diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..5175b92 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +/.idea/*.iml +capstone_project/eurusd_features.csv +capstone_project/data/eurusd_features.csv diff --git a/README.md b/README.md new file mode 100644 index 0000000..5b10aa1 --- /dev/null +++ b/README.md @@ -0,0 +1 @@ +# kai_code \ No newline at end of file diff --git a/boston_housing/boston_housing.html b/boston_housing/boston_housing.html new file mode 100644 index 0000000..1aaf064 --- /dev/null +++ b/boston_housing/boston_housing.html @@ -0,0 +1,14167 @@ + + + +boston_housing + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Model Evaluation & Validation

Project: Predicting Boston Housing Prices

Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

+

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

+

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

In this project, you will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a good fit could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.

+

The dataset for this project originates from the UCI Machine Learning Repository. The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:

+
    +
  • 16 data points have an 'MEDV' value of 50.0. These data points likely contain missing or censored values and have been removed.
  • +
  • 1 data point has an 'RM' value of 8.78. This data point can be considered an outlier and has been removed.
  • +
  • The features 'RM', 'LSTAT', 'PTRATIO', and 'MEDV' are essential. The remaining non-relevant features have been excluded.
  • +
  • The feature 'MEDV' has been multiplicatively scaled to account for 35 years of market inflation.
  • +
+

Run the code cell below to load the Boston housing dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

+ +
+
+
+
+
+
In [6]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from sklearn.cross_validation import ShuffleSplit
+
+# Import supplementary visualizations code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the Boston housing dataset
+data = pd.read_csv('housing.csv')
+prices = data['MEDV']
+features = data.drop('MEDV', axis = 1)
+    
+# Success
+
+print "Boston housing dataset has {} data points with {} variables each.".format(*data.shape)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Boston housing dataset has 489 data points with 4 variables each.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Data Exploration

In this first section of this project, you will make a cursory investigation about the Boston housing data and provide your observations. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand and justify your results.

+

Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into features and the target variable. The features, 'RM', 'LSTAT', and 'PTRATIO', give us quantitative information about each data point. The target variable, 'MEDV', will be the variable we seek to predict. These are stored in features and prices, respectively.

+ +
+
+
+
+
+
+
+
+

Implementation: Calculate Statistics

For your very first coding implementation, you will calculate descriptive statistics about the Boston housing prices. Since numpy has already been imported for you, use this library to perform the necessary calculations. These statistics will be extremely important later on to analyze various prediction results from the constructed model.

+

In the code cell below, you will need to implement the following:

+
    +
  • Calculate the minimum, maximum, mean, median, and standard deviation of 'MEDV', which is stored in prices.
      +
    • Store each calculation in their respective variable.
    • +
    +
  • +
+ +
+
+
+
+
+
In [7]:
+
+
+
# TODO: Minimum price of the data
+minimum_price = np.min(prices)
+
+# TODO: Maximum price of the data
+maximum_price = np.max(prices)
+
+# TODO: Mean price of the data
+mean_price = np.mean(prices)
+
+# TODO: Median price of the data
+median_price = np.median(prices)
+
+# TODO: Standard deviation of prices of the data
+std_price = np.std(prices)
+
+# Show the calculated statistics
+print "Statistics for Boston housing dataset:\n"
+print "Minimum price: ${:,.2f}".format(minimum_price)
+print "Maximum price: ${:,.2f}".format(maximum_price)
+print "Mean price: ${:,.2f}".format(mean_price)
+print "Median price ${:,.2f}".format(median_price)
+print "Standard deviation of prices: ${:,.2f}".format(std_price)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Statistics for Boston housing dataset:
+
+Minimum price: $105,000.00
+Maximum price: $1,024,800.00
+Mean price: $454,342.94
+Median price $438,900.00
+Standard deviation of prices: $165,171.13
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 1 - Feature Observation

As a reminder, we are using three features from the Boston housing dataset: 'RM', 'LSTAT', and 'PTRATIO'. For each data point (neighborhood):

+
    +
  • 'RM' is the average number of rooms among homes in the neighborhood.
  • +
  • 'LSTAT' is the percentage of homeowners in the neighborhood considered "lower class" (working poor).
  • +
  • 'PTRATIO' is the ratio of students to teachers in primary and secondary schools in the neighborhood.
  • +
+

Using your intuition, for each of the three features above, do you think that an increase in the value of that feature would lead to an increase in the value of 'MEDV' or a decrease in the value of 'MEDV'? Justify your answer for each.
+Hint: Would you expect a home that has an 'RM' value of 6 be worth more or less than a home that has an 'RM' value of 7?

+ +
+
+
+
+
+
+
+
+

Answer: higher RM should lead to an increase in MEDV, as more rooms means higher price. Higher LSTAT should lead to a decrease in MEDV, as more lower class people means less purchasing power so lower home prices. Higher PTRATIO should lead to a decrease in home prices, as richer people may go to neighbourhoods with more advantageous, lower student to teacher ratios.

+ +
+
+
+
+
+
+
+
+
+

Developing a Model

In this second section of the project, you will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in your predictions.

+ +
+
+
+
+
+
+
+
+

Implementation: Define a Performance Metric

It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, you will be calculating the coefficient of determination, R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how "good" that model is at making predictions.

+

The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the target variable. A model with an R2 of 0 is no better than a model that always predicts the mean of the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the features. A model can be given a negative R2 as well, which indicates that the model is arbitrarily worse than one that always predicts the mean of the target variable.

+

For the performance_metric function in the code cell below, you will need to implement the following:

+
    +
  • Use r2_score from sklearn.metrics to perform a performance calculation between y_true and y_predict.
  • +
  • Assign the performance score to the score variable.
  • +
+ +
+
+
+
+
+
In [8]:
+
+
+
# TODO: Import 'r2_score'
+
+def performance_metric(y_true, y_predict):
+    """ Calculates and returns the performance score between 
+        true and predicted values based on the metric chosen. """
+    
+    from sklearn.metrics import r2_score
+    # TODO: Calculate the performance score between 'y_true' and 'y_predict'
+    score = r2_score(y_true, y_predict)
+    
+    # Return the score
+    return score
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 2 - Goodness of Fit

Assume that a dataset contains five data points and a model made the following predictions for the target variable:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
True ValuePrediction
3.02.5
-0.50.0
2.02.1
7.07.8
4.25.3
+

Would you consider this model to have successfully captured the variation of the target variable? Why or why not?

+

Run the code cell below to use the performance_metric function and calculate this model's coefficient of determination.

+ +
+
+
+
+
+
In [9]:
+
+
+
# Calculate the performance of this model
+score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
+print "Model has a coefficient of determination, R^2, of {:.3f}.".format(score)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Model has a coefficient of determination, R^2, of 0.923.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer:yes, because r squared is high and thus 92.3 % of the dependent variable is explained by the independent variable.

+ +
+
+
+
+
+
+
+
+

Implementation: Shuffle and Split Data

Your next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.

+

For the code cell below, you will need to implement the following:

+
    +
  • Use train_test_split from sklearn.cross_validation to shuffle and split the features and prices data into training and testing sets.
      +
    • Split the data into 80% training and 20% testing.
    • +
    • Set the random_state for train_test_split to a value of your choice. This ensures results are consistent.
    • +
    +
  • +
  • Assign the train and testing splits to X_train, X_test, y_train, and y_test.
  • +
+ +
+
+
+
+
+
In [10]:
+
+
+
# TODO: Import 'train_test_split'
+from sklearn.cross_validation import train_test_split
+
+# TODO: Shuffle and split the data into training and testing subsets
+X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=5)
+
+# Success
+print "Training and testing split was successful."
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Training and testing split was successful.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 3 - Training and Testing

What is the benefit to splitting a dataset into some ratio of training and testing subsets for a learning algorithm?
+Hint: What could go wrong with not having a way to test your model?

+ +
+
+
+
+
+
+
+
+

Answer: It helps to prevent overfitting ensuring the trained model generalizes well to out of sample data.

+ +
+
+
+
+
+
+
+
+
+

Analyzing Model Performance

In this third section of the project, you'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing 'max_depth' parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone.

+ +
+
+
+
+
+
+
+
+

Learning Curves

The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination.

+

Run the code cell below and use these graphs to answer the following question.

+ +
+
+
+
+
+
In [11]:
+
+
+
# Produce learning curves for varying training set sizes and maximum depths
+vs.ModelLearning(features, prices)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 4 - Learning the Data

Choose one of the graphs above and state the maximum depth for the model. What happens to the score of the training curve as more training points are added? What about the testing curve? Would having more training points benefit the model?
+Hint: Are the learning curves converging to particular scores?

+ +
+
+
+
+
+
+
+
+

Answer: The max depth is 3, after that overfitting occurs. As more examples are added, the training score will decline a bit as it gets harder to fit all examples. But testing also gets better, until the two almost converge. Adding more training point would benefit the model a bit, as training and testing curves would converge even more. However, additional points are not always helpful, as at some point no new information becomes available, so the model predictions on the test set will not improve in accuracy further, so the testing score doesnt improve more. The reason why the training score is high initially is that it is easy to fit the data as there are few examples. As more examples becomes available, it gets more difficult to fit so testing score drops.

+ +
+
+
+
+
+
+
+
+

Complexity Curves

The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the learning curves, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the performance_metric function.

+

Run the code cell below and use this graph to answer the following two questions.

+ +
+
+
+
+
+
In [12]:
+
+
+
vs.ModelComplexity(X_train, y_train)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 5 - Bias-Variance Tradeoff

When the model is trained with a maximum depth of 1, does the model suffer from high bias or from high variance? How about when the model is trained with a maximum depth of 10? What visual cues in the graph justify your conclusions?
+Hint: How do you know when a model is suffering from high bias or high variance?

+ +
+
+
+
+
+
+
+
+

Answer: At max depth 1, it suffers from high bias - r^2 is generally low for both training and validation, so it has low predictive power. At max depth 10, it suffers from high variance, as r^2 for training goes to 1, but validation remains low, meaning model is overfitting and does not generalise well. These conclusions are based on the fact that the training and validation scores diverge at higher max depth, with training improving, whereas validation is dropping off and even declining.

+ +
+
+
+
+
+
+
+
+

Question 6 - Best-Guess Optimal Model

Which maximum depth do you think results in a model that best generalizes to unseen data? What intuition lead you to this answer?

+ +
+
+
+
+
+
+
+
+

Answer: It seems to be max depth of 3, as afterwards validation declines whereas training continues to rise, showing the model cannot generalise well anymore, so there is no benefit to increasing max depth.

+ +
+
+
+
+
+
+
+
+
+

Evaluating Model Performance

In this final section of the project, you will construct a model and make a prediction on the client's feature set using an optimized model from fit_model.

+ +
+
+
+
+
+
+
+
+

What is the grid search technique and how it can be applied to optimize a learning algorithm?

+ +
+
+
+
+
+
+
+
+

Answer: The grid search space is a space occupied by parameters to a model. The grid search technique will try all possible points on this space (combination of parameters) The output of grid search are many models, each using different parameters. This is a selective search, as only points on the parameter grid will be used. The search is guided by chosing a range of values for each parameter dimension picking a step size large enough to expect the output to vary in some interesting way. In case of enum parameters, we could earch across several different classifiers for example, to get an idea which works best.

+ +
+
+
+
+
+
+
+
+

Question 8 - Cross-Validation

What is the k-fold cross-validation training technique? What benefit does this technique provide for grid search when optimizing a model?
+Hint: Much like the reasoning behind having a testing set, what could go wrong with using grid search without a cross-validated set?

+ +
+
+
+
+
+
+
+
+

Answer: The K Fold cross validation technique splits the dataset into training and cross validation sets. More specifically, it splits the data into K subsets, using one of the subsets as validation and the k-1 others combined as the training set. It then trains and evaluates the ML algorithm. In the next iteration it will pick a different training and cross validation set and repeat the previous step. Once all K combinations have been explored, an average performance estimate is computed across the outputs of each of the k steps run. The benefit of this technique to grid search is that you get a more reliable, stable estimate for each point on the parameter grid, as it will be run using several splits of training / testing data, eliminating potential bias in the dataset and given stable values no matter how the dataset is divided into training and testing. This K fold validation is useful for grid search as each point on the grid will get a more reliable estimate of model performance than not using K folder validation. If we limit grid search to a single dataset (no K fold validation) overfitting would be an issue, as the specific choice of model function might lead to lack of generalisation to out of sample data. Applying this generalisation inside the dataset, many times over, make the estimate more stable.

+ +
+
+
+
+
+
+
+
+

Implementation: Fitting a Model

Your final implementation requires that you bring everything together and train a model using the decision tree algorithm. To ensure that you are producing an optimized model, you will train the model using the grid search technique to optimize the 'max_depth' parameter for the decision tree. The 'max_depth' parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called supervised learning algorithms.

+

In addition, you will find your implementation is using ShuffleSplit() for an alternative form of cross-validation (see the 'cv_sets' variable). While it is not the K-Fold cross-validation technique you describe in Question 8, this type of cross-validation technique is just as useful!. The ShuffleSplit() implementation below will create 10 ('n_splits') shuffled sets, and for each shuffle, 20% ('test_size') of the data will be used as the validation set. While you're working on your implementation, think about the contrasts and similarities it has to the K-fold cross-validation technique.

+

Please note that ShuffleSplit has different parameters in scikit-learn versions 0.17 and 0.18. +For the fit_model function in the code cell below, you will need to implement the following:

+
    +
  • Use DecisionTreeRegressor from sklearn.tree to create a decision tree regressor object.
      +
    • Assign this object to the 'regressor' variable.
    • +
    +
  • +
  • Create a dictionary for 'max_depth' with the values from 1 to 10, and assign this to the 'params' variable.
  • +
  • Use make_scorer from sklearn.metrics to create a scoring function object.
      +
    • Pass the performance_metric function as a parameter to the object.
    • +
    • Assign this scoring function to the 'scoring_fnc' variable.
    • +
    +
  • +
  • Use GridSearchCV from sklearn.grid_search to create a grid search object.
      +
    • Pass the variables 'regressor', 'params', 'scoring_fnc', and 'cv_sets' as parameters to the object.
    • +
    • Assign the GridSearchCV object to the 'grid' variable.
    • +
    +
  • +
+ +
+
+
+
+
+
In [13]:
+
+
+
# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'
+
+def fit_model(X, y):
+    """ Performs grid search over the 'max_depth' parameter for a 
+        decision tree regressor trained on the input data [X, y]. """
+    
+    # Create cross-validation sets from the training data
+    # sklearn version 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)
+    # sklearn versiin 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None)
+    cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)
+
+    # TODO: Create a decision tree regressor object
+    from sklearn.tree import DecisionTreeRegressor
+    regressor = DecisionTreeRegressor(random_state =1)
+
+    # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10
+    import numpy as np
+    params = {"max_depth": np.arange(1,11)}
+    print("params", params)
+
+    # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' 
+    from sklearn.metrics import make_scorer
+    scoring_fnc = make_scorer(performance_metric)
+
+    # TODO: Create the grid search object
+    from sklearn.grid_search import GridSearchCV
+    grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cv_sets)
+
+    # Fit the grid search object to the data to compute the optimal model
+    grid = grid.fit(X, y)
+
+    # Return the optimal model after fitting the data
+    return grid.best_estimator_
+
+ +
+
+
+ +
+
+
+
+
+
+

Making Predictions

Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a decision tree regressor, the model has learned what the best questions to ask about the input data are, and can respond with a prediction for the target variable. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on.

+ +
+
+
+
+
+
+
+
+

Question 9 - Optimal Model

What maximum depth does the optimal model have? How does this result compare to your guess in Question 6?

+

Run the code block below to fit the decision tree regressor to the training data and produce an optimal model.

+ +
+
+
+
+
+
In [14]:
+
+
+
# Fit the training data to the model using grid search
+reg = fit_model(X_train, y_train)
+
+# Produce the value for 'max_depth'
+print "Parameter 'max_depth' is {} for the optimal model.".format(reg.get_params()['max_depth'])
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+
+
+
+ +
+
+ +
+
C:\Anaconda3\envs\udacity\lib\site-packages\sklearn\grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.
+  DeprecationWarning)
+
+
+
+ +
+
+ +
+
Parameter 'max_depth' is 4 for the optimal model.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: The max depth of the optimal model is 4. My guess would have been 3, as it seems with 4, training accuracy goes up, but much more so than test accuracy, which almost flatlines.

+ +
+
+
+
+
+
+
+
+

Question 10 - Predicting Selling Prices

Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FeatureClient 1Client 2Client 3
Total number of rooms in home5 rooms4 rooms8 rooms
Neighborhood poverty level (as %)17%32%3%
Student-teacher ratio of nearby schools15-to-122-to-112-to-1
+

What price would you recommend each client sell his/her home at? Do these prices seem reasonable given the values for the respective features?
+Hint: Use the statistics you calculated in the Data Exploration section to help justify your response.

+

Run the code block below to have your optimized model make predictions for each client's home.

+ +
+
+
+
+
+
In [16]:
+
+
+
# Produce a matrix for client data
+client_data = [[5, 17, 15], # Client 1
+               [4, 32, 22], # Client 2
+               [8, 3, 12]]  # Client 3
+
+
+
+# Show predictions
+for i, price in enumerate(reg.predict(client_data)):
+    print "Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price)
+    
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predicted selling price for Client 1's home: $411,931.58
+Predicted selling price for Client 2's home: $235,620.00
+Predicted selling price for Client 3's home: $922,740.00
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: Client 1's home: around \$410k, Client 2's home: around\$235k, Client 3's home: around \$920k. Prices seem reasonable, as Client 3's home has low neigbourhood poverty, low student teacher ratio and a lot of bedrooms. C2 home should be the lowest, as least rooms, worst student teacher ratio, and highest neighbourhood poverty. C1 works too and is in between C3 and C2, as better student teacher ratio, half the poverty level, and 1 extra room compared to C2. More generally, prices are in the range of the dataset and a large house in a good neighborhood is close to the maximum prices which is expected

+ +
+
+
+
+
+
+
+
+

Sensitivity

An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted. Run the code cell below to run the fit_model function ten times with different training and testing sets to see how the prediction for a specific client changes with the data it's trained on.

+ +
+
+
+
+
+
In [17]:
+
+
+
vs.PredictTrials(features, prices, fit_model, client_data) # predicts client 1
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 1: $391,183.33
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 2: $419,700.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 3: $415,800.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 4: $420,622.22
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 5: $413,334.78
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 6: $411,931.58
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 7: $399,663.16
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 8: $407,232.00
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 9: $351,577.61
+('params', {'max_depth': array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])})
+Trial 10: $413,700.00
+
+Range in prices: $69,044.61
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 11 - Applicability

In a few sentences, discuss whether the constructed model should or should not be used in a real-world setting.
+Hint: Some questions to answering:

+
    +
  • How relevant today is data that was collected from 1978?
  • +
  • Are the features present in the data sufficient to describe a home?
  • +
  • Is the model robust enough to make consistent predictions?
  • +
  • Would data collected in an urban city like Boston be applicable in a rural city?
  • +
+ +
+
+
+
+
+
+
+
+

Answer: Data from 1978 may not be that relevant, as underlying factors may have changed, such as the distribution of wealth across neighbourhoods, or the number of teachers and students in schools. However, if there were no such trends, the dataset could be a good proxy, as price was corrected for inflation. The number of features are probably not sufficient to describe a home - condition, size of land, age and other features may have additional or more important predictive power. The model does not seem very robust - a range of around 70k in predictions on just 10 iterations would be unacceptable to a prospective seller. Finally, urban data may apply to rural settings as there are less neigbourhoods, prices are generally lower, and properties illiquid so not many transactions so price discovery may not follow the same pattern as in a city. Thus the model's use should be restricted to an urban setting, additional features should be added to control the variance of predictions, and ideally updated data would give a better price estimate that may come closer to a real transaction as of today.

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/boston_housing/boston_housing.ipynb b/boston_housing/boston_housing.ipynb new file mode 100644 index 0000000..8ff5536 --- /dev/null +++ b/boston_housing/boston_housing.ipynb @@ -0,0 +1,741 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Model Evaluation & Validation\n", + "## Project: Predicting Boston Housing Prices\n", + "\n", + "Welcome to the first project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "In this project, you will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a *good fit* could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.\n", + "\n", + "The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Housing). The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:\n", + "- 16 data points have an `'MEDV'` value of 50.0. These data points likely contain **missing or censored values** and have been removed.\n", + "- 1 data point has an `'RM'` value of 8.78. This data point can be considered an **outlier** and has been removed.\n", + "- The features `'RM'`, `'LSTAT'`, `'PTRATIO'`, and `'MEDV'` are essential. The remaining **non-relevant features** have been excluded.\n", + "- The feature `'MEDV'` has been **multiplicatively scaled** to account for 35 years of market inflation.\n", + "\n", + "Run the code cell below to load the Boston housing dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Boston housing dataset has 489 data points with 4 variables each.\n" + ] + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.cross_validation import ShuffleSplit\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the Boston housing dataset\n", + "data = pd.read_csv('housing.csv')\n", + "prices = data['MEDV']\n", + "features = data.drop('MEDV', axis = 1)\n", + " \n", + "# Success\n", + "\n", + "print \"Boston housing dataset has {} data points with {} variables each.\".format(*data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Exploration\n", + "In this first section of this project, you will make a cursory investigation about the Boston housing data and provide your observations. Familiarizing yourself with the data through an explorative process is a fundamental practice to help you better understand and justify your results.\n", + "\n", + "Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into **features** and the **target variable**. The **features**, `'RM'`, `'LSTAT'`, and `'PTRATIO'`, give us quantitative information about each data point. The **target variable**, `'MEDV'`, will be the variable we seek to predict. These are stored in `features` and `prices`, respectively." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Calculate Statistics\n", + "For your very first coding implementation, you will calculate descriptive statistics about the Boston housing prices. Since `numpy` has already been imported for you, use this library to perform the necessary calculations. These statistics will be extremely important later on to analyze various prediction results from the constructed model.\n", + "\n", + "In the code cell below, you will need to implement the following:\n", + "- Calculate the minimum, maximum, mean, median, and standard deviation of `'MEDV'`, which is stored in `prices`.\n", + " - Store each calculation in their respective variable." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Statistics for Boston housing dataset:\n", + "\n", + "Minimum price: $105,000.00\n", + "Maximum price: $1,024,800.00\n", + "Mean price: $454,342.94\n", + "Median price $438,900.00\n", + "Standard deviation of prices: $165,171.13\n" + ] + } + ], + "source": [ + "# TODO: Minimum price of the data\n", + "minimum_price = np.min(prices)\n", + "\n", + "# TODO: Maximum price of the data\n", + "maximum_price = np.max(prices)\n", + "\n", + "# TODO: Mean price of the data\n", + "mean_price = np.mean(prices)\n", + "\n", + "# TODO: Median price of the data\n", + "median_price = np.median(prices)\n", + "\n", + "# TODO: Standard deviation of prices of the data\n", + "std_price = np.std(prices)\n", + "\n", + "# Show the calculated statistics\n", + "print \"Statistics for Boston housing dataset:\\n\"\n", + "print \"Minimum price: ${:,.2f}\".format(minimum_price)\n", + "print \"Maximum price: ${:,.2f}\".format(maximum_price)\n", + "print \"Mean price: ${:,.2f}\".format(mean_price)\n", + "print \"Median price ${:,.2f}\".format(median_price)\n", + "print \"Standard deviation of prices: ${:,.2f}\".format(std_price)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1 - Feature Observation\n", + "As a reminder, we are using three features from the Boston housing dataset: `'RM'`, `'LSTAT'`, and `'PTRATIO'`. For each data point (neighborhood):\n", + "- `'RM'` is the average number of rooms among homes in the neighborhood.\n", + "- `'LSTAT'` is the percentage of homeowners in the neighborhood considered \"lower class\" (working poor).\n", + "- `'PTRATIO'` is the ratio of students to teachers in primary and secondary schools in the neighborhood.\n", + "\n", + "_Using your intuition, for each of the three features above, do you think that an increase in the value of that feature would lead to an **increase** in the value of `'MEDV'` or a **decrease** in the value of `'MEDV'`? Justify your answer for each._ \n", + "**Hint:** Would you expect a home that has an `'RM'` value of 6 be worth more or less than a home that has an `'RM'` value of 7?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** higher RM should lead to an increase in MEDV, as more rooms means higher price. Higher LSTAT should lead to a decrease in MEDV, as more lower class people means less purchasing power so lower home prices. Higher PTRATIO should lead to a decrease in home prices, as richer people may go to neighbourhoods with more advantageous, lower student to teacher ratios." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "\n", + "## Developing a Model\n", + "In this second section of the project, you will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in your predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Define a Performance Metric\n", + "It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, you will be calculating the [*coefficient of determination*](http://stattrek.com/statistics/dictionary.aspx?definition=coefficient_of_determination), R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how \"good\" that model is at making predictions. \n", + "\n", + "The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the **target variable**. A model with an R2 of 0 is no better than a model that always predicts the *mean* of the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the **features**. _A model can be given a negative R2 as well, which indicates that the model is **arbitrarily worse** than one that always predicts the mean of the target variable._\n", + "\n", + "For the `performance_metric` function in the code cell below, you will need to implement the following:\n", + "- Use `r2_score` from `sklearn.metrics` to perform a performance calculation between `y_true` and `y_predict`.\n", + "- Assign the performance score to the `score` variable." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Import 'r2_score'\n", + "\n", + "def performance_metric(y_true, y_predict):\n", + " \"\"\" Calculates and returns the performance score between \n", + " true and predicted values based on the metric chosen. \"\"\"\n", + " \n", + " from sklearn.metrics import r2_score\n", + " # TODO: Calculate the performance score between 'y_true' and 'y_predict'\n", + " score = r2_score(y_true, y_predict)\n", + " \n", + " # Return the score\n", + " return score" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2 - Goodness of Fit\n", + "Assume that a dataset contains five data points and a model made the following predictions for the target variable:\n", + "\n", + "| True Value | Prediction |\n", + "| :-------------: | :--------: |\n", + "| 3.0 | 2.5 |\n", + "| -0.5 | 0.0 |\n", + "| 2.0 | 2.1 |\n", + "| 7.0 | 7.8 |\n", + "| 4.2 | 5.3 |\n", + "*Would you consider this model to have successfully captured the variation of the target variable? Why or why not?* \n", + "\n", + "Run the code cell below to use the `performance_metric` function and calculate this model's coefficient of determination." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model has a coefficient of determination, R^2, of 0.923.\n" + ] + } + ], + "source": [ + "# Calculate the performance of this model\n", + "score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])\n", + "print \"Model has a coefficient of determination, R^2, of {:.3f}.\".format(score)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**:yes, because r squared is high and thus 92.3 % of the dependent variable is explained by the independent variable." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Shuffle and Split Data\n", + "Your next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.\n", + "\n", + "For the code cell below, you will need to implement the following:\n", + "- Use `train_test_split` from `sklearn.cross_validation` to shuffle and split the `features` and `prices` data into training and testing sets.\n", + " - Split the data into 80% training and 20% testing.\n", + " - Set the `random_state` for `train_test_split` to a value of your choice. This ensures results are consistent.\n", + "- Assign the train and testing splits to `X_train`, `X_test`, `y_train`, and `y_test`." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training and testing split was successful.\n" + ] + } + ], + "source": [ + "# TODO: Import 'train_test_split'\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# TODO: Shuffle and split the data into training and testing subsets\n", + "X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=5)\n", + "\n", + "# Success\n", + "print \"Training and testing split was successful.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3 - Training and Testing\n", + "*What is the benefit to splitting a dataset into some ratio of training and testing subsets for a learning algorithm?* \n", + "**Hint:** What could go wrong with not having a way to test your model?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** It helps to prevent overfitting ensuring the trained model generalizes well to out of sample data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "\n", + "## Analyzing Model Performance\n", + "In this third section of the project, you'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing `'max_depth'` parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Curves\n", + "The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination. \n", + "\n", + "Run the code cell below and use these graphs to answer the following question." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAIKCAYAAAAK1y/8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFdX5xz/vvVvuVmDZXXaXKkgREUhARUTFqBGiYGLB\n2I1dk2hETYixkljSSAyKWGJDo0b9GSG22GKJKGJBEBSVXpa2sL3ccn5/nJnd2bt3K7tsez/PM8/M\nnDlz5ky558533ve8R4wxKIqiKIqiKIqidAd87V0BRVEURVEURVGUfYUKIEVRFEVRFEVRug0qgBRF\nURRFURRF6TaoAFIURVEURVEUpdugAkhRFEVRFEVRlG6DCiBFURRFURRFUboNKoCUDoWInC8ixjOV\nisg6EXleRGaIiLThsW8RkWbFhReR/4rIf9uoSrGO90jU9alvmryv6tRAXe+MqlOFiKwQkavb8j52\ndZzrGmrvejQHEQk4z8Csdjj2B55nMCIiW0TkRREZ1wbHukVENopIWEQ+aO3yFUVRlNYhrr0roCj1\ncBqwCUgEBgAnAE8Cl4jINGNMeRsc80HglWbuc0Ub1KMhfgvM96xfBFwITALCnvSV+7JSDRDG1g2g\nN7a+c4Aq4J72qpSyz6kEDgM2tNPxPwKuBATYD7gReEdExhhjvmmNA4jIkcDNwG3AS0Bha5SrKIqi\ntD4qgJSOymdRLyYLROQZ4BngD8DPW/uAxphNWNHVnH32qdAwxnwLfOuui8gUZ/FDY0yjVgERSTTG\nVLZV/WJhjKn+Ei4irwKrgYvZxwKoPc69pXT0uoqIH5CmPHMAxo643Z4WkSLPc7hYRJYCXwGXAL/c\nm4I99+oAJ2meMWbL3pQZVa6iKIrSyqgLnNJpMMY8B7wAXCwiyW66iCSLyO9FZK2IVDnz34hIredb\nRLJEZJ7jolLpzBeISKKzvY4LnIhcJSKrRKRcRHaLyFIR+ZFnex0XOBEZ7rjs7XH2+8AjVNw8tzgu\nOUMdd5wSEVkvIjdF17uliMgU5xjTHNe5XcB6z/ZxIvJvTz3fEZHDYpRzrHOeJc70oogcEJ2vKTgv\nzMuxVr3o4zS1PteJyAYnz2IROVhE8kVkvifPZc65H+bci0Lg7eack4ic6Ny7IifPKq8Ll4iMFJGF\nIrLDce/bICJPR5UxUkQWiUihU9//icgxUXnuFJGQiIwSkTdEpAR4rPlXt851Ol1ElohImfPsPiUi\nfaPynCsibzvnUCwiH4vImVF5XPe1m0TkRhFZj7XgDfU8Y1NE5D4RKRCR7c7zlh6jDO/1c897qIi8\nKtbdda2I/FqktoukiBwiIu97rvO1zv4VLbk2xpjVQDGwv+cYfUTkARHZKrZ9WCkiP4mqR8znSqy7\nm/v8bfaeq4j0FJF7nWe0SkS+FJGfRZVb72/Vc51GiMjrzv1cJyJnO9svEJHVzjP6uogMjCq7Off4\nBhG5RmxbVOw8j8Ojr59Yd+QPnHtW5CxP9WyPd56V1c613CS2jU6IynOHiKxx7utOEXlXRA5t+p1U\nFEVpGWoBUjobLwE/BMZjXVjigFeBkVj3sOXABKyLSwZwDYCI9ALed9J+B3wOZAMnAQlYF51aiMhZ\nwJ+B2cC7QBIw2ikjJiKSB7yHfbn6GdYN5qfAiyJyojHm5ahdngceBv4CTANuBTY6aa3FfGARcAYQ\ncOo5AXgL+1X+QqDCqe+bInKIMWa5k+9krNXteeBMwA/8GnvtRxtjtragPoPwWLGaWZ+fYS2A84F/\nAcOc+qXWc6yngCeAu526N+mcRGQE8H/AP7BuTSFgKNDfKUOAl7EWw0uBXUA/rKume04Dgf8BO4DL\ngRLgKuBVEfm+MeZN7yXAivv7sc+n152x2YjIL7Cuhg849e+JfY7fEpGxxpgyJ+tg51p8DUSAo7HW\n1gRjzCNRxV6KtZr8Ant/tgPuy/Y87P04HRgF3In9TV3aWFWx1/nvwB+Bk4HbgXVYl1dEJBd4HVgL\nnI29NtcBfesW1zREJAtIA/Y4672Axc7mG7CueicAfxeROGPMA1FFRD9Xm4GfYNubE4ACYENU+3QD\n8CW2zZkrIhnGmNlR5db5rbpVxt6n+djn/0rgMRE5EJjoXI8k4C5gAXCkZ9/m3OOLgC+wv71k4E/A\n8yIyyhgTca7Vtdh79Qzwe6AcGEfNswDwT+A47L1cgn0mZmN/I2c5eW7Cto2/BlYAPYBDaKB9VRRF\naTWMMTrp1GEm4HzAAPvXs/14Z/vpzvo5zvqRUfl+g/1Kne2sz8a+OH2ngWPfguOt46zfDXzSSH3/\nC/zXs/4n7Mvy/p40P/bF8ZPoYwE/iSpvOfCfZlwvt5y4GNumONuejLHtf8Ay735APFaYPOWs+7Bi\n7KWofTOwL453NlK3O51rEedMfZz6BoGpLahPPJAP/F/Uvmc65znfk3aZk3ZHVN4mnRP2RTsCJNZz\nbv2c8r/fwPnfjRUBA6LOaS3wftR1MsClTbzndwKhBrb3BEqxrlje9GHO/bisnv18zn1agHWpdNMD\nTv3WAQn1PGP3RaU/iHU7iy5jVozzPsOTJlgXyYWetDnYl+w+nrRUrMioaML1+gB4wzm3eOc6vOQc\ne4qT5zbnmg2K2ncBsAXwNfRcOdt+5mzL8aSd6qT9OCrv40AZ0KMJv1X3Os3wpGU7aduAFE/6L530\nPvVci8bu8ReA35N+tpP+XWe9t3Mv/tHA9T4uur5O+oVO+gHO+usNlaOTTjrp1JaTusApnQ3XNcZ1\nVZuCdRV5X0Ti3An4D/ZlZ4KT7/vAR8aYT5txrI+AsSIyV6zLVHKje9gvrx8YT/8lY0wY+zV7rHjc\nghxejFpfQQz3sL3kee+KU4fDgKeddfeaGeBNar4eH4h90X886toWYa+N9ytzffixgieIFS83A9cY\njyWsGfXZDyuinok6xnPUPA8NnnszzukTrAB6RkROFpHMqHLysdafP4nIhSIyJMaxjwTeNcZUd/w3\nxgSd8zxERAJR+aPr2lKOwH69fyLqHNc4U/V9c9yq/ikiW7DiKIh96a3j9oQVjVX1HDP6OV4OpIlI\nzybUt3pfY4z7Eu79DUwA3jHGbPPkK6F5AUu+hz23KuzHiO8CFxpj3DKmYC23m6Ku2atALh5XOYem\n3qsjnWNGP7OPYy02hzSj3OrfjDFmO7AbeM8YU+rJ86Uz7+8mNPMev+q0Vy7Lnbl7P47AiqX7G6jn\nFKyYfCFGm+yWAfb39kMRmS0iE0UkvoEyFUVRWhUVQEpnw/1jd12vsrGuF8GoaYmzvbdn3qwAB9h+\nGJcDh2JfhApE5P9EZFAD+2R46uYlHyveekWlF0StV1Lb9aU1iK5PllOX26h73S6i5pplO/MnYuQ7\n1pOvIcLAwdgXvVOwrodzpHbfnqbWJ9eZb/cewNiO4vVF3Io+9yadk7HBLaZi78U/gG1i++8c7mwP\nYV+qP8e6A30jIt+IyIWeYzX0LPixLj8uEeeltjVwz/E96p7jUJxzdMTJ68AIrAvVJOy9eoLYz2BD\n7o6xnmPqKcdL2BhTFGNf7365RN1zh20x0upjCfbcxmEFcK4x5iHP9mzsR5Lo67XA2R79rDfV9TMD\n2B4lKsA+A+72ppQbNsYUR6VVYUVQdBrUuLo29x43dh/d69BQW5oNpGDdJL3X0v0Q4JZxC/Y3fyrW\nArxTbB+s6DZSURSl1dE+QEpn4wTsH+vHzvourEvRjHryr3PmO2lmnwHna/R9wH3On/L3sX2CnsaK\nolgUADkx0nOwVoroF5Z9QbR1xH3J+TO2L0N9+Xc582uAd2Lka1IHdGPMUmfxIxF5H/uVei62H1dz\n6uMVvdWIDWLRg9hEn3uTz8kY8xrwmmOpmYQT3lhEBhhjCo0xXwNniw1aMRbbN+ZBEVljjHmLhp+F\nMLVFW7PGn2oE9xzPxPb7iMYVHEdgfxM/9NwjGvgS35p1bA5bibrnDn2aUUax9xxjsAv4BisSYvFl\n1HpTr0UBkCUiPuP0oXHI8WxvSblNpbn3uDF2OvO+2OsVi13YPpDfq2f7Zqj+cHEbcJvTz2s6tg1I\nAM5rYf0URVGahAogpdMgIqdg/yTvMjWduF/BWhZKjDHRLyle/gPcIHbcj2XNPbYxZjfwtBOhqKGO\n3W8DvxCRQcaYdU69/djO4Z/G+Nq9zzHG7BaRD7EBHa5zhF4slmP7PxxgjJnTSsfOF5Hbgd+LHc9p\nUTPqsxb71f80nA7yDqdS4xrZGM0+J2NMBfC6iGRgxe8AalyDcF5sP3E6h5+D7fD9FvZZuFhE8owT\nFtlxBZqB7X/RoghmTeAdbD+NwcaYJxvI57p0Bt0EEckGftBG9WopHwCXi0gf1w1ORFKxrlatxSvY\n/odrjDHRomRveBsbsv9HWFdNl7Ow92hJrJ1akda+x+9i630JnqiKUbyCDfaRaIz5X1MKNTaYyn0i\nchL296MoitKmqABSOipjnX4XCdgXzhOxL76vYaMGuTyBjb70hoj8GduRPgEYghVLP3TE0l+wX8Rf\nF5HfYV9gM7ERmS6L4V6CiNyP/ZK5GOuCMwz7gvuf6Lwe/oJ9kXpNRG7Gfm2/wtn3hAb229f8Atu/\n5iUReQTrkpOFtcoEjTE3GmPCTtS1Z5z+T89hv+7mAIcDq40xd7fg2HcDM7GR+hY1oz5B597NFZF7\nsf0lhgHXYvscRGiEpp6TiFyJdRV6BevukwVcj3Xj+VJEDsFGuPonNlBDPNZdrwobGANsQIyzsc/m\nrU4dr8Q+zxc185pFIyJyaoz0TcaYD8SGYP6z2KiEr2Kf477YCGAvG2Oexb7MlmJfPGcD6djIXNuw\nbmIdhT9ix436j4j8FtuP5ZfYqHqt5S76B6yQfk9E/ooNxJCGHdvnUGPMKS0s9wWsyHnIuRdfYdul\ns4GbjTFtPVhqq95jY0yBiNwE/NGxfD6NDebwHaDQGDPfGPOKiPwftg/QHMC1PO2HbQN/boxZLyIv\nAx8Cn2IDkIzHWo3+0vLTVRRFaRoqgJSOittp2A23+wnwY+BZr4XAeSk+HpiF/Sq5H/YP/1ts5+oq\nJ98ep//G75y8vbEvAW9S4zcfzf+w4uocrIvVFmzn5Zvrq7QxZouITMKGh70XSAQ+A07wdLhud5yX\n5EOxL0N3Y1+MtmNfVu715HteRI7Gvvz/HdtxeytWFD7ewmOXOVagu0RkqjHm5WbU525HuPwce2+W\nYUMGv0H9/YCij9+Uc/oUG83q91jxswv7xdsVYpudfdxwzOXY/kA/ME7IbuclbxI2itf9WJH0KTby\nmDcEdkvwUbdjPVhBd6ox5m9ix+uZCZxLTajmt3GsV86zegr25f85rNCbg+1T94u9rF+rYWxY8mOB\nv2I/eGzHDqI7CPsBozWOUeA8fzdjI0jmYt1Vv8QJztHCckNO+3SnU24GNhDFz1v48aC5x2/1e2yM\n+ZPz/M/EWmKrsIErbvVkm+GUfz72N12BteC+So2L5jvYIQ2uxArZDdj2+Y6W1EtRFKU5SP3eJoqi\nKB0fR2S8iw27G0sUKF0Mpw/L51iXtY5kWVUURVE6AWoBUhSl0yAiw7DuY+5gs6OwlpzVwMJ2rJrS\nhojIHcAqrJUgE9sPbzh2IE1FURRFaRYqgBRF6UyUYyOu/QQ74GcBtk/Wr5yoUkrXxIcNm5yHjaD3\nGXBiK7gSKoqiKN0QdYFTFEVRFEVRFKXboAOhKoqiKIqiKIrSbVABpCiKoiiKoihKt0EFkKIoiqIo\niqIo3QYVQIqiKIqiKIqidBtUACmKoiiKoiiK0m1QAaQoiqIoiqIoSrdBBZCiKIqiKIqiKN0GFUCK\noiiKoiiKonQbVAApiqIoiqIoitJtUAGkKIqiKIqiKEq3QQWQ0i0QkckisqmNyh4kIkZE4tqifEVR\nlK6CtsWKonQEVAApSjMRkXUicmw7HHeGiLwvImUi8t99fXxFUZSORDu2xX8QkY0iUiQi60Xk+n1d\nB0VR9g4VQIrSeSgA/grc2d4VURRF6cY8BBxojEkHJgJnicjJ7VwnRVGagQogpU1wvsxdJyKfi0ip\niPxdRPqIyMsiUiwir4tIL0/+Z0QkX0QKReQdETnQSU8Qkc9E5OfOul9E/iciNzVy/CQReUREdovI\nSuDgqO15IvKciOwQkbUicqVn2y0i8qyIPO3U9RMRGeNsWwAMABaJSImI/NJT7FkiskFEdorIb/b2\nGkZjjHndGPNPYEtrl60oStdE2+I2aYu/NMYUeZIiwP6tfRxFUdoOFUBKW3IKcBwwDJgGvAxcD2Rh\nn70rPXlfBoYC2cAnwBMAxpgq4GxgtogcAMwC/MBtjRz7ZmCIMx0PnOduEBEfsAhYBvQFjgF+ISLH\ne/Y/CXgGyAD+AfxLROKNMecAG4BpxphUY8wfPPtMAoY75d3k1LcOIjJLRPbUNzVyXoqiKM1F2+IY\n7E1b7OxbAmwCUpy6KYrSSVABpLQlc40x24wxm4F3gQ+NMZ8aYyqA54HvuBmNMQ8ZY4qNMZXALcAY\nEenhbFsB/A74F3AtcI4xJtzIsWcAtxljCowxG4G/ebYdDGQZY2YbY6qMMWuAB4Afe/J8bIx51hgT\nBOYAAWBCI8e81RhTboxZhv1DHxMrkzHmTmNMz/qmRo6hKIrSXLQtjsHetMXGmDuBNOC7wAKgsJE6\nKYrSgVABpLQl2zzL5THWU6HaleJOEflWRIqAdU6eTE/+R4GBwEvGmK+bcOw8YKNnfb1neSCQF/Wl\n73qgjydP9b7GmAj2K19eI8fM9yyX4ZyfoihKO6NtcRtgLJ9ir+GtbXEMRVHaBhVASkfgTKybw7FA\nD2CQky6ePPOAfwPHi8ikJpS5FejvWR/gWd4IrI362pdmjPmBJ0/1vo6bRj9q+t6YJhy/XkTkesdn\nPea0N2UriqLsBdoWt6wtjsO6+CmK0klQAaR0BNKASmAXkAzc7t0oIucA44Dzsb7qj4pIY1/0/gn8\nWkR6iUg/4OeebUuAYhH5ldNB1y8io0TE2zl3nIicLHY8iV849fvA2bYNGNySEwUwxtzu+KzHnOrb\nz6lnAPtn6xORgIjEt7QeiqIoUWhb3EhbLCI+EbnUOR8RkUOAnwJvtLQeiqLse1QAKR2Bx7BuEZuB\nldT8uSEiA7Chn881xpQYY/4BLAX+0kiZtzplrgX+g/XRBsDxWT8RGOts3wk8iP3i6fICcDqwGzgH\nONnxQQe4A7jBcdm4tiUn3ELOwbpa3Asc4Sw/sA+PryhK10bb4qbxI+BboBh4HJjrTIqidBLEmL2y\nICtKl0NEbgH2N8ac3d51URRF6a5oW6woSluhFiBFURRFURRFUboNKoCUTovYgfxidV69vr3rpiiK\n0l3QtlhRlM6GusApiqIoiqIoitJtUAuQoiiKoiiKoijdhrj2rkBzyczMNIMGDWrvaiiKojSbjz/+\neKcxJqu969EaaFusKEpnpCu1w0rL6XQCaNCgQSxdurS9q6EoitJsRGR9e9ehtdC2WFGUzkhXaoeV\nlqMucIqiKIqiKIqidBtUACmKoiiKoiiK0m1QAaQoiqIoiqIoSrdBBZCiKIqiKIqiKN2GNhNAIvKQ\niGwXkRX1bBcR+ZuIfCMin4vId5tU8PLl4PPBoEHwxBOtWWVFUZQuh7bFiqIoilKbtrQAPQJMaWD7\nVGCoM10C3NukUquqwBhYvx4uuUT/eBVFURrmEbQtVhRFUZRq2kwAGWPeAQoayHIS8JixfAD0FJHc\nZh2krAx+85u9qKWiKErXRttiRVEURalNe/YB6gts9KxvctLqICKXiMhSEak76MSGDW1TO0VRlO6B\ntsWKoihKt6JTBEEwxtxvjBlvjBlfZ+OAAe1QI0VRlO5Hg22xMTBjBixeDMFgO9ROURRFUZpGewqg\nzUB/z3o/J63pBAJw222tWSdFUZTuRuu0xePHw8KFMHEiHH00PPww5Odb9zhjWrO+iqIoirJXtKcA\nWgic60QgmgAUGmO2NrpXQgKI2OWxY+Gss9q0koqiKF2cvWuLBw6EBx+E996Dd96Biy+GlSvhggus\nEJozBz76yLrIFRVBONzmJ6QoiqIoDSGmjb7MiciTwGQgE9gG3AzEAxhj5ouIAHdjoxOVAT8xxtT1\nK49i/PjxZunSpXDRRfDoo/DppzBqVJucg6IoSmsiIh/HdB9r22O2bVscTVGRFUALF8JTT8HatZCX\nBz/+MZxwAqSkQEaGnVJTITGxtU5VURSlUdqjHVY6Hm0mgNqK6j/djRthyBCYPh3++U87HoWiKEoH\npiv98dYrgMBaebZtsyGyP/wQ/vEPawVKS7NC6LTTID3d5g0EIDvbricn11j4FUVR2oCu1A4rLSeu\nvSvQYvr3h/POs37mH38MBx/c3jVSFEVRAPx+a/VxLT0TJsCaNbBgAfz97/DII3DiifCTn8B++9kP\nWsbY/TIyoHdvaymK67x/UYqiKErHpfNagKDGCjRlCjz7rPVJVxRF6aB0pS+PDVqAvBgDe/ZYV7hQ\nyLrIPfaYbbPLy2HSJLjwQjjsMIhEbFowaC1BaWmQlWVd5QKBtj8pRVG6PHvTDn/88cfZcXFxDwKj\n6CSRlLspEWBFKBS6aNy4cdtjZejcn9f694dzz7VWoMWL4aij2rtGiqIoihcR6NXLipmtW63ImTkT\nfvYz20dowQJrCTrgABs4YepUK3iMgcpKazkyxvYVysyEnj2tq5y6PSuKso+Ji4t7MCcn54CsrKzd\nPp+vc1kQuhGRSER27NgxMj8//0Fgeqw8nf8f5OabrZvEH/4ApaXtXRtFURQlFnFx9qPV6NHWWh+J\nWMvPW2/Z4QyqquC66+DYY+Ghh2x7HghYwdOrF8TH27DaX3xh3Z6/+QZ279YxhxRF2ZeMysrKKlLx\n07Hx+XwmKyurEGupi51nH9anbejfH845B155xYZg7WQufYqiKN2K5GRr7Rk61Lq7lZfDKafAv/8N\n999vw2r//vfWov/731urEVgBlJ5eY00qLobVq+GTT6wo2rZNxxxSFKWt8an46Rw496lendP5BRDA\njTfaP8e5c+0XQUVRFKXjImIDHYwZY93aCgqsu9tRR9n+Qc89B5Mn26EOjj3WWoZWrarZ3+ezQRJ6\n9bJTJGIjzi1fbodGWLMGdu6EkhK1ECmK0mXIz8/3jxgxYuSIESNGZmZmjsnOzh7trldUVDQphOap\np546aNmyZQ2OP3DHHXdk3XvvvRmtUefHH3+854gRI0YOHz585JAhQw6cM2dOZmuUu7d07iAIXi64\nwP5ZPvccTJtmowkpiqJ0ILplEISmUFJiRUt5ubXyuO335s22XX/mGWvdmTjRtvWTJtUfLjsUsmKq\nqqomLT7eWo3S0yEpyfYn8g6qrShKt2Fv2uFly5atGzNmzM4m7zB/fgazZ/clPz+BnJwqbrppM5dd\nVtCSY0czc+bMvNTU1PDs2bO3edMjkQjGGPwd4D24vLxcBg4ceNCSJUtWDRo0KFheXi5ff/11wujR\noytbWmZzzm/ZsmWZY8aMGRRrW9ewAAHccIP9k7v/fusKoSiKonQOUlPtgNb77Wdd24qKbHrfvnD9\n9fDf/8I118DXX9tBsKdPh+efry1yXOLialuHevWyoqeszFqJVq2CZctg6VL48ksrsvbsseIrEtmn\np60oShdm/vwMrr56IFu3JmAMbN2awNVXD2T+/FaxrHhZsWJF4pAhQw6cPn36fkOHDj1ww4YN8Wec\nccbAUaNGHbD//vsfeO211+a6eceNGzf8/fffTwoGg6SlpY294oor+g4fPnzk2LFjR2zevDkO4Mor\nr8ybPXt2tpv/iiuu6HvQQQcdMGjQoFGvvfZaCkBRUZHv+OOPHzJkyJADp0yZMnjUqFEHvP/++0ne\nehUUFPiNMWRnZ4cAkpKSjCt+NmzYEHfMMccMGTZs2Mjhw4ePfPPNN1MAbrjhhj5Dhw49cOjQoQfe\ndttt2fWd3z//+c/0sWPHjhg5cuQBJ5xwwuCioqJmaZrOHQXOy+DBcOaZ9mvhe+/BSSfpCOOKoiid\nBZ/PDojao4cd4mDHDiuMEhNt2iWXwPnnw4sv2iAJs2bBnDk2Eujpp1vrzqJFNm3rVsjNtdHmXI+A\npCQ7uUQi1j1u61Y7cKuI7T+UkmKtRWlp9tiBgHoUKIpSlwsu6M+KFcn1bl+2LIWqqtpm5ooKH1dd\nNYiHHsqKuc+oUWU89NDGllRn7dq1gYcffnjtkUceWQbw17/+dVOfPn3CwWCQCRMmDP/44493jxs3\nrsK7T0lJiX/y5MnF8+bN23zRRRf1u+eeezJvv/32/OiyjTEsX7581RNPPNFj9uzZeccdd9zXd955\nZ3Z2dnbw1Vdf/Xbx4sVJkyZNGhm9X9++fUNHHnlkUf/+/UdPnDix6MQTTyy86KKLCvx+PxdffPHA\nY445puj666/fEQwGKS4u9r355pspzzzzTO9PP/10ZTAYlHHjxh1w3HHHFScnJ0e857d58+a4P/7x\nj7nvvvvu6rS0tMivfvWrnNtvvz37zjvvrFP3+ug6FiCA3/zGujU88oj9A1UURVE6F4mJsP/+cOCB\nVpjs2WPnYNv3H/0IFi6EBx+0+f70J9t36KKL7H/Ali1WyGzZYj0DFi2KfRyfzx7LDazQs6edAHbt\nstamFStsxLlly+Dbb60oKy6ObXlSFEXxEi1+GkvfS/r371/pih+Ahx56KGPkyJEHHHjggSPXrFkT\n+Pzzz5Oi9wkEApEZM2YUAYwbN65s3bp1MQfUPO200/YATJw4sWzTpk0JAIsXL04966yzCgAOO+yw\n8iFDhpTH2ve5555b99JLL60eN25c2Zw5c3LOPPPMgQAffvhh2jXXXLMTID4+noyMjMjbb7+dOm3a\ntN2pqammV69ekalTp+558803U6PP780330z95ptvAgcffPCIESNGjHz22Wd7r1+/vllWj65jAQJr\nBTr9dDuuxEcfQZ8+9iueoiiK0rlIT4eDDrIuzZs2Wde21FS7TQSOOMJOq1ZZi9DChXXLqKiAP//Z\nWoGagogVWdGDarsDuO7aVZPm99dYipKTraVI+xUpSvehMUtNXt5BbN1aV1Dk5laxZMlXrV2dpKSk\nah/e5csy75qEAAAgAElEQVSXJ9533319li5duiozMzN80kkn7VdeXl6ncYqLi6sOBOD3+004HI7Z\ngAUCgUhjeRri0EMPLT/00EPLL7jggl2jRo0aBayH6khtTcJ7fsYYjjrqqKJ//etfa5tbF5euZQES\ngV//2n7VW7DAjjzeyYI8KIqiKA5+P+Tl2bGDUlKsAIm2vhxwAPzxj/ULj61bbfCEGTOsS9xf/mKD\nKixebD0FQqHG6+H2K3KtRO5grOXlVpx99ZW1En30EaxcadN277b9jrRfkaJ0T266aTOOcKgmEIhw\n002b2/rQe/bs8aekpIR79eoVXr9+ffw777yT3trHmDBhQsmTTz7ZC2DJkiVJa9asqWNhKigo8L38\n8sup7vqSJUuS8/Lyqpz9i/74xz9mAYRCIQoKCnyTJ08ufvHFF3uVlJRIYWGh75VXXun5ve99ryS6\n3KOPPrrkww8/TF25cmUC2P5Iy5cv78YWILAuEaedZgXQOefYP8/MDhFxT1EURWkJgQAMH25Fxdq1\nVlikp1s3NpfcXOv2Fk1aGhxzjBU7n38Or75aW/T4/ZCTA/362XHl+vWrvdy7d2xxFatfkTFWoG3b\nVuO2Z4zNk5pqLUTx8Xby++tOPp9akBSlq+BGe2ujKHANcfjhh5cNHTq0YsiQIaPy8vIqx40bV0dE\n7C2zZs3aftppp+03ZMiQA4cOHVo+ePDg8oyMjLA3jzFG7rjjjtzLL788MRAIRFJSUsIPPvjgOoD7\n779/w/nnnz/okUceyfL7/cybN2/d0UcfXXbKKafs+s53vjMS4IILLthxyCGHlK9YsaKWuOnfv39o\n3rx562fMmDEkGAwKwK233rr5oIMOanJ0ua4TBtvLihVw6KFw5JHw29/C2LH2C56iKEo7omGwW4FQ\nCPLzrZUlMdFaZsD29bnhBuv25hIIwO9+V9sFzru/O23caKPBbdpk+/l4SUqqEUWxptRUGmTRIuuG\nl59v3bIvvxyOPz620DHGiqS4uNpzVzipaFKUvWafhsHuwgSDQYLBoCQnJ5vly5cnTpkyZdi6deuW\nx8fHt3fVqmkoDHbXVAXDhlkr0GOPwXnn2T+d/v3bu1aKoijK3hIXZ4VHRgasW2fd4tLTa0ROrChw\nsfbv1y92+eXlNWJo48baImnJEigtrZ2/V6+6ViN3+eOP4ZZbakRZfj7ccYcVbfX1SwqH7VRZWeNC\n5071iab4+BqxFB+voklRlDansLDQf9RRRw0LhUJijGHu3LnrO5L4aYyuKYASEuDKK+HZZ21Y7EGD\nrBtcUh33REVRFKUzkpxs+/8UFNS4xZ14YtMDHtRHUpJ1pd5//7rbjLFR6aLF0aZNtu/P66/b0NoN\nUVFhRdG2bVYIpabWP09ObppQcUVTVZUtPxKx6w2Jptdeg3nzrCjLzbX9Z884wwqkuLjac1/X6i6s\nKMrek5mZGf7iiy9WtXc9WkrXFEAAI0ZYK9Ajj9ixI3r1sj7kiqIoStdAxPbRSU+3Vpv8/Lr9clr7\neO7gqgcdVHd7OAzbt9eIo1//OnY5JSU2cENj+P11hZE7NSScYs0TE2vE0KJFcNttNZapLVvguuus\nNW3KlJoxkdx5XJy1JgUCNXPXRS9aMKllSVGUTkDXFUDJyXDppdYK9NBD9otbYaEdUE9RFEXpOsTH\n11j61661wRKg5mU8Eqlx/xKpsWr4fDVprYHfb60publwyCEwd27swAx5eXZA15IS61JX39ydvOnF\nxdbFz5velL68biS7lBQr0qKj31VU2Ah52dlWVGZk2CklxZYfCtk8JSU1FqZooeQeJzHRCiTvPJZl\nScWSoijtRNcVQAAjR1or0MMPw8UX26+Co0erOV9RFKUrkpoKo0bZ/jPuS7rrChYMWhexqqoad7HK\nSvti7w1V7b6Uuy/0rlByxVJzhNPMmbEDM8ycaT/SJdc/iHyTMca6/zVHSD3/fOyyCgvhiitqpyUm\n1oghrzDq3bvuekaGFTz1iaXoerv9lbxCaeFCG7hi0ybbl+rWW+34fiI1ZXjnDaV70xRFUTx0bQGU\nlgY/+Ym1At13n21Ud+ywQREURVGUroeIFRnNwdtnxiuawmErnLxTVZWdl5bW7mPjWkK8y5MnWwF0\nzz3WPS8nB666CqZOrREF3pf1lp6va9nJzm7aPh9+GNsy1aeP7Re0a5ftW1VQUHf5m2/svLKeaLPJ\nyU0TShkZNfeprMxatl58EW6/vUYwbtxoBdnGjdY1rz6ir3007kdPV7x600RqgkJEL7vTokXwpz9Z\ny1teHlx/vRVl9Ynj1rYsKorS6nRtASRirUAzZsDf/w6XXVbjwx090reiKIrSPfG+GDcHY2oEU7SA\ncq1MZ55p/4OCwZpobt5ld4qmsZfnWC/60S/uXiuI98X+yitrR6cDK0auu85a0Jpy3mVltQVSLNGU\nnw9ffGGX6xtwNj29Rhh98UXtOoFdnzOnpt+RN9JddMS7+pa99XavW6xl935601980Q6n4dZr82a4\n5hr7MdUVZbGsW2Cvudftz53cqH3eIBPRAsorpBTFIT8/3z958uThADt37oz3+XwmIyMjBPDZZ5+t\nCgQCTRrb5q9//Wvvk08+uXDAgAEhgFNPPXXQjTfeuHXMmDFNHkenPq699trcf/3rXxk+n8/4/X7m\nz5+/7qijjirb23Jbm64tgMCO2H3WWXbk73nz4Pe/tw3Yfvu1d80URVGUzoxIzYvs3mKMFULel/GG\nplh5o0WVO7mCzM3jRsq7666a8YkuuwwmTbL9p6ItWdEv6X5/jdWpKUNMGGMtPLt22Wn37pplr2iK\nFj8uhYXwq1+1/Nq6g8/WJ5QaSnv55dii7C9/secfCNSdkpKsO18gUCNkIhEbYt29b+69ccVSfSIK\naoslr3hatKjmnaZvX7jpphp3QVfwxrJudccw6E88Ab/5DWzYwGiIEcGkbZj/0fyM2e/M7ptfkp+Q\nk5pTddORN22+7OCWD4Sak5MT/vLLL1cCzJw5My81NTU8e/bsbc0tZ8GCBZmHHHJImSuAnn322XUt\nrZOXV155JfWtt95KX7FixcpAIGC2bNkS5w5U2lKCwSBtEV676wsgv99GhPvxj+H++2H9evslKju7\nZgA9RVEURWlPXKGxrxg5sraoiLZeuVMoVNN3ynUBrKiw8/rczmKJppQUa+1p6OPj0UfX75r3+ON1\n6+Ht19XctFjbCwvrppXV8+G6sNBazJqC328FUVJSbMHkboueu9sTEmrmiYlWBH38sQ3wVFVlj7Fp\nE/z853b+gx/UFbGx3AS940K5czeSX1xczbq73XXrixZS0fOnnoIbb7Sui/372+4HZ5xRc+yGrHAt\nXXatqF6Lqrv8/PMwa5YVoEA87BMXoPkfzc+4+j9XD6wIVfgAtpZsTbj6P1cPBNgbEVQfc+fO7X3/\n/fdnB4NBGT9+fMmjjz66IRKJcNppp+23cuXKJGOMnHfeeTv69OkTXLVqVfKZZ545JBAIRD777LNV\nhx9++LC5c+duOPjgg8szMjLGnnPOOTveeOONHklJSZEXX3zxm759+4aWL1+eeNZZZ+1XUVHhO/74\n4wsfeeSRrOLi4s+8ddi0aVN8RkZGyLVE5eXlVZt+33zzzZSZM2f2Ly8v9yUmJkb+97//rRYRc+65\n5w5csWJFclxcnPnzn/+8cerUqSVz5szJfOmll3oUFxf7fT4fixcvXn399dfnLFq0qFdlZaVMnz59\n95/+9Kete3O9ur4AAhsZ6PTT4emnrS/2nDlWCB1wQPf7CqIoiqIo0biWiuZ8aY0lmGKJpmCwrmjy\nYow99hVX2JflaNe8a66xL9Lt8X/dkCh77DFb18am8vL6t5WW1li/oqfmUlkJs2fbybVoxXILjGXt\n8g6kGz0lJNRYn9x93Wh/bprr2rdkCTzwQI0w27DBBqH66COYONE+G+4z0tDzU1+e6LSGynHdUt94\no2XXsxEueOGC/iu2r6g3ksmy/GUpVZGqWg9tRajCd9UrVw166LOHsmLtMyp7VNlDJz20sbl1+eij\njwIvvPBCz08++WRVfHw8Z5xxxsAHHnggY9iwYZUFBQVxq1evXgmwc+dOf2ZmZnj+/PnZc+fO3TBx\n4sTy6LJKSkr8kydPLp43b97miy66qN8999yTefvtt+dfccUVA37xi19su+CCC3bffvvtMet/8skn\nF/7hD3/IHTRo0Kgjjjii6KyzziqYMmVKSVlZmZxzzjmDn3766W8nTZpUtmvXLn9SUlLk5ptvzklM\nTDSrV69euXTp0sD06dOHrlmzZgXAypUrk5ctW7YyKysr/PTTT/fYsGFDwrJly1YZY5g8efLQ1157\nLeW4444rjVWPptA9BFB8PAwZYn2x773XduLs18+a4TMy2rt2iqIoitL5cK0CTcX9Uh/rRTUYhHPP\ntUEU3IADOTnw059aEbJnT+2yoq0Z9Qkrb/5YAQ6iXcKiXcbqi+R33XU29HpbYYwVNOXldecVFXZ8\nw/q44ooaAeqdYlm39uyJbR1zp6aEWG+MykobEn7u3L0vKxbx8TXPousq6F1uA/HTFKLFT2Ppe8PL\nL7+c/vnnn6ccdNBBIwEqKip8/fr1q/rhD39YuGbNmsD555/ff9q0aYU/+tGPihorKxAIRGbMmFEE\nMG7cuLJ33303FWDZsmUp55133tcAF154YcEdd9zRN3rfjIyMyBdffLHylVdeSXvjjTfSzjrrrCGz\nZ8/eOHbs2PK8vLyqSZMmlQH07t07DLB48eLU6667Lh9g/PjxFdnZ2cEvvvgiEeDII48sysrKCgO8\n+uqr6W+99VaPkSNHjgQoKyvzrVq1KtBhBZCITAHuAvzAg8aYO6O29wAeBwY4dfmTMebhNqlMdjac\ncgo8+STcfbed1q2z4wJpJ0NFUbooHaodVro3rmtcQ/+5V18NV19NxEQQBPEKm/r6P3nX61v2WgTc\n0OfePlKxAlSEQrZf1KxZMH8+bNtmLT+XXw5HHFHTXypWBMDoZe85eMdNir4+0aG8XctKampNOtix\nprbG8ADKzbX1q6/M+tJi4Y7/VJ84iiWsfvrT+sv7619rC5RYwiVawHj7P9U3lpT3esZykTvuuNjX\nai9pzFKT9+e8g7aWbK3jbpebmlu15OIlX7VmXYwxnHHGGTvvuuuuOubKL7744ovnnnuuxz333JP9\n7LPP9nryySfXN1RWXFxc9cPp9/tNOBxulmCLj49n2rRpxdOmTSseOXJk+TPPPJMxduzYOpamxkhO\nTq6ODmOM4dprr9169dVX72xuOfXRZgJIRPzAPcBxwCbgIxFZaIxZ6cn2U2ClMWaaiGQBX4nIE8aY\nqlavUFKSNaGffbYVP6tWwYABtkHLy2v1wymKorQ3Ha4dVhTsy0woEiIYCdp5OEh5qJzyYDkVoQoq\nQhVEjH338YmPOF8cPp8PP37ifHH4fX784sfvs+tums/nw+f34RMfgg+fxNllEXziq57qCKuGKwsH\nH2ytQG7fkob6ojS2vaH9HOFlHPEWCdvuEyYStpMx1XPfzKuIv/EWxGPdMIEAwSt/ijEhxBgk4ohI\nwIcPie4r4517iR7g1r1WrvtbQ8IuJ8cG1ogmJwcOOyx2ubGueaw8riALhWrCsHutdRA7zPlVV9WN\nergPuOnImzZ7+wABBOICkZuOvGlzax9r6tSpxTNmzBgya9as7bm5uaH8/Hx/cXGxPyUlJZKUlBS5\n4IILdo8YMaLikksuGQSQkpISKSoqatbX/9GjR5cuWLCg5/nnn7/n4Ycfjuk+9cknnwQSEhLMqFGj\nKgE+++yz5P79+1d997vfrdiyZUvCe++9lzxp0qSygoICX3p6emTixInFCxYs6D116tSSTz75JLBj\nx474Aw88sPLtt99O9ZY7ZcqUojvvvDP3wgsvLEhPT498++238cnJySY3N7ee8JKN05YWoEOAb4wx\nawBE5CngJMD7x2uANLEtUSpQALT4ZBolNxd++EPbmXLuXBsUYePG2uMRKIqidB06XjusdHmMMbXE\nTVW4iopQhRU5oXIqQ5UYY6wIMWAwtYRMemJ6tUAxxhAxESImgsGWWxmurF73bgcQBIOpJXCMMY4M\nsMeC+oWVmx4ttFzh5B7TLct7/IYmN68xhggRIpEIESIx96/GNdL4xb6tGSfNAGccTUZiJf1/fy8J\nW7ZRldeHjbMup+CHx4FUVV/XWmUZPEKwRhz6xY8fHz4RRzgKPnz4BCfdh198TpogBsSZ2+uCTUOI\nu/UmEn5xDVJe88HfJCUR+e1sOGCErYrPEaFe18OmWKlibWsKo0fbbg9OFLjgPvq44wY6aM0ocPVx\nyCGHlM+aNWvL0UcfPSwSiRAfH2/mzZu33u/3c/HFFw9yf2+33XbbJoBzzz1352WXXTbIDYLQlGPc\nc889G84+++zBt99+e97RRx9dlJaWFo7OU1xc7LvqqqsGlJSU+H0+nxk8eHDFo48+uj4pKck89thj\na6644ooBlZWVvkAgEHnvvfdWz5o1a/s555wzcNiwYSPj4uLMgw8+uDZWKO/TTz+9cNWqVYHx48eP\nACvgnnrqqTW5ubktvmbi/pBbGxE5FZhijLnIWT8HONQY8zNPnjRgITACSANON8a8GKOsS4BLAAYM\nGDBu/foGrXf1YwwsXw4PP2xNsU89Bfvvb93g9t+/ZWUqiqI0ERH52Bgzfh8er9XaYSdv67TFSqcm\nYiIEw8FqK05VqKqWBacyUgnOCzFiBUi8Px6/1FhsmmyBaSOihZW7bnDmnvVqAeWcSzQiUm1V8lqX\nYi03lNYsy9RenHe1GHPONVZ6Q3On8rj6yhWyblrG8y/T//fzo4TZlNrXz8nrnne0dU5cEeaKJaRm\nOWofV8jFKse7Daxg65nUs8Xt8LJly9aNGTOm1dywOhNFRUW+1NTUiM/nY968eRkvvPBCr1dfffXb\n9q5XQyxbtixzzJgxg2Jta+8gCMcDnwHfA4YAr4nIu8aYWp20jDH3A/cDjB8/vuWKTcR+BZg2DR59\n1LrC/f3vdkCzPn0gLa3lZ6IoitI5aVI7DK3YFisdmnAkXMuCUxmupDxorTcVoQqC4SBgX17dL8tx\nvjjiffEkxCWQ7Ks3MFaHocby0b36AFeLgTbUWZEzz2D9mWfUSutZT95oa5prtfIKtOo8kdh5GisH\nqDlfU2tNaQbvvPNOyrXXXts/EonQo0eP8KOPPrq2veu0N7SlANoMeEdI6+ekefkJcKexT+g3IrIW\n+xVySZvVqmdPO11wAfz5z/DJJ3Y8hLVr7QjYLRkNXFEUpWPSMdvhbkYoEqIsWBbTetBUarkztWT/\neo5tMFQEK2pZcFzXLEEwYvBR4xaWFJdEakJqzLKUfcuirxYx54M5bC3eSm5aLjMnzGTa8GntXa1m\n1ctrDdsXsmRP+Z7GMykxOfHEE4tPPPHElY3n7By0pQD6CBgqIvth/3B/DJwZlWcDcAzwroj0AYYD\na9qwTlbg9O0LJ54Ijzxi+wI9/HDNaNSZmW16eEVRlH1Ix2yHuwlV4Sp2lu5kc/FmG9WsBe5N9QkX\nacHbYp0+ITaxVjCB1MRUfKIfAjs6i75axA1v3UBFyHbs31K8hRveugGgXUVQR62XokTTZgLIGBMS\nkZ8Br2LDrz5kjPlCRC5zts8Hfgs8IiLLsc3xr4wxbe9bmZFhxxq48EL4wx9g6VIYO7YmLHZzBoJT\nFEXpoHTodrgLUxGqYFvJNvJL8hGEtMQ0/L7u5WqltD6lVaXkl+azvWQ7v3v3d9Uiw6UiVMGNb93I\nh5s/rNWXpro/DL7aaU6fGYSafjP1pFX3y4mVRk0/m3lL58Ws1+3v3U6vpF4E4gIk+BMIxAVI9Cfa\neVwiif5EEuMS20x8e61S9GHUXhQViUQi4vP51AW4gxOJRASIEebQ0mZBENqK8ePHm6VLl+59QRs2\n2OlHP7KDpD72mB0QLCfHhsdWFEVpZfZ1EIS2pNXa4i5EaVUpW0q2UFBWgN/nJy0hrd07+3c2Oqpb\nV1tijGFPxR62lVrRvK1kG/ml+eSXWLGTX2rTiquKm1Redkp2raAFbjAHDLUiz7kWQW/QB6BW35u9\ndb1sLvG+eAJxgdpCySOQAn5nvYFlV1i5+3+69VMeWfYIVWEn+Nt9YLaYFv0wly1btjAnJ2dkVlZW\noYqgjkskEpEdO3b0yM/PXzlmzJjpsfK0dxCE9iM72w6MdfHFcMcdsGSJjfW/ZYt1g0vu+J04FUVR\nlPbFGENxVTFbirewp2IPCf4EegZ6qvBpAR3VfWpvRFk4EmZn2c5qcZNfkl9L6Gwr3ca2km1Uhitr\n7ecTH5nJmeSk5rBfz/04rN9hZKdkk5OaQ05qDtf85xq2l26vc7y8tDzeOu+tVjlvl+iABNFR5Lxp\nJz55IvkldccBykrO4q6pd1EZqqQyVElFuKJ6uTJcaaMHepbd0One5cpwJcWVxdXL0fn3BaFQ6KL8\n/PwH8/PzRwHqK9pxiQArQqHQRfVl6L4CKBCAXr1sRLgHH7R9gRYssIN8bdwIw4e3dw0VRVGUDkrE\nRCisKGRj0UbKqsoIxAfISIo5NqBSDxWhCnaU7mBb6TZ2lO1g9juzY7pP3fzfm/l297ckxiWS4Euo\n/sof74+vsQ74E0nw220J/gS77K+xCLhpzRWmDYmy7w/5PttLt9cSNfkl+dVp+SX57CzbSdjUHi4l\n3hdPn9Q+5KTmMDp7NNmDrbDpk9KnWuBkJmcS56v/Fe2XE39Zq14AgbgAMyfMbNb5NQVviOnGuPaw\na2PW61eH/4pxueNavW4uEROpEUqOMKoMWXF06jOnttpxxo0btx2IaVFQOhfdVwCBHRi1oAAuuQRu\nuw0++AAmTIBdu6Cw0PYHUhRFURSHcCTM7vLdbCzaSFW4iuT4ZDKSVfh4iRY220u3s710OztK7bKb\nVlRZJ9J6TEqDpcxfOr9V3LFcYdQUsZQYl8jr374eU5T98rVfcu1r19YpPyU+xYqZ1D4c3v9w+qT2\nsWInJac6vVeg115bCF0LVEdzF2yvevnEV+06F01eWh5bire06fGVzkf37QPksnw5VFbCCSfYvj+P\nPw7BIIRCcNBB4NeOq4qitA7aB6jzEgwH2Vm2k81FmwmbMCkJKST4E9q7Wi2mJW5dXmHjFTKusHHT\nYgmbeF88WSlZZCdn23lKNtkp2WQl2+WslCwuXXQp+aV13afy0vJ489w37aCr4SqqwlVUhirt3PnS\nXxWpoirkWXe3hSvtWEaOVaDWPm5ZMdbdY2ws2ljv9bjq0KtqWW76pPbREOEdkGgr3t70AVK6Dt3b\nAgR2YNTVq+HSS+G3v7VWoMMOg9JS2LnTDpCqKIqidEsqQ5VsL93O1pKtAKQmpDbomtQZiOXW9Zs3\nf8Oa3WsY2ntos4WNK2SG9BrChH4TYoqbplg9rp0Y231q5oSZiEi1ZWZfcvSjR8e0HuSl5XHFwVfs\n07p0NLx9f4A6y0C165xPfO3WLy7aKmUiZt90GFI6NGoBikTgs8/s8g9+YMcI+sc/bHpxsQ2PndB5\nv/IpitJxUAtQ56EsWMbW4q3sLNuJX/ydbnwcYwyFlYXsKN3BzrKdbC/bzs7Snewo28FTK56iPFTe\n4P6usIkWMt717JTsVg/40NGiwNWxHmBF2e+O/l27u5uFIiGqwlUEw8Fa4gMAATGCwdj7Y6g19hNC\n9WC3iE2LzuvdXl22kxeoFja1lsURPU58gAgRwpEwoUioOsqcO4ZV9fHcannqXyvkttSIqOjjNfc3\nuad8D4f2P/QTY0zbdUhSOgWd+zNWa+AOjLpunbUCzZ4N778Phx9ut23aBIMHt3ctFUVRlH1AcWUx\nW4u3UlBeQEJcx4voVhWuYlfZLnaU7bCTK3BKt7OzzAqcnWU72VG6g2AkWGf/QFygTp8WLwt/vLBN\nhE1TmTZ8WrsLCy8dpa9NMBysdudzRUq8P560xDTSEtLqWFmqx+lxxEas5ei89S3Xt19z8UaOcyc3\n/Hb1urPdFU1hE661HIqEiEQiBCNBQpEQoUioum7e47j1r07zhPxWFFABZOndG9avh1NOgQcesBHh\nJk6EtDTYts26waWktHctFUVRlDbAGENRZREbizZSUlVCoj+x1QIbNMWi4YbS3lG6o5aAcUWOd31P\nxZ6Yx8lIyiAzOZPs5GwG9xxMVkoWmcmZZCVnVS9np2STEp/C9x77Xr1uXcMzNQJqNPtSlBljqvs6\nBSPBamtLID5Ar0Av0hLSCMTbzv6dzRWzOdHkmkN9Iqo+oQWtEE1D6fR0rl9PWxEXZyPCbdtmrUC3\n3ALvvQdHHAFJSdY6NHIkdKCvgIqiKMreEY6E2VOxh42FG6kIV9iIbq0YyjpWX5tZb8ziuVXPkZqQ\nWkvwRI8DAzZiWVZyFlnJWQzqOYjxeePJSsmqTnNFTUZSBvH++CbXa+aEmfsshLJSPxETqbbshCNh\nBMGIISUuhcykTNIS06oj0/l9GpCpPkQEv/jxo9dIaToqgFyysmDzZjj5ZLj/fmsFmjTJDoi6a5cN\nl927d3vXUlEURdlLQpEQu8p2saloE6FIiJSEFDISWjeU9fbS7THHtQlFQnyw6QP2z9ifzORMxuWN\nq7bcZCZn1giclCzSEtLaxA2to7h1dSfCkXB1lDnXDcsnPlITUslIyiAlIaU6FHdn6mumKJ0VFUAu\ngYAVOMXFcNllcNNN8M47cNRR1hVu3To7LlCcXjJFUZTOSFW4ykZ0K95KhAhpCWmt6kZUWlXKa2te\nY9FXi3h/0/sN9jf495n/brXjtoSO1temKxGKhKgM2f46YPufxPniSE9Mp09qH5Ljk6vHG+pI/csU\npTuhb/NecnOttedHP4L77rNWoCOPtFHgSkuti1zfvu1dS0VRFKUZlAfLyS/JZ3vp9uqv7q3lUhSK\nhFi8cTELVy/ktW9fozxUTt+0vlw67lKeW/kc28u219knNy23VY6ttD+uVccVOyJCgi+B9MR00hPT\nq4ViUHAAACAASURBVAfnbI6LoqIobY8KIC+pqXaKRODyy+GGG+Dtt2HyZGv92bTJWokCdUcaVhRF\nUToWJVUlbC3Zyq6yXcT54lotspkxhlU7V7Hwq4X8e/W/2VG2g/TEdKYPn8704dP5bu538YmPIb2G\naF+bGLhRviImQtiEa61Xh2EmKiwz1ArjHL3NiKm9X1Q0M6gbCc1Lffm924wxVIWrCEfC1VHFkuKT\nyEjKID0xvdqFrbMFJ1CU7oj+SqPp1w++/BJ++ENrBfrb36wbnM8H8fGwYQMMG9betVQURVFi4EZU\n21S4icLKQhLjElstsMHW4q0sWr2IhV8t5OuCr4n3xXPUoKM4afhJHDXwKBLjEmvl7w59bWKJGTfN\nO8ZM9VgzYoiTOOL98ST4Ekj2J1cPcBrvj7ed2X1+fOKrM6imG0bZXY7e5q67y64LonceK62+bW5Z\nxhgiRPCJj56BnqQmpJIYl0ggLqD9dRSlk6ICKJr0dEh0/sQuvxyuvx7efBOOOcZah3btgqIim09R\nFEXpUOws28nXu74mJSGF3sl7H7impKqEV755hYVfLWTJ5iUYDN/J+Q63TL6FqftPpWegZ4P7d6a+\nNsaYWhYZ73J9YsaPn/g4K2aS/EnE++KrBY3f568WNN659ntRFKW9UQEUjXdg1JNOgvnz4e674Xvf\ns2GwU1Jg7Vo46CCbV1EURekQGGPYUryF9EA6Cf6EFpcTDAf538b/8cJXL/DGmjeoDFcysMdAfnbI\nz5g+fDoDegxoxVrvW7zRyFxLCWKvnU981ZaYxPjEaiGjYkZRlK6GCqBYZGTYgVFF4IorYNYseOMN\nOPZY2/9n927YuROys9u7poqiKIpDabCU8lB5i1zejDEs376chV8t5MWvX6SgvICegZ6cOvJUThp+\nEqP7jO50L/vBcLBWB303GllaYlp1NLIEf0IttzNFUZTugAqgWLgDo27dCtOmWSvQ3LnWCuTz2bDY\n69dDr162X5CiKIrS7mwr2dZsy8/Goo0s+moRL3z1Auv2rCPBn8D39vseJw0/iUkDJu2VJWlfYYwh\nGHHETiSIGOuuluhP1GhkiqIoMVABVB/uwKh+v+0L9Ktfweuvw/e/XzMW0JYtMHBg+9ZTURRFIRgO\nsqt8Fz0SezSat7CikFe+eYUXvnqBj7d+DMAheYdw0Xcv4vghx5Oe2HH7eEZMhGA4SGW4srpvjhFD\nSlwKvZN6k5aYRqLfdtBvrVDfiqIoXQ0VQPWRmAiZmVBYCCeeCPfea61Axx5rrUDp6dZClJUFycnt\nXVtFUZRuzZ6KPTWhkWNQFa7infXv8MKXL/DWurcIRoIM7jWYqydczbRh0+ib3vHGeHP761SGKzGm\nJrRzakIqGUkZpCSkVIdeVvc1RVGUpqMCqCFycmDHDhv97ac/heuug//8B6ZMsf2DEhNtWOzhw+26\noiiKss9xgx/8d+1/+duSv1WHnL56wtX0S+/HC1+9wMtfv0xhZSG9k3pz5kFnMn34dA7MOrDD9Otx\n++tUhauq0+L98aQlpJGTmkNSfBKJfhuYoKPUWVEUpbOiAqghUlKspaeiAk44wVqB7rnHusH5fHZ7\nQYG1EvVsOBSqoiiK0jaUBkv515f/4s7/3Vk96OiW4i388rVfYjAE4gIcO/hYpg+fzuH9D2/XgSqj\n++u4g3cG4gP0SOxh++vEB0j0J2p/HUVRlDZCBVBj9O0Lq1bZyHA//Slccw288gr84Ad2e2qqDYs9\nerTtL6QoiqLsU7aVbGP+x/OrxY+LwdAz0JM3zn2D1ITUdqlbKBKiIlRBKBKyYacFUuJSyEzKtP11\n4hJJ9Cdqfx1FUZR9iAqgxkhPt6Gvq6pg6lSYN89agY4/3gqehAQoK4Pt223kOEVRFGWf4QY/2Fay\nLeb2worCfSp+wpEw5aHy6tDTif5EMpMySQ/YSGwJ/gTtr6MoitLOaCvcGCLWClRWZgXPz34G33xj\nrUAuaWmwcSNUVrZfPRVFUbohbvCD3LTYH6DqS28tIiZCWbCM3RW72V2+m7JgGT0TezKs9zDG5oxl\nbO5YBvQcQM9ATwJxARU/iqIoHYA2bYlFZIqIfCUi34jIrHryTBaRz0TkCxF5uy3r02J69bLzcNgG\nQBg6FO6+266DFUZ+P2zaBMFg+9VTURQlii7TDsfAGMOWki2kxKdw9YSr62wPxAWYOWFmqx+zPFjO\n7nIreEqqSkhNSGX/XvszJmcM3839LoMzBtMrqReJcYmtemxFURSldWgzFzgR8QP3AMcBm4CPRGSh\nMWalJ09PYB4wxRizQUSy26o+e0VcHOTl2bDXPXpYK9BVV8FLL9mBUsH2Bdq1y069ekF2trUM+fRr\nn6Io7UOXaodjUBospTxYTkZSBqP7jAagR2IPiiqLyE3LZeaEmUwbPm2vjmGMoSpcRXmo3IaiFqFH\nYg/y0vJISUghKS5Jo7IpiqJ0MtqyD9AhwDfGmDUAIvIUcBKw0pPnTOD/jDEbAIwx29uwPnuHOzCq\nMTYK3PDhti/QD35grT8iNhKcMVBSYqPD+XzQpw/07m3HCtI/SUVR9i1dqx2OYnvJdhL8CQC8v/F9\nAJ457RkG9ty7AaqrwlWUB8uJmAgAaYlpDOwxkNSEVJLik9SNTVEUpZPTlgKoL7DRs74JODQqzzAg\nXkT+C6QBdxljHmvDOrUc78CoqanWCvTzn8O//w0nnVSTT8SGx05JsS5y27fDli02kEJurhVJieoW\noSjKPqFrtcMeguEgO8t30iOxBwCLNy6mb1pfBvQY0KKy3EhtAMnxyfRN60taYhrJ8ckaoU1RFKWL\n0d5R4OKAccAxQBKwWEQ+MMas9mYSkUuASwAGDGj+n1ur4Q6MCnDssTBihI0Kd8IJ1k0uGr/fRpED\nG0Vu/XpYt866xvXpY93pYu2nKIqy72hSOwwdqC2mJviBiPD/7N15nFxVnf//16e23pck3QnZIAJB\nFmUNq6ioKJsMIo7L18Fdxv3r4Diu46i/cXTGGcdRxwV3RxQZ4oig4KgDg34TlgARJCwGCGRPJyFJ\nb7Xe8/vj3ltd1V1VXb1Ud3XX+/l4XOrWvbeqTl06p+pT53M+N+fluHP7nbzsqJdVlY42ujR1c6yZ\n3tZeupq7aI236vo7IiLzXC2/fW8HVhbcXxFsK7QN2OecGwQGzewO4CSg6IPXOXcNcA3AmjVrXM1a\nPJ7wwqjDw9DS4o8AvfvdcNNNcPnllR+bSPgL+BdW3bzZHy1atMhPr2tv13whEZlu09YPQ/30xYXF\nDwAe6nuIQ6lDnLPinJLH57wcyWySdC4NQDwaZ2HLQrqbu2mNt+bT6EREpDHUMgC6B1htZs/C/8B9\nLX6ueaEbga+YWQxI4Kdm/GsN2zR14YVRW1rgJS+B44/3R4EuvbT60ZzmZn9xzk+p27vXHy067DD/\ngqutrbV9DyLSKOZlP1xY/AD89DeAs1acBfgBUjKbzF8YNRqJ0t3czcKWhbTGW2mONc9Ow0VEpC7U\nLAByzmXN7D3Ar4Ao8B3n3ENm9o5g/9edcw+b2a3AA4AHfMs598datWlaFF4YNZHw5wK9613wvOf5\nwczSpXD11SPV4Sox80d+wJ8vtHOnX0q7pWVkvlBCv0yKyOTM1364sPgBwLpt6zi251gWtS5iMD1I\nxsuwoHkByzuW05ZooznWrEptIiKSV9MJKM65XwK/HLXt66Pufx74fC3bMa3MYMUKePxxPzgZHPS3\nHTjg79+xAz7+cX+9miAoFI36c4LAD66efNJf7+ry5wt1dvrHiIhMwHzrh0cXPxjODHPvjnu58sQr\nAb+C27E9x9LV3DWbzRQRkTqmSSeTsWCBP18nl4N//Vc/la1QMglf+MLknz+R8F9jwQJIpeCxx+De\ne/2gqL9/7OuJiDSIwuIHAPftvI+Ml+HslWcDYGa6AKmIiFRUdQBkZuea2ZuD9d4gp7wxRaP+XKD+\nfj9trZQdO+CnP/Urv00lYGlp8QOhzk545hnYtAk2bvSff3h48s8rInNOo/fDo4sfgJ/+Fo/EWbNs\nDS7oa5uiCoBERKS8qlLgzOzvgDXAs4HvAnHgh8Dzate0OtfTA1u3+nN1duwYu98MPvKRkWNPOw1O\nPdW/Pe64iZe/jkRG5gtls/5FWZ9+2q9Mt3SpnyoXV+lWkflK/fDY4gfgF0A45bBTaI23ksqm6Eh0\naL6PiIhUVO238MuBU4D7AJxzO8yso2atmgsSCVi8GN75TvjMZ/y0t1BzM3z603DCCX7qWrj86lf+\n/tZWOPlkPxg67TQ48UQ/kKlWLDYyXyiV8ucjgV9BbvFiP1DSfCGR+abh++HRxQ/2D+9nU98m3nfm\n+wBI5VIsalk0W80TEZE5otoAKO2cc2bmAMxsAt/W57ElS/wLora0+HN+du4cWwXu6KPhNa/x13ft\ngvvuGwmIvvIVPz0uGvVHhU47Ddas8UeKenqqa0NTk7845xdkeOQRf7Ro8WL/GkNtbf5o1FSEKXyj\nb8utVzqucFsk4gdzCtZEqtHQ/fDo4gcAd22/C4fjnJX+9X9yXo62REOdFhERmYRqA6DrzewbQLeZ\nvR14C/DN2jVrjmht9UtVv+Ql1VV8O+wwuPhifwF/DtHGjSMB0XXXwfe/7+9btWokZW7NGjjiiMqB\njJnfntZW8Dz/2kK7dvkjVfG4vw2KA5HR66W2VXq98LiJBFiljjfz29nUNHLb3OwHRrHYSJAUi009\nmBOZuxq6Hx5d/AD89Lf2RDvPWfwcQAUQRESkOlUFQM65fzazlwKH8PPPP+Gc+3VNWzZXLFvmFyaY\nzMVLOzrg+c/3F/DLX2/aNBIQ/c//+IUUwB/NCVPmTj3VHzEqN+cnEvGfG/z5Qp7nbwu/OIy+HW9b\nrTnnV9TLZPzCDp7nt7uwDWEwFouNjHolEn6glEiMBEiFtyLzSCP3w6WKHwCs27qOM5efSSwSUwEE\nERGp2rgBkJlFgd84514ENMSH7YR0dPgpcOGFUacikfDnBp18Mrz1rX4g8OSTxfOI/vu//WNbWuCk\nk/zRodNO89cL5xHddFP5tLzZVK5d4UhP0zhfXnI5fxka8kfQcjn/PI0ekdKokswjjd4Plyp+sPXg\nVrYe2sqbTn4T4F//RwUQRESkGuMGQM65nJl5ZtblnDs4E42aU8ILo27ePPUAaLRIBI46yl9e/Wp/\n2+7dfiAUziX66lf9ACAahWOP9YMh5+D66/0CCTD5i7NORjia43kjwUq4fsst8LnPTa1d0Wh1ozvV\njCqFx5UaVYrHi4MkjSrJLGr0fnh08QOA9dvWA+Sv/5PKpYoCJBERkXKqnQM0ADxoZr8GBsONzrn3\n1aRVc013t//lOJudeHnriVqypHge0cBA8Tyi668vrkgXSibhYx/zU+o8byQoKRWoVHs7epvnTfya\nR8mkXy7817/2CzcsWeIv4frixROrkBcym55RpXBEKbxtavKDo8JgafSIUizmB68i06sh++FSxQ/A\nT39b0raEI7uPBMBzngogiIhIVar9tv7TYJFSwgujPv20f9HSmdTeDuee6y/gp+KdeGLJQMSlUnhD\nAxCJQjQCsShE4/79SMTfFglGWIL7lr8fLdpv+WNK3I9ERpZowfN95jOl30MmA3/6E/z+934lu1Lv\nsTAoKrXe0zP54HOio0qe5wdK4ajS6CDJOf/9hql3hcGSUvBk8hqyHz6QPIBzxcUPPOexftt6XrTq\nRfntzjmaY82z1UwREZlDqi2C8H0zSwDHBJsedc5latesOWjRIj+l65lnRraFoxDhF+wajgykc2lS\nXprhXIoFS3qJ79oz9pglPfzh3z+OAwz8WzP/ywXmV1iC4NbK3hI81n+PwW2wIRJ8GTEMMyNCJH//\n+G/3ktjVN7Zdh/Wy+cdfwsyIDg0T69tPvG8fsb59I+t79hHbu4/oE5uJ7d2P5XJFz+EiEXILF+D1\nLiK3uJfc4h683h5yi3vxFvfi9fbglizGdXRgFsl/aTLz25b4xa20funrRHbtxh22hPT73wuXXkrM\nokQt6h8f/v+E8dMdnfODo3IpeIXBUjhKNXrOUqnCDgqWGlYj9sP54gejRnYe2fsIB5IH8ulvYYCk\nAggiIlKNqgIgMzsP+D6wBf8r70oze6Nz7o7aNW2OSST8QgSZjP9FN5v1R2OSSX/OSyrlp6vlcmPn\noBQGSOF6mS+6zjnSXoZkLsVwLsmhzAD92UGynv/l2ogw9I7Xc/jnvkokmco/zmtuYv+730J3orOm\npyGsxOQYdetgzzvfyLLPfnlMu3a/40o85/kxQ3OC1MrDcCuXFD0+fA7/QR7RAweDIGk/ib59xPv2\nE9+7n3jffhLbttK88QFiB/vHtC/XlCDTs4B070IyPQtJ9y4gtu8AbbfdSSQTnMOdu4h/4lM8ObSL\nfS87FzMjYQkSkRhN0SaaInGaok3EI7F8gBSLRIlZbORXarORKn3jpeCFwVEyOfI3EpYtrxQshal4\nYbA0+m9Ic5bmlUbsh0sVPwA//Q3g7BV+AKQCCCIiMhHV5gz9C/Ay59yjAGZ2DPBj4LRaNWxOClOb\nKgnnm4RBUjbrB0ejAyXn8JznBztemsHsMIdIMeBSeBHDgrSzRCROa7SZaGzky276kgvYHYnT89Xv\nEdvdR3ZJL3vf9Sb6L3pxjU8AIyMrjPoiYjB08fnstsiYdg1f9GImXD5icSssXooHJINlTFtSaWJ9\n+4juDUaQ+vYS69sf3O6j+ZEniP1uH5FUesxjo6k0R33qy6z68g/x2lvJtbeRbWsh195Ktq2FTHsr\nqbbW4H4rufYWcu1t0NFBtLOLaOcC4p3dNDW1kojG/SApXCIxIlYwEhimy41WqmLexRf7fz9hsBTO\nwSoMlKA4DS8e95ewZHg8PjZYUireXNBw/XCp4gfgX/9n9cLVLG5bDPgFEBa0zHD6sYiIzFnVBkDx\n8EMXwDn3mJmVuQiNVBR+4Rz1hTfn5UjlUqSyKfqTh+hPHmRg+CBkc5hnRHLNNOWa6cw4LJPxR5fS\nWbAMEGTBhF+Ao1H6X/w8+l/6guJRABdeDJWR40vdwtj75fZV+9jgfv+5p9N/7un+9nCOUCbjz0ey\n6U0PdE0JMiuWklmxtMJBjtVnXoyVKd4w8IKziA4MEhkYJDY4SGLvM/n7keFSYVexXFOCXHsruSBY\nGm5rJdvRitfmB0vW0YF1dBLt6CLa1Y11dhLt7CJ2z33EvvglbCoV8wrnLA0OFhd4gNLXWIrHi1Px\nEoniOUu6ztJsaqh+uFzxg1Q2xYadG3j1Ca/Ob/OcR3uifaabKCIic1S1AdAGM/sW8MPg/uuBDbVp\n0vyX9bKksilSuRSHUoc4lDrEcGY4Px8nHo2TiCbo7lxcOaUjTJ3yPMhlIRuUfU6l/AAplfLnn4TC\n+Uejb0PhPJdwnz9BJtgXGTmm8LHhMYX7C5dSjwlvwzamUjA4VPqLefhlOxKpzSiFGdkyc6ayhy1m\nz8f+b/nHZrNEBob8gGgwCIoGhogMDI4ESf2DRfsTA0M09z0zckxBOuC4kkm8j36EgVtvJNfVidfV\nidfV5d92d+K6u3DBfTo7iUSj/lwsjIhFiMQiEPPnaYUjdGaGhfO0PA/zhrHBQejPYZ7Dcl7BcYBz\n/hwq/BS/WDxBNBp8B8//zVjxhXfDghjVrJf626m0XurivoVtCJ9zflTla6h+uFTxA4D7d91PMpvk\nnBXn5LepAIKIiExEtQHQO4F3A2G51d8BX61Ji+aZTC5DKpdiODPModQhBtIDpHKp/FyZMNiZVPpG\nudSpuaowPTBXEMyFKYIDAyPHFqZ7Fc55mUShgL3vehNL/uHfxsxN2vuuN1V+YCyG1+0HH5OWzRYH\nTEEAteyDnx6dRAiApTM0PfYE0YOHiPYPYmHQOIqLRMh1tJHtbCfb2UG2a+Q22RXc72gn29VBrrOD\nTFc7ue5OvKaCv6cwDgXMr5iBw7HoV79n5dd/RGLPXtKLe3jq7a9h6MKX0BJtpjXaRHOkiRgR4hYl\nHokRJVI0Cug/acHIYan1ojc9Kr2v6I0WbL/1Vvja1/xrZS1ZAu98J1x4YfEIV2EwXbheqlhJqSCq\n1P3xXHutX4L+6ac5EZ47/gPKaph+uFzxA/DT36IW5fTlp+ePVQEEERGZiGoDoBjwb865L0D+quT6\ntBklk8swnB3OBzv96X4yOT89zTDi0ThNsSZa4i2z3NI6VSY9sEjh/KkwSEomi0e8Rs+FCdICx3y5\nDYRzo2ZjzpQfRHXhdRen+WQPW1x2VOqptd/273ieHzwd7PcDooOHiBw8RPRAcP9QP5FgX/O+g0Sf\n2OYfUyF1z2tK+KNLne3kujqDpSM/4hR/ahudv/gNkYz/d920ey+r/umb7D44xDPPX8MQHjmAiPmZ\nlmZEI1Gao800xZppiTWTiCX8AhLRBPFo3J8PFY7ahAHsmJHIcZabb4bPfnbkGli7dvn329pGUgYL\nr1VVOHoaBl6F+0Kj/45ChYFaYUBVuMRi8POf+9e5CkZi40x8uluBhumHBzODJDPJkj8Mrdu2jpMO\nOymf8pbOpWlPtKsAgoiIVK3aAOi3wPn4F+IDaAH+Gzin7CMazHBmmIf2PISH/+UpEU3QEmtRXvp0\nC79cVqqsFgZH2UxxWmAqCelg/lT4BTYYXeg/93T6zzu7+At4YcU+C/4zQ1+yqhqVikTwOjvwOjvI\nrFxW9XNbOk3kUP9IoHTwENGD/X7wFARO4f3Ek0/n948uPZ5vRjrN0i9/l6Vf/u5k325tJJPwwQ/C\n3//92JGfSksYJBfeFu4vta0wyC4cJfrxj4vTUKemYfrhPQN7iEfHTm86mDzIH/f8kXeteVd+WzqX\nZknLkplsnoiIzHHVBkDNzrl8/pFzbsDMWmvUpjnHcx5PPPME0UiUzhqXmZYqhClN5YKk8Bo9uZw/\ndyoTlCxPB3OnskEqHoyMGoSjAoW//E8kGCpTZKHoeQpGNPpfeBZk0vRccy2xPXvJLu5h7zveQP/L\nXlg+HazapiQS5HoWketZNKH2RwaHOOrFV/jpcKN3A7s+9UF/zfnzifwhIJcfYTHP5ffntzmH5+Xw\nPI+cy+G83MiIjPOPjWJ+Oh0x4hYlahGiDiL415mKAHzlK2XbzSWXjKRXllrCkaDC27CMfeG2Ss9R\n6nnKBIxT0BD9cLniBwB3b78bz3n56/+AP6dSPzSJiMhEVBsADZrZqc65+wDMbA0wbT9rznV7BvYw\nkB5QGda5IrxGT3ySBbSKvqAXLOX2FX7ph+JgqjD9qjAFy/Pov+Ll9F9+SXA/5wdm4RfzwmsDjU7T\nCl+n1HyVicxdGXXOvPY2skvKp+b1X/ySCZ/KauRcjqyXI+OyZL1c/oK9AM6gyRKccMP1JdvlLV1K\n9mMf9otABMuMcQ5e9CK/jPn0aIh+uFzxA/DT31rjrZy05KSi7SqAICIiE1FtAPR+4D/NbEdwfynw\nmto0aW4Zzgzz1MGn6GzSyE/DsJlLhSsrDJRyuYKgKQdeQTCVyYydMxVed6pwdKLUPBfPKw6agjSv\nvX95JUv+8SvVF4wYM/Llim5KHjdqPYo/CtREHMKqz27kebK5HDvf9hqWf/4bRAuu6ZRrSvDkmy5j\n/8778jEoOKIu4hdnMCPmokQjEWIuSswi+Ws1RQsCpghGJBINRpysaHvZIDRcf8c7iucmTc2874cr\nFT8A/wKoZyw7I58epwIIIiIyGRUDIDM7HdjqnLvHzI4F/hJ4JXAr8OQMtK+uOed44pknSEQTRCO6\nLorMoMI5J5M1OoAavR4umUyQ1pWj/4LzwMvR840fEuvbR7Z3EXvf+jr6n7cGDh0q3c5ChSNP5dbL\nHV94v6BEe4wYycsuYU+ipbiQxXvegnfJ+XQXlmmPRPDMT1v1gEwEUs7hmT+a5G93fuU78MvfmRcs\nFpTEM1xYgDASIxaJEYvGiFqMWHjR22icWCRK7L1voXVZDy2f/iyRbdvJODf2qrvjaKR+uFLxgx39\nO9hyYAuve87r8ttUAEFERCZjvBGgb+BPugU4G/go8F7gZOAa4FW1a1r92zOo1Lf54qZHb+ILd36B\nnf07WdqxlKvPuppLn13lBUfnqsmkwgE/co/yhe4EO/thaXuCq89ayaXPPnHkgFn6Mtr/rrfS/663\njntcJFimg+e8/JJ1jrTL4bkMLjeMl/W3uwtPI/3SH7F60Woe6Fj64CRepmH64b7BvpLFD8Avfw3w\nvJXPy29TAQQREZmM8QKgqHNuf7D+GuAa59xaYK2Zbaxt0+rbcGaYLQe2KPVtHvj5oz/nb2/7W5JZ\nP01pR/8OPn7bxwHmfxA0QTc9ehMfv+3jI+dqYAcfv/0TYJGGPFfVzis6lDqUv/bXJDREP5zJZegb\n6itZ/AD8+T+9rb0cvfDo/DYVQBARkckYNwAys5hzLgu8BLhqAo+dt5T6Nnm1HGlJ59IcSh3iYPIg\nB1MHR26D9UOpQxxIHsgfcyDlr+8f3j/muZLZJB/+7Yf52SM/Y3HbYha3L2Zx22KWtC3J3y5qXUQs\nMv/+GTjnGMwMsndob9HSN9THDzb+IB/8hJLZJH93+9+xe3C3f64KlrZ4m9KTpq4h+uGDyYN+BcES\nfy/OOdZvXc/zDn/emP2a/yMiIhM13ofnj4H/NbO9+NWGfgdgZkcDB8d7cjO7EPg3IAp8yzn3uTLH\nnQ6sB17rnLuh+ubPjj2De+hP97OwZeFsN6WsekzpGjN6UGKkxTnHQHrAD06ShziYOlgUtBQGNIWB\nzcHUQYYyQxVfvyPRQVdzF11NXXQ1d7G0YymdTZ385KGflDw+62U5mDrIn/b/ib1De8m54rLGhtHT\n2jPmS38+SGr3b7ubuydVfWy6/x8ms8kxQU0Y2Owb2le0PpwdW1wsYhE855V4Zn/uxufXfX7M9tZ4\nK4tbR85Nb1vvmPPV29pbdtK7AA3QDzvn2D6wndZE6arej+17jH3D+zhnxTlFj8FUAU5ERCauzTNz\n5QAAIABJREFUYgDknPuMmf0Wv9rQf7uRHI4Ifg56WcFVyv8deCmwDbjHzH7unNtU4rh/xL+gX90L\nU9/KpWnUg2oCjZyXC8oLZ4uWnJcj67Jkc9mi/TkvR8bL+Pu9LFmXHVkf/ViveF/42O9u/G7J0YOP\n/PYjfOXur+RHZMp9yQb/ArNdTV10N3fT2dTJ8s7lnNB0Ap1NnUXBTWdTJ93N3XQ1+eudTZ1lR+t+\n9/Tv2NG/Y8z2ZR3LuOHVN+TP1/7h/ewe3M2ewT35Jby/c2Anf9j9h5KjSfFI3P/i3zoSFI0Olha3\nLS6azF3N/0Pw04b2D++nb6ivZHATBjV7h/YykB4Y0zaABc0L6Gntoae1h1MOO4Xe1l4WtS6ip7Un\nv97b2kt3czfn/8f5Zc/VTa+7qejc7BncQ99gH3uG/PUH9jzAnsE9Y/4GANribcVBUVtv0bkJA6WW\neEvJ9xCes3oL+sN2/fP6f2b3wG5YwnMn+vhG6IcrFT8Av/obUHT9n3QuTXtcBRBERGTixk2fcM7d\nWWLbY1U89xnAZufcEwBmdh1wGbBp1HHvBdYCp1fxnLPKOceTzzxZV6lvnvPoG+xjR/8OdvTvYHv/\ndr624WslA40P/vqDfOS3HyHrZYM6V/Uh42U4YfFIENPd1D0moAlva/Fr79VnXV0UbID/q/LVZ12d\nvx+NROlt66W3rbfic6Vzaf9L/6hAIAyUNu/fzLqt6+hP9495bEusJR8UPbjnwZL/D//2tr9l7cNr\n84HNgeSBku3oSHTkg5rjeo7Lr4dBTbi+sGVh2UnnEz1X7Yl22hPtHLngyLKPD0f4Cs9L31Dx+bp/\n1/3sGdxDOje2YFpHoqPkaNLTB5/m+oeuzz8mDBiT2SQXrb5oTBuAon8Do7eVOqaa40bP8/n147/m\nn9b9E6lcUDY8QqLsyalgvvfDlYofgD//58gFR3JY+2H5belcmiXtKoAgIiITV8v88eXA1oL724Az\nCw8ws+XA5cCLqPDBa2ZXEeS9H3744dPe0GrtGdzDofShGU19S+fS7BrYxfb+7ew4tKMo0NnRv4Nd\nA7vIeJmqnsvhePPJbyYaifqlewsWv3RvjJgF9wuOya9brPxjC+8XPtaixIPSwOf/4Hx2DJQePfjC\nBV+Y7lNXtXCUYDpGDxLRBMs7l7O8c3nF4wbTg2O++O8e2J0fLSmVggYwnB0mmU2yqnsVa5atGRPY\nhCM3tUoLmuq5MjM6mjroaOrgqIVHlT3OOceh1KHi0aRR5+veHfeyZ3BP2b//ZDbJx2/7eH7krEFN\nWz8cHDvtfXHWy1YsfpDOpbln+z1ccdwVYx6nAggiIjIZsz2B9ovAh5xzXqU0BufcNfjlXlmzZs2s\nDF1USn2bSurNQHpgTFCzo38HO/t3sr1/O32DfUW/QhtGb1svyzuWc+KSE7ng6AtY1rGM5R3LWdax\njGUdy7j0x5eWTVP6wDkfmPxJmKKrzx5/pGW2XPrsS2c0Xaot0UZboo1V3atK7n/R919U9v/hda+6\nrsatq2wmzpWZ+SN/zV2sXrS67HHOOQ4kD3D2t88uO6r5N+f8TT5NyoKLB5Xqb8YcM+rY8P7ITen9\n+eOAT9z+iXHeaV2oqh+G2vTFB4YPlC1+APCHXX9gODtclP4G/nlWAQQREZmMWgZA24GVBfdXBNsK\nrQGuCz74eoCLzSzrnPtZDds1YZVS3yrN1Xj5MS9n//D+osBm9HIwVTyHOR6Js7RjKcs6lnHu4eey\nrN0PapZ1+kHOYe2HkYhWzqKpJqVrNkznSMt8V6//D+uNmbGgZQFLO5aWDRjfeur41waqla/f+/WS\n7ZpBdd0Pj1f8APz0t4hFOHP5mUWPc+ZoiikAEhGRiatlAHQPsNrMnoX/gfta4P8UHuCce1a4bmbf\nA26ut+AHKqe+feHOL5Scq/Gh33xozBdY8Cd7h6M1pyw9haXtS4tGb3rbeidVMaxQPQcaMz3SMlfV\n8//DelSvAWOpds2wuu6HBzODDKeHWdhaPq14/db1nLj4RDqaOvLbMl6G9nj7lPtKERFpTDULgJxz\nWTN7D/Ar/PKr33HOPWRm7wj2f71Wrz2dhjPDPHXgqbL56Tv7d5bcnnM53vicN+ZHc8Igp7Opc0aq\nFinQmPv0/7B69Rowhq8fVoFznhtb2aGG6r0f7hvsIxErP6Ldn+rngd0PcNVpVxVtT2VTLG5bXOvm\niYjIPFXTOUDOuV8Cvxy1reQHrnPuTbVsy2SEqW/xaLxs1bdKqTcfOvdDtW6iiATqNWC89NmX8sJV\nL/R/BPnksgdn+vXrtR8er/gBwN077ibncpyz8pyi7SqAICIiU6H8gQrC1LdKF2m8+qyrx6Rh1EPq\njUitOefGlH0WqdZ4xQ/AT39ribVw8mEnj9mnC6CKiMhkzXYVuLo1Xupb6HmHPw+cP7dnKDNUN6k3\nItPJOUc6lyadS5NzOZxzmBmG5S9ca2bg8KukOb/sejQSJWIRIhYhav56uG0+85xXtGRy1ZWqbxTV\nFD8A/wKoa5atKSr84pwDQwUQRERk0hQAlVBN6lvoxkduxMPjJ6/6ScVyvSJzhXOOjJchlU2R9bIY\nhjNHR6KDJS1LaE+00xxrpinahJkfAOW8nH/rcuS8XP42DJoyXoZsLkvaS5NMJ8m6rP/rP5YPmDD/\ntcMgybB8sBS16IxcfLgwaHHO5d9TuO45D7/Jlj9XhWWvw1Lc4XWw4tE4iWiCtnhb0ST+RldN8YPd\nA7t5/JnHedXxryrargIIIiIyVQqASqj2gqfOOW54+AZOWnKSgh+Zs/JBSjhKYdAeb2dx22I6mjpo\nijbRHGsum6oUsQiR6MS+jDrnioKlMIjKuRyZXCbfnoyXIZPLkMwlSefSmFk+7S4ccXLmByFRi2Lm\n34IfzDhc/rnzjynRllDRBXwj/g8g8WiceCSe3xeOaOVHtgpGucJFKhuv+AHA+m3rAcbM/1EBBBER\nmSoFQKMks8mqUt8AHtj9AJv3b+bT5316BlomteQ5j6yXJZPL5L/Uhl9255PCEZnwuqGt8VZ6Wnro\naOrwR3ZiTTV/32ZGzPyAYiIKR5cKR5yyXjb/3rJeFhgJZvJBTSSaT8Mrt8xEhcZGV03xA/DT3xa2\nLOSYRccUbc95ORVAEBGRKVEAVCBMfYtFY1Wl26x9eC0tsRYuOeaSGWidTFWY2pXJZch6WRwun8Jk\nZrQl2uhu7ibrZUllUwymB0dSwCgeJQgDpJlKzZqMTC5DKpcik8vk30NLvIWFLQvpbOrMp7HVa/tL\niUaiRIn6BZ1lTqqm+IFzjnVb13H2irPHBOMOpwIIIiIyJQqACuwZ3MPB1MFxU98AhjJD3PzYzVx4\n9IX6NbLOhAFOxsuQ83JFX7RaY610NnXSnminKdZEIpogEU2UHYkoHBnKelmyXpZkNkkymySVS5HM\nJkl76eJ5IAXzWMI0qjA9q1bCoC2d8y8zY2Y0xZpY0LyAruaufBrbXAp2ZP6ptvjB4888Tt9QH2ev\nPHvM41UAQUREpkoBUCCZTbLlwJaqUt8AfrX5VwxmBrniuCtq3DIpJQxGwsAkP0pjfnnc1ngrbfE2\nWuItJKKJ/DyOiQYhEYvkg6RynHP59oSBVyrrB0epbIpULsVAbgBGV4w2ikaRqm1fPt0rm86PTDVF\nm+hq6qKzqZOWeAtNsaYJp5eJ1Fo1xQ/AT38DOGdF8fyfjJehLdY271JTRURkZukbEhOr+hZa+/Ba\nVnWtYs2yNTVuXeMK53aEFcTCKmGAX1kr0cbCloW0xlv9ICfiV9ya6XkcZuYHWNF42WPCSf+FgVI6\nm2Y4O5wfSTqUOlSUahc+LhaJkXO5fGnpRDRBR1MHXR1dtMRbaI41K9iROaGa4gfgB0BHdB3B8s7l\nRdtT2RS9rb21ap6IiDQIfWtiYqlvAFsObOGeHffwgbM/oEnTUxTOywknr4fXlwm/+LfF2+hs6qQt\n3kYilsgHOnMtlavaSf9h0Fc4wpXMJUlEEvlgp1KgJVKvqi1+kMlluHv73SWvpZbzcionLiIiU9bw\nAdBEU98A1m5aS8QiXPbsy2rYsvpXeK2UsNxwuK3wvue8/EUzgaIgJ2IRWmItLGheQHuiPZ9uFo/G\nG3JUIxrx0+Ga0BwHmV+qKX4A8OCeBxnMDI5JfwMVQBARkenReN8wC0wm9S3rZfmvR/6LFx7xQpa0\nL6lxC6dPYTBS6X7hNVEKv6gUXvAxTNOKWKSoIlrhhP/C8sPlyg3HI5XTxkRkfqi2+AH46W+GceaK\nM8c8hwogiIjIdGjoAKhvqG9CqW8Av3vqd/QN9dW0+EG5kZVSwUo4+b+aCzxGLUok4gctiWgiH6iE\ngUwYzBhWMmDRxR5FZDKGMkNVFT8A/wKoJyw+ge7m7qLtKoAgIiLTpWEDoGQ2yZPPPDmh1Dfwix8s\nalnEeavOG7Mvk8uQc7mywUthGlio1MhKWBUsHFkJg5XRoyvhFeirCVhERGbLnsE9VRU/GEwPsnHX\nRt5y8lvG7Evn0vS09NSieSIi0mAaMgCaTOobwN6hvdy25TbecNIbxqRuZb0sA+kBupu7q04D08iK\niMx31RY/ANiwYwNZL8s5K8fO/8nmsiqAICIi06IhA6C+oT4OJg9WlY5R6MZHbiTrZXnVca8asy+Z\nTXJY+2Ec0X3EdDVTRGTOq7b4Afjzf5qiTZy69NQx+xxO839ERGRaNNxwQz71rXliqW/OOdY+vJZT\nDjuFoxYeNWZ/JpcZk7MuItLIJlL8AGDdtnWctuy0MYFOWDlSFeBERGQ6NFQANNnUN4CNuzby+DOP\nVyx+0Bqv7kNeRKQRhMUPEtHx5//0Dfbx2L7HOHvF2WP2ZbwMrbFWpQiLiMi0aKhPkzD1rT3RPuHH\nrn14La3xVi5afdGYfelcmrZ4m0o6i4gUqLb4AcCd2+4EKDn/J51L09nUOa1tExGRxtUwAdBkU9/A\nr0z0iz/9gguPvrBk8DScGWZR66LpaKaIyLwQFj+odmR83bZ1dDd1c1zPcWP2ZXIZFUAQEZFp0xAB\n0FRS3wBu3XwrQ5mhsulvnvP04SwiUiAsflBN2ppzjvVb13PmijNL9tFmpgIIIiIybRoiAJpK6hv4\n6W+ruldx2tLTxuwLJ+dq/o+IiG+ixQ+2HNjCzoGdJdPfwudTAQQREZku8z4ASmaTbDmwhc7myeWP\nP/HME9y7816uOO6KkmVck9kkC5oXaHKuiEhgIsUPwE9/g/Lzf1rjKoAgIiLTZ15/ooSpb+HFSCdj\n7cNriVqUy4+9vOT+ZM4PgERExLdncM+EisKs37qe5R3LWdm5csw+FUAQEZHpNq8DoKmmvmVyGX72\nyM944aoX0tvWW/ogB+1Nk3t+EZH5Jix+0JZoq+r4nJfjzm13cs7Kc0qOsqsAgoiITLeaBkBmdqGZ\nPWpmm83swyX2v97MHjCzB81snZmdNF2vPdXUN4A7nr6DvUN7yxY/yHk5YpEYTVFNzhWR+jTT/fBE\nih8APNT3EP3p/rLzf3QBVBERmW41C4DMLAr8O3ARcDzwOjM7ftRhTwIvdM49F/j/gGum47WnI/UN\nYO2mtfS09vDCI15Ycv9w1i9/XepXSxGR2TYb/fBEih8ArNvqz/85a8VZJfc75/Qjk4iITKtajgCd\nAWx2zj3hnEsD1wGXFR7gnFvnnHsmuHsnsGI6XniqqW/gX5X89i2384pjX1E2lz2Ty9Dd3D3p1xAR\nqbEZ7YcH04MTKn4AfgB0XM9xLGxZOGZfWABhMpcvEBERKaeWAdByYGvB/W3BtnLeCtxSaoeZXWVm\nG8xsQ19fX8UXnY7UN4CfPfozci7HK497ZcXj2uLV5bmLiMyCaeuHYfy+eKLFD4Yzw9y38z7OXnl2\nyf0qgCAiIrVQF0UQzOxF+B+8Hyq13zl3jXNujXNuTW9vmWIE/nFsObBlyqlvzjnWblrLqUtP5agF\nR5U8JvxlciIf9iIi9Wq8fhgq98UTLX4AcO/Oe8l4Gc5ZUXr+T8ZTAQQREZl+tQyAtgOFNU1XBNuK\nmNmJwLeAy5xz+6bygn1DfRwYPjCl1DeA+3bdx5MHnixb/AD8Xy4XtSya0uuIiNTYjPXDEy1+AH76\nWzwSZ82yNaUPcKgAgoiITLtaBkD3AKvN7FlmlgBeC/y88AAzOxz4KXClc+6xqbzYdKW+gV/8oDXe\nykVHX1T2GM95+mVSROrdjPXDEy1+AH4AdOrSU2mJt5Q9RgUQRERkutUsAHLOZYH3AL8CHgaud849\nZGbvMLN3BId9AlgEfNXMNprZhkm+Fk8deGrKqW8AA+kBbtl8CxevvrhsKodzDjOjNT6xD3sRkZk0\nU/3wZIof7B/ez8N7Hy5b/loFEEREpFamFi2Mwzn3S+CXo7Z9vWD9bcDbpvo6fUN97B/ez6LWqaek\n3bL5FoYyQxXT35LZJF1NXfpgFpG6NxP98ESLHwDcue1OgIoBkNKMRUSkFuqiCMJUpLIpthzYQldz\n17Q839pNazlywZGcctgpZY9JZpMlS7aKiDSayRQ/AD/9rSPRwQm9J5TcrwIIIiJSK3M6AJquqm+h\nx/c/zv277ueK464Y9+KmUy20ICIyH0ym+IFzjnVb13HWirPKj6SrAIKIiNTInA6A9g3tY//w/mkL\nRm54+AZikRivOPYVZY/JeTlikZg+mEVEgB0DOyZc/GDroa1s799e9vo/IRVAEBGRWpizAVAqm+KJ\nA09MW+pbJpfhxkdu5LxV59HT2lP2uOHsMAuaF4w7QiQiMt8NpgcZSg9NqPgB+OlvQNnr/6RzaVri\nLZpnKSIiNTEnA6DpTn0D+N+n/pd9w/sqFj8AP999Yavm/4iI9A31Tepi0Ou2rmNp+1JWda8quT+d\nS9PZNPVLGoiIiJQyJwOg6U59A7hh0w30tvbygiNeUPE455zKX4tIw3M49gzumXDxg5yX465td3H2\nyrPLjqRnvIwCIBERqZk5GQBNZ9U38Eu43vHUHVx+7OUVR5TSuTTN8eYJp3uIiMw3nvNwzk2o+AHA\nw3sf5kDqQNn0N0AFEEREpKbmZACUIzdtqW8AP3vkZ+Rcjlce98qKxyWzSV2XQkQkYEx8LmQ4/0cF\nEEREZLbMyQBoOjnnWLtpLWuWreFZC55V8VjP8+hqmr6RJxGRRrN+23qOWXRM2WIzKoAgIiK11vAB\n0L0772XLwS3jFj9wzuHQ/B8RkclKZpNs2LGhYvqbCiCIiEitNXwAtHbTWtribVx49IUVj0vlUnQ2\ndepXSRGRSbp/5/2kc2nOWVk+AFIBBBERqbWGDoAG0gPcsvkWLll9ybgjO8lMsuL1gUREpLJ1W9cR\ni8RYs2xN2WPMmeb/iIhITTV0APTLP/2S4ewwVxxfOf0N/JKvEy33KiIiI9ZtW8fJh51csS91OFWA\nExGRmmroAGjtprUcvfBoTlpyUsXjPOcRjURpibXMUMtEROaXA8kDPLTnIc5eUb76W3ipAaUai4hI\nLTVsALR5/2Y27t7IFcddUfZifKHhzDALmheMe5yIiJR217a7cLiK83/SubQqbYqISM01bAB0w6Yb\niEViXPbsy8Y9Np1Ls7Bl4Qy0SkRkflq3bR1t8Taeu/i5ZY/J5FQAQUREaq8hA6B0Ls2Nj97Ii1e9\nmEWt1V3YVOWvRUQmb/3W9Zyx/Azi0XjZYwwVQBARkdpryADo9i23s394f1XFDzK5DM2xZppi+lAW\nEZmMbYe28dTBpyqmv4EKIIiIyMxoyABo7aa1LG5bzLmHnzvusclssupRIhERGWv9tvUAla//k8uo\nAIKIiMyIhguAdg/s5o6n7+DyYy8nFomNe3zWyyonXURkCtZvXU9vay9HLTiq7DGpXIrOhPpaERGp\nvYYLgP7rkf/Ccx5XHDd++huAmWn+j4jIJHnOY/229Zyz8pyKlTRVAEFERGZKQwVAzjnWPryWM5ad\nwRHdR4x7fCqboiPRUdVIkYiIjPXYvsfYP7x/3Pk/gOb/iIjIjGioAOieHffw9MGnqyp+AP78H5W/\nFhGZvHVb1wFUvABqSAGQiIjMhIYKgNZuWkt7op0LjrqgquM959GeaK9xq0RE5q91W9dx1IKjWNK+\npOwxKoAgIiIzqWECoP5UP7c+fiuXrL6ElnjLuMd7ziNiEc3/ERGZpHQuzYYdG8ZNf1MBBBERmUk1\nDYDM7EIze9TMNpvZh0vsNzP7UrD/ATM7tVZt+cWffkEym+RVx7+qquOT2SQLWhZUnLQrIlLvZrMf\n3rhrI8PZYc5eWTn9TQUQRERkJtUsADKzKPDvwEXA8cDrzOz4UYddBKwOlquAr9WqPWsfXssxC4/h\nuYufW9XxqWxK839EZE6b7X543dZ1RC3KGcvOGPdYzf8REZGZUssRoDOAzc65J5xzaeA64LJRx1wG\n/MD57gS6zWzpdDfksX2P8cDuB7ji+CsmNKLTFm+b7qaIiMykWe2H129dz4lLTqSjqaPicWZGU6xp\nOl5SRERkXLUMgJYDWwvubwu2TfSYKbth0w3EI3H+7Nl/VtXxWS9LU7RJH8giMtfNWj/cn+rngT0P\nVJX+1hRr0uUGRERkxsyJIghmdpWZbTCzDX19fRN6bDqX5sZHb+TFz3px1Sltw5lhpb+JiIxS2Bfv\n7dtb8di7tt+F5zzOWTF+AYSOeOURIhERkelUywBoO7Cy4P6KYNtEj8E5d41zbo1zbk1vb++EGvE/\nT/4PB5IHqr72D/gjQF3NXRN6HRGROjRt/TAU98U9vT0VX3j91vW0xFo46bCTKh6nAggiIjLTahkA\n3QOsNrNnmVkCeC3w81HH/Bx4Q1CF6CzgoHNu53Q2Yu3Da1nStoRzV547oce1JTT/R0TmvFnrh9dt\nW8fpy08nEU2Me2w1lyYQERGZLjVLunbOZc3sPcCvgCjwHefcQ2b2jmD/14FfAhcDm4Eh4M3T2YZd\nA7v4/dO/56rTrqr6AnvpXJr2RLvy0UVkzputfnjXwC6eeOYJXn38q8c9VgUQRERkptX0W75z7pf4\nH66F275esO6Ad9fq9X/68E/xnMerjqvu2j8AQ5khDu86vFZNEhGZUbPRD6/fuh6gugIIURVAEBGR\nmTUniiBMhuc8fvrwTzlz+Zms7Fo5/gMCzjk6EpqQKyIyWeu2rWNRyyKOWXRMxePSubT6WxERmXHz\nNgC6e/vdbD20dULFD5xzRCyifHQRkUlyzrF+63rOXnE2Eav8EZPOpVUAQUREZty8DYDWPryWjkQH\nFxx1QdWPGc4O093cPe6HtoiIlLZ5/2b6hvrGTX8LNceba9wiERGRYuanf88dZtZPgq145Kb9ySNE\nyZKawnP3AJUvjjF76rVt9douUNsmS20r7wjn3MRq+dcpMxsgwdNT6osjREkzNI3NCs32/+dy6rVd\noLZNVr22rV7bBbPftnnTD8vkzcWZp4+6lFsz240oxcw2OKe2TUS9tgvUtslS2xrGI+qLJ6Ze2wVq\n22TVa9vqtV1Q322TxqFcLxERERERaRgKgEREREREpGHMxQDomtluQAVq28TVa7tAbZssta0x1PO5\nrNe21Wu7QG2brHptW722C+q7bdIg5lwRBBERERERkcmaiyNAIiIiIiIik6IASEREREREGsacCoDM\n7EIze9TMNpvZh2e5LVvM7EEz22hmG4JtC83s12b2p+B2wQy15TtmtsfM/liwrWxbzOwjwTl81Myq\nv1Ls9LXtk2a2PTh3G83s4plum5mtNLPbzGyTmT1kZv832D7r561C2+rhvDWb2d1m9oegbZ8KttfD\neSvXtlk/b/NJPfXDQXvUF0++bbP+b0N98aTbVpd9sfphmTOcc3NiAaLA48CRQAL4A3D8LLZnC9Az\nats/AR8O1j8M/OMMteUFwKnAH8drC3B8cO6agGcF5zQ6w237JPDXJY6dsbYBS4FTg/UO4LHg9Wf9\nvFVoWz2cNwPag/U4cBdwVp2ct3Jtm/XzNl+WeuuHgzapL55822b934b64km3rS77YvXDWubKMpdG\ngM4ANjvnnnDOpYHrgMtmuU2jXQZ8P1j/PvCKmXhR59wdwP4q23IZcJ1zLuWcexLYjH9uZ7Jt5cxY\n25xzO51z9wXr/cDDwHLq4LxVaFs5M9k255wbCO7Gg8VRH+etXNvKmdF/C/PEXOiHQX1xtW0rpx76\nu1k/b+qLp7Vd5agfllkxlwKg5cDWgvvbqNwR1ZoDfmNm95rZVcG2Jc65ncH6LmDJ7DStYlvq5Ty+\n18weCNIywiH6WWmbma0CTsH/paquztuotkEdnDczi5rZRmAP8GvnXN2ctzJtgzo4b/NEPZ4z9cVT\nUzf/NtQXT7hNddkXqx+WuWAuBUD15lzn3MnARcC7zewFhTudc47Kv3rMmHpqS+Br+Ck0JwM7gX+Z\nrYaYWTuwFni/c+5Q4b7ZPm8l2lYX5805lwv+9lcAZ5jZc0btn7XzVqZtdXHepGbUF09e3fzbUF88\ncfXaF6sflrlgLgVA24GVBfdXBNtmhXNue3C7B/gv/CHb3Wa2FCC43TNb7avQllk/j8653UEH6QHf\nZGS4e0bbZmZx/A+1a51zPw0218V5K9W2ejlvIefcAeA24ELq5LyValu9nbc5ru7OmfriyauXfxvq\ni6emXvti9cNSz+ZSAHQPsNrMnmVmCeC1wM9noyFm1mZmHeE68DLgj0F73hgc9kbgxtloX6BcW34O\nvNbMmszsWcBq4O6ZbFjYOQcuxz93M9o2MzPg28DDzrkvFOya9fNWrm11ct56zaw7WG8BXgo8Qn2c\nt5Jtq4fzNo/UTT8M6ounqh7+bagvnnTb6rIvVj8sc4arg0oM1S7AxfhVWB4HPjaL7TgSv2rJH4CH\nwrYAi4DfAn8CfgMsnKH2/Bh/SDmDnz/71kptAT4WnMNHgYtmoW3/ATwIPIDf+S2d6bYB5+KnBjwA\nbAyWi+vhvFVoWz2ctxOB+4M2/BH4xHh/+3XQtlk/b/NpqZd+OGiL+uKptW3W/22oL55JgG6yAAAg\nAElEQVR02+qyL1Y/rGWuLOZcPaUji4iIiIiI1M5cSoETERERERGZEgVAIiIiIiLSMBQAiYiIiIhI\nw1AAJCIiIiIiDUMBkIiIiIiINAwFQFLEzJyZ/UvB/b82s09O03N/z8xeNR3PNc7r/LmZPWxmtxVs\ne66ZbQyW/Wb2ZLD+mwk+96/C645UOOYzZvaiybZ/1HNtM7MHzewBM7vVzBZPQ/veYmaHTUf7RGT6\nqR8e97nVD4vIlCgAktFSwCvNrGe2G1LIzGITOPytwNudc/kPP+fcg865k51zJ+Nfg+CDwf3zJ/I6\nzrkLnHP94xzzMefcbZWOmaDnO+dOxL9+woen2j7gLYA+eEXql/rhCtQPi8hUKQCS0bLANcBfjd4x\n+pdDMxsIbs8zs/81sxvN7Akz+5yZvd7M7g5+NTuq4GnON7MNZvaYmb08eHzUzD5vZvcEv7D9ZcHz\n/s7Mfg5sKtGe1wXP/0cz+8dg2yfwL173bTP7fDVv2MzON7Pbzexm/Au1YWY3mdm9ZvaQmb2t4Nht\nZtZtZkcHr/vt4JhbzKw5OOaHZvaKguM/aWb3B+/tmGD7YjP7bfDYb5jZ9vDq2RXcARwdPP4vCt77\nP1TbPjN7DXAy8JPgl9dEcO43Be37x2rOmYjUlPph1A+LSO0oAJJS/h14vZl1TeAxJwHvAI4DrgSO\ncc6dAXwLeG/BcauAM4BLgK8HH1ZvBQ46504HTgfebmbPCo4/Ffi/zrljCl/MzJYB/wi8GP+D5HQz\ne4Vz7tPABuD1zrkPTqD9a4B3OeeOC+6/0Tl3WtCeq81sQYnHPBv4onPuBGAYeEWZ597tnDsF/1xc\nHWz7NHBr8NibgGWVGmdmBrwceNDMVgB/D7wIOAV4XvglZrz2Oed+gn8189cEv8IuwL+y+QnBr5uf\nrdQOEZkx6ofVD4tIjSgAkjGcc4eAHwDvm8DD7nHO7XTOpYDHgf8Otj+I/2Ebut455znn/gQ8ARwL\nvAx4g5ltBO4CFgGrg+Pvds49WeL1Tgdud871OeeywLXACybQ3tHWO+eeLrj/V2b2B2A9sAI4qsRj\nNjvnHgzW76X4fRb6aYljzgWuA3DO3QxUSpf4Hf6HZQv+l40zgf9xzu11zmWAH1H6vVfTvv2AB3zT\nzC4HBiu0Q0RmiPphQP2wiNTIRPJ5pbF8EbgP+G7BtixB0GxmESBRsC9VsO4V3Pco/jtzo17HAQa8\n1zn3q8IdZnYeM/dBkH8dMzsf/4PsLOfcsJn9Hmgu8ZjC95yj/L+nVBXHVPJ859yBgvZV+7hx2+ec\ny5jZGuClwJ8D78T/IiQis0/9sPphEakBjQBJSc65/cD1+GkRoS3AacH6nwHxSTz1n5tZJMhHPxJ4\nFPgV8E4ziwOY2TFm1jbO89wNvNDMeswsCrwO+N9JtKeULmB/8KF7Av6vnNPt/wGvBjCzi4GKFYNG\nuQt4kZktMn+y8GuZ2HvvD1/P/EpFncGvn3+Fn8ohInVA/bD6YRGpDY0ASSX/Aryn4P43gRuDlIRb\nmdyvgk/jf2h2Au9wziXN7Fv4aQH3BTnWfZTP4wbAObfTzD4M3Ib/y+UvnHM3TqI9pfwCuMrMNuF/\nMbhrmp630N8BPzKzNwO/B/ZQ5fl0zm0zs78Fbsd/7zc5534xgdf+LvAtMxvG/wJ1g5k14f8gcnXF\nR4rITFM/rH5YRKaZOTd6JFxEai2YdJx1zmXN7Fz8SbJrZrtdIiKNQv2wSOPSCJDI7FgF/DhIG0kB\nfzm7zRERaTirUD8s0pA0AiQiIiIiIg1DRRBERERERKRhKAASEREREZGGoQBIREREREQahgIgERER\nERFpGAqARERERESkYSgAEhERERGRhqEASEREREREGoYCIBERERERaRgKgEREREREpGEoABIRERER\nkYahAEgagpmdZ2bbavTcq8zMmVmsFs8vIjJXqe8VkXqkAEhkgsxsi5mdP0uvfb6Z3Wdmg2a2zcxe\nPRvtEBGZabPV95rZq81snZkNmdntJfafbGb3BvvvNbOTZ7qNIjIxCoBE5ggzOx74EfAxoAs4Cbh3\nVhslIjL/7Qe+CHxu9A4zSwA3Aj8EFgDfB24MtotInVIAJDUR/FL3QTN7IBit+LaZLTGzW8ys38x+\nY2YLCo7/TzPbZWYHzewOMzsh2J4ws41m9t7gftTM/p+ZfWKc128xs++Z2TNmtgk4fdT+ZWa21sz6\nzOxJM3tfwb5PmtkNZvaToK33mdlJwb7/AA4HbjKzATP7m4Knfb2ZPW1me83sY1M9hyV8HPiGc+4W\n51zWObfPOfd4DV5HROYo9b3T3/c6537jnLse2FFi93lADPiicy7lnPsSYMCLp7sdIjJ9FABJLV0B\nvBQ4BrgUuAX4KNCL/7f3voJjbwFWA4uB+4BrAZxzaeAvgE+b2XHAh4Eo8JlxXvvvgKOC5QLgjeEO\nM4sANwF/AJYDLwHeb2YXFDz+MuA/gYX4oy4/M7O4c+5K4GngUudcu3Punwoecy7w7OD5PhG0dwwz\n+7CZHSi3VHhPZwWPf9DMdprZD81s4TjnQUQaj/reEqbQ91ZyAvCAc84VbPtDsF1E6pQCIKmlLzvn\ndjvntgO/A+5yzt3vnEsC/wWcEh7onPuOc67fOZcCPgmcZGZdwb4/An8P/Az4a+BK51xunNd+NfAZ\n59x+59xW4EsF+04Hep1zn3bOpZ1zTwDfBF5bcMy9zrkbnHMZ4AtAM0EAUsGnnHPDzrk/4H8AnlTq\nIOfc55xz3eWWCs+/ArgS/8vNaqAF+PI4bRKRxqO+t4Qp9L2VtAMHR207BHRM8vlEZAYoAJJa2l2w\nPlzifjvkUys+Z2aPm9khYEtwTE/B8d8HjgB+6Zz7UxWvvQzYWnD/qYL1I4Blo375+yiwpOCY/GOd\ncx6wLXjOSnYVrA8RvL9pNAx81zn3mHNuAPgH4OJpfg0RmfvU986cAaBz1LYuoH8G2yAiE6QASOrB\n/8FPezgf/4NjVbDdCo75KnAzcIGZnVvFc+4EVhbcP7xgfSvw5Khf/zqcc4XBRP6xQdrGCkbyvwtT\nHSbMzD4a5LCXXCo89IFRrz2ldohIw1PfW13fW8lDwIlmVnjOTgy2i0idUgAk9aADSAH7gFb8kY08\nM7sSOA14E37u+vfNbLxf+K4HPmJmC8xsBfDegn13A/1m9qFgwm7UzJ5jZoWTdU8zs1eaf32J9wft\nuzPYtxs4cjJvFMA59w9BDnvJpcJDvwu82cyONLNW/Jz8myfbDhFpeOp7q+h7g3Y24xc7iJhZs5nF\ng923AzngfWbWFBR1cMD/TLadIlJ7CoCkHvwAP01iO7CJkQ87zOxw/PKjb3DODTjnfgRsAP51nOf8\nVPCcTwL/DfxHuCPIYX85cHKwfy/wLfxfQEM3Aq8BnsGfd/PKICcd4LPAx4MUjr+ezBueDOfcd/DP\n1V347y1F8WRmEZGJUN9bnSvxUwe/Bjw/WP8m5ItFvAJ4A3AAP1h8RbBdROqUFRcuEREz+yRwtHPu\nL2a7LSIijUJ9r4jMFI0AiYiIiIhIw1AAJHOW+Rf2KzWZ9aOz3TYRkflKfa+IzHVKgRMRERERkYah\nESAREREREWkYsdluwET19PS4VatWzXYzREQm7N57793rnOud7XZMB/XFIjIXzad+WCZvzgVAq1at\nYsOGDbPdDBGRCTOzp2a7DdNFfbGIzEXzqR+WyVMKnIiIiIiINAwFQCIiIiIi0jAUAImIiIiISMOo\nWQBkZt8xsz1m9scy+83MvmRmm83sATM7tVZtERFpVOqLRUREitVyBOh7wIUV9l8ErA6Wq4CvVfWs\nDz4IkQisWgXXXjvFJoqIzHvfo1H64muv9dtTT+2qxzZB/bZLRGQG1KwKnHPuDjNbVeGQy4AfOP9K\nrHeaWbeZLXXO7az4xOm0f/vUU/D2t4PnwZVXTk+jJ+vaa+FjH4Onn4bDD4fPfAZe//rZbZOICDPU\nF7/tbbBtG7z85dPT6Mm4+Wb45CchmSxu165dcNllYOZ/2S+8rcW2QtdeC1ddBUNDI2266ip/fTY/\nI+q1XVCfn6f12CYRmRLzP/Nq9OT+h+7NzrnnlNh3M/A559zvg/u/BT7knKtYV3WN2dgDmpqgrQ3a\n26G11b9taxu7hNvb2yuvh/fj8bCxIx9s433Agd+Ga65RBykiRczsXufcmll43VXMRF8sxcFRNlv6\nmEgEFi6EaNRfzEbWo1F//+j7pbZN5H7hth//GAYGxrarqws+8AGIxfwlHh9ZL3V/upfrrqu/z9N6\n/oyv18CsXtsVmK1+WOrLnLgOkJldhZ+awWmlDnj96/3OfHAQhof9jurAAdixw19PJv3tw8MwkYAv\nkYCWluKltRWam/3blhb49a+LO0bw7//VX8Hq1dDb6x8fixV/kBV+oBXeHx1giYjUiXH74i9+cUbb\nU+T97y+/73Of8/t+zxu5DdcLl3L7Pc9/nlyu+P7ox4x+nu99r3R7PA+e//yR1/E8/7nD2/A5wm2F\nx2SzY7c5N/bY0c9beEyp4Afg4EH4xCcm/b+gJoaG/CyPd797JLAsHHGb6ujdeMfcf//IaGdhm972\nNvjP/xwJDAuXwmAxvE0k/M/7RKL0vlLPE4+P3Rc+/qab4G/+xv9eA/Uzilevo4sFQdmJ8NzZa4jU\ni9kcAfoGcLtz7sfB/UeB88ZLuxjzq+MRR8CWLf562NmPXrJZyGQglfI7/oMH4dAhfxkc9AOkoaGR\nICkMmsLAKZUa2RfuD5e+vvFPRGen/8tad7e/FK4XLl1d/q+C3d3FnWM0WvzLWzWB1I9+VNe/wIg0\nojodAZr+vng2rFrlf9kabTbbVa5Nhx8Ojz/ur4dBU7geKtw2ev9Ub08+2U9ZHG35crjjDv/zMvzc\nLLdeuC28X7iEn72Ft6O3jd7+7W+XP5evfGXlYHP0eqngFsYGr4XbCm/Dx23cWL5NK1dWfr/lRgBr\nLfyeEC7h/cLthd8nCu8XHjt6CbfH42O/l4Tbr7nG/2412oIF8NnPlg7qCreFAV54W7ieSBRvLwxg\nKxkVlK0BNjinX5sb3GyOAP0ceI+ZXQecCRwcN+d8tNZW/4t9KPzyH6auVaNS0JRO+0smM3KbyRR/\nSL3i/2fvzqPcuO470X8vdnQ3eiObZC9cRVIitVCWKFLU5kVSLPtYluPYiR0fJZM8W6OcyElGzkyU\n2Md2PIllZ+yc8ZvnWFEyTpxkTvwsy36RPYo9orwIrcUitZuSKFFcmkt3c+kNe233/VEodAEorA00\nqoHvRwcHQFU1cBti38Kv7r2/3wfMOeaF+vuBT37SHImanV28nT8PvPkmMDNTfFXJ4vMtBkkDA4vB\nkXUrDKQGBsxRJsu//7t5xdM+F/4TnzADv49+tLhT46gTUSdrfF/cCn/5l85TlVrZrlJt+uIXzb63\nVb70Jed2ffnLwJYtzXvfwmCu8PFjj5kX7QqtXw/88z8vPSisFBQ53d9wgzmbpNDICPDjHxe/jvV+\n9tE36/uDU7Bk/85RuE9VzZ93ChrL/bv+zd90fo9qbul0/khjqdcpta2U2Vng7rtL769HqUCtcMrm\nW2+ZnyWRTdN6YCHEvwJ4B4DVQohTAD4HwA8AUsoHADwK4L0AjgBIAvidql44EDD/ITdqVKOeoMn6\nYzcMsw333LM4DA2Ywch99wG33JLfIQhhdo7We6rq4kiUFSDZA6aZGfP+2LHFfVZHWygcNgOhgQHg\nyBFz1MoulQI+8xnz8+vtBSIR89664hIImGupQiHz3mmuNxGtOCumL14q6/3dNPLtxja1sl2VrtZ/\n8YvOgdn995v3rfBXf+Xcpr/6K2DHjtpfr1IQV+3+f/on4OTJ4tcfGwO+9rXin7cHaU4jXdWMpDm9\nRuH+973P+aLw0BDwwAOLQZwVENoDO6fn9mDQadTQ6fjC2+uv1/7/idpeU6fANcPu3bvlwYMuW3pb\nbsGfdfXG/oeqKOZVlkxm8d4w8k8MUuYPTVtBkz1YKnX72c+qb3s4vBgQWbeenuJtvb3AqlXA6tVm\nR7ZmzWIAZb95KmRWd/niSKJmaqfFt67si2nlc+M5wq1tcmNyhlLteuABcwZKYVAFlJ62WGp/4Tq3\nctsNA3jXu4DJxUFtToEjgAGQezhdzbAHSNZNyuJAqXC+7623Og/Zr15tXklbWMhfB2U9LtyWSJRv\nczBYHCj19S2ORFkB06pV5u3ZZ80Th320zA0dNtEyYQBERA3jxsDMje3iGiBywABopXEa7rUSNmQy\n5ujSI4+YgY61Bggwp7b96Z8C73734jb7AkL71AQrC46um0kjYjEzKCq8t98Kg6hSWYac+HzAzp2V\n05b39JhBltO2nh7zd3TK5FPqZue2DpvaEgMgIqIWsJ3jd0mpvCRlsNVNotbiwo6VxhrlCZb52921\nC9i82fxjP3XKnBP82c8CH/pQ6WFkewpW+/BxV5c5ilM4pGxPrQoUBxSaZo4g2QOmP/xD5/ZqmjkV\nL5Ewk0TYs+3ZR4uq+Wzs6crt906Pu7rMYOrwYeDhhxcXSVoFFM+cMYfsrfVQTtn27Fn4Gp1MgkEZ\nERHR0n3sY7nz58tCvNLi1pALcASIlqbc3N3C244dzos2R0eBaDR/caS14NEwzJEtKxgqvLfXeLI/\nLkxXnkjkPy+VTKJQYVDV3b0YSNkfW/us0Shr3VRvr5mpz0qFHonkFyR0CqaEcO/8bloSjgAREbVW\nO/XDVD+OANHSVJOD33L//aVTr27e7PwzhSNT9nsrM4w9YFIUc7s9xbiVfc+6l3JxumA6DdxxR35q\nc7tPfMIMnqybFUydPbv4OJEozrpXiseTPwJVGExZt3/7N+cCu3/0R2YgZR0XCpk/b92Hw8WFAp2m\nBS6FW0em3NouIiIichUGQLR86km9ak35qyVNuaVU4GTPzKcowPCwc9KIdeuA3ynICGxPQmEPqqyk\nFYUjUE6jUalUcUB1/nz+81JT/86fB26/vfzvHQwupja30psXPrfSnVuPrVswuBhQWcGZ9TgUAp55\nBvgf/2Mx4LOmC547B3z4w/lF6+w1puyBV6nHS+HW6uMAK5ATERG5DKfAEZWabva3f2uuASpc/2Rf\nP2V/bC8eZ2X0sx4X7rem4NlHp4DFx+9/PzA9XdzWwUHgz//cDNysUSynm7XPfox9mz27oLUtk2ls\n5XIhSheoK1fAzl6DqvCx9bywkvg3v+lcfby/31z/Zq3Rckotb5+SaN2sfVZbnY61rwsrfA3r+B/+\n0KwJlg1o2yn7EPtiIlqJOAWOAI4AEVUemfJ6G/+ehcFUYVD1F38B/MEf5I8EhcPAF74AfOADxfUO\nCl+j3DaL08iLNX2wVPBkjao4ufde54rlTttUtXQBu3g8/7m9AJ7TrZy5ObNdRERERFkMgIiAvAwx\ny8IajSjl4x83A55mrGmpJXFF4e0LXzAzCxYaHTUDjUqF6gr3ldpe+FlZ7bY/t7bpOvDBDzqPmA0N\nAd/4RnGGQ10v3R6n4LLSvlLHfvWrS///RURERA3FAIjIrZoVlC1l3c2XvlQ6kcXoaGPaB5SvEO60\n/YtfBO65p3jE7ItfBG6+ufTPlqokDpQO0px+1ul4wzCnV05NNe5zISIioiVjAERE1asnkUU97EkS\nqvG7v2smcHBbFrivfKU4YCQiIqKWYgBERLVZ7umC1XJjuwoCRlVKpfwPEBERUbN5Wt0AIqK29rGP\nAcePA4aBlwFWICciImoxBkBERERERNQxGAAREREREVHHYABEREREREQdgwEQERERERF1DAZARERE\nRETUMRgAERERERFRx2AAREREREREHYMBEBERERERdQwGQERERERE1DEYABERERERUcdgAERERERE\nRB2DARAREREREXUMBkBERERERNQxmhoACSFuE0IcFkIcEULc57C/TwjxAyHES0KIQ0KI32lme4iI\nOg37YSIiony+Zr2wEMIL4OsAbgVwCsABIcQjUspXbYf9PoBXpZS3CyGGABwWQvwvKaXSrHYRuZmU\nEoY0im4SMrc/d2zBtmqPsR4b0si7l1Ii918Nx7iVEAICIvfcI/Kv99if2x+X+7m84yAghPNx9u3W\nsV3+rnp+jSVhP0xERFSsaQEQgD0AjkgpjwKAEOLbAO4AYD/xSgARYX5b6AEwA0BrYpuIGsYKViRK\nBC22YEYztNxNN3ToUodu6OZzuXgvIfO+fNuDjNx2a7e07iSEEJBy8WelkMXHZPdZX87t71O4rfAL\nvNM++8+7kRX85Z47BIaOP1cQ2NmPLfcahfvsn4+iK9g6uLXKljcU+2EiIqICzQyARgGctD0/BWBv\nwTH/D4BHAJwBEAHwG1JmLzXbCCHuAnAXAGzYsKEpjaX25hSU2AOXwpEXe8CSF7TYAhdrVMQpEMh9\nORYApDk64BGe3OiC/bnf40fQFywaUaD2sZBZaNVbN6wfBtgXExFRe2hmAFSNdwN4EcC7AFwE4DEh\nRFRKmfdtQUr5IIAHAWD37t3unndDdSsMQkoFKBKyeBSl4LkBw9yW3W6xAoy80RJrBCU7rcsKTjzC\nkwtWhDDvvcILv8+f20bUBqrqhwH2xURE1B6aGQCdBrDe9nwsu83udwB8SZpzR44IIY4BuATAs01s\nFy0zzdCg6ipUQ0VGyyCpJpFUk1ANFYZh5KaAQdhGU2xfrawABVicZmQfSXEaVfHCDFSswIWoQ7Ef\nJiIiKtDMAOgAgG1CiM0wT7gfAfCbBcdMALgZQFQIsRbAxQCONrFN1CS6oUPRlaIgJ6kmzbUt2REX\nCQm/1w+/xw+v8MLn8+UCFyJqOPbDREREBZoWAEkpNSHEPQB+DMAL4JtSykNCiLuz+x8A8F8B/KMQ\n4hWYqyX+REp5vlltoqWpJ8jp8nfB6/G2uunUQD84/AP89TN/jcnYJIYjw7j32ntx+8W3t7pZ5ID9\nMBERUbGmrgGSUj4K4NGCbQ/YHp8B8CvNbAPVxinISakpJNSEuZbGllWMQU7n+cHhH+AzP/0M0loa\nAHAmdgaf+elnAKDlQRADM2fsh4mWxp7x00pWw6Q1RCtbq5MgUAvohg7VUKHoChRNWRzJ0ZJQdTU3\niiMg4PP6OiLIceOX5+Vok5QSaS2NuBJHQk2Y90oCcTV7n91uPf7uq9/NBT+WtJbGZ376GTx+7HEE\nvIG8m9/jL97m9Rc/9xRvd/p5n8fn+KXDzYEZES2vUtk+C2+FpQis7J727J9WUh0BYV4AFNm1qNkM\nn17hhdfjXUyWAw98Hh88nsUkOj6PLy+5jvUz9kDKSrpTy7ZKn4GV2KfSPWCr9VbimFKfYWHiorzP\nXkoEfUEEvAGEfCEEvAF4PV74PL7cjdPfqVUYALUpKSUUXUFGz0DVVSSURMUgJ+wLoyfQ0+qmLzs3\nfnku16b3bX8fUloqL0ApCmBsgUtCSZQNbgznjMd5PMKDbn83UlrKcX9aS+P186+bQbWuQNVVKIaS\nS37RKALCMVA6EztjJtIoaNPnfvY5nI6dRl+oD31B89Yb7EV/qB+9wV5EghGegIlcwPrirEu9qoDF\nKXgpLFEAlK5XZiXXKcz0aQ9SKmX8LBVUqIYKaSw+LywkbQUH2QZCSLGY7McWZAkzM1B+4JX9Gau8\ngtfjhQeeokDPOsb+mkWvY1P4XpDZenLWW9qCMHsAZt8GLBaEFsJ8vaSaREyJQTf0XCBpny7vFV4E\nfGaAFPQGcwGTFSB5hRkwtfMFWGoN4fZq7oV2794tDx482OpmuIqqq8joGSi6glgmlvtia+/srOlq\n7EjMz+N88jxOzJ/A8bnjuD96P+JqvOg4j/BgTfeaog4ecDgZZE8e9mKhpfaXOnHYf+a1c685Bg7W\n/lqClp5AD7oD3ejxZ+8DPej2d6M70F303Hqcdx/oRtgXhhAC7/zWO3EmdqbovUYiI/jpb//UsR2G\nNMyAyAqOjMXHeQFTwbZSxzpt/+EbP6z4eTgREOgN9qIvlA2Mgv3oDfXmgqXc9mzAZG3rC/Yh5AtV\nNQXmB4d/gK88/RVMx6chvyEVOSWDdTXWZdgXk8V+1b8wgNENPW9URdGVvGBFNdTcKAtk/QFLYSbQ\nTtAOU/OsfxvWvfXvJa8gOMzyFEFfEEHv4ohS0BfMBUi5gKmK7zdCiOeklLub+XuR+3EEaAXRDT0X\n6CQV86pKXIlDMzSzjk020Al4A+gL9q2oTrDRpJSYTc/i+NxxnJg7gePz5v2J+RM4MXfCDBArMKSB\n69ZfZ14Jy14Gy13ps13ts/YXHSOdfwZAxf2lRk0kJP7j1f+xKEApDG56Aj1Vf0Gvxb3X3ps3MgUA\nIV8I9157b8mfyZ24fM373v/85PMlA7MffexHmM/MYz49b95n5rGQXsg9zm1Pz2Mhs4BTC6dy+8oF\nmn6PfzEwso0w2YOmIzNH8PBrD0PRFfOHPAg06zMgqpf1pbNUEKPpi4GKaqjQdC03+qLqKnToi3XV\nbDXWgMW+M69MgVicMhbyhToqaGkk67NcyTzCg4C3crcopYRmaMjomdzMBd3QF2ez2C4sBryB3GiS\ndW8PkogABkCuJKXMBTopNYWYEkNCSSCtpXOBjtfjRcAbaPu1OZXMpmbNoCYb2NiDnZgSyx3nFV6M\n9o5iY99GXD18NTb2bcTG/o3Y1L8Jv/X938JkfLLotUciI7j/5vuX89fJKTfS8p+u/U8taJHJmhLo\ntvVS5QKzoC+INb41WNO9pqbXlFIioSYwl57DQmYhL1ByCqSm4lN448IbmEvPVRVgE5Viv7JvTZcq\n9di+9sIq/Gx9ObQHMtYUJM3Qcj9nny5mD0CcCkV7hTevILQQAn6PH0FfkNNIqemEMKc/++Eve5yU\n0gzMDRWpdCo3XdIeIAElhhmpozAAajFrCk9aTSOuxhHPxJHQEnkLLq11DmF/uNXNXbJ6FvYvZBZy\nIznWtDUr4JnPzOeO8wgPRiIj2NS3Cbsu3oWN/RvNQKdvI8Z6x+D3Onecn9r3qd2b47cAACAASURB\nVJpHNZqtnpGW5XL7xbe3POAp1IzATAiBnkBPXeviVF1FTInhuv95Xe4KOLU/68uXfYqXLnVkNHMt\nZi44kXquCLRVQsD6omat37DOAfa1IXnrRIDFtRpYLBDttHC+aNqYbYE+R16onQgh4BPmSE8QxbMO\n5lJzLWgVuREDoGVizX3OaObwbTwTR0yJ5U17sqav9Qf72/KkVG5h/zs3vzM/wLE9nk3P5l5DQGA4\nMoyNfRvxnm3vwaa+TWag078R63vXVzWUXsiNoxpubJPbuSkw83v9GAwPYjgy7DiSRyuHPTixL7pX\ndRVpLZ3r11XDTPxhX9Bu9e3WYnWngMQrvBAegQACDEjgzoycRNR+mAShwQxp5E6IKS2VS0qgGmru\nSp3P48ul/+2kqQPv+Md3OE418whP0VqLdT3rcqM31lS1jX0bsaFvQ1PXkhA1UmHQj78F5BnZFt9w\n3d4XV1IY0OiGnksoY01BVjQFiqGYU8JEfvYqK6ixUhpb91S/or8XmCPff/HOv2AQ5IDBYu3mUnPY\nu37v81LKq1vdFmotjgA1iCENvHnhTcxl5nJXAK3FfUFfEN2e7lY3cdnoho5TC6fw5sybODJzJHfv\nFPwA5mf3qX2fygty2mG6H5H1ZSSXBc6QSoub1PaklEhpqVyAYy2czmiZvMyB1ui7FdBY086s2iQ+\njw8BXwBhEe74UZlGSqpJnImdyd0mY5M4HTuNyfgkXph8wSy4bZPW0vjPj/1nfPXpr+ampNqzVjrd\nChPCWI9LTYOuxI2BhhvLNxCtJAyAGiSWiWE2NYvBrsFWN2XZGNLA6YXTRYHOWzNvIaNncseNREaw\ndXArTs6fdFwcPhIZwV1X37WcTaclsBZX64b5RcUpJS0tuv3i2/H2TW/HaGQUI58feaXV7Wl3ZxNn\ncXT2KLweb27kxj5K4/f6m5Ihkczg80LqQl6Akwt04pM4s3AGc5n8NRhe4cW6nnUYjgwXBT+514XE\nvrF9iCtxxNU4FpQFnImfyatnVo2QL2QGRLasmfaAqcdfHES9PP0y/vHFf8yd087EzuDTP/k0ziXP\n4R2b3lFU/BNAfj2eMs+dkl1U+/wvo3/pWJT6y09+GVeuuzLX/nqmhS+VGwNGokIMgBpkOj6NkD/U\n6mY0hSENnImdWQxyLpj3R2eP5hXGXNezDlsHt2Lv5XuxdXArtg1uw0WDF+UWkZea3uCGhf2drrAW\nQy7FqPUlMTtTVgqJgCcAv8ePLn8XABTV87AKkpaq52G+nMwLmgpreDCYonpIKTEZm0QkGGnJF7+V\npJ4vqYquYCo+ZY7YxCaLRnLOxM8spnzP6vJ3mcF/ZARXrL0CIz0jGImMYDgyjNHIKIa6h3Kpictl\nv7z/ltIZOQ1pIKkmzQCp4GYVf857btt/OnY673lhQWUnGT2DLz/5ZXz5yS9XPHa5nUuewy3/fEvu\necAbyB8hKwj+So6g+fO31VL3jCNTtBIwAGoARVcwl55DX6iv1U1ZEiklJuOTuSDHCnjemn0LSTWZ\nO25N9xpsG9yGX7/017FtcBu2Dm7F1sGtiAQjZV/frQv7DWkgraWR0cwrfIXpYK1tK+3LeuHibSu4\nyQUmYvE4ezVuq4ZCXjVujzdXlbuak2CpSu5OVd2tBeX2tRi5Yom2K8K5qUqFv6e1HqMgTS+L/nae\nhJpAWk9jMNA5I/H1KPUlNakmsWvdrlyAUxjonE+eL/obHOoawkhkBDuGduBdW96F0choLrgZ7hlG\nb7C36tG2erNfeoSn7oyNdlJKKLqSFxB98DsfLHn8V279St55wKlIq5X4otRzq/3VPBdCwAPz/s7v\n34mzibNFbRoIDeC+G+5zDAatAHA6MY23Zt/KbSsMWp14hTcvQLJPL7TfvvXStxxHpr769Fdbfq4n\nsmMA1ABz6TlIIV01paLc1T0pJaYT03jzQv7UtSMzR/KmEgx1DWHr4Fb82o5fMwOdVVuxdWDrkgI9\nN2Tq0g3dzN5kKIAEvB4v+kP9GIuMoSvQBQFRVBTQ/mXdulnb7F/Wy/0bcMoIVU8gZZ+CZgUNViVw\ne3pce0G4Ln9XLrjxe/151bO9Hm/Dg7dGBYT2KR+6oefuC4Opwv83iq4gpaWg6upiCmEhi6qGuy1o\npaU5lzjHkZ8yDGlgKj6F+8fvd/yS+tmffTZvW8AbMEdsekdw08abMBLJH71Z17OuoZ93qy+SCSFy\nRZtXda0CYI4+lRqVauW57L9c918cg8VP3/jpmttlBX2Fo2PWlMNSo2dz6TmcWjiVm4Zov1BaaDI+\niT1/tweD4UHH26rwKgyGBzEQHsCq8CoMhAdYtJSaiv+6lsgaNen2uyfJgdPVvfsevw/fOfQdqIaK\nIzNH8oqEDoYHsXVwKz5wyQdyU9e2Dm7FQHigVb9CQ2mGhrSWhqZrgDCvZPWH+jEQHkDYF27YegD7\nPPCSox7ZyulOgZRqqLmREIvVrlxhQoFc8cGgP4iQL4SgN2gGNR5bUNMmGanslc7rORkWfrZpLY2k\nmjQLDGdieUUgpZR5wZHP43PVRQ0qTzM0nEueQ2+wt9VNabmUmsLxueM4OnsUx+aO4ejsURydPYrj\nc8fzpi07+dptX8sFOqvCq5b9b8ANF8ns3FqTrZHBYsAbyAUiS6EZGm7+p5sxFZ8q2hcJRPC+7e/D\nTGoGF1IXcHzuOJ6ffB6z6dmiLLCWvmBfXoA0EB7IC5bst0oBk/2iMNbisiX9otQWGAAtUVJNIqWk\nXJX84CtPf6Xo6p5maDhw5gB2j+zG+7a/LxfkbFu1bcmdnttYAY+qqxAwq0f3B7MBjz+MoDfYlJN6\nbrE1lhZ4OAVSQoiapqCRyesxA0GngngActPvrAAppaWQUlNIaSkkMgkUlgnwe/15ARK5x0J6AVLK\njhnVk1KaCR/mzODm2OwxHJs9hqNzR/NGLAQERntHsWVgC/aO7sWWgS342i++hgupC0WvORIZwW1b\nb1vOX8P1Wj0qVY7bgkWfx4c/3vfHjgHj597+Oce26oaO+cw8ZlOzuJC6gJnUTNHtQuoCjs0dw3OT\nz5UNmKzzfGHANBmbxP9+83+b5UgAwAMOExMDoKW6kLxQd2rNRpJS4sCZA/jOoe84Xn2x/MsH/2UZ\nW7U8rNodqm52bkFvEIPhQfSH+hH2hVdc3aBGBVJUmRXIhFGcdl1KmTd6pOgKkmoSaS1tjiAZMQhp\njspBZv+/ebzwe/xcf9QCU/Gptkyfn9EyODF/omg059jssbwpy13+Lmzu34yrh6/Gh3d+GJsHNmNL\n/xZs7N+IkC8/QU+Xv8uVoxqGNHJ/a7rUF2vmefwtvfDjtkDDzWoNGL0eb24U5yJcVPH1rYCpMECa\nTc3mHs+kZnBs7hgOTh7EXHquZMBEnY0B0BLoho7pxHTFxf/NdCF5Ad9//ft46NWHcHzuOCKBCLr8\nXY5zcYcjwy1oYeNZhWatbD0hXwirw6vRG+pFl7+LawCoIYQwRw/9Xj/gcI3DWntkjSBltIw5Iqyl\nkFSTednw7GnhqfHSWhoxJebKabvVZFuTUmImNbMY3NgCndOx03lf4IZ7hrFlYAs+uOOD2Ny/GVsG\ntmDLwBas6V5TdZDghlENRVfMvx1dzSVWsJIZDIQHEPAEkFATSCgJzGfm80ZjrcCIFxrcqZkBoz1g\nqoZu6Lj0by51TKBDnY0B0BLElBh0qS/7lAtDGnhy4kk89OpDePzY49AMDVcPX43f2/17ePdF78b+\no/tdeXWvXoquIK2lc3UQQv4Q1vasRSQQQdgfZsBDLWEVOi7170839NzokWqoCPvab3TCLWaSM66c\n+ua0HvPTP/k0Xjn7ClZ3rTanrM0exdG5o1jILOR+LugNYvPAZly+9nK8/+L354KcTf2bcunnl2q5\nRjWsrI6qoZqBnDQzN4b9YfQF+xAJRsy1jL5gyZEeKSVUQ80VsU0oZmCUUBO5zJYSMjcCa01VJfJ6\nvBiODDsmsqDOxh5iCabiU8v6pWYqPoWHX3sYD7/6ME7HTqM/1I87r7gTH975YVw0uDh07Iare0uR\n0TK5gEcIgbAvjOGeYUSCEYR9YVdMOSSqxFp/VDj9iBpLSomp+BS6A+5JRGNxWo+Z0TP41kvfAmBm\n2twysAXv3fZeM8jp34LNA5sxEhlxZUBXjj1IsWdf9Hq8iAQjWBNYkxuhD/qCNf1+Qoi8iw32q/9W\n1kdFV5BSU7lsZTE9lpfy3wqMWj2djpafUyILIgZAdcpoGcyn55s+5UIzNPz8xM/x0KGH8PMTP4ch\nDewb24c/vu6PccuWW0pefV4pc5atugspLZWb4tAT6MFoZNQMePxhXskjopJiSgyqoaLHs7QaMI0y\nHZ/G/mP7sf/o/pLrMQUEDnziQEunTy+FPeiQcrEERJevC6vCqxAJRnK1xJp9wcpax9fl70J/qD+3\n3RqBVXQFaTWdS9U8n5lfLOwMmQuK/F6/q4NOawaEVRag8DmTs5RWeFFYGrJy4SNqe/xLqdNceq6p\nr39y4SS+++p38b3XvoezibMY6hrCJ676BD6080PY0Lehqe/dTLkTp6bk5uT2BnuxoW8DegI9CPvC\nnNNNRFU7mzjb8lHht2bfwv639mP/sf14efplAMCm/k3o8fcgrsaLjh+ODK+I4CcvKUG2DhdgTtHr\nCfbkpiFbwY6bRlbsI7C9wV6swRoAixfd8qbTqYm8tPjWz9cznc6exVNCln0OYHGUCmZA5lSIG0Cu\ntIFV7sDvMQM2q56Zlb0ypsdK1j7r5NEv66LwXGoOez+/95etbg+1HgOgOkgpMRmbXHLV6UKKrmD/\n0f347qvfxZMnn4RHeHDThpvwubd/Dm/f+PaWn+RrZc/OZtVZsU6cfZE+hP1hBjxEVDdVVzGTmkFf\nsP7izPUwpIFXpl/B/qP78djRx3Bs7hgA4PI1l+Pea+/FLVtuwUWDFxWtAQLcux7TnpQAML+Me4QH\nkUAEA+EBdPu7zfpj3uCK7rPtxU4B5AqeAsgFe1bGRysJQ0yP5f28JVefDchL5JArMA0P/J7FGm3W\nPnudMXsBbHtx7MIC2dWygtZcan81haRm1j4rTCZhlVdg5krqRAyA6pBQE0jraXQFGrMY9ejsUTx0\n6CF8//XvYzY9i5HICD6555P4tR2/tiIyt+XN/TbU3PSCkD+EgdAAIoEIQv4QQr4Qh+eJqGHm0/N5\nU7CaSdVVPHv6WTx29DE8fuxxnE2chVd4sWd0D+684k7cvOVmrOtZl/czbl2PKaVEWksjradz/XXY\nH0Z/qB89gZ6KSQnalZX1sRvdedPb7Ykc7EGKUwDT6s/LIzxmgJetfWb/PUql9reCJCv4tbAwNLUz\nfhutw7nEuSVnHktrafzoyI/w0KsP4eCZg/B5fHjXpnfhw5d+GNevv961V2Ls0wdy2XeERLevG6vD\nq9ETzJ48V/hVQiJyvzPxM01NfpBQEhifGMdjRx/Dz47/DDElhrAvjBs33Iibt9yMd256J/pC5Uef\n3LIe00oSYCWXGQgNYDQyiu5Ad81JCTqN1+NF2BN2rBe2klRK7V+YuTKlpnKp/RMZs+aUNYJkHz1y\n+/opIicMgGqkGRrOJc+hN9hb18+/fv51PHToITzyxiNYyCxgY99GfGrfp/DBHR/E6q7VDW7t0hjS\nQEbL5Ba6WvOTrSkRPYEeBL1BnjyJaNkl1SSSarLqeiDVmknN4CfHfoL9R/fjyZNPQtEV9If6ceuW\nW3HLRbfg+vXXr4jMfrqhI6Wlclf1u/xdGOsdQyRo1opjn02FijJX2uI9a/TIGgmz1z1LKAnoUjdH\nE4V5rDVq5PV4IWAWiea/OXKTpgZAQojbAHwNgBfA30spv+RwzDsA/HeY1yPOSynf3sw2LVUsE4OU\nsqY/5ISSwKNvPorvvPodvDz9MgLeAH7lol/Bh3d+GHtH97piWLkwqw9gDn9HghGs6TbTl4Z8Idct\ndCWi8tqxHwbMItCNmlJ7auEU9h81M7c9N/kcDGlgJDKCj1z2Edyy+RZcPXK166fv5qa1Zdcb+Tw+\nrOpahf5QP7r93StuDSm5S97okYPC0SNrap21La2loUlz1ohVC8paG2zVcfIIT1HA5BEeeIWX3zuo\n4ZrWowshvAC+DuBWAKcAHBBCPCKlfNV2TD+AvwFwm5RyQgixplntaZTJ2CTC/vxhcKdK3+/b/j68\ncvYVPHToIfzwzR8iqSaxbXAb/uzGP8P7t7+/pRXL7Qs9ATMLjd/rRyQYQSRgXh0M+oIsMEq0wrVr\nP2xIA1PxqboT0UgpcfjC4VzQ89r51wAA21dtx92778atW27FjtU7XP+lyyoSrRs6AKA/1I+RyEhu\nHY/b20/to3D0yGlk1sqAp0vdvDf0vMf2tUm61KFoSl4RXStQymW5gwQEcvWmCgMmr/Dm1moRFWrm\nJa09AI5IKY8CgBDi2wDuAPCq7ZjfBPA9KeUEAEgpzzaxPUuW1tKIKbG84MWp0vefPv6n+OrTX8Vk\nfBJhXxjv2fYe/PrOX8eV665c9j/EXCY2Q4WQZucR8ofQF+xDb7AXIb+5XodXB4naUtv1wwByKYtr\nWWeoGzpemHohF/ScXDgJAYG3Db8Nf3L9n+DmzTdjY//GJrZ66QqntYX8IQz3DKM32IsufxfXXZKr\nWUGJF7X/O7VSh+uGnguirMeaoeVNz9N0DYqh5IIp672XK2EKrQzNDIBGAZy0PT8FYG/BMdsB+IUQ\nPwMQAfA1KeU/Fb6QEOIuAHcBwIYNrauBM5uazcvZD5jZfQqrC6uGivPJ8/j8Oz6P27ff3vB02dUw\npIH5zDz8wo9VXYuF6UK+EE+SRJ2jYf0w4J6+eCo+lUtjbFc4Gv/JPZ/EYHgQ+4/ux0+O/QQXUhfg\n9/hx3frrcNfVd+Fdm9/lurWXdlJKZPQM0moaEhJejxeDoUEzLXWgm6P01DGs0Z16pqLaR5uyU/xl\npZ+h9tfqSc0+AFcDuBnmcrunhRDPSCnfsB8kpXwQwIMAsHv37pb8w5VSmlMugvnBzGRs0vF4zdDw\n0cs+uhxNKxJX4lA0BWN9YxjuGWbAQ0TlVNUPA+7oizNaBnPpuaJpxKVG4wGg29+Nd2x6B27Zcgtu\n2nhTSy5KVUvVVaS0VG5aW2+wF8MDw+gOdCPsC/MKNlGNPMIDj9cDv1PqO+pYzQyATgNYb3s+lt1m\ndwrABSllAkBCCPEEgF0Aik68rRZX4shomaKUq8ORYZyJnSk6vhX1e1RdRUyJoS/Yhx2rdxStVSKi\njtNW/TAAzKXnHLc7jcYD5lqEn/+Hn7t2tMSQhrlYXFfNKcq+ENb1rENvsBfd/m5ewCIiaoJm5iQ8\nAGCbEGKzECIA4CMAHik45t8A3CCE8AkhumBOzXitiW2q29nEWQR8xSfQe6+9F35P/lWF5a70LaXE\nXGoOaS2N7YPbccnqSxj8EBHQZv2wlBKTsUnH2j+lRuNnU7OuC34yWgZzqTnMpmYRV+KIBCPYtmob\nrlx3JXat24Wx3jH0BnsZ/BARNUnTRoCklJoQ4h4AP4aZfvWbUspDQoi7s/sfkFK+JoT4EYCXARgw\nU7T+slltqpdmaLiQuoC+YHHBu9svvh3/8OI/4PXzr8OQxrJX+k6pKaTUFIYjwxjtHXV9qlYiWj7t\n1A8DQEJNIK2nMRgozjDlptH4QoY0kFASZvFoIdAT6MHG/o3oCfSgy9/FaW1ERMusqd+WpZSPAni0\nYNsDBc//G4D/1sx2LNV8er5k9hBVV3F87jg+tPND+MI7v7BsbdIMDQuZBfQEenD52subWg2diFau\ndumHAeB88nzJ0Zx79tyDP3v8z/K2LfdofCEpJWJKDLqhY13POgyEB9Dl7+KFKiKiFqu6FxZC3ABg\nm5TyH4QQQwB6pJTHmtc095iMT6LL3+W478WpF5FQE7hxw43L1p5YJgZd6tgysAVDXUO8ekjUITq5\nH9YMDWcTZ9Eb7HXcv6bLLF80GB7EbGp22UfjC8WVOBRdwdrutRiJjDhmrSMiotaoKgASQnwOwG4A\nFwP4B5jVwv8FwPXNa5o7pNQU4pk4BruKp1wAQHQiCp/Hh2vHrm16WzJaBnEljqHuIWzo2+C6ee1E\n1Dyd3A8DwEJ6AVKa1eKdRCeiCHqD+Olv/zRXjLEVUmoKSTWJVV2rMNY7VvLiGRERtU61I0C/CuBt\nAJ4HACnlGSFEpGmtcpHZ1GzZhajjE+O4ct2ViASb93EY0sBCegFBXxCXrrm05BVQImprHdsPA2bt\nn3LJXaITUVwzek3Lgp+MlkFCSaA32IvL1lzW1HMCEREtTbVZ4BRpVo+SACCE6IgFJ4Y0MBl3zjgE\nABeSF3Do3CHcsOGGprUhrsSxkF7AWO8YLltzGYMfos7Vkf0wAKS1NBaUhZLBzamFUzg6exQ3bbxp\nmVsGKLqC2dQsDBjYMbQDO4Z2MPghInK5akeAviOE+FsA/UKITwD4XQB/17xmuUNciUM1VEQ8ziez\n8ZPjANCU9T+KriCeiWMgPICNQxtbOqWDiFyhI/thAJhJzsAryo/EA83pi0vRDA2xTAx+jx9bB7di\nIDxQcnoeERG5S1UBkJTyK0KIWwEswJx//lkp5WNNbZkLTCemEfSWXrg6PjGOwfAgdg7tbNh7Sikx\nn5mHT/hw8eqL0R/qZ5IDIurYflhKian4VNlMl9GJKEYjo9jcv7np7TGkgfn0PDzCg039m7C6azXr\n9RARrTAVAyAhhBfAfinlOwG0/cnWouoqZpIz6A/1O+43pIHxiXFcv/76hl31S6pJpLU0RiOjGI4M\nM1UqEQHo3H4YAGJKDKqhosfT47hf0RU8dfIpvP/i9zf1YpGUMpeBc7R3FOt61rGPJiJaoSr23lJK\nXQhhCCH6pJTzy9EoN5hPm79qqRPqa+dew0xqpiHrfzRDw0J6AZFgBNvXbmfWICLK06n9MACcTZyF\n3+svuf+FyReQVJNNnf4WV+JQdRVrutcwpTURURuo9vJVHMArQojHACSsjVLKP2hKq1ygXPIDwJxy\nAWBJAZB1RVFCYuvgVqzqWsXpbkRUSsf1w6quYiY1g75gX8ljmlmKwBqVX9W1CmORsbJZ6IiIaOWo\nNgD6XvbWEZJqEgk1gcGwc+0fwFz/s3NoJ1Z3ra7rPdJaGkk1iTXdazDWO8aaPkRUSUf1w0B2JF6W\nHokHzADoquGr0BNwniJXD6vmWn+oH1sHtzb0tYmIqPWqTYLwLSFEAMD27KbDUkq1ec1qrZlU+YxD\ncSWOF6ZewO9e+bs1v7Zu6FjILCDkD+HSoUuZLpWIqtJp/TBgjsR3BUpPCZ6OT+P186/jU/s+1ZD3\ns7JvdgW6sHNoJ3qDvRyVJyJqQ1UFQEKIdwD4FoDjAASA9UKI35ZSPtG8prWGIQ1MxafKXvF75tQz\n0AwNN26sbc65tYB2U/8mDHUPMWUqEVWtk/phoLqR+CdPPgkAS67/Y6W0DngD2L5qOwbCAwx8iIja\nWLVT4L4K4FeklIcBQAixHcC/Ari6WQ1rlVgmBk3X4A2WHgGKTkTR5e/CleuurOo1FV1BLBPDqq5V\n2Ni3kQtoiageHdMPA2ah6UpZ1qITUQx1DeHiVRfX9R66oSOmxOCBB5sHNmNVeBVTWhMRdYBqAyC/\nddIFACnlG0KI0ml5VrDp+DRC/tJFR6WUiJ6IYt/YvorrdgxpYD4zj4AngJ1DO9EXKr2Ql4iogo7p\nh6sZidcMDU9OPImbt9xc82iNlBILmQVISIxFxrCmZw1TWhMRdZBqe/yDQoi/B/Av2ecfA3CwOU1q\nHUVXMJueLVn7BwCOzx3H6dhpfPyqj5d9rYSSQEbLYKxvDMM9w7yqSERL1RH9MGCOxBvSKNtvvjL9\nCuYz8zWlv5ZS5lJaD0eGMRwZZgIaIqIOVG0A9HsAfh+AlW41CuBvmtKiFppLzwGifMah8YlxACh5\n0lV1FTElhr5gHy5ZfQnTphJRo3REPwwAU/GpilOFoxNReIQH162/rqrXtC5Kre5ejbHeMYR8pUf6\niYiovVUbAPkAfE1K+ddArip5Wy1kkVKatX/8pWv/AOZJd1PfJqzvW1+0bz49DwGBbYPbMBge5CJa\nImqktu+HAXMkfi49h4HwQNnjohNR7Fq7q+yIPWCWHEgoCQyEB7B91fay9d2IiKgzVJuG7HEA9qGM\nMID9jW9O6yTVJFJKqux0iIyWwbOnn3UsfqrqKvweP3at28WCpkTUDG3fDwPAbGq24jEzqRm8Mv1K\n2ULUiq5gJjUDAYFL11yKS1ZfwuCHiIgAVD8CFJJSxq0nUsq4EKJ0cYYV6ELyAvze8uuJn5t8Dikt\n5Zj+OqNnMBgerPgaRER1avt+WEqJydhkxUDlqZNPQUI6pr+2aq0FvUFsH2RKayIiKlbtCFBCCHGV\n9UQIsRtAqjlNWn66oWM6MV3xpBudiMLv8WPP6J6ifZquoS/ILG9E1DRt3Q8DQEJNIK2nKyYmiJ6I\nYiA0gMvWXFa0byGzgLHeMVyx7goMdnEqMhERFat2BOiPADwkhDiTfT4M4Dea06TlF1PMAqWVCpOO\nnxjH1SNXo8vvfNGVi2qJqInauh8GgPPJ8/B7yo+iG9LA+MlxXL/hesc+W0CgP9TPQtNERFRS2TOE\nEOIaIcQ6KeUBAJcA+H8BqAB+BODYMrRvWUzFpxD2lc/WNh2fxhszbzhmf5NSAoIBEBE1Xqf0w5qh\n4WzibMWR+NfOvYbzyfMl+2IJyb6YiIjKqnSJ7G8BKNnH+wD8GYCvA5gF8GAT27VsMloGc6m5iumq\nrfTXTotuM3oGfcE+TrUgomZo+34YMGv/SCkrjtxEJ6IAnPti1VDRE+hh3TUiIiqr0hQ4r5RyJvv4\nNwA8KKV8GMDDQogXm9u05TGXnqsqcIlORDHUNYSLV11ctC+jZbCme00zmkdE1Pb9MABMxiarqpsW\nnYji0qFLsbprddG+tJbGcM9wM5pHRERtpNIIkFcIYQVJNwP4iW1fteuHjVy5FAAAHuVJREFUXMvK\nONQT6Cl7nG7oeOrkU7hxw42OwZIhjYr1g4iI6tTW/TBgBi4LykLFqWuxTAwvTL5QshC1YRgV+3Mi\nIqJKAdC/Avi5EOLfYGYbigKAEGIrgPlKLy6EuE0IcVgIcUQIcV+Z464RQmhCiA/V0PYlszIOVUpd\n/crZVzCfmXdMfw2Yi24555yImqSt+2EAmEnOwCsqT1t7+tTT0KVesi+WkFWNIhERUWcre/VQSvmX\nQojHYWYb+j9SSpnd5QHwyXI/m61S/nUAtwI4BeCAEOIRKeWrDsd9GcD/qe9XqN+5xLmK6VYBc/2P\ngMC+sX1F+1RdRcAbYP0fImqKdu+HpZSYik9VVaQ0eiKKnkAPdq3dVbRPN3T4vf6q+nQiIupsFadP\nSCmfcdj2RhWvvQfAESnlUQAQQnwbwB0AXi047pMAHgZwTRWv2TCaoeFc8hx6g70Vjx2fGMflay/H\nQHigaF9Gz2AgVLydiKhR2rUfBswyBKqhosdTfuqalBLRiSiuX3+94wWntJZmLTYiIqpKMwsljAI4\naXt+KrstRwgxCuBXAXyjie1wVG3Gofn0PF6afqnknHPVUNEX4kmXiFzJ1f0wAJxNnK1qBP2t2bcw\nGZ8s2RcrusIAiIiIqtLqSnH/HcCfSCmNcgcJIe4SQhwUQhw8d+5cQ9642oxDT516CoY0HFOuAgAk\nKtYQIiJysar6YaDxfbGqq5hJzVSVROaJE08AcE5/bekKOBepJiIismtmBqHTANbbno9lt9ntBvDt\nbGa11QDeK4TQpJT/n/0gKeWDyNa72L17t8QSpbU0YkrMcUpboeiJKHqDvbhi7RVF+6SUEIIJEIjI\ntRrWDwON74vn0/OARNWlCLYNbsNwpDjNNftiIiKqRTMDoAMAtgkhNsM84X4EwG/aD5BSbrYeCyH+\nEcAPnU66jTabmq049Q0wT6rjE+PYN7YPPk/xR5XRM4gEIiyASkRu5dp+GAAm45NVjdok1SQOnD6A\nO6+403G/oivoCfRU1a8TERE17WwhpdQA3APgxwBeA/AdKeUhIcTdQoi7m/W+VbSr6oxDb868ienE\ndMk55xktg/5Qf6ObSETUEG7thwEzqEmoiaqytj17+lmohloy/XVGz6A/yL6YiIiq09QielLKRwE8\nWrDtgRLH/odmtsUSV+LIaJmqAqDxiXEApeecS8iqXoeIqFXc2A8DwExqxnFk3Un0RBRhXxhXD1/t\nuF83dPQEWQCViIiq03HzBc4mziLgq65OxPjEOLYObnWccw6Yo0lMgEBEVBtDGuZIfBXJDwBz/c/e\n0b0I+oKO+7n+h4iIatFRAZBmaLiQulDVSTelpnDgzIGS0980Q0PQG2QBVCKiGsUyMeiGDq/HW/HY\nE3MncGL+BG7aeJPjfs3Q4PewACoREVWvowKg+fR8LltQJc+eeRaKrpSc/pbW0lUVUSUionzT8emS\nozmFohNRACi9/kfLsP4PERHVpKMCoMn4JLr81dWJiJ6IIugNYvfIbsf9qqGiP8xFt0REtVB0BbPp\n2aqnD0dPRLGxbyM29G1wfj1DYV9MREQ16ZgAKKWmEM/Eq77qOD4xjj2je0rOKxfgnHMiolrNpmYB\nVFf7J6Nl8IvTvyg5FRlgX0xERLXrmABoNjVbdcahUwuncGzuWOnsb9Ks/8eTLhFR9aSUmIxNVp09\n87nJ55DSUiWnv0kpISHZFxMRUU06IgAypFF1wT1gMf11qZOuoiuIBCIsukdEVIOEmkBGz1SdsCB6\nIgq/x489o3sc9yu6gt5AL/tiIiKqSUecNeJKHKqhVj0CND4xjpHICLb0b3Hcn9bSXHRLRFSj88nz\nVffDgJkA4ZrRa0qu3UxraRajJiKimnVEADSdmEbQW93aH1VX8dTJp3DjhhtLzlE3pMGie0RENdAN\nHWcTZ6ue/jYZm8SbM2+WXf/DYtRERFSPtg+AVF3FTHKm6uxvL02/hISaKLn+B2DRPSKiWi1kFiCl\nrHq6mjUVuVT9H4DFqImIqD5tHwDNp+cBVJdxCDDnnHuFF/vG9jnuZ9E9IqLaTcYmEfZXH6w8ceIJ\nDPcM46KBixz3sxg1ERHVq+0DoDPxMzVNkYhORHHluisRCUYc97PoHhFRbdJaGgvKQtUj56qu4qlT\n5acip7U0+kLsi4mIqHZtHQAl1SSSarLq0ZoLyQs4dO5Q2elviq6gN9jbqCYSEbW9meQMvMJb9fEv\nTb+EuBIvmYkTMItRMwAiIqJ6tHUANJOaqSnj0JMnnwSAsotuAVSdTpuIqNNJKTEVn6ptJL7CVGTz\nhcH1P0REVJe2DYAMaZgnXX/1J93xiXEMhAZw6ZpLHfdLKZkAgYioBjElVlMZAsCcivy24beVnIps\n9cVBX3XZPYmIiOzaNgCKZWLQdA1eT3XTLgxpYHxiHNevv75kliJFV9AT6GHRPSKiKp1NnK0pUcH5\n5HkcOneo7Eh8Rs+wACoREdWtbc8e0/FphPzVj9S8fv51XEhdKDvnPKNn0B9k0T0iomqouoqZ1EzN\nI/FA+anIGS2D/jD7YiIiqk9bBkCKrmA2PVvT/PDoiSgA4Pr115c8Rjd0Ft0jIqrSfHoekNWXIQDM\n6W+ru1Zjx9COkscY0qgpqCIiIrJrywBoLj0HiNpOuuMT49ixegeGuofKHldLHQsiok42GZ+sKWmM\nbugYnxjHDetvKDu9TYBrMYmIqH5tFwBJKTEZn6zp6mBcieP5qefLpr/WDR1+LwugEhFVI6kmkVAT\nNfWZh84dwlx6rnz6a11F0McCqEREVL+2C4CSahIpJVXTSfeZU89AM7SyAVBaS7MAKhFRlWZStdX+\nAYAnTjwBAYHr1l9X8piMnmH9HyIiWpK2C4AuJC/UfGVwfGIcXf4uXDV8VcljFF1hAEREVAWrDEFP\noKemnxufGMflay/HYHiw5DGqrrIvJiKiJWmrAEg3dEwnpmtKVCClRHQiir2je8uOGgkIrv8hIqpC\nrWUIAHPt5kvTL1UsRM31P0REtFRtFQDFlBh0qddUG+LE/AmcWjhVds65lBISkiddIqIq1FqGAACe\nOvkUDGmUDYCklIAA+2IiIlqStgqApuJTNaW+BqqrOaEaKnoCPTVdzSQi6kT1lCEAzPTXfcE+XLH2\nipLHZPQM+oJ9NWX4JCIiKtQ2AVBGy2AuNVfzNLXoiSg29m3Ehr4NJY9Ja2n0h1h0j4ioktnULIDa\nyhBIKRE9EcX1G64ve6GJfTERETVCUwMgIcRtQojDQogjQoj7HPZ/TAjxshDiFSHEU0KIXfW+11x6\nruargoqu4Benf1E2+xtgri2qdTEvEZEbLGc/LKXEZGyy5oLRhy8cxrnkuYrrfyCBLn/1dYWIiIic\nNC0AEkJ4AXwdwHsA7ATwUSHEzoLDjgF4u5TycgD/FcCD9byXddKtNUh57sxzSGmpigEQF90S0Uq0\nnP0wACTUBDJ6puZ6aU+ceAIAKvbFEpLJaIiIaMmaOQK0B8ARKeVRKaUC4NsA7rAfIKV8Sko5m336\nDICxet4ooSaQ1tM1p7+OTkTh9/ixd3RvyWN0Q4fX40XQF6ynaURErbRs/TAAnE+eh8/jq/nnohNR\nXLL6EqzpXlPyGFVXEfKH6np9IiIiu2YGQKMATtqen8puK+X/AvDvTjuEEHcJIQ4KIQ6eO3euaP+5\nxLmarzgC5kn3quGryk7XYNE9IlrBGtYPA+X7Yt3QcTZxtubpb3Eljucnn684/S2jZ9Af5PofIiJa\nOlckQRBCvBPmifdPnPZLKR+UUu6WUu4eGhrK26cZGs4lz9U8L3w6Po03LrxRNv01YCZXYNE9Imp3\nlfphoHxfvJBZgJSypjIEAPDMqWegGVrFAEjTNfQGe2t6bSIiIifNnEtwGsB62/Ox7LY8QogrAPw9\ngPdIKS/U+iaxTKyuk+6TJ58EUD79tYWLbolohVqWfhgAJmOTda3PiU5E0eXvwtuG31b2OK7/ISKi\nRmnmCNABANuEEJuFEAEAHwHwiP0AIcQGAN8DcKeU8o163mQpJ92hriFcvOriiscyAQIRrVDL0g+n\ntTQWlIWa+0or/fW+sX1lpzEb0oBHeBD0ci0mEREtXdMCICmlBuAeAD8G8BqA70gpDwkh7hZC3J09\n7LMAVgH4GyHEi0KIg7W8R70nXd3Q8dTEU7hhww1lU2cruoJufzcLoBLRirQc/TAAzCRn4BW195NH\n547idOw0btp4U9njMloGvcFeFkAlIqKGaGo6HSnlowAeLdj2gO3xxwF8vN7Xr/ek+8uzv8RcZq5i\nytWMlsHanrX1No+IqOWa3Q9LKTEVn6o5+QFgFqIGKqe/zugZrOtZV1f7iIiICrkiCUI9pJSYTkzX\nd9KdiEJA4Lr115U9TjM0RAKReptIRNT24kocqqHWnf56y8AWjPWWz7wtpayrryciInKyYgOguBJH\nRsvUddIdnxjHZWsuw2B4sOKxXP9DRFTadGK65hpsgDmF+cDpA1UlohGCxaiJiKhxVmwAdDZxFgFf\n7bV/5tPzeGn6pYpTLnRDh8/jq6u+EBFRJ1B1FTOpGXT7ax+defb0s8jomYoBkKIrCPqCLIBKREQN\nsyIDIM3QcCF1oa6T7tOnnoYhjcr1f3QuuiUiKmc+PQ9I1NVPRieiCHqDuGb0mrLHKbqCgeBAvU0k\nIiIqsiIDoPn0PKSUdZ90I4EIdq3dVfY4RVPQH2LVcSKiUibjk+gK1FcnLXoiij2jeypObVN1Fb0h\nFkAlIqLGWZEB0GR8sq7ipFJKjE+M47r111WcTiEhWQCViKgEQxpIqIm6pgmfXDiJY3PHKo7EA1z/\nQ0REjbciA6CEmkDQV3tBvCMzRzAVn6q4/sfCky4RkTMJCU+dpxAr/fVNG8rX/2EBVCIiaoYVGQDV\na3xiHEDlmhOKrqDL38UCqERETRCdiGKsdwyb+jeVPS6jZdAX7ONaTCIiaqiOC4AuGrgII5GRssdl\ntAzX/xARNYGiK3jm1DO4ccONFQMbKwAiIiJqpI4JgFJqCs+eebaq6W+61BEJsgAqEVGjPT/5PJJq\nsqr1PxCoO8kCERFRKR0TAB04cwCKrlRVdE9KibAvvAytIiLqLNGJKPweP/aO7q3qePbFRETUaB0T\nAFVbc8KQBrweLwugEhE1QfREFFcNX4WeQE/Z4xRdQdgX5lpMIiJquI4JgMYnxnHN6DUVM7tx0S0R\nUXNMx6dx+MLhqqa/cf0PERE1S0cEQKcXTuPo7NGqpr8xAQIRUXNEJ8z019X0xbrUWQCViIiaoiMC\noGrTXwNmbYuwn3POiYgaLToRxZruNbh41cUVj+VaTCIiapaOCYCGe4Zx0cBFFY9l1XEiosbTDA1P\nnXyqqvTXhjTg8/i4FpOIiJqi7QMgVVfx1KmncMOGGyqedBVdQcgXgs/jW6bWERF1hpenX8ZCZqGq\n9T9pLY3eYC/XYhIRUVO0fQD00vRLiCvxquacK7qC/iDX/xARNVp0IgqP8OC6sesqHqtoCtdiEhFR\n07R9ABSdiMIrvNi3fl/FY1Vd5aJbIqImiJ6IYtfaXegLVc7sJiHR5WcBVCIiao62D4DGJ8Zxxdor\n0BusLrDh+h8iosaaSc3gl2d/WdX0Nwv7YiIiapa2DoBmUjM4dPZQVSddqwBq0BtchpYREXWOJyee\nhISseipyl7+LBVCJiKhp2joAquWkm9EyXHRLRNQET0w8gYHQAC5bc1nFYzNaBgPhgWVoFRERdaq2\nDoDGJ8bRH+rHpUOXVjw2o7PqOBFRoxnSwPjEOG7YcAM8ovIpRzM0RAKRZWgZERF1qrYNgAxpYPzk\nOK5ff31VUymklOgOdC9Dy4iIOser517FTGqm6vU/AqzFRkREzdW2AdDh84dxPnm+qulvFp50iYga\nKzoRBQDcsP6Gisfqhm6uxfRxLSYRETVPUwMgIcRtQojDQogjQoj7HPYLIcT/nd3/shDiqka9t3XS\nvX7D9RWPVXQFIT8LoBJR+2llPwyY6a8vHboUq7pWVTw2o2eqSpNNRES0FE0LgIQQXgBfB/AeADsB\nfFQIsbPgsPcA2Ja93QXgG416/+hEFBevuhhrutdUPJYFUImoHbW6H17ILODFqRernv6W0bgWk4iI\nmq+ZI0B7AByRUh6VUioAvg3gjoJj7gDwT9L0DIB+IcTwUt84rsTxwuQLVZ90NV2ruk4QEdEK0rJ+\nGACePvk0dKnXNBWZBVCJiKjZmhkAjQI4aXt+Krut1mMghLhLCHFQCHHw3LlzFd/4F6d/AdVQccOG\nynPOAbPqeNgfrupYIqIVpGH9MJDfF58/d77im0cnoogEIrhy3ZUVj5VSAuBaTCIiar4VkQRBSvmg\nlHK3lHL30NBQxePHJ8bR5e/C1cNXVzzWkAY8wsMCqEREFdj74tVDqysdiydOPIHr1l9X1fpK1VDR\n7e9mAVQiImq6ZgZApwGstz0fy26r9ZiaRU9EsXd0LwLeQMVjFV1hAVQialct64ffnHkT04npqqci\np7U0+sNci0lERM3XzADoAIBtQojNQogAgI8AeKTgmEcA/FY2C9G1AOallJNLedMTcydwcuFk1dPf\n0loa/SGedImoLbWkHwbMC1EAql7/oxs6C6ASEdGyaFreZymlJoS4B8CPAXgBfFNKeUgIcXd2/wMA\nHgXwXgBHACQB/M5S33d8YhxA9SddSC66JaL21Kp+GDDX/2wf3I51Peuq/hmu/yEiouXQ1MI3UspH\nYZ5c7dsesD2WAH6/ke8ZnYhife96bOzfWF0bmQCBiNpYK/rhhJLAwTMHceeuO6s6Xjd0+Dw+FkAl\nIqJlsSKSIFRL0RX84vQvqp5zruoqQj4WQCUiaqRnTz8L1VBx04abqjo+raVZAJWIiJZNWwVAz00+\nh6SarHr9D6uOExE1XnQiirAvjKtHKmfiBFiMmoiIlldbBUDjE+PweXzYO7q3quM1XWPVcSKiBotO\nRHHt2LVVZeK0cCoyEREtF2EVn1sphBAxBHASBvQlv5gHXqhIQaJRH8JqAJWrA7aGW9vm1nYBbFu9\n2LbSNkopKxczWwGEEHEEMNGwvlhBsgHNsrT6/3Mpbm0XwLbVy61tc2u7gNa3rW36YarfSlz8clhm\n5O5WN8KJEOKglGxbLdzaLoBtqxfb1jFeZ19cG7e2C2Db6uXWtrm1XYC720ado62mwBEREREREZXD\nAIiIiIiIiDrGSgyAHmx1A8pg22rn1nYBbFu92LbO4ObP0q1tc2u7ALatXm5tm1vbBbi7bdQhVlwS\nBCIiIiIionqtxBEgIiIiIiKiujAAIiIiIiKijrGiAiAhxG1CiMNCiCNCiPta3JbjQohXhBAvCiEO\nZrcNCiEeE0K8mb0fWKa2fFMIcVYI8UvbtpJtEUL8afYzPCyEeHcL2vZ5IcTp7Gf3ohDivcvdNiHE\neiHET4UQrwohDgkh/jC7veWfW5m2ueFzCwkhnhVCvJRt259nt7vhcyvVtpZ/bu3ETf1wtj3si+tv\nW8v/NtgX1902V/bF7IdpxZBSrogbAC+AtwBsARAA8BKAnS1sz3EAqwu2/RWA+7KP7wPw5WVqy00A\nrgLwy0ptAbAz+9kFAWzOfqbeZW7b5wH8scOxy9Y2AMMArso+jgB4I/v+Lf/cyrTNDZ+bANCTfewH\n8AsA17rkcyvVtpZ/bu1yc1s/nG0T++L629byvw32xXW3zZV9Mfth3lbKbSWNAO0BcERKeVRKqQD4\nNoA7WtymQncA+Fb28bcAfGA53lRK+QSAmSrbcgeAb0spM1LKYwCOwPxsl7NtpSxb26SUk1LK57OP\nYwBeAzAKF3xuZdpWynK2TUop49mn/uxNwh2fW6m2lbKsfwttYiX0wwD74mrbVoob+ruWf27sixva\nrlLYD1NLrKQAaBTASdvzUyjfETWbBLBfCPGcEOKu7La1UsrJ7OMpAGtb07SybXHL5/hJIcTL2WkZ\n1hB9S9omhNgE4G0wr1S56nMraBvggs9NCOEVQrwI4CyAx6SUrvncSrQNcMHn1ibc+JmxL14a1/xt\nsC+uuU2u7IvZD9NKsJICILe5QUp5JYD3APh9IcRN9p1SSonyVz2WjZvakvUNmFNorgQwCeCrrWqI\nEKIHwMMA/khKuWDf1+rPzaFtrvjcpJR69t/+GIA9QojLCva37HMr0TZXfG7UNOyL6+eavw32xbVz\na1/MfphWgpUUAJ0GsN72fCy7rSWklKez92cBfB/mkO20EGIYALL3Z1vVvjJtafnnKKWcznaQBoC/\nw+Jw97K2TQjhh3lS+19Syu9lN7vic3Nqm1s+N4uUcg7ATwHcBpd8bk5tc9vntsK57jNjX1w/t/xt\nsC9eGrf2xeyHyc1WUgB0AMA2IcRmIUQAwEcAPNKKhgghuoUQEesxgF8B8Mtse347e9hvA/i3VrQv\nq1RbHgHwESFEUAixGcA2AM8uZ8OszjnrV2F+dsvaNiGEAPA/Abwmpfxr266Wf26l2uaSz21ICNGf\nfRwGcCuA1+GOz82xbW743NqIa/phgH3xUrnhb4N9cd1t+//bu/dQOco7jOPfx1sVQWsj0op/pF5S\nJdRGTaxgrEbSFlMpqZjaEG2p8VqqJUFBCF4QqwYR/KfQ1oilF60ihRhDk2KaeEMSbzFHI2lqUiQi\n1RLqjXjIMY9/zHtkst3sOXtuu+k+HxjOzuz7vvOb4exv9p15d6Yrc3HycOw33AV3YhjuBMyhugvL\nm8CSDsZxPNVdS14FXh+MBZgErAG2Ak8CX5qgeB6muqS8m2r87MJWsQBLyj7cAlzQgdj+APQBm6iS\n31cmOjZgJtXQgE3AxjLN6Yb91iK2bthvpwKvlBheA24Z6n+/C2Lr+H77f5q6JQ+XWJKLRxdbxz8b\nycUjjq0rc3HycKb9ZZLdTcORIyIiIiIixs/+NAQuIiIiIiJiVNIBioiIiIiInpEOUERERERE9Ix0\ngCIiIiIiomekAxQRERERET0jHaDYiyRLurc2f4Ok28ao7d9Jungs2hpiPfMkvSFpbW3Z1yVtLNNO\nSdvL6yfbbHv14HNHWpT5paRZI42/oa0dkvokbZK0StIxYxDf5ZK+PBbxRcTYSx4esu3k4YgYlXSA\nolE/cJGkozsdSJ2kg9oovhC40vbnBz/bfban2Z5G9QyCG8v87HbWY/u7tj8coswS22tblWnTObZP\npXp+wk2jjQ+4HMiBN6J7JQ+3kDwcEaOVDlA0GgB+CyxqfKPxzKGkj8rf8yQ9JWm5pG2S7pa0QNKG\nctbshFozsyW9KOkfki4s9Q+UdI+kF8oZtqtr7T4j6XFgc5N45pf2X5O0tCy7herhdQ9Iumc4Gyxp\ntqR1kp6gelAbklZIeknS65KuqJXdIemLkk4s632glPmrpENLmT9Kmlsrf5ukV8q2TSnLj5G0ptT9\njaS3B5+e3cLTwIml/qW1bb9zuPFJugSYBjxSzrweUvb95hLf0uHss4gYV8nDJA9HxPhJByia+RWw\nQNKRbdT5BnANcApwGTDF9pnAMuC6WrnJwJnA94Bfl4PVQuB92zOAGcCVkr5ayp8O/ML2lPrKJB0L\nLAXOpzqQzJA01/btwIvAAts3thH/dOBntk8p8z+xfUaJZ7Gko5rU+Rpwn+2pwC5g7j7a/rft06j2\nxeKy7HZgVam7Aji2VXCSBFwI9Ek6DrgDmAWcBpw9+CVmqPhsP0L1NPNLylnYo6iebD61nN28q1Uc\nETFhkoeThyNinKQDFP/D9gfA74Hr26j2gu13bPcDbwJ/K8v7qA62gx61vcf2VmAbcDLwHeDHkjYC\n64FJwEml/Abb25usbwawzvZ7tgeAPwHfaiPeRs/bfqs2v0jSq8DzwHHACU3q/NN2X3n9EntvZ91f\nmpSZCfwZwPYTQKvhEs9QHSwPo/qy8U3g77b/Y3s38BDNt3048e0E9gD3S/oB8HGLOCJigiQPA8nD\nETFO2hnPG73lPuBl4MHasgFKp1nSAcAhtff6a6/31Ob3sPf/mRvWY0DAdbZX19+QdB4TdyD4fD2S\nZlMdyM6yvUvSs8ChTerUt/lT9v156h9GmVbOsf3fWnzDrTdkfLZ3S5oOfBuYB1xL9UUoIjoveTh5\nOCLGQa4ARVO2dwKPUg2LGPQv4Izy+vvAwSNoep6kA8p49OOBLcBq4FpJBwNImiLp8CHa2QCcK+lo\nSQcC84GnRhBPM0cCO8tBdyrVWc6x9hzwQwBJc4CWdwxqsB6YJWmSqh8L/4j2tv3DwfWpulPREeXs\n5yKqoRwR0QWSh5OHI2J85ApQtHIv8PPa/P3A8jIkYRUjOyv4FtVB8wjgGtufSFpGNSzg5TLG+j32\nPY4bANvvSLoJWEt15nKl7eUjiKeZlcBVkjZTfTFYP0bt1t0KPCTpp8CzwLsMc3/a3iHpZmAd1bav\nsL2yjXU/CCyTtIvqC9Rjkr5AdUJkccuaETHRkoeThyNijMluvBIeEeOt/Oh4wPaApJlUP5Kd3um4\nIiJ6RfJwRO/KFaCIzpgMPFyGjfQDV3c2nIiInjOZ5OGInpQrQBERERER0TNyE4SIiIiIiOgZ6QBF\nRERERETPSAcoIiIiIiJ6RjpAERERERHRM9IBioiIiIiInvEZDniPQcqS9l8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Produce learning curves for varying training set sizes and maximum depths\n", + "vs.ModelLearning(features, prices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4 - Learning the Data\n", + "*Choose one of the graphs above and state the maximum depth for the model. What happens to the score of the training curve as more training points are added? What about the testing curve? Would having more training points benefit the model?* \n", + "**Hint:** Are the learning curves converging to particular scores?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The max depth is 3, after that overfitting occurs. As more examples are added, the training score will decline a bit as it gets harder to fit all examples. But testing also gets better, until the two almost converge. Adding more training point would benefit the model a bit, as training and testing curves would converge even more. However, additional points are not always helpful, as at some point no new information becomes available, so the model predictions on the test set will not improve in accuracy further, so the testing score doesnt improve more. The reason why the training score is high initially is that it is easy to fit the data as there are few examples. As more examples becomes available, it gets more difficult to fit so testing score drops. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Complexity Curves\n", + "The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the **learning curves**, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the `performance_metric` function. \n", + "\n", + "Run the code cell below and use this graph to answer the following two questions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAFNCAYAAACUvLFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8XFX5/9/PrNmXNk2btEn3lrYgW9lRBERRQcTl64KK\n8NUKCi6gINsPlVVBEAUElEWggihu9YuCIDsWKMhiWbq36Z40+2T2Ob8/zr0zkzRpkiaT9Xm/Xvc1\ndz333Htn7mee55znOWKMQVEURVHGA57hroCiKIqiDBUqeoqiKMq4QUVPURRFGTeo6CmKoijjBhU9\nRVEUZdygoqcoiqKMG1T0xggi8ncROb0P+7WLyKyhqJMy/hCRr4jIU4NQzmUictsgVGnQEZGFIvK6\niLSJyNeHuz5K/1DRG0JEZIOIhJ0fS7OIvCAiZ4nIgJ+DMebDxpjf9GG/ImPMuoGeLxtHSN0p5Vyj\nu3zaYJ6rh/NvzjrndhG5S0QKc33ekYSITBWRu53rbxWRt0XkchHJH+667Q3GmCuMMWcBiMgcEdnr\ngGJHiJPO96NVRP4jIh8ZQPUuBB4zxhQbY24dQDnKMKCiN/ScbIwpBqYD12J/QHcOb5UGhiOkRcaY\nImAT9hrddUu77i8ivhxU48PO+Q8CDgUuyME5EBFvLsrtx/l3u3ciUgH8G/ABhxljSoATgQpArXrL\ns873oxy4F/i9iJT2p4Csez8dWLk3lcjRd1/pByp6w4QxpsUY81fgM8DpIrIvgIgEReR6EdkkIjtE\n5Lbsf+sicoqIvOb8Y10rIic6658Ska8483NE5GkRaRGRBhH5XdbxRkTmOPOlInKviNSLyEYRudS1\nOkXkyyLynFOXJhFZLyIf3ptrFZErReR3IvKAiLQBXxARj4hc7FxDg4g8KCLlWcccJSLLHYv4NRF5\nXx/v61bgMeCArLLyROQGEalz7umtIpKXtf0ix0LaIiJfde7RDGfb/SJyi4j8Q0RCwHv3VJ6IVIrI\nI069G0XkmazzXCwiW51n946IvD+rfj8XkW1OHW4QkYCz7QNiPQQXi8h24FfdXPZ3gV3Al4wxG537\nsNEYc64xZqVTztEissL5TrwkIodl1es5EfmRc79DIvJnEZnoPK9WEXlRRGqdfX3O/TnX+U40iMi1\n0oO3Qqwr8HHnXrwjIp901gdF5E0ROTur3OUicrGzfKWI3OMU84yzzvUevNe5vwuyzlMlIh0iMrGX\n70cSuAsoAGY6x35MrLuy2bkX+2aVu1lEvicibwIh53m+F7jNqcssESlzvif1zrO6SETEOf4rIvKM\n83wbgUuddU8765pFZI2IHCYi/5v1nfpCVh0+Jpnf/CYRuSxr2xzneXzJqWu9iHw/a7tPrKt4rXP8\nChGp3tOzGfMYY3QaognYAHygm/WbgLOd+RuBvwITgGJgGXCNs+1QoAU4AfuHZSqwj7PtKeArzvwD\nwCXOPnnA0VnnMsAcZ/5e4C/OeWYAq4D/dbZ9GYgDXwW8wNnAVkD6e43AlUAMONmpUz5wPvC8cw15\nwK+B+5z9a7Av8Q85+58INAATezjnZuD9Wce+Bfw0a/svgD9h/+WXAI8AVzjbTnKuawFQ6Nw7A8xw\ntt8PNAFHOHUJ9lLedcDNgB8IAO9z1i8CNgJTnOWZwCxn/mrgBWASUAm8CFzubPsAkHD2CQD53Vz/\nCuCyPTyTCud78zmsNfhF5/6WO9ufA97FWoXlwDvO8rHO/r8FfuXs63Puz+POvtOBNcCXne1fAZ5y\n5ouALcCXnOMOds4739m+v3Nv5wGXO98Hb9Z35h5nfg5gulzTHcBVWcvnA3/q4fqz6+QDzgNasd/7\nQ4AdzqcXOBNYCwSyvluvANPce+/cry9nlf9b4I9OebOc+3F61rkT2N+PF/vd/wr2t/VFZ921znfj\n59jv10ec51XglHGc8/3xOPesATgp+94At2F/RwcBUWCus/0i4HVgrnP8Adh3yx6fzViehr0C42mi\nZ9FbjhUpAULA7KxtRwDrnfnbgRt7KPspMqJ3r/NSmNbNfsb5oXixQrQwa9vXsl4OXwbWZG0rcI6d\n0t9rxL7A/tVl3WrgmKzlGiDi/DAvAe7usv8TwGk9nHMz0A60OXV8DCh1tnmccqdn7f9eYHXWvboi\na9s+7C56d2Vt7628q7EvwNld6jgf+3I9HvB12bYR+GDW8kfde48VvQjOS7iH61/vPvsetp8BvNBl\n3cvAF5z554ALs7bdBCzLWj4VWOHMu6L3gazt3wQedeazBeY04Mku570TuCRr+ULgbaAR509A1nfm\nHme+O9E7yrlucZZfAz7Rw/W7wtOMFYwXgOOcbb/C+YORtf9a4Kis79aXumxPix72z00CmJe1/RvA\n41nnXtdNfd7OWj7QuacTs9a1APv2cD03A9dl3xuyfpfAq8Cnsq7lo92U0euzGauTujdHBlOxP/pJ\nWHF5xXF7NAP/cNaDFYa1fSjvAqyAviQiK0XkzG72qcD+YDdmrdvo1MVluztjjOlwZov6cP7uqOuy\nXAssy7rON531lVjr4XPuNmf74UD1Hso/ydi20uOBhdh/swBTsP+eX88q62/OeXDKzK5b13p2Xddb\nee6/9iccl9L3AIwx72KtkR8BOx3X4ZSsOuzpOewwxsT2cO27gKo9bO9afrfnyJoPd7Pc9bln35ON\ndP9spgNHdXmOn+lS13uA2ViR7XMHK2PM81ixOdpxR9YC/7eHQ54zxpQZYyqMMUcaY/6VVccLu9Sx\nis73prvvhEsl9g/knp5fd8d3vb9JY8yuLuuKAETkCLHNF/Ui0oIVzYrswowx27MWO8g8r57eGX15\nNmMSFb1hRkQOwf5AnsP+Cw0Di5wfaJkxptTYBniwP57ZvZVpjNlujPmqMaYaa73dKk47XhYNWBfL\n9Kx1tViXRy7o2vtuM3BC1nWWGWPynB9vHdbSy95WaIy5rteT2JfZUqybEezLJYZ122TfU7cTwzas\n68qlppe677E8Y0yrMeY7xpgZwMexL9RjnG33G2OOwro2vcA1Tplb2fNz6HrvuvI4cKrbjtQNXcvv\n7hz9Jfs+1Trn6Eod8ESX51hkjDkna59fAn8GThKRw3s4V0/Xfy/wBayb8CFjTLR/l5Cu4w+71LHA\nGPNQH84PsBNIMrDn1xsPAg8DNc737NfYP7V9oad3Rl+ezZhERW+YEJESETkJ+4W+3xjzpjEmhXW3\n3Cgilc5+U0XkQ85hdwJniMjxYjuCTBWRfbop+9Mi4r7Im7A/ulT2PsY26D8EXCUixSIyHdvWcX8O\nLrc7bgOulkwHiUoR+Ziz7T7sS/wEEfGK7ehxrNsA3wduBD4iIvs61/lr4GciMkks00Tkg86+DwH/\nKyLzRaQAuKynQiF933osT0ROFpHZjgC1YF+IKRFZ4FxDEPvHJkzmmTwA/D8RqRCRSU4d+vMcrsf+\n8787635OE5GbRGQR1hJdJCKfcTo2fB7rFtuTZdQbF4jtwFGLdW/+rpt9/uqc9/Mi4nemQ0VkvlPH\nM4B9sa707wD3SfehJjsBI7vHl94HfAr4PFYA94ZfAd8QkUOcZ1nkPMM+hbwYY+LAH7Df5SIRmelc\ny2D+joqBRmNMxPlj8Nl+HPtr4Er3OykiB4jIBHp5NmMZFb2hZ5nYHox12LarG7BtLi4XYhvCl4tI\nK/Zf/HwAY8xLzr43Yl+oT7P7P3iwjfIvikg79sv9rR5cR+di2xDXYS3N32J7tg0FN2Bdt0849+MF\nbL0xxmzAtiNdBtRjO/qcTx+/r461uJSMgJ2PdTm9hL1vj2Eb9jHGLMNaG89g2xmfd47Zk9XQY3nY\nZ/UvbBvj88BNxphnsS7Rn2At7O3YTiCXOMf8ENvZ4L/AG9iOLK4V2JfrbcC2/QK87NzPfzrnWmeM\nqQc+hv1u7cK+lE8yxjT19RzdsAzbjvYfbKeee7qpVwu2M9IXsBb1dux1BcX2jv0ptr2swxhzL/ba\nr++mnDbnuBcdV9xiZ/0GrFs8aox5YW8uwhizHNvJ5JfYP4irnPr2h69jrf8N2N/kb9h7Ee6Os4Fr\nnOd6MfaPWl+5DmtJP4HtvHMHkLenZzOI9R6RuI3AiqIAIrIftiNA0LG8lSzExpnFgZmO6AwrInIv\nVth/MNx1UUYHaukp4x4ROVVEAo7b51rgLyp4Ix/H3XkKQ+edUMYAKnqKYruYN2DdyhFnWRnBiMg1\nWJfw1caYTcNdH2X0oO5NRVEUZdyglp6iKIoyblDRUxRFUcYNoy7jd0VFhZkxY8ZwV0NRFEUZQbzy\nyisNxphJve036kRvxowZrFixYriroSiKoowgRKRrqr1uUfemoiiKMm5Q0VMURVHGDSp6iqIoyrhB\nRU9RFEUZN6joKYqiKOMGFT1FURRl3KCipyiKoowbciZ6InKXiOwUkf/2sF1E5OciskZE3hCRg3JV\nF0VRFEWB3Fp69wAn7mH7h7EDb84FlmAHcVQURVGUnJEz0TPGPAM07mGXU4B7jWU5UCYiVbmqj6Io\niqIMZ5veVKAua3mzs243RGSJiKwQkRX19fVDUjlFURRl7DEqOrIYY+4wxiw2xiyeNKnXfKKKoiiK\n0i3DKXpbgJqs5WnOOkVRFGWss3QpzJgBHo/9XLp0SE47nKMs/BU4R0QeBA4DWowx24axPoqiKMpg\nYgykUpnJXX7wQTjnHAiH7X4bN8KSJXb+tNNyWqWciZ6IPAC8H6gQkc3A5YAfwBhzG/AI8BFgDdAB\nnJGruiiKooxLli6FSy6BTZugthauuqp7UckWpK4C5c4nk1akWlo6T62t0N5uP1tbIRSCtja7rqPD\nLnd0dJ5vbt69Dh0dtq45Fj0xxuT0BIPN4sWLjY6npyiKQkaUksnO88kkPPQQfOc7GWsKIBiE00+H\nRYusALmC1ZM4ZX+GQrbcvlBQAIWFnaeiosz8gw92f5yIvYa9QEReMcYs7m2/UTeIrKIoyoihr5bU\nnuhOsNzlRMJO0agVqPp6aGyEXbugqSljaXU3rV+/u4BEo3DHHbvXQSQjVNniVFnZWbTcfQoKMlNe\nnv3Mz7dTXh74sqTFGFt+9vzTT8O2blqzamv7d+/2AhU9RVGUvWHpUtsO1dFhl912qWgUPv3pjHjF\n41a4YjE739RkRaux0U6uSLW0WLdg9nK2iCUSPdclGISyMigttZ+zZsHatT3v/8ADGcHKz7fHQ2eB\n6rrsegX9fvB67afPZ6fsea/XTh5PZuq6fN11ne8d2PpcdVX/n0M/UdFTFEXpCdfyci0u1+qKROB7\n3+v80ga7/K1vwaOPdm99tbXt2UVYUGCFyxWvqqqMmGWvLymB4mI7FRVZ0XEtRVek3nwTtm/f/RxV\nVfCe92QEyu/PiJYrTnsSrcHAtYYHaiXvBdqmpyjK+CPbdZhIWLGIxayYhcNWLLZsgZ07rVXW0GCn\n+vrM/M6dPZdfVJQRqOzPrvOlpRkBKyqywuNaiNkC5uK+rz0eCAQyghUIZJZdS+sPf4Bzz93dmrrj\njiERl6FG2/QURRkb9KfdzJjOYpZIWJdiNGrFrL4eNm+GHTsy4tVVzBoauncllpXZNq7KSthnH3js\nMdsJpCtVVdbSyxYvV8C6E7FsaytbwAKBjIBluwzdz94480zrthwGa2oko6KnKMrIpbt2s69+1S5/\n/OMZMWtstJbZtm27i1h9vbXW6uutNdeVkpKMmM2enZnPnsrLrSC5VmEiYV2E115rrUOXvDxrXfn9\ntq0sW8S6Cpg7dRXCweS008a9yHVF3ZuKogw/bhxYPJ6ZwmE47DDYunX3/fPyYMGCjKhlC49LYSFM\nmtRZvCZP7rw8YYIVpGwxc8kWI1e4gkF77mDQCtrDD8MPfmCtx5oauPpqFZlhQt2biqKMHHoStXDY\nuhrXrbOW2tatu0/dEYlYK2m//bq3zCZOtOLUVcy665no8dg2tby8TLuY2xPR7dzRkzV25pl2UkYN\nKnqKogwObvtZV1FzY8ZcEduyJeOK3LLF9mjMprQUpk2DhQut27KndrPbbtu9J6TruXLbvYqLrVXm\nWmZ9FTNlzKKipyhK3+hJ1Do6MlZa9ue2bXZ+x46MGIEVn6lTrTvwoIOswNXU2M+pU21bmBvb9ve/\nwzXX7N5u9t3vWldlVzHzeu2nipnSAyp6ijLeye4dOW0a/L//B6eemhE1t6NIT6K2devubWqVlbas\nww7LiJorbBMnZoK243G7f1eRKi213eu/+U17zA9/CHV12gNRGTDakUVRxhvJpO31GIvB/ffbIOts\n0fL54IgjrMXlilpjY+cyCgszItb1c+pUW4ZrrSUSVtSyM3rk52fSWLntaIFA5/RVitIPtCOLoox3\nUqmMuIXDtu0sFLJB1WvXwurVtl2sq5WWSMCzz2ass4ULM4LmTmVluwd3gxW3cDiT3srNyZgdSO31\nDv29UBQHFT1FGe2kUlbY3Iwi7rAu7e3WZbl6tRW5tWthzRrbxtYbIjb42s0ZmUh0zsPY2mqFzU1C\n7MakudNgpatSlEFGRU9RRgvGdBY3V9hCIet+XLPGCtz69XZ+3bpMm5nfb5MQH3YYzJ+fmT7zme7D\nAiZPtmUXFNjA7IIC22kku0u/dhZRRiEqeooyEnHFLRrtLG6RSGdRW7sWVq2ymftdJk+2gva+92XE\nbcYMK1bxeCbbvwh87Wu7947Mz4ef/AQW99o8oiijDhU9RRlOXBGKRq2ouQKXSlkLbO1aK3JuG9yG\nDZkx0vLyYN48OP74jLjNm2cts2yXZzJpywbbAaWiwrol8/Lg4INt6i3Nz6iME7T3pqIMBffdZ4Vl\n82aoroZvfxuOPda2lYVCncVtzRprvWUHZdfUdHZLzp9v13m9meFusvNK+nxW2EpKMq7JYFBdksqY\nRXtvKspw4FpY7phrra3w+9/DFVdkXIhbtsBFF1mrrLXVCqFLcbEVtFNOyVhuc+daATOms3vSzWQS\nDFpxKynJ5IUMBIb+2hVlFKCipyh7gytArri5bkl3NIB43I4IsHq1HSW6u7CAVavggx+0o2y71ltV\nlbXGst2T7mjbYN2TEyd2Tq+lsW2K0mf016IovZHtPnTFzW13E7GCtmGDdUu+8w689ZYVNLfnZE8k\nk3DjjZmwgGgUmpvtNtc9WVFhhc613jQUQFEGhIqeorhkB3N3dGTELRbLZBSJRm3b26pV8PbbsHKl\nbYdzg7PLymww9+mnw6JFdv6MM3oOC2hutoJWXGwzmah7UlFyioqeMv7oGu/W1manSCTT0cO14LKt\nt5UrrUXndv6qqLDCdvzxGYGrrs6UkUjYMpYs2X2w0fx820vyoIPUPakoQ4j+2pSxTXZIQLZr0sUY\na1W1tmasN1fgsjuYVFdbUTv55IzAVVZmtrtWYktLRhSDQWv5nXOODQX4wQ80abKiDDMasqCMDZYu\nhYsvtqKSHRKQTHZOdOz3w65dVtjcaeVKm4/SZfp0K2oLF1qBW7DAjrCdjSukbjJlEdt7sqzMhgjk\n5dlzKYoyJGjIgjI+SCbh7rvh3HM7hwRcdpkdjuagg6yoZQuc2xPS47GpuQ4/PGO9LVhg29eycWPp\nsuPgCgutpeeOuK0xcIoyKlDRU0YfyaRtg2tosFbbZZftHhIQicD3v5+x8nw+G+923HEZgZs/31pl\n2aRS9thoNJP5JBCw47uVlNi2uLw8HSlAUUYpKnrK6CCRsG1x9fU2ubIx1rqKxWD79u6PMcYGhS9c\naIO8u+sRme2mBGv9lZRYK66wUN2UijLGUNFTRi5dhQ6scEUidtibRx+FV1/t+fjqavif/+lcXtd0\nXQUF6qZUlHGEip4yskgkMq7LpqaMRRcKwT//aYXuP/+x+86bZ3tGBoNw882dXZx5eXab25vS7aVZ\nUmJdleqmVJRxiYqeMvzE49ai27kzI1LBoA0jcC26N96w+y5YYHtmfuhDthOKy5Qp8NOfWlfn5Mlw\n9tlw6qlW4Fw3pQZ8K8q4R0VPGR7chMn19ZnUW8Ggte5coVu50q7fd184/3wrdNOnZ8owBiIRTCRC\n9IhDCP/9j7QWB6GwkPyCUgL+IH6PH5/Hh9/rQxN4KYqioqcMHfG4td7q661FB9YCa2y0Ivfoozb7\nCcD++8MFF9iEzDU1mTKMIRkOEQm10pGM0JwvtBT7SOYHEb8Hn9dAqp1EazPGGEQEDBgMAW+APF8e\neb48CvwFBLwB/F5HFD1+vB51dSrKWEdFT8ktsZi16HbutIInYt2M9fXWovvHP+xIBAAHHmiH3Png\nB20nFLeIRJRwqJn2jhaaEm2E8nwwoQwpKCEYLKTIF8QjvdtxyVSSRCpBc6SZho4GUiaFICBgjMHn\n8XUSxaDPWoquMPo8+nNRlNGO/oqVwScWy1h0rtAFg7BjhxW5Rx+Fdevs+sWL4dJLrdBNnowxhkgy\nSjjSREtbA82hXcRJYoqL8E6eSF7JNMqDBb3XoRu8Hi9ej5cgwW63p0yKRCpBW6yNpkgTyVSyk6Xo\nEU8nUczz5eH3+tMuVJ/HZ/dXFGXEoqKnDA7RaMaicwc3zcuzowu4rssNG2wc3CGHwBe+ACecQLJi\nIuFkhFAiTHPLWlraGjBOSIG/fCJ5s+dRWFQyJEmZPeIh4A0Q8Hbf4cUYQzwVJxQP0RptJZGysX0i\nknalBn1B8n355PvyyfPl7eZCVVFUlOFFRU/Ze6JRa8nt3JlJ4pyXZ/NfukJXV2fDAg47DM48k9ix\n7yNcVkRbvJ2meBMdDVsgEkGSKYIePyUTKvFMrLAhBSNs9AER6VUUE6kE4XiY9lg78aQdTy/tQsUQ\n9ATxeXwEfcF0WQFvwFqh4t3tU0VSUQaXkfVWUUY22Umdp0yBr30NTjzRCt3GjRmh27IFfD7MEUcQ\n++qZdBxzJE2FXlribcRSO6B5O75YnGDKQ7k3ABXTMomaR3HcnIhYd6e35wwuiVSClEnREe+gLdZG\nyqSsG9URRteVagsEn/g6iaM7+Ty+boWyL22bijKe0VEWlL5x//12XLhwOLMuEIBDD7Vjzm3fjvH7\nSB5xOKHj38fOow+gKT+T+jIgXoLRFL6UsW155eV2ys8f1UKXa5KpJEmTTItjyqRImiQGg5hMJxwX\nj3gI+AIEPJ1F0u/1d2tJao9VZaygoywog0drqw0fyBY8gFgM89xzRI45ivqzPkf94e8hUVyA4CHP\nG6AUH5Iefidlh+dxLTqPWiR9wevx4qXvwuSKYyKVIJqMdhLL7E45Lh7xpHuoBrwB8v35FPgLOq1T\n61EZS+RU9ETkROAmwAv82hhzbZftpcD9QK1Tl+uNMXfnsk5KP+jogE2bbPB4T0mdBd665jyC3gDF\nHr8dmSAchnDEWnDl5VBeBvkqdEOBRzx4vH2/z8aYtCXZEe9Id9BxO+cABLwBCvwF6ckVQ41tVEYj\nORM9EfECtwAnAJuBl0Xkr8aYt7J2+wbwljHmZBGZBLwrIkuNMbFuilSGimjU9rrcvh2SScz994Mx\ndNelIjG5kmJPHnSEIRW2wjZxIpSWqNCNAkQEnzivgR70K5lKEk1GCcVDxJPxThaj3+unwFeQthDd\n2Ea3c46ijDRyaekdCqwxxqwDEJEHgVOAbNEzQLHYLmpFQCOQyGGdlD2RSNiemHV14PFgnnwSc+MN\neBp20brffIpWrccTzfwfSQUDNJzxPzbRc0WFTeZcUKCjFIwx3PjG7kimksRTcTrCHWxv344gtr1R\nBK94yffnU+gvTGfAyQ7hUJThIJffvKlAXdbyZuCwLvvcDPwV2AoUA58xxqRyWCelO1Ipmwps40ZI\nJEitWkXqmqvwvf0u7YvmsuPa75Pafz+K//4vKm65G9/OBhKVFTR852u0ff6TtjOKCt24ZE8B/ymT\nIp6Msyu8ix2hHZ3SwokIhYFC8n1WFIO+YDrQf0+9X5WxhTGGlEkNqVdguP9ufQh4DTgOmA38U0Se\nNca0Zu8kIkuAJQC1tbVDXskxTUuLDRoPh0k2N5K48acEH/sX8ckT2faj8wmf+AEraIkEbUceTNsH\n3gtTq6GgUIVO2SMe8RD0BXsURDclXH1HPZDpheoRD/k+6y4tDBSmXaaudZjdESf7uK7bBrI+e1tP\n67tu84hHw0gcEqlEukNV0jgdqxJRYskY0WSUWMJ+JlIJ/F4/B045cMhiUnMpeluArEzBTHPWZXMG\ncK2x35w1IrIe2Ad4KXsnY8wdwB1gQxZyVuPxRChk3ZhNTSRMkuidt5N//+/weTzsXHIaLV/8NCYv\nD0wK2tpt29z06bb3pYqdMkD2lP3GzXzTEm1hV3gXKcf5474UjTE2rhHSrtTMwXS7PvuY7Mbpnsrq\nuj59TNbbx5BVplOuG0aCIR1O4l6ra8mO1qQE7h8VV8zcKZKIdBKzWCqWserp/GfG6/Hi8/jwiIfC\nQCEe8dAUbtr9XuaQXIrey8BcEZmJFbvPAp/vss8m4HjgWRGZDMwH1uWwTko0aoPHd+4k7jGE/vFn\nCm++ncLGFpo/cjyN3ziDRGWF3bejw46MMHkyTJo04jKkKGOT3jLfjDa69pDtKSlBOjmBGHzis71k\nPYF0b9lcxFu6desqZrFkrJOYRRPRTgna3WPdtltXzAK+APmSPyJF2yVnbzFjTEJEzgEexfYLu8sY\ns1JEznK23wZcAdwjIm9ib+WFxpiGXNVpXJNI2N6YW7YQJUnLmy9ReP3PKVu1no73LGDbDT8ismi+\n3Tcet5ZgaSnMnm0zriiKslf0pYdsV1xRjKfiRJKRbuMtu1qUbhhJwBfoZFG6buF4Mk40GSWSiBBP\nxa27MRWz1il0ErOuolocLB4zbtqc/nU3xjwCPNJl3W1Z81uBD+ayDuOeVAp27YKNG4nEw9TvWE/h\nTbdS+dSLxKdMYutVF9F+wvusyzKVsmLn88GcOVBcPNy1V5RxSX/jLSGTvSeSiBBKhTpl7wGbA9bn\n8aXFLM+XR6GnMBfVH9Gov2qsYozNpLJhAx2hZrZHdpF3971M/d3/gddLw1lfoum0T2LynE4GoZAV\nvSlTbJydpgZTlFFFf7P3jFdU9MYioRBs2kT7rm1sNa14/+/v1N7xO/xNLbR89AM0fOMMkpMm2n2j\nUZtBZcIBjapKAAAgAElEQVQEqKqy+TQVRVHGKCp6Y4loFFNXR9u2DWw2rfD668z4xb0UrN5AeP+F\nbP3ZFUQXzrP7JpN2OKC8PJg3FwqLhrXqiqIoQ4GK3lggkcBs20brxlVsijeQqN/OzFsfpOzp5cSr\nKtl69cW0f+C9tt3OmMzYdzU1NjempgpTFGWcoKI3mkmlSNXvpHntSupC24gl40y/fxkVD/0NfF4a\nvv5lmj53aqbdLhKxU2Wlnfya+UJRlPGFit5oxBiSTY00rX6DupY6on4PNf/6N5NvX4q3uZXWk06g\n4eunk6xw2u3icRtzV1RkA8wLCoa3/oqiKMOEit4oI9HazK41b7C5fi2JvCCVa+qo/tmdBFevp+PA\nfan/zteILphrd3azqfh8MGOGjbsbwUGjiqIouUZFb5QQD7VRv+YNtmx7l1TAz8S2BFOu+RVFT/+b\nePVktl57Ce3HHZ0RtY4OG5A+ebIdAWGMZ1NZ9u4yblh+A9vatlFVXMV5h5/HyfNPHu5qKYoywhjb\nb8IxQDTczs4NK9m2aSXG46XMX8iku35P+e/+ggn4qf/GGTR/7lRM0Ak1iMWs4JWVQXU1BHdP9jvW\nWPbuMi598lIiiQgAW9u2cumTlwKo8CmK0gkVvRFKJNbB9k1vsWPdG3gQSoorKP/b40z85b14W1pp\n/dgHaTjrdJIVE+wBqZTtlRkMwty5tv1ujOPmMrzuhevSgucSSUS4YfkNKnqKonRCRW8Esm37Gja+\n9QK+RIqykskUvPomlTf+iOCaDXQcuB/153+N6Pw5dmdjbDC6MTB1qg0yz1EIwmC6EBOpBO2xdtpi\nbbRHnc++LsfaaYvaz67DzGSztW0rlz91OXPK5zBnwhxmT5jNpIJJIzoZrqIouUVFbySxdCmpiy5i\nyuY6Kion0fTZUyj4z38pemY5seopbP3xpbQfe1Sm3c7NplJRYdvucphNpTsX4iX/uoRNLZs4sOrA\ntAh1EqV4e/frY+2EE+FezxnwBigKFFEcKLafwWJqS2s7LRf5i7j9ldtpibbsfrwnwN9X/73TtpJg\nCbPLZzNnwpxO0+TCySqGijIOkK4DJI50Fi9ebFasWDHc1Rh8li7FLFmCdHSkVxnABPzsWvJFmj/7\n8Uy7XSJhrbuCAmvdFeY+aeyxvzmWrW1b+7x/gb8gLVjFgWKKgkW7LafFq5vl4mBxn4eW6SrIAHm+\nPK489kpOmncSDR0NrGlaw9rGtaxpdD6b1tAYbkzvX+gvTFuDrmU4Z8Icqoqrxkx2eUUZiTSFmzhk\n6iED/p2JyCvGmMW97aeW3kjhkks6CR7YkT4SZaU0nf4/doWbTUVkSAd0jSaiexS8pZ9YSlGgqJNV\ntrfje+0Nrou1J9frpMJJTCqcxBHTjuh0XGO4kTWNazoJ4bMbn+WPb/8xvU+Bv4BZ5bOYU+4IoiOG\nU4unDuk1KooyOKilN0IwHg/SzbMwIqx+6e/WjRmP20wqQzig61v1b3HBPy9gdePqbrdXF1fz5OlP\nDkldhormSDNrm9ayZteaThbijtCO9D55vjxmlc/q5CqdXT6bmtKa9Phl2WhIhaJ0j1p645CUSZGY\nMonAtp27bUtUVkBLC5QUw8yZkJ8/JHVKpBLc/srt3PryrUzIn8D/Hvi/LH1z6W4uxPMOP29I6jOU\nlOWVcXDVwRxcdXCn9W3RNiuGjmW4unE1r2x7hWWrlqX3CXgDzCyb2clVWtdSxy9e/oWGVCjKCEBF\nbwRQX7+R6IlHU3P3H8l2VqaCARqWnAazZtkBXYeoo8XaprVc+M8LeXPnm5w09yQuO+YyyvLKWFCx\nYFxbK8XBYg6YcgAHTDmg0/r2WDvrmtalXaRrG9fy+o7XeWT1Iz32Lo0kIvzg6R+wM7ST0rxSSoOl\nlOaVUhIsoSyvjJJgCfm+fO1coyiDjLo3h5lwNMQbzz3Me755JcH1dSSLi/DV7yIxaSIN559N25c/\nN2QDuqZMivveuI+fvvBT8v35/OD9P+DDcz48JOcei3TEO1jftJ5PPPSJvTre7/GnBTAtjN2IY2le\nKWXBzHxJsKRbF2tPqOtVGU7UvTmOMMawfvXLTH34MfLfWs22H11A2wePsRlV5s2zY90NEVtat3DR\nExfx4pYXOXbGsVxx7BVMKpw0ZOcfixT4C1hUuYjq4upuOwJVF1Wz7PPLaI220hJpoTnaTGuklZZo\ni50izuQs7wjtYNWuVTRHmgnFQ3s8d1GgKC2QpcGeRXJl/Uruee0eoskooK5XZeyjojeM1O/aRPSV\nF6m++w+EjjyEthOPhdZW2zNziATPGMMf3/4jVz17FQbDVcddxScXfFLdaoPIeYef121IxXlHnJfu\n9VpdXN2vMuPJOG2xtowodv105lujrTRHmtkR2pEW13gqvseyI4kIlz91OW2xNmaVz2JW+SwN6lfG\nDCp6w0QkHmb9yudYdMsD4PGw46JzbQ/N4mIbijAE1IfquezJy3hyw5McWn0o13zgGqaVTBuSc48n\negup2Bv8Xj8T8icwIX9Cv44zxhBOhNPieMqDp3S7Xyge4odP/zC9XOgvTAugO80sm8n0sul9jqdU\nlJGAit4wYIxh/dpXmLzsKYpefp2d3/u67aXZ3m6DzYfgH/U/1vyDy5+6nHA8zEVHX8SX9v+SBmHn\nkJPnnzwi3IUiQoG/gAJ/AVXFVXt0vT7wqQdY17SOdU3rWN+0nnXN63hxy4v85d2/pPfziIeakhor\nguUzmVXmfJbP6rcgK8pQoKI3DDQ0b6HjtZeZ96sHCe+/kOZPnQRtbXZUhBy7NVsiLfzomR/xt1V/\nY9/KffnJB37C7Amzc3pOZeSyJ9frlKIpTCmawpE1R3Y6pj3WzobmDWkhdIXx+brniSVj6f3K8srS\nFmG2hTitZFq/OtooymCi37whJhqPsP7tF5h/+++RcJTtl37HBp3n5dkcmjnk2Y3PcvG/LqYx3Mi5\nh57L1w7+Gn6vP6fnVEY2e+N6LQoUsW/lvuxbuW+n9clUkq3tWzOWoSOGT298mofffji9n9/jp7a0\ndjdX6azyWRQHi3c730juXTqS66Z0j4reEGKMYcPG15j42POUPvVvGs76EvHpU6G1zfbWzNHoCKFY\niJ+88BMe/O+DzJkwh19+9Je7vbCU8ctguV69Hi81JTXUlNRwzPRjOm1ribSwvjkjhOub17O2aS1P\nbniSRCqR3m9SwaS0e3Rm2Ux2hnZy/xv3j8jepTqO4+hE4/SGkF3N21j35MMcuORykmUlbLz3F7bz\nyuTJMGVKTs65YusKvv/499ncupkzDjyDbx/2bYK+sT+wrDI6iCfj1LXWpYXQtRLXNq2lNdra43Ee\n8VBRUIFHPHjEgyB4xINXvIhIZn32PJn5Ttvw7HaMV7y97vPEuie6HS1kUsEk/vnFf5LvH5rsSaMd\njdMbo0QTUda+8wJz7/oL3sZmtlx/uU0gHQjYXJo5ON9NL97EXf+5i6klU7n/E/ezuLrX74OiDCl+\nrz/t4szGGENjuJEj7zqy2+NSJsUx048hZVKdJmMMKbLm+7DNGEPSJIklY3vcx13vLvc0PFZ9Rz0H\n3H4AkwomUVNaQ21JLTWlNXYqqaG2tJaJ+RM1BGSYUNEbAowxbKx7k9JnXqL8b4/TeNoniS6cZ3Nq\nzp076BlXspNEf2bRZ7jgqAsoCoz9kdSVsYOIMLFgYs+9S4urufK4K4ehZhl6Gm6rPK+c0w84nU0t\nm9jcspnlW5bzl3f/0iklXYG/gGkl09IiWFNSw7TSadSW1DK1ZOq4CAPJbg+tKa3h6uOv5rT9Tsv5\neVX0hoDGtp00rXyFA39xH7GpVew664s2PGFSBRQNnhglUgnueOUObnn5Fsrzyrnj5Dt2a1tRlNFE\nj71LR0Ci857qdsl7L9mtTS+aiLK5bTObWzazqWUTda111LXWsallE8/XPd+pDEGoKq5iWsm0tCDW\nltaml0uDpX22EkdqR5uu7aGbWjaxZNkSgJwLn4pejoklY6x7dzmz7n+EwOZt1N1yDcbrhWQSplQN\n2nnWNa3jwscv5I0db3RKEq0oo5lcBPYPFv2pW9AXZHb5bGaX7x4eZIyhvqPeCmGLnTa1bqKupY6n\nNjxFQ0dDp/2LA8WdRDAtiqXTqCqqSoeDDFZHG2MMsWSMjngH4USYcDzcaT4UDxGOhwknwj3uE46H\n6Uh0pOc3tW4iZVKdztMR7+CSJy7JuehpR5Ycs2bja8SW/ZkF376C1o9+gB2XnQfNzXbkhNLSAZef\nMinuf+N+rn/hevJ9+Vz+/sv5yNyPDELNFUUZCXTEO6wYuqLoWIh1rXVsad3SKa2cz+Ojuria2pJa\nXt3+Kh3xjt3KKw4Uc9p7TttdjLoRK3e+q0D1Rr4vn3x/Pvm+fAr8BbvNP7L6kW6PE4TU5f07V/pY\n7cgy/DS21dPw7isc8PN7SZaVUv+tr1q3Znn5oAhedpLo909/P1ccdwWVhZWDUHNFUUYKBf4C5lfM\nZ37F/N22JVNJdoR2ZFymWaLYneABtMXauH3F7eT7HRFyBKrAZwWpPL88PZ+93p1Pi1g32/L9+eT5\n8nrtifna9te6bQ+tLa3du5vUD1T0ckQ8GWfd6peY8dDj5K1ez9YfX0qqsMCOoFDdv+TCXemaJPrK\n467kUws+pb3BFGWc4fV4qS6uprq4msM5vNO2njraVBVV8eTpTw7r+6K79tACfwFXHX9Vzs+tyRZz\nxKZt7xB89XUq73uYtmOPov24o22qsZoaG6awl9SH6jn7/87m4n9dzKJJi/jr5/7Kpxd+WgVPUZRO\nnHf4eeT5Oqc1zPPlcf4R5w/7++Lk+Sdz5bFXUl1cjSDUltZyx8l3aO/N0UpzRyM7332V/W/5LSYY\nZOcFX7cWXmnJgEZQcJNEd8Q7hi1JdCQRIRwPI+4Y72LbEdzJDQ5WFGV4GcmdgCCTCWiwgtP7iore\nIBNPxlm7+kVq//oMBa+tZPul3yY5oRxCIZg6ba9GUGiJtHDFM1ewbNWyYU0S3R5rBwMLJy1ERIgn\n48SSMSKJSHpqT7bjdo4SEYwxeD1evOLNCKNnaEaCV5TxzkgZ3WMkoaI3yNTtXI33zbeYcucDdCw+\ngNaPfci6NadOhWD/0389u/FZLvnXJewK7xrWJNGtkVYCvgDzJ87fYxozYwyJVCI9xVNxooko4XiY\naDJKJBEhloqBIW0tGkxaDF1h1GGOFEXJBSp6g0hLuJkdq//Dfr98EEmk2HHJtyAahfx8mND72GLZ\ngaRTiqYwvWw6yzcvZ86EOdz60VuHLUl0U6SJkkAJcybM6VVwRQS/17/H/YwxxFPxjDAm49ZtmggT\niUcIxULpJMSutQg2ZZVXvHg9Xvwev7pRFUXpNyp6g0QilWDtuhVMfXQ5RS+soP5bXyU+dbIdQWH+\n/F5HUOgaSLqtfRvb2rdxTO0x/OIjvxiWJNHGGJoiTVQUVDCzbOaguSVFhIA3sMdUS8lUspO12EkY\nExFao63p2CFBMBibcNjj7bVsRVHGLyp6g8Tm+nXw9ttU//I+Igvm0vTZj0Nbux09Ib/3bOs3LL+h\nU/ddl9VNq4dF8FImRVO4yQa6ltYOuVXl9ViLLkjP197Jjeq0L4YTYdqj7TSFm+xOYsdvC3qDOnag\noii5FT0RORG4CfACvzbGXNvNPu8Hfgb4gQZjzKhLFtkaaWHb6ldZ+KuH8ba2s/mWayCVtG14fRxB\nYVvbtn6tzyWJVIKWSAvTS6dTXTKwmMJc4rb/dUcylUy3IbZEWmiNtRKKhNKu0oA3QNAX1BG8FWWc\nkbNfvIh4gVuAE4DNwMsi8ldjzFtZ+5QBtwInGmM2icioSyeSSCVYu+FVpjz9CqWPPc2uMz9HbM5M\nO4LCvL6PoFBVXNV9IGnx4OXn7AuxZIz2WDvzJs5jYsHEIT33YOL1eCnw2OwRE/Jte2oilUiHXLRG\nW2mNttKWbAOsyzXoDRLwBrR3qaKMYXL5N/dQYI0xZh2AiDwInAK8lbXP54E/GmM2ARhjduawPjlh\nS8MGku++w7Sbf0N0Rg2N//s5ZwSFSVDY9xEUvnrQV/nh0z/stG6os8m7grBw0kJKgiVDdt6hwufx\nURQooihQxKRCa4G7bYUd8Y60ELqdaDziIeizQqi9SRVlbJBL0ZsK1GUtbwYO67LPPMAvIk8BxcBN\nxph7c1inQaUt2sbWta+yz2+W4dvRQN2vrseIWOuunyOhr6xfiQc7GnR9R/2QB5KGYiFSJsW+lftS\nGCgcknOOBNyepsXBYiYXTQZIxx6GYiFaIi20RdvSY6F5JdNRRnuPKsroY7gbNHzAwcDxQD7wbxFZ\nboxZlb2TiCwBlgDU1uY+IWlfSKaSrNv0GpXL/0vZn/9By6dOIrL/IjuCwuzZ4Ov7rX2r/i0efuth\nvnzAl/n+0d/PYa27pz3ajtfrZcHEBbulLRqPuKJWEiyhqrgKY0y6fbA91k5LpIXmaHM61tDn9WmP\nUUUZJeRS9LYANVnL05x12WwGdhljQkBIRJ4B9gc6iZ4x5g7gDrBDC+Wsxv1ga/MmoqvfZZ+f30Oi\nsoL6b5xhs65MmAAlfXcNGmO4+tmrKcsr4+uHfD2HNe6e5kgzhf5C5k2cp70be0BEyPPlkefLoyyv\njGkl00iZFNGEFcK2aBst0ZZMj1GsBak9RhVl5JFL0XsZmCsiM7Fi91lsG142fwFuFhEfEMC6P2/M\nYZ0GhfZYO1vW/Ic5Dz5KcEMdm392BSYYgHAYqvrX8eTRtY/y8taX+eH7fzik7WjGGJrCTUwomMDs\n8tnaeaOfeMSTHlKlPL8csNZ/JBEhmozaHqPRVtpj7dYNaiDgC+D3+PF6vNpGqCjDRM5EzxiTEJFz\ngEexIQt3GWNWishZzvbbjDFvi8g/gDeAFDas4b+5qtNgkEwlWVv3BhNefYeJD/yZ1hOPpeOoQ2xv\nzenT+zWCQjQR5SfP/4T5E+fz6YWfzmGtO+PG4FUVVVFbVqsv4EHC6/FSGCikkMJue4y2RFsIxUNE\nYpFMxpmsVGzZbYQGA8aKq0c8iAhe8abn3fX67BSlf+S0Tc8Y8wjwSJd1t3VZvg64Lpf1GEy2tWwm\nun41837xG5JFhew8/yw7gkJJ/0dQuPu1u9nStoXffPw3Q2ZpJVNJmiPNTC+dTlVxlXbGyDHd9Rh1\nSZlUekqmkp2W3Sk7I00ilUhnqnHXJU0SoMfnaIzpJJKC9CikijIeGO6OLKOKUCzE5nX/YebDT5D/\n1iq2XXEhqZJiG6IwdWq/RlDY0b6D21+5nRNmncDh0w7v/YBBIJ6M0xptZc6EObu9gJWhp5Oltpf/\neYwx3YplWkxNslNKt65TJGmtzhQpm87NEUnBporze/0awK+MKfTb3EdSJsXarf+l9L9rmXTPQ7Qf\nfShtH3o/tLbCtGn9HkHhxuU3Ek/GueCoC3JT4S5EE1E64h0sqFhAWf7ej+mnjCxca827t6rp4Ipn\nLBlLp3Nri7YRioVoS7Z1GibK7/FrEL8yalHR6yPbW7YSXreK2Tffh/F62XnhuXYEhcJCmNi/zCVv\n7HiDP73zJ75y0FeoLc19CEZHvIN4Ms6iykUUBfoeMK+MH1zxzPfYzjmllDKlyMaauindYskYHbEO\n2uPttMfaiSfj6WTfPo8Pv9evgfzKiEdFrw90xDvYtOE1pv/9BQpXvM6OC75BYvJEO4LCjBn9cmu6\nIQoVBRWcvfjs3FXaoT3WjgcP+03eT2PwlL0iO6VbWV7GS5BIJYgmrBiG4iHao+3pYaFErBj6PX47\nef0qhsqIQEWvF1Imxbptb1H07noqb7+fjgMW0fLJj0J7yIYn9GEEhWweWf0I/9n+H6487sqcW10t\nkRby/fnMmzhPA6eVQcfn8eEL+CikMB22AaRHvIgmo4RiIdpj7emsNtljIwa8AR0XURlyVPR6YUfb\ndto3rmLRbQ8gkSg7Lvk2xOM2NKGiol9lheNhrnvhOhZOWsgn9vlEjmpsaQo3UZZXxuwJs7UjgjKk\nuKndskM33IGDY8kY0USU9ph1kbZEW7DRGaZTdhsVQyVX6NtwD4TjYTZtfJ2p/3qF4qf+TcPXv0x8\n+jRnBIV5fR5BweXO/9zJtvZtXP/B63PWCcANOq8sqmRG2Qx1KSkjguyBg4sCRekRPIwx6c4zbpq3\n9lg7zdHmTr1JXRcp2NhGt4dp9qei9AUVvR4wxrBuxzvkr91I1c33EJk7i8YvfsqGJ1RW2g4s/WB7\n+3Z+/eqvOXHOiSyuXpyTOrsxeDWlNUwtnqovAmXEIyIEfUGCviDFweJ0KI0rhtFklGgiSmu0lWgy\nSiqVIkkSk9o9VGO3shEQwNDrp5tQvLv6dSeu2evAhp/4PD7t0ToK6LPoicjRwFxjzN0iMgkoMsas\nz13Vhped7Tto27iKBb9+GG9jM1t++gMwxlp3kyf3u7zrX7iepEnyvSO/N/iVJRODN3vCbCoLR92w\nhIrSiWwxJEif4kqNMel2Q1fEuq7r66d77J5iIN3JYEilUoTiIZsswNFPv9evAxWPQPr0NETkcmAx\nMB+4GzvK+f3AUbmr2vARSUTYuOkNql54k9L/e5zGL3yS6MJ5dgSFOXP6NYICwGvbX2PZqmWctfgs\nppVMG/T6xpIx2qPt7FOxT6cOBYoynkhbXsPo4HDbLCOJiB2kONpGe6p9tw482rFs+Ojr2/tU4EDg\nVQBjzFYRKc5ZrYYRYwzrd67Cv24TVTfdRWxaFbu+9kXr1pw4EYr7d9kpk+KqZ69iUsEklhy0ZNDr\nG46HiSajLKpcRHFwTD4SRRk1uIKW7ap1QzuiyWhaCN0ROQTB69ExGoeSvopezBhjRMQAiMiYHWW0\nvqOe5o3vMP+3fyOwZRt1v/wxxueDRKLfIygA/PXdv/LGjje49vhrB31w1vZYOxjYr3I/8v39C51Q\nFGVoyA7tcHuzZg9NFYqHaI222p6s2D/eHvEQ8AYI+oLaGW2Q6avoPSQitwNlIvJV4EzgV7mr1vAQ\nSUTYUPcmU15ZRflDy2g55UTCi/e3bs0ZM8Dfv7HROuId/PTfP2W/yv04ZZ9TBrWurZFWAr4A8yfO\nt+0eiqKMGrobmsodrNhNGegOTZU0yXQvVtci1HbCvadPd84Yc72InAC0Ytv1/p8x5p85rdkQY4xh\nQ8MafBvrqL7pTpITyqj/1lfsCAqlpf0eQQHgV6/+ip2hndx04k2D+m+tKdJESaCEuRPn6pdfUcYI\n2YMVl+aVUlVsPUvZ7YQt0Rbao+20JdvSx2k7Yf/o9Y0pIl7gcWPMscCYErpsdnXsomnju8z9/WME\n12xg608uI1VYYEdDnzatX6nGALa0buHOV+/kpLkncVDVQYNSR2MMTZEmKgoqmFU+S90eijIO2FM7\nYSQRoS3WRmu0laZwU3rAYq/HS9AX1CD/buhV9IwxSRFJiUipMaZlKCo11EQTUdZt+S+TVq5nwn1/\noO34o2k/9igbhF5T06+BYV2u//f1iAjfPfK7g1LHlEnRGG6kpqSGaSXT9IusKOOYdDthoDAd6O8m\nBncz3rTF2tLthG4YRdfBintbD2DEdL/eyaLjkn18f9cPJX31jbUDb4rIP4GQu9IY882c1GoIMcaw\nYddafJu3UH3T3Zi8IDu/+3UIh6GoCCZM6HeZK7au4JHVj3DOIeekXRQDIZFK0BJpYWbZzEEpT1GU\nsUd2YvCu7YSJVCK9nE12UH72tr1Z7y5nxzoC6cQBPa33eXxD6rXqq+j90ZnGHI3hRpo2r2bmX56k\n4I232H7ZeSQnltkRFGbN6rdbM2VSXP3s1UwpmsJXDvrKgOsXS8Zoi7Yxf+J8JhT0X4AVRRm/uO2E\nSoa+dmT5jYgEgHnOqneNMfHcVWtoiCVjrNu6kgnvbGLSr39L6NADaT35BGhrs+EJef3/svzp7T+x\nsn4l151w3YDDCCKJCJFEhEWViygJlgyoLEVRFKXvGVneD/wG2IDNd1AjIqcbY57JXdVyizGGDY3r\n8WzeTPWt90Iqxc6LvgmxmB0FfVLvaY+60h5r58blN3LA5AM4ed7JA6pfe8xmcdi3cl8K/AUDKktR\nFEWx9NW9+VPgg8aYdwFEZB7wAHBwriqWa5rCTezasooZj79I0Qsr2PmdJcSnToHWVpg7Fzz99zHf\nvuJ26jvqufWjtw6okTYUC+H1eNln4j4ag6coijKI9PXN7ncFD8AYswqbf3NUYoxh/Y63KV+7lUm3\n3EN40XyaP3OKTTU2eXK/R1AAqGut4+7X7uaU+afwnsnv2eu6pUyKWDKmgqcoipID+mrprRCRX2OT\nTAOcBqzITZVyj8GQ2FxH9e2/xdsWYvOl34ZUyiaS3gu3JsB1z1+Hz+Pj/CPOH1Dd2qJtVBdXq+Ap\niqLkgL6K3tnANwA3ROFZ4Nac1CjXLF2KXHwxh27ahABtxxxBbPYMm2ps3rx+j6AA8NKWl3h07aN8\n67BvMbmo/8MOubjDlAykDEVRFKVn+vqG9wE3GWNugHSWltFniixdCkuWIB0d6VWFy1+l+C9/p+1T\nH7Nxef0kmUpy1bNXMbV4KmceeOaAqtcaaaW6pFrTCSmKouSIvrbpPQFk97/PBx4f/OrkmEsusbk0\ns/BEo1T8+rcwZcpeFfnw2w/zTsM7fPfI7w4oHiaZSoLA5EK18hRFUXJFX0UvzxjT7i4486OvH/2m\nTd2u9u3c1e8RFMC2v924/EYOrjqYD8/58ICq1hZtY1rxNPzeUds/SFEUZcTTV9ELiUg6a7KILAbC\nualSDqmt7XZ1Yurepfa6dcWtNIWbuPi9Fw8oRMG18txksoqiKEpu6KvofRv4vYg8KyLPAg8C5+Su\nWjniqqugoLOBmsrPo+HS8/pd1IbmDdz3+n2cuuBU9q3cd0DVaouplacoijIU7FH0ROQQEZlijHkZ\n2Af4HRAH/gGsH4L6DS6nnQZ33IGprcUIxKsns+PGK2n7VP+zp/zk+Z/g9/o57/D+C2Y2yVQSQags\nqk5UPd8AABzdSURBVBxQOYqiKErv9Gbp3Q7EnPkjgIuBW4Am4I4c1it3nHYaZv06Xnr9Eda//vRe\nCd6/6/7NE+uf4OzFZw/YJdkaa2VayTQdDFZRFGUI6O1N6zXGNDrznwHuMMY8DDwsIq/ltmo5RATK\nJ/R7BAWww/xc/ezVTCuZxun7nz6gaiRTSTx4tC1PURRliOjN0vOKiCuMxwP/yto2Lk2Th1Y+xKrG\nVVx41IUDzprSGmultrRWrTxFUZQhore37QPA0yLSgO2t+SyAiMwBxuQo6nuiJdLCTS/exKFTD+WE\nWScMqKxEKoEXb3rUY0VRFCX37FH0jDFXicgTQBXwmMkMlesBzs115UYat7x8Cy2RFi4+emAhCgDt\n0Xaml01XK09RFGUI6fWNa4xZ3s26VbmpzshlbdNalr65lE8v/DQLJi0YUFmJVAKvx0tFQcUg1U5R\nFEXpC/0fNG6c8uPnfkyeL49vH/7tAZfVFm2jprQGr8c7CDVTFEVR+oqKXh94ZuMzPL3xab6++OsD\nboOLJ+P4PD4m5mtbnqIoylCjotcL8WSca5+7luml0/ni/l8ccHntsXZqS2vVylMURRkGtBdFLzz4\n3wdZ27SWWz9664CH/Ikn4/g9fibkTxik2imKoij9QS29PdAUbuIXL/2CI2uO5LgZxw24PLXyFEVR\nhpecip6InCgi74rIGhH5/h72O0REEiLyqVzWp7/c/NLNtMXauOjoiwYcohBLxgh4A0woUCtPURRl\nuMiZ6Dmjq98CfBhYCHxORBb2sN+PgcdyVZe9YfWu1Tzw3wf4zKLPMG/ivAGXF4qFqC2txSNqXCuK\nogwXuXwDHwqsMcasM8bEsMMRndLNfucCDwM7c1iXfmGM4drnrqUwUMg3D/vmgMtzrbzy/PJBqJ2i\nKIqyt+RS9KYCdVnLm511aURkKnAq8Msc1qPfPLXhKZ6re45vHPKNQel0olaeoijKyGC438I/Ay40\nxqT2tJOILBGRFSKyor6+PqcViiVjXPv8tcwsm8lp+502KOUFvUG18hRFUUYAuQxZ2ALUZC1Pc9Zl\nsxh40OkkUgF8REQSxpg/Z+9kjLkDZ/y+xYsXG3LIb9/8LRuaN3DHSXcMykjm7dF25k2cp1aeoijK\nCCCXovcyMFdEZmLF7rPA57N3MMbMdOdF5B7gb10FbyhpDDdy80s3897a93LMjGMGXF4sGSM/kK9W\nnqIoygghZ6JnjEmIyDnAo4AXuMsYs1JEznK235arc+8tN714Ex3xDi46+qJBKS8UCzG/Yv6Awx0U\nRVGUwSGnGVmMMY8Aj3RZ163YGWO+nMu69MY7De/w0MqHOG2/05g9YfaAy4smouT58ygNlg5C7RRF\nUZTBQBuasCEK1zx3DSWBEs459JxBKTMUDzG9dLpaeYqiKCMIFT3gifVPsHzzcs497FzK8soGXF40\nEaXAX6BWnqIoyghj3IteLBnjx8//mDkT5vDZfT87KGWGYmrlKYqijETG/SgL975+L5taNnHnx+7E\n5xn47YgkIhQGCikJlgxC7RRFUZTBZFxbeg0dDdz68q0cO+NYjq49elDK7Ih1ML1MrTxFUZSRyLgW\nvZ8t/xmxZIwLj7pwUMoLx8MUBYsoDhQPSnmKoijK4DJuRe/dhnf5w1t/4Avv+QIzy2f2fkAfCCfC\n1JbWqpWnKIoyQhl3bXpL31zKxU9czKaWTXjwDJ7gxcOUBEq0LU9RFGUEM64svaVvLmXJsiVsatkE\nQIoUVz97NcveXTbgsjviHdSU1vS+o6IoijJsjCvRu+SJS+iId3RaF0lEuGH5DQMqtyPeQWmwlOKg\ntuUpiqKMZMaV6LkWXle2tW0bULmReEStPEVRlFHAuBK92tLabtdXFVftdZkd8Q7K8svUylMURRkF\njCvRu+r4qyjwF3Ral+fL47zDz9vrMiOJCNNKpg20aoqiKMoQMK56b7ojoV/8xMXUtdRRVVzFeYef\nx8nzT96r8kKxEOV55RQFigazmoqiKEqOGFeiB1b4Prfv53h5y8sDHtw1mowyb+K8QaqZoiiKkmvG\nlXtzMGmPtTMhbwKFgcLhroqiKIrSR1T09pJYIsbUkqnDXQ1FURSlH6jo7QXtsXYmFk5UK09RFGWU\noaLXT4wx1sorVitPURRltKGi109C8RAVhRW7hT4oiqIoIx8VvX5gjCGWVCtPURRltKKi1w/a/397\n9x5dVXnue/z75KIhBAggFwFJ2D0oCbkR0ihYCpGK6DlKURAQtwJqkHrZ0uM4pe4O2+0eVEbbYcHL\n4aKC1R3heCmF7oqXUqnlsEUuO1w0sqEa2ggo4ikQAoEkz/ljraQJJCEmWawk6/cZIyNzzjXnO585\nM5In77y8z+lSesX3olNsp3CHIiIizaCk10TuTkVVBf269At3KCIi0kxKek1UerqU3p17q5cnItKO\nKek1gbtzpvJMiwamFhGR8FPSa4Ljp4/TJ6EPcTFx4Q5FRERaQEnvPNydyqpK3csTEekAlPTO43j5\ncfom9OXimIvDHYqIiLSQkl4jqryKSq+kb0LfcIciIiKtQEmvEaXlpVyacKl6eSIiHYSSXgOqe3l9\nEvqEOxQREWklSnoNOF5+nH5d+qmXJyLSgSjp1aPKq3BcvTwRkQ5GSa8ex04do1+XflwUfVG4QxER\nkVakpHeWKq8Cg96de4c7FBERaWVKemdRL09EpONS0qulsqoSDPp01r08EZGOSEmvluOnjzOgywBi\no2PDHYqIiISAkl5QZVUlhtGrc69whyIiIiGipBd07PQxBnRVL09EpCMLadIzs/FmtsfM9pnZvHo+\nn25mO81sl5ltMrPMUMbTkMqqSqKIUi9PRKSDC1nSM7No4BngeiAVmGZmqWet9ikw2t3TgX8FloUq\nnsZU9/JiomLCsXsREblAQtnTywX2ufsn7n4aWAVMqL2Cu29y9/8XnH0fGBDCeOpVUVVBNNHq5YmI\nRIBQJr3+wF9rzZcElzXkLmBdCOOpV2l5KZd1u0y9PBGRCNAm/tKbWR6BpPetBj7PB/IBBg4c2Gr7\nraiqIDoqmkviL2m1NkVEpO0KZU/vM+CyWvMDgsvqMLMM4Dlggrsfqa8hd1/m7jnuntOrV+tdhjxe\nfpzLul1GdFR0q7UpIiJtVyiT3hZgsJkNMrOLgKnA2tormNlA4NfAP7r7f4UwlnO4OzFRMfTs1PNC\n7lZERMIoZJc33b3CzO4H3gKigeXu/qGZ3Rv8fAnwKNAT+N9mBlDh7jmhiqm26Kho9fJERCJMSO/p\nufsbwBtnLVtSa/pu4O5QxlAfw+gZ31O9PBGRCNMmHmS50MyMf+j+D+EOQ0RELjANQyYiIhFDSU9E\nRCKGkp6IiEQMJT0REYkYSnoiIhIxlPRERCRiKOmJiEjEUNITEZGIoaQnIiIRQ0lPREQihpKeiIhE\nDCU9ERGJGEp6IiISMZT0REQkYijpiYhIxFDSExGRiKGkJyIiEUNJT0REIkZMuAMQEQmVM2fOUFJS\nwqlTp8IdirSSuLg4BgwYQGxsbLO2V9ITkQ6rpKSELl26kJycjJmFOxxpIXfnyJEjlJSUMGjQoGa1\nocubItJhnTp1ip49eyrhdRBmRs+ePVvUc1fSE5EOTQmvY2npz1NJT0QkRI4cOUJWVhZZWVn07duX\n/v3718yfPn26SW3MnDmTPXv2NLrOM888Q0FBQWuEzJo1a8jKyiIzM5PU1FSee+65Vmm3rdA9PRGR\nagUF8M//DH/5CwwcCPPnw/TpzW6uZ8+eFBYWAvCTn/yEhIQEHn744TrruDvuTlRU/X2QFStWnHc/\n9913X7NjrK28vJw5c+awdetW+vXrR3l5Ofv3729Rm+c7vgutbUQhIhJuBQWQnw/794N74Ht+fmB5\nK9u3bx+pqalMnz6doUOHcvDgQfLz88nJyWHo0KE89thjNet+61vforCwkIqKChITE5k3bx6ZmZmM\nGDGCL774AoAf/ehHLFy4sGb9efPmkZubyxVXXMGmTZsAOHHiBLfccgupqalMmjSJnJycmoRc7ejR\no7g7PXr0AODiiy/m8ssvB+DQoUNMmDCBjIwMMjMz2bx5MwA/+9nPSEtLIy0tjaeeeqrB41u3bh0j\nRowgOzubKVOmcOLEiVY/r02hnp6IRIaHHoKz/sjX8f77UF5ed1lZGdx1Fzz7bP3bZGVBMNl8XR9/\n/DEvvvgiOTk5ACxYsIAePXpQUVFBXl4ekyZNIjU1tc42R48eZfTo0SxYsIDvf//7LF++nHnz5p3T\ntrvzwQcfsHbtWh577DHefPNNnnrqKfr27cvrr7/Ojh07yM7OPme73r17c91115GUlMTYsWO58cYb\nmTJlClFRUdx3331ce+213H///VRUVFBWVsbmzZspKChgy5YtVFRUkJuby5gxY+jUqVOd4/viiy9Y\nsGAB69evJz4+nvnz57No0SIeeeSRZp27llBPT0QEzk1451veQt/4xjdqEh7AypUryc7OJjs7m6Ki\nIj766KNztunUqRPXX389AMOHD6e4uLjetm+++eZz1tm4cSNTp04FIDMzk6FDh9a77QsvvMA777xD\nTk4OCxYsID8/H4ANGzYwe/ZsAGJiYujatSsbN27klltuoVOnTnTp0oXvfve7/OlPfzrn+DZt2sRH\nH33EyJEjycrKoqCgoMHYQ009PRGJDOfrkSUnBy5pni0pCTZsaPVwOnfuXDO9d+9eFi1axAcffEBi\nYiK33357vY/lX3TRRTXT0dHRVFRU1Nv2xRdffN51GpORkUFGRga33XYbKSkpNQ+zfJ0nJ2sfn7sz\nfvx4Xnrppa8dS2tTT09EBAIPrcTH110WHx9YHmLHjh2jS5cudO3alYMHD/LWW2+1+j6uvvpqXnnl\nFQB27dpVb0/y2LFjvPfeezXzhYWFJCUlAZCXl8eSJUsAqKys5NixY4waNYrVq1dz8uRJSktLWbNm\nDaNGjTqn3ZEjR/LHP/6RTz75BAjcX9y7d2+rH2NTqKcnIgJ/f0qzFZ/ebKrs7GxSU1MZMmQISUlJ\nXH311a2+jwceeIA77riD1NTUmq9u3brVWcfdefzxx7nnnnvo1KkTCQkJLF++HICnn36ae+65h6VL\nlxITE8PSpUvJzc1l2rRpfPOb3wRgzpw5pKens2/fvjrt9unTh+eff54pU6bUvKrx05/+lMGDB7f6\ncZ6PufsF32lL5OTk+NatW8Mdhoi0A0VFRaSkpIQ7jDahoqKCiooK4uLi2Lt3L+PGjWPv3r3ExLS/\nvk99P1cz2+buOQ1sUqP9Ha2IiHxtpaWljB07loqKCty9pscWaSLviEVEIlBiYiLbtm0LdxhhpwdZ\nREQkYijpiYhIxFDSExGRiKGkJyIiEUNJT0QkRPLy8s550XzhwoXMmTOn0e0SEhIAOHDgAJMmTap3\nnTFjxnC+17cWLlxIWVlZzfwNN9zA3/72t6aE3qg9e/YwZswYsrKySElJqRmqrD1Q0hMRCSrYVUDy\nwmSi/iWK5IXJFOxqWYWFadOmsWrVqjrLVq1axbRp05q0fb9+/Xjttdeavf+zk94bb7xBYmJis9ur\n9uCDDzJ37lwKCwspKirigQceaHGblZWVLW6jKZT0REQIJLz83+az/+h+HGf/0f3k/za/RYlv0qRJ\n/O53v6sZhaS4uJgDBw4watSomvfmsrOzSU9PZ82aNedsX1xcTFpaGgAnT55k6tSppKSkMHHiRE6e\nPFmz3pw5c2rKEv34xz8G4Mknn+TAgQPk5eWRl5cHQHJyMl9++SUATzzxRE1JoOqyRMXFxaSkpHDP\nPfcwdOhQxo0bV2c/1Q4ePMiAAQNq5tPT04FA4nr44YdJS0sjIyOjptTQ+vXrGTZsGOnp6cyaNYvy\n4CDeycnJ/OAHPyA7O5tXX32VP//5z4wfP57hw4czatQoPv7442af+4aE9D09MxsPLAKigefcfcFZ\nn1vw8xuAMmCGu28PZUwiEpkeevMhCg81XFro/ZL3Ka+sW1Gh7EwZd625i2e31V9aKKtvFgvHNzyQ\ndY8ePcjNzWXdunVMmDCBVatWceutt2JmxMXFsXr1arp27cqXX37JVVddxU033dTgoM6LFy8mPj6e\noqIidu7cWac00Pz58+nRoweVlZWMHTuWnTt38uCDD/LEE0/w7rvvcskll9Rpa9u2baxYsYLNmzfj\n7lx55ZWMHj2a7t27s3fvXlauXMmzzz7Lrbfeyuuvv87tt99eZ/u5c+dyzTXXMHLkSMaNG8fMmTNJ\nTExk2bJlFBcXU1hYSExMDF999RWnTp1ixowZrF+/nssvv5w77riDxYsX89BDDwGBQrvbtwf+7I8d\nO5YlS5YwePBgNm/ezPe+9z3+8Ic/NHh+myNkPT0ziwaeAa4HUoFpZpZ61mrXA4ODX/nA4lDFIyLS\nmLMT3vmWN1XtS5y1L226O4888ggZGRl85zvf4bPPPuPzzz9vsJ333nuvJvlUV0Go9sorr5Cdnc2w\nYcP48MMP6x1MuraNGzcyceJEOnfuTEJCAjfffHNNSaBBgwaRlZUFNFy+aObMmRQVFTF58mQ2bNjA\nVVddRXl5Ob///e+ZPXt2zUgvPXr0YM+ePQwaNKimGO2dd95ZZ1DrKVOmAIERYzZt2sTkyZPJyspi\n9uzZHDx4sNHjaI5Q9vRygX3u/gmAma0CJgC1fxoTgBc9MADo+2aWaGaXunvrH6mIRLTGemQAyQuT\n2X/03NJCSd2S2DBjQ7P3O2HCBObOncv27dspKytj+PDhABQUFHD48GG2bdtGbGwsycnJ9ZYTOp9P\nP/2UX/ziF2zZsoXu3bszY8aMZrVTrbosEQRKE9V3eRMC9xtnzZrFrFmzSEtLY/fu3c3aX3UJoqqq\nKhITE8+p5t7aQnlPrz/w11rzJcFlX3cdzCzfzLaa2dbDhw+3eqAiIvPHzic+tm5pofjYeOaPbVlp\noYSEBPLy8pg1a1adB1iOHj1K7969iY2N5d1332V/fbX8avn2t7/Nyy+/DMDu3bvZuXMnECgH1Llz\nZ7p168bnn3/OunXrarbp0qULx48fP6etUaNG8Zvf/IaysjJOnDjB6tWr6y0J1JA333yTM2fOAHDo\n0CGOHDlC//79ufbaa1m6dGlNDb+vvvqKK664guLi4prKCy+99BKjR48+p82uXbsyaNAgXn31VSDQ\nE96xY0eTY2qqdvEgi7svc/ccd8/p1atXuMMRkQ5oevp0lt24jKRuSRhGUrcklt24jOnpLS8tNG3a\nNHbs2FEn6U2fPp2tW7eSnp7Oiy++yJAhQxptY86cOZSWlpKSksKjjz5a02PMzMxk2LBhDBkyhNtu\nu61OWaL8/HzGjx9f8yBLtezsbGbMmEFubi5XXnkld999N8OGDWvy8bz99tukpaWRmZnJddddx89/\n/nP69u3L3XffzcCBA8nIyCAzM5OXX36ZuLg4VqxYweTJk0lPTycqKop777233nYLCgp4/vnnayq7\n1/dwT0uFrLSQmY0AfuLu1wXnfwjg7o/XWmcpsMHdVwbn9wBjGru8qdJCItJUKi3UMbWktFAoe3pb\ngMFmNsjMLgKmAmvPWmctcIcFXAUc1f08EREJlZA9yOLuFWZ2P/AWgVcWlrv7h2Z2b/DzJcAbBF5X\n2EfglYWZoYpHREQkpO/pufsbBBJb7WVLak07cF8oYxAREanWLh5kERFprlA9tyDh0dKfp5KeiHRY\ncXFxHDlyRImvg3B3jhw5QlxcXLPbCOnlTRGRcBowYAAlJSXo/d6OIy4urs64n1+Xkp6IdFixsbEM\nGjQo3GFIG6LLmyIiEjGU9EREJGIo6YmISMQI2TBkoWJmh4HGR2Zt/y4Bvgx3EO2Uzl3z6dw1n85d\n87XWuUty9/MOztzukl4kMLOtTRlDTs6lc9d8OnfNp3PXfBf63OnypoiIRAwlPRERiRhKem3TsnAH\n0I7p3DWfzl3z6dw13wU9d7qnJyIiEUM9PRERiRhKem2ImV1mZu+a2Udm9qGZ/VO4Y2pvzCzazP7T\nzP493LG0J2aWaGavmdnHZlZkZiPCHVN7YWZzg7+vu81spZk1fzTkDs7MlpvZF2a2u9ayHmb2jpnt\nDX7vHsoYlPTalgrgf7p7KnAVcJ+ZpYY5pvbmn4CicAfRDi0C3nT3IUAmOodNYmb9gQeBHHdPI1Aw\ne2p4o2rTXgDGn7VsHrDe3QcD64PzIaOk14a4+0F33x6cPk7gD0//8EbVfpjZAOC/A8+FO5b2xMy6\nAd8Gngdw99Pu/rfwRtWuxACdzCwGiAcOhDmeNsvd3wO+OmvxBOBXwelfAd8NZQxKem2UmSUDw4DN\n4Y2kXVkI/C+gKtyBtDODgMPAiuCl4efMrHO4g2oP3P0z4BfAX4CDwFF3fzu8UbU7fdz9YHD6ENAn\nlDtT0muDzCwBeB14yN2PhTue9sDM/gfwhbtvC3cs7VAMkA0sdvdhwAlCfImpowjef5pA4B+HfkBn\nM7s9vFG1Xx54nSCkrxQo6bUxZhZLIOEVuPuvwx1PO3I1cJOZFQOrgGvM7N/CG1K7UQKUuHv1VYXX\nCCRBOb/vAJ+6+2F3PwP8GhgZ5pjam8/N7FKA4PcvQrkzJb02xMyMwH2VInd/ItzxtCfu/kN3H+Du\nyQQeJPiDu+s/7iZw90PAX83siuCiscBHYQypPfkLcJWZxQd/f8eih4C+rrXAncHpO4E1odyZkl7b\ncjXwjwR6KYXBrxvCHZREhAeAAjPbCWQBPw1zPO1CsHf8GrAd2EXgb6pGZ2mAma0E/gO4wsxKzOwu\nYAFwrZntJdBzXhDSGDQii4iIRAr19EREJGIo6YmISMRQ0hMRkYihpCciIhFDSU9ERCKGkp5IA8zM\na7/gbmYxZna4uRUczOwmMwvbSCdmtsHM9pjZzmA1hafNLLEF7c0ws3615ovN7JLWiVYkNJT0RBp2\nAkgzs07B+WuBz5rbmLuvdfeQvoPUBNPdPQPIAMpp2YvAMwgMvSXSbijpiTTuDQKVGwCmASurPzCz\nXDP7j+AgzZuqRzQJ1ldbHpxOD9ZZiw/2jJ4OLn/BzBab2ftm9omZjQnWGisysxdq7aO01vSk6s+a\nun1D3P00gcG5B5pZZrDN283sg+CgCEvNLLo6BjP7ZbBm3Hoz62Vmk4AcAi+0F9b6x+ABM9tuZrvM\nbEgzzrdISCnpiTRuFTA1WBg0g7pVLz4GRgUHaX6Uv49isgj4b2Y2EVgBzHb3snra7g6MAOYSGIrp\nl8BQIN3MspoQW4u2d/dKYAcwxMxSgCnA1e6eBVQC04Ordga2uvtQ4I/Aj939NWArgZ5jlrufDK77\npbtnA4uBh5twDCIXVEy4AxBpy9x9Z7DM0zQCvb7augG/MrPBBEaGjw1uU2VmM4CdwFJ3/78NNP9b\nd3cz2wV87u67AMzsQyAZKDxPeC3dHsCC38cCw4EtgSEk6cTfB/6tAv5PcPrfCAyq3JDqz7YBNzdh\n/yIXlJKeyPmtJVAzbQzQs9byfwXedfeJwcS4odZng4FSGr/nVR78XlVrunq++nez9jiBcc3YvkHB\ny5fpBAZI7g38yt1/eL7taLz0S3UclU2JQeRC0+VNkfNbDvxLdU+qlm78/cGWGdULg5XInyRQjbxn\n8P5Xc31uZilmFgVMbEE7dQRLWD0O/NXddwLrgUlm1jv4eQ8zSwquHgVUH8NtwMbg9HGgS2vFJHIh\nKOmJnIe7l7j7k/V89DPgcTP7T+r2an4JPOPu/wXcBSyoTibNMA/4d2ATgcrcLVVdSWE3gXt1EwDc\n/SPgR8Dbwc/fAS4NbnMCyDWz3cA1wGPB5S8AS856kEWkTVOVBRFplJmVuntCuOMQaQ3q6YmISMRQ\nT09ERCKGenoiIhIxlPRERCRiKOmJiEjEUNITEZGIoaQnIiIRQ0lPREQixv8HMh8ccssjyxAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.ModelComplexity(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5 - Bias-Variance Tradeoff\n", + "*When the model is trained with a maximum depth of 1, does the model suffer from high bias or from high variance? How about when the model is trained with a maximum depth of 10? What visual cues in the graph justify your conclusions?* \n", + "**Hint:** How do you know when a model is suffering from high bias or high variance?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** At max depth 1, it suffers from high bias - r^2 is generally low for both training and validation, so it has low predictive power. At max depth 10, it suffers from high variance, as r^2 for training goes to 1, but validation remains low, meaning model is overfitting and does not generalise well. These conclusions are based on the fact that the training and validation scores diverge at higher max depth, with training improving, whereas validation is dropping off and even declining. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6 - Best-Guess Optimal Model\n", + "*Which maximum depth do you think results in a model that best generalizes to unseen data? What intuition lead you to this answer?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** It seems to be max depth of 3, as afterwards validation declines whereas training continues to rise, showing the model cannot generalise well anymore, so there is no benefit to increasing max depth." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "\n", + "## Evaluating Model Performance\n", + "In this final section of the project, you will construct a model and make a prediction on the client's feature set using an optimized model from `fit_model`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7 - Grid Search\n", + "*What is the grid search technique and how it can be applied to optimize a learning algorithm?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The grid search space is a space occupied by parameters to a model. The grid search technique will try all possible points on this space (combination of parameters) The output of grid search are many models, each using different parameters. This is a selective search, as only points on the parameter grid will be used. The search is guided by chosing a range of values for each parameter dimension picking a step size large enough to expect the output to vary in some interesting way. In case of enum parameters, we could earch across several different classifiers for example, to get an idea which works best." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8 - Cross-Validation\n", + "*What is the k-fold cross-validation training technique? What benefit does this technique provide for grid search when optimizing a model?* \n", + "**Hint:** Much like the reasoning behind having a testing set, what could go wrong with using grid search without a cross-validated set?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The K Fold cross validation technique splits the dataset into training and cross validation sets. More specifically, it splits the data into K subsets, using one of the subsets as validation and the k-1 others combined as the training set. It then trains and evaluates the ML algorithm. In the next iteration it will pick a different training and cross validation set and repeat the previous step. Once all K combinations have been explored, an average performance estimate is computed across the outputs of each of the k steps run. The benefit of this technique to grid search is that you get a more reliable, stable estimate for each point on the parameter grid, as it will be run using several splits of training / testing data, eliminating potential bias in the dataset and given stable values no matter how the dataset is divided into training and testing. This K fold validation is useful for grid search as each point on the grid will get a more reliable estimate of model performance than not using K folder validation. If we limit grid search to a single dataset (no K fold validation) overfitting would be an issue, as the specific choice of model function might lead to lack of generalisation to out of sample data. Applying this generalisation inside the dataset, many times over, make the estimate more stable." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Fitting a Model\n", + "Your final implementation requires that you bring everything together and train a model using the **decision tree algorithm**. To ensure that you are producing an optimized model, you will train the model using the grid search technique to optimize the `'max_depth'` parameter for the decision tree. The `'max_depth'` parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called *supervised learning algorithms*.\n", + "\n", + "In addition, you will find your implementation is using `ShuffleSplit()` for an alternative form of cross-validation (see the `'cv_sets'` variable). While it is not the K-Fold cross-validation technique you describe in **Question 8**, this type of cross-validation technique is just as useful!. The `ShuffleSplit()` implementation below will create 10 (`'n_splits'`) shuffled sets, and for each shuffle, 20% (`'test_size'`) of the data will be used as the *validation set*. While you're working on your implementation, think about the contrasts and similarities it has to the K-fold cross-validation technique.\n", + "\n", + "Please note that ShuffleSplit has different parameters in scikit-learn versions 0.17 and 0.18.\n", + "For the `fit_model` function in the code cell below, you will need to implement the following:\n", + "- Use [`DecisionTreeRegressor`](http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) from `sklearn.tree` to create a decision tree regressor object.\n", + " - Assign this object to the `'regressor'` variable.\n", + "- Create a dictionary for `'max_depth'` with the values from 1 to 10, and assign this to the `'params'` variable.\n", + "- Use [`make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html) from `sklearn.metrics` to create a scoring function object.\n", + " - Pass the `performance_metric` function as a parameter to the object.\n", + " - Assign this scoring function to the `'scoring_fnc'` variable.\n", + "- Use [`GridSearchCV`](http://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html) from `sklearn.grid_search` to create a grid search object.\n", + " - Pass the variables `'regressor'`, `'params'`, `'scoring_fnc'`, and `'cv_sets'` as parameters to the object. \n", + " - Assign the `GridSearchCV` object to the `'grid'` variable." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'\n", + "\n", + "def fit_model(X, y):\n", + " \"\"\" Performs grid search over the 'max_depth' parameter for a \n", + " decision tree regressor trained on the input data [X, y]. \"\"\"\n", + " \n", + " # Create cross-validation sets from the training data\n", + " # sklearn version 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)\n", + " # sklearn versiin 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None)\n", + " cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)\n", + "\n", + " # TODO: Create a decision tree regressor object\n", + " from sklearn.tree import DecisionTreeRegressor\n", + " regressor = DecisionTreeRegressor(random_state =1)\n", + "\n", + " # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10\n", + " import numpy as np\n", + " params = {\"max_depth\": np.arange(1,11)}\n", + " print(\"params\", params)\n", + "\n", + " # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' \n", + " from sklearn.metrics import make_scorer\n", + " scoring_fnc = make_scorer(performance_metric)\n", + "\n", + " # TODO: Create the grid search object\n", + " from sklearn.grid_search import GridSearchCV\n", + " grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cv_sets)\n", + "\n", + " # Fit the grid search object to the data to compute the optimal model\n", + " grid = grid.fit(X, y)\n", + "\n", + " # Return the optimal model after fitting the data\n", + " return grid.best_estimator_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Making Predictions\n", + "Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a *decision tree regressor*, the model has learned *what the best questions to ask about the input data are*, and can respond with a prediction for the **target variable**. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 9 - Optimal Model\n", + "_What maximum depth does the optimal model have? How does this result compare to your guess in **Question 6**?_ \n", + "\n", + "Run the code block below to fit the decision tree regressor to the training data and produce an optimal model." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\envs\\udacity\\lib\\site-packages\\sklearn\\grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.\n", + " DeprecationWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter 'max_depth' is 4 for the optimal model.\n" + ] + } + ], + "source": [ + "# Fit the training data to the model using grid search\n", + "reg = fit_model(X_train, y_train)\n", + "\n", + "# Produce the value for 'max_depth'\n", + "print \"Parameter 'max_depth' is {} for the optimal model.\".format(reg.get_params()['max_depth'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The max depth of the optimal model is 4. My guess would have been 3, as it seems with 4, training accuracy goes up, but much more so than test accuracy, which almost flatlines." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 10 - Predicting Selling Prices\n", + "Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:\n", + "\n", + "| Feature | Client 1 | Client 2 | Client 3 |\n", + "| :---: | :---: | :---: | :---: |\n", + "| Total number of rooms in home | 5 rooms | 4 rooms | 8 rooms |\n", + "| Neighborhood poverty level (as %) | 17% | 32% | 3% |\n", + "| Student-teacher ratio of nearby schools | 15-to-1 | 22-to-1 | 12-to-1 |\n", + "*What price would you recommend each client sell his/her home at? Do these prices seem reasonable given the values for the respective features?* \n", + "**Hint:** Use the statistics you calculated in the **Data Exploration** section to help justify your response. \n", + "\n", + "Run the code block below to have your optimized model make predictions for each client's home." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted selling price for Client 1's home: $411,931.58\n", + "Predicted selling price for Client 2's home: $235,620.00\n", + "Predicted selling price for Client 3's home: $922,740.00\n" + ] + } + ], + "source": [ + "# Produce a matrix for client data\n", + "client_data = [[5, 17, 15], # Client 1\n", + " [4, 32, 22], # Client 2\n", + " [8, 3, 12]] # Client 3\n", + "\n", + "\n", + "\n", + "# Show predictions\n", + "for i, price in enumerate(reg.predict(client_data)):\n", + " print \"Predicted selling price for Client {}'s home: ${:,.2f}\".format(i+1, price)\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** Client 1's home: around \\$410k, Client 2's home: around\\$235k, Client 3's home: around \\$920k. Prices seem reasonable, as Client 3's home has low neigbourhood poverty, low student teacher ratio and a lot of bedrooms. C2 home should be the lowest, as least rooms, worst student teacher ratio, and highest neighbourhood poverty. C1 works too and is in between C3 and C2, as better student teacher ratio, half the poverty level, and 1 extra room compared to C2. More generally, prices are in the range of the dataset and a large house in a good neighborhood is close to the maximum prices which is expected" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sensitivity\n", + "An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted. Run the code cell below to run the `fit_model` function ten times with different training and testing sets to see how the prediction for a specific client changes with the data it's trained on." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 1: $391,183.33\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 2: $419,700.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 3: $415,800.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 4: $420,622.22\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 5: $413,334.78\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 6: $411,931.58\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 7: $399,663.16\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 8: $407,232.00\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 9: $351,577.61\n", + "('params', {'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])})\n", + "Trial 10: $413,700.00\n", + "\n", + "Range in prices: $69,044.61\n" + ] + } + ], + "source": [ + "vs.PredictTrials(features, prices, fit_model, client_data) # predicts client 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11 - Applicability\n", + "*In a few sentences, discuss whether the constructed model should or should not be used in a real-world setting.* \n", + "**Hint:** Some questions to answering:\n", + "- *How relevant today is data that was collected from 1978?*\n", + "- *Are the features present in the data sufficient to describe a home?*\n", + "- *Is the model robust enough to make consistent predictions?*\n", + "- *Would data collected in an urban city like Boston be applicable in a rural city?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** Data from 1978 may not be that relevant, as underlying factors may have changed, such as the distribution of wealth across neighbourhoods, or the number of teachers and students in schools. However, if there were no such trends, the dataset could be a good proxy, as price was corrected for inflation. The number of features are probably not sufficient to describe a home - condition, size of land, age and other features may have additional or more important predictive power. The model does not seem very robust - a range of around 70k in predictions on just 10 iterations would be unacceptable to a prospective seller. Finally, urban data may apply to rural settings as there are less neigbourhoods, prices are generally lower, and properties illiquid so not many transactions so price discovery may not follow the same pattern as in a city. Thus the model's use should be restricted to an urban setting, additional features should be added to control the variance of predictions, and ideally updated data would give a better price estimate that may come closer to a real transaction as of today." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb new file mode 100644 index 0000000..d16910a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/Pandas multilevel column slice by integer example-checkpoint.ipynb @@ -0,0 +1,187 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd, numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],\n", + " ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]\n", + "tuples = list(zip(*arrays))\n", + "index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])\n", + "df = pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first bar baz foo \n", + "second one two one two one two\n", + "first second \n", + "bar one -0.318200 0.178610 0.028051 1.686810 -0.894416 0.288034\n", + " two 2.550545 -0.149372 -0.219050 -0.655504 2.841000 -0.284396\n", + "baz one 0.011945 1.588152 -0.024538 -0.488825 0.014111 1.452298\n", + " two -0.756507 0.798701 -0.057006 1.253656 -0.674178 -0.207080\n", + "foo one -0.768974 -1.127536 0.358538 -1.231684 -0.149561 -1.597307\n", + " two 0.088282 1.052544 0.518868 -1.152717 0.211445 -0.269728\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first bar\n", + "second one\n", + "first second \n", + "bar one -0.318200\n", + " two 2.550545\n", + "baz one 0.011945\n", + " two -0.756507\n", + "foo one -0.768974\n", + " two 0.088282\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
firstbar
secondonetwo
firstsecond
barone-0.3182000.178610
two2.550545-0.149372
bazone0.0119451.588152
two-0.7565070.798701
fooone-0.768974-1.127536
two0.0882821.052544
\n", + "
" + ], + "text/plain": [ + "first bar \n", + "second one two\n", + "first second \n", + "bar one -0.318200 0.178610\n", + " two 2.550545 -0.149372\n", + "baz one 0.011945 1.588152\n", + " two -0.756507 0.798701\n", + "foo one -0.768974 -1.127536\n", + " two 0.088282 1.052544" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(df.loc[:,(slice(\"bar\"), slice('one'))])\n", + "\n", + "df.loc[:,slice(df.columns.levels[0][0])]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": {}, + "toc_section_display": "block", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb new file mode 100644 index 0000000..b0f4034 --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/aws_v1 - fx spot prediction notebook-checkpoint.ipynb @@ -0,0 +1,2140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# get data from mongodb\n", + "import io\n", + "import pymongo\n", + "from pymongo import MongoClient\n", + "import datetime\n", + "\n", + "#client = MongoClient(connect=False) #Makes it \"good enough\" for our multi-threaded use case. \n", + "\n", + "# mng_client = pymongo.MongoClient('localhost', 27017)\n", + "# mng_db = mng_client['fx_prediction'] # Replace mongo db name\n", + "# collection_name = 'fx_tick_data_typed' # Replace mongo db table name\n", + "# db = mng_db[collection_name]\n", + "\n", + "#print(db.count())\n", + "#min_date = datetime.datetime(2016, 1, 1, 0)\n", + "#max_date = datetime.datetime(2016, 12, 1, 0)\n", + "min_date = \"1Jan16\"\n", + "max_date = \"1Feb16\"\n", + "\n", + "#https://bitbucket.org/djcbeach/monary/wiki/Home use to speed up" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1Jan16\n", + "1Feb16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# # each of these is a stage in the pipeline - match, project, group, project.\n", + "\n", + "# cursor_group = db.aggregate(\n", + "# [\n", + " \n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"bo_spread\": {\"$subtract\": [\"$ask\", \"$bid\"]}\n", + "# , \"bid\": 1\n", + "# , \"ask\": 1\n", + "# , \"date\": 1\n", + " \n", + "# }\n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# \"dateAgg\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"dateSample\": {\"$first\": \"$date\"},\n", + "# \"high\": { \"$max\": \"$bid\"},\n", + "# \"low\": { \"$min\": \"$bid\"},\n", + "# \"open\": { \"$first\": \"$bid\"},\n", + "# \"close\": { \"$last\": \"$bid\"},\n", + "# \"avg_bo_spread\": { \"$avg\": \"$bo_spread\" },\n", + "# \"max_bo_spread\": { \"$max\": \"$bo_spread\" },\n", + "# \"min_bo_spread\": { \"$min\": \"$bo_spread\" },\n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"date\": \"$dateSample\"\n", + "# , \"high\": 1\n", + "# , \"low\": 1\n", + "# , \"open\": 1\n", + "# , \"close\": 1\n", + "# , \"avg_bo_spread\": 1\n", + "# , \"max_bo_spread\": 1\n", + "# , \"min_bo_spread\": 1\n", + "# , \"count\": 1\n", + "# }\n", + "# }\n", + " \n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# cursor_group = db.aggregate(\n", + "# [\n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# #\"month\": {\"$month\": \"$date\"}, \n", + "# #\"day\" : {\"$dayOfMonth\": \"$date\"}, \n", + "# #\"year\" : {\"$year\": \"$date\"},\n", + "# \"time\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# #\"date\": { \"$dateFromParts\": {\"year\": \"$date\", \"month\": \"$date\", \"day\": \"$date\", \"hour\": \"$date\", \"minute\": \"$date\"}}\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"high\": { \"$max\": \"$date\"},\n", + "# \"low\": { \"$min\": \"$date\"}, \n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# }\n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdaydatebid_priceask_pricebo_spreadhighlowavg_bo_spreadcountopenclose
020161317102016-01-03 17:00:15.4931.087011.087510.000501.087231.086610.0001651421.087011.08701
120161317102016-01-03 17:00:38.9931.087031.087490.000461.087231.086610.0001651421.087011.08703
220161317102016-01-03 17:00:41.4931.087131.087490.000361.087231.086610.0001651421.087011.08713
320161317102016-01-03 17:00:41.9931.087131.087450.000321.087231.086610.0001651421.087011.08713
420161317102016-01-03 17:00:44.7431.087031.087450.000421.087231.086610.0001651421.087011.08703
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday date bid_price \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:15.493 1.08701 \n", + "1 2016 1 3 17 1 0 2016-01-03 17:00:38.993 1.08703 \n", + "2 2016 1 3 17 1 0 2016-01-03 17:00:41.493 1.08713 \n", + "3 2016 1 3 17 1 0 2016-01-03 17:00:41.993 1.08713 \n", + "4 2016 1 3 17 1 0 2016-01-03 17:00:44.743 1.08703 \n", + "\n", + " ask_price bo_spread high low avg_bo_spread count open \\\n", + "0 1.08751 0.00050 1.08723 1.08661 0.000165 142 1.08701 \n", + "1 1.08749 0.00046 1.08723 1.08661 0.000165 142 1.08701 \n", + "2 1.08749 0.00036 1.08723 1.08661 0.000165 142 1.08701 \n", + "3 1.08745 0.00032 1.08723 1.08661 0.000165 142 1.08701 \n", + "4 1.08745 0.00042 1.08723 1.08661 0.000165 142 1.08701 \n", + "\n", + " close \n", + "0 1.08701 \n", + "1 1.08703 \n", + "2 1.08713 \n", + "3 1.08713 \n", + "4 1.08703 " + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "str_query = \"\"\"\n", + "\n", + "\n", + "select\n", + " --distinct\n", + " const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15\n", + " , const.snaptime 'date'\n", + " , const.bid_price\n", + " , const.ask_price\n", + " , const.ask_price - const.bid_price 'bo_spread'\n", + "\t, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high'\n", + "\t, min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low'\n", + " , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread'\n", + "\t--, min(const.snaptime) 'open_datetime'\n", + "\t--, max(const.snaptime) 'close_datetime'\n", + "\t, count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'count'\n", + " , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'open'\n", + " , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'close'\n", + "from dbo.fx_spot_data_features const\n", + "where\n", + " const.snaptime >= '\"\"\"+min_date+\"\"\"'\n", + " and const.snaptime <= '\"\"\"+max_date+\"\"\"'\n", + " \n", + "--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "--order by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "order by const.snaptime\n", + "\n", + "\"\"\"\n", + "res = getQueryDataframe(str_query)\n", + "print(res.count())\n", + "res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'date'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2441\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#cursor = list(cursor_group)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdf_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'date'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/data/eurusd_features.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mset_index\u001b[0;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdrop\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1962\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1963\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1964\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1965\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1966\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1969\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1970\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1971\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1972\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1973\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1643\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1644\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1645\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1646\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1647\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3589\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3590\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3591\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3592\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2442\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2444\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2445\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2446\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'" + ] + } + ], + "source": [ + "#cursor = list(cursor_group)\n", + "df_res = pd.DataFrame(res)\n", + "df_res.set_index('date', inplace=True)\n", + "#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "df_res.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load kaggle reference dataset for comparison\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open', 'Close' : 'close', \n", + " 'High' : 'high', 'Low' : 'low', 'Close' : 'close', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df_res = df_kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAIUCAYAAAAnl0eaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QHXd95/v3J5INJjyYYMGCJF8rRODICWadwTYPN9hL\nANnAKrBkyyYbFi+sYgrzcLeSiza7CeRyqy4PYZclGBSFFcY3KbwEHKKAsCEEwi0cZyXA2JZBMJGN\nLcEG8RADdoIj/L1/nBYcH8+MRppzuvuM3q+qLp/+9e90f/vMb8YfdffpTlUhSZLUhZ/ougBJknT8\nMohIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSepML4NIku1JvpHk5nmWJ8nbk8wmuTHJWW3XKEmS\nlq6XQQS4Ati4wPILgPXNtBl4Vws1SZKkMetlEKmqTwPfXqDLJuDKGrgeODnJo9upTpIkjUsvg8gi\nrAbuGJrf37TdT5LNSXYn2X3GGWcU4OQ0OnXCsem0yKkTjk+nRUxjMa1BZNGqaltVzVTVzEknndR1\nOdKPODbVZ45PtWVag8gBYO3Q/JqmTZIkTZFpDSI7gBc33545F7izqr7edVGSJOnorOy6gLkkeR9w\nHnBKkv3A64ATAKpqK7ATuBCYBe4GLummUkmStBS9DCJVdfERlhfwipbKkSRJEzKtp2YkSdIy0Msj\nIm07bctHjqr/bW98zoQqkSTp+OIREUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nBhFJktQZg4gkSeqMQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy\n4AJgA3Bxkg0j3V4B3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3g\nULtlSpKkpepjEFkN3DE0v79pG/YO4GeBrwE3Aa+uqnvnWlmSzUl2J9l98ODBSdQrHRPHpvrM8am2\n9DGILMazgRuAxwBPBN6R5KFzdayqbVU1U1Uzq1atarNGaUGOTfWZ41Nt6WMQOQCsHZpf07QNuwS4\nugZmgVuB01uqT5IkjUkfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5Jc\nBlwLrAC2V9WeJJc2y7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj\n1cdTM5Ik6ThhEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqzMpJrTjJ7wM13/KqetWkti1JkqbDJI+I\n7AY+CzwQOAv4SjM9EThxgtuVJElTYmJHRKrqvQBJXg48raoONfNbgf9vUtuVJEnTo41rRB4OPHRo\n/sFNmyRJOs5N7IjIkDcCn0/ySSDALwKvb2G7kiSp5yZ+RKSq3gOcA/wpcDXw5MOnbeaTZGOSvUlm\nk2yZp895SW5IsifJX42/ckmSNGltHBEB+AHwdQYXrj4uyeOq6tNzdUyyArgceCawH9iVZEdV3TLU\n52TgncDGqro9ySMnvgeSJGnsJh5EkrwMeDWwBrgBOBf4a+BfzPOWs4HZqtrXvP8qYBNwy1CfFwFX\nV9XtAFX1jclUL0mSJqmNi1VfDTwJ+GpVnQ/8c+DvF+i/GrhjaH5/0zbsccDDk3wqyWeTvHi+lSXZ\nnGR3kt0HDx48tj2QJsCxqT5zfKotbQSRf6yqfwRI8oCq+hLw+CWucyXwC8BzgGcDv53kcXN1rKpt\nVTVTVTOrVq1a4mal8XFsqs8cn2pLG9eI7G+u6fgQ8PEk3wG+ukD/A8Daofk1Tdt91gl8q6ruAu5K\n8mngTODL4ytbkiRN2sSDSFU9v3n5+uYrvA8DrlngLbuA9UnWMQggFzG4JmTYnwHvSLKSwV1azwH+\n61gLlyRJE9fKt2aSPA1YX1XvSbKKwTUft87Vt6oOJbkMuBZYAWyvqj1JLm2Wb62qLya5BrgRuBd4\nd1Xd3Ma+SJKk8WnjWzOvA2YYXBfyHuAE4I+Ap873nqraCewcads6Mv8W4C3jrleSJLWnjYtVnw/8\nS+AugKr6GvCQFrYrSZJ6ro0gck9VFVAASX6yhW1KkqQp0EYQeX+SPwBOTvLvgb8A/rCF7UqSpJ5r\n41szv5fkmcB3GVwn8jtV9fFJb1eSJPXfRINI89yYv2juqGr4kCRJ9zHRUzNV9UPg3iQPm+R2JEnS\ndGrjPiLfB25K8nGab84AVNWrWti2JEnqsTaCyNXNJEmSdB9tXKz63iQnAqcz+Arv3qq6Z9LblSRJ\n/dfGnVUvBP4A+FsgwLokv15VH530tiVJUr+1cWrmvwDnV9UsQJLHAh8BDCKSJB3n2rih2fcOh5DG\nPuB7LWxXkiT1XBtHRHYn2Qm8n8E1Ir8C7EryAoCq8kJWSZKOU20EkQcCfwc8vZk/CJwEPI9BMDGI\nSJJ0nGrjWzOXTHobkiRpOk38GpEkb07y0CQnJPlEkoNJ/s2ktytJkvqvjYtVn1VV3wWeC9wG/Azw\nmy1sV5Ik9VwbQeTw6Z/nAH9SVXe2sE1JkjQF2rhY9cNJvgT8A/DyJKuAf2xhu5IkqecmfkSkqrYA\nTwFmquqfgLuBTYeXJ3nmpGuQJEn91MapGarq21X1w+b1XVX1v4YWv2m0f5KNSfYmmU2yZb71JnlS\nkkNJXjiBsiVJ0oS1EkSOIPeZSVYAlwMXABuAi5NsuN+bBv3eBHysjSIlSdL49SGI1Mj82cBsVe1r\nntJ7FUOncoa8Evgg8I0J1ydJkiakD0Fk1GrgjqH5/U3bjyRZDTwfeFeLdUmSpDHrQxC57Rje8zbg\ntVV175E6JtmcZHeS3QcPHjyGTUmT4dhUnzk+1ZY27qx6QpJXJflAM70yyQmHl1fVC0becgBYOzS/\npmkbNgNcleQ24IXAO5P88lzbr6ptVTVTVTOrVq1a8v5I4+LYVJ85PtWWNu4j8i7gBOCdzfyvNW0v\nm6f/LmB9knUMAshFwIuGO1TVusOvk1wBfLiqPjTesiVJ0qS1EUSeVFVnDs3/ZZIvzNe5qg4luQy4\nFlgBbK+qPUkubZZvnWy5kiSpLW0EkR8meWxV/S1Akp8GfrjQG6pqJ7BzpG3OAFJVLxlTnZIkqWVt\nBJHfBD6ZZF8zfxpwSQvblSRJPdfGt2Y+A/wBcC/w7eb1X7ewXUmS1HNtBJErgXXAG4DfB34a+H9b\n2K4kSeq5Nk7N/FxVDd+i/ZNJbmlhu5IkqefaOCLyuSTnHp5Jcg6wu4XtSpKknpvYEZEkNzF4jswJ\nwHVJbm/m/zfgS5PariRJmh6TPDXz3AmuW5IkLQMTCyJV9dVJrVuSJC0PfXjonSRJOk4ZRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqTC+DSJKNSfYmmU2yZY7lv5rkxiQ3JbkuyZld1ClJkpamd0EkyQrgcuACYANwcZINI91u\nBZ5eVT8PvAHY1m6VkiRpHHoXRICzgdmq2ldV9wBXAZuGO1TVdVX1nWb2emBNyzVKkqQx6GMQWQ3c\nMTS/v2mbz0uBj863MMnmJLuT7D548OCYSpSWzrGpPnN8qi19DCKLluR8BkHktfP1qaptVTVTVTOr\nVq1qrzjpCByb6jPHp9qysusC5nAAWDs0v6Zpu48kTwDeDVxQVd9qqTZJkjRGfTwisgtYn2RdkhOB\ni4Adwx2SnApcDfxaVX25gxolSdIY9O6ISFUdSnIZcC2wAtheVXuSXNos3wr8DvAI4J1JAA5V1UxX\nNUuSpGPTuyACUFU7gZ0jbVuHXr8MeFnbdUmSpPHq46kZSZJ0nDCISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzvXzoXd+dtuUjR9X/\ntjc+Z0KVSJI03TwiIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqTC+DSJKN\nSfYmmU2yZY7lSfL2ZvmNSc7qok5JkrQ0vQsiSVYAlwMXABuAi5NsGOl2AbC+mTYD72q1SEmSNBa9\nCyLA2cBsVe2rqnuAq4BNI302AVfWwPXAyUke3XahkiRpafp4i/fVwB1D8/uBcxbRZzXw9dGVJdnM\n4KgJwPeT7G1enwJ8cxwFH0neNNHVt7YfE9blflxTVRvb3ugCY3PYcvn5jlqO+zWpferD+PxBkpvb\nrmFEX8aMdfzYzVX1c0tdSR+DyFhV1TZg22h7kt1VNdNBSWPlfkyv+cbmsOX6uSzH/Vpu+zQ8Pvuw\nb32owTruX8M41tPHUzMHgLVD82uatqPtI0mSeq6PQWQXsD7JuiQnAhcBO0b67ABe3Hx75lzgzqq6\n32kZSZLUb707NVNVh5JcBlwLrAC2V9WeJJc2y7cCO4ELgVngbuCSY9jUgofEp4j7sbwt189lOe7X\nctynw/qwb32oAaxj2FhqSFWNYz2SJElHrY+nZiRJ0nHCICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzvQyiCTZnuQbSW6eZ3mSvD3J\nbJIbk5zVdo2SJGnpehlEgCuAjQssvwBY30ybgXe1UJMkSRqzXgaRqvo08O0FumwCrqyB64GTkzy6\nneokSdK49DKILMJq4I6h+f1N2/0k2Zxkd5LdZ5xxRgFOTqNTJxybToucOuH4dFrENBbTGkQWraq2\nVdVMVc2cdNJJXZcj/YhjU33m+FRbpjWIHADWDs2vadokSdIUmdYgsgN4cfPtmXOBO6vq610XJUmS\njs7KrguYS5L3AecBpyTZD7wOOAGgqrYCO4ELgVngbuCSbiqVJElL0csgUlUXH2F5Aa9oqRxJkjQh\n03pqRpIkLQMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSeqM\nQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy4AJgA3Bxkg0j3V4B\n3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3gULtlSpKkpepjEFkN\n3DE0v79pG/YO4GeBrwE3Aa+uqnvbKU+SJI1LH4PIYjwbuAF4DPBE4B1JHjpXxySbk+xOsvvgwYNt\n1igtyLGpPnN8qi19DCIHgLVD82uatmGXAFfXwCxwK3D6XCurqm1VNVNVM6tWrZpIwdKxcGyqzxyf\naksfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5JcBlwLrAC2V9WeJJc2\ny7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj1cdTM5Ik6ThhEJEk\nSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nvQwiSTYm2ZtkNsmWefqcl+SGJHuS/FXbNUqSpKVb2XUBo5KsAC4HngnsB3Yl2VFVtwz1ORl4J7Cx\nqm5P8shuqpUkSUvRxyMiZwOzVbWvqu4BrgI2jfR5EXB1Vd0OUFXfaLlGSZI0Bn0MIquBO4bm9zdt\nwx4HPDzJp5J8NsmL51tZks1JdifZffDgwQmUKx0bx6b6zPGptvQxiCzGSuAXgOcAzwZ+O8nj5upY\nVduqaqaqZlatWtVmjdKCHJvqM8en2tK7a0SAA8Daofk1Tduw/cC3quou4K4knwbOBL7cTomSJGkc\n+nhEZBewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/hiy3VKkqQl6t0Rkao6lOQy4FpgBbC9qvYkubRZ\nvrWqvpjkGuBG4F7g3VV1c3dVS5KkY9G7IAJQVTuBnSNtW0fm3wK8pc26JEnSeE301EySFUk+Oclt\nSJKk6TXRIFJVPwTuTfKwSW5HkiRNpzZOzXwfuCnJx4G7DjdW1ata2LYkSeqxNoLI1c0kSZJ0HxMP\nIlX13klvQ5IkTaeJB5EktwI12l5VPz3pbUuSpH5r49TMzNDrBwK/AvxUC9uVJEk9N/E7q1bVt4am\nA1X1NgbPiJEkSce5Nk7NnDU0+xMMjpD08kZqkiSpXW0EgrcOvT4E3Ab86xa2K0mSeq6Nb82cP+lt\nSJKk6TTxa0SSPCzJf0myu5ne6p1WJUkStBBEgO3A9xicjvnXwHeB97SwXUmS1HNtXCPy2Kr6V0Pz\nv5vkhha2K0mSeq6NIyL/kORph2eSPBX4hxa2K0mSeq6NIyIvB947dF3Id4B/28J2JUlSz7URRL4I\nvBl4LHAycCfwy8CNLWxbkiT1WBtB5M+Avwc+BxxoYXuSJGlKtBFE1lTVxha2I0mSpkwbF6tel+Tn\nW9iOJEmaMhMLIkluSnIj8DTgc0n2JrlxqH2h925s+s8m2bJAvyclOZTkheOuX5IkTd4kT80891je\nlGQFcDnwTGA/sCvJjqq6ZY5+bwI+ttRCJUlSNyYWRKrqq8f41rOB2araB5DkKmATcMtIv1cCHwSe\ndMxFSpKkTrVxjcjRWg3cMTS/v2n7kSSrgecD7zrSypJsPvycm4MHD461UGkpHJvqM8en2tLHILIY\nbwNeW1X3HqljVW2rqpmqmlm1alULpUmL49hUnzk+1ZY2vr57tA4Aa4fm13D/+4/MAFclATgFuDDJ\noar6UDslSpKkcehjENkFrE+yjkEAuQh40XCHqlp3+HWSK4APG0IkSZo+vQsiVXUoyWXAtcAKYHtV\n7UlyabN8a6cFSpKkseldEAGoqp3AzpG2OQNIVb2kjZokSdL4TevFqpIkaRkwiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0y\nm2TLHMt/NcmNSW5Kcl2SM7uoU5IkLU3vgkiSFcDlwAXABuDiJBtGut0KPL2qfh54A7Ct3SolSdI4\n9C6IAGcDs1W1r6ruAa4CNg13qKrrquo7zez1wJqWa5QkSWPQxyCyGrhjaH5/0zaflwIfnW9hks1J\ndifZffDgwTGVKC2dY1N95vhUW1Z2XcBSJDmfQRB52nx9qmobzambmZmZaqk06YimdWyetuUjR9X/\ntjc+Z0KVaJKmdXxq+vQxiBwA1g7Nr2na7iPJE4B3AxdU1bdaqk2SJI1RH0/N7ALWJ1mX5ETgImDH\ncIckpwJXA79WVV/uoEZJkjQGvTsiUlWHklwGXAusALZX1Z4klzbLtwK/AzwCeGcSgENVNdNVzZIk\n6dj0LogAVNVOYOdI29ah1y8DXtZ2XZIkabx6GUQkLR9e3CppIX28RkSSJB0nDCKSJKkzBhFJktQZ\ng4gkSeqMF6tKy4wXh0qaJh4RkSRJnTGISJKkznhqRuqxoz3NcrzydJQ0vQwi0nHOsCOpSwYRSb1i\nMJKOL14jIkmSOuMREUkas2M5quN1KzpeGUQk6Qg8XSRNjqdmJElSZwwikiSpMwYRSZLUGYOIJEnq\njBerSjruePGp1B8eEZEkSZ3pZRBJsjHJ3iSzSbbMsTxJ3t4svzHJWV3UKUmSlqZ3QSTJCuBy4AJg\nA3Bxkg0j3S4A1jfTZuBdrRYpSZLGondBBDgbmK2qfVV1D3AVsGmkzybgyhq4Hjg5yaPbLlSSJC1N\nHy9WXQ3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+lu6aqNra90QXG5rDl8vMd\ntRz3a0n7lDfNu6gP4/MHSW5uu4YRfRkz1vFjN1fVzy11JX0MImNVVduAbaPtSXZX1UwHJY2V+zG9\n5hubw5br57Ic92u57dPw+OzDvvWhBuu4fw3jWE8fT80cANYOza9p2o62jyRJ6rk+BpFdwPok65Kc\nCFwE7BjpswN4cfPtmXOBO6vqfqdlJElSv/Xu1ExVHUpyGXAtsALYXlV7klzaLN8K7AQuBGaBu4FL\njmFTCx4SnyLux/K2XD+X5bhfy3GfDuvDvvWhBrCOYWOpIVU1jvVIkiQdtT6empEkSccJg4gkSeqM\nQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmS\nOtPLIJJke5JvJLl5nuVJ8vYks0luTHJW2zVKkqSl62UQAa4ANi6w/AJgfTNtBt7VQk2SJGnMehlE\nqurTwLcX6LIJuLIGrgdOTvLodqqTJEnj0ssgsgirgTuG5vc3bfeTZHOS3Ul2n3HGGQU4OY1OnXBs\nOi1y6oTj02kR01hMaxBZtKraVlUzVTVz0kkndV2O9COOTfWZ41NtmdYgcgBYOzS/pmmTJElTZFqD\nyA7gxc23Z84F7qyqr3ddlCRJOjoruy5gLkneB5wHnJJkP/A64ASAqtoK7AQuBGaBu4FLuqlUkiQt\nRS+DSFVdfITlBbyipXIkSdKETOupGUmStAwYRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYg\nIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmd\nMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0ym2TLHMsfluTPk3whyZ4kl3RRpyRJWpre\nBZEkK4DLgQuADcDFSTaMdHsFcEtVnQmcB7w1yYmtFipJkpasd0EEOBuYrap9VXUPcBWwaaRPAQ9J\nEuDBwLeBQ+2WKUmSlqqPQWQ1cMfQ/P6mbdg7gJ8FvgbcBLy6qu6da2VJNifZnWT3wYMHJ1GvdEwc\nm+ozx6fa0scgshjPBm4AHgM8EXhHkofO1bGqtlXVTFXNrFq1qs0apQU5NtVnjk+1pY9B5ACwdmh+\nTdM27BLg6hqYBW4FTm+pPkmSNCZ9DCK7gPVJ1jUXoF4E7BjpczvwDIAkjwIeD+xrtUpJkrRkK7su\nYFRVHUpyGXAtsALYXlV7klzaLN8KvAG4IslNQIDXVtU3OytakiQdk94FEYCq2gnsHGnbOvT6a8Cz\n2q5LkiSNVx9PzUiSpOOEQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmD\niCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1\nxiAiSZI6YxCRJEmdMYhIkqTO9DKIJNmYZG+S2SRb5ulzXpIbkuxJ8ldt1yhJkpZuZdcFjEqyArgc\neCawH9iVZEdV3TLU52TgncDGqro9ySO7qVaSJC1FH4+InA3MVtW+qroHuArYNNLnRcDVVXU7QFV9\no+UaJUnSGEw8iCR5UJLfTvKHzfz6JM9d4C2rgTuG5vc3bcMeBzw8yaeSfDbJixfY/uYku5PsPnjw\n4LHuhjR2jk31meNTbWnjiMh7gB8AT27mDwD/9xLXuRL4BeA5wLOB307yuLk6VtW2qpqpqplVq1Yt\ncbPS+Dg21WeOT7WljSDy2Kp6M/BPAFV1N5AF+h8A1g7Nr2nahu0Hrq2qu6rqm8CngTPHV7IkSWpD\nG0HkniQnAQWQ5LEMjpDMZxewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/ji+EuXJEmT1Ma3Zl4PXAOs\nTfLHwFOBS+brXFWHklwGXAusALZX1Z4klzbLt1bVF5NcA9wI3Au8u6punvB+SJKkMZt4EKmqjyX5\nLHAug1Myr25Opyz0np3AzpG2rSPzbwHeMuZyJUlSi9r41swnqupbVfWRqvpwVX0zyScmvV1JktR/\nEzsikuSBwIOAU5I8nB9foPpQ7v91XEmSdBya5KmZXwdeAzwG+NxQ+3eBd0xwu5IkaUpMLIhU1X8D\n/luSV1bV709qO5IkaXq18a2ZO+e682lVXdnCtiVJUo+1EUSeNPT6gcAzGJyqMYhIknSca+Pru68c\nnm+enHvVpLcrSZL6r4un794FrOtgu5IkqWcmfkQkyZ/T3N6dQfDZALx/0tuVJEn918Y1Ir839PoQ\n8NWq2t/CdiVJUs+1cY3IX016G5IkaTq1cYv3FyT5SpI7k3w3yfeSfHfS25UkSf3XxqmZNwPPq6ov\ntrAtSZI0Rdr41szfGUIkSdJc2jgisjvJ/wA+BPzgcGNVXd3CtiVJUo+1EUQeCtwNPGuorQCDiCRJ\nx7k2vjVzyaS3IUmSptPEgkiS/7Oq3pzk9/nxDc1+pKpeNaltS5Kk6TDJIyKHL1DdzRxBRJIkaWJB\npKr+vHl5C/BbwGlD2yt8+q4kSce9Nr6++0fAe4AXAM9tpuct9IYkG5PsTTKbZMsC/Z6U5FCSF461\nYkmS1Io2vjVzsKp2LLZzkhXA5cAzgf3AriQ7quqWOfq9CfjYOIuVJEntaSOIvC7Ju4FPsLj7iJwN\nzFbVPoAkVwGbGJziGfZK4IPAk8ZesSRJakUbQeQS4HTgBODepm2h+4isBu4Ymt8PnDPcIclq4PnA\n+RwhiCTZDGwGOPXUU4+ydGlyHJvqM8en2tJGEHlSVT1+zOt8G/Daqro3yYIdq2obsA1gZmbGb++o\nNxyb6jNOoAD0AAANjklEQVTHp9rSRhC5LsmG0Ws8FnAAWDs0v6ZpGzYDXNWEkFOAC5McqqoPLbla\nSZLUmjaCyLnADUluZXCNSICqqifM038XsD7JOgYB5CLgRcMdqmrd4ddJrgA+bAiRJGn6tBFENh5N\n56o6lOQy4FpgBbC9qvYkubRZvnUCNUqSpA608ayZrx7De3YCO0fa5gwgVfWSY6tMkiR1rY0bmkmS\nJM3JICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTO\n9DKIJNmYZG+S2SRb5lj+q0luTHJTkuuSnNlFnZIkaWl6F0SSrAAuBy4ANgAXJ9kw0u1W4OlV9fPA\nG4Bt7VYpSZLGoXdBBDgbmK2qfVV1D3AVsGm4Q1VdV1XfaWavB9a0XKMkSRqDPgaR1cAdQ/P7m7b5\nvBT46EQrkiRJE7Gy6wKWIsn5DILI0xbosxnYDHDqqae2VJl0ZI5N9ZnjU23p4xGRA8Daofk1Tdt9\nJHkC8G5gU1V9a76VVdW2qpqpqplVq1aNvVjpWDk21WeOT7Wlj0FkF7A+ybokJwIXATuGOyQ5Fbga\n+LWq+nIHNUqSpDHo3amZqjqU5DLgWmAFsL2q9iS5tFm+Ffgd4BHAO5MAHKqqma5qliRJx6Z3QQSg\nqnYCO0fatg69fhnwsrbrkiRJ49XHUzOSJOk4YRCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZ\ng4gkSeqMQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIk\ndcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpM70MIkk2JtmbZDbJljmWJ8nbm+U3Jjmrizol\nSdLS9C6IJFkBXA5cAGwALk6yYaTbBcD6ZtoMvKvVIiVJ0lj0LogAZwOzVbWvqu4BrgI2jfTZBFxZ\nA9cDJyd5dNuFSpKkpVnZdQFzWA3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+l\nu6aqNra90QXG5rDl8vMdtRz3a1L71Ifx+YMkN7ddw4i+jBnr+LGbq+rnlrqSPgaRsaqqbcC20fYk\nu6tqpoOSxsr9mF7zjc1hy/VzWY77tdz2aXh89mHf+lCDddy/hnGsp4+nZg4Aa4fm1zRtR9tHkiT1\nXB+DyC5gfZJ1SU4ELgJ2jPTZAby4+fbMucCdVXW/0zKSJKnfendqpqoOJbkMuBZYAWyvqj1JLm2W\nbwV2AhcCs8DdwCXHsKkFD4lPEfdjeVuun8ty3K/luE+H9WHf+lADWMewsdSQqhrHeiRJko5aH0/N\nSJKk44RBRJIkdWaqg8hSbgU/33uT/FSSjyf5SvPfhw8t+49N/71Jnj1t+5DkmUk+m+Sm5r//Yhz7\n0PZ+DC0/Ncn3k/zGuPajT470mU6DJNuTfGP4HhRH+rn2XZK1ST6Z5JYke5K8ummfuv2axO/thOr4\n1Wb7NyW5LsmZQ8tua9pvyBK+TrqIGs5LcmeznRuS/M5i3zvmOn5zqIabk/wwyU81y8b1Wdzv93Zk\n+XjHRVVN5cTgQta/BX4aOBH4ArBhpM+FwEeBAOcCf3Ok9wJvBrY0r7cAb2peb2j6PQBY17x/xZTt\nwz8HHtO8/jngwDT+LIbW+QHgT4Df6Ho8djG+p2ECfhE4i8GNjw63Lfhz7fsEPBo4q3n9EODLzd+H\nqdqvSf3eTqiOpwAPb15fcLiOZv424JQWPovzgA8fy3vHWcdI/+cBfznOz6JZz/1+byc5Lqb5iMhS\nbgW/0Hs3Ae9tXr8X+OWh9quq6gdVdSuDb+ycPU37UFWfr6qvNe17gJOSPGCJ+9D6fgAk+WXg1mY/\nlqPFfKa9V1WfBr490jzvz3UaVNXXq+pzzevvAV9kcGfnaduvSf3ejr2Oqrquqr7TzF7P4N5R47SU\n/Wn1sxhxMfC+Y9zWvOb5vR021nExzUFkvtu8L6bPQu99VP34niT/C3jUUWzvaLW9D8P+FfC5qvrB\nsZW+qBoX0+eo9yPJg4HXAr87htr7ahLjrS8WMz6nQpLTGBxp/Bumb78m9Xs7iTqGvZTBv8YPK+Av\nmtPNm+d5z7hqeEpzKuKjSc44yveOsw6SPAjYCHxwqHkcn8VijHVc9O4+In1SVZVkqr/fPNc+NL9A\nbwKe1U1VR29kP14P/Neq+n6SDqvSUk3z71gTiD8IvKaqvjs8Fqd5v/osyfkMgsjThpqfVlUHkjwS\n+HiSLzX/oh+3zwGnNn93LgQ+xOAJ8F15HvCZqho+ctHWZzFW03xEZCm3gl/ovX/XHGKi+e83jmJ7\nR6vtfSDJGuBPgRdX1d8usf4j1biYPseyH+cAb05yG/Aa4LcyuAnecrKcH2Mw7/icFklOYBBC/riq\nrm6ap22/JvV7O4k6SPIE4N3Apqr61uH2qjrQ/PcbDP62Hcsp8yPWUFXfrarvN693AickOWWx9Y+r\njiEXMXJaZkyfxWKMd1ws9aKWriYGR3P2Mbhw9PBFMWeM9HkO972g5n8e6b3AW7jvBWdvbl6fwX0v\nVt3H0i9WbXsfTm76vWCafxYj6309y/Ni1SN+ptMyAadx34tVj/hz7fPUjOErgbeNtE/Vfk3q93ZC\ndZzK4Lq8p4y0/yTwkKHX1wEbJ1TDP+PHNwE9G7i9+Vxa/Syafg9jcA3HT477sxha331+byc5Ljr/\nZVjKxODK3S8zuEr3PzVtlwKXNq8DXN4svwmYWei9TfsjgE8AXwH+AvipoWX/qem/F7hg2vYB+M/A\nXcANQ9Mjp20/Rrb7epZhEFnoc5mmicG/2L4O/BOD88UvXczPtc8Tg9MCBdw49Ht04TTu1yR+bydU\nx7uB7wx93rub9p9m8D+7LzC4cP2Y61hEDZc12/gCgwtmn7LQeydVRzP/EgZfnhh+3zg/i7l+byc2\nLrzFuyRJ6sw0XyMiSZKmnEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQktSLJafM9zVPqiyT/cilP\n0E3ymub261okg0gPTfsf7CQvSfKOruvQ8pfEx1RorKpqR1W9cQmreA1gEDkKBhHdh3/YNWErkvxh\nkj1JPpbkpCRPTHJ98zCxP03ycIAkn0oy07w+pbml/+GguyPJXzK4gZi0KM0/8r6U5IokX07yx0l+\nKclnknwlydnD/5Bq+r09yXVJ9iV5YdN+XpIPD633Hc37XgU8Bvhkkk82y56V5K+TfC7JnzTPKNIQ\ng0h/rWx+Sb6Y5ANJHpTkGUk+n+SmJNuTPGC+Nyd5Y5Jbmj/uv9e0XZFka5LdzS/hc5v2+/1hT/Kb\nSXY17//dofV+qHmy457hpzsmuaRZ5/8EnjqpD0VTbz1weVWdAfw9g6dAXwm8tqqewOAuja9bxHrO\nAl5YVU+fWKVarn4GeCtwejO9iMHdcn8D+K05+j+6Wf5cYMEjJVX1duBrwPlVdX7zLJr/DPxSVZ0F\n7Ab+w5j2Y9nwX7/99XjgpVX1mSTbGQzeXweeUVVfTnIl8HLgbaNvTPII4PnA6VVVSU4eWnwag+ck\nPJZBav+Zpv0s4AlV9e0kz2LwP4yzGdzKd0eSX6zBUxz/XdPnJGBXkg8yeKbA7wK/ANwJfBL4/Fg/\nDS0Xt1bVDc3rzzIYhydX1V81be8F/mQR6/l43fepo9Ji3VpVNwEk2QN8ovk7eRODv4+jPlRV9wK3\nJHnUUW7rXGAD8Jnm6cwnAn99zJUvUx4R6a87quozzes/Ap7B4Bfoy03be4FfnOe9dwL/CPz3JC8A\n7h5a9v6qureqvsLg4USnN+3Df9if1UyfZ/Do69P58eOuX5Xk8LMW1jbt5wCfqqqDVXUP8D+Odae1\n7P1g6PUPGTyIcT6H+PHfqAeOLLtrnEXpuDI8Bu8dmr+Xuf9xPtw/zX+Hxybcf3wO9/94VT2xmTZU\n1UuPoeZlzSDSX6MPAfr7Rb+x6hCDoxkfYHA48ZoF1nt4fvgPe4D/Z+iX52eq6r8nOQ/4JeDJVXUm\ng6Ay3y+gtBh3At9J8r83878GHD46chuDo2wAL2y5LmkhXwU2JHlAc8T5GUPLvgc8pHl9PfDUw0ee\nk/xkkse1W2r/GUT669QkT25ev4jBucXThk6lDP/Bvo/mYqiHVdVO4P8Azhxa/CtJfiLJYxk8rXHv\nHKu4Fvh3hy+qSrI6ySMZPHr6O1V1d5LTGRx2BPgb4OlJHpHkBOBXjnGfdXz6t8BbktwIPBH4v5r2\n3wNenuTzwCldFSeNqqo7gPcDNzf/HT4VvQ24Jsknq+oggyflvq8Z33/Nj49Cq+HTd3soyWkMjmLs\nZvAvwlsYBI8nM/jjvBLYBby8qn4wx/sfDfwZg6MVAX6vqt6b5AoGp2xmgIcC/6GqPpzkJQwe43zZ\n0DpeDbysmf0+8G8YPA76QwzOo+5lcFj99VX1qSSXAP+RwZGbG4B7htcnSdJcDCLHkSaIfLiqPtB1\nLZIkgadmJElShzwiMuWS/CmwbqT5tVV1bRf1SJJ0NAwikiSpM56akSRJnTGISJKkzhhEJElSZwwi\nkiSpM/8/Q2Ep4tIP3CQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIUCAYAAADMoPyZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX24HWV99/v9zXrZOzsJxMTIoUAMb+KFApskYGl7+diq\ngLYPWLzQpEBCS4nl1IdYq1WfPtU8nPYSK20NrSeSKJCoTdCjVU5FAW0t5TQCCUReVCSE8BpJsjc7\nyd5rr5dZc58/1twr95p1z6yZ9bJnr72/n+uaa611v/5m9mTmzlq/73dEKQVCCCGEkKnGSTsAQggh\nhMxOuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGE\nEJIKXIQQQgghJBVm3SLk0ksvVQC4cQtuqcNzk1vEljo8P7mFbB0x6xYhhw4dSjsEQqzw3CTTGZ6f\npBfMukUIIYQQQqYHXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIamQTTsAEbkUwAYAGQBf\nVkrdHKgXv/69AAoArlVKPSoipwDYCuAE1GRCm5RSG7oR09JPfi9R+303/243piWEEEJmFal+EyIi\nGQBfBPAeAGcDWCUiZweavQfAmf62FsBGv9wF8OdKqbMB/DqAP7X0JYQQQsg0Je2fYy4EsEcptVcp\nVQawHcDlgTaXA9iqavwEwAIROVEptV8p9SgAKKWOAvg5gJOmMnhCCCGEtE/ai5CTALxofH4JzQuJ\nlm1EZCmA8wE8ZJtERNaKyE4R2Xnw4MEOQyake/DcJNMZnp+k16S9COkYEZkH4FsAPqKUOmJro5Ta\npJRaoZRasXjx4qkNkJAIeG6S6QzPT9Jr0l6EvAzgFOPzyX5ZrDYikkNtAfJ1pdS3exgnIYQQQrpM\n2ouQRwCcKSKnikgewEoAdwfa3A1gtdT4dQCHlVL7fdXMVwD8XCn191MbNiGEEEI6JVWJrlLKFZEP\nA7gXNYnu7Uqpp0TkT/z6LwG4BzV57h7UJLp/6Hf/TQDXAHhCRHb7Zf9TKXXPVO4DIYQQQtojdZ8Q\nf9FwT6DsS8Z7BeBPLf0eBCA9D5AQQgghPSHtn2MIIYQQMkvhIoQQQgghqcBFCCGEEEJSgYsQQggh\nhKQCFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgpchBBCCCEkFVJfhIjIpSLytIjsEZFP\nWupFRG716x8XkWVG3e0ickBEnpzaqAkhhBDSKakuQkQkA+CLAN4D4GwAq0Tk7ECz9wA409/WAtho\n1N0J4NLeR0oIIYSQbpP2NyEXAtijlNqrlCoD2A7g8kCbywFsVTV+AmCBiJwIAEqpBwCMTmnEhBBC\nCOkKaS9CTgLwovH5Jb8saZtIRGStiOwUkZ0HDx5sK1BCegHPTTKd4flJek3ai5ApQSm1SSm1Qim1\nYvHixWmHQ0gdnptkOsPzk/SatBchLwM4xfh8sl+WtA0hhBBC+oy0FyGPADhTRE4VkTyAlQDuDrS5\nG8BqXyXz6wAOK6X2T3WghBBCCOkuqS5ClFIugA8DuBfAzwF8Qyn1lIj8iYj8id/sHgB7AewBsBnA\n/6n7i8g2ADsAnCUiL4nIdVO6A4QQQghpm2zaASil7kFtoWGWfcl4rwD8aUjfVb2NjhBCCCG9Iu2f\nYwghhBAyS+EihBBCCCGpwEUIIYQQQlKhZU6IiPwjABVWr5S6sasREUIIIWRWEOebkJ0AdgEYBLAM\nwDP+Ngwg37vQCCGEEDKTaflNiFJqCwCIyA0AfsuX1UJEvgTgP3sbHiGEEEJmKklyQl4H4Djj8zy/\njBBCCCEkMUl8Qm4G8JiI/DsAAfB2AOt7ERQhhBBCZj6xFyFKqTtE5PsA3uYXfUIp9avehEUIIYSQ\nmU5SiW4JwH4ArwF4k4i8vfshEUIIIWQ2EPubEBH5YwDrUHuK7W4Av47ac1t+pzehEUIIIWQmk+Sb\nkHUALgDwvFLqtwGcD2CsJ1ERQgghZMaTZBFSVEoVAUBEBpRSvwBwVm/CIoQQQshMJ4k65iURWQDg\nOwDuF5HXADzfm7AIIYQQMtNJoo75ff/tel+mezyAH/QkKkIIIYTMeJJ8EwIR+S0AZ/py3cUATgLw\nXE8iI4QQQsiMJnZOiIh8BsAnAHzKL8oB+FovgiKEEELIzCdJYurvA7gMwAQAKKVeATC/F0ERQggh\nZOaTZBFSVkopAAoARGRub0IihBBCyGwgySLkGyJyG4AFInI9gB8C2NybsAghhBAy00mijrlFRN4N\n4Ahq/iCfVkrd37PICCGEEDKjibUIEZEMgB/6TqlceBBCCCGkY2ItQpRSVRHxROR4pdThXgdFCJne\nuK6HSbeKuQNZTJRczMlmAKCpLJtN+ozM3s2bVszETrXqwa16AICypxL/DWx/z0m3Wn/V5QOOIJvN\nwHGkYe5Cxeiby2CyUuvreh4qlng8T6FQqWIon0GhXMWcrIPJShVDA1kUSlU4gtoGoGT0H3AEHprL\nc47AU7U+AOApIJ9xkM06cF0Pnuc1tLftlwKQcRwU3SocEQzkHExWPAzlGvd3OpPEJ2QcwBMicj98\nhQwAKKVu7CQAEbkUwAYAGQBfVkrdHKgXv/69AAoArlVKPRqnLyEzhSQ30LhtOynzPK8hvuBnXea6\n02fe0UIZ67bvxiP7RnHB0oW449oVTUlxvYg5yd9kJiyAPE+h6FYBBWT9+6Drvy95yriJZyColc3J\nZjBRcjGUz6DqeiiXm/+uJsp/HXAEbqWKAUdQrnq1G77n1csBIJvL1I9v1fNQ9ucz+3pGX/0X8KoK\nAsDJCMaLLvJObSFRKFUxNJBBoeTCEfHjURjIZTBZri0GzIWGAiB+HKWSC6+q6vsxmG/c70m3ijlA\nfTGVUR4Kpdo5UtALGq8Wlz4Onuch7y90ShUPeQHKbm3f9SIn6y9UzAVTVo4dmwFH4Cog4w+cyTgo\nVmr7ohdGvSLJIuTb/tY1/J95vgjg3QBeAvCIiNytlPqZ0ew9AM70t7cB2AjgbTH7EtL3uK6H0cky\n1m07dgPdcu2Kpnb6Bhr3Rj1WdBtuymFjxikLI24svZ530q1i3fbd2LF3BACwY+8IHMB6DOIe67hl\nSf4mrou+XIjo/7kDwKTrAQLMyRzbD70YGXAEVffYDV+XjRbK2PX8KN551hsAoH7jDqNqLHB0e/Oz\n/uahYaHheRC/rNW5pNvk/f5559h+lJRqmFOPX3Vr7YFjZQ3HyIhjINCu6noN8+rXrNQORC2GWh+v\nemwe80xxcOxbFV1e/5bFsi/BOBuOnzFHr8/LJImpW0QkD+DNqB3/p5VS5Q7nvxDAHqXUXgAQke0A\nLgdgLiQuB7DVlwf/REQWiMiJAJbG6EtI3zPpVrFuW+MNFGi+gW5YOYwFg1nrjTVYtmn18qabsm1M\nW99+LPv69W/DI/tGG45ryVNNx6DkqVjHOu68Sf4mum0y0WL6mAuQsqdQdD28bjD+/29LnsL2h1/A\nmt84FSXv2LcEGRFkpXazMRcdJU813eAlMF6w3jYngJbtgoT/zWY2vVyIxD56IvJeALcBeBa1v/mp\nIvIhpdT3O5j/JAAvGp9fQu3bjlZtTorZl5C+Z+5ANtYNdN323dbFha1t3DFnStlEycUFSxfWy8KO\na7ePS5K/iW6bt58G05ZJ/6t/oHb8AGlYTLRi7kAWl7z1RMwbzEKMNUGhVK1/6yCQ+nv9U0fUeFH1\nx+JEy3ZBwv5mswKvivlpLkIA/D2A31ZK7QEAETkdwPcAdLIImRJEZC2AtQCwZMmSlKMh5Bhxzs1C\nqRrrBvrIvtHYN9ZObsr9WDbgCDasHG74X6ztGMQ91nHLkvxNdNvpRJzz04xZ50skYbzo4ow3zMOe\nA+M4acEcKBxbbNiYKLmRx0nnUEShFx9Jj3c//M36jSTLmqN6AeKzF8DRDud/GcApxueT/bI4beL0\nBQAopTYppVYopVYsXry4w5AJ6R5xzk1HgM9feS4uOm0Rso7gotMW1W+gJuaN1cRWpm/KrcacKWUA\nsGAwi02rl+OXf/MebFq9HDnLMYh7rOOWJfmb6LbTiTjn50TJrW+O1BYVZlmr7dmDRzFRcnHvk/vh\nSO3czDuCQkj7vCOR4zmClnPmHMFAi3FsW9jfbLZsvSDJImSniNwjIteKyBoA/y9qyaBXiMgVbc7/\nCIAzReRUP99kJYC7A23uBrBaavw6gMNKqf0x+xLS9+QzDuYNZPHZK87B03/9Hnz2inOsi4gNK4cx\nJ5tpKre1BZpvyrZ2M6XMhgNgKJ/BxquX4Zd/8x5svHoZsoJYxzpuWZK/iW7bb2ilyYBTy+EYzEj9\nc5zt5NcN4dB4ESvftgSAQtlXf+RD2uvk0rAtK9H1A47Ub3xJ4gz7myUdo1+3Xp2bolS83+5E5I6I\naqWU+qO2AqjlmnwBNZnt7UqpvxGRP/EH/ZIv0f0nAJeiJtH9Q6XUzrC+reZbsWKF2rlzZ2SbpZ/8\nXqJ92Hfz7yZqT6YlqYvqo87N6SbRZdmUS3Sn/fmZRL0UpOwpzDGku+WqB08Bg1mno3F7QdADZDbg\nOJEy3Y4OQuxFyEyBixASQupXkzjnJpm18Pwk05WOzs3YP8eIyN+KyHEikhORH4nIQRG5upPJCSGE\nEDJ7SZITcrFS6giA3wOwD8AZAD7ei6AIIYQQMvNJsgjROqTfBfBNPkOGEEIIIZ2QROD8ryLyCwCT\nAG4QkcUAir0JixBCCCEzndjfhCilPgngNwCsUEpVUFOqXK7rReTd3Q+PEEIIITOVRB6sSqlRpVTV\nfz+hlPqVUf25rkZGCCGEkBlNN43gU5eQEUIIIaR/6OYiZHYZjhBCCCGkI/rrmdGEEEIImTF0cxGy\nr4tjEUIIIWSGE1uiKyI5ADcAeLtf9B8AvuQrZaCUavchdoQQQgiZhSTxCdkIIAfg//Y/X+OX/XG3\ngyKEEELIzCfJIuQCpdR5xud/E5GfdjsgQgghhMwOkuSEVEXkdP1BRE4DUO1+SIQQQgiZDST5JuTj\nAP5dRPb6n5cC+MOuR0QIIYSQWUGSb0L+PwC3AfAAjPrvd/QiKEIIIYTMfJIsQrYCOBXA/wXgHwGc\nBuCrvQiKEEIIITOfJD/HvFUpdbbx+d9F5GfdDogQQgghs4Mk34Q8KiK/rj+IyNsA7Ox+SIQQQgiZ\nDbT8JkREnkDtuTA5AP8lIi/4n98I4Be9DY8QQgghM5U4P8f8Xs+jIIQQQsiso+UiRCn1/FQEQggh\nhJDZBZ+iSwghhJBU4CKEEEIIIamQ2iJERBaKyP0i8oz/+rqQdpeKyNMiskdEPmmUXykiT4mIJyIr\npi5yQgghhHSDNL8J+SSAHymlzgTwI/9zAyKSAfBFAO8BcDaAVSKivUqeBHAFgAemJlxCCCGEdJM0\nFyGXA9jiv98C4H2WNhcC2KOU2quUKgPY7veDUurnSqmnpyRSQgghhHSdNBchJyil9vvvfwXgBEub\nkwC8aHx+yS9LhIisFZGdIrLz4MGDySMlpEfw3CTTGZ6fpNf0dBEiIj8UkSct2+VmO6WUQs0ArSco\npTYppVYopVYsXry4V9MQkhiem2Q6w/OT9Jokz45JjFLqXWF1IvKqiJyolNovIicCOGBp9jKAU4zP\nJ/tlhBBCCOlz0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLvRwghhJA+J81FyM0A3i0izwB4l/8Z\nIvJrInIPACilXAAfBnAvgJ8D+IZS6im/3e+LyEsALgLwPRG5N4V9IIQQQkib9PTnmCiUUiMA3mkp\nfwXAe43P9wC4x9LuXwD8Sy9jJIQQQkjvoGMqIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIK\nXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkF\nLkIIIYQQkgpchBBCCCEkFbgIIYQQQkgqcBFCCCGEkFTgIoQQQgghqcBFCCGEEEJSgYsQQgghhKQC\nFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVMimNbGILARwF4ClAPYB+IBS\n6jVLu0sBbACQAfBlpdTNfvnnAfx3AGUAzwL4Q6XU2JQEH2DpJ78Xu+2+m3+3h5EQQggh/UOa34R8\nEsCPlFJnAviR/7kBEckA+CKA9wA4G8AqETnbr74fwFuVUucC+CWAT01J1IQQQgjpCmkuQi4HsMV/\nvwXA+yxtLgSwRym1VylVBrDd7wel1H1KKddv9xMAJ/c4XkIIIYR0kTQXIScopfb7738F4ARLm5MA\nvGh8fskvC/JHAL4fNpGIrBWRnSKy8+DBg+3GS0jX4blJpjM8P0mv6ekiRER+KCJPWrbLzXZKKQVA\ntTnHXwJwAXw9rI1SapNSaoVSasXixYvbmYaQnsBzk0xneH6SXtPTxFSl1LvC6kTkVRE5USm1X0RO\nBHDA0uxlAKcYn0/2y/QY1wL4PQDv9BcyhBBCCOkT0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLv\np1UzfwHgMqVUYQriJYQQQkgXSXMRcjOAd4vIMwDe5X+GiPyaiNwDAH7i6YcB3Avg5wC+oZR6yu//\nTwDmA7hfRHaLyJemegcIIYQQ0j6p+YQopUYAvNNS/gqA9xqf7wFwj6XdGT0NkBBCCCE9hY6phBBC\nCEkFLkIIIYQQkgoy20QlInIQwPMh1a8HcGgKw+kmjL0zDimlLk0zgBbnpmY6HKtuMVP2ZSr2Yzqe\nn/309+uXWPslTuBYrB2dm7NuERKFiOxUSq1IO452YOyzg5l0rGbKvsyU/UhKP+13v8TaL3EC3YuV\nP8cQQgghJBW4CCGEEEJIKnAR0simtAPoAMY+O5hJx2qm7MtM2Y+k9NN+90us/RIn0KVYmRNCCCGE\nkFTgNyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUmHWLUIuvfRSBYAbt+CWOjw3uUVsqcPzk1vI1hGzbhFy6NChtEMgxArPTTKd4flJ\nesGsW4QQQgghZHrARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgrZtAOYTriuh0m3ijnZ\nDCbdKuYOZOFWqih5ql42J5fBZKVWN1FyMeAIsrkMJkpuva6hzBhrouQi7whyuQwK5SqGchk4jgAA\nPE+hUKliKN9cRwghMxXX9eB5HkqeariuOo6DbLa7/08Om8vEvN7b2oT11df84HhBouYGAMep7bPn\neQ3t3Uo10Ti2cSdd//6UnT73F34T4uO6HkYLZew5cBSjhTLWbt2FkaNFjBXdetmDzxzE6ESt7k1/\n+X2s3boLY0UXbqWKtVt3YXSi1mas6OLnrxyulRXKyAjq7Q8XXTzwywO4fstOjEyU4XkKnqcwMlHG\n9Vt24k1/+f2GOkIImanoRcFY0W26rnqeB9f1pmQukwFH6veAN/3l9xtu8FF99X1grOgiLOpWcwO1\nxYdegOj2wQWIbZxWdwvP8zDgSO2e5Vanzf2FixCfSbeKddt34/TF87Fu+27s2DuCwXy2oeyi019f\nr3M9hR17R7Bu+26UjPe6zZJFc+tlVYWG9suWLMSOvSO4cdtjKFSqKFSquHHbYw3j6jpCCJmpTLq1\nb5rDrquTbveuga3mMjezTVi5ra8uqwT6xe0f1j7OOOWIcYJ9S/4379MB/hzjM3cgi0f2jWLeYO3V\nVnbcnFy9TvPIvlHMHcjW3+s2Zpl+rz/PGzxWN5TP1N8Hx9V1hBAyEzGvkybB6+ZUz2W2CV6/4/QN\niz3pfpr3ok7GabftVMBvQnwmSi4uWLoQ48Xaq63syGSlXqe5YOlCTJTc+nvdxizT7/Xn8eKxukK5\nikK5ah23UJ4eK1VCCOkFEyW3fp010ddN89o5FXPZ2oSV2/qGjZdkblv7TscJ9p0oudPm/iJKTY/f\nhaaKFStWqJ07dzaV65yQl8cKOGnBENZt341bV54HBamX7Xp+FMvfuBDrtu/GI/tGccHShdiwchgL\nBrNYc+dObFg5XG9z8GgRf/29X2DDymHMG8jg3P99f739z/Yfxm3/8RxuXTWMufks8hkHo5NlrNt2\nbFxdlxEgm3VQKB9LkhrKZZDJcP3YZVLP0go7NwnBDD0/zTwN23XVRrsJq0nmMtv8bP3F1nJbX30f\nOG4wa/0fvquAbBf+krY4jh/MxjpJxoouFgxmu5mc2tEgXIT4mFnTvVTH5BxBLpvBi6MFLBjKYSjr\nYMxfWBwaL+OUhUP1uucOjeOkBUMYzDn40FcfbTjhFs3NcyHSXWbkRZ7MGGbk+amvu0AytUfShYg5\nT6u5bPeAYL2tr6k+sVFwPQx1Ue0zjdQxHQ00fX4YSplJt5bZvGn1clxz+8PYsXcEuz/9btzwtUex\n8epl9TLNRactwqbVy7Hmzp3YtHo5zll/X1PdOevvw0WnLcJt1yzHVZsfwm3XLMebP31vU7t123bj\ns1ecg3fc8uOGutuuWY4PfXUXNl69rD63TkLatHo55nMRQgjpY/R113ZtjcSrYn6CG7qZ4NpqPn3d\n3rR6ufXnoND+XhVK1b4NsdWPFSrIzMvHjrkVVU/hqs0Phe6L7Z4E1BYv+WkizwW4CKmjk1D1K4B6\nkmlUQmqrxCQzsXXeoL3dI/tGccrCoaY6MyE2bHxCCOlXzOutppdJqXr8VvN1klwaVj+Uz0K6fO+P\ne+ym8z1jekaVAmbCzgVLaxJanWSqX80Vp9k2uFoOJqbqxNbxor3dBUsX4sXRQlOdmRBr6zd/sHFx\nQggh/YR5vdXYrqk2klz/guKAVvNFxRDVX6nw+pHxMhZ1+ZuQuMcuWD6d7h38Pt9nTjaDDSuHkRFg\nw8phXHTaInx398vYsHIYO549VC/LOoKLTlvU0HbALzPrPM+rv3/24FFsWDlcrzfbDTiCDauGsWAo\n11Sn+zmCprqhHOW7hJD+Rl93bdfFqG1ONtn1b042U+/bar5WMUT1z0bULxjKtdyvJFvUXLZ7UrvH\nrtcwMdXAZtterlRR8VRTQqpuEzcxdU42A9fzUDGSicy6ctWDpxSGAnV5R6iOmRpS/5GUiakkghl7\nfurrbpIkS6B1cmowGdUkLKkzk3VQjeHSGpUUqgCUQ+q7pY7ReEDDPSUYS9BKvhdW+Ojw3OSdzEdL\ndNdu3YU3f/oHWLt1FwolF0d8e9w3/1Wt7KXRSdzx4HMYLZQxUaqE2rYXy27dtl3bAHtKYbJcxXix\n0jDPK4eL+PJ/7kWhXMVXd+yr93vwmYM4XHShvNrXZ44I5g/muAAhhMwYslmn4fqWz2frz08ZK7pY\nc+dOnL3+Pqy5c2eDzXmUrXvYAkSPd/5N9+OqzQ9hMuCVEWUTb8aydusuHDpaarJ0X3PnTrwlUL/m\nzmMLN70AidqvuHhA/f4UZgPvVVX9mObz2V4sQDpm+kWUEtq23bTC9RSayj7xrcdxyVtPxLrtuzF3\nIBdq215VaLDl1WXrtu+G59fZxrx8+KSmsbppXUwIIdOduBbrYddG3T+pbXqU9XmrvlGP9OjUvt22\nVTo4PtMJJqb62LK0TQt3zSP7RnHGG+ZZ1TFRtu3mq03tosfUdbaxCCFkNtCpnXu3bNOT9I2q76bt\nei/GSRN+E+Jjs8I1Ldw1FyxdiD0Hxq3qmCjbdvPVpnbRY+o621iEEDIbSGJPHtW/23bnUX2jHunR\nzTiSjjPd6YvEVBE5BcBWACeglvezSSm1QUQWArgLwFIA+wB8QCn1WtRYrWzbTSvczauXo1CuNpR9\n7v3n4juPvYSVFy6Bpzw44lht2+cNZHDdll11C9+s6VYXSFrNOYJND+zFyguX4PtP7scPnny1YayF\nQ3lMulUM5TMolGuvkxUPQ7muut7NdlI/kExMJRHMqPMzKmnUJImdexxajacQfqBb9Q2rX3PnTmy5\ndkXX90vnhLQap0fJqCYz37ZdRE4EcKJS6lERmQ9gF4D3AbgWwKhS6mYR+SSA1ymlPhE1Vhzb9roK\nJZ+B63oNmc56IRBHHXNksoKsI8g7UvfrHyu6Dc+VmZN3MFn2sGAwCw9APjBW3hHseG4Et/3Hc/UF\n0PvOPxnfeewlrHrbG7Fobp4Lke6Q+kHkIoREMGPOz7gLEE1Se/Jejteqr61el8W1f+/F/vR4ITLz\nbduVUvsB7PffHxWRnwM4CcDlAN7hN9sC4McAIhchYWj74PWXvQXr736qwQDmifUX46rND1nrghbt\nus2m1csxfNP9x6zZfat1/Wrar+vXtVtrFu2638arl+Harbtw2zXLsWPvTnziW49j/WVvqb/euO0x\nbF6zAvP67DdAQsjsJW6yZFt27gnHKnmN/wk/Z/19eMJ/YF1YH/0Th+4bZY+u68zyOPulHyFi2w9b\neZR9O4DENvdTSd/dvURkKYDzATwE4AR/gQIAv0Lt5xpbn7UA1gLAkiVLrOPqpFGdIBq3LpiEaiat\nmvVhiaxhSatmYqq2ezfH169D+ellPEOSEefcJCQtenF+disRNAlJxuokKTaObXontvFR5UljnS5M\nz6VRCCIyD8C3AHxEKXXErFO135Wsvy0ppTYppVYopVYsXrzYOrZO8tEJonHrgkmoZtKqWR+WyBqW\ntGompmq7d3N8/VooT38JFgknzrlJSFr04vzsZtJlt8cy40vSJ6yNrTzOuGFzRZW3GnO60jeLEBHJ\nobYA+bpS6tt+8at+vojOGznQ7vjaPvjeJ/fjc+8/t8HyNu/b49rqTNv2z73/XNz75H5sWDmMF0Ym\nGq3ZjVeDT7fFAAAgAElEQVSzDlANr9/d/XK9TtvFP/rCaMP4+vXWVefTvp0Q0leYFupRWzt27p2O\nlXUEE6VKoj5RbWzlccYNmyuqPGrM6WbVbtIviamCWs7HqFLqI0b55wGMGImpC5VSfxE1Vhzbdp18\nqpN9MiLIZxxrnZmYquvCbNvD1DGmSsaWmJoLjE91TE9I/UAyMZVEMKPOz7jJqd1MSm1nrDh9oto4\nhiqy01jMvnOymabjFzbmdFfH9Ms3Ib8J4BoAvyMiu/3tvQBuBvBuEXkGwLv8z21h2raf9b9qduoH\nj5ZQ9RQyAowWyrjjwefw8mvFJpvcn79yGGu37sLIeBkZQaOVu2Hbri3dtZWutivWr4P5bN26OJup\nlQ0YZRnHqb/OG8hyAUII6Wta2ZfPyWYS27mH1Q84AtdXL+pxWjFZruKqzQ/h/Jvub5qnlQU8ULOW\n19btZl8dy2S5Gtu+Xc834Ag8z2vax8lytb5/milYgHTM9I7ORyn1oFJKlFLnKqWG/e0epdSIUuqd\nSqkzlVLvUkqNth7Njs22/SPbd2OsUEHZt8e95K0n4hPferzJJnfJorn199qavRSw0aUNOyGE1GjX\nlj1uvzjjxrFGjxonifV6WH2SMXTbJH374V7TH+mzU4DNtv2RfaM4ZeEQRBqVKcE2YWqXYBlt2Akh\npH0FStx+U2GLnnSOMBVM3DF0204t7acbffFNyFQQlmH84mghkTomSgFDG3ZCCGnflj1uv6mwRU8y\nR1h9kjF0207UO9MRLkJ8tDrGzDD+wsphLBjKtVTHmGqXjKBBMWOqYrTaZTpnKhNCSK/RCpmkqo64\n/eKM26mqJol6J0oFE3cM3TZJ33641/SFOqabxFHHmBbtVderZyO3UsfEUcA01PkKmKh+pjqm3t5/\nzYhgMN/Yfu5AFsVyFZ5SGApYzetXs58ua1Dh5DLIZGbd+jT1LF+qY0gEM+78tD0qI47teNx+YfWZ\njAOlENs6PjhONpepW7B3Q72TZIygBXy3Le3bTGSdFeqYnmOqY7TyZaLs1p/1ElTHPPDLA5gsV/Gl\nB/bipdFJrN26C2/+9A+aFDOmOmbAkUblzERNMTNaKANQTaqajACHiy4e+OWBxvZGv4/etRt7Dhyt\nx/7Ru3ZjtFDG9cZ+vPxasR77HQ8+V+9n1pnzjEyUUa3Gf7YDIYQkJZt1kM9nMSebaakU8TwPruvV\nFyBjRbfhWh3EVXZli+PYFyAK4YobU1UDAG6l2qCMSapyCRJHKRNU+JixHTpawtqtu9qaO4g+zlMJ\nFyE+NnWM59WULovnDzapY5YtWRhbMaMzmc1XXacVM4A01WmlzbIlC5vaX3T66/Hxbz6OG95xBk5f\nPL8e+w3vOAMf/2ZjPJ/41uP1OC9564n1fmZdcJ5CZfpnVRNC+p8kSpmwtkFViBsynjmGuZVjzB+m\nakmqcmlHiWNT5rSjsImzTbWipv9SaXuETR1jqlmC6ph5g/GfJxP17JjgHLZ+5rNjdHv9esYb5tXV\nOwBC4wk+c+aMN8xrqjPn6ccsa0JI/9GO2sP2fK9WbeKoV9qZP0xZmfQaGkfxE7w/JI17OsJvQnxs\n2cammiWojhkvtqeYCdYF57D1M58do9vr1z0HxuuxAAiNJ/jMmT0HxpvqzHn6IauaENL/dKIUCY6h\nN/OaGGe8Tubvlhonaozg53ZVOnG3qYSJqT46J2Td9t14ZN8oLli6ELetXoZi2cN4qYJ5Azlsf/gF\nvO/8k/GJbz2OD/23U3H2icc3lOl+G1YO4+DRIv76e7/AhpXDWDCYxVjRbXhdc+dObFg5jF3Pj2L5\nGxdiTt7BZNnDwqF8LZHVTz4dcAROxsFk5VgybFSSaxzr+GBCa7nqoapU0/imbf1AzmlIyNX9PKUw\nGGjfkEwbqLPtj47ZtK03k2ld10PZa47Pto86MbeqVNPcc7KZqKSrGZf4R2YUM+78rFY9uFWvvmNj\nRbfh+quvnRrtcqpzQsy2W65d0TC2q4DxUvN4C4fy9TFMFGr5d1Hzm5jz/2z9xS1jj0PUGPp+oT/r\n+0ic45aUNpJTOzo3uQjxsWVct1LHVCpVlD0VSzETVx1z9vr76ieSXqDoRYt5kumFUXBB85ZfW4Dv\nPPYSVl64pKFOt89lgImyh1vufRqvHilhw8phzBvM4rrA+AsGs/VY/u4D5yHnCG4MnOiDOQfPHhzH\nSQuGmv4R/Gz/YRw/J9dUt/HqZahUPdy47VjZ595/bj3m7z+5Hz948tV62R/91qkolKtN4788VsBJ\nC4YgULhx+0/rZVv+63l87JKz8Ia5ees/zoVD+bB/YDPuIk9mFDPq/KxWPZRcD9nAXrV6/on5zJlW\nyhAFNPznRdu1B8dpNX/ZU8iHqG/MZ7j0SikT9vyZVv3aIQ11DBchPkeLFazdugu3XbMcH/rqLuzY\nO4In1l+MtVt3Yf1lb8H6u5/Cjr0j9fYXnbYIn73iHCwYyuGGrz3aVLf+srfgki88UH+//u6nGl6D\ndZ+94hy845YfN4yx8epluOFrj2LT6uU4Z/19DXWbVi/H2q276nVmez2mWWe21/ukYwgbX5fpfbXF\n54jUj5dZd9s1ywGgqe7HH3sHPvXtJ6zHa/3dT2Hj1cswfNP99bITjx8MHf9DX23c/9uuWY79h4v1\nfV+7tbnfptXLMX8wZzs1ZtRFnsw4ZtT5ebRYgVKABPYq7N8sAMwfzNWv02FtWo2hx7HFE9Z349XL\nkDFu7GabJ9ZfHDv+VkT1Na/FtvHizhty7euUjs7N/sle6TFmEqhpjxuVfGpaugfrbImfUUmhpywc\nahojzOa9VZKrHjMqOdaMIWz84L7a4tPvg3VmkqvJKQuHIhNnzTGDSbfB8YP7OG8wizMG5jXsZ9R+\nEULSIW7CafDfbJx/1+38u49K8tTXJNv4ndiwB4nTN2y8fr7WMTHVx0wCNe1xo5JPXxwt1BNEg3W2\nxM+opNAXRwtNY4TZvLdKctVjRiXHmjGEjR/cV1t8YQlg40V7ctiLo4XIxNkjk5WGsqjxg/s4XnQb\n9j0qYZgQkh46eTRpcmacRMxW9WHxhPU9MlmJTEptN7k16b5HjdfPFu5chPho2/ZnDx6t2+F6nhdp\n175gKFe3YjfrPn/ludj44z246LRF+Nz7z633v/fJ/da6DatqYwXH12Nr21+z7uDRYpM9/I5nDx0b\nM1Cn27vVakMMG1YOI2MZf8CR+ue/+8B5mJvPNLVxBA3Hy6x79IVRa92CoRxuXdVYZsb83d0vN5Q5\nvg1+cHw9drHsNpRt/PEefP7Kc0NtjfvBxpiQmc5QLoNsApt0/e/W9niNJJbtYf/+o+zgg3GabTqx\nYU/St9V4tr65PrFwZ06IgbZtNxNN3UrN2CaYfNqQtOonmJpqkqAtepRl+pxsBq7noWIqQKa5OmYo\nn0HFrcUcbB+mjglVreQyKLv2GMKOTbVqV8zozzlHkLUcN6pjSJ8y487PoDpGE0yyDCZLBh+vkcSy\nHQCy2QwcSx+bOCHnSP1/6o7jxLJ6b5Uk6io0JeRG9Y2bdBrVrs2E07jQtr0bmLbtZ/2vmv36S6OT\n+NIDezFZruJrP3kea7fuwqGjJTz4zEH8+Td+igMTNSv3V8aKDRbCpi36yHitjR5T193x4HMYGa/N\n9/SrR3Ck6GKiVKlb8H7smz/F4ckK1ty5E2/+qx/gjgefO1b3/xyrq8850TjPgYlj8+j9+vrDz2Oy\nXMV1W3Y2xPqrI5OYLFfx1R37GtrrNuWqhwP+fusYvvaT53Gk6Nb2/3Cxbhl/eLKCa/24zLG0nXxG\n0DT+axNljE1Wmo7hngNHMV52cThg0XykWMHh0rEyW8xHii6+/tDz9b+jbjPVlsSEEDuZjIOM4+Bw\nqdEu/fBkBUcmK/UbadBKPJt1MCebibQrt1m2a1y3Cs+z/+c7aAd/JGAdH4eqp/DK2GRDbIf9n0IK\nhiLIZhNvWsTr8slytcE2PoyofU7Djj0uXIT42GzbTUvzy4dParBO1/boNtt20xZdW7sH6/S4O/aO\nYMmiuVi3fTfmDuRC7dfN9jZr9jjzXD58ktXiV9vSXz58UkN73WasUMFH7/pp3TLeHMvc/zgxayt6\nc/yJchV//o2fNsV1+uL5GCtU8JFA+yOTLtZt222dx+yv/2bm33GqLYkJIeFMulXcuG130/VzrFCJ\ntBK3Xa+TWJnbHkvRasy421ih0nR9vnHb7npd3BiTxhDH9n460h/ps1NAWNa1TbVx3Jwc5g82KlFs\n/YLvbXXm3GYMwXHNz63mDJtHq2eC/fS85n6ZaEWL2T+oxIkbs+04hylm5g1mY7UPOx5BpU0/ZYwT\nMhsIu+5q5WHSfp1YmXdLUTeUDx9nKJ+t71fcueLG0K8KGX4T4hOWYWxTbRyZrDQpXmz9gu/Nz2a/\noHIFaLZfNz+3mjNsnjAlj57X3C8TrWgx+weVOHFjth3nMMXMeNG11gXLwo5HUGlDdQwh04uw6+6L\no4VIZUcrRUgrtUih3PytQKfqFr2FXc90XVIVT9wY4sQ+HemLRYiI3C4iB0TkSaNsvYi8LCK7/e29\nncxhy7q2qTa0CkWrMGzKmaD65N4n9zfV6XEvOm0RXhiZwIaVw5goVeplenw9rtk+WBd3nu/uftma\nRa2VM9/d/XJDe1PR8vcfPK9BCaTHMvc/TswZi9plbj6Dv/vAeVYFzIKhHL4QaH/cnCw2GAobW8w2\npQ3VMYRMH1zXw4AjTWq5z195LhYM5SKVHbbr9ZZrV8RWqQzlmq8DcZQ3cbYFQ7mm6/Otq4brdXFj\n/OVNl+CXN13SsF/tqmv0Vi67KJfdaZUf0hfqGBF5O4BxAFuVUm/1y9YDGFdK3ZJkrKS27cFnmtjU\nHkHlTFB9ElSa2Oq0Cic4vqcUhiwKED23TR1SKLlwzHkM9U65Um1Umvj9wvZRZ4jnsjV1jG0sc/+j\n4gpTxwzlMyhVwtUxQfVO1PNkzJiDz6GhOob0MTPq/Azappe92nWuUKrCkUb1iE3ZEbxeu5Ycj1YW\n8GHxdMMC3VWAp4ChgQwKvmLQrNP71y27dU2S8bqomJn5jqlKqQdEZGkv55h0q00W7UHb9k2rl+Oa\n2x/Gjr0juPcjb7dauW9avRxnf+beprLTPnVPw2dtNb55zQo4Isjns8j7feZnHYyXXFy/ZWfT+Lr9\nkPFbn7bine+fUPMMa956XaZWN5jPYjCkn61sfsNYTsRYtbKouBrqAuMPDYTHkLXEl8k7GIgVc64h\nPkJI+tiSJK/a/JDdetyrNlyjgv1tPzNE2pi3GC8yFgtRc+nYSoYap+opVB3pyOLdRtVT1keIhI5p\nOQ5p0BeLkAj+h4isBrATwJ8rpV6zNRKRtQDWAsCSJUusA9ks2oNlUYmjQHwLdDN5aihv/3lgKJ+x\njh/WnvQncc5NQtKiV+dnp9bjrRIukyZpdmK/3m5CaC8SSfsxOTX9ZVD7bARwGoBhAPsB/F1YQ6XU\nJqXUCqXUisWLF1vb6MQeW8KoLakyLBkyuCq3WaDrzxcsXWhNkAKAQrlqHT+sPelP4pybhKRFr87P\ndm3Lo/onSdJsNV6SBNWkyazaBr4bSbDBcZOOOR3o20WIUupVpVRVKeUB2Azgwk7G00lJZqJlzk/2\n0WU6gTMqOdRmsR603c0I/GSl860JUkDN1vjWVecHkpvC2xNCSL+gbdKTWLa36h83STMsKbVd+/Wk\nyazZNvu12rIJx5wuSfp9kZgKAH5OyL8aiaknKqX2++//DMDblFIrW43TqW17q+TQVhboVht2P9nT\nTAC1JaYGY7Aluc7JZlD17EmbZqKtaWnelABrJJ827aNRVyhV4TjAgBGzLhvM6VgdTLreMft6/wJQ\nMCzmh3LHbJQ930jIVhdF0MpZ/wMLljExlfQpfX9+BpNRTRSAqn8rCrM0T4otSTOTcZDJOPA8BbeF\neVe3k0anYg4PaBAexB2zwyTVmW/bLiLbAOwAcJaIvCQi1wH4WxF5QkQeB/DbAP6skzm0bfuDzxys\n26l/9K7ddWv2l1+rWZO/+dPHLN2//J81S/cHfnmgbjWeFdRtdnXZgCN1G+CxoouiX2darj/4zEEU\n3Zo9uq67bstOFMpVFEpug538aKGMg0eLDfbw2uZ8tFBGxVNNFuiAwsuvFXHHg8+haFjUazv16wPx\n3PHgc/W6Bnv0iWOfr9+6E2OFCkbHG8tGfcv467fsxMhEGbf/595a3ZadOFqsYGSihOt963jdxvMU\nPE9hZKJsrYvztzP32fOay2jbTkg6hC1ACq6HilKYdD0UKm59AdLuf41NK3T9mA3zRqwUQhcgQRv1\nKLt03VbjBV7jYtq022Iwrdc1rlKh9Y5lzDjjpmnr3heLEKXUKqXUiUqpnFLqZKXUV5RS1yilzlFK\nnauUukx/K9Iu2rLXtCaPsmY3rcCXLVnYYJOrX80y00pXvzfLLjr99XV79GCdrf3i+YNN9vCnL54f\n2h6QesxjhUrd9jzKAj7Khl23/fNv/BQT5Wps2/rXCpUmm+Ybtz2GQqWKQqWKG7c9Zq2L87cz+4XZ\nGE9X62JCZjKTbjXU4rzqAWOFCsaLx9qUE1qlJ7EuL1TssSSxbNdt9edK4LXdLU4MVYWuW7qnaes+\nvdNmpxDTujyogImySdf24rrMtGA3y8x+2k48WGazTA9rbyp3dNm8wWyi9uY+2vbNbBfV9pSFQ5H9\nTTv5MIt2rfppRxFks1vulgUzIaRzwv7daRtzXR9l1R6HTv7Nt6OI6fb1JGn8M8HSvS++CZkKdLay\nmWEcx5pd24vrMj2OqYAJqmO0nXiwLMzu19beVO7osvGiG6u9OU/UvkXZsJttXxwtWPsH3wPhFu2F\ncrVtRZAt0zwq+5wQMrWEqTNeHC3UH89gs2pPusVRhxTK1Y5VLqaCsptb3BjixNjJuFMJFyE+Wh1j\nWpNHWbObVuCPvjDakIl8x7UrMHcgiyfWX4w7fctdM1tZvzfLdjx7qG6PHqyztT94tNhkD//swaOh\n7QFVj3nBUK5uex5lAR9lw67b/t0HzsPcfCa2bf3rhnJNNs1a9dOuIshmtxyWfT5dMsIJmU2EqVkW\nDOWQcYAFQznMGzzWJt+mQiSOOiQv6FjlsuXaFfXrzIAjyAVe293ixtALS/e0ro19o47pFnFs223q\nkKA1u/6cdwQ53x7cTC76/pP78YMnX8WGlcNYMJhF1m+TdwSZmOqYuprGcZpUHt1Wx4QpYPpZHRO0\n4dfHMiQLvO/VB2RG09fnp+t6qHqedSdcBWSke+qYThQnSftmcxmrZXwn9EqVE2fcNlUyM9+2fSqw\n2bZrLjptEdZf9hZc8oUH6u/X3/1U/XXj1cswfNP9dYvcddt3Y+PVy/CZu3+Gddt3Y9Pq5Viz+SGs\nv+wtGMg6+NS3nwid57NXnIN33PJjPP6Zi/Ghrzbb+q6/7C044bgB3PC1R7Hx6mW4bvNObLx6Wd1O\nvlXMn73iHJRcL9RyPmjzbrVhz2h7eLOuuWye33eebj9gqQv8Luk4EloXRTbrNNi2Hy1WQm2Rp4NV\nMSGziUm3GmkrXjX+L3zdlnh25ubjGTRHi7Wfoo9MVpJZmKOF1XsIpYifMNoZT6laXoz+aeRNn763\nYzt3kwlfaZnE0r7XTOkiREQyAH6olPrtqZw3Djbbdo0t0dJ81YmgZgKorcw2RnAeneSpk0xtcYgc\nS1gNJtO2ilmPP50TlboBE1MJmT6YifomYY+6aNWm1TztjNPt60W3xuv2dWu6XRendMmjlKoC8ETk\n+KmcNw5m4mZYoqb53nzViaBmAqitzEwKbZXkqZNMbXHo5Nnga5yYXxwtxLac72eYmErI9GGiFN9W\nvJMkSl3XjoV5t23U2xlvvNi8j53GkTSuqSaN76XHATwhIl8RkVv1lkIcDdhs222Jljq500xM/e7u\nlxuSfYJlE6VKvf28wQxuufI86zxmkuejL4w2JRPpMbQ9r06iNZNpo2K+5crzMG8wY517w8rhGWUJ\nb0tWZWIqIekwJ5uJbSveSRKlToBNamGeNDE1asv5WzvjZQOfu2HnnmQ/07g+TnliqoissZUrpbZM\nxfxJbdsnSm5DAmg9YdJI8sznGpNDbWW6fUYEAzmnYQxzHl03dyCLSqXakGBq2rbr5FOdKGomjEbF\nXHI9eB4wJ9+YADuUyyCTmVm5ErZkVdq2kz6l789P1/Xgel4sW/GoJMpWyZNaZNCOhXm3k0KTjKfQ\n+EfOBgQP3SRxAm42UiDQX7btSqkttm2q4wgSZtt+eLKC63wb8YlSpV6nLdSPFF38/JXDDRbtR4ou\nRo4WG8pGxsuYk81gaCCLjONg/mCu/uqIYP5grqHOEcFAPttQr+uyWadel804Da/mWMF+GcfBUD6L\neYPZprln2gIE8JNVjX3s4NkIhJAOqFZrCwObrbhpge75n83HLdisy6PIZh3k81lkHadpruB8QWzt\nzT5Rduq29uffdD+u2vwQJi1eR+aYQPOdvN04bG2Chuxh+xmG61ZbPj6jXab8qiwiz4nI3uA21XEE\nibJt13a3cwdyVvvbJYvmNtm2D+azTWW0DCeEzEbCrNKDFuiVmNbrcQizig9arnfL9jxpe7NNN+Ow\ntenUTr7kWyf0gjRSYlcY7wcBXAlgYUjbKSPKtj3YxsRm0d6qjBBCZhNxVClJFDSdzNmO5XovlDbB\ne0u34phu6pdWTHlkSqmRQNEXRGQXgE9PdSwmpqrlgqW1B9JpFYnWVOs2psbaZtEeVWbTthNCyEwm\nSnWhr6nmNTPsGquJcx0NmzM4XxzixJS0ffDe0q04ksYaFxFJ5N0Ue9wUElOXGR8d1L4ZuUEpdd5U\nzB/lmDpaKGPX86NY/saFWLd9N044bgAfu+QsfPybj+ORfaN48BPvgCMO1m3fjUf2jeKCpQvrFup/\n/b1f1N1Rx4ouBAo3bv8pbl01jOMHamULBrMoe8DQQDI3UDIlpP6HYGIqiaCvzk+dHJoUD8CRott0\njV1gmCCaiantzpOUsRYxddq+m3HY2hw3mO049yIiObWjczONRci/Gx9dAPsA3KKUenoq5m/Xtj1o\ngW5mFmcDSpgBR5DNZvDCaAELhnIYyjq1hKtJF39217GT49ZV52PR3DwXItOD1P8IXISQCPrm/OzG\nwiCOOmaqFiBxYupG+27G0e25e6mOSePnmGnnlgocs23fePUyXPOVmgW6tk7fePUyXLX5Iast+vq7\nn8Km1ctxzvr76va3a+6sWam/45Yf18tGxsv41LefqI+xY+8Ibtz2GDavWdGTr7gIISQNupWAb7vm\n3nbNcohvLd6rRP8oW/OJkotzfDWLzU49rG8pgbIkjt27+dO+tqoP0tKiHWi4b2mmOmVgyu9+vlvq\nZwC83S/6DwA3KaUOT3UsJrbEVG2dHmWLHpaEGrRtH8rbk1qH8jTPIoTMHLqVBGm7XprPpupVsmXc\nxM5eJYUmHaMbCbJpJq6mMfPtAJ4E8AH/8zUA7gBwRQqx1LElpmrrdLNMY1qh25JQg7btI+Nl6xiF\ncpXfhBBCZgzdsv62XS/Hiy5Eav9b75XFeNzEzl4lhcYdQ39j0Y0EWbNsqr8JScO96XSl1GeUUnv9\n7X8DOC2FOBrQNt+mBbq2TrfZopu27aa9LqCabNtzjmDBUA7/8MHGMW5ddf6MskonhBBtnd4Le/Gs\nYS3erXmS2rd3ajnf6fxBe/Wo49BqrNlq274DwMeVUg/6n38TtcTUiyL63A7g9wAcUEq91S9bCOAu\nAEtRS279gFLqtVbzx7FtNxNTtXV60BZdW6HbElNttu1zshkU3SocEeSzTsNYc3IZlF0PVdU8T94R\n5HLhlvG5bMB+3bCHb7Jtz2UgIihUqg1lTIwF0EeJf2RWMq3Pz14liZoJlnlH6geh18mprRJjtQAh\nad9uzN+tsYK28K3s8CPoL9t2ADcA+KKI7BORfQD+CcCHWvS5E8ClgbJPAviRUupMAD/yP7eNluiu\n3boLb/6rmiX7oaMl/NvTB1Byq3j1SKnBSnhkvAxA4cBEGR+9a3eTbfvRyXK97MFnDmK0UMYzB47i\nSNHFeKnRlnh0ooyK59XaTZQb6g4XXTzwywNYu3UXXn6tiDsefK7+WnQ9HDjaGJeuGy0ci0uXjRTK\nOFqs4Hrfhv76LTsxMlHumR0vIWTmY1sIaPv1OFbnUe1Me3HzTud5HlzXq1u02zbHcXC4xU8hYXNH\n2Zp7nocBR0L3a7JcxVWbH8L5N90fy+IdAFylGsYT2G3bO9mXoAV+0vF7RRqLkJ8D+FvUckO+DeA7\nAN4X1UEp9QCA0UDx5QD0M2e2tBqjFdq2PWh3e9Hpr8d4sYqPffOnTXWA4OPffBw3vOOMJot2x3Ea\nxli3fTdOXzwff3bXbowVKk1jKYUGy3izbtmS2u96n/jW47jkrSfWX8cKFXz0rsa4dJ0Zly5bt203\nXgvMfeO2x3pmx0sImfnY7NHj2K+3a4ke17590q3ixm2d26uHbWF92hmzqtDQPomVe9x5W8WS1mNF\n0siI/C6AMQCPAni5g3FOUErt99//CsAJYQ1FZC2AtQCwZMkSa5swS/bj5uQwf9CujtF9znjDvKYy\nUzGj1TVabXPKwiHrPPp9sE5nhJuKHHPOYHtbG11mm5sKnfSIc24SkhZxr502kqhM4rRLSpzHZXRL\nzWL26XRM836QNI5W86athLGRRjQnK6WCP610hFJKiUjobwpKqU0ANgG13zVtbcIs2Y9MVjBWsKtj\ndJ89B8abykzFjFbXaLXNi6OFhrmDahpbRrh+rxU5ew6MYyDrRKp2zLh0mW1uKnTSI865SUhaxL12\n2kiiMmlXURKl5AheizuJMYpgn07H1PeDTMKfStpRwgRJ47Eiafwc818ick4XxnlVRE4EAP/1QCeD\naXVMMJN4x7OHMG8wg1uuPK+pDlD4/JXnYuOP9zRkGW9YOQzP8xrG2LByGM8ePIp/+OAwFgzlmsYS\ngZOCs1oAACAASURBVFWFs2HlMB59YbRBkaNfFwzl8PcfPM+q2jHjqit5Vg3jdYG5qdAhhHSCTZ2R\nS6AUaVdR0krJMSebwa2rosfqRM0S1qedMTOCJhVQt1U1rWJJQxkDTKE6RkSeAKBQ+/blTAB7AZRQ\ny6xVSqlzW/RfCuBfDXXM5wGMKKVuFpFPAliolPqLVnHEUceYqpVipaZoGcg1qlC06sVUodjUMUFF\nS0P7gBIm5wiyGSeROibrZ2rHUcfok6xhH7OZdjOiZxqpZ2hRHUMimNbnZ5hKJa7KI6kaxHFq16xu\nKGM6VaJ4SOd/8zbiKmHCaFMh0zfqmN8D8N8BvAfAGQAu9j/r8lBEZBuAHQDOEpGXROQ6ADcDeLeI\nPAPgXf7nttHqmAefOYhDvuLkzX/1A1y/dRfKVQ8jAdXKK4dripPxklvPPB4tlHHwaBGHJpqVKTbV\nyuhEGXc8+Fx9zCNFFw/uOYi1W3ehUHIxWa7i2jt3NihyHnzmIEbGyyi7Hv796QN1RY/ZJiOC67bs\nbFLMlKteU/vRQhmuO3XPXyCEzDzCVCrzB3NwpPX/sk01ylipUeVxYKKMSdeD4xybA+h8AaLVJJFK\nGLRW+TgAygkUhnFVQ+30DdsXt1L7j2mr/lp1NJVM2SJEKfV81Nai7yql1IlKqZxS6mSl1FeUUiNK\nqXcqpc5USr1LKRVUzyRCq2NsCpWxQgXrtu22qlB0trHOPF48f9CqTLGpVtZt341L3nqiVQnjhmQ7\n6/iOFt1QNY1+H4w1bMy0sqIJIbMDm4ImVOURuNZ+/JuP47VCpeE6lWS8VmqSqDZxVT5J1CydKHI6\nVfPE6T/V9wNmI/rYnh2jOWXhUOJnx9iUKWGqFXNMrYQJe16NLj9l4RBEWj9fwZwnrP10y5YmhMws\nkqpDgp/19a6d8VrN02qsbl8zOxmvG8qbTvr3At59fGzPjtG8OFpI/OwYmzIlTLVijqmVMGHPq9Hl\nL44WsGAoF6mmCcZ64vGDoRnUaWRFE0JmB0nVIcFr1IujBSyal4/1vJSk87QaK47qpOqp2GqWTtQz\nnfRVKvlzaaaCKbdtT5uw5CqdE7Lr+VEsf+NCrNu+G4/sG8UFSxdi49XLUK56WLftWNnn3n8uvvPY\nS1h54RIsGMxizZ07sWHlMMZLFeSzGdxy79N49Uip3u5955+M7zz2Eq5YfnK9bsPKYWx/+AXc+m97\ncMHShdiwchgL5+Yx6f+m5/oGNvMGsxgvushnBEdLLhbNG8BEyYXn102Uqpg3mMWRyQqyfmZ62UhQ\n0gmzYcmuVddrSGjS7VsluXpeoJ9hPx9MlJ2Ty8Cteqh4zXVD+QwmK16ohXxTwnDMZNqE/aZ14h+Z\n9fTN+el5CmW32vZv/WMlt+Fa+/krz8X8gSzm5rP1f7+9smsP4gE4UnQb7gcbVg5jQeDb5rKnkE/B\nfXSs6DbFEoargPFS632x0SJhtaMd5yLER5/UJa/5+S1RKhTbs2Osz22JoY558JmD+B/bdtdOjlXD\nyGcc3PC1RxtOmJfHCrjySz/BBUsX4h//YBilisLHvvnThjZzBzL44y278Mi+Udz4O2dg5YVLmk68\nn+0/jNv+4zl8Zc0K64npKQ9lF00LJ72oWv0bS5sWZhtWDiPjCD78z481Ldb+6LdORaFcbZgnuEBb\n9bY3YtHcfMNCRC8Og/EtHMpHLkTa6Nc3F3kyK+mL89PzFAplt+Mbsv7PTaFUhSNAPuNM+QLEFo9N\nYRJHHaMwDf6AqMVRjtiXKCIWIn2jjpnWTLpVrLlzJ6qewjVfeRjnrL8P48XaM16eH53ENbc/jFfG\nirhq80M4Z/19OP1/fh/n+BnGEyUX56y/D9fc/jAA4Lotx8qu/nKtTLc36675Sm3MI5MVrN26Czd8\n/bFjCUPb7Pbupy+eX/8cZidf9VAv08mzYVbwVWVPVpo7kIu0gLcl6+qE2bhJscGkXZuFfJidfhzL\nZibhEjK1FCrVWEmaa+7ciTd9+t76tubOnQ31QO0nFwWFqlItk1JfOVJCyVMoVttPVI2KSccDoKHP\nc6OTqMTZpw7i6samYzvr0/finPX34arNDzXtS6utV9dO5oT42BJTtc16MLHUJCwxNVgW1j4qYdRm\nsW4mnYYlzJptwmLWbcLs6s0E27Bk2rgxR+1j8NgGLeSj4oui3X6EkPap/fttbXrVyb9NW7uhfLYh\ncbUd2olJX9va7T9VTOfYpkcU0wBbYqq2WQ8mloYl9oTZtgctfc26PQfGccJxA6HJWCbBpNOwhFmz\nTVjMuk2YXb2ZYGtLpg2zjLfFHLWPwWMbtJCPii+OZTOTcAmZOgrlKtyq1zJJs50Ey6ik1JHxMhbN\ny0MptL0YaSemV8aK+LUFgy37dxJXN+iGPT3Qm4RV/hzjo23bTev0R18YxYaVww1W6Z97/7lWa9yg\nbftrE6WGMrP9CyMTDXbqAjRb7q6y27s/e/Bo/XOYnXzGQb3s3if3R1rBZ8Ru9ztRqkRawC8YymHD\nquZ+8wezVhv5rMVWOGhDb7OQD7PTj2PZ3E4/Qkj7DOUysSzHk1qbm/9ubTbxrxvK1a+zSe3OO7Fb\nv/fJ/RhwBPkW/TuJqxtbVGy5mGP06trJxFQDraYwE0YrlSrKnmpKMDUTe4KJqbYyW3tzzIrbqByx\nqk8CY2VC7OTL1UaFSifqGNf1rEqbMHVMUAGjj+WcXAbVamAsv85UxwC135XrxyaXgef/HmlTuXie\namqvxxjMNlrgUx1D+pi+OT/jqmOikj2jCLNsdxWQlc6SQJPElMk6dXFCVP/pkpTa7vEGequO4c8x\nPlpNsf3hF/C+80/GJ771OD70307F2Scej5fHCjhpwVCT0mLeQKYmkQKwduuuutxprOhinlINZW/6\ny+/jgqULsWn1cowdLTXMo8e8ddUwqp7CDV97FJ97/1sxmMs2zaljGS9V8H8cPwcj480KkDn5DNZu\n3dVQZkqB//EPhlGaqDSqaoy5ddk/fHAYg7lmhc4xhYmDvH/85g/m4HkKR0tV3LjtMWOfzseiubVW\nr4XUOY5g3oADz1MYmShb2+ivAc2vA23tv+TLqW8MkVO3UtUQQjrDcQSD+fBbS7XqoVr1kBHBoaOl\nxJJRzztm4W6SD2kfpqYx5a1x5atnr7+voS54M7fZpgfv0GMxJL+2WJP0sS0azGv1dIJXYx+tptBq\njR17R7BsycK6IsWmtKgqNNm2a2vdqkJDme5X9evNeXTdjYYi5nVzB6xz6lgWzx+sj9WsjlFNZaY9\nvFVVY1Hj/NlddoVOWJZ0oVJbZDTuU03xElUXp3/c+V4rVHBjhMU+1TGEpEuhUk1kI96pUiPM4t2c\nK24s7dil2+ZNus9J+/TTdY7fhPgE1SDAMXWMfjWJUsJEqWO0+iZMtaLVJWHqDh2LOX6wzXFzck1l\npj18mKrGpmyxlYVlVQ/lM9ZxteIlqi5O/zjzxbXYJ4SkQ1AtaNKLf6Nh49mUi3Fj6STOdvZ5Oqtb\nOoXfhPgE1SAA6uoY/WoSpYSJUsdo9Y05jzmmVpfocYL1OpaJkhva5shkpanMtIfXqpqwuVuVhWVV\nF8pV67iFcjWyLk7/uPOF7VvQYp8Qkg762hV1XY2zJZ0vuJlzxY2lnTht8ybd53b69AtchPhoNYWp\ngNHqmGcPHrVmF2cEoeqYjMCqjsn49Talza2GIua1iZJ1Th3LwaPF+ljN6hhpKtMKlVBVjUWN8w8f\ntCt0wrKkh3IZ3Lrq/MA+1RQvUXVx+sed73VDOdy6yq7CoTqGkPRwXQ/lstugGGlHkaK3uI+ct6lp\n9HU6aSy/vOkS/PKmS7Dl2hVTqsJpp0+57MY+RmlCdYyPadtuKmC0OiaoMLEpYcxkJJs6plBy4Ygg\nn3Eans0ydyBrVYK4/m+nNmWKtofXYwXVMZ5SGAqoUKJUNaaqxLSmt6ljohI7bWoVbcMeVRenf9z5\n9H4MWZ53Q3UM6VP6+vwMSw7txEYcaKnaaDl/N2NJQjtKlU7URD1Oxqc6phtMulWs3bqrwdDlotMW\nYePVy5BxBNfc/jBuu2Y5rtr8EHbsHcG9H3k71t/9VFP7TauXY+3WXVh/2VtwyRceqJc5IphnZCXP\n90+K+YO1V23Q5ThSr8vns00ZzfV+xkl1bKxaG/OEq/fLNLYx524oC7TL5B0MBMaKoqZ0yTbsU5y6\nJG3itNfvj6lq+KUfIWnRKlFSX1c1+roJ1JSH+n0TXrXhWhiGVvMdLVas9bZrf+icFpQCPNX4JN2R\n8TI+9e0nQsc1beDDCIsrrI/1WMU8RmnBRYhPWCKoTvIMJqhGWbgHrc1nSgIRIYS0QyeJl928hkYl\nmobN3y5D+c4fHZG0fz/eb/or2h4SZvN9ZLKCjCMNSaE79o5EWrgHbc5pFU4Imc20SpSM8ziMMJJc\nW8PG6dTWPOybkE7HTdo/rH4633/6PidERPYBOAqgCsBVSq2Iah+VE2J79Puu50fxzrPegLGi22Ba\ndsJxA/jYJWfh4998vKH9gsEsDkyUccu9T+PVI6VYj50n04K+/s2dzHj6+vxslZMRZcZlmooFSZrv\nEGVcltRArGFcfxGSNxYhBdfDeMltuEfcumoYr5uTb5mf0m5ctmM13XNCZsoiZIVS6lCc9nFs201b\n8WKl2pBMaiaaFstVqz16RgSDflJknKTQYDKpTrBUqjHpsiEu12uZtEkSkfqB5CKERNCX52echFBN\nMPHScZx68n8Som66UfG0myyqH2Fhs2evLU6AoYEMCv4jM5LSQ7v1bsHE1G5g+ybkttXLUCx71m9H\nlr9xYf2bkQFHGmzSP3/lubjlX57Gaa+fi5UXLmno/49/MIzXCqrRMn3lMIYGMrjeGGPz6uUolKtW\ne3cdw4qli+q254QQMp2w3fCj/mc/J5uBI9Lw08Ec1Gzak3wj4HkeXBdNN18znuB4W65dgclytelx\nF62+DRlwpD6mvgrbYs07aGsB0sk3NFO0AOmY6R9haxSAH4rILhFZ2+4g2rbdtMb1PFjtci86/fUN\nFuratl23+fg3H8cN7zijbhVu1lkt07fvhuehoUzbCNvs3XUMUZbmhBCSJja79Cj7cZuCRo/RDdty\nM57geO3aqXfLlr0XY/WLdftM+Cbkt5RSL4vIGwDcLyK/UEo9YDbwFydrAWDJkiXWQWzqGG2xbqIV\nMzYLdbONqY4xCbMVnxdY3bayd9f1YZbmpD+Ic24SkhadnJ82lUZStUfU4ymSqkCiLNrD1JHtKE26\nqbSZyXbtmr7/JkQp9bL/egDAvwC40NJmk1JqhVJqxeLFi63j2KxxtcW6iVbMBC3Ug232HBi3WrOH\n2YqPFxvHaGXvruvDLM1JfxDn3CQkLTo5P9uxHw8boxu25VFxtDtHtyzWezVWP9DXixARmSsi8/V7\nABcDeLKdsbRtu2mN6ziw2uXuePZQg4W6tm3XbT5/5bnY+OM9datws85qmb5yGAMZweOfuRh7P/te\nPP6ZizEn64Tau+sYbl01jMFszYDHUwpHixW41VpGthdhgEMIIb3Edb3E9uO2Rypoy/V2bcvNLSqO\ndufolsV6r8YKHoOwLU17975Wx4jIaah9+wHUflr6Z6XU30T1iWPbbtqWV93GMq12MW3bM9lGtUvF\n9XD8UB7jJRdz8/HUMTZ58MKhfJO9+3ixZrH+0tgkFgzlUPUUPvzPjzFptXNSP1BUx5AI+ub8bKWI\nsak94ihaOlGJxI2jW3N0M9Zu73cYHSSyzl51jFJqL4DzujGWtm1ff9lbmuzYH//Mxbhq80PYePUy\nXPOVh7Fj7wieWH9xk6Xu7k+/Gzd87dF6WZi1u2npvvHqZQ1JsQDqCUibVi83MsWrVmvjz15xTlO/\njVcvww1fexSb16yIZX1OCCHdIiohMtQePcJaXFuul4qVSHv3JETZtJt26u3auSsVbUWfNKarNj8U\nadfeFVKyd+cdyse0Ww8mA+kEVDNRNU4ia1hSqZm0atrCB9uZCUhhiVOnLBxqKmPSKiEkLVrZigc/\nx020TCN5tJP52rFcD2s/ExNSNX2dE9JNTLv1YDKQTkA1E1XjJLKGJZWalu5HJiuRCUjB+IJtXhwt\nNJUxaZUQkhbtJlrGGXeqk0fbnU/fM5L0jWrfSXLrdE9k5SLERyem2hJBM36Cqk5Ivei0Rchbkoay\ngTJbYqpOWjUTTF8YmbAmIJmJWkO55sTZDauGMX8wG5K0en79sfaEEDJV6GTSJImWtqRU27hTnTza\n7nzBe0GcvlHt486bbzMBNu7foBf0dWJqO8Sxbf//2Tv3OCuqK9//VlWdR59+gN3iC0RAfEQUm4ca\novE6SUbUuRe9OkSYKGJyQ3SSgNfoNYl5tEbHMRBHmORjxMTgayAajSGfqJjMaIyJo4I2Lw3aCiJI\neLVAd58+j6ra9496dFWdXafrdJ/u06dZ38+nP92nateuXXWq91619lq/7Q0ETWd1v2y7R4Zdzxv+\noFVNhW6ayEsCWb2Bqa6ku0cCXlYXEZDO+wNYvbLycYWgBYJiWdK9z1T8ZnFgKlOEqno++yqPrmnF\n+61SZOB7I2rA52AFhg72uYpRYpDq4RuYWk5ksu13XzEZT7+5A5dPG+NbkK4zm0d3LlYg2+5I6gal\nf2viCna0d+PpN3dgztljsXVfJ+743V/dTJY1m3cXLIZ331VTkTNMLFrpz5hZ9dp2LPuvNnsxpClo\n0lQ3eNX5Xaeyg4sZeMZ983clld/2r/8wQC1hhhqapkDXEUm2vSGpuS55XTdCDZG+GiDC/gn2igmF\noOd71qaRtW1EUnPLdecMLFjViofmh6+R6tRRrIxD2AJ3jmciyDUr1hbIthdb3K+3NhaTgg+Tvh8I\neLSykcm23/LkBsw8/VhXht3JPhlVn5TKtssk3BetagVAbl2LVrVibFOtT379+gsm4uYn/NLsB9J5\nLFpZKNk78/Rj3c8s284wzFAlqmx7PlAmrE+T1RflJ2eKgnNElUjPSfZHqSNKuw6k8wX9/sKV4bLs\nMtn2vkjCR5WCHyzZd/aE2IRFXjsZLt6MFqdsULY9TMI9mHnjLd9QE0N9slAePkze3WmH85kzYBiG\nGYqUO9tkoLNDemubNzOytzqitDUVLz3bR9amUu/LUJOCZyPExolA9uZpe7NlvBktTtmgbHuYhHsw\n88Zb/lB3HrsPZQvO7ci7y9rj/ZzOGawFwjDMkEOWbSHr04LliEjapw109kZvbXP2F2tHlDIO+ztz\nke5HsP5gm0q9L6Wc07ui8UDB0zE2ssjru6+YjDWbdhVktOztyEhl22US7kvnNAMQWDL7TDdbZvv+\nLl8my30vtmHxbH9GzshUDEvnFkZLr9m0y/3MGTAMwww1TFMUyKQXywCJBTM8CFIZ8WJZN71ljATP\nEbVtccn+3up45/aZkdo1MhUr6Pe9MSHBn3dun4mH5k/3bQt+Lmdm0GBly3B2jE2YbHs6Z0gzWryy\n7VqsZ1/OMGEKgZQnoyWjGzBMgZiqQCP4yjvZLpmcAUP0kh3jybRJ5wzOgCkvFb+R1ZYdU2pgaqlw\nIKuPqng+TVNA7yWWIGoGiCxDo5zZMaW2TVEUXzZjOdAFYAoglVCRtjMeB4PevgPOjqkAxWTbX7zp\nAnzrqY24/+ppuPrB16TSume0PO/+veDhdQXbrnv0Dbdurxy7I5Ob8rgfvS6wejvTxS1vf+YpGIZh\nhhrpvAHZi22YJHlRGXKJjLgj4Q4AHZl80bqLEUW2/eTvrfHvMw3f/igEz7Ox5cJIbbn/6mmgEof2\nUu+DV55+MKZdwuCRzKaYbLsTJOoEonqRBaaGbQsGpjIMwwwnwgLlByIY0tvHllp3Kcf0p63B80QN\n1q0rMe02rJ5qGGuGfgsHiWDwqCxI1AlEDQvq8QahyrZ5A1MraXkyDMMMBOmc3BNSagCmQ7F+0tvH\nllp3Kcf0Jfgz7DxRg3U7M3rJnpC+3mNgcAJQw+DAVJtisu0jUzH825U9gaiyoB5vEKosWNUJcg3K\nsTMMwwwXUjF58Ghf5M976yedQNW+1B3lmP5Kw8vOE7UtWhnOFbXdlR6PODDVg0y2PSiPHpRODwam\nyoJVvYGsNZo6KCp0TMlUReBfqQykqikHpg4qVfN8hgWn9lWSvFiQpCyhIGrdxY4pp3x6lLq8ZeIK\n9fnL7ku7SwxClcGBqeVAJtu+bE4z8qbANx5fHyqdvnROM97auh/3/3GrK9Ge1gXyWR0LA5Lr6z5o\nx/RxTWiqjXNWC8MwwxJFIcTjhUNL3P7tuP4dA6I3GfFiEuJOoGqwbi/FzuN4A4J4l94Ik2Dvrd3S\n84XEeiQUvzR8MUn13trgeDecLKL+3N/BgF/JbWSy7V05A994fH1R6fRFq1oxdWyjT6L9QDqPhRLJ\n9RknHslS6wzDMOiRYY8iI94fCfFSzuOVSHfK9VX+vJTz9fWYsPJeifuBvr/9hT0hNjLZ9qjS6U4k\nsxONHCbH21ATY6l1pl8M9BRItcKL6VUf/cluGczzFMuaKVbfQGftRC0/1LNmhk5LKoxMtj2qdHpn\nxp8JEybHe6g7z1LrzJCGjRxmsCg1u6WvGRz9yaLxHh8kqsx7Kefri4x7b+UH+v72l6oPTCWiiwAs\nBaAC+JkQ4l+LlS+mmNrnmJBdB30xIYYJ5A2TY0Kqi4p/IVEC/9hIKA9V6AmpiuezFKLGhAD9C54s\n5TwO16xYOyAxIcXiO/pyTFh5RVEix4QA/Q5O7dezWdVGCBGpAN4B8PcAdgB4HcBcIcRbYcdEyY7x\nyrZn86ZfTt0jne5EMsck2TGqnU3jlWHPGCZLrQ9dKv6lsBEyeLARUjoDZYQAvcul9zdostQsmnKV\nK3fWThiOpHxCIWiaNcYM4v09rLNjzgbQJoR4HwCIaBWASwGEGiFhOJ6QhqSGfR1ZLFrViqMbErhp\n5inYuOMApp3QiFWvbcdlU8bglic3uFblj/9pCoyApbl49mQsWbMFuw9lXauzPZ1DY4o9IAwz3OH4\nlN4pmrHieUsvhwECWJkfug4kYELPW4N1MQ+Bkx3zlkdm3Vve2Z5QyB0vZPU4WS/OwB92Tsfz8lbL\nhT2ZMnkDC1b6x5W6hIaU5H6YpumTf5B59qN4YirB0GtRaYwG8KHn8w4A5/SlIic7Zvm8aW408Zob\nzsfNT2zAfVdNxfX22i+3PLnBnV975f396Mjo+NZTG33bbn5iA1pmTcLMe1/y1bl83rSCtRAYhhna\nsPep/DjZGE5fC8DN3PCtdyJZP6a/53Qodm5nu3dtG2/5sO3Sa4hwTmm9K1sLxpW7Lj8Dal28sGLA\nd6+82Z69tquM97gvVLsREgkiWgBgAQCMHTtWWsa75osTTeys9eJktRRbV8aLN4NGtp4MwzhEeTYZ\nplIM1PM5WJkxsnN6z9XbucOyXfqaBdNb2d7qPb4xFUnOXZbtOVTHoGp/Ld8J4HjP5zH2Nh9CiOVC\niOlCiOmjRo2SVuRd8+WscY0A4K714mS1OJ+9OBk0XrwZNLL1ZBjGIcqzyTCVYqCez66s7utrHZx+\n0vtT7nNGObfsGG/5qPVEPWfUej9sT4fWHaynlHZVkmo3Ql4HcBIRjSeiOIA5AFb3pSJn7ZiYR4P/\nvhfbsHj2ZLzy3r7QdWXqk1qBZv/i2ZNx34ttPv1+XjOGYRjGIuq6L+XsM51zRllrxdkeVr6va7YU\nW3usoN65hePKyFQs0howzngWpV2VHpeqOjsGAIjoEgD3wkrRfVAIcWex8lGyY7zrw2RyBgwh3KyY\n4LoyKhHimuLLmFGJkIwXrh3Da8YMaSoeMczZMYNHFa6RUxXPZyn0lrFSrqBU2Tkdws5dju3eNFkv\nsrK91ZvOGlAI0EKeAtm9CmZ7yjJtynSPD+vsGAghngHwTDnq0jTFDdBxfqc8c2j1qr0v6fyOSfZ5\nttl/czAqwwwt2JirPFHWfRmoczqEnbtc22WTDbKyvdVb14esFt94ViEhsijw6MgwDMMwTEVgI4Rh\nGIZhmIrARgjDMAzDMBWBjRCGYRiGYSpC1WfHlAoR7QXwQcjuIwHsG8TmlBNue//YJ4S4qJIN6OXZ\ndBgK96pcDJdrGYzrGIrPZzV9f9XS1mppJ9DT1n49m4edEVIMIlorhJAvmTjE4bYfHgynezVcrmW4\nXEepVNN1V0tbq6WdQPnaytMxDMMwDMNUBDZCGIZhGIapCGyE+Fle6Qb0A2774cFwulfD5VqGy3WU\nSjVdd7W0tVraCZSprRwTwjAMwzBMRWBPCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzDVAQ2QhiGYRiG\nqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoC\nGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHCMAzDMExFOOyMkIsuukgA4B/+\nCf5UHH42+afIT8Xh55N/Qn76RcWNECJ6kIj2ENGmkP2nEtErRJQlops8248noheI6C0i2kxEi6Kc\nb9++feVqOsOUFX42maEMP5/MQFBxIwTACgAXFdnfDmAhgCWB7TqAbwghTgPwSQBfJaLTBqSFDMMw\nDMOUnYobIUKIl2AZGmH79wghXgeQD2zfJYR4w/67A8DbAEYPZFsZhmEYhikfFTdCygERjQMwBcCr\nIfsXENFaIlq7d+/ewWwawxSFn01mKMPPJzPQVL0RQkR1AJ4EcIMQ4pCsjBBiuRBiuhBi+qhRowa3\ngQxTBH42maEMP5/MQFPVRggRxWAZII8JIZ6qdHsYhmEYholO1RohREQAfg7gbSHEPZVuD8MwDMMw\npaFVugFEtBLABQCOJKIdAL4PIAYAQoifEtExANYCaABgEtENAE4DMBnA1QA2ElGrXd23hRDPDPIl\nMAzDMAzTBypuhAgh5vay/28Axkh2vQyABqRRDMMwDMMMOFU7HcMwDMMwTHXDRgjDMAzDMBWBqDkB\nKgAAIABJREFUjRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHC\nMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEqAhshDMMwDMNUBDZCGIZhGIapCGyEMAzD\nMAxTEdgIYRiGYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzD\nVAQ2QhiGYRiGqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWB\njRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMRKm6EENGDRLSHiDaF7D+ViF4hoiwR\n3RTYdxERbSGiNiL65uC0mGEYhmGYclBxIwTACgAXFdnfDmAhgCXejUSkAvgJgIsBnAZgLhGdNkBt\nZBiGYRimzFTcCBFCvATL0Ajbv0cI8TqAfGDX2QDahBDvCyFyAFYBuHTgWsowDMMwTDmpuBHSD0YD\n+NDzeYe9jWEYhmGYKqCajZDIENECIlpLRGv37t0bWk7XTXRk8tAN67cpBNJZ3f3bu88pm8vpPfv0\nnn0ME4Woz2Y14Dz/3v+HoVQfUzrD6flkhibVbITsBHC85/MYe1sBQojlQojpQojpo0aNklam6yZM\ns7CTM4SASlR4gGSTW5dpcofJRCLKs1kOBnpAl/3/mP34Pyh3fUzfGKznkzl8qWYj5HUAJxHReCKK\nA5gDYHVfK/N1eMK/T/EaHPY+RfFbIfs7c+jK6YgphLwpoKiEjkwehsGdJlNZBmNAlxnwzva+GD/F\n6htoTFOgM2t5ODuzOkxT9H4QwzB9Qqt0A4hoJYALABxJRDsAfB9ADACEED8lomMArAXQAMAkohsA\nnCaEOEREXwOwBoAK4EEhxOZytElRCdCtzsgxKmJC+PYJ+7PTPTXVxVGjqejWDSQUghCWYWKkYkhq\nCjRFQc4wYQqBVEJDOmcgFVMLjBmGKTfFDQQDtQkNXVkdNZoKTRvY9xLL+AG6df95Af+2RJH/i45M\nvuix/bkO0xTQdaPn/1tYnzWN/1cZZiCouBEihJjby/6/wZpqke17BsAzA9AmAJa3I5+3pmOEGSzT\nSx2mcMsZAujozqE2ruFP7+7F11e24qxxjVg2txm1cQ3JuMpGCVMUXTd7HbidwTdYttiA7sUxEAbD\nECn2uT91Odv6eh26boRuj8cr3l0yzLCjmqdjBoW4QjCENb0C9Bgojgsk2L07n03TxLee2oisboIA\nLFzZCkMI/I+Tj8LP5k1Dy6xJaKxNIGeYuPGXrfjyQ2uxvyvHrl+mgLDplLApFtnAfCCjY8HD63Dy\nrc9iwcPrQs9V7umOqOctd319nQYaTDjwlmHYCOkVw7YJHOOA7CBVktw50zTx7p4OHMjoAICWWZPw\n+OvbYQqBi04/GrUJDZ05Hc1jj0DL6s045TvP4vpH38CNf38KRtUnsHDlm0jn5W9izOFLmGEQHJAP\nZHRp2awpsGhVK155fz90U+CV9/cPSDuD7Sn3ecPqi2KYVDqoVWZwcOAtw7AREp2Ag0IIQCVCzuO5\nUBQFpxzdgFRchRZTcdzIJL5y/gTUxFVcfPqxyOUNLFrZigPpvK8jveXJDbj90kk4uiGBVFx1Oykn\nKM4JlDMCb3cc9Hr4oIueKUAh5APyolWt0mNrExpe3xaqB1gWZO0JO6/MaIhiSMjqK8XQkXlHgsZB\nKUT1ZIQZHGFtZJjDCZ7k9JAzBUwBX/yHRpY3JBiQCv8vF0MIvOyJ+1g6pxkjkxoaU3F06wYemj8d\nqqZgY8uF7px9Kq4imzdxx2Wn++pyg+JiKgxToCuro70rj1Rcc4Ne6+IaunUDKTuuxKlTJUIyrrqx\nAt264f6OKwRVUXxxA9LyMRXdeWNQAhaZcASAzqyORata8fq2dpw1rhGPffmcggE5zNDoyuo4a1xj\nnz0RsniU4PMgMxBk582aAiOTGpbPm+bW5zUkAPg8HN5rXj5vWkF9/TGwSh3wgwGxck9GYSyKaZoF\n1/LQ/Ol9ajPDDDd4ZLExYcV/KOSfatGDHhC733FiRGR85pSj8M6dF2P5vGloTMWRNT0xJeiZ0jEN\nAWG/4XbmdHzZ8ybY3p0DICwXuyGgEJCKaWiqi0OYAo11cSQ1paAd+zsy1vHpHG78ZSsWPLwOGd2A\n8LRZt40qw/ay7O/MIZ3X3fKdOR2GKaAohEzeQGdOl771ZXN6wbZgSqNhFHpvOAWyNHKSt31ngPfi\nfA56FRIKYemcZsyY0ARNIcyY0FT0fFGnDbzlZO2JS85bo6kF7Yvq4ZBdh+y8snsQtq2vlJKS7DW8\nnH6BYRgL9oTYeK0xrydEtT0hbkyIp2CYkJlzuGEKZHQDbXs6MPun/+16Rt7auh/3/3Grmx2Tsadp\nvG+Ci1a2Yvm8aVi0yvq94OF1WDqnGTsPpDF6ZMr97dR19xWT8fSbOzDn7LFYNudMLFy1Hi2zJuGV\n9/YhnTN8b2GLZ0/Grb/egt2Hsrj7islY3boTl08bg5tnnoK7n9uCzqyOm5/Y4Jb/0efPBABc/+gb\n7rZlc5sRU5WCbQ0JDV05HbUJDbm8gUOBN8Clc5rRWBu3ppkMAd0wIWIKOjI64gohFistUyj4lu54\nlQwhXI/OYKagDgSyQdoZkIP3NsyrEPQ+RCXqtEFCITw0fzqypnDPQZLzdutGQftkHpMwD0ewPtl9\nkN2DqN6Wh+ZPj+y1iFLONE2p14RhGIvq65EHAcdjYJoCOdMyNJwB0TFQTDtiVZOMk6rzWyHEFcKp\nxzT45u2njrU6XCdjJiXpcF/f1u52xLUJzT32xFH1vt9OXbc8uQEzTz8Wi1a1Ihm3jpt4VB0umzK6\n4I3y5ic24PoLJvqOu/mJDRhRE8dX/24ibn5ig6/8Nx5fXxDHslAS27JwZSuyhnDfNjO6KY1b6MoZ\naO/KQVEJqn1fTQHkTQEhrB/TFKHS+U5sTDqrFwQIC9P2Nkm+12oN/OvK6nir5UJsbLkQ7991CTa2\nXAgABW/XI5PaoMR/9IdiBlUUD4eM4H2QnSOqtyVq8GvUck6wsMwLE/T/sT+QORxhT0gvJBRCVjJd\n4MSIyAiWVj1/v76tHXVJzf27NqGhI1P4JnjWuEZ0ZXUs/MxE983VOTb429k38ag6t86zxjWiO2eg\noSYmNXAmHlVXcFwqoeKko+uk5Y9vTEXaVpfQ0DJrEk46qg6gwjiF17e1oz6p4eOunKWhYt/bdFZH\nTVzFgXQOj/33dsw5eywWrWrF0Q0J3HbpJDco0zAFOjM6/vLePpw7cRSSRNjfmcN3n96E3YeyWDqn\nGXUJDTGFkNENt37DFMgBiMNEtdnepbxJOwaL1yMxlAiLT4ni4ejPOaJ6W3ozVgCEBt3KyjmeTJkX\n5qDESzgyyV0yc3hRXb3xIOEVKwvGhDhv3qYhCrJjZCiqgqwp8P5dl2DD9y/EE9d9Ep12Cu9Z4xqR\nzhqojalYOtf/JrhsbjMUAq49bzxqExo2fP9C/PX2i1zDpNM2XLx1te3pdI2XpXObkdSU0NiBtj2d\nBcels0Zo+Q/b05G2deV0nNBYAwERWldXVkdTXRyAgEKE7pyBJ9Z+iM6sjpqY5np0Xnl/P777Pz+B\nbN7E9Y++gZNvtVKas7qJvzvlKJj29zQyFcO//O8z8NOrpuHI+gQAK44iqamup8XxSlWfH6S0AMqo\nwmSDSV/jU0qJozij5XlM+NYzOKPleek5YhG9LbJtxYJueyvn9Wh6Cctukr3wMMxwhs1uCU7gqBCi\nJybE8OuEAFZMSEIhnHzrs+6bTGc2j/pkDI1O7IGnT2nvymH8kXXI5nXMmNCExbMnQyHg4+4cRiYK\n3wSDc85L5zRj3QftmHP2WOzrzGDpnGa8sb0dMyY0uTEhS+c0I6EQ2j5OAwJY90F7wRvl4tmTsWTN\nFt9xi2dPxnee3ogJR9YWxhrMbUZCVTBjQlNBTEhwm0oEBcDB7jyI5HELNXbchzABEJBKaLj2vPFQ\niJCIKThuZBKPffkc9y1+wcPrpG+Xiue7MIXAQ3/Zivf3deGmmafgqNo42tM5ftMsA/2JmwBQ4AEo\nJT7ljJbn3b/fuX1maDlvtpnsHAqAVFzFfVdNRUNNDIe681Jvi2ybzIsStVzY9mIGC8McTpCbcnqY\nMH36dLF27dqC7bmc1XllzcKARpUIcVUpCIBM5wz3zfPk763BjAlNbhDpv//TFHz9P97E0rnNWPXq\ndiz7rzbXAGhMxaGbAnVJDemsjj+9uxfTxjVi0Ur/wL/q1e245w/vum2cMaEJ9101Fdc/+gaWz5vm\nBnJ626MbBmKqCgH4AjLD0nFTcRUftnfjnt+/g9XrPwIA3Pi5k1wPTFdWt4wDyfXndRN5j9vfSen1\n1u9MZzllurJ5nHf3i/j3uc2YdkKjrxP/0efPREwhLAykop5867PQPW+ImkJ4586L8YUHXvUZGKoC\n7OvMo2X1Zvd78Hb8zvdTn4zJHo2KuxCKPZthg7733nq9ILLtUbbJ0mKD93Fjy4UF2xwDQXaOk7+3\nJlI577YaTcWp33vO971HPXYgtkW9/7IXh5FJLdJ9rdbnkzns6dezydMxMiS31A1WlXhEtJiKjS0X\n4oF5U903nMbauJvlcuVZY31Boaaw3tyFAPZ15nDuxFFudozrml3ZipmnH+trw+vb2tFQE8MjXzob\nAKAqCm78ZSs+OpABQPjoQAa3/fZtpBIafvHyVpx867P4xctb0d6d8wfLdefddFwiwufu+aNrgADA\nsv9qQ21CwyOvbIMphJWuq1qL8qWzVoDdNx5fj31d/no/OpCxzmenB//i5a0FAXkKKfjZvGmYceKR\nBe7obzy+Hl05I1Iq6qHufIErO66pvriY4fKmWUoQZLnPEzVuohx4r6VbNyLHgZSSetvXFN2oU0Oy\nYGHZdtmUkePFZJjDierrkQcBb9at86cbJ+JZYTdITFGg5w03vgKwBr5RDQm3jBMA+oUH1vYqPOUE\njzqcNa4R2/enkYqrWPdBO6ad0IjbL52ErzzSkya7ePZkZHIGvnjeBHz17yYinTdQG7eCRX/yQhtW\nr/8I33h8PX74j5Px6R++gO3701IX8vb9aVxyxrEQArju0XW+N7uZk47GjBOPdLNoALiZNj/8x8nQ\nDYF7rmzGoe48Hv7LtoKplPuvnuYG1gavecwRNVhzw/mYeFQd2vZ0okZTpVM6v2ndCQCYdeZx+Orf\nTcTEo+rQnTPwt4PdbjDvljsu8gm4xRRCV1YPe9McspQSBPnQ/OkF6qphBN/OZc9h1CDPYnin7Irh\nvZaogalhqbdhBKeB+jvV1B9kwbgMc7jBRogEr05IWB8ukQdxWTx7srvfa5A4n53UVsDqNMMMgc6s\n7uvA775iMpY8vwV7O7LutMx9V0311XXzExtw/9XT0J03kDMIX33sTV/Mxg8unQQQoS6hYsP3L0Rt\n3AqK9U4FLZvbjJxuYuWr2zGrebQ0HiPM0zD6iBrfNMn986b6pnaAnmmiv/7gIry3t8s1jhZ+ZiLa\nu3JoWb3Z15Y6T7yMFYgr8Nym3Zh15nG46cJTcMuTPZomP/6nKZhzzlj84uWt+OJ5432DsSmGZuBm\nb5QSUyBTV5UNrLKMjaixD6VmrvRFnwSIFjvSH69Mf/VEGIbpP2U1QoioBsBYIcSWctY72Hgl2p2Y\nBhFIUPAZKvZIF4upyOQMjKiJoSam4sWbLkBdUgUgoCnkDqq3/3azr657//AOls1txsKAIfD0mzvw\nwLzpqImraNvTiSXPb8Hq9R9BU8hNvW2o8b/VO2m7X3lkHe66/AxfZ7pwZSvunzcNK17eisumjHEH\n74WfmYifXj0N9UkN2/encefv3naFzI4bmSyo3zEGZIbT7oMZtMyahIlH1aG9K4tM3vTHutjBteOa\n6jC2KYWGpIbv/sMnMHFULeafOx4r/rzVPb5tTydWvrod15w7Htc90uONWTL7TPz7PzWjM2Pglict\nb8yK+dMx9YRG1CWtti04f4I77eX73vryQFSYUoIgcxEH1qgCaIDcGOir+FkY16zoW6xBmFcmiodD\n5vmJ6nUKIywmhGEYOWWLCSGi/wWgFcBz9udmIlpdrvorgRA96qeyVXNVsgwUrwy7bgor88MuoykK\nYnYgZcusSTAFsPtQ1lfP7kNZqERomTUJW+6wytXEVDy3aTd2HujGVT97FTPvfcmN23BiIpzfXhzP\nSzEdj5mnH+sO3ropcM8f3sV1j6zD9v1pXLDkRTzd+pE7vdIZGGCcAbA7b2Dx7MkFacWaQu4KwV1Z\nozDWZVUrpoxtxLee2oiTb30WNz6+HlnDxP/59ATUJlRcNmWMe3zL6s24bMoY1MZVXx03PbEeCU3F\n2KYUXt/WjhXzp+O040bgK49Y8/1feWQdTGF5BLzbgtdSLSiKEjmmIGoMR5gYWKXkxR+aPz2yrLwX\n2X2IKkLWnxRdIJqAWdiigg7ljOlhmGqknIGpLQDOBnAAAIQQrQDGl7H+QcMJPlUUQt4UiClUMLdO\nSk+KrnucaWJfZ8aeihEYmYpBtSPmT77VGlRVBVgy+8xCTRDP4N2y2vKULJ3TjDWbduHuKyYXDDav\nvLcPS+c0u9uc34tnT8bB7lyojkc6a7jBm15e39aOsU0prLnhfMw68zh3W0NNDDd+7iTfuWtiKo6s\nS2DJmi2u4XTfVVNRG9ew0NMJH9+Ykp6nzlaADQbrpnOGzzgKM4Qcb4wzYEy1s2y8x+mmwM4Dadx/\ntTWg3n/1NOw8kO5V12Uo0q0b0u2yIMioA2up68l4UZSBiWfvq/HTV8VU2T2Iqt4aNYi3t6ki1glh\nDnfK6SfMCyEOkj9Yoir/o7xej7hiCZLFAncqOD0DWF6TMSNqYKIne4YAjEhqeOfOi9302CNSittZ\nHurO43u/2YzLpxznBmx2ZnS8u6cDnzimAfM+NQ71Add3TUzFeSeNQkIhqJriHrf7YAaaQlj52nYs\nndMMRfEHBS6ePRmAcMXJgq78d3d3omX1Ztx9xWQAwN6OLNJZHfPPHY+vffaknnTfvBXsectFp0JT\nCc7XnIyrvgDYsPM4QmkOTrCu83dwX0MgkNQJnK1Lqlgy+0xpkGsqpmLSMQ1up04ETDqmYcAG0IGk\nNqEVpCmHaWaUEsNRypTKgod7psMcT0wlyJnCp4ILSTtKCaaNMtUku39RVw0uRem1WrO3GKY/lPOJ\n30xE/wRAJaKTACwE8Jcy1l8RerJjei+rKQoyuuEaIAfSeYxMxaAphP0dWax8bTsunzYGS9ZscSXG\nV722Hc9s3IW9HVksnTMCv35zB57btBuLZ0/G/q4cbnpiA+67aiqab/+9ex5HT0AXgAay032tNWhq\n4ypmNY9GKq5CNwXuuvwMHN+YwoftadQlNBhCuN4Vb0CnE/TqeB/uu2oq6pMa9nf2CH4t/MxEV07d\nq+3R3pnzaXs4RsxPXmjD4tmTfYvhOfonXpxYEt0UoQG6L950gXsdtXEVP/jd29jbkcWS2ZOlnb9s\n+fSe+fnqMkRk15c1BV5+dy9mnHgkAGtA/s939+KzpxxV9hiOa1as9cVDxIroZkTFa9REXSDuF/On\nFyzGKDu2HMG0QYL3L2oQ79I5zZHP4Ux1Vlv2FsP0h3IaIV8HcCuALICVANYA+EEZ668IzgJ2cLMs\n/Km6gEc7xB7buvM6bv31Ruw+lMXi2ZMRV+NorIvj2vPGQyXCPVc2u16Fa8/r8TLEFMLVnxyH/3Hy\nUUioiuvRcNzCBcqkBIAsSXJhWi+FikJoqovjV+t2AAAumzIaREBTXRw1moqMbuCac8ej1qMe+e7u\nnqBXwFnfJYa2PZZnxOlovXLqAFxtj2AA7C1PbkDLrEloWb0ZdQnN9dQ41zj3nLF45f123/Xc+bu3\nYQprquqmJ9b79plC4FtPbfQFpjrtPGZEDf70zp5IK6k6mT3xgXtcBoSwN/Gvr2wtEHH76+0X9WvF\nVq/BAQDv33VJwRu/TH0UKC2DpLfsE1n2Tr6EANGBDqaN6l3qzWPk/b9mnRDmcKRsRogQIg3LCLmV\niFQAtUKITLnqH0y8su0C9uDuZMzY/btXadbZl9dN/OndvfjUxFG458pmvLu7E0+t24EvnjcBRASV\nyJet4V2HpmejZTCk4paB8tQbO/CFc07wZYzc+bu3cc+VzTj51mex5Y6LcUbL866K6Mm3PmsFwf72\nLQBAy2/fcvftaO/Gkue34N+ubMYp37Hc+2tuON9naAA9UybB2JGwWBJZAOxJR9ehZdYkPPyXbZh5\n+rFoecRSMV3+0vu48uyxvutxgnWdNjj7OjJ5ZHVr3RjvwHPTE+vRMmsS9nZk0banE/NXrMWv/3mG\nr/MfTmJlQLQ38bPGNaJbN0oayLyy6DKDI2waI66QO9eq2hlkpeh1eImavVNqOq7X2/LYl8+Bni+M\nrQkaXe/cPjOyMRXVqFE1BUbI6s2sE8Ic7pQzO+Y/iKiBiGoBbATwFhHdXK76BxOvKmrCDk51DQW7\nnyCJUIimKvj0SaPw0J+3uoGol00Zg5q4dZsNYaXqmqYoqEMl6zwOhm4irhCe27QbOz7uxsx7X8KJ\n334GM+99CbsPZd3BwbsQnZM2K8uY6crqrrfjw/a0++b2kxfaCgJf775iMn7yQpsb0+EQ/OzULQuA\nfXd3J2be+xKW/Vdbj4ppXMPnzxqLhKb4gnAVAD/6vBWs+8zGXWhZvRk7P+7Gw3/ZhlH1iVAht8Wz\nJ+O+F9swY0ITRo9MoW1PB/Z35lAblwdoOveh2pAFKxZT3CxFQdRLfwJY+6PXETV7JyyjJ4xgJsw1\nK9b6FrrTYmrRdNxi6rSybVpMLWgDAGTz0T1THJjKHG6U87XwNCHEISL6AoBnAXwTwDoAi8t4jgHl\nQEbHzgNpjB6ZwqJVrVg250wIkLvNUSktiDOA9dblaGDMPWcsvvqZiUjnDADCVe10DI14rMfTAgAg\ny9tiuFM+gC6sYMqlc5sRDywUt3ROM/Z2ZHwL0S2d04z39nZIp2+seWmBZzbuwowJTRiZirkCZc9s\n3IWJo2p9QbEr/rzVnZrxxo6s2bSrwAXtrPciE1UDAqv75nQ0JDXENcX3BpiKq8jmzYJt1543PvSN\nP53TcUQqjnuubEZnRscbH7Rj/oq1mDGhCQ9cMz10fr4a3zZlgakbWy4Mdf1HfUM/kPGL4fUngLU/\nKqph8RUPzZ9esDZLcFtUomqtRNUJyZqi4L7IPC0AoFE03ZKlc5rRmKq2yUKG6R9lW8COiDYDaAbw\nHwB+LIT4IxGtF0KcWZYTlImwRZg6MnkseHgd7r96Gr7yiLWwlLNQl7PNUSmVLTp1RsvzBQvMOYZJ\nQ1KDplgLwMUUcv/2DrhdWQOaYi38dqg7D00haAqBYK0R4y3vLEjnXSjO2VajqTBME7lA553WTTTU\nxNCR0RFXCTFFQTpvuLEaCgE1MQ2ZvIH2dM4NJl34mYm45tzxqE9amTx1cQ2dOR0NNTHs78wiFdeQ\n0BR0ZnU0JK36H/rLVnfBPmeV3sumjMHoI5IgooIB9f27LgldpM40Bdq7ClfDbayN49TvPoctd1yM\nE7/9TMFxAKDnjYJBTIupvtV3PVTcOunt2QzGasju2VstFwLo+wJs/dnWn3OUIp8etX1RFs6LsrDc\n+3ddUvAs1WgqTNOMtIBdTVyNtAggL2DHVCn9ejbL6Qm5H8A2AOsBvEREJwA4VMb6BxTnDcib7hnc\n5qiUevHGGXjL1NpaGE4wpG4arvpqMN0XAOKqPe1jCqgKIZWwVthViCB38lpvWEFIAXK6o21iDVBa\nTIVqTykpBKRzOkam4q60vEoEQwiArCmjo2rjblzGRwe60ZnJoy6hQlEIikpQyJpS6soaaKpL+AZD\nZy0XJ9g2FVMx8/Rj8fSbOzDvU+OgEBW8fe4+mJF6OzoyOgjAqte2+2JIVr22HfPPHR+uhZIzIIQo\ntZMfspSimBpGuRVOo56jr/EV/YkxcdjYcmGv1xslHVfPG5GuIywYOqoyazXHLDFMXylnYOoyAMs8\nmz4gor8rV/0DjdOpe+XIg9scldJgx+90ct4y3gXsahMa9nVkoSWtKRlv4Cvg1xxR7Lc407SCYjU7\nA6ZXAmUUwKfk6qUmprn7drR3QVEUfxrtnGaMb6wBESzBNY/mCWBNExEBxzQkrDVgbr/I56mJe6Y8\nhACOG5nE1z57EjI5A4YQeOSLZ/s9OzEVP79mOgwhCrw9NZqKL3xyLDRFBRFw7Igk/vmCiTDMnumb\njS0XuuW9i9U98qWzXU0TZ4CpRp0Qr2JqscGylHRQB29gapj2SF/pj9y5bOAuhf6kEEc1iKK0+fVt\n7ZF1SzhFlzkcKWdg6ggiuoeI1to/PwJQW676BxqnU3fiKmZMaEImp/u2OSqlsmBAr5Lp4tmTXQ0l\np2NZtKoVeVNA9RgLXuMjbwq07elwg9zau3J4+d29OJDRYRqmLwCuPZ3D3o4MDmSseWhv+Z0fZ/CL\nl7f699nl29M56IY13XLjL1ux4OF1SMY05HRDqtzoykl359HemfO1YU9HFhnddOv17juY0fHSO3vw\ni5e3uvtu/GUr2tM5xBQqKN/elUO33VbvNbbt6UBGN2CY1kq+jvx6e3cO3XrPPfGexzlet6dxhoMs\ndimKqVFRFAWneQwQh74GtcqIGqwaVVI9Kv0JLo16HVHb7I216U2ZtVpjlhimP5TztfBBAB0APm//\nHALwizLWP+CMTGqYeFQ9GlNxLJ83DU31Sd+2804ahcbaeEHHryiWamljbRzTxzWiLqEBEG7HElPI\n9Yj4uhj7Q0Y30JXNY/TIFH42b5prCMw48UjXIAgaCaPqk759Tvlbntzg6nlkJeU1VcXNT2zA9RdM\n9O3z4rTVOd83Hl+PrpzfULnxl+txIJ136w22b+rYRp+uyPUXTMTNT2zwaT14y3dk9IKiK304AAAg\nAElEQVRtJ46qhy4rv7LVXYlYN4XvPF7Zdtl5wgb0oUx/Ml4cgsd360bBgNnfwTu4LaohEVVSPep5\noxoNUa836noyYYYFIF+Tpz9GJMMMF8r51J8ohLjC8/k2Iiq+etMQRbZYnaMF4sRROGm2zj6yX7KT\nMdUNgLzvqqnQFIKCHo8IAYD91u9k00w7oREja+K4dsVat4MKxpd4cbaFxaO4KbGefd7yThnvPi/B\nVNYwLZDjG1Mgkkut1yU1TEz06Ip42xRVa6Qu2dP+YuVl+iW9xe9UE7LpmFKQZXJElSKPuty9bFtY\nto0sGDSKpHrU80bNeol6vVFjcmRtLtWz0XeZOYapTsrpCekmovOcD0R0LoDuMtY/aMjWhSks1POn\nM+3x0QFrKuRgVocQVoBpXCHsONjtulrTOQMmeoLWHG9H3hS+QdIbXxIcdLydoCwexU2J9ezzlg/q\ni3Rl9aJu4bAA0A/b06Eu6M6M7tMV8bYpqtZIZ0Z3r6lYeZl+Sdhx1agTUqr3RuYZOK3leZ9GBlD4\nJh71jb8UIbHgOWTeh3g/tEiieiT6u2JulFWMixHVk1V9EUsM0z/K+cxfD+AnRLSNiD4A8GMA1/V2\nEBE9SER7iGhTyH4iomVE1EZEG4hoqmff/yWizUS0iYhWElFSVkd/CNojjoGieII7tJiK5fOmYfQR\nSVx73niMSPQEfiqKglH1Saz7oN3tgB1RsqC3w2sQeGNQnJgTr5GwtyMjjUe5+4rJrp5HQlJeNwyf\nyJdTLugWvmbFWvd8P/r8maiNq7423HPlmRiZirn1Btv3xvYeXZEZE5pw34vWOjKxEJd1fVIr2Pbe\n3g5osvJzmzEyFXO3ec/jXVV4uMy5hxkRwYHtQEaPHKsQVQAt6uDdn6kXAlx5f2fFYxmlnDeK0RD1\nesOQTbHIiDrtU60xSwzTH8qmE+JWSNQAAEKISOm5RHQ+gE4ADwshTpfsvwTWujSXADgHwFIhxDlE\nNBrAy7BE0rqJ6HEAzwghVhQ7X1iuey5ndQBZU/gyLXJ5A3mvPkCsZxXZ4D5HdMu0F5PzumNPa3ne\nJ6s+4VvP+HRF7p83DZmcgRFJDTlTuOdJKARFVXxZHk77nGkfb7tScRXpXGCfJ9MkTF8kphBimoJ0\nzvBdo7PybyKmuKJrzrXmdRP5wP1ysmNigXPXJjQ3OyZYviamIqebodkxHTkdCgj1NZaYWipWqIUi\ny47RAvctk9PRVJ8cFjohYToTj335HOmKu7JMjmC5tjsujqR9EabhEUXXA0BBu8M0PGTbyq0nogQ0\neErVO7lmxdqiGiNh3wnrhDDDiMrqhBDRjSHbAQBCiHuKHS+EeImIxhUpciksA0UA+G8iGklEx9r7\nNAA1RJQHkALwUWmt70EXPbobTvyHaYpCV5HHZnP6FK/MuyGEm9LqJTglEvR2xBWCltCgKgpgGj2p\nurBEqAD/ejUqWZojwS+QiGAKa209xbSWPVdUQmenjpxm4rbfvoWJo2oLVsN11Fd3H8piRSCdUaZH\nAsDO9rG0Q8iwdEmm3P576KbAivnTMfWExp57aViGmUO9psAwLLeSolj3LebxUpDS8wzldROLVrXi\notOPxqXNo6GohG69pzwRQVHI7bzrkzF0ZPK4dsVrw1YnJCy2Jmqsgqxc2LozUReDixK3Uu7VbKOe\nFwDSuokD6TxScWt16OMaEtLF/qLWF1xduJTvhHVCGMaiHE98vf1boNAiKoebZTSADz2fdwAYLYRY\nS0RLAGyHFXvyvBCiMOcwIhpZnVR3zvImCGENjt15a6ANam2E4Qp/BXCmApbOaUaNPX1TE1Nx3kmj\nfJ6N9nShOuizaz/Ec5t2u+qjc84ei9qE6luga+mcZqx6bburVLp0bjOSmoID6TzqkzHUxFXUJzXc\ncdnpUBXC/3mopwP9yvnj0ZCMuav7dtuLxjl133fVVOQCb4dOWy6fNgZLfm0ZL0vnNmPhZyZi8pgR\nOO24EfjKI/72Nabi0DR7HR3DxH6JEmrwWueeMxZ1CQ0r5k/HwYzua5e3/LK5U9BUG3eNt1RMlepo\npELW9xjqRF3ALuogH7bcfX/0Nfp6LaUgW3AuSNYsFKp767aZ6MzqvtWYi3lRZPRlsb+w74R1QhjG\not8xIUKI24QQtwE4EdZUifN5GYBx/a0/DCI6ApaXZDyA4wDUEtFVIWUXOPole/fuDa0zpSluRkaB\nmqhbWYS2ef5WFAVZU6AxFUfGENh5II339nbhjJbncfXPX4MQQGfOmhuWzR0vWtWKS5tH45X39/vS\nbw0TBeVmnn6sL41VgPCtpzbilO88i+sffQM7P85gxZ+3Ip3TcXRDAgCwYv5012Bw5qY7szpG1Sfc\nug6k8wXtctriS/dd2Yr5547HVHt9nWLpsem8EelaF65sxZ6OLHIh9+Z/TxmDV97fj4Ur30Tas3aH\nqipoCqRTN9XGoapDK/QvyrMpE1grNR1URpS00bDzVwLZgnNAtBRdUwA3P7Gh1xRd2SJ0Mk0VWexI\nKd9JWNkabWgZyVH7TobpK+X0/U0WQhxwPgghPiaiKWWodyeA4z2fx9jbPgdgqxBiLwAQ0VMAPgXg\n0WAFQojlAJYD1rxmbyf02hzONIGTtuudaXH2eaccDGGJjqXiMcy89yV3CmDid54FYE2tbLnDWtsk\nmIYa5qJtqIm5fzvpqM5x3nJO2q1bty0dD8Ad2FtmTcLCla246/Iz8HTrR5h6QqO7Vo5T7uYnrHLO\nInbHN6ak7XLa4k33LZZWW5vQoNtLmpdyrb2lAjt/p+JWrEg6Z0g78zKHP5WFKM+mpinQdQBmj5EV\npqI6UHinunTdlE5jDDQy70HUFN1UotCACVu9VxZ/E6wv6mJ/znei2NOsDoqiuHpE3rgmx1M4VCi1\n72SYUinnE6/Y3gkAABE1ojxGzmoA8+wsmU8COCiE2AVrGuaTRJQiK3jgswDeLsP5fJNIzsq3boxL\noO9V0BMTYpomEgphVH2yIPvEIZge601DDUtfPdSd9x3rHBcs59Qr+wz4B/axTSnMmNDkWysnWM7h\nw/a0tF1OW4LX48jcB8t3ZnW0p3MwTTM0hVZ2rW17OkPvjTcNefv+tKsYa5pmoTJrOucaQdWGpimo\nT8agkBX7omlKgYfC8boFl6zvL0GDQ3buwUDmPZAZErKU36iZNVGzaIDoHidFUaTfn2wbwxxulPOp\n/xGAV4joB0T0AwB/AfDD3g4iopUAXgFwChHtIKIvEdF1ROSk9z4D4H0AbQAeAPDPACCEeBXArwC8\nAWCjfS3Ly3EhXrEyx35wDA0nNdcbI+Js80693HNlM5bPm4aGpIYdB7vdziuYHutNQ+3K5qUu2t+0\n7sSMCU2+9FtVQUG5NZt2+dJY12za5bsu78C+91AWLbMmFdXtcOoamYoVtMtpS/B6Vvx5K974oF3u\nlhbCVXJ9+s2dka717ism4ycvtEE3hbR8zNOee37/jjuNEza1VY2KqWHIBrGoUukOUVVYOzJ5mEKg\nI5OHrpsF5x4MvN6fYtomspTfhEJYOrfvxkVUg0Pe7oontjDMkKWsKbpEdBqAz9gf/0sI8VbZKi8T\nUVJ0nTRXb7pn3E45dfaFpcLmjMIUXW9qnyw91rssuCzVNHhu5zy6KVCXLEwddtJkD2V1LFwpDyYl\nAOfe/QJWXDsdpx07wh/AObcZdXHNbaemEOKago6MjoZkDF05qy2dWQM53UBjbQJtezpx4qhanPrd\n53zZMU771n3Qjk+fdBRO+U5PinLL/zoNl00ZjYaamPRaP2zvxr1/eAe7D2Xx06umQlUIuinQUBPD\noe48NIWQ1FS8t68LP3mhDavXf+ROdxFButT9O3deXHUpuqUgS+ctlgIbXO4+anqqLLU17Bzl2uZM\nsfUnpbZS24L3qw9TL8Pi+WSGJf16Nsvq/xNCvCWE+LH9M+QMkKh4V7lNKNZ0jDcN19rXU94x5BTV\nCmINDnLe6RhTCOzvyLjTA3GF8NhrH0DVVEy5/fcAAR8dyAAA9nfm8P+e3IgJ33oGtQkN33h8PT46\nkAEphKxuuvEpQgAvt+1FbULDybc+i1Rcw6SW53FEKo6WWZOw5Y6Lcd9VU3HcyCS+eN4ELFmzBceM\nqAEA3P/HrRiR9L817vw4DUMIfOGBVyEE8MUVa9G2pwvNt/8eX/jZqzBMgQ/bu3HdI+tw1p3/iRO/\n/Qxm3vsSdnzc7b6Vzl+xFpNvex5feOBVfHQgg/v/uLVAybXlt29ZdT7wKgAgGdfcN2sC4cj6BO65\nshkPXDMd9ckYkpoK1b6Xjhrt1Q++hpn3vuTGr0Sdvhmu1GhqSUqeXsJEtWSUOyYkiqKoacpjUaJ6\nKYLTVLIg1HIgEyALtts0zaqdGmSYcsKTkBIco4KIoNvGRnAaxnGxCvQYJsXSeJ19cYXQVJ/E8nnT\nsLcjg1O+twbPbdrtDtDpnIGW1ZvxyCvbkIqr2NuRhaYQOjM6dh/KYua9L+HEbz+DKT/4vbu41uTb\nnsf9f9xaINu+4+Nut3zz7b+3snEgsPtQFm17Ot0pjY+7c8jkDeTzBr7yyDqMHpmCSnCni4JTLq+8\ntw+1cRU/+vyZvsFuZCpW4PL2TqsElVyLZQUoCqEuYRkldQkNikKS6QcVy+ZOkZ6vWrIPoqLrZsGU\niGybpvUEPJY6dVDqVE65KMX4OZDt+0J+sjgRWfxMX1fbdQhOAYZhmoXfH8McbpRdMXWoU6piqqPy\nGZyiScVVdOcMKIHplaCSZ0IhXLNirU/3YkRC8yktuvof54xFXVxDzjDRUBNDJm/AsOvK5w0cDLid\nl85pRkIjXPfom+5ieJOOG+lqicQ1pUBXwxQmFMVKX3WmdgrUV4sprHqUWbP5gMppTIVumAUqssHp\nq1Jd04ZhIu2ZakrFVDfV1jQF0nZ7glNWAEo5z5B1dzvZKFEVQIHC6w47vjfFz1LUTGXbdCFgCBQt\n53jwelN5fWDeNHy5zO0biKkc7xSXphDearkw8vFOEKuEIft8Moc9lVVMHe4oBHgdHM7quUQEAb+a\nKClAzlbydIw7Z12ZVFzFteeNdzuf+6+e5sZLpGIqrjl3PDozecRrFFeXxDCtukxTIGcHvAbT/7SA\n8JlzHpUIcVUpSAF8b18XRqYUXPWzQjXR+6+ehsm3Pe/bdt9VU7Hg0XX44T9Oxv/71QbXYLpi2vFI\nxAhf/4+eDnzZ3GbEVAUP/2UbLpsyBrc8uaFg3zUBgbWgdofXqEjnDCRVRSrg5hzneEwAbxqpAtMU\n2N+V9cXELJvbjKbaRNUFCoZNfQQH0KVzmqXLwZumKU0RBdDryrqy80QVMNNiKk6LYFzIVtGVpd6m\n+hB0W0yYzFknqa/CaTKuWeEfpIvdw/Dvjx3UzOEDP+294PSf5AZg+Pfrwm+YANZNDZuiyZkC3brp\nEwfb35XDQ3/einPvfgETv/MszmixYikIhNNbngcRYcHD6/C3jgwIwPb9acs1/L01rhv56p+/hv2d\nOez8OINbf70JiZiKU7/3HG799SbsaO/GgofX4dTvPYeW1ZuR1BQsmX1mwTRGbcI/VeFdYG/0ETU+\nEbGbnliPzozhcz0vXNmKA+k8Zp5+LG55coN0X9BV7RUYswyHHL780FqcfOuz+PJDa9Gty0XNvMfJ\nSOesoNxgG9K56owJCU4HhGX/hCGLSQgiyz6JuviaDFlcjqy+qKm36axRksx7b8JksoUBtZgaabHA\nsG2yKUDZucO+P9nCggwznGFPiAfn398RH9vR3oWn3/wI888d31PI8xKtEsEUwidgRrDXoXE+22ae\noy+iKYSauOq+fW3fn0YqruLzZ43FK++3+9ZyOdidw1njGtGdM9AyaxKWrNmCez7fjLFNcm2PsU0p\n3LCqFavXf4Qb//5knDWu0Q3YbJk1CROPqkNHJo/OrI4n1+1wt7Xt6cTTb+7AvE+N89Xp6HacNa4R\n6azhnscrIhZsg7NN1j5Zee9aGem8gYUr34y0Hkdva2zI3ppf39buW7+mWpB5BcLuSxiyN/GMbk33\nAZbXzTRN6UJ3wXpl7Qk7R5Q1b4BosvQKAYtnT8bNT/R42KISJkwWPEdUQTQAGBFos5BcR42mQlEp\nklAarx3DHI6wJ8SDY0s4UyljGmtx7XnjEVepICDV8X6Ywi9gFnyPcfY5ga3duglh9pRrqosjGbPW\ndVk+bxq23HEx7rr8DCRUBU+u24Glc5rxq3UfYua9L2H3oSy6cjrSIZkf2/en8czGXW6Q6DI7SPSZ\njbvQsnoz/nYwA9008eS6Hbhsyhi0rN6MU77zLFpWb8acs8eCUKg98sp7+1yDyDmPE/j6YXu6oA0f\ntqfd/bJ9wW1eF3gqXqhqGSZq1pvrXPbW7DWmqoliA6gX53PwGZS9dZsA0jkD1z/6Bk6+1ZL1l5WT\nnUfWnjCPSRRdDxky74hGlv7HXZef4f6fRKU/wmRhhlNwUs/5HNRuiSqUdjhkbzFMEDZCJHhTdAHL\n0FBUgkqE/Z1Za2rju8/hSw+tRUY3XG+HaQh05w18yZ5OWPDwOnzcncOh7jxuWNWK7fu7oNky7wQg\nndWxvzMHIsKh7jyIrO2NtXE01sVx7Xnjse6Ddtzxu7ddo0AIgT+9u7ego/y3K5txVH3C7eyTmoLu\nnI77rppqpd7Om4ZjGhJIxjTMPWcsRh+RdAeH+21RtbrAgNGYiuMTx45AMqZg8ZotvuyTJbPPRF1S\n9bVh2dxmjEzF3GwY2b6gkeNdUC6dKzQcnFWGix0nw3lr9h63ePZkVFk4CIDS1yk5GGEtlXzI9ESw\nnOw8UQ0TGWECYTJkqbcpTUFTXRxElgEfhgB6NS7CztHQR8MpDFna9HDL3mKYvsLZMTZh2TF63vAL\nJgVEwZzg0O3707j3D+9gwpG1mH/ueNQlNOw+lEFNXPVlqPzo82ciphAWrmrF0Q0J3PC5kzG2KYXd\nBzO469m/utMnMyY04d45zTiQzrtTJms27cK8T41DzjCRiqnY15nD8Y0pfNiexshUDElNQUxTkM4Z\niCuEWCDbJSzbJ50z3EE9nTdQE1N8mUDe7BhvtktWN2Ga1rocTh2mKdCtG9L6hRChWS5AT0zIwpVv\neoJJp+CImpgv2yN4nAxdN9GZ03Egnffdo7q4VnXZB7puFgTnhmVxyFaQ3dhyYcG29++6pCAjRVYu\nLPtEFuRZ7sya4LawLBoBFGSkyeqTZWXJsoZk5aLefwCIxwunVHTdLKgTGB7ZW8xhD2fHDCZO/Ic3\n4FTPGxiZiuGeK5td5U8QUJfUUBNTfXPEed3EiFQM9101FfXJGLpzBoQQ+PQPX/B1rq9va8eRdQmc\n8y//6W7TFMLXPnsSvvDAq7jr8jNwwZIX3X0zJjThgWumI6koqE/2dGRuxojduXljIpxydZ5tPZkm\niu94X132vlRcKThOUcg9V2H9hHq1sF4HRSE01cbxwDXTe4ydmBqoM5pEuKYpqIMGVSH3rXkoLhAW\nBa/2h/McuWu3BDJeamOF8QdRl5IPy46RIVuoLeqxfUXWZiBaD+iu3xJ4jmQLA8rKye5/WHCvDFmd\nAEp+rhlmuMFGiAxPr5Y1BeK9+PBPa3neTQFNxTXopoCSN3yLhznprropkNdNNN/+e9dw6M6bBZ1r\nWAzFoe58aJBnKl79rlxvyq3XOOoLYR1/NRJ1EOvI5KUDdVSjoSFiyqqiKKiP95w7l9NLSnf1/m84\nHpPeKMXQCbYvjKjPSCkGDMMw0WEjREZghorgV1F1NqpEyJkC79x5sW/awzFaZkxo8mkAxFUFmkLY\n05Gx4ySmuNMgy+ZOCUxDWLoawTqefnNnqIGSzhn9HriZ6qY/3gxAHiQm0xjpz2Ab1NKIiqJE9wgN\nhjEwnIxchqkUPGLZmOjpgCnQf+kC0AK6H4pipefKFkMjAKoWEAqzY0kSCmFMY6015WBPNQAomIZQ\nCPjjlj346VXTUF+j4VB3Hr9p3Yk1m3dj2VzLoPEaKF6Dhjm86Y8AV5jB0Z/Btmcaz/KY9NebwdMa\nDDN8YCPERoEV3GaYAkQEwxRI26vR5kIEhBRbJ8RLzA4OrHUybEzR0wl7gimDHovgNIRpCkwf14Tr\nHl3nBrBePWMcrph6vDvtIoudYA5visYqSBRTy2VwqKoCwyg8ryyAOIqRxFMbDHN4wEaIjaIoiMN0\nZ2JUhZCMqW7H6q6i6+kXDXuVXdPoMTQ0KEja+/vzViYL0oSwgl0dyhU7wQwfNE2JHGwJlM+D4Bob\nnvOqqlJghBQzkqLEcDAMM7zg0ctG1nlDWN6RhK3tAb1HfKxnWmbg3tjKGaTJHD5UKlZBVZWi2U9O\n2zigk2EYBx7ZPMg673pP5xjcVs8dJ8OUDAd0MgzjwKMowzAMwzAVgY0QhmEYhmEqAhshDMMwDMNU\nBDZCGIZhGIapCGyEMAzDMAxTEdgIYRiGYRimInCKLsMwDMMMIOO++bvIZbf96z8MYEuGHuwJYRiG\nYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgJnxzAMwzBMCZSS7cIUh40Q\nhmEY5rCGjYrKUfHpGCJ6kIj2ENGmkP1ERMuIqI2INhDRVM++kUT0KyL6KxG9TUQzBq/lDMMwDMP0\nh4obIQBWALioyP6LAZxk/ywAcJ9n31IAzwkhTgVwJoC3B6iNDMMwDMOUmYpPxwghXiKicUWKXArg\nYSGEAPDftvfjWABpAOcDmG/XkwOQG9jWMgzDMAxTLoaCJ6Q3RgP40PN5h71tPIC9AH5BRG8S0c+I\nqFZWAREtIKK1RLR27969A99ihokIP5vMUIafT2agqQYjJAwNwFQA9wkhpgDoAvBNWUEhxHIhxHQh\nxPRRo0YNZhsZpij8bDJDGX4+mYGmGoyQnQCO93weY2/bAWCHEOJVe/uvYBklDMMwDMNUARWPCYnA\nagBfI6JVAM4BcFAIsQsAiOhDIjpFCLEFwGcBvFXBdjIMwzBMvyg1XbjaV92tuBFCRCsBXADgSCLa\nAeD7AGIAIIT4KYBnAFwCoA1WMOq1nsO/DuAxIooDeD+wj2EYhmGYIUzFjRAhxNxe9gsAXw3Z1wpg\n+kC0i2EYhmGYgaUaYkIYhmEYhhmGsBHCMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEq\nAhshDMMwDMNUhIqn6DIMwzBMuSlV9IupDOwJYRiGYRimIrARwjAMwzBMReDpGIZhGIapUkqZdhqK\n68ywJ4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoCx4QwDMMwFaHa4xmY/sOeEIZhGIZhKgJ7QhiG\nYZghD4uPDU/YE8IwDMMwTEVgTwjDMAxTFthbMbQp9fsZjDgc9oQwDMMwDFMRSAhR6TYMKkS0F8AH\nIbuPBLBvEJtTTrjt/WOfEOKiSjagl2fTYSjcq3IxXK5lMK5jKD6f1fT9VUtbq6WdQE9b+/VsHnZG\nSDGIaK0QYnql29EXuO2HB8PpXg2Xaxku11Eq1XTd1dLWamknUL628nQMwzAMwzAVgY0QhmEYhmEq\nAhshfpZXugH9gNt+eDCc7tVwuZbhch2lUk3XXS1trZZ2AmVqK8eEMAzDMAxTEdgTwjAMwzBMRWAj\nhGEYhmGYijCsjBAiuoiIthBRGxF9U7KfiGiZvX8DEU3t7VgiaiSi3xPRu/bvIzz7vmWX30JEM6ul\n7UT090S0jog22r8/Uy1t9+wfS0SdRHRTf9peTfR2n4cyRPQgEe0hok2ebUW/46EIER1PRC8Q0VtE\ntJmIFtnbq+5awpB9V4H90v9nIjqFiFo9P4eI6Iah2FZ73/+1v8NNRLSSiJJDtJ2L7DZuHuj7GbGt\npxLRK0SUDfa/feqjhBDD4geACuA9ABMAxAGsB3BaoMwlAJ4FQAA+CeDV3o4F8EMA37T//iaAu+2/\nT7PLJQCMt49Xq6TtUwAcZ/99OoCd1XLfPXX+CsATAG6q9LM3VJ7vofwD4HwAUwFs8mwr+h0PxR8A\nxwKYav9dD+Aduy+oumsp5bsK7Jf+PwfKqAD+BuCEodhWAKMBbAVQY39+HMD8IdjO0wFsApCCtczK\nHwBMrPA9PQrAWQDu9Pa/fe2jhpMn5GwAbUKI94UQOQCrAFwaKHMpgIeFxX8DGElEx/Zy7KUAHrL/\nfgjAZZ7tq4QQWSHEVgBtdj1Dvu1CiDeFEB/Z2zcDqCGiRDW0HQCI6DJYHcjmPra5Golyn4csQoiX\nALQHNod+x0MVIcQuIcQb9t8dAN6GNaBV3bWEEfJdeQn7f/byWQDvCSF6UwDuF/1sqwar79NgDfIf\nhVVSwXZ+ApZBkhZC6AD+CODygWpnlLYKIfYIIV4HkA/s6lMfNZyMkNEAPvR83mFvi1Km2LFHCyF2\n2X//DcDRJZxvqLbdyxUA3hBCZPvW9MFtOxHVAbgFwG19bG+1Us7nbagQ5fkcshDROFhexVdR5ddS\nIlGexTkAVg5ai8KRtlUIsRPAEgDbAewCcFAI8XwF2ucQdk83Afg0ETURUQqWx+T4CrQvCn3qo4aT\nETLgCMvnVJU5zbK2E9EkAHcD+EpFGhWRQNtbAPybEKKzci1iyk21/W/ZxvCTAG4QQhzy7qu2ayk3\nRBQHMAvWdOmQxI7ZuRTWVPpxAGqJ6KrKtqoQIcTbsPro5wE8B6AVgFHRRpWZ4WSE7ITfQhxjb4tS\nptixux33nf17TwnnG6ptBxGNAfBrAPOEEO/1sd2VaPs5AH5IRNsA3ADg20T0tX60v1oo5/M2VAh9\nPocyRBSDZYA8JoR4yt5cldfSR3p7Fi+G5V3dPaitkhPW1s8B2CqE2CuEyAN4CsCnKtA+h9B7KoT4\nuRBimhDifAAfw4pDGor0qY8aTkbI6wBOIqLxtiU+B8DqQJnVAObZkcifhOWC29XLsasBXGP/fQ2A\n33i2zyGiBBGNB3ASgNeqoe1ENBLA72AF0v25j22uSNuFEJ8WQowTQowDcC+Af3x5wEIAAAWQSURB\nVBFC/Lif11ANRLnP1UbY/9aQhYgIwM8BvC2EuMezq+qupR+E/T87zMXQmIoBwtu6HcAniShlf6ef\nhRXfM9TaCSI6yv49FlY8yH9UrplF6Vsf1VvkajX9wJovewdWhO6t9rbrAFxn/00AfmLv3whgerFj\n7e1NAP4TwLuwIpMbPftutctvAXBxtbQdwHcAdMFy7Tk/R1VD2wPnbcFhkh1T7F5Vww+sQWkXrGC2\nHQC+FOU7Hmo/AM6DNdWywfO/c0k1XkuJ31XU/+daAPsBjKiCtt4G4K+w4i4eAZAYou38E4C3YGWb\nfHYI3NNj7O2HAByw/26w95XcR7FsO8MwDMMwFWE4TccwDMMwDFNFsBHCMAzDMExFYCOEYRiGYZiK\nwEYIwzAMwzAVgY0QhmEYhmEqAhshQxQiGhe2imE1QETziehw0O9gSqDan2vm8IGIWoKrxDLlh40Q\npgB7QSeGqQr4eWWY6oWNkKGNRkSPEdHbRPQrW93vs0T0JhFtJKIHi61+S0T/SkRv0f9v735CtKrC\nOI5/f0pgaSnZJiKxbEgTUxuRRNJy4UZblEoQZekijGqiIEYwqKhokYsIiokorAxKAysq0mAaV07+\nKZ2QsCClFm0iFVIstKfFeUYvwzs2aDN33pnfBwbue865l3OG572cuefOeaQeSRuzbJOkDkl7Jf0o\naXmWPyjpU0mdlE2XkPSUpD15/nOV634saZ+kg5IeqpSvyWvuBhYO1i/Fmt5YSW9m/OyQdKmkOZK6\nM9a2qeT2QFKXpHl5fFVu198wXs0uhqTVGX8HJL3Xp66/+Gyr3GM/yLLxeW/enffqpsl2XQdPQoa3\nG4HXI2IGZXe6J4FNwD0RMYuSivrhRidKmgzcBcyMiJuBFyrVUylpl5cBHZLGZfktwMqIWCxpKWUr\n+vnAHKBV0qJstzYiWoF5QJtKhserKTsQLqTsKnnT/zB+G5lagNciYiZlx8UVwLtAe8bq98AzA7jO\n2XgdtJ7aqKCSzPNpYElEzAYe79Okv/hcD8zN8nVZtgHojIj5wB3Ay5LGD/YYmpUnIcPbr3Eut8tm\nSn6DwxHRm8DoHWBRwzPhOHAKeEvS3cDJSt2WiPgnIn4CfgamZ/lXEfFHHi/Nn++Ab7NNS9a1SToA\ndFMSFrVQEst1RUkI9Tfw4YUO2ka8wxGxP4/3AdOASRGxM8vOF9dV1Xg1uxhLgK0R8TtANa4kTaT/\n+OwB3lfJwHs6y5YC6yXtB7qAccCUQR9Bk/Ja6vDWd0/9Y5QcFf99YsRpSfMpE5eVwKOUL1qj6/Z+\nPlEpE/BSRLxRbSjpdkoGygURcVJSF+VLZjZQf1WOzwCTztP2NOf+WOobZycwq9cyyoTkTmCDpFmU\ne+eKiDhUa8+ahJ+EDG9TJC3I43uBvcBUSTdk2f3AzkYnSppASSL1BfAEMLtSvUrSGEnTgOspCfj6\n2g6szesg6ZrM5jgROJoTkOnArdn+G2BxLs1cAqy6wDHb6HMcOCrptvxcjesjQGserxziftno0Um5\nL04GkHRlb0VENIxPSWOAayPia6Cdcm+cQLl3PpbZeZE0d+iG0Xz8JGR4OwQ8IultShbFNsoSyNb8\nj4A9QEc/514OfJLve4jyPkmvX4DdwBWUzIin8vtyVkTskDQD2JV1fwL3AV8C6yT9kP3rzva/SXoW\n2EV5YrMfs4F7gPJ+0mWUJcI1Wb4R2JIvQH9eV+dsZIuIg5JepEwuzlCWoY9UmjSKz7HA5lyuEfBq\nRByT9DzwCtCTE5XDwPKhG01zcRbdUUbSJuCziPio7r6Ymdno5uUYMzMzq4WfhIwAkrYB1/Upbo+I\n7XX0x8zMbCA8CTEzM7NaeDnGzMzMauFJiJmZmdXCkxAzMzOrhSchZmZmVgtPQszMzKwW/wJHcOPn\nk2csnAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#df_res.date = pd.to_datetime(df_res.date.dateAgg, format='%Y%m%d %H:%M')\n", + "df_res.head()\n", + "sns.pairplot(df_res.loc[:,[\"bo_spread\", \"hour\", \"close\"]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "year 2081682\n", + "month 2081682\n", + "day 2081682\n", + "hour 2081682\n", + "weekday 2081682\n", + "Unnamed: 6 2081682\n", + "bid_price 2081682\n", + "ask_price 2081682\n", + "bo_spread 2081682\n", + "high 2081682\n", + "low 2081682\n", + "avg_bo_spread 2081682\n", + "count 2081682\n", + "open 2081682\n", + "close 2081682\n", + "avg_price 2081682\n", + "range 2081682\n", + "ohlc_price 2081682\n", + "oc_diff 2081682\n", + "period_return 2081682\n", + "pca 2081682\n", + "dtype: int64\n", + "2016-01-03 17:00:15.493 2016-01-31 23:59:41.170\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdayUnnamed: 6bid_priceask_pricebo_spreadhigh...avg_bo_spreadcountopencloseavg_pricerangeohlc_priceoc_diffperiod_returnpca
date
2016-01-03 17:00:15.49320161317101.087011.087510.000501.08723...0.0001651421.087011.087011.086920.000621.0869650.000001.000000-1322.240112
2016-01-03 17:00:38.99320161317101.087031.087490.000461.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.160522
2016-01-03 17:00:41.49320161317101.087131.087490.000361.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161377
2016-01-03 17:00:41.99320161317101.087131.087450.000321.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161865
2016-01-03 17:00:44.74320161317101.087031.087450.000421.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.161011
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " year month day hour weekday Unnamed: 6 \\\n", + "date \n", + "2016-01-03 17:00:15.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:38.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:44.743 2016 1 3 17 1 0 \n", + "\n", + " bid_price ask_price bo_spread high \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08701 1.08751 0.00050 1.08723 \n", + "2016-01-03 17:00:38.993 1.08703 1.08749 0.00046 1.08723 \n", + "2016-01-03 17:00:41.493 1.08713 1.08749 0.00036 1.08723 \n", + "2016-01-03 17:00:41.993 1.08713 1.08745 0.00032 1.08723 \n", + "2016-01-03 17:00:44.743 1.08703 1.08745 0.00042 1.08723 \n", + "\n", + " ... avg_bo_spread count open close \\\n", + "date ... \n", + "2016-01-03 17:00:15.493 ... 0.000165 142 1.08701 1.08701 \n", + "2016-01-03 17:00:38.993 ... 0.000165 142 1.08701 1.08703 \n", + "2016-01-03 17:00:41.493 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:41.993 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:44.743 ... 0.000165 142 1.08701 1.08703 \n", + "\n", + " avg_price range ohlc_price oc_diff \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08692 0.00062 1.086965 0.00000 \n", + "2016-01-03 17:00:38.993 1.08692 0.00062 1.086970 -0.00002 \n", + "2016-01-03 17:00:41.493 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:41.993 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:44.743 1.08692 0.00062 1.086970 -0.00002 \n", + "\n", + " period_return pca \n", + "date \n", + "2016-01-03 17:00:15.493 1.000000 -1322.240112 \n", + "2016-01-03 17:00:38.993 1.000018 -1322.160522 \n", + "2016-01-03 17:00:41.493 1.000110 -1322.161377 \n", + "2016-01-03 17:00:41.993 1.000110 -1322.161865 \n", + "2016-01-03 17:00:44.743 1.000018 -1322.161011 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#plt.savefig(\"test.png\")\n", + "print(df_res.count())\n", + "print(df_res.index.min(), df_res.index.max())\n", + "df_res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['year', 'month', 'day', 'hour', 'weekday', 'Unnamed: 6', 'bid_price',\n", + " 'ask_price', 'bo_spread', 'high', 'low', 'avg_bo_spread', 'count',\n", + " 'open', 'close', 'avg_price', 'range', 'ohlc_price', 'oc_diff',\n", + " 'period_return', 'pca'],\n", + " dtype='object')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#df.drop([\"vol\"], axis=1, inplace=True)\n", + "df_res.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df = df_res\n", + "# all these should refer to the price prediction period, so for tick it doesnt exist\n", + "#df['low'] = df.bid.min()\n", + "#df['high'] = df.bid.max()\n", + "#df['open'] = df.bid.iat[1]\n", + "#df['close'] = df.bid.iat[-1]\n", + "\n", + "# to include seasonality as a feature\n", + "#df['hour'] = df.index.hour\n", + "#df['day'] = df.index.weekday\n", + "#df['week'] = df.index.week\n", + "#df['month'] = df.index.month\n", + "\n", + "#df['momentum'] = df['volume'] * (df['open'] - df['close'])\n", + "df['avg_price'] = (df['low'] + df['high'])/2\n", + "df['range'] = df['high'] - df['low']\n", + "df['ohlc_price'] = (df['low'] + df['high'] + df['open'] + df['close'])/4\n", + "df['oc_diff'] = df['open'] - df['close']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close / df.open" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2081682\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAELCAYAAADQsFGkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt0nFd57/HvMzfdLEuyrTi+JU6I\nQ+OkIQRDoJwCJQVMaEnaBS3QghvSlQWE3ji0De1ah9OeZhUWbaGUAiclKUlLAoHCIS1JQxoCKZc4\ncUJutnNxQuJ7fJElW9cZzTznj3ePPbYlS5oZaUbv+/usNUvv7Peddx5JM/PM3vvde5u7IyIiyZNq\ndAAiItIYSgAiIgmlBCAiklBKACIiCaUEICKSUEoAIiIJpQQgIpJQSgAiIgmlBCAiklCZRgdwKkuW\nLPHVq1c3OgwRkXnloYceOuDuvVMd19QJYPXq1WzatKnRYYiIzCtm9sJ0jlMTkIhIQk2ZAMzsRjPb\nZ2ZPVJR9ysyeNLPHzOxbZtZdse9jZrbNzJ4ys7dUlK8PZdvM7Nr6/yoiIjIT06kBfBlYf0LZ3cAF\n7n4h8DTwMQAzWwu8Czg/PObzZpY2szTwj8BbgbXAu8OxIiLSIFMmAHe/D+g7oey77j4e7t4PrAzb\nlwNfdfcxd/8ZsA14Vbhtc/fn3D0PfDUcKyIiDVKPPoD3A3eG7RXAjop9O0PZZOUnMbOrzWyTmW3a\nv39/HcITEZGJ1JQAzOzPgXHgK/UJB9z9endf5+7renunvIpJRESqVPVloGb2O8CvAJf6sWXFdgGr\nKg5bGco4RbmIiDRAVTUAM1sP/Anwdncfrth1O/AuM2sxs7OANcADwIPAGjM7y8xyRB3Ft9cWuoiI\n1GI6l4HeCvwEeKmZ7TSzq4DPAZ3A3Wb2iJl9EcDdNwO3AVuA/wSucfdi6DD+MHAXsBW4LRwrInNs\nz8AI6z9zH7v7RxodijTYlE1A7v7uCYpvOMXx1wHXTVB+B3DHjKITkbp7au8Rntx7hCd2DbC8u63R\n4UgDaSSwSMIM54sAHBrONzgSaTQlAJGEKSeAvqFCgyORRlMCEEmY4Xw0hlM1AFECEEmYYzUAJYCk\nUwIQSZjhsVADUAJIPCUAkYQ5WgNQE1DiKQGIJMxQ+Sog1QASTwlAJGFGQiew+gBECUAkYco1gMOj\n4xSKpQZHI42kBCCSMCMhAYAuBU06JQCRhBnKjx/dPqTBYImmBCCSMCP5Ip2t0TRg6gdINiUAkYQZ\nyo+zsqcdUBNQ0ikBiCTMSL7IijALqGoAyaYEIJIwQ2NFVvZECUBjAZJNCUAkQUolZ6RQZGFbls6W\njEYDJ5wSgEiCjBSiS0A7cml6OnKqASScEoBIgpQvAW0PCaBvWJeBJpkSgEiClAeBtecyLO7I0Tc0\n1uCIpJGUAEQSZGgsNAG1pOlpz2kgWMIpAYgkyEghagJqy2VY1JHVZaAJpwQgkiBHawChD2CkUDxu\nbiBJFiUAkQQpLwbTlkuzqD0HaDRwkikBiCRIeUH4jlyGno4oAagZKLmUAEQSZPjoVUBpFnWoBpB0\nSgAiCVKuAbS3ZOhpVw0g6aZMAGZ2o5ntM7MnKsoWmdndZvZM+NkTys3MPmtm28zsMTO7uOIxG8Lx\nz5jZhtn5dUTkVI72AWQragBKAIk1nRrAl4H1J5RdC9zj7muAe8J9gLcCa8LtauALECUM4OPAJcCr\ngI+Xk4aIzJ3hfJHWbIp0yuhqy2KGRgMn2JQJwN3vA/pOKL4cuCls3wRcUVF+s0fuB7rNbBnwFuBu\nd+9z90PA3ZycVERklg3nx2nPRYvBpFNGd1tWNYAEq7YPYKm77wnbe4GlYXsFsKPiuJ2hbLJyEZlD\nw2NF2nPpo/cXdeTUB5BgNXcCu7sDXodYADCzq81sk5lt2r9/f71OKyJETUBKAFJWbQJ4MTTtEH7u\nC+W7gFUVx60MZZOVn8Tdr3f3de6+rre3t8rwRGQiQxVNQEA0H5AuA02sahPA7UD5Sp4NwLcryt8X\nrgZ6NTAQmoruAt5sZj2h8/fNoUxE5tCIagBSITPVAWZ2K/AGYImZ7SS6mucTwG1mdhXwAvAb4fA7\ngMuAbcAwcCWAu/eZ2f8BHgzH/aW7n9ixLCKzbChfpDtc/w9Ei8IM53F3zKyBkUkjTJkA3P3dk+y6\ndIJjHbhmkvPcCNw4o+hEpK5G8uN0tFTUANpzFIrO4Ng4na3ZBkYmjaCRwCIJMnRCE1DP0cFgGguQ\nRFPWAEQkPqI+gOhtf8vG7Ty59zAAtz6wnVWL2gF4zyVnNCw+mVuqAYgkhLuHq4CO1QA6QjIorxUs\nyaIEIJIQY+Ml3DnuMtC2bJQMtChMMikBiCTE0FiYCbSiBtCSjT4CRsdLDYlJGksJQCQhKtcCKGsN\nNYCxgmoASaQEIJIQxxLAsSagbDqaGXS0oBpAEikBiCTE0NHFYNLHlbdmUoyOqwaQREoAIglR7uht\nzx6fAFqyaUbVBJRISgAiCVHuBO5oOX74T2s2xZiagBJJCUAkIUbCt/y23IlNQGk1ASWUEoBIQgyN\nRR/yHbkTawBp1QASSglAJCGGQyfwSTWAbEp9AAmlBCCSEBONA4DQCawmoERSAhBJiOF8kVwmRTZ9\n/Nu+NRN1Ape8biu7yjyhBCCSEMMnTARX1ppN40Be00EkjhKASEIM54sndQBDdBUQRJPFSbIoAYgk\nxHB+/KQOYKiYEE4dwYmjBCCSEFENYOImIFACSCIlAJGEGB4rTlgDaM2UawBqAkoaJQCRhBgujE/Y\nB9BSrgHoUtDEUQIQSYhJawBH1wRQDSBplABEEmLSq4DUCZxYJ78aRCRWbtm4HYD+kTzbDw0fvV+W\nS6dImZqAkkg1AJEEcHfy4yVa0ie/5c2MlkxancAJpAQgkgDFklNyyGUmfsu3ZFNaFziBakoAZvZH\nZrbZzJ4ws1vNrNXMzjKzjWa2zcy+Zma5cGxLuL8t7F9dj19ARKaWL0bf7idLAK0ZrQqWRFUnADNb\nAfw+sM7dLwDSwLuATwKfdvdzgEPAVeEhVwGHQvmnw3EiMgfK8/zkJmgCgjAltKaCSJxam4AyQJuZ\nZYB2YA/wRuAbYf9NwBVh+/Jwn7D/UjOzGp9fRKahPM/PpDWAbFpNQAlUdQJw913A3wDbiT74B4CH\ngH53Hw+H7QRWhO0VwI7w2PFw/OJqn19Epq8wVRNQNq0aQALV0gTUQ/St/ixgOdABrK81IDO72sw2\nmdmm/fv313o6EaGiBjBJE1BLRquCJVEtTUC/DPzM3fe7ewH4JvBaoDs0CQGsBHaF7V3AKoCwvws4\neOJJ3f16d1/n7ut6e3trCE9EygrTaAIaLRRxLQqTKLUkgO3Aq82sPbTlXwpsAe4F3hGO2QB8O2zf\nHu4T9n/P9WoTmRPl5p2WzMlTQUA0IVzJYbykt2SS1NIHsJGoM/dh4PFwruuBPwU+YmbbiNr4bwgP\nuQFYHMo/AlxbQ9wiMgMjkywIX9aiKaETqaapINz948DHTyh+DnjVBMeOAu+s5flEpDoj4YO9LTtJ\nDeBoAlBHcJJoJLBIAozki7RkUqRTE195rQnhkkkJQCQBhvMTTwVdVu4b0IRwyaIEIJIAI4Ui7ZM0\n/0BlDUBNQEmiBCCSACP5Iq2nqAEcWxRGNYAkUQIQSYDhqWoAR5uAVANIEiUAkQQYnaoPQJ3AiaQE\nIBJz7s5woUhbdvKrvlNm5DJaEyBplABEYq5QdIolp/0UNQCIRgOrEzhZlABEYm6qQWBl0YygqgEk\niRKASMwNTzENRFm0JoBqAEmiBCAScyP5UAOYMgGkVANIGCUAkZibbhNQi9YFThwlAJGYK9cApuwE\nzqoTOGmUAERibni6TUCqASSOEoBIzI0UiqRs8uUgy1qyacZLTl6jgRNDCUAk5kbyRdpyGaKF+yZX\nnhBucGx8LsKSJqAEIBJzU80DVFaeEO7IaGG2Q5ImoQQgEnNTzQNU1hoWjD8yqhpAUigBiMTccGF8\nyktA4di6wIdVA0gMJQCRmBvJF6e8BBSONQENqgaQGEoAIjE3Ujj1YjBlagJKHiUAkRgbL5YYLZSm\n1Qlc7ifoH1ETUFIoAYjE2OHR6U0EB1ETkAH9w/lZjkqahRKASIwNhG/z0+kETpnRnkvTN6QEkBRK\nACIxVv42P51OYID2lgyHVANIDCUAkRgrt+e35SZfDrJSh2oAiVJTAjCzbjP7hpk9aWZbzew1ZrbI\nzO42s2fCz55wrJnZZ81sm5k9ZmYX1+dXEJHJHJ5BExBAey7DoSF1AidFrTWAvwf+091/DngZsBW4\nFrjH3dcA94T7AG8F1oTb1cAXanxuEZlC/3C5BjC9BNDRkqZPTUCJUXUCMLMu4HXADQDunnf3fuBy\n4KZw2E3AFWH7cuBmj9wPdJvZsqojF5EpHU0AM6oB5HH32QxLmkQtNYCzgP3AP5vZT83sS2bWASx1\n9z3hmL3A0rC9AthR8fidoUxEZsnASIGWTIp06tQzgZZ15KIpoY9oRtBEqCUBZICLgS+4+8uBIY41\n9wDg0deIGX2VMLOrzWyTmW3av39/DeGJSP9IftrNPxBdBQRwSB3BiVBLAtgJ7HT3jeH+N4gSwovl\npp3wc1/YvwtYVfH4laHsOO5+vbuvc/d1vb29NYQnIgPDhWk3/0BUAwB0JVBCVJ0A3H0vsMPMXhqK\nLgW2ALcDG0LZBuDbYft24H3haqBXAwMVTUUiMgsGRgozqwGEy0U1FiAZpndx8OR+D/iKmeWA54Ar\niZLKbWZ2FfAC8Bvh2DuAy4BtwHA4VkRmUf9IYVrzAJV1hCagPl0Kmgg1JQB3fwRYN8GuSyc41oFr\nank+EZmZ/uECZy1pn/bx5RHD6gNIBo0EFokpd+fwSIG27PS/57VkUmTTprEACaEEIBJTI4Ui+WJp\n2vMAAZgZPe051QASQglAJKZmOgisbFFHTlcBJYQSgEhMHZ0KegY1ACCqAagJKBGUAERiaqbzAJWp\nBpAcSgAiMTUwEn2Iz7QJqKcjy6FhXQaaBEoAIjFVbRPQovYc/cN5iiVNCBd3SgAiMXUwNON0THMx\nmLKejhwlP7aWgMSXEoBITB0czNOeS5PLzOxtvqgjB6CxAAmgBCASUwcHx1i8IDfjx/W0R4/RWID4\nUwIQiamDQ3kWdbTM+HFHawBKALGnBCASUwcH8yzpqKIGEB6jsQDxpwQgElN9Q/mj3+ZnYlF7uQag\nTuC4UwIQiSF35+DQGIsXzLwJqC2XpjWbUg0gAZQARGLoyNg4haKzpIpOYIhqAeoDiD8lAJEYOjgY\nfXhX0wQEUT+ArgKKPyUAkRg6ODgGUFUTEIT5gNQEFHtKACIxVB4FvLjaGoDWBEgEJQCRGCo3AVUz\nEAw0I2hSKAGIxFDfUNQEVHUfQHuOw6PjFIqleoYlTUYJQCSGDgzm6WzJ0JKZ2UygZYs6ssCxNQUk\nnpQARGLo4FC+6uYf0GjgpFACEImhvqGxqpt/oHI0sBJAnCkBiMTQwcF81ZeAwrEaQL9qALGmBCAS\nQweH8lVfAgqVM4KqDyDOlABEYqZUcvpq7APobo86gQ+EAWUSTzNbK05Emt7h0QLFkle1FgDALRu3\nA9CRS/PDZw6wJDQlveeSM+oWozSHmmsAZpY2s5+a2X+E+2eZ2UYz22ZmXzOzXChvCfe3hf2ra31u\nETnZgTAIrNqJ4Mq62rJHF5aXeKpHE9AfAFsr7n8S+LS7nwMcAq4K5VcBh0L5p8NxIlJnR+cBqrIG\nUKYEEH81JQAzWwm8DfhSuG/AG4FvhENuAq4I25eH+4T9l4bjRaSOypdu1nIZKEBXe5b+EV0FFGe1\n1gA+A/wJUB4vvhjod/fxcH8nsCJsrwB2AIT9A+H445jZ1Wa2ycw27d+/v8bwRJLnwFCdmoBas4wW\nSoyNF+sRljShqhOAmf0KsM/dH6pjPLj79e6+zt3X9fb21vPUIonQF/oAeupQAwDUDBRjtVwF9Frg\n7WZ2GdAKLAT+Hug2s0z4lr8S2BWO3wWsAnaaWQboAg7W8PwiMoGDQ2N0tWXJpmur4He1RQlkYKTA\naZ2t9QhNmkzVCcDdPwZ8DMDM3gB81N1/y8y+DrwD+CqwAfh2eMjt4f5Pwv7vubtXH7qIVCpfvvnT\n7f1k03b0frW62qIawGHVAGJrNgaC/SnwETPbRtTGf0MovwFYHMo/Alw7C88tkniDY+N0tNQ+xGdh\na3SOfiWA2KrLQDB3/z7w/bD9HPCqCY4ZBd5Zj+cTkckNjY3T21nbJaAAmXSKBS0ZBjQldGxpKgiR\nmBkaG6cjV59B/hoLEG9KACIxUnJnOF+sSxMQKAHEnRKASIwM54s40NFS3UpgJ1ICiDclAJEYGRqL\nxmAuqGMNYGy8xGhBg8HiSAlAJEYGQwKoWxOQBoPFmhKASIwM1TsBtCoBxJkSgEiM1L0JSDWAWFMC\nEImRvqE8mZTRnqtPJ/DC1iyGEkBcKQGIxMiu/lGWdbWSqtNM6+mU0dmqwWBxpQQgEhMld/YMjLC8\nu62u513YlmVgVAkgjpQARGKibzDP2HiJFXVOAF1tWdUAYkoJQCQmdvWPANS9BtAdBoNp8t74UQIQ\niYnd/SNkUsbShfWdu39hW5Z8scTh0fGpD5Z5RQlAJCZ29Y9welcr6VR9l9ourwuwZ2CkrueVxlMC\nEIkBd2f3wAjLu+rb/ANRExDAnv7Rup9bGksJQCQGtvcNM1qofwcwQFd7tDTkbtUAYkcJQCQGHt81\nAMDynvongAUtGVKmGkAcKQGIxMATuw6TNmNpHVYCO1E6ZSzqyPH0i0fqfm5pLCUAkRh4YtcAS7ta\nyKRn5y29rKuNLXsOz8q5pXGUAETmOXfn8V0Ds9IBXLa8u42dh0Y0ICxmlABE5rmdh0YYGCmwYhba\n/8uWdUVjCzbvGZi155C5pwQgMs89ETqAZ+MKoLLy6OItu9UMFCdKACLz3BO7B2ZlBHClBS0Zli5s\nUQKIGSUAkXluy+7DnHPaArKz1AFctnbZQjYrAcSKEoDIPLdlz2HWLl84689z/vIutu0f1ALxMaIE\nIDKPHRgc48XDY6xdNhcJYCHFkms8QIxUnQDMbJWZ3WtmW8xss5n9QShfZGZ3m9kz4WdPKDcz+6yZ\nbTOzx8zs4nr9EiJJtTVcmz8XNYDyc6gZKD5qqQGMA//T3dcCrwauMbO1wLXAPe6+Brgn3Ad4K7Am\n3K4GvlDDc4sIx67KmYsawKqedjpbMuoIjpGqE4C773H3h8P2EWArsAK4HLgpHHYTcEXYvhy42SP3\nA91mtqzqyEWELXsOs6K7je4wYdtsSqWM85YvZPNujQWIi7r0AZjZauDlwEZgqbvvCbv2AkvD9gpg\nR8XDdoYyEanS5t2HOW8Ovv2XrV22kK17jlAsaXWwOKg5AZjZAuDfgD909+Pqhh6tITejV4qZXW1m\nm8xs0/79+2sNTyS2RvJFnts/OCft/2XnL1/ISKHI8weH5uw5ZfbUlADMLEv04f8Vd/9mKH6x3LQT\nfu4L5buAVRUPXxnKjuPu17v7Ondf19vbW0t4IrH21ItHKPnctP+Xnb+8C1BHcFzUchWQATcAW939\n7yp23Q5sCNsbgG9XlL8vXA30amCgoqlIRGao3Bl7/hzWAKIBZ6Z+gJjI1PDY1wLvBR43s0dC2Z8B\nnwBuM7OrgBeA3wj77gAuA7YBw8CVNTy3SOJt2TNAZ0uGlbM4CVylWzZuB+D0ha3c8dgezlzUAcB7\nLjljTp5f6q/qBODuPwQmW3360gmOd+Caap9PRCLlD+L7nj7A4gUt3PrAjikeUV/nLu3ke0/uY3hs\nnPaWWr5DSqNpJLDIPFRyZ+/AKMu6Z28CuMmcu7QTB57ZPzjnzy31pQQgMg/1DebJF0ss75r7BLCi\np422bJpnNCXEvKcEIDIP7R4YAaKlGudayow1Sxfw9IuDlFzjAeYzJQCReWjPwCgpg9NmYRH46Th3\naSeDY+PsHRhtyPNLfSgBiMwz7s7WPYdZ2dM+a4vAT2XNaQsA1Aw0zykBiMwzO/qG2XdkjFec2dOw\nGDpbsyzvauXpfeoIns+UAETmmU0vHCKXTnHhiq6GxrFmaScvHBziyGihoXFI9ZQAROaRwbFxHts5\nwM+v7KIlm25oLOcu7aTk8KNtBxsah1RPCUBkHvnOY7vJF0usa2DzT9kZi9ppyaS498l9Ux8sTUkJ\nQGQe+dqDO+jtbOGMRe2NDoV0yjh/eRe3P7qbvqF8o8ORKigBiMwTz7x4hIe397PuzB6iuRgb7xfX\nLGGkUOTLP36+0aFIFZQAROaJWx7YTjZtvPyMxjf/lC1d2Mqb1i7lph8/z9DYeKPDkRlSAhCZB54/\nMMRX7t/Or75sOQuabAK2D77hJQyMFLj1ge2NDkVmSAlApMm5O3/x75vJZVJcu/7nGh3OSS4+o4dX\nn72If/rv5xgbLzY6HJkBJQCRJvdfW/dx71P7+cNfXsNpC+d+8rfp+NAbzuHFw2P8v5+etMifNLHm\nqkuKyHFGC0X+4t83c+7SBWz4hdWNDmdCt2zcjruzvLuVT9z5JCP5ErlMSgvFzAOqAYg0qVs2bueD\n//owOw+N8Lo1vXx9086ji8E0GzPjsp9fxqHhAj94WuMC5gslAJEm9dyBQX7w9D4uWtXN2b0LGh3O\nlM5esoCXr+rmvmcOcODIWKPDkWlQAhBpQvsOj/K1B3awqCPH21+2vNHhTNv6C04nmzZuf2w3rrUC\nmp4SgEiTGS+W+PCtP2V0vMh7LjmT1gbP+TMTna1Z3nTeUrbtG+Q7j+9pdDgyBSUAkSbzN999mgd+\n1scVF63g9Ca96udULjl7Mcu7W/nIbY/y13duZWBEs4U2KyUAkSZy1+a9fPEHz/KeS85oqhG/M5Ey\n432vWc2vXLiM6+97jtd/6l6++INnOaT5gpqOEoBIk3j+wBAfve1RLlzZxcd/dW2jw6nJwtYs685c\nxDVvOIfeBS184s4neeV1/8Xln/shP952gEKx1OgQBY0DEGkKI/kiH/jXh0injc//1sW0ZOZPu/+p\nLO9u48rXnsWegREefP4Qj+w4xHu+tJHO1gyvO7eX9eefztt+fhmpVHNMbpc01sw99evWrfNNmzY1\nOgyRWePufOqup/jek/t4au8RNvzCas5d2tnosGZNfrzE0y8e4akXj/DU3iMMjo2zqqeNyy9awUff\n8tJGhxcbZvaQu6+b6jjVAETm2ODYOJue7+Mnzx3kzsf3sr1vmLQZ6y84PdYf/gC5TIoLVnRxwYou\nSu48uqOfO57Yyz/eu43BsXF+85Wr+LnTO5tmuuu4m/MagJmtB/4eSANfcvdPTHasagASF4dHC9z+\nyG6++fBOHtnRT8khkzJe85LFnNbZwtplXbTl4tHsM1Mj+SJ3bdnLpuf7KDmcubidXz5vKecvX8jZ\nvQs4u7eDha3ZRoc5r0y3BjCnCcDM0sDTwJuAncCDwLvdfctExysByHzh7owWShwZLXB4tED/cIFd\n/SPs6BvmqRcHuXvLXkYLJU5f2Mp5yzo5a8kCzljUTi6j6zDKjowWeHLPETbvGeDZ/UMUS8c+m5Ys\naOHsJR2sXtLOyp52VnS3saKnjdZsGiO68qi7PctpC1ti039Si2ZtAnoVsM3dnwMws68ClwMTJgCR\nueDuuEPlVyEDSu7kiyXy4yXGxkuMFUqMjRfZf2SMB58/xIPP97Flz2GGxsYZG5/8qpbOlgwXruhm\n3eoeVnS3qXljEp2tWV551iJeedYiiiWnbyjP/iNj7B8c4+DgGPuOjLF1z2GOTLHwzKKOHMu7W1nZ\n3c6qRW2c1tlKV3uWnvYc7bk0KTPSKSObNlqzaVoyKXKZFGaGAWYcfT2kzVjQmqEjl47l/22uE8AK\nYEfF/Z3AJfV+kkNDea74/I8m3HeqCo+HjwD38s0peVSeOvriOPYiKO8vhZ9UPn6iY0rHtt0Bi15g\nKeOkF1e5ZpYyI5UyMinDgWLJj34zSqeiF3LKOO453KHox47JplOkU8de3IaFn5GpXtjl3eW/nXv0\nl/Lwt6n8m5px9G9VeW6zk89z4vmPPepYWVR+ssq/xdGbO8WiU/Jou+SQMsikwu9vx/9fC8UShWKJ\n0ileE6f6m5y+sJWX9HbQmk2TTafIplO0ZlO0ZtO0ZdN0tUUfOvqWP3PplNHb2UJvZ8tJ+wrFEgPD\nBfpHCoyXSuDR6384P87h0QKHR8bpH8nz0AuH+K+tLzJezT/4BCmD9lzmuM+EbCpFJn3s/RW9V489\npvw5Em0fH0P5fZGa4KVRfn+uXbaQL/z2K2qO/VSarhPYzK4Grg53B83sqRpPuQQ4UOM5ZlMzx9fM\nsUGD43t+6kP096tNouO7D/jie6t++JnTOWiuE8AuYFXF/ZWh7Ch3vx64vl5PaGabptMW1ijNHF8z\nxwaKr1aKrzbNHt90zHXd9EFgjZmdZWY54F3A7XMcg4iIMMc1AHcfN7MPA3cRXQZ6o7tvnssYREQk\nMud9AO5+B3DHHD5l3ZqTZkkzx9fMsYHiq5Xiq02zxzelpp4KQkREZo+uTxMRSah5lQDMbL2ZPWVm\n28zs2gn2n2lm95jZY2b2fTNbWbHvk2b2RLj9ZkX5WWa2MZzza6Fzupni+0o45xNmdqOZVT0mfjbi\nq9j/WTMbrDa22YrPIteZ2dNmttXMfr/J4rvUzB42s0fM7Idmdk6Vsd1oZvvM7IlJ9lv4H20L8V1c\nsW+DmT0Tbhsqyl9hZo+Hx3zWphowMofxmVm7mX3HzJ40s81mNumUMo2I74TH3j7ZeRsuGgXZ/Dei\nTuNngbOBHPAosPaEY74ObAjbbwT+JWy/DbibqM+jg+hqpIVh323Au8L2F4EPNll8lxGNhTLg1maL\nL+xfB/wLMNiE/98rgZuBVLh/WpPF9zRwXtj+EPDlKuN7HXAx8MQk+y8D7gyvo1cDG0P5IuC58LMn\nbPeEfQ+EYy089q01/H/rGh/QDvxSOCYH/HczxVfxuF8HbpnsvI2+zacawNFpJNw9D5Snkai0Fvhe\n2L63Yv9a4D53H3f3IeAxYH34RvNG4BvhuJuAK5olPog6zT0gekOupDqzEp9F8zt9CviTKuOa1fiA\nDwJ/6e4lAHff12TxObAwbHcIPHYTAAAF4klEQVQBu6sJzt3vA/pOccjlwM3hpXQ/0G1my4C3AHe7\ne5+7HyJKVOvDvoXufn947d1M9e+Nusfn7sPufm84dx54mOrfG3WPD8DMFgAfAf6q2rhm23xKABNN\nI7HihGMeJcq4AL8GdJrZ4lC+PlQblwC/RDQgbTHQ7+7jpzhnI+M7KjT9vBf4zyaL78PA7e5e6wrg\nsxXfS4DfNLNNZnanma1psvh+F7jDzHYS/X9rasqoIv5Tle+coHy2zDS+o8ysG/hV4J4mi+//AH8L\nDM9iXDWZTwlgOj4KvN7Mfgq8nmiUcdHdv0t06emPiZpRfgIU51l8nyf6FvnfzRKfmS0H3gn8wyzG\nVHV84TEtwKhHIzb/CbixyeL7I+Ayd18J/DPwd7MYX+yYWYbob/pZD5NMNgMzuwh4ibt/q9GxnMp8\nSgDTmUZit7v/uru/HPjzUNYffl7n7he5+5uI2vGeBg4SVeUyk52zwfEBYGYfB3qJqpPVmo34Xg6c\nA2wzs+eBdjPb1kTxQfSN7Jth+1vAhc0Sn5n1Ai9z943hFF8DfqHK+KqN/1TlKycony0zja/seuAZ\nd//MLMZWTXyvAdaF98UPgXPN7PuzHOPM1btTYbZuRB1ozwFncawT7vwTjlnCsc6+64jafiHqwFsc\nti8EngAy4f7XOb4T+ENNFt/vEn1zbGvGv98Jj6+lE3i2/n6fAN4ftt8APNgs8YXbAeDcsO8q4N9q\n+BuuZvJOzLdxfCfmA6F8EfAzog7MnrC9KOw7sRP4shpfg/WO76+Afyv/zWu91Tu+6Zy30beGBzDD\nf9BlRN/sngX+PJT9JfD2sP0O4JlwzJeAllDeSrTmwBbgfuCiinOeHV7o24iSQUuTxTcezvdIuP2v\nZorvhPNXnQBm8e/XDXwHeJyo6eVlTRbfr4XYHgW+D5xdZWy3AnuAAlGt5yrgA8AHwn4D/jHE/jiw\nruKx7w+v/23AlRXl64iS1bPA5wgDR5shPqJv2g5srXhv/G6zxHfCuVfTpAlAI4FFRBJqPvUBiIhI\nHSkBiIgklBKAiEhCKQGIiCSUEoCISEIpAYiIJJQSgCSSmX3AzN43g+NX12NKXzPrNrMP1XoekXpQ\nApDEMbOMu3/R3W+erfOfYnc30bTPMz1nuvqIRCamBCDzUvhG/qRFC+ZsNbNvhNk2X2FmPzCzh8zs\nrjBlLxYt0PIZM9sE/IGZ/W8z+2jYd5GZ3R8W+viWmfWE8leY2aNm9ihwzRTx/E5Y+ON7hFkpzeyP\nzezBcN6/CId+AniJRQvAfMrM3mBm/1Fxns+Z2e+E7ectWkjmYeCd4Xf4pJk9YNECN79Y1z+qJI4S\ngMxnLwU+7+7nAYeJPqT/AXiHu7+CaObP6yqOz7n7Onf/2xPOczPwp+5+IdEw/4+H8n8Gfs/dXzbN\neC4Oz/16M3szsIZoHYGLgFeY2euAa4FnPZoY7o+ncc6D7n6xu3813M+4+6uAP6yIU6Qqp6qqijS7\nHe7+o7D9r8CfARcAd0dr/ZAmmt+l7GsnnsDMuoBud/9BKLoJ+HqYY77bo4VCIFrx7K1TxHO3u5cX\nFXlzuP003F9AlBC2T/N3myzm8symDxHNMSNSNSUAmc9OnMjqCLDZ3V8zyfFDsxxP5fkN+Gt3/7+V\nB5jZ6hMeM87xNfHWU5wTYCz8LKL3r9RITUAyn51hZuUP+/cQzbTZWy4zs6yZnX+qE7j7AHCooj39\nvcAPPJrHv9/M/kco/60ZxnYX8P6wLCBmtsLMTiNKUp0Vx70ArDWzllDruHSGzyNSNX2DkPnsKeAa\nM7uRaKrlfyD64P1saNrJAJ8BNk9xng3AF82snWjO/ytD+ZXAjWbmwHdnEpi7f9fMzgN+EpqjBoHf\ndvdnzexH4ZLSO939j83sNqJpl3/GsSYjkVmn6aBlXgpNKf/h7hc0OBSReUtNQCIiCaUagMgMmNlb\ngE+eUPwzd/+1RsQjUgslABGRhFITkIhIQikBiIgklBKAiEhCKQGIiCSUEoCISEL9f4tOzVoPcWjQ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create ohlc prices\n", + "df_res.head()\n", + "print(df.high.count())\n", + "sns.distplot(df.period_return)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#df.drop([\"_id\"], axis=1, inplace=True)\n", + "df.head()\n", + "#df.to_excel(\"df_res.xlsx\")\n", + "import dill as pickle\n", + "with open(simname+'_fx_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFUXwOHf2VBFepMqIL2pgBQFO2JB7NhBsYOgKCD6\nqWBBUaSJFRVsIGBFRRCkCdIElC49SC/SQkhIu98fM7s725IN2WSzcN7nwdm50+4ESU5uOVeMMSil\nlFJKqdjginYFlFJKKaVU+DR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRS\nSqkYosGbUipPiMinIvJqJseNiNTOw/o8JyIf59XzlFIqUgpEuwJKKRUNxpjXol0HpZQ6GdryppQ6\n7YiI/uKqlIpZGrwppSJGRBqIyBwROSwia0Skk98ppUVkiogkiMhiETknxH2KishQEdkmIkdEZL6I\nFM3kuTXsbteHRWSXiOwWkT6O4wNF5BsR+VJEjgL32WVfOs5pKyIL7LpvF5H77PLCIvKWiPwrIntF\n5INgdbHPOywijR1l5UUkSUQqiEg5EfnZPuegiMwTkaDfg+136SUiW0TkgIgMcZ4rIg+JyDr767hW\nRJrZ5f1FZLOj/KZQXzOlVOzS4E0pFREiUhD4CZgOVAB6AuNEpJ7jtDuAl4DSwCZgUIjbvQU0By4E\nygD9gIwwqnEZUAe4CnhGRK50HLsB+AYoBYzzq/vZwFRgFFAeOA/42z48GKhrl9UGqgAv+j/YGHMC\n+A6401HcGZhrjNkHPA3ssO9fEXgOyGx9wpuAFkAzu+7d7LreBgwEugAlgE7Af/Y1m4F2QEmsr/OX\nIlIpk2copWKQBm9KqUhpDZwJDDbGpBhjZgE/4xvMfG+MWWKMScMKoM7zv4ndwtQNeMIYs9MYk26M\nWWAHR1l5yRiTaIxZBYz1e/ZCY8wPxpgMY0yS33V3Ab8ZY74yxqQaY/4zxvwtIgI8DPQ2xhw0xiQA\nr2EFocGM9zt2l10GkApUAs62nzHPZL649Bv2M/8FRjje5UHgTWPMn8ayyRizDcAY87UxZpf9jhOB\njUDLTJ6hlIpBGrwppSKlMrDdGONsIduG1VLltsfx+ThWsOevHFAEqxUpu7b7PbtyiGP+qoV4Xnng\nDGCZ3d15GJhmlwczGzhDRFqJSA2s4PR7+9gQrNbG6XZ3aP+TfJdQdUVEuojI3466Nsb6eiqlTiEa\nvCmlImUXUM1vHFd1YGc273MASAaCjofLQjW/Z+9y7GfWyrU9xPMOAElAI2NMKftPSWNMsKATY0w6\nMAmrlexO4Ge7tQ5jTIIx5mljTC2srs6nROSKk3iXoHW1u34/Ah4HyhpjSgGrAcnkGUqpGKTBm1Iq\nUhZjtab1E5GCInIpcD0wITs3sVvuxgDDRKSyiMSJSBsRKRzG5S+IyBki0gi4H5gY5mPHAVeKSGcR\nKSAiZUXkPLsuHwHDRaQCgIhUEZEOmdxrPHA7cDfeLlNEpKOI1La7Yo8A6WQ+jq+viJQWkWrAE453\n+RjoIyLNxVLbDtyKYQWo++3n3Y/V8qaUOsVo8KaUighjTApWsHYNVovVe0AXY8w/J3G7PsAq4E/g\nIPAG4X2/movVNTkTeMsYMz2ch9njyq7FmlRwEGuywrn24Wfsey6yZ6r+BtQLdh/7XouBRKxuzqmO\nQ3Xsa48BC4H3jDGzM6nWZGCZXZcpwCf2/b/GmugxHkgAfgDKGGPWAkPte+8FmgB/hPP+SqnYIpmP\nl1VKqfzPHl+2FShoT4aIaSJigDrGmE3RrotSKv/RljellFJKqRiiwZtSKiaIyN0icizInzXRrptS\nSuUl7TZVSimllIoh2vKmlFJKKRVDNHhTSimllIohBaJdgZwqV66cqVGjRrSroZRSSimVpWXLlh0w\nxoRapSUsEQveRCQOWArsNMZ0FJEyWEklawDxQGdjzCH73GeBB7CSVPYyxvxqlzcHPgWKAr9grW2Y\n6aC8GjVqsHTp0ki9hlJKKaVUrhGRbTm9RyS7TZ8A1jn2+wMzjTF1sBJm9gcQkYZYCzc3Aq4G3rMD\nP4D3gYewklnWsY8rpZRSSilbRII3EakKXIe1bIvbDcBn9ufPgBsd5ROMMSeMMVuxMpe3FJFKQAlj\nzCK7te1zxzVKKaWUUorItbyNAPrhu05fRWPMbvvzHqCi/bkK1sLKbjvssir2Z/9ypZRSSilly3Hw\nJiIdgX3GmGWhzrFb0iKWUE5EHhaRpSKydP/+/ZG6rVJKKaVUvheJlreLgE4iEg9MAC4XkS+BvXZX\nKPZ2n33+TqCa4/qqdtlO+7N/eQBjzGhjTAtjTIvy5XM0YUMppZRSKqbkOHgzxjxrjKlqjKmBNRFh\nljHmHuBHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIaxERoIvjGqWUUkopRe7meRsMTBKRB4Bt\nQGcAY8waEZkErAXSgB7GmHT7mu54U4VMtf8opZRSSilbzK9t2qJFC6N53pRSSikVC0RkmTGmRU7u\noctjKaWUUkrFkJhfHksppWJVUnIyrb56mxZFyzIr6QAI1h/cW0fPiL0vnuOGRwrUoP/td+VhjZVS\n+YEGb0oplYXzRw3lsGPfCCB2YGUHU3VLlmT63Q9l677dZ//AUWBW0n+Om9v3dG99Dvj6MC3eWrpG\nKXVa0eBNKaWykJ71KZCR/fHDY6+5I9vXKKWUBm9KKZWFlT2fjnYVlFLKQycsKKWUUkrFEA3elFJK\nKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIoh\nGrwppZRSSsUQDd6UUkoppWKIBm9KKaWUUjFEgzellFJKqRiiC9MrpVSMqTnudcAggPUf71bEgMC3\nl97HeRWrRKeCSqlcpS1vSikVYxoVONP6IL7l4tivXbJs3lVIKZWntOVNKaVizM+394x2FZRSUaQt\nb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNExb0qpfK/eK8MBMO4C5wxL8SsX2Ni/d15WTyml8pS2\nvCmllFJKxRBteVNK5XvrX9CWNKWUctOWN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikV\nQzR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBN\nKaWUUiqGaPCmlFJKKRVDchy8iUgREVkiIitEZI2IvGSXlxGRGSKy0d6WdlzzrIhsEpH1ItLBUd5c\nRFbZx94WEclp/ZRSSimlTiWRaHk7AVxujDkXOA+4WkRaA/2BmcaYOsBMex8RaQjcATQCrgbeE5E4\n+17vAw8Bdew/V0egfkoppZRSp4wcB2/GcszeLWj/McANwGd2+WfAjfbnG4AJxpgTxpitwCagpYhU\nAkoYYxYZYwzwueMapZRSSilFhMa8iUiciPwN7ANmGGMWAxWNMbvtU/YAFe3PVYDtjst32GVV7M/+\n5UoppZRSyhaR4M0Yk26MOQ+oitWK1tjvuMFqjYsIEXlYRJaKyNL9+/dH6rZKKaWUUvleRGebGmMO\nA7OxxqrttbtCsbf77NN2AtUcl1W1y3ban/3Lgz1ntDGmhTGmRfny5SP5CkoppZRS+VokZpuWF5FS\n9ueiQHvgH+BHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIa3uWaRfHNUoppZRSCigQgXtUAj6z\nZ4y6gEnGmJ9FZCEwSUQeALYBnQGMMWtEZBKwFkgDehhj0u17dQc+BYoCU+0/SimllFLKJtZwtNjV\nokULs3Tp0mhXQymllFIqSyKyzBjTIif30BUWlFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkop\npVQM0eBNKaWUUiqGaPCmlFJKKRVDIpHnTSmlcqT+gOHeHbE2RryfPWX27uI+j1K6aNE8qp1SSuUv\n2vKmlIq688oUsT74BWuhaOCmlDqdacubUirqJjzxWLSroJRSMUNb3pRSSimlYogGb0oppZRSMUSD\nN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikVQzRViFJKZUP7d4ayEexcdMYnN11VYP5j\nfaJVNaXUaUJb3pRSKhs2eT6ZgGM78rIiSqnTlra8KaVUNmx9/OloV0EpdZrTljellFJKqRiiLW9K\nKQX8unYtj02fZu2I1SVq/NZafa3NJdzZokXeV04ppRy05U0ppYBqYSx236RMmTyoiVJKZU5b3pRS\nCmhYsyZbnnwq2tVQSqksacubUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIohGrwppZRS\nSsUQDd6UUkoppWKIBm9KKaWUUjFE87wppVQQtd4e6l16XrzlW3vq2qZKqejSljellMqGxTu2RbsK\nSqnTnLa8KaVUEFt6aQubUip/0pY3pZRSSqkYosGbUkoppVQM0W5TpdQp4Y1fZ/Lx8pUY9+QCx3ZT\nv97RqpZSSkWctrwppU4Jz3S4AvCZGArA1M435X1llFIqF2nLm1LqlLHxWW1hU0qd+rTlTSmllFIq\nhuQ4eBORaiIyW0TWisgaEXnCLi8jIjNEZKO9Le245lkR2SQi60Wkg6O8uYisso+9LSL+PSBKKaWU\nUqe1SLS8pQFPG2MaAq2BHiLSEOgPzDTG1AFm2vvYx+4AGgFXA++JSJx9r/eBh4A69p+rI1A/pZRS\nSqlTRo6DN2PMbmPMcvtzArAOqALcAHxmn/YZcKP9+QZggjHmhDFmK7AJaCkilYASxphFxhgDfO64\nRimllFJKEeExbyJSAzgfWAxUNMbstg/tASran6sA2x2X7bDLqtif/cuVUkoppZQtYrNNReRM4Fvg\nSWPMUedwNWOMERET8uLsP+th4GGA6tWrR+q2SimVqZqjhgJYueTc39IE4rv3iV6llFKnnYgEbyJS\nECtwG2eM+c4u3isilYwxu+0u0X12+U6gmuPyqnbZTvuzf3kAY8xoYDRAixYtIhYUKqVUZrb21PVO\nlVLRl+PgzZ4R+gmwzhgzzHHoR6ArMNjeTnaUjxeRYUBlrIkJS4wx6SJyVERaY3W7dgFG5bR+SqnI\naPL0cO+OgLG3AKuHaH41pZTKK5FoebsIuBdYJSJ/22XPYQVtk0TkAWAb0BnAGLNGRCYBa7FmqvYw\nxqTb13UHPgWKAlPtP0qpfOZ0b+6u8e5Q+5PxWYbLfxv/iHanKqUiL8fBmzFmPoEr0rhdEeKaQcCg\nIOVLgcY5rZNSKvJWDdXWNV9Zh7Cp6ekUjIvL8jyllMoOXR5LKaWyKb6Hjn1TSkWPLo+llFJKKRVD\ntOVNKXVaefbXX/lp7TrSgRST4TPxwru1ukSNf7nNP1VIqG27KtV48oK2nFu+En/t20WNEqW4fvIX\n7D6eQIdqtahbtiIbDx2gecXKXFjpbBqXO4vktFQ++2c5Z5cozcGkRO6qdz7/HjvMN5tWkZhygjEb\n/vSpo/g9N04MGX7H3JmaShUsxEMN2vJwvYtO4iunlMovxFrMIHa1aNHCLF26NNrVUErFiOTUVI6d\nOEFaRgapKSl8NnMm9WvX5p9t21jybzwbgRMCYOwgzbquLPAfUFjgrrKVOatqVSqULEn1UqXY9t9/\nTF80j9qVz6ZpnTpUL1MGAaqXKUOhggVxiZBhDC4RDiUlcSwlhQrFiuHCGhdXKC6OuLg43PkxU9PT\ncYlggAIuF8YYUtPTMcDGAwd48bexHBdDa6lKh/NasD0xEVdGBhVLlqRB5cokpKay/eBBdh85Qipw\nWe3a7D1+nJqlSlG8SBEKuLTTRaloEZFlxpgWObqHBm9KqXB9/8efvPjd/IBUIc4g5wLg0zd0coNS\nSgUTieBNf/1SSoXtxe/mAyHmWdqFf+ZZbZRS6vSkY96UUmHTdCFKKRV9GrwppcJy+Ggi7V4abe0E\n6zZ17PuXz37mASqWKpE3FVVKqVOcdpsqpcKy90iC53N2R8ruO5qQ9UlKKaXCoi1vSqmw1Kt2lnab\nKqVUPqAtb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhuiEBaViwA9z/ub1L2aRbgiS\nnkO8+yFSdSDQpkEV3uvZOW8qHIYGLwwHgqcZqVS4ALOf7RmVeimlVH6nLW9KxYB/tu23Arcc2LB9\nX2Qqkwd2n0ij3kvDqffy8GhXRSml8h1d21QpFVXzVq/moa9neAv81ktd/6KmJzlVfffPPN7e+QMA\nItbPIpdj6xIA4y0j8Byxr729/HVMPzCXBBIAw31VO3Nd9cvz8nWUCksk1jbVblOlVFS1a9yYfxo3\njnY1VBT8tHdBpsczjDuAC809kmD2gXkcsQM3F/D7gQUavKlTlgZvSqmoafzicNLcO8HG6wn0v6w1\n97drk/eVi4Aao4dYHzzLiRnPvnPrbnWKv/+ZvKxe1I295PR6X6UiRYM3pVTUhDNo4/PZixg8ZxGt\ngFe73sJTn3/LN8/HcFdqFi1JOdV04iAS7a+s+AWHbze9gWvqNc3dCiilcp2OeVNK5Sv1X7JnoUJg\na5y9W0RgZSwHcLmo9sRBmBDB2/lx5bmoeg2W79zJovSdnAEkAVUxPFa3A+9unMZhsb7cyWJ1P7pb\nC0WM435gjUWztlcXqUvVkuV4tNk1uETnwSmVmUiMedPgTSmlTgNL9m7lnnlfWjviF9xhPAGef8Dn\ncgRv/sf9j33X9mnOLl42V99D5Y258bUBcJEBQJz9dxznmTSSQRwAhjiqIBxEJI4m1dZFobaxRScs\nKKWUCkvLijXZcOsL0a6GOqW4G392Et4gCBUpGrwppZRSysclNTZFuwoqExq8KaVUhL0051fGrl9p\n7fjMnvXONt32QL+o1E3FruTUo2xOmM7iAyPA051pbd058OIkgzj7mMs+FgecV/x1alW4Os/rrHKH\nBm9KqVyzaeceOr37lbVjBzGL+j9MieLFwro+KSmJ84Z84DNhwSVwda1qXHNuI3r+MM0q91sazD3Z\noUeLpvS+4ooIvU34Lqlcwxu8KRUh4nIR5yoKFAKSs3l14VyokYoWnbCglMo1X85ezGsz7ESsdnA1\npsuNtK5XM6zrbxz1EesOHQuYbYpYQVyGvetcH9V/rdQN/Z7E5R5lr5RSUaazTdHgTanT0UNjP2fu\nzv8CEvoCbHz21EghYoyh/9yfmPjvWqvAb7Zn4L71Jdh853N5Wk+lVPbobFOlTiEjv5jBuBmrrB07\nGHHmOvNvUfLui2e/YYXCfPlq97ypcBTN3flfYKF7naRThIhQNK5gtKuhlMqHNHhTKp/YeyjBt+Ak\ngpEDh05ErD752YbTJEHvwHbXMLDdNdGuhlJZSkk5zvq9dQBvLrg4+5hLvPvuFM5x9ve2OPubXOUq\nu/KopqcGDd6Uyide63Uzr0W7EuqUlJiYyPlTh3kL/Lpc19z4PAVcujLCqeZI0r/M3HU7kEwcZ4Ok\nADsciXe9iXatv/0MR1CVDpxFk7IjKVO8eZbPKlTojEyPx2V6tEqW91e+NHhTMSkpKYWUlDREhAIF\nXHw1/g/+3baXpudWZ83aHcyZuwVrVDsULAAp6eBuxqpetRiPP9aBvi98ByJBl2H64v37qF69Qp6/\n16lu+sp1PDHJmiEaqjvYuf37uccpUjDvuw5rjRwKBKmb/TmzRebxG5Pm3u/TvA2PN2+bG9XNUrFi\ngbN73YHbeYgGbqeo1Qc/JJ1k4jCkE+9JIeKUjjuw8kz/cRzdw5r/boP/rBUWPIGeWOfH0ZNm1ft6\nzm5SbWeuvIcKpBMWVEz6bfoqtm7ZzxlnFCKuoIuPPpzjM/YL8O67/PadaSUAIxLwg7dq1ZKM+/CR\n3HyFU8KJEyk0f/5dz9f80fPPpkCJsuw4fJhBd98QcP4DH09kQbzdPZJF8GYEBnW8lEPJxzmxezdN\natTgkhY5GuMbtkgHb3HAiEs7cn3dBrlUY0tiagpvLpvOxkP72Z1wmO0kWlXIZLKD/a/Cc87SDv0o\ndkbmrSiRcPHMPoA3P5n/clzW1goU3GUVCpbkQOphz34p1xmUKFyMtmXO55s904gjjgltRur6qhEQ\n7vJYzar/G5X6xTKdbYoGb0pF06BvfuOrxauCBmBrBoc3Lq3+i8MDrnVv/e+7/oXTY6zbydqblMA9\nM75gZ9JBUhwBZ2bBG/iubTrx4m40LVs91+s6eO5XTEtbBkAlhD2SDliBmnvBe+e2KmcysNnjrPsv\nnu0Ht1OlZBXqlqtBkQIFKVGwBBsOb6BQgUI0LF0/1+uuVE5o8IYGb0oppVROHDlyhCUHBwPf2WPe\n3F2kj+NihGccXBVmc/bZZ0ermqcMTRWilFK5oPnIoRwiq25T6FChEh/edlee10+pSFpysDWBY94y\ngLcBSDdWt+lOLuVstkahhsqfBm9KqXwhPT2dRq+87dn3X/IKfPPe+ZQ7zxPY2D9n3auHMjvoSOHy\n677dOXrOyZq3agVdVk4B/JL0CjQoUoqfbzz1c/2pyGlfc120q6CySYM3pVRIn/86jyG/+g1LCJJA\nePWQkw+WVm/YwK3jpvjePwQBTB4k493yxNO5+4Ac+nxT8HVTjYF/kg/ncW2UUnktIsGbiIwBOgL7\njDGN7bIywESgBhAPdDbGHLKPPQs8gDVLuZcx5le7vDnwKVAU+AV4wsT6oDylYti89cFnkkXyH+Wa\nw0lhnxv0uQKVgN0CzYvF8fqdd0aqavnWRzfdG+0qRMXL895jsVnnNyM1yAxVrNmQVhn4TH5wzJZ0\nXxPnOZbhdz94rfEoShUqnfsvp1Q2RGTCgohcDBwDPncEb28CB40xg0WkP1DaGPOMiDQEvgJaApWB\n34C6xph0EVkC9AIWYwVvbxtjpmb2bJ2woFTea9zHd4ZoZuk+3PvLBvagaKFCYd2/25iv+GP7nuDd\npsAGnXV6Wrr7974cJjnM4A2u4EKuqN2WPUf2UrZ4OWbHz6EEJXAJJJFIvMRzJsVoUKg+ZV1l+PTE\nx0AGLoH+NV/hRFoS9SrkbnoXdfrJV7NNRaQG8LMjeFsPXGqM2S0ilYA5xph6dqsbxpjX7fN+BQZi\ntc7NNsbUt8vvtK/PNNmWBm9K5Z6mTw0PbO0KksIj0+BNoOYZBZjyfM+I1m37/v1cMfrLwOdHYMxb\nJDQZPQTngmfOMXzbHuwb7JJT0vTtyxiwbpL1VyMmMJ8b3rQlFYCJlw+NUk2Vyhv5fbZpRWOMezTv\nHqCi/bkKsMhx3g67LNX+7F+ulMqHBFiVg7Fup7p3Lr6Wrr//Yu1EeIzewaTjNP9uJFZyXTzPELv7\nz53HrZTEUclVlPXGCiM33vZCZCsShsS08NfbTcj6FJVDxhg2/fcpuxJ+J5HFjuWx/JPx2l3I9rai\nayB1q3eJQo1VMHkyYcEYY8T961YEiMjDwMMA1avnfjJJpU5XK4dZwdnl/3uX/UkpPscM0Livt/u0\njAt+DzMxbyRUK1+eDf/Lv8HjJfUbEV+/Ua7c+88dwdM1GOOYfQocIZ0jGcd8yvLaTTUv5KaaF+b6\nc+Zt/pMRe8fYa3R6l3CqIuXpe+7jVCpaKdfrEAsyMtJJTt/DCfZk67pksymXaqRORm4Gb3tFpJKj\n23SfXb4TqOY4r6pdttP+7F8ewBgzGhgNVrdppCuulPI1a1CPaFdBOXSo04itdXInMIxVI/aOBSDD\nscg6wG728+OO6TxSp2vU6pZfnEg7yoY93xKfMgEX6X5BvUtThsSQ3AzefgS6AoPt7WRH+XgRGYY1\nYaEOsMSesHBURFpjTVjoAozKxfopdVr65o+/efWr2UDgWLGAMsd+8YIw99WeFCwY2W8b0/5ewZPf\nz/IW+KUi6daiMc9c2z6iz4wV3adO5Jf9diubY0mrrfc8G971M75k+qH4LNc2Pa9YRSZ0yN21fC+a\n8QzONVS9Y94IXh5kbdMyFGPcxa8Hvf+3F76Xi7XP/4wxfLXZSrbrXmjeJVCcQaSRRjq/UkjKksZ3\nQAYZWGvuehemh93711CpvP5SEAsilSrkK+BSoJyI7AAGYAVtk0TkAWAb0BnAGLNGRCYBa4E0oIcx\nJt2+VXe8qUKm2n+UOu1t33OQm5/71Ce3WufLGnN5iwY8MvQbIHhS2+UfBHYrVil5pm9BFl1qxQpC\nWipULFGCAgXiMj85TBv37KXTu+OBEKsYOHK5jV26+rQN3hKyMV4smOmH4rM8xwB/J+7N0XNyi0sE\nZ4KYwxzjut97hj3bFGDUeYOoULRsHtY6OqzAzS3Ds03gWc9i8inA5VV+oXjhqv6XqxgTkeDNGBMq\nsdIVIc4fBAwKUr4UaByJOil1Ktn4776AWZ9zl2+kTKni2b5Xm8a1+fud6I4VS0gOPyjJ6biI9PR0\n6g0b6b1PkNbGzU89lcOn+Npx8CBtv/7E51newNsw4sKruKnheVne54vrczZAfFPn53N0fST90f6N\nXLnvTX/4dum7/I4XdPmXnJruqr042lVQeUhXWFAqBlzesj5LW9YPeuzBjm1y/fm3vvkp6/ccyrJr\n1b/lD4FPHriZ1rV9F7NuVqM6617JmwDyeFpa6IPGqrsxBongqP62X4/x3B9xbO0Q8smF08MK3npN\nnciPQbpNg+1Xk4LMvTNnKUga/jDQ89m/G9O/63VQo5voWLNZjp6XGzKwArjKlGd4m1eCntN1yQOA\nM0mvtwv3DIqTLIc9x8Ax81IMF5Roxz3n5M8xoOM3dQJ2O+przyC1/7+Lkwyf8YDX11qd95VUERGx\nPG/RonnelMp9aWlpvPz+x6yMT2IzeFqSmheDZcdDB29NK5Xiix5dItbdGqv+3b+fdj98yvkCD1x8\nFQlHkzmSkMhV9RvwxLQvqEBhZkkyl1GKey+7hFFzf+Yv0vFpd7SDv6DBm8DnF91EoaKFaFn+nJOu\n52sLJ/Pl3r8AK1AxBA/eRGDRVc9TpGDhk36WirzExAQm777cZ8ybNQYuMHirL29Sp+a1Uarp6S1f\nJemNFg3elIp99QcM9+74JfgFOFNgWT5bVWHl3r2sio/ns2XzeO7yjrwz+2eWgiOAtb+3+ryP8Rnb\nJ3YQLH6moJyLAAAgAElEQVTnBtzD8TlUy5v7GhETcMwZeG24Ne9zvWVH+znuv+fACQvepa38t/D9\nRe/63Of2hY/Y1/ueGwd83urjXH2H/O5gwj8sOnAr7ha4uCB53s4t+TVlS58brSqe0vJ7kl6lVAwY\n9cMcPp71l0/gsGJE9gKl48kpXDDA8cPTca81r/em4f98gzPnxIugExb8ZIQ+FBUfLF3M4MXzrB2B\n+2b9HLr+4rdjIr/CwsB5P/P5jpWO1A++A/3delTLf92c/mZcOjzrk8JQnjLs57+A8trUjsj9Y1np\nM+vBAeuzt03chfNfmgZu+ZsGb0qd5hau3x5QlpSUTNGiRcK+xxlFHGuWOoKxla/2Cn5BiEDnm243\n0/jss4MfzEcebdGKR1u0inY1PAa268hAOka7GtwzbRjrzQGf8XLuVR/cC8OLwINV21OyUBFGbp2M\nO8gMnioExrcaQPmi2V8Y/p02wVOK5JUjxw8yfMv9uN/PRQZx4rvwvTtw6tcwbxMriAjX1tTxbrFM\ngzelTnPjn7kXgMOHD3PJgLEYoNWz7/sEYYNvvZJrL2wS8h5b9x/07jjSfDR5/m3PPRCoWaY4va5q\nx6+r1zN17eaA+9w65jsQ+ObBzjSuqqvjxZpkUsM670T6CW6q1d4O3gK503y4BMoXLc2rS8bwR/Lf\nQbpNwb9r1AVMaPUOcXHRHWd5LOVQVJ+vTm0avCmlALhz2ISg5QZ45pvfMg3eChcILx1D2TOKUKxQ\nYUqeUTTT84oVyj8D4WuOCrJQusDWx5/O+8pkQ+tJb3DADqYyS9I7tMmN7Eo9wsMN2530s5pPfQ4I\nTNMB1pJdlxasw+DLHww4NueKt8K6/8LkFSGOBHYNZwD7kg9QqVjFwNPzUJVS5zCwVPDgVKmc0uBN\nKQXA1JcfPelrK5cuxZo3go+Ta/TccM+P2KU79rP0i+99xry5rXiuB4ULFyIcdV/1rqnq3pogY+i6\nNm3EC9dcFeZbBNekQGFWOZPlCmR3ReWHPxrBr6R604UIPFK7Cc9dck2O6paZA2G2gvVZ9QNgGL5+\nJhA4ycF/tunK64On38jM9rT9AWUHjx/m5oWvklm3qcuny9Xrca7ngkYXMGztMNbKIXtWLDSnGlcW\nuJKzzqiQ7ToGszNhG3/v/JMlx//gsOzx1NVKL+JeuN1dZu2/2OBzzih4ZtD7KRUpGrwppbK0dede\nOg0dHyLpbOhUIWsG9w47yW5yRjqRbm9LSA0vgMnMj489nqPrdx05wnRPIOX9any4aVWuBm/hJuht\n8d3LHANCTXIAb0D39FkXBz2+7JrXwq7XkROJ3Dx/IKmesWChZRhvAOf0Dj/Bmp+sQM9YgVuGgWWy\nnWVpY+mxN43Lz7ow7DqF8t2ur9hwfBWQkWk93YQCuRK4JaYe5MstNwA4ctJ5Z4cWoy231hmS5X2O\np+xh5o6r8MwyFedsU2h11gxKFNXVF2KBpgpRSmWpyVN+s0XDTNI7/38PUbp47rZCLIvfzh3jv/E+\nV2Bj/+zNlu01cQI/79oVkKIj6ExYT+AaKr0HxD/aJ1vPj4ZvNy3juZVTABDH2qL+LW/FBRZ1eili\nz80wGTy79FMWHl0LeFuuMl/bFKZePBKAF+a9zd9sCDjX3TrXulAj+rbIn0l0oy0jI40p8c1wBm/W\nyECDi8pcWWMGIt4wdV58bce5xnMuWC2NnvxxfmMR42hOw2o/5vr7xCpNFaKUyhOrhuWvHGtOd7oD\nN4c6g4cHDeD2HU2gzeiPrJ0g+eTC4piQEctKFgxvNnHJCD/XJS7euKDbSV9/SbWW/L19Q0B5hrGC\nhyIpZ+Skeqc0l6sA19damQdPCuwmV5GlwZtSp7Fze/m2qH3x4JU0bRJ6YkJuqz/QO5bNZ1ycvV2f\nWaJeR0AVKrFEhRLFfXsHHdf8r3VrHmiT8642p5S0NOqOsd7Jk6TX+VyfxLqOC52teF2eiWid3K48\nuxHrz24UsfulZ6RzzfQXOWRM0PFyLoGCwF1VL6ZMoeK8Hf8TAL9dMohCBYKPdUxOTmb9+vWMOzKO\nVSTbXZeBY+Cc5rCE5AUH6FS2E/Xq1cvWO2w6uJ43t7waJLGvb4oPa8wbvNn0K1xy6q6d2q7GJs/n\njIwMdu78nV0ZA3DJNrvU+sd0BsOoU72zz7XHjq9h53/tAd/UKO6vVpz9dxhn/8/uohdnVemfS29y\n6tHgTSnlcf/Hv7FsZHSCN58hHCFat9bu2k3DypV8yjY8l71Wwc1Pn9wi9M5Zp/6BWHz34N2khQoU\nYFanu+n/03gW2y/VWgzt6rXij63/0KJ6dWZsWcWFVRoyZtdaz/3c258vuT1kfWqNe81encF7vjun\nmvseFaQA+0kNMtsUNtwS2ZUW0kwGhzMZhpNhIFVgxeF4yhYubpcajqckBwRv1ioLgSsshBqT58uw\nhM0sPTicAYeeomHpumG/w57k7LUYZWRk4Io7dYM3p/3HJrMr4ynA2K2c4P77OM7TQGe/KzKfUR6o\nbI7reDrRMW9KqaCaPjXcE0R5vkuEmLCAwOo380fX6u7Dh2n3wVhP3c4S2GMHNP517lCxAtP27Qu5\nLFWwMW+jr+3EQ9N+xP1VOdPlYvVjJxcQ5kTNcdYkgewuj+U+d377HlQoUSaidTLG8NBvo1iZvhsI\nbHmDwFa5zMa8OWebPsJltGvUjlKlSkU9h1sw01ZPZE7GRMf4L+9YMfd6ok3lam5sFHoCzPB1V/pe\n62hl7F5vdm5VXeUxHfN2mjLGkHQsmeSkZP7be5hel7/hPegSrunWilp1q/LvzgP89K69hI/L+vYx\nZftIXK7T4zdFlUPBfq/Lg/Fe9V8a7n18kOAp065TsAI3hz2ZnPvePfdQa9iwsOs24677qFW6NBM6\ndWbj7t0sX7GCIfffH/b1kbT17uei8lyA86a8gDM5rifwso/LSf4/Uhh8Epx4Z5vCjRffeHI3zaYe\ny+4n3a6Ff7fp0KafhezinZMxMeQ9M7C+NmuYxo2EDt58F6hSKjRteYtBhw8cZe53f7J5zXZmfLMA\nY6egEnFZbdneX7e9F9kBW+N2NRgyIX8nF40lk6b8ycgxc60dzwB48e67W3vsn2rP3HcRl7U+l5Il\ns9ulkD817usYzwUBwZZPeZCyZlXKM+7Re3zu2fql4RwmePDmjh2dAdwLP05hwuoNnvOc99/0TPBA\n75yh3oDNZ8KCz9Z47lVMIBHY2lP/7eTENb/9jwRSAG9gNKFZfyqXLhfW9RO2TGHczmk48625t95u\nPKuly+VZigq+aj067Do+uuzegPu7g7fBjT6mWOFiYd9LqWAi0fKmwZtSOTD+h0W8+8V8aydY8IYj\nmHBZnwVYOD42g4AmTwcP1k42eBt5+7Vc1ThwULkxhvovjwgavLn3NzxvBWYrtm7l1q9+8HmOO/AL\nFrylpqZS/+1R3mf5BW9d69RhwHXXB33//CTcbtNZHXpQvWT21wbNj9LS0vjonwlMO7TIas0KlV4E\nb/DWu9IDtK6Rf9ahVUqDNzR4Uyfv7gfeZueu5OAtPC5vADbj6yfCzvx/qvv81zkMmf5XwPixR9ud\ny+OdLgegUX/vDFZnoLb2tazHxHlmm+INqsoXLMD+tDSrzH3QEbydrvYkJHDhT3YQan+dqwkcwpAo\nVu62G6U6b3Xukqv1aD71f3gXX7er41h79LfLXuDMQt70HUdOJHL9/IGOa3y7XmdfHn439vAlH/N7\n6l84W8qcM1K7l7uPS+q0Pqn3yq6BK+8jmaOZjnk7R5pzd6OX8qQ+Kv/SMW8qZnQ4f4B3x29gjPHr\n5i1UtACXdWjE08/dkKt12rkrOazzDh1J4qwKGrwBdOlwKdXKVaDnV7/6lL8/fwXvz1/hEwSP7noj\nFzWoGfa9e48dH7R8f2oa/7zwJOI3kKruoOBB4sZn8yaoazvmfXYkJfoG/vbnrY88HVDfSDureHG2\n3JV7494aTbb+zfqPaxPHrFaX/0QIP60KVPcJ3ABKZtLt2JbwZ4YCduDmKwPj+Rbz64HZeRa8SRhr\nMLgomAc1UacDDd5UvlLmrAK0aduES9s3zvVnzZnaL1fuO2DoJGYs3u7ZNwILJjyV6z/MAaYsXM0L\nn87ItDvzr3dzFtzsTkgI67wdhw4HLR/w9XQmrViTZZerU9+vf+Ktzp18ypY8+TAtR4z2nF9Q4MFz\nG4ZVt0h44vwL6LtgTkB5CUBEqPGhvVyR8z0zy/MWpNx9fnyXvM9/1ZoiLCKZrnEt+Tx9ic8xY9wB\nmwAm5PJYc3ev5qLp/fGmLzE+rXIW4Y7K7Xi0QfZ/Wfv+onfDPjch+RjdVzwJfi1jVs42b8vhB83G\nhjWpq8+K2+xrfO9nfbaOvNLk+7Drp1R2aLepUhF2YeehPvtG4PdxT1CwQO7/rrRwTTw9Rnl/YGQ2\nNm3xsMcpXCjvWwK27N7Hde+OCz4G7rqL6NCyZY7u/93K1aQkHef5OX947osY33Qnjmd+2LEjT035\nmWNAE4GtQBGBczAsFvj5trtoWKkS2ZGWkUHtj4Z6n0feBW8jls1i1KYF9n19719CYNmt2c/vNmXK\nFPZl7GOEbHHc19BVynI2ZzNIlgGG84GVnokD4acKEcc1XatfyX21r812HbNijKHLkocIHrxZz3cB\no1t8Ftb9+qy4HWvNU79uUk96D2+3KVhrkbrXEn2u4ZQc/zI3ZsOF9v3t93AvVSUZjqTC3joB1Cz8\nIOdXzdlavSrndMwbGrxFkjGG0YO/44ePFloFnnFfnn4Spm54I8TV4Vu/die9unzkfa7/7Fj7l96x\nEx+jytnlc/y8002zR4N3J/rvT3rmbupWq5CndcuJY4mJNBtmzxr0e6+HGtWl743XAdBkyNskZaR7\nLwyVs82xDTzme83WXjmbYFLjoyGZroc65+YHqFmqLKv27uT6aV8G1N17rvH8M9l6z7NBn5Walkb9\nb9/wOdcdMP1+RQ8qlclebrd3/5zGh3sWgGdsmveeoVOFBAZv7n3/Y7WlAlvZi3/A595ObPUSZYqG\nXqTrpj96+F3rnrAAkIFL4KPmwzgzFxaMDyU1/QQvr7WS1gYL3vrU/o7ChcNbniwU3+DNZd+/GhBv\nr0FaBJccB9xrkArXVllAkSLZn+m+Zd8I9iRZa8s6g1Pv2qYAVTi3+qIcvdPpQoM3NHiLpP27D9Hl\nokHeAp/gDUAiErxt27qPh297z7NvHPe3nmttxk7qTpXq4aUQUKe+eq8MD5osGILPas3u4vRunUYO\nY7V1V4zAd9fewPm1awNw75iPmH/8qGOyhgmoS/xjJ78ofXJqKvXHD3PcLzB4ixO4uWo9hlx680k/\nJzsOJx7j4llv4gzevGPe3IHZyQRv8PsVQ0hNT+Wquf0JHrz5rrDgwlAlrjyjL3oxaF1vW/CY/cn4\ntKz5bEO0vN1W8Ha+TZ2AFfD5XvNes3HZ+6JF0HvrLwG86Uq8weCZdKs7LU/qkJi4lxUHWtv1cAZv\nANaC9RULfcRZZ12dJ/WJdRq8ocFbXnjqnndZt2QbeNff8QR2zlazxq2r8NYn3aNTSXVaqP/KcOtH\nmDtgsqMFZ1DnDOSeaHMBPS9um+V9k1NSaPjeO94Cv5a3MgLLej5NzXeGep8XsqvT9x6eoO7hvlnW\nI1oafP+S/Smwtc4l8F27x7j1D+/4Mv8JC8uvHcTQ5T8wYe8Sv2u9wZsANQqUZvzlgV3Al816msxy\nt3kDL+hZ8w6urhZ8DVoreAsMzny2mY55C37N4zX60bDMuUGfmdtCB2/Qre78qNRJ5YwGb2jwlheu\nqfuMc4SytQ0SvAFMWzMo2C2UiohDSUm0GvqBt8BuaXOmLQnePWq1kLmAmd26Uq2s7zqKuxMSuOjj\nj0J2myKxn6D3nl/HsiRhh0+LnqfR2zEWzT94O1vgl04v8dXq3xkcP8NxTpBxbPhe6xJY1OH1LOsW\nKngD6Fb2Ku5sEpkxcPcufpBgwZ0zIAp3zFt+t2rreP7JsCbNeLo3BTrV/CtPJk/lthO7a3k+x4n1\nf54LF1Jxfb5/Pw3e0OAtGub/9jeDelpLwQQbr/bV3Ge489I3veUiGBHaXFaXhXM3eMpLlS3K4f+S\nAu7x4YSHqVnrrLx6HZWJpk8Nx/87xKphOU/FsWjzVu7/1Eqs6w6QGpcuzDe9M2+5TUlPp/Hrb3sL\nHAFbhaIF+aP346Skp9PwLf9zjCfI++au2zm/SpUcv8OppsH3AwG/MW3Aqhte8pxz7s8vOM4JZ8wb\nLLhqEC45+SX5Zm1ZypAdn9v3t+77ev3HaVohMLlzLHh97bW4uxrdY/LcAaVzokHzIt1oW+OegOsT\nExOZuPNqwBrXGScZuICq3MJu+QarOzP4hIU4gRYlxlKl3Plh1XVefG38J17EAS2rb7ZW9ImiUMEb\n5dfiisvfiTQ0z5uKit27jmZ6/M5L3vD+BACr1Q74c/5Gx1mGY0eD51k7cii8/Gsq9zTt7Z304J+6\no8nTw0Fg1VsnH8SNnTEnoGz14RNBz633imMChqNOrcqX5ItHugWcXyguLuSyWDlx36efMDfBSn/i\nTiA89uKruKxJk4g/K9/w+7tf0fGViN7+0pl98LYCelvc7qlwOfc3sla5uLxWCy6vlaOfc/lMAXxX\ncA2uUomaQctn7OyH/8LDGcAOvqUsF3GYeXhXSXVvrb/IG2oF5sXLTPW4Ufyb3iOgPNqBG0DhSlui\nXYWo0pY3lSuubvq89cExU3Xa3y9HsUYqO57/+Gd+XGMH2+IbNBUBxj11B3WrBKbPaP38CBLSvN9T\n3K1qa1/PfjBV76XhgRMTHPUYe9PVXNSoAQB1Xg+cYbvpJCcs/Bkfz+2Tv/XeK0gPjLu8BLCyR2x3\np7oFtrzBmhsGBpyXkp5Ky2kv499tWo0i/HDNi2RkZNB6+v8AKxCrJaXYyqFMU4VYz8tqzJsw9eKR\nkX5tpfKctrypfGvaylejXQWVA68+2JGT+Ru864Jz+XDh3zl+fqhfKgXfRendfn/sfi5+f6znHAN0\nfGM415UowtCEZDb1Cz+Q23r4UNjnZt4GnbdqfeVe69Q7A3bz7f8L+/p1Nw0M67zP1s1y7Hn/nrZj\ntZgnpPu2nG/Faq3MMM7EvE7CdcWa8svxwP9vMoxxXOP7/8TWwzt5cvVr1ChcicpFytGiXFPmbf2D\nNWwGvF2G7Yu25cHzcr5E2BN/3YlzXF6cOxUJUJxKPNVwEMUKFs/xc5QKh7a85QMditzt3XE3R1tz\n8Glz07kM/OKpXHnuoF4fM/+H1b4pQYC+797F5deeSt0U0XXjYyPZe9hemzMgxYX47VufO7Suw50d\nWtCwVvDksMkpqVzU3b2upQQM2ndvl3+Q/9b/vHrgcLalETDB4J+Xc1bXDGOoN3hE0AkL8x7smu38\nZpmp8a47EXNgqhDP7NJHvSlDvHneAq+Jv79vRAZYXz9hBGs57rn/kMYduLlR7v47HjXrZ8YmL/SM\ngWtCCdZwlDZSgRTiGHJZN4pnshyW0xWzn7IDPO94uRmXDg95/sJdKxi8ZTQl5AzKFi5Fq3JNmb1r\nPoc4Yl9vBW+1pQqDWg/I0XumpKXQd1VXfIM3d3JcS5szrmJp0lTHOf6zQ1282PiHHNUjVqWmHmL7\nXmv1E/fXK87+Xz7O/sfgLXfvi+e4C0GKr6J48dD5/mKJtrzFiPau27w7dnAmLmFc/CjKV8k8CW1G\nau4F1/N/XB20fOLbMzR4i6B2LerzzW/Bv9Y+7G9mRQsJzetVp1zp8H7oRVvjfuHnX1s7qLcVuAVR\nf8DwwGsFlj/TnWKFC2dZj3qDR4Q4Ymj38af0at2SXmGkDQlHISAlG+cv7HgPrX+2ku8OjCvPwIz9\nFAB6U5Kanw7B06rkDOq6PpOtOv10x5PZOj+nmv3yPN7WMGu7xm6LXMReANrPeSVgZmphcTHtspcp\nFOe7XvDMy8JfkB6gTeVzmVzZd3msO2tcH/b1iYmJPL72cazceZmnCnFPAHiz0ViKFvZNcrtg42/8\ncPwDFidNtc/1ihM4k6acTwOaVLgk7LqdagoWLA38gDXWrxhxUgTYRxwHgR5BAreHgVb21/0RoM4p\nE7hFira85YFQwdsHywdTq0mN6FRK5Uh6ejovD/uBmQu3Bm1N63RZPfp37xi1+sWaZgOGc9y94xe8\nOcuCdZk2f224t/tSsl4tAYHNfXLWmn3w+HGajX3P7znWJv6xPnT78Rtm7d7qU+5+n20PevO9paSn\nU/fzoUQieMuOut9a40+dqUL+uTl7rVPO4C07KyyUlSJ8f9kA4uLiCNc1v/ey7x88ncjktuGvceo2\n6s9RLGc52QneRjX7KuA+/Vbcap/rO7PTJeS7tU1/2nILGWz0vKe1lNaZuEgAhMJUIE7OJI0NuGeZ\nus+9sPo64lxZ/xKlsqYtbzFiRsbXUXnu9OnzGN51AhSCum1KsWF+AnIOmC1C1dZF+XDia2EtwOwv\nLS2N29u9wvHDKVYaEPB0uU5Z+XK2vikD3HLlYBKOnPBJNwLulRe83YrnNavEkFEPZLu+uWHmvLXM\nXLg15PEfZ6/PNHjbvXsfN/X5IqDbtFH1AowZ1CuSVc11/i1va94Ir/uz8QvDSSdIsOX/2aHuK97W\nubYVSzLmoW74/zhxj3nLTaWKBF/aqCFWa9K1Nc7xBm+ZKBQXR/z9/SJat+yypgLAhH+W8PI/v3jK\nRQy1KU63xpfxybrfiDfHfCYzXFKyLiPb+o4liz+6j84LgreAVpZifNved2WE5XvX89Tq0Z7ngRUw\nFUFIkQy8Kyxk/g43/dHdc60L+PrC97N8754X9MzynHC8ee43Pvv/Hd7BiO09gQxeWHUDcQIDG0+O\nyLNyqlnxZ1me4DtDu2bhp9h/YhaFpSzli11AocLF2HDQ/2tTRAO3fEaDt1NUctIJK3ADSIEN86y2\nCbPZ+tG2Y1ES97Z6kXF/Zn9YesLRJCtwI/CH5OYNu6nboGq27peUGDxFhL/9+xKzdd/cdNWlTbjq\n0pNPEXFT3y+Dlq/enkbLrsMQYPFnuTPWMdKWvdKd5i+8hwFuysY69/dc0JjP/gzenfzPgN40fnl4\npgkVKp1ZAoAFzwUGi7XfCBwrtbmv79fznKFWN51/C9+WJ7P+urtcLuJ7hF4G69am53Nr0/ByaUXD\nhlsCl5fyn20KsIkEnl8z2VPuztVtDMw9sjHgHr/tCD1ZZZcJ/PdbpljwrrBkn/VJsycDuG3Boz5r\nm37VenT2b+TQc/mdgG+LnHfCglV2hpRlYNMPWX1gcWCdMjICflFOS0vjow0vkcASnxY+n0XtHct8\n3VJuDBXLnpOj96hSvgVVyq8MKK/LHZ7Ps+Lr2s92SmbBtpqeOgE0KD2DEiXq5Kg+6uRpt6lSUZKU\nnMqlD7onHVgbZyvU+bXK8OGA+6JRtbA17msFSc56h9vyFo56L/uOg1v/Qm8mL/+bvr/M9inf8L/s\nP3Py5Mm8snkzB4E6AruBmffcS/nymY9DjaS+n49hUtoBT6uTc23Wr1p1ok39BgHXbPpvD+2njcV/\noXjv6nWGFTf35cxChQKuzcyuY4e4csZIz/NDdX061za9vnwTphxY6dlfds1rtJr2HIbg11prm8L8\nK9/0PvfIfu5eNtjzPs4JC971Tb3dsu4y33OdW3fgl+G5T06CtxMnTtBnzX0Bz/FOWPDWd3DTb4Le\nI5iha28n3Z6J69896xLvuqHuYK57vbknVf+UlGP8vN0a6+mu8wUlP6Fy2QuCnu8N3ny7TePEeOok\nQKNyayhWLDbG5eY32m2qouqahs85usuEi9rX5YURXaNZpRz5atIcPvjMWpvReGbgWhsjULF8AfYe\nSOPmqxrSu/t1OX5e0SIFWfxldFvXvl+wgoET7NQPQQLImQMepHyp7KU/uPiFkfz+yhMB5Z2GjWXT\nwcM+XayTe9xN3bMqhLzX+hcDg7ILz6kJzM5WndzWbNtGp6+/9Wlp+7RjRy6uWzfb96rx7luee7i3\n2V2UflLagcBCux/zzsU/Eh8kePtkyR8h7+duGTv3eys48l/qqkHBMvx4ozfp6vLdu7hr4cf4LI+F\n1eriXFnhUPIxLpnxRsBzphxY5ag0HD2RSOfyrZi4f1HmL+5QuWR5Zl8+NOsTHa6f97jn80PSmU+Y\n6GmlcyG0oSm9Wz8achZvjyVPcMweKRnO2qbeVihh5PmB4978JZ9IYtAGqzUrzj1hgwwggzi7G/jZ\nhr9kdouIKVToTPwHE4QK3Cy9gLdxJvotJpNodnaz3KymyiZteVMnpfdd7/DPXzuDLo8FcEu31jzU\nO/yZX/nBJdd5WwOCBW/OcVjzfsh/i4wfPJrIlX3tFgZHQFGwAKRYK+l4ArNGFYoxbsDDJCWn0Lrf\nuz7XBE7A8H1OsOWxGvXztpDN7teVCmUD03KMnDaPPzZsYtW+wwF1LACsyiRViHuVhWCzWt+95Tra\n1w8v+DrnLceMRucEhqeyH0RHIngDqDH2TYJNWLC2ju/PfmuPBu57W8T8j7kDs1Ii/Hnr8z7Pr/+d\nlXA3cG3T4El6Q+nzx2fMPbre53kuxz0XXjU47Hv5G/3Pt3y/b65PK1c9qvFWu5MfL9h1yf2eGbC+\nAVboCQvBWt561BzEh/HP4ezqtM6xArUG3MV6lgNrPF2t7WUgLRu2POm655Z58ZeQym4gsOXtoupr\ncbmCj/VU2aNrm6LBW7Rc0+BZIPjapu79WE/UuyV+L/f1stZUdAcwk0Z3o1JF76Lm13Z5iyPuoTye\nYMc38GvTrDJD+9+Z6/Xd+O8+bh80zufZ/vnf3O/hElj+TvBgqWnv4d5R7PgGb1880IHzGjWMSH1H\nTpnFB4tWgMCMJ7tSNZM8bPd/+DEL9iUEDd4WP/EQLd/+yLMfarbp+j5PEncSE3SCmbdxHfdOnxJQ\nF/d2wW33U7lsWZ9rkpOTqffl2z7nbrj3SeK3bqXDgsmeevaRYrxFIp6ccG5BgjfxfzZ24OQ4t1yB\nokdFVS8AACAASURBVCy6OfQqEBM2LGXg6imewC+z4K3Fzy+Q6qmD8QnOIPRqCeLoAnWue2oFTNb+\nnCu8rW/t5/TGmV7EJfBkldvpcM6FXD+vp+frEthtCt9e+F7Id3XruuQBcARkceKue2CQJgRvkXMH\nYm82mchzqzsTLHgDb563PjU/4cxiwbvkk1KP8cGmmx3P996rtNTh7no5G7OXFWMy+C2+gU99vcGb\npV2NTblah9PJKRm8icjVwEisluqPjTGZ/rp2KgdvHc60uiDF/QNHhDd/7UfT1vWjWKvTx+sjfmLq\nrH8Ab0DQqUMD+jpmkaampnLZHSMxQNOq0LRFNb78cYdPALFg4qmxfJI/93g3AARWv3lyY92uffNd\ntiQ6sqbZX7t1A570dHt9/+ff9J82OyB4m/loF6qVK0ud17wtf+GkCvFs/YJbn4kLT4RujTt06BDn\nj/8k8H6O7ZpuvWj06UhvvTzHjOecbQ+cfMvR+JWLeH61Y7UDZyub/Tk7Kyz4azTZSh0SbMybe983\neDN82eYxGpSqBsDx48e5fN7LAXnewlkey7tYu+9s06kXj2T+v3/xxrZPfO9hX3MlbXjswnuzfLfA\n4C10t6l7AXln+fDzxuMSF/1W3IZ/Ut6CntZS3+DtmXMmULToGSHrNHzdVRAw5g2uLvkGtStl1s0Z\nGTO2PgD8Q5wcALzv7QKalJpPqVJn5XodThen3Jg3EYkD3gXaAzuAP0XkR2PM2ujWLP+oWrditKsQ\nVO+732fdyh3eAhGu7NSEPq/eHr1K5dCzT17Ps09m3vVbsGBB5n/r21X2WNY/O5TDG3fdwG0f+aXT\nEXzGKx1KOhb0Wncr58YgM04BNuzYwbXjJ4V+uKOFMSs1Rw311M0Alxc6k4SC8GeIurUc6x3873zO\ntgcDA7ZO349h5ZH93gL73AU3P0Ll4qWC3n//8YSQdQ0VtD39zXB+kmO4W9hGNOxM77WTCNVtGj7r\n2i4LrRQdJaQwZcWaMOEeH+ddHst3/FUwma2s0Lb6+bSt/k5A+Q8rfuGLxJ+YtWABOGZplpHivN/a\nd0zdZy0/Ye2/axmyd4jfXdzjvCzvNRtHz+V3408y+Z/m2uKP0abGVQxcdQPpjvIhmzt7JznYY97e\nWncjGSYpyNg6SMdqeZt+tB/Tj0L3eic3zjNc7Wt+kqv3V5GVr1reRKQNMNAY08HefxbAGPN6qGtO\n5Za3/OSauo6EoeL9VXjqOuuvJjExiVtav+o9Tuysb3r1zUNJSra/zdrfk885pxxj3u4W+qIcuvKB\ntzmWnBrQxbo4l5ZCC9e3f/zNS1/7zuR0t1jNGfggZUt4Jy+06jscT/IHgTn97qVcuXLZfmb710aw\n/YSze9DavHhNW+5qlbMWh9pvDscdKLjf45d77uTa8d5B587xjFt6B//6r9u3j2snfhFwzdy77+eS\n8WN86u3edqnTgJevCG9iy/ZDe2k3+VNvgUBBgdRMuk233vNsWPd2S0lPp/H3rwW9lwQN3rxdkZ/X\nvJWu8ZP8AjsT0CrnGDXBkqtfy7JOzyz4gMVJG/2eZ21vP+tiHm5wU9Dr3BMW3C1u7aUVM1mEp7WO\nyM02DUf/lbeSVbepi4yA4G3qundYY37y/H3EBek2dQlU5CpuqZe9v2+Vf51yLW9AFWC7Y38H0CpK\ndVFhcOcvKlasKNNWDYp2dU7Ke8Pu5v7un/uUffDWPbn6zN8+yZ+JeNdt3xvy2NHjqZQt4d33z9p1\n6ZtfnHTXaW4JtSD95qcDg7QBU36m1gh7QoMjdUfLAoWY0L0nW3v6dn/XeHcol4wbE9By1xL4slsv\nCmUjVUe10hWJvy/3VlQAKyHwhltfCCjvOHk4m9KPBrnCzdBl69cBed4yb5kztJz2LC6BRR0Cf/f+\ncuaXjGYF7kArmPXHdgQtt8a8eWUYmIE1u9XbsgcT23gDtmFr32NZwl84x9h5ujldjtQjft2jraUt\n9zV7NLMXBaAjD/Azn+BstXPyvmMBulR7k2olrKEvZxQpQ0aS87i75U9wYShPY/5jNXuZxofr/+SR\net9lWZfsmLrVvd6od7JGRVdXmp79XESfoyIvv7W83QpcbYx50N6/F2hljHnc77yHgYcBqlev3nzb\ntm15XlelImHUZzP48rdVnn3/tUCDjcdynrP049hI5JsX9h85woXvjQk55q2wwJq+wb9etYYPC3qN\n+17jb7qZNtVqes7v9t0EZu3e4XeNd3tx5ap83smb+BQgOTWVep8ND3qNu9WpnsTx631WN3yNz9/A\nd8ICFAQ23ts/6Du4nTNxkOc6Z0vZso5PU6Ko77qc1kxTCN5t6j/pwHBt4XOYmrI5jJY3b6udf/Bm\njOGSWf3wBkx2q5PL/a7O5zrHvDkDL2tbQQwHHWPqXiz1COc2PDfgazLqnw9ZdGQpwYK3zMe8wXvN\nvAm1e/91h2fconNh+tebTCDOZXV6frbqFTaxHP8xb76pQpzdpBlB9t0tbwVxSYp1HfDISeZ6CyVY\n8FZc2tC6xqcRfY7ydSq2vO0Eqjn2q9plPowxo4HRYHWb5k3VlIq8+Ws2hh53FaT8ylY1WL1hF7sP\nZ2dZ9JPX9qnhHHEWOIIOAzQuBh/0fZSLXv4g4Piawd5Wr4b/845hcgdEfw94nMIFs7EkQw7Ne+TB\nkMc+bd6C+5Z5h18svqtLpsl6x9x8R8hjwbT/8j02JCUG/3t2ePKiaz2fKwD7/I6v7uzbknjixAme\n+PYjpovVctbW0QXsb91/e2hVtWbwg4B7LNqSjv0Zt2kxb6+fFXDGLyc2h9ny5ma4/dfXmdjB2+Un\nIvx+hf9YM3hjyedMT/RdocG7wkLwb/MH7EMue0zdy4c/xLXA2zXpspfYsvbD/1HRoeh1zEieAhi6\nL7/b0Z1pvbxVL3crWSFP4AbQtUlg6+bLq28BThAnvmPqAPo1/DXsekXaNTV1OHmsym8tbwWADfB/\n9s4yMIqrjcLPbJCgH+6SIMEJHrwUtwItLVpcWtyhuLtb0Ra3Foc2uLu7hiQ4xYpLbL4f4zuzyUaQ\ntnt+kJ2Ze997Z0l2z7xyXiogkbbjQCNRFC86muPKeXPBhZhBUFAwRXvPMFV02uu82Vd0nh/XlXx9\nppi8hHry1nDMZM6+1OwJwKURzodYK06ew+1XbyylQhSbZ3t2IH6cOGQbY+/dMnrRevgUpX3ZMpbr\n2IdNlTk3OnXHJghS0YLOIxrYwblK4sLzJvOYEEM49stkGVj4dSMqLhiHn64CVbkeS4AQHWkJbPoT\noiiSZdkYEKAQcNqgAyf/sJMKAWiXtgizHxw3acTFF+BUnQFq66bc64do5nTep/O1huK9eaDhgcK+\n2nR+4dYUTGVNDu++ekK9w5KenTPVpgCxdJ44+7GOGtO/fPOSlmd6q+d9hHwc54xpPRuAILWiqk99\nVgsr5GsSsWqWojXLns5DIX4aeYPJ3suw2Wz0PFsffXsshWgOyrGI+HFjpvPA6is9eCicwo3kwCMk\nz520XmuvAzGyBsCtW7e4GnoMN56CsBQ33gI/4J3kW84/W4+bsAgYQtF0JYn9ER+4/q34t0qFVAem\nIHmQfxVFMdxEKhd5+/hQNN4A7BvTe+RKzuzVrlDePxGv3wRRst9Mp8ibcu3EyI7EjRub0NAw8veb\nahwjz02XIC47BrQ3rZdrkFl498pQM6G7ducOXy343TTWfp3DnduQImFCdV5IaCg5J0wzETH7uRUy\npGdufakqeu3Fi/TcoXhCRJM4swJRgAk+Jfm2aAk8fjaK9V5s0ZEEFo3rM88fr92BVdjUjrxJP+3J\nmWgiYPZab1bkzT4kqr++pFQTiqWWSJcj8gaQ1ubOX7zR2TGStzVFO+ORwlwNX2LbT0RWKkT5abNb\nxxF5U/TY9OFbmxBqOXZpsXkOOy8o+PFkE8O6evLWP/skUiVMS8+z9TCGYQHC6J51BqkSpAvXvjMI\nDnnLHL/quhCqMQybiKrU9xrgcL6zCBOD2BnojX2Y16o9FkDJzAHRXvO/jn8leYssXOQtZvD04XMa\n+wyVDgQ5c0XtMmD3002XYmxH3nIUTsvUxYYUxX80ho1dzI5DfxlJg3zPu1ZFLin9n4L8XY2eK0fk\n7fwEI9HK08eo+6bM7VCuEB2qfGFa55J/AHUXrlff21QCPNQRkQ7FctKpWjXGbdrCL2cuS/Z09q8N\niFxxRL81a1gVcNO0x/6lStKyeHHT+JtPnlBu+ULT+cyCG3s6diU4OJjs88yE1UC8BGj8v3SMrN+Y\nsLAwPH+diF7nzT7nzdIGxtcxQd6UwoW/37yhxJYJhJ/zhnq9ZtI8jCrtOGTs49tPSre3yJdTjo26\nbxo5sCJvWs6bY/LWnCo8EO6yQzgPiFSnCFs44ZC82YAlPvMt9/865CU9zrbHPtSq77BQJlllvs38\n4SrRXfj3w0XecJG3mEQ1T9ljJpO30l9nIWWajKRKnZg5I6Q+fIN/aUbxMjGjsP9PQNna40E0em0U\nstqgdh46Nq8WoY0S9WWNKZsWMjy8/J8j3Juvu53mlgPyFh0UHzWdZ+9DNPsYJTwQYGXTuhTMnAmv\nEWaSqPy/VPTIwKxG3zlc58W7dxScaVTgt19H+ilq/9fA5R864h43Lp4zpP9LURmD1VydDfk4sK2x\nnVrmX8YZxlqSN0FdyWDPOfImzU0kwJl6A8j++3DTXKNKjXPkLS3x2fqVtWTFl779UBTvwidvMiES\nYK+c+3b/yUManR2DTQAvBPyEMAqShtfCG97xglAhMX/xd7ieN+WnDVhVYiYNj/xoOSYVSZnsM54W\nx1vIu3Wut+n0Qsss7zs8hIWFMexSHbmQQypW6J9ns2nchMuV5XU0qZDEZKdFzjmRXtOFzx8u8oaL\nvH1O6NR4OtfPPdB9Q0D+YpkZN7/NJ9zVp0eJ+hN1ZXiQKiFsmPvPIW8fCz+tWs/6y1pIxp5UFcuY\njiXN61uSNwO51r326yMRzMrzfuHGs+eGOeFV9NqTt2PN25AycWI2nT5F54O7zd0SLEKePTPloGN1\no8hz5vlG0haR5y2WIBJisCuSToD79iFUe1uCtVCv1+rh2v2hI2oRkLfztYYa7BT4YyD6UOip6iNZ\neGUnMwN22s11TN5sAswp0IF2Z6ZbzrHpcuq0alPNI2c/Vp1jUU1q+IlsS855C5+8GatNI4udd5az\n/9lKg+1BeZ0jb7FJTvucv5vGfkzsD8wmvwrDTeiAG4eA2NiEa8RjHEF0BF6TPekREiVK/wl3+s+C\ni7zhIm8A1VLqdIjsQp2FKuRi5LJOFrNiHlXz9Tesrbzecnb4R1nfhX8Wcg2Uc950hMUq580K+69c\np9Ua3ZegANcsuixYifQiwPXuXdUk/ZjAw9evKbZ4lmpf+qkjZAIEtunFzv37aXn1sImk3WwZtTZZ\nWZbrhHDDDZuCnuwJNtFumnStT6KShMZPwKSH21QbegJWzj0LwUHBHOY2+pywJmmK0a1Q7SjdQ7td\no7ksPo5y2FT6ibof+xw0M3kzk7sPRd6cxYTLVQBwQwn1GkV6JakQe+kRqJVqMSmSZPkge7pxZw33\nQvqgz4UTkAs+1D1pnsn8GW8iCDH3N/Vvxr9RKsSFKOC7buX5fbJc1p8C6reryaoRUtPsoYvafbR9\nfCyR3vZt53DtymNAa4+k5KLt3P3PUCEv3lgOv9l1WFAIxsLBjcid9cP2EhRFkQKdp2jrC3B2qvOh\n0OfPX1NqxFx1fueKhWlbuWy4c876B9Dg1/XamlFEmZzZDcezvywBQOFJM3geFGy0b7HOkxcvSJnE\nuu1UlqmTsCd8FVKnYX79xrx8+ZL8i+aaPW8O1tEj87zxGHLYYgD+jTQx1eorR3FVPRLQh1ybJcrO\n4lfXwrWVjfg0r1gJgPR+CelxcY1pTOJ3oWwSbptkQo4/iXoS+6hi7fjmWFQf8AQ2lDa3ytJjzJGJ\nnOUKIKjErZWtCeWKlgOg9YnmUVw7phH5340XoXdIQeTI2yb//GiEDKp7XrAclzVDXbJSN9J7cuHj\nwOV5+w9i9erV/NJtPwgCeerF4smTUKZOHUrixIkjnvwZoGJZjSTak5+de/4ZyuAVWk7i9XvRIXn7\nY1JrUqaImf+PtuNXcDzggcE+AszvUIdWP683kY9lbSqRN2/eCO0W6zVZrj3U5m7u1YIaExeoY/Tr\nXRrVjaUHDzPS94hhzpTvqlElf86o3JoBoijiNWaKKRTq16cb2cZPMhQ73OjpuCLairztrtuAL9eu\nNN6XMzlvOpKjhYFFmmbNw/AvnWudpaDLkjFssKg27eiWiZniLXVcZAoWootCf/Y32DeL9Iq0y1CB\nZnkqxch6etQ+0BFz+BTWlPw5nFlmSORN239RitOmiOOH3jlnxnKFUwaRXoBx3s6FOC882Memp5Jw\nsZudp0857pZrR6TuITI47n+cB7TATYDC8XeSOvXn2S/73wxX2BQXeYssAq/epV3FcdoJfZ/SQMfN\noCODqvnl8nVB/UciKYLA1tNDHc5z4cNgxII/WHNc8rroyVS5XOnZfeWueqwnH8fHdSZOHDd7UxHi\n/ftgyg+ZwTP5Y0VZr3uZHLSuXt3hvCVLljDS7zEI0MgGISKsAr4RYPQgozdwzpw5THz0RgqV9teu\nPXj5kjIz5jvssKA/f6Blc9ImSxbh/Tx//ZoCv842nc/qHg+/oDd261iva1+A4d+yB25yyNZjwThZ\n8NaaCJ7+tgNJEyTEY8kY7LsmxJRUiDRVDpvmrEDzXKXDe0sMaLl1JmdC74VL3uyP9Tlviljvl7t6\nYCZimvyHTQDfsrrKXhyRNznUij5sCkr4dZnPPKfvzRHGnxnIPa7pyJsWhpX+YrTj9OThx3zGHq8T\nLzUgSJa+/hTkTY9Hf1/k1LPvUN4zgEqelz/K2v9luMgbLvIG8PeT5zTKKfdF1OW8LT4/NFyV+JjG\n8QNXGNhuibq+/qcoCFSqm5ueA61lBioXG6YdyJ8iq7f0InGSeJbjXfi4MFScCnBidEfixjGKdd57\n9JRKExapY8BOW033WgS+8UrJyKbfs/XsRbqs3Wawr84VYHC1cjQqWlC9HF7BwnW7vLeN5y7Qfcs2\n816A5fW+xSdTpnDv++Hr1/hYkDdjMUUElaKCds+OvHWC3pNnZUM315KACeDf0Oh1rrN2OhdCnstj\ntLGjC9ak75lN6rH8F4ogwL4qPUgZP6HBTv6NgyRtXgtCGHF7LFE3VllHOjckfT0q5ioKOCZv5pw3\n5GsOihGcKljQjrt7dMM7VT4iix1XNrDl/VI7e2byBjA834ZI249pvA95xpZb5cCk3abLrdOFUkHU\n6bx1pozH59mL+Z8KV86bCwDcD3hieb5pvsHaJ62SnC0I9J7ehC+/Lhrj+0iRIrFEHsOMDwRZ8sfh\n5yXhh2m+b12KpfMP6j/9nSJuQUHBVKs8Xp0DsHxlW1KnTh7p/dtj7i87WbrhFGD84t+/vpfjSTGI\nYs0nGcJ/9uTj6NyuuLnFfIJwhDpvwPN370llR95+3X/cKfvKb8fa648YCVTxzsMV7zymcTmGSvsY\n6ruHoVv2qOevDZQI2s+79zHl0EltgsU+a+XPS638eRFFkWwTjKTPJ1MmSs6YwYOgIAOZ8u+qhVRT\nJUhA1UTJ2PLyaTh3AoHte4Zzx/Dy7VuKLJ3BuBI1uHjrFgU8PBh+eBP35OuX6nckfvz4eCwcazRv\ncU96CAIkBs40NKcLLK7WmkKbJhrOeQJ1sxakbtaCpvGOEL3He0HtbVpqex/1XDVyq8QNYHf5iXy5\nyyqULUR6B3GIQ4jgXPu4jO5Rq5CsmLM2FXG+QGPYhVpIFZvWnjbzcRjJ8KJJTvODQ2Rw9cZRLvIj\naqcI9ffJJhc+tMeNXXjSnpv0AV5hfr+ncDRwAz4eO6O1FxdiFi7P2z8EVf+nE4XUEbEk6RKz8oL0\nAV0ttS5Pw15YVzdn1aWRJE6c6APvOPqoVHKEdiDfxrYD/Q3q6BXK6avt1BgQO3dFv3AhNDSML79W\nCgukc6N+qk2ZEl7Rtv3k2StqdJzrsJtB3DgC++dHXUft9LWbtJq01kD4Tv/snL2vBk7m5kvjntb2\n+J7s6c1eXFEUtdZY8jrHB3cgfvzoiReHhYWRa/hUk4dKT2b1xCaDm8Bt+bPs+zxeDK7lXD7ZurNn\n6bFzp8OQp3+XHhwMDOT7TbrkfQsvmp68dd+8jrV3byi7RRAgoK1zhF8lb7p9pIkTnyMNHHs+1IpT\nQ9hUeg4S7TxjghBz+W72KOqrEUh7z1tr95IsCDqI4uH7NqUPXb2tk+HvP/uLpmeUMLF1tenmMtPC\n7ZIw8fAMjnHOsAe9jRxxsjOg4E+RvsfN/ivZ+WI9kryIfdgUxuRfbTlvwoXuvOGaTJ60CtiuniuI\nF8+6cCYmsPZGK0ROIajkLQyITe0sJ8OdtzfQC72XLgWtyeXxz8gn/ifAFTblv0PeJnadxfYFsmdD\nR8SGbu6MT0nJ7b998wEmtVqmXgNI5OlOmlQpGDy3HclTJzXY/Cpbd0KCwkzyIr4Bk9QxXetO4eq5\ne+r1pCndWH7QmMNhhaqFBkCIZlPJeZP2D1tPDg13fuUSww2dGzQiIb3YccCsYdW2zRxu+D3VERaB\nXTsj/wH9MSCKIr3G/c6B83fM3jUBfu5ZhyL5oi4BMG/DXmb5njJ560QBmpfPT9e6FaKxeyPy9p5s\nIG8Xx0ZPvDfnUF3bLHnfE2qU56vC3lLIVPFI6b677TXhrv9k3MPLt2+ZsmcfSy5elMUYNBuWhFBH\n3vRwRqQ3r82NC4SiejDs1imRJA2Hn983zLHKeXMX4EpTxVul28Oy0fJ7EF7Om86mzr59yPVa3UEm\n+/Y4+tCPNkcXoyejik2bAKeqj+DUk2v8cGyhaT2FpBSwJeM8T1DIW5H4nkwp2Y5yO3uqdvdUkN5b\nv79v0+6sVjRiaJNlEVpVrgFkFlIzpeRgdR8Nj7Q12AErqRBYUHRBhO8DgN/Di8y8Nxxr8qaFIPXH\nHztseuXx75x9NsZuT1Ajwy7ixk0azkwXPhZc5I3/Dnn7VKiWXac/JSfI+F4dS7U8fSFMIlMC4HvJ\nSOjevHnD1KlT8fb2Zlq/I3gUh4Cj0qf+qt3dSOJApkFBVMhbhS9Hy2O0/X6u5O1jomB7LVwoCjCs\nQTlqlXEubDZl8z5+2WV8Sj89rjOxYhmLGYKDgykwQCfZoCOLbUrkoVutyoSGhpJv8DR1iKPG9Fbk\nLWkcgSM/dXVqz1Y46B9I0zVrDXuzJ8z211IjklCAb7zy0K5qVYM9j5m6cKQd8fL/obuqIffwxTOK\nrZxnt45oWs9Rh4VAC/K2+foFOh3dFAF5i6hgATILCdhUuxMlNozmbTgivYfKdafVvoVc47FJN07f\n29SGmSwO8KrNz37rea4jUMq1xQW60vKspsOnkDd7LLi8nt8e7ZbtW+XFOSpYMOe8JSEh04tOosWJ\nNijFDPnIR/ei3Wl7opm8olkbTt/btLhQjYYFmpr2eej8bjaK003kzaghJ3VZsAnQN/eflvcbXVx/\nvJFTz4Ya94CLvH1OcJE3XOTtU0FpTi8aP83ZcvHjaL258HEQEhLCpYD7NJ4lh4MEOD9RI10zNm1n\n9r4LDpu+iwJ8552NoQ2+IigolALDzOTt+xkLOPHwmWnuF2mTM+cH6Usyx3BjJfTVgZH37k3evJkZ\nV65Z7vNGdynfKsuUSbrzonpfAZ3NHTGWnj7JgEO7LYlfGuDIj+HnwdljzLHtzL50ys6WkwULujkR\nkbf/Acfl0OmLoHcU2zwOwiFvS0o0p1AqTwAKbx6odnwIr2AhrS0xr3nOa7RepmAkb709a5MjThp+\nuDbLaEP+6Vt2LLFtsam+v6s2Xxei3FRG6sywJWAnc+6tsfDOaYRrRfG5RATnyJt03DH9IObcHyqN\nRVo3tZCBzrnGEzt2bAae/xr7Ru82mbgppPFDkbeIcPh2Fx4H75T3Ju2xuuelaNkMDnnGlft5UXPr\ngAz/O0rixBmiZfffClfBggsmqHlvelKlC7MiQM+pTajwTfQKFhbu6E1zveSIHap6D0TWQCB2XDeC\ng8I0oidvJ0/hVEya2yFa+4gORFHky+rjrcNmNoG9mz5OYcLnjFixYpE/e0bOT7ImSw1KFWH2PmuR\nT4CVTaqRP3dOcvc3Fgs0L5RDPTzx8Jnl3D0PnpBjmLF4AmBEhRLO34AO3WrWpFvN8MfoixUAPKdN\nBAFqTZ+IBzC+bUdyzpthDJtaIH3sBOprj3lSQY1+zrqaDSiUxljpmj2hMacwsFkf7jx/RukNjpLW\nBfwb/WTI/QoTRbL/Fn5aw3FdzlviOO5c+Sbi0KmCEgk92f8qwCTSa48HolTlahPUjwHDvkGkVlZZ\nkkSnHayQPy8hAXHcpLzJsTk70ufKdIP9smie4zn3JI9qmCjXS6GI8dqQCJRI46NtMBNAxx0WlH06\n6q4w+GxbUMdKcx9xi4GX6+s8b/oCAaibuh95Upa0tBdVLLpeEi03Tctr82IagdylsFthToStxI3f\nkEK9NbGRA9ip7i1/7FXR3kfsWEmAvsBolLwGF3H7sHCRt38B2pbuz+2rcsWpzeJTNSxMInCi9Efl\nu+xAtMlb6vRJ8b082uH1BMnh9RNpL982LcGtW484sP26YczFU4+oUmQIq3f3JlGi+NHaT1QgCAIp\nU8Tm4eNg07X2LYp99P18aHSZuZq9l25LB4pnTFesGluAE3YdFrYePUvPVbu0E3aet3KjFxrGHxvU\ngQQJIi5WWHjqKr2/qY7/o0fWAxyQg6h43OzRe9Mm1ly7rq5jRd79u3anxKyZ0oEI5wU4D2yaOyPc\n/QEE2nvclBw9HeK4GSt1AVLENX8cH3kQ6HghRLIsH01AYy2R3BYRq4oitlw/Se8r61USphEyiYhF\nDtL4sjul9ykpCVhaqheJ3K2LqPKnyo5vqmmW1wDWlZL+n+oeam+wj46IKcQuYiiEL3wM9ZY8upFt\n4gAAIABJREFUeSduHuK3Z5McjgsVNQIniiEOxzmDw7dnc+7NMhPR1BNE6bWNG3QGwjgRZiSYsJEw\nwCvOQHJlqB/hmqcCZ/CaSbJtxatWlXwpxxPfTlImX8YOwKd7GP+vwRU2/Rdg18Z9jG+1XDqwKz6w\nrzb1vTudiBAcFEKt3LpqTaWQ4bpjT5s9NKFeaa6+YMHbJzVnj/+lHg8cU5vSFZ2XLnAhaijaYTIq\nTbUgb3oCIwJdqxVn1tYjvLM3JGAiPUp48eK4iMlVrgGaN6101vTs99cJBdvb1J2LLHGrs2ApFx4+\nMuSkuQNdSxVn9GGpy0McAd5brK33wN179oxSS35RjyeUKUePA3vk90Ef1oRMghv7fuyGx5wJGAoW\n5PtJI8DR1pHz6D5+85oiq6c7FTbV9OLsQ6CgFAtYzQ2vMf3F2kM5cd+PlicWmT5WTlcfZvD8KRWn\nzon0Gj1hjnLe7HH/xV+0lfslKzbqJC9P5vhpmHl3KY5z3jSR3nEnJnIx7IJ6XSFA84ssBODHk98b\n5upz3gblnE7yeCkAGH22E39zX76m5ZdJx1JpjJ5spSInz2zXEQmysyuN6ZlLp3doh7/+vsqGh611\n75s0t6XXISfetahBakxvDP+6Aanjt8YjpTnv2AXn4Aqb/kcRGhrK0CZTObblskrW1tycTIIEUqim\nWpr24c51c7NWzh/eZQGHNp4Hpbmw7lF10C/NLOc4BU0JFIBhU1rh7h436vZkVPxilFFqQxDIkjU5\n8+a3jbbtfyOOzzSTn5GLNvHbST/L8XWK5qdlFSlEaRDpxexrsSJtLef8xpFAiZgJglmnbmuXpmRK\noenxVRk6mZuicUxkMW/fAcYdOm70pun2PL5yRap556d1SefDV+mSJCGgk5bzVniGQjJEk1ftlhiK\nx+wJ0oHFPTyIYK2Gfyzl8OO72glDIUPEXi5R1A3VoWLyLOx4ciOC1R2jSNpsnPsq4v6jvdJVYvy9\n7U5aVe5HYGURqTCqwu7uoAs7bi9n/L0LCwuj7dkR2GPr012szDWT8plLMeXoPA6GmqUwuqXpqL7u\nUagrLU+01n3ESWu+D3pP3Dhx+R+pec5fhvkJhDT4UFglbgB9vR0/DA88r+nAKc9IT4QrIIbJHlJ9\naFfAk/BbiKVOmoO2SfdbXgsLC2XZDel32k0IIxfDKJitWrj2nEEZD+vPBhc+PVyet38gBn0/hWN/\nXtRO2ARSZkzCktPOe8as8ODBY1qUGGUmb4IQKa+bgicPX9K4kjRP8byt2tmHJMmkEGlYWBjVfIar\nX0fbjg+OlH2VvKmkQGDWnCZ4ef03ci0Kt1aS61X3CSfnRj+sGBnk7SVXhuqIWTpg+9hudFy0nl1X\nAgA5F8nOS2fpadMdz6pfjS9zOe55euvWLZovWcMdnRfQM0lC/J+/srMvqvYFwK+X476mUUXfWTNZ\nwVu7dWFB+Rq02L1ZXT+gVQ+1EtUK79+/59y5c3x3aRdqZaoCO89YwPeSd9xa500b2zBzAYb7RJDs\nJyNUDCPfhmHq3HTA9tpDDGNWHNrN2L93oWiwgUhRIRXN89emRHoPdVzxrX3RPICiXNkpckdw4xkh\nhq4JO74YQ6xYsezIm/ZzVq4eZEkl5Qh+tb+TacyiIiNJ4i5VsDc61JFgQkyet+qJKtAkj7HDS4vj\nLZBywaRjxfMWXQw734ZgHgKax6qt50QWBHaR9ySNi6mihaCQV6wKqCCvJ3V6qJ/NOdFsBQGPlxHw\nagYgpeBoHRagZMaLuLlF/4HbBQmualP+m+Ttc0TVPLILXf5eWrmvL0mSJqRqgYGgSETa9TZ99y6Y\n2mVGRZm8uWDEk6fPqNR3gXQgfzlM+KEm5QtmD3feqzfvKdVXa+atkJyzUzQiePDSVX6c/6dmW4Bj\nozpQtP9MdY5+3fC03l6+fEmHcfNRvlqWff0FHh4e9Fv7B3vuPDbsY8o3laiWLy+hoaHkHjXNJGps\nT/wOtm9BKp0MTf1fF3Py8WN17O/ffk1BT89w3w+ALFN14sz2HjQdWexftDgjTxy23JPeaxYb2FCl\nHtW2S4njCOBbqha5czompwo8Fo8x2ItKtWl8AdIhsuW7gdx+9TcVtk5Xr2cmPrd4bQqbZnRPxNaq\nmsdx/72rdDylJfAbq01BCVeqe0AXdjTsyTpsqj+vabdZi/T+Udbs8QoJDaH+0U6GitQhnt3JlcYs\nqt3z2E9AKMFCEK95rhJlGzC3yCLT+MjCqtr0+/RDyJa0ULRtxwQ2+ecFpBw5N5JSxXM/t59uwO/F\ndERuSdcM5O0Sbm6Oc1lFUeTCnYzoq01zZ7zrcPx/Ha6wqQufBaweAF6/eEuSpAnp2L8aM0ZuUc9X\nKTiYBm1L0KJdVdzdY7PVRdgihSKtdMnRAvRu5EO98qUA2Hfltmn8mRt3IiRvCePH5ezU8D12Pl5Z\nTefixYnDhfHdyKcT6XVGoDdRokQsHu68h/CHxb+x56ZzXwSlZi0AAQalT0GTJk1Y1bIpXddsYPON\nG4jAt6vXEU+ACz3D9751yZWXP65c4BXIGU1QNE583ge/4RyQBEhHLCYrxE2HOeVr8MPuPwzngkEj\nbjKqHdzITSfIW0zgLSI3AK/VcuhT0Ejatm+kwoFc64ao4wUBssdPZbBRJl0OOGVvWaB5mpJ0LlSd\nir795HbrGo5UkYin1Bor4rCvYnN7uUlU2uNY1+/2swdkTJLGcC6WWyyZPGrrpEucmku3LzH87mRr\nkV65kMFN3VcYbU80Ucc2T9KO4llLObFnDUPONSMMzbs2JO/GSM0HmHGlvPxKNOTSVU03hsyJolZt\nrSAsTF+gFUao7GnLmKw2GZOZW36FhYVx5HY2QFR7txbL5I8gR2jO3tJIm00QiE8rsmYcarLjQszC\n5Xn7j+DVq9d8l9NYhLDRfyJzhvzOH8uOqecAhNg2/rw2IUbWbf31eO4EvDQI7rongg37ovbHXbG0\nrCMnP+Ir8iPLf+tI6tSJo7nbzx/25M0GHJsfM2HAHSfO0WPJTpMXbcfA1qRKZqwEzNdzsmXBAgKs\nbl2XXNnDb/huj5yDtdymPhWKM3b3EWsJF6TCBbU5vcX6yutptapQPXduso+fhCgax9yIgLwZPG92\n6+vz3+wxbIcvv/rJKQ12wrt6L95NJ4oWeu7dzOqbOhkWR543XRT2f8Bpiz6noCNuwIVafYgTx/kW\nZt9sGoEfQXbeOckrdrjCQOLG1UJq796/o+xu6e/bvhm9VcHCvgrSZ83Gm/uY6i+1nlLHInnkCgge\nnCPAosMCbCitE4e2w/b7e/j15jLjHCekQpSx/xOSMLaQY/tWGHjua5m8fT6N6aODe/f2EBjcEs2r\nJlI001VsgvR/fvbWl4Afyu9D+gQHSZYs86fa7j8CLs+bC04jYcIEpnOxY8fiwR2zxpYYInnTwusd\n6Czmr4tZrbSMmRNw++Zr9Vh5xo4scZs1Zyer1kmkX5QLKvb+2TuCWZ8eJ36J+XwtBVtOXrQ8f//p\ncwN5C3jwxOg/EYw+lUgTt0FGIrZg15FwCxY2njcLil7v59iTdz0KOW5ZBPDX3WQyQGlN7zl9okzE\njOQssH1PSqXPpJE3S0hzMv8yzjD3Zsvexqb08vmGGb1JFdfGVP/TOPRc6Yo8srqnIuuqkepJ5U/4\nYp3eDnua5lw7DH0l6uWvzd5wP4IAUZUI0aRCRErsHGYS6dU+OrT9asUBxvsot7Mn7VNX5cIjneCb\nbnaTBOVpUqQ2NfZZ9XcVqX2gAzZBkwzRo1LaclRKW850/nXQazqe6aj7PbN/bwWSk5yRhaZYrBk+\nhudfx+jzrXmDJIMz5EItQCOGg/JuNs0JCgpi5o2aKKHWbrl2WNqef62M/Eo0SIUkJjNfZ18R4d42\n+OeX9wIQxhcp9pM4cfhdF9KlK0c6/B1e9860O8J1XYh5uMjbfwi+d8xaSSMWtbMY+WFRpbD85aCX\nEZGPtx4dGC5pXLAs6i2S9ChdMqNE3j6QLlbJeprswYafW5IyxefflmbXJa0WUgDOTrYmRJ5pknNh\nwocrjHgIUlqYAFcGmdd5HxzM6A1b5WAP1PHMaBqTc+xktRMAAvj1jtx+d1h0VJg4fSIzgOICHFYM\ny1/4g70K4DHLvspUYEDRsiy6fJLbb145XEvJ0Lv4XUcuXbokFSsAfxSpSZ48eQDoVqqKOv5dSAi5\nVo23tHX6/UO7PUjIu0Eihsqv+6Yv25AjuTHsCJADd3KvHwLApTrSzzsvH5vGReXPJjyttYrpC+NO\nHA4+MlY32gSIFSR5CP8oK31+SQULUcPQoyPxk4mITYBSCUvQNpd1dfqAU91of6oxIIUsayatRxVP\nc1jRChVi1WdTiNlj5yaYH6IBTjxeazh+/PY2KeKZf68l2BP4VJRL41hrzhoS8Xv59hqJE/tEcm74\nuHQ7PfrctxwZ78WofRckuMKmnzHWz9nCrB4rEOTqtNjJBDYF/vrR97Fo2kZWzjionRAE9VM4PKFe\nRwiPvG07ZlR7373zNKMG/qF+GW0/OCDS630K6Mlbi6+L0KbhF59wN2YU6GTsH7pzWGsqDJ4vndOF\nCk+N70SsWB/3GS/nEF0Fq24vjnTevpu7gDOPn6njrvftxiE/P5qu2SSf0zxkvUoW54dSJck6Ufuy\nU9bJHCcOuzt0JKpQyJuk8i/ZvNS8E3sDrtNuv68uDCyq9xXYsleEHu579+5RcsdiEGBTgRrky5dP\nak5v513TChbgRgMpdHrs4U0a711iGlssSTqWVmxluZ49edPj3N3bNDk91xA2NYRFla3IxzmFZFwX\nnhjG2gTYb9Gd5did8/S9vkDdq1bsoNhTCiJEbPZFDw48b/ZocrS1zn4Y8YS4zC5q3cGi/anv0UiI\nRHamF4rYuxVV3Hh8jI2P+ql7k9bV57ylwE14qO0/ijpvlx4s4sYbifzHVHssg/3bwwGp5ZmLvFnD\nFTb9l+PhfaP6fPD76NmrlkEXdhAEfG9PdWqed8lsRvLmJPyu3qNjvVkgSNWmXQbWonrdImw96Xy+\nm9+VO4bjoKCgSOXqfCoc+s1xXtSHQqEftLyxU3OMROfmw0fUGbrUrH8mvz508YZatNB+1GQOPISE\n8MGI25s3byg8eg4AxQRYNCxiz1iO4VphBAJc7d8VQRBwt+tWkG2MuaWWgtbFfQgKCrK0/zbEsQL+\nrb//5oul2oOTfdg0PVLY1Art9vnq9mN8WL7/6jnpEiUxzRm69w8W3LxgN17kqzOb6fH2qWl8Ore4\nHKjfg6wrRwEiWVeNZGeVHymWKjPXvzM+8HitGc6x53fxWjPMoHOmF/K1Im4ALU5LnQWksKnAqepS\nHl1R336WfQmu8UT1oiqeNxGR0jt6mXLetj4wVUPIOxOVenXMXieB9aWmO53iscRnvlPjALU11rJL\n8znyTuoF2uV0A9IIGelbwNrz6SzWXJrENbabRHrdMHsn09CJR6zlhxzLo7Wmglypm3IjYLwqj+JG\nOdMYURTZd1MqdLIBpTNfUwsUIkLujAMB6xC9CzEHl+ftX4btq/cxqcMK7RFb/vn79XEc8L3I1DFL\n4aFA7Eyw8aBz5O2fgPfvQ6heVf5AlW99566+jid8QhRvrHnlFK9jlZJeDGvvnBaXIzTtOJkLciGZ\nPXk7fiWAttPXm8ibvXcL4OREyds2dslalp2+iQgkd3djzyirnKOoIddAY6/Tyw7Im31vUz15uzbA\nOGf6rv1MO3rCVGTg10cb12HhIrY8fmK0KUBcm43LXa1D8qIokmWGMSxlT9565fJm/JWz2nF+HzqU\nlPKTPOaON8252Tr8/Mp+e/9guT150xULKBpvekjEDWmOg24J178biNea4apdTT/bSN60uebm80qz\nlG/JR7tSlUieJCnnH96k+ck52JDtRaLDgkLePjaaHWuhegMrCOX5vkhTy3GdTjUGHckSgCkFV0Zr\n7dGXqiNVb9qTt/Bz3j4WbtzZxJ0Q6e/GBuRK8SspEpb9pHv6N8Gl84aLvNmjWpp2smi5kbwNXdae\nYuXzaOMy6b6obAK+gUYl84+NysWGaQc2qNesMK3b1XB6/p+bTzBxoqTsrnx579jxEzbnGhp+VFiR\nNwQomTcjhy7e1jTEWn9B7TKFo7yOKIoUaj9Fta/83D2uLTsuXGfE0t0a0dGN0cuG5O8uebscNab/\nUMg51FjNigCHOrdk6t7DrDx3WR3n7S7we08j6fL/6y8qL1gu5br1+Xj7/mHxfLa+fgaCRX/TGEDO\nJaN5h7naNIkApxv1c5q8KcixVvubC689lhV5U47dBDhZfQSF5bZYim/meDVlL5GDlUjv9nKRLxrQ\no/GRNnL1pxbaXeIzn2bHWqjruAkwMs9YUsdL7bTdnme/k+1p+81Ibjrkj7gThT0mXK4M6NtlSUK7\nHXPuCmeWsTF9s+xHIr2uC58GLvKGi7xFFd8V/YlXf0ldKz2KJmTWGnPLmY+JI0eOMKjzNvXT/+v6\nhVn72yn1myJdhrgs+i1mK1c/R/y2/QATlkrSLccWRb+y9OdVW5i357KBBJ22aJPlDLrOWcPOa7dU\nO3riF27XBAGO9W9HwgTuTq+1d98+2u4+abDnnTYlv7X+XpMJsVvnYu9OxIkVyxA2HVq2BI1LFKfD\nyt/YcvuOwetY4H+JWdOmtXqcZYrkXcsDbOoatfe+9YZV7Lgv6+0JInVsiZjS5kf1eub5xirThZXq\n8GUms4isFc79dZfa2xbr3hPps3trxWZ4pU6PKIpkWyXnwil9Sb/ujbuTaQaKzpuz5M3NJuWhGcYq\nWxPgYMWhxI5lDGmX3tEbe3JmA9aXGkwS90Qm8mYTYOsXjsnb3Ud36XhNChXHF2BZSUlsuv7hH8HO\nq6X8zER6Rvs4n7rhCCvPzuIEu3R5eNAr2wySxzcWgoSGhjLysiTaK4Uqw1SPn5teiBgRQUfeALpE\nSN5GARuxAU3CIW8PX5zg8OPWoBPe/SrLOdO4sLAw9tyStAeVJopfeJirgF2IHlzkDRd5i2kEBwdT\nK4cckrEJVGiYm57DW3z0fVy+cIvObRerxx26l6fOt873o/y3YMmGHUxbL33IKgTpxK8fTi4kPKj9\nTWVCVjN/Zjadv6mes/Li6UndpVGRI41qyFSenyJeXB69fW+wr19n+4/N8EiWzJTz5tenG6UmT+OB\nktOmkA8BrvWQ3sug0FByTtfSCPyjSN7UvqagEqjAH6SHjlzzx/NGCYPKe7jZKmJ5mtyLx/BGnuPf\nuDdZl4812D/+TRdSxJOqGFesXMEA/E2etzZpvOlT9ivVpt7rJpmOnOdtuMe3DLn1O+GRt70VBxEv\nljvfbxvNDZ7pihukn1tKDiZh/ISW99xg70CeiC8xd1jQqk4Bvj7YQX5lTwi1RH+bACuKz7Vc57+E\nDf4F5FdhDskbwK7AHGiCvGWxsUcubPgJnwytHPbGdsF5uMgbLvIW01g3dxtzx2yTDpSKUr/oJeeG\nhypFh+rymMzVpi7ArJW7+HXrGZN3Szk+NLMTcePGNhQsIMDPXepQPJfnB9uX0tdUWe+CRXP6yEKp\nNAXratNF+w8zco+kA3e2x4/Eixcv2mvGNDxmTzAWJ9h5IfXVptgRpVPfdSBZQiOh0dpjwQjvcnyf\nv3i464uiSI7fRhKKRsQ6ZyzGjLtHtUGCjowBGXHnjvBG3os0pGH83AysXM9k/9nbV5TbNRarfDg9\neTtWVQqdltj2E3pypdg/YFdx2uLAKAKDHltUkmqeKc0ObCqjtcja7L+DBQ/WArKwbzTI248nm6jr\nzCywCDc3N0RRpOuZRuirZpVKTX07rjH5Vzu9TlQg6bzpq01ttPQ6ECkbm/wrAfdVLyBAyZRbSZJQ\nkyY5f3cwT4NXIBE9rc2XO2UplHlRtO/jvw4XecNF3qyw/Nf1LOknEzBBoN+qlpQpG/XcqQ+Jw4cv\nMLjzGhAEOvetQc2vP899fmjsPHiFfnP+NCTkH/61C25ubhRtOUnOY5QuiTZA1Mjb8bldsdlsBAUF\nUbzTTHX+qdndOH72Om1nb1bnHp3SIUardVUCJ8Dxoe2IF08Kjeb5ydyw3hnPW9khkyWdN0GTMQGp\n60LLUlFrC7T67HnmHT+O39+anIjys14OL0bXjF6hiB4lZ0/gnrqGjryp92MkdPbk7WrjbsR14v/n\n9bt35F0zGX2BAQLEFiAbblwRQgCRllkL0r9IDY4+8KfJgWWaAX3xAUAkPG/7K/Xhi50KeTPOVchb\nDfecPI/1nsNvbqhzC7ilY1aFLqZ76bJzKGd5Ye55Kv8sHD8LY4p15vt9/fibl/I1I3lzhIZH2qIn\nfMt85kU4R0/eJuaZQwL3BHQ53VC+Kp33ipeHgPfndPcsvRfVkjTni0wx9/v0IfD8+SMOPqkFwksg\nDDdSUcVzz6fe1n8KLvKGi7xZoVqa9tqB/Ensez9iDaTPFdW+GIES8VIS/EeOr4tPCXNfyFGj1rBj\nh5yjIQjs2vnTx9omzTpNxO++qHZsiBsHdi91TjLEp4mUb2XwrtkRGHvP2+HZnYgd25hTZI+C7Ywh\nxJQJY7NtXNS1zOyhJ2+zm39F6dzZAGvyhgCXRkZM4JYfPcmwLftMBQtgrDYFqeI0ODiY3ONnOHyf\nOvoUZdGZ07wIDjacR4CiqVMxvUoVfJYuUc+FFzL1nDFR24eFFy2jezz2t+hgOTfzfMWDrc2pmzIj\na5/cxkD0gMDmfSxtBIeG4rVCyZszki0DETSEKFFDlVZN7TXyZj8n4oIF5dqp6iPVPY478DurX51S\n5woClMeNkZW1MXqU29nDYH93+UlU2tNNfU8yCsn59YuoSU8o5M0mQFW+pIlPoyjZsSdvVVJ8Q9Y3\n3sx7NwAb4Eke4gmJaJ4/4r/3+Ze68YQbQLAux02y2zPXtijt70Nhf2A2FO9cHKEjPpnNfxtnb+UF\nniO9z/XIlzGygsH/Pbh03lywhO+Dn2Pc5rWzt+nynawYLov0RkWg1wrNGg/l/nVIl0WgmE9Bduw8\nTbZcSRk3XlJSt5LfevL3W0tbadP8L0b2FBX4PTAev7eWE7PE0SXmD8VizSdpxMAOzrbJOj0r8qHM\nM4G3aTpltbr2OV2nhZr9JnPzPZJnb3QnLoy3tn9xTDcqDp/OvTeOtdMcYdiWfSAtYaHqZTy3+uQ5\n+m2VNLj03kk9upYrjU/GtHy/VuoxmRA4G0Fv06ji9ru3Wt6bnZdNEEAUjHcUxz0ujrDi/DH6ntYl\nrNuTNQQCGvcly3Krys6IH8oX5v+Gktnzqse51g1x9Otmgr2sWmHfftiAo1VG8Mer06bxuwihzPY+\n7K80ltkXfVl6f5cuP834v1phtyxRIZPJuzxm3KH59C7Z2mQ3IkQ3123bqY1sYpW6n2zkp1NBrXfs\nBH6P0MbDh9eZ/bAHUsGCFsoFrSjgn4BQ1gFWfzcScZPwG+Aibx8DLvLmglNI65lMevEB2kndlx1l\n9/xhvf9psMGZ/X/z14OXpE6TKFJdFVq0rEiLlhVjfI/O4ODvMSvMe2yh9kHZcdxyjlx5EM7omMOU\ndXstz999+kwibjIGLN3M2BZ1HNrZMTD8NkZdf1nG1psP1Y/9K04I9Spjrw3oxsOXLyk93U501eLX\nM9u4SYZrSqOqrJMmaTad/LUO6Kj9Hz99+pRCK35lWMJUJEqUiG4Pbji1dz1W3PHj29RZmVijrula\nw3zFmHJ6F38hEc7XJhuigbj5yw3ppd6mEa/e/NxahPNrEYCLtfuro7S3QqBPti9omudLAEpuHshr\nkxUNYcDW2+fYK+e6Fd8qFT4pfVBD5C08fWtut6WsKjggnbtDzvOxOg/rw6ZVheqGay8wCyRHBIm4\nmVHCrSHlclhryzmLRdcrgPy/El7F6ZkHY7j5ZiVatamNr7KcidB+GQ+pXdmhmwWAOxy66SlXyEIi\noQm5Mw3HO9PtaN2DC1GDK2zqgiVuBTzgh0qyHplM2L5t/yWtulVTx1TL3U/7qI0nQAj4nhnhtNr5\nPxH7T/jRb+R66fW6mNPyUsKmCHB0ccx7hdYdPs+wpTtMROXMjA+ng1Zn4gKu6dpW2ee8rTh2kmGb\n95lCoeYEf925cMbqm9O/fPuWgtPktkeyh0cJp97o1Z0qEyfhJ8+3Cs+6CXC9i/b/EBYWxv4zZ9h8\n5gyVCxdm+P4d3LJoTG8Fj7nj1TGra9Snrq9O4NUuRIkA/fKXp22hoiY7L16/5urjx7Tfv5zWmUrx\n19OnvHxznxP8TTnBg8ENzSHBbL+NMNi3CpsCzC/yHW1PrjKcEwSomdCLsRUku96bjaFLQRBVD5Ig\nSF0QBKCwzYPZVaR+oaO3jmaj8JzDlcdQansflLCsfbGCAnupkM4pv+KrPBUsx+rR5lAfnogvEQRY\nUzJ6kQc9eZtdeGm0bOkx8qLWeN4mQN/cf1qOCwkNZuZ1qZdtRFpvi663ACTdw4jkQqRq0zDi05MS\nqb4mYcJETu/90M0sKO+Jm/r/40HRTHuctuGCBlfY1IUYQ7taowg8Lz8RK21Q7ARufcp6sXTONpZN\n2oXuU1v6+Q6wwd9PXpEsRcQfClWKDFFf/7z8R7J6adpI634/yKxJu+QvVcl+k1YladqqfBTuLGZR\nunDWT72FKOGL3J7qaxvSV0gGix7ZQUFBFO09ExFII8A2B83prXDo0g3aLNooHQgw7rtK9Fq9Xb2e\nu785D65VCW96Vi9PWFgYuYdG3PFD0M+3g/+9+2RJlxaQyJZ+VrnUKZnf7Hv1jNr+3EGoNRSRLFMn\n4t9F8pr8ef0anQ7uBmD1/h0G/1Bc4KodcfOYMwFDHpu8Tvtdm/j9yzp03L2evxzcY2YHbsDECRJQ\nNEECjmfWuiuUXz6Nm8AiMZBFK0bRI2txOhTT/k786hm91g3WTuWU+EI9vvqNrrr7pHnNZgXKqa+V\n53ylw0JCkCRM7HAyLJBiW6Q92gQRRCixrY/h40QURcuHvB5xazDx/Wb5SHCKuAE8lQvvY5ZFAAAg\nAElEQVQZFNsNDreT/1/D1PDscp+5pjW7HO/CC57jpiu4mFtkiVNr9jxbDxDValPPuHlol3OoU3PD\nw8zr1XRHIndenyZDgoKWY5tlX+C03dpOeNocoWRmf0RR5NitLID08Z835boo23Mh+nB53v6jGNVj\nKvvXBEAYNO1dkYYdnauQevv2Ld8UGAo2gTYDK/NNoy8jvXZISCg1imsq5J5eqZi9XCuymDJ2HX+u\nv2Agb30GVaZi1WIGOxW/GKV+ia7Z0JkkSaw1o6IDURT5os4Eg8dn//oPKxY8YMZ6th33l9YXIG3S\n+Gyc/GMEs2IG5X6axtN3odKBoOW7VRsykzsvpCS+LMkSsWFAa4NUiKVIr+zV6lutBE3KmuUtjh07\nRu9NB8kmQHIBNigX5GcHZwoWlHUArvUzE81s4yajJ1F+vSRvWpnZs7n3+o22dwHaexfg53Nn1GT/\nIy3aMHTHFv68axcWku9rSKlynH9wmzUBfoY9TSpcmu6nD6AvTLjWoitxYscm+/zxBFlKhUBy4GQL\nLTjosXis/o4lspu1IANLVlFPFVo+lmdo/1/fpPFiwpffmt4HgAdvnlH2T7lC08mCBSXvTDlW5gCc\nrWnsJFDWdxBvCTGMtenmTPFuRu7/ZaTagWEoMiMDs9SnkqfZyxgdbL21m/l3VumkQqQ9JBbcecVb\nlWy5CTDNezJ7z+1lg7AGEMmMJwN1D5ZW6HamAdZSIUoDeaibsgeF0pbi+bunTPZrLo8LI6WQlXZ5\npIeU0ZeqUYOx5M+d32D/1q1bbHwjzUlAdZrn6PGvjmb8F+GqNsVF3qKKz609VlSgJ2+/re1I8uSJ\nP8g6ZWuPN5CGX8Y3xCt7hhhdw6fpJE3+Q/c5XSoFjBj2IwkSxKdIS2PulkKYTs6Pepj1+fO3lB2o\nhBehULrELOjTyuH4fD206lKHlbD67xkBLo42k6qxG7az8MQFy7mtvL345dy1CMmbfW9Te2Qbq+xV\nFzaV7Zxu9wOJE0iux8sPHlBjxXLV7urv6lMofXqyTJtoJoto95tNgDoFCjDh7GnjGF3/7sAfjB45\n+w4LevK2uGwtymbVKqityNvi0t9S1jNbuPdthRfv3lJks1lAWOvOZiUVAoVipeNM6B2V2Cnntb6n\ncKq6dXcWKedNm3O48hgGnVjMrmfnAaPw7p4P1N9ULxXiJoiIGHXZFhX7JdI2J54ZyB2uhUve6qXq\nhXeaEgQFBTHq2rfyuDB84tTiVMh6bU8WvU1tssdQKWbQh03nXyuLEnrNG7sdxT0bR3r/0cHrd35c\n+EvKKbYJUDRT4Edd/98CV9jUhSjD91b0+gV+Dtixt1/Eg2IA+zZ8mrZch37pTKxY0p9o0ZYfpoIr\nXjxjvVuCeFr14+Blm1h3UvIq/dzmK0rnyqZGABVKYV9t2mnOcnYFaAFB7/TW1b99aleiT+1KtJq/\nnIO3pPFXhmq2en1dgzoTJ3NZzpC/OtBM1LxGag8chzu1InlijbwHKbIg9pDDl8vOnGHCEUm01p4w\nH/D3p1D69IAW8bSCHzDhzGlz2FWE8uk9+KVmXeovncfRN8/MuXUyKqfxYF51sxAuQGBTs1yI59LR\ncFCzE9DY3KDeCi/e2ZcaCJyr/RPusWLTY+8K/nhi1QJJ5FTIXWyCFDLdXaE3FXZL5FMpQvBx04Rd\n34W8p8x2KWwoyA3cFSKYVB4zrEhThgFld/Yi/Hc35rHUZ37Eg+zQ/pREjvQkKy/FmFxwFX3PtiWY\nv9WxY/KvNc2PEycOQ/JuVI9FMYz7l28QTBDxiMM97hNfiMc7AhAw8H5CkfLLfr4qRTfa59iN/v36\nK/gYEHXy9mdAXhSS+GX6E8SJEz/COfHjSmkjEsH8PtyxLnxYRMvzJgjCd8AQIBdQTBTFE7prfYFW\nSL+DnUVR3CqfLwwsBOIBfwJdRFEUBUGICywGCgNPgPqiKAZGtAeX5y3yaF9tNAEX5MpFRfbjE3ve\nQkJCqV5SrpJTwmbaI776ZaVUnlYsO1IbA+z8SETuU6Foy0nqx/aHbI/l3XWyus6UFlXpumgLADsH\ntiZlUimXMV9PbcyFCd347fAJhq7bb/ImrezUkHzp05C7n+atW9+hIV7p0lBm4GQe68aOrFKCb0pJ\noVXfc5fotm6ryfNmT+D05O1c746422nevXj7lkLTZ6N84YlyiFAJnWadpHk7kwhwqpv2vj58/Zri\nv8w2ed6a5c7PkAqVAFh29hT9D+wy3bf201jQ4EyHhRRCLE40t65OPBB4mSYH1msnBLhSrydxI9D6\nA8j++3B5Hem4dOI0/Fq5jWFMZHubCoJII6EwWVNlxBYnDrXz5cVnywCHc20ClE2Wm9GFm6lrltvZ\nE/uw7O7y2oNKlb1dUTx8gxO3oHiBAsQU3gS/ocOZDkghUKR1HPRD1ZO3JCRjaMGYl2OywuPHj/nt\nyXcycYtZKOQNIGus/uTI+HG9eP9lfA6etwvAN8Ac/UlBEHIDDZB6PKcDdgiC4CWKYigwC2gDHEUi\nb1UBXySi97coitkEQWgAjAXqR3N/Lligx4zv6VhugvopnDpjkkjbOLb/NIPb/qaSJwSBxKngt93W\nQpwRwZTSYZHjUbZSdvV10uSx+fuJ5F3Jk98i8/4zQ4mGSuWu9OPw8sjJihz/BP1Mi2Tz5NwkjTDp\ne5sKApyf0E3NexNk74w+Ob/B9BVcHNMN79hwNhhyAF7ppMIUVSxCJk/9th7m3N2HDKlXizI5zEUh\nzQuZBZmv9Q8/bJo4Xjz8ejsec6O79p5mmTyJLJMnOSReDRMmY8Wrpyy6dI5Fl87h174rjb0L0di7\nkKVtqWBBBwHOftcG79XzmJMhPz/cte8rKb1xCyp853C/pT1yEeCRiwWXDjPs9B5AJOdv4wlobHxw\nmXpiJ9NuHEHJX2tlkVN24OV9vNYMU3Pe1GrXSGIlJ+DhCQQB4iYIIitJ8OcZIKjEB+Bw5bGW8yMT\nLh3xYgGb0Ypaah/oiL57wrpSkRMid3dzJy1puS/1xJChlPM4xrMoyIU4g92XF3EGqVgid5yaVMna\nlRQpUtA+RcwTN4DqnhcMx9sDcgBSLmByfsLbo8UHWdeFmEGM5LwJgrAH6Kl43mSvG6IojpaPtyJ5\n6AKB3aIo5pTPNwTKiaL4gzJGFMXDgiDEAh4AKcUINujyvH08jOyziAPrpbJ0pXRMT94AtlzUyFtV\nb01aQO9F23p66EfYbdTxxVdajtu8SY3JkT0dAG/evKFKo5kgCGRLDwtmOC8VEl3y9jnAvjG9nrw5\nktxQ8tlOD+tE3NjmZ8VcgzQvnjM6bx8CJwL8qbde9mjZkTdTIYb8OqBjD+rPn83R969M9/xLpZpU\nyGYmm1KHBY0Ulk6RnmW1Y97bIem8aV6yOAhcqtefhqtHclIhJnZeNKXq9NrtQOqcXChfM3vP9M9U\n+g4Lynmbbt20xGNDVevOCGV39qIUiTjIC5IBibCRRciIIIQx5EtzCy0rND3Qi+dyvetErz5kS5XJ\nqXn2aH2iufxKlKtNFxmui6JI19ONpE6i8v1OLbiS6OD9+/dMvSFpJPbO7QvA5MuV0UuJdMm5I1pr\nRBbbA3IhCQlDeY+rH3Xt/xo+B8+bI6QH9IIzd+RzwfJr+/PKnNsAoiiGCILwHKkAy0rR0YVPgB5D\n63Ng/RDLa3rSFh7WHujN3JkbWfPrSRAElm/t/sEKDaKKvZusc9z2Hb0uvRBF/O6aPYPh4fCKfw5Z\ny9/V2FLLI3k8Ng74kfOTzOTqwvhu5O09OcLMpYKDp6v2SmXNwLyWZg9TaFgYeYZpnpXy2TLz8/ff\nGMZ4DTfu7cJPnYgj5wVmH61du/5TxERQEekF8Nd74aZq5083bUXBJXZJ7SIM2r2do++tJWtb7dhM\noEzePOaON+xXYjnSu3Xg8V2K/jqJNgWLMerMQQCyxUvMjgbtVFsNFo9RP0iv1OuKu7t7hPdljyBE\n3rx7xyu3hBD6wnJMzrVD+SJRFvKkSu3Qzq4Kfaiwy9qDBpCK+PhW609oaCgltg/gPm8ovlVqT6cU\nLOhxEGkvzxB5Rih3CAARjjy4QPE0eU327bG49PgIxziD+UUWhntdEASmFlqhHnc704BuZ+qrjd1H\n511ObLeIQ9d6XLq7X3394tU9EidMJx9F7PlT8Ou1kgC6wonwdd4iQiXPy1Ge68LHR4TkTRCEHUAa\ni0v9RVHcYHH+g0MQhLZAW4BMmaL2tOVC5FDNS06eFgQGzG3AiB9XmcZUzddfO5AfxZOlScjybcb+\noqcOaE91fz149tmRNwXv3wdT6TupsMM+qd3LI+VH2UPRFrpCBZ13y9n2WDGBgKdvydd9MsdHdcLd\n3fyRcWFcN/L0tsiZdMBvD/jfIfeAyVwa0Y3LOm/b9QcPDeMGf1WBHMM0QnZ1YDfa++Tj56NStWJG\nAZW4AVzvGznPXSNgOdDSy4thO7az8Px5A8na0qgJj0Ose5wtvngOBAjsoHlfPWZpIUCP2RMk75Zi\nT68np3tfHhLCqDOH1GO/dy/YEXCNip5ehIaGGp6Ac/4uvRe1MudkWtmvybF8FEpZxtCspWji8wVZ\nV44yrQHgvWm8clsOse+VP5U8c3Ch1iDybRqmuyJwvpbkLT9bczj9/ljDn5yhNG7MqC6dL+Lbj4e8\npqhvP7t1BI5UGY3f47uqSO+20oPZVyFmiJczWHhtCdv/3icfibgTm198ZsWAZYk09b/QiDRkpLt3\nxEVFp27uwPfVJGwCtEu3hCRJUqjXukWyr2lLr0MRD4oAfwbklqtaRYqn/YP/uWeJtk0XPg4iJG+i\nKEal19BdIKPuOIN87q782v68fs4dOWz6P6TCBas9zQXmghQ2jcL+XIgE7gY+0g5EkSmDVuJ7eYxp\nXMK08Oq+8VzsWFL1QZWCg7WTckHC1hNDYninMYu4cbWnaQHY94H13T4XnJsikaD83ScbigF/6j+d\nncD5iWaSdHGc+VyevkYv2dmhnfAeMt3hutnTpOLKkPAJWNfKFfkidy7qL/yN26JWtNA4SwaWBt4h\nHnDOSRI3vHt3FKWyl69eSeRNh7rLl3Dgh/bmiQ4wq3gFph/dyWsBbionRQj8oRce8zSykkEUONha\n+l16HxJCjiWTUHLevsCdip5eALi5uRHY9Ce6bVnFuocB8mwB31tXpKpTXT3P4BsHGe1/UEfaJHuH\na3Sl5J/GyvLLX/cj9wbNU76kZCOaHV4GiAw8/yeDLkjK/3qil3/TIPQacAAHZI+Pb8Apk+f1WFWp\n73Gb7ZMose0n9LlpjQ+OYX3F4cQUvj4oFR38j9gsLGUWem6arTHbj+9T9xBEEM2OSXI4i4r9QpgY\nxuiTI3nJc57yCE+y0qfQAGw2m6Ha1CbApPzWHReSkNapvb5F68kcwisghePBOjx98Re/35ckRxRB\n4eZZ9qjV6FHBoQCp+laqaoW7L1fyP/d/d+HXvwkfKuctD9JDbTGkgoWdQHZRFEMFQTgGdEYrWJgu\niuKfgiB0APKJovijXLDwjSiK1jX0Orhy3j4NquWSJQoEAd9LVo2xjbAkbyc/79w3F4xQct6mNa/B\nl/m91PN5dV63CxYkLiaQQw6XWon0NvDMwIqbWjZGZD1w9lDCpv5duuM5zZirqEDxxKYFDncwhsT3\nXr1Csz2b1d0GtO2J53xZ6NmuEMK+2lQ5bpE6M4OrNeDKk0dU/UMO25paXEGDxB6sehmgHiv6az2y\nFKF9MUnMN+fvIwjV5aL1y1OB0ZeN+VTWOm+Oq00FAQoSjwU1+nHj2X3qHZZIuSJ14WiuTdDEgG0C\nVImfj/4lotffUyFvrRJ/Q8181r6GVX7r2PjkD3l/WluvRcV+4fLfl5l4Y4y8f4mQphXSM7TwGNqf\naix7pqTz1VLVpXoGaxFkeww8XxuQyJb06yLlk/XPszn8iRYIDQ1mvl951Z60V8hARyp7NYi0PRc+\nLT65SK8gCF8D04GUwDPgjCiKVeRr/YGWQAjQVRRFX/l8ETSpEF+gkywV4g4sAQoCT4EGoij6R7QH\nF3mLOdTI2ZMwXZTI199cCfbkyUu+L62RtQ5Dv6VmvcIfY3ufFNeu3adVb+2pW+myULqu9B6JwME1\n0e91WqypRBzyZE3JxYBHapj0+IKPX23qDPQFC/DhyNutx4+pNGuJ+n6kj2tjdy/nEtujA0vyZlec\nEdjB+XzGMvMncYsQE3m72bI3Hgt1+WQCBDaTUhU8Fstebj25kucFNO6rNafXka4sgjvb6zve1937\n9yl/eJ5uWuTIm/LzTA2zBy0kJISSOwZazpXIm+aFa/g/H9oVCZ8Mfb2vB+/kALEN+KPsNNOY0w8v\nMsJvJooKoQ34veTscO06g06nlIISo4RI0wyd8E7uQyybY8/XrPN9uMcV3ARRJbXuQjJ651kY7X39\neq20+rql14Fo23Ph4+KTFyyIorgOsGxwJoriSMCUxS5750zZqKIovgMc18m78MFhs0WcKtu66kjk\nsisAatYrTNU8Wq5b8swJeHJH1/FQEFjg25Nnj57TtbnsQbCB7/HB2Gx6ScrPG56euvCGXeLQh4jb\nj+nwFd0mr+T6XavukR8e+bvpNNSc7G/6oYgbQKYUuvdfJMaJ25+nT9Nxz24Q4GjL1qSUBX8DOksE\nqPicn/kr6K26viBAgI60hYWFkWWORLxrpfVgWh2JkKgFCyjeOum35eC3bcnwP02i59wDvVwFzEol\ntUwqslhLT5hWrDq1cnib9u7fyDrUNeTQRpbekSRJHDWmv1Z3ED5rh/FcOgnA2a8GENvNKN4cGUQU\nykuKQHkK062CpARVe9dAnotvVC24Nh7VaeCpedDaZ67LpJur5EpWkRr7OvFHWWP4PY6gFXLYnBD/\nlcKm0qddv4w/ce3FVTa8XIONMARgjtzfdGrBJXQ53cQ03//1JXInLRgueWuXz1zcIYoioy9VV/fX\nV6401ePuqwusvtMZG1A+Xn/yZJb6u955cIEtL6RiltYuwvafh6vDggsqNl2KWHNp3fExDO+2kENb\npKKDqrnlLw75W+HJ7deGY4C06f5HLLvvAivitmLZHhZMlxKLO/WuxFfflIjsLXwwxI4d29DT9OjJ\na/QYKSmnCwIciAGvG8CxxZqHbfnIj9PP1BmoMiHAuYld1V6L9h0WHEFpSg+a/MblERHPLTJsMi8F\niFj7PXoYsXeP+vrk3btU1XVr8Jw+0ThYkO7BY+YE9Vj/c+ODQMy+ISMSx45jOK7lu8Rgo93Dc7Do\nnMHjd+b+bZW87blyiRYnJXmTaSW+4qss+UxrrLhjryUnIQ8JuMgrBAFyrB1muAUQ8d6kCPqKjM1Y\nm5qFNC27Nf5HGHbpD2m8INIrV1UaZ5G8QMuu7maK/3Z5rqM7F9hU0UhqeudqSP9LWkVvnfRlDNcr\nZS5JpcwlHRmU7illVtakjFg4d+nVlWx9Ju1RCZ1mSp6JHGlzsOHEGsBGZiGzOt4m2JheaJl6vMJ/\nFsde7OXQsx0cfb6DCd7mwq3wIAgCVRnJlv+3d9/RUVVrA4d/OyEoRSU0lSaRD0IEC1UUCxApAQED\nAnKNiooiTQVZAiJFQRQXfngvouD1Ij1SBBUlFFERc6WICBJCJzRpAooxCoTs+8c+05LJJJNMySTv\ns1ZWJufsmTnzZq+Zd3ZlFJWJdzmXfakQc8Pxxnn8z61ePZco3mRvU+GVuGhr5qi7dd6sfKxGnSs5\neuACZa5RLFuf/4HJvxw7RZ/upqtjYdILREYW3cV3n3hhFnsOWqvY+DB5K4gmT5vE6IMB7Wl0201+\neY5XZyeyeNsJ2sdUZfJTOdcmazx8ChecZlSmTHJNzNwlb290a82IT8wCpF/0782N15tJ7YdPn6bd\nu/PYNXaIy2zTqV070O6WGN++MCeHz56l1ZxZ1vOZ98XeNWqw4JejOcq62y2hbvmrmdaxK+2WzCVO\nRfB4s7tp7pT4xH7wNvsw4xIOPjHM5QtM7Q9NQvPqTS0ZsyvZfjyp02PEVHY32R+i5k/kg+tuJzY2\ntkCvd1nqFkakfmFeLs6tc66/U7qasamLdyczYe9K+/3D7bNpNY0jrmNbpmO2UniYtmbYuu6wsLTp\ncK6NrFig63Wn63cDAWtdtNqP0Kp6i1zLPryxrynrNHlCkcXE+q9R7epqOcoP+DEBxx6kMLXxfGtT\negDN/epJYm9t57PXMiO1PxnsJ0xl8UT1pVx1Vc5Z+OcvHmdRmumgqkocXeqNylFGFH1B7zYVJdCV\nwAVzc9CrnXhn7ApHB0UW3FC/IjM+LtiaZtWqV2X1hjG+uEq/uHw5i1bdTSuMVoqV8wdRvqz3627l\n16FjZ3hw1GxQ0DfuVvr1zOVD2voHPPveKtbP8E/yNuax3nj6z8x9Op6eM8wIinpulryKqRJJ6mmz\nD2TKq88RFhbGhOWOpRE6vpfo2oKl4Ksff6bH9ZVYfPwM9QAVpokeP4Vu0bV5sVM7IsuVo95ER1K4\n56XCddvO/ilny8aCY0cd1wRUBM4q+KLzg5zJyuTRFY5RI3v/PE+7xXNBQZK+RNLmr0hzSt7W9n0+\n1+dOe9yMb3t781qX43ErZgGwtcdzNFpiZo0qBVvv759jZwVv2RI3m9T4sSzYkcyEfWusI2aXhJs/\nG8v2zuNcyl4LVFKR7Lb29tyaabbbCwM2x5kxeB1XjecsrmvhbfhtD10jc0+w8pKw/iXO6T8IU7D8\n7ql8etc0hiW/wn5O5UjczvxxhlEpY/idS7xVaxx9whOYdXke5SnNtGbT7Mnzsz8MIoN0ylCOqU3z\nu0uD8mniBtAvJu/lS64ufT22mcSSuJVskrwJryRtc10ipFOPu8jIyKBbMzO8MWHgfXS45WVHAaWY\n+lE/6sbUINRl7woKU3mP2ft2088Mf8skKcmJQ7wa53fopGOlnO9Tj9Avl3Jb/h2cnQmcNahT2+1y\nITa2xA3gYuZlEr/7jvmbUswBBTMT7ueJ+Y5ZeLvGDuHvzEz6f25mRe4BBln7nX68O40M9TX/7HG/\nT1/D6DaxjG5jEuQb//mW2zJbBrt+MbGt8/bGN18yPfUnxwmrrhz/9VfuWPqhY3LDU56Xm3m+WSzP\nN4sl48IFblroWOIj/ZLrenPPJX/O7E5mY/BjZ85w9+oZ7IwfmucivvWWjLdfn60+z7r9Ee6oHgVA\nZER5e9ky2L+noZSiR3RLekS3zPGYTZJG4TzGrFnSS4y6sRNncR6vqUhum3N5IYBRayfzX47zxR3j\nKVvWcwf5XzrnunuTW451UxIGpYwkS5sWthcOjyOxxfu0pVWOchk6HZTmL9JZkpLI6r9W2Lstw6xF\nlcOsj8opt3m/s8LR8/uYeXgott0LoGAzTm361lufdyFR7Em3qfC5TxKTmf56kv3T4ZaWtXjzXbMJ\ndvsmjjfaerdUZOqH/p8x6K0+A9/nwGEzhJsw7AusznmnD48MngVKEQasW+a+q3Tc2x+z+r9p9r9t\n3YTfLwydXRb8KeZl1xmqKEh9dQj1x5rj1yjYmMd6b8ES9Y5J6vpHN+TFtu1zLWff29Rpf0+t4Ntu\nfbihUu4LPLeZPZkDXLbuC6B5sEYMk9t0zfU+zrNNbQnZvl4j7eMSAU78cZ64Vf/iT1s3oILU7qNd\nxrzt6lbwVu8m1uK8tq8mj1Vuxryzm3DedF4Ba1qNoVxp1+EQrda+YJWBr9u4T5p94eGNT2GbiWpm\njZrxZd0j4+lStwsAa1OTWPjnAit50/bfzhvThymIUOG0juxCXK28t9/Oyspizs7RHGUbSkFDOtK1\nQf7XDwT4LeMEC4+Y7tJwJQlcqJNuU1EkPdC7JQ/0zvkNPbtuve4JwNV4b9DTbRn68pIcx68o7egP\nvMrDcLzboq+1J29lS8Oq2c8TXojZe0WZ81Ihla5QrBufs2vwbPpf3DVxOijY+doQ5j/amYfnLGfF\nMz2Jql7dXm7XK0UrYUs7cYLWi+aDMqMFUp1a3Vbt3sG7e3awosMD3FSnTr4e777ranpM3ADi6tzM\ntP0/EQH23RNiq9Xjy23b6LvdzExMe8R1xxLbbFP77grA0T/PUbO8Y2zZ5lNp9sQNYHWHgfm65tzc\n9sVobMnNjx0nsCXO8dxdvp7EnDObAKeB95YLlzPJ70jW9uscdWnVvW97KAnxyQMIU2Y8WwThLLjz\nHTel3DdURFeMtt+OjYkjljiX82v2LOez9AX2v7M0XCKTcuqqfLwKMzmrT8P8bR+Ym7+zzuVdSJQo\n0vImgq5dMzMgevVm990fouhyTt563hrFmIfNZtuNRk7hIubjMkJZiYiVvGVveatWoTxrX3jK5XHr\nvzLFZS21JY8/yM01axJIa/bu5umkzx1rqjklb7WnOVqIvFnnraC01kTNM5MasidvzrK0pu7CiaAg\nvnI0k2Pzt6Cst2zJ27AKrUho6VjWo3nSS6ahWtla+MykhjdjEmhRvT6tvzKJ5pXAl/e9Cfim5S0+\neYBTixosvjPn+DHbhIWbS8UwoknB/2dm0oLmzQbziIjwbk/TgvrhwEK2XDKzaftFrwvIcwr/kZY3\nIYqB8+l/szJ5B2/NN8ukTBwQR2wL/82q9KXclgrZ+voQBo+cQufWDWjbtq1LF15tIA1IHe/+vpv2\n7s1xbPevvwU8eWtbNxqSPrd3m/+ekcE11pisvBK29IsXafih2aqpVbVazOqcd/eaJ0opj0mbTZhT\nnHvVzbl8iK+4W5wXYNIN3Xnx0MfWtcBXseMoU+pKNqZtp9VaM8BeKbivdAP7fb6JLXxX6bKWeS8T\nMv/2Dwr9PFCwcW+F1SSqJ1v2vEs9+gf8uUXRJC1vwqemT17BJ3PMhskrt08I8tWEhg3bDjD63eWc\n/8tsYlSn2jUkvvFksC9L4LrDwoFBQ12S0Lw88/5UDvA3q54a5tX9Qs3tSaPIBLpUacRYa7eEQ+mn\n6ZVsFi2Or9qYT06b9+gwBd2vb8HQhq5rnB374zQJm82EBn+OexOiKAj69lhFgXkjFowAAAd2SURB\nVCRvRcuG9SmMG5gISPJWGM37mA8+DUwf+SBNomsF94KCKEtrJi1bzqyU/S57m+55ObBj5GyL9R4c\nnL8ut9ozzO4Kaf08zzD11o5TR+iyZh49b2jIosM/Uz+8PCt6PevT5/BGx6TRnLQmWYQBGzpMINxp\nJvbIzXP45pyZWfxhowH03WbGow2s3YEZh8w4vm9i814gXIjiQrpNRVAtnbWe5K9TSNl8GJRiZcpr\ntLi7gSRtPlShbBjR1X23qGko+nT7Tmal7A/2ZXjNm6TtP5u+Y/xOszhvWp/hHssqzKKx5axtqMqW\nKu2xvL8taDOCJVuTWXpuHfNaj+TX387SeeP/k1C5Kc827cbrzVw3nq9PBLu4RMvrbuGrQ98yoq60\nMgvhLWl5EwV25OBpfjl6grHPfAThsHJ74WZUCVfTF33NinVbeSiuBf+43/P2QCK0vbdpHZN2bgDc\nJ2/f7NlJn42fYTaQh7uq1GZu+94Bvsq8aa25fZVj3bdNHV63n9t18ghPbp/K3AaD2H3+JK8fW8SC\nJi9So4LnGbhCFDfS8iaCqmZUFWpGVWFliv8GRpdkM1dsRQNTPt4gyVsx17/5vfRvfm+u54f/uNrl\n70yVRUbmxaC3urlTnnDSyaRm+DUux4dvfx+AR3dOpZaKBGDZoe8YXCE+x2MIITyTljchhAgBly5d\not7CyZQBEmKa8mKjWEp5sWNHIOzatYuoqCiuuOKKYF+KEEWWtLwJIUQJERERwcGEkcG+DI8eOTgH\nDjr2NxVC+Ickb0IIIXxCkjYhAqNotbkLIYQQQgiPJHkTQgghhAghkrwJIYQQQoQQSd6EEEIIIUKI\nJG9CCCGEECFEkjchhBBCiBAiyZsQQgghRAiR5E0IIYQQIoRI8iaEEEIIEUIkeRNCCCGECCGSvAkh\nhBBChBCltQ72NRSKUuo0cKiAd68M/OrDyxHuSZwDQ+IcGBLnwJA4+5/EODCyx/kGrXWVwjxgyCdv\nhaGU+kFr3TTY11HcSZwDQ+IcGBLnwJA4+5/EODD8EWfpNhVCCCGECCGSvAkhhBBChJCSnry9H+wL\nKCEkzoEhcQ4MiXNgSJz9T2IcGD6Pc4ke8yaEEEIIEWpKesubEEIIIURIKTbJm1JqplLqlFJqRy7n\nlVLqX0qpfUqp7UqpxtbxaKXUT04/55VSz1vnKiql1iil9lq/IwP5mooiP8V5nFLqmNO5joF8TUVR\nQeNsnRuilEpRSu1QSiUqpa60jkt9duKnGEtdzqaQcX7OinGK7f3COi51ORs/xVnqczb5iHN9pdT3\nSqkLSqlh2c51UErttv4HI5yOe1+ftdbF4ge4B2gM7MjlfEcgCVBAC2CjmzLhwAnMGiwAbwIjrNsj\ngEnBfp3B/vFTnMcBw4L92orST0HjDFQHDgJlrL8XAX2s21Kf/R9jqcu+i3NDYAdQFigFfAn8n3VO\n6nJg4iz12fs4VwWaAa85x8763NsP3AiUBrYBN1nnvK7PxablTWv9LXDWQ5GuwBxtbAAqKKWuz1Ym\nFtivtT7kdJ/Z1u3ZwAO+vOZQ5Kc4i2wKGedSQBmlVCnMG/IvTveR+mzxU4xFNoWIcwwmwcjQWmcC\n64BuTveRuuzET3EW2eQVZ631Ka31ZuBStlPNgX1a6wNa64vAR5j/CRSgPheb5C0fqgNHnP4+ah1z\n9hCQ6PT3tVrr49btE8C1/ru8YqMgcQYYbDXlz5QukHxxG2et9TFgMnAYOA78rrVebZWR+uydgsQY\npC57K7f3jB3A3UqpSkqpspiWo5pWGanL3itInEHqs694+mz0uj6XpOTNI6VUaaALsNjdeW3aM2Vq\nbiHlEuf3ME3Jt2E+DN8KwqUVC9aba1cgCqgGlFNKJWQvJ/W54PKIsdRlH9FapwKTgNXASuAn4LKb\nclKXCyGPOEt9DrD81ueSlLwdw/XbRA3rmE0c8KPW+qTTsZO2bhLr9ym/X2Xo8zrOWuuTWuvLWuss\n4N+Y5mXhWW5xvg84qLU+rbW+BCwF7rTKSH32jtcxlrpcILm+Z2it/6O1bqK1vgc4B+yxykhd9p7X\ncZb67FOePhu9rs8lKXn7DHjUmnHTAtPVcdzpfG9yduV9Bjxm3X4M+NT/lxnyvI5ztjFx8ZhmfOFZ\nbnE+DLRQSpVVSinM+MJUp/tIfc4/r2MsdblAcn3PUEpVtX7XwozDWuB0H6nL3vE6zlKffWozUFcp\nFWX1QD2E+Z9AAepzsVmkVymVCLQCKgMngbFABIDWerr1JvsO0AHIAB7XWv9g3bcc5g35Rq31706P\nWQkzk6wWcAjoqbX2NCC02PNTnOdimuU1kAb0y5bwlTiFjPMrQC8gE9gK9NVaX5D67MpPMZa6nE0h\n47weqIQZ/D1Ua73WOi51ORs/xVnqczb5iPN1wA/A1UAWkI6ZVXpemaVW3sbMPJ2ptX7Nekyv63Ox\nSd6EEEIIIUqCktRtKoQQQggR8iR5E0IIIYQIIZK8CSGEEEKEEEnehBBCCCFCiCRvQgghhBAhRJI3\nIYQQQogQIsmbEEIIIUQIkeRNCCGEECKE/A+zhXSpwiKKCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAE/CAYAAADPHl79AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cXVV56PHfc84MIYJBkRQR0ECBFtCiMKVUq1UQZ8Za\nQdsqlgsICip4fUHknSteQUFAKCpaWqmEqoje3spVh4HyYm0FMbGgAoIRQYgoQVtQioHMee4fe0/m\nzGReAjkzZ+/M7/v5nM/ss/bbs87OnDyz9lp7RWYiSZKk+mp0OwBJkiRtGBM6SZKkmjOhkyRJqjkT\nOkmSpJozoZMkSao5EzpJkqSaM6GT1FUR8dmIOKPbccyF+VRXSXPLhE6SJKnmTOgkaRJR8DtSUi34\nZSVpnIg4MSJ+HBG/jojbI+J1ZfmCiPiviHh+27aLI+KxiPid8v3xEfFARPwsIt4aERkRO63HabeK\niGvKc34jIp7Xdo4XR8R3IuLh8ueL16MOb46Iu8vj/SQiDm4r//eI+ER5vB9GxH5t+90QEWdGxL8D\n/w3sGBFbRMRnynqtjIgzIqJZbv+7EXFdRPwyIh6KiM9FxDPajveiiPhuGccXgU2niHfazzYitoqI\nr5bb/CoivjlVsll+5u8q6/9QRJzTvm1EHBkRd7Rd3z3L8kmvu6R6MKGTNNGPgZcCWwAfBP4xIrbJ\nzNXAPwFvatv2DcA3MvPBiBgAjgVeCewEvPxJnPNg4EPAVsAtwOcAImJL4GvAhcCzgI8BX4uIZ011\noIjYrNx+MDOfDry4POaoPyrruBXwAeCfyvOMOgQ4Cng6cC/wWWBNWacXAa8C3jp6OuAjwHOAXYHt\ngdPLODYB/hm4DNgS+BLwF5PFPNNnC7wPuB9YDGwNnAxMN2/j64A+YE/gAOCIMqa/KuM7FFgEvBb4\nZbnPpNd9mnNIqhATOknjZOaXMvNnmdnKzC8CPwL2Lld/HjiobfO/LsugSED+ITNvy8z/pkxs1tPX\nMvNfy8TmFOCPI2J74M+AH2XmZZm5JjO/APwQ+PMZjtcCnh8RCzPzgcy8rW3dg8AFmflEWb87y/OM\n+mxZhzUUidirgfdk5qNlcnX+6GeQmSsy85rMXJ2ZqygSzj8tj7MP0Nt2ri8D35km5uk+2yeAbYDn\nlcf6Zk4/EffZmfmrzPwpcAFjieJbgY9m5neysCIz7y3rMt11l1RxJnSSxomIQyPilvL23n8Bz6do\nzQK4HnhaRPxRRCwBXgj833Ldc4D72g7VvjyTtdtm5m+AX5XHew5FK1m7e4FtpzpQZj4KvBF4O/BA\nRHwtIn6/bZOVE5Khe8vzTBb38yiSsgfaPo+/BUZvMW8dEZeXt2IfAf6Rsc/qOVOcayrTfbbnACuA\nq8tbqSdOc5yJdWiv3/YULXHrmOG6S6o4EzpJa5V91/4OeCfwrMx8BvADiluLZOYIcAVFi8+bgK9m\n5q/L3R8Atms73PZP4tRrt42IzSlaxn5Wvp43YdvnAiunO1hmDmfm/hStWj8s6zRq24iICcf7Wfvu\nbcv3AauBrTLzGeVrUWbuXq7/cLn9CzJzEfA/KD8ris9jsnNNFfOUn21m/joz35eZO1LcJj22ve/f\nJNo/+/b63Qf87sSNZ7rukqrPhE5Su80oEpRVABFxOEVLTbvPU7SAHczYLUEokpHDI2LXiHgacNqT\nOO+rI+JPyn5nHwJuysz7gK8Du0TEX0dET0S8EdgN+OpUBypbzQ4o+9KtBn5DcQt21O8A74qI3rJP\n2a7ledaRmQ8AVwPnRcSiiGiUAyFGb6s+vTz+wxGxLfD+tt1vpOh7N3qu1zPzLcxJP9uIeE1E7FQm\nhw8DIxPqNNH7I+KZ5W3rdwNfLMv/HjguIvaKwk5lMrc+111ShZnQSVorM28HzqNIRn4BvAD49wnb\nfBt4lOI23lBb+RDFYITrKW4P3lSuWr0ep/48xQCFXwF7UbR0kZm/BF5DMSjgl8DxwGsy86FpjtWg\nGJzxs/J4fwq8o239t4GdgYeAM4G/LM8zlUOBTYDbgf8EvkzR8gfF4IE9KZKsr1EMbKCM/XHg9cCb\nyzje2L5+MlN9tmW8/0KRPN4IXJSZ109zqK8AyykGg3wN+Ex5/C+Vdf488GuKQRtbrs91l1RtMX2/\nWkl6aiJiV4rbdgvKAQZdFxFvBt6amX/S7VhmS0QksHNmruh2LJLmji10kjomIl5XPlPtmcDZwP+r\nSjInSRszEzpJnfQ2iseC/Jiin9c7ACLitoj4zSSvg5/qiaY43m8i4qWdqYok1Ye3XCVJkmrOFjpJ\nkqSaM6GTJEmquZ5uB7Chttpqq1yyZEm3w5AkSZrR8uXLH8rMxZ0+bscSuohoAssoprp5TTnZ9ReB\nJcA9wBsy8z/LbU8C3kLRafpdmTlclu9FMRH2QooHfb57hvkKWbJkCcuWLetUNSRJkmZNREw3BeBT\n1slbru8G7mh7fyJwbWbuDFxbvicidqOYgHp3YAC4qEwGAT4FHEnxEM2dy/WSJEmaRkcSuojYDvgz\nimllRh0AXFouXwoc2FZ+eWauzsyfUDxRfu+I2AZYlJk3la1yS9v2kSRJ0hQ61UJ3AcWUPO1zC25d\nzoMI8HNg63J5W4oJokfdX5ZtWy5PLJckSdI0Njihi4jXAA9m5vKptilb3Dr2wLuIOCoilkXEslWr\nVnXqsJIkSbXUiRa6lwCvjYh7gMuBfSPiH4FflLdRKX8+WG6/Eti+bf/tyrKV5fLE8nVk5sWZ2ZeZ\nfYsXd3ygiCRJUq1scEKXmSdl5naZuYRisMN1mfk/gCuBw8rNDgO+Ui5fCRxUzve4A8Xgh5vL27OP\nRMQ+ERHAoW37SJIkaQqz+Ry6s4ArIuItwL3AGwAy87aIuAK4HVgDHJOZI+U+RzP22JKh8iVJkqRp\n1H4u176+vvQ5dJIkqQ4iYnlm9nX6uE79JUmSVHMmdJIqrX/hId0OQZIqz4ROUmWNJnMDiw7vciSS\nVG0mdJIqa/ixy4je2Ry7JUkbB78pJVXaVY/8Q7dDkKTKs4VOkiSp5kzoJEmSas6ETpIkqeZM6CRJ\nkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoRO\nUqX1b34Y/Zsf1u0wJKnSTOgkSZJqrqfbAUjSdIZ/c2m3Q5CkyrOFTpIkqeZM6CRJkmrOhE6SJKnm\nTOgkVVr/Zod2OwRJqjwTOkmSpJozoZNUacOPLu12CJJUeSZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJ\nklRzJnSSJEk1Z0InSZJUcyZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcxuc\n0EXEphFxc0TcGhG3RcQHy/ItI+KaiPhR+fOZbfucFBErIuLOiOhvK98rIr5frrswImJD45MkSdrY\ndaKFbjWwb2buAbwQGIiIfYATgWszc2fg2vI9EbEbcBCwOzAAXBQRzfJYnwKOBHYuXwMdiE+SJGmj\ntsEJXRZ+U77tLV8JHABcWpZfChxYLh8AXJ6ZqzPzJ8AKYO+I2AZYlJk3ZWYCS9v2kSRJ0hQ60ocu\nIpoRcQvwIHBNZn4b2DozHyg3+Tmwdbm8LXBf2+73l2XblssTyyVJkjSNjiR0mTmSmS8EtqNobXv+\nhPVJ0WrXERFxVEQsi4hlq1at6tRhJUmSaqmjo1wz87+A6yn6vv2ivI1K+fPBcrOVwPZtu21Xlq0s\nlyeWT3aeizOzLzP7Fi9e3MkqSJIk1U4nRrkujohnlMsLgf2BHwJXAoeVmx0GfKVcvhI4KCIWRMQO\nFIMfbi5vzz4SEfuUo1sPbdtHkiRJU+jpwDG2AS4tR6o2gCsy86sRcSNwRUS8BbgXeANAZt4WEVcA\ntwNrgGMyc6Q81tHAZ4GFwFD5kiRJ0jSi6N5WX319fbls2bJuhyFJkjSjiFiemX2dPq4zRUiSJNWc\nCZ0kSVLNmdBJkiTVnAmdJElSzZnQSZIk1ZwJnSRJUs2Z0EmqtP7ND6N/88Nm3lCS5jETOkmVN/yb\nS7sdgiRVmgmdpEozmZOkmZnQSZIk1ZwJnSRJUs2Z0EmSJNWcCZ0kSVLNmdBJkiTVnAmdJElSzZnQ\nSaq0gUWHM7Do8G6HIUmVZkInSZJUcz3dDkCSpnPVI//Q7RAkqfJsoZMkSao5EzpJldW/8BD6Fx7S\n7TAkqfJM6CRJkmrOPnSSKmv4scu6HYIk1YItdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcyZ0kiRJ\nNWdCJ0mSVHMmdJIkSTVnQiep0ga2OIKBLY7odhiSVGkmdJIkSTXnTBGSKu2qhy/pdgiSVHm20EmS\nJNWcCZ0kSVLNmdBJqjQHRUjSzEzoJEmSas5BEZIqzUERkjQzW+gkSZJqboMTuojYPiKuj4jbI+K2\niHh3Wb5lRFwTET8qfz6zbZ+TImJFRNwZEf1t5XtFxPfLdRdGRGxofJIkSRu7TrTQrQHel5m7AfsA\nx0TEbsCJwLWZuTNwbfmect1BwO7AAHBRRDTLY30KOBLYuXwNdCA+SZKkjdoGJ3SZ+UBmfrdc/jVw\nB7AtcABwabnZpcCB5fIBwOWZuTozfwKsAPaOiG2ARZl5U2YmsLRtH0mSJE2ho33oImIJ8CLg28DW\nmflAuernwNbl8rbAfW273V+WbVsuTyyXJEnSNDqW0EXE5sD/Ad6TmY+0rytb3LKD5zoqIpZFxLJV\nq1Z16rCSKqh/88Po3/ywbochSZXWkceWREQvRTL3ucz8p7L4FxGxTWY+UN5OfbAsXwls37b7dmXZ\nynJ5Yvk6MvNi4GKAvr6+jiWKkqpn+DeXzryRJM1znRjlGsBngDsy82Ntq64ERv+sPgz4Slv5QRGx\nICJ2oBj8cHN5e/aRiNinPOahbftImscGtjySgS2P7HYYklRZnWihewlwCPD9iLilLDsZOAu4IiLe\nAtwLvAEgM2+LiCuA2ylGyB6TmSPlfkcDnwUWAkPlS9I8tnbar2Zz+g0laR7b4IQuM/8NmOp5cftN\nsc+ZwJmTlC8Dnr+hMUna+Fz1q7/rdgiSVFlO/SWp0pz6S5Jm5tRfkiRJNWdCJ6m2+vtOp7/v9G6H\nIUldZ0InSZJUc/ahk1R5A1seOemgiOFlp899MJJUQbbQSaoFn0MnSVOzhU5S5fnIEkmani10kmpl\ncMfjGNzxuG6HIUmVYkInSZJUc95ylVQrQ3ef2+0QJKlybKGTJEmqORM6SZKkmjOhkyRJqjkTOkmS\npJozoZNUaQNbHMHAFkeMKxvc7WQGdzu5SxFJUvWY0EmqFZ9BJ0nr8rElkirtqocvWads6PYPj3u/\n/5+cCcA1/3bKnMQkSVVjC52kWvE5dJK0LlvoJNXC4HbvKhYaDYZ+esG4dbbMSZrvbKGTVHkDWx3V\n7RAkqdJM6CTVQv72twDrtM5N5qUHnjPb4UhSpZjQSaqNofsvXO9tTeokzSf2oZO00fnmP7+/2yFI\n0pwyoZNUeVc9dHG3Q5CkSjOhk1R5g1u/o1hYsABYv350kjSfmNBJqrx8Yg00guh2IJJUUSZ0kuqh\nlbbMSdIUHOUqqdL6Nz+Mq371d8QmvQw+++huhyNJlWRCJ6ny+jc/rNshSFKlmdBJqrRoNolmk6Gf\nXwQ99hKRpMn47SipFga3OabbIUhSZdlCJ6nSrnr4Eq56+BJotSBzbfnAC07pYlSSVC220EmqvIGt\njiKaTQAGdzyuKNxsQRcjkqRqMaGTVAs5MkJsuikAQ3ef2+VoJKlaTOgkVd5VD13M4OK3M3T/hd0O\nRZIqyYROUmW9apO/BqC5xaIuRyJJ1eagCEnV1whoBIPb/s9uRyJJlWRCJ6nycmSEHBmBVovB576n\n2+FIUuV0JKGLiEsi4sGI+EFb2ZYRcU1E/Kj8+cy2dSdFxIqIuDMi+tvK94qI75frLowI5+KW5rGr\nH/880dsDI6312v4V/Wfziv6zZzkqSaqeTrXQfRYYmFB2InBtZu4MXFu+JyJ2Aw4Cdi/3uSgimuU+\nnwKOBHYuXxOPKWk+GhkpZot44JMM/fSCbkcjSZXTkUERmfmvEbFkQvEBwMvL5UuBG4ATyvLLM3M1\n8JOIWAHsHRH3AIsy8yaAiFgKHAgMdSJGSfU0+vy5HBmZcdvrh0+Y7XAkqZJmsw/d1pn5QLn8c2Dr\ncnlb4L627e4vy7YtlyeWS5rHcmQENuntdhiSVGlzMigiMxPIGTdcTxFxVEQsi4hlq1at6tRhJVXV\nE2u6HYEkVdpsJnS/iIhtAMqfD5blK4Ht27bbrixbWS5PLF9HZl6cmX2Z2bd48eKOBy6pOqLHx2VK\n0kxmM6G7EjisXD4M+Epb+UERsSAidqAY/HBzeXv2kYjYpxzdemjbPpLmqasevgSaTWh1rJFfkjY6\nHfnTNyK+QDEAYquIuB/4AHAWcEVEvAW4F3gDQGbeFhFXALcDa4BjMnO0t/PRFCNmF1IMhnBAhDTP\nDSw6vFiwpU6SptSpUa5vmmLVflNsfyZw5iTly4DndyImSRuHbBXPoPOhlJI0NWeKkFR9ZnOSNC0T\nOkmVFs0m0WgWc7lu965uhyNJlWSnFEmVNvpA4dEHDEuS1mULnaTK6l94CIy0iN7iwcJD91/Y5Ygk\nqZpM6CRV1vBjl61TNrjLCQzu4hRfktTOhE5SpQ0/dhlEEM0mg88+utvhSFIl2YdOUqX1b3YosWAB\nOTLCVas+3e1wJKmSTOgkVd/ICDSbDG7/bhjtT3f3uV0OSpKqw4ROUj00Ap54AiIY+ukF3Y5GkirF\nPnSSKi1Gp/wq53I1mZOkdZnQSaqHRjFdhKNcJWldJnSSKqt/4SHk409Alq1zP79o7brB3U7uVliS\nVDkmdJJqY/DZRzN019nQ46wRktTOhE5SZa19sHDE+J8jLYZu/3B3gpKkCjKhk1RZ/QsPAcr5XMtB\nEZKkdZnQSaqs4ccuI3p7iMbYV9XgTu+HTPvQSVIbn0MnqbJGW+hoNgiAtY8waQH2o5OkUSZ0kuqh\nEQzd9zfdjkKSKslbrpIqa/ixy6DZdrv12UczuOS9XYxIkqrJhE5S5UWj4aAISZqGCZ2kSmsfEFEU\nRHcCkaQKM6GTVGnZajGubW7NCIO7nsTgrid1KyRJqhwTOknV12qtnct1dJaIBAZecEr3YpKkCjGh\nk1QPo33o1owwdMdHoKfBVd8/s7sxSVJF+NgSSZUWvb2TlpvMSdIYEzpJlTX6YOHo7Rl7qLCDIiRp\nHd5ylVR5GUAATWeHkKTJmNBJqq5GQCMIohgF0Wp1OyJJqiQTOkn1MfGZdJIkwD50kiosn1gDQDSb\nRWvdyAhDKz/e5agkqXr8c1dSPZSPLRnc4dguByJJ1WMLnaTKitGHCY8OhoiAHD+n6/4vPgOAa751\n6lyGJkmVYgudpMoa/u3noNkkWyNFQdmHbnCXExj8vRO7GJkkVYstdJIqq3+zQ4uFVkJvFKNcy1uv\nQ3eeBdgyJ0lgC52kCht+dCnRbBIRY1N/AUN3nd3FqCSpekzoJFVajoyMzQ6RCY1gcNeTGNz1pO4G\nJkkVYkInqbLW3nIdNaGlTpJUsA+dpNoZuuMj3Q5Bkiqlci10ETEQEXdGxIqIcBibNI8NP7oUGL3t\nSnHLtdlgYMfjGNj9lO4GJ0kVUqkWuohoAp8E9gfuB74TEVdm5u3djUxSN/RvenCx0NP2VTXSIjZp\nkkD/H34QgDWb9QJw7Q0nz3GEklQNVWuh2xtYkZl3Z+bjwOXAAV2OSVKXRaMxfmAEcNVtZ65dbyIn\nab6rVAsdsC1wX9v7+4E/6lIskrps+LefY2DR4cWb0RkiIhhacU6x/jsfWLutSZ2k+axqLXTrJSKO\niohlEbFs1apV3Q5H0izpX3gI+cQaEsZa6Hp6GNz5+G6GJUmVU7WEbiWwfdv77cqycTLz4szsy8y+\nxYsXz1lwkrojYOxxJWvWwEirm+FIUuVULaH7DrBzROwQEZsABwFXdjkmSV0y/NhlRG/ZMyRoa6Vr\nMvAHpzLwB8W0X/u/+IyOnG+ns89np7PP78ixJGkuVaoPXWauiYh3AsNAE7gkM2/rcliSuihHRohm\ns3yTY33pgKu+dwb77/O/uxSZJFVHpRI6gMz8OvD1bschqWLaJogYuutsBvY4DShvx3bIihPe28Gj\nSdLcqVxCJ0njRJDZKu62RkCzUQyKeNoCBvY4jatv/VC3I5SkrqtaHzpJWtfE6VsjuOrWD5G9Tfr7\nTu9GRJJUKSZ0kqqv/aHCrYnZnSTJW66SKi8ixid1EQz+3okM33lWdwOTpIqwhU5SPbTGZoqQJI1n\nC52kyupfeAgAGTF+NGsmQ3ed3ZWYJKmKbKGTVH0R6zyfZHA3526VpFEmdJIqa/ixy6DZgFbbVF+Z\n0NMkgYEX/q+uxSZJVeItV0nVlkn09IzrOzd0+4e7GJAkVY8tdJIqq3+zQwHIdECEJE3HhE5S5UVE\nMcq1fGSJJGk8EzpJlTX86NKxBK4xlsgN7nhclyKSpGoyoZNUWf0LD4GRFtk+KKIRDN197pzG8bxL\nPjqn55OkJ8uETlIl7d/4K1qrfwuUt1xH+9G1koFdTmBg91Om3PdlB5zTsThM5iTVgQmdpGobvdXa\nNvVXwPhHmUyiU0ndvUccz71HHN+RY0nSbPGxJZIq6ZrWlwDo3/wwkhx7rnAENBsTnzM8zr9+5f2z\nHZ4kVYoJnaTKGn1sSdAYu+XaCFj9xKT96F7RX0wHdv3wCXMWoyRVgbdcJVXW8KNLJ1/R05xyH5M5\nSfORLXSSKi16yq+p0T50rVzbf67/RR8AYPg/PgiYzEmav0zoJFVajoxAo0GM3nId/clYIjeTvrd8\nDIBlnzm24/FJUhWY0EmqrNE+dEwx9Vf/Xh+gBbCgl2u+deqcxiZJVWIfOknVlwnZ9r4x9tXVmJDk\nvey15/Cy13buOXSSVAcmdJKqq5XQSmI0gRttqVszUvwskzlb5yTNd5GZM29VYX19fbls2bJuhyFp\nFvQvPKRYaDaITRcUAyR6e8neXli4AJpBa7MFAFx942ldjHRmn/jhvgC88/ev63IkkropIpZnZl+n\nj2sLnaTKGn7sMmhO+JoKirLM4i7s42s26By7nXr+Bu0vSVXgoAhJlTbudmsELFiwdpaI7G0SwHCH\nW+d2vPA8AO5+1/s6dkxb5iTNJlvoJFVW/6YHk48/XryJKJK6kVbROjfSYnj5BxleXjy6ZL+Xf/gp\nneP2M97bqXAlqWtsoZNUeZlZPIcuAtasITfpnXa2iA3VyZY5SZoLttBJqq5oQDSI0UeTlIO4IgIa\nMPCCU9Zums0G++53VjeilKSuM6GTVHnZahXPoRtN7EZa62400qI10uLlA2dPeow933Y+e77NARCS\nNk4mdJIqL9oeJExmMcp1TQsi2P/FZ7D/i88oBkpsun63Yfd4z7qJ3S5nnM8uZ5jwSaonEzpJ9VHe\ncs2yhe6q752xdtW1N5xctOBNmDli1Hf/9r1892+LARC3XuBACEkbFwdFSKq8BNrTtPac7Zpvncor\nX3Ymr3zZmfC0p/6VdtepJnmS6ssWOknVlS3IVpHMtSVxGUE2GvT3nc7+fafDSNFy1xhJshH86as/\nusGnXvLJ81jyyfM2+DiSNBdM6CRVVrayGOnaLPvGTbyl+sTI2PIUt1qfqnuOGXt0yZJ/2PAEUZJm\nkwmdpErLkRFojRT3XTMhk2g0yGb5oOFNeoiEVk8DWvCNrx/PN75+fEfOPV1St9s/n96Rc0hSJ5jQ\nSaqs6O0henuKlrpGW+tc5tgd2MeemHTfP3n9uTMef/eTzmf3k9Yd2brjheetnf4L4J7Dj+eew8eS\nRJM5SVXjoAhJlTX86FIGFh0+VlCOcgVg9RrYtJcGMPytU4upvxpFmrc+yRzAbR8ZPxBi57PK5O5p\n0+93+4Gnr9fxJWmubFBCFxF/BZwO7ArsnZnL2tadBLwFGAHelZnDZflewGeBhcDXgXdnZkbEAmAp\nsBfwS+CNmXnPhsQnqf6yVTyiZFwPud7yqysCmlGMcG3zb/903KTH2vMd5/PdT00/mvVHJ67/aNc9\nv34qAN999RkzbClJs2tDb7n+AHg98K/thRGxG3AQsDswAFwUEaNP/PwUcCSwc/kaKMvfAvxnZu4E\nnA9M/rh3SfNONJvjWufy8eI2a2TS2qQH1hS3YK+94eQZj7XnO6Z+ePCTSeYkqUo2qIUuM+8AxuZZ\nHHMAcHlmrgZ+EhErgL0j4h5gUWbeVO63FDgQGCr3Ob3c/8vAJyIiMtvvsUiab6J9hOuEnwk0Vj/B\n8PIPAvCK/uLvwOuHT5j0WDO1zj1ZtsxJqorZGhSxLXBf2/v7y7Jty+WJ5eP2ycw1wMPAs2YpPkk1\n0L/wkLWtcUz82y4TetbvK+wPj/gYf3jEx9a+n2zqL0mqsxlb6CLiX4BnT7LqlMz8SudDmllEHAUc\nBfDc5z63GyFImkPZahHZLFrnMqFVJndPjNDapIf9X3wGrQVlS16vg/clzT8zfvNl5isz8/mTvKZL\n5lYC27e9364sW1kuTywft09E9ABbUAyOmCymizOzLzP7Fi9ePFMVJNXU8GOXFSNXM8d+NhvFa9SE\nLh/XXz12u3Wfg89jn4PPI1rQasFeRz25lrkln1q/0bKS1G2z9afslcBBEbEgInagGPxwc2Y+ADwS\nEftE0fHuUOArbfscVi7/JXCd/eek+a1/4SHQSqLZGGuVazSJkdbaW7CNVotsBPFEC3obvOJV646n\nuvmzx8ImY4nfrRcUfemmeg5dO5M6SXWwoY8teR3wcWAx8LWIuCUz+zPztoi4ArgdWAMck5mjc/Qc\nzdhjS4bKF8BngMvKARS/ohglK0nFLBGj1qwhe3qY+NdeAqxpjetXF62x9csvfvIDIu55x+SPP5lN\nrZ/vAkDj2XfN+bkl1VfUvRGsr68vly1bNvOGkmrlVb3F33SNp5VP+W02iQWbQE8P2dtL9vaQT1sA\nzeDqZaez374fAeDa605ae4w/ftN5jCwoWuZu/uyxALzwnedzyyc2fLTrC678AADff+0HN/hY7Uzo\npI1bRCwitY56AAAKOUlEQVTPzL5OH9eZIiRV2+gfnTG2HFG8Heltrt2sPZEbdeMXirlY937zx8aV\ndyqpmw0mcpKeChM6SZV09ROX07/ZoeTICDQaYzNFRDmna2Od51+u7T83OjDij99UzMd6c5nYAR1L\n5DrdMidJG8Lx/ZIqLxqNsdGsmdBo0ALiiaJr7qv++ENrt73+6hN42WvPKXdkwpxh69rtlPGDInY6\nZ6w1b8mnznVQhKRaMKGTVH3tfX0jYM3I2JdXs8jY9tv3I7CmxctedTa5Jnnp687lxs+/jxs/P9Y6\n96Kjz+dFR48lcLuddD6UAyd+70M+bFhSfXnLVVJlDT+6lIFFh48vLJO7BKLVYvjG04AioWsArZ5i\nSrB1ZpaY4PnHn08ArSb8/mnnQ0+R1K047Vh2vKBopbvnPXM/ylWSngoTOkmV1b/wEABi4abjE7S2\n59Lt/+JiPtVrv3Xq2tUvPfCcSY/3HxeN7z8XsPZbMIAfnlbNgRKSNBMTOknVlW0PkhsdDAHFIIlG\nMLKgd+2z5/bb9yPF3dPeBt8cPmGdQ+11ZHFLdfnfjU/a7vjQuknc3e85dtz7JZcWgy3uOWzd40pS\nFdiHTlL1NYOIBvT0MHTf3xQtdGVyF8A1ba1zU0kgm1Ov3+XM89nlTPvRSaonW+gkVdbwbz8HwODi\nt68tG9z+3Qzd9zcM7nYyV9/8v9aWJ0Vyd90krXN/eMTHaAIjzbEhrz/46PrfXrVlTlLV2UInqfKG\nVn2aoVWfHleWPQ0G/qBomdv/JWdw3XUncd11J/Gy154z9tiSNi3GTwU20V2nvJdWD+x09lgr3ZJP\nn8uST5/LsUvPZsnS4rbr737xzA2vkCR1mAmdpPpo60e3w0vgqu+dUQyKaBsvsWiTdXf7ziXHQk+x\n3wvfuf63VbcBXt32vkjmWuzy5Q9NsYckdYcJnaT6aLUY+ukFnH3SpfzkW8HAHqets8lXv/x+sgEv\nOfAc3nbiJ8etG9xjq2kPv+KE90Ij+fjHPw7AjW8/jovefhwfO/QE7jn0BH78xlNoTtMPT5K6xT50\nkmrhsssuW7t8w1fuLBZ6m9MOiPjBj3877v3QrQ9xy8XT951b8f5ihOsOHz+P87f/XQ488MBx6+/6\ny3WTSEnqtsgZHr5ZdX19fbls2bJuhyGpi2699Vb22GOPjh5zh4+fx0/+5/tm3lCSnoSIWJ6ZfZ0+\nrrdcJdXeccd8lSP++qKOHtNkTlKdeMtVUu1d82+ndDsESeoqW+gkSZJqzoROkiSp5kzoJEmSas6E\nTpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmouMrPbMWyQ\niFgF3NvtOGbRVsBD3Q6iC+ZrvWH+1t16zy/We36x3mOel5mLO32i2id0G7uIWJaZfd2OY67N13rD\n/K279Z5frPf8Yr1nn7dcJUmSas6ETpIkqeZM6Krv4m4H0CXztd4wf+tuvecX6z2/WO9ZZh86SZKk\nmrOFTpIkqeZM6GZZRGwZEddExI/Kn8+cYruBiLgzIlZExInrs39EnFRuf2dE9JdlT4+IW9peD0XE\nBeW6N0fEqrZ1b91Y6l2W31CWjdbvd8ryBRHxxXKfb0fEko2l3hHxtIj4WkT8MCJui4iz2raf1es9\nVR3a1kdEXFiu/15E7Nnp+pfle0XE98t1F0ZEdLKek5nLukfE/hGxvKzj8ojYt22fSf/NbyT1XhIR\nj7XV7dNt+8zpNZ/jeh8c47/DWxHxwnLdxnC9/yqK76pWRPRNOF4lfsfnst4d/f3OTF+z+AI+CpxY\nLp8InD3JNk3gx8COwCbArcBu0+0P7FZutwDYody/OcmxlwMvK5ffDHxiY603cAPQN8l5jgY+XS4f\nBHxxY6k38DTgFeU2mwDfBAZn+3pPV4e2bV4NDAEB7AN8e5au+83l8aM83+As/9ue67q/CHhOufx8\nYGXbeSb9N7+R1HsJ8IMpYpmzaz7X9Z5w3BcAP97IrveuwO9NrAsV+R3vQr079vttC93sOwC4tFy+\nFDhwkm32BlZk5t2Z+ThwebnfdPsfAFyemasz8yfAivI4a0XELsDvUPwnP9e6Vu8ZYvkysN8s/oU3\np/XOzP/OzOsBymN9F9iuw3WazHR1GHUAsDQLNwHPiIhtZtj3SdW/PN6izLwpi2/ApUz+mXfSnNY9\nM/8jM39Wlt8GLIyIBbNVuWnM9TWfVBeueTfr/aZyn26YlXpn5h2Zeeck56vK7/ic1ruTv98mdLNv\n68x8oFz+ObD1JNtsC9zX9v7+smy6/afbZ9Roa1T7yJe/KJt2vxwR2z+5qjwp3ar3pWXT9GltSdva\nfTJzDfAw8KwnX6X10rXrHRHPAP4cuLateLau9/r8+5tqm07Wf9tyebo4Om2u697uL4DvZubqtrLJ\n/s3Phm7Ue4eybt+IiJe2nWMur3k3r/cbgS9MKKv79X6y59tYrvf62KDf754ncSJNISL+BXj2JKtO\naX+TmRkRT3lY8VPY/yDgkLb3/w/4Qmaujoi3UfxVuO+ke66HCtb74MxcGRFPB/4PRd2XPtXzTqWC\n9SYieii++C/MzLvL4o5e77m2oZ9fnU1W94jYHTgbeFVb8Zz8m58rE+r9APDczPxlROwF/HP5GWx0\nprjefwT8d2b+oK14o7reGtOJ328Tug7IzFdOtS4ifhER22TmA2WT7IOTbLYSaG892a4sA5hq/+n2\nISL2AHoyc3lbnL9s2/7vKfpwPGVVq3dmjv78dUR8nqL5e2nbPveXic8WQPtn8aRUrd6li4EfZeYF\nbXF29HpPMFM8023TO82+T7b+Kxl/i3myODptrutORGwH/F/g0Mz88Wj5NP/mZ8Oc1rtspVhdLi+P\niB8DuzD313zOr3fpICa0zm0k1/vJnm9jud5T6tjvd85B58r5/ALOYXzH149Osk0PcDdFR9DRjpS7\nT7c/sDvjO5DeTdugCOAs4IMTzrNN2/LrgJs2lnqXx9qq3KaXoq/c28v3xzB+UMQVG0u9y3VnUPz1\n1pir6z1dHdq2+TPGdxy+eZbqP7HD9Ktn6/p2qe7PKLd7/SRxTPpvfiOp9+K2a7wjxX+MW871NZ/r\nepfvG2V9d9zYrnfbvjcwfnBAJX7Hu1Dvjv1+z8oH4mvcRXkWRZ+mHwH/0vaF9Bzg623bvRq4i2KE\nzCkz7V+uO6Xc/k4mjPop/1H9/oSyj1B0urwVuH7i+jrXG9iMYkTv98o6/k3bl8GmwJcoOtneTNuX\n5EZQ7+2ABO4Abilfb52L6z1ZHYC3M5ZIB/DJcv33Gf8l1rF/70Af8INy3ScoH5g+y7/Xc1Z34FTg\n0bbrewvFYKcp/81vJPX+i7Jet1AM9vnzbl3zLvxbfzkT/gDbiK736yj6lq0GfgEMt62rxO/4XNab\nDv5+O1OEJElSzTnKVZIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM\n6CRJkmru/wNh7xHC3s7IPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHVW1sPF3dTphljEgkwYUZVJBIiIIl9EMigG5Kjgw\nXAZRQEBFQERQUQGFYC4KwgUBB0QBlSvEAJFB/UQJgwwiEBCEECACgoo3pLvX90dVJ6c7PSan+9Tp\nvL/nOU+fql21a+1zOpXVe++qisxEkiRJzaGl0QFIkiRp4EzeJEmSmojJmyRJUhMxeZMkSWoiJm+S\nJElNxORNkiSpiZi8SepTRFwSEac1Oo7h0Oi2RsTNEXFIL2XjIiIjonUY4zk/Ik4eruNJGphhOwlI\nkppLZh7e6BgkLc6eN0lNKQqew4ZIRIxqdAySeuaJT2oyEXFCRDwSEf+IiD9FxN7l+uUi4u8RsWXN\ntmMj4t8RsXa5/NmImBsRT0XEIeUw3OsHcNi1IuKG8pi3RMRra46xfUTcHhEvlj+3H0AbDoyIR8v6\n/hIRH65Z/9uIOLes788RsVvNfjdHxFci4rfAy8DGEbFqRFxUtmtORJzWmXhExOsi4lcR8VxE/C0i\nfhARq9XUt3VE3FnGcQWwfC/x9vnZRsRaEfGLcpvnI+LXvSWWA/i8Xlt+Bv+IiOsjYq1e6lkjIr5b\nfpcvRMTP+vnMd46IJyPic+Vn8Vjn516WXxIR50XEdRHxL2CX7sPIETElIu6OiJfK38GJ5fpevwNJ\n9WfyJjWfR4AdgVWBLwLfj4h1M3M+cDWwX822HwBuycxny/9oPwXsDrwe2HkQx/ww8GVgLeBu4AdQ\nJBDAtcA0YE3gbODaiFizt4oiYqVy+0mZuQqwfVlnp7eXbVwLOAW4ujxOp48ChwGrAI8DlwBtZZu2\nBt4FdM4bC+BrwHrAZsCGwKllHGOAnwHfA9YAfgLs01PM/X22wKeBJ4GxwDrA54DFnj04wM/rQ8BB\nwNrAGOAzPcVUxr0isEW57dRetqv1aorPdX3gAOCCiHhjt2N/heKz/U232LcFLgOOA1YDdgIeK4sv\noffvQFKdmbxJTSYzf5KZT2VmR2ZeATwMbFsW/xDYt2bzD5XroEg2vpuZ92fmy5RJzABdm5m3lknM\nScA7ImJD4N3Aw5n5vcxsy8zLgT8De/ZTXwewZUSskJlzM/P+mrJngXMyc0HZvgfL43S6pGxDG0XS\nNRk4JjP/VSZSUzs/g8ycnZk3ZOb8zJxHkSz9R1nPdsDommNdCdzeR8x9fbYLgHWB15Z1/Tp7fnD0\nQD6v72bmQ5n5b+DHwFbdK4mIdYFJwOGZ+UJ5zFv6iL3WyeXncQtFIvmBmrKfZ+Zvy9+t/+u238HA\nxeXn2ZGZczLzzxGxDn18B5Lqz+RNajIRsX85dPX3iPg7sCVFbwrATcCKEfH2iBhH8R//T8uy9YAn\naqqqfd+fhdtm5j+B58v61qPo/ar1OEXPTo8y81/AB4HDgbkRcW1EbFqzyZxuic/j5XF6ivu1FAnY\n3JrP4zsUPVFExDoR8aNyKO8l4Pss+qzW6+VYvenrs/06MBu4vhwOPqGXOgbyeT1d8/5lYOUe6tkQ\neD4zX+gj3p68UH7+tcfu7bPt6ZiP9LC+z+9AUv2ZvElNpJxrdiFwJLBmZq4G3EcxPEhmtlP01uxX\nvn6Rmf8od58LbFBT3YaDOPTCbSNiZYoer6fK12u7bfsaYE5flWXmjMzcg6K36s9lmzqtHxHRrb6n\nanevef8EMB9YKzNXK1+vyswtyvKvltu/KTNfBXyE8rOi+Dx6OlZvMff62WbmPzLz05m5MfBe4FO1\nc/VqLNHn1YMngDVq5+8N0OrlsHXtsXv7bHs65ut6Wd/XdyCpzkzepOayEsV/sPMAIuIgip63Wj+k\n6Nn6MIuG9aBIPA6KiM0iYkVgMPfvmhwR7yzniX0ZuC0znwCuA94QER+KiNaI+CCwOfCL3ioqe8Om\nlEnEfOCfFMOondYGPhkRoyPi/RRz1a7rqa7MnAtcD5wVEa+KiJbyIoXOodFVyvpfjIj1KeZrdfod\nxTytzmO9j0XDz73p8bONiPdExOvLRPBFoL1bmzoN+vPqo93TgW9HxOpl/DsNcPcvRsSYiNgReA/F\nXL+BuIji92e38nNePyI2HcB3IKnOTN6kJpKZfwLOokg8ngHeBPy22za/B/5FMRw2vWb9dIqJ8jdR\nDPHdVhbNH8Chf0hx8cDzwDYUPVhk5nMUCcCngeeAzwLvycy/9VFXC8WFE0+V9f0H8PGa8t8DmwB/\no5g8/5/lcXqzP8XE/j8BLwBXUvToQXFBx1spEqprKS46oIz9FeB9wIFlHB+sLe9Jb59tGe+NFIni\n74BvZ+ZNPey/JJ9Xbz5KMdfuzxTzBI8ZwD5PU3xGT1FcdHJ4Zv55IAfLzD9QXEgxleLzvIVFvYh9\nfQeS6ix6nlMraaSLiM0ohlyXKyf/N1xEHAgckpnvbHQsI01E7Ax8PzM36G9bSdVmz5u0DImIvaO4\nZ9nqwBnA/1YlcZMkDYzJm7Rs+RjFENsjFPOyPg4QEfdHxD97eH24r8r60kt9/yznWmkIRHED3p4+\n8+n97y2pWThsKkmS1ETseZMkSWoiJm+SJElNpLXRAQzGWmutlePGjWt0GJIkSf264447/paZY+td\nb1Mlb+PGjWPWrFmNDkOSJKlfEdHXI/eWmMOmkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQm0m/yFhEX\nR8SzEXFfL+WbRsTvImJ+RHymW9nEiHgwImZHxAk169eIiBsi4uHy5+pL3xRJkqSRbyA9b5cAE/so\nfx74JPCN2pURMQr4FjAJ2BzYLyI2L4tPAGZm5ibAzHJZkiRJ/eg3ecvMWykStN7Kn83M24EF3Yq2\nBWZn5qOZ+QrwI2BKWTYFuLR8fymw12ADlyRJWhYN5Zy39YEnapafLNcBrJOZc8v3TwPrDGEckiRJ\nI0bDL1jIzASyt/KIOCwiZkXErHnz5g1jZJIkSdUzlMnbHGDDmuUNynUAz0TEugDlz2d7qyQzL8jM\n8Zk5fuzYuj9hQpIkqakMZfJ2O7BJRGwUEWOAfYFryrJrgAPK9wcAPx/COCRJkkaMfp9tGhGXAzsD\na0XEk8ApwGiAzDw/Il4NzAJeBXRExDHA5pn5UkQcCcwARgEXZ+b9ZbWnAz+OiIOBx4EP1LdZkiRJ\nI1O/yVtm7tdP+dMUQ6I9lV0HXNfD+ueA3QYYoyRJkkoNv2BBkiRJA2fyJkmS1ERM3iRJkpqIyZsk\nSVITMXmTJElqIiZvkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQmYvImSZLUREzeJEmSmojJm6RKaW9v\nb3QIklRpJm+SKuOQQw7l3WMPb3QYklRpJm+SKuPJqxsdgSRVn8mbJElSE2ltdACS1OmXz1/IVRdN\nb3QYklRp9rxJqpR9Dp7EpPWPYtL6RzU6FEmqJJM3SZKkJmLyJkmS1ERM3iRVj/d6k6ReecGCpMqY\nuOp/ARDLL9fgSCSpuux5kyRJaiImb5Iq6dK7Tm10CJJUSSZvkipp7bXXbHQIklRJJm+SKunFF19s\ndAiSVEkmb5KqpyPZd9PPNToKSaokkzdJ1ZHZ6AgkqfJM3iRVTpLQ0vX0dOwh3+LEYy5qUESSVB3e\n501SU/jT3fMaHYIkVYI9b5KqI6L4WQ6ftvukBUlajMmbpGrq6OA9G3260VFIUuWYvElqGh3AHtuf\n1ugwJKmh+k3eIuLiiHg2Iu7rpTwiYlpEzI6IeyLirTVlR0fEfRFxf0QcU7P+1IiYExF3l6/J9WmO\nJEnSyDaQnrdLgIl9lE8CNilfhwHnAUTElsChwLbAW4D3RMTra/abmplbla/rliB2SSNNZvEq575N\n/+s5C4uOPnmPRkUlSZXSb/KWmbcCz/exyRTgsizcBqwWEesCmwG/z8yXM7MNuAV4Xz2ClrTsmTxl\nB1pW8AJ5SarHnLf1gSdqlp8s190H7BgRa0bEisBkYMOa7Y4qh1kvjojV6xCHpCY2YYWPkm1txUIv\nN+vt8OJTSRq6CxYy8wHgDOB64JfA3UDnqfc8YGNgK2AucFZv9UTEYRExKyJmzZvnfZ6kEc0HLEhS\nv+qRvM2ha4/aBuU6MvOizNwmM3cCXgAeKtc/k5ntmdkBXEgxL65HmXlBZo7PzPFjx46tQ7iSKq3z\nXm+SpB7VI3m7Bti/vOp0O+DFzJwLEBFrlz9fQzHf7Yfl8ro1++9NMcQqaRk249/fI8aM7nObfT68\nNe/cZaNhikiSqqnf2b8RcTmwM7BWRDwJnAKMBsjM84HrKOazzQZeBg6q2f2qiFgTWAAckZl/L9ef\nGRFbUQySPAZ8rB6NkTSyHX7EuxsdgiQ1XL/JW2bu1095Akf0UrZjL+s/OqDoJC1bWrxvuCT1xzOl\npOrpSGhpYa83f6rRkUhS5Zi8Saqe8pqF+f/ouvrdu57m47EkLfO846WkyomWUQvfT9ziJACytYWO\n0aNgTHHaOuPM73H8Z5d8Bsb3r76arTbfnC033XTpgpWkYWbPm6TKyAULyAULioWOjq5l3W7c+8sb\nnwJgx72+zo57fX3h+m0PPHtAxzr14cfZ6+fTlyJaSWoMkzdJ1dXLkxb6s82hU9nm0Kl1DkaSqsHk\nTVLlZPui52BFWzuMCgK4YdapdIxpYbedv8pN1x8PwEbrr8Bxn9h94fZ/uKS4yOGOC48d1pglabg4\n501SpcTobjfqbW+HljG9bn/Zt45cbJ2Jm6SRzORN0jJp9vFFgvetm2fy8vw2jpswocERSdLAOGwq\nqXJiVHm1aUdC+b6eTzx9w2lTecNpxZy4s+65m/Me9Al9kpqHPW+SqqnzYoXMxa48laRlmT1vkioj\nRo0qE7UOiJq+trYOEph2xs+YefPnuPCi/wLgPyafycsvvzygun/+h7u7LL99dC8bSlLFmbxJqozO\nq0wz6XKbkABYbjTXXvlHADZ+3avZ5V1nQFsy6T/PHVDdn/vpTWxxYjFUOgo48aMfrGPkkjR8HDaV\nVAkTVtp/0UJ0neE2/U9fZcLbvtjjfrdc99lBH+uBzy+6GvXRT3560PtLUiOZvEmqnvYOGN3/6Wkw\nQweXHvw+xr/+tX1uk5n8e8ECVhzT+61JJKnRHDaVVAkrb9zDypbgw0ftCsAHD34bY5ZbVLTuq1dc\neKPegegvcQMY992vs9n3zxlwnZLUCCZvkirhqnsvKy5Y6Jzr1lH8/MG0mQA8cM9fufSaoxc+4/SH\nlx3VkDglqdEcNpVULb3c0O2ePzzNB991DoxpZdX1Wnn+BfjVzBPqeuhTt96RS+6/o651SlK92fMm\nqZpqLlr48aW3UPuI+udfWPJq33LaN7l/7tweyw7a+h3c8pHFH7c1VDoWPEnHP64dtuNJGhlM3iRV\nR2fC1hLQ0lJcuAB894wZxXLL0p+y5rd3MO3qiiRMz+0K//I5rJIGx2FTSRVTJnAdHdDSUvS4ZXL9\nH75A8TaJWLqHZd3yt38sXYiS1ED2vEmqln7yss7EbbdJZ3Di53+0RIe44P2Dfwh9e/qILknVYPIm\nqToy6TK5LQJaR/U4XNrRAbfd/vigD/HnU45lp80377Ju/vz5jDvvG33u97bpX+Ct131+0MfrS8ur\nH6Ll1Q/VtU5JI5/Jm6Rq6rxlyIK2Qe027fu/YNuDzx7UPm+8+L8Htb0kNZLJm6RqqR02zRzQkxZq\nXXbTQwx2gHO7AW637iDrlaSh4AULkqqldth0VAu0tUHr0J6qfvTxz3D33Kf63W7SBjsOaRySNBAm\nb5KqKaJ4ykLCDlNey1c//xPu+N1DXDXzpD53+4+N1uCWvzw/4MNsPO0soP8H1N8x6ctLfZWrJNWD\nw6aSqiWzyw16o6WFk08/nFtm/Il/vrRo/luWr52mfL3L7md9/kBmXfSpJT78uO+eSXt7+2LrTdwk\nVYXJm6RqqUCO9LrLzmp0CJLUK4dNJTWFGbefAsAe7/wKO+6+Ud3q7W+4VJKqxuRNUsXEotuEtCx6\nP2H8qcVVpMu18usb/0KsVJy+zjvzw3WP4BNrvrHudUpSvZi8SaqeQcwv2+KN6wHwjv3O4neXF71o\n2xw2FYA7Lhj8c0MfO+izg95HkoaTc94kVUtn3pYJLaMWrp4x61SuvumzXRK712zQddd37OdcNUkj\nX789bxFxMfAe4NnM3LKH8gC+CUwGXgYOzMw7y7KjgUMpTscXZuY55fo1gCuAccBjwAcy84U6tEdS\ns+vIRcOm7W0wagy3/+bPvO2dm7LKKisu3OymGcd32W2vHTbg+CM/CCxZj5skNYuB9LxdAkzso3wS\nsEn5Ogw4DyAitqRI3LYF3gK8JyJeX+5zAjAzMzcBZpbLkpZx2VHzbISWFkjICE7++Pf63bczcZOk\nka7f5C0zbwX6uuPlFOCyLNwGrBYR6wKbAb/PzJczsw24BXhfzT6Xlu8vBfZa0gZIGmE6h0U7E7kI\n6ICJW32hy2Y7TzyDnSeeMczBSVLj1WPO2/rAEzXLT5br7gN2jIg1I2JFimHVDctt1snMueX7p4F1\n6hCHpGaXNc/G6kziatdJkobugoXMfAA4A7ge+CVwN7DYbcszs/NG6T2KiMMiYlZEzJo3b95QhSup\nwSastH+f5ZP33brfOu598K9se+DZ9QpJkiqpHrcKmcOiHjWADcp1ZOZFwEUAEfFVil45gGciYt3M\nnFsOsT7bW+WZeQFwAcD48eP9E1xaxgTFXLhPnrB3l/U3//L4xbY9+GtXDlNUktQ49eh5uwbYPwrb\nAS92DolGxNrlz9dQzHf7Yc0+B5TvDwB+Xoc4JI0UEYsNl0588+cbFIwkVctAbhVyObAzsFZEPAmc\nAowGyMzzgeso5rPNprhVyEE1u18VEWsCC4AjMvPv5frTgR9HxMHA48AH6tIaSSNDt4fTE0EHMGWX\nL7H2Oqvy3xceAsBO7y0eSn/rNcfxjv3OYodNXsXULx3agIAlafj0m7xl5n79lCdwRC9lO/ay/jlg\nt4EEKGnk26Pl/QC0rLDC4g+m7+yBi+Df/4Kf33R0r/Xc9vBLfR7n2rvuZYc3vo7VVlyxz+0kqcp8\nPJakSkuKm/a2AB3A7v/xVQBuvOVz3HrNcYOq6zNX3wjcyANf9ia+kpqXj8eSVB21T1eA4sH0PW0G\n7LrH6QD87413AfC7yz+98Nmmnb51zS1DEqYkNZLJm6RqK3O5jgjo6GDs2ouKbr7515w57UamfOjr\ndHR0sGDBorsRTf7kVC68/s4uVT3w5WPtdZPU9EzeJDXcDR0/oWW55YuF6NbbVi5Ga3G6+tvcJFqC\naE++cPZtADz/Mmz/0anseOA5fO+623nssTlcN+3YQc0LGXf+Nxh3/jeWsiWSNPRM3iRVymI3c6x9\n6AJww29OAmDmr07scf9pV/6a93/pCgBmnWsvm6SRxwsWJFXCkT8+kHP3vbRr9tZRLrR0/Ttz5k1F\n4nbrNcex417F7UJu+0Ex3+3X985mo9VXHvTxr3zvvmy6xlqDD1yShpk9b5IqYc89dyuTtUW3BqnV\n2gqve8Na7L7TV9h9p6/0Ws+Ob3o9G2zw6kEff/x6G7Dy8ssPej9JGm4mb5IqYcLyH6ZI3GoeSN8S\nC3vf2l9uY9plhzcsPkmqCpM3SdWRNT1vAB1ZpHKjggQmvf3LRFty460nNSY+SaoAkzdJFROLnm3a\ny33e+jL+4LMZf/DZQxCXJFWDyZukSpjxfz+A1lZi8etNu/jEMT5ZT9KyzatNJVXCRz5yALR3wKiW\n8ueoLuUB3HDHF/utZ9ZFn+px/ReuuJYr732IP53m7UMkNTd73iRVwryrOnou6DZ02tbWtkT1X3nv\nQ0u035I498+7cu6fdx2240lattjzJqnyoq2DC6Z/ij22Pw2A9hWKU9evZp4w4DrO3HtnPvvTm5fo\n+I8+9xQbr7neEu0rSfVmz5ukSvjvP57ctZet86KF0iH7nAsdHcWrm122G9dv/e/ZZuslHjKd8tvv\nLNF+kjQU7HmTVAlHbV30qi28OW9mcdeQ0a1kJixoL24b0tr1b86rLjyUtceuNpyh9uvITX/V6BAk\njWAmb5KaTu1w6UASty0/OxWA+85csp63e9/b/4USkjRcHDaVVC0di98qJABGF1ef/nTmZ4Y3Hkmq\nGJM3SdVUPoz+Q8fswvQHvgYUSdxKK63Ibjt/tYGBSVJjOWwqqSISOoBRFBculBcrfPRj71q4RQew\n2/anwZjB/d05mOHScZedAcBj+x8/qGNI0nCx501SNZQXkS4cNM2ETPZ624n85td31f1wmckOXz+b\nV155hd3+5/y61y9JQ8XkTVK1dN4upLzqdP4/4SuH/bjLJh1tyS7vOoMbb7y1xyq2OWwqZ176v30e\n5tBzz+UZYMaMGTz6738tXH/W+Ams6KCEpAozeZNULW3ti24XAsWjsoD9P74LjB5F1Nz77Utn/o6d\n3vv1Hqu54rez+zzM/xx1FEdtszV77rknK9as32fzrfjT/p9e4vAlaaj556Wk6ulM0FZYHoDpD3yN\nW66/j6AYVo2WmuHVtuLd9Jv+yE7bvp6VVlqJWd85hojoXutijt51FwDuP8pkTVLzsOdNUjVlwiuv\nLFycO+d5oDhp/erWk/jPvTaB1kUJ2pcuvJHdDy3mrkUEWx05la2OnDqsIUvScDB5k1QN2QHZQbTU\nnJY6kukPFVd/7jrxzWRHBxnBrnuczlU/fYhbr/sst1732T6rfcsxJnCSRhaTN0nV0tJ1uHPSJkVy\ndsgHv0lL++I38O30ux9+mt/9cNHw593ndr09yBYnTmWLE03kJDU/57xJqqZuSdz8l4vELVuDlvnt\n3HjrSb3u+taPFUlartB79ZucXmzz8AlL9sgsSWoUkzdJ1RDFQEBm+Tgs+r/gYDDu/5pJmqSRweRN\nUiX874sXseeqB/dY9se7ZnPq1P143SavZu1XrwrAzpPOBODm6b3PefvjOcfy2DPPLbb+jV+eCqOL\neSMbf/NsAB49+lNL2QJJGh7OeZNUCXuucSiMKk9J5dMVoLglyPEfvpipX7mcxx97ekB13fmdY6EF\nXnrpJcats2aP2zx8wrE86JCppCZk8iapYrLrTXpLLz7VxuePvByA3Xb9GhN22rjPXjeAnY+/qMf1\nD568KGl79OhP2esmqamYvEmqlMXStpaWIpkb03WWx403PNxvXXeeZ8+apJGn3+QtIi6OiGcj4r5e\nyiMipkXE7Ii4JyLeWlN2bETcHxH3RcTlEbF8uf7UiJgTEXeXr8n1a5KkptQ5VJrdloG37Thu0NWZ\nuEkaqQbS83YJMLGP8knAJuXrMOA8gIhYH/gkMD4ztwRGAfvW7Dc1M7cqX9ctQeySRpBc0Ea2ty92\ni5AAbr/tCWjr6HG/d77vG7zzfd8YhgglqRr6vdo0M2+NiHF9bDIFuCwzE7gtIlaLiHVr6l8hIhYA\nKwJPLWW8kka6zp63ct5bto6CBe0wKuj8e/OII3dh0qS39ry/JI1w9Zjztj7wRM3yk8D6mTkH+Abw\nV2Au8GJmXl+z3VHlMOvFEbF6b5VHxGERMSsiZs2bN68O4UqqtpqnKHQmcOViB7DHDqfxvvdtxwor\njOm1hhde+DvHTPvB0IUoSQ00ZBcslAnZFGAjYD1gpYj4SFl8HrAxsBVFYndWb/Vk5gWZOT4zx48d\nO3aowpVUGeWwaSYf++K7e9xit12/xm67fg2A31z9GX5z9We6lp/4XW7907NDGqUkNUo9krc5wIY1\nyxuU63YH/pKZ8zJzAXA1sD1AZj6Tme2Z2QFcCGxbhzgkNbuOrs8u/c4p1/KLP36xHDItTlg3/Pbz\n/VZz+K5vHoroJKkS6vGEhWuAIyPiR8DbKYZH50bEX4HtImJF4N/AbsAsgIhYNzPnlvvvDfR4Jauk\nZVwmra2tBF0GU5n5qxP73O2wD+zGYR/YbUhDk6RG6Td5i4jLgZ2BtSLiSeAUYDRAZp4PXAdMBmYD\nLwMHlWW/j4grgTuBNuAu4IKy2jMjYiuK8/FjwMfq1iJJTSlGjSrfdK7odse3MT7NT5JgYFeb7tdP\neQJH9FJ2CkWy1339RwcaoKRlREsUw6a1XWxlAvfLe05jwvhTGxKWJFWNT1iQVA2d890ye91k5TU8\nZUmS4xCSqiHLm/C2LP5cU4A99nwT2+7whmEMSJKqyeRNUrX00vH2mVP2Gd44JKmiHIOQVB0RfQ6b\nSpJM3iRVRbQAsehq09KkzU7k2h/+piEhSVIVmbxJqpSErjfrbWvj3C9fC0BHR88Pp5ekZYlz3iRV\nQ+2FCqMW/V2Z7QljWpiwzSlFYjemlet/d/KwhydJVWHPm6SKKee9deZyKyw3JEc57LuXccqll/a7\n3UV/+C2HT79wSGKQpCVhz5ukSsgFbdASi5600MOFCwHMqFOv26+e/RsAX+xjm0deeJaznrqhLseT\npHqx501SddQ+Eispkrn5r/DL+79Cy5jgTePXBuCRR+by97//X7/VPfroo7zlmKkAbH7SVDY/aeqi\nwhZ6PAPeNucxHp73DK+74iu863p73CRVjz1vkqqr7H371fW/5drffoGWliLbOuzQSwCY/N638Olj\nJve6+97Tft5r2ezjPtXj+n1vvKL4uep6/GT+U/zgTR/l1mf+tATBS9LQsOdNUrV06X0rkrczj/sl\nk7fu+pjkDuAX0+/ts6o/nnMsO7xmLAAn7Pq2QYVx+l4H8cgHT2Lr172Oo7ffc1D7StJQimyiG2KO\nHz8+Z82a1egwJA2Bd435UDFMutxyxOhWorUVRo+G5ZejY8XiooUZf/zywu13mXAGq64CP7vy+EaF\nLEl9iog7MnN8vet12FRSJcTo1uL+bp1/UAZde+F68OI/hj4uSaoakzdJ1dDeDtFS3CGkIxdesDD9\n4TMbHJgkVYtz3iRVR3Z9gsL0x6YycYuTmLjFSQ0KSJKqx543SdXSeZ+3foZMP7Tvtrx/77pPJZGk\nyjN5k1QNUQ4EdHQsTOAmjTuWT377Q0yevPiVoocetMtwRidJlWHyJqnS/vvIK5j86NuYMP5UALab\nvD6/uXXNG4ZuAAAS00lEQVQeM2/+XGMDk6QGcc6bpGrKhJZRi63+za3zGhCMJFWHyZskSVITcdhU\nUjWsAvwDIKGl54sVNt50dc77/tHDGZUkVY7Jm6RKmPHs95j4qoMWrYiAtjZoLU5TM2ad2pjAJKli\nHDaVVC2dtwjp51YhkrSsMnmTVAkTNtmfbG8vnqyQNY/JGuVpSpJqeVaUVAn5eNuihZby1NTL3DdJ\nWpaZvEmqjFxQJnCdvW4d6bNNJakbkzdJlRGjFr+vmySpK5M3SZWwMHFbOGTawvS/ntO4gCSpokze\nJFVPRzY6AkmqLJM3SdXQEsUrYuGFCpNec0yDg5Kk6jF5k1Qt2bXXbdLmn2PS5j6EXpI69Zu8RcTF\nEfFsRNzXS3lExLSImB0R90TEW2vKjo2I+yPivoi4PCKWL9evERE3RMTD5c/V69ckSc1oxr8uI8aM\nASDCvyslqTcDOUNeAkzso3wSsEn5Ogw4DyAi1gc+CYzPzC2BUcC+5T4nADMzcxNgZrksSYuk894k\nqSf9Jm+ZeSvwfB+bTAEuy8JtwGoRsW5Z1gqsEBGtwIrAUzX7XFq+vxTYa0mClyRJWtbUY2xifeCJ\nmuUngfUzcw7wDeCvwFzgxcy8vtxmncycW75/Glint8oj4rCImBURs+bNm1eHcCU1hY4ODj9790ZH\nIUmVM2QTS8p5bFOAjYD1gJUi4iPdt8vMpHiaYY8y84LMHJ+Z48eOHTtU4UqqoPOP+xW0tS9VHd/9\nxc31CUaSKqIeydscYMOa5Q3KdbsDf8nMeZm5ALga2L7c5pnOodXy57N1iEPSSNJ5096lmPv2lmOm\ncs6Nd9UpIEmqhnokb9cA+5dXnW5HMTw6l2K4dLuIWDEiAtgNeKBmnwPK9wcAP69DHJJGmj563eb9\n7cVhDESSqmMgtwq5HPgd8MaIeDIiDo6IwyPi8HKT64BHgdnAhcAnADLz98CVwJ3AveWxLij3OR3Y\nIyIepuihO71+TZI0kuSY0WREl3W7vOsMPvCh8xcu7/D+s9jh/WctXH7HYVO5+Lr/x+1nHslGr1p+\n2GKVpOHQ2t8GmblfP+UJHNFL2SnAKT2sf46iJ06SFpPZQUDxtIXShK1PYcZdXwTgmqs+wXv3+Xav\n+78CfOtnv+e/Jm/Pz7708aENVpKGWb/JmyQ1RGfi1tZOto7qUrTKKqtw0/XHL1z+7U8+vdjukzft\n/d7fb/jKVAAeOunYOgQqScPL5E1SdbS3QwCjlm467h0XmJRJGrlM3iRVU8TCJC4y+WU5ZFoP39iz\nr4fGSFK1mbxJqqZyqDTa25e6J6679755s7rWJ0nDyac/S6qMX770XRjVCh3J9L+cDT6gXpIW45lR\nUmVMfNVB0N7W6DAkqdJM3iRVSwLLB5M2+GTNuiV/yoIkjTQmb5IqJ1rKG+u2RN8bStIyyAsWJFXH\nqFE9r+/2hIXddv0aADN/deJQRyRJlWPPm6TqaWtj+pPTGh2FJFWSPW+SKmv67K9z7Y9v47WbrM2E\nbU7h2t+fTGtrfU9bG59zNh2jE0h+/f792XDttetavyTVmz1vkqonk0lv/wQA557yc4770IUAvPvt\nXwaK4dLBDpluceJUtjhxas+FC4ofO1512ZLFK0nDyORNUuXkgjaO+dKURcsAbR1ccPV/DcnxHjum\neDbqH/bZf0jql6R6MnmTVEm77LLLYuuOPvS7S1XnCTss/mSFR4/5FACPHfEZ1nbIVFITcM6bpOpo\nby9+LjeGKa89lulzv7WobFTw7+eXvOr7v+bD6iWNDPa8SaqeTH7y8BnF2851LZ6uJAnseZNUERNW\nKuabRXmvt5VXXrlL+YxZpw53SJJUSSZvkqqt1R43SarlWVFSNbyh+HHM+Qcyfd53Fq5+9cYNikeS\nKsqeN0mVMOOunu+x9vSjwxyIJFWcPW+SJElNxJ43SZUxcfVDAIgxo5n+zHkNjkaSqsmeN0mVk533\newM22mq5BkYiSdVj8iapMrb/yBbQ0dFl3YbrjWtMMJJUUSZvkirj/11272LrjvjcPqy21goNiEaS\nqsnkTVIlTRp3BAARLWy51bjGBiNJFWLyJqkSJqy0P9nWBqPL66jmFz9e9aoV+PzUjzQuMEmqGJM3\nSdXSkf1vI0nLMJM3SZV1ySWXNDoESaockzdJlZILXln4/oqT72LS649rYDSSVD3epFdSNUQUP7O4\nSIHW4vT0vkO2bGBQklQ99rxJqobM4lUrgkNPOICJbzmZiW85eUDVXD/rj9x85wNDEKAkVUO/yVtE\nXBwRz0bEfb2UR0RMi4jZEXFPRLy1XP/GiLi75vVSRBxTlp0aEXNqyibXt1mSmlpLLOyJ+9mlNw9q\n15O+PZPjzp0+BEFJUjUMpOftEmBiH+WTgE3K12HAeQCZ+WBmbpWZWwHbAC8DP63Zb2pneWZetyTB\nSxo59v3KhIVXmuaCNliwAIDvfPWXPW7/97//e9hik6Qq6XfOW2beGhHj+thkCnBZZiZwW0SsFhHr\nZubcmm12Ax7JzMeXKlpJI9aPTqxJ0lpi4Zw3YNF8uBp7f3AaADfNOL7L+tsv/hQAL7z0T1ZeYXlG\nj3Zqr6SRpR5ntfWBJ2qWnyzX1SZv+wKXd9vvqIjYH5gFfDozX+ip8og4jKJHj9e85jV1CFdS1bxr\n9L4AROvoInGDYv5bBNMfPB2Atra2QdW56wkXAnDXt4+tX6CSVAFDfsFCRIwB3gv8pGb1ecDGwFYU\nSd5Zve2fmRdk5vjMHD927NghjVVSBfTQywbQ2rr435pHHb7DUEcjSZVTj563OcCGNcsblOs6TQLu\nzMxnOlfUvo+IC4Ff1CEOSU3qm/ecwtFv/mLXlS0ti3rhetB9uLS726cd1WPCNxj3Pvs0r19lVVZY\nYYWlqkeS6qkeyds1wJER8SPg7cCL3ea77Ue3IdNuc+L2Bnq8klXSsmGzzTYrhkyBoEjYpv/1nKWq\nc2kTN4B9bi2GXh/6z4HdpkSShkO/Z7eIuBzYGVgrIp4ETgFGA2Tm+cB1wGRgNsUVpQfV7LsSsAfw\nsW7VnhkRWwEJPNZDuaRlVXmvt0nrHsH0ud9qcDCwaqMDkKRuIrvfFLPCxo8fn7NmzWp0GJKGwIQV\nPgpAjG6FMaOJ0aOhtZXpT3yzYTH985X/Y7nW0YxuGdWwGCQ1r4i4IzPH17ter6GXVA2jul0/1dL4\nB8CsPGb5RocgSYtp/NlRknrS0bF4QidJMnmTVDGjHKKUpL44bCqpGppo/q0kNZI9b5KqpZeb9EqS\nCiZvkqqppYXpj01tdBSSVDkOm0qqhg6HTSVpIOx5k1QtnY/EcvhUknpk8iapWjp74NrbGxuHJFWU\nyZukamlra3QEklRpJm+SJElNxORNUiX97LGzGx2CJFWSyZukSpjx7+91eRzWY4/9tYHRSFJ1mbxJ\nqowZ/7wUWlsh4Zidz2l0OJJUSSZvkipjwsoHFG98VJYk9cqb9Eqqlhbv7yZJfbHnTVIlvGvMh7os\nT5/7rQZFIknVZvImqTLylQUcesoHuOpxn2kqSb1x2FRSpexz1O6NDkGSKs2eN0mSpCZiz5ukSoiW\n8M9JSRoAT5WSqqOj0QFIUvWZvEmSJDURkzdJkqQm4pw3SZUw4/9+0OgQJKkp2PMmSZLUREzeJEmS\nmojJmyRJUhMxeZMkSWoiJm+SJElNxORNkiSpiZi8SZIkNZF+k7eIuDgino2I+3opj4iYFhGzI+Ke\niHhruf6NEXF3zeuliDimLFsjIm6IiIfLn6vXt1mSJEkj00B63i4BJvZRPgnYpHwdBpwHkJkPZuZW\nmbkVsA3wMvDTcp8TgJmZuQkws1yWJElSP/pN3jLzVuD5PjaZAlyWhduA1SJi3W7b7AY8kpmP1+xz\nafn+UmCvwYUtSZK0bKrHnLf1gSdqlp8s19XaF7i8ZnmdzJxbvn8aWKe3yiPisIiYFRGz5s2bV4dw\nJUmSmteQX7AQEWOA9wI/6ak8MxPI3vbPzAsyc3xmjh87duwQRSlJktQc6pG8zQE2rFneoFzXaRJw\nZ2Y+U7Pumc6h1fLns3WIQ5IkacSrR/J2DbB/edXpdsCLNUOiAPvRdci0c58DyvcHAD+vQxySJEkj\nXmt/G0TE5cDOwFoR8SRwCjAaIDPPB64DJgOzKa4oPahm35WAPYCPdav2dODHEXEw8DjwgaVtiCRJ\n0rKg3+QtM/frpzyBI3op+xewZg/rn6O4AlWSJEmD4BMWJEmSmojJmyRJUhMxeZMkSWoiJm+SJElN\nxORNkiSpiZi8SZIkNRGTN0mSpCZi8iZJktRETN4kSZKaiMmbJElSE4ni6VbNISLmUTwLdaRaC/hb\no4NoANu9bFlW2w3Lbttt97LFdi/y2swcW+8DNVXyNtJFxKzMHN/oOIab7V62LKvthmW37bZ72WK7\nh57DppIkSU3E5E2SJKmJmLxVywWNDqBBbPeyZVltNyy7bbfdyxbbPcSc8yZJktRE7HmTJElqIiZv\ndRIRa0TEDRHxcPlz9V62mxgRD0bE7Ig4YSD7R8SJ5fYPRsSEct0qEXF3zetvEXFOWXZgRMyrKTtk\nJLW9XH9zua6zjWuX65eLiCvKfX4fEeNGSrsjYsWIuDYi/hwR90fE6TXbD+l33lsbasojIqaV5fdE\nxFvr3f5y/TYRcW9ZNi0iop7tbGS7I2KPiLijbN8dEbFrzT49/r6PkHaPi4h/17Tt/Jp9RvL3/eHo\neg7viIityrJh/b6HsO3vj+Jc1RER47vVN5L/jffY7rr+G89MX3V4AWcCJ5TvTwDO6GGbUcAjwMbA\nGOCPwOZ97Q9sXm63HLBRuf+oHuq+A9ipfH8gcO5IbjtwMzC+h+N8Aji/fL8vcMVIaTewIrBLuc0Y\n4NfApKH+zvtqQ802k4HpQADbAb8fou/9D2X9UR5v0hB+v8Pd7q2B9cr3WwJzao7T4+/7CGn3OOC+\nXmIZsd93t3rfBDzSiO97iNu+GfDG7u1h5P8b763ddfs3bs9b/UwBLi3fXwrs1cM22wKzM/PRzHwF\n+FG5X1/7TwF+lJnzM/MvwOyynoUi4g3A2hT/mTdCw9reTyxXArsN4V9uw9ruzHw5M28CKOu6E9ig\nzm3qSV9t6DQFuCwLtwGrRcS6/ew7qPaX9b0qM2/L4mx3GT1/5vUyrO3OzLsy86ly/f3AChGx3FA1\nrg/D/X33aKR/393sV+7TKEPS9sx8IDMf7OF4I/rfeG/true/cZO3+lknM+eW758G1ulhm/WBJ2qW\nnyzX9bV/X/t06uxhqr36ZJ+ya/bKiNhwcE0ZtEa1/dKye/nkmgRt4T6Z2Qa8CKw5+CYNSMO+84hY\nDdgTmFmzeqi+84H8Dva2TT3bv375vq846mm4211rH+DOzJxfs66n3/eh0Ih2b1S27ZaI2LHmGMvK\n9/1B4PJu64br+4aha/tgjzdSvvOBWKp/462DONAyLyJuBF7dQ9FJtQuZmRGxxJfxLsH++wIfrVn+\nX+DyzJwfER+j+Gtv1x73HKAKtv3DmTknIlYBrqJo/2VLetzeVLDdREQrxYl+WmY+Wq6u+3c+nJb2\n82tWPbU7IrYAzgDeVbN6WH7fh0u3ds8FXpOZz0XENsDPys9gxOnl+3478HJm3lezekR93+qqHv/G\nTd4GITN3760sIp6JiHUzc27ZpfpsD5vNAWp7RDYo1wH0tn9f+xARbwFaM/OOmjifq9n+fyjmXCyV\nqrU9Mzt//iMifkjRhX1ZzT5PlknOqkDt5zEoVWt36QLg4cw8pybOun/nNfqLp69tRvex72DbP4eu\nw8Q9xVFPw91uImID4KfA/pn5SOf6Pn7fh8KwtrvseZhfvr8jIh4B3sAy8H2X9qVbr9swf98wdG0f\n7PFGynfeq7r9G89hmhA50l/A1+k6KfXMHrZpBR6lmKDZOcFxi772B7ag68TOR6m5YAE4Hfhit+Os\nW/N+b+C2kdT2sq61ym1GU8xtO7xcPoKuFyz8eKS0uyw7jeKvspbh+s77akPNNu+m66TePwxR+7tP\nZp48hN/vcLd7tXK79/UQR4+/7yOk3WNrvt+NKf4DXGOkf9/lckvZ3o0b9X0PZdtr9r2ZrhP3R/S/\n8T7aXbd/40P2y7CsvSjmVc0EHgZurDn5rAdcV7PdZOAhiqtUTupv/7LspHL7B+l25U35y7Npt3Vf\no5gM+Ufgpu7lzd52YCWKq2vvKdv5zZp/+MsDP6GYAPsHak6KI6DdGwAJPADcXb4OGY7vvKc2AIez\nKGkO4Ftl+b10PWHV7XceGA/cV5adS3mj8SH8joet3cDngX/VfLd3U1yI1Ovv+whp9z5lu+6muAhn\nz2Xh+y7LdqbbH1qN+L6HsO17U8wFmw88A8yoKRvJ/8Z7bDd1/DfuExYkSZKaiFebSpIkNRGTN0mS\npCZi8iZJktRETN4kSZKaiMmbJElSEzF5kyRJaiImb5IkSU3E5E2SJKmJ/H+R2oE1UwVndAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XVWd///XO0nT0hulbSi90hYKUhCr1IKORQa8AMNM\nBW/l64AwIHYEL6M//aHOPBwdGVHHn18dUcSRrzAKha+IoqKgIqAO0IsUbCmFtlzaUkppaek1aZLP\n74+9ku6mJ8kJTXMueT8fj0POWWvttT/rnOTw6dp77a2IwMzMzMwqX02pAzAzMzOz3uHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixM7N9SPqBpC+WOo6+UIljlbRd0tRXsN1k\nSSGp7mDEZWblwYmdmVkFiYihEbG61HG0kXSRpD+WOg4zyzixM7OKoEy//c4qxUxbX7znnkE06139\n9kvSrFJIulLSKknbJD0m6dxUPlDSFkkn5No2SNol6fD0+lOS1kt6TtKl6VDc0UXsdrSk36R93ifp\nyNw+3ihpoaSt6ecbixjDRZJWp/6ekvS+XPmfJH0r9fe4pDNy290r6SpJfwJ2AlMlHSrp+2lc6yR9\nUVJtan+UpHskbZL0oqQfSRqR6++1kv6c4rgFGNRJvF2+t5JGS/pFarNZ0h86S4DSe/6RNP4XJX01\n31bSP0haLuklSXd1eK9D0uWSngSezJUdnZ4fKulGSRslPSPpn9v6llQr6T/SPlcDf9Pd59TT91zS\nccC1wBvSIeItuT4u7fD5/zH3urNxzZP0ZHpfr5GkYmI2s72c2JmVv1XAbOBQ4PPADyWNjYhG4CfA\n+bm27wHui4gXJJ0JfBx4C3A0cFoP9vk+4N+A0cAS4EcAkkYCvwS+CYwC/j/gl5JGddaRpCGp/VkR\nMQx4Y+qzzclpjKOBzwE/SftpcwFwGTAMeAb4AdCcxvRa4G1AWxIh4EvAOOA4YCLwrymOeuCnwH8D\nI4H/C7yzUMzdvbfAJ4C1QAMwBvgM0NX9Gc8FZgKvA+YA/5BimpO2PS/19Qfg5g7bviO9R9ML9Puf\nZL8XU4E3AxcCF6e6DwDnkL1HM4F3dRFfR0W95xGxHJgHPJAOEY8o3F1BhcZ1DvB64ESy9/vtPejP\nzAAiwg8//KigB1lSNCc9fwuwKlf3J+DC9Px64Eu5uqPJko+ju+n/B8D83OuhQAtZknQBsKBD+weA\ni7robwiwhSyJOqRD3UXAc4ByZQuAC9Lze4Ev5OrGAI35fsiSr993su93AA+n56cW2Nf/AF/sZNuu\n3tsvAD/r7r1MbQM4M/f6Q8Dv0vNfAZfk6mrIZsmOzG17eoH+jgZqgSZgeq7ug8C96fk9wLxc3dvS\ntnXdxNuj9zx9hn8s0MelHT7nP3YYQ6FxvSn3+lbgylL8jfnhRyU/PGNnVuYkXShpSTo8tQU4gWx2\nC+D3wGBJJ0uaDMwAbk9144A1ua7yz7vT3jYitgObU3/jyGZw8p4BxnfWUUTsAN5LNrOzXtIvJb0q\n12RdRORnu55J+ykU95HAgNRP2/vxXaDt0PMYSfPT4cKXgR+y970a18m+OtPVe/tVYCVwdzrEemUX\n/XQcQ358RwLfyI1lM9ms4/hOts0bTfZe5MeQ/yw6fv5djbWreLt8zw9AoXE9n3u+k+wfFWbWA07s\nzMpYOt/qe8AVwKjIDnUtJfufPxHRQjazcX56/CIitqXN1wMTct1N7MGu29tKGkp26PK59DiyQ9tJ\nwLquOouIuyLircBY4PE0pjbjO5xLNSntp33z3PM1ZLNHoyNiRHoMj4jjU/2/p/avjojhwN+T3iuy\n96PQvjqLudP3NiK2RcQnImIq8HfAx/PnBhaQf+/z41sDfDA3lhERcUhE/E8n4897EdjDvp9H/rNY\nX2C/xerJe14ovh3A4NzrI7rZh5n1Eid2ZuVtCNn/ADcCSLqYbMYu7yayGbH3pedtbgUulnScpMHA\nv/Rgv2dLelM6L+3fgAcjYg1wJ3CMpP8lqU7Se8nOkfpFZx2lWbQ56Vy7RmA70JprcjjwEUkDJL2b\n7Ny4Owv1FRHrgbuBr0kaLqkmLZh4c2oyLPW/VdJ44JO5zR8gO0+sbV/nAbO6eR8KvreSzpF0dEoS\nt5Idqm4t3AUAn5R0mKSJwEeBW1L5tcCnJR2f+j00vQfdyiWeV0kalv4R8HGyWUpS3UckTZB0GNDd\nrGJn++nuPd8ATEi/K22WAOdJGpwWelzySvZtZj3nxM6sjEXEY8DXyJKSDcCryc71yrd5iGyGZBzZ\nOVtt5b8iW7Twe7LDhg+mqsYidn0T2UKGzcBJZDNfRMQmshPcPwFsAj4FnBMRL3bRVw1ZwvFc6u/N\nwD/m6h8CppHNQF0FvCvtpzMXAvXAY8BLwI/JZgIhW1zyOrJk65dkCyBIsTeRLVK4KMXx3nx9IZ29\ntyne35IlkQ8A346I33fR1c+AxWQJzy+B76f+bwe+DMxPh46XAmd1FVMHH07xrQb+SPa5XZ/qvgfc\nBTwC/JluxtqNrt7ze4BlwPOS2n4Pvk52/t8G4AbS4hszO/i07+kmZlat0qUplgIDI6K51PFAdhkM\nspPs31TqWA4WSQFMi4iVpY7FzKqfZ+zMqpikc5Vdk+0wspmhn5dLUmdmZr3PiZ1Zdfsg8ALZdeJa\nSIdAJS1LF5Tt+HjfK91RJ/1tlzS7d4ZivcWflVn18qFYMzMzsyrhGTszMzOzKuHEzszMzKxK1JU6\ngN4wevTomDx5cqnDMDMzM+vW4sWLX4yIhoPRd7eJnaTrya5b9UJEdLwwKukCnd8Azia7BcxFEfHn\nVHdmqqsF/isirk7ltwDHpi5GAFsiYka6bc9yYEWqezAi5nUX4+TJk1m0aFF3zczMzMxKTlJPbvHX\nI8XM2P0A+BZwYyf1Z5FdrHMacDLwHeBkSbXANcBbgbXAQkl3RMRjEfHeto0lfY3sYqJtVkXEjJ4O\nxMzMzKy/6/Ycu4i4n+wq7Z2ZA9wYmQeBEZLGkt2qZ2VErE5XfJ+f2rZLs33vAW5+pQMwMzMzs0xv\nLJ4YT3aT6DZrU1ln5XmzgQ0R8WSubIqkJZLu8zWVzMzMzIpX6sUT57PvbN16YFJEbJJ0EvBTScdH\nxMsdN5R0GXAZwKRJk/okWDMzM7Ny1hszduuAibnXE1JZZ+UASKojuyH3LW1lEdHYdvPviFhMdrX8\nYwrtNCKui4iZETGzoeGgLCwxMzMzqyi9kdjdAVyozCnA1ohYDywEpkmaIqkemJvatnkL8HhErG0r\nkNSQFl0gaSrZgozVvRCjmZmZWdUr5nInNwOnAaMlrQU+BwwAiIhrgTvJLnWykuxyJxenumZJVwB3\nkV3u5PqIWJbrei77L5o4FfiCpD1AKzAvIrpauGFmZmZmSVXcK3bmzJnh69iZmZlZJZC0OCJmHoy+\nfUsxMzMzsyrhxM7MzMysSjixMzMzM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7s\nzMzMzKqEEzszMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixMzMz\nM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7szMzMzKqEEzszMzOzKuHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqRLeJnaTrJb0gaWkn9ZL0TUkrJT0q6XW5ujMlrUh1V+bK/1XSOklL0uPs\nXN2nU/sVkt5+oAM0MzMz6y+KmbH7AXBmF/VnAdPS4zLgOwCSaoFrUv104HxJ03PbfT0iZqTHnWmb\n6cBc4Pi0z2+nfszMzMysG90mdhFxP7C5iyZzgBsj8yAwQtJYYBawMiJWR0QTMD+17cocYH5ENEbE\nU8DK1I+ZGQDf+H/ns/mFraUOw8ysLPXGOXbjgTW512tTWWflbT6cDt1eL+mwbvoyMwPg97c/xBNL\nny11GGZmZalUiye+A0wFZgDrga/1tANJl0laJGnRxo0bezs+MytTE6cdwdiJo0odhplZWeqNxG4d\nMDH3ekIq66yciNgQES0R0Qp8j72HWzvdpqOIuC4iZkbEzIaGhl4YhplVgtraOmoH+NRbM7NCeiOx\nuwO4MK2OPQXYGhHrgYXANElTJNWTLYq4AyCdg9fmXGBprq+5kgZKmkK2IGNBL8RoZlViy6Zt7Ni6\nq9RhmJmVpbruGki6GTgNGC1pLfA5YABARFwL3AmcTbbQYSdwcaprlnQFcBdQC1wfEctSt1+RNAMI\n4Gngg2mbZZJuBR4DmoHLI6KlV0ZqZlVhwzObeeh3f+HY10wudShmZmWn28QuIs7vpj6Ayzupu5Ms\n8etYfkEX/V0FXNVdXGbWfzXu3F3qEMzMypLvPGFmFWdUw8hSh2BmVpac2JlZRampEyMnOLEzMyvE\niZ2ZVZShwwcxZuzwUodhZlaWnNiZWUVpamxm8+adpQ7DzKwsObEzs4py+nmv55jjJ+5XvuG5l1j+\nmO9IYWb9mxM7M6so9/98Eeuf3rBf+T9e8n3+6UP/XYKIzMzKhxM7M6sorS3QQgBw03fvYdUTzwHZ\nuXf19f5KM7P+zd+CZlZRdm5r4tkns2TuJ//9R+67O7txzfp1W9m1s7WUoZmZlZwTOzOrONs2ZbcU\n2761kb8seLzE0ZiZlQ8ndmZWMXbvbARg6+Zt7WXLH07n26kUEZmZlZdubylmZlYuPnL2lwAYNf7Q\n9rLhI7Ovsc98bg5bX95VkrjMzMqFZ+zMrGKsefwFACYcOaa9bNuWZgB++IP7+dH195ckLjOzcuHE\nzswqS3Mzd9zwh/aXkdZLjG4YzvCRw9rLW1uD1tbo6+jMzErKh2LNrLLU1bH1xRf3K371ayaxaeP2\n9tdPP7sZgKmTR/VZaGZmpebEzswqS0szOxub9it+29tOZFtaXAHwpW/9nJqaGr77lQv7Mjozs5Jy\nYmdmFefFp/ZfJLF12y62bdvd/nr985v7MiQzs7Lgc+zMrLIEjJpyyH7F13z913z9K79of71nj9jT\n7GugmFn/4hk7M6ssEnt2738o9rFlzxG5tRJ/dcpU5LzOzPoZJ3ZmVjlS5vby+pb9qgYPgR17106w\nYNEqnNmZWX/jxM7MKl5zcwu7du5btnXH/smfmVm18zl2ZlbRAnjwvhW0tpY6EjOz0nNiZ2YVr35Q\nHeMmDGfYsAGlDsXMrKR8KNbMKsKu7Z3fB/beu5fy3NqX+zAaM7Py5Bk7M6sI5068vNO6Y48f34eR\nmJmVr24TO0nXS3pB0tJO6iXpm5JWSnpU0utydWdKWpHqrsyVf1XS46n97ZJGpPLJknZJWpIe1/bG\nIM2ssv12/h+hFSIK3/v1tz9/uI8jMjMrT8XM2P0AOLOL+rOAaelxGfAdAEm1wDWpfjpwvqTpaZvf\nACdExInAE8Cnc/2tiogZ6TGvB2Mxsyr19Y99P7vUSaEVEgMH8Owz+9871sysP+o2sYuI+4Gu7s0z\nB7gxMg8CIySNBWYBKyNidUQ0AfNTWyLi7ohoTts/CEw4kEGYWXVrabuUifb9yjr21WM5//1vYPYZ\nx/d9UGZmZag3zrEbD6zJvV6byjor7+gfgF/lXk9Jh2HvkzS7F+Izs2oR+87YvfOiN3PMiRM4ZHB9\niQIyMysvJV0VK+mzQDPwo1S0HpgUEZsknQT8VNLxEbHfcjdJl5Ed+mXSpEl9FbKZlVLrvufYrX36\nRYYeOpBNL3hFrJkZ9E5itw6YmHs9IZUN6KQcAEkXAecAZ0Q6IzoiGoHG9HyxpFXAMcCijjuNiOuA\n6wBmzpxZ+IxqM6tqt3z/94yZNJL167fiqzeZmfXOodg7gAvT6thTgK0RsR5YCEyTNEVSPTA3tUXS\nmcCngL+LiPYbAUlqSIsukDSVbEHG6l6I0cyqQYdbvzbubOGZp7bQtNv/tjMzgyL+iSvpZuA0YLSk\ntcDnyGbjiIhrgTuBs4GVwE7g4lTXLOkK4C6gFrg+Ipalbr8FDAR+o+wm3Q+mFbCnAl+QtAdoBeZF\nRFcLN8ysPymQv9XXQ1MT2WHaGu3fwMysH+k2sYuI87upD6DglUMj4k6yxK9j+dGdtL8NuK27mMzM\n2jQ1NePDsGZmGX8bmlllSRcpvujsq6Ale17g6nZmZv2SbylmZhVpw6pt0NKalluZmRk4sTOzCtHZ\n7cTAX2RmZm38fWhmZS8K3Uosp3ZAHwViZlbmnNiZWflrn60rPGvX0tJ3oZiZlTMndmZWOQrldQPh\n8LFD+zwUM7Ny5MTOzMpfa4GMbk8zAMOH1tPU1NTHAZmZlScndmZW0YYNG8QR49OMna9PbGb9nBM7\nM6to27fu4s2nz8xe+M5iZtbPObEzs8qifaflRo47jN/f/RffTszMDN95wswqSYekTsCu7U2seWYL\n1PrrzMzMM3ZmVrECaGzcwZRpR5Q6FDOzsuB/4ppZWdu9e3eX9S89v4dtO9ZDzYFfpXjxmnUAnDRx\n/AH3ZWZWCp6xM7Oy9h8f+07XDQQ16p1/o55/w62cf8OtvdKXmVkpOLEzs7J2/38vJAreWiLaf7Q0\nNxfV168eXE5zc+Hbk33ytl+8wgjNzMqHEzszK297um9S7C3FbrhzAXv2FO7w8fUv9CAoM7Py5MTO\nzMrWC2tfJJr3dH3h4dy32IABXV/yZOW6Tfz5sacL1l38V7N6HqCZWZlxYmdmZetz7/5y1w0iyL7G\nAiJ4w5umddvnR7/9y4LlJ0+e0OV2v3tqBX96ZlW3/ZuZlZITOzMrWysferr7Rq2t0AJI3P/7J2ht\nDZqaOj/nrvAZdvDJ237ZXn/Ml7++X/0l9/6M991zW/fxmJmVkC93YmYVL38nsUcffZYHF+6dWdu+\no4nGliZGDR/aXtbc0kpd7b7/rt3euDcZbPWtycysQnnGzswqUnvu1TYFlxKzBxY8yT33Lm9v99ZL\n/5NzPvjdfbb9/I137dff4cMP2a9sT7GrMszMyoQTOzOrePkJtsFDBrDxxe1dtv/Fwsfbn3/wv27j\nXV//AX9cvS47pJt6XLd5Myd/91tsa+r6AslmZuXEh2LNrPLlFsP+n+/9CeprCzYrdIT1j6ueJYBB\nddA0EJrSt+L1CxewZU8zb7nxe7zj2OOyjbtedGtmVnKesTOz8tfZOW8dEq29CyOCoYP2/Xpb98KW\nzvsBdgc0t9A+a/fb5U8AsGFPI/+1dAkBRGQdfOqBnwHwznuu4csPH5wLG7c2PkBEZ0s9zMwK6zax\nk3S9pBckLe2kXpK+KWmlpEclvS5Xd6akFanuylz5SEm/kfRk+nlYru7Tqf0KSW8/0AGaWZWrAYh9\nEq8I2L5736To3E9dT7RmuV0Af1n9XJfdrsldyDh/pl1rayu3PbuUo265iie2v8AP1yyg5WAkYI0L\niFaf42dmPVPMjN0PgDO7qD8LmJYelwHfAZBUC1yT6qcD50uanra5EvhdREwDfpdek+rnAsenfX47\n9WNm/dCxbziq+0bRyfOmKNhMAK3w99+8hbsffqw9a6sB6PLbJuvhG3/6bXrdSktr9vP+55d3ttEr\nN+QCamoH9H6/ZlbVuk3sIuJ+YHMXTeYAN0bmQWCEpLHALGBlRKyOiCZgfmrbts0N6fkNwDty5fMj\nojEingJWpn7MrB9a8WAnFwRW7hhsPn/reGi2FWjucAQ21+aTN9zV3kUrZElefvIt8q+zDX/41MP7\nx9N6EE6+2/g3tG5/qff7NbOq1hvn2I0H1uRer01lnZUDjImI9en588CYbvoys/6o03Pien6huejw\nkw7XMBbs940Ybf/JJXvfPP1d+7QZUAefeOSmomJobGzkW4+fXlRb2Ak+x87MeqjkiyciOymmx9/S\nki6TtEjSoo0bNx6EyMysYvTkG0TFz66p/T97nTBqHJMHj2DywMH7V3bj50/9vAetW6C+vkf9m5n1\nRmK3DpiYez0hlXVWDrAhHa4l/Xyhm772ExHXRcTMiJjZ0NBwwIMws/IzYEiHKzJ1zKOKSOjGjhq0\nz+b5vK7TpQkSFDi9TYhD6uu56YwL+MRJXZ16XNiRHNmD1k3w0q96vA8z6996I7G7A7gwrY49Bdia\nDrMuBKZJmiKpnmxRxB25bd6fnr8f+FmufK6kgZKmkC3IWNALMZpZBbpz282otmfrp7JZtr3Z24ZN\nu6Em+7IrdLi1M6eOHL1f2/818RgARg4awimHT+lRXAALWdiD1jNg5Dk93oeZ9W/FXO7kZuAB4FhJ\nayVdImmepHmpyZ3AarKFDt8DPgQQEc3AFcBdwHLg1ohYlra5GnirpCeBt6TXpPpbgceAXwOXR4TX\n+5v1d69gpq7NP//j25h8xDAA3nva8YX7S2X/Z+47GD8kO/w5bswRWXlN9njX1Onc++IzrNyyke17\nGlmxZQP1QD01HNL1ctp2rfy4+MAPvQRqBxbf3syMIu48ERHnd1MfwOWd1N1Jlvh1LN8EnNHJNlcB\nV3UXl5n1E+rBgYUO588JOOv0V3PW6a/muz/+A+e/7XXc/NBj7fW17F1DMVhw8lFHsn5XE9TBaRPH\nMX/FUkYPPIRzph7Fy2ph3a7d3P/MSt553Ay27WmkCfjlaR9FRZ5rd+G4n3Ljc+/oviFA8x4Y6Ftd\nmFnP+JZiZlb+ipihE0BdlgjVAK11+yZFH3zX7C633xlQV1NDa/pWrE8LF3583vmMHjyUhzc+x7+9\n4S0MqR9IawRvHJMdil3y4jPUSowbPLLbGIcPH84Vw+/pfjAAOz4OO+rgiJ6fy2dm/VfJV8WamR0o\n1RQ/s/Wrz3+g/ULEl5x+YvttZf/xlOymOZ95Y3bpzOEpsZs8YiRD6+uZPX4yQ+qzQ6M1EkMHZM+/\nveK3XPtEkclajzV338TMLMczdmZWWaLD9F1n/zztJNcbc/hQvnP5uTyw4hne8YYTef2xR7Ps+Q1c\n+uYsobvn6WcAGFEzoNsz504YdgQvN75EjXp+Xb3i/BbwAgozK55n7Mys8kgFrzHXMZfrbB7vDcdN\n5pjxoxg8oJ6xI4dyylF7r7L0vbnv5otvO4MFGzd0fjmU5NYz5lFXW0Nt7cH6Kh1xkPo1s2rlxM7M\nKkdrFzNjtQWyvC6O0P7Lj37Dt3/1ByY3jOKECWPbyw8ZMIC5rz2RV40eXVRIW1saeal5d1Fte6zu\nQwenXzOrWj4Ua2YVaP8ETx1ejBjW9V0bWoElTz7Taf0jz28oKpIdNBXVrseGfhoGHXZw+jazquXE\nzswqW7rEScdUb8rE0dDNoopVm3d2Wjd+xPCidj+qbjB1PbkkS5Fqhl7c632aWfVzYmdmla2Te782\nNbd0m9h15a+POoZfzO1+xuxfT3wnNQewHzOz3uTEzswqW1pIETX7zppFQHeLVRu6OFpbW1PDhEO7\nX7zw7RW/oZYa3nD4MUUEa2Z2cHnxhJlVroDT/vZ4kBg5akhWlu7CVVer/dZTdNTdVeKGD+z+ll4r\ndjzPih3PdR+rmVkf8IydmVWeNBMnoC798/SWn/8TZ5z27+1Nnl67udtu/ur4ow84lP98/fupPQjn\n2JmZvRJO7MyssnQ4p+6+e5d3aJBdVvikGZOp6eJ6J0eMGMpxk4444HCmHzr+gPswM+stTuzMrKKN\nHFXLhh0t6flgxkw4lJWrNvKF/2dOl9vd9In3ceghgw54/4fWDz7gPszMeosTOzOrHPusPs2eq6YW\n0j0iduzYTfOewbQWuM5dR6OGOSEzs+rjxM7MKlsuh2vc3cqTq16itXTRmJmVlBM7M6toNXX7zs69\n6ujhvHrGsSWKxsystLyUy8wq2nOr9rQ/f+Mbp1E3aAi3/XRhCSMyMysdJ3ZmVjmiw7lzdbXU5k6V\n+7d/fzdPPb2R5u4uUGdmVqWc2JlZ5Shw+7Dvz/8Y4ycd2v66ts639zKz/suJnZmVtelvyl1EuOOM\nHTB23Aiu/8k/tb8eNHBAX4RlZlaWnNiZWVn7+u8+DzU10FrcWteLLngzr5sx6SBHZWZWnrwq1szK\nmiTUfghWBWft8o6ZdgS7djUd/MDMzMqQZ+zMrPIUONeuzcrVL/DAQ6v6MBgzs/LhxM7MKosEAzo/\nj+5/HnyChx95uu/iMTMrI0UldpLOlLRC0kpJVxaoP0zS7ZIelbRA0gm5uo9KWippmaSP5cpvkbQk\nPZ6WtCSVT5a0K1d3bW8M1Mz6h8NHDefQ4b5dmJn1T92eYyepFrgGeCuwFlgo6Y6IeCzX7DPAkog4\nV9KrUvszUoL3AWAW0AT8WtIvImJlRLw3t4+vAVtz/a2KiBkHOjgzqyI1NR3uFZt58YWXWfn4ek45\nNbvbxNQpDTz1zIt9HZ2ZWVkoZsZuFrAyIlZHRBMwH5jToc104B6AiHgcmCxpDHAc8FBE7IyIZuA+\n4Lz8hsrOin4PcPMBjcTMqppqCn9djWoYxoxZU9tfjxlzGEceObqvwjIzKyvFJHbjgTW512tTWd4j\npIRN0izgSGACsBSYLWmUpMHA2cDEDtvOBjZExJO5sinpMOx9kmYXPRoz63f2NDbz0qbt7a9XP/U8\nS5etK2FEZmal01uLJ64GRqTz5D4MPAy0RMRy4MvA3cCvgSVAS4dtz2ff2br1wKR0KPbjwE2Shnfc\noaTLJC2StGjjxo29NAwzK1sDsjNHLvrndMBgUD0AL23ZwYpla9ubDR9+CMOGDurz8MzMykExid06\n9p1lm5DK2kXEyxFxcUrGLgQagNWp7vsRcVJEnAq8BDzRtp2kOrKZvltyfTVGxKb0fDGwCjimY1AR\ncV1EzIyImQ0NDUUN1swq19BxA5BqeGnjlqygObtW3aBBAxg5amh7u3v/uIKFi58uQYRmZqVXTGK3\nEJgmaYqkemAucEe+gaQRqQ7gUuD+iHg51R2efk4iS+Juym36FuDxiFib66shLdhA0lRgGilJNLP+\n66/ePhOAn333vqygOfvRtHsPW7fsam+38sn1fR2amVnZ6DaxS4sergDuApYDt0bEMknzJM1LzY4D\nlkpaAZwFfDTXxW2SHgN+DlweEVtydXPZf9HEqcCj6bDuj4F5EbH5FYzNzKrEvK9dwFvfPRtqa3jt\nX09rLx8U1upTAAAU8UlEQVQ4qI5hIwZz5FF7Z+23b99ZihDNzMpCUbcUi4g7gTs7lF2be/4ABQ6X\nprpOFz9ExEUFym4DbismLjPrH8790NtY8NtHAdjywrb28po60dLcyp6m5vayHc7rzKwf850nzKwi\nvO604wF4fu2m9rJd2/cgiQEDfNtrMzNwYmdmFaKurhZqYNzUMe1ltQPEgPpahg7buwp2UH2hrc3M\n+gcndmZWOVph3ZPPt788/ZzXsn7tZu67e2l72e6mUgRmZlYenNiZWcU4ZNhAXn3K0e2vNzy3hfpD\n6hky3NetMzODIhdPmJmVgy/88HLGTBrFj/7zbo6ePo6/fsdM7v7Fw/zi1kW87ZzXljo8M7OSc2Jn\nZhXjhJOz2bqP/ft728te87qpbH1pd6lCMjMrKz4Ua2YVrbZWDB48oNRhmJmVBSd2ZlbRtm9v5Pl1\nL5U6DDOzsuDEzswq2pSjD+fv3ntKqcMwMysLPsfOzCra4CGDmHyUV8WamYFn7MzMzMyqhhM7MzMz\nsyrhxM7MKtqunY2sefrFUodhZlYWnNiZWUUbdEg9Y8Ye2v66YXRtCaMxMystJ3ZmVtEkUT9w73Xs\nLnjfGZz46okljMjMrHS8KtbMqsrfnv1a/ubMGaUOw8ysJDxjZ2ZVp6ZGpQ7BzKwknNiZWUXbvauJ\n9Ws3lzoMM7Oy4MTOzCragPo6Dj1sSKnDMDMrC07szKyi1dbWMHjIwFKHYWZWFpzYmVlF27plB8se\nebbUYZiZlQUndmZW0Xbv3sP6tS+VOgwzs7LgxM7MKtpzT2/i4QWrSh2GmVlZcGJnZhVt245dvPD8\nllKHYWZWFopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkfy5X/q6R1kpakx9m5uk+n\nfa2Q9PYDHaSZVa8VS9ey8on1pQ7DzKwsdJvYSaoFrgHOAqYD50ua3qHZZ4AlEXEicCHwjbTtCcAH\ngFnAa4BzJB2d2+7rETEjPe5M20wH5gLHA2cC304xmJntp66ullr54IOZGRQ3YzcLWBkRqyOiCZgP\nzOnQZjpwD0BEPA5MljQGOA54KCJ2RkQzcB9wXjf7mwPMj4jGiHgKWJliMDPbz3EnTuL41/jesGZm\nUFxiNx5Yk3u9NpXlPUJK2CTNAo4EJgBLgdmSRkkaDJwN5L+BP5wO314v6bAe7M/MDIBhIw5h1JhD\nSx2GmVlZ6K3jF1cDIyQtAT4MPAy0RMRy4MvA3cCvgSVAS9rmO8BUYAawHvhaT3Yo6TJJiyQt2rhx\nY++MwswqzgP3Lef+u5eWOgwzs7JQTGK3jn1n2SaksnYR8XJEXBwRM8jOsWsAVqe670fESRFxKvAS\n8EQq3xARLRHRCnyPvYdbu91f2v66iJgZETMbGhqKGIaZVaPmpj3sbmwsdRhmZmWhmMRuITBN0hRJ\n9WQLG+7IN5A0ItUBXArcHxEvp7rD089JZIdrb0qvx+a6OJfssC2p77mSBkqaAkwDFrySwZlZ9bvr\njsXscV5nZgZAXXcNIqJZ0hXAXUAtcH1ELJM0L9VfS7ZI4gZJASwDLsl1cZukUcAe4PKIaLvg1Fck\nzQACeBr4YOpvmaRbgceA5rRNC2ZmBRx19Dj+smS/SX0zs36p28QOIF2K5M4OZdfmnj8AHNPJtrM7\nKb+gi/1dBVxVTGxm1r+NGnsoOLEzMwN85wkzq3AP3PdYqUMwMysbTuzMrKJFlDoCM7Py4cTOzCpa\nw+hhpQ7BzKxsOLEzs4r2mpOPpa6os4XNzKqfEzszq2hSK6pRqcMwMysLTuzMrKLt2rmLlhafaGdm\nBk7szKzCTT16HA2H+16xZmbgxM7MKlz94AEMHFzffUMzs37AiZ2ZVbRnVz7P+mdfLHUYZmZlwYmd\nmVW0Deu3sGePz7EzMwMndmZW4Y6aNpYhw30o1swMnNiZWYVb/fgGdrzcVOowzMzKghM7M6toGuRr\n2JmZtXFiZ2YVbcvmnaUOwcysbDixM7OKtmvbrlKHYGZWNpzYmVlFe3mLZ+zMzNo4sTOzirZ7z55S\nh2BmVjac2JlZRfM17MzM9nJiZ2YVrWV3qSMwMysfTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTOz\niqbaUkdgZlY+nNiZWUWLllJHYGZWPopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkf\ny5V/VdLjaZvbJY1I5ZMl7ZK0JD2u7Y2BmpmZmVW7bhM7SbXANcBZwHTgfEnTOzT7DLAkIk4ELgS+\nkbY9AfgAMAt4DXCOpKPTNr8BTkjbPAF8OtffqoiYkR7zXvHozMzMzPqRYmbsZgErI2J1RDQB84E5\nHdpMB+4BiIjHgcmSxgDHAQ9FxM6IaAbuA85L7e5OZQAPAhMOeDRmZmZm/Vgxid14YE3u9dpUlvcI\nKWGTNAs4kixRWwrMljRK0mDgbGBigX38A/Cr3Osp6TDsfZJmFzUSMzMzs36urpf6uRr4hqQlwF+A\nh4GWiFgu6cvA3cAOYAmwz6nOkj4LNAM/SkXrgUkRsUnSScBPJR0fES932O4y4DKASZMm9dIwzMzM\nzCpXMTN269h3lm1CKmsXES9HxMURMYPsHLsGYHWq+35EnBQRpwIvkZ1PB4Cki4BzgPdFRKT2jRGx\nKT1fDKwCjukYVERcFxEzI2JmQ0NDseM1MzMzq1rFJHYLgWmSpkiqB+YCd+QbSBqR6gAuBe5vm2GT\ndHj6OYnscO1N6fWZwKeAv4uInbm+GtKCDSRNBaaRkkQzMzMz61y3h2IjolnSFcBdQC1wfUQskzQv\n1V9LtkjiBkkBLAMuyXVxm6RRwB7g8ojYksq/BQwEfiMJ4MG0AvZU4AuS9gCtwLyI2NwLYzUzMzOr\nakWdYxcRdwJ3dii7Nvf8AQocLk11BRc/RMTRnZTfBtxWTFxmZmZmtpfvPGFmZmZWJZzYmZmZmVUJ\nJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlnNiZ\nmZmZVQkndmZW0WoHlDoCM7Py4cTOzCra8OEDSx2CmVnZcGJnZhXt9bOPpbau1FGYmZUHJ3ZmVuFE\nTY2/yszMwImdmVW4upoaWltaSx2GmVlZcGJnZhXtyeVraGkpdRRmZuXBiZ2ZVbQNz28udQhmZmXD\niZ2ZVbRRDcNKHYKZWdlwYmdmFW3m7BMYdqgveWJmBuCLBJhZRTv5lGns2Lyr1GGYmZUFz9iZWUUb\nOmwgY8aNKHUYZmZlwYmdmVW0uro66uprSx2GmVlZcGJnZhVt3ZqX+Muip0sdhplZWXBiZ2YVbcDA\nGgbU+3RhMzMoMrGTdKakFZJWSrqyQP1hkm6X9KikBZJOyNV9VNJSScskfSxXPlLSbyQ9mX4elqv7\ndNrXCklvP9BBmln1GjJ4EKPH+JInZmZQRGInqRa4BjgLmA6cL2l6h2afAZZExInAhcA30rYnAB8A\nZgGvAc6RdHTa5krgdxExDfhdek3qey5wPHAm8O0Ug5nZflQDtTX+ijAzg+Jm7GYBKyNidUQ0AfOB\nOR3aTAfuAYiIx4HJksYAxwEPRcTOiGgG7gPOS9vMAW5Iz28A3pErnx8RjRHxFLAyxWBmth9RQ02t\nzyoxM4PiErvxwJrc67WpLO8RUsImaRZwJDABWArMljRK0mDgbGBi2mZMRKxPz58HxvRgf2ZmABwx\nYQRvOPXYUodhZlYWeuuM46uBb0haAvwFeBhoiYjlkr4M3A3sAJYA+92uOyJCUvRkh5IuAy4DmDRp\n0gGGb2aVavjwwUx/jb8DzMyguBm7deydZYNsJm5dvkFEvBwRF0fEDLJz7BqA1anu+xFxUkScCrwE\nPJE22yBpLED6+UKx+0v9XhcRMyNiZkNDQxHDMDMzM6tuxSR2C4FpkqZIqidb2HBHvoGkEakO4FLg\n/oh4OdUdnn5OIjtce1Nqdwfw/vT8/cDPcuVzJQ2UNAWYBix4JYMzMzMz60+6PRQbEc2SrgDuAmqB\n6yNimaR5qf5askUSN6TDqcuAS3Jd3CZpFLAHuDwitqTyq4FbJV0CPAO8J/W3TNKtwGNAc9pmv8O3\nZmZmZrYvRfTo1LayNHPmzFi0aFGpwzAzMzPrlqTFETHzYPTtawSYmZmZVQkndmZmZmZVwomdmZmZ\nWZVwYmdmZmZWJZzYmZmZmVUJJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXC\niZ2ZmZlZlXBiZ2ZmZlYlnNiZmZmZVQkndmZmZmZVwomdmZmZWZVwYmdmZmZWJZzYmZmZmVUJJ3Zm\nZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlikrsJJ0p\naYWklZKuLFB/mKTbJT0qaYGkE3J1/yRpmaSlkm6WNCiV3yJpSXo8LWlJKp8saVeu7treGqyZmZlZ\nNavrroGkWuAa4K3AWmChpDsi4rFcs88ASyLiXEmvSu3PkDQe+AgwPSJ2SboVmAv8ICLem9vH14Ct\nuf5WRcSMAx2cmZmZWX9SzIzdLGBlRKyOiCZgPjCnQ5vpwD0AEfE4MFnSmFRXBxwiqQ4YDDyX31CS\ngPcAN7/iUZiZmZlZUYndeGBN7vXaVJb3CHAegKRZwJHAhIhYB/wH8CywHtgaEXd32HY2sCEinsyV\nTUmHYe+TNLvo0ZiZmZn1Y721eOJqYEQ6T+7DwMNAi6TDyGb3pgDjgCGS/r7Dtuez72zdemBSOhT7\nceAmScM77lDSZZIWSVq0cePGXhqGmZmZWeUqJrFbB0zMvZ6QytpFxMsRcXFKxi4EGoDVwFuApyJi\nY0TsAX4CvLFtu3R49jzgllxfjRGxKT1fDKwCjukYVERcFxEzI2JmQ0NDUYM1MzMzq2bFJHYLgWmS\npkiqJ1v8cEe+gaQRqQ7gUuD+iHiZ7BDsKZIGp3PpzgCW5zZ9C/B4RKzN9dWQFmwgaSowjSxJNDMz\nM7MudLsqNiKaJV0B3AXUAtdHxDJJ81L9tcBxwA2SAlgGXJLqHpL0Y+DPQDPZIdrrct3PZf9FE6cC\nX5C0B2gF5kXE5q5iXLx48YuSnul2tJVtNPBiqYMoAY+7f/G4+xePu3/xuPc68mDtTBFxsPq2XiRp\nUUTMLHUcfc3j7l887v7F4+5fPO6+4TtPmJmZmVUJJ3ZmZmZmVcKJXeW4rvsmVcnj7l887v7F4+5f\nPO4+4HPszMzMzKqEZ+zMzMzMqoQTuz4gaaSk30h6Mv08rJN2Z0paIWmlpCuL2V7Sp1P7FZLensqG\npVuytT1elPS/U91Fkjbm6i6tlnGn8ntTWdv4Dk/lAyXdkrZ5SNLkahl3uk7kLyU9LmmZpKtz7Q/6\n593ZOHL1kvTNVP+opNf19nuQyk+S9JdU901J6u2xlmrckt4qaXEa32JJp+e2Kfg7XyXjnixpV25s\n1+a2qebP+33a9zu8VdKMVFcNn/e7lX1XtUqa2aG/av77LjjuXv/7jgg/DvID+ApwZXp+JfDlAm1q\nye6yMRWoJ7v/7vSutgemp3YDyW7btgqoLdD3YuDU9Pwi4FvVOm7gXmBmgf18CLg2PZ8L3FIt4wYG\nA3+d2tQDfwDO6ovPu6tx5NqcDfwKEHAK8NBB+uwXpP6V9ndWFY37tcC49PwEYF1uPwV/56tk3JOB\npZ3EUrWfd4d+Xw2sqrLP+zjg2I5jofr/vjsbd6/+fXvGrm/MAW5Iz28A3lGgzSxgZUSsjogmYH7a\nrqvt5wDzI7sN21PAytRPO0nHAIeT/c++r5Vs3N3E8mPgjIP4L74+HXdE7IyI3wOkvv5Mduu/vtDV\nONrMAW6MzINk95Ue2822PXoPUn/DI+LByL4Nb6Tw+95b+nTcEfFwRDyXypcBh0gaeLAG14W+/rwL\nqvbPu4Pz0zalcFDGHRHLI2JFgf1V9d93Z+Pu7b9vJ3Z9Y0xErE/PnwfGFGgzHliTe702lXW1fVfb\ntGmbncqvknlnmvL9saSJHDylGvcNacr6X3LJW/s2EdEMbAVG9XxIRSnZ5y1pBPC3wO9yxQfz8y7m\nd7CzNr35HoxPz7uKozf19bjz3gn8OSIac2WFfucPhlKMe0oa232SZuf20V8+7/ey/x2aKv3z7un+\nquXzLsYB/313e0sxK46k3wJHFKj6bP5FRISyW6+9Iq9g+7nABbnXPwdujohGSR8k+1fi6QW3LEIZ\njvt9EbFO0jDgNrKx3/hK99uZMhw3kurI/gfwzYhou79yr37epXCg72GlKjRuSccDXwbelivuk9/5\nvtJh3OuBSRGxSdJJwE/Te1B1Ovm8TwZ2RsTSXHFVfd62V2/9fTux6yUR8ZbO6iRtkDQ2ItanqdoX\nCjRbB+RnUyakMoDOtu9qGyS9BqiLiMW5ODfl2v8X2Tker1i5jTsi2n5uk3QT2bT4jblt1qYE6FAg\n/170SLmNO7kOeDIi/ncuzl79vAvoLqau2gzoYtuevgfr2Pfwc6E4elNfjxtJE4DbgQsjYlVbeRe/\n8wdDn447zVo0pueLJa0CjqEffN7JfvdTr5LPu6f7q5bPu1O9+vcdfXACZn9/AF9l3xNkv1KgTR2w\nmuyE0bYTLo/vanvgePY90XQ1ucUTwNXA5zvsZ2zu+bnAg9Uy7tTX6NRmANm5dPPS68vZd/HErdUy\n7lT3RbJ/zdX05efd1Thybf6GfU8yXnCQ3oOOJ1effRA/474e94jU7rwCcRT8na+ScTfkPt+pZP+D\nHFntn3d6XZPGO7XaPu/ctvey7yKCqv777mLcvfr3fVDeFD/2+yUZRXbO05PAb3NfTOOAO3Ptzgae\nIFtR89nutk91n03tV9BhlVD65XpVh7IvkZ2c+Qjw+471lTxuYAjZCuBH0xi/kftSGAT8X7KTcReQ\n+7KsgnFPAAJYDixJj0v76vMuNA5gHnuTagHXpPq/sO8XWq/9zgMzgaWp7lukC7AfxM+5z8YN/DOw\nI/f5LiFbFNXp73yVjPudaVxLyBYF/W1/+LxT3Wl0+IdYFX3e55Kde9YIbADuytVV8993wXHTy3/f\nvvOEmZmZWZXwqlgzMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjix\nMzMzM6sSTuzMzMzMqsT/DwTnGDSgc8FCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV9///Xe2YyCbmHZAjkRhJIkIAQJQ1oC7WiCJQa\nQauhVISCiAWr1W/7Q+33Z7VFwdavYkUpCgVUbpViEbGAoKB+uSSRAAkkkIRLEpIQciW3uX6+f+w1\nk53JXM4kkzmXeT8fj/OYc9Zae+3POmfm5JO199pbEYGZmZmZlb+qYgdgZmZmZr3DiZ2ZmZlZhXBi\nZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdWYSTdJOmfix1HXyjHsUraJmnqPmw3WVJI\nqjkQcZWC7sYo6QuSfpB7fbaklek9fVvfRWpWupzYmZn1oYgYGhErih1HK0kXSPptseMoRER8NSIu\nzhX9K3B5ek+fkvSypPcUKz6zUuDEzsz6hDL99junGDNtffGeF3kG8XBgcRH3b1Zy+u2XrFlfkXSF\npOWS3pT0nKSzU/lASZslHZtrWydpp6RD0uu/l7RG0muSLk6HqY4sYLdjJD2Y9vmIpMNz+3inpHmS\ntqSf7yxgDBdIWpH6e0nSebny30n6TupviaRTc9v9WtKVkn4H7ACmShoh6YY0rtWS/llSdWp/hKSH\nJW2Q9IakH0samevvbZJ+n+K4AxjUSbxdvreSxki6N7XZKOk3nSVA6T3/mzT+NyT9S76tpL+S9Lyk\nTZLub/deh6TLJL0IvJgrOzI9HyHpFknrJb0i6R9a+5ZULelf0z5XAH/a3efU0/dc0tHAdcA70uHM\nzbk+Ls71ucesXhfjulTSi+l9vVaSOolxtqT5krZKWifp/7Rrcp6kV9PYv5jb7h8l/Sh9vtuAauBp\nZX9fPwQmAT9LY/n7Qt4vs0rjxM7swFsOnAyMAL4M/EjSYRFRD/wXcG6u7YeBRyLidUmnA58F3gMc\nCbyrB/s8D/gnYAywEPgxgKSDgZ8D3wZGA/8H+Lmk0Z11JGlIan9GRAwD3pn6bHViGuMY4EvAf6X9\ntPoocAkwDHgFuAloSmN6G3Aa0JpECPgaMA44GpgI/GOKoxb4KfBD4GDgP4EPdhRzd+8t8DlgFVAH\njAW+AHR1f8WzgVnA24E5wF+lmOakbc9Jff0GuK3dth9I79GMDvr9N7Lfi6nAHwPnAxemuo8DZ5G9\nR7OAD3URX3sFvecR8TxwKfBYOpw5suPuOtTRuM4C/gA4juz9fl8n214DXBMRw4EjgDvb1f8RcBRw\nKvD/pwS0TUTUR8TQ9PL4iDgiIj4KvAr8WRrL13swFrOK4cTO7ACLiP+MiNcioiUi7iCb4Zidqm8F\n5uaa/0Uqg+wfxv+IiMURsYOU4BTo5xHxaEpwvkg2IzORbNbnxYj4YUQ0RcRtwBLgz7rprwU4VtJB\nEbEmIvKHv14HvhURjWl8S9lzdummNIYmsoTsTOAzEbE9JVnfbH0PImJZRDyY/uFeT5Z4/nHq5yRg\nQG5fPwHmdRFzV+9tI3AYcHjq6zfR9Y2zr46IjRHxKvAtdieMlwJfi4jn0/i+CszMz9ql+o0RsTPf\nYZqlnAt8PiLejIiXgW+QJWWQff7fioiVEbGRLOEtVMHv+X7oaFxXRcTm9D79CpjZybaNwJGSxkTE\ntoh4vF39lyNiZ0Q8DTwNHL+fsZr1G07szA4wSedLWpgOT20GjiWb3YLsH7/Bkk6UNJnsH8K7U904\nYGWuq/zz7rS1jYhtwMbU3ziyGZy8V4DxnXUUEduBj5AlMWsk/VzSW3JNVrdLil5J++ko7sPJkrM1\nuffj34HWQ89jJd2eDhduBX7E7vdqXCf76kxX7+2/AMuAB9Ih1iu66Kf9GPLjOxy4JjeWjWSzjuM7\n2TZvDNl7kR9D/rNo//l3Ndau4u3yPd8PHY1rbe75DmBoB20ALgKmA0uUnQ5w1j72Y2btOLEzO4DS\nzM33gcuB0elQ1yKyf/yJiGayw1Dnpse9EfFm2nwNMCHX3cQe7LqtraShZLM2r6XH4e3aTgJWd9VZ\nRNwfEe8lm+VaksbUany7c6kmpf20bZ57vhKoB8ZExMj0GB4Rx6T6r6b2b02H6f6S9F6RvR8d7auz\nmDt9b9MM2eciYirwfuCzyp0b2IH8e58f30rgE7mxjIyIgyLi/3Yy/rw3yGau8p9H/rNY08F+C9WT\n97yj+LYDg3OvD+1mHz0SES9GxLlkyeXVwE/SIf/9tc8xmVUKJ3ZmB9YQsn9s1gNIupBsxi7vVrIZ\nsfPYfagQsqTkQklHSxoM/O8e7PdMSX+Uzkv7J+DxiFgJ3AdMl/QXkmokfYTsHKl7O+sozaLNSf/w\n1gPbyA7NtjoE+BtJAyT9Odm5cfd11FdErAEeAL4habikKmULJloPtw5L/W+RNB74u9zmj5GdJ9a6\nr3PYfUi7Mx2+t5LOknRkShK3AM3txtTe30kalQ5nfxq4I5VfB3xe0jGp3xHpPehWLvG8UtKw9J+A\nz5LNUpLq/kbSBEmjgO5mFTvbT3fv+TpgQvpdabUQOEfSYGULPS7al313RtJfSqqLiBZgcyru6v0v\n1Dqy8xXN+i0ndmYHUEQ8R3be1GNk/+i8FfhduzZPkM2QjAN+kSv/BdmihV+RHTZsPQ+pvoBd30q2\nkGEjcALZzBcRsYHsBPfPARuAvwfOiog3uuiriizheC3198fAJ3P1TwDTyGagrgQ+lPbTmfOBWuA5\nYBPwE7KZQMgWl7ydLNn6OdkCCFLsDWSLFC5IcXwkX9+Rzt7bFO8vyZLIx4DvRsSvuujqv4EFZAnP\nz4EbUv93k8043Z4OHS8CzugqpnY+leJbAfyW7HO7MdV9H7if7Byz39PNWLvR1Xv+MNklQ9ZKav09\n+CbQQPY7ezNp8U0vOh1YnFa2XgPMbX8O4j76GvAP6ZDz/+qF/szKjro+X9jMSkVaGbgIGJhOii86\nSReQra78o2LHcqBICmBaRCwrdixmZt3xjJ1ZCVN2y6SB6VDc1cDPSiWpMzOz0uPEzqy0fYLsciLL\nyc4D+ySApMXpIqztH+ft64466W+bpJN7ZyjWW/xZmVlnfCjWzMzMrEJ4xs7MzMysQjixMzMzM6sQ\nNcUOoDeMGTMmJk+eXOwwzMzMzLq1YMGCNyKi7kD03W1iJ+lGsutevR4R7S+sSrrA5zVk9yLcAVwQ\nEb9PdaenumrgBxFxVSq/g+wGzwAjgc0RMTPd9ud5sntNQnZR1Uu7i3Hy5MnMnz+/u2ZmZmZmRSep\nJ7cI7JFCZuxuAr4D3NJJ/RlkF/ucBpwIfA84Md3g+lrgvcAqYJ6keyLiuYj4SOvGkr5BdjHSVssj\norMbR5uZmZlZJ7o9xy4iHiW7yntn5gC3ROZxYKSkw8hu9bMsIlakK8bfntq2SbN9HwZu29cBmJmZ\nmVmmNxZPjCe7yXSrVamss/K8k4F1EfFirmyKpIWSHvE1mczMzMwKV+zFE+ey52zdGmBSRGyQdALw\nU0nHRMTW9htKugS4BGDSpEl9EqyZmZlZKeuNGbvVwMTc6wmprLNyACTVkN3Q+47Wsoiob715eEQs\nILva/vSOdhoR10fErIiYVVd3QBaWmJmZmZWV3kjs7gHOV+YkYEtErAHmAdMkTZFUC8xNbVu9B1gS\nEataCyTVpUUXSJpKtiBjRS/EaGZmZlbxCrncyW3Au4AxklYBXwIGAETEdcB9ZJc6WUZ2uZMLU12T\npMuB+8kud3JjRCzOdT2XvRdNnAJ8RVIj0AJcGhFdLdwwMzMzs6Qi7hU7a9as8HXszMzMrBxIWhAR\nsw5E376lmJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZ\nVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc\n2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFaLbxE7SjZJel7Sok3pJ+rakZZKekfT2XN3pkpamuity5f8oabWk\nhelxZq7u86n9Uknv298BmpmZmfUXhczY3QSc3kX9GcC09LgE+B6ApGrg2lQ/AzhX0ozcdt+MiJnp\ncV/aZgYwFzgm7fO7qR8zMzMz60a3iV1EPAps7KLJHOCWyDwOjJR0GDAbWBYRKyKiAbg9te3KHOD2\niKiPiJeAZakfMzMArvn/bmfj61uKHYaZWUnqjXPsxgMrc69XpbLOylt9Kh26vVHSqG76MjMD4Fd3\nP8ELi14tdhhmZiWpWIsnvgdMBWYCa4Bv9LQDSZdImi9p/vr163s7PjMrUROnHcphE0cXOwwzs5LU\nG4ndamBi7vWEVNZZORGxLiKaI6IF+D67D7d2uk17EXF9RMyKiFl1dXW9MAwzKwfV1TVUD/Cpt2Zm\nHemNxO4e4Py0OvYkYEtErAHmAdMkTZFUS7Yo4h6AdA5eq7OBRbm+5koaKGkK2YKMJ3shRjOrEJs3\nvMn2LTuLHYaZWUmq6a6BpNuAdwFjJK0CvgQMAIiI64D7gDPJFjrsAC5MdU2SLgfuB6qBGyNicer2\n65JmAgG8DHwibbNY0p3Ac0ATcFlENPfKSM2sIqx7ZSNPPPQsRx0/udihmJmVnG4Tu4g4t5v6AC7r\npO4+ssSvfflHu+jvSuDK7uIys/6rfseuYodgZlaSfOcJMys7o+sOLnYIZmYlyYmdmZWVqhpx8AQn\ndmZmHXFiZ2ZlZejwQYw9bHixwzAzK0lO7MysrDTUN7Fx445ih2FmVpKc2JlZWXn3OX/A9GMm7lW+\n7rVNPP+c70hhZv2bEzszKyuP/mw+a15et1f5Jy+6gb/96x8WISIzs9LhxM7MykpLMzQTvLF2Cz++\n7iGWv/AaAMNHHsTAgb4jhZn1b91ex87MrJTseLOBV198jQlTDuW/fvhb6puaOWL6OFav3Fzs0MzM\nis4zdmZWdt7csJO6Q0eyfWsDzz65pNjhmJmVDCd2ZlY2du2oB2DLxjfbyp5/Kp1vp2JEZGZWWnwo\n1szKxt+c+TUARo8f0VY2/ODsa+wLX5rDlq07ixKXmVmp8IydmZWNlUteB2DC4WPbyt7c3ATAj256\nlB/f+GhR4jIzKxVO7MysvDQ1cc/Nv2l7GS3ZzzF1wxl+8LC28paWoKUl+jo6M7Oi8qFYMysvNTVs\neeMNIvZM2t56/CQ2rN/W9vrlVzcCMHXy6D4Nz8ysmJzYmVl5aW7ize3bWbVi/R7Fp512HG+mxRUA\nX/vOz6iqquLfv35+X0doZlY0TuzMrOxsWtnExCMO2aNsy5s7efPNXW2v16zd2NdhmZkVnc+xM7Py\nEjBm6uC9iq/95v/wza/f2/a6sVE0NvkaKGbWv3jGzszKTsPO+r3Knlv8GvnT7v7wpKnIeZ2Z9TNO\n7MysfESAxNY1zXtVDR4C23evneDJ+ctxZmdm/Y0TOzMre01NzezcsWfZlu17J39mZpXO59iZWVkL\n4PFHltLSUuxIzMyKz4mdmZW92kE1jJswnGHDBhQ7FDOzovKhWDMrCxvXbiIiUAfnzf36gUW8tmpr\nEaIyMystnrEzs7LwF0d/rtO6o44Z34eRmJmVrm4TO0k3Snpd0qJO6iXp25KWSXpG0ttzdadLWprq\nrsiV/4ukJan93ZJGpvLJknZKWpge1/XGIM2svP3y9t9CF+fQ/fJnT/VdMGZmJayQGbubgNO7qD8D\nmJYelwDfA5BUDVyb6mcA50qakbZ5EDg2Io4DXgA+n+tveUTMTI9LezAWM6tQ3/rbG7JLnTR3sNJ1\n4ABefeWNvg/KzKwEdZvYRcSjQFf35pkD3BKZx4GRkg4DZgPLImJFRDQAt6e2RMQDEdGUtn8cmLA/\ngzCzyta0PT2pqt6j/Ki3Hsa5H3sHJ596TN8HZWZWgnrjHLvxwMrc61WprLPy9v4K+EXu9ZR0GPYR\nSSf3QnxmVili9/HY7dt2cfJpxzH9uAkcNLi2iEGZmZWOoq6KlfRFoAn4cSpaA0yKiA2STgB+KumY\niNhruZukS8gO/TJp0qS+CtnMiqll9z3DhgwdRENDM2+s3cKG170i1swMeiexWw1MzL2ekMoGdFIO\ngKQLgLOAUyOyOzxGRD1Qn54vkLQcmA7Mb7/TiLgeuB5g1qxZ0b7ezCrfHTf8irGTDmbNmi346k1m\nZr1zKPYe4Py0OvYkYEtErAHmAdMkTZFUC8xNbZF0OvD3wPsjou1GQJLq0qILJE0lW5CxohdiNLNK\n0O4SdvU7mnnlpc007PL/7czMoID/4kq6DXgXMEbSKuBLZLNxRMR1wH3AmcAyYAdwYaprknQ5cD9Q\nDdwYEYtTt98BBgIPpouNPp5WwJ4CfEVSI9nFDS6NiK4WbphZf9JB/lZbCw0NZIdpq/a+eLGZWX/S\nbWIXEed2Ux/AZZ3U3UeW+LUvP7KT9ncBd3UXk5lZq4aGJnwY1sws429DMysv2Sm5XHDmldCcPe/i\n2sVmZv2KbylmZmVp3fI3obklLbcyMzNwYmdmZSItnu+Qv8jMzDL+PjSzkhctXR9srR7QR4GYmZU4\nJ3ZmVvpaZ+s6mbVrbuqw2Mys33FiZ2alr4vDsAyEMYcO6btYzMxKmBM7Myt9HeV1jdk03fChtTQ1\nNfZtPGZmJcqJnZmVtWHDBnHo+KHZC1+f2Mz6OSd2ZlbWtm3ZyR+/e1b2wncWM7N+zomdmZUX7Tkt\nd/C4UfzqgWd9OzEzM3znCTMrJ+2SOgE7tzWw8pXNUO2vMzMzz9iZWdkKoL5+O1OmHVrsUMzMSoL/\ni2tmJW3Xrl1d1m9a28ib29dA1f5fpXjBytUAnDBx/H73ZWZWDJ6xM7OS9q+f+V63barUO/9HPffm\nOzn35jt7pS8zs2JwYmdmJe3RH84jmps7qNm9BLa5qbBbT8xfspKWlo6Xzn7hp7/Yl/DMzEqKEzsz\nK21dXXs43ZGiw7yvA9+649c0NHTc4XOvrethYGZmpceJnZmVrNdXvUE0NXZ+4WFpj2+xAQO6vuTJ\nklfXs2DxSx3Wnf+OWfsYpZlZ6XBiZ2Yl60t/fnXXDSLIvsYCInjHH03rts9Pf/fnHZafOHlCl9s9\n9NJSfvfK8m77NzMrJid2Zlaylj3xcveNWlqIZkDi0V+9QEtL0NDQ+Tl3LZ2U/91dP2+rn371N/eq\nv+jX/815D9/VfTxmZkXky52YWenrwa3Cfv/7l5j31Mttr7dtb6C+uYHRw4e2lTU1t1BTvef/a7fV\np2RQ0BLQ3NLC8k0bmT56zP5Evs+iZSOqOrgo+zaz8uUZOzMrS225XusUXErMfvmrRTz08HNt7d57\n8b9x1if+neWr32jb6Mu33L9Xf4cMP2iPjqurqhhz0ODeD7xQLZuJ8M1vzaxnnNiZWenr5jaw+fTn\nsHEj2LBx+15txo8Z0dbPvfOWtJV/4gd38aFv3sRvV6yGttW1weqNG3nPTd/nzYauL5B8oKhmKpLv\nf2tmPeNDsWZW/nL5z398/3dQW71Xk0EDB3R4RPe3y18lgIMGQH0tNKRvxRvnPcnmxibe+8MfMGf6\nW7LssYM8qyVaEHISZmYlwTN2Zlb6OjsiqT2btOReDR2059fbyrWbujxXb2cLNDXTNmv30JIXAFjb\nsIsbFi0koO3Q6BefuBeA8x65nque+hmv79pa2DAieG3HswW1bal/jIjOlnqYmXWs28RO0o2SXpe0\nqJN6Sfq2pGWSnpH09lzd6ZKWprorcuUHS3pQ0ovp56hc3edT+6WS3re/AzSzClcFrRlba+IVAdt2\n7ZkUffCK/yBaspYBPLvitS67fTV3IeP8GtuWlhZuf/lpjrjjSp7ZsprbVi1gzKBhBYUqiXGD31pQ\nW+qfJFoKvPKymVlSyIzdTcDpXdSfAUxLj0uA7wFIqgauTfUzgHMlzUjbXAE8FBHTgIfSa1L9XOCY\ntM/vpn7MrB866h1HdN8oOnneEB1WCaAF/vLbd/DAU8+1zdBVAeS+bfY+sJr1cM3vfplet9Dckv18\ndO3z3cfZU0M+SlX1gN7v18wqWreJXUQ8Cmzsoskc4JbIPA6MlHQYMBtYFhErIqIBuD21bd3m5vT8\nZuADufLbI6I+Il4ClqV+zKwfWvp4JxcEVrtjsG3lezaLFqCp3RHYXJu/u/n+ti5aIEvyWnLd7nF8\nN9vwRy89tXc8LQfg/Lr1f0rLtk2936+ZVbTeOMduPLAy93pVKuusHGBsRKxJz9cCY7vpy8z6o07P\niev5ZUCi3U/aXcNYsNc34l6XVAG+/e4P7dFmQA187ulbC4qhvr6e7yx5d0FtYUfKTM3MClf0xROR\nnRTT429pSZdImi9p/vr16w9AZGZWNnryDdKDybWOmh47ehyTB49k8sDBPesM+NlLP+tB62aore1R\n/2ZmvZHYrQYm5l5PSGWdlQOsS4drST9f76avvUTE9RExKyJm1dXV7fcgzKz0DBjS7opM7fOoAhK6\nw0YP2mPzfBedLk2QoIPT24Q4qLaWW0/9KJ87oatTjzt2OIf3oHUDbPpFj/dhZv1bbyR29wDnp9Wx\nJwFb0mHWecA0SVMk1ZItirgnt83H0vOPAf+dK58raaCkKWQLMp7shRjNrAzd9+ZtqLpn66fa535r\nN+wCZV92AqguZJYt+MNRo/f6hvyLidMBOHjQEE46ZEqP4gKYx7wetJ4JB5/V432YWf9WyOVObgMe\nA46StErSRZIulXRpanIfsIJsocP3gb8GiIgm4HLgfuB54M6IWJy2uQp4r6QXgfek16T6O4HngP8B\nLosIr/c36+/2Yaau1RUfP5XxdUMA+Mi7julyHz/48Ps5dGCWSE4Ye2hWXpU9PjR1Bo9seJVlm9ez\nrbGepZvXUQvUUsVBFJZ8tvCTwgMfcRFUDyy8vZkZBdx5IiLO7aY+gMs6qbuPLPFrX74BOLWTba4E\nruwuLjPrJ9SDAwutCWBaNSvg/afN5P2nzeTff/Ibzj3t7dz2xO77yFazew3FYGDKIWN4vbEZasSf\nTBrPHS8sZszAgZw1dRpDhw5h1c6d/G7lCj5w1HG82VhPA/Dzd30aFXiu3fnjfsotr32g+4YATY0w\n0HezMLOe8S3FzKz0FTBDlz/MKoCaPZOiT3zo5C633wFMHDWClvStWJsWLvzknPMYM3goT61/jU8e\n9xmG1A6kJYJ3js0OxS584xWqJcYNPrjbGIcPH87lwx/ufjAA2z8L22vg0J6fy2dm/VfRV8Wame0v\nVaUkLjdT15lffPnjbRcivujdxzEgfQt+8qTspjlfeGd26czhKbGbPPJghtbWcvL4yQypzQ6Nbti1\nnaEDsuffXfpLrnuhwGStx5q6b2JmluMZOzMrL9Fu+q6z/552kt2NPWQo37vsbB5b+gpzTnor48eO\npZFm5p54PAAPv/wKACOrBlAN7GxspLa6mgA21e+k7qAh7GhuJCKYNXIir+94nSr1/Lp6hfkl4AUU\nZlY4z9iZWflRx2e1qV3SJ2D1us1s2Lx9j/J3HD2Z6eNHM6R2IO+YPpFZk3dfB/37c/+cfz7tVJ5c\nv45mYP3O7exsaiIIGtO9W8cMGsLzW9Zxy7suoqa6iurqA/VVOqr7JmZmOU7szKx8tLSbGctnd9Xa\n81Zj6aJ1h9WN4OARg/fq6n//+EG++4vfMG7UCI4cO6at/KABA5j7tuN4y5isbNLwkQytrWVAVTXj\nhgwHYEhNLTNGZqtmtzY3sKWpvleGt5eaTx6Yfs2sYvlQrJmVob0Pfardi5HDsnPkqqo6PibbAjyz\n/NVO9/D02nUFRbKNA5TUDf08DPKMnZn1jBM7MytvaZaufao3ZeIY6CSpa/XiG9s7rRs/cnhBux9d\nM5ianlySpUBVQy/s9T7NrPI5sTOzitTQ1NxtYteVPzliOvfO7X7G7B+P+2Cns4JmZn3NiZ2Zlbe0\nkCKq9pw1i4DuFqvW1XZeV11VxYQRI7vd/XeXPkg1VbzjkOkFBGtmdmB58YSZla+Ad73/WJA4eHR2\n2zDSXbhqqtXtbWG7u0rc8IHd39Jr6fa1LN3+Wvexmpn1Ac/YmVn5STNxAmrSf0/v+Nnfcuq7vtrW\n5OVVG7vt5g+POXK/Q/m3P/gY1QfgHDszs33hxM7Myov2nIZ75NfPt2uQ3VbihJmTqeriHhSHjhzK\n0ZMO3e9wZowY330jM7M+4sTOzMrawaOrWbe9OT0fzNgJI1i2fD1f+V9zutzu1s+dx4iDBu33/kfU\n7n2NPDOzYnFiZ2blY4/Vp+m+sFXVQJbYbd++i6bGwbR0cJ279kYPc0JmZpXHiZ2ZlbdcDle/q4UX\nl2+ipXjRmJkVlRM7MytrVTV7zs695cjhvHXmUUWKxsysuLyUy8zKS+yZyL22vBGAxc+u5J3vnEbN\noCHc9dN5xYjMzKzonNiZWfmI2HNVbE011elUuaOPmcA/ffXPeenl9TR1d4E6M7MK5cTOzMqH9r58\nyQ23f4bxk0a03darusa39zKz/suJnZmVtBl/lLuIcOy92vWwcSO58b/+tu31oIED+iIsM7OS5MTO\nzEraNx/6MlRVQUtha10v+Ogf8/aZkw5wVGZmpcmrYs2spElCbYdg1eGsXd70aYeyc2fDgQ/MzKwE\necbOzMpPB+fatVq24nUee2J5HwZjZlY6nNiZWUnbuX0XkZ+lk2BA5+fR/d/HX+Cpp18+8IGZmZWg\nghI7SadLWippmaQrOqgfJeluSc9IelLSsbm6T0taJGmxpM/kyu+QtDA9Xpa0MJVPlrQzV3ddbwzU\nzMrTru31PWp/yOjhjBju24WZWf/U7Tl2kqqBa4H3AquAeZLuiYjncs2+ACyMiLMlvSW1PzUleB8H\nZgMNwP9IujcilkXER3L7+AawJdff8oiYub+DM7PyN+qQEdk5dlVV7e4Vm3nj9a0sW7KGk07J7jYx\ndUodL73yRl+HaWZWEgqZsZsNLIuIFRHRANwOzGnXZgbwMEBELAEmSxoLHA08ERE7IqIJeAQ4J7+h\nsrOiPwwLbuqyAAAXIElEQVTctl8jMbOKpqqqDhdOjK4bxszZU9tejx07isMPH9OXoZmZlYxCErvx\nwMrc61WpLO9pUsImaTZwODABWAScLGm0pMHAmcDEdtueDKyLiBdzZVPSYdhHJJ1c8GjMrN9prG9i\n04Ztba9XvLSWRYtXFzEiM7Pi6a3FE1cBI9N5cp8CngKaI+J54GrgAeB/gIVAc7ttz2XP2bo1wKR0\nKPazwK2ShrffoaRLJM2XNH/9+vW9NAwzK1kDakDign9IBwwG1QKwafN2li5e1dZs+PCDGDZ0UDEi\nNDMrukISu9XsOcs2IZW1iYitEXFhSsbOB+qAFanuhog4ISJOATYBL7RuJ6mGbKbvjlxf9RGxIT1f\nACwHprcPKiKuj4hZETGrrq6uoMGaWfkaPHYAUhWb1m/OCpqya9UNGjSAg0cPbWv3698uZd6Cl4sQ\noZlZ8RWS2M0DpkmaIqkWmAvck28gaWSqA7gYeDQitqa6Q9LPSWRJ3K25Td8DLImIVbm+6tKCDSRN\nBaaRkkQz67/edlK22P6///2RrKAp+9Gwq5Etm3e2tVv24pq+Ds3MrGR0uyo2IpokXQ7cD1QDN0bE\nYkmXpvrryBZJ3CwpgMXARbku7pI0GmgELouIzbm6uey9aOIU4CuSGoEW4NKI2LhvwzOzSnDpNz7K\nIZPr+N29zzD7tLcw77evAjBwUA3DRg7m8CN2z9pv27ajWGGamRVdQbcUi4j7gPvalV2Xe/4YHRwu\nTXWdLn6IiAs6KLsLuKuQuMysfzj7r0/jd/f9HoANr+2+MlJVjWhuaqGxoamtbLvzOjPrx3znCTMr\nCyeedjySWLNy9zXqdm5rRBIDBvi212Zm4MTOzMpETU01VMG4qWPbyqoHiAG11QwdtnsV7KDajrY2\nM+sfnNiZWflogdUvrm17+e6z3saaVRt55IFFbWW7GooRmJlZaXBiZ2Zl46BhA3nrSUe2vV732mZq\nD6plyHBft87MDApcPGFmVgq+8qPLGDtpND/+twc4csY4/uQDs3jg3qe49875nHbW24odnplZ0Tmx\nM7OyceyJ2WzdZ776kbay498+lS2bdhUrJDOzkuJDsWZW1qqrxeDBA4odhplZSXBiZ2Zlbdu2etau\n3lTsMMzMSoIPxZpZWZty5CG8/yMn0VDfRHNLS7HDMTMrKid2ZlbWBg8ZxOQjBrF1606aGpuLHY6Z\nWVE5sTOzijB8+EHFDsHMrOh8jp2ZmZlZhXBiZ2ZlbeeOela+/Eb3Dc3M+gEndmZW1gYdVMvYw0a0\nva4bU13EaMzMisuJnZmVNUnUDtx9HbuPnncqx711YhEjMjMrHi+eMLOK8mdnvo0/PX1mscMwMysK\nz9iZWcWpqlKxQzAzKwondmZW1nbtbGDNqo3FDsPMrCQ4sTOzsjagtoYRo4YUOwwzs5LgxM7Mylp1\ndRWDhwwsdhhmZiXBiZ2ZlbUtm7ez+OlXix2GmVlJcGJnZmVt165G1qzaVOwwzMxKghM7Mytrr728\ngaeeXF7sMMzMSoITOzMra29u38nrazcXOwwzs5JQUGIn6XRJSyUtk3RFB/WjJN0t6RlJT0o6Nlf3\naUmLJC2W9Jlc+T9KWi1pYXqcmav7fNrXUknv299BmlnlWrpoFcteWFPsMMzMSkK3iZ2kauBa4Axg\nBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZG67b0bEzPS4L20zA5gLHAOcDnw3xWBmtpea\nmmqq5YMPZmZQ2IzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnSWOBo4ImI2BERTcAjwDnd7G8OcHtE\n1EfES8CyFIOZ2V6OPm4Sxxzve8OamUFhid14YGXu9apUlvc0KWGTNBs4HJgALAJOljRa0mDgTCD/\nDfypdPj2RkmjerA/MzMAho08iNFjRxQ7DDOzktBbxy+uAkZKWgh8CngKaI6I54GrgQeA/wEWAs1p\nm+8BU4GZwBrgGz3ZoaRLJM2XNH/9+vW9MwozKzuPPfI8jz6wqNhhmJmVhEISu9XsOcs2IZW1iYit\nEXFhRMwkO8euDliR6m6IiBMi4hRgE/BCKl8XEc0R0QJ8n92HW7vdX9r++oiYFRGz6urqChiGmVWi\npoZGdtXXFzsMM7OSUEhiNw+YJmmKpFqyhQ335BtIGpnqAC4GHo2IranukPRzEtnh2lvT68NyXZxN\ndtiW1PdcSQMlTQGmAU/uy+DMrPLdf88CGp3XmZkBUNNdg4hoknQ5cD9QDdwYEYslXZrqryNbJHGz\npAAWAxflurhL0migEbgsIlovOPV1STOBAF4GPpH6WyzpTuA5oClt04yZWQeOOHIczy7ca1LfzKxf\n6jaxA0iXIrmvXdl1ueePAdM72fbkTso/2sX+rgSuLCQ2M+vfRh82ApzYmZkBvvOEmZW5xx55rtgh\nmJmVDCd2ZlbWIoodgZlZ6XBiZ2ZlrW7MsGKHYGZWMpzYmVlZO/7Eo6gp6GxhM7PK58TOzMqa1IKq\nVOwwzMxKghM7MytrO3fspLnZJ9qZmYETOzMrc1OPHEfdIb5XrJkZOLEzszJXO3gAAwfXdt/QzKwf\ncGJnZmXt1WVrWfPqG8UOw8ysJDixM7Oytm7NZhobfY6dmRk4sTOzMnfEtMMYMtyHYs3MwImdmZW5\nFUvWsX1rQ7HDMDMrCU7szKysaZCvYWdm1sqJnZmVtc0bdxQ7BDOzkuHEzszK2s43dxY7BDOzkuHE\nzszK2tbNnrEzM2vlxM7MytquxsZih2BmVjKc2JlZWfM17MzMdnNiZ2ZlrXlXsSMwMysdTuzMzMzM\nKkRNsQMwM9sX9bsaeXX568UOw8yspHjGzszK0sBBA5h2zPhih2FmVlKc2JlZWVN1sSMwMysdTuzM\nrKxFc7EjMDMrHQUldpJOl7RU0jJJV3RQP0rS3ZKekfSkpGNzdZ+WtEjSYkmfyZX/i6QlaZu7JY1M\n5ZMl7ZS0MD2u642BmpmZmVW6bhM7SdXAtcAZwAzgXEkz2jX7ArAwIo4DzgeuSdseC3wcmA0cD5wl\n6ci0zYPAsWmbF4DP5/pbHhEz0+PSfR6dmZmZWT9SyIzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnS\nWOBo4ImI2BERTcAjwDmp3QOpDOBxYMJ+j8bMzMysHysksRsPrMy9XpXK8p4mJWySZgOHkyVqi4CT\nJY2WNBg4E5jYwT7+CvhF7vWUdBj2EUknFzQSMzMzs36ut65jdxVwjaSFwLPAU0BzRDwv6WrgAWA7\nsBDY41RnSV8EmoAfp6I1wKSI2CDpBOCnko6JiK3ttrsEuARg0qRJvTQMMzMzs/JVyIzdavacZZuQ\nytpExNaIuDAiZpKdY1cHrEh1N0TECRFxCrCJ7Hw6ACRdAJwFnBcRkdrXR8SG9HwBsByY3j6oiLg+\nImZFxKy6urpCx2tmZmZWsQpJ7OYB0yRNkVQLzAXuyTeQNDLVAVwMPNo6wybpkPRzEtnh2lvT69OB\nvwfeHxE7cn3VpQUbSJoKTCMliWZmZmbWuW4PxUZEk6TLgfuBauDGiFgs6dJUfx3ZIombJQWwGLgo\n18VdkkYDjcBlEbE5lX8HGAg8KAng8bQC9hTgK5IagRbg0ojY2AtjNTMzM6toBZ1jFxH3Afe1K7su\n9/wxOjhcmuo6XPwQEUd2Un4XcFchcZmZmZnZbr7zhJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZm\nZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmVlZqx5Q\n7AjMzEqHEzszK2vDhw8sdghmZiXDiZ2ZlbU/OPkoqmuKHYWZWWlwYmdmZU5UVfmrzMwMnNiZWZmr\nqaqipbml2GGYmZUEJ3ZmVtZefH4lzc3FjsLMrDQ4sTOzsrZu7cZih2BmVjKc2JlZWRtdN6zYIZiZ\nlQwndmZW1madfCzDRviSJ2ZmAL5IgJmVtRNPmsb2jTuLHYaZWUnwjJ2ZlbWhwwYydtzIYodhZlYS\nnNiZWVmrqamhpra62GGYmZUEJ3ZmVtZWr9zEs/NfLnYYZmYlwYmdmZW1AQOrGFDr04XNzKDAxE7S\n6ZKWSlom6YoO6kdJulvSM5KelHRsru7TkhZJWizpM7nygyU9KOnF9HNUru7zaV9LJb1vfwdpZpVr\nyOBBjBnrS56YmUEBiZ2kauBa4AxgBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZNrmCuCh\niJgGPJRek/qeCxwDnA58N8VgZrYXVUF1lb8izMygsBm72cCyiFgREQ3A7cCcdm1mAA8DRMQSYLKk\nscDRwBMRsSMimoBHgHPSNnOAm9Pzm4EP5Mpvj4j6iHgJWJZiMDPbi6iiqtpnlZiZQWGJ3XhgZe71\nqlSW9zQpYZM0GzgcmAAsAk6WNFrSYOBMYGLaZmxErEnP1wJje7A/MzMADp0wknecclSxwzAzKwm9\ndcbxVcA1khYCzwJPAc0R8bykq4EHgO3AQmCv23VHREiKnuxQ0iXAJQCTJk3az/DNrFwNHz6YGcf7\nO8DMDAqbsVvN7lk2yGbiVucbRMTWiLgwImaSnWNXB6xIdTdExAkRcQqwCXghbbZO0mEA6efrhe4v\n9Xt9RMyKiFl1dXUFDMPMzMysshWS2M0DpkmaIqmWbGHDPfkGkkamOoCLgUcjYmuqOyT9nER2uPbW\n1O4e4GPp+ceA/86Vz5U0UNIUYBrw5L4MzszMzKw/6fZQbEQ0SbocuB+oBm6MiMWSLk3115Etkrg5\nHU5dDFyU6+IuSaOBRuCyiNicyq8C7pR0EfAK8OHU32JJdwLPAU1pm70O35qZmZnZnhTRo1PbStKs\nWbNi/vz5xQ7DzMzMrFuSFkTErAPRt68RYGZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZ\nhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJ\nnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhSgosZN0uqSlkpZJuqKD+lGS7pb0\njKQnJR2bq/tbSYslLZJ0m6RBqfwOSQvT42VJC1P5ZEk7c3XX9dZgzczMzCpZTXcNJFUD1wLvBVYB\n8yTdExHP5Zp9AVgYEWdLektqf6qk8cDfADMiYqekO4G5wE0R8ZHcPr4BbMn1tzwiZu7v4MzMzMz6\nk0Jm7GYDyyJiRUQ0ALcDc9q1mQE8DBARS4DJksamuhrgIEk1wGDgtfyGkgR8GLhtn0dhZmZmZgUl\nduOBlbnXq1JZ3tPAOQCSZgOHAxMiYjXwr8CrwBpgS0Q80G7bk4F1EfFirmxKOgz7iKSTCx6NmZmZ\nWT/WW4snrgJGpvPkPgU8BTRLGkU2uzcFGAcMkfSX7bY9lz1n69YAk9Kh2M8Ct0oa3n6Hki6RNF/S\n/PXr1/fSMMzMzMzKVyGJ3WpgYu71hFTWJiK2RsSFKRk7H6gDVgDvAV6KiPUR0Qj8F/DO1u3S4dlz\ngDtyfdVHxIb0fAGwHJjePqiIuD4iZkXErLq6uoIGa2ZmZlbJCkns5gHTJE2RVEu2+OGefANJI1Md\nwMXAoxGxlewQ7EmSBqdz6U4Fns9t+h5gSUSsyvVVlxZsIGkqMI0sSTQzMzOzLnS7KjYimiRdDtwP\nVAM3RsRiSZem+uuAo4GbJQWwGLgo1T0h6SfA74EmskO01+e6n8veiyZOAb4iqRFoAS6NiI1dxbhg\nwYI3JL3S7WjL2xjgjWIHUQQed//icfcvHnf/4nHvdviB2pki4kD1bb1I0vyImFXsOPqax92/eNz9\ni8fdv3jcfcN3njAzMzOrEE7szMzMzCqEE7vycX33TSqSx92/eNz9i8fdv3jcfcDn2JmZmZlVCM/Y\nmZmZmVUIJ3Z9QNLBkh6U9GL6OaqTdqdLWippmaQrCtle0udT+6WS3pfKhqVbsrU+3pD0rVR3gaT1\nubqLK2XcqfzXqax1fIek8oGS7kjbPCFpcqWMO10n8ueSlkhaLOmqXPsD/nl3No5cvSR9O9U/I+nt\nvf0epPITJD2b6r4tSb091mKNW9J7JS1I41sg6d25bTr8na+QcU+WtDM3tuty21Ty532e9vwOb5E0\nM9VVwuf958q+q1okzWrXXyX/fXc47l7/+44IPw7wA/g6cEV6fgVwdQdtqsnusjEVqCW7/+6MrrYH\nZqR2A8lu27YcqO6g7wXAKen5BcB3KnXcwK+BWR3s56+B69LzucAdlTJuYDDwJ6lNLfAb4Iy++Ly7\nGkeuzZnALwABJwFPHKDP/snUv9L+zqigcb8NGJeeHwuszu2nw9/5Chn3ZGBRJ7FU7Ofdrt+3Assr\n7PM+Gjiq/Vio/L/vzsbdq3/fnrHrG3OAm9Pzm4EPdNBmNrAsIlZERANwe9quq+3nALdHdhu2l4Bl\nqZ82kqYDh5D9Y9/XijbubmL5CXDqAfwfX5+OOyJ2RMSvAFJfvye79V9f6GocreYAt0TmcbL7Sh/W\nzbY9eg9Sf8Mj4vHIvg1voeP3vbf06bgj4qmIeC2VLwYOkjTwQA2uC339eXeo0j/vds5N2xTDARl3\nRDwfEUs72F9F/313Nu7e/vt2Ytc3xkbEmvR8LTC2gzbjgZW516tSWVfbd7VNq9bZqfwqmQ+mKd+f\nSJrIgVOscd+cpqz/dy55a9smIpqALcDong+pIEX7vCWNBP4MeChXfCA/70J+Bztr05vvwfj0vKs4\nelNfjzvvg8DvI6I+V9bR7/yBUIxxT0lje0TSybl99JfP+yPsfYemcv+8e7q/Svm8C7Hff9/d3lLM\nCiPpl8ChHVR9Mf8iIkLZrdf2yT5sPxf4aO71z4DbIqJe0ifI/pf47g63LEAJjvu8iFgtaRhwF9nY\nb9nX/XamBMeNpBqyfwC+HRGt91fu1c+7GPb3PSxXHY1b0jHA1cBpueI++Z3vK+3GvQaYFBEbJJ0A\n/DS9BxWnk8/7RGBHRCzKFVfU52279dbftxO7XhIR7+msTtI6SYdFxJo0Vft6B81WA/nZlAmpDKCz\n7bvaBknHAzURsSAX54Zc+x+QneOxz0pt3BHR+vNNSbeSTYvfkttmVUqARgD596JHSm3cyfXAixHx\nrVycvfp5d6C7mLpqM6CLbXv6Hqxmz8PPHcXRm/p63EiaANwNnB8Ry1vLu/idPxD6dNxp1qI+PV8g\naTkwnX7weSd73U+9Qj7vnu6vUj7vTvXq33f0wQmY/f0B/At7niD79Q7a1AAryE4YbT3h8piutgeO\nYc8TTVeQWzwBXAV8ud1+Dss9Pxt4vFLGnfoak9oMIDuX7tL0+jL2XDxxZ6WMO9X9M9n/5qr68vPu\nahy5Nn/KnicZP3mA3oP2J1efeQA/474e98jU7pwO4ujwd75Cxl2X+3ynkv0DeXClf97pdVUa79RK\n+7xz2/6aPRcRVPTfdxfj7tW/7wPypvix1y/JaLJznl4Efpn7YhoH3JdrdybwAtmKmi92t32q+2Jq\nv5R2q4TSL9db2pV9jezkzKeBX7WvL+dxA0PIVgA/k8Z4Te5LYRDwn2Qn4z5J7suyAsY9AQjgeWBh\nelzcV593R+MALmV3Ui3g2lT/LHt+ofXa7zwwC1iU6r5DugD7Afyc+2zcwD8A23Of70KyRVGd/s5X\nyLg/mMa1kGxR0J/1h8871b2Ldv8Rq6DP+2yyc8/qgXXA/bm6Sv777nDc9PLft+88YWZmZlYhvCrW\nzMzMrEI4sTMzMzOrEE7szMzMzCqEEzszMzOzCuHEzszMzKxCOLEzMzMzqxBO7MzMzMwqhBM7MzMz\nswrx/wBqQ1b+/IecaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFXawPHfMzNpkEAooYUuTZoirGLB3vvuq666tl17\n73UtuIriuoJlbeiKvbAWbIuKIq4NEVakKUUJQuglIT1TzvvHvTNzp6VOysDz/XzCzD23nZkJyZNT\nniPGGJRSSimlVGpwtXQFlFJKKaVU3WnwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEA3elFJKKaVS\niAZvSimllFIpRIM3pVKQiDwvIvfWsN+IyIBmrM9tIvJsc92vuYlIbxEpFRF3A8+/VEQ22tfolOz6\nKaV2LRq8KaUazRhznzHmgua+r4hMEZFlIhIQkfOi9p0nIn47YAp+HdyQ+xhjfjPGZBtj/A2oYxow\nCTjSvsbWWo4/T0S+akg9lVK7Bg3elFKNIiKeFrz9j8BlwP8S7P/WDpiCX7Obr2ohXYFMYElz3KyF\nPw+lVDPQ4E2pVkpEdheR2SJSJCJLROTEqEM6iMiHIlIiIt+JyG4JrpMlIg+JyGoRKRaRr0Qkq4b7\n9rW7XS8SkXUisl5EbnDsHy8ib4rIyyKyAzjPLnvZccwBIvKNXfc1wVYxEckQkX+IyG92N+JTNdWl\nNsaYx40xnwGV9T1XRApE5EYRWSgiZSLyLxHpKiIz7Pf0UxHpEPWeeOzt2SJyj4h8bR/7iYh0jnOP\nQcAye7NIRGZFX8txvQtEZHfgKWBfu6WwyLnfcXxE65x9vctFZAWwwi4bIiIzRWSb3Tp5WoL34Y8i\nMi+q7FoRec9+fqyILLVfZ6HzeyHqnPPs9+Of9vfZzyJymGN/RxGZan9PbReR6XZ5BxH5QEQ22+Uf\niEjPhB+cUkqDN6VaI7ur7X3gE6ALcCXwiogMdhx2OnA30AFYCUxIcLl/AKOB/YCOwE1AoA7VOAQY\nCBwJ3Cwihzv2nQS8CeQCr0TVvQ8wA3gMyAP2BBbYuycCg+yyAUA+cGcd6tJQo0Rki4gsF5E74rRK\n/R9whF2nE+x632bX2wVcVcO1zwT+jPX5pAMxQY0xZjkwzN7MNcYcWlNljTE/AZcQbjHMre0FOpwM\n7AMMFZG2wEzgVbt+pwNPiMjQOOe9DwwWkYFRr+1V+/m/gIuNMTnAcGBWDXXYB/gF6AzcBbwtIh3t\nfS8BbbDejy7AZLvcBUwF+gC9gQrgn3V8zUrtkjR4U6p1GgtkAxONMdXGmFnAB8AZjmPeMcbMNcb4\nsAKoPaMvIiIu4C/A1caYQmOM3xjzjTGmqg51uNsYU2aMWYT1y9V572+NMdONMQFjTEXUeWcCnxpj\nXjPGeI0xW40xC0REgIuAa40x24wxJcB9WIFFU/gvVrDRBStIOwO4MeqYx4wxG40xhcCXwHfGmB+M\nMZXAO8CoGq4/1Riz3H7904jz/jez++33tQI4Higwxkw1xviMMT8AbwGnRp9kjCkH3sX+fO0gbgjw\nnn2IFysgbGeM2W6MSdRFDbAJeNj+3N/AanU8TkS6A8cAl9jX8BpjvrDvv9UY85Yxptz+npgAHNT4\nt0OpnZcGb0q1Tj2ANcYYZwvZaqyWqqANjuflWMFetM5Y461+aUAd1kTdu0eCfdF6JbhfHlbLy3y7\nO7UI+Mguj2F3FQcnGoyrX9XBGPOrMWaVHWAuAv4GnBJ12EbH84o42/He06C6vP/NyfmZ9AH2Cb7P\n9nv9J6BbgnNfJRycnwlMt4M6sALfY4HVIvKFiOxbQx0KjTHGsR38vukFbDPGbI8+QUTaiMjTdrf+\nDqygO1caOLNXqV2BBm9KtU7rgF52y1lQb6CwntfZgjUeLO54uFr0irr3Ose2IbE1Ce63BSsgGmaM\nybW/2htj4gY9xphhjokGX9a38vEuCUgSrtNYZfZjG0eZM6iK996W1XB8vPPWAF843udc+328NEGd\nZgJ5IrInVhAX7DLFGPO9MeYkrBbM6VitjInk2y2sQcHvmzVARxGJ1w18PTAY2McY0w440C5vDZ+V\nUq2SBm9KtU7fYbXm3CQiaWKluDgBeL0+F7Fb7p4DJolIDxFxi8i+IpJRh9PvsFtFhmGN7Xqjjrd9\nBThcRE4TEY+IdBKRPe26PANMFpEuACKSLyJH1ec1OYlIuohkYv2iTxORzGDAKyLHiEhX+/kQ4A6s\n7sEWZYzZjBWEn2V/Hn8hMtjdCPQUkXRH2QLgD/bnMQA4v5bbfAAMEpGz7e+fNBH5nT0hIl6dvMC/\ngQexxkXOhND7+ycRaW8fs4Oax0t2Aa6y73cqsDvwH2PMeqzxhE/YExTSRCQYpOVgBfVF9vi4u2p5\nbUrt8jR4U6oVMsZUYwVrx2C1WD0BnGOM+bkBl7sBWAR8D2wDHqBu//e/wJoI8RnwD2PMJ3W5mTHm\nN6xutuvt+y0A9rB332xfc47dRfYpVqtLQ32C9Yt/P2CK/TwYFBwGLBSRMuA/wNtYY+xagwuxxt9t\nxRrA/41j3yystCIbRGSLXTYZqMYK7F4gapJINHvs2JFY4wnXYXXxPgDUFLS/ChwO/NseRxl0NlBg\nf16XYHW/JvId1iSXLVhj105x5LU7G2v83M9YY+OuscsfBrLsc+ZgdaUrpWogkcMTlFK7OhHpC6wC\n0qJ+iSuVkFjpYC4wxhzQ0nVRamenLW9KKaWUUilEgzeldkH2OKbSOF/NsgqAUkqphtNuU6WUUkqp\nFKItb0oppZRSKUSDN6WUUkqpFBK9zl/K6dy5s+nbt29LV0MppZRSqlbz58/fYoyJu7JMXSUteLOX\nMpmHtTzK8XayxTeAvkABcFpwaRQRuRUryaQfuMoY87FdPhp4Hivnz3+w1mOscVBe3759mTdvXrJe\nhlJKKaVUkxGR1Y29RjK7Ta8GfnJs3wJ8ZowZiJXk8xYAERmKlThyGHA0Vsbt4Bp2T2Ilrxxofx2d\nxPoppZRSSqW8pARvItITOA541lF8ElYmcOzHkx3lrxtjqowxq7Cyre8tIt2BdsaYOXZr24uOc5RS\nSimlFMlreXsYuInINe+62uvZgbU0S1f7eT7WIsVBa+2yfPt5dLlSSimllLI1OngTkeOBTcaY+YmO\nsVvSkpZQTkQuEpF5IjJv8+bNybqsUkoppVSrl4yWt/2BE0WkAHgdOFREXgY22l2h2I+b7OMLgV6O\n83vaZYX28+jyGMaYKcaYMcaYMXl5jZqwoZRSSimVUhodvBljbjXG9DTG9MWaiDDLGHMW8B5wrn3Y\nucC79vP3gNNFJENE+mFNTJhrd7HuEJGxIiLAOY5zlFJKKaUUTZvnbSIwTUTOB1YDpwEYY5aIyDRg\nKeADLjfG+O1zLiOcKmSG/aWUUkoppWwpv7bpmDFjjOZ5U0oppVQqEJH5xpgxjbmGLo+llFJKKZVC\nUn55LKWUSlUVlZWMfe1RRmd1YlbFFhB7h9hfzkn6Yj0XCW9f7OnLLX88EwBvwE+ay41SauenwZtS\nStVi1GMPUWQ/NxAOrEJBFgxq355P/nRhva57+efTKQ7ArIqtsTuNCQdzCTztK7CWrgGWFW1mcG6e\nBnBK7QI0eFNKqVr4az8EAvUfPzzlqNPYUl5Gt+ycep8bbXjHbo2+hlIqNWjwppRStVh45fVNcl2P\ny5WUwE0ptWvRCQtKKaWUUilEgzellFJKqRSiwZtSSimlVArR4E0ppZRSKoVo8KaUUkoplUI0eFNK\nKaWUSiEavCmllFJKpRAN3pRSSimlUogGb0oppZRSKUSDN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIq\nhejC9EoplWQby0vI8qTRLj2zSa7f75X7AYMA1j/BR4PY228dch57ds1vkvsrpVqWtrwppVSSZadl\nkOlOa7LrD/NkW08k8TED2ndqsvsrpVqWtrwppVSStU1Lb9Lrf/DHK5v0+kqp1k1b3pRSSimlUogG\nb0oppZRSKUSDN6WUUkqpFKJj3pRSrd7geyYDYIIFzhmWElu+4tZrm61uSinV3LTlTSmllFIqhWjL\nm1Kq1Vt2h7akKaVUkLa8KaWUUkqlEA3elFJKKaVSiAZvSimllFIpRIM3pZRSSqkUosGbUkoppVQK\n0eBNKaWUUiqFaPCmlFJKKZVCNHhTSimllEohGrwppZRSSqUQDd6UUkoppVKIBm9KKaWUUilEgzel\nlFJKqRTS6OBNRDJFZK6I/CgiS0Tkbru8o4jMFJEV9mMHxzm3ishKEVkmIkc5ykeLyCJ736MiIo2t\nn1JKKaXUziQZLW9VwKHGmD2APYGjRWQscAvwmTFmIPCZvY2IDAVOB4YBRwNPiIjbvtaTwIXAQPvr\n6CTUTymllFJqp9Ho4M1YSu3NNPvLACcBL9jlLwAn289PAl43xlQZY1YBK4G9RaQ70M4YM8cYY4AX\nHecopZRSSimSNOZNRNwisgDYBMw0xnwHdDXGrLcP2QB0tZ/nA2scp6+1y/Lt59HlSimllFLKlpTg\nzRjjN8bsCfTEakUbHrXfYLXGJYWIXCQi80Rk3ubNm5N1WaWUUkqpVi+ps02NMUXA51hj1TbaXaHY\nj5vswwqBXo7Tetplhfbz6PJ495lijBljjBmTl5eXzJeglFJKKdWqJWO2aZ6I5NrPs4AjgJ+B94Bz\n7cPOBd61n78HnC4iGSLSD2tiwly7i3WHiIy1Z5me4zhHKaWUUkoBniRcozvwgj1j1AVMM8Z8ICLf\nAtNE5HxgNXAagDFmiYhMA5YCPuByY4zfvtZlwPNAFjDD/lJKKaWUUjaxhqOlrjFjxph58+a1dDWU\nUkoppWolIvONMWMacw1dYUEppZRSKoVo8KaUUkoplUI0eFNKKaWUSiEavCmllFJKpRAN3pRSSiml\nUogGb0oppZRSKSQZed6UUqpRhtw1Obwh9lp6Et6OKAe+u+ESOmRlNVv9lFKqNdGWN6VUi9uzY6b1\nRCIeYgM4mwZuSqldmba8KaVa3OtXX9rSVVBKqZShLW9KKaWUUilEgzellFJKqRSiwZtSSimlVArR\n4E0ppZRSKoVo8KaUUkoplUI0eFNKKaWUSiGaKkQpperhiH8+xAqwc8+ZiFx0PYGvLr2hpaqmlNpF\naMubUkrVw4rgE2Ni9q1t1poopXZV2vKmlFL1UHDF9S1dBaXULk5b3pRSSimlUoi2vCmldhqby8to\n40mjbXp6vc/9eOlSLv3kI2tDrC5RE7W26n37HsQZY8YkoaZKKdVw2vKmlNppZLjdeFwN+7HWqw6L\n3Y/o2LFB11ZKqWTSljel1E6jXUZmg88d2q8fv15zXRJro5RSTUNb3pRSSimlUogGb0oppZRSKUSD\nN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIqhWjwppRSSimVQjR4U0oppZRKIZrnTSml4uj/6EOElp6X\ncPmqK3VtU6VUy9KWN6WUqofv1q5u6SoopXZx2vKmlFJx/HqVtrAppVonbXlTSimllEohGrwppZRS\nSqUQ7TZVSrV6pVXVrNuxg0F5nRMe88DHn/Hs/xZakwyCEwzE+lp507XNUEullGoe2vKmlGr1sjPS\n6d+pY43H3HzUYQCIRJbPOO33TVUtpZRqEdryppRKCR5X7X9rrrhVW9iUUjs/bXlTSimllEohjQ7e\nRKSXiHwuIktFZImIXG2XdxSRmSKywn7s4DjnVhFZKSLLROQoR/loEVlk73tUJLoDRCmllFJq15aM\nljcfcL0xZigwFrhcRIYCtwCfGWMGAp/Z29j7TgeGAUcDT4iI277Wk8CFwED76+gk1E8ppZRSaqfR\n6ODNGLPeGPM/+3kJ8BOQD5wEvGAf9gJwsv38JOB1Y0yVMWYVsBLYW0S6A+2MMXOMMQZ40XGOUkop\npZQiyWPeRKQvMAr4DuhqjFlv79oAdLWf5wNrHKettcvy7efR5UoppZRSypa02aYikg28BVxjjNnh\nHK5mjDEiYhKeXP97XQRcBNC7d+9kXVYppWrU77GHHHnkTCiP3PT/+xN7du3eonVTSu06khK8iUga\nVuD2ijHmbbt4o4h0N8ast7tEN9nlhUAvx+k97bJC+3l0eQxjzBRgCsCYMWOSFhQqpVRNVl2p650q\npVpeo4M3e0bov4CfjDGTHLveA84FJtqP7zrKXxWRSUAPrIkJc40xfhHZISJjsbpdzwEea2z9lFLJ\nMeL6yaHnodYnu4F98YM151czxlBWVU12ZkaT1U8ppXYVyWh52x84G1gkIgvsstuwgrZpInI+sBo4\nDcAYs0REpgFLsWaqXm6M8dvnXQY8D2QBM+wvpVRrZQgvRVUDnz/A5h1lKRe8VXi9pLvduKMSBPd9\n/CHsEDZyKa6ox4KLb2iGWiqldjWNDt6MMV+R+Mf3YQnOmQBMiFM+Dxje2DoppZJv0UMNX70gzeOm\nX5eal7dqjTaXl9EhK4uc9BqCzhoCWK/fT5rbHX+nUko1kC6PpZRSCfRunxu3vOByHfumlGo5ujyW\nUkoppVQK0ZY3pdQu5daPP+b9pT/hB6oCgQRj1gzGue3oFo1JFQKx3ab2n8Xjevbimt8dwB553Vmw\naR192uVywvSXWF9RwtG9+jGwUzeWb9/CmC492K9HH4Z37kalz8sLP/2PPu07sK2ijDMHj+K3kiL+\nvXIRZdVVTF3xfcS9IxYRFINbIOAYjycCwUxNuWnpXLj7AVw0eP+Gvn21Kq6qYFNlGQPbd26yeyi1\nqxNrMYPUNWbMGDNv3ryWroZSKkVUer2UVlXhCwTwVlfzwmefMWTAAH5evZq5vxWwAqiygyNnANcJ\n2ApkAGd27kG3nj3p0r49vXNzWb11K5/M+ZIBPfowcuBAenfsiAC9O3YkPS0NlwgBY3CJsL2igtLq\narq0bYsLa1xcutuN2+0mmB/T6/fjEsEAHpcLYwxevx8DrNiyhTs/nUq5GMbSk6NGjWFNWRmuQICu\n7duze48elHi9rNm2jfXFxXiBQwYMYGN5Of1yc8nJzMTjatpOl+BrVUrFEpH5xpgxjbqGBm9KqboI\nBAzTv/6eu6Z/bQU2EGr9MY7Wqd8Bzz/Q8MkNSim1M0tG8KZj3pRSdbK1tMwK3IC4f/PZZd83X5WU\nUmqXpGPelFJ1ktcuu1HpQpRSSiWHBm9KqTop2lHGuLunAHG6TB3bzgH+wX2f33w+XXPbNU9FU9DW\n0nI6Zbdp6WoopVKEdpsqpepkY3FJg8/dtKPh5+4KSiqqWroKSqkUohMWlFJKKaWaiU5YUEoppZTa\nxWjwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEE0VolQKmD57Afe/NAu/Pb/IxF1v0y4I/knmXAVB\nYN/d83niytOarI7ri0vwuFzk5bSt0/G73zEZiJ9qpHuGh89vvTL5lWykbSXldMzRlB5KqZalLW9K\npYCfV28OBW4NtXzNpuRUJoG87LZ0bJuVlGutr/Ix+O7JDL57co3HlVVXU1rVPGk2AgGjKT2UUq2C\npgpRSrWoLxcv5sJ/zwwXRK2buuyuxKs67KisJGAgNyuzSeuomsbby77k0bXTARCxfhe5Ih4NLnGU\nES6Lfjyl89F8tvVLdlCCAOf1PI3jeh/azK9IqdolI1WIdpsqpVrUuOHD+Xn48Aad2y5Tg7ZU9v6G\nb6JKTNRj9HNHkUQWfbb1K4opBXvXf7d8o8Gb2mlp8KaUqlV5tZcqn48ObZLTLRo0/M7J+IIbjjFv\nzpa3Ww4dy5/H7ZvU+ybLhrISsjxptM+IH0T2nfKg9ST0mkxk0GE/D7Y6Ffz55iara2s09aBd6/Uq\nlSwavCmlWkxdBm28+PkcJs6ewz7Avef+H9e98BZv3pG4K7U5tc/IxC3NM3S40uel0u8jN6PmAHrk\nGxMoc7yzIuHg8NGRJ3HM4JFNWk+lVNPTMW9KqVZlyN2TI4M650L3dlGmwMLbr+W3bUVkpaeRl123\nGa6prNxXTbnPS+fMml/rgDcmYBzdj1bwZm2Ncuexf+++/K+wkDm+QtoIVAA9MVw66CgeX/ERRWK9\n3ZVirBltduAnocfgdYP74ejMQfRs35lL9joGVzMFs0qlqmSMedPgTSmldlLbq8op8VbSO7sjczeu\n4qwvXwaMo7sWwFjxsUQGfMH9wYkD4ujuFTGOCQbhc98+4Hr65HRq+hemmtwXBQMAcBEAwG1/xm6C\nn3sANwAGF/kI23CJmxG9fmqB2qYWnbCglFIqoQ4ZbeiQYeWl27trP5afckcL10jtHKwAzo/BDQQo\nDAV1qnlo8KaUUkqpCAf1XdnSVVA10OBNKaWS7O7ZHzN12UJrI2L2rAmN4Vt9/k0tVj9VszLvZjI9\nubglraWrEqHSu4NfSz5hzpaHIdSdGcDqugQI4Barq9P6NgsgAm5gz5z76d/l6JaqukoyDd6UUk2i\n2u/ntw2bOfHx18KFAnNuuYh2OW2pqPYiImSmJf4xVFFRwZ4PPhU612CNsTq6fy+O2WMYV07/CIhc\nYsuZZuTy343k2sMOS/ZLq9VBPfqGgzcniS1SrY9L3Egr/LDE5cLlygLSgcp4R5B4DndGk9VLNT+d\nsKCUSrqAMSzdsIkFPxdw30xHIlaB5845mbGD+7GttBwRoUMNS2qd/Ngz/LS9NHRu6KeVWEFcwN50\nruHqDN4QWH7TNbik9f0iVkrtmnS2KRq8KbUrunDqi3xRuDWcQsSRTmTZLddgjMHtSu2UFcYYbvni\nfd74balVIJG524hI3UHo9f96xm0x1yr3VVPh89KpljQjSqmmp7NNldqJPPLSTF6ZucjaiNOCZJyN\nR85tkdCxQ7tk8PK9lzVTjVvOF4VbYwvtJZO2lpVT7feT375ds9crmUSELHdyxly5EG19VGonosGb\nUq3Exu0ljb7Glu1VSahJ67f89taxwkJTGz/uGMaPO6bR18n0pJHpaV2D71XTqvQuI8MzEGmmpMnV\n1eUs2zgQCOeCC+WBs/9ucNvHuuwvazKFtbNH/rpmqefOQoM3pVqJ+676A/e1dCXUTunnTWs58b9T\nwwVRXa5LTr4dT4p3M6tIae5u7Khcy2fr/ghU4KYvSDWw1k68a3DZyZfdwUTNBBxBVQDoyohOj9Ax\nZ3St90tPt/IJGmM3gocaeiMnUTg6DBzyG/FKd00avKkWZ4zB7w/g8bhrP9hWUVFNdbUPEcHjcfHa\nq1/z2+qNjNyjN0uWrmX2F79ijWqHNA9U+yH4Y6N3z7ZccelR3HjH23bXo8QsFv7Sk+fRu3eX5L3I\nnVx5tZd0txuPu+YA4JOFP3H1NGuGaMR4Nce283HBbVeQmVZ7i5HX72djWRk92yWnq7T/Iw/Fr1tE\nmYmpb/jRxJTfMHpfrhh9QFLqV1+D8hL/ctwT0cBtJ+R2tWfxtr/jpxIX4KfADsiCgVQAZ2Bl7PQi\nxg7krMcNLNl6KmyNXmHB4BKDmyvZq/eNoXuO6FVIlW8TYMjwdG2ul7pL0gkLqsWVllSyvaiMXr3q\nvqzOpzMXseqXzbRpk447zcUzT8+2djjGfwEYsQK4EJGIwe3GLsNxDgI9e7bnlacvbuAr2nVUVVUz\n+vbHCbgAA5eO6oOnXSfWFhUx4U8nxRx//rNv8E2B3T1SQ/AW/AwnHH8w2yvLqVq/nhF9+3LQmMgx\nvsGfXwFjKKqqpFNWm6S8rpqCt3D96h68uYGHDz6eEwbtnpT6RSvzVuNxufAFAvx9/ies2L6Z9SVF\nrKHMqkLM5IaodUqxHwXmHXUTbdsk532syYGf3QCAi8i1U12hx4D9aNXNJZDnac9WX1HomFxXG3LS\n2zKu8yj+ve4jPOLm9X0fqdP6qmvLN5Cb3o5sT9O/1tbGmABl1T+SnTEq4THxl8cyjuDNOu53vX9r\n4trufHS2KRq8KdWSJrz5Ka99tyhuALZkYvxxaT+t28RuXTqRbre0DrlzcuS5wedxJm0suyPymoVF\nO/C4XHRtl934F5PCNleUkuH2UOH3ctbMlyis2EZ11Fqk1mOwIHHw9saBf2Fkp95NXueJX7zKR77/\nAdANYaP4ASt4c9l1DK65Khh6Sg7jR13Bz9sK+G3rGvJz8xnSuS9p7jRy09uxrGg5GZ50hnYYUqf7\n+40fFy5EJ3KoZqbBGxq8KaWUUo1RXFzM3G0Tgbcd3aMAV+DiYWtbIJ/P6d27twa8jaSpQpRSqgmM\nfuQhthOZ/Ncp2PV+VJfuPH3qmc1eP4Cy6mrapqe3yL3VzmXutrEEU14HTLCrOgA86jjKUMjBdPHN\nwuNqR5q77sNcVPJp8KaUahX8fj9D77F+WQg1j4ULidO1CjDvmkvJzkhvcKLe7TXsM44nH29a36Dr\nO22rKqdjRv3GXX2xcAHnLpiBuE1Mkt6hWbl8cPLOn+tPJc8R/X5q6SqoetLgTSmV0Isff8mDH0cN\nS4gTMC1+sOF51xYvX84pr3wYe/1oxjE3TsJlEcGcAVywo7KKrDRPnYK38movq7cXsXvXvFDZr1df\nX89X0XDbGxC8vfzLIsQdf8jLz5VFyaiWUqoVS0rwJiLPAccDm4wxw+2yjsAbQF+gADjNGLPd3ncr\ncD7gB64yxnxsl48GngeygP8AV5tUH5SnVAr7clnTzyRbUlQRCtacMVkEO2ozcYbaCNANWA+MznZz\n/xln0KtD+zrfv016GoPyWq4LaLd2net9zjO/P7sJatL63fPlE8wxPzlmpDofwxMcrJA9gMvOAiRi\nwrNWcc5mdSSQFYMQQELXsboP7xv+GLnpHRpc51Vlv9CnTb86zYBVqq6SMmFBRA4ESoEXHcHb34Ft\nxpiJInIL0MEYc7OIDAVeA/YGegCfAoOMMX4RmQtcBXyHFbw9aoyZUdO9dcKCUk1n/fYdpLnddG4X\nuSbm8BsiZ4jW2sUpMH/85WQlGKO1eO1GcrLS6dPJ+iX5l+de4+s1G8LXdKZ2AZbfsWussKAinfXf\nG9lOZYLgLRzEWWGS4WAZy9EDDmJD8UY65XTm84LZtKMdLoEKyiiggLbSlqHpQ+jk6sjzVVMAEAy3\n9r+XKl8Fg7s0Lr1LwAQ0cFMRWtVsUxHpC3zgCN6WAQcbY9aLSHdgtjFmsN3qhjHmfvu4j4HxWK1z\nnxtjhtibll1WAAAgAElEQVTlZ9jn15hsS4M3pZrOyOsmx20Fix7Ib4L9mRKnHOjX1sOHt1+Z8D7V\nPh/pnvp1BKzZvJnDprwcd8zbiltbPrgbOeVBdtjPo+u4+oIb45/UQrwBH2W+SnLTk59y5ZM18xn/\n0zQM4dYvq1XLDrjsvGEiQhfgjUMfSnodlGpNWvts067GmOBo3g1AMN1yPjDHcdxau8xrP48uV0q1\nQgIscox18wcCbCoupXuH+q9yUN/ALRU8ftBxnP2FNZZP4k22aIRtFeWMefsRKwt+VOAqdusTArni\nprsri2XGWjd3xal3xL2eAXwm0OD6VPi8uETIcMd+jmW+qvhjGONo/Oq+qjb+gJflW6ewqXQeZXwX\nXn80Ihkv9lJZ4W7mrq7xDOp9TstUWsVolp+YxhgjwSyRSSAiFwEXAfTu3fTJJJXaVS2cZAVnh/71\ncTZXVEfsM8DwG8Pdpx1d8N8EiXmLyirYWlrObl2TN7asV14ey//a8i1siYwbPJSCwUOb5NrzCwsS\nBESRpcX4KQ6UUltarnSXh84ZDV9arNRXRZrLHTd4+32//fh9v/0afO1ovoDfWntTIpfT+/KX73l4\n479CDb/BFRryJY8b97iC7lndk1aHVOYPeKnwraeKDRHlwYZzY4j7/VJpVjZL/VTdNGXwtlFEuju6\nTTfZ5YVAL8dxPe2yQvt5dHkMY8wUYApY3abJrrhSKtKsCZc36vzctlnkts1KUm3UEQOGsmpA0wSG\nDZGX2XwrXOzwlSAIHdIjJ6U8svE5IByEWPnKDOvMZt5d+wmXDDy32erYWlX5ilm+4W0Kq9/HhRUE\n+zG4sdrejtSUISmjKYO394BzgYn247uO8ldFZBLWhIWBwFx7wsIOERmLNWHhHOCxJqyfUiltzeYi\neuXl1vu8N79ewL2vfR47VizO5APnMe3Thc/vuYK0tOT+2PhowY9c886scIFEzio9f+8R3HTM4Um9\nZ1PzBQJ4A36yPGkx+9aX7aB727q1cl024w3+s3mVteFY0mrVWbfW7fyZL/PJ9oJalseCUW278vpR\nTbuW7/4zb8Ya2xY1yQDilwcnHzjWNs0hg9fHPRB3AsCb+z3ZpPVv7YwxvPaLlWzXapMM2O/ZBHz4\n8PMxGdIJL28DAQJ20Oa0btNienQZ3txVVw2QrFQhrwEHA51FZC1wF1bQNk1EzgdWA6cBGGOWiMg0\nYCngAy43xvjtS11GOFXIDPtLqV3emg3b+MNtz0cEUyfsP5jj9hvJxQ+9GXfQPgL/eyq2WzG/ff1a\nSdqmgd8H3dq3w+OJ/nHfMCs2bOTEx18F4i/+LsG0IALPfb8o5YK3Cr+XHdUV5Htig+v6jC0r8VU1\nqh6fbC+IUxrbWbGgbGOj7lM31n0TdcvVJHh4CZWc8OXVUYFdZKoQMLhD5fDYnhPoktW47vqACbC1\nejt5Ga13VQErcLPeY78dwBkToERutReThyrg0Pz/kJPRM+b8Ct9m/KZx32+q+SQleDPGnJFg12EJ\njp8ATIhTPg/QsF+pKCt+2xTzK3fu4gJ6dulY72vtO3wAC/5Z+1ix4rJKfH4/naLShCRDSWUdf0kk\nyO1WH36/n8GTHgm/f3GC3F+uuy7mvIAxlFVXk5ORUe977igtZ/9pz4auHw6urYkED+93JL8fumfC\n832BAB6Xi5dOaNwA8ZWn3d6o85Pp6yP+3iTX/f3X4S79eEFhWgNX2XASBHcrT/dx5oDvGnV+liev\n9oNUq7HzTfFSaid06N5DmLf3kLj7zj9+3ya5Z/u2mQAsK9zMra98yIoN2yPzrSXoao1+/Nf5f2Ds\ngD4R196rb2/euuRMBnbrTJo7Oa15iZT7fAn3hQdpm5jFtr1+P1vKyxsUvO0/7V817r/m208SBm+V\nPi+/Fm9naKcuXDXjDd6L020ab7uXpPHFGYlTkJT5qthSWUqf7MStR0Onjw89j+7GjO56nTDs9xzf\nb6+E12pp+ZLHw/veE9reXLUZj3jokN6Bc+eej7V2p7ET+VpdjC6ENuRQKdYqFa7QIu2B0PaYduM4\ne7fGjQFtKq+uPBErXXVk12mw5c0tgVACY4AT+i9OeK1S71rSXNlkuOs/NEM1vaTleWspmudNqaYV\nCBgCAT9/e/JZFhZU8AuEWpNGt4X55YmDt5Hdc3np8nPidrdW+/ykJ6kbtr78gUCD1z1tiN82b2bc\n9OcZJXD+gUdSsqOS4pIyjhyyO1d/9BJdyGAWlRziyuXsgw/isS8+4AfjDwVoobXBSBy8vXjA70nP\nSmfvvN3i1iFgAlT5fWR5Ei9mf9+37/Lyxh8AK2VEgPjBmwjMOfJ2MtPqH9iqplNWVsK76w+1gzUT\nmnEbL3jbXSYxoN+RCa8VMD4EF9LKWxxTUatK0ttSNHhTKvUNuWtyeCPO6gzZAvOTuKrCoi0bGdSh\nE2kuN676DsCyLdy4kfcX/8gXyxZy26HH88/PP2CeXV8gHHhFd5s6fhcG87+J41icx4aqFh28xQvm\nrPL4+00o6Fp+Svxcb8m2omQNvdt0JcMdGSwuK1lNv7b5pLvid/wcMftawuPyIicshJe2inx0i+Ht\n/Z+IuM4fv70IsFZLcCYFdgMv7vNso19fqgmYasq9BWSnD2Jbyc/M2fJ/YAd5oVY6rPfLJbBH+3/T\nqcMeLVnlnVZrT9KrlEoBj02fzbOzrNaWYFfojw/HBkrFZZXkZGXgskeJ/7h6PcN7dcXtclFeWc3v\n7no8fLAjoFhw71WMvPPRcBwSFZzFm7AQreHpY+Mb0dnKGb5s6xZ65OSQk16/FqSn5n3HxO++tDYE\nzpv1QeL6S9SGSd4KC8YYfCbA/d98xPNrfrRvFiews13eq/m6OQfm9IpbPjinT9zyoJkHT65xfzw7\nvLHpffPoxGa2xrwHAxhQ7+vvDFySTpbH+kw6ZA+GLdb3SvBvidCj/X5p4Na6afCm1C7u22VrYsoq\nKirJysqMKCupqKRNRhoul/V3+ohe3UKBXJtMR+uKIxhbeO9VeANxWvcTBDpv/uUPDO9T8y/3ZBrc\nqf6LwgNcMmYfLhmzT5JrU38iQpq4ufOA47iT45rlnusrtpLpTqdDek7MvrM+msQysyVivFz02DmA\ni3sfSaeMtjz4y1sEW9kkbooQeHWfu8jLqnlh+HZp4boEjJ8Kfyn/3Pf+hr7EpCgu38bkX/+M9frC\n3ZVuiUyTIsBNQ5snsYLbZeVaFBGO7Zd4vJtq/TR4U6oVWrutmJ4d29d+YBK8evPZABQVFXHQXVMx\nwD63PhkRhE085XCO3W8EPn+4DSwYuAGs2rwtfMHgLABgxO2PWpewW/T6dczhqqPG8fGiZcxY+ktM\nXU557m0QePOC0xjeU1fHa43yMnITdjVX4q3TNar81RzX93A7eItlXd8K4PKyOjDh+6l8VfFDqNs0\n3BUKwUH5zi7WZ/YaT1tP8/z/SaS0envCfQ1Jl6KUkwZvSrVCTT0DM54zJr1uPXEEX8HNm9/8lGP3\nG8HSNRsZ0adbzMzMDE/dBjV3apNJ27QM2repebWFtvXsxmxK/R6Ls1C6wKorrq/xvNLqarZWlNOn\nfcvM1hs77QG22MFUTUl6HxpxMuu8xVw0dFydrutxxX5vjp5xGxAxnC/EGOHgtAFMPPSCmH2zD/sH\nW6q2k+nOINvTJmLfjupK2qVbrb/fVizAmZ/Ob6yxa0icVl2EKn/LR0b5ubsxPvfd2g9UqgE0eFOq\nFepaz0S6yTDjb5fUeszIvvHXh+zRIZclD8SfUDDstsnWr10D89ZuZt5L78RdpP3H2y4nIyP+TMjN\nJWXk5YTzzQ26N7ymavAxOHbOee1z9xjGHccknlEXVFJVhSBkx7n/CE8Gi6KS5SZaUdk5i7VNWhpu\nsep80TMP8zHeiIkIFw8YwW0HHVNr3RpqS8JWsMiA5/pF7yDApJ8/CwV31uSG6FQhAUBYeMI91Nca\n3+aYsgVblnPNj0+HtiWqu9QfENLd/ojJBkHnuQ5lv8FjeXr5EyxlOwaDS4TR9ORwz+F0a9Ol3nUM\ncqaNKSxZzYLC75lb/jVFsj54RKhr1x1s8cNKNyICd+7+Im3Smv//r9q1aPCmlKrVT6sLOe2RadaG\nc6JBLXnelky8NsEC6rEqA34StbeVV9etOy5aibdu5wWMQRLU9L1Lr6jzNRZu2cCoLj0Aq+svKy2N\ndcXFVuAGdn+Z9fTplYuaNHira4LeMW//jVLHa4/XnSdicIvhmq4Hxb3G/GPuq3O9iqvK+MNX4/Ha\nTbyumPfdKk9zBxzrlAbTXliB8YtmFi/9PAu3yw74MAQMzJc1zPdN5fKNPg7ttl+N9agOeCms2EC/\ntuGJFduri6kKVNMt00pY+/a611hevghrzJo9GcR6R4gOgq1ST50Dty2Vy8hN74vHVXsrc5l3Gy//\nehIRq0fY03jcYmjLAZwy8MFar1NevYHP1h4JoXPDqUQEGNttJu2yYldfUK2PpgpRStVqxHU1p/KI\nTtobfPzqrxfSIafhrRD/W7uOPfO715jOY37BGk5/9c2I+664tW5pRSp9XjI9aVw97Q3eLyyMSfMR\nbyZs9GoJ8RITf/B/Z7NbbgfcLjfpSeoCL/NWUR3w0SEjOStevLVyPrct/BDnslLBdCIQbnnLEZhz\n4t1JuSdY+eZunfc83+5YCoTTf0S3vDknLrgEZhz4CAB3fPkoP5jlAHbw5kwdAmPTh3HjmLol0fUF\n/HG7gXcm1b6NpHus2dWBgI8PC/YifvDWgyP6zozI6/ZlwQDHscGUIvYEDAnnjxO79TGcjmU0Q3u9\n1/QvLkVpqhClVLNYNCl5OdbqY1R+95jxddFCgZvDwImTWXj9FWSlRS4Mv2lHCftOeQawAjMT7BJE\nwo0pzttFb9fR0M5dqPB6WVtcxMCOyVkP0yXJXaKpfVpm7QcByR727xIXD/zuL/U6xxvwUuorJ9vT\nhoN67c2CNcsde03EY2Z1m5jzE9nZAzdjDAFTHdp2uTyc0H9hM9w5tptcJZcGb0rtwva4KrJF7aUL\nDmfkiBGhIq/PD9J8EyiGjA/Xx8Rp1Vp021V4XK6Ilrh4HVi5QIYn9sdbl3Y5kanQjIRaz/46dizn\n71tzV5sxhmq/P+61nYoqK9haWUGfdu3pO+XBWlvrRExkkOjYX3DOzQBkedKpeZpH/RzeZxjL+gxr\n0Lk7vOW09WRGBJP+gJ9jP7mTbcbEtKIFW/EyBM7seSAd03N4tOB9AD49aALpCVZ9qKysZNmyZbxU\n/DJLqIzJRRbPbOZS9s0Gft/pDwwePLher2vltmX8/dd7Yxe+NwHH2LtgwmB4cI/XcLXiFQhEhMy0\n+Pn26mJc35Wh54FAgMLC/7IucBcuWQ0ECNjd3tlMYmDv0wDw+dbg8fSitHwJhVuPsOpht+q6CX/7\nu8Aus95kF1fRLf+WBtd1V6PBm1Iq5C/Pfsq8R8LBW1FZBSJC5yZYnD5a3CEcUS1fX/y8nH1260e7\nzHCr0fLb6tcq+Mv1sYvQB81bX8jobj3itvYFZ53GC8QKLrsh4tjczCzaZWTiEmHWiX/ilvdf5Tv7\n+LEC4wbvw9erfmZM797M/HUR++UP5bl1S2Pu+eHBpyesa/9X7rNXZ7AL7Do5t7uIh81448w2heX/\n1/CVFsp8lWS60yOCN2/Az/a44wbDZV7gx6ICOmXkhPaVV1fGBG+HfX6dPQHAucJCbJhupdyILjfM\nZzXztkzmwuw/cVR+3WbRAmyojN9iFLDHBkRPnAgEArjcrTd4S6bNpe+yLnAdYAgYq9vU2O97OdcD\nVvAmEvxDz/pTwxgwIqEu1sSS00K9q9Axb0qpuEZeNzkUPEX8lIgzYQGBxX+vWxBljGFraTnGBeVe\nL31yk5tKY31REeOemhqqWzeBDXbgFD1W76iuXfho06bQdq1j3gxMOe5ELvzoPYLvSrbLxeJLEweE\nTaXfK9YkgYg4U+IvjxUvePvPQeczoHOPpNXHG/CzumQbE+e+xkK/NTMz2FIloQCM0HZoFqs95s45\nu9UYe8F4CY95u5hDGDdsHLm5ubjr2BLsnDna1D5a/DqzA9PsICWARwIEcOEOJeQNMFKO5uRhiSfA\nTP7pcOtYCRBetsp6/ZcN/rxpX4BqNjrmbRdljKGitJLKikq2biziqkMfCO90Ccf8ZR/6D+rJb4Vb\nef/x/9rl1l+HH655BFcSFuQ2xhDwB3C30MLiqhk04u+6NduL6JnbPu4vTmOgvMpL7865cVvbhtw9\nOW6wGHxcVssap+OemmrfyDpnQw3j1p446yz6T5pU53Ftjx91PIf27c/rJ57GLxs2MG/BAh7885/Z\nUFpCm7R02mU0X366VX+6rdnuFW3PD4MzWcNBFoTj38iP3WoZk+CjHcAFAyvnoRlYrXPOiRNBJx94\ncr3r2ZDA7fL5f8aPF2e3qdsetP/QyBdiWgl9AR9VgUpmB6ZFlJuIV2adv9h8xMkkDt5cJH8pOLVz\n0pa3FFS0ZQdfvPM9vyxew8w3v8HYKahCs4SCzfjOH1x2wDZ8XF8efL3m5KJ1sWNbKaVF5fTo3/B8\nSq1NIGAiVg0I8nr9lJRV0jE3tutw2off88hzX1gboRYpCW2HWm7sj+Tm8/bnkLF70L59MkcvtZxh\nN8bmW4PwULJ4KUScM1P3ys/jlUvOirjmfndPZquzIOpcITKAu+O9D3l98fJwK2EogoCVN19LwBh+\n3bqNAZ3D3TK7PTTJqmecuociEGNC12orUAasujL+/52y6mrS3MmbWbqzOubTv1KCNYA+OA7q9b1u\nIa99LsXeMjpnJJ4esaVqG++vnsXbG78g+JdF5Ng0g3PZKZc9k9Il8NrYKXWu4yXzzya4YHt08DZx\n2LO0jZrtWx2ootxXTm56zUt4KRWUjJY3Dd6UAnw+P8sKNjFsQGwSWq/XT3FpBZ07xKa8eHX6HB5/\n6StrI17w5igPjbYW+PbVxgfQLWHE9Vaw5gzAIn6C2K8xbt634Pvj2H7kj8dy5PDYQeXlVdWMmvh4\nbFBIeHv57VYA9+OqVZzy2vSEwRtAcWUl7e1xcl6vlyGPPhZZF8fjeYMHceexx1NUWYHH5SY7Pf5g\n+ub2646t5GZk0THDmk0Z023qHPPm6CadddTl9G6f+oFFwATw+Xz8a9k0Pto+hwCJgzfr47fGZV3b\n/XzG9m35dWiVCtLgDQ3eVMP96fxHWbuuMlzgDDBc4QBs5r+vTpj5f1fz4sezefCTH2Lyul18wB5c\nctxBpHncDLslasaofezS+2ofExecbeoMqvLSPWz2+cLl9r5g8LarsBLVhluGN5SUsN/7j4UPEOgl\nsB1DmVgtW7+XPjx42tlNWq/RM/5KqCUsWBVH3rVPD7mD7PQ2rCrdQH5WJyp81Zzw1XjHOcFxcdb2\n54dOpq4mz32W/3p/ILKlLJhzDC7rfB4HDRzb2JdYJ+MXnkclO0ID84Mtf24x1uQLoL+M4qxh9V+h\nQu1cdMybSgnGGI7ea3xkYXCeOM6WKusxPcvNIUcN5/rbTmrSehU6A7cabC+uoFuXXSN4215WQVW1\nj7aZ6eRkxY7fOueog+nVuQtXvvZxRPlTX/3IU1//GNGKNeXck9l/9351vve1U1+NW77Z6+PnO64J\njV9aV7wDj9vFoAmxgR5S9wS9jXXAc0+ytqIsdF9nHVZdfD0/b93C7p3zkna/6ETF3XJy+PXM21hW\nvIFebTvSJkG6jYYa9u5d9n2dSXQjJ0C4oidCRBmb1ofsdKulMD+rE+nuNNLdaXGPFWBfBtarjlbg\nFl/AwMdbPm+24E3iruwayUX8165UfWnwpppczKDhGn7GdezmYd8DRnDwEcObtlLA7Bk3Ncl173po\nGjO/WxPaNgLfvH5do2e9FZdU0D6n5rFyH367mDuen2ltRI0vC5b98Hji4Kba5yfN4yK9hoko60tK\n6lTfwqLiuOXj3/yENxYsiZy1Gqynk2P7lrc+5IFTjgega042IsLcay5i74enhPK8pQlcsMfQOtUt\nGa4e9Ttu/GZ2TL3bYX3PH/PW81ZBxOusIc+b81j73+Aw1oJzEue/GtCuS8LkvZsrysjLalial7Fk\nModKznXvzYv+uRH7rBQdVoDkksTLY32xfjH7f3IL1uuODALDw0uFE7vux3XD/6/edXxn/8frfGxJ\nZSmX/XgNRLSMhVvr3GL9aJq8xz8Rge3eHXTN6IrHFf/X5A0/nmo/c65t6nxtLu4Z8U69X5NSdaHB\nm2oWH/9wd0tXodk4A7cgn99PWi2JXWuzvbi81uCtY7tsQtFMHAbY8/LJIDB38pV4/QHaZoZbbLq2\nr30pqzMP3oczD274GKJz9t/TCt7ieOS4/Tl41F64XJIwMbAvECDD4yG3bVuW/zU2EH174WKqK8q5\nffbXVoE40oRATOD09AnHc92HH1AKjBBYBWQK7IbhO4EPTj2Tod0jx0IGjOHoYSM4dVT8ng9fwDFn\n0ARXcmhc8J5IdOD28PxZPLbyG+vWAbAWEbDGwrUTmH9K3fK7/eukW0PPd/9Q2BTYxMPyKxD8g8xw\ntnSiP/0YM+M2DIZRCAuDQWpEkt7w32zBwC/4CIb3N33D+7Osz+vc3odz3oBjG/BO1Cw77rJi1utw\nOz4at8sDGDqld0wYuDnPTSzAHYtOslOFBOzXH8AtcNvQDxv9x9xzy4MJpa11Z4PLjFlLXgXshLgB\nOxGuta9fxgWM6lm3tXqjVfuLqQ4Uk53Wu1H1VsmhY95UiDGGKRPfZvoz31oFzp+89g+aGcuttCTV\nVV7SM8JdABvXF9G1e93ydS1bWshV5zwTvm9Ut2nwp/zUNy4lv0/yup12FXtdEn/MWfT2O7edgx9D\nv24dcSchfUxT8vr9VFVWstcke9Zg1Ou6ePhgrj/J+oU/4sFHqQj4wycnytnmeIxtoQy2fVllq66K\nnGBS6fOyqaKM3jk1f8+XVFWxrrSEI9+205c48q857zf7D+fTL7cTizYWcsJHL8ceG6pvuJty1Vm3\nEo/X52PIWxMjylz2GqD/PexyunfsWGOdV5Vspnd2p1BQ+Pj3H/H0hm8i7h1+HkwVYs/stCsc2a1a\nc563Qa6u/GI2hNLGRK9X+sY+d9MxKzwLdVXpOvq2DS+b9vuvLyfRmLfgGpzPjJ5Edh0WjF9fsZE2\nnizap7Wr9diaeP1V3LP0NAzEDd5uGPA2GRl1W54skeeW74ex/ybwiJVHzkUvRArs/HCZuKTcuqc9\nm+fY/G/IzKz/TPdfNz3M+nJrbVlPcAxfsMUSexQM+ezRe06jXtOuQicsoMFbMm1ev51z9p8QLogI\n3gAkFLytXLyW/kN7hHLGbd5YTF7Xuq2CuHrVJi469YnQtnFc37qv9TB12mXk9+7c8BekdgrGGBau\n28hpz72WsPXMBBtBJPy14paGjX078ZFJLCYc8L197EmMGjAAgLOfe4avynfYQV1kV2fwseDSyNUW\n6qPS62XIq5PCBc6M/o7uvT/0HMyDB/+h1uv5AwF8JkCGu+6tvsXV5bRPD68PWlRWyoGz/k508Bb8\nb2sFhs7JB45jsAI5Z/Dm7Fp8b9xdVPu9/PHbe6OCtzjpP+zWu+6uTjx7wF1x637qN5eG6xJKFRIZ\nDLoi9odbB09P/yNveV+NODa4/4m9XrFXFWjeP3L8xsvTy63EvW7HAvEALrL5y6CPmqUeZWUb+XHL\nWLsewc81EGrRcwNd05+hW7ejm6U+qU6DNzR4q011lRcgopWsvq4763F+mrsaxwAd69ElEa1mw8fm\n849/XdaI2ipVsyH3TLZ+hQUDpmBqEvsf47IW7Am2yly93++48sADQuev2V5MhzaZZEcl062srmbo\nE/8MF0S11nUUmH/l9fT750OhJYEI1iNhi15kcFdw0Y31fbmNUli+nQyXh86ZObUeu/s7wWEN4eW1\nnEHW2+Mu5ZSvnePLjN31aQU3Pxw3gYf+N53XN86NOjdynFs/TwdePTQ8fs8b8GEwHDXbHhdHuLUu\nGLx5JBD6484FXNnvdI7uFbkGbamvFMHFeXOvp27BWyAiKAx3nQbsVrvI4O2KvjfRJiObXm364Jbm\nG21U6S/iuZXWxK3Y4A3+MuirZquLSh6dbapqVVZSibikUcHbT3N/C7dq1GDxnMIG30OpRIwx+I3B\n43Lx7Q2XsM9DTzl22o/OIMpF6Pv1kW+/55Fvvw+NexNg5nlnk50X2R2/vrTMSm2foGFlm/246orW\nl59vwda1DO/QA09U13f3rMiW8LM+nsrckrX2+xQAxG49Cwcq8YZh9QIGdujGLX2PYGKBNRnG8fcb\nAKNnWKs9xL59wpyj7k9Y97Qax5RZ55/T8RjOGFHzGDg3bkSEf+/3ZI3Hnf3dBaHrhhnHt46LKWNe\nqKVOzSfTnctlg79o0LmLVr3Kz4EHCXZtArgFTuz3Az5TRpqr9m7k5mQCJSAeROrWrVu1vn/oebCL\n34UL6bqs2ZZEa0na8qbqpGRHBRkZHtIz0vjq0wVMuPINIDgmSBw/zeGZd6/iwpPt/FNit86JsO8h\ng/j2i+Wh8txOWRRtrYgZ8/b06xfRr3+35ntxKqGR10UtVQUsmpS4O7K0sopNxaX071rzItNzflnF\nn5+fDoRbt4Z3yODNa2Nbbksqq9hUWsZunTtS7fcz/P5Hwzsd3aZdstL4+torqPb7GfqPRyMv4pi0\n8OaZf2RUfn7kPaqqqPb76dSmDbuCn4rXMSCnK2mu8KSQ3d8ZH3oeTAfiAhaddHeofI8P7rD3B5Ph\nmsjUIaHzw61a3xw5oc7djT/tWMWgnD4RkzBm/TqPB9e+aF/fuu79Q65gZJfY5M5NqcS7lUx3W9Jc\njRurdv/SYwkHVIFQy59VFmx1NIzO/AsH9I1cfcRvvJSXVvLv9ccC1rhOt93C2IdTWSdvWOfbeeWi\n10h1C4xpN5XsnGzape8WXpUngS8LBkBUi58b2Lv3L7WeW18msBVIQ1x1G2+YKHgjbymuegwTaAna\n8mAHs2IAACAASURBVKaaRcHKjbjcLrrYY9rWr9tR4/EXnvQoEX/C238gfP/ViojjSkvi51kr3l63\n/Guq4Zau3cjAbp1JS5ASZOS1jkSpUX/EBldZWPRQbBCXnZlBRlrtP1amzpwdU7a4qCrusWMedIyP\ndNRpTG42r15xYczx6W53aGWFusqpZU1SfyDAGf+awveVZRGTG6YeeCSHjBhRr3u1Bru3r9uC9NEN\nGAuO+xubKkvommX9gg2YAAFj8LgatizYwZ/dgHPyA1hdlmd1OZQ/DzsBgEP7j+HQ/o36PZcUHlc6\nLknG8mcerBVca9a9Xb+Ysm2VK/h6/ePgaC0NWsO/6cQBFPFl1H/Z8NZJ/RPnxYunt/sxfvNfHlUq\nSQ/cAMRV8x980TK6/5r0OqQSbXlTTeLokfbC1Y5WtY8W/K3lKqQi+PwBPO7EP4Bvf/YD3ltiB9tC\nROtbpsAr153OoPzYpcT2veMRdnjDaTKCrWpL778WYwwrN25lYLfaJ6H4AwGG3vNI7MQEwtvPnnwU\nBw638roNvN8xw9bev7KGCQvbKyrITk+Pm47k+4IC/vjuW+H6RwUwzqTA7QQWXt76ulLrq9xXxej3\nre5NZ0P4kpPGxxxb7fey90d/w+putAMul6EXmUw/5k4CgQBjP7FWXXCJoY+05zeKI8aRhWebmjit\ndbFj31x2qpUZBz7SBK9eqealLW+q1fpo4b0tXQVVg5oCN4B7LziehnyCf/rdHjz5Tfy/7kWEbrm1\nD54HqLKXw4oeaylELkof9N9L/8yBT06172OddvwDkzmuXSYPlVSy8qbIcyp9PtqkxR8Huqpoe53q\nCFBzG3Tz6v/afUSMWxP45Y9/rdO5W6p28MOJfyUzweoHTi/8NAtnOB/M2bZGrBbzEr+z5Vz4DStZ\nczChbySr4Li2I/lP+QKI6aS3WDnhIvetKirkmsX30TejOz2y8hjTaQRfrvqaJfwChCcsHJF1ABfs\neU7c6wZMAG+gmgx37V2hV/9wBs6UJO5QehTIoTvXDZ1A27S6fX8r1Vja8tYKHJX5p/BGsDna/im3\n7x/2ZPxL1zX42pvWbqVLz/jN0ROuepavpi8O38/+qX/j42dy6LGJ/ygwxlBeWkXbnMaN/UglBYVb\n6Ztfv2b9oJMvfYSNRfbanDEpLiS07eyOO/Ww4Rx3wAiG9o9t3QKorPay/2XOcYWOnY7Wov891TLr\nfwYChpKqKtpnxX6PHD1+Mqvt2AwJvyc//61xdQ0Yw+CJD8ddVeLLC86tNb9ZffR9/CH7mWNGadRn\nUHBJOGVIn2cedOyLzPVW8OcbERGMMczbVMjvuvZsUJ1OeP1hlphyK8gReGjE0Zw8dHSDrlVXj836\ngKmV34YCqxG0Ywk72Fe6UIWLfxxyPjlRyXGNMWyo3EL3rMhJI4d9fp29fqu17RKYeXDidU6/Xfcj\nE3+dQjtpQ+fMXPbuNJLP133FdjtYDOYiG0A+E/aNn1qkyl9Jia+Yzhlda3yd1b5qblwUDADt1sBQ\nrjMrgNu3zZHMq5hB9GzX8OxQF3cOn17jfVq7quoFpKftjkjNwwyieb3bWbPRaiUP/tkYTIzstv8z\nhMuD2xKx352zmJyc2HRUft8viHTA5U7e/++mpi1vKeII16nhDTs4E5fwSsFj5OVbP8CCQXT0GJOA\nt3HBtQkkPv+r9xbHLX/j0Zk1Bm8+r5/tm3bsUsFbbi0rG9Rk3JghvPlp/Pc6gv3ZZ6ULew7sRecO\nDVvWqLkNv2lyRHem89EZrBpg9i0XhgM3iJgtOuSuyRHHhgLQWy6jrT0mrbzaS5XPR4c2sZ/H4IkP\nRxaEWu0M4559nqvG7s1VjrQhjZEBhEboRbcmxZnoNuf4sxj7wcsgMN6dx/jAZjzAtbSn3/MPEnwj\nrDQn1jUKzr25xjrsqK6iyu8LLX/1/unXNPj1JLKpspgumfHzN+71n9uJbilbYrdFzmEjYDhi9j0x\n3aEZ4uKjQyKHUBhj+OyQSdTHvj324N0ekctjjesykq6ZPUhz1d6CWFZWxhVLryDY/esSO+AjPAM3\nmDDYbc/O/fuw58jKiPze+3blZ7xT9iTfVcywj42UzUhGsTsjuhyUsC7VgSrSXfULiFpCetoeDZrJ\nmZbWAZiONdavLW7JBDbhZhsQHlMnwSTPXATsY7/vF+NiUNzADcDl7r9LzC6Npi1vzSBR8PbU/ybS\nf0RfALZtKCKzbQZtGhEkqObj9/v526TpfPbtqohAw2pJEk48ZDC3XHZ8jdfw+fy4XC5csX1JO4Ut\npWV4/QG6t7e6knz+AFvLyunaLjZFwV53TaY8uBEVvDlbtX64+YqY4G3P/2fvzON8qv4//jyfZfYN\nY+yMfd/JEqWFQvuqVCgpa/aiEH1TKWRLSslS0S+VJAptKISyb8MYZJkx+/7Z7u+Pu3+WmSEqNa/H\ng/u5957zPufcz2fufd33OnUmuYCEJGuwfPqac7Yh4NjoS9dmpxfkk5yTwy0rDCklDHM8MXA0j3/5\nKd+dTfS7nqQn5Xxv2Y5C0gvyuW7lO5g0eMq2OPJW4HLi9HiIDLr4h369lTJ50hW/Eofu8dVOnc5L\no2qYf42Gkbz5jzY1V1RQ98uJED6/YRJWxd8w3+XgZN4F6kcFDqLo/tMwbZ4quTJWaVjVSSZxLo/L\nb0mrdEcWUfZwrIaAgzm/zmEXO5U9Oc9b0eQN5rT62Ef22N33yWtXNW2a5o0S1zY9lZdEldBqJYrK\ndXsKyHedISKoVrFtvbH6+D14SMCCUkJLgJUILGQBFoKJwyoicElHkIR6LeRtx+oHsV4FBPNqQKnm\n7SrBes//FdumbMWSlZa6GHz77SZm9lkOQVCvQwxHNmUh6gik41C1fRgLVkzVKiQAeDwe034guN1u\nHuz8ErnphbLJDrSnwJo9U7Sbcm52QYm0c/d3e02OMPUqj2VKISKgRatKvD7niRKv/0pAkiTcbg/f\nbT7Axl8SA7b78vvDRZK3s2eTuXvUEi2NivrQblzdxvsvD7vc0/5T2HPyLI2qVAjoJ+etedv/mmz+\njAkLxfhyaLNaTMStyYSZuPFTtsr42YvXtnhtrna8Q/koFj/1hEHToby1e5O/y4xQm52qkf7TGTRC\nrhPbI762Tt6MMMwpxGajbEgYJ/qNvaR5hNjsXB7dt/wdLT+0nSmHvtaOCiFRh0geb3ID7x3cwAkp\nxxTMcH10Paa2f4Awa7Cm+TiRlcwDP6saUIGu/pSoTAQru040jfxt0jamJnyizUMlZCEIHF4VECzC\nv6LBI8FdmwdppboswNJ2bxJi1YmGW3JrpaRUDG079GIvlF9Ma/6paT814zRvnhqKXtsUXmyyqkgZ\n1cJq4JE85LtzCLUWnX/NIoIJtfl3pygOrSLHsyv7cVUS4KFm8EhSCr8jWJSjfHhbgoLDOZI21OtP\nMKSUuP3DUEre/qUoyC+UiRuAA45sks0ZkuzLy+mt+TzafiIfbpfd0iVJ4tCuJBq1qVms7Py8Qpm4\n4etefOzIWeo1rIrH4yHlXGaJyFtejv8UEd5ISc4tUbsribx8BykZuXTr0pRuXS49RcTdY5Zhyo+H\nfC33nXJxzWMzEAK2Lb407ZBugr887KVptYpFytr50iBaT3gLCbjbYK3yThrrjUfaNGHxDv/m5N/H\nDaHtq3NxYs7Da0RlhUDtHD+CPIeTkxkZNIiT3RDqvOYVfQocG2O+nrWnz/Cr4Ts+vOjrHmKzgc3G\nicGBy2Dd16wl9zVrWaQcu8WKPehypJ7wj/P5WdgtVmKCQn00OkfunejTvtHnL+pmWwUJZPPCfpl4\nGIvJSxL8mHmU1MJs7KE2gpSqAxtO/+5nJvI3cAbfv99KEeV92oFEgSEK1QjtqxLmY5Ik97YIOSvZ\no9ueMVRYgI/bv+NHWskxdNdDiizdBCyUHG1q7rkwUY4Xmy1g34VtPv39vRi7XC7ePTKZbLZjEZJ8\nbfFgF5KiLTbngrs39n0qlKuNEAJrCRPZqihwncNmiaBK+TZUKb/H53w9emmfvztRD/A2/+bzc1JN\n5bi83oZl1hMVVfei5lGKy4dSs2kpSvE3Ib/ASZf+atCBvDFqoVrWKsuCSX0vWu651CwEggrlrnzk\nW5MxMkkyzlvVvF0O1J+i+8GBHGn60dbtvLhhi+n4kef1MZOzcwi22bRgCUmS/JLPVatW8dKxY6QB\ndQWcBTY+8ijlvaovXEmMWfI+n7gu6JGUhuv4cbs76NCgoU+fhNRzdF23CN1kqfdR5ey+Zwx2q8At\nSSTmpFAzojw2YSXIT2oUFWdy0rl5vZ6eJVCJK2P5rB6xTViXulczi+7sPpX268bj8Sp1ZS5MD1u6\nTtPHzUyh985XseDBg4RFdVgXxhJXeuF7VaZpbmqSW4syDqCSnkshbwnZx4kPr47NYqOwsJDR+/ua\n1qMWvbcayJtFwKvNdC2cJHk4k3+YKmG+3yHA9AMP4ibDtA6rYs60KMp4C5I2ZlGVFgrd6Tg92UTY\nq/ucczhy+OqU7OupRsi2jX6PyuXa+pWlkzf1muuBF/KvR55rk9j9hIdfHX65/zSUmk1L8beie6Px\nBnOZoFO3+rww039IvorTiSlUrfnXPRwvBh9/8gNvL5ZrM0rqU8ZAqiqUt3H+gov7uzdh2FPdffrn\nFzgIDQkq8XihIXa2Lbt036tAqFiuZBnKAT7/eTcvLv9OPyDMROyrcX2oHld8FJemHZPgugmz+Oml\nZ3za3DFjEQlpGSYT66rBvalXMS6g3MMTfYlg14b1dfLmBxHBwdgMfoRG4rY/KYk7/k/N4SZHZX5w\n2+1cV69e4MUZIEmSouERxM97Q1uHur3YovSfuC54DaDLe2jbl5zwQ97e2x547apmrPnnMjnSly5f\n9UZBZfnyLt1BfNfZMzz8y7taG6FYOm1Cr6xwoSCH8/mZPLTZUJZMkbcudZ9pP6swl4fiOvJhcuA5\neqNydHm+v3F6kW1cHhcuyUOIVf77un3TEO3ck+IB3mOFQvokLAg60IwRHZ72Ie1Oj4Mz+X8wbf+b\n5JCF0S9PJmKB6qFqRnlmtVxe7JoKCvN5+YiszbKqxNXgZ2YRMK7R10WJuCgEWWIIClCZICjI1wwb\niLjJGAbMRjWrgoVwPqFVjVaXYaaluFwo1byV4qLhKHQy7vF3ObDrlE9pK9XWce/j7XlyxO0+fTPS\ncogp+8+qqafi+p66NsBI3nxSTwCbvvAtMp6QmEytGuX/tgCEtKxcbh6jaBgMhMJuA4dcSUcjZo3j\nwvlw0gDyCxy0HzvP1Efymr7kZb9Sy2NJksTupLO0iK9Mo7GyhkwI+H5sH9KcbmqXL2tKgjtr3Sa2\nHElgb3KGzxxtwN4pIzidkUl0SAiRIWb/mvoveZXpMvSdd29PujYoGfmq/YYe0ShZZFubEIJjI0tG\nopNzcnC43VSNji6WvBW4nITYio96jF80DTV/mCGCQNk3NBTKfC2GfQw+fihkQ5jPyVt5P0YIfr3v\nBdP4DT6brHxSS12h9VWT9PrTXibnZ1E+JJIsZz7RQWGM3rKYH7MOm8azGObxS7dXi70WgfDOoZV8\nnvyjSctVn2q80Vn2F8xwZBBtjy6Rq4C6lj7b+xryzvkjb6rWSyjlpnSiZ0wVMrjmyyw4MR6tjBQS\nHklgE24sAhqJhznETgQHFCLnoat4kWsaXXPJ1+NKYdOJ63FyFvDVvF1b/QCWP1karBQyLofmrZS8\nleKicf6PdPreLBMdLVjBi7whxFWfqPf4ifP0HSbXVFQJzSfvPE4lQ93OHo+9QabqyqORH7PWrkOr\nykx/TvaZ2XfkDI3qVLoiBO/oyWQefPlD/YBCOI1+Xeo6LAJ2zTVrtVKzcykXGS6XxpJ8+wAsfeIW\nWjRupO17PJLftThcLoJsRSv2Z635jre37gYB64f3oWrZsuQ7nQRZrVi9/IP6LVjIluRs89qU7bZn\nnuSa2e9q+7553uR73OHRw33kXio2HT3Io9+u8ZmLul1/V2+kEBvVI8sQotRZLCgooP4yc13WI48O\n50RiIt22fAEWOZJytIjgDXK1eetQiFAA8qaaJoUXeYu1hbL1nsBVIJYf2cGkvWtkYiIkv+RNRZuv\nJmiFnYSQEF6ETyVXwuBvpsqyCI+WbFcIdCKk9PnhJl371vWHEejkSb60QyvdQ7Oq9Ri0c6p2LXw0\nZAJWdtTLqQVCn+1PoNYGVfvaFWKlH5PHtyEhGUijel4lYtOarmD8vgcwkjdJkvRIVUX+mFqLCA/z\nnysy35nD2wn3GMbXZZWhLr0b6GbfTMcZQq3RBFkvn8lSkjxsOCFreS3Kd6qTNxmd4xMu23gqHO4U\nPJ4CQuzVLrvsfzL+leRNCHErMAvZX3KhJElFvq5dreTt1NGzVKtbdMTQLRF9tM/CYgEhmPbNWJq1\nb3Clp1cK4JU3V7P2u0OATmDuuKUhYwxRpE6nky695JI9zapC87bVWbrqlMn0+PMK/cEZiOxcjVD9\n3QB5nZMHEuUnKa83cgodpObkUaOcHGHdY9o8juc6TLIADk4armlSPv/1d55b971PPrmZd9xCz2aN\nqDvVkCPOh0z5pgrRtgatlZnwwfFn5KSxSZkZ1IwpY1pDeno6LT96z1eetpXY228YTRfrZE0vtaVr\n1JKekDVH/oJM8lwO7BYLdj+pLwA+2rOVF/aZTd66f5mMY71KVmHhSGYK1cJjCDVoChuvklOHePu8\nqZ+9/diEkFjWYSANY6qR4cghMzeLB7fPNvQ1OPsLQFJIgpd8i9BJmznaFL7sNJ3NJ3cw49Qy09zk\nAALoKjowsOOjPuvLceUQYgnBZrHh8DgYsOMpLbOe5m+mkDHZRKqnClGDBozjzWzxERZhYdTvD2ga\nOJVw2bW5m5P0PldnBSEhgQMNZh7shi95g1ujX6NOJd3M6fQUYBX2y1RnVcf6xCeAg1jFBW1s9Xo0\njdlMTEzFyzoeqL976YrUSv0n41/n8yaEsALzgK7AaeBXIcSXkiQd+HtndvkReYkJWKvWKzoT+N+F\nEb3nc3DPaf2AENx8RxNG/69X4E4KDu05Rb0mVUqUpuSvxLjhtzNuuK/p1wi73c6WlWY/p6cfCdz+\n30Lc/CE0qHgTIUCY3Y7NkDLktYfv5P53fdPpGIlMen6OX1mNK8t/D0fH+w+SOHL6ND0++sTvOSTZ\nR8xvWKM6ByBKSRBcc8507aAEXGcPoSDYzva8bE2e0cx5zQezde2lQWZSf9/UIPd9uYSd6efMAwPr\nbu9Lg7Lmv/ndF87SPLYSKXnZBMLOu0f61TKO+nQmq8nRNGxvNnqAEQc+UWaoVgwQJm2a6kdXNOQV\nPvbLfACiRDDlhLf/p9CJGxgz5PiMs77Lmzg9LtySB7uwYjUUvr8hvj3X17jGJ4L2i91fszR3NRt/\n3iI7+ysEqKyIZGqrFwiyyPOxYGFeq9kknTnF6+fVyhfGmGZJi6h9q9WHDN3VG2+oyWQtXmQZoEfk\nQDrEd+PFvXcquj0AD9MS7kclQ1YB4xp/zRsH78Ij5WuaPiNR1PwKM8diyYKn623AIqzYr5DpsmvN\n966I3KIg1IzUpbho/KM0b0KIDsCLkiTdouyPA5Ak6ZVAfa5WzdvVhu71DAlDdZsHaw/KX01ubj73\ntv+fqU1JzaYlzS93pXDrPdPJL1Bus8p9pHbtWN6f/XjgTiXEkaRkqlaIIcwrkOHm/rPJyXf6mFi3\n/YlSaJcDK7f8zuT/+17e8TKb/vBif8pF6RGs7cbM1JM/CPhh7KPExhZfdN4bXae+yalCw31IGW9i\n90483K4ox2pfFLpc5BQ6KBceBkCdaTNRH4LqOr5+5CF6fPSxTN7AYOqH4yP8X//f/viDez6THdWN\nZtkfe/fj+o/eN81b3T5WtyFTbupZonmfyUih4xfv6wcE2JFwGp9rJs0XJD4yDqfbjcPjJtxefKCM\nw+2myedTTbI0UyvgS97k9BUWAe/F382TJ1ca+pjNppq/nPwRiwW23zqVDEcukfZQrAE0K8/+/Dbb\n8o8qe+bEuw9WvI4BDe/226/HT0OxKho6i4Cuoh0b2YrqO2jBGKn651OFAGQ6kokO8h9c89ye+zCa\nTY0aPZngefQIWHTytvbgXPZJqzWtozHaVCVzFgFl6EKvehMvW/qfUvy9+NeZTYUQ9wG3SpLUX9l/\nFGgnSdKQQH1Kydtfg0Dkbc3+l/9xGrOLxfET5+g3SPZtUx+86z8fTlBQySNH/y343/Jv+GSrouj2\nIm9fju1DzYp65Km32RRg37SLTxNyJcnbxeDFr9ew5MhhZQ6SNpdrbEEsHyQndJVrbwo8kkStt2Zg\nCipQttcIWPb4sKvm93PbqpkkuOXIS9BdWAOnCpE0LZlFmMmbucKCbDLccOOLhNvN2qJlG5fxDnJO\nON1PTt7aLG48koUWEbWY7ieR7u2bhmpzNafuMJhYgf/rOF/rM+/QQn7O3IbRx04zc1p0k65aTUBd\ncwfRmT6tngp47TySB4uwsHnPWr5C9ru0esnXa5t6sAorj1V7jWpRsuvLj4kfsjVviaGSA8jkTZ5T\nRRpzgX0I4cFKOZ6q/1nAuZQUha4Ugm1yxP/axEaYUqsAFSx9aFZj/J8epxSB8Z8lb0KIAcAAgOrV\nq7dOSkr6y+dailJcDsxbuoEl38pJM42BBSZfLDDmKjD5bu1YWLymLq/AwYXMXKpXKFNs238qsgoK\nsAgLEcGBCVFKZiYd33rf9zoqD88QAfvH+L9etWbO0NrLkEz+cx/dfQ+N4ypzPjebumVjeXDFUral\nnPfxk1O311WuypI7enEoLYWa0WUIttoocDqpv9iL8Bq0WAANhJ11feU5xi/xcvcVYAeOPvocGYX5\nxAT795+qveJlvHPACQE7bxtFVKjeJ8dZSJvVr6H/0ryjTX3JW4/g2qx1JCgETjYxqrnVhNA5r8Wi\nO/h/0H4YtSPjsCumT0mSuP67sdq4KpmyaiRKriNqJGRCGd9iIG2SpBAvQ7uJMU/RvFFzn2vyzpFF\n/Jj+szxfPEgmwqeYLIXwkyoE3mq1TJMz4rdeBg2oRympBa82Xa6ZdhfvfYkEdmH2eVPnrqYKMZM1\n1cfOpvrdaT5vdgQOTXP3dBG53kqKXOcJwu3xgH/yFik60D7+gz89TikC41/n8wb8ARjDTqoqx0yQ\nJOkd4B2QNW9/zdRKUYrLj837jvr4SqmQH43mcze3i2ffkTOczXD4dgiAkCA7cWUuLT1Lp5EzyVQ+\na15BBlLTJBzeHvM01055W5+0st3/qq6Fa/S8oeKB0ub3SUMItst+cofOptCgUuD8fx7J7DB/MVCv\n448DApdW+6B1G/ru1DX423o/5jdZr+r/tuJBX6d4f4iPkolb12VvcSQ/V59QAOvX8E56/sAKCM6b\nKTz7HhiBR5JILcwlJjgUh8PBM5++yzdC/pY6FSH7YOo52lWtqe3/kZfht932257jw4RtzD78nc+5\nrwuPIYTQNG/a1x3QmicxaesHrLhlHH/kpRFiDaJccAQ/3fS6T8vXf13Kupzf0PV3ukZM/RMRWtyn\nPKZb4W4WIf9GpmQsQPysa8/8JfTV41clbWtB7o8i65bQnqwvWANIDNrVG4ukkCmL/FZlLNUlCDL5\n5PVpOgGQS3JlOFIpFxzHlH33AoV+3SvHNvqGAnc2IdYrn1Qb0IgbQPea/zp38v8M/mmaNxtwBLgJ\nmbT9CjwsSdL+QH1KzaalKMXlgcPhpO3YuT4RncZUIRLoecUUorDj5SG0eWGuj8bLSN4eenUmu7N1\neQI48D/9fG6hg/AAWrVzWTn0WriUs7kFZipjICqSgN2jBxMWFESdV721W7JzmxrtOapdWwZd19ln\nnDNZWXR6b6Hex7D2Y0NHcvhCCj2WLzWtc+cTA4kJDik2BUnrhTO5ILnQzKwCbixXjUV3PcTNi14j\nwXjtlM82AS7Dik889hySJFFz2auARFML7PchTZKSSkQ35woBAyu15u1zO7R9dX3hAnbe9QJHsy5Q\nKSyK9l/r2j5h0D7tvWMyzb+aYHjRMEebCgELW/enZZxODgEK3U4ynLm4XG4e+MUo25gA12yOVU2I\nNouk5GQztlW1cmZCpham/y35EFMTZmmkrb1oznZ+M7X1Nps+JB7kUyEXnBeS7PfXJ7Y/H6a9i0b8\nNPIGM5t/iMViYfTu+5WvStIIJMDE+osJCw7HI3lILTxPueC4EkWGuiUXVmHWp3x6aBTJYhdWygHn\n5Tko6+hfb3OxMlUEqjKi4uTJkxx2b8dKKogPsZIPPEXzmPvYm7EKq/gAmEzbyh2w20sWmFSKwPjX\nmU0BhBA9gDeRNcrvS5L0clHtS8nbX4/uDcfpO8JcmD6+YTne/vTvdbovxaUhN89Bx/HziiRvxuMq\ncbParBw+m8wDcz72aSMJqBwezIYXBvmM13CiUlrLcOzQFJ3Q7T9znoYV49iflMR9yz73aWtK9SHg\nl2FPEhsRwcm0DKqWicbj8dDgjdk+RMzbzHlT1Sq88+CDpOblsebwYV786XttJD29hw4JWe30Yutr\naBRfkwc+W24ikvv7DSE8xDcisMbC180r0Oah5mbD7zn9mHH1kpbvTZjWo5MqI3nT/NRA7qcQWgQs\n6fgI7SvVIstREJC8AVSyhHCePH18L/K2su0w4mPNkbEuj5vOG2T/KUnyaG39kTf12qjmU2NONV/i\n5bsVygJV3zuLcPttu+yad4t1/H9656OY0oigBz88W2sqlaNrauRND5AA8DCy9lziwisDkO5IJsIW\ng91SvP/j+fz9VAhtrO07XfksSOiBGsCgzkFNFhzJrTxY74UA0nQ43Gk43ZmEB9X0e94jOdh4ojne\nqU38lccC6FgjsdgxS1E0/pXk7WJRSt4uD9KSM+ndbrK8oz4VjBk2jVurQcvgRd7qt67ErCUB40uu\nOkyZtoQNW86bCI263u9WyE7pefkOwkKvDuf0QMjKLyDMHsSp1AzufGWxfLAY8rZ3uk60cgoKoCxH\n5wAAIABJREFUaTfpLZ82koDBXVox+JbrTSI8HolDJ05w7wdfaNc2TkCygYg81bIOI+64nWmr1/He\n7wdleQb5R14oWXBEnlNOK/u/L79kRWKSzxyfv7Yjj7dvT47DgUUIwhTNQlJqKl0++sBHXhVhYWW/\nJ4my2Wn43hwfed7Eq3dMZV5+sDcej4ea700H4TEQNaEQDsmPDAkzoTP6sUkmy59O/sxJeuX25nQW\nQsCR+yaQVpgHLomO3yiVIvBK42EibxJCSHSNrs8rnXpxOOsMDaOqYLOYNUrt1o5XHvVmIuYvJ5we\nXODRjsnjGcmb6vOmBkQY2iim9H7iFs6JP1jPXiQkmooKHOR8QPJmAZa2W4g/JOYc57XDk7T5+5I3\niRYR7elTZ5hPqpJSlKKkKCVvlJK3y4nuNRWNmXJT6nR3LcpXrEZchSgWvLQGhGDSe31o37mRqZ/L\n6cZmv7wJI/8puO7O13WTG5jIW687GzPosVs5npRCnZqB63N2eFDJD2bRzY6/fCQn7s0vcHI+NYv4\nKv4zr/9VOHUhgwoxEX6rIjQdOdN8wA95uxhk5BWQlptHrfJ65Gr7l+eQ4XCZ5Js0ZQKW97mPltWr\nUe9/vlGu6vdyc3xV5j8sa0Q8kkSuw0FksF5qK6uggJbzdJKp6XyEqrVR2YVkIq0HnxpCSHAwNedO\nN/STTOObCZfAGLF6YoBcTi2rsJCMwnw6/98C+YRSoguMBMxblnrMTMiM53zIm9I3UsDXtw3l+jWz\n9XYGWUIhRurVKI68xUmhrOk5hmCrr+nsxrXjydaujswq/ZM3NTkv/HjT60iSxOHzJ3h6/xwsAsoK\niUwBLalIrsijkGzcIpJzpPto3jRS55Ws95MO8+j1y9OAboZV28RRhpntXqffr/0wBmvIwQduBMJH\nrhWY00qvXpJSmEz54MB/8yo8Hg9TDtylBQRYBTxTbzERdvPf+xsHu8lzMJh0o6hLvwYLih2jFFcf\nSskbpeTtn4QhvWaRsD8Z42t+83bxvPZu/79xVn8/OvSabnoox0XAqndk8iZJEg6nm+Cgf1rs0F+L\nzPwCJn62hm+OngR8I28R0LxSHB/260XjV8wlpsAfuZZ3Nz7VjxplYujx3iIOp6Wb+mh9MZA3RRPm\nTd62932S8lFRrP5tF8O2KJUejNoyra1O3sbUaMDg7no1DoAaC/X6uUbfOmGYC+jKb5uQdL83uSwB\nlQScMxE143r0Y/6qK9T79CWlrVmLJ9D76gRO1TYJdt02kaNZKTRSsuy3WDMBo1lxUfun+S35CPMS\nN6ISPRCaX5k/8mYRsKDFYJ7+bY6pj5Fs+dOaGYMQvEmWQNLMeyhpP7zJmyTJGjyrxWNau0WADTfa\nT0D4RpuqyHCkExNUfPT2xtMfsSljOXq0KfSuMZnaka1N7fyRNzvlGNTAN3n1XwVJcrM5qb6y58Eq\nBmPhZwR2LOIIoUzDwRAgl7plthIZWeVvm+vVhlLyxn+HvOVm5XPhbAY16vuW1Ope/mnzAYO5s9VN\nDXn5Q99cSVcCtzZ9XhtXgxCs2/3SXzJ+Ka4uNJyg+LwZyNShySXT5v1y5Bh9/u9L/YCAI+NHIEkS\nB8+n0KiirBXxl6QXAUdHDr+s+QmTc3O5Zsl8Tb68NZO7E0+OYeOmTTx++BcfApn0uP8yWQUuF+fy\nsgmz24kLjaDQ7aLA7SQ6KJQ8l4Mmn6gmT12WrJUzk0JjLjYAYTFo8dDbPhvZEXdYODOSvwWf+qQS\nXUJq4XQ4+YWTyjmFkFS8hlGt7ryoa5bmyCbEYmfgT6+SJGWjltCyeBE9i1GzZtC8yQmEzXVSjeRN\nJmAePwRQJ0j6+pXC9MKjfF263Fkt3scluQm1Bi5t9WfxxsFbALBq9Vb1hL+qLx14sGLMGwd3xC0h\nNqaWj7x8Vzqhtj+XGujAiZmkMg9fXzj9+mmfgebVkvivlbm6VPwbU4WUIgDCo0IJjQj2e+7+ETfy\nfzOVsP44wYMDb2PFS18BMHnxwL9qiqzbW2RsSZHIySkgIqJkZV8GDVjAkUNy/T3vCgUbf7g6kku2\n762Y37zmrxKMDyY9TKPal7+WoBGSJNFi2Jum8XfPLrkpNDMzl2v/947mdzWsa2sGdLsOp8uN3WYl\nI6+A8GA7dqtuUt99PJFe739hGvNS0KFebdP+2zd0AKDNzHlkFjrN2jA/46RmZVE+Jsav7FqzlOS7\n6N/HDXFxvN/rUbKzs2m2+B3dbAqmCg0BIUGNd5WAhSLaeTvSW4Qg0h5MuVA56bBL8uD0yA/4MFsQ\nxx/Wf+89l0/lkC5Jnx/QJ7IuS3KOFDFBqEs4fW/uCkCVhAhG7V+pT15BVIGb1eKURgI9kkxwdqZe\nvBN7kLBhE1bGN+vD03vm+p13UZC1hIJVneaS6yogxGrH6ieq87Wt0/mdQ6CYQwGesDxKl7ZdAOi/\no6/WVjJsVUkuyY3DU3hFyZt5dDPUa+wPWe7TxOJL3go9OYTin7ytPt4MnZBB1xpbyXedISqonqld\no/gRwKW5RpTiyqNU8/YvRqDw8JUrV7Jw+E8gBI0fsJGa6mbWrMlERUX9DbOUkZiYQnx8bLFRYAA3\nX6eTxKuVvN30+AxyC6WA5G3NjP6Uj70838fT05ez7dhZk3wELBx8F0+89YUPyVnYpwttW7UsVu41\nY2bKsYcKeUPAV2P60fONRZo843gHpo5g2ZZfeHntVtN4bz10Ozc0qoPD5eJMRjbxsZemMZAkiXqv\nvukTVbp/1FAaz5xtCnY4NjpwRLQ/8vZJ99t5YN1qfSwBevgm/smil1+aZDj2QPV6vN7tLtO4u1JO\n07xcZZ+0I+rf8TNLX2WV0VSqaEKG2mow15Okzdno8+ajcVO2R+6bEHD9xeF8fgaR9lDCbMG0+vp5\nRa6ugTHtC4mh1brRu9GN5LoKCbf5fwEtCjmuPIItduwWs5/dnZuHoPrXGYvXr+z4lo+MoiCTN33+\nzWjFU60G+YynYsHvr3FIScJrFfqapzX3b+LMdKYSZg3Hbgkhw3GWP9KO8WWafA+zeiUFVvdHNNxw\nUWu4GPx6/FfO0Q+rgDbh3xEXF1dsKpFSXF6Umk0pJW9F4cjuk8Q3qExQsK5gPZVwlgE3GDK3C/2u\nt/aEl2O6F5LPZhAUZCOmXNEJX29tpoSvK74/qoM/QvDNb5Mveh2l+HN4ZfHXfLJNLvtkJDZdGlbh\n+0N/aPtG8vHF+D6EBdmpEHNxiUMLC53cNHku6UptbXW8kZ3r079Hj4D9li5dyssJsjb1YaucfHU5\ncI+AqROGmx4sCxYsYHpKnmwqfV7XDJzLzqbz3IW6z5vWRSFiBg3Z5sf7UqmsHjABkO0oJDIomAKn\nkxyHg9jwcDJzc2nx/ts+860dEkqCI8980EcDp5M7ox/e0X4jsFutCCGIX/Saxn1NfZXtb/cN5kxh\nLj3XLMJbM6OaPv0FIXiTN22KFv9tVRHPNbyJvg07+azXiFxXAemF+YTZghj9wwf87j6j+8cpkswm\nUKP/nDKeYpJUk/Xe8N0obZ7GaFNJ0uuXruk8kzRHNpH2UEKswX7Jm1B85yzGzwbz6/xWM7EKK+E2\nsxYtz5VPmNcxj+TBI7mxeZG413+fwBmOoJM3oxlRv94W4aEKjbmn7iAswkVscDw5zlTeOTqEQuQE\nycb0H0L8NeTNiJT0/ezKuF+ZswcLFm6osQOrCCslc1cQpeSNUvIGkJ6aycMNDLVHlWRKS/ZO9skS\nL0kSORl5RJYJv+hxXE43wiKwWv37Nfy6+RATBi6Vd4RQHtxCNoQIQdd7GzF6Qi8AUs5lEl0mjKBg\n+cbY7ZophvnLm0/XjSEq5kqbKkpREpgiTgXseGUIwUHmh9qZlDS6vrFYawP4EimDhrFDGLw/fgTr\ndu9n+GffmuQbyc6Adi0Y3u16TSPlL9pUJYlHx+tkbs/ZcxxPTmH0N+tNbdQ+Hz1wH+2qV9faH05N\noW7ZWJxuNzkOB+XCwkjOzaWdF3nzCabQzKeGwALjcSOBMxA6Y39hrC1lumbG+7NZk2f0WwNI7G3W\nOt/12Rz2uTKVKelk7ZWWtzHut9WKDGV8pc0P3UZRIdxM2Jt/OVFOjWuQoSbPVcmRSs6EcpEtXkEC\nQvUlM5C3l6r24oYGsuP+Dd+NMiTk1YmeTN7kcQQoRd7VQAhzLjh9q5I3jylQQvWTsxrajoofQbO4\npvyWvpuGUfVJc6RTOVT2K85zZVPgzqVssK/7woZDq1hXqAYyqHnefMkbwEtNV/n0/6tR6Mpg3cku\n4JO7Tb6OWk1V1NuvhE37TgfQqsp9RAT5mmdLcWko9XkrBQBnE1N9D0oSjzWdZNCs6Rk9n3jhTu57\n+qaLHqe4dCCxsVGyE4VbeagoKoVazYJ4a6nZTBMcYjc5jD/S/1qWLdyiNxDCh7h5PBIWL+cPh8NJ\n926va30APlo+gAoV/nzqjcXLfuS9T7bLSzE8bDd9McZv+5zcQjKy8qha6eLNfvmFTk6eS6d+DT39\nQNu+M/QGwpd8/LpwxBV5O242fKZpHJ88b0BmQSFxXuTt/U2/lki+Ku+XfHnbuFoVvn2mH+XCwwgP\nDkKSJPKcTlq9ImfNf2f777zz6+9a/yMTZII2ff1GFmzfE3CchnHlaVapInc1b4okSdR5w6xZble9\nOh3nzuWcw2Fa7/ERIwlWUqbEhYdza2RZ1mWnGUJBtZVo+ycGjdaK1vtDdn4+bZbNZVrHnuw/eZIW\n8fG89MtqzigCDjw4hLCwMOI/eM1wobz847xMn+rnKGDXQ4bE2QqWdO9Pq9XTTcdqAvfWbsm9tVvi\ncLsIshq08rlphPqJevb4WY8xKtU0Od+WbL3lFRxuFzd8N1471p1GGnEDWN9lGjd/P0Y7L0OPfjVL\nN34R3soHiWDsuIVTO6LeMtSSXkZUDZEjJOtG1CZIBFHWEEEaZoskzOZf83xzgzu5mZIHaEzZdzuq\ndstc29RMQnUzqoey1OO2ms8TbI0kzObfP7M4HD62jf08jdEsDICwYBUeBPdg4QA1GUQSzwI5eJeh\nE+Jt9v2xjvY1fculleLvQ6nm7SrBrdGP6zsGIhZTOYrl++QbdPcKcnCCFrFmsfiSN2DFwalERf01\ndfRKguysfBwOF+VizXPq2vF/pn1JwBffjDYFNtzUZarewHBn3vi978PsYiFJEtff+YY2NsDU5+6k\nc4d6ftt7PBIut5sge/HvRKkZOfQc8o7+6PEiSkFBgs0LAzsLp+fkUyYisFbytyNJPDHjMxPh++2t\nkjkf3z5hJknZ5jl9NuoRqpUvQ4jXw12SJJo++6ZpHb9OGkxY2KUnLXa43SRdSOO2t5dpWi5TKg0v\nEgtQ1SY4pRSnfKRxPSbd0bNEY32+ezejNm7U5XmZII8/M4otJ07wyOqVGk/QzK8GLdqJQaM1mSO/\n+pzP/kjQ9i0Cjg/QCX9SZgZVI6P8ltTSyJvB9FklOJwtD5ojxg+np1C/THmSstO5YfV8fS6g5Xyz\nAB7FdGj0efsz/m7e8EgeTuelUT08lrZrdc2ft9n0ydBrea9gkzaHe8u3pV+jWykTpP/NpztyiLKH\nkZyZwmO/yyXAvKNN1VJUX3We7ffFpcBdQLAlmBlb57Edmdj7izatH1SHF1pe/D3iq+PL2Zj1uTIX\nj26SRb78rzX/1G+/l/cNxM0pvMnbsPhlhIdduRyPnx17AoldWqCGrGmzc2etnUX2+/FEPYxaulj6\n0zD+6vAnvhpQajblv0Pepg+fz/pFimbDQN4mfzWMdh2bArD+q83MeOJD7RxAeLVg4srH8tKiQURG\nRxAUomtL7qg7CmehW5GpPyHXJuoan+H3vsnhPWc0mWXjbHy4ufio0u4tn0dyyXPVfN4MW6Pvm8Ph\nwu32EGqoUtCtw0sGQqA5tGgO/t/8MI7MzDzKGvzvBjy5gGMJaQZTneC7jc8VOc/8fAdWq4WgvzjP\nmiRJjH39UzbtOWUiJCrZemvMXbRpGthMcTI5naqxMT6aSBXvrvqR+Wt3+WjrJAF9b2zG8HsvXvMa\nCE3GzjSRt/2vXVqEWp7DSajdRsMpOhlUr82wjq0ZeGMnGk6dZQqQUOFdxuroOPMcsvLzmfXDTyzb\nvx+XYa4+ff2QNyNqzplu0ERK5n7K5yYWK/v0UXxMyG2i49iRdd7UR9V2aDolC4QAh/oY3CEUxC97\nRXEnVXOo6X8fmiyFVEiSfLsQJh83fX1H7p3oIx/k36cHCauwsC05gSe3LdFm5x0EsbzTIPJcOTy1\n/QN9yV6EqaWlHLulFK1f67CaTGzTm/s2v6TJXX7tC8QGRXEi8wwDd+tBIxaj35ofvzj9nIfyohyz\n208iSClH9dDWASY54JsqxCJgUdtFfq+DNxKS9zPvzBRFjsEsi26mtXrJf6npKhyeQgSiRGWyLha5\nzjOE2Sppv4NDF/6P3RmvmuZgBXpW/Y7g4D+XPqQUlwel5I3/Dnn7qyBJEo5CF8EKyeted6x+UrFf\nrD38Gt0bjwOPTKYEsPbAVJOcE0fPsGz5B7Rq3YLZ47cS3x4St8k3lxXfjyAmQJoGFV07GHLDGewm\nKnlb98NzZKTnEltej8i86YZX5DZQYvKWlpaDzWYlKurf6VuXV+Dg2pHztH1JwJReXbijc9HRpLtP\nnKVp9YrM/noT731nfkv/bdowbDazCd3pdNLihbn6AQMxerJDY0bc0Q23203TSXqCXWNheoDjF9Ko\nHB1Fi6lzzMYwATF22Dbu0tMWbDl+gsdWfmaenwigyVPOVUAiQsA99Roz8NZbATiYkkJMSAgdlrxj\nkCWZ+h9/aqTmEpCclcE1y981r8diaO+HvBkrLZzwIm8eSWLhnq28svcHE3mTJHT/NSHPSTUTGsmW\nMKyxhghn9Z1D6bBqKvmobSQkScj50ZQXg5+7jOSJnz7gCBeU8fT5ovqpWSSMekT1/Av17uSthM/J\nVOSrpEsIwZIWw3l8t56H74ebZAtCpiOX84UpVAqJJdOZw/qkrXyS8p3miwV+fNxUEuWHTBnbliGS\n2W2n02/Hk6iapeaiKSPbjmTAjj7qVfbR1lnxICFrMztYuvNQi8dM30uhO49N+9exgWVYvHz3rJof\nntFsCuMafc3lQJ4rmTCb7m5x9MKX7MqYrMy/lLz9E1FK3iglb5cbjkInZ0+lUaNOhSLbdW84zo9m\nTLBuv66VcznduN0ejQiW4uqB6l/ocrk4kHiW3vMVc5Awl8Wau3o9b/+0L2DRd0nA/c3rMLjHDeTk\nObht7mKtr0reHpm7iB3JGea+ErQoG8aSIf0Jslqp/5LBX02CraOfpkzYxRHumV99xdxDhlxnBpJ0\nbKScOqTWmzMM89erLCQO0zVwielphNuD+P54As9u2uCX/FUEtj49mpNZGVSLjC6Rb+Kr29fz9oFd\npvHNPm9FRZeqkDQSZzQ3GzVv0cCviuk0y1HANV+9pvfVaoaiVXlY2qEvreJqAtD6qwmKTtF/ySuV\nwFUSkVwQWQrlMbbVydvYmncSbyvLsISFgPAxtb7TZixxwVE8sHU8us+WSqpgdWe5ruy6xI0sOLNS\nOa5r59SC7gJY3sFAthXkuvLIc+dTPlg2W5aMvMlrGVJlIgvOTpbbKmusIKoysP5U0tzJLDg2Eu/k\nthY8mqn1cpK3i8Uvp57hgnOjMjd5jj1qHkCSJDId+4gJbmpqn+/YTYi9IUIE1ho6XRkcOtsE9Xuy\nAlWjtxEVVfWKrOFqRyl5o5S8qcjNzic8MlTzezOZKQ1mVoRg3Py+XHdb8Xm8ikJOVj73tZviM5ZK\n3m5tPgE8HhACe4gNp8Ojm0+V6TRuHceQMfdSo1ZcwAjWKwlJkrihx+tmvzP1QWgR/Ljaf2BCKXRc\nSEunyysfBCRvy/v0oGnD+jR63hwh2rdVfcbeI6cOaTBxpm9fSXkMWM3yACZ1acd1jRtT6HZRu/yV\n8xc6l5NNh/flh34zATWAaU8OpuHCeYEjRxX1TGt7OCufGEhybg7XfDRfbQ3IRek/v+0hWlXUI11P\nZWey/VQio7Z/o8lKfGws+1LOcfs6lfCaCRkCEh561uQ755Ek6n7ysm5axqwp8+fzlu0sIMtRQOWw\naFySB4fHZcrHdjL3AmWCIoi0hzDkh/fZlJOIRtY053Zz4Xg9A5G67wGEUhFB/rz5ZjnQqMvGUUob\nRXsnJOqJcGZ1noTdYmNvSgLPHpKJmiq/i2jJmM6yH/DdWwajBgOoASMWJINZVCeYRhnG86DWNpWj\nYi1Kqa43ms8nwuabGmnS7gHkkq7IM8tR/d8sQtayqePeX+E5Gpfv6CPrz2Dx0Y7ovmm6X1t95pDI\naVpbW7PDsxwrnyjz6IKVWliE7G9rEx6a2VdQtapM2DySE4swv2xLkoeSVE7Ye2oeIFtgrAgaVTt9\nmVb570NptOl/HKeOnqNyzfIM7DKRU4cNEafeflAej0zgFKK+7uMtf5q8RUSFsu7gKwHPh5eD3FT5\nD/6+xzpw8mQKm9cfNbXZvyuFgb3m8+kPz2IRFsJLWGHhckEIQVz5IM6nOMwaDmBQv2v+0rlcSWTl\nFRAREsyI+Sv58cAp+aBqMrSgPehtAra8PtQUlPDNtt2MXmGOMts7Q9e8dXnlA9O57RMHEx6uv6FL\nkkSh04U3Pth1mLH39OB4Sor/SavPCgMJATg8QR87p7DQf98ikJGfz4vr1rH6eKIs3iDbWN/0+PCR\n3LlE94Pao/xb/a5igi5CkXa4/3AtWjU2LFwmol7tg7wKu9ssFmKDzbdjIQSH088XsRqJOh+/qqUI\n2Zt2hiZlKsmT84oYLAqR9hBswsLhrLM0iK6M3WLFI3k4l59F5bAYKoXGsD5hN88d/sJHy6fPVftk\nOu49X0Axy8J1G+Ugj2gpjHfaD6NSRHm/vZrF1WVt3Gy/5wrdDqY3f5aqoRV5eNswnVQbR5VkeuN9\nW/QXfaqGeeir8f9FT24uk/odST/zSYasrfVIutZQnYFbQiFwIEny34HTI0c3F+f/lu08S4g1BrtF\n1jD/fHIBe/OXmTR5oMvXP1tIYCjg4Ve3bDqWUFOtfAfiO6paRlKvSjfC7WbNmDdx23ViLrnMUGSr\nWrWuNC0/g7AwM6ltWm0wMLjINZXi8qFU83YVI/VsBmUrRvP96k28/sRH8kGB0dHF8AosPw2X732V\nvJwCKlX3r7FwFDoRQnBHI0MklhrIcHSa3z4qPB4PfySlUq1meUOiXnOSXoDm7Sqw+9fz2v74l28n\nvm51atTyf/MuxZ/DyeQMKpWLpOOw2Tjx8vMykDeVYAjkz8O7t2f+N1sp8BZoaOsdaLF/mtkvLd/h\n5ExmlqYhO5eZzQ2vL9T6dqpdhU3H/zDJ8uuLJszErSS4a9Ey9iWnmHzS7MDQDu2Yvm0bAHYBSqIQ\nH/KmpizJzMvj2qXvaXLf6NyFUZt/ACTMjl5QXVj56ekRxC94A+0RblhPRWDbk7pGN7OwgPO5OdQr\nGxtwHSm5ObRdOTeg2VQ7pmiL0EyTRo2b0I4Z++qxDhLmoAYJ9Ydx4K7J7DibwOM7FhvIjmz6/K3H\nFM0kfC4/g9t/mKbIMJsdveuWym6synwkmVj8eLM5rUkgnM06zwClXrIq/65yN1I7oiqzTn2Aqv0y\na9Zk8vZhu3cBmLZjOvvc+wAJq0Wei0XAwjaylvPpnY+Y+uopPGBigzmUC5W/rym7B5FDshLN6UEI\noSmLLcKNqtFTfd7iaECaOIqEA4vwrbAwsO4K3JKTKHscDk8eNhGERcik/nz6Ib5MflK/tkrfx+v9\nXKLrdinYdKIOvrVNoUJYf+LLP3/Fxv23o9Rsyn+HvLndHs206Ha7mfTQTHZskLPmYxGsTJpJeLic\neLd7xUF6Ry/y9uWJGQgsfnO2vfTMIn7+Yo8anqa/qgrBxPf60OG6xsXOMysjj6iYMDN580oKteqX\n8YSEXHyZHG/cfP1UL5OnoFbtcowZewd16lQIGIn5X0dugYN8h5PYqHCmLvmKFTsUjahJCwU/TBxA\nmTJh5DtctBtnDkbwJm/7XvclVoPe/4wfjibJzQwERlLkf/PMo9Qor5OWWybPJEn1g/djhi0JeVvw\n0ybe+HmHF/mTNJlzu91M9+bNipUDcsqSk5kZ1ClrftFpPXc6sp7bj9nUz7jeZDTJQN7O5+YQFRxM\nqE3WeDy0Zhm/XFDIrNHnzUCaQLmekjyGRtKM72teROzG2Fp8n3r8IsibPtaBuyZr88105JPuyKV6\neFksXqY0j+Thk90/Mv3ser9kTd0XBjKlEq3lbcZSMTqOm74fqY1rEbC0/fOEWoKJVlKKZBRm8+h2\ngw+cIitEwHvXTCPCHs6sbe+y2b3TJ5HvqEpDqFC+LBVDKmLBwuM7+pvMvlYB85q9Q3BQMM/uHEUm\n503kLZyKtBOtubvlI6Z1S5KER9GqWQ3VGCbslfPAGTVlqo+ZXlEBVN+8mnTlngYjkZCw+KnRWhQ8\nHjcfHuuojOehIVNoWae7qY3LU4BAYLX8+XtvKf4cSskb/x3ylrDnJNXrVSIoxM7ER95k+9f79ZMC\nylcvw9LfitaMFYdz5y7Qr8NUNE9lA3krTutWkO/g7Ol0atbVAx1Sk7Pp3XWaSfO2YuOzxJSVi2x7\nPB66t9NTgnz766Ri55iXW4g9yIbdbvVL3uYveJT4+Ip/eeqPvwLn07JxezxUjo0GoHV/1bleV5nt\nfOevLSTdZIzsr2Y0C1YWsP61EYz5eA1r9sgBAhahvL8byJvwIibehO3dh3pSv3JlCpwuqpf1jU4+\nefIk/Zau5JQmU6J6ZAQnc3L1RgYiIwl5N2FM4LqmF4uj6ReoE1OO8W+/xcdKzKaRcC26sSf9vv9K\nI2+JT4wyJafOKMgnzB5EkFV+WBcWFrJnzx7uP/Cdr+nTi1xtumsQVSOiqfXRVIxEz5u89a3Vhhfa\n3Fqi9bglD01XTdH6Vkaw/k797zLbWcDn2zczI+NHjOSsrYjj4SY9qVOuLFXCyuLyuOltWJSSAAAg\nAElEQVS0/gV0sin7fzUBTgjI0YIXZF+tDde/hs1m8yJvqh8bzG84mlpx1clzFfDgL2PwJm/vtZqM\nxwJxIbE8/PMQnLh8NG89Im+iV8N7TTVL+/3aD81PTcDCNh+U6DoVhyl7n8RJMqBHm/aPf53FSfJv\nT7ldXbagBYcrhxWJN6FGs4Lg4TrbTW0KXKkIYSXY6j/SP/HChyTmzAXl1UTTCgIdq+3Hai0lfZcL\npeSN/w55+yciIzWH6LLhCCG4tbGiQleeS8t/GkdMmQhubTEB0E2nxvxuBQVO7uw89aLIW8r5LMLC\ngwmPKL2ReCM1LYOu4xQ/LeVB/sZTt3Fjy7pF9tuZcJLH56zU9lWSs/tNnQhuOXCYpxd+bZK9/ZXB\ntH1+ntmnS9FE/fjCAELtdsJDfP16srOzGTJtIeqj5cO7ryc+Pp7xn63hh9NyOgqV7My+txvdGjfC\n4/HQaKq5uLwRkkX26/nhqT5ULSdrytLz8un/8Qp2p6ZpfVbcexcta9YMWAlBRa1Z07Vr4TOWYX9E\ny9bM3L3DPCejdksJYLBK8EW3+7ht46eoRGtNx9tp0rChz9guj4cjGSk0Kiu/CMUveVWXh5dmzDAX\nuVyWHrVpDG4IE1AJiW/un8CpnHRu+maOJqsGYZwkF2NmfSGgVmg0X90yghM5qYTbgjmU9gdDdukl\noeSSVbL5VB7Ho/z5C8y1TBUCYzKhGh38jfP2DjDQy2pZhO6Uv+a6Ob7Xze3iwW1D5Dkp3mrP1xhM\nldgqxAab69iO3v4c4MYpHOSSqVxHmcS9o5hO/wwm7L0bb3Nj32pTiY9u8qdlXw6sPi7PQ67NWoab\na3zDmfRvOZY9F4mT8jkTeTuA1RrYR0+SJPadroYx2rRRtT8Ctv+vozRgoRR/K/LzHETGhOEnUTy5\nWfnElIlgyPPdmfPyOu34LS0n0WtAB/oNvJWQEDvfKIQtOyu/RGOWrxBVfKN/Mdo8YS6ZNfbhdjxw\n47UA/HjwpO6Frbg//X7sdLHkrUWtqnw5vi81KgTOAdWuXm3zAQGhQUHse30ETcfM1MiW6vOWnV+I\nLUAEcWRkJItfKpmG0Onx8ND8RfyWmllsW4HghgVLQMDEqrHcdu99vP9wL15Ys5a1xxORgAdWfkGQ\ngIOji9a+PdOwCWsO7SMHOKscaxsURqEzjz1ADFBZ2Hlrt++L44Ibe/LU92tMfvNugU7ckDc9f15N\nkh/ydjInnagg75cTXZh/R/uikY/EcaDep0r+REP/b++RAwcafv6idkwIqBuukMcImQyXr1wfdnnP\nStCv4rUMa9WDm9eOx/tb2nqLTDyvXe+bbFhfh/diBOu7zKDrD8O1fWG8mMCpjHNUizHXHLVZbXj/\n4qpGV+HE2SSGnnvWf5JeSclPLunVEgbseFRr2zdmIO1rX+szd28UugtJLjxPtbDqTN7T1xQg8WKT\nL7V2bslFoTuPMFvR97G5h25E/86V9CJA59ixxEd3INxWtojeRcPjcRr38JBKgescVcp0p3q5u3C5\nM7FZow3tPWw9Jf/9qwmIr6l+XItA3X1SJ20WIQjjCapU6HXJ8ytFyVCqefsXIuVMOvZgOzGG6gM5\nObnc38AchPDpwVeZP2klG1fu1I4BWIIsrDn8xmWZS/+7X+dUYrZp3JBIWPXTZFO7E8eSqVGrPMXl\nw7q5k5JHTrlLq0l733izN3XrVjCVzvo3wpu8WYDtC2Ui4nS5OZ2cQc3Kl5Y+Y8OOPYxautHHfLlh\nQn+iIkM5kZJGg8pyMtAmo82pP4zaqE/630PjejVIy8mjbERYicZuMEmXN+y61szevNNXy6ZsD08Y\nIRenVwiq9/gSgAVm33ELnWrVotWct3y0g8eKIW8mzZtxDkDi0FE+7R1uN0FWK1M2rOX9BMWlwZ/P\nmyInqX/RaWjO5WXz0pb1rDmr5qUzaq5U+6iyb2As0cBvD/mWMcpxFtJqle76sO+OZwkKKjra0S15\n8EgSdouVe1b/jwQcGIMe1KL0v9w0geBgnWym5KTTc7M8lu7zpgRRKGuxWHS/r59uku81Xyb9xKzj\nX+BtErUIiRYinj1SotbHGISwqpPBH9ML3575jkUnP1bGVoraG8mbZvpVkud6jR0tYnitlVm+0+Mg\nx5VDmSAzgfJIHizCwoQ9dyvkzbcwvdPjIM+VSXTQPzc4K8+ZQKitlkbOzpz5gRPOfspZuYh92+qH\nsQj5O9998kbgKOq1rBK+heiYMlgt/+0X7aJQqnkrhV9El4vEajWToIiIcJ92FmEh+Uy6z3GPU1aD\nX46i5ws/L1mutPjaccU3AqrXjOBkYo62L5Bv9Y0bVfEbhBEI8xdsZMXnqmO7vM4VHzxFxQrRRfb7\nu7HjvcCkw26zXjJxA1i3c7/5gEKOzqZlElc2kroV5eCCxHOp5nZeP5M6NasgSRJZeYUlIm/eed4+\n3LTTJ7WGERsPJ/gcOzo+sCbvUnzcagk4bnivLQsoxlfi50zXzGxGQjbzph60iKsECV7XEf13qv5f\n471p+gkg6fGx5qL0yvGHqjUnLtjCrOO/oWtivCDpfWqHxFF7xcvaQfVPeP9dY/n21sHYhKBquFnD\n2uAz/UVKCDh4t6wNz3TkU+hxUik0RiNu3oN6JIkOG6cglIoOqu+Yd9CDPD35KujRrDK6bBxNr7Kd\nOZlxSpcuSfLPT8Aj4TfyaJs76fnTMEWOeR53bh6MRcDn187DG90q30i3yjfiVLRNqr9briOXIb8P\nUSYqYdF+xPrFLEc5Xm71po9Mi7CY/OaMxwFeavY5r+ztTx5yGpwX992Bbh6GiU2+8unrcDiYd+w2\nVFPriIYbfNoALDzSWZunMVVIFDW4u+7HfvsYseq4HKwjz9RDx7JrKRdTzdQmzF5H+5ztOE25Ci2p\nbE0MKLN59dKC9X8HSsnbvxBBwf6/1rWnfXMlTft4qJ+WVxa3tFZ825Q7vKSGzgnBN9snIoTA6XST\nmpJNxcpm59r3lz5zWebQqWM1Vnxu1tiGh18+P7qOD+hpD1a99TjlY80PzNx8B+Ghl7/O4aXA7ZGT\nm3534Jx2zNvnDdCSwdasWI59bxRv9oyPu7RSPKmgZb04NGkELreHhJRUGlSUtRUOl4tY4IJCnO6q\nqT98EtPSKR8eTps355lqmCaMvbhAjg3DfLVrM+bMYA4SHQT8AtqDH2By/ZaM2Pi1icyB4IW217H4\n4E5O5uaYSJYR6lXaf/8QDhw4IAcrAGva3EbjxnKEd982ncl1OqgaEUOBy0XDFXKCW28T6q6CZCVg\nwTxGk1Wvmcplrb7hSeqXU82OQknECvUJpdEXLwJw4C55ezr7AnrqEJAkoblKGAO65fQfZqiGHTXX\nmFzxwEjiZPSseg27bDFsu3Dc0F6Wl5frwOVxs+Y6+f51+6YhXCxUsjV528skcBxVS3RdZCeeaPCE\nT/t8dz4v/z6eQbt6A7IP121lHuCWmndiFTYibJFFjneT7UFWu4waO3nNVuH7Eg2w48Jnpv0L+aeI\nDa3mt60viY+jS8UZflsGhkz80nP3+pA3I8LtFRE+xuiiceBUFW2OVqB+tTMXObdSlASlZtN/ML5Y\nsI75oz5GKHfKoHIWvkx8r8g+aecziS4XgdV2caHm3sjNLqCwwEnZ8pEsnv0ly+du0U8a0oisLSJR\nbyAURd7UoAW320NOdgG/7TrCyy98pT0V1m954dIX9RfCSN763d2GJx+63nT++KkLVK9UxqdG6F+F\nFkOVKFEAAV88/xh3TV1iOoaAXa8PxaYknD2TloXNaiEu2jfj/OVEgxe9IliVB/mecUPxSBJhQWat\nx/3vLOL3Cxlan6PPDeeXY8d4bOVqpb9uvhzYphW927Tm2nfkfF/aWoEawUGsfeop8p0uyoRefK3b\n+Pmy+c8YWXug71B+TDzKwJ/WKuZc8/32xBNjitVwnzlzho4bZF++1S160rRpU7k4vU/eN7T9Iw88\nh9Vi4dfkJB7+cam6Uq3tNTGVWXJTP9ySB7vFxoGMswRZbNSJKu9D3lQUup38evo4g/cu80n3oece\nU+cg79chhuMi3ScYYdPNvtHr20/vZdzRRahEUa9XKkzVCzBGqhrm8fm188h25hFpD6ztfXRbf4N8\niTARyvy2b/m0O1+QzIv7R2jXS3Xen9OqeO1WIEiSRK4rlQi7/5x+xy5s58uU8cp6ZJOuMZWIlfJY\nxXk0s/Il5nk7cG4xx/Jk8m8sj2WE21NAriuJqKD6FyUb4MCpF4D3ZfmUkjd/KDWb/suRfNacfd5R\nWDzR9rg9BCLk3asO03eEYO2pWQHl2IOs2kOlecc6ZvLmBwX5Dk4npVKnQSXtWMLhMwx5YL7ml/bM\nhDvocW8bvtk5OZAYDVarheiYMBIOmUusOByOYn11/gn4+RNfzY0RtaoFTsp6KUjPyefGUW9rmo+l\n4x6iYXU9111Scgp3TV5mIivGz8dOnWP3rBEcO5vKG+8tYcsFiACNuAFUjIm8aEd5I9R6qQB5eXm0\nfmUBAO0EfDDFj2ZMVb0oaPaKEmGoEMtfRz5NdFgoVkNOLAHUfe1NfccLQzpdi9vt9ju/fJcLSQK3\nn7+fk+npXLdMfXFSVEwGUlgFODFotKlPrtNBjtPBwJ/W6vMxrklInM3JpHKkb+qGyT+uYVHSXvNB\nSeL2379iVH6auqt9H5WtwWx+cBS1l0/F45Gos+IVvu/+NC1jq3H0fv2FJ8tRQJvV09ie+QcNPnvJ\nEHVrNmcevPtFnzkFW+0M37tMGVvut+mWFwi3BdN27XhDXQJJuQcJjgvdLUPOhyandOm0YYxGvL7p\nMpVQaxDfnDNGQwj0Sge61s9X6yT44to5CCHwSB7SndlFkrel7Rb6Pe7yOHFLboKtss9shZA45rf+\nEIAPDyxka4FcC/SZ33pRkWqMa/l6wDGKggf5t7fywAyOsN4nSa8VmYhqP0EBlRlKCp/zVP0PL2lM\nbzSs8BjHEvX5W+ni08Yigtn1R0/5PR3oVOOI5gPn9hRgtQT2LW5U7X/A/y7LXEsRGKWat38Z1n/6\nEzMGf6zf1ZXt/x2dxua1+5n1ylJIFthrCL7cEpi8XS2QJAmXy4PHI9HjVsWUpDxbN343rujOfxPa\n99a1ciqxvaVjPaYMuu2SZZ6+kMG4SYvYr9gKt701DLvVytm0LEKC7CScPseAOV+YCJs8vmFf2e6c\nPpSDf1zgq++38PGek0hAuRArP0w1kP+LRFZ+AeezcqhbQSatDSeYAx4OKuRNdfxXUX+K2R/OGMTw\n66iniQ4N5WxWNmVCQ3l30y/M3rYDSTHRqS8fCc/qxHDwB4tZdyFVkyEhk4kQq5WDzwzHHyRJotbc\nGUiq9gqhaAV1n7cxDZvz+qHdmtwxzdrxxDUdKHS7aL5YJp2SgfAl9R/L6ZxMqkb497Ec/+MaPtLI\nm8r45PGEgMRHxlHgcuJBIswmv8zUXi7ne5MkvZ0xuABgUefePL5lmTaOSti0n4BBm6cn1pX8nrtd\nasSA9jdSLbYCe5OT6LtzgY/mzaLNWfaJU5MBWyw6YVndeTLRQbo5Ma0wm3y3gyphV65uLUCf7f00\n7d71ojN3N7+baLtvFOfQXb3Bi2TNarn8kseVJA+vHuyJrFkzaxCtxfi8/VVI/OMbTjrlUlcWoGHs\n+8RGXCdrDx37iQj+Z6Q8uVpRmueNUvLmje4VB6J5+qoQgskfDqJV5wb8cTyZGvUr0b264UFlgbUn\nZG1FTmYeLqebmNiifTouBYcP/EHdBpX9Vj7ods0U03we6NOa/gN7FiszL6+QCxdy2LcnkenT1wO6\nRmnDhuf+kVUW/JE3BHRsUo2f95/S5v/8E9dz53Wt2X/sLPVrxF20iVWSJFoN8tJCCfh+2gA27DvK\n/5Z9bw4MUD7vnjVC05I1GymnATHWM72SOJJ8geplYmg+1ZDHSyFIPw97nFk//sLyPQe1U81DBP83\n2ky6Tl24wA0Ll8q+bs+O4GxWNpWiLv/vGeScbDbFreGpJQv5JjcDBJx4enQxPS8eDZb+f3vnHR5F\n8cfhd+7SE0IPvffem6AivQgoP0GwAApYKApIUVCqFJGiYEHEgiAIoqAoXaVKkd5Beq+BhJB2uZvf\nH7t7u5dLQgIhgMz7PJq73Z3Zubll77Pf+ZaxxGJdJtXu3VkE7HhusFu8uSVuEuJtx1MDCfH1J97l\npMIiPXJbF2+Jl2ET52NLvF0IzVl+W4v3qbZUX+7Te1zeYDDZ/JNfXj8TfZkw/yxeNV7NJL1mZYSV\n9b2DBtLC85u647L0J4DZtWbQectL7vMIYGz5D8gVmCvZfs7FnCBXQH7sermq/rvaAZ4RqgUoS8+K\no245puvx5wiwZSJA952bcKAJYC2XpeXM61066WCAm46LIGwsON4GQ1h2LrHpludV3B8o8YYSb7dL\nuxpvE3VRq1pZuEYIn/+kmbnjYuNxJrgIugspNxwOJ77JRIRu2rSJoW+s0N7Y4Olnq/Hz/O3uX5K8\n+f2ZOT91kasPMj+u2sCHs7S6m1tmalGS1uXGtPLZvGV8ufqAh3jb8WnSQsyR4MQ3BYHYb/rPrDx0\nEsAreW1S5aysx20Z8johweY15XA6EQivXHAOp5MbsXHs3b6N7n9u9eivSt4wfuj6vJYmBHO7IXb3\nDeyNn48PxceZ1rr369elbqlSjFu2nGWnz3iMuXLmUH7q3s39vuhHmtN3OWBxn7RFqBoWw26/zGPV\neT1qUkja2kN56ak2lMiSnQAfXwrN8Iwy/a7J0zxeIOU8fAa7L56lzYrvPJZdkbC4wfOUz1sIKSXF\n543Rd2oWrz1PDSDIP3WBOFqeN0OkCfdrw1qWWLxpX52nVc60vMGGRiPw9THF2W9ntzDugJHrzrDo\nae7wi+oOI0tApiQqLHiLN6d0YdeX8M5ePkuvw1p0bbAQzH5E8197duNrJLaWGX8Lko+xtTxdN6IT\nognySTky2uGK9ygmP2/XNP7hD4t4gwHFPyF7kGf+OZfLxfv7n8JM2utyi2WrT5sNibCIN4A3kxBv\nZ6P3kSegNEIIvjsyDtDyyKUk3i5FbmXjlW7mnACNCmr320Cf3MQ6zmCzBeAjsrH6VGltnHrbxwsf\n9u5QcUco8YYSb+mBIz4BX72clMPhoHUpfbnRJmjYsSz9R72UIeNwOl3ExjoIDvbnwN5TvPHKd+59\nPfs14KlnHsmQcdxPzPplFVMW7QZMgbT16/Qr72TlwJlLFM+THV970gKuQj9TFEmgVaVCLN5z0iuH\nmXGMdcwI2D/GFI0XIm5gt9nImckz+i4+IYHw6Bhyh2Yyl0z19jmDArgUHevRP+DO67bytc4UzpbN\nQ7yBZn2rO3kKFxISPLbbBRx+S5vLeKeT0lNNN4JjaRRvOy+ep3KuPBSeZuRHlO7znHhVe+goM+ND\noi1WMYCTXQcm2V+Cy4VEy7FW9rtxROttjj0/kGJz9JQiuhhZ3eo1XAKKZMrG3B/m8i7HSFyNoXvu\nSgx6rBWgpfcos9BqHTLzr2kiTehtk7O8weB8T/LB+cVYxVviVCFrGg0l0CeAF1aM5SjXsVrThJAs\ne2QYIUGmde5mQiz+Nl98bHaeWzuUy65ITMuYdPtfTazch9KhRQFos74nApdbcFoT8dosVR7m1p6e\n5DwDnI05T77APMnu/6/wy7HK+ivNqvdkkV1o36sNKZ2AQAgbf54ohRks8Rg2VqPlwRtErfzdsCdz\nf1CkHiXeUOLtTnHEJ3D66CWKlskLwMLpK5g+zrCAaXfapUduzzk3NTStMcLixyRYsWUoAOfPXMMv\nwIfsd2H59kEiOjaez+b9xbzV+7ysW8b7vz/tjb+/L1Vf9RQ7n735FKFBQZTInyNZQXYnGHVNjfPt\nHX/nS6tGpCngVXLr0Ht9mbluI6NXbwIBu956DbuvL34+GR935ZISp8uV5LwWnjYBaYgn9/8sPm+G\nC1viYvLA9nY9yRYSwpWYm8S7nOQNDjXLYwHDyj/KS1W9M/5fiY0iR4AmhKSUlJo/Gqel336F6vDR\naUtUojDFGUBhAjnJTQ8/uY5BZXmvSXuP8xyKuECwzYcn135MYn84KcFu+Txbmo0hOiGOhn8O0wMY\nJIahVQhYnyji9IV173MmPhy7LXG0qbU0lmnlWvyoubT+27FVfHPhZ3N/KsTblTgt8MPP5kuor3mf\neW3bi+5+plb6hlgZQ4hPJvrsfM7jMxuRmlbL27iKC7zOczvEOiOJSbhKVv8iHtu1PG/WaFMbL5dc\nn6o+bzrO4CMCWXGqA3Be/660z/BIzuVkCTFThhw4N5lL8Z+jCT098lWAH3WpXmh2Er0r0oISbyjx\nlhRzvl7ErMG6ABOCIfO7Uu/Rqvd2UMmwceNehr2h1dV8Y/CTPPl0NQB3xGx6JAp+EPh99W5Gfr3K\nwyF/0zd9SHC6eOTVKWaNcgHSBkhT3PwzvQ82m434+Hhq9/7Ufdz2aX3Zsuswr0773S0SNn/U0yta\n1+lyuXO4pRYpJdFxDmq9Z57vnxGvExioLY2We9ssmWXst1reDC5H3SQ0wB9/XYA9Nnwyl7AEJujD\nGtCgFt3q3Z7l9afde/l661YOXgn3tBAKaF+qJGOffBKny8W12FhyBKWuIsS12BhuxMdRMNQzUvSR\naRM4h3EOi5VNaEEU7nNLtLQhicTboef74p9CNPW+qxcpky2MvZfP0WblTI+2CPAFigs7B0UCIHmp\nSGUGVGvGwfDztFvzrXlyy3lNq5vL3ZGwiDub++LTrF/rGg/i8T8+wCqwPAIUgJYBZYjwiWNj9FH9\nPJIqPvn4rIF30Mubf4xgF5GmL50R1KCPsbx/ASbXeYsX1g7mGjf0MXmKN4BYZyxX4695WNE6bnoF\nq+D7vtaXyc6tgVW8jS/7KQ6bg5H7jXyY2vaSgeU4Hrdb/8y456J5li48XlALPIpwhOOSTrL45uBy\n3AXCAu6tdU9KFyCIjLzChqutQdwAXNgJo2mR1fd0bA8bSryhxFtSNM/dw3yj39mXnvfOPn4/ExMT\nj8vpIjgkgOaPv4+x4mU4+I/+8H/UqlPaq90HHyxk+fKD2hsh+POPtzNqyHTuPZEj56U2RgH+fvDX\n7JRThhjUelHzt/LIbWa1PEldtBnvgY3TeuPr68vh05fJlyNzkkl/q7zuuYSYM8SXFePNJKdOl4sD\npy5RvnBur7Yp4Uhwcjo8gtYfznT3P61LK+qV1bKzJyXeELB/tKeAO371GrEOB2VymxU25mzexshl\na5NNa2L9PGvf6IavgNpTZ3gfq7/vXbsGs3bu5FpcvCmk9DQbNXKHMbVpU2rNnuXu91ifftyIj0NK\nSai/p+9nkU8meiarsFjPEJDTx491L/UgwGINdLpcxDkTKDPzI892wP9yFuTnq6fxEHrAiS5mLdCD\n1y6RNziUUL8AHE4nJeeOJ7EAM9takt9aLGs2m7HPOnqJsJl1QzXrme6HZktevBnHWstUbW8x2t3r\nB+vm89PNHe62QkBDfHi/SdLpI+r/8Za7T4AvavSjx9aJ7vcFRHa+fvy9JNtakVKSIBM8qh8Y4s0m\noBlP8GKt527ZT1K8uaOjcRYAGmRtSYnYKnwdNwIbUITyBIoQulQ0/71rVSIkNmEjyhFJiK9WLmrG\n/r6EcxRw4ELzf7Ppc9u/zIrbGt/dYt2J4hjWOT/Ri6r5X8bX7vnAsutUeUDLs2gT7alQIK0Jgx8+\nVJ43RZIsveCddPJOObzrNG+20zOGG4Lw0LgUWqSezs+P4Py/kLeooGatKqz6YwdFSmRh6DDNmTwh\nwbvN5avRSfaVJ/e9K2915ILn+7j41LfdPMvbx6pml0l62gs8hQueZbJKFki+TuKOz1NeyrTbbF7C\nbeeJ03T6aIH7nLsna31IKWk5+CNOx2vj2T62N3s/NPtPcJqZvvaN60v9EVO4FGvJqZbEc2KR7FmR\nUnL40hVKhmlpREYuWwu4Nav2WngkzHCz8uC/jFq5xhS4SRhq33y8HtXz5abTQs2xOxOw9LXu5A4J\nSdGym/xzrSG0vNteToin9IyPsIorN1oFdMsGQVBQoFZSwqNvreHcPVt4Z4fFYd3Dj0075vjz71B0\njhFlmsQYvTDUl2Ro4cdoX/lR/Ozaz0CZhcNTnI9EAezaWXQRXG3pYGzA5qbvs+TmTvc+YxR/CAdr\nVgxiXZMPmLZvKbPP/4nNvdTq+a2+vnUiUkrdf05yliuM/3sGPWo+x5W4CAoHJ23BEkLgKzyjV1Py\ndUsNK7b/ymLmAdrXV5yK9K4ymKiEcAJsmZhg+zHZtkIIBIILFw8y/fJANL8xM2DAQ2g/ADhZiMPZ\nGh9b5kTXSYTl9XxAibeMQIk3RarIUyRR/qN0vOkYtbfPHYNFx3aADfZcuU5srJPMJF1V4diRi8RE\nxxMY5Glt6tS5AZ06N0i/waWBDT+mzsqWWrZ8qwm0G9GxDJzyI/8cvnyLFunDlEVrk9x+8ko4p+Nw\nC6Wh3//O2C5ttDHGxHE5MoqiuczcXKuHpZwXrs9X37P85CXzB75fV/JlSbmYtXHs9gE9uBEby+Of\nfu1xLRoiz32wgOLjJ7mFnRBwA7gQeYN607/EGq1qPUEmv6QjNI/30r7jyLg4Em7epOrcrxkZEoYz\nKJARl08mGmVKaCecdeowVYNCmd32JYL9/HFJ6U6c27FCTT7a8ScX0RIm30xiNjThpnGg/SD87T56\nbVNzPpIb08gTaxl1ch0A+9sMSaKNYFDxx6lToDRhAZlpvmJsEmMwcQHLT+9mTTNtTLWXG3kWtXMb\nz2BXY65oWz1NmOCOthTu9wZ/OvYw0CeIkFtEhKYFl3ThcMW7E/MaWJdNm4kWHvsi9Qq3IT7e+eCS\nwxBuHgioI56nfpkX0zxuKzP/bYhxZdiA54uvx6anMol3XifOeY1MfkXYeWEcJ6N/wIw2tdGq6M5b\n9v9oYa2O8N8nKwNn2Hm+sTs3XSbxImULjqJSwdO4ZCwuGYeP7f6uDf1fQi2bKpoWODYAACAASURB\nVJLk3OnLdH3CSGug3c2f6fEEXfs25+rFSAKC/Xim5kjTMhIkkAmwdMf7/2k/tXVbjzB49CLt9cL0\ny+VlLJsiYOHEruTNefs3wRsxcUTHxpMrq+mEvXDjHkbOXuVlxdv5Sfrnb4uJd3AxMoo+MxdxWC9b\nlZTP29wt2xj521oPPz/jr8fink3bltjqBrh94qTwLE5/IyaGKlOm6f1prVx6/8cG9KPpxEkcAe88\nd/pJbAKOWCJOXS4X63bu5LedO2lavToj167klKXCApgVFrTlOxe7Ll6gep58FJ7+ofuYBS2f5X9L\nf/A8p9YKoyZpr9KP0LJkKXxsNkpkMStxRN68yaErV+ixbg7dCtblYng4N6LPs41rPC4KM6yj55Jg\ndEI8FX/W/g17l9IyIki1DTOqt+OVbfM8jhECWgQV5/lqj1E5W0Eq/WZdujTSiGDxj9OsZZXIx4zm\nWoLXMSvG8KuMZFPTcdRdOcjdLnGwgkHiVCFv5GxFq3INkzzWSte/3+KajEEI+OmR1K08xDpjiEq4\nQQ7/MI/tVvE2rVr6OeeP3mcWngcYUm6Jx/4bjqv42wK5Hneeuae6A1q6jl7J5HoDmPnvS4CW91AT\nbxuwWSqOSGl+x1q0qYsg+lMn7GlCQlIfDPb3yaIYc2ImFi5EjYJrAHC6onHJKHztYcl1obCglk0V\nt42Ukv3bTlCuehEAXm89hhN7tCdiRBJVp4Faj5Xki7ELWfSNnk/IbnPf6WUMYINrV6PIlooI0abV\nh7tfT5/fk0JFzaW/hT9u4LNJ+g1L7//Fro/Qqeu9sahZqVet2F0/R+LcZ2klwM9HX4oyebxsEfdr\nG+AECiaRQzU+Pp4aAz9FArkFrJicenH39/6jdJ+pLU0iYHy7xgxYsNK9v+xgS81S/b+nKxTnlYb1\nyB4cSI2xn3v1meSjZVLPBhKOnTtP0bzakprL5fJoUDdndqZ0bM/ZyEg2nznNEesJEvcnwIWk6McT\nOfamZmlb8u9hem/4C4AFa1dq49Lb+gOHLKWxhBCUmD7ZHL0wj+3x52J+fOIpev61iEvWU1rGUMEv\nkDLZwnC6PK01ocHB1AgO5p9CZuWQxnOnckLCCXmCmXPH8Gqhqgx6pBkAQT5+HGnvabV+9ueP2SEj\n3R/0UNuh5s5teNGx8mPk8Nf+PVuLzAOESLiZxHexi7PUXKaN0fCJq7NikPu1lKaocEkXJ29epkiI\nlhz3Lf+WTIz7zT2+1Ag3KSXXiXG/dzgTeGFzL7BGgwqYU2u6x4NlgD2QQdvfJpIIjGhKGzC9+iyv\nc0QlRBGVcIPclqADI0mvIVqL+Jfj9dIjbjneZD8HkmvxZ/jhVA/3FoAzN3eQP7hKkm06l/gmxT6t\nn7dNKixtyfFIoWNIKdlyqqh7W/mci9yv7bYg7KSfVVRxa5Tl7SFlbP8prP3pGDih08BGdOzlXZrJ\n5XJhSxSFGBERRYea74NN0P29JrR97ok0nzshwUnL2maeqVIV8jLlm1fc7z/6YCG/L9qrvdFvPoOG\nNqFRs5oe/TR6fIz7x/3Lb16mcOFc6V5RQUrJ409N8LAOrVuU/smCExKcHD51mbJFc/PuJ4tY8c8x\nt5UsT9Ygfp38Wrqe7/jFcLKFBJE52HPJqP7bUwg3/NQELB7cheAAPzpNmsnpiDgACmYLYU6/F6k7\nzBRbSSXpNba907wOLz5W28MKALBlyxYGLt5AcQE5BLh/CmyJRJsh9sDje0i8//BgT6EZHe+g4kef\nYBVRRwb0wyUlDaZP53TUTbNPAT0qV+bT3TvcVr5NL3VnxKplLDl72nPydMvg8Lr12XPhND8dP+Ix\npglV69J/xwbTv03A6HqN6FimMqW/mkCc2x/O+KtFd2YHfvpfd/KFhOJrs1P4uw/wmAkBXYtV4b1H\nmro3VZ8znnDM/HVNsxbm82ZJO+VfiL7OY0uM+rBWS5xnhQXDj81mM6NJsew3vsLFT/QhLCCUGGcc\nWf1CeHzpMKJxeBxrs7T5qFJnSofmp+WGUZpPm5AMLfYstfOXJ5NvYJJjTis3HFH8fvIvfrr0uztV\niBGwECoCiCLGHRFrFzCl0mTW7l7LIqElD85HfkZUH02cMw4hBH6WpLwu6cImbPTd2UGfE5eebkMT\nb0YxeR+gbc7+VM1Tl4jYcCYf6aIfI8lJMV4vr+UTHLu/OU8yngplK7j/bUjp4vTpM/wa3QWAYFrQ\npdRb/+nVjIcRFW2KEm+3i0d5LGDpKc8s5vGxDk79e4HiFQpwv2IVb59+0YUSJXJjv0OrVVI81uZD\nD9Hw+Zh22Hz8KVsy/UL/a3Uy/bKMaEgE1M4G495/jeDgIKq/bC6tgimOts24/aS9ERExPPaesbwI\nVfOGMmPAS1yOuEnurN4W1ApvTfYUUFZRZXlv/btvbF+2HDtNjkzBFM2p+Qp98MtKvt2qCXRjOdNY\nNnyhbBFmHzjunoPkxNved97g30tXKJfHs6SRw+lEAmUnTNGP1UWJpZ8dr79KaHAwZyMiORF+lRcX\nLdSPkfzUrgNhmUJ49NsZpmXO8ttp1DgtbhO0rVKF8Tu3e35myyW4pkM3CoRmJjbBQZCvn1eFBfQq\nA0LAd4+1plL+wmTy88cmhEd+N6PNd/We4bEixUkrkbExVP9tgrkhCfFmLGkaPwl2O1T1yctO5xn3\ncR5thGac397CM4rUECKaz5vZZladN/n8wGI2R/6rfxwz8e7qhhNIT6ISbhJsD+K5za+6x+AjpJ4Z\nzRCWMLPmV+42sc4YfIQvPjYfIh2R2ISNEB9v8/SYnYO4zHF3hKjZn54PDWgfNpBKuesQHx/PmMPP\nYIi3Wn6t2Z6wyD0mG06Py8suXO78awJtboxlU5dM4KvDT2DMfXnf16ld5Pn0nLZbcjP2CHsvNtLG\nLqBGwRM4nFdwyTj8ffJl6FgeZNSyqeK2SSzWEuMX4HtfCzeAVWsGZ8h51v6S8WW5hIDlU18hODAA\nP18farx8dyK4AgM9k8wGB2qO+jabYNj3i1m4TbMqfda9FbVKaEuvxiog4BFtCtD7izn8efyi+32l\nfJrvXvn8uQnyMyMBB7VpzKA2jek6Yw4bTmnHHxxh9vUu0PSDyZzQCyoces97+bbkaDOh74IX21Gx\nYH4ArsfEEudIJtRXF2Pf79zJhE2bvdKZCClYcegQrz1Sx/ysSS2tAkckjN+x3XufhFph+ZjWvA2v\n/fQ9m6Ove/vW6RPYKE9hvmrxbJJDPdHJO81NkdljYYM5nuPPv+N1TFJExiYONRDsbvM2AT6+9F/7\nA79dOeTh62YItO0JZ7Hpgu6vhgNp+Nd4d3uQ1LTl50TUJQqHhBGbEMejK0fofRjWPO3orEDh4DAm\n1nyFOKeDxqsHe05EOnPDEUWAzTPoZFatGSm2CbCb1r9QPa1Hj+2aOLJbSm2VpQoDK73Pe3t64uCa\nu824ij979enn58fw8r+630vp4vyBoziIJxA/znGWIIKJFccRmCWpzEcE+PTgEwgBr5RY5tH3RccW\n4PbEm5SSpScqYPjgNcq3FT+/Wy97BvlrbiOaRfYFAHxsWZGJAzIUd507srwJIdoBw4EyQE0p5VbL\nvneArmjuNW9IKZfr26sB3wKBwBLgTSmlFEL4A98B1dCC55+VUp641RiU5S3t9Gg+luN79bwW+uPz\n0hOTU250l0lIcNLiET1Kzlg2s/6aAAiYtaAXufNkodFj2rFG3rc/dCEXEx3PlSs3KFAwO/8larw8\nyX0zv1vlsQAq9TEta592a0HPrzWn6j/e60bmTIFERsfxxMjppnib0Jf5G7cyYuE6L6vbD707UiFf\nbrevG8CiXh0Jy5KFVmM/54rl2NFN69C2bm0Alu7eT9+Fy72CKw4N9RRwVvG24rUuFM6e1WN/ZEwM\nVadOwxAIUl8OPTJAm79ik0xrZ1YB2/r2I8ahLfvdiI+n9lfTvJZpO5etyPCGjQH4atsWRm1cayno\nmfivZ0CDafmTHn5wAMKmHZtD+LC1ixm1HJPg4GxUBMWz5GD9iQO8uN70M0LAwfb98ff1TI9hcC46\ngrxBmngu8aPmpmD8U6oXmpuvm2hO8RdiIvERNh5dOsHjGGvSXNCWUaXu7GfT3V2fE9XIkyOMTIGh\ntC5fjlrL3k2yrZF0t07WEvQt14b8QZqPa/0/+pN4WfavBpOIToglyCeApmv6YCx7Ds/8MrUqVUry\ns94O0Y5oeu7U/MsMK5rAZX5eYS77WsVbFrIxtPJU7OLulomSUhIeHs68K8/Qo9Rf6dq30xXH8pPV\nMMRbMZ8hlCqQsVa8h5n7wfK2F2gLfGHdKIQoC3RAq/GcF1glhCgptQJqnwPdgc1o4q0ZsBRN6F2T\nUhYXQnQAPgCSfiRV3BFvffICvepPcN+lcxfKeosW3vz8w598OWKlWzwhBKG5YP6foz2Oi49z4Oef\n9I+LFS+XjsTCDXi0YXEyZ9aeDrPl8Cf8iuaDVa6iWR8zINCXXLnufbi60+XiWkQ0ObJqyy51Ok7U\ndugfZ+OctKUV+ecuCrbkqFqsCLsnmYLJWttUAL8M6kz5/pO195alXkOUdJg6l33j+lLRDrudUEpA\nyby5OXn1OleMTnXxNHj5RnafvcTw9q15tJR3UEiXat4JmQ8PSTmYIjQwkCMDkz/maD9zTotOnkTR\nyZO8hZf+eZ8Nzsq8qGvM3L+bmft3c6RHH7pWq8kz5SoSHhtDkSye/4YKf+G9DLirXXcqLfiSL/JX\n5NWzuxNZ7LSJ+6ZhO482AXYf8odoSVHrFS7D8cJl+Gb/RkbuWA1ISs//kOPPaw8uZ29q+bYWHNjK\nlKMbMaJJXylay2ss62+cp+RPI93fmzuYALM+qcfoPJZNtbFKCXPYiu2Ktt8v6GmKkYVjXAfMOqMA\ns+r0oUBwDgLsnveC5JZLz8depVhIPvOcSN6P+IrFTHEf02Z9L/d+m4CFddOWiDzAHkAe8nKec5bn\nQy2cJyUPs+uEczn2ArkD03eZcPWBWexgJgCl7M1pUfItsmfPTo/s6SvcAOw2f1oU2euxbeXxUto+\nAdkZRKXCL6f7eRXpR7r4vAkhVgP9DcubbnVDSjlWf78czUJ3AvhLSlla394RqC+lfNU4Rkq5UQjh\nA1wAcspbDFBZ3tKfyGs3iYmOJ1c+zx+k0YNmsn6RFpZurInIRCJr6o89KVQsJ37+vjSrqD2FS2vB\nRCFYvmNERnyM2+bxVpqPmwS+nfIiTpegQL6sSFcCTZ/TfiCK5xd880nyqUISnC7Cr98kLLvmN3an\n4u1+wCreAJYOfplmY792+4QlXoIE0y9vx8je+Pt6Pis6nE4qDp/iPubgyPRPW5KYyLg4YhMchAWb\nvkxbjx+j/SLdopVIvHnVk0UiEGzo0p1+8+eyKeaGl1/eV42fpGFxT7F59Ho4DRZ8hTV44tGc+Znd\n+vYy/l+N1Wqf5gwIIdbpIMTXXCLU8ryZvmb+2NjXfjAdFrzPdvf5PYMPDrUdyrEbVzhw5hj9Dy6x\npP+wBh2YBeBJZFEz+rHpok4IyCeCWNTsXaSUHIg4S8nQPPjY9HLnfwygLpnYQCTZgRBsFBUFEMLF\n8Cfe9Pq8CS6nu61Bp/UDiEBL1j2x5CCKhxW8rbnstrWL/kpb6v2y+kz3Pocrnkuxlxh/cIDmL6fP\nxcdVfkjcTZqIi4vj46NPATCw7FIAJu1vArjcvoRvll51R+dIKyuPl8aIum1Q+FCGnvth436wvCVH\nPmCT5f0ZfZtDf514u9HmNICUMkEIEYEWgHUFRYYSHBpIQLB3ktK3RjzL+kXDtTeJHs2X7dOXMa0R\nhUlESP28fiDTP/2Vn77eBkIwZ3k/smdPOTFrRrNmsebjdupsOHnCMuPrq/1orFhz0H3MkbMp9+Fj\nt7mFG8DGuQ+OWKvYx1OkFc0RxKIhr7Jnkre42juhL+UHWoIYEqPvqDLMiHKEusXy8+XL7Th8wfOf\ndoLTSflRpmWlQfFCfPZCW49jSo7yXN7f+05vd2H6EmPNff++k7QQ9Lfb3Ulwi00y/QiP6VY4l5QU\nn2L2s6NTV6rM+sqjD4lk2tbNbIqN8hBtBl1X/cYJXbwVnv6h1/KvoX3WXT5Dza8n061KDcbs3KB9\nvqDMrHjWjCzu8N049410c5vXyJVZs8JlD9CszdEJ8VyLi/YQb4mJw0V0bCw37ZnAGZnEEZLSP4/g\nidBi5AoJwbOElhl9+mfDt2n45wfmx0j0uXMRzJLmg4mKi+GJP0dyjpvUXm767W1q6hmAsQFtLNeQ\nhEsnpziODdh0YS+1c5f3ODaxcAP4rt6HyX7mtDCj+rfJ7vO1+ZEvKD8fV53r3tZ3Zwf67nzWHVgw\ntvwcfO23Xl2wsv/sOvfryKhzhIbk1d/Z8EromwxfH9Zq/VqrNrxYYlMKLVKmcZGDtz5Icd9wS/Em\nhFgFJFX4cIiU8pf0H9KtEUK8ArwCULDg7T1tKZLHbrd5RW02L2nWWhz0aXs+6K2XhdHv4PFxDlpb\ncrcZ27PlDuHb3/pz5MA5ylbSvqvt682nuosXrt934g0gNs5B5I0YXnhd++FO7HBerkTaaoHeLjVe\nsgQqCLcWYuXHryEQZMmUPikWUuLo1Wgq9JvMP2N6ExDgfcvYO74v5QaagscYY3LZDdYfO0PZdyez\ne8SbHBhliqx/L1zyOG5Yq4aUGmkKye2DevJcheLM2aMFURSy4RZukLxgs+Lv44Mhc54D5gAvlyzJ\nyFUr+XbPHsuyr2DRsx24EB/r0d6oBPrdPm3Z84/nXiaTnz/Bvr6UmzHFLdIKT5uAte6pcEcSC/2N\ndp6LwsGYnX+7+z8cE8Gak0d5vFAxnE6n5QlYUuuXz0FA64JlmPhoK8r+8AFONHH1btHadK3TgGI/\njHbPl5VKizWhY13+tCKB1TeO8mrO2ux48l2q/m5GkAoh2NNas5bvenIUg35fwHJ28Sh2prYcDkD1\npYO5SBQ1lg726FULdBjO9otH3Ul6V9QbxtqG6SO8UsO3h2ex8ppRNUQSgC9f1fLOKXgrzkQfJ39Q\nEYz5c0otMvSdvc+RlwL0q+QZVBTrjMbPFoBNmPfS7SdXsTRqEjYBncM+JSxbfnz0dCT9yqatrunL\nJf++9UG3YMnxsnqQhKRO3mWE+he64z4VGcMtxZuUstFt9HsWsIYq5te3ndVfJ95ubXNGXzbNTKKq\nf5YxTQemg7ZsehvjU6SBsyc8yzJ9+v6PLNw+kvArN8hrCQwIzA0xiep7+vrYEAL6dp5hXVsBYPnW\n4Xdx1HdGgL8v5UubPi0CWLOoP7FxDgIDvAvAZzSBfr5eP9Dpxe6P+hLnSKDGoKkeJYxaDpnKJWDP\nRG+RtG+8ue1SZBQOp5Mm47/WNujj3DWyN5WGT3UflzgZcYncYRwcnrwA87Pb6d+8Ca2rVaHDzB85\nKc2gheeL5mf2iTMEATvf7kO804m/T8q3t1H9+mFkG7wRFaWJN8t4O877gU9aP5ViH0WzZHVbmj+t\n3YBPt/xJpIAzxrxJOPnqAAp/aYqVPFKwqtObhPj5EZeQQKlZkzBU4+MEUCm3ZoWx2+2c6PQ2fZfN\nY+Gl4xjOhEtPHWDxnP1uX0MhYPTxTUw8sUn/N2Z+aRtavkm9JR97jPnA00Mo+4vpmzqtejte3zof\ngC+ObWT68Y3uwRufreLioRgpKgzWCS0f4OIjW7zk4JL67xDhuMngTd/Q4M9hbtFoE9BhwzhmP/Y2\nmf2CuVPC467TdasmGEPxY2Zd7yj6TsWfZ+U/azHmJZ54Om/pCmipQlzSxdhto7lBBOFcpCglGVh1\nCDabjR7bn9fqr+rLmR9Vmo2UAiG05UWXrs+zCO+0QTcTbmD39cEmzPtFjDWZMJGpjtIMj7zIj+ef\nAcCuW0Zb5/2KLIH58LMnkW07FWw4rqUIcqJFuZ6P+plQ/7vvuqBIH+6Wz1s5tIfammgBC38AJaSU\nTiHEFuANzICFqVLKJUKInkAFKeVresBCWyll+1udW/m8ZTyXz1+nUwN9+UQIlu4fk3IDoGmVYeYb\nQ7xtu7993xRw5moEfj52wjKHuH3epnRpyRMVSwKa31qVd8ylzr3j787Nv5S+XJo4+hMB7QvnY94p\ncx1751s9uXAjimLZU19/0krRjzULyrE3+1Hk44mePn36qQ1LrF3APy+/TrZAM83Civ17eWXdMvdo\nj7/SnyIzjETPlgjURP50IN3FTZ4MysXkZ15kzeljdFvzk3u/VbALG7TLVJAFUSct/WgC662i1elR\nsynRCfFUWjgew9QnBAwp35gx+83KF0ZOMUgcJ+RCCOFOdpvYG6IyAcx8cgiHw8/QcbNWksodeOv2\nl7O2NZL+aq/tNmgaVIEhdTpxu8S7HDy7UYtI7RralicrJG1rmHdkIb9e/d0jxxto4u3AtQNMPDpO\nH7823ry2/AyvOpYe25/X3QNd2AS0zt2RMlkqkisgL742P3fi3qR4b08bDB8yo28bMLDsAvxsAUm2\nSQ6n08GMI1qFGUO82YDcdKdFyc5p6ktx77nnSXqFEE8DU4GcwHVgp5Syqb5vCPAyWj3iPlLKpfr2\n6pipQpYCvfVUIQHALKAKEA50kFIeu9UYlHhLP1qW7o/Lkh5r6THvSLCrV2/wQj1TrPUc8QxPtq+W\nEcO7pxw+fJ6uA806h+sWDeD0uWt07KVZFCWw4SczgCE2zkFAKqJsrdyMieeJVz8BoFyxnOw9rls8\nBfzzTcZHm6aG8gM8/eMM8XYzNh5hEx653e6EU1eu0PjzWW7/sfwBdv7sn3Lh+/SgyBQz0MTjTmkR\nXid6pt6f8bEZkzmJw8sH7nCnfpSaPdFj24nOg7geF0PleYblTHqIPiG0PG/u4vQW8VZUBLDyWc9x\nSSk5HxNJnsBQzl24QIONX+rNTDOhZ2xRUgIMM0LVBjtbmpVSohJiSXA5CbH588iq99DEmpGEWGKK\nNzPBb8fMtXi9+jPJzte5mMv0+GcMcWhWPhvw+2NTvI7bcWkf7x/5FEOk2oAfH9EsS7HOGMLjIsgT\nmIuLcVfI6Z8dezKCy8AlXZyLOckHB43yYp7VGjrl702l7LXwsSVv3f1izzucYb+H2PITWRhY9huP\n+qNpIcEVxw3HWRaeNAXvyyXX31ZfinvHPQ9YkFIuBBYms280MDqJ7VuB8klsjwXaJd6uyDhstlu7\nynZrNlo7SPffebJ9NZqVG+Len71QMFfPRGuBC3qnQz9+gaxZA+nT5Sv9rg9Ltw73Kr11P1OkSA6v\nbZkzaU/PiR9/4h0JnLt4naIFc3q1SQnrg9S4nq3oO/kH/j0bneaxpgcV+5o+bLsn9+XU5euEZQ4h\nwC/5W4bV6hbvdGJzCbhD8WZUSyiYwzL/knQXbkt27KDX6r9AwJau3cmRSQs2Of6GJoBqf/EZF+Nj\nPNqseK4LRfUUIS6Xi6JfaBa71nkKM+UpTZAUnv6hMWS3uELAhmdewdfXh1A/f6SULD/h6Sz+eVhF\nABrPM4XKhBpNaFqsPJn8PIMTjj2XdLLq4X//yuwzu3GLMn0MRvpXIeDw/4ZS6+eRRFiWSHe1ehdf\ne9rFhR0bCPBxL1d7LuEaZBVQi/K811CzGLX58z0iZLQ7crV74RZ0KKJZ0HL4Z6VHwf8x+dR83aon\nabm2N78/NtWjTz+RvCUr0hFBREIEeUVuAu0B2BD6sql2txtc4G0ORx7ilxs/YdOtkF9Un4VTwoeV\nvmLALu+UGcdu7qds1iopirdXK4z12ialZNyBlu55eUePNAU4G32QPIElOBr5N0vOD0MADQOHUK6Q\nVt/1zIW9LIt8HYBuSrA99KjyWIo0M6rvt/y9TAs6SJwqxFg3cecftdn4betwroVH8UKzSRg/Xsu3\njwTg5s04bkbFEpYrM/PmruGrj9cA0HtgY1q1rZNhnyktOBxO/tlxmIHjftc2CFj/U/JpQx5ErOJt\n1psdeOFjPTWCgN0T+5gRxamk7BBLQIPe9MD7t15irTJyMtECgoGbmFLgcBIVF+6ERz6azAWpXZtf\nNG9J41Kl3PuKTJ3ocawE7TqXnpYwD2vca9r14CXedCvMnud64bIJAn198bf7UPibD7z6sJwNBLyQ\nryS96zQmV1Am1h46QOet2nPzsCqN6FLWs+4vQKn57+v2KulhNStDEPu56VFJwVw2tfq1SSYUeooW\nVcyi6AuObmTUgSWatU7AgDLNeL5oPSIdMfx0ZD2fnfjL3Q9Y04yYy5XrG43DIZ346cJnw/n9DNn/\nlVu8/V53LAF+yUfPppUEVwLxrniCfIKYd3gBv11bqo9FE2/TKn9GoF8g3bZ2xoaLghTh3eojcbji\n8bXUNr0Ue44/zv3Clsg1GNa9iZXnpXk8O/bvYBlDyMHTdC/b3b190v4mCCNyVP/bKHgo5QrUB+Cf\no9+xy6lZS7uVXIfiweWeL5veDyjxlrE0L6WH/utOI9qPkv4roAu3vAX9OHcqnsAsgoXr3k+yH4OE\nBCeOeCeBQX6cP3eZzm21KLB5S98ia9Y7d2i+G1wJj+Kt4fM4ekYvjXOPxFtsfAIBfj5Ue2UySJjR\nsylVKpdN9/M4XS7GzJ7P/J3naVomjAndvTOxVxk0mXi3Yod9H3iKq6TE24fPNGTAz38A8HP39pQp\noAWInL5yhcafzmL/0D6UGaU7oAuY2qYZTSqWSd8PZ+FUeDj1v/tWH6MmaDrmz8+cc3p2I2kZv0WI\nGeMrGhLC+AYteea3ebQQfnSqXpdaVau6hW6jrz7mX6kllj7+cn8Py7Mh3l4vWonPT+xyb1/c/EVK\nZc+FXxKWsCLfj2FG7lo0aNAgzWIa4Mf9//DuwaXG8DGXTT2XUfe10XxTv93zJ5NPmglj7e5oWkkR\nezZOuq6gxeOC3aZH1FrEm03AohpvkzNL2pOCJ0eb9T0B7XbUOW9bnshfk8y+mZBScvDGMcqEmgmf\nn9/cTTvWw+/NxdjSo8kbmtd93PGoY+Twz8GgPT0wvnQ7MLnyTAbsfsE96cyryQAAEjRJREFUN0/Q\nlsfLNSaz7+35ViZm+oEe3OQI4KJb/p8JCgnCLjwtezcdV5h7XAuiCaM5rUsOSaInxf3OPV82VTyE\nBAC6X1yvkS35ZNgSc2HEBflLZmXER13InT9bqorE+/jY8fHRfpjy5M3Jik1D78qw0wOn00X9/010\nC9Zl3/fShGdg+kefxjsSOHLqCp1HzQGgW4tKvNq+occxpy9dp3DurG5R8cbny1n3RfqLN7vNxnud\nOvBeCn7lY9o9Qf/52g97SctKaXxCAhHRsZTNmZX9lzWxu2/km9hsNsb+biYhffrL+Z5WJwFz122i\nVVhWFl+6RknAZtcCF9qWKszAlk2Id0kenfqlu4/Dg+/MGvfZP5sxbMbGgt+cs2fMMQFZ0Jx7f2v1\nDJFC0vHXBe59x25G8czieSBgiYxnyda/2FKmNGFB2kPIqq7eyWcNTrykpeIZv3mlx/ZWy74DYEGT\n53hmxffaUGyw48nX3ZUVbhdNuJlhGAfbDmPO3g28f2QlVr+0Cr8OY3er4QRbrGGZgXwiK4f02p4n\nXFcx5u2PRu8RlRBLt3WfEC6t9lLYfP1fnszibSVMDRHxN+i1+QPCZQQ2AYsfncov9T5lwIaRHOEi\nrQrX10egpTcJE1l4bVNPInAwseBwuthf4JuE2QQLXyZVnUSQrxZk8sbWXkRzgyAyMaX6J+QJzItL\nOr3O77lEKniyUvp6+bxS5rNbHhPsmwNjOVoJt4cbJd4UaWLpLs9Emy3b1eP6tUg61NMsBy/2bEjX\nVpZwfSGY+sOrlCiTnwedxMYNm7AhbGakXlKs3bKHQRO1/E2/fv4KoSGB+KfgN2YQn+Dk37Nm3rON\nB07zaqJjSuTX/MC2fXnvw/ubV69M8+qVvbZHxMRxITLKLdxA+2xz16/nu01mao4Zz7ek2/e/u4XQ\nwWF9iU1IYORqLdPZYQk9f16GBH46dIJo8RfvNn8iXT/DiIaNGdWoCb52O0U/nujtsSVgR2/PIIBd\n3Xphswk+Wr+arw7pnwfpvlic0TEUnv2Zu/2J7gNSHMPAWo0ZWKsx0XFxlJ1nWisTl5V6c8NvzGyp\nWYFOX7nC4yuns//pfgQEpBzFWHLBKPdYDKZUbUezIproz+prpp0IQhBrKYnVrlRd2pWqS4LLyQ1H\nLFn9NVFabakhIjRrZcNVI+lfsIku3MyTbWjsee8wePuP8WzmIr/XGUVQUPLF0Z24iNYtl1Y+rJv0\nA1+vfe/gkpoAfevUcD6rOp7KrvKE+mbimiPcLd6iZRQuJNEikgX75rAiZqk7GtWmp16x6T+VEyrN\n5mbCTUJ9U1+C70zkEb4+1UfrD+3SGFLut1S3T4xaMlWAWjZVpAMXzl4jOFMAmUK1hLGL5m5g2ljd\nEVcIKj5SgPGfvwJA02pmypCSFbMx9Zs3OXv6KjnDQlNVAzUj6NJzOsdOaXUi3b/gNvh2Shc6v/Et\nWn4twdqFSS+VjpzyM8vWH3e/N5YJl3z5OsGBfvj5PrzPTHGOBCqPMKstGH93vNebyqOmgoAsAjal\nkO8to4lzJhAd7yBrYCBFPtH833qWrkD/Rk08jjOqi1yKjqLmLC3S0UjIa/jJrW3bhULZvQNZjkZc\npWhoNhp+N5FjuqeaseTYJFdRpjdNOmtSvNNJ6Xmmv5zxgLH96b5k9jcTOF+4EUmL5VOJ0p30fQT8\n/WR/av72oTuYYf/T77mrT6QFh8tJ7eV6dKk+kGezVmFBxHasZbQAVtUfSrBfMFfiIsnul4kYZxwt\n1gzRj4G/GkxM6hTpwvObu7vHqEXYarnb/pf1aRoXbQzA34f/Yt7Nue6oWOOvUZhe6BG0/jZfGmZ7\niiYFtMCUSEcEvjZfAu3e4tPlcvHd/vc4wy6EgPK0oE25Hmka+/XoC8w7rVn67EIJuAcdtWyquC/I\nnagG6lMd6/JUx7q3bNf22ccAyJI1GB/f2wudvxv0eqUx/d5d4LU9wN/85xKagoGjUslcbvEW5Ae/\nfdWbeIeT0JC7Xw0ho7GmCsnuL1gzqo/XMeFRMdQbo4mZNW93Z2q7hvT+8Q+WvNaeIvnMRMgZUds0\nLZy4cIEn5n8PAgIEHOhlWt2WHdzDJ4f2sLT505QpWhTA7XcWFuSdNFUADXMXSFK4AWTzD0IIQfNi\nFfj06E58AYf+5PC/whVZtWsX3XZrD0QnXjRLTvnZ7e5o02I/mCl8dlw5Rf18ZtDF1ssn3cINYHmz\nnoT4+ntYkyMdsWTxS901Wvn3d92fa0fL99nW3Dz306s/ZP717QBu8WMQ50wgGIh3JQAQ5OP5D8la\nXq/pGvNaWv64d/Jdg6iEaF7c3B+b0PzZ/PDh+0fMaFSndGIXdtxlLRLZyktlK0WgXfvcDcu0oCEt\nPPavPLyYX6M09wUhtB7ipYMAaS4j+9p8vfzTDGw2G13KeyVeSBOxrmu3PkjxUKEsb4p7TpMamkP0\n0o3vcerEZYoUz3WPR6RILVbx1rZCITo2rEeZvGFUeWcy8Wg/dH5Cd5MU8GOP53jm8znuNgCFsmdm\nWR/PdAylR1jqpQpY8NIzVCigFW2RUuKUEp+7nGpm5b+HeGXpb+5xHrcsmRb+1LQQpSXP2+0ipaTI\nbM3CZhVviXFJSYl5mpB6OmcpJjTULEM3HHFEOeLIE5Q+pegq/65Z2vpnqc8Ldc3EuDWXDtari2lC\n0a77L04s24kaeUvyxJ+a0AwAVjUaD0D9P7T5u13LW4TjBl22DMKGGd364yNm+auzMefI5puVbtt6\na2P3Lc+Aqt4PGaml784OgGRc2e/wT8eo2JTYemwe2xza8nvn4ouJd0YR6pf3Fq0U9yvK8qb4T2H3\nsXlZ8R4GIqNiWbZhLxO/1+ovjunRnIa1k46qjI6NJ+g+KM9lsPdDT2uZ8TC4Y2xfer8zmdYNytOo\nUSO3NcXhdFIYOAEedU2tbPn3X09fMwnHr0dRQS+4FxEbx/XoGApnv7vXSuMSpWDpb25jzanwq9h8\nfMnk53dLwRYVH0/5b7TkurVy5GFik1bkz5R6P6nECCFSFG0G7mVPAc+WqODeHmD3wZaO9dSsyXmt\ndMv6CF9e+9sYAn82HE6gTwCbT+ym/h/m8mgjv3LuNqsb3tlSaWbfTCysm7yzf75ATeR8X2vGHZ3H\nYHLlH9Kln7RQrUh7th3+jJK8jr8tBF/bf8+Kr0gbyvKmSFemTVjCou+0m/evW4fjlwrn/IedTbuO\n8d5ni4mM0RLSFsubmbnjuiZ57OGTlyhZKCxjB/gQY62wcOj1N4l1OgmPiaZwKtJdvD79E44Sw7Ju\nb4EQt+VP9iBQe+kQHEDTLOUYU+c5AE5GXebZDVrS4vpZS7Pm+n5AW0ZtkL0so6p6lnRadWYHow9r\nFUzupt+bQnE/oPK8ocTb/camdfsY3nMuAEt2jnygqijca85ejiBrpkCCAvyo2WWS2/o07Z1nqFaq\n4D0d273EJSVD58xn/rFz5kYBh9/NOB+567ExVPlSs+4c733rZdJ4p5OSMzTxcuLVlCNM08r+y2do\ntWIW7QqVZ97JPZTxCWHJs3e/VFhytFw6lAtoPmwC2NzsfY/yU+9unc0f4XsQSMaX7cTbB2cC0CFv\nPRac1xzvVzf0LsWnUPxXUcuminvKz9+uY8Nf+9j3zykt79m+0dR+tBzLdnsn5j1/OpzM2YIJCs4Y\nH5EHkayZvNOIZAmyUSpf+iQBfVD5Zfd+frQKt3tAbEJCmo73s9vTJNq+37aJIXvWAHCiyyCPfRdu\n3iAsKMRtuRNoSWOD9TJUQT73dhn9+waD+Gnn3/wUvprZT7zDlevhtNo8iRdyVOeN6m0ZVrUDI4Vm\nkbMJG6UP+nIQB43y1mDX+e0MLtntno5foXgQUZY3xW1z+vhlzp25wLDXfgAfWLYr+Yiq2Oh4fP19\nUpW4V6ExfcFqflu9nXZNavJi63r3ejiKu8g32zYwYo9WrzKxeDt3M5LDZ8/QZfOvGJGbj4YVZlbT\njhk9zFsipaTW8iEY49zSbCxno8MJ8Qng/LWrdN09ldnle7Mv/AzjL/zMnGoDyZ4pM77Cjo/t/ok4\nVyjuJsryprinFCiSkwJFcrJsX4VbHhsQdP842T8ozPhtOxKYsnCLEm//cV6qVpeXqiWdXidvcCj/\n2+FZeeFmQizRCfH33OqWFJnw4QYO8tu1AI18QZrluNNurVD7i/umkEtoDvcLT66nfan6BPsEEKKc\n8BWKVKMsbwqFQvEA4HA4KDlvAkHA/4pXYmjNZnc9XUpaOXToEIUKFcLf3/+26q0qFA8DyvKmUCgU\nDwm+vr4cf+Gdez2MFHnh2Ew4BovrDyR3YJZ7PRyF4j+LEm8KhUKhSBf+sVRaUCgUd4/7y+auUCgU\nCoVCoUgRJd4UCoVCoVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVC\noVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVCoVAoHiCUeFMoFAqF\nQqF4gBBSyns9hjtCCHEZOHmbzXMAV9JxOIqkUfOcMah5zhjUPGcMap7vPmqOM4bE81xISpnzTjp8\n4MXbnSCE2CqlrH6vx/FfR81zxqDmOWNQ85wxqHm++6g5zhjuxjyrZVOFQqFQKBSKBwgl3hQKhUKh\nUCgeIB528Tb9Xg/gIUHNc8ag5jljUPOcMah5vvuoOc4Y0n2eH2qfN4VCoVAoFIoHjYfd8qZQKBQK\nhULxQPGfEW9CiK+FEJeEEHuT2S+EEFOEEEeEELuFEFX17aWEEDst/0UKIfro+7IJIVYKIf7V/2bN\nyM90P3KX5nm4EOKsZV+LjPxM9yO3O8/6vr5CiH1CiL1CiLlCiAB9u7qeLdylOVbXciLucJ7f1Od4\nn3G/0LerazkRd2me1fWciFTMc2khxEYhRJwQon+ifc2EEIf07+Bty/a0X89Syv/Ef8BjQFVgbzL7\nWwBLAQHUBjYncYwduICWgwVgPPC2/vpt4IN7/Tnv9X93aZ6HA/3v9We7n/673XkG8gHHgUD9/Xyg\ni/5aXc93f47VtZx+81we2AsEAT7AKqC4vk9dyxkzz+p6Tvs8hwE1gNHWudN/944CRQE/YBdQVt+X\n5uv5P2N5k1KuBcJTOKQN8J3U2ARkEULkSXRMQ+ColPKkpc1M/fVM4Kn0HPODyF2aZ0Ui7nCefYBA\nIYQP2g35nKWNup517tIcKxJxB/NcBk1gREspE4A1QFtLG3UtW7hL86xIxK3mWUp5SUr5D+BItKsm\ncERKeUxKGQ/8gPadwG1cz/8Z8ZYK8gGnLe/P6NusdADmWt7nklKe119fAHLdveH9Z7ideQborZvy\nv1ZLIKkiyXmWUp4FJgCngPNAhJRyhX6Mup7Txu3MMahrOa0kd8/YCzwqhMguhAhCsxwV0I9R13La\nuZ15BnU9pxcp/Tam+Xp+mMRbiggh/IDWwI9J7ZeaPVOF5t4hyczz52im5MpoP4YT78HQ/hPoN9c2\nQBEgLxAshHgh8XHqer59bjHH6lpOJ6SUB4APgBXAMmAn4EziOHUt3wG3mGd1PWcwqb2eHybxdhbP\np4n8+jaD5sB2KeVFy7aLxjKJ/vfSXR/lg0+a51lKeVFK6ZRSuoAv0czLipRJbp4bAcellJellA7g\nZ+AR/Rh1PaeNNM+xupZvi2TvGVLKr6SU1aSUjwHXgMP6MepaTjtpnmd1PacrKf02pvl6fpjE269A\nJz3ipjbaUsd5y/6OeC/l/Qp01l93Bn65+8N84EnzPCfyiXsazYyvSJnk5vkUUFsIESSEEGj+hQcs\nbdT1nHrSPMfqWr4tkr1nCCHC9L8F0fyw5ljaqGs5baR5ntX1nK78A5QQQhTRV6A6oH0ncBvX838m\nSa8QYi5QH8gBXASGAb4AUspp+k32E6AZEA28JKXcqrcNRrshF5VSRlj6zI4WSVYQOAm0l1Km5BD6\nn+cuzfMsNLO8BE4AryYSfA8ddzjPI4BngQRgB9BNShmnrmdP7tIcq2s5EXc4z+uA7GjO3/2klH/o\n29W1nIi7NM/qek5EKuY5N7AVCAVcQBRaVGmk0FKtfIQWefq1lHK03mear+f/jHhTKBQKhUKheBh4\nmJZNFQqFQqFQKB54lHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHCCXeFAqFQqFQKB4g\nlHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHiP8DKNsV7qFGMyIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.colors as colors\n", + "import matplotlib.cm as cm\n", + "import pylab\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['bo_spread'].values.min(), df['bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['bo_spread'].values))\n", + " plt.scatter(df['bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('bo_spread vs period_return shift')\n", + " plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume vs pca')\n", + "#plt.show()\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume - 15min future vs pca')\n", + "#plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back=20):\n", + " dataX, dataY = [], []\n", + " for i in range(len(dataset)-look_back-1):\n", + " a = dataset[i:(i+look_back)]\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back])\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAANKCAYAAAAdrnZ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeUFFXax/Hv08NEZoDJgCRBQAUkgwQBMaxpzRlcM2sW\nc87ouq6r6+oa0PV1VcxpTasiCgqKBAWUnDOTBwYm99z3j+oZJgMDTNPy+5zDYbrqVt1QXdX99L11\ny5xziIiIiIiIyL7NF+wCiIiIiIiIyI4peBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTURE\nREREJAQoeBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTUREREREJAQ0CXYBRERERERk/+Jn\nggt2GeoTxigLdhlqo543ERERERGREKDgTUREREREJAQoeBMREREREQkBuudNREREREQaVVmZP9hF\nqFfYPtrFtY8WS0RERERERCpT8CYiIiIiIhICNGxSREREREQalXOlwS5CSFLPm4iIiIiISAhQ8CYi\nIiIiIhICNGxSREREREQalXP79myT+yr1vImIiIiIiIQABW8iIiIiIiIhQMGbiIiIiIhICNA9byIi\nIiIi0qjK9KiABlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaldOwyQZRz5uIiIiIiEgIUPAm\nIiIiIiISAjRsUkREREREGpWGTTaMet5ERERERERCgII3EfndMLP7zcxV+rfBzN43s07BLpuAmXUI\nHJeTdnG7s83solqWTzaz9/ZYAfcQM7vXzNabWZmZvVJPusvNbKWZlZrZ5D1chlrbTEREQpuGTYrI\n781m4LjA3x2Bh4BJZtbNObcteMWS3XA2kAS8Um35VUBJo5emHmbWD3gAuBOYDKTXka4l8BzwDPAu\nkLOHi1JXm4mI7BNcmYZNNoSCNxH5vSl1zk0P/D3dzFYDU4Hjgb3aS2Nm0c65gr2ZR7DUVTczCwPC\nnHPFjV0m59yCxs5zJxwc+P9fzrkt9aQ7CAgDXnbOzdv7xdo9v+f3tohIKNGwSRH5vfs58P+B5QvM\n7Agzm2Jm+WaWZWYvmllcpfWtzOxlM1thZgVmtsTMxplZRKU05UMAR5nZq2aWC3wSWHeymc02s21m\nlmNmP5nZ8ErbxpjZP81sk5kVmtlMMzu2cqHLhwSa2flmtszMtpjZ/8yszY4qbGbtzexNM8sM1HGe\nmZ1faX2Smf0nUPf8QF79qu1jlZn93czuMbN1wJbA8lfMbJaZnWpm84FCYGBgXTsze8vMsgP7/dLM\nuu6grH8ys6mBbXLM7NvKZQkMOzwDGF5pOOz9lduo2v5GBtq70MzSzOxZM4uttH5EYB8jzOxdM9sa\nOM5X7US7hgWG5q4xsyIzm1+tXV8BXgu83FyeTy37uR/4PvBybiDdRYF1UWb2mJmtDeQx18xO2INt\ntsrMHq+2v4sCaWKrtdEfzOxjM9uK10OImfnM7PbAe7IocG5cWG1/Q83s+8B7douZzTGzs3bUviIi\nsmPqeROR37sOgf83AZjZEOBr4CPgTCAReBSID7wGb7hZLnALkAl0Ae4HkoE/V9v/48AHwFmA37z7\n694DngpsHwX0BRIqbfMicDLe0LplwOXAZ2Z2pHNuaqV0A4HWwE1AdGCf44EqX+YrM7MU4EcgH7gZ\nWAt0B9pWSvYRXs/PzYH63QJ8a2a9nXPLKqU7H5iPNzyx8udFB+Ax4EG8dl1pZgl4PZxZwBWB/G8H\nvjazLvX02hwITACWAuHAecD35g1zXYE37LUd0CJQDoB1ddS9G/AFMBEveGmLd2w7sn0obbkXgf/g\nted5wL/MbJZzbkYd5SRQ31vxhkXODOQxwcycc+7NQFnXAncDI4ECoLbewZfwhlP+CxgFrACWB9a9\nBwwA7gssOxv42Mz6OefmBNLssTbbgX8D/wf8Ay9IB3gauDDQFj8DxwAvm1mWc+5TM2sGfAr8N5DG\ngB6BsoiIbKfZJhtEwZuI/O6YWfm1rSPefUV5wKTAskeBH5xz51RKvx7vvrjuzrnfnHO/AjdWWj8N\n2Ib3JfXaakMEpzvnrq6U9kwgzzl3S6U0n1dafwjel+2LnXP/CSz7EpgH3AP8odJ2zYATnXM5gXQt\ngSet/iFsNwDNgb7OuY2BZeV1x8yOA4YAI5xzUwLLvgFW4QVx1YPTk5xzhdWWJQJHVwomMLOHgKZA\nL+dcdmDZtMB+L8ELVGpwzj1QaR8+vMBrADAaeNA5t9zMsgFfpeGwdbkHWA2c7JzzB/aZDbxtZoOc\ncz9WSvumc25cIM1k4I/A6UCtwVsgOB0LjCvfDvjSvJ7Q+wP7W25m5UHYTOfc1jrqvM7MyoO6ec65\n3wJ5HAWcSKVjA3xlZl2Au/B+INjTbVafd51z91TK6yDgSiq9d/GC81Z4weaneD90NAeucc7llddh\nN8ogIiKVaNikiPzeJOJNYlECLMbrpTjHObfBzGKAQcA7Ztak/B9ej1EJXg8Z5hlrZgvMrCCwbgIQ\nidejUdln1V7/CjQ3b1jisWbWtNr6/ni9Ee+WL3DOlQVeD62WdmZ54BZQ/oX/gHrqPxL4olLgVt0A\nIL1ScEBgIpdPa8l/Ui2BG8D6yoFbwNF4QcSWSu2aB8wG+lXfQTkzO8TMPjSzNMCP19Zd8YKAXTUA\n+LA8cAt4HyilZt0qAgrnXAleL1Z9Q1K7AzFUOm4BbwNdzCy5AeWt7mi8nsxp1d6fk6jUhnu4zepT\n/b19FFAGfFhL+XqZd//jcmAr8IaZnWJm6nETEdmDFLyJyO/NZrwAqR/el/EOzrn/BdbF400S8Szb\nA7wSoAhv+Fn50MKxeMMhPwROwQsKynvXoqrll1b5hXNucWCbjng9bplm9kalL/etgK3Oufxa9hNj\nZpGVluVWS1Pe41e9DJUlAnUFbuX51zYDYhpVh3aWL6tNbcuTgHOo2q4lwJFUHbJZwbz7DL8KrL8R\nOALv2M2l/jrWpVX1sgUCuSxq1q22tq0vz1aB/6vXvfx19f03RBLQkppteD+BNtwLbVaf6nVNwjt/\nNlcr3yt4I3laBX5sOAbvfHoHyDCzz8ys4x4um4jIfknDJkXk96bUOTerjnW5gMP7Mvx5Les3BP4/\nC3jPOXdX+QozO7SOfboaC5z7DO8etuZ4w+D+gXev0Ll4gVWsmcVUC+BSgXznXFFdFdtJWWwPNGqz\nEUipZXkqkF1tWY261bM8G/gY736r6vJqWQZeL2gb4Bjn3KLyhYF2a4gadQv0BiVSs24N2TeB/WdV\nWp4a+H9391++j/XAqfWk2d02KwQiqi2LryNt9eOcjdeLOQSvB666dIDAUM3jzCwarzfxCeAN4PCd\nLKOI7Aec7nlrEAVvIrLfcM5tM7PpQFfn3IP1JI3G642rbFQD8tuMN3xsON6XbvAmunB4k6O8Ct4w\nzcDrqbXtZxdNAq4zs1TnXG09ZD8BD5jZMOfcd4H8Y/CCzA93M9+zgfm7MKV8dOD/irY2s8F4E6LM\nrpRuR71i5X4CTjOzOysNnTwd77Nud9v2N7xJWM7Cm4ij3NnAEudcxm7uH7w2vAmvZ3ZRHWl2t83W\nAYdUW3ZsLelq8w1ez1tz59zEHSUOvA8+MbPuwB07mYeIiNRDwZuI7G9uxZucpAxvZr88vPvYTgTu\ncs4twbt36zoz+wnvHp5ReLMz7pCZ/RkvUPsCryevM94X/lcBnHMLzexN4JnAELjleLNNHow3GcTu\nehL4E97sgw/jzX54CNDUOfeYc+5LM/sBbxKP2/F6kW7GCwr+thv5PoE3YcY3ZvY0Xg9SKjAcmBqY\njbG66Xj3R71oZo/h9SjdH9i2skXAKWZ2Kl7wscE5t4GaxgG/AB+Z2XOB/f0V+LLaZCW7zDmXbWb/\nAO42s1JgFl5geALeBDR7wkTgS2Cimf0Vb6bPZkAvIMo5dwe732YfAk+b2Z1snzGz284Uzjm32Mye\nB94K5D0LL0DsBnRxzl1mZifiTVDzEbAG7/7MP+MFfiIispsUvInIfsU5N9XMhuFN9/4aXk/Carxg\nq7yn6kG8xwKUzyr4AXAdgee47cA8vMcAPIF3H9RGvGnp762U5nK8oOJevCnUf8Wb1XG3e96ccxmB\nxyE8hjdcMxJvMo6/VEp2KvD3wPoovBkWR1Z7TMCu5ptpZocDD+MFkC3w6j4Vr01q2yYt8Pyvx/Gm\nll+K95iBW6slfRboDbyMN8TvAbyApfr+5pvZ8cAjeMdsC/BmLftrqHvxhg1eiReYLgNGO+fe2hM7\nd845Mzsd7xESY/F+VMgG5uANu90TbTYe6IT3fo7E+1FhHPDCThbzamAJ3nv4Qbw2XoD3WAHw2sTh\nHYMUIANvMpw7d3L/IrK/KCsJdglCkjlX1y0NIiIiIiIie15e3r37dBASF/egBbsMtdFskyIiIiIi\nIiFAwyZFRERERKRRabbJhlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaV5mGTTaEet5ERERE\nRERCgII3ERERERGREKBhkyIiIiIi0rg0bLJB1PMmIiIiIiISAhS8iYiIiIiIhAAFbyIiIiIiIiFA\n97yJiIiIiEjjcrrnrSHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRRmV6VECDqOdNREREREQk\nBCh4ExERERERCQEaNikiIiIiIo1LwyYbRD1vIiIiIiIiIUDBm4iIiIiISAjQsEkREREREWlcGjbZ\nIOp5ExERERERCQEK3kREREREREKAhk2KiIiIiEijMqdhkw2hnjcREREREZEQoOBNREREREQkBGjY\npIiIiIiINK4yf7BLEJLU8yYiIiIiIhICFLyJiIiIiIiEAAVvIiIiIiIiIUD3vImIiIiISKOyMj0q\noCHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRxqVHBTSIet5ERERERERCgII3ERERERGREKBh\nkyIiIiIi0rg022SDqOdNREREREQkBKjnrXG4YBdARERERPYLFuwCyN6j4E1ERERERBqVabbJBtGw\nSRERERERkRCg4E1ERERERCQEaNikiIiIiIg0Lg2bbBD1vImIiIiIiOwiMzvOzBab2TIzu72W9c3N\n7BMzm2tm883s4t3NU8GbiIiIiIjILjCzMOBfwPHAocB5ZnZotWRXAwuccz2BEcDfzSxid/JV8CYi\nIiIiIrJrBgDLnHMrnHPFwFvAKdXSOCDOzAyIBbKB3Xo6ue55ExERERGRRvU7eFTAAcDaSq/XAQOr\npXkG+BjYAMQB5zjnynYnU/W8iYiIiIiIVGJmY8xsVqV/Yxqwmz8Ac4DWQC/gGTNrtjvlUs+biIiI\niIhIJc658cD4epKsB9pWet0msKyyi4FHnXMOWGZmK4GDgRkNLZeCNxERERERaVyhP2xyJtDZzA7E\nC9rOBc6vlmYNcBTwvZmlAl2BFbuTqYI3ERERERGRXeCcKzWza4AvgTDgZefcfDO7IrD+eeAh4BUz\n+xUw4DbnXObu5GteL57sZWpkEREREWkMFuwC7IyCBUfv09+Pow/9ep9sR/W87QFmFuacC/m+XxER\nERGRxvA7mG0yKPa72SbN7EEzG1vp9cNmdr2Z3WJmM81snpk9UGn9R2Y2O/BU9DGVlm81s7+b2Vxg\nUCNXQ0RERERE9jP7XfAGvAz8CcDMfHg3F24COuM9bK8X0NfMhgXSX+Kc6wv0A64zs8TA8qbAT865\nns65qdUzqTy96Pjx9U1UIyIiIiIismP73bBJ59wqM8sys95AKvAL0B84NvA3eE9A7wx8hxewnRZY\n3jawPAvwA+/Xk0/l6UX36TG9IiIiIiKNSsMmG2S/C94CXgIuAlri9cQdBfzFOfdC5URmNgI4Ghjk\nnMs3s8lAVGB1oe5zExERERGRxrI/DpsE+BA4Dq/H7cvAv0vMLBbAzA4wsxSgOZATCNwOBg4PVoFF\nRERERGT/tl/2vDnnis3sWyA30Hv2lZkdAvxoZgBbgdHAF8AVZrYQWAxMD1aZRURERER+LzTbZMPs\nl895C0xU8jNwlnNuaSNkuf81soiIiIgEwz75fLLqiuYM2ae/H0f2mrZPtuN+N2zSzA4FlgGTGilw\nExERERER2W373bBJ59wCoGOwyyEiIiIist/SsMkG2e963kREREREREKRgjcREREREZEQoOBNRERE\nREQkBOx397yJiIiIiEhwWVlZsIsQktTzJiIiIiIiEgIUvImIiIiIiIQADZsUEREREZHGpUcFNIh6\n3kREREREREKAgjcREREREZEQoGGTIiIiIiLSuDRsskHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBER\nERGRRmVOD+luCPW8iYiIiIiIhAAFbyIiIiIiIiFAwyZFRERERKRxabbJBlHPm4iIiIiISAhQ8CYi\nIiIiIhICFLyJiIiIiIiEAN3zJiIiIiIijatMjwpoCPW87YCZtTCzqyq9HmFmnwazTCIiIiIisv9R\n8LZjLYCrdphKRERERERkL/pdBW9m1sHMFpnZK2a2xMwmmNnRZjbNzJaa2QAzSzCzj8xsnplNN7PD\nAtveb2Yvm9lkM1thZtcFdvso0MnM5pjZ3wLLYs3svUBeE8zMglJhEREREZFQVFa2b//bR/0e73k7\nCDgLuASYCZwPDAVOBu4E1gK/OOdONbORwKtAr8C2BwNHAnHAYjN7Drgd6O6c6wXesEmgN9AN2ABM\nA4YAUxujciIiIiIisn/6XfW8Bax0zv3qnCsD5gOTnHMO+BXogBfIvQbgnPsGSDSzZoFtP3POFTnn\nMoF0ILWOPGY459YF8pgT2G8VZjbGzGaZ2azx48fvweqJiIiIiMj+6PfY81ZU6e+ySq/L8OpbspPb\n+qm7fXaYzjk3HiiP2lw9eYqIiIiI7FeszB/sIoSk32PP2458D4yCiiGQmc65LfWkz8MbRikiIiIi\nIhI0v8eetx25H3jZzOYB+cCF9SV2zmUFJjz5Dfgf8NneL6KIiIiIiEhV5t0OJnuZGllEREREGkNI\nzIJeOqnjPv39uMlRK/bJdtwfh02KiIiIiIiEHAVvIiIiIiIiIWB/vOdNRERERESCaR9+EPa+TD1v\nIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiIiIg0Lt3z1iDqeRMREREREQkBCt5ERERE\nRERCgIZNioiIiIhI4yrzB7sEIUk9byIiIiIiIiFAwZuIiIiIiEgI0LBJ2ev8TAha3mGM4osB5wYt\n/+NmvMXiPw4PWv5dP5nCxIFnBy3/Y356h/RLugct/5SXfwt6/lOGnB6UvIdP+wCAtIsPC0r+qf83\nj8zLDw1K3gBJLy5g6tBTg5b/0Kkf8d8+o4OW/yk/v07GZd2Cln/yS/ODfu4FO/+3e14UtPzPmftK\n0I5/8kvzAfhuyGlByX/YtA/5rN/5Qckb4MRZbwT93A8VptkmG0Q9byIiIiIiIiFAwZuIiIiIiEgI\n0LBJERERERFpXBo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI49KwyQZRz5uIiIiIiEgI\nUPAmIiIiIiISAjRsUkREREREGpeGTTaIgjfZZ911x8dMmbyEhMSmfPzplXtsv4fcdCFJg3tTVljE\nrw8+x5bFq2qkiW6dTM9x1xPePJYti1Yy775ncKV+mrZvTY97r6BZ1wNZ8tzbrJrwKQBN27Wi5yPX\nV2wf0zqFpePfrbccMX0GkHr5teDzsXniZ2S/90aV9RFt2tHy+tuJ7NSZzNdeIufDtwEIP6AtrW+9\nryJdeMvWZE14mZyP36szr643XkzS4N74C4uY/9Cz5C1eWSNNVKtkDhs3lvDmcWxZtILf7n8aV+qv\nd/tD776S5CF9KM7ZzI/n31xr3ikv/0bGdUNxW3Or1q/7EGLPvx0sjMLv3yf/839XWR95+Ik0Pf5S\nMHCF+eS99hClaxcDEH30aKKHnQFmFHz3HgUTX6+z7nVp7PzjB/bmoLGXYD4fGz/5mrWvf1gjTaex\nl5I4qA/+wiIWP/wMW5esIDIlkYPvuY7w+BaAY+N/J7L+3c8AOOTBm4hp1xqAJrFNKd26jdkX3bRT\ndY87/zbw+Sj47gPyP3+5yvqow08g5oRLwAxXuI28V8dRunaJV/djRhEz7AwwKJjyAfkNaPvwbkNp\neu4dmC+Mwu/fo+CLl6qWr+dIYk69FpzD+UvZ9vajlC77GYDYC8cRcdhwyvKyyb3/lJ3Os8XA3nS8\n/jLM5yPt04mse/2DGmk6Xn8Z8YP6UlZYxJJH/sm2JSu2r/T56PXS4xRnZLHgtocB6HDVhSQM6Y8r\nKaVwwyaWPPI0/q3b6ixDj1suIGVoL/yFRfxy33g2L1pVI01M62T6/eVqwlvEsXnhSmbf/Ryu1E9i\n30MY+MQN5G/IAGDDNzNZ8uJHXrlHHUf7U0eAc2xZto5f7h+/0+0S3m0osefdjvnCKPj+fQr+V+1Y\n9DqSpqdeC2UOV1bK1rf+WnEsGirY5/6ulCWi15HEnnYtzpVBmZ+tbz5KydJfdjmf3reNotXQw/AX\nFjPjnpfIWbS6RpqmByQx6K9XEtE8lpyFq/jpzvGUlfoJj4thwIOXEtsmBX9xCTPv+zebl60H4KTP\nH6ckvwDndzi/n4nnP7BL5WqM4x8/sDedxl6K+Xxs+uRr1tZy7nUaeykJg/riLyxiycNPs3XJCiwi\nnJ7/ehhfeBOsSRiZ3/7I6n+/BUD7y88jcegAcI6SnM0sfvifFGfm1FmGQ2/+EylDeuEvLGbu/c/X\n+bnf+5FriWgey+aFK5lz77O4Uj+pw/vS5YqzcGVlOH8ZC/7+GjlzF+OLCGfQi/d65QsLY+Okn1g6\n/v1a898Xz30JXQreqjGz+4GtzrnHg12W/d1pp/dk1Oj+3H7bR3tsn0mDexHTthXfnzGW5t0P4tDb\nLmP6JXfXSNflmvNZ9eZnbJr4I4fefiltThnJ2vcnUrJlKwsef4XUEf2rpN+2ZiM/jL7de+Ezjvzs\nOdImz+SQGy+svSA+H6lXjGXdPTdRkpVB+ydeYOtP0yheu/0D3Z+3hfTx/yT28KFVNi1Zv5bV119W\nsZ9Or7xH3o/f11Pn3sS0bcm0M6+jeffOHHLrZcy49K4a6TpfM5rVb31G2sQfOOS2yzng5JGs+2Bi\nvdtv+HQya9/9gu73XV1jf5EpiV49MjfULJT5iBt9Nzl/v5yy7E3E3/s2RXO+xb9h+5dlf8Z6cv56\nES5/CxE9hhJ34X3kjDufsAMOInrYGWSPOw9KS2hx4/MUz52CP31tnW0Q9Px9PjrfdDnzxj5AUXoW\nfV56jKypM8lfta4iScKgPsS0acWMc64mrlsXOt88hl/G3I7zl7H86f+wdckKwmKi6PPvx8mZOZf8\nVetYeO/fK7bveM1F+LfVHThUqfsFd5L7+Bj82Wkk3PsmRXMmV6175npyHr0Yl59HRI+hNLvwPrLH\njSLsgIOIGXYGWQ+dH6j7cxQ1oO1jz7+bzU9eRllOGi3uepviud/i37i8IknxoukUP/ANAGEHdCHu\nz0+Qe+9JABT+8CEF304g7pJHdz5Pn49ON/6Z3264j+L0LHq99Deyps6goFL7xx/el6i2rZh97pXE\ndevCQTdfwdwxt1asb33WSeSvXkeTmOiKZbkz57LqhdfAX0aHK/9E2wvOYNVzr9ZahJQhPWnariWT\nTrmJ+B6d6HnHRXx34f010h163bksn/AF67+azmF3Xkz7U0ew6r1JAGTNWcxP1/+9Svqo5Hg6nnss\n35x5G2VFJfR79FoO+MPhO9cu5iNu1F3kPnE5ZTlpxN/9NsVzqh2LhT9RPOdbAMLadKHZn/9Ozj1/\n3Ln915VnMM/9XSxLycLpZFeqf/MrHyf7rpN3KZtWQw8jrl0qn//xNhJ7dKLv3X/i69EP1Uh32PVn\ns/j1r1j7xU/0vftCDjxtGMvf/ZZDL/sjuYvWMO2Gp4nr0Iq+d17A5DGPVWz37WV/pTh3a8Pqv7eP\nv8/HQTeN4dex91OUnkXvlx4ja+qMKte++EF9iG7TmpnnXBU49/7MnDG34YpLmHfdvZQVFGJhYfR8\n7hGyp/9M3vwlrJvwEatffBOA1meeSLuLz2HZ356vtQjJQ3rRtG1LJp92Iy26H0T3Oy7hh4vurZHu\n4GvPY+Ub/2PjVz/S/Y5LaHvKkax5/2syZ/xG2pTZAMQd1JY+j17PlDNvpqy4hOlXjMNfUISFhTHo\n3/eR8cPcGvvdJ899CWm65032Wf36t6d58+gdJ9wFqcP6seHz7wDY/NsywuNiiExsUSNdYr9upH3z\nEwAbPvuO1OH9ACjO2cKWhSsqeqRqk9i/B/nr0ijclFlnmqjOh1CycT0laRuhtJS8774hdmDVIM2/\nOZfCpYtwpaV17iemZx9KNm6gNCOtzjTJw/qx8X/ldV5Kk7imRNRS54R+3Uj/ZnqgzpNJHt5/h9vn\nzllIyZbavzR0vaE8cHU11jXp2IPS9DWUZawDfylFP/2PyF4jq6QpXT4Hl78FgJLl8/DFp3rbtupI\nycpfobgQyvwUL55FZJ+j66x/bRo7/2aHHETBuo0UbkjDlZaSPmkqiUcMqJImcegANn0xGYC8+UsC\n7RxPcVYOWwM9QP78QvJXryMyObFGHskjB5M+ceoO6x7esTv+9DX4M9aDv5TCGV8Q2fvIKmlKls3F\n5ecF6j4XX0JKoO4HUrJiXkXdSxbPIrLvLrb9gT3wZ6yhLHMd+Esomvk/Iqq1PUX5FX9aZDSV30Ol\nS2fjtm3epTzjDulM4bqNFAXaP+PrqSQOHVglTcIRA0iv1P5hsU0JT4wHICI5kYRB/Uj7ZGKVbXJn\nzgF/WWCbxUTUclzKtRrRl7Wfescn59flhMc1JTKp5nmY1P9QNkyaAcDaT7+n1ZF9d1g/X1gYYZER\nWJiPsOgICjPq7oGorMmBPfCnr604FoUzPieiV9X3QpVjEVH1WDREsM/9XS2LKyqo+NsioxtU/QOO\n7M2qT6YBkPXrcsLjYohKal4jXeqAQ1g3cSYAqz6eygEj+wDQrGNr0mYsBCBv1Uaatk4iMqHZrhek\nmsY4/nEL7p8SAAAgAElEQVSHdK5y7cuo5dqXNHQAaV94AWLlax9AWUGhl3eTMKxJGDgvf3/+9uMS\nFh1Zsbw2qcP7sv5z7wfO3Ho+95P6d2PTJO9zf92n39NyhPe57y8oqpRXVJW8ytdZkzB8lcpX2b54\n7ktoU88bYGZ3ARcC6cBaYLaZXQ6MASKAZcAFQBgwD+jinCsxs2bA3PLXQSm87JLIlAQK0rIqXhem\nZxOZkkBR1vYhfeHN4yjJy8cFvpQVpmUTmZyw03m0OmYQG7/6od40TRKTKMlMr3hdmpVBVJdDdjqP\ncs2OOIot302qN01kcgKFadsDycL0LKKSEyiuVufSynVOzyYqUOed2b665GH9KMrIrnN9WIsUyrI3\nVbwuy0mjSccedaaPOuJ0in/1PvxK1y+j6enXYU2b40qKiOxxBCWr5te57b6Qf0RyIkXp2993RelZ\nNOvWuUqayOQEitIzq6SJSE6gOGv7h3Fky2RiOx/IlvlLqmzbvOehlOTkUrBuY73lAPDFp1KWvT3Y\nL8tOI7xT3XWPHnY6xb96XzxL1y8j9oxrK+oecdgRlO5i2/tapFZr+000OfCwGukieh9FzGk34GuW\nyJZ/XrFLedTYV/W2zcgi7tBq7Z+UQHGlNMXpWUQmJVCSlUPH6y5l5XP/qdLrVl3qiUeTManu4Dkq\nJb7KtacgPZvo5HiKMrefRxEtYinZuv08LEjLJio5vmJ9wmGdGfH2IxSm5zD/yTfIW7Gewowclr32\nOcd+/hT+omLSf/yVjOm/7USreO8Ff87290xZThrhHWs/Fk1PH4uvWSKbn9q9IezBPvcbUpaIPkcR\ne8b1+OISyX3qql3OJzolnvy07dfDgrQcolPiKczc/iNERItYiitdg/PTcohJ8Y597pI1tDmqL5m/\nLCGh+4HEtEokJjWeouwtOBwjXrgVV1bG8ve+ZcX7U3a6XI1x/Gu7rsV161J1/7VcHyuufT4ffV5+\nnOgDWrLhg/+Rt2BpRboOY0aRetwISrflM+/ae+osQ1RyPAWbtrd/YVo2USnxtXzub6v0GZhFVMr2\ncy91RD8OvuZcIuKbMXPs37bv3GcMfe1hmrZtyep3vyJ3/vZey4r898Fzf59Rtns/Bu2v9vvgzcz6\nAucCvfDa42dgNvCBc+7FQJpxwKXOuafNbDJwIvBRYLsPFLhJOWsSRsqwvix59q29n1mTJjQdOJiM\nV/etMe6+yAgOvPA0fr5uHO3OOWG39xd+cH+ijzidnL9cAIB/4wry//cyLW4ajysqoGTtYnB776bn\nYOdfzhcdRbeHb2X5P1+u8qszQMoxQ3eq121XeXU/jexHvF5U/8aVbPv8/4i/+QVcUQGlaxbj9tIN\n58W/TKL4l0k06dyXmFOuY8uTl+6VfHYkfnA/SnI3s23xcpr37l5rmjZ/OhPn95Px1c5/cd5Vmxet\n4qsTrsdfUETKkJ4MeOIGJp16M+FxMbQc0YeJJ91AydZ8+v/1WtqcMGSP5l1+LMI796Xpqdey+YnL\n9uj+67KvnHvFP08i++dJhHfpS+xp15D7+OV7Pc/KFr78GX1uG8Wxbz/I5mXryF20Ghf40vvNRQ9T\nkJ5LZEIcI56/hbyVG8n4eckO9rhrgnX8ASgr4+eLbiQsNoZuf7mdmAPbkb9yDQCrxk9g1fgJtL3g\ndFqfcULF/XB7Q9rkWaRNnkVC74PpesVZ/HT1I4HyOaaOupMmsTH0e/wGYju12eN5B/Pcl33Tfh+8\nAUcAHzrn8gHM7OPA8u6BoK0FEAt8GVj+EnArXvB2MVDrVdzMxuD13PHCCy8wZsyYvVYBqV+7M4+l\nzaneUJjNC5YTnZpI+e9dUSkJFKVX7SEq2ZxHeFwMFubD+cuISk2otxepsuTBvdiyaBXF2fUP6yrN\nyiQ8KaXidZPEZEqz6h5mWZvYvgMpWr4Uf27NYRItTjiV5n/w7hEqyswlKjUJ8G74j0pJpDCjZp2b\nVK5zSkJFmqKM7B1uX1lMm1SiW6dw+Over5O++FQS7nuXnIfOpWyL9+ujPzcdX0LLim188amU5aTX\n2FdYmy40u+hBcp+8ospQucLvP6Dwe++m96anX09ZzqYa29ansfMvzsiquAcQvPsBq7+nijKyiUxJ\nqpKmOJDGwsLo9vAtpH/1HZlTfqpWSB9Jww9n9iW37KDWnrKcNHwJqRWvfQmp+Gupe5M2nWl28f3k\nPnFVtbp/SOH33mQrsWdchz+77iG7teafm1at7VtSllsz/3KlS2cTltwGi21RY9KbnVVcvW2Tt7dt\nuaLMbCIqpYlISaQoM5vEEYNIGNKf+MP74osIJ6xpDF3uGcuSh/4BQMrxI0kY3I/frq95D82BZx9N\n+9O8YWg581cQnbr9PRCdkkBBtSFOxblbCY/dfh5GpyZUDIMq3bY9YE+fNhffHRcR0SKWpH6Hkr8+\ng+Jcb5jrxm9mkXBY1V7FupTlpBEW36ritdcTU/fxLNkDxyLY535DylKuZMmu1f/Ytx8EIHv+SmJS\nt4/eiE6NpyC95rGPqHQNjkmNJz+9/NgXMuPe7ROpnPT542xd55WzIN0rR1F2Huu++ZmE7h13Onhr\njONf+3Utq0qa2q6P1c9P/9Z8cn/+jYTDe1cEb+XSv/qO7o/fUyV4a3/WMbQ91Tv3Ni9YQXTLBHIC\nt6NFpSZQWK39vc/9ppU+AxNrpAHI/mURMQekeD11m/MqlpduzSdz1gJSBvUE9v1zX0Kb7nmr2yvA\nNc65HsADQBSAc24a0MHMRgBhzrla+6idc+Odc/2cc/0UuAXXmve+4ofRt/PD6NtJnzKL1icMA6B5\n94Mo2ZpfZehEuezZC0gd6d0T0/rEYaRNmbVTebU6dggbv5q2w3SFSxcR3roN4aktoUkT4oaNZOuM\nHW9XWdywo9gypfYhk7mff1QxqUnGdzNodXx5nTtTujW/1iGPObPnkzLSu9m59YkjyPjOq3PG97N2\navtyW5evZcrxlzP1tGsA7wtC9gNnVQRuAKUrf6NJajt8SQdAWBMiBx5PUeCm+HK+hJY0v/ofbH7x\nDvxpVWdms7iEijSRfY+icPrndZanNo2d/5ZFy4hu04qoVilYkyakHDWUrKkzq6TJmjqTlseNACCu\nW5dAO3sf3l3uuJr81etZ9/YnNfYd368n+avX1/hCVJeSlfMJS2lfUfeoAcdR9MvkmnW/5km2vHjn\nnm/7Vb9Vyj+cyP7HUzy3Wtsnt6v4O6zdIdAkosHBAkDeoqVEt21FZKD9k48eSva0GVXSZE+dQUql\n9vdv3UZJVg6rX3idmadfxqyzxrD4/r+zefa8isCtxcDetDn/NBbc/ghlRcU18l35ztdMPu8uJp93\nF5smz6btSd59rfE9OnnXnsyadcqctYDWR3n3BLU96Qg2TvZm9otM3H6PVItuHcGM4tytFGzKIr7H\nQYRFRQCQNKAbeSvX71S7lK76jbCK8yCcqAEn1DwWKduPRZM9cCyCfe7valnCUtpW/L2r9f/qnHv5\n6px7Wf/tz3T4o9cjktijEyVbC6oMmSyXPnMRbY7x7jXucPJQNnzrzWoZHhfj3U8FdDx9OBk/L6Z0\nWyFh0RE0iYnyyhkdQctB3Spmodyp+jfC8c9btLTKtS+5jmtf6nFeoFP52hfeohlhsTFeOSIiiO/v\nXesAotpsDzoTjxhA/up1Vfa5+t2JTB11J1NH3Una5FkccMIRALTofhClWwtq/dzPmrWAlkd5n/tt\nTjqi4nM/ps32H7uade2AL6IJJZvziGgRR5Py8kWGkzywB1tXeRN07evn/j6jrGzf/rePUs8bfAe8\nYmZ/wWuPPwIvAHHARjMLB0YBlc+IV4E3gJrTRckec/ON7zNjxmpyc/I5ctiTXHPtCM44q/du7TNj\n2i8kDe7FsA+ewl9YxK8PbZ+dqu+Tt/Hbw+Mpysxh8dNv0PPh6+h8xTnkLVnFuo+9D7SIxOYMfuUR\nmjSNxjlHh3OP5/tzb8a/rYCwqEgSB/Zg/l9e3HFByvykP/8P2jzwuPeogK8/p3jNKpof581itvmL\njwlrkUD7J1/AF9MUysqIP/lMVl11IWUF+VhkFE179SPtX3/fQUaQOe0Xkgb3Ycj7/8RfWMyCh56t\nWNf7ydtZ8PALFGXmsPSZCfQYN5aD/nwueUtWsv7jb3a4fY+Hrie+z6GEt4jjiE+eY/n4d9jwybc1\nylBb/fNef4QWN77gTVE99UP8G5YTNeJsAAonv0PTk6/EF9ucuAvurtgm58FzAGh+9ZP4Ylvg/KXk\nvf4wriCvrpz2jfz9ZSx78iV6PHEvFuZj06eTyF+5llanHgvAxo++IvvH2SQM6sOAd571HhXwyDMA\nNDvsYFoeP4Kty1bR9xXveK98YQLZP3of7ClHDyH967pnG6217hMeIf6m58AXRuH3H+HfsJzoEWcB\nUDD5XWJPuQJfbAviLgjMSur3k/3geQC0uOYJfE2be3V/7ZEGtf3WNx6m+dgXwXwUTvsQ/4ZlRA33\n2rZwyttE9j2GyEGngL8UV1xI3vjtjz+Iu/xvhHcZgMW2IP6xb8j/+BmKptacerwKfxnLn3iR7k/c\nB74w0j77mvyVa2l5yh8A2PTfL8n5cTbxg/rS9+3nKSssYukj/9xhVTrdMAZfeDjdn/SmZ8+bv5jl\nj9c+413a1DmkDu3J0f/9O/7C4ipTeh/+z5uZ8+BLFGbmsuCfb9HvL9dw8NVnsXnRKtZ8NBmA1kcP\noMOZR+H8fvxFJcy6418A5Py2nA2TZjB8wjic38/mxatZ/cG3HHZbHTPdVlZxLMZjvvJjsZyo4YHz\nYMo7RPY5hqhBJ3vHoqSQLS/U/kiQnRbsc38XyxLZ9xiiBp+M85dCcSFbnt/1+m/8fi6thh7GiZ8+\nRmlhUZVetCOeuYGZD/wfhRm5zP3HOwx67Ep6XH06uYvWsOJDb6KoZge2YuC4y3HOsWX5embc5z3a\nIyqhOUOfvBbwhuyv/nw6m374dZfqv9ePv7+MZU96517Va5937m386MvAta8v/d95jrLCIhY/8jQA\nEYnxdL37OvD5MJ+PjG+mkf2DF1AdeOUFxLQ7AFdWRtGmDJbWMdMkQPq0OSQP6cWIj57EX1jEvAde\nqFjX/6lbmffQeIoyc1n49Jv0eeRaul55FlsWr2btfycD0PKoAbQ54QjKSkspKyrh5zu88kUmtaDn\nA1diPh/mMzZMnE761JqPkdgnz30JaebqmaFnf1FtwpI1ePe9bcMbHpkB/ATEOecuCqRvCawEWjnn\nduYnqP26kf1MCFreYYziiwHnBi3/42a8xeI/Dg9a/l0/mcLEgWcHLf9jfnqH9Etqv0+oMaS8/FvQ\n858y5PSg5D18mhfQpF1ccwKCxpD6f/PIvPzQoOQNkPTiAqYOPTVo+Q+d+hH/7TM6aPmf8vPrZFzW\nLWj5J780P+jnXrDzf7vnRUHL/5y5rwTt+Ce/5E0i892Q04KS/7BpH/JZv/ODkjfAibPeCPq5D1jQ\nCrAL/O+22Ke/H4edlbtPtqN63gDn3MPAw7Wseq6OTYYC7+1k4CYiIiIiIpXtw0MT92UK3naRmT0N\nHA/s/jR6IiIiIiIiO0nB2y5yzl0b7DKIiIiIiMj+R8GbiIiIiIg0Lj2ku0H0qAAREREREZEQoOBN\nREREREQkBGjYpIiIiIiINC6n2SYbQj1vIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiI\niIg0Lj0qoEHMOTVcI1Aji4iIiEhjsGAXYGf4X4/Zp78fh43O3yfbUcMmRUREREREQoCGTcpe98WA\nc4OW93Ez3sLPhKDlH8Yonu5yZdDyv3bJc0wceHbQ8j/mp3f4ZtCZQct/5I/vBT3/RSeNCEreB386\nGSBox/+Yn95h8uAzgpI3wIgf3mfDBb2Dln/r137h2a5XBC3/qxY/H/T3/v6e/5uHXRy0/M+b939B\nq//IH98DgnvtmXT4WUHJG+Co6e8G/dwPGRo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI\n49KwyQZRz5uIiIiIiEgIUPAmIiIiIiISAjRsUkREREREGpUrC3YJQpN63kREREREREKAgjcRERER\nEZEQoGGTIiIiIiLSuDTbZIMoeJNGd8hNF5I0uDdlhUX8+uBzbFm8qkaa6NbJ9Bx3PeHNY9myaCXz\n7nsGV+qnafvW9Lj3Cpp1PZAlz73NqgmfAtC0XSt6PnJ9xfYxrVNYOv7d3SrnXXd8zJTJS0hIbMrH\nn165W/uqy7C7z6b98G6UFhTz9e2vkrFgbY00xz5+MSnd21NW6idt3iq+vXcCZaVlxHdM5ai//ImU\nbm358YmP+eXlr+vMp+uNF5M0uDf+wiLmP/QseYtX1kgT1SqZw8aNJbx5HFsWreC3+5/Glfp3vL3P\nGPjKoxRlZDPnpr8C0OnP55B8RD8Aev3jHhaMe4bizJwq+SUc3ovOYy/Gwnxs/HgSq1/7qEaZOt9w\nCYmDe1NWWMyCh55h6xIv34PvuoqkwX0pztnMjNE37qCV915+ySMHceClZ9O0wwHMuvQO8hYt36my\nADTtM4CUMddgvjByv/qM7PfeqLI+ok07Wo29jchOncl89d9kf/h2xTpf01haXncLke0OBBwbn/or\nhYsW1JrP3jr2iYf3pOuNF2M+H+s/nsSqV/8LVD32h/3jHhYFjn3CwF4cNPYSr/0/mcSa1z6sUY6D\nbriExEF98BcWs2jc0xXt3/XOq0gc0o+SnM3MHH3D9jY8qD1dbv0zYdFRFG7MYOH9/8CfX7DDto/s\nMZjmF9wCPh/5kz9i66f/V2V99ODjiT3xIjDDFeaT+8ojlK5ZAoDFxNLi0vto0qYTOEfuSw9Qsmze\nDvOsbuhdZ9N+eHdKC4uZdPt/yKzl3O8+agQ9LxxJ8/YpvHz4TRTmbPPK3yyGIx/5E83bJVFaVMq3\nd75K9tINNbbfnfd8XdvGHtSerreOISzGa/P59z1Vpc0jU5MY+MaT9da9sc79gW89FZS6r/z3jj97\n+tx2Pq2POAx/YTHT7/k3OQtX1yzfuUfRdfQxxLVL5f1h11KcuxWAuA4tOfyhS4k/pD3znv6ARf/5\nIqj1j2qZzMC3/kH+6qrvwb1x7fFFhNPv+QfwRTTBwsJI+2Y6K1702ju2c3sOue1yAA57/Dbm3/tP\n/PkFJBzeiy43eNeqDXW0RZcbL/auPUVFLHzoXxVl3dG27c4/ic7XXch3f7iEks15tR6H6hrj3Jff\nt/1u2KSZdTCz34Jdjv1V0uBexLRtxfdnjOW3v7zIobddVmu6Ltecz6o3P+P7M8ZSkreVNqeMBKBk\ny1YWPP4KKwNBW7ltazbyw+jbvX9/ugN/UTFpk2fuVllPO70n418atVv7qE/74d1o0SGF1465j2/u\neYMRD5xXa7rFn8zg9ePu542THqJJVDiHnjUUgMLcfL4b9w4//7vuoA0gaXBvYtq2ZNqZ17Hw0fEc\ncmvtbd75mtGsfuszpp15HaV52zjg5JE7tX27c05g26r1VZatev1jpo++BYDMabM58JKzqmbm89H1\npsuYe+PD/HTeDaQcM5SYDm2qJEkc1JuYtq2Yfta1LHr0ebreOqZi3abPvmXODePqrXdj5Ldt+Rp+\nu+Nv5M5ZuPNlCZQn9crrWXffbay46kKaDR9JRNv2VZL487aQ9sI/yf7g7Rqbp465hm2zZ7Dyyj+x\n8tpLKV67ps6s9sqx9xkH33Ipv4x9hB/OvYGWxw6h6YEHAFWPfda02XS4+Czw+eh88+XMu+lhZpw/\nlpSja7Z/wqA+RLdpxU9nX8OSvz5Hl1sqtf/nk5l3w0M1yt31jqtY8ezrzLrgRjKn/ETbUafU2Q4V\nzEfzC28n62/XkH7bGUQPOo4mrTtWSVKasYHMhy8j486zyfvoRVpccnfFuuajb6Vo3g9k3HY6GXed\nQ+mGFTvOs5p2w7rTvEMKE469l8n3TGD4/efXmm7Tz8v5+OKn2LIuq8ryPlccR+bCtbx98jgm3fZ/\nDL3r7Fq3b/B7vp7z5eA7rmT5cxOYMfomMqbMoN3oqm3e+boLyZ4+p+7KN8a57/O+2uxzdQ9oNfQw\n4tqn8ulJtzPjwVfod/cFtabLnLOUb8f8ja3rM6ssL96yjdmPvlFn0GY+a/T6F6xLY+aFtzDzwlsq\nlu2Na09ZcQmzr36A6aNvZfroW0k6vBfNu3cG4NA7/8yyf00AIGPyDNqPPtmrz82XMueGh5l+3g2k\nHjuEprW0RXTbVvx41rUs+ssLdL318u1tUc+2kSmJJAzoScHGjFrrVpvGOvfl922/C972BjNTD+ZO\nSh3Wjw2ffwfA5t+WER4XQ2RiixrpEvt1I+2bnwDY8Nl3pA73fskvztnCloUrKn6Zq01i/x7kr0uj\ncFNmnWl2Rr/+7WnePHq39lGfjkf1ZOGH0wFIm7uSyLgYYpKb1Ui3esr8ir/T5q0itqXXXgXZeaT/\nupqyetoCIHlYPzb+r7zNl9IkrikRtbR5Qr9upH/jlWfDZ5NJHt5/h9tHpiSQNKQP6/87qcq+/Nu2\n/xodFh2Jc1WHRjQ79CDy122icEM6rrSU9K+nkTysf5U0ScP6s+l/kwHYMn8pTWJjKvLNnbOQ0i1b\n6613Y+SXv3o9+Wt2/VfPqC4HU7xxPSVpG6G0lC3ffUPs4UOqpPFvzqVw6WLwVz2+vpimRHfryeav\nPvMWlJZStq3uttgbx755oD0LNqTjSv1smvhDRXtWOfZRkTjntX/Buk0UbkgLtP9Uko6o1v5H9Cft\niylAeftvL+vmOQtqbf+Ytq3YPMfrccyZOZfkEYfX2Q7lwjt1pzRtLf6M9eAvpWD6l0T1HVElTcnS\nubh871f04mXzCItPBcCiY4k4uA/5UwK9hv5SXP7Ovw/LHXjUYSz+aPu5H9EsutZzP3PhWvLWZ9VY\nntCpFeunLwYgd0UacQckEp0YVyNdQ9/z9Z0vMe1akfuL1+bZM+aSMmJglf0VbExn24qaPQnlGuPc\nb3boQQD7XN3LtTmyN6s++QGArHkriIiLISqpeY10OYvWsG1DzeNflJ1H9vyVdV77E7p3bPT612Zv\nfe74C4oAsCZhWJOwis+XmHatyfllYaB880g58vBK1x6vPmkTp5E0rF+VMiQP68+mz2tee3a0bZex\nF7HsmdeBnR/611jnfsgo28f/7aP21+AtzMxeNLP5ZvaVmUWbWS8zm25m88zsQzOLBzCzyWbWL/B3\nkpmtCvx9kZl9bGbfAJPqzkoqi0xJoCBt+wWpMD2byJSEKmnCm8dRkpeP83tnTmFaNpHJVdPUp9Ux\ng9j41Q97psB7UdPUFmzdtH0o4da0HGJTa364lfM18dH1lIGs+b724XF1iUxOoDBteyBbmJ5FVHLN\nNi+t3Obp2RVp6tu+6w0XsfSZ18HV/PDqdMW5AKQeewQrX6zaexSZnEBR+vZ9FqVn1TjGkcmJFFZ6\nrxRlZBOZnLjzFQ9ifjsSnphMacb2X2tLMzMIT0zeuW1TW+HfkkursbfT4akXaXntLVhkVJ3p98ax\nj0xJoKhyW1Vrz4pj/4dhrHrpLa/9K+2ntratmSZrh+2/beVakoYNACB55GAiU5LqTQ8QFp+CPzut\n4rU/O42w+LrbPmbEqRTOm+Ztm9yasi05tBjzAMkPvUnzS++tt+3rUv3c37Ypl6b1nPvVZS5aR8dj\newOQ0qMDca0TiG0ZXyNdQ9/z9Z0v21auIynwZT5l5KCKNg+LjqL96FNZtYMhg41xLlbf375S93LR\nKS3Ytim74nV+Wg4xKTWPX0PFpFbd196uP0B06xT6/+dv9H72gYple+tzB59x+GuPMfyLl8ia8Stb\n5i/zyrdibUWgmXLUICJTEolKTqAwvfK1qvZrT9U0Xp3r2zbpiH4UZWSzdVnN4a71aaxzX37f9tfg\nrTPwL+dcNyAXOAN4FbjNOXcY8Ctw307spw9wpnNu+F4rqewSaxJGyrC+bJo0PdhF2eNG3H8eG2Yu\nY8OsZcEuCgBJQ/pQnL2ZvEU172MAWP78WwCkffU9bc48rjGL9rtmYWFEdepCzuf/ZdX1l1NWVEDi\nWbUPvQmWimP/5XcccMbxey2fxY88S+vT/0Dflx8jLCYKV1q6R/cfcUg/Yoadypa3nwLAwpoQ3uFg\ntk16l4x7zsMVFRB70iV7NM+d8fP4L4mIi+bsj+6ixwUjyFy4ljJ/4/xMvPDhf9Hm9OPo939/JSwm\nuqLND7zsbNa+/Sn+gsJGKUcw7M91h7rrX5SVw7RTr2Dmhbew7Kn/7P2ClDmmX3Ar3//xCpp360TT\njm0BmD/uOdqeeSwATfbC9aCcLzKCDhedzvLxNYe0723BPPdl37G/Dvdb6ZwrH5g+G+gEtHDOTQks\n+w+wMz+hTXTOZde2wszGAGMAXnjhBcaMGVNbsv1CuzOPpc2p3jj2zQuWE52aSG5gXVRKAkXpVZuw\nZHMe4XExWJgP5y8jKjWBooxam7mG5MG92LJoFcXZm/dkFfaYHqOG0+1sb3hc+q+rq/xiFpsaz9a0\n3Fq3G3DNiUQnxPLNPeN3OZ+izFyiUpMAb6hFVEoihRk127xJ5TZPSahIU5SRXev2KSMHkjysH0mD\ne+OLjKBJ02i63///7N13eBRV28Dh32w2PYH0BqGGjlJCD02KFQUVbAgCIop0BKXZAfVVsaKA6Pt+\nKjawgIBKM3QIvRNaQknvfTfZ3fn+2LDJplCTbALPfV25YGfOmWfOmTkze2bOzE7g6BufWS07/p+t\ntPlwFlFLf7FM0yelWl21dfTzLrWN9UkpOPl7c3lLOvp6oU8qPYzkWlR1vKspSElC61t0t0fr40tB\nyrU9N1GQnIQhOQndKfPwoKztm/EeXNR583hgEB73DLB8roxtr2jtcPQvunpdVn2CueN+54ezSd19\nAEf/YvVfRt3qk1JLpPG+av3nno/h8GTzs3DOwYF4dwu9YnoAY1oidl7+ls92Xv4Y00rXvTa4CR7P\nvtx/KRsAACAASURBVEbKB+NRs817hTE1AWNqIgVnzY9N6yI24PbgyKvGBGj9VC9aPmZ+XrVk23cN\n8CCnnLZfloIcHf/O+tby+emN88i8WHqY+I3u84rWrty8uedjOViszn3C2gNQq2UTfO/qQuNxw9C6\nuQJQZ/C9xKywfi6rKtpiyeVVednL+OXhJo/3ofGj5uu8KceicA3w4vIWc/H3JDcxrVSeG5WbYL2s\nyi6/WmDAUJBNnUfvJeihvpa8lXHsKc6QnUvavmP4dG1LzrmL5J6PZf/EefTf/Qvx67bj3S0UXVIq\nTn7Fj1VlH3uc/IrVRWGZFa22zLzOdQNwDvSj8/fvF9adN53+7z/sGTWT/NTS7dgWbV/c2m7XO2/6\nYv83Ale6Z22gqJ5Kjo/JKS+TqqpLVFXtoKpqh9u54wZwYcU6y8tEEjfvJej+ngDUbh1CQXYu+pTS\nB67Ufcfx72MeTx/0QE8SNu+9pliBd4cRt257xa18BTuybDM/DZzPTwPnc27DIVo8bH5Gx79NQ/Kz\n88hNyiyVp+WQMOp1b8HfU74pc3jileIAJG2JIPC+y3XeBEN2Lvll1HnavmP49TGvT9ADvUnaYq7z\npK17y8x/5osf2frgWLY9PJ4jcz4mde9RS8fNJTjAslzfHh3JPW/9QpOsE2dwCQ7EKdAPRavFr18Y\nyVutXzCTvHUvAff1BqBWqyYYc8pe72tR1fGuRncqEoegutj7B4BWS62efcjefW1DfY3pqRQkJ+JQ\nx3y12bVNKPoLRUN30tf8QfTEopcDVMa2zzxxtrA+fVG0dgT072bJU3zb+xRu+6wTZ3CuW7z+u5O8\nzbpNJ2/bg/+95i+3tVo1wXAN9W/vWfisiKJQf8RgYn9fd5Xag4Jzx9AG1MPONwjstDh3uQfd/nCr\nNHbeAXhN+oC0xa9ijC96GYwpIwVjajx2AeaXyzi26oQh5tpeWHL0h838MmgevwyaR9SGgzQbVKzt\nZ+nKbPvlcXB3RmNvB0CLId2J23uagpzSd31udJ+/UnspXucNRg4m5vf1AOwf+yo7H3mRnY+8yKWf\nzc9jluy4QdW0xawT5tEJtip79P+VfpPq6Z838fdjr/P3Y68Ts2k/DR7sBoD3nY0oyMpDl1xxFxxT\nj0VVafntPWqBRkPMr39zZOb7lhiVceyx93BH6+YCgMbRHq9Od1pemGVZP6DhyEeJ+X1dqfL49w8j\neav1sSdp614C7i927Mkuuy4u5805e4Gt949mx8Pj2PHwOPRJKUQ883KZHTewTduvMWz9TFsNfebt\ndr3zVlIGkKYoSg9VVbcCw4DLd+GigVAgAhhsm9W7dSRtP4BPt7b0/O0TjDo9R95eZJkX+tErHJ23\nBH1yGpGf/UCbeRNp8sLjZJ2K5tKqfwFw8K5Nt//NR+vqjKqqNHjiPrY+MQ1jTh52To54d76DY+98\nVSHrOm3qr0REnCc9LZe7en7E+Am9eXRIuwpZNkB0+FHq92rN8A1vUZCXz8aZRVfTHvxqHJtmf09O\nYgZ3vfkkWbGpDPnF/Bavs+sOsmfhWlx8avH4bzNwcHNCNam0HdGH7+97q9SBPHn7AXy6tSfs108x\n6vI5/vYXlnntPprB8XmL0SencfrzZdwxdzIhzz9B1qkoYlZtumr+8oSMG4prvUAAvDq34eR/rO8Y\nqkYTpz5cStuP55hfwbx6EzlRlwh62DzkJfb3daTs2I93t/Z0Xf65+fXNc4vitnpzMh7tW2Hv4U63\nlYuJWvozcX9uKnd9KiueT69ONJ36LA4etWjz4UyyTkVz6FregmkykrDoE4Lfeh80GjLW/0X+hWg8\n7nsIgPS/VmHn4UWDjxejcXEBk4rnwMFEjX0GU14uCYs+JXDaHBStloL4OOI+frfcUHmxiRW+7VWj\nicgPvqH9p7PN9fnnv+REXQKst71np7ac+s9iVKOJ0wuWcudHr5pfP756E7lRFwkaVFj/f6wjdcd+\nvLu2p/PyhRh1eiLnLbSsa4s3p+DRzlz/Xf9YQtTSn4lfvRG//j2o84h5SG7y5t3Eryl/Hyhe9xnf\nvof39C/MPxWwZSWGmHO49DEf3nM3rcBt0Bg0bh54PDOzsLxGkl83v3k249v38Bw7H0WrxZAUQ/qS\naxlhb+385qPU69WaoevfxpCXz6ZZRUPNHlgynn/nfEduYgZ3DLuLdqPvNrf1Va9yfvNRwud8j2fj\nAPq+OwIVlbTTcfw7+7sy49zoPl9eewHw79+duo+a6zwpfDdxq6+hzoupirZ/+Rmq6lb2y2K3Hiaw\nx50MWPMeRl0+u1/92jKv18IpRLzxX/KS0mn6VD9ajLwPJ+/a3LfiLeK2HSHijf/i5F2Le356HXtX\nZ1STSrOn+7Nm0GwMhcf+qi6/R9sWNHzuCfMwxWIXGCvj2OPo40mr18ahaDQoGoWEjTtJ3r4fgIC7\nwwgefA8A+uQ04labvzdEfvA17T6ZDRoNcavNx6o6D/cHIOb39aTs2I9Pt3Z0XfGZ+WcT5i601EVZ\neW9GVbV9cWtTSr4F7lanKEoDYLWqqq0LP08D3IA/gEWAC3AOGKmqapqiKM2BXzDfoVsDPK2qagNF\nUUYAHVRVHX8NYW+vSi7h705P2Cz2vRE/YWSZzeLbMZTPmlbOb8RdiwmnvmR9Z9u9Srj/7l/Y1NV2\n1zz67Fxh8/gnB/S2Sezmq8MBbLb9++/+hfBuj9okNkDvHb8SO6ziLrZcr6DvDvBFsxdsFv/FyEU2\n3/dv9/g/3nltQ2orw5OH/2uz8vfZuQKw7bFnY5chV09YSfruWm7ztg8oNluB62BY5Fitvx9rX9BX\ny3q87e68qaoaDbQu9vmDYrNLvWdaVdWTwJ3FJs0pnP4/4H+VsY5CCCGEEELc0qp11636ul2feRNC\nCCGEEEKIGkU6b0IIIYQQQghRA9x2wyaFEEIIIYQQtqWaquUjZdWe3HkTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFE1arGP4RdncmdNyGEEEIIIYSoAaTzJoQQQgghhBA1gAybFEIIIYQQQlQt\nedvkDZE7b0IIIYQQQghRAyiqqtp6HW4HUslCCCGEEKIq1IhbWgWfOFfr78f2k/KqZT3KsElR6SIf\n7GWz2M3+3MxnTcfaLP6EU19iZJnN4tsxlI1dhtgsft9dyzk5oLfN4jdfHW7z+Gs6PGWT2A/s/QGA\nUw/1tEn8pqu2cOy+vjaJDdDqr42sbP+0zeIP3P89Fx7vZLP49X6OsPm+f7vHP/dImM3iN/ptu83K\n33x1OADrOj1uk/h3R/zMpq6DbRIboM/OFTZv++LWJp03IYQQQgghRJVS5Zm3GyLPvAkhhBBCCCFE\nDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJqybDJGyJ33oQQQgghhBCiBpDOmxBCCCGEEELUADJsUggh\nhBBCCFG1VBk2eSPkzpsQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RzpuwGZf2\nnfB/bgJoNGSsX0Pqih+s5jvUrUfApBk4Nm5C8ndLSfv9ZwDs6wQT9PLrlnT2AUGkLPuGtFUrrnsd\nes55jPq9WmHIy2fDjG9JOn6xVJq7PxiJX+v6mAxGEg5H8+9ryzAZTHg28qfvO8PxaxXMzgWrOPDN\nhuuOX57ZM1exOfwUXt6urFo99qaW5dWlLU2njETRaIhdtZHz3/1RKk3TqSPx7toeo17PibcXkhUZ\ndcW8DUcPIeihfhSkZwJw9ssfSNl5gFotQ2g+43nzQq9yTHZt3wm/MeNRNHakryt7+wdOfsW8/b/9\nmtTC7Q+gcXUjYOJ0HOs1BFTiPnkP3cnj11Uvtojfctpw/MLaYtTlc+iNRWRGRpdK4xzkS7v5E3Co\n7UbGiSgOvvYFqsGIf69Qmr4wBNVkQjWaOP7hd6QdigRA6+bCna8+h3vjYFBVDr215Irr4dK+E36j\nJ4Kdhox1a0j7dZnVfPs6l9teU1K+W0raHz9Z5nk8NITadw8AVUV//hwJn7yLWpB/1bIX5xbakYAX\nxoFGQ/rfa0le/pPVfIe6wdSZ+jJOISEk/t83pPy63HoBGg2NPv0CQ3IKF96Yfc1x75g+DL/ubTHq\n9Bx4fQkZJ6NLpXEJ8qXDO+Ow93An40QU++Z8iWow4h3ags4LppAbmwRA7KY9nPrqD9zqB9Lh3fFF\n+ev4cXLRlY9FTm264DniJdBoyNm0ksyV31qvQ/d7qPXQcFAU1LxcUr9+j4Lzp8HeAf83FqPYO4DG\njrzdG8lY/tU1l/+y27HtVaf4xTm364z3qMkoGg2ZG/4k4/fvrea79byb2oOGoigKprxckpd8QH70\nmRuOB1VX/mYvjcC3WzuMOj1H3/rScl6xKn+QL3fOnYR9bXcyT57jyOufoxqMV8xf78n7qTuwD6iQ\ndeYCx97+ElN+AU0nDMW3RygA7RfPxcGzNigQV855r8mUUXh3a4dJl8/xtz8n+1TRea/J5JEodhqr\nvG5NGtDs5TFoHOxRjSYiP/iKrONncG8ZQvNXLp/3rnzis3XbF7eG26bzpihKODBNVdW9V0gzAuig\nqur48tKICqLR4P/CZC69+hIFKUnUX7CY7N3byb943pLEmJVJ4pJPcevS3SprQcxFzk8abVlO4/+t\nIGvn1utehfq9WuHRwI/v+r+Of5uG9H7zSZYP+U+pdJF/RrBu2n8BuGfBKFoO6c7RH7egS89ly9xf\naNSvzXXHvpqHH2nD0Kc7MuOV0iec69Vs2rMcmPg2+sRUOv73HZK37iUn+pJlvnfXdjgHB7JzyARq\ntWpCs5efY++zs0CjuWLeiz+t5sIPf1rFyj57gT0jX0E1mnDw9qDHmq9AYwcmo/VKaTT4j53ExTnT\nKEhJosFHi8rc/gmLS29/AP8x48nZF0HsO6+DVovG0en6KsUG8X3D2uIaHED4w1PxaB1C65mj2DHi\ntVLpmk94kqgf/iJu3U5azxxF8MC7uPDrBpIjjpKweR8A7iHBtH93EpsHTwOg1bThJO04xP5XPkHR\n2mHn5HjFsvs9P4WY16aa296HS8iJ2GZVdlN22W1P6+WD54ODiR43DDU/n8CX38C9Rx8yN/191fIX\njx84biLRs17GkJxEo0++IGv3TvQXitd9FnGLPqdW17AyF+E98BH0Fy5g5+J6zWH9wtrgWi+AjQNf\nwvOOxrSZOYItz7xRKl3LiU9wdtnfxKzbxZ2zRlJ/UG+iV2wEIOVgJLsnfWiVPvt8HOFPFnYgNQr3\n/P0Zcf/u5Y5pw8peEUWD56iXSZw3HmNKIgHv/B+5e7diiCn6YmtIjCXhzRdQc7JwatsVr+dmkjBn\nFBTkk/jWi6j6PLCzw//Nr8g7uJP800evuR5ux7ZXreKXWBef514i7s3JGFISqfOfpeTu2UbBpWhL\nkoKEWOJeHY8pJwvndl3weeFlYmeMuamYVVV+1+AAtj06idqtm9DylWfZPWpOqTRNxg/l/I9riV+/\ngxYzRlNnYB8u/boen25ty8zv6OtJ/cfvY/vjUzHpC7hz/mQC+ncjds1mUiKOcPqLH+m/80dcGwaT\nuGE7pxZ8Q4dv3iVp615yS5z3XIID2WU5741h3+iZ5vPeS6M5MOkt9ImpVnlDxg0j6uvlpO46gHfX\ndoSMG8aBca+Tc/YCe0cVnfe6r15a9nnP1m1f3DLkmTdhE05NWlAQF0NBQhwYDGRt2YRbZ+sThTEj\nHd3pk6gGQ7nLcWnTnoK4WAxJCde9Do36tuHE77sASDgUhaO7Cy6+tUqlO7/5mOX/CYejcQvwACAv\nNYvEI+cxGYyl8tysDh3rU7u2c4UsK+9SPLrYRFSDgYT12/Hp2cFqvm/PjsSv3QxA5rHTaN1ccfD2\noFbLkKvmLcmkz0c1mgDQODiUm86paXPyi23/zC2bcOti/UXdvP0jwWhdvxoXV5xbtSFj3RrzBIMB\nU072NdWFLeP79wolZq35IkP60TPYu7vg6O1RKp1Px1bEb9wNwKXVWwnoba5zY57eksbO2QlUFQCt\nqzNe7ZpzcWU4AKrBiCE7t/yyl2h7mVs34lpG29OfOVmq7OYKsENxcDT/6+iEITXlqmUvzrlpc/Jj\nYyiIj0M1GMjY/C/uXbqViq87FVlm29f6+ODWqTPp/6y9rriBvUO5uHobAGlHzmLv7oqjT1n135LY\njREAXFy9lcC7Qq85hm+nVuRcSiQvrvw6cQhphSHhEsbEWDAayN2xDpeOPa3S5J86gpqTBYD+9FHs\nvP0s81R9HgCKnRZFq7XsB9fqdmx71Sl+cY4hLSiIu4QhIRYMBnK2bcS1Uw+rNPrIo5gu7wunjqEt\nti/ciKosf+zaLQBkHD2N1t18XinJq0MrEjaZz8Oxazbj16sjYD4vlZdfsdOgcXRAsdNg5+SAPjkN\ngJTdhy3nH11cInYuzqgGA4kbtuPbs6NVXJ+eHYn/Kxy4fN5zsZz3coud94rnVVUVrav5vKx1c0Gf\nnApc+3nP1m2/WjJpqvdfNVVt77wpijId0Kuq+qmiKB8BbVRV7aMoSh/gWeD/gDcBR+AsMFJV1WxF\nUUKBBYAbkAyMUFU1rthyNcA3wCVVVecoijISmAmkA4cAfWG6B4E5gAOQAgwFkoBIoJuqqkmFyzoF\ndFVVNamSq+SWovX2oSA50fLZkJKEU9MW172cWj36krll4w2tg6u/B9nxaZbP2QlpuPl7kJuUWWZ6\njVZDs4Gd2TpveZnzqytdYtEXSX1iKrVaNbGa7+jrVSJNCo6+XjiVmm6dt+6Q+wi4vxdZJ85y+tNv\nMWTlAFCrVQgtZr+IU4CvOWHJq4+AvbcvhqSiJmNITsK5WctrKo+9fyDGzHQCJ8/AsWFjdGdOkbDk\nM1S97pry2yq+k68nefGpls+6hFSc/DzRp6QXLbu2OwVZOUVfQBJTcPLztMz3792B5uOfwMGzFnsm\nvw+Yh+nlp2dx5+vPU6tpfTJORHH8A+uhOMVpvX0wFG9711F2Q2oyaX/8RKOvl2PKzyf3wB5yD+65\npryWMvr4UFCs7guSk3Budu1tP+D5cSR8vQSNs8t1xXXy8yQvoWh/zktMxdnXE31yUf07eLhRkJ1r\nqf+8hFScfIvq3+vOJvT+eT66xDSOffQDWedirGLUuacrMf/svOJ62Hn5YkwputhkSEnEMaRVuend\n7noI3cFiy1Q0BLz7LdqAumT/s4L8M8fKzVuW27HtVaf4xWm9fTGkFD8PJuLYpPx9wb3fAHIP7Lqh\nWJdVZfl1xdqb+VjmRX6J450hq6i96RJScfL1Aszttaz8mSfOEf39anqu+gKTPp+U3YdJ2X249LrW\nciNl537AfE4rfd7ztlq+PikVR19vHH290CcmF00vlvf0x/+l7cdzCJkwHEWjsG9M0ZDtWi2b0Hz2\nizgF+JgnlHHes3XbF7eO6tuthK3A5UtQHQA3RVHsC6cdxtyx6qeqantgLzC1cP5nwGBVVUMxd9Lm\nFVumFlgGnC7suAVi7gCGAd2B4kewbUAXVVXbAT8BL6uqagK+x9yRA+gHHJKOm41otbh27kbW9vAq\nCdf7jSeJ3XOG2L0397zBrSDmt3XseHQ8EcOmo09Jp8nE4ZZ5mcfOsPupqewZNQPAPEa/Ail2djg1\nbkra2pVET3oOkz4P7yFPVWiM6ho/IXwvmwdPY9+0BTR7YUjh+mio1awBF1ZsYNvQWRjz9DQe8VCl\nxNe4uuHWuTtRzz3OuREPo3Fywr13/0qJVRa3Tl0wpqehO3O6ymJelnEymnX3TyL88Vmc+2kdnRZM\nsZqvaO0I6Nme2PW7KyymY6tQ3Po8RPqyz4smqibiX3mamLEDcAhpiX1wowqLdzW3c9uzdXyn1u1x\n7zuA1G+/qJJ4ZbF1/QNo3V3x69WBrYPGs/n+F7BzdiTw3tLDO1VVJeGf63+c4krqPHIPpz/5HzsG\nvcDpT/5H81kvWuZlHj9NxNAp7C0873GT573q1vZF9VKdO2/7gFBFUWphvhu2E3MnrgeQh7mjtV1R\nlIPAM0B9oBnQGlhfOH0OULfYMhcDR1VVvdyh6wyEq6qapKpqPvBzsbR1gX8URTkCTAcuXx75Brj8\nTXUU8N+yVl5RlDGKouxVFGXvkiVXfnnA7ciQkoy9T9FwAPMVyOQr5CjNLbQz+rOnMaanXT1xoTuG\n9uKJlbN4YuUscpMycAsouqru5u9JdkJ6mfk6jX8AZy83tr5z/S9FsTUnP2/L/x39vNAnWQ/p0iel\nlkjjjT4pFV2p6UV581MzwGQCVSV25QZqtQwpFTc32nxXwrF+w1LzClKS0Pr6Wj5rfXwpSLm2ayAF\nyUkYkpPQnToBQNb2zTg1bnKVXLaL333ZfLovm48+OR3nAC/LdCd/L3SJ1vtuQUYW9u6uKHbmQ7OT\nn3epNACpB07iUscP+9ru6BJT0SWmkn7sLABxG3dTu3mDctfHkJKMtnjbu46yu7TtQEFCHMbMDDAa\nydq5Befmra8p72UFycnYF6t7e59rb/suLVvh3qUbTf63jLoz5uDapi11ps8sN33Dx/rR+8d59P5x\nHrqkdJz9i/ZnZz8v8pKs6zY/PRt7NxdL/Tv7e6ErTGPIybMMXU3cfgiN1g4HDzdLXv+wNmScjEaf\nWvad+8uMqUnYeftbPmu9/TCmla5/+3oheI2ZTdL70zFlZ5Sar+Zmozu2D6c2Xa8Yr6Tbqe1Vx/jF\nGVKSrIZBar39MKaWXheH+o3xfXEGCe/MwJR95f3raiqz/B4PDKLBp0stn52KtTfzsaxo5AGYj3da\n96L25uTvhS7JnEaXmFZmfu9Od5Abm0hBehaq0UjCvxF43NnMki7ogV4A5F2Mt0y7fE4rTp+UYrV8\nR1/z+U2flIqjn0+ZeQPv70VSuPniTOLGnWWf986bz3sOwY1LzbN12xe3jmrbeVNVtQCIAkYAOzDf\nibsLCCmcvl5V1baFfy1VVX0W8/vtjhWbfoeqqncXW+wO4C5FUa7lCePPgM9VVb0DeB5wKlyvi0BC\n4fDNTsBf5az/ElVVO6iq2mHMmJt4uPgWpTt9Evugutj7B4BWi3vPPmRHbL+uZbj37Evm5usbMnlk\n2WZ+GjifnwbO59yGQ7R4uAsA/m0akp+dV+aQyZZDwqjXvQV/T/mmRo4xdwkOxCnQD0Wrxb9/GMlb\nrd/Zk7R1LwH3m094tVo1wZCdS35KOlknzpSbt/izC769OpFzzvyWTqdAv6ITceHwkYLEeErSnYrE\nodj2r9WzD9m7d1xTeYzpqRQkJ+JQJxgA1zahVi+7uBZVGX/b0FlsGzqLhPC91LnfPJjAo3UIhuw8\nqyGTl6XsPU5A384A1B3Qg4TN5jp3qVt00q/VrAEaBy0FGVnoUzLQJaTgWj8QAJ9OrUsN57Mqe2Hb\n0/oHmsveoy85u6+t7RmSEnBq1tL8zBvg0ibU6kUH1yLv1Ekcgupg7x+AotVSu9ddZO26trpP/N/X\nnBr2BKdHDOXSu3PJOXSQmPffKTd91C8bCH9yNuFPziY+fB/BA8xX6D3vaExBdq7VkMnLkvceJ6hv\nJwCCB/QgLtw89MrRu7YljUerRqAo5KcXPe9T596rD5kEyD97HPuAYOx8g8BOi0u3u8nba32HwM7b\nH5+X3iNl4esY4i5YpmvcPVBczB1Gxd4Rpzs6UxBbffd9iX9l+jMnsQ+si9bP3BZdu/clZ882qzR2\nPv74vzyfxE/eoiCu9NuQr1dllj99zR9ETxxt+Rx0v/l5rtqti84rJaXuO45/H/N5OOiBXiQVHu+S\ntu4tM78uPhmP1k3QOJrvbHl3bE124YVC7y5taDDMPOrAuY6/5dzl1y+M5K3Ww7uTt+4l4L7egPm8\nZ8wp+7xXPK8+OQ2Pdubr+J4d7iD3ovmJnLLOe4ak2FJltXXbr5ZMSvX+q6aq7TNvhbYC0zDf4TqC\n+Vm2fcAuYKGiKCGqqp5RFMUVqIP5eTRfRVG6qqq6s3AYZVNVVS8PDP4a6An8oijKI8Bu4BNFUbyB\nTGAI5ufeAGoDl78BPVNivZZiHj75naqqFf+2ituByUjioo+p++YH5p8K2LCW/AvR1L7XfODN+HsV\ndh5e1P9oMRoXVzCZ8HxoMNEvPoMpLxfF0QnXth1IWPjhVQKVLzr8KPV7tWb4hrcoyMtn48yi54Qe\n/Gocm2Z/T05iBne9+SRZsakM+WU6AGfXHWTPwrW4+NTi8d9m4ODmhGpSaTuiD9/f9xYFOTf2/ENx\n06b+SkTEedLTcrmr50eMn9CbR4e0u6FlRX7wNe0+mQ0aDXGr/yUn6hJ1HjYPdYv5fT0pO/bj060d\nXVd8Zn5l8tyFAIWvQi6dFyBk/DDcmzRARUUXl8TJdxcD4NGmOfWHD0I1GDGPMsZ8l6Ykk5GERZ8Q\n/Nb7hT8V8Rf5F6LxuM+8/dP/Mm//Bh8vRuPiAiYVz4GDiRpr3v4Jiz4lcNocFK2Wgvg44j5+9/oq\nxQbxE7cfxDesLb3/+AijTs/hNxdb5nX85GUOv70EfXI6Jz77kfbzJ9Bs7BAyI89bXkQS0LcTde/v\ngclgwKQvYP/Mzyz5j73/f7R9exwaey25MYkcenMxjYcPKLfsSYs/pu4b5raXuWEt+RdLt716C5ZY\n2p7HQ4M5P244ulMnyN4eTv2Pl6IajejPnSbjnz/LjlNu3ZuI+/Iz6s99D8VOQ9q6v9BfOI/n/eb1\nTVu7Gq2nJ40+/dJS996DHuXM86Mw5Zb/IparSdh2EP/ubei38kOMunwOvFE0IqLLp9M4+NZSdMnp\nHP/0Jzq8M57m44aQcTKaC3+EAxDUrxMNBvdFNRox6gvYO3OhJb+dkyN+nVtzaN4311B+I6nfvI/f\nrE/NrwsP/5OCS+dw6/cIANkbfqP24NHYudXG69lXAMx3GGY9g52nD94vvg4aDWg05O7cgG7/titF\nKzP+7db2qlX8EuuSvPQjAl5bgKKxI2vjagouRuF+9yAAstb9gedjI9G418JnjPnNshiNxLz8byQt\nmQAAIABJREFU7E3FrKry58Yk0v23TzDq8jn29peW6e0+msHxeYvRJ6dx+rNl3DlvEiEvPE7mqWgu\nrdoEQPL2A/h0a1cqf8axMyRs3E3X795FNZrIjIzi0u/mn+lpMX0UGgfz11oVlU7fvk9BehaxqzeR\nE3WJoIfN1/Jjf19Hyo79eHdrT9fln5t/ImeueTiqajRx6sOltP14jvkncgrzApx8ZxFNpoxEsbPD\nlF9AZLHzXr1hD5tfsFR4gdeUVfZ5z6ZtX9wyFLUa30lQFKUv8DfgoapqjqIop4BFqqouKLzz9R7m\nF5YAzFFVdZWiKG2BTzF3vrTAx6qqflX8pwIURXkTaIr52bVnKHphyUEgX1XV8YqiDAQ+AtKATUBH\nVVV7F66XPeaXmHRSVfXkNRSl+lZyFYh8sJfNYjf7czOfNb2530m7GRNOfYmRZVdPWEnsGMrGLkNs\nFr/vruWcHNDbZvGbrw63efw1Har2mZDLHthr/u2mUw/1vErKytF01RaO3dfXJrEBWv21kZXtn7ZZ\n/IH7v+fC451sFr/ezxE23/dv9/jnHin7py6qQqPfttus/M1XhwOwrtPjNol/d8TPbOo62CaxAfrs\nXGHzts9Vf2m1etDP96jW348dZ6VXy3qs1nfeVFXdCNgX+9y02P83AR3LyHMQ8921ktN7F/v/68Vm\n/ZcynltTVXUlsLKcVWuD+UUl19JxE0IIIYQQQhSjqtWyb1TtVevOW3WkKMoMYCxFb5wUQgghhBBC\niEpXbV9YUl2pqvquqqr1VVWVwcZCCCGEEEKIKiN33oQQQgghhBBVyyT3kG6E1JoQQgghhBBC1ADS\neRNCCCGEEEKIGkCGTQohhBBCCCGqlFqNfwi7OpM7b0IIIYQQQghRA0jnTQghhBBCCCFqABk2KYQQ\nQgghhKhaMmzyhsidNyGEEEIIIYSoARRVVW29DrcDqWQhhBBCCFEVasQtrbzXfav192PnN5OqZT3K\nsElR6dZ3fsxmsfvv/sXm8Td2GWKz+H13LcfIMpvFt2Oozct/u8bvu2s5gE3j3651fzn+6tChNos/\nYN8ym5f/do//V8cnbRb/vj0/2vzYs637IJvE777tD5u3PVvHrylUtVr2jao9GTYphBBCCCGEEDWA\ndN6EEEIIIYQQogaQzpsQQgghhBBC1ADyzJsQQgghhBCiapnkHtKNkFoTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFElVJN8lMBN0LuvAkhhBBCCCHEdVIU5V5FUSIVRTmjKMqMK6TrqCiKQVGU\nwTcbUzpvQgghhBBCCHEdFEWxAxYC9wEtgScVRWlZTrr3gHUVEVeGTQohhBBCCCGqlKrW+GGTnYAz\nqqqeA1AU5SdgIHC8RLoJwK9Ax4oIKp03USWaTR2JT7d2GHV6jr39BVmRUaXSOAX6cufcydjXdifz\n5DmOvvEZqsF4xfwt54zFN6w9+WkZ7HxqWpmx++/+hUt/bMArtHWFxwdAo9D5f++iT0rl4EvvAdD4\n+cfx7dEBgI7/ew+tmwuoELtqI+e/+6NU7KZTR+LdtT1GvZ4Tby+0LN+rS1uaThmJotFY5W04eghB\nD/WjID0TgLNf/kDKzgPUahlC8xnPmxd6E8fE2TNXsTn8FF7erqxaPfbGFwR0+fmTUutf3PWW3a9P\nFxqOfgzXBnXYM2omWSfPAeB/T3fqDx1oWa5bSD2bxLdzccbJzwvFvvzD6/XG1NZyo/XcKTgH+pIX\nl8TR2QswZOWUWebID76h3hP3W6Z1/mEBydv2cfaLZRUev+T+FrV0OUmbIyxxwlYuwsGzFgDnv1/J\nuSU/33RdlLfve3W6k8YvDkWj1WIyGK64jMrY/tpabtz5zku4twghbk14mdu91fTh+IW1wajL5+Ab\ni8k8GV0qjXOQL+3fGY9DbTcyTkRz4NUvLMchgNotGxH23zc4MOtz4jZG4Fo/kPbvTLDMd6njx6lF\nKyqt/K3nTsGlXpC5zO4uGLJyiRg+vdS+CNDt94WoBtMt0/ZDxg/Dp3soJoOBvEsJnJi7EEN2Loqd\nHS1mvYB7s0YoWg1xazeXitXipWfwDWuLUZfPkTe/JDMyulQa5yBf2s6biH1tNzJPRnHotYWoBiNB\n94bRcPhDKAoYcnUce/drsk5fwLV+IG3nT7Tkdwny4/SSFUT/+FellL/RmMfx6dkRTCr5aRkcf3sh\n+clpZW774jw6t6PRpNEoGg0Jq9dz6fvfSqVpNGk0nl1DMen0nJr/KTmnzhXN1Ghou/QD8pNSOP7K\nPAAavPgMXmEdUQsM6GLjOTX/M4zZOeWuQ2W0PSd/L9q+NRZHr9qgqlz4fRNRP/5TZfGv1PZFlakD\nXCz2+RLQuXgCRVHqAA8Dd1FBnTcZNikqnU+3drgEB7B98EROvLuEFi+PLjNdk/FPc/6nNWwfPBFD\nVg51Hupz1fyxq8PZP3l+mctz9PMGQJ+agXMd/0qJD1Dv8fvJiY6xmhb9/Sp2PT0dAKcAHzKOnmbX\nk1PwvzsM1wZ1rdJ6d22Hc3AgO4dM4OQ7i2n28nPmGRoNzaY9y8Ep88rMe/Gn1UQMn07E8Omk7DwA\nQPbZC+wZ+QoRw6dzcPK8wpTX34t7+JE2LFk69LrzWTPHLW/94cbKnn3uIkdmfED6wRNWy0r4Z5ul\nPo69+Rl5sYlVH3/EK4DKoZf/Q15MAkCFxGwwfBBpe46wc8hE0vYcof7wQeWWud5TAzj08n8s8Y6+\n9gkedzbDu2vbCo9fcn9r/soYFLtipxUFdj4xmfA+w/Hp0aFS9/389EwOTXuX3U+/xPG3Pge44jIq\nevub8gs4u+Rnznz2LWXxC2uDa3AA/w56icNzv+aOmSPLTNdi4hNELfuLfwe9REFmDvUG9S6aqVFo\nMfEJkncdsUzKOR/H1qdmmf+eno1Rpyf+372VVv6jcz6y1H3iv7tJCt8NlNgXC+t//7g3b6m2nxpx\niN1DpxLx9DRyL8ZS/5mHzdu2b1c0DvbsfvolIp55hToP97eK5dutLa71AtjyyBSOzf+KVjOeLXPb\nNxv/FNE/rGXLI1MoyMwheOBdAOTGJrL7+bfY9uQrnPn6N1rPes6y7bcPnWn+GzYLoz6f+H/3gKZy\njr3nv19FxNPTiBg+neTt+2g4anCZ9W9Fo6Hx1Oc5Nu0t9j89Ad9+PXAusS6eXUJxCg5k3xNjOfP+\nF4RMe8FqftCQAeSev2Q1LX3PIfYPn8iBEZPJuxhL8LBHy6xTqLy2pxpNHP9oGZuHvMy2Ea9Tf0h/\n3BrWqbL4V2r7omIoijJGUZS9xf7G3MBiPgZeUVXVVFHrJZ03Uel8e3Yg7q8tAGQcPY3W3RUHb49S\n6bw6tCJx0y4AYteE49ur41Xzpx88QUFmdplxm015BgA7RwcS1u+olPiOfl74hLUnZuVGq2UZc/Is\n/zdkZmPMzUM1GEhYvx2fnh1K1E9H4guv1GYeO43Wzbz8Wi1DyLsUjy42sdy8JZn0+ahG8/FB4+Bw\nxbRX0qFjfWrXdr7h/GbmzvOV1v9Gyp4bHUPuhdgrRg7oH0b6oZNVHv9yPs+2LUjYYN7nKiKmT4+O\nxK0NByBubTi+PTuVW+a8S/HkFruY4NOtHVmRUZaLGRUZv/T+plqtkz4hpcLrvzzZp6LJT04DIOec\n+UJoXmxClW1/k05PxqGTmPILylw//16hXFqzFYD0o2ewd3PB0af0ccinYyviNprvXl5cvQX/3kXr\n3PDxe4jbuAd9WmaZMXw6tSb3UiJ58cnm8l+lDm+2/v37diV+/bZS0+s/OQC49dp+asRhy/6eefQ0\nToVtClVF4+yIYqdB4+iAWmCwiuXXK5SYYtte6+6CYxnnIO+OrYjfZO4Mx6zZgl8vc9z0w6cxZJnv\nKqUfOYOTn1epvD4dW5N7KQFdfDIerUIqpfzG3KLzmp2TY7n1X5x7iyboLsWhj01ANRhI2rAN7+5W\nNybw6tGJxL/DAcg6dgo7N1fsvT0BcPD1xqtrBxL+XG+VJ33PQSjcFlnHInHw9S5zfaDy2p4+Od1y\nB82YqyM7KhYnP88qi2+Vt0TbrzFMmmr9p6rqElVVOxT7W1KiBDFAcLHPdQunFdcB+ElRlGhgMPCF\noiiDbqbapPMmKp2jrxe6hKIDii4xBSdf65OPfW13DFm5lhOjLjHVkuZa8pfk27MD+qRUABQ7jeX/\nFR2/2ZQRnP78e1Ctv7QCNH7hCfOyPWpZhovpE1NxLHGScfT1QpeYYvmsT0zB0dcLp1LTrfPWHXIf\nnb7/gBazx6J1d7VMr9UqhM4/LKDzsg8Lp5Ret6ph3fmryLJfjV+/bmSfjq7y+Jfz+fXrRsK6bYUx\nbj6mg1dt8lPSAchPScfBq3a5ZS6+DADnIH98uoeSuudIpcQvvr+dfO8rSxsCcKkfRKdv36fByEer\nZN+31MVdXQDQFfsiU5X7X1mc/LzISyhapvkYY/1Fz97DjYKsnBLHIXMaJ19PAu7qwPkVG8qNEXR3\nF2L/2VEsxpXLcDPl92jbgvzUDPIuxpdaD68ubaw+34ptP/DBuyx3fRM37cKUp6f76q/ovvJLzi/7\n0yqtk68XuhLb3tGv9DnIetunlNlJCx7Ym6QdB0uvz93dLNu+5H5VkeVv9MKThK38koB7epQ5DNqv\nXzerzw6+XugTi7XDpBQcSpx/HX28yC+WJj8xBUcfc5pGE58l6sv/K/Mce5n/A/1I27W/3PlV0fac\nA32o3bw+6UfP2iR+ybYvqsweoImiKA0VRXEAngBWFU+gqmpDVVUbqKraAFgBvKiqaulxzNdBOm/i\nlqNxdKDhMw9zdnHpE0tF8glrT35qBlknSz8/B3B20U8A5F6Kp+7geys0dsxv69jx6Hgihk1Hn5JO\nk4nDLfMyj51h91NT2TPq8htrb69mXqtVCCZdPvqElKsnrgQOHrUw6fItd38qRYkvMlcqs1eXNlz8\nZS26wqFkFR2/+P5Wf/jDaBzsLfMSw3ez74VX8WjbgtptmlVI6Cvt+wCuDevSeNzNDvmtflpOG8aJ\nT38q90usorUjoFcosRt2V8n6+N/dnYQy7rrVahWCKd9QRo7KV1Vtv8GIR1ANJuL/3mqJq5pMbBsw\nhu2PjKPeUw9WSlyv0JbUfeguIj//0Wq6orXDr2co8Rsrf9ufW/Qj2weOJf6fraXOa5frv6J4dutA\nQXoGOZGlO0SX1R0+GNVoJGld6ecMK8rV2p6dsyOh70/m2AffYSg26qaq4ld12xdFVFU1AOOBf4AT\nwC+qqh5TFOUFRVFeuHLuGycvLKkkheNixwAsXryYMWNuZJjsrUGfnI6Tvw8QCYCTnze6YnfCAAoy\nstC6u6DYaVCNJpz8vCxp9EmpV81fnEtdf1wb1qXXP0sB0DjY0+r1cex88iXyUzMqLL5fn8749uyA\nT7d2aBwd0Lo60/qNCRx9w3rMv0mfj99dnYla+guOfl7ok6y/WOiTUnHy8yaj8LOjnzf6pFQUrbZo\nWA5Y5c1PzbBMj125gTYflP5pkaKhcx5A+fVVeaxPYhVV9qvx7xdG/PptpbZxVcTXJaXi1qQ+MX8U\nXSGtqO3t4O1hvuvl7UF+iaEzxctcfBlgvnJ+8ee1lRofzPubMU+Ha6Ngy4sknPy8MebqSFi3jaBB\n/UneuqdC6uKykvu+o68Xd743neNvfU6HJXOvug0rY/8rrv6Q/tR72PzcUsbxczj7e5NWOM98jEmz\nSl+Qno29u2uJ45A5jUeLhrR/ZzwADh7u+IW1wWQ0khC+DwC/sLZknIwmP7Vo21RW+RU7DX69OxHx\nzCulyuzfL4yUnQeo+8jdlRL7Sqqi7Qc+0BufsFD2j3/TMi3g7u6k7DyIajRSkJZJxuGTuNYPImzZ\nO4B52zv5Fy3Tyc8LfWLpc5D1tvdGVyyNe0g97pgzhj2T3qUgw/pRAd9ubck8GWVpGyX3q8qo//h/\nttF2wUyilv5imXa5/kNCnrJMy09KxdHPp2h5vt7kl9g++uRUHIqlcfDzRp+cinfvrniFdcSzSyga\nB3vsXF1o+upkTr39MQB+9/XBq1sHjk56rdT6VVXbU7R2hL4/mZi/tls9b2brtl9T3Ao/0q2q6lpg\nbYlpi8pJO6IiYt5el+SrUPFxsrdzxw0gaUsEgff1BKB26yYYsnMtQ7CKS9t3DL8+5uFOQQ/0JmmL\n+UCYtHXvNeW/LPvsRf7t8wwbu5uvvuenZZJ1+jz5qRkVGv/MFz+y9cGxbHt4PEfmfEzq3qOWjptL\ncIBlua4N66JLSEHRavHvH0byVusHipO27iXg/l4A1GpVtPysE2dwCQ7EKdCvVN7iz+z59upkucvj\nFOhneWGEU8Dlk2H5b+CqXClF61SBZb8iRcGvbzcS1m8n68SZKo+fdfIsjn7epB86iaI1XxuriJjJ\nW/cSeH9vAALv723dCSpR5svLuOzku4srLX7J/c21fhC6uCTLNJfgQJzrBuDTvQNO/t6Vuu9r3Vxo\ns2AmZ75YRsbhSEv8Kt3/Sji/fL3lhQLx4Xup+0APADxah2DIzkOfXPo4lLz3OIF9zc8UBg/oScJm\n8xe0TQ9NYdODk9n04GTiNkZw9N3/Wb68AQTd05WYv62HTVVW+T073klOdKzVcHTAsi+e/8E8bPBW\na/teXdpS/+mBHJr+HiZ90R0mXUIynh1aA6BxcqR266YAlpeJJITvpY7Vts9FX8Y5KGXvMQL6mJ8H\nq/NATxK3mLevk7837f4zhUOvLyT3QulhqoH3dCN2XdG2zzh+tlLK71zsvObbswO554s9f1is/ovL\nOnka5+BAHAuX59uvO6nbI6zSpG6LwO/e3gC4t2qKMTuHgpQ0zi/+nj2PjGbvkDFEvvEhGfsOWzpu\nHp3bUfephzk+Y77Vtrisqtpem1efIzsqhqhlf9kkPpTd9sWtTe68iUqXvP0APt3aE/brpxh1+Rx/\n+wvLvHYfzeD4vMXok9M4/fky7pg7mZDnnyDrVBQxqzZdNf8db0/Cs31L7D3c6fHnl5xd8guxf/5r\nFd+kz0cXl1Qp8csTMm4orvUCAciLScC1fhBdfvqIuNX/khN1yfI2spjf15OyYz8+3drRdcVnmHT5\nHJ+7EDC/ySryg69p98ls0GgsecH8ymr3Jg1QUdHFJVm+oHu0aU794YNQDUaKXmykv+Ztddm0qb8S\nEXGe9LRc7ur5EeMn9ObRIe2ucynmIR4l1/9my+7bqxNNXxqFg0ct2i6YSdapaMubNT3atUCfmGw1\nRLAq49e+sxl5F+NpOesF0Jg7MBURM/rb37lj3lSCHuqDLj6JI7M/spSvZJkjP/ia9p8XXYlu9cZE\n7Gu7k7b/KMff/LxC45fc306+v5SCjCw0hS8zUBXo8sMCTPn5nF/2Z6Xu+3WH3ItL3QAajhpCw1FD\nADiz+Mcq3f7dfl+I1sXF8jMRbg3rkB1lvgOeuO0gfmFtuWvlAoy6fA69UdSp7vTJdA69/RX65HRO\nfvoj7edPoNmLQ8iIPM/FP8K5GjsnR3w7t+bI/K+tppdVhpstP4B//7Ayh0xa9sVL5g7Grdb2m730\nLBoHLe0+fRWAjKOniPzPV1xa8Q8t5rxI5x8WoCgKsav/pcmEYZb1SNp+AN+wtvT6/WOMOj2H3yra\n9qEfv8zRuV+hT04j8vMfaTtvAk3GPkZmZDSXVprPZSGjH8GhthutXhllXkeDiR3PzLZse59Od3Bs\n/lLLMi8/N1XR5Q95cSgu9YJQVRVdfBKR731VetuXHJ5tNHF2wVe0XvA6aOxIWLOB3KiLBAy8B4D4\nlf+QtnMfnl1DCf15ESadntPzPy21b5XUeMoYNPb2tP7IfAc061gkZz8o82ZHpbU9z7ZNqTugB5mn\nL9DjB/NbryMXln5cwxZtX9zaFPUKD4GKCnNbV/L6zo/ZLHb/3b/YPP7GLkNsFr/vruUYWXb1hJXE\njqE2L//tGr/vruUANo1/u9b95firQ2337N2AfctsXv7bPf5fHZ+0Wfz79vxo82PPtu439UK9G9Z9\n2x82b3u2js9N/dJr1cmaHlytvx+7v3+xWtaj3HkTQgghhBBCVClVrZZ9o2pPnnkTQgghhBBCiBpA\nOm9CCCGEEEIIUQPIsEkhhBBCCCFE1TLJPaQbIbUmhBBCCCGEEDWAdN6EEEIIIYQQogaQYZNCCCGE\nEEKIKqWa5G2TN0LuvAkhhBBCCCFEDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJKyY903xi58yaEEEII\nIYQQNYCiqqqt1+F2IJUshBBCCCGqQo24pZU+qVG1/n7s8cm5almPMmxSVLrEUa1tFtvvm6Ns6jrY\nZvH77FzByQG9bRa/+epwNnYZYrP4fXctx8gym8W3Y6jN4+/s+ZBNYnfdsgqAAtO3Nolvrxlu87rf\n2+d+m8XvsGmtzduerbY9VI/tb+v427oPsln87tv+sFn57RgKwKrQoTaJ/9C+ZWzvMdAmsQHCtq60\neduvMeRHum+I1JoQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RO29CCCGEEEII\nUQNI500IIYQQQgghagDpvAkhhBBCCCFEDSDPvAkhhBBCCCGqlKrKM283Qu68CSGEEEIIIUQNIJ03\nIYQQQgghhKgBZNikEEIIIYQQokrJTwXcGOm8CZtxaB2G21MzQLFDt/VXctd+bTXfscsDuN73LCig\n6nLJ+u5tDBcjAXDu9zTOPR8FRSFvywry1n9/3fG9urSlyeSRKHYa4lZt5Px3f5RK02TKKLy7tcOk\ny+f425+TfSoKgOazX8SnWyj5aRlEPD31BkoPru074TdmPIrGjvR1a0hd8YPVfIe69Qic/AqOjZuQ\n/O3XpP7+s2WextWNgInTcazXEFCJ++Q9dCePl1vOplNGomg0xJZTzqZTR+LdtT1GvZ4Tby8kKzLq\ninn9+nSh4ejHcG1Qhz2jZpJ18hwA/vd0p/7QgSWW7gmkXVfdzJ65is3hp/DydmXV6rHXlbciVEZ8\nj07taTBxNIrGjoQ164hd9mupNA0mPodnlw4Y9XrOvvMxOafM9dru568w5eWhGk2oRiNHxrwEQJM3\npuMcXAcAOzdXjNk5HH528lXXZdvWs7w7fx1Gk8qjg9sy+rluVvMzMvJ4dfZqLl5Mx9HRjrfnDqBJ\nUz8Avvs2gl+XH0RVVQYPacewZzpdd11s3XKGd+b9g9FkYvCQdjw3pnup+HNmreLihTQcHbXMnf9Q\nUfz/283y5ftRVRgypB3DR3S5ppi1OoZSb/zzoNGQvPYf4n9cXipN8Pjnqd25Iyadnuj/LCD39FkA\n/B4ZiO8D94CikLTmbxJ/XQlA3edHUbtrZ9QCA/q4OKLf+whjTo5leZXR9gDqDrmXuo/ei2oykbJj\nP2c+Nx//3ELq0fyV57FzdS5MqQFMpWLaevtfyS3Z9ju3o9Gk0SgaDQmr13Pp+99KpWk0aTSeXUMx\n6fScmv+ppe0DoNHQdukH5CelcPyVeVb56jwxkIbjR7LrgWEYMrJuel0rq/5bTx+Of1gbjLp8Dryx\nmIyT0aXSuAT5EvrOeBxqu5F+Ipr9r36BajDiHdqCTgumkhuTBEDcv3s49dXvRRk1Cr2+m0teUhoR\nkz8otVyPTu1oNOk5KKz/mDKOvQ0nPYdnl1BMej2n539iqf/QX5ZgzM1DNZnAaOLQcy9Z5Qt6fCAN\nx49i94Cnrerf9m0fJ0BXKqi4JciwSWEbigb3p+eQ/tFYUuc8hGPn+7ELamSVxJgUQ9p7I0h97RFy\n/lyE+zOvA2BXJwTnno+SOvdJUl9/FMc2vbDzC76++BoNzV4azaGp89j95BT8+nfHpUFdqyTeXdvh\nEhzIriETOPnuIpq9PMYyL37NvxycMvfGyl4Y33/sJC69/grnXnyGWr364BBc3yqJMSuThMWfkvrb\nz6Wy+48ZT86+CKLGDidqwrPkX7xQbqhm057l4JR57HpyCv53h+FaRjmdgwPZOWQCJ99ZTLOXn7Os\nY3l5s89d5MiMD0g/eMJqWQn/bCNi+HQihk/n2JufFU69vo4bwMOPtGHJ0qHXna+iVHh8jYaGU57n\nxPQ3OTh8HD59e+Jc33qf9egSilPdIA489Tzn3l9Iw6nWX5yOTZrN4WcnWzpuAKffeJ/Dz07m8LOT\nSd2yk9QtO6+6Kkajiblv/82XS55g1Z/Ps3bNMc6eSbJK89WSHTRv4c/vK59j/rsP8e47683xTiXy\n6/KD/PjLSH794zk2h5/mwvnU66oKo9HE3Lf+YvHSp/hzzYusXX2MMyXiL1m0jeYtAvjjzxd4571B\nzJ/3tyX+8uX7+Xn5aH5f+Tzh4ac5fy3xNRrqTXqRUzNe49jIF/Dq0wunEvVfu3MHnOrU4eiw0Zxf\n8Cn1Jo8HwKlBfXwfuIcTL07h2OhxeHTphGNQIACZ+w5wbNRYjj83Dt3FGAKeesxqmZXR9jzbt8K3\nZ0d2D5vG7qemcn7ZKgAUOw0t35jIyfeWsPupyxeU1LLr34bb/2puxbbfeOrzHJv2FvufnoBvvx44\nl9gPPLuE4hQcyL4nxnLm/S8ImfaC1fygIQPIPX+p1KId/Hzw6NgWXXxiha1uZdS/X1gbXIMD2Djo\nJQ7N/Zo7Z44sM12LiU9wdtlfbBz0EgWZOdQf1NsyL+VAJJufmsXmp2ZZd9yARk/eS1Z0bNnBNRoa\nTX2eY9Pe5MCw8YX1b932PbuE4lw3kP1PvsCZ/yyk8UvWx96jk+ZwaNSUUh03Bz8fPDq1K7P+bd/2\nKSi7QsStoNp23hRFaaAoytEypi9VFKVlGdNHKIryeQXEDVIUZcXNLkdcmbbRHRgSL2BKugRGA/rd\nf+HYto9VGsPZg6i5mQAUnD2MxtPfnDewEQVRRyBfByYj+ZF7cWzf77ri12oZQu6leHSxiagGA4kb\ntuPbs6NVGp+eHYn/KxyAzGOn0bq54ODtAUD6wRMYMrNvpOgAODVtTn5cDAUJcWAwkLkI9YNuAAAg\nAElEQVRlE25dwqzSGDPS0Z2OBKPRarrGxRXnVm3IWLfGPMFgwJRT/rrkFStnwvrt+PTsYDXft2dH\n4tduLlZOVxy8PajVMqTcvLnRMeReKOdkWSigf9gV519Jh471qV3b+eoJK0lFx3dr0QRdTBz6uARU\ng4HkjVvx7N7ZKo1X984k/fMvANnHI9G6uWLv7XnNMbzvCiN545arpjtyOJZ69bwIDvbE3uH/2Tvv\n+Car9YF/T9I23XQlbYECQsuwIKPsLeDALcJ1L5YLZAgqigsQ9HevgDgB9XpVrnrRq6KAlyVThmXL\nXm0pXUnadCdpkvf3R9q0aVpakJKi5/v59PNp3jzPec55zvuc8573jKgZftPVbNhw3E3m1Ek9vXq1\nAqB16yjOnTNhMBRx+rSRTtc0JSDAFx8fFd17tGDd2mP1zqPT/jlatAwnLi4cPz81w29OZMN69zRO\nndLTq3e5/TZRZJzLx2Ao4tQpA9dc08xlv0ePlqxbc6QGK+4EtW+L5VwG1swsFJuN3A2bCevbx00m\nrG9vjGvXA1B8pNz/EeEEtIyj6MgxHBYLOBwU7v+d8AHOe7sgeS84HOU6R/HTRrml2RCx12zE9aR8\n9j1KmQ2AsjxnGxnRszNFJ1MpOplaxYLn4M3b9V8Xf7bYD+mQgDk9E0uGM/b167YSWT32B/Qk5+eN\nABQeOo66Suz7aSOJ6NOd7B/XeqTdeuJoUj74V03VfNE0hP9jBiWRvnILAHm/n8Q3OBBNVJiHXFSP\nRDLX7wLg7E+biRnc3UOmOv66CKL7dyHt+19q/D6kQwLmc1mutle/fgsR/d1niyP69yTn54q293i9\n296rJo4h5f1PQfGsAO/HPu4PDo0URVE16r/GSuPNWS0oijJWUZSa14f9QYQQPoqiZCiKMrIh0pdU\nog7T4cjNcn125GWjCtfVKu8/YATWg1sBsJ07iW9CN0RQE/DzR9NpAKqImAuyr9FGYMkxuD5bcoxo\ntBHVZCIxZxsrZfS5aLSRF2SnNnwjtdj0lW+7bQY9vpHa+ulGx2IvMBE7+Xlavb2UmInTERr/WuXN\nOVXKkONZBo02opqM0xf+HtcvrPy6YX3rFvqL4BcV6Xa/WfUGD1/6RUVizdFXkTHiF1Upc/X82XRa\nOh/drTd4pB/SOZGyXBPm9Mw685KTU0hMTIjrc3R0KDnZ7sut2rWPdj2UHzxwjsyMfLKzC4lP0LJn\n91lMeSWUlpaxZfMpsrIK6rRZlezsQmJimrg+x9Rmf81RAA4cOEdGhonsrAIS2mrZvTvNZX/z5hNk\n1sO+07dV/G8w4FfN/75RUdX8b8A3KorSM6mEdOqIOjQElUZDk17d8dW5D9IAooZfT/6uZLdrDRF7\ngS2aEta5A90/nku3918jpEOb8uuxoECXhS/S419v1uoLb9f/Xw2/6n2N3ohf9b4mKsL9/swxooly\nyrR+egxnPviXxwAhon9PrAYjxSdTGi7zlwh/XQSlVfrS0pxc/LXugyO/sGBshcUodkeNMhHXJDD4\nq3n0WvQsIa2bua53fOZBDr/9JYqj5hGsn7Za7OuNaKIiPWTc68hQKaNA4oJZdP7oLaJvvb4yP/17\nYtUbKTmVUqPdxhj7kj8PjX3Pm48QYhnQDTgEPASsAqYpipIshHgUmAGYgP2ApbaEhBCf4lz/2x0I\nBaYqivKTEOIRYAQQDKiFEA8DPymK0lEIoQbeBG7EuXFgqaIo7wghkoD55ToG4BFFUep+apJcFL7t\nexAwYAR58x4EwJ55mpLVnxD2zBIUSyllZ4+B4rmv48+KUKvxb9OW7A8XYT5+BN34CUSOug/DF594\nO2suQhPjcZit3s7Gn4ZDTz2H1ZCLT1gTrp4/i9K0dAr3H3J9HzV0IIb1Wy6ZvbHj+vLG3DXcdedS\nEhJ0tO8Qg1olaNMmitFj+zB+7JcEBPjSrn00KtWl33A+bnx/5r7+M3fevpi2bXV06BCLSq2iTRst\nY8f2Y+yYZQQE+NK+fQxqVcO+gzSnnSXrq+W0/b85OMwWSk6dds22VRB7/90odju562p++38pEWoV\nvk2CSR7zAqFXx9Pp9an8OuIphFpNWOf2/Pbo89jNFq7dtAxBDApZdSdaDW/Xv8RJeN/ulJnyKT52\niiZdO7quqzR+xD00kt+nvOq9zF1G8o+msPbmp7GXWtD160yPt6ay4c5niB7QFUtePvlHU4hM6tAg\ntg8+9TxWQy6+YU1IXPAapWnpFB09SfMHR3Fo6isNYrM2LiT2gaHA+suaQcllo7EP3toBYxRF2SaE\n+AR4suILIUQs8BqQBOQDvwB760ivFdATaAP8IoSIL7/eDbhGUZRcIUSrKvLjy3W6KIpiE0JECCF8\ngXeA2xVF0Qsh7gZeB0ZXNSSEGF+uz+LFixk/fjySSuymHLfZMlV4NI48z3Xj6uZtCX1kFqYFj6MU\n57uum7f8F/MW56bvoBGTcORd2AOKRZ+Lpsrbc40uEos+t5qMEf/oSCqsarQRWPRGLgVlRj0+2sqZ\nNp8oLWVG/Xk0quga9NgMeszHncvFCrdtInLkfbXK++sq3/hpdJ5lsOhz8ddVKWe5L4SPT526tRE9\nrB9Za7cSH197vv5KWA1Gt/vNTxvl4UurwYifTgscKZeJxGowln/nvDdtpnxyt+wguENC5eBNrSJi\nYB8OjptSr7zodCFkZVXOtGRnF6CLDnGTCQ7WMGfurQAoisINw96jeZzzLfhdI7tw18guACxc8Asx\n1XTrIjo6hKysyljOqsX+3Hm3u+xfN3QRcRX2R3XlrlFdAVgwfz0x0aF12nT6tor/o6KwVvN/mcFQ\n7v9yGW0UZQbn23jD6jUYVq8BoNmYh7HqK9/SR94wjCa9e3J82gsedhsi9iw5ueh/2QlAweGTKA4H\nvmGhWHKMmPYepqzKoQmCSI/Bm7fr/6+GtXpfo43EWr2vMeS635+6SCyGXCIH9yGiXw/Ceyeh8vNF\nHRRI25cmk77sOzSxOrp+utCVZpdP5rN/3HTKck2Xp2D1YNC/5wJgOnyagOjK+zlAF4FZ774X2moq\nwickCKFWodgdbjK24lKXXM62/aieV+MXFkxE57bEDEwiul8XVH6++AQH0G22+341q75a7GsjsRiM\nHjIaXRQVUaHRRrlkKtreMlM+xs07CO7QFlthMZpYHV3+udAl3+XjBewfP83lf2/HPs7n2sY/eJOn\nTV4UjX3Z5FlFUbaV//8FUPVIsl7ARkVR9IqiWAHPUx08+Y+iKA5FUU4Ap4H25dfXKopS067rYcBi\nRVFsAOUy7YCOwFohxD5gJtC8uqKiKEsURemuKEp3OXDzxHbmd3yiW6CKagZqHzS9hmPZ5/7WWhUR\nQ5OnFpK/dAb2bLe13IiQCJeMJmko5h2rLsh+4ZGTBMbF4h+rQ/j4oBvWD8OW39xkDFuSiRk+GIDQ\nxATsxSVYjZemYzQfP4Zf0+b4RseAjw+hA4dQtPPXeunaTbmUGXLwa+bcdB3UOQlLWmqt8lXLGX1d\nPwxb3Jd26bckE3PTIMBZTluRs5zVfVSTbo0IgW5oX7LXbqtb9i9C0dET+DdviiY2GuHjQ9TQAeRt\n2+kmk7t1F9obrgUg+Op22ItLKDPmofLXoApw7kFR+WsI69GF0tOVB9SEJXXBnJbuMRipjY6dmpKW\nmkt6uokyq53Vqw5z7bVt3WQKCsyUWZ1bJr5dvo+k7i0IDtYAYDQ6T1PMzMhn/dpj3HRLRy6Ejp2a\nkZqSS/rZPKxWO6tXHuLaIZ72reX2v1m+l+7dW3rYz8jIZ92ao9x8a6c6bRYfPY5/s6b4xTj9HzFk\nIKbtO9xkTL/uJPK6oQAEdWiHvbiYslznw6NPmHOZp59OS9iAvuSu3wg4T7CMuXskJ2e+5twTV42G\niD395l2EJzl9HhAXi8rXhzJTAcad+wmKb4FK44dQO7t2Bc/2ytv1/1ej8OgJAuJi0ZTXpXZYf3K3\n7XKTyd26C92NgwEISWyLvaiYMmMeqYu/4LcRY0keNZ5jr75F/u4DHJ+9kJLTqey69RGSR40nedR4\nLHoj+0ZPbVQDN8B1wEjmxmSa3zwAgPCO8ZQVlWIxeObVmHyY2KHO/Whxtwwka9NuADSRlcuswxJb\ng0pgNRVx5N2vWXvTRNbdOpndL7yL4bfD7HnpA7c0C4+eIKB5Ff8PHUDu1mr+37YL3Y0VbW9bbOX+\nV/lrULu1vV0pOZ1KyelUfrvtYXb/bTy7/zYei97AvjFT3Pzv7dgHGmR7kaRx0Nhn3qovYv6j23Jr\nS6+4uuB5EMAhRVH61CkpqR2HncIv5hI2dTFCpaZ063fYM07hP9h5Wpt5438Iuu0JVMFNCHlwpksn\nb9bdADR5agGq4DAUu43CL15HKb2wI5IVu4Pjb31El4Uzncfx/rSB4jPpNL3TuaY947s1GH/dQ2Tf\nbvRZ/q7zKN8577v0E1+bTFi3RHzDQuj7w2LOfPQ1mT9uuKDyZ3/4NnGz/g4qFflrV2NNSyFs+G0A\nmFavQB0WQauFi1EFBoJDIfz2kZx54mEcpSVkf7iI2GkzET4+lGVlkrnwjVpNHfvHx3R9+0VQqcj8\n6ReKz6TT7M7rADj33VqMv+4hqm9X+nzzjvMnEea85/JRTboA2kE9afvMaPzCQukyfwaFx1PYN9l5\nhHVY1w5YcgyYMy7+BLRpU79l165UTHklXDtwARMmDnbNtlwOLrl9u4MzCxfT4R+vIlQqclatozTl\nLNG33QhA9oqfMe1IJrxPEl2/XIzDYuHkvEUA+IaH0e5156yOUKsxrNuEadceV9KRQwdgWFf3QSUV\n+PioeGHmDTw29kvsDgd3juhMfIKWr79yPijdfU8Sp08ZeHHGjwgBbeK1zJpzs0t/yqRvMZlK8fFR\n8eJLNxAaWvt+y9rsv/jycMaNXYbDrnDnXV1ISNDx1ZfOB5R77u3O6VN6Zjz/AwJBfIKW2a/f6tKf\nNPE/mEyl+PqomfnK8PrZdzhIe+cD2r45B9QqjKvXYE5JQ3vrTQDof1xF/s7faNKrBx2/+Lj8pwIW\nuNTbvPoiPqGhKHYbaW+/7/o5gBZPP4HK15e2f3fe+0WHj5G2sPLcrIaIvYwff6HDzCfotewtHDYb\nh2c5dWyFxZz98id6/PMN1/4ohXM1+t+b9V8Xf8bYPzV/KR3nvwIqNdkr11Fy5iwxtzv3rmb98D/y\ntu8mvE8SSV9/iMNs4cTcRZeoNBdOQ/g/Z+s+ovt1YegP810/FVBBr7ens2/2UiwGE4cXfUnS3Il0\neHIU+cdSSft+IwCxQ3vSauQwFLsdu6WM3TMu4Gw6u4PTC5aQ+NaroFKRs3I9pSlnibnd2fZm/fCz\n0/+9u9PtK6f/T85znpTsGx5Gh7kzAGfbq1+7GdOuuhZ4OfF27AMr6+8kyZWGUGo4JacxUL588QzQ\nV1GU7UKIj3CuJ7oVmAacA3bgnBouADYA+xVFmVBLep8COuAW4CpgExAP3AN0r9Art1ux5+1xnLNv\n91QsmwSKcL7ReLA8X75AW0VRDlE7jdPJl4mc0d57M6v75Hc29PHe+TNDtn/D0VsGe81++582sr73\nKK/ZH7pjOXaWec2+mvu9bn/7wNu8YrvPZucx0mWOz7xi31f1kNd9nzzkJq/Z775hlddjz1t1D42j\n/r1tf2v/O7xmv//W771WfjXOnxpYkeSdn3y4bfcytg2o/nujl49+W37weuzjnGho9OjHJjbq52Pt\nR4capR8b+7LJY8BTQogjOH/p1zUfXn5AyKvAdmAbFRtFzk8asAtYDTyuKEpdP2D4UbnOASHEfuC+\n8iWaI4E3y6/tA+SxehKJRCKRSCQSiaRBabTLJhVFSaFyT1pVBleR+SfwzwtIdp2iKG6/fqkoyqfA\np9Xsdiz/3wZMLf+rqrMPGHgBdiUSiUQikUgkEonkD9HYZ94kEolEIpFIJBKJREIjnnm7WIQQLwLV\nFxsvVxTlES9kRyKRSCQSiUQikVRDkT8VcFH86QZviqK8jvN31yQSiUQikUgkEonkT4NcNimRSCQS\niUQikUgkVwB/upk3iUQikUgkEolE0rhRFDmHdDFIr0kkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJ\nFYBcNimRSCQSiUQikUguK/K0yYtDzrxJJBKJRCKRSCQSyRWAUBTF23n4KyCdLJFIJBKJRCK5HFwR\nU1pZD3du1M/HMf/a3yj9KJdNShqcnNEdvWZb98nvbOgz0mv2h2z/hqO3DPaa/fY/bWR97+q/WX/5\nGLpjOXaWec2+mvu9bn/7wNu8YrvP5hUAlDk+84p9X9VDXvf97qHDvWY/af1qr8eet+oeGkf9e9v+\n1v53eM1+/63fe638au4HYEXS/V6xf9vuZWwbcLtXbAP02/KD12P/SkFRGuXYqNEjl01KJBKJRCKR\nSCQSyRWAHLxJJBKJRCKRSCQSyRWAXDYpkUgkEolEIpFILity2eTFIWfeJBKJRCKRSCQSieQKQA7e\nJBKJRCKRSCQSieQKQA7eJBKJRCKRSCQSieQKQO55k0gkEolEIpFIJJcVxSH3vF0McuZNIpFIJBKJ\nRCKRSK4A5OBNIpFIJBKJRCKRSK4A5LJJiUQikUgkEolEcllRFDmHdDHIwZvEa/h17Efwfc+DUGPe\n8i0lqz52+17T+2aCho8BAYq5hMLPZ2M7ewyAgGEPEDDwLhCC0s3fULr2i3rZjOjdhYTJjyLUKjJX\nrCf18+89ZBKmjCayb1ccZiuHZ79L0fEzALR/8Umi+iZhzctn1wNTXfLaIX24aszfCGrVjOQxMyg8\neqpeeQnq1hPd+AkIlRrTmpXkfvNvd/80b0Hs5OfQtEnA8NnH5H73tes7VVAwMU9PR9PiKkAh8+03\nMR89XGuZ2055FKFSkVFLmdtOfZTIPt2wWywcmf0ehcfOnFdXN6Q3V411lvm30TMoPHoagOgb+tPy\n/turpR4O5NXLJxW8OGMFmzYeJyIyiBU/PXFBupeChrAf1rMbrZ4ei1CpyV65hoxl33rItHp6HOG9\nu2O3WDg1byHFx51+VQcH0ebZCQRe1RIFhVNvLKLo0DEiBvcj7tF7CWjZnIOPTaP42Ml65WXrllO8\nMXcNdofCXSO7MHZcX7fv8/NLeenFnzh71oRGo2b2nFtIaKsD4PPPdvHt8n0oisLIUV158OGeF+yL\nLZtPMu/1/2F3OBg5qivjxvf3sD/zhRWcTctDo/FhztzbKu3/ayfLl+9BUWDUqK489EjvetkM7ZFE\n3FOPg0qFYdXPZH+13EMm7qnHCe3VA4fFQsr/vUXpCWcs60bcTtRNN4IQGFb+TM5/nXEQ+9D9RN18\nIzZTPgDnPv4XBbt+c6XXELEH0HzUjTS/60YUhwPjr3s4+e4X+IQGc828ZwjpEE/myo3n9YW36/98\n/Cljv1dXWk8ai1CpyP5pLelf/NdDpvWksYT3ScJhtnB87iJX7AOgUtHlo39g1Rs5/NzrbnrN7rmd\nqyY8yo6bH8SWX/iH89pQ/u84/SGi+3XGbray99XF5B9N8ZAJbKolad4E/JoEYzqSwp6X3kex2YlM\n6kDP+VMpOacHIPOX3zi+9LtKRZVg0OdzKNXnsWvyPzzSDevZldaTxkG5/8/V0PZeNWkc4b2TcFgs\nnJj7tsv/Sf9Zgr2kFMXhALuD/eOecdNrevftXDVhNDtveaBW/1/OdkDy10AOeSXeQagIeWAmpgVP\nkDvzNjS9bkLdtLWbiF1/jrw3HyH35REU//ghIQ+/AoC6WTwBA+8id8695L5yF5rOg1Dr4uq2qVLR\n7pmx7J/6OjvvnYLuuv4EtmruJhLZpyuBcbHsGDWRo298SLtnx7u+y1r5C/umzPFItvhUGr/P+Dum\nfUfqX36ViugnJpH+ynOcfvJhQgcNwS+upXv5CwvIXryI3P9+7aEePX4Cxbt3ceaJhzgzcQzWs2m1\nmmo3bQz7przOjnunEH19P4JqKHNAXCzbR03k6LzFtHt2nCuPtekWnT7Lwef/4VHm7P9tZddD09n1\n0HQOvfZO+dULG7gB3DmiM0s+uv+C9S4Vl9y+SsVVUx7jyPTX2PfQU0QNHUhAS/d7Nqx3Ev7Nm7L3\nvsc4/ff3uGpq5YNTq6fHYdq5h30PPsmBRydRmpoOQOmZVI7NnEfB/kP1zord7mDO7J/5YMk9rPjx\nMVatPMSpk3o3maVLfqV9h2i++2Ecc9+4jTfmrQXgxPEcvl2+jy//8yjffj+OTRtPkJaae0GusNsd\nzJm1msUf3cePK59k1U+HOFnN/pIPt9K+Qwzf//g48968g7mv/+yyv3z5Hr5ePpbvfniMjRtPkFof\n+yoVLZ5+ihMzXuLw6MeIGDIY/5Yt3ERCe/ZA07wphx4aQ9r8RbScNAEA/1YtibrpRo48NZnD456k\nSe+eaJrGuvRyvvmeI49N4MhjE9wGbtAwsRfeLRHtwB7sfHAaO++bSuqyFQA4rGWcWvI1J9/5rG7/\ne7H+6+LPGPttpj7GoWmz2PPARLTDBhBQ7T4I752Ef1wsu+95gpN/f5/4aY+7fd901C2UlMd8Vfx0\nUYT16II5K+eSZbch/K/r15mguBjW3/EM++d8zDUzHq1RrsPT93Bq2WrW3/EMZQXFtLxjsOs7495j\nbLrvBTbd94L7wA1ofe+NFKZk1GxcpaL11Mc4NO019j44odz/7m1veO8kAprHsufexzn5f+/R5hn3\nQevvk2ayf/QUj4Gbny6KsJ5dz+//88RyBZeyHZD8NbiiB29CiI1CiO6XOM3HhRAPXco0JZ74tO6E\nLScNhz4d7DYsO1ej6TLETcZ2ah9KSQEAZacOoAqPdurGtqbszEGwmsFhx3osGU23YXXaDL06npL0\nLMwZOSg2GznrtqEd2MNNJmpgD7JWbwSg4NAJfIID8YsMA8C07wi2giKPdEtSz1GSVkvHUQv+bdtj\nzTxHWXYm2GwUbN5AcO9+bjL2fBPmE8fAbne7rgoMIiCxM/lrVjov2Gw4ij3zVUFplTJnr91G1ED3\nkNEO7EHWqk1VyhyEX2QYoVfH16pbklJ3mWOu63fe789H9x4tadIk4KL1/yiX2n5whwTM5zKxZGaj\n2GwY1m8hvH8vN5mI/r3Q/+8XAIoOH8MnOAjfyHDUQYGEdk4kZ6XzAVqx2bAXFQNQmpqO+ey5C8rL\nwQMZtGgRQVxcOL5+aobfdDUbNhx3kzl1Uk+vXq0AaN06inPnTBgMRZw+baTTNU0JCPDFx0dF9x4t\nWLf22AXaP0eLluHExYXj56dm+M2JbFjvnsapU3p69S633yaKjHP5GAxFnDpl4Jprmrns9+jRknVr\n6n5pEtS+LeZzGVgzs1BsNvJ+2URYX/cZu7B+vTGuWQ9A8ZGjqIOD8YkIx79FHMVHj6FYLOBwUHjg\nIGED6ndvN0TsNRtxPSmffY9SZgOgLM/ZRjrMFvL3H8VhLTtvnrxd/3XxZ4v9kA4JmNMzsWQ4Y1+/\nbiuR1WN/QE9yft4IQOGh46jLYx/ATxtJRJ/uZP+41iPt1hNHk/LBv0C5ZNltEP/HDEoifeUWAPJ+\nP4lvcCCaqDAPuageiWSu3wXA2Z82EzO47sc7f10E0f27kPb9LzV+H9IhAfO5LFfbq1+/hYj+7rPF\nEf17kvNzRdt73NX21sVVE8eQ8v6noNReAeeL5QouZTtwpaE4RKP+a6xc0YO3S40QwkdRlA8VRTn/\nq0vJH0YdpsORm+X67MjLRhWuq1Xef8AIrAe3AmA7dxLfhG6IoCbg54+m0wBUETF12tRoI7DkGFyf\nLTlGNNqIajKRmLONlTL6XDTayHqXq774Rmqx6SvfdtsMenwjtfXTjY7FXmAidvLztHp7KTETpyM0\n/rXKm3OqlCfHszwabUQ1Gadf/D2uX5gvdMP61i30F8EvKtLt3rPqDR6+9IuKxJqjryJjxC8qEk1s\nNDZTPm1mTOKajxbS+tkJqPw1F52XnJxCYmJCXJ+jo0PJyXZf7tOufbTrofzggXNkZuSTnV1IfIKW\nPbvPYsorobS0jC2bT5GVdWEPDdnZhcTENHF9jqnN/pqjABw4cI6MDBPZWQUktNWye3eay/7mzSfI\nrId936goyvRVfWvANyqymkwkVr17HflFRWFOSSW4UyLq0BCERkOTXj3w01bGqvbOW+mw9H1aTpuC\nOjjYLc2GiL3AFk0J69yB7h/Ppdv7rxHSoU2d5a+Kt+v/r4Zf9X5Hb8Sver8TFYG1avuQY0QT5ZRp\n/fQYznzwL48BQkT/nlgNRopPpjRc5i8R/roISqv0q6U5ufhr3QdHfmHB2AqLUeyOGmUirklg8Ffz\n6LXoWUJaN3Nd7/jMgxx++0sUR80DKD9tpLtv9UY01WLfTxtZrY4MlTIKJC6YReeP3iL61usr89O/\nJ1a9kZJTKecvez36UW+0A5Irm0Y5eBNCfC+E2C2EOCSEGC+EUAshPhVC/C6EOCiEmFJNXlX+veea\ntkqZIiHEgvI01wshtOXXNwohFgohkoFJQohXhRDTyr+LF0KsE0LsF0LsEUK0Kb8+XQjxmxDigBDi\ntVrsjRdCJAshkpcsWXLJfPNXxLd9DwIGjKBo+XwA7JmnKVn9CWHPLCFsyoeUnT0GisPLubx8CLUa\n/zZtyVv1AymTxuGwlBI56j5vZ8uN0MR4HGart7Pxp0Co1QQltCH7+9UcGDsZh9lMs/tHNqjNseP6\nUlho5q47l7Lsi2Tad4hBrRK0aRPF6LF9GD/2Sx4f9yXt2kejUl36t5PjxvenoNDMnbcvZtnnu+jQ\nIRaVWkWbNlrGju3H2DHLGD92Ge3bx6BWNWw3Zk47S9ZXy0l483US3phN6cnTzv0vgP7Hlfz+wGiO\njH+Kstxcmj8+rkHzAiDUKnybBJM85gVOvvs5nV6fWrfSBeLt+pc4Ce/bnTJTPsXH3PdRqzR+xD00\nktSPvvRSzi4v+UdTWHvz02y8ZwZnvv4fPd5y3vPRA7piycuvcf/cpeLgU8+zf5fLl0sAACAASURB\nVPQUDk+bReyImwjtfDUqjR/NHxxF2sf/rjuBBuJytAOSxktjPbBktKIouUKIAOA3YDfQTFGUjgBC\niKrz7T7AMuB3RVFe90zKRRCQrCjKFCHEy8ArwITy7/wURelenvarVXSWAW8oivKdEMIfUAkhrgcS\ngJ6AAFYIIQYqirK5qjFFUZYAFaO2S7io4c+B3ZTjNlumCo/Gkee5blzdvC2hj8zCtOBxlOJ813Xz\nlv9i3uLc9B00YhKOvCwP3epY9LlodFGuzxpdJBZ9bjUZI/7RkVRY0mgjsOiNXGrKjHp8qry994nS\nUmbUn0ejiq5Bj82gx3zcuVyscNsmIkfWPnjz11W+5dPoPMtj0efir6tS5nK/CB+fOnVrI3pYP7LW\nbiU+vnENKr2F1WB0u/f8tFEevrQajPjptMCRcplIrAYjKAoWvYGiI86lbcaNv9Ls/rsuOi86XQhZ\nWZUzLdnZBeiiQ9xkgoM1zJl7KwCKonDDsPdoHud8C37XyC7cNbILAAsX/EJMNd26iI4OISurMpaz\narE/d97tLvvXDV1EXIX9UV25a1RXABbMX09MdGidNssMBnyrxJufNooyg7GajBE/bRTFVWSsBufb\neOPqNRhXrwGg6ZiHKSufobPlmVz6hpWriX/d/V1eQ8SeJScX/S87ASg4fBLF4cA3LJQyU/1mwLxd\n/381rNX7HW0k1ur9jiEXv6rtgy4SiyGXyMF9iOjXg/DeSaj8fFEHBdL2pcmkL/sOTayOrp8udKXZ\n5ZP57B83nbJcE42FQf+eC4Dp8GkCoivv5wBdBGa9+15oq6kIn5AghFqFYne4ydiKS11yOdv2o3pe\njV9YMBGd2xIzMInofl1Q+fniExxAt9nu+9WseqO7b7WRWKrFvlXvbJ8rokKjjXLJWA3Ouioz5WPc\nvIPgDm2xFRajidXR5Z8LXfJdPl7A/vHTPPxvLo/xChpLO9BYUBT58udiaJQzb8DTQoj9wA4gDvAD\nWgsh3hFC3AhUvTsXU/fADcABVJz88AVQ9XgzjxMhhBAhOAeM3wEoimJWFKUEuL78by+wB2iPczAn\nuQBsZ37HJ7oFqqhmoPZB02s4ln3ua9ZVETE0eWoh+UtnYM9OdftOhES4ZDRJQzHvWFWnzcIjJwmM\ni8U/Vofw8UE3rB+GLe4HDBi2JBMzfDAAoYkJ2ItLsBovfWdoPn4Mv6bN8Y2OAR8fQgcOoWjnr/XS\ntZtyKTPk4NfMuek6qHMSlrTUWuWrljn6un4YtiS7fa/fkkzMTYMAZ5ltRc4yV/dXTbo1IgS6oX3J\nXrutXuX5K1B09AT+zZuiiY1G+PgQNXQAedt2usnkbt2F9oZrAQi+uh324hLKjHmU5Zqw5hjwj3Mu\nFWqS1JnSlLMXnZeOnZqSlppLerqJMqud1asOc+21bd1kCgrMlFmdey2/Xb6PpO4tCA52LtU0Gp3D\nm8yMfNavPcZNt3S8QPvNSE3JJf1sHlarndUrD3HtEE/71nL73yzfS/fuLT3sZ2Tks27NUW6+tVOd\nNouPHse/WVP8Ypz+D792EKZfd7jJmH7dQeT1QwEI6tAee3Extlznw6NPmHOZp69OS3j/fuSu3+i8\nHlG5rCusf19KU9zjsCFiT795F+FJTp8HxMWi8vW5oAc2b9f/X43CoycIiItFU16X2mH9yd22y00m\nd+sudDcOBiAksS32omLKjHmkLv6C30aMJXnUeI69+hb5uw9wfPZCSk6nsuvWR0geNZ7kUeOx6I3s\nGz21UQ3cANcBI5kbk2l+8wAAwjvGU1ZUisXgmVdj8mFihzr3o8XdMpCsTbsB0ERWLrMOS2wNKoHV\nVMSRd79m7U0TWXfrZHa/8C6G3w6z56UP3NIsPHqCgOZV/D90ALlbq/l/2y50N1a0vW2xlftf5a9B\nHeDc/6fy1xDWoyslp1MpOZ3Kb7c9zO6/jWf338Zj0RvYN2ZKjf6vTz/qjXZAcmXT6GbehBCDgWFA\nH0VRSoQQGwEN0Bm4AXgc+BswulzlV+BaIcRbiqKYL8BU1dmw4lqlasgiME9RlMUXoCOpjsNO4Rdz\nCZu6GKFSU7r1O+wZp/Af/DcAzBv/Q9BtT6AKbkLIgzNdOnmz7gagyVMLUAWHodhtFH7xOkpp3Uck\nK3YHx9/6iC4LZzqP3f1pA8Vn0ml6p3Mde8Z3azD+uofIvt3os/xd55G9c9536Se+Npmwbon4hoXQ\n94fFnPnoazJ/3EDUoJ60nToGv7BQOr81g8LjKeyv4VTK6uXP/vBt4mb9HVQq8teuxpqWQtjw2wAw\nrV6BOiyCVgsXowoMBIdC+O0jOfPEwzhKS8j+cBGx02YifHwoy8okc+EbtZo69o+P6fr2i6BSkfnT\nLxSfSafZndcBcO67tRh/3UNU3670+eYd588jzHnP5a+adAG0g3rS9pnR+IWF0mW+s8z7Jjvfn4R1\n7YAlx4A54+JPQJs29Vt27UrFlFfCtQMXMGHiYNdsy+Xgktu3OzizcDEd/vEqQqUiZ9U6SlPOEn3b\njQBkr/gZ045kwvsk0fXLxTgsFk7OW+RSP/P2EhJemorw9cWSkcXJeW8DEDGgN60mjcc3rAnt33yZ\nkpOnOTLt1fNmxcdHxQszb+CxsV9idzi4c0Rn4hO0fP2V80Hp7nuSOH3KwIszfkQIaBOvZdacm136\nUyZ9i8lUio+PihdfuoHQ0Nr3W9Zm/8WXhzNu7DIcdoU77+pCQoKOr750PpTcc293Tp/SM+P5HxAI\n4hO0zH79Vpf+pIn/wWQqxddHzcxXhtfPvsNB2jsfkPDmHIRKjWH1GsypaUTdchMAhp9WUbDzN5r0\n6kHHzz/BYTaT8vcFLvXWr87EJzQUxWYjbdH72IudXUbz8WMIbNMaBbBmZZO6YJGb2YaIvYwff6HD\nzCfotewtHDYbh2e957LX97v38AkMRPhWdO1NgPyqWfJ6/dfFnzH2T81fSsf5r4BKTfbKdZScOUvM\n7TcAkPXD/8jbvpvwPkkkff0hDrOFE3MX1ZFow9EQ/s/Zuo/ofl0Y+sN8108FVNDr7ensm70Ui8HE\n4UVfkjR3Ih2eHEX+sVTSvt8IQOzQnrQaOQzFbsduKWP3jHfrb9zu4PSCJSS+9SqoVOSsXE9pylli\nbne2vVk//Oz0f+/udPvK6f+T85wnJfuGh9Fh7gzAuXxdv3Yzpl17L6jstcVyQ7YDkj8/QjnPKTne\nQAhxOzBWUZRbhRDtgX3AA8AaRVEKhBAdgS8URelSPrCbBgwEBgMjFEWx1ZKuAtyrKMpXQoiZQLSi\nKBMr0lAUJblc7lWgSFGUfwghduBcNvm9EEIDqHHO2M0GhiqKUiSEaAaUKYpyvifVxuXky0zOaO+9\nmdV98jsb+jTs/qDzMWT7Nxy9ZbDX7Lf/aSPre4/ymv2hO5ZjZ5nX7Ku53+v2tw+8zSu2+2x2Hh1d\n5vDO+Uu+qoe87vvdQ4d7zX7S+tVejz1v1T00jvr3tv2t/e/wmv3+W7/3WvnVOH9qYEWSd37y4bbd\ny9g2oPrvjV4++m35weuxj3OiodGT+rdejfr5uOV/djZKPza6mTfgZ+BxIcQR4BjOpZPNgI1CiIpl\nnjOqKiiKMl8I0QT4XAhxv6LUeHpFMdCzfOCWA9xdj7w8CCwWQswCyoBRiqKsEUJ0ALYLIQCKcA4u\nL90PrUgkEolEIpFIJBJJNRrd4E1RFAtQ0+vSt2uQHVzl/1fqkbbHcTxV0yj//GqV/08AQ6qpoCjK\n2zXlRyKRSCQSiUQikUgaikY3eJNIJBKJRCKRSCR/bhrzD2E3Zv50gzchxE6cB5xU5UFFUYJrkpdI\nJBKJRCKRSCSSK4E/3eBNUZRe3s6DRCKRSCQSiUQikVxqGuvvvEkkEolEIpFIJBKJpAp/upk3iUQi\nkUgkEolE0rhRFLnn7WKQM28SiUQikUgkEolEcgUgB28SiUQikUgkEolEcgUgl01KJBKJRCKRSCSS\ny4qiyDmki0F6TSKRSCQSiUQikUiuAISiKN7Ow18B6WSJRCKRSCQSyeXgijgJ5PSIfo36+bj1f7c1\nSj/KZZOSBmdTvxFesz1o2385estgr9lv/9NGVna/z2v2b07+N+t7j/Ka/aE7lrN94G1es99n8wqv\n27ezzCu21dwP4LXyNwrffxvhNfvqu3L5otNor9l/4OAnXvf/X93+hj4jvWZ/yPZvvBr7ABv73uUV\n+4N//Zafe97jFdsAN+76yuuxf6XgkKdNXhRy2aREIpFIJBKJRCKRXAHIwZtEIpFIJBKJRCKRXAHI\nZZMSiUQikUgkEonksqI45LLJi0HOvEkkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJFYBcNimRSCQS\niUQikUguK4o8bfKikDNvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIF\nIPe8SSQSiUQikUgkksuK3PN2ccjBm+SyEt6rK/GTRyNUKjJ/XMfZL77zkGkzeQyRfbphN1s49vq7\nFB0/jUYXSfuXnsY3PAxQyPxhLeeWrwSgw6xnCGzRFACf4CBsRcXsfuSZOvMS1K0nuvETECo1pjUr\nyf3m327f+zVvQezk59C0ScDw2cfkfve16ztVUDAxT09H0+IqZ37efhPz0cP18sHV0x5C168LdrOV\n/a9+SMGxFA+ZgKZaus6diF+TYPKPnGHfy++j2OxED0qi7eOjUBwOFLuDw299Tt7+Y+VlD+Sal8YR\n1jEeTXgolryCWvPQduqjTh9bLByZ/R6Fx84AENG7C22nPIpQqchYsZ7Uz793ph0aTMc5UwiI1VKa\nqef3F+djKywm+ob+tLz/dle6wfEt2PXwc5SkZdBprrMOOv/rXfJ+3UXa4s8I69mNVk+PRajUZK9c\nQ8aybz3y1urpcYT37o7dYuHUvIUUHz8NQNevl+IoLUWxO1Dsdg6Od6af8Op0AuKaAaAODsJeVMyB\nMZM90v0jttXBQbR5dgKBV7VEQeHUG4soOnSMiMH9iHv0XgJaNufgY9MoPnayVp9fCC/OWMGmjceJ\niAxixU9PXJI0G8L3gW1a0fqZJ1EH+mPOzOHk7Lewl5RePvvxV9H6mSdR+fmi2O2cWfAhRUdO1OmL\nLcd9mfdTMHaHYGSPUsYN8szzrtO+zFsZjM0O4YEOPhufj6UMHloahtUmsDng+o4WJg4rqdNeTXR/\n/j6aDeiEzWxl+8yPyT2S5iHT9t4hdHjgOkJaRLN8wNNYTEVOP93cm8TRw0EIbMVmds7+HNPxs/W2\n3RCx0JA2/2jsN5T9+t5/Eb27kDD5UYRaRWaVdrUqCVNGE9m3Kw6zlcOz36Xo+Jnz6gbHt6Tds+PL\nY0/PoVfevryxdwGxH9Gri7PfV6vI/HE9aZ979vvxU0aX9/tWjs55h6LjZ1z9vl9EE1AgY8Vazv3H\n2e9rr+1DqzF3E9iqGXvGPk/h0VM12q6gwzMPE9W3Kw6zhYOzPqi13+08ZxK+TYIpOHqGA6+8i2Kz\nE3tDP1o/dJsz3krMHH7zIwpPOOO148zH0PbvhjWvgG33Tj9vHirwZuxL/hzIwZvk8qFSkfDMOA5M\nfg1LjpFuH/0fxq2/UZKS7hKJ6NONwOax7Lr7KUIS25IwbTx7xz+PYndw6p1/UXT8NOpAf7p9/A/y\nfttPSUo6R15+y6XfesIj2IuL65WX6CcmcXbmNMqMelot+JCinduwnk11idgLC8hevIjg3v091KPH\nT6B49y4y5r0CPj6oNP71coG2XxeC4mLYeOdUwjrG03HGaH595GUPufYT7+XMv1eTuWY7HWeMJu72\na0n7dh2GXb+TvWk3ACHxcXR7YxKbRk4DIHHaQ+i3HyC0XSs23fMcZQXFXL9uMUGtmlNcxceRfboS\nEBfL9lETCU1MoN2z40ge8wKoVLSbNoa9T8/GkpNLj3/Ow7AlmeKUdFo9dAd5vx1k3+ff0/LBO2j5\n0B2cem8Z2f/bSvb/tgIQ1KYF17w5naITKag0fqQtW0FUv24cGDOZqxfMJqx3EldNGs/hqS9j1Rvp\ntOQt8rbuojS1suMJ652Ef/Om7L3vMYKvbsdVU5/g98crO8RDk17Ell/o5qsTr/7d9X/Lp0ZjL6qh\n/lUqrpry2EXbbvX0OEw793D85TcRPj6o/DUAlJ5J5djMebSe9mS96r++3DmiM/c/0IPnn/N8yLso\n/mD5oWbft3l2Iqnvf0LB/kNobxpG03tHcPbjZZfNfssnHiH90y8x7dxDWO8kWjz+CIcnvXheV9gd\nMGdFCB+NNhEd6uDu98O5tr2V+Gi7S6agVDDrh2CWPJpP0zAHxiLn22E/H/hkjIkgDZTZ4YHFYQxs\na6VzC9t5bVan6YBOhLSM5oebZxB1TWt6znyIn++f4yGn33uSc5v2c90nz7ldL0rXs/bRN7EWlNC0\nfyd6v/Jwjfo10kCx0JA24Q/EfgPar9f9p1LR7pmx7J00C0tOLt0/eQP9lmS3fi+yT1cC42LZ4WqT\nx7N77Izz6raf8QQn3/0M097DxN4yhBYP3M6ZJV9dtrJfSOwnTBvH/kmzsOQYSfr4TQxbPPv9gOax\n7PzbBEITE2g7fTx7xs1Asds59c6nFB0/gzrQn6RP/k7eLme/X3w6jd9f+D/aPftYzXVehai+XQiM\ni2XLXZNp0jGeq58by47RMz3k2k64j5QvV5K1djtXPz+G5rcP4ey3aynN0LPz8VnYCouJ6tOFxBnj\nXfrnVm4ibfn/6PTqU3XmA7wc+5I/DV7d8yaEaCWE+N2befgjCCEeEUK86+18XCmEdoinND0Tc0Y2\nis1GzvqtRA7o6SYT2b8nWT9vBKDw0HF8QoLwiwzHasyjqPxNoL3ETElqOhptpIcN7ZC+5KzdWmde\n/Nu2x5p5jrLsTLDZKNi8geDe/dxk7PkmzCeOgd3udl0VGERAYmfy1zjfAGKz4SguqpcPogclcW7V\nFgBMv5/ENyQQTWSYh1xUj0Sy1u8EIP2nLcQM7u7MU6nFJaMO8AdFAcAnKICIru0pPJVOydlsStKy\nKDM5O9uogd3d0tYO7EHWqk0AFBw6gU9wEH6RYYReHU9pehbmjBwUm43stdtculEDepC5aiMAmas2\noh3oXm8AMdf1I3vdrwA4LFby9hwCQLHZKD5xipBrEjGfy8SS6ax/w/othPfv5ZZGRP9e6P/3CwBF\nh4/hExyEb2R4vXwLEHltPwzrN3tcD+6QcNG21UGBhHZOJGflWld5Kh4SS1PTMZ89V+/81ZfuPVrS\npEnAJUvvj5T/fPjHNaVgv7Oe85P3ETGoz2W1j6KgDgoEQB0URJkh9/zywMF0H1pE2omLcODnA8Ov\nMbPhiJ+bzMr9Gq5LtNA0zAFAZLAzzoSAoPKxis0ONgdwEat+4q7typkVzlgxHDiNX0ggAVFNPOTy\njqZRnGH0uG7YfwprQUm5/ikCo+sfIw0VCw1ls77UFvsNar8e91/o1fGUVGlXc9ZtQzuwh5tM1MAe\nZK3eCFS0yYGuNrk23cAWsZj2Old75O7aj26we3kauuz1jf3KfqW831+3lagB1co/oAfZP3v2SVaj\nyTUDWdnvRwBQknqO0rSM8+axguiB3clY5bw38s/T70Z2TyR7g7PfzVi5mehBzv7PdPA4tkLnfW76\n/QT+ugiXTt7eo5QV1OOFcTnejP3GiKKIRv3XWPnLHlgihJCzjpcZP20klpzKxsiSY3Q1xBVotBFY\ncgxuMn7VZWK0BCdcRcGh427Xm3S+mrI8E6XpmXXmxTdSi02vd322GfT4RmrrVQ7f6FjsBSZiJz9P\nq7eXEjNxOqKeM2/+2nBKsyo7eHN2Lv4698bXt0kIZYXFKHbng6M5x+gmEz24O4O++Qc9Fk5n/6wl\nAAQ202E1FdLuqb/RpMNVdJo5DnX5G/Hqg1yNNgJzDfXg73E916XrF9EEq9EEgNVoci5jqYZuWF+y\n13gOnNXBQYT37Yk1R+9Wt1a9wSNvflGRWHP0VWSM+EVVylw9fzadls5Hd+sNHnZCOidSlmvCXEP9\n+0VFXrRtTWw0NlM+bWZM4pqPFtL62Qn1m21oRPyR8ldQk+9LU9JcD4KRg/uh0UVdVvsp73xEyyce\npds3H9PqyUdJXfLZ+R0BZOeriGlS+UImpomDnAK1m0yKQU1BqYqHlzZh5Lth/LCnsr7tDrjznXD6\nz42ib3wZneMubNYNIEAXTnGVdqA4O5cA3cU9hLW5cwAZWw/WW94bsdBQ9V/B+WK/Ie3X5/6rqU/z\n7PciMWdXaXv1zrb3fLrFZ9KJKh/I6Yb0ueyxV9/Y12gjsGRXKYM+t8Y+yV3G6CHj7+r3614W7ZEH\nXQSlVfxrzslFo3OvA2e/W1LZ72bnetQTQPPbrkW/fd8F56ECb8a+5M9DYxi8+QghlgkhjgghvhFC\nBAohhgoh9gohDgohPhFC1No7CCHeEEIcFkIcEEL8o/zap0KID4UQyUKI40KIW8qvPyKEWCGE2ACs\nL782XQjxW7n+a1XS/V4IsVsIcUgIMb7K9UfL09wFuE/VuOdrfLn95CVLlvxxL0kAUAX4k/j6s5xa\n9InH+nrddf3rNev2RxFqNf5t2pK36gdSJo3DYSklctR9DW63guyNyWwaOY3d0+bT7vFR5XlSEdqu\nFYbtB8namIy91EKbR25ruEyUz/hVEJoYj8Nspfi059r7hJenkfntT5Tl5f8hk4eeeo4DYyZzZPpr\nxNx5EyGdE92+jxo6EMP6LX/IRk0ItZqghDZkf7+aA2Mn4zCbaXb/yEtupzFTm+9PvrGImDtvotPS\n+agDA3CUXfhA5o/Yj759OCnvfsSekWNIefcj2jw38ZLYszsEhzJ8+ODhfJY+ms8HvwSSYnAO8NQq\n+G5iHr88Z+TgWR9OZKnrSK3hiO7RnvgRA9izYPllseetWPBW7Ndlv6Huv/pw5PX3aD7iRrr/803U\ngQEotssbe5cr9sG5yiRx7nROvv3PWvfVXQ4ikq6m+W3Xcvzdf9ct3MBc7tiXNC4aw+xTO2CMoijb\nhBCfAFOBx4ChiqIcF0J8BjwBLKyuKISIBO4E2iuKogghqs6DtwJ6Am2AX4QQ8eXXuwHXKIqSK4S4\nHkgolxPACiHEQEVRNgOjy2UCgN+EEN8CfsBrQBKQD/wC7K2pUIqiLAEqRm1KTTJ/Nax6Ixpd5ds0\njS4Si959mYlFn+v2Bk+ji8RaLiPUahJfn07Oms0YNu10T1ytImpQb3aPrt+G4TKjHh9t5UybT5SW\nMqP+PBpVdA16bAY95uNHACjctonIkbUP3lqOuo64O64FIP/waQJiIsjb7/zOPzoCc06ee/r5hfiG\nBCHUKhS7A39dpIcMQO7eowQ20+HbJARzTi7mnFyMe44Q2f1qTnz8HfHlgzeL3n3phUWfi78ukoqh\nVEU9CB8f/N3qJ8Kla83Ndy1j8YsMw1rtMJToYf3IqmXgbE7PIGv5CoIT27nVrZ82yiNvVoMRP50W\nOFIuE4nVUJ6H8iVJNlM+uVt2ENwhgcLyZTuoVUQM7MPBcVNqzIPVYLx424qCRW+g6Ihzpte48Vea\n3X9XjXYaK3+o/NTue3PaOY488woA/s2bEt7HfYluQ9vX3jiElEVLATD+so3Wz9b98BzdxEFWfuWA\nKytfhS7UXk3GTpNAB4F+EOin0L1VGUcz1bSKqpQLDVDo2bqMLSf8SIip+4Gy7T1DiL9roDOvv58h\nKCaCihYnKDqC0hpi/HyEtW1O79ceYcMTC7Dm13/ZljdioaHqH6gz9hvSfn3uv5r6NM9+z4h/dJU2\nWetse4WPulbdktQM9k2eDUBAXCxR/bpd1rLXN/Yt+lw00VXKoI2osU9yl4l0yQi1msS508les8Wz\n3z8PLUZeT/M7hgCQf/gUAdGRmMq/89dFYMlxrwNnvxtY2e9GR7jVU3B8Czq++BjJk9+gLL9+2yQq\naCyx3xhxKI1hDunKozF47ayiKNvK//8CGAqcURSlYk3cv4CBtejmA2bgYyHECKDqsV//URTFoSjK\nCeA00L78+lpFUSoi8vryv73AnnKZhPLvnhZC7Ad2AHHl13sBGxVF0SuKYgUqjx+U1EnB0ZMENI/F\nP1aH8PFBN7Q/xq2/uckYt/5GzI2DAQhJbIutqASr0dmwtZ3xFCWp50j/+kePtMO7d6Yk9RxWveca\n8ZowHz+GX9Pm+EbHgI8PoQOHULTz13rp2k25lBly8GsWB0BQ5yQsaam1yqcuX8vW+19g6/0vkL0x\nmWY3DQAgrGM8tqJSLEaTh44x+TAxQ51LUprfMoDsTckABDaPdsmEtmuFys+HsvxCLMZ8zNlGbEUl\nBMXFEDO0J4Upzv0Ahi3JbmnrtyQTc9MgZxqJCeU+NlF45CSBcZX1E31dP5euYUsysTcNBiD2psEY\ntlSpNyHQDe1L9tptbnZaP3YP4FxaBFB09AT+zZuiiY1G+PgQNXQAedvcO+PcrbvQ3uAc6AZf3Q57\ncQllxjxU/hpUAc49YCp/DWE9ulB6uvKErrCkLpjT0mut/z9iuyzXhDXHgH/5qXZNkjpTmnJlne7V\nUL73CStfPisEzR/6G1k//HxZ7VuNuYR26QhAaLdrMKfXvQemYzMbqQY16bkqrDZYfcCfaztY3WSG\ndLCyJ8UXmx1KrXDgrC9ttHZyiwQFpc59EOYy+PWkH6219prMeHD8qw2sGvUqq0a9SvqGvVx1W18A\noq5pjbWohFJD/WemA2MiGLTgKbbNWEphana99cA7seDN2G9I+/W5/6q3q7ph/dzbT5zta8zwwc50\nEhOwF9fcJlfV9Q0PdSoLQatHR3Luu7WXtez1jf3CI9X6/WH9MWx175MMW38j+sYqfVJ5+QHavfAk\nJSnppH/l2e+fj7Rv1vDrA8/z6wPPk7MpmaY3OR8jm3SMp6yopMZ+N3f3YaKHOPvdpjcPdPW7/tGR\ndH1zKgdeeY+StLq3ZVSnscS+5M9DY5h5qz4rZQI8T6KoSVFRbEKInjgH1aGZBgAAIABJREFUfCOB\nCcCQWtKt+Fz1NYUA5imKsriqoBBiMDAM6KMoSokQYiNQv01NktqxOzi54CM6zX8ZoVaR9dN6Ss6c\nJfaO6wHI/H4Nudt3E9GnGz3/877zpwLmOs+DCb2mPTHDB1N0MoWkT52nS55ZvIzc7XsA0A3rR866\nC1g247CT/eHbxM36O6hU5K9djTUthbDhztkq0+oVqMMiaLVwMarAQHAohN8+kjNPPIyjtITsDxcR\nO20mwseHsqxMMhe+US+zOdv2oe3XhcHfL8ButnDgtcpbr8fbz3Jg9hIsBhNH3vmSbnMn0u6JURQc\nS+XsD//P3n2HR1H8Dxx/76WHhPRCQuihdwKhgyAqoCgCiiIoCIKCCCgqon5Rmqg/UMQCYhdBAVGk\nSTP0IiC9BAgESL/0dpfc3f7+uHjJpRBQyCXyeT0PD8ntzH5mZneyO7uzexEABPbuQM1+3TAZDJj0\n+RyZ9pEl/6n3vqHVW8+CArUevMtydyz70jWCB/YBIGbNFpL3HsG3cxs6rfrI/FrqWR8DoBpNnHv/\nC9p8OB00GuLW/UH2JfMbwS5/u4YWs6cQNKAXuvgkTkxfYInr2aYJ+kQtuthEy2dOft7UHWm+It9y\nqTlt/M/rufTBYpq8PwNFoyFxw1ZyL18lYMB9ACSs3UTa/kN4dWpHm+WLMen1XJi7EAAHL08azX4N\nMF+J1W7dQdrBI5Z4Pr27od1a+ssKADCa/nFsgEsfLiH0jSkoDg7oY+O5MPdDALy7daTOC8/g4OlB\n43lvknMhijMvzSi7HDfopSmrOXgwmrTUHO7qvoAJz/dk0JA2/3yF/6L+12t737u7EziwHwApO/eR\ntGFrhcaPencRdSaOQbGzw5SXR9R7H5fbFPZ2MH1AFmO+8sCkKgxspyM0wMiKA+Y/8UPDddT3N9K1\nYR4PLfRCo8Dg9jpCA42ci7Nj2ip3TKqCyQT3tdDTs3FeORFLitl1nKDuLXlwwzsFrwv/0rLsrk8m\nsf9/X5OblEajx++m6aj7cPHxoP/qt4nddZz9M76m5bgBOHq60eH14YC5724c+vaNBb9NfeF2xfzX\nff82xr+R/U81moj8v6W0/uB181ewrNtO9qVrBA00H/di12wmee8RfDq3pdPKReavb5n1yXXzAgT0\n6UrNQebyJ0UcIG7d9gqt+432fdVo4vz8pbRc8Ib5qwLWbSfn0lWCCo77sb9sJmXvEXw6tSV85ccF\nXxFkbkcPy3E/mrCv3ze3+eIfSNl3BN/uHQidMhoHz+q0eP81ss5f5vjkmaWWIWnPX/h2bk33nz/E\nqNNzYuZnlmXtFrzCydlL0GtTOffRD7SaPZHQcY+SGXmZa2vNL3GpP3oQjh5uNH1lVEGdjOx70vxW\n0VYzn8erXVMcPd3p+dvHnP98VenboYBN+774z1BU1XYz+hRFqQNcAjqrqrpPUZSlBb+PBXqpqnpB\nUZSvgb9UVS1xhFAUxQ1wVVU1UVEUDyBKVVWfgjz+wP1AXWAH0AAYCoSpqjqhIP89wEzMUzSzFEUJ\nBvKBTsBoVVUfUBSlMXAUuA84h/lOXFsgA9gOHPt7fddxR0+b3NHlYZvF7rHnZ87e39Nm8Ruvi2B9\nWMU9D1dc/0M/sK3jEJvF771/Jfu638Zn78rRaedam8c3UsrrsyuAHcMAbFb/StH2q0u+cKCi2A1K\n4fsWo2wW/4kTX9q8/e/0+Ns72e7Z2F77Vtm07wNEdLbN9PKee1ezqcNQm8QGuO/gCpv3ff7Re3Ar\n3qm+vSv1+XGzjdsqZTtWhjtv54DxBc+7nQYmYh4grSx4I+SfwGdl5HUHflUUxRnzjjqlyLIrwEGg\nOjBOVVWdolhvA1VVNyuK0gTYV7AsC3gC2ASMUxTlDIUDNlRVjVMUZQawD/Mdwn/+yiEhhBBCCCGE\nuAk2HbypqnqZwmfRitoGlDtHSFXVOMwvGynNVlVVxxVL/zXwdbHPPgRKm/fRt4yYXwFflVc2IYQQ\nQgghhLiVKsOdNyGEEEIIIcQdpDJ/EXZlVmUGb4qirMH8/FpRr6iq+nvxtKqqPlUhhRJCCCGEEEKI\nClJlBm+qqg60dRmEEEIIIYQQwlaqzOBNCCGEEEII8d8g0yb/mcrwJd1CCCGEEEIIIcohgzchhBBC\nCCGEqAJk8CaEEEIIIYQQVYA88yaEEEIIIYSoUCZ55u0fkTtvQgghhBBCCFEFKKqq2roMdwJpZCGE\nEEIIURGqxC2tY/fcU6nPj1tt3lwp21GmTYrbLmFkS5vFDvjqOFvCH7FZ/D4HfiJyQHebxW+4difb\nOg6xWfze+1eSb/rWZvEdNCNsHn9f9wE2id1p51oAjCyzSXw7hpFn/NImsQEc7UZxqFc/m8UP277B\nZtsezNvf1vu+rePbat8H8/5/qm9vm8VvtnGbTfs+wPZOg20Sv9e+VWzu8KhNYgPcc/BHm/f9qkK+\nKuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCGEqFAybfKfkTtvQgghhBBCCFEFyOBN\nCCGEEEIIIaoAmTYphBBCCCGEqFDyJd3/jNx5E0IIIYQQQogqQAZvQgghhBBCCFEFyLRJIYQQQggh\nRIWSt03+M3LnTQghhBBCCCGqALnzJmzGsXkX3B9/BTQacnf+TM6GL62WO3fsh2u/UaAoqLpsMr+d\nheFqJAAufYbh2n0QKJC742dytnx/3ViNpozEt3MbjDo9p2Z+Qua5SyXSONfwo+WsSTh4uJNxNoqT\nMz5CNRivm9+nYysaTRmJotEQs3Ybl7/9FYD6Yx/Fr1sYAMFv/R/xH87BmJJsFc+1bQf8R08EOw3p\nm9eTunqZ1XKH4FoEvvAqTvUbkvzdUlJ/WWFZ5jlgCB733A+qij46ioQP30HNzyux3rI0nDISn05t\nMer1nJn5saU+3h1b03CyuT6xa7cR/d0vANhXd6P5rMm41PAjNy6Jk9PnY8jMpnrTBjR+dax5pQpc\nWrqSpB0HAWj7yQxzXuV+AAzqVkBnKcPuXRd5Z85mjCaVQYNbM3pMZ6sypqfn8sb0dVy9moaTkx0z\nZ91PaEN/AL779iCrVx5FVVUGD2nD8Cc7lFnXslR0fM8ObakzcTSKxo6E9ZuJXba6RJo6E8fg1TEM\no17PxbkfkB0ZBUCbHz/HlJuLajShGo2ceOZFAFzr16Hei89h5+qMLi6RCzP/D2NO7k23RXHTp61l\nR0Qk3j7VWLvu2X+9vuJ274pi3txtGI0mHh7citFjOlotT0/X8ebrGwra3p63Z/UlNNQPgG+/+ZOf\nVx1DURRCG/oxc3Y/nJzKP5RVb9+OWhPGgkaDdsPvxC9fWSJNyISxeIS3x6TTc/nd+eScvwiA/8MP\n4tf/XlAUktZvInG1uZ8HjRyOZ+eOoJrIT0vn8rz55CenlBq/Mm3/O63v3Yzbve8DuLVrT+C48aDR\nkLZpA9qVK6yWO9YMIXjKyzg3aEDiN1+SvLrYvqrRUG/hJxi0yVyZMf2Wlu121N+7Y2tCJ41EsdMQ\nV+S4UlTo5FH4dG6DSZfH6ZmLyIo0H5MaT38O387tyEtN5+ATUyzp608Yjm/XMNR8A7kx8ZyZ9TGG\nrJwyy9DoxafwKziGn3z701LPAVyC/Gg56wXLOcCJ/y1CNRhxrR1E8zefpXqjupz/dAXRy9YB4OTv\nQ4sZ43H09gBUrq3ZxpUfN5ZYb2Xq++K/4Y6886YoSh1FUU6W8vnbiqLcXU7eGYqivHT7SneHUDS4\nD3+NtAXPkjz9IZzD+2IXVM8qiVEbQ+o7I0l5YxDZa5dQ/cn/AWAX3ADX7oNInvk4yW8OwbFVd+z8\nQ8oM5du5Da4hgewZPJEz7yyhycujS00XOuEJolesZ8/giRgyswke0Ov6+TUKjac+zV+T5rB36GQC\n7+lCtbrBAFz+fi37n5gKQPafe/F59CnrYBoN/mMnE/PWVC6PH0H17r1xDKltlcSUlUHikoWkrrE+\nsNt7++L1wGCuTBlD9PNPoWg0uHfrVep6AarVqWmV36dTG1xCarBvyPOcnbuYRi+PseRt9NLTHJ08\nm/2PTSbgni6WvHVGPETqnyfYN2QiqX+eoPaIhwDIuniFP0e+wsERUzk6aTaNX3kGpdig0aCuw6Cu\no+jAzWg0MWvmJj5dMpS1v41lw/pTXLyQZJXv8yV7adwkgDW/jmHOOwN4Z+4WAM5HJrJ65VGW/zSS\n1b+MYUfEea5El37CXJYKj6/RUHfyWM5MfYujI8bj27s7LrWt91nPju1wrhnEX4+PJeq9j6k7xfrE\n6dQL0zn+9CTLwRug/svPc2XxNxx7aiIpu/YT9NjDN9UOZRn4cCuWLB12S9ZVnNFoYvasLXyyeAi/\n/jaajRtOc/GC1irN0iX7aNzYn59/GcXsuf2ZN2cbAAkJmfzw/WFWrHySNWufxmg0sXHDmfKDajTU\neuE5Il99k1Mjx+HdqwfOxdrfIzwM5+BgTg4fTfT8hdSaNAEA5zq18et/L2eem8yp0ePx7NgBp6Aa\nAMT/uIrTY8Zz+pnnSd93kBrDHy8zfmXZ/ndc37tJt3PfB0Cjocb4iUS/MY2LY0fh0bMXTrWs//Yb\nMzOJ+2xRyUFbAZ8HH0Z/5cptKd4tr79GQ6MXR3NsymwOPDYZ/z5dcS3lmOQaUoP9Q57n7Duf0ejl\nZyzL4tf/wdHJs0qsNvXgcQ4Om8zB4S+ScyWO2iPK3vd9O7emWkgguwe9wOm5n9P0ladLTRc6YRjR\nyzewe9AL5GdmE/yg+bhqyMji7Ptfc3nZb1bpVaORcx9+x96hL3Jg1OuEDLnHcg5QtP6Vpe+L/447\ncvBWFlVV31RVdauty3EncKjXHGPiFYxJMWA0oDu4Cac2d1mlyb9wDDUn0/zzxWNovM1XXu1r1CU/\n6jjk6cBkJP/cIZzalT3m9useRtzGnQCknzyPvXs1HH08S6TzDmtG4vb9AMSuj8CvR/vr5vdo2oCc\na/HkxiaiGozEb9mLX3dzHmN24RUwxdkZUK1iOYc2IT8uhvyEODAYyNi1jWrhXa3SGNPT0F84C0Zj\nyUpp7FAcncz/OzljKLirV3y9AL7dw4q1R3viN+wAIOPUeezdzPWp3rQBudfi0cUmohoMJGzZY8nr\n2609cRsiAIjbEIFfd/PVbpM+D9VoMhfJ0bFEPcty4ngstWp5ExLihYOjHX37NWX79kirNBcvJBEe\nXgeAevV8iYlJQ6vNIioqmRYtg3BxccDeXkNY+1ps3XLuhuLaKr5bk1B0MXHo4xJQDQa023bh1TXc\nKo1313CSfv8DgKzT57B3q4aDj9d11+scEkTGsVMApB86inePTjfTDGUKa18bDw+XW7Ku4k6ciKNW\nLU9CQjzNbd+3CX9sP2+V5uJFLR3CzSe09er5EBObjlabDYDBaEKvM2AwmNDpDPj7u5Ubs1rjhuhj\nYsmLi0c1GEjZvhPPztZt5dm5I8lbzIPE7DMF7e/thUvtELLOnMOk14PJROaxk3h16wKAqciVbk0p\n/fxvlWn732l972bdzn0fwKVhY/JiY8iPj0M1GEjf8QfuHa3vPBrT09BFnkMt+BtelL2vL24dwkn7\nfcNtKd+trn/1guPk38eVxK17LMfJv/l2b0/8xgjg72OSq+UYnXb0DIaMrBLrTTl4zHLsST8ViZO/\nT5ll8OventgNN3YOkGA5B9iBf8E5QF5qBhlnLlpm4vwtLznNcgfPmKMj+1IMTn7eVmkqU9+vjFRV\nqdT/Kqs7efBmpyjK54qinFIUZbOiKC6KonytKMpgAEVR+imKclZRlMOKoixUFGVdkbxNFUWJUBQl\nSlGUiTYqf5Wm8QrAlJJg+d2UkoCdl3+Z6V26P0zeiT0AGGIu4NCwLUo1D3B0xrFlN+y8A8rM6+Tn\njS6h8Mq+LjEZ52J/YB083DFk5lgOBrrEFEuasvI7+XujTyicCqlPTLb6w11/3FAAqvfoQ/KyL6zi\n2fv4YtAmWn43aJNw8PErsw5FGVK0pP6ygnpfrKTeN2swZWeTc/TPUtdrLr9Psd+90SWWLLdzic9T\nLHkdvT3IS04DzAcs8zQRs+rNGhD+w3zCl/0fZ+d9bmlDS12V+9HQwuqzxMRMAgPdLb8HBFQnMSHT\nKk2jxgGWE7MTx2OIi00nISGTBqF+HDl8lbTUHHJz89m18yLx8Rk30HK2i+/o64M+sXAfykvSltgu\njr4+5CUmFUmTjKNvYZqm82fS4vP5+D9wr+Wz3MtXLCcCPj274OTve6NNYDOJCZkEBla3/B4Q6E5C\novXJWaNG/mzdaj6hP3E81tL2AQHuPDWyA316f0qvHotwc3Oic5e65cY0t22R9tdqcSzW/g6+vsXa\nX4uDry+5l6Jxb9Ecu+ruaJyc8AgPw6FIOwePGkHLFd/gc3dPYr/6rsz4lWX732l9r7Jx8PUlP6lw\nO+drk7D3ufF+Gzh2PAlfLEE13diFMltz8vO22veLHyfNaXzQFT2WJqWU6B/XE3R/L5L3HSlzubO/\nl9X6dYnJOPuXcw6QkFLiPOF6nGv44d6oLumnLlh9Xpn6vvjvuJMHb6HAx6qqNgPSgEF/L1AUxRlY\nDPRVVbUdUPysujFwL9AB+J+iKA7FV64oyjOKohxSFOXQkiVLblcd7ggOjdvj0m0gmT8tAMAYd4ns\nDV/h9dJivKZ8iuHKOVSTqZy1VLyLn5mnO2bs2IJn/1s3pUFTzQ238K5cGvMoUU8NROPsjHvPPrds\n/TdELTxxyDh1gQOPT+HPUa9Se8RANI7m7nDqfwsBMKibUJQAFOqVuqqyjB7TmcxMHYMGfs6y7w/R\nuEkgdhqF+vV9GTW6E8+MXs64Mctp1DgAjebWXyGzdfyiTo1/heNPT+LM1LcIHNgP91bNALjwzkIC\nB/ajxefzsXN1wZRf8kp9VfT0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx5Obm89va\nU7e1LLorV4lfsZKG784idN5Mci5GQZG/NzFffsvxoU+SvDUC/4ceuC1lqOjtb+t939bxKyu3Dh0x\npqWiu3C+/MR3iNpPPoxqNJLw+y6blcHOxYnW70zh3PxvrGbd3Ap32t9+cWPu5BeWXFJV9WjBz4eB\nOkWWNQaiVFX9+4nW5cAzRZavV1VVD+gVRUkEAoBrRVeuquoS4O9RW9W4RFaBTKkJaIrcLdN4B2BM\nTSyRzr5mKNVHziBt/nOo2emWz3W71qDbtQYAt0ETMRa5iwfg0utRXHqYx+N6bRrOAb6A+Uqus78P\nuiTr5yTy0zOxd3dFsdOgGk04+3tb0uiTUkrNr9jb4RRQeHXMyd8HfVLJ5y8yI7YQ/L93SV7+leUz\nQ7IWe9/CO432vn7kJyeVyFsa19Zh5CfEYcwwt0fmvp24NG5OZsSWEus1lz+52O8pOPv78Hdr/l1u\nxd4eZ/+i9fG25M1LScfRx9N8183Hk7zUkle7cy7HYMzVUa1eCJlno4q0hQGTeglF8UVVzQ9h+/u7\nEx9feLU9ISED/wB3q/W5uTkxa475ZFhVVe69+2Nqhpinkgwa3JpBg1sD8MGCPwgslrc8FR0/T5ts\ndWXU0c+3xHbJ0ybj6O8HnClI40OetqD9tea2NKSlk7JrP25NQsk8dgrdlRjOvGh+FtS5ZhBenayn\nyFZG/gHuVndLEuIzCSg29dHc9v0Bc9vf1+czaoZ4smf3JYKDPfD2dgXg7j4NOXY0hgcGNLtuTHPb\nFml/X1/yirV/vlZb0P4Fafx8ydear5hrN25Gu3EzAMFPP0lekvUzegAp2/4gdO5bxH6zrMSyyrT9\n77S+V9nka7U4+BXuZw6+fhiSS+5PpXFt2gz3jp1xax+O4uCInasrwVOnEfPe3NtV3H9Nn5Rite+X\ndpzUJyXjHFDkmOTnXaJ/lCawX098u7Tjr+ffKrEsZPA9BD/UG4CM0xdxLnKsdvb3QZdYzjlAgHeJ\n84TSKHZ2tJr3InG/7yYx4mCJ5ZWp71dGpko8NbEyu5PvvOmL/Gzk5gay/yavAPIvncLOvzYa32Cw\ns8e5w33o/4qwSqPxDsRjwgIyPn8NY0K01TLF3duSxqldb3T7ref/527/kZT/PQJA0s6D1OjbHQCP\n5qEYsnIsUwCLSj18Cv9e5rfeBfXvSdLOQ+b8uw6Vmj/jzEVcQ2rgXMMPxd6OwD6dLXlcQwIt63UL\n70reNeuHy3Xnz+IQVBP7gBpgb0/1br3JPrDnhtrOkJSAc6Om5mfeANdW7ci7Gl3qegG0uw5Z5U/a\ndYjAfj0AqN6ssD6ZZy4U1Mcfxd6egD5dLHm1uw5Ro19PAGr064l2l3mapnMNf8sLSpwDfalWOwhd\nXBKKnQYHj79PqhQ0Sk1QC9u8eYsgrkSncO1aGvl5RjZuOM1ddzW0KmdGho78PPMzBqtXHqVdWC3c\n3Mx1Tk42P/8UF5vOti3n6Hd/8xtqO1vFzzp7HueaQTjVCECxt8e3dzdS9xywSpOy+yB+95qf+3Rr\n2ghjdg75yalonJ3QuJifQdE4O+HZvjW5Ueb9yd6zYPqqolBzxCPE/7rpptrBFpo3r0F0dGph2288\nQ8+7GlilsWr7VcdoFxaCm5sTNWpU5/ixWHJz81FVlQP7o6lbr/zpVdlnI3EODsIx0Nz+3r26k7Zv\nv1WatL0H8OljPtmr1qQRxuxs8lNSgcJ2dvT3w7NbZ1K2RQDgFBxkye/ZpSO5V6yu4VlUpu1/p/W9\nyiY38iyOQcE4BASi2Nvj0eMuMvfvvaG8iV9/QeTwoZx/ahjX3plF9rGjlXrgBpQ4rvjf3cVy/Pib\ndtchAvv2BMzHJGN26cfoorw7tqb2Ew9y/OV5mPR5JZZfXbWZ/U+8wv4nXiFxx58E9Sv/HCDl8GkC\nLOcAPUjacahEmuKavTGO7EsxRP+wvtTllanvi/8OGXSU7hxQT1GUOqqqXgYetXF5/ntMRjKXzcHr\nxU9BY4du1y8YYy/i0nMIALkRK3F7cBwaN0/chxe8CtloJOXtxwDwnDAfTTUPVKOBzO/moOZmlhUJ\n7Z6/8O3cli6rF2LU5XF65ieWZW0WvMrp2YvRa1M5v2gZLWZNosHYoWRGXiJm7fbr5leNJs69/yVt\nF043v1r/tz/IvmQ+eWswfhjVapnfSOfapj2Jn/xfifonLf6AmjPeB42GjK0byLt6GY/7BgCQvmkt\ndp7e1Jq/BI1rNTCZ8BwwmOjxI9BFniFrTwS1P1iKajSijzpP+u+/lbpegOxL1wgeaJ5WGbNmC8l7\nj+DbuQ2dVn1kfi3zrI+L1OcL2nw4HTQa4tYV1ufyt2toMXsKQQN6oYtP4sR08xRWz1aNqT3iIVSD\nEVU1cfa9peSnZ6JxdqL1h68DYK88gIk4TBRO9bG31/Da6/cydvRyjCYTAx9uRYNQP35ccRiAR4e2\nI+qilunTfkNRoH4DP96e1d+Sf/ILq0lLy8XeXsP0N+6lenXnMrd/aSo8vtHEpQ8W0+T9GSgaDYkb\ntpJ7+SoBA+4DIGHtJtL2H8KrUzvaLF+MSa/nwlzztFMHL08azX4NMF/l1W7dQdpB8/Mdvnd3J3Bg\nPwBSdu4jacOted/SS1NWc/BgNGmpOdzVfQETnu/JoCFtbsm67e01vDa9D+PG/ITRpDJwYAsahPrx\n04q/AHhkaBuiopJ5fdp6FEWhfgNf3prZF4CWrYLoc08jHhn8NfZ2Gho3CWDII63KD2oyceWjT2k4\nbxbYaUjeuBnd5Sv4PWBuu6TfNpB+4E88wtvT/PsvCr4qYIEle/0Z07GvXh3VaODKh59gzDYPIGqO\nGYlzSDCqSSUvMZHoBYtKj1+Jtv8d1/du0u3c9wEwmYj79CNqz5qHYqchdfNG9Fei8epn/kqV1A3r\nsPfyot7CT9G4uoJJxeehQVwYOwpTTtmvwr9VbnX9VaOJyP9bSusPXjcfJ9dtJ/vSNYIG3gNA7JrN\nJO89gk/ntnRaucj89TWzCo/Rzd6ahGfbZjh4utP518VcWvojcb9tp+GLT6NxcKD1h28A5hednHu3\n9EdUzMfwNnT9+UOMujxOzfzUsszqHOCjZbSc/QINxj1KRuRlrhWcAzj6eNDx67nYV3NBVVVqD+3H\nnqEv4t6gFkH9upN5PpqO388D4MIny62DV6K+L/47FFW982b0KYpSB1inqmrzgt9fAtwwT51cp6rq\nKkVRHgDeA7KBPwF3VVWHKYoyA8hSVfX9grwngfsLBnllufMauYiEkS1tFjvgq+NsCX/EZvH7HPiJ\nyAHdbRa/4dqdbOs4xGbxe+9fSb7pW5vFd9CMsHn8fd0H2CR2p51rATBSchpfRbBjGHnGL8tPeJs4\n2o3iUK9+Nosftn2DzbY9mLe/rfd9W8e31b4P5v3/VN/eNovfbOM2m/Z9gO2dBtskfq99q9jcwXbX\n3O85+KPN+z5QJeYj7u/xQKU+P+6447dK2Y535J23goFW8yK/v19Ksj9UVW2sKIoCfAwcKkg7o9i6\nqtacDSGEEEIIIUSVdCc/81aeMYqiHAVOAR6Y3z4phBBCCCGEEDZxR955uxGqqi4AFpSbUAghhBBC\nCHFTKvMXYVdmcudNCCGEEEIIIaoAGbwJIYQQQgghRBUg0yaFEEIIIYQQFUq+pPufkTtvQgghhBBC\nCFEFyOBNCCGEEEIIIaoAGbwJIYQQQgghRBUgz7wJIYQQQgghKpR8VcA/I3fehBBCCCGEEKIKUFRV\ntXUZ7gTSyEIIIYQQoiJUiVtau7s+VKnPj7vu/qVStqNMmxS3nXZMU5vF9v38NBGdB9ksfs+9qznV\nt7fN4jfbuI1tHYfYLH7v/Ssxssxm8e0YZvP4+7oPsEnsTjvXApBn/NIm8R3tRtm87Q/16mez+GHb\nN7Cu3TCbxb//8DLyTd/aLL6DZoTNt7+t468Pe9xm8fsf+sFm9bfDvN9vCX/EJvH7HPjJ5sc9W/f9\nqkK+KuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCEFYG+QAAAgAElEQVSEqFBq1Xg0\nr9KRO29CCCGEEEIIUQXI4E0IIYQQQgghqgCZNimEEEIIIYSoUPIl3f+M3HkTQgghhBBCiCpABm9C\nCCGEEEIIUQXItEkhhBBCCCFEhZIv6f5nZPAmbMahWVeqDZ2GorFDt2sVuZuWWi13bNUL14eeB1VF\nNRrI/vEdDBeOAOD25CwcW/bAlJlC2owHbzimd3hrGkwahWKnIe63bVz5bk2JNA0mj8KnU1uMujzO\nzvqIrMhLADR67Tl8uoSRn5rOn09MtqSv1qA2DV8ei52LM7q4JM7M+ABjTm65ZXFr157AceNBoyFt\n0wa0K1dY179mCMFTXsa5QQMSv/mS5NUrrVeg0VBv4ScYtMlcmTG97Dp3bE3DySNRNBpi124j+rtf\nSqRpOGWkuc56PWdmfkzmuUvXzVt39BCCBtxNfloGABc//YHkfX/h3aEl9Z8bhsbeHpPBcN3679p5\ngbmzf8doMjF4SBvGPNPVanl6ei6vv7aWq1dScXKyZ9acAYQ29Afgu28OsHLlEVQVhgxpw4inOl43\nVmWI79mhLXUmjkbR2JGwfjOxy1aXSFNn4hi8OoZh1Ou5OPcDsiOjAGjz4+eYcnNRjSZUo5ETz7wI\ngGuDutR78Tk0jg6oRiOXFnxG1pnz5ZZl964o5s3dhtFo4uHBrRg9xrr86ek63nx9A1evpuHkZM/b\ns/oSGuoHwLff/MnPq46hKAqhDf2YObsfTk639lAyfdpadkRE4u1TjbXrnr0l66zevh21JowFjQbt\nht+JX76yRJqQCWPxCG+PSafn8rvzyTl/EQD/hx/Er/+9oCgkrd9E4upfAfDq0ZWgJ4fhXCuEM89N\nJify+m3fbOoI/Lu0wqjL4+iMxWScvVwijUuQH23nTsDRw430M5f5641PUA1Gy3KPpvXo8tUM/npt\nEXHbDgJg7+ZKqzfG4N6gJqqqcuytJdctx+5dF3lnzmaMJpVBg1szekxnq+Xp6bm8MX1dwfa3Y+as\n+wv3/W8PsnrlUVRVZfCQNgx/ssN1Y5XG1n3/em7HvgfQ9KUR+HdpjVGXx7EZn5Fx7nKJNC5BfrSZ\n83zBtr/E0TfN2z6gRzsajhuCajKhGk2c/r/vSD12DoA6Q++j1sC7AIUrv2zn8vJN/6qct7L+jaaM\nxLdzG4w6PadmfmI5rhTlXMOPlrMm4eDhTsbZKE7O+Miyv183v0Yh/Ot30CelcPTFeQDUH/soft3C\nAGj/9Tzs3VxB5ZYd9+o98yi+3duDSSUvNZ3TMz8mT5uKYm9P41efoXrj+qiqqdS2qCx9X/w3yLTJ\nAoqiZNm6DHcURYPb46+T8eFYUt98AKcO/bCrUd8qSd7Z/aS9NZC0tx8m6+vXcRvxtmWZbu8a0j98\n5uZiajSEvjSG4y/O5uDjk/C/uyuudWpaJfHu1BaXmjU48MgEIud9SsOphTHiN0RwfPLMEqttNO05\noj75nkPDp6DdcYCQYTcwmNRoqDF+ItFvTOPi2FF49OyFU63aVkmMmZnEfbao5KCtgM+DD6O/cqXc\nUI1eepqjk2ez/7HJBNzThWrF6uzTqQ0uITXYN+R5zs5dTKOXx1jKeL28V1es4+CIqRwcMZXkfX8B\nkJeWwbGX3uHAEy9y+u1FZZbJaDQx6+2NLF76OL+tf44N605x4UKSVZoln+2mcZNAfvltHHPnPcSc\n2eaTkvORiaxceYQfV45mza9jiYg4T3R0SrntYNP4Gg11J4/lzNS3ODpiPL69u+NSO8QqiWfHdjjX\nDOKvx8cS9d7H1J1ifeJ06oXpHH96kmXgBlD72ae49vVyjj89iatf/kCtcU/dUN1nz9rCJ4uH8Otv\no9m44TQXL2it0ixdso/Gjf35+ZdRzJ7bn3lztgGQkJDJD98fZsXKJ1mz9mmMRhMbN5wpN+bNGvhw\nK5YsHXbrVqjRUOuF54h89U1OjRyHd68eOBdrf4/wMJyDgzk5fDTR8xdSa9IEAJzr1Mav/72ceW4y\np0aPx7NjB5yCagCQeymaC/+bRdbxk+UWwb9LK6qFBPLHQy9yfNYXtJg2stR0TSYO5dKyjfzx0Ivk\nZ2RT66GeReqh0GTiULT7T1jlaTZ1OIn7jhExaCo7h04j61JsmeUwGk3MmrmJT5cMZe1vY9mw/hQX\ni+37ny/ZS+MmAaz5dQxz3hnAO3O3AOZ9f/XKoyz/aSSrfxnDjojzXKnsfe8m3fJ9D/Dr0ppqIYFE\nDJzCidlLaT5tVKnpGj//GJd+2EjEwCnkZ2YT8uBdAGgPnmTXY6+ye9hrHH97MS3fMP+Ndqtfk1oD\n72L3iDfY9firBHRti2vNgH9V1ltZf9eQQPYMnsiZd5bQ5OXRpaYJnfAE0SvWs2fwRAyZ2QQP6AWA\nb+c2181f69F+ZF+Osfrs8vdr2f/EVACcA31JP3n+lh73or9fy8EnXuLgiKlo9xym7qjBAAQ/2BuA\nA0+8yF8TC84RlMI7SpWl74vbQ1GU+xRFOacoygVFUV4tZbmiKMrCguXHFUVp+29jyuBN2IR93RYY\nk65g0l4DYz76Pzfi2LqXdSJ9juVHxckFUC2/G84fRs1Ov6mY1Zs2IPdaPLrYBFSDgcStu/Ht1t4q\njW+39iRs2gFAxqnz2LtVw9HHE4D0o6cxZJQc47uG1CD96GkAUv88hl/P8q8EuzRsTF5sDPnxcagG\nA+k7/sC9o/XVb2N6GrrIc6il3MGy9/XFrUM4ab9vKDeWuc6JqAYDCVv24Ns9zGq5X/f2xG8oWefC\n9io7b3FZkZfJ06YCkB11teDTkn9mThyPoVZtL0JCvHB0tKNv/2Zs33bOKs3Fi0mEd6wDQL36vsTG\npKPVZnHxopaWLYNxcXHA3l5D+/a12br55gYQFR3frUkoupg49HHmfU+7bRdeXcOt0nh3DSfp9z8A\nyDp9Dnu3ajj4eF2/IqqKXTVXAOyqVSNfW/6J7IkTcdSq5UlIiCcOjnb07duEP7Zb3zG6eFFLh3Dz\nxYR69XyIiU1Hq80GwGA0odcZMBhM6HQG/P3dyo15s8La18bDw+WWra9a44boY2LJi4tHNRhI2b4T\nz86drNJ4du5I8hbzIDX7TEH7e3vhUjuErDPnMOn1YDKReewkXt26AKC7chX91ZgS8UoT0KMd19bv\nAiDt5AUc3Fxx8vUskc63fTPLVfWr63YS0LOwz9V99F7itv2JPjXD8pm9mws+bRpz9ZcIAFSDEUNW\nDmU5cTyWWrW8CQnxMm//fk3Zvj3SKs3FC0mEh9cBoF49X2Ji0tBqs4iKSqZFyyDLvh/WvhZbt5wr\nJUrZbN33y3Or9z0wb/uYDUW2vbsrTj6lb/v4bQcAuLZuF4EF296Yq7eksXNxBtV8LHSrE0zayQuY\n9HmoRhPJR84Q2Kt9ifXejFtZ/7iNOwFIP3kee/fCY2lR3mHNSNy+H4DY9RH49TCX3697WJn5nfy9\n8e3Slphft1mty5hdOOPFkJGFMSf3lh73is6osXN2svxcrW5NUg+ZL+DkF/RNz6Z1LcsrS9+vjFRV\nqdT/yqMoih3wMdAXaAo8pihK02LJ+gKhBf+eAT79t+0mg7diCkbI7ymKclJRlBOKojxa8PnHiqIM\nKPh5jaIoXxb8PEpRlNm2LHNVpPEMwJQSb/ndlBqPxtO/RDrHNr3xfHsd1Sd+RtbXr/+rmE5+3ugT\nCu8w6JNScPLzKSdNcok0xWVfuopvd/PUIb9enXHy9y23LA6+vuQnFV5tztcmYe9Tfr6/BY4dT8IX\nS1BNarlpdYnJlp/1iaXX2TpNMk5+3jiX+Nw6b80hfenw/fs0mf4s9u7VSsT1v+vvQWzJaSQJCZkE\nBnoU1iegOokJmVZpGjUOYOvmswAcPx5DbGwaCfEZhDb04/DhK6Sl5pCbm8/OneeJi8/gZlR0fEdf\nH/SJhftVXpK2xHZw9PUhLzGpSJpkHH0L0zSdP5MWn8/H/4F7LZ9d/mgptZ8dSdtVX1DnuZFEL/m2\n3LonJmQSGFjd8ntAoDsJidYXJRo18mfrVvMJ/YnjscTFppOQkElAgDtPjexAn96f0qvHItzcnOjc\npS6Vnblti7S/VotjsfZ38PUt1v5aHHx9yb0UjXuL5thVd0fj5IRHeBgON9DHi3P29yY3obA/6RJT\ncPazHpw7eLqRn5mNajSVSOPs50XgXWFEr9pqlcc1yJ+81ExazRhLt2WzafnGaKsTy+ISEzMJDHS3\n/B5Q1r5fMCg7cTzGsv0bhPpx5PBVy76/a+dF4it536sMnP28yI0vvLCiS0jB2b/YtvdwL7btk63S\nBPQMo8eq92n/wVSOvW2eGpd18SperRvj4OGGxskR/y6tcQm4/vGqIumKHEt1ick4+3lbLXfwcMeQ\nmVNsfzencfLzLjN/o8lPcX7R95ZBbFH1xw01r9uzOlFLfgRu7XGv3rjH6PLrpwTe282y/szz0fh2\nC0Ox0+Bcw3we41xkO1SWvi9uiw7ABVVVo1RVzQNWAMWnXz0IfKua7Qc8FUWp8W+CyuCtpIeB1kAr\n4G7gvYJG3gV0K0gTjHmETcFnOyu6kHeKvL+2kfbm/WR8PAHXByfaujilOjfnE4Ievpd2X76Lnatz\nqXfKbiW3Dh0xpqWiu1D+s023S8zPm9k7aAIHh09Fn5xG6MQRVsur1a1J/fH/burNmGe6kpGpY+CD\ni1n23UGaNKmBxk5D/fp+jB7dhdFPL+OZ0cto3DgQO82t/1Nm6/hFnRr/CsefnsSZqW8ROLAf7q2a\nARDwYF8uL1rKkcFPc3nRUuq/8vwtiff0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx\n5Obm89vaU7ckZmWlu3KV+BUrafjuLELnzSTnYhSYSn+u5XZq+tJwzixcUeKEVbHTUL1xHaJXbWXX\nsOkYc/XUH/nAv4o1ekxnMjN1DBr4Ocu+P0TjJoHYaRTq1/dl1OhOPDN6OePGLKdR4wA0mlv/woHK\n1Pcqi4SIQ+wY/BKHX5pPo3FDAMi6HEvUt78RvmgaHT56hYzIaMvJ/3+Vb5e25KWkk3m25PNzABc/\nMz87nnMtnpqD77vl8aM+W86eB58l/vddlvXHrduOPjGZ9l/No+HkpwBQb+HfiIrs++KmBQNXi/x+\nreCzm01zU+SFJSV1BZarqmoEEhRF2QG0xzx4m1RwO/Q04FUwqOsElBhVKIryDObboyxevJhnnrnJ\n57P+40xpCWi8Ay2/a7wCMaUllpnecP4wdn41Udw8UbPS/lFMfVIKTgGFV8yd/LzRJyWXk8anRJri\ncqJjOD7JPM/dJaQGPp3blVuWfK0WBz8/y+8Ovn4YkrXXyVHItWkz3Dt2xq19OIqDI3aurgRPnUbM\ne3NLTe/sX3gF0Mm/9Do7+/uQbknjgz4pBcXevsy8eSmFU1Zjf91Kq/cLp3k7+XnTct5UTr+9iLAl\ns0otU0CAO/HxheuIT8jAP8DdKo2bmxNz5povYKmqSp/eCwkJMV+JHDSkDYOGtAFgwfxtBAZU52ZU\ndPw8bbLVHVlHP98S2yFPm4yjvx9wpiCND3nagvYumA5pSEsnZdd+3JqEknnsFH739eLyws8BSP5j\nD/VeLn/w5h/gbnW3JCE+k4BiUx/d3JyYNae/pe739fmMmiGe7Nl9ieBgD7y9zVM17+7TkGNHY3hg\nQLNy49qSuW2LtL+vL3nF2j9fqy1o/4I0fr7ka819UrtxM9qNmwEIfvpJ8pJurK/WHtKn4GUSkH46\nCpcAH1ILljn7e6NLSrVKn5+WhYN7NRQ7DarRZJXGs0ld2s41P4fn6OmOf5dWmIxG0k5cQJeYQtpJ\n88tV4rYevO4JnL+/O/HxhXe6EsrY92fNMa9DVVXuvftjav697w9uzaDBrQH4YMEfBBbLWx5b9/2K\n1HXZHKBg2wd6k3rM/LlzgDe6xGLbPj2z2Lb3KZEGIOWvs7gG+5vv1KVncvXXCK7+GgFAo+cetbpr\nVNEUGqJQ+Oy6c4AvYL6D6+zvgy7Jelp3fnom9u6uxfZ3cxp9Ukqp+f17hePXPQzfzm3QODliX82F\n5jOe5+SMj6zWbdLn4X9XOJeW/nTLjntFxf++m9bzp3Fp6U+oRhPnP/zGsqz3/pV4NKlLw2cGAZWn\n74ubV/RcvsASVVVt/laYO+OS1S2gqmoM4Anch/lO2y7gESBLVdXMUtIvUVU1TFXVMBm4lWS4fBI7\n/9pofIPBzgGn9n3JO/aHVRqNXy3Lz3a1moC94z8euAFknrmAS80aONfwR7G3x//urmh3H7JKo939\nJwH39QCgerNQDNk55CVfP6aDV8HJg6JQ+6nBxK7ZXG5ZciPP4hgUjENAIIq9PR497iJz/94bqkfi\n118QOXwo558axrV3ZpF97GiZAzcwP5P3d50D+nRBu8u6zkm7DhHYr0ids8x1zjxzocy8RZ9d8OvR\nwfJ8m72bK63mT+PCJ8tIP172szDNWwQTfTmFa1dTycszsnH9Ke7q1dAqTUaGjrw885u2Vq38i7Cw\n2ri5maeEJCebn7+KjU1n6+az9H+gxQ21na3iZ509j3PNIJxqBKDY2+Pbuxupew5YpUnZfRC/e80n\n+m5NG2HMziE/ORWNsxMaF/MzKBpnJzzbtyY3yvyimrzkFKq3bg5A9bYt0V0r/2H15s1rEB2dyrVr\naeTnGdm48Qw972pQou75BXVfveoY7cJCcHNzokaN6hw/Fktubj6qqnJgfzR161WeaVplyT4biXNw\nEI6B5vb37tWdtH37rdKk7T2ATx/ziweqNWmEMTub/BTzyZO9p3man6O/H57dOpOyLeKG4kav3MKu\nx19j1+OvER9xiJr9zZM3PJs3wJCVi15b8m+L9tBpavQ2T8MOub87CTsOA7B9wGS2PzCJ7Q9MIm7b\nQU6+8zUJEYfRJ6eTm5BMtdrmWTi+HZqRFVX2c3jNWwRxJTqlcPtvOM1dd5Xc9y3bf+VR2oXVKrHv\nx8Wms23LOfrd3/yG2qIwvm37fkXaPew1dg97jYSIQwT3K7btSzmuJB86TWBv87OwNe/vRsIO89/b\noi8hqd6oDhpHe/LTzacdjgXHH+cAHwJ7tSdm040dR24HlUhMbLT8XqNvdwA8mhceV4pLPXwK/17m\nKfZB/XuStNNc56Rdh0rNf+GT5ex64Fl2D5zAidc/IOXQScvAzTWk8IJwtbo10SUk39LjnkuR9ft1\nDyMn2vz3VuPkiKZguqJ3h5YARH66qtL1/crIpCqV+l/Rc/mCf8UHbjFA0bdf1Sz47GbT3BS581bS\nLmCsoijfAN5Ad2BqwbL9wCSgF+ADrCr4J26WyUjWD7PxmPQ5KBp0e9ZgjL2Ac49HAdDt+BGndn1w\n6vQgGA2oeToylxS+Zc99zHs4NOyA4uaJ17vbyVm7CP3un68bUjWaOD9/KS0XvGH+qoB128m5dJWg\nh+4BIPaXzaTsPYJPp7aEr/wYo07PudkfW/I3eWsynm2a4eDpTqdflnBp6Y/Er9uGf59uBD9snj6h\n3XGA+PXbb6D+JuI+/Yjas+ah2GlI3bwR/ZVovPrdD0DqhnXYe3lRb+GnaFxdwaTi89AgLowdhSnn\n5h5IPvf+F7T5cDpoNMSt+4PsS9cIHtgHgJg1W0jeewTfzm3otOojTLo8Ts/62NJepeUFaDBhOO6h\ndVBR0cUlcfadxQDUHHIfrjUDqTtqCHVHDSkogROgtyqTvb2G6W/2ZczoZZiMKgMHtSY01J8Vy80H\nyaGPhRF1MYlpr/6KgkKDUD9mzi68ovjC8z+RlpaLg70dr/+vL9WrO99Um1R4fKOJSx8spsn7M1A0\nGhI3bCX38lUCBpj3m4S1m0jbfwivTu1os3wxJr2eC3MXAuDg5Umj2a8BoNjZod26g7SD5q/MiHp3\nEXUmjkGxs8OUl0fUex+XHr9Y3V+b3odxY37CaFIZOLAFDUL9+GmF+Y2hjwxtQ1RUMq9PW4+iKNRv\n4MtbM/sC0LJVEH3uacQjg7/G3k5D4yYBDHmk1U20/I15acpqDh6MJi01h7u6L2DC8z0td1v+EZOJ\nKx99SsN5s8BOQ/LGzeguX8HvgX4AJP22gfQDf+IR3p7m339R8FUBCyzZ68+Yjn316qhGA1c+/ARj\ntnkA4dm1E7WefxZ7Dw9C58wg52IU5195o9QiJO4+in+X1tz16/yC18Uvtizr8OFUjs38HL02jbML\nl9N2zvM0em4I6eeiLS8juJ5T735Lm1nPoXGwJycmkWMzFlN/xP2lprW31/Da6/cydvRyjCYTAx9u\nRYNQP35cYT5RfHRoO6Iuapk+7TcUBeo38OPtWf0t+Se/sJq0tFxzH3rj3srf927SLd/3gMQ9R/Hr\n0pqevyzAqNNz/K3Cbd/+w5c5PnMJem0aZz4q2PbPDiHjXLTljlpg7w7U7NcNk8GASZ/PkWmFd5na\nvTsJBw83VIORk/O++tcvrLiV9c+NTaTL6oUYdXmcnvmJ5fM2C17l9OzF6LWpnF+0jBazJtFg7FAy\nIy8Rs9Z8/NTu+Qvfzm1LzV+WBuOHUa1WwZtgYxKoVjuIjisW3Lrj3nPDcK0VhKqq6OKTODfPPOvB\n0duD1h+8DqoJfVLJl0ZVlr4vbos/gVBFUepiHpANBR4vlmYtMEFRlBVAOJCuqmrcvwmqqKU88Hkn\nUhQlS1VVN0VRFOBdzG+HUYFZqqr+WJDmaWCmqqpBiqI4AGnAcFVVrz9qKPqaxDuQdkzxF+9UHN/P\nTxPReZDN4vfcu5pTfXvbLH6zjdvY1nFI+Qlvk977V2Jkmc3i2zHM5vH3dR9gk9iddq4FIM/4pU3i\nO9qNsnnbH+rVz2bxw7ZvYF27W/vK+Ztx/+Fl5JvKf4HN7eKgGWHz7W/r+OvDip/DVZz+h36wWf3t\nMO/3W8IfsUn8Pgd+svlxz9Z9H6gS3369JfyRSn1+3OfAT+W2o6Io/YAPADvgS1VVZyuKMg5AVdXP\nCsYVizDP3MsBRqqqeqjMFd4AufNWQFVVt4L/Vcx32qaWkuYL4IuCn/OBkq/YE0IIIYQQQlzXjbyO\nv7JTVXUDsKHYZ58V+VkFxt/KmPLMmxBCCCGEEEJUATJ4E0IIIYQQQogqQKZNCiGEEEIIISqUqWo8\nmlfpyJ03IYQQQgghhKgCZPAmhBBCCCGEEFWATJsUQgghhBBCVKj/wtsmbUHuvAkhhBBCCCFEFSCD\nNyGEEEIIIYSoAmTapBBCCCGEEKJCmWTa5D8id96EEEIIIYQQogqQwZsQQgghhBBCVAGKqqq2LsOd\nQBpZCCGEEEJUhCoxH3F92OOV+vy4/6EfKmU7yjNv4rbb3fUhm8XuuvsXYoe3sVn8oO/+4te2T9gs\n/oNHvmdbxyE2i997/0oO9epns/hh2zdwuHdfm8Vvt20jxtXeNoltNygFwGbtH7Z9g823vZFlNotv\nxzAWNRpns/gTzn1m833f1tvf1vG3dxpss/i99q2yad8HiOg8yCbxe+5dzaYOQ20SG+C+gyts3ver\nCvmqgH9Gpk0KIYQQQgghRBUggzchhBBCCCGEqAJk2qQQQgghhBCiQplsXYAqSu68CSGEEEIIIUQV\nIIM3IYQQQgghhKgCZNqkEEIIIYQQokLJ2yb/GbnzJoQQQgghhBBVgAzehBBCCCGEEKIKkGmTQggh\nhBBCiAplkmmT/4gM3kSF8gxvQ70XRqNoNCSs28K1738ukabeC6Px6tQOk05P5JyFZEdGFS7UaGi9\n9H3ykpI5/cpsAOo89yTeXdqj5hvQxcYTOecjjFnZ5ZbFqUVnPIZPBY2GnIhfyFr3ldVyl859cev/\nFCgKqi6HtK/nYLgSCYDi6obn0//DvmZ9UFXSlr5F/oXjN9QGLaYOx79ra4w6PX/9bwnpZy+XSOMa\n5EfY3PE4eLqTfuYSh1//FNVgxKddE8LnTyYnNgmA2O1/Evn5L7jVrkHYOxMK8wf7c/azVQB4d2xN\nw8kjUTQaYtduI/q7X0rEazhlJD6d2mLU6zkz82Myz126bl7/Xh2pO/oRqtUJ5s9R08g8a95G9tXd\naDn3RdybNCBufUSJONXbt6PWhLGg0aDd8Dvxy1eWSBMyYSwe4e0x6fRcfnc+OecvmmM+/CB+/e8F\nRSFp/SYSV/8KQM2xo/DoFI6ab0AfF8fleQswZpfc/tXbtyNk/LiC2JtIWFFK7PHjqB7eHpNez+V3\n/4/cIrF9+90HioJ2/SYSfza3Q40Rw/Dtfx+GtHQAYr74hoyDf5ZYb2l2RTowd50bRpPC4Pa5jOmR\nWyLNwSgH5q53w2AEL1cT3z6Tjj4fRnzuSZ5BwWCCe5rref7unHLj3Y62Dxo5HM/OHUE1kZ+WzuV5\n88lPTqmw+F49uhL05DCca4Vw5rnJ5ESeL7cdbsT0aWvZERGJt0811q579pas83q6TX+E2j2aY9Dl\nse3Vb0g6fbVEmj7vj8K/eS1M+UYSTlwm4s1lmAw3/qJtW+//tuz7tyv+je7/3h1bEzppJIqdhrgy\n/gaHTh6FT+c2mHR5nJ65iKxI89/gxtOfw7dzO/JS0zn4xJSSZX7sAUInPsmu+0aSn55Z6eoO4B3e\nmgaTRpnr/9s2rny3pkSaBpNHmY9BujzOzvqIrMhLOPn70PiNiTh6e4AKsWu3EPPTegD87upEnacf\nxbVOMEdGv0rm2Yulxv5bkxefxLdzG0w6PSfe/pSMc5dLpHEJ8qPVrBdw8HAj4+wljv9vEarBSI17\nu1BvxABQFAw5Ok7PW0rm+SsANH99LH5d25KXmsGex6ZetwylqYi+L/57ZNqkqDgaDfWnjOXUS29z\n5Inn8bu7Gy51alol8erYDueQGhwe+iwX3vuEBi+Ns1oeNOR+cqKvWX2W9ucxjoyYyF9PTSL3aiwh\nwweVXxZFg8eTr5L83gQSXxmES6f7sA+qZ5XEkBSLdvZokl57hMxfPsdz1OuWZR5PvIz++F6SXnmY\npOmPYoiNKh6hVP5dWlGtViDbHnyRY7O+oNW0p0pN13TiULFS7a4AACAASURBVC4u28S2B18kLyOb\n2g/1tCxLPnqOiMemE/HYdCI/N58EZEXHWT6LGPY6Rp2euD8OAdDopac5Onk2+x+bTMA9XahWrM19\nOrXBJaQG+4Y8z9m5i2n08hjzAo2mzLxZUVc58er7pB09Y7UuU14+F5f8yIWPvi1ZKY2GWi88R+Sr\nb3Jq5Di8e/XAuXaIVRKP8DCcg4M5OXw00fMXUmuSeUDqXKc2fv3v5cxzkzk1ejyeHTvgFFQDgIzD\nf3Fq1LOcHjMe3dUYAh9/pPTYE8dzftobnB41Fu9ePXGuXcsqSfUO7XGqGcSpEU9zZf5Car9QGNu3\n332cGT+J02Oew6NIbOD/2Tvv8Kaq/4+/TpKmK91tWgpll7333i5coOAARWWJbBVUnCiC46e4B6g4\ncXzFzVD2XrL3pmV0pnslaZL7++OGtmlaWpASquf1PD7Sez/nvM8593zuuWeGlEW/cvjhiRx+eGKl\nO252B7z8ewDzHszij6npLN3rw4lkrYtNdoHgpd8MfHB/Fn9MzeCtYdkA6HWwYFQmv0zO4OdJGWw8\npmfvmQrG4aqo7JN+WMShMRM4NHYSWVu2U+P+YVdVv+B0PCdeeJncfQcqLvRLYPAdrZn/6fArGmd5\n1OnVguC6Rr65/nnWPLeQ3jPLLsNjv29n4Y0z+e7WWei89TQb2qPyIp6u/570/SrUr1T912ho/Pho\n9j42m233Porxuh74lfEO9oupwdahkzjy6sc0fmJs0b2kJWvY8+jLZWbL2xhGaKfWmBNTy863p/Pu\n1I+dNoZ9j89m+7CpGAe45z+0azt8a9Vg210TOfbaRzSaruZfsds5+d4X/D18KrvGPkXNO24sCpt3\n6gwHnn6drD2Hys+7k/BubfCLqcGGO6dy4JVPaPbk6DLtGk0cRtx3S9hw51QKc3KpdXs/AAoSUtk2\n7iU2DXuCk5/9TPMZxc/n/JJ17JzySoVpKIur4vuSfyUe7bwJIdYKITp4Mg3/FCFErqfTUF0IaBqL\n+VwiloRkFJuN1JUbCevR2cUmtGcnUv5cC0DOwWNoDf54hYUAoI8II7RrB5L/WOESJvPvPerXMJBz\n8Cj6iLAK0+LVoAW25LPYU8+D3UbB1r/wad/Hxabw+F6UfHUk03piH9qQSACErwF9k3bkr3OOHtpt\nKPmVqwY1+rTn7OKNAGTsP4lXgD/e4cFuduEdm5GwajsAZxdvoEbf9pWKHyCiU3PyzqVQkJgGQMG5\nJMwJKSg2G8krNhHey9XlInp1JGnpOgCyDx5HZ/BHHxZMYLOG5YbNjztP/pkEN22H2ULW3iM4rIVu\n9/ybNMJyPgFrYhKKzUb66vUEd+vqYhPcrQtpK1YBkHf4KDqDP16hIfjWiSH38FEcFgs4HOTsPUBI\nz+5qmnfsBofDGeYI+ojwMrXNJbQz1qxTR41LanfvQtryVUXxaA0GdKEh+NSOIe/IUZQL2vv2E+zU\nvlz2n9NRO8xOTKgDvQ5uamVm9WG9i82Svd5c19xCdLCatzCDAoAQ4O+t2tjsYHMAFaw8qaqyd+QX\nzxZqfHwA5arqm8+cxXL2/MUzfxl06FiHoCDfKx5vWdTr34ojv24FIHnvabwDffGLCHSzi19f3EFN\n3heHITKk0hqerv+e9P2q1K9M/Q9s1pD8Eu/RlJWbiOjV0cUmvFdHkpatVfN08Dg6gx/6MLVdyNxz\nGFt22e1L7JQHOfnB1yjl+J2n834h/2o7kuzM/0bCe5bKf8+OJP/p3gZZ0zKLZiDt+Wby48/hHREK\nQH78eQrKaIPKIrJXBxKWrgcg68AJvAL88A5zb3fDOjQnefU2ABKWrCeyt9reZe4/hi1HndHNPHAc\nH2NoUZiM3UcozK54pU9ZXA3fv9ZRENf0f9cq/+mZNyGEtmIryZVCHxGKJcVU9LclNQ19RKiLjXd4\nKNYSNtaUNLzDVZv6k0dx+qMvQSm/oYq8eQAZW3dVmBZtiBF7enLR3/b0ZLQhEeXa+/UZhHnfJjVs\nRDSO7AyCx75IxKzvCBr1PMLbp0JNAB9jCAXJaUV/F6Sk4xvh+iLWBxsozM1HcXZIC5LT8SlhE9oq\nlj4/zKHLe9MJqF/TTaPmDV05/9eWor/NKcV6lpR0vEt1br0jQkvZpOEdEYqP23X3sJeCPjzM9dma\nTG4dba/wcKwpxaPI1lQTXuHhFJyOJ6BlC7SBAWi8vQnq3AEvo/uHWvhN15O1fYfbda/wcApTS8db\nWjsMa6rJxUYfHo45Lh5Dy+ZoAwMQ3t4Ede6IPqK4rkQMvpWmn3xInWmPojUYKlUWyVkaooLsRX9H\nBTlIyXZ9HcWZtGQXaHjgkyCGvB/Mb7u8i+7ZHTD4vRB6zAmnW8NCWsfYLqpXlWVfc+QIWn3/JWED\n+pDw+ddXXb+6Y4gMJjcpo+jv3KRMDJHuH5YX0Og0NL69M/EbDlZaw9P135O+X9X6FdV/79LtnvP9\n6moThrlEu2BJrfhdG96zI5bUdHJPxF/UztO+7x0RiiW5ZLtfdhvkapPmZuMTFYEhth7ZBy99abS3\nMdSl3TWnpONtdH0GXkEBFOYUt7vm5HS35wRQ67a+pG7Zc8lpKIur4fuSfyeV2vMmhPgViAF8gHdQ\nO30NFEWZ7rz/INBBUZSJQojngPuAVOAssFNRlDcuEv39QohPnWkZqSjKdiFEKLAAqA/kA2MVRSlz\nQ5EQorczTaAO/fQC2gMvATlAQ2ANMF5RFIdzpmweMACYIIQoAOYCBsAEPKgoSqIQYgwwFtADJ4D7\nFUXJF0LUA7512v9WmfKT/HNCunWgMDOLvKMnCWrbokybWiOGoNjtpC5fd0W19U074NdrEKaXRwIg\ntDq86jYh6+vXKDx5gMD7pmO4ZSQ5P314RXXLIutIHMsHTsFeYMHYvTWd5j7KqkHTiu4LnZaoXu04\n/N4PVZ6Wq4n5zFmSvv+RRq+/jMNsIf/kqaIR9wvUGH43it1O+so1VaId+9psHGYzBSdOoTi1U/9Y\nQuI334GiEP3QCGqNG0P8G29dEV27Q3AwQceCUZlYCgX3fhxM69o26obb0Wrgl0kZZBcIJn8TyPEk\nLbFR9oojvQwqKvvzC77i/IKviLr3LoyDbiXhy4VXVf+/Ru8XhpGw4ziJO09cFT1P1f/S+p7w/cro\nV3X9LwuNt546D9zBnimzqlTnWsm71teH5nOmc+Kdz7Hnu+8NvlqEtm9Grdv6sm3sCx7Rv9q+L7l2\nqeyBJSMVRUkXQvgCfwP9gU3Ahd2ZdwOzhRAdgTuB1oAXsAvYWUHcfoqitBFC9ELtsLUAXgR2K4oy\nSAjRD/gKaFNO+GnABEVRNgkhDIDZeb0T0AyIB/4E7gAWAf7ANkVRHhdCeAHrgNsVRUkVQtwNzAZG\nAj8rivIJgBDiZWAU8B5qR/EjRVG+EkJMKC9TQoixqJ0/5s2bx9ixY8sz/c9gTU3Hu8SonXdEGNZU\n1w3OFlM6+hI2emMYFlM6YX26Etq9IyFd2qPRe6H196PRc1M5NuttAIw39SO0WwcOTHm+UmmxZ6Sg\nDY0s+lsbGok9w33fgC4mluBRz5P2xkSUXHVTvj09GXt6CoUn1aUM5u0rMdz6ULla9e4aQJ3BfQHI\nOHgK38jiEUVfYygFqRku9tbMXLwMfgitBsXuwDcyFLPTxpZX3HClbNqLZsaD6IMNWDPVZTWR3VuT\ndSQOS3p2kZ2PsVjP2xiKJbV4BBLUkVAfYxhZRTZhWFLTETpdhWEvBaspzfXZhodjLRVfocmE3lg8\nqq+PCKfQpI7ImpYtx7RsOQA1Rz3gMksQdsMAgrp04ti0p8vULjSZ8IooHW9p7TT0EeHklbCxOrXT\nli0nzakdPeoBCp3atozMovCmJctoOPvFigsCiAxykJRVPNOWlKXBGGgvZWMnyM+Bnx789Aod6hZy\nJFFL3fBiu0BfhU71C9lwXE9sVPkfNVVZ9hdIX7WG2FdeLPMD7mroVydaDutNs7vUfSsp++MxRBXP\nrBuigslNziwzXMcJN+MbamDNxEv7SPZ0/fek71e1/gXKq/+W0u2e8/3qapOGT2SJd3DExd+1vrWi\n8K1hpNPXbzjtw+j4xevsGDUDa7pr3fG071tS0/GOLNnul90GudqEFdkIrZbmc6aTvHwDpnXbyi2T\n0tQecj21Bql71rIOncQ3MowLJeNjDMWS4voMCrNy8Aoobnd9IkNdnpOhYW1aPPMwO6a+SmHW5e+W\nudq+f60jT5u8PCq7bHKyEGIvsBV1Bq4ecEoI0UUIEQY0Qe3MdQd+UxTFrChKDvBHJeL+DkBRlPVA\noBAiGOgBfO28vhoIE0K4LwRW2QTMFUJMBoIVRbmwfmi7oiinFEWxOzUu7PC0Az85/90YtbO4Qgix\nB3gWuLCTtoUQYoMQYj8wHGjuvN79QpovpLEsFEWZryhKB0VROsiOm0rOkeP4xtTAu4YRodMRMaAH\n6Zu2u9ikb9yO8cY+AAQ0b4Q9N4/CtAzi533D33eMZsfQsRyd+SZZO/cVddyCO7el1rDBHHpqDg6L\ntVJpKTx1EF1UbbQR0aDV4dvlBsy71rrYaMOiCJ3yBhnznsOedKbouiMrDXt6EtqoOgB4N++E7Xz5\nB5ac/t/KosNEktbuJOYWtSqGtGxAYW4+FpP7y9q04xDR/TsBEHNLTxLXqktBvcOCimyCm9cHIYo6\nbgA1b3RdMgngF1MDH2eZR17XHdMG16VFqRt2EDWwNwCBzWOx5eZjTcsk5/CJCsNeCnlHjuFTMxp9\nVCRCpyO0Xy8yt2x1scncvI2w6/oD4N+0Mfa8PArT1Y6rLljNu94YQXDPbqSvWqumuWN7ou4ewoln\nX1T3ZlRCO6RvbzI3l9beStj1F7SbYM/Lw1ZK28sYQUiP7kXautDihje4RzcK4i6+hOkCLWraiDdp\nOZeuwWqDZft86NvUte72a2plV5wXNjsUWGHfWS8aRNhJzxVkF6gNnrkQNp/QUz/i4rNuVVX23jWj\ni/PfvQsFZ1wPE6pq/erK/m/X8cOg2fwwaDanVu6hySB1/1lk63pYc8zkp2a7hWk2pDu1ezTjr8c+\nu+jS8bLwdP33pO9XpX5l6n/p96hxQHdMG1wPdjFt2EHUTX3UPDWPxZ6nvoPLzc/JM2y8eRRb7hjP\nljvGY0lN4+8Hn3DruHk67xfy71urZP57YNro2o6YNv5N5I0l2qAS+W/89Hjy485x7vvKfE4Wc2bR\ncjbf9xSb73uKlHU7iB7YC4CgFg3VdreM8k3feYjIfuo+/Oibe5G8Tk2nT2QYbV97jH0vfED+mcRL\nSkdprrbvS/6dVDjzJoTog7rEsKtz2eBa1OWT3wN3AUeAXxRFUYS4rB506Zp4STVTUZRXhRBLgIHA\nJiHEDRXEa3Z26EDd5n9QUZSuuPMFMEhRlL3OZaF9LjeNEid2ByfnfkKLuS+ARkvykpXknz5L1O3q\nI0v67S8ytuwkpGt72v/wMQ6zheNz3q0w2gaPjkXj5UWLt9RR35yDRzn5xscXD+Swk/XVa4RN/1D9\nqYD1v2E7fwq/fkMAyF+9CMOgsWgMwQQ/MANQT74yvaCeQJf11WuEPDIHodNhSz1P5vzKLaNI3riH\nyB6tGfDbm9jNVnbPnF90r8u709jz0qeYTZkcevd7OrwykSYThpJ1JI4zv64FIHpAJ+oO6Y9it2O3\nFLJjxgdF4bU+3hg7t2Dv7AUumkff+Iy27zwDGg2Ji9eQd/ocNQdfB8D5X1aQtnkX4d3a0nXRe+ox\n1S9/4Myvo8ywABG9O9Ho8ZHogwNpM3cGOcfi2DNV/emGbr98gM7PD+Glvl586sRgjj8LDgdn3vuI\nRq+9DFoNacuWY447Q8StAwFI/WMpWdv+JqhzR1p885nzyOriJVgNZj6DLjAQxW7jzDsfFh0JXnvy\nI2i8vGj0f6p+7qGjnHn7/VLPW9WOfe1lhEaLadlyzPFnCL9F1TYtXkr2Be2vF+Awm4n7v2Lt+jOf\nVbVtNs68W6xda+wo/BrURwGsScnEv1VxfQXQaeGZ23IZ83kQDkUwuL2Z2Eg7329T907e09lMA6Od\nHo2sDHo3BI2AIR3NxEbZOZqoZcaiAByKwOGAG1ta6NOkgkGLKir7WmMewiemJopDwZqSQvxb75cp\nX1X6wT26UnvSI+iCgoidM5P8k6c4/uRzlXoGF2PaYz+xfXs8mRn59O31FhMn9eHOoW3/cbxlEb/u\nAHV6t+D+FbOwFVhZ9fSXRfdumT+RNc9+TV5KFn1eHEZOQjpDfngCgFMrdvP3B0srJ+Lp+u9J369C\n/crUf8Xu4Nibn9Lm7WfVn1xZvJq80+eIHnw9AAm/LCdt8y7CurWj64/vqz/X8nLxEvzmL04luF1z\nvIID6PbbPE5/+gOJf6wu/1lfQ3m/kP/jcz+l1VvPqT8VsHg1+afPEj3Imf9fl5O+eRdhXdvR+ccP\nsJstHJ2ttkFBrZoQdVMfck/E0+ELdZbx1LxvSd+yi/BenYh9bDRewYG0fONpco/Hse/RspeRpm7a\nTXi3NvT6+R3sZgv7ZxV/H7R/60kOzJ6PxZTB0fe+pfXsycSOu5ucY3Gc+11dhttg9J3ogww0e3Kk\nM092tjzwDACtZ00ipH0z9MEB9PnjA45/sqjSj+aq+L7kX4lQKujFCyFuB0YrinKrEKIJsAe4EdgL\n7ADOAE8696p1RN1P1g21Y7gLmF/enjdnR/CIoijjhBA9UJcjthRCvAukKooyy9l5fEtRlDJbTiFE\nA0VRTjr/vQj4BsgEllG8bHKZMx0/CSFyFUUxOO31wCHU/WxbnMsoGymKclAIYXKGzwCWAucVRXlQ\nCPE78D9FUb4RQjwC/N+F+C7Cf7qzt7HHII9p99j4Kwn3V81HV2WI/no3v7W7z2P6t+/6hlVdhnpM\nv//WH9nRb6DH9DusXsrO/jd5TL/9qmXYf3Lf9H410N6pLvnxVPl3WL3U48/ejueWGGkZzvuNx1Vs\nWEVMPPqxx+u+p5+/p/VXdx3iMf1+WxZ51PcB1narxM/2VAF9Nv/En53u8Yg2wI3bv/e471PhGcTX\nBovaPHBNfx8P2fPlNVmOldnz9icwTghxGDiKunQSRVEynNeaKYqy3Xntb2fnZh+QDOyHomXc5WEW\nQuxG3SM30nltJrBACLEP9cCSBy4SfqoQoi/gAA6idtS6ou7Ne5/iA0vcfhVSURSrEGII8K4QIgi1\nPN52xvMcsA314JVtQIAz2BTgWyHEk8gDSyQSiUQikUgkkkvGcU133a5dKuy8KYpiAcocvlMU5ZYy\nLr+hKMpMIYQfsJ6LHFiiKEqfcq6nA5WarlEUZVLpa87lm9llpa/0LJmiKHtQT6gsbfcR8FEZ10+j\ndg4v8GxpG4lEIpFIJBKJRCK50lT2tMlLYb4QohnqvrgvFUWp+Ee3JBKJRCKRSCQSiURyUa54501R\nlGGlrwkhPkA9pbEk7yiK8nll4xVCPIS6ZLEkmxRFcTuuX1GUtcDaysYtkUgkEolEIpFIrh5K9dia\nd81RFTNvbpTVwbqMOD4HKt3Zk0gkEolEIpFIJJJ/E5X9nTeJRCKRSCQSiUQikXiQqzLzJpFIJBKJ\nRCKRSCQXcChy2eTlIGfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF\nkT/SfVnImTeJRCKRSCQSiUQiqQYIRXZ7rwaykCUSiUQikUgkV4NqcRLIty0fuqa/j4ft//yaLEe5\nbFIikUgkEolEIpFcVRzVo495zSE7b5Iq57d293lM+/Zd3/Bh43Ee0x9/9GPO3N3JY/q1f9jO4vbD\nPaZ/y86FrOoy1GP6/bf+6HH9b1qO9Ij2ffsXALCl120e0e+6/neP1733Pej7E49+jJ2FHtPXMtzj\ndf+/rm//wsdj+toHzR7Lf/+tPwKwpMMwj+jfvONb1ncf7BFtgF6bfvG470v+3cg9bxKJRCKRSCQS\niURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqoihyz9vlIGfeJBKJRCKRSCQSiaQaIDtv\nEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVXFIZdNXhZy5k0ikUgkEolEIpFIqgGy8yaRSCQSiUQi\nkUgk1QC5bFIikUgkEolEIpFcVRRPJ6CaIjtvkqtOy+n3Y+zRBrvZwu4X5pN1JM7Nxi86gg6vTMAr\nOICsw6fZ+exHKDY7Ye2b0nnuo+QnpAKQsPpvjn3yKwD1h99InUF9QFHIPnGO3TPnV5iWHs/cRZ3e\nLbCZrax66ktMh8662bQY3ofWD/QjqI6RBV0ex5yRB4B3oB9954wgqHY4NouNNU9/RfrxhEqXg0/r\nLoQ8+DhoNOSt/o3s375yLYMeNxB42wgQAqUgn/TPXqMw/jh46YmcOQ/hpQeNloJtq8j68ZNK6zaf\nPgJj99bYzVb2zJxHdhnl7xsdQbtXJqIPMpB1OI7dz32IYrMX3Q9qVp/un89k99Pvk7hqO/51atDu\nlUnFaa9p5NjHiwDo8sM7CI2GhN9XEf/1r25ajR57iLCu7bBbLBye9QE5R08DENqlDY0efajMsLWG\n3kitO29EcThI27yLE+9/A4ChYW2aPPkwWn9fcChXVV8XaKDVK48T0LQhiUvWcuzNzyp8Fh2eGkbN\nni2xma1sefYz0g+fcU/fvf1oet91BNSO5Meek7Fk5gJQ9+YuNB95EwiBLc/Mtllfk3nMvf5eILhT\nO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAqDtD5/gKChAsTtQ7Hb2j30cAL8Gdan/\n+Hi0fj6YE1M4MetN7PkF5aahKuoegM7gR+vnxhDQsBaKorD3xYp9vyQ9S70HUst4D1z3xkiMLWrj\nKLSTvD+Otc8vxGFzXJJOZXlmxu+sW3uM0DB/fl/8yGXHc7E6fIFLrf/Gfl2oN/ou/OvW5O+RM8g5\notaR0vUf/ju+X55+eWw46cMrK0OxO2BIm1zGdM12ub893puJPxmpGWQD4LrG+YzvkcXpNB2P/RpR\nZHcuU8eknpmM6JRTps6Vzn+90UOJvm0AhZlqek9+9C1pW3YT2qkVDcYPR6PT4bDZykxLs2kjMHZv\ng91sZe/Mj8k+Gudm4xsdQds5k5y+f5o9z6u+H9m7PY3GDUVxOFDsDg69+TUZe4+qaRp2EzG39wUU\nsk+cZd+L89ziDenclgZTRyE0GpL+WMnZb352s2kwdRShXdtjN1s4Nvs9co+dQui9aP3BbDReOoRO\ni2nNFuI/+x4A/9i6xE4fh0avR7HbOfHGfHIOHy8z75fClfJ9yb8b2Xm7TIQQU4H5iqLkezot1Qlj\n99b4145i1e2PE9KyAa1nPMj6B2a62TWbfA8nF/7J+eVbafX0Q9QZ1Ie4RasASNtzlG1T3nSx94kI\nof4917N6yJM4LIV0eHUSNW/octG01O7VgqC6RhZe/zyRrevRe+YwfrrrNTe7pF0niV+7n9u/eszl\nertxN2I6fJY/J35McP1Iej1/L78/+HblCkJoCBn5BCmzJ2JPSyHqlS/J37EB2/nTRSa2lASSXxyH\nkpeDT5uuhI6ZQfKzI6HQSspL41EsBaDVEvniJxTs2YL1+IEKZY3dW+MfE8WaQY8T3KIhLWc8xKYH\nXnCzazr5Hk4vXEbC8q20nDGS2oP6EO8sfzSCppPvwbR1f5F9XnwiG4Y9XXR/wLL3SVq3k+bT7mfP\no7OxpKTT8fNXMG3YQV7cuaJwYV3b4htTgy1DJxHYPJbGT4xhx6inQaOh8bRR7J48yy1sSLvmRPTq\nyLb7p6EU2vAKCVSLVKuh2czJHJr5Hrkn4tEFB9D7zwVXTd9hLeTk/B8w1I/Bv37tCp9FdM+WBNSJ\n5LebZxDeqj6dnh3Bn8NfdrNL3X2C8+v2ct2CJ12u555LZcVDr2HNzie6R0u6vPBAmeHVZ6Kh3qMP\nc+ix57GmptFy/ptkbNxOQXxxJyW4S3t8akWze9jDGJo1pt5jj3Bg3PSi+wenPIMty/UjscETk4j/\ncAHZew8SMXAA0ffewdnPFpaZhKqqewDNp99Pypa97HzyHYROi9bHu+xyKIM6vVoQXNfINyXeA4vK\neA8c+307K6YtAOD6N0fRbGgPDny3vtI6l8LgO1oz/L6OPPWk+wf3pVBeHb7A5dT/3FNn2f/UGzR5\naqyLVln1/7/i+276gQZ6L/+8zGdid8DLy0P59J4UIgNt3P1FDfrGFtAwvNDFrn0tMx/dlepyrV6Y\njV9GJRbF0+f9WvRvXMYniNBUSfkDnP1+MWe+/cNFzpqZzd5pr2I1ZeBfP4Yu3851uR/RvQ3+MVGs\nHfwYwS0a0mLGSDY/+LxbsptMupfT3y4jcfkWWswYScztfTnz00pM2w+QvG4nAAENY2j36hTWDZmG\nd0QIde++gXV3TcdhKaTtK5OJvr6ra6QaDQ0fH8v+qTOxpKTR9tPXSdu4nfwSZRHStR2+taL5++7x\nBDRvRMNpD7Nn7JMo1kL2TX4eR4EZodXS+qM5pG/dRc7BY9Qf/wDxC/5HxtZdhHRtR73xI9g36Tn3\nZ3GJXCnfl/y7kXveLp+pgJ+nE1HdqNGnPWcXbwQgY/9JvAL88Q4PdrML79iMBOeo+tnFG6jRt32F\ncWu0WrTeeoRWg9ZXjzk146L29fq34uivWwFI3nsafaAvfhGBbnamw2fJOZ/mdj20QQ3Ob1VH/zJP\nJRNQMwzfsIAK0wmgb9gcW/I57CkJYLeRv3k5fh17udhYj+1HyVM/li3HD6ANMxbdUyzq7IbQ6hA6\nHSiVW3wQ2bs955ZsUNN84AReBr9yyr950azG2cXriezToehevbtvIHHV31gyst3CAYR3akH+uRS8\nw4IAMCekoNhsJK/YRHivDi62Eb06krR0HQDZB4+jM/ijDwsmsFlDCs4llRm25h3XE/fVryiF6ghv\noTMdoZ1ak3sintwT8QD41apxVfUdZgtZe4/gsLp+n5ttMwAAIABJREFUhJVHTN+2nP59MwCmfafQ\nB/jhGx7kZpdx5Ax5Ce71z7T3JNbsfGf4k/hFhpSrZWgai/l8IpbEZBSbDdOqDYT06OxiE9qjM6l/\nrQEg99BRdAZ/vMLKjxPAJyaa7L0HAcjasYfQ3l3Lta2quqcz+BLWtglnf10LgGKzY8ut/Jhavf6t\nOFLiPeBdznsgfn3x4EjyvjgMFynvf0qHjnUICvL9x/GUV4cvcDn1Pz/uPPln3FcYlKz/+lD1uf5X\nfL+0vi07t9xnsj9BT+0QGzEhNvRauKlpHquPXfqz3hrnQ+3gQmoG2d1vhneskvyXR+6xOKwmtb3N\nO+U+ax3Zuz3nl5bw/QA/vMPK9v2kVdsAOLd4A1FO37cXWIpstL4+Lu2dKNnu+7i3+wFNYyk4l4g5\nQX33pa7aSFjPTq66PTqR/Kf67ss5eAxdgD9657vPUWBWdXRahE5bpK0oCjp/9bnp/P2wmtIvWkaV\n5Ur5fnXBoYhr+r9rlX/1zJsQYgQwDXVZ7T7gOWABEA6kAg8pinJGCPEFsFhRlEXOcLmKohiEEH2A\nmYAJaAHsBO4DJgHRwBohhElRlL5XM1/VGR9jCAXJxR+iBSnp+EaEYDFlFl3TBxsozM1HsatLkgqS\n0/GJKP5QCm0VS58f5mBOyeDgW9+Sc+o85tQMTny9lOuXvoPdYiVly35St158Jso/MpjcpOIXfV5S\nJv6RweSnlt0pKY3pyDnqX9+WxJ0nMLasS0B0KIaoEArSyl7CUhJtaAT2tOSiv21pKXg3bF6uvaHv\nbZj3bCm+IDREvfoVuqha5P61COuJg5VKs48x1KX8zSlq2ZYsf69gA4U5eUXlf8EG1BnOqL4d2PLw\nbIKbu468XyD6+i4k/LUZX2Ooy3VLSjqBzWNdrnlHhGJOSSthk4Z3RCg+bteLw/rVjia4dVMajLsX\nh6WQ4+99Rc7hk/jVrgEKtHn7GbxCAt0+Iqpa/1LxNYaQl1Tc4Oclp+NrDKHAlHXJcTUY3JOEjfvL\nva8PD8OSYir625pqIqBZYzcba0pqCZs09OFhFKapPtJs7iwUh4Pk3/8i5Y+/ACiIO0NIj85kbNxG\nWJ/ueBvDy01DVdU9v2gj1owcWs98mMDY2mQdOc3B//u6/MIqhaHUeyA3KRPDRd4DGp2Gxrd3ZsPs\n/1Vaw1OUV4cvcDn1vzJofV1nPv/tvl9aP3nFpnLLJjlXR1Rg8dLCqAA7+xL0bna7z3sz6NMaGAPs\nTO+XQWyE66DQ0sP+DGxWziCFX3SV5B+g1tCbiBrYm5zDJzn+7lfYcvJc4jX2dV/x4hMRQkGJd505\nOR0fYwiWtBK+HxRQyvfT8DEWt/uRfTrQZOI96EMC+Xvq/6lpS83g1DdL6Lf4PewWK6at+zFtc30P\nekeEurz7LClpBDRv5GKjjwjDUqos9BGhWNMyQKOh3YI38K0ZRcLPy8g5pC6NPPnOAlrOfZ76Ex4E\njWDPwzPc8i2RVBX/2pk3IURz4Fmgn6IorYEpwHvAl4qitAIWAu9WIqq2qLNszYD6QHdFUd4FEoC+\nsuN2dck6EsfygVNYe/fTnPp+OZ3mPgqAV4AfUX3aseKWR/nrhknofL2pNbB7laZl1/y/0Af4ctev\nz9Dy/j6YDp/FYb/ye2C8m7fH0O82Mhe+X3xRcZD05H2cf+QW9A2b4RVT/4rrlkWzafdz+N3vy53p\nEzotUb3bk7ByW5WlQWg1eAUZ2DHqaU68/zUtZz/mvK4luHUTDr7wLjvHPkdgs8p/bF4JfU8R2bEJ\nDe/oya63fqwyjYMTnmTfqKkcnv4iUYMHEtBaHWg48eq7RA0eSMtP5qL188VRWPZ+lytBeXVPaDUE\nNqlL/KKVbBj+DPYCCw0eurXK0tH7hWEk7DhO4s4TVaYhKZtr1fdL6xt7d64gpovTLMrKqgnn+XV0\nIsPbZzPppwiX+1Y7rDnuyw1N88qJoWo4//NyNt85ke33T8eSlkns5BEu9/3r1aLBhOFVop28dgfr\nhkxj57S5NB43FABdgD+Rvduz5rYprLpxAlpfb2redIXbfYeDXQ8+xtbBowloFotfPXVJcPTgGzj1\n3gK23TGGk+8uoNGMCVdWVyK5CP/mmbd+wI+KopgAFEVJF0J0Be5w3v8aeL0S8WxXFOUcgBBiD1AX\n2FhRICHEWGAswLx58xg7tuxZiv8C9e4aQJ3Bah834+ApfCPDiu75GkMpKLXMwZqZi5fBD6HVoNgd\n+EaGFi2FsOUVH4aQsmkvmhkPog82EN6hGfnnU7FmqrNeiat3ENrKvQFvMaw3ze7qoYbfH48hqnhk\nzz8qmLzkTLcw5VGYZ2bN08WHjNy3ajbZZ00XCVGMPT0VbVhk0d+6MCP2jFQ3O6/aDQkd+wypr07F\nkes+I6Pk52I+uBOf1l0pPHuqTK06Q6+jtrP8sw6p5X+hxH2MoW7LTAozc/EK8C8q/5I2wU3r0e6V\niQDogwMwdm+Nw24nea26H8HYvQ1ZR+KwpmdTkOK6jMTbGIol1XX5nyU1HR9jGFlFNmFYUtMROh0+\nxrAyw1pS0kldo3YOsw+dQHE48AoOxJKSRubuQxQ692Vl7D6If53oMuOoCv0Lm/gvRqN7+tHwTnV5\nbNqB0/hHhXLhqftHhlKQcvGlvqUJblSLLi8+yOpH3sKaVf6HnNWU5jIrpo8IdysLqykNvTECOOy0\nCcNqSnPeU5+lLTOL9A1bMTSNJWfvQcxnznP4cXXfmk+taEK6ui6vuhp1L3P/Ccwp6WQeUGc/E1du\nr7Dz1vIi7wFDVDC55bwHOk64Gd9QA2smlr2v71qjvDp8gcup/5Wh5DK3K6l9rfp+aX3T5l0EtXSd\n3blApMFGUnbxp1dSjhZjgOvSR4N38QBF74ZmZi0XZORrCPFTBwc3nPSlWaSVcP9yBgvzXZe1Xqn8\nW9OL26CE31bS+o2niu0iQmn12nQOvfQ+Heare297LJwDOH0/KpSMvaqtT2Qo5lLvusKsnFK+H+Zm\nA5C++wh+NY14BQUQ1qEZBQkpRe1+0pq/CWnlWu6W1HSXd5+3MQxr6XdfahreLnkOw5rq2n7Zc/PJ\n3HWA0C5tyT99hsib+nLybfVQKtPqzTR6SnbeLoeqOfLp38+/dubtErHhLAshhAYouYahZCtkp5Id\nXkVR5iuK0kFRlA7/5Y4bwOn/rWTtvc+w9t5nSFq7k5hb1I+mkJYNKMzNd1k2dQHTjkNE91fXpcfc\n0pPEtbsAivZRAQQ3rw9CYM3MpSApjZCWDdH6qI8uvFNzck6fd4v3wLfr+N+g2fxv0GxOr9xD40Hq\nEo/I1vWw5pgrvWQSQB/gi8ZLC0DToT1I3HGcwjxzpcJaTx7CKyoGbUQ0aHX4dbuegh0bXGy0YZGE\nP/4aaR+8gC2x+BRCTUAwws8AgPDyxqdlZwoT4svViv9xBRuGPc2GYU+TtHYHtW7uCUBwi4bYcgvK\nLf8aReXfq2iz+OrbHmX1rVNZfetUEldt58CrXxR13ACib+jK+T/VfVxZh9TOpE8NI0KnI/K67pg2\n7HDRSd2wg6iBvQEIbB6LLTcfa1omOYdP4BdTo8ywqeu3E9K+BQC+MTXQeOkozMwmbdte/BvWRuPc\n/+BXM/Kq6leGY9+vZunQmSwdOpNzq3dT77ZuAIS3qo81N/+Slkz6RYXS+60JbJrxCTnxyRe1zT1y\nHJ9a0XjXiETodIT370nGJtfZ0fSN24m4Qe1oGZo1xp6XT2FaBhofbzS+6h4MjY83wR3bUHBKrY+6\nYKc/CkGtEXeR9NufLnFejbpnScuiIDkN/zrqPqfwTs3JPeXu+yXZ/+06fhg0mx8GzebUyj00qcR7\noNmQ7tTu0Yy/Hvus0ntMPU15dfgCl1P/K4M1Q63H/xXfL60f0q5ZuWXTItpKfIaOc5k6rHZYdtif\nvrGuJ7Sm5mqKqti+BD0OBYJ9iz9zlx7yZ2Dzi8y6mXZUSf71JfapRfTuVLQ8VWfwo/XcGZz4cCFZ\n+44W2Wwc/jQbhz9N8tod1BxYyvfT3H0/bcchovqrs5a1bulJ8jpV169W8UBnYOO6aPQ6CrNyMCeZ\nCG4Ri8bb2e53bE5unKvv5xw5jm+t4vxE9O9B2sa/XXU3/k3kjeq7L6B5I2dZZOAVHIjWoB5toNHr\nCenYmvx4NX6rKYOgtuoKhOD2LSk4m1ju45BIrjT/5pm31cAvQoi5iqKkCSFCgc3APaizbsOBC1/L\ncUB74H/AbYBXJeLPAQJQ98NJKknyxj1E9mjNgN/exG62uhzn3+Xdaex56VPMpkwOvfs9HV6ZSJMJ\nQ8k6EscZ52EE0QM6UXdIfxS7HbulkB0zPgAg48BJElZtp/fCl1HsdrKOxhP/8xpaPflAuWmJX3eA\n2r1bMHzFLGwFVlY//WXRvZvnT2TNs1+Tn5JFy/v70nb09fiFB3L3788Rv+4Aa5/9hpAGUfR/9UEU\nFDKOJ7Lmmcrvs8FhJ33B/2F8+l31pwLW/kHhuVMYBqgTw7krfyZoyGi0hiBCR6mnDCp2O8lPP4A2\nJJyw8S+ARgMaDflbVmLeVeFkMAApG/dg7N6Gvr/NdR7ZXHyscqd3prN31idYTJkcefc72s2ZROPx\nQ8k6Gl90GMTF0Pp4E9G5BfvnfOZMr/qx0fadZ0CjIXHxGvJOn6Pm4OsAOP/LCtI27yK8W1u6LnoP\nh9nKoZc/KAp79I3P3MICJPyxhqbPPkLnhW/isNk49JIaxpaTx9nvFtPx81dBUdQjrDu2umr6AN1+\n+QCdnx/CS0dE744XLa/zG/YR3asVty991flTAQuK7vX9cCpbX/iCgtRMGg8bQLORN+IbFsTNP71E\nwoZ9bJ35Ba3G3YY+2ECnZ+8vSvOye14qW8zu4PTb82j6xkyERkPK0pUUxJ0l8rYbAUj+/U8yt+4g\npGt72n43D4fFwolX1FXlXiHBNJ6tniQqtFpMK9eRuV0dTAkf0IuowQMBSF+/hdSlK8vNb1XWvYOv\nf0Xbl8ej8dKRfz6FvTPn0WDELRWGA/U9UKd3C+53vgdWlXgP3OJ8D+SlZNHnxWHkJKQz5IcnADi1\nYjd/f7C0UhqXyrTHfmL79ngyM/Lp2+stJk7qw51D215yPGXV4X9a/yN6d6LR4yPRBwfSZu4Mco7F\nsWfqbMC1/gO0+/AFFLvjX+/75emXhU4Dz1yXzpjvjTgUGNwql9iIQr7fpQ7I3dMul+VH/Pl+twGd\nBrx1Cm/ebkI4z07Itwo2n/Zh5o0XmQlV1Jm8K53/hhPvJyC2LgoK5sRUjryq+nCtoTfiVyuKeiOH\nUm/kULfkpGzaQ0T3NvT59S3sZovLcf4d33mCfbPmYzFlcvg9p+8/MpTso/Gc/W0tAFH9O1FrYE8c\nNhsOSyG7ZrwHQObBkySu2kbPhXOc7X4cZ35eTfPpDxaL2x2ceOsTWsx9AaHVkLR4Ffmnz1Jj0A0A\nJP76F+lbdhLatT0d//cRDrOFo3PU+PVhITR+djJoNAiNhtTVm0jfrHYoj732IQ2mjEJoNTishRx/\n/cPyn8clcKV8X/LvRijVZATxchBCPABMR50x2w28AHyO+4ElkcBvgC/wJzChxIEl0xRFucUZ3/vA\nDkVRvhBCTAImAgmV2Pf27y3kSvBbu/s8pn37rm/4sPE4j+mPP/oxZ+7uVLFhFVH7h+0sbl81exAq\nwy07F7Kqi3tjfrXov/VHj+t/03KkR7Tv2692Brf0us0j+l3X/+7xuve+B31/4tGPseO55ZVahnu8\n7v/X9e1f+HhMX/ug2WP5779V3X+7pMMwj+jfvONb1ncf7BFtgF6bfvG47wPX7lGJJfi02Zhr+vt4\n9KFPrsly/DfPvKEoypfAl6Uu9yvDLhkoeUTSk87ra4G1Jewmlvj3e6gHoEgkEolEIpFIJJJLQLmG\nj+O/lpF73iQSiUQikUgkEomkGiA7bxKJRCKRSCQSiURSDfhXL5uUSCQSiUQikUgk1x4OuWzyspAz\nbxKJRCKRSCQSiURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqck3/TsA1jJx5k0gkEolE\nIpFIJJJqgOy8SSQSiUQikUgkEkk1QC6blEgkEolEIpFIJFcVedrk5SFn3iQSiUQikUgkEomkGiAU\nRW4XvArIQpZIJBKJRCKRXA2qxZTWh43HXdPfx+OPfnxNlqNcNimpclJHN/eYdsSnB1nddYjH9Ptt\nWcSRW/p4TL/J4rWs6jLUY/r9t/5IoeMrj+l7aUZ4XH9Lr9s8ot11/e8AHsv/tVD2O/vf5DH99quW\nedz37Cz0mL6W4R5//p7Ov6d8H1T/91T+tQwHYEe/gR7R77B6Kf9r/YBHtAHu2vulx32/uuDwdAKq\nKXLZpEQikUgkEolEIpFUA2TnTSKRSCQSiUQikUiqAXLZpEQikUgkEolEIrmqKPK0yctCzrxJJBKJ\nRCKRSCQSSTVAdt4kEolEIpFIJBKJpBogO28SiUQikUgkEolEUg2Qe94kEolEIpFIJBLJVUX+VMDl\nIWfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF/lTA5SE7b5JrAq/m\nPTDc+xRCo6Vgw08ULPvU5b6+TV/8B00Ch4LisJH7/WvYTuyqVNyhXdoQO/UhhFZD4u+riP/6Vzeb\n2EdHEtatLQ6zlUOz3if32OmLhjU0rEPjJ8ai9fPBnJjKwRfewZ5fUBSfd2Q4nb9966Lp8m/XCePY\niQiNlszlS0hf9K1rnmvVpsbUJ/FuEIvpq89I/+WHonsafwNRk6fjXbseoJD4zmuYjxwqN/+NHn0I\nodGQUE7+Gz32EGFd22G3WDg86wNyjp6+aNgWLz+KX+1oAHQBfthy8tk+YjqRN/SgzvDbS8UeAmS4\naW7ccJJX5yzH7lC4c0gbRo/p5nI/K6uA555ZzNmzmXh7a5n18i3ENjIC8PVX2/npxz0oisKQoW25\n/4FO5ZZzeXhaP7hTO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAkBr8KfBExPxq1cH\nBYWTr75L7sGj1SbvntAP7NiemAnjQKPBtPRPkr//0c0mZsI4Ajt3xGGxEPf6mxQcPwmA8Y7bCR94\nIwiBacmfpPys+kGNEcMJv/lGbJlZAJz/7Euyt/9dFF9V+J6xXxfqjb4L/7o1+XvkDHKOqHVCF2ig\n1SuPE9C0IYlL1laqTMrimRm/s27tMULD/Pl98SOXHc/F8HT927D+BK/M/gu7w8GQoW0ZM7aHm/6z\nT//O2TMZeHvreHnObcX6X27jxx93oSgwdGhbRjzYpUK9f+LrbX/4BEdBAYrdgWK3s3/s4wDEzpyO\nb0xNQH0f2HPz2Ddq6iWXRWmq4vkHdmxP7YkPO33vL5K+K8P3Jj5MUOeOOMwW4l6fS77T9yKHDCJ8\n4A2gKOSfjiPutbdQCgvxrV+POo9OROPrizU5mVOzX8dRog0uTdsnhxPVozV2s5Xtz31C5pF4Nxv/\nmuF0eW08+iADGYfj2P70PBw2O14GXzrPeRi/qDCETsvRL5cR99sGAGKHXUf9O/uAEJz6aS3HFy4H\nqqfvS6oPctmkxPMIDQHDnyHr7XGkP3cbPp0Goq3RwMXEengbGTPvIOOlO8n54jkCHnix0tE3fnw0\nex+bzbZ7H8V4XQ/86tZyuR/WtS1+MTXYOnQSR179mMZPjFVvaDTlhm0y4xFOfrSQ7fc9Tuq67dS+\nz7XDEjv5AdK37ik/URoNkY9M4dwLT3Jq/AME9u6HPqaOi4k9J5vkee+S/vMPbsEjx04kb+d2Tj8y\ngtOTRmE9e6b8/E8bxZ5HZ7P13keJvL47/mXk3zemBluGTuLIK/No/MSY4vyXE/bAs2+xfcR0to+Y\nTsqabaSu3QZA8l8bi64ffPE9p4J7x81ud/DyrD/5aP49/P7HwyxdcpCTJ1JdbD6Zv5kmTSP55bcx\nzHn1Nl59ZQUAx4+l8NOPe/jufw/x069jWLf2OGfi08sv6zLwtD4aDfUefZjD019kz4gJhPfvhW+d\nGBeT4C7t8akVze5hD3Pq/z6g3mPFH1J1J48hc9su9tw/nn0PTaEg/ly1ybtH9DUaak+ewPEZz3Fo\n5MOE9uuDT53aLiaBnTriXSuagyNGcWbuu9SZMhEAn7p1CB94I4cnTOXQmPEEdemEd3SNonApi37l\n8MMTOfzwRJeOG1SN7+WeOsv+p94gc89hl7gc1kJOzv+BE+99VXF5XITBd7Rm/qfD/1EcF+OaqH8v\nLWPep8P4Y8l4li4+yIlS+vM/3kiTplH8+sc4XnltEHNm/1mk/+OPu/jhx9H88tvDrF17nPiK9P+h\nrwMcnPIM+0ZNLeq4ARyf+X/sGzWVfaOmkr5+C+nrt1xSOZTHFX/+Gg21p4zn2FPPc/ChcYT2641P\nqfwHde6AT82aHLh/NPFz36X2VNX3vMLDMA6+jUPjpnBw1HiERktov94A1J02hXOffM6h0ePJ2LCZ\nqLuHlJuEqB6tMNSOYtmtT7Djpc9p/+wDZdq1mnI3x775i2W3PkFhdh71BqtaDe/uT/apBJbf9Rxr\nR71C68fvQaPTEtiwJvXv7MPK4S+yfOizRPdqgyFG7eRXR9+XVB9k503icXT1WmJPOYvDdA7shZi3\nL0Xfpq+rkSW/6J9C7wsolY4//1wS5oQUFJuNlJWbiOjV0eV+eK+OJC1bC0D2wePoDH7ow4IJbNaw\n3LB+tWuQuVud6Urfvhdjn84u8RUkppB36my5afJp1ARr4nkKkxPBZiN7/WoMXbq72NizMjEfPwp2\nu8t1jZ8/vs1bk7V8iXrBZsORl1uuVkGJPCSv2ER4rw4u9yN6dSRp6boS+fcvyn9FYQEi+3clacVG\nt+tR13V3u3aB/fsSqF07lJiYELz0Wm4a2IzVq4+52Jw8kUrnznUBqF8/nPPnMzGZcjl1Ko2WraLx\n9fVCp9PQoWNtVq6o/KzTtaBvaBqL+XwilsRkFJsN06oNhPTo7GIT2qMzqX+tASD30FF0Bn+8wkLQ\n+vsR2Lo5KUvUD1rFZsOem1dt8u4Jff8mjTCfT8CamIRis5GxZh3B3VxnTIK7dyFt+SoA8g4fQWsw\noAsNwad2DHlHjqJYLOBwkLNvP8E9y6/bJakK38uPO0/+mQQ3LYfZQtbeIzishZVKW3l06FiHoCDf\nfxTHxfB8/TtP7TohxMSEoNdruenm5qxe5RrHyZOpdO7i1G8QTsL5LEymXE6eNNGqVc0i/Y4d67By\n+eEyVIr5J75eWcL6dse0an2l7S/GlX7+/k0aYSnhe+mr1xPcrauLTXC3LqStuOB7zvyHqvkXWi0a\nbz1oNGi8vSlMSwPAu1ZNcvcdACB7525CLuKTNfu2I+6PTQCk7z+JV4AfPuFBbnbGTk05t0IdgIn7\nfSM1+7UDQFFA5+cDgM7PG2tWHg67g8B60aTtP4ndbEWxO0jdeYSa/VU/rY6+7wkcyrX937XKf6rz\nJoR4TAhxwPnfVCFEXSHEESHEQiHEYSHEIiGEn9O2vRBinRBipxDiLyFEDef1tUKI14QQ24UQx4QQ\nPT2bq+qPJiQSe0Zi0d+OjGS0IZFudvq2/QmZ9QdBUz4i5/PnKh2/JcVU4t9peEeEutz3jgjDnJxW\nbJOajndEGN4RoeWGzTt9jnBnR87YryvexnAAtL4+1LlvEHGfuS8LKYlXWAS21OLRXpspFa+wiErl\nxyuyBvbsTGpMfYq673xC1KTpCG+fcu3NKSXylqLmrSTeEaGlbNR8+rhddw8b3KYp1vQsCs4mueka\nB3Rzu3aBlJQcoqICiv6OjAwkJTnHxaZxk8iiD7P9+86TmJBFcnIODWMj2LXzLJkZ+RQUFLJh/UmS\nkrLL1boW9fXhYS51y5pqcitbfXgY1pTUEjZp6MPD8K4RiS0ziwYzptDq07ep/8REND7e1SbvntD3\nCg+nMLVkWZrwCg8rZROGNdX1mejDwzHHxWNo2RxtYADC25ugzh3RRxT7asTgW2n6yYfUmfYoWoPB\nJc6q9L3qiqfrX3JyDlFRxR/uUeXpLz8CwL5950lIyCQ5KZvYRhHs3HmmSH/9+uMkVqD/T3z9As3m\nzqLlJ3Mx3nqDW/wBrZtTmJ6J+Vyi271rATVvJfJvMqGPKO174aXyb1J91pRG0v9+ptX3X9J60ULs\neXlk79gNgDk+nuDuaicwtHdP9M42uCx8jSEUlGjjC5LT8TW6do71wQasOfkodvXw+vzkjCKbE9+v\nJLB+NLeufIfrF81mz+sLQVHIOnGOiHaN0Qf5o/XRE9WjNX5R6jeC9H1JVfKf2fMmhGgPPAR0BgSw\nDVgHNAZGKYqySQixABgvhHgHeA+4XVGUVCHE3cBsYKQzOp2iKJ2EEAOBF4ABVzk7/0msu1dh3b0K\nr9j2+A+aRNbc0R5Ly+HZH9Do0VHUfWgIpg07UGw2AOqNvouzPyzGXmCuMm2h1eLToBHJH7+L+dhh\njGMnEjZ0GKZvFlSZZnlEXt+D5DJm3QKbN8Rhtv6juEeP6carc5Zz5+BPiI010qRpFFqNoEGDcEaO\n7srY0d/h6+tF4yaRaDRXftOzp/XLQ2i1+Mc24PTb88k9fIy6k0dTc/gQzn628IppeDrvntYvifnM\nWZK+/5HY12bjMJspOHEKxaF+4KX+sYTEb74DRSH6oRHUGjeG+DcuvtdVUjGefv5jxvZgzuw/GXz7\nPBo1MtK0aQ00Wg0NGkQwenR3Ro9aiK+vF02aRKHVVO0Y+MEJT2I1paMLDqLZ3JcoOHOOnL0Hi+6H\n9++FadWGKk2Dp9AaDAR378L+YQ9hz82j/gtPEzqgL+kr1xD3+tvETBpHjfvvIXPzNpRCW5WlI6pb\nCzKPnGHt6FcxxBjpNe8JUncdJed0Ikc+X0Kvj5/AXmAh8+iZos6fRFKV/Gc6b0AP4BdFUfIAhBA/\nAz2Bs4qibHLafANMBv4EWgArhBAAWqDksNa+UI0VAAAgAElEQVTPzv/vBOqWJSaEGAuMBZg3bx5j\nx469knn5V6HOtBXvIVFn4pLLtS88vhNtRC2EIRglN7PC+L1LjMh5G8OwpLruUbCkpuETGUbWBZuI\nUCypaQidttyw+fEJ7Jk6CwDfmBqEd1eXVwQ2iyWibxcaTLgfncEfgOBbBpO5+BfXPKSloisxeq8L\nj6AwzXXfRbn5N6ViM6ViPqYu18nZtI6wIcPKtfcxFo/aeRvVvLnmPx0fY4n8O/MpdLqLhhVaDcY+\nndj+wJNumpEDupO0YiMNG5adLqMxgKSk4tHu5ORsjJEBLjYGgzcvz7kVAEVRuGHAB9SKUUdC7xzS\nhjuHtAHg7bfWEFUqbEV4Wt9qSnOpW/qIcLfnYjWloTdGAIedNmFYTWmgKFhSTeQeVpeapa3dTM3h\nd1Za29N594R+ocmEVwl/00eoo/quNmnoI8LJK2FjNakzBmnLlvP/7N13eFTF+sDx7+ymQgjphd4C\nBFAICRCqCKKCCoJgwU4VpIsVvKI0O0UsYPldr3JR0YsgRelVIAIC0msIJW3TIG2T7M7vjw1JNkWK\nwCbwfp6Hh+w5M+edmT2z58yeOWeTVtgeRFBt4NPk5l+hy0sp/PwxLVtBg6n29+Jer75XkTl6/wsM\nrEJcXFrB67gy4k+b3qsgfreus6l5MX6/MB7qFwbAjA/XEBTo+bfx/lFfB3JMtmNOXmoayZu24REa\nUjh4Mxrw6dSWvwaPvZImuKFsdStSfz8/chKL9z1Tfv3z0/j7kWsy4RneAnNsHHlptqubqZu24NE0\nlOTV68g+fYajL00EbFMovSLtb4do8EhX6vax3bOWsv8k7oG+wFEA3AN9yEqwvxc7JzUdlyqVUEYD\n2mKlUqB3QZo6vTpy6CvbbQrppxPIOJuIZ91qJO87wclFGzm5yDZl9baRfcmMt71f0vcvTzmemViu\n3VLTJstQfN/R2K7M7ddat8j/d5vW+u4iacz5/1soYwCstZ6ntY7QWkfIwO3v5UXvwxhYC4NfdTA6\n49a6Bzl71tmlMQQUPlzAqVYoOLlc1sANoFLNYNyCA1BOTgTc1R7TJvuHCpg27SCoe2cAPJuGYMnI\nJCcplQsHj5WZ19k7/4CtFHWe7cvZRbb7j3YNe52tfYaztc9wznxv+7AvPnADyD5yGJdqNXAODAIn\nJzw7dSF9+++XVR9LajK5pgRcqttu+q7cPBxzTMknZ5VW/8Bu7TFt2mG3PnHTDoJ63FFQ/7z00utf\nPK93q9vJiD5XYjCMUgR0bUf8qi2Updlt1Yg5lcyZM6nk5lhYsfwAd97Z0C7N+fPZ5ObY7vf7aeFu\nwiNq4eFhmx6YlGQ7xY49l8aaVYfpcX+zv2uychc//dBR3GpUwzU4EOXkhF/XjqRs2W6XJnlzFP73\n2O799GjSCEtGJrlJKeQmp5KTYMIt/0lzVcObkxVd9v2V5a3ujoifcegIbtWr4RJka2/vO+8g9fdt\ndmlSf9+G791dAagc2hhLRgZ5ybaTNycv2zQ75wB/vDu0J3nNettyn8KpV14d2pEVbd8Pr1ffq8gc\nv/9V51R0MmdOp5CTY2HFsv3c2aVk/Jz8+D8u/JOIiNol4p87l8bqlYe474Hb/jbeP+nrBjdXDO62\n+88Mbq54tWpB1onCh1N5hbcgO+ZMicFQeVK87/l06UTq1uJ9bzu+3S72vUZYMjLITU4hJz4RjyaN\nMbja2r5KyxZkx9g+6y72SZQi+IlHSViy3G6bx75fw6pH/sWqR/7F2XW7qPOA7Z44n9vqk5ueRbYp\njeIS/jhIjW62QWCdnh04u872ROvMuGQC2zQBwNXHkyp1gkk/k5D/2jbwrxTkQ/Wu4cSssNVN+r64\nnm6lK2+bgH8rpd7GNjjrDTwJzFJKtdVabwX6A5uBw4D/xeVKKWegodZ6f1kbF/+A1UL6f6dSdcw8\nlMFA9pZFWM4dx+2OhwHI3vADri274da2J1jy0LnZnJ87/rI3f+SDL2gxc6LtsbtL15Jx8gzVetvG\n4ucWrSTp9134tmtJ24VzbI/snfIJANpiLTUvQGC3DtR46F4AEtdvJ3bp2iuuc/xns6j51ntgMJC2\nagU5MdF4de8JQOqKJRi9fKgzcy6GSpXAqvHu1ZeTw57GmpVJ/GezCR4/EeXkRG5cLLEz3y4z1OH3\nvyRs1gQwGIhduo6Mk2eo3rsbAGcXrSLp9134tQuj7Y8f2X4qYcrHBfUvLe9Fgd3alzpl0issFHOC\niexzCWWWycnJwGsT72HooAVYrFZ692lOgxB/vv9uJwCPPBrOieMmJrz6C0pB/Qb+vDXlvoL8Y0f/\nRGpqFk5OBia8fg+enmXf81ce42OxcnLmXELfn4QyGEhYvpqs6NME9rTtU/FLfiV12w6824YTtmAu\nVrOZY9NnF2Q/OWseIa+PQzk7Yz4Xx7HpsypM3R0S32ol5qNPCXlnCspgxLRiJdmnYvC7vwcApqXL\nOb/9D6q2aUWzb77Cmp1N9HuF0x/rTZqIk6cnOi+PmNmfYMmwncDXGDKQSvXroYGcuHhOzZhtF/Z6\n9D3/O1rT8IUBuHh50uLDV7lwJJrdY6YC0G7RxzhVqoRyvnho9wSu7J6w8eN+IirqFKkpmdzZaQYj\nRnYuuNJ0LZSH/W/Cv7ozeNB8rBZN74daEBISwHcLbCfIjz4WwYnjibz6ymIUigYh/kye+kBB/tEj\nfyA1NQtnJyMT3+h+6fj/oK87e3vRaOprgG26tGn1BlKjCn8ix7drR0yrr82DSi665u9/ft9r+M4U\nMBpIWrGS7OgY/B+w9b3EX5aTdrHvfftl/k8F2PpexqHDpGzYTOjc2WCxkHnsBIlLVwDg06UzAb3u\nByBl8xaSfl1VZhFiN+0huMPt9Fj6HnnZZv74V+FPEXWcM44/3vyK7MRU9s78gch3h9Ps+YdIPXSq\n4IragXmLaT15MHf/OAWlFHtn/kBOqu0hYe0+GIlLVQ90noVd074h94Lt4WqO7/s0AUr//SBR4Smt\nb52LlkqpcRTet/YF8DO2KZI7gHBsO/qTWutMpVQLYDZQFdsgd6bW+nOl1HpgvNZ6h1LKD9ihta5z\nidC3TiOXInFQU4fF9v9iP2vblv0I4euty9YfOXR/Z4fFb7x0PWsi+zksftdtC8m1Ou7xxc6Gpxwe\nf2unng6J3XbjEgCH1b88tP3Ort0dFj98zQqH9z0L1+4+yCtl5HGHv/+Orr+j+j7Y+r+j6m/E9lMD\nO7r0cEj8iLXL+aF56T8HcCM8vOdrh/d9bBcpyr336j9frs+PXzz+cblsx1vpyhta6w+BDy++VkrV\nAfK01k+UknY30KmU5Z2L/G2ijHvehBBCCCGEEOJaknvehBBCCCGEEKICuKWuvBWntY7G9lRJIYQQ\nQgghhCjXbunBmxBCCCGEEOLGk1/FuzoybVIIIYQQQgghKgAZvAkhhBBCCCFEBSDTJoUQQgghhBA3\nlNbl8kn85Z5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0SSGEEEIIIcQNJU+bvDpy5U0IIYQQQggh\nKgCltXZ0GW4F0shCCCGEEOJGqBBPAplWb0S5Pj9+7cScctmOMm1SXHcJA5o5LHbAV/tY27avw+J3\n2fojh+7v7LD4jZeuZ01kP4fF77ptIRbmOyy+kccdHn9rp54Oid124xIAcq3/cUh8Z8NTDm/7HV16\nOCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L32Hzzw6rv5HHAVgS/rhD4vfcOZ8tHXs5JDZA+02LHd73\nKwq5fnR1ZNqkEEIIIYQQQlQAMngTQgghhBBCiApApk0KIYQQQgghbihrxbg1r9yRK29CCCGEEEII\nUQHI4E0IIYQQQgghKgCZNimEEEIIIYS4oazytMmrIlfehBBCCCGEEKICkMGbEEIIIYQQQlQAMngT\nQgghhBBCiApA7nkTQgghhBBC3FBa7nm7KjJ4Ew7j0qw9Hv1fAWUke9NPZC7/0m69a+R9VO4+EBTo\n7EwufDOZvNOHAXC/6wncOz0ESpG18UeyVn17xfF9IlsQMuZZlNFA7JI1nPrm5xJpQsYOwLddGNbs\nHA5MnkP6kZMANJ4wHL924eSkpBH1xLirqD1UbtmagCEjUAYjqSuXkfzjf+3Wu9SoRfCYl3GtH4Lp\nP1+SvOj7gnWGyh4EjXoR11p1AU3srHfIPnSgzHo2HPssymDgXBn1bDjuWXzbtsRiNnNw8sdcOHzy\nb/MGdImk7qCHqVynOn8MeJULh04AEHhPB2o/3qvY1r2BlCtqmwmvLmHD+iP4+FZmydJhV5T3Wrge\n8b1at6TOqEEog5H4ZSs5N/+nEmnqjBqMd2QEFrOZ49NnknHE1q5h33+ONSsLbbGiLRb+GvICACGT\nXsS9ZnUAjB6VsaRnsHfgmEuWZfOm47w9bSUWq+ahvi0YNLid3fq0tCxen7CU06dTcXU1MnnK/YQ0\nDADgm/9E8dPC3Wit6dsvjCefbn3FbbFp4zGmT/0Ni9VK335hDB7SoUT8ia8t4XRMCq6uTkyZ1rMw\n/tfbWbhwF1pDv35hPPVM5GXF9GwVTq0RQ8FgwLT8N+IWLCyRpuaIoVRt0wprtpnodz8k8+hxAAL6\n9ML/vntAKRKX/UrCT4sBqDF0AFXbtkHn5mGOjSX6nRlYMjIKtnc9+h5AjX73UuOhe9FWK0m/7+LY\nHNvnn0eDWjR+eSjGyu75KQ2AtURMR7//f+em7Pttwqg3ehDKYCB+6SrOfPu/EmnqjR6Ed9twrNlm\njkybXdD3ATAYaPHF++QkJnHg5al2+ao/2ou6I55l231Pkpd24R+X9Xq1f7MXnyKwfXMs2Tn8OWku\naYeiS6SpVM2f8OkjcKnqQerBaHa9/gk6z4JveCitPxxH5tlEAGLX/cGRzxcVZjQo7vhmClmJKUSN\neb/Edr1ah1Fv9GDIb/+zpXz21h09GO/IcKxmM0enzSpo//Af5mHJzEJbrWCxsmfwC3b5qj3Si7oj\nBrD9/ifs2t/xfR83ILtEUHFTuGWnTSqlJimlxju6HLcsZaDKExNJnTGM5Ik9cW3TA2O1enZJLIln\nSXnnGZL/1YeMXz6jytNvAGCs3gD3Tg+RPOUxkt94CNfmd2AMqHll8Q0GGr0wiD3jprL9sbEEdOtA\npTo17JL4tg2jUs1gtvUbyaG3P6PRS0MK1sUtW8fusVOuru758QOHjebMGy9zYvjTeN7RBZeate2S\nWC6cJ37ubJL/932J7IFDRpCxM4qTw57i5MiB5JyOKTNUo/ED2T12KtseG0vg3e2pXEo93WsGs7Xf\nSA5Nn0ujlwYXlLGsvOknTvPXK++Tuvug3bbif9tM1FMvEvXUi+x/86P8pVc2cAPo3ac58754/Irz\nXSvXPL7BQN2xQzn44pvsfup5/Lp2wr22/T7rFRmOW41q/Nl/KCfe+5i64+xPnPaPnsDegWMKBm4A\nRye9x96BY9g7cAzJG7eSvHHrJYtisViZMvlXPp33KEt+GcryZfs5fizRLs3n836ncWggixYPZtrb\nPXl7+ipbvCMJ/LRwNwt+eJaffh7MhvVHiTmVfEVNYbFYmfLWCuZ+0Z9flg1n+dL9HCsWf95nm2kc\nGsTPvzzH9HceZNrUXwviL1y4i+8XDmLR4qGsX3+UU5cT32Cg1ujhHHnlX+x/9jl8utyBW7H2r9om\nArfq1dn35CBOfTibWmNGAOBWpzb+993DweFj2T/oebwiW+NaLRiA8zv/ZP+AYRwY/DzZp88S1P9h\nu21ej77n3bIp/p1asf3J8WzvP45T85cAoIwGmkwaxaF35rG9/8UvlEp+re3o9/9Sbsa+X3/cUPaP\nf4tdT4zE/66OuBfbD7wjw3GrGczOR4dx7L1PaDD+Obv11frdT+apMyU27RLgh1erFmTHJVyz4l6P\n9g9o35zKNYNY8+AL7JnyJbe/+myp6UJHPcrx+StY8+AL5J7PoPaDnQvWJf15mA39X2ND/9fsB25A\nvcfu5UL0udKDGwzUGzeU/ePf5M8nR+S3v33f944Mx71GMLsee45j735M/RfsP3v3jZ7IngFjSwzc\nXAL88GodVmr7O77vk1t6g4ibwS07eBOO5VTvNvISYrAmngFLHubtK3Bt0cUuTd7x3ejM8wDkHt+L\nwTvQlje4Hrkn/4KcbLBayDm8A9eWd11RfM8mDcg8E0f2uQR0Xh4Jq7fg36mVXRq/Tq2IW7EegPP7\nj+LkUQkXXy8AUncfJO98+tVUHQC3ho3JiT1Lbnws5OVxfuNaPCLb26WxpKWSffQwWCx2yw2VKuPe\ntDlpK5fZFuTlYc0ouyxZReoZv2oLfp0i7Nb7d2pF3PINRepZGRdfLzybNCgzb2b0WTJjyjhY5gvq\n1v5v1/+diFa1qVrV/dIJr5NrHd8jNITss7GYY+PReXmY1mzCu0MbuzQ+HdqQ+Ns6ANIPHMbJozLO\nvt6XHcP3zvaY1my8ZLq/9p6jVi0fatb0xtnFSPceTVi79ohdmuPHEmnTpg4A9er5cfZsKiZTOidO\nJHHb7dVwd3fGyclARKtarF51+LLLaIt/llq1valZ0xsXFyPd72vK2jX22zh+PJE2kfnx6/tx7mwa\nJlM6x4+buP326gXxW7WqzeqVB0uJYq9y44aYz54jJzYOnZdH8tqNeLVra5fGq10kSavWAJBxML/9\nfbxxr12T9IOHsZrNYLVyYc8+vDva9u3zO/4EqzU/zyFc/P3stnk9+l71PncT/Z+f0bl5AOSm2D4j\nfVo3J/3YKdKPnSoSoeTgzdHv/6XcbH2/SmgI2WdiMZ+z9f3E1ZvxLd73O7Ym4df1AFzYfwRjkb7v\n4u+LT9sI4n9ZVWLb9UYOIPrTr0t7m6/a9Wj/oDvCObNsEwAp+47h7FEJVz+vEun8WjUldk0UAKeX\nbiSoc0SJNMW5BfgQ2KEFMT+vK3V9ldAQss/GFXz2Jq7ZhE8H+6vFPh1ak/Drxc/eI5f92Vt35ECi\nP/l3qXP/HN/3sT9xKKesqHL9r7y6ZQZvSqmnlFJ7lVJ7lFLfFFvXQim1LX/9IqWUd/7yUUqpA/nL\nv8tfVlkp9ZVSKkop9adSqvgcMXEZjF4BWJPjCl5bU+IxeAeUmd6tYx9y/toMQN7ZYziHtERVrgou\nbrje1hGDT9AVxXf198GcYCp4bU5IwtXfp1gaX7LjkwrTJCbj6u97RXHK4uzrT15i4bfdeaZEnH39\nLy9vYDCW86kEj3mFOrM+J2jkiyhXtzLTZycUqUNCyTq4+vsUS2NrC7cSy6+s/gF3tbt0oluEi5+v\n3f6Wk2gq0ZYufr7kJCQWSZOEi19hmiYfTua2zz8k4IF7Smy/SvOm5Cankn0m9pJlSUi4QFBQlYLX\ngYGeJMTbT7dq1Diw4KT8r71niT2XRnz8BRqE+LNr52lSUzLJyspl08bjxMWdv2TMouLjLxAUVLXg\ndVBZ8VceAmDv3rOcO5dKfNx5Qhr6s3NnTEH8jRuPEnsZ8W1tW6T9TSZcirW/s59fsfY34eznR9bJ\nU1S5rRlGzyoYXF2p2iYC5wD7QRqAX/e7SYvaYbfsevS9SrWq4dU8lIgvp9HykzepElo/f3kwaGgx\ncwKtvn6nzLZw9Pt/q3EpfqxJTMKl+LHGz8d+/0xIwtXPlqbeqIGc/PTrEgMEnw6tyTElkXEs+voV\n/hpxC/Ahq8ixNCshGTd/+8GRi5cHeRcy0BZrqWl8bg+h83fTaTP7JarUq16wvNkLT3Jg1gJ0GT8Y\n5uJfrO8nJuHq51sijf17ZCpMo6HpjLdo/sUHBD5wd2F5OrQmJzGJzOPRpcYtj31f3DxuiXvelFJN\ngYlAO621SSnlA4wqkuQ/wEit9Qal1FvAG8AY4BWgrtbarJS6+DXRBGCt1npA/rIopdRqrXUG4rpw\nbtwK9459SJn+JACW2BNkrvgKrxfmoc1Z5J4+DLrkfR03K2U04la/IfGfzSb7yEEChozAt19/TN9+\n5eiiFfBs2gBrdo6ji3HT2P/8y+SYknHyqkqTD98iK+YMF/bsL1jv17UTpjWbrlm8QYPb8fa0lTzU\n+3NCQgJoHBqE0aCoX9+PAYPaMmTQAtzdnWnUOBCD4dp/Ozl4SAemTf2V3r3m0rBhAKGhwRiMBurX\n92fQoPYMGjgfd3dnGjcOwmi4vt9BZsecJu67hTR8dwrWbDOZx08UXG27KPjxR9AWC8mrS//2/1pS\nRgPOVT3YMfA1PJs04Lap4/i9z/MooxGv5o3549lXsGSbuXPDfBRBaOIuvdFiHP3+CxvvdhHkpqaR\ncfg4VcOaFSw3uLpQ86m+7Bs7yXGFu4HSDkWz6r5RWLLMBLRvTqsPxrG29wsEdgzDnJJG2qFofMND\nr0vsv55/hRxTMs5eVWk6402yYs6QfugYNZ7sx/5xb1yXmGW5kr4PdAXW3NACihvmlhi8AV2AhVpr\nE4DWOlkp2wFHKVUV8NJab8hP+zVw8U72vcB8pdTPwMU7Ru8Geha5X84NqAXYzd1RSg0BhgDMnTuX\nIUOGIApZUhPsrpYZvAOxppScN26s0RDPZ94idcZz6Iy0guXZm/5H9ibbTd+V+4zGmnJlJyjmxGRc\ni3x77hrgizkxuViaJNwCfbkY1dXfB3NiEtdCblIiTv6FV9qc/PzJTUr8mxxF8poSyTMlkn3Etstd\n2LIB3779y0zvFlD4jZ9rQMk6mBOTcQsoUs/8tlBOTpfMW5bAu9oTt2ozDRqUXa5bSY4pyW5/c/H3\nK9GWOaYkXAL8ufhR4uLvS44pKX+dbd/MS00jedM2PEJDCgdvRgM+ndry1+Cxl1WWgIAqxMUVXmmJ\njz9PQGAVuzQeHq5MmfYAAFpr7rnrY2rUtH0L/lDfFjzUtwUAM2esI6hY3ksJDKxCXFxhX44rI/60\n6b0K4nfrOpuaF+P3C+OhfmEAzPhwDUGBnpeMaWvbIu3v50dOsfbPNZny2z8/jb8fuSbbt/GmFSsx\nrVgJQPWBT5OTWPgtve89d1E1sjVHxr9WIu716HvmhGQS120H4PyBY2irFWcvT8wJSaT+eYDcIg9N\nUPiWGLw5+v2/1eQUP9b4+5JT/FhjSrbfPwN8MZuS8e3cFp/2rfCODMfg4oyxciUavj6GM/MX4Roc\nQNi/ZxZss8VXH7Jn8IvkJqfemIpdhjv+Ow2A1AMncA8s3J/dA3zITrS/FzonNR2nKpVRRgPaYrVL\nk5eRVZAuYcseDK8YcfHywKd5Q4I6hRPYvgUGF2ecPNxpOdn+frWcxGJ9398XsympRBrXAD8u9gpX\nf7+CNBc/e3NT00jauA2P0IbkXcjANTiAFv83syB9iy9nsGfI+IL2d3TfB1pSAQZv8rTJq3PLTJu8\nSvcBH2PrBH8opZwABTyktW6R/6+W1rrETRda63la6witdYQM3ErKO7kPp8BaGPyqg9EJ1zbdMe+2\n/9ba4BNE1ednkvb5q1ji7eZyo6r4FKRxDe9K9rblVxT/wsFjVKoZjFtwAMrJiYC72mPa9IddGtOm\nHQR17wyAZ9MQLBmZ5CRdmwNj9pHDuFSrgXNgEDg54dmpC+nbf7+svJbUZHJNCbhUt910Xbl5OOaY\nU2WmL1rPwG7tMW2yn9qVuGkHQT3uAGz1zEu31bN4G5WWt1RKEdC1HfGrtlxWfW4F6YeO4lajGq7B\ngSgnJ/y6diRly3a7NMmbo/C/504APJo0wpKRSW5SCgY3VwzutntQDG6ueLVqQdaJwgfUeIW3IDvm\nTInBSFma3VaNmFPJnDmTSm6OhRXLD3DnnQ3t0pw/n01uju2WiZ8W7iY8ohYeHq4AJCXZJhnEnktj\nzarD9Li/GVei2W3VORWdzJnTKeTkWFixbD93dikZPyc//o8L/yQionaJ+OfOpbF65SHue+C2S8bM\nOHQEt+rVcAmytb9Pl06kbt1mlyb19+34dusKQOXQRlgyMshNtp08OnnZpnm6BPjj1bEdyWvWA7Yn\nWAY90pdjE9+03RNXzPXoe4kbo/AOt7W5e81gDM5O5KaeJ2n7Hio3qIXB1QVltB3aNSU/rxz9/t9q\nLhw6invNYFzz30v/uzqQvCXKLk3y5igC7u0MQJWmDbGkZ5CblMKpud/yR59B7Og3hMOTPiBt516O\nTJ5J5olTRD3wDDv6DWFHvyGYE5PYPWBcuRq4AQUPGIldv4Ma93UEwLtZA3LTszCbSpY1accBgrva\n7kereX8n4jbsBMDVt3CatVfTemBQ5KSmc3DO96zqMZLVD4xh52tzMP1xgF2vf2q3zQuHjuJeo0j7\nd+1I8uZi7b8lioB7L372NiQvv/0Nbq4Y7T57w8g8cYrME6f4o+fT7Hx4CDsfHoI50cTugWPt2t/R\nfR8o/fHT4qZwq1x5WwssUkp9qLVOyp82CYDWOk0plaKU6qi13gQ8CWxQShmAmlrrdUqpzcCjgAfw\nGzBSKTVSa62VUmFa6z8dUakKzWrhwrfT8Bo3F2UwkrV5EZZzx3HrbHtaW/b6H6jccxgGj6pUeXJi\nQZ6Utx4BoOrzMzB4eKEteVz4dio668oekawtVo588AUtZk60PY536VoyTp6hWm/bnPZzi1aS9Psu\nfNu1pO3CObZH+U75pCB/0zfH4NWyKc5eVWi3eC4nv/ie2F/WXlH94z+bRc233gODgbRVK8iJicar\ne08AUlcswejlQ52ZczFUqgRWjXevvpwc9jTWrEziP5tN8PiJKCcncuNiiZ35dpmhDr//JWGzJoDB\nQOzSdWScPEP13t0AOLtoFUm/78KvXRhtf/zI9pMIUz4uaKPS8gL439Gahi8MwMXLkxYfvsqFI9Hs\nHmN7hLVXWCjmBBPZ567+CWjjx/1EVNQpUlMyubPTDEaM7FxwteVGuObxLVZOzpxL6PuTUAYDCctX\nkxV9msCe9wIQv+RXUrftwLttOGEL5mI1mzk2fTYAzt5eNJpqu6qjjEZMqzeQGrWrYNO+XTtiWn3p\nB5Vc5ORk4LWJ9zB00AIsViu9+zSnQdCqkpYAACAASURBVIg/339nO1F65NFwThw3MeHVX1AK6jfw\n560p9xXkHzv6J1JTs3ByMjDh9Xvw9Cz7fsuy4k/4V3cGD5qP1aLp/VALQkIC+G6B7QTl0cciOHE8\nkVdfWYxC0SDEn8lTHyjIP3rkD6SmZuHsZGTiG90vL77VSsxHn9LwnSlgNJC0YiXZ0TH4P9ADgMRf\nlpO2/Q+qtmlFs2+/zP+pgBkF2etPmoCTpyfakkfMrE8Kfg6g1qhhGJydafiebd9PP3CYmJlzCvJd\nj7537pd1hE4cRpv5H2DNy+PAW7Y8eRcyOL1gKa3+7+2Cr7M1Z0ttf0e+/5dyM/b94x9+TrMP3wCD\nkfhlq8k8eZqgXrZ7V+MW/0bK1p14tw0n/PvPsGabOTpt9jWqzZW7Hu2fsHk3ge1b0HXxhwU/FXBR\nm1kvsnvy55hNqRyYvYDwaSMJHd6PtMOniPl5PQDBXVtTp+9daIsFizmXna/OKSNSKSxWTsyYR9MP\nJoHBQMKyNWRFnyaol+2zN27xr7b2j4yg5Xe29j823fakZGdvL0KnvQrYPnsTV20kNeryTvcc3feB\nZZffSKKiUfoWuWaplHoaeBHbE3j+BKKBdK31+0qpFsBnQCXgBPAskA6sA6piu9r2rdb6baWUOzAT\naIftyuVJrfX9lwh/azRyGRIGOO6b2YCv9rG2bV+Hxe+y9UcO3d/ZYfEbL13Pmsh+DovfddtCLMx3\nWHwjjzs8/tZOPR0Su+1G22Okc63/cUh8Z8NTDm/7HV16OCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L\n32Hzzw6rvxHbTw0sCXfMTz703DmfLR0d9yy59psWO7zvQzl+VGIRE2qNKtfnx1NjZpfLdrxVrryh\ntf4a2/1spa3bDZT2S68dSkmbBQy9tqUTQgghhBBCiL8n97wJIYQQQgghRAVwy1x5E0IIIYQQQpQP\nZfw8n7gEufImhBBCCCGEEBWADN6EEEIIIYQQogKQwZsQQgghhBBCVAByz5sQQgghhBDihpJb3q6O\nXHkTQgghhBBCiApABm9CCCGEEEIIUQHItEkhhBBCCCHEDWXVytFFqJDkypsQQgghhBBCVABKa7ld\n8AaQRhZCCCGEEDdChbik9VKN0eX6/PjdM7PKZTvKtElx3SUMaOaw2AFf7WNt274Oi99l648cur+z\nw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dejokdtuNSwAcVv/y0PY7uvRwWPyItcul793i8bd0\n7OWw+O03LXZo3wcctv933baQVW0edkhsgG7bf3B4368o5PrR1ZFpk0IIIYQQQghRAcjgTQghhBBC\nCCEqAJk2KYQQQgghhLihrI4uQAUlV96EEEIIIYQQogKQwZsQQgghhBBCVAAybVIIIYQQQghxQ8nT\nJq+OXHkTQgghhBBCiApABm9CCCGEEEIIUQHI4E0IIYQQQgghKgC5500IIYQQQghxQ8lPBVwdGbyJ\ncsGlWXs8+r8Cykj2pp/IXP6l/foWd+LReyRaW8FqIX3B2+Qe/fOytu0T2YKQMc+ijAZil6zh1Dc/\nl0gTMnYAvu3CsGbncGDyHNKPnPzbvB4NatPopSEYK7mRHZvI/jdmYcnMKtiea6Afbf4742/LVbll\nawKGjEAZjKSuXEbyj/+1r3ONWgSPeRnX+iGY/vMlyYu+L1hnqOxB0KgXca1VF9DEznqH7EMHyqx/\nw7HPogwGzpVR/4bjnsW3bUssZjMHJ3/MhcMn/zZvgxFP4tchHGteHlln4jk45WPy0jNRRiOhrz1H\nlUb1UE5Xf2F/wqtL2LD+CD6+lVmydNhVb6c8xfdq3ZI6owahDEbil63k3PyfSqSpM2ow3pERWMxm\njk+fScaREwCEff851qwstMWKtlj4a8gLAFRqUJd6LwzH4OKMtlg4OeMz0g8e/cdlvRnb37NVOLVG\nDAWDAdPy34hbsLBEmpojhlK1TSus2Wai3/2QzKPHAQjo0wv/++4BpUhc9isJPy0GoNqzT+LVLhK0\nldzUNKLf+ZDcpOSC7V2PvgdQo9+91HjoXrTVStLvuzg251sAPBrUovHLQzFWds9PaaC006NNG48x\nfepvWKxW+vYLY/CQDnbr09KymPjaEk7HpODq6sSUaT0JaRgAwDdfb2fhwl1oDf36hfHUM5GX+Q5c\nnptx3/NqHUa90YPBYCB+6SrOltL3644ejHdkOFazmaPTZhX0/fAf5mHJzEJbrWCxsmewre/XGtgf\nn45t0FYruSlpHJs2m5wi+97Vupb1j/x+1jXd9+sNeQS/Tq3AqslJSePA5I/JMaWUedxpNO5Z/NqF\nYck2s3/yJwXbL8ot2J/bp4zBuWoVzh86wb5JH6HzLJfOb1C0+ffbmBOT2f3COwAEdImk/uB+QH4f\n7dvdgX0fNyD7Mt4mUQHJtEnheMpAlScmkjpjGMkTe+LapgfGavXskuQe3EbyG31ImdSX81+9TpVn\n3rzszTd6YRB7xk1l+2NjCejWgUp1atit920bRqWawWzrN5JDb39Go5eG2FYYDGXmbfzqMI5/Op+o\nJ14gcUMUtZ7oZbfNkFFPk7xtd9mFMhgIHDaaM2+8zInhT+N5Rxdcata2S2K5cJ74ubNJ/t/3JbIH\nDhlBxs4oTg57ipMjB5JzOqbs+o8fyO6xU9n22FgC725P5VLq714zmK39RnJo+lwavTS4sP5l5E2O\n2sP2x8cR9cR4Mk+fo/bTvQEI6NoWg4sz2594gainX86PULnsdihD7z7NmffF41ec71q55vENBuqO\nHcrBF99k91PP49e1E+61a9ol8YoMx61GNf7sP5QT731M3XH2J077R09g78AxBQM3gNrDnuHMvxew\nd+AYTn/1X2o998w1Ke7N2P61Rg/nyCv/Yv+zz+HT5Q7cirV/1TYRuFWvzr4nB3Hqw9nUGjMCALc6\ntfG/7x4ODh/L/kHP4xXZGtdqwQDEff8jBwY/z4EhI0nbGkXwk/3ttnk9+p53y6b4d2rF9ifHs73/\nOE7NXwKAMhpoMmkUh96Zx/b+4/IjlHyUm8ViZcpbK5j7RX9+WTac5Uv3c+xYol2aeZ9tpnFoED//\n8hzT33mQaVN/BeDokQQWLtzF9wsHsWjxUNavP8qpU/98wFDUzbjv1Rs3lP3j3+TPJ0fgf1dH3OvY\n73vekeG41whm12PPcezdj6n/gn3f3zd6InsGjC0YuAGcXbCI3c+MZs+AsaT8voOazzxyTYp7Let/\nrff9U98uIeqJ8UQ99SKmLTupO6AvUPpxJ/j+zlSqGcSWvqM4+PY8Ql8aVGoZQ0Y8wanvlrGl7yjy\nLmRQvWcXAPzahf1t/lqP9CAj+qzdsowTp9nz8vsA1H7yQQf3fXIv9f6IiksGb0UopSKUUrMdXY5b\njVO928hLiMGaeAYseZi3r8C1RRe7NNpceFVLubqXdk5SpswzcWSfS0Dn5ZGwegv+nVrZrffr1Iq4\nFesBOL//KE4elXDx9cKzSYMy81aqFUzqn7YrXclRewjo3MZue1mxCWScOF1mmdwaNiYn9iy58bGQ\nl8f5jWvxiGxvl8aSlkr20cNgsdgtN1SqjHvT5qStXGZbkJeHNSO9zFhZReoQv2oLfp0i7Nb7d2pF\n3PINRepfuaD+ZeVNjtqLtti+0T+/7yhuAb62jWmNwd0VZTRgcHXJj3Dlx5CIVrWpWtX90gmvk2sd\n3yM0hOyzsZhj49F5eZjWbMK7Qxu7ND4d2pD42zoA0g8cxsmjMs6+3n+/Ya0xVq4EgLFyZXJN1+ZE\n+mZr/8qNG2I+e46c2Dh0Xh7Jazfi1a6tXRqvdpEkrVoDQMbB/Pb38ca9dk3SDx7GajaD1cqFPfvw\n7mjrq9YiV9sNbm4U/2C6Hn2vep+7if7Pz+jcPAByU84D4NO6OenHTpF+7FSRCCU/KP/ae5Zatb2p\nWdMbFxcj3e9ryto1h+3SHD+eSJvIOgDUq+/HubNpmEzpHD9u4vbbq+Pu7oyTk4FWrWqzeuXBSzX/\nFbnZ9r0qoSFkn40r6PuJazbh06G1XRqfDq1J+PVi3z9yWX2/6EwPg7sr+koOin/jWtb/Wu/7Rets\ndHMt3Fgpxx3vsCbErtgIQNq+ozhVsW2/OJ+IpiSs3QbAuWXr8b+jVX75IsrM7xrgg1/7lpxdvMZu\nWxnRZ8mMiQXAHJ/k4L6P/YlDOWXV5ftfeSXTJvMppZy01juAHY4uy63G6BWANTmu4LU1JR6nereV\nSOfSsiseD43GUMWX1FnDL3v75gRTkb+T8GwaYrfe1d+X7PikwjSJybj6++Lq71Nm3oyTZ/Dr1ArT\nxj8I6NIW1wA/W13c3aj9xIPsHj2ZWv17llkmZ19/8hILv+3OMyXi3qjJZdXHOTAYy/lUgse8gmvd\n+mQfO0L8vI/Q5tJnSGQnFKlbQnIp9fcpliYJV38f3EosL5kXIPiBO0lY/TsACWu34d+pFR2Wfo7R\n7eLgLeey6nUzc/HztduXchJNVGnSqESanITEImmScPHzJTcpBYAmH05GW63EL/mNhF9+AyD6oy8I\nff9Nag9/FqUM/DX8pRtQm4rH1rZF2t9kwiPUvv2d/fyKtb8JZz8/sk6eovqApzF6VkGbc6jaJoKM\nI4VTU6sPeArfu7tiycjg8LhX7LZ5PfpepVrV8GoeSv3nHsNqzuXoR//hwsHjVKoVDBpazJyAs7dn\nmW0RH3+BoKCqBa+DAj3Zu9f+CkKjxoGsXnmIiIja7N17lnPnUomPO09IQ39mzVxLakomrm7ObNx4\nlKbNqpUZS4CLf7F9LzGJKqENS6SxO9YkmnC92Pc1NJ3xFlitxC3+jfhfVhakqzX4CQLuuZO8jAz2\njZ54/Stzla7lcafec48R3L0TeemZ7HreNgOntOOOi1cVsuML2zQ7IQk3fx9yklILljlXrULehcyC\nLyKzE5Jx8/cpLF8Z+RuNfYajc77FqVLZg1xzcmGc8tL3xc2jXF15U0r9rJTaqZTar5QaopR6Tin1\nXpH1zyil5uT//bpS6rBSarNSaoFSavzfbHe9UmqWUmq3UmqfUqp1/vJJSqlvlFJbgG+UUp2VUkvz\n13kopf5PKfWXUmqvUuqh/OV3K6W2KqV2KaUWKqU8rmujiAI5u9aQPKEnaXNG4dF7hEPLcnDqx9To\ncy8R//cOxkru6DzbN2F1Bz3M6e+XYsm6flPNldGIW/2GpCxfTPTowVjNWfj263/pjNdBnWf6oPOs\nxP26CQDPpg3QViub7x/Clj7P56eSLvJP7X/+ZfYOHMPBF98kqHcPqjRvCkBgr+5Ez/mCXX0HEj3n\nC+q/PNLBJb35ZMecJu67hTR8dwoh70wm8/gJsBbeR3b2q/+w99GnSVq9noAHH7ju5VFGA85VPdgx\n8DWOzfmG26aOy19uxKt5Y/a/MZudQ17PTx14VTEGD+nA+QvZ9O41l/nfRBEaGozBaKB+fX8GDWrP\noIHzGTJoPo0bB2E0lKvTiJvOX8+/wp4BYzkw/i2C+/TAs3nhl3wxn3/Ljr4DSVy1geA+9zmwlDfO\nic8WsKXXMOJ+20SNvvcCpR937K7MXUN+7VuSk5zGhUMl75+73q6s79P1hhdQ2FFK+SilVimljub/\nX+bldKWUUSn158UxyKWUt0/dAVrrcCACGAUsAnoXWf8I8J1SqhXwENAc6J6f/lIqaa1bAMOBr4os\nbwLcpbV+rFj614E0rfVtWuvbgbVKKT9gYn76ltiu0o2jFPmDzx1KqR3z5s27jOLduiypCRh8ggpe\nG7wDsaYklJk+98hOjP41UB4lp0CU5uJVMdvfvpgT7aeWmROTcAv0LUzj74M5Mcl2Ba6MvJmnzrF7\nzGR2PPsy8as2k3XWduXQs0kI9Z9/krb/+4Qaj9gOpl73F92F8+uQlIiTv3/Bayc/f3KTEkukK02u\nKZE8UyLZR2zTlS5s2YBb/ZJXxC4qmNKIbbqHOTHJbr05MblYGls9s0sst88bfF9n/NqHs/+NWQXL\ngu7uQNLW3WiLpWBKh8Lnsup1M8sxJdntSy7+fiXehxxTEi4B/kXS+JJjSspfZ9vv8lLTSN60DY9Q\n2/vtf28XkjdsBSBp3RY8in2jL2xsbVuk/f38yCnW/rkmU7H29yPXZPvm3bRiJQefG83hMS9huZBO\n9mn7K1UAyWvW4d3Jfurz9eh75oRkEtdtB+D8gWNoqxVnL0/MCUmk/nmA3LQLWM22q92l9b3AwCrE\nxaUVvI6LP09AYBW7NB4erkyb3otFi4fy9rsPkpySQc2atvOOh/qF8eP/BvPN/GfwrOpGnTrSv/9O\nTmKxfc/fF7MpqUQau2ONv19Bmot9Pzc1jaSN20rt44krN+B7R9sSy8uLa3ncuSjut80E3Gmben7x\nuFP9wbsIm2UbvGitcQssbFO3AF+yix37c9Mu4FSlEspoyE/jU5DGnJhcan6v5o3w7xRBh0VzuG3K\nGHwimtFsUskvzVx9Cs9PHNH3gZYlClUO6XL+7x96BVijtQ4B1uS/Lsto4LLnoJe3wdsopdQeYBtQ\nE6gLnFBKRSqlfIHGwBagPbBYa52ttb4A/HIZ214AoLXeCHgqpS72rCVa66xS0t8FfHzxhdY6BYjE\nNtjbopTaDTwN1C4lL1rreVrrCK11xJAhQy6jeLeuvJP7cAqshcGvOhidcG3THfPudXZpjAGFN3g7\n1QoFJxd0emrxTZWqUs1g3IIDUE5OBNzVHtOmP+zWmzbtIKh7ZwA8m4ZgycgkJymVCwePlZm3YGqC\nUtR5ti9nF60CYNew19naZzhb+wznzPe2e9JSly4qUabsI4dxqVYD58AgcHLCs1MX0rf/fln1saQm\nk2tKwKW6rU0qNw/HHHOqzPRF6xDYrT2mTfYzgxM37SCoxx0F9c9LL73+RfP6RLag9hO92PPiO0UP\nFmTHm/COaAaAIf+bT835y6rXzSz90FHcalTDNTgQ5eSEX9eOpGzZbpcmeXMU/vfcCYBHk0ZYMjLJ\nTUrB4OaKwd02Pcfg5opXqxZknbA9oCYnKRnPFrb29mx5O9lnzt3AWlUcGYeO4Fa9Gi5Btvb36dKJ\n1K3b7NKk/r4d3262L6srhzbCkpFBbrJtyqqTl22aoUuAP14d25G8Zj0ArtULpwx6tY8kK+aM3Tav\nR99L3BiFd7jtPXevGYzB2Ync1PMkbd9D5Qa1MLi6FJyMatIortlt1TkVncyZ0ynk5FhYsWw/d3ax\nHxCcP59NTo7tlpkfF/5JRERtPDxs/TkpKQOAc+fSWL3yEPc9UHKKuyh04dBR3GsE45r/Xvp37Ujy\n5ii7NMlbogi492Lfb0heekZB3zfa9f0wMk/YPuvdagQX5Pft2IasmJJfKDjatd733WsWfsnr3ymC\nzFO2z7uLx50zP/3GjiG26aMJ66MI7t4JgKrNCrdfXMrO/QR0sT0xtdp9nUncuKOgfKXlP/bJAjY9\nMIzNvUfw18SZJO/Yx75JH5XYrmugr0P7PlD646fFjdQL+Dr/76+BB0tLpJSqAdwHfHG5Gy4397wp\npTpjGzC11VpnKqXWY3vU6XfAw8AhYJHWWiulriZE8UH0xdcZV1JMYFUpV+nEP2G1cOHbaXiNm4sy\nGMnavAjLueO4dX4YgOz1P+Aa3g23dj3RljzIyeb8Z2XOki3hyAdf0GLmRNtjd5euJePkGar1vhuA\nc4tWkvT7LnzbtaTtwjm2R/ZO+QQAbbGWmhcgsFsHajxkm7KRuH47sUvXXnGd4z+bRc233gODgbRV\nK8iJicaru+0+udQVSzB6+VBn5lwMlSqBVePdqy8nhz2NNSuT+M9mEzx+IsrJidy4WGJnvl1mqMPv\nf0nYrAlgMBC7dB0ZJ89QvXc3AM4uWkXS77vwaxdG2x8/sv1UwpSPC+pfWl6ARi8MxODiRNhs27ec\nafuOcPjdzznz42+EThxOm/9+SGE/vbxBdlHjx/1EVNQpUlMyubPTDEaM7MxD/cKueDtX65rHt1g5\nOXMuoe9PQhkMJCxfTVb0aQJ72vah+CW/krptB95twwlbMBer2cyx6bZnJzl7e9Fo6muAbXqMafUG\nUqN2AXDi3TnUGTUYZTRizcnhxHsflx7/Ct107W+1EvPRpzR8ZwoYDSStWEl2dAz+D/QAIPGX5aRt\n/4OqbVrR7Nsv838qoPCnPupPmoCTpyfakkfMrE+wZNgOGzUGP4tbzepoqyYnIYFTM+bYhb0efe/c\nL+sInTiMNvM/wJqXx4G3bHnyLmRwesFSWv3f26AvHt5KDuadnAxM+Fd3Bg+aj9Wi6f1QC0JCAvhu\nge0E8dHHIjhxPJFXX1mMQtEgxJ/JUwung44e+QOpqVk4OxmZ+EZ3PD3drv59KcVNt+9ZrJyYMY+m\nH0wCg4GEZWvIij5NUC9b349b/CspW3fiHRlBy+8+w5pt5th022DA2duL0GmvAra+n7hqI6lRtp/I\nqT30KdxrVQetMcclcPz9T/9RvS+6lvW/1vt+g+GPU6lWNbTWZMclcvidzwFKPe6c+fE3POrWoP1P\ns7Fk53Bg8ieF5ZrxCgemzsVsSuHonPncNmUMDYY+yoUjJzm7xHYsN235E792LUvNXxb/O1rRePwA\nAIzurkT+9wPMSakO6vssu6o3TVxLgVrr2Py/4yh7HvtM4CWgShnrS1BaX4MLg9eAUqoXMEhr/YBS\nqjGwG7gX2INtemIM8LLWOip/2uRcoB22AeguYJ7W+v0ytr0eOKS1fk4p1QH4VGt9m1JqEpB+MV/+\nAHK81vp+pdTbgJvWekz+Ou/8WDuBLlrrY0qpykB1rfWRS1SvfDSygyQMaOaw2AFf7WNt274Oi99l\n648cur+zw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dyn5wzfXUdqPtMdKOqn95aPsdXXo4LH7E\n2uXS927x+Fs69rp0wuuk/abFDu37gMP2/67bFrKqzcMOiQ3QbfsPDu/72C42lHvPB40u1+fHn8TP\nHgoUnT43T2tdcC+UUmo1EFQiI0wAvtZaexVJm6K1trvvTSl1P9BDaz286BjkUuUqN1fegF+B55RS\nB4HD2KZOorVOyV/WRGsdlb/sD6XUEmAvEA/8BaXMD7GXrZT6E3AGBlxGeaYAHyul9mF75OqbWuv/\nKaWeARYopS7eDTsRuNTgTQghhBBCCFFB5A/Uynxwhdb6rrLWKaXilVLBWutYpVQwUNrDHNoDPZVS\nPbDNNvRUSn2rtX7i78pVbgZvWmsztoePlLautFHo+1rrSUqpSsBGbFfE/s63F6+iFdnupGKv1wPr\n8/9Ox3ZPW/GyrAVaFV8uhBBCCCGEEMASbOOIt/P/X1w8gdb6VeBVsJv997cDNyhHg7erME8p1QTb\nSPVrrfUuRxdICCGEEEIIcWnl5M6t6+Vt4Ael1EDgFLbnd6CUqgZ8obW+6nn9FXbwprUu8cNWSqmP\nsV2CLGqW1rrzDSmUEEIIIYQQ4pamtU6ilN/b01qfA0oM3IrO/ruUCjt4K43W+vlLpxJCCCGEEEKI\niuemGrwJIYQQQgghyj+rowtQQZW3H+kWQgghhBBCCFEKGbwJIYQQQgghRAUggzchhBBCCCGEqADk\nnjchhBBCCCHEDWW9uX8q4LqRK29CCCGEEEIIUQEofZP/Ql45IY0shBBCCCFuBOXoAlyOIQGjy/X5\n8byEWeWyHWXapLjuvm/+jMNiP7Ln3yy4/VmHxX9s7/9xok/x342/cer9bwsrWj3msPjd/1jA5g4P\nOix+h80/Ozz+2rZ9HRK7y9YfAdjfvcRvhN4QTVesYVlEf4fEBrhvx38d1vZga3/Lv90cFt/4TDZb\nO/V0WPy2G5c4vO9t6djLYfHbb1qMhfkOi2/kcYfVv/2mxQDs6FLid4hviIi1y/mh+dMOiQ3w8J6v\nHd73K4pyPXIrx2TapBBCCCGEEEJUADJ4E0IIIYQQQogKQKZNCiGEEEIIIW4oedrk1ZErb0IIIYQQ\nQghRAcjgTQghhBBCCCEqAJk2KYQQQgghhLih5NfKro5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0\nSSGEEEIIIcQNZXV0ASooufImhBBCCCGEEBWAXHkTN1zYy48T3OF2LNk5RL3+BSmHTpVIU7m6H23f\nGYZLVQ9SDkaz/bV5WPMsOFepROu3BuJRIwBLTi5/vPElacfOAnD/8vfJzcxCWzTaYmFV/zcvWZaW\nL/enWkdbWba9/iUpB0uWJeTRrjR6ohtVagXyU6eR5KSmA1ClThCRkwfiHVqbvR/9j0Nf/3rVbeIe\n1gbfAWNQBgPnV/9C2qJv7dZ7dLqbqg8+jlIKa1YmpnnvkxN97Kpihb7wNP7tW2DJzuGvNz/l/OHo\nkuWp5k+LqaNwrurB+UMn2fOvj9F5Fqrd2566T/VEKcjLzGb/219y4WgMlWsH02LaqIL8laoFcHTe\njyW269UmjHqjB6EMBuKXruLMt/8rkabe6EF4tw3Hmm3myLTZZBw5UbjSYKDFF++Tk5jEgZen2uWr\n/mgv6o54lm33PUle2oVyFRvAJ7IFIWOeRRkNxC5Zw6lvfi6RJmTsAHzbhWHNzuHA5DmkHzn5t3k9\nGtSm0UtDMFZyIzs2kf1vzMKSmVVq/KI8wlsR9NzzYDCQ+utyTAu/s1vvUqMm1ce9hFuDBiR8/RVJ\nPy2034DBQL3Zn5BnSiJm0oRLxruoyfinCMjf9/ZM+qzMfS9s2khcqnqQdvAku//1CTrPQuAd4TR8\nrh/aakVbrBz44BtS9hwGoM6j91Kr952AIubntUQvKNkX/0n7N54wHL924eSkpBH1xLgS+Wo+9gAh\no55m073PklvG+1/UpuNuTF/tg8UKfVukM7jtebv1UadcGfFTANWr5gHQrVEmwzukcTLJiXE/+xek\nO5PqxMiOqTzV+tIxvVq3pM6oQSiDkfhlKzk3/6cSaeqMGox3ZAQWs5nj02cW7P9h33+ONSsLbbGi\nLRb+GvKCrb0mvYh7zeoAGD0qp4i55QAAIABJREFUY0nPYO/AMaXHd3D/82odRr3RgyE//tlS6l93\n9GC8I8Oxms0cnTarIH74D/OwZGahrVawWNkz2Fb/WgP749OxDdpqJTcljWPTZpOTlFxq/Ms14dUl\nbFh/BB/fyixZOuwfbeui61H3OsOfwbtdK3ReHtln4zg6fTaW9IxS43u2CqfWiKFgMGBa/htxCxaW\nSFNzxFCqtmmFNdtM9Lsfknn0OACBfR/Er8c9oDWZJ6OJfmcGOjcX9/r1qD12BAYXZ7TFSsysj8k4\ndKTMNgh7+XGCOjTPP+/4nNQyzjsi3xlecN4R9dpc23mHhzttpg2lUpAvysnI4a9XEL14E1VqBxH5\n7vCC/B41Atj3Scn9uihH9H1x85HBm7ihgjvcTpVagSx/4GV8b6tP+MSnWP3E5BLpbh/9MIe/Xcnp\nX7cTPvFp6vbuxPGF62gy6AFSD8WwZexHVKkTTPhrT7J+yLsF+dYNeqdgcHVZZakdyNL7X8H39npE\nTHySVY9PKZHOtPso5zbupsuXr9gtzzmfwc63/0uNLmFX2ArFGAz4DX6B2DfH8P/snXd8U9X7x983\nHUkXtM1oC2Uvochqy16COHCCIiqoDBkiyBBQ9OsE3CAqigx/7q1fvyqggiBToJQpe7ZAZ5IOupI0\nyf39cdO0aVpApKTgefviZXrvc87nnOeeJ/eee0bs5mzqv7aM4u2bKD2T4jYpzUon45mJOIsKCOrY\nFd34maQ/OfZvS+m7dyCkYTQbBk8lvG1z4p4czZaRz3jZtZp4PylfrCRj9RbinhxNgzuu49T3v1Oc\nns22cS9iLyhC1709bZ8aw5aRz1CUmsHmYbNc9ZHot/I9Mv/YTutpD3rUs9m0ceyb+hy2bDMdlr2O\neVMSJSln3CYRXePRNIhhx72PEBbXkubTx7Nn7Ez3+XpDbqU49Qz+wUEe5Q006AhP7IAlM7taH/tM\n26Xf6vGH2TX5RazZOST83ysYNyZTXEFf260jwQ1i2DpkEnXiWtBq5lh2PDzrnGmvmfUIxxZ+Qt6u\nA8Tc2o+Gw+/g5JKvqi+Hqywxjz5GylMzsZuMNH3rPQq2bcF6qvxhxlFQQMb7C6nTrUeVWWjvGIz1\n1Cn8gkPOrVUBfY8OhDSIZt2gaYS3bU7bWaP4c8SzXnbXTLqPk1/8QsaqLbSdNcrd9kxJ+8havwOA\nsOYN6PTKZNbfPZ3QZrE0HHQdmx58Btlup/PbT5K9cZdXnS/a/0Dmij848+0vtHl2kld51QYtkZ3b\nY8kwXpAfHE6YsyqSZfdmE1XHztCPYriuRQnNdaUedvGxFhbd45lnE62dH0ZnuPPpuzCW/q2Kzy+q\nUtFk6jgOTHsWm9HMtUvmkbspiZLU026T8K7xaGLrsev+cYS2aUWTaY+wb/wM9/n9k5/26hgdff51\n9+dGj46q9uG9NsRf02nj2D/1OWxGM+2XvkHO5iRKUsrrH9E1nqDYGHbeN57QNi1p9vgj7B1XXv99\nk//jVf+0L3/g1AdfABBz1600GDGU4/MWVV+OC2DQ4PYMG57Ik094v1y4KGqo7nnbd5Oy+BNwOGk0\n/kFih99F6vufVKnfcPIEjsx4mlKjidaLFpD351YsFdpe3S4JaOrXZ98DDxPSuhUNp0zk0KNTCdBp\nMQy6nX0jxyPbbDR9dhaR/fpg/u13YseNIv2TLziblEzdLgnEjh3F4WlPeusD0T3bEdowml9um0nk\ntc2I/89DrBn+opddu8lDOfLZbxWeO/pw/Nu1NB/an7Mn0tn02ALUEWHc9OMrnFrxJwWpmaweqnyH\nSSqJW1cvIG3tDjrOHFZlOXwS+4Krkn/FtElJ4V9R19pO/es6kvLzZgDMfx0nICwYja6ul11U59ac\nWb0dgJSfNlG/XycA6jStR1bSQQAKUjIIqadDHVnnosoSe11HUn7+UynL3hMEVlOW3EOnKEo3ex23\n5hSQs/8kTrvjovTLUDdvTWnGGexZ6WC3U7RpDSGde3lqHd6Hs0i5eVqP7Mdfa7goLUOfeNJWbAQg\nb98x/MOCUWvDvey0iXFkrt0GQNqKDRj6JChp9h7FXqA8oOX9dQyNIdIrrS6xLcVnsrBkmjyOh7Vu\ngeVMBtb0LGS7HePvm9D27OJhE9mrM9m/rgOgYP8R/EJDCNBGABCo1xLZLYGsn1d7aTadNIqURR9D\nNdsO+1IboE6b5hSfycSSno1st5P9+2b0vRM9bHS9E8n8RdE/u/8o/qHBBGrDz5k2uGEMebsOAJCT\ntAdDX886VUVQy2uwpadRmpmBbLeTv/4Pwrp297Bx5OdhOXIY2W73Su+v0xHauQt5v608r1ZFovrE\nk7ayvO0FVNP2dIlxZK5R2t6Z5RuJ7qu0PUeJ1W3jF6Rx7zEd2rg+efuO4bTakB1OzDsPEt3P07f/\nxP8AebsPYj9b9UuhFpNHcPzdT5HP1QAq8Fd6IA0j7DSIsBPoBze3LmLtkaDzJ6zE1hQNDcNLqV/3\n/N8/oa1bYEnLwJqhtH/Tmo1EVG7/Pbtg/O0PAAoPHMa/Qvu/ELTX9cC0ZkOV53wdf2GtW2BJy3TX\n37hmI5E9O3vq9+xM9q9l9T9yQfWvOMqtClJfcBs4FwmJjahb9++3h+qoqbrnbd+t9CJQrpdar6vS\nLuSalljT0rFlZCLb7eSs3UB4924eNuHdu2JevQaAooOuthep6Et+fqjUgaBSoVKrKTW77sWyjF9w\nMAB+ISHnHPGsf10n93NHzjmeOwzVPHfIMvgHawDwD1Zjyy/C6fBcrWXoEkfRaSPFGd7PCmX4IvZr\nO065dv+rrVy1HRpJkhpLknRYkqRPgH3AB5IkJUuStF+SpBcq2KVIkvSCJEk7JUn6S5Kka1zH9ZIk\nrXbZL5MkKVWSJJ3r3HBJkpIkSdotSdJiSZL8fFPLK48gQwTFWeVfsiVZuQQZPG8SgeGh2AqKkV1f\njsVZuQS7bPKOnCK2fzwAkW2bEByjJThKOScj03fxTAZ8+TxN7+pzAWUJpyizvCwVdS4n/lo9dnP5\nW2O7ORu/SH219mHX30rxrq0XpaXRR2LJKr+5WLJzUFfqgAXUDaO0oMjtf0u2ucpOWoM7+mL8c7fX\n8ZgbupP+259exwP1kVizyzt0VqOZQL1nvmpdJLYKNrZsM2qdYtP0sdGcXPSx1w/DRPbsjM1kpuhY\nSnXV9qk2gLqyfrYZdWV9vdbj2liNOaj12nOmLTp5Bp2rE2Lo1w21oeoHqIoE6HSUGsvf6paajPhr\nz5+ujOhxj5L1wRLkv3ln0+gjKKkQb5asHDSV4q3qtlduE9U3gT7fvUHighnseXEJAIXHTxPR4RoC\n6oaiUgdi6NGBoCitR77/xP/nQtcrEasxh8Jj3lOwqiOr0J/oOuWd4ugwB9kF3reQXWlq7lwWw9iv\nDRw1BnidX3kwhIFtLuzNe6BO61F/m9HkVbdAnRZbtrGCjZlAXblNm/mzuXbpfAy33eiVf1j7OEpz\n8rCcyaha38fxF6jXeuZtNKPWab1sPMtoKreRIe7NF2m/bB5Rt93gka7hmOEkfPcB+gF93KNwtYma\nrHsZUbf0J3fbjqr1dZX0TSYCK7W9AJ2uUtszKd9TJjOZ3/yXdl99TPvvPsdRVMTZZGVU/fS7S4gd\nN4p2X31M7PjRpC37qFofBBkiKKkQ2yVZORf03FFmc+yr36nTtB63/f4WN3w3l92vfe7VFhve1IVT\nv577vuyL2BdcnVy1nTcXLYD3ZFmOAx6XZTkBaAf0kSSpXQU7kyzLnYBFwHTXseeAta603wENASRJ\nag0MBXrIstwBcABeY+SSJI11dRaTlyxZUkPV+/dx8P9WEFgnmBu+fpEW9w0g71Cq+yFy7Yi5rBr6\nLBsenUeLof3Rd2rp49JeejRtOxHW/1ZyPnnPp+WIjG9D7O3XcXjhlx7HJX8/DL3j3SMnl4qI7gmU\n5uVTdPi4x3GVOpAGD95N6rIvq0l5ZWufj4Nz3yV28E0kfPgqfsFBVY6UXUpCO3fFkZeL5djRGtWp\njqx1yay/ezo7ps+n1fghABSmpHPik5/psnAWnd95grNHUt0PYDWJSh1Io4cGc2Lp15c87zbRNtY8\nmsb/Hs5gWPxZJn3v+TLH5oA/jgZxY+tqpileYvY/+gR7R0/h4IwXiB40kLD2cR7ndf17Y1qzsUa0\na0P8/fXok+wZNZUD018kZvBA6rRv4z53aulnJN89GuPq9cQMvqXGy3K5OVfdAWIfGILscGJctf6S\na/uFhhLeoyt/3T+SvUOGo9JoiLz+OgD0tw/k9HtL2XvvQ5x+dymNp0++5PplRHdvS96hU/x8/WRW\n3/MMHWc9gH+Ixn1e5e9HvT4dOb0q6R9r1bbYF9ROrvY1b6myLJe9CrlHkqSxKHWOAdoAe13nylaY\n7gAGuz73BAYByLL8qyRJua7j/YF4YLskSQBBgNdke1mWlwBlvbZaPPha8zQf2p+mg5WRsJz9JwmO\nKn/jGhQVQUl2roe9La+QwLBgJD8VssNJcFQExS4be5GFpGc/cNveuvINCs8o7i/JzgOU6Yxn1u4k\nsm1Tr7K0GNqPZq5ROfP+k4RER1L2TrCizuXEbjZ6TIP01xpw5Hivnwls1Az9hCfJnP04zsKzXuer\no+GQATS4sx8A+QdOoKkwKqExRGLN9pxuUppfQEBYiNv/GoMWSwWbsOYNufY/Y9k++RVK8z2nkum7\nd+DsoZPYcvK9ymEz5niMDKn1WmxGT22rKYfACjaBBi1WUw7avt2I7JFIRNd4VIEB+IUE0/KZKZz5\n/AfUMQY6frTAnWeH/5vPnjEzKM3JqxXa4BrFqahv0GKtrG80o4nSUuY5tT4Sq9GM5O9Xbdri1HR2\nT1HWjAY1iEHXo5OX3ytTajIRoC9/IAjQ6bGbTedIUU5wmzjCunYnNLELUkAgfsHB1J8xi7TXX67S\nvtGQATS4U3nYyj9wgqDoSHL3KOc0UZFYKsVb1W3POyZzdh0iuL5BGanLL+D0j+s4/eM6AFpNGIol\n23Pq0j/xf3UExUYTFGOg86dvuOy1JH70GsmjZ2GrdP0rEhVqJ/Ns+a03s8APQ5jn9KdQdfkto09z\nC7NXSeQWq4gIVjqlG48H0SbKhi7kwjqpNpPZo/6Bep1X3WwmM4EGPXDQZaPFZjK7zim+suflk7Nx\nK6GtW1CwZ7+S0E9FZO9u/DVmavX6Po4/m9Hsmbdei9Vk9rJRG3SUrexS63Vum7L6l+blY96wldDW\nLTm754BHeuOq9bR5/VlO/5/vXuZURU3W3XBzPyK6J7B/ive6aXfepkr6Oh22Sm2v1GRytb2yMuoo\nNZmoE98Ba0Ym9nzlfpe3cTOhca3J+f0PtDdcz+mFiwHIXb/Rq/PWfGh/mrieO3L3n3SNxisvnYKi\nIi/ouaPMpvEdvTj0fysAKDydTVGakTpN6pGzT9nUJbpnO3IPpWLNOfd92RexX9v5Vz8c/wOu9pG3\nIgBJkpqgjKj1l2W5HbAC0FSwK1tM4eD8HVoJ+FiW5Q6uf61kWX7+0hb76uLY12tYNfRZVg19lrQ/\ndtL4NmUTBO21zSgtLMFi8n7Qz95+iNgBynSwxrf3JP0PZapEQFgwKn9lmkHTwX0w7jyMvciCX1Cg\ne066X1Ag0d3i3LtQVuTo12v59Z7n+PWe50hbu5PGtylrfbTtmlJaUHVZahrrsUMExMTib4gBf39C\nevanaPsmDxs/XRRRM18i+60XKc04XU1OVXPq29VsHjaLzcNmkbUumfq3KOvpwts2x15YjNXs/aBp\nTt5PdD9lTUr9W3qTvUGZEqOJ0tLxtansee5dik9leqWLubE76au8p0wCFBw6SlCDGNQxBiR/f/TX\n9yRns+ebypxNSRhu6gtAWFxLHIVFlJpzSV38GdsHP0zykLEcfn4e+Tv2cmT2AopPpJJ02wiSh4wl\nechYrEYzu0dN83p486U2QMHBYwQ3iEHj0jdc3wPTxu0eNqaNyUTfrOjXiWuBo6gYmznvnGkDIlzr\nPSWJxiPvJu0H7zVBlSk5cojAevUJiIpG8venbp/rKNha9TWrTPZHH3DkgXs5OmIYZ16ZQ9Ge3dV2\n3ABSv13NpmFPsWnYU0rbG1ix7ZVU0/YOEN1faXuxt/Yia30yAMGxUW6bOq0aowr0d+/sGOjygyZK\nS3S/RNJ+9azPP/F/dRQdP8WmW0azZfAEtgyegNVoZvuImefsuAG0rWcjNdefM3n+2Bzwy8EQrmvh\nuUOosVDlnpW1Nz0QpwzhQeUPaysPhDAw7sLfvBceOoomth7qmCgkf390/XuRu9lzdDxnUxL6G5WO\ndmibVjiKiik156LSqFEFKetyVBo14YkdKDlxyp0uPL4DllNnvB7IK+Lz+Dt0lKDYCvr9e5GzqZL+\n5iQMN5XVvyV2l75Ko8bPo/4dKT6hTJPVxMa402t7daHklPc9x9fUVN3DO3ek/v2DOThrLk6rrVr9\nokNH0NSvR2C00vYi+/Umb4vn9MK8P7ehHdAfgJDWrXAUFVGak4sty0hom2tQqdUAhHXqgOWUcv8r\nNZsJa3+tcrxjeyxpnr4/9vUaVg99ltWVnjsiz/nccdDjuSPtj50AFGfmENVFGXFUR9YhrHGM+6Ux\nQMObu3Lql/MvZfBF7AuuTq72kbcy6qB05PIlSYoCbgbWnSfNZuAe4FVJkm4AyiZIrwF+lCTpTVmW\nsyVJigTCZFm+8EUP/2IyNu4hpmc7bln+GnaL1WMUrdfCqWx/4UMsxjz2LPiGbq89wrWPDibv0ClO\n/KAshK/TJIYuc8YgyzJnj6eR9Nz/AaCJrEvPN5Wd4CR/P1JXbiXzz7/OWZb0jXuJ6dWOW1e8isNi\nY9sz5WXp8+5Ukp7/kBJjHi3vv57WI29Go63Lzd+9SMamv0h6/kM02jrc+NVzBIQEITtlWg0fwIo7\nn8ZeZPl7TnE6MC17k+hn5yOp/ChYs5zS0ycJu+FOAApW/Y+Ie0aiCquDbqxrVq/DQdrM0X9PBzBu\n3oW+Rwf6/LAAh8XK3hcXu8/FL5jJvjlLsZpyObzwSzrMnUSLR+7h7OEUzvyoLGZv/vBgAuuGEvfE\nKABku5M/H1K2ivfTqNF1vpb9Ly2rWtzh5Pj8pbSd/xyo/Mha8TvFJ08TfYeyhibzx9/I3bKDiG7x\nxH/9Pk6LlaMvvf2361jrtAHZ4eTIvGV0WPAfJJWK9OVrKTp5hnqDlDUk6T+swvznTrTdO9Ht24U4\nrFYOznnvnGkBogb0JPaumwAwrttGxvK15y+M00nGondoNOdVJD8Vuat+wXoqlYiBtwKQu3I5/hER\nNH17EargYHDKaO+8i2PjRuEsvvh1Ftmbd6Pv0YG+/3tTaXsvlLe9xLdmsnf2EqymPA6+8yWdXppE\nq0eGcPZwqntELbp/Z2IH9sJpt+O0lrJz1jvu9PGvTSGgbiiy3cG+Vz/EXuhZzn/if4C4F6YQ3imO\ngPAwuv+4mJPLvibj5wvwdRX4q+DpATmM+cqAU4ZB7QppoS/lq52hANzbqZBVh0L4alco/ipQ+8vM\nu8OEMtEDim0Sf57U8PxN1XeWvHA4OblgMa3feB5JpSJ75e+UpJwm6nal7WT99Ct5W5OJ6BZPxy8X\n47RaOfay0v4DIsJpNfcpQNk8wvT7evKSdrqz1vbvhen3qjcqqajvy/jD4eTEm0uIm/c8qFRkr1hD\nScppou+4yaX/q6LfNYFOXyn6x15+x13/1i/NctffuHoDeUnKy8RG4x4kqGF9kGWsmdkcf+Of7TQJ\nMH3a9yQlpZKXW8x1vd9k4qS+3DXkH+xoXEN1bzp1HKqAAOLmK1sIFO4/UvVOm04np95ZRMtX54Cf\nCvMvq7CknEJ/20AAjD+vJH/bdup2SaTtZx+4firgTQCKDh0md/0mWi9+GxwOio+dwLj8FwBS571N\ng4njkPz8cNpKSZ33jre2i7LnjoHLX8dusbL92fJ7VK+F09j+wv9hMeaxd8E3dH1tAm0fvYu8Q6mc\ndD13HFjyI51nj+GG7+YgSRJ7F3zj3tXaLyiQqK5t2TH7o/NeCp/EvuCqRJLlq3PQUpKkxsByWZbb\nuv7+COgOnAbygZ9kWf5IkqQUIEGWZZMkSQnAG7Is95UkyQB8CUQBW4BbgcayLFslSRoKzEIZuSwF\nHq0wPbMqrk4nXyBftx/hM+2hez7iy3YjfaZ/394POTG46u3WLwdN/7uZXxLv85n+zdu/ZFPPO32m\n33PT/3yuv7bb3T7R7rdF+Z29/Tf394l+3C9rWJFwv0+0AW5J/sJnvgfF/46PNOc3rCH8RljY0vt2\nn+l32/CTz2Nvc687fKbfY+OPOPjcZ/p+DPNZ/Xts/BGA5H4DfaKfsHYl37R/yCfaAPfs+djnsY8y\nS6zWMyxycq1+Pv48561a6cerduRNluUUoG2Fv0dUY9e4wudkoK/rz3zgRlmW7ZIkdQMSZVm2uuy+\nBi79KnWBQCAQCAQCgUAgqIartvN2CWgIfOP6fTgbMMbH5REIBAKBQCAQCAT/YkTnrRpkWT4K/IOJ\n5gKBQCAQCAQCgaAqrtKVWzXO1b7bpEAgEAgEAoFAIBBcFYjOm0AgEAgEAoFAIBBcAYhpkwKBQCAQ\nCAQCgeCycnX81PjlR4y8CQQCgUAgEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4r\nTrHd5EUhRt4EAoFAIBAIBAKB4ApAdN4EAoFAIBAIBAKB4ApAksWQ5eVAOFkgEAgEAoFAcDmQfF2A\nC+Ge8Mdq9fPxN3lv10o/ijVvghrH+HCcz7T1y/azttvdPtPvt+U7Dt3a12f61yxfx5quQ3ym33/r\ntzj43Gf6fgzzuf6W3rf7RLvbhp8AfFb/2uD75H4DfaafsHaliL1/uf7mXnf4TL/Hxh99GvuAz+69\n/bZ8x6rOQ32iDXBD0tc+j/0rhVrdc6vFiGmTAoFAIBAIBAKBQHAFIDpvAoFAIBAIBAKBQHAFIKZN\nCgQCgUAgEAgEgsuKU8ybvCjEyJtAIBAIBAKBQCAQXAGIzptAIBAIBAKBQCAQXAGIaZMCgUAgEAgE\nAoHgsiKL/SYvCjHyJhAIBAKBQCAQCARXAKLzJhAIBAKBQCAQCARXAGLapEAgEAgEAoFAILisiN0m\nLw4x8iYQCAQCgUAgEAgEVwBi5E1QKwiI60nofU8iqfwo2fg9Jb8s8zgf2OE6Qu6cBE4Z2Wmn8KtX\nsR/beUF5R3btQIspI5H8VGT8tIbUT//nZdNi6ii03TvitNg4MHshhUdOnjNtaPNGtJo5Fr9gDZYM\nI/ufewtHcQmaaD1dvlpAcWr6ecsV0qkzhrETkVR+5K1aQc53X3jWObYhMVOeQN2sBaZPPiDnh6/d\n51QhoUQ/NgN1wyaATMZbr2I5dKDa+recOhJJpSK9mvq3nDYSbbdOOKxWDs5+l4LDJ8+ZtunYoeh6\nJ4JTxpabz4HZ72Iz5RJ1Y08aDbujUu4RQO55/VGRp2f9xPp1R4jUhvDT8kf+VtpLQU3oh3fuROPH\nHkZS+ZG1YhXpn3/vZdP4sTFEdE3AYbVy/OUFFB05AUDHr5fiLClBdjiRHQ7+Gvs4AMHNGtP08Qmu\ndpjNsdnzcBSX/OOyXo3+r5MYT8OJ40ClwrTyNzK//NbLpsHEcdTtkojTYiXltfkUHz0OgGHwHehv\nuREkCeOKX8n+/kcA6o18gPDuXUF2UpqXT8qr8yk157jzq4nYa/LwEOrdfj2leWcBOL7oC8xbdhHZ\nuR3NJgxD5e+P026/aD9djdfe1/rhnTvSdPIYUKnIWr6atCpiv8nkMUR0jcdptXL0pbfcsR//zRIc\nxSXITic4nOwZo8R+4wkjiOieiGy3Y0nL5OjLb+MoLPrHZa2J+v+Te/A1T09A1z0eW24+ScOnue31\n/brRZPQ9hDSuT/LoWRQcOn7OMrR6fAT67h1xWKzse3GRO84qElRPT7s5kwmoG8bZQyf467mFyHYH\nwY3q0fbZR6jTqglHF31F6ufL3Wni/jMefc9O2HLP8ud90z3qfKXFvuDKQYy8CXyPpCJs2NPkLxhP\nzjO3o+k8EL+YZh4mtoPbyH1+MLkv3kXBR88Q9tALF5x9q8cfZs+0uWy7byqGAT0JbhzrcV7brSPB\nDWLYOmQSh155n1YzxyonVKpq014z6xGOL/qcpOGPY1yfRMPh5R2WkjNZbH9oBtsfmlF9oVQqoh6Z\nzJnnnuDEhIeo06cfgQ0aeZg4Cs6Stfhtcv77tVfyqLETKdqRxMlHHuTkpNHYTp+qvv7TR7N76ly2\n3jeVqBt6EFJF/YMaxLBlyCQOvbyYVjPHlNe/mrSpn/1E0vDpJD04A9PmHTQZdTcAWb9tIunBGSQ9\nOIP9L7zjUvh7HTeAQYPbs2TZsL+d7lJxyfVVKppMHcfBGS+w+8FH0fXvTVCjBh4m4V3j0cTWY9f9\n4zjx+rs0meb54LR/8tPsHT3F3XEDaDZzEqcWf8yeEY+Rs3Er9e4bfEmKezX6v+HkCRx58ln2jxxP\nZL8+aCr5v26XBDT167PvgYdJnf82DadMBEDTuBH6W27k4ISp7H/4UcK7dkZdLwaAzK+/48CYRzkw\ndhL5W5KIeeB+jzxrIvYATn+13B1n5i27ALDlnWXP9FfYNvxxDry48KJdddVde1/rq1Q0nTaO/dNf\nYNcDE9Ff34ugxp5tL6JrPEGxMey8bzzHXnuXZo97xv6+yf9hz6ip7o4bQN723ex6aBK7R0ym5HQa\nscPvuiTFrYn6X/Q9GMhc8Qe7p87xyrbo+Cn2zXqdvN0Hz1sEXfcOhDSIZtNdkznw8lLaPDG6SrsW\nE4eR+uVKNt01mdKCIurf0Q8A+9lCDr3xESmf/+yVJn3FenZMftnr+JUY+77AWcv/1VZqZedNkqTG\nkiTtq+bcR5Ik3V2D2islSQqvqfwF3vg3uRZH9mmcpjPgKMWStJLADtd5GlmL3R+lwCD4G9vLFp/J\nxJKejWy3k/37ZvS9Ez1yE+qZAAAgAElEQVTO63onkvnLOgDO7j+Kf2gwgdpw6rRpXm3a4IYx5O1S\nRrpykvZg6Nvlb9VZ0/IabBlplGZlgN3O2Q1rCe3aw8PGkZ+H5ehhcDg8jquCQwiKa0/+qhXKAbsd\nZ1FhtVolFeqQtXozut4JHuf1vRPJXLm+Qv1D3PWvLm3F0R0/jbpK3egBPao8fiEkJDaibt2gi07/\nT7nU+qGtW2BJy8CakYVst2Nas5GInp5tJrJnF4y//QFA4YHD+IeGEKCNOGe+mgb1OLtnPwD5ybuJ\n7NPtkpT3avN/yDUtsaalY8vIRLbbyVm7gfDunr4K794V8+o1ABQddPk/MoKgRg0oPHgYp9UKTicF\ne/YR0Utp284KcaDSaKj8vVQTsVcdhUdSsJmUFyVFJ06Xlepv+Qmuvmvva/2w1i2wpGW6Y9+4ZiOR\nPTt72ET27Ez2r2Wxf+SCYj9v+25wKI+XBfuPoNbrLkl5L3X9z3UfLaO6ezBA3u6D2M9639+KU9Mo\nPnX+GS6gxFn6yg0A5O87in9YiDv/ikQmxJG1diugdMoMfZRy2nLPcvbgcWS7wytN7q6DlFZRPt/H\nPlXfmAVXBbWy8+YLJAWVLMsDZVnO83V5/k2oIqJw5Ga4/3bmZuEXEeVlF9ixPxGzf6bu5EUUfPjM\nBedvzTZV+GxGrY/0OK/Wa7FkmcttjDmo9VrU+shq0xadPKNMGwQM/bqhNpTfOIPqGUj8+HU6vlf9\n6GCAVo/daHT/bTcZCdDqL6g+AVExOM7mETPlSRq/tZToSTOQ1Jpq7S3ZFeqWrdStImp9ZCUbpZ4a\nr+OeaZuOv48ePy4i+sZenFjiPTpouL77BdXn30CgTuvRlmxGk9d1CNRpsWUbK9iYCdSV27SZP5tr\nl87HcNuN7mMlKafcnUBt3x4e7VBQjuLbCv43mQis5P8Ana6S/00E6HSUnEwl7Nq2+NUJQ6VWU7dL\nAgEV/Fx/1IO0++pjtNf3Jf3DTz3yrKnYix1yM50/e4PWTz+Cf1iIV30N13V1farN747/HQTqK7U9\noxm1Tutl43GvMZrKbWSIe/NF2i+bR9RtN1SpEXVLf3K37bj0hb8EnOs+Wm5T9T34UqExRHjkb8k2\nozF4liGgbhj2gmJkV4fYkpWDplI5/w6+j32sF114Qa2nVnTeJEmaJknSPte/Ka7DfpIkLZUkab8k\nSaskSfJ6FSRJUqIkSX9KkrRHkqQkSZLCqsl/hCRJP0qStE6SpKOSJD3nOt5YkqTDkiR9AuwDGkiS\nlCJJks51/kFJkva68v/UdUwvSdL3kiRtd/2rcnhBkqSxkiQlS5KUvGTJkkvgJYFt1xpyn7mNswsn\nKevffMjBue8SO/gmEj58Fb/gIGTXPHOrOZfNd45n+0MzOPbWxwCogoIvqbbk54emWUtyV/5IyuQx\nOK0laIfcf/6El5gT73/J5jseIfO3jcTefZPHuTpxzXFabJe9TFcr+x99gr2jp3BwxgtEDxpIWPs4\nAI698jbRgwZy7dL5+AUH4SwV6x0uNZZTp8n86ltavjaHFq/Opvj4CXCWd4rS/u8T9t77EObf12G4\n87YaL0/af1fx510TSXpgBlZzHi0ee9DjfEiTWJo96rtph4JLy1+PPsmeUVM5MP1FYgYPpE77Nh7n\nYx8YguxwYly13kclFFwuROwLyvB5502SpHhgJNAF6AqMQdnhoAXwrizLcUAecFeldIHA18BkWZbb\nA9cD51qp39mVRztgiCRJZePQLYD3ZFmOk2U5tUL+ccB/gH6u/Ce7Tr0FvCnLcqIrP8+dNVzIsrxE\nluUEWZYTxo4dW5WJwIUy0hbj/lsZicuq1r706A789LFIoRc2u7XiaITaoMVqzPE4bzWa0USVv9lS\n6yOxGs3K279q0hanprN7ymySRz5B1upNlKRlAiCX2t1TPAoOKwvOA+t7rm8AKDUb8deXj7T56/SU\nmo1edlVRajJiNxmxHFHm+hdsXo+mWYtq7TWGCnUzKHXzrH9OJRulnhav495pATJ/24ThOs8pgFHX\n9yBz9aYLqs+/AZvJ7NGWAvU6L1/aTGYCDfoKNlpsJrPrnNLu7Hn55GzcSmhr5XpbTqVx8PHn+GvM\nNEy/b8CanlnTVbkiUXxbwf86HbZK/i81mSr5X0epSRkxMP2yioPjJ3N4ykwcBYVYTqd5aeSs+YOI\n3p7v8moi9mw5+UrnUZZJ//F36rRpXm6nj6TdqzOuuHUvVzM2Y6W2p9diNZm9bDzuNXqd26Ys9kvz\n8jFv2Epo65ZuO8PN/YjonsCRF+fVZBX+Eee6j5bbVH0P/ic0uPsGun72Kl0/exWrKc8jf41BiyXb\nswyl+QX4hwUj+SmPxZqoSCyVyvl3ELF/YciyXKv/1VZ83nkDegI/yLJcJMtyIfBfoBdwUpbl3S6b\nHUDjSulaARmyLG8HkGX5rCzL53rtvFqWZbMsyyUujZ6u46myLG+twr4f8K0syyZX/mVRfD2wUJKk\n3cBPQB1JkkL/Rn0FlbCn7MMvqiEqXX3wC0DTeSC2PX942KgMDd2f/Ru2Bv9A5MILm90a3CAGTYwB\nyd8fw/U9MG3c7nHetDGZ6Jv7AlAnrgWOomJs5jwKDh6rNm1ARB0lsSTReOTdpP2wWjkeXgdUri//\negYAbJne8/ItRw4TWC+WgKho8PenTu9+FG7784Lq48jLodSU7e4UhrSPx3oqtVr7inWIGtAD08Zk\nj/PGjclED+zjrr+9sOr6V0wb1CDanV7fO8Fzd01JwtC/O1mrN19Qff4NFB46iia2HuqYKCR/f3T9\ne5G7eZuHTc6mJPQ3Kms9Q9u0wlFUTKk5F5VGjSpImXig0qgJT+xAyQllgxr/8LpKYkki9sF7yPzx\n18tXqSuIokNH0NSvR2C04v/Ifr3J2+L5tZ/35za0A/oDENK6FY6iIkpzlHUkZX4ONOgJ79WdnDXr\nAFDXr+dOH96jKyWnznjkWROxV3Gtjr5PZ/caF//QYNrPn8Wx9z4nf+/hf+QvwaWj4NBRgmJjULuu\npb5/L3I2JXnY5GxOwnBTWey3xF5Y5I59P4/Y70jxCeW7PrxzR+rfP5iDs+bitNbeWQ7nuo+WUd09\n+J9w+rtVbB3+BFuHP0H2+u3UG9gbgLpty+OsMjk7DhDVT5l2WO+WPhjXJ3vZXCgi9gU1SW3+qYCK\n83UdwD9dQVu5C13299/dW1cFdJVl2fIPyyMow+mg8Iu51J2yBEmlwrL5Bxzpx9H0uQcAy/pvUHca\ngKbb7eCwI5daOLt4+nkyLefIvGV0WPAfZdvd5WspOnmGeoOUtQPpP6zC/OdOtN070e3bhcqWvXPe\nA0B2OKtMCxA1oCexdylTBY3rtpGxfC0A4R1a02TMvco0StdbG2dhQZV1znr/LRq8+DqoVOSv/gXb\nqRTCb74dgLxffsIvPJLGCxajCg4Gp0zEHXdz8pGHcJYUk/X+28RM/w+Svz+lmRlkLHil2voffuMD\nOr71NKhUZCz/g6KTZ6g/aAAAaT+sxvznTnTdO9Ltu3eUbZrnvOuuf1VpAZpPGEZww3rIsowl08jh\nV5e69cI7tsaabcKSnn3B16gy06d9T1JSKnm5xVzX+00mTurLXUM6XnR+Ptd3ODm5YDGt33geSaUi\ne+XvlKScJup2pQ1l/fQreVuTiegWT8cvF+O0Wjn28tsABESE02ruU4AyZdb0+3rykpSfydBd35vo\nQQMByNmwBePK3/9Brcu56vzvdHLqnUW0fHUO+Kkw/7IKS8op9LcpvjP+vJL8bdup2yWRtp994Pqp\ngDfdyZs9/zT+deogO+yceus9HEXKbSN2zEg0DeojO2Vs2dmkvun51rtGYm/iA4S1aIyMjCXDyKFX\nFitlGXITwbHRNBk1hCajhrhKoObvLn256q69r/UdTk68uYS4ec+DSkX2ijWUpJwm+g4l9jN//JXc\nLTuI6JpAp6/ex2mxcuxlZafegIhwWr80C1Bi37h6A3lJyg6DTaeOQxUQQNx8ZW114f4jHJ+36OLL\n6eJS17+6++iF3IMB4l6YQninOALCw+j+42JOLvuajJ/XouvTmZbTRhMYXof282ZRcCSFPVXsSglg\n2rwLXfeO9PzvWzgsNvbPLvdTxzef5MDcxVhNuRx953PazZ1M8/FDOXskhTM/Kff1QG1dun70Mv4h\nQciyTKN7B7L53sdxFJVw7ezHiIxvQ0B4GL1/fo/jS5WfIPF97GMALv4mLKjVSL4eFpQkqRPwEcqU\nSQnYBjwAfCrLcluXzXQgVJbl5yVJ+ghYjjLqdQgYKsvydtd6t5KqRt8kSRoBvAS0RZlauQ0YBZiA\n5WU6LtsUIAGIAn4AusmybJYkKVKW5RxJkr4Adsmy/LrLvkOFEcLqqL1jr5cB48NxPtPWL9vP2m41\ntjnpeem35TsO3drXZ/rXLF/Hmq5Dzm9YQ/Tf+i0OPveZvh/DfK6/pfftPtHutuEnAJ/Vvzb4Prnf\nQJ/pJ6xdKWLvX66/uVfl37y8fPTY+KNPYx/w2b2335bvWNV5qE+0AW5I+trnsY/yPF3ruSVsYq1+\nPl5RsLBW+tHn0yZlWd6J0nlLQulULeMCfhhKlmUbMBR4R5KkPcBqoPot95T8vwf2At/LsnzO8XBZ\nlvcDc4H1rvznu049BiS4NjI5AIw/X1kFAoFAIBAIBAKB4J9SK6ZNyrI8n/LOURltK5x/o8LnERU+\nb0cZsbsQzsiyfGcl3ZSKOq5jjSt8/hj4uNJ5E0qnUSAQCAQCgUAgEAguG7Wi8yYQCAQCgUAgEAj+\nPfh66daVylXVeZMk6Ubg1UqHT8qyPAhlaqZAIBAIBAKBQCAQXJFcVZ03WZZ/A37zdTkEAoFAIBAI\nBAKB4FJzVXXeBAKBQCAQCAQCQe3H6esCXKH4fLdJgUAgEAgEAoFAIBCcH9F5EwgEAoFAIBAIBIIr\nADFtUiAQCAQCgUAgEFxWnGK3yYtCjLwJBAKBQCAQCAQCwRWA6LwJBAKBQCAQCAQCwRWAJH4g77Ig\nnCwQCAQCgUAguBxIvi7AhXBDyIRa/Xy8qui9WulHseZNUONs6DHIZ9q9N//A6i73+Ex/wLZvWNV5\nqM/0b0j6mk097/SZfs9N/+On+GE+0799x+c+11/X/S6faPf983sA1na72yf6/bZ85/PY85XvQfH/\nioT7faZ/S/IXJPcb6DP9hLUrfR57a7oO8Zl+/63f+tz/vox9AAef+0Tfj2FIUoBPtAFkudTnsX+l\nIIuxjYtCTJsUCAQCgUAgEAgEgisA0XkTCAQCgUAgEAgEgisAMW1SIBAIBAKBQCAQXFacvi7AFYoY\neRMIBAKBQCAQCASCKwDReRMIBAKBQCAQCASCKwAxbVIgEAgEAoFAIBBcVpxit8mLQoy8CQQCgUAg\nEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4rTllMm7wYROdNcFmJ6NKRZlNGI6lU\nZP78O6c/+6+XTbMpo4nsFo/DYuXI3HcoPHICKTCA9u/ORRXgj+Tvh+mPLaR+8BUAjcbch7ZnZ5Bl\nSnPzOTz3bWymXI88W00bia57RxwWK/tnv0fB4ZNeupoYPe3mTCGgbhhnD51g3/PvINsd1aZXBQaQ\n8P4LqAL9kfz8yFq7lRNLvwUgtEUjWj8xBoCO82ZiMeagTbwWh8XKvhcXVakfVE9PuzmT3fp/Pbew\nXP/xEehd+hXTN7xvILF39AMZCo6dYv/sRThtpbScNAx9r3gAWr/0JEdeegdHYRHhXTrSdPLDSCoV\nWctXc6YK/zed/DAR3eJxWqwceeltio6cKD+pUtFh2RvYjGYOPDEXgMYTHiKyRyJyqR1LeqZbqzra\nzniQqB7tcVhs7Hp+MfmHUrxsguvpiX95IoF1Q8k7mMLOZ95DtjvQxrem8/xpFKcZAcj4YztHlv5Q\noXwSfT6dQ4kxl6Qpb9Qq/cguHWg+ZRSSn4qMn9dw6tMfqEzzqaPQduuEw2Lj0Jx3KDxyErVByzXP\nPEZgZF2QIf2n1aR9swIA/XXdaDx6KMGN67Pz4ScpOHS8Wr9Hdu1AiykjFf2f1pD66f+8bFpMHYW2\ne0ecFhsHZi+k8IjSzq55egK67vHYcvNJGj7Nbd9s4gPoeiYgl9opScvk4Jx3sRcWe+RZE7FX0d9d\nPnoFqzGH3Y+/qpRp3FD0vRIAaLfgGQ7NWYjNlOtz/wO0mf4ghh4dcFhs7Hn+fc4eTvGyCaqnp+NL\nkwisG0r+wZPsflZpe1F94mk5fgiy04nscHJg3qfk7jkMQJP7b6bBHdcBMmePnWbvC4u98q2TGE/D\nieNApcK08jcyv/zWy6bBxHHU7ZKI02Il5bX5FB9V6hN1953oBt4IskzxyRRSXn0TubSUoKZNaDR1\nIqqgIGxZWZyY+xrO4pJq63+5Y6/r128hqVSkV9PeW04bqVxvq5WDs991t63Irh1oOXWkV9qmY4ei\n650IThlbbj4HZr+LzZSL5OdH66fGE9aqKZK/ioyV62ve982aKr4PDEB2ODn11rsUHTpSpd9rIvb1\n/brRZPQ9hDSuT/LoWedt+xfK07N+Yv26I0RqQ/hp+SOXJM+/Q6tWrfjww2V06tSRp59+hnnz3rwk\n+foy9gVXH2LapODyoVLR/PGx7Ht8NsnDHkN/fU+CG8d6mER060RQbD22D53A0dcW0Xz6OABkWyl7\nH3uWnSOmsfOhaUR06UhYXEsAznz+P3Y+NJWdI6Zh3pxMw5FDPfLUde9IcINoNt/9GAdfWULrmQ9X\nWbwWE4eT+tUKNt/9GPaCIurf3u+c6Z22UnY8+gJbh89k6/CZ6Lp2oG7bFgC0eWocx979HICiM5lo\nE69l012TOfDyUto8Mboa/WGkfrmSTXdNprSgiPp3lOl3IKRBtFd6tT6CRkNvZutDs/jzvulIfiqi\nB3QHwJz0F3/eNx2AktPpNHjgLlCpaDZtHPunv8jO4ZPQX9+LoMr+7xqPpkEMO+59hGOvv0fz6eM9\nztcbcivFqWc8juVt38POBx9j14gp5VrVYOjRnpAG0ay583H2zPmAdrNGVmnX+rF7Of75L6y583FK\nzxbR6M6+7nPmXYdZf/9TrL//Kc+HN6DpfTdRkJJe+/RVKlpMH8Pex+eSdP8UDFW0/chunQiKjWHb\nPRM58uoiWs4YC4DscHD8nY/YPmwKO8c+Sf3BN7nTFp04xb6nXiN/94Fq61ym3+rxh9kzbS7b7puK\nYYC3vrZbR4IbxLB1yCQOvfI+rWaOdZ/LXPEHu6fO8co2N2kvScOmkvTA4xSfyqDRg4M9ztdU7JXR\ncOhAilLSPI6lfPYTW4fPAMC8eQeNRw7xvf8BfQ8ljtcNmsZfc5fRdtaoKu2umXQfJ7/4hXWDplFa\nUOR6MANT0j423vckm4Y9xd4XF9PuGeXlkFofQeOhN7LpwafZMPQJJJWKejd088xUpaLh5AkcefJZ\n9o8cT2S/PmgaNfAwqdslAU39+ux74GFS579NwykTAQjQaTEMup0D4yezf/QEJJUfkf36ANB4+mTO\nLP2QAw9PIHfjn0QPvbva+l/W2FNJAOyeOpet900l6oYehFTR3oMaxLBlyCQOvbyYVjPHuH3Vavro\nKtOmfvYTScOnk/TgDEybd9BklFJfQ/9uqAID2Db8cZIeeoL6gwbUuO9jx40i/ZMvODB2EukffUrs\n2KrbU03FftHxU+yb9Tp5uw9WrXuRDBrcniXLhl3SPP8OOTk5PPbYVN54Y/4ly9OnsS+4KhGdt2qQ\nJKnQ9f96kiR9V+H4l5Ik7ZUkaaokSddIkrRbkqRdkiQ1811prwzCWreg5EwGlvQsZLsd45pNaHt1\n9rDR9exM1q9/AFCw/wj+YSEEaiMAcJZYAJD8/ZD8/cA13O6o8KbXL0jtPl6GvncCGb9sACB/31FX\nnuFe5YtMiCN77VYA0lesQ98n8bzpHSVWjzLJLu3ghvXI3aXc1ALD66AKDLgg/Sy3/noMbv1E0ldW\nrS/5qVCpA5H8VPhpArG6RhzN2/YiO5wuPx4mUK8lrHULLGcysJb5//dNaHt28SxDr85k/7rO7X+/\n0BACXP4P1GuJ7JZA1s+rPdLkbd8NlbSqI7pPPGdWbAQgd98xAkKDUeu8faFLjCNjTRIAp5dvILpv\nQrV5lqExRBLVswOn/vdHrdOv06Y5JWcy3W0/+/dN6Holemr2SiTrV+WN/dn9R/EPVa6zzZznfgvu\nKLZQnHoGtT4SgOLUNEpOVd9ZrahffCYTS3q2S38z+t6V9HsnkvnLugr6we52lrf7IPazhV755iTt\ncbez/P1HUBs8r31Nxp7aEImuRyfSflzjkZejqML3gUaNLPve/wBRfeJJW6m0vbx9xwgIC0ZdhS90\niXFkrtkGwJnlG91tr+y7BsAvSOPxPSf5+eFX4XvAYvSceRByTUusaenYMjKR7XZy1m4gvLvnQ154\n966YVyu+LDp4GP/QEAIiI9z5q9SBoFKhUqspNZsBUMfWp3DvPsVnO3YR0atHtfW/nLEXEafcjsva\ne9bqzeh6e+aj751I5krv613eVrzTetxrNOryzGQZVZDa/X0sl9rdp2rK98gyfsHBSllCQrCZc6r0\nTU3FfnFqGsUX2Pb/DgmJjahbN+iS53uhGI1GkpOTKS0tvWR5+jL2aztyLf+vtiI6b+dBluV0WZbv\nBpAkKRpIlGW5nSzLbwJ3At/JstxRluVLM2fgKkatj8SabXL/bc02ez3oB+q1WLPNlWyUByVUKjp9\nNJ9uyz8ib/seCg4cdds1HjuMLv9diuGGPqQu+9JL15JVrmvJNqMpy9NFQN0w7AXF7gdRS3aO2+ac\n6VUSXT99jT6/LsOc9Bdn9x8DoOjEafcNsk6rJvjXCfVMbziPfla5vsYQgSXL7JXeaswl5bPl9P7p\nPfqsXIy9sATztr1UJuqW68ndupPAyv43VvBtma90kdgq2Niyzah1ik3Tx0ZzctHHXp3jqrSqQ2OI\npKRCXUqyc9DoIzxsAsNDsRcUuX1R2SayXQv6fvUyXd6eSVjT+u7jbR9/gANvfYnsrL58vtJX6yOx\nZlX0fQ7qSm3f28bsZaOJ1hPaogln9x/l71BV7KkrX3u91qOdVVXGc1Hv1n6Yt3he+5qMvVZTR3B0\n4WdVtsdm4+8FIOrG3qQs+8rn/gfQ6CMoySx/wLZk5aAxeLa9gLphlFZoe0qsl9tE9U2gz3dvkLhg\nBnteXOIqZy4nPltBv+Xv0P/X97AXlmDa9pdHvoE6rWdcm0xe370BOh22bGO5jdFEgE5HqclM5jf/\npd1XH9P+u89xFBVxNnmXUr7UVMJ7KB2RyD69CDToqq//ZYy9yt+v1uyqr7el0r1GrY9E43XcM23T\n8ffR48dFRN/YixNLvgYge+1WnCVWei5fSs8fF5H6+c/ldaoh359+dwmx40bR7quPiR0/mrRlH1EV\nlyP2BefGl7EvuDq5qjpvkiRNkyRpn+vfFNexB10jZXskSfr0HGmbSJK0RZKkvyRJmlPheGNJkva5\n/lwF1HeNtj0HTAEekSSp+lf9gkuH08nOEdPYOuhhwtq0ILhJQ/eplCWfs23wGLJXrafeXQMvY5lk\ntj4wk423jaduXDNCmirTYfbPWUSDu28AlNEx2eG45NL+YSEY+iSw8c6JrB84Hr8gNTE39fSykx0O\njKvWV5HDhRPRPYHSvHyKDlf/jiL2wbsvida5yD+UwupbHmPdvbM4+fVvJM5T1mBE9eqINTe/yjU0\nV4u+X5CGuJdmcOytDz1GAGoDjR4ajOxwkPXbxsuip+vRCVtOPgWHvNfPARx/X1kPm/XbBurfdfMl\n0awN/s9al8z6u6ezY/p8Wo0fAijfA1F94vnj9smsuelR/ILU1L+5+hGwv4tfaCjhPbry1/0j2Ttk\nOCqNhsjrlelcKa8tQH/HLbR+/y1UwUEeI06XGl/Hfhkn3v+SzXc8QuZvG4m9+yYA6sQ1R3Y62XTr\nWDYPfpSG9992SbTO5Xv97QM5/d5S9t77EKffXUrj6ZMviaagduKL2BfUXq6aDUskSYoHRgJdAAnY\nJknSduA/QHdZlk2SJEWeI4u3gEWyLH8iSdKj1djcDiyXZbmDS1MCCmVZ9toZQZKkscBYgMWLFzN2\n7NjKJv86rMYc1BXezKoNWmxGs4eNzWj2mHql2HhOB3EUFpO3cx+RXTtSfPKUx7nsVRto+8Yz2HLz\nibldWXdgNeWhidIBygJfjUGLpVKepfkF+IcFuzpaTjSGSLeN1Zhz3vT2wmJyd+xH160DRSdOE5l4\nLYERdQEoOJpKHVX5exKNQYsl+zz6UeX6luxcNFFar/TaztdSnJ5NaV4BAFl/JBHerhUZv24CoN4t\nytqIwy/Md/m2kv/13r61mnI83p4HGrRYTTlo+3YjskciEV3jUQUG4BcSTMtnpnBk9gIADDf3I7J7\nAvsmP0tlGg8ZQKNBygNH3oETBFWoS5Ah0muahy2vEP+wELcvKtrYK0yJy968B9WTfgSGhxLZviXR\nveOJ6tEBVWAA/qFBdJr9SK3QB1fbj6ro+0isldq+t43WbSP5+RH30gyyVm3EtH6bl4/PR1WxZ618\n7Y1mNFFa8s9RxqqIHtgXXY94dk16AYD6d91Evdv7K3nWUOwZ+nVB3zsBXfeOqNSB+IcE0fb5Sex7\n/h2PvLNWbaTdvKfJ2bbLJ/5vNGQADe5U2l7+gRMERUeSu0c5p4mKxJLt2fZK8wsIqND2lFj3ngaV\ns+sQwfUNBNQNQ5vQhpL0bGyu74HMP7YT0a6lh73NZPaMa53O67u31GQi0KAvt9HrKDWZqBPfAWtG\nJvb8swDkbdxMaFxrcn7/A8vpMxyd+R/FX7H1Ce/qOR3PV7Gn8vN8L602VH29NYYK7d0VE5K/PxqP\ne1DVcZD52yY6zJ/FyWXfEH1DT8xbdiM7HJTmniV/7yFCGtWrUd9rb7ie0wuVzSly12+stvNWk7F/\ntTBhwiOMGaOsJT09EY4AACAASURBVB848DYyMjL+cZ61JfZrO+JHui+Oq2nkrSfwgyzLRbIsFwL/\nBRKAb2VZNgHIslz1pHCFHkDZfLtqR+guFFmWl8iynCDLcoLouCkUHDpKUGwMmhgDkr8/+v49MW/a\n7mFj3rSdqJuUL7ywuJbYC4uxmXMJCK+DX6gyv18VGEhEYnuKU5WNCjSxMe702l6dKU49Q8Z/f2Hn\nCOXNrHFDEjE39wagbtsWrjzzvMqXu2M/hn5dAah3S1+MG5KV9BuTq0wfEB6Gf1mZ1AFEdm7n3jwh\na80Wtj4wE1CmQzistvPq5+w4QJRbvw/G9eX69QZ661syTYS3baGshwC0iW0pdOlru7an8QO3A+B0\naRccOkpQgxjUZf6/vic5m5M8y7ApCcNNfd3+dxQWUWrOJXXxZ2wf/DDJQ8Zy+Pl55O/Y6+64hXfp\nSOz9gzjw5EturYqkfLvavclAxrpkYm/pBUBE2+aUFpZgNXn7wpx8gJj+ynrIBrf2JnP9DgDU2rpu\nm/C4pqCSsOUVcnDh16weOInfb5vCjqcWYtp+gJ3PLKoV+gAFB495tH3D9T0xbUr20DRt2k7UTUqH\nu05cC+xF5e2k1VMTKE45w5mvfuZiKDh4jOAGFfV7YNroGXumjclE39zXre8oqrqdViSyawcaDb+D\nvTNfdV/7tO9/ZftDyoYhNRV7x977ko23PcKmQRP56z8LyEne5+64BTeIduer65VIcWqaz/yf+u1q\nNg17ik3DniJrXTL1ByptL7xtc+yFJVir8IU5+QDR/ZW1qLG39iLL9T0QHBvltqnTqjGqQH9K8wu8\nvgd0iXHu74Eyig4dQVO/HoHRUUj+/kT2603elq0eNnl/bkM7QOl0h7RuhaOoiNKcXGxZRkLbXINK\nrazxCuvUAcup0wD4h7viQZKIGX4v2T+t9MjTV7G3zbXbZNn1jhrQA9NGz+tt3JhM9MAK19vVtirH\nSsW0QRXalr53AsWpypovS5aJiIS2AKg0auq2LX+Arinfl5rN/D979x0fRdE/cPwzl94gPaFKR2oI\nhN5F1AcrjyIKKoiKSJOqgqgoIuhPQUSRYn0Ee0Ox0XsNvdcQWkgP6e1ufn/skeRyCSCSXMDv25ev\nF7mbne/s3Mzezs7snk9YM+P18DCyz9p+5heVVd+/kcyZ8yHh4RGEh0dck4EbVJy+L25MN8zM2zUi\nlwDKktnCsZkLaDrjFZSTifNLVpAZdZoq990OQMzPf5G0aTv+7VvR+tsPsWTncPgN44TMNcCPhpNG\ngsmEMpmIX7mBpI3Gga32M4/iWbMa2mIh53w8R/9vrk3YhA07CezQko4/vIc5O5cDU+YUvBc+8wUO\nTJ1HTkIyR99fRLPXR1Hv6YdIOxLF2V9WXnJ7t0A/mrw8DGUyoUyK2BWbSNhg3PMTeltHajxg7Ffq\ngWM4eXrQ6cdZmLNz2T/lw5Ljz15E86nPUm9IX1KPnOSMTfxwu+0v7D9G7IottP9iOtpsIfVwFGd+\nWg5Ao/GDMLka3bvFpzNJ23+Y42/P5fgMo/4xORH723Iyo04Teq9RzvOL/yJ503b82rei1TdzsWTn\ncPSN9y77sdYdPRiTiwtNZxozLxdjlSRu/S5COragx+IZBY8Lv6jtrPHsmrKAnIQUDrz3Fa3eGEGj\noX24cDiaUz+vBqBKjzbUeuBWtNmMOSeP7RPev2z5KkJ8bbZwdMZHNJ/5kvG47iUryYw6TdX7jKW1\n535eStLGHQS0b0nb7z7AnJ3D4akfAFC5+c2E/qcb6ceiifjMOCk9Me9LkjbtILBLG+qPeRIX30o0\ne3si6UdPsmf0lBLjH3nnI1q8O8l4/PmSlWREnaFqb2v8n5aSuHEHAR1a0v67941Hp79e2E+avDoK\n35ZNcPH1ocPieUR99A0xv66kwdgnMLm40GLWS4DxsIPDb80v2K6s+t6l1BvWH6+axgUdvzYtOPLW\nPIfXP0Dchl0EdWxBt59nYs7OsXmkd+tZz7FnynxyElI4OPsrWr4xgobP9CH1cDSnF68GILRHG6r3\n6owlPx9LTh47JhjHxpT9x4lZsYXOi95Am81cOHySUz+upMn4gYXBLRZOzf6QBm++Dk4mEv9YSvbJ\nUwTdbSwxj//1dy5s2Ubltq1puvBj6+PqjUekZxw6TPKa9TSa9x6YzWQeO0H8kj8A8L+lG8H33gVA\n8voNJP5p+zAjm/0vx7538b6h8FkvgslEzJJVZESdKXgK5NmflpG4cQeBHcJp//1s4/H4r39QsO3h\ntz+22xag3tD+eNasitaa7PPxHH5zAQBnvv+LRpOG0vbLGSilOLdkFfVHPFqmdR/9znvUGP40yskJ\nS24e0e/YzjoXrYuy6PuBXdvQYMwTuPpWIuydCaQdOcnuEp5K+XeNG/MDW7dGk5KcSfcuMxk+ohv3\n9wn/x/leqZCQECIjN1OpUiUsFgujRo2kcePmpKWlXXWeDu374oak9A3yA3lKqZbAZ0A7rMsmgaeB\nT4H2WutEpZR/abNvSqlfgG+11guVUs8A/6e19lZK1cJYKtm06L+t20ymlGWTxdwYlXyV1nbs7bDY\nXTb8xLK2Dzosfs8t37K0Td/LJywjt239hvWd7nNY/E7rf+aXVo577PM92xc5PP7qDqX/dEJZ6rbx\nBwBWti/98e1l6ZZN3zu87zmq7sGo/98i+jks/p2RXxJ5Szne/1tMxMrfHd73VrTr47D4PTZ/5/D6\nd2TfBzCzyCHxneiPUi4OiQ2gdZ7D+z7GeXCF18nzqQp9frw+c0GFrMcbZuZNa71DKfUZcHEd2Eda\n6w1KqanAGqWUGdgJDCwli2eBL5VSzwOLy7q8QgghhBBC/FvJPW9X54YZvAForWcAM4q99jnw+RVs\nGwUU/fGVSdbXTwJNi//b+vfkf1hkIYQQQgghhLgiN9IDS4QQQgghhBDihnVDzbxdCaXUi0DxhfDf\naa2nOqI8QgghhBBC/NtoWTZ5Vf51gzfrIE0GakIIIYQQQojriiybFEIIIYQQQojrwL9u5k0IIYQQ\nQgjhWPK0yasjM29CCCGEEEIIcR2QwZsQQgghhBBCXAdk2aQQQgghhBCiXFmUxdFFuC7JzJsQQggh\nhBBCXAdk8CaEEEIIIYQQ1wGltTzppRxIJQshhBBCiPKgHF2AK9HKa0CFPj/envF5haxHuedNlLnf\nIvo5LPadkV+yol0fh8Xvsfk7VrZ/wGHxb9n0PUta9XdY/Lu2L2JD53sdFr/jusUOj/9nm4ccEvuO\nrV8DsLRNX4fEv23rNw7ve46qezDqf23H3g6L32XDT3wbNsBh8R/c/bnD+96ytg86LH7PLd86vP4d\n2fcBlHJxSHyt8zCzyCGxAZzo7/C+L25ssmxSCCGEEEIIIa4DMngTQgghhBBCiOuALJsUQgghhBBC\nlCuN/FTA1ZCZNyGEEEIIIYS4DsjgTQghhBBCCCGuA7JsUgghhBBCCFGuLPJLWldFZt6EEEIIIYQQ\n4joggzchhBBCCCGEuA7IskkhhBBCCCFEubIoedrk1ZDBmyh3jcc9RnDHFpizc9k9eS6ph0/apfGo\nGkT4GyNwrezNhYNR7Hp5DjrfTEjXVjQY0gdtsaDNFg688wXJuw9jcnWh/YKXMbk4o5yciFmxhaPz\nf7DL179dCxqMfhxlMnHulxVEf/GzXZoGYx4noH1LzDk5HJzyAWmHo65o25r97qL+yAGsvX0QeRfS\nbGLWH/U4yslETCkx648eRECHcCzZuRyY8j7pR6Iuua13/Vo0fG4wJlcXtNnC4bcXkHbgGD6N63Hz\n808bmSpVYv03Gf8YwR3DMGfnsmvyPFIPlVz/LacNt9b/SXa+ZNT/RZUb16Hjp5PZOfF9YlZsxT3E\nnxavPYObf2XQmlM/rSTqq7/s8vVtE06dZ58Ck4nYJcs4u8j+M6r97FP4tWuFJSeHo2/MIuPICQBa\nfTsfc2YW2mIBs4XdT4212a5q33upPXwQW+56hPwi9V8RYl/UaOwAAjuEY8nOYe9rH5ba9sNefxaX\nyt6kHopizyvvo/PNVLm9I3UeuweUIj8zmwNvfkTa0VMANJ30NEGdWpKbnMqGh8eXGr/h2IEEdQjH\nnJ3Dvtc+LGjbxeM3f/1ZXCr7kHroBHut8T1vqkrTl5+hUsPaHP3wa6IXLQHALTiAZpOH4epfGdCc\n+WkFp775Ayib/lZncF8Cu7QGiyY3+QIHpnxAbkIyytmZm18YTKWb66J1yScEjqx/v7bh1B31BMpk\n4vyvyzm98Ee7NHVHPYF/+1aYs3M4MnU26UdOoFxdCPtgqnFsc3YiYdUmoj/+GgCv+rWoP34IJldX\ntNnMsbfnk3bwaInxAcKf709oJ6Pvb31pASmHou3SeFULpN2bQ3Gt7E3ywZNsnTgPS74ZF28P2r7x\nNJ6hAShnJw5//gcnF68DoH6/ntS5vxsoxYkfVnN00VK7fB3R/xqOeZxAa3vfP2VOie3dvUoQzV8f\nVdDe902eXXCsu+T2JkXbz6aTE5/ErrFvAhB8SzvqPtUHr1rVyqXufW4Kpd1bQwu2964ezL45P5ZY\n/2XR9wGaTBpS0PY3PjzOLs+/q2HDhnz66Ue0bBnOiy++xDvvzPzHef4dL074hTWrj+Af4MUvS565\nJnlWhL4vbiyybFKUq6COLfCqEcrq3mPYO/Ujmk4YVGK6m0c8TNSXf7C69xjy0jKocW93ABK27mPd\nwy+wvv9E9rw2j+YvPQWAJTePzUNeZ12/CazrN4GgDmH4Nq1nm6nJRMNxT7Br9FQ2PzyakNs64lWr\nuk2SgPbheNSowqY+Izg0bR4Nn3vqirZ1Cw7Av00YWTHxdvvScOyT7B4zlS0Pjya4Zyc8S4jpWaMK\nm/uM4ND0uTR8bnBhzFK2rTfsUaI+/o5tA8YTteBr6g17FICM46eIHPQ82waMZ/fo1wFQToXdPLhj\nGF41Qll131j2vP4xzSY8XmL9Nxr5EFGL/mDVfWPJS82g5n3ditSjotHIh0jYvLfgJW22cGDmItb0\neY71A1/hpj498a5d7ATGZKLOmKfZP+5Vdj46nKBbO+NRq4ZNEr92rfCoXoUdDw/h2FsfUHes7Zfn\nvmcnsXvQaLuTN9fgQHzbhJN9Pq7E/XFobKvADi3wrFGFdfePYt+0BTR+/skS0zUY3o+TX/3GuvtH\nkZeWTvV7bwEg61w8W4a8xoZ+z3H84x9pMmFwwTZnf1vD9menXTa+V41Q1t//LAemLaDx80+UmK7+\n8P5Ef/U76+9/lry0DKpZ4+enpnPo7c84uehXm/TabObwrC/Y+NBYtgyaRI0+t+Fl/ezLor9FL/yF\nrY+MY+tj40nYsJ3agx4AoNq9PQDY8shYdo6cYuRT5AKGQ+vfZKLe2MHsGzuFyP4jCbrV/jjg174l\nHtWrsq3vUI6+9SH1xhkXYXRuHntGvsyOgWPYMWAMfm3D8WnSAIA6QwcQ/cm37Bg4hpMffUXtoY+V\nWoTQTs3xrhnKH3c/R+Rrn9Jq0oAS0zV/ti9HFv7FH3c/R15qBrV7dwWgXt8epJ44x9IHX2L1E9MI\nG/sQJmcnKtWrRp37u7G8/6ss7TOJql1a4F0j2G7/HdH/PGuEsuGBkRycPp9Gz5X8edcf/gjRX//G\nhgdGkp+WQbV7jM87sEP4Jbev2bcXGSfP2ryWceI0u59/m+SdB21eL6u6T4s+z7K+L7Os78ssf/gV\n8rNzOLtyu12+ZdX3Ac5dwbHn70hKSmLkyNG8/faMa5bn39H7v2HM/6j/tcuwAvR9ceNx6OBNKTVE\nKXXFLU4pVUspte8axPVVSg29fEpxrYV0bcXZ342rtSn7juHi44lbgK9dusDWTTi/YgsAZ5asI7Rb\nBADmrJyCNE4e7qALn1R08T3l7ITJ2cnmPYBKjeuRdeY82efi0Pn5xC7bQGCXCJs0QV1ac/73NQCk\n7j+Ks7cXrgG+l922waiBHHt/IZTw5KTMItvFLd9AUJfWtvvapTXn/1hdJKZnQczSttVa4+zlAYCz\ntyc5CUkAWHJy0WZj1sHk6mpXlpCurTjzW5H69/bELbDk+o9ZsRWA00vWEtKtcF9r972dmBXbyElO\nLXgtJyGlYAbPnJlNetQ53IP9bPL0aVSf7LPnyYmJRefnE79iHf6d2tik8e/Uhrg/VwGQfuAIzt5e\nuATY5lOS2iOe4OScz+w+84oQ+6KQLhGc+30tABcu0fYDIpoQu9Jo++d+W0tIV6PuU/YeIT8tw/j3\nvqO4B/sXbJO88xB5qRmXjB/UpXWR+Edx9jHadnH+EU2IXbnZGn8NwV2NNpebnErqweM2M7AAuYkp\nBVfxzZnZZESdxS3IKFtZ9DdzZlbB9k7ubgX/9qpdneRI4+shz9o2KzeqU/C+I+vfp1F9ss7EkH3u\nYvtbT0Bn2/YX2KkNsdb2l7b/iPXzMdqfJSsbMI5tqsixzeY44OVJrvU4UJJq3Vty8tcNACTtPY6L\njyfugZXt0gW3acSZZdsAOPnLeqrd0tIaC5w93Y1Ynm7kXsjAYrZQqXZVEvcex5xtHHvitx+iWg/b\nz9lR/S/mjytr73EF7X01Qdb2HtQlotTt3YL9CezYkrOLV9jklXHyLJmnYuxilFXd22zbtgkZp+PJ\njEm0y7es+j5A8s6D5KWm271+teLj44mMjCQvL++a5fl3RLS+icqVPa5ZfhWh71dklgr+X0XlsMGb\nUspZaz1Xa/2/ssr/Em/7An978KaUcrr6EgkA9yA/ss4XHmSyY5PsTvJdKvuQl5ZRMAjJjku0SRPS\nLYKu379N63fHs/u1+YUbmhSdFr1Bz2VzSdiyl5T9x4vF9ic7rvCLLScuCbegAJs0bnZpEnEL8r/k\ntoGdI8iJTyL9mP0yGCNtgl1+tjEDyI4tkne8kbdbkH+p2x5991PqDX+UDj/Ppd6Ixzjx4aKCdJUa\n16fNopm0WfgOQEE9ArgH+5NVJFZ2XBLuQcXq39e7WP0XpnEP8iO0ewTR3y8vcV8BPKoEUvnmm0jZ\nZ1v/rkEB5BbZn9z4RNwCA+zS2OxzfEJhGg1NZr5G2EfvEHL3bQVp/Du1ITc+kczjJ0stkyNjX+RW\nQt27Bdu2BaPtZxbWfWySXXsBqH5Pd+I37bpszKLcg/1s2pnRr+zj5xeL715C/FJjVAnCp2FtLuw/\nVhDjomvV3wDqDHmYjos/JPT2zpyY/w0AaUejCewcgXIy4V7FmPlxDyncxpH1X1Jfdg0qqf0lFktj\njW0y0fKzGbRf8hkp23aTdsBYHnV81ifUHjqAtj8uoM7wgUTNXVhqGTyC/Wz2Pys2CY9ix15XX29y\ni+x/ZmxyQZpjXy+nUp2q3L18Frd9P5Vdby0Crblw7AxBLRviWtkLJ3dXQjuF4RlqW2eO6n/ZsYX5\nZccl2rVlu/YeV9je3YL8S92+4eiBHH1/4WUv2FxUVnVfVM072nLqz80lxi+Pvi9KVhH6vrjx/KN7\n3pRStYA/ge1AS2A/8BjQCJgBeAMJwECtdYxSajWwC+gEfKWU8gHStdZvK6VaAHMBT+A4MEhrnayU\nagV8Yg1pv5DbtjwDgf9a4zoBXZVS44EHATfgJ631K8B0oK5SahewDPgNGKe1vsuaz/tApNb6M6XU\nSeAboCfwllJqCLAF6I4xCHxCa73uqipQXJXY1ZHEro7EP/xmGg7pw5ZhbxhvWDTr+0/E2duTiLdH\n4123+qUzugZMbq7UGvhfdo58vcxjFVXtv7dzdNZnxK/eQnCP9tw8cSi7Rr4GQOqBo2ztPxrPm6rR\n7utZmFxdsORem6uYjcc9ysH3vi71pMXJw41W/zeK/W9/QX5GVolprtbeYS+Qm5CEi29lmsx8laxT\nZ0g/dIzqj/Zh/5hXrmmsihS7OP9Wjal+T3e2DC7fuJfj5OFGi+ljODzjc8zX+LMv7sTcrzgx9ytu\neuw+qj9wB1EffUvMkpV41apG60/fJPu8sXxZW679lVOH1L/Fwo6BY3Dy9qTJtBfwrF2TzKhTVO19\nOydmf0LC6s0E3tKBBhOGsXfU5DIpQmiHpqQcOsXqJ6fjXSOYLvOeI37HYdKiYjj06W90mfsc5qwc\nUg6fsrlgdC1UpP4X2LEluUkXSDsUhV/LxuUSs7S6z88wZmVMzk5U7RrOnlnflUt5RDmqAH1fVDzX\n4oElDTEGMBuUUp8Aw4DewL1a63ilVF9gKnDx5iZXrXUEgFJqcpF8/geM0FqvUUq9BrwCjAI+BYZr\nrdcqpf7vCsrTEmiutU5SSt0G1AfaAAr4RSnVBXgBaKq1bmEtR7fL5JmotW5pTTsEcNZat1FK9bKW\n89biGyilBgODAebNm8fgwYOLJ/nXuKlPT2rcZ9yzduHACTxC/UnebbznHuJPdlyyTfq8C2m4+Hih\nnExoswX34AC7NABJOw/hWS3YuFpe5Cb1/PRMEiIPENw+zCZ9dnwS7sG2V+Jz4m2XmORY01woSBNA\nTnwSytm5xG09qofiUSWYtguNpukWFECbz99i26AJ5CalWNMGFtnOyM82ZiLuIUViBhl5K2enUret\n0qsrR2ca1zTiVmzi5gn2N1ZnRhv3YzR4+n6C2jcHrPUfEsDF2nQP9ic7vlj9p6QXq//CNL6NatNy\n2nAAXH19CO4YhsVsJnb1dpSzE63+bxRn/9jA+VWRduXJjU/Etcj+uAYFkJOQaJfGLTiQi5+mW1Bg\nQZqLy0LyUi6QuHYz3o0akJ+WgVuVYFp8+m5B+hYfz2T34HHkWevf0bE7LJxurfvjeIQEcPEd92B/\ncuJs24LR9j0L6z7E36a9eNerSdMXnyZy1HTyLlzZUqV2C42HKaQeOG4zE2X0K/v4zsXiZ8dffjmO\ncnIi7M2xxPy1nrjVW21iXHQt+ltx5/9aT4sZE4j66Fu02cLRWZ8XvNdj83dUurkO9Z4y7olzVP1f\n3M/ifTk3vqT2F1AsjW35zOmZpOzYh3+7cDKjThHyn+4cf/djABJWbqTBC8Ns0tfr24Pa/zXum0re\nH4VHSABgXLn3CPEnq9hxNTclHdci++8Z4leQpta9nTn0yW8ApJ+OI+NsPJVqVyVp3wmiflpL1E/G\nsrxmIx4gM9a23OXV/1p++SG5CUlos7G8zz0kEDhs/Ds4wK4t27X34ML2nhOfVOL2wbe0JahLBIEd\nwjG5ueLs5UHTySPYN3k2xfX85rUyr3sw7qlLPhRNTlKqTZ7l0fevhaFDn+Gpp4z78Hr1upuYGPul\np9crR/X960VFXppYkV2LZZOntdYbrP9eCNwONAWWWWe2JgFFp0C+KZ6BUqoy4Ku1XmN96XOgi1LK\n1/r6WuvrX1xBeZZprS+2+tus/+8EdgA3Ywzm/q7iZb74qKDtQK2SNtBaz9daR2itI/7NAzeA6O+W\nsb7/RNb3n0js6kiq9eoMgG/TeuSnZ5GTmGK3TWLkAUJ7tAWg+l2diV1jDAY8q4cUpKnUsBYmV2fy\nLqTh6uuDs7cnACY3F4LaNiP95DmbPNMOHsOzRhXcqwSjnJ0J6dmRhHW2g4z4dZGE9jJOdio1qU9+\neqZxT08p22YcP8W6Xk+ysfcwNvYeRk58IlsHPFcwcANstgu+tSMJ67bZxExYF0nof7oVxDRnlByz\n6LY5Ccn4hjcBwC+iGZmnjS879yrBBQ8ocQ81vjCOf7GEdf0msq7fRM6vjqT6ncXqP8G+/hMiD1Cl\nh7Euv8ZdXYhdY9wEv/Ke0ay8exQr7x5FzIqt7Jv+GbGrjffCXnqK9KizRC36wy4/gLRDR/GoXgU3\n6/4E9ehM0vqtNmmSNmwl+A5joO/duAH56RnkJSZjcnfDycNY329yd8O3dTiZJ6LJPBHNtnsGsP3B\nwWx/cDA58QnsemK0zeDJ0bE3PvICGx95gbg1kVTt1QWAyk3rkZeeWWLbT9p+gJBbjLZf9c4uBW3f\nPSSA8DfHsOeVD0q8r6Y0mx95ns2PPE/cmm1F4he27ZLjt7PG70r8GvuBeHFNXhpCRtRZor/8zeb1\na93fADxqhBZsH9Qlgsxoo5+b3FwxWe+B829jXKw4Nu9bh9c/FLY/94L214nE9bbHgcT12wixtj+f\nJg2sdZGMi28lnC4e21xd8WsdVnBhJjchmcrW44Bvq2ZknbYt17FvVhQ80OLsqh3UurujUT/N6pKX\nnkV2wgWKi9t2kOo9jXudat3TibOrdgCQeT6JkLbGTJObfyV8alUh/Uyc9W8fADxD/anWoxWn/rBd\nvlde/W9Hv2fYNWAkuweNBqDKfy7f3pO37ye4oL13I36t8XnHr4sscftjc75i3d3PsL73cPZOepek\nyH0lDtyAcql7gJr/aWdX51A+ff9amDPnQ8LDIwgPj7ihBm7guL4vbmzXYuat+PqpNGC/1rp9Kekv\nfVf9P1c0fwVM01rPK5rAutyzqHxsB7Lul8gT4OJTM8zIzy38LXEbdhHUsQXdfp6JOTuHPa8WfjSt\nZz3HninzyUlI4eDsr2j5xggaPtOH1MPRnF68GoDQHm2o3qszlvx8LDl57JhgfGm6BfoS9uozKJMJ\nZVKcW7aZuPU7bWIbj9T/mPBZL4LJRMySVWREnaFa754AnP1pGYkbdxDYIZz23882Htv/+geX3PZK\nHHnnI1q8O8l45PmSlWREnaFqb+O+jXM/LSVx4w4COrSk/XfvG49Lf31OQcyStgU4NG0u9Uc/jnJy\nwpKbx+HpRj36ht1MzUd7o/PzC5Y25qUUzhDErd9FcMcWdF88w/pTDYX132bWeHZPWUBOQgqH3rPW\n/9A+XDgczemfV19yH/1aNKD6XZ1JPXqKzl8ay1gPf1DsmofZwomZ82nyzmQwmYj7bQVZJ08Teu8d\nAJxf/CfJm7bj1y6Cll/PxZKdw7Fpxufr4udLozcmAMYsT/yytaRstf18L8mRsa3iN+wksEMLuvw4\nC3N2DnunzC14r9XM59k3dT45Cckcnv0lYVNHUn9IX9KOnOTML8aN7HWfvB/Xyt40ft5YxKDNZjYN\neBGAsCkjQ+kULgAAIABJREFU8GvVGFdfH7r9+gFHF3xvFz9hw04CO4TT6cdZmLNz2T/lw4L3wme+\nwIGp88hJSObo7EU0n/os9Yb0JfXISc78shIA14DKtPtsGs5eHmituemhXmx4aCw+9WpStVcX0o5G\nF1zpPzbnK4Ay6W/1hvbHs2ZVtNZkn4/n8JsLjPL5V6bFu5NAW+xmtx1e/2YLx2YuoOmMV1BOJs4v\nWUFm1Gmq3Hc7ADE//0XSpu34t29F628/xJKdw+E3Zlvr3Y+Gk0aCyYQymYhfuYGkjcZJ9ZE351D3\n2SdQTiYsuXkcfWtOCS3PELNuN1U6NafXkv8jPzuHbS9/VPBe5/fHsO3VT8iOT2HPu9/S7q2hNB12\nPymHogtm1A7MX0ybKU9x2/evo5Riz7vfkms9tnR4x/hZF51vZscbX5CXlmm3/47of1nn4uj4w3uY\ns3M5MKWwbmza+/uLaPb6KOo9/RBpR6I4a23vRn9pWeL2pQnq2pqbxw3C1bcSAF0+HMfaZ94u07p3\n8nAlpF1Ttk/5rNRylVXfN2dk0WzKSPxbNcbF14cuv87h+IJ/tnQzJCSEyMjNVKpUCYvFwqhRI2nc\nuDlpaaX/BMu1NG7MD2zdGk1Kcibdu8xk+Ihu3N8n/OozrAB9X9x4lL7CG25L3NgYBEUBHbTWm5RS\nH2GsC3gKeNT6mgvQQGu933rP2zitdaR1+8kU3vO2G2N55Drr65W11qOVUnuAoVrr9UqpN4E7tdZN\nSynPQCBCaz3c+vdtwBSgh9Y6XSlVDcjDGHTt0FrfZE1XA1iHsQTUA2Om7tUi97xFaK0TrGkL9kEp\nFYhxb1yty1TV1VfyDeC3iH4Oi31n5JesaNfHYfF7bP6Ole0fcFj8WzZ9z5JW1/Cxx3/TXdsXsaHz\nvQ6L33HdYofH/7PNQw6JfcdW4/eAlrbp65D4t239xuF9z1F1D0b9r+3Y22Hxu2z4iW/DSn4kfXl4\ncPfnDu97y9o+6LD4Pbd86/D6d2TfBzBO/8qf1nmYWXT5hGXEif4O7/sYkxcVXiPvByr0+fHB9O8r\nZD1ei1mjw8Aw6/1uB4DZwF/Ae9blkM7AuxgPM7mUAcBcpZQncAK4+ANUjwOfKKU0l3lgSXFa66VK\nqUbAJmX83k868IjW+rhSaoP1Zwf+0FqPV0p9C+zDGIz+/cvqQgghhBBCCFGGrsXgLV9r/Uix13YB\nXYon1Fp3K/b35CL/3gW0K2Gb7UDRJ088V1pBtNafAZ8Ve20WMKuEtP2K/f1cSXkXn1Urug/W2bha\nCCGEEEIIIUQZc+iPdAshhBBCCCGEuDL/aOZNa30S48mS5UopdTvwZrGXo7TWjltkLIQQQgghhLgi\nFiU/FXA1rssnJWqt/8K4r04IIYQQQggh/hVk2aQQQgghhBBCXAeuy5k3IYQQQgghxPXLgiybvBoy\n8yaEEEIIIYQQ1wEZvAkhhBBCCCHEdUCWTQohhBBCCCHKlcbs6CJcl2TmTQghhBBCCCGuA0pr7egy\n/BtIJQshhBBCiPKgHF2AK1HP5+4KfX58LO3XClmPsmxSCCGEEEIIUa7kaZNXRwZvoswtbvmIw2Lf\nu2MhcxoOcVj8oYfncqpvG4fFr/nNVpa06u+w+HdtX8SKdn0cFr/H5u8cHn9hs0EOif3I3k8A2NTl\nHofEb7/2F4e3vfcd2PeHH56LmUUOi+9Ef4e3/X97fPNn7g6L7zQw22H732PzdwD8FtHPIfHvjPyS\ntR17OyQ2QJcNPzm874sbm9zzJoQQQgghhBDXAZl5E0IIIYQQQpQrWTZ5dWTmTQghhBBCCCGuAzJ4\nE0IIIYQQQojrgAzehBBCCCGEEOI6IPe8CSGEEEIIIcqVxuzoIlyXZOZNCCGEEEIIIa4DMngTQggh\nhBBCiOuALJsUQgghhBBClCv5qYCrI4M3Ue6ajX+U4E4tMGfnsPOV+Vw4dNIujWfVICKmDcPF14cL\nB6PYPulDdL6ZgFaNaDtjNJnn4gE4t3IbRxb8DECd/ndw033dQGtSj51h5+T5ly1Lpxcf5KauTcnP\nzmXFC5+TcOC0XZqm/bsRNuAWKt8UzCftxpKdnAGAWyVPur/xGJVrBpKfk8+qif8j6ei5K64H97B2\n+A0cCyYTGSsXk7r4f7Z10Ol2Kt3zGCiFzsok6eM3yYs+Ci6uhEyeh3JxBZMTWVtWcOG7BVcct8n4\nxwjuGIY5O5ddk+eRWkL9e1QNouW04bhW9ubCwZPsfGkOOr9wbXrlxnXo+Olkdk58n5gVW/G6qQot\np40oLHu1YI7M/R6Adt/MQplMnPtlBdFf/GwXq8GYxwlo3xJzTg4Hp3xA2uEoAPzbtaDB6MdL3LZ6\nnzuofv8daIuFxI07OPb+QgC869Xk5uefxsnLAyzaJs6l8iuLslyJiBf6Ua1zM/Kzc9k06WOSDp6y\nL9PDt9DokZ741Azhu84jyUlJB6DWne1oMug/oBT5GdlsmfIFKUfs2+9Fvm1aUmvkkyiTE7G/LeXc\noh/s0tQa+RR+7SIw5+RwfNq7ZBw5AUD4NwuwZGWhzRa02czewWMB8Kxbizpjh+Lk6U52TBzHpryD\nOTOr1DKURdsDcPb2JOylp/CpVx2tNbtfvXzfL6pzseNAfAnHgZ5vDyK4aU0seWZi955k9cuLsOSX\nzYnHixN+Yc3qI/gHePHLkmeuOp+yaPPBt7Sj9pMP4lWrGtsGTSDtkNFGnCt503zaWHwa1SPmt9WA\n4/u+o+OXZt1xd6Yt98dsgQdapPNU+1Sb97dGuzH8h2CqVc4HoGfDTIZ2ukBUojNjfg4qSHcmxZkR\nnVN4rE1aiXGu9f7XfrIPVe+5lbwUo7zHP/ySxE078W/TnLpD+2NydsaSn19iWRqPe4zgji0wZ+ey\ne/JcUg+ftEvjUTWI8DdGWPt+FLteNvp+SNdWNBjSB22xoM0WDrzzBcm7Dxtl6vcfatzbHdCkHjvN\nnlfn2eXr1zacuqOeQJlMnP91OacX/miXpu6oJ/Bv3wpzdg5Hps4m/cgJlKsLYR9MxeTijHJ2ImHV\nJqI//hoAr/q1qD9+CCZXV7TZzLG355N28GiJ+/53XKu+L25sMngT5Sq4YxheNUNZce9Y/JrVJWzC\nQNYOmGyXrvHIhzi+6E/OLt1M84mPc9N93Tj5/QoAEncdZsuz79ikdw/yo85Dt7Hygeex5OQRMX0E\n1W5vd8my1OzSlMq1gll028uEhNWm6+R+/PDgm3bpzu84TvTqvdz7vzE2r7cccgcJB0/z5/C5+NYJ\nocvLD/PLwHevrCKUCb9BzxE3dTjmxDhCp31OZuQ68s9GFSTJjztH7KtD0BlpuLdoj/9TE4idNAjy\ncol7bSg6JwucnAh5dQFZuzaRe3TfZcMGdwzDq0Yoq+4bi2/TejSb8DgbBrxil67RyIeIWvQH55Zu\nptmEQdS8rxvR1vrHpGg08iESNu8tSJ8RHcO6fhML3r/1j/c5v2Y7TcY9yq7RU8mJS6L1p9NIWBdJ\nxskzBdsFtA/Ho0YVNvUZQaUm9Wn43FNEPjERTCYajnuCnSOn2G3r17IJQV1as+XRcei8fFz8KhlV\n6mSi8eSRHJg8m/Rj0ThX8qbr0k+tZSo9v7Ioy5Wo2rkZPjeFsPjOCQQ2r0ObSY/xZ//X7dLF7zzG\n2TW76fnJ8zavp5+JZ9njb5KbmknVTs1o98qAEre/uP+1Rz/NgTEvkxufSLP575C8fitZ0YWDFN92\nrXCvXpWd/Z7Gu3FDao95hn1Dxhe8v//ZF8m/YHuSWPe5EUTP+YTU3fsJ6nUrVR/+L6c/XlRiEcqq\n7QE0Gf8ocZt2s/35WShnJ5zc3UquhxLc1KUpvrWCWVjkOPB9CceBI79sZdm4TwC47Z0naNynE/u+\nWnvFcf6O3v8No/8jrXnhefsT7r+jLNp8+onT7H3hbW5+YbBNLEtuHsfnf4N3nRp41akJ4Li+7+tD\n1z8/qRjHnmLMFnh9qT8fPRRHSKV8+n5Whe71s6gXmGeTrlX1bD58MN7mtdoB+fz0RExBPt3er06P\nhpn2QZSpTOof4PTXSzj15a824XJTUtk9bjq5Ccl41alBuy9n2Lwf1LEFXjVCWd17DL5N69F0wiA2\nDnzZrtg3j3iYqC//IGbpJppOGESNe7tz6oflJGzdR+ya7QD41KtBy+nPsuaBcbgF+VGr7+2seXA8\nlpw8wqeNpOpt7W0zNZmoN3Ywe0dNJicukfCP3iJx/VYyi9SFX/uWeFSvyra+Q/Fp0oB6455m1+Dn\n0bl57Bn5MpasbJSTE2EfvkHS5h2k7T9CnaEDiP7kW5I378CvfUtqD32MPSNesv8s/qZr1ffFjU3u\neRPlqkq3Vpxesh6A5L3HcfHxwi3Q1y5dYOvGnLNeVT+9ZB1Vure6bN4mJyec3FxRTiacPFzJjk++\nZPraPZpz+OfNAMTujsK1kgeeQfYn3wkHT5N2NtHudf+6VTi72bj6l3IiFp9qAXgE+Fy2nACu9ZqQ\nH3sGc9w5MOeTuXEpnq272KTJPbIXnWGcLOcc3YdTQHDBezrHmN1QTs4oZ2fQl77Se1FI11ac+W2d\nUeZ9x3Dx9iyl/psUzGqcXrKWkG4RBe/V7ns7MSu2kZOcarcdQGCbpmSeicMtoDIA2efi0Pn5xC7b\nQGCXCJu0QV1ac/73NQCk7j+Ks7cXrgG+VGpcj6wz50vcttp/b+Pk/35G5xlXePOs5fBvE0b6sWjS\nj0UDkJ+aXhDnUvmVRVmuRI3u4UT9shGAhD0ncPXxxCOwsl265EOnyDhn3/4Sdh8nNzXTuv1xPEP8\nSo3l3ag+2WdjyImJRefnk7BiHX6d2tqk8e/Ulvi/VgGQfuAwzt5euASUnieAe42qpO7eD8CFyF34\nd21fatqyanvO3h4EhN/M6Z9XA6DzzeSnl3BCW4raPZpzqMhxwK2U40D02sKLI7F7TuJ9ifr+pyJa\n30Tlyh7/OJ+yaPOZJ8+Secp+hYElO4cLuw9hyc3D1d/4XB3V9z2rV3Fo/KLHnuL2nnOlpl8+Nfzy\ncXWC/zTKYOWRv/9Zbz7pTk3fPKpVLuFpfYGty2T/S5N+5CS5Ccb3bcYJ+1nrkK6tOPt7kb7v44lb\nQMl9//yKLQCcWbKOUGvfN2flFKRx8nC3+b5TRb/33e2/930a1SfrTAzZ54xjX/yK9QR0bmMbt1Mb\nYv80jn1p+4/g7OOFq/XYZ8nKNuI4O6GcnQpia61x9jI+N2cvT3ITki5ZR1fqWvX964XGUqH/r6hk\n5g1QStUC/gS2Ay2B/cBjQBNgFuAF5AA9gADgC+trAMO11hvLt8TXL/dgP7JiC09Es+KS8AjyIych\npeA1V19v8tIz0Waj42TFJuEeVHii5N+8Pt2+eYPsuGT2z/yStBNnyY5P5tgXv3Pb77Mw5+QSt2kv\n8ZsvPRPlFeJL+vnCA33G+RS8QnzJjL+yE/CEQ2eoc1s4MduPEdysFj5V/fEO9SMrseQlLEU5+Qdh\nTowt+Ds/MQ63ek1KTe/d/R6yd20qfEGZCJ3+P5xDq5P+1/fkHtt/RWV2D/a3qf/sOKNui9a/i683\neWkZBfV/MQ0YM5yh3SPY9PRUfJvYXnm/qOpt7Tj310Y8gv1tXs+JS6JSk/o2r7kF+ZMdl1gkTSJu\nQf64271euK1nzar4hjWi7pCHseTkcXT2/0g7eBzPmlVAQ4t3X8TFrxKxyzYU7vcl8iuLslwJj2A/\nMs4XfuFnxCbhEexHVsKFK9q+qLq9O3Nu/d5S33cNDCAnLqHg79z4BHwaN7RLkxsXXyRNIq6BAeQl\nGn2k8YwpaIuF2F/+Iu7XvwDIOnkKv05tSV6/hYBuHXELDiy1DGXV9jyrBpObnEbY5KepVL8mFw5F\nsf//vii9sorxLnYcSD+fgvcljgMmZxMN723LuqnfXnEMRymLNn8lnDxsZz7Lu+8XH0A48thTXGy6\nM6GVCpcWhvqY2XPO1S7dzrNu3PdRFYJ9zIy/JZn6QbYzc78f9KJX41IuUnhWLZP9B6je5z+E9upK\n2sHjHH3vf+SnZdjkG9zdfsWLe5AfWUWOddmxSbgH+5GTWKTvV/Yp1vcTcQ8u/N4P6RbBzcMfwtWv\nEttG/Z9RtvhkTiz8jVuWzMack0vC5r0kbLE9DroF+dsc+3LiEvFp0sAmjWtQADnF6sI1yJ/cxGQw\nmWj5ydt4VAvl3I9/kHbAWBp5fNYnNJvxMnWGDQSTYtfTE+z2W4iyIjNvhRoCc7TWjYBUYDjwDfCs\n1joMuBXIAuKAnlrrlkBf4D0Hlfdf6cKhkyzt9Syr+07kxNdLaTNjNAAuPp6EdmvJsrtG89ftI3D2\ncKN6r45lWpYd8//C1ceDB39+kWaPdiPh4Gks5mt/pcatSSu8b7mHlEXvF76oLZx//hHOPnMXrvUa\n41KjzjWPW5LG4x7l4HtflzrTp5ydCO3ainPLt5RZGZSTCZfK3kQ+MZFj739Bs6ljrK874Rt2M/tf\neY/tg18iuGvby+RUdmUpTyGtb6befzuzY+Z3ZRZj/7Dn2fPEKA6Of5XQ3r3wCTMuNByb/h6hvXvR\nbMEMnDw9sOSVfL/LtVBa21NOJirdXIvo75ezrv+LmLNyqPv43WVWjq6v9ONc5FFith8rsxiiZFfa\n9ys1vvKBZlnE/6fHnsahuawYdpafn4yhf6tURvwQZPN+rhlWHfXg9kYZpeRQNs7+uJSN9w9n66Pj\nyUlMof7Ix2ze96pdnbrD+pdJ7NjVkax5YBzbx82g4ZA+ADj7eBHStRWr7nmWFXcMw8nDjWr/ucbf\n+xYLOwaOYXPvJ/FpXB/P2saS4Kq9b+fE7E/Y8t+nOP7eJzSYMOzaxhXiEmTmrdBprfXFy2ULgReB\nGK31NgCtdSqAUsoLeF8p1QIwAw1KykwpNRgYDDBv3jwGDy55luLfoPaDt3JT7+4AJO8/gUdIQMF7\nHsH+ZBVb5pCbko6LtyfKyYQ2W/AI8S9YCpGfUfgwhLgNuzFNGIirrzeBEY3JPBtPboox6xWzMhL/\n5vZf4E37daXxg52M7fdG4x1aeGXPK9SXjNgUu21Kk5eRzaqJhQ8ZeWTFVFJPJ1xii0LmpHicAkIK\n/nYOCMacHG+XzqVmPfwHv0j89FFY0u1nZHRmOtn7t+Me1p680ydKjHVTn57UtNb/hQNG/V+scfdg\nf7tlJnkp6bj4eBXUf9E0vo1q03LacABcfX0I7hiGxWwmdrVxP0JwxxZcOHSS3KRUsuJsl5G4BfuT\nE2+7/C8nPgn34AAuFKQJICc+CeXsjHtwQInb5sQlEb/KGBymHjiGtlhw8a1ETlwiKTsPkGe9Lyth\n4w4qNzO6Z7Y1TnmV5eIN/cU1eOgW6t1vLI9N3BeFV6g/Fz91rxB/suIuvdS3ON8G1Wn36kBWPjOT\n3Auln8jlJiTazIq5BgXa7X9uQiKuwUHAQWuaAHITEq3vGZ9lfsoFktZtxrtRfdJ27yf71FkOjjXu\nW3OvXhW/9rbLq8qj7aXsPUZ2XBIp+4wZz5jlWy87eGt2ieOAd6gv6aUcB1oPuxMPf29WDS/5vr6K\npiza/JUousztWsa+0r6fvHM/XjdVLTGP8ohf9NhTXIh3PudTC0+9zqc5Eexju/TR263wAkXXetlM\nWapIzjTh52lcHFx33IPGIbkEepVysTDTdlnrtdr/3KTC76Bzi5cT9vYLhemC/Gn+5ngOvPY+EfON\ne287LXoDsPb9UH+Sdxtp3UP8yS52rMu7kFas7wfYpQFI2nkIz2rBuFT2ISCiMVnn4gq+98+v2oZf\nc9t6z4lPsjn2uQUHkFv82BefiJvNPgeQG2/7/WVOzyRlxz7824WTGXWKkP905/i7HwOQsHIjDV6Q\nwdvVsMiPdF8VmXkrVHwqobS1c6OBWCAMiADs1zsAWuv5WusIrXXEv3ngBhD17XJWP/wiqx9+kfOr\nt1PjLuOkya9ZXfLSM22WTV2UEHmAqj2Mdek17upMzOodAAX3UQH4NqkDSpGbkk7W+UT8mtXDyd34\nOALbNCEt6qxdvvu+XMO3903l2/umErV8Fw3vM5Z4hITVJjct+4qXTAK4+nhgcnECoFGfTsREHiUv\nI/uKts09fgCX0Bo4BVUFJ2c8O9xGVuQ6mzROASEEjn2TxA9eIT+m8CmEJh9flKc3AMrFDfdmbck7\nF11qrOjvlrGu30TW9ZvI+dWRVL+zMwC+TeuRn55Vav1XKaj/LgU3i6+8ZzQr7x7FyrtHEbNiK/um\nf1YwcAOoent7zv5prCK+cMAYTLpXCUY5OxPSsyMJ6yJt4sSviyS0V1cAKjWpT356JrmJKaQdPIZn\njSolbhu/dit+rZoC4FGjCiYXZ/JSUkncshuvejUxWe9/8GvZuCDOpfIri7KU5sjXK/m9z2R+7zOZ\nMyt3UvueDgAENq9Dbnrm31oy6RnqT9eZw9gwYQFp0bGXTJt+6Cju1aviViUE5exMYI/OJG+wnR1N\nWr+VoNuNgZZ344aYMzLJS0zG5O6GycO4B8Pk7oZv6xZknTDao7OvtT8qRfXHHuT84j9t8iyPtpeT\neIGs2ES8bjLucwps04T0E/Z9v6i9X67hm/um8s19UzmxfBc3X8FxoPEDHanZqTF/jfn4iu8xdbSy\naPNXIjfZaMeO6vue1UIcGr/osae4plVziU525kyKM7lm+OOgF93r2z6hNT7dVNDE9pxzxaLB16Nw\noPb7AS96NbnErFtCZJnsv2uR+9SCurYpWJ7q7O1J2IwJHJuziAt7DhekWd9/Iuv7TyR2dSTVehXr\n+4n2fT8x8gChPYxZy+p3dSZ2jRHXs3rhhc5KDWthcnUm70Ia2ecT8G1aH5Ob9Xu/dRPST9r2/bRD\nR/GoXrg/QT06kbh+m23c9dsIucM49vk0aWCti2RcfCvh5O0JgMnVFb/WYWRGG/nnJiRTOdxYgeDb\nqhlZp2NK/TiEuNZk5q1QTaVUe631JqAfsBl4WinVWmu9TSnlg7FssjJwRmttUUoNAJwcWObrTuz6\nXYR0CuPWxe9gzs61eZx/u/fGseu1j8hOSOHAe18TMW04Nw/rw4VDJzllfRhB1VvbUOuBHmizGXNO\nHpETPgAged9xzq3YStdFr6PNZi4cjib6x1U0f35AqWWJXrOPml2b0n/ZFPKzclk58fOC9+6cP5xV\nk74gM+4CzR7tTviTt+EZWIm+v7xE9Jp9rJ60EL+6ofSYPhCNJvloDKtevPL7bLCYSfrk/wie+J7x\nUwGrfyXvzAm8b/0vAOnLf6TyA0/i5F0Z/yeMpwxqs5nYiQNw8gskYOgrYDKByUTmpuVk71h/RWHj\n1u8iuGMLui+eYX1kc+FjldvMGs/uKQvISUjh0Htf0fKNETQc2ocLh6MLHgZxKU7ubgS1bcreNz62\nltc42Qif9SKYTMQsWUVG1Bmq9e4JwNmflpG4cQeBHcJp//1sLNm5HHj9g4JtD7/9sd22AOd+XUWj\nSc/QdtE7WPLzOfCasU1+Wganv1pC60+ng9bGI6xbN79kfmVVlitxdt0eqnZpzr2/T7f+VMAnBe91\nnzOKza98RlZ8Cg373UrjQXfgEVCZO394jXPr9rB58mc0H3IPrr7etJn0aEE5/3jotZKDmS1EvTuP\nRm9PRplMxP2+nKyTpwm55w4AYn/5k5TNkfi1b0X4V/Ow5ORwbJqxItzFz5eGU40niSonJxKWryFl\nq3ExJfDWLoT27gVA0tpNxP++vNT9Lcu2t/+t/xH++lBMLs5kno1j9+R51H3srstuB8Zx4KauTXnU\nehxYUeQ4cJf1OJARd4Fur/Yj7VwSD3zzHAAnlu1k2we/X1GMv2vcmB/YujWalORMuneZyfAR3bi/\nT/jfzqcs2nxQ1zY0GDsIV99KtJgxgbQjJ9k1aioAHX76AGdPT5SLcWrRcs4raLPFYX2/Ihx7inM2\nwYs9k3jq62AsGno3T6d+UB5f7zAuyD3UMp2lh7z4eqc3ziZwc9a8c28CShnbZ+YqNka5M/mOS8yE\namM241rvf73hj+JTvxYaTXZMPIemG324ep878KweSu1Bfag9qI9dceI27CKoYwu6/TwTc3aOzeP8\nW896jj1T5pOTkMLB2da+/0wfUg9Hc3rxagBCe7Sheq/OWPLzseTksWPCbABS9h8nZsUWOi96w/q9\nf5JTP66kyfiBhcHNFo7NXEDTGa+gnEycX7KCzKjTVLnvdgBifv6LpE3b8W/fitbffoglO4fDbxj5\nuwb40XDSSDCZUCYT8Ss3kLTRGFAeeXMOdZ99AuVkwpKbx9G35pT+efwN16rvixub0tfJFcSyVOSB\nJZFAK+AA8CjGA0tmAx4YA7dbgSrADxgzdX8Cw7TW3pcJ8a+u5MUtH3FY7Ht3LGROwyEOiz/08FxO\n9W1z+YRlpOY3W1nSqmzuQbgSd21fxIp29l/m5aXH5u8cHn9hs0EOif3IXmMwuKnLPQ6J337tLw5v\ne+87sO8PPzwXM45bXulEf4e3/X97fPNn7g6L7zQw22H732Ozcf/tbxH9HBL/zsgvWduxt0NiA3TZ\n8JPD+z6gHFaAv6GKT+cKfX4ck7auQtajzLwVytdaFx9lbAOKPzrpKFD0ktrzCCGEEEIIIQSglPLH\nePBhLeAk8KDW2u5GTqXUaOBJjImevcDjWutL3oMj97wJIYQQQgghxLXzArBCa10fWGH924ZSqhow\nEojQWjfFuBXroctlLIM3QGt90lppQgghhBBCCPFP3AtcvIn6c+C+UtI5Ax5KKWfAEzhXSjqbDYQQ\nQgghhBCi3Fh0xf6pgKI/+2U1X2s9v7T0xYRorS8+hvQ8EFI8gdb6rFLqbeAUxrM1lmqtl14uYxm8\nCSGEEEIIIUQR1oFaqYM1pdRyILSEt14slo9WStk9nEUp5YcxQ1cbSAG+U0o9orVeeKlyyeBNCCGE\nEEIIIf4GrfWtpb2nlIpVSlXRWscopaoAcSUkuxWI0lrHW7f5EegAXHLwJve8CSGEEEIIIcqVxlKh\n//8xV4PdAAAgAElEQVSHfgEu/tjwAGBxCWlOAe2UUp5KKQX0AA5eLmMZvAkhhBBCCCHEtTMd6KmU\nOooxwzYdQClVVSn1O4DWegvwPbAD42cCTFximeZFsmxSCCGEEEIIIa4RrXUixkxa8dfPAb2K/P0K\n8MrfyVsGb0IIIYQQQohypanYT5usqGTZpBBCCCGEEEJcB5TWdk+uFNeeVLIQQgghhCgPytEFuBJB\n3q0r9PlxfPq2ClmPMvNWPtQ/+V8p9fQ/zUPiS/zrLbbEl/gS/98b/9+87xJf4l+D+NcFi7ZU6P8r\nKhm8XR8GXz6JxJf4N1xsiS/xJf6/N/6/ed8lvsR3dHxRgcngTQghhBBCCCGuA/K0SSGEEEIIIUS5\nugY/hP2vJDNv14fL/mCfxJf4N2BsiS/xJf6/N/6/ed8lvsR3dHxRgcnTJoUQQgghhBDlyt8rvEIP\nQpIydlbIh7/IskkhhBBCCCFEudJafqT7asiySSGEEEIIIYS4DsjgrYJRSpmUUh0cXQ4hhBBCiLKm\nlKrt6DIIcT2RwVsFo7W2AB84uhwASqkOSql+SqnHLv5fTnGdyiPOpeIrpVY5MH6Ao2ILg1Kqk1Lq\nceu/g/5tJxfWPlBVKVXz4v/lGHuKUqqnUsqrvGJWFEqpFVfy2o1MKeWhlGrooNieSqmXlFILrH/X\nV0rdVY7xlVLqEaXUy9a/ayql2pRX/CLl8CznkN9b4/6r2roQV0vueauYViil7gd+1A56ooxS6gug\nLrALuLgoWQP/K4fwR5VSPwCfaq0PlEM8G1prs1LKopSqrLW+UN7xgc1KqV3Ap8AfjmoDjqSUCgHe\nAKpqrf+jlGoMtNdaf1wOsV8BIoCGGJ+BC7AQ6FjGcWdj9LESaa1HlmX8IuUYAbwCxELBc5w10Lw8\n4gMngIeB95RSacA6YK3WenFZBrXGulT9VyrD2O6AJxColPIDLt4kXwmoVlZxSyhHR2AycBPG+YEC\ntNa6TjnFvxt4G3AFaiulWgCvaa3vKY/4GP19O9De+vdZ4DtgSTnFn4PR524BXgPSgB+A1uUR3Lrq\n5yPAG6iplAoDntZaDy3j0Cal1ESggVJqTPE3tdYzyjg+UCHafztgNtAIow84ARlleexxNIv8VMBV\nkcFbxfQ0MAbIV0plU3gAKc8OHAE0dtDAIQx4CPhIKWUCPgG+1lqnlmMZ0oG9SqllQMbFF8vpBLoB\ncCswCOME9lvgM631kXKIXVF8hnEi9aL17yPAN//f3plH2VVVafz3BcIghBlBG0GJNIjIEEHCoIiK\nouKAiMio4AQog4oKDcqg4hJFm6EVRAigIIZWEBuZlNEwJyBRBhuQqZ0VQgiBEPj6j3Nu6qVIJSHm\nnnNTb//WqvXq3FRl76p6776zz97720DrwRuwI7AJMAnA9h8ljSpg99b8uBWwPunnBdgZKHmIcRCw\nru1/FLQ5C9vjgHGSVgc+ABwCfBxo9W9gexSkzB/wJ+AHpHvv7sBL2rRNuucfDLyUFDw0wdvjwMkt\n2+7ldODT2YcaSgJHAa8DrgawfXvhrPdo27tI2jXbf1JSSbW5zW2PkXRbtv+opCUK2v828Dbgomz/\nN5LeUMDuB4H3kvakJe61Q1H7+X8y6XdxPmkPthdpPxAEsxHBWwdpNhGV+S2wOmkTUxTbU4HTgNMk\nbQOcC3xb0n8DX7Z9bwE3fpo/ipMD5iuAKyRtS8r67C/pN8Chtm+o4VdhVrE9XtJhALZnSir1ZjrD\ntiUZoFT5nu2zsr39gK1tz8zrU0jZp1I8DNTIOAMg6fuk4PUvpJ/7/eRAuhDvtr1Rz/q7+bX3pbYM\n2j4BOEHSAbZPasvOfDDF9iUV7T9je8qgeKnkAeIMSUs3NiWNBp4uaP+Z3DbQ2F8VyqYmbD886Pdf\n4r67ve2vS1rS9jEF7A1F7ec/tu+VtJiTDOO4HMgfVtOnoHtE8NZRcunMOsBSzTXb1xaw+3PSG8co\n4E5JN9Pz5lWifCW/eb0T2Bt4OXA8cA7weuAXFDiJajbSNcg9b3sAe5I2sAeQTkI3Jp3I9UP/1bT8\ne2g2MWMpF1CMl3QqsIKkj5EyoKcVsg2wIqlc7p95vWy+1io95Ur3A1dLupjZX/tFSpeAlUnlQo+R\nfgd/bwLZQkyTtDtwHun5tys92fc2sX1SLl17OT3vz7ZLlKsDXCXpG6SDq96/fang+XeSdgMWk7QO\ncCBwfSHbkMqFLwVeJukcUhb8wwXtnwhcALxY0ldJBxdHFLT/cH7+WdJIUhb+rgJ29wZOIGXfagZv\ntZ//T+ZM6+2SjiMdng9rbYok8xC8UGJIdweR9FHSTXMNUs/ZWOAG228qYHubuf277WsK+HA/cBVw\nuu3rB/3biSVKFyX9gTmc+JaofZf0e1LJ1jjbjwz6ty/Y/nrbPtRG0hhS7f8GpCzwqsD7bd9RyP52\nwFtJ5WuX2b6ihN1se29S+dhV2f4bgKPaPlDIvX5DYvvoNu0PRtKrSCVcnwYWs71GIbsvJ20ktyLd\nAyYAB9t+oIDtOfYaF+x3nJNQk0u892T7LyKVSs967ZGqLZ4qYT/7sDLpPVfAjbb/Xsp2tr8e8OZs\n/1e2SwRPje1VSM/9t2T7lwMHtV1CLelHpDLBlwL39f4T6flXpN+2A8//tUgHtkuQ7nvLA98pVG1U\nheWWXr/TQcjj0+/s5JDuCN46iKTJpAblG21vnG/mx9p+X0Efvm77C/O61pLtZW0/0badefjQq/i4\nFKnvaCXbrZVO9dhWP4qUDEbS4iTREAH32H6mkN1XAH9qNoy5jGq1Epv3Hh9WBzbPy5ts/7mU7doo\nqfu9nhS0rgDcCFxn+4yqjhVA0l3U6zXuFLkCY5mSvc6SdgSubISqJK0AvNH2hYXsrzSHy1NL3ftq\nku95lwHPq+6x/WAB+yNIB4Tj27Y1Fx+WAaZn1fHmNbCk7Sdr+dQ2EbwtGBG8dRBJt9jeLCsObm77\naUm/s/3qgj5Msj1m0LU7SpyAZeW1jwCvZvay0X3atj03JE20/doCdlYFPs/zf/4ip39dQNIngXNs\nP5bXKwK72v5OAdu3AlvanpHXSwATbBdRfMs2q5RNZ9tN6XQvU0iCKqe2nQWRdDKp1+06239s09YQ\n9qvdfySdDxxou3ivcbZfTeU12z8X2JeUdbyFVD58gu1vFLJ/u+2NB127zfYmhew/ALwMeJR0aLUC\n8GdSNuZjtie2bP8sUqat9757fO333lJIutX2phXt3wi8pTm8lrQscLntYTv7d9TS63Y6CJk6/Z5O\nBm/DupZ2EeaRfOJ3IUm04mdA6ydPkMQScuZvXUl39Hz8AZhcwgdSyeDqpJKpa0jlo1ML2QZS2V7P\nx6aS9qVcj+g5wN2k3rajgQdIG5l+4mPNBgKS6hrwsUK2F28Ct2x7BqmMpQi5bPpa0in00fnxqFL2\nST1vT5BFg0iKh1NJvaat9/7Z/hRJbXCMpB0kvbhtm4Ooef9ZhdRrfJmki5qPQrYhqbxeRipfg6Ty\nenBB++vnTNt7gUtI98A9C9qf056opDbAFcA7bK9ie2Xg7aQxBfuTxgi0zYZzuO+2HrgqKSojafKg\nfcdkSUVK5TO/lHSIpJdJWqn5KGh/qd6qo/x56Zl7wSJACJZ0ENs75k+PyjXYy5OaqEtwLulN82vA\noT3Xp9r+55y/ZaHzSts7S3qP7bPyaWxJtT1IIikNM0kB1AcK2V7Z9umSDso9htdI6rfgbbHe8tFc\nPlIqgPqbpHfbvijbfg9Qsu/lIAbKprdtyqYL2t9yUJbx5z3VAL9r27iknUmzvq4mZR9OkvQ52//d\ntu1MzfvPUYXsDEVNlVeAkUpCGe8FTrb9jLLqayFulfQt4L/y+pMk2fhSjLU965DK9uWSvmn7E5KW\nLGB/hKQVc9DWlHGW2CcelB+LDUQfgl3y4yd7rhkoMueNJJY0phFIkbQpML2Q7WARIoK3jiJpa2Ad\n2+NyGd2/AX9o226u9Z8C7Jo3zKuRnifL5l60h9r2AWjq+x+TtAGpbKTo6bvtbUvaG0Tz8/9J0juB\nPwIlT/+6wKXAj5VUHyHNwSp1gLEvcE4u3xNJOn+vQrYBnrL9lCSUpLPvlrRuQfvLSlqzea1LWpOk\neAkwY+hvW2gcAWxm+6/Z/qrAL4FSwVu1+08JQah5UFPlFeBU0kHZb4BrlQQcSs73PAD4IgMzFq9g\n9o182/xJ0hdISqeQgom/5PfiErJ8xwM35PJdkdQuv9q20aZMuERv2zz8qK3kfDBwvqSmXPwlDASU\nw5JQm1wwInjrIEqqb5uSxBrGASNJs762KujDp0inwH9h4E3DQAnVp+/lWvsjSBL5y5LeUIshaXmS\nbHQzoPQa4Jimkb1lvpLtf5akuLgcSXmqn/gCKWDbL6+vAL5fwrDt+4Cxud+gKV0pyeCy6UcpVDad\n+Szwa0n3kTZwryDNGVwGKDFCY0QTuGX+QdkS/+b+80UG7j+tCxUBSJrKQL/hEqR7/zTby5WwD3yG\n9DOPljSBrPJayDa2TyTJ5Tc8qDTrspT9acxecVKa3UjvO41AyoR8bTEKVH7YPjv3/Db91e+zfWfb\ndgc97+fkV5Hnv6Q5HtK53KiOycAppJLtx0mvxdarHYJFjxAs6SBKQiWbAJOaRmkVEgvp8eFeklhK\nqxLBg2x+Zk6X86Ndbs4Ukn5CkqhvNqt7AhuVVPwMyiJpD9s/HOJ5WHLOWa9P25DLpnv78ArYXRJY\nLy/vaVukZJDtb5AOiX6UL+0C3FFC6bZLSBLwHlIpXbGAQpVUXrPtKodmkv7T9sGas1hPkfmmNZG0\nnO3Hh+rvKtUyIenLpNlmPyA9/3YHXlJC5TnbP6lnuRRpZMMk20UOMHLv3+OkvndIgfsKtncuYb8G\nyy61TqeDkCee+t9OCpZE5q2bzLDtptY/n3iX5mHKlstAGgwOaeOwGenUCeBdwM2FfRlte6ee9dE5\nqG6N/MYxt9PHIrOeaiJpvO0PZNGcOW2i2jzAaF5no+b6VQWoUTYt6U22r5Q0+IBitCRs/7RN+w22\nPydpJwYqDb5n+4IStqG+4mJD7ve8MFdiFAnelJQ29we2Jr3+rpN0SsHg/QzSoVmTZdqTVH3S9qHZ\nD/LjN1u2M1ck/TtwCM8f0t620vC5pH6zicx+3xVle77ebXujnvV3Jf2GQplv2wf0rnMFxHlDfHkb\nbGB7/Z71VZJaz3zWxEWqgYcfEbx1k/G512cFSR8D9qGAytsg7geulnQx8HRzsc3sg/MQYEnXAmNs\nT83ro4CL27I7BNMlbW3719mHrWi/cfjW/LgVsD4DfRc7A8P6Bt5DtcZ126fm3pLHbX+7tP2GimXT\n2wBXkg5LYGAT12zgigRvALZ/AvyklL1BnEn6vR+e178nvRZbD94GBc4jSM+DYllP4GySsmaTgdiN\nFNiUOvkvfmgGYHtifu1/3PbubdubC+eTyua+z8CQ9taxvUPO9G5TqK99KKZJ2p0UMBnYFZhW0x9S\n2XgpJkkaa/tGAEmbM7AvCIJZRPDWTWaQGvQfJ23gvmT7isI+PJQ/lqCgTHpmNWYXRpiRr5VkP+Cs\nXMYDae7Oh9o0aPssSOMagK1tz8zrUyivtlkF23/Km6gza4jG2H5W0q5AteAN2JFcNp19+qOk1rOB\nto/Mn+4H7MTsp/+tl7bMpe9Fyb1ifV81FRff1fN5o3L7nkK2of7Jf41DM2DWa38tSUuULFEexEzb\n361hOFf7XAy8pob9zG7ACfnDDPT8FWFQ2ewI0iHq+aXsA68FrpfUBNBrAvc0lSglW2eCbhPBWzd5\nMXAgafN2BimQK0pPFqyGaMPZwM2SmlKp95JOw0tyF3AcMJo0KHVK9qPEzJkVSSIlTZ/BsvlaX5A3\nUc9JWr6QQMxgJmSlyR/Tc+rbyDcXoHbZ9IXAY6T7T5P1aT14s129XDVTTXHR9t4l7MyF2if/vYdm\nIt0DP1zQ/v2k1/9FzP7aL9Xv+nNJ+wMXMHvFS6kxPZMkbWa7ymga2w8wl8MKSYfZ/lqLLvSWzc4E\nHrT9SIv2BrN9QVvBIkwIlnSUXMLwVmBvUunMeOD0rIRXwv4GpHKZpoH578BetosoH0kaA7w+L6+1\nfVsJuz32L2VgAzvr1N328UN+08KzvTdJ6fMq0gbmDcDRts9s23ZXUBpMvwlJZbJ3E9V635/SbMXB\nuEDfSWP/EGAdYDvSvMV9gHNtnzTXb1x49n9re4MStrpIvvecBGxA6r9aFXi/7dYPbiStkW03JbLX\nAQeV2kBKuotU7fEQKXhdC7iHtJEtdvIvaTmSwZJjApqS5efRHGYWsD+nvlbbLtJzJulu4JUkddtp\nDGS9O5HxkTTJ9pgW//+vDxZGmtO1YOHxoiVf3ukg5MmnH+ikYEkEbx1G0kak4G170kZ+LHCF7c8X\nsH09cLjtq/L6jcCxtrds23YXqL2BlbQ6sHle3mT7z7V8qYGkOZaoNqWlwx1J25EObwRcVrJsWtL3\ngJNsTy5lsytIGkG6z95MBcVFSVeQxCMaAY09gN1tb1fI/lqkLP+sgzPSIRbQ3hyuoRRee+wWVXrN\nwaObvut+If/9n0dbf/cXiqTbnBW4W/r/nxccqrDSd78RwduCEWWTHUTSQaShwH8nNS5/zvYzeWPx\nv0DrwRuwTBO4Adi+upLqZS2ul/SaGhtYScdkaeSf5fUISedUbqQviu2zJC1Bkqs3aQNdpA8ll8wd\nyYDi3q9JcuWtj83I/X6/zP1+RftcexQ+Fwf2lnQ/qXSrU6fvbWL7OUn/lTeINeYrrWp7XM/6TEkH\nF7T/XuCjJHEakYLI0wpkfZuSWTMwHoaea0WQtClJrGZUXk8B9rE9saAPG5B6rZZqrrnQnDHbD+bM\nc3Pvm1CwXHx+aOW5kPvM9wfWltSbYR9F6rsLgk4RwVs3WYk0HHO20668sSilwne/pC8y+wnw/YVs\nV6MjG9iXNbX9SvO2xgNFy0ZrI+kdwKnArEHRkj5h+5IC5s8jZRwa1bvdSf1vb2nbcOV+v+IKnx3l\nV0qjCn7q8qUp/5C0BwMz7nYlDSkvxUdIc+WmQSoZA25gQH2yFXp6rM8ilYk+ltcrAq2XqvdwBrC/\n7euy/a1JwVypctEjgTeSgrdfAG8nHR4VCd4kfYmkLNooy46TdL7tr5SwPx+0lQU5F7iEVKbeO5Zj\nasF+w77EjlEBC0KUTQZzJL9pHs3svRdHNW+qw5WhykYaSpSP5H7Hc4DJwLbAJTWl62uQey92sH1v\nXo8GLra93ty/c6HYfl7JrKTJtouosNXs9wtmqV4uQ+p1nU5Btct8/zkJ2IJ0iHQ9cIDth9u2ne1P\nBjZznuumNPftloLP/eeVxbVdKjcf9lvtsxpkazKwEXCb7Y2UZg7+sGDZ7D3ARj1//6WB222vW8L+\nvJD0H7aPbdlG74zNVYBRtludsdnPLL3Emp0OQqbPeCjKJoNFitHAy0hyuYsDbwbeRKETyFrUrO3P\n5SoNJ5AyTxOAaySN6Vj5SttMbQK3zP2k+VMluFzSB0kZT4D3A5cVsg3p1LvYTLVgdiqrXh4DfMj2\nowCSViIp4O1TyP444KZBSr8lh5OPkLTioJ+/5D7lGqUZqz8iBc+7kOadjoEiirNP5Qqbmbnv7q+k\n9+FS/JFUrtmozC4J/F8p40NlXm3vA1AgcBs8Y3MJyszYDIIXRGTegjmST+AOIamtzcprd6VxeTgy\nhMphQzG1wy4g6bskpbvxpE3UziQFvF8C2G4tuBmUeQFYjIEMWKkMTJV+vyChNCy76fu5zvaFhexW\nzTxle03PE6SfvVjJtqS9gP9gYLbWzsBXbf9g6O9aqPar3YNzxcX3gc8CH8yPT5AyX0VGSEi6ENiM\nlPU3SfH2ZuARaD/7X/v5rzQQfhNgUmMzBEvaZakl1uh0EPLUjEci8xYsUvzN9s9rO9FPuMJQ6g6z\nFPAXYJu8/huwNGmIsWkxMzWvzIukV7vFkRmV+/36HknfIcmlN31n+0razvYnC5ivnXlqsktVsvy2\nz5Z0K6nKA1Lvd7Eh4fO6B0v6UFuKt7Yt6XU563SK0ria5VxgREUPF+SPhqsL2ob6z//aMzaDYL6I\nzFswRyS9mdQs/ytmHxYa5Vwtk/scjgVeavvtktYHtrBdsnyp06j9Ya1zs932rKFq/X7BrN//qxqx\nkqzy+zvbrypgu2rmKZg7BV77ZwEnu9KQ7Hkh6Se2d5r3Vy7w/78XcDip4kKkkvWSmdeqMzb7kci8\nLRiReQuGYm9S2dZIBsomW814BLM4k1Rvf3he/56kdhjB2wA7k95ca9D2zbxmv18A9wJrkgYVQ+o5\nunfoL1941M48BfOk7df+5sDukjo5JBtodVh4fv7fS+o7M7C37RvatDnI/jeVZmw+Tup7+5ILztjs\nR0JtcsGI4C0Yis26ojDVh6xie7ykwwBsz5T07Ly+qc+oeRrW9knhrZJ+wez9frfkPqzIfrfPKOAu\nSTfn9Wakv8lFALbf3abxHKxFwNZN2n7tv63l//9fpdWfX2nGbe+cwVMllZgzWHXGZhC8UCJ4C4bi\neknrx6lvFaYpDYpuyrbGAqVnfnWdTpda/ItU6/cLAPhSbQeCztLqoVEIgtWZMwjVZ2wGwQsigrdg\nKMYCt0v6A+WHVPc7nwEuAkZLmgCsSqr9DwaomXlrVfmxlLJcMCS3AtOzZPu/k8rHL7H9TGW/gvpM\nqO1AZdq+74oBlV/y5yXv9U8AkyXFjM1CmCibXBAieAuGYvvaDvQrtidJ2oZUcy+SVHxsHGfn/Hl/\nyYIh6RjbX+pZLwacbXt3ANtj27Kd7R0HfIU0IPpS0mzFT9v+YZt2g1lcC7w+z5i6HLiFNO9r96pe\nBa0j6TNzuDwFmGj7dtufKu1TSbK64nTnRqQs1rOU7Sfzl3yhZRdqzxmMGZvBIkGoTQZBx5D0IlL2\nbS3bH5O0DrCu7f+p7FrrSDqJuZREljgBlTQO+L3tr0laktR7dpvto9q2ne3fbntjSTsCO5CeC9fa\n3qiE/X6nURSUdACwtO3jJP0mfv/DH0nnksQymjE5OwB3AC8Hzrd9XCXXiiDpRuAttp/I62WBy21v\nWdCHanMG50Xbapv9yBIjV+90EDLjmT+H2mQQBPPFOGAisEVe/x8p0zTsgzdSyRrAVsD6JJVNSKId\npfov9wHOyYIx2wK/sP2fhWzDwH35naQN45Q0vzcohCRtQcq0fSRfG1HRn6AcawBjeoKXI4GLgTeQ\n7snDOngjZdmeaBa2n8iHicWoOWdwPmhVbbMfsUOLbUGI4C0Iusdo27tI2hXA9pPqk917MwBX0n7A\n1rZn5vUpwHVt2s4nvg0nkAZlTwCulTQmbypK8D951th0YD9JqwJPFbIdwEHAYcAFtn8naW3gqso+\nBWV4MT1zTYFngNVsT5f09BDfM5yY1nuvk/Ra0n0oSHQ6SxT0DxG8BUH3mCFpaQbUJkcz+4aiH1gR\nWA74Z14vm6+1yfGD1o+Ssn/Hk/4Wb3red7SA7UNz39uUrID2JPCe5t8lbRezh9rD9rWkvrdmfT8w\nq1xX0km2D6jhW9A655B6rn6W1+8Czs29YP2gvHwwcL6kP5L6rVcn9XsGQdAhouctCDpGHhJ6BClw\nuJxUQvhh21fX9KskkvYGjiJlPEQqWzqqycz1M01PVm0/+pX4/Q9vJG1KuucCTLB969y+frghaSRJ\nLAtCLGs2JN1me5PafgwnRi6+aqeDkGdm/q2TVU8RvAVBx5D0Q1KT/HTgfuAm23+v61V5JK0ObJ6X\nN9n+cyG7B5H6DqcCpwFjgENtX17C/ryIDURdIngbvkg6ETjP9vW1fSmJpPfN7d9thwIjIOmtXXkf\nGC6MXHzlTgchz8z8RyeDtyibDILucTrwemA7YDRwm6RrbZ9Q1632kbSe7bt7+s8ezo8vlfTSQn1n\n+9g+QdLbgJWBPYEfkLKgXaDTb3ZBsAgzEThC0rrABaRArh8yb++ay7+ZYS6fL2kyc1c53jA/duU9\nIOhzIvMWBB0kzxbbjKR2uC9p9s56db1qH0nfs/1xSVcx+5tpMyS+9b4zSXfY3lDSCcDVti/oUrYr\nMj916dJzIWgHSSsBOwEfBNa0vU5ll4IWkbRW/vST+fEH+bGZ7Xlocaf6hMi8LRiReQuCjiHpV8Ay\nwA0khcXNbP+1rldlsP3x/Ok7gP1J835M+j18t5AbEyVdDrwCOEzSKOC5QrbnhwdqO9AP5BlX9Eqn\nZ4Z9BjzglcB6wFrAXZV9KUaea7kTaa7drP2h7WNq+VQC2w/CLDGo3oOZQyVNAiJ4a4k8Dz54gUTw\nFgTd4w7gtcAGwBTgMUk32O4nyeazgMeBE/N6N+Bs4AMFbH8E2BgYSRrYuwpwZgG7wCzBgP1IIi0A\n1wCnNMIBtufanxL8a0h6Dem5tlJa6m/Ah2z/FsD2mRXdC1okq7zuCNwHnAd82fZjdb0qys9I7zkT\n6T+FY0iv961sT8iLLYkZj0EHibLJIOgoOePzYeAQYHXbS9b1qByS7rS9/ryutWT7o6RZX2sAtwNj\ngRtKlGxm+98nBY6NsuaewLO2P1rCfr8j6XrgcNtX5fUbgWNtb1nVsaB1JH2C1N+1NjDrfpvHRwx7\nJP3W9ga1/ahFnmt3BrA8qVT/UVIPdFeHhi/yLL7Yip0OQmY++2iUTQZBMG8kfYokWPJaUoncGbQ8\noLqDTJI01vaNAJI2B0oJBxxE6je80fa2ktYDji1kG1KZ7EY96ysl/aag/X5nmSZwA7B9dZ7zFQx/\nngOuZNDBDYVmPHaA6yW9xvbk2o7UwPZEYCNJy+f1lMouDXvcqY6ERYcI3oKgeywFfAuYaHtmbWdK\n0qP6NZK0kXgor9cC7i7kxlO2n5KEpCWz+uW68/62hcazkkbbvg9A0trAswXt9zv3S/oiA6IFe5BG\ndgTDnwOpe3BThZ777uLA3pLuJ5VNNkJRG9b0rxQ5aDuSXLIu6RrgmAjigq4RwVsQdAzb36ztQ4NT\n4RgAAAWkSURBVEV2qO0A8IikFYALgSskPQo8WND+54Cr8gYKknjA3gXt9zv7AEczII9+Xb4WDH9q\nH9zUove+uyKp8gPgWqCfev7OAH7LQG/1nqSZn9FnHHSK6HkLgiAYAknbkPofLrU9o5DNpYDPAm8m\nbZxuAb5t+6kS9oNEPoV/zvbU2r4EZZB0Aemg5GBSqeSjwEjb76jqWCEkHQR8lHRwIeC9wGm2T6rq\nWCEk3W5743ldCxYeiy02qtNByLPPTu1kz1sEb0EQBB1C0niS0uY5+dJuwAq2d67nVf8gaTPSCfyo\nfGkKSbRgYj2vgtLUOLipjaQ7gC1sT8vrZUhiTf1SNnkD8Dnbv87rrYBv2t6irmfDlwjeFowomwyC\nIOgWGwxS1bxK0p3VvOk/Tgf2t30dgKStSaVTfbGBDRK2r6ntQwXE7P21z+Zr/cJ+wFk56y7gnyTF\n5yDoFBG8BUEQdIuaSptBGsswS93V9q8l9ZVwUNC3jANuyuWjkMomT6/oT1Fs305Sm1wurx+v7NLw\nJ4Z0LxBRNhkEQdABBiltrgvMprRZYsZdPyNpTP50L2Bp4Eek3/8uJCGLz9TyLQhKkV8HW+fldbZv\nq+lPCSTtYfuHkub4Grf9rdI+9QuLjVim00HIs89N62TmOTJvQRAE3aALSpv9zPGD1kf2fN7pDUYQ\nLCzyQOp+G0rdzHEcNdevCoKOEJm3IAiCIJhPJH3I9lm1/QiCYOEhaTHgQNvfru1LPxGZtwUjgrcg\nCIIgmE8kTbI9Zt5fGQTBooSkm22/rrYf/cSIEUt3Ogh57rnpnQzeomwyCIIgCOafTr6ZB0HwLzNB\n0snAj4FpzcVcShoEnSGCtyAIgiCYfzp9UhwEwQLTDOM+pueaSQPbg6AzRPAWBEEQBPNPZN6CYBhi\ne9vaPvQfMSpgQRhR24EgCIIgWISYUNuBIAgWPpJWk3S6pEvyen1JH6ntVxAMJgRLgiAIgiAzxKyn\nKcDEPMQ3CIJhSA7axgGH295I0uLAbbZfU9m1YcuIEUt2Ogh57rmnO1lpEZm3IAiCIBhgU2Bf4N/y\nxyeA7YHTJH2+pmNBELTKKrbHk2v5bM8Enq3r0jDH7vZHR4metyAIgiAYYA1gjO0nACQdCVwMvAGY\nCBxX0bcgCNpjmqSVyaJEksaSsu5B0CkieAuCIAiCAV4MPN2zfgZYzfZ0SU8P8T1BECz6fAa4CFhb\n0gRgVeD9dV0KgucTwVsQBEEQDHAOcJOkn+X1u4BzJS0D3FnPrSAIWuZO4ALgSWAqcCHw+6oeDXMc\nk1cWiBAsCYIgCIIeJG0KbJWXE2zfWtOfIAjaR9J44HHSAQ7AbsAKtneu59XwRhrZ6SDEfqaTgiUR\nvAVBEARBRtKJwHm2r6/tSxAE5ZB0p+3153UtWHhE8LZgRNlkEARBEAwwEThC0rqkEqrzIvMWBH3B\nJEljbd8IIGlzIF77LdLV4KjrROYtCIIgCAYhaSVgJ+CDwJq216nsUhAELSLpLmBd4KF8aU3gHmAm\nYNsb1vItCHqJzFsQBEEQPJ9XAusBawF3VfYlCIL22b62A0EwP0TmLQiCIAgyko4DdgTuA84DLrT9\nWF2vgiAIgiARmbcgCIIgGOA+YEtgbWBJYENJ2L62rltBEARBEMFbEARBEPTyHHAlsAZwOzAWuAF4\nU02ngiAIggBgRG0HgiAIgqBDHAhsBjxoe1tgEyDKJoMgCIJOEMFbEARBEAzwlO2nACQtaftukgJd\nEARBEFQnyiaDIAiCYIBHJK0AXAhcIelR4MHKPgVBEAQBEGqTQRAEQTBHJG0DLA9cantGbX+CIAiC\nIIK3IAiCIAiCIAiCRYDoeQuCIAiCIAiCIFgEiOAtCIIgCIIgCIJgESCCtyAIgiAIgiAIgkWACN6C\nIAiCIAiCIAgWASJ4C4IgCIIgCIIgWAT4f2+l+5OX/kY/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAElCAYAAACrn37VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8VfP+x/HX55yiiKJ5IirRRaRMIVMTEZJrdoXMcnGv\n+Zpd3Gt2jQklU4ZkCMlQMjWLkEpoVNFA+alzPr8/vmufs89pdwbaa53TeT8fj/04Z6291v589z5n\nrb2+6/v9fr7m7oiIiIiIiBSXk3QBRERERESkYlJlQUREREREMlJlQUREREREMlJlQUREREREMlJl\nQUREREREMlJlQUREREREMlJlQURERESkkjOzgWb2o5l9vo7nzczuMbMZZvaZmbUvy+uqsiAiIiIi\nUvk9DnQv4fkeQOvo0Q94oCwvqsqCiIiIiEgl5+6jgZ9K2KQXMMiDj4E6Zta4tNdVZUFEREREZMPX\nFPghbXlOtK5E1bJWHBERERERWUseQ7y8+1SzE88kdB9KedjdH15/pVpH3GwHEBERERGRQvn5eeXe\nJ6oY/JnKwVygedpys2hdidQNSUREREQkRu5ryv1YD4YDJ0dZkfYElrn7/NJ2UsuCiIiIiEiM3Mvf\nslAaM3sa2B+oZ2ZzgGuA6iGePwi8DhwCzABWAqeW5XVVWRARERERiVH++mkpKMLdjyvleQfOLe/r\nqrIgIiIiIhKj9dStKBaqLIiIiIiIxEiVBRERERERycjzVVkQEREREZFMKlHLglKnioiIiIhIRmpZ\nEBERERGJkcYsiIiIiIhIZvmrky5BmamyICIiIiISI7UsiIiIiIhIZsqGJCIiIiIiGamyICIiIiIi\nGakbkoiIiIiIZGJqWRARERERkYxUWRARERERkYxUWRARERERkUxMYxZERERERCSj/LykS1BmqiyI\niIiIiMRIA5xFRERERCQztSyIiIiIiEhGalkQEREREZFMTC0LIiIiIiKSUSWqLOQkXQAREREREamY\n1LIgIiIiIhIjdUMSEREREZHMVFkQEREREZFM1LIgIiIiIiKZqbIgIiIiIiKZqGVBREREREQyU2VB\nREREREQysfz8pItQZqosiIiIiIjESS0LIiIiIiKSkSoLIiIiIiKSibm6IYmIiIiISCZqWRARERER\nkYw0wFlERERERDJSZUFERERERDLRpGwiIiIiIpKZWhZERERERCSjSlRZyEm6ACIiIiIiUjGpZUFE\nREREJE6VqGVBlQURERERkThpgLOIiIiIiGRialkQEREREZGMKlFlQQOcRURERETilJ9f/kcZmFl3\nM/vazGaY2WUZnq9tZq+Y2RQz+8LMTi3tNdWyICIiIiISpyy0LJhZLvA/oAswBxhnZsPdfVraZucC\n09z9MDOrD3xtZkPc/fd1va5aFkRERERE4pTv5X+UbndghrvPii7+nwF6FdvGgc3MzIBawE/AmpJe\nVJUFEREREZE4/YFuSGbWz8zGpz36FXvVpsAPactzonXp7gN2AOYBU4H+7l5iM4e6IYmIiIiIxOkP\ndENy94eBh/9k5G7AZOBAoCUw0szGuPvyde2glgURERERkThlpxvSXKB52nKzaF26U4EXPZgBfAts\nX9KLqrIgIiIiIhInzy//o3TjgNZmto2ZbQQcCwwvts33wEEAZtYQaAPMKulF1Q1JRERERCROZWsp\nKBd3X2Nm5wFvArnAQHf/wszOip5/ELgBeNzMpgIGXOrui0t6XXNf/4UVEREREZHM8gbVLPcFeO7J\nqywbZSmNWhZEREREROKUhZaFbFFlQUREREQkRmUbglAxqLIgIiIiIhKnStSyoGxIIiIiIiKSkVoW\nRERERETipG5IIiIiIiKSkSoLIiIiIiKSUeUZsqDKgoiIiIhInDw/kSkT/hBVFkRERERE4qRuSCIi\nIiIikpFaFkREREREJBN1QxIRERERkcxUWRARERERkYxclQUREREREclA3ZBERERERCSz/JykS1Bm\nqiyIiIiIiMRJLQsiIiIiIpKJa8yCiIiIiIhkpG5IIiIiIiKSiQY4i4iIiIhIZpWoslB52kBERERE\nRCRWalkQEREREYmRBjiLiIiIiEhmGuAsIiIiIiKZaICziIiIiIhkpG5IIiIiIiKSmbohiYiIiIhI\nJuqGJCIiIiIiGakbkoiIiIiIZKZuSCIiIiIikom6IYmIiIiISEbqhiQiIiIiIpmpG5KIiIiIiGSi\nbkgiIiIiIpKRuiGJiIiIiEhGalkQEREREZGM3DVmQUREREREMlHLgoiIiIiIZFKZxixUnjYQERER\nERGJlVoWRERERERipAHOIiIiIiKSkQY4i4iIiIhIRpWpZaHyVGtERERERDYA7lbuR1mYWXcz+9rM\nZpjZZevYZn8zm2xmX5jZ+6W9ploWRERERERilI1sSGaWC/wP6ALMAcaZ2XB3n5a2TR3gfqC7u39v\nZg1Ke11VFkREREREYpSlbki7AzPcfRaAmT0D9AKmpW1zPPCiu38P4O4/lvai6oYkIiIiIhIj95xy\nP8qgKfBD2vKcaF267YAtzOw9M5tgZieX9qJqWRARERERidEfaVkws35Av7RVD7v7w+V8mWrAbsBB\nQE3gIzP72N2nl7SDiIiIiIjE5I+MWYgqBiVVDuYCzdOWm0Xr0s0Blrj7r8CvZjYaaAess7Kgbkgi\nIiIiIjHKUjakcUBrM9vGzDYCjgWGF9vmZWAfM6tmZpsAewBflvSialkQEREREYlRNgY4u/saMzsP\neBPIBQa6+xdmdlb0/IPu/qWZvQF8BuQDA9z985Je19x9vRdWREREREQy+7b3XuW+AN/mhY8SmclN\nLQsiIiIiIjEqY3ajCkGVBRERERGRGOVnYVK2bFFlQUREREQkRlmalC0rVFkQEREREYnRH0mdmpTK\n02FKRERERERipZYFEREREZEYVaaWBVUWRERERERipMqCiIiIiIhklK/UqSIiIiIikomyIYmIiIiI\nSEbqhiQiIiIiIhmpslCUxxBDRERERKRSXIVrBmcp4rLmFyQS95Yf7mHTGi0TiQ3w628zOWjTsxOL\nP+rXB6i50VaJxV/1+/fkMSSx+LmckHj8Jpt1Tiz+vBXv83vewMTib5Tbl9X5gxKJXT3nZNpsdlQi\nsQG+XvEim2zcIrH4K/9vduJ/+6SPvaTj16/VMbH4i34Zl/j7N6ueSGz31QA03mzfROLPXzEm8WO/\nslDLgoiIiIiIZKTKgoiIiIiIZKRuSCIiIiIikpFaFkREREREJCNVFkREREREJCN1QxIRERERkYzU\nsiAiIiIiIhmpsiAiIiIiIhlVpm5IOUkXQEREREREKia1LIiIiIiIxKgydUNSy0JCttt/By5+70ou\nGXM1nc85eK3ndzmiA/3fupQLR17G2S/9ncY7NCl4rlPfzlz49mX8/e3L6XTa/n8ofpcu+zHps5F8\n9sU7XHzJmRm3+c/t/+KzL97hk3GvscsufylY/8BDtzD7+08ZN2HEH4oN0LFLWx6fdC2DPruOYy/u\nutbzzbdryL3v/IMRP91Dn/5FP59Na9fkmifP4LGJ1zBwwr9ou/s264zTpWtnpnz+Lp9PG80l/zgn\n4za333Edn08bzacT3mSXXXYsdd+jeh/KhMlv8+tvs2nffueC9ccedwQfjxtR8Ai2KMvHUcSVlw9n\nn73+y+E9Hyj3vutDNuLvf/DujJk4mLGTh3DeRcdn3OaG2y5g7OQhvP3RQHZq17pg/SefP8Oojx9j\n5NgBjHj/oYL1Dz5+DSPHDmDk2AF88vkzjBw7oMzl+WDMLA475BEO6fYQAx75eK3nly37jf7nv8hR\nRwzkuL8O4ptvFhU89+Tg8Rx5+KMccdgABg8aV+aYhbFn0rPHA/Todj8DHvkwQ+xVXHDeUI7s9QjH\nHjOQb6b/WPDc4EGfcsRhD9Or50MMfuLTMsfc9+BdeWPivbw1+X+ccdGRGbe58rbTeGvy/xj+0R20\nbbdtwfqTzz6UVz65i1c/vYtTzulZsP6fN57MiAn3MPyjO7jvqUvZrPYmRV6vS9fOTJ46iqnT3uPi\nS87OGPO/d1zD1Gnv8cn4EUXOMSXte9Y5pzDps1GMn/QWN958WcH6HXfcnnfff5Hxk96K1uRmjJnk\n3740G+KxD3DgwXvx0cTn+XTKi1xw0SkZt7n5Pxfz6ZQXee/jp9i5XZsiz+Xk5PDO2CcZMvSOtfY7\n+/wTWPTLOLasW/tPlzNb7//uu+/km2++ZMqUiey6664Zt2nRogUffzyWb775kmeeGUL16tUB6Nx5\nP5YuXcykSeOZNGk8V199ZZH9cnJymDhxHK+8Mizj6x5w8O6MmTiEDyc/zXkXnZBxmxtu68+Hk59m\n1EePs1O77QrWf/r5c7zz8eOMHDuQN95/ZK39zjz/r8xfMWatzz75Y58aGYNWMPlu5X4kRZWFBFiO\n0evGPjx28oPceeDN7NJrNxq0blRkm59+WMLDfe7hri63MOruNzjy1mMBaNimMR2P34v/9bydu7vd\nyvYH/YW6LeqVK35OTg533H0tR/bqy267dKPPMYex/fatimzTrdv+tGrVgp3/ciDnnXsld91zfcFz\nTw5+gSMOP/UPvnvIyTEuuONYLj/yPvrudj0H9unI1tsXff8rfl7JfZc8x9C7315r//P+cwzjRk7j\n1PbX0W/Pm/ju6wXrjHXX3TfS67BT2LXdQfT56+Fsv0PrIs93634ALVu1YMe2+3He2Zdxz303RWXM\nWee+X3zxNcce048PxnxS5LWeeXoYe3bswZ4de3DaqRdGa38u78fDkUe14+EBmU/qcVjf8XNycrj5\n9gs54ah/sn/HU+h19EG0brN1kW0O7LoH27RsRqddTuCfF/yXf995UZHn+xx6IV06nU6PzoUV27P+\ndh1dOp1Ol06n89rw0bw+fEyZypOXl89NN47k/of68PIrpzPi9WnMnLG4yDYDHv6I7bdvwIvD+nLT\nvw/l1ptHAfDNN4t4YegUnnr2ZJ5/qS/vvzeT778r+984Ly+fG294gwcePpbhr5zJ6699wcwZi4ps\n88jDH7L9Dg156eUzuPmWw7nl3yND7Ok/8sLQyTz93Km8MOwM3n/vG77/7qdSY+bk5PCv28/g9KNu\n5NCO/el59L60bNOsyDb7dW1Pi5aN6brLuVx9wYNce2c/AFrvsBV9/taFPvv/k157XcT+3Xdjq23D\nsTr2nSn03P1CDt/rImbPmMeZF/cu8pp33n09Rxz+N9q36xKOn+LnmO7706rVNuzUdn/OO+cK7r63\n8Nhb1777dd6Lnod1YY8OPeiwa1fuvjNcwOTm5vLo43dywXlX0mHX1M2H/Iyff1J/+7LY0I59CH/P\nW+74J8ce1Z9OHY7hyD5d2W77ojd4Du66N9u23Ird2x3FxeffzG13XVbk+X7nHMv0r79d67WbNG3I\nAQftwQ/fz18vZc3G++/RozutW7eidesd6NfvbB544L6M2916683ceefdtG69Az//vJTTTutb8NyY\nMR+w664d2HXXDtxww01F9uvf/wK+/PLLjK8Zzr0XccJRl9C540kccfTBbNemRZFtDuy6J9u2bMbe\nuxzHPy64jVvuvLjI80cf2p8unfrSvfMZRdY3adqA/Q/cnTnfr/39m/yxz+qMH0gF41i5H0lRZSEB\nzXfZmiWzF/HT90vIW53HlOETadt1pyLbfD/hW1YtWwXAD5NmU7txHQAatGrID5O+Y/Vvq8nPy+fb\nT2bwl+7tyhW/Q8d2zJr5HbO//YHVq1fz/NBX6XlY0bv3hx52ME8NeQmAcZ9OpnadzWnUqD4AYz8Y\nx08/L/1D7x1g+w4tmDtrEfNnL2bN6jzefX48e/cs+h6WLlrB1xO/Y83qvCLrN928Bjt1asXrT4wF\nYM3qPH6NPqdMZs6czexvv2f16tUMfe4Veh5WtBWj52FdeWrICwB8+umk6H02oGPHXda579dfzeCb\n6bNKfI/H/LVX2T6MDDp03JratWv+4f3/rPUdf9cOOzB71ly+nz2f1avX8PIL79Ct5z5Ftul26D48\n//SbAEwcN43adWrRoOGWZY5x+JEHMOz5tSuWmUydOp+ttqpD8+Z1qL5RLj167MC773xTZJuZMxez\n+x6hQrPttnWZO28Zixf/yqyZS9hp58bUrFmdatVy6NCxOW+/Pb3M5Zz62Ty22mpLmjffIsQ+pC3v\nvFN0/5kzFrHHHi2i2PWYO3cpixf/wqxZS9hp5yZpsbfi7ZFflxpz5w6t+G7WfObMXsjq1Wt47YUP\nOKjn7kW2OejQ3Rn29HsATBk3nc3rbEr9hlvQsk1TPhs/nd9W/U5eXj7jPphG18P3BEJlIS8vXJBP\nHjedRk3qFvsM084x6zj2hjz5IgDjPp1E7Tqb0ahRfTp03GWd+57R7wRu/88D/P777wAsWrQEgIO7\n7MvnU79i6tT0iyZf+/NP8G9fFhvasQ/QvsNfmD3rB76bPZfVq9cw7PmR9Di0c5FtuvfszLNPvwbA\nhHGfU7v2ZjRsGP6fGjdpQJfu+/DkEy+v9do33vp3rrvqXtzX/lv/Edl4/716Hc6gQU8C8Mknn1Cn\nTm0aNWq01nYHHngAzz8fvoueeGIwRxxxeKmv3bRpUw49tAcDBgzM+Pza595Ra517ux+6D0OffgMI\n597N69SiQcO6mV6uiOtuOZ8brr4/42ef/LFP0QuHCsrdyv1ISpkrC2ZW08zalL6llGbzRnVYNq/w\nYnvZ/KVs3mjdTagdjt2L6e+GA2HB1/NpsXtLNqmzCdVrVKfNAW2p06ROueI3adKQOXMK78TMnbuA\nxk0aZthmXsHyvLkLaNxk7RPcH1GvSR0WzSm8I7do7s/Ua1y299CoRT2WLf6Ffz50Mg9+eAUX/+9E\namyy0Tq3T38Pc+fOp+la77MRc35I+yzmLKBJk0Y0adqo1H1LcvTRh5V52w1do8b1mDe3sCvN/LmL\naNy4aGtYoyZFt5k3dxGNmoTKqTs8O/x23hj9MCecuvbnukennVn04098O3Numcrz48IVNGq0ecFy\nw0absfDHX4ps06ZNg4ILwamfzWP+vGUsXLiC1q3rMXHCHJYuXcWqVasZM3oWC+YvL1NcgB9/XEGj\nRpsVxm64OT8uXFE09vYNCyoBUz+bWxC7Vev6TJzwA0t/XhnFnsmCBaXHbti4LgvmLilYXjh3CQ0b\nF62INWyyJQvmFt5hXzB3CQ2bbMn0L79nt73bUmfLWtSouRH7dWtPo6Zrt2T2PulARo+cWGTd3B+K\nHj9NmpZ8jpk7Nzr2mjRc576tW29Lp0678/6YYbw58ll22y10A2zVelvcnZdfHcSHH7+6zs8iyb99\nVdW4SX3mzllYsDxv7kIaR8d2wTaN6zMvfZt5P9KoSQMAbrrtIq676h7y84u2FHU/dD/mz1vEF58X\nrexVNE2bNuGHH+YULM+ZM5emTZsW2aZu3bosXbqUvLy8aJs5NG1a2PV47733YsqUibz++iu0bdu2\nYP1dd93OP/95+VqfTUqjxvWZW+zc22itc2/9tc/PTcI27s6zw+/kzdEDODHt3Nvt0H1YMG8R0z6f\nmTFuRTz2K6LK1A2pTAOczeww4L/ARsA2ZrYLcL27Z6z6mlk/oB/AQw89RL9+/dZTcauebfdqTce/\n7smDR90FwKIZC3n//rfpO+RcVq/6P+ZPm0t+3vq5q1IZ5Obm0HqX5tx78bN8NX425/6nD8de3I3H\nb3gl6aIV6NhxF1auWndrh5TPEV3PY8H8xdStV4dnht/OjOnf8cnYzwqfP/pghj0/ar3GPO2MPbnl\n5rc5+sjHaL1dfbbfoSG5Oca2LevR9/Q96Hf6s9SsWZ3tt29Abu76PYGffsbe3HLzW/Q+8hFat27A\n9js0IjfHaNmyHn1P34t+pz9NzZrVabN9Q3JysvvlMevruQy48yUeHXYNq1b+xleffUt+XtELk7Mu\n6U3emnyGPzs6q2UByK2WyxZb1qbzvkfQoUM7Bj/1P9q22Zdq1XLZu1NH9t37cFauXMWSpV9hNMYp\nf/eUJP/2UlSX7vuwaNHPfDb5K/bet33B+po1N+bCS06lT6/zEixdPCZOnMRWW23Lr7/+So8e3Rk2\n7Hm2264thx56CD/+uIiJEyfSufN+WYndq+u5BefeZ4ffyYzp3zNl4ldccPFJHHvERaW/wHpUnmMf\nOAhYv18KWVCZBjiXNRvStcDuwHsA7j7ZzNY5qtTdHwYeTi3+ifJtkJYvWErttNaA2o3rsHzBsrW2\na7R9E3r/5zgeO+kBVi5dWbB+/LMfM/7ZMDCv26U9WTa/fF2C5s1bSLNmjQuWmzZtxPx5CzNs0wSY\nAECTpo2YP2/dYwPKY/G8pdRvVjjwt37TLVhcxvewaN5SFs1dylfjZwMw+qVJGQdIp4T3EDRt2pi5\na73PBTRrnvZZNGvEvHkLqF69Wqn7rkufYw7nuWdfZscdty/T9hu6BfMX06Rpg4Llxk3rM39+0X7i\nC+YV3aZJ0/osmLeoYH+AJYuX8sYrY9h1tx0KKgu5ubkccvi+dN+37DckGjTcrMgd+YULVtCwQa0i\n29SqtTE33nwoEO6ude/yIM2ah2P2qN7tOKp36DZ3953v0zCtpaDU2A02Y8GCwpaEhQuX06Bh0f1D\n7MMKYnc7+H80ax6Ol95H70Lvo3cB4K4736VRw9JjL5y/hEZNC7sVNGxal4Xzi451WDjvpyItBo2a\n1mXhvLDN84NG8fyg8L3792tOYGFaK8WRJxzA/j068Lee16wVt2nzosfPvLnrOsektgnHXrXq1de5\n77y5C3h5WOiuNn78FPLz86lXb0vmzlnAB2M+ZcmSwhZLs7q4F60sJPm3r6rmz1tE02aFd5abNG3I\n/HlFx+nMn7+IJunbNGnAgnk/clivA+l+yL4c3HVvatTYmFqbbcr9A67n3jufYKsWTXjvo6ei12zA\nqA+epFvnv/Hjj0uoCCZNGg/AuHHjad68cIxQs2ZNmTu3aCvokiVLqFOnDrm5ueTl5dGsWTPmzg13\n2FesKDxfjBjxBvfffy9169alU6e9OfzwnhxySHdq1KjB5ptvzuDBTxR53QXzF9G02Ll3wVrn3kVr\nn5/nLY72Lzz3jnhlNLvstgNLf17BVi0aM+rDxwq2f2vMo/TYvx+LfgznjKSPfaA9laCysCHOs7Da\n3YtfzaoS8AfNmfI9dVvUZ4vmW5JbPZd2h7dn2sipRbap3WQLTnzkNJ7tP5jF3xY9sW5at1bBNn/p\n3o7JwyaUK/6E8Z/RslULtm7RjOrVq3N0n5689mrR4+q1V9/m+BNC1pSOu+/C8mUrWLBgUaaXK7ev\nJnxH05YNaLR1XapVz+WAozvw4Wuflb4j8PPC5Sya8zPNWocvll33b8N3X627EtOq1TZs3aI51atX\np88xh/HaqyOLPP/aqyM5/oQwMHP33XeN3uePjB8/pdR9MzEzeh/dk6HPVZyWjqRNnvAV27RsRvOt\nG1G9ejV69T6Qt14bW2Sbt14fy9HHdQOgfce2LF/2Kz8u/Imam9Rg01qhD3HNTWrQ+aCOfDWtcKDj\nvgfsxozp36918VGSHXdszHff/cycOUtZ/XseI0Z8yf4HFB2At3z5b6z+PXQJeOH5KezWoTm1am0M\nwJIlvwIwf95y3n57Oocc2pay2nGnJnz/3U+FsV+fxgEHbFdkmyKxh05mtw5bZYi9jFEjv+aQnjtS\nmqkTZtCiZWOabd2A6tWrcWjvfXjntaKZfN55fRxHHLc/AO06bseKZStZtDB8+W5ZL3SRbNysHl0P\n34NXhoYWhH0P3pXTLzyCs//6b35b9ftacVuln2PWceydcOJRAHQsOPYWMWH8lHXu+8rwt+jcOYyZ\naNV6GzaqXp3Fi3/i7ZHvs+OObahZswa5uSELkvvaNyCS/NtXVZMmTGObllux1dZNqF69Gkcc3YU3\nXi/aCvXma6P563GhgrZbxx1ZvvwXFi5cwo3X/o92bXqy2196ccbfruCD98dxzun/4ssvZtJ2m27s\n9pde7PaXXsyb+yMH7XNihakoAAUDkocNe5mTTz4RgD322INly5azYMHa31nvvvseRx8dvotOOeUk\nXn45fIc0bFhYierYsSM5OTksWbKEK664iubNt2GbbVpz7LEn8M4773LSSUUzTRWeextH596DePO1\nD4ps8+brY+lzXHcgnHtXLPuFHxcuyXju/XraLL6aNoudtj2c3Xc8ht13PIb5cxfRdd/TCioKkPyx\nD0wr218pWZVpzEJZWxa+MLPjgVwzaw1cAKyd80/KJD8vn+FXP0/fJ88hJzeH8c9+zI/TF7DHiZ0A\n+OTJsRx8YXc2rbMpR9zUp2Cf+w79LwAnPnwam9TZlPw1ebx81VB+W16+Li95eXlcfOF1vPzK4+Tm\n5jDoief58stvOO304wB4dMDTvPnGe3Trvj9Tp73DqpW/cWa/Swv2f3zQXey77x7UrbcF02d8wI03\n3s2gx4eW6/3fe/Ez3Pry+eTk5jBi0Id89+V8ep62LwCvPjqGLRpuzgNjLmOTzWrg+U7vcw+k727X\ns3LFb9x7ybNcMfBUqm+Uy/xvF3PbWYPXGevvF17NK68NJjcnlyeeeJYvp03n9DPCiXvAI0/yxoh3\n6Nb9AL74cgwrV63izNMvKfiMMu0LcHivbtxx5/XUq78lL778GJ9NmcbhPU8CYJ9992DOnHnM/vb7\ncvxFirrkohf49NPvWPrzSg7Y707OO39/evfJnG4vG9Z3/Ly8PK685C6eGvZfcnNyeGbw60z/ajYn\n9Q29GAcPHM6oNz/moK578uGUp1i16v/4+9m3AFC/wRY8+tSNAFSrlstLz73Ne28XpgztdfSBDBta\nvhtI1arlcMWVXTjrjOfIy3eOPHInWrWuz3PPTALgmGN3ZdasJVx1+WuYGS1b1eO6G3oU7H9R/2Es\nXbqKatVzuPKqLmy+edmz9FWrlsMVV3XjzNOfJi8/nyOPaker1vV59plQ4f/rsbsxa+Zirrz8Fcyg\nZav6XH/joQX7/73/CyF2tRyuvLpbmWLn5eVz/SUDGDDsX+Tm5PDC4FHM+OoHju0bWuSeGfgW7785\ngc5d2zPDPgclAAAgAElEQVRyyv2sWvV/XHF2YcaWe4f8gzpbbsaa1Xlcd9EjrFgWWjmv/u/pbLRx\ndR57ObQqTBk3nWsuLExte9GF/2L4q4PIzc1l0OPP8eWX33D6GSHTzIBHhvDGiHfp1v0APv/yfVau\nXMVZZ/wjKm9exn0Bnnj8OR58+DbGTXyT1b+v5ozTQ+aWpUuXc8/dAxjz4fCCAZdOYT/xIp9/Qn/7\nstjQjn0If8/LL76N54bdQ05uLk8PHs7XX87ilNPCxeITj77IyDfHcnC3Tnz62UusWvUbF5x1fSmv\nmh3ZeP+vvz6CQw7pwYwZX7Fy5SpOPfX0gudee204p59+JvPnz+fSS6/gmWeGcOON1zFp0mQefTQM\nWj766N6cfXY/1qzJY9WqVRx77Illjp2Xl8cVl9zJ08Nuj869rzH9q9mc3Dck4Bg08GVGvfkRB3Xd\nk4+mPMOqVb/x97P/DYRz78CnbgZS596RvPt22dI1J33sA6+V+UNKUH6C2Y3Ky8qSRcDMNgGuBLoC\nBrwJ3ODuv5UhRpVvgbis+QWJxL3lh3vYtEbLRGID/PrbTA7aNHOO5TiM+vUBam60VWLxV/3+PXkM\nSSx+LickHr/JZp1L3zBL5q14n9/zMmcJicNGuX1ZnT8okdjVc06mzWZHJRIb4OsVL7LJxi0Si7/y\n/2Yn/rdP+thLOn79Wh0Ti7/ol3GJv3+z6onEdg9ZQxtvtm8i8eevGJP4sQ+V4yp8RMfjyn193GPc\n04m8tzK1LLj7SkJl4UozywU2LWNFQURERERE0mxwYxbM7Ckz29zMNgWmAtPM7B/ZLZqIiIiIyIan\nMo1ZKOsA57buvhw4AhgBbAOclLVSiYiIiIhsoPL/wCMpZR3gXN1CB7wjgPvcfbWZVfmxCCIiIiIi\n5bUhzrPwEDAbmAKMNrOtAU1dKSIiIiJSTpVpzEJZBzjfA9yTtuo7MzsgO0USEREREdlweeVI2gSU\nfYBzbTO7w8zGR4/bgU2zXDYREREREUlQWQc4DwRWAMdEj+XAY9kqlIiIiIjIhirfrdyPpJR1zEJL\nd++dtnydmU3ORoFERERERDZk+ZUoTVBZWxZWmdk+qQUz6wSsyk6RREREREQ2XI6V+5GUsrYsnA08\nYWa1CdNo/wT8LVuFEhERERHZUFWmbEjmXvZ2EDPbHCCaoC0WZtbP3R+OK57iK35FiV+V37viK77i\n69yj+Iq/IXtqp1PL3RHp+KmPlVrDMLPuwN1ALjDA3W9Zx3YdgY+AY939+RJfs6TKgpldVNLO7n5H\naYX+s8xsvLt3yHYcxVf8iha/Kr93xVd8xde5R/EVf0P25E59y11ZOHHqwBIrC2aWC0wHugBzgHHA\nce4+LcN2I4HfgIGlVRZK64a0WfTTYa3OUpVoaIaIiIiISMWQpRmcdwdmuPssADN7BugFTCu23fnA\nC0DHsrxoiZUFd78uCvYE0N/dl0bLWwC3l6f0IiIiIiLyx8YsmFk/oF/aqoeLddlqCvyQtjwH2KPY\nazQFjgQOYH1UFtLsnKooALj7z2a2axn3/bOS7rem+IpfFWMrvuIrftWNX5Xfu+Irfiz+SPecqGLw\nZz+fu4BL3T3frGwVljINcDazKcD+7v5ztLwl8L677/QnCisiIiIiUuUMbHtGuesLfac9UtqYhb2A\na929W7R8OYC7/zttm28pHFpQD1gJ9HP3Yet63bK2LNwOfGRmQ6PlPsBNZdxXREREREQi+dl52XFA\nazPbBpgLHAscn76Bu2+T+t3MHgdeLamiAGWsLLj7IDMbDxwYrTqq+MhqEREREREpXTYGOLv7GjM7\nD3iTkDp1oLt/YWZnRc8/+Edet6wtC0SVA1UQRERERET+hGxNyuburwOvF1uXsZLg7n8ry2vm/Pli\nrT9mlmNmeyddjiRFuW9FRERkAxd1F5EqyP/AIykVqrLg7vnA/5IuB4CZ7W1mx5vZyalHTKG/MbP/\nmFnbmOIVYWa5ZvZuErGj+HWTil1RmFlDM3vUzEZEy23N7LQY4+9jZqdGv9eval9m0THQxMy2Sj1i\njH2DmXUxs03jillRmNmosqzbkJlZTTNrk2D8TczsajN7JFpubWY9Y4ptZnaimf0rWt7KzHaPI3ax\ncmwSc8jno7hV6n9dQstCeR9JKXM3pBiNMrPewItellRNWWBmg4GWwGQgL1rtwKAYwrcjDEgZYGY5\nwEDgGXdfHkNs3D3PzPLNrLa7L4sjZjEfm9lk4DFgRFL/Awl7nPD+r4yWpwPPAo9mO7CZXQN0ANpE\nZagOPAl0iiH2vZRw88TdL4ihDOcD1wALKRx/5sDO2Y4dmQUcB9xjZiuAMcBod385m0GjWCV99ptn\nMXYNYBOgXjSHT+obcXNCzvBYmFkn4Fpga8J3owHu7tvGFP8w4L/ARsA2ZrYLcL27Hx5H/MhjwARg\nr2h5LjAUeDWG2PcTjrkDgeuBFZRj0qg/K+rVMACoBWxlZu2AM939nCyHzjGzK4DtzOyi4k+6+x1Z\njg9UiP//PYF7gR0Ix0Au8Gs2zz1Jy9IA56yoiJWFM4GLgDVm9huF/7Bx/sN0ANomcaHq7iuAR4BH\nzKwz8BRwp5k9D9zg7jNiKMYvwFQzGwn8mla2rF+sAdsBBwN9CRdMzwGPu/v0GGJXFPXc/bm0lGdr\nzCyvtJ3WkyOBXYGJUex5ZrZZybusN+Ojn52AtoQKEoTsa3GNl+oPtHH3JTHFK8LdHwMeM7NGwDHA\nJYQJeLL6N3D3zSC0bADzgcGEc+8JQONsxiac8y8EmhAuVFOVheXAfVmOne5R4O9RGeI63tJdS5h9\n9T0Ad5+cQKteS3f/q5kdF5VhpZU1Efuft4e7tzezSVHsn81so5hiA9wJdAOGR/GnmNl+McQ9FjiC\ncD0W17k2k6T//+8jfBZDCddgJxOuB6QCqHCVhdSXVsI+BxoRvjRjFY1ZOBQ4FWhBSFs7BNiXMGAl\njoPnxegRu6iCNhIYaWYHEO5qnxPN9XGZu3+URLli9mvUHcuh4I5LXK08v7u7m1kqdmzdYdz9iSjm\n2cA+7r4mWn6QcIc9Dj8Q32e9FjMbQKgoLSS856OJKm4xOdzd26UtPxAde//KVkB3vxu428zOd/d7\nsxWnDJa5+4gE469292XFrs3jvmH1u5nVpPDc0xL4v5hir46+/1Kx6xPzzVd3/6HY5x/HRXN3d7/V\nzDZ29+tjiLcuSf//4+4zzCzX3fMIN00mAZcnWaZsykY2pGypcJUFgKgpujVQI7XO3UfHEPcVwolq\nM2CamX1K2okypubgb4B3gf+4+4dp65+P6S5HwUVbEqKL5BOBkwgXTOcT7vTsQrjjUBX6z19EeM8t\nzWwsUJ9w0RiH58zsIaCOmZ1BaOF5JKbYKVsQuqD8FC3XitZlTVrz/yzgPTN7jaLHfixdAYC6hOb3\npYT3vzhVaYrJr2Z2AvAM4Vx4HGmti9nk7vdGXUFakPbd5O5xdP8EeNfM/kO4UZL+t4+rsvaFmR0P\n5JpZa+AC4MNS9lnfrgHeAJqb2RBCK9/fYop9D/AS0MDMbiKc866KKTbAD9H/n5tZdUIr45cxxD0V\nuJvQupBkZSHp//+VUUvSZDO7jXCztkKNq13fKlM3pDLN4BwnMzudcJA2I4wZ2BP4yN0PLHHH9RO7\nc0nPu/v7MZShlrv/ku04pZThWzLc0Yqj76KZTSd0gXjM3ecUe+5Sd78122WoCMysGmHcgAFfu/vq\nGGN3AbpGsd9095FxxY7in0rokvFuVIb9CDNSZq0SG43VWCd3vy5bsTMxsx0IXSL+DuS6e7OY4rYg\nXLh0IpwDxgIXuvvsGGJnHCsWU/dHLHNiB4/juyeKvwlhnFLBsUfoevpbHPHTylGX8L1rwMfuvjjG\n2NsDB0WxR7l7HBfrqdj1CP/7B0fx3wL6Z7tLopk9Teh20wSYmf4U4f8vlvFSFeD/f2vCDcKNCOe9\n2sD9MXW9TsRdrc8p9wX4hd/cn0hzREWsLEwlDGj62N13iU4eN7v7UTGW4VZ3v7S0dVmKXQM4DfgL\nRVtW+mY7dloZ0jMS1SD0Gd/S3bPWFSEttlXRQc0FzOxcYIi7L42WtwCOc/f7Y4i9DTA/dYESdUlo\nGMfFYrFyNAL2iBY/cfcFccZPioXMM/sSKkh1gI+BMe4+MNGCxcDMviShsWIVTdQdZ9O4ElukxT0S\neCeV3MLM6gD7lza763qKvWWG1SvivFGSlOh89yawVu8Fd/8uhvg5wNHu/ly2Y5VQhk2BVVFWzNQx\nsLG7r0yqTNl2R6vyVxYumpFMZaEiNvH8lnahsrG7f0W4wxqnLhnW9Ygp9mDCeIluwPuEFpYVMcUG\nwN2XpD3muvtdhHEUcahnIXXs62b2TuoRU+yK4oxURQHCQD/gjJhiD6Vo62hetC5u/0dohv6ZkCUk\nli54ZvaKmQ0v9hhsZv2jiny2dSeMUejt7ju4+6lxVhTMrIaZnWtm95vZwNQjpvCpsWKJsORTFj9l\nZptHF01TCV1h/xFX/Mg16VnwovNQia1u69FEYBEh+9s30e+zzWyime2W7eBm9kRUOUotbxHX/767\nL3D3du7+XfFHTPHzgX/GEasEowhZ0VJqAm8nVJZYaJ6FP2dOdMAOIwxyfRmI5YAxs7Ojlo02ZvZZ\n2uNbwsk7Dq3c/WpCyrAnCBfpe5Syz3plZu3THh0sTBMe1/iWIcBXhLEJ1wGzgXExxa4oci1tlF10\nhyWurCDV3P331EL0e5wZSVJdEUcT7rRdF/28NqbwswjZwB6JHssJlfXtiGHshrufR8iG097MeppZ\ng2zHLCbJmxX1CBfIb6ZX1mKKDSFl8ZuE7iAQLlovjDF+26gl4QhgBOEceFKM8SHzNUFc5/6RwCHu\nXs/d6xJu0L0KnENIq5ptO2e4SbNrtoNayPiHmU0tdt0x1cw+y3b8NG+b2SVm1tzMtkw9YoxfI70L\ndvR73HNexErzLPwJ7n5k9Ou1UR+62oQBV3F4inCS/jdwWdr6Fe7+U+Zd1rtUk+tSM9sRWADEfcFw\ne9rvawgX7MfEFLuuuz9qZv2jMSLvm1lVqyy8ATxrYaAxhNSScR0Di8zscHcfDmBmvYDY+ixH+lPY\nFfGAVFfEmGLv7e7ped1fMbNx7t7RzL7IdnAz60PItf8eoc/yvWb2D3d/PtuxI63cvY+Z9XL3J8zs\nKeLLRHVtTHHWJcmUxQDVLQysPQK4z91XW5SVLEbjzewOCidHPZeQSjMOe7p7QQuqu79lZv919zPN\nbOMY4ueY2RZRJSHVLSqOa6T+0c9YJr8rwV+jn+emrXMglnkWCMkV2qcGVJtZB2BVTLETUZkGOFe4\nygKEGWSB1u7+mIX0aU2Bb7MdN2p+XQYcF93NbUj4jGpZGHj8fbbLADwc9VG/ipARpxZwdQxxC7j7\nAXHGKyZVWZpvZocC84A4725UBJcSKghnR8sjCZMFxeEsYIiZ3Ue4WP2BkO86Tr+5+29mVtAV0eKb\n1baWmW2VOtYtzN5cK3ru93Xvtt5cBXR09x+j+PUJTfFxVRYSu1kRRwKJUiSZshjgIcKNmSnAaAsD\nPmMds0DIPnc1hXOcjKToxWM2zTezSwmZuCBcvC6MvovjuK66HfjIzIYSzn1HAzdlO6i7z49+xtKD\nooRyJJ1p8EJgqJnNi5YbU1iB2SApdeqfYAnOIJtWhvMId7lim8XVis7ceGr0M3V3J7Zc91FZahP6\nqab6ib9PmEk0ji/OG6P4FxNmc9yckBmhyoj6jz4QPeKOPRPY08xqRctJZOYq3hXxZ2Lqikj4v/vA\nzGYSLhi2IczzsSkQR0rhnFRFIbKEeLuLpm5WXE3hzYqsJzaAtWaR3ohw7o9zBtckUxbj7vcQ0oem\nfGdhrpnYuPuvFG1Vj9PxhO+d1GDqsdG6XGJo2Xb3QWY2njCDNMBR7p71ySAtwdnTi5Uj400hjy91\n8VTgQUIXyOWEYzHrrblJqkwtCxUxG9Jkohlk3X3XaN1ncaUPi+LNIMwmGdssrlaYurENoQtGqq/u\nYcCn7n5ijGV5gTDYMHVxdBLQLs6MVFWRmT3n7sdE42Yypa7NZmX1RHd/slilNT12XPMMFGEhnXFt\n4I30sRRZjrkxsH20+HWcqSst5DnfGXg6WvVX4LM4MrFVJNGYnV6ErimxXbxasimLE7tJY2Z3ufuF\nVjjXUBEezxxDiTCzzd19+br658fVBdnWMXt6HFkIo/jpEyLWIKSwnejusVSYo7EbywnjFiFUFOu4\ne5844ifhpm3OK/cF+JXf3pdIc0SFa1kgwRlk08Q+i6tHedzNbDTQ3t1XRMvXAq/FWRagpbv3Tlu+\nLqrEZU10oirp7kosudYTlmTf1dRxVhFmUI+9K6KZHeju75hZ8QpxSzPD3WOZ0dzd/2FmvSlsSX3Y\n3V+KIzaEjECE8SFN3L2HmbUF9nL3R+MqAxTM5D4suokSS2XBQrarc4B9COeiMWb2YIyVxYGEmzSp\nu+gnEVrX47hJMzj6+d8YYmVkZtsBl7D2pHzZzvP/FOGcO4Gi30FGvH32Y589PZ27n5++HLXuPrOO\nzbNhR3dvm7b8rpllvWUnSfmoG9KfURFmkE1yFteGFO0b/Xu0Lk6rzGwfd/8AwMw6kf2BRuOjn52A\nthT2me0DbNAnjBR3nx/1z3087nEj7v5QFHu5u98ZZ+ziEuqK2Bl4h9CSB4UXDakLhlgqCwDu/gLw\nQlzxinmc8JlfGS1PJxyLWa8sFKuo5RD+B+KckGwQIfNT6g7r8YSL6LjubMZ+kybF3SdEx38/dz8h\njpgZDCV0QxlA4aR8WefuPaOWrM4xjUtcl8RmT19XeQjdMOMy0cz2dPePAcxsDwqvCzZI+RWrY0+J\nKmJl4XfCgL7lhIuFf3nMM8gC30ePjYg5bSThC+tTM0vdTTyC8AUep7OBJ6JmcQi57k/JZsAoTSxm\ndjawj7uviZYfJL5sLIlz9zwzyzez2jGNESke+zgg0coCcCRRV0QAd59nZllt8XD3VDfAs4HeFL27\nmfVTegn9llOzuMbVbz/JjECHpf2eysLWK6bYkPydzSRu0hSIjv+tzWyjuLr8FbPG3WMfpwXhAItu\nDu6URPzI8YQZpO+mcPb04+MKXqwLWg7hpl2cc+zsBnxoZqkK21bA16luuXF2RY9LBRsFUKKKWFlo\nAFxAuFAYSAKTcqR1CYp9kKe732RhUqB9o1WnuvukuOJHvgRuA1oSZpFdRqi0xJHzeQvCoOZUP9Fa\n0bqq5BdgqpmNJO3OUkxdscZGmZCeLRZ7YgyxU5LsijgMWEo4/6Tuamf9lO7uFaL7FwlmBHL3U0vf\nKquSvrOZfpPGCOfAv8UYH0Kr+lgL81ukH/9xtKq/YmbnAC9RtEU/rrTlE82so7snkqrb3WdTQuXY\nzC53939nsQjpXdDWAN+5+5wsxiuue4yxKgR1Q/oT3P0qM7sa6ErICnRfNPDl0ShTS9ZFKQMHE6Xs\nNLPFwMnuHsvI/OjCLM6Ls+JepvCCaW7MsW8BJlmYY8MIg/2ui7kMSXuRGLu9FLNL9PP6tHVOYYaQ\nOCTZFbGZu1e5L600iWUEMrNmhC5Aqe5mY4D+MV6wpN/ZdGBrYryz6e6TgXZmtnm0HHfaVICZ0SOH\n+McvpVqv02etjnPMwB7ACWb2HaGilGrVqyh3tPsQ5oDKlkOKJ1Iws1vjSq6QdOrYJKhl4U+K7iou\nIOT4XkO4s/y8mY109zimJH8YuMjd3wUws/0JFyt7xxC7Ikjsgika0DqCwlmrL3X3BUmUJSkeJsPa\niJCRxwlZWWLpFhD3WIl1lOG/ZtaFZLoifmhmO7l7XDO2VxhmlkPIgtKZZDICPUYYbJoaI3BitK5L\nTPG7E75rUq26owk3TbJqXRnILJrEPc5MZGmt6puHRY9r9u6KkOe/W8LxS5Pt29BdCHP8pOuRYZ2s\nJ5UpdWqFqyyYWX/CJFCLCQOd/uFhJssc4BsgjsrCpqmKAoC7v5dQVqakJHbBZGbXR6niXo6Wc8xs\nSIKD7mJnZocQJmgqyPVvZme6+4gYYtclpG9MZYT5gJC+MZY0wtEgy7ejSktsY5WsMF1tNeBUM5tF\n6ApR0e4uZo2755vZ/zykrE4iv3l9d38sbflxM7swxvhHAKcTWvWM0Lr8iLvfW+Jef17qDr6z9gVh\nrPceLcya+1iqTGa2DOjr7rHM4hy16rclVFqB+PL8u/t3ZtaewnPf2Ji7X5YmK/8L0TjBc4BtzSy9\nq/FmhHETkiUa4PznbEmYDKVIk1T0RRZXSslZUVeoVDq5Ewl9OTdoFeSCqXmqb6aFfPfPAXGP2Uja\nHcAB7j4DwMxaEtLnZr2yQMjEMZowyBdCru9ngYNjiJ3kAO8k0tVWRKOi1K0vRulL47TEzE6kcI6J\n4wiT0sXlNMK8Dr9C6IIBfERhdqSsSLub/wSh29XSaHkLwqzCcRoInOPuY6Iy7EOoPGT93B9lQduf\nUFl4nXBX+wNC0o+sM7N/EVq1Ul1AHzOzoe5+YxzxyyBbLQtPEb5b/k3RNMUrYhwvIhVchZuUrSKI\nTtLXUbTv7LWpk/iGysy2Lun5OPoURinshhBmczwAGJF0Ks+4mdk4d++YtmyEifk6lrDb+or9ubvv\nWGzdVHePLUuImb1MyIaUxADvKi3KyrQpIXXlKmLMxhSdf+4F9iLctPgQON/df8h27Cj+VKCjR/Mq\nWJh3YVxc//tmNilq1SlxXQJlmOju7WOIPRVoB0xy93YW5vx40t1j6YZmZl8TJh9N/f1rApPdvU0c\n8UtjZle4+81ZjpE+v009YDN3z9r8NlXdZc0vKPcF+C0/3KNJ2SqQlkBzwiCvaoSZDA8khrsrSUpy\ngFHU/JtyN6EbzljgfTNrX8Gag7NtvJm9TmhVccLdrnEW5aH37E4Q9paZHRvFhjC49c0sxsskyQHe\nVVrCWZmuB05x958BLMyo+1/CAPc4PAZ8YkXTVsc5GV2OmW1R7P3H/R39fpRc4GnCueevhDmH2kPW\ns6L9FvUgWBONmfiR8D0cl3mE7k+pLGgbE2OCj3W1LLl7X4AYKgrF57fZiOzPb1Ol5buyIVV2Qwgz\nSX5O5RqDUpkVb27/mdAcfTvxZ+NJWg1gIWGgKcAioCYhD322Jwg7A7iQwi54uYR0mmcS0x3mJAd4\nS8HkaAWzGLv7sJhC75y6UIaQMtPMYrur7u53mNl7hPcO8aetvh34yMxSue37ADfFGB/CnX0I45bS\n7UoWz8NR6+lnFmYNfoQwm/IvhG5gcVkGfGEhZbUTBvx+amb3QCwtmzun915w95/j/P8ngfltqrrK\n1LFHlYXMFrn7K0kXoiqpCFl4KgovJd98NvNtl3Zn2cz+ku0UwkkO8K7qzOx+oBWF4wbOMrMu7n5u\nDOETv7OeZNpqdx9kZuMpvCA/yt1jnb2+tPOwmZ3i0QSa6zmum9nu0cXyg2b2BrC5u8cxt0/KS9Ej\n5b0YY0Py//9Jzm9TJVWmO9GqLGR2jZkNAEZRdHIYdY3Isqif6s1AE3fvYWZtgb3cPc7uABVdtvNt\nl2QwkO3+y0kO8K7qDgR2SA1ujrpGxJUZqSLcWU9UVDmItYJQTv2B9V5ZiBRMiuZhgrJYlVYJMrMX\n3L13Sdv8SbcDH1uYV8oIXUDj/P9Pcn6bKkktC5XfqYQuENUprPxlu/uHBI8T+kteGS1PJ2TjUWWh\nUJIdHeOIvSJVUYjMAmLL917FzQC2AlLjl5pH67KuItxZl1Jl8/iv6JOiZXVyuOj/fwZh3IATusHF\n1g3Lk53fpkpSy0Ll17GiZECoguq5+3NmdjmAu68xs7ykC1XBJHk/Io7YSQ7wruo2A740s0+j5Y6E\nv8dwAHc/PJvBK8Gd9aoum8d/RZ8ULavnPgtzTKXP8/GQmcUxz0di89tUdZpnofL70Mza6q5WIn61\nMDFYqhvEnoSBZ1Ko8qRQ+GOSHOBd1f0r6QJIhZa1c0+S2fgqiETm+YBE57ep0ipRXUGVhXXYE5hs\nZt9SxWZxrQAuAoYDLc1sLFCf0HdTCg0tfZOsyXpWotIGeEtWjQdWRSkstyN0xxzh7qsTLpdUDFV5\nRt9s36QxwvwmKXkxxEz3CzA1ygal+W1ioJaFyq970gWoqtx9opl1JvSZNELazCpxoWJm91LCzYbU\nSTub+bbN7Hp3/1faci4wyN1PiGLvma3YaTFvA24kTAr2BmF+k7+7+5PZji2MBvaNcry/BYwj5No/\nIdFSSSzM7KIMq5cBE9x9srufF3eZ4hJl/1nl7vnRcg5Qw91XRptcmuUiJD3Ph+a3iZkGOFdyag5N\njpltQmhd2NrdzzCz1mbWxt1fTbpsMRgf/exEmGPi2Wi5D/H1426eSs1qZhsTxg3EmWseoKu7/9PM\njgRmA0cRLmJVWcg+c/eVZnYacL+732ZmU5IulMSmQ/RIpQ7vCXxGSKE71N1vS6xk2TcKOJhwhx1g\nE0KFeW8Ad38rm8GTnuejAmSDqnI0wFnkj3uMMCHPXtHyXEK3mw2+spA6WZvZ2cA+7r4mWn4QGBNT\nMfoCQ6IB5gcAr7v7XTHFTkmdlw4Fhrr7sjBnk8TAzGwvQkvCadG6nATLI/FqBrR391+gYFbf14D9\nCOflDbmyUCP1vgHc/Zfo5lVskpznowyymg2qKqpM3ZD0JSAVTcvo7tVqgKgJuKpdKW4BpM+UXCta\nlzVm1t7M2hNm8Lyb0PXkG2B0tD5Or5rZV8BuwCgzqw/8FnMZqqr+wOXAS+7+hZltC7ybcJkkPg1I\nm1uIcB5u6O6riq3fEP2afq4zs90IXSElqESXtpWD/4FHUtSyIBXN72ZWk8JsSC3Z8L+kirsFmGRm\n7xIqSvsB12Y55u3Fln8mdIW6nfC3OHCtPbLE3S+Lxi0si7J0rAR6pZ6PZhRWer8scPfRhC5fqeVZ\nQMEARzO7193PT6JsEoshhH7zL0fLhwFPRf35N/TsgBcCQ81sHuG824hw00QkKypTy4J5ZRphIRu8\naPBADqIAAAzJSURBVFKYqwgXqm8R+u//zd3fS7JccTOzRoRJigA+cfcFSZanIjGzie4ed2uHoM++\nKjCzDoTzLsBYdx9f0vYbEjOrTkiuAVUouUZZmNkkd9816XJsSPrW61/uC/CBi+9OpKeFWhakojmF\n0Ef2ecLMvf3dfXGyRYqHmW3v7l+lNYX/EP1sYmZNov6s2S5Df8K4kRXAI0B74LJsD+4rp6rWLU0k\nFmZ2D/CMu9+ddFnikprsMYPtzEyTQBbKdjaoKkcDnEX+uEeBfYEuQEtCd5zRVeTL6yKgH4Vdf1KM\n+LoC9XX3u82sG1AXOAkYTGjlqSjUHCqSHROAq8ysDfASoeKwobcsHFbCcxv8JJBmNpWSU3bvHP2s\nSN8BEjNVFqRCcfd3zWw00JGQjecs4C+EQbcbNHfvF/16CHAOIYWeEzIhPRBTMVJ37Q8hzK/whSkV\nkRTS/8IGLMrI9oSZbQn0Bm41s63cvXXCRcsaTQJJz+jnudHPwdFPza2SZZVpzIIqC1KhmNkoYFPC\nNPdjgI7u/mOypYrdE8By4J5o+XhgEHBMDLEnmNlbwDbA5Wa2GRWvtXR20gXY0JlZLQjpI4s9tcFX\n2gWAVoTZu7cGvky4LLGI5pXpDbQg7drI3a9PqkxxSM0rFSWOSB+TcJmZTQQuS6ZkG75KVFdQZUEq\nnM8IKTN3JMwcutTMPopS91UVO7p727Tld80srkwkpwG7ANUJkzPVAx6PKTZQMMjwbEIWKID3gQdT\ngw3dfV19jOVPMrOdCBXTLcOiLQJOcffPAdz98QSLJ1kWZSE7EpgJPAPc4O5Lky1VbF4mmq2aqpeB\nD8Lx3sndx0YLe6P0+lmllgWRP8jd/w4Q3dH+G2GwbSNg4wSLFbeJZranu38MYGZ7UDi7c7b1JeTa\nbwZMBvYktPLcG1N8CF2uqgP3R8snRetOj7EMVdVDwEXu/i6Ame0PPEw0i61s8GYS/tbbEs65O0eD\nfEeXvNsGoZm7d0+6EAk6DRhoZrUJ3Q1/JnwfSJZkKxmpmXUntALnAgPc/ZZiz59AGLBuhGQmZ7v7\nlJJeU5UFqVDM7DzCAOfdCN1NBhLf7MWJShtoVh340My+j5a3Br6KqRj9CeNFPnb3A8xse+DmmGKn\ndHT3dmnL75hZiScyWW82TVUUANz9vSjHvlQN+cA7rH2zILZ5VhL0oZnt5O5Tky5IEtx9AtAuqizg\n7ssSLtIGLxv9e80sF/gfIUnMHGCcmQ139/TeCd8Cnd39ZzPrQbghtMfar1ZIlQWpaGoAdwAT3H1N\n0oWJWc/SN8m639z9NzPDzDaOUrm2KX239SrPzFq6+0yAaBbhvJjLUFXNMrOrKRzkeCIhhbFUDReQ\n/M2CWKXdpKnG/7d3t6GWlVUAx/9LK6kwp6wkfCmtwZCQslGnlEAj0EBsMMkkDRuwKQYFoQiKxpdP\nihWJlU1paW+jH9ImSkVosHF8QceGSksZBWukTzY5Nr7kzFl92Ps4Zy577txzuXs/95z9/w2be55z\n9t1nMXA5Z+31POuBiyLiaappSAHksBvQtKuThDXU0z8j4l7gSpOG9gzaKS2cBGytN9QkItZRbWr6\nWrKQmfePnP8g1c2BWZksaFHJzGtLx1DKcKFZYdsiYglwB3BPRGwHuo7rK1TrNIZfUt8D9L1jSVe+\nAFzBnnaRG3EqQp8shpsFXRu9SfNWqso2VDuZ92W9BlRV/L+yp5HGBVTTgF0j1pKWZiEdzp49mqCq\nLsxWNVgJ3Lm/i5osSHpNZq6oH14eERuAQ4C7Og5jE9Xc+Y9TfVjfTTUVQi3LzO3AJfVdxkFmvlA6\nJnVqMdws6NRIN6BLqdZF/ZqqqvAzqo0pu1yvVdJ7M/OckfEVEbGlWDQ9MJ8FzhFxMdV+TENrM3Pt\nfN4/Ik6jShZO3d+5JguSGmXmvYXe+haq1rFX1ePzqT64zy0UT29ExIlUdxgPrsfPU23Ut7loYOrE\nIrlZUMpKYHlm7gSIiKvpvrlDSS9FxKmZeR9ARJwC9KkLYedyHrWFOjGYLTl4FjhyZHxE/dxeIuJ4\n4MfAmZn53P7e12RB0mJTsnVs390IfDkzNwJExKlUUxF6MW9bexS8WVBKsPfaqN30axPCL1FtyDfs\nhvRvqo6EaklLrVMfBpZGxNFUScJ5VDfcXhMRR1FV0C7IzCfnclGTBUmLTcnWsX23e5goAGTmfRHR\nt0YD6qefAA9FxO31+FNUyXMvZOYWqm5Ib6nHOwqHNPXa6IaUmbvqrpJ3U7VOvSkzH4uIVfXrNwDf\nBA4Fvh8RALsyc9ls141sq9GrJI1hRuvYY4G9WsfOqDZoAUXECfXDC4E3Ar+i+r//DNWi18tKxSZ1\npf47GM7f3piZfyoZTxci4nOZ+fOIaPwbz8xvdx1TX5x18Oqxv4D/9oXri1S7rCxIWiwWQ+vYvvrW\njPGakcfeUVIvZOajwKOl4+jYcB+Vg4tG0UNtVBbaYrIgaVFYJK1jeykzT5vLeRHx+cy8ue14JHUj\nM39Yb+S1IzO/UzqePpmkmT0HlA5AkjQxLi0dgKSFlZm7gc+WjqNvBvM4SrGyIEmaqz51h5H6ZFNE\nXA/cCuwcPllPzVILWtrBuRUmC5KkuZqcTzdJ4/hg/fPKkecSOL1ALFpkTBYkSXNlZUGaQnNdt6SF\nM59N2UpxzYIkaa42lQ5A0sKLiMMi4saIuLMeHxcRK0vHNc1csyBJmjj76LX+PLA5M7dk5uquY5LU\niZ9SbUz39Xr8JNX6hd5sTNe1gZUFSdIEWgasAg6vjy8CZwA/ioivlgxMUqvenpm3Ud/AzsxdwO6y\nIU23QebYRylWFiRJQ0cAJ2TmfwEiYg3wO+BjwGbgmoKxSWrPzog4lLqJQUQsp6oqqiWTtGbBZEGS\nNPRO4JWR8avAYZn5UkS8so/fkTT5LgPWA8dExCbgHcCny4Y03SZpGpLJgiRp6BfAQxHxm3p8FvDL\niHgz8Hi5sCS17HHgduBF4AXgDqp1C2rJJCULMUnbTUuS2hURy4BT6uGmzHykZDyS2hcRtwE7qG4Y\nAJwPLMnMc8tFNd0+8qaVY38Bf+DFG4u0r7ayIEkCICKuA9Zl5ndLxyKpUx/IzONGxhsiwmpiiyap\nsmA3JEnS0GbgGxHxVERcW1cZJE2/R+tFzQBExMmAVcUWDWIw9lGKlQVJEgCZeTNwc0S8DTgHuDoi\njsrMpYVDk9SuDwP3R8Q/6vFRwBMR8RcgM/P4cqFNp0mqLJgsSJJmeh/wfuDdwN8KxyKpfWeUDqBv\nsuiezOMxWZAkARAR1wArgKeAdcBVmfmfslFJaltmPlM6hr6xsiBJmkRPAR8FjgEOAo6PCDLzj2XD\nkqTpUnINwrhMFiRJQwPgD1Q7OW8BlgMPAKeXDEqSps1ggqYh2Q1JkjR0CXAi8ExmngZ8CHAakiQt\nsME8/pVisiBJGno5M18GiIiDMvPvwLGFY5IkFeQ0JEnS0LaIWALcAdwTEdsBFz5K0gKzG5IkaeJk\n5or64eURsQE4BLirYEiSNJVc4CxJmmiZeW/pGCRpWk3SAmeTBUmSJKlDye7SIcyZyYIkSZLUISsL\nkiRJkhqZLEiSJElq5DQkSZIkSY2sLEiSJElq5D4LkiRJkhoNnIYkSZIkqYmVBUmSJEmNBmllQZIk\nSVIDKwuSJEmSGtk6VZIkSVKjQVpZkCRJktRgkqYhHVA6AEmSJEmLk5UFSZIkqUNpNyRJkiRJTQYT\nNA3JZEGSJEnqULrAWZIkSVKTSWqd6gJnSZIkqUOZg7GPuYiIMyLiiYjYGhFfa3g9IuK6+vU/R8QJ\n+7umlQVJkiSpQ220To2IA4HvAZ8AtgEPR8T6zHx85LQzgaX1cTLwg/rnPllZkCRJkjqUuXvsYw5O\nArZm5tOZ+T9gHXD2jHPOBm7JyoPAkoh412wXNVmQJEmSOjSfaUgRcXFEPDJyXDzjsocD/xwZb6uf\nG/ecvTgNSZIkSerQfKYhZeZaYO3CRzM7kwVJkiSpQy21Tn0WOHJkfET93Ljn7MVpSJIkSVKHksHY\nxxw8DCyNiKMj4g3AecD6GeesBy6suyItB57PzH/NdlErC5IkSVKH5rhgecxr5q6IWA3cDRwI3JSZ\nj0XEqvr1G4DfA58EtgIvAhft77qRmQserCRJkqRmr3/doWN/AX9113PRRiz7Y2VBkiRJ6lBLaxZa\nYbIgSZIkdaiNTdnaYrIgSZIkdcpkQZIkSVKTCZqGZOtUSZIkSY2sLEiSJEkdcs2CJEmSpH0wWZAk\nSZLUZIL2OXNTNkmSJEmNXOAsSZIkqZHJgiRJkqRGJguSJEmSGpksSJIkSWpksiBJkiSpkcmCJEmS\npEYmC5IkSZIamSxIkiRJamSyIEmSJKmRyYIkSZKkRv8HTqMxXMLHyw8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# fit model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRandomForestRegressor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_estimators\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mforest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 326\u001b[0m verbose=self.verbose, class_weight=self.class_weight)\n\u001b[0;32m--> 327\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 777\u001b[0m \u001b[0;31m# was dispatched. In particular this covers the edge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0;31m# case of Parallel used with an exhausted iterator.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 779\u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_one_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 780\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 781\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 625\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dispatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtasks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 626\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m_dispatch\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 586\u001b[0m \u001b[0mdispatch_timestamp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[0mcb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBatchCompletionCallBack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdispatch_timestamp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 588\u001b[0;31m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 589\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 590\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mapply_async\u001b[0;34m(self, func, callback)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0;34m\"\"\"Schedule a func to be run\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImmediateResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;31m# Don't delay the application, to avoid keeping the input\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;31m# arguments in memory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36m_parallel_build_trees\u001b[0;34m(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mcurr_sample_weight\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mcompute_sample_weight\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'balanced'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcurr_sample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcheck_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1124\u001b[0;31m X_idx_sorted=X_idx_sorted)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 360\u001b[0m min_impurity_split)\n\u001b[1;32m 361\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0mbuilder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_idx_sorted\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_outputs_\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. pca 19 (0.453368)\n", + "1. ask_price 7 (0.217941)\n", + "2. ohlc_price 16 (0.075821)\n", + "3. close 13 (0.069535)\n", + "4. period_return 18 (0.064586)\n", + "5. bid_price 6 (0.060840)\n", + "6. oc_diff 17 (0.057908)\n", + "7. month 1 (0.000000)\n", + "8. day 2 (0.000000)\n", + "9. hour 3 (0.000000)\n", + "10. weekday 4 (0.000000)\n", + "11. 5 (0.000000)\n", + "12. low 9 (0.000000)\n", + "13. high 8 (0.000000)\n", + "14. avg_bo_spread 10 (0.000000)\n", + "15. count 11 (0.000000)\n", + "16. open 12 (0.000000)\n", + "17. avg_price 14 (0.000000)\n", + "18. range 15 (0.000000)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJOCAYAAADGcdzeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu0pXdd3/HPl5kEJaARMnJJAok1aCMCwhBpizpKkSSg\nQeslqFDxEmMNiosqkVaUWtcCkVovSBohhlYkKDcjjgLaom0VzISGSwLRSUjIhEtGLoqAJiHf/rGf\nwc1kTubMnD2z2ef3eq11VvblOXt/f+dM9ux5n+d5TnV3AAAAABjH3ZY9AAAAAABHlyAEAAAAMBhB\nCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAgCFV1UVV9dPLngMAYBmqu5c9AwCwQqrqhiT3\nTfLpuZsf3N3v38Bj7kjyW9190samW01VdWmSPd39H5c9CwAwBnsIAQCH45u6+55zH4cdgxahqrYu\n8/k3oqq2LHsGAGA8ghAAsDBV9eiq+vOq+lhVvX3a82fffU+rqndX1cer6vqq+qHp9uOS/GGSB1TV\n308fD6iqS6vqP899/o6q2jN3/YaqelZVvSPJJ6pq6/R5r66qvVX13qr60buY9TOPv++xq+onq+qW\nqvpAVT2pqs6uqr+qqo9U1bPnPvdnq+pVVfXKaT1vq6qHzd3/z6vqzdPX4eqq+ub9nvfFVbWzqj6R\n5PuTfHeSn5zW/vvTdhdW1XXT419TVd8y9xjfW1X/p6p+sao+Oq31rLn7711Vv1lV75/uf93cfU+s\nqqum2f68qh46d9+zqurm6TmvrarHruPbDgCsIEEIAFiIqjoxyR8k+c9J7p3k3yd5dVVtmza5JckT\nk3xBkqcl+aWqekR3fyLJWUnefxh7HD05yROSHJ/kjiS/n+TtSU5M8tgkz6iqx6/zse6X5POmz31O\nkt9I8j1JHpnka5L8dFWdOrf9OUl+d1rrbyd5XVUdU1XHTHO8MckXJ3l6kpdX1ZfNfe53Jfn5JPdK\n8t+TvDzJL0xr/6Zpm+um5/3CJM9N8ltVdf+5x/jqJNcmOSHJLyR5aVXVdN//SHKPJF8xzfBLSVJV\nX5XkkiQ/lOQ+Sf5bksur6u7TfBckeVR33yvJ45PcsM6vHQCwYgQhAOBwvG7aw+Rjc3uffE+Snd29\ns7vv6O43JdmV5Owk6e4/6O7reuZPMwsmX7PBOX6lu2/q7k8leVSSbd39n7r71u6+PrOoc+46H+u2\nJD/f3bcluSyz0PLL3f3x7r46yTVJHja3/ZXd/app+/+SWUx69PRxzyTPm+b4n0len1m82uf3uvv/\nTl+nfzjQMN39u939/mmbVyb56yRnzG1yY3f/Rnd/OsnLktw/yX2naHRWkvO7+6Pdfdv09U6S85L8\nt+5+a3d/urtfluQfp5k/neTuSU6vqmO6+4buvm6dXzsAYMUIQgDA4XhSdx8/fTxpuu1BSb59LhR9\nLMljMgsVqaqzquot0+FXH8ssFJ2wwTlumrv8oMwOO5t//mdndgLs9fjwFFeS5FPTfz80d/+nMgs9\nd3ru7r4jyZ4kD5g+bppu2+fGzPY8OtDcB1RVT507tOtjSR6Sz/56fXDu+T85XbxnkpOTfKS7P3qA\nh31Qkmfu9zU6OckDunt3kmck+dkkt1TVZVX1gIPNCQCsJkEIAFiUm5L8j7lQdHx3H9fdz6uquyd5\ndZJfTHLf7j4+yc4k+w5xOtCvPf1EZoc97XO/A2wz/3k3JXnvfs9/r+4+e8MrO7CT912oqrslOSnJ\n+6ePk6fb9nlgkpvXmPtO16vqQZnt3XRBkvtMX6935Z++XnflpiT3rqrj17jv5/f7Gt2ju1+RJN39\n2939mMzCUSd5/jqeDwBYQYIQALAov5Xkm6rq8VW1pao+bzpZ80lJjs3scKS9SW6fToD8jXOf+6Ek\n96mqL5y77aokZ08nSL5fZnuv3JW/TPLx6cTInz/N8JCqetTCVvjZHllV31qz33D2jMwOvXpLkrcm\n+WRmJ4k+pmYn1v6mzA5DW8uHknzJ3PXjMgsye5PZCbkz20PooLr7A5mdpPvXq+qLphm+drr7N5Kc\nX1VfXTPHVdUTqupeVfVlVfUNU7z7h8z2iLpjjacBAFacIAQALER335TZiZafnVnIuCnJTyS5W3d/\nPMmPJvmdJB/N7KTKl8997nuSvCLJ9dOhTA/I7MTIb8/sxMZvTPLKgzz/pzM7afXDk7w3yd8keUlm\nJ2U+En4vyXdmtp6nJPnW6Xw9t2YWgM6aZvj1JE+d1riWl2Z27p6PVdXruvuaJC9M8heZxaKvTPJ/\nD2G2p2R2TqT3ZHYy72ckSXfvSvKDSX5tmnt3ku+dPufuSZ43zfzBzE5G/VOH8JwAwAqp7gPtoQ0A\nwFqq6meTfGl3f8+yZwEAOBz2EAIAAAAYjCAEAAAAMBiHjAEAAAAMxh5CAAAAAIPZuqwnPuGEE/qU\nU05Z1tMDAAAAbDpXXnnl33T3toNtt7QgdMopp2TXrl3LenoAAACATaeqblzPdg4ZAwAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgtyI4dO7Jjx45ljwEAAABw\nUIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMOsKQlV1ZlVdW1W7q+rCNbbZUVVXVdXVVfWnix0TAAAAgEXZerANqmpLkhcleVySPUmuqKrLu/ua\nuW2OT/LrSc7s7vdV1RcfqYEBAAAA2Jj17CF0RpLd3X19d9+a5LIk5+y3zXcleU13vy9JuvuWxY4J\nAAAAwKKsJwidmOSmuet7ptvmPTjJF1XVm6vqyqp66oEeqKrOq6pdVbVr7969hzcxAAAAABuyqJNK\nb03yyCRPSPL4JD9dVQ/ef6Puvri7t3f39m3bti3oqQEAAAA4FAc9h1CSm5OcPHf9pOm2eXuSfLi7\nP5HkE1X1Z0keluSvFjIlAAAAAAuznj2ErkhyWlWdWlXHJjk3yeX7bfN7SR5TVVur6h5JvjrJuxc7\nKgAAAACLcNA9hLr79qq6IMkbkmxJckl3X11V50/3X9Td766qP0ryjiR3JHlJd7/rSA4OAAAAwOFZ\nzyFj6e6dSXbud9tF+11/QZIXLG40AAAAAI6ERZ1UGgAAAIAVIQgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGs64gVFVnVtW1VbW7qi48wP07qupv\nq+qq6eM5ix8VAAAAgEXYerANqmpLkhcleVySPUmuqKrLu/ua/Tb93939xCMwIwAAAAALtJ49hM5I\nsru7r+/uW5NcluScIzsWAAAAAEfKeoLQiUlumru+Z7ptf/+yqt5RVX9YVV9xoAeqqvOqaldV7dq7\nd+9hjAsAAADARi3qpNJvS/LA7n5okl9N8roDbdTdF3f39u7evm3btgU9NQAAAACHYj1B6OYkJ89d\nP2m67TO6+++6+++nyzuTHFNVJyxsSgAAAAAWZj1B6Iokp1XVqVV1bJJzk1w+v0FV3a+qarp8xvS4\nH170sAAAAABs3EF/y1h3315VFyR5Q5ItSS7p7qur6vzp/ouSfFuSH66q25N8Ksm53d1HcG4AAAAA\nDtNBg1DymcPAdu5320Vzl38tya8tdjQAAAAAjoRFnVQaAAAAgBUhCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADCYrcseYFlue+4zF/p4fcN1R+Rxk+SYn3nhwh8TAAAAGJc9hAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwmHUFoao6s6qurardVXXhXWz3qKq6vaq+bXEjAgAAALBIBw1CVbUlyYuSnJXk9CRPrqrT\n19ju+UneuOghAQAAAFic9ewhdEaS3d19fXffmuSyJOccYLunJ3l1klsWOB8AAAAAC7aeIHRikpvm\nru+ZbvuMqjoxybckefFdPVBVnVdVu6pq1969ew91VgAAAAAWYFEnlf6vSZ7V3Xfc1UbdfXF3b+/u\n7du2bVvQUwMAAABwKLauY5ubk5w8d/2k6bZ525NcVlVJckKSs6vq9u5+3UKmBAAAAGBh1hOErkhy\nWlWdmlkIOjfJd81v0N2n7rtcVZcmeb0YBAAAAPC56aBBqLtvr6oLkrwhyZYkl3T31VV1/nT/RUd4\nRgAAAAAWaD17CKW7dybZud9tBwxB3f29Gx8LAAAAgCNlUSeVBgAAAGBFCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEWNOOHTuy\nY8eOZY8BAAAALJggBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qra\nXVUXHuD+c6rqHVV1VVXtqqrHLH5UAAAAABZh68E2qKotSV6U5HFJ9iS5oqou7+5r5jb7kySXd3dX\n1UOT/E6SLz8SAwMAAACwMevZQ+iMJLu7+/ruvjXJZUnOmd+gu/++u3u6elySDgAAAACfk9YThE5M\nctPc9T3TbZ+lqr6lqt6T5A+SfN+BHqiqzpsOKdu1d+/ew5kXAAAAgA1a2Emlu/u13f3lSZ6U5OfW\n2Obi7t7e3du3bdu2qKcGAAAA4BCsJwjdnOTkuesnTbcdUHf/WZIvqaoTNjgbAAAAAEfAeoLQFUlO\nq6pTq+rYJOcmuXx+g6r60qqq6fIjktw9yYcXPSwAAAAAG3fQ3zLW3bdX1QVJ3pBkS5JLuvvqqjp/\nuv+iJP8myVOr6rYkn0rynXMnmQYAAADgc8hBg1CSdPfOJDv3u+2iucvPT/L8xY4GAAAAwJGwsJNK\nAwAAALAaBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwWxd9gCbxR8/7TuWPQIAAADAuthDCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACD2brsAVic2577zIU+Xt9w3RF53CQ55mdeuPDHBAAAANbHHkIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qraXVUX\nHuD+766qd1TVO6vqz6vqYYsfFQAAAIBFOGgQqqotSV6U5Kwkpyd5clWdvt9m703ydd39lUl+LsnF\nix4UAAAAgMVYzx5CZyTZ3d3Xd/etSS5Lcs78Bt3959390enqW5KctNgxAQAAAFiU9QShE5PcNHd9\nz3TbWr4/yR8e6I6qOq+qdlXVrr17965/SgAAAAAWZqEnla6qr88sCD3rQPd398Xdvb27t2/btm2R\nTw0AAADAOm1dxzY3Jzl57vpJ022fpaoemuQlSc7q7g8vZjwAAAAAFm09ewhdkeS0qjq1qo5Ncm6S\ny+c3qKoHJnlNkqd0918tfkwAAAAAFuWgewh19+1VdUGSNyTZkuSS7r66qs6f7r8oyXOS3CfJr1dV\nktze3duP3NgAAAAAHK71HDKW7t6ZZOd+t100d/kHkvzAYkcDAAAA4EhY6EmlAQAAAPjcJwgBAAAA\nDEYQAgAAABiMIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAA\nDEYQAgAAABiMIMRwduzYkR07dix7DAAAAFgaQQgAAABgMIIQAAAAwGAEIQAAAIDBCEKwCTgvEgAA\nAIdCEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAABiMIAQAA\nAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQsDnpB07dmTHjh3LHgMAAGBT\nEoQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghDAUbIZf3PaZlwTAACMQBACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBrCsIVdWZVXVtVe2uqgsPcP+XV9VfVNU/VtW/\nX/yYAAAAACzK1oNtUFVbkrwoyeOS7ElyRVVd3t3XzG32kSQ/muRJR2RKAAAAABbmoEEoyRlJdnf3\n9UlSVZclOSfJZ4JQd9+S5JaqesIRmZKl+OOnfceyRwAAAACOgPUcMnZikpvmru+ZbjtkVXVeVe2q\nql179+49nIcAAAAAYIOO6kmlu/vi7t7e3du3bdt2NJ8aAAAAgMl6gtDNSU6eu37SdBsAAAAAK2g9\nQeiKJKdV1alVdWySc5NcfmTHAgAAAOBIOehJpbv79qq6IMkbkmxJckl3X11V50/3X1RV90uyK8kX\nJLmjqp6R5PTu/rsjODsAAAAAh2E9v2Us3b0zyc79brto7vIHMzuUDAAAAIDPcUf1pNIAAAAALJ8g\nBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwg\nBAAAADAYQQgAAABgMIIQAAAAwGC2LnsAuCu3PfeZC3/MvuG6I/LYx/zMCxf6eAAAAHCk2EMIAAAA\nYDCCEAAAAMBgBCEAAACAwTiHECzBos9f5LxIAAAAHAp7CAEAAAAMRhACAAAAGIwgBAAAADAY5xAC\nFsJ5kQAAAFaHPYQAAAAABiMIAQAAAAzGIWMAa3AYHAAAsFnZQwgAAABgMPYQAhiIvZ4AAIDEHkIA\nAAAAwxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGDWFYSq6syquraq\ndlfVhQe4v6rqV6b731FVj1j8qAAAAAAswkGDUFVtSfKiJGclOT3Jk6vq9P02OyvJadPHeUlevOA5\nAQAAAFiQ9ewhdEaS3d19fXffmuSyJOfst805Sf57z7wlyfFVdf8FzwoAAADAAlR33/UGVd+W5Mzu\n/oHp+lOSfHV3XzC3zeuTPK+7/890/U+SPKu7d+33WOdltgdRHvjABz7yxhtvXORaYF127NiRJHnz\nm9+81DkWyZpWgzUBAABHWlVd2d3bD7bdUT2pdHdf3N3bu3v7tm3bjuZTAwAAADBZTxC6OcnJc9dP\nmm471G0AAAAA+BywniB0RZLTqurUqjo2yblJLt9vm8uTPHX6bWOPTvK33f2BBc8KAAAAwAJsPdgG\n3X17VV2Q5A1JtiS5pLuvrqrzp/svSrIzydlJdif5ZJKnHbmRAQAAANiIgwahJOnunZlFn/nbLpq7\n3El+ZLGjAQAAAHAkHNWTSgMAAACwfIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBbF32AAAH8uY3v3nZIyzcZlwTAACw\nmgQhhuMf5QAAAIzOIWMAAAAAgxGEAAAAAAbjkDEADptDMAEAYDXZQwgAAABgMPYQgk3AXhoAAAAc\nCnsIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBlPdvZwnrtqb5MalPPmRc0KSv1n2EAu2GdeUbM51WdNqsKbVYE2rYzOuy5pWgzWtBmtaHZtxXda0\nGjbjmh7U3dsOttHSgtBmVFW7unv7sudYpM24pmRzrsuaVoM1rQZrWh2bcV3WtBqsaTVY0+rYjOuy\nptWwGde0Xg4ZAwAAABiMIAQAAAAwGEFosS5e9gBHwGZcU7I512VNq8GaVoM1rY7NuC5rWg3WtBqs\naXVsxnVZ02rYjGtaF+cQAgAAABiMPYQAAAAABiMIAQAAAAxGEDpMVXVJVd1SVe+au+1hVfUXVfXO\nqvr9qvqCZc64EVX1ZVV11dzH31XVM5Y916E60Pdpuv3pVfWeqrq6qn5hWfMdrjX+/P1cVb1j+n69\nsaoesMwZD9Uaa3p4Vb1lWtOuqjpjmTNuVFUdX1Wvmv7svbuq/sWyZzpUa3yfXjn3WnFDVV21zBk3\nYq3XjFVWVSdX1f+qqmum17wfW/ZMG1VVn1dVf1lVb5/W9Nxlz7QoVbWlqv5fVb1+2bMsyvS68M59\nr+XLnmd7JX2wAAAISUlEQVSjqurHqupd05+9lXtvtJaq+vFpTe+qqldU1ecte6ZDtcbfUfeuqjdV\n1V9P//2iZc54qNZY07dP36s7qmrlflX2Gmt6wfT+6B1V9dqqOn6ZMx6Ou3oPUVXPrKquqhOWMdvh\nWuN79bNVdfPce7+zlznjRlTVmVV1bVXtrqoLlz3PMghCh+/SJGfud9tLklzY3V+Z5LVJfuJoD7Uo\n3X1tdz+8ux+e5JFJPpnZmlbNpdnv+1RVX5/knCQP6+6vSPKLS5hroy7Nnf/8vaC7Hzp9z16f5DlH\nfaqNuTR3XtMvJHnutKbnTNdX2S8n+aPu/vIkD0vy7iXPczguzX7fp+7+zrnXi1cnec0yBluQS3Pn\nP4er7vYkz+zu05M8OsmPVNXpS55po/4xyTd098OSPDzJmVX16CXPtCg/ltV8bTiYr59eJ1buH6/z\nquohSX4wyRmZvY4/saq+dLlTbVxVnZjkR5Ns7+6HJNmS5NzlTnVYLs2dX8MvTPIn3X1akj+Zrq+S\nS3PnNb0rybcm+bOjPs1iXJo7r+lNSR7S3Q9N8ldJfupoD7UAl+YA7yGq6uQk35jkfUd7oAW4NAd+\nX/RL+977dffOozzTQlTVliQvSnJWktOTPHkTvD86ZILQYeruP0vykf1ufnD+6YX5TUn+zVEd6sh5\nbJLruvvGZQ9yqNb4Pv1wkud19z9O29xy1AfboAOtq7v/bu7qcUlW6ozxa3yvOsm+Pe2+MMn7j+pQ\nC1RVX5jka5O8NEm6+9bu/thypzp0a3yfkiRVVUm+I8krjupQC3RX61tV3f2B7n7bdPnjmcWGE5c7\n1cb0zN9PV4+ZPlbqNe9AquqkJE/I7AdMfG7650ne2t2f7O7bk/xpZv8w3wy2Jvn8qtqa5B5Zwb9z\n13gNPyfJy6bLL0vypKM61Aat8Z7v3d197ZJG2rA11vTG6f+pJHlLkpOO+mAbdBfvIX4pyU9mBf+e\n2ozvi+ackWR3d1/f3bcmuSyz14uhCEKLdXX+6Q/Rtyc5eYmzLNK5WeF/4B3Ag5N8TVW9tar+tKoe\nteyBFqWqfr6qbkry3Vm9PYQO5BlJXjCt6Rezmj8t2ufUJHuT/OZ0OMhLquq4ZQ+1YF+T5EPd/dfL\nHoQDq6pTknxVkrcud5KNmw6tuirJLUne1N0rv6Yk/zWzfzTcsexBFqyT/HFVXVlV5y17mA16V2bv\nIe5TVfdIcnY2wfu97r45s79n35fkA0n+trvfuNypFua+3f2B6fIHk9x3mcOwLt+X5A+XPcQiVNU5\nSW7u7rcve5YFe/p0eN8lq3YY5pwTk9w0d31PVvwHZodDEFqs70vy76rqyiT3SnLrkufZsKo6Nsk3\nJ/ndZc+yQFuT3DuzQyd+IsnvTHs2rLzu/g/dfXKSlye5YNnzLMAPJ/nxaU0/nmnvmhW1Nckjkry4\nu78qySeyerutH8yTs7ni8aZSVffM7JC+Z+y3R+FK6u5PT4cpnpTkjOlQnpVVVU9Mckt3X7nsWY6A\nx0zfq7MyO2Txa5c90OHq7ncneX6SNyb5oyRXJfn0UodagOkfdOdk9sOLByQ5rqq+Z7lTLV53d1Zw\nL42RVNV/yOxQ55cve5aNmqLxs7M5fkg778VJviSzQ7Y/kOSFyx2HjRCEFqi739Pd39jdj8zsH0XX\nLXumBTgrydu6+0PLHmSB9iR5zXTIwV9m9pPYlTrB2zq8PJvjkMV/m386H83vZrZr56rak2TP3F4M\nr8osEG0K0yEG35rklcuehTurqmMyi0Ev7+5VPsfTnUyHXv6vrP65n/5Vkm+uqhsy2239G6rqt5Y7\n0mJMe5/sO0T7tVnt1/J090u7+5Hd/bVJPprZ+U5W3b9O8t7u3tvdt2X2d++/XPJMi/Khqrp/kkz/\nXblTBYyiqr43yROTfPcU71bdP8sssr59em0/Kcnbqup+S51qg7r7Q9MPZe5I8htZ3df0m/PZe3ie\nNN02FEFogarqi6f/3i3Jf0xy0XInWojN+BP/1yX5+iSpqgcnOTbJ3yx1ogWoqtPmrp6T5D3LmmWB\n3p/k66bL35BkZQ9F6u4PJrmpqr5suumxSa5Z4kiL9q+TvKe79yx7ED7btAfkS5O8u7v/y7LnWYSq\n2rbvN9BU1ecneVxW/DWvu3+qu0/q7lMyO1T7f3b3yu+hUVXHVdW99l3O7MSqK/1b/Obe7z0wsxD+\n28udaCHel+TRVXWP6TXjsdk8Jze/PLMfMGX67+8tcRbWUFVnZnbI7Dd39yeXPc8idPc7u/uLu/uU\n6bV9T5JHTO8JV9a+wDr5lqzua/oVSU6rqlOno2LOzez1Yihblz3AqqqqVyTZkeSEqtqT5GeS3LOq\nfmTa5DVJfnNJ4y3E9MbtcUl+aNmzHK41vk+XJLlk+vWJtyb5t6v2U4g11nX2FBvuSHJjkvOXN+Gh\nW2NNP5jkl6e9T/4hyaqfe+LpSV4+/aVzfZKnLXmeQ3ag71N3vzSb5Fxjd7G+VfavkjwlyTunc+4k\nybNX9beCTO6f5GXTbwi5W5Lf6e5N82vaN5n7JnntdGT21iS/3d1/tNyRNuzVVXWfJLcl+ZFV/AUB\n++vut1bVq5K8LbPDdf5fkouXO9WhW+O9xPMyOz3A92f2/ug7ljfhoVtjTR9J8qtJtiX5g6q6qrsf\nv7wpD80aa/qpJHdP8qbp9eIt3b3y72VX/T3EGt+rHVX18MwOv7whK/pvxe6+vaouSPKGzH6z4iXd\nffWSxzrqasX+HQwAAADABjlkDAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAACA/9+OHQgA\nAAAACPK3HuTCiBkhBAAAADAjhAAAAABmAsSSvmEJzLbbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1]\n", + "\n", + "column_list = df.columns.tolist()\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + "# Plot the feature importances coming from the forest of decision trees\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill_between\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'low'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'high'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# plot first 200 entries\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(*args, **kw)\u001b[0m\n\u001b[1;32m 251\u001b[0m \"\"\"\n\u001b[1;32m 252\u001b[0m \u001b[0;32mglobal\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfigure_manager\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_to_draw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 302\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 303\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 171\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 172\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 215\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 216\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 235\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 237\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2198\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2199\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2200\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2201\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2202\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 466\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1143\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1144\u001b[0;31m renderer, self, dsu, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1146\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2424\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2426\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegendPatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 482\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 483\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legend_box\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 484\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'legend'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 280\u001b[0m renderer)\n\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 282\u001b[0;31m \u001b[0mpx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 283\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_visible_children\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mget_offset\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 219\u001b[0m \"\"\"\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_findoffset_best\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_findoffset_best\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0;34m\"Helper function to locate the legend at its best position\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 434\u001b[0;31m \u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_find_best_position\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mox\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_find_best_position\u001b[0;34m(self, width, height, renderer, consider)\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;31m# take their into account when checking vertex overlaps in\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 949\u001b[0m \u001b[0;31m# the next line.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 950\u001b[0;31m \u001b[0mbadness\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 951\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 952\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_overlaps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbboxes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36mcount_contains\u001b[0;34m(self, vertices)\u001b[0m\n\u001b[1;32m 658\u001b[0m \u001b[0mdy0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 659\u001b[0m \u001b[0mdx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 660\u001b[0;31m \u001b[0mdy1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 661\u001b[0m \u001b[0minside\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdx0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdx1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdy0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdy1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minside\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low',y2='high', data=df, alpha=0.4)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "high_index = df.columns.tolist().index('high')\n", + "low_index = df.columns.tolist().index('low')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 1, 20) 3360 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 1, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 1, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 1, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 8,145\n", + "Trainable params: 8,145\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.02140, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.02140 to 0.00056, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.00056 to 0.00035, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.00035 to 0.00024, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.00024 to 0.00011, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error improved from 0.00011 to 0.00006, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00006: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.00005 to 0.00003, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00003 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error improved from 0.00002 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "CPU times: user 16min 23s, sys: 1min 23s, total: 17min 46s\n", + "Wall time: 15min 1s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "simname = \"bm_kaggle_4\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=100, batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X2U5XddJ/j3p2/VTd8bQhKSBicJ\nmnZFTjIwE7CJIA+DwyAJCMHlQR7iiuue4BndcfcIY3wAhNnZkz0zKqKg4pgZHQTMwKDM0gwBJwwq\nMKaJGUxIIIET6U5c0hPIY1VSVd3f/aNuJdWV6u5boe/9Vader3Pq5P4e7/sS/sp5n8+nWmsBAAAA\nAAAAAAA2l21dBwAAAAAAAAAAAB5OsQcAAAAAAAAAADYhxR4AAAAAAAAAANiEFHsAAAAAAAAAAGAT\nUuwBAAAAAAAAAIBNSLEHAAAAAAAAAAA2IcUeAAAAADpTVbdU1T/pOgcAAADAZqTYAwAAAAAAAAAA\nm5BiDwAAAADHRFXNbMYMG821GX4HAAAAQKLYAwAAADC20dqoN1fVF6vqvqr6/ap6QlV9vKruqapP\nVdWpo3ufWVWfrao7q+q/V9XzV73nJ6rqhtEzX6uqN6669vyq2ldVP1dVt1fV31XVT4yR7cVV9aXR\nO2+tqjetuvbm0Xtuq6r/tapaVX3P6Nqnq+p/W3XvG6rqL1Yd/0ZV7a2qu6vqC1X13FXXfqWqPlRV\n76uqu5O8oaq2VdWlVfXVqrqjqq6oqseteubHqupvR9d+acz/3Q/7zqo6e/R7frKqvp7kv6x3bnTv\ny6rq+tG/k09X1Tlr/t3+fFV9Mcl9yj0AAADAZqDYAwAAALAxr0jywiTfm+SlST6e5BeT7Mjyf2v5\nZ1V1ZpKPJfm/kjwuyZuSfLiqdozecXuSH07y2CQ/keTXq+rpq77jO5KcnOTMJD+Z5N0rhaEj+P0k\nb2ytnZTkKXmozHLB6PtfmORJSf7JBn/v1UnOG/2O9yf5D1W1fdX1i5J8KMkpSf4oyf+e5OVJ/lGS\nM5J8K8m7R1nOTfLbSX5sdO20JGeNkeGw71zlHyU5J8mL1jtXVd+b5ANJ/o8s/7vaneQ/VVV/1f2v\nTfKSJKe01pbGyAUAAAAwUYo9AAAAABvzm621b7TWbk3y50n+W2vtr1tr9yf5SJKnJbk4ye7W2u7W\n2sHW2ieT7Eny4iRprX2stfbVtuy/JrkyyXNXfcdikne01hZba7uT3JvkyUfJtZjk3Kp6bGvtW621\na0bnX53k37bWrmut3ZfkVzbyY1tr72ut3dFaW2qt/WqSE9Zk+Vxr7U9Gv3M+yU8l+aXW2r7W2gOj\n73vlaALOK5P8v621z4yuvSXJwTFiHOmdK36ltXbfKMN65340ycdaa59srS0m+ddJBkl+YNX972qt\n7V3zDgAAAIDOKPYAAAAAbMw3Vn2eX+f4MUm+K8mrRiuf7qyqO5M8J8nfS5KqurCqPl9V3xxde3GS\n01e95441E2PmRu89kleM3vO3VfVfq+pZo/NnJNm76r6/HetXjlTVm0Zrw+4aZT15Tda9ax75riQf\nWfW7b0hyIMkT1mYZFY3uGCPGkd55uBxrz52RVb+9tXZwdP3Mo7wDAAAAoDOKPQAAAADH3t4k/761\ndsqqvxNba5dV1QlJPpzliTFPaK2dkuW1UPXtfGFr7erW2kVJHp/kT5JcMbr0d0meuOrW71zz6H1J\nhquOv2PlQ1U9N8k/z/LUn1NHWe9ak7Wted/eJBeu+e3bRxOODslSVcMsr+M6miO983A51p67LcsF\noZXvrlGWo70DAAAAoDOKPQAAAADH3vuSvLSqXlRVvaraXlXPr6qzkvSzvM5qf5KlqrowyQ99O19W\nVf2qen1VnTxaM3V3HlpxdUWSN1TVuaMizdvWPH5tkv+5qoZV9T1JfnLVtZOSLI2yzlTVW5M89ihx\nfifJv6yq7xpl21FVF42ufSjJD1fVc6qqn+QdGe+/Tx3pneO6IslLquoFVTWb5OeSPJDksxt8DwAA\nAMDUKPYAAAAAHGOttb1JLkryi1kuxexN8uYk21pr9yT5Z1kumnwryeuSfPQYfO2PJbmlqu5O8lNJ\nXj/K8vEk70zyX5LcPPrnar+eZCHLK8X+IMkfrbr2iST/OclXsrzG6v4cfV3Vb2T591xZVfck+XyS\n7x9luT7JTyd5f5an93wryb4xftth3zmu1tqXk1yc5DeT/I8kL03y0tbawkbeAwAAADBN1ZoJwwAA\nAABbSVW1JE9qrd3cdRYAAAAADs/EHgAAAAAAAAAA2IQUewAAAACOE1V1fVXdu87f67vO9u2qqo8f\n5rf9YtfZAAAAALpiFRcAAAAAAAAAAGxCJvYAAAAAAAAAAMAmNNN1gGPp9NNPb2effXbXMQAAAAAA\nAAAAYF1f+MIX/kdrbcc490682FNVFyT5jSS9JP+mtXbZmuvPS/LOJP8gyWtaax9ade07k/ybJE9M\n0pK8uLV2y+G+6+yzz86ePXuO+W8AAAAAAAAAAIBjoar+dtx7J7qKq6p6Sd6d5MIk5yZ5bVWdu+a2\nryd5Q5L3r/OKP0zyr1pr5yQ5P8ntk0sLAAAAAAAAAACbx6Qn9pyf5ObW2teSpKo+mOSiJF9auWFl\nAk9VHVz94KgANNNa++TovnsnnBUAAAAAAAAAADaNiU7sSXJmkr2rjveNzo3je5PcWVX/sar+uqr+\n1WgC0CGq6pKq2lNVe/bv338MIgMAAAAAAAAAQPcmPbHn2zGT5LlJnpbldV1/nOWVXb+/+qbW2nuT\nvDdJdu3a1da+ZHFxMfv27cv9998/6byd2759e84666zMzs52HQUAAAAAAAAAgG/TpIs9tyZ54qrj\ns0bnxrEvybWr1nj9SZJnZk2x56gv2bcvJ510Us4+++xU1UYePa601nLHHXdk37592blzZ9dxAAAA\nAAAAAAD4Nk16FdfVSZ5UVTurqp/kNUk+uoFnT6mqHaPjf5zkSxsNcP/99+e00057VJd6kqSqctpp\np22JyUQAAAAAAAAAAFvBRIs9rbWlJD+T5BNJbkhyRWvt+qp6R1W9LEmq6hlVtS/Jq5L8blVdP3r2\nQJI3JfmzqvqbJJXk9x5Jjkd7qWfFVvmdAAAAAAAAAABbwaRXcaW1tjvJ7jXn3rrq89VZXtG13rOf\nTPIPJhoQAAAAAAAAAAA2oUmv4iLJnXfemfe85z0bfu7FL35x7rzzzgkkAgAAAAAAAABgs1PsmYLD\nFXuWlpaO+Nzu3btzyimnTCoWAAAAAAAAAACb2MRXcZFceuml+epXv5rzzjsvs7Oz2b59e0499dTc\neOON+cpXvpKXv/zl2bt3b+6///787M/+bC655JIkydlnn509e/bk3nvvzYUXXpjnPOc5+exnP5sz\nzzwzf/qnf5rBYNDxLwMAAAAAAAAAYFK2VLHn7f/p+nzptruP6TvPPeOxedtL//4R77nsssty3XXX\n5dprr82nP/3pvOQlL8l1112XnTt3Jkkuv/zyPO5xj8v8/Hye8Yxn5BWveEVOO+20Q95x00035QMf\n+EB+7/d+L69+9avz4Q9/OBdffPEx/S0AAAAAAAAAAGweW6rYs1mcf/75D5Z6kuRd73pXPvKRjyRJ\n9u7dm5tuuulhxZ6dO3fmvPPOS5J83/d9X2655Zap5QUAAAAAAAAAYPq2VLHnaJN1puXEE0988POn\nP/3pfOpTn8rnPve5DIfDPP/5z8/999//sGdOOOGEBz/3er3Mz89PJSsAAAAAAAAAAN3Y1nWAreCk\nk07KPffcs+61u+66K6eeemqGw2FuvPHGfP7zn59yOgAAAAAAAAAANqMtNbGnK6eddlqe/exn5ylP\neUoGg0Ge8IQnPHjtggsuyO/8zu/knHPOyZOf/OQ885nP7DApAAAAAAAAAACbRbXWus5wzOzatavt\n2bPnkHM33HBDzjnnnI4STd9W+70AAAAAAAAAAMeTqvpCa23XOPdaxQUAAAAAAAAAAJuQYg8AAAAA\nAAAAAGxCij0AAAAAAAAAALAJKfYAAAAAAAAAAMAmpNgDAAAAAAAAAACbkGIPE/XS3/yLvPuqm7uO\nAQAAAAAAAABw3FHsmYI777wz73nPex7Rs+985zszNzd3jBNNz613zufv7prvOgYAAAAAAAAAwHFH\nsWcKtnKxZzDby9zCga5jAAAAAAAAAAAcd2a6DrAVXHrppfnqV7+a8847Ly984Qvz+Mc/PldccUUe\neOCB/MiP/Eje/va357777surX/3q7Nu3LwcOHMhb3vKWfOMb38htt92WH/zBH8zpp5+eq666quuf\nsmHDfi/zij0AAAAAAAAAABu2tYo9H780+f/+5ti+8zuemlx42RFvueyyy3Ldddfl2muvzZVXXpkP\nfehD+au/+qu01vKyl70sn/nMZ7J///6cccYZ+djHPpYkueuuu3LyySfn137t13LVVVfl9NNPP7a5\np2TYN7EHAAAAAAAAAOCRsIpryq688spceeWVedrTnpanP/3pufHGG3PTTTflqU99aj75yU/m53/+\n5/Pnf/7nOfnkk7uOekwMTOwBAAAAAAAAAHhEttbEnqNM1pmG1lp+4Rd+IW984xsfdu2aa67J7t27\n88u//Mt5wQtekLe+9a0dJDy2hv2Z3H7P/V3HAAAAAAAAAAA47pjYMwUnnXRS7rnnniTJi170olx+\n+eW59957kyS33nprbr/99tx2220ZDoe5+OKL8+Y3vznXXHPNw549Hg36vcw9YGIPAAAAAAAAAMBG\nba2JPR057bTT8uxnPztPecpTcuGFF+Z1r3tdnvWsZyVJHvOYx+R973tfbr755rz5zW/Otm3bMjs7\nm9/+7d9OklxyySW54IILcsYZZ+Sqq67q8mc8IsPZXuas4gIAAAAAAAAA2LBqrXWd4ZjZtWtX27Nn\nzyHnbrjhhpxzzjkdJZq+zfZ73/an1+Ujf31rvvgrL+o6CgAAAAAAAABA56rqC621XePcaxUXEzXo\nz2R+0cQeAAAAAAAAAICNUuxhoob9XhYPtCweONh1FAAAAAAAAACA48qWKPY8mtaNHclm/J3Dfi9J\nMrdgag8AAAAAAAAAwEY86os927dvzx133LEpSy/HUmstd9xxR7Zv3951lEMMRsWeecUeAAAAAAAA\nAIANmek6wKSdddZZ2bdvX/bv3991lInbvn17zjrrrK5jHOKhiT1LHScBAAAAAAAAADi+POqLPbOz\ns9m5c2fXMbaswezy/8Ws4gIAAAAAAAAA2JhH/SouunXiCaNVXIuKPQAAAAAAAAAAG6HYw0Q9tIpL\nsQcAAAAAAAAAYCMUe5iolVVc8wtLHScBAAAAAAAAADi+KPYwUSb2AAAAAAAAAAA8Moo9TJRiDwAA\nAAAAAADAI6PYw0QNRsWeecUeAAAAAAAAAIANUexhoob9mSQm9gAAAAAAAAAAbJRiDxPV21bpz2zL\n3MJS11EAAAAAAAAAAI4rij1M3LDfM7EHAAAAAAAAAGCDFHuYuOGsYg8AAAAAAAAAwEYp9jBxg34v\n84tWcQEAAAAAAAAAbIRiDxM37M+Y2AMAAAAAAAAAsEGKPUzcoG8VFwAAAAAAAADARin2MHHDfi/z\nij0AAAAAAAAAABui2MPEDfu9zC0sdR0DAAAAAAAAAOC4otjDxA1mZ0zsAQAAAAAAAADYIMUeJu7E\nE3qZW1TsAQAAAAAAAADYCMUeJm7Q72XOxB4AAAAAAAAAgA1R7GHihrMzWVg6mAMHW9dRAAAAAAAA\nAACOG4o9TNyw30uSzC0sdZwEAAAAAAAAAOD4odjDxA1GxZ5567gAAAAAAAAAAMam2MPEPTSxR7EH\nAAAAAAAAAGBcij1M3Eqx5z6ruAAAAAAAAAAAxqbYw8QN+jNJrOICAAAAAAAAANgIxR4mziouAAAA\nAAAAAICNm3ixp6ouqKovV9XNVXXpOtefV1XXVNVSVb1yneuPrap9VfVbk87KZAxmFXsAAAAAAAAA\nADZqosWequoleXeSC5Ocm+S1VXXumtu+nuQNSd5/mNf8iySfmVRGJm9lYs/84lLHSQAAAAAAAAAA\njh+TnthzfpKbW2tfa60tJPlgkotW39Bau6W19sUkB9c+XFXfl+QJSa6ccE4maNifSWJiDwAAAAAA\nAADARky62HNmkr2rjveNzh1VVW1L8qtJ3nSU+y6pqj1VtWf//v2POCiTM1iZ2KPYAwAAAAAAAAAw\ntkkXe74d/zTJ7tbaviPd1Fp7b2ttV2tt144dO6YUjY1YWcVlYg8AAAAAAAAAwPhmJvz+W5M8cdXx\nWaNz43hWkudW1T9N8pgk/aq6t7V26THOyITN9rZltleKPQAAAAAAAAAAGzDpYs/VSZ5UVTuzXOh5\nTZLXjfNga+31K5+r6g1Jdin1HL+G/ZnMLyx1HQMAAAAAAAAA4Lgx0VVcrbWlJD+T5BNJbkhyRWvt\n+qp6R1W9LEmq6hlVtS/Jq5L8blVdP8lMdGPY75nYAwAAAAAAAACwAZOe2JPW2u4ku9ece+uqz1dn\neUXXkd7x75L8uwnEY0oG/V7mFhV7AAAAAAAAAADGNdGJPbBi2O9l3sQeAAAAAAAAAICxKfYwFcPZ\nmcwtLHUdAwAAAAAAAADguKHYw1QMTOwBAAAAAAAAANgQxR6mYtjvZU6xBwAAAAAAAABgbIo9TMVA\nsQcAAAAAAAAAYEMUe5iK5Yk9S13HAAAAAAAAAAA4bij2MBXD/oyJPQAAAAAAAAAAG6DYw1QMZnt5\nYOlgDhxsXUcBAAAAAAAAADguKPYwFcN+L0kyv2hqDwAAAAAAAADAOBR7mIqVYs/cwlLHSQAAAAAA\nAAAAjg+KPUzFoD+TJJlfMLEHAAAAAAAAAGAcij1MxUMTexR7AAAAAAAAAADGodjDVCj2AAAAAAAA\nAABsjGIPUzG0igsAAAAAAAAAYEMUe5iKhyb2LHWcBAAAAAAAAADg+KDYw1QMRsWe+UUTewAAAAAA\nAAAAxqHYw1Q8NLFHsQcAAAAAAAAAYByKPUzFcHYmiWIPAAAAAAAAAMC4FHuYigdXcS0sdZwEAAAA\nAAAAAOD4oNjDVPRntmVmW5nYAwAAAAAAAAAwJsUepmbQ7yn2AAAAAAAAAACMSbGHqRn2e5mzigsA\nAAAAAAAAYCyKPUzNsD9jYg8AAAAAAAAAwJgUe5iawWwv84o9AAAAAAAAAABjUexhapZXcSn2AAAA\nAAAAAACMQ7GHqRn0e5lbVOwBAAAAAAAAABiHYg9TM+z3Mr+w1HUMAAAAAAAAAIDjgmIPU3Nif8Yq\nLgAAAAAAAACAMSn2MDWDfi/zij0AAAAAAAAAAGNR7GFqhv2eiT0AAAAAAAAAAGNS7GFqBv2ZzC8e\nyMGDresoAAAAAAAAAACbnmIPUzPs95Ik9y+Z2gMAAAAAAAAAcDSKPUzNSrHHOi4AAAAAAAAAgKNT\n7GFqBrPLxZ55xR4AAAAAAAAAgKNS7GFqhv2ZJCb2AAAAAAAAAACMQ7GHqVlZxXXfwlLHSQAAAAAA\nAAAANj/FHqZm0LeKCwAAAAAAAABgXIo9TM3KxB6ruAAAAAAAAAAAjk6xh6l5qNhjFRcAAAAAAAAA\nwNEo9jA1g/5MEqu4AAAAAAAAAADGodjD1AxnreICAAAAAAAAABiXYg9TMxit4ppfVOwBAAAAAAAA\nADgaxR6m5oSZbeltq8wtLHUdBQAAAAAAAABg01PsYWqqKsPZnlVcAAAAAAAAAABjUOxhqgb9XuYV\newAAAAAAAAAAjkqxh6ka9k3sAQAAAAAAAAAYh2IPUzXozyj2AAAAAAAAAACMQbGHqRr2e5lfXOo6\nBgAAAAAAAADApqfYw1RZxQUAAAAAAAAAMB7FHqZqMNvLvGIPAAAAAAAAAMBRKfYwVSb2AAAAAAAA\nAACMR7GHqRr0ZzK3sNR1DAAAAAAAAACATU+xh6kysQcAAAAAAAAAYDyKPUzVsN/L/OKBtNa6jgIA\nAAAAAAAAsKkp9jBVg34vrSX3Lx7sOgoAAAAAAAAAwKam2MNUDWd7SZK5haWOkwAAAAAAAAAAbG4T\nL/ZU1QVV9eWqurmqLl3n+vOq6pqqWqqqV646f15Vfa6qrq+qL1bVj046K5M37M8kSeYWDnScBAAA\nAAAAAABgc5tosaeqekneneTCJOcmeW1Vnbvmtq8neUOS9685P5fkf2mt/f0kFyR5Z1WdMsm8TN7w\nhOWJPfOLij0AAAAAAAAAAEcyM+H3n5/k5tba15Kkqj6Y5KIkX1q5obV2y+jawdUPtta+surzbVV1\ne5IdSe6ccGYmaNhfWcWl2AMAAAAAAAAAcCSTXsV1ZpK9q473jc5tSFWdn6Sf5KvrXLukqvZU1Z79\n+/c/4qBMx2B2ZRXXUsdJAAAAAAAAAAA2t0kXe75tVfX3kvz7JD/RWju49npr7b2ttV2ttV07duyY\nfkA2ZGViz7yJPQAAAAAAAAAARzTpYs+tSZ646vis0bmxVNVjk3wsyS+11j5/jLPRAau4AAAAAAAA\nAADGM+liz9VJnlRVO6uqn+Q1ST46zoOj+z+S5A9bax+aYEamaGBiDwAAAAAAAADAWCZa7GmtLSX5\nmSSfSHJDkitaa9dX1Tuq6mVJUlXPqKp9SV6V5Her6vrR469O8rwkb6iqa0d/500yL5M37M8kSeYW\nljpOAgAAAAAAAACwuc1M+gtaa7uT7F5z7q2rPl+d5RVda597X5L3TTof0/XgKq5FE3sAAAAAAAAA\nAI5k0qu44BAnzGxLlVVcAAAAAAAAAABHo9jDVFVVhrO9zCn2AAAAAAAAAAAckWIPUzfoz2RuYanr\nGAAAAAAAAAAAm5piD1M37JvYAwAAAAAAAABwNIo9TJ1iDwAAAAAAAADA0Sn2MHWDfi/zij0AAAAA\nAAAAAEek2MPULU/sWeo6BgAAAAAAAADApqbYw9QN+zNWcQEAAAAAAAAAHIViD1M37Pcyv6jYAwAA\nAAAAAABwJIo9TN3yKi7FHgAAAAAAAACAI1HsYeoGszOZV+wBAAAAAAAAADgixR6mbnliz1Jaa11H\nAQAAAAAAAADYtBR7mLpBv5eDLXlg6WDXUQAAAAAAAAAANi3FHqZu2O8liXVcAAAAAAAAAABHoNjD\n1K0Ue+YWFXsAAAAAAAAAAA5HsYepG/RnkiTzC0sdJwEAAAAAAAAA2LwUe5i64exoYo9VXAAAAAAA\nAAAAh6XYw9StrOK67wHFHgAAAAAAAACAw1HsYeoGo2LP/KJVXAAAAAAAAAAAh6PYw9QN+zNJrOIC\nAAAAAAAAADgSxR6mbmUVl2IPAAAAAAAAAMDhKfYwdQ+u4lLsAQAAAAAAAAA4LMUepu5Eq7gAAAAA\nAAAAAI5KsYep2z67LVXJ/MJS11EAAAAAAAAAADYtxR6mrqoymO2Z2AMAAAAAAAAAcASKPXRi2O9l\nblGxBwAAAAAAAADgcBR76MSg38u8iT0AAAAAAAAAAIel2EMnhrMzmVtY6joGAAAAAAAAAMCmpdhD\nJwb9XuZM7AEAAAAAAAAAOCzFHjoxtIoLAAAAAAAAAOCIFHvoxNDEHgAAAAAAAACAI1LsoROD/kzm\nFxV7AAAAAAAAAAAOR7GHTgxne5lbWOo6BgAAAAAAAADApqXYQycG/V7mHjCxBwAAAAAAAADgcBR7\n6MSw38vc4oG01rqOAgAAAAAAAACwKSn20Ilhv5cDB1sWDhzsOgoAAAAAAAAAwKak2EMnBv2ZJMn8\ngnVcAAAAAAAAAADrUeyhEyf2e0mSOcUeAAAAAAAAAIB1KfbQiYFiDwAAAAAAAADAESn20ImhVVwA\nAAAAAAAAAEek2EMnhg9O7FnqOAkAAAAAAAAAwOak2EMnHlzFtWhiDwAAAAAAAADAehR76MTKxB6r\nuAAAAAAAAAAA1qfYQyeGszNJkjnFHgAAAAAAAACAdSn20InBgxN7ljpOAgAAAAAAAACwOSn20ImV\nVVwm9gAAAAAAAAAArE+xh04MZhV7AAAAAAAAAACORLGHTmzbVtk+uy3zi4o9AAAAAAAAAADrUeyh\nM8P+TO57YKnrGAAAAAAAAAAAm5JiD50ZzPYybxUXAAAAAAAAAMC6FHvozLDfy5xiDwAAAAAAAADA\nuhR76Myw38vcomIPAAAAAAAAAMB6FHvozKDfy/zCUtcxAAAAAAAAAAA2JcUeOnNif8YqLgAAAAAA\nAACAw1DsoTPLE3sUewAAAAAAAAAA1jPxYk9VXVBVX66qm6vq0nWuP6+qrqmqpap65ZprP15VN43+\nfnzSWZmuYb9nYg8AAAAAAAAAwGFMtNhTVb0k705yYZJzk7y2qs5dc9vXk7whyfvXPPu4JG9L8v1J\nzk/ytqo6dZJ5ma5hfyZzC0tdxwAAAAAAAAAA2JQmPbHn/CQ3t9a+1lpbSPLBJBetvqG1dktr7YtJ\nDq559kVJPtla+2Zr7VtJPpnkggnnZYoG/V7mF03sAQAAAAAAAABYz6SLPWcm2bvqeN/o3DF7tqou\nqao9VbVn//79jzgo0zec7WXxQMvigbWdLgAAAAAAAAAAJl3smbjW2ntba7taa7t27NjRdRw2YNDv\nJUnmFkztAQAAAAAAAABYa9LFnluTPHHV8Vmjc5N+luPAsD+TJJlX7AEAAAAAAAAAeJhJF3uuTvKk\nqtpZVf0kr0ny0TGf/USSH6qqU6vq1CQ/NDrHo8TwwYk9Sx0nAQAAAAAAAADYfCZa7GmtLSX5mSwX\ncm5IckVr7fqqekdVvSxJquoZVbUvyauS/G5VXT969ptJ/kWWy0FXJ3nH6ByPElZxAQAAAAAAAAAc\n3sykv6C1tjvJ7jXn3rrq89VZXrO13rOXJ7l8ogHpzMrEnvlFxR4AAAAAAAAAgLUmvYoLDmul2HPf\nA1ZxAQAAAAAAAACspdhDZwazywOj5q3iAgAAAAAAAAB4GMUeOrMysWdOsQcAAAAAAAAA4GEUe+jM\ng8WeRcUeAAAAAAAAAIC1FHvozPCElVVcSx0nAQAAAAAAAADYfBR76Mxg1iouAAAAAAAAAIDDUeyh\nM71tlRNmtmVesQcAAAAAAAAA4GEUe+jUsN8zsQcAAAAAAAAAYB2KPXRq2J9R7AEAAAAAAAAAWIdi\nD50a9HuZX1zqOgYAAAAAAAAB28ijAAAgAElEQVQAwKaj2EOnrOICAAAAAAAAAFifYg+dGswq9gAA\nAAAAAAAArEexh04N+73MK/YAAAAAAAAAADyMYg+dGvZnMrew1HUMAAAAAAAAAIBNR7GHTg1M7AEA\nAAAAAAAAWJdiD50a9nuZW1TsAQAAAAAAAABYS7GHTg36vcw9oNgDAAAAAAAAALCWYg+dGs7OZOHA\nwSwdONh1FAAAAAAAAACATUWxh04N+70ksY4LAAAAAAAAAGANxR46NTxhudgzv6DYAwAAAAAAAACw\n2ljFnqrqVdX/OekwbD0PTuxR7AEAAAAAAAAAOMRYxZ7W2oEkr51wFragwexMkmRuYanjJAAAAAAA\nAAAAm8vMBu79y6r6rSR/nOS+lZOttWuOeSq2jJWJPVZxAQAAAAAAAAAcaiPFnvNG/3zHqnMtyT8+\ndnHYaqziAgAAAAAAAABY39jFntbaD04yCFvTQLEHAAAAAAAAAGBd28a9sapOrqpfq6o9o79fraqT\nJxmOR79hf7lbNr+41HESAAAAAAAAAIDNZexiT5LLk9yT5NWjv7uT/NtJhGLrsIoLAAAAAAAAAGB9\nY6/iSvI/tdZeser47VV17bEOxNaysoprXrEHAAAAAAAAAOAQG5nYM19Vz1k5qKpnJ5k/9pHYSoaz\nJvYAAAAAAAAAAKxnIxN7firJH1bVyaPjbyX58WMfia1kprct/d42xR4AAAAAAAAAgDXGKvZU1bYk\nT26t/cOqemyStNbunmgytoxBv5f5haWuYwAAAAAAAAAAbCpjreJqrR1M8s9Hn+9W6uFYGvZ7uc/E\nHgAAAAAAAACAQ4xV7Bn5VFW9qaqeWFWPW/mbWDK2jOWJPYo9AAAAAAAAAACrjbWKa+RHR//86VXn\nWpLvPnZx2IqG/V7mrOICAAAAAAAAADjEWMWeqtqW5OLW2l9OOA9b0LA/kzkTewAAAAAAAAAADjHW\nKq7W2sEkvzXhLGxRw34v84uKPQAAAAAAAAAAq41V7Bn5s6p6RVXVxNKwJS2v4lLsAQAAAAAAAABY\nbSPFnjcm+Q9JFqrq7qq6p6runlAutpDB7EzmFXsAAAAAAAAAAA4xM+6NrbWTJhmErWt5Ys9S1zEA\nAAAAAAAAADaVsSf21LKLq+oto+MnVtX5k4vGVmEVFwAAAAAAAADAw21kFdd7kjwryetGx/cmefcx\nT8SWM+j38sDSwRw42LqOAgAAAAAAAACwaWyk2PP9rbWfTnJ/krTWvpWkP5FUbCnDfi9JMr9oag8A\nAAAAAAAAwIqNFHsWq6qXpCVJVe1IcnAiqdhSBv2ZJMncwlLHSQAAAAAAAAAANo+NFHveleQjSR5f\nVf8yyV8k+b8nkootZTg7mtizYGIPAAAAAAAAAMCKmXFvbK39UVV9IckLklSSl7fWbli5XlWnjtZz\nwYasrOKaU+wBAAAAAAAAAHjQ2MWeJGmt3ZjkxsNc/rMkT/+2E7HlDBR7AAAAAAAAAAAeZiOruI6m\njuG72EKG/eV+mVVcAAAAAAAAAAAPOZbFnnYM38UWsrKK676FpY6TAAAAAAAAAABsHsey2AOPyMoq\nLhN7AAAAAAAAAAAeYhUXnTtxtIprTrEHAAAAAAAAAOBBM0e7oaoed6TrrbVvjj6+4JgkYstZmdgz\nZxUXAAAAAAAAAMCDjlrsSfKFJC3LE3m+M8m3Rp9PSfL1JDuTQwo+sCFDq7gAAAAAAAAAAB7mqKu4\nWms7W2vfneRTSV7aWju9tXZakh9OcuWkA/LoN9vbltleZW5RsQcAAAAAAAAAYMVRiz2rPLO1tnvl\noLX28SQ/cOwjsRUNZnsm9gAAAAAAAAAArDLOKq4Vt1XVLyd53+j49UluO/aR2IqG/ZnMLSx1HQMA\nAAAAAAAAYNPYyMSe1ybZkeQjSf7j6PNrj/ZQVV1QVV+uqpur6tJ1rp9QVX88uv7fqurs0fnZqvqD\nqvqbqrqhqn5hA1k5zgz7vcyZ2AMAAAAAAAAA8KCxJ/a01r6Z5Ger6sTW2n3jPFNVvSTvTvLCJPuS\nXF1VH22tfWnVbT+Z5Futte+pqtck+X+S/GiSVyU5obX21KoaJvlSVX2gtXbLuJk5fgz6VnEBAAAA\nAAAAAKw29sSeqvqBqvpSkhtGx/+wqt5zlMfOT3Jza+1rrbWFJB9MctGaey5K8gejzx9K8oKqqiQt\nyYlVNZNkkGQhyd3j5uX4YmIPAAAAAAAAAMChNrKK69eTvCjJHUnSWvvvSZ53lGfOTLJ31fG+0bl1\n72mtLSW5K8lpWS753Jfk75J8Pcm/Hk0NOkRVXVJVe6pqz/79+zfwc9hMBv2ZzC0q9gAAAAAAAAAA\nrNhIsSettb1rTk2yiXH+6P1nJNmZ5Oeq6rvXyfTe1tqu1tquHTt2TDAOkzSc7WV+YanrGAAAAAAA\nAAAAm8ZGij17q+oHkrSqmq2qN2W0lusIbk3yxFXHZ43OrXvPaO3WyVmeCvS6JP+5tbbYWrs9yV8m\n2bWBvBxHrOICAAAAAAAAADjURoo9P5Xkp7O8OuvWJOeNjo/k6iRPqqqdVdVP8pokH/3/2bv3KEnT\nuk7w3ydumRF16epuuqGhG2hpuhAWbzSIzDgOoDPd7SruCiOKyuxhlj2uuLNnz+wOe3YPi6xnd3D2\njOsuqMcRHcWZ1Vnd2dNKA7OCl/EyCig6NlLS3ASBpqEvVZUZmRmR+ewfEZkZlZV1ye6MiqiOz+ec\n97zP+75PRPyyMg9a2d/6/fbsuSfJa8frVyZ5f621ZjR+62VJUko5kuTFST56gHq5inQ7zfQFewAA\nAAAAAAAAdrQuZ1MppZnk+2qtrznIm9dah6WUNyR5b5Jmkp+ttd5XSnlLkg/WWu9J8o4k7yyl3J/k\noYzCP0ny9iQ/V0q5L0lJ8nO11j87yOdz9dCxBwAAAAAAAADgXJcV7Km1bpZSvifJjx30A2qt9ya5\nd8+9N02s15K8ap/Xnd3vPk9M3U4r/cFmtrZqGo0y63IAAAAAAAAAAGbusoI9Y79bSnlbkl9OsrJ9\ns9b6x4deFQvnSKeZJOkPNnNk6SA/lgAAAAAAAAAAT0wHSVB8zfj8lol7NcnLDq8cFlVvHOxZ3RDs\nAQAAAAAAAABIDhDsqbW+dJqFsNi6ndGPYn9jc8aVAAAAAAAAAADMhwO1RimlfGuS5yVZ3r5Xa33L\nhV8Bl2enY89gOONKAAAAAAAAAADmQ+NyN5ZSfirJdyX5oSQlyauSPGNKdbFguhOjuAAAAAAAAAAA\nOECwJ8lLaq3fn+ThWusPJ/mGJLdPpywWTa89CvYYxQUAAAAAAAAAMHKQYE9/fF4tpTw1ySDJTYdf\nEouo1xlNhdOxBwAAAAAAAABgpHWAvb9eSjmR5J8m+eMkNcnPTKUqFs7uKK7hjCsBAAAAAAAAAJgP\nlx3sqbX+z+Plr5ZSfj3Jcq310emUxaLpdYziAgAAAAAAAACYdNnBnlLK9+9zL7XWXzjcklhEvZ2O\nPYI9AAAAAAAAAADJwUZxvXBivZzk5RmN5BLs4XHbHsXVHwj2AAAAAAAAAAAkBxvF9UOT16WUE0l+\n6dArYiF1mo00GyWrG8NZlwIAAAAAAAAAMBcaj+O1K0luPaxCWGyllPTaTaO4AAAAAAAAAADGLrtj\nTynl15LU8WUjyXOT/OtpFMVi6naa6Qv2AAAAAAAAAAAkOUCwJ8n/NrEeJvl0rfWzh1wPC6zXaWZF\nsAcAAAAAAAAAIMkBgj211t+eZiHQ67TS3xjOugwAAAAAAAAAgLlwkFFcZ7I7iuucR0lqrfX4oVXF\nQup1mlnVsQcAAAAAAAAAIMnBRnH970k+n+SdGYV5XpPkplrrm6ZRGIun22nmzJqOPQAAAAAAAAAA\nSdI4wN5vr7X+RK31TK31dK31J5O8YlqFsXh6nWb6OvYAAAAAAAAAACQ5WLBnpZTymlJKs5TSKKW8\nJsnKtApj8fQ6rawOdOwBAAAAAAAAAEgOFuz5niR/L8kD4+NV43twKLo69gAAAAAAAAAA7Ghd7sZa\n66di9BZT1Gs3syrYAwAAAAAAAACQ5AAde0opP1pKOV5KaZdS3ldKebCU8r3TLI7F0us00x9sptY6\n61IAAAAAAAAAAGbuIKO4/k6t9XSS/zjJp5LcluS/nUZRLKZup5Vak7XB1qxLAQAAAAAAAACYuYME\ne7bHdn1rkv+71vroFOphgfU6zSTJ6sZwxpUAAAAAAAAAAMzeQYI9v15K+WiSFyR5XynlhiRr0ymL\nRdTdCfZszrgSAAAAAAAAAIDZu+xgT631jUlekuSOWusgyWqSV2w/L6V8y+GXxyLZ7tjTHwj2AAAA\nAAAAAAAcpGNPaq0P1Vo3x+uVWusXJh6/9VArY+H0dOwBAAAAAAAAANhxoGDPJZRDfC8WULfdSpKs\nbgxnXAkAAAAAAAAAwOwdZrCnHuJ7sYB2RnHp2AMAAAAAAAAAcKjBHnhcjiyNgj0rgj0AAAAAAAAA\nAIca7PnUIb4XC6jbGY3i6hvFBQAAAAAAAACQ1kE2l1JekuSZk6+rtf7C+PyfHmplLJxee9SxZ1XH\nHgAAAAAAAACAyw/2lFLemeRZST6cZDt5UZP8whTqYgF1O4I9AAAAAAAAAADbDtKx544kz6211mkV\nw2JbajXSKElfsAcAAAAAAAAAII0D7P3zJE+ZViFQSkmv09KxBwAAAAAAAAAgB+vY86QkHyml/FGS\n9e2btdZvP/SqWFjdTjP9wXDWZQAAAAAAAAAAzNxBgj1vnlYRsK3XaerYAwAAAAAAAACQAwR7aq2/\nPc1CIEm6bcEeAAAAAAAAAIAkaVzuxlLKi0spHyilnC2lbJRSNkspp6dZHIun12mmL9gDAAAAAAAA\nAHD5wZ4kb0vy3Uk+lqSb5B8kefs0imJx9TqtrG4MZ10GAAAAAAAAAMDMHSTYk1rr/UmatdbNWuvP\nJblzOmWxqLodo7gAAAAAAAAAAJKkdYC9q6WUTpIPl1J+NMnnc8BgEFxKr9NMfyDYAwAAAAAAAABw\nkGDO9433vyHJSpJbknznNIpicfV07AEAAAAAAAAASHKAjj211k+XUrpJbqq1/vAUa2KBddut9AV7\nAAAAAAAAAAAuv2NPKeXbknw4yXvG119TSrlnWoWxmI4sNbOyMUytddalAAAAAAAAAADM1EFGcb05\nyYuSPJIktdYPJ7l1CjWxwLqdZmpN1odbsy4FAAAAAAAAAGCmDhLsGdRaH91zT1sVDlWv3UySrBrH\nBQAAAAAAAAAsuIMEe+4rpXxPkmYp5dmllP8zye9PqS4WVK/TSpKsbgxnXAkAAAAAAAAAwGwdJNjz\nQ0mel2Q9yb9K8miSfziNolhc3c6oY09fxx4AAAAAAAAAYMEdJNjz3PHRSrKc5BVJPjCNolhcvY5R\nXAAAAAAAAAAAySikc7n+ZZJ/lOTPk2xNpxwWXVewBwAAAAAAAAAgycGCPQ/WWn9tapVAkl5n9CPZ\nHwxnXAkAAAAAAAAAwGwdJNjzP5VSfibJ+5Ksb9+stf4/h14VC8soLgAAAAAAAACAkYMEe/6zJM9J\n0s7uKK6aRLCHQ9NtC/YAAAAAAAAAACQHC/a8sNZ6cmqVQHY79vQFewAAAAAAAACABdc4wN7fL6U8\n96AfUEq5s5RyqpRyfynljfs8Xyql/PL4+R+WUp458eyrSil/UEq5r5TyH0opywf9fK4uvc4oa6Zj\nDwAAAAAAAACw6A7SsefFST5cSvlkkvUkJUmttX7VhV5QSmkmeXuSb0ny2SQfKKXcU2v9yMS21yV5\nuNZ6Wynl1UnemuS7SimtJL+Y5PtqrX9aSrk+yeAgXxxXn+V2I6Uk/Y3hrEsBAAAAAAAAAJipgwR7\n7nwM7/+iJPfXWj+RJKWUX0ryiiSTwZ5XJHnzeP0rSd5WSilJ/k6SP6u1/mmS1Fq//Bg+n6tMKSXd\ndlPHHgAAAAAAAABg4V12sKfW+unH8P5PS/KZievPJvn6C+2ptQ5LKY8muT7J7UlqKeW9SW5I8ku1\n1h/d+wGllNcneX2SPP3pT38MJTJvep1mVgeCPQAAAAAAAADAYmvMuoCLaCX5m0leMz7/J6WUl+/d\nVGv96VrrHbXWO2644YYrXSNT0O0009exBwAAAAAAAABYcNMO9vx1klsmrm8e39t3TymlleSaJF/O\nqLvP79Rav1RrXU1yb5Kvm3K9zIEjnVZW1oezLgMAAAAAAAAAYKamHez5QJJnl1JuLaV0krw6yT17\n9tyT5LXj9SuTvL/WWpO8N8nzSym9ceDnm5J8ZMr1Mge6nWb6RnEBAAAAAAAAAAuuNc03r7UOSylv\nyCik00zys7XW+0opb0nywVrrPUnekeSdpZT7kzyUUfgntdaHSyn/LKNwUE1yb631XdOsl/nQ6zSz\nahQXAAAAAAAAALDgphrsSZJa670ZjdGavPemifVakldd4LW/mOQXp1ogc6fbbuWhlf6sywAAAAAA\nAAAAmKlpj+KCA+t1mulvDGddBgAAAAAAAADATAn2MHeM4gIAAAAAAAAAEOxhDnU7zfQFewAAAAAA\nAACABSfYw9zpdZpZHWym1jrrUgAAAAAAAAAAZkawh7nT67SyuVWzsbk161IAAAAAAAAAAGZGsIe5\n0203k8Q4LgAAAAAAAABgoQn2MHd6nVGwZ1WwBwAAAAAAAABYYII9zJ2uYA8AAAAAAAAAgGAP86fX\naSUxigsAAAAAAAAAWGyCPcyd3VFcwxlXAgAAAAAAAAAwO4I9zJ2dUVwDHXsAAAAAAAAAgMUl2MPc\nOWIUFwAAAAAAAACAYA/zZ3sU18q6UVwAAAAAAAAAwOIS7GHubI/i6hvFBQAAAAAAAAAsMMEe5s52\nx55Vo7gAAAAAAAAAgAUm2MPcWW4J9gAAAAAAAAAACPYwdxqNkm67mf7GcNalAAAAAAAAAADMjGAP\nc6nXaerYAwAAAAAAAAAsNMEe5lK300xfsAcAAAAAAAAAWGCCPcwlHXsAAAAAAAAAgEUn2MNc6nZa\nWR0I9gAAAAAAAAAAi0uwh7nUazfT3xjOugwAAAAAAAAAgJkR7GEuGcUFAAAAAAAAACw6wR7mUrfT\nTF+wBwAAAAAAAABYYII9zCUdewAAAAAAAACARSfYw1zqdVpZ3RjOugwAAAAAAAAAgJkR7GEu9TrN\n9Ac69gAAAAAAAAAAi0uwh7nU6zQz2KzZGG7NuhQAAAAAAAAAgJkQ7GEudTutJEl/Q9ceAAAAAAAA\nAGAxCfYwl3qdZpJkdTCccSUAAAAAAAAAALMh2MNc2gn26NgDAAAAAAAAACwowR7mUrc9CvYYxQUA\nAAAAAAAALCrBHuZSr9NKomMPAAAAAAAAALC4BHuYS92dUVzDGVcCAAAAAAAAADAbgj3MpV7HKC4A\nAAAAAAAAYLEJ9jCXejsdewR7AAAAAAAAAIDFJNjDXNoZxTUQ7AEAAAAAAAAAFpNgD3Op12klSfob\nwxlXAgAAAAAAAAAwG4I9zKVu2yguAAAAAAAAAGCxCfYwl5qNkqVWI33BHgAAAAAAAABgQQn2MLd6\nnaaOPQAAAAAAAADAwhLsYW71Oi3BHgAAAAAAAABgYQn2MLd6nWb6g+GsywAAAAAAAAAAmAnBHuZW\nr9PMyrqOPQAAAAAAAADAYhLsYW51O830jeICAAAAAAAAABaUYA9zq9dpZdUoLgAAAAAAAABgQQn2\nMLe6nWZWdewBAAAAAAAAABaUYA9zq9c2igsAAAAAAAAAWFyCPcytno49AAAAAAAAAMACE+xhbnU7\nLR17AAAAAAAAAICFJdjD3Op1mtnY3Mpwc2vWpQAAAAAAAAAAXHGCPcytXqeZJFkd6NoDAAAAAAAA\nACwewR7mVncc7DGOCwAAAAAAAABYRII9zK2djj2CPQAAAAAAAADAAhLsYW51260kyerGcMaVAAAA\nAAAAAABceVMP9pRS7iylnCql3F9KeeM+z5dKKb88fv6HpZRn7nn+9FLK2VLKP5p2rcyXnlFcAAAA\nAAAAAMACm2qwp5TSTPL2JHcleW6S7y6lPHfPttclebjWeluSH0vy1j3P/1mSd0+zTubTkSWjuAAA\nAAAAAACAxTXtjj0vSnJ/rfUTtdaNJL+U5BV79rwiyc+P17+S5OWllJIkpZTvSPLJJPdNuU7m0O4o\nLsEeAAAAAAAAAGDxTDvY87Qkn5m4/uz43r57aq3DJI8mub6UcjTJP07ywxf7gFLK60spHyylfPDB\nBx88tMKZvZ1RXIPhjCsBAAAAAAAAALjyph3seTzenOTHaq1nL7ap1vrTtdY7aq133HDDDVemMq6I\n7WDPyrqOPQAAAAAAAADA4mlN+f3/OsktE9c3j+/tt+ezpZRWkmuSfDnJ1yd5ZSnlR5OcSLJVSlmr\ntb5tyjUzJ7rbHXuM4gIAAAAAAAAAFtC0gz0fSPLsUsqtGQV4Xp3ke/bsuSfJa5P8QZJXJnl/rbUm\n+cbtDaWUNyc5K9SzWHqd0Y/nqmAPAAAAAAAAALCAphrsqbUOSylvSPLeJM0kP1trva+U8pYkH6y1\n3pPkHUneWUq5P8lDGYV/IM1GSafVyOpgOOtSAAAAAAAAAACuuGl37Emt9d4k9+6596aJ9VqSV13i\nPd48leKYe71O0yguAAAAAAAAAGAhNWZdAFxMr900igsAAAAAAAAAWEiCPcy1ro49AAAAAAAAAMCC\nEuxhrvU6raxuDGddBgAAAAAAAADAFSfYw1zrdoziAgAAAAAAAAAWk2APc63XaaY/EOwBAAAAAAAA\nABaPYA9zradjDwAAAAAAAACwoAR7mGvddit9wR4AAAAAAAAAYAEJ9jDXjiw1s7oxnHUZAAAAAAAA\nAABXnGAPc61rFBcAAAAAAAAAsKAEe5hrvXYr68OtbG7VWZcCAAAAAAAAAHBFCfYw13qdZpIYxwUA\nAAAAAAAALBzBHuZadxzs6RvHBQAAAAAAAAAsGMEe5tpuxx7BHgAAAAAAAABgsQj2MNcEewAAAAAA\nAACARSXYw1zrdlpJkv5gOONKAAAAAAAAAACuLMEe5pqOPQAAAAAAAADAohLsYa5124I9AAAAAAAA\nAMBiEuxhrm137OkL9gAAAAAAAAAAC0awh7nW67SS6NgDAAAAAAAAACwewR7mWrezPYprOONKAAAA\nAAAAAACuLMEe5ppRXAAAAAAAAADAohLsYa61m420myWrA8EeAAAAAAAAAGCxCPYw93qdlo49AAAA\nAAAAAMDCEexh7vU6zaxuDGddBgAAAAAAAADAFSXYw9zrdppZ1bEHAAAAAAAAAFgwgj3MvV6naRQX\nAAAAAAAAALBwBHuYe712KytGcQEAAAAAAAAAC0awh7nX1bEHAAAAAAAAAFhAgj3MvV6nmVXBHgAA\nAAAAAABgwQj2MPe6gj0AAAAAAAAAwAIS7GHu9TrN9AeCPQAAAAAAAADAYhHsYe71Oq2sbgxnXQYA\nAAAAAAAAwBUl2MPc67abWRtsZWurzroUAAAAAAAAAIArRrCHudfrNJPEOC4AAAAAAAAAYKEI9jD3\ntoM9qxuCPQAAAAAAAADA4hDsYe51O60kSV+wBwAAAAAAAABYIII9zL2djj2D4YwrAQAAAAAAAAC4\ncgR7mHtGcQEAAAAAAAAAi0iwh7nXM4oLAAAAAAAAAFhAgj3MPR17AAAAAAAAAIBFJNjD3OvuBHuG\nM64EAAAAAAAAAODKEexh7unYAwAAAAAAAAAsIsEe5l6v3Uoi2AMAAAAAAAAALBbBHube9iiuvlFc\nAAAAAAAAAMACEexh7nVajbQaRcceAAAAAAAAAGChCPZwVeh2moI9AAAAAAAAAMBCEezhqtDrNNMX\n7AEAAAAAAAAAFohgD1eFXqeV1YFgDwAAAAAAAACwOAR7uCp02830N4azLgMAAAAAAAAA4IoR7OGq\n0Os0s2oUFwAAAAAAAACwQAR7uCp0BXsAAAAAAAAAgAUj2MNVoddppi/YAwAAAAAAAAAsEMEergpH\nOq2sDoazLgMAAAAAAAAA4IoR7GF6huvJb/4vyUfvfdxv1dWxBwAAAAAAAABYMII9TE+zk3z4XyV/\n8ouP+616nWZWBXsAAAAAAAAAgAUi2MP0lJKcvCv5+PuTQf9xvVW300p/sJla6yEVBwAAAAAAAAAw\n36Ye7Cml3FlKOVVKub+U8sZ9ni+VUn55/PwPSynPHN//llLKh0op/2F8ftm0a2UKTt6VDPvJJ377\ncb1Nr9NMrcnaYOuQCgMAAAAAAAAAmG9TDfaUUppJ3p7kriTPTfLdpZTn7tn2uiQP11pvS/JjSd46\nvv+lJN9Wa31+ktcmeec0a2VKnvE3k86x5NS7Htfb9DrNJMnKxvAwqgIAAAAAAAAAmHvT7tjzoiT3\n11o/UWvdSPJLSV6xZ88rkvz8eP0rSV5eSim11j+ptX5ufP++JN1SytKU6+WwtTrJs785OfWeZOux\nd9vptkfBnv7G5mFVBgAAAAAAAAAw16Yd7Hlaks9MXH92fG/fPbXWYZJHk1y/Z893JvnjWuv63g8o\npby+lPLBUsoHH3zwwUMrnEN08luTlS8mn/vjx/wWvU4rSbIq2AMAAAAAAAAALIhpB3set1LK8zIa\nz/Vf7Pe81vrTtdY7aq133HDDDVe2OC7Ps785Kc3k1L2P+S22R3GtGsUFAAAAAAAAACyIaQd7/jrJ\nLRPXN4/v7bunlNJKck2SL4+vb07yb5J8f63141OulWnpXps84yXJqXc/9rfoGMUFAAAAAAAAACyW\naQd7PpDk2aWUW0spnSSvTnLPnj33JHnteP3KJO+vtdZSyokk70ryxlrr7025Tqbt5N3JFz+SPPTJ\nx/Ty3Y49gj0AAAAAAAAAwGKYarCn1jpM8oYk703yF0n+da31vlLKW0op3z7e9o4k15dS7k/y3yR5\n4/j+G5LcluRNpZQPj48bp1kvU3TyztH5L9/zmF6+E+wZCPYAAAAAAAAAAIuhNe0PqLXem+TePffe\nNLFeS/KqfV73I0l+ZCPFEyIAACAASURBVNr1cYVc9xXJDV+ZfPRdyYt/4MAv73ZGP6r9jeFhVwYA\nAAAAAAAAMJemPYoLdp28K/n07yf9hw/80l7bKC4AAAAAAAAAYLEI9nDlPOdbk7qZfOw3DvzSbkew\nBwAAAAAAAABYLII9XDlP/brkyI3JqXsvvXePpVYjjZL0BXsAAAAAAAAAgAUh2MOV02gkJ+9M7v+N\nZLhxoJeWUnKk09KxBwAAAAAAAABYGII9XFkn707WTyef/r0Dv7TbaaY/GE6hKAAAAAAAAACA+SPY\nw5V16zclrW5y6t0Hfmmv09SxBwAAAAAAAABYGII9XFmdXvKsl46CPbUe6KVdo7gAAAAAAAAAgAUi\n2MOVd/Ku5NG/Sh748wO9rNdppi/YAwAAAAAAAAAsCMEerrzb70xSDjyOq9dpZmVjOJ2aAAAAAAAA\nAADmjGAPV97RG5ObX5icuvdAL+u2dewBAAAAAAAAABaHYA+zcfKu5HN/kpz+3GW/pNdpZlWwBwAA\nAAAAAABYEII9zMbJu0fnv3zPZb+k22kJ9gAAAAAAAAAAC0Owh9m44WRy7a3JqXdf9kt6nWb6G8Mp\nFgUAAAAAAAAAMD8Ee5iNUkZdez7x28n62ct6Sa/TzOpgM7XWKRcHAAAAAAAAADB7gj3Mzsm7ks31\n5OPvv6zt3U4ztSbrw60pFwYAAAAAAAAAMHuCPczO078hWT5x2eO4eu1mkmR1Y3OaVQEAAAAAAAAA\nzAXBHman2Upu/7vJX74n2bp0WKfXaSVJVjeG064MAAAAAAAAAGDmBHuYrZN3Jf2Hks/80SW3djuj\njj19HXsAAAAAAAAAgAUg2MNsPevlSaOdnLr3kluPLBnFBQAAAAAAAAAsDsEeZmv5eHLrNyan3n3J\nrd329iguwR4AAAAAAAAA4IlPsIfZO3l38uWPJV/62EW39bZHcQ2GV6IqAAAAAAAAAICZEuxh9m6/\nc3S+RNee7WCPjj0AAAAAAAAAwCIQ7GH2TtySPOX5yal7L7qtK9gDAAAAAAAAACwQwR7mw8m7k8/8\nYbLypQtu6XVaSZLVdaO4AAAAAAAAAIAnPsEe5sPJu5O6lXzs315wy84oroGOPQAAAAAAAADAE59g\nD/Phpq9Ojj31ouO4llqNlJL0jeICAAAAAAAAABaAYA/zoZTk5F3J/e9PBmsX2FLSazezKtgDAAAA\nAAAAACwAwR7mx8m7k8FK8ql/d8Et3U5LsAcAAAAAAAAAWAiCPcyPW78x6Ry96DiuXqeZ/sbwChYF\nAAAAAAAAADAbgj3Mj9ZS8qyXJafenWxt7bul1zGKCwAAAAAAAABYDK1ZFwDnOHl38hf3JJ//cPK0\nrzvvcbfTTH8g2AMAAAAAAADAE8zmIFl9KNlcH603N8bHnvVwff/7F1rf9FXJ137vrL86HiPBHubL\n7X83KY1R1559gj069gAAAAAAAABwVdkcJGcfSM48kJz5fHL2C8mZPcfZLyQrX0pSD+czG+2k2Uma\n7WS4JthzFRPsYb70rkue/g2jYM/L/ofzHnfbrTy00p9BYQAAAAAAAAAsjFqTujU6p+5eb6+3z2uP\n7AZ2znx+HOD5/PjeRQI7pZEcuTE59pTkmpuTm1+QHLspOfKkpNXdDeU0OxdZX+R5KVf+z4ypEOxh\n/py8K/m3/2PyyF8lJ55+zqMjS830N4YzKgwAAAAAAADgCa7WZNBP1k8na6fH50f3XO89Pzp6TbOT\ntJaSdnd0bi2Pz3uuL/p8OWmPz1ubyWB19N6D1T3rfrKxMr6efL66e2/v8+HabljnvJDORIjn8bhQ\nYOfok0fnY08ZHUduSBrNQ/iG8UQn2MP8OXn3KNhz6j3J17/+nEdGcQEAAAAAAABXtVqT4XqyuT46\nbx+b66PgyXBjdN7cmHi2kWwNx+GTzWRra2K9OTrXrfH97fXmnvXWufcH/QsHd7Yu1WyhJEvHkqXj\nyfLx3fPmINk4m6x+aVT3YG38Na0nw/7o6zhspZG0j4zCQu1u0tle90Zhmu11pzcKC5Uyek3KuKvN\n5Lmxz7399k2cl44L7DBVgj3Mn+uflTzp9uTUvecFe7rtVvqCPQAAAAAAADB7w41RIGTt0dE4orVH\nJq4fTfqPJOtndgMlO11Rsue67rmevJcLdFhJzumscij3LrDnsVxvDSfCOpNBnbXphFv2UxpJaY5C\nJjvrxu663d0N5By7Kbnh5PlBnaVr9lyPz51jo/c6qK2t3QDT3tDPcO/9tVGdnd5uOGfn6I7v90Zd\ngoyd4glMsIf5dPKu5A9+YvR/8Jev2bnd6zSzOthMrTXF/zgDAAAAAADwWG1tJYOVZP3sqMPI+pnx\neXy9sTIKQDSa40BEaxyK2F43d4MSjdZugGJnvc/9reFoHNDGnnFC+40Q2tm3597k/uFG0myfO7ro\nkmOPJvft87rNjXPDOXvDOtuBnbVHR2GMi2m0R11dGq09XVIae7qgNC7wvHFuZ5XJ/dvO+W+G5RDv\nTXZrmdxWLrJ/4rrRGv2ZNrf/3Dujc7Ozz/XSBZ4tjZ8tjb7P2z9POz+XjXN/Rs9Zl8xl2KXRSBrj\nzjrdWRcDVwfBHubTybuT3/vx5P7fSP6j79y53e00s7lV8/EHz+a2G4/NsEAAAAAAAOBQbG0m/YeT\n1YdGQYHW0miMSufoeJxK77F1hThste52kEiZCHVMng/5P6LXOvrz2dwYH4MLrDfOv39e54v13fqH\nE/cGE10y9nbNmHyP1FFIo9kan9u7183OPs9aE3v27N++N/nnNvlnORlaOKfTyCWCDJsbE8GcM6Og\nzoVCO+tnRsGd1Et9F6680pwYJdQ9t0PJ3rFCzaXx93ufbicbK8nql/d8v8frzfXLrKUx+kf4yyfG\n52uSJz15dO6e2PNsYs/20e7OZ7gE4Coi2MN8uvmFSe9Jyal3nxPs+YZnXZ/ldiPf8mO/k7uff1N+\n8G/fluc+9fgMCwUAAAAAAHZMhnRWvzw6+hPr1Ycn1uNn/Udy8XBFGQd9Jo+jF1jv8yxlT5eT/Tqf\nXOzZxP1LhkDKPkGU7dE3e0NAE4GUunXh0M5hBk9K4+KdXDq9pHfd+R1dWkujcMbmMNkajOrbGuy5\nHp57f7g2Cs9cbN/WVlI3R1//1uZovbV5OF9zcylZOjr6GVg6Plr3npRc+8zxvWPj8/b62MT+o6Pr\nTm93pFLdHNW7s56od2c9vPj9rc1RsKm9d6xQ99xzq/P4v/5LmRyHdE7Aqz8KXm2HdjpHBXMAZkyw\nh/nUaCa335l89NdG/89ds50k+bqnX5vf/ccvyzt+95N55x98Ou/6s8/n5c+5MT/4stvydU+/dsZF\nAwAAAADAAdU6OjI+161z1zsBgq3d895QQd06PxixHULYu/9SwYy94Yx9QxsT19sdQS4npNNaHgUr\netcmveuTE7ck3etG6971o0DJ8jW7nUa2RyHtHBPX62dG4aFHPjPx7Oyorst1XleUifVkV5RzuqZ0\nR19H6vnfg32/P/t9v/a5X5qjrjfN9vh8ofWlnk+s23sCPK3lnf/eMve2f/7P+zmf+LPb73mzvRva\nuVq+1lmZHIcEwFwrtc5he7nH6I477qgf/OAHZ10Gh+Uvfj355dckr/215Na/dd7jR1cH+fk/+FR+\n9vc+mUdWB3nJs67PD770trzkWdenSA4DAAAAAHAxtY7H9qxMjOfZGyY5c36wZN99K8lgZRQ4yHYg\n5yJhnUyEeeZdaYy6dzRa+49g6hyZCOZcPxHUuW58TNzv9KZf73Bj4nsz/n6Vcn44p90T/AAAZqaU\n8qFa6x2XtVewh7m1sZK89dbkha9L7vxfL7htZX2Y/+uP/io//TufyBfPrOdrbjmRN7z0trz8K28U\n8AEAAAAAuNpsbSZrj47GOfUfGZ3XHhmPixmPjNk+Ntf3ub6cPeuj8UoH6e7SPjIez7N33NN4dE+7\nuzteKWV3dE1pjNdlz7rs2bv9POc+32980+QIp3NGPV3G/uZ2SKc9EdJpnRvWmQzvNBqH/A0GAECw\nhyeOf/n3kgc/mvzDP73k/M61wWZ+5UOfzU/99sfz2Yf7ec5TjuUHX3pb7n7+TWk2BHwAAAAAAK6o\nzcFuMOcgx9qjuexONo32eMxQZ3fcUHNpPHZoaZ/riT3t5d1QztLRPWGdicBO58iou4uACwAAh0Sw\nhyeOD/5c8uv/dfJf/vvkxq+8rJcMNrdyz4c/l5/4rfvz8QdXcuuTjuQHvulZ+Y6vfVo6LX/xAgAA\nAACegLY2k/Uz4+P06Lx2erw+PV5f4Nn62aRujt5ncjxUzcS6Hmw96I/GIF1QSbonku61lz6WT4z2\ntpZ3gznb4RxhGwAArkIHCfa0pl0MPC633zk6f/Rdlx3saTcb+c4X3Jzv+Nqn5b33fSFve//9+e9+\n9c/y4+/7WF7/t74i3/XCW7Lcbk6xaAAAAACAx2n9THLmgeTM55OzDyRnvrC7Xn3o/LDORUM0Y6WR\nLB0fHcvHk6VjydGnJNcfHY1oSs4dEzW6sWedC9zfs24t7wno7AnxLF0jlAMAAJdBxx7m30+/dPQX\nzv/8fY/p5bXW/NapB/O237w/H/r0w3nS0aX8g2+8Nd/74mfk6JJsGwAAAABwhdQ6GjN15gvJ2S+c\nH9w5O74+80AyWDn/9a3l5OiTkyNPGgd0jo0DOnvCOjvPrtm9Xj4+Gie1E8ABAABmRccenliec3fy\n/h8Z/WX22JMP/PJSSl76nBvzt0/ekH//iYfyE791f/7Juz+an/ytj+fvv+SZ+fsveWauPdKZQuEA\nAAAAwBPG1tYobLN+NtlYGXXI2Vi5yHp8Xj+dnP3ibnBnuHb+e7ePJMeeMjpu+prk9vH66FNGvxM9\nOr5evkYwBwAAFoyOPcy/B+5LfvIlybf9H8kLXnsob/nhzzySt//m/fn/PvJAep1mXnTrdbn52m5u\nubaXW67r7axP9Nop/qIMAAAAAE8sg7VxZ5zxeKvt4/Tnk/5D+wd2BquX//6NVtI5OjqWjiZHbtgN\n7myHdI4+OTl20yi4s3Rsel8rAAAwd3Ts4YnlxucmJ56enHr3oQV7vuaWE/nn339HPvqF03nHv/tk\nPvL50/mTv3okj/YH5+w7utTKzdd2c/O147DPdb3cMr6+5bpuji23D6UeAAAAAOAQbG0mKw/uhnT2\nhnbOfCE587mk//D5r20tjwI3vetHgZwjNySdIxPH0Qusj52/r6VDOAAAcDgEe5h/pSQn704+9C+S\njdWk0zu0t37OU47nn77qq3euT68N8pmHVvPZh/s7588+vJrPPLSa3//4l7K6sXnO60/02jvdfXaD\nP7089UQ31x/t5NpeJ82Gjj8AAAAAcCDD9WT9zGiM1fqZPcfpZG18f+3R0Xir7eDO2QeSeu7v8FIa\n4+44T0mufWby9Bcnx28ad8sZH8dvSpZPGHMFAADMHcEerg4n70r+8KeST/xW8py7p/Yxx5fbed5T\nr8nznnrNec9qrXl4dSL48/DqOPTTz6kHzuR9H/1iNoZb57ymlOTaXifXHenk+iOdXH90e72071oQ\nCAAAAICr3tbWKHzTf/jcY+2RpP/IPkGdvQGe08nmxqU/p9FKlo7vjri64StH572hnaM3Jo3m9L9u\nAACAKRDs4erwjL+RLF2TnLp3qsGeiyml5LojowDOV99y4rznW1s1Xzq7ns883M/nHunnoZWNfPns\ner68sjFeb+TUF87koZWNPLw62OcTLh4EuqbbzvFuO8eWWzm+3M7x7vi83M7R5ZZAEAAAAACHa3M4\n6oizN6BzqWPtkaRuXfh9G+1k+fgolLN0bHQ+/rTxenyc83zymLjfWtJhBwAAeMIT7OHq0Gwnz/7m\n5C/fM5qTPYf/wqbRKLnx+HJuPL6cFzzj2ovuHW5u5eHVwT7hn4MFgSYdXWrthH6OLbfOCQHtd31s\nuZ2jS60cWWrmSKeVI0utdFqNw/rjAAAAAGDWhhvjsVWPjsI2a4+Oj9MT6/Gxvs+9jbMXf//la5Lu\ntbvHtc8493q/Y+l40l6+Ml8/AADAE4BgD1ePk3cnf/6ryV9/KLnlRbOu5nFpNRu54dhSbji2lOTY\nJfcPN7dydn2Y0/1hTq8NRkd/mDNrg5xeG593rgc5szbMF8+s5eMPDnO6P7oebtVLfk6n2UhvHPQ5\nutRKb6k5Cv+Mgz9Hlpo5sjR+1jl3fXSplW6nmW67ec6502yk+JdTAAAAwKKpdTROamMlGfSTwep4\nvZpsrI7OmxvJ1jDZHFx4vTUY37uM9aB/bjBn2L94jaUxCudMHtd9RbJ8Ynx9POleNw7lnDg3oLN8\nzVz+4zsAAIAnGsEerh63ffNobvape6/6YM9BtZqNnOh1cqLXeUyvr7WmP9jMmbVR0Gc7DLSyvpmV\n9WFWNoZZWR/m7PpmVjeGObs+ul5Z38zZ9WEeOL22s15Zv7yQ0LZGyU7IZ7ndPH993rNGuu3R9XK7\nmU6rkaVWI+1mI51mI+3W6NxplXSazbRbZXS/OdrX2d7baqTVKEJFAAAAwLlqHYVghv1ksDY6D9dH\noZjh2p7z+u6+weq5oZyd9co+98Yhnrr5+Ottdkajq5qtS687veT4U0eBnJ2wzjiks3T8/BBP54hR\nVgAAAHNu6sGeUsqdSX48STPJz9Ra/8me50tJfiHJC5J8Ocl31Vo/NX723yd5XZLNJP9VrfW9066X\nOdY9kTzjbyT3/ZvkSbePZmi3uqNze3xuLe8ek/cW/F8PlVLS67TS67Ty5OOPv9Xx+nBz31BQf2Mz\na4PN9AejdX8wvh6vJ69XNzbzyOpGPr+zfytrg1Gw6AC5oUvq7ASBGmk3S1qNRlrNkmajpNUoaTYa\n43PZPTcvcH+8v9nIOc+bjZJGGY1ja5bt6wvfb5SM1uP7u+fsvK5ktK+Uc8+NUlL2u87uZ23vL8n4\n88rO7+i217vnJHs/K9ufcf77Z/tedj9j+3nG77f3/vZnlwu91i8QAQAAnji2tsbdYzZGY6A2t49B\nsrk+sd4YhWa21zsdasbPz+lWM76/3ZXmgp1shufeG65dOKhTtx7b11caSfvIKEDT7o2CMe3uaH3k\nSeN7vdGednd3fc65u/u8tTT6h2zNzmgUfaM9Om+vG03BGwAAgAU31WBPKaWZ5O1JviXJZ5N8oJRy\nT631IxPbXpfk4VrrbaWUVyd5a5LvKqU8N8mrkzwvyVOT/EYp5fZaD+OfuXDVev4rk3t+KPl/f+Bg\nr2u0J4I+22GgiRDQzi9LWqNfmDS31+NfoDRaE/cmjmZrYt8+r937r6ca7f1/STP5rNmZ+Lz5/AXO\nUquZpVYz1x15bB2ELqbWmsFm3QkBbQy3MtjcysbmVgbDmo3NzawPtzLYrLvPhqPnk9e79+v4PHqv\nza1kc2srw62aza2657yV4WbN+v/f3t3G2pbfdQH//u49M51pR/tAC9FpSwcYxWqkrTe1WjENmEiF\nMLyotspD02j6pkYwPoHRoCS+MDECBoI0bbVoQ4GxyIQX+FBIlcQ+TAGBthgnReg0hakWKmDaueec\nny/2Oueu/Xj2PWfvu/c59/PJ3Tlr/Z/Wbz3svfba97fXvnmcw+Oj6fKTdkc9V96dHB13jrpzPPzt\nDSYn3S0miUC3En1OEn8m05PKmmo7Shqa6Tfddnm7W0+tOl3+ePxxXMl0EtI4Yek0xqn56T6jRS2t\nWzbWyrZnLH88yPxyFqzXklgy12dVrMvrVq3LopgWtcmydV043vw+O6vdeNBx6dy+PCP2qbZrxLR8\n3CXt504N0wVz6zvbeq5+ef9F22GRVWOuimfRsb6o3fxuWr3OC7qcO8ZFz6VF/eaOpTXjWtn2jPcB\nt7Mvly17cYyLl7vu25JFca+/7NVjrbNOs41Whb1snZZtg3ViOGu/LOq0/LhYEcfSmtWve4tiWmff\nLovlPNt3UQzr97vd5Z3/uXmRY3n5cpYedEutXucLxniR16411+/8+3Nzz8PbPVeeJ6bVS1y+7Ok+\n53teLKpfZ1+s/bq+5hZa95y/an+cdR5Y1m5VHNP9bu/1b9n72WWxzL036J7cteX4KJXD1PFx0kep\nk7KezE/Kjm+VHR+mjo+SPkz1YXI0/D0pPz5MHR8O7Sfz6UndpHxSN2l3czL+8SQppo4OJ8s8unk6\ndk7qTvueTN+cLGOon/Q/Sa6ZJObUKHGnjg9Xb9AL6NPPVQ6WJMEcTH/W8ozfnzzwhemD+5N77kud\nfiHs/vQ996XuuW/qS2N1z/2jL4udfHFsaDNuu2ef0wAAAHC1bfuOPa9M8kR3fzxJqurdSR5JMk7s\neSTJPxqmH03yfTX5hOSRJO/u7s8n+dWqemIY779tOWb22Su+JflDr53c4vj0Fsmfn7ll8mj+8HPD\nLZVHj9P50a2UDz83fCB168Orkw+uTr8JNn4c3dzMrZTXdfLhVFVS14bHMJ1x2bWZ+pm6zPQ//Z/r\n8fTJQmv0QdWidkvqxuVLyxaNNamrVO6tyr1Jnr3wY9oFGTMLs2jWbZfk2vDYoJMldSedzvBvUj6U\n9UlI3aP2PRXqMDfMT9edlvTJaDldzq3pnt4So/rZrTGJtU5rb7WrZDae0b6Z3aw9WsjCPTMb/3jk\nPjkqJsuvqT6Tb1PeKhtHm9RoO0/Hc6tXn/4dT4/WpSrdNep3Uj9qs3TNTuKfWavZ7bNsB8wVj6dq\nYZ91jvyeeR7N7/fZdaupNitz1Fbs51tNFgd9UlqLevfcxPKIzkiiW1Y9PgYW1c7VTcU9PkrHTRaP\nt/iYX8+6SYKr98G6/cfP6/UWvKpV9fzRPHu0Le27oH5ZSIuPkrP3xVRcdatyUYxT/1G34Jmy/Eia\nj2f8OrQo3kV91v+v5nUs3/YLn48bjmDd58Dy5+d+WLWtptvtbsx1x7uoM88zt1m/qu0+mN2uc8kH\nC6Jed5+t+3q2j9vlIlYmZuzh2m7jeX3e8c46OtY5Hhe3We84XrfvbPmyc+jS8uqp8++t6VvzNdW/\n5+pu9T1pN9/m2un1xvSYp8urXlg3mT7O9eFxLT2aHv7W/hzLR105zEEOcy2HuT796OvzZaO6o1zL\nzRzkKPflZp6VmznIzT7I07knT+dgMp/ruZmDPN3jsoM8nYM83dPzN0dlT+ee3ByWdbMPTqcPM56+\nns2+L1rmc8NjsTuVGDppv7LytqrWTTS9naT0SfvltSv31kW24x2KcXm3FeOdb5dtLeFznWVPj7f5\n59j6XwxYs90WXgcuw3Zc19pL3nCI21jjy7AdL0Oe5zaeM2sv+xJsn125DHex387zeguD7rm7cZ2T\n3b727Mpl2Ndf+fDz83f+/JfvOgzOaduJPQ8m+cRo/skkf3JZm+4+rKrPJvmCofz9M30fnF1AVb05\nyZuT5MUvfvHGAmePPfCCJC/YdRST/wA8Pjr9Rtt0YtD41tAzt5A+vbX0oltGr+jTxzm9TfTJ9NSj\n56fTq9uN12UyMZrv+bqF7cZ1M/2n/jd7KDs+nh9rqv1sDIs+rVn8sfK5221Bzfy9vc61ouOqT3pu\nY32XJkMty0KZbbdh3TPxj6ZPy0cf4p7ZdjTuWcfy6XNh2TE+ml77ndmd+U/4+abz/126eqiz9ved\n2NfJ3PY6s37dZZ2zcmVSy7Lskoum1mzJ2rcP21aMm34Nn3E7r1FL2654XTnztaZuJXgtfP2Ziad7\npm62flHZdNxzyXLncva5ZNl/y17Iho7Hfbkr3nTCxYqg1j13dNIbP8/cTtLMOTbs3DG7YIxeOnO+\nZZ5lzSEv9lxafd5anKx01j5btO3WfI27rfco69n882zJ+/o1ei1dt9uM8ezmtxPj+uvSi5pe6PC7\nNWB3Vr5v6pn509Jxn6WvPeuVzfXt6WuZZYmqPXde7ZXtkxqWVdPtqhZPn6TezHwhpauSnhmrKp1b\nX34ZpxClkuNUUtdOU3hOl3/afjJe17V0XU9n+FvXcjz87Yzmcy197SDHqdN2J/2OR/OT6es5roPR\nWAc5HuqO62AyTk3SiG61nSTgnNT1qP1xXZ+sy6K3HyfzK14Apvv1wrqD4TH7I+ALvxByRpvlcazX\nd37dVsewLAn8rAUtfLVeGM/trfPKK4yV/dbYGEvGX3fbrhpjvX4b3v8bjOOsfudd1qqeK2M8Z/zr\njjE93prtbudjivXfnG2y2W3ZxBdbpsc7fywXtX6Mmw1yK6u80+242efWLu32eLw623HTLsMqb2e/\nXIY136y78fhO7sY9vflz67Y88Ix7dh0CF7DtxJ6t6+63Jnlrkty4ceNyPGu4GqqGn9q69E8jAOCc\n7vQXMS7BFz8AAAAAAIAN2vCPz8z5ZJIXjeZfOJQtbFNVB0meneT/rNkXAAAAAAAAAACupG0n9nwo\nycNV9VBV3ZvkDUkem2nzWJI3DtOvS/LTPblf1WNJ3lBVz6iqh5I8nOSDW44XAAAAAAAAAAD2wlZ/\nQ6i7D6vqryf5D0muJ3lHd3+kqr4ryePd/ViStyf5N1X1RJLPZJL8k6Hdjyb5aJLDJG/p7qNtxgsA\nAAAAAAAAAPuiJjfHuRpu3LjRjz/++K7DAAAAAAAAAACAharqw919Y5222/4pLgAAAAAAAAAA4Bwk\n9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtIYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAA\nAMAektgDAAAAAAAAAAB7SGIPAAAAAAAAAADsIYk9AAAAAAAAAACwhyT2AAAAAAAAAADAHpLYAwAA\nAAAAAAAAe0hiDwAAAAAAAAAA7CGJPQAAAAAAAAAAsIck9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtI\nYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAAAMAektgDAAAAAAAAAAB7qLp71zFsTFV9\nOsmv7ToO5jw/yf/edRAAXFnOMwBsk/MMANvkPAPAtjjHALBNzjMX98Xd/YJ1Gl6pxB72U1U93t03\ndh0HAFeT8wwAH4KPMQAABx1JREFU2+Q8A8A2Oc8AsC3OMQBsk/PMneWnuAAAAAAAAAAAYA9J7AEA\nAAAAAAAAgD0ksYc74a27DgCAK815BoBtcp4BYJucZwDYFucYALbJeeYOqu7edQwAAAAAAAAAAMAM\nd+wBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQetqaqvqaq/kdVPVFV377reAC43KrqRVX1M1X10ar6\nSFV961D+vKr6T1X1P4e/z911rABcXlV1vap+vqp+cph/qKo+MFzX/EhV3bvrGAG4nKrqOVX1aFX9\nSlV9rKr+lOsZADalqv7m8JnZL1fVD1fVfa5nADivqnpHVT1VVb88Klt4/VIT/2I43/xiVb1id5Ff\nTRJ72Iqqup7k+5O8NslLk/zlqnrpbqMC4JI7TPK3uvulSV6V5C3DueXbk7y3ux9O8t5hHgDO61uT\nfGw0/0+TfHd3f1mS30ryV3cSFQBXwfcm+anu/vIkX5HJ+cb1DAAXVlUPJvkbSW509x9Lcj3JG+J6\nBoDz+9dJvmambNn1y2uTPDw83pzkB+5QjHcNiT1syyuTPNHdH+/up5O8O8kjO44JgEusuz/V3T83\nTP9OJh+CP5jJ+eWdQ7N3JvmG3UQIwGVXVS9M8rVJ3jbMV5KvSvLo0MR5BoBzqapnJ/mzSd6eJN39\ndHf/dlzPALA5B0nur6qDJM9M8qm4ngHgnLr7vyT5zEzxsuuXR5L8UE+8P8lzquoP3JlI7w4Se9iW\nB5N8YjT/5FAGABdWVS9J8vIkH0jyRd39qaHqN5J80Y7CAuDy+54kfzfJ8TD/BUl+u7sPh3nXNQCc\n10NJPp3kXw0/+fi2qnpWXM8AsAHd/ckk/yzJr2eS0PPZJB+O6xkANmvZ9YvcgC2T2AMAXCpV9UCS\nf5fk27r7/47ruruT9E4CA+BSq6qvS/JUd39417EAcCUdJHlFkh/o7pcn+b3M/OyW6xkAzquqnpvJ\n3RIeSvIHkzwr8z+fAgAb4/rlzpLYw7Z8MsmLRvMvHMoA4Nyq6p5Mknre1d3vGYp/8+SWjsPfp3YV\nHwCX2quTfH1V/a9Mfkr4q5J8bya3Dj4Y2riuAeC8nkzyZHd/YJh/NJNEH9czAGzCn0vyq9396e6+\nmeQ9mVzjuJ4BYJOWXb/IDdgyiT1sy4eSPFxVD1XVvUnekOSxHccEwCVWVZXk7Uk+1t3/fFT1WJI3\nDtNvTPITdzo2AC6/7v6O7n5hd78kk+uXn+7ub0zyM0leNzRzngHgXLr7N5J8oqr+8FD01Uk+Gtcz\nAGzGryd5VVU9c/gM7eQ843oGgE1adv3yWJJvqYlXJfns6Ce72ICa3CEJNq+q/kKS70lyPck7uvuf\n7DgkAC6xqvozSf5rkl9KcjwU//0kH0jyo0lenOTXkvyl7v7MToIE4Eqoqtck+dvd/XVV9SWZ3MHn\neUl+Psk3dffndxkfAJdTVb0syduS3Jvk40nelMkXL13PAHBhVfWPk7w+yWEm1y5/LcmDcT0DwDlU\n1Q8neU2S5yf5zSTfmeTfZ8H1y5BU+n2Z/Azk/0vypu5+fBdxX1USewAAAAAAAAAAYA/5KS4AAAAA\nAAAAANhDEnsAAAAAAAAAAGAPSewBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQeAAAAAAAAAADYQxJ7\nAAAAALiQqnpNVf3kruMAAAAAuGok9gAAAAAAAAAAwB6S2AMAAABwl6iqb6qqD1bVL1TVD1bV9ar6\n3ar67qr6SFW9t6peMLR9WVW9v6p+sap+vKqeO5R/WVX956r671X1c1X1pcPwD1TVo1X1K1X1rqqq\nna0oAAAAwBUhsQcAAADgLlBVfyTJ65O8urtfluQoyTcmeVaSx7v7jyZ5X5LvHLr8UJK/191/PMkv\njcrfleT7u/srkvzpJJ8ayl+e5NuSvDTJlyR59dZXCgAAAOCKO9h1AAAAAADcEV+d5E8k+dBwM537\nkzyV5DjJjwxt/m2S91TVs5M8p7vfN5S/M8mPVdXvS/Jgd/94knT355JkGO+D3f3kMP8LSV6S5Ge3\nv1oAAAAAV5fEHgAAAIC7QyV5Z3d/x1Rh1T+cadfnHP/zo+mj+NwJAAAA4ML8FBcAAADA3eG9SV5X\nVV+YJFX1vKr64kw+H3rd0OavJPnZ7v5skt+qqq8cyr85yfu6+3eSPFlV3zCM8YyqeuYdXQsAAACA\nu4hvTgEAAADcBbr7o1X1D5L8x6q6luRmkrck+b0krxzqnkry+qHLG5P8yyFx5+NJ3jSUf3OSH6yq\n7xrG+It3cDUAAAAA7irVfd67KwMAAABw2VXV73b3A7uOAwAAAIB5fooLAAAAAAAAAAD2kDv2AAAA\nAAAAAADAHnLHHgAAAAAAAAAA2EMSewAAAAAAAAAAYA9J7AEAAAAAAAAAgD0ksQcAAAAAAAAAAPaQ\nxB4AAAAAAAAAANhD/x8Q5j5wGrfO2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+U7XdZH/r3c/Y+s09mT4ghCXiT\ngImUusKProDHgIVeQUASkID1XgSbVin3xvbqLV5rSmgRhWploUWUEhVXo/diCyJcLnERasAmRcVU\nDiGVX8EkFM1JKImBYGZPMpMz53P/mD1xzsmcOTNk9v7Oybxea83K/v6c9x7OX6z3ep5qrQUAAAAA\nAAAAANhZ9nQdAAAAAAAAAAAAeCjFHgAAAAAAAAAA2IEUewAAAAAAAAAAYAdS7AEAAAAAAAAAgB1I\nsQcAAAAAAAAAAHYgxR4AAAAAAAAAANiBFHsAAAAAAAAAAGAHUuwBAAAAeASrqnOqqlVVf5vf+6Wq\nev52vhMAAACAIyn2AAAAADBRSkAAAAAA3xjFHgAAAAAecdabULTVqUXbPeUIAAAAYKsUewAAAAA2\nYTx15rKq+rOqGlXVv6+qx1bVh6vq3qr6aFWdOr73mVX18aq6p6r+W1U9Z817XlVVnx8/88Wq+pE1\n155TVQer6p9X1Z1V9eWqetUmsr24qj5VVX9dVbdV1c+sc9s/rqo7xu/8yTXPXlBVB8bPfqWq3rrm\n2sVV9dnx97iuqs47xu//rar62aO/x/jzu5I8PsnvVdV8Vf2L4/2NNviep4z/7l+uqtur6merqje+\n9sNV9cdV9UtVdXeSnznGuT1V9fqq+ovx3/j/qapTxu9YXVv26qr6yyT/+XiZAAAAACZJsQcAAABg\n874/yQuS/O0kL0ny4ST/MskZWfn/Wf5ZVZ2V5ENJfjbJo5P8ZJL3V9UZ43fcmeR7kzwqyauS/FJV\nPX3N7/jmJKckOSvJq5O8Y7UwtIFRkn+U5JuSvDjJP62qlx11z3OTPDHJ9yR57ZrVWL+c5Jdba49K\n8oQk702SqvrbSd6d5MfH3+/qrJRzZo6T5QittX+Y5C+TvKS1Ntdae8sm/kbH8ltJDiX5W0meNv4u\n/9ua689I8sUkj03yc8c498Pjn+cm+dYkc0n+3VG/57uSnJfkhVv5rgAAAADbTbEHAAAAYPPe3lr7\nSmvt9iR/mOS/ttY+1Vq7P8kHslI2uSTJ1a21q1trh1trH0lyIMmLkqS19qHW2q1txX9Jck2Sv7fm\ndzyQ5E2ttQdaa1cnmU/ybRuFaq1d11r79Pj3/VlWCjnfddRtb2ytjVprn07ym0leueb3/a2qOr21\nNt9au358/geSfKi19pHW2gNJfjHJSUn+7lb/aOvY8G+0nqp67Pj6j4+/x51JfinJK9bcdkdr7e2t\ntUOttfuOce4fJHlra+2LrbX5JK9L8oqj1m79zPh33BcAAACADin2AAAAAGzeV9Z8vm+d47kk35Lk\nfx2vmLqnqu5J8uwk/1OSVNVFVXV9VX11fO1FSU5f8567W2uH1hwvjN97TFX1jKq6tqruqqqvJ/kn\nR70zSW5b8/kvkpw5/vzqrEwguqmqPlFV3zs+f+b4viRJa+3w+B1nbZRlkzb8G23wzN4kX17zzK8n\necyae25b57mjzx3xvcaf+1mZ6LPRewAAAACmrn/8WwAAAADYgtuSvKu19r8ffaGqBknen5W1WR9s\nrT1QVf9fknqYv/M/ZmWd1EWttfur6m15aLHncUluGn9+fJI7kqS1dnOSV1bVniR/P8n7quq08fWn\nrsle43fcvs7vHyWZXXP8zUddb0cdH/NvtIHbkiwmOf2o4tNGv2e9c3dkpSS06vFZWe/1lSRnb/Ae\nAAAAgKkzsQcAAABge/12kpdU1QurqldV+6rqOVV1dpKZJIMkdyU5VFUXJfmebfidJyf56rjUc0GS\nH1znnp+qqtmqenKSVyX5nSSpqkuq6ozxRJ57xvceTvLeJC+uqudV1d4k/zwrxZqPr/PuG5O8qKoe\nXVXfnOTHj7r+lSTfuuZ4o7/RulprX87K2rJ/W1WPqqo9VfWEqjp65djxvDvJ/1VV51bVXJJ/k+R3\nNigLAQAAAHRGsQcAAABgG7XWbkvy0iT/MisFntuSXJZkT2vt3iT/LCulma9lpYBz1Tb82v8jyZuq\n6t4kbxi//2j/JcktSf4gyS+21q4Zn78wyWeraj7JLyd5RWvtvtbaF5JckuTtSf4qyUuSvKS1trTO\nu9+V5L8l+VJWyje/c9T1n0/y+vEKrZ/c6G90nO/5j7JSjvpcVv5+78vG67vWc+U478eS/Pck9yf5\nP7f4DgAAAICpqNZMFgYAAAAAAAAAgJ3GxB4AAAAAAAAAANiBFHsAAAAATgBV9dmqml/n5x90nW07\nHeM7zlfV3+s6GwAAAMC0WcUFAAAAAAAAAAA7UL/rANvp9NNPb+ecc07XMQAAAAAAAAAAYF2f/OQn\n/6q1dsZm7n1EFXvOOeecHDhwoOsYAAAAAAAAAACwrqr6i83eu2eSQQAAAAAAAAAAgG+MYg8AAAAA\nAAAAAOxAij0AAAAAAAAAALAD9bsOMGkPPPBADh48mPvvv7/rKBO3b9++nH322dm7d2/XUQAAAAAA\nAAAAeJge8cWegwcP5uSTT84555yTquo6zsS01nL33Xfn4MGDOffcc7uOAwAAAAAAAADAw/SIX8V1\n//3357TTTntEl3qSpKpy2mmn7YrJRAAAAAAAAAAAu8EjvtiT5BFf6lm1W74nAAAAAAAAAMBusCuK\nPQAAAAAAAAAAcKJR7JmCe+65J1dcccWWn3vRi16Ue+65ZwKJAAAAAAAAAADY6RR7puBYxZ5Dhw5t\n+NzVV1+db/qmb5pULAAAAAAAAAAAdrB+1wF2g8svvzy33nprzj///Ozduzf79u3Lqaeemptuuil/\n/ud/npe97GW57bbbcv/99+c1r3lNLr300iTJOeeckwMHDmR+fj4XXXRRnv3sZ+fjH/94zjrrrHzw\ngx/MSSed1PE3AwAAAAAAAABgUnZVseeNv/fZfO6Ov97Wdz7pzEflp1/y5A3vefOb35zPfOYzufHG\nG3PdddflxS9+cT7zmc/k3HPPTZJceeWVefSjH5377rsv3/Ed35Hv//7vz2mnnXbEO26++ea8+93v\nzm/8xm/k5S9/ed7//vfnkksu2dbvAgAAAAAAAADAzrGrij07xQUXXPBgqSdJfuVXfiUf+MAHkiS3\n3XZbbr755ocUe84999ycf/75SZJv//Zvz5e+9KWp5QUAAAAAAAAAYPp2VbHneJN1pmU4HD74+brr\nrstHP/rR/Mmf/ElmZ2fznOc8J/fff/9DnhkMBg9+7vV6ue+++6aSFQAAAAAAAACAbuzpOsBucPLJ\nJ+fee+9d99rXv/71nHrqqZmdnc1NN92U66+/fsrpAAAAAAAAAADYiXbVxJ6unHbaaXnWs56Vpzzl\nKTnppJPy2Mc+9sFrF154YX7t134t5513Xr7t274tz3zmMztMCgAAAAAAAADATlGtta4zbJv9+/e3\nAwcOHHHu85//fM4777yOEk3fbvu+AAAAAAAAAAAnkqr6ZGtt/2butYoLAAAAAAAAAAB2IMUeAAAA\nAAAAAADYgRR7AAAAAAAAAABgB1LsAQAAAAAAAACAHUixBwAAAAAAAAAAdiDFHibqJW//o7zj2lu6\njgEAAAAAAAAAcMJR7JmCe+65J1dcccU39Ozb3va2LCwsbHOi6bnjnvtyxz33dR0DAAAAAAAAAOCE\no9gzBbu52DM76GW0eKjrGAAAAAAAAAAAJ5x+1wF2g8svvzy33nprzj///LzgBS/IYx7zmLz3ve/N\n4uJivu/7vi9vfOMbMxqN8vKXvzwHDx7M8vJyfuqnfipf+cpXcscdd+S5z31uTj/99Fx77bVdf5Ut\nG870M7+43HUMAAAAAAAAAIATzu4q9nz48uR/fHp73/nNT00uevOGt7z5zW/OZz7zmdx444255ppr\n8r73vS9/+qd/mtZaLr744nzsYx/LXXfdlTPPPDMf+tCHkiRf//rXc8opp+Stb31rrr322px++unb\nm3tK5gZ9E3sAAAAAAAAAAL4BVnFN2TXXXJNrrrkmT3va0/L0pz89N910U26++eY89alPzUc+8pG8\n9rWvzR/+4R/mlFNO6TrqthgO+llYUuwBAAAAAAAAANiq3TWx5ziTdaahtZbXve51+ZEf+ZGHXLvh\nhhty9dVX5/Wvf32e97zn5Q1veEMHCbfXcNDLwa8p9gAAAAAAAAAAbJWJPVNw8skn5957702SvPCF\nL8yVV16Z+fn5JMntt9+eO++8M3fccUdmZ2dzySWX5LLLLssNN9zwkGdPRMOZfkaLy13HAAAAAAAA\nAAA44eyuiT0dOe200/KsZz0rT3nKU3LRRRflB3/wB/Od3/mdSZK5ubn89m//dm655ZZcdtll2bNn\nT/bu3Ztf/dVfTZJceumlufDCC3PmmWfm2muv7fJrfEOGg35Giyb2AAAAAAAAAABsVbXWus6wbfbv\n398OHDhwxLnPf/7zOe+88zpKNH077fv+4u9/IVdcd0tu/TcvSlV1HQcAAAAAAAAAoFNV9cnW2v7N\n3GsVFxM1O+jlcEvuf+Bw11EAAAAAAAAAAE4oij1M1NxgZdvbvHVcAAAAAAAAAABbsiuKPY+kdWMb\n2YnfczizUuwZKfYAAAAAAAAAAGzJI77Ys2/fvtx99907svSynVprufvuu7Nv376uoxxhOJ7YM1pS\n7AEAAAAAAAAA2Ip+1wEm7eyzz87Bgwdz1113dR1l4vbt25ezzz676xhHGA56SZLR4nLHSQAAAAAA\nAAAATiyP+GLP3r17c+6553YdY9d6cGKPVVwAAAAAAAAAAFvyiF/FRbfmxsWeecUeAAAAAAAAAIAt\nUexholYn9iwsKfYAAAAAAAAAAGyFYg8TNZzpJUnmF5c7TgIAAAAAAAAAcGJR7GGiVif2jKziAgAA\nAAAAAADYEsUeJmpvb09m+nsUewAAAAAAAAAAtkixh4mbG/QzWlLsAQAAAAAAAADYCsUeJm52ppfR\n4nLXMQAAAAAAAAAATiiKPUzc3KCfeau4AAAAAAAAAAC2RLGHiRsO+hkp9gAAAAAAAAAAbIliDxM3\nHPQzWrKKCwAAAAAAAABgKxR7mLjhTM/EHgAAAAAAAACALVLsYeKs4gIAAAAAAAAA2DrFHiZubtDP\nvGIPAAAAAAAAAMCWKPYwccNBLwtLy2mtdR0FAAAAAAAAAOCEodjDxM3O9LN8uGXx0OGuowAAAAAA\nAAAAnDAUe5i4uUE/SazjAgAAAAAAAADYAsUeJm44LvaMFHsAAAAAAAAAADZt4sWeqrqwqr5QVbdU\n1eXrXP8nVfXpqrqxqv6oqp605trrxs99oapeOOmsTMbcoJckGS0ud5wEAAAAAAAAAODEMdFiT1X1\nkrwjyUVJnpTklWuLO2P/sbX21Nba+UnekuSt42eflOQVSZ6c5MIkV4zfxwlmdmY8sWfJxB4AAAAA\nAAAAgM2a9MSeC5Lc0lr7YmttKcl7krx07Q2ttb9eczhM0safX5rkPa21xdbaf09yy/h9nGBWV3HN\nW8UFAAAAAAAAALBp/Qm//6wkt605PpjkGUffVFU/muQnkswk+e41z15/1LNnrfPspUkuTZLHP/7x\n2xKa7TU3LvYsWMUFAAAAAAAAALBpk57YsymttXe01p6Q5LVJXr/FZ9/ZWtvfWtt/xhlnTCYgD8tw\nsLJBbWRiDwAAAAAAAADApk262HN7ksetOT57fO5Y3pPkZd/gs+xQwxmruAAAAAAAAAAAtmrSxZ5P\nJHliVZ1bVTNJXpHkqrU3VNUT1xy+OMnN489XJXlFVQ2q6twkT0zypxPOywQMx6u4TOwBAAAAAAAA\nANi8/iRf3lo7VFU/luT3k/SSXNla+2xVvSnJgdbaVUl+rKqen+SBJF9L8kPjZz9bVe9N8rkkh5L8\naGtteZJ5mYyZ/p7M9PZktOR/PgAAAAAAAACAzZposSdJWmtXJ7n6qHNvWPP5NRs8+3NJfm5y6ZiW\n4aBnYg8AAAAAAAAAwBZMehUXJElmZ/qKPQAAAAAAAAAAW6DYw1TMDfqZV+wBAAAAAAAAANg0xR6m\nYjjoZWFpuesYAAAAAAAAAAAnDMUepmJoYg8AAAAAAAAAwJYo9jAVw5l+Roo9AAAAAAAAAACbptjD\nVAwHij0AAAAAAAAAAFuh2MNUzA16GS0tdx0DAAAAAAAAAOCEodjDVMyOJ/a01rqOAgAAAAAAAABw\nQlDsYSrmBv0cOtyyeOhw11EAAAAAAAAAAE4Iij1MxXCmlyQZLR7qOAkAAAAAAAAAwIlBsYepGA76\nSZKFpeWOkwAAAAAAAAAAnBgUe5iK1WLPvIk9AAAAAAAAAACbotjDVKwWe6ziAgAAAAAAAADYHMUe\npmJu0EtiYg8AAAAAAAAAwGYp9jAVqxN7FpaWO04CAAAAAAAAAHBiUOxhKoYzK8UeE3sAAAAAAAAA\nADZHsYepWJ3YM1LsAQAAAAAAAADYFMUepmI46CVR7AEAAAAAAAAA2CzFHqZi0O9lb68yWlruOgoA\nAAAAAAAAwAlBsYepmZ3pm9gDAAAAAAAAALBJij1Mzdygn3nFHgAAAAAAAACATVHsYWqGg56JPQAA\nAAAAAAAAm6TYw9QMB/0sLC13HQMAAAAAAAAA4ISg2MPUDGes4gIAAAAAAAAA2CzFHqbGKi4AAAAA\nAAAAgM1T7GFqhoN+RotWcQEAAAAAAAAAbIZiD1MzN+hntGRiDwAAAAAAAADAZij2MDWzM32ruAAA\nAAAAAAAANkmxh6mZG/TywHLL4iHruAAAAAAAAAAAjkexh6kZDvpJktGiYg8AAAAAAAAAwPEo9jA1\nf1PssY4LAAAAAAAAAOB4FHuYmuHMuNizpNgDAAAAAAAAAHA8ij1MzXDQS2JiDwAAAAAAAADAZij2\nMDVzD67iWu44CQAAAAAAAADAzqfYw9QMHyz2mNgDAAAAAAAAAHA8ij1MzXBmpdgzr9gDAAAAAAAA\nAHBcij1MzXDQS2JiDwAAAAAAAADAZij2MDUPruJaWu44CQAAAAAAAADAzqfYw9QM+nvS31Mm9gAA\nAAAAAAAAbIJiD1NTVZmd6Sn2AAAAAAAAAABsgmIPUzU36Gd+0SouAAAAAAAAAIDjUexhqoaDfhaW\nTOwBAAAAAAAAADgexR6majjoZ94qLgAAAAAAAACA41LsYaqGg15Gij0AAAAAAAAAAMel2MNUDWf6\nGS0udx0DAAAAAAAAAGDHU+xhquYG/YyWTOwBAAAAAAAAADgexR6majjoW8UFAAAAAAAAALAJij1M\n1eygZxUXAAAAAAAAAMAmKPYwVXMz/SwtH87SocNdRwEAAAAAAAAA2NEUe5iq4aCfJFlYso4LAAAA\nAAAAAGAjij1M1dy42DO/qNgDAAAAAAAAALARxR6manbQS5KMFpc7TgIAAAAAAAAAsLMp9jBVQxN7\nAAAAAAAAAAA2RbGHqVpdxbWwpNgDAAAAAAAAALARxR6majizUuwZmdgDAAAAAAAAALAhxR6majjo\nJUnmF5c7TgIAAAAAAAAAsLMp9jBVw4GJPQAAAAAAAAAAm6HYw1TNrRZ7lhR7AAAAAAAAAAA2otjD\nVA36e9LbUyb2AAAAAAAAAAAch2IPU1VVmZ3pZbS43HUUAAAAAAAAAIAdTbGHqZsb9DNvYg8AAAAA\nAAAAwIYUe5i64aCfhSXFHgAAAAAAAACAjSj2MHXDQT/zVnEBAAAAAAAAAGxIsYepG870MrKKCwAA\nAAAAAABgQ4o9TN1w0FfsAQAAAAAAAAA4DsUepm5u0M9oSbEHAAAAAAAAAGAjij1M3exML6PF5a5j\nAAAAAAAAAADsaIo9TN3coJ95q7gAAAAAAAAAADY08WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6g\nqr5lzbXlqrpx/HPVpLMyHcNBP0uHDueB5cNdRwEAAAAAAAAA2LH6k3x5VfWSvCPJC5IcTPKJqrqq\ntfa5Nbd9Ksn+1tpCVf3TJG9J8gPja/e11s6fZEambzhY+We3sLicU2YNjQIAAAAAAAAAWM+kWxUX\nJLmltfbF1tpSkvckeenaG1pr17bWFsaH1yc5e8KZ6NhwppckmV+yjgsAAAAAAAAA4FgmXew5K8lt\na44Pjs8dy6uTfHjN8b6qOlBV11fVy9Z7oKouHd9z4K677nr4iZm41Yk9o0XFHgAAAAAAAACAY5no\nKq6tqKpLkuxP8l1rTn9La+32qvrWJP+5qj7dWrt17XOttXcmeWeS7N+/v00tMN+wOcUeAAAAAAAA\nAIDjmvTEntuTPG7N8dnjc0eoqucn+VdJLm6tLa6eb63dPv7vF5Ncl+RpkwzLdPzNxJ7ljpMAAAAA\nAAAAAOxcky72fCLJE6vq3KqaSfKKJFetvaGqnpbk17NS6rlzzflTq2ow/nx6kmcl+dyE8zIFszO9\nJMm8iT0AAAAAAAAAAMc00VVcrbVDVfVjSX4/SS/Jla21z1bVm5IcaK1dleQXkswl+d2qSpK/bK1d\nnOS8JL9eVYezUkB6c2tNsecRwCouAAAAAAAAAIDjm2ixJ0laa1cnufqoc29Y8/n5x3ju40meOtl0\ndGF1FdfCkmIPAAAAAAAAAMCxTHoVFzzE6sSe+cXljpMAAAAAAAAAAOxcij1M3b69e7KnrOICAAAA\nAAAAANiIYg9TV1UZzvQzr9gDAAAAAAAAAHBMij10YjjoZ2FJsQcAAAAAAAAA4FgUe+jEcNDLaHG5\n6xgAAAAAAAAAADuWYg+dGA6s4gIAAAAAAAAA2IhiD50YzvQzUuwBAAAAAAAAADgmxR46MRz0M1qy\nigsAAAAAAAAA4FgUe+jE3KBnYg8AAAAAAAAAwAYUe+jE7MAqLgAAAAAAAACAjSj20Im5QT/zij0A\nAAAAAAAAAMek2EMnhjP9LB46nEPLh7uOAgAAAAAAAACwIyn20InhoJckGS0td5wEAAAAAAAAAGBn\nUuyhE8NBP0kyso4LAAAAAAAAAGBdij10QrEHAAAAAAAAAGBjij10Ys4qLgAAAAAAAACADSn20Inh\njIk9AAAAAAAAAAAbUeyhE6uruOYVewAAAAAAAAAA1qXYQydWiz0m9gAAAAAAAAAArE+xh04MB70k\nyWhpueMkAAAAAAAAAAA7k2IPnZgzsQcAAAAAAAAAYEOKPXTipL29VCn2AAAAAAAAAAAci2IPnaiq\nDGf6mVfsAQAAAAAAAABYl2IPnRkOellYXO46BgAAAAAAAADAjqTYQ2eGg37ml0zsAQAAAAAAAABY\nj2IPnRnO9DOyigsAAAAAAAAAYF2KPXRmOOgp9gAAAAAAAAAAHINiD52ZG/QzWlzuOgYAAAAAAAAA\nwI6k2ENnhoN+Rksm9gAAAAAAAAAArEexh87MzvSt4gIAAAAAAAAAOAbFHjozN+hlXrEHAAAAAAAA\nAGBdij10Zjjo5/4HDmf5cOs6CgAAAAAAAADAjqPYQ2fmBv0kyWjJ1B4AAAAAAAAAgKMp9tCZ2Zlx\nscc6LgAAAAAAAACAh1DsoTPDQS+JYg8AAAAAAAAAwHoUe+jMg6u4Fpc7TgIAAAAAAAAAsPMo9tCZ\n4cAqLgAAAAAAAACAY1HsoTPDmZViz7xiDwAAAAAAAADAQyj20JnhoJckWViyigsAAAAAAAAA4GiK\nPXRmbmBiDwAAAAAAAADAsSj20JnhuNgzUuwBAAAAAAAAAHgIxR46c9LelVVcij0AAAAAAAAAAA+l\n2ENn9uypDGd6GS0tdx0FAAAAAAAAAGDHUeyhU8NB38QeAAAAAAAAAIB1KPbQqblBP/OKPQAAAAAA\nAAAAD6HYQ6dmBz0TewAAAAAAAAAA1qHYQ6eGM/2Mlpa7jgEAAAAAAAAAsOMo9tCpuUHfxB4AAAAA\nAAAAgHUo9tCpWcUeAAAAAAAAAIB1KfbQqblBL/OLVnEBAAAAAAAAABxNsYdODWf6WVgysQcAAAAA\nAAAA4GiKPXRqOOhnYWk5hw+3rqMAAAAAAAAAAOwoij10ajjoJUlGpvYAAAAAAAAAABxBsYdODQf9\nJMlocbnjJAAAAAAAAAAAO4tiD52aWy32mNgDAAAAAAAAAHAExR46NZxZndij2AMAAAAAAAAAsJZi\nD52aHfSSJPOKPQAAAAAAAAAAR1DsoVMPruJaXO44CQAAAAAAAADAzqLYQ6eG42LPwpKJPQAAAAAA\nAAAAayn20KnViT1WcQEAAAAAAAAAHEmxh07NzvSSJCPFHgAAAAAAAACAIyj20KnhzOrEnuWOkwAA\nAAAAAAAA7CyKPXRqz57K7EwvCyb2AAAAAAAAAAAcQbGHzg0H/YyWFHsAAAAAAAAAANZS7KFzw5me\nVVwAAAAAAAAAAEdR7KFzw0E/I6u4AAAAAAAAAACOoNhD5xR7AAAAAAAAAAAeSrGHzs0N+hktKfYA\nAAAAAAAAAKw18WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6gqr5lzbUfqqqbxz8/NOmsdGN2ppfR\n4nLXMQAAAAAAAAAAdpSJFnuqqpfkHUkuSvKkJK+sqicdddunkuxvrf2dJO9L8pbxs49O8tNJnpHk\ngiQ/XVWnTjIv3Zgb9DNvFRcAAAAAAAAAwBEmPbHngiS3tNa+2FpbSvKeJC9de0Nr7drW2sL48Pok\nZ48/vzDJR1prX22tfS3JR5JcOOG8dGA46GdBsQcAAAAAAAAA4AiTLvacleS2NccHx+eO5dVJPryV\nZ6vq0qo6UFUH7rrrrocZly4MB/2MlpZz+HDrOgoAAAAAAAAAwI4x6WLPplXVJUn2J/mFrTzXWntn\na21/a23/GWecMZlwTNRwppckWXhgueMkAAAAAAAAAAA7x6SLPbcnedya47PH545QVc9P8q+SXNxa\nW9zKs5z4hoN+kmRkHRcAAAAAAAAAwIMmXez5RJInVtW5VTWT5BVJrlp7Q1U9LcmvZ6XUc+eaS7+f\n5Huq6tSqOjXJ94zP8Qgzp9gDAAAAAAAAAPAQ/Um+vLV2qKp+LCuFnF6SK1trn62qNyU50Fq7Kiur\nt+aS/G5VJclfttYubq19tao4yQp1AAAgAElEQVT+dVbKQUnyptbaVyeZl278zcQeq7gAAAAAAAAA\nAFZNtNiTJK21q5NcfdS5N6z5/PwNnr0yyZWTS8dOMJzpJUnmTewBAAAAAAAAAHjQpFdxwXGtTuxZ\nWFLsAQAAAAAAAABYpdhD51aLPSb2AAAAAAAAAAD8jU0Ve6qqV1W/OOkw7E5z42LPaHG54yQAAAAA\nAAAAADvHpoo9rbXlJM+ecBZ2qdlBL0kyMrEHAAAAAAAAAOBB/S3c+6mquirJ7yYZrZ5srf2/256K\nXWU4M57Ys6TYAwAAAAAAAACwaivFnn1J7k7y3WvOtSSKPTwsvT2Vk/b2TOwBAAAAAAAAAFhj08We\n1tqrJhmE3W046Gd+cbnrGAAAAAAAAAAAO8aezd5YVWdX1Qeq6s7xz/ur6uxJhmP3GA5M7AEAAAAA\nAAAAWGvTxZ4kv5nkqiRnjn9+b3wOHrbhTD8LS4o9AAAAAAAAAACrtlLsOaO19puttUPjn99KcsaE\ncrHLzA36mTexBwAAAAAAAADgQVsp9txdVZdUVW/8c0mSuycVjN1lZRXXctcxAAAAAAAAAAB2jK0U\ne/5xkpcn+R9Jvpzkf0nyqkmEYveZHfQzMrEHAAAAAAAAAOBB/c3cVFW9JH+/tXbxhPOwS83N9DNa\nUuwBAAAAAAAAAFi1qYk9rbXlJK+ccBZ2seGgbxUXAAAAAAAAAMAam5rYM/bHVfXvkvxOktHqydba\nDdueil1nbtDLaOlQWmupqq7jAAAAAAAAAAB0bivFnvPH/33TmnMtyXdvXxx2q9lBP60lC0vLGQ62\n8s8SAAAAAAAAAOCRaVMNiqrak+RXW2vvnXAedqnVMs9o6ZBiDwAAAAAAAABAkj2buam1djjJv5hw\nFnaxuUEvSTJaXO44CQAAAAAAAADAzrCpYs/YR6vqJ6vqcVX16NWfiSVjVxnOjCf2LB7qOAkAAAAA\nAAAAwM6wlZ1HPzD+74+uOdeSfOv2xWG3Wl2/Na/YAwAAAAAAAACQZAvFntbauZMMwu62WuxZWFLs\nAQAAAAAAAABItrCKq6pmq+r1VfXO8fETq+p7JxeN3WRu0EuSzC8ud5wEAAAAAAAAAGBn2HSxJ8lv\nJllK8nfHx7cn+dltT8SutDqxZ2QVFwAAAAAAAABAkq0Ve57QWntLkgeSpLW2kKQmkopdZ3ZGsQcA\nAAAAAAAAYK2tFHuWquqkJC1JquoJSRYnkopdZzizsoprZBUXAAAAAAAAAECSpL+Fe386yX9K8riq\n+g9JnpXkhycRit2n39uTfXv3ZLRkYg8AAAAAAAAAQLKFYk9r7SNVdUOSZ2ZlBddrWmt/tXq9qp7c\nWvvsBDKyS8wN+pm3igsAAAAAAAAAIMnWJvaktXZ3kg8d4/K7kjz9YSdi15qd6Wek2AMAAAAAAAAA\nkCTZs43vqm18F7vQcNDPaHG56xgAAAAAAAAAADvCdhZ72ja+i11obtAzsQcAAAAAAAAAYGw7iz3w\nsMzO9DNaUuwBAAAAAAAAAEi2t9iztI3vYheaG/Qzb2IPAAAAAAAAAECSLRR7asUlVfWG8fHjq+qC\n1euttWdOIiC7x3DQy8LictcxAAAAAAAAAAB2hK1M7LkiyXcmeeX4+N4k79j2ROxaw0E/IxN7AAAA\nAAAAAACSJP0t3PuM1trTq+pTSdJa+1pVzUwoF7vQcKaf0dKhtNZSVV3HAQAAAAAAAADo1FYm9jxQ\nVb0kLUmq6owkhyeSil1pOOjncEvue8A6LgAAAAAAAACArRR7fiXJB5I8pqp+LskfJfn5iaRiV5ob\n9JIko0XFHgAAAAAAAACATa/iaq39h6r6ZJLnJakkL2utfX5iydh1hoOVf46jxUM54+RBx2kAAAAA\nAAAAALq16WJPVb2rtfYPk9y0zjl42GZnVv45zi8e6jgJAAAAAAAAAED3trKK68lrD6qql+TbtzcO\nu9ncmok9AAAAAAAAAAC73XGLPVX1uqq6N8nfqaq/rqp7x8d3JvngxBOyawwHvSTJwtJyx0kAAAAA\nAAAAALp33GJPa+3nW2snJ/mF1tqjWmsnj39Oa629bgoZ2SVWJ/ZYxQUAAAAAAAAAkPS3cO+Hq+p/\nPvpka+1j25iHXWzWKi4AAAAAAAAAgAdtpdhz2ZrP+5JckOSTSb57WxOxa83NjIs9VnEBAAAAAAAA\nAGy+2NNae8na46p6XJK3bXsidq3hoJfExB4AAAAAAAAAgCTZ8zCePZjkvO0KAv3engz6exR7AAAA\nAAAAAACyhYk9VfX2JG18uCfJ+UlumEQodq/hoJ95xR4AAAAAAAAAgM0Xe5IcWPP5UJJ3t9b+eJvz\nsMsNB70sLC13HQMAAAAAAAAAoHObLva01v7vSQaBJP8/e/ceZedd3of++5vZmpFmj2br7suMbAtj\nGxtjLpYNmJhCGwLkAuFOkiaQJpAuVkLOOU27krYradJ2NWmTnHS1SRNCICf0JDmUGEISGg7JIRQw\nF9uEm42NjW+SfNHF1kgzI81oZt7zx7vHuliWZmzt2SPtz2etd/3e/b6/d+9nxCxAo+88T5oDOvYA\nAAAAAAAAACSLCPaUUr6RoyO4jruVpKqq6pozXhU9a3iwkUnBHgAAAAAAAACARXXs+f6OVwFtQ4ON\njE/NdLsMAAAAAAAAAICuO22wp6qqBxbOSynnJbmu/fLLVVXt7lRh9Kbhwf48tH+u22UAAAAAAAAA\nAHRd32I3llLemuTLSd6S5K1JvlRKeXOnCqM3NQeM4gIAAAAAAAAASBY3imvBv0py3UKXnlLK5iR/\nk+QjnSiM3tQcbGRCsAcAAAAAAAAAYPEde5L0nTB6a98Sn4fTag72Z3J6NlVVdbsUAAAAAAAAAICu\nWkrHnr8upXwyyZ+0X78tySfOfEn0suZgI/NVMj07n9Wr+rtdDgAAAAAAAABA1yw62FNV1T8vpbwx\nyXe1L72vqqqPdqYsetXwYP0tOTE9K9gDAAAAAAAAAPS0RQd7SinNJH9eVdVNpZQrklxRSllVVdWR\nzpVHr2kO1N+Sk9Oz2TQ82OVqAAAAAAAAAAC6p28Je/9XksFSymiSv07yo0n+sBNF0buag3WXnonp\n2S5XAgAAAAAAAADQXUsJ9pSqqqaSvDHJf6uq6i1JntuZsuhVzfYorqmZuS5XAgAAAAAAAADQXUsK\n9pRSXprkR5L8Vfta/5kviV62EOzRsQcAAAAAAAAA6HVLCfb8b0l+IclHq6q6vZTyrCSf7kxZ9Krh\ndrBnUrAHAAAAAAAAAOhxjcVurKrqM0k+U0oZKaWsrarq3iTv7Vxp9KKhgboJlGAPAAAAAAAAANDr\nFt2xp5SyvZTyjSRfT/LNUsrXSinXdq40etHRjj1zXa4EAAAAAAAAAKC7Ft2xJ8kHkrynqqrPJkkp\n5buSfDDJNZ0ojN7UNIoLAAAAAAAAACDJEjr2JJlbCPUkSVVVn0sifcEZtaq/LwONvkzM+NYCAAAA\nAAAAAHrbaTv2lFJe1D79TCnl95L8SZIqyduS/F3nSqNXNQf6dewBAAAAAAAAAHreYkZx/cYJr3/p\nmPPqDNYCSepxXFPTc90uAwAAAAAAAACgq04b7Kmq6pXP5ANKKa9J8p+T9Cd5f1VVv3rC/Zcn+a0k\n1yR5e1VVHznm3lySb7RfPlhV1eueSS2cHYYHG5nQsQcAAAAAAAAA6HGL6djzhFLK9yV5bpLVC9eq\nqvqVU+zvT/LbSV6VZGeSW0opH6+q6o5jtj2Y5J1Jfu4kb3GoqqoXLKVGzn7NwUYmZwR7AAAAAAAA\nAIDetuhgTynld5MMJXllkvcneXOSL5/mseuT3FNV1b3t9/jTJK9P8kSwp6qq+9v35pdSOOeuoYH+\nHDgs2AMAAAAAAAAA9La+Jey9oaqqH0vyeFVVv5zkpUkuP80zo0l2HPN6Z/vaYq0updxaSvliKeUH\nT7ahlPLu9p5b9+zZs4S3ZqUaHmxkyiguAAAAAAAAAKDHLSXYc6i9TpVSLkxyJMkFZ76k41xcVdX2\nJD+c5LdKKZeeuKGqqvdVVbW9qqrtmzdv7nA5LIfmYCOTgj0AAAAAAAAAQI9bSrDnL0sp65L8pyRf\nSXJ/kj8+zTO7kmw95vVY+9qiVFW1q73em+Tvkrxw8eVythoebGRCsAcAAAAAAAAA6HGLDvZUVfVv\nq6raX1XVnyW5OMlzqqr6xYX7pZRXneSxW5JcVkrZVkoZSPL2JB9fzOeVUtaXUgbb55uSvCzJHYut\nl7PX0EB/JmfmUlVVt0sBAAAAAAAAAOiapXTseUJVVdNVVY2fcPnXTrJvNslPJ/lkkm8l+XBVVbeX\nUn6llPK6JCmlXFdK2ZnkLUl+r5Rye/vxK5PcWkr5WpJPJ/nVqqoEe3pAc7CRufkq07Pz3S4FAAAA\nAAAAAKBrGmfwvcrJLlZV9Ykknzjh2i8ec35L6hFdJz53c5LnncH6OEsMD9bflpPTs1m9qr/L1QAA\nAAAAAAAAdMfT6tjzFMxN4oxoPhHsmetyJQAAAAAAAAAA3XMmgz1wRjQH6i49E9OzXa4EAAAAAAAA\nAKB7zmSw5/4z+F70sIWOPVMzgj0AAAAAAAAAQO9qLGVzKeWGJJcc+1xVVX/UXt94RiujZy0Ee3Ts\nAQAAAAAAAAB62aKDPaWUDyW5NMlXk8y1L1dJ/qgDddHDhtvBnsnpudPsBAAAAAAAAAA4dy2lY8/2\nJFdVVVV1qhhIkqGB/iTJpFFcAAAAAAAAAEAP61vC3m8mOb9ThcCCox17BHsAAAAAAAAAgN61lI49\nm5LcUUr5cpLphYtVVb3ujFdFT2sK9gAAAAAAAAAALCnY8286VQQca6DRl1X9JRPTc90uBQAAAAAA\nAACgaxYd7Kmq6jOdLASO1RxsZGpGxx4AAAAAAAAAoHf1LXZjKeUlpZRbSikTpZSZUspcKeVAJ4uj\ndzUHGpkwigsAAAAAAAAA6GGLDvYk+a9JfijJ3UnWJPnJJL/diaJgeLCRScEeAAAAAAAAAKCHLSXY\nk6qq7knSX1XVXFVVH0zyms6URa8bGuzP5PRct8sAAAAAAAAAAOiaxhL2TpVSBpJ8tZTyH5M8nCUG\ng2CxhgeN4gIAAAAAAAAAettSgjk/2t7/00kmk2xN8qZOFAXNAaO4AAAAAAAAAIDetuiOPVVVPVBK\nWZPkgqqqfrmDNUGagw2juAAAAAAAAACAnrbojj2llB9I8tUkf91+/YJSysc7VRi9rTnYbxQXAAAA\nAAAAANDTljKK698kuT7J/iSpquqrSbZ1oCZIc7CRqRnBHgAAAAAAAACgdy0l2HOkqqrxE65VZ7IY\nWDA82MiRuSrTs8ZxAQAAAAAAAAC9aSnBnttLKT+cpL+Uclkp5b8kublDddHjmgP9SZLJacEeAAAA\nAAAAAKA3LSXY8zNJnptkOskfJxlP8rOdKAqGBhtJkslp47gAAAAAAAAAgN60lGDPVe2jkWR1ktcn\nuaUTRXGOqKrkj9+WfPn3l/zo8EKwZ0awBwAAAAAAAADoTY0l7P2/k/xckm8mme9MOZxTSkke/noy\ntHHJjzZ17AEAAAAAAAAAetxSgj17qqr6i45VwrmpNZaM71zyY8OD/UmSiem5M10RAAAAAAAAAMBZ\nYSnBnl8qpbw/yd8mmV64WFXVTWe8Ks4drdG6a88SDQ3o2AMAAAAAAAAA9LalBHt+PMlzkqzK0VFc\nVRLBHp5aayy5638mVVWP5lqkYaO4AAAAAAAAAIAet5Rgz3VVVV3RsUo4N42MJbOHk6l9SXPToh9r\nCvYAAAAAAAAAAD2ubwl7by6lXNWxSjg3tcbqdXzHkh5rDvYnSSZn5s50RQAAAAAAAAAAZ4WldOx5\nSZKvllLuSzKdpCSpqqq6piOVcW54ItizK7nwhYt+bKC/L42+kgkdewAAAAAAAACAHrWUYM9rOlYF\n564ngj07l/RYKSXNwUamBHsAAAAAAAAAgB616GBPVVUPdLIQzlFDG5PG6uTA0oI9STI82MjEtFFc\nAAAAAAAAAEBv6ut2AZzjSklGRpfcsSdJmoP9mdSxBwAAAAAAAADoUYI9dF5rLBnfteTHhgYamZwR\n7AEAAAAAAAAAepNgD53XGntaHXuGBxs69gAAAAAAAAAAPUuwh85rjSUTjyRzR5b0WD2Ka65DRQEA\nAAAAAAAArGyCPXTeyGhSzScHH17SY83BRiZ07AEAAAAAAAAAepRgD53XGqvXJY7jag40Mjkj2AMA\nAAAAAAAA9CbBHjqvtbVex3ct6bHmYCNTRnEBAAAAAAAAAD1KsIfOa43W6/iOJT02PNifmbn5zMzO\nd6AoAAAAAAAAAICVTbCHzhtoJmvWJweW3rEnSSanjeMCAAAAAAAAAHqPYA/LY2QsGd+5pEeaA3Ww\nZ0KwBwAAAAAAAADoQYI9LI/WWDL+9Dr2TM3MdaIiAAAAAAAAAIAVTbCH5dEaTcZ3LOmR5mB/Eh17\nAAAAAAAAAIDeJNjD8miNJYf3J9MTi35kuN2xZ1KwBwAAAAAAAADoQYI9LI+RsXo9sPhxXEMDC6O4\nBHsAAAAAAAAAgN4j2MPyaLWDPeM7F/3IQseeiem5TlQEAAAAAAAAALCiCfawPJ5GsKc52J/EKC4A\nAAAAAAAAoDcJ9rA81l6QlL4lBnsWOvYI9gAAAAAAAAAAvUewh+XR36jDPQd2LfqRwUZf+vtKpmYE\newAAAAAAAACA3iPYw/IZGU3Gdyx6eyklzYH+TE7PdbAoAAAAAAAAAICVSbCH5dMaS8YX37EnSYYH\nG0ZxAQAAAAAAAAA9SbCH5dMarUdxVdWiH2kONjIp2AMAAAAAAAAA9CDBHpZPa2syeziZ2rfoR4YG\nG5mcMYoLAAAAAAAAAOg9gj0sn5HReh3fsehHhgf7dewBAAAAAAAAAHqSYA/LpzVWr+O7Fv1Ic8Ao\nLgAAAAAAAACgNwn2sHxaW+t1fOeiHxkebGRCsAcAAAAAAAAA6EGCPSyfoQ1JY/WSRnENDfZnamau\ng0UBAAAAAAAAAKxMgj0sn1LqcVwHljCKS8ceAAAAAAAAAKBHCfawvEZGlzaKa6CRmdn5HJmb72BR\nAAAAAAAAAAArj2APy6u1NRlfWseeJJnUtQcAAAAAAAAA6DGCPSyv1mhy8OFk7siitjcH+5MkkzNz\nnawKAAAAAAAAAGDFEexhebXGklR1uGcRdOwBAAAAAAAAAHqVYA/La2S0Xsd3Lmr7QrBnQrAHAAAA\nAAAAAOgxgj0sr9bWeh3ftajtwzr2AAAAAAAAAAA9SrCH5dVa6NizY1Hbhwb6kyST03OdqggAAAAA\nAAAAYEUS7GF5DTSTNesXPYpLxx4AAAAAAAAAoFcJ9rD8WmPJgcWN4mouBHtmBHsAAAAAAAAAgN4i\n2MPyGxlbdMee5kAd7JnQsQcAAAAAAAAA6DEdD/aUUl5TSrmrlHJPKeXnT3L/5aWUr5RSZkspbz7h\n3jtKKXe3j3d0ulaWSWvxwZ7Vq/rSV5Kp6bkOFwUAAAAAAAAAsLJ0NNhTSulP8ttJXpvkqiQ/VEq5\n6oRtDyZ5Z5I/PuHZDUl+KcmLk1yf5JdKKes7WS/LpDWaHN6fTE+cdmspJc3Bho49AAAAAAAAAEDP\n6XTHnuuT3FNV1b1VVc0k+dMkrz92Q1VV91dV9fUk8yc8++okn6qq6rGqqh5P8qkkr+lwvSyH1tZ6\nPbBrUduHBxuZFOwBAAAAAAAAAHpMp4M9o0l2HPN6Z/vaGXu2lPLuUsqtpZRb9+zZ87QLZRmNtP9j\nHN9x6n1tQwP9mZwR7AEAAAAAAAAAekungz0dV1XV+6qq2l5V1fbNmzd3uxwWozVWr+NL6dgz18GC\nAAAAAAAAAABWnk4He3Yl2XrM67H2tU4/y0q29oKk9CXjOxe1vWkUFwAAAAAAAADQgzod7LklyWWl\nlG2llIEkb0/y8UU++8kk31NKWV9KWZ/ke9rXONv1N+pwzxKCPROCPQAAAAAAAABAj+losKeqqtkk\nP506kPOtJB+uqur2UsqvlFJelySllOtKKTuTvCXJ75VSbm8/+1iSf5s6HHRLkl9pX+Nc0BpLDiwy\n2DPQn8kZwR4AAAAAAAAAoLc0Ov0BVVV9IsknTrj2i8ec35J6zNbJnv1Akg90tEC6Y2Q0efiri9ra\nHGxkanquwwUBAAAAAAAAAKwsnR7FBSfXGkvGdyVVddqtw0ZxAQAAAAAAAAA9SLCH7miNJXPTyeTe\n025tDjYyPTuf2bn5ZSgMAAAAAAAAAGBlEOyhO1rt6WsHdp5269BAf5Jk0jguAAAAAAAAAKCHCPbQ\nHSOj9Tp++mDP8GAjSTI5YxwXAAAAAAAAANA7BHvojtbWeh3fddqtzYVgz7RgDwAAAAAAAADQOwR7\n6I6hDUljTTK+47RbFzr2TAj2AAAAAAAAAAA9RLCH7iglaY0uahTX0EB/kmRyeq7TVQEAAAAAAAAA\nrBiCPXRPayw5sIRRXDM69gAAAAAAAAAAvUOwh+4ZGVtUx56FUVyTRnEBAAAAAAAAAD1EsIfuaY0l\nBx9J5o6ccltTsAcAAAAAAAAA6EGCPXRPazRJlRx46JTbmoP9SZLJmbllKAoAAAAAAAAAYGUQ7KF7\nWmP1emDXKbetWdWfvqJjDwAAAAAAAADQWwR76J6RdrBnfOcpt5VS0hxoZEKwBwAAAAAAAADoIYI9\ndE9rtF5PE+xJkuZgQ8ceAAAAAAAAAKCnCPbQPQPNZM2GRQV7hgb7MzkztwxFAQAAAAAAAACsDII9\ndFdrdFHBnmEdewAAAAAAAACAHiPYQ3e1tiYHdp12W3NAsAcAAAAAAAAA6C2CPXTXyGgyvuO025qD\njUxMG8UFAAAAAAAAAPQOwR66qzWWHB5Ppg+ecltzsD9TMzr2AAAAAAAAAAC9Q7CH7mqN1ev4qcdx\nNQeN4gIAAAAAAAAAeotgD921EOw5sPOU24YHG5kQ7AEAAAAAAAAAekij2wXQ40ZG63X81MGe5kAj\nh4/MZ3ZuPo1+eTQAAAAAAAAAeEpVlUwfTA7vT0p/0hrtdkU8TYI9dNfaC5LSt4hRXP1JkqkjcxkR\n7AEAAAAAAACgF8xOJ4f2J4cer0M6hx4/yeuTXdufVHP1ezzvLcmb3t/dr4OnTbCH7upvJGsvPH3H\nnsH6W3VyejYjq1ctR2UAAAAAAAAA0HnTE8mDX0ju+1/JQ3+fTD12NKBzZOoUD5ZkdStZsy5Zsz5Z\nvS5Zd9HR1wvXNl2+bF8KZ55gD93XGk3Gd5xyy7HBHgAAAAAAAAA4ax05lOz4Uh3kue+zyUNfSeZn\nk75VyQXPT9Zf0g7mrDs+tPPEtXZoZ3Ak6evv9ldDhwn20H2tsTp1eArD7VFcE9Nzy1ERAAAAAAAA\nAJwZs9PJzluT+z9bh3l23pLMzSSlP7nwhckN70223ZhsfXEy0Ox2tawwgj1038ho8q2/TKoqKeWk\nW4YG6m/VKR17AAAAAAAAAFjJ5mbr5hb3faYO8zz4pWT2UJKSXHBN8uKfSi55eXLRS5LVI92ulhVO\nsIfua21N5qaTyb3J8OaTbhluj+KaEOwBAAAAAAAAYCWZn0se+Xo9Vuu+/5U8+IVkZqK+t+W5ybXv\nSLa9PLn4hnqEFiyBYA/d1xqt1/EdTxnsabaDPZMzgj0AAAAAAAAALNH8fHJ4fz0Wa/5IMrdwzBz/\n+kn3Zut17sjx5wv3H709eeBzyeHx+nM2XZ5c87Z6tNYlNybNTd39ujnrCfbQfa2xej2wKxl90Um3\nNAf7kyQT03PLVRUAAAAAAAAAT+XwgWTvt+tjz131v/euXpcMb0mam4+uC+cDzc7VMjebTDyaHHio\nruO4tX0cfLgO7Zxp67clV72+Hq217cZk7fln/jPoaYI9dN9IO9gzvvMptzQH6m/VKaO4AAAAAAAA\nAJZHVSUHHzk+wLNwfvDho/v6ViUjF9RdaxY615xoVbOe4NJcCP60z08MADU3J6tbSSn1c7PT9Wc9\nEdI5IbBz4KFk4pGkmj/+8xqrk5ELk5HR5OKX1ufD5yWNwbre/oGkv1GvfauS/oXjZK/b+xauLdzv\naxytEzpEsIfuG9qQNNacMtgzNNCfUpJJwR4AAAAAAACAM2tuNtn/QDu4c1ey9+72+d3J9DFBnYG1\nyebLk2e9Mtl0WbL5imTTFcn6S+qQTFIHcSb3JpO7k4k97XX3Mdd2J4/fl+z4UjK1L0n15Hr6B+uA\nz9x0MrnnyfcHR5K1F9RhnUv/YTvA0w7xLJyvWS90wzlBsIfuK6Uex3WKYE8pJc2BhlFcAAAAAAAA\nACczP5/MHkqOHF7cOr6rDvHs+Xby2HeSuZmj7zV8fh3gueYtdXBn8+X1uvb804dlGoNJa7Q+Tlvz\nXB3umdh9TBBoz9HzxsDxYZ2R0TrQs3rkmf1ZwVlEsIeVoTV6ymBPkjQH+3XsAQAAAAAAAM49c0fq\ngMvkQrBlb/tov556LDkylcweTo4cOmFtB3WODeYsRulL1m9LNl2eXP49dXBn0+V1J5416zrzdZ6o\nr78evzW8ZXk+D85Cgj2sDK2x5J6/PeWW5kAjkzOCPQAAAAAAAMAZMD+fVHNJNV+/Ln1JSrsjTXt9\nuqOc5ueTw/uPD+c8Edg55nyq/frQ4yd/n75GPZJqzYZkYChprK5DMI3Vyao1z2xtbqq76wArmmAP\nK8PIWHLwkWR2pm6ndhLNwYaOPQAAAAAAALCSTT2WPPKN9vH1ZO/ddXhmURYZoqnmjx7zc/X7P7HO\nn/B67iT75pdQU7uuY8M+T4R+ThIEWlhnJp/iM0oytCEZ2lQHdrZcVa/NzXXQ5rjzTcnqdU8/XASc\nEwR7WBlaY0mq5ODDyfqLT7qlHsW1lP+BBQAAAAAAADqiqpLxnXV455FvJA9/vT4f33F0z9oLks1X\nJP1nsitMVQdqSn/S13fMef8xa98Jr0+8fsIzTwRnqqRKu4NPVX+NC+vJrqV9vaqO/pksXBtonjyw\ns2ZD0u+f6YHF898YrKI2Fw4AACAASURBVAyt0Xod3/mUwZ7hwUYe2n94GYsCAAAAAACALps+mIzv\nSg7srP8tbXxXcmBXfT61L1mzPhk+r31sOWE9LxnaWAdgnom52WTvt4924VkI8zwxPqokG5+dbL0+\nue4nkvOvqY/hzc/4ywfodYI9rAytrfV6YNdTbhkaaGRqxiguAAAAAAAAOuTwgWTf3fX4qP0PJo3B\nuvPKwNp6HRxOBhaOY173r3p6n3fkUHLgoTqkc2DXMQGeXUdfT48f/0zpS4bPr39xvrW1Dtfsui2Z\neDQ5MvXkzyj9daeYY8M+JwsArT2v/lqOTCWP3l6Hdxa68Dx6RzI3Xb9f/2By3lXJla9LLmgHeM57\nbv3nAcAZJ9jDyjCy0LFnx1NuaQ42MmEUFwAAAAAAAM9EVSUHH6k70Cwce+6qwzwHH3p679k/eELw\np3lM+Gft0ddHptpdd9pBnql9T36voU11aGf9tuSS70paY/W/pS2sa89/6iDR9EQd8JnYfcJ6zPmj\ntyeTu5P5k/xCfWNNMns49TyqJKvXJec/L7n+Xe0uPM9LNl1ulBTAMvLfuKwMA0P1PMnxp+7YMzzY\nn8lpHXsAAAAAAACesaqqRzxN7qkDH5O72+ueE9bdyeTeZO7I8WGVJ45TvT7NeWMwKaVzX+PcbPL4\nfccHd/a21+kDR/cNDNdhlW0vTzZfXp9vuiJZf3H9dc9MJDOT9Tq9cH6wXk98PTNZ/7ku7J94tL2n\nfTTWtDvtjCWj19bnI2PttX2sWv30v+bB4frYeOmp983P151+Tgz9TDxa/3lc0A7xtLZ29j8jAE5L\nsIeVozVWp5OfQnOwkUNH5jI3X6W/z/+BAAAAAACAc8r0wTp80RqrxwIJEyzd3JHk0P7k0GPHhHX2\nHBPa2Xv8tdnDJ3mTkgxtrEc0NTcnY9clzS11h5aF4MoTQZfJuuPME9cnkyOTSyi4JKvW1EdjzdHz\np7rWWJ2sGnrqPVOPtYM73072fDt57N5k/sjRjxs+vw7uXPPWOriz6bJk8xXJ2gue+vutMVgHZc41\nfX1Jc2N9nHdVt6sB4BQEe1g5WmPJ4w885e3mQP3tOjUzm7Wrn+acUgAAAAAAYGU49Hjy4BeT+z+X\nPHBz8vDXkmquvre6lWx+Th262Pyco8fIhcsf+KmqOryy/4Fk/4P1CKe+xjFBk0Ws/QOLr7uq6nFN\nhx4/5th/wuvHk8P7n3x/ZuLk71n6k+amOqAzvDnZeFm9NrccDfAMb6lfD218ZmOW5ufr+k8MAD3p\n9cHkyOFk9lBy5MRjql6n9tV7Fq7NHq7XUyn9yYZtdXDnitfW30ObLq9DPKtbT//rAoAuEexh5WiN\nJQ98/ilvNwfrb9fJ6TnBHgAAAAAAONtM7q3/HeCBm5P7P588+s0kVR16GbsuufH/SC54QXLgoWTP\nnXX3njs/kXzlj46+x8DaY8I+VyRbrqzXkbG6A8nTUVV1p5eF4M7JjiV1oTmZcurgz9yR4wM7czNP\n/VZ9q5I1648eI2PJec9L1qw7/voTQZ4tyZoNT//PZ6n6+o6Og8p5Z/79qyqZnT4a/lkI+xw5lAyO\nJBuelTQGzvznAkCXCPawcoyMJofH61abg2ufdLs52J8kmZieXe7KAAAAAACApTrwcDvI8/k6yLP3\nrvp6Y02y9frklf8yufiGZHR7smr1U7/P5N520Kcd9tlzZ3LPp5Kv/veje1Y16xFLx3b32XxFsu7i\nulPOocdPHdw5sdPN6lay7qJk46XJpa+sz9ddXK9rL6g7Cz0RKlnqutCl5pi1f1Vd77HBnCeOEwI7\nq4Z6e0xZKfX3y6m+ZwDgHCLYw8rRGqvX8V3Jluc86fbwEx17BHsAAAAAAGDFefyBuhvPA5+rgzyP\n31dfH1ibXPSS5AU/lFz8srorz1I6qjQ3Jc3vSi75ruOvTz12NOizsN77meRrf3J0T2NNPTZr5uDx\nzw6O1EGd9duSZ72iHdxpH62tdZgGAGAFEOxh5Xgi2LPzpMGeoYF2sGdGsAcAAAAAALpifq7uvr8w\nNurR24+O1xrfUe9Zva4O8Fz3k8klL6vHRPV34J+khjYkF7+0Po51ePz4wM/87NFuOwuH4A4AcJYQ\n7GHlWAj2HNh50ttHO/bMLVdFAAAAAABwbpqdPhrOObT/mPOTHIePuX94/Mnv1dxcj9S64b11kGfz\nlUlf3/J/TQtWt+pRX1uv714NAABniGAPK8fw+Unpqzv2nERzsD+JUVwAAAAAAJwD5ueSuSPJ/JH2\nOnvM69l6nZ1uH4eTuZl6XXh93Pki1yOHj4Z0jkw9dW2lL1mz/ugxtCnZeNnx1xaO9Zckmy5LSlm2\nPzoAgF4i2MPK0d9I1l6YjO866e3moFFcAAAAAACsANMTyWPfSfbdk+y7t173P5jMHjoayjk2pDM3\nc3xgZ+5IkurM1tRYkzQGk8bqpDHQXhder65DOGtX1yOoVq87eUhnTfv6wNrudtwBAOAJgj2sLK2x\nozN4T/BEsEfHHgAAAAAAOm12Onnsvjq0c2KIZ+KR4/eOjNada4Y2Jf2rkr5Ge11V/1Jr/0D7/FT3\nGsfsOebeQjDnuKDOCWv/Kh1zAADOUYI9rCyt0WTXV056a2hVPYprYnpuOSsCAAAAAOBcNTebjD+Y\n7PtO+7jnaJBn/44c11VnaFOy8dnJs/9RsvHSZMOl9esNz0oGhrr2JQAAcG4T7GFlaY0l3/rLZH7+\nSW0++/pKmgP9OvYAAAAAAHBqVZUcejyZeDSZ2N0+Hk0mjznfvyN5/P56NNaCwZE6tDN2ffL8H67P\nF0I8a9Z17csBAKB3CfawsoyMJXPTydTeZHjLk24PDTYyNSPYAwAAAADQc6oqmT5wfFBnYnc7rHNs\ngKd9bf4kP0vuH0iaW+qfP295TnLl9x/tvLPx0qS52UgrAABWFMEeVpbWWL2O7zxpsGd4sGEUFwAA\nAADAua6qkj13JQ98Pnng5mTXrcnBR5LZw0/eW/rrnyc3NyfD5yXnXZ0Mt88Xrg2fV19bvU5wBwCA\ns4pgDytLa7Rex3cmoy960u3moFFcAAAAAADnnPm55NHb20Gedphnal99b/j85KIXJ1e+rg7wnBjY\nWbM+6evrbv0AANAhgj2sLK2t9Xpg10lvNwcamRDsAQAAAAA4u80dSR7+Wh3iuf/zyYNfTKbH63vr\nLkou+57k4huSi1+WbHiWLjsAAPQswR5WljXrk8aaumPPSTQHG9l98CStVgEAAAAAWLmOHE523VZ3\n4nng88mOLydHJut7Gy9LnvuDdYjn4huSdVu7WysAAKwggj2sLKUkrbFTBnsm984tc1EAAAAAACzJ\nzGQd3lkYq7Xz1mRuur635bnJC3+kDvFcdEOy9rzu1goAACuYYA8rzymCPcOD/UZxAQAAAAA8XbPT\nye5v1WOwHvl6ve75djJ/JElpj7w6dl148GT3TrFOPJrMzyalL7ng+cn176o78lz0kmRoQze+cgAA\nOCsJ9rDytEaTu//mpLeaA41MCvYAAAAAAJze9ETy6DeTh9sBnke+Vod65ts/Yx1Ym1xwTXLNW5PG\nYH2tqpJU7TXHnC9hTZLmljrIs/X6ZPXI8n3NAABwjhHsYeVpba1/m2N2JmkMHHdraLCRqZm5zM9X\n6esrT/EGAAAAAAA9Zuqxox14FoI8++7JE0GboY1155wbvjs5/5r6fP22pK+vq2UDAACnJtjDyjMy\nmqRKDj6UrL/kuFvrh1YlSW594PFcv027VgAAAACgx1RVcvCR40dpPfz1ZPzBo3tGxurgzvPeXK/n\nX5OMXNgelQUAAJxNBHtYeVpj9Tq+60nBnje8cDR/9IUH8lMfujUffc/Lcsmm5vLXBwAAAACwnKoq\n2X1H8s2bkttvSh679+i9DZcmY9uT6/5JO8Tz/KS5sXu1AgAAZ5RgDyvPE8GenU+6tW5oIB9453V5\nw+98Pv/kD2/JTe+5IeuGBp60DwAAAADgrLf37qNhnj13JqUv2fby5Lp3JRe+IDnv6mT1SLerBAAA\nOkiwh5VnZLReDzw52JMk2zY1874f3Z5//P4v5d0fui0f+onrM9joX8YCAQAAAAA65PH7j4Z5HvlG\nkpJcfEPyvb+eXPX6ZHhLtysEAACWkWAPK8/AULJmw0k79iy4ftuG/Ke3XJOf/dOv5hf+7Bv5jbc+\nP8V8aAAAAADgbDS+K7n9o3WYZ9dt9bWx65JX/4fkuT+YjFzY3foAAICuEexhZWqN1X+ZPYXXv2A0\nD+ybym9+6tu5ZFMz7/1Hly1TcQAAAAAAz9DBR5M7/rwO8zz4hfraBc9PvvuXk+e+IVl/cXfrAwAA\nVgTBHlam1ta65exp/Mw/fHbu3zeZ3/zUt3PRhqH84AtHO18bAAAAAMDTMbkv+dbH6zDP/Z9Lqvlk\ny1XJK/91cvUbk42XdrtCAABghel4sKeU8pok/zlJf5L3V1X1qyfcH0zyR0muTbIvyduqqrq/lHJJ\nkm8luau99YtVVf3TTtfLCtEaTR743Gm3lVLyq2+8Jg/tP5R/8ZGv58J1a3L9tg3LUCAAAAAAwCIc\n2p/c+Vd1mOfev0vmZ5MNlyY3/lwd5tlyZbcrBAAAVrCOBntKKf1JfjvJq5LsTHJLKeXjVVXdccy2\nn0jyeFVVzy6lvD3JryV5W/ved6qqekEna2SFao0lh8eTwweS1SOn3DrQ6Mvv/uNr88b/dnPe/aFb\n89H3vCzbNjWXqVAAAAAAgCRTjyV7v53svfv49fH7k2ouWXdR8tKfrsM851+TlNLtigEAgLNApzv2\nXJ/knqqq7k2SUsqfJnl9kmODPa9P8m/a5x9J8l9L8TeanjfSHql1YNdpgz1Jsm5oIB9853V5w+/c\nnB//4Jfz0fe8LOubAx0uEgAAAADoKXOzyf4Hnhzg2Xd3MrXv6L7+gWTjs5Pzr06uflNy+auT0WuF\neQAAgCXrdLBnNMmOY17vTPLip9pTVdVsKWU8ycb2vW2llL9PciDJv66q6rMnfkAp5d1J3p0kF110\n0Zmtnu5pba3X8V2LbkV78cZmfv/Hrs0P/f6X8u4P3Zr//pMvzmCjv4NFAgAAAADnpEP7k333PDnA\n89i9yfyRo/uam5NNlydX/kCy8bL6fNNldXeePj+bBAAAnrlOB3ueiYeTXFRV1b5SyrVJPlZKeW5V\nVQeO3VRV1fuSvC9Jtm/fXnWhTjqh1e7YM77j1PtOcO3FG/Lrb3l+3vsnf59/8ZGv57fe9oJoAAUA\nAAAAnFJVJQ/cnNzy/uSBzycTjx6919dINjyrDu1c8dp2eOfyZNOzkzXru1czAADQEzod7NmVZOsx\nr8fa1062Z2cppZGklWRfVVVVkukkqarqtlLKd5JcnuTWDtfMSjB8flL661FcS/S651+YHY9N5T99\n8q5csrGZ//1Vl3egQAAAAADgrDc9kXz9/0lu+YNk9+3J6lZyxfclm684GuBZf3HSv6rblQIAAD2q\n08GeW5JcVkrZljrA8/YkP3zCno8neUeSLyR5c5L/r6qqqpSyOcljVVXNlVKeleSyJPd2uF5Wiv5G\nsvaCZHzn03r8Pa+4NPfvncx//tu7c9GGobzp2rEzXCAAAAAAcNba8+26O8/X/iSZPpCcf03yuv+S\nXP3mZGCo29UBAAA8oaPBnqqqZkspP53kk0n6k3ygqqrbSym/kuTWqqo+nuQPknyolHJPksdSh3+S\n5OVJfqWUciTJfJJ/WlXVY52slxWmNfa0gz2llPz7Nzwvu/Yfys/f9PWMrl+Tlzxr4xkuEAAAAAA4\na8zNJnd9og703PeZpH8gee4bkuvelYxtT0rpdoUAAABPUuqJV+eG7du3V7fealLXOeMjP5Hsui35\n2a8+7bcYP3Qkb/pvN2fPwenc9J4bcunm4TNYIAAAAACw4k3sTm77v5LbPpgc2JW0tibbfzx54Y8l\nw5u7XR0AANCDSim3VVW1fTF7+zpdDDxtrdHkwEPJ/PzTf4s1q/LBd16XRl/Jj3/wluybmD6DBQIA\nAAAAK1JVJQ9+sf7lwd+8Kvn0v0s2XZ68/Y+T9341ufGfCfUAAABnBcEeVq7W1mRuOpna+4zeZuuG\nofz+O7bn0QOH8+4P3ZbDR+bOUIEAAAAAwIoyM5nc9ofJ796YfODVyd2fSq77yeSnb01+7GPJc74v\n6W90u0oAAIBFE+xh5RoZrdfxHc/4rV500fr8n297QW574PH83P/4Wubnz50RdAAAAADQ8/bek/z1\nLyS/cWXyFz+bpEq+/7eSf/at5LW/mmy6rNsVAgAAPC1+NYGVqzVWr+O7ktFrn/Hbfe/zLsjPv/Y5\n+dX/eWcu2djMz736imf8ngAAAABAlxw+kNz3meSWP0ju/XTS10iuen1y3buSi16SlNLtCgEAAJ4x\nwR5WrieCPTvP2Fv+1MuflQf2Tea/fvqeXLxxKG/ZvvWMvTcAAAAA0EH7dyQ7vpQ8+MVkxxeTR29P\nqvlk7YXJK/9V8qJ3JGvP63aVAAAAZ5RgDyvXmvXJqqHkwK4z9pallPzK66/OzscP5Rdu+kZG163J\nDc/edMbeHwAAAAA4A+Zmk9231yGeB79YB3oWfk64qpmMbU9e/s/rzjyXvDzp96NuAADg3ORvO6xc\npSQjo8n4jjP6tqv6+/LbP/KivOl3bs4//e+35ab33JBnb1l7Rj8DAAAAAFiC6YPJzluSB79Ud+PZ\neWsyM1HfW3thHeC56CXJ1hcn510tyAMAAPQMf/thZWuNJeNnrmPPgpHVq/KBd16XN/zOzfnxP7wl\nH/6pl+aC1poz/jkAAAAAwEmM7zzaiefBLyaPfrMeq5VSB3ee//Zk60uSi16ctLbWvwQIAADQgwR7\nWNlaY8ndn+rIW2/dMJQ/eMf2vO19X8iNv/bp/KMrt+St27fmH1y+OY3+vo58JgAAAAD0pEP7kzv/\nMvnOp+sgz4Gd9fVVzWTs2uTGn6s78oxdl6we6W6tAAAAK4hgDytbayyZeDSZnUkaA2f87Z+/dV0+\n8d4b86e37MhNX9mZT97+aDavHcwbXzSat1y7Nc/eMnzGPxMAAAAAesLMZHLX/0y+eVNyz6eSuZlk\n+Pzk4pcmW3+m7sZz3vOM1QIAADgFf2NiZWuNJamSgw8l6y/pyEc8a/Nw/uX3Xpl//uor8uk7d+d/\n3LYz7//sffm9z9ybF120Lm/dvjXfd80FWbt6VUc+HwAAAADOGbPTyT1/k3zjI8m3/zo5MpWsvSC5\n7l3J896UXPgiY7UAAACWQLCHlW1ktF7Hd3Ys2LNgVX9fvue55+d7nnt+dh88nI/9/a58+Nad+fmb\nvpFf/os78trnnZ+3bt+aF2/bkOKHDwAAAABQm5tN7vtM8s0/S771l8n0eDK0MXn+25Or35xc9NKk\nr6/bVQIAAJyVBHtY2Vpb63V817J+7Ja1q/Pul1+ad934rHx1x/58+Nad+YuvPZSbvrIrF28cyptf\nNJY3XTuWC9etWda6AAAAAGBFmJ9PHvxCHea548+Tqb3J4Ehy5Q8kV78x2fYPkn4dsAEAAJ4pwR5W\ntpEL63V8R1c+vpSSF160Pi+8aH1+8fuvyl/f/nA+fMvO/Manvp3f/Jtv58bLNuct147lVVedl9Wr\n+rtSIwAAAAAsi6pKHvpK8s2b6uPgQ0ljTXLFa5Or35Q8+7uTVau7XSUAAMA5RbCHlW1gqG7be2B5\nO/aczJqB/rzhhWN5wwvH8uC+qXzkth35yG078zN/8vdprVmVH3zBhXnL9q25erTV7VIBAAAA4Mx5\n9I66M883/yx5/L6kb1Vy2auSq/9tcvlrksHhblcIAABwzipVVXW7hjNm+/bt1a233trtMjjTfvfG\nZO35yY/8j25X8iRz81Vu/s7efPjWnfnk7Y9kZnY+V14wkje9aDTffeV5uWRTs9slAgAAAMDS7b0n\nueOjyTf+LNnzraT01eO1rn5TcuX3J2vWd7tCAACAs1Yp5baqqrYvZq+OPax8ra3J4/d3u4qT6u8r\nufGyzbnxss0ZnzqSj39tVz586878u7/6Vv7dX30r2zY184orNueVV2zJ9ds2GNcFAAAAwMq19+7k\n9o8ld3wsefSb9bWLXpp8768nV70+Gd7S3foAAAB6kGAPK19rLLn/c92u4rRaQ6vyoy+9JD/60kty\n/97J/N1du/Ppu/bkj7/0YD74+fuzZlV/brh0Y17xnC15xeWbs3XDULdLBgAAAKDX7bnraJhn9x31\nta0vSV79H5KrXlf/bA4AAICuEexh5WuNJtPjyeEDyeqRblezKJdsauadm7blnS/blkMzc/nivfvy\n6bt259N37c7f3rk7SfLsLcN5Zbubz/ZLNmSg0dflqgEAAADoCbvvrIM8t3+sHrOVklz0kuQ1v1aH\neUYu7HaFAAAAtAn2sPIt/FbQgV1nTbDnWGsG+vPK52zJK5+zJVVV5d69k/n0nbvzd3ftyR/efH9+\n/7P3pTnQn5c9e1Ne+ZwtecUVm3NBa023ywYAAADgXLL7W0c78+y5M3WY56XJa/9jcuXrkpELul0h\nAAAAJyHYw8o30g72jO9MtlzZ3VqeoVJKLt08nEs3D+cnb3xWJqdnc/N36m4+f3fn7vy/dzyaJHnO\n+Wvziiu25JVXbM6LLl6fVf26+QAAAACwBFVVj9a6/WPJHX+e7L0rSUkuflnyvb+eXPkDydrzu10l\nAAAApyHYw8rXOibYc45pDjbyqqvOy6uuOi9VVeXu3RP59J31yK73f/be/O5nvpO1g43cePmm3HjZ\n5rzs0k25aONQt8sGAAAAYCWqquTR24+O2dp3d1L66jDP9e+qO/OsPa/bVQIA/P/t3XmQHOd93vHn\n7Tl2F3sBi2MBLO6D4CVRJCFSJChTluSYknW4KkpEH7KiUuKoSi7bqbgSO0e54qpUxVVJZKd8xC5J\nsWQ78sHIMSPTsmQdtAiKByhKFA+ABAGCuIHFsdhd7O7MdL/54+2efrtnZrEAdnd2F99Pcdjdb7/d\n885gZmdn5tnfCwC4CgR7sPD1rpVMYUkGe3zGGN002KubBnv1Lx/crtHJqvYeHNa39p/Vt189o8d+\neEqStGFFl/ZsX6X7d6zU/dtXaXVvR5tHDgAAAAAAgHkTRdLlc9LoSXe5dCJdvvld6dzBNMzzjk+5\nME/PmnaPGgAAAABwjQj2YOELClLfeunS8XaPZF71dpb00O3r9NDt62St1cEzY9p7cFhPvn5Oj714\nUn++76gkaddgr+7bvlJ7dqzSvdsG1NdZavPIAQAAAAAAcE0q49LoqWxYZ/SUNHpCunQyXj8pRdXc\ngUbqXi0N3ird92np5g9KPavbchMAAAAAALOLYA8Wh76hJV+xZzrGGO0c7NXOwV79sz1bFUZWLx4f\n0d7Xh/XkwXP60jNv6o+efEOFwOgtQ/3as2Ol9mxfpbs2r1BnqdDu4QMAAAAAACARhdKxZ6XXvyld\nPOpCO6OnXHBnaqSxf7lH6l0n9a2TNt8Xr693Va5717v2nkGpwB97AQAAAMBSZKy17R7DrNm9e7fd\nt29fu4eBufDIJ6Xjz0m/9P12j2RBmqyG+t6bF/Td189p78Fh/eDYiMLIqqMYaPeWFbp/+yrt2bFK\nbxnqVyEw7R4uAAAAAADAjaVyWTr0LWn/Y9KrX5UuD7vpsnrXpaGd+noutNPR2+7RAwAAAABmmTHm\nOWvt7hn1JdiDReHrvy499XvSvz8tBUG7R7PgjU5W9czh89p78JyefH1Y+0+NSpJ6O4t6x7aVun/7\nSj2wY5V2rOmRMQR9AAAAAAAAZt3YGRfi2f+YC/XUJqWOfmnnj0k3v1/a8V6ps7/dowQAAAAAtMHV\nBHuYiguLQ/8GKay4v2bqWdPu0Sx4vZ0lveeWQb3nlkFJ0vDYlL77ugv57D14Tl9/+bQkabCvQ3t2\nrNID8WVNX2c7hw0AAAAAALC4nX1VOvA30oG/lY4+I8lK/Ruluz4u7XqftHmPVCy3e5QAAAAAgEWE\nYA8Wh/4NbjlylGDPNVjV06EP3rFeH7xjvSTp6PnL2ntwWE8cHNa39p/Rl793XJJ002CPHtixWu/c\nuUr3bB1Qdwc/IgAAAAAAAFqKQhfgOfCYu5w76NrX3SG961elXe+X1r5FomIyAAAAAOAa8a09Foe+\nIbccOSYN3d3esSwBGweW6eF7NunhezYpiqxePnlJTxwc1hOvDetPnj6iz+89rFLB6M5NK1w1n52r\n9NahfhULTIMGAAAAAABucJXLbmqt/Y+5qbYuD0tBSdrygHTvp1xlnuSP1AAAAAAAuE4Ee7A41Cv2\nHG/vOJagIDC6fahftw/161MPbtdkNdS+Ny7oOwfPau/BYX3m71/Vf//6q+rtLOq+bSv1zp2rtGfH\nKm1d1S3DX5sBAAAAAIAbwegp6bWvuTDPoW9JtUmpo1/a+WPSze+XdrxX6uxv9ygBAAAAAEsQwR4s\nDl0rpNIyV7EHc6qzVNADO12VHkk6P17Rk6+7aj7feW1YX3v5tCRpaHmX9uxYqQd2rtae7Su1sqej\nncMGAAAAAACYPRMXpSN7pUOPS4e+LQ0fcO39G6W7Pu6q8mzeIxXLbR0mAAAAAGDpI9iDxcEYV7Xn\nEsGe+TbQXdYH3rpeH3jrellrdeTcZX3n4LCeeO2s/vbFU/qLfe7f5NZ1fbpv+0rdu3VAb98yoBXd\nfLAFAAAAAAAWieqkdPQpF+Q5/Lh04nnJRlKxS9p8n/S2n5a2v1ta+xb3ORUAAAAAAPOEYA8Wj74h\nKva0mTFGW1Z1a8uqbn3sHZtVCyP98PiI9h501Xz++Kkj+twThyVJN6/t1T1bB3Tv1pW6Z+uAVvdS\n0QcAAAAAACwQUSid+L50+NsuzPPmU1I4JZmCtGG39M5fkbY9KG14u1TkMw0AAAAAQPsQ7MHi0b9B\neu3r7R4FPMVCoDs3rdCdm1boF969U5PVUC8cG9HTh87pmTfO6y/3HdMXv3tEkrRtdbfu3eoq+ty7\nbUDr+rvaPHoAsW2XYQAAIABJREFUAAAAAHDDsFY6e8BV4zn0uPTGE9LUiNu35jbp7Z+Utj4obb5f\n6uxr71gBAAAAAPAQ7MHi0b9RGjst1SrMX75AdZYKumfrgO7ZOiBJqoaRXjw+oqcPn9fTh87pKz84\noS8986YkaeNAVxr02bpSGwe6ZChlDQAAAAAAZsvIMRfiOfRt6fA/SGOnXPvyzdJtH3ZBnq0PSj2r\n2zpMAAAAAACmQ7AHi0f/kCQrjZ6QVmxp92gwAyWvos+nHtyuMLJ65eQlPX34vJ45fE7feOW0HnnO\nTa+2rr8zM3XX9tXdBH0AAAAAAMCVRaF04Q3p9EvSmVekMy9JJ1+QLrjpwrVslbT1R9zUWlsflAa2\ntnW4AAAAAABcDYI9WDz6N7jlyDGCPYtUITC6fahftw/165MPbFUUWR08O6anD53TU4fP68nXz+mv\nv39CkrSqp6zdmwd087pe7Rrs1U1re7V5YJmKhaDNtwIAAAAAALSFtdLYGRfcOf2ydCa57JdqE3En\n4z43GrxNuudfuCDPmlulgM8TAAAAAACLE8EeLB59XrAHS0IQGN002KubBnv1sfu2yFqrw8Pjeubw\neT1z+LyeP3pRf/fyKVnr+peLgXas7tGute6YXWt7dNNgr4aWM40XAAAAAABLytRoXH3n5TTEc/ol\naeJ82qd7jbTmFmn3J1x4Z/BWafXNUrm7feMGAAAAAGCWEezB4tE/5JYEe5YsY4y2re7RttU9evie\nTZKkiUqo18+O6cCpUb16elT7T43qqUPn9FfPH68f19NR1E2DXuAnrvCzqqejXTcFAAAAAADMhLXS\n+UPSieezU2ldfDPtU+p2AZ5bPiCtuc2tD94mda9q37gBAAAAAJgnBHuweJS6pGUrCfbcYLrKhfr0\nXb6RiapeOz2qA6dH9eopt/zqi6f0pWeO1vus7C7HlX3SCj+bBrq1srusIKDCDwAAAAAA885aafg1\n6cgT0ht7pSN7pdGTbl9QlFbulDa8Xbrr51yIZ/BWqX8TU2kBAAAAAG5YBHuwuPRvkC4dv3I/LHn9\nXSXt3jKg3VsG6m3WWg2PVeqVfZLAz1/uO6rxSljvVy4EWtvfqfXLO7W+v0vrlndqXX+X217epXX9\nXerrLDK9FwAAAAAA1yuKpLP7XYDnjSekI09K42fcvp610pY90uY90sZ7pFU3SUWq7wIAAAAA4CPY\ng8Wlb4N04XC7R4EFyhij1b0dWt3boT070nLcUWR1/OKEXj09qmMXJnRiZEInL07qxMUJPX34vE5d\nmlQY2cy5ussFrVvepXX9LvyzfrkLACVBoPX9XeoqF+b7JgIAAAAAsLBFkZtK6429rirPkSely+fc\nvr4N0vYfdUGeLQ9IA9sk/qgGAAAAAIBpEezB4tK/QXrjO65sMx/8YIaCwGjjwDJtHFjWdH8YWZ0d\nndKJkQmduBiHfuLwz8mRCb1yclTDY1MNxy1fVtLavk6t6unQyp6yBrrLWtXToYHuZL2sgW63r7eD\nCkAAAAAAgCUoCqVTL6TTah15Upq86PYt3yTt/HFXlWfLA9LyzXyeAwAAAADAVSLYg8VlYKs0dUn6\nb7uk7e+Rdr5X2vaj0rKBKx8LtFAIjNb2d2ptf6fu2rSiaZ+pWqjTIy78c3JkQifiij+nL03q3HhF\nR49e1rmxisamak2PLxeCeuBnZU9ZK7vLWhmHgPwA0Mrusvq7SurpKKpYCObyZgMAAAAAcPVqU9Kp\nH8bTau2V3nzKfVYjuQo8t3zQhXg275GWb2zvWAEAAAAAWAII9mBxufsTUme/9NrXpQOPST/435IJ\npKG7pR3vdZf1d0oBUyRhdnUUC9q0cpk2rWxe9ScxWQ11fryi8+MVDY9N6fx4RefGKjo3XtG5eHt4\nvKI3zo3r3FhFlythy3MtKxfU01FUb2dRvZ0l9XYW1ddZamhLL6XMsqejqM4SzwUAAAAAwDUKa9Lw\nAen496QT33PL0y9JUdXtX3WTdPs/joM890t969s7XgAAAAAAliBjrW33GGbN7t277b59+9o9DMyX\nKHQfKB38e3c5/pwkK3WtkLa/W9rxY27ZO9jukQItTVRCnRvPBoAuTVQ1OlnT6GS8nEq207axqdq0\noaBEuRCot7OornJB3eV42VHQsnJRy8pu2V0uuPWObJvrW1RXyS2TtmXlogoBpdMBAAAAYEmJIunC\n4WyI59QLUvWy29/RL61/m/uDqqG7pE33ST1r2jtmAAAAAAAWKWPMc9ba3TPqS7AHS8b4OenQt9Kg\nz/hZ1772rWk1n433SIVSe8cJzJJaGGlsygV+Lk1WNZaEfzJBoJrGpqq6XAl1eSrUeKWmiUqo8Uqo\ny5Va3F7T5Wqoq3k5KBcDdRYDdZZc2KezWFBnyW27S6Cu+nra1lkqxO1Bdl8xUKkYqFwIVI6X9e24\nrVQwTE8GAAAAALPBWunS8WyI58T3pakRt7/YJa27Iw3xrL/LTbMV8J4MAAAAAIDZQLAHiCLp9A/j\nkM833HzvNpQ6+qRtD7qQz/b3MNc7ELPWarIaecGfWpMwULycCjVRDTWZuUS5tkiTtVATlXi7FqlS\ni657nIGRSl74xwV+sstywahcDFQMXBioVAhULAQqBcm6WyZBobTd729UCnJ94+10aVSIjy0EbrtY\nCOKlidvSvsXA7QuodgQAAABgvo0P50I8z0vjZ9y+oCgN3ubCO0mIZ/XNUqHY3jEDAAAAALCEEewB\n8iZHpEOPp0GfS8dc++qbXchnYJtU7naX0rLceo9UXiaVuvnLNOA6hJHVVBL2qUWarLr1qZoLAlXC\nSNVavAxdEKgSWlVq6XbaHuXaraZy+2uha6+GkWqRW1bDSLWGtvl9HTRGKgVxGKgeEHLhocagkNtX\n9LaTgFCmb5PzJNtJ32JgVJhpv9x1Z9q9sfvthfz+3HHGEGgCAAAA5kVYk06/KB17Vjr6tHT0Geni\nkXinkVbvyoZ4Bm+TSp1tHTIAAAAAADcagj3AdKyVzh6IQz5fl448KYWVmR1b7HIhn3K3C/qUu9PQ\nT7Je7pG6V0s3/bi05lb3LT6ABctaqzCyLgQUpcEfPwRUDa1qkQsD1eL1sL5uVYuDQmEcFgojq2pk\nFcbt+X2Nx1iF3vldn6h+/oZj43357WpoFVl37tC73lrU/tf6evjHZINAgTEqBFIxCBQEUsG4qkbF\n+j6TOTbwwkLJ/uQcQbw/MEYF42+r3i85xpj0uly76gGkgskGl4KW20G67QenTDYc5a4nO4bMmJIx\nmvj64+30trjxBt4+glIAAACoGz+XhniOPSsdf06qXnb7ete5acmHdktDd0vr3ip19LZ3vAAAAAAA\ngGAPcFWqk9LkRaky7i7Vy1JlTKpcjrfj9srl7HplLO7bbN+oO/fAdumWD0q3fsj9FRxfxAJogyS8\n5Ad9wiYBoVbhotA/Pswenz9vlDtXtr9rDyO5AFKyHqXXEcbrkXe+zL4oDi9l9qW3MbJWkXXnD+M+\nkZVCa70+itvj6/K2F0AGakbqwaQ4NJQEgFoFmfw+pun+OEyUCxIlxyVhJD+IVG/3tpuOK3NdLrCU\nhJ+SIFXzdtXHlpzTxKEmF26SjNI2E98vgbcupUEof7/cf/VQlh8Yy1agSoJbgQqFxmBatg9T7QEA\ngHkQhdLZ/a4Kz9FnpGPPSOcOun1BUVr7FmnjvdKGt7tl/wY+iwAAAAAAYAG6mmAPk2UDpU6ptHZ2\nzzl6Wtr/FemV/yd993ekvb8l9W2QbvmAdMuHpE3vkILC7F4nALRg4gozRX7sXJGNwz1hlA0vhVHz\ncNR0ffLbtkmQyLUrbveCSPWgUbrtjy3Z54eaXHhJ3noyBjVcd/YcVqFNbrtVFKXBqEqYjsEPRlmb\nHX/TcdZvT3qcH9xaTEGqqxH44SOlIaJs6CgNGpkksKT0OCltC0waTirkQlRpBSo/bKVMJapkXxKw\nSsem7LYX1pJ/Lm/Mfj9TH0N6nH8bg8ALiPnHKDtOv08S1MpUtQpMprpWoWlgzKva5e3LV79KA1/p\ndfmSsFh9vUlf4/XNX1dmPVepy686BgDAVZm4KB3fJx2NK/Icf06auuT2LVvlqvHc+bPShnuk9Xe6\nSsIAAAAAAGBJoWIPMNcun5de/aoL+Rz8hhROuQ/fbv4JV8lny49IxXK7RwkAwLzLh5XqgaNI9UpN\n9fBRnAKyVrJKA0Y2afPWozjkZBUv/XV5+20ugGVdlal8lajGPpFCq3oFKn8ZedeVrMf/1W9vdmze\nbfCOk2zmtiTBLb8qlR+Qyt+Xad80rOWqVLkrS8aW7PPv1yi+o/zrst51ZO7/3NhaLZdqkOtaZII/\ncdin0BA+8gNfXnUqZafiSwJI+f3xKZpWmbpSW72CVZN+gfGCT/kxJvvi/zXs90NT8UoS9CoESXgs\nDWkllbsCr7pX08ph+Spi01Tp8kN3ze67IGhe8SsfqMsE0rzrTe6ffCWzevgtvr0maB1o86uTAbgB\nRZE0/Goc5HnahXnO7pdkJRNIa26TNr49rcgzsI1qPAAAAAAALFJMxQUsVFNj0mtfcyGf177mpvPq\n6Jd2PeQq+Wx/N39dBwAAlixrGwNKfvjHSg2Vq5oFvpIqVG7KvWzVq1YVrJK3PUnAKxmPpHq4Km5N\n+3rtVjZzvH9dkb+Mq2D5UwlGuX6hVxnLr6CVnNt64a58MC0zHi80Zr2xJdv18TSZ1jA/9WGr6RBr\nUXYKxHhoDdebjKl+/+bGrSb9Mb18RSyT286HjDLVrPzgWBI+iqtbFZLgVJCdojGthKUm1cCyUzk2\nq8gVtAo8edW50mphaQArPSatYtasb73aWD2Ala2GVQikQhCkUzyaNKyWBNXyVb7yAbck1CWlITQ/\nKOb2elW8cqG2fFhM3v1XD3IF2ftOIth1Qxs760I8x/a55fHvpdV4OvtdFZ6N8WXobqmjt73jBQAA\nAAAAs4ZgD7AYVCelQ9+WXnlUOvCYNHFBKi2TdrxXuvXD0s5/JHX2tXuUAAAAwJxIqkA1qy6VrTSV\nBsD8KQD96QFD75hWVbrSSlhe+Mn6ASnVA2bWX8bHRDadbjATSMuF1RorXjUG2fxj6tW6ouwxyfia\nVc5qVhErnWrRC47Z7NSM/jSMfmCuHj7zzpNWGmtxnVH+37B1f/98/m1Ha62CXUmQqZgLLaXhrCSo\nFdSDXA3TBQbZUFQ9YBX4Fa2yUzf60zQaub5pZStvOkfJVf2KL8k4i/GYstvZftn1IBPW8sNq/hSH\nrYJp9TCbf2w9BJZeXzEOsc2L6qR06oU0xHPsWenim26fKUiDt0kbdktDu91y5U7FdzQAAAAAAFiC\nCPYAi01YlY7slV5+VNr/FWnstFQoS9ve5Sr57Hq/1L2y3aMEAAAAgFmTBH3SEFO2UlU+1GRzIaJ8\n5a50akSbCTdlK2ypoS30wkzJuNwyDV6l22nwKzkgX1UrOVMUN+TDTw1hMM0s2NVY/Ssb2koqa+Vv\nV2StamGrY9Pb6ldP84NkydSN/riSwJvkh7rSqSKTal/VcOF/5hQYqRgEaeCn4Ad/AgVBbn+Q3V8I\njIqFbHipGEhrwxPaNrVfWyZf1qbLL2vd5EEVbE2SdKk8qFO9t+ts3+062/8WXVh+q1RapmIhOT45\nZ7xdCOrXUQzS9VLBXX+pkF53ti3dntcQEwAAAAAAuCKCPcBiFkXuL/deedRdLr4pmUBatUtafVO8\n3CWtuklatVMqdbV7xAAAAAAANJWf1i+MQ0a1KFIYudBRfZ93yW9nwlxXqDiVVqtSrnJVEvqSwiiq\nX0d9Gdrm7VESHGvW36qjNqLtlf3aXjmgXbUD2lV7Vf0alSRdVqde0na9oB36frRDz0fbdSJc3paq\nVUnwp1iIl9NtB2l7qZAGiur9ikE9aJSEiOrBJC+EVA8dJW2FQKUgFzoqeIGkXF8/5FQqmEz4qUBY\nCQAAAACwiBHsAZYKa12p7v1/I518QRo+IF14Q7JR3MFIyzelQZ/Vu9IAUNeKdo4cAAAAAIDFy1pp\n6pI0dsZV1R07na6P5rbHz8QHGWnNLdLQ3em0WmtukYJCw+mTQFItdCEnt8yth1G8jNsjq2qYBqIy\nfaJI1TAJHKXHVaNIYWhV9dortah+PdUwOdYdn/Sphsn+qN4nOV/SnhlbPJ75Vq9MlASCvDBQKa6o\nlISHkqpGjdWXgibVmpr096smxdulTNUmr38hrehUDz55oaV8NaXmU9S5qeiS6w1M2hcAAAAAsPhd\nTbCnONeDAXAdjJHW3eEuieqkdP516ewBafjVdHnocSmcSvt1r8kFfuJl7zp3XgAAAAAAbjS1igvi\nJMGc0VPNwztjZ6TaROPxQVHqGZR61kj9Q9LQndKKLS7Es/5OqbNvRsMIAqNARqWCJDUGfxajpDJS\nLWoMJtUDSZEfCHJ9kkBSEhoKo8gLHKVhpWqYO74eakqDSP71VsMonYouU4HJBZkmqtnKS/UqUg2V\nmaLM7QrbEGDyGSMX+GkIBQUqxFPHFQvpfn+71Gr6OG+75B9byIehsufOBpFahKfiUFV9zN5Ucn6F\nqFLRjbVcyFaLoioTAAAAABDsARafUqc0eJu7+KJQunhEOvuqq+yTLH/4iDQ1kvYr97qKPiu2ug8c\nyz3u0uEvexu3y91u2i8+UAEAAAAALCS1ijR+Ng7sxJfM+tk0rDN5sfk5ugbSwM7Ge92yd23a1jPo\nLp3LpSCY39u3SBgThzaWRk6ppXyAKUwqI+UCTaFfYcmrbpSvuBR6U8U1m5IuqrdH2WnkrLvu/FR3\nSV8/QOVvh5HVZC30xuFNP+eNsR64igNS1bA9gaZ6BaY4CJRMDVdOpoMrBCoXGqsdJYGnpNJRoWBU\nMK0rJPnVkQrG9akvA6PASIFJ+wfGxNvZdmPic8Xtyb7MeAreuLwgVL5PGuAKFMShrfrSiNATAAAA\ncAMh2AMsFUFBGtjmLrseStutdR9g5iv8HN8nTY1JlTGpNjmz6zCFJiGgHqmj1y17B6Xlm6UVm92y\nf6MLIgEAAAAAMFNRJFVGpckR6fI5aeysV2WnSYBn4kLz83T0Sd2rXTBnzS3S1gezIZ1kvXu1VCzP\n723EonWjBJiaiaJs5aNWYaR8kMg/JooUT/GWVlaqJtO7hZEqXjWmZNq4an1aOFeZqZKbKi5Tncla\nTVTDTCgq8sbbNBDVJEi1GARGuZCRcRWdmgSPAmMUBKqHlYI4gJT0T0JJQVwRKoj3Jce57TTglASL\n0m2vv8n2N0YyMnEm0sTbqh9j5M6V9KvvD4yMO8T1lerX0Xws/nXnx3flPq2OScYaBLntuI9MdtuY\n7O1MAljJ+JPbKG+7vp67D/xz5cfebJkZd4tj/PuScBgAAMDiQbAHWOqMcX9l2LtW2vZg8z5h1QV8\nkqBPZVyaGs22Nd0ed+vjw2579KQUVbPn7l0nLd/kBX7i9eWbpP4NUqE09/cBbgxR6D74n7ggTV2S\nOvulvg18QA8AAADMNz+YM+PLRW/9kqQWX6yXe6We1en001vf6dZ71mSDOj1rXNVZALMmCIzKQRIE\nWNrJpigJAcUBoMjKrcftkbWKIrn1yO9n48pK/nbanoSbalF2qrh85aZ6KOkKfdKxeGP0xmHr16/M\nWPLjj6xVaF3/ZF/Svxqm94G16bkiv3/cZuv70nNYK1kl+yQpafP2WysrZdbTYyUl51c6BsweP4QU\nJGEj0xhGqoewJG+/FzBSs2BT4/HJdTaEu3LnnQlrZ/5gyIfR6tW4kgpdXpAtDcgpU40rv78+ynxI\nK3Pfpu3psnVfP5yVbqehNree7pMf4JK7PVJ6/7r7KV7Gv1/5d1tyH6Z9pj/GD40Zk61qZnL3Wb3a\nmR8u8wOHSUBuBq72ae/fr/mwXRpuyz/eTdPHrf/vq8x5G68v3T+z/q0fD2bax5Hf7j+2mj0Xg2a3\ny2Rvb/3xnHscNh9v7v4w+X2N90H++Pw5Wj3lZ9o/85j2Hi2tfkS06p9cj//48MOsBCIBtBPBHgAu\nXNO1wl2uRxS5cM/FI9LFN6ULR9L1N5+SXnxEslHa3wQueLF8U1rlp76+yX0gG1alcMqVVk+WtcnG\ntnBKqk1JYSW3zPWLapIN3Tgif5lbj6ImbWH8CUPoHWPj3/ACud96g9y2ucJ+fzu+T5LrjGreJUzH\n7m/XL1Hz/lHNnbfUlU6nVuqSSt25tmXxpUsqL/O2l8XbXdm2QslViQqK7mIK8XbB2y5efYl6P5wz\neVGauJhdb7qMvwSYutTkhMY9jpZvdEGy/o3u4m939rd+5wAAAAAsZmFNqk1I1QmpejleepfaRPb9\nU8N7qGTf5BXavH1Tl6YP5iQ6+tzv4smyb4O05ja37l+6VsTVdeIwT3nZvNx1AG5sQWAUyKi0tPNL\ni1o2ZOSHirKBoZZ9onQ7DRIlgaXsMZnAUpw0Ss4RZYJLaeApCSS5RXqeJJyUBJnqPer7vP7ebW28\nfdmxNgtdtTomG5qyDdeb3Cb5420yPv/fweZugzK3ufH45NxR5tzp/WZlG4IULc30Y71c+K0xDOfa\nkmkS039jt8/afBguDbw0Dcp4/8Z+OCYbnMm214NtUTbsltzH+X/b7OMIwHzJhH28IFA9YBentPyA\nnR9a9MNXUhrq8oNT+aCX6utumX/u13+GqvnPHredP9Y/SS5IKC9k2OS2JevJvmScfrU+/7YlG9nA\nWvb25e+Demgs3567L/L7GoJ03vmz/WdmpoGu5D67UoW9/P2ZVAX0Q5t+wDN/mxpuR5MQnVrcX7es\n69OH7lg/w1uOhYZgD4DZEwRS/5C7bL6/cX9YlS4djwM/b7rQT7L++jddKGiuFDqkYocLniQhFBPE\n60GTtmQ9yB0TB1aKHW7dmPi3IOsCOdam4SUbxQGhqMl+f9s/PvJCMkXvUnCVZ/JtDcGaJvtl0w/y\nK8mH+Um1pbOu8lJ9/7gLD80a0zzskx+3jVygp2k4x1PslDqXS13L3bJvyH34n2wny84+F/wZOeou\nF49KJ1+Q9j/mvnDwlXtzwZ8NaUWp/o2u2lUwzSd51rovNaoTueVk/CVKi2Vtyj1+CmV3CYrpeqHk\nrbdqL0lBKdte7FiaVbAql90UDJeH3XL8nLd93v37lJa5oFq5O17vcV/6lLtdkC2zHve52uAZMDXm\npgAZPeVes5L1sdNue3zYPb66vYoBPavT6T6643W+kMT1iCJXITGqud+tkiBvWHXtYRLyTfZF2VBy\nlFufyb5k3RQav3DvjL+QL/fyc1WKfy+YctUspy7Fl1F3mYzXo5qbyraj191/HX3xdrwsdxM6Xsis\n9Z5v+edi8hxM9uXD+M0C+rnt+vOuSZ+w6h5f9YDOZe93T79tMl3PV1S9GiaI30eV42Wnt+4tO/u8\n30U70p8L0106+qb/HRsAgCtwFVSkwoy/lgOWrnxoK4q/tY+sneaL7sYvjJt9yZ7Zb0zmusLID5Cl\nlbr8gJkfkqqHo7ygWRjZGb/9mWnYKxOkagij5cNmfkAqF0JrEZ7KV3i5wmbL4xsCfN4J8rchOW9j\ncCwfDstWOJPf1hDWs02Pk81WRvOvM397bK5Ps9vctFLUFfrm27PnTs+XrWDU/PExk6o//pGZ0GH9\nOZWG65JAZJTblwni1e/z5kG/ZiG/Zo/RZsfKpgNu9hxuFXJJb2/jMf7jKYr8IKH/PEhChvHPmOQ+\nyfWXF0JMxp/ermS98d+52fPUPy75Gq3+mG8ZWmr+eE2fX9n9VzLT8KQf4vV/FmcfK62XfiVEq/Rn\nZn6s0z8fm98n/sZPvHUdwZ5FjGAPgPlTKEkrtrhLM9VJaeSYdPENF/YZH44DC/EHxsXOxg+Rk8BO\n/YNk7wPlZH+hxJcjV6NWib8QuJwLBF1O15t++ZCvKhTNvI8x2WBOq2Wp8/puWxS5MNPIMWnkzfjx\ndjTdPvasqxDkC4pS73qpe2X8RUouwFObvL4xzbZCRxxw6ZE6etKwS7knvnTH7T1ee76/tz8oes+f\nOG7vL6Vs25Wea1HoQlf1kM5wNqTTbLs20fxcpuD+gttGLpSWD21diV+VqtyTDQcVO+P9na5iVbHL\nq3g13XZnWv2q2NX6508S8ss8J/JVwmpqqCKW9JfSIFf952C8Xigv7C/XkzBcffrHZArIMTdlR309\nv2/M3cbk3ympPlavKtZs3a88tszdN81q9U5disM6p7zgzilp7JQ0ejpennJjyCuUXQCwZ600sM31\nufCGdPRp91hu9jYxmUKkZ9AFgLrXpOv5aUSKHVd339bDot6yHiiN22pTTYKIfvgw9zOuWTDR/1kY\n1eJwYikbMJ3RdhL6jPcVvOBnErCtX5KfM/n2fB+/Kp7XLv9nVLN1/5PM3M+3Zuv16haTLZZT3nar\nPpNedYypmYV1/OqHC4qJQyotgj/+l/n+vqRaoR+AnvZip++b+2uzdNVcZVvSbt3vPq1COlOj0tRI\ntv16ghSSu0/KSein17v0ZdeT/eUed1xyHzQNbl1le3JfNHsuBoUmz8V8P5MNysu4+yX/3KhXfZnK\nPheSSjCZPn7lzvj50vT6p/k5EUz38yNo8ryrNj4nZzUEf5WCYuPvIEllza4VUt96b79fdbOzsS35\nXaeYD+x0pO+nCnxkBAAAsBjMZ9DNvy6qmgEAMH/M1cxButDt3r3b7tu3r93DAAAsZlOj0sjxuNJP\nHP4ZOeoCP8XO+EuQzvhLk+tZdrovJcNK+qVRWIkv/na1RZ9atn9UdV+6J0GIynguJDGeDUrMSyCp\nSRAoqqllHr7cIy1b6S7dq9L1zHayHHBhLz/AEtbialRJCG3MrVfG0/bKWFqdqjLeYv2yN2WFN03F\nNd0FBfcFmpQN6sz1F/NBMQ021r+cK6UBSL/CUxKEbPnhzzS/K073e2RUc/f3VJOAzky/FA2Kceis\n1335GNWyYcOr/fLcFLJTEMq64E6zf9/SsjSw0zuYLnvXudBN71q37FrROtAW1lxIbey0NHYmvsTr\n42eybZO6pvb7AAANaklEQVQXm5+jGD9+WoV00j9XmVvJY7mYhN060p9nQdH70jtXLWa67QUbUJll\nJnD3Vf3Lc++L8/p2p1e9LanIVkxDT34oqmF9mr5JBb9MBcKit+5VKqxX0mvWFp8jCl2IZTK5XPLW\n48p7ky32T420+19idgSlXOCmLxu46ey7crsJ4p+PfkCoVXAov4z3XevrUktGmSqVMjMITl2noJg+\n9pNgSWa7I/v8yPdJKlMmAaUZBcOuEBozQe55VUq3g0Lrfc2egw3PxRaVN/MVLVv1qYcUAQAAAAAA\nsBQYY56z1u6eSV/+/AoAAF9Hr7TmZneZD8Xy/FxPXlj1AkD54IUXCkqqwzRUAUlOlA8YNGvzamgW\nStnAjn+53opMhaJUiKtAzLakykw96JNMeREvp92eSKsHNEztV5h5mwnSL/qkuIJBxVUuSKbmyKxX\n0ooiYTWtcFBfr7ixJevTmfaLxBb7gkIc1hpw092VexurQvnVo5LpZ5IgT7n7ytVqksexP51gMt1g\ndSIOACXr42klsmRd8kI6a90yCex09F7/F6iFYnrOK6lNuYpimRDQGRf4yVShMVe/zLclX5QnQZ3p\nAovFDtdvLqb58yu7RfGUNUlljJZVWvzpLKfp02zb/1lUX4//1/DzawbrrcI5yX1ab1tib7m6V17b\ncVGYBlT84I9sY6WXaasy+RWYWu1TLnhor64t317uTkM6xY7ZCVcsG7i+48OqF/iJq4k1vGa0ei1p\n1j7D29QsPFMP1vjPvXxb5AVLO9MpcgEAAAAAAABc0Zx/ymyMeUjSb0sqSPqstfa/5PZ3SPqipLsl\nnZP0UWvtG/G+X5P0SUmhpF+01v7dXI8XAIAbQqHkpjjrWt7ukSwOxqTTXWDhWEqP42KH1L/BXW4U\nQSAFZUltCjhifgWFpfN8XQgKJRcOut6A0NVKpucSoRwAAAAAAABgvgRX7nLtjDEFSb8r6X2SbpX0\nU8aYW3PdPinpgrV2h6TPSPrN+NhbJT0s6TZJD0n6vfh8AAAAAAAAAAAAAAAAwJI3p8EeSfdIOmit\nPWStrUj6M0kfzvX5sKQvxOuPSHqPMcbE7X9mrZ2y1h6WdDA+HwAAAAAAAAAAAAAAALDkzXWwZ0jS\nUW/7WNzWtI+1tiZpRNLKGR4rY8zPG2P2GWP2nT17dhaHDgAAAAAAAAAAAAAAALTPXAd75py19g+t\ntbuttbtXr17d7uEAAAAAAAAAAAAAAAAAs2Kugz3HJW30tjfEbU37GGOKkvolnZvhsQAAAAAAAAAA\nAAAAAMCSNNfBnmcl7TTGbDXGlCU9LOnRXJ9HJX08Xv+IpG9aa23c/rAxpsMYs1XSTknPzPF4AQAA\nAAAAAAAAAAAAgAWhOJcnt9bWjDG/IOnvJBUkfd5a+5Ix5jck7bPWPirpc5L+2BhzUNJ5ufCP4n5/\nIellSTVJn7bWhnM5XgAAAAAAAAAAAAAAAGChMK44ztKwe/duu2/fvnYPAwAAAAAAAAAAAAAAAGjK\nGPOctXb3TPrO9VRcAAAAAAAAAAAAAAAAAK4BwR4AAAAAAAAAAAAAAABgASLYAwAAAAAAAAAAAAAA\nACxABHsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEewBAAAAAAAAAAAAAAAAFiCCPQAA\nAAAAAAAAAAAAAMACRLAHAAAAAAAAAAAAAAAAWIAI9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAA\nAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHs\nAQAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAmSste0ew6wxxpyVdKTd40CDVZKG2z0IAMCS\nxesMAGAu8ToDAJhLvM4AAOYKrzEAgLnE68z122ytXT2Tjksq2IOFyRizz1q7u93jAAAsTbzOAADm\nEq8zAIC5xOsMAGCu8BoDAJhLvM7ML6biAgAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAkSw\nB/PhD9s9AADAksbrDABgLvE6AwCYS7zOAADmCq8xAIC5xOvMPDLW2naPAQAAAAAAAAAAAAAAAEAO\nFXsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEezBnDHGPGSMOWCMOWiM+dV2jwcAsLgZ\nYzYaY75ljHnZGPOSMeaX4vYBY8zXjTGvxcsV7R4rAGDxMsYUjDHPG2O+Em9vNcY8Hb+v+XNjTLnd\nYwQALE7GmOXGmEeMMfuNMa8YY+7j/QwAYLYYY/5V/JnZi8aYLxljOnk/AwC4VsaYzxtjzhhjXvTa\nmr5/Mc7/iF9vXjDG3NW+kS9NBHswJ4wxBUm/K+l9km6V9FPGmFvbOyoAwCJXk/SvrbW3SnqHpE/H\nry2/Kukb1tqdkr4RbwMAcK1+SdIr3vZvSvqMtXaHpAuSPtmWUQEAloLflvRVa+3Nku6Qe73h/QwA\n4LoZY4Yk/aKk3dba2yUVJD0s3s8AAK7dH0l6KNfW6v3L+yTtjC8/L+n352mMNwyCPZgr90g6aK09\nZK2tSPozSR9u85gAAIuYtfaktfZ78fqo3IfgQ3KvL1+Iu31B0k+2Z4QAgMXOGLNB0k9I+my8bSS9\nW9IjcRdeZwAA18QY0y/pRyR9TpKstRVr7UXxfgYAMHuKkrqMMUVJyySdFO9nAADXyFr7D5LO55pb\nvX/5sKQvWucpScuNMevmZ6Q3BoI9mCtDko5628fiNgAArpsxZoukOyU9LWnQWnsy3nVK0mCbhgUA\nWPx+S9K/kRTF2yslXbTW1uJt3tcAAK7VVklnJf2veMrHzxpjusX7GQDALLDWHpf0XyW9KRfoGZH0\nnHg/AwCYXa3ev5ANmGMEewAAwKJijOmR9H8k/bK19pK/z1prJdm2DAwAsKgZYz4g6Yy19rl2jwUA\nsCQVJd0l6fettXdKGldu2i3ezwAArpUxZoVctYStktZL6lbj9CkAAMwa3r/ML4I9mCvHJW30tjfE\nbQAAXDNjTEku1POn1tovx82nk5KO8fJMu8YHAFjU9kj6kDHmDbmphN8t6bflSgcX4z68rwEAXKtj\nko5Za5+Otx+RC/rwfgYAMBveK+mwtfastbYq6cty73F4PwMAmE2t3r+QDZhjBHswV56VtNMYs9UY\nU5b0sKRH2zwmAMAiZowxkj4n6RVr7X/3dj0q6ePx+scl/fV8jw0AsPhZa3/NWrvBWrtF7v3LN621\nPyPpW5I+EnfjdQYAcE2stackHTXG7Iqb3iPpZfF+BgAwO96U9A5jzLL4M7TkdYb3MwCA2dTq/cuj\nkn7OOO+QNOJN2YVZYFyFJGD2GWPeL+m3JBUkfd5a+5/bPCQAwCJmjHlA0nck/VBSFDf/O0lPS/oL\nSZskHZH0T62159sySADAkmCMeZekX7HWfsAYs02ugs+ApOcl/ay1dqqd4wMALE7GmLdJ+qyksqRD\nkj4h94eXvJ8BAFw3Y8x/kvRRSTW59y7/XNKQeD8DALgGxpgvSXqXpFWSTkv6dUn/V03ev8Sh0t+R\nmwbysqRPWGv3tWPcSxXBHgAAAAAAAAAAAAAAAGABYiouAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAA\nAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHsAQAAAAAAAAAAAAAAABYg\ngj0AAAAAAAC4LsaYdxljvtLucQAAAAAAACw1BHsAAAAAAAAAAAAAAACABYhgDwAAAAAAwA3CGPOz\nxphnjDHfN8b8gTGmYIwZM8Z8xhjzkjHmG8aY1XHftxljnjLGvGCM+StjzIq4fYcx5u+NMT8wxnzP\nGLM9Pn2PMeYRY8x+Y8yfGmNM224oAAAAAADAEkGwBwAAAAAA4AZgjLlF0kcl7bHWvk1SKOlnJHVL\n2metvU3S45J+PT7ki5L+rbX2rZJ+6LX/qaTftdbeIel+SSfj9jsl/bKkWyVtk7Rnzm8UAAAAAADA\nElds9wAAAAAAAAAwL94j6W5Jz8bFdLoknZEUSfrzuM+fSPqyMaZf0nJr7eNx+xck/aUxplfSkLX2\nryTJWjspSfH5nrHWHou3vy9pi6Qn5v5mAQAAAAAALF0EewAAAAAAAG4MRtIXrLW/lmk05j/m+tlr\nPP+Utx6Kz50AAAAAAACuG1NxAQAAAAAA3Bi+Iekjxpg1kmSMGTDGbJb7fOgjcZ+flvSEtXZE0gVj\nzDvj9o9JetxaOyrpmDHmJ+NzdBhjls3rrQAAAAAAALiB8JdTAAAAAAAANwBr7cvGmP8g6WvGmEBS\nVdKnJY1Luifed0bSR+NDPi7pf8bBnUOSPhG3f0zSHxhjfiM+xz+Zx5sBAAAAAABwQzHWXmt1ZQAA\nAAAAACx2xpgxa21Pu8cBAAAAAACARkzFBQAAAAAAAAAAAAAAACxAVOwBAAAAAAAAAAAAAAAAFiAq\n9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAA\nAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwAP1/Nt8O2ertn9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPUAAAJcCAYAAACb/gMvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+s5Hd93/vXe2fO7M4YB4y9SWtM\n461KkV1oTVi7IBKUhCaxSa9JFHCAkoa2kiNVSKmaohiFOIXmD1fpTWkUSEJSt025QBGUG26ztxhu\njYIaUry4iNjYYBs5eO0m3jqxY/vM+pzZ/dw/9pzN2fX+OMfsd76zex4PyfKZme8cv4/kP596v6u1\nFgAAAAAAAAAAYHHs6HsAAAAAAAAAAADgeKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAAAAA\nAABYMKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAgG2mqh6sqr/T9xwAAAAAnJqoBwAAAAAA\nAAAAFoyoBwAAAAAAAAAAFoyoBwAAAGCbqqqdVfW+qnpk7Z/3VdXOtc8uqar/UlWPV9WfVtXnq2rH\n2mc/W1UPV9WTVfW1qnpdv38JAAAAwPln2PcAAAAAAPTm55K8KslVSVqS30ny7iQ/n+RnkhxIsnvt\n2VclaVX10iTvSHJ1a+2Rqro8yWC+YwMAAACc/2zqAQAAANi+/l6S97bWHm2tHUzyniQ/sfbZapK/\nnOQ7W2urrbXPt9ZaksNJdia5sqqWWmsPttYe6GV6AAAAgPOYqAcAAABg+7o0yR9teP1Ha+8lyS8l\nuT/JbVX1jaq6KUlaa/cn+SdJ/nmSR6vqo1V1aQAAAAA4q0Q9AAAAANvXI0m+c8Prv7L2XlprT7bW\nfqa19leTXJ/kn1bV69Y++3Br7bvXvtuS/Mv5jg0AAABw/hP1AAAAAGxfH0ny7qraXVWXJLk5yYeS\npKr+blX9taqqJE/k6NmtI1X10qr6/qrameRQkmmSIz3NDwAAAHDeEvUAAAAAbF+/mGR/kq8k+cMk\nd669lyQvSfLZJE8l+UKSD7TWbk+yM8ktSf53kj9O8u1J3jXfsQEAAADOf9Va63sGAAAAAAAAAABg\nA5t6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwQz7HuBsueSS\nS9rll1/e9xgAAAAAAAAAAHBSX/rSl/53a233Zp7tNOqpqmuT/JskgyS/1Vq75YTPX5vkfUn+ZpI3\nt9Y+vuGzv5Lkt5K8OElL8vrW2oOn+m9dfvnl2b9//1n/GwAAAAAAAAAA4Gyoqj/a7LOdnd+qqkGS\n9ye5LsmVSd5SVVee8Ng3k7w9yYdP8it+O8kvtdauSHJNkke7mhUAAAAAAAAAABZJl5t6rklyf2vt\nG0lSVR9N8oYkX11/YH3zTlUd2fjFtfhn2Fr7zNpzT3U4JwAAAAAAAAAALJTONvUkeVGShza8PrD2\n3mb89SSPV9V/rqr/WVW/tLb55zhVdWNV7a+q/QcPHjwLIwMAAAAAAAAAQP+63NTzrRgm+Z4kr8jR\nE13/KUfPdP3bjQ+11j6Y5INJsnfv3nbiL1ldXc2BAwdy6NChruft3a5du3LZZZdlaWmp71EAAAAA\nAAAAAPgWdRn1PJzkxRteX7b23mYcSPLlDae7/u8kr8oJUc8Zf8mBA7nwwgtz+eWXp6q28tVzSmst\njz32WA4cOJA9e/b0PQ4AAAAAAAAAAN+iLs9v3ZHkJVW1p6pGSd6c5FNb+O4Lqmr32uvvT/LVrQ5w\n6NChXHzxxed10JMkVZWLL754W2wkAgAAAAAAAADYDjqLelprsyTvSPLpJPck+Vhr7e6qem9VXZ8k\nVXV1VR1I8qYkv1FVd69993CSf5bk/6uqP0xSSX7zucxxvgc967bL3wkAAAAAAAAAsB10eX4rrbV9\nSfad8N7NG36+I0fPcp3su59J8je7nA8AAAAAAAAAABZRl+e3SPL444/nAx/4wJa/9/rXvz6PP/54\nBxMBAAAAAAAAALDoRD0dO1XUM5vNTvu9ffv25QUveEFXYwEAAAAAAAAAsMA6Pb9FctNNN+WBBx7I\nVVddlaWlpezatSsXXXRR7r333nz961/Pj/zIj+Shhx7KoUOH8tM//dO58cYbkySXX3559u/fn6ee\neirXXXddvvu7vzu///u/nxe96EX5nd/5nYzH457/MgAAAAAAAAAAurJtop73/D9356uP/PlZ/Z1X\nXvpt+YX/42+c9plbbrkld911V7785S/nc5/7XH74h384d911V/bs2ZMkufXWW/PCF74w0+k0V199\ndX7sx34sF1988XG/47777stHPvKR/OZv/mZuuOGGfOITn8jb3va2s/q3AAAAAAAAAACwOLZN1LMo\nrrnmmmNBT5L8yq/8Sj75yU8mSR566KHcd999z4p69uzZk6uuuipJ8spXvjIPPvjg3OYFAAAAAAAA\nAGD+tk3Uc6aNOvNywQUXHPv5c5/7XD772c/mC1/4QiaTSb73e783hw4detZ3du7ceeznwWCQ6XQ6\nl1kBAAAAAAAAAOjHjr4HON9deOGFefLJJ0/62RNPPJGLLrook8kk9957b/7gD/5gztMBAAAAAAAA\nALCIts2mnr5cfPHFec1rXpOXvexlGY/H+Y7v+I5jn1177bX59V//9VxxxRV56Utfmle96lU9TgoA\nAAAAAAAAwKKo1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN33b7ewEAAAAAAAAAziVV9aXW2t7N\nPOv8FgAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAA\nAAAALBhRD535+7d+Mb/4X77a9xgAAAAAAAAAAOccUU/HHn/88XzgAx94Tt993/vel+Xl5bM80fz8\nyROH8tCfnbvzAwAAAAAAAAD0RdTTse0c9YxHgyyvHO57DAAAAAAAAACAc86w7wHOdzfddFMeeOCB\nXHXVVfmBH/iBfPu3f3s+9rGP5ZlnnsmP/uiP5j3veU+efvrp3HDDDTlw4EAOHz6cn//5n8+f/Mmf\n5JFHHsn3fd/35ZJLLsntt9/e95+yZZPRIFNRDwAAAAAAAADAlm2fqOf/vSn54z88u7/zL708ue6W\n0z5yyy235K677sqXv/zl3Hbbbfn4xz+eL37xi2mt5frrr8/v/d7v5eDBg7n00kvzu7/7u0mSJ554\nIs9//vPzy7/8y7n99ttzySWXnN2552QyGuTx5dW+xwAAAAAAAAAAOOc4vzVHt912W2677ba84hWv\nyHd913fl3nvvzX333ZeXv/zl+cxnPpOf/dmfzec///k8//nP73vUs2I8Gma6alMPAAAAAAAAAMBW\nbZ9NPWfYqDMPrbW8613vyk/91E8967M777wz+/bty7vf/e687nWvy80339zDhGfXZGmQ5ZVZ32MA\nAAAAAAAAAJxzbOrp2IUXXpgnn3wySfJDP/RDufXWW/PUU08lSR5++OE8+uijeeSRRzKZTPK2t70t\n73znO3PnnXc+67vnovFokOVnbOoBAAAAAAAAANiq7bOppycXX3xxXvOa1+RlL3tZrrvuurz1rW/N\nq1/96iTJ8573vHzoQx/K/fffn3e+853ZsWNHlpaW8mu/9mtJkhtvvDHXXnttLr300tx+++19/hnP\nyWQ0yPLq4bTWUlV9jwMAAAAAAAAAcM6o1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN36L9vb/6\n3+7Lv7rt6/naL16bncNB3+MAAAAAAAAAAPSqqr7UWtu7mWed36Iz49HRRVDTFSe4AAAAAAAAAAC2\nQtRDZyajo9t5lkU9AAAAAAAAAABbct5HPefLebEzWcS/U9QDAAAAAAAAAPDcnNdRz65du/LYY48t\nZPByNrXW8thjj2XXrl19j3Kc8dLRqMf5LQAAAAAAAACArRn2PUCXLrvsshw4cCAHDx7se5TO7dq1\nK5dddlnfYxxnMjr6v9fyyqznSQAAAAAAAAAAzi3nddSztLSUPXv29D3GtjVeP7+1alMPAAAAAAAA\nAMBWnNfnt+jXBTud3wIAAAAAAAAAeC5EPXRmsrR+fkvUAwAAAAAAAACwFaIeOrN+fmu6Mut5EgAA\nAAAAAACAc4uoh85M1qIem3oAAAAAAAAAALZG1ENnxkuiHgAAAAAAAACA50LUQ2d27KjsWtqR6aqo\nBwAAAAAAAABgK0Q9dGoyGmZ5Zdb3GAAAAAAAAAAA5xRRD50aLw2y/IxNPQAAAAAAAAAAWyHqoVOT\n0SDLK6IeAAAAAAAAAICtEPXQqclokOVVUQ8AAAAAAAAAwFaIeujUeDTIdGXW9xgAAAAAAAAAAOcU\nUQ+dmoyGzm8BAAAAAAAAAGyRqIdOHd3UI+oBAAAAAAAAANgKUQ+dmiwNbOoBAAAAAAAAANgiUQ+d\nmowGWV6Z9T0GAAAAAAAAAMA5RdRDp8ajYaarNvUAAAAAAAAAAGyFqIdOXTAaZPVwy+rhI32PAgAA\nAAAAAABwzhD10KnxaJAkWV6xrQcAAAAAAAAAYLNEPXRqMhomSaaiHgAAAAAAAACATRP10KnJsU09\ns54nAQAAAAAAAAA4d4h66JTzWwAAAAAAAAAAWyfqoVPrm3qmq6IeAAAAAAAAAIDNEvXQqfWo5+ln\nnN8CAAAAAAAAANgsUQ+dGi8NkyRT57cAAAAAAAAAADZN1EOn1jf1LIt6AAAAAAAAAAA2rdOop6qu\nraqvVdX9VXXTST5/bVXdWVWzqnrjST7/tqo6UFW/2uWcdOdY1LMq6gEAAAAAAAAA2KzOop6qGiR5\nf5LrklyZ5C1VdeUJj30zyduTfPgUv+ZfJPm9rmake+O1qGe6Mut5EgAAAAAAAACAc0eXm3quSXJ/\na+0brbWVJB9N8oaND7TWHmytfSXJkRO/XFWvTPIdSW7rcEY6NhkNkzi/BQAAAAAAAACwFV1GPS9K\n8tCG1wfW3jujqtqR5P9M8s/O8NyNVbW/qvYfPHjwOQ9KdwY7KqPhjkxFPQAAAAAAAAAAm9Zl1POt\n+MdJ9rXWDpzuodbaB1tre1tre3fv3j2n0diqyWhgUw8AAAAAAAAAwBYMO/zdDyd58YbXl629txmv\nTvI9VfWPkzwvyaiqnmqt3XSWZ2QOJkuiHgAAAAAAAACAregy6rkjyUuqak+OxjxvTvLWzXyxtfb3\n1n+uqrcn2SvoOXdNdg4zXZ31PQYAAAAAAAAAwDmjs/NbrbVZknck+XSSe5J8rLV2d1W9t6quT5Kq\nurqqDiR5U5LfqKq7u5qH/ji/BQAAAAAAAACwNV1u6klrbV+SfSe8d/OGn+/I0bNcp/sd/z7Jv+9g\nPOZk7PwWAAAAAAAAAMCWdLapB9ZNRoNMRT0AAAAAAAAAAJsm6qFzk9EwyyuzvscAAAAAAAAAADhn\niHro3NimHgAAAAAAAACALRH10LnJaJDlVVEPAAAAAAAAAMBmiXro3Hg0yPIzoh4AAAAAAAAAgM0S\n9dC5ydIwK4ePZHb4SN+jAAAAAAAAAACcE0Q9dG4yGiSJE1wAAAAAAAAAAJsk6qFz47WoZ7oi6gEA\nAAAAAAAA2AxRD507tqlH1AMAAAAAAAAAsCmiHjr3F1HPrOdJAAAAAAAAAADODaIeOjceDZM4vwUA\nAAAAAAAAsFmiHjrn/BYAAAAAAAAAwNaIeuicqAcAAAAAAAAAYGtEPXRusn5+a3XW8yQAAAAAAAAA\nAOcGUQ+ds6kHAAAAAAAAAGBrRD10brwW9UxFPQAAAAAAAAAAmyLqoXOTJZt6AAAAAAAAAAC2QtRD\n54aDHRkNdoh6AAAAAAAAAAA2SdTDXIxHg0xXZn2PAQAAAAAAAABwThD1MBeT0cCmHgAAAAAAAACA\nTRL1MBdjUQ8AAAAAAAAAwKaJepiLo5t6nN8CAAAAAAAAANgMUQ9zMVka2tQDAAAAAAAAALBJoh7m\nYjwaZLoq6gEAAAAAAAAA2AxRD3Nx9PyWqAcAAAAAAAAAYDNEPczFeDTIVNQDAAAAAAAAALApoh7m\n4uimnlnfYwAAAAAAAAAAnBNEPczFBaOh81sAAAAAAAAAAJsk6mEuxqNBnpkdyeEjre9RAAAAAAAA\nAAAWnqiHuZiMBkmS6aptPQAAAAAAAAAAZyLqYS7Go2GSZHll1vMkAAAAAAAAAACLT9TDXEyW1jb1\nrNjUAwAAAAAAAABwJqIe5mL9/NayqAcAAAAAAAAA4IxEPczFWNQDAAAAAAAAALBpoh7mYjIaJnF+\nCwAAAAAAAABgM0Q9zMX6+a2nV2Y9TwIAAAAAAAAAsPhEPczF+vktm3oAAAAAAAAAAM5M1MNcrG/q\nWRb1AAAAAAAAAACckaiHuZgsDZMky85vAQAAAAAAAACckaiHuXB+CwAAAAAAAABg80Q9zMVouCPD\nHZXlVVEPAAAAAAAAAMCZiHqYm/FoYFMPAAAAAAAAAMAmiHqYmwtGwyyvzPoeAwAAAAAAAABg4Yl6\nmJvJaJBlm3oAAAAAAAAAAM5I1MPcOL8FAAAAAAAAALA5oh7mxqYeAAAAAAAAAIDNEfUwN+PRMMur\noh4AAAAAAAAAgDMR9TA3k6VBpiuzvscAAAAAAAAAAFh4oh7mxvktAAAAAAAAAIDNEfUwN+PRIFNR\nDwAAAAAAAADAGYl6mBubegAAAAAAAAAANkfUw9yMR8NMVw/nyJHW9ygAAAAAAAAAAAtN1MPcTEaD\nJMl01bYeAAAAAAAAAIDTEfUwN+tRjxNcAAAAAAAAAACnJ+phbsZLa5t6RD0AAAAAAAAAAKcl6mFu\nJqNhkmR5ddbzJAAAAAAAAAAAi63TqKeqrq2qr1XV/VV100k+f21V3VlVs6p644b3r6qqL1TV3VX1\nlar68S7nZD6c3wIAAAAAAAAA2JzOop6qGiR5f5LrklyZ5C1VdeUJj30zyduTfPiE95eT/P3W2t9I\ncm2S91XVC7qalflYj3qc3wIAAAAAAAAAOL1hh7/7miT3t9a+kSRV9dEkb0jy1fUHWmsPrn12ZOMX\nW2tf3/DzI1X1aJLdSR7vcF46duz8lqgHAAAAAAAAAOC0ujy/9aIkD214fWDtvS2pqmuSjJI8cJLP\nbqyq/VW1/+DBg895UOZjfOz81qznSQAAAAAAAAAAFluXUc+3rKr+cpL/mOQftNaOnPh5a+2DrbW9\nrbW9u3fvnv+AbInzWwAAAAAAAAAAm9Nl1PNwkhdveH3Z2nubUlXfluR3k/xca+0PzvJs9GBybFOP\nqAcAAAAAAAAA4HS6jHruSPKSqtpTVaMkb07yqc18ce35Tyb57dbaxzuckTlaP781XRX1AAAAAAAA\nAACcTmdRT2ttluQdST6d5J4kH2ut3V1V762q65Okqq6uqgNJ3pTkN6rq7rWv35DktUneXlVfXvvn\nqq5mZT5Ggx0Z7Kgsr8z6HgUAAAAAAAAAYKENu/zlrbV9Sfad8N7NG36+I0fPcp34vQ8l+VCXszF/\nVZXJ0sD5LQAAAAAAAACAM+jy/BY8y3g0yFTUAwAAAAAAAABwWqIe5moysqkHAAAAAAAAAOBMRD3M\n1Xg0zPLKrO8xAAAAAAAAAAAWmqiHubKpBwAAAAAAAADgzEQ9zJWoBwAAAAAAAADgzEQ9zNV4aZCp\nqAcAAAAAAAAA4LREPczVZDTI8uqs7zEAAAAAAAAAABaaqIe5muwc2tQDAAAAAAAAAHAGoh7marI0\nyLKoBwAAAAAAAADgtEQ9zNVkNMh09XBaa32PAgAAAAAAAACwsEQ9zNV4NExryaHVI32PAgAAAAAA\nAACwsEQ9zNVkNEiSLK/Mep4EAAAAAAAAAGBxiXqYq/GxqOdwz5MAAAAAAAAAACwuUQ9ztb6pZ7oq\n6gEAAAAAAAAAOBVRD3M1sakHAAAAAAAAAOCMRD3M1XhpmCRZXpn1PAkAAAAAAAAAwOIS9TBXx85v\n2dQDAAAAAAAAAHBKoh7maj3qeVrUAwAAAAAAAABwSqIe5mp8bFOP81sAAAAAAAAAAKci6mGuJqNh\nkmTZph4AAAAAAAAAgFMS9TBX6+e3RD0AAAAAAAAAAKcm6mGudg53pCqZinoAAAAAAAAAAE5J1MNc\nVVUuGA1t6gEAAAAAAAAAOA1RD3M3Hg0yXZ31PQYAAAAAAAAAwMIS9TB3k9HAph4AAAAAAAAAgNMQ\n9TB34yVRDwAAAAAAAADA6Yh6mLvJaJCpqAcAAAAAAAAA4JREPczdZDTM8sqs7zEAAAAAAAAAABaW\nqIe5G4+c3wIAAAAAAAAAOB1RD3M3GQ0yXRX1AAAAAAAAAACciqiHuZvY1AMAAAAAAAAAcFqiHuZu\nvDTMVNQDAAAAAAAAAHBKoh7m7uimnllaa32PAgAAAAAAAACwkEQ9zN14NMiRljwzO9L3KAAAAAAA\nAAAAC0nUw9xNRoMkybITXAAAAAAAAAAAJyXqYe7+IuqZ9TwJAAAAAAAAAMBiEvUwd+PRMEkytakH\nAAAAAAAAAOCkRD3M3QXObwEAAAAAAAAAnJaoh7kbi3oAAAAAAAAAAE5L1MPcTdbPb63Oep4EAAAA\nAAAAAGAxiXqYu4lNPQAAAAAAAAAApyXqYe7GS6IeAAAAAAAAAIDTEfUwd+ubeqaiHgAAAAAAAACA\nkxL1MHeT0TCJTT0AAAAAAAAAAKci6mHudi3tSFUyXZn1PQoAAAAAAAAAwEIS9TB3VZXx0sCmHgAA\nAAAAAACAUxD10IvJaJDlVVEPAAAAAAAAAMDJiHroxXg0yNSmHgAAAAAAAACAkxL10IvJ0jBPPzPr\newwAAAAAAAAAgIUk6qEX49EgU+e3AAAAAAAAAABOStRDLyajQZad3wIAAAAAAAAAOClRD70Q9QAA\nAAAAAAAAnJqoh16MR8NMV2Z9jwEAAAAAAAAAsJBEPfTiApt6AAAAAAAAAABOSdRDL8ajQaaiHgAA\nAAAAAACAk+o06qmqa6vqa1V1f1XddJLPX1tVd1bVrKreeMJnP1lV963985Ndzsn8TUaDLK8eTmut\n71EAAAAAAAAAABZOZ1FPVQ2SvD/JdUmuTPKWqrryhMe+meTtST58wndfmOQXkvztJNck+YWquqir\nWZm/yWiYw0daVg4f6XsUAAAAAAAAAICF0+WmnmuS3N9a+0ZrbSXJR5O8YeMDrbUHW2tfSXJi2fFD\nST7TWvvT1tqfJflMkms7nJU5Gy8NksQJLgAAAAAAAACAk+gy6nlRkoc2vD6w9t5Z+25V3VhV+6tq\n/8GDB5/zoMzfZHQ06lkW9QAAAAAAAAAAPEuXUU/nWmsfbK3tba3t3b17d9/jsAVjUQ8AAAAAAAAA\nwCl1GfU8nOTFG15ftvZe19/lHDAZDZM4vwUAAAAAAAAAcDJdRj13JHlJVe2pqlGSNyf51Ca/++kk\nP1hVF1XVRUl+cO09zhN/cX5r1vMkAAAAAAAAAACLp7Oop7U2S/KOHI1x7knysdba3VX13qq6Pkmq\n6uqqOpDkTUl+o6ruXvvunyb5FzkaBt2R5L1r73GeOHZ+a9WmHgAAAAAAAACAEw27/OWttX1J9p3w\n3s0bfr4jR09rney7tya5tcv56M/6ph7ntwAAAAAAAAAAnq3L81twSpOloz3Z0884vwUAAAAAAAAA\ncCJRD71YP781dX4LAAAAAAAAAOBZRD30Yv381rLzWwAAAAAAAAAAzyLqoRfjJVEPAAAAAAAAAMCp\niHroxY4dlfHSINOVWd+jAAAAAAAAAAAsHFEPvZmMBjb1AAAAAAAAAACchKiH3oxHg0xFPQAAAAAA\nAAAAzyLqoTc29QAAAAAAAAAAnJyoh96MR8Msr4p6AAAAAAAAAABOJOqhN5OlQaYrs77HAAAAAAAA\nAABYOKIeeuP8FgAAAAAAAADAyYl66M14NMhU1AMAAAAAAAAA8CyiHnpjUw8AAAAAAAAAwMmJeujN\nZDTM8sqs7zEAAAAAAAAAABaOqIfejEeDTFdt6gEAAAAAAAAAOJGoh95MlgZZPdyyMjvS9ygAAAAA\nAAAAAAtF1ENvxqNBkmS6YlsPAAAAAAAAAMBGoh56MxkNkyTLq7OeJwEAAAAAAAAAWCyiHnozWdvU\ns2xTDwAAAAAAAADAcUQ99Gbi/BYAAAAAAAAAwEmJeujNsfNboh4AAAAAAAAAgOOIeujN+Nj5rVnP\nkwAAAAAAAAAALBZRD71xfgsAAAAAAAAA4OREPfRmcmxTj6gHAAAAAAAAAGAjUQ+9OXZ+a1XUAwAA\nAAAAAACwkaiH3kxGwyTJdGXW8yQAAAAAAAAAAItF1ENvxkvObwEAAAAAAAAAnIyoh94MdlR2Dndk\nKuoBAAAAAAAAADiOqIdeTUYDm3oAAAAAAAAAAE4g6qFXk9FQ1AMAAAAAAAAAcAJRD70ajwaZrs76\nHgMAAAAAAAAAYKGIeujVZDTI08/Y1AMAAAAAAAAAsJGoh16NlwaZOr8FAAAAAAAAAHAcUQ+9mowG\nWXZ+CwAAAAAAAADgOKIeejXZOcyyTT0AAAAAAAAAAMcR9dCrifNbAAAAAAAAAADPIuqhV5PRwKYe\nAAAAAAAAAIATiHro1Xg0tKkHAAAAAAAAAOAEoh56NRkNsnL4SGaHj/Q9CgAAAAAAAADAwhD10KvJ\naJAkWV61rQcAAAAAAAAAYJ2oh16N16IeJ7gAAAAAAAAAAP6CqIdeHdvUI+oBAAAAAAAAADhG1EOv\nxkvDJMnyyqznSQAAAAAAAAAAFoeoh15NnN8CAAAAAAAAAHgWUQ+9cn4LAAAAAAAAAODZRD30aizq\nAQAAAAAAAAB4FlEPvZqMhkmS6eqs50kAAAAAAAAAABaHqIderZ/fevoZm3oAAAAAAAAAANaJeujV\n+vmtqfNbAAAAAAAAAADHiHro1WTpaNSzLOoBAAAAAAAAADhG1EOvhoMdGQ13ZHl11vcoAAAAAAAA\nAAALQ9RD7yajgfNbAAAAAAAAAAAbiHro3WRp4PwWAAAAAAAAAMAGoh56N7apBwAAAAAAAADgOKIe\nejcZDbO8Mut7DAAAAAAAAACAhdFp1FNV11bV16rq/qq66SSf76yq/7T2+f+oqsvX3l+qqv9QVX9Y\nVfdU1bu6nJN+jUfObwEAAAARBxskAAAgAElEQVQAAAAAbNRZ1FNVgyTvT3JdkiuTvKWqrjzhsX+U\n5M9aa38tyb9O8i/X3n9Tkp2ttZcneWWSn1oPfjj/TEaDTFdFPQAAAAAAAAAA67rc1HNNkvtba99o\nra0k+WiSN5zwzBuS/Ie1nz+e5HVVVUlakguqaphknGQlyZ93OCs9mtjUAwAAAAAAAABwnC6jnhcl\neWjD6wNr7530mdbaLMkTSS7O0cDn6ST/K8k3k/yr1tqfnvgfqKobq2p/Ve0/ePDg2f8LmIvx0jBT\nUQ8AAAAAAAAAwDFdRj3fimuSHE5yaZI9SX6mqv7qiQ+11j7YWtvbWtu7e/fuec/IWXJ0U8+s7zEA\nAAAAAAAAABZGl1HPw0levOH1ZWvvnfSZtVNbz0/yWJK3JvmvrbXV1tqjSf57kr0dzkqPnN8CAAAA\nAAAAADhel1HPHUleUlV7qmqU5M1JPnXCM59K8pNrP78xyX9rrbUcPbn1/UlSVRckeVWSezuclR6N\nR4M8MzuSw0da36MAAAAAAAAAACyEzqKe1tosyTuSfDrJPUk+1lq7u6reW1XXrz32b5NcXFX3J/mn\nSW5ae//9SZ5XVXfnaBz071prX+lqVvo1GQ2SJNNV23oAAAAAAAAAAJJkuJmHquqnk/y7JE8m+a0k\nr0hyU2vtttN9r7W2L8m+E967ecPPh5K86STfe+pk73N+Go+O/m+4/Mwsz9u5qf8lAQAAAAAAAADO\na5vd1PMPW2t/nuQHk1yU5CeS3NLZVGwrF6xt6llesakHAAAAAAAAACDZfNRTa/9+fZL/2Fq7e8N7\n8C2ZiHoAAAAAAAAAAI6z2ajnS1V1W45GPZ+uqguTHOluLLaT9fNb09VZz5MAAAAAAAAAACyG4Saf\n+0dJrkryjdbaclW9MMk/6G4sthObegAAAAAAAAAAjrfZTT2vTvK11trjVfW2JO9O8kR3Y7GdjJdE\nPQAAAAAAAAAAG2026vm1JMtV9beS/EySB5L8dmdTsa2sb+qZinoAAAAAAAAAAJJsPuqZtdZakjck\n+dXW2vuTXNjdWGwnk9HRK3A29QAAAAAAAAAAHDXc5HNPVtW7kvxEku+pqh1Jlrobi+1kPFo/vzXr\neRIAAAAAAAAAgMWw2U09P57kmST/sLX2x0kuS/JLnU3FtuL8FgAAAAAAAADA8TYV9ayFPP9XkudX\n1d9Ncqi19tudTsa2sTTYkaVBZXlV1AMAAAAAAAAAkGwy6qmqG5J8McmbktyQ5H9U1Ru7HIztZbw0\nsKkHAAAAAAAAAGDNcJPP/VySq1trjyZJVe1O8tkkH+9qMLaXyWiY5ZVZ32MAAAAAAAAAACyETW3q\nSbJjPehZ89gWvgtnNBkNsmxTDwAAAAAAAABAks1v6vmvVfXpJB9Ze/3jSfZ1MxLb0Xjk/BYAAAAA\nAAAAwLpNRT2ttXdW1Y8lec3aWx9srX2yu7HYbiajQZ52fgsAAAAAAAAAIMnmN/WktfaJJJ/ocBa2\nsclomMeXV/oeAwAAAAAAAABgIZw26qmqJ5O0k32UpLXWvq2Tqdh2JqNBHnnc+S0AAAAAAAAAgOQM\nUU9r7cJ5DcL2Nh4Nsrwi6gEAAAAAAAAASJIdfQ8AydFNPdNVUQ8AAAAAAAAAQCLqYUFMRsMsr8z6\nHgMAAAAAAAAAYCGIelgI46VBDq0eyZEjre9RAAAAAAAAAAB6J+phIUxGgyRxguv/Z+/eYyTLDvsw\n/05VdXVXzWvfXIq7JJfa5TAUGVnWglT0iiRSNncDhxZEwZQdiDGIMH4QQRAkDhMggqIYQSTAFmyI\nSkCJAhQpBiUIMLSAliISU7Ilh6a4skIJVLTU8iHvkiKzL+7OTPd0V3Xd/HGru6urqx8z0zV1Z+v7\nsBf33HPOvffUo1+1vzkHAAAAAAAAACBCPTTETqhnfUuoBwAAAAAAAABAqIdG6HU7SZINoR4AAAAA\nAAAAAKEemmF3pp7BcMEjAQAAAAAAAABYPKEeGqFn+S0AAAAAAAAAgF1CPTRCf6UO9Vh+CwAAAAAA\nAABAqIeG6Hc7SczUAwAAAAAAAACQCPXQEHvLbw0XPBIAAAAAAAAAgMUT6qER+l3LbwEAAAAAAAAA\n7BDqoRHOjJffuiLUAwAAAAAAAAAg1EMz9HZn6rH8FgAAAAAAAACAUA+N0O200mmVrJupBwAAAAAA\nAABAqIfm6HXbQj0AAAAAAAAAABHqoUH63XY2hHoAAAAAAAAAAIR6aI5+t5P1gVAPAAAAAAAAAIBQ\nD43RW2lnY2u46GEAAAAAAAAAACycUA+N0e+2s275LQAAAAAAAAAAoR6aoyfUAwAAAAAAAACQRKiH\nBul329kQ6gEAAAAAAAAAEOqhOfrdTtYHw0UPAwAAAAAAAABg4YR6aIyemXoAAAAAAAAAAJII9dAg\n/ZV21oV6AAAAAAAAAACEemiOfredjcF2qqpa9FAAAAAAAAAAABZKqIfG6HU7qark6mC06KEAAAAA\nAAAAACyUUA+NcWa1nSS5sjVc8EgAAAAAAAAAABZLqIfG6K3UoZ6Nre0FjwQAAAAAAAAAYLGEemiM\nfreTJFkX6gEAAAAAAAAAlpxQD43R79Yz9axbfgsAAAAAAAAAWHJCPTRGr2v5LQAAAAAAAACARKiH\nBtmbqUeoBwAAAAAAAABYbkI9NMZuqGcg1AMAAAAAAAAALDehHhqj1+0kSTa2hgseCQAAAAAAAADA\nYgn10Bj9FctvAQAAAAAAAAAkQj00SK8r1AMAAAAAAAAAkAj10CCrnVZaJdkQ6gEAAAAAAAAAltxc\nQz2llHeVUp4spTxVSvnQjPbVUsqvjts/XUp5/UTbv19K+VQp5XOllD8upazNc6wsXikl/W7HTD0A\nAAAAAAAAwNKbW6inlNJO8uEkjyR5c5IfLaW8earb+5O8WFXVg0l+JslPjc/tJPmVJH+nqqpvSfJ9\nSQbzGivN0eu2szEYLnoYAAAAAAAAAAALNc+Zet6W5Kmqqr5YVdVWko8lefdUn3cn+aVx+deTvKOU\nUpL8lSR/VFXVZ5Okqqrnq6oyfcsS6HfbZuoBAAAAAAAAAJbePEM9r0ny9MTxM+O6mX2qqhomeSnJ\nnUnemKQqpXyilPJvSyn/YNYNSikfKKU8UUp54tlnnz31B8DN11sR6gEAAAAAAAAAmGeo50Z0knx3\nkr813v9QKeUd052qqvpIVVUPV1X18N13332zx8gc9LvtbAj1AAAAAAAAAABLbp6hnq8kuX/i+L5x\n3cw+pZROkgtJnk89q8+/qqrquaqq1pM8nuQvz3GsNMSZ1U6ubA0XPQwAAAAAAAAAgIWaZ6jnM0ke\nKqU8UErpJnlvksem+jyW5H3j8nuSfLKqqirJJ5K8tZTSH4d9/sMkfzLHsdIQvRUz9QAAAAAAAAAA\ndOZ14aqqhqWUD6YO6LST/GJVVZ8rpfxkkieqqnosyUeT/HIp5akkL6QO/qSqqhdLKf84dTCoSvJ4\nVVW/Oa+x0hz9bjvrQj0AAAAAAAAAwJKbW6gnSaqqejz10lmTdT8+Ub6a5EcOOfdXkvzKPMdH8/S6\nHaEeAAAAAAAAAGDpzXP5Lbhm/W47G1vDRQ8DAAAAAAAAAGChhHpolH63nfXBdqqqWvRQAAAAAAAA\nAAAWRqiHRul126mqZHM4WvRQAAAAAAAAAAAWRqiHRumvtJMk61vbCx4JAAAAAAAAAMDiCPXQKP1u\nJ0myvjVc8EgAAAAAAAAAABZHqIdG6XXrmXo2zNQDAAAAAAAAACwxoR4apd+1/BYAAAAAAAAAgFAP\njdIT6gEAAAAAAAAAEOqhWfrdTpJkYzBc8EgAAAAAAAAAABZHqIdGsfwWAAAAAAAAAIBQDw3TWxHq\nAQAAAAAAAAAQ6qFRzqyOl98S6gEAAAAAAAAAlphQD42ys/zWla3hgkcCAAAAAAAAALA4Qj00ymqn\nlVLM1AMAAAAAAAAALDehHhqllJL+SjvrQj0AAAAAAAAAwBIT6qFxet2OUA8AAAAAAAAAsNSEemic\nfredja3hoocBAAAAAAAAALAwQj00Tr9r+S0AAAAAAAAAYLkJ9dA4vW47GwOhHgAAAAAAAABgeQn1\n0Dhm6gEAAAAAAAAAlp1QD43TW+kI9QAAAAAAAAAAS02oh8bpd9vZ2BouehgAAAAAAAAAAAsj1EPj\nWH4LAAAAAAAAAFh2Qj00Tq/bzoZQDwAAAAAAAACwxIR6aJx+t531wXaqqlr0UAAAAAAAAAAAFkKo\nh8bpdzvZHlXZ2h4teigAAAAAAAAAAAsh1EPj9LvtJLEEFwAAAAAAAACwtIR6aJydUM8VoR4AAAAA\nAAAAYEkJ9dA4vW4nSbKxNVzwSAAAAAAAAAAAFkOoh8bpr9Qz9aybqQcAAAAAAAAAWFJCPTTOzvJb\nQj0AAAAAAAAAwLIS6qFxeuNQz4ZQDwAAAAAAAACwpIR6aJx+t5PETD0AAAAAAAAAwPIS6qFx9pbf\nGi54JAAAAAAAAAAAiyHUQ+PsLr81MFMPAAAAAAAAALCchHponL2ZeoR6AAAAAAAAAIDlJNRD46x1\nhHoAAAAAAAAAgOUm1EPjtFolvZV2NraGix4KAAAAAAAAAMBCCPXQSP1u20w9AAAAAAAAAMDSEuqh\nkXrddjaEegAAAAAAAACAJSXUQyOZqQcAAAAAAAAAWGZCPTRSv9vJ+kCoBwAAAAAAAABYTkI9NFK/\n287G1nDRwwAAAAAAAAAAWAihHhqp323nyqaZegAAAAAAAACA5STUQyP1up1sWH4LAAAAAAAAAFhS\nQj00Un+lnXXLbwEAAAAAAAAAS0qoh0bqddtZ3zJTDwAAAAAAAACwnIR6aKR+t50NoR4AAAAAAAAA\nYEkJ9dBI/W47w1GVreFo0UMBAAAAAAAAALjphHpopF63kyRm6wEAAAAAAAAAlpJQD43U77aTJOuD\n4YJHAgAAAAAAAABw8wn10Ei7oR4z9QAAAAAAAAAAS0ioh0bqrdShHstvAQAAAAAAAADLSKiHRup3\nO0nM1AMAAAAAAAAALCehHhqpt7v81nDBIwEAAAAAAAAAuPnmGuoppbyrlPJkKeWpUsqHZrSvllJ+\nddz+6VLK66faX1tKuVxK+a/nOU6ap9+1/BYAAAAAAAAAsLzmFuoppbSTfDjJI0nenORHSylvnur2\n/iQvVlX1YJKfSfJTU+3/OMnH5zVGmuuM5bcAAAAAAAAAgCU2z5l63pbkqaqqvlhV1VaSjyV591Sf\ndyf5pXH515O8o5RSkqSU8teTfCnJ5+Y4Rhpqd/mtgVAPAAAAAAAAALB85hnqeU2SpyeOnxnXzexT\nVdUwyUtJ7iylnE3y3yb5H4+6QSnlA6WUJ0opTzz77LOnNnAWb2/5reGCRwIAAAAAAAAAcPPNM9Rz\nI34iyc9UVXX5qE5VVX2kqqqHq6p6+O677745I+Om6K3UoZ4rm2bqAQAAAAAAAACWT2eO1/5Kkvsn\nju8b183q80wppZPkQpLnk7w9yXtKKT+d5LYko1LK1aqqfnaO46VBWq2StZVWNiy/BQAAAAAAAAAs\noXmGej6T5KFSygOpwzvvTfI3p/o8luR9ST6V5D1JPllVVZXke3Y6lFJ+IsllgZ7l0+92sm75LQAA\nAAAAAABgCc0t1FNV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQOvgDSeoluNa3\nzNQDAAAAAAAAACyfec7Uk6qqHk/y+FTdj0+Uryb5kWOu8RNzGRyN1++2syHUAwAAAAAAAAAsodai\nBwCH6XfN1AMAAAAAAAAALCehHhqrZ6YeAAAAAAAAAGBJCfXQWP1uJ+uD4aKHAQAAAAAAAABw0wn1\n0Fg9y28BAAAAAAAAAEtKqIfG6q9YfgsAAAAAAAAAWE5CPTRW30w9AAAAAAAAAMCSEuqhsXrdjpl6\nAAAAAAAAAIClJNRDY53ptrO1Pcpwe7TooQAAAAAAAAAA3FRCPTRWr9tOkqwPzNYDAAAAAAAAACwX\noR4aq9/tJIkluAAAAAAAAACApSPUQ2P1xzP1XNkcLngkAAAAAAAAAAA3l1APjbW7/JaZegAAAAAA\nAACAJSPUQ2PtzNSzMRDqAQAAAAAAAACWi1APjdU3Uw8AAAAAAAAAsKSEemis3konSbKxNVzwSAAA\nAAAAAAAAbi6hHhrLTD0AAAAAAAAAwLIS6qGxhHoAAAAAAAAAgGUl1ENj9cahng2hHgAAAAAAAABg\nyQj10Fj9bieJmXoAAAAAAAAAgOUj1ENjtVsl3U4r64PhoocCAAAAAAAAAHBTCfXQaP1u2/JbAAAA\nAAAAAMDSEeqh0forbctvAQAAAAAAAABLR6iHRuuvdszUAwAAAAAAAAAsHaEeGq3fbWd9a7joYQAA\nAAAAAAAA3FRCPTRaz/JbAAAAAAAAAMASEuqh0frddjYGQj0AAAAAAAAAwHIR6qHR+t1OrmxafgsA\nAAAAAAAAWC5CPTRar9vOhuW3AAAAAAAAAIAlI9RDo/W77axbfgsAAAAAAAAAWDJCPTRar9vOupl6\nAAAAAAAAAIAlI9RDo/VXOtkajrI9qhY9FAAAAAAAAACAm0aoh0brd9tJkvWt4YJHAgAAAAAAAABw\n8wj10Gi9cahnwxJcAAAAAAAAAMASEeqh0fZm6hHqAQAAAAAAAACWh1APjSbUAwAAAAAAAAAsI6Ee\nGq3X7SRJNgbDBY8EAAAAAAAAAODmEeqh0czUAwAAAAAAAAAsI6EeGk2oBwAAAAAAAABYRkI9NFp/\nZ/ktoR4AAAAAAAAAYIkI9dBoZuoBAAAAAAAAAJaRUA+N1tsN9QwXPBIAAAAAAAAAgJtHqIdG66+Y\nqQcAAAAAAAAAWD5CPTRap91Kt90S6gEAAAAAAAAAlopQD43X67azYfktAAAAAAAAAGCJCPXQeP1u\n20w9AAAAAAAAAMBSEeqh8XrddtYHQj0AAAAAAAAAwPIQ6qHx+t12NszUAwAAAAAAAAAsEaEeGq+/\n0sn61nDRwwAAAAAAAAAAuGmEemi8npl6AAAAAAAAAIAlI9RD4/W77awL9QAAAAAAAAAAS0Soh8br\nCfUAAAAAAAAAAEtGqIfG63fb2RgI9QAAAAAAAAAAy0Ooh8Y70+1kfWu46GEAAAAAAAAAANw0Qj3M\nR1Ulv/uPks9+7IYv1eu2c3UwymhUncLAAAAAAAAAAACaT6iH+Sgl+dPfTH7/52/4Uv1uO0kswQUA\nAAAAAAAALA2hHubn4iPJV55ILn39hi7T63aSJOtbQj0AAAAAAAAAwHKYa6inlPKuUsqTpZSnSikf\nmtG+Wkr51XH7p0sprx/X/2Ap5Q9KKX883v/APMfJnFx8tN5//rdu6DL9lfFMPUI9AAAAAAAAAMCS\nmFuop5TSTvLhJI8keXOSHy2lvHmq2/uTvFhV1YNJfibJT43rn0vy16qqemuS9yX55XmNkzm6583J\nba9Nnnz8hi6zs/zWla3haYwKAAAAAAAAAKDx5jlTz9uSPFVV1RerqtpK8rEk757q8+4kvzQu/3qS\nd5RSSlVVf1hV1VfH9Z9L0iulrM5xrMxDKfVsPV/8nWTrynVfpjcO9Vh+CwAAAAAAAABYFvMM9bwm\nydMTx8+M62b2qapqmOSlJHdO9fnhJP+2qqrN6RuUUj5QSnmilPLEs88+e2oD5xRdfDQZXq2DPdep\n3+0ksfwWAAAAAAAAALA85hnquWGllG9JvSTXfz6rvaqqj1RV9XBVVQ/ffffdN3dwnMzrvjNZvXBD\nS3D1d2fqsfwWAAAAAAAAALAc5hnq+UqS+yeO7xvXzexTSukkuZDk+fHxfUn+eZIfq6rqC3McJ/PU\nXkke+sHkyd9KRtc3087O8lsbAzP1AAAAAAAAAADLYZ6hns8keaiU8kAppZvkvUkem+rzWJL3jcvv\nSfLJqqqqUsptSX4zyYeqqvrXcxwjN8PFR5L155Kv/MF1nb43U49QDwAAAAAAAACwHOYW6qmqapjk\ng0k+keT/TfJrVVV9rpTyk6WU/3jc7aNJ7iylPJXkv0ryoXH9B5M8mOTHSyn/z3i7Z15jZc4efGfS\n6lz3Elz9lU4SoR4AAAAAAAAAYHl05nnxqqoeT/L4VN2PT5SvJvmRGef9wyT/cJ5j4ybq3Za87ruS\nP308eedPXPvpO8tvbQ1Pd1wAAAAAAAAAAA01z+W3YM/FR5Pnnkye/8I1n9rttNJpFTP1AAAAAAAA\nAABLQ6iHm+PiI/X+yY9f1+m9bluoBwAAAAAAAABYGkI93By3vy551VuuO9TT77azIdQDAAAAAAAA\nACwJoR5unouPJP/uU8n6C9d86pluJ+sDoR4AAAAAAAAAYDkI9XDzXHwkqbaTP/s/r/nUXredja3h\nHAYFAAAAAAAAANA8Qj3cPK/+tuTsvcmTj1/zqf1uO+uW3wIAAAAAAAAAloRQDzdPq5VcfFfy1L9I\nhpvXdGqv2xHqAQAAAAAAAACWhlAPN9fFR5OtS8mXf/eaTuuvtLMh1AMAAAAAAAAALAmhHm6uB743\nWeknT378mk7rd9u5sjWc06AAAAAAAAAAAJpFqIeba6WXfPMP1KGeqjrxab2umXoAAAAAAAAAgOUh\n1MPNd/HR5OWvJF/7oxOf0u+2sy7UAwAAAAAAAAAsCaEebr43/tUk5ZqW4Op1O9kYbGc0OvnsPgAA\nAAAAAAAAtyqhHm6+M3cl9789efLxE5/S77aTJFeHZusBAAAAAAAAAF75hHpYjIuPJH/x2eSlr5yo\n+06oxxJcAAAAAAAAAMAyEOphMS4+Wu9POFtPb6UO9WwI9QAAAAAAAAAAS0Coh8W466Hkjm9Onvz4\nibr3u50kZuoBAAAAAAAAAJaDUA+LUUrypkeTL/2r5OrLx3bfW35rOO+RAQAAAAAAAAAsnFAPi3Px\n0WQ0SL7wyWO79rqW3wIAAAAAAAAAlodQD4tz39uS3h0nWoLrjOW3AAAAAAAAAIAlItTD4rQ7yRv/\navJnn0i2j15Wa2emnvWBUA8AAAAAAAAA8Mon1MNiXXwk2XgxefrTR3br7y6/dXT4BwAAAAAAAADg\nlUCoh8X65h9I2t3kyceP7LYT6rH8FgAAAAAAAACwDIR6WKzVc8kD31uHeqrq0G49oR4AAAAAAAAA\nYIkI9bB4Fx9JXvhi8tznD+3SbbfSbpWsW34LAAAAAAAAAFgCQj0s3hsfqfdHLMFVSkl/pW2mHgAA\nAAAAAABgKQj1sHgXXpO8+i8lT378yG69bjsbQj0AAAAAAAAAwBIQ6qEZLj6aPP37yeVnD+3S75qp\nBwAAAAAAAABYDkI9NMPFR5JUyZ994tAuvW5HqAcAAAAAAAAAWApCPTTDvW9Nzt935BJc/W47G4Ph\nTRwUAAAAAAAAAMBiCPXQDKXUs/V84ZPJYGNmF8tvAQAAAAAAAADLorPoAcCui48kn/n55Iv/Mrn4\nrgPNvZV2nr20uYCBAQAAAAAAAMAcbQ+TjReS4dVke5Bsb423Gyzf/kDyHX9n0Y+O6yTUQ3O8/nuS\n7rnkycdnhnrM1AMAAAAAAADALWV7mFx5Nrn0F8nlr9f7S1/b2y6P91eeTarR6dyz1Una3aS9krzu\nu4V6bmFCPTRHp5s89M7k87+VjEZJa//qcL1uR6gHAAAAAAAAgPmqqjpgU1VJqon9VN3mpb2QzuWv\nXUNYpyRn7k7O3Vtvr/7W5Oy9ydl7kpXeXiCn3b32cmvlwP9r59Yl1EOzXHw0+dw/T776h8l9376v\n6Uy3nY2t4YIGBgAAAAAAAPAKV1X18k9XX042Xx7vX6rDK/vqJtquvpxsXalDJZ218bZa71emjo9t\n7+2VUyWD9WSwUe+3JsqDjWRwZbyfbF+fqLsy1X9jL5RTjbI/rDNRd0MOCeucuzc59+rk3Kvq/Zl7\nkra4BsfzLqFZHnxnUtr1ElxToZ5+t531wXaqqkopZUEDBAAAAAAAALhOVZVsb9XBmeF4v72VDDcn\nyjPaRsNxIGW7XvVkt7x9gvrtcWhlp7ydDK6OgzkvHQzqjAbHP47uuWTtfLJ6vt6vnU+2B3W4Z/35\n8WO4Wo99MC5vb87hCS1J90w9u81KL1nZKffrcM1OeaVfB4Varfqc0kpKGZcn9qV1sG63bUZd96yw\nDnPl3USz9O9IXvedyZMfT97xP+xr6nU79Qxmw1HWVtoLGiAAAAAAAACQ7UEdCLn6UnL1G/V+4xsT\ndeOwyE64ZHfpokwdV0ccV7Pbk+ybUeVU6g7pc63HSR3AGW7ubdtT5ZuhtOrJFEorabUnyuP6ztpe\nKOfsq5I7H9of0lk9n6xdmDoe71fP1de8VqPROKS0sRdiGkyEf3aDQOPjZBzIGQdzuv39xyv9elYf\nE0LwCibUQ/NcfCT5xH+fvPjl5PbX71b3u/UPhvWtbaEeAAAAAAAArl9V1TOKbF1ONi8nW5fG+/Hx\n4Erdr9WpAxCt9l4wotWeqG/t71PGbTvBiVZnr74ajZcBml4iaNayQUf1G5eHm/WMIJPLFXVW68DD\nrKWOVqb6TZ63swTSaHt/SGdymw7s7DxHh2l1xuGPlakZUFpTs560DmmfPM7BGVSSqTDHadZNzs4y\n2a0c0X/iuLSnnuvVpL2adLp1Xbs7o2116nit7r9zXquzF9RpjQM6BwI7O+WSRgZdWq2kNX6/ASci\n1EPz7IR6nvx48h1/d7e6Nw71/OnXXs53fvNdixodAAAAAABwWkajOjyw/kKy8WL9P667Z+ulVLpn\n6mVUWq1Fj7IOgAw369klUvaHO3b/J/scxrk9rGe12N6qZ0U5UXlzvGzPxv6ZL46aDWNm++beNUbb\nSXul3lqT+87EcWfcp7tXPtBnZe8607OG7HsujwostGb0bdfLBR0I51yaHdjZGm/V6PRfsxtVWhPL\nB03NTnLm7uS2qRlKtgezX9fBRv11ddjrfbLB1DO17Gy925K7Hhwf3za1n+q3dqEeYxODJQC3EKEe\nmueONyR3vyl58vF9oZHv0igAAB5CSURBVJ6HX3d7zq128jd//tP5gTfdk7///Q/m2193+wIHCgAA\nAAAA7JoM6Kw/v7dtTB6/uL9+48XjgxUr/XHI5+z+wM9u3azy+LjVnpjpZHp/TN2+mVPWs29pncPs\nm62lvRf2OVA/EVhJpsI5EyGdUw2dlMNncOms1W39O6ZmFxn3Ka16OaHtQR2e2R5MHQ/31w8360DN\nrLadc0aj8VJK2+PlmcZLNJ3GY26Pw2GrZ5PuuXrfvyO57bX763b6rJ6f6H+2nl1mpV9fq9quxz0a\nTZTH4x2N6uOdx7BbnlU/Ggd2DltKqFeHedor8w/C7IbUpsJbw6tJyl4op3uuGaE6gCUm1EMzXXw0\n+df/pP5lvlcHd95w99n83od+IL/8qS/no7/3pfzw//p/5zvecEc++P0P5bsevDNF0hcAAAAAgFtJ\nVdVbxvtqtL+8G3YYBx12gwST+2pG3bj+QP/h4QGL40Ias9q21k8e0GmvJv07x9vtyb1vqcu9O/bq\n1y5MzLZyebw00pWp8vj46jeSl7+yv3176+TP/eRsKPuCFePZUHbK+/a9ermiVBOvy/ZE2GP6+T6k\nfvq1ScbL7YxnuWl3jygf1z6eBWfWckytzq0xa8rO+38y6LPvOZ31vI72lnrqnq1nfOJwpdTLH1kC\nCaDxSlWdIFV8C3j44YerJ554YtHD4LQ8/Znko+9MfvijyVvfc6B5fWuYf/bpf5ef/90v5usvb+Zb\n778tH/z+B/OON92TVusW+IUUAAAAAIDFGm7NCI5MHW9enhEqme43rhvtBHJGhwd1ptsbrxyxhFKn\nDrv0J0I5kwGd/u0T5TtvzjI8w61kMPG6bF6uQx8Hwjn9mzMbCgDADKWUP6iq6uET9RXqoZFGo+Qf\nvTF54HuT9/ziod02h9v59T94Jv/bv/xCnn5hI2+691z+3vc/mP/ora9OW7gHAAAAAODWMholmy/X\nM77sbFe/US9/NNyst+3NvfLOcjHTddsTbcOtcZ+tvePBej0jzEkdtfzTzjI9O0sqpeyFRUprXB7X\n7WsvU+2tpGR/3wNLNpWjl3GabCutGcs+dWaHc3aPOxP1K3tLQwEAcGqEenhl+I0PJn/yWPLfPHXs\nNInD7VEe++xX83O/84U89f9dzuvv7Ofvft8354e+7b50O9b6BAAAAAC4qbaHdRhnMpwzc/vGwQDP\nYcs3TWutjJcXWq2XduqszjheO6TPWrI6GdCZDuucHbef2QvsAADAKRDq4ZXhTx9PPvajyY/9RvKG\n7zvRKaNRlU987mv52d9+Kp/76sv5pgtr+cD3viHvfdtrs7bijy4AAAAA4BVoNBovFfVycvXlZPNS\nXT5wfGl8PNG2dTkZbWff8lDZ2e2Uq2srDzfr6x9l7ULSu/1k29qFOlgzHc4RtAEA4BYk1MMrw9Z6\n8tMPJH/5fcmjP31Np1ZVld/5/LP58CefyhN//mLuOtvN+7/7DflPvuO1Obe2MqcBAwAAAACcgq0r\nyaWvJZe/nlz6i+TS15PLX6v3688dDOpsXspuoOZQJVk9n6ydr5eL2il3z9ZLLiV7y0BNlneWkUrZ\nbTpYP1Vud5PeHTMCOrfthXQEcgAAWFJCPbxy/LP3Jl//XPJf/tHEH4bX5tNffD4/+9tP5Xf/7Lmc\nX+vkP/3O1+dvf9cDuf3M0Ut6AQAAAACcmqqqwzcHgjpfmwjwjMtblw6e3+4mZ+9Nztw5Ec45fzCo\ns3pudlv37HV/xgoAAJyeawn1dOY9GLghb3o0+fzH62DPvW+5rku8/Q135u1vuDOfffob+fBvP5V/\n+smn8gu/96X8rbe/Nv/Z97wh95xfO+VBAwAAAACvKKNRMlivZ9DZujzerkwczyhvXq7DOZef3Qvv\nDNYPXrvTS869qg7svOpbkgffkZx9VXLu3no7O973bhfKAQCAJSPUQ7O98V1JSvLkx6871LPjW++/\nLR/5sYfz5Ncu5ed+56l89Pe+lF/61J/n7Q/ckftu7+f+O3q5//Z+7ru9l/vv6OfOM90UfyQDAAAA\nwCvLcKsO2bz8F+MZc76WXPpqvb/y3OyAzuDKya9f2snq2XpmnO6Z5Mw9yTd9214459y9+0M7q+eF\ndQAAgJksv0Xz/cI7k9F28oHfPtXLfvm5K/no730pn33mG3nmxY28cGVrX3tvpb0b8Lnv9jrwc/8d\nvToAdHs/F/orpzoeAAAAAOAGjEbJ+vN7AZ2Xv7o/sLMT4ll/7uC57W4dsOnftT+Qc2B/SHnynHZX\nSAcAADiU5bd4Zbn4SPIvfrL+o/v8q0/tsq+/60z+p7++N/vP5c1hnnlxPc+8sJGnX1zPMy9u5OkX\n1vP0ixv5zJdeyKXN4b7zz611xgGf3u5MP/eNZ/q582w3d/S76bRbpzZeAAAAAFgKw616lpyrLyWb\nl6a2l/fKV19KLn99YradryWjwdTFSnL2njqwc+E1yX0PJ+deXX/OeG5i698hiAMAADSOUA/Nd/HR\nOtTz+d9KHv7bc7vN2dVO3nTv+bzp3vMz219aH4zDPut5+oWNev/iRr78/JX87p89l43B9oFzbuuv\n5I4z3dx1ZjV3nOnmjrPd3HWmOy6v1uWz42MhIAAAAABudVVVB242Xjy47QvpvHxI+VIyvHr8fUo7\nWTtfL211/tXJ6797L6AzGdg5e0/SNuM2AABwaxLqofnuflNy++uTJz8+11DPcS70V3KhfyFvec2F\nA21VVeX5K1t55sWNfOXFjbxwZTPPXd7KC1fq7bnLm/nCs5fzmS9v5YX1rRy26t1hIaAL/W7OrXVy\nfm0l53vj/dpKzq11cm6tIwwEAAAAwOkabdchnAPhnG/MDuxMbtXBf/y2q9VJVs8nq+fq/dr5Onxz\n1xvHdef22nb7TdaNyys9M+sAAACveEI9NF8p9Ww9n/losnm5Xp+6YUopuevsau46u5q/dP9tR/bd\nHlX5xvpO2Gcn+HN9IaAd/W57N+RzvreyGwA67Pj8WidnVjs50x3vV9tZ7bRP8RkBAAAAYKG2B8nV\nl5Or36hnwrn60oxtRv1O382Xj77+6oWkd1vSu73eX3jNuHzEtnYh6awJ4wAAAJyQUA+3houPJP/m\n55Iv/nby7/21RY/mhrRbJXeeXc2dZ1fz0KuO7789qnL56jAvXx3U28Ywl64O8vLV8X73eJBL434v\nXNnKl5+7sns82D4mFZRkpV3S73ZydhzymSzvhX86OdNt58zqTlsn/dV2zq520ltpp9dtp7fSTr/b\nztpKO6udVooPaQAAAIBlNNxKBleSwUaytV6Xd/aDjWR7qw7ebA+S0WCqPKzbd+pHw73+B8qD+nh4\ndX9IZ3DlmAGWOmSzdqGeLWfttuSOB+rj1fP1/qhwTttHywAAAPPmLy9uDa/9D+oPFp78+C0f6rlW\n7VYZL/11fWt/V1WVzeEoL2/UQaCd8M+VzYltazuXN4dZ3xzm8ub2uK5ue/bSZt22NcyVze1sbY9O\nfO9SUod9VuqQz07op7fSzlq3nd5KazcMtLay19brtrO60s5qu5Vup95W2jv7ktV9x610d/q1W1nZ\n2beLQBEAAABw0PagDtUMr+7th1eTwdVkuDG132lbHwdy1veXt64c0nalDtzcqNZK0u7WAZrjyp21\n5K5XTQR1bhuHdS7s33YCO92zScuS7gAAAE0211BPKeVdSf5JknaSX6iq6n+Zal9N8r8n+fYkzyf5\nG1VVfXnc9t8leX+S7ST/RVVVn5jnWGm49kry0F+pQz1/+H8kndV63ezOatLp1R9arKzV+51t57i1\n3MtKlVKyNg7V3HP+xq+3NRxNhH7qMNCVzWE2Btu5OtjOxtZ2Ngb1dnWivLE1ysZguNv+0sYgX39p\nf9/1wXa2R8fPKnRS3YkgULfTSqfVSqdd0m6VdFol7VZrvC+7+3ZrRnu7TPXbO69VStqtpNUqaZe6\nrpSd8qz6Oqi1U9+avEYpE1v92k3uW6WkzDrO+LhV75P97a1xuGnyuN7v9d29V3busb+uVZLsnJu6\nrd7X7Rlfb7p+J1c1Oc59fQSvAAAAXjmqajyDzNbE7DGbe+UD22DcvrU348yBWWqGE7PVzJjN5kDd\nePaao0I61fZ1PsCSdM8kK/2k209WztSfT3X7Se+OcV1/3KdXt++r64/7j9s7a0mrU3/uNSuk02pb\npgoAAGDJzS3UU0ppJ/lwkh9M8kySz5RSHquq6k8mur0/yYtVVT1YSnlvkp9K8jdKKW9O8t4k35Lk\nm5L8X6WUN1bVdf/FzSvBW344+eNfS37j713bea3OOPgzHQQaH7dX6j6tlfrDkt0PUzr7t/ZO+0Rb\nu3PIuSsTH8Ks7O1ntU2277S1u3vXbNiHN/XMOd3cfqY7l+sPtke7IZ+t7VG2hqMMtqtsDUcTx6Pd\n48H2KJsTdXtt1f7j4SjDUZXt0c6+mtqPMhyfs1O/vds+mtG/ynB7lFFVL5G2XVUZjaqMqiqnmEta\nGnXoZ6e8F/pJ9kJDZV/fsu+8nXDQOKe0/1q719nfb+9La7rPwesnBwNIO+Gn3THuG/P+cyZudWjb\nYdfKRP8DfY+5/+RFDt7n4OM6bCw5cM7EuKbvfYLHcfi1ju+Twx7rEWOb2XZEv+nHOzmmk4593/mH\n3GvW+UeN7bDxH7zCjOd9uveB9iOeqwPnzv65dNQ1jxrP/sdVDu138GU6+jHPOOW6xzjra2nWeQfe\nS4eMa9Z1Dut7XPjxWl7La7nvrGsd1fdgvxnnnvDex73nTnLOdKejhn0tj/+wc457r8283glem73r\nHfJ1d+Q5xxxfx+t71PvxsJajrnktz/FJ7nX4eSd7rLPfo9f/Xj78Ptf+4K71/TGPr/UTPrXX/N66\nnvf+rGse/3V47d8fr3VMR99x+jqHnXN9XxeHtR/7c+Gk39dP+Ayd9Gf+Ua/HSX/3mNX3sHHsP+f4\nnyvHtR/1O8uB56BKHSAZbadkO6Ua1eVqO6m2U0ajccBk3KcapYy2k9Gw3lfDlGpYt42G++tHw71r\nbQ/GdTvn1m0Z7Zy/UzfY7ZPtwe41U42PJ6+1PW6bOHf3eDekM0jZ3gvtlNHg6Cf0BlStWZ+l7Hwm\nM6O+ezbp35VqHJ4pK72kXX8WVHXWUlbW9oI1O+0ra/VnRjv73c+SJvo27HMaAAAAXtnmOVPP25I8\nVVXVF5OklPKxJO9OMhnqeXeSnxiXfz3Jz5b6k5F3J/lYVVWbSb5USnlqfL1PzXG8NN3FdyX/4EvJ\n5qWpaZGv1v+qa7hR7wcb+4/39Zs+72qyeXnvg6mJD6x2t51/4TXa3vcB1k2zG+5pTWyl3qdM1U+0\nlYm2A/1Kdj923FfeuWmZ+JBqst9RbVPlffup847ov1JKVpKcn/nx7Iy0TDUrQXPSfkla4+0U7dyp\nqpIqVcb/1fXjump3SNXu0KpxYfc4k+3723Zrqp2rZfc+u+0715s4oZo8d1/fpNp9zquJ9nJwPBOv\nzfTTWk3cZOYrMz3+6Z47z0n23o71OXvLvu3efeLxlYnnef94Jh7H+Mz6tdgpTzyWUsbXKBPP08R7\n9bAxTwynTPeYfn4OewGOuX6VcvBaR54/cd5R7dX0Yyv7+hybTzvita7rZw96p7bMOrM6UDh8RMcM\n8PBxHXxuJlsPtO17i5bdXvu7zL7e7Pf8yRz2betAv+ts299n8uv6ZDc+qlepDr6bZ30lzTz3kK+v\naxnDrNfj4Per8f3KXuOsMe77n3QzvlIOfycdHEs14w7H1Z38fzOfxOHP/cyvx1MewUm/Bg7/+myG\no56rg31P95qnfb0bdezPmWtsP6pvE0w/rzODMyfoM8vsn3ozvped8Hq3iiNDLw18tNfy3em0x3/8\ne+vg/Y47Z9YYZ9cdP57D6qbrD/sZemh92fvtfHJfdvd7Xyll4re8nbad602eM91nf/lg3eQ4Zt27\nZJT2eGulmiiP96U57+XtqmSYdoZpZzvtDCb3VSuDdKba6rrtqrV73jBrGaadQTrZqjr1PlP73fqV\nDNLJIO1sVZPHdd+dfjt9BulkWLV3x7FTv3Pv0/296DCb4222mxUKrfsf2XhNTScNmZ441Lnb/9pD\nd4c1nvh5vEljPPy0I653fS/ZXELQJ733/uud/tfYyf9RwAn7zeH7wK3wPJ7Uie88hyGe9iVvhefx\nVsh4zuNr5sT3vgWen0W6FWawP/2v61O+4C1iGR/3Ir/3LFLTX+u3vOZC/ucfeuuih8F1mmeo5zVJ\nnp44fibJ2w/rU1XVsJTyUpI7x/X/Zurc10zfoJTygSQfSJLXvva1pzZwGqx/R70tWlXt/ou3vaDP\n9sGpno+cGnprf7+jppoebSfVONRQjaa26uBxputm9Jt8LHVh4ri6trYD5cm6ifNGo2P6T99n1ic1\nsz9Svu5+c1Cm9td2cjnixKM+5bmGx3toEOqwBMp0v1NWVVPjnyjv1rcPqZ9VN3HdunBEebRX3j3n\nkPKJfyM77ffZSZMdB/9X6dGXOe71vhmvdXLg+Tq2/aT3us7GIwMthyVLbjRWMycnTQXNbYyn/T18\nyqGPb0b9od/Pyoz7HVG3r77shbuO+v4zawwz2w8UDoz7QFDuupzsZ8nJ/pfuNTil9+OJLzNn+8MW\nxwzqRO/n1OHSE7nxfrNHfI1PbjV9MOtr76jrz+PnzEm73ci9j/u5NSuMc9xrdi3ft2b0O+VPjU7/\n6+yQ3+tPcNahj+1G3q6H9jj93/Wqw7pe73M8+X26yrG/N1UH6qbeL4d+7zlZ3YFzq/1/yxwWUq0O\n/FytjuyflPG9pq5RJiI947HshfLL1PjGx9X+a+2Uq/E/htkXGyrJKPvbU1IH43fOG1+3Kq1UpZ0q\n4/34eFTqmE9VWhkdaN8rjybqR6WdUemMz+/snVs647b2RFt7qn/dtj3uu9de90lpHRp0TnJkuHt/\nWL2a2dYZb2tHnHvcNY4za4yzr390n5Pc/+CfUDPuffC0Ez3ew/oddd2TnXeSB3LYuBc3xht6/U9x\nHMedd733OurMI8d4neM/6TX2X++E/a7hZ9iJf+c65TFei9P4Ry37r3f9Y7lRJx/j6Q9yLr8+Lshp\nf20t0mLfj6+c53EeboWHPZ+/C5fPMr7Hl/AhJ5nPz9fTdn5tZdFD4AbMM9Qzd1VVfSTJR5Lk4Ycf\nbv5XC68cpYyXyZr1cRUAsAxu9j++aPg/9gAAAAAAAE7ZKS86s89Xktw/cXzfuG5mn1JKJ8mFJM+f\n8FwAAAAAAAAAAHhFmmeo5zNJHiqlPFBK6SZ5b5LHpvo8luR94/J7knyyqueneizJe0spq6WUB5I8\nlOT35zhWAAAAAAAAAABojLktv1VV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQ\nOviTcb9fS/InSYZJ/n5VVdvzGisAAAAAAAAAADRJqSfGufU9/PDD1RNPPLHoYQAAAAAAAAAAwEyl\nlD+oqurhk/Sd5/JbAAAAAAAAAADAdRDqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACA\nhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAA\nAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAA\nAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHq\nAQAAAAAAAACAhilVVS16DKeilPJskj9f9Dg44K4kzy16EAC8Yvk5A8A8+TkD8P+3d2+xtl5VHcD/\nf8+hSltDW0Wip0iLNGol0gIh1SJpwAdAIn2oFgVsGg0vJALBcDEYAokPJEYugSCkoCU2CNSiTR+M\nWkmVBwrlIpcWI6naHlI4JEC5RaB08LA+kk3hJGSfvc5ae5/fL9nZa85vri/jexoZX8aak3WSZwBY\nJ3kGgHWRY07cI2bmoT/KwgPT1MN2anvbzDx+03EAcDDJMwCskzwDwDrJMwCskzwDwLrIMSeX47cA\nAAAAAAAAAGDLaOoBAAAAAAAAAIAto6mHdXvrpgMA4ECTZwBYJ3kGgHWSZwBYJ3kGgHWRY06izsym\nYwAAAAAAAAAAAHawUw8AAAAAAAAAAGwZTT0AAAAAAAAAALBlNPWwFm2f2va/2n6m7cs2HQ8A+1vb\nh7d9X9vb236q7QuW+XPa/kvb/17+n73pWAHYv9oeavvRtjct4/Pb3rrUNe9qe9qmYwRgf2p7Vtvr\n23667R1tf009A8Beafui5Z3ZJ9u+s+1PqGcA2K22b297rO0nd8z90PqlK29Y8s3H2z52c5EfTJp6\n2HNtDyV5U5KnJbkwye+1vXCzUQGwz92X5MUzc2GSS5I8f8ktL0ty88xckOTmZQwAu/WCJHfsGL8m\nyWtn5lFJvpTkDzcSFQAHweuT/NPM/FKSx2SVb9QzAJywtkeS/HGSx8/Mo5McSvKsqGcA2L2/SfLU\nB8wdr355WpILlr/nJXnzSYrxlKGph3V4QpLPzMydM/OtJH+X5JkbjgmAfWxm7pmZjyyfv5rVC/Aj\nWeWXa5dl1ya5fDMRArDftT03yW8luWYZN8mTk1y/LJFnANiVtg9J8qQkb0uSmfnWzHw56hkA9s7h\nJA9uezjJ6UnuiXoGgF2amX9P8sUHTB+vfnlmknfMygeSnNX2Z09OpKcGTT2sw5Ekd+8YH13mAOCE\ntT0vycVJbk3ysJm5Z7n0uSQP21BYAOx/r0vykiT3L+OfSvLlmblvGatrANit85N8IclfL8c8XtP2\njKhnANgDM/PZJH+R5K6smnnuTfLhqGcA2FvHq1/0BqyZph4AYN9oe2aSv0/ywpn5ys5rMzNJZiOB\nAbCvtX1GkmMz8+FNxwLAgXQ4yWOTvHlmLk7y9TzgqC31DAC71fbsrHZJOD/JzyU5Iz94ZAoA7Bn1\ny8mlqYd1+GySh+8Yn7vMAcCutX1QVg09183MDcv057+3jePy/9im4gNgX7s0yW+3/d+sjg9+cpLX\nZ7Vd8OFljboGgN06muTozNy6jK/PqslHPQPAXvjNJP8zM1+YmW8nuSGrGkc9A8BeOl79ojdgzTT1\nsA4fSnJB2/PbnpbkWUlu3HBMAOxjbZvkbUnumJm/3HHpxiRXLZ+vSvKPJzs2APa/mXn5zJw7M+dl\nVb/828w8O8n7klyxLJNnANiVmflckrvb/uIy9ZQkt0c9A8DeuCvJJW1PX96hfS/PqGcA2EvHq19u\nTPIHXbkkyb07juliD3S1MxLsrbZPT/K6JIeSvH1m/nzDIQGwj7V9YpL/SPKJJPcv03+a5NYk707y\n80n+L8nvzswXNxIkAAdC28uS/MnMPKPtI7PaueecJB9N8pyZ+eYm4wNgf2p7UZJrkpyW5M4kV2f1\ng0v1DAAnrO2rklyZ5L6sapc/SnIk6hkAdqHtO5NcluSnk3w+ySuT/EN+SP2yNJS+MaujH7+R5OqZ\nuW0TcR9UmnoAAAAAAAAAAGDLOH4LAAAAAAAAAAC2jKYeAAAAAAAAAADYMpp6AAAAAAAAAABgy2jq\nAQAAAAAAAACALaOpBwAAAAAAAAAAtoymHgAAAAB2re1lbW/adBwAAAAAB42mHgAAAAAAAAAA2DKa\negAAAABOAW2f0/aDbT/W9i1tD7X9WtvXtv1U25vbPnRZe1HbD7T9eNv3tj17mX9U239t+59tP9L2\nF5bbn9n2+rafbntd227sQQEAAAAOCE09AAAAAAdc219OcmWSS2fmoiTfSfLsJGckuW1mfiXJLUle\nuXzlHUleOjO/muQTO+avS/KmmXlMkl9Pcs8yf3GSFya5MMkjk1y69ocCAAAAOOAObzoAAAAAANbu\nKUkel+RDyyY6D05yLMn9Sd61rPnbJDe0fUiSs2bmlmX+2iTvafuTSY7MzHuTZGb+P0mW+31wZo4u\n448lOS/J+9f/WAAAAAAHl6YeAAAAgIOvSa6dmZd/32T7Zw9YN7u8/zd3fP5OvHMCAAAAOGGO3wIA\nAAA4+G5OckXbn0mStue0fURW74auWNb8fpL3z8y9Sb7U9jeW+ecmuWVmvprkaNvLl3v8eNvTT+pT\nAAAAAJxC/GoKAAAA4ICbmdvbviLJP7f9sSTfTvL8JF9P8oTl2rEkVy5fuSrJXy1NO3cmuXqZf26S\nt7R99XKP3zmJjwEAAABwSunMbndVBgAAAGA/a/u1mTlz03EAAAAA8IMcvwUAAAAAAAAAAFvGTj0A\nAAAAAAAAALBl7NQDAAAAAAAAAABbRlMPAAAAAAAAAABsGU09AAAAAAAAAACwZTT1AAAAAAAAAADA\nltHUAwAAAAAAAAAAW+a7BZle4q9yLYgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0022660818189899888" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0009000000427477062\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0008100000384729356\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.0007290000503417104\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0006561000715009868\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00012: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00032: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler)\n", + "\n", + "callbacks_list = [checkpoint, lr_decay]\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQIAAAJcCAYAAACo4EsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmQn1d9JvrndKul1tKWZO3dMpZA\ntvHewgpxMAEcIN7A6gwZQhJSSW7uhUwlN7n3Tpg4e6DmVjF17w2ZLCQzmZDKDJkkHigkgw3YDDaE\nxYBsS95tyRvaJcuyLMna+9w/9LOQhZaW1a23l8+nStXd73t+p59jlf2H66nzLbXWAAAAAAAAAAAA\nI1tb0wEAAAAAAAAAAIAzpwgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopAAAAAAAAAAAAwCigCAQAA\nAAAAAADAKKAIBAAAAAAAAAAAo4AiEAAAAAAjRinl2VLKu5rOAQAAADAcKQIBAAAAAAAAAMAooAgE\nAAAAQCNKKeOGY4bTzTUczgEAAACQKAIBAAAADJnWGKuPlFIeLKXsLqX8bSllTinli6WUnaWUr5RS\nprfWXl1K+VYp5cVSyqpSyjuO2ueXSymPtT7zdCnlw0e9e0cpZV0p5d+WUraUUjaWUn55ANluLKU8\n2tpzfSnlt45695HWPhtKKf9LKaWWUha13t1TSvlfj1r7S6WUbxz1838spawtpbxUSrmvlPLjR737\n41LKZ0opny6lvJTkl0opbaWUW0opT5VStpVSbi2lnHvUZ36hlPJc693vDfCf+wn3LKUsaJ3nV0op\n30/y1eM9a629uZTySOvv5J5SysXH/N3+dinlwSS7lYEAAACA4UARCAAAAGBovS/Ju5NcmOS9Sb6Y\n5HeTzMrh/zfzG6WUniS3J/n3Sc5N8ltJPltKmdXaY0uS9yQ5J8kvJ/lEKeVNR/2OuUmmJulJ8itJ\n/vKVgtFJ/G2SD9dau5Jclh+UX65v/f53J7kgybtO87zfS9LbOsd/T/I/SimdR71fmuQzSaYl+Yck\n/3uSviRvT9KdZHuSv2xluSTJXyX5hda7GUnmDyDDCfc8ytuTXJzkuuM9K6VcmOQfk/wfOfx3dUeS\nz5dSxh+1/meT3JRkWq314AByAQAAAAwpRSAAAACAofXntdbNtdb1Sf4lyXdqrQ/UWvcm+VySxUk+\nmOSOWusdtdb+WutdSVYkuTFJaq2311qfqod9LcmdSX78qN9xIMnHaq0Haq13JNmV5KJT5DqQ5JJS\nyjm11u211vtbz9+f5O9qrQ/XWncn+ePTOWyt9dO11m211oO11v8vyYRjsny71rqsdc49SX41ye/V\nWtfVWve1ft9Pt27Y+ekkX6i1fr317g+S9A8gxsn2fMUf11p3tzIc79nPJLm91npXrfVAkv83ycQk\nbzlq/Z/VWtceswcAAABAYxSBAAAAAIbW5qO+33Ocn6ckOT/Jv26NoHqxlPJikrcmmZckpZQbSin3\nllJeaL27McnMo/bZdsyNNC+39j2Z97X2ea6U8rVSyo+1nncnWXvUuucGdMqWUspvtcaY7WhlnXpM\n1rXHfOT8JJ876tyPJTmUZM6xWVrFpG0DiHGyPU+U49hn3Tnq7LXW/tb7nlPsAQAAANAYRSAAAACA\n5q1N8t9qrdOO+jO51vrxUsqEJJ/N4Rtp5tRap+XwmKpyJr+w1vq9WuvSJLOTLEtya+vVxiTnHbX0\ndcd8dHeSSUf9PPeVb0opP57k3+XwrULTW1l3HJO1HrPf2iQ3HHP2ztYNSq/KUkqZlMPjwU7lZHue\nKMexzzbkcKHold9dWllOtQcAAABAYxSBAAAAAJr36STvLaVcV0ppL6V0llLeUUqZn2R8Do/X2prk\nYCnlhiQ/eSa/rJQyvpTy86WUqa2xVy/lByO3bk3yS6WUS1rFmz865uMrk/yrUsqkUsqiJL9y1Luu\nJAdbWceVUv4wyTmniPPXSf7vUsr5rWyzSilLW+8+k+Q9pZS3llLGJ/lYBvb/s06250DdmuSmUso7\nSykdSf5tkn1JvnWa+wAAAACcNYpAAAAAAA2rta5NsjTJ7+ZwiWZtko8kaau17kzyGzlcTNme5OeS\n3DYIv/YXkjxbSnkpya8m+flWli8m+dMkX02ypvX1aJ9Isj+HR5z9fZJ/OOrdl5N8KcmTOTxWa29O\nPT7rP+bwee4spexMcm+SH21leSTJryX57zl8O9D2JOsGcLYT7jlQtdYnknwwyZ8neT7Je5O8t9a6\n/3T2AQAAADibSq1uMAYAAADgxEopNckFtdY1TWcBAAAA4MTcCAQAAAAAAAAAAKOAIhAAAADAKFVK\neaSUsus4f36+6WxnqpTyxROc7XebzgYAAADQFKPBAAAAAAAAAABgFHAjEAAAAAAAAAAAjALjmg7Q\ntJkzZ9YFCxY0HQMAAAAAAAAAAI7rvvvue77WOutU68Z8EWjBggVZsWJF0zEAAAAAAAAAAOC4SinP\nDWSd0WAAAAAAAAAAADAKKAIBAAAAAAAAAMAooAgEAAAAAAAAAACjwLimAwxHBw4cyLp167J3796m\nowypzs7OzJ8/Px0dHU1HAQAAAAAAAADgDCkCHce6devS1dWVBQsWpJTSdJwhUWvNtm3bsm7duixc\nuLDpOAAAAAAAAAAAnCGjwY5j7969mTFjxqgtASVJKSUzZswY9bceAQAAAAAAAACMFYpAJzCaS0Cv\nGAtnBAAAAAAAAAAYKxSBAAAAAAAAAABgFFAEGoZefPHFfPKTnzztz91444158cUXhyARAAAAAAAA\nAADDnSLQMHSiItDBgwdP+rk77rgj06ZNG6pYAAAAAAAAAAAMY+OaDsAPu+WWW/LUU0+lt7c3HR0d\n6ezszPTp0/P444/nySefTF9fX9auXZu9e/fmN3/zN/OhD30oSbJgwYKsWLEiu3btyg033JC3vvWt\n+da3vpWenp4sX748EydObPhkAAAAAAAAAAAMFUWgU/jo5x/JoxteGtQ9L+k+J3/03ktP+P7jH/94\nHn744axcuTL33HNPbrrppjz88MNZuHBhkuRTn/pUzj333OzZsyc/8iM/kve9732ZMWPGq/ZYvXp1\n/vEf/zF/8zd/k/e///357Gc/mw9+8IODeg4AAAAAAAAAAIYPRaAR4M1vfvORElCS/Nmf/Vk+97nP\nJUnWrl2b1atX/1ARaOHChent7U2SXHXVVXn22WfPWl4AAAAAAAAAAM4+RaBTONnNPWfL5MmTj3x/\nzz335Ctf+Uq+/e1vZ9KkSXnHO96RvXv3/tBnJkyYcOT79vb27Nmz56xkBQAAAAAAAACgGW1NB+CH\ndXV1ZefOncd9t2PHjkyfPj2TJk3K448/nnvvvfcspwMAAAAAAAAAYDhyI9AwNGPGjFxzzTW57LLL\nMnHixMyZM+fIu+uvvz5//dd/nYsvvjgXXXRRrr766gaTAgAAAAAAAAAwXJRaa9MZGrVkyZK6YsWK\nVz177LHHcvHFFzeU6OwaS2cFAAAAAAAAABiJSin31VqXnGqd0WAAAAAAAAAAADAKKAIBAAAAAAAA\nAMAooAgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopADDu11qYjAAAAAAAAAACMOIpADCt/8dXVWfqX\n31QGAgAAAAAAAAA4TYpAw9CLL76YT37yk6/ps3/6p3+al19+eZATnT3TJo3Pg+t25JENLzUdBQAA\nAAAAAABgRFEEGobGchHopsvnZVxbyfKV65uOAgAAAAAAAAAwooxrOgA/7JZbbslTTz2V3t7evPvd\n787s2bNz6623Zt++ffmpn/qpfPSjH83u3bvz/ve/P+vWrcuhQ4fyB3/wB9m8eXM2bNiQa6+9NjNn\nzszdd9/d9FFO2/TJ4/OOi2bltlUbcssNF6e9rTQdCQAAAAAAAABgRFAEOpUv3pJsemhw95x7eXLD\nx0/4+uMf/3gefvjhrFy5MnfeeWc+85nP5Lvf/W5qrbn55pvz9a9/PVu3bk13d3duv/32JMmOHTsy\nderU/Mmf/EnuvvvuzJw5c3Azn0VLe3vylce25DtPb8tbFo3ccwAAAAAAAAAAnE1Ggw1zd955Z+68\n884sXrw4b3rTm/L4449n9erVufzyy3PXXXflt3/7t/Mv//IvmTp1atNRB827Lp6TyePbs8x4MAAA\nAAAAAACAAXMj0Kmc5Oaes6HWmt/5nd/Jhz/84R96d//99+eOO+7I7//+7+ed73xn/vAP/7CBhINv\n4vj2XHfZ3HzxoU352NLL0tnR3nQkAAAAAAAAAIBhz41Aw1BXV1d27tyZJLnuuuvyqU99Krt27UqS\nrF+/Plu2bMmGDRsyadKkfPCDH8xHPvKR3H///T/02ZGsr7cnO/cdzN2Pb2k6CgAAAAAAAADAiOBG\noGFoxowZueaaa3LZZZflhhtuyM/93M/lx37sx5IkU6ZMyac//emsWbMmH/nIR9LW1paOjo781V/9\nVZLkQx/6UK6//vp0d3fn7rvvbvIYZ+Qtb5iRmVMmZNnK9bnh8nlNxwEAAAAAAAAAGPZKrbXpDI1a\nsmRJXbFixauePfbYY7n44osbSnR2DeezfvTzj+Qf7v1+vvd778rUSR1NxwEAAAAAAAAAaEQp5b5a\n65JTrTMajGGrr7cn+w/154sPb2w6CgAAAAAAAADAsKcIxLB1xfypWThzcpatXN90FAAAAAAAAACA\nYU8R6ATGwsi04X7GUkqW9nbnO8+8kI079jQdBwAAAAAAAABgWFMEOo7Ozs5s27Zt2BdlzkStNdu2\nbUtnZ2fTUU6qr7cntSa3rdzQdBQAAAAAAAAAgGFtXNMBhqP58+dn3bp12bp1a9NRhlRnZ2fmz5/f\ndIyTWjBzcq48b1qWrdyQD7/9DU3HAQAAAAAAAAAYthSBjqOjoyMLFy5sOgYtfb3d+ejnH82Tm3fm\nwjldTccBAAAAAAAAABiWjAZj2HvPFd1pbytZ9sD6pqMAAAAAAAAAAAxbikAMe7O6JuSaRTOzfOWG\n9PfXpuMAAAAAAAAAAAxLikCMCH293Vn/4p7c9/3tTUcBAAAAAAAAABiWFIEYEX7y0rnp7GgzHgwA\nAAAAAAAA4AQUgRgRpkwYl3dfMje3P7Qx+w/2Nx0HAAAAAAAAAGDYUQRixOjr7c6LLx/I15/c2nQU\nAAAAAAAAAIBhRxGIEeNtF87K9EkdWbbSeDAAAAAAAAAAgGMpAjFidLS35aYr5uUrj23Orn0Hm44D\nAAAAAAAAADCsKAIxovT19mTvgf58+eFNTUcBAAAAAAAAABhWFIEYUa46f3rmT59oPBgAAAAAAAAA\nwDEUgRhRSilZ2tudb655Plt27m06DgAAAAAAAADAsKEIxIjT19uT/pp8YdXGpqMAAAAAAAAAAAwb\nikCMOBfM6col887JcuPBAAAAAAAAAACOUARiROpb3J1V63bkmed3Nx0FAAAAAAAAAGBYUARiRLr5\nyp6Ukix7wK1AAAAAAAAAAACJIhAj1Nypnbl64YwsX7k+tdam4wAAAAAAAAAANE4RiBGrb3F3nt32\nclat29F0FAAAAAAAAACAxikCMWJdf9m8jG9vMx4MAAAAAAAAACBnoQhUSrm+lPJEKWVNKeWW47yf\nUEr559b775RSFhz17ndaz58opVx3Gnv+WSll11CdieFh6sSOvPPi2fnCgxty8FB/03EAAAAAAAAA\nABo1pEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/VnqWU\nJUmmD+W5GD6W9vbk+V37882ntjUdBQAAAAAAAACgUUN9I9Cbk6yptT5da92f5J+SLD1mzdIkf9/6\n/jNJ3llKKa3n/1Rr3VdrfSbJmtZ+J9yzVRL6f5L8uyE+F8PEtW+clXM6x2W58WAAAAAAAAAAwBg3\n1EWgniRrj/p5XevZcdfUWg8m2ZFkxkk+e7I9fz3JbbXWjScLVUr5UCllRSllxdatW0/rQAwvE8a1\n58bL5+XLj2zKnv2Hmo4DAAAAAAAAANCYoS4CnTWllO4k/zrJn59qba31P9dal9Ral8yaNWvowzGk\nlvb2ZPf+Q7nrsc1NRwEAAAAAAAAAaMxQF4HWJznvqJ/nt54dd00pZVySqUm2neSzJ3q+OMmiJGtK\nKc8mmVRKWTNYB2H4+tGF52be1E7jwQAAAAAAAACAMW2oi0DfS3JBKWVhKWV8kg8kue2YNbcl+cXW\n9z+d5Ku11tp6/oFSyoRSysIkFyT57on2rLXeXmudW2tdUGtdkOTlWuuiIT4fw0BbW8nNV3bna09u\nzQu79zcdBwAAAAAAAACgEUNaBKq1Hkzy60m+nOSxJLfWWh8ppXyslHJza9nfJpnRur3n/0pyS+uz\njyS5NcmjSb6U5NdqrYdOtOdQnoPhb2lvTw7219z+0MamowAAAAAAAAAANKIcvnxn7FqyZEldsWJF\n0zE4Q7XWXPenX885nR35zL95S9NxAAAAAAAAAAAGTSnlvlrrklOtG+rRYHBWlFKytLcnK57bnrUv\nvNx0HAAAAAAAAACAs04RiFFjaW93kuS2VRsaTgIAAAAAAAAAcPYpAjFqzJ8+KT+yYHqWPbA+Y33k\nHQAAAAAAAAAw9igCMaos7e3J6i278ujGl5qOAgAAAAAAAABwVikCMarcdPm8jGsrWb7SeDAAAAAA\nAAAAYGxRBGJUmT55fN5x0azctnJDDvUbDwYAAAAAAAAAjB2KQIw6S3t7sumlvfnOM9uajgIAAAAA\nAAAAcNYoAjHqvOviOZk8vj3LHzAeDAAAAAAAAAAYOxSBGHUmjm/PdZfNzR0Pb8zeA4eajgMAAAAA\nAAAAcFYoAjEq9fX2ZOfeg7nniS1NRwEAAAAAAAAAOCsUgRiV3vKGGZk5ZUKWGQ8GAAAAAAAAAIwR\nikCMSuPa2/LeK+flq49vyY49B5qOAwAAAAAAAAAw5BSBGLX6enuy/1B/vvTwxqajAAAAAAAAAAAM\nOUUgRq0r5k/NwpmTjQcDAAAAAAAAAMYERSBGrVJKlvZ2595ntmXTjr1NxwEAAAAAAAAAGFKKQIxq\nfb09qTW5bdX6pqMAAAAAAAAAAAwpRSBGtQUzJ+fK86YZDwYAAAAAAAAAjHqKQIx6fb3deXTjS1m9\neWfTUQAAAAAAAAAAhowiEKPee67oTntbybKVxoMBAAAAAAAAAKOXIhCj3qyuCblm0cwsX7khtdam\n4wAAAAAAAAAADAlFIMaEvt7urNu+J/c9t73pKAAAAAAAAAAAQ0IRiDHhJy+dm86ONuPBAAAAAAAA\nAIBRSxGIMWHKhHF59yVzc/uDG3PgUH/TcQAAAAAAAAAABp0iEGNGX293tr98IF9/cmvTUQAAAAAA\nAAAABp0iEGPG2y6clemTOrJs5YamowAAAAAAAAAADDpFIMaMjva23HTFvNz16Kbs2new6TgAAAAA\nAAAAAINKEYgxpa+3J3sP9OfORzY1HQUAAAAAAAAAYFApAjGmXHX+9MyfPtF4MAAAAAAAAABg1FEE\nYkwppWRpb3e+sXprtu7c13QcAAAAAAAAAIBBowjEmNPX25P+mnzhQbcCAQAAAAAAAACjhyIQY84F\nc7pyybxzjAcDAAAAAAAAAEYVRSDGpL7F3Vm19sU88/zupqMAAAAAAAAAAAwKRSDGpJuv7EkpyfKV\n65uOAgAAAAAAAAAwKBSBGJPmTu3M1QtnZNkD61NrbToOAAAAAAAAAMAZUwRizOpb3J1nt72cVet2\nNB0FAAAAAAAAAOCMKQIxZl1/2byMb2/LsgeMBwMAAAAAAAAARj5FIMasqRM78hNvnJ0vPLghBw/1\nNx0HAAAAAAAAAOCMKAIxpvUt7s7zu/bnm09tazoKAAAAAAAAAMAZUQRiTHvHRbPT1Tkuy40HAwAA\nAAAAAABGOEUgxrTOjvbceNm8fPmRTdmz/1DTcQAAAAAAAAAAXjNFIMa8pYu7s3v/odz12OamowAA\nAAAAAAAAvGaKQIx5Vy+ckbnndBoPBgAAAAAAAACMaIpAjHltbSU393bna09uzQu79zcdBwAAAAAA\nAADgNVEEgiRLe7tzsL/m9oc2Nh0FAAAAAAAAAOA1UQSCJJfMOycXzJ5iPBgAAAAAAAAAMGIpAkGS\nUkr6FvdkxXPbs/aFl5uOAwAAAAAAAABw2hSBoOXmK7uTJLet2tBwEgAAAAAAAACA06cIBC3nnTsp\nS86fnmUPrE+ttek4AAAAAAAAAACnRREIjrJ0cU9Wb9mVRze+1HQUAAAAAAAAAIDToggER7np8nkZ\n11ayfKXxYAAAAAAAAADAyKIIBEc5d/L4vP3CWblt5YYc6jceDAAAAAAAAAAYORSB4BhLF/dk00t7\n851ntjUdBQAAAAAAAABgwBSB4BjvvnhOJo9vz/IHjAcDAAAAAAAAAEYORSA4xsTx7bnu0rm54+GN\n2XvgUNNxAAAAAAAAAAAGRBEIjmPp4p7s3Hsw9zyxpekoAAAAAAAAAAADoggEx3HNG2Zk5pTxWWY8\nGAAAAAAAAAAwQigCwXGMa2/Le67ozlcf35Idew40HQcAAAAAAAAA4JQUgeAE+hb3ZP+h/nzp4Y1N\nRwEAAAAAAAAAOCVFIDiBK+dPzYIZk4wHAwAAAAAAAABGBEUgOIFSSpb29uTeZ7Zl0469TccBAAAA\nAAAAADgpRSA4ib7FPak1uW3V+qajAAAAAAAAAACclCIQnMTCmZNz5fypxoMBAAAAAAAAAMOeIhCc\nwtLenjy68aWs3ryz6SgAAAAAAAAAACekCASn8J4r56WtJMtWGg8GAAAAAAAAAAxfikBwCrO7OnPN\noplZvnJDaq1NxwEAAAAAAAAAOC5FIBiAvt6erNu+J/c9t73pKAAAAAAAAAAAx6UIBANw3WVz09nR\nZjwYAAAAAAAAADBsKQLBAEyZMC7vunhObn9wYw4c6m86DgAAAAAAAADAD1EEggHq6+3J9pcP5OtP\nbm06CgAAAAAAAADAD1EEggF624WzMm1SR5at3NB0FAAAAAAAAACAH6IIBAM0flxbbrp8Xu56dFN2\n7TvYdBwAAAAAAAAAgFdRBILT0Le4J3sP9OfORzY1HQUAAAAAAAAA4FUUgeA0XPW66emZNtF4MAAA\nAAAAAABg2FEEgtPQ1laytLc731i9NVt37ms6DgAAAAAAAADAEYpAcJr6FvekvyZfeNCtQAAAAAAA\nAADA8KEIBKfpwjlduXjeOcaDAQAAAAAAAADDiiIQvAZ9vd1ZtfbFPPP87qajAAAAAAAAAAAkUQSC\n1+Tm3u6Ukixfub7pKAAAAAAAAAAASRSB4DWZN3VifnThuVm+ckNqrU3HAQAAAAAAAABQBILXqq+3\nJ888vzsPrtvRdBQAAAAAAAAAAEUgeK1uuHxexre3ZZnxYAAAAAAAAADAMKAIBK/R1IkdufaNs/L5\nVRtz8FB/03EAAAAAAAAAgDFOEQjOQF9vT57ftS/fempb01EAAAAAAAAAgDFOEQjOwLVvnJ2uznHG\ngwEAAAAAAAAAjVMEgjPQ2dGeGy6bmy8/vCl79h9qOg4AAAAAAAAAMIYpAsEZ6uvtye79h/KVxzY3\nHQUAAAAAAAAAGMMUgeAM/ejrZ2TOOROy3HgwAAAAAAAAAKBBikBwhtrbSm6+sjv3PLE123fvbzoO\nAAAAAAAAADBGKQLBIFja25OD/TW3P7Sx6SgAAAAAAAAAwBilCASD4NLuc7Jo9hTjwQAAAAAAAACA\nxigCwSAopaSvtzvfe3Z71m1/uek4AAAAAAAAAMAYpAgEg2Rpb0+SZPnKDQ0nAQAAAAAAAADGIkUg\nGCTnnTspV50/PctXrk+ttek4AAAAAAAAAMAYowgEg6ivtztPbt6VxzbubDoKAAAAAAAAADDGKALB\nILrpiu6MaytZvnJ901EAAAAAAAAAgDFGEQgG0bmTx+dtF87Kbas2pL/feDAAAAAAAAAA4OxRBIJB\ntrS3Oxt37M13nnmh6SgAAAAAAAAAwBiiCASD7N2XzMmk8e3GgwEAAAAAAAAAZ5UiEAyySePH5bpL\n5+aOhzZm38FDTccBAAAAAAAAAMYIRSAYAkt7u/PS3oO5+/GtTUcBAAAAAAAAAMYIRSAYAm9dNDMz\np4w3HgwAAAAAAAAAOGsUgWAIjGtvy3uu6M7/fHxLXtp7oOk4AAAAAAAAAMAYoAgEQ2Rpb3f2H+zP\nlx7a1HQUAAAAAAAAAGAMUASCIdJ73rScP2NSlhkPBgAAAAAAAACcBYpAMERKKVna25NvP70tm3bs\nbToOAAAAAAAAADDKKQLBEOrr7U6tyedXbWg6CgAAAAAAAAAwyikCwRB6/awpuWL+VOPBAAAAAAAA\nAIAhpwgEQ2xpb08e2fBS1mzZ2XQUAAAAAAAAAGAUG/IiUCnl+lLKE6WUNaWUW47zfkIp5Z9b779T\nSllw1LvfaT1/opRy3an2LKX8bSllVSnlwVLKZ0opU4b6fHAq771yXtpKsuwB48EAAAAAAAAAgKEz\npEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/Fnv9nrfXK\nWusVSb6f5NeH8nwwELO7OnPNoplZvmp9aq1NxwEAAAAAAAAARqmhvhHozUnW1FqfrrXuT/JPSZYe\ns2Zpkr9vff+ZJO8spZTW83+qte6rtT6TZE1rvxPuWWt9KUlan5+YROuCYWFpb0/WvrAn939/e9NR\nAAAAAAAAAIBRaqiLQD1J1h7187rWs+OuqbUeTLIjyYyTfPake5ZS/i7JpiRvTPLnxwtVSvlQKWVF\nKWXF1q1bT/9UcJquu3ROJoxrMx4MAAAAAAAAABgyQ10EOutqrb+cpDvJY0l+5gRr/nOtdUmtdcms\nWbPOaj7Gpq7Ojrzrkjm5/aGNOXCov+k4AAAAAAAAAMAoNNRFoPVJzjvq5/mtZ8ddU0oZl2Rqkm0n\n+ewp96y1HsrhkWHvO+MTwCDp6+3JC7v3519Wu4UKAAAAAAAAABh8Q10E+l6SC0opC0sp45N8IMlt\nx6y5Lckvtr7/6SRfrbXW1vMPlFImlFIWJrkgyXdPtGc5bFGSlFJKkpuTPD7E54MBe/uFszJtUofx\nYAAAAAAAAADAkBg3lJvXWg9JAGctAAAgAElEQVSWUn49yZeTtCf5VK31kVLKx5KsqLXeluRvk/y3\nUsqaJC/kcLEnrXW3Jnk0ycEkv9a66Scn2LMtyd+XUs5JUpKsSvJvhvJ8cDrGj2vLjZfPy+fuX5/d\n+w5m8oQh/dcPAAAAAAAAABhjyuHLd8auJUuW1BUrVjQdgzHiu8+8kPf/p2/nEz9zZX5q8fym4wAA\nAAAAAAAAI0Ap5b5a65JTrRvq0WDAUZacPz090yYaDwYAAAAAAAAADDpFIDiL2tpKbu7tzjfWPJ/n\nd+1rOg4AAAAAAAAAMIooAsFZ1tfbk0P9NV9Y5VYgAAAAAAAAAGDwKALBWXbR3K68cW5Xlq1UBAIA\nAAAAAAAABo8iEDSgb3FPVq59Mc8+v7vpKAAAAAAAAADAKKEIBA24+crulJIsdysQAAAAAAAAADBI\nFIGgAd3TJubNC87N8pXrU2ttOg4AAAAAAAAAMAooAkFD+hb35Onnd+eh9TuajgIAAAAAAAAAjAKK\nQNCQGy+bl/HtbVn2gPFgAAAAAAAAAMCZUwSChkyd1JF3XDQrn39wQw71Gw8GAAAAAAAAAJwZRSBo\nUN/inmzduS/feur5pqMAAAAAAAAAACOcIhA06CfeODtdE8YZDwYAAAAAAAAAnDFFIGhQZ0d7rr9s\nbr78yKbsPXCo6TgAAAAAAAAAwAimCAQN61vck137DuYrj21uOgoAAAAAAAAAMIIpAkHDrn79jMzu\nmmA8GAAAAAAAAABwRhSBoGHtbSU3X9mdrz25JS++vL/pOAAAAAAAAADACKUIBMNA3+KeHDhUc/tD\nG5uOAgAAAAAAAACMUIpAMAxc2n1OFs2ekuXGgwEAAAAAAAAAr5EiEAwDpZT09Xbnu8++kLse3ZyX\n9x9sOhIAAAAAAAAAMMKMazoAcNhPvWl+/ss3nsn/9l9XZFxbyZXnTcvVrz83V79+Rq46f3omjfev\nKwAAAAAAAABwYqXW2nSGRi1ZsqSuWLGi6RiQJNm972Due2577n16W+59elseXLcjB/urYhAAAAAA\nAAAAjGGllPtqrUtOuU4RSBGI4UsxCAAAAAAAAABQBBogRSBGkt37DmbFMcWgQ/01He0lV86flqtf\nPyNXv35G3nT+NMUgAAAAAAAAABglFIEGSBGIkUwxCAAAAAAAAABGP0WgAVIEYjTZdZxRYscrBl11\n/vRMHN/edFwAAAAAAAAAYAAUgQZIEYjRTDEIAAAAAAAAAEY+RaABUgRiLFEMAgAAAAAAAICRRxFo\ngBSBGMt27TuYFc++kHuffiH3Pr0tD61XDAIAAAAAAACA4UYRaIAUgeAHFIMAAAAAAAAAYPhRBBog\nRSA4sZMVg3rP+0Ex6E2vUwwCAAAAAAAAgKGiCDRAikAwcIpBAAAAAAAAAHD2KQINkCIQvHY79x7I\niue2596nt+Xep1/Iw4pBAAAAAAAAADDoFIEGSBEIBo9iEAAAAAAAAAAMPkWgAVIEgqGjGAQAAAAA\nAAAAZ04RaIAUgeDsObYY9NC6F9Nfc6QY9KbXTc+Fc7py0dyuLJo9JZ0dykEAAAAAAAAAMNAi0Liz\nEQYgSbo6O3LtRbNz7UWzkxxTDHpqW/7um89m/6H+JElbSc6fMTkXzpmSi+Z05cK5XbloTlcWzJyc\njva2Jo8BAAAAAAAAAMOSIhDQmGOLQQcP9efZbS/nyc0788SmnYe/bt6Zux7dnP7W5WUd7SVvmDXl\nyM1BF845XBCaP31i2tpKg6cBAAAAAAAAgGYpAgHDxrj2tiyaPSWLZk/JjZfPO/J874FDeWrrrlZB\n6PDX+57bnttWbTiyZmJHey6cc7ggdOFRNwjNOWdCSlEQAgAAAAAAAGD0UwQChr3OjvZc2j01l3ZP\nfdXznXsPZPWWXXly0848uflwQeieJ7fmf9y37siaczrH/eDmoKNuEJo+efzZPgYAAAAAAAAADKkB\nFYFKKe1JfqPW+okhzgMwYF2dHXnT66bnTa+b/qrnL+zenyc373zViLHPr9qQf/jOwSNrZnVNyEVz\nXikIHb5J6II5XZkyQT8SAAAAAAAAgJGp1FoHtrCU79Za3zzEec66JUuW1BUrVjQdAxhitdZsfmlf\nnti8M09u2nn4a+vP3gP9R9bNnz4xF7VKQa8UhN4wa0o6O9obTA8AAAAAAADAWFZKua/WuuRU607n\n6otvllL+Isk/J9n9ysNa6/2vIR/AWVVKydypnZk7tTNvv3DWkef9/TVrt7985OagV0aMfX311hw4\ndLgo2VaSBTMnH3WD0OGvC2ZMyrj2tqaOBAAAAAAAAACvcjo3At19nMe11voTgxvp7HIjEHA8Bw71\n59nndx9zg9CuPLttd175z+b49ra8YfaUXDRnSi6c23WkKNQzbWLa2kqzBwAAAAAAAABg1Bj0G4Fq\nrdeeWSSAkaOjvS0XtEaE5YofPN+z/1Ce2rrryA1CT2zeme8+80KWrdxwZM3k8e25YE5XLpwz5cgN\nQhfN6cqsrgkpRUEIAAAAAAAAgKEx4CJQKWVqkj9K8rbWo68l+VitdcdQBAMYjiaOb89lPVNzWc/U\nVz1/ae+BrN68M09sOjxa7IlNO/M/H9uSW1esO7Jm2qSOw8WgOV1H3SA0JdMmjT/bxwAAAAAAAABg\nFBpwESjJp5I8nOT9rZ9/IcnfJflXgx0KYKQ5p7MjV51/bq46/9xXPX9+1748eWS82OGS0LIH1mfn\nvoNH1sw5Z0IunNOVC2Z35YI5U3LB7Cm5YHZXpk7qONvHAAAAAAAAAGAEO50i0Btqre876uePllJW\nDnYggNFk5pQJmTllQt7yhplHntVas3HH3jxxpCB0eMzYP373+9lz4NCRdbO6JrRKQVOyaE7Xke9n\nTJnQxFEAAAAAAAAAGOZOpwi0p5Ty1lrrN5KklHJNkj1DEwtg9CqlpHvaxHRPm5hrL5p95Hl/f836\nF/dkzZZdWb1lZ1Zv3pXVW3bls/evz66jbhA6d/L4LJo95Ugx6IJWSWhW14SUUpo4EgAAAAAAAADD\nwOkUgX41yX8tpUxt/bw9yS8OfiSAsamtreS8cyflvHMn5do3/qAgVGvNppf2HikGrWmVhD6/akNe\n2vuDgtA5neOOlIIWHVUQmje1U0EIAAAAAAAAYAwYUBGolNKW5KJa65WllHOSpNb60pAmAyDJ4RuE\n5k2dmHlTJ+ZtF8468rzWmq279mVNqyD0yi1Cdz26Of/0vbVH1k0e3/6q0WIXzJmSC2Z3pWfaxLS1\nKQgBAAAAAAAAjBal1jqwhaWsqLUuGeI8Z92SJUvqihUrmo4BMKi27drXGjG261Wjxrbs3HdkTWdH\nW2vEWNcPRo3N6crrzp2UdgUhAAAAAAAAgGGjlHLfQHo7pzMa7CullN9K8s9Jdr/ysNb6wmvIB8AQ\nmjFlQmZMmZAfff2MVz3f8fKBrNm688iYsdVbduU7T2/L5x5Yf2TN+HFtef3MyUdGi71yi9D5Myan\no73tbB8FAAAAAAAAgAE6nRuBnjnO41prff3gRjq73AgEkOzceyBPbd2d1Zt3HrlJaPWWnVn7wp4j\na8a1lSycOTkXzJmSRbO7jhSEFs6cnAnj2htMDwAAAAAAADC6DeqNQKWUtiQfrLV+84yTATDsdHV2\npPe8aek9b9qrnr+8/2Ce3rr7yGix1Vt25bGNO/Olhzelv9UjbSvJghmTD48Xm/ODUWNvmDUlE8cr\nCAEAAAAAAACcLQMqAtVa+0spf5Fk8RDnAWAYmTR+XC7rmZrLeqa+6vneA4fyzPO7s3rLrqzZvPP/\nZ+/OYy3N87u+f35nvVvdW9U91ctM94hmZux4nBhEmkX8EQkcYiMUDwFLDHYARRBIggERRREoKICd\nSIGQEBIMiJhEMdgyhoA0IIIhtgIEQ8Y9xhjPYty2Z6a7p/e6td7lbL/8cZ5z7rlb1b3ddbuqTr1e\nUunZn3puyZKnq9/9/c2XGfuxL72VUVMIlZI8f2Utn3hqIx9vAqFPPLWRjz21kY3+eVamBAAAAAAA\nAOAszvNvYn+0lPJbk/ytetb1xABYSivddr7h2c18w7Obh84PRpN85d1pIDSdIDRdauyf/Nw7GYwn\n8/s+cnl1OkGomSL0/JW1PLO1kme2VrLWEwkBAAAAAAAAvBflrE1PKeVWkvUk4yS7SUqSWmvdvOuD\nD7kXX3yxvvTSSw/6MwCW2mg8yVev7UwnCL11Oz/XTBF6+a3b2R9NDt27udJpoqDVPLPZb7YreWar\nn2c2V/PM1kqurHVTSnlAPw0AAAAAAADAB6uU8rla64v3uu/MYxdqrZfe3ycB8LjqtFv5pVc38kuv\nbuRbvvHg/HhS89r2bl69vpM3buzljZt7022z/6XXb+bt2/s52qz2Oq0mDlrJM5sreXZrJU/PtlvT\n7dWNfjrt1gf7gwIAAAAAAAA8QGcOgcp09MJ3Jnmh1vo9pZTnkzxba/3shX0dAEut3Sr56JNr+eiT\na6feMxxP8vat/WOR0Gz/p165nr//M3uHlh5LklZJrl7qHwqGntlaPTRZ6JnNlaz22hf9YwIAAAAA\nAAB8IM4cAiX5C0kmSX59ku9JcjvJ9yb5lRfwXQCQJOm2W/nw5dV8+PLqqffUWrO9M8zrN3bz5s29\nvH5jL282wdDrN/byi+/cyY///Lu5tTc69uzWanc+UWgeDW0dnja0tWopMgAAAAAAAODhd54Q6FfX\nWn9FKeVfJEmtdbuU0rug7wKAMyul5In1Xp5Y7+UbP7x16n139kd54+Y0Enp9cbJQs/3C6zfzzglL\nkfU7rePLj82jodU8s7mSq5f6abfEQgAAAAAAAMCDc54QaFhKaSepSVJKuZrphCAAeCSs9zv52NWN\nfOzqxqn3DMeTvHVr/8gyZLt54+Z+3rixm899dTtv3tg/thRZu1VydaO/sAzZ9NfRaUMrXUuRAQAA\nAAAAABfjPCHQ/5zkbyd5qpTy3yb59iR/7EK+CgAekG67lY9cXs1H7rEU2bU7g+kSZLOlyBa2P//2\n7fzTl9/Jrf3jS5FdXuvOo6Bnt1by7NZqnruymueurOW5K6t5enPFZCEAAAAAAADgPTlzCFRr/YFS\nyueSfHOSkuQ311q/OLteSrlSa92+gG8EgIdKKSVPbvTz5EY//+ZHTl+K7Pb+KG8ci4V288aN/bxx\nczc/89p0KbJF3XbJhy83cdDlaRz03BOref7KWp67spanLvXTEgoBAAAAAAAAJzjPRKDUWr+U5Eun\nXP7RJL/ifX8RACyJjX4nH39qIx9/6vSlyPaG47x+Yy+vXNvJq9u7eXX7YPtjP/tW3r51OBTqtVv5\n8OWVPHdlLc8/cTBJ6Lkr01joQxtCIQAAAAAAAHhcnSsEugf/1hEAzmml284LH1rPCx9aP/H63nCc\n167v5tXt3WOx0D/8wlvHJgr1Oq08d3k1H2mWGzsaC13d6KcU/y8bAAAAAAAAltH9DIHqfXwXAJBp\nKPSxqxv52NWTpwrtDsZ57fpOXtmexkKvLsRC/+Brb+TdO4ND9/c7rSYKWptvF2OhJ9d7QiEAAAAA\nAAB4RN3PEAgA+ICt9tr5+FOX8vGnLp14fWcwOrLk2HT/lWu7+elXr2d7Z3j4fd32fHrQSbHQlbWu\nUAgAAAAAAAAeUpYGA4Alttbr5OuevpSve/rkUOj2/iivzZcdW4iFru/kJ796PTd2h0feNw2Fnl+I\nhBZjoa1VoRAAAAAAAAA8KPcMgUopT9zteq31WrP7zffliwCAD8xGv5Ovf+ZSvv6Zk0Ohm3vDvHZk\nktAsGPqJL1/Lzb3RsfedNFFoFg9trXU/iB8LAAAAAAAAHktnmQj0uSQ104k/H02y3exfTvLVJC8k\nh4IgAGBJbK50s/lsN9/w7OaJ12/sDk9cduzV7Z3881+4ltv7h0OhSyudhUBoNc9sruTpzZU8damf\npzZX8vRmPxv9jqlCAAAAAAAA8B7cMwSqtb6QJKWU/zXJ3661/r3m+Dcm+c0X+3kAwMNsa7WbrdWt\nfOOHt45dq7Xm5u4or2zvHIuFvvruTn785XdyZzA+9txqt52nN6dh0FOX+vNQ6OnNlTy12c9TlwRD\nAAAAAAAAcJJSaz3bjaX8q1rrv3Wvc4+aF198sb700ksP+jMA4LF0e3+UN2/u5a2b+3nr1nT75s29\nvHlrP2/d3Mtbt6bHOycEQ2u99nyS0CwUeroJhQRDAAAAAAAALJNSyudqrS/e676zLA0287VSyh9L\n8tea4+9M8rX38nEAAEmy0e9k4+pGPnZ14673HQ2GZvtvNqHQ5792Mz/2pbfeUzA0mzgkGAIAAAAA\nAOBRd54Q6Lcn+eNJ/naSmuQfN+cAAC7UeYOhN2/u5e0mEnrz5v58stDnv3YzP/rFt7I7vHswdLAc\nmWAIAAAAAACAR8eZQ6Ba67Ukf6iUsl5rvXOB3wQA8J6cJRiqteb2/mgeB50UDP2rV6/nzZv7pwZD\nT2+u5Oql/qFg6Og5wRAAAAAAAAAftDOHQKWUX5vk+5JsJPloKeWXJfl9tdb/7KI+DgDgfiul5NJK\nN5dWuucKhg6WJWuOb+0LhgAAAAAAAHionGdpsD+b5FuSfCZJaq3/spTy71zIVwEAPGDnDYbebEKh\ntxZCobMEQ6vddp7a7M+XJXvqUrMc2SwWaq5trXYFQwAAAAAAANzVeUKg1FpfOfIvoI7/2ywAgMfI\nYjD08afOGAw1gdBswtBbt6bnvvi1m/lHt/Zze3907Plep5WrG9OpQk9dWjk5Htrs54m1XlotwRAA\nAAAAAMDj6Dwh0CvN8mC1lNJN8oeSfPFiPgsAYLmcNRhKkjvNkmRvLUwWevvW/jweevnt2/nxn38n\nN/eOB0OdVsnVS9NI6GoTBz29GA41+0+u99Jpty7qxwUAAAAAAOABOE8I9J8k+XNJPpLktST/IMnv\nv4iPAgB4nK33O3mh38kLH1q/6317w3HeXliC7GDS0PTcq9s7+cmvbufancGxZ1sleXJjFgc1y5Bd\n6ufq5srh40v9dAVDAAAAAAAAj4QzhUCllHaS31Fr/c4L/h4AAM5opdvO80+s5fkn1u5632A0ydu3\nD4dCb9+cLUs2PfczX7uZd27vp9bjzz+x3juyDNnBsmSzpcquXupnpdu+oJ8UAAAAAACAszhTCFRr\nHZdSviPJn73g7wEA4D7rdVr5yOXVfOTy6l3vG40neffOIG81gdBiKPTWzf28fWsv//qNW3n79n7G\nk+PF0OZKZzpJqImDZhOFZtOFZiHRev88QykBAAAAAAA4q/P8W5j/t5Ty55P89SR3ZidrrT95378K\nAIAPXKfdytObK3l6cyXJ1qn3TSY113amwdCbt/by9kIwNFum7LO/eC1v39rPYDw59vx6r50r671c\nWevl8lo3V9Z6ubLWzeVme2W9d7Df3LPR76SUcoE/PQAAAAAAwKPvPCHQL2+2371wrib59ffvcwAA\neNi1WiUf2ujnQxv9fDKbp95Xa82N3eHBZKGb+83SZHu5vjPM9s4g2zvDfPXaTrbvDHJzb3Tqu7rt\nkq3Vg1DoIBI6HAzNrl1e6+Xyajeddusi/ggAAAAAAAAeSmcOgWqtv+4iPwQAgOVSSpkGOWu9fP0z\nl+55/2g8yY3dYbZ3hrneRELbdwbzYGh6brr/i+/cyU/uXM/1nUGG4+PLlM1cWukcmzg03fZyZX02\njehwRLTabZs+BAAAAAAAPJLOMxEopZTflOQbk6zMztVav/v0JwAA4Gw67Vae3OjnyY3+mZ+ptebO\nYJztO4OFKUMH+4uTh7Z3BvmFd25n+84wt/dPnz7U67QOTxk6afJQExLNoqKt1W7aLfEQAAAAAADw\nYJ05BCql/KUka0l+XZLvS/LtST57Qd8FAAD3VErJRr+TjX4nzz9x9ucGo0mu7zah0J3BoSlEi5OH\nru8M8nNv3Z5fG09Onj5USrK1ejQe6h6ZRjTd32qOt1a7We+ZPgQAAAAAANw/55kI9Gtrrd9USvnp\nWuufLKX8D0n+r4v6MAAAuCi9TitPXVrJU5dW7n1zo9aaW/ujXL9zePLQtTuDg6XMmnNv3tzLz75x\nK9s7g+wMxqe+s9Mq2VqdxkFbq91cXm22a71sHjo+2G425/qd9v34owAAAAAAAJbIeUKg3Wa7U0r5\ncJJ3kzx7/z8JAAAePqWUbK50s7nSzUefXDvzc/uj8cESZXeGubE7yI3dYa7vDKfb3en2xs4w79we\n5OW3b+fGzjA3905fvixJVrvteSC0dSwYOiUkWu3l0konLcuYAQAAAADAUjpPCPR3SymXk/z3SX4y\nSc10iTAAAOAU/U47T2+28/Tm2acPJcl4UnNr76Rg6OSQ6Cvv7uSnXx3m+u4ge8PJqe8tJdlcORwI\nnRQTba32jk0jWu1aygwAAAAAAB5mZw6Baq3f0+z+n6WUv5tkpdZ642I+CwAAHm/tVsnltV4ur/XO\n/ezecJybuwuh0M5CSLQYEzXHr23vzo/Hk3rqe7vt0gRCnVxe682XM9s8EgydFBJ1263388cBAAAA\nAACcwZlDoFLK7zzhXGqt339/PwkAAHg/VrrtrHTbeeqcU4hqrbkzGOd6EwrdODJ1aDaFaLa82Zs3\n9/Kv37yVGzvD3Nq/+1Jm6712EzZ1c2WtlyvrvVyZ7a91m+Nenlif3vPEes8EIgAAAAAAOKfzLA32\nKxf2V5J8c6ZLhAmBAABgCZRSstHvZKPfyXNXzvfsaDzJzb1REwwNDqYPLQRE2zuDXN+Zbl/d3sl2\nc/40vU4rTyzEQ4uR0OW1Xp5Y7063a70mLupmo98RDwEAAAAA8Ng6z9Jgf2DxuJRyOckP3fcvAgAA\nHjmdditPrE9jnWT9zM+NxpMmEpoGQtt3BtPtznC+f+3ONC764hs3c31nun/aCmbd9nRJtStrC5HQ\n+mzy0MIkotkEorVeLq100mqJhwAAAAAAePSdZyLQUXeSvHC/PgQAAHj8dNqtPLnRz5Mb/TM/M5nU\n3NybxkPX7gxyfWfQbIe5tnNwvL0zzM+/fTvbX5nGQ6NT6qFWSa6ctGzZQix0eBJRL1ur3bTFQwAA\nAAAAPGTOHAKVUv5OktnfnLeSfDLJD1/ERwEAAJym1ZpO/bm81ssLHzrb9KFaa27tj3L9zjQWOpg+\nNFyYQjTI9p1hXrm2k59+dbo/GE9OfF8pydZqdx4QPbF2ZLmyWUzUhEWX17q5vNpLr9O6n38UAAAA\nAABwyHkmAv2Zhf1Rkq/UWl+9z98DAABw35VSsrnSzeZKNx99cu1Mz9RaszMYzwOh7YWA6FqzRNls\nEtHrN/byxddvZntnmN3h+NR3rnbb2VztZGu1O/+1udLN5mx/4fz0+ODe1W47pZhCBAAAAADA6c4c\nAtVa/9FFfggAAMDDpJSS9X4n6/1Onrty9uf2htN4aL5cWbN82Y3d4aFfN3dH+dr1vXxx91Zu7g1z\na2901/d229OYaRYMHURDnfn5rROCos2Vbi6tdNKylBkAAAAAwNI7z9Jgt3KwNNihS0lqrXXzvn0V\nAADAI2ql286zW6t5dmv1XM+NJzW39g4ioXkwtHc0IGr2dwZ55drO/Px4ctI/rk2Vklzqd7K11j0U\nDW2udLO1thAXrXROjIm6bUuaAQAAAAA8Cs6zNNj/lOT1JH810/jnO5M8W2v9ry/iwwAAAB4n7VbJ\n5bVeLq/1zv1srTV3BuODSGgxGGr2b+6NDh2//Nbt+fH+aHLX96/12ocDotXOsalD84lER2KjlW7L\nkmYAAAAAAB+Q84RA31Zr/WULx3+xlPIvkwiBAAAAHqBSSjb6nWz0O/nw5fNNIkqmy5nd3JvFQ6PT\ng6JmOtFr1/fyxddv5ebuMLf2776kWa/dyuZqN5fXurmy1s3Wam++f3mtl63Vbq6sTc9trXZzZb2X\ny6vdrPXaAiIAAAAAgHM6Twh0p5TynUl+KNMlwn57kjsX8lUAAAB8YFa67ax023nq0sq5nx2NJ7nV\nTBtaXMZscXmzG7uD3NgdZvvOMK9d380XvnYj2zvD7A7Hp763125la62by00oNN9fn8ZD05hoGg1t\nrR3ERKtdAREAAAAA8Pg6Twj0HUn+XPOrJvmnzTkAAAAeU512K1fWe7myfv4lzfaG49zYHeb6zjDX\ndwbZ3plGQ9d3hkf2B3nl2k5+Zne6vzc8fSmzXqeVy00odLkJhWbR0DQm6k0nE83216fb1V77/fwx\nAAAAAAA8FM4cAtVav5zkUxf3KQAAADxOZpOInt483ySiveF4Gg81odD1nWbbhEI3dobzgOir13by\nL1+dRkaD0ekBUb/TmsZDzdJl8/31g3Ozpc2uLJxb6QqIAAAAAICHx5lDoFLKn07y3yTZTfL3k3xT\nkj9ca/1rF/RtAAAAcMxKt51nttp5Zuv8AdH2LBqaBUQLE4lmcdH2zjBffmcn13ev3zMgWum2jsdD\ns2lEzXJml1a62Vjp5NJKJ5f6nWysdLLR72S910mrZRkzAAAAAOD+Oc/SYP9erfW/LKX8B0m+nOS3\nJPnHSYRAAAAAPPRWuu08u7WaZ7dWz/xMrTV7w8lBQLS7EBIdnUi0M8wvvHN7vj8Ynx4QJUkpyUav\nM4+ENvqdbKx0D4KhfucgIuofvu/SSnOt38lar51SBEUAAAAAwPlCoNm9vynJ36i13vAXjQAAACyz\nUkpWe+2s9lbz4cvnC4h2myXMbu2Ncnt/th1Nt3uj3Nof5dbeMLcXzt/YHea17Z35vTuD8T1/r1bJ\nQTTUREIbJwRDB8edbPS78/suNc+udFuCIgAAAAB4xJ0nBPq7pZQvZbo02H9aSrmaZO9iPgsAAAAe\nXaWUrPU6Weud5x+7jxuNJ7kzGE+Dof0mIGoioun+8CAu2j843r4zyFff3Znftzu8d1DUbpUTgqHD\nU4lOnFy0cN+llU76HUERAAAAADwoZ/4byVrrHyml/OkkN2qt41LKTpJPza6XUn5DrfUfHn2ulPKt\nSf5cknaS76u1/ndHrpp4E0oAACAASURBVPeTfH+SfzvJu0l+W631y821P5rkdycZJ/mDtdYfuds7\nSyk/kOTFJMMkn03y+2qtw7P+jAAAAPAw6bRb2VptZWu1+77eMxxPcudQMHQwpWh2bhYWzeKh2/uj\nvHN7kC+/u9PcN8z+6O7LnSVJp1Xm04bWup30u630O630O+2sdKfbfqfVnJ/tN9sj+yvz/fbJ72nO\n9driIwAAAABIzjcRKLXWawv7d5LcWbj8p5IcCoFKKe0k35vkNyR5NclPlFI+U2v9wsJtvzvJdq31\n46WUTzfv+W2llE8m+XSSb0zy4ST/dynl65pnTnvnDyT5D5t7fjDJ70nyF8/zMwIAAMCy6bZbubzW\ny+W13vt6z2B0EBTd2j+8rNlJU4p2B+Psj8bZH02mS6XtDrI3nEzPDSfZH03394b3Dozu5VA4tBAZ\nrSxGRgvx0KHIaOGZ02Kl06KkfqeVVkuEBAAAAMDD4f3NKD/spL/1+lVJXq61/kKSlFJ+KNMpQosh\n0KeS/Ilm/28m+fNl+p/xfSrJD9Va95P8Yinl5eZ9Oe2dtda/N/+YUj6b5Ln79LMBAADAY6/XaaXX\n6eXK+vsLio6qtWYwbsKgWSjU7O/No6Hm3GiS/eE4e812fm7xvoXIaPae2/uDU98zntT39f29duvE\ncOjyWjdX1nq5vNad72+tLp5rtqvddNqt+/SnCQAAAMDj7H6GQCf9rdlHkryycPxqkl992j211lEp\n5UaSJ5vz//zIsx9p9u/6zlJKN8nvSPKHTvrQUsrvTfJ7k+SjH/3oqT8QAAAAcPFKKU1A005WPvjf\nfzSLkBYmFB0Lig5FSfeOlXb2R7mxO8yX3riZ6zvDXN8d3jU4urTSOTUWutKERJfXerm8cG1zpWsa\nEQAAAACH3M8Q6GHyF5L841rrPznpYq31Lyf5y0ny4osvvr//7A8AAAB4pHXarXTaraz3L+73qLXm\n1v4oN3aG2d4Z5PrCdrZ/Y3e63d4Z5pVrO9neGebm3jD1lL+5aJVka/XwZKEra71srZ0QEq0eTCba\n6HcyHcYMAAAAwLK5nyHQl08491qS5xeOn2vOnXTPq6WUTpKtJO/e49lT31lK+eNJrib5fef+CQAA\nAAAuQCklmyvTKT7PP7F25ufGk5qbu9OJQtNwaBYRDXOjiYau7w5zfWeQt2/v5+feup3rO8Pc3h+d\n+s5OqxyaMHRs6tAsJJpdW5+GRKu99v34owAAAADgAp0rBCql/Nokv2TxuVrr9zfb33LCIz+R5BOl\nlBcyjXU+neQ7jtzzmSS/K8k/S/LtSX6s1lpLKZ9J8oOllP8xyYeTfCLJZ5OU095ZSvk9Sb4lyTfX\nWifn+dkAAAAAHjbtVsmV9V6urPfyQtbP/NxwPGmmDQ2mEdGdwTwYmoVEs/1Xt3fy+a9NQ6O94el/\nndLvtI4tX3ZlvZut1ePLl6322um0Wul1SrrtVrrtVjrtkl6zP/1VTCYCAAAAuM/OHAKVUv5qko8l\n+akk4+Z0TfL9pz1Tax2VUr4ryY8kaSf532qtny+lfHeSl2qtn0nyV5L81VLKy0muZRr2pLnvh5N8\nIckoye+vtY6bbzn2zua3/EtJvpLknzV/kfS3aq3ffdafEQAAAGAZdNutXL3Uz9VL51vvbG84PrJs\n2WA+jWi2rNl0GtEwP//27Vz/6vSe4fi9rbzeaZV5FDQPhGbxUGth/8g9vea4Mz8uTWx0sN/ttNJp\nlfQ6rRPfca/9XvN8t9OaB0ztlnAJAAAAeLiVetpC80dvLOWLST5Zz/rAI+LFF1+sL7300oP+DAAA\nAIBHUq01O4PxQjw0zP5onOF4ksG4ZjiaZDQ52B+OJxlNagbN/vRXPfP+YDR9fjieZDiavnc0mTTv\nrhmML25IdCk5FiL1joRE/W4rl1a6udTv5NLK9NdGvzvdrnSyudLJpZVuNubXp9f6nZYJSQAAAMCp\nSimfq7W+eK/7zrM02M8keSbJ6+/5qwAAAABYKqWUrPc7We938tyVB/010zBpPKnzKGg4nmQ0i4gW\njgfjg3joWGy08MzR4+lzTXw0nmQwqk3cNN3fG45zY3e65NrtvVFu7Y2yOxzf87u77XIoEJpuu9ls\nAqJLxwKig4hodu9Gv2NqEQAAADzmzhMCfSjJF0opn02yPztZa/22+/5VAAAAAPAelFLSaZd02slq\n2g/6c5Ikw/Ekd/anUdDNveE8ELq1P92/2Rzf3h9Ot83xq9s7ud08d2tvmMkZ5nSv99oHgdAsFjph\nOtFpMZHpRAAAAPBoO08I9Ccu6iMAAAAAYFl1261cXuvl8lrvPb+j1prd4XgeBd2ax0OHj2fXZwHR\njZ1BXt3emQdG72U60SwgOm060eZKd35+vTeNitb67fQ7D0eIBQAAAI+TM4dAtdZ/dJEfAgAAAACc\nrJSStV4na71Ont5cec/vGY4nud0ERDf3FiYQ7R+OiW4vHN9uphMthkdnmU7UbTfLxjVx0Hq/PT9e\n73eyMTvud7LeazfnOgfn+u2FZzvpdVrv+ecGAACAx8WZQ6BSyq9J8r8k+YYkvSTtJHdqrZsX9G0A\nAAAAwH3UbbdyZb2XK+vvbzrRzmB84jSiO/uj3BlMt7f3x9Pj/WlAtDOYTjR648be/NydwTjjs1RF\nSXrtVtb77awdCYs2+p3m3EFYtHEkMDo4157fLywCAABgGZ1nabA/n+TTSf5GkheT/M4kX3cRHwUA\nAAAAPJxKKfO45v1MJ0qmUdH+aNIEQ+MmDhrNj+fB0P4otwej7CyeG4xy8z6ERQcx0eGpRLNwaK23\neG56z2KMNLvWbQuLAAAAePDOEwKl1vpyKaVdax0n+d9LKf8iyR+9mE8DAAAAAJZZKSUr3XZWuu08\nufH+3zcLi27vT6OhWTA0i4nm55qwaDE4moVFrzdh0Z33EBat9tpZ67Xn27Vu5/i5Xier3dl+O6u9\nzsH1bnO9t3i9nV67lVLK+/8DAgAAYOmdJwTaKaX0kvxUKeVPJ3k9if/MBQAAAAB4KCyGRbnPYdHi\nEmez48Ul0HYG4+wOptud4Ti7g3F2BqNc3xnka9fH0+vD6bm94eRc39Fulax12wtRUecgFOqecO6E\nqGi1iZAWn1nrdbLSFRkBAAAsk/OEQL8j0/Dnu5L84STPJ/mtF/FRAAAAAAAP2mJY9KGN/n1772RS\nmyioCYaGTUC0Pw2FZtcOxUXzew/O3dob5a2b+9kZjprwaBob1bMNMWp+xizERIenGM0Do277+LlD\nIdLxKUazyUftlsgIAADgg3TmEKjW+pVSymqSZ2utf/ICvwkAAAAAYGm1WiXr/U7W++f57zTPptaa\nveEkO00sdBAVLcRCzfHB5KLD0dHsme2d4cG5JkI661JpM/1O69D0oWPRUPfIJKOF+Gh27rTYyJJp\nAAAAx535nzRLKf9+kj+TpJfkhVLKL0/y3bXWb7uojwMAAAAA4OxKKdN4ptfOk/f53bXWDMaTI/HQ\n8ahod2Fq0aF7hwfTjd69PcgrszipCY8Go/u7ZNrqkdjopElHx5ZNmz3bbadlmhEAAPAIOs9/cvIn\nkvyqJP9PktRaf6qU8sIFfBMAAAAAAA+ZUkr6nXb6nXYur93/94/nS6aNToyNTlsybW94ODa6vT/K\n27f2D997ziXTkhxMMOqesOxZrz0PiVa67fS77fQ7ren+wvbYuW4rK53D237HEmoAAMD9c54QaFhr\nvXFk1Oo5/9EJAAAAAACOa7dKNvqdbFzQkmn7o8mhZdJmYdFBdHRybDS/3kw6euvW3qHze8Nx9s85\nzeiobrscCoNm25XuCTHRXbZHg6SDdzTbbjsrnYNtp926T3/CAADAw+I8/0T1+VLKdyRpl1I+keQP\nJvnxi/ksAAAAAAC4P0opWelOp/c8sd677++fhUb7w0n2R9MwaBYInXe7P5xkbzQ+eNdwkmt3BofO\nL27PO+loUbtVDoVB/VOCooPt8bhodWFq0mxJttWFaUmzSUorHcutAQDAB+E8IdAfSPJfJdlP8oNJ\nfiTJ91zERwEAAAAAwKNiMTRKuh/Y71trzXBcD8KgWUw0GmdvISRaPL77djFIGufG7jD7C8d7C9vx\n5PwF0uJya6snhEPHzh+LijrHn1m4r2vCEQAAnCsE+mTzq9P8+lSSb0vyTRfwXQAAAAAAwF2UUtLr\nlPQ6rWTlg/29R+NJdofTJdb2BpPsDJsl1xaXXRsePt4bzpZmm2S3uX9nMM71nUG+dv3w/bvD8087\n6rbLwRSibruZVjSNj1aOxka9dtbOEhwt3NfvtFKKqUYAADzczhMC/UCS/yLJzyR5fwseAwAAAAAA\nj6xOu5VL7VYurVzMBKTZcmsHQdEsIJrGRHtHY6PBODsL+0fjo3fvDKbvWDg/HJ+vNColh4KhXqeV\nXruVbruVbrs024X9+fWDa73OkePZ9c7icSuddjn87hN+r17nyHG7Zfk1AADOFQK9XWv9Oxf2JQAA\nAAAAADm63NrFGM6mGs1ComNTjE4PjvYG4wzGkwzHkwzHNcPxJIPRJDuD0cHx7PqoZjSZXp9dG72H\npdXOot0qh8KgY1FR54QI6YzR0uJ+v9OaTktqoqiTlntb7bbTsVwbAMAH7jwh0B8vpXxfkh9Nsj87\nWWv9W/f9qwAAAAAAAC7QLGrZvKCpRnczmdQMJ00YNJoshEMHUdGhyGg8yXA0DYgOrtfmntn1I8cL\n545GS7MI6ube8d/r6PvfT7R0dLm2lSYUOnR8ZIm22fGh5dy67awsLOG2eNwVGwEAHHKeEOg/SvJv\nJOnmYGmwmkQIBAAAAAAAcEatVkm/1U6/k6T/oL/m7o5GS4MmFJpNSZottbY4TWm+bfYXJyvtNeeu\n7wyP3bc/mtz7g47otMqxaUQrJwRDi8u6HY2OFuOjeWy0cNxtl5Ri2TUA4NFwnhDoV9Zav/7CvgQA\nAAAAAICHygcZLY0n9VBUNNufR0RHwqHFkGgeGy0ERzf3htNQ6dB954+N2q2StSYqWuk2S6W1pkut\ndVrTZdU67ZJOu5Vee3qu22ml2yrpHFlerTPbb832D65P750ed1qt9Jr3z5Z3W7y/0zr+3vl3tIRL\nAPA4O08I9OOllE/WWr9wYV8DAAAAAADAY6ndKlnvd7LeP8+/vjqfyaRmb3Q4GNodTLIzGB0cL0RF\nB2HSJLvDUXYH4wwnNaOF5dRG45rBaJI7g3GzhFtzrrk2XFiabdRMV7po3VmQNAuHjgZJd7vWhErd\nJj7qNec67ZJ+c1+vs/CrOe7Pj9vpdabvmp9vzi0+Y9ISAFyM8/wvqV+T5KdKKb+YZD9JSVJrrd90\nIV8GAAAAAAAA91GrVbLW62Std3Gx0b3UWjOa1IVYaJLRZBoTjSYH4dBBRNQER5Mj8dGR0Gg0mS7f\nNpzM7jl8/3A8WYiYDl+7PRqd8t4mXhpN9wfj809Uupte+3hQdOr+CQHSLD7qnnBP/4T3dI88d9Lv\nJU4C4FF3nv+V860X9hUAAAAAAADwGChltgRYspr2g/6cc6m1zgOiwWiSQbPdHx0+Hi6en907mmQw\nGmfQBEbzZ0aTDMbjhf3ZtmYwGmdnMMr13cV3LN4z3U7u45ClbrMU2/GpR+35dKTZNKXewkSl3pHp\nSr3OwRJuswlJs2Xjeu3DE5cWl4frzaczLSwd1zzfbR3eb7VESwAcd+YQqNb6lYv8EAAAAAAAAODh\nVUpJrzNd8mu9/6C/5sBofDg42p/FSOPDAdH+wvFZY6bF52ZTlgbjSe7sj3J9FkUdmc50eLrTxS0F\n126Vg1jolEDp5EhptjzcdL/bbjWR0jREWtxffPfBsm4nT2JavGd2ffasSUsAH5wHN/cQAAAAAAAA\n4H3qNNN11noP+kuOm01Rmi6xVpuJSAfLsA3Hh5dqO/F4VDM8skTb4pJvx985XSZuNJlOVho2QdOd\nwbh5x0m/58G76gW0S0djoeMR0eHl23oLIdLser9zUoRUDkVHx97Z/J4nPzv9ZbISsGyEQAAAAAAA\nAAAXYD5FKa3kIQyVTjKeHA6EBgsTlmYTj4bj2eSleuKEpcXpSIMj95x076AJnnZ2h/NYaXru8FJw\nw3HN+H6uBZfpZKXefOpR+1BctBgpdU6YvnR0wlK30yzhdmi/NEu6HX7u8P7p1w7/3qYrAfcmBAIA\nAAAAAAAgyTSMabfaWem2H/SnnGgWKu2fEhfdLU46NWI64Z7pudos/TY9tzMYnz5RaTSZTm66gFhp\nUadVjodDzRJv3dYp++8xQuq0DyYzzfZPDqKaJeZmQdXCfrdl6hJ80IRAAAAAAAAAADwSHvZQKUkm\nkzqPgubLsU3qoWlHi0u7jRaiosG4zsOjwcIyb7NwaXH/7kvETbI/nOT23mj6nnnQtBg3Hdx7EUvC\nzbRbZR4FdTutk2OmeUxUTp3C1JktIdfsT4On4xOXOq3pVKfO4kSm1uF3nPz7HP79TF/iUSUEAgAA\nAAAAAID7pNUq6bfa6XeS9B/015zNbNLSbEm20WQhNprMIqQmWBodhE2jyfF4aXTC1KTRPECqJ09U\nGjeR06jm1nA0358GVQvB0+J3jC+wXso0YJpFS512mYdFnSZqmp2bbst8CtL8vtZBZHTi9YX99vyZ\nw/ctPn/8Ow6f77ZaabdLus07Dn+nsOlxIgQCAAAAAAAAgMfYozBp6aha66EoaDg+PF3paGw0Gh8s\nHzfbn9+/MLHpIHyaXa/zSUyj8UGINFo839y7N5xkNB4dOjc88p7RPHy62GXkjppGRgtxUDNRaTEa\nmk1v6rRb+cH/+Fen33l0/u+BA0IgAAAAAAAAAOCRUkqZL+f1qKr1cGg0njQTlWbbE+KhYxHSCaHS\nQbB0+H0nP79wfVwznNSMJ5O0TRB6ZAmBAAAAAAAAAAA+YKWU9DolvTy6MRMPH//XBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS+DCQ6BSyreWUn62\nlPJyKeWPnHC9X0r56831/6+U8ksWrv3R5vzPllK+5V7vLKV8V3OullI+dNE/GwAAAAAAAAAAPCwu\nNAQqpbSTfG+S35jkk0l+eynlk0du+91JtmutH0/yZ5P8qebZTyb5dJJvTPKtSf5CKaV9j3f+0yT/\nbpKvXOTPBQAAAAAAAAAAD5uLngj0q5K8XGv9hVrrIMkPJfnUkXs+leT/aPb/ZpJvLqWU5vwP1Vr3\na62/mOTl5n2nvrPW+i9qrV++4J8JAAAAAAAAAAAeOhcdAn0kySsLx6825068p9Y6SnIjyZN3efYs\n77yrUsrvLaW8VEp56e233z7PowAAAAAAAAAA8FC66BDooVRr/cu11hdrrS9evXr1QX8OAAAAAAAA\nAAC8bxcdAr2W5PmF4+eacyfeU0rpJNlK8u5dnj3LOwEAAAAAAAAA4LFy0SHQTyT5RCnlhVJKL8mn\nk3zmyD2fSfK7mv1vT/JjtdbanP90KaVfSnkhySeSfPaM7wQAAAAAAAAAgMfKhYZAtdZRku9K8iNJ\nvpjkh2utny+lfHcp5dua2/5KkidLKS8n+c+T/JHm2c8n+eEkX0jy95P8/lrr+LR3Jkkp5Q+WUl7N\ndErQT5dSvu8ifz4AAAAAAAAAAHhYlOnwncfXiy++WF966aUH/RkAAAAAAAAAAHCiUsrnaq0v3uu+\ni14aDAAAAAAAAAAA+AAIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAgP+/vfuNtS2t7wL+/Z1z7p0ZZmhh2pEQwDJt\nSRSaSnUk0VZD2lRp34DJ2IK2QWNSX9CExje0RtNKNGmNim9qaU1JpooOFMFOfGNrRZQXDgx0KAVE\nR6TpkJGh5Y8MDPfec87ji732uWuvs/afc+85d5+7zueT7NlrPetZz3rOnbOfvc5a3/1sAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAA4Cy0luxfSQ4Pt90TAAAAAOCC2Nt2BwAm5fAgObiWHF6bPR9cSw6uduv7veVri/UO98+oQ3UG\nTZ5Fm7vJ7l6ys+SxeynZ2e2V9dZ3L82ea+ds+gYAXBz7V5Orz3SPr80eV756fflqt3xlvn1Z3d72\n1oWAdu9ILt2Z7N214fOdyaW7bvx599J2/y0BAAAAgK0QBOJ8efZLswvmtZOkuhv7O9dv8FeNbOst\nH5WXQMDtqrUuTLMkMLNpsOaoXldn6baxer3l4X6HXf2FY/eWm097b9VRSGhvFhSah4Tm6zu99ZXB\no73x0NGxUFLvWP1Q0vBYx/qyt7htXWBr7Xh2M/uv23fNoW+2760lad1y95952cK2Nr6ttRztfGxb\nVmy7kbaHdW+i7aNt646/yfOafmz0fKv7kdn79fw1UDvXX0e1u6JsN9nZGSkbLI+VHe2zs2HZ7qCP\nq8q6Nk5La7P39lUYwAAAEtZJREFUovn71OH+7L1xXnZ4bbC+P3svOlz1OOi11Ss7vDZYHzvmSB8O\nRvqw8phd3XbYG2cvXR8bdy8tWd9Ldi9fX950n6PyU9zPueX5c3hwPHQzFtC58sxinWPhnt72g6ub\nH//yPcnlu7vHPbPH3fcl996/WHbpztlr4dqzyf43Rp6/kXzjK8m1zyf7z87W+883qnZHAkInCSLd\nQFDJ6wQAAAAAtk4QiPPlv/x88ujbT6+9YwGhYXioBtvGQkU7s/vcp9bWmkDT2huohzd207YdDsqy\n4b6HI2Ub7HvseBvsO7/ZeNZ2+jcVe4+d4fLl2fLeHdeXl9bbW1wetr9wrMvHb27u7J7+jZOjoMKp\nNno2TbZVN7Svrbj5fG3kZvPIze1VN8jn7e1fOX68Yze6h9tuwe8r3JTqvT+d9Pks98/sfeLwYPZo\n/ef92VfoDMvOvRoJHu2Ml6WNh2Tm49Y2Q6VHQaexoGN/ZrYlj0t3DQKYg7aqjs+e1x9TD/ZnwYh+\neT+8O69ztO8tHIc3ChetCR0NA2RVI2U7i+G0GiwfK1vVzop9dnZG2hkee5N2uuMv2+foNd9mwZdj\nAZ3eLDvLAjpXejPu9Ote+/rm///27lwM51y+O7nzm5JveuFi2R295VXll55zugHAZeZfLTYWEFp4\nHgsYrXl+9svXg0j99m5mzN0bCwjdMZsNaeG8+nK3fGm2bWG52z5cHt1/bHlevzsvBwCAi+joenv/\nesvw+kvvmszRB3h612aO1nsf7jnar7t20w676zj9azk3u60trm+07fD6taaFYxys2DZWb922jFwf\n2R2U9T9otje+bdjG0fWYZW3eaLtj7QyP1b9esaI9M/ID3FZcFeN8+a4Hkxe8YvHErQ2DJf3yw0F5\nW1I+qL8QclnW1mEXUFjXVnezbm1b87DLweq2Vt1YPQoPDbbNb0Is3XdndbvL9l12vLU3e9cdb8nx\na/f6BfybDdYsrecT/Zyy+R/FS0NJw+DRSMhppTXhq7XZrBUV1obF1h37FPYfjgVLx5bhtsFzsuG2\nsXZutO2s2LZJ20v6csPBm/74PcFxrh8O6l+IOgoUrSvrXdhaVXZ0YWtYdrCkD/OywQW0hYtjg7L+\nbEcrZxZbMjPZpsGcYzOfjcxWtvAVi6c8s9GtMD+3Gg0VjYSM+gGihfUl+x0LIa1qc6TetWcX6x39\nPgwvKM5/R9ri7+d8+1kEcW+Veei9f968zs7eSAjn7uQ59y7OwnPHc5cEdgZll++5fQMhVbPZdy7d\nmdx1i455sL9B8GiD5/0rXejoSnJwZfa6+PrXutfWla58vny1m3Xzyun+LLUzEipaEUI6ChudNHg0\nElza6/4uGc4SeLSc2fpGyxkvH233pMsnON6y5VXHOGqqv96WlK/bdprtnXb/lvV1cH53w8u5iX1P\nsrxpn7t6K5cri9cGetuWXmtYci3hpNc6FtrPCeufwXn1/LrP8P194Wbm4CbnsfOCTcpHbnIeKx8e\nf+xG57rykTbn5yvVCxr3P0S3szO+7ShQvGzb/INzY+Ujj4Vtg7aPbevaPtbesm1r+t0//1+4kd4P\n/h+sqdNfH968X1Ln6Lg3UaeNHXuwz7E6vfW0ketyg+t6x5aXfdhuSdnojKHD/fauf5Dv2PIt/GAe\nJ3d0TX/ZmDMy7q3ddgMBj357q/px7JpDPzAzDNsMrk2Mra8K6fSvUawM6Yzsd1v9Hdkfc3ePj83H\ntvXeGxa2Dcbs/rb5+f2xbYN667bNP+B0bIxfNp52ZUcfQl02vo8999o9N0bOCU+0fjNtnFYfbrDP\nVb3rdt17yPBbAObvSwvbVtVdt76urZO0fZu97y2cQ/fvGc/Xe/dWR+sM7r0eqzPyWKjTG/OT62NC\n/2+I/vlgesv97aPlJ5xAYqG8Njhuv5+3yf9vzsRtejWUyXrJn509AG4XOzvJzuUkl7fdE5i2nZ0k\nO7M/XGGuqruQ381GNFX9m4TrwkPrbvgtDSGdwj4LF9EH++zsLgZzlgV27rhndmPGhYrt2d1Ldp87\nC1rdaq1dD+HNH/tXlix3waGj5auDUNHYvtcG+3RlV7+eHHxptrzseLfF7HTA2dg0OLSTZOQ9+7a6\nEbvEsRuzI7MLpnL95x+5gTK8uTKFf5fzZGGGiLGZHJbNItHbZz6759I6wza6siTHQvHLlvevJodf\nO15+uN+95w5C+bfi9+SmQkp7OfrdHw3JZrC8SZj2Rutlw3qndNz5+qazr4yGbHr7TcHw9XM0w0v/\ntdOfXbU3M0t/v91Ls9k1x/ZbqLtz/PXaP+aqY4x+lfqS9dFjjM0Gu7PhtrGwj7//VjoKRJw0+DlW\nbxgqGwaPRsJI89fwwXxW5hVjwkbry8pups3TWl/Rv/m/2dG3CPQ/FLbfm+F6uK2/3v+A8P52xr/h\nBw83CRXV7uzfZGlgph/Q6dfph3FGgjiHg/V+HU7JJsGhNYGlNz8+C1Jy2xEEAgAAOM/mgSd/vjF1\nVbOZdPbOYcD68HAkbLQieDR/rJo1Jbl+we2GluedW3GMTZZPdLyRT8uuXe7182hx5BPB67Zt3N6w\n2s22d4P9O/HMTxvcMD615ZxOO0d9HSwfPSfXZ0sebjscKWvXL/qfqP6w/Zyw/rz9nLD+yDH7M9gs\nm71g2U3QYzdOu31Gy+ez7JykfGzmhCUzHgwDP2dh009xL2wb3HRatm3VTaWFm1JjN6zWBJhGPzl+\nkMVwzM7iDbRNvpblWJ2RoM6yOlO+iT6/8Xxsps6rvdk5+8vDENLIDJ8nXR6GlK4+sxhYmttk9rSj\np03qbdreinoLb1k32d7othoZc1bNzNIfpzbYtjATS2XpODU6Vm4wQ8zSfgyOtWzbMJQDZ6V/DhE3\n4ydl+G0DB/3ldaGiE6zfbFuHB1mcDbE/S1YvOLJqpsXR7SOPY3VqcKxhnRrpT79OjfRnXmesDyPH\nT7Lw90H/PHb0G2DakvKx+m1FO/3ytsFxD8+mn7W7hRcHp8GVZAAAAIBVdnaSne5r2gC4efObOtk1\n6yfLzWck8f4LwBT5tgHgDIkpAwAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAA\nAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABJx5EKiqXlNVn66qJ6rq\np0e231FV7+q2P1pVL+1t+5mu/NNV9ZfXtVlV93dtPNG1efmsfz4AAAAAAAAAADgPzjQIVFW7SX4x\nyQ8leXmSN1TVywfV/laSL7XWvjPJ25L8Qrfvy5O8Pskrkrwmyb+oqt01bf5Ckrd1bX2paxsAAAAA\nAAAAACbvrGcEelWSJ1prn2mtXU3ycJLXDuq8NslD3fJ7kvxAVVVX/nBr7Upr7f8keaJrb7TNbp/v\n79pI1+brzvBnAwAAAAAAAACAc+Osg0AvSvIHvfUnu7LROq21/SRfSfItK/ZdVv4tSb7ctbHsWEmS\nqvqJqnqsqh77whe+cAM/FgAAAAAAAAAAnC9nHQQ6l1prv9Jae6C19sB999237e4AAAAAAAAAAMBN\nO+sg0OeSvKS3/uKubLROVe0l+eYkf7Ri32Xlf5TkeV0by44FAAAAAAAAAACTdNZBoA8neVlV3V9V\nl5O8PskjgzqPJHljt/xgkv/cWmtd+eur6o6quj/Jy5J8aFmb3T7v79pI1+ZvnOHPBgAAAAAAAAAA\n58be+io3rrW2X1U/meQ/JtlN8o7W2ieq6q1JHmutPZLkV5P8q6p6IskXMwv2pKv37iSfTLKf5E2t\ntYMkGWuzO+RbkjxcVf8wye90bQMAAAAAAAAAwOTVbCKdi+uBBx5ojz322La7AQAAAAAAAAAAo6rq\nI621B9bVO+uvBgMAAAAAAAAAAG4BQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgA\nQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJiAaq1tuw9bVVVfSPL72+4HC741yR9u\nuxMAt4gxD7hIjHnARWLMAy4SYx5wkRjzgIvEmAfny7e11u5bV+nCB4E4f6rqsdbaA9vuB8CtYMwD\nLhJjHnCRGPOAi8SYB1wkxjzgIjHmwe3JV4MBAAAAAAAAAMAECAIBAAAAAAAAAMAECAJxHv3KtjsA\ncAsZ84CLxJgHXCTGPOAiMeYBF4kxD7hIjHlwG6rW2rb7AAAAAAAAAAAA3CQzAgEAAAAAAAAAwAQI\nAgEAAAAAAAAAwAQIAnGuVNVrqurTVfVEVf30tvsDcJaq6rNV9fGqeryqHtt2fwBOU1W9o6qerqrf\n65XdW1W/VVX/q3t+/jb7CHBalox5P1dVn+vO9R6vqh/eZh8BTktVvaSq3l9Vn6yqT1TVm7ty53rA\n5KwY85zrAZNTVXdW1Yeq6mPdmPcPuvL7q+rR7v7tu6rq8rb7CqxWrbVt9wGSJFW1m+R/JvnBJE8m\n+XCSN7TWPrnVjgGckar6bJIHWmt/uO2+AJy2qvqLSZ5J8mutte/qyv5xki+21n6+C30/v7X2lm32\nE+A0LBnzfi7JM621f7LNvgGctqp6YZIXttY+WlXPTfKRJK9L8jfiXA+YmBVj3o/EuR4wMVVVSe5u\nrT1TVZeSfDDJm5P8nSTvba09XFVvT/Kx1tovbbOvwGpmBOI8eVWSJ1prn2mtXU3ycJLXbrlPAADc\ngNbaf03yxUHxa5M81C0/lNnFU4Db3pIxD2CSWmtPtdY+2i1/NcmnkrwozvWACVox5gFMTpt5plu9\n1D1aku9P8p6u3Hke3AYEgThPXpTkD3rrT8YJNTBtLclvVtVHquontt0ZgFvgBa21p7rl/5vkBdvs\nDMAt8JNV9bvdV4f5ihxgcqrqpUm+J8mjca4HTNxgzEuc6wETVFW7VfV4kqeT/FaS/53ky621/a6K\n+7dwGxAEAoDt+b7W2p9O8kNJ3tR9pQTAhdBm31Hse4qBKfulJN+R5JVJnkryT7fbHYDTVVX3JPl3\nSX6qtfb/+tuc6wFTMzLmOdcDJqm1dtBae2WSF2f2bS5/YstdAm6AIBDnyeeSvKS3/uKuDGCSWmuf\n656fTvK+zE6qAabs81X1wiTpnp/ecn8Azkxr7fPdBdTDJP8yzvWACamqS5ndEH9na+29XbFzPWCS\nxsY853rA1LXWvpzk/Un+XJLnVdVet8n9W7gNCAJxnnw4ycuq6v6qupzk9Uke2XKfAM5EVd1dVc+d\nLyf5S0l+b7u9AjhzjyR5Y7f8xiS/scW+AJyp+c3wzl+Jcz1gIqqqkvxqkk+11v5Zb5NzPWBylo15\nzvWAKaqq+6rqed3yXUl+MMmnMgsEPdhVc54Ht4GazdIK50NV/XCSf55kN8k7Wmv/aMtdAjgTVfXt\nmc0ClCR7Sf6NMQ+Ykqr6t0leneRbk3w+yc8m+fdJ3p3kjyf5/SQ/0lr74rb6CHBalox5r87sqyJa\nks8m+duttae200OA01NV35fkvyX5eJLDrvjvJnk0zvWAiVkx5r0hzvWAiamq707yUGb3aXeSvLu1\n9tbufsbDSe5N8jtJfqy1dmV7PQXWEQQCAAAAAAAAAIAJ8NVgAAAAAAAAAAAwAYJAAAAAAAAAAAAw\nAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAANxSVfXqqvoP2+4HAAAA\nwNQIAgEAAAAAAAAAwAQIAgEAAAAwqqp+rKo+VFWPV9UvV9VuVT1TVW+rqk9U1W9X1X1d3VdW1X+v\nqt+tqvdV1fO78u+sqv9UVR+rqo9W1Xd0zd9TVe+pqv9RVe+sqtraDwoAAAAwEYJAAAAAABxTVX8y\nyY8m+d7W2iuTHCT560nuTvJYa+0VST6Q5Ge7XX4tyVtaa9+d5OO98ncm+cXW2p9K8ueTPNWVf0+S\nn0ry8iTfnuR7z/yHAgAAAJi4vW13AAAAAIBz6QeS/JkkH+4m67krydNJDpO8q6vzr5O8t6q+Ocnz\nWmsf6MofSvLrVfXcJC9qrb0vSVpr30iSrr0Ptdae7NYfT/LSJB88+x8LAAAAYLoEgQAAAAAYU0ke\naq39zEJh1d8f1Gs32P6V3vJBXKcCAAAAuGm+GgwAAACAMb+d5MGq+mNJUlX3VtW3ZXY96cGuzl9L\n8sHW2leSfKmq/kJX/uNJPtBa+2qSJ6vqdV0bd1TVc27pTwEAAABwgfikFQAAAADHtNY+WVV/L8lv\nVtVOkmtJ3pTka0le1W17OsmPdru8Mcnbu6DPZ5L8za78x5P8clW9tWvjr97CHwMAAADgQqnWbnT2\nZgAAAAAumqp6prV2z7b7AQAAAMBxvhoMAAAAAAAAAAAmwIxAAAAAAAAAAAAwAWYEAgAAAAAAAACA\nCRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACfj/hQx2uebc\nveQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPwAAAJcCAYAAABn6yjlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xmc5Xdd5/v39yxVp7au3tNJOqE7\nC0lHVg0MCI4wCCQEcJtBdBhHxhmccbwjF0WDA14XRhlGERzBZa7ovXJH4aIoQwKEJYiAKM2ihHSH\n7KQ7W6fTW+3bb/6o09VVvXe6q09X1/P5eNTjnPP7/c6vPr965JE/ktfj+y1VVQUAAAAAAAAAAFga\nap0eAAAAAAAAAAAAOHmCHwAAAAAAAAAAWEIEPwAAAAAAAAAAsIQIfgAAAAAAAAAAYAkR/AAAAAAA\nAAAAwBIi+AEAAAAAAAAAgCVE8AMAAAAAAAAAAEuI4AcAAABgGSqlbCqlVKWUxhm+732llO85k/cE\nAAAAYCHBDwAAAAAdIQ4CAAAAeGIEPwAAAAAsG0db0ehUVzk606siAQAAAJwqwQ8AAADAaWivUvPG\nUso/llKGSyl/WEq5oJTy0VLKgVLKJ0spq9rXPqeU8oVSyt5Syj+UUl4w7z6vLaVsa3/nnlLKT8w7\n94JSyo5Sys+UUh4tpTxUSnntScx2Qynlq6WU/aWUB0opv3SUy/5NKeXB9j1/dt53n11K2dr+7iOl\nlHfMO/fKUso32s/xmVLKlmP8/j8upbz18Odov/+TJJcm+V+llKFSys+d6G90nOccbP/dHyql7Cyl\nvLWUUm+f+7FSyudLKb9VStmd5JeOcaxWSnlzKeX+9t/4/y2lDLbvcXD7sx8vpXwryadPNBMAAADA\nYhL8AAAAAJy+H0zy4iRPTvKKJB9N8gtJ1mX2v7/8p1LKxUluSvLWJKuT/GySPy+lrGvf49EkL0+y\nIslrk/xWKeXb5/2ODUkGk1yc5MeTvPtgSHQcw0l+NMnKJDck+Q+llO877JoXJrkyyUuS/Py8Lbbe\nleRdVVWtSHJ5kg8kSSnlyUn+NMnr2893c2ajna4TzLJAVVX/Ksm3kryiqqr+qqrefhJ/o2P54yRT\nSa5I8sz2s/zbeef/SZJ7klyQ5L8c49iPtX9emOSyJP1Jfuew3/PdSbYkeempPCsAAADAmSb4AQAA\nADh9/72qqkeqqtqZ5G+S/F1VVV+tqmosyYcyG6G8JsnNVVXdXFXVTFVVn0iyNcnLkqSqqpuqqrq7\nmvXXSW5J8l3zfsdkkl+pqmqyqqqbkwwluep4Q1VV9Zmqqr7e/n3/mNlQ57sPu+yXq6oarqrq60n+\nKMkPz/t9V5RS1lZVNVRV1Rfbx38oyU1VVX2iqqrJJL+RpCfJd57qH+0ojvs3OppSygXt869vP8ej\nSX4ryavnXfZgVVX/vaqqqaqqRo9x7F8meUdVVfdUVTWU5E1JXn3Y9l2/1P4dowEAAADoIMEPAAAA\nwOl7ZN770aN87k/ypCT/or1V1d5Syt4kz09yYZKUUq4vpXyxlPJ4+9zLkqydd5/dVVVNzfs80r7v\nMZVS/kkp5dZSyq5Syr4k//6weybJA/Pe35/kovb7H8/sikXbSylfKqW8vH38ovZ1SZKqqmba97j4\neLOcpOP+jY7znWaSh+Z95/eTrJ93zQNH+d7hxxY8V/t9I7MrAB3vPgAAAABnXePElwAAAABwBjyQ\n5E+qqvp3h58opXQn+fPMbr/1V1VVTZZS/jJJOc3f+T8zuy3V9VVVjZVS3pkjg59Lkmxvv780yYNJ\nUlXVnUl+uJRSS/IDST5YSlnTPv/UebOX9j12HuX3Dyfpnfd5w2Hnq8M+H/NvdBwPJBlPsvawIOp4\nv+doxx7MbDx00KWZ3SbskSQbj3MfAAAAgLPOCj8AAAAAZ8f7kryilPLSUkq9lNIqpbyglLIxSVeS\n7iS7kkyVUq5P8pIz8DsHkjzejn2eneRHjnLNW0opvaWUb0vy2iTvT5JSymtKKevaK/jsbV87k+QD\nSW4opbyolNJM8jOZDW6+cJR7fy3Jy0opq0spG5K8/rDzjyS5bN7n4/2Njqqqqocyu/3Zb5ZSVpRS\naqWUy0sph29ddiJ/muT/LKVsLqX0J/m1JO8/TkQEAAAA0DGCHwAAAICzoKqqB5J8b5JfyGzY80CS\nNyapVVV1IMl/ymxMsyezYc6Hz8Cv/ckkv1JKOZDkF9v3P9xfJ7kryaeS/EZVVbe0j1+X5BullKEk\n70ry6qqqRququiPJa5L89ySPJXlFkldUVTVxlHv/SZJ/SHJfZqOc9x92/teTvLm9FdfPHu9vdILn\n/NHMRlO3Z/bv98Ecfxuwo3lve97PJrk3yViS/+MU7wEAAABwVpSqshIxAAAAAAAAAAAsFVb4AQAA\nAAAAAACAJUTwAwAAALCElVK+UUoZOsrPv+z0bGfSMZ5xqJTyXZ2eDQAAAOBss6UXAAAAAAAAAAAs\nIY1OD3C2rF27ttq0aVOnxwAAAAAAAAAAgKP68pe//FhVVetOdN2yCX42bdqUrVu3dnoMAAAAAAAA\nAAA4qlLK/SdzXW2xBwEAAAAAAAAAAM4cwQ8AAAAAAAAAACwhgh8AAAAAAAAAAFhCGp0eoJMmJyez\nY8eOjI2NdXqURdVqtbJx48Y0m81OjwIAAAAAAAAAwGla1sHPjh07MjAwkE2bNqWU0ulxFkVVVdm9\ne3d27NiRzZs3d3ocAAAAAAAAAABO07Le0mtsbCxr1qw5b2OfJCmlZM2aNef9KkYAAAAAAAAAAMvF\nsg5+kpzXsc9By+EZAQAAAAAAAACWi2Uf/AAAAAAAAAAAwFIi+OmgvXv35j3vec8pf+9lL3tZ9u7d\nuwgTAQAAAAAAAABwrhP8dNCxgp+pqanjfu/mm2/OypUrF2ssAAAAAAAAAADOYY1OD7Cc3Xjjjbn7\n7rvzjGc8I81mM61WK6tWrcr27dvzzW9+M9/3fd+XBx54IGNjY/npn/7pvO51r0uSbNq0KVu3bs3Q\n0FCuv/76PP/5z88XvvCFXHzxxfmrv/qr9PT0dPjJAAAAAAAAAABYLIKftl/+X9/I7Q/uP6P3vOai\nFfm/XvFtxzz/tre9Lbfddlu+9rWv5TOf+UxuuOGG3Hbbbdm8eXOS5L3vfW9Wr16d0dHRPOtZz8oP\n/uAPZs2aNQvuceedd+ZP//RP8z/+x//Iq171qvz5n/95XvOa15zR5wAAAAAAAAAA4Nwh+DmHPPvZ\nz56LfZLkt3/7t/OhD30oSfLAAw/kzjvvPCL42bx5c57xjGckSb7jO74j991331mbFwAAAAAAAACA\ns0/w03a8lXjOlr6+vrn3n/nMZ/LJT34yf/u3f5ve3t684AUvyNjY2BHf6e7unntfr9czOjp6VmYF\nAAAAAAAAAKAzap0eYDkbGBjIgQMHjnpu3759WbVqVXp7e7N9+/Z88YtfPMvTAQAAAAAAAABwLrLC\nTwetWbMmz3ve8/KUpzwlPT09ueCCC+bOXXfddfm93/u9bNmyJVdddVWe85zndHBSAAAAAAAAAADO\nFaWqqk7PcFZce+211datWxcc27ZtW7Zs2dKhic6u5fSsAAAAAAAAAABLUSnly1VVXXui62zpBQAA\nAAAAAAAAS4jgBwAAAAAAAAAAlhDBDwAAAAAAAAAALCGCHwAAAAAAAAAAWEIEP3TM1PRMp0cAAAAA\nAAAAAFhyBD90xJv/8uv5D//fVzo9BgAAAAAAAADAkiP46aC9e/fmPe95zxP67jvf+c6MjIyc4YnO\nnotW9uQTtz+SL9z1WKdHAQAAAAAAAABYUgQ/HbScg59/87zN2biqJ7/ykdszPVN1ehwAAAAAAAAA\ngCWj0ekBlrMbb7wxd999d57xjGfkxS9+cdavX58PfOADGR8fz/d///fnl3/5lzM8PJxXvepV2bFj\nR6anp/OWt7wljzzySB588MG88IUvzNq1a3Prrbd2+lFOWatZz43XX52f+p9fzf+/9YG8+tmXdnok\nAAAAAAAAAIAlQfBz0EdvTB7++pm954anJte/7Zin3/a2t+W2227L1772tdxyyy354Ac/mL//+79P\nVVV55Stfmc9+9rPZtWtXLrrootx0001Jkn379mVwcDDveMc7cuutt2bt2rVnduaz6IanXpg/ftJ9\n+Y1bvpmXP/2i9Hf7xxEAAAAAAAAA4ERs6XWOuOWWW3LLLbfkmc98Zr79278927dvz5133pmnPvWp\n+cQnPpGf//mfz9/8zd9kcHCw06OeMaWUvOXl1+SxofG859a7Oj0OAAAAAAAAAMCSYEmVg46zEs/Z\nUFVV3vSmN+UnfuInjjj3la98JTfffHPe/OY350UvelF+8Rd/sQMTLo6nX7IyP/DMi/N/f+7e/PCz\nL80lq3s7PRIAAAAAAAAAwDnNCj8dNDAwkAMHDiRJXvrSl+a9731vhoaGkiQ7d+7Mo48+mgcffDC9\nvb15zWtekze+8Y35yle+csR3l7o3XndVaiV528e2d3oUAAAAAAAAAIBznhV+OmjNmjV53vOel6c8\n5Sm5/vrr8yM/8iN57nOfmyTp7+/P+973vtx111154xvfmFqtlmazmd/93d9Nkrzuda/Lddddl4su\nuii33nprJx/jtF042JOf+KeX512fujOv/c7Hc+2m1Z0eCQAAAAAAAADgnFWqqur0DGfFtddeW23d\nunXBsW3btmXLli0dmujsOtefdWRiKi/8jc9kw4pWPvSTz0utVjo9EgAAAAAAAADAWVVK+XJVVdee\n6DpbenFO6O1q5OdeenX+Yce+/NU/7Oz0OAAAAAAAAAAA5yzBD+eM73/mxXnaxsG8/WN3ZHRiutPj\nAAAAAAAAAACck5Z98LMctjRbKs9Yq5W8+YZr8tC+sfzBZ+/p9DgAAAAAAAAAAOekRQ9+SinXlVLu\nKKXcVUq58Sjnu0sp72+f/7tSyqb28TWllFtLKUOllN85xr0/XEq57YnO1mq1snv37iUTxDwRVVVl\n9+7dabVanR7lpDx78+q87Kkb8nt/fXce3jfW6XEAAAAAAAAAAM45jcW8eSmlnuTdSV6cZEeSL5VS\nPlxV1e3zLvvxJHuqqrqilPLqJP81yQ8lGUvyliRPaf8cfu8fSDJ0OvNt3LgxO3bsyK5du07nNue8\nVquVjRs3dnqMk3bjdVvyydsfzX/7+B35zVc9vdPjAAAAAAAAAACcUxY1+Eny7CR3VVV1T5KUUv4s\nyfcmmR/8fG+SX2q//2CS3ymllKqqhpN8rpRyxeE3LaX0J3lDktcl+cATHa7ZbGbz5s1P9OsskkvX\n9Oa1z9+U3//re/Jj37kpT9042OmRAAAAAAAAAADOGYu9pdfFSR6Y93lH+9hRr6mqairJviRrTnDf\nX03ym0lGjndRKeV1pZStpZSt5/sqPuebn3rhFVnT15Vf+cg3zust1wAAAAAAAAAATtViBz9nXCnl\nGUkur6rqQye6tqqqP6iq6tqqqq5dt27dWZiOM2Wg1czPvOSqfOm+PfnobQ93ehwAAAAAAAAAgHPG\nYgc/O5NcMu/zxvaxo15TSmkkGUyy+zj3fG6Sa0sp9yX5XJInl1I+c4bm5RzyQ8+6JFdvGMivf3Rb\nxianOz0OAAAAAAAAAMA5YbGDny8lubKUsrmU0pXk1Uk+fNg1H07yr9vv/3mST1fH2cOpqqrfrarq\noqqqNiV5fpJvVlX1gjM+OR1Xr5W8+YZr8sDjo/njL9zX6XEAAAAAAAAAAM4Jixr8VFU1leSnknw8\nybYkH6iq6hullF8ppbyyfdkfJllTSrkryRuS3Hjw++1VfN6R5MdKKTtKKdcs5ryce55/5dq86Or1\n+Z1P35XHhsY7PQ4AAAAAAAAAQMeV4yymc1659tprq61bt3Z6DJ6Au3cN5aW/9dm86lmX5Ne+/6md\nHgcAAAAAAAAAYFGUUr5cVdW1J7pusbf0gtN2+br+vOY5T8qf/f23sv3h/Z0eBwAAAAAAAACgowQ/\nLAmv/54rM9Bq5r/ctC3LZVUqAAAAAAAAAICjEfywJKzs7cpPv+jK/M2dj+XWOx7t9DgAAAAAAAAA\nAB0j+GHJ+FfPfVIuW9uXt960LZPTM50eBwAAAAAAAACgIwQ/LBnNei2/8LItuWfXcN73xfs7PQ4A\nAAAAAAAAQEcIflhSXrRlfZ5/xdq885N3Zu/IRKfHAQAAAAAAAAA46wQ/LCmllLz55VtyYGwy7/rU\nnZ0eBwAAAAAAAADgrBP8sORcvWFFfuhZl+ZP/vb+3L1rqNPjAAAAAAAAAACcVYIflqQ3vPjJaTXr\n+fWbt3V6FAAAAAAAAACAs0rww5K0bqA7//GFV+ST2x7N5+96rNPjAAAAAAAAAACcNYIflqzXPm9T\nNq7qya9+5PZMz1SdHgcAAAAAAAAA4KwQ/LBktZr1vOn6Ldn+8IF8YOsDnR4HAAAAAAAAAOCsEPyw\npL3sqRvyrE2r8pu33JEDY5OdHgcAAAAAAAAAYNEJfljSSil58w3X5LGhibz71rs7PQ4AAAAAAAAA\nwKIT/LDkPf2SlfmBZ16c937u3jzw+EinxwEAAAAAAAAAWFSCH84Lb7zuqtRrJW/76PZOjwIAAAAA\nAAAAsKgEP5wXLhzsyU9892W56esP5Uv3Pd7pcQAAAAAAAAAAFo3gh/PG6/7pZdmwopVf/cjtmZmp\nOj0OAAAAAAAAAMCiEPxw3ujtauTnrrsq/7hjX/7yazs7PQ4AAAAAAAAAwKIQ/HBe+b5nXJynbRzM\n2z92R0Ympjo9DgAAAAAAAADAGSf44bxSq5W85eXX5OH9Y/mDz97T6XEAAAAAAAAAAM44wQ/nnWdt\nWp0bnnphfv+v78nD+8Y6PQ4AAAAAAAAAwBkl+OG8dOP1V2d6psrbP76906MAAAAAAAAAAJxRgh/O\nS5es7s2/ef7m/MVXduYfHtjb6XEAAAAAAAAAAM4YwQ/nrf/4wsuztr8rv/qR21NVVafHAQAAAAAA\nAAA4IwQ/nLcGWs38zEuuytb79+Tmrz/c6XEAAAAAAAAAAM4IwQ/ntVdde0mu3jCQX//otoxNTnd6\nHAAAAAAAAACA0yb44bxWr5W85eXXZMee0fzR5+/r9DgAAAAAAAAAAKdN8MN573lXrM33bFmfd996\nV3YdGO/0OAAAAAAAAAAAp0Xww7LwCy/bkrHJ6bzjE9/s9CgAAAAAAAAAAKdF8MOycNm6/vyr5z4p\n7//St7L94f2dHgcAAAAAAAAA4AkT/LBs/PSLrsxAq5m3fmRbqqrq9DgAAAAAAAAAAE+I4IdlY2Vv\nV17/PVfmc3c9lk9vf7TT4wAAAAAAAAAAPCGCH5aV1zznSblsXV/+y03bMjE10+lxAAAAAAAAAABO\nmeCHZaVZr+U/v2xL7nlsOO/74v2dHgcAAAAAAAAA4JQJflh2/tnV6/NdV67Nuz51Z/aOTHR6HAAA\nAAAAAACAUyL4YdkppeTNN1yTA2OTeecn7+z0OAAAAAAAAAAAp0Tww7J01YaBvPrZl+Z9X7w/d+8a\n6vQ4AAAAAAAAAAAnTfDDsvWGFz85Pc16fu2mbZ0eBQAAAAAAAADgpAl+WLbW9nfnP/6zK/Kp7Y/m\nc3c+1ulxAAAAAAAAAABOiuCHZe21z9uUS1b35K033Z7pmarT4wAAAAAAAAAAnJDgh2Wtu1HPm67f\nku0PH8j7v/RAp8cBAAAAAAAAADghwQ/L3vVP2ZBnb1qd37zljuwfm+z0OAAAAAAAAAAAxyX4Ydkr\npeTNL9+S3cMTefetd3V6HAAAAAAAAACA4xL8QJKnbVyZH/j2i/NHn7sv39o90ulxAAAAAAAAAACO\nSfADbT/30qtTr5W87WPbOj0KAAAAAAAAAMAxCX6gbcNgK//+uy/PzV9/OH9/7+OdHgcAAAAAAAAA\n4KgEPzDP6/7pZblwsJVf/cjtmZmpOj0OAAAAAAAAAMARBD8wT09XPT933VX5+s59+dBXd3Z6HAAA\nAAAAAACAIwh+4DDf+/SL8/SNg3n7x7dnZGKq0+MAAAAAAAAAACwg+IHD1Golb3n5NXlk/3h+/6/v\n6fQ4AAAAAAAAAAALCH7gKK7dtDo3PO3C/P5n785D+0Y7PQ4AAAAAAAAAwBzBDxzDjdddnZkqefvH\n7uj0KAAAAAAAAAAAcwQ/cAyXrO7Njz9/cz701Z352gN7Oz0OAAAAAAAAAEASwQ8c10++4PKs7e/K\nWz9ye6qq6vQ4AAAAAAAAAACCHziegVYzP/uSq7L1/j256esPdXocAAAAAAAAAADBD5zIv7j2kmy5\ncEXe9tHtGZuc7vQ4AAAAAAAAAMAyJ/iBE6jXSt5yw5bs2DOa937+3k6PAwAAAAAAAAAsc4IfOAnf\necXafM+WC/KeW+/OrgPjnR4HAAAAAAAAAFjGBD9wkn7hZVdnbHI67/jEHZ0eBQAAAAAAAABYxgQ/\ncJIuW9efH33uprz/Sw9k20P7Oz0OAAAAAAAAALBMCX7gFPz0i67Mip5m3nrT7amqqtPjAAAAAAAA\nAADLkOAHTsFgbzOvf9GV+fxdu/PJbY92ehwAAAAAAAAAYBkS/MAp+pfPeVIuX9eXX7t5WyamZjo9\nDgAAAAAAAACwzAh+4BQ167X85xu25N7HhvMnX7y/0+MAAAAAAAAAAMuM4AeegBdetT7fdeXavOuT\n38ye4YlOjwMAAAAAAAAALCOCH3gCSil58w3XZGh8Ku/61J2dHgcAAAAAAAAAWEYEP/AEXbVhID/8\n7EvzJ1+8P3c9OtTpcQAAAAAAAACAZULwA6fhDS9+cnqb9fzazds6PQoAAAAAAAAAsEwIfuA0rOnv\nzk/9syvy6e2P5m/u3NXpcQAAAAAAAACAZUDwA6fpx563KZeu7s1bP7ItU9MznR4HAAAAAAAAADjP\nCX7gNHU36nnT9VfnjkcO5M++9ECnxwEAAAAAAAAAznOLHvyUUq4rpdxRSrmrlHLjUc53l1Le3z7/\nd6WUTe3ja0opt5ZShkopvzPv+t5Syk2llO2llG+UUt622M8AJ3LdUzbk2ZtX57c+8c3sH5vs9DgA\nAAAAAAAAwHlsUYOfUko9ybuTXJ/kmiQ/XEq55rDLfjzJnqqqrkjyW0n+a/v4WJK3JPnZo9z6N6qq\nujrJM5M8r5Ry/WLMDyerlJK33HBNHh+ZyLs/fVenxwEAAAAAAAAAzmOLvcLPs5PcVVXVPVVVTST5\nsyTfe9g135vk/2m//2CSF5VSSlVVw1VVfS6z4c+cqqpGqqq6tf1+IslXkmxczIeAk/HUjYP5gWdu\nzB99/r58a/dIp8cBAAAAAAAAAM5Tix38XJzkgXmfd7SPHfWaqqqmkuxLsuZkbl5KWZnkFUk+dYzz\nryulbC2lbN21a9cpjg6n7ueuuyr1Wsmvf3Rbp0cBAAAAAAAAAM5Tix38LJpSSiPJnyb57aqq7jna\nNVVV/UFVVddWVXXtunXrzu6ALEsXrGjlP7zg8nz0tofzd/fs7vQ4AAAAAAAAAMB5aLGDn51JLpn3\neWP72FGvaUc8g0lOppT4gyR3VlX1zjMwJ5wx/+67LsuFg6289aZtmZmpOj0OAAAAAAAAAHCeWezg\n50tJriylbC6ldCV5dZIPH3bNh5P86/b7f57k01VVHbeSKKW8NbNh0OvP8Lxw2nq66vn5667O13fu\ny1989fC+DQAAAAAAAADg9Cxq8FNV1VSSn0ry8STbknygqqpvlFJ+pZTyyvZlf5hkTSnlriRvSHLj\nwe+XUu5L8o4kP1ZK2VFKuaaUsjHJf05yTZKvlFK+Vkr5t4v5HHCqXvn0i/L0S1bmv318e0Ympjo9\nDgAAAAAAAABwHiknWEznvHHttddWW7du7fQYLCNfvv/x/ODv/m3+04uuzBte/OROjwMAAAAAAAAA\nnONKKV+uquraE1232Ft6wbL1HU9anZc/7cL8wWfvzoN7Rzs9DgAAAAAAAABwnhD8wCK68fqrM1Ml\nb//Y9k6PAgAAAAAAAACcJwQ/sIg2rurNv33+5vzl1x7M1x7Y2+lxAAAAAAAAAIDzgOAHFtlPvvCK\nrO3vzq9+5PZUVdXpcQAAAAAAAACAJU7wA4usv7uRn33Jk/Pl+/fkI//4UKfHAQAAAAAAAACWOMEP\nnAX/4tpLsuXCFXnbR7dnbHK60+MAAAAAAAAAAEuY4AfOgnqt5C0v35Kde0fzh5+7t9PjAAAAAAAA\nAABLmOAHzpLvvHxtXnzNBXnPrXfl0QNjnR4HAAAAAAAAAFiiBD9wFv3Cy7ZkYnom77jlm50eBQAA\nAAAAAABYohqdHgCWk81r+/Kjz92U937+3nzlW3uyeW1fLlvXn8vW9uWydX25bG1/VvV1dXpMAAAA\nAAAAAOAcJviBs+wNL35y+rrquf2hA7nz0aF8atujmZqp5s6v6m3msnX97RhoNgK6bF1fnrSmN92N\negcnBwAAAAAAAADOBYIfOMv6uht5w0uumvs8NT2TB/aM5p5dQ7n3seHcvWs49+wayme/uSsf/PKO\nuetqJdm4qvdQCDRvZaANK1oppXTicQAAAAAAAACAs0zwAx3WqNeyeW1fNq/tO+LcgbHJ3PvY8IIQ\n6N7HhvOl+x7PyMT03HU9zfpRQ6DNa/sy0GqezccBAAAAAAAAABaZ4AfOYQOtZp62cWWetnHlguNV\nVeXh/WO5d9dw7n5sNgS6Z9dw/nHHvtz89Ycyb4ewrBvobgdAh0Kgy9b155JVPWnUa2f5iQAAAAAA\nAACA0yX4gSWolJILB3ty4WBPvvOKtQvOjU9N5/7dI7ln13DueWw2BLr3seF87LaHsmdkcu66Rq3k\n0jW9uWxt/2wEdDAKWteXNX1dtggDAAAAAAAAgHOU4AfOM92Nep58wUCefMHAEef2DE/knoMrAj02\nnHvbUdBnv7krE9Mzc9cNtBq5bF1/Lm9vNXYwBNq0pi89XfWz+TgAAAAAAAAAwGEEP7CMrOrrynf0\ndeU7nrRqwfHpmSoP7h3N3bsOrQh0z2ND+dt7ducvvrpzwbUXr+zJZevaIVA7Btq8ti8Xr+xJrWZV\nIAAAAAAAAABYbIIfIPVaySWre3PJ6t684KqF50YmpmYDoIMhUHt1oL/4ys4MjU/NXdfdqGXz3IpA\nfblsbX82r+vL5Wv7M9jbPMuGk2+jAAAgAElEQVRPBAAAAAAAAADnL8EPcFy9XY1820WD+baLBhcc\nr6oqu4bGF4ZAu4Zzx8MHcsvtj2R6ppq7dk1f16EQaF1/Nq7qyYWDrVywopX1A610NWpn+7EAAAAA\nAAAAYMkS/ABPSCkl6wdmg53nXLZmwbnJ6Zl86/GRdgw0GwLds2s4n96+Kx/YuuOIe63t78qGwVY2\nrJiNgDasaOWCwVYuHDz0fqC7kVJsGQYAAAAAAAAAgh/gjGvWa7l8XX8uX9ef5IIF5/aPTebBvaN5\naN9YHtk3lof3j+WR/WN5aN9YduwZzZfv35M9I5NH3LO3qz4XBc0Pgg4GQhsGW1nb3516TRQEAAAA\nAAAAwPlN8AOcVStazazY0MzVG1Yc85qxyek8un88D+0bnQuCHt43nof3j+bhfWP5u3sfzyP7xzI1\nb9uwJKnXStYPdC+IgBasHNR+39NVX+zHBAAAAAAAAIBFI/gBzjmtZj2XrunNpWt6j3nNzEyVx4bH\n88i+8Ty8v71S0L7ZlYIe2T+Wu3YN5fN3PZYD41NHfHewpzm3StCGFd3ZMNjTDoRmY6ELB3uyqrdp\nCzEAAAAAAAAAzkmCH2BJqtVK1g+0sn6gladm8JjXDY1P5eF9B1cJmg2DHp63ldj2h/Zn19B4qoWL\nBaWrUcsFK7rnVgea2z5s8NDqQesHWulq1Bb5SQEAAAAAAABgIcEPcF7r727kivX9uWJ9/zGvmZye\nya4D40esEnQwDvr6zn35xO2PZHxq5ojvru3vWriF2NzKQe1IaLCVge6G1YIAAAAAAAAAOGMEP8Cy\n16zXctHKnly0sueY11RVlX2jk4dWCJq3StDD+8ayc+9ovvKtPdkzMnnEd3u76kcNguavGLRuoDv1\nmigIAAAAAAAAgBMT/ACchFJKVvZ2ZWVvV67esOKY141NTufR/eN5aN/ovCBoPI/sH8tD+0bzd/c+\nnkf2j2VqZuEeYvVaybr+7nYM1L0gDJq/jVhvl39tAwAAAAAAACx3/s8xwBnUatZz6ZreXLqm95jX\nzMxU2T080Y6Axua2EjsYCN2zazhfuHt3DoxNHfHdgVZjLv654OC2YfO2FLtgRStr+rpSs1oQAAAA\nAAAAwHlL8ANwltVqJesGurNuoDtPuXjwmNcNj08tiIEWvh/PnY88lkcPjOWwxYLSrJesH5i3hdiK\nVjYMds+FQRcO9mT9iu60mvVFflIAAAAAAAAAFoPgB+Ac1dfdyOXr+nP5uv5jXjM1PZPHhiZmI6B9\n7S3E2mHQQ/vGsu2h/bn1jkczMjF9xHdX9TbbMdChMOjCwXlbia1oZWVvM6VYLQgAAAAAAADgXCL4\nAVjCGvXabLAz2EouOfo1VVXlwPjUodWB9rV/9h8KhG7buT+7h8dTHbZaUHejtmDLsA0LthCbXTVo\n/UArXY3a4j8sAAAAAAAAAEkEPwDnvVJKVrSaWdFq5soLBo553eT0TB49MH5kENR+/w879ubj3xjL\n+NTMYfdP1vR1Z8Ng96EtxFYcWino4KpBA90NqwUBAAAAAAAAnAGCHwCSJM16LRev7MnFK3uOeU1V\nVdk7Mjm7UlB767D5YdCOPaP58v17smdk8ojv9nbVs6a/K6t6Z39W9x1838yqvtnPK3ubWd3XldW9\nXVnZ22XlIAAAAAAAAICjEPwAcNJKKVnV15VVfV3ZcuGKY143NjmdR/ePHxEGPT48kceHJ7J3ZCL3\nPDaUPcOTGRqfOuZ9+rsbWdXXXBAJrextZnVvl0gIAAAAAAAAWLYEPwCcca1mPZeu6c2la3pPeO3E\n1Ez2jkzk8ZGJ7BmezJ6RQ1HQ4+3Pe0Ymsmd4NhLaOzyZA6cRCa3q7cqqPpEQAAAAAAAAsHQJfgDo\nqK5GLetXtLJ+Reukv3MwEtozMpnHhycWREGPD0/OC4jOfCS0qnf2XHejfiYeHwAAAAAAAOCUCX4A\nWHIWOxK697Hh7BmeOGEkdHA7sZOJhFZZSQgAAAAAAAA4QwQ/ACwLTzgSGp3damxum7F2FLRnZHI2\nFjqFSGigu5HV/bNx0Jq+2dfVfd2H3vcfOr6mrzs9XVYRAgAAAAAAAI4k+AGAY+hq1LJ+oJX1A6cf\nCT0+NJHdwxN5vP2zc+9Yvr5zXx4fnsjkdHXUe/U067PxT//BOOhgEHT0SKi/u5FSypl6fAAAAAAA\nAOAcJfgBgDPoVCOhqqpyYHzqsCBofPb90Ozn3cMT2T00kTsfGcru4fGMTc4c/XfXa4fCoKNEQvOP\nr+nryopWM7WaQAgAAAAAAACWGsEPAHRQKSUrWs2saDWzaW3fSX1nZGIqu4cOrRa0+xiR0P27R/L4\n8ESGjrHNWL1Wsqq36xhbih0ZCa3q7UpdIAQAAAAAAAAdJ/gBgCWmt6uR3tWNXLK696SuH5+ano2A\njhIJzT++7cH92T08kX2jk0e9TynJyp5mOwjqPiISmn98Tf9sINTVqJ3JRwcAAAAAAAAi+AGA8153\no54LB3ty4WDPSV0/OT2TPSPtOGjeVmOHR0J37xrKl+6byJ6RicxUR7/XQKuRNX1dGexpZkVPM4M9\nzazsnX1d+DN7zWD7XF9XPaVYTQgAAAAAAACORvADACzQrNeyfqCV9QOtk7p+eqbKvtHJ2W3FhubH\nQYfe7xudzL7RyezYMzr3fvpYlVCSRq3MxUAr5oVB82OhuYBoXig02NNMT1MsBAAAAAAAwPlN8AMA\nnJZ6rcxt6XXF+pP7TlVVGRqfmot/9o1OZv/oZPaOTC44dvBnz8hE7ts9PHfdcVqhNOvlKCsItX96\nu444Nj8iajXrZ+aPAgAAAAAAAItI8AMAnHWllAy0mhloNbNx1al9d2amyoHxqew/LAo6PBY6eH7X\n0Hju2jWUfSOTOTA+leo4sVBXo3Zo1aCehasJHX0rskOrC3U3xEIAAAAAAACcHYIfAGBJqc3b7uuS\nU/zu9EyVobGp7B2dOGIVob0jk0dERA/vH8v2hw9k/+hsLHQ8rWbt0KpBPV0LtiJb0dOYfW0t3I7s\n4HHbkAEAAAAAAHAqBD8AwLJRr5XZFXl6m6f83anpmRwYm92GbO/okasJ7R1ZGBHt3Dua2x/cl/1j\nUxk6QSzUrJesaM2GQCt6mlnRaiwMg1rHDocGWo0067Un+icBAAAAAABgCRL8AACchEa9llV9XVnV\n13XK350fC+0fOxgJHf65/dq+buee0bl4aGrmOPuQJenrqi+Ig1Ycb1WhViODvYeO93ZZXQgAAAAA\nAGCpEfwAACyy04mFqqrK6OR09o9OHRkHjU5m31GO79w7mm0PTZ7UVmSNWjliVaEVh60qdNRoqP3Z\n6kIAAAAAAABnn+AHAOAcVkpJb1cjvV2NbBhsnfL3p6ZnMjQ+dYJVhdrh0Lxg6OD7yenjry7U21U/\n6pZjKw4LhI6IiHqa6e9qpFazuhAAAAAAAMCpEvwAAJzHGvVaVvZ2ZWXvE1tdaGxy5uiB0Mih7cfm\nH9+5dyzbRg+c1OpCtZIMtA5bRejwz0cLidrnWs2a7cgAAAAAAIBlSfADAMBRlVLS01VPT1c9F6w4\n9dWFpmeqDI0dWlVo/4LVhabmjs2en11h6O5dQ+3jUxmdnD7u/Zv1Mhf/DMxbSeiY4dD8bctazXQ1\nbEcGAAAAAAAsTYIfAAAWRb1WMtjbzGBv8wl9f2JqZl4oNLVgJaGDwdDBFYYOnt+5Z3Tu+Im2I2s1\na4etHLQwCJrbfqzVPCIkGmg1U7cdGQAAAAAA0CGCHwAAzkldjVrW9ndnbX/3KX+3qqqMT83MC4Jm\nI6GFqw1Ntbcmm/15bGgid+8anjs/c/xeKAPdsysKDRwWCh3cgqy/u5Herkb6uuuzr1319HYf9trV\nsNIQAAAAAABwygQ/AACcd0opaTXraTWf2HZkVVVleGL6UDB02NZjR9ua7IHHR3Kgff7A+NRJ/66u\nei293fX0dTXSe1gMdKJYaO58+/t93bP36G7UUooViAAAAAAA4Hwl+AEAgMOUUtLf3Uh/dyMXr+w5\n5e9Pz1QZmZjKyMR0hscPe52Yysj4dIbGpzIyMZXhiemMjLdfJ6YyPD77+uDe0SPOn6x6raS3qx0R\nzYuJDgZBC44f7Xz7df4qRa1GPTXbmAEAAAAAwDlB8AMAAGdYvVYy0GpmoNU8Y/ecmakyNjU9FwTN\nvc4LgobHp+aCogWv7XO7DowvOD48PnXCrcsOKiXpbR57haH5KxH1z/sZaDXS32pkoLs5+9qaPW4V\nIgAAAAAAeOIEPwAAsATUaiW9XbMr7iTdZ+SeVVVlfGrmqCsQHQyCFqxAdJSViPaOTrZXIzr03Ynp\nmRP+7ma9tIOg5mwc1GpkYF4g1N/dzMC8QOjgNSvmXd/f3UirWT8jfwsAAAAAAFhKBD8AALBMlVLS\natbTatazuq/rjN13vL0S0YGxyRwYm8rQ+FSGxqZyYHyy/dr+3D53YGwqB8Ym8/D+sdy169C5kwmH\nuuq1ufjn4IpCByOhgVZz7tyh480jrutvNdLdEA4BAAAAALB0CH4AAIAzqrtRT3fj9COi8anpDC2I\ngtrx0Pjkws/tYOjgdQ/tG5sXE01mcvrE+5Z11WvzVhc6FAzNj4IG2qsQzV+BaG7bsvb1XY3aaT0z\nAAAAAACcDMEPAABwTupu1NPdX8+a/tPbwmx8ano2ADpsRaHZeGh+TDQ5d83+sak8uHd0Lho6MDaV\nqZmTCIcatfR3N9LbVZ977WsHRL1djfR3z37u626kr2ve++7Zc7PXzH7u7aqnu1FLKeW0nh8AAAAA\ngPOP4AcAADivHQyH1p5GOFRVVcanZuYCoQVblM2tPDSV/WOTGRmfznD788jEbGz08L6xjExMZ2h8\nKsPjJxcPJUmjVhbEQb3tMKiv62Ao1I6Guo4dDfV3H7q2p1kXEAEAAAAAnAcEPwAAACdQSkmrWU+r\neXrhUDIbD01Mz2S4HQYNT0y1A6HpjLRDodnj7fPz3h+MiHYPjcy9HxqfysTUzEk+R9px0PxQqD63\nAtHRoqG+owRGc6sXdTVSqwmIAAAAAADONsEPAADAWVRKmV11qFHP6r6uM3LPyemZjIxPZ6gdD83+\nTLejoHlB0UQ7Gpp37cj4dB7cO9YOj2bDotHJ6ZP+3T3N+lwo1NfdyECrkf7uZgZaB9830t9qZKDV\nzEA7FhpotY+1r+tvNdKs187I3wIAAAAAYDkQ/AAAACxxzXotg721DPY2z8j9pmeqdih0KBoaakdE\nh95PLVilaOjgVmZjU9m5dzQHxibntkCbPoktzLobtdkoqDUvCmrHQitazXnh0KHzAwePd89e09dd\nT0M4BAAAAAAsA4IfAAAAFqjXSju+Of2AqKqqjE3O5MD4ZIbGZgOggyHQwShoaGwqB8bnn5u99lvD\nIwuuO4luKD3N+rwVhA5FQUccWxAOHVqVqL81u9VZ3VZlAAAAAMA5TPADAADAoimlpKernp6uetYP\nPPH7VFWVkYnpuVhofhg0FwuNTWVofHI2EjoYEo1N5tEDY4dio4mpVCcRDh1cOeiIVYW6jx4L9bca\n6WnW09tVT6s5+7wHP3c3ailFQAQAAAAAnDmCHwAAAM55pZT0dTfS193IBSue+H1mZqqMTE4fPxZq\nB0Wz5yfnPj+0b6x93ezPqeiZFwHNvTbraXXV09s+1moePF9Lb1djweeeZmPB93q6aunpasx97m7U\nUrMqEQAAAAAsG4IfAAAAlo1arcyt3pPBJ36f6ZkqwxNT87Ypm8zY5ExGJqYzOjmdsfbr3OfJ6Yy2\n389/3T86mUf3jy343sjkdKZPZv+yw8yPiVrNWnq66ultNtLqqqenWWufb8yLiGYjo96uxpGf29cc\njI56uxqiIgAAAAA4hwh+AAAA4BTVayUrWs2saDUX5f4TUzNHhEIjE8cIh9rvx+YFRvOjo9moaN53\nTiMqarXDodkViGpzgVFXo5ZGrZZmvZZmvaTRfm3WamnUy2HHa/nf7N1/tO15Xd/313vvfc65d5gB\nLR0TAxgmQrVDlrV4JahZaRfUOq4YcVkMQ4qx1pY/Akq6lsmSlbYa2q6UpF0mVaAh8kOpES3VlamJ\n0KS0JsYWuPxoIxBWpqBl0JRxwPl57zln7/3pH/u7z/5x9r3nnJmz597vzOOx1l3fvT/fz/d7PmfA\nJevy5PPZGSzNGa7N2fSe7rnRYDFv5bm1n+MINQAAAACe6gQ/AAAAcJPZHQ2yOxrkWRe3ExQlyeFk\nuthVaC0UWvnehUJHwdFadPTYwST7h9M8Mp1kPJnmcDLNeNJy0F3H02kOxtOMp+1ofNuGg9oQHC0+\nL4dDK+HRYDUm2u2uo8Ggi5pm83e750aDyoWdYW67MJoFYBdHue3CztH3W3aH4iMAAAAAtmLrwU9V\n3ZXkbyUZJvmZ1tp/vXZ/L8nPJfmmJA8keVVr7ber6tlJ3pfkm5O8u7X2+qVnvinJu5NcTPIPkryh\ntXb2/2kiAAAAPE3NI5ht7VJ0La21TKYt4+kiCjpcCoVmn2eh0NHnpTmLe617ZunzdPVdq9HR7LoY\nn80/GE9z9XCah6+Ou591rZ+z+BmnNRxUbrswOgqAZp93jj4/8+JOnrly/3g0tDsabPFfDQAAAAD6\naqvBT1UNk7wlybcnuS/JR6rqntbap5am/VCSL7fWXlBVdyd5c5JXJbma5D9L8se7P8veluQ/TvKh\nzIKfu5L82jZ/FwAAAOCJq6rZrjnD5MLO8EYv58xaaysx0P7hJA9dHeehq4d5+Oo4D12ZXR++eng0\ntjz++S89Nvve3TvJ3miQZ15cjoXWdhPaGx3dXw6J5vNv2xtlMLDLEAAAAMBTzbZ3+HlJkntba59N\nkqp6b5JXJFkOfl6R5Ce6z+9L8tNVVa21R5P8RlW9YPmFVfXVSZ7ZWvs/u+8/l+R7IvgBAAAAtqyq\nsjuq7KbbeefiTr7qmY/vXdNpyyMHy5FQ93n/MA9dmUVD8zjooaVo6Hf/4Eoe6qKiq4fXPyKtKrl1\ndzkC2hwGrY89c2nXoQs7A0eTAQAAANxkth38PCfJ55e+35fkT1xrTmttXFUPJnl2kt+/zjvvW3vn\nczZNrKrXJnltknzN13zNWdcOAAAAsDWDQc1263kCx6odjKcrYdDR7kJXFqHQw2u7D/3Lh67mX3xx\nvgvROJMTjinbGdbKMWPL172d2dFwu6NBdoeLz4uxWh1bu78zrA1ji3lDuxMBAAAAbLTt4OeGaq29\nPcnbk+TSpUvX/9srAAAAgJ7ZHQ3y7Fv38uxb9x7X8621XDmcHO0odNrjyT73+4/m4auH2R9PczCZ\n5nAyzcF4mhPaoTMbVDbGQjvDyu5omN1hLY0twqN5THSmGOnYvNn9vWvESHujgePSAAAAgBtm28HP\nF5I8b+n7c7uxTXPuq6pRkmcleeCEdz73hHcCAAAAcIKqyi27o9yyO8offtaFJ/y+ybTlYC0COuw+\n74+nOZy0o7GDpfuLsbZhbOk94zb7vvbug/E0jx5Mjo3Nr7P1tBN3MzqrW/dGuXVvlGfsDXPrhZ3c\n1n2/9cLsetuF+f3F5/n92/Z2cuuF2bN7o+G5rgsAAAB46tt28PORJC+sqjsyi3LuTvLn1ubck+QH\nkvwfSV6Z5IOttWv+7Utr7feq6qGqemmSDyX580l+ahuLBwAAAOD0hoPKxd1hLubmDFgm03bt2KiL\niVYioaV46XDcsr80duVgkkf2x3nk6jiPHHTX/XHuf3g/j+zPdkZ6ZH98ql2PdoeDo0hoEQSNVseO\nhUQ7x565ZWdo1yEAAAB4mthq8NNaG1fV65N8IMkwyTtba5+sqjcludxauyfJO5K8p6ruTfKlzKKg\nJElV/XaSZybZrarvSfLvttY+leQvJHl3kotJfq37AwAAAADXNBxUhoNhLuw8OUHS/Mi0eQw0D4Qe\n3h+vjD18dZxH9g+7sUke2T/M//fw1fw/9y/u74+nJ/68quTW3aVQaCkQesbueki0s/L9GbtLuxBd\nGGVnOHgS/gkBAAAAj1ddZzOdp5RLly61y5cv3+hlAAAAAMCZHYyneXR/KRw6Fg8drnx/9GAeEi3F\nRd1uRKf568C90WAlAFoOgp6xN8reaJjd0SB7o8HRdfF59d7ucJC9nWF3HRxd94azebujQYZ2JgIA\nAIAkSVV9tLV26aR52z7SCwAAAAB4gmZhzG6+8hm7T+g902nLY0e7Dh3OdhTqPq8HQkfxUPf5d//g\n6lFsdDBeHH12HkaDWgRCG6Kh2XW4FAst4qGNkdE13rE3GmR3OFwJj5bfsTOsVImPAAAAuPkJfgAA\nAADgaWIwqNmuPXujJBee8Pum05aDyTT7SwHQ/uGku06XrpMcjGfz5n/m0dD+eHFvZWztHQ9eObzu\n/Ok5bWS+Gggdj4Yu7AyzNxrm4u4wF3cGubgzzIXdYS4cjQ2XxgZHYxd2Zvcv7Czm7I0GGdjdCAAA\ngMdB8AMAAAAAPC6DQeXCYBax3GjjY+HRLDS6uhIenRAZLQdJK8HRIkB6dH+c33/kIFcPJ7lyMMmV\nw0muHk6yP358ux1d2BmsRECLMGiw+L4UCy3mDo5HREfh0eDYmLAIAADgqUXwAwAAAAD03mg4yGg4\nyDP2bszPn05bro6XI6DpLApaC4MWodB08f1w83NffvRwdU53//HYHQ2OoqKLu7PdhY7vSDSLhY52\nIFqaP4+PVkKk3fm8xTOj4eCc/8kCAACwieAHAAAAAOAJGgwqt+yOcsvudv/KdTpt2R9PVyKgKwfz\nmGi6CIOWIqPjY9PFvYNJHrp62L1junjfeJL2OI5JGw1qERAtxUEXjnYwGixFR8sx0WA1MjqKigZr\nOxsNu2PVHIcGAAA8vQl+AAAAAAB6YjCoWSSzO8xXbvHntLYWFq3tQLQ8fnU8PRYYHe1U1MVDVw4m\n+YPHDlajpO7P4eRxlEXJyi5FiyhocZzZ8q5FF0YbjkXrxi8svWM5Ppo/vzOsVImLAACAm4vgBwAA\nAACAFVV1FMd8xZZ/1ngyzdXxdGmnouM7EV1d2snoSje+vxYdXTmYZL+Lix68criy69H8nY9n16Lh\noHJhNMjeziz+2R0NsjMcZHc4yO5odt3pPu8MB9kbDVbnjRZzd9auu2vv2xkNstddl9+7eH51vl2O\nAADg6UvwAwAAAADADTMaDnLrcJBb97b719XzXYv21yKg1ahouhQcLe9kNM3hZJqD8ey6P5nmcDzN\nwWQx/tiVydH95evB0vXxBEfXMxpcKyw6OUzaHdWGsU1xUmVvNMzezmxHpJVrd7za/LozHJzvLwgA\nAFyT4AcAAAAAgKe85V2LnpWdG7KG8WSaw0lbhEBL4dB8bD0kOujmrwRHG8Oi4/Pm731kf7w03lZC\npPn4ePrEa6ThoI4CoPmuSHvd9cLG68kR0d7a903X0cCxawAAPP0IfgAAAAAA4EkwGg4yGiYXd4c3\neinHTKdtJTRaDoP2x5Psj2e7H812SVr9fvVwkv3Daa6O16+zufPrg1cO88UNz149nOSJ9EaDykoA\ndHIsNMjeaHjida+7zo5bq6Mdk0bD2eejo9iGlaHoCACAJ5ngBwAAAAAAnuYGg8qFwSyWuRHmOxed\nFBHtr0dFm+KjtetDVw5XYqXlEGlyDjsbzc3jn53RIKPBILvd53kctHMUCh2Ph+bHq+2MavbsaHn+\n6udj0VEXI82e2/zM8ecESgAAfSf4AQAAAAAAbqh5lHLr3pP7X1uMJ8d3IrrahUXz6+GkZTw/gm3S\nctjthHT0+egItdYd2zb7PJ83nix2T5o/Nz9m7XDczZsuPh8sPXceR61dyzwIGg2qC4w2xEVLOyLt\njQbXPW5t9mexM9Lsunx/aX53b3c4EB4BADxOgh8AAAAAAOBpaTQc5NYbEBqd1nTaZjHQenQ0XouO\nlu6tREfzedPlZ46HSweTafdcFyeNF+/cP5zmoSvjxS5Ja0e8tSfQJFVlJQba2xnkwnI0tCEourCz\niI2OBUVrsdHKEW3d++djYiMAoO9uzv8ECwAAAAAA8DQ3GFT2BsPcpD1SWms5nLSVHZFmR6etHcO2\nFAjNj1Zbua7cXz227eGr42u+/4nERklWo6G1yGh3OJgdyTaolSPUdoaV0XA2vjMcZDScHd826o5M\n2+12TZo9u3qM2nz+zmB+9NvivUfPDrtj3RzBBgCc4FT/EbGqhkne3Fr70S2vBwAAAAAAgB6oquyO\nZkeC3Xbhyf3Zy7HRSjC0diTbsaBoQ2y0Mv9wMXblyuToeLX50WtHn7vr/Mi2bRsOahYNDQZrsVAX\nIM0/DzbESUfHty2HR2uB0do750e6zY972x0NstdFULvDxfje2pxdgRIAPGlOFfy01iZV9Se3vRgA\nAAAAAAA4yUpsdIPX0lrLZNoyns6PR1scwbYcCI2n02Ox0Oq9+fjsSLbxZDp753i6dn8tOpoeD5Ae\nOxgvPbv+XPe5e24yfYJbJW2wiIJqNRxaCoNWQqH52MbxWsREo+PvWA+ONr6/uw4HQiQAnjrOsgnk\nx6vqniT/Y5JH54OttV8+91UBAAAAAABAD1TNjv0aDZMLO8MbvZwzm07b0e5F82DocDLNwXgWLS1f\nj8ZXxloOxpPuuZb98fG5h5Np9je849H98Wz+ZH1+O/oZ52m+U9IsABouYqKlOGinO5ZtfvzasNv5\naNgd7za/NxrMdkc6GuvG5z9j2O2oNBzU0fFuy+86mtP9jKN3Dtfee/Szlsa7OQImgKe3swQ/F5I8\nkORlS2MtieAHAAAAAAAAemgwqOwNhtk7y39r+CSZH912LDhai4kOxrOg6HBDnLS/EhBNjj7vb4iS\nlt/76MEkk3kINV3suHT0fTrNpNspaTKdrfPJVpVFCNTFQiuh0TxUWg6JjkVFy2PzI982HP82GGRn\n1B0r1x0XNz8Wbmdl/uLzPJ7aWR9bf2bgGDiAx+PU/6+7tfaD21wIAAAAAAAAwNzy0W3Zu9Grub7W\nWqYtOZzMAqBxd1TbeL1yz3MAACAASURBVLopGFoNiSbTlsNpy2TpmLXV9yyOfVuec/TO9Z+39LOW\n37X8M64cTjK+Ot3w7PxousVRcYeTabZw8tuKnS4+Wg+D5lHRLDia7Yi0fm8+fyVEGtTa/NWIaTU4\nGmR3tPyewcqxdMu7Px2NDQYZ2GEJuMFOHfxU1XOT/FSSb+uG/kmSN7TW7tvGwgAAAAAAAAD6oKoy\nrGQ46N+xbqcxD4fG05bD8TSHXTg07oKgRRzUzVuKhQ4ni2DpsIuJDjY8O57Odl8aT6c5HLdr/ozx\nPFhambf8MxfzzvtYuGXz3YuOYqBhFxl1wdDOqBsbLmKh3eXdjkbHw6Kd4SB7o8FKxLR4rouejo6l\nWw2Udka19HMHRzs8AU9dZ9mc711J/m6S7+u+v6Yb+/bzXhQAAAAAAAAAN4fhoBYx002+29Ky1trR\nkWuH09mxb4uwaC1KmiwfCbe4Nz9G7nB+PNzS+PzZ+f3FvdXnH90f52DtnYdrP2u8hW2UBpWlIGke\nDdXR50U0VCtz5jsozefPdkFaDZOu/Xn1++5ovnvTYiel+Y5Lyz/PrklwdmcJfm5vrb1r6fu7q+ov\nnveCAAAAAAAAAOCJqqrZkWDD5GJu7t2XJmsB0kpsNJntZnSwEhp10dCkrYzNI6KVsfV7RwHTPGZq\neWQ8Pvo5h5NuF6fu88HSDkrbCJPmRmtHts2Do53B0udNUdHa8W673fFuRzsvLUdGXeQ0Giw+DweV\n0WD2zGhQR99n1+7+8Brjg8pwuDo+qNm/92DbzhL8PFBVr0nyC933Vyd54PyXBAAAAAAAAABPH/Nd\nlC7s3Nxh0nS6etzawTxQ6o5jW97d6HDlaLe1nZPWjms7Os5tKVaaR0bzYGm8tMPS1cNpHrm6unPS\n8v3lHZluhGPh0FJYdOag6Oj+piBpU6g02PC+tee7+7fsDvOyr/9DN+SfEU/cWYKf/zDJTyX5ySQt\nyW8m+cFtLAoAAAAAAAAAuLkMBpW9wTB7ZykNbqDlY91mOxUt7aC0FApNpi3j6fw6XXyfXGP86P50\n9fvRdbrh+aXxY+9fHb9yOFmML61vPJ1ueOdibYeTs+3A9FW37eXDf0Xw01en+j/Dqhom+d7W2ndv\neT0AAAAAAAAAAE9Yn451Oy/Ta8VLK5HRbNzJY/12quCntTapqldntrsPAAAAAAAAAAA3mcGgsjuY\nlzxPj8jp6eosG23906r66SS/mOTR+WBr7WPnvioAAAAAAAAAAGCjswQ/39hd37Q01pK87PyWAwAA\nAAAAAAAAXM+pgp+qGiR5W2vtl7a8HgAAAAAAAAAA4DoGp5nUWpsm+ctbXgsAAAAAAAAAAHCCUwU/\nnX9UVT9aVc+rqn9l/mdrKwMAAAAAAAAAAI451ZFenVd119ctjbUkf+z8lgMAAAAAAAAAAFzPqYOf\n1tod21wIAAAAAAAAAABwslMf6VVVt1TVf1pVb+++v7Cqvmt7SwMAAAAAAAAAANadOvhJ8q4kB0m+\ntfv+hST/5bmvCAAAAAAAAAAAuKazBD9f21r760kOk6S19liS2sqqAAAAAAAAAACAjc4S/BxU1cUk\nLUmq6muT7G9lVQAAAAAAAAAAwEajM8z98STvT/K8qvr5JN+W5D/YxqIAAAAAAAAAAIDNTh38tNb+\nYVV9LMlLMzvK6w2ttd+f36+qF7XWPrmFNQIAAAAAAAAAAJ2z7PCT1toDSf7+NW6/J8mLn/CKAAAA\nAAAAAACAaxqc47vqHN8FAAAAAAAAAABscJ7BTzvHdwEAAAAAAAAAABucZ/ADAAAAAAAAAABs2XkG\nPwfn+C4AAAAAAAAAAGCDUwc/NfOaqvrPu+9fU1Uvmd9vrb10GwsEAAAAAAAAAAAWzrLDz1uTfEuS\nV3ffH07ylnNfEQAAAAAAAAAAcE2jM8z9E621F1fVx5Oktfblqtrd0roAAAAAAAAAAIANzrLDz2FV\nDZO0JKmq25NMt7IqAAAAAAAAAABgo7MEP/9dkl9J8lVV9V8l+Y0kf20rqwIAAAAAAAAAADY69ZFe\nrbWfr6qPJnl5kkryPa21T29tZQAAAAAAAAAAwDGnDn6q6j2tte9P8s83jAEAAAAAAAAAAE+Csxzp\n9aLlL1U1TPJN57scAAAAAAAAAADgek4MfqrqjVX1cJJvqKqHqurh7vsXk/y9ra8QAAAAAAAAAAA4\ncmLw01r7a62125L8jdbaM1trt3V/nt1ae+OTsEYAAAAAAAAAAKAzOsPcX6uqP7U+2Fr7x+e4HgAA\nAAAAAAAA4DrOEvz8paXPF5K8JMlHk7zsXFcEAAAAAAAAAABc06mDn9ban1n+XlXPS/I3z31FAAAA\nAAAAAADANQ2ewLP3JfnXz2shAAAAAAAAAADAyU69w09V/VSS1n0dJPnGJB/bxqIAAAAAAAAAAIDN\nTh38JLm89Hmc5Bdaa//0nNcDAAAAAAAAAABcx6mDn9baz25zIQAAAAAAAAAAwMlODH6q6p9lcZTX\nyq0krbX2Dee+KgAAAAAAAAAAYKPT7PDzXVtfBQAAAAAAAAAAcConBj+ttd+Zf66qP5Tkm7uvH26t\nfXFbCwMAAAAAAAAAAI4bnHZiVf3ZJB9O8n1J/mySD1XVK7e1MAAAAAAAAAAA4LjTHOk191eSfPN8\nV5+quj3JP0ryvm0sDAAAAAAAAAAAOO7UO/wkGawd4fXAGZ8HAAAAAAAAAACeoLPs8PP+qvpAkl/o\nvr8qyT84/yUBAAAAAAAAAADXcurgp7X2l6rqe5P8yW7o7a21X9nOsgAAAAAAAAAAgE1OHfxU1TOS\n/L3W2i9X1dcl+bqq2mmtHW5veQAAAAAAAAAAwLLBGeb+4yR7VfWcJO9P8v1J3r2NRQEAAAAAAAAA\nAJudJfip1tpjSb43ydtaa9+X5EXbWRYAAAAAAAAAALDJmYKfqvqWJP9+kr/fjQ1P8dBdVfWZqrq3\nqn5sw/29qvrF7v6Hqur5S/fe2I1/pqq+Y2n8P6mqT1bVb1XVL1TVhTP8HgAAAAAAAAAA0FtnCX7+\nYpI3JvmV1tonq+qPJfnfrvdAVQ2TvCXJdya5M8mrq+rOtWk/lOTLrbUXJPnJJG/unr0zyd2Z7SJ0\nV5K3VtWwO1LsR5Jcaq398cyio7vP8HsAAAAAAAAAAEBvnTr4aa39emvtu5O8rapua619trX2Iyc8\n9pIk93ZzD5K8N8kr1ua8IsnPdp/fl+TlVVXd+Htba/uttc8lubd7X5KMklysqlGSW5L87ml/DwAA\nAAAAAAAA6LNTBz9Vdamq/lmS/zvJb1XV/1VV33TCY89J8vml7/d1YxvntNbGSR5M8uxrPdta+0KS\n/ybJ/5vk95I82Fr7X66x5tdW1eWqunz//fef5tcEAAAAAAAAAICb2lmO9Hpnkr/QWnt+a+2PJnld\nkndtZ1nXVlVfmdnuP3ck+SNJnlFVr9k0t7X29tbapdbapdtvv/3JXCYAAAAAAAAAAGzFWYKfSWvt\nn8y/tNZ+I8n4hGe+kOR5S9+f241tnNMd0fWsJA9c59l/J8nnWmv3t9YOk/xykm89w+8BAAAAAAAA\nAAC9dWLwU1UvrqoXJ/n1qvrbVfVvV9W/VVVvTfK/n/D4R5K8sKruqKrdJHcnuWdtzj1JfqD7/Mok\nH2yttW787qraq6o7krwwyYczO8rrpVV1S1VVkpcn+fSpflsAAAAAAAAAAOi50Snm/Ldr33986XO7\n3oOttXFVvT7JB5IMk7yztfbJqnpTksuttXuSvCPJe6rq3iRfyiwKSjfvl5J8KrOdhF7XWpsk+VBV\nvS/Jx7rxjyd5+yl+DwAAAAAAAAAA6L2ababz1Hfp0qV2+fLlG70MAAAAAAAAAADYqKo+2lq7dNK8\n0+zws/zSP53kRUkuzMdaa286+/IAAAAAAAAAAIDHY3DaiVX13yd5VZIfTlJJvi/JH93SugAAAAAA\nAAAAgA1OHfwk+dbW2p9P8uXW2l9N8i1J/rXtLAsAAAAAAAAAANjkLMHPle76WFX9kSSHSb76/JcE\nAAAAAAAAAABcy+gMc3+1qr4iyd9I8rEkLcnf2cqqAAAAAAAAAACAjU4d/LTW/ovu4/9UVb+a5EJr\n7cH5/ar69tbaPzzvBQIAAAAAAAAAAAtnOdLrSGttfzn26bz5HNYDAAAAAAAAAABcx+MKfq6hzvFd\nAAAAAAAAAADABucZ/LRzfBcAAAAAAAAAALDBeQY/AAAAAAAAAADAlp1n8PPb5/guAAAAAAAAAABg\ng9FZJlfVtyZ5/vJzrbWf667fe64rAwAAAAAAAAAAjjl18FNV70nytUk+kWTSDbckP7eFdQEAAAAA\nAAAAABucZYefS0nubK21bS0GAAAAAAAAAAC4vsEZ5v5Wkj+8rYUAAAAAAAAAAAAnO8sOP/9qkk9V\n1YeT7M8HW2vffe6rAgAAAAAAAAAANjpL8PMT21oEAAAAAAAAAABwOqcOflprv77NhQAAAAAAAAAA\nACcbnHZiVb20qj5SVY9U1UFVTarqoW0uDgAAAAAAAAAAWHXq4CfJTyd5dZJ/keRikv8oyVu2sSgA\nAAAAAAAAAGCzswQ/aa3dm2TYWpu01t6V5K7tLAsAAAAAAAAAANhkdIa5j1XVbpJPVNVfT/J7OWMw\nBAAAAAAAAAAAPDFnCXa+v5v/+iSPJnlekn9vG4sCAAAAAAAAAAA2O/UOP62136mqi0m+urX2V7e4\nJgAAAAAAAAAA4BpOvcNPVf2ZJJ9I8v7u+zdW1T3bWhgAAAAAAAAAAHDcWY70+okkL0nyB0nSWvtE\nkju2sCYAAAAAAAAAAOAazhL8HLbWHlwba+e5GAAAAAAAAAAA4PpGZ5j7yar6c0mGVfXCJD+S5De3\nsywAAAAAAAAAAGCTs+zw88NJXpRkP8nfTfJgkjdsY1EAAAAAAAAAAMBmZwl+7uz+jJJcSPKKJB/Z\nxqIAAAAAAAAAAIDNznKk188n+dEkv5Vkup3lAAAAAAAAAAAA13OW4Of+1tr/vLWVAAAAAAAAAAAA\nJzpL8PPjVfUzSf7XJPvzwdbaL5/7qgAAAAAAAAAAgI3OEvz8YJKvT7KTxZFeLYngBwAAAAAAAAAA\nniRnCX6+ubX2dVtbCQAAAAAAAAAAcKLBGeb+ZlXdubWVAAAAAAAAAAAAJzrLDj8vTfKJqvpckv0k\nlaS11r5hKysDAAAAAAAAAACOOUvwc9fWVgEAAAAAAAAAAJzKqYOf1trvbHMhAAAAAAAAAADAyQY3\negEAAAAAAAAAAMDpCX4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAA\nAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAA\nAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4If\nAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAe\nEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI9sPfipqruq\n6jNVdW9V/diG+3tV9Yvd/Q9V1fOX7r2xG/9MVX3H0vhXVNX7quqfV9Wnq+pbtv17AAAAAAAAAADA\nzWCrwU9VDZO8Jcl3Jrkzyaur6s61aT+U5MuttRck+ckkb+6evTPJ3UlelOSuJG/t3pckfyvJ+1tr\nX5/k30jy6W3+HgAAAAAAAAAAcLPY9g4/L0lyb2vts621gyTvTfKKtTmvSPKz3ef3JXl5VVU3/t7W\n2n5r7XNJ7k3ykqp6VpI/leQdSdJaO2it/cGWfw8AAAAAAAAAALgpbDv4eU6Szy99v68b2zintTZO\n8mCSZ1/n2TuS3J/kXVX18ar6map6xqYfXlWvrarLVXX5/vvvP4/fBwAAAAAAAAAAbqhtBz/bMEry\n4iRva639m0keTfJjmya21t7eWrvUWrt0++23P5lrBAAAAAAAAACArdh28POFJM9b+v7cbmzjnKoa\nJXlWkgeu8+x9Se5rrX2oG39fZgEQAAAAAAAAAAA85W07+PlIkhdW1R1VtZvk7iT3rM25J8kPdJ9f\nmeSDrbXWjd9dVXtVdUeSFyb5cGvtXyb5fFV9XffMy5N8asu/BwAAAAAAAAAA3BRG23x5a21cVa9P\n8oEkwyTvbK19sqrelORya+2eJO9I8p6qujfJlzKLgtLN+6XMYp5xkte11ibdq384yc93EdFnk/zg\nNn8PAAAAAAAAAAC4WdRsM52nvkuXLrXLly/f6GUAAAAAAAAAAMBGVfXR1tqlk+Zt+0gvAAAAAAAA\nAADgHAl+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHtl68FNVd1XV\nZ6rq3qr6sQ3396rqF7v7H6qq5y/de2M3/pmq+o6154ZV9fGq+tVt/w4AAAAAAAAAAHCz2GrwU1XD\nJG9J8p1J7kzy6qq6c23aDyX5cmvtBUl+Msmbu2fvTHJ3khcluSvJW7v3zb0hyae3uX4AAAAAAAAA\nALjZbHuHn5ckube19tnW2kGS9yZ5xdqcVyT52e7z+5K8vKqqG39va22/tfa5JPd270tVPTfJn07y\nM1tePwAAAAAAAAAA3FS2Hfw8J8nnl77f141tnNNaGyd5MMmzT3j2byb5y0mm1/vhVfXaqrpcVZfv\nv//+x/s7AAAAAAAAAADATWPbwc+5q6rvSvLF1tpHT5rbWnt7a+1Sa+3S7bff/iSsDgAAAAAAAAAA\ntmvbwc8Xkjxv6ftzu7GNc6pqlORZSR64zrPfluS7q+q3Mzsi7GVV9T9sY/EAAAAAAAAAAHCz2Xbw\n85EkL6yqO6pqN8ndSe5Zm3NPkh/oPr8yyQdba60bv7uq9qrqjiQvTPLh1tobW2vPba09v3vfB1tr\nr9ny7wEAAAAAAAAAADeF0TZf3lobV9Xrk3wgyTDJO1trn6yqNyW53Fq7J8k7krynqu5N8qXMIp50\n834pyaeSjJO8rrU22eZ6AQAAAAAAAADgZlezzXSe+i5dutQuX758o5cBAAAAAAAAAAAbVdVHW2uX\nTpq37SO9AAAAAAAAAACAcyT4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgR\nwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAA\nQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAA\nAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4A4P9v715jJMsO+oD/Tz/nPbOzu7bXu+tdPwCztsHYiwWs\nHSEQCZBIdogDNsFyokjkA0ig5AMPJYIgRUoiApEiAiECySQOhhiTWBFSeAQRbMC7a+O3Y2zMmn15\n197ZndnZme7p7jr5cG9NV92uqu6enZ7q6v79pKu699xHnZquuX37nv89BwAAAAAAAGCGCPwAAAAA\nAAAAAMAMEfgBAAAAAAAAAIAZIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMEIEf\nAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABghgj8AAAAAAAAAADADFmYdgUAAABgZvV6\nyZOfTp76fPKi1yRnX5aUMu1aAQAAAAAHnMAPAAAA7FSvlzz5qeShDzTTFz+YXH56c/3Rm5I7vnFz\nuv11yZHT06svAAAAAHAgCfwAAADAOL2N5IlPJg99cDPgs/JMs+7MXcnX/O3k7jcmt3x1s90jDzTT\n5363PUBJbn1lcudACOiWr0nmjLANAAAAAFw7gR8AAADo620kX/rEZrjnix9MVs436256afK1fye5\n+03JXfclZ+4c3veO1yevf2czf/mZ5LGPJA+3AaBPvz/5yK8165ZPJbe/fqAnoHuTY2dv3GcEAAAA\nAGaewA8AAACHV28j+dLH2yG6Pph88U+S1Tbgc/ZlyT1vTu56Y3L3fcnpO3Z+3KNnkpd/WzMlSa3J\nU3+ZPHL/Zi9Af/yzSe01629+xWb45443JC+4J5n3JzsAAAAAMJq7hwAAABweG+sDAZ8PJH/9p8nq\nhWbd2Zcnr3pL04PP3fclp158/d63lOSWVzTTa7+/KVu9mDz2520A6MHk87+ffOzXm3WLx5IXv254\nKLATL7h+9QEAAAAAZprADwAAAAfXxnrypY8NBHz+bDPgc/Mrkld/z+YQXaduu7F1Wz6RvPRNzZQ0\nvQA988Um/PPIA8nD9yd/8h+S3nqz/sxLmt5/+gGgF70mWVi6sXUGAAAAAPYFgR8AAOD5W7ucXDqX\nXHoq2VhrhjM6elNy5HQyNz/t2nGYbKwnj390OOBz5dlm3S1fnbz67yV3v7GZTr5ounXtKiW56e5m\nes1bm7K1y8njH98cCuyv/zT55HubdfPLyYtfOzwU2Onbp1V7AAAAAOAGKrXWadfhhrj33nvrgw8+\nOO1qAADA/re2klxuwztXp3ObgZ5LTw2sb1/XLo05WGlCP0dv2tl07GwbFDqTzHs+gR3YWEse+2jy\n0B8nX/xgG/C52Ky75Ws2wz133ZecfOF063q9nH+0HQasHQrssT9PNlabdSdf3IR/7mx7Arrt65PF\no9OtLwAAAACwY6WUD9da791uO3fQAfbK2kry7GPJhceSC48385eeSmqvGa6h1iR1czltWe2NmR/Y\nZst+k46x0/3685lcj5H7Zft6pCaLx5tG3yOnkuVTm/NHTg8vL58eXrewfKN+agAHz/rqcFDnamDn\n6fGBnrXnxh9v+XQTyjl2c3LiRckL7mnm+2VHzybzS8nKM817jJqe/qt2/pm0v0TGvNepzZ6CdjP5\nvXGwbaw1AZeH/rjtwedDm9/ZW1+ZfP3bNgM+J14w3bruldO3N9Or3tIsr19JnvjE8FBgn3l/s25u\noRn66+pQYPc2PQiVMrXqAwAAAADPnx5+AHar1qYR88LjTZjnaqjnseTZxzfnL5/buu/8UtPoktI0\nspS5dj7t61zb+NKdH9y2jC+feIx0jjFmfmi/7KJOc+32Y+qRNL0/rJxPVi40r6vt/KTG3qQZrmJk\nMKg/f3pg3ZjtDCfD81Fr08C8sdq8rq925q800/rqwHZXmgbY3nrGB+YGA3ITwnIj9xkM243aZ9Jx\ncg371Ob9drNPKcnC0aZnicWjycKRZPFYsnikXT7azh/rrOsvH93cbm7uhvyo971+eGdL7zud8M5g\n7zv9nk5GWT6dHLupDezcvBnY6Yd3BoM8x25uwjTzi9fv8/R6ze+CoUBQGxS6dG58YOjy00ndGH/c\nxWOdEFA3NHR2rQKHtwAAGotJREFUdFBo8agQxH60fmU44PPwhzZ7lHrBPU2w52rA59bp1nU/ufhk\nGwC6v3l99CObwajjtw4MA/aNyYtflyyfmG59AQAAAIAkO+/hR+AHYFBvo2kcuRrkeTy58OhwkOfC\nY8n65a37Hr81OfXiZhiFU7cNzLfTydua8AnDer2mMXr1QicM1F8+P7xu1HZjh5EZsHRym9BQd11n\nu8VjGoH3Wq3N/8GN1eHgzHobphkbtlnbuk8/bLPTUM52x964Mu1/nV3aJqA3KhC4F/vUXrK+0vR4\ntna5+b86KaQxyfzy+DDQYhscGgwXDa07OrzPpLDRwtEbN4zU+pWtw2L158cNp3Xl2fHHWz7VDol1\ncyesc7YT5hkI7yws3ZjPer3Vmqw+OzkQdHlUD0PnJv9/nl8e02vQNr0MLZ/0O+J6Wr+SPPaRgYDP\n/QMBn1e1Q3Td1wR8jt8y3brOko315Mufaf49+z0BPfW5Zl2Za/5tB4cCO/tyYUsAAGB21ZpceW7z\nHvPKMwPz58eXX36m2XfkPZURD0gdPdvcUwKA60jgp0PgB9gyxFY3yPPs48mzX9raGD232IR1TvWD\nPLe3ywPzJ2+b3UbTg2BjrQ0DnR8RGtomQNRf7q1Pfo+5hTE9CJ0eExoanD/TDC9TN5pAS60D8xtN\nKKI3+NqZ7/VGlPW3qyPKepv7jH2Pzvpeb0RZf7vu+/aG67XleCPeY2J4ZyCIs11vT7s1v9z0rLWw\n1M4vNj+LofnFZnlwfsfbjTr2Ulvezs/NZ3xoZlSopjO/myDOLAQONtba8M/lJjy5ttI05K+3r/1w\n0Nh1/eX+MUata+d7a9dWx7nF0b0SbQkUbbPuysUJve+ca8494yydHNPzzs3jby75PbS9WpvvTTcE\ntJPA0KRw6dxCc64fDAgdObP5euT0+LKlE7Pxf3cvra8mj344eeiDTcjn4fs3w9UvfPVm7z133Zcc\nv3m6dT1oLp1r/u0feaCdPtxcTyXN9/SOe9uhwO5Nbn99850FAAC4EWod6DF+QlDn8rggz/ntHzxb\nPD7wN/tAT/IpnYexnt78W2nccUY9eNV/4EpICIBdEvjpEPiBA+zqEFttkGdwiK2rw2w92jTWdS2d\nHNEbz2Co58XJsVs83XzQ9RuAt/QmNCpANKanoUm9bsyaMpeU+SaoUuab5blRZYOvnfm5ueHjDIVg\n+sGZtmxswOZ57jO3oBH9sNtYHx8cWr+8GRrqBoe2rOvPT1g3qdeYpRMjngKb1PvO2eY7zP6yttJc\nb0zsVagdiqx703FSmHFuob2heGbgBuOZnYWGlk/N5jXK+mrTw8xDH0i+2Pbgs76SpCQvenVy1xvb\nkM+3NP8fuHF6veQrfzEQAHogefIzufodvuVrkju/sR0O7BuTW19p2FQAAGC0Wpu/9UYFcS4/PSHI\nMzBt9zDX4rHhoM6W6cyE8lO7G7Z8/crmg0OjemUeGmJ9tyGhEUOqCwntXK3NvYa1S02vTmuXmgfx\nrlzqlF1qhrq+8tzAfGebxWPJ6TuS03e2r+106nb//sANJfDTIfADM2rLEFuDIZ4dDLF1sg3vGGKL\nvdbbaIaXGRcMWl/pBGbKQDjmGkM0V1/LiLK5zr7znX1Hre8fS0gGdq23sbXnoaXjbsbQBChWL7Rh\nof5Th/35SWXt68SnEUvbo9wOA0Ld9Tdq+Lq1leTRNuDz0AeaEMnVgM9rkrvf1AzR9ZJvFvDZj1Yu\nNEOsPTwQArp8rlm3dDK5/XVN+OfMSzpPxQ7MCwUBAMBsWl8dHupq4tBYI9ZNekAqaXpI3lFAp7P+\naPsQzH7v7bgfEtoSBjqEIaFam+/DlecGAji7COIM7TewzZXnmvna2119Fo8nS8eagM/S8fb1WLJ6\nsXmA/OITW/c5futACKgbCLqjWT+LD2YB+5LAT4fAD+xDa5cHgjuDQ2w92vbUs8Mhtkb1zHPyRXpH\nAABmW63NjaudBoSu3oBtyzZWJx9/6eTuexXqbz/pOmttpQmFDAZ8NlaTlOS2r2sCPnfdl9z1zc0N\nSWZLrcm5Lwz3AvSlT04Opw0OhTp4A39cQGiw3LB3AACwc/2HEq881/Rwsnqx7emkP9+u65dP2nb1\nQvuwxgTzS9uHdMZd9y+f2j9hlP1k1yGh7YaN7/Y8vU1I6Mjpgd5yRgRrJgZxxgV42nXbDbHWNS6U\ns3i8Wb46393m+PB8d7/Fo9v/nbm+2rRVnX9kYHp4eLk7/Pv8UtNGNSoQdPrO5PTtzfsD7IDAT4fA\nD0ywsd40wqyvNgnr9dVkY21E2ZXh+W3Xtcfpll06Z4gtAIC9tnZ5970K9UNDa89NPvbC0a0hoCNn\nmptfjzzQXPuVueRFX9cMz3X3m5KXfFOzLQfP2uXmRvPQU7/ns2V4u+4Tv5ef2X5Y1DI/uaFg8Ps3\nKjTkIQAAAPazjfXmmnj14kDw5tk2ePPc5vzV9d1tOyGeUT3hj1SaIMjyiTYccSJZPtm8Lh1vyrft\neeeMwM5+sZOQ0NC6bUJCu7F4bETIphvEOTE6lDNpv4Wj+7sdqNbm33xcIKj/gHu356GjN40PBJ26\nvXmYXS+5QAR+thD4YV/od1nYDcCsX+kEZvplg4GZgbKr23fL+sftrhsM8IzYfrddHU4yt9CkmOeX\nmpvr88tNt5rzy814uAvLTZrcEFsAAPvX+pVOKKg///SEXoXOJ8dvaYbn6gd8jpye9idhv9tY3xz2\nbstQATsIDW33xPHCkd33KmQ4MoCtam3uL/XWmoa4/dwAx86tXW4afS+f23y9/HQ7//RwWe01D+Ed\n7/cEcUtz7Xfslmb5eFu2dFzvfBxs61c6PeZ05reUDYZ0RoR4tuuZta/MtaGJbUI6SycH5vvrR2y7\neMy5/LAbFxJaOd/8HbWTXnX2eyhn2jbWmtDPyB6C2t6DukO4zS007WZDYaDBgNDt7rVMsn6lOceu\nXtgMUI6brgwuX2z+/l9Ybr7XC8vt/4MjzevVabnpIaq/vj8tDqzv7794dKDsiPsL7JrAT4fAzyHW\n67UBl5XhsMv6ytZQzGAQZ32lE85Z6azvhnA6ZaP232682t2aX25DNf2AzdJwwGahDdlsKetuvzwQ\n0FncYdnS8Hz/1S8sAADgRllbGdN70NPjexUaLNvu4YedDEe2fLL9+2hx8++k7vzc4uRt3CSfLbUm\nvfXmdW7Bz4/9rdcb7i2i3wCypdHjwnCDx6jy3lpzzDLXnPu658ehc+bg1ClfPuX+0fW2sd78btsS\n2tkmyDMpOLt4rB0C5qbmtZTkuaeSS19JnvvK5veha+FIGwI6uxkIOn7L5pAx3bIjZ5xH2XuD58Kr\n0/nRDcArnfJuiGen9/jLXBO+6QdvBgM52wV2Rq3fyRBEwOxZOb8Z/ukOGXbhkeTCY83fHoOWT00I\nBN3RPFw/vzidz3Mtehudc/TF4WvQoWvYzrn8SuccvtNz9NLJ5vy6PHCerb22rfdyO6zdymbb8Prl\n59/GO7e4g7BQt2wnoaJtwkfzi35/zCiBnw6Bn33miU8lz35pl4GaUYGdwR5xuoGdtrz7i/Balfnh\ncMvV3mv6ZUeGAzcLRzpBm37ZhJ5vutvPjwrwDNwcdoIGAAC4NrU2Nw4nDTk2qXy74ch2o8yPCAIN\nvk4IE00MEi1ss9+k+TH7btdI3w/DbKw1r/1pKssbTYP0TpZ7602DeW+9LdsYOGZnuW5s/dxzC83P\ncW6h+Team9+6vO02C03j4NzCLrcZLBt8n4H33ck2E+s711le2PrdWVhubmJruL8++j1IbBvOGdEo\n0m0E2YmFo22jx+B0arMRpD/NLbY9s10YOEe20+qFzdftLJ3cPhg0GBAaChedmq1GrN2otfm5Tepp\nZ1SQZ+X8+GOW+SZ8c/RsM4xIf74f5BkqG9hu0jA9/Xpe+spmCOjSU00QaGTZU833eVL9roaAznZ6\nDxoRHDqoP3+26vW2Nub2z3cr3fPehfHnwtVnk+ygLWzxeBtoPLXZAHz1tR/C6YZ4xgR2Fo64fw88\nf72N5OITowNB5x9uwkKXzw3vU+aSEy8aHwg6fUfzu/75nKNqbXoKHDwHT+pRZ0vwfGDb7YaV71s4\nsnlNunSivVbtBHeWTw6EecZM19pbZa/XtlWvDAeD1lcGwkED69cu73K7gfJu2Oh5jdRStg8GnXhh\n8j2//Dzeg70g8NMh8LPP/Prbk8/+zvbbjQq8DIVuBgM0zzeIM+F95pebm50AAACQbA5HtvpsGxbp\nD728tov5td1v31vb2bbX6+GXrjI3HCiqG9uHYfba1SDLYhtEWRhYnm97WRq1PBBcuRp0WRwom7Tc\n3iPo9TY/d2+9DRFtTFget816cxN3x9sMlHe32UmD5l66GjRb3LyvMy6odvXBpu76cfv0eyseF1jr\nHm9x4N5OJwy3F42wtSZrlyYEcyZNnW13NMRLGR3KGQrsjChbGrH99QxQ9DY2wz8r5yeHg4aClQNl\n232PF4/tIBw0GCQ6M1y2sHz9Pu8466ubgZ2RPe2cSy49vTXcM67nnCRZbnuZGxXQGRfkWT61P0IH\naytbQ0D9136vQYNll5/O2O/B8unNIcTG9h40EBxaOn5DPyoZ7q1hKJhzYcQ5b2C+G+LZaWhx6Lx2\navT8kVHlA2VLJ7QBALPpynNtL0EjAkEX2t6Dur3TLB7bGgg6dvOIa9mBYE43tLOTEEqZ75xvTwyf\nd0eGdjqhy724Xp0l/YdqdhIMuhos2mXYaPlk8o73TfuT0iHw0yHws8888enml8GWgM1grze6NQcA\nAIBr0ut1wkHjAkfbhI22CzOVfoBmfkzg5gYsu3cwrNfbDGL1A0TdoNDV9YPL62PKRoWa1jvfhxHf\nkfVx35vV0eXrq2PCaxPCD8/H/NKIaSdhpKWmrqN60tlpw8fc4piG54Fp5JPJne0Wjx3M739/6J2R\nwaAJ0+C224Ue55d3NvzYkTObIaLlk02D2tXwTifIc7WsDe9Melp9frkT2rlpfE87V+fPHK6Gro31\n9t/yK51gUCcgNBgSGjvM2NEd9h7Uls3CMGO1tqHPXjsNzPc2mvVbynrD09j9e8Pla5e3hhJXtgnu\njOvRqat7rht7bhwR0BnshccwgQDj9XrN786RPQQ90oSFnntyeJ+lbjBnQg+QQ+fyTohHb2dwzQR+\nOgR+AAAAAGDGbAmvdQNF3fDQbgNI7fDxo8pHvsdq03AxtjeJcWUDjR83oneZw6zf09LIHoaemRAk\nurC5Tfcp+HHKXBMO2e2QWYtHNX5db7U2P9ehnoJG9SjUn39qfCirzA/0GHRzE7ZK2SYsU8eHaLoB\nmt0Gc4bKN57nsB7XQ9mmV7HtetUZ6G1svwerAA6LtZUmaLt03PkZ9omdBn70TwgAAAAA7E9zc8nc\nspAMO1dK21h1PDn14ms7xtpKJxjUDjm2dGK4R55Z6AnmsChls2emm1++s33WLu+s96CvfC5JaQJe\nZa75mZe5Jhh0taydX5gfXT44DZX158tAeXf/Mlw+6pgjj1vGvNcuj7t4rNOTg4ZggANn8UiyeNu0\nawFcA4EfAAAAAADoWzzSTCdfOO2asJcWjyZn7mwmAACYQWLYAAAAAAAAAAAwQwR+AAAAAAAAAABg\nhux54KeU8p2llM+WUj5fSvnxEeuXSym/0a7/UCnl7oF1P9GWf7aU8rfasjtLKX9YSvl0KeVTpZQf\n2evPAAAAAAAAAAAA+8WeBn5KKfNJfiHJdyW5J8nbSyn3dDb7x0merrW+IsnPJ/k37b73JHlbklcl\n+c4k/7E93nqSf1ZrvSfJNyX5oRHHBAAAAAAAAACAA2mve/h5Q5LP11q/UGu9kuQ9Sd7c2ebNSd7V\nzr83ybeXUkpb/p5a62qt9a+SfD7JG2qtj9daP5IktdZnk3wmye17/DkAAAAAAAAAAGBf2OvAz+1J\nHh5YfiRbwzlXt6m1ric5n+TmnezbDv/1DUk+NOrNSyk/WEp5sJTy4Je//OVr/hAAAAAAAAAAALBf\n7HXgZ8+UUk4k+a0kP1prvTBqm1rrL9da76213nvrrbfe2AoCAAAAAAAAAMAe2OvAz6NJ7hxYvqMt\nG7lNKWUhyekkT03at5SymCbs8+5a6/v2pOYAAAAAAAAAALAP7XXg54EkX1VKeWkpZSnJ25K8v7PN\n+5O8s51/a5L/U2utbfnbSinLpZSXJvmqJPeXUkqSX0nymVrrz+1x/QEAAAAAAAAAYF9Z2MuD11rX\nSyk/nOR/J5lP8qu11k+VUn4myYO11venCe/8l1LK55OcSxMKSrvdbyb5dJL1JD9Ua90opbwxyTuS\nfKKU8tH2rX6y1vo7e/lZAAAAAAAAAABgPyhNZzoH37333lsffPDBaVcDAAAAAAAAAABGKqV8uNZ6\n73bb7fWQXgAAAAAAAAAAwHUk8AMAAAAAAAAAADNE4AcAAAAAAAAAAGaIwA8AAAAAAAAAAMwQgR8A\nAAAAAAAAAJghAj8AAAAAAAAAADBDBH4AAAAAAAAAAGCGCPwAAAAAAAAAAMAMEfgBAAAAAAAAAIAZ\nIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMkFJrnXYdbohSypeTfHHa9WDILUm+\nMu1KANwgznnAYeKcBxwmznnAYeKcBxwmznnAYeKcB/vLXbXWW7fb6NAEfth/SikP1lrvnXY9AG4E\n5zzgMHHOAw4T5zzgMHHOAw4T5zzgMHHOg9lkSC8AAAAAAAAAAJghAj8AAAAAAAAAADBDBH6Ypl+e\ndgUAbiDnPOAwcc4DDhPnPOAwcc4DDhPnPOAwcc6DGVRqrdOuAwAAAAAAAAAAsEN6+AEAAAAAAAAA\ngBki8AMAAAAAAAAAADNE4IepKKV8Zynls6WUz5dSfnza9QHYS6WUh0opnyilfLSU8uC06wNwPZVS\nfrWU8mQp5ZMDZWdLKb9XSvlc+3rTNOsIcL2MOef9dCnl0fZa76OllO+eZh0BrpdSyp2llD8spXy6\nlPKpUsqPtOWu9YADZ8I5z7UecOCUUo6UUu4vpXysPef9y7b8paWUD7Xtt79RSlmadl2ByUqtddp1\n4JAppcwn+Ysk35HkkSQPJHl7rfXTU60YwB4ppTyU5N5a61emXReA662U8jeSXEzya7XWV7dl/zbJ\nuVrrv27D3TfVWn9smvUEuB7GnPN+OsnFWuvPTrNuANdbKeW2JLfVWj9SSjmZ5MNJ3pLkH8a1HnDA\nTDjnfW9c6wEHTCmlJDlea71YSllM8oEkP5LknyZ5X631PaWUX0rysVrrL06zrsBkevhhGt6Q5PO1\n1i/UWq8keU+SN0+5TgAAXINa6/9Ncq5T/OYk72rn35XmJinAzBtzzgM4kGqtj9daP9LOP5vkM0lu\nj2s94ACacM4DOHBq42K7uNhONcm3JXlvW+46D2aAwA/TcHuShweWH4kLZ+Bgq0l+t5Ty4VLKD067\nMgA3wAtrrY+3819K8sJpVgbgBvjhUsrH2yG/DG0DHDillLuTfEOSD8W1HnDAdc55iWs94AAqpcyX\nUj6a5Mkkv5fkL5M8U2tdbzfRfgszQOAHAPbeG2utr0vyXUl+qB0KAuBQqM0YwsYRBg6yX0zy8iSv\nTfJ4kn833eoAXF+llBNJfivJj9ZaLwyuc60HHDQjznmu9YADqda6UWt9bZI70ozO8sopVwm4BgI/\nTMOjSe4cWL6jLQM4kGqtj7avTyb57TQXzwAH2ROllNuSpH19csr1AdgztdYn2hulvST/Oa71gAOk\nlLKYpuH73bXW97XFrvWAA2nUOc+1HnDQ1VqfSfKHSb45yZlSykK7SvstzACBH6bhgSRfVUp5aSll\nKcnbkrx/ynUC2BOllOOllJP9+SR/M8knp1srgD33/iTvbOffmeR/TrEuAHuq3+jd+rtxrQccEKWU\nkuRXknym1vpzA6tc6wEHzrhznms94CAqpdxaSjnTzh9N8h1JPpMm+PPWdjPXeTADStPrKtxYpZTv\nTvLvk8wn+dVa67+acpUA9kQp5WVpevVJkoUk/805DzhISim/nuRbk9yS5IkkP5XkfyT5zSQvSfLF\nJN9baz03rToCXC9jznnfmmaIh5rkoST/pNb6+HRqCHD9lFLemOSPk3wiSa8t/skkH4prPeCAmXDO\ne3tc6wEHTCnl65K8K0077VyS36y1/kzbnvGeJGeT/HmSH6i1rk6vpsB2BH4AAAAAAAAAAGCGGNIL\nAAAAAAAAAABmiMAPAAAAAAAAAADMEIEfAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABg\nhgj8AAAAALAnSinfWkr5X9OuBwAAAMBBI/ADAAAAAAAAAAAzROAHAAAA4JArpfxAKeX+UspHSyn/\nqZQyX0q5WEr5+VLKp0opf1BKubXd9rWllD8rpXy8lPLbpZSb2vJXlFJ+v5TysVLKR0opL28Pf6KU\n8t5Syv8rpby7lFKm9kEBAAAADgiBHwAAAIBDrJTytUm+L8l9tdbXJtlI8g+SHE/yYK31VUn+KMlP\ntbv8WpIfq7V+XZJPDJS/O8kv1Fq/Psm3JHm8Lf+GJD+a5J4kL0ty355/KAAAAIADbmHaFQAAAABg\nqr49yeuTPNB2vnM0yZNJekl+o93mvyZ5XynldJIztdY/asvfleS/l1JOJrm91vrbSVJrXUmS9nj3\n11ofaZc/muTuJB/Y+48FAAAAcHAJ/AAAAAAcbiXJu2qtPzFUWMq/6GxXr/H4qwPzG3E/CgAAAOB5\nM6QXAAAAwOH2B0neWkp5QZKUUs6WUu5Kc9/ore0235/kA7XW80meLqW8qS1/R5I/qrU+m+SRUspb\n2mMsl1KO3dBPAQAAAHCIeKIKAAAA4BCrtX66lPLPk/xuKWUuyVqSH0ryXJI3tOueTPJ97S7vTPJL\nbaDnC0n+UVv+jiT/qZTyM+0x/v4N/BgAAAAAh0qp9Vp7YwYAAADgoCqlXKy1nph2PQAAAADYypBe\nAAAAAAAAAAAwQ/TwAwAAAAAAAAAAM0QPPwAAAAAAAAAAMEMEfgAAAAAAAAAAYIYI/AAAAAAAAAAA\nwAwR+AEAAAAAAAAAgBki8AMAAAAAAAAAADPk/wO6hR0MIHEqoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAJcCAYAAABD1/AMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3WuMX/d95/fPb+6cC4eX4W2GkkmZ\nlExZl2FMa5XISezYjmTLFhlk63qzbhfFAg6KDZB2t27kNkmboA+cbps1vFgn2GxcBM2uvV6nJmVL\niWXDki9JZIeSKFlXkpIs884hxcvwMiRn5vQBRyNSIilS4syZy+sFCBye//kffA8gSA/mjd+3VFUV\nAAAAAAAAAABg+mqoewAAAAAAAAAAAODtEQEBAAAAAAAAAMA0JwICAAAAAAAAAIBpTgQEAAAAAAAA\nAADTnAgIAAAAAAAAAACmOREQAAAAAAAAAABMcyIgAAAAAC6plPLTUsqH6p4DAAAAgIsTAQEAAAAA\nAAAAwDQnAgIAAAAAAAAAgGlOBAQAAADAZSmltJZSPl9K2T32z+dLKa1jn/WUUr5ZSjlcSnmllPKD\nUkrD2Ge/U0rZVUoZLKU8X0r5YL1vAgAAADDzNNU9AAAAAADTxv+a5PYk/UmqJJuS/G6S30vyr5Ls\nTLJo7N7bk1SllBuS/FaS91ZVtbuUsiJJ4+SODQAAADDzOQkIAAAAgMv1T5P8YVVV+6uqGkjyB0n+\nm7HPziRZluQdVVWdqarqB1VVVUlGkrQmubGU0lxV1U+rqnqhlukBAAAAZjAREAAAAACXqzfJy+f8\n/eWxa0nyr5NsT/JgKeXFUsq9SVJV1fYk/0OS/z3J/lLKV0opvQEAAADgqhIBAQAAAHC5did5xzl/\nv3bsWqqqGqyq6l9VVXVdknuS/MtSygfHPvtPVVW9b+y7VZI/mtyxAQAAAGY+ERAAAAAAl+vLSX63\nlLKolNKT5PeT/GWSlFI+VkpZVUopSY7k7Bqw0VLKDaWUXymltCYZSnIyyWhN8wMAAADMWCIgAAAA\nAC7X/5Fkc5Ink/wkyWNj15JkdZLvJDmW5O+TfLGqqoeStCb5XJIDSfYmWZzks5M7NgAAAMDMV6qq\nqnsGAAAAAAAAAADgbXASEAAAAAAAAAAATHMiIAAAAAAAAAAAmOZEQAAAAAAAAAAAMM2JgAAAAAAA\nAAAAYJprqnuAOvX09FQrVqyoewwAAAAAAAAAALigRx999EBVVYve7L5ZHQGtWLEimzdvrnsMAAAA\nAAAAAAC4oFLKy5dzn3VgAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBAQAAAAAAAADANNdU9wBTzZkz\nZ7Jz584MDQ3VPcqEamtry/Lly9Pc3Fz3KAAAAAAAAAAAvE0ioNfZuXNnurq6smLFipRS6h5nQlRV\nlYMHD2bnzp1ZuXJl3eMAAAAAAAAAAPA2WQf2OkNDQ1m4cOGMDYCSpJSShQsXzvjTjgAAAAAAAAAA\nZgsR0AXM5ADoVbPhHQEAAAAAAAAAZgsREAAAAAAAAAAATHMioCnm8OHD+eIXv3jF3/voRz+aw4cP\nT8BEAAAAAAAAAABMdSKgKeZiEdDw8PAlv/fAAw9k3rx5EzUWAAAAAAAAAABTWFPdA3C+e++9Ny+8\n8EL6+/vT3Nyctra2zJ8/P88991y2bt2aDRs2ZMeOHRkaGspv//Zv59Of/nSSZMWKFdm8eXOOHTuW\nj3zkI3nf+96Xv/u7v0tfX182bdqUOXPm1PxmAAAAAAAAAABMFBHQJfzBN57OM7uPXtVn3tg7N//b\nx9990c8/97nP5amnnsqWLVvy8MMP5+67785TTz2VlStXJkm+9KUvZcGCBTl58mTe+9735td//dez\ncOHC856xbdu2fPnLX86f/dmf5ROf+ET+6q/+Kp/61Keu6nsAAAAAAAAAADB1iICmuNtuu208AEqS\nL3zhC/n617+eJNmxY0e2bdv2hgho5cqV6e/vT5K85z3vyU9/+tNJmxcAAAAAAAAAgMknArqES53Y\nM1k6OjrGf3744Yfzne98J3//93+f9vb2vP/978/Q0NAbvtPa2jr+c2NjY06ePDkpswIAAAAAAAAA\nUI+GugfgfF1dXRkcHLzgZ0eOHMn8+fPT3t6e5557Lo888sgkTwcAAAAAAAAAwFTkJKApZuHChbnj\njjty0003Zc6cOVmyZMn4Z3fddVf+9E//NGvWrMkNN9yQ22+/vcZJAQAAAAAAAACYKkpVVXXPUJt1\n69ZVmzdvPu/as88+mzVr1tQ00eSaTe8KAAAAAAAAADAdlVIerapq3ZvdZx0YAAAAAAAAAABMcyIg\nAAAAAAAAAACY5kRAAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBMaVUVVX3CAAAAAAAAAAA044IiCnj\nP/7o5fzK//29nBkZrXsUAAAAAAAAAIBpRQQ0xRw+fDhf/OIX39J3P//5z+fEiRNXeaLJ09PZmpcO\nHM8Ptx+oexQAAAAAAAAAgGlFBDTFzOYI6P03LMrctqZsenxX3aMAAAAAAAAAAEwrTXUPwPnuvffe\nvPDCC+nv78+HP/zhLF68OF/96ldz6tSp/Nqv/Vr+4A/+IMePH88nPvGJ7Ny5MyMjI/m93/u97Nu3\nL7t3784HPvCB9PT05KGHHqr7Va5Ya1Nj7r5lWTZt2Z0Tp4fT3uJfTwAAAAAAAACAy6GyuJS/vjfZ\n+5Or+8ylNycf+dxFP/7c5z6Xp556Klu2bMmDDz6Yr33ta/nxj3+cqqpyzz335Pvf/34GBgbS29ub\n+++/P0ly5MiRdHd354//+I/z0EMPpaen5+rOPInW9/flyz/ekW8/sy/r+/vqHgcAAAAAAAAAYFqw\nDmwKe/DBB/Pggw9m7dq1+bmf+7k899xz2bZtW26++eZ8+9vfzu/8zu/kBz/4Qbq7u+se9aq5bcWC\n9Ha3ZaOVYAAAAAAAAAAAl81JQJdyiRN7JkNVVfnsZz+b3/zN33zDZ4899lgeeOCB/O7v/m4++MEP\n5vd///drmPDqa2go+Xh/b/7DD17KwWOnsrCzte6RAAAAAAAAAACmPCcBTTFdXV0ZHBxMktx55535\n0pe+lGPHjiVJdu3alf3792f37t1pb2/Ppz71qXzmM5/JY4899obvTmcb+vsyMlrl/p/sqXsUAAAA\nAAAAAIBpwUlAU8zChQtzxx135KabbspHPvKR/MZv/EZ+/ud/PknS2dmZv/zLv8z27dvzmc98Jg0N\nDWlubs6f/MmfJEk+/elP56677kpvb28eeuihOl/jbVmzbG5uWNKVjY/vyn/78yvqHgcAAAAAAAAA\nYMorVVXVPUNt1q1bV23evPm8a88++2zWrFlT00STayq/6xcf3p7/82+ez/c/84Fcu7C97nEAAAAA\nAAAAAGpRSnm0qqp1b3afdWBMSffc2psk2bRlV82TAAAAAAAAAABMfSIgpqTl89tz24oF2bhlV2bz\naVUAAAAAAAAAAJdDBHQBsyE6mQ7vuH5tb14YOJ6ndx+texQAAAAAAAAAgClNBPQ6bW1tOXjw4LSI\nZN6qqqpy8ODBtLW11T3KJd1987I0N5ZsfNxKMAAAAAAAAACAS2mqe4CpZvny5dm5c2cGBgbqHmVC\ntbW1Zfny5XWPcUnz2lvyy9cvzn1P7M5nP7omjQ2l7pEAAAAAAAAAAKYkEdDrNDc3Z+XKlXWPwZgN\na3vznWf35ZEXD+aOVT11jwMAAAAAAAAAMCVZB8aU9qE1S9LZ2mQlGAAAAAAAAADAJYiAmNLamhtz\n57uX5m+e2puhMyN1jwMAAAAAAAAAMCWJgJjyNqztzeCp4Xz3uf11jwIAAAAAAAAAMCWJgJjyfuGd\nPVnU1WolGAAAAAAAAADARYiAmPIaG0o+fktvHn5+IEdOnKl7HAAAAAAAAACAKUcExLSwYW1vTo+M\n5oGn9tQ9CgAAAAAAAADAlCMCYlq4ua871/V0WAkGAAAAAAAAAHABIiCmhVJK1vf35UcvvZLdh0/W\nPQ4AAAAAAAAAwJQiAmLaWN/fmyS574ndNU8CAAAAAAAAADC1iICYNlb0dKT/mnlWggEAAAAAAAAA\nvI4IiGllQ39vnts7mOf3DtY9CgAAAAAAAADAlCECYlr52K29aWwo2bjFaUAAAAAAAAAAAK8SATGt\n9HS25n2renLflt0ZHa3qHgcAAAAAAAAAYEoQATHtbFjbm12HT2bzy4fqHgUAAAAAAAAAYEoQATHt\n/OqNSzOnudFKMAAAAAAAAACAMSIgpp2O1qZ8+MYleeAne3J6eLTucQAAAAAAAAAAaicCYlrasLY3\nh0+cyfe2DtQ9CgAAAAAAAABA7URATEu/uHpRFnS0WAkGAAAAAAAAAJAJjoBKKXeVUp4vpWwvpdx7\ngc9bSyn/eezzH5VSVpzz2WfHrj9fSrnzCp75hVLKsYl6J6aG5saGfOyWZfnOM/syOHSm7nEAAAAA\nAAAAAGo1YRFQKaUxyb9L8pEkNyb5J6WUG1932z9PcqiqqlVJ/k2SPxr77o1JPpnk3UnuSvLFUkrj\nmz2zlLIuyfyJeiemlvX9fTk1PJpvPb2v7lEAAAAAAAAAAGo1kScB3ZZke1VVL1ZVdTrJV5Ksf909\n65P8xdjPX0vywVJKGbv+laqqTlVV9VKS7WPPu+gzxwKhf53kf57Ad2IK+blr5+XaBe3ZZCUYAAAA\nAAAAADDLTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O6lnvlbSe6rqmrPpYYqpXy6lLK5lLJ5YGDg\nil6IqaWUkvX9vfnb7Qeyf3Co7nEAAAAAAAAAAGozkRHQpCml9Cb5r5L82ze7t6qqf19V1bqqqtYt\nWrRo4odjQq3v78tolXzjiUu2XwAAAAAAAAAAM9pERkC7klxzzt+Xj1274D2llKYk3UkOXuK7F7u+\nNsmqJNtLKT9N0l5K2X61XoSpa9XiztzUN9dKMAAAAAAAAABgVpvICOgfkqwupawspbQk+WSS+153\nz31J/tnYz/84yXerqqrGrn+ylNJaSlmZZHWSH1/smVVV3V9V1dKqqlZUVbUiyYmqqlZN4LsxhWzo\n78uTO4/kxYFjdY8CAAAAAAAAAFCLCYuAqqoaTvJbSb6V5NkkX62q6ulSyh+WUu4Zu+3PkywcO7Xn\nXya5d+y7Tyf5apJnkvxNkn9RVdXIxZ45Ue/A9PDxW3tTSrJxy+66RwEAAAAAAAAAqEU5e/DO7LRu\n3bpq8+bNdY/BVfBP/8Mj2XnoZB7+n96fUkrd4wAAAAAAAAAAXBWllEerqlr3ZvdN5DowmDTr+/vy\n8sET2bLjcN2jAAAAAAAAAABMOhEQM8JdNy1NS1NDNlkJBgAAAAAAAADMQiIgZoS5bc350JrF+eaT\nuzM8Mlr3OAAAAAAAAAAAk0oExIyxvr8vB46dzg+3H6h7FAAAAAAAAACASSUCYsZ4/w2LMretyUow\nAAAAAAAAAGDWEQExY7Q2NebuW5blW0/vzYnTw3WPAwAAAAAAAAAwaURAzCjr+/ty4vRIvv3MvrpH\nAQAAAAAAAACYNCIgZpTbVixIb3eblWAAAAAAAAAAwKwiAmJGaWgo+Xh/b76/dSCvHD9d9zgAAAAA\nAAAAAJNCBMSMs6G/L8OjVe5/0mlAAAAAAAAAAMDsIAJixlmzbG5uWNKVjVaCAQAAAAAAAACzhAiI\nGWn92t48+vKh7HjlRN2jAAAAAAAAAABMOBEQM9I9t/YmSTZt2VXzJAAAAAAAAAAAE08ExIy0fH57\nbluxIBu37E5VVXWPAwAAAAAAAAAwoURAzFjr1/Zm+/5jeXr30bpHAQAAAAAAAACYUCIgZqy7b16W\n5sZiJRgAAAAAAAAAMOOJgJix5rW35JevX5z7ntidkVErwQAAAAAAAACAmUsExIy2YW1v9h09lR+9\neLDuUQAAAAAAAAAAJowIiBntQ2uWpLO1KRutBAMAAAAAAAAAZjAREDNaW3Nj7nz30vz1T/Zm6MxI\n3eMAAAAAAAAAAEwIERAz3oa1vRk8NZyHnttf9ygAAAAAAAAAABNCBMSM9wvv7MmirlYrwQAAAAAA\nAACAGUsExIzX2FDy8Vt689BzAzly4kzd4wAAAAAAAAAAXHUiIGaFDWt7c3pkNH/91J66RwEAAAAA\nAAAAuOpEQMwKN/d157qeDivBAAAAAAAAAIAZSQTErFBKyfr+vvzopVey58jJuscBAAAAAAAAALiq\nREDMGuv7e1NVyX1bdtc9CgAAAAAAAADAVSUCYtZY0dOR/mvmZaMICAAAAAAAAACYYURAzCob+nvz\n7J6j2bpvsO5RAAAAAAAAAACuGhEQs8rHbu1NY0PJxsd31T0KAAAAAAAAAMBVIwJiVunpbM37VvVk\n05bdGR2t6h4HAAAAAAAAAOCqEAEx62xY25tdh0/m0Z8dqnsUAAAAAAAAAICrQgTErPOrNy7NnOZG\nK8EAAAAAAAAAgBlDBMSs09HalA/fuCT3/2RPTg+P1j0OAAAAAAAAAMDbJgJiVtqwtjeHT5zJ97YO\n1D0KAAAAAAAAAMDbJgJiVvrF1YuyoKMlG7dYCQYAAAAAAAAATH8iIGal5saG3H3zsnznmX0ZHDpT\n9zgAAAAAAAAAAG+LCIhZa8Pa3pwaHs23nt5X9ygAAAAAAAAAAG+LCIhZ6+eunZ9rFszJJivBAAAA\nAAAAAIBpTgTErFVKyfpb+/K32w9k/+BQ3eMAAAAAAAAAALxlIiBmtQ1rezNaJd94Yk/dowAAAAAA\nAAAAvGUiIGa1VYu78u7euVaCAQAAAAAAAADTmgiIWW9Df1+e3HkkLw4cq3sUAAAAAAAAAIC3RATE\nrPfxW3tTSrJxy+66RwEAAAAAAAAAeEtEQMx6S7vb8vPXLcymLbtSVVXd4wAAAAAAAAAAXDEREOTs\nSrCXD57Ilh2H6x4FAAAAAAAAAOCKiYAgyV03L01LU0M2WQkGAAAAAAAAAExDIiBIMretOR981+J8\n88ndGR4ZrXscAAAAAAAAAIArIgKCMev7+3Lg2On8cPuBukcBAAAAAAAAALgiIiAY84F3LcrctiYr\nwQAAAAAAAACAaUcEBGNamxrz0ZuX5VtP782J08N1jwMAAAAAAAAAcNlEQHCO9f19OXF6JN9+Zl/d\nowAAAAAAAAAAXDYREJzjH61ckGXdbVaCAQAAAAAAAADTiggIztHQUHLPrb35/taBvHL8dN3jAAAA\nAAAAAABcFhEQvM76/r4Mj1a5/0mnAQEAAAAAAAAA04MICF5nzbKuXL+kMxutBAMAAAAAAAAApgkR\nELxOKSXr+/vy6MuHsuOVE3WPAwAAAAAAAADwpkRAcAHr+3uTJJu27Kp5EgAAAAAAAACANycCggtY\nPr89710xPxu37E5VVXWPAwAAAAAAAABwSSIguIj1/X3Zvv9Ynt59tO5RAAAAAAAAAAAuSQQEF3H3\nzcvS1FCsBAMAAAAAAAAApjwREFzE/I6WvP+GRbnvid0ZGbUSDAAAAAAAAACYukRAcAnr+/uy7+ip\n/OjFg3WPAgAAAAAAAABwUSIguIQPrVmSjpbGbLQSDAAAAAAAAACYwkRAcAlzWhpz501L89c/2Zuh\nMyN1jwMAAAAAAAAAcEEiIHgTG/r7MnhqOA89t7/uUQAAAAAAAAAALkgEBG/iF965MD2drVaCAQAA\nAAAAAABTlggI3kRTY0M+fuuyPPTcQI6cOFP3OAAAAAAAAAAAbyACgsuwob8vp0dG89dP7al7FAAA\nAAAAAACANxABwWW4ZXl3VvZ0WAkGAAAAAAAAAExJIiC4DKWUrO/vzY9eeiV7jpysexwAAAAAAAAA\ngPOIgOAybejvS1Ul923ZXfcoAAAAAAAAAADnEQHBZVrR05Fbr5mXjSIgAAAAAAAAAGCKEQHBFdjQ\n35tn9xzN1n2DdY8CAAAAAAAAADBOBARX4GO39KaxoWTj47vqHgUAAAAAAAAAYJwICK7Aoq7W3LGq\nJ5u27M7oaFX3OAAAAAAAAAAASURAcMU29Pdm1+GTefRnh+oeBQAAAAAAAAAgiQgIrtivvntp2pob\nrAQDAAAAAAAAAKYMERBcoc7Wpnz4xqW5/yd7cnp4tO5xAAAAAAAAAABEQPBWbOjvzeETZ/L9rQN1\njwIAAAAAAAAAIAKCt+KXrl+U+e3N2bjFSjAAAAAAAAAAoH4iIHgLmhsbcvcty/KdZ/fl2KnhuscB\nAAAAAAAAAGY5ERC8RRv6+zJ0ZjTfempv3aMAAAAAAAAAALOcCAjeove8Y36Wz59jJRgAAAAAAAAA\nUDsRELxFpZSs7+/N324/kP2DQ3WPAwAAAAAAAADMYiIgeBs29PdltEq++cSeukcBAAAAAAAAAGYx\nERC8DauXdOXGZXOzyUowAAAAAAAAAKBGIiB4mzas7c0TO4/kpQPH6x4FAAAAAAAAAJilREDwNt1z\na19KSTY+7jQgAAAAAAAAAKAeIiB4m5Z2t+X2lQuzacuuVFVV9zgAAAAAAAAAwCwkAoKrYMPa3vz0\n4Ik8sfNI3aMAAAAAAAAAALOQCAiugrtuWpaWxgYrwQAAAAAAAACAWoiA4CrontOcX3nX4nzzyd0Z\nHhmtexwAAAAAAAAAYJYRAcFVsmFtbw4cO52/feFg3aMAAAAAAAAAALOMCAiukvffsDhdbU3ZZCUY\nAAAAAAAAADDJREBwlbQ1N+ajNy3Lt57em5OnR+oeBwAAAAAAAACYRURAcBWtX9ub46dH8u1n99U9\nCgAAAAAAAAAwi4iA4Cq6feXCLJ3bZiUYAAAAAAAAADCpREBwFTU0lNzT35vvbR3IK8dP1z0OAAAA\nAAAAADBLiIDgKlvf35vh0Sr3/2RP3aMAAAAAAAAAALOECAiushuXzc3qxZ1WggEAAAAAAAAAk0YE\nBFdZKSUb1vZl88uHsuOVE3WPAwAAAAAAAADMAiIgmAD33NqbJLnvid01TwIAAAAAAAAAzAYiIJgA\n1yxoz7p3zM/Gx3elqqq6xwEAAAAAAAAAZjgREEyQ9Wv7sm3/sTyz52jdowAAAAAAAAAAM5wICCbI\n3TcvS1NDyaYtVoIBAAAAAAAAABNLBAQTZEFHS375+kW5b8vujIxaCQYAAAAAAAAATBwREEyg9Wv7\nsvfoUH700sG6RwEAAAAAAAAAZrAJjYBKKXeVUp4vpWwvpdx7gc9bSyn/eezzH5VSVpzz2WfHrj9f\nSrnzzZ5ZSvnzUsoTpZQnSylfK6V0TuS7weX48Jol6WhpzKbHrQQDAAAAAAAAACbOhEVApZTGJP8u\nyUeS3Jjkn5RSbnzdbf88yaGqqlYl+TdJ/mjsuzcm+WSSdye5K8kXSymNb/LM/7Gqqlurqrolyc+S\n/NZEvRtcrjktjbnz3UvzwFN7MnRmpO5xAAAAAAAAAIAZaiJPArotyfaqql6squp0kq8kWf+6e9Yn\n+Yuxn7+W5IOllDJ2/StVVZ2qquqlJNvHnnfRZ1ZVdTRJxr4/J0k1ge8Gl2392r4MDg3n4ef31z0K\nAAAAAAAAADBDTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O4ln1lK+X+S7E3yriT/9kJDlVI+XUrZ\nXErZPDAwcOVvBVfojncuTE9nSzZaCQYAAAAAAAAATJCJjIAmXVVV/12S3iTPJvmvL3LPv6+qal1V\nVesWLVo0qfMxOzU1NuRjt/Tmu8/tz5GTZ+oeBwAAAAAAAACYgSYyAtqV5Jpz/r587NoF7ymlNCXp\nTnLwEt9902dWVTWSs2vCfv1tvwFcJRvW9uX0yGj+5qk9dY8CAAAAAAAAAMxAExkB/UOS1aWUlaWU\nliSfTHLf6+65L8k/G/v5Hyf5blVV1dj1T5ZSWkspK5OsTvLjiz2znLUqSUopJck9SZ6bwHeDK3Lr\n8u6sWNhuJRgAAAAAAAAAMCGaJurBVVUNl1J+K8m3kjQm+VJVVU+XUv4wyeaqqu5L8udJ/t9SyvYk\nr+Rs1JOx+76a5Jkkw0n+xdgJP7nIMxuS/EUpZW6SkuSJJP/9RL0bXKlSStb39+UL392WvUeGsrS7\nre6RAAAAAAAAAIAZpJw9eGd2WrduXbV58+a6x2CWeOnA8Xzg/3o4/8tH35VP/9I76x4HAAAAAAAA\nAJgGSimPVlW17s3um8h1YMA5VvZ05Nbl3VaCAQAAAAAAAABXnQgIJtH6/r48s+dotu0brHsUAAAA\nAAAAAGAGEQHBJPrYrcvSUJKNW3bVPQoAAAAAAAAAMIOIgGASLe5qyx2rerJpy+5UVVX3OAAAAAAA\nAADADCECgkm2ob8vOw+dzKMvH6p7FAAAAAAAAABghhABwSS786alaWtusBIMAAAAAAAAALhqREAw\nyTpbm/KhNUty/5N7cmZktO5xAAAAAAAAAIAZQAQENdjQ35dDJ87k+1sH6h4FAAAAAAAAAJgBREBQ\ng1+6flHmtTdn45bddY8CAAAAAAAAAMwAIiCoQUtTQ+6+eVm+/czeHDs1XPc4AAAAAAAAAMA0JwKC\nmmxY25ehM6N58Om9dY8CAAAAAAAAAExzIiCoyXuunZ++eXOsBAMAAAAAAAAA3jYRENSkoaFkfX9v\nfrhtIAODp+oeBwAAAAAAAACYxkRAUKMNa/syWiXffNJpQAAAAAAAAADAWycCghpdv6Qra5bNtRIM\nAAAAAAAAAHhbREBQsw39vXlix+G8dOB43aMAAAAAAAAAANOUCAhqdk9/b0pJNm3ZVfcoAAAAAAAA\nAMA0JQKCmi3rnpPbVy7Mpi27U1VV3eMAAAAAAAAAANOQCAimgA1re/PSgeP5L4/uzNGhM3WPAwAA\nAAAAAABMM2U2nzyybt26avPmzXWPATly8kzu+vz3s+fIUBpKclNfd26/bmFuv25B1q1YkLltzXWP\nCAAAAAAAAADUoJTyaFVV6970PhGQCIipYejMSB7/2eE88uLBPPLiwTz+s8M5PTIqCgIAAAAAAACA\nWUwEdBlEQExloiAAAAAAAAAAQAR0GURATCdDZ0by2M8O5ZEXX8kjLx7MlnOioJvHo6CFWbdifrpE\nQQAAAAAAAAAwI4iALoMIiOlMFAQAAAAAAAAAM58I6DKIgJhJREEAAAAAAAAAMPOIgC6DCIiZTBQE\nAAAAAAAAANOfCOgyiICYTURklJ0DAAAgAElEQVRBAAAAAAAAADD9iIAugwiI2ezk6ZE8/rNDeeTF\ng3nkxVfy+I5DOTNSiYIAAAAAAAAAYAoRAV0GERC8RhQEAAAAAAAAAFOPCOgyiIDg4i4WBTU2lNzU\n153br1twNgp6hygIAAAAAAAAACaKCOgyiIDg8omCAAAAAAAAAGDyiYAugwgI3rqTp0fy2HgUdDBb\ndhy+YBT03hUL0tnaVPe4AAAAAAAAADAtiYAugwgIrh5REAAAAAAAAABcfSKgyyACgokjCgIAAAAA\nAACAt08EdBlEQDB53iwKes+18/OupV25fmlXVi/uTIcwCAAAAAAAAAAuOwLyW3ZgUsxpacwdq3py\nx6qeJOdHQX//wsH8px+/nKEzo+P3X7NgTm5Y0pXrl3TlhqVn/7xuUUdamxrregUAAAAAAAAAmLJE\nQEAtXh8FjYxW2fHKiTy/bzBb9w6e/XPfYB5+fiDDo2dPLGtsKFnZ03FOHNSZ65d05R0LO9LYUOp8\nHQAAAAAAAAColQgImBIaG0pW9HRkRU9H7nz30vHrp4dH89KB4+fFQU/tPpIHntqTV7cZtjQ1ZNWi\nzvETg16Ng/rmzUkp4iAAAAAAAAAAZj4REDCltTQ15IalZ1eC5dbXrp84PZzt+49l675j2bpvMM/v\nHcwjLx7M1x/fNX5PZ2tTVi/pfMNasZ7OFnEQAAAAAAAAADOKCAiYltpbmnLL8nm5Zfm8864fOXkm\n2/YNnndy0Lee3puv/MOO8XsWdLTk+lfjoKVduWFJV1Yv6Ur3nObJfg0AAAAAAAAAuCpEQMCM0j2n\nOetWLMi6FQvGr1VVlQPHTo+fGLR1LBL62qM7c/z0yPh9S+e2jUVBneMnB61a3Jn2Fv+pBAAAAAAA\nAGBq85ttYMYrpWRRV2sWdbXmjlU949erqsquwyezdd/g2bViYycH/cWLB3N6eHTsu8m1C9rPRkHn\nnBy0sqcjLU0Ndb0SAAAAAAAAAJxHBATMWqWULJ/fnuXz2/Mr71oyfn14ZDQ/e+XE2MlBx8ZPDvru\nc/szMlolSZoaSq5b1PGGOOiaBe1pbCh1vRIAAAAAAAAAs5QICOB1mhobct2izly3qDN33fTa9VPD\nI3lx4Ph5a8We2Hk433xyz/g9bc0NWbW48w1x0LLutpQiDgIAAAAAAABgYoiAAC5Ta1Nj1iybmzXL\n5p53/fip4Wzb/9o6sa37BvO32w/k/3ts1/g9Xa1NuX5p11gc1DkeBy3sbJ3s1wAAAAAAAABgBhIB\nAbxNHa1N6b9mXvqvmXfe9cMnTmfrvmNnw6CxQOiBn+zJl398Zvyens6WrF7cleuXdGbVkq6sXtyZ\n1Ys7xUEAAAAAAAAAXBEREMAEmdfekttWLshtKxeMX6uqKgODp/L8OSvFnt93LH/12K4cOzU8ft+C\njpasGguCVi/uzOqxQGhRV6u1YgAAAAAAAAC8gQgIYBKVUrJ4blsWz23LL65eNH69qqrsOTKUbfuP\nZdu+wbwwcCzb9h3LN57YnaNDr8VBc9uaxoOgVefEQcu628RBAAAAAAAAALNYqaqq7hlqs27dumrz\n5s11jwFwUVVVZeDYqWzfd+xsILR/MNvGfn7l+Onx+zpaGs9bJ7Z6SWdWL+5K37w5aWgQBwEAAAAA\nAABMV6WUR6uqWvdm9zkJCGAKK6VkcVdbFne15RdW9Zz32cFjp7J9/9kgaPtYIPT9rQP52qM7x+9p\na24YWyvW9dp6sSVduXZBexrFQQAAAAAAAAAzhggIYJpa2NmahZ2t+UfXLTzv+pETZ7J94LUTg7bt\nP5YfvXgwX3981/g9LU0Nua6nY3yd2KunB71jYUeaGxsm+1UAAAAAAAAAeJtEQAAzTHd7c97zjgV5\nzzsWnHd9cOhMXhg4nm37BsdPENqy41C+8cTu8XuaGkpW9nRk9ZLOrFrcNR4HrezpSGtT42S/CgAA\nAAAAAACXSQQEMEt0tTWn/5p56b9m3nnXT5wezosDx7Nt/2unBz27ZzB/89TejFZn72koyYqFHWdX\nii15bb3YOxd1Zk6LOAgAAAAAAACgbiIggFmuvaUpN/V156a+7vOuD50ZyUsHjmfb/mPZvm9wfLXY\nd5/bn+GxOqiU5Jr57Vm9uDOrxuKg1Ys7s2pxZzpa/S8GAAAAAAAAYLL4DS0AF9TW3Jg1y+ZmzbK5\n510/PTyalw+ejYPOnhx0dr3YD7YdyOmR0fH7+ubNOXty0NjpQavGTg/qntM82a8CAAAAAAAAMOOJ\ngAC4Ii1NDVm9pCurl3QlN792fXhkND975cTZk4P2H8u2sdODHnnxYE4NvxYHLZnbOr5ObPWSzrxj\nQUeWdrdmafecdDo9CAAAAAAAAOAt8dtWAK6KpsaGXLeoM9ct6syd737t+sholV2HTmbb/sHx04O2\n7x/MVzfvyInTI+c9o7O1KUu727J0bluWzG3Lsu62LOluy7K5bWevd7dlQXtLGhrKJL8dAAAAAAAA\nwNQmAgJgQjU2lFy7sD3XLmzPB9csGb8+Olpl95GT2XnoZPYdHcqeI0PZe2Ro/OcXXjiQfUeHMlqd\n/7zmxpIlc8+GQq8GQ68GQsu6z8ZDi7va0tLUMMlvCgAAAAAAAFAfERAAtWhoKFk+vz3L57df9J6R\n0SoHjp0aD4T2HjmZvUdPjf05lKd2Hcl3nt2XoTOj532vlGRhR+t4FLSs+/xg6NVrHdaPAQAAAAAA\nADOE334CMGU1Npw99WfJ3LbkmgvfU1VVjpw8k71jJwjtOzKUvUfHoqGjQ9l56EQ2v/xKDp8484bv\ndr26fux1Jwqde8rQgo6WlGL9GAAAAAAAADC1iYAAmNZKKZnX3pJ57S1519K5F73v5OmR8VVj5/95\n9nShrfsGMjB46g3rx1qaGrJkbmuWzZ2TJeesHDv3z0VdrWlutH4MAAAAAAAAqI8ICIBZYU5LY1b0\ndGRFT8dF7xkeGc2BY6ez58jJ8VBo/FShI0N5cufhPPj0UE4Nv3H92KLO1vNWjY2vITvnhKH2Fv/b\nBQAAAAAAACaG30YCwJimxobxYOdiqqrK4RNnzls5du4asp8dPJEfv/RKjpx84/qxuW2vrh+bk6Vz\nW7Ose06Wz5+T5fPbs3z+nCzrbkuTE4UAAAAAAACAt0AEBABXoJSS+R0tmd/RkjXLLr1+bO/YurF9\n54RCr64he27P0QwcO5XqnPVjjQ0lS+e25ZoFr4VBy+e355r5c7J8QXuWzm1LY0OZhLcEAAAAAAAA\nphsREABMgDktjVnZ05GVl1g/dnp4NHuPDGXHoRPZeehEdh46OfbPifxw24HsGxw6LxJqaihZNq8t\ny+e1vzEUWjAni7tEQgAAAAAAADBbiYAAoCYtTQ25dmF7rl3YfsHPTw2PZM/hoew8dPINodD3tg5k\n39FT593f3FjSO29sxdgFQqHFXa1pEAkBAAAAAADAjCQCAoApqrWpMSt6OrLiIqcJDZ0Zye7DJ8fD\noB3jkdCJfPf5/RkYPD8SamlsSN/8sUho/htXjvV0ioQAAAAAAP5/9u4tRrL8Puz7738uVd3V3XPZ\n5S5pXiRRIAWBfnDirB0EQZAHJ5ESBOZDjIhxLBgxDfnBgg0kMCAhDwn0FCNAAiG2FQhUgkiQowhy\nAvDBsBzHSJwETkhKkZyQtOSFSGp3Se6Su90zPV1dXbeTh3Oq+lR1dU/3zNTMnJnPB2ic+7+qh7uz\nw67v/P8A0FUiIADoqJ0yjx9+bT9++LX9jddHk9kyCmovNfbW4Wn8z197N77/YLxyf6/I1uKg80Do\n43cH8aH9XqQkEgIAAAAAAIDnkQgIAF5QO2Uen3p9Pz71+uZI6HQ8i3eO6ijo7Q9WQ6H/75178cHJ\neG28LD52Zzc+8cpg40xCr+yJhAAAAAAAAOBZEQEBwEtqt5fHp14/iE+9frDx+snZNN45Op9J6K1W\nKPS7bx3F4XCyOl6ZL2cQ2hQK3R2UIiEAAAAAAADYEhEQALDRXr+IH/nwQfzIhzdHQsejSR0JfdAK\nhZrtb//hUdw7XY2E9nr5ylJjH7m9G68f9OPDt3biw7f68frBTtzaLYRCAAAAAAAA8AhEQADAIznY\nKeNHP1LGj37k1sbr90eTlUBosdTYW4en8aVvfhDHo+mFZ/pFFh++tbOMg15bi4TEQgAAAAAAALCZ\nCAgA2IpbO2V85qNlfOajmyOh4Xga790/i3fvj+K94/Pte/dH8e79s/j6d+/HP/r9szg+e3gs9Ppa\nJPThW/14/dZO3NoRCwEAAAAAAPByEAEBAM/EoFfED32oiB/60N6V97VjoXebSGgZDT1GLLQ4LxYC\nAAAAAADgRSACAgCea9eNhU7OpuczCV0SC/1vv38WD66IhRYzCYmFAAAAAAAA6BoREADwQtjrF/HJ\nfhGffIxY6N37oytjoZ0yW1l27PVWJCQWAgAAAAAA4FkSAQEAL5WbxkLvNpHQe00ktDj32LHQwU7c\n2hULAQAAAAAA8GSIgAAANniUWOjd+6P4Xiscevf+KL7+nauXIVssPbYIhF476C9nFFqcuzsoxUIA\nAAAAAABcSQQEAPAYrhsLPTibriw99r3js9YMQ2fx++8ex//x5vfjeHQxFirzFK/t9+O1Wzvx4YP+\nSjj0emu2oVf3+pFnYiEAAAAAAICXkQgIAOAp2O8Xsf/afvzwa/tX3nc6nsV7x4slyM7iveM6Enrv\nuA6HvvX+ML78zQ/icDi58GyepXh1r3e+5Nitfrx2sLYM2a1+fGi/H2WebetbBQAAAAAA4BkQAQEA\nPEd2e3n84Kt78YOvXj2z0Nl01ppNqI6Eltvjs/j2vVH87ttH8f7JOKpq9dmUIl7d6y0DoUUctAiF\nXmvNMtQv8i1+twAAAAAAADwpIiAAgA7qF3l8/O4gPn53cOV9k9k83n8wXplRqI6FzpbLk/3T796P\n7z8Yx2xeXXj+zqBsQqFFGLS6DNmHm+1uTywEAAAAAADwLF0rAkop/dWI+G8j4jgivhAR/3xE/ExV\nVX9/i+8NAIDHVOZZfOT2Tnzk9s6V983mVbx/Us8qVM8wVMdC77aioW98/yTeOx7FZHYxFjroF/Ha\nrf7q0mMHO8tY6PXm2n6/iJTStr5dAAAAAACAl9Z1ZwL6C1VV/XxK6cci4m5E/GRE/EpEiIAAAF4A\neZaa2X6ujoXm8yqOTicrMwq9e3+0Eg799h8exnv3z+JsOr/w/G6Zxyt7vbgzKOPu4Hx7d1DGnUEv\n7u412+bc3b1eHAiHAAAAAAAAHuq6EdDiU5d/KyJ+paqqryafxAAAvHSyLMUre714Za8XP/qRy++r\nqiruj6bxvQ3LkB0Ox3E0nMThcBzvHJ3G4XAc904nUV2cYCgiIoosxZ1FJNTa1hHR2rlWYFTm2XZ+\nEQAAAAAAAJ5D142Afiul9Pcj4pMR8bMppYOIuPhXuwEAICJSSnF7t4zbu2V86vWDh94/m1dx73TS\nBELjODyZrMRCh8NJfX44jrc+GMY/ebs+N94w29DCfr9YmXHolb3eyuxD57MQNft7vdjr5WYdAgAA\nAAAAOum6EdDnI+Kfi4g/qKpqmFJ6JSL+g+29LQAAXiZ5a4ah66qqKk4nszgcTuLw5DwYOmqioQ9O\nzvePhuP41vvDOByO43g0vXTMMk9XzjjUDooW527vllGYdQgAAAAAAHjGrhsB/UsR8TtVVZ2klP5c\nRPzxiPj57b0tAAC4WkopBr0iBr0iPnZn99rPTWfzODqdLAOhdkDUnnHocDiJb3z/JH57eBRHw3FM\nZpesVxYRt3aKZimy1Vjo7kpQVJ+7vVvGnUEZ+/3CrEMAAAAAAMATc90I6Bci4o+llP5YRPxHEfGF\niPjliPhXt/XGAABgG4o8iw/t9+ND+/1rP1NVVTw4m16MhU7a4VB97f0H43jzvQdxNJzEg7PLZx3K\ns/Ml0xZfy0hot4xbu3U8tOn8Tpk/iV8KAAAAAADgBXLdCGhaVVWVUvpsRPyNqqp+KaX0+W2+MQAA\neF6klOJgp4yDnTI+8crg2s+Np/M4Om1mGjoZx9HpJO4NJ3HvdBJHp+N62xwfDsfxzfdP4mg4ifuj\nSVSXTzwUO2XWREF1JHS7FQm1j2+3Q6ImIMozsw8BAAAAAMCL6LoR0HFK6Wcj4icj4l9JKWURUW7v\nbQEAQPf1iixeP9iJ1w92bvTcfF7F8Wi6MRZafg3Pr731wTC+ejqJo9NJDMezK8c+2CnWZhfqNbMO\nbQ6JFhHRXi+3fBkAAAAAADzHrhsB/URE/NmI+AtVVX03pfQDEfGfb+9tAQDAyyvLUh3hDMr4gbj+\nzEMR9exD57HQakC0HhIdDcfx3Xv3l8eT2eXTDxWL5cvWYqE7gyYiWl/SbFDPPHR7t4x+YfkyAAAA\nAADYtmtFQE3486sR8SdSSv92RHypqqpf3u5bAwAAbqpXZPHaQT9eO+jf6LmqqmI4nq3FQmsRUWsW\nou8/GMeb33sQ94aTuD+aXjn2bpnHnUEdDL2y12wHvbi7PNeLO4MyXtnrxd1BL+7u9cw8BAAAAAAA\nN3StCCil9O9GPfPP/xoRKSL+q5TSX6uq6je2+N4AAICnJKUUe/0i9vpFfPTO7o2enc2rOB5tioXG\ny1mGDof1zEOHw0l8/dv343A4jqPTSVSXTD5U5qkOgga9uLtXLuOgu4Py4vnm2q2dQjgEAAAAAMBL\n67rLgf3HEfEnqqp6LyIipfRaRPyDiBABAQDASy7PUtwZ9OLOoHej52bzKu6fTuKD4TiOhuP44GRS\nx0HNfr0dx9FwEv/svQfLiGg231wO5Vk6n11ocD67UHsGortrsxHd2i0jz4RDAAAAAAB033UjoGwR\nADXej4hsC+8HAAB4SeRZqmf32bt+PDSfV3F8No3Dk3EcDpuvJh46bCKhxbVvvT+M33nrKA6H45jM\nNodDKUXc2d0w09BiabLWkmV3B2Xc3evFnd0yitz/HQIAAAAA4Ply3Qjo76WUfjMi/vvm+Cci4u9u\n5y0BAABslmUpbu+WcXu3jB+KvWs9U1VVnIxnyzhoMbtQHRDV4dBiNqJ3jkbx1W/fjw9OxnE2nV86\n5q2dYiUU2rxfL1m2mHFop8yf1C8DAAAAAABccK0IqKqqv5ZS+nci4l9uTv1iVVX/0/beFgAAwJOR\nUor9fhH7/SI+8crg2s+djmfxQRMKHQ3by5Y1x01U9L0HZ/H77z6Iw+E4huPZpeP1i2wZMN1qtrd3\ny7i1U6ycW7nWbPd6eaRk2TIAAAAAAC533ZmAoqqqvxMRf2eL7wUAAOC5sdvL42O93fjYnd1rPzOa\nzM5nGWqWKvtgOI77p5O4dzpZbu+dTuK941H8s/eO495wEsdn06g2r1gWERFFluLWWjDUjoXqmKgd\nDxXL/YOdMvJMQAQAAAAA8KK7MgJKKR1HxKYfRaeIqKqqurWVdwUAANBBO2UeH7mdx0du79zoufm8\niuOz6cZY6N7pJO6PFvvn97xzeLq8Pp1fURBFxEG/aM00VFyMhwbn+6szERXRLyxjBgAAAADQBVdG\nQFVVHTytNwIAAPCyyrK0DG8+ccNnq6qK08msiYemq/HQWki0OP7G90+W955OLl/CLCJip8wuzDS0\naTaixSxFtwfn9w4sYwYAAAAA8NRcezkwAAAAnj8ppRj0ihj0ivgjt2/+/Hg6b800dB4PLWclGk3j\n3vD82nfvj+L33j2Oe6eTOB5Nrxy7WMRNgzLuDnpxZ7eMO4Ne3BmU9f7e4lx9/Xazv98vxEMAAAAA\nADckAgIAAHiJ9YosPrTfjw/t92/87GxexYPRdMOyZecx0dHpJO4NJ3F0Oo7v3h/FP/3ucRwNx3Ey\nvnwGoiJLdSg0OI+ELuwPyriz22ybc3tmHgIAAAAAXmIiIAAAAB5JnqW4Pahn+rmp8XQeR6fjuDec\nxOFwEkfDcRydNtvhZGX/20ej+Nq378fR6SSGV8RDZZ7i9m4v7jZhUHv/snDojmXLAAAAAIAXhAgI\nAACAp65XZPH6wU68frBzo+fOprNmZqFJHJ6MlzMNHS4jovN46J2j0/jqt+/F0XASp5PL46FenjVL\nltWR0HK/WaLsbnsJs8F5RLRbiocAAAAAgOeHCAgAAIDO6Bd5vH4rj9dv3SweGk1mca+JhA6bSOje\n6biZhajZP6mXLXvrg2H8v2/X+6PJ/NIxe0UWd5pI6HYTCS2CoTok6sXBThH7/SIOdoo42Cljv1/E\n/k4R+70iskxABAAAAAA8OSIgAAAAXng7ZR47ZR4ffoR4qF6ebLwyy9Bhc+5eKyr6ww+G8btvH8Xh\ncBLj6eXx0MJ+v1hGQSuxUL+sQ6FlPFTEfnOuvr54poxBmYuJAAAAAICIEAEBAADApXbKPD5yO4+P\n3L55PHQ4HMeD0TTuj6bx4GwaD0bTeHA2iePRNI6bc8ejSbOtv75zb9TcV389TEoR+70mFFqGQ00w\n1L94vH7fIj4a9CxtBgAAAABdJwICAACAJ2ynzOOP3N6NuP3oY8zmVZyM63joeENA9GA0jeNFSLSM\niqZxdDqJtw+Hy/uG49lDXytLcR4MXRELXba82UFz306ZiYkAAAAA4BnZagSUUvrxiPj5iMgj4gtV\nVf1na9f7EfHLEfEvRMT7EfETVVV9s7n2sxHx+YiYRcRfqarqN68aM6X0qxHxRkRMIuJLEfGXqqqa\nbPP7AwAAgG3JsxS3dsq4tVM+1jjT2TxOxrPlrEOLqOh4uX8+G1F7dqLDk3H84fvD5X2nk4fHRHmW\nlpHQoJdHv8hjp8yiX+TRL7Lot/Z3yuZckUV/437e3J9dOU6/EB4BAAAAQMQWI6CUUh4RfzMi/vWI\neDsivpxS+mJVVV9r3fb5iDisqupTKaXPRcRfj4ifSCl9JiI+FxF/NCI+GhH/IKX0I80zl435qxHx\n55p7/nZE/MWI+IVtfX8AAADQBUWexe3dLG7vPl5MNJnN46S1dFm9ZNmG2YlG9bnTySzOpvM4m85i\nNJnF0ek4zibz5bmz6TzOJvMYTWdRVY/3PW6KiXZuGBMt718JjFr3t8ZY3N8rssgzARIAAAAAz4dt\nzgT0JyPizaqq/iAiIqX0axHx2YhoR0CfjYj/tNn/jYj4G6n+63ufjYhfq6rqLCK+kVJ6sxkvLhuz\nqqq/uxg0pfSliPj4tr4xAAAAeNmUeRZ3Br24M+g90XGrqorJrDoPg6bzOJvMYjSZXzh3Np3HaNI6\nN50tQ6JNgdHi+uHJeHXs1njT+eMVSGWeVmYl2inz6Jd53Nkt486gbH7Nyrg7KOPObrO/12uu18dl\nnj2hX00AAAAAXmbbjIA+FhFvtY7fjoh/8bJ7qqqappTuRcSrzfn/a+3ZjzX7V46ZUioj4icj4q9u\nelMppZ+KiJ+KiPiBH/iB6383AAAAwBOXUopekaJXZHHwDF5/OpvHeDa/MiYatWY1Wg2S2qHS+bPD\n8SzunY7jzfcexOFwEkfD8ZWx0X6/iNu7ZdzdK+PuoFfvN4HQnUEdDN3da+0PenFrtzQLEQAAAAAr\nthkBPSt/KyL+UVVV//umi1VV/WJE/GJExBtvvPGYE44DAAAAXVbkWRR5Fk94gqMVVVXFyXgWhyfj\nuHc6icPhOI6aOOhoOFmGQkfNtXcOT+NwWN97WTuUUsStnXI1FFqZeWgtIhr04s5eGQf9IupJmAEA\nAAB40WwzAnonIj7ROv54c27TPW+nlIqIuB0R7z/k2UvHTCn9JxHxWkT8pSfw/gEAAAAeW0op9vtF\n7PeLlR9qPMx8XsXxaFpHQ00gdG9Ybw+Hk7jXbBfXvvH9kzgcjuN4NL10zDxLcWe3jNuLUGh3bcmy\nVkRUz05U3zPo5eIhAAAAgOfcNiOgL0fEp1NKn4w61PlcRPzZtXu+GBF/PiL+cUT8mYj4h1VVVSml\nL0bE304p/RcR8dGI+HREfCki0mVjppT+YkT8WET8qaqq5lv8vgAAAAC2LstS3B7Uwc5NTGfzZsah\nSdw7HcfhSR0KHQ3HrVmIJnF0Oo7v3BvF179zP45OJzEczy4ds5dnzcxCa7MLDS5GRLtlHmWeRa9I\nUWRZlEUWZZ6i18y6VOYpyiyLzHJmAAAAAE/U1iKgqqqmKaWfjojfjIg8Iv6bqqq+mlL6uYj4SlVV\nX4yIX4qIX0kpvRkRH0Qd9URz369HxNciYhoRf7mqqllExKYxm5f8ryPiWxHxj5u/mfY/VlX1c9v6\n/gAAAACeR0Wexav7/Xh1v3+j586ms2amoUUwtLpM2WIWoqPhJL71/jB+562jOBpOYjx7tL+LVWQp\nijzVwVCeRZlnUTSxUJlnUTYRUa/ZL/OsPm72y0VQtNzPopenJjRqwqOifmaxX4+Roiwuec18bewi\ni7J5Ps+S2ZAAAACA51qqqksWl38JvPHGG9VXvvKVZ/02AAAAADqpqqo4ncziqBUIjSazmMyqmMzm\nra9qZX88ncd0fr4/mc1j2twznp0fj1vPTGfzGLfGWbk+ncdkXo+1LSlFHQc1EdEiXipa4VC/yOJg\np6i/+mXsN/v7/SJu7ZT1/k4RB83+Qb/e3ykzgREAAABwqZTSb1VV9cbD7tvmcmAAAAAAvMBSSjHo\nFTHoFfHRO7vP+u1EVVUxm1d1dDRv4qC1AGkRGq1ER9N5TOfN8SXPXNxfPR5PqzibzuJ4NI3v3BvF\n8WgSx6PplcusLRRZagVDdSB0q4mHDtbjoX4TGe2UzfU6MNrr51Hk2VP4VQYAAACeVyIgAAAAAF4I\nKdVLjBV5xG7kz/rtRETEdDaPk7NZ3B9N4sHZNI5H0zhu9u+PpvGgOT4eTZvrk7g/msa3j0ZxfDZp\n7p/GbP7w2bwHvXw589BytqG1WYnaIZFZiQAAAODFIgICAAAAgC0p8ixuD7K4PSgfeYyqqmI0mdex\nUBMSteOh47NWSDSarsRD3z46XcZHN52VaBEPXTYrUfv8YlaiQS+PvX4R/UJMBAAAAE+bCAgAAAAA\nnmMppdjt5bHby+P1xzil7+EAACAASURBVBinPStRe+ahdkj0YHRxtqJ3jkbx4IazEhVZir1+HQnt\n9fMY9M73F+frc/Xx+b1F7PXy1eN+Hv3i+ZjZCQAAAJ5nIiAAAAAAeAlsa1aiRUh0ctZ8jWfxoNl/\ncDaN4dksTsb1/nvHozhpjk/OpjGZPTwoiogo83RJSLQaDO03EdFg5VwTGvVERQAAALzYREAAAAAA\nwLU8qVmJFs6mszoKWgRD42k8aB23w6LVc3Vo9O790XL/5Gwa02vMUhRRR0XnYVArJOqdh0ODVlS0\njI7WoqJFaNQrsifwqwEAAACPRwQEAAAAADwT/aKeleeVvd5jj1VVVZxN5zFcC4bquGi2EhUtQqPF\njEQnZ7M4Hk3ju/dGK/feJCraLetlzwZNJFVvixiU+cVzi/0Nz7Sf2+3l0S+ySCk99q8PAAAALz4R\nEAAAAADQeSml2Cnz2CmfbFS0iIQWwdCDxXE7IhrP4nQ8i+G4Do7q/VncO53Ed++drpw7ncxu9D6y\nFDHoFecRUbmIhYrVcKi8PCY6P796z06RR5YJjAAAAF4UIiAAAAAAgDXtqOjV/Sc37nxexWg6WwmD\nhuPp+f5kFqdNTDTcEBbVIVEdIH3/wdn5ufE0hpNZVNebvGhpd9NMRWvnlsFRuTkmakdI7eAoFxgB\nAAA8VSIgAAAAAICnJMtSE9E8+R/NtpdEWwmLmnDoPBhqhUPL8Gg1OPrOvUmcTlbPXXd5tIVekdVh\nUJnHziIYKluzGrUjo3JtBqPm+oXzlkkDAAC4lAgIAAAAAOAF8KSXRFs3ns7rWGiyPjvRdGW5s/NZ\njVrnW5HR4XAc7xytnjubzm/0Xh62TNr6DEft0GjjbEZNnLSY8cgyaQAAQBeJgAAAAAAAeKhekUWv\nyOJ2lE987Pm8amYeml0rNFrEQ6PJbG2Go3qZtJWxxtO44SRG0V/MYnRFaDTo1cHVTpFFv6xnJ+q3\nji9syyz6RX3fTnm+tWwaAADwpIiAAAAAAAB4prIsxV6/iL3+9pZJO10ufTaN0/G8DokmG5ZHWwuN\n2vHR9x+MYzgeLscaTWYxmtxsFqN1RZZWoqB+KypahEPr2/WQqF9msVPU236xerzcLsZunimyZEk1\nAAB4wYiAAAAAAAB4YbWXSbu7hfGrqorxbB6jyTzOprM4a7ajte3ZZB6jxXZSL4G2fs+mZ46G4/Pj\nafvZ2Y1nOGrLUlyIjy5GSGvn14KkxWxI9exIWeyWqzMnLZZm27XEGgAAPBUiIAAAAAAAeEQppWZ2\nnjxiC0ulXaaqqpjOq5UoaNP2bLndFCFdvj0eTeN7x2cxbo/V7E8foT5aLLG2jIN6eQzKInZ6eQxa\n5xbLru2U5/u7redWwqNWaNQrsi38KgMAQLeIgAAAAAAAoGNSSlHmKco8i4On/NrT2TxGzRJro8nq\nEmrL4+bcYjm19n2nrfvvnU7iu/dOz883S61VN+yMiiytBEbtaKjeL2K3zGLQK5qIaHW2okEvXwmS\n1mOjnTKzfBoAAM89ERAAAAAAAHBtRZ7Ffp7Ffn87HzFUVRVnTWR0OjmPiE5XAqNpnI7nq+HRSmB0\nHh4dnkxaQdI0RpN5jGfzG7+v9ixF/SKLMs+iLOoQq8yz6OXZMswqi7Xjtf1esXa8cazmnmLt+JJr\nuSXXAABeeiIgAAAAAADguZFSip2yjm3ubuk1prP5hWhofTaiURMNnU7mcTqertw3mVUxmc5jMquD\nokkz3v3RPMbN+cmsaraLc/Xxoyyndh1ZilZQdB4MLQOiDcFScY146UKwVGTnS7WV9QxKm47L3BJt\nAABPmwgIAAAAAAB4qRR5Fgd5Fgc75VN/7fm8isl8fh4StfeXUVETEE3XjteCouX90yqm8/P9lWuP\nECxN59Xy/KMqsrSyNNtuma8sxbaIhdozLO22zrWf3Wnd1z4u82SZNgCAFhEQAAAAAADAU5JlKfpZ\nHv0iIvrP+t1craqqC8HR2WS+ujxbM2vS6WR1NqXF8WhlGbf6+P5oUi/ZtnLfzZdoy7MUg7WgaKeX\nx2AtPNrtZTHoFct4aLfM6uu9ohUdZU2kVLTGqmdGEhoBAF0hAgIAAAAAAOCClFL0ihS9YvtLe83n\nVYymq7HQ6XjeLMk2W4ZHi3Pt43o7bYKieYzGs3jveBSn4zouai/9dlN5lpYx0U55vrxasVwiLUWR\nNUuwZWl5rddsF0uuFVla3lMslmjLz+8vs3rJtiLbcG3xmln9v0WRtc6tvw+zIwHAS00EBAAAAAAA\nwDOVZSkGvSIGve19dDWfV3E2nV86a1EdDbVmOGrFQ8Pm2mJWpOmsinGznc7nMTydxbR1bTJvLdPW\nLLG2eGbbimw9IKoDodWAaBEjrUZGq9fakVMdNvXyepzFV5ln0S/Wzrf2+8096+fNsAQA2yECAgAA\nAAAA4IWXZalZBix/Zu+hqqqYzZtl1uZNMNTEQ5NZFdNm2bVFXDRuQqLz62v3z+fLJdvqZ+sxpvOq\niY/qGGkyPx9/eX9z7cF0uvF9TObVSvA0mc2jqp7cr0U7Cirz1AqF8jog2hAWLYKi/obgqHdJbNSO\nlnr5WpjUvi/PIsuESQB0mwgIAAAAAAAAnoKUUrNMWMRuPLsY6VFUVbWMi8bTOlZa2a7tn03rcGjT\nPWfN/mTDs2fL/XoWpnunk4vXp7Pl8fwJhklls5Rbbz0Uap1bLMvWnjWptzar0qX7rWXjyiKLXns5\nueUycpv327M7CZYAuIwICAAAAAAAALhSSmkZtOz1n/W7OTdrhUlns9mFqGjSio4ujZba5y65Z9Ka\nYenkbLqcUWnSml1p9Vx9vC15luogKT+PiBbLvi3+d6oDpcvipKtipRRl1pxrLfu2CJDKZRiVlrHU\n4toimlrcU+bJ0m8AT5EICAAAAAAAAOikfGWZt/JZv50Vi9mTJrP2smz1/ri1JNtiubXFsmzt48X+\nZNpESIuxZvN6vOl5eDSerS4xN14uATePk/GsGaOOk9ph02R6/ppPcmalhUUMtDLD0tqMS/X1PHrt\n+1aCo8WsSHmURVoNjlpj9S+Muem1zu/LzagEvGBEQAAAAAAAAABPWHv2pOg963dzPbP5xRmOlku3\nLQOmWYwX8VIrIFrMnHR+rlpZFm59ebjz8/VY908nG+6tYjydLe+ZPeFKKc/SyjJwq7MYnS/btmlm\npWJtqbblMyvHrSXjimb5t9YsSvXsTRf3N41fZpaBAx5OBAQAAAAAAABA5FmKPMtjp8yf9VvZaBEp\ntUOiC2HSpbFROyw6X7btsjDpbLqYXameYWk4njx0xqbprJ79aVuKLF0ZIBVNpLQpOtoUIC1mVWrv\nt8fZtGTcpnCpfj6Lsnl/ZZEtl6sTLsHTJQICAAAAAAAA4Ln3vEdKERHz+WLpt3o5tsWsSIvl2MbN\nEm7t/fbMS5uPL9lfLg1Xj9/eP5vM48Fs+tBxxrN5VNvrliJLsQyTirWoqFgs57bcv3i9jpTShcio\nzM5naFos/VaHTlfMpnRZ2NTct3wPZl2iw0RAAAAAAAAAAPAEZFmKfpZHv0OfxF+2DNx07Xw7appe\nERYtZkeabrq2IYSazs/veXA2ffgYzbVtyrMUxeJrESVl5zHR6vnVezbfe8nzV4zTvrfMs/o9rZ0r\n2q/ZGm+xhFzRjJuSqOll0aHfegAAAAAAAACAJ6kLMyytq6qqiZeq5bJt7SBpOj9f9m26mClpw4xJ\n03m9RFw7aho35+sAqY6UpvNquTTcZF4tX+/8vnmMJvOYNrMvLc+3xpmtndvm0nHr1kOk83CoHQud\nx0S/8O//8Xj91s5Te388OSIgAAAAAAAAAKAzUmqiljxiN7oTL7VVVdXERa0wqAmUNkVGi3vXzy1m\nR5q2lqGbNoFUe7zFvbPWtY3Pz+eWQ+swERAAAAAAAAAAwFOUUooyT1F2OGTi+ZM96zcAAAAAAAAA\nAAA8HhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdt9UIKKX04yml30spvZlS+pkN\n1/sppf+huf5/p5R+qHXtZ5vzv5dS+rGHjZlS+unmXJVS+tA2vy8AAAAAAAAAAHiebC0CSinlEfE3\nI+LfjIjPRMS/l1L6zNptn4+Iw6qqPhUR/2VE/PXm2c9ExOci4o9GxI9HxN9KKeUPGfP/jIh/LSK+\nta3vCQAAAAAAAAAAnkfbnAnoT0bEm1VV/UFVVeOI+LWI+OzaPZ+NiP+u2f+NiPhTKaXUnP+1qqrO\nqqr6RkS82Yx36ZhVVf0/VVV9c4vfDwAAAAAAAAAAPJe2GQF9LCLeah2/3ZzbeE9VVdOIuBcRr17x\n7HXGvFJK6adSSl9JKX3le9/73k0eBQAAAAAAAACA59I2I6DnUlVVv1hV1RtVVb3x2muvPeu3AwAA\nAAAAAAAAj22bEdA7EfGJ1vHHm3Mb70kpFRFxOyLev+LZ64wJAAAAAAAAAAAvlW1GQF+OiE+nlD6Z\nUupFxOci4otr93wxIv58s/9nIuIfVlVVNec/l1Lqp5Q+GRGfjogvXXNMAAAAAAAAAAB4qWwtAqqq\nahoRPx0RvxkRX4+IX6+q6qsppZ9LKf3p5rZfiohXU0pvRsR/GBE/0zz71Yj49Yj4WkT8vYj4y1VV\nzS4bMyIipfRXUkpvRz070D9JKX1hW98bAAAAAAAAAAA8T1I98c7L6Y033qi+8pWvPOu3AQAAAAAA\nAAAAG6WUfquqqjcedt82lwMDAAAAAAAAAACeAhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAwJNWVRHTs4j5/Fm/EwAA\nAADgJVE86zcA8MKYzyPmk4jZOGI2qb+Wx9PV/dm4OW7Ob0XawpDbGDOPyPKIrIjIy3qb5RHZYr85\nztvH61/5dt4bAPDymE0ixg8ixicRZ812fNxsTyLOWvvjB/XX8r4H588un38QUc3qsfNeRLEbUe5E\nFDsR5e41tzut526wzUt/NgIAAACAl5AIiOfH6F79g/WURUSqtymrf3i92G48n609k/zAu6uqKmI+\nuyScuUFUs9zf8MxV983GEfPp2n7z2u395Zhr41f+lvcztQyCyvOoaBkW5a1rm6Ki/JrXioj8shBp\n/bXW3stK4NS69rBY66G/n23x+Yf+VvqYr11Vi52IarGtVrfL+254rYrW2JvuueraprHjmq97k7Ef\nNs51tg95rWttn/b7iPq/14t/Fxb77SBw5VzR2s+ueS5f3b/0XNF6fv312u8xv+Jc8x6elKqq/5vT\n/pqtHS/+W9k+nq0dz6ete2atsTacm0823DO7+D7W38N1XrM9VjVv/T5anv++mJeXHD/ufb1HHGPD\nmP5s+fyZzyMma8HNuBXknLWCnEXIc7Z2z/q9s7Prv345iOjtR/T2Ivr79f7g1Yg7P7h6vtyt/x2e\nnkZMRhu2o/r/A518L2JyWh+3t+f/QbuZlF0RCd0kQrrmtth5sr8XAgAAAACPRATE8+PLX4j4X37u\nyY13IQ5aC4cirQZGG4OirP6M+4mN1bpv01g3+dD1xh/Qzh/tw9pqvnbuus/ON5y74tmq+TDxUT/o\nuK5FfLH4YDDvnX/Yt9xvfQjY22+Oe82Hhb3WB4e91XtX9tsfPD7kvm3MYlNt49dxC2NWUf+zsv7B\n8YUPllvHKx+GX/XB9aYPoi/58Hx8dvkH3Rc+fG+91rb/eYXHsohiH2W7zeej+fd+1vr3f1b/d2Dj\nuenT+yV7HBfCoEtCpKg2BzKLr8WsIc9Cyi4PKi9EkBviyqJ/dRCZUuv3+Ekrsl0cT+vwYdP5+WTz\n8dP6fTi7LCZ6WGTU+nPDyj8P2cUALi2CtGa78fp1zz3qMzd97XaIt+m1F//OV/X/tiuz6bSCnI2z\n7qwHO2thz+Tk+v/75f06yuntN8FOs7//4YvnFgFPby+if3DxfH+/DoCyfDv/rLVVVR2ab4qDrtxu\nio3Wtmf3L8ZIk9PHm6Ey71+Mjop+/ZX3mtmQ+s2fhfsRRXPu0v3e6rN5r7nWv2K/bJ7pb+fP2AAA\n0AVV62cPi5+trP/MZXlttvozmI3H09bPclo/v6lm9V/QWOy3f97zyNfW7nvsa9XF91zNV1//2tdi\n7ecdeVz42cnKz1YuuWflL5gVG8ZcP/eo424ab33cy8bZ8Pr+/xVAZ4iAeH58+t+I2Hvt/A9s1XpI\nsn5+3gpUFuerDefXnom45PzauFVcY6z2a141VnX+B++rvpfrfLjajo4ixfJv3D702eySa1c9e9kz\nD/mgd/09XrltXj/lN4xqLol2Hhb3+IMqT9L/3969x9h21XUA//5mbh9IkfKoSFqE8ki0KBa9IVHQ\nEAgK/FNMKhSFVKPBPyCB+A9gNCDRRIyK/yAPA0lRtDwEafxHHhKUP2x7gfIqoleE0KbSQilSwXt7\n5y7/mD1z9+w558yZuXPmzDnz+SSTWXvttdde594566yz12+vfXbji/MgIGnqIKadght2mNzece57\np+Mn7T+fY6c8fqMvSHboW5KJfcikfmZL3Zmwb7d1Z/Lxe6p7p2Om/L2M/dzZ/oWXtYy+ANW/oDXM\nW+vVMcjrX/TadvGrX8+wDePyem3YUnd3rv5qQlMF24z72WHVsrGrkI0558aqSItmYlDRmMChbdtn\nJgcm7em4B84FVKz1PiO2XFBcm5DXSy90wGmt/631x+E7HrI6CMzpgnB+8IrdB+ts5K1eMNuXOStV\n54JoDsrZtT0EHU34vXY6OXOqC2b6XnLmdLe65qleeqPMLlZimkrtMgBpRODRlvSkoKMxQUvDFQBH\nrhq4Uzrn0pt1nU96F+fr5+/lfJtV9bfbmPyd9u1nffvdvnFtHYzv9pzOeRw7bf21mTV6vLrb9Ma4\ndOPawHDfmGsNI68lZJfl+/Vnl+VnMK7euO4z/Hxva+euE22ZqByMC6bOHzW5OmZSdNwE7FT5wzp7\n2/0b4jaCimulCxieZt/q1nIbwZzbjhmU23bMNPm9urfs6wUyj903ot2jbmTY/Dm7dbv/fWbqMoOJ\n+GnKDCfvpyoz7jwTyqRlW3D8yOt6I4LkN9PD63eD9KhVPjdv1hukd2rDsD3L+P15EW3r2/p9TtvF\nvhEBHJP2jQz8GHGucf1v//277VrF8L12dsR7atS1hL0E6KwNzt/VtTCq19+ubu9/t+0bVW6HfSvH\n1sfqo+rv3/Cy076Nm5v6/WobbI/qe8+cmv4zYFsffZhujhsxhpy4vZdjxm3vd327bHPV4Drbse3b\nk/aN3e5dzzvvuqZo16J87vXnTvvjz81+eTC3uq3MiJ8tZXqfHyPLtHPnSs71B/3vFZu/xyz6sOW7\nxk7la0I9/fya4rz9di7I/zczIQiIw+OHf2L9B2BRrKwkKxcmuXDeLYHltrKSZGVxJ/KZnY2703Lx\nvFsyO5sThDsFDu00CbjHY7ZdJB91zPBi+OCYWhkE6/QCdoaBPccucpFinlZW1/9PLrrk4M+98TjE\njaChzQChLmhobPqBrcec6fLWTg3SYwKQHvh+8v37Jp/vUF14Bw7WLoKGku2fpQsdzNvZttLfxkqA\nvfxUkmHA04jJlY19y/DvcphsWfGhC+4f3kCwbVWIwTHHLt5+zHBlilHnSTchvnY6W4PmT/cC5Xvp\njSDhjQD6frofyL92Ogfyd7IyTcDQhACljb/9JKMDb/vpXQTo7rrciHMdxHlHfh9ove8OwyCaMcE3\ny2C4osvmqi39906Xt+3x5IMbd45d3KtndcRxq716++WG22POMVXbxp1j5VwdUwXsTLPP97+JNt9r\nYwI7RwZ99gLEdgxEHZM3KrhpXP8wcXvaMrupc0bbW5KDMv1/j82bvTY+v9bWb4TZcgPwAztvz6P/\nq+FNhVMEJ60cy+Y4b1KwzLaAmmEgzrBM/3rXoAz7ZJqgoR2ClX7zo8lDL5/z62AvBAEBAAAcVlXd\nBAMsuapzE26Hzdmzg8CkKYKO1k5nS2DAYVq1ZU/n3uv5esdtJkfcZbvTvqnrGxY73/r22L49r/50\nPsdOm8659Ob59jG97XHgZ0fs6/LHPi58N+WH9WeX5Secc+r29/7fRj1ac+TKBKvjJ0Z3zB8RhLMl\nf9T5h3VOk7+xWs4MJmd3c/f2ln29Cadxk0bbJp2GgUjjjpkwmbVT+/oT6v2J/G2T+yMm+8eWGRe8\nMzx+iSfQh6t+jktvCTQasSJoP0BpYrDSIChpVIDS6e8lZ79z7hwbpv7MzZTldvMZPqpcZctKr+dd\n36hyNb4vmrhaS43phwZ921QBJP36RrVjmn1TrP4yqh39wJtlfh8yf1Xn/tZYLpurQE0RMLTb7Y3g\npH2pu1sNZ+TKir2gkZErMq6e2z+2zOBnS5kanGtYpka0p1+mRrSnX2ZUGwbnT7LlO0B/HDvyyS9t\nTP6o8m1CPf38jIvAWAAAChVJREFUNsV5z86mnRc86IDfGOwXV5MBAAAAxllZSVYuTi5Y4lXHAA7S\nxoRmTGgywVFY9ROAo8tTBoAZWtm5CAAAAAAAAAAAcJgJAgIAAAAAAAAAgAUnCAgAAAAAAAAAABac\nICAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAAAAAAAIAFJwgIAAAAAAAAAAAW3EyDgKrquVX1\n5ao6WVWvGbH/oqp6T7f/5qp6XG/fa7v8L1fVL+5UZ1Vd2dVxsqvzwlm+NgAAAAAAAAAAOCxmFgRU\nVatJ3pzkeUmuSvLiqrpqUOw3kny7tfbEJG9K8sbu2KuSXJfkyUmem+Qvqmp1hzrfmORNXV3f7uoG\nAAAAAAAAAIClN8uVgJ6W5GRr7SuttdNJbkxyzaDMNUlu6NLvT/Lsqqou/8bW2qnW2n8lOdnVN7LO\n7phndXWkq/MFM3xtAAAAAAAAAABwaMwyCOjyJF/vbd/R5Y0s01o7k+Q7SR4x4dhx+Y9Icl9Xx7hz\nJUmq6mVVdaKqTtxzzz17eFkAAAAAAAAAAHC4zDII6FBqrb29tXa8tXb8sssum3dzAAAAAAAAAADg\nvM0yCOjOJI/pbV/R5Y0sU1XHkjw0ybcmHDsu/1tJLu3qGHcuAAAAAAAAAABYSrMMAro1yZOq6sqq\nujDJdUluGpS5Kcn1XfraJP/UWmtd/nVVdVFVXZnkSUluGVdnd8zHuzrS1fmhGb42AAAAAAAAAAA4\nNI7tXGRvWmtnquoVSf4xyWqSd7bWvlhVb0hyorV2U5J3JPmrqjqZ5N6sB/WkK/feJLcnOZPk5a21\ntSQZVWd3ylcnubGq/iDJZ7q6AQAAAAAAAABg6dX6IjpH0/Hjx9uJEyfm3QwAAAAAAAAAABipqj7V\nWju+U7lZPg4MAAAAAAAAAAA4AIKAAAAAAAAAAABgwQkCAgAAAAAAAACABScICAAAAAAAAAAAFpwg\nIAAAAAAAAAAAWHCCgAAAAAAAAAAAYMEJAgIAAAAAAAAAgAVXrbV5t2FuquqeJF+bdzvY4pFJvjnv\nRgAcEH0ecJTo84CjRJ8HHCX6POCo0e8BR4k+Dw6Px7bWLtup0JEOAuLwqaoTrbXj824HwEHQ5wFH\niT4POEr0ecBRos8Djhr9HnCU6PNg8XgcGAAAAAAAAAAALDhBQAAAAAAAAAAAsOAEAXHYvH3eDQA4\nQPo84CjR5wFHiT4POEr0ecBRo98DjhJ9HiyYaq3Nuw0AAAAAAAAAAMB5sBIQAAAAAAAAAAAsOEFA\nAAAAAAAAAACw4AQBcWhU1XOr6stVdbKqXjPv9gDMUlV9tao+X1W3VdWJebcHYD9V1Tur6u6q+kIv\n7+FV9ZGq+o/u98Pm2UaA/TKmz3t9Vd3ZjfVuq6rnz7ONAPulqh5TVR+vqtur6otV9cou31gPWDoT\n+jxjPWDpVNXFVXVLVX226/N+v8u/sqpu7uZv31NVF867rcBk1VqbdxsgVbWa5N+TPCfJHUluTfLi\n1trtc20YwIxU1VeTHG+tfXPebQHYb1X180nuT/Ku1tqPd3l/nOTe1tofdQHfD2utvXqe7QTYD2P6\nvNcnub+19ifzbBvAfquqRyd5dGvt01X1kCSfSvKCJL8WYz1gyUzo814YYz1gyVRVJXlwa+3+qrog\nySeTvDLJbyf5QGvtxqp6a5LPttbeMs+2ApNZCYjD4mlJTrbWvtJaO53kxiTXzLlNAADsQWvtn5Pc\nO8i+JskNXfqGrF84BVh4Y/o8gKXUWrurtfbpLv3dJF9KcnmM9YAlNKHPA1g6bd393eYF3U9L8qwk\n7+/yjfNgAQgC4rC4PMnXe9t3xGAaWG4tyYer6lNV9bJ5NwbgADyqtXZXl/7vJI+aZ2MADsArqupz\n3ePCPBYHWDpV9bgkT01yc4z1gCU36PMSYz1gCVXValXdluTuJB9J8p9J7mutnemKmL+FBSAICADm\n4xmttZ9K8rwkL+8eIwFwJLT1ZxJ7LjGwzN6S5AlJrk5yV5I/nW9zAPZXVV2S5O+SvKq19j/9fcZ6\nwLIZ0ecZ6wFLqbW21lq7OskVWX+Ky4/OuUnAHggC4rC4M8ljettXdHkAS6m1dmf3++4kH8z6gBpg\nmX2jqh6dJN3vu+fcHoCZaa19o7t4ejbJX8ZYD1giVXVB1ifD391a+0CXbawHLKVRfZ6xHrDsWmv3\nJfl4kp9JcmlVHet2mb+FBSAIiMPi1iRPqqorq+rCJNcluWnObQKYiap6cFU9ZCOd5BeSfGG+rQKY\nuZuSXN+lr0/yoTm2BWCmNibCO78UYz1gSVRVJXlHki+11v6st8tYD1g64/o8Yz1gGVXVZVV1aZd+\nUJLnJPlS1oOBru2KGefBAqj11Vlh/qrq+Un+PMlqkne21v5wzk0CmImqenzWV/9JkmNJ/kafByyT\nqvrbJM9M8sgk30jyuiR/n+S9SX4kydeSvLC1du+82giwX8b0ec/M+uMhWpKvJvmt1tpd82khwP6p\nqmck+Zckn09ytsv+nSQ3x1gPWDIT+rwXx1gPWDJV9ZQkN2R9nnYlyXtba2/o5jNuTPLwJJ9J8pLW\n2qn5tRTYiSAgAAAAAAAAAABYcB4HBgAAAAAAAAAAC04QEAAAAAAAAAAALDhBQAAAAAAAAAAAsOAE\nAQEAAAAAAAAAwIITBAQAAAAAAAAAAAtOEBAAAAAAB6aqnllV/zDvdgAAAAAsG0FAAAAAAAAAAACw\n4AQBAQAAALBNVb2kqm6pqtuq6m1VtVpV91fVm6rqi1X1saq6rCt7dVX9a1V9rqo+WFUP6/KfWFUf\nrarPVtWnq+oJXfWXVNX7q+rfqurdVVVze6EAAAAAS0IQEAAAAABbVNWPJXlRkqe31q5OspbkV5M8\nOMmJ1tqTk3wiyeu6Q96V5NWttack+Xwv/91J3txa+8kkP5vkri7/qUleleSqJI9P8vSZvygAAACA\nJXds3g0AAAAA4NB5dpKfTnJrt0jPg5LcneRskvd0Zf46yQeq6qFJLm2tfaLLvyHJ+6rqIUkub619\nMElaa/+XJF19t7TW7ui2b0vyuCSfnP3LAgAAAFhegoAAAAAAGKokN7TWXrsls+r3BuXaHus/1Uuv\nxTUqAAAAgPPmcWAAAAAADH0sybVV9UNJUlUPr6rHZv1a0rVdmV9J8snW2neSfLuqfq7Lf2mST7TW\nvpvkjqp6QVfHRVX1Awf6KgAAAACOEHdZAQAAALBFa+32qvrdJB+uqpUkDyR5eZL/TfK0bt/dSV7U\nHXJ9krd2QT5fSfLrXf5Lk7ytqt7Q1fHLB/gyAAAAAI6Uam2vqzYDAAAAcJRU1f2ttUvm3Q4AAAAA\ntvM4MAAAAAAAAAAAWHBWAgIAAAAAAAAAgAVnJSAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAA\nAAAAAIAFJwgIAAAAAAAAAAAWnCAgAAAAAAAAAABYcP8PaVBck7IscfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0021724022948290786" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJCCAYAAABAuEcoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVNX9x/H3mb6NshQRKUtsoDTB\nTjQae6wxGntiEnv8mcQYe9QkxhJjNEajIRoTY40tasSGiogUAQFBirQFls4u23en3t8fd3bKzpaZ\n3dnC8nk9D8/ee+65957dBZ5nPs8532Msy0JERERERERERATA0dUDEBERERERERGR7kNhkYiIiIiI\niIiIxCgsEhERERERERGRGIVFIiIiIiIiIiISo7BIRERERERERERiFBaJiIiIiIiIiEiMwiIRERER\nEREREYlRWCQiIiIiIiIiIjEKi0REREREREREJMbV1QNorH///lZRUVFXD0NEREREREREpMeYP3/+\nDsuyBqTTt9uFRUVFRcybN6+rhyEiIiIiIiIi0mMYY9al21fL0EREREREREREJEZhkYiIiIiIiIiI\nxCgsEhERERERERGRmG5Xs6gpwWCQkpIS6uvru3oouzyfz8eQIUNwu91dPRQRERERERER6YZ2ibCo\npKSEgoICioqKMMZ09XB2WZZlUVpaSklJCSNGjOjq4YiIiIiIiIhIN7RLLEOrr6+nX79+CorayRhD\nv379NENLRERERERERJq1S4RFgIKiLNHPUURERERERERassuERSIiIiIiIiIi0vEUFnWR/Px8ADZt\n2sQ555zTYt+HH36Y2trajJ4/bdo0TjvttDaPT0RERERERER2TwqLsigcDmd8z+DBg3nllVda7NOW\nsEhEREREREREpC0UFqWpuLiYkSNHctFFFzFq1CjOOeccamtrKSoq4qabbmLChAm8/PLLrF69mpNP\nPpmJEydy1FFHsXz5cgDWrl3LEUccwZgxY7j99tuTnjt69GjADptuuOEGRo8ezdixY/nLX/7CI488\nwqZNmzj22GM59thjAXj//fc54ogjmDBhAueeey7V1dUAvPvuu4wcOZIJEybw2muvdfJPSERERERE\nRER6AldXDyBTv3nrK5ZuqszqMw8Y3Is7Tz+w1X4rVqzgqaeeYtKkSfz4xz/mr3/9KwD9+vXjiy++\nAOC4447jiSeeYN9992XOnDlcc801fPTRR/zsZz/j6quv5gc/+AGPPfZYk8+fPHkyxcXFLFy4EJfL\nRVlZGYWFhfzpT3/i448/pn///uzYsYO7776bqVOnkpeXx/3338+f/vQnbrzxRi6//HI++ugj9tln\nH84777zs/YBEREREREREZLeR1swiY8zJxpgVxphVxpibm7h+qTFmuzFmYfTPZdH28caYWcaYr4wx\nXxpjdukEY+jQoUyaNAmAiy++mBkzZgDEgpnq6mpmzpzJueeey/jx47nyyivZvHkzAJ999hkXXHAB\nAJdcckmTz586dSpXXnklLped4RUWFqb0mT17NkuXLmXSpEmMHz+ef/3rX6xbt47ly5czYsQI9t13\nX4wxXHzxxdn95kVERERERERkt9DqzCJjjBN4DDgBKAHmGmPetCxraaOuL1mWdW2jtlrgB5ZlrTTG\nDAbmG2PesyyrvK0DTmcGUEdpvO18w3leXh4AkUiEPn36sHDhwrTubwvLsjjhhBN44YUXktqbe6eI\niIiIiIiISCbSmVl0KLDKsqw1lmUFgBeBM9N5uGVZX1uWtTJ6vAnYBgxo62C72vr165k1axYAzz//\nPN/85jeTrvfq1YsRI0bw8ssvA3aws2jRIgAmTZrEiy++CMBzzz3X5PNPOOEE/va3vxEKhQAoKysD\noKCggKqqKgAOP/xwPvvsM1atWgVATU0NX3/9NSNHjqS4uJjVq1cDpIRJIiIiIiIiIiLpSCcs2gvY\nkHBeEm1r7HvRpWavGGOGNr5ojDkU8ACr2zTSbmD//ffnscceY9SoUezcuZOrr746pc9zzz3HU089\nxbhx4zjwwAN54403APjzn//MY489xpgxY9i4cWOTz7/ssssYNmwYY8eOZdy4cTz//PMAXHHFFZx8\n8skce+yxDBgwgH/+859ccMEFjB07liOOOILly5fj8/mYPHkyp556KhMmTGDgwIEd94MQERERERER\nkR7LWJbVcgdjzgFOtiyroQ7RJcBhiUvOjDH9gGrLsvzGmCuB8yzL+nbC9T2BacAPLcua3cQ7rgCu\nABg2bNjEdevWJV1ftmwZo0aNatt3mCXFxcWcdtppLFmypEvHkQ3d4ecpIiIiIiIiIp3HGDPfsqyD\n0+mbzsyijUDiTKEh0bYYy7JKLcvyR0+fBCYmDKYX8DZwW1NBUfT+yZZlHWxZ1sEDBuyyq9RERERE\nRERERHZ56YRFc4F9jTEjjDEe4HzgzcQO0ZlDDc4AlkXbPcDrwDOWZb2SnSF3jaKioh4xq0hERERE\nREREpCWt7oZmWVbIGHMt8B7gBP5hWdZXxpjfAvMsy3oTuM4YcwYQAsqAS6O3fx84GuhnjGlou9Sy\nLG3dJSIiIiIiIiLSDbUaFgFYljUFmNKo7Y6E41uAW5q471ng2XaOUUREREREREREOkk6y9BERERE\nRERERGQ3obBIRERERERERLKmvDbAmY/OYH1pbVcPRdpIYVEHmDZtGjNnzmzXM/Lz87M0GhERERER\nEZHOM2XxFhaVVPD4J6u6eijSRgqLOkA2wiIRERERERGRXdH7SzZyrnMa4VCoq4cibaSwKANnnXUW\nEydO5MADD2Ty5MkAvPvuu0yYMIFx48Zx3HHHUVxczBNPPMFDDz3E+PHj+fTTT7n00kt55ZVXYs9p\nmDVUXV3Ncccdx4QJExgzZgxvvPFGl3xfIiIiIiIiItkQCkcYvuYFHnBPxrPoma4ejrRRWruhdSvv\n3AxbFmf3mYPGwCn3tdrtH//4B4WFhdTV1XHIIYdw5plncvnllzN9+nRGjBhBWVkZhYWFXHXVVeTn\n53PDDTcA8NRTTzX5PJ/Px+uvv06vXr3YsWMHhx9+OGeccQbGmKx+eyIiIiIiIiIdbf66Mh6eupKJ\npgqA/qYCy7L4alMlg/vkUOMPMbQwt4tHKenY9cKiLvTII4/w+uuvA7BhwwYmT57M0UcfzYgRIwAo\nLCzM6HmWZXHrrbcyffp0HA4HGzduZOvWrQwaNCjrYxcRERERERHJlrpAmFF3vEuB18UvTtiPCw8b\nxvcen4WTMP/2vQbAd/sW88ysddz55lex+z751TEM75fXVcOWNO16YVEaM4A6wrRp05g6dSqzZs0i\nNzeXY445hvHjx7N8+fJW73W5XEQiEQAikQiBQACA5557ju3btzN//nzcbjdFRUXU19d36PchIiIi\nIiIi0l4LNuzkXOc09guX8MmUMbzzxSGs8l7Mn0LnxPoMr/qCFVurku771gPTKL7v1M4ermRINYvS\nVFFRQd++fcnNzWX58uXMnj2b+vp6pk+fztq1awEoKysDoKCggKqq+D+IoqIi5s+fD8Cbb75JMBiM\nPXPgwIG43W4+/vhj1q1b18nflYiIiIiIiEj6bn1uGsf87g3y/Vt5wD2Zy11T+Jfnfv5WeikuE+FG\n939ifVf0OZocl2GI2UYvqhlt1gAQDEe6aviSJoVFaTr55JMJhUKMGjWKm2++mcMPP5wBAwYwefJk\nzj77bMaNG8d5550HwOmnn87rr78eK3B9+eWX88knnzBu3DhmzZpFXp495e6iiy5i3rx5jBkzhmee\neYaRI0d25bcoIiIiIiIi0qJ7Vp7Je6Gf8NN/z0lqLzTVKX3X54zi8C3PM8P7c770XcH/vLdTZDZT\nGwh31nCljYxlWV09hiQHH3ywNW/evKS2ZcuWMWrUqC4aUc+jn6eIiIiIiIi0yV290+76aOQczhq0\ngyHbpiW1b7t+KwN7+bI8MGmNMWa+ZVkHp9NXM4tEREREREREJPsiQQImNRQKRrrXpJX2uvX1xTw3\np2eVlVFYJCIiIiIiIiJZ158KqrauTWkP9ZCaRRV1Qc6fPIvpn8/j/tfnYFkWr84voT646y+z22XC\nou62XG5XpZ+jiIiIiIiIpOvjFdsouvltPlq+FSKZhTx9TA2LQsNS2oPBULaG1ymaC39++9ZSZq8p\nY4b35/zPcyszVu3gly8v4g/vrujkEWbfLhEW+Xw+SktLFXS0k2VZlJaW4vNpbaiIiIiIiIi0btrb\nL1Lsu5Cdz/2YsoryjO492TkXP+6U9kjQn63hdbitlfWM/PW77H/7OynXJlhfMd97JQDDHNu5/R9v\nMtd7FQtnvtfZw8w6V1cPIB1DhgyhpKSE7du3d/VQdnk+n48hQ4Z09TBERERERERkF3Be+G0Avuec\nwY0PPcgfGk05CThz8YRrAVjdZxJ7n/s7mP5HWDEFgMtd9leGHkZFVTW9y78iHKjrtPG3x45qP4vW\nbmW296fcHzyfl+YeyHmHxGdKjS57n36mKnb+ifd6AG50vwT8orOHm1W7RFjkdrsZMWJEVw9DRERE\nREREZPdi4unQHxyPplzeOOwMRqx90T7ufRB77zURLnghdde0i19j8wdP0nvenYRD9R065PZYu62S\nB55+gd9ccyln/f4FznZ+yonunTzkeZwDXz04KSwyjqYjlYCvf2cNt8PsEsvQRERERERERKTz1QeD\nLV7vf9DpCWctRAxODw6nvSQtEgwkXbrplS854t4P2zrErNlQVsubj1zHX+tuZN7MqXzm+xm/dL8S\nu36965Wk/sbhbPI5gbpqavy7Vl2mxhQWiYiIiIiIiEiTJvjntnjdsc9xsWPLmOY7ujwYlweAcKOw\n6KV5G9hcUU8k0rV1it/5y3X8zPU6AL7AzpTrP3E1qlvUzPd7vHMB20pT79+VKCwSERERERERkTbJ\n8fkIGXvGkCMxPPlpasjkcEbDonAg5RqAP5TZbmvZdoX1cuy4+vN/t9o/MdwKnPFE0rVwbWn2BtYF\nFBaJiIiIiIiISJs4HIaZoZEAfLWlJn5hwH7x4wk/BMC4osvQQslL2452LOJ0x0z8oaa3qO8sKwed\nFjs+3Tm7yT7hhICo3orWLLpiGp6x34NxF7JqtF3Y+uk3PuiwcXYGhUUiIiIiIiIi0mZHOxcDsF9w\nWfKF81+wv37TDlCc0bAoHIrPLLIsi2c89/MXz6PUB7t2ZlGlZ4+mL9xVwYKhl1BreQmG42M0oXoq\nrDwYfBC4PPDdxyl22AWwf191e2cMucMoLBIRERERERGR9N2wqsnmXEejos4jvwN3VUChvbu5iS5D\nsxLCoppAfDZRfbBrZxZZkRaKUjvcuAnFwqJN5XUUb95ODd6kbqOH7fo7oYHCIhERERERERFpwuez\npqU2nvkY5A+A//sCrluQdCngyG3xeZbDnlm0Zmt5rK2qPr4kzR9oeee19qqoC1J089vMWLkjqX3p\npkqKbn6bL4u3ptyzcN9rATBON24TJhStq/TujNl83/UJOSTXX+q754gOGn3nUlgkIiIiIiIiIikm\nvHd20vkWqxAOutg+6bc3FH4DgNqDfgLA8EJfi8/LzbGvr9tWEWurqqmLHfv9dSn3ZNOfp64E4OKn\n5jBnTWmsQPV5k2cB4CU1rAr1LrIPoju5BYN+AMZu/A8AfU11Un9PXp/Y8cIN5XxZUs6uSGGRiIiI\niIiIiKRwkbwsbJApa7Jf7rd+DsDwb/+kxef175UHwIhCT6yttiq+xXyovjblnlA4wuaK7IRIifWG\nzps8mzveXAJAVb29/MxrUsMiV04vAIzDHvMtL9mFr02k6VlQJm9A7Pisxz7jjEc/Y+2Omib7dmcK\ni0RERERERESk7foMs2sT7XN8i92My67vU1AeL4S9fvOW2HHAnxoW/X7KMo649yN21gRSrmVq7wF5\nSefPzl5PZX2QicP7AuAlwJrIIBaNvD7Wx53b2z6Izix6cPOlAEQwTb/E7WPhN64CwGCHUw998HW7\nx97ZFBaJiIiIiIiISMfrvy8A9SF7+de84jJee39a7HKwibDow2XbANhY3v7ZRbkeV0rbk9PXMLxf\nLm6n4XTnbL7h2IJxxWc+GV+B/TXa1sfYs4QO2fqfZt/j9trL7fKoB2Dc0D7N9u2uFBaJiIiIiIiI\nSIolg88FYPOJT2Tnge5cQpaDrdu3Y1kWa7bXUEA8IAoHUgOh9WX29WzMzqmvr+VFz+/oS2Wsrah/\nHjm1W3nZfWesLTEsGtSvEIAdFfHaRJX1LRfi9oftMOxx98McaNby8fJt7R57Z1NYJCIiIiIiIiIp\n/M58gpYT556js/NAY6gilwJq8Yci5HldDDXbY5dDCTOLIhGLJz5ZHTs/cK/e7X794Yvv5HDHMhb4\nrqI/dpHtX/93CT8vuY7xxMOo2nB8BlLhoGEADC2fG2urroqHTU3pV7cOgKOcS3jbexszVu3g8Hs+\nbPO4Lcvi928v7dTaRwqLRERERERERCSFFQkSwonTRFrvnKaIp4B8U0e1P8QepXO40f1S7FrxltLY\n8Y/+OZf73lkeO9+rT8s7raWjV+262PE839V807GYmkCYAaF43SS/tx9m1Qfxmzx2naNhY4+O96nc\nwUrfGADqBoxLec9eIw9JOj/SsYQtlfVsr/K3adxbKuv5+6drufTpz9t0f1soLBIRERERERGRVGE7\nLOrjzV500C+4me85Z1DjD1GwY0HStU+WlvDxim0EwxE++dqecfSu5yaKfRdSE92xrD3CVnJR6mc9\n99KLhNk6vYbg/eUSRvu205j3W79ky7BTARjx70MZVrecYmcROZe9ndLXdeRPk85HmfUAVNS1vHyt\nOQ5jj7sqCz+DtN/ZaW8SERERERERkW5h0ZyP4K7ePPTgb5vt44gECeLCOShLy9ASfOuBacxdkxzK\n+Aiwels1X2+twkGEy53/Y6RjAwDBuop2v/O90ISUtmMcC5nlOcI++dlC8ORSd9zvU292ONjcZ2Ls\n1GuCbPaOAG9Bal9jKDnid7HTAaYcgGC4bTO0LLsEEmVZ2BEuXQqLRERERERERHYT5VXVvDVtJuPe\n+S4Av6h6sNm+gdJ1hHGAMYSLjiZ87O1ZG4eLELVV5Ulto8x67n57Gec+MYtfuV7iNvfzsWuj1z3T\n7neWVdentFWSS2VdkPXuEeB0A+D25DR5f9Gkc5POw67cZt815KTr4JDLALjK9T8OMcsJR6w2jTts\nWQwzW3ESbtP9baGwSERERERERGQ3sWjyFZw+7ZRW+wXDEfYOrSI3uv2789K3cH7rV+1+//yRvwTs\nWUR1eJKuXe9+hdFmDVaghqtdbyVd27g1dWlYa4LhCIfdM5W3Fm2ieEcNXpO6DOwu1zPk4KfU74y1\n9RpoF7Wum3RTUt++ewxj/difx87d5atp0Yl3xw5f9v4WK9y2ZWT+im1M9/6CO13tD8zSpbBIRERE\nREREZDexX61dJ6iYPVvsd9+D9zHAVLDOu39W318T8QKwxHcZE429A5n/R1Nj14ebbVznej3lvnl1\ngzJ+V3ltkK2Vfm59bTH3TFmGj9RlXEWOreQYP3VWQnDVZyhcv4yc425O6T/wmCtix2PNmpYH4E6e\noWTqy5vp2LKLH58GwInOedQGOqdukcIiERERERERkd1EMLp0qr+1M9YWaWJ51KXV/7D7W9mNDZxu\nb+z4m86vAPD03iPWdppzVsqsIoAC6jJ+13/m2fWOqvwh3l+6lVwSdiMbdmTsMIcAtXiTb+41GByp\n37vHGw+AckyGNYSCNa33acSyLCzsAteDzE7eXLgp42e0hcIiERERERERkd1E0JkPQL6J1+/5eNHK\nlH5uY9fHCTm8Kdfa45DwgpQ248mPHZ/inNvkfXnUU7KzNqN3PfDeiqTzb5jNCWfxgGy0o5gjRw5N\n65mOhLArfNFrrd9w7G0EfP0AKK2s47GPV2FZ6dcu8ociOE28MPaOan8LvbNHYZGIiIiIiEgPFolY\nTc4ckd1PtT/EzqArpX35q79LaXNjL3eKZBBspMPjdiedBywnOD3N9I7LM3W80c5ZNXs7Eu5fPyvp\nWu7KN9N7iDMeFjn3Pa71/t+6kbUTbgPg3ilLeeC9FSzemP7ObrWBcFJh62Wbyrn8mXksWL+zhbva\nT2GRiIiIiIhID/aNW6fww6c/7+phSDfwxqM3cHBwXux8Rq4ddozum7rLVm+qAaisSy0K3S69Bied\n1uMB03o0UUAdHmdmEcax+/Si2Hch33d+zGB2MNA0qhl04Hczeh4AztSwrTXG2MvIAiE7gPOHIi11\nT1JTH+QT7/Wx80+XrOWDpVv57l9ntnl3tXQoLBIREREREemhVmypAuDTlTu6eCTSHVxU9XTS+ZpK\nByXOIXhDdjBUtvxTuKs3O7dvxhVd+pRfuEfKc9rloB8knfrxgCcXvv/vFm/LM/U4HCajVx2fZxeg\nvsn1IjN918Uv7HsSXLcA1s3M6Hlt5rB3WjPRpW/BcPph0ZL125LOD3Csix13ZLFrhUUiIiIiIiI9\nUCgc4bbXF3f1MKQL/eYP9/GX519j6YKZfP7FFynXa/Hhd+bjCdmhYuGLpwGw+JFz2W71BiB07J3Z\nHVTfoqTTsCO6BO2AM2DCD5u97Uxn5sHORSvsgKifqYo3HnEtXPQfKPxG8oymC17M+PnpCkYnABVQ\nxzizikAGM4tue2l20nli3aXaQOqMsGzJfP6UiIiIiIiIdHt/+uBr5q3r2Lom0r3dWXsvfI39pwlD\n++ZQF8rHWVPGspWrGBVtP9pph4yLXGOZNP6A7A7K6YK7Klj14s3ss/xxcq2EotVnPAJf/KvZW3M2\nTAdGtO/9B10SPz7yOnjvFjj0Stj/lPY9twWlNXao85D7MUY4tvJ+1YnAwFbvq/GHyE0oRA6Qgx8f\nfurxUO0Pkc68r7cWbeK1L0oyGrNmFomIiIiIiPRA84oVFEnLhhx6JiXVhnGONWx85rKU62F3Xoe9\n2+krAGC9Sa5hxO3bmuht85dvbvZaU0I4UxsHjowfH3EN3LIRTrk/o+dmas8+uQCMcGwF4LevzuHV\n+a2HN6c/OoN8ksOiX7ufZbnvRxT7LqLWn97Mov97YQEfr9ie0ZgVFomIiIiIiPRAq7dXd/UQpJvL\nz8tlr8F2WHO8M3VL+3pHboe9u5YcAGrCjQIdlzf5/PvPxO8JZRZhfJJ3ctJ5xbdSd33Dmw8ms1pI\nXPYR/OzLtLvvOzA/6dyHnwfeW9HqfWu21/CE+6Fmr3+8fGvaY8iUwiIREREREZEeqLQm0NVDkG5u\n73FHUdVrv2avB3E3e629hg22l2E5aaF+z4l3wwFnxk59wcxmyxUGk8OU3vsfldH9zRoyEfoOT79/\nRfIsonzq086nihzNB0J/nbqk1fvL2vj/gMIiERERERERkd3EPM8hAFQcczc43fQvOrDZvumXYc6c\nN9cuoO0hmHpxr4OhzzA48v/s8/EXAVAY3JLRO6rq/MkN7o6bKdWi2tKk016mhs0VddQHW15G5nO3\nnCjlUc/DU79u8TkTfvcBhgiODH+bCotERERERER6oMI8T+x4eL8u+pAs3c6IM2+DuyrofYwdxOw3\n6btJ19/rc17seEx1x20t7/bZfyf3NRtTL17+Ifw8YSe/s/5KEDeWZWX0jpSAxJ2T6TCzo1dyXaZn\nPPdzkfNDznz0sxZvey/vty1ezzF+Hp66kuMe/KTJ628u2gTAo+5HWOO7OIMBKywSERERERHpkZyO\n+KwER6Y1WWSXV+/3N9ne78BjU9q+nnB77Dj/oLNjx/1NZfYHFmX67Q2Ax+Ntpaet2vJSVV3N+tLa\n1jtHeU2jWUumiYLXnWHCD2HwQUlN5zo/YcXWKr4sKW/2tuH1y+Inl/w35fq1TrttY3ldk/df94Jd\nh+pU5+eZjlhhkYiIiIiIiLTN/HVlvLsks6VB0jn8m5eltNVbTdcgWmLidYsOOfJ46g61Zx0VX9xx\nM4saloQ5TXqzhfy48RLk6Ac+Tqt/OGLhbbzErdEMn07jcMDwSUlNBvv7fuHzDa3fX3QU7B0P+WoO\nuRaA813TAHA7sx8GKywSERERERHpgeoCdh2THOpxWOltsZ2p7z0+i6uenc+WivrWO+9C1myvpujm\nt1mxpaqrh9Jm4UD8d7J8wElAE8uyog6bMIFSq4DrIr/E43aR85274a4KivZpvp5RuzmjwVWaS8v8\nljt1plALagMh+psK/K4Cu+HoGzPf9SybDvwuuPNip72pAeCFz9e3fu+pDyadOveP7/I2kJ30zfU0\nviPel7b921dYJCIiIiIi0gNV+0MALPP9mLvr7+nQdx3/p6Zrpuyq3vvK3oHq5y8t7OKRtF0gFA+G\nagYdDjS/89heew1lykmfcuMvbuiUsdmDiS4/+8YxaXVvmFmUrvqqcgabMryhKrizHL59W+ZjzKYh\nB8Ot8fpMRY6tnOqY3eIt83ImUewsggH7J7X78nrHjj/3/ZSi+qXNPuMm14ttGq6rTXeJiIiIiIhI\nt7efsZe4HBGe16HvaQimuptAKEKNP4TLaSjwpb8NfO8cu++yzR1Xs6ejBcLxYMiXmw+0vOTrkiNH\ndPiYknhy4epZ0Lcore77OTayHxvpG2z9d+IPhamvKos3dJeaXY3G8ZjnEb6o37fZ7o5IkLBpIrbx\n5CWd/s1xP3BdUptlWTzjvpejnYtpC80sEhERERER6YH6Usn73pu6ehhd6qg/fMRBv/uAMXe9n/Y9\nVfVBFqzf2YGj6hxBv10IenHfE3C40ysi3en2OMAOjTLwlOePLV5fXFLB/re/y4ylxQCs3ffSNg6u\ng5z1eNLp5f2/ZOmmSq769/yUrg4rRCQxLPrRO3DWE+BMXnbW11Sn3FsbCLc5KAKFRSIiIiIiIj3S\nE56Hk85Ldqa/i1S68qijAPu5kUhm25p3hq2VTe8I1pJrn1/Ay/NLOmA0nStQZwcIkYMvw+H2dfFo\nsmeCYxXbq5r/vc5bZ88omvu1XQuoavA3O2VcaRt/IeT2i53+uPrvfOeRT3n3qy1MW7EtqauJBLEc\nCTPihh8J4y+AvAEpj7Ua1X6qaedsP4VFIiIiIiIiPdAwk/zB81sPTMvq819fUMIc709Z7LsMSF72\ntKvaWlnPJ19v7+phZIXvk9/zTKNOAAAgAElEQVQBsGXLJpzddWZRG9UGmg9CGmo1ecN2iOnK6dUp\nY8rIjWvgugUpzZc+PZeim9+m6Oa3ATCRULwQeKJG4d82qw/hRmFtVWJY1HtYxkNUWCQiIiIiItID\n7WnKks4bf5hsr1+8tIh8Y++4daxjQbcLi/yhzHeB2hadibS32chc79XsSSllNYFsD61TjAitAaCf\nJ4jLk9PFo8muz9eWNXstp3ItC72XMyy0DgBPbjcMiwAc8eVlIwcVNNnFHakn4mpmVtjRv4r3I8Tn\na8vwh8KxIK22NmEmYWFR5sPL+A4RERERERGRBE97Hkjafas7qPEnh0VLNla0eo/HZX9EPtf5CQNM\nBXe4n2HW6tIOGV9HW7LftQAMnngq3vzCLh5NFlz2Uexw8vQ1zXY7YMt/6WNqOCnwAQCenLxm+3ap\nPvZsnzVmGKMCi5nrvRov8WAyHLHwWn4irmZqOh39K+i/P9MjY3ERZsaqHRzzwDQOuOM9NlfUMW9x\nwg5pBYMzHp7CIhERERERkR4uYDk7/B3BbjazqKo+eZv1zRX1rd7T8D3stOyZHqc457a45Kk7Czjs\nGSlOl4eCoaMAWOw8oCuH1D5DJsYOHeEWalFFa/e4LPv3783JrIB2Z1qZO57t4Vweqr2VAaaC0xyz\nOcUxhwHs5IH3VuCjHtNcAXCXF679nOXWMNyE+Ou01bG/40fc+xHPfvZ1vO+kn4HJLP5pYg82ERER\nERER6Um+tPYG7CK4JkvbiOd7kz9OBkPdq8B1VX1yyJPOMryGpXRVxD+g+7vZjKl01fntWSrG5SQ/\nL5/IHeWMcXSTLeTbaZ++zYefxor+3q0IGMjxddOZRcDmqjD5Jv739EHPE7Hjok+e50pvgEp3y0sI\nJ4zYA/e61EDThx2WWU4vZo8DwJ0LlKc9Ns0sEhERERER6eEc2IHHRU/Oydoz783/T9J52OpeYVF9\n0F6G9qNJRQAU+FqfKxEMRTjJ8Tn3uJ8CYHVkT0LdbMZUuiatfQQAV7RAsqMHBEXBg68A4DuFm5rt\nYyz79+7A/urrxjOLBhUW4CLMusjAJq/n4sd4Ww67DvRswWkshpstSe052LOMzHnP2g2B6ozGprBI\nRERERESkh9nZqCizK/rBeebqUkp21nLr64vbHYKcXvNK0nk4FGymZ9eoD0Y43jGfXy0+ndtd/6Y2\n0HrB62AozN88Dye1dbfC3ZlyuprYTWsX5Vr3KQAjS15uvpNl/77c2LNtPL7uGxYN6dcLN2ECpP6O\n8qjDa4I4PS2HRTmr7J3TTnLM5SjHl5zisAPhgx3RZWg5fds0NoVFIiIiIiIiPUjxjhqOfuDjpLaG\nD865Hic/f3Ehz89Zz6KS1gs+ZyISbL0mUGeqD4Z50vMguYFSLnO9k1btId/2hUnnezs2Ewhmvqta\nd+J09pzqM8bltb+GW9ihLjrDzU2IiGWSdh3rbrxeH6Mc62Mz/xLd5rJnBLnSDLtOds7l3577eNzz\nZ0aZddzsftG+0PD7H3pYRmNLKywyxpxsjFlhjFlljLm5ieuXGmO2G2MWRv9clnDth8aYldE/P8xo\ndCIiIiIiIpKR0/4yI6VejycaFo0d0pt563YCsK60hqKb3+b2/y7OynutYAtFh7tAfTD5Z5DezKLU\npXQDdn6RtTF1hRxP9w1LMjbyNAC2e4c226VhGZqLMH7ckKUaXR3BEa2vtLdjc8q1C1124JvjaGVm\n274nATDBsSrW9I73lvj1vAH215+8n9nYWutgjHECjwGnAAcAFxhjmiqh/pJlWeOjf56M3lsI3Akc\nBhwK3GmMadscKBEREREREWlVtT91Bk3DzKKDhsU/jl3/n0UAPDt7fbveVzrwCAAi4e61DC1Yn1yj\npaWwyB8KU1EXJBhO/dm56ndmfWzpqKoP8t8FG7HaWAtqqxnIgpzDcfaAWkUxE+35J29tzOPNRc3U\nLYrYv+deps4Oi7oxc8S1sWProEua7jNwZMsPOeE3zV6qKtgbeg9p09jSmVl0KLDKsqw1lmUFgBeB\nM9N8/knAB5ZllVmWtRP4ADi5TSMVERERERGRNhnm2M4YsyarxZrXOoYDsH2Y/REvHO5ey7UWripJ\nOg/7my/wu//t7zLuN++zaXtZyrVgGruodYQH3lvBz19ayOdrU8eUjj2sbSyt6r47gbVJdBmalwDX\nvbCg6T6ReGjp9LS8k1iXy+0XOzS9BjfZxZvfynwbl6/ZSwVVq9s0LEgvLNoL2JBwXhJta+x7xpgv\njTGvGGMa5oSle6+IiIiIiIh0oLe8txMMZy/4sICF+UdhorttdaeZRaXVfqYvWZvUts+mN6kNhJiy\nOHXJT4MPFiXcc/L9AMxZ2fzOWx2pNFqkfEtlG2pBRWdIDcjpXjvUtZvLDn8atoVvijOhnlFBcEeH\nD6ldvPnxY39Vk118eb1bfobD2fy10x5qw6Cij23zncneAoosyxqLPXvoX5ncbIy5whgzzxgzb/v2\n7VkakoiIiIiIyO4lcclSpImPe6FI9mYWOa0QlnFhVy4BK9J9ZhbVBsLkUZfU5rfcHHDHe1zz3Bcs\n2lDe5H25JNRdGmXXx3FHuqZwd+8cO4Qrr808hAtFZ1HlDBmb1TF1OaebCAavSS5wXXTz2xTdbO8K\nVm+8XTGytvH1iR+PPsf+uv938Cd8D57WwqKcwuav7TmuzUNLJyzaCCRWjxoSbYuxLKvUsqyGf1VP\nAhPTvTd6/2TLsg62LOvgAQMGpDt2ERERERERSRBOWDI1N7JfyvVQ2GLcEPvDZ7HvQop9F3KX659t\nepfLChFxuGO7LUVC3WdmEcBwsy3pvCwU/wA+Z21p0rUJw+wP7b6GEOJnX4Lb3oUqKUDqREs22rvV\nVdRl/nOtr7XDIuPu5suwMmUMfjxc5/ovz7vv5s9TV6bUdApZu1CNJk8u/LoUbt0MQybCHTvh/OfZ\n7B4e62K8BS0/w5sPV37a9LV27ASXTlg0F9jXGDPCGOMBzgfeTOxgjNkz4fQMYFn0+D3gRGNM32hh\n6xOjbSIiIiIiIpJloYSwqDc1KddfnLuByvoQ9iIy26WuzHZJauAihOVw4Yh+IO1OM4siiQFCdDlZ\nVX18fI2Lerud9kfjWDDkyY+FRTm0sE17ByrbuJJ7XX/PKIT7Yv1OlmysYNXCGQBUhD0dNbwuE7Ds\nmWxHOpfy0NSv2Zkw8yoSsXAk1CzinH909vAy53TZoRGAwwHGEDQJhblbC4sABo2BUx+E/U+1vzaI\npBZsT1erMZNlWSFjzLXYIY8T+IdlWV8ZY34LzLMs603gOmPMGUAIKAMujd5bZoz5HXbgBPBby7La\nVp1LREREREREWpQYkvQzlSnXC6hl3Y4IN+y1FEpTLmfESQjL4cY47Q/vkSZ2EusqwXAET0Ndm8Jv\nABAOxZeTnTk+uZhwYXAzY00JOQ1hkTsHXF4sDAXOrplZdK/rSY5yLuHVqi+wNyZv3pTFm9lQVsvz\n706jgFp+M8b+2L3n/od1wkg7V6DRDmf3TFnGJMdi+1r4ZByRhHBv9Pc6c2hZU1YXjk/tiYaWLTIG\nDrnM/hOogbd/abcPavsytLTmJFmWNQWY0qjtjoTjW4Bbmrn3H8AuEOeJiIiIiIjs2hJnFg0wFSnX\n73U/yZzISK4t/We73+WywuBw4WhYhtaNwqKq+hBeEw2LfL0ACAXioU+40Q5nj+/4EXjhiZBdpwh3\njj3Dw5GDO+THsiyM6dzlTcHox3VXpPWw6prnvgCg2Hc9AF+GLidsGYaNmtjSbbukQEKM4SbEK/M3\nUOy7F4Cq8C9xNswsyh/UFcPLipCVULQ60793njy4K/XffqayVeBaREREREREulg4utvZdx1N1zAZ\nYrazl2nnlKIoFyEspxvTDZeh/fqNJfGZRdFlPOFgfGZR47CowVWu/9kH0Q/olWE3OfhZvLH9H74z\nlZdjb4nepz7z3djCNeVUkke+z916511M4t/flb4f0J/4DLoafxinFWCVe3+4YUVXDC8rwt0gqun6\nEYiIiIiIiEhWVPtDnOSYy0Oex5vts48pycq73IQhYRma1Y76KNm2ZGMl3lhYZM8sigT9HOX4kt+4\nniYYTm9L+f6mgotdH1Ky095ZbVtlPZOnr242bMqmscFFAATasLvXQVtfJgc/XlfP/8j/zegSNIAr\n/z0PZyRI2OzaIVmR2QJAidW/y8bQ8//miIiIiIiI7Ca+9/hM/uZ5qNnrH4Qnst3q0+z1dIUjFi5C\n4HTjcNofzK00lqF9+4/TOOXPzezclEWHjijkbKdd5LlhZlEkGODfnvv4oesDcuu3JPWvoeW6MA2h\ny+OfrOaeKcv5ePm2FvtnQ45lB1TpxFIjzXrGmVVJbT4T7PSlc13hYc9fY8eLSspxWkHCjl07LBrm\n2A5AHvWt9Ow4CotERERERER6iG1VTdS32fekpFOPCbIhMiB2vjaSeW2XYDCI01gYpxuHw55ZFE4j\nLFqzo4Zlm1MLb2fbd/csY5QjuuNZtEBwYcJeS3uXf5bUv8QR3+B71b4/SXne9ujPdWN0hlEwHMnq\neFvSeGv4przrvZk3vHe02q+n8xLEZQUJO3rGLnAdP3+teQqLREREREREeoDiHTWpjcffBRf9J3bq\nNiG8BPEn7CjlIkwow/AjEIyGUk43Tpf9rKYKXP/8xQUcds/UjJ/fboGEn0V05lNfUx1rMsG6pO4O\nK15vaZ+h8eAodPhPqbM8sRCuoYD4nLVlLC7pnDpGJnEreLGLN+91cJOX/uh+okeFRV05L0xhkYiI\niIiISA/w6zeW4KRRkenDr7G/Xr8MsIMhL6Gk7cfdJpR2DZ8GwYC9PblxenC57ALXf5v2dVKfkp21\n/HfhJrZW+tnntnc46aHpsWsvfL4+o/dlKmnmjzEEcNGLeIC0bGNZUv+kn5snP3boyulDjgmwraI6\n6bn/nFnM6Y/O6ICRx611DAPAobAo1bn/bLL5dOdsXFaQyC6+DK1BL0/XxUUKi0RERERERHoAl8Mw\nkPJ4wz4ngCtaHLnXYAB+4PwAD0F7+/HzX6DKNxg3IQKhzGb+hGMzizy43PYHcyf2M6Ys3kxptZ8F\n68uT7lmxtSp2fMtri7O+lKuiNshNr3xJjT/1+wlYLnqbeFjkJMyFf5/NlMWbWVxSgTNhZhEmYdvy\naL2jOUuLWb6lkrpAchiX6c8tE37s2THGatsuc+XnvZHN4XQvfYbCiXezI3eflEsuK4S1ixe4buCM\nBLrs3a4ue7OIiIiIiIhkjdPhIJK4cGXVByl9eplaDnQUs9oaDCO/Q8keb7NX8av4WwluagMhcj3x\nj48hf3QZl8uHK7oMzUWYspoA1zz3RVrjXbKxgoOG9U2rbzqemL6al+ZtoMDnYvGSTVyWsIlYEBe9\nqI2duwkzc3UpM1fb27DP8CWGRQk/w+hOav6anZz8cGph7v1uf4f7zh7D+YcOy9r30aB3JLrMzco8\nkLJu304fV89YitWsI/+PHYtm0b82ubC3sUKU1nfysseOEm6iBlkn0cwiERERERGRHsDpIDksakYv\nahi5V3RLbpcHDyECLYRFG8vrOOCO93h+TnzpWChgh0XG7cPt8QHgJsSO6vQ/3GZ7+3mXw/7en5yx\nlrvc/0q6FqTRzCKTPFvHSUK9JZPwMdltf2+jzLpm33vza4vTKkKdqb7YYVFLz7Ysi/97YUFy421b\nMT09KIqynL6UNhchttf0kLBo/MVd9mqFRSIiIiIiIj2A02FiS8GA5NAjgceE8eXk2F2cHtyECDZa\nThWOWNQG7ABlXbRw9luLNsWu19TYbS6PF1c0LPqb52G2VKS/1XdLAVV7xXZCiwo1qlnkblTbyZE4\neye69AyAPccD9owsgGMcC/jIcz0D2Jl0f2Vd6zvBZarWsqdGtbQMbUNZHW8t2sR2qxeV3kHwsy9j\nAdfuIOLyJp3/L3wYHkLsP6RfF40oy77zQJe9WmGRiIiIiIhID+AwBpdJCD2umdNsXxP9kG1cXpzG\nIhBMro1yw8uLOOCO9wBomAA0a01p7Pr9/1sEQEF+Ac6EWSwbd9ZyufN/9KfpncK+7fiC6/bdYT83\ny1mRx9nEx9uT7gUgbFzkmfisp337+7j91FGxcydhvuz/HTjhdzD6e/H78wcCcJCxlzpd7XqLbzi2\ncEiv5LCoLti2ukItMQ0bp0eDrO//bRZ/nroydn1jeR3/+GwtYG8ZPz/3m9B3eNbH0a25c2OHKyJD\ncBGht6mlsCC3hZt2AdfMhu8/A56u+z4UFomIiIiIiPQAToehL/Ei0gzYr/nOLnv2iYluKx8MJC8f\ne33BRgAiEYuwZbG32YhJmLVUWW3P0unbqwCc8bCoftNSbnM/zzzf1Zzv/Ihckmca/cPzR67fcB0A\n4Swv3RrWL/7Beq4VDYImXGKPk8qkvscPd/GDI4pi5y7CBF35MOk6cCQUuI7ujJYTDZrG7mGHbHcc\n1Ys+CT/r+iyHRZZlxXdosyJsrqjj87VlPDT1a+58YwkA1z7/Bf+cWQzYYdGooQOyOoZdgcdr/86D\nuKjDQx9j71rnjaQ/w61bGjgKDjizS4egsEhERERERKQHcBrDW97b0+rr2r4UAEd0VlAo0PSHa38o\nQs7O5Xzo/RVXO9+KtZ89xl7mY4dF8Z2nXvl8Tez4PveT3Ot+stkxRLJcsygUjj9vhWNvO+iJLinL\nTyhuDcCiF3A74/WdXITB0cT+T8YQHjiGo4d6WPbbk8lx2IHZoA+vY6Hvylg3f5Z3RQuGrfhSOSvC\nWY99Frv2r1l2/aSGndgcRPCaEIMK+2R1DLsC47GXU37lHo0fT2xGm7/fAV05rB5Bu6GJiIiIiIj0\nAMa0Utzakw8Be+aFqbBr+jiiy9FCjWYWeZwOAuEIVf4g3hp7ltFEx9ex6y4rumzN5Uvaar6fSV5+\ndqZzJmc6Z/JZ+EA2E68jc5xjPuHIwRl8d61LLJjtsgJJM56aYn7Th3c8Q6nFh4swVlNhEeDM7UO/\nSD14nBBOXq7nIEIER9ZnFgXCEXzRotvGirC1Mv77ufZYe7t4j8uBixCrfD+wLzSq37M7cESXofmN\nj8McC+Ptub27akg9hmYWiYiIiIiI9AC9Q9tb7nDZ1NihiYZGDnd0ZlEoOSwaGVnJBc4POfT3H9JQ\nh/oQx4rY9T2r7KVQuDyQFw+B9jDJtXwaTHJ+xTnO6bHzpzwPEs5y0SJHfTm/cr2IkzDOSCC21K4l\noxwbmOhYaRcGbyYswpMH62fBXb1hx4qkS791Pc0AyrMeFvn9gXj9KSuCIcLX3kuY6rmBUDgIwNF9\nSrnJ9WLCXa3vhNfTRKK/40hCYAngylFY1F6aWSQiIiIiIp0iGI6wYksVo/fSB7mOcMHGe1ru0H//\nlKaGmUXhYHJY9Kb31wC8ED6OhhVWDTuCAXxry9PRIzugsPIGYmq2sSdlaY/XV1kM7Jl2/9aMW/4g\n+7reZEVkGGebT8Cfn/a9bhPGahQ4xJTMa/a+i10fcrJzLl+FTsx0uC2qqKmJz8OyIpzqmIPHhNnH\nbGJ46WfAaK5afQ05roQaVUVHZXUMu4Kw0w6LnCZ5SaMvf/dbkpdtmlkkIiIiIiKd4q8fr+a0v8xg\nycamd8qS9oktDWuOI/Xjn8MdDYsaLUNLtGRjeew43LjOUG4hAOasxwHY05SSLhOqbb1TJiL2sq2f\nuV61w4NAVSs3JJu3obLpC7U7Wryvv6kk4I/XfCreUcN/5m1I/VllYO6qLfETK8Kjnr/E31djLwf0\nhBv9/IZMbPP7dlVBY9fLcpL8sy4s7N8Vw+lRFBaJiIiIiEinWBwNiTaW13XxSHomK5OPdwWDAQhH\nP2w/N3NV7NK2ynjw4SLE9JXxAKi6PkQkYvFs6Dj8lht62c/Ba8/iucD1sX1+3UJw5bQ83nAo/fGm\nI2IvBdvbsbnlfrdtabK50t/2ZVyJYdExf5zGja98yRmPzmjz877ROz7LaX1pcuhVa9mzaWpcCbNn\nfjKV3ZEVXZIXcbig3z6xdoevV1cNqcdQWCQiIiIiIp1qs8KirNpQVssjH66ExALXp/6p5Zt+9DYA\nYWNXJtlUWkldIMwr80s49J4PY93ucT0FCbM2qgMhjrzvI1yE2UnCMq+8Rtu25w2AS99ucQhWJLth\nkTuU5kwidw4cdhWc+mBSc15OMwWir5kTP554KZz1BFzy36QuIX8NEN+hDOCrTc3MVEqDFY6HT6FQ\ncj0kE7Znga3MGWc37P8d2Gv3m1UEEAnZs+kixg0//F/8QkH2ljfurhQWiYiIiIhIp2goAvzh8m1d\nPJKe5afPf8GfPvia2mBCwejeQ1u+KfphOj/P3k3KTYhbXvuSG15elNTt+65P4lu4A5c8NYctlfW4\nTZgQCTV+Ggc/njx7WdSR/5fy6tp9TgfAimS3KPSG3o12V7vy0+Y7n3I/jL8oqen7h45ouu/AkXDt\nfBh7HpzyAIy/AAaPT+ryh7cWUnTz2+z/63dSbg+F21DIOxBfYuZotMSqqrqao//wMRvL61gd2RMu\neKHJJYa7g2B0+aRxuqFXQkDkanknPGnd7vk3SkREREREOt2oPQsA+OY+qieSTRHLDhOSMonWZu1E\nd/4a2Mf+nZxyQL9mZ8K4iT9rzXZ7FzUXYYJWQliUPzB2uHXf8+OznCZcmvK8cJ8iAKxwdsOiRZvj\ns3Espxf2HJvaafT34seNdkvr3zuv+Yf33wfOnhwPIXL6Jl32Gns5lNWoTFHRzW+zz23v8MHSra1/\nAwmctfGd7RzEf7F+PFRVV7O+rBYfAfzs5qFIdCmjlbiT3d7HddFgehaFRSIiIiIi0uG2VdUzZ236\nO2VJ+gq8dt2hQGL2YrUSxDR8uPbbS7eGff0vVm6zg6ApnluSuv7V80js2BWdZeQiRF5OQk2ihPBk\nj5yExMSTGsAYpz3eSJZnFu2orIm/o/F7Bx5gf/3eUwkDSa5R5HC2fbNwHy0XF793yrKMnpdYG/tS\n1/sABDx9CODCQzD2znrcmQ20hxnbzw7Sxgy2Q0/uLIeLX+3CEfUcCotERERERKTDHfr7D/myxC5w\n3fY9oqQpeV57hk8wMWFoLYhpCEpq7BksJzrnM8as4WXPXRzgWNfsbS7CnOP8hFOdnzPQX9x0p0A8\ntMHtS7nscdrvrvO3sntbhpwJy+VwNgpRLn3bLgLdKCBi0s/jx/VtrzHkI8ChRYUMKLDrHr169RFJ\n148bNbCp25pVWZO6U5wnUE695cYbDYu8JsiwPfq1ccQ9g8dhh0W5vexd+TAm9XcsbaKwSERERERE\nOoUPP8c75rdrS3FJZaIfjkOJy9Bam1nUwFsQO3ze83sOcXzdYvejHIv5o/tvTV884lr7azAh6PD1\nSenmjoZFgUD2wqJIxEqqrZQitxCGHpLaXnRU/HjOE21+/zM/GMd/rjqCubcdT/HNY5i4+nHOGhkv\nAO5zO/nVy4t4fs76tJ73wqzVTba7vTnkGD+nOmZzsLuY/n16t3nMPUJDKOrJb7mfZExhkYiIiIiI\ndIpfu57lSc+DFJZ/1dVD6VEa5lFYJMyoaG53rMOuTj4fYgcoO6xeac34+runhV3WDr8anJ7kwtFN\nzPIwe9q7eAWC2dsNLWxZOBNq+6QUD2pOXsLMHHdum9+f7/DHTx4eA9P/wPnr74qPL2Lx8vwSbn19\nMX98b0Wrzxs1MCe1sc9w+hQUcLZzBo95HsEZrofgbr6z4L4n2l/3P6Vrx9EDKSwSEREREZFOMdjs\nAMDr39HFI+lZHNFAJhYW9R0BfYua7nzKfXBXRfy89xAA+ptKepl2Bg+9h8BtW2DMOU1f/9Vq+93R\ndwZDwfa9L0E4YsXqKdnSDIv67x8/bgge0tVvn/hxffRnWh6fOXR45IvYcY0/How9+vEqrFbCrFF7\nNBEWfecBCNUntw1qooj37mSvCfbfqb0mdPVIehyFRSIiIiIi0inqozs35dVv6eKR9CwNu6bH4ofO\nqtlyw8omBuNMbWvQsFQo2mfG11uJZGlJYjhi4TQJYVHN9uY7J0rcEe34uzJ76U8+sGshAbx+JdzV\n255VlGCl9xKKfRfiKU9eVlYTaHmZ4PCyz1Ib9zspNSwK1qT2E8kChUUiIiIiItIpgti7TYX0MSSr\neod3cpxjfvIyrGw79UG+HPnz5Lb8zIo247KLPzfsxOYkQnlddmYXhSIWrrZ8/46Ev4tNFONuUW4h\nDDuixS7uaIA1aduLSe21/paX4B24fUpywyX/tb+eeLf99RvH2l+PuzO9sYpkSP9Li4iIiIhIh6oL\nhHERYrjZCkAooo8h2XRdyS95yvMgBbFlZBnOLNpjTPPXfH3g/OfhkMswpoVZQ+lomPEUfY6LMIFQ\ndgKuuWvL6E3CLJu9Dk7/5sOvgV5D2vZihxMGNfHzG/7NpNP1kf5J5/5Wvu8Kz6DkhmhtKcadby+7\n+sF/7a+5hRkPWSQd+l9aREREREQ6VMSyeMnzO8Y51gAQ0mZoWTUgUAJAPm2sOXTJ681fu6kYRp4K\nwPqd8SVQliuDWTh3VSTXSYpuaz/UbGPhhnKue2FBu0OjvnluLnJ9GH/f5R+mf/PJ98L17Si6fuWn\ncGe5/eeYW+22U+7jK+/4WJed/uRbKutbnlG1rPfRVJMT/9l5tduXdC6FRSIiIiIi0qHClsVER7y+\njRWxZ5TMXlPahaPqOVzYS5qGm2gtqJzU7epbfoC36fZfrUmqf1SbkPKZH01p6o705NmzbPx4+MVL\nC3lz0SaWbq5s+/OIF/nuEsbE/xx9A1z1GQwaQ69IebxPoJq/uB/hYucHAPzsxYVJj5i5egfrS2vj\nDZEAQdydMXqRJiksEhERERGRDmU1mjSyZEMp90xZxvmTZ7N0U/tCAonzNBR4Pu/ZzG709YJTHkhu\nO/XB5G3lgWAkIZAp2LMNI4yKblHvI0Bd0B5za7uDtSacpULZ7eZwwqDRAPhMfPZQHnWc7pzN3e6n\nOdnxOau2VSfdduHf5/yeRgsAACAASURBVHD0Ax/HzsPBQKzGl0hXUFgkIiIiIiJZVVEbpOjmt/my\nxJ5ZEW4UBITDIf45sxiApz9b29nD69HW5I2HXoMzv/GwK5LPD7kspcsZByXU9fH1zvwdDZxuIg43\nuSZhWVvbnwZAKNRyweiu0C8vvlSvF/FZQ094HgZg5dYqIDkoe+Hz9QBs2VlJfaSdNaJE2kFhkYiI\niIiIZE04YjHut+8DcMaj9vbfkUZhUeKuXS/PL+m8wfVQ67z7x46H7dGvhZ7tk795dvwkOjuorSIu\nHzkEYuftnRlkBezi1usPvq1dz8kmhyM+E2uAKU+5fsJD0wmGI/z0+S9ibbe8tph3l2zGQ0gzi6RL\nKSwSEREREZGsaapQcWpYFI4dX3TYsA4fU08WiVjsTNh+3uXJaf9De+3VdPvX78WP21sjyOnlx653\nY6evtjM0tPz2si7Lk9eu52SViX/c3iMlLLL/Tbw0dwNTFm/hf55bY/WMrnr2CzyEcHmaqSUl0gkU\nFomIiIiISNY0lSFEGuVH7oSwqMCnIr7tMX3ldqzEj3U129v+sMs+hAO/C5dNbfp6O+sKJQr1LgLi\nxblfnLuhfQ8M2jOLTHcKi4j+Y8jtxwhfcm0uL3bA9+s3lgAWox3F3O1+Onb9JOc8hoeKO2mcIqkU\nFomIiIiISNY0nkUEUL5zR9K5m3h9me1VfvyhcONbJE0RyyJCQkK3YU7bHzbkYDj3n83XPLr4lbY/\nu5Hg/qcD0JcqDjTF7X+g3w6LrO60xXzDzCKnl5zAzqRL71w5HrDzt1z8sfYis7nThifSEoVFIiIi\nIiKSNY2zovpgmHOfmBW/bhzsXeiJnb/6RQmX/mNuZw2vx+md48Gik7aNH3G0/bVw73Y/ypVjhzq/\ncf+Lt7230pd27ooXtAtIO9zdaGZRwzS7qk0pl74x7zex43zqYsfTvL/EQepSTpHOprBIRERERESy\n5t+z1yWdL1hfHvvwu3DUDRinh4OH5nGGYybFvgvJoZ5Za0q55rn5vDR3fVcMeZcWjljJO4mNPK1j\nX3hLCVw9s92P8XjtUOc7zs+B5Nk1bWGF7WLZDrenlZ6dqPfQ1DZvdBe5r17HE12KdrhjaVKXNb6L\nAXg+9O0OHZ5ISxQWiYiIiIhIVtT4Q9z3znIAvC4HLoehT647tvvZTr8DQvUMWfp3HvE8CsBhDrv/\nlMVbuOnVxV0z8F1YKBLBk7Csj46u2eMtALev9X6tcPqSl4v1y2n77KgNZbVYYTt4cTi70Q5iZ/8N\nzn4S8gbE2/aJB0B/dz+IhyCPeB5r8nZXr4EdPUKRZiksEhERERGRrAiG7VDIQYSfuKZgIkFCYSu2\n+9lXW6pT7rnC+b9OHWNP89oXGymzCuIN7izshtYZGo1zaO+2hTzTVmzjqD98zFPTVwHw/+zdd5wV\n5fX48c8zc8tWelNAF1AsYEfF9tVo1NhbNGo0avxp1MT0GEwxGI3GWGI09t6NvaGioqioqIh0pPe6\ntO17y8zz+2PuvTNzyxb2bj/v10t3yjNznwsL7Jx7znkMswM1TC/sDXufDZe4q74RcoNkR5qzONiY\nn/PyktKerTk7IRokwSIhhBBCCCFEXsQspyDqxsCjXMOTvB26llP+OyWVWTSkb2nGNSv0wDadY1fz\n5sy1KMBSpnNg1+PadT5NFizy7ep4hAmz1qGbueLaV8u2OLdLZFcFOlIZWlK/XdztPU7xndpLLc15\n2eEDWlaaJ0RLSLBICCGEEEIIkRdRy6aYOs4PfAjArsYaAALKCRYdv9fgjGsaCxbFLZuycRN47LNl\neZ5t1/CjA4diYhEbuB/8eT3sflJ7T6lp0oJFh297k58/O51PFm3KcUGmTdUR7p28BCAVkOxQZWhe\nf94Af1oLI4+Ha5bB751MqGuCL/jHBdwSvx7FHahZt+h2JFgkhBBCCCGEyIto3Kafqkjtx7XzuHGC\n4SznXhgOZ1zj67eTRU3EKWG7/s15zc466Q6e/mIZR5hzCASCnacEDTKCRckAY0VdrMm3WLmlNrUd\nSJQ6moEOVIbmFSxw+0kV9XF6P3nYe50DF78NV0+HHfdLXNOJfj9FlyPBIiGEEEIIIUReROM2FmZq\nP5lR9Ofgs84BZcLJ//ZdM8ZYQH+28RNzIrupzNXQamNuMOmxz5bnf9KdTNm4CZSNm8Dabc5y6/3Z\n5pwo7GT9bXIEQprT5to7NhksMjpqsCid4c+AMoYdAWWHQc/Bbimh0UGzpES3IMEiIYQQQgghRF5E\n4zYxbfqO7aMWuzuGCWN+Cuc+mzr0f+Zsvi64ir8Hn2BieFxG9lBNxA0WzVq9rXUm3gnNXuNkcJUq\nJ7tG7XV2e06n+QL+FdWW2045ompGtKg2arm3U852qCP2LMrG8P85YcmH7vYu3/d/FaIdSLBICCGE\nEEKILujzxZuYvbqi8YF5FLUsdFpuiIEn+BNzsmHY/SQYn31u0cSKagB1UYvv3/FJav/1mWvzN9lO\nzrKdX9d+gXoAzMJe7Tmd5gv5y9A24sxfNSO3yBssSvYsCoU6SbAoPSpW1NfdHnqQ8+dj6IFtOych\nPCRYJIQQQgghRBd0/sNfcsp/p7Tpa0aiUe4J/cd3zPI+ctRubvQe9TE3WPT458t957SGVZ4+NV7/\n/XARizZUNX2ynVzIdH5df9R7gXMgnLnSXIcW8jdvrtRO8Kg5mUVTl26mLxVMHvYkNx6faJ5udJIy\ntHSH/7a9ZyCEjwSLhBBCCCGEEHmhKlZzoLEQgHigiEpdlFrS3DnY+FLgkbiVcexoYzolOEGiI/71\nEX96dTabqt171UUtbntvIcf++5OMa7uq4rDTz+aMymecA+GSdpzNdjr1vwAssgenGp1/2ozV0B6Z\nsozfBF6ibN27BD683jmYXt7VWaSV5QnR3iRYJIQQQgghhMiLiKcZta2CBLAoUfXugF2PbfQelXXu\nPYpCJoMp59HQbdwTvCt1/NkvV/K92ya7r+sJMJ1896fbOfvOJW7b/gOdceWs/S+E8RVsoZSwihEm\nynNfZTY5z+X8g3diZ7XBf7CzNoXujME+0aVJsEgIIYQQQogurC2Xm49F3MBQIBSmSEV4InSLc+CS\nd2HHfRu9xz/f+S61XRg0KVROBtGR5ix2VatT56rq3aCSt3RtzppKbFszc9U2nvpi+Xa+k44vbqX9\nvhZ0sp5FHhEd5GDjOxYUXMwgGi9VTLKmP80R5hz/QbMTlqGNr4BAuL1nIYSPBIuEEEIIIYTowiJx\nu/FBeRKPusEio2aj/2Sg8cbDcW2wcktNar8wZKYaFwPsayzOdllG6Vp1NM5p93zGX1+f25Rpd0qx\nRCPwVE+ooj7tOJuW6V3iZkUNM9Y3+brTyFJ22Fkzi4ToYCRYJIQQQgghRBfmXTGqtXmDRRnMxjMn\nAsrme7sPSO3rWB2Phm5N7ReRveeRN7MIYP7aytT2ys3ZG2J3Rratucp8nXdCf8RKBIu8wbTOatSQ\n3qnt9NX0GvKqfXjmQdWJehad8h+49P32noUQWUmwSAghhBBCiC6sOT1gWsqKNRAs0lmCVgdfAcUD\nfIcqaqKp7V2/u5fByi1LOrR/rmCR/96vTF+T2t5WF00f3mnFbJtrgv9jD2MVn06e2N7TyRvDlw3U\n9GBRTGfJIjI60SPuARfD0IPaexZCZNWJ/iQJIYQQQgghmuvWiQva7LWsmCeY03uY/2S2pd1PuAUu\n/8h36KVpy1PbZqzad+74bc+jsmTSpAeLxpT1ZoeezupSd01a1ISZdw4xT5+iReu2sLWmiwTCPAEe\nWzsZVI2JWzZBFW90nBBi+0iwSAghhBBCiC5oecH5fBj6bZu+pu3NLAoWudsXvw19hme/KK08LUic\nxz5bBkBMZfY5WlZwAZeZbwFu8+5IpI73Qn/gcGM2AFtro2xOBFI+mL8x4x6dVczTf8rCQAMz7OGs\n1v3ab1L5sH52ajOgLOJNCBbVRCzOMKY4Oxe+Cteuhl/PbvgiIUSTSbBICCGEEEKILmp4ollweuZN\na9HJYNHos2Dsle6JssNyX5S2elUxEa5/cx6zV1eAnT1z5M/BZ9ldrUwFFYxtKxhprOHp0M0AbK6O\ncmFZBcca07b/zXRAyabWABGCrK+oJ0qQlfaABq7qBLYuT22eYHyF1YRgUXU0zqHmPGdn4F5O5lqv\nnVppgkJ0PxIsEkIIIYQQoovb0kblSspKlKEd/RdY8E7TLkoLFl0ecLKGTvnvFCoKhua87N3wOKKJ\nTJtY3A0q7dOzlvLqCH9d/TMeCt1BWd+iXLfodKKeYFEAi9dnriGIRYyuswLYhYEPiNuNN+1et60O\nWyf6GxX2auVZCdH9SLBICCGEEEKILm5DZQONp/PItBKvEyiEwfs18SJ/GdoAtTW1HSWYPtpn8Uan\np1Es6gbDXo/8P8qr3N5JlbXZm2J3RrFYLLUdwOKBj5cSIM7A3iXtOKv8ayyzaMKsdbw/bwOGSowz\nG/4+EUI0nwSLhBBCCCGE6OJWbqlFa807s9f5SpnyzUgGi4IFMObSpl1kBuB3C2HX4wHYVbkrmc1c\nuanBS9+Z45TZ2ZEa3/HNVW5wLFS/qUkNkzuDWMR9X0HllBYGsRjQq2sFixrqWbRycy0/f3Y6D3yy\ntA1nJET3I8EiIYQQQgghujCFzdLyGj78biNXPjOdO95fmGoMncv2BpQCyTK0QCEU9Wn6haUD4YeP\nABDGzZ7ZUlXnG6aHHenbv//jJSzcUIUVrfXfL+quovZDYzLV0a6xalY04v56BEgGi+JgdPLMmiu/\n8O02lFkUtZL9t7pGAFCIjkqCRUIIIYQQQnRhwwuq+c+kRVz6hNPs+b7JSxh27ds5A0KvTF/Nrn9+\nh1Vb/AGYO95fyNfLtzT4WoYdwUZBIFFatv9P4PvXN22i4VIAdjHWMiKRXZQMiCSpnkMyLquJxNEx\n/1x7xjentn8ffJFFG6rTL+uU6uvc93moMRdI/Bp19jKsgXvCUdcCUKmLGswsWlLuZJF5g4pCiPyT\nYJEQQgghhBBdjSdzaBJXZB0ydenmrMc/XljuO//Fks28N3c9d01axNn3f5H1mqSAFXH6DKlE4+FT\n74bDf93c2TMp/AcAzGSwaId9na9ZgiIBw4C0zKIyazn1hFL7Z933ebPn0BHFIu77vCrwBqAJqjh2\nZ88sAjhqHAtHXIKJxaT5GzJO18csysZN4GdPfQNAMW3Th0uI7qpJwSKl1A+UUguUUouVUuMaGHeW\nUkorpcYk9oNKqSeUUrOVUvOVUtfma+JCCCGEEEJ0NfdNXsKNb81r8X20bryMzLI11ZE4H3230Xd8\nQKmTFZRcQe28h6ZyeeIBvTEBO0JUhRsf2AS3BB4kQOJ9XPQmjFsFZihjXNSyMoJFYbuOApz5T7d3\nyct8OoJYxF+WV0odO6ot9Fn6RjvNKM8MkwA2170+N+OUt2k5QJFygkXR425pk6kJ0d00GixSSpnA\nPcAJwJ7AeUqpPbOMKwV+BXzpOXw2ENZa7wUcAPxMKVXW8mkLIYQQQgjR9dzy7nc8PGVZi++zYlNN\no2M08LsXZnDJ41/7Ss4CpvOI0FApUC5OsCgzoLM9fhSY7JahhYqhoEfW3jyRuA1xfxCl2HbLzoro\nOquh2TF/Ns2OymkAblhd5D0agVQ22ZdpmW/p349DEu89VNK3beYmRDfTlMyig4DFWuulWuso8Dxw\nWpZxNwC3gC8fUAPFSqkAUAhEgcqWTVkIIYQQQoiux1sW1lgD6sZMX+F/0DbTev8ARGI2E+c65T6R\nuHs+YDglZJatG13C3GvGqm1sqawi3shy9w3qN9K321tVEdcGGKZzIK0MTWEngkX+IMqu2g24lSh/\nIKkz0zF/UOjfwfvaaSatQ5kBAsoGdEZ/rKXl/r5Tfws84WwsmthGsxOie2lKsGgwsMqzvzpxLEUp\ntT8wVGs9Ie3al4AaYB2wErhNa91wVzwhhBBCCCG6oQ2VbsDjdy/ObNG9ehUGfPujlRM8Gd6/mKcu\nPQiAeWsrUue9samAkcgssmxmrNrW5Nc8/Z7PMLGIY27vtMH2r1p2SWAilvIEiNLK0PpSRSRmQ9wp\nOeOvTpBsCG7Pmx40nmXVWei0DKI9jRXOxr4/bofZ5J9KZI6Z2OzQs9B3LtmgHeDPJ+7BwD0Pd3aG\nf6/N5idEd9LiBtdKKQO4A/hdltMHARawIzAM+J1SaniWe1yulJqmlJpWXl7e0ikJIYQQQgjR6Yx/\nw+3T8sr0NRm9hJriwH98wA1vzaMm4qwUVbPz0QD0U05gqDgUYI8degCwrsINTkU9K6MFTCezKG5r\nIrEsGUnxzGNJJjY1cdXseadYmUvcx73Bot47+85NK7iSeLQWZUWwMMAMsKbH/pi476eHqiOc6F/U\n6cVzNHXe/ydtO49W0qPI6XcVwMLI8aR6/6k7ctmH+9En7pShUXZ4G81OiO6lKcGiNcBQz/6QxLGk\nUmA0MFkptRwYC7yRaHJ9PvCu1jqmtd4IfAaMSX8BrfWDWusxWusx/fv33753IoQQQgghRAemtebz\nJZs48T+fZi0z21rrXwr8kse/bvZrlFdFeGTKMqrqnAwUo5fzY/yeagXF1HHhhn9Rop1Mm6p6NzBz\n0l1TUitQmYkytNlrKrKumHZFA82uA1hYLcksyhJnUgFPNlGWDJp/vPgZyoqmyt+sUAlB/EGn3lRR\nG80MRHU6iQyqWK8R/uNZGn93RgN6FgNO0LE64g9KnjNmCADf77/VObD4fedrID8N1YUQfk0JFn0N\n7KqUGqaUCgHnAql2+1rrCq11P611mda6DJgKnKq1noZTenY0gFKqGCeQ9F2e34MQQgghhBAdyrqK\nOl/T6Okrt/LoZ8s5/6EvmbeukmHXvp2RobNTn6Ks99pQWc8hN09i8cbqrOeTonE3myYZCAr0doJF\nBxeu5tbgA5wT+JiC24dxsvEF785d77v+mS9XAhC26jjV+Iypi9Zz14eLU+cPUvPpQTUfLSjnrkmL\neHTKMj6Y5wSY7ERvIxObeEuKF877H+x3oe9QUczTxUIp+Mkb0HOn1CFDWygrQiyRgWSYQQJYRHSQ\nlbbzQfRoYznVka4QLHKCgNYeaS1ku0rAxHDKJ/c1FhOL+1f0Mw3FNUVvEVg5xX9NFwmUCdHRBBob\noLWOK6V+AUwETOBRrfVcpdTfgWla64bWabwHeEwpNRfnc4LHtNaz8jFxIYQQQgghOqpDbv4QgDd/\ncTjXvzmXaSu2ZozZ7S/vMrhXIZ+Nc0rFVm6pzRgD8N8PF7Ouop5nvlzB304Z5Tv3xsy1DO9XzO6D\nSvnZU25Pl+pEZlEwGIZgEYfHpuJN+Plv6G6m1+/KWvqljiWDTXuufp5LQvdwdVTxpn0oCpsANi+E\nb2CevTMnRm/mjvcXpq47dZ8deWPmWsDJLOrXI3vQq0kG7gmn/Re2Lofln2YfM/xIOPtxeNj5dQup\nOIYdS5WrGcEwQeKYWEQL+kK0nIdDt7Mq9vvtn1dHkehZZISL/cfNrhUsejZ0Ew/ZZ/tO9alaxFX2\ns5D+bWG2oKG6ECKnRoNFAFrrt4G3045dl2PsUZ7tauDsbOOEEEIIIYTo6k7575QGz6/ZVsf3bpvM\nR78/KnXs+lNH8bdE/6Kyce76MT0KMh+Kf/nctwA8cOEBfLTA7f357pz1TkNRZUCoBGKZgaiBaitr\ntRssiiX6FhVHnGyh3qoKgGUFF6TGpBoqeyQDReAEiwrDeQhcXPwWjO+Z+3ywILU5oncAIxbBSjRH\njmqDEHECysbovTNscAob6rP0X+psVCKzyIhWpZ1oQZ+ojsRwI5qFNasAt92tGavKcgFdJ1AmRAfT\n4gbXQgghhBBCiO23bFNNaon6f+wwhYvCk7OOCwVy/+j+s7Q+QjUViV5DdVugJnujbBvF3moJNwYe\nATTxxBysxCOCt0l0U/UvNulVUtj4wOYYeULmsYAbLIpG6jB1DEs55Ug9i4vooZy+TEN33Ts1rj7W\n/PfT0ahkZlHVWv8J3fnfG5DKLALoVb3EdypqZfb54gf/hICUoQnRGiRYJIQQQgghRDsb8ae3Ac2P\nt94Lb/6KV646NGPMrRMX+PazNclOuigw0dn44t6cYwJYvBH+KxcEJlFCHfFEZtG0Fc7KaQZ2RqPo\nhoxUq9glOh+V77IgO5Z5zBMsqq2tJRqpT2UW9S4toqdyMqmCJW7mVH0Dq7h1Fspyfi2MkKfU75Bf\nQJ8ROa7oZDzBIkv7s6WKI1mCngdf0dozEqLbkmCREEIIIYQQHcApxhep7YE9ChoY6YhlybQoIIKB\nzXI9yDlw2K/8A3bcL7V5pDkztR3ASt3Pm1n0PePbJs//vfAfMeyYU/qWD30SJUhGls4ZnqbGYRUj\nRIzyusQBwxOsWjs9tRnpAplFC9Ylel8FPNlbx/+DnOvMdzZB933VK/+fgau33OQfu/vJXaf8TogO\nqIv8rSKEEEIIIUTb01qzYH2OXipZjD9lT3YfVApklpXtoNxl6gsaKDlLilqZwY/vCi7hjuC9bNMl\nzoE9T4OfvucOCJXAaU620RXmm+5h4sRt53479k4uX67ppyozXqOYuoxjPks+bHTuTXLcjc7X3U7M\nPOfpWRQiTogYURJBIu/qWJ7sqwse+ZL56zLfT2dRXhWhoqbe2Rm0V/tOprX0HJLazLmq3oWvwfgK\nOPeZNpqUEN2TBIuEEEIIIYTYTs99tYrj7/yETxaW8+6cdZSNm8DMVdtyjr/4sGH88phdAThm9wG+\nc+eYH6e2+350TWr79OGa94qv44cj/eVdkbSGzYFEydjp5ucMV+ucg8FC2OlgN4CydgZUOv1uQsq9\n/quCn7NDbJVzScDJ5DGwCZFZAnayOdV5L4eW5XyfebH7SXDpB7D/TzLPhUvhjAcBuMh8j5CKE9UB\n91xSsVuGZmJxwn9yrLDWCSzaWOX2kdrn3PadTGsZciDs7bw3beUogbQ7fzmhEJ2BBIuEEEIIIYTY\nTn96dTYAizZWc8XTTsnTafd8lnXsTn2KoHwhA9Z/AjhJLz8YNSh1fhfD07T4m8dZ/sdRLP/nSdxZ\n8jQjrcWMrX7Pd79I3J9ZVErmimeU7uB8TZb3RKuyB1+AX0QeAiCWWDD5EGMuR2cpQ7sl+BA/Mj/i\nb8O+4/I9YpRSy6d9b856zxYbemDuUqP+IwE4ypxJiBj7Dx/oHC/wrKJ2yC9Sm0VEWmeObaQwaGIq\nC1sr36phXYpScMBFzmZar6rPzAOdjRHfa+tZCdEtZSkAFkIIIYQQQjRHLK0krJg6NIpaCrj55OGc\ntauC3sPhpv6MAQZxN5qBlIQbaAb90NFw+WRY+A4AdarYdzoatxmh1lCue1JJCbsoN9hUqmrRgUJU\nslzL9syvoEeD7yXZs+hwc27OMbcEH4KXH+JPwFXhYnrV1LgnSwblvC6veg9Lbe67QxEUJJo+e4NF\nnvdaRD1VeBpDdzJ3vL+QsVjoZKBot5Mg383EO4JEz6n0zKJqXUB5aAj9u2qgTIgORjKLhBBCCCGE\naKH6mMUOPd0+OnMLLmVO+FIAzvtgLKH7DiZ0u7ti1dSCqzmiXy0ap6fOrT/cmwy1m+FOtzdNrXID\nHR/M28BRt01mUvgPzCq4nMOM2bwY/nvqfA9q/EEhK+p87T3Mt5KYV7KMTenMMp/YlV85fWKy6KVq\n/AfOfizruLwr7OUETAaMgnjEDZx45x8owD7DyZgqVvVtM69W8umiTZjYqGTD7/OehXOeaN9JtQbT\neX86LbPItKPYRhcMjgnRQUlmkRBCCCGEEC1UH7NZV+EPRhhKs7zgfPdAxN9c+YIvT+EC4MjgoQzp\n/2yjr2F7Vhl79LNlGLjZQs+E/GVg5wc+gmrPAStRgnXxWznLukZYy515ZwkWmcFwo/MD4Ijfw06H\nNG1sPkSrYWMiA2rw/omDnvdnBjHCTrPvIjp3sAicVet0ttXhupLE+4tF3WBR3LLRVpwt9TCwveYl\nRDcjmUVCCCGEEEI009Slm1lS7kZjqiOZjaCb6jTzcw4Ykli9rHcZnP9i1nG71s9ObQdNI2vz6UaV\nJB61dz8549Rm1QuAsdUfZJwzAk0MFo38QdsuZ77MbQqeyp7a+0fO18N+5XwNOeV7xZ28ZxHAOeZk\nzFh14wM7s0T20PRlG1lX4ay8VxezCBInjpSgCdFWJFgkhBBCCCGEx3frKykbN4Flm2pyjjn3wakc\nc7sbqJi9poVLsj95uvN163IYeRyMODpjyPerXk9tNztYdPp9MGhvt1TriN9mDIlp50G8n7Ux8/pE\nsEjveUbDr9NIP6S867+Huz33VedrIOSUzB2bKMsLOYG4wk5ehgaaHqquvSfR+hLfoyYWh9z8IXPX\nVvDgJ0sJEmdAr9JGLhZC5IsEi4QQQgghhEiwbc0P7nSWV//bG7kbPKebuWpby154xRT//jHXNTj8\ng/kbCJNjafGkwWPc7X3Phys8y8bHM7NsYg11qEg8wKv9Lmj4NcNt/TCvGx+Slllk2024pgP66Ygu\nnlGUlGhgHVROOeRJd03h7g8XE1RxtBlqz5kJ0a1IsEgIIYQQQoiEU+9xgzajduzB18u3sLGqni+W\nbG7bIEOg0LcbI8BnRccAsK3WKbdqNLPovOdyn0uWbHlfI5FZ9F1oVOZ4M1GGZnmCTOc9n3tcWynu\n3/iYkNMYvCiRWRSz7YZGd1j9YmsbH9QVJMrQAvh7ZwWxUueEEK1PgkVCCCGEEEIkzPGUk903eQln\n3/8FB/1jEuc9NJWLHvsKrTV1Ufch9kzjE14IXY+BTS+q+E3gJQ4xGshIOvNh2OlQZ3vH/TPP9xji\nfB2wOxx4Gez7Y7jiMzYb/VI5NMmYVUg1klkUbl5JmEo0zI6qMHXKH6xyl2j39CPa7QR3+9Bfwun3\nQ3HfZr1mi53/grv9m3nZxyTK0M4c1ROAaLxzBouG1ye+r/Y4tX0n0toSDa4zg0VxtCnBIiHaShdv\npS+EEEIIIUTTBOl3LAAAIABJREFUnbbvjrw+I3sGx6eLNjHs2rd9x+4I3Q/A94xv+VngLQ4yFvCr\nhl5g77Ohbgus/ByGjIG10/3nPSuecdJt/lOJcJHWmjBR9lWLG34zDTWl9paoJaRWQdM2K4LD2P3E\nq+G1KxMvrvzz2/U45+vYq2DqvU7j7H3Pa3g+rSFU5PQnanCMU4YWthOZRVbnLEP7QeVLzsZBl7Xv\nRFqbmT2zKEwMJWVoQrQZySwSQgghhBAioSi0fZ+lFlOfO3jTu8z5uuN+iQOJwIvWMHSsf+w+P8p6\nC62UMx6nS88/go/y79B9mQN3OdbdbmhVsnAJ7LCPs73HKUBiWXatMdBojFRGjo/yzL2zMENgBAjb\nTnPozppZlFK6Y3vPoHXlyCwqVBF0sKg9ZiREtySZRUIIIYQQQiSY2/lRapGKECNAKO0BF4BT7oKh\nB6ca96ZKtUoHwsZE6dQZD8Iux0BhnxyvoCCVWQRj1ILMIRdPcIJPt5RBtKrxSf+/SWBbYAZZdvep\nmJuXYdkapS0ngyiRkeOfRvIXKC1Y1FBgqr0pBaFiQtoJFsWsTh4sCnXxgEmuYBERIhIsEqLNSLBI\nCCGEEEKIBGM7gx7F1FGsMlcYc25qQrDA3R91Jtg2jDodln7sHCsdBMX9ct5fo1LdgjQ6+xpg4VIw\nA3DVF7BlaeOTNoOpkp94sJgAFlHLRmmNbeTILEplRXWygEuohJBVC0C0sweLunqT5xxlaEVEiIUl\nWCREW5EyNCGEEEIIIRKaGizaXa2kD24z7D8cuUP2gbudBEMO9B9TyuldZAbh5DudMrCdxma/3itZ\n+qXBzvZjfDKI0GsoDD+yCe/CMyUzSBCLSMxGYaOV4ZSqpSs7HHY7EU641dk/7New6/FOI+6OLFjE\nzitfpS8VnbYMrUonmo4XtXET8baWyCw6zJiLiUVfKthDraBQRQkVZAtgCiFag2QWCSGEEEIIkTBj\n1TYATCwszJzj3g2Po1y7q40V1G/MPvC8Zxt+wX67wI+ebnRe2luGlnPQ9gdBlBnEVBaRuJ1opK2y\nl6EFC+C859z90oHw4xcyx3U0mxcB8E3Blby7+Wj22KF5K8V1BHPsYRjK5mCji3/enwjYHmLO41f6\nZX5sTqKvcsoqQ4USLBKirXTxv2mEEEIIIYRouuI1n7K84HyWFFzICLWmwbH9lZtZxPQnW3lmyl0N\nzbIYYazLHNLQ6meNMMyAk1kUt1A6kVlU0HO779eRXfH0N+09he1iKgtLd6/Ht18GXksFigBKSrvm\n96QQHVH3+ttGCCGEEEKIBlxlvpHafvoHQa4yX+N44ytuDdxPCbXtNi/bsxoa0RxLxffbdbvvr8wg\nASzqk2VoGFDYe7vvJ/LPxCbeQLZbtxAsbO8ZCNFtSBmaEEIIIYQQCcWqPrW9g72Oa4JuidXhxauZ\nVDOM+61Tc99gxDGwZFIrzMzNLFL1lf5Tp90LlWtbdHfDDGFisaUmSr9kZlFXcvp98NqV7T2L7fbi\ntFXsipW9V1V3IsEiIdpMN//bRgghhBBCJC3a0ITl1rs4X+bGx7f4zu0QWcoFgUlMCf8q+8WBAjjk\n5+7+qDPyNi/tLUPTaV2LRp0OR/6hRfffFrUJYvH7F2dioCEZLBowCgbt1aJ7dwj7ns/yYT/y9Znq\nTP7w0qxEZlE3f3wLZumjJYRoFd38bxshhBBCCAEwce56jv33J7w1q2UZKh1ZNG5TNm4CT01dkXOM\n1ZIfjwt6pVZyouwIOPvx7b9XOk8Zmk5vZJ2tEXUzxbVJAIs12+qwbIu4TqwKd9XncMWUFt+/Iygp\nKiJEnN5F+V96fvXWWva/4X2Wllfn/d5JAWzJLJLMIiHaTDf/20YIIYQQQgAsXO9kFc1fV8lH321k\nYRfMMqqqjwHw19fmZD1fG40nVh1rpp0Pc76GS91gUQtWJsvOXQ2N9MyiPBg1tC9BZfHjg4aibZsN\nVdG8v0Z769ezhCAWF47dOe/3/seE+WypifLCtNV5v3fSHsZKDjbmt9r9O4U8BEaFEE0jwSIhhBBC\nCJFcrZovlmzmkse/5rh/f9K+E2oFdTErtV3v2U569suVaL0dwaL+u8ERv4PzngcjUcZmx7d3mln5\nwkPeYNGl7+fl/uGQs5La+m01mNjY2xM06+jMEEHi3PXh4rzf+p056wH46LuNeb+3w/k976nar8l6\nhyCZRUK0GQkWCSGEEEKIlOkrt7X3FFpNXdQNEG2pycycKetbTFhtR0ZN72FwzHXQbxcncAT+3kV5\nkdmz6Mv9boGhB+Xn9omMqCkL16PQ7LZDr/zctyMxggSVhSLfWV+uBa2UkafIfzZZp1TUr71nIES3\nIauhCSGEEEJ0Y799YQavTF/D0D5d/xP7Gk+wqKIuxo69/O/Z0pr9je3IOtGeLKXC3jA+x9L2LaBx\nexalvqo8Zv8kgkUBLAxsAoEuuET7Vw8AMESV5/W25VWRvN4vG0OCRY6SAe09AyG6DcksEkIIIYTo\nxl6ZvgaAVVvq2nkmrW/1VreEZ1ttLON83GreA7ne98eJjdbLVElRnsyiVOAgj8Ei02n6XGDYGGiU\n0QWDRXVbAdhJ5bdUbFtt6/d3+nXg5VZ/jQ7r//4A1yyDq6fnN0AqhGiQBIuEEEIIIbqxknD3STS/\na9Ki1Pb4N+ZmnI/baUGf/S/KeS9LK1TpIGcn/bpWoD3/b83MoiJd7QSLVBd8TDj2BgA26Z55va1K\n+314fcaavN4f4OrAa3m/Z6dx9F+gqA/0HdHeMxGiW+mC/woIIYQQQoimGtgjnPNcW2RMtJVPF5Wz\n39Deqf012zIzqXyZRSN/AKfeBWVHOPt7nwt9d0mdtjGcYwCjzmiVOXtpjIyeRelBihZZ9jEA1wWe\nwlA2yuiCjwm9ywCnpMu281fWlf7b8KvnZ1A2boKvR1ZLrPV8r9qhHnm5Z6ex1zntPQMhuq0u+K+A\nEEIIIYRoiUNH9AXgvIe+bOeZNE5rzUOfLGVDZX3OMTNWbePCR77if9NWUda3CIDzD94pY5wvs+j8\n/zlfL37L6UF05gNw9Tcw+iwgESzqP9I512+XjHvlnbcMLVX2lsdgUb+Rzr1RTn+crliGlnhPBjaz\n1uSvr1TIzP5Itcd17+bl/vPWVqa2je5WhnXWQ+09AyG6LQkWCSGEEEJ0E49OWUbZuAlU1jv9erbU\nRFlSXgPASLWKGeHLGMgW1icCL/PXVea8V3urjsTRWrN6ax3/eHs+lz05Leu4snETOP2ezwAoIMJL\ndZdyYtE8aiKZS9vH4k4Qpm70+blfOOA0xW7rpeV9Da5phTK0sVcBMNXekx3UFgYv64I9chKldQaa\nrVlWw9tetm7d5tOm4fl9LurTqq8lhBBJEiwSQgghhOgmnv1qJQDrK5xg0K0TF6TO/cR8j16qhi8P\n+4Zf9PmGkWpVu8yxKSpqY4z+20TumrSYjxY4zYpnrc7MFKlOCwgNU+vpZ2/mXvtGnvlyZaqcq7I+\nRnUkTrDOWSVLJ8qVskpk9RSq9ijRS2QW2a3Q4DpcCsCxxjeJO3fB1beUk1lkYhPMkQ20PfJY0ZaV\n4Q0WnXF/676YEEIkdJ+OhkIIIYQQ3VzyATmayKDxJqYM7VsCFcA3j3EmcGYYzh70TttPsglqok4Q\n6IkvlnPUyP45xzWWPbJ0Uw0j+pew9/j3KAya3L3PCgBUcb/cF818ttnzzQ+FgkS5XSv0LDJDABxi\nzgOgvngwBfm7e8eQ6MMUIE59bPv6Cf38mel8s2IrU/90TOqYlYgWHVjWm6+Xb00dH96vuAWTdWlv\n5lKvnfNyzw7v0F9C1fr2noUQ3ZpkFgkhhBBCdBPlVREAJs51HsIiMbdHzxEjemeM9z74diTJh/Mt\nNVGO3M0NFqU3FI5ZuVcpCxP1ja+LWWjLCUKpnQ7N53TzQitFbSTGwTdNYn1FrXMwn8GitHut3uvn\n+bt3R7HNyaz7ffBFrO0sHZswe12qTDMpGcwJBfyPVkfs2kDQcXuFivJ/z47ouBukX5EQ7UyCRUII\nIYQQ3YSVaOB894eLAdh3p17cHbyL5QXnY0x/vB1n1jzxHHU/b89e59uPWf5xAdzgUC+qicTtVP8m\ngLdnOqV3ZjCYr6nmkUoVnX0wb0PiUH77JlX028/dCZXm9d4dQrVTZjjWmO9f+a6FkoGnsr7FWY/n\nlZLHNyFE25C/bYQQQgghuokLxrolLIs3VrG+oo5TzKnbdS+tNVc98w0fLyzP1/SaLO7JGPI+9Kc/\nmqdnFg1UbqbUYLWJuqjFDW/OSx0LKCeYFAg0ECzq2wYrn2XlroY2on9x4kh+f5TvMWi4uxMI5/Xe\nHYLh/nr5Vr7bDt7vLcvWFFPHpXWP8e7PD2TZzSfSryRMA4ltzWN7e291s9XQhBDtRoJFQgghhBDd\nRHLVppJwgO/f8Qn3fLSkwfEKm+/WZ18RLRK3eXv2ei569Ku8z7Mx3oyhjYnSOsh8jI4mntYfv+RA\nfjhgHUOUG9jqqWqoicapqncfxIOJzCOV6N+T1RkPtGDm20/jvr9Uv+M8ZxapYGFqOxjqiNlVLeX+\nelkt7Ert/b7RGsYHnmD4wkfYfd3rKKUwDbDz1Pm675oP3Z1gNylDE0K0O2lwLYQQQgjRTSTLt3Yb\nVMo3K5wsm5V2f3YysmcHFRHx9TXyau3lwhvizQq55d3vUttG2segs1ZtA6Bf+ZfcVvk78MQ/Sqml\nLmoRDroXBUgEAMwGAiVDxmz/xFtgS20s1dA6Fk8EtfL9IuEeqc2Sgi7X3hp2OgSAafbInKWMTVVR\nF6NPsRNUtGzN2YFPnBOJ1fJMpfJXhua9T/o3uRBCtBL520YIIYQQopuwEhk53hIaQ2V5oD3yjwD8\nOfA0ATN7SMKbmWHbmjs/WJhqoN3avJlFFx3iltaFTNM3bnyixKy4dmXGPXqoWupiFrv0L0kdS2YW\nYXS8z1NtbaTK0JKr2eU7swjPKnAlhV0wWLSz07h8jLGwyT2LLFvzp1dns6S82nd87ba61LZRs8E9\nkegpZBgqb5lFuh0Ds0KI7kuCRUIIIYQQ3USfmsX8OvASs1ZXANCfrQxRm9wBu58MZz0CvcsAOD/w\nUc5yHe/xuWsrufODRfzyuW9bbe5e3p5FxWE3sJPZh0YzJfxLhn3+p9SRqpCzeloPaojb2hc4SzXA\nbiizqJ1oYLhax7jAc8QTq7blvdlxjyGpzXC4gVK8zkp5y9Cc3/cj/vUhv31hRs5LFqyv4tkvV/Lz\nZ6b7jq/YXJvaDm9d4LngHQBMI3+ZRbYVb3yQEELkmQSLhBBCCCG6iUsWXsWvA69QiLP093XBp/wD\nTrod9vqhr+wlV7mON1gUDDgP4Ztr2iazqLzaeR2l4N7JSzhYzSdInEjcDfxsrYnSmyp/MAxYHXUy\nia4JvkDcsonEbXYz1jCIzW6wyGgkWHTOk3DE7/P3hppAo+ivKrgi8CalNc6qbXnPLCod5G53wOyq\nfIlrg7itqYnEWbWljlemr0mde3PmWo7798eprKCVW5yg0Kottb5MoSmLy3k/sSqdpTzfL0smAYky\ntDxlFn26cGNe7iOEEM0hwSIhhBBCiG7C0E6GgokTVIl521ce+ks3WDBwFOA8VOcqpfFmTYQDTvlX\nfY7+Rvn2i2edDCatYQ+1gv+Fb+DawLO+LKHNNRGGqfUZ10ZNd3lzM1JBJG4zMfQHphZc7QkWNRIo\n2fM0OOavLX8jzeD9XbCsGNAKPYs2zne3u2iwKD5kLF/ZuxO3NN+tr3KPJ753fv2/GSzcUE19oi/U\ni9OcwFxN1KI2ZqXGvz17PZc9OQ0AS2X+WhmGyltfr37FHS/TTQjR9UmwSAghhBCim7BxgjqhRCPn\nGp3oS2ME4Ni/uwN33JdI0SA206NJmUVJK7fU8vCnS/MyV601ZeMmUDZuQsa5fdRilheczwFqAcU4\nvWNOMqdSF3Uf5utjttuDyGPoDm72jIpWE4m7YwLKckq7OmATYe0JDem4EyzKexmaZzW0vN+7gwis\nnsqh5jzqYhZn3fd56vim6ijgfl8nG7v/38j+qTG3TfSUm3lY6WsGfXQTH1Semrfysb7FXTNwJ4To\n2LrmvwJCCCGEECJDtdkTgEONuQDUEnZO9ByaUdIUKxxAtS6kJuI88L4wbRVl4ybw+ow1bK2JcveH\ni1NjvQ14b5ww39dTaHs1tFrVoYbTuPqx0L+wEz/ODlTbuHHCfMrGTUBrzcottQRU5sN67z59sQ+6\nAgAVq6VvlRsAuDrwWuMlaO3EGyxavylRWpfvMrS9zna3u2hmUVJNba1vf1O1v4QymTlXGHSbpj/+\n+fKM+ywpr2ZheZ3/4Me3ANA/sioPMwXLygx6CiFEa5NgkRBCCCFEN7G0cDQARxiz2V8txEgWN510\ne8bYTYGBjDDWcecHiwC45R1nifpfPT+D696Yy7NfruRQYw69qCI9rlNV3/KMiqin/1D6alDlOEGv\nHqqOSwNvZ1y7tTbGVc9Mz5pZpIJFqOH/52zH6zim/En/AKtt+i41V5Fy52VFnOCEas3Moi4eLOqz\ndSaDe7nvNxK3fA3akxlGt76XPZso6ZjbP+bxz7Jn0/WPrc7DTKG6PpqX+wghRHNIsEgIIYQQopuo\nMpJBlhpeCY/nsmSgZciBGWPLNrwPwPo1K1ixuYYCT4bFmzPXEiLGs6GbeDx0C/6OOs0LFj386VKW\nlldz16RFrKtwMzQmzFqX2vY2ri6vilCrw6n9mfaI1PZByum5M3P1NgAKyPKQHSxEBYsAUPFaQvGa\nJs+1PY0xFqa2gyRXQ8vzi3gzlUJFeb55BzF0LACVMZPisEmvIieTLBrXvDFzbWpYMlhUXuUPHhrY\nmGlBSIPsWXCF8aqsx5vrq2Wb83IfIYRoDgkWCSGEEEJ0F9p5yA2kZ9w0kEUSVlGOvHUya7b5S22S\nD8yjjRWk9/GtrI+xcENVxoN2urqoxY0T5nP07R9zx/sL+eVz36Z6FV3z8qzUOG9/pH+9+x1x3MDV\nT088zDNXp5dPRa3z9f7Qnc6JK93eNATCEHKaXJuxOpbUdL4l4oOJ8jrVmj/K9xjcevduT0deA4C2\nokTjNsUh53s/bvtLJy1bZ2S0AXwQ+j0zw5f5jiUbxqcbGl2SjxnnDEYJIURrkmCREEIIIUR3oZ2H\n2n0GFfiPm5l9evQJtwK5H1STJV4BrIwRD3+6lOP+/QlH3z6ZR6csY86aiiZNr7IuzsueZcyTvCuv\nRS2behIBnsLeDCpwH9TrtXN8Y1W9/wbePkSBglS51UdzVrBG92vS3DqSZGaRznfPIq8s3xNdgul8\nj9hWnGjcpiTsBItiaX22yqsj/OGlWRmXDzfWU6L8319GjmBRjcpPdtYuKvPPhBBCtLauXYwshBBC\nCCFcicyiATUL/cezZBap4r6Ap+QpjbcUJ32J8NdmOOU8VfVx/v6W04x6+T9PyriHlXadpTWLN1Zn\njNtYGWHv8e9x8aFlvD5jLUcmP+4MFsPWZalxQRUH7ZQOBbzzNj3vz7acgBHOqnChHO+vI0vOWbVG\nsOjiCVD+Xf7v21Ekv9ftOJG4zcCwk6UWjfu/F+/8YBGfLCxv4EaaZB1grmCR0vlpTB0sKIY4/gw5\nIYRoZZJZJIQQQgjRTahkqU3tptQxGzP7qlqJDIwwsdSh0rAbdPGWsmkNvakkvXeR1zG3T6Y+5n94\nTg8y2Vrz+ZJNpJs4dz3grkalUq+jwXLnN+7YYQBsq41RjCf7w/SUmn12Jxhm4j3ECXneX2fhvrdW\nCBaVHQ4H/r/837ejSASLdCOZRbG4f//+C/b37Rfillimsu9Gnekbo3TLVwUECOooUVUAA0fl5X5C\nCNEUEiwSQgghhOgG5qypYENFZjNnW5lZRpMKsHgzi6oicXYfVArAV+OOTB0PVK7m24IruNx8y3eL\n4f2LU9tLymt4cZp/KXE7bRk1rWHW6syStVsn+lekSgWLtIaI20Q4pJ3AT1V9nBI8PZa8ZWiDx6T2\nTWUTJoZlesryxjetZK49nRP4GIDPlkjj42ZLBAq1HSdi5e5Z5BU0FcePGuQ7dvOJO6W2TZW4dsxP\nne+f8RVECaUy+VoqqKPEjc7XW0sI0blJGZoQQgghRBdUURdjn+vf8x27JZCZ+WMGcvSmyRIsAnju\nsrGs3lqH0lvdoTXOymXHm9N40DoldTw9W6Oizp/FkxYrYtmmpq1MdmvwAWcjXgfTn0gdT2YJvTt3\nPbspT7DIu8T86fekskuCWIRUDCNUBHVpfY46gZpofjJXupVkGVois6g4kVkUjduYhmLkwFLmr6tM\nDS+llveK/o5at6PvNqfvXsKv394IeIKXhht41cogo/P7djrHficv9xFCiOaQzCIhhBBCiC7o3+8v\nzDiWyoDwULEcAZpksEg52RFD1Qb+uvM8eheH2GtIT7DcIJKdyNQJEud7u/XnZ/83nNP33ZHqen+g\nqSoS5+vlW/h8sVNqll6W1lT9VOJhvm6r73iQaGo7Vao1/HtQ0h/2u8DZ7z0s1bzZxCJEHBXsnMvE\n//CAIe09hc4nESxatdnJSBtuL+cY4xuqIxaWrdklsJGTjKmpysyxxjx2iK2Eyf/032eL2yvrzyeM\ndDY8QUkbAyse490561rvvQghRCuSYJEQQgghRBexcnMtJ9/9KZuqI6leLF65GvFmlWgCPUytZ2CP\nMK+E/salG26E2i1Ok+ity1NDtXKzkHoWBrn2xD0oLQhSG/UHgyIxm7Pv/4LzH/4SIHX+yqNGZJ3C\nMLWO/mxr8pRDVm1quzSZWfS9PzlfT7vHKRFSKpUBEsRyspESq6N1Nv1KCxofJPwSwaJkz62ff/cT\nHgndzpNfLAfgtk1Xck/ortTwVGadGaQk7CnZrHGbX4eST1Sekk4bg6q6KFc8PZ3FG53A1Htz13PO\n/V+g85RxJIQQrUmCRUIIIYQQXcRjny9jzppKxtz4AbOyLFffrGBRuASAm4KP8OlVo+mfzOb51zCY\n9Hd45qzUUDsRfAkRx0ikZFTWx4ikNQkOB/w/em6odLJ/DtipNy9dcUjq+LOXHczNJ+3MR+Hf8XXB\nVU2eckHVytR2cbJnUagkc2AiYGBiOQ28O2mwqCCUo9+UyC3xvWpiM1RtSB1esdkJNIa107ha206Q\nyA0WhZjz5/9z76NtrvnBbuy3Uy+G9018/3gyiyK28xoA9THn6+VPfcNXy7fwh5dmUVEb47rX52SU\nZmazSfdkev8ztuPNCiHE9pNgkRBCCCFEF9G7yG2Cm23Zb7M5wSJPkCUU9Zd78dmdvt1kpsQIYx0/\nX3E1AK/PWJtxy/Sl3n+cyDAqCpmMKevDrT/cmxtPH82hI/px3j59s07rih0XZx684GUAesx5ildC\n19GTau5NZoeEswWLnDK0ADZHmHNg/aysr9XRBU0JFjVbMrNIWZxmeJei92f7RBMlkskyTMwgxDx9\nsN76NVfNOINXrzoMUyV7FrmPVhZG6s/b81+vZH2F2xPrpW9Wc9o9U3jyixXcOznL93P6lLF8/ZCE\nEKItSLCoi9tUHeGbFVuaPL6iNsbabXWNDxTt5iePfsXPnprW3tMQQgjRAQ3tk5khs+SmE3ngwgMA\nOGa3fk2/mTfI8srlOYd9Y+/KL5+bntofUTsLbIvfHTsyY+x789antuckMp8uNt+lR3wzTLmTs0eV\ncMHYnZ0BM5/1XfvETw8C4Or445mTKN0RSndE2VH2NxYz1pjvnuuRpa9PImBwjDk981wnohofItKl\nsspsfh98MXU4TIyxxrzU/pzVzs/Pqcyimc/Bggn+e21LZLLpRBA2rWdRMpPv6akrOfLWj3yXLk9k\nMikU49+Yyz0f5Q4aBbDdxtxCCNFGJFjUxZ374FTOuq/ptdHH3/kJh/7zw1aelaisj1E2bgIvpC0h\n3BSfLCxn4twN290UVAghRNcVs7KsdmY4y34v/+dJFCWfN3fYF3bYp+Gbecu3Gsi8sTAw0rIyiEe4\nev8QxdQxTK1LPXAvLXebaZ989xR2UhsYH3yS0c8fBB/8Dd6+xllBauF7TqmbxxG79GPmdcdRXFSc\nOYk+w8F0H6bDeEp7jCw/7iayNMYYiSbgJYMyx3Q0R46DPU6FwQe4xxZPar/5dFaBMAAFnmboAIVE\neD50Y2o/GejxrQb4xtWZ96suh6pEEFRlzyw6YfSgjJLMpKCpePzz5dw6cUHW87atMbHQEiwSQrQx\nCRZ1cYs3VgNurXRj1lf6l42dunQzy5u4jK1oulVbnE+THp2yrJGRuX23vipf0xFCCNFFxLMEi3y0\nDQP3gp99DCN/4BwbdWb2sU0oe5mqR6PQmb2Q4vXwn735dsD1fBT+Hf8IPAJAQdD/o6dKDzLVbYWv\nH4Znz86cjqHoWRRMrdIGOA2rx1dAsMDN8gD6qMqM6/0vrGDEMe7+uc84X/c4teHr2tP3roUfPQWX\neT7UG7hn+82nswqXAp6eVglFRHz7yQCoL/CYzW27wITfOtueBteGEUitPlgYzP1nacKs7KulbauN\nMu7lWdz63gIC2MS0PLYJIdqW/K3TTWypjTY+KItzH5zKUbdNzu9kBNHEp0uGaloC+cbKeuqiFuVV\n7g8yspKGEEKIdHHbH7RR2HDX/jDtUeeAbbmZNgW9nK9lh+W+4UVvNvJ6GkWWoM+/hgEQqnQCOOf0\nnM+eO/SgKOTPjrBIf4jWsDpbqbXn/skH8n675ZxX38aCRQD9dnW3AwVwzTL44aONX9eRDD+qvWfQ\n+QTC2EaIElXPZMvNritU/mBRMivoz0F/OWSDPJlFA3oWcfLogew+qJStDfwcvjTHh7J3f7iY579e\nxX2Tl2BiMW1lZsN6IYRoTU0KFimlfqCUWqCUWqyUGtfAuLOUUlopNcZzbG+l1BdKqblKqdlKKVnj\ns41EPemulz3ReI+bl79ZnfOcBCbyK7nyhWk0HixavLGKg26axB7Xvcsr01dzqvEZhxmzqY7EG71W\nCCFE57cCVmtbAAAgAElEQVS5OkLZuAlMnLu+0bHezKKeVLOs4ALYsgTe+g289xdYNBHWzXQGHHQ5\nnHo3HHBJ7hv2zNLvJ+mCV9CJrjkZZWjpajZiaIstNf6H5oyMJK0hkhnoCROD96+D1d/A6q+cg0V9\n/IMueiu12ZfEPS79IPecYrXu9qDRzv3MYMPvo6MJZinJE43SoRJKqCPkyRoqTMss6qcq+GPguebd\n2PBmFpmETU2PgiAfLXCbzT972cFNupVlJ/9MaQLKRitpcC2EaFuNBouUUiZwD3ACsCdwnlIqI+dV\nKVUK/Ar40nMsADwNXKG1HgUcBY3lcop8sT0BnnnrGv+EbdbqbantDWnlaMOufbtJS3uKpnnmS+eT\nVqMJwaIz73VX6rj5ne+4K3QPz4RupqpegkVCCNEdLN/sZB7cN3lJo2OteIR91WJm/u04vj5wsv/k\n53f7980A7P+ThsvN0oMRBb3gnKfgwMtgl2MY2qcoexlaFidXv5hxLEB6/z0NC97OvNaYCp/9Bx4+\n2j34/fH+QcOOgPP+B8D5o4ucY4NG557Q9CcbnXOH19mCWx2EDhZSSIQiVZ8qa0wvQ7s+8DhXBhrO\nrMvQY7C7bZhgW6yrdMvdfnLIzhw6oh8P/2QMN5zufG/2Lmr49zAZiP3ZUbkz6YQQojU0JbPoIGCx\n1nqp1joKPA+clmXcDcAtgDfKcBwwS2s9E0BrvVlr3e268n6+eBNl4yawYnN+e//MXLWNsnETKBs3\ngbiV+UNac5OBjt3Tbe7obUCZ1JSlPUXTvD9vAwBNiBVRmSMolP7prBBCiK6pINHvJH1hgw2V9Vz3\n+hxfJnGPaf/ltfB1FG6cTigUosUKevj3T74D9jwVTroNgLK+xRywU6/cmUWeJtpXxJ9mtFoKwFOX\nOiubmelBphxNfG8P3Z95cKexmcdCieBW7Wbna6CBhPa9f5T7XGfRxHJ24afMIAFlUUwEigcAUJRW\nhlaqtmN14FCR90VAW6ze6t7nmh/sDsD39xzIhWN3pjQcYGttwx/GJgOqoZAEBoUQbaspwaLBgHfJ\nptWJYylKqf2BoVrrtPUkGQlopdREpdR0pdQ1LZptJ/XSdKe868tlTV/CvilOu+ez1PZXWe5ta80N\ngUdZEL4IgEi84Tid9vygt2B9ZibSAx8v3d6pijR7mStZXnA+o2n81/TIkf1T295Pbv/y2pxWmZsQ\nQoiOJVlKXpcIFn20YCNl4yZw8E2TePKLFYz8yzv8+dXZrKuow9i2AoDQY8dBZfbGuc0SLIQ/rYM/\nr4c/roDRZ/nPKwVaZ/YsSor5H7hHKudnokE9nCBORmbRovdaNt9ksGjlF+78cjk9SwBKdA9miCBx\nilU9lDjBopK0htcZ2XL7XtDwPb9/vX/fMMG22aGHG7AsCfuDoVWJlgJfh6/g7uBd2aea/DMiq6EJ\nIdpYixtcK6UM4A7gd1lOB4DDgR8nvp6hlDomfZBS6nKl1DSl1LTy8vL0051eIJE+4tYet9x3acGc\nbLe2tebCwAeElfOJxROfL2/wni9/s5rjja851/yQ8W/Ooy7a7ZLA2sxJhU6gZ/DaibwwbVWDY719\njQawNbUdNOXTRCGE6A7WVjhJ2ys21xK3bC557OuMMc98uZJDbv6QOXqYe3DRROfr/j+BPT1J4ee/\n0LwJhIqcoFFhrywnnX+LHrpwf/dQ7zI46k9O8+W0YFGcAKcYn9N7kVOSdlkg8TmjmYcsqObex5B1\nXrorwwwSxKJvMJoKFv39+wN8YwLpwaJj/upuH/Qz2Od8d3/sVXDARf7xygBtMbh3IQCTfndkxjx+\ne+xIAPqrSk4xp6aOxy071W7gaGOGc9CSdhBCiLbVlH8l1wBDPftDEseSSoHRwGSl1HJgLPBGosn1\nauATrfUmrXUt8Dbg+WnCobV+UGs9Rms9pn///umnO72FG5zl6699ZXbe7rm52l+C9PmSTRljvAui\nFFPXaJrrazPW8kDo3/wz+DAAe1z3bsaYdRXbkZIrMmyoc364DhPlmpdm8Ytnp+ccG7Ns9lOL6EUV\nvw28lDp+2l4Dcl4jhBCia3ovUcaci02WDxJOvRsGJ9YeGftzGHl8fidlRei73G0uzc6Hw1F/hEAh\nVPg/ENHA3aH/0u+D3wBwpjnFOXHus87cmkrl+BFWsi9EEygzyPG79yVs10Gx8+zRRzurjcV3PNAZ\n4w0WFfSCgp7u/on/gjPuc/fHXgWFvf0vkuhZdM+P9+eWs/ZiRP+SjHkM7BHOOr/fvziT16cv53Bj\nNveEEhlHc15u5rsUQoiWaUqw6GtgV6XUMKVUCDgXeCN5UmtdobXup7Uu01qXAVOBU7XW04CJwF5K\nqaJEs+sjgXl5fxcd3IxVbuNob1+BlkhfReveLE0vdZWbfv5A8A72HtwzY0yjr4NFALdnzjG3f9zs\ne4hMEZxPPpMrb7w1K3epQDQW49Xw33gidEtq1RmAL+csyGu2mhBCiI7vk4UNZ2AHMxpGJ/R3eqUw\nOOMzu5ZRCtbPhq8edI8lM3aWT8kYntGjKHWNCcf/w90fdQbssC/sdU728aPOzH2f5tj9ZBjatNWp\nOpSBo6GwT+PjRHZmEKI1YMdTmUXUbAQgUOT8vLxrf09z94Mub7j/VbYgZaJn0YDSAn504E5ZLysO\nZf9+fW3GWn4TeImnQze7ByPVuV9fCCFaQaPBIq11HPgFTuBnPvCC1nquUurvSqlTG7l2K06J2tfA\nDGB6lr5G3UpdLD+lXcmVzi46ZOecY7Qn9ftwcy6xtMDCys213PzOfGJZmmMnPRi8g5dD41P7tVKa\n1mJxyyaG88PBSGN16niuwM8PV98CwD7GUn4UmJw6rqwI+9/wfutNVAghRIfz/Nf+TJ0bThvF6MFu\nE2ozV7Bo5HFw7WrY64f5ndDiLEvTJ7N+olUZp7xNhG8+cy/3hBF0Ak9/2Qh/2wZnPQr/7wM49Ors\nr5utuTX4g0V7nd3Y7OGcJ+HiTvij6ZWfwR+XtfcsOq/VX8OKRDAzkVmUWh2vci3gtpFwdkJu/6te\nWQI/2ValWzMNlnwI43tCbaK36Fu/dfbH94Rln3Dyq3tynJFZVgowXKV9kLjXWVnHCSFEa2lSsbbW\n+m2t9Uit9Qit9T8Sx67TWr+RZexRiayi5P7TWutRWuvRWutu2eD60L7V3Ba8nyBxXp+xpvELmsC2\nYTDlXP/tYSwvOJ8QsYwV0Wzl/4frl89969u/YcI8Hvh4KYs2VKO1ZkfcUrZgIpvoGPNb9jGW+lNx\nRYv8853vOMH4CoCtujR1/NaJC7KOPzvwSdbjA9hKRV2swWCfEEKIrq1fSTjV9wQayCwCCJfmPpdP\nKnd2z9ghbtnNeR8e4Z5IZmYEws5DuWE4D+ABT5nOyBOcrzvsA2Mubfy1q9Y3PlfDlOXnu7twqT9r\nqDz585jnQ7ySxIrB/+9D5790diMfpq6dDnNfg2mPuMfevRaAY41vmjbPY/7WtHFCCJEn0tmvlWmt\n+U3dPfzQ/IQjjFlc9/rcvNw3bts8E7optb+PWkJtWtaSzuhboInGbR6dsoyYZTN7tVObrRRMW7GV\nx0L/So3sSY3vyp+a70CulU5Ek2mteXjKMo42nWaFJjYHqAUMURu5/+PMUsKG/DLwKgA/fujLvM9T\nCCFEx3K88RVhohnHexQGOXr3gSz/50lAlsyi42/KuKb1JX5eOPe5jDMnly5yd+rdMv2cvYa8D/Fn\nPgj7XQgXvZm7ObX3PsGi7GOE8AoV+79XDv+187X8O/fY3olyyCEHQImnv+pVX8Ihv3BL2XJ5+TJ4\nMa0B9gZnsZMqsn+fZvwc39DKfkII0QokWNSKNldHGHbt25hxJ/BSpjbQtzg/q31YtqbMcJtcKjQ6\nLcEkWaqWdJwxjUemLOPvb83jic+XpzJSYpZNeVWEd+0DU2MHqq2+a/8afIZRakVe5t6dVdT5m4xb\nGLwcvp4p4V9z3kFDs14T09k/of1W7wrAV8u35HeSQgghOoxXv13NvmoxD4Tu5LrAU2lnNf3Dbl/B\nf5wx2lkKPOnP6+GQZjSNzhcrEdTa/UQYX+H817sMACOSWZoGgJkjWBTy9I0p6AGn/dffaDid7fl3\nNthAjxnRvSUbvgOESv3fZ8VZAj+B7I2oGbC702ursUDOkANzntpJ+ZvWV9XLqmdCiI5BgkWt6Lb3\nFgKwv7EYgOuCTzGmrDczV23LCBo0V+GW+b79nqoGKy04ZKelxA5UW9lU7fQKqKqPp4JF0biNaSjm\n2W7/o2xlZ8+HbgCgOhLPONfdWLbmprfn8+q3qxsf7LG5xvkB+hPL6dOgGsnWisZtZnuXQfZYq/s2\n67WFEEJ0LtWROL/530x6KOdDp6Fqo+/85eZbjHxkN6h2jvcuCnFFILEq2fgKZ7n79lBfmXnsVzOd\n7I2aHA26wz2yH2/uewh4x0smhsjhSE9nDMP0Zxa1xp+bgaNynvq+6W8T8d36HAFVIYRoYxIsakXZ\nVj7bWhvjtHs+49wHp7bo3sVb/cGiB4L/zmiQbNv+1/f2NVq2qSY1PmrZmErx1+DTqbFnm5mrnpUq\np2H2AvlHjP9MWsT/Z++8w+Smrj78SpqyzeveK24YV2yKMdX0XoIJxRAIoXcI8OFQgkMJkNASSkJJ\nQjMdAwZjDAZsA8aAccG44Lruvex66xTp+0OakTSjmZ2xt3rP+zz7jHTvlXR3VzMj/XTO7zw/fQW3\nvDUvq+22lZpi0Yjc1QDxdDSAHWXJAuLijSUE8RYWT++3+94Tk+Zv4PZ35vG3TxfTY8xEflplR5KV\nVIYZO2EBJXvpk62xExZwzWsZ+gMIgiDUE9OXbGHgvZMBeND3XwAKAgpdlC3MDV7BZ4HbudNvpXk9\n2gfGNmdo8Rd1P9Fbf4Wb57vbnFEaLhTY7pFy3e80aN3LexNfljfuzdrby5KGJqTCaYSuqBBwnCup\nooj2hFDmlcxa5gU4Tf2OU7Qf4m3h89+q+TkJgiBUg4hFtUj31skXKfNWmmaLizaU8Nhnv2IYu+cD\nFPK5hQJVMZLSzozE6mdGe17+zkwlmzBvfTwSKRZZ1EWxDa4v8X3OGwclX9B1YBuVNVTRrTHjLF2c\nzd/j+enm39QfKk7q21mR7EUR1Y2UYtHhXXM4oX97+nXIXjS6Ztxs3vlpLc9ONedz0Yu279GHc9bx\n0owiXpy+Iuv9NgZemlHEpF8yMD0VBEGoRy7+r32j2FU1v3OGRX/mKu0jWihl9FWTC2Z0nFIPKWfN\nOiRXh0plpB0u827vdUzq/afyJkrHpZPMsvInPpj9tkLTwOlt1W0E+J3pji1q9ljNOsK2Zfb6jXNT\nDt1VGcYwDJ4OPOVq97ftU7NzEgRByAARi2oJwzB4/HMzDc3It59yjdK+ji8/9eUynvpyWdK26fZ5\nwfMz+WLRJkKa+aSttOcp8X5nZFFxeZi3fixybd9acYeFx7SlcNTA8EiHGjH/nqS2ScE/satS0tDm\nrrFNOR9NUcXMiymLNjNMWeLZt2XlfF7/frWrrTKsJ4tFvY83DT93rMTvUwnVQDU057kTW965h6mS\nDRFnBJUgCEJjpKXSQKN7m3Xa/W1rOpKj+6FmWfm8VjW7X2HvwSkW+QIQst5XB19lRhrVBEN/Z3oV\n+XJguaOCWitvewEwI9DDUY8HyakM4AVBEGoREYtqiSpHCppi2JEnI1X304RXvivKaH93fzCfQWM/\n47sV27js5Vl886sZGbFr2NXxMRHry6UqEmXIfZ8xYa7bT+dh/4uecwxF9Pi21dFSKU2KYGqKnDHE\nvijORlQppJTxwbGefTf5xnPn++5Q/spIlICSsP+L3oVIJcx7g/0q5mb8v0tH2JGymB80L0im/prC\nV6IRM+pfM+p7CoIgCHvEaVoDrYDZc6S93GFQ9eNvdTw4cVadEoS6IFF82WDZCjTrAHoNPRQ982m4\nfArsWJnc136g5yYjH53Kiq0eKWuav2bmJAiCkAUiFtUSFaEoI9U5FOWMhnI7vWuL4Q5t3VqanHrk\nJBzVuev9+bw2c7XLWHrJ+m0AqD77y+M5K8Vpw06zEopqRQut7na2576PVOfxTmAs0VAlEWfKmj+V\n14BJojdSU6RVfiBe+KJX24KMtimtitBJSV257HjV9NGJOCKFqhIji466w7XN9WtuYfX2cnqMmUiP\nMRNZvqV0t/4/Tv2vlVWxb/X28qz3IwiCIOw+b/24ml53fhIvQJERZ78IgYTvoX6n1ezEMuH0J+H6\nWXDNDDOiojqcN7/yEEqoa1JF6oTLIb9t7R33lgXm60XjU6ajXf/6nORGrWaqKQuCIGSDiEW1REU4\nyt/8LyS1N1fKuFibTA9lQ7zt5RlFKffzyfwNjEtITQLwY0Yrqb4ga4O9AVi/3XwSMWb8z4BdaUtx\nlPMMEuJSbRIqOo/6n+MgdQlK+VaiIYcwYJW3TYVEFoFatomPgn/mXt/LRPXMLurLqiIUkFqAeTFq\nphRuKLbLHldFom6xKNEXAhik2N5Cxz42jcc/zzwtzovGXO3uh5Xb+fc0D/NUQRCEBs72shB3vDef\nqG5Qkk0acPPOcP2P7rbCzjU7uUzwBaFNH7PqU3VlxMG8+b10ErTZF0b+qfbnJwhOnAbXTg6/Jfn8\nvWh8zR23eRfztVl7aLUPRl4bj0GShiYIQsNAxKJaojwUZbHeNam9v1LEff6Xecz/73hbulS0Vy1D\n6kT8mDf0qi9AzgEXAHDyvs0BmLnCjF6JRRZta2GHut7kG8+9/lc5Tf2Odorpu1NaUUGHNZPsned6\nGPt1GBxfFLEIzloyhoEs41LfZKIZpoGVVkXoGIssumo69Dza1R8T9/ya/basqIoQJExV18NBC0Lf\nk5L2+1Hwbtf6V4vTp48VbfU2GC0PmefUTW+mNl5s6Jz73Hc8PEnSGQRBaHw88bmdluWM9r39hL7m\nQtdDvDf05UBhJxjrKJyQ6ka4vtnnSHtZC5jeQtf/AMHMInQFocaIReq06mm+nvoYtO2XXMkvrw30\nPrZmjnndj0lNyuBzk9qOUn9O3lbEIkEQ6gERi2qJynCUn3TrAu/PO2BsMVUdD6KnanoN7a8s49h+\n7QA4dVDHlPuZ5WHIe/GI7nGxqGWzAoLBHLNDd6e0qZgRLzsMuypJc0yhoFCxI1xemPorWshhmOlP\nKFPb+UAYZfsd1YCfcqOnh25He/XbNCGjbcqqIjwVeNpcyWkBF3/g6m9mRR1FHJFKu8orUBXDvMC+\nZzPkez2BcrOtrCpt/8hHp3q2X/D8zGr33VjY3SqDgiAI9cWrM+2HQxHd4MQBZnGMq4+wIkpTVQzz\n5djLx99vLWQQ2VMfXPKRvSweLEJ9oliCakyEOehyuM7yA6vpa4hDrjVfva7hEsQpPxEUPC60JQ1N\nEIR6QMSiWmLjjl3c4n/PXImVfW0/IN6vKQY3bv0LuX6NXzft4uR/fM2uyjCbd1V67M3anO0U5Yzm\nvjmHMUA1LypVnx/Vb10oRkyxKI9KinJGMzk4BoCD9mlDVafhAFzo+wKAB/z/i+83QIQ5axyV0rYu\nNV877m++blvqKiOqpCp9C1z16iwe+2zP0qAaAyHsi9z2uxZktE1ZlW107lX55ejuZlvMc2jS/A08\nO9nMW/cHcpLGO9FU+8ZgU0l6sQjgZt+7vBe4l0f9/6YoZzSHqfOZt9Z8Kt1LWceS4O/orjTe8vLF\naVI4HvX/m6f9/6jD2QiCIGSHrhu0yA3QrlkQ7UHzwRLrZnkP9ju+HzJJ/6pvgoXma2OYq7D34rPE\nl2YdUvcBFLRP7s+W4++HWxZ6V+dL8BvLIcR2o9A95o+L3XMSBEGoI0QsyoJFG0p46JNFKaMWxk5Y\nwD+/WEpVJMr/vfZ1Ur+vVXfX+pDSr+nsK2bygk0s2lDCFa/M4uAHv2DmCtO8+qvFm13jz9Omxpcv\n81lpY1oAxXraYERD6LrBPgk3+fk5foLrU1dP8RNh+XaHwLDTerpZusk6RtDMrbbIKXVXWVu9zTRY\n/nDuOiYv2MRTXy5Leay9gbKqCBOjw+Pr6/P2y3i7OLGLk3P+C/nmjUC3dR/TQ9lAOGpw74e/cM24\n2bSySiSrWkL48VXTYfQ7ACzTO3HTsX1c3dWZXN/sG88B6lLO0aYD8H++twCzMt5N7eYSUKJc23p2\nRr9XQyJgpfDtKE8tFp2jTW+41YQEQRCASb9soH35Ej4IX2M3Lv0MOg1NHqw5Hz7EBJgGHF151TTz\nu08Q6pNWPeH0f8Ioj3Oxw2A49XE48a9w0Xt7fizNZ3qLeeFzPwwMEI5nD5DbEn73ARSmzkAQBEGo\nTUQsyoJrx83muekrWL4luaTl/LXFvDSjiMc/X8KY9+aTS3J0h5bXMqntAZ6NL8e8hs5/fiY9xkxk\nU4kZZTRYWc5R6jz+6H83eVKaH9VvikXlZWV8vmgTBVS4hijVeBf4iaA7Q9bPfcV8Pe1J17iKfqMA\neO6LBUz91RayTn/6G6Bxe91kyootpSzeuCtuMA6g6Okr2sUoC3kYRw8cBbcvheamv9X4wL18sWgT\nL1teVflYkWaxnPoYHYdA3xNY0vxQVHTahtZS9PCp8e6qSJRsCFgXJmVVEQyrGl4Lw442e+arZfQY\nM5Ff1jk8MUrWw/YVNCis01gq9gmC0Jj56yeL+eOKy+iE46HRBW/BWf9OHuys3DTot9CmLxx8Ze1P\ncndp1dP87suGAy+DY+6pnfkITZcDLoECj8pnigIHXQYjrqt9oWbhh67Vc7Vptr/lua9Ar6M9NhIE\nQagbxC0tQ6Yt2cJKyxj4ohd/YESv1sxbs5MVW8u44OCuHLefHXnz/px19FI8BASP/PyBxpLkcRZj\nxs/nZPV7/hVIkzKjBfCtMb1mfLOep6L7P/lf4G/uMYoK3Q6F1TM8d/HmH4Zy50t2dTb6n2kaZYas\ndLNB5wBQNfh35C5+j3ylko/mbWDkvmZETH5AS5v2szdxzGPTAHjMHyKq5aJFKzAyrIZWUW56ElXs\nexa5iZ1t94XiNbRSSnnIYdCcr1hiUbBZ4hYABHIK6KFupOf3Z8HJtpCzbkcFfdp7b+NFx2Y+2Gaa\nlxfr5uxaRLbG+/8+2UwtvP712Uy93bpwefl0KN0Cf0qu1ldfhCLm/yKVCXtB0P7IMwzDVSlQEASh\nPikI+tJXo9w3ocCB09A6RrP2yZXR9gZOe7y+ZyAItUN39/X5Hf437b5goccGgiAIdYdEFmXIJf/9\nIb68saSS9+esY4UlHr3xwxoSAxnikUXOUOvW7lQhgALKOVydn/K4vZT16Sem+lFCZgRIB2UHEd0g\nT0mIaoqG4Og7U+5C0cNEDetUuHKq3RHIhztWwQkPmOM0M0LJR5RKR+RKwNf0TqMcQuj+PAAUPbNS\n849NMM8hpevByZ3LpsQXNUfUUsz0OjGnPUb3ts3tlX8OoyhnNIeoC7ny1Z8ymlMM1TB/B92AhdtM\nwWV41QwMw4iLpElsWwZVHjcrDYBIigp1YYc7u3hgC4LQkIjqBt1b59X3NARBqEsG/TZ1n6MSsSAI\nQn3Q9O7yd4PiNP4nMSIJJcKCWNs4jKFTlYbtmUYQOlNLjgaKFnazVzQ/HHYTABOiI/jLRx5my7s2\nJpcCdaDqYXyKJVDktXZ35raIl+CN+eaoGFSGbEEjnGHp+L2JU7Uf8Fea3lKG4U75WrppV5KvVVUk\nSr5ipgcGChL+xgnEzx0caWgpIosUp+Hh9uUAXKB9mVLgmbM6uboeQGG5GR20dkc5naJr4u37/OkT\njnZUTyvaVp64aYMkVWSRsxx1qjGCIAj1QdQw2FGWQVrzNTPg0km1PyFBEGofNU2Shyq3aYIg1C/y\nKZQB5eHqI0fKQ1F6Kutpi3kzfoBqpZc5q14lCjb7XwhAIeUcqc7juqO68/5pKrPuPo5mOeaXRx91\nnXub815D6z3SXlcU1IAV4YJB5xZJCU4QKgW/R7uFqodsDx41dSnbmPeRis4XDvPtpu4PM3fVNm58\nYw7rdlbw5JQlHP/EdJ6f7vby2Vkejgs/ak76sOK4sSHVp6F5XWQoaYxN1+2soBUlnn0qOjsrwtzo\n+yDl9s0pha/+Ct8/l3JMQyDVORnUbT+vJn7aCkLWrNtZwe3vzHNF6Ak1h64bmX2fth9gpq4IgtD4\nqcZXVBAEoT4Rz6IMiPmgpOPWd+ZRlHMbAD0qX+dO/xtmR8VOe1BiKpEVdXSz7z18ig7b58L3k6Hb\nZ9x4TB8e/GRR8oH2Ox2Wf+Vqiok4PqIs3rgLEqusdzkIlNRfRko0bKc+pXnCoTnEIoC3flzNnNU7\nObpfW974YY1rrK4bqGrT8IPRMJgwbz0T5tkRYg9NWsxVR/WKr+8oD9HMiizyjDDrc4JZ6QbbbHpI\n1xYMCauwk9RikYcPlo/U5taqojA752rPvlt9b+NTD4mvbzJaJI2Zl3MlTEu5+wZDNEXU0G2+t+PL\nElkkCNlx2MNfAnD2sC6M6JU+QlLInqhhpJb6h11Sl1MRBKGuSHXdffLfvNsFQRDqEIksyoAqSyy6\nUvuIopzR+OKRHwZFOaO5zfcWndkSH3+r44YUxfEnThKLTL8Zn2KJUUsnm6/FawhFdQIkpL8NGW2+\nxkrax7C+aDRFp79SlPwL9Dg8bRoaXz9mRxYllmh3EBOlNEssuuO9+bz54xqXaXCMf01bnvp4jZRY\nallOQqW7mHiWSGXYFm12VUbIj1Wp8/IfuuAtOOVRwIwsOqZ3IR9uOYXflr5uCn2+RAUwdvDkv30/\nZbVrvq7hafS7Y9S5jTraZtlmu0rh018u8xwzQl0YXxatSBB2j9yAPAmvaQzDwDCgTzuP74erv4HT\n0xS6EASh8ZJKLMpp7t0uCIJQh4hYlAFVYZ2rtQnxaKFBykqmBW5mQuBuAK73fchg1U47usGZxuNM\nQ3MuA6gqYcPjovu9yzhw2VO0oNTdfupj5uvmhe52xRZxjlJ/9v4lmneGk//u3bdlEX0VKzIoTRqa\nqonlX/AAACAASURBVMUiiwz272pHnbzw9cr48mXaRI5S58WrZ9UHJZVhvlq82VMs2RNCVupFy9j/\nxSr9myqSZ1NJZXy5IhSlICYWeVW3UNX4+dFV2cIRFVb0WKQCjKhZxtVzUsneRD3VjQBUhpNFrHTV\nvzorW6moCjMlOhSAlYa7XGyfdgUU+fZJuX19c9zj0zhSncel2iS+dKRJxli3s8Il7ElkkSBkzswV\n2+LLmUTbCtkRSz8b3WULPw/7mAd9/2F6dJDZ2WFQ6u8AQRAaN06x6Mxn7OVUDwkFQRDqEBGLMmBT\nSSVjHKUs3w/eS3d1M4NVWyQJJkYBxehxhL2sKHD4LeC3onzClfgVb6Fh+LqXGKo6oiPO+hdY3kRE\nE45lfdH0UtbTXEkQmJwcdLlZdeE3zyd1ne+bai5ogaS++GGsyKJj1DlUhmxfnSAh3gvcS0tKuMc/\njpcDj6SeQx3wjylLufSlH1myKc3fYjcIRXT2VVZzpe9js2HfUwBQFfvG6bj92seXN++yI5AqwlEO\nUJeaKymMzln8CQB/8r/Opdsey2xSu0xhiGPuSegwKLf+R7puEI7qPPDxQq5KrJJ22zLodxoAhUo5\n14/7EZ8lqDjP6b7KGk4Of+4djlPPoktVJEqPMRMBeCXwCPf6X/Ucd9jDX8aj4kDEIkHIlOtfn835\nz8+Mr+8oz8CEWciKWOrseXN/T+HC17nQ9wVHavMBEYkEYa/G6Vk09CJ7ecO8up+LIAhCAiIWZcBf\n3v6m2jFBxUMsGv0O+BLEl+PGQp/jzOX2/dPu87nAE/bK/qPt5YgVsdL3ZPPV+qK5wvcJV8eEDC9U\nFUa9CEPOSz0mcb6uzc3jnOubxqEVX8bbvwneyAHqUuak8MKpa35ea/pE1fQNTUU4yuTgGC71WemC\n/jyiaC4B4rj92tnjrYpxU3/dzBeLNnGx73OzwysNDWBf8/85S++LbmR4g2BVQKPdfjDWLmMfIMKX\nizezsbiSnnd+Qp+7JvHiNyvd2+a1gYK2cP44fup9A2BGjeVZptrONMjPgnfwx4qn6BEtSp7Dkk8z\nm2stMXf1zuoHWWiOKLDGnHInCHXFuO9X8fHPG1xtt70jNzE1jZ4yWEs+qARhryYWWZSYjtb/zLqf\niyAIQgIiFmVAnxbV37gH8RAmWvX0HhxrL+yc3FfYJbnt0oSb8U7DzNezrYpUXpUUghnkOrfsAffu\nNP0QMkB1+BkVlK2NL7dVvKtr1ReaZcyj17AaUF6VEAWWU4ihqC6xyK+pcV+gWKrG7//3IxNmOTyc\nUvlHWWLR5b5JqEqGc49dTOS5zWYv1yZy+7s/s3lXpcdGFm37xRd/Wm0KTQoGuZYnUyyyaNqVvdPP\noWR9+v5apiKc2tA7EZ/jf1XTaYqCsDeieqQ/7aqsvkKokB1Rw+AE9cf6noYgCHVN7Bq+2wjzVbMs\nKzrtXz/zEQRBcCDV0NLw2YKNDOvekjMGtoJq9JT9VQ9D51Tl6o++C/Y5Erod4m6/bAq07gXrZ8Nr\no+z2xFLrZz8PWxbb5neOSmdTo0MYqc2DG+dAVTFEU1zUX/6lKRYpCjTr6D0mEcdNQ75SkWagycL1\nJQR8Cr3bpajkVUvEbm5qWgooDyWIEl0PwWeEuUr7mN7KetYZrRn10WeMCsJbkZG88UM7jutvpqU1\no9zeLpX3RJoUwJQcfZeZ6phwLv2f/22ejZ6VlCFW6PTBOvbP8cUj+7aHXyCHEIPUIgB6q+sZ63uJ\n7q98ln4OeuZiTW2Qyj9l9bZyurbKdfk0dVVtI3qJLBKE6unaMq++p9AkiOoGzzujiWN0GFz3kxEE\noe4I5JsPhdsPMNdvmgdlW9JvIwiCUEdIZFEKqiJRrnz1Jy54fiahivJqxw9VLD+aKxxl7Qs7eQ/W\n/NDrmOT2rgdBXivofRwccq3dnlg2PbeFWxxwRBa1VXZS3GYY5Lc2I5ja9vWeQ5cDzDHgrtiWDsdx\nuivJBsKJnPLPrznu8em1GsGxsbiSdTtN4cowDD6ZvyFuFFrTnjTrdyYIZFaklaoYHK/9xO99tqhy\nnm8qXzhMlnOVDFLiEg3QY4z8U+ptND/0PtazKz+gJf0NztUcde87D4sv9utkGpYPjfkqWTh/p1QY\nbfpUO6Y2GT97nWf7kX//ipdnFKXc7v053tsJgmCTppi7UIOkjIRt0a1uJyIIQt3TfYT9YLiwI3QU\nkVgQhIaBiEUpiEUrLN1cypsz7MpePxUc5Tl+H9UqZ995GLTqBcMu3rPqJU4BJ79d6nFgh6wCA9RV\nRP0p0pxS4ZXG5jkne1yOV9pdCiK1GMJxyENfcNjDXxKK6Pxr2nKuHTeb71duB0zfZcMwWLi+pEaq\n93y5eFNW44cri+LLeVZql3HuK6k30FKIRT0Oz/ygnWwB6Lj+7ZOiZwynWarmqHxnnW+VpJhDGqKZ\n+ivVAp/M38CnCzam7P966daUffd/vJBwVKo6CUI6JAKvbrjnw1+8Oyp21O1EBEEQBEEQLEQsSoFT\nXHCaVw/q3t5ruJsbZ8MZT+3ZBCos095THwN/NeUzNR/0Pyu+2mrD19kdS8lULLJPl5j5cffWed7e\nSw4i0dq/2+h79yT+9umvrjYDM+rklH9+zUn/mL7HxxjcITkdY0ebYR4jTQ7oaGd55mF6Bymp/IrA\nNCD3ormHj1UqrrQj28qqoklRXXqqyjrW/zZiZPaRsEzvxKiqewH4fnl2IlpNcu242Z7tbTA9mKrz\nM6rMwu9IEJoiXpGh/TrUbWpxUyDRRDzOgN/U7UQEQRAEQRAsRCxKQdghcByl/hxf9gdT+BAB9By5\nG0eybt5vSLjpNaybWF+a4zlp3Ws3jm2RaWSRY1yeUsn4wJ+ZVnYWDLkgaWhHtsWXw6nLvNQqqgJf\nLzXzvldsKeOA+z9n+Rbbs+eF6Sv40/j5LN20i753T2L26vRPcLVomb3SYRAAgbwWKceHAi3jy3mK\nGVlENlFfN8yGq6ab3lLZsP+FAHz162bO+fd3rq5oqre8JRb5FPN/VTUw+X/qpJRcopjnQ9GWXdnN\nrw5oo5hiUXVRbZVhiSwSBMMweOarZWzZVeXRZ74+fPYgPr7hcPp1aEa7wmoeYAg1x0GX1/cMBEEQ\nBEFooohYlAJnesrVvo/iy0okTXWpFt2zP9CNs+GYezzEnlgESIZROYf/Mftjxw+VfRraFqMlw9Rl\n5src15OG3uV/Lb5cm5FFHTxuWlqwizPVb4jqBgM721XhtpWF+OvERbz701quHfcTD36yiDd+WM0X\nizcTiuh8NC99VS81YnoWRfPbw+8+NBsT/KTKTngsvqxVmuLTmeo33OWz/h7pIouc9D/LPCc6Dsls\nvBPrPDQSjKe7KZu4sqOHETvEo5oGKCsBCLZOfy6XGTlx4cmvNJzonFgaXSzyrboEuZCkoQkCC9aX\n8PfJv3LTm3OS+mKeRft1LGRg5+aUhSLMqUZYF7LnmqP2MRcOvhIGn2937Ek6uyAIgiAIwh4gYlEK\nqiI6LdhFgDALdceN889vpd4oVJq6LxWtesKRtyW3H3ipmd7V44jM9hMsgE5DzeV+p2U3h4w9i+zT\nJej0LNqVLLKoDpErUs0Nua4bTFm4abeMsMuqkqu9/cP/DP8IPMuihfOSSjx/sXgzt70zj0/m2z43\n42evBWD26p1pj+WLmJFF5Uc/EDcH9+e5K9XlN7MjjS4veZrLX/6RfwSeZT91jdmYqVjk9BPKFqsK\nXwGmuNVD2UAntjI9eAtdtlpl/fqe5N7G+t/e4x9nruc0d/e3dptYPxc9LS4W9WvVcD5GdEvQ9GEK\nWM77rB6tk9MIa9N8XRAaC5pqvlG8IotigaGKYq6Ub9+Y9Lkq7DnRsPU3zW8Hpz5av5MRBEEQBEFA\nxKKUhKsqmJtzFUtyLqG/uiqzjULVV03LmK4Hwx8XQsssopViN76H3ZTdsWIiUC/vqlpxHJ46BUpF\nmoHudKeD/2qaUKeq9vLyd0Vc/sos3ktR1SoVhmGwy0MsaqeYT70n/LCUp75cmtSfyJJNpsg3b83O\nuIdNZTjK2c9+63qCroat/2/AFh0CeQmiit/uK6YZUxZtTtmflvnvZDbOi6oSAG71vU0bipkavJUZ\nOTe6x5z8iHt90cfudadYdPEEuGFWfHVy9ECm60M4ZYjppTT4ew+xs56IiUV+Syxy3tR6nX6iFQkC\n5PrN982WUo80NOtVVRSY9jA/5VxDW9IL60J2rN9ZweRfrO8/Vc082lcQBEEQBKEWEbEoBU9N8jbO\nTesh5AvUzmSyJdNIoRiKAjfOgfNeq2acQywivVh0ujbTtb5uZwWbPZ5aA/zlo4UAFG0t8+xPxaIN\n1XvlZFvJp989n/L9im38unEXs1fv5IpXZrG1tIplm0tpVTQRAMX5f96WkNblC8D5ZlreZ76RyQeo\nLrIoW6HPixIz0utEbRYtlBR/Iy3hXF33k3vdKRb1NCsA3h++CAAFg8IcH6cO6brnc61hYj5KfsUU\niRasL6HHGPP/pnsoQyIWCYL93thZHk7ZpyjANFNkbqGUpi71LmTNoQ9/yeYS62GEotnf4YGC+puU\nIAiCIAhNHhGLHCzbXMqtb88jHNWZsyJFhaerv0m9g5F31s7EMsVn+fdEvEWZtLTq6YqY8cTxtLOv\nml0UEFBt+fqnv1rG/R8vzHh/v6wrznoOmXDe8zNZtd28cN9aGuLAB6Zw3OPTOGzzGwAYFSX24CWT\n3BurfuhzAgBa1MPfqjqx6Kg7dnvecSxRT0MnQIp0kUSx6PpZ7nWPCnxrjLbm7oFmOX5UzSFKfvNk\nXKSqS04f0ol92uTzyh8OBqC5bkY8+Dx+72RhyIj7sQhCU8YppP660S0wx1I1FYcDmIrOtrIQQs3h\nw/p+VH3gC8JpT8I139bvpARBEARBaNKIWOTgtnfm8d7stcxfV0yOkuJCuE1vdCPBcPLAy8zytu36\n1f4k03HcWCjoAO0H1M7+s4xY6qFsoJtii26hqLcRcrtmwfjyf75ZmfH+e7XLpyUlFGJ7RXVXNtK2\nwBRCDOvm5qZj+1D08KlZzf3GN5KNXmMUFDgEn4OvdHdWbAfNTxQNPVxBkkF5dX/DQL5Zae3MZ7Oa\nr4tDrgHgO70//pRiUYInUkFb6Li/vb5wQtpD9Gybj+bcx5R74akDTEUmMdqqFrjq1Vn0GDMRXTdQ\nFPBp5v+6SjHPpTw8vFcS1CIFA90wPavGvPdz0nhBaCo4g4Qe//xXV59hQEtKyNs6L96WS4iDHpxS\nV9NrdGzZVcW6nemjbxNR42KR9R1x4KXZV8IUBEEQBEGoQUQschDzbSivipLrcbMZw3nLGUGF0x6H\n375Uu5PLhO4j4LZfk82JawrVEgdyW6YfZzE1eCvTg7fE11OVKe/YfPfKMIciBnNyrubnHFOwOUad\nzbTgH2lTbooVsYvvW47vu1v7T2SXYaYgKs4L+CHnuwdFzTSOsBrEr1e6jL4z5upvYOiFuzlLTLEw\nvx0nHdCHvm2C3mMSI4sAjr7LXm7d23xts2+8aZXRHoAZen+evmCYO7IIIFwO46+Ep4bBmh92f/4p\nWLyxhOLyMD3GTGTyAlOEXLSxBE1ROGSf1lx3dC+Chvm+fcT/Qny7Uwd3BLzEIrPtj2/P480f11AZ\njrJmezk9xkykx5iJlFQmp+QIwt5I1KEWJfqs6QbMybmaHuPtwgm5ym5ErzYhRjxk+vSl4pd1xfQY\nM5HZq3cwd40ZDanFxCLxKxIEQRAEoYHgq+8JNBRCEZ2ibaZnjoHhnb5zuylCaIp9YV1FoOn8ETUf\n3DQPti6FceeYbT2OgIOvMCuxlW6GNn1h/BWw5NOkzVOVKQ/6du/iuDJiRyq94n+II7X5rv59WufS\np2oxjB0NpzwKdIr3BTQ167Lp/4qcwf/533I/7U3MbbJSAaNqkBxC9g1AXRPIJxCt4I7je8J4j37V\no9pa2OEZ1ftY2P9CVzpaafN9OXTnP2nTuSfN8/xU+j32Mf9t83XbMtOkvQY56cmvkyqa7SwP07Yg\niKoq3H58X/jObG/mMGBXrZJoif9uFZ1jH5sWX+93j/ucHTz2s6wj0gShMeIUi6IJXkT5JUuSxqd7\nmCJApBo/p9OeMtPZz352Rrwt/l2hyjM8QRAEQRAaBnJVgvmU79pxs9lQbHrMLN6wixt87ycPzG+T\n1BSmgZha1xUte7gjl3ocDv3PhBbdoMuBkFMIHYe4NlGsi+BUnkU/FG3fralUOSKVEoUigId/058n\nmlml4D+5jT/63iaAGS0Siuocrs5n+hnlLL97OMuOmEp7ZQd+K51JRedm37s0d6S42b+Q420TcvSf\n8ij0M5++R7RccpUQF2r1lKoRKID579Bm/G+T+0570hT+Etno+Bu2HwD5rV0eS89eOIz1tImn92le\n+4ih1M5HS9E2d8XBnuU/86ftd8PaWVBmR0Qs1m3z7bhBr+4WgC/Uvqj2eE9OWcLLM4r2YMaC0PDx\nMn+PkbdrdVLbRZ3W73ZEqOCNKpFFgiAIgiA0MEQswnzKN2WR7a3z8KeLOVZL7VnjJKQ0MbEI3ClM\nqodgkJDi1DHfPM2qPMSi29+Zl9R24xtzMqq0UxWJUmykNuVu5ldQ9z3Z3q/vAy7RJvPkMbkcrv7C\na4GH6PbZ5WgLxuP78Xm+H/ABr51sRsscpc7jZt94/uJ/Kb69Ek8pc3hWdT7QFMeunGZGWFlPhaNa\nDjlUMdb/SrW/R60QTeG5dcbTpheGFwddYb6e+FfPbitAJ24KreS2YpPRwntfZVsyneke8W7wPkZq\n8+DFY2HqQ/H2fuqa+HLMoHek8b1r27/4X652/09OWcq9ExbU0GwFoWGS+HFbGbajNg0j+XP7mK2v\nUxH29qAT0rMrRXrrmf2symfZVjMVBEEQBEGoJUQs8sCnKukH5LWOL5ZHm+CFnc/hg+PlfZNwsfvC\nhYMB78iid35am9Q2Yd56ykIpjJkdTPt1s6eRcRwjmjSXu/yvc9aM3/BawCGIhK1olWWfM3zKORyk\nLI5HIJn7j1UDsu6onFEzwQK4ajp0cphDA7qWQwvKqDe2/urdnu5GpLAjjC2GEdd5dsc8vbq2NAU6\nnz/IEVX/8N7XZ3dnPNUa46eXXKuxiDbdOu18RvXnlCA0RaK6+7N59qod9kqKqKNKEYt2i88WeFda\nvXPXA3U8E0EQBEEQhPSIWORgpDqXopzRtDG2ZbxNqOk4Ftk4BaLEqloAK6a5VoOKeZOeKg1tuLKI\nopzR/OUIO+VJz8DqZ+KcIvxKmhuW/50MGzKocjXlXtfqO8H74iLUCdpPFOVcSFHOaG7zv2MOyCDF\nSvfl0E7Z6W4846nq51LbbFm825v2ad+Mf5y/P4+cY4p/mqYQIY34tKz6NK/aZGXORZyo/hBPsbmE\nDz3HHbdf+7qcliA0OGJRn2cP7QxAizznQwDvz9jKsB6P2hO88fr7aKkeRm1bZr6WrK/FGQmCIAiC\nIGSOiEUOfqd9DsB+xor0A322V0MID7FkbyfqCKPvfXxy/4qvXKu9X96fP/teIRTxjuy4y/8aAN1L\n58bbwmnUoh1lIZZvKaUVu6qfa8JcMuVwDw+kOBkYkEa0HPqo6+LrRqcDYOjvdmsuNcqKqXu0+Zn7\nd6YwxzznfaqCnu4jZOaze3SstPNQv+FybWK1487QZsRTbHYazQDY0Ntdwe4f5+/PN3cczR0n9Uu5\nn9KqCKVVEpkk7J3EhPyOLSyDfkdeWiwLrXjo1XDqYwB8i+lLJ35e6QlHsxCL4htVpO8XBEEQBEGo\nI0Qs2h2O/XN8saopikWxsuoArXsl95+QHE7/B9+nRCu8xZ3B6koAhq5+iVaUACkzH5i+ZAtD7/+c\nYx+bxu98n2c37ywYpX3j2V5a0COj7atwl6xXBp9rm/7UBc27utfPf8N8Pe2JGjtEjl/j9CGdUg/o\ndkiNHSuRfwSe5W7/uGrHBYjEn+77CbOy8EDKC3s6RhhoqkKXlnl8u2xryv0M+ctn7P+Xz/Z02oLQ\nIJm9agfDlUXk+83PKJdYb6lF5f3Ph4Muh0ABbRXzc3rTLqmKlg6vipsFOSmikYdcYL6mSAMWBEEQ\nBEGoa0QschCrRpIbqEYAGnI+kzpcDUDIaIJikeYzvW3GFnsLIANHeW5WXOr28EkM0W9etpLZOVd7\n9sW46wM74meN0dZ7fnnJVesYW+w9NksKmreufhBQYSR4OYU8qqrVJofd5F7vd4r5N+h8QI0e5qkL\nhqbuzG1Zo8faHVSMeBpakDBRNehKI9TQ4x5lD48alHI/Ud2othy2IDRWvvrqM94K3s/hq8xoQFdk\nkSUWKbGIylApfQ1T4O/XoVndTrQR4PRyqvLwdQpq9udP0cOn2h2BAvMzs6Bdrc5PEARBEAQhU0Qs\nAopyRlOUM5qjNbMy15FK9ZXQFEskaZKeRdVR6B1t8sJXi1zrsRB9Z5nzGKnuy9dst0P0NxitzIWu\nCREsV38D1/1gr9+TOmIka3KaZzSsWbOEm6i6FosOuhzurpuKZDFejJzsWi8prcHfWdcpyhnNzb53\nyaUy/Vi/XSFPRY+fSwFCRNUABm6xKJYW0qVl6sp6Mc5//jvXjbQXq7eVc/SjU9lUUs08BaGB4MdM\nsey43fzcDDsiYpZsNKOIFA+vtohHmlVT57pxs+PLXgKz32f+HZ84z0zlO26/dhTljIYfX4CKHUnj\nBUEQBEEQ6osmLxbNW7Mzqe0sfYprXe92KNww29XWp30hAEN7ijlupgQUt+dLLES/a06yR8P8dcWs\n3VGedn9Bq2IZzRL+B6oP2u5rr3uZcHtx9gts7npS+jEZikVd2yVEIIXS/y41jqKALwA3z4fLv6zV\nQ51e9QBHVD3BQLXI1f7mjKXugetmwxf37dYxDN08d67TPqSvklxBLxVHa/PYr+InIBZZFMBwRMOp\n6HHhF+A3lsFvKmau2E5xhbv0dTiqU+Ioh/3a96tYubWM4X/9gh5jqvdVEoT6JvbQo0AxP4tjgujV\nr/7E7FXbAUdkkYNIJpUImhhfL7UfToQT0tAiUT3uD9W+mekP9eIlB9Xd5ARBEARBELKgyYfFfLpg\no2XVaRNLR4uvDz43yZunVzszcqQwLwfBg32OgpXuqmixcvQx/vzhLwCoHiXNr3hlFpAQpp9A0Hoa\nTr4jHe3gqyDfSkM7+W+Ql0Ha2On/hJJ1MPhcfvxlE6fyaeqxmVb/8SecF+Ey73G1TYtu5k8tMt8w\nPYBuCV3Ldzk3cEnoDl4OPMKw3I3ugS8cbb6O/FPmAp6FYUBM0vkw+Oe0Y9Hd59Pw8mnANfiIois+\n7D2ZaWpOnjhvf75dtpXNabxYyqoitMq30wwv/d+PfJPG70gQGjrdWgSgArSoGQ0Xi4j5dMFGfqOa\nywbulOMW7JLUTA80VYkXkEs0uO5916T4slqd0bUgCIIgCEI90+Qjizq3yE1q05SEC+A13ydvuGSy\n+broo1qY1V7AJROSorGCCWLR+Nnr0IiSG3ZHd/lIXXXqokNs4SOohMyFfIfHwyl/s32Uhl8Fg85J\nP8+xxXDAJXD0nQAcs1+H5DFH3g5DRpvLu2vaHKonsagO2UBrelS+zjTdlF/baSl+53A5REKZC28Q\n9x3yK95lvN2D3WOiqBiGYYrAioaR4FmUyN2n9U+7e2cUESBCkdDoMaz3jL98EwAL15fE+xRLUI0k\nvFVmB6+uNiWzKeJziEBTFpp/zx1lIc597jvXOFVRQNehTD4/BEEQBEFomDR5sahLy2SxKIlKD3Pk\nsrr1g2mUJERjJYpFAMtzksvJL8u52HN320qreG3m6uT95XsYWqfj9hVQ2MWzKzcYSG486Aoosqqj\nBTM0dI0kRKa08qgat5dw8Yju3HFSPy4cbgt58/SecYEniV0b4YG28N0zGR8j4wiGUf8BI0FQMnQM\nw4wYNBQVn6bFuxKjCAHOGNKJu07ZL+UhykPu/Z880ENgBM4e1pm8gObZJwgNCisaTzF0RqnT+fvk\nX+NdqvXwJOG0R1UMvl+xvc6m2JDYsquKHmMm8sn8DUl9mmaLRQ9+sgjDMBh6/+f8sNL9t1IV4PH9\n4O9773eDIAiCIAiNmyYvFnnd0G4yWrgbEsuQg8tEV0jDLQvMNC+SPYtctOmb0JD8f1m7w+1t9FvN\nSnOLp6FlGNaf3xqumg7XzEju8zBxpVl7MxoGoG81nkYxIpa58TH3wKWfwsgxmW3XCLnvzIFcM7IX\nJ1miydBuLQgRAD1ZHARgs2V0Pndcxseo9Kgq5ImWLPYpho4ejyxS2adNgT3cQywCuPjQ7q71ds2C\nXDvSvKl7cKI5/+1lIXTdSCmKdWqeS2U4mrKynyA0FIyo/f56LPBvV18ssqhzggH8Er0zEz3EkqbA\nQQ+avobXjptNcbn7c86nqpynfcWN2ngAJi/YlLT9QGUFB760D5RuTOoTBEEQBEFoKDR5sSgaTb5Z\nzE+stuRVAtxvRSSd+lgtzGovonkXaGdGaXhFFsXpORIO+H18NXYT/93ybfG2igTBYIi6wlzoNgIG\nnwej304/l4snwGlPmMv5raH9gPTj9z0Vzvmvufy78XDM3ZlHMUWsFLlmHaD7iKw9ehojR/Rpy7x7\nT2D8NYdSZWiU79oJ485NMveurLTWNy/MeN83vVl9hUIAfMGkJgWdeWuLzXNK1eI3vwCXH+bt5xT0\nafxw17Hx9YP2acVpg80qf3PX7GRraRXD7v+cnnd+4nkzeP3RvckNaOhGsm+JIDQ0FA/fOIABnQrj\n75eA37I4PP8NAHTFjJr7fGHy+d+UuPOD+a71gKbwiP8F/uh/F4CKcPLf9uPg3XUyN0EQBEEQhD2h\nyYtFRtgtDFUafgqUBLGo/5nJG4atKJeO+9fSzPYirBv4RINrF6oPAnbEh89yCL3ghZnxthKrClUH\nttES21OD/DZw9vPQ94T08+h5FBz4h/RjnObIJ9wPA0eZyx2HmN5FmRKLLPI1LQP05rl+FEUh6GuD\nagAAIABJREFUjI/+xnJYOhn+ORSK7QpmVZXJ1e+qY4ZDNEyLhyi3o7SSUf+agYph+hV9+UC879qj\n9km5q3bN7P+dAvTvVBhfv/rVn5LG/3jXcRzVty1z/3w8t524Lzl+82Y6UeQUhIaGonuLRc1z/Q4T\neCtys98pMOBs/Ib5eXzFK7PYWFzpuX0qpi/Zwq1vz9vd6TYoRvR0F1Hw++zLqmY5PjoUZpDqDtD5\nAOhycE1OTRAEQRAEYY9o8mJRhzXu0tYRzePmvr2H4W2noeZrQbvkPsGNFhOLIvQYM5EVW0q58Y2E\nSJGZz0IgP76qeKShFVeEOUv9hpk5NzAn52q7Q6nBqjIxc+QBZyd5LmVFLGqpZY89nlJj5GjNcSNY\nuhGesKO4whWlWe/P63zwREuOLIr5EsXS0Ch3GMrq6YWce0/3NruetWqHa/3J8/anbbMgL//hYFrk\nmalwAeumcchfPsts7oJQTxgJ74OLDjRTSnXDsN97zhRdfy5BxRb/D3noi6yOd/F/f+C92WuTUrga\nC04vssSvH79m/52CPo2Ibn7+9GybT1qu+BIu/7zG5igIgiAIgrCnNHmxqPm2ua71An1XZhue9BBc\n/U2tlyXfK/CZN89BzNSs0S98z4R569FIuFEP2+lKXuLAXz9ZxKlaQmW6YPOanWvMuLx4zZ7t5/Bb\n4Mqp0OXAPZ3RXsf2nTuqH5QNbfvZyx6RXLHICDOyKMFwOtEMO4FW+ea5q1YjSJ41tHNS2wdz1iW1\n6brRaG+Qhb0XNeF9UFhlehGZxvAxscjxHti5mi7KVtqyZ+/lf09fvkfb1xdH9W0bX64Ku1PZnWKR\nYRhErDTUR0YN5se7jtvjv5kgCIIgCEJd0eTFos1t05RCv/xLOONp7z5fEDoMqp1J7W1YN/DD1cUA\nnDnU9H5xeRhd8SXMeyu+qiaIRTOWb2VHeZi8RD+pQA0bjf/ynvm69sc924+q2dFnTZDnOt6fsk8P\nldXswX77sr3ceVhSd8z/SkNnR3lCus3c1+GbJ+Gzu82f/50C711hLi94H8PjPjmRpQ+e7Nn++0N7\nxJd/XrsTgKe+XMaQ+z5jW2mV5zaCUB8kikUHbf8IMMUiz8iioq8BOEJ1+/Vky8c/r9+j7esL3TDo\n1sr87qmKuMWisqqIa1zY8kXM9Wu0bRa0CzMIgiAIgiA0cJq8WKR7F0My6XIADEsu7S5kiZUadJ5v\nKmA/iY1FGnHy302/hjNtYa6lsosgIVrm+SnaWsboF8yIovxEP6ldNVyN54QHzddTHq3Z/TYxZvhT\ni7BGguF1JqRNQ2u1j/n/ymnhqeo409B0RYVDrrM7pz0CU+6F75+DH16EVd/C/Lfhu2dh0h30aW/6\naB29r3e66WuXDXdFEjgZ4PA4iolOH1k3x1tLQ6l/H0GoY/Kx3pNDRgOwJtAbsESRlrFoPcd7a7iZ\nBlxKhn48KUj13mnoRHU7Fa0q4hbaDuje0jHOIKKbb36fZv79dLnsEgRBEAShkdBkrlp03eClb1ei\n6+6bzsm/2Kki77a/Kb5c0unwOpvbXk+C6fBLM4oAOK6PlUIWq2DV90Qmdb4BgG+CN/Nu/iPsKA9z\n0j+mx7ct0Twq09Uk3YbD2GI4+IraPc5ezrQlW1J31kRk0dXfQldLkPIFzf/XmFXmepeDXEOdaWhb\nyiJm5b1Ezn4ebl9mrx96PVTsZECn5sy553jPNDOA/To2SznFvIAvvhzzLfGp5g1jcUVYoouEBsPD\n/hfMhX2OAGCXZn4264ZBMGbY7IwsGmo+RLl+ZM89Ou7pVoXBxkZU1wn4VAKaSmVCGlprK3UVoKQy\nwsqt5uedTzX/fjoeYYo9jqi9yQqCIAiCIOwmvuqH7B2c+OR0lm4u5ee1xTx+nl3BbPuuSohd2zku\nhgvzazi9qSnjUc4c4O7Nt5oLhn2xHdXtC+lB0UUArovxdWonXFZHf1qL0PDo37GQVNYc+61/f88P\n0GEg/G48VHgc5OIPzXbLVNuZhhaKAn4PE3stYP7EyGkO0Sr4/F5aHv8XzykUPXxq2inm+m1/pFiq\nSiyi6NznvgNg4o2HM6BTDftuCUIWGIZhyxeqeUlgWOJmfrSES3Y+Y/Y5o/asz/TBHfO4cHg3Pv1l\nY1bHzAtolIeicRG1sRHRDTRVQVMVogm/w/5bPogva0Tjwrnfiiwqxq76yQVvQvuBkOeuqCYIgiAI\ngtAQaDKRRUs3mxWY2hXmEInqcR+B2I0kgM/ns32IwtmX9xZSoNqRRf+8wPbxaV5l+VWU2NFdOYHU\n+qWPCBdEJ7gbg6kjO4T645Ob6uBJeSAfmneptl1Bp2ebPFTFoFVBrvdTfC3gjoAbOMp8XT3TNey1\ny4Yz9vT+/Dz2hGqnlx+0xaJZRTv4avFmtiZEE81fW1ztfgShNnEH21qpUlbe5AVlrzq6HGJR7L0S\nDZEf9FEWSvACq4aY6XNiVE5jIaob+CyxKCFYmdNWPRJf9hGNC3E+K+Vu1GCHMLTvydCia8177wmC\nIAiCINQATUYsipEX0Bh63+f0uWsSAJpih6mM6N3eFoksA0+hBlDt0+zQXh5PUB2Cz1EpvGEADlEX\n1ei0hMbDaYM67Pa2GjqDO5vnWN8OheZN7+DzEgYF3DfDLXtAnxNgzfdQbEevHd6nDb8/bB8Kc9yp\nlS50HVbNwLfiS7oqmwB4/PMlXPpSsml6jl9LahOEuiQmDAHQ3Ey3VHUzAu6Uyol2nzMNLRaFF6ki\nP+CjMqwTiWYu/IStaJzKcPpqhA2ViG6gKgqKYgpHqQgQiX+s+FUF1s7i4B7Wd+DRd9fBTAVBEARB\nEHafJicWBX0quxzVSpyRRe19ZRARH5HapE2BR0paHztKw799Scpt44bYQpPD87zJEA2dI3u3AqBP\nByvlS02IYHOmoMWoLAEM+E/1UUQuVn8H/zsZxo3iJf/fsp+wINQhumGw0WjJwg5nQtUuAM7f6lUF\n1BlZZL1fomEClqdRJI1o4iSqG3HD9w/mrEvyEWwMRHUDnxaLLDIorYp4/h4+IvHf1acY8OKxMOl2\ns6HPcXU4Y0EQBEEQhOxpcmLRC1+viC/rukGu88F+qNSMKBDqlnb72culm11dd/vsNAg/jfMpdFNl\nYOWLXBC6iwtDf+LMqvs4P7T7T9LTVkOrhiO1+fxm/47Wjqw3fEF79yCnr1asb42VguZIk8yI8q3m\na7v+dC9IH22RLipBEOoCwzAFVUPR4mJRm+jm9BvF3i9bFsdN2zMVi8KOCKSyUJTxc7J8fzUAolZk\nkaYolFZFGHjvZH733++Txs3JuZotu6p4xv8krR5LiI5UJKpQEARBEISGTZMQi5zh8c6S1aWhCIpT\ngIiG4fxx5vLvHeH3wp6T08K7vXlX97rf7d1wuW9SfLlQqYEqWkKdUUoe3+kD+FYfxDyjNzP1/pxY\n9TAfRg+tmwmc95p53ql+lJiJeiyV5ohb3WM7DDZff/syXPRe8r7euRTmvuF9nFXfwZzX7PWQVYa8\noD2Kkd7LZcbybdX8EoJQu+iGgYpuihdKmksCw/FdGUsd9ueiWWJRNJqZWJQoKm0qqcxqvg2B/Spm\n8+qaE7haf5O5a3YC8O2ybTzz1bKksWu2FnOq9kPyTtL9rQVBEARBEBoAGV2tKIpykqIovyqKskxR\nlDFpxo1SFMVQFOXAhPZuiqKUKopy255OeHeYu2YnfZU1HK/OQnGknf2ytpj+rLQH6hGzCtLYYuhx\neD3MdC9m31Mgrw0s/oTOOSGGB1eb7QPOco9LTA9y0N3yf2HE9bU0SaEmeejsQUltvxrduCm8O/+/\n3YjA2e90OOD3pheRbt3oqtbT/EC+Pa55N9Cs827AWbbJ/fH322MWjIeZz3gf538nwYfXwS/jzZ/V\nZqUzgs1skSqBGWOOAeC92Wv5++TF2f9uglBD6LHIIlVzm7wDIRzrwUL3hgUd4McXaVVRBNg+RNWR\nKCqpikcp+QbOQ6VmlOQVxrus2FIab//75F8JGe6IoRPVZK8yQMQiQRAEQRAaPNVerSiKogHPACcD\n/YELFEXp7zGuGXATkByLDY8Dkzza64TKsM5nwTt4IfA4J6g/xdsf+3wJo9Rp9kA9u4ouQhaompme\n8+YFfDFiPm/FNMd1s93jPP4HVx3ZE4DrfFYlNOdNvNBgueDgbhQ9fKrr54KDuwEwITqCFXrmptXG\n7mZrqT5TKEqMLFIUGPUfc3nUC97bHnYj7H+hvV7dzfC7l5o/s182I+TyWqOk+EyJRWMA/O/bogx+\nEUGoHXTDsNPQEt5oK7Qe9oqakDalKBCp5KxvTcF/7uqd/O3TxdV6EE2cv8Hc3HpwEysp31g5V5vq\nWo/gfuBRSq73hol/T0EQBEEQhAZGJo+2DgaWGYaxwjCMEPAmcKbHuPuBRwBXTLmiKGcBK4EFezjX\n3aYw175466Zs4q3Afbzsf5jh+7RyD2zWsY5n1oRwPLHOCe+w2xMjifRw0qa3nrAv4zs50nxUeSLb\nWPnrbway9MGTiaK6zOWrY7c9i1TNTJ/54j5rR44btIGj4LZl0O2Q9NvHSCUmDzjbfL32e/vnpp8h\nWOBO3XHu1hFNoTXCyAph78HQrUIPipaUBqykU2kdqcV3+sZx+SuzeHbqcv41bXna4935/nzu9I3j\n6+DNgIFfa9yf530Ut+dSBLcIFCaFKCSRRYIgCIIgNHAyuVrpDKxxrK+12uIoijIM6GoYxsSE9gLg\nDuAvezjPPSIctm/yDlCXMlxdzFHazzw71XFRe/YLkt5Um1Q4BKLKEnt51IvucYk35J2GElj7HcO2\nf1J7cxPqDEVR8GsqrfJz0ZQ6MHeOiZGzrCiiSIVzMlDQNrPtIbVYpCjQuje062f/FLS1opqSt7no\nkG6uyCJ9t8OmBGHPMTAji1BV6H0sAOMix7J2R7npZZSK7XaxiCt99lf/3yf/Wu0xr/RNpIuylQ5s\nb/Ri0Ty9l2s95IgsWme0xo/1GXDeODjsJnugiEWCIAiCIDRw9vhqRVEUFTPN7FaP7rHAE4ZhlHr0\nOfdxpaIosxRFmbVly5Y9nVIS0bAd7HSSlsI/YPC5tm+JUPOs+s5e/uVd83XQuVDQzj0ual1YtxsA\nvY+HLUvgpVPs/jZ9zdcjbrPTiIRGR16O3ywlXdsk3pCVZvn5kolYZOjeN36qLykNrejhU3ngrEGu\naCIpiCbUJ7oBaiwNTVHYZjRDR+GfXyy1I/p++3Lyhs07J7el4b/frGT26h2utvv8L9EYtaJ5Ru/4\ncpAw+3e1o6yckUUaOsGYWNSiGxx/n70TEYsEQRAEQWjgZHK1sg5wlqzqYrXFaAYMBKYqilIEHAJM\nsEyuhwN/s9pvBu5UFCUpfMcwjOcNwzjQMIwD27at5kn/bqCHUlVbMagyfMzuekmNH1NIIFZO3Enn\nA5LbYjfXx90LlcUQTqiAplrpbMfeA4POqdk5CnWGoajpoxbS0XNk5mO9fFaywSUWeaeUpROLMHSX\nqX68yzG8Ipxiv4JQB8Q8i2LncMAfQCPKB3PWAwY/FxyeXIgA4MDLsjrOfR8v5OxnZ7ja2ijFjVIs\nLTcC7Ah2ASCohCkI2p8TxYZtnq8RtSOLtIB7JyIWCYIgCILQwMnkauVHoI+iKPsoihIAzgcmxDoN\nwyg2DKONYRg9DMPoAcwEzjAMY5ZhGEc42p8E/moYxtM1/2ukJ2fLPM/2E9VZ+ImyrkSMrWud2I32\n8GvstkBe8rhWppk1+W3iKREuNteb9ZVQk2QtFjnGXvR+5pslemJle4M281nHFLKNLDKFqpg3U8Bn\nj3GmoY3ct+YFckHw4teNu5hnlXqPoes6qmLE/bwUzY8PnVBURzV0jFTvmRHX2X5dDrq0TGHo7MFq\no12jS8OM6gYqOmGf+f0VJESO3xalFxg94ss+dDoUWH8/X4JYJAbXgiAIgiA0cKq9czIMIwJcD0wG\nFgFvG4axQFGU+xRFOaO2J1gTNN/wjWf7b7WpqIrBqp3JpspCDRO7aT/2HrvN7yEWnXA/XPieGXUU\nSpu9KDRiDEXb/ciibAzOlT2MLHKSwqwaw/AWi8rNlJtDVVPg/M8lB8a7nAbXbQqCuz8nQciCE5+c\nzpnPfOtqM2JCviVe5OUG0RSzLRKNYpDiPaMocJYpppYYuYwa1oUT+rcn6FOJVhMuZFiXHvP0XtVW\nT2tohKM6PqJELLEohzD5QftzJmzYAnVLpZQbDreqPkpkkSAIgiAIjYyMrlYMw/jEMIy+hmH0Mgzj\nQavtz4ZhTPAYO9IwjFke7WMNw3h0z6ecPZvbHubZ/rNlTNm8wEO0EGqWy6eYPkMBO0TfUyzyBaHP\nceZyqrQfodGTdRra7kYf7OnT+6EX2ctlW+CbJ5LHGLq3CDXzGQBeCTwCuKOJnMtlVRLZKNQfeswn\nLhZZpPrwWe9NlRRCaAx/LsbAUSgF7XngrIHsKA+xfEsZve78hFLrvC6rinDJf39wb2ed/gEijS4N\nrSqioxFF18wIKh8Rmuf6U45vvnaauSBikSAIgiAIjYwmcbUSsa5Go8HmrvZWilmV6/hBXep8Tk2O\nTvu7o4rArCCVjqhEfO21KKp5I1rbzHsj6bhZ0W2Ee33K2GThSo9mtF+fIyLK5xCLwtHdjLAShBog\nMbJIUX1omG2mwXX6aDxFC9LMFyU3oPFjkW1gPfDeyQA89eUypi2xjeUVdBTDSs0kXG0UUkMjFNFN\nMU0zBSJN0V1ikZL4uWb9rkliUU4LBEEQBEEQGjJNQizSLdEh3G6wq/33vs8A6NCiWZ3PSSC5Eloi\nqTxihEZP1mlouxtZ1KxTQkOWaWhe0W2J6ZGGnpzuBtBpmPvIinPZKRY1rptlYe9Cj5rnuBE7h1Uf\nfodYlNKzKIYvCJGqlN35Afd7I5dQfDmgRGrNs2jqr5uprAXz+FDUjCxC9aMbCgoGc1bbPlAt8hJ8\n0vQEg+uxxeaPP6fG5yYIgiAIglCTNA2xKGJerPlKVnsPiKSqlibUKrnVPFlNNCcW9h4UFdXIXCyK\nC0tH3JbdcY5MGJ9tZFG4PLmtaheUbYNXfwMvHgfLPof1s5PH/cGMrJiefwKAmZaz6GN4/TyIRujY\n3LxZjOgSWSTUH0YsgjOWsqnZkUVmGlo1AqtDLJr5p+SiBO0K3Z5c+djftzf4PiBQtW03Z56aVdvK\n+P3/fuT/3v25xve9oyxkRhapGjoKGjpn+H/gLt9rAIzs28YcOOo/5uvyL83XxMgiQRAEQRCEBk6T\nuBs3dPNJpq94lfeApZ/D4TfX4YyaOCc+VH1UEcAxd5mh/rNfEbPrvQyD7DyL1Ji5dGFipFA1JAqS\n2Rpce6VCrpsNb11Y/ba+ALToRtCKHCqtjMCn10PFDpj9El/ddinnPvedRBYJdU5UN+K+WWHrYYqi\n2pFFPqvcu0qaamgxfEGImmJRq/xkQaS0yh3dk69UuNY7b/sOOCjbXyEtuyrN+S/bXPPfG89PX8Gt\nhFldEqUtKho65668G3ywSO+GzwhDi27Qdl/3hlL9TBAEQRCERkaTiCyKhs0bvtABV6QYITdrdcqI\na2HQOdWPy20JJz0EV0612wb8prZmJdQlanZpaHGxKNtos8Tx+2VZwNG6CWbw+XZbJkJRjGBzBrRW\n6N2ugCP6tDGFIoCJt5Lj1yjM8RMRzyKhjnH6ZD3zxa8AVOmWkKr6KLAEHVWp3rMILWhG54bKCJRv\n5Inzhri6yy2j68Ic872YjztlrTYsi2K/38INJTW2z0hUp2hrGcf3b0+OEqJXxzboqAxVl8XHPB74\nN+qC8YCS/NmzJ5UYBUEQBEEQ6oGmIRZFrOiAg6+EfU9NHhAsrNsJCdnRpo/t8/Dbl+p7NkJNkKXB\ntWpYvh/ZikXOinsnPAgdB6ce60Urs2IifU+E0W+nHje22Ls92IwCKpjyx6NokZccdeHTlLgBvyDU\nFU6x6OslmwEoC1vnYTTEfjm2UfXyLR6pmE581nn9107w+H78plMJNx/XBwBdN/ihaDsA719nViXN\nxx1ZtL0ivVj68KTFfDRvffo5JFAb76ned01i5KNT+XDuenIJEczNQ0fhEHVR8mBF8fYxEwRBEARB\naEQ0iTS0mFjk9/tB9dDHWveq4xkJQhNHUfEpumlcncET9+Fb3jEXshWL8tvAtd9D6Sbodkj28xzw\nG7NqX8fBsPyr5P7+Z8KR/5d6+9UzzNeQxw23YeBTVUlDE+oEw2Ek7TznNCvCT489O1o/h3zMqmUq\nut2eikQvnmmP4G9rVr7seecn8ebOLcxS828H73cN/2rpDs5Ls/t/T1sOwOlDMk9Brc0Kg1MWbSIY\nDFHpzyUvGICQh7m3okramSAIgiAIjZ4mEVmkR03PIkULJD/tO+I2GPmnepiVIDRddkYt09uV0zIa\nP2LzW+bC7tyAtesHPY8yvVWyRVHsaKR9jrTbB54DZ78I574CHQZWv59ty2BjgtmuHsGvKZKGJtQJ\nFY7KYE4xRVMsschwXw60ZhcqBnp1aWiq372+8AP8WvI2AU3FK+U7qdR8DRCKJL+n9lRAGtGzNWD6\nOAWVCIGcAhSvh08A21eIWCQIgiAIQqOnUUYWLd5YQvdW+eQGMrsYi0YcKSyJF3DH3lPDsxMEoTqi\n6+aABrxyZuoULi/qs6KQqkGL7rBzFZz1bHbi0/bl5g2kkx1F+DRV0tCEOmF7mV2y3imcxLzDwoZb\n4Lnf/19UjOqlnMTzGvB5iChq+VYKSY6w81Hz5e13lNu/67+nLWfpplLem70WgNtP3Jfrju6d9T7z\ng+a1QxBz38Hc/PSpZs6+SydlfTxBEARBEIT6ptFFFlWGo5z05Nfc8IZHqeoU6BHrwlHzQ7cR5vJl\nU7K7SRUEocYI9hi+exs6PYjqg5t/Nj83MhWKYlEX7/wevrjP3ff0gXSIrK/VlBlBiLGz3K7spztO\nuVga2qF9rAqVfU8CoJuyGQUDo7rLhJ/fSmry+zy2ebQ3M7v9y1w+9bF4c2Ew9f6zibrbWlrF1tIq\nwlGdW96aF29/eNLiuFAE8NSXSzPep5PcgPlsLccSi9RAbvroId16SNWiG3Q/dLeOKQiCIAiCUJ80\nSrEI4JtlWzPfKBoTiwJw0OVw/U/QtWZL9QqCkDmVB1xlrzzQPvMNO+1f85OpTc4fl7b7ruWjGRn6\nuo4mIzRl3vxxNUU5oynKGc1xT0xj1bYywI4sap6XYw4s7AzAAHUVfiLVp6FVJVQc63UMgaQ0NDM+\nKW+z9ZDHWVQiJqp4EHKIRXqaCDzDMDjwgSkc+MAUXpu5Ku10C3P8afsTWbWtjGKH0JaDtezLMb2J\nAJp3c2/kjIC0/p6CIAiCIAiNjUYoFln+Clk8jFcileaCL8f0IPl/9u47Xo6q/v/4a2brbclNJ400\nkkBCSIAYuoD0IkEEpFhBQRFRrIiFIkURQVBQge9PEEWEr8oX6RCBAKF3ElJIIQHSy82t22Z+f8xs\nmW13b8vdXd7PxwP3zJkzM2fBZO/97Od8ztCup6CLSO/xFKuNd0DC/YXxnX/CB68WvjBY17cT623h\ngZ0OOTuRm5kh0tv++sLqVDsat/jzc6uAdGZRqnj8wemC7bV0dB4sOvSn6fb4g2D5f2ncviTVdcNp\ns/jnuXO814Qa4MQ/AmBbhZehJT/vAR5+Z13BcZGMGkWX/WdR0enWlrh8PengXz/FJ656gk3NTiHr\nsOF++RSoSQ8avpv3okETYPAEOO46p66ZiIiISAWqwGCR84NlrCvRokSUBCb4KrJEk0jVMbJ3QIu3\nQ6QZ/vcsuO1ThS/0h/t2Yr2thOVqBlqGJn3rrNtfzulLFqEeGHL/LCaXVGVk/fhK2Q1t7y/B4IlO\nxq775/OoZ05mGFvZbeQA5u7awN7Lfue9JtTgFJ2H4plFGUGgeJHP/EQX6n6F/F0vPB2NW2xqiXD0\n9J347wVu4MsfdgLdAOEB3gvm3uS8fuJsqB/e5eeJiIiIlIPKCxbFnWCR3YWasGYiQszoWuq5iOw4\nHW0tJG49vPOB2UGmcuev6XRIwq64v4alwvx38YacvlufWQmAlXAze5IFmTMCnD6jhA/a+uFwwetO\nxu57j6e6Xw5/k1ljB8Ivx8KCG73XhBpSzzOxCgZ7igWIvOPyX3/dqTMZM8j7ZzD5RVNrJE5rpHCg\nKtuyDS0MbQimM5UDNRB3so1yMgi1zF1ERESqQMX9lhKJdf1beCMRJW704y5KIlKUtfQxfJsWpzt+\nPRmeviZ1+Oago2ilwrKKAAIF5vyVR1LNRGfLfET6kJ3M7ElmFmUVbT5wcvczY8xCwd1AXWrZmw+r\nYJH3zCBSe7TwcrXsQtjD2Mqq8Bmc1Lic+T841HMuGrdYv72D6Zc8yvRLHi3lbaQ8v3wzxNqdg8zM\notCAwheJiIiIVKiyDBbZts34ix7k+seX5pz7z5sfpdqZRSeL8VkRBYtEypjvv1k7hbVugCevTB0m\nDD/NVFi9IkjXgclWOzg9xNYyNOkflmWzs73WOSiwDfzIQV3YgfAzt3gOTcOA6Z/JHWcYYDo/fviw\nPIWsM2VmDLXHCgeLsjOT9jbdHc9eugXTNHjpJ4fx9A8OAWDqiAZumJfeEW1tU3vB+364zXtu+cbW\ndIAos2ZR5vLYc1WwXkRERKpDWQaLYgnnB7/MH+iSbnt2Zar92KLCBS8ztbW3EUPL0ETKVShSYHfD\n9q2pZhdWnpaPAr+AZwaRao2Oojs9ifSVaMLit8GbnYP2LXnHmHbhIE2O6Sd6Dn2mkb/OWOPOqT8D\nJhZvrN6W93aZQaC2YplFWX9+UkdNHwAwvCHMuCF1zBzbSMyyuevFdLHv/a7+b8H7Lt/QkmqHiLLk\nqwPSmUWZwaI3/55uj9yj4P1EREREKklZBosKfcsIsMvw+lR7YE3nASDLsgkRoylWlm9VRIpJ7pJW\nmaGi9NbaRfo/sod2rWC/SC/xLuvOv2Ss9vXbSr+hPwS7Hp86HD+kFqItueN8gVQg1U8DtCdtAAAg\nAElEQVSC+nBuBt5rq7e6QR3nz/5ji9YXfGxuzSP3vax9w9Mb9BmpTTJK0dyRrml0gf9fhP56PKx7\ny+nIDILte17J9xQRERGpFGUZQcncASXb3jsPSrX97m4uTW0xrnhgUd7r5i/bSIg4UWUWiVSe5JIP\noNAvs2UtX82WT/7Ak1m00tqJB95cuwMnJR83u48ewG6+D3L6I4mMwEnmrmTHXdf9h51yB7YbPPny\n47Pg3f84/d9Y4B3n/hm4KHB33s/uk25ewO0LVvFs6Ntc6L+XN9fkzz6C3Myi2lD+5Z+1QT/rt3fk\nPZfPN+96LdXe13zXaWx3/6xmZhbtc07J9xQRERGpFGUZLIrEvd/8tUTibGjuIJaw2NbawU/8f2W8\nsZbkl/HXPraE255dyd0vr86518KPthMmQri2PueciPSfwyK/7nTM1g+dotdGpWYWJaK5fR1NniLC\npmHx+pqtueNEeklt0M/Zg9709E0fNcAbpLEyagDWNHb/YT4/RsNOuf2hBu9xxp+BiDuP5RtbWLmp\nNX0rEowxNvFt/7+LPjKRlZl37ckzvAMizfCf7zDAbOf9zW0lvIki3rzLec1eXvflB+Hbb/Xs3iIi\nIiJlpCyDRdnfMh5/4zPMuXIek3/yMO8tfoOv+R/iD4Hf8p+3nGLXd77wPgA//7+FOfeaNnIANUaU\noYMH5ZwTkf6zwh6Zar9hTcw7ZtC9J0OkBdsGuxIzixpGpdt1w9LtjMwiPxYNYWU+St+xbZtVwcmp\nYwML0zC8n7WJjGBRocLspfKF8vRlbTKRsRQzOY/DfvM0h177FIvXbQcgQOGt7aNxi7+/tBrLslN1\nDo/ZfSfuPmdffOGMwNRjP4VfjoNX/8xxW+703OPrB08C6HRp2v3nH8CssQO9nYEaOOpqOPEPzvH4\nA2HQuKL3EREREakkZR8s+vfrH7Aq45tA080wCBLn/974KOda2/ZmIETiFjVEvCnjItLv3rjk6FR7\nlZ0nEyHp6tGVm1lkmulfvA+/1Hmdeqyn8LUPi62teTKQRHpJwrIJZgRe/FhYts3lDyxis+0GVsbO\nSV8QK7xDWEny1eoKDXD+f3/wRe4Yg6ZdTmSlNYJo3PJkFB/9W2dHscw5Tx3hzPPI65/mG399lRvn\nLePH/3qbiRc/xKKPnODSyXuPYd+JQyAz02jB78At0u3busIzpQE1zp/NQnUSk3URdx81EF/2klJ/\nGPY7D2adUezfhIiIiEjFKstgUSQjWHThP7yp8yGK/1K1vcP7TWQknqCGCEagC9v/ikifqw2mAyYn\n+hYUGelUK6rIzCJIB4ZG7QmXbINJh4I/nWXhI8HdL6/pp8nJx4FlwwVbrkgdLwt/kV2ii3lqyUZe\ntHajpWES7JSxdCvf8smuyLeDWrAWfvwBHHJRqsv0BwkYCaKJBFN/+kjOJZmZRe2xBNG4xdL1LTz8\nzjp+/+R7qXPfu9f5OSFh2bBpGfzts3mndYTvVc7yPQw4WUi1AefPZjyRPxjd1B5jVfgMzPvOJadm\nWr56ZCIiIiJVpOyDRdnqiABODZMZowfmnJ952WOs2ZLORIrGEkw01xHaurT3Jyoi3eY3DT4duaLz\ngcCsrbm/SFaMZG0Ww5f+BTPUAGf+ExpG4cNi1tge1IgR6YRl5wZD9o69CsBuxvskfFn1d6zCy79K\nkrmkbc8vwPfcz99grSfIYviDBIkX3NQiM7No65ZNfPvu1/OOM7H4a+BKjrx3Ktx2WNGpHWE67/u7\nR0zh6aUbAfjHy2voiCWIFdqJ9a1/wNo3858TERERqVJlGSwqthtareHsZDLRXMeMMU6w6JNThnnG\nHHTNk6l2IuJs2xvc/G5vT1NEesAwDLYP3j3vuT/Hj+Ki2FdZY6X/bNfSw6Ux/SXmBq8zCvoCMPlw\nqB/GoLCZWu4i0hdGR1fm9E1rd4ImrdQQSGQVfY73MLMoGWwaPg3m/h4aRuQdZvqDBIoEiwJGOli0\nh7mch99Zl3fcIJo50OfWLOxoKjq1GM6fw4DPZP6yTQD86pHF7PqzR9jr8sc9Y0c3Zixfz665JCIi\nIlLlyjNYlLAIE8Eg9wfI+oxfGJesa+bCf7zB/KUbqCH/dri2Gyyyg9oNTaTcPP2DQ/P2/yp+Gncn\nPsVB0RtSfYNo3lHT6hutm3L7DB8+w8qb+SHSW/6w/fycvtmmk+1TSwfRYVm7h40/IN2eeXrXH5gM\nFk09tugwnz9EgHhONnHQb/LZvcbwyPn7pPuKFLv2U7xAdaZ4MljkN/GZ3qVkzRHvM4Y1ZBTqjjbD\n7LOc9sn/r+TniYiIiFSqsgwWxdpbWBz+Cj/w35NzrtaIpNpvvr+Rf7/+Iaf5nuTd8FmMMTbkjE+0\nO4UvE8dc23cTFpFeFSWdabPRHtCPM+lF4dxls5h+fChYJP2n3uggUJu1rX1m/aKDf9T1myaXoXWy\nq5oZcIJFVzyYzvy9/SufYOkVx/CbU2dSm3F5Q5HMwrzBoq89CZc2wQ+zsqrMZGaRwSFZWck5b8PK\n+nPpr3HuuXv+mkgiIiIi1aQsg0VWtBWAM31P5Jz7/qz0D4XjDScl/ZeB2wA41nwRgJ0GpOsvxDqc\nzCJ/TZX8wilSZWZ03OY5XmaNxsr4qylOD7fxLhcjpuX2BcKE7EjuL6UiO0gtHdTVF6mZ5evGEslk\nZlEnwSJfIEiABLi7Hc4a28ghU4enB2TUPmowspbKZd7HyLOMLblsrHYwnDs/1e13M5YbFlzDT4c+\nnXPZ+u3pLGVfIitA1dNaTiIiIiIVpOyCRdvaYtz61BIABmb9cDhuSC3DBtaljgfS6jn/xZrncm/o\nLkMjWJd7TkT6XTO13Bg/MXX8urULPzs+HVhJlN9fU13z9WfhqKvznwvUEbIjnp2+RfrMAd/xHBpY\n1BsdECqyTNsfLnyuEMsN8vg6ySzyBzENO5UZ9KldMwJFG96FlelgTn2RzKJAviVqmTWGRs6EC5zi\n2LHwYI40X6bm+d+w80uX51y2z1XzUu09ollFrQ+8sNjbEREREakqZfdb2Jqtbazdsj3vuemjBqSD\nP4CJ99v4MfHV7G6sIOzL+M0r4tY5CWal2YtIWbjm5D3osNO1QRqGjubsAyekjuO2L99llWOnGbDf\nefnPBWoIESGhZWjSR6zMrLXh3uy2GtxC1sW+TAnUFD5XyIxTnNepxxUf5xbSHms4u5LVhTKCSzfv\nC4//PHU42Mj/cwGAL099Q/xZBakHT4TBEzlgwkBuCV6f6q7NU+9wg5tdFM/+YzlgZME5iIiIiFSb\nsgsWAYSIeY4PmTqMv311H649ZWY6+ENusAjggdBPubftrHRH1A0uFfvmVET6zamzxzJseHq3pI21\nuwDw9qVH8s5lR6UK0lalYC0hu0M1i6TPdMQz6vkEvFlCdclsnWIbQPi7ESwaOdOp7TNsSvFxOzm7\nISY/8+uChf+sTzY+TLW/c/hkLp87nQlDnSBXIF/NonxfEPmChGPe3dIWhc/KGTbHzS66qv0Xxecv\nIiIiUsXKrhjIiAHhnF1Pzrbv44BFzfDyJljyUKp/mrmKFxO7sdAax3Tz/VT/MGM7HbEE4YAPM+Yu\nVdNuaCJl65dr92Ke+WNa7BomNR4CQEPYqZWyi/lRP86sjwVq3WVoChZJ32iPJlhrjWRIQ5jGjBpC\nr1u7UGe4WTXFPh/NPvxOyedkFAbdYNGcdy6Hh+6Fk27LGRqqHQBN8KfAdRw16Iuw95c4/v1f8eet\nUZ62ZnoHf/oGqBuS53kBaMuzKyFw4qxRLNvQwsKP8mQwHX89TDm6a+9NREREpMKVXbDINNI/OAIc\nbz7PQatvgtW5Yy8J3EkdHZ5AETgFcn97z5vcdOZe+FLBItUsEilXAxsaeLZ5BjsNCHPbsbv293R2\nnEAtIatDy9Ckz7THEnQQpLV+nCdY1GqH2MNY4Rzky7w9417YsrxvJ+cWz05+5k9cfa/T/6+v5gzd\nf3w9p4fGctRbr8B/XoHdT2Lw4rv4XgDGzjwGMssL7fWl/M/zh6Hpw5zucMDkt6ftyZ6XP5bqS1h2\nOqdxtxOgbmhX352IiIhIRSu7YJFhGJ7Mot8Hf1d0/PcD9+b0baWeB99ey02AP+EWyVZmkUjZeuCC\nA3l99TaOmr5Tf09lx/KHCBDDTuRZRiPSC7a3xzGxMQwfGOllXj5sbgze5Bzk+zJlypF9Pzm/m1lk\nxMmzqtzDSES5+tNT4C2346Efps6dMn2AEyyq3wl2Ox4MI/9NAjXQnJupOLzBWZ63tS39RdWkix9i\nVXLVXrjIbnEiIiIiVarsahaZBgSNWOcDi/Bn1C8IW21EjFCnu7KISP8Z3hAuGChaFZi0g2ezAy38\nNwBjNzzZzxORavX9e9/ExKI1apEZkTEzt5vvrw0g3GVod3xxJlceO6HwuGA9xCNwZbq2GW/elWoa\nd7kFtU+9A477TeH7ZO/sduCFWIaPv311HwCG1AXzXIR+fhAREZGPpbILFhkYOTWLuqrd3VkpGrcI\n2+1EjG4U6BSRsvCL4dd3PqhSbXPW114R+H+0RXv2955IPkvWN2Nik8AEK/1FimcHsf5apu3uWBaw\n45y59abC46ItsOqZnj9v2ePe40Atpp1g7EBnOVxjbaDnzxARERGpEmUXLBpYE2DmyM6DO7HAQG/H\nJ38A318GwDhzPQCReIKQ3UGHGc6+XEQqRNQMc1zkKr4U/VF/T6X3HX4ZAEON7Zx084J+noxUo4Rl\nM9n8kGEdK8FOB4hmm0vTg/orWORmFpGIwOt/zT2/6/Gw+8ml3y/S0smAjLVuh1+WzjR69XYAlm9s\nzbmi1Tcwp09ERETk46DsgkWGAd85ZFzxQSfdRiKQ9cPtmE9A/XCnaaR3OwnZHUQNBYtEKpVhGCy0\nx+fueFQN9jgVgMXWWBava+7nyUg1G9K2AuwCtbGyl2ftKG5mEa/9xdu/yxFw4h/gtL/Byf9T+v3G\nzil97IyTnRpGAA99H565jttPHgPAgos+xd+/ti9LrdGsHTS79HuKiIiIVJHyXIgfjxQ+d8C3YY9T\nSMy7xtvv86aP72a8jw2E7IiCRSIVbP7Sjf09hb5TO5gttRNY3jysv2ciHwdWgWBRqH9rFrHiqXTf\nmf+EyYd3737hAcXPj5kDH7zktM2AN0g27zIO4TJW/bIJgFGNNbQ3BgkN7+SeIiIiIlWq7DKLACcl\nPZ9wIxx2iTMkO23e5y1MeY7/AcAJFkW0DE1EypTp82N2thWUSBdtaokw/qIHMd3aRK+P/yqE8uwK\nOu4ACPTTZ6QvT42gQJ5l6D9c2TvP+/KD3mfne1aGGh+Y+eYoIiIi8jFQfsGirSvhgQvznxs8EUxn\n6187kPVNaFaw6DO+57BtZxlazAz1xUxFRHrMsg1vsWGRXrDoo+0ABNwNI+L+Oph0GMzNKiTdvHZH\nTy3N8HmPg/Uwbv/cceFeqhvkz/g5wfTnX373wSvptpVI/cwhIiIi8nFTfsGi9m35+3c5HOb+PnXo\ni2cVooy6xyfdBsDb1ngA/HachKFvBkWkPEUSpLI/Fn7U1M+zkWqxtS0KkNpddNb4YU5RwD0/7x24\nZcWOnlpazSDv8ZyvOXPM1hcBG18wf0bVbYel23YiN6AlIiIi8jFRfsEit0g1AHPOdV6PvBI+/08Y\nMT11KjF8uve6xp2d1z1OAWCGuQpsMLCwyvBtiogA7NRYl1qGdt/rH/bzbKRabGuLAenMokCwDJdj\nm1mfzaXWTrq0yfmnJ3wB8Hey86oVV2aRiIiIfGyVYRTF/VZxxIz0D2l5vmn0BzN+yLtoNQyZVOBu\nNka+bypFpCKsuOrY/p5CnzJMM7UM7dZneqk2i3zsNXc4waJ9zUVOx6Zl+QdOm7uDZlSCYAnBouSX\nSN01eKLzavoK7wJ3x6edVy1DExERkY+x8tsNzXDjV6F6UoEjcoM9pps+HrV9BAvUM7CxMbCxjDKM\niYlISUzT4IbTZvHyqi39PZW+YfgY02hCFW/6Jjue5dZM/57/Xqex6pn8A99/fsdMqJARu8P6d5y2\nP1h43FmPwYevwuyz0n2n3w1/P81pl1oE+6xHYcO77vMK1DNcOR9sG9o2wbp3SruviIiISJUpvyiK\nkREgOuh7MONU2OsLOcN8wdrO72XbGLZNOb5NESnd3FmjueLEGf09jb5hmIxtVBF+6V2W7USLJplu\nAevWTfkHnvPUDplPQWfem24XqlkIsPM+sN953jpDEw6G3U6Ac56G2sGlPa9+OEw82GlnBovm3gQN\nI9PHV49xXj94qbT7ioiIiFSZ8ouiZGYB1Q2Bz96at45BMOwsQwsaiYK3sm23cKyWoYlIuTJ9BN2/\n9k7ac3T/zkUqWsKymfv7Z9nQ3IEbK0or9AXLwH7+/9yAUXD6P5z2rsd37dpgLXzuThg1q2dzGDzR\nKfyduTNctKVn9xQRERGpcGUYLHLrA2TvkpKtUK0B4M0JX3NbNsnFaCIiZckwwbYYO7iG7N/vRbri\n148u4c0Pmphz5Tzs7GhR5hcxp9yxYyfWmalHOwWrh+6yY58bcANoI4sEm468csfMRURERKTMlF/N\noppGmPsLGH9g8XG+wrUNLCP9tgxsZRaJSPlya8msjXawNNycc3rNlja2d8SYPip/bTaRpN1HDwBg\nUG0gVbMoxQyk27schuBkVX35oeKZSZnZRiIiIiIfI+UXLDJM2PPMzse5wSILo2B6lG3bmKpZJCIV\nIG7ZLPxoe07/Qdc8CcCyK48h4NPfZVLYIvf/P421QWwrzim+p9InD/puuq1NH9LGH1D8vFV4qbuI\niIhINavcnxjdYJHhC+Se82QS2dj6wVhEypyJVfT85J88zPiLHtxBs5FKdPNTywEI+U0mbX2WXwdu\nSZ8M1qXbPhVUz+ug76XbR17hvO5+Uv/MRURERKSfVW4Uxd1i1zALJ0fZttXpL2AiIuXgCv//5PS1\nROI5fQveK7CrlYhrWEOI+sg6b2dmDSNf+SUVl4XDfu7UTrq0Cfb/lvM6dk5/z0pERESkX1RusChZ\nsyhfsMjNLFqztd0p8qnMIhEpVzPPAOAMv7PcLFmY+PXVW7ljwaqc4Wff8coOm5qUhw3bO/jDU8tZ\n29RecMxtz6xItYM+k0Ciwzsg+3PwwoVw4aLenKaIiIiIVJHK/XoxGSyKRwoO+ewfFvB8SMvQRKSM\nZS4Pwtn+3O8z+MzNC/IOb4+phsrHzZyr5gHwq0cWs+qXx+Udc8WD76baCdumseMD74ApR3uPB47p\n1TmKiIiISHWp3ChKMgBk5/7iZKRebQws7YYmIuXr5Vs9h/GcbaxydShgJFn2nzQk1bZsSGR+vO/5\nBS09ExEREZEuqdxgUf0I5zVPoU6bdHDIyPhfEZGy4w97Di07f7DIZ6b/Hvvlw4v7dEpSeRYs35xq\nW5ZNwsgIDoUa+mFGIiIiIlLJKjdY5HeDRKYv95yRfjGxtAxNRMrXKXekmp8xn8mbWXTQ5KE8eMGB\nqeMH3lq7Q6Ym/c/OEzy87vGlXPTPt1LH2ZlmCcvGMjI+G7OWOoqIiIiIdKZy89KtuPfVI/0NvImN\nbSuzSETK1C6HO4X6rTjXB//A1sTlntND64PcefY+gLPUaMHyzWxqibC5JcKQem2BXu1iidxg0Y3z\nlgGwpTXK3FmjeXyRd+ezhG17Nj8jUNuXUxQRERGRKlS5KTeNOzv/nPa3gkOcmkU2i9e37MCJiYh0\ngc8Ph1yUOky4v+UPCDux/Jd/cnjq3O9O3zPV3vuKJ3bQBKU/xRJWwXOPLVrPN+96jfve+CjVN95Y\ny0srN2NZGddtfq8vpygiIiIiVahyM4sCNfCdtwuczKxZZGNVcExMRD4Ghk5JNZeub2ZbW5TtHXEG\n1gQwMgr0Z9YtAmeJkqEC/lWtWLAo2zRjFQ+FLuYXsc/TEY2lT0T1hYmIiIiIdE1VRlEiceeH68eD\nP2CA0c6M0QP7eUYiIkWE039HnXHrixx+3XwAmtpjnmHZwaKH3/EuP5LycN3jSzn6t/N75V7RLgSL\nxhnrAfhZ4K9E4xl1jGoG9cpcREREROTjo3Izi4p4adUW9gXGmRsAGDqgpn8nJCJSzISD83bvPNhb\nayY7WJQdTJLykKwp1BuicW+wqD2aKDASrq25HdzTiYTbGL03HHV1r81HRERERD4eqjKzKODzvq2J\nw+r7aSYiIiUosJTs2lNmwtb3YaWTpWJmjRsxQAWuq0XCstncEsnpzy5wPf2SRwreoy7RlGpH43G2\nMBC+9l8IqsC1iIiIiHRNScEiwzCONgxjiWEY7xmGcVGRcZ81DMM2DGO2e3yEYRivGobxtvv6qd6a\neDE1wayEKaMqY2IiUuVCfhNu2APu+DRYCfxZmUUdsdKXKEl5+81jS9j7iidyAkbZ2WNW7uZoABw6\ndViq/WhiNpFoHBvVsxIRERGR7uk0imIYhg+4CTgGmAacbhjGtDzjGoBvAy9mdG8CPm3b9gzgS8Cd\nvTHpzhw9faesySlYJCLlLTr2AJZYYzx94cjm9MHlg/H/wlt7piNWeEmS9D/bLhDZyePxRU69oc2t\nUU9/Mni0y/DiGbIXH7tbqh0hANgKFomIiIhIt5USRZkDvGfb9grbtqPA3cDcPON+AfwK6Eh22Lb9\num3byT19FwI1hmH0+bqJnQZm1Shq+qCvHyki0jM1jTm/3DdsXZgz7D+fH8NlJ0wHCmeZSHnIXkJW\nTLIeVSLrP+odz78PwKRhdam+ofW5H6N1oXRGrY8EJjaWvigRERERkW4q5SfJ0cCajOMP3L4UwzD2\nAsbatv1gkft8FnjNtu3cogx97e17d/gjRUS6wvAFCBBPHe9srCfc+mHOuBkv/pDDdhsOgKVoUVnr\nyrb3yXpU2cGi+Us3AvDhtvZUX0M4d2+KsN8EwwdAwA0WKbNIRERERLqrx187GoZhAtcB3ysyZjpO\n1tG5Bc6fYxjGK4ZhvLJx48aeTim3WGzN4J7fU0SkDxmmN1g0P3Qhg5/KUyIuUJPKQrG6sMxJdrxb\nn1lR8tjkf9N/vpY/E9bKiDsld0h7+geHpPrCvgTYzrJEHxamYYOCRSIiIiLSTaUEiz4ExmYcj3H7\nkhqA3YGnDMNYBewL3J9R5HoM8G/gi7ZtL8/3ANu2b7Fte7Zt27OHDRuWb0jPHPLj3r+niEhv8gXw\nGyXUIFrxJCOv3wkfiZz6NlJefvvEMib++EHeXbu94Jg1W9qAdBbSn59blTPme/57eGjr8anj9liC\nubNGMW5Iemla2Eon7QaNBIYyi0RERESkB0oJFr0MTDYMY4JhGEHgNOD+5Enbtpts2x5q2/Z427bH\nAy8AJ9i2/YphGI3Ag8BFtm0/1wfzz2/TMu9xgW2pRUTKhbMMrfSC1UFi/PrRJby4YnPng6XfWDb8\n7L538p57Y802DrrmSf7x8mo+2JpeZpa9fO1b/vsAMHD6WyNxZ6e8DGYifX3IdINFqlkkIiIiIt3U\n6U+Stm3HgfOBR4F3gXts215oGMblhmGc0Mnl5wO7AD83DOMN95/hPZ51Z17P2HRt/EEw/TN9/kgR\nkZ4w/EHPMrQcF7zhORxubAPglfe39uW0pBumjxrgOS703+j9za0APPzOOgbVBVL9S9c3A9DUHvOM\nv+y4KQBE4hYhv897s2hbqrk372JiKVgkIiIiIt1W0k+Stm0/ZNv2FNu2J9m2faXb93Pbtu/PM/YQ\n27ZfcdtX2LZdZ9v2rIx/NvTuW8gj8wfkz/8L6ob2+SNFRHrC8AUIU2BZ2b7nweAJnq7Hgj8CoD1a\nejaS7BilJrMu39ACwFNLNrJmSzoz6LgbnwWgJeIEDy3buWHISAcTk5lFZx84gcbaAMTSwSIfFsPZ\nhmoWiYiIiEh3VefXjpM+lW77g/03DxGREhlbVhA2YhxlvpR78tCLndfRs1NdIcPJOmmNFslGkn4R\nT5RWePzV1cWzwlrdYFHyC5AjX/xy6txqt9bRz46fxhs/PxKWz3NOzDwdgAFGm2oWiYiIiEi3VWew\n6JQ7YP8L4NS/9PdMRERKs/YtAI70vcqpezSm+0fvDaEGp/3Z2zyXhIimAwpSNhKWN1g0dnBN3nEn\nzhrtOf7DmXsB8NUDnSyy5H9b061lNah5aWrsY4vWe2/2xGXO6y6HA1BHO5aCRSIiIiLSTdUZLArV\nw5G/gGlz+3smIiKlcbNHRrKZz2+6Md3/lUfS7fBAzyWfMl/nnlfyb7Uu/Sdh23xyyjAOmuwsgW6L\n5F8qGImnC1nffc6+HDNjJAPCfuJusKm1wHXTjFX86oDsXjdAVTsYgDojQnvMyh4kIiIiIlKS6gwW\niYhUGjdYtL9vEXtsyQgQZS6lNf2eS07xPQ3AI++s7fPpSRckYgwPW9x59j6cf+gubG2LYlm5S9OS\nwaIfHb0r+04cAkAo4Ev1OzWLcq97KHQxn3v1DGjZAPGsOleBOiCZWaSPeBERERHpHv0kKSJSDvJV\nRR4wxnucFSzaTi0AX//ra301K+mGW9q/x7VLjwJgcF0Qy4ZtWTubAXTEnMyhrxwwPtUX9JlE4k5/\nWzROiNzrUq6dDFcM8/YF3WCREWH0oNoevAsRERER+Tjzdz5ERET6XL5tzj+XVXctK1j0aOITqfbm\nlghD6kN9MTPpol3s91PtupCzxX0yMJQpmUGU3NkMIBQwaWqL8eU/v0QkZlFHR+cPvMxZesb0kyCY\nDhA1hLXBg4iIiIh0j4JFIiJlIc8OWjWDvMe+gOfQzLhmc2tUwaIyZLgZY62ROCs2tjBxWD0X/uMN\n/v36h3ztoAmE/GZqDMCKja2s2NiaOh5NxHO/AbTkPsR2A1Gj9kwtQwPAVPKwiIiIiHSPfpIUESkH\nh/40t8+XFfzJWqpmYHPtKTMB+GBrW1/NTHrAdP+bnXXHy3zqN0/T3BHj369/CMCtz6xMF7lOxKB5\nfc71YcNbk+jawJ8KP+zte1PL0JyH6/sgEREREekeBYtERMrB1GNy+3x5lhFd2mcJ9FIAACAASURB\nVATnvwLAjafNZM54ZwnS5pZo7ljpd6Yb31uzpR2AGZc+ln/gf74Nv5lCMKtGUU1WZtFQo6nww8bt\nD4GMOkWGr8vzFREREREBBYtERMpDviwQf4GaM259IxMbn8+JRlh2nmVsUjkW3Q/Ak9/Z19NdtMB1\npmG7wZFXOkvP/DVOn6lgkYiIiIh0j4JFIiLlIF+wKDww/9jkcjTbwu+mriSsPpqXdKqpPUZ7NLeA\nNb/cmTfXbCvtJu5/0yE13gBP0Ih7jvcy38t//blPg8/9/1ByKVpWjSsRERERkVIpWCQiUg66kgWS\n3Dlt7Vupv8QTlqJF/WXmZY8x96ZnAaeQdUpHE2cHnyh67b4TB3uOw2aCVb88jpljnEDhnEFuQetg\nffFJ+DPqWyWDidk1r0RERERESqRgkYhIOcgqXl18rPtX9ws3Ef7gOQASlpah9Ye2qBMcWrq+hYRl\nc+6dr3rO7/ziJXzTd1/B60P+ZJDQ/e8fd2oUfWG/8QBc2HqD099ZsChT60bn1a9gkYiIiIh0j4JF\nIiKVxkj/1R3Y9A4AcQWL+sW37no91d7v6nk8+96mnDFn+x/Ke+1UYzV3rD4CNi2DiFu4OuHUKAr6\nsz6ea4ek28ki1oMnFZ/c4geKnxcRERERKUDBIhGRcjNqLzjvxcLnM4pZ+9e/DSizqL88tzwdHNrQ\n7GQFxW3vR+sjiU+k2ruPHpBqz/UtcBq3HJoefP/5AAR9WZlmDSMyDgyoGQRn3NODmYuIiIiIFKZg\nkYhIuRl/AAzftfD5RDTVNDcvc7q0G1q/mDKiIadvCwM8x+OMDQDUBn3c8oXZqf7Uf7Foc3rw6ueB\nPJlFB1+Ubsc7YK8vwtBd8k9q1pnO65xzO52/iIiIiEg+ChaJiJSbcQcUP2+ni1mb694AIJFQsKg/\nnDJ7bKrtc3emM/EWGx9pbAbgu0dMYVRjTarfpnCdqjGDar0dO+8Dh/3cvTABZpGdzk68GS5tgmOv\nKeUtiIiIiIjkULBIRKRcXPwR/GAFTD2m+LisLdFXhc8gntBuaP3BzsjoCrvZQJ5g0YjdaagJAhDw\neT9yTzAX5L/pk1cxZUQDj134SezGcTDRXaZmZOyYZ/p7PnkRERERkQIULBIRKRfBOqgb0vm4QeNz\nusxER+/PRzplZdSKao0mAPAbNkw6DL7yCIyaRchqA9Ib3p3zyYmcf+gu7GxuzH/Tp38FwJTh9Rjb\n3oeaRqffzAgWRbY7r+e/4jxHRERERKQXKVgkIlIFAtFt/T2Fj6V8q/8GBE0YNhXG7QfBBoKJNs/5\ni4/dje8fNRWmHuu98PS7nddkf6sbTEpmFGVmFr1ws/M6dLLzHBERERGRXqRgkYhIJUoWMXb54sos\n6g92VmHxgyYPdWoKGe7Ha6ieoNWOgYVpxbwXD5mUbn/+n87yQ18Qhk5x+jrc7KHJRzqv2z/sg3cg\nIiIiIpJLwSIRkUo09yb4+RY49U4AjDJchvb66q1c/O+3cwIq1cTKem9/OWsOWIn0krFgPSY2V/n/\nhxOfneu9OJkpNGQX2OVwpx2ohVi7004uNQu7u6tFW9PXNo7rxXchIiIiIuKlYJGISCUyDCcgEXB2\nzXr49ZVlF5Q5/dYXuOvF1bRE4v09lT6TXVfcMAw3s8gNBLnFyE/3P0l9u5sZtOJpePJqsNx/L2c/\nnr5BoNZZfvavc2DLCqcv1OC8ZtYs+tRPe/mdiIiIiIikaTsVEZFK5g8BEDaitEYT1IdK+2v9npfX\nsOvIBvYY09iXswOgJRKnIVxkq/cKlp1ZBIBtpQM7RtZ3MokY/OUEpz3nHAg3Qu3g9HlfABb+y2m/\n9Q/nNeRmFmXWLEpkLWkTEREREelFyiwSEalkgRoAQkSJxa1OBjuaO2L88J9vccLvn2PVptbOL+iC\nY254hkvvXwhAxJ1PLF5eGU+9KSeby7adYFEySJQdLErWIQJnWZkv6D2f3DItU3IZmpkRCJxwUPcm\nLCIiIiJSAgWLREQqmT8MQJgYcau0oEybu8U7wMl/XFB07MpNrby7dnvRMZneXbud2xesApy4CYBN\n9QaLspehYbsdySygD1/znv/1xHT7jb9BR9YudltX5T4kmVmU+e+xcecuzlREREREpHQKFomIVDI3\nsyhMlFufWVHSJZnBoi/tN77guIRlc+i1T3HMDc/0aIplVkqpV1m2zY/9f+M7oxfz5f3HO8WtAUz3\n4/Xd+4vfIBHt/CHJYNHIWd2ep4iIiIhIVyhYJCJSyZKZRUaUW+aXFixqzSg47fcV/hj4yb/fTrUj\n8QRt0eKFqqMFlsFVcawI27I41/8g39l8OZeeMB3atzgnkplFbgHyHvG5y8+mzS0+TkRERESklyhY\nJCJSydxgUYjcgse2bfO7ecvY0Nzh6Y/E05lF7dE4zy/fnPfWd7+8JtU+8vr5TPv5o0Wnsqklkre/\n3HZp6y2vrd7KW0//M92RiMNf3IDOeqduE5/8fu890C1mLiIiIiLS1xQsEhGpZG7WiZ/crJ/3NrTw\nm8eX8o2/euvmRGLpDKAb//sep9/6Ar9+dLFnzH8Xr/ccv7+5rdOp/OKBRXn7qzNUBCfdvIDL/X9O\nd9z3Ddjo/nucdKjzuufni99k0mHe42+9ln8cpItf77x/1yYqIiIiItJFChaJiFQyMxksyl0CFg44\nS6FWb2nj0vsX8tG2diC9S1mmm55cDsCLKzZz9UPv8tcXVnd5KvOXbszbX6WJRQDsbGa857fvSbf3\n+JzzGqgrfgO35lTKkEnw9WfhsEvyjz//FTjz3q5PVERERESkC/ydDxERkbJlBgDwk2D2uEGeU/e/\n+REAG5sj3L5gFR9ta+fCI6YwLytrKKkjluBzt7xQ9HG2bWPk294dbxDqygczs4yqOFpUiM/575Iq\ndF1IdrAIYKcZsNr97zBihvfc0Mk9n5uIiIiISCeUWSQiUsnczKKpw8KeXc4Afv3oEs/xY4vWc8wN\nzxTMGnrt/a2dPm5tU0fBc8Mb0jV1bn1mZapdzZlFDyT2SR+49aMKOvGPcGmTty9fsAjAcpcVjtOS\nMxERERHZ8RQsEhGpZKYJhknIZ9Hi7nK2tqmd8Rc92Omlt31xtuf4f55dWWBk2vaO3ELaSWcdOAGA\ncUO8O4BVcayIt62JTsMXTAd43GyvlGRdolB97g0KBZgSUfe+gfznRURERET6kIJFIiKVzgywqamV\n1VvaiCcsfvLvd0q6bI8xA1n1y+P45qGTAJi3eEOn1/zigUWd7m4WT3jPV3NmkZkMhVkJJ1i0z9fh\n/Je9g5KBn2Ce+kVmgdXgfjfjqKaxdyYqIiIiItIFChaJiFQ6X4D2Dmd52O0LVnHktBGe0wdNHppz\nyafNBdRsfhuAbW2Fs4WyPffeZtZtz78UzbZhrvksIzuWefo7Yom84yuZZTlBIiNZWNx236Pph8ET\nvIOTwaKAN+PKuUGBj+HZX4HDL4P9L+iF2YqIiIiIdI2CRSIilS4e4av+hwkSoyboI2Z5U3lCfl+q\n/Y9z9gXgd8Hf03DH4WDbBHxd+yjwFyjanLBtbgjezP/yQ+e5RBlnrOOW+Su6dP9KEHf/Hfuyd6F7\n/vd5BkecV1/Q298wCmaflf8BvgAc+B3wh/KfFxERERHpQwoWiYhUOsvJDFoa/hLD6kO0R53aOfUh\nZ4nT5/fdmdd+dgR3nDWHfSYOYQAt6Wv/ewVHTh+Rc0uA/SYO4YnvfjKnv8BmaFhZ682uD9zM06Hv\n4qf0zKVKkXyvZnZFpnEH5g5OBosyAz8jZ8L33oUhk/pohiIiIiIi3VegWIKIiFQiy7ZTu6K98tPD\n+WhbOxOHOYWVD54yDICxxsb0BatfYP/Dfpb3Xtd/bhY7DcwtwDz7iic4fo+R/P6MvTz9diLuOT7K\n9woAx06tvro7CTez6BPjG+HDjBNfuj93cMNOsPHddM2iH73f+c5pIiIiIiL9SJlFIiJVxLKhPZog\n6DcJB3ypQFGmB76eEeSZfqLn3Jzxgzljn50BGN7gZMJcc/Ieufd4a21On5mIeI5TS7SseM7YSpdc\nhlYXyEqzMn25gz/7P3DSrTBovHNc0wgBBYtEREREpHwps0hEpIqc97fXaAj5CZhuEGPdO85Sp0BN\naoyRLLgMEG0FYOqIBpasb+b/feUT1AR8/OTY3TATHbDkCU4ZN4VfsxU/FmsZUvDZvnhr3v4l67cz\na3sHIwZUT4DEKlSzKJ+6IbDHqX08IxERERGR3qNgkYhIlXjJmgpAc8TN5GnbAn88AHb/LJz8/9ID\n4xnBokgzWBa3n/UJXl+9LVXnqC7kh3vOgkX/hwG87MZ5xnfcVfD5A1rfz9t/x3Mrue65Laz65XHd\nfm/lJplZZBo2+EKQiMC4A/p5ViIiIiIivUPL0EREKt3PNhGvG0mznbU1e6zdeX1/gbc/c7nYa3fA\n5YMY+fI1HDtjpHfcov/r0jT+87oTLNpqe5e+JRdqNbVVT6FrT4Frw4SL18IX7uvnWYmIiIiI9A4F\ni0REKp0vQLxxPPVGe9YJd6eu5rXw3yvS3fGMYFGrW+z62et6PI0gTkZTIuujxXDn0RFP9PgZ5SKe\nuQzN9EGwFvzBfp6ViIiIiEjvULBIRKQamH72MRenDpdfdSysfCZ9fv6vIdbhtDNrFmXbtgZWzof3\n5nV5CkGczCHDyC7y7ARWXn1/a5fvWa4sy2ZPYxmjNjwF0Zb+no6IiIiISK9SzSIRkSoQXuMEhoax\njY004jMNuO/r3kHvPQG7HgcdTflvYtvwv2fBBy8Vfg4ROnB2SbMsG9MtpL2tLUrIzSwaXB/k71/Y\nF+70Xru1rUiQqsLELZt/hy6B/DW9RUREREQqmjKLRESqiJ8iS73+cSZc1giPXOQcf+ZP3vNWomig\nCGBx+CsY7g5gyaVYAB0xi6DhZha1rGe/OyemziVrFk0d0VDamygTTe0x1mxpy3vud08s2cGzERER\nERHZcRQsEhGpAh2HXgJA0Ijx3Bm1cOnA9MmcZWGuXY+DUXulj5//XUnPSm4X//7mdFpNWzSeqllE\nzSDP+GTNoozYUkWYedljHHTNk3nP3f/Gmh08GxERERGRHUfBIhGRKhAeMh5wikyPfukq78kz78l/\nkS8E5zwJo/d2jp+4tKRnPRX6LnsYyzni+vmpvgfeWpuqWZTOJUoeJYNFFRYtctl55p0MmImIiIiI\nVCMFi0REqoHfqSP0tf1HwZBJ3nNZmT4pvoDzWqzgdR5jjE3cH/qZp+/ZZZvSwSLLuxQuGTqq1GDR\nt+9+I6fPVLBIRERERKqYgkUiItXA5wSLTp01Ijc4NGxXOP+V3GsMN4zjD/f48SfPHkMgWS/JinnO\nfcK/DHDqZ1ei+9/8KKdPmUUiIiIiUs0ULBIRqQb+oPMaj0C8w2nPvRm+8jAE62DoZNj3m3DkFbnX\nDhyb/54XLnSuL2BIXTDVTlh2qsB1dqbST2Y4u69VamZRPsosEhEREZFq5u/vCYiISC9wM4t49noI\nD3QCQHue6R1ztFvLyB+GEbun+4+5Bhb+K338pf/A+oUwcIzzTwHRRDpgEo1bhJIFrq24Z5xtOkGl\nSitwXYwyi0RERESkmimzSESkGiTrDy2f5w385DPnazBuv/Rx/TCYc276eOf9Yd9vZIw/J+9tmjvi\n3DJ/OQCReIJGmvOO6xiyG1BZmUXRuDcYtGx9+r0lLBsflfNeRERERES6SsEiEZFqYGT9dd7Uxa3d\nj70GLm1y/vFlJZ1+6mf5rwGuemgxAJGYxWn+p7wn9zsfACvUCOTfVaxctUa82VFXPPhuqh2JJ7zL\n0AK1O2paIiIiIiI7hIJFIiLVIGvpV68KD8gpkJ0w0gGlVZtauf7xxbnXBesAMG1nblYPVm7Zts11\njy9l9ea27t+kC1qygkWL121PtSMxK70M7ZAfwzee2yFzEhERERHZURQsEhGpBltX9e39h072Hmdk\nMh1y7VM00pJ7TaAGgPFPnMOv/Lf0aOHWmi3t3DhvGefcmWdXtz7Q3OENFpnJneNwajX5DDdYNHAM\nDJ64Q+YkIiIiIrKjKFgkIlIN3MBMyl5f7NPH+awoAzICRGGiuYMCdanm5/xPYfUg++mxResAWLwu\nf12k3padWZQZLHIyixLuCe0TISIiIiLVR8EiEZFqkJ3dcsLvev8Zh1zsvM76PABvhdOFr2uNjtzx\niYj3uAfBorrQjg3KtERinuMPt7UTd3d/e2nVlvQyNMO3Q+clIiIiIrIjKFgkIlINhu+Wbl+4sG+e\n8ckfwHfegcHjc07V4QaLTrkddjnCaSe82UZ2ItHtRzfWBLp9bXe8smprTt9NTzo7v33/3jfTBa5N\nfYyKiIiISPXRT7kiItVm4Ji+ua9pQuNY2Lwi51St4WYR1Q2Dz90JR10Nkw7zDupBZlFbNB1o2hG7\nqt381PKcviXr00WulVkkIiIiItVMxRZERKrFrM/nzfrpddHcukGpzKJgnVM/ab/zINbuGWP3JFgU\nSweL4pZNwGcUGd1zX9pvHPc9v5AwUdYzGIB316bf9yDDrddkKlgkIiIiItVHmUUiItXixJucpWJ9\nbeKhOV21qWBRfbozUAPHXps+7maw6K0PtvGz+95JHccTfZ9ZBPBc+Nu8GD4/dbxyU2uqfXfwCqeh\nzCIRERERqUIlBYsMwzjaMIwlhmG8ZxjGRUXGfdYwDNswjNkZfT92r1tiGMZRvTFpERHpR7PPgsnO\nX+fn+e4D4MCdw865YJ13bNMHqea2Fm+mUalO+P1znuO4ZfHw22tZvz1PUe1e0hpNUE/++Yb8GR+d\nyiwSERERkSrUabDIMAwfcBNwDDANON0wjGl5xjUA3wZezOibBpwGTAeOBm527yciIpXKMCDi1O/5\nYeAeAA7YucY5lx0sirakmr97fHGvPL65I843/vYaX/7zy71yv3zaovmzoMZf9CCRuNVnzxURERER\nKQelZBbNAd6zbXuFbdtR4G5gbp5xvwB+BWR+1TsXuNu27Yht2yuB99z7iYhIJVv9vOfQn2hzGoGs\nYNGB3001fUb3dkPbd+Jgz/HzyzcDsLG5DzOLIum5BiiyfG7tm302BxERERGR/lJKsGg0sCbj+AO3\nL8UwjL2AsbZtP9jVa0VEpPL5423gD4Mva9+EgaNpOuZmAAJG1zJyNjR3MP6iB3lhxRZP/7zF6wGo\nCfZdompmZtHSz24uPNAf7rM5iIiIiIj0lx4XuDYMwwSuA77Xg3ucYxjGK4ZhvLJx48aeTklERPra\n/hekmv8bvJQhb/4R4vkzfQbWOUvUPr37sC49InP3sUwPvb0OgKCv7/ZoiHSk34vx4IXsNCAdFDLI\nCHrVDumzOYiIiIiI9JdSftL+EBibcTzG7UtqAHYHnjIMYxWwL3C/W+S6s2sBsG37Ftu2Z9u2PXvY\nsK79MiEiIv0hvSPZbHNp8aGmk21kW11bhuYzjKLn+6p20LqmDj5Yt97T98LFhzFlhLPTWw3R9ImZ\np/fJHERERERE+lMpwaKXgcmGYUwwDCOIU7D6/uRJ27abbNseatv2eNu2xwMvACfYtv2KO+40wzBC\nhmFMACYDL/X6uxARkR3L7sL29clgUaJI7Z98l2V9Ql048QNCGYGaw3Yd3qX7lWrfq+dRQ8Tb2bEd\nvzuhWiPjXPYkRURERESqQKc/5dq2HQfOBx4F3gXusW17oWEYlxuGcUIn1y4E7gEWAY8A37Rtu3sV\nTkVEpHxMPab0sW6wyLC6FizKSF7i9XNH8e2Pfsgl/jtSfUYnmUc94QkIAfzvVwj4nOcN9Mf67Lki\nIiIiIuWgpK9Ebdt+yLbtKbZtT7Jt+0q37+e2bd+fZ+whblZR8vhK97qptm0/3HtTFxGRfjP+QBZN\nu7C0saZTiNruYrAokkgvMxv0/mMAnOF/MtX395dWd+l+pYi6S9vqyKq/9N4T+N0aSQN9XQx6iYiI\niIhUGOXPi4hI9xglfoQkM4vsrgVZYpk1iZY9mnM+ErewrC4shytBU7uTNVRr5BbrTmYWNfjczKK5\nN/Xqs0VEREREyoWCRSIi0j1miVvXu8EiEl1bhRzNyCwqVEi6PdZ7K5sty2b5xhYAxhveAtfUDac2\n6LyPAcllaAPHIiIiIiJSjRQsEhGRbjG6mllkda3WT8wNFj353QNhe85GmgC0RntvSdgN85Zx2i0v\nAHBV4H+8J4dMoj7kBotMt8h2sK7Xni0iIiIiUk78/T0BERGpUEZGZtGZ/wuTjygwzgkqWSXuoHb+\nXa8xtD7EtJEDAJhw884Fx7ZFEtBQ2nQ78+jCdYVPmn7q3GBRvc8NFgVqeufBIiIiIiJlRplFIiLS\nLXbmMrRgfeGBbrBo79b5Jd33gbfWcvuCVZ4C15lM0v29mVm0eF1z4ZOrnqG+zSmo/aOWXzl9gdpe\ne7aIiIiISDlRsEhERLrFsjO2rg8VCxY5L4e0PtLpPdc2tafangLXGR6/YB8uHvsOg9jO6s1tJc21\nN0xe/CcATNwMqcbCGU8iIiIiIpVMy9BERKRb4mQEi4plFm1fW/I9t7Wl6xq1xxKMYAt2oBYjlg4K\nTTLWMWnjVewamMGfXpzAMTNGdmne3WXUDoLtGR2lFvgWEREREakwyiwSEZFuidsZHyGhIoWDulDY\nemtrNNWeP38eL4bP9wSKAGhxdiobZDRz8t5jSr53MWu2pJ/xo6N3hZEzYfJRnjGnRO/rlWeJiIiI\niJQ7BYtERKRbPCWFimUW+YKp5qpNrTS1Fw4ebWyJpNo7RVblH/TaHQC0EcbKv1KtS2zb5qBrngTg\n6wdP4huHTIJ4BPzBnLEn+552GoPG9/zBIiIiIiJlSsEiERHpllhmZpE/VHjglGMAeMx3MIdc+xQn\n3vRcwaHfvvuNVDtBgWVe7/4HgBDRkndYKyaSURsp6DNg/SLYuBj84Zyx1wacukVsXdXj54qIiIiI\nlCsFi0REpFs64hmBGsMoPNA02e4fTJvtZOqs3NSad5idFfhJdPIR9ZY1qdeDRTVBP/xhP+fAF4Ij\nr4DRs3v8DBERERGRSqJgkYiIdMuIxrqSx9qYYBdfM7a9PZ5qHzxlWKfBohZqsHoeKyKaESyqC2Vk\nM/lDsP+34Gvzci/a47SeP1hEREREpEwpWCQiIt0yY8ygksfaho9YrHih63hGAaI7zprDLZ/fK33y\ngjfgpNs848/z30+iF6JFkXgi1TYyM6SKLa37zB97/FwRERERkXKlYJGIiHSP0YWPEMPANIoHdqJu\nxeyrT5rhdCTSO6MxeAKEcotoZy9d647MZWjvrW9On8gozM2XH0q3G3cuvuxORERERKTCKVgkIiLd\nYxYoQJ1HR8LApPgytJhbA6k+vgVaNjg7kmWK5tY66o3MotWb21Ltnx4/LX0is8D1+ANgyOTcfhER\nERGRKqRgkYiIdI9RerAomgATJ7DTWBvIO+aP85cD8OnHDoZrJ0PCDRaFG53XyPaca6xeCBbd+N9l\nAPzgqKkEYhmZRf6gd2ByWZqCRSIiIiJS5RQsEhGR7umkYHWmAbUhfG5mUaFsoLteXM0k48N0R9xd\nhnbe885raEDONUaio+Q5FHLK3mMBmDtrFLRtSZ/44BXvwOSyNAWLRERERKTKKVgkIiLdk1wWNnhS\np0Ntw0wtQ8vMBrJtm8cWruO59zYBcIj5RvqiZGZRqMF5nX5Szn2NhHep2qaWCOMvepCrH3q31HdB\nwi2sXdu0HB79SfrEkoe8A1OZRUUKX4uIiIiIVAF/f09AREQqVLTFeZ1wUKdDw23rGGc4u47FLZuX\nV21hl2H1vLhyC1//66upcevsIemL1r7pvPrc4Ixpwuf+BiuexF74fxhtGzGy6hotWecsI/vT/BVM\nHz2QE2aO6nRuyQLXjf88FZo/Sp+Y8EnvwGRGUaCm03uKiIiIiFQyZRaJiEj3xNzC0MHcXcqy1dht\nTDffB5zgzCl/fJ5T//Q8G1u8wZ4wGTugvfNP59WXUeNot+PhuN8QP+xSAMysZWg3Pfleqv3qqi2U\nIhksMprXek/MOtN7nNyNTZlFIiIiIlLlFCwSEZHuSRaeHjyh5EtWhc/gIv/fAVi2oYWFHzZ5ztca\neWoQ5dmm3gg4WT7t7W2Mv+hBvvLnlwBYsHxzasz0UQNLmlPUDRbRMDLded4LMPM078BkUEw1i0RE\nRESkyilYJCIi3TPrTDj1L7D3WZ0OtQeMJu6vA+Dr/v+k+u9+eY1n3Jd9j5b0aNNdCrbkgw0APLlk\nI7btLZwds0orwB2JWwR9JkbmErTaobkDk5lU5AavRERERESqiYJFIiLSPaYJ0+Y6r50wRu2Jf/C4\nnP5BtQHP8SRzbc6YvPdzM4tWrUsvNZvwY29B6ngi/65r2aJxi6A/6z3UDskduOj/nNfswtciIiIi\nIlVGwSIREel7vgDE2nO6zz4wvYRtJJtzzhdiuJlFISNWcEwsUVpmUTSRoNaXNbZYAMzQR6eIiIiI\nVDfthiYiIn3PDMDWlTnd2zviqbbP3S0NgEubcsZ6uEWmPQWxs8St0jKLNja18ZKVUZ9ov/OLXxDZ\nXtJ9RUREREQqlb4eFRGRvucL5O2+Zf6KVDuAGyza8wud388tMp0vWHTZCdMBiJeYWbTg3dXpgzGf\ngMMuKX7BgDEl3VdEREREpFIpWCQiIn3PLJ7IOmpgmCDukrJdDu/8fr4gAH4SfGk/by2kY2c4u5rF\nSqxZ5Ak4TT0W/MH8A7/1mvN67vyS7isiIiIiUqkULBIRkb6XlVn0qV2HAzBrbCMTh9ax4MeH8ejX\nprljCwRrMrl1g0xsQgGf51TQ55y7Yd4yPtyWWycp28TGjINQQ+GBQyY5y+Pq8hS/FhERERGpIgoW\niYhI38sMAA3bjRNmjgJgU0uEATUBWP0C/OUE5/z2Dzu/nxss8mERytrJzO9Lb21/3WNLO72VPx5J\nH4QGdP5sEREREZEqp2CRiIj0PTMj+yfeTsDN/gm2fMTvt50HT1+TPt+yl7npuwAAEA9JREFUoeT7\nmYYTLLrhtFkATDY+oO7qIXzKdJaM7blzY8FbJPmtjOwju7Q6RyIiIiIi1UzBIhER6XvRtnQ71kHA\nzf45xX6EMbFVsHxe+vyMkzu/n+EEi/wkOPGdbzF3pLN72vWBmwH4f8FrqaeNn973Dpa7K9qqTa3E\n8hS99lsd6YMPX+3CmxIRERERqU4KFomISN/LXFrWso4h294kQBwfeTJ5gnWd38/NLDrCfJUxW56H\nP+xHA228aO2WGrKfuQiAiRc/xLl3vsIh1z7FtJ8/kvu4REZm0ZxzSns/IiIiIiJVTMEiERHpe1bc\neR3mBHP2fvxUbgz8Ln+wyBfq/H5uZtE4Y32q6+3wVzl02PbUsZ9Eqv3oQmdcvh3SUplF570Iw6Z0\n/mwRERERkSqnYJGIiPS9ZOHorStTXcf4XsaXEdBJqR/W+f3cAteTzLWe7olbn0u1TXIDQwDt0fQz\nYwmLMG6B60BN588VEREREfkYULBIRET63nG/gSN+AQNGebr9+YJFpTA7//i6+jPT8vb/d/EGlq1v\nBuD9zW3UJINFpSx/ExERERH5GFCwSERE+l7tYDjgAjj6V57uIPHu3c/wdTqk1p+//5t3vcYR1893\nxgR91BB1TiizSEREREQEULBIRER2pClHwuGXpQ7rjPYig4sw08GiSGhI3iF+w2bqiIait0lYNrWG\nm1nkV7BIRERERAQULBIRkR1t/wtSzRCx7t0jI7OoqXF3GL13+txn/uS8WgluP+sTBW8RiSdojyUI\nEyHuC5e0tE1ERERE5ONAPxmLiMiOZZpsnDAXAKu7H0MZmUVt9WNg7D7pcw07Oa92glg8XeS6IeRd\nlzb7F09w5PXzqSVCwqesIhH5/+3de6wc1X3A8e/vPm1sjJ+Ay8MYMC5UJMRcOVYD/JEQMJACaUoF\nTYUbt6JUQSqkLxBRS9u/kipUaktDSQohVVJISKK4UtuERukjUYEY6mAMGNuUlljG5hVMCvGL0z/m\n7N7Z693r63v37u7d/X6k0cycnRmf0fx8ZvZ3z5yVJEkVJoskSS2XTlkDwAnHDk7uADF6+1q4aAm8\nun30s1nHFfPND3HygtEk0MoTa19Je3NfMV7S7NjPO76CJkmSJFWZLJIktdzx8+cC8K7FURQse18x\nX7VuYgcoJYvmzZ0LP3vF6GeVZNEL/0Hfrid435nFmEa/ceHyuoeazU/tWSRJkiSVmCySJLVeX/FK\nWLz9Oiw+C67/Jty2Ez705xPbP2J0eWBWbZJpeN7o8ts/5if7DgGweO4wv3fpysMOdUX/Y8x9c8dR\nn4IkSZLUrUwWSZJaLyeLePlZeOU56B+E4bk1YxEdUf9wMR+YVZs8qjlG4sDBd/ja0B8x8oXlXL/m\n1ClXXZIkSep2JoskSa3XN3DkbY6kf6iYDwzXlpd+KY3//GvO3reJ8/u2AXDsjn/gorOWTP3fliRJ\nkrqYySJJUus1JVmUB8cemFXM86DZNT2LdnyHz7z1ydH1h9bTX+qEJEmSJOlwTXhalyTpKJWTRVff\nPbljjO1Z9LF/hJTgnYPj/9NRmy3am2Yzb/VHJ1cHSZIkqQvZs0iS1HrlZNGiMyd3jJ+8VMwrPYv6\n+qF/AAZnwcV/3HC3tW98hQ/2bayuD/AODPpraJIkSVKFySJJUuv1l5JFS989tWPVe6Xtgpvhxu/X\n3fya1+/hc0N35rXEMPtHB8uWJEmSZLJIktQGh0qvig0MTfFgqX7xBHosDXCI/kijvZMkSZIkmSyS\nJLXBof1TP8aiFcW8Qa6IwVlww7+Oe4jb35sHyd7y9anXR5IkSeoSJoskSa13aN/UjzF7QTGfs3ic\nf+fAuIdYd+ZPi4U9T0+9PpIkSVKXMFkkSWq9ShJn7omTP8ZHPg8X3AInvmucf6fUg2nhGTUfzT9m\nkL7jVxYrH/zTyddDkiRJ6jImiyRJrbfs54v5NfdN/hgLlsHFd0DfOLeyJWePLo+sr/lo31tvwoG3\ni5WFyydfD0mSJKnLmCySJLXe/FPhjjdGk0bTZc4imHdysbz8Qrj6s9WPnpm1Hj7/gWIl+qe3HpIk\nSdIMYrJIktTdKuMjDc6Bd1/Hvhjme4d+rnabvoHW10uSJEnqUD4dS5K6W2XcoqE5EMHQKas4d1+C\n3aVtxnuVTZIkSeoxJoskSd2tMpj20DEARPRz3KxUu409iyRJkqQq/5QqSepuKy4p5oNFsoi+Pji4\nr3YbxyySJEmSqkwWSZK624f/Bm7eDP2DxXr0w769tdv0D7W+XpIkSVKHMlkkSepug7OKX1+riD54\n5bnabSqJJEmSJEkmiyRJPWb//x1edvzZra+HJEmS1KFMFkmSesuLjxxeNji79fWQJEmSOpTJIklS\n7zrvV+GWp9tdC0mSJKmjTChZFBFrI2JrRGyPiFvrfH5jRGyOiE0R8b2IOCeXD0bE/fmzZyLitmaf\ngCRJk3blX8JxJ7W7FpIkSVJHOWKyKCL6gbuAy4BzgOsqyaCSL6eUzk0pnQd8Grgzl18DDKeUzgXO\nB34zIk5rUt0lSTp61z1YzFffAH12sJUkSZLGGpjANquB7Sml5wEi4gHgKqDabz+lVP4N4jlAqnwE\nzImIAWA2sB8Y83vFkiS10Mq1cMcb7a6FJEmS1LEmkiw6CXixtP4j4L1jN4qIjwOfAIaA9+fihygS\nS7uAY4BbUkqvTaXCkiRJkiRJmj5N63+fUrorpXQG8AfAJ3PxauAQ8DPAcuB3IuL0sftGxA0RsTEi\nNr788svNqpIkSZIkSZKO0kSSRTuBU0rrJ+eyRh4Ars7LvwL8c0rpQEppD/B9YGTsDimle1JKIyml\nkSVLlkys5pIkSZIkSWq6iSSLfgCsiIjlETEEXAtsKG8QEStKq1cA2/Ly/5JfSYuIOcAa4NmpVlqS\nJEmSJEnT44hjFqWUDkbETcC3gH7g3pTSloj4E2BjSmkDcFNEXAwcAF4H1uXd7wLui4gtQAD3pZSe\nnI4TkSRJkiRJ0tRFSunIW7XQyMhI2rhxY7urIUmSJEmS1DUi4vGU0mFDA9XTtAGuJUmSJEmSNPOZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVUVKqd11qBERbwJb210PdZzFwCvt\nroQ6krGheowL1WNcqB7jQvUYF6rHuFA9MykulqWUlkxkw4HprskkbE0pjbS7EuosEbHRuFA9xobq\nMS5Uj3GheowL1WNcqB7jQvV0a1z4GpokSZIkSZKqTBZJkiRJkiSpqhOTRfe0uwLqSMaFGjE2VI9x\noXqMC9VjXKge40L1GBeqpyvjouMGuJYkSZIkSVL7dGLPIkmSJEmSJLVJRyWLImJtRGyNiO0RcWu7\n66PpFRGnRMR3I+LpiNgSEb+dy++IiJ0RsSlPl5f2uS3Hx9aIuLRUbux0kYh4ISI25+u/MZctjIiH\nI2Jbni/I5RERf5Gv/ZMRsap0nHV5+20Rsa5d56Opi4iVpTZhU0TsjYibbS96T0TcGxF7IuKpUlnT\n2oeIOD+3P9vzvtHaM9RkNIiLP4uIZ/O1/0ZEzM/lp0XE26V24+7SPnWvf6MYU2drEBdNu29ExPKI\neDSXPxgRQ607O01Wg7h4sBQTL0TEplxue9EjovF30959xkgpdcQE9AM7gNOBIeCHwDntrpfTtF7z\npcCqvHws8BxwDnAH8Lt1tj8nx8UwsDzHS7+x030T8AKweEzZp4Fb8/KtwKfy8uXAPwEBrAEezeUL\ngefzfEFeXtDuc3NqSnz0Ay8By2wvem8CLgJWAU+VyprWPgCP5W0j73tZu8/ZadJxcQkwkJc/VYqL\n08rbjTlO3evfKMacOntqEBdNu28AXwGuzct3A7/V7nN2mlxcjPn8M8Af5mXbix6ZaPzdtGefMTqp\nZ9FqYHtK6fmU0n7gAeCqNtdJ0yiltCul9ERefhN4BjhpnF2uAh5IKe1LKf03sJ0iboyd3nAVcH9e\nvh+4ulT+xVR4BJgfEUuBS4GHU0qvpZReBx4G1ra60poWHwB2pJT+Z5xtbC+6VErp34HXxhQ3pX3I\nn81LKT2Siqe6L5aOpQ5WLy5SSt9OKR3Mq48AJ493jCNc/0Yxpg7WoL1o5KjuG7lHwPuBh/L+xsUM\nMV5c5Ov6y8Dfj3cM24vuM8530559xuikZNFJwIul9R8xfuJAXSQiTgPeAzyai27K3fnuLXXdbBQj\nxk73ScC3I+LxiLghl52QUtqVl18CTsjLxkXvuZbahzjbCzWrfTgpL48t18y3nuKvuBXLI+K/IuLf\nIuLCXDbe9W8UY5qZmnHfWAT8uJSQtL3oDhcCu1NK20plthc9Zsx30559xuikZJF6VETMBb4G3JxS\n2gt8FjgDOA/YRdEVVL3lgpTSKuAy4OMRcVH5w5yN96cce1AeD+JK4Ku5yPZCNWwfNFZE3A4cBL6U\ni3YBp6aU3gN8AvhyRMyb6PGMsRnP+4bGcx21f5Cyvegxdb6bVvXa9eykZNFO4JTS+sm5TF0sIgYp\n/jN+KaX0dYCU0u6U0qGU0jvA5yi6/0LjGDF2ukxKaWee7wG+QREDu3P3zUrX3z15c+Oit1wGPJFS\n2g22F6pqVvuwk9pXlYyPGS4ifg34EPDR/JBPfs3o1bz8OMV4NGcx/vVvFGOaYZp433iV4rWTgTHl\nmqHytfxF4MFKme1Fb6n33ZQefsbopGTRD4AV+VcFhiheM9jQ5jppGuV3gv8WeCaldGepfGlpsw8D\nlV8q2ABcGxHDEbEcWEExSJix00UiYk5EHFtZphig9CmKa1r5NYF1wDfz8gbg+vyLBGuAN3JX0W8B\nl0TEgtzF/JJcppmt5i9+thfKmtI+5M/2RsSafI+6vnQszTARsRb4feDKlNJbpfIlEdGfl0+naB+e\nP8L1bxRjmmGadd/IycfvAr+U9zcuZr6LgWdTStVXhWwvekej76b08jPG0YyGPd0TxYjiz1FkbG9v\nd32cpv16X0DRje9JYFOeLgf+DticyzcAS0v73J7jYyul0eONne6ZKH5t5Id52lK5nhRjA3wH2Ab8\nC7AwlwdwV772m4GR0rHWUwxQuR34WLvPzWnKsTGH4i+5x5XKbC96bKJIFu4CDlC87//rzWwfgBGK\nL487gL8Cot3n7DTpuNhOMW5E5Rnj7rztR/L9ZRPwBPALR7r+jWLMqbOnBnHRtPtGfmZ5LMfaV4Hh\ndp+z0+TiIpd/AbhxzLa2Fz0y0fi7ac8+Y1QCWpIkSZIkSeqo19AkSZIkSZLUZiaLJEmSJEmSVGWy\nSJIkSZIkSVUmiyRJkiRJklRlskiSJEmSJElVJoskSZIkSZJUZbJIkiRJkiRJVSaLJEmSJEmSVPX/\n8lwR3hyQgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJcCAYAAADKNbH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8pGld7/3vr/ZUlkrS6SW9Dsz0\nAMMwM+DA4KBH3BAQX+jxqIjLqHhGz4MePQ963FBxQfE8B1Afz1HhoCAyICoIIioICOLADDPMwmzM\nPt3pTtLpLFVJaq+6zh/3XenqTNKpSqrqruXzfr361cld21WVpPLN77ru32XOOQEAAKC1QkEPAAAA\noB8RsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZaAsz+xMz+9UW3ddxM1szs7D/+b+a\n2Y+34r79+/tHM7upVffXxOP+tpmdN7O5Bq/vzOwK/+OLXl8z+y9mNu+/TvvM7CVm9oj/+Xe26zkE\nwcxeamYzQY+j35nZm8zsLzv0WE+a2bd04rG2eOwfMbPP132+ZmbP3MX9/ICZfaK1o0OvI2Shaf4b\nYs7MVs1sxcxuNbOfNLON7yfn3E86536rwfu65Jurc+6Uc27EOVdpwdif9ovDOfcK59x79nrfTY7j\nuKQ3SLrKOXeo2dvXv75mFpX0Nkkv81+nRUm/KemP/M//rpVj72X9HNA2hwXsjv8z8/ilrmNml/l/\n9ETqbvc+59zL2j9C9BJCFnbrO5xzo5JOSHqLpF+Q9K5WP0j9m1ifOS5p0Tl3rgX3dVBSQtL9dcdO\nbPq8YX38mqPP8b2LbkPIwp4459LOuY9K+j5JN5nZ1ZJkZu82s9/2P54ys4/5Va8lM/s3MwuZ2Xvl\nhY2/90v0/73uL8TXmdkpSZ/e6q9GSZeb2e1mljGzj5jZpP9YT6tU1KplZvZySb8s6fv8x7vHv3xj\n+tEf1xvN7CkzO2dmf2FmKf+y2jhuMrNT/lTfr2z32phZyr/9gn9/b/Tv/1skfVLSYX8c797m9j9v\nZrNmdtbMfmzTZe/2pxuvlPRV//CKmX3azB6T9My61zXuj+Vd/v2d8W9bm379ETP7dzN7u5ktSnqT\nf/zHzOxBM1s2s382sxN1j+/86uUj/tf1f5mZ1V3+n/3brprZA2b2Av/4YTP7W/81ecLM/mvdbV5k\nZnf4X9N5M3vbdq+tf/1f9r8GT5rZD9Qdj5vZ//S/RvPmTa0OmdmwpH+se93X/PHkzGzKv+2vmFnZ\nzMb8z3/LzH7/Uvdb97ivMrO77UJ195q6y540s58zs3vNLG1mf2VmiW2e1+X+13HRf37vM7PxusuP\nmdmH/Ndw0cz+yMyeI+lPJH2t/7xW/OteNLVuT58a+wMzO+2/5nea2ddf6jWvu92EeT/TC/73x8fM\n7Gjd5f/qv3b/7n8PfKL2GvuX/5B5PxOLdomfIf+67/Zf60/69/XZLb4XX29mj0h6xD/2bP/6S2b2\nVTP73rrr7zOzj/rP+XZJl296vPpp+SEze6s/1rSZfd7/mn/Ov/qK/3p/7Rav7Y1m9iX/dl8ysxsb\nfX3QR5xz/ONfU/8kPSnpW7Y4fkrSf/E/frek3/Y//l15vwCi/r+vl2Rb3ZekyyQ5SX8haVjSUN2x\niH+df5V0RtLV/nX+VtJf+pe9VNLMduOVFyD+ctPl/yrpx/2Pf0zSo/JCyoikD0l676axvdMf17WS\nCpKes83r9BeSPiJp1L/tw5Jet904N9325ZLm657jLf5jX7HF63vR67PN6/phSX/q39cBSbdL+gn/\nsh+RVJb005Ii/nN7tf86PMc/9kZJt9bdn5P0MUnj8oLygqSX+5d9j//1eaEkk3SFvMpaSNKdkn5N\nUsx/jR+X9G3+7b4g6Yf8j0ckvXib1+al/njfJiku6RskrUt6ln/52yV9VNKk/9r/vaTfvcT3x+ck\nfbf/8SckPSbpFXWXfVcD9/t8Seck3SApLOkm/2sQr/t63C7psH/7ByX95DbP7wpJ3+o/t/3+GH7f\nvyws6R5/LMPyKphfV/d1/Px239tbXUfSD0ra53+N3yBpTlJiu5+Vutvtk/TdkpL+a/HXkv5u0+M+\nJulKed9P/yrpLf5lV0lak/Qf/Of4Nv/r+bT3lLrv9dW66//Bpufg5P3RMuk/1rCk05J+1H9ez5d0\nXt7UvCR9QNIH/etdLe97dfP91X7O/pc/9iP+a3+jP4bL9PSfuY3X1h/LsqQf8sfw/f7n+3Z6ffjX\nX/+oZKGVzsp7c9msJGla0gnnXMk592/Of6e5hDc559adc7ltLn+vc+4+59y6pF+V9L3mV2b26Ack\nvc0597hzbk3SL0l6jV1cRfsN51zOOXePvF94126+E38sr5H0S865Vefck5LeKu9NtxHfK+nP657j\nm3b7hMzsoKRXSvpZ/zU9J++X9GvqrnbWOff/O+fK/mv+k/ICxIPOubKk35F0XX0FQd4vhRXn3ClJ\nn5F0nX/8xyX9D+fcl5znUefcU/JC137n3G8654rOW/fyzrpxlCRdYWZTzrk159wXd3hqv+qcKzjn\nPivpH+R9D5ikmyX9N+fcknNu1R/7ay5xP5+V9A3+1/gaSX/of57wx/y5Bu73Zkl/6py7zTlXcd4a\nv4KkF9c9zh86584655bkBbTrtAX/9fqk/9wW5IWQb/AvfpG8oPbz/tcy75zb9Tos59xfOucW/a/7\nW+UFiGc1cLtF59zfOuey/mvx5rox1vy5c+5h//vpg7rwfP+TpI855z7nnCvI+/mt7vCQ/1B3/V+R\nV7E7Vnf57/pfl5ykV0l60jn35/7zukveH2Lf4/9cfrekX/Nfv/skbbke07w1pj8m6Wecc2f8r+ut\n/hh28u2SHnHOvdcfw/slPSTpOxp4fdBHCFlopSOSlrY4/v/Jq4p8wsweN7NfbOC+Tjdx+VPyKmSt\nKLcf9u+v/r4j8tY91dSfDZiVV3XZbMof0+b7OtLEODY/x9064Y9l1p/KWpFX1TpQd53Nr/cJSX9Q\nd/0leVWp+vFv9zock/dX+lbjOFy7T/9+f1kXXtvXyfvL/iF/euVVl3hOy374rHlK3mu2X1515c66\nx/gn//h2PiuvwvUCSV+RVxX5BnkB6VHnnUiw0/2ekPSGTc/tmD+mmka+b2RmB83sA+ZN62Yk/aUu\nfG8fk/SUH3z3zJ/CfNCf0lqRlFIDP0dmljSzP/Wn0TLyqm3jm/7Q2e75XvS97X8dF3d4yPrrr8n7\nfjy81eXyvhY3bPpa/ICkQ/K+XhE19rM1Ja9SuNX38k42v4/UHqeRnx/0ERYJoiXM7IXy3kCe9le1\n/5fuG+T9Erpa3jqrLznnPiWv5L6VnSpd9X/FHpdXBTkvb9ooWTeusC7+BbvT/Z6V9yZdf99leVN3\nR7e8xdbO+2M6IemBuvs60+DtZ/X057hbp+VVVaYu8ct58+tyWtKbnXPv2+XjXb7N8Seccye3HIBz\nj0j6fr+C8B8l/Y2Z7dsUpmomzGy47rLjku6T97rnJD3XObfVa73V1/9WedWb75L0WefcA+ad/flK\neQFMDdxv7fV681bPrUm/44/zec65JfNacPxR3eMcN7PIFl/LrZ7bRT8P8oKGJMlff/XfJX2zpPud\nc1UzW5YXpnfyBnmv2Q3OuTkzu07SXQ3edlbeNHRtHEl504+XsvGzYGYj8irmZ+sur3/up+V9Hb91\n85347wdl//4e8g9v97N1XlJe3vfyPZsua/Z9pPY4/7TD7dBnqGRhT8xszK84fEDe+o2vbHGdV5nZ\nFf6US1pSRRemB+blrc1p1g+a2VX+G/RvSvob57V4eFhSwsy+3bzWBm+UNwVSMy/pMqtrN7HJ+yX9\nNzN7hv9m/juS/qrZyoE/lg9KerOZjfrTbP+vvKpEIz4o6UfqnuOvN/P4m8YyK2+t0Vv9r1fIvMXV\nm6d36v2JpF8ys+dKG4v4v6fBh/w/kn7OzL7GPFf4z/92Satm9gv+guKwmV3tB3SZ2Q+a2X7nXFXS\nin9fl5pG+g0zi/lh4VWS/tq/7Tslvd3MDvj3e8TMvs2/zbykfeafzOC/Pll5a8Verwuh6lZ5U6af\n9a+z0/2+U9JPmtkN/nMe9r8HRxt8zeqNyluzlDazI5J+vu6y2+WFlLf4j5Ews5fUPbejZharu/7d\nkv6jX3m6Ql61sP5xyvLW00XM7NckjTUxxpy8hd+Tau77828kvcrMvs4f629q599Fr6y7/m9J+qJz\nbrtq98ckXWne4vqo/++FZvYc/+fyQ5Le5L8mV8lbP/c0/tf8zyS9zbwTJMLmLXCPy3vNqtr+vevj\n/hhea2YRM/s+eWvRPrbD80SfIWRht/7ezFbl/dX4K/LWjfzoNtc9Kelf5P3i+IKk/+2c+4x/2e9K\neqNf1v+5Jh7/vfIWxM7JK+n/V8k721HS/yPvF/0ZeX/J159t+Nf+/4tm9uUt7vfP/Pv+nKQn5P0l\n+9NNjKveT/uP/7i8Ct8t/v3vyDn3j5J+X9Kn5U21fnqXY6j5YXmLzR+QtwD3b+Stk9vu8T8s6fck\nfcCfDrpP0isaeSDn3F/LW6Nzi7wFy38nadL/BfcqeWtPnpBXKfg/8qaoJG+x//1mtiZvcfNrLrEm\nb85/HmclvU/eIvJaZeIX5L1mX/TH/i/y1xn513m/pMf977nalNNn5U2p3l73+agunEW20/3eIek/\ny6s4LfvX+5FGXq8t/Ia8qcu0vLVmH6pd4L+G3yFvcfwped/b3+df/Gl5bTvmzOy8f+ztkoryAth7\n5L1WNf8sr7LysLyprLx2nqav+X15C7bPS/qimqjQOOfulxdob5EXGJd18c/oVm6RF+SWJH2NvAX7\n293/qqSXyVsvd1be98rv6cIfWz8lb2puTt57yJ9f4nF/Tt4U8pf8x/49SSE/mL9Z0r/730f1a+/k\nTzG/Sl7Fb1FexfBVzrnzwkCpneEFAEDXMa/FyYxz7o1BjwVoFpUsAACANiBkAQAAtAHThQAAAG1A\nJQsAAKANuqJP1tTUlLvsssuCHgYAAMCO7rzzzvPOuUs1OZbUJSHrsssu0x133BH0MAAAAHZkZg3t\nwsF0IQAAQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAA\nQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAAQBsQsgAA\nANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaINI0AMAAGztlttONXS9195w\nvM0jAbAbVLIAAADagEoWAHSp937hST21lNVIPKKxRFQjiYhG4xFddXhMJ/YNBz08ADugkgUAXcg5\np0cX1jSWiGpqJK5ipaqnFtd162OL+vBdZ4IeHoAGUMkCgC6UyZdVqjg9//i4vv7k/o3jn35oXv/y\n4DnlihUNxcIBjhDATqhkAUAXms/kJUljQ9GLjtemCU8trXd8TACaQ8gCgC40l/ZDVuLikHVsIqmQ\nSU8tZYMYFoAmELIAoAvN+ZWs1KZKViwS0nRqSE8tErKAbkfIAoAuNO9XskYTT186e3xfUjPLWVWq\nrtPDAtAEQhYAdKG5TF7JWFjR8NPfpk9MJlWqOM2mcwGMDECjCFkA0IXmM/mnrceqqS1+Z8oQ6G6E\nLADoQnOZvMaGtu6ykxqKanwoqqcWOcMQ6GaELADoQnPpwraVLMlbl/XUUlbOsS4L6FaELADoMqVK\nVYvrhaf1yKp3Yt+wVvNlrWRLHRwZgGYQsgCgy5xbLcg5KXWJStaJyaQk6SmakgJdi5AFAF1moxHp\nNmuyJOlQKqF4JMTid6CLEbIAoMtst6VOvZCZjk0mCVlAFyNkAUCX2W5Lnc1OTCY1n8krk2ddFtCN\nCFkA0GXmM3nFIiElY+FLXu/EvmE5SXedWunMwAA0hZAFAF1mLpPXwbG4zOyS1zs2MSSTdOeTS50Z\nGICmELIAoMvMpfM6NJbY8XrxaFjTqYTuPLXcgVEBaBYhCwC6zHwmr4MNhCxJOr5vWHedWlG5Um3z\nqAA0i5AFAF3EOae5TF7TqcZC1onJpLLFih6aW23zyAA0a8eQZWYJM7vdzO4xs/vN7Df8488ws9vM\n7FEz+yszi/nH4/7nj/qXX9bepwAA/SOTKytfqjZcyTqxz2tKegfrsoCu00glqyDpm5xz10q6TtLL\nzezFkn5P0tudc1dIWpb0Ov/6r5O07B9/u389AEAD5vweWYcarGSNJ2OaTiV0x1OsywK6zY4hy3nW\n/E+j/j8n6Zsk/Y1//D2SvtP/+NX+5/Iv/2bb6RQZAICkupDVYCVLkl5wYkJ3n6aNA9BtGlqTZWZh\nM7tb0jlJn5T0mKQV51zZv8qMpCP+x0cknZYk//K0pH1b3OfNZnaHmd2xsLCwt2cBAH1iLp2TpIan\nCyXpmVPDOruSU4nF70BXaShkOecqzrnrJB2V9CJJz97rAzvn3uGcu945d/3+/fv3encA0Bfm0gVJ\nzYWsYxNJVZ10diXXrmEB2IWmzi50zq1I+oykr5U0bma13UuPSjrjf3xG0jFJ8i9PSVpsyWgBoM/N\nZfLaNxxTLNL42/PRySFJ0uklQhbQTRo5u3C/mY37Hw9J+lZJD8oLW//Jv9pNkj7if/xR/3P5l3/a\nOedaOWgA6FfN9MiqOTbhnWE4s8xm0UA3iex8FU1Leo+ZheWFsg865z5mZg9I+oCZ/bakuyS9y7/+\nuyS918welbQk6TVtGDcA9KW5dL7hMwtrplMJhUOm04QsoKvsGLKcc/dKev4Wxx+Xtz5r8/G8pO9p\nyegAYMDMZ/K69th4U7eJhEM6PJ5guhDoMnR8B4AuUShXtLhebKp9Q82xiSSVLKDLELIAoEucy3hn\nFh5KxZu+7dGJISpZQJchZAFAl5j3G5E2u/Bd8ipZ59cKyhUrrR4WgF0iZAFAl2h2S516xyY5wxDo\nNoQsAOgSc+nmt9SpOeb3yppZZsoQ6BaELADoEvOZvOKRkFJD0aZvW+uVxeJ3oHsQsgCgS8xlCjqU\nSsjMmr7t/tG44pGQTi8RsoBuQcgCgC4xn26+23uNmXGGIdBlCFkA0CXmMvldrceqOUqvLKCrNLKt\nDgCgzZxzXsjaxZmFt9x2SpKUL1X02MLaxuf1XnvD8T2PEUBzqGQBQBdYyZZULFd3PV0oSRPJmPKl\nKr2ygC5ByAKALlDrkTW9i0pWzcRwTJK0nC22ZEwA9oaQBQBdYG4P3d5rJpOELKCbELIAoAvMp3ff\n7b1mYtjrr7W8TsgCugEhCwC6wFwmLzPpwGjzm0PXDEXDikdCWsqWWjgyALtFyAKALjCfyWvfcFzR\n8O7fls1ME8kYlSygS9DCAQACsLnNwpefWlEsYlu2X2jGxHBMi2uFPd0HgNagkgUAXSCTL2ks0fye\nhZtNJqNazhblnGvBqADsBSELALpAOlfS2C42ht5sYjimUsVprVBuwagA7AUhCwACVqk6ZYsVjSb2\nvoJjwm/jsMLidyBwhCwACFiu5HVoT0bDe76vWkPSJXplAYEjZAFAwPL+NjhDsVZUsuiVBXQLQhYA\nBCzrV7KGWlDJikfCSsbCdH0HugAhCwACltuoZO09ZEnS5HBMy+usyQKCRsgCgIDlSt6ZgK1YkyV5\ni99ZkwUEj5AFAAGrVbISLapkTSRjSmdLqtIrCwgUIQsAAtbKNVmSt1F0xTllckwZAkEiZAFAwPLF\niuKRkMIha8n9Tfq9spbplQUEipAFAAHLlSotW/QuXeiVRRsHIFiELAAIWLZYadlUoSSND0VloiEp\nEDRCFgAELFdqbciKhEMaTUSoZAEBI2QBQMByxdZOF0relCENSYFgEbIAIGCtrmRJ3uJ3Fr4DwSJk\nAUDAcsWKkm2oZGVyJZWr1ZbeL4DGEbIAIEClSlXlqmt5JSs1FJWTtJort/R+ATSOkAUAAWp1t/ea\n1FBUkrRCQ1IgMIQsAAhQrdt7MhZp6f3WQlaakAUEhpAFAAGqVbJaPV04TsgCAkfIAoAAbYSsFk8X\nxqNhJaIhpXO0cQCCQsgCgADlWrw5dL3UUFRpFr4DgSFkAUCAckUvBLW6hYNUC1lUsoCgELIAIEC5\nUkUmKRZp/dtxaiiqNA1JgcAQsgAgQLlSRYloWCGzlt93aiiq9WJFpQoNSYEgELIAIEDZNnR7r0kN\nxSRJGc4wBAJByAKAAOVLrd8cuoaGpECwCFkAEKBssfWbQ9fQKwsIFiELAAKUK7avkjVGyAICRcgC\ngADlSu2rZMUiISVjYc4wBAJCyAKAgDjn2romS6r1yiJkAUEgZAFAQArlqqquPd3eawhZQHAIWQAQ\nkNq+he1q4SB5IWuFru9AIAhZABCQdu5bWDM+FFW+VNV6gT0MgU4jZAFAQLJ+JWsoFmnbY6SS3hmG\ns+l82x4DwNYIWQAQkE5Usmpd32fTubY9BoCtEbIAICC5jUpWe9dkSdLsCpUsoNMIWQAQkE5UssaG\nIjJJZ6lkAR1HyAKAgOSKFYVDpmjY2vYYkVBII/EIlSwgAIQsAAhIrlRWMhqWWftCluQtfqeSBXQe\nIQsAApIrVpRo43qsmrFElLMLgQAQsgAgINlSRck2rseqSSWjml3JyTnX9scCcAEhCwACki+2d9/C\nmvGhqNaLFWXyNCQFOomQBQAByZYqbT2zsGajjQPrsoCOImQBQEByHapkXQhZrMsCOomQBQABqFSd\nCuVqZytZtHEAOoqQBQAByJfa3+29ZjQRVciYLgQ6jZAFAAHoRLf3mnDIdHAsobNUsoCOImQBQABq\n+xYmO1DJkqTpVIJKFtBhhCwACEAnK1mSND0+xMJ3oMMIWQAQgKxfyepEx3dJOpxK6CwNSYGOImQB\nQABqlaxkLNKRx5tODalQrmo5W+rI4wEgZAFAIGprsjo1XXh4PCFJOrvCuiygUwhZABCAXLGsWCSk\ncMg68njTqSFJNCQFOomQBQAByJU604i0ZtqvZHGGIdA5O4YsMztmZp8xswfM7H4z+xn/+JvM7IyZ\n3e3/e2XdbX7JzB41s6+a2be18wkAQC/KFcsdDVlTw3FFw0avLKCDGllxWZb0Bufcl81sVNKdZvZJ\n/7K3O+f+Z/2VzewqSa+R9FxJhyX9i5ld6ZyrtHLgANDLcqXO7FtYEwqZDqUSmqOSBXTMjpUs59ys\nc+7L/serkh6UdOQSN3m1pA845wrOuSckPSrpRa0YLAD0i2yx0tFKliRNjw3pLGuygI5pak2WmV0m\n6fmSbvMP/ZSZ3Wtmf2ZmE/6xI5JO191sRluEMjO72czuMLM7FhYWmh44APSyfKnSsW7vNdPjdH0H\nOqnhkGVmI5L+VtLPOucykv5Y0uWSrpM0K+mtzTywc+4dzrnrnXPX79+/v5mbAkDPy5UCqGSlhjSX\nzqtapSEp0AkNhSwzi8oLWO9zzn1Ikpxz8865inOuKumdujAleEbSsbqbH/WPAQDkVbFKFdfRNVmS\ndGQ8oVLFaWGt0NHHBQZVI2cXmqR3SXrQOfe2uuPTdVf7Lkn3+R9/VNJrzCxuZs+QdFLS7a0bMgD0\ntkzO67re6ZB18uCoJOmB2UxHHxcYVI2cXfgSST8k6Stmdrd/7Jclfb+ZXSfJSXpS0k9IknPufjP7\noKQH5J2Z+HrOLASAC1ZqIavD04XPO5JSyKR7Tq/oG591oKOPDQyiHUOWc+7zkrZqSfzxS9zmzZLe\nvIdxAUDfSgdUyRqOR3TFgRHdc3qlo48LDCo6vgNAh61kg6lkSdK1R8d170xazrH4HWg3QhYAdFit\nkpWMNbJio7WuPTauxfWiZpZp5QC0GyELADosHdCaLMmrZEnSvTPpjj82MGgIWQDQYelsUSYpHu38\nW/CzDo0qFgnpnhnWZQHtRsgCgA5L50pKRMMK2VbnFLVXLBLSVdNjupvF70DbEbIAoMNWcqWOn1lY\n77pj47rvTFoVOr8DbUXIAoAOS+dKgazHqrn2WErZYkWPnlsLbAzAICBkAUCHrWSDrWRd4y9+p18W\n0F6ELADosEzAlaxn7BvWaCLC4negzQhZANBh6YDXZIVCpmuOpghZQJsRsgCgg5xz3sL3ACtZktcv\n66HZVeVLbC0LtAshCwA6aL1YUaXqlAywkiV567LKVacHZjOBjgPoZ4QsAOiglWxRUjDd3utdd4zF\n70C7EbIAoINqm0MHsW9hvUOphA6OxdleB2gjQhYAdNDSulfJCnq6UPKmDKlkAe1DyAKADlr2pwuT\n8eBD1nXHxvX4+fWNDasBtBYhCwA6aHmjkhXsdKEkXXM0JUn6ClOGQFsQsgCgg5ayJZkFv/Bdkq45\n4i9+p18W0BaELADooJVsUamhqMIhC3ooSiWjeubUMOuygDYhZAFABy2tFzWRjAU9jA10fgfah5AF\nAB20ki1pIhkNehgbrj02rvlMQXPpfNBDAfoOIQsAOqjbKlkvfuY+SdL7bz8V8EiA/kPIAoAOWskW\nNTHcPSHrOdNj+vbnTetPP/cY1SygxQhZANBBS9liV00XStIvvuLZqlal//HPDwU9FKCvELIAoENy\nxYrypWpXVbIk6dhkUj/2dc/Qh758RveyCB5oGUIWAHRIrdv7ZBetyap5/TderqmRmH77Yw/KORf0\ncIC+EHzLYQAYELV9C8eTsY2PO+WW23Ze2P51V+zX3919Rr/y4ft09ZHUttd77Q3HWzk0oG9RyQKA\nDlnJensETnbZdGHN15yY0MGxuP7p/jmVK9WghwP0PEIWAHTIkj9d2G0L32vCIdMrnzetpfWibn1s\nMejhAD2PkAUAHbJSC1ldWsmSpJMHRvWsg6P6zFfPaa1QDno4QE8jZAFAh2ysyRrqzkpWzSuuPqRC\nuaovP7Uc9FCAnkbIAoAOWV4vaiwRUSTc3W+9B8YSOjSW0MPzq0EPBehp3f2TDgB9ZDlb6tpF75td\neXBETy1mVShVgh4K0LMIWQDQIcvZosa7sEfWVq48OKqKc3psYS3ooQA9i5AFAB2ynC32TCXrxL5h\nxSMhfXWekAXsFiELADpkeb2k8S5t37BZOGS6fP+IHp5fpQM8sEuELADokOVssSu31NnOsw6NKp0r\n6dxqIeihAD2JkAUAHZAvVZRXU3CTAAAgAElEQVQtVrq6R9ZmVx4clSR9dY6zDIHdIGQBQAcsb3R7\n752QlRqK0soB2ANCFgB0wPJ6bd/C3liTVUMrB2D3CFkA0AG1SlavtHCooZUDsHuELADogFrI6pUW\nDjW0cgB2j5AFAB2wXNu3sEdaONSEQ6YrDtDKAdgNQhYAdMCSvyarlxa+11x5kFYOwG4QsgCgA5az\nRY3GI4p2+ebQW6GVA7A7vffTDgA9aDlb7KkeWfVo5QDsDiELADpgOVvq2ZAledUsWjkAzSFkAUAH\nLK8XNdFji97rXXlohFYOQJMIWQDQAb22b+FmJyaHFTbT6eVc0EMBegYhCwA6YHm92HONSOuFQ6bR\noYjSuVLQQwF6BiELANqsUK5ovVjpuS11NkslooQsoAmELABos5WsF0x6uZIlSWNDUWUIWUDDCFkA\n0GZL6725pc5mqaGoMvkSnd+BBhGyAKDNavsW9mK393qpoahKFceUIdAgQhYAtNlybUudHl+TNTbk\njX82nQ94JEBvIGQBQJvVKlm93MJBklKJiCRpjpAFNISQBQBttuyvyeqHhe+SNJchZAGNIGQBQJst\nZYsaiUcUi/T2W+5oIioT04VAo3r7Jx4AesBKtqTxHt5SpyYcMo0kIppL0/UdaAQhCwDabGm92PPt\nG2pSQ1EqWUCDCFkA0GYr2WLPt2+oGUtENc+aLKAhhCwAaLOlbFETfTBdKFHJAppByAKANlteL2mi\nT6YLx4aiWs2XtVYoBz0UoOsRsgCgjYrlqtYK5b6ZLkwN0SsLaBQhCwDaaKW2pU4fVbIkQhbQCEIW\nALTRctbfUqdf1mQlaEgKNIqQBQBttLTeH1vq1FyoZNErC9gJIQsA2qjfpguj4ZAmkpxhCDSCkAUA\nbbRUC1l9UsmSpEOpIdZkAQ0gZAFAG13YHLo/1mRJ0nQqwZosoAGELABoo+VsSclYWIloOOihtMzB\nsQSVLKABhCwAaKPl9f7ZUqdmOpXQ4npR+VIl6KEAXY2QBQBttJwtamK4f6YKJelQKiFJOpcpBDwS\noLvtGLLM7JiZfcbMHjCz+83sZ/zjk2b2STN7xP9/wj9uZvaHZvaomd1rZi9o95MAgG61lC31ZSVL\nkmZp4wBcUiOVrLKkNzjnrpL0YkmvN7OrJP2ipE85505K+pT/uSS9QtJJ/9/Nkv645aMGgB6xki1q\nsk/aN9QcGvNCFovfgUvbMWQ552adc1/2P16V9KCkI5JeLek9/tXeI+k7/Y9fLekvnOeLksbNbLrl\nIweAHrDUh2uyatOFLH4HLq2pNVlmdpmk50u6TdJB59ysf9GcpIP+x0ckna672Yx/bPN93Wxmd5jZ\nHQsLC00OGwC6X6lS1Wq+fzaHrhlNRDUSj9CQFNhBwyHLzEYk/a2kn3XOZeovc845Sa6ZB3bOvcM5\nd71z7vr9+/c3c1MA6AkrtX0L+2zhu+RVs6hkAZfWUMgys6i8gPU+59yH/MPztWlA//9z/vEzko7V\n3fyofwwABspyH3Z7r6EhKbCzRs4uNEnvkvSgc+5tdRd9VNJN/sc3SfpI3fEf9s8yfLGkdN20IgAM\njNrm0P0YsmhICuws0sB1XiLphyR9xczu9o/9sqS3SPqgmb1O0lOSvte/7OOSXinpUUlZST/a0hED\nQI84v+b1kdo/Gg94JK03nUro3Gpe5UpVkTAtF4Gt7BiynHOfl2TbXPzNW1zfSXr9HscFAD1vYbV/\nQ9ahVEJVJy2sFTSdGgp6OEBX4s8PAGiThdWCIiHT+FD/LXyfpo0DsCNCFgC0ycJqQVMjcYVC200G\n9K6DY4QsYCeELABok4W1Ql9OFUramCKkVxawvUYWvgMAGnTLbac2Pn54blWjiehFx/rFRDKqWCRE\nGwfgEqhkAUCbrBbKGk3059+yZqbpVIJKFnAJhCwAaIOqc1ovlDXSpyFL8tZlzROygG0RsgCgDbLF\niqpOGo33b8iaTiU0m8kFPQygaxGyAKANVvPevoUjif5r31BzKJXQfLqgarWprWuBgUHIAoA2WMuX\nJfV5JWssoWKlqiV/j0YAFyNkAUAbrBb8kNXHa7IO0ZAUuCRCFgC0wapfyernhe+H/F5ZhCxga4Qs\nAGiDtXxJsUhI8Ug46KG0TW1rnVl6ZQFbImQBQBusFsp9vR5LkqZG4gqHTHNpzjAEtkLIAoA2WM33\nd48sSQqHTAdG45pLF4IeCtCVCFkA0AZr+f6vZEnS5HBMy5xdCGyJkAUAbbBaKPV1j6yayeGYltYJ\nWcBWCFkA0GKlSlX5UrWv2zfUTCSpZAHbIWQBQIutFfq/EWnN5HBMS2uELGArhCwAaLG1AeiRVTM5\nHNNqoaxiuRr0UICuQ8gCgBZb3dhSp//XZE0MxyRJK0wZAk9DyAKAFlst1DaHHoBKVtILWexfCDwd\nIQsAWmxjunAA1mRNDHvVOs4wBJ6OkAUALbZaKCsZCyscsqCH0nb7huOSCFnAVghZANBia/nyQLRv\nkC5UspYJWcDTELIAoMVW86WBWPQueX2yJGlpvRTwSIDuQ8gCgBZbK/T/voU10XBIo4kIDUmBLRCy\nAKCFnHNaHZB9C2vYWgfYGiELAFqoUK6qXHUDU8mSCFnAdgbnXQAAOmCjEWkfh6xbbjt10ee5YkVz\n6fzTjr/2huOdHBbQdahkAUALbTQiHZCF75KUjEWULVaCHgbQdQhZANBCawNQydpsOBbWeqEs51zQ\nQwG6CiELAFrowr6FAxSy4hGVq07FCptEA/UIWQDQQmuFssJmGoqFgx5KxyT955otMGUI1CNkAUAL\nrea9Hllm/b+lTs2wX7VbL5YDHgnQXQhZANBCa4XSQK3HkuoqWSx+By5CyAKAFlrNlzUyQOuxJGk4\n5leyClSygHqELABooUHaHLrmwnQhlSygHiELAFqkUnXevoUD1CNLkuLRkEImZalkARchZAFAiyyu\nF+Q0WD2yJClkpqFYhEoWsAkhCwBaZGG1IEkDtyZL8hqSZjm7ELgIIQsAWqQWsgatkiV5W+us0ycL\nuAghCwBa5ELIGqw1WZI0HA/TJwvYhJAFAC2ysDbI04URFr4DmxCyAKBFFlYLikdCikUG7601GQ8r\nW6yoyibRwIbBeycAgDZZWC0MZBVL8ipZTlK+xLosoIaQBQAtsrBaGMhF75K3Jktik2igHiELAFpk\nYa2gkQFc9C55ZxdKbBIN1CNkAUCLLKwWNDrA04WSaOMA1CFkAUAL5EsVrQ7gvoU1ydp0IZUsYAMh\nCwBaYJC7vUt1lSy21gE2ELIAoAVqPbIGtZIVi4QUDZvW6ZUFbCBkAUALbFSyBnThu+Qtfme6ELiA\nkAUALXAuk5c0uJUsydskmoXvwAWELABogblMXpGQDeyaLElKxqlkAfUIWQDQArPpvA6MxhUyC3oo\ngUnGwix8B+oQsgCgBeYzeR1KJYIeRqCG4xEWvgN1CFkA0AKzaULWcCysQrmqcrUa9FCArkDIAoA9\ncs5pLp3XobGhoIcSqNrWOlmmDAFJhCwA2LPVQlnZYkXTg17J8hf9s0k04CFkAcAezaW99g0HBz1k\nxbytddgkGvAQsgBgj2oha9ArWcl4bZNoQhYgEbIAYM9qIevQ2GCHrFolizVZgIeQBQB7NOuHrANj\n8YBHEqzkxibRVLIAiZAFAHs2l8lr33BM8Ug46KEEKhwyJaIhFr4DPkIWAOzRXDo38D2yaoZjESpZ\ngI+QBQB7NJcpDPyi95pkLEwlC/ARsgBgj+bSOR0c8EXvNcNxKllADSELAPYgX6poOVuikuVLxiKc\nXQj4CFkAsAfzGb8RKZUsSdJwPKz1QlnOuaCHAgSOkAUAezC70Yh0sPctrBmORVSuOhUrbBINELIA\nYA9qlaxDqcHukVWTrDUkZfE7QMgCgL2oVbIOUcmSdGGTaBa/A4QsANiTuXReI/GIRvxwMeiSbK0D\nbNgxZJnZn5nZOTO7r+7Ym8zsjJnd7f97Zd1lv2Rmj5rZV83s29o1cADoBnPpPI1I6wyzSTSwoZFK\n1rslvXyL4293zl3n//u4JJnZVZJeI+m5/m3+t5kN9j4TAPraXCZP+4Y6wxv7F1LJAnYMWc65z0la\navD+Xi3pA865gnPuCUmPSnrRHsYHAF1tLp2nfUOdeDSkkElZKlnAntZk/ZSZ3etPJ074x45IOl13\nnRn/2NOY2c1mdoeZ3bGwsLCHYQBAMMqVqs6tUsmqFzLTUCxCJQvQ7kPWH0u6XNJ1kmYlvbXZO3DO\nvcM5d71z7vr9+/fvchgAEJzza0VVHY1INxuOhZXl7EJgdyHLOTfvnKs456qS3qkLU4JnJB2ru+pR\n/xgA9J3ZdE6SqGRtMhyPaI3pQmB3IcvMpus+/S5JtTMPPyrpNWYWN7NnSDop6fa9DREAuhNb6mxt\nOB7h7EJA0o6NXczs/ZJeKmnKzGYk/bqkl5rZdZKcpCcl/YQkOefuN7MPSnpAUlnS651zTMwD6EsX\nttQhZNUboZIFSGogZDnnvn+Lw++6xPXfLOnNexkUAPSCuUxesXBIk8OxoIfSVUbiEeVLVRXKFcUj\ndPHB4KLjOwDs0lw6r4OpuMws6KF0lVG/IeniWjHgkQDBYh8IAGjALbedetqxe06nFTbb8rJBVuv6\nfn6toMPj7OmIwUUlCwB2KZMvaWwoGvQwus5I4kLIAgYZIQsAdsE5p0yupFSCkLXZyEYli+lCDDZC\nFgDsQq5YUbnqqGRtYSROJQuQCFkAsCvpfEmSCFlbiEVCioVDOr9KJQuDjZAFALuQyXkhK0XI2tJI\nIkIlCwOPkAUAu5DOec02xxKcpL2VkXhEi+uELAw2QhYA7EI6V5JJGmXh+5ZG4hGmCzHwCFkAsAuZ\nfEkjiYjCIRqRbmU4znQhQMgCgF3I5Eqsx7qEkXhES9miypVq0EMBAkPIAoBdSOdKGmOqcFsjiYic\nk5azpaCHAgSGkAUAu0C390ujVxZAyAKAphXKFeVLVaYLL4GQBRCyAKBpGdo37IiQBRCyAKBpaRqR\n7qgWshbZvxADjJAFAE3KsKXOjhJRb2udBSpZGGCELABoUm1LHc4u3J6Zad9IjIakGGiELABoUjpX\n0lA0rFiEt9BLmRqJsyYLA413CABoEo1IGzM1EmP/Qgw0QhYANCmdL2lsiDMLdzI1Eme6EAONkAUA\nTUrnylSyGrBvJK7F9YKcc0EPBQgEIQsAmlCuVLVeKHNmYQOmRmIqVdxGywtg0BCyAKAJq3mvEWmK\nMwt3tH80Lkk6T68sDChCFgA0gUakjZsaqYUsFr9jMBGyAKAJaRqRNmzfSEwSIQuDi5AFAE3IUMlq\n2EYla5WQhcFEyAKAJqRzJcUiIcVpRLqjiWRMIZMW11mThcHEuwQANCGdKymViMrMgh5K1wuHTJPD\ndH3H4CJkAUAT6PbenKmRmBZoSIoBRcgCgCZk8vTIagb7F2KQEbIAoEGVqtMqW+o0hf0LMcgIWQDQ\noLVCWVXHmYXNYP9CDDJCFgA0aKN9A93eG7ZvJK5cqaL1QjnooQAdR8gCgAbVur2zJqtxUzQkxQAj\nZAFAgzJ5GpE2a4r9CzHACFkA0KB0rqRIyJSMhYMeSs/Yz/6FGGCELABoUDpX0tgQjUibwf6FGGSE\nLABoUCZX0hiL3puyb7i2fyHThRg8hCwAaFA6V1KKHllNiUVCSg1F6ZWFgUTIAoAGOOeUyZdZ9L4L\nUyMxpgsxkAhZANCA9WJFlaqjfcMu7KMhKQYUIQsAGrDRiJSQ1bT97F+IAUXIAoAGbDQiZeF705gu\nxKAiZAFAA9JUsnZtaiSuTL6sQrkS9FCAjiJkAUADMvmSQiaNJDi7sFn7/Iaki3R9x4AhZAFAAzK5\nkkYTUYVoRNo09i/EoCJkAUADvB5ZTBXuRm3/QipZGDSELABoQDpXpn3DLtX2L1ygkoUBQ8gCgB04\n55TJlZRiPdausH8hBhUhCwB2kMmXVaxUqWTtUjIWUTIWpiEpBg4hCwB2MJ/JS6J9w15MjcTZvxAD\nh5AFADuYTROy9oqGpBhEhCwA2MFcOidJTBfuwRT7F2IAEbIAYAez6bxM0igL33ft4FhCc/60KzAo\nCFkAsIO5dF7D8YgiId4yd+vIxJDSuZJW86WghwJ0DO8YALCDuUye9Vh7dHRiSJJ0ZiUX8EiAziFk\nAcAO5tJ51mPt0ZFxL2TNLBGyMDgIWQCwg9l0Xqkh1mPtxREqWRhAhCwAuIRsseztW5igkrUX+0fi\nikdChCwMFEIWAFzCnN8ji+nCvTEzHRkf0sxyNuihAB1DyAKASyBktc6RiSGdWaaShcFByAKAS5hj\nS52WOToxpBlCFgYIIQsALqG2pc4Ya7L27OhEUovrReWKlaCHAnQEp8sAwCXMpb0eWbEIf5M265bb\nTl30+VOL65KkP/3cYzowmtg4/tobjnd0XECn8K4BAJdwZiW30eMJezM+FJMkrWTp+o7BQMgCgEs4\nvZTVsUlCVitMDHshaznLRtEYDIQsANiGc04zyzkdnUgGPZS+MJqIKGRUsjA4CFkAsI3F9aJypYqO\nTVDJaoWQmcaTMSpZGBiELADYxuklr3EmlazWGR+KUsnCwCBkAcA2aj2djk0SslplPBnTCpUsDAhC\nFgBs4/RyrZLFdGGrTCSjWs2XVa5Ugx4K0HaELADYxsxyTpPDMQ3HaSnYKuPJmJykdI4pQ/S/HUOW\nmf2ZmZ0zs/vqjk2a2SfN7BH//wn/uJnZH5rZo2Z2r5m9oJ2DB4B2Or2UpYrVYhNJr3P+MuuyMAAa\nqWS9W9LLNx37RUmfcs6dlPQp/3NJeoWkk/6/myX9cWuGCQCdd2Y5p2Msem+p8WStISnrstD/dgxZ\nzrnPSVradPjVkt7jf/weSd9Zd/wvnOeLksbNbLpVgwWATqlW/R5ZNCJtqdRQVCYqWRgMu12TddA5\nN+t/PCfpoP/xEUmn66434x97GjO72czuMLM7FhYWdjkMAGiPhbWCipUq7RtaLBwyjQ1FqWRhIOx5\n4btzzklyu7jdO5xz1zvnrt+/f/9ehwEALVXrkUUj0tYbT0apZGEg7DZkzdemAf3/z/nHz0g6Vne9\no/4xAOgpF9o3UMlqtYlkTCs5Klnof7sNWR+VdJP/8U2SPlJ3/If9swxfLCldN60IAD1jZslrRMrZ\nha03nowqkyupUm16EgToKTs2fzGz90t6qaQpM5uR9OuS3iLpg2b2OklPSfpe/+ofl/RKSY9Kykr6\n0TaMGQDa7vRyVvtH40pEw0EPpe9MJGOqOimTL2nCP9sQ6Ec7hizn3Pdvc9E3b3FdJ+n1ex0UAARt\nZjnHeqw2Gfd7Za1kCVnob3R8B4AtnF7Osh6rTSaGvGC1zBmG6HOELADYpFypanYlr2P0yGqL1EYl\ni5CF/kbIAoBN5jJ5lauOSlabRMMhjcYjtHFA3yNkAcAmM8vemYVsqdM+40kakqL/EbIAYJONRqRM\nF7bNeDKmFSpZ6HOELADY5PRyTmbSdIqQ1S4TyahWciVVHb2y0L8IWQCwycxyVtNjCcUivEW2y3gy\npkrVaS1fDnooQNvwDgIAm8ws5Vj03mYT/hmGtHFAPyNkAcAmM8tZHWU9VluN+01IWZeFfkbIAoA6\nxXJVs5k8law2m9gIWVSy0L8IWQBQZzadk3NiS502i0VCSsbC9MpCXyNkAUCd00tejywqWe03kYxp\nJUclC/2LkAUAdWaW6ZHVKePJqJbXqWShfxGyAKDO6eWswiHTobFE0EPpe7VKVrVKryz0J0IWANSZ\nWc7p8HhCkTBvj+22bySmUsVpNpMPeihAW/AuAgB1Ti9l2bOwQw6MetXCR+ZXAx4J0B6ELACoc3o5\np6OcWdgRB0bjkqRHz60FPBKgPQhZAODLlypaWC1QyeqQ4XhEw7EwIQt9KxL0AAAgaLfcdkqSdG7V\nWxt0aim7cQztdWAsoUcIWehTVLIAwFfb4mVyOBbwSAbH/tG4HplflXOcYYj+Q8gCAN/SutcYs7av\nHtrvwGhcmXxZC6uFoIcCtBwhCwB8K9miwiHTaIKVFJ1SO8OQdVnoR4QsAPAtZUsaH4oqZBb0UAbG\ngTHvDEPWZaEfEbIAwHcuk9fUSDzoYQyU0XhEo4mIHjlHryz0H0IWAEgqlL32DUfokdVRZqaTB0b0\nyDyVLPQfQhYASDq7kpeTaEQagJMHRlmThb5EyAIASTPLWUnSURqRdtzJgyNaXC9unN0J9AtCFgDI\n2xh6fCiqkThnFnbaFQdGJHGGIfoPIQsAJJ1ZybEeKyC1kMXid/QbQhaAgZctlLW0XmSqMCCHU0NK\nxsIsfkffIWQBGHgzKzlJLHoPSihkuuLACNOF6DuELAADr7bo/cg4ISsohCz0I0IWgIE3s5zT1Ehc\niWg46KEMrCsOjGguk1cmXwp6KEDLELIADDTnnM4s55gqDNjJA6OSOMMQ/YWQBWCgzWXyWi2UCVkB\nO1lr48Did/QRQhaAgXbP6bQkmpAG7dhkUrFIiDYO6CuELAAD7d6ZFYVMmk4lgh7KQAuHTM+cGma6\nEH2FkAVgoN07k9ahsYSiYd4Og3by4KgeIWShj/CuAmBgOed078yKjjBV2BVOHhjRzHJO2WI56KEA\nLUHIAjCwnlzMKpNn0Xu3qC1+f+zcesAjAVqDkAVgYN07syKJTu/d4uRB9jBEfyFkARhY95xOKxEN\n6cAoi967wYl9w4qEjMXv6BuELAAD656ZFT33cErhkAU9FEiKhkO6bGqYxe/oG4QsAAOpXKnq/rNp\nXXM0FfRQUOckexiijxCyAAykh+fXlC9Vde3R8aCHgjonD4zoqcV15UuVoIcC7BkhC8BAqi16p5LV\nXU4eHFXVsYch+gMhC8BAumcmrdFERJftGw56KKjz3MNjkqT7z6YDHgmwd5GgBwAAQbjn9IquOZpS\niEXvgbvltlMbH1edUywS0ofvOqNK9cJ1XnvD8QBGBuwNlSwAA+f0UlYPzGb0kiumgh4KNgmZ6XAq\nobMr+aCHAuwZIQvAwPn7e89Kkr7jmsMBjwRbmR4f0mw6p6pzQQ8F2BNCFoCB89G7z+oFx8d1bJI9\nC7vRkdSQShWn86uFoIcC7AkhC8BAeWR+VQ/Nreo7rqWK1a0Oj3vbHJ1N5wIeCbA3hCwAA+Xv751V\nyKRvv2Y66KFgG/tH44qEjHVZ6HmcXQigb9WftSZJzjm974tP6bKpYf3LA+cCGhV2Eg6ZDqUSOrtC\nJQu9jUoWgIFxNp3X4nqRLu894HBqSGfTOTkWv6OHEbIADIx7T68obLbR8BLda3o8oXypquVsKeih\nALtGyAIwEKrO6d4zaZ08OKJkjJUS3e5IbfE7U4boYYQsAAPh1GJW6VxJ1zBV2BMOjiUUMkIWehsh\nC8BAuPfMiqJh03OmR4MeChoQDYd0YDRBGwf0NEIWgL5XqTp95UxGzz40pngkHPRw0KDD4wmdWcmz\n+B09i5AFoO89fn5N64WyrjmaCnooaMJ0akjrhbJW8+WghwLsCiELQN+793Ra8UhIVx5kqrCX0Pkd\nvY6QBaCvlatV3T+b1nMPjyka5i2vlxxOJSSx+B29i3ccAH3tiYV15UtVXX2YqcJeE4+GtW84xvY6\n6FmELAB97YHZjGLhkC4/MBL0ULALh8eHmC5EzyJkAehbVef04GxGJw+OMFXYo46MD2klW9LyejHo\noQBN410HQN86u5JTJl/WVdNso9Orpse9dVkPzGYCHgnQPEIWgL71wNmMQiY96xBnFfaqwynvDMP7\nzqQDHgnQPEIWgL71wGxGl00Ns1dhDxuORzQ+FNV9Z6lkofcQsgD0pSfOr+vcaoGpwj4wPT6k+89S\nyULvIWQB6EuffGBOkvQcQlbPOzye0BPn17VeoPM7egshC0Bf+sT98zqcSmgiGQt6KNijI6khOce6\nLPQeQhaAvrOwWtCdp5b1nMNUsfrB8X1JmUlfeHwx6KEATdlTyDKzJ83sK2Z2t5nd4R+bNLNPmtkj\n/v8TrRkqADTm0w/NyzmxHqtPJGMRXX04pVsfI2Sht7SikvWNzrnrnHPX+5//oqRPOedOSvqU/zkA\ndMwn7p/X0YkhHRpLBD0UtMiNl+/TXaeWlStWgh4K0LB2TBe+WtJ7/I/fI+k72/AYALCl9UJZ//bo\neb3sqkMys6CHgxa58YoplSpOX3pyKeihAA3ba8hykj5hZnea2c3+sYPOuVn/4zlJB7e6oZndbGZ3\nmNkdCwsLexwGAHg+9/CCiuWqXvbcLd960KNeeNmEIiFjyhA9Za8h6+uccy+Q9ApJrzez/1B/oXPO\nyQtiT+Oce4dz7nrn3PX79+/f4zAAwPOJB+Y1kYzq+hMsB+0nyVhEzz8+rlsfOx/0UICG7SlkOefO\n+P+fk/RhSS+SNG9m05Lk/39ur4MEgEaUKlV9+qFz+qZnH1SEDaH7zo2XT+m+M2mls6WghwI0ZNfv\nQmY2bGajtY8lvUzSfZI+Kukm/2o3SfrIXgcJAI24d2ZF6VxJ3/KcA0EPBW1w4+X7VHXSbU8wZYje\nsJc/9Q5K+ryZ3SPpdkn/4Jz7J0lvkfStZvaIpG/xPweAtrv10UWZSS9+5r6gh4I2eP7xCSWiIdZl\noWfsetdU59zjkq7d4viipG/ey6AAYDdufWxRV02PaWKYLu/9KBYJ6YWXTbIuCz2DRQsA+kK+VNGd\np5b1tVSx+tqNl0/p4fk1LawWgh4KsCNCFoC+8OVTyyqWq7rxCkJWP3uJ//WlmoVeQMgC0Be+8Nii\nwiHTCy+bDHooaKPnHk5pLBHRF1iXhR5AyALQF259bFHXHE1pNBENeihoo3DI9OJn7tO/U8lCDyBk\nAeh5a4Wy7jm9wnqsAXHj5ft0eimn00vZoIcCXNKuzy4EgCDdctupjY+/OreqctUpX6pedBz96cYr\npiR5U8THJpMBjwbYHpUsAD3v8fNrCodMx/mFOxBOHhjR1EicKUN0PUIWgJ73+MK6jk0kFYvwljYI\nzEw3Xr5Ptz62KG+LXOJH03cAABSMSURBVKA78Y4EoKflihWdXcnp8v3DQQ8FHfSSK/ZpYbWgxxbW\ngh4KsC3WZAHoaU+cX5OT9Mz9I0EPBW20ea3d8npRkvTWTzysrz+5f+P4a2843tFxAZdCJQtAT3ts\nYV3RsOnY5FDQQ0EHTQzHdGR8SPedSQc9FGBbhCwAPe3x82s6sW9YkRBvZ4PmeUdSOr2c26hqAd2G\ndyUAPWs1X9J8pqDLp1iPNYiuPpKSJN13lmoWuhMhC0DPeuL8uiTWYw2qyeGYjk4M6StMGaJLEbIA\n9KzHFtYVj4R0eJz1WIPqeUdSmlnOaYkpQ3QhQhaAnvX4wpqeMTWscMiCHgoCsjFlSDULXYiQBaAn\nrWSLWlwvMlU44CaSMR1jyhBdipAFoCfdfzYjSbryACFr0D3vSEpnVnJaXCsEPRTgIoQsAD3prtPL\nOjI+pANjiaCHgoDVpgypZqHbELIA9Jyvzq3q7Epezz8+HvRQ0AXGkzEdn0wSstB1CFkAes6H7ppR\nyKRrjhKy4HnekZRm03k9zl6G6CKELAA9pVJ1+ru7zujKg6MaibP9Kjy1KcOPf2U24JEAFxCyAPSU\nWx87r/lMQc8/PhH0UNBFUkNRnZhM6mP3ErLQPQhZAHrKh798RqOJiJ59aDTooaDLPO9oSg/NrerR\nc0wZojsQsgD0jPVCWf9435xedc1hRcO8feFiVx9Oyf5ve3ceHEd55nH8+8yMbusWtiVZlg/AF8bG\nCBsbs5gQCJCYwznKORY2LBBybHYrS+2SSmVDJbvLJqnU1iYEkqw3G4wTIORa45wmDk6IwfcB+HZ8\nSLIObF2WdY1m3v1j2kIYyZYtjVqj+X2qunqmp6fnGT3q1qN+u9/X4Jc6myUjhI5SIpIwfvN6Le3h\nCO+fV+p3KDIC5WSkcM2kAl7YdRznnN/hiKjIEpHE8bPtVUwsyOTqcl2PJX27Y04JB+tb2Vt7yu9Q\nRFRkiUhiqGluZ8OhkyybV4qZxiqUvt12xXiCAeOFncf9DkVERZaIJIZfbD+Oc3D3VWoqlP4Vjklj\n8aVFajKUEUFFloiMeM45fratioryfMoLs/wOR0a4pXNKqGxoZ0dlk9+hSJJTkSUiI96mww0cqG9l\n2bwJfociCeCWWeNIDQVYrSZD8ZmKLBEZ0bYda+SBlVsozk3nvVcW+x2OJICc9BRunHYJv9xVQySq\nJkPxj4osERmxNhw8wcdWbCQ/K5XnH1pIbkaK3yFJglg6p4T6U51sPHzS71AkianIEpER6cXddfzN\nDzZTlp/J859YyIT8TL9DkgRy0/RxZKYGeWGnOiYV/6jIEpERZ/XO4zy0aiszxmfz7IPXMjYn3e+Q\nJMFkpAa5eeY4fv16DV3dUb/DkSSlIktERpSnXz3K3z+7nXnl+ay6fwH5Wal+hyQJ6o45JTS1hfnz\nwRN+hyJJSkWWiIwI0ajjsV/v4Yu/eJ0bp43lqY/PJztd12DJxbv+skvISQ+pY1LxTcjvAEREOsIR\nHn5+J2t21bBgcgE3ThvLz7dX+x2WJKAfbTz2tueXj8tmzWs1zCnL6xlU/CMLJvoRmiQhFVki4qum\nti4eWLmFzUcaeeS26WSnhTRsjgyZKyfkseVoI/tqT3FFaa7f4UiSUXOhiPimsqGNZU9uYGdlM9/6\n8FU8dMNUFVgypKZckkV2WojNRxr8DkWSkIosEfFFRzjC/U9t4cSpTlbdv4Clc0r8DklGoYAZi6YW\ncqC+larGNr/DkSSjIktEfPHYr/awr+4U3/zwVcyfXOB3ODKKLZhSSHpKgJf2vel3KJJkdE2WiAyL\n3hck761tYeUrR7luaiHHmzrecbGyyFBKTwmyaGoR6/bWU9vS4Xc4kkR0JktEhlVLR5ifbK2iODed\n98wa73c4kiQWTSkkNRhg/b56v0ORJKIiS0SGTdQ5frq1inAkyocqyggFdQiS4ZGZFmLB5AJ2VTVz\n5MRpv8ORJKEjnIgMmw2HTnKgvpXbZxczTkPlyDBbfFkRwYDx5EuH/A5FkoSKLBEZFseb2vnt67XM\nKM5h/iRd6C7DLzs9hYpJ+fx0WxXVTe1+hyNJQEWWiMTd8aZ2Vm08SmZakGVXlaovLPHNX112CQDf\nW6+zWRJ/KrJEJK7qT3Xw0RUb6QhHuGfhJLLSdFOz+CcvM5Vl80p5dnMl9ad0p6HEl4osEYmbxtNd\n/PWKTdS1dHDvwkmU5mX4HZIIn1xyKeFIlP9cu59o1PkdjoxiKrJEJC5aOsLc8/1NHD55mhX3VFBe\nmOV3SCIATC7K4p6Fk3hmUyUPPr2V5vaw3yHJKKUiS0SGXFtXN/f972b21rbwnY/NY9GlRX6HJPI2\nX1o6ky++byYv7avnjsdfZk9Ni98hySikiyNEZNB699gedY6nNhzhYH0ry+dPpLa5Uz26y4hjZvzt\n4slcOSGXT/9wG3c/8Wf+/e7ZLJs3we/QZBTRmSwRGVJrd9dxoL6Vu+aWMrs01+9wRM7pmkkFrPns\nYuZMyONzP97J5368Q52VypBRkSUiQ2ZPTQvr97/JNZPyuUaDPkuCGJudzg/vX8Cnlkxlzc4abvzG\nSzz09Fa2HWv0OzRJcGouFJEhcbK1k+e3VlKal8H7rizxOxyRfvXXfD0hP5N/vOVyXjl0kvX73+Q3\nb9RSUZ7PQzdM5aYZY9W/m1wwFVkiMmhd3VF+uPEYhvGR+RNJ0ZiEkqCy01O4ZdZ4bpgW67T0f14+\nzP0rt1BRns/nb5/B1eX5PkcoiURHQhEZFOccq3dWU9fSwYcqysjPSvU7JJFBSwsF+fh1k3np4SU8\ntmw2RxvaeP+TG/jkqq0c1jVbMkA6kyUig/LMpkq2HWviXdPHMm18tt/hiAypUDDAh+dP5I45Jaz4\n02G++8dDrN1dx/L5ZXzs2nKmj8/xO0QZwcw5/3u7raiocFu2bPE7DBG5QK9XN7PsiQ2UF2Zy76JJ\nBHTNioxypzrC/H5PPVuONhB1UJKbzv3XT+HOuSUUjknzOzwZJma21TlXcd71VGSJyMVo6Qiz9Fsv\n09Ud5b7rJmtMQkkqrZ3d7KpqYtuxRo43dRAKGDdOH8v9iyezYEqh3+FJnA20yNJRUUQumHOOR366\ni6rGdp578Fr217X6HZLIsBqTFmLR1CIWTS2itqWD7Ucb2XDwBGt311FemMmSy8dy+bgxPXckfmTB\nRJ8jFj+oyBKRC/b0q0f51Wu1fP626VRMKlCRJUltfE46t80u5qYZ49hytIE/HTjBU68coSQ3nRum\njWVWia7bSlYqskTkgrxW1cy/rtnDu6aP5YHrp/gdjsiIkRoKsGhqEfMnF7Czson1+9/kmU3HKM3L\nYPr4bComqYPeZKMuHERkwFo6wnz6R9soGpPKNz44h0BAF7qLnC0UCHB1eQH/8O7L+eDVEzjVEeYD\n33mFv3tmO1WNbX6HJ8NIZ7JEZEDCkSj/9Pwujje189wnFqo/LJHzCJhx1cR8ZpXk0tDWxXfXH+J3\nb9Ty4F9N4RM3TGWMbhYZ9XQmS0TOa/fxFu769p/5zRu1/POt09XrtcgFSA0F+NzNl7Pu4SXcMms8\n31p3kMVfXcfj6w7Q0hH2OzyJI3XhICL96uqO8vgfDvLEHw6Sl5nCV+68gttmF79jvf7GghORd6ps\naGPd3nr21Z0iPSXAdd5dihmpQd2FmCDUT5aIDMquqiYeWLmFupZOrirL472zi8lU84bIkKlubGfd\nvnr21LSQFgowtyyPz7zrUhZMLiQ1pIamkUxFlohcMOccrxw6yQ82HOHFPXWMSQtx19xSphfrFnSR\neKlpbmf9/jfZU9NCOOLITguxZPpYbp45jusvLdL1jyOQOiMVkQFr6+rmZ9uqWfnKEfbXtVKQlcon\nl0ylIDONjNSg3+GJjGrFuRksv2Yi4UiU0rwM1u6u4/d763hh53EAJuRnMLs0lytKc3vmBSq8EoLO\nZIkkqVWvHuXoyTZ2VDbxWnUTHeHYAX7hlEJmT8glJajmChG/RJ2jsqGNoyfbqG5qp7qpnYbTXT2v\nX5KdxrRx2UwbH5tmFucwbXy29tthojNZIvIOzjkO1Lfyi+3V/GjjMZraw6QEjVkluVw7uYCygsye\nYUBExD8BM8oLsygvzOpZ1t4V4XhzOzVN7dS2dHL4xGle/ctJuqOxkyUpQaM0L4OygkzK8jP57E2X\nMS4nTfu0j+J2JsvMbgX+CwgCK5xz/9HfujqTJXLxIlHHydZOGtvCnO7q5nRnN6c7I7R1ddNwuouq\nxnaqGtu8eTutnd0EA8bUS7KYW5bHjOIc0kJqEhRJRFHnaGjtorq5naqGNo41tHG8uYOIV3gVjUll\nRnEOs0pymVmSw8ziHMoKMrTPD5KvZ7LMLAh8G7gZqAI2m9lq59zueHzeYEWjjnA0SiTq6I46olFH\n1MX+6z8zNzNCASMYNFICAYIBIxgwAob+S4ijqJeTWG6iRKOxg0rEOaLO4RwEA15uAkboAnPjnCMc\ncXR2R+jqjtIVidLeFaGtK0JrZzdtXbGCJRyJetu0nnlqyEhPCZKREiQjNTZPDQWI9MQbm4cjUTrC\nUTrCETrCEdrDETrCUe/37Mx3icUCsZgNMAPD6OqOcLor0hPL6c5uGtu6qGvppK6lgxOtnUTP8b9S\nWihAfmYq+ZkpzJ6Qy9jsNGaV5KojRJFRIGBGUXYaRdlpzJmQB0B3JEpNcweVjW3UNHVwqL6VDQdP\nEul1UiU7PUR+Zipzy/Iozc+gMCuV3IwU8jJTyctMITcjhZRgIHYcxWLHo3McU513PH7rOTicN/de\nh56/r1EXOz6eeU/s1bekBAOkBAOkBgOkhCz2PBAgFDRC3t/hRBhxIl5H2fnAQefcXwDM7FngTsCX\nImtPTQvLntjwtoTj3vpjPdiTeQGL/aE3s55fSIj9Qp4x8n8V4q+/H/PZO2NsWaxIGarcBLxk9GzO\n+8xwxP9rEgcqYLFODVODAbLSQmSnhygryGRWSQ7Z6SlkpgZJC8UKvTRvOlP86R8BkeQRCgZiTYYF\nmT3LuqNR3jzVSW1zB41tXTS2hWls62JHZRO/eq2mp8kxkfT8M42B0fN4+fwyvrR0lt/hAfErskqB\nyl7Pq4AFvVcwsweBB72nrWa2L06xxFsRcMLvIGTIKJ+ji/I5uiifo0tc8vmoN8VZ+UBW8q29wDn3\nPeB7fn3+UDGzLQNpl5XEoHyOLsrn6KJ8ji7JkM943etZDZT1ej7BWyYiIiKSFOJVZG0GLjOzyWaW\nCiwHVsfps0RERERGnLg0Fzrnus3sM8BviXXh8H3n3Bvx+KwRIOGbPOVtlM/RRfkcXZTP0WXU53NE\n9PguIiIiMtqo/30RERGROFCRJSIiIhIHKrL6YWYFZrbWzA548/x+1rvXW+eAmd3ba/m/mVmlmbWe\ntX6amT1nZgfNbKOZTYrvNxEYknxebWaveXn7pnm9e5rZo2ZWbWY7vOn24fpOycjMbjWzfV4eHunj\n9X73LzP7vLd8n5m9Z6DblPiIUy6PePvpDjPTWG3D6GLzaWaFZvYHM2s1s8fPek+fx92EEusKX9PZ\nE/A14BHv8SPAV/tYpwD4izfP9x7ne69dCxQDrWe951PAd7zHy4Hn/P6uyTANQT43eTk14NfAbd7y\nR4GH/f5+yTARu4nmEDAFSAV2AjPPWqfP/QuY6a2fBkz2thMcyDY1JUYuvdeOAEV+f79kmwaZzyxg\nMfAQ8PhZ7+nzuJtIk85k9e9O4Cnv8VPAXX2s8x5grXOuwTnXCKwFbgVwzr3qnKs5z3Z/AtyUkNV5\n4rnofJpZMZDj5dQBK/t5v8RXz3Bdzrku4MxwXb31t3/dCTzrnOt0zh0GDnrbG8g2ZejFI5fin4vO\np3PutHPuZaCj98qj5birIqt/43oVSbXAuD7W6Wv4oNLzbLfnPc65bqAZKBxcqDIAg8lnqff47OVn\nfMbMdpnZ9/trhpQhMZD9rb/961y5vdB9WAYvHrmE2PCkvzOzrd7QbTI8BpPPc23zXMfdhODbsDoj\ngZm9CIzv46Uv9H7inHNmpr4uRjif8vkk8BViB/evAN8A7huibYvIhVnsnKs2s7HAWjPb65z7o99B\nSfJK6iLLOffu/l4zszozK3bO1XinLev7WK0aWNLr+QTgpfN87Jkhh6rMLATkAicvJG7pWxzzWe09\n7r282vvMul6f8d/AmouNX85rIMN19bd/neu9GgJs+MUll865M/N6M/s5sWYsFVnxN5h8nmubfR53\nE4maC/u3Gjhzd9m9wP/1sc5vgVvMLN9rJrrFWzbQ7X4AWOe1N0t8XXQ+vWbGFjO71rsm5J4z7/cK\ntjPuBl6P1xeQAQ3X1d/+tRpY7t3hNBm4jNhFtRoCzB9DnkszyzKzbAAzyyK2/2p/HB6DyWefznXc\nTSh+X3k/UidibcW/Bw4ALwIF3vIKYEWv9e4jduHlQeDjvZZ/jVgbctSbP+otTwee99bfBEzx+7sm\nwzQE+awgdsA+BDzOW6MlPA28BuwidhAp9vu7juYJuB3Y7+XhC96yLwN3eI/73b+INRsfAvbR6y6l\nvrapKfFySezOtp3e9IZymVD5PAI0AK3e38uZ3vI+j7uJNGlYHREREZE4UHOhiIiISByoyBIRERGJ\nAxVZIiIiInGgIktEREQkDlRkiYiIiMSBiiwRGTXM7FEze9jMvmxm7/aWXW9mb5jZDjPLMLOve8+/\n7ne8IjK6JXWP7yIyOjnn/qXX048CjznnVgF4Y9oVOOcivgQnIklD/WSJSEIzsy8Q60m6ntgAtFuB\nK4gNcZRHrGPgZmADkA28l1gHso85557zI2YRSQ46kyUiCcvMriY2hMdcYsezbcSKLACccyvMbDGw\nxjn3E+89rc65uX7EKyLJRUWWiCSy64GfO+faAMxM4w6KyIihC99FRERE4kBFlogksj8Cd3l3DWYD\nS/0OSETkDDUXikjCcs5tM7PngJ3ELnzf7HNIIiI9dHehiIiISByouVBEREQkDlRkiYiIiMSBiiwR\nERGROFCRJSIiIhIHKrJERERE4kBFloiIiEgcqMgSERERiYP/B/Ty4ndfe5dIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 8.5686068097e-06\n", + "MAE : 0.00260148191793\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.002528\n", + "std 0.001476\n", + "min -0.010324\n", + "25% 0.001668\n", + "50% 0.002496\n", + "75% 0.003467\n", + "max 0.010337\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX)\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['actual']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction')\n", + "plt.show()\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQkAAAJcCAYAAABQALD4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYXUX9x/H3bN9Nr6STQEKLhGLA\nUJSqIgQRFAFDUZCOCiigggJKFxFQkB+9BpEmVUB6DRB6h0A66XVLts/vj3Nzd2+2J5tsEt6v58mz\n58zMmTPn3Lv84X78TogxIkmSJEmSJEmSJEmSJGn9ldXRC5AkSZIkSZIkSZIkSZK0ehkSkiRJkiRJ\nkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9Z0hIkiRJkiRJkiRJkiRJ\nWs8ZEpIkSZIkSZIkSZIkSZLWc4aEJEmSJElShwghDA0hxBBCTur8vyGEI1ZiniEhhJIQQnb7r3L9\nknrfw5vpPzaEcHnqOOPzWduFEH4aQnixib5mnyWE8PsQwvWtvM85IYTbV2WtbRVC2DWEMKOZ/ptD\nCOetyTWtjBDCuBDCE+0wzwYhhI9CCPntsS5JkiRJkr4qDAlJkiRJkqQmhRCmhBCWpUI4c1JhhM6r\n414xxu/FGG9p5Zr2rHfdtBhj5xhjzepYV3tJhUtiCOEbbbgm41lXpxBCHnAW8Jc1cb+1SYzxghjj\nzzt6Heu7GOMdMcbvtMM8c4BngGNWfVWSJEmSJH11GBKSJEmSJEkt2TfG2BnYFhhNEiTJEBL+7wxN\nCCEE4HBgYern2mg/4OMY48yOXojWTmtZVak7gGM7ehGSJEmSJK1L/B/vJEmSJElSq6TCI/8FvgYQ\nQng2hHB+COEloAzYKITQLYRwQwhhVghhZgjhvOXbgIUQskMIl4YQ5ocQvgD2qT9/ar6f1zs/OrWl\nUHEI4cMQwrYhhNuAIcBDqepGpzeybdmAEMKDIYSFIYRJIYSj6815Tgjh3yGEW1PzfhBCGN3Y84YQ\n/hlCuHSFtgdCCKemjs9IPWNxCOGTEMIezby+bwL9gV8CB6eq9tSft7XP2mDbqfrVhkII24cQXgkh\nLE59Bv9Y8V7N+B7wXFOdTb3XEEJBqtpU79T5mSGE6hBC19T5n5dvYdbInD+r99xfhBCOrde3awhh\nRgjh1yGEuann+Vm9/l6p9SwNIbwGbNyKZxwXQpiW+g6eWW+ujC3EQgiHhxCmhhAWhBD+0EhFp7zW\nfIdSc10RQpieWucbIYRv1uvbPoQwMdU3J4RwWXOLD8m2aPNT6xnXxJgG266FetvMhRDyU7+H01L3\nvCaEUNjMXC+FEP4WQlgAnJNqPzL1uS0KITweQtiw3jXfSf0+LAkhXB1CeC6kfq9XXFsIYccQwuup\nsa+HEHas1/ds6rvzUuo9P7H8O5byKsl/czZEkiRJkiS1iiEhSZIkSZLUKiGEwcDewFv1mg8j2fKn\nCzAVuBmoBoYD2wDfAZYHf44GxqbaRwM/auZeB5IEEg4HugLfBxbEGA8DppGqbhRjvKSRy/8FzAAG\npO5xQQhh93r930+N6Q48CPyjiWXcCRwUQgipNfVIPc+/QgibAicB28UYuwDfBaY09TzAEcBDwL9T\n5/u207OuqAY4BegN7ADsAZzQiusAtgQ+aaa/0fcaYywHXgd2SY3bheS7sFO986bCR3NJvhNdgZ8B\nfwshbFuvvx/QDRgIHAVclfocAK4CyknCV0em/rVkZ2BTkvfyxxDC5isOCCFsAVwNjEvNvfz+9bX2\nOwTJu9ka6AmMB+4OIRSk+q4ArogxdiUJOf278SmA5F30Tq3lCODa1PewrS4CNkmtaXhqvj82M/4b\nwBfABsD5IYT9gN8DBwB9gBdIfldIhXjuAX4H9CL5Pu3YyJyEEHoCjwBXpsZeBjwSQuhVb9hPSL4X\nfYE84DfLO2KM1cAkYKtWP7kkSZIkSV9xhoQkSZIkSVJL/hNCWAy8SBL2uKBe380xxg9Sf7DvSRIi\nOjnGWBpjnAv8DTg4NfbHwOUxxukxxoXAhc3c8+fAJTHG12NiUoxxaksLTQWZdgLOiDGWxxjfBq4n\nc4uvF2OMj8YYa4DbaDpk8AIQSaoAQRKMeSXG+CVJGCcf2CKEkBtjnBJj/LyJNRUBBwLjY4xVJCGK\n+utZqWdtTIzxjRjjhBhjdYxxCvB/1IV3WtIdKG7iGVp6r88Bu4SkmtMokuDHLqkwzHbA802s95EY\n4+ep534OeIK69w1QBfwpxlgVY3wUKAE2DUl1qh8Cf0x9194HbmnFM54bY1wWY3wHeIfGP/sfAQ/F\nGF+MMVaSBGjiCmNa+x0ixnh7jHFB6jP5K8n3Znm4pwoYHkLoHWMsiTFOaGH9f4gxVqTe1SMkv1Ot\nlgq8HQOcEmNcGGMsJvl9PriZy76MMf49tf5lwHHAhTHGj1K/9xcAW6cq+uwNfBBjvC/VdyUwu4l5\n9wE+izHelpr7TuBj6gXogJtijJ+m7vtvkmBTfcUk31tJkiRJktQKhoQkSZIkSVJLfhBj7B5j3DDG\neELqD/bLTa93vCGQC8wKyXZXi0lCKn1T/QNWGN9cEGYw0GjopgUDgOXhh/r3qV8Jpn5ooQwoSIVb\nMsQYI0m1mENSTT8B7kj1TQJOJqkANDeE8K8QwoAm1rQ/SXWlR1PndwDfCyH0SZ2v7LM2EELYJITw\ncAhhdghhKUmAo3dL16UsIqkI1ZiW3utzwK7AtsB7wP9IwkljgEkxxgVNrPd7IYQJIdnCbDFJyKT+\nehekwibLlQGdSSrY5ND679NyK372nRsZk/E9jTGWASuuv1XfIYAQwm9SW3MtST1jN+qe8SiSqj4f\np7bbGtvM2hfFGEvrnU9NrbUt+gBFwBv1fkcfS7U3ZfoK5xsCV9S7fiEQSL4LK767SFJ9qjEDaPiZ\ntfS7uuLn1QVY3MzaJUmSJElSPYaEJEmSJEnSqqhfYWU6UAH0ToWKuscYu8YYR6b6Z5EEYpYb0sy8\n00m2X2rpniv6EugZQqgfdhkCzGzmmubcCfwoVSXlG8C96UXEOD7GuDNJaCICFzcxxxEk4YZpIYTZ\nwN0kYaqfpPrb8qylJCEPAFIVdeoHPP5JUo1lRGoLq9+TBDha412SwEpjWnqvL5NUx9kfeC7G+GGq\nf2+a2GoshJBP8j4vBTaIMXYnCVK1Zr3zSIJXrf0+tcUsYFC9dRaSbIfVZiGEbwKnk1T86ZF6xiWk\nnjHG+FmM8RCSIN3FwD0hhE5NTNdjhb4hJJ/Lilb8jvSr1zcfWAaMrPc72i3G2FhYarkVv4PTgWPr\nXd89xlgYY3yZhu8u1D9fwZckvzv1tfp3NRXKGk5SEUqSJEmSJLWCISFJkiRJktQuYoyzSLaL+msI\noWsIISuEsHEIYfl2V/8GfhlCGBRC6AH8tpnprgd+E0L4ekgMTwV1AOYAGzWxhukkgZULQwgFIYRR\nJNVabl/JZ3qLJFhxPfB4jHExQAhh0xDC7qmgSzlJ8KJ2xetDCAOBPYCxJFslbU2yNdXF1G3V1ZZn\n/ZSkas0+IYRc4CyS7auW6wIsBUpCCJsBx7fhcR+lia3JWnqvqWo7bwAnUhcKeplka6pGQ0JAXmrt\n84DqEML3gO+0ZqGpbb7uA84JIRSFELYgCWO1h3uAfUMIO4YQ8kiqRbU2aLWiLiRhpnlATgjhj0DX\n5Z0hhENDCH1ijLXUVcRp8D2q59wQQl4qfDSWJHC2oneAkSGErVPbvZ2zvCN1n+uAv4UQ+qbWMDCE\n8N02PNM1wO9CCCNT13cLIRyY6nsE2DKE8INUiOdEoF8T8zwKbBJC+EkIISeEcBCwBfBwK9exPTBl\nZbfmkyRJkiTpq8iQkCRJkiRJak+Hk4Q/PiTZvuoeoH+q7zrgcZIQw5skIY9GxRjvBs4HxgPFwH+A\nnqnuC4GzUtsd/aaRyw8BhpJUKrkfODvG+OQqPNN4YM/Uz+XygYtIAkSzSSrB/K6Raw8D3o4xPhFj\nnL38H3AlMCqE8LW2PGuMcQlwAkmwaCZJ1Zj62zn9hqRCUTHJ+76rDc/5ELBZM9umtfRenyOpkPRa\nvfMuwPONTZbauuyXJOGxRal1P9iG9Z5EUqFpNnAzcFMbrm1SjPED4BckW83NAkqAuSRVstrqcZLt\nvD4l2UqrnMztu/YCPgghlABXAAevsJ1ffbNJ3tOXJFvWHRdj/LiR9X8K/Al4EvgMeHGFIWcAk4AJ\nqS3pniSpAtUqMcb7SUJu/0pd/z7wvVTffOBA4BKSLdq2ACbSyLtLbUE3Fvh1auzpwNjUHK0xjiSw\nJEmSJEmSWikkW4NLkiRJkiTpqy6EcAywRYzx5I5ey9oihNCZpMrPiBjj5I5ez7okhJBFEmIbF2N8\nph3n7UsSQtsmxljeXvNKkiRJkrS+MyQkSZIkSZIk1RNC2Bd4imSbsb8C3wC2jf4PaS1KbV32KskW\nfKeRbDm2UTMVkiRJkiRJ0hridmOSJEmSJElSpv1ItvX6EhhBsg2YAaHW2QH4nGQrvn2BHxgQkiRJ\nkiRp7WAlIUmSJEmSJEmSJEmSJGk9ZyUhSZIkSZIkSZIkSZIkaT2X09ELWJv17t07Dh06tKOXIUmS\nJEmSJEmSJEmSJDXqjTfemB9j7NPSOENCzRg6dCgTJ07s6GVIkiRJkiRJkiRJkiRJjQohTG3NOLcb\nkyRJkiRJkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9l9PRC1jXVFVV\nMWPGDMrLyzt6Keu8goICBg0aRG5ubkcvRZIkSZIkSZIkSZIkab1mSKiNZsyYQZcuXRg6dCghhI5e\nzjorxsiCBQuYMWMGw4YN6+jlSJIkSZIkSZIkSZIkrdfcbqyNysvL6dWrlwGhVRRCoFevXlZkkiRJ\nkiRJkiRJkiRJWgMMCa0EA0Ltw/coSZIkSZIkSZIkSZK0ZhgSkiRJkiRJkiRJkiRJktZzhoTWA+ec\ncw6XXnppRy9DkiRJkiRJkiRJkiRJaylDQpIkSZIkSZIkSZIkSdJ6zpDQOujWW29l1KhRbLXVVhx2\n2GEZfW+//TZjxoxh1KhR7L///ixatAiAK6+8ki222IJRo0Zx8MEHA1BaWsqRRx7J9ttvzzbbbMMD\nDzywxp9FkiRJkiRJkiRJkiRJq19ORy9gnXbyyfD22+0759Zbw+WXN9n9wQcfcN555/Hyyy/Tu3dv\nFi5cyJVXXpnuP/zww/n73//OLrvswh//+EfOPfdcLr/8ci666CImT55Mfn4+ixcvBuD8889n9913\n58Ybb2Tx4sVsv/327LnnnnTq1Kl9n0mSJEmSJEmSJEmSJEkdykpC65inn36aAw88kN69ewPQs2fP\ndN+SJUtYvHgxu+yyCwBHHHEEzz//PACjRo1i3Lhx3H777eTkJNmwJ554gosuuoitt96aXXfdlfLy\ncqZNm7aGn0iSJEmSJEmSJEmSJEmrm5WEVkUzFX/WNo888gjPP/88Dz30EOeffz7vvfceMUbuvfde\nNt10045eniRJkiRJkiRJkiRJklYjKwmtY3bffXfuvvtuFixYAMDChQvTfd26daNHjx688MILANx2\n223ssssu1NbWMn36dHbbbTcuvvhilixZQklJCd/97nf5+9//TowRgLfeemvNP5AkSZIkSZIkSZIk\nSZJWOysJrWNGjhzJmWeeyS677EJ2djbbbLMNQ4cOTfffcsstHHfccZSVlbHRRhtx0003UVNTw6GH\nHsqSJUuIMfLLX/6S7t2784c//IGTTz6ZUaNGUVtby7Bhw3j44Yc77uEkSZIkSZIkSZIkSZK0WoTl\nVWTU0OjRo+PEiRMz2j766CM233zzDlrR+sf3KUmSJEmSJEmSJEmStPJCCG/EGEe3NM7txiRJkiRJ\nkiRJkiRJkqT1nCEhSZIkSZIkSZIkSZIkaT1nSEiSJEmSJEmSJEmSJElazxkSkiRJkiRJkiRJkiRJ\nktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmStNa580746U87ehXS+sOQkOjcuTMAX375\nJT/60Y+aHXv55ZdTVlbWpvmfffZZxo4du9LrkyRJkiRJkiRJkiR99fzkJ3DLLR29Cmn9YUhoPVVT\nU9PmawYMGMA999zT7JiVCQlJkiRJkiRJkiRJktRaMcLpp9edV1d33Fqk9UlORy9AbTdlyhT22msv\nvv71r/Pmm28ycuRIbr31VrbYYgsOOugg/ve//3H66aez3XbbceKJJzJv3jyKioq47rrr2GyzzZg8\neTI/+clPKCkpYb/99suYd+zYsbz//vvU1NRwxhln8Nhjj5GVlcXRRx9NjJEvv/yS3Xbbjd69e/PM\nM8/wxBNPcPbZZ1NRUcHGG2/MTTfdROfOnXnsscc4+eSTKSoqYuedd+7AtyVJkiRJkiRJkiRJWttN\nX1jGx7OLAZjwbB5/+UuPdN/51yxmx90rOmppDWw7pDu9Oud39DKkNjMktApOPhnefrt959x6a7j8\n8pbHffLJJ9xwww3stNNOHHnkkVx99dUA9OrVizfffBOAPfbYg2uuuYYRI0bw6quvcsIJJ/D000/z\nq1/9iuOPP57DDz+cq666qtH5r732WqZMmcLbb79NTk4OCxcupGfPnlx22WU888wz9O7dm/nz53Pe\neefx5JNP0qlTJy6++GIuu+wyTj/9dI4++miefvpphg8fzkEHHdRu70eSJEmSJEmSJEmStP5ZXFrN\nmSd1Yb8jljBjVm1G3wfvw4jt6kJCC+dmk50T6dazlsrywPzZ2QwYuubKDVXW1LY8SFoLud3YOmrw\n4MHstNNOABx66KG8+OKLAOlATklJCS+//DIHHnggW2+9NcceeyyzZs0C4KWXXuKQQw4B4LDDDmt0\n/ieffJJjjz2WnJwkR9azZ88GYyZMmMCHH37ITjvtxNZbb80tt9zC1KlT+fjjjxk2bBgjRowghMCh\nhx7avg8vSZIkSZIkSZIkSVpnTJgAIcDTTyc/99wzs/+mm+Abm3Xh9WeKOOun/SmftDCjf/DAkozz\nX3x/ICfsPQiAa8/vyWkHD+DCX/RZrc8grQ+sJLQKWlPxZ3UJITR63qlTJwBqa2vp3r07bzdR6mjF\n61dGjJFvf/vb3HnnnRntTd1TkiRJkiRJkiRJkvTVs8MOyc899kh+PvUUVFRAfj5UVsKRRwLU/Q17\n0kNLMq7P/XwGMKDBvOPGDEkfv/96IePGDOG8m2cxbLOqdn6CTDGu1uml1caQ0Dpq2rRpvPLKK+yw\nww6MHz+enXfembfeeivd37VrV4YNG8bdd9/NgQceSIyRd999l6222oqddtqJf/3rXxx66KHccccd\njc7/7W9/m//7v/9jt912y9hurEuXLhQXF9O7d2/GjBnDiSeeyKRJkxg+fDilpaXMnDmTzTbbjClT\npvD555+z8cYbNwgRSZIkSZIkSZIkSZIylVfV8MzHczt6Gats71H9AfjP67PIy0/aepLHQnpljLvz\n2blsMKCGpx/KBzJ3tnm5dDQAt3A4R3Ary2oLWn3/Fx/rxLDNFq/8A0jrMbcbW0dtuummXHXVVWy+\n+eYsWrSI448/vsGYO+64gxtuuIGtttqKkSNH8sADDwBwxRVXcNVVV7Hlllsyc+bMRuf/+c9/zpAh\nQxg1ahRbbbUV48ePB+CYY45hr732YrfddqNPnz7cfPPNHHLIIYwaNYoddtiBjz/+mIKCAq699lr2\n2Wcftt12W/r27bv6XoQkSZIkSZIkSZIkrQdihEVlVev8v+XefCOLvUf1Z+9R/fke/23wvFMnVzJv\naRWXnlkXEKqpF2HIoobv8yAAFcta/x5zc1d/mR8LCWldFaJ1sJo0evToOHHixIy2jz76iM0337yD\nVpSYMmUKY8eO5f333+/QdbSHteF9SpIkSZIkSZIkSVJHW1ZZw/1vNV7kYV2yfAuwrFBLbWy6bslv\nTv+UIRtV8Mvjtky3RQJHcDO3cgQA1WSTQw2D+y7hogfrtiCrv83Yig44aDY/PKVyVR+jWbts2oeB\n3QtX6z2ktgghvBFjHN3SOCsJSZIkSZIkSZIkSZLUweJ6Vp+muYAQwCtPdmbag/PS54dyG6X9BlJI\nXdmgN39zDgDT53bj2Qc7pdt7sJBBTE+fH8X16eOcGXNWdelaA378Y7jvvo5exVePIaF10NChQ9eL\nKkKSJEmSJEmSJEmSpPVIeUWrh7705gAufXT39PmRF1fxwH9e5pf5V7Mxk3hy43HM3GkPducpAK67\noBcAixdksYie7McDvM5o/s2BXMNxvMZ2yRJq89vxgRrnjk0r59JL4eqrobwc7r4bfvjDzP6pU+H+\n+ztmbV8VOR29gHVRjJEQQkcvY53nfzglSZIkSZIkSZIkad3z028NJjsncs51cxi8cVW6vXpGcYvX\nFoRyymNBg/ZZu+wJQPdtezHplRHwOfyr1zl04730mJpqOHGfQQBcxUn8g18wmjcA2I6JbMgUKpc1\nmFqt8P7MJVTW1LZqbIxQUwM5bUycnHZaDwA23WQyMAyAN6ctSvfvv1tXpk3O5tn3FtGla+a1PYry\nGNa7E1o1hoTaqKCggAULFtCrVy+DQqsgxsiCBQsoKGj4H39JkiRJkiRJkiRJ0tqrqjJQVRn47bj+\n3DFhGgDVVfDuC9kNxn6DCbzKGMZ1uoeXSr/OL0c9yKnv/CpjzAg+BZK/HS/r3TfdXpuXz/0ckD6f\n/HFe+nhY/nRIFS5asNmW9Pr4PQpZtkZCQutjPYzP55VQWlHTqrF/Pa03b75QBMDNz08jN6+FCyD1\n0pKQ0J7fHpZu/vqGPfjWPiXse/hSpk1O+v/8xxyOPGNRxuVDehYZEmoHhoTaaNCgQcyYMYN58+a1\nPFjNKigoYNCgQR29DEmSJEmSJEmSJEnSKnrwL7Xc++BWGW178CS1eXlQCQzpzfgf3sf03faCPTKv\nPXqnF4BvA/Du0afS6cvpTDztvAb3OPvn/QDoyQLuP+xy3s49nX6vv8QLF13D4KcfpeiCMirLDZKs\nDqVLA6UlWfQdUJMOCAH89FtD+MtdXzJgw+pmr8+qqmyy7/lHOvP8I53T588+0KlBSCiyHiazOoAh\noTbKzc1l2LBhLQ+UJEmSJEmSJEmSJKmV1pnqNFUNwyA11XDvg0MbtBcNKqR8frIdWX5RZPLYAwHY\nnA/5iC3S45ZsvgUDU8fL+vbn6av+le57bNBP+MuMI3mKPdNtC+nFVtdfxvgJU/nwiBMB+GLfgyi6\nYBqVFV1W9Qm/kup//+69AEJRLgecXLeV3J+O6s2M6YX87b6ZDa499+gN+L8nGrbXF0rLW72Wwuxy\nYoT6mzutM78fa7msjl6AJEmSJEmSJEmSJElaN8yZVNugLevdLxodW5FdyEeVIwDILqirYfJc1m4Z\n40LDXcrSvjvjTh5i34y2LXmXT390eObAECgM5ZRXta5Wyr3Xd2XcmCEsXWRsApJKPcd+ZyDjxgzh\nvgeHcO+/+mf0z5heCMApBwxscG3J0mymTcptdv6apRUN2j5jODMZkD7vx6xkvqoiHrnDsNfq4Ldd\nkiRJkiRJkiRJkiS1yqk/G96g7d2XCxode+IuzzCjNgmVPPTulun2iTfdxClclj7Pymk+ulBIOb/m\n0vT5f3v8iIm//lODcQXZlVRUty4kdN/13QF4dHzbwyjra1WbkqWZaa3yZXWlfPbkfxl9XViacV42\nu2EIqL6apZnbjZ3GJUy+5iLev+6qdNsm3WZwxYCzAZj99PyM8evpK1/jDAlJkiRJkiRJkiRJkqSV\ndsntYxptr/rJHunj47d8JH28aNOvsWW/6enznGaK0Nz/4ATK+vTjUk7jeo7iAb5PYZ/czL2oUgqy\nKyivzmtxveVlddcWdjZ+Ao0Hn47abTAfvpaErmaSWUHoOXbhLn6cPq+dV9Ls/OWLkq3L9uFhSini\nB2fnMW/r7Zm/5dd5g20ZwEx+dcokNv3TtmzOh+SWFq+wPj+n9mBISJIkSZIkSZIkSZIktVkulcx5\nv7zRvpG8T0X3nunzzc8dldFfst3W6eO8oqbvsaxvfx69/TFmbbczR3Ej3+ch3jrpzEbHFmZXUF7d\n/LZXAEsX10UlYq3hE4DKZQ23kQP45L7FlC8LfMQWAEQCkcDcG85lzO6lfJBqryqubnb+8rlJJaGj\nOt3Oo4+/wpTvHZDum3Pzn3nu+7+h4ttjWPC1bSjIquSJqdty54X57fFoqseQkCRJkiRJkiRJkiRJ\narMq8pj2wOyMtkFhBlMLNubWcdcB0IOFydgu3TLGZdXWhUpyujQf7Kns1oNn/n4HVUWdmbnT7szZ\nfudGx+VnV1Fe03IlodKldVGJ8PnsZkY2Lq6Hm19VzljaaHt5eTY1L3ySPh8/YSrjJ0xlwcitefGC\nf/LO2RcAUFVc0+z8y1IhoS9OO4XKbj0y+hZttiWv/f5iYnay3dlbtUmA7OEHNmDRvKRt/XvjHcOQ\nkCRJkiRJkiRJkiRJHWxdC0Ec0/dfAMydnYRybmcc2/MqD+9wKi8/8Rgfn3QqAB+yBW+zVYPrayrr\nnji7a8vVfwDufup9nvvrTU32F+RUUV7TcvWZqk/mp4+XFTczsAnr485XVdMWN9peXpFN9RvJ1nCP\n5oxt0J/TLfnsqkoar0QE8MDNXTnrju8CUDCwmbJRKWPzH0sfz/+kIjlYD995RzAkJEmSJEmSJEmS\nJEmSWjRuzJD08dbbLgFgybwkdhCvOYarTn2MT847l9q8fAgBgFfvu5fp//pbg7l2GvhR3UlhK7eV\nSs3ZlCk1G1IR8ygtbn5czQcz08cPvbp56+69Drj++uQVLVjQ8tjqajjqqGR8CPDz0xuvzjRig7l8\nMr8fAFOuPLdBf063JCRWWdp0SOjf13SnqiYHgILBnVtc2959Xqw7WVgCrJ/VmzqCISFJkiRJkiRJ\nkiRJktSsUF2VcZ49ONky6pEp2wNQtdFgPv3xz6gu6pQxrnTAYJYOHd5gvi8O/Rl/5yQAOvVrXSWh\nlgzvNA2Aj94saHbcP57apV3ut7Y5+ujk59VXJz/nzYP332987GefwY03Nj3XJ4PGAFBLFn9/OakC\nVLhF7wbjQrdCsqihoqzlEE8E+sheAAAgAElEQVQ21RR0y25x3KitlqSPK5Yk29JN+yKbl19u8VK1\nwJCQJEmSJEmSJEmSJElqVvayZenjX23/MPm9MoM9uZ1y2jRfVeeufOvIXGoJdOrZcnCkNQ4f8DAA\nC+c2P9/i0kIARpIkaKqr23afmTNDm69ZkzqnivVsuy1suSVce23DLdLmz294HcDRQ+5jbO5/+eiy\nSwjUUlEGGxbOAiCvoGGFptrCQjpRyi0vjuHK3/ZsOGF1Td26QllLxaAAKNl/T6awIQAVS5Prf7ZP\nb3baCb72tZavV9MMCUmSJEmSJEmSJEmSpGbVLilPH4+6aCuKumX2Z61Ezuf9Y07hzglTV3FldXrn\nL6GQMhZ+Xtlof0V5oHhJFn2KlnAkN/Bzrk/al7UiuZJSXhbYeesiTjihXZa8Wpx6Krz0EsyYkZwf\neyxsvHHmmFmz6o4vu6zueJu/b8shL4ykplMRnSmhpDiHyWUD2SBnXqP3qirqRCdKAXj12YZbiS2o\n91kUZpc36G/Mgq9tw8SrrgGgbGFmuumDD6C26Z3N1AJDQpIkSZIkSZIkSZIkdbC4YqmXtUzl4rrt\nxgqKIp0K175SOtN335vhTGL2Z42/y0t/3YfjvjuI0vJcuuaUUkASWqmqbH1IaFlZMva661Z9ve2t\nX7+644MPzuybPDnzfPbs5OfcudC1a1378u3Aqgs70ZkS7nlrNABzqvs0es+a/AJm0z99vqw0811e\n/ae+6eO8nNZ/Z7L7dQHgw0k9GvSt+CxqPUNCkiRJkiRJkiRJkiSpWdVLkpDQMVs8AsCS7UZzPr/v\nyCU1sOBr2/AZI3j9g/7cdEnDcMmHbxQAUFZbxJys/nUhoYrWh4SevLdL+yx2NVi8sG5rr+VVhJoy\n68tITlYtvR68iYU/Py3dnpefBKyqCwrpQnHLN83KjJ3cc2VhxvlGPeemj6eVD2h5vpTKHr0AeP6T\nEYwbMySj76STWj2NVtC2TQElSZIkSZIkSZIkSdJXTk1Jsm1U39FJ2ZmYnc2yb24DL3TkqjKV9elH\nOUlI5cn7uvCz0xc1OfapsAfbfX02vNFyJaG5X2bzwesF7LZfKf+5qW6ftTufmUuvvmvH3le1tVBe\n2a9B+2MvTeK0Xw3hvYl5nPnXxeyyVxKM+vC5EjaoLSDr50fyEvenx4flryIri0/ZNN0+cdfD+ITz\nW1xHt5lTgLrqQYPzZ0O9eVqrurCoyb7HHqtb5wOvzaGgaM1W4eqcn8OOw3szcyZcfDFcdBEUNb3c\ntYohIUmSJEmSJEmSJEmS1KzqkqSSUE5RXeWYmdMKOmo5jaru1Jn3w0i+Fj9gqx2WNTv2/v3OZ+Ls\n4QAsmJNDp661dOuZGfiproIjvllXxWaH75Rl9E+bVUMsqmJtsGh+w42keocFfHenEZy4RRIM+t/D\neYzceWkyfkkWPUhCVDfzU3qwmEf3OYtFHNPo/B+dd16TW1X9h/14kj25n/1ZsjBzVMWSZIuxb/I8\nV/Y/mw+5pXUPFAIX8lt+x0Xppl15hmfZLWPYb47qzjnXzWndnO2kvDr5nlx9Nfz977DFFnDccWt0\nCSutw7YbCyHcGEKYG0J4v4n+EEK4MoQwKYTwbghh23p9l4QQPgghfJQaE1Ltz4YQPgkhvJ361zfV\nnh9CuCs116shhKFr4hklSZIkSZIkSZIkSVofVJckW1nldK6rRXJy9+s6ajlNGhk/ZDif0bdkarPj\nOneH7E65AFz0q76csPegBmM+ejMzBLWsNLPi0II52au42vazcG7yuZzGJeRRAUC/+CUAz364MQCv\nP1tETBXdKSvNohtLAJhywnG8ecLvWHTW0RlzjuDT9HFWTtPVluIDv2O/q/oyk0E89sW2jBszhHFj\nhlBTDUsX57BBmMMlZ73Gx3dd26Zn2uawrunje/ghT7JngzGfvZffpjnbQ0y9xNpUpmzBgjW+hJXW\nYSEh4GZgr2b6vweMSP07BvgnQAhhR2AnYBTwNWA7YJd6142LMW6d+rd8c7ujgEUxxuHA34CL2/E5\nJEmSJEmSJEmSJElaK9UsKEmHNv56eO7Kz1OWCgl1qgsJff7nMwHYgZdXbZHtrIgyit77OP3cpcVJ\nwKV7qnLO3ziZLtMmk1PYdMintgb+c3PXjLay4iRi0YOFADx1f+fVsfyV8uKjnQA4hDsZyEwANiCp\nsDModQ7w0mPJvlhlZdl0YwnPXnojHx5+Ah8dfny9vcYSxxS2rupP2QYDmPv1HRq0l5cF7pu+C3Pi\nBnwx9sfU5rUt0LP4yAM4f/SNXL7XTezd8wWyqeWH3APAP/87g9y8yOhdylqYpf3VpkJCXVNfj7PO\nqgsMre06LCQUY3weUr85jdsPuDUmJgDdQwj9gQgUAHlAPpALtFQ7aj9I16y6B9hjefUhSZIkSZIk\nSZIkSZLWJ2/9u4x505LjTw9/It3+5qf9V3rOqx8YDUB2l7x027K+/Zmx2fb85bSXVnre9rZgi63I\noZoH+EG67aSxA6mthcX04I+cy8lcwQc/PYmcFXZL+9kug9Jhjw8mFvDxW5kDTj9kAEC6As/AoWvH\nVmPVVfDEPV0A2JCpTGYjAJ6qV3knkDzYLZf15MzD+/HR/MF0yy3hy533aHLeqj49Adi4+6xWrePP\n/S7NOJ/6fEnrH6IRNYVFDP3HnvQ5Zw/e+sXvAbiDccxkAKNevZcN+y6kpnqVbrFSln9HuhTW3fza\nthVJ6jA5LQ/pMAOB6fXOZwADY4yvhBCeAWYBAfhHjPGjeuNuCiHUAPcC58WkzlN6rhhjdQhhCdAL\nmL/iTUMIx5BULmLIkCErdkuSJEmSJEmSJEmS1O5iO82Tt3ABl162DUU5y7juxXnU5GRWD6quhpw2\nJgWKF2fx2eKBAPQekTnfczffs0rrbW+P3/ggb47J/Ft/ZUUWFcuSOiJdKGbONt9g6dDh5BRMazDu\nsB2HcPPz0ygoaro0zBgmUEUuSxd1b/8HaMbsaTn8+fgNOPva2fQdWJNuv/7CnunjnqlqScuNnzCV\nn4zZkHfYilG8R1lxFlOKk6BXbguFfb797bkMuuEwOl9/HMsY3OL6NvrPj7mDaYxLvf/zz9scgEO5\njcwNotpuyvcOAGDHc09hALMYcM7J9GQM2aEHSZ2ZNae6tpaXP1rMF3e9CewOwOQ5Zbw7o3KNrmO5\nrDbUyFmbQ0KNCiEMBzYHlm8I+L8QwjdjjC+QbDU2M4TQhSQkdBhwa1vmjzFeC1wLMHr06Pb677Ak\nSZIkSZIkSZIkSatd7ZJlAJRVFwJw4ZwTM/oXTqmm7/DWRwUWPvwFvzhvVwB26z2RvA36ts9C17Cy\nuUnVn8oRG/LMlccBUJ3VeEpm0vv59Fg0DejXaP8ZXMynbMKS+Ws2JPT8o51YvCCbx+7qyuGnJmGg\nlx4r4oVHk23PxnE7AL2Zx3z68OLg7zOVfwAwgs8azFeS1/z6PzvyOLp8fw5lGwxo0zr/9s1rOOWF\n49Ln80du06brmzLlewew47mnpM9zqSJ7/kKgbetbVaUlgZ22787ygBDAJecUsdVeDerUrBHZbdhD\nrMO2G2uFmZARRRuUatsfmBBjLIkxlgD/BXYAiDHOTP0sBsYD2684VwghB+gGLFgDzyBJkiRJkiRJ\nkiRJ0hpTs7RuC6zKCtgk7wsAjs29DoDyzxa3ab5lH9QFH/oPLG+HFXaMeZ8m76V6kyHU5iaVdHr2\nSiq/HM/VGWPPO2EDfn3mdk3O1YlS+jGb2Z+vuchFdTU8cHM3AB7/d7K12AcT87n6nN7pMf/HsUza\n9yBm049KctloQLIt2n9vfpgCKhrM2aNz859nzM5uc0AIIG7QM+N81KAZbZ6jJW+d+DtyqGZZUbd2\nn7slxUsa/9xnTl776/SszSGhB4HDQ2IMsCTGOAuYBuwSQsgJIeSS1KT6KHXeGyDVPhZ4v95cR6SO\nfwQ8ndqGTJIkSZIkSZIkSZKk9Ub14rrgR/HiLAblzGTrLh+z+fEbAvC7c7dl3pSapi5vON+yum23\n8gvXjT+zH8c/G7RN/ziJRxT2zE639exVRS2BX3Jlm+b/4vAjeZR9mD2viAtOWjOVlYoXZWecL12U\nxecfZlZC6kQZ75xwBtnUkks1y3r1AWDRJiMzxu26/XQO5xZO3O6x1bLWvKK67a9u41C2O7V/u839\n2hkX8Pk+B/LRYceRnQPVsS6Y8+R9nZnxRW4zV7ePZaWZUZsfcxcA82YZEmpSCOFO4BVg0xDCjBDC\nUSGE40IIy2tOPQp8AUwCrgNOSLXfA3wOvAe8A7wTY3wIyAceDyG8C7xNUj3outQ1NwC9QgiTgFOB\n3672B5QkSZIkSZIkSZJWk9pa8P8SL61fVvV3uqYaHri5KxXz6irGVM0vp6Imj/ycKvpt1yndfv2v\nG99mqzHlJXXHeQWrtsY15WpO4CHGciG/5QaOBOCVV3oB0LVfXUwir3gpAejPLAAubGWUYN539kgf\nfzBxzbyUpYsz4x3/u7czL/63KH1+H/sDUNG9rorPRo/emxxkZVE8aENmMoD/sB/PvDaEW/gpoW/X\n1bLWnE51a62467dUduvRbnNP2n8cr/7h0uQ+WTVU1yb3qqmGmy7pyVk/bXyLuPa0rCTzs7go9b1Z\nvCCb0uLAS48Vce/1XZn4fOFqX0tbdViMKcZ4SAv9ETixkfYa4NhG2kuBrzcxVzlw4MqtVJIkSZIk\nSZIkSVq7ZGfDoYfCbbd19EokrS1uHzefJ6YO4b6wd7otVtZQUZNLYU4NNSMGc8uNEzjiyDEMyJkN\n9G56snoqyuodZ619oYfGBGAsjzCWR1hID47iRj6ZkoRneg7JJr0hW0gq3nQNxVTGXHKp5ndc1PL8\nw/ryUM732bf6wdXzAI0oXpQZTLnv+u7p4z+MuI79P/tPanGBxjz3lxsYe8ie7EfdmmsKVs/nmdup\nrupR/sAuq+UeANmhlppUSKhkafKzqrLx529PpcWZn8XykNldV3fnuvN7ZfTtf9QSfnT0ktW+ptZa\nm7cbkyRJkiRJkiRJkrSCI5OiGNx+e8euQ9La5Ymp2wKZ2y/FyhomVm/LWwtHAJCzxQD2yHuO2bMb\nVr8J1VVct/MU/rBH5rZWy8rqYgU7HL/6Ah/tacFmW6aPe7CILOq2V8sbUFdRacp3f8CEMy/hhYv+\nj1yqAYgEaqkLmmzKxwDcxY/TbSE7i07d1mw5t6Xzk59P8O2M9mF8wZ8+OwaAV3+XBJxeO+08AO55\n/J30uNL+gxrMmVVZuTqWmhESyspZfaGdGAIfLh3G0//pRFnJmom/zP0ym7+e1iejrYAKOlPM0hW2\nhAN4+fGiBm0dyZCQJEmSJEmSJEmStA6YPBmKi+Gmmzp6JZI6wu/37cw959edz7hvBktmVBIj/OfM\n0kavueSMAQCU1NQFYzbN/5xJlUMztjcrXRT54qJ3eLb6W3xROpCqSlj0yhxmv7qU8vK6WEHnwetG\nJaEXL7g6fRyAfJIt2LbjNSq7dEv3xexsvtj3IOZu/Q1mj96RF8+7Kn3NcnvzKAB9h0ZmMoBP2ASA\n3l3r3vnrz6z+91LzYVKtZrNUaGm5KnLTx5P3SrYcm/TDwxg/YSqV3eqqDTVWNeiLfX/coK095HRu\nGJZZHR4r3xOAGy7qxdsvrZnv5ikHDGzQVrrBAHqwqNHxgzeuarS9oxgSkiRJkiRJkiRJktYBG20E\nu+7a0auQ1BGyqiqZOq8n9z80BIDc4iWcccmOnHFQf7Je+Yi7n9q80evmlSchkbEFj6fbOg3tRFks\nSm/PBHDFEVmc9fAB6fPi+bWcdMp2/PpXX6N0WR6ds0q44enpq+PRVovSAUMYP2Eq4ydM5al/jKeG\nJLTShWKqOjeshlTZrTtP/+NOvtxxtwZ9Z3I+k9iYIVtEBjCLTfgMgC0nP8P7jATg/dcbVmZqb0uX\n5pBDFQOZSV4q9ARQShIAK+03kNr81q3j3v++yfgJU6no3nO1rDU/p3q1zNuc956r+z7X1rb//DHC\njMk5jfa9ccrZdGdxRtudL0xixJYVlJetnkpKC+Zkc+YR/Vg4t22BrMafQJIkSZIkSZIkSdJaY86c\n5Oebb3bsOiR1jKyqumokh44ZRCQJCxXXdCJ7/uKmLkv78ROb1s1VlMQEXryxgm1+VEj1C5/ywdxd\nM8b/4oCh6eM75oxlSN5MCorW7PZa7aW8Zx8qyQcgp2cBZDVdS6W6qBN3PfMRfd59g2/+6nle4Fvk\ndcth4yVf8OQ+F7DRo/dmjB/Jh/TnS6qruq7WZwAoXbR867RIPhXpZ1pEEvR58J7nWpzjXy98RlZV\nFdVFnRr09euWT3Yz76YtCgYm8xewjIE92qfCz7LKahaWZlbl2bbgXd4sHwXAO2/XVYh6d0IBfzm1\nL5fd8yUbDGqfwNJzD3fiuvN7pc/n04vzOItP2JTKrt3pxpKM8Qd/cwS38CiTNxrTLvdf0dXn9GLK\nJ3k893AnfvTzpa2+zpCQJEmSJEmSJEmStJb7/POOXoGkjlQ/JBRX2DCotKb56jH5lJOdV3fNmLFV\n8CqM//cwbr8ri291arlCUKiuJnMTrnXHsl590scVOUUtjq8pLGLRpiN5jB2ZxHDoUghLoGyDATx6\n22PE7KRyy3tHncyWN1zOAL5k4bweq239y5UtTUJCCzYfRfFHmaGk1047j5iT28SVdWpz86jNzWu0\nb/thveic304Rkk32IJ76azjuOBgxol2mnLagjBcnzc9oe7H8G0xnMJvyaUb7rZcln8fE5wrZZ1xx\nu9z/8w8y31svFvI3TgXgka6P04m67efuJanK1ZWlfPJFD647P5ejz1zYLutY7uO3kt/7vPy2hffc\nbkySJEmSJEmSJElay/3ylx29AkmrXTN/6w9VlU32zZ5XF3z540bXcDGnc3qnywHYiRe58Y//zbzN\n1zYEoDYmcYHnS7/R4tKm1m7Y4pi1VWWXbpwZzgdgcXXDrcYaU9GtB0UsYxTv8cKF1/DpDw+jZMBg\nFo/YnCUbbQJAVafOAAxkJovnrf4AVWlJNt1ZzMvnXplu+y0XMnXbXZn0w8NW+/3b7K9/bbeAUFMK\nKWdj6lK0P+YuAObMSAJT7bkNXH5B3S/oJ2yS0VfZtTuz6J8+P4D7gSQkBPDsQ52J7VSIq7oarju/\nbpu40uK2xX4MCUmSJEmSJEmSJElruQ3X3b/PS2oHtcua3jKpZG5t+njwpbsxaMJJfOfs7lzBLzll\nfIS9v54xvqJ3nxWnSLtjwjT2G/byqi94bZKVxY5d31x+2DohMHmv/anJyWXxiC2YeNp5DS6ePXpH\nAHozn7K57bOlVVNqa+DlmZszO/SnrG9//si5APyJP1JU2fqtptZH2dQyincAuJTfZPS9O6GQV59q\nn+3OunSrAWAQ09mEzzL6Krt24z22BGAw06gq6sz4CVPJr7erW8WywCfv5PHa06u2njuu6MGzD3VO\nny+en92m6w0JSZIkSZIkSZIkSWu573wn+TlsWF1b586Nj5W0/lkxJHTri9P4y+h/AnDL41sB8DXe\no2hAEkCY863d6T3hN1Rs1DBhWJubx/inP23QvtyBdwxs0LbzNjNXeu1rg6rC5D+YhbkVrb7mlbP/\nxl0vTmqyf/EmI7n30TcoZBlVVas3evHCf5O0ybQ4hJqCAs7lHCKBXKrJXrasXe6xtm8mF5pZ4ATG\nsJQu9GN2g74rz+zDuDFDqF7FHFePt5Og2RSGAjB+wtR0X01+QXobwL/ya2pyk0pGRfl12wQunJvN\nn47txxW/78O//9mtzfcvXpzFyfsP4Im7M6thLZ1Z1cQVjTMkJEmSJEmSJEmSJK3llv9xszK141Dn\nzlBSArW1TV8jaf3x9n8z9yrKzoEuJfMAmFnVD4CjTpnb6vliUQFPXXA9A5nRoC9kBa65+MWMtu59\n1+3/2Az/BhzJDfxpm5taf1FzqZSUyq7dyKKWJeVFnPGTfquwwuZlZTezV1WryyOtfx647wX+d809\nFFJOF0rIpekk0BE7D1mle3X++BNyqCKbWqbtuhcAD/37WR649wUIgbOKLgbguzxOVZckBFSbm5e+\nfupndccP3NL2kNBpB/dn3qycBu1vvdWjTfN8db8tkiRJkiRJkiRJ0jpieUiorCz52bVr8rOi9UUx\n1grXXgs/+EFHr0Ja9yx5oGHln35/3g2AIdnTAagc0LdNc87e/TvMZFD6/NxfTEgfd/nWYJ4/+Lfc\nMOIsRuV9wA9/u26HhMqHDeUGfs6gTgvadd6Yk8vk7I0BmPFFHn87o3e7zr/cspIk2vHmtgdktFfn\nF/Dief9YLfdcF5QOGMK8UZnb6X3G8CbHz5nRMGTTWuW1+RRQDsBrv7sIgOIhwygdmISPftP3eiKB\nrhTz3F+uT67JKUpf/48/ZH43amvadv/ixU1vK1Ze1vo6UIaEJEmSJEmSJEmSpLVcVWo3kUWLkp9d\nOyd/sC8v76AFraRjj4UHHoC//GXdCzh9VZ1xBuy2W0ev4qsh0nS1mKrauoBAAcn2UmUDBjGQGSyt\nTbYfyi5sewBiEz4BoH+3JQwfN6CuIwSmn3wCBbcdwxnPdyGvcG3fjKp5WakybDV5eS2MbLuqnIL0\n8cTniqhu2+5PrTJvVg6FlNGjR5IYreyUfOYP3vcCxRtu3P43XJdkZTF/i62ZudMevHz23xjO50QC\nl/MrAA47cjr7Hr4EgN+OW/lqT8Vd+qZDQpXdGlbv6TYl2ZqurE8/lg4bAcDo3p80GPfN7y4FYOG8\npkM/LTnn9+9QShHXcCwAixe2fq6Vj0lJkiRJkiRJkiRJ65B5xRUsLqvs6GWslNmL84D89HmXTycC\n2/PRjBL6VDYeLOhamMsGXQsa7etop58O77wDt9/e0StRSy65JPl51VVw4okdu5avss16zoQvk+O9\nt/sE6EnMzqZLKGZmTKoBZRe1PXTwu2eLeGT8YvYZt7QdV7tyuhXm0rdrfssDV0KXkZsCULDt1ozY\noPMqzzdz0TLKKpNSMEuzMreOKi3OolvP9q28lP3O5/SmF0OfeoiXz/8H9zz1frvOv6574vr7IQS6\nTPsi3fYrruRXXAk3wmEHfwF0o7Ji5evolOZ0IT+rkvEvT2123KJNRqaP9+j+KjMZwMDlv7zA0Y+f\nyAvcxoLZOfTu1/pyQkVdaikrTtZ/0AUHUcQyNiRZy5IFrX8uQ0KSJEmSJEmSJEn6Spi+qIyPZxV3\n9DJWytR5XckICZE8x+uTltCnrPE/Mg7tXbTWhoQA7rgDzjoLNtuso1ey7qiqSraeq66GkhLo33/N\n3fukkwwJdaSFi+t+/wcPrQs7dskug9R2hNlFbf/zf15BZP8jOz4gBNC3az7bDe25eiY//gjYdjM2\n+sY32CiselWk4vI56ZDQkNyZvLJsdLqvPUJCtbXJv5zUR1rzxXx6sm5Xc1qtspKQTFNVlS55YFdu\nZyqdu7Zxj696yqtyKQrLgOarUb3+mz+lj7MrKxjArIz+oUwBoLKi9Z/n7Gk56YAQQB/mAdCP2QAs\naUMlIbcb0/+zd99RUpX3H8ffd/rObGfpVWmiiAVUsHfFEo29xoKxd2Nii5qfGqOxxS6WGI1g11jA\ngooKigUFKVKll92F7Ts7/f7+uLszOzuz7AJb4fM6J4c7z33uvc/U9Zz7yfcrIiIiIiIiIiIiIiIi\nHVw0mnwzsS4kFA43fpMx1rKFLLZaNM292WXL2n4dndlRR4HXC9nZ0KsXrNh0QYut8umnUFLSeueX\nzfN3/58AuHHvt9nr6q7x8WxndXzbk+ds83V1GoYBo0db/7bE6eoFdp6rOJv3OD7+uKRoy9tI1Xnk\npgLO279f/HFhZn/yKOWTZ97c6nM3poVemna34IxxKWOZXWycxStk+RIBu3AI7rioOz9MzWjWeWvC\nTjJsjff4/O6mf1C2w2D8PXrHx6IuK9wXxsGzviuJYMeN1WszvBlt6WZ9m7zGfKwf57qQUNlGhYRE\nREREREREREREREREth3VyTcms7Eqf/w8LYPykvS3/GJm+jZk7aW0NHWssnMWdmoX4TB88UXy2PLl\nLX8d04T16+HII6FLl8S419vy15LNN+LhURjORCAgx5f4bcjI7Fjf+c3VWTMqmVRzPB/wIccA8NCf\nuzZxRNNmfmV94ep+xitrPGR7atiw215bfe7Oqrkhpp+uvZ0JMxIJyjX7HsLGYSNwE8TYkKiaNe9H\nD0vmunnkpua9X/6wh0x7TaP7l554JpMmTkla6PxzLwPAQZSLqp/ATiweEorWNL+qkb8qcc4YBhUD\nBhH2ZlLABgxirFzc/ICg2o2JiIiIiIiIiIiIiIiIdHCGP5j0uK6S0ITH8vh6ko9/vLI+5ZiKQJh5\na8vbZH1NWb7UxhnHZtIwBrBwtZ95a5tXTiHX66J3bvMqPmyL5sxJHbNvfcGSFH//u9UGriG/36pc\n1L9/y19Tms/W4D3PzorABsgyKlP2SduI2e3YolEGsaTFzx0OGrg8JuXBDLIzg00fIHH1g0L73XoF\nboJJ1ffKNiR/YYrW2rnupEQVoGc+Xk1mTqIkX3XEQ09HmrTrJmwcvgevfrWIMw4cEh/77fRz4DWI\nFVdRv43oppgRax37MAMD+Oq+8VT2H8jwF/6FOd7GlHeymr0mhYREREREREREREREREREOrjMRYuA\nROuZupAQwOrf0lcQqKiJMHtVxwgJXXt6L6oqU8tALF4dZPaq5pUT2qHAt12HhAoLU8dmz4uw68iW\nrR4z/lkHjdV0GTAAyvxWqMvjtOF2KJXSFoxIpNF9Pq/1flSaWcDmBRg6ms7a7iqYm0/GxmKGsNh6\nXGPDNFvm+YTqQkKRLLK8oaYP2ApGp63l1LRgTi4eAgRxA1b1rfp/OwM1BovnJAd21ixzMnR3K5gV\nicCc6iHMYQjnsXKzrh1zJZ832suqXPToo4N55azEuUIBg8oKG126pVYYql5UAeTzNidZ680vAKAm\nv9tmrQUUEhIRERERERWDoWEAACAASURBVBERERERERHp8DIWLCGPPSklH0gOCRnpu411KMXrErcl\nz+FljuJjzuW/BKqafw6zg7VPa2vrU4tFceWlDvJ237wb1k0xHT0AV9LY8bzH+/wOgA9/WQfAHv1y\nGdYzu0Wvvb1r7CNuC4dwEOa03lOAXZL21aQJ30kbqPeyT3nqDfpNeZ/dxj8YH6urALQl6n8OQkGD\nUMAgYHrI9LVuSKijM7YidTXriptwv/0+QcMDWOHZ8sJElaBxh/TluvuKk45ZMNsdDwk1rDq0ub76\nxzMceNMlfDL+LezLqtPOueDgvgD8e+oqKits5BVEsdlgxWInH0/vCUAPrD8E4UzrtzfQZfNb23WC\n/2QQERERERERERERERER2b7Nyd6bwbVVKgA8tZUQOouBuyTa5PyDmziHV3ATILa++ZWOYtt3Roh1\n6xLbF1zQetdxulNf6A84Lr4daV53OGlB9lAIO1EcPVNbCu14Ri8ATt1hahuvSupU9tuBeRdezdLj\nT4uPVVdueRQjWJMIw4SCBlUV1rkyMxuvKCWbFvFlEerTk6DpZuk8KwRpLCsiA398zsN/SQ7cvP5U\nbjywVVpshYTuGfL4Fl1/9cFHM2HGCjaMGIXdm/hsvP5UDi/cl8crj+bGxy44uC9X/64377+cjWnC\nLef2jO+zYbJ+5Jh4maqagm6YGHz1wPPNXotCQiIiIiIiIiIiIiIiIiId3IpYPwaxJP54F+bFt2NR\ng8qyjn3br3tv6+Z2LqX0Zi0APqoJV6W2VWlMTJWEyM6GSZPg/vtb7zr5XRPvSXaetf0/ToiPVZSq\nxVhbi/pDBPHgSNNZcIeTuvHStJWcOHHHtl9Yi+vcVZGKdts7vr01IaFwKPE6BPwGVeXWY192rLFD\npBlWh62wze3jegAQ8NsYzQy+Z69GjylcZVXBW7bAChbt1nPFVq/Dk5n4bPzvPzl89k4WkyakVmWb\n+VUGyxcmvvSPcSU/3vA3Pn/i1fhYTW0lIW/RupTjG9Ox/2tBREREREREREREREREZDsXqDFYV53P\njvwWH+vu2pg059Kj+7B+laPhoR3G0u9jZFHBRrrEx5yEMYPNr4yxfUeEoKQECgpg7Fjr3wE7xDBs\nLf+qRCKJgEJpqRMTg+P5gFuyHwIgGLD2b+eZrTb17DXWd7s66km7395xv/rbleVHn8hEzgCgumIr\nQkLVid/Fh27sSnCD1WbMl7N169vendb3s/h2dYXBzKJBfMGhjOLHRo95/Hbrb9Z/HrRafe60evpW\nr8PIcHIPtzQ5b8Q+AW473wo2nTPsc67kCRadcl7SnGCetb6R9/+12ddXSEhERERERERERERERESk\nA/vgv9nETBtDWBQfy8qKUJHdLWnehvXJFV7+92I282a622SNTSksy6KSbGz1oj4OIrAZIaHtvZJQ\naSnkGuXw7rswZAgXrbsHM2bEQzstprgCgF35Jen92qviKyC5FZK0rMY+4VNXDgegxr9tV3EyOtFH\nK91STYeTgSwFoLpqK57MxsrEZpGDULHVXtKdn6aUlDTbnt2WcpbnDQAuPrIvAAfyJQYw7bBL4vNe\n51S6UgTAsgXJf0MHLv12q9cRc7oIkv5v81MnvxjfDtQY7DLKeu8f+/Uka7DBlyTmdG329ZUpFBER\nEREREREREREREelgohH46LUsjjilkneet8pHZFIV35+dG8W7qgK7wyRaW/klFk3cPDRNeP3pXABe\nmbGyDVfetA07787a/Q7F8WyE2GaEhIoqArz785pWXFnHtnR1AX2W/gC//z0APVgOQGWZDXeP5rdt\na4rzt9Ucxc98xNj4WMTtxhesBiBYY9WhMLf72k5tJ1p7Wz9UpXZTHV0epQBUl295SMgs8Sc9njXD\nC7R+SKijh7S2dnkxp4sLA08zgVPjY1d0fRmKYeRn/wGeAeBU3mQfvqM/qX87f7qq6QpATYk6nfQn\nfduy3d96mpdfGMoVV+zO5IlWC7JdmEsu5Vt93ToKCYmIiIiIiIiIiIiIiIh0MF9P8jHhsTwC/kRj\nEC+JG8dmjg/70iBmvcIioWDiFuozd+UnnW/pPBc9B4T542F9Oe2yMk44r6L1Fp9GHiWczmsAfPbk\na2DGcDwbwQw1P/QQjYE/1HJhmM7GXxyKBxAAfNSFdlr2zn4g4kz6rAGUDd4Z39za67V05SJpUk/W\nso5e7LVvOdC1vZcjm1D3HQ1sCG/xOWJVoaTHkz7vB4C7m5vgli9tuxfIL2Ag3ySN7TWyhI9Oe4+j\nL/xd0ng/VqU9x2/HnbbV6wjm5nMe/2EKhzORs5L2OQlzzoX7cm69EOY8hm/yfBNmrMBuA/bu36zr\nq92YiIiIiIiIiIiIiIiIbBc6U7eqQG21lqryxO08H9UUUAxAMCcPSK4eVD8k9PWkTADcnhihgMHt\n43pw3zVWe7LXn8pt3cWnEba58GC1TYl6PMScThxEiEYVOGmuygoHXdgYf1wXEqr7rGwJ04TSDcnH\nl5JHNskhMiMSSVzPv32+Z2++CT/91D7XzrFVcnCXH9jp6kHts4A2si18shZdfz0AgZIwH/w3i2mT\nvZt9jkiDkFAdZzffVq2ts9vaSkdzxl2LZ1Qfoti4/PpVvMnJhL0+SnbejR/+dBcxDGL1PoWn8yo7\nZK8HoIe3hPNsLxHK3vq/nzXdelI8ch8mcDb59X7TAYYzN+0xcy+4ionTlmz1tUEhIRERERERERER\nEREREZEOxzCsRNMnb2bFx3xUs5ChrKBf2huV4VDi5uaeB1iVYIbuHiRce795yVx3K65400IxJ26C\nTHp5MgCmza6QUDPFojDnOw+VNe6kkFBd+7mtqST00J8LuPK4PnzziZfC1Q4iYVhLr3grnG/ueJgf\nr7uT4t32SlQuCtS2G+tEobuWcOqpMHJk21/XWLOBBbGhLAwMbPuLS6OMRhIroR498FJNuDzCxMfz\neOpvBZt97lBZasW0e7iFWF72Zp9LEkyHg/Wj9sWGyRMP9eNk3qaqt1WlqWiPfTCwgmrf/vVBAFyE\niAatanfr/fnYYpEW68kW9ll/27/mAHZkKX4yMDH49dJrAHi9Xku08fyRFUf8DtPRMu3m1G5MRERE\nREREREREREREpIMJpWnpNIglZFFFPqXMz8oBrBuJp/FGo8f8MiODUKh9gzimCSHcuAhRNnhna9Bm\nqw0JqaZBUya/msWEx6zKUekqCTVs/zVvppsefSJ06d50a7afvraqnDxxuxVkGH14NTHs8ZDQ8rEn\nAeAu2cABr70PwDsvZHPAMdVb85Q6NdNssZxAs/inrwT2ZJ+hK4H8pqZ3ao0FbzqTUHYuXvyEq7a8\nNWKwygqmGMQwsTGL3diNX3g965yWWuZ2y2iQblx+1IkA+Lv1iI8tO/YUYk4nztvDRIMxZkyxfif/\nzYUczsoWWYezuhKAnfmVpSQqhK06ZCwF82Zx6tdv8tvYk9lh8tsATOx3c4tcF1RJSERERERERERE\nRERERKRDWbnYyatP5sUf73mAnxUHjyWrtnIMQLC2ktCpvMlvOx0AJLcbi4QT21ce16e1l7xJsaB1\ns9xNMGncYUSJxjp/KKC1rV+dqPuQSxkAcy68OhESqklU9pnwWC5/v6I7V5/Qu1nn7tU/nPR4xhSr\nnVEfVhPOSLRJCuYXsGbcHwAoXO2MV6faXkQiie2KisbntYaaUuv7M/LYtr2ubJlQdo4VEqredEgo\nFoWzR/fj7NH9KCmyJ+0LWPkRruFfAPSrDaZEvNt3u7GWUDxiVHx7wy57ECjoDkA4M7lK0/q9D8BF\niBAuHrvNClH2Z3mLrePXsy9JOx7J8PLVfeMB4gGh9aP2w3S0XP0fhYREREREREREREREREREOpBV\nS5NbimT4TLrN/gF/10Slg/rtxtwOK7FRPyQUjXSc8E3UbwVRNo7ZN2ncTpSYQkJNqv8KhbJzmDht\nKev2OTClktBHr2Xx4SuJG90Bf9Ovbf8h6dM+meeN4s0pc5PGotmJ1neVZfaGh2zT5tZ7Kdaubb3r\nmGl6uPlLrTFPgav1LiwtJpRlhYQm/zwsPhaJwCuP5lK2MRHPWLE48Tvf8De/qsL6fv0ftxPATV5t\nOLBNS1hto4pGjmHitCW8NnUhU556LbHDMHj168VMnP4bAMHcfKJdcgnaM+JTnjv5+RZbx7p9D2Hi\ntCUU1QstAUQ8XrAlx3h6/Di9xa4LCgmJiIiIiIiIiIiIiIiIdChOV3JQwOU2idntVPYZEB8zoonS\nJi7C2Owmb47P5aWHrApE4RD0G9x4uZc0WYRWE/Nba7W7km9wO4wokZhuVzalfi7AyHRjOhxs2G0v\nQjv2BRJhoIbt5mbP8DR57lDQoN+gEA+/tSY+9jSX4OyagWlPDgKFM7MYxQ8AVFXY2vQz1N7uvDPx\nZMvLW+86s342WDo/OQz0l3dPAcDdren3s7PrTBGYxtYa9npZwLCksQdu6MqkCdm8cF+iXdwPXyQq\nddUPeAIUlXrpwgayqMKN9Tv+/Y13t8zCOzGjhT4hpsNJ1OMh5nInjcecrqTfPYfDpCKahS8zwlgm\n0cfRsglB0+Hkm/97lO9uupefrr6Nb+54mHB2ToteI52Wq0kkIiIiIiIiIiIiIiIiIlvNkVxUglB1\nDO+GIpb8/hy6/zwDgHVjDo7vL5j7M9keP2VRHx+/nsUfri8lEjHoHVvNiw9PI5Lh5chLT0k6Zzho\n4PK0TcojVltJyN6gEIrdiBKJdqZYQDup9xLt0mNtbeMhKD7yMHgawhXW6+vLjiUdZmvGSxvxR/GG\n/bgzEp+FbCoIZaXeqA5lZXMff+EwPqe6ovOHuz77tZDCimDTE4EFS7oAVqunD38u5Dejecc1ZfFc\nF99+4uPc60oxDDj7wH5AD16ZUfsuxxLvaX7/7at6U2cVdWekjM35zhqb+ZWXpfNcDNwlRH63RDuy\nQHXylzUUMvDhjz9+beoCop7U80rrcjis7191lQMXIXZ67QV+uu4OAJx2g1NH9W2Bq/SDE8bEH8Xr\n7T31FFx2mbU9eTJn7dOvyTOd0cwrdv5fbxEREREREREREREREZFtiM2eHN4pXGjdTA5lJlpJBXNy\nk+aUBXxJjyMhg25Lf+GQ687Ds7E4Pt6b1QDUNKMVVUuJ1lYScrgbVhKKqZJQMyydl0hX9eidqA5l\nz8nAIEa4wnp96yoJXfDnEutxqOn3OGPBYrqvmEvXokXxsWwqktrZ1Qn7ssjHOnfRWgcmnbuU0OZU\nQnI5EpW7IuGW++7cfVl3Pn49C39Vg3PWhoNsxaUAXDxmKkZzUl/S7kzHpuu03D6uB+EQRNeUJY5Z\nV5o0JxS04bEFmX/OpQBtFhDq6N3M2np9TnsipOcixK9nXlRvLa28mEsvtX6kTBOOPrpFT62/uiIi\nIiIiIiIiIiIiIrKd6ByhBlu9O3iDhgf5fNUIAEqHDo+PR7yZTJixIv74aCYnnSMSsm5qAhxw6+Xx\n8bu5DYCAv+1uE8YCtSGhBu3GMmw1lId86Q6RWqYJyxYkWuIEunSNb0d9XnxUE662bmQHa0NCw/cK\nAM0Ls8SqwngIcPL5h8XHsqhstJJQFzYCMP7uLlvwbDqWzfk1GLhDZXw73HgXv80WrS0m88kbWfzj\nmsR7W7IwQCwGlb9avc1ye3Xw9EYL6eghleZa7BnGNTzS6P6qcjv2hSvjj1cudiWF1kIhOx5bkFlX\n3pz0Oy9ty+5IvClugiyoHxJqjwW1EIWERERERERERERERERERDoI04SS4kRboXse/Y2+tdV/Ihn1\nqkk0uJv+by6Ib6/+zcnalS7cJFoi7cw8wAqAAARq2rKSkJWEsHuSr9nHsY6NwdQwiiSUFCU+C9PY\nj0B+QfxxxGOFhEK1IaFQ0MBui3HWqXsCVku5ptSQQQY1STe8s6kg6nanzA1nZscrCTUmErE+mnfd\n1eSlOxVzfXl826isabnzxqxX/s3xufGWVABXXbAT5+7bj4tvOhgATy+1mupoNhVoGhRYwCNcx3q6\nJ40fwFeAVSjKX20nvzZ0N/nL/nzyRmZ8XjBsx2WPIO3LXq+qn4MINd16xh935kCbQkIiIiIiIiIi\nIiIiIiIiHcT7L2fz7D2JKi19vvokvh3ZRMsZH9Xx7b+cZd3IdBKOj81gNGvolQgJVbfdbcJojRUS\ncriTr+mz1+CPeFr0Wv93STeuObFXi56zPVWUJl6z/fiGYE5e/HHEa4WEArVvfbQsiC9WiQerklC4\nGe3G/PbM+Pw6eZRSvuPQlLnBnFx8+BNrK0+ZwpdfWv/efnuTl253sc3oN5b5/az4thEIbmLm5snN\nbV5Zoh2Py2t6knQ43SniQa4H4Dje5yKeA6wqXzXVBjkkvkQ/fOGNbwcjDjyOMNK+onZnfPunvAOT\n9ikkJCIiIiIiIiIiIiIiIiJb7edpyaGZHT94I74dyfCybq/9WT9q35TjvPXCG3VCuHj1y4VMmLGC\nLKroxbp4SKjG33Z3OGPBukpCybcmvbYaQqaTSAveC18428OG9Y6WO2E7C9RYr9knHAGQ1AYs4vFS\nTFfmL7FCZd5f5uPFn6ggVVLR9PnJINqzgClPTIyPLb3/Tky7PWVuxGtVOnmEawBYtyb1VrM/9WO4\nTSiPZeOsbd8XC0Vb7Lw7lM1t1jxnTmplp22R0ambOKV3Dv+lK0X8hfvi381wGPw1TrKNxHe0uirx\nfQpGnLidbV9JaFt8/bdGMJYICc0v65+0rzO/VgoJiYiIiIiIiIiIiIiIiHQArz+Vw6JfkkNCPX6c\nHt8O+zL54rFX+PzxiQ0PxU6M0cNWJY2V5vYh5k4+X6xfNwCCbRgSigSsdlj2BpWEskwrsBTcjNZn\nrz6Zw23nd2fRL65NztuMIjEdWt1rUxfuCmdmxfdFvD4qyaawNJNQwOCNZQeznp6JIEJJ01VqAqYL\nlyNC1J1BBVlsJJ9odnb6yYbBdzf9g335BoDVK1ODRBs2JLZNE6ZNg+nTU6Z1CJvzGVlm7MhAlloP\nWjAkVEYuADn5EY45q4JTeb3Fzi3tZ8KMFUyYsYIpT7xKN4opojv7Mz3+3YwEoTLgxutJBIFCRYmK\nXsGoE5ej5T5n24q2juUEQ4nAae/Mjclr6bwZIYWERERERERERERERERERDqC//0np9F9U554lYgv\nK2X8f29PY9blfwHgmN3nJ+3zG96U+cHDRgFQsqbtUjTR2pCQLSP51qQry3p80zk9qa5s+o7rlcf3\n4v2Xcli2wM3fLu4BwIM3FnD1Cantxc4Z049fvmvZVmbtIRiwXpe6dnLhzESAJ+LJYDhzALjg4L7x\n8Z+uuwOA1z4c3PT5TTduR4RIhpcsqsinlFBm6uesTigrm52Zj90eY+6sTYeEKivhgANg//0h2iHz\nDs3/DpS5C+hCbUgg3HIVXsrI5Uoeo6zEyYcTcjiEL1rs3J1RZwpeNKeSTNHIMazZ71AAFpwxjqID\nDwKs4OSGYA5dvFX8nrcB8NdrARmIuXC7OuSXZrviMq3g1u78zNNjn2nn1bQchYRERERERERERERE\nREREOrAFZ4yjaOSYtPuqe/Vl1cFjATh32QNJ+wJmIiTz+b9e5qt7nyYz38BOhJqStrsBXV1phUl8\nDQrU2Lpa7atKihzM+iYjPh4Jw9T3fMRql2iasHKJk9LiRFUHw2YFPH762svGQms80iC7cd813fjo\ntcyWfCqtavpHXqa+70saC9a2G8ukCoBIvcpQEa+Po/g4af5JjncpHbJz0tiaZQ7uuKg71ZUG5Rtt\nvPNC4o2oMT24nFEinsTrH95kSCgHH34yHCE+ed/JnDnw00/WvqoqKCxMzJ06NbF90UXW+xhqurhR\nm9mcSkL+sIdcyqzjIi0TsIvFrJBQHqXxsQv4d3z7FOMNnjv1OSb+88MWuZ60j+9uuZ+Fp57PnAuv\nIZZnffeqN5gsDe9AyOHhQW4AYKh3WfyY8mg23oy2bzcmyS7rPpHHuYIfGUV/e3KlPqMzJdoa2HYa\ncoqIiIiIiIiIiIiIiIh0UrFY4/tCmY20f6oV8VjBkQEzpnCM8yMmhY8GIN9dCbXtjNbvc6A1Z/Lb\n+KgmVLn1ISHTtCrdeDI2HZooLbNag+UUmNS/qsebOM7hTGx//HoWEx7L49m/d+HWJwq554ruKefM\nyokRqNem7L//ymXsmZUp815+OJ+jT69q7lNqV0/eWQDAwcdbVYOuOLY3ZRtrA1a1lYRquiZei3CG\nN96GrM5Q11JizkG4CBLCzW+/uvjrBVbVpYuPSFQbGrpbkKG7BYniwOWIEujSNXFeX+PBKtNuracq\n6KFqJYwY0fjzOeGExPa6dfDMM3DZZVaQqFu3xo9rK82N+pgmVEa95FAOQCzaMiGhgN/AxBYPHwF4\nCPI0lzDqkVMZMO53LXKdzsTr2vbiC4EuXZl5w98AKI9YAbz7b7O+i58UjmYHljOWSayJDgRg5WI7\nZeSSmamQUIo2zuXkxUq4gg8AyF84tz2X0qK2vW+ZiIiIiIiIiIiIiIiISCcTS5PZmcsuwKZDGwCR\njERbsbyw1e+pv20ld+3+PAu4M3mu10cmVQSrtj7o8O6/s3lzfC7PfrYKr6/x85WWu3ETwJNjq426\n1HK74pvRSOKWa3VFohlKuoAQgN1hctXvescfT56YzeSJmw5TdRbRCJSX2OMBIbBCQoG8LsRc7vhY\nzOUm06hKSrt4nUGiLhdOwoRwxwNCDdVU2wgFrdfc7YoSrVdJKOJt/PNWF1I6hg+ZxLHNfk65ufDK\nK9Z29+4wbx7svPOmj2ltza0kFA5BBCfZbj8EIbaV2Y3SYjv/vKErY8+sAEgKCQFcYm47bY0k2W47\nrEt6/MaJ/2T1xiPI+rqSqpgPiPH83XkA/ObvzUHtsEZJsAeD8e2Nw3ZL2teJCwkpJCQiIiIiIiIi\nIiIiIiLS3mLR1DuOuzAfANNmT9lXXzgrh6jLjT0UxIsfgHHOF8n0hVPnZlghoVgJQEbK/nT81Uba\nENCb460qRWUb7Hh9jScnFq0toCvFmPVCQQDVjkQYpXhlvTWGm777arNBt54Rlle6Gp0z6iA/RWs6\n3+3QD17JZswRSXEqvPgp7tsgVWMYeJ0hqNfCK8ftJ+Z0sStzmEH6FnUAgRqDcMh6nZ2O5DJWddWC\n0qnstyOrDjqK8778T7NCQhvKw4w9wk5RMfTqA2AFwP75YJRHHttE+aw2EG1mSijgr2355gnWhoS2\nLmD3xjM5rFjk4um/WZWjAnsN56PL3sMeDBAYvivHb9XZpa1sSUgkOyeCgzARnADsnPkb31z1MJ7D\nfqQm5ubLD2wMGlDOkoVebjj+S0ra+NPQ0YMvDpuN7Iy2+00P9+wJc+DHh56j8MDDyXYmrp3lcbbZ\nOlpa5/urKCIiIiIiIiIiIiIiIrKNaazd2Jr9DmXFkU23HVqz36H0+2JyvP1UOGZPqjpTx9+jN5lU\nUVOT06x1LZzl5v8u7c6NDxWx+76BtHM+fzeTc64pS7uvaI2dH5f3AyCUmdwaa8yQFfCptV28JFFK\nqXRFlC7eSjb6sxpdl80OIw/ys3xRakjomds+JvO4YfzrlgKiW99Vrc2tW+EgHEzcrZ/BPhjAtHuf\nTpnbMCQ0pGo2AdfRTGN/7j3pXV5afCRjz6xgn0NrmP6xlyfvsIIpwRojqZIQwMzr7iBr5W9Nrm/V\nwUeT/+UHKeN3/Xs9f72gBy9xLn/gZc68spSPf63kh++t9/+AY6rwZnrxV9koN6r4cE55s1+T9hSo\ntl6nLG8YysFs0G6sptrg9gt7cMolZewyMkhmTuqXORaDD1/JYvThfvK7J38o3f2yKNnZqlLidW06\nECidm+l2kU8JRXTnCh6n208ziFx5M+szB7Cuqivj77bm9WQt3u4uStp3uR1Ovs/FcSN6td0Fn3kM\nXt6bUVefD5sIT3Y2tqaniIiIiIiIiIiIiIiIiEhraizM8uWD/yaY16XJ45cdcwoAvVkDQEXYR9SZ\nGqAJ5OVbrauCzbvhuXS+dY6533sanbOpNl8b1idqFkS8vqR9tiwPr3EaAEXrE2vdOKucff1fkGEP\n0tBeh1iVkorXOvBXpr/Vefzd5wNgt5tJbcw6OqfbCpd8PSmTYMB6bn+7+Gv24XuWH3kCgS5dU47J\niSTHCIb65xBzurAT49ie33Lns4Xsc2gNALldEh+ygN9GxB+rva41tvD0C/nxxrubXOeGXUfGP2d9\nBloJpUHDg+w4LMQXNz/KufwXE4PjzqnEXbKB4btZ4bB1K53kFkRxe2IEazrP+xIstypyeX3W69ew\nNeA7L+SwdoWTR2/pyiVH9SGU+rFl5RInrz6Rx0sP5vHO88kBvSGDOkdYSrZe2JdJD9YDVpu5H2+8\nC4BPqpIbi+VQjrOqMuV4aWMDBsBf/7pNBYRAISERERERERERERERERHZTjSzu1C7iMW2LjQR8Vgh\nHg9WtZ8QLmKu1JBQJMNLJlXNDgk5nNaLVteaqj6nkdrOrCGj9m7k01nXpvSycVZXchpvMJw5zFuQ\nx33XduXJO7qwqHoA3Snks+jBAJSRwyh+AGDQLsF4K64Vi9O3GsujFLCqDUXTtHHrqOrfh/7vv6xW\nbnl2K0Dy61l/THtMeEi/pMd9WE3UbX0W9nji3qR9Nf7EreFAjUGkygr4OBvPf6VV1ac/vfqHeXbE\nXdwxvpB/f7mS258uBCCnfB0Akdo1nHzMSO6dfSYAS+a6WbvciTvD7FQhoXCJlfrxZVuhqvohoY9e\ny+TDV5JDcjO/8qacI1L7/flpWmLfnTf8iImBmZuomNXR2z3J1ikbNAwHVmvGXMooGTYi7bwcyikb\nOLQtlybbEYWERERERERERERERERERNpZNLJ1x4eyrVCJq7b3VAgXEU9qWMF0OPEZfmpCzmad115b\nCGjK21kpISu7mVh0uuopAAG/lXrYMXd96s7aRIQTK2z0y4wMpn9sVRtaQ2/GMAMTgxwqKMeqvnLg\n4zdzyaeXAzB/qXy4tgAAIABJREFUZvp0i4cgvz9mFO5oTUrVl46sfhBr7XLr/ennqQ3deDPTHmPL\nSFRqshPhh9vuI5SVHFrp/dUnnHLYcPr2qIiPBatiRKus192Rsfm3jEPZuZy3+B94fSYud+JzkrGx\nCADDNOn20wwACtiQdKzbY8YrJXUGoRLrO+XNsd4fs95n6uWH81PmO92pacRQMDX9c8eDe1n7spvX\n+k86li3JcwVz8olipQH9+yQCQrfZ70ma18VWQulOu27N8raIMmrbh87z6ysiIiIiIiIiIiIiIiKy\njUpXqWdzlA4dTtThxIvVjsvAxLSlP2eGI0hNKH0VnoY84ar49jljkqvWBMiIb7/6RF7a40PlVpCo\nS+XqlH2LTvkDAGfwasq+hcZOSY9/YC9u4l4uZjxdKU6ZX1ddqE5GSTEDP32bWGAr01dtJBaDaMTg\ntCN+BSAUsN67uuca9qUPCYXciRZuvzIMf49eYEvcAj5rdH8O+vMfcVVXss/S9+PjkdIQ0UrrtXH5\nNv+zF8rOxVnj57jTDmHoay9w1uj+nDW6P/0++wAAeyjI4ZefDsDefB8/7syhU3FndLJ2Y6XW65SR\nZ72usWhqCGiMfQYfHfUXa74/9bmZpcmfz0P5LL4dzmy8XZ9sW6IeD36s8KazR+I7fVb0v0nzzKzU\ngKdIS1FISEREREREREREREREthmLFkF5eXuvQmTzRcKJYME4nuNXdtrE7PS++b9/cQpvci0Pcy83\n4wgE0s7zOoL4I+5mnXPHqe83um8kP8a369qSNVTw8RTr37KVKftiLjcLT7uAgSxNGs+hjI93u5jq\nHr3rjVVwL7dgw2Qsk1PONWzZlyljDiLYyysbXX9HUteOas9PXwQgGLDhdoTZ9+FbAQj7stIeN6x3\nIcfzHnMYzmCWEMjt0ug1+k/5gEUMpitFBCujlKy3runybv4t48I9RwOQvfI3Rj78t/i4d0NRylwb\nJrfuboUgchfOp3ilwQ9TO08I4vsfrGpB+d2tEkKxNLmzEdFZjPj4JSC5rVud7JmzAHj3kFvYOHRX\nPuNwAIp3HUll3x1aY9nSQVVhhYPqQmcAPXeI8gHHxh9PLj+4rZcl2xGFhEREREREREREREREZJsx\ndCiMGNH0PJGOJuKPxbd7s4adWLjZ51h16LFEuubzMNdTwEbsgZq087zOULNDQpAc/olFYfrHXmIx\nsBFjT2YCUNAzfcWeSpdVYchHddr9M6+/k0MG/spw3+L42J3cSc3IXVl84lkAvPPed0SdicpHBrBz\nphUsOoqPuJLHeGjJmaykL2voFZ/nIEKERDuujixsdbTCTaJvW14k0aYr6k7/ftmyPLzHCQxnHgDB\nvNT2V3V6T/+MwSyhmG58Mb03Dz+1CwAOn33zF2w0rxLQhBkrKNthMN7qUgBi2AhGmm51FwrCp29m\nUr6x/W9nT53ZHwBPd6u9XSyWOuc6HiYTq+pWrLAiZX8wYn0Oh37xNvkL5wIQyszm02ffJuL1pcyX\nbVc11vtt7NA9PrbsmFM4lknxx68ccm+br0u2H+3/qyoiIiIiIiIiIiIiItKCVqYWLBHp8KL+cHy7\n7iayv2v3xqY3yrQlAh+h7Ny0c36JDidsOlk8p/GWY2uXO/ju8wzCMSvc4DWsNmYfv5HFk3cUMPU9\nH2Gc5GGFP8x1ZSnnCNQY/PPr4wH48j9vNHqtcHYOw6p/jj/OpIqoy8X8867grUkzqenWg2Bucvhl\nftVAAH5mDx7janKooC+r6cW6+ByHESVsa24Yqn2FaytJeQiQkWEFrnKoVxatkVBOxJOR9DiYY4Wy\nJk5bypf3Pxcff2vyT8y58Oq05zAymg7tNOTv1jNlbO3og4BElaG5F1wFQKBLN/IWzweskNARfGKN\nb6Ll2IWH9OXFB/K5/Ng+PHpr49WR2sLIASvIooJwTi42osSiUFlu4+zRVvu9XqxhKIviQbhwWSjl\nHAHTChh5SFT3evvDH9pg9dJqtrBjXl0lIVd+4ntXU9DNGiPIbsxidMbMrV6eSGMUEhIRERERERER\nERERkW1COJGxwEzf+UikwzBNeO+lbApXWyGcqD+a2Fd79/nj59/b7PNG3VYYYf2ofVlw5ri0c2bU\n7GH9OyW55dOSuS781QYTH8/lxjN68egtXQkGrduJ15oPA1C81lpv8ToHNWTQhY3YiOJYvDrpXL98\n52HcIX0TA7mZja455nSyEwvij7OoxOmvBsMgmF8AwLR7nmDmNX9NOTYpSFNrzb6H8P7rUwl3ySdi\nbkGVnHYQDlrvuZsgNTXWa7ywtuVc6eCdGz+wQXjIdDhr/3Ww5sAj+OXi65n60L8J5nWhfMehAEzg\nzKRjYp7Gw2KNWXnYsSw76kTmnXtZfOzLB17g29sf4vNHX+GbOx5mzrhrAStQVPf+DulayPm8CMDG\n9enfm5+meTBjief13WftW2nHGQuzM/MJ5ubjJEwkYvD4XxPBpbVYbfGKRo7GRxWhqtQ/QBvLre9l\neN/hFO22F5NemkSs9rsq25cY1ufeXZD43i0/6kS+v/FuqsjkR0bRdXb7BMiMZlYIk86tc9TXExER\nERERERERERERaUJNvc5KhYXQo0f7rUWkKZVlNl57Mpep7/l46M11RP2p7bpqum3+h7guJLT0+NPj\ngZGGxnaZxpvFRxGLJm4Ih4Jwx0U9GLhzkKXzE9V3qkPWdgFW66to7TIXznazkJ3Yg5+JYeeF7w9k\n0qlhHnzDquQzf2ZyBZ9oRnLFm/qCuXncwt+5i9sBsBNl2diTkuZsGDGKDSNGUTpkFw6/4oz4+Dn8\nN+V8X983npjThd2+rPOEhOpVEqqvqkcfPnn27cYPbCIROffCa+LbwVyrytAx9doaAXTvEyW1DlQT\nDINv//YvazMWZf3eB2I6HCw75mQAltd7/wr3HM0hk/7ET+xBt4G5LCu2Ep2P3NSVtSuSP6O9BoRZ\nuzz1cxuNgL32zrZpWm3v7G10p9usDOAmSCgrh1zKqPS7mDsr+fP85f3PUlPQncwLqwhWW+/J/17M\nprzEzplXljL+6wMBmH3H3wnlpK/wBQppbE/cBfV+I202lpx0Dnv/8zYAPn/0lXZalWwPVElIRERE\nRERERERERES2CX5/Yrt+YEikTkcqMBWtLRxUuNoKRERqopuY3XzOqgogue1YQ7fv/DwA+d0i8YxJ\nsMa6bVg/IASw0WUFlepCQlPezgJg4SwrjPRqvao061c5WbbAej4VpcnX31RIaNVBR+MhyFtYwRLf\nXcdRMWBQ2rlFI8dQuMdovrQdxOm9PuE27k6ZE3NaFToctihRHB2+sphpwsevWa+rmyB+Mjh94FTW\n0Iuv7h9P1NP4a1f/Uz3r0hs3eZ2w16rmlENFfOw5xhHbxHvTHLOuupX1+xzQ6P6ywcMA2INZGJj0\nMayqUw0DQkBSQOjg31XFt/+wfz/+fX8eZ4/uxzlj+vGH/fsR8LdNoCYaiOImSMzppIANfLlwcNL+\n//AHSofsQsTrI5MqSkpdfPhKFq8/ncvHr2dx/oH9Eudyd472d9L6jMwGlaRqA2K/HXMy1b37pTlC\npGUoJCQiIiIiIiIiIiIiIp1aJAITJ0J1dWIsGGy/9Yg0RziUHHCI1gsJjeLHLT7vhuF7AmCLhBud\ns9PX7wLw6pN5nDOmH999lsHLj+Slnbs+0g2AEOlbUuU5kmvQfPmBFUT58v1Ee7FJtmOINVLVCGDV\nYcdSOmgYJ/EOJgbu7E2XiCnfcTAHxr7i1bVHYdtE9Mtlt17TtgqTbKllC1zx8JWHABkEeCTvNnqx\njmBu/iaP9XfrBcDM6+5g/nlXbHJuoLZ1G8CTB1hVgE7lDSKt3PaqdOhwVhx2HACFe46hu6d5dYv+\neEsJ97y0Lv647jWqs6GwbapEBWMuyPFi2ux0YSMVNcmhquOG/oy/R2/C3kwyqWL6wh2Z8Fjq92kc\nzxF1KSS0rTDYst+VyRzNn/hnSqtAgAnfLGPGXx/c2qWJbJJCQiIiIiIiIiIiIiIi0qntthucdRYM\nqld4JBRqv/WINEc42DAkFAPgQ47hTF7d4vPWhRDsocaTcs5YcoDo0Vu7Mv0jX9q5kxbvQR4l7DF0\nfdr9l+5gBXs+u+4hAAp6RPj150QQIoqNsbHJaW+I1xf2JUJFTQUp7MFAytjc869MGRuatQKAlYvT\nB5w6ivqfBSfWe+Mu3QjQZEho5eHHMfWBF1h46vlNvsb+Hr2Z8sREQlnZHJkznXWj9iebyniLutYU\nrG2xFc3IIKOmPD5+0kVl3PJEIeNu2sixZ1fwpweLGDAkxM4jrfd4wJAwQ3dPfb8Baqra5lb3nOAw\nqg0fps1GlEQw6Sg+YjW9yV84F4Cwz8dsdm/0PH/Puwdsuj2/vTuaj/knf06/02Zr8nvcmjp2nFJa\nin6FRERERERERERERESkU5s/P3VMISHp6EINQ0IBKyS0C/O26rwxlxWIsYVb7ktQSj6OA3fCwFrj\nybwZ33fu7tMA2P/hmwCIhA2+/8wb37+pSj/1/XzVLfHtWBMhobkXXJ0yVtl3h5SxXLfVrqqmg1cS\ncjgTr9Fvh58IQN7SBYS9mU2+FhgGa/c/rNnhk6KR++Iv6E6/zz6kx4/TAZpoZ9ZC6tZX2/stgJtH\n3lnDSeMq2GVkkENPrOasq8rYY78A97y0njv+uYy+n0+i7+eTuP2pQi6/c0PKKWv8ied86dG9ufnc\nHi2+7A3rrVDQN2V7EPb6mM7+8X3v8Ht6szb+OJLh40XOSzp+wkMfc9alxXzK4dh65rb4+kRENtem\na/WJiIiIiIiIiIiIiIh0MP5QhO+XldQb6ZYy59vFpVRlNd5uaVvRPdvDsJ7Z7b0M2QL1243FohCo\nbZfnw9pYs99hW3Te5UeewOB3XqFozzGNzznid3z36d5c038CM1YManRe0np9mZi19QcO5Cue4jLs\nRPFOscbqKuBEIgaVFdZYPhubve6Nw/dkwekXMuTN/+Dv1nOTc6t796MmvysZJcX4C7rh3VBE0R77\nEHG7WXXosfF5PpdVTSng79h1E2K1GaFR/MCIEaUwxXocyNt0FaEtZdodOGv88cdtUUmoLhxUlxlz\nE6Jrz2ijc/e77Qp6f/MFAF///SmcrpNTpgWqre/QisVOKsvsVJbZKV5n561nczj32lJ82c0LqG1K\nJGxdY2jWCqIZXvY1vuEbc18AMrAqHBXtvrc12WbjrIw32ftEF3MvuJpTjxwB18ORw0bQhV8IrWr6\nt7pjx9mkvp16ZNE3f/MDdoFDD8c5fy4HDiloenIbs9n0CdwetFtIyDCMF4DjgCLTNIen2W8A/wKO\nAfzA+aZp/lS7737gWKxKSJ8C15imadY79j1gx7rzGoZxJ/BHoLh2yi2maU5qpacmIiIiIiIiIiIi\nIiKtKBw1WVuWaD8zcOcgS+cnV9tYXxqiS1nj7Za2FU57xw4/SOPqVxIKBgwmfjQMgDxK+fKfz7Pm\ngMO36LzFe+zDhBkrNjnnl4tv4HefHsQ9Ky7mMD5v8pzXOB7DW7iWzzmE4/iAy3gKJxEAynIH4ynd\niAE4CeFZsYpobEcAbuNuANaPbDywVN9P197OrCtvJuZsuj1YRol122/tmEP4/tb7AXj9y0XJc5xW\ncKmyrGN/TyK1gbH7+AuG95j4eDC3S6tc76erb+Owq8+OPzbt9k3MbhkV/QYCUNW3Pz9feTN7PH4v\njupKIr6slLmHX3IK3X75Mf54xDMP8M4VqSGhukpCVeWJ9/fa3/cGoKBHlFMuLk85ZnPVfU+v2Old\n4Pd80v00fOvXJM2Z8vQb8e2I18ewic8xbOJz8bEuv/4CwJyLrtvq9UjHkedzkefbglaGn30KQJ8W\nXo9Ic7VnJaEXgceBlxrZPxYYXPu/fYCngH0Mw9gX2A8YUTtvGnAQMBXAMIyTgKo053vYNM0HWmjt\nIiIiIiIiIiIiIiLSXhoUh4hGUv+f79Gw/t/w0rHVryQ0Y4qX0iqrIoWdWKLqSiupa0k2Aiu8MImx\nHMPkpDnPMY6LeJ4reJx7Cu6jsHwMhzCVajKT5s3543U4q6sYfc+fcRGCqgA1lUH2ZybX8Qjf33g3\ny48+sXkLM4xmBYSSDtlEO7MMlxUSevGBfLr1jrDbmECjc9tTuPb3ykWIaL3nn7/gl1a5XtSdCFUu\nOvncVrlGQ4tOPY+ywcMo2nM0zqpKAI4adyIxh5PMtatw+q3buzG7HVs0ucJQzoqlOIzUqkOB2jZy\n/qrUEFi0kSJFmytaG0jNrS4ESAoI/Xzlzaw47Lik+WFvJhkbi0ln4WkXNHk9Q3+6RKSVtVts1jTN\nr4CSTUw5AXjJtMwAcg3D6In1n/4ewAW4ASdQCGAYRiZwPdTGkkVEREREREREREREZJtj1gsFmCYs\nX5QaKogEYm25JJHNFq5XSei5e5MrxtgioVa9dqy2ckwBGzExGMtHKXP2YzpTOIxHuBaHv5qZ196e\n9lyrDzyS344/nXff/QYnYSIRg6qFFfTGClMsOfnctNViWsqmWpNlZyRCQZMmtN4attbG9db74SaY\n1PqrYVimxa63yx7x7d+OPbVVrpHCZqNoz9EAlA2yqmblLF+CEY3EA0KQ/JzXjjk4vj3ow9fi27sx\nC4D1K616GOkqRaULj24J3+z5APSbPz1l34IzLsLfM7kezIIzL0pqFfjJs28DELPZlAASkQ6hPSsJ\nNaU3sKre49VAb9M0vzUM4wtgHVZbxsdN0/y1ds5dwINY7ckautIwjD8APwI3mKZZmu6ihmFcDFwM\n0K9fvxZ5IiIiIiIiIiIiIiIi0jq++cQb3z756CVUf7SYjxhLNNA6N9dFWkrGgiVA16SxE3mnTa4d\nysppck5P1rETCwFwVJQRzs5h3h8uZ/BbL/PB658T6NItaX7M4aCMPD6YvSs1ERfn8QKFe4xulfUD\nrNtrf3r+MI0Vhx/X+CSHnYDLhydUzZARrRu82hp1IbFiupLhySCYnYu7oozyAYM2eVymx8HoHfK3\n6JoVTz1L5m03M/KIfTCzs7foHIsKq1hZku627KaV7zCY8v4DyVq1jJnX3ckuLz2Jp6QYh9/Pb787\njRHjHwJg6sP/IXv5Eo4+/zgqpiZuG//MHtgw+eTNbM77UxnlJant0uyOlqnGVWW3wmWVu++ass90\npN5qX3LSOSw56Zyksaba/4mItKWOHBJKyzCMQcAwEm36PjUM4wCgEhhomuZ1hmEMaHDYU1gBIpNE\nkOjCdOc3TXM8MB5g1KhRrVvLUURERERERERERERENlv9Tkw11YkKEm9+NJgFDOUjxkIwgvX/NRbp\nmCLVkZSxe7jV2mjlO1Qxt4cJM1awywuPstv4B9POyaYiZWz25X9h9mV/TlsRxXQ4AagJW5W9ciin\ncNS+LbjqZF889kqTc2yRMO6QFWIpXG3dFjVNePaefA44ppphewZbbX2bY6+d1/HD/J7syzf84BnH\nW5/MbtZxTptBt2xP0xPTufQiuGQcXbeius3qspotO9Aw+PDVz+LbhXvtF98GGDH+IfxduwNQMWAQ\nr3/xK8U3/ATf1E5rcLrKMjsOp0mkXpvJeT96gPItW1894dqnuO73J+JDgR8R6fzard1YM6wB+tZ7\n3Kd27PfADNM0q0zTrAImA2Nq/zfKMIzlwDRgiGEYUwFM0yw0TTNqmmYMeBbYu82ehYiIiIiIiIiI\niIiItJq8Aqti0JNcBoADK3gRDSVXElq+0El5SUe+LbJlTP3fnTutUCS1+omPagBiTmebrCHiywSg\nZMjOOElU2vmMQ1k3+qD447c//CFxUCOhkmiDNQ/ML2Te+Ve24Go3X9HuiVuC0z/2ARDwG3z5QSZ3\nX969vZaVYrB9KdmUk0s5Ec8Whn62RHu2vzKMxPXrbwP/e+trPnzl06S5hiu59sXZ/BeAhbNd+NcH\n6R9emrR/6Tw3P32d0eQyfp7uobQ49btYJ1hj/cg6fY3PERHpTDryfw2/B/zBsIwGyk3TXAesBA4y\nDMNhGIYTOAj41TTNp0zT7GWa5gBgf2CRaZoHAxiGUb8Z6e+BuW35REREREREREREREREpOXUz8XE\nYta/Y/gWACdhAObP8lG0NnFT99bzenLreT3aaokiTQqZrpQxH9XMO/cy1u53WJusYfGJZzFn3LV8\nOv5tJnEM1/MgJgaH8gUz/voA88++mLcmzUxpLZaOaU8OCQ05zINpb99gRXWvvilj/uqOd3s0UGOQ\nReVmH9eeGR9ovVpt1b37Ec5ObonnzUiuvPUKVkuv/7ukB/5fS+lKMaNr/w7UWTjbTSS1YFdcJAwP\n3NCNK4/v3eic8lLrc+3KbpvPjaEKeCLSytrtr6BhGBOBb4GhhmGsNgxjnGEYlxqGcWntlEnAb8AS\nrOo/l9eOvwksBeYAs4HZpmm+38Tl7jcMY45hGL8AhwDXtfDTERERERERERERERGRVnDBBdaNcL8/\nMWbWK58Tqy0YVFdBqC4k9Nln3bnupN6cPbofyxdaN3lLix2sXZ5cjUK2Lx2p8lK4ttPVpxweH/Pi\n55dLbmizcE3M7WHOH68j6sngcD7jQf4U3xfo0o1ZV91KML+geedyOLifG+OPQ9m5Lb7ezRXKzAbg\n0N2W0qOv9dvgr+x4IaFyVwGZVAFQ2XdA+y6mgzpy+K+cyDvMZgQAcxge3zezeDDV+PiWffHndY2P\nf/DfbMYd0peq8vTveUm9CkLLFjj533+y8Vcnh3Se/tRqmZeRr78dIrJtaLdfM9M0z2xivwlckWY8\nClzSxLHLIfGXwTTNc7dslSIiIiIiIiIiIiIi0h4WL4YhQxKPX3gBrkzTuSgSsW7o1oWD7ERT5sz7\nMdG+p2itg14DNlFaQqSNRAImNqIcxmf889W1RJ74BM83IUx75wwjmHY7N/IAkxmLkzDr9t6/vZdE\nuDYklO2opqa2gpC/quNVaqkOu8lkAx9MnELEl9Xey2k2ow1LGRl2O+9wUvzxcOYxeugKZizsD8Cc\n2vBQRumGpOMiYYNLjurD8L1ruPnRYsAKCz7+1y7kdkn8vbjtfKsxTdFqByddVE5psZ1BwxMt+MyM\nNmwDJyLSijpeVFZERERERERERERERLZ7H32U/Pi55xJVYOoXg4k2CAl1pTi+74+3bARgwmN58bGZ\nX2e0/GJFNtPa5Q5enb47MewYQK8BEW76+gJs0Wj795ACfrloC5py1K77cw7jY46mpmv3Fl7V5gtl\nWSGhwTM/orzETtlGG8GaxO3RwtUdI5BVE3CQSRVRl7u9l9JhZWwsAiDi9vDJ+LcA+HbhgPj+gnq/\n/enM/T6Dso3We19TbTBjio+PXstOmTf1/UyuPqE3d1zUg+kfefE4ghzOpwRz2qYyVgf4+ovINk4h\nIRERERERERERERER6XAyM5Mfz54NRdY94qSWUfayCgACPXqy4vDjCXTtFt/XvU9qxaDP3+k8VTpk\n23X7uB4EI8744+4/Tm/H1Vjef+1zvrnjYX666lbmnZ/S7GOzVffq1wKr2jqhnDyW/O4MMqgB4Ipj\n+1C6IdFiatpkX3stLUm0KoSPamJOV3svpcPq9e0XADiCATbsOjI+ftXdGzih11dMI1G56gdGxbef\n/3wVLncMgMduKyAShrKNzWvn9+SdBdgiUUbwC6bD2fQBIiKdgEJCIiIiIiIiIiIiIiLS4TQMCQHU\n1CQ/DoegctJi64HXwfS7H2f6XU/E9+d1TbSSGTDEahtz4gXllJfYiKrjmLSjutZXdQ678qx2WklC\nZf+BLB97EgvOvniLAxGBnLymJ7WxORddRz4l8cfj7+4S3w6H0h3R9sxSPx4CxFydKyTUlkVvIp56\nVeDqldvZ94ASnhhwJ/3zNsbHRjGT74+8iDvGr8fjNbnrxfUALPjZw/Wn9uLG03slnXs4cxq9rh8v\nuZS10LMQEWl/HaOGnoiIiIiIiIiIiIiISD2+NAU+qqutf01MFsxyc9el3QGrWknJqH0AiHg8VJDF\nc5e+Tve+u8SPveel9Zy7X1+qK21cfkwfxp5ZwTnXdP4bv2ZS8zXpLPYfW820yT7MBjGLX/54fYte\nJzvDwcCuaRJ3rWTZr8sZ1iuHwC67ske/lm/PtLEqxMoS/2YdE/Zl0pN1afeVbugYt0oDePAQIOL2\ntPdSOqyoO7lVZEXfHchetYzTD96JkmEjqOi3I57SRFBor0+eZ90f/0AVA3DWy7xt/H/27js8qir/\n4/j7Tk9vJPQqoNgLKoKKDV17Lyv2uuracC1rr2vvdf1Z1gK6WBF1FewFEBVBEKR3CAkJ6dPn/v64\nyUyGmQkB0oDP63l4cuecc+89dyYz0dxPvqc4/jVfSi96sAI7VrWhyTc+wKITz2TkkFglrCCqIiQi\nW4+O8ZNPREREREREREREREQEq1rQE0/A9tvH2vLzobwcamrqG0zqA0Ixi0/+K3Yg4nKTRQ2Dey5h\nOTtR2C1EOAinHziQi+1VTHzXWm7sf29lc8jxNRR0CfPMrQUMGVHHsCM2LnwgsqlCQeiTswYq49vn\njLykRc+T4XYwqGt2ix5zgyoq8LhcDEpL2/DYjbSwtGajQ0KhtHR6szJp3w//y+CyO8qS9rWlWlcO\nDiCclt7eU9koRhuWEqru0TvusWmzqnEZpknB7Bms2XMI497/gYzVKzjsijMAOO7U4Xz9+GuUb3do\n0mP+yFB6sTz6uD/zGfLgPxny4D8Z2SiA+WHB2dzU0heUQltWZxKRbZNCQiIiIiIiIiIiIiIi0mGM\nHQs33wx77mk9/ukn8Plg+PBGISGg98AAS+fFluYxPNYtj7DLDcAeT/+LXl99yg97ZTHz3L9jP8VP\nOpXUURjd5/1XcujWO8i0H9KZ9kM6w45Y1voXKIK13JjLCCa0h7eGSjI5Oe09g3g2G/s6f4X1nu50\n6qijfUI5Pq9BwGeQnWdVr/FHnDiyN+W27bYTKZlx2Y1kLV/M1JvuB+DzV8dz2iE7RvsLZs+gtltP\narv1jNuivELNAAAgAElEQVTv4GvPJe/AvwJjEo6ZTVV0u4TCuMdrKKIzJQDcecx4fJzQkpcjItJu\nbBseIiIiIiIiIiIiIiIi0jZCIevr0qXWV/u0n8l851UgFhIygUF7+kjLiET3c3ism+UNIYvM4hV0\n/ek7Bo5/i+6//QiAB1/cuSZPyGDKF7GQgKmVu7Z6Zgd4kWurDGZMTmNeRQ8A/NmNQjVtWZplG1K2\nyx58NXBk9LGJwakZ48jJD7fLfG45pwuXHdmD0tV25vzmxh9243RGNrxjB2O0YUgp7PHw7WP/wVvU\nFYBQegZLDj8u2l/do0/S/fzZOfT9aULSvi4UR7cLWYubQPRxEaXR7c49EgN9IiJbKlUSEhERERER\nERERERFpwvw11ZTXBjY8UFrE8goXkEVZ/QpA9ssuJoNa4HymL6rGNzHEbddk0qm7HbsjFvgw3E4A\nAlmxpZX+OOdy9njuAXIWzQPAjT/hfCsXx6oReWsN0jPbP0QiW7fqSnt0u66wMx+On8qB119Ej+8n\ntuOstm7BjCx2r57O6CnL6DVxPNwGLnuYYNAKuSz8w0VaZoRuvUNtMp/i5dbn1TUndo+21RdBk40w\n6e6n6TPhIwAWHnt6tL2usAvppVYA6L3PZzBs1IUwOXH/TpTxzsTfcdZUc8KJwwAYM2UpmCZn7teH\n/3AuH3EcWaWrWv9i6iknKCKtTSEhEREREREREREREZEmrKr0sXKdt72nsc1YsCx+EQQ7YTKxSghN\nmgx3jsoDYP5sJ7kFYd444SkqP5xLxDEKgLAnLbpvxYBBAAx66yUA8ilnYRPn9tbZSM9sXmWRFYsd\n3PjXbtz7n9X03aH9qkx0gMI4spHCjXIoDZWvvn/g3xjhtgmobMk2NT9hCwbImz+b3hPGYfdbFcWy\nq4oJuaw30O0XdgFg9JTWXXJw5JBeKfuc7i3vzdwRAi1vfzsXWzhMKC1WFW7cBz/iqq4k4nCAYbD4\nlJFJQ0IAwaxYJa/y7Xe2Nuov7Fxe51xeZ2rOva02fxGRtqblxkREREREREREREREmtARlifaltTV\nxt+6cBIki2oAJryTFdfnxsfIcddwBc9h2hP/Lrqy74C4xwbWa3nQcTVJz+33Nv+O92/fW2Gkj9/M\nZvGfzmbvJ/Lyg/kA3M1thOvLx5h2OxGVkmk17qoKAIbdfhW7P3O/1YafULADpFzqOV36WbMpIm4P\nofSMuMSS6XDgzyuIBoBCaRmxPgxu5j4mM4QpNz8IWEGhbx57lS+fGRMd98u1d0a3F5wYW6pORGRL\np5CQiIiIiIiIiIiIiIh0GAFf/E37dOpIpy7p2DVlGRgNIa5GN4iLBw8j7HThLewSbZt+2Q0EscI8\nwzOnJD1eXXXzb5sY9UOnfJHBred1VUUfiXruzgJGDunF/VcVJu1fMMsKA1WTxdqd92zLqW2zApmx\nZQg9lesAKyQUMW0JnzmtyW5P/UERtits2FrCLlfc4/u4lSH8xPJDjoq2rRp6SFxVoXmnnx/bwaZb\n6iKy9dByYyIiIiIiIiIiIiIi0mEE/IkhIRsmO/IHSzJ2oK7WvsFjfNWoGkTI7aF0t71ZcMJIfnt+\nVwB2G/MshxXl8EXJ3nH7vfZoHve8uqZZ8wwGjPUegwrBCMCPn1lVS2ZNTUvaH4lYX2vJYNrVt7bV\ntLZp5TvsQtep38e1ufEDUFnedgGQ7n2DFHYL4fcazPo5/vujJJC/0cfrCMt9bQnCKT6ct+/flZxM\nT8r9fPsMwTlvLsP6F7TW1BK4HAokiUjrUkhIRERERERERERERKQJHaFAzOxf3XjSTfoNCrT3VFpd\nwG+QXxSivMS6hZGLtUyQB1+zAkLrG/vtXDBN7D4vPzCMM3ibo/mEipJcvuDVuLErFm24ksesqW6+\neD+LlUvix777Yi4nX1yJ29MRvmOkvTSnotReB3j55dt0LtnhE/7IOLb1JyUJSw9CLCRUVbHxnyub\nyltrIy3DJDvPSoo9OnYVdkeE20/K4rhBv+JnYJvNpSVsKSGliMvNzwymiJK49i55GRRlpw4J8dNk\nME16bykXKiLSDIoiioiIiIiIiIiIiIh0cPdd0Znbzu+y4YFbgVBVkJyaNZy357fszm/Mvvhq5px5\nMSvpHh1z3SMlZNi93Mo9zTuoYRBxuhjGJJbTCxdB7ISj3W9xBgBHnF69wUPdf1Vnfv4mnVXrhYQ+\nGZ3N5Ud1p6Js4269+H0GbzyeS221bkJvDYLNyPE5bSEGMI/egYWtPh99V1mW/OXEuMffPPoKtnTr\nPXz7BW3z2RoKQulqB6Wr7dw+8EX+PfINuvQK0bmTl0py2a5zWZvMY1sUdrkZzK/0Ynl8R3PeIAoI\nichWRiEhEREREREREREREZEOrDmVSbYm7kXLyK4r5enVZ/Ebe7Lg+DMo3XUwa4jdyO/RN8jMESO5\noftLzT6u6YhfXKFxSOhYxpNBDaHA5t0M9tXZuOLoHnzwSjYT3s1k8Z/ODYZ/vh6XwWf/zeaSET3x\n+3Qzekvn98VuvXXvmzwx5Fy1Bjd+chfNa6tpiWHw+UsfAjDzwqtZNexQwkWJy3v98L/0VvvMXbbA\nBcDc6R4Oevg6Lhl9DjkL59J7wkeAVe1GWkfYnfjcrttuB2wKAInINkjLjYmIiIiIiIiIiIiINKWd\nQzqRWJaFuhqD9MytOzXkCzlJoxJbfUkW02YnlJYeN8Zj1uHw1hH2pLHigBFkL1mw0edpCAmdzttk\nUEctmUyeGOKsayo2+xrefTE37vHoKctSjvXWxkIl49/IZtLn6dz2fAl5heGU+0jHFWgU9AoFkwcQ\nAmEHHnxtNSWpV7bzHoyZsjT62OvMTBjz/F2dyC1Yw877+Fv8/A0hwL9fNAfq841Hjzw82h/eAkNC\nxhZSqyrsjD2370z8nVNH7MqfIy9he4WERGQbpEpCIiIiIiIiIiIiIiIdWCQS2579q6f9JtJGfGEX\naXhJX1sCgGm3E3ancSMPRMecfso+pJcWE3Kn8d3DL/HxO98069gRuz263RASChNrqyhztEoVkUgT\neZ/Gr+8HL+ewZoWTX79LixtTXWljzNO5hIKJ+2/dkbEtT0MQxO2JEPCnCAlFnLhp+RDKtsBowVDH\nikj3pO2BzawolsqHr2QDcO5LZyftT1btRlpG4ypNwawcxkxZyuKjTsamjJCIbIMUEhIRERERERER\nERER6cAikdhdzNrqrf/X+t6Aiwxqo49Nm42Qx8Nd3BFtS8NLwewZZK5evlHHNm1WIGjqDffR3VkM\nwP78EDemeHnTizAUdQ9i2EyyHTVcwr+j7X85o4pr7i9Nuk9NVerXra4msS+yXvLn3Rdz+GR0Nl+P\nS6x8Ih2L32u9XzNzI3FLjzVm1vhx42fSHY+35dRkPTsXLEna7klrnejdrJ+t8F82VUn7t8RKQk67\ngdth6/D/HOlWwDbsdse1t2ToTERkS6HlxkREREREREREREREmmC2c62WxlVoKsrsqQduBUwTllUX\nchiLo21htwdbKISbQLStoQqLZ13Zxh3fZoU21g3ckSHdX+WPJTsyiDn4cvLoWbmM5fRi0oR0Tr4o\n+U18gHBNiBP6/8q/3X/nvZmDo+0FRWFyUywR5vcakJf8eDWVia/pa4/kc/gpNdHHwfqKNP95JJ8R\njdpl47X2uzlQHwzqvm4ecyI7JB1jLynHjR9vQVErz0aacmiv31kxezuGd/2dhfMzGM43fMtBuNwt\n/10SjH18pQwJRZyuFj9vaxvQOYsBnbPaexrN8/DD2I84gpN36dHeMxERaVdb/58ciIiIiIiIiIiI\niIhswRqHhMY+n8ukCentN5lWVldtUBtOo2+jkFDE5aaqdz8AxvBX/o+L2NTaD3+cewX+7FxquvWi\nZI8h7MgcDMBTuY55DATA72361kmk0kv3eT9TOPNXfMSWfztxvz/IKwgl3SdVRRlouspQg9xOTaxX\nJh1Kw3JjXfzLCQZtvPtiDtUV8a+xHzdu/LiqK9tjilIv4nRSFFnDXaN+YRzHcTP/stojG9hxEzQO\neFYec3B0u6pn3+i2syZ1OFFawD/+Abvs0t6zEBFpdwoJiYiIiIiIiIiIiIg0wWzfQkJxy40BPHt7\np3aaSetruJGe3jMtrj2YlYM/O5dT3R9yES9H29futMdGHf+PC67ivQkz8Od3ImKP3bRfve+B0epE\nn4zOjgtmrc9LGunUAVBLBgA3cT8n//UAdlr8ddJ9GpagSqamMvmtmupG7W5P7Jvw0sO7p56ctLtg\nlVUyphNrAfjglRxeuKcgbsxSepNOHT5VEmpXEacLWzBIoaOc4xiPHeuNHw63/BJUDZ9t97ruhPQ0\nVg0ZDsDHY79m6g33AVDdKDDUXFosS0RENpaWGxMRERERERERERER6cBMrz+xzQRjK7w73LD0Vk5G\n4jWH3W7cVRUAfPXkmxhmhNJd9trkc5mNQkK/XXETR/30XfTx2cN6cf1jJew+1Be/jwk+0kjDC0Ck\n/m+xc7Aqwhw66hzg7IRz+XypXyxvWQhwJ7QXL3OQtYsVOAkGYvvXVMUvT2a2d4pN4hVXAD0oILYU\n3prlsdtxKxY7qCKHcRzP0buXt8MEt2wt+bEXcTqxBwMcfvFJADiwKoG1SiWhUut9e1RgHOlrOvP9\n/S/gWbcWDIMFJ46kdLe9qdxu+5Y/sYiIyHoUEhIRERERERERERER6cA8xcXAdnFtE97J5IjTatpn\nQq3I77ciAM4MOxNefA9PWWm0L710TXR77S57EkrP2LyT1aesarr0oKZHn4Tuh0cVcfx5lfToF2To\n4VbloGD9/BpCQtfwBGvpxFU81eSpmqok5F0bv0TZYSdV88X7Waxe5mRAfUjIrKwDcqJjQkFwOJu+\nPGkf4fpKQvnEAkChYOz1f+eFXABqyQQUEmpPpi0+cNdQSSgSavkE5rr6SkJdWU2Xb6cTTkunNq2X\n1WkYCgiJiEib0XJjIiIiIiIiIiIiIiIdWMjhSWh7/bH8dphJ6wvUh3Ds2S7W7jqYFQcfmXRc2J34\nnGyshuXG5p98NiGPtbzZB5wQN2bcf3LilnfzrxcS8qTDk1xDev3jVKor7Cn7qkIZ/JN/YWLw7qfT\nuOzU6bjcEZbOi6WAPnyvKwAXnj1/g8eT9hWotSo72YiVo9l9WOz745dv0wF4YuCDbTsxSdD9+4lx\njxtCQo5161r8XP97KwuAQkr59erbWvz4IiIizaWQkIiIiIiIiIiIiIhIE9p7NadI2Aob7Mgf7TuR\nNhCsX93Llp24/FZjjZcK21Trtt8ZgKre/cBm3S7Jo+lwQEOIad2QfRkzZSlLDzsm2vfHuVfw2+U3\nJd3vxXsLkraHghAyHWRQC8Bu/36Ek/56IDv0K+fP6YlBqCGTX7fmXKHbOx1VoD4PFLbFFvMIh6yQ\nyNSv0kjLsN7Pw7tMb4/pSSO2YDDuccNyY+HI5lcSCvgMfvw8Pfrzo2SlFfqzE2F5ivCjiIhIW9B/\nRYqIiIiIiIiIiIiIdGBmwAoV3MQDfPrse9H2OdPigzTrSu3M+a3pcE1HF6q2lmqy5SYGZJYedmyL\nnmvpYcfy8VtfsPKAEdG2bKqSjr1pZBfmz3JFQ0wud/2d/0YJsuruvfAWdo7brxsro9szf/KwrjQ+\n3OT3WWGEhpBQ/3FvAbB9UTErlzgSAmo7LPgagMpyVRLqqPx14CBIH8+qaFvAb+PNJ/N48uZCsvPC\n7OL4g5x0fzvOUgBqevSOe9xQScgMJRu9cV5/PI/n7ujE/JkuAHr19XEIXwIQzMjc/BOIiIhsIoWE\nRERERERERERERESa0M6FhDBD1gzshMmoWsshJ1QDsHaNnUgYItZ9bW49rwv3XtYZ0wRv7eZXwgiF\nYsduK5FKKzhhy0lL6Jt21S0tezKbjaq+A8CwnqvFR55EF4qTDl2+0MV/Hs4nWGulB1weK7jl8Fup\nobJBu7L46FPxdiriD3ZkFI8C4CcW2nrg6iLuuiQ+ROT3Wrdp0qmLa++3YBJBv43wes9/ESUAVJXr\n9s6mau3KYNU1TvIp56T8Cfyvzzl06xOMhsEA1qxwUhPJIOx0te5EZIOm/vMBfrrp/ujjcKa1FJwZ\n3PwPvlVLrEpSLz+Qz5inc1m22ENXVgMQSm+5kJBhbP5nvYiIbFv0X5EiIiIiIiIiIiIiIh1Y45BQ\n/4/e5pzzlwNQsdbOZUd159qTuxGJQEWZVV3mrP16cdGhPbnyuG78/lNiRZ7mOnf/Xjx+U6cNjouE\n4eUH81i9zLHBsRsSqqqvJJSfntDnKyja7OM3ZfbZl9GZNQAM6rwqob+6wka4xgoJOT3WjXlnbQ0A\ns86/CtNup7pHH3ZkDrdxDwAH8H3cMUpXxz9HgfUqCTUoXDkXgGD98mYOI8TN3Bed38olTspKVE2o\nI6qsdtGJtYSyszl82WiyfOVUlsXfjlsc6UPE1TYhIYVIUvPn5rPwhDOZcvODLDv4SP4892/A5oeE\nKstszJ1hffauWOTik9HZAORSYR2/BZZLFBER2VQKCYmIiIiIiIiIiIiIdGBmyKpaYydMt8nfcOAz\n/wTA77NRU2lnbbGDT8dkJexXXuLgwas3L1gz7fvEsA7AwtkuJk1IJxKBNSsdfPVBFo9cV7hZ5wLw\nVYSxEcbeKSOhz7TbGTNlKWOmLN3s8yQTyMzGhslMdmbSmh15gBvj+svWOKgts16LjAwrRLB6nwMA\nqOw3EIC6zt0AyKWSnxnMGM7kXlJXQPLWJQ8JebAqFAUDBuEQhEwHaXijy6F99FoOVx3XHWj/SlcS\nr7LWQyGlBDKysEUidCqeT8XiQMK4sHvTA3zSshYddwY/3P8CNqcV3gl64btPMohEmn+Meb+7GDmk\nF1cc3Z3Lj+6RdMwMdmuJ6YqIiGyWzY/1i4iIiIiIiIiIiIhsJUaPhs8/h9dfj7WZrb0+0QZEgrGQ\nEEDfiR9hd5iEGuUOgoHmVwuZ+ZOH3gMDZOc17w54OAT2RncTImG4/YIuAFSWrWOXIV4Aipc7mz2H\nVPyVEbKoJpiTs9nH2ljBTCtotTN/AHAjD3Hydj8wYOGPADhdJm+/3hWAggI/dcC8085j6RHH48/N\ntw5ii/1t9mB+BRIDQI1VV1qhhE6sjWtvHBJqeG09+CjbcXeYvTlXKa2tsi6NvpQRzLCWlHLjp6Q6\nO2Gcu6K8rae2VWjNwkhGfYGftz7oR3FJOuEQHHx86vdvY+Nft17jhopuyezBb4x7//uU/SIiIm1B\nlYRERERERERERERERIDSUjjrLHjjDfjll/aeTcwb7w8AwEYs1BMOGYx/Ixakqa1q3q/7A3544Ooi\nHrq2+VV/Av74u/K11bFzrVziJOBruVsNQZ9JGl6C6ZktdszmCqVnsOKAEXFt/RdOIoCTnff2EgwY\nLFpkzSunqP45MYxYQCiFdOqi2z36xVeUqS2xgl+FlMa1R0NCfiOu2tDSEcdu5FVJW/MGnWRQS96C\nPwH4ikOjfWdeuS66XTR9apvPTZoWxgr4FJdYFdReur+g2fumZzUdJn0n+2we5Tpqu/bc9AmKiIi0\nAIWERERERERERERERESAI46Ibf/+e/vNY31TZ1hVe+pIvvQXgN9nBUmeeH8lo6csi7Z37xsLpQQD\nMGNyGgBL5rqaPGfj4knrh4SWL4xVDAoFY0tmWWObPGxKq5Y6mDwxnaDfCsiEPe2zFNPCY09PaHMS\nYtbPaXFt4fzEyjDJBDKy4kJC1RXxVUa8a63Xx9UlnWCa9fp+8+gr0ZBQIGBQU2aNLaQUf24+j3Ft\ndP92LnIlSfhDDjz2AFkrliT07b6DFQY7ng+ZdMfjbTwz2ZC8rE37ADNN+PGz+M/nv90Rqw529rXl\nnFL1Jk5CrVsKSUREpBkUEhIRERERERERERERAX77Lbb96adw0kng9UJ75zAG9LKqjwzrvyDado5r\ndNwYv9dGUfcghd2syjRPfbSSfoP8rFwcCwONeSqPJ26yKgiZZtM3qiPh2Pb6IaFH/hGrQhQOGXhr\nY7ca1hY72BTXn96NZ27rxJdzB+HBR8iTOhDVmgLZuUnbPyOWIBvPMQSymrccWlXv7aLVSQCqK21x\nwR5flfVg6YUX8M7XcxgzZSnFg4dFQ0J+r0FNmTWmkFL8eQWcyjvR/UPB5l2XtB1/2InbEUrad9j9\nl+HDzXucTNlOu7fxzGRDMrOSv24bMmuqJ+4zNTsvzLAj6rj/zdXc/XIxfzm9pqWmKCIistkUEhIR\nERERERERERGRbd60afGP33sPPvgA0tNh/uxNC75sLNOE84f34NMxWXHt85flsTdTmX/Vtbz93TwA\nXgucxV5DYzeea6psuD2x9ElBUZhFc9wALJtvVf5ZMi9WAchubzr6FA7FbngH1wsJ+b2xWwuL57p4\n/IZYaKhxlaFNEQg7+ZNBhN3tU0kokJ08/HMEE6LbA5nX7JCQt7AzFcSCR5GwEfd8+qpM3PiwZ8Se\nt4jbQ/reXQFYs8LBc/+yKkkVUoovN59MYq/79B/T2j/FJnF8YRceR5B5J52V0Nd9xUzcBCjZeyim\nY/PeK9LyTMPGSN4EYLudrKpCwUBTe1gMI/YmHD1lGc//byU7vvUiN53VjQEDqq3jpGcm/Z4QERFp\nawoJiYiIiIiIiIiIiMhWIRKB8nLYY4+NXy7szDNT9115WqfNm1gz1VTZCPhtjH4qL9pWtc76Nf7P\n7IPpcBBxuaN9oy6ZycBdrYozMyan4S0NMnDsq9H+PYZ5AVi31qpk40mP3cgOhw1eeySPkUN6JV2y\nKtyokpDfZ1C8zMGsn90J41YvjQ86PHVzIUvmOeMqEW0K09E2waz1NSz5VdO1R0Lf0JzpAPRlccqK\nQwAfvfsd0y+/EQDTZuM0xrIfk7iSpwB465nYvr4ayKaKkCd+ObPczlaQaN1aO+Vrree48thD8ecV\nxC1f9vVHmRt9jdJ6QiEIm3acHvjtqlv55pFXeMV9SbQ/myqAdgvBbQ0MWnG5LpuNl7mQV++bwKEn\nWmG8daX2DewEofpQ5ZDDaqNtez59HwCHXHUWZw7pjbOuptnhQhERkdakkJCIiIiIiIiIiIiIdFhr\n18L8+cn7fL5YBaBAAOx2KCiA6dNht93g/vvhww+bd57c1JkPIPmyThPfzeTBawoTOzZRspvRZWus\ntue4DNNmbc8eeSkAnfyrOGrvudGxa6syGPzYnfT57AN2e+5Brjz4SwAeuraI7z/NwOWOTwNNeNeq\nWFRRlniroHElobWrHVx3Wjfuv7Jzs67jlnO6cvawXkQi8PnYTEJB+OK9TH77MXkworxkwzfh20pd\n527MO+ksvnvoJeaeel5c36v9b2ImO+MkRCg9I+Uxanr0Zu6p57Hs4COZffZldKWYSQyjDiuA1PC8\nA3hrDXKoJLxeSCgtI0IWVawrbRSW2qUX/px8nMS+GR1OlRHqSBqqRDnS7YQ9aaza/1BOT499CLmx\nqtPk/7mRKUZpE6Zhw02AXpkldF81CwBv3YZvpfq91uv+j5zncFWuI714ZbSvaPrU6HZTnxubqhUj\nUyIispVSSEhEREREREREREREOqyddoKBA+G886zAUINnn4W0NNhrL1i9GtyJRW64+WY48UQwjNi/\nVH76yfr60EPw4IOJ/dMnxYc4wiH4zyP5/D4lLWklnlS+GZ/BikXx1Xe+/CCTkUN6UbIysXpOeYnV\ntjc/Y9qtX+kv+csJAKSVlTDs5XuiY9PqK8wMvfMadnr9OU6+N1Ye6YW7C/DWJr8lsGpJ4rJHptcf\n3S5rFOKJRGJjuveJrcMzgRHcvN+7ccd49aE8Xn8snzsu6sKrD+fzyHVFAPi8Bred35mRQ3oxckgv\n3n4uPqE1vdvBSefZJmw2frnhPioGDOLX6+7ikzETo10Df/2cnfnDetDUNxMQTkvnh/tfoHzH3Zh3\nyjkAnI9V5cnWaKk3b61BNlUE1wsPRJwuqsnm87GxQJHpchH2eOJCAb9+l74pVymtJNAQEspo9J7x\nxD6cGl67iNPVltOSZmr4jN37oVvY85WHAQgFNxzD8dUvwbjXe89yzGkHc8IJQ5OOc/i8LTRTERGR\nTaeQkIiIiIiIiIiIiIh0WCUl1tfXXoPCQjj4YCuf8fe/x8bMmNH84738srW/z5e8//rr4YYb4Omn\nrXM2ePzGQh64upCRQ3rxxy9uLh4RW47KW9e8Wg611Qb/d18BN57ZNdq2bq2NVx7Mj56jwdL5TiIR\n+GSMFRLpwYpoJSFvJ6uiT9raErKoju7zT+6PO192oz6ILV22vqXzkgQWfLFqNVO/jgVRaqtix5i2\npAddO9fx/FXjGcEX3Df51LhDNFTgWDI3/vjP3l7Aojmx4MSPn8UHZHpllCSdZ3uo7DeQMVOWbtYx\nQh7r+RvGJEZlPINhEF2OzVdjhYT8uflx+4Rdia9JQ9u8k87arPlI6wn46kNCWbHgXebqFcynPxMY\nEW2zp/oAagWqNNN8pmF9ZmWtXBat2BUObXg/X/3PgExq8FSuSznOn5OXsk9ERKStKCQkIiIiIiIi\nIiIi0sFFIiahcGSb/Le+b75JfH6OPNL62r//hkv6XHSR9fX5F2Ln+H2mdZ4zzjAJv/AC4See5G+X\nRThzZIRrr40dc+ZPVjWhf/29M35v7NfrlWXNWy4r2bi/H9MjyUi4+eyunHdAT+ZOt5boKqKEiN3a\nv+FG8+DH7oyGhPpmF3Mr9yYc50sOiW4vX+jisOMreXufm+PGjH4q8ca16Q9HtxvmAPFBoyJK+eCC\np9mhV6zEU1ZubL/Crol31yNh6N43ce02T3qEm59dw8RdLiDcwaus/HLtnRs1PuyOPX89M0oJh4xo\ndaaaOgdZVCeEhCJOF0fyafTxE1yNL68TACV77scZvAVAl55J1sGTJpm03hJtgfoCXM70+Ntv/VnI\nCL5g0p1PWA0bqEQl7cMIxz6/YiGh5lcSyqQm5Zg/z7iQBSecmbJfRESkrSTWLhURERERERERERGR\nDg1K7dYAACAASURBVGXummp+W1bR3tNoJ72aPXLBgtjN3Jz8MJXlqcM7o6618erb3mjwB2Dt2hLs\nl10GwJj9TgRgr9OAx5uewzO3deK+14o3OL+6mlhwYPGfTvpsnxjw2OeQOqZ+ZVWeCYdj12PDjIVN\nbLHj5GFVrdi/YDpGldUWTM/EWWfdrB7caynHHVzJR6/lAOD9ZSWnr7yfpzJOZlLtXinnOmF8ftL2\ndaXWc3ofVtDIiERwemuj/dUVsef84zezE/Y/e1jy59JXZ+Mw/2fs6JxDxN7xQkK/XzyKXf/vMQAW\nHXvaRu1rNCpF0j80F4B/31PAzc+UsGRdIYfbVhD27B63T9jl4mOO4c2PZ3HYxafQbfUcPio8BYDq\nnn14i6MxMPnKjK/eJO0rVGO91o605MGSlcMOYdb5V7LskKPbclrSTHkL5kS3N6aSkL/GxE4IN/6k\n/T/c8wzLRhzbInMUERHZXKokJCIiIiIiIiIiIiJbhXP/UQ6Ayx2h76BAtH3vg+oYenhtwvjGASGA\n3l+Oj25nLVsMWAU/jju3ssnzrr+cVire2tiv5G89rytrlif+He91tyxJaHPV33iuK+qa0DeIP/mO\nA7ir6xOsG7AjY6Ys5Z2v/qB4r/0AsAUDBAOxwMKylZkAHJ71XbStU5fEu+DjP+yc9BrKS605N74Z\n7qiNVc94+NXF0e1IeOOqpRw86jwyilcScTg3PLiNzRl5aXQ7lJbexMhEzkbPz8Dwn9bxpnk4e2gv\nghEndY6shH0iThc2THIC5XRbbQUXvJ2K4s6fRTW+OlurVsaRjfPl+9b7y5We/PZbKD2T3y/9BxUD\nBrXltKSZVg09OLrtwvoZEmpGJaH0GXPIpCa6tFsgK5sxU5ZS2ac/yw76iwJCIiLSoSgkJCIiIiIi\nIiIiIiJtqrLcRmV58349vdNgX0Jb5x5BHhm7KqF9+DG13PLsGh7+72r++vd10fYTLqjkwpvKN3iu\ngBkL+zhrq6PbLndiCOP6x0q4/d9W9aDsvHBCfzJ1tfE3mz8fmxgOOe3Qnfju0rvj2o5O/4Klhx5N\nKCMz2jZm8hJKdt8HgMEFc8muKMZbUBjt/+rZt5lz5sV4ykvx18XO+zxWpaSd0+ZF2wL+xJvgJ5+4\nIuk1rFtrVQpquIFuCwTinqtDf36RvQ+qS7pvc2SuWk6XX37c5P1bS9jjwZ9tVWPa2KWiarpb1ZMq\ne29H38D8hP5SW1FCm1lfLSp7WSx0FfZYobZQ/dcsqvHVmPz0rYvDD4e6TX/apQVMeCeTL/9XAIAj\nRUjItDdvaUJpH1V9+ke3GyoJNSckFKgKRpcaGzNlKe9OnAnAJ29/yQ8P/LsVZhqjletERGRjKSQk\nIiIiIiIiIiIiIm0mEobLj+rB5Uf1iG+PwMghvXjjiVwAKstsfPtxBm5PJOlxirqF2OvAWCpi9JRl\nuD0mO+7lp1OXMD36hkjLsPb1eEw86Sajpyxrcm52YmGfIXeP4sDrL4JIhCP/Wk1eoVVtJ68wxI57\n+dh9qI/j/nyBfjmrGbhr8iVm1te4khDAhHcTQ0IAu0wczSmXWMvLuT0R3qg7DX/uest/GQbfPPoK\nxYOHklZWSsHsGYnnKyjE4fcTqIldVx+WAJC5eFG0LVlIyAxHMEh87sc+b70+DTfQBz9+J3s+/a9o\n/x7PPYAzHB/suv2FNfzrjdX87fayuPaH3lrFA6NXA7AzMxPO1dF8/PZXjB/79UbvN/+ks/jqyTcp\n3XUwTm9ikqebpzShbd2AHQFIX5MYhgt5YpWE/AEHN/8tj4kT4ZxzNnpq0oJGP5UX3fbE8nx818oh\nkW1Na4dixo/9mjV7DKFqB+s9aNYlLgu5Pm/AFQ0JiYiIdHQKCYmIiIiIiIiIiIh0cOZWtJrQg9cW\nJm1vWKbns7ezAbj86B68eG8Bq5Y66dY7yHUPx4IUQ4+ow+6AUQ+txbCZFHSOLZflrK6k3/j/AlYg\nCcCdHgu7vPTl8pRz60JxdDt38Xx6fD+Rk/+yB51X/ckz41cxesoynhm/ilueLcHurWOvx+8iq3IN\nkeQ5pgTrh4RSsQcCZGRbBx2xzxIyqKO6R5+EcaGMLNbuvGf0sbuqIq7fl2891/vO+zDa1lAByEts\nqbXGy5E1iIRMnARZwHY8ec0Ehu65Oq6/4TgNpl92Q3S72/dfRrcn9z+RQYMqGbbqY/6y2xyeGrcy\n2nfOQydz8tjruPfOGXzBYQlz6Gj8+Z2o7tVvo/eLuNwU73sA+fP+AOAAYku9HZw1mZt6v5SwT0P1\noYzilQl9YY8HsEJCjb333kZPTVrQAUfFljTMyo99aK848PD2mI5soupe/fjy+f+ydsgQq8EbaHoH\noNrIIpMaJt/+WCvPTkREZPMpJCQiIiIiIiIiIiIibWbW1LSk7XZH8iRU8XInLmcIhzPWf9KFldh9\nPjxlJYz+YAaPvmNVW0krXcO+993AkPtuoN/4/xJuCAmlxfZNy4htX3xLGdc/VsI5o8q5Y+CL3MFd\nCed3V1Vw9MjDyVq6EFvAj6esFLvPx353XQuAjQhmpHmlLepq4scN2MVPZnaYsV/MimvPWBWreGT3\nWZVnivc5IOkxg+mZSbcBfPmdAHhg+UUMYjYABVjVfBqHhMIhIxqoirYFTRyE2I5F7FG4kB+ndeNI\nPiU9ywovuQjw9WP/AWDxkScx+9wr8OVZSy2ZWNf5DqcwZMGHHH7xSRx44yUcddYRFHSOnajzb1Po\nP+4tbrlzdzpTEm3/45zLk17rlm7WBVcB8B3DGT1lGaOnLOPdrhfhzHImjPXnWa/d9m+/nNAXcboI\npmeQTVVC39YUKNySzPnNzdfjrPffw/yDvE6N3lA2GwuPPY0V+3f8IJzE2BzW51g4uOE3lTfgJMPm\nZfFRJ7f2tERERDabo70nICIiIiIiIiIiIiJSWx37m9ZIBHpuF2D5QhcASxaksd1Oa6P9Nhscdvlp\n0SW2xkxeQvqa1Zxw/H7RMUPuu4Fj2Y4POAm3O/lN3oOOjVX+OPDnd/HMS71s2LGnHxLdru7ei6yV\nVpDHRoTIBkoJXXlcNw46tpZwcSWQy6mM5R1OY/5MN3mFIU49bBce52p67umAaWCLRHBVVQL5OLxe\nALydOic9dig9I7q9et8D4/oaKgk5CPMre7GCHuSzDoA9mQbA/nzPDxxAIGDgaRSmigRjS4o5fNYc\nsqimrv51chJk9dCDGTNlaXSf9z/9lTP360Ok/u+TbfXLlTVU0Em21Nb6qnr2ZcblN25w3JZoxfAj\nmHHpP9jt349gC/iJuNw4a2sIZmQmjDXtdiDFc2YYvPPVbKqGPwvrfcuWl0NBQWvMXpoy+klrGT63\nM8Q/go/yhfvtuP6fbnm4PaYlm6EhXOrbwCpipgm/lG5PFyOXhDekiIhIB6RKQiIiIiIiIiIiIiId\nnMnWWR4k4LMqNUTC8PazedH2s4f2wumKv+aLR1jLL3lsPs4c0jsaEAJweOvY46l7E44/hjNZRF/O\n3r83Zw6x/vX7yLp5v37lorS1a1i9zwF89eSbfPjBj03OuyEgBFYQxllZmXJsMADlJQ7efzmH0Fov\nXVnFQXwT7XeWWpV9ruFJTp72aLT99PlPADBq5tUABLJzkh6/IUxS2Xs75px1aVyfLz+WFknDxwAW\nsPCYUwHYnnlEMDiNsdY8/fFVjiIhcGAt47bfPddZ191oeav1lxsDwDCo7dKdMNacKvrvkDDE5vcl\nvQ6AT9/4H18+99+U/VsDf24+AGccOBAjHCZr5bK4oFcqP979VEJblScxDbR6dUKTrK8VPk4z6its\nNVRyCrvdLX8SaVN5OQHyKGf5Ek+T4+bPtMKsxWbyIKeIiEhHo5CQiIiIiIiIiIiIiLSaWT+7KVlp\nT9o3c6p183VdWWL/ojlu3J74Cj1rKGJ1pEvC2MP+dgq9v/wkod2Dn74siWsb8q8bWUMRL36wINqW\n9+dMCub8Tl3nrhTvewB1XXvwzSOvMPH5sRu8PgOTrEULUvbXNaqQVOt1kkMlvYiFjNaRFze+bIdd\nADj066cwMRjK5PoTJV/SzFFnVUMq3ueAhDG+giJ+GXVnXFvx3vsz8YV3qS3qigGkYVUJCqwXErKV\nV0YrCTVovLzVmv0PSjqfskG7RpcbK1jwR0L/GcO3T7qfL6+AigE74i3cum+0rxx2aHR7xKXW0kRh\nd/IQwncPvhjdXnboMQn9l3ePBaoaqgeVlbXELGVjZeVZn1WBkLWAR9ilkNAWz2GnE2tZtiyNd/8v\nJ+VSfssWWCGh0zM+aMPJiYiIbDqFhEREREREREREREQkqdsv6MwdF21eaOP+Kztz7cndk/a98mA+\n4RC8+URe0n6/L/5X2EWUkkti1Z78ebMBWLvTHs2aUxGlHHXX+aSvXkG3H77kyPOsAEbjJb1W7X8o\npXvsy9TrEysUNWYjYq2PlkJdbewavDUG2VRxDLFAUxBX3PjvHvq/Zl1Dg2WHHUNtUVfmnXpu0v55\np53PyqEHRx8XzPmd0t33ZsVBfwHAg1XZZ/1KQvm//xatJNQgk9i6O94+vZKeb9b5V/IsV3Aer/IX\nPks65lXO4zkui2tLtuTW1shbFAu5dZr1GwA1XXsmHbti+BGMmbKUMVOWRitGNRbOjFUgaggH1Wxg\naSRpHRmZ1mfAJfwbSB38ki1HxOEki2pm/5nLBy/nMPXrNEpXW+9DX53BmKdz8fsM0jKs1/7awpfa\nc7oiIiLN5mjvCYiIiIiIiIiIiIhIx1K83PrV8cLZLVcNo7baIC3DxLCZmBErkDJgFz/n7B8Lm/To\nFyArN8KcadYN9h7bBVix0JX0eEnP0bUHnf74jbDDiT83j/S1JSnHdvnlR044cVhcm7egMGHcgpPP\npu9n71M4c1pc+9xTzqW2W09sT0UIeJIvFxUKwVM3d4o+rqxx07M+5PR3nuYZrkzYx1vUlfH//Ypj\nTz8k2jbtyltSXkdd526M+2hKyn4Ad2VFdHtd/0EA1HSzgimpKgkFcSZUEvqW4bFjpicvq1ExcCdy\nerl4ddkFKedzHq8BsHz4EfT89nMAIvZt93aFPejfpP0aB6tycqCyEqqrm9hBWk0kAhlGLc+ZlwMK\nCW0NIg4HbmLvzadutn4+9OofwOEyWTTbTacuIRo+utI9oWSHaXUpisyJiIikpEpCIiIiIiIiIiIi\nIhIVCcN1p3bjulO7xbWFgrB0vpNlC5xUrbN+tVxZbmP5QmfKY4UaZUwuGdGT8W9ks8PusZuuP3+T\nHjf+ynvL4sIqR56RPPFQV9iF5cOPSGj//ZLrAKju1RdvYaxiy/9e+4TZIy9NOc/ofNOSh31qu/RI\naJt2ze38ecaFGJgE3elJ9oKxz+dGl6IBWFLeKbpkV18Wp5xHde/tqOg3EIA5f72IP/960Qbn3hSH\nry66vWqYFT5y1lolZ6KVhALxd5qrC7pht8UHgZ7k6uh29861Kc9nRMJxjz8YP5WJz49lyq0Px7X/\neM/TfPr6p4AV8NpWhTzJv382JJiRyYS8EwAYW78y3ssvt9SsZGOEQwZ5Zjl2rKoy/pzk1dFky2Ha\nHQlBSbCWF1tUH6B97dF81q21qgulpaWuKCciItKRbLvRfBEREREREREREZEthJm8aEurqKlK/NvS\ndWV27r6kM2uLrV8pF3QO8dS4VdxybhfWlTp46K1V2OzQtVd8JYX1Q0DjXs1mt76r2TW7ji47O5kw\nqU+075RLKrj4tkNY3O9lFv4xFIDuv/0AHJ8wn1VDD6Zk932iVWgApl5/L9W9+jLpjsdZs9dQTJvB\nScfsA1jVdn6/9DqKpk+l0x+/pbx2w0x+k/fnG++jtkt3KgbuSMidRnXP3piO+l+v222YJC/l0L1v\n/A1mX8jFe5wCwEm8z7+4mR+JVTOKNFpSqrLvAHIXzaNiwI5g27y/97X7vLFz1M/b7rfCQSkrCZkO\n7A748pHR5C2Yg6d8Lbu/+UK0Pys7RKqYkBGOhYQ++OgnvIWd8RZ2pnT3fSicPpXtPn7HmovLTcXA\nnfjpnw+wIknoa2v1wz3PsP9tfwegZPd9WHDCXzfpOMGMLIYH3+WL2WvYt6e1VN4XX7TYNGUjOErK\ncGJ930+9/l7CaZsW/GoNqjSzaSKO5CGh9X3wcg4A7rQ2/EEtIiKyGRQSEhEREREREREREZEovy/x\njvLqpY5oQAigbI2DkUNiy4Td8NduceNverKEXfb18cxtneLaMcA1ZxEGTgZM+oUJWEGJw0+t5rwD\np5L34p88t3AYvwyv5Zdv0+n76Xs83+kH+q2dEXcYWzDIymGHUj5wJ/Ln/QFYy4IBLDnypIT5B9Mz\niLjcTHj5Q4bcPYp+n76X/OIjyUNCwcxsZlxxU9I+m2FimsnvwtvsiTeNH2UUAH1Yylqs5WtquvQg\ns3gFEUesKpNpswJDjYNDm+qnmx/isCvOsI5Xf46GkFBDJaH1Q0Jh04bDFmbNPvuzZp/9wTTZ4a2X\neKXnjfy8pDe4clKez6hPtX381hd4i7o06jD46dZHoiGhBguP37SQzJZq2YhjGTPi2M0+Tig9A1dN\nFTafl8z6lcf22GOzDyubIO/36TiwlvJr+CySLVvE4cBFoFljM40aImlprTwjERGRlqHlxkRERERE\nREREREQkKhxKDLzcf2XnjTrGlx9mJq1+5Pfa+IED+Ikh3MUdjc4JXX6dBIAB5BVaFTkqyOUC77/Z\n4SA7s869Ijp+9ZADCWbn8Fn9UlXFg4c2OZ+Iyx3dnnL7YynHrRu40wavbX0GJpEUIaFkz+Wlnf/L\n1Bv/FX1cPnAnPh77FbBeWKa+/IeRIri0MUr22o959cGFiNNa/qxkzyEA+PpaYa/1lxsLRew4jEaV\noQwDX34Bpwbe4jmuiFYkSqahklDY7U45RjZf//ffBGD4vtsDsO++UFjYnjPadkUCYZwEKd5rv/ae\nirSQVMuNJZNp1BDMyGzlGYmIiLQMVRISERERERERERERkahwaMNjNmTnvX2kWLkrqoByBg+v45dv\n0wmHDJzVVQDUdOsZt3iXq7Yad2UF3sJYRZqlh8eWIPvv13OIOJ1sivc+/ZVgRib2gB8Mg2Bm9kYf\nw2iiklAkHP/47O4fE3RlkL1kQbTNtNmIuNyM/Wo2IU+sEkVt1x4AmzSnZH4ddRfTL78pukzaiuFH\n8M4XM0l78l1YnFhBKhyx4TDiL8CX14mcRfOsa2siJNTw4kccrhaZuyRn2q3XwBa0qp243eD3t+eM\ntl0BWxrOSBB7oHmVZ6TjC7vczQ4JZUWqKJzxcyvPSEREpGWokpCIiIiIiIiIiIiIRIWSVL/Z6GME\nU67cBcBZvAHACedWALDznrXs+tLjAGSuWk7+3N8BcGAllnIXzmHBiSOTHiuclo7pSB4SGvfe93zx\n7Nsp5+HP70TE7SGYlbPJYRwbkaRVkyD2XP6Tf2Fi8EDPRwilZdD9x69ig+orBoXSM8AW+5X9zAuv\nZtIdj7Ny/0M3aV7rM+12QutVughmZuPJsCbvr4t/3YMRO3Zb/Ivoy++EPWTdNE/1nAMYEbP+nLoF\n0ZrGv/MNAGtGHA2Ax6OQUHsJGE6cBLGFmhcqkU1nbP6PqGYp32GXZi83VkgpOUsXtvKMkjNooydE\nRES2GqokJCIiIiIiIiIiIiJRyZbI2lhvP5vHwcfXRh+ffFYJH75dGD3241wLwB7OmbzwWYTt/5gY\nt/8zM48jnYc4l9cAMA0bpt3O3NPOp3jwsGbPo7Z7L2q790po//OMCynZY9+Nvq5kDEi53FgkbLVf\nx6MAOGtrCKVn8OM9T3P8yQdY+6dIU0VcbpYceVKLzLEpnvrckL8qfh5h047Tvl4lofzYWlbhJqo3\nfffQ/zHwnf/gy+uUtP/nf9yNLdQCJau2caGMTEp32YvMeXPg8cdx267A71f1prYWCsGE4GEATLnt\n0XaejbQU0+GwgpJNBF7zi0KUlzj4lb345do722xuIiIim6PdQkKGYbwCHAOUmKa5c5J+A3gSOAqo\nA84zTXNafd9DwNFYlZAmAlebZuxvNQzD+Ajo13BcwzDygf8CfYAlwGmmaa5rtYsTERERERERERER\n2UL9PsWz2ccIBoy4pbaemXU8X+Z+T8Va61fSWVQDUDhjKhWnDMIIx4dRCijnZS5iyeHHkzFhHK4a\na/yvo+7c7LkBTLvm9hY5DoDNMDFTVHJo+K21Hev6HN46fHkFccGl/LmzWmwum8KdaVX78a0XEgqZ\ndlxGfBUNX34s9NNUJaGynfdg8s57pOyff8q5mzJVScLbqYjCmb/CqFHUFB3MbyW78/3cMppaDW5b\nV1rTsuWWKsvsse1+A1v02NK+nPb4kNBfzqjis7etqnNfcxDH1FgBVz8eVg07pD2mKCIistHa8z8T\n/wM8A7yeov9IYED9v32B54F9DcMYCgwDdq0f9wMwHPgGwDCMk4Ca9Y51E/ClaZoPGIZxU/3jG1vq\nQkRERERERERERES2Fu/8Ozdp+/WPlWCa8Mh1RdG2pz9ayZXHdU86vnFIqMv0KVzw0Doeu8GqROOu\nX8IlvXQNZw7pnXIudUVdAbCFO27VmaaWG3OXlAB5GFgDnHVWJSGAxUecQN/PP2yjWaYW8bjJogpf\ndfxFhCJ2HOstN+Yt7BzdDrvcbTI/aZrD541uf12yOwD/HWsy9PC69prSNsdmT/EBIFs8hy0+wPrg\n9NO4lWqGMQmA1aFCztzhK97882A+z5vUHlMUERHZaO22ILBpmt8B5U0MOR543bRMAXINw+gKmIAH\ncAFuwAmsATAMIxMYBdyb5Fiv1W+/BpzQUtchIiIiIiIiIiIi0tpShVBa06mMxU6IeQzg3v+sZveh\nPvYY6sVhxAI7u03/kOED5gKw/e4+jj+vMtpXuc4ed7xHbyiKe2waBju99mxc2ydvfk7pLntGH9cV\ndmmx62kthmGmXG4sa/liwAoSAThrqgilWSEhe9AKSv3SQtWRNlXE5SabKnzr/eltyLRbS+00sujI\nk6PbNUmWcZO256quTGgLBTd/yUARgTV0jnvc48+p0YAQQFagkkd3eoJMp49QemZbT09ERGSTdOSC\nk92B5Y0erwC6m6Y52TCMr4HVWMs9P2Oa5pz6MfcAj2ItT9ZYZ9M0V9dvF8N6P9UbMQzjEuASgF69\n9D85IiIiIiIiIiIism26hBcZy+kA9N0+QOaKZWz/31f40lzIw46buHS3zzng9qf4iCyO2mEG1xw9\nhf5lvzHF/g/WhIsoXmYtR3Ur90SP+eNRVxCaVczyPofT87sJCees3G57pl1zB0dceDwA/rz8NrjS\nzWMYJmaKkFAEKyjVUEnIXVVJsL6S0LSrbiWYkcmCE85sm4mmEHJ7MDD55tsizmdFrN20J1TRCGbn\nxB4Y7RtEyfI4OHa3bu06hw7h7TfwnXcBnl+mRpva+aXZppStsXPV8cmrqUnrMNrwG3yVaVWzG8EE\nTuJ98lmXMGbge29YgVa98UREZAvRkUNCSRmG0R8YBPSob5poGMYBQDWwnWma1xqG0SfV/qZpmoZh\npPy7G9M0XwReBBg8eLBqRIqIiIiIiIiIyDZh3TrweqGb7rlLvQpiy465qirZ/5bLyZ87i+2BA0Pf\nw69WXzbV/PBnP7jPevwt49iBuZTMqAUK6dEoeJKXE6CbMYMqoz9zTzuf7ce+CsDk2x9j8VFWlZqy\nnXbHl5uPp6KcYIZVmWH+iSNb/Xo3lQ0TkxQhofqbxg2VhABqeljLq9V16c5Ptzzc+hPcgLDbwwp6\nQhhWLnbQva9VKSpkOhIqCQGs3vdAspcsaOtpJtD9+Ho77UTx/76i+MnnY2sspL4FIi3su08yotsP\nbvcYcEr7TSYFI8Xnk2yYDw8Ad3M7Q/gp5Th/bscPtIqIiDRot+XGmmEl0LPR4x71bScCU0zTrDFN\nswb4H7Bf/b/BhmEsAX4ABhqG8U39vmvqlyqj/mtJm1yBiIiIiIiIiIjIFqJPH+iuYggdlknzbvov\nne9k5JBerFjk3KTzRBoVjhnaaEmVA/55KflzZzXrGLlUAOCttAImDmLLkw166yVyli6k57efs+io\n2NJVRjgUd4yI0wVAMD2TMVOW8vON/9q4C2lDtiaWGzPrn0+j0eu3oIMFnsJud3S7ojy2RNzSUI9o\nJaTGvn7yDcaNm9wmc5PmMQwIedLpg7W8nSdtywoJjXstm8dv7NTe09hsTkd4w4Nki1JjWkHVfMqb\nHOdTSEhERLYgHTkk9BFwjmEZAlTWLxm2DBhuGIbDMAwnMByYY5rm86ZpdjNNsw+wPzDPNM2DGh3r\n3Prtc4FxbXkhIiIiIiIiIiIiHV1VVWLbBx/AwoVtPxfZdJMnpgNw45ldqa7Y+F///jjB2v8JrqYb\nq6PtnadNafYxPPgAWLHKurlqJ/mN83U77EJF3wFJ+xqCK6H0jKT9HUvq5caMkBV+alxJqKMJpWfy\nENcDsHa1tfhAKAhBXHy6Zlh7Tk02QsiTxjucCsSH/Tq6yjIbY5/P5Zdv09t7KpvNVlXb3lOQFlZr\npgGQQ2WT47aEpTFFREQatFtIyDCMt4DJwPaGYawwDONCwzD+ZhjG3+qHfAosAhYA/wdcXt/+LrAQ\nmAnMAGaYpjl+A6d7ABhhGMZ84LD6xyIiIiIiIiIiIrKeyfUFQkIhOOkk6N+/fecjG8eMxMIqD40q\n3Oj9X7jLquaRhneT59Cw75Rfi4DkIaEf734KgC9eeJd5p5zD0hHHx/WHXVZIyLR15L9ztdiM1HWe\njKAVEpp6o7UW28dvTWyjWTVfMCOTv/ECAHNnWM97aX1YSLYcYY8nGmT4zyNbTmDh5Qdjc/3+f1t2\nUCiyuukgiWx53tjuH/yN5ymk9P/Zu+/wqMq0j+PfM30y6ZVQghRBUcQuKig2FBXsDXTtBcW6a2dX\nV10LrnVfK5YVBcvaAQUsgAoGpSlFkB5IgPSe6ef948zMyclMKkgmeH+uy8uZ0+aZSeYMOc9vrseW\nZQAAIABJREFU7rvF7byJyXtoRDFINzkhhBDt1Gl/YamqeomqqrmqqlpVVe2pqurrqqq+rKrqy6H1\nqqqqN6mq2k9V1cGqqi4OLQ+oqnq9qqr7q6o6SFXVO2Ice7Oqqgc2ul+mqupJqqruq6rqyaqqtlwX\nUAghhBBCCCGEEEKIP6ljjgFVhYKCzh6J6Ai1UVplnwHeDh/nEt7t8L5WfIb7jduNhW0ZqYWCvCmp\nLP7bwwQcDsP6FVffBkBdbs8Oj2NP0dqNNXOp3a8FpDaPvpBp+Vuo7jNgD46sbXyuJBKoB2D+dK36\nU3GhFhKaeuxDnTYu0T5+RwKBUHu46oroNnHxSFVh+xa9NWI4pNhVjWROZw9B7GZDktbzEjdiihEF\n3TTq3MjtAR+/syeHJYQQQuyS+P8ahhBCCCGEEEIIIYQQYreaMwcURfsPoLTUuL6uDs48U79fWbnn\nxiZ2TV21fsm3rqb9l38HDnFzAt+SRG2Hx9C0qIGZANPyt1DRf/82H2PrSWcwLX8Lvs6sztAOzbUb\nC4e2lDiu9OBzJWJu0g5tZygklJdc3BlDahNFymcY+J0J9GZLZw+jXWZ/kERRo5AQQENd1/25HsDq\nzh6C2M2CFmNVtfVjLo7cXjbhvsjtskFD9tiYhBBCiF0lISEhhBBCCCGEEEIIIf5kxowx3s9q0pUq\nKQl++02/v27dHz8m0TK1uX5WTcwLVYIB2Lja3u7H8fuVqEpALQlX/GlJuN3YV6/8r93j6QpMSpBg\nc4GVcEgojq/E+50JqIrChfv9QFKq9rMq22HBipfMhI6HxcSe5Utw4cRNHzYCUFwU/9WEVixyRC2r\nr4vjN0sMjrKW21CJ3W9PxsiCFmOIbfHfHmLuM28x799v4M7I4oNvVrLqLzcy59WP9uCohBBCiF3T\ntf61JYQQQgghhBBCCCGE2GX336/ffvPN1revqPjjxiJ2H3e9ceq0ZLuFLeuszWwdW8AHNoxtyuZP\nmszcZ95iwcP/4auXjUGflVfeHLldOuhg3ClpAHzHcHr3rAH0kJDfldSusXQVJkVttpJQMLQ8nisJ\noSgoqsq29RZqKs2UF5vxeRWtBZnV0vr+otMpKNR36wFAL5cWWtlR0L73fmdo/L7I6amFE39Z6OCz\n/yZTUdo1pq9yfloQuZ0/8clOHIn4I6gm4+9h0GZn+9EjKBp2EqB9rv1y492olvh/vwkhhBBhXeNf\nWUIIIYQQQgghhBBCiN2mvl6/fdVV+u177zVu9+672v+nTIGgsRuRiBP1dQqrFmsVg954Ih2AfQd7\n2HewB4CC9e2buAx6g5FKQhtGX0hF//0pPG4k248ewZZTxlBy8JH8es3tgBYKUi0WZr05HYDvH3+Z\nzz/RJsyH8wPd06oAKOt/YOT4684eS9HQ4zv6dOOSoqiozdW2CKoodI03z0L/UABW/OQg4NfCYk0n\nyEUcUxQq+u3HPQOnAFBTFf8/O6tdL5F22e1aGvX1xzP44OVUJpzZk+tH9mDm1PgNF05/O4mntl4B\nwMEso6ZH704dj9j9kgs2dvYQhBBCiN0u/v+VKIQQQgghhBBCCCGE2K2qq6OXTZkCt9yi31+0CEaM\n0G5PnQqTJu2Rof1plJfDI49AINC27ZvrNnbfpbk8OiGHilITC2a7ALjz6WImPFwKgKe+fZeAgz41\nEhJaftO9fPnOrKhtVl5zG9PytzDnjc+057L/QUzL30JDdi7+BBeL7nkcAEdNJQDbjj0psu/P9zzG\nvGentGtM8U5BrxjUVFBVUJr96cWXI1kEQFW5Gb9PazsXNMdvJaG4rs7USYJWK9mmYgBefCCzk0fT\nOodTD9A5EqLfJ7XVZqb9J41Na+KzSstHr6VEbn/NyaiW+H2/iI5xlGufpbNf+5Rp+Vs6eTSxyalQ\nCCFEe8m/WIQQQgghhBBCCCGEAIJBlRq3v7OHsUs8HshJt3LvxAB33xu7esk7UxSmvWum6bTSKV/c\nTMIPFpKTn2bSUwEGHqji8QBok7Pz5gcZf0sbEy1tZLOYcNrMu/WY8aiyElJTjcvuuQcmT4aBA+GC\nC9pxrDITN53Rk579vDwxdQcl27VLvKsXOzhmZB0rF1gYe9nRzJgyC7OlO6U72/f6BkIhoaW3TMST\nmt6ufSNj7L8fAPu4tgMHYrZ16DBdhqmlSkIqmLpAJaEltz/Ah8+cTx5bef/FVIafUokNL1krlnT2\n0EQ7qBYL2UppZw+jzdIy9c8UZ0Lz75Mfv3LRZ7/KPTGkdrFaweeBNMrJoBxPqN2i2HvYq7Xfu/rs\n3E4eiRBCCLH7SEhICCGEEEIIIYQQQgig1utn5ortnT2MXVJXowC9eOpJhQPPjP1cJozPi1p26PB6\nct77PxRgysfnUdc9jy+W+TnwjeeA5wCo8LqZuWL3Tj73y3JxVN+M3XrMePPf/8KVV8KXX8Jpp+nL\nJ0/W/r9pU/uON31KMgDbNthYu9weWf7Oc2n0G+Sld3Azrh2FXDRyMNel+Zg+JYVjTqknb19f1LHq\n67RgS4KrUQWPOg9WfJQPPKB9A2vEn6BVNHpp1Zkcy6XkHXgSJfTr8PHinaKoXb6SUPmAAziMbQAo\nJhVzeRU2vGQv/6mTRybaI2ixYgu4OfbUOn5fYW99h84Wetv0HuDF6Wr+fTLrvSTG3hx/ISGzRRuz\nkwYAanru04mjEX8kd0ZWZw9BCCGE2G0kJCSEEEIIIYQQQgghxF4i4NdmXL2etreYOv+6Ss65qhpl\nqHb/9HGn8r+5v5G+ZgWD33ieC5NO4oOaMah/QM4h/qMTu+7NN7X/jxpFzNewsLB9x0tI0qttPHRD\nTuT2USfVU7DOSoapJrKsukK7/HvvZblMzS+IOtZ1J/fEbIG3vt8aWRb0BrHio7r3ge0bWCMBmxZO\nsOPlat7ga+upHT5WV6CgooZCQjVVJhzOINZQ9SS1i1QS8qRqFVCu4E3+G7ySoEfFhpffxl7bySMT\n7aEqCsmbN+DoHcRd3zlNiKZPSeK9F9N458eCVlvCBUOFhB56fQd1Nc1/bp13bdVuHOHuZyZAdV5f\nMLWvvaPomOwkO2cctGcq+9T/50Vs/3uf0w/puUceryOsZmk4JoQQon0kJCSEEEIIIYQQQgghxF7C\n79MnimoqTSSlNh9OGHJ0Azc+WIYr2biNtaEeAGfpTgDerzmLD1D5eW7Cbh/vHxE8ijeZmbGXu1xQ\nVwfPPw/DhrW95VhDbexJaK9Hob7WRD9TdZvHpqoK/iYFhvxBM77MDNyZObF3aoNwSCjyOKa9u6Vc\nuN1YSZGZ287tQfd9fDz5nlbJS1XpEpWE3OlalYz/ciUAG7clk0U5ay6+pjOHJdopZ9kiABzBenxe\nV6eM4b0XtcDZ4nlOjjihocVtAwEFuzOIxQpOl/5ZdMekEp6+S6/cYjLH53tIDQ3ZRJCA3dG5g/kT\nsZhNpDj3UCBrwniYMJ6UPfNoQgghxB4hsWYhhBBCCCGEEEIIIdg7Ait+v377H1dHhzwaP8ezfpzE\ndaf2QlHgwhH7GbYbO7Q3x91zfdT+DXW799vq6t7wordiwADt/6NGGZd3767fvvDC1o8Tfq08HoXk\ntIBhnc0epKHORH2tiWRFryQ089AJAPQ/0BN1vPdf0qc8t22y8PRdmbgbFNyqDZs1ELV9ezSdLA9a\n9u6QkKKoBFG47dweABRttkbWaZWE4v/33JuSRvGQIyL3t1WmY8OLO72ZlFsckNoZzbPjMYRG96Tw\n+cnraf3xg0Ewh04PNrvW6g7g0OENHHZcPZf/tRyg055LW5kJRIUj40lrFZ2EEEII8eciISEhhBBC\nCCGEEEIIIfYSjSdSiwv1oMLWDVaqykwEQiGi0XzORB4BwFZVicXdcrWHO+/bAMC6lR2fBK2tMvHw\n+GyKC/fuwEhTnlA+JxiMvby9vG4TdqfKP17ZAcC+gz306OPD06BVEsqu3hzZ9vSlLzB8VC0VJcbX\n3O+Dz9/SQ0J3X9KdJd8l8N8n03AH7bshJPTnqiSkKFDsix2mUVWlS1QSAlBNJmaht4az4UW1SDOC\nrqBpCMRmDeL3KZ0Sfu07yAtAdUXr7/ugX8FkUunx3Vf0nD+bV2Zv45mPC1EUuGNSKSMvqEUxqfEb\nEgpo50oTwbgOCQkhhBBCNCYhISGEEEIIIYQQQggh9hKNJ1KTUvWgxz3jcrlrbC5er7b+iIw1WNES\nQ+efOqTV4/ZKrwDgiVuzOzy2pT84WbPMwQevpEaWBbtGdmKXhMNAXq9xeUFBB4/XoGB3BBk4xMvU\n/AL+9fTv2PxuAgFw1yskY2w3lu2ooLLUbAgL1NXEviz8/ReJBLBQx661KQrYHRSMOC1yP7iXB00U\npflfZFUFk9J82794krNsEYewLHI/xeXuxNGIXWFTtBNO03aCe8L6lTYAyktaDwkFAmA2qxx/1zUc\nd/d1uJJUsrsbQ4oWa/yGhMx1WntOE0GW3PFAJ49GCCGEEKJtJCQkhBBCCCGEEEIIIcReIlwpyGxW\nScnQJlqDofnW2iozvlD7l2BOesz9v3xrpuH+goeeB6C3a8cujy01UxtIZeneXVWmKXcoZ9E4JLRl\nS/uPowKb1ljZWWjB5tBDKSfcdjmZ61fgrlNQVYUkagz7pVpqCAQU3PX6JHtDXcuXhcsDqS2ub5Wi\n8MPjr+BOywAgaLXt2vHinKnFkFDXqSTUkJFFBmWR+33tWztxNK2TFkrNs6OdcHydEK6prdLO8V9M\nS25120BAwVlb0eI2FouxlWY8Up0OKvcd1NnDEEIIIYRoEwkJCSGEEEIIIYQQQgixlwhXW3C6gpFA\nUG21fgnQF6ok5PTXRu37yfSfcKdnAVCx7yA+mrWMutyeAIwZP5r+Pco4dFh9h8cWDiuFxwAQVFW2\nbIEnnqBT2uLsCbEqCdWEcjwTJrTvWBOvyKVgnQ27XX+xMlctYxN9WL/KAUAitXz66ULmvPIhACmB\ncsAYDGqo034Gvfp5ueZePRQSdtnAb9o3sGYEzVpYYG9vw9M0rJKQ2KhykKpVGekKvn7xfcyNxppn\n3/VwoNizvn3ubQB6/6y9h/3ePyYkVFJk5tVH0qMqFYXPLWGBVsI9SRvXY/O1/LkSz5WEfGhtPVuq\nJiaEEEIIEW8kJCSEEEIIIYQQQgghxF4i4NYm+BMcfnxehZpKE+NH9YysD08Y5/6+JGrfhqwcGrJy\nmD/pNb75v3fxpKbjTs2IrE+qLY20K+uIcDio6aT1+PFwzz2wdGmHDx3XYoWEqqq0/48eDXfcAa42\ndPdyN+r81GfZNxz9wK2YPNrCInpE1rnMbupzukcCXi53JWCsxFEfCgz95Y4KMnKMrX0ArI7Wx9MW\nAUcCAKbO6HnUSfZP30rAqwcGgmp8hhtiqcnrC8CBzrUA9HPFdyUh0bzszSuB6EpCqgpXHt+TVx6O\nXU2urV5/Ip35MxJZs8wYACzbqbUW7NlXO+GVFLXcajDp998xo5+D8r6aHrVNPIeE6kOtGVuqJiaE\nEEIIEW8kJCSEEEIIIYQQQgghBNBFOgK1KHHNGgAyarfh9yn8ttQ4gRueMHbSYFi+8gq9pE3hcafg\nTdHaTdXl6uETm8m3SxO14X29HmMloQQtR8K6dR0+dNyqrobCQu12OCS0YwcMG6bdTt78K8nJUFcH\nvlZyNK8/ryd3tpNLn9mf0nfmh1HbVSVmgaLgTs8EYOCX7wLGcFa4qlBWxSaS3SVRx0hN9kYt64jv\nnniVTaPOpbZH791yvHgVriYCkF2+AV+jl09VVUxK16gkhKKw85ChTGm4mJFJ33Fw8trOHpFop7JB\nQwAwZ2onVneTyj6z3kvC6zHx3cxEFs5JiHmM5QsdjBuax8qfm68AtmKRU7vR5COhrkZbsP+hWjqy\noV5h2yYL8z6PnYT0mWxY0BOMw/4+IaqsnMXSekWiztZl3uNCCCGEEEDLMW4hhBBCCCGEEEIIIUSX\n4VW1sEKiUovPq2BzGCdbw9V87HjwJKdir65k7tP/ZfsxJ8Q8nmqxsuOwo+m25EfsisfQKqy9wvtW\nlpsjyyrqvXhMbsDB8g015K33dPj48eiUg9MjVXt++y26LVXi9WOp++tXQC6zl5SRntl8Uu2nRUmR\n2+vpD8CRk+6P2q5fRjFVaD87AIeqVRtqHPAKtwQ6Y+KllJsyuZ98AP77zSYOOeks1OSRbGvfU42p\nqt9Afnzgmd1wpPhW4tOrsjhpIIiZYABMZlBVBaULJRBzluWTA3yQcTV1th6tbi/iiy8phZLBh+F0\nm6AU6mr074nX1Si881xa5P7bz6RxzMjoVl9P3pENwKTbspmyoOVqUqXbLYB+3t681gZAcppWHeiH\nL13Mej8ZgKNOqsfpMr4XAorFEBICcBVtpa5HXuR+vFYSctfrY3p0/xep49ZOHI0QQgghRNtJSEgI\nIYQQQgghhBBCiL2EF63yQxK1+H2KYWLVbFEjFU4cuFlz8dWsvvwmVLM51qEi5j73NqdeNYaU9UVs\nzhjc4bGFO0553Y3CKt4gfpMXcLCt2M/vhQ189FoKZ11RRUJifAUr3A0KV5/QC4ApPxRgbsOV1fq6\nzBbX78NmLPVFQC7LVvvod0DzFXy65dlZuVj7+daQ3Ox2g/N28EOj+/bQBL7PF11JKJlq6oN6NREn\nDRzECpbax7Q4bmFU6dd/Hla0X3SfT8FuVlFVBVMXCgmFJews6gIVoOIvOBIPslYsoV+oiUTjkNB1\np/QybHfIMGNFubARo2uZNz2RoadEB4iamvxoBkOOaSAtU6ukM+VpLTCXkq7dDweEAHZstdBnP2PJ\nNK9iiwoJWetrAXAVFXDWucOZ2K0Mv2839UDcjfK/1s6dN/ASQ9LWs7CTxyOEEEII0VbSbkwIIYQQ\nQgghhBBCiL2EPzTXml5XhM+rMP1tfYI24Fd46PpugBYcUU2mVgNCoFWkqew/iJJgJgXrbDG3qa9V\nuOqEnsx6P4mvP040rPv+ywQ2/maLBJaaVoRwJGgBCneDwpUjejHjnWRmf5BEvFn0jR6m2bbJ2sKW\n0YbyY8zlidRx4vppAGxZZ6Vos0Vr8/NTdJufbz9LJCEpSKKpln8kP2lY93LCLQC8x0W4M7Mjy2e9\nOR0bWvDI32hu3l2pTeCnUBVZD5CyeT0AAXvzbYZENG+o3dgNvMQJzAVg8xrtvRJU6VKVhBY++CwA\n1oZ6Atb2/Z6L+NGdIiBc6Sda30EeKkpin/9TM7UqQNk92tbja8KZPXl0QjbjhurVf1LSA1Hb1VVr\n01FlO82sXqKdY7zYIuegyj77AnD6ZaMYO7Q3Rzz5dwDSdmwynL/ihdOlnUfP5WNUU+ufpUIIIYQQ\n8UJCQkIIIYQQQgghhBBCAGoXmshvTsCjPYdwNZP1K2OHPWpJZP05l7b5uCUHHUY+RwNQVW6KVCQK\nK9psxdNg4u1n0nhzUjpV5dplR78PXv5nJn+/shtvPaVVmLDZg4Z9LdZQSKhev1Rps8ffzyIhUR93\nSTMT7825kyejlu1EC/Oc+NUzWK1Bdmy18s2nWsBq3nQ9aPXgtTmMG5pHMKBQX2Ni84BjuO7ALw3H\nujTxQwqHjuAiPiBg03/m5fsfhLu3Vj3E79fDWYGdNdjwYMcbqTQEcPiTE7X1NgkJtYcvqP0+XMo7\n1KOFyR66IYef5zqp8iVhUoIt7R5XyvfTq4WFW9aJrmXlFRPoQSGJ1LC9QP8Z9h6gnbj//vJOnAmq\noV0WwGdvJTNuaB714epDzZyGp/0nNWrZqsXGSj8pGdEhodpqLUhz32Xd+NdNOagqNNiTIiGhJbc/\naNi++4/zALT11bGrHnWm+lrtdcple9yHhKTmlhBCCCEak5CQEEIIIYQQQgghhBB7iXBI6F3GGpZf\nz8uG+2Vjz8abEj3R25yg1cbfeQiAG0/vyVN3ZhnW+7zGKcgbT+9JwA/lxdETpxbVWBIiGMpPuOsV\n9hmoTRZ73H/clKbPCx+8lIK7QXuMqjITH01OiYwjlh1bLTx7j/6caytbv6w6flSPyO00Kgw/g30G\nesmmBAATKimBCmZOTWbWe1rlJ6tNn51ft8IY2LG4GwjYHXz6qdbcZv6k10BRsFVXAVAx4ADjQJK0\nyXt/o5+Ru0YlmWoAQyWhjDUrAOJ+wjveeFStapADN9kUR5Y/e28WX5QM61IT9PVZOZHbSqBtlWRE\nfPn9gstRgCxKqGl0rqoqNzFiTC37HezBalfxeoznsQ9e0j4TikMhSH+MH7+qwsypzbc7BDj1gmqc\nlujWibVVJjasskXCQvU1Ct9XHMZqBrHmoqsI2mJXqrPhxR+Iv3fRa49lAFooVzXF3/iEEEIIIZoj\nISEhhBBCCCGEEEIIIfYSQb8WLrmQ9yPLHvv3ag5jiWG7AXkV7TpubY/enMi3kfsrFjmpKjMx9flU\nxg3NY83y6MozfxmWR/43rugxNgnjqEFtcrWhzoTJpI2/psIYUtm81kpt1e65lDn380Q+eyuFq0/o\nRdlOM/f9JZePX09h7S/G51BSZGbc0DwWzknggWtyDOuahqKa8nmhutFzyKSU55Vb+PcHRTz/WSET\nX9xJQ7oeOioNZhj2NzcqVJTX3zjZnrJ5PQG7g/puPZiWv4XC407BtbOIzNXLAfA7nMbBpGiVbbyh\n4JWqwox5fSlFe/zKIQdHjb9iwKAWn58w8gW1n7UDNxf1+gZbo+pMAApdp5KQP0GvYrVh9EWdOJLW\nKZLLiMmdkc32o47DYQ/g9egvks+rRKq02eyqYV1jyxdo55CmrSGBZluUNfZCyaWcdcUpUctrqkz8\n4+pukftP362dg6pIZentD6CaYp/jbXhjjiVe+LGgKjLVJoQQQoiuQ/7lIoQQQgghhBBCCCHEXsLv\n1SaAn7f/lRf6/JMXv9jGQTlbuZI3I9u8wZUE7O1rJ1Vy8BH0Yqth2QsPZPLFNK2ixNzPEmPtxvsv\nGqsVjeMdAkHjJclwaKi+zkQgVC2iqkLb5uuPE1m12M79l+fyr5u09lyqCv97JYWynR2sdtOohc4D\n1+RQWaYdJ2AscMRt52qVgF5+KIPaKuNjNW7dFUvpDj3lc7BrNQeykm2jziI3z09GToAEhx97ZVnM\nfbNy/YY2QIFGXXsm8rC2zO5oups+NmeC4X737m5Aq2oD8MW0pMi6ZRPupeqgwTTlcyVFLRPNC7cb\ns+PBk5rGAZY1hvVdKsyiKPgStHBfXW7PTh6M6Ci/w4kDtyHQ6PUokSplNruKr5mQUFigUTBn/gwX\n33+ZwO+/6p8d/5qynZPPqzHsc+ARDfSbN93QxjDsw1eNnwdrlmnnsZ6mQgBMsUoXEQ4JtTjUTqEo\n2ms5iNUEmoYzhRBCCCHimISEhBBCCCGEEEIIIYTYSwRDISFcNs5PnklqsodBb7+EBT1p0p2idoeE\nAJIbdRjr3ttH6Q49OFO2UwtJDDm6gWc+Kmz2GL3YSlCNHRJqqFUigZhF37h47OYs3pyUzqMTtCo+\nBeu1VjSFmy18+mYKt5zVg5Ki9geFGrfyqijRwzyb1sZudROIEQhqPGE973MX44bmRZaNH9WDv13Y\nPbL+0szPUABTo53slWWYgkGW33g3AFtzDuDAIxu44PpKElMCNNRpr1FVuYnCTdq4Hhj/Iw/zD21M\nLYSEAnbjZLUtVX9elWUmpv0nDYCBrGHriFGYM10czULe50L9+blih75EbH2sWoBOQcXnSqIsmGZY\nb+pClYQAvn7xfdZecAU1eX07eyiig4JWGw7ckQo8qgo+jwmbIxQScgSbrSQEkJwWMLQbe/WRDF7+\nZyZJqfpnSc8+Pi6ZUMmgw9yRZeHQZRp6tbonpm1vcayrcocBzbe3s+GNCnHGgyxKuZ6XUYBfr/9r\nZw9HCCGEEKLNJCQkhBBCCCGEEEIIIcRewh/qTGVyWjH5fAx8/032mfOZYZsB/N5iyKQ5DnuQa3p/\nQnq2n6ItVnZus0Ztc+fTJWT3CHDhDZWG5aMvq+KcA5dgxUdAbRLsCbVIq681EWwUyFn5c+zKDOZG\nu992bg8WzE5g0bdtr+IQbrfT1HsvpMVc3tjEl3YCxjY8kx/VWoVNfS6Nsp1mQ5sxgEOdqwDjBLij\nrASA6l592HDGBaRRyb3Pl3D2ldU4ElQa6kIVlUIT7t17+zgtY0Fkf5PP2IKssaYBsKDVyj08BsDM\nqcmR5b8wBF+Ci0BKMgs5lvNNH0XWeROTEW33RrfbeJnr6cdGfK5ECoJ5hvVb/T06aWQdU7HfYJb8\n9Z+o5g5W6xJ7XNNqVQGbDYfaEAkChasGNdduTFWNAUqrTY3Z4svToE8pWazgcKrc/0JxZNm2jTaq\n8/qSQnVkWc++PkPFocahoqt7fYJq1cKalf33B2DeU2+w4upbI9vEa7uxerMLJw189dIH+OScKYQQ\nQoguREJCQgghhBBCCCGEEEJ0cfW1Cm/9O43qOq1qjOK0YfJ7sTTUR23bh80dCgkF7Hb+sc8rlBdb\nmt0mPFGdnq1Vm7huYhlvLyzg4puqmHjCJ5hDFY2CjQqrZC5ZBEBDjVZJKCs3djUJu0PbqXH7HIAX\nH8jk+fuyYu0Sk8UWOyTUfR+9VMXmtdEBqIturGS/gz0oihqpLlRerIco5nyYxC1nGcMgz35cyAG2\ntYCxlY4zFBJyZ2ThdyViravV17mCNNRrl23Dr9OF4yuxl+vtyewVsVuVAbhT0w33gxYrV/EGAJ4G\n/bWz48Wf4CJg035n/K5EpuVvYVr+FlRL8z9jEa3P1qVcz6sAKGrs3y8h9qSg1YZd1duNhXOFhpCQ\nWz8fNNQp+LwK2T18XH1PGRarHhJqXFEo/xutneG+g43txC7/W3nkti9Ra1f46Ih3uPgmraLQCWP0\nc1xCov4BcGzKMoJm7XzjSctgWv4Wio49iRXX3sG0/C3MfGe2FhJqpcVjZ/CoWrWmyv77dfZQhBBC\nCCHaRUJCQgghhBBCCCGEEEKgVVKIZ99/obW1mvyvdMYNzWPc0Dy+/lhrC3Xtyb2Y82FqusjVAAAg\nAElEQVQS7y46AoBgggOTz4cvSa9u8Pa+dzLxsu8ACNja324sYHdg9ribXX/SOXqliGGj6rj7uWKO\nO6MOU+gKpMnvixkSStq0HtCCTsGAwn6HuHnsbb09zdT8Ai66sRKP24S7QYkKCUXGFztbFEUNxt6/\naLOVz6cks2qxnfsvz415fEXRqmeEO4dVlLZcaeXk1+8h+9fFgN5uLG3tSk64/XIA3OlZ+FyJWOtq\nIr+ATpcaaTc250Ntst1mV3GW6dU6Ao7mKyfV5/Y03A9arWShhZK++UQ73u2Hf0bQZCJgdxC0hNqR\nxfnvfzxTQn3yFt3zOAGbnZUcwK3Kcwznu04e2d4t/mIj8SNgteFUGyLnKneoAlA4bGmzqwQCSuS8\nWVWuncvOu6aKE8+uw2wh0v6xccWhBbNcADx01uecNP7CyO/+Ecc3RLbJWP0LANdvf4LRl2mfC42D\nQTu26iHEkSkLWgwlBuyOUEgovqaygkHwBSw4cBO0RIdKhRBCCCHiWXz9y0oIIYQQQgghhBBCCBHT\nyw9pba3mTU+MLHtzUjruhuip8oAzgdRN67BVV0WWXbru39yw8Z/a+o5UErLZSVu7iusm6lVscnrq\n1Xeucb2DyatVl1AUOOgot6EFjsnXKCQU0Jf7zFpgqaHBjN8PJjPk7evj9idKuP0JLdziStImmOtr\nTM2GhHYW6hPNm9ZYWTw/dpAmVpWgsPdfTOXRCTmxj79NO77PqzB/RmLMbRrL7uHjgJnvRO6bfD6G\n33Utoy4/I7LMnZ6Jz5WIoqqRqk/OhGCk3dj80M/aZldxlhZT0yOP1ZfewMqrbqWxRfc+DsDn/5sf\nNY6A1UYKVYZlR6Sswp+QCIpC0Bp6PeI9JRfHTKGkRfGhQ1l92XgOYDXPqrdho/m2cEL8kYI2G+ag\nn20bbTw6IZvqCm0qKCktiKOshIM/fAmAylA4qDLU2jA1I0Diti2kb98QaV/ZuOJQ2JhHLidn2SKs\ntVoIyJUciNomfe3KyG2nSz+/bNtoY2p+AVPzCzD5/S2GbAIOJza8+EIhoeULHVSUdH4bPH/oc8iB\nWyqvCSGEEKLLkZCQEEIIIYQQQgghhBBx5MNXU5j9gTGEUl/bfM2Mq0/oFbUsYWcRAINff9awvMeC\nb4GOhYRMXi+mgI+DehYCcMMDpTz94XYycrSAxCnvTGTIy09iLy817Ocs3oHJ5yV7+aJGlYT05+MP\nVbJRVYX6WhNmszaZfPjxDRweqk4RrkJRX6fg88R+LUq36xO1E6/I5Zm7s2LmXqa/nQLAMx8V8sCr\nO3ju08I2Pf8Lbqgi5+cfAKiuMPP1x4n846puABw0tCFq+/OvMwZzcn/6nl7fzTEs8ye48CZp47FV\nVwJauzF3fZPLtgo4y4qpz+7O8gn3UpPXx7B6w1mXMC1/C7W99okaR9Bijaq4kuCtxu/U2gZFQkJi\nl/kdDqr6DaQhXWt/Z0F7b9yRNbkzhyX+hAJWG4HQeXbVYgfVFaEQUEI9555xOJ5yLeB5yxitRWJ1\nuXbOSU4PMub843B6qnFs2QbEDgkloJ3zLA11AISL011+2i+G7WxVWrsxZ6NKQo0pfh/BFkI2/lAl\noYp6F3XVCk/ekc2jN2fH3Hb1Ejvjhubx+6+2Zo+3u4Tbt0klISGEEEJ0RRISEkIIIYQQQgghhBAi\njnzyRgpTnk5n2n9SGTc0DyAywdtWPldSi+s70m5s+9EjsFdXcdMNQ1gxchzDR2mVb/72VAkTTp5P\nBuXsP20y551+WGQfxe/nnDFHceaFJ9Bt8cKY7cb8Zn0sngYTphhP1ZGg7XD3Jd15/FZtgvihN3YY\ntnHXR09kh6tnhNVVKww5Wpvczu4RYMBBXjK7Bfj3B0WG7YYc3cDU/AKe/6yQ9Gw/b8zbyjFzJ3PS\nzeMi27w5KT1y+9JbKyK3nS5trEedWB/9RBqpz9ICRg0Z2vNxlhaH9lfx+5TIJHT4uTlLd9KQGXty\nvCXhENDTjy+OLHN5q/ElaG2DIu3GxC4Lht5XznKtAlYd2mucZqnutDHtzRRFGo6FNX0tgnY7GehV\n36ortXPhGZOuA+Bm/hNZV1Fi5vn7tWBbSrp2jrbiwx/QjulxG8+jhw7Xz23WutrI7an5BVwzbAEA\nay66CiDSotJigWvvK+OIE+r552v6uVurJNRSuzE7RXQH4LqRWiC2aHPsUM7kR7Vz8uR/ZTBvuotF\n3+rV5OZ97uIvw3oZPnt2hb9WC1mVDhsO8nsohBBCiC5GQkJCCCGEEEIIIYQQQgDx1mxp5tRkAL7/\nMoG/XqBNkp57tVad5qwrqnhj3lbD9nc+XcyZ/X+mhkQyVy2LLA+azdT03MewrWpq/2XB+iy9Ddeg\nb96P3M7r7+PCE1cbth07tDcA9qpyABK3axUpwiEhtVFnmoDZOOG77xfvkVSw0fjYNdHjTUo1trdx\nN0RvU1tlXHbdyF788qOTtCy/YXlunp+p+QVceWc5Iy+o4a5ntJBHRk6A/3xehN2hkrN4IQDX87Jh\n37OuqKJHH/14z39WyFMfFHHSPVdGjaexGe99DRAJ/jjLikld9xtHvvMkADee0TOy7UN/7U3Sti24\nM7JaPGYs4ZBQ/x56kKnPotmkbNlgWO8PhYZExzUN3+1Ee890s5XG2lyIP4wvIZFr0SpYpWX5qQ61\nFetfkA9AFqVkJVSRt6+Xey/rFtkvKSXI9qOOw4YXt1mrNtY0gHnqBTWR29ZaYwAu3H4sfK7qO+N/\njB3am9PHjeTE08q57bFS+h+oJyBNfj9qC5V4gjY7HqJDrVs36Pt43Aqrltg5bLgWAC3aYmXyvzJ4\n/j69mtzkRzMI+BWKtuye1mDBOi0kZHFKQEgIIYQQXY+EhIToooJBmDHjj2sX73bD77//MccW4s9i\n3Dg4/fTOHoUQQgghhBCiq3v5n5mR230HeZiaX8CFN1Rhd6g8PnV7ZN1BR7l57Ni3SDC7DfvnT/w3\ndTm5hmX13Xq0exwNmXpIyBQIkLJhLYPeeoEhLz5BQsnOqO17zpuFvaLcsKxxu7FxQ/MYNzQPn9k4\nAexoqCF1/W+GZUNPjq7Kk9nNGBJa+oNWNaK4SC9FdNcl3Vn5U/QEs9NdHSln5CosYN8PpwBw8nm1\nXP7XiqjtU39fRc/vvwJgAPoFk3OvqeTCG7Tg1j4DtYnvhESVbnn+SGs3gEX3PG44XtBswR+q9uQO\nVxIq2cHpl51GZq0WqAoHoybyME60n2npAYdEja014UpBvb+bpT9/9PZoQbP2enkTW64+JVrXNCRU\nSSoA/Qp/7ozhiD8xnyuRI/mZww4rx5UcZNp/0gBIRg/1HJmxGk+DQk2lfs7cZ+4MFL8PG178ARPL\nFzr4bqYxQJhs0kNCI68/H8WvBWacxds56vF7ACIt94a8+hQAqRvW4iiPDsuZWmk3hqIwnTFRiz95\nIzly+61/p/HoTTksW+CM2u6bj42tO212/WL61OdT+ey/yU13aRNfXajiUvuL8gkhhBBCdDoJCQnR\nRU2bBqNHwyuv/DHH/9vfYOBAKC7+Y44vxJ62335a9d/t21vfdndQVe19+uWXWqBPCCGEEEIIIdpK\nMTX/jaDGE5wAvfr5mJpfwNT8AkzmcOsWK8tvvBuAzz76ns2jzmXZzfdH9qnrQEAIMLS6qs/M5vRL\nT+XglyZxwJQXGfju61HbH3fP9fT58qPI/bL9BlPdb18Aqsr1SekqUgz7WfBjqzFWp0gt2sgVt5VE\n7r/3+lyaFkP6ea5W9eLlhzIMyx+7JYd5nxsnuZNqihn4/htY6usYfcHxHPHvv0dVxHCUFdNt0feY\nPG5O/4v+DZDGIaGefXyR2w9O3sHrc0PVnZp8q6vgxNNZ8NDzFA09npLBh/H9Y3o1IneaNt4j/v0P\n7XExhrwaT+oXDj+F9qrqo73m+737GkeMqAMgl+1sPW4koLcD8klIqMMW3fMYOw4/FjUUdgiHucK/\n2938hZ02NvHn5HNp4ZgEk5ttG/SWguG6N7Xde5FlKjOciwGGTbyJhOId2PCysyqJJ+/I5ttPjeeG\nlGClcZ/7byJ583pOmjA2ssybkhY1pvB53VZViTMULFVCn1nt1Wc/vRrRlnXa89uxNfo4M6clRdp2\nAgT9euWfL6Yl88HLqe1+bIBAvVY9TkJCQgghhOiKJCQkRBdVEroutmbNH3P8+fO1/xcVxV4/ezZs\n3Rp7nRDxaO1a7f+rVu2Zx9uht1dn9Og985hCCCGEEEKIri/gBzXYfPuSpiGhpkx+H0GrjdV/uZFp\n+Vuo66FNjlbsNziyzaw3Pu/Q2Oqz9WpEQZsdpVEQJnHHtsjtH//+VOT2oKmvAjBz6hxm/3dGpK3M\n3WP1YxV6cshArzCRTbEhsGOvLGf0hSdw7+bbOfm8Gt679lUuuvpEspfmG8a372APALm9jK3EQGs1\ns6NAr1axD5s57LmHOenGizCFKgrZK40VhM494whOvPVSDnr1acPyzEZjtTv118BqA0fovq26yrCP\nLymZLSPPYt6zU/hq8scUHqeHfdQmVTSqMVa2SDfrxwo4HFHPrTW1vfZh/eiLsNVW8+JhT6GioADf\nT9JaEYUrGW09QUrhdtSGs8fy7f9Ni9yf8/qnTMvfgl3Rggy57KFvLAkR4klJByClKvbvXsBmJ8NU\njrs+eorItaMQG15Ka2MHB5ObhIR6zZ/NmRefRHKjNpF+e/S5ylqnVSAafcFxnDP6SABMAT+q2Ry1\nbWM3OPUQ6uHH12MyqzTU6uOuqzY+h39N2c7bCwoAKC40Bodeezy9xcdqzsI5CSyYlRB6PIW/3XEQ\nANb2n5I7h3RFE0IIIUQjEhISootav177/9q1u7/lWHU1rF6t3a6tjb3NaadBXh74fLHXCxFvrKFr\nAm53y9t1xJYt0e+FZ5/Vb+fkIIQQQgghhBBt4vNpM3lWW+w/9v0+hYxVyzn/lMHk/jgvar3J5yVo\nbbkqgyc9s8X1Le338YyfWHv+5SQWxf7m0Mczf2bTGeez/cjhxn1TtaoSv9X1idqnxp9AEnr7mjwK\nsNXWYKmr5ZzTD+e807SqLN0XzefKOysYUr0IgPQ1KyJVlAYOcUdeM4criN0ZjHqcku16GKcHWmWX\njDUrIsv2m/ZqzOc0aKqxjHPjsVqbCW05yvXSzD/+42mttG0bXcK7hvv7BbRvu/icCW0+RlMFJ2vf\nXknetC5qXW3P3nw882fWXHJNh48vYvsy9Xwe5AEKrr26s4eyV5LcQ/NKDzoMAIdZr7hzP49Q2XcA\n78/9jYDdYTiXAcwmVF3M56We5s8359wW3f6rsfVjLiZos0Utt9VUc+z9N2IPhyhVNVT9roV2Y8Cj\naf9i0YgrmZpfwO1PlJKSHqAyVAHpm08SDef2sTdXsM8AH6Zmcke/Le1YqueFf2Ty4oOZ+H2w4bdG\n5YOsLY9dCCGEECIeSUhIiC5o+nR48UXt9qxZ8Oabu/f4KSkQ+hIdVVUtb/vFF7v3sYX4o7hCleV/\n/73l7dpj+3btOu8++0CvXsZ1kybpt/fff/c9phBCCCGEECJ+zJ/hYtzQPDzu3TdV7fdqx7pofCVJ\nqQHMFj2EMj5nGv+4sSenXn0WtppqBk9+JrKux3dfMXZobwZ8/A6OirKYx/7yvzOY88qHuzQ+d2YO\nUX2+Gq8PVaUJT/quPf9yFjz0fGR5hS+6MsXGuh5sRg8PHcAqDnzzP1x40gE4y/UWYyafNtntTdba\nwxz6/CNkrFwKgM2hsn6ljfGjerBto5XElCBT8ws4dHh9ZP/tW1uezB3w8Tstrgf46a5/kYj+jSq7\nXaXHd3MYO7Q3Jo8bVJXBk5/huLuui2zTkJHV6nHnPa1d3Fl5xQTons6Uwx+IrDuIXwH4YursVo/T\nnPps7dsr4ec499kphvXujOx2BZlE2xzpWcADPERdbs/OHor4kwlabQTNFlyKfg58hL9TNmgIAWcC\nAZudZFWv2Db25gpG8lXk/ixGNXtsJw0tPvbiOx8mYIvuw5W2diW9v5kZuT/m3GEkbduMam753Gyy\nmsgx658FFSUW5k9PZMs6K288YawMdPrYmqa7c+mtFZx5aXXU8o54/fF0nrhVb715QP/Yn7dCCCGE\nEPFMYs5CdEH5xmraXH01nHoq9Oix+x/rzjvhjDOaX3/22dC7N9x3H1x3XfPbCdGZNm6EylAl5A0b\n2r7f9F+K8Pqjv30a9sD1mYD2DaSdO+G+50rxeRTmfOSKLAeYNw8+XLytXddbT94/h5SE9vdkF0II\nIYQQQuw5X0zTAi9Fmy302W/3lNr1hzplOX3VvDxLm+ws2W4mPc3DZSPGGbZ1lpeQ9/UMCo89kePv\nar0KTOOWY7si2ExrmPlP6i1hlt18P6rZwvIJ9xJwOCPLL+n1FV/uPJan/lfEwjkJfDQ5Neo4jdt5\nNVbbXWud5k3S23Gdes05TH//W5zmZLweJ14PrPzJSe8BWqCocZ5pR4H+N9b5RIeltg07Wb8To2zz\nz397mKJjTqAfejs1mz3I8XddC0D/z99j+1HHM/j1Zw37VQw8MObzaazomBOZlr8FgJwlCzmFr5ma\nfzW9vv2CpPtqyZ/4JHWh598RntQMw/3qvOiKTmL3s9bXAeBO7ViLIyF2RcDuoJtNO58ecmQN/ARV\nfQeG1tlJrGrU1tFhPOcdx3y+4/jI/dOZyTIOYTvdW63gFLTaDCGhLSedQe9vZpKzZKFhu8TtWpvK\npu0Zo45nsWLyR7eRvO8yvW3lvf/ZyYFHeAzrH3p9B0u+czLqkhpqq0zMeEf77FDVjmcily3QP8+O\nYQGWhJZbpQkhhBBCxCOpJCT2CgMGaGGVrqCuTvsjJPzfrFntP0as9vOzO/5lshYFm89HAJCRobVa\nuv56mDmz5W2F6Cz33qvfLixs+351Hj8ef7DZ/3r2M04CPHZbJv++O4Nff4p+kxYX0+Kxmv4X3N19\nBIUQQgghhBCtUtv57/D07AAAZTvb9j28We8n8Wt+y61ONq7QjnXgp29ElmXlBshe/2vUtq4dhQyb\neBMDPpoSte6PtH3oCAB+eOSFyDK/w0nhsSdG7lf32ZfvnnzNEBACGJa1gprcXnTr5eeYkfWGdamK\nNlGcRoVh+Yezl7PjsKMj930JiYb1oy86kf6LvjQsS0zWLmjc+lgp51ytHXfZAu21f27kG4wi+oKM\nu1Ebtt5zPotaH7RaCVqtpFIZWdZvwQx9XK4kLA11hn3+N+dXPO0MiDRkZOMoKzEsKx+4awGvcPWl\nsKA1usqH+OO093dAtI0Uv9LFeikCNhtJihY2TUnUAjT+0Dk5YHfg9Ovnq6OPKDbsOxTjt1TNBFjO\nwUy+9dPIsvfnreHLt4wXhNePvggA1axPPeUszac2tyc5yxbFHPuv193R0lNDtVgw+fVrcCefZ6wW\ndO39ZVEBIYB+B3i5cLx2/k9MCTJslPZ8CzdbWr3m3ZzGrUBfYnzMtmpCCCGEEPFOKgmJLm/nTli3\nTvsvFrcvQHmdN/bKPayhHvr3MF4cGzUKCitaLtHalA8LoH37rd8+XjZstvH1PD+nndvytxYTbGZS\nE1r/w6V3by34A7B2LWzbBj2bVEVWFO1bFy4XlIWqqt56a8tVh0R8q/P4qWrYPd98jTfp2fp7pqzc\nR1Fl9LePmlKBYCvzA15Py1ejZnI669iX23iOt59J4+ZH2l6CWCJCQgghhBBCxLcn78ji13ztb/zy\n4uhKAn4/XD4sj0OObeC2x0u4fLixCkxalp/zrqmiVz8fWd39pKRrM5ZP3dMNgF5Fv3LO0N7UZ+Xw\n6fSfsDQYAzU1PXsz7+m3OPWqMRzyf4/9EU+xWTuOGs77c38j4EzgwyOOxe9MwOxxt9iGLExVTJE/\neLK763+bHcZi3s64kZ8rB1F48pn0mfVJZJ03JQ1PagZp61YDoKjRs7tJAWMlisQULcBlMsH511bx\nyespFBdqfxemmGO3nen/+XuY/D6Stm4ia8XSqPX1Wd0IWmyY0R8/vXJr5PbRD91BXU53wz6+RlWP\n2sqdnknOUm2Cfvh94wGt6seuUM1mvn3ubU689TLteDKxvUdJSEh0hqDVRoNXO++57KGQkDMBgIDN\nTi+1ILJtbmCbYV8vxnOEgko2JVzz3DmRZQGHk4qBB/Lh7OWcf+rBAFg8bgBDC7Hq3v3YfMoYjnxy\nIgClgw4mc/VyAOa88mGr1daCVmMloYycgGH9iNF1TXeJyebQzt3zpyeSkh5oZevYMnIClBdrzy2Z\nanZY5VwqhBBCiK5HQkKiyytrZc69pMbD9+til6ne0/7v7xkxl8/5tYQYbZqbVVCVCGgXFyZf9xYn\n3nct775t4cybilrcLy89gWH7Zra4zUcf6QGhsF69wOsFjwcSE7VwUPjLlY2rsrSnjZOIP9sqGliy\npaL1Dbug737MBqycwhyW/3YcBw+ycseTJeT137VQlNejkNXdT0lR7I/TJGo4kxncxnP4ffL1NiGE\nEEIIIfYmyxfqXwJ666l0Rl5QG7lfsN7KLwu1qjXLFjjZ+Fv0JGJFiYXXHtOvE1x6awWnXaxXRxjD\n5wAklOyk+4JvOHbiBAAW//Wf9J3+Ad+88C6+pBRWXnULhz7/CABLb76P3t/MZP1Zl+zGZxpbIDTR\n7E1JAyDYxgsbqqJEQj4mMzz/WSEjnriVAxZ+jN+TxACWsyb7Wn697g78jgS2DT8FAE9aOvZK7SKQ\nEoie3H2FGwz3u5WvZ9Bb01h9+U1R2/Za/zMA8ydNJmXzemxVlWT89gs5S/Pp+8VHzY59+9EjsNQb\nJ6Mb9t/XcN+1s8m1mQ6UOvE7XVjcxi+UBewtV6Bqi4aM7MjtoExs71HutNjXBIX4IwVsNo5PXcy/\nuJxTjt4CX+rnEp8rkcMDP/D41O306OPDuUSrJLR8/F0UnHgG3gtWGI6lttBkLPw5AOAs2QlATV5f\nVl02Hou7gRXX3Eb28p8i21QMPJA1Y6/F7G6gdMgRrT6PoMWKyad/CfiEs2p5/8VUMrr5eWLq9ja8\nEppzr6rm20+SWPKdk55923ZNsK5GwZmgf5UvKUX//MmklDXtuagvhBBCCBEnJCQkurzGgRZFgblz\nYcQIfVk8tezJ/yYhcvvtBQXMn+Hitccy+PErF8ef2bZvPABYzfo3J/p+Ox24tk37ba2o5/2fC1rc\n5uLztW82Duc7vuc4ACxWlaEnuln6g5Np+QUsnJMAaGGjptfl7nq6mIFDPCQmx8/r3pTLbuHMg7q3\nvuGfjLoX165ZvUS7AJJILSWl2u05/0ti9RI7+w72Mv6Btlf4aczrVrDZm69PbMdDPzZiVfzk9t47\nqzQJIYQQQgghNA11Ck6X9nfVvZfmGtZNeTot1i4G7zyXxq+L9CBI42o1Rzz5d6yhSkI7DxnK7xdc\nEVm3s1EbrpKDj2LNuOs7NP49xqREvnmUuWIJWYEAaeZqTKjYarQKP6rZzMqrbjXs5klOxV5dRcbK\nZRz1+L1Rh23KtmwtBy+bFDsktO4nvEnJFB43ksLjRgKQs3hBpHpPLL+NvRYUhaDValh+ygPNX5NZ\n9ZcbWx1nLEGbDbPXo39DCwjshlBPbc999ONJJaE9KhyqE2JPClptDLRvZGp+AdlLtUpB3kStupkv\nMRlbbTW9+mnXq5ylWkho6wmjqO21D0cpr/GiehNX3lXOm5PSOZFvDcdedM/jhvu/XPdXhrz6FI1r\nY/9y0z2R2z6X3iYyaLFQcPKZbX8eFgsmrx4SSkoJcu19ZQw52h353G2L5DTtQvbObVYOONzd6vbr\nVtp48JpuXDdRv2649AftvfwJZ5NI3W45NwshhBBC7GkSEhJd3nnnGe/Pn980JLRHh9OijOwApTu0\nt53JDElp2gW/Vx/JYPioOkzR1clj6v79N4D2rcDeX09nSN/t/LIxt+Wd0K4tBdr4euSynd/Yj8GW\n1fh9Jpb+oH1DcuzQvJjbW6wqfp/Ck3/NZsBBbh54tTjmdvEgEE+/FGKP6c1mXOhhvMTkADu3Wdm5\nzdrxkJBHwRWs4zB+ZQmHR60/nMUAWM0+igstbPzNRt/929b+UI2jgKMQQgghhBB/Frvyr/B7xuXy\n7CdFbNtojVqX19/HpjVatYHeA7xcdnsFj4zPidou3L6sKdcOvYxv04o99dn69YDa3Ca9wuOQioIS\nDGDyeRl57bkAFB57onGbGBdIwhPMp15zdszj/spgLh04l1/Xal9qmoE2AW3yegja7PTs62XbRm0y\nN51y/A5jaGPn4ccy492vOfOSkwF4b/5agnYHhz77EPu99zrLbr4fiK7AY6P5v/F+GX9Xs+taEp50\nNnk9kWX+hES6pzrok+nq0DHD6k89HftP+RwzMKdDVY5E+9SdOQbXjM85tr9UEvojOKxtvJj6JxWw\n2SLhGntlOaBVZQPwJqVgra9D8ftRzeZISKghIwuAseb36T4mj+Jzr+P43F/4y+3PGY694Wxjxbod\nRx3HkFefwlof+4uwPldS5PbA//2XJX/9Z5ufR9Bi1Y+rqqAojBjT9i/chvczmyEhKUjAB2mZWmBI\nofkv/21YpX3e/jQ3OuR3Np8B4JEqYUIIIYTogiQkJLq85GRoaFSBubLSuD6eKgll5fop3WHh/he0\nsqvZuXpFoJoqEynpzf9R0phjpzGAc/bGV/iFBwkGaDVoFAzA/15N4bDhDfQ/sPkLWWZTkP2Ca7l4\nzHre+XhAq2O6+MZK3nlO+2bk77/ueglsIXaXTWu0C/Q38DKb2SeyvHSn/hH42zI7+x/iabprq375\n0cn+bGIE8wwhoTsmlXDeXWdhCk0x1PudLPoGFn3j4sRzarjstopWWwzGz5lLCCGEEEII0VTAH72s\ndIeFS4+O/cWailIzZrPKy7O3kZCo/Wv//6YXMmF0j5jbT+aaZh/b7zD+ze1Jy+C979dh8nrxN6rU\nEK8y1qwgobSYi4frbbqstTWGbYLm6IsbiUVbo5a9P28tF40YCMBgVvLULV/zbcmNjPsAACAASURB\nVPAEHrs5hyPQWoo5S3dS1z2P2x8v5c6Lczk9OIN0yqlx9o06XnWfffng29X4HU4wmQBYeuvfWXrL\nRD1QoyisO+dS+CR0N7TvtB83M/bofYwH7GAIJxiq8nPx8dpzW3z7gwQcDpKdVnpn7FpIiJmfg8dD\n7wSpbLNHfP4pAL0lkCU6QdBqp+cPXzPsvvHsOPxYADypWqjFFTqn9vj+K/rM+oRe82cDWiARAIuZ\n7s4SioHuzrIWmo1pGtK1gGZ17+hzK2jV4DrKVl1FxupfOPvMI0goLWbVX27klxvvjtpuxG1/oXv+\nfOa8+hEjrzuPTaeezY//1MJN4fPzuNAVN3eNdh1eafEKnLZu+YLYAV4AdyhUJYQQQgjRlZg6ewB/\nRqqqEgzKf7vrv6OOMv5D/tlnwe02bhMvPG6FIUc38MhN3Rg7tDe3Xqb/0fTjV22/OOOzaBeLfmUw\nAE60lNT1p/WkbGfLKaHVS+18/lYK770Q/YdZVZl+SnAEtWMe2X1ds8dyopU6z+3tY9jp7fz2hog7\ncZSn260mXqF9q9aOx1BJaPMa/dufj4zPoaGuYxfsSsnkTp6M3C8hk6EH7+AYfoy5/befJPHU3+QC\nghBCCCGEEF2Zx92+vx8qSsykZgUiASGAtKwAqZl+snv4OO9a4zeectne7LHUGAGaoNXWJQJCAGnr\nVkctSyg2Pt9YzzFzxdKoZYEmgansZT+R2U2rDnEq2oT3mRedxP5vv8yoTx/ko49+ZDpjUIgOW4X5\nE1yRgBCgBX1Mxkuo3qTkyO36rBxmv/6ZIRD06acL+WLKFzGP3xYBq/FbJZ50bVJ/t8RMzGaQgNCe\noyhSsUnsEbF+zcJtBfO+/QJHpVZF25OqfckzqXALAIc+90gkINT4QEGzBVNAO59a62tbffz63J58\n/cK7/NSkDVlYXY88lt9wJwBVvfu14RnpHOWlACSEqh0dMOVFw/qs5T9z6LMP0T1/PgAjr9NaD/SZ\n/Skmn/FLsrl5Wnu12vLQ88RMMNCu4eAIXYv/8e9PtW/HTqTsnk8QIYQQQuwlpJJQJ1hfXMvPmys6\nexh7Ba8HVvyegw3wol9AufJvlYy+rKb5HTuJ36dgMel/dTjRex//NDeB0y5q/Q8uAJ9Zu5DVA63c\nuClUFrW+xsTCOQmR575htY26GhMHHaU/zmM3a+XMy4qjL7i99JBeHtWK9gdTrw2LgTNaHM/2LVZ6\nlq0B4r+sufjzqK0ycf2p+u/ksSzgZv4Tub+9wNgCYOVPDo44oYG2Cga0bxuN5yVyKGYEcwliIpMy\nLhh5kGHbI/iJnzlSf6yfndTXKoYJgqb21tCWEEIIIYQQewNPgxYaOerYSm489lsun3Rui9tXlJgj\n4ZXGXphRFLn9w5cudm7T/k7JpJTCY06gx8K5kfULH3yW9DUrcKfvfV86SCjegTcxGVttNRA7JDTv\n6Tc590z976olt/0japuDXnuGldfcxnr7QPp4tC89mX1eDnnhMQA2nXZOZNum7cbaw5uoh4QWPPwC\nZQccDMB3j7+Cs7SY+m49qO8Wu0pUW4QrCYW5U7X2QIqETYQQ7aA2Cjju+78p+BISIy0TFzz8f5wz\n+kjKDjiYxB3bovc1mzH5vPSe81nURaoVV98W8/GKDzumxfGs/suNOCrLWX/22PY9D0v0Z4KtqgJv\nihZ4OuWG85vdN2v5T+w8Yljk/omjq5n6QgZ1Jfpnss+nYDdHX4jz+2Kfc8PX4guHndS2JyCEEEII\nEWekkpDokuZ97uLnuU6uPD6PTWuie/ZsWN1KH59OEvBD2o5NMdcdNrzt4QS/+f/ZO+8wqam3Dd+Z\nsjPb2b5Lr1IERURBUEGwYkPF3vVnAXsXFeyK/bNjRxGwCxYQEQRpC1Kld1hge2/TJ98fmUkmOzPb\n2AUWzn1de21OSXIyk2SSc57zvMrLnBHlZWYR2ouOxaq90Iy/JZ1X7ksNuY1Q/UqbVmmz6PwiobT8\nrUH1ktIVX/UneRGA5xjHkIdv0dWx2w7fjishvjg6WDZP3+F7Mv+qwrpQVFc17CexstyAjEQKBQD8\nzTAWMFRXZ9M1twHoBEJ+xoyoXVQni4BjAoFAIBAIBALBYcmmVRY1TNi12e9ww6uXcf4lBbWuU1lu\nJCbeg9FuQ/KEtix4YVKuupxMIbvPGQnA0qdeZ2rmHnafewmr7h9/xLiS/PT7v+qywePGGRevpuUQ\nsdTtyWlMzdyj/m256tagOlVprQGI7p2khn8OJKowT122lhY3uu2u2DhW05dMBugcifYNPZdto25o\n9Hb9xOzbrUs7fCIhgUAgaAjbLtPuR5ElhTpHIFtKGkU9j8NcFXqirddootOsnxg8/l6On/iarixQ\ncNkgDAZW3T+e8o5dG7aayxWUl7w+2F0uFJFFBcTt0vq3zUalX1vepPURup1Bq7FoVhTT3ksI3R6f\nSMgdKVzZBAKBQCAQtEyESEjQIvnkpST+b6w2c87vIpREIa1bV+v6y9b/a8HtPtgtDI05r5CUHesA\n2DvkHNbdej9d2A6A213/Tj6PpHSWGfHww+y1XMaPapmxDn+wEwYrYqTYVt6gspg4Lc8vEoqVtRfF\nh9/I5/G381VbVicRVLRuzzheICZ7LxOGTVbrfj9R69wTCACK843MnBrL/F+jD8r+cvZoF8P3A8ZS\nld6Gib1e5LVOr4asn7evYeZ6m1Yr9524aEfYOjtHjCJr2Aj6o3R+DxiuhTtzOY+Mjn2BQCAQCAQC\ngeBoYs0SKy+MSVPTlXmK4OfOUWtD1j9paLW6HBPv5cqhPTjplSdC1g10Gk2mEEerJKZm7mHXBZc3\nRdMPG8p8g8P2pFS+m7tBzY/K1QZs5QYIofyioeqUdHJPViZR2VIzqEpvw7RFOyjsfYK2jzwtrFlF\nu06NPgZXTCx9WcsAluOIDz2IfCDUdItytGrCcGMCgeCoYe+wERQf0ytsuaNVIpYwgknZZMRcrfRj\nxeTonYZcBzm8pcGtiYRsvvujpVSL1OAxRwSt42fQM/dzwdVnqemT330GgJWO49W8UI5BHz6bHJR3\nt8+h3C8S8kYcnhOVBQKBQCAQCOpCiIQERwQ76AzAg7xJ2/gS8n2D/VvWWHj5njRmTIqrbfWDhmxz\nquKbJc++gz0hka0cA4A7eEJEWDy+SIFGPLgjI7meybzJAwA47cEvNft3aeKHmHilA9NeHVwvwqqJ\nhEqtygtX11V/qnmdezrpM8BO6w6K6moXnbAW5avld2weT7suytSLP749PD5zQf1pToclWYZ7LmrD\nlHcS+OTFpLpXaAJmfaOcg1/O28GoZROwJyYjWyK4q/z1oLqR0V7y9zdMJLR6USQAJyTvCFvHHRlF\nZEEu0xnJrW1/4q5ni3jivbyw9ZuLzZvh4ouhwqf5+/priIiAyEiw1WFi9sMP8PHHzd9GQdMzcSKc\ncELd9QQCgUAgEAgEtVNdKTH+1jTG3ZzGaw/q3Xrvq1bcFaIK83jj+2xd2XXHzmfG/C5axlxl0lDX\nX77hmoEd1L/TH/kfKWuUiQVDRijhtuIopzo1vbkO6ZAy56Mf+W3aXwC4AwaaDV6tT8IfvqshuKJj\nSFuxhCEP3kRUbja2pFRkkwlzpTb5KSpP+Y7WjH6UZU9MaOwh6MKNuaOafiLMliv1bs2OVooQ6Qgx\nkRIIBAcRjyUybJk9ISmsq5pcy0xUd9TBFQlJvhnAyx95gbnvTwPAUloEQGRBHkaXZgW07tb7+en3\nf1n40ocht2WV7UF5rhAioTMvC3ZYep5xnMssPur5HL9P+TOoXCAQCAQCgaClIERCghaFLMOOjcrM\ngKgYL5/M3Ut21xPozC6cmBnLy3Tes4zdWyNw2iUqypVTfOcmCyv+ieSrNxMOaRgsF2ZVJOSxWqlO\nbY0BGRMuPGFiHIfCg+IkZMCLN8KCBNzNewB8/XYCY6/TdyQ+enVrddnpUPZjqw6+/EsKtJe/Sfbr\nALCguaR02zgPo62aQc756vGYHFp5dfsOvDvi83ofx6FChHE6+NhqiNKevKF5O7u3rNFm8rTepHS2\nl3XsisdiIbKogHS02aPnMRNblYGlc6IbJJSyRMokGktIygh25fLjsVpZ9sQrtCGb0Zf/h9EEx/Z3\ncNaoCmLiQocYUGnC0/Shh+CXX2DJEiU9ZQq4XGC3w+LFta97+eVwxx1N1xbBwWP0aFizBqqq6q4r\nEAgEAoFAIFAI9U6w+I9odmywsHOT3jFgD+2JQlHdD7vvOtqkVPLQa1rYsUc33EMGWgix2+TQ6vu2\nC+dw1p2j6PPJm3xgvY8y4pCgweFYWgrO+FaUd+qmptffdHdQnbKA8vrijoomJmcfbZb8TdrqTGzJ\niqArfvd2tU5G5gIA9px5Ifak0OHZ64MrQBjksVhrqdk4ZJOJn39dDkDhsSfgrcUlQyAQCGrDazar\ny4uffVtX5oxrRXSAi9vPv2Sqy7Ih/NCRx3JwHXSsZYprUNaZF1DesStui5XIQmXi6nnXn6uru/7m\nu7EnpbL3jPNCbiuC4NhiP34S7IgfyoU/jnJmMYLBqRso69K9wcchEAgEAoFAcLggREKCFsUXryYw\n/hZFXHD5naVERctYfHGEzbiRgMpq5cVn6V9ReHzuPC6HxFuPpjD7u1huPaMdWdvNoTbfZBTmGhl9\nXhsmva63nPaLhFbfNRaA4h59AOXlxFsVIvhxDZb8GcXuLWY8vkvXiCIy2HT1/zCjxVTL2h6+88hW\npawbykkoMPxRpNHB9ouvRgLy+/RHRuLMh2/klGcf4MoZjwBwIb+q9Yt6HU/rzAVc/O5obuo0E2tU\neOGE4PCkOcVTZUVGXXr31giqq5pPsPfcnZr9/5l3Xa3s85yRauftRnrR3bSNTfRgJuerde8b2Zp1\ny+rXwVuUa6IVpUE28AA7LricqvQ2OONaUdm6PQCW0mJMPpvmbessVJYbcYRw/vLTlN+GP+Sif8Aj\ncPZpiLDughaOLENygCt2Tk74ugKBQCAQCASCujGZg5/Ou/W20569urzB4+6m36laeLFIn4Aomww+\nuPNnbuGLWvfT57O36fXTJOLwuRccJbYxO88PDqfmimm4O7G7hluGLUl5V1t7+0NqXtJmxc3JfYCh\ncgJdKzzNFG7GlpLG1Mw9/PnZdDVPEgHHBAJBA/GLDN0WC3vOGakrC3RFW/7IC9hSM9R0dI0QYzoO\n8u/TqnuexJaQjDM+ASQJW0o6MfuzSF+2UOeENDVzD7LJHLKNFW2U/jmDRd9HCfDP78G/CQ6bRKTB\njhMz2waOoIooDGLiqUAgEAgEgiMEIRI6BIhHycaza4smfjGZlE/SUlaie6F5lUcBMBhlHHblFK85\nEL9/V9OLhCa9nsDCmdF4vXDfyDaUlxiZ80Ms1w5srw7QOyUL1R06sOn6OwGw+zqsDHgp3Rze6sFW\nJXHtwPa8Pz6ZJ2/MUMON5Q4aAkDbhX8FrVNSoH/heefJJOZNj+a/TKXTzF5lCJohGRWjCHue5yn+\nGfUwy8dOoPiYY0lZt1Kt037+H/RgC9VEcg3T1PyygBmOseV5eNyi40qgsfW/4E7Thob3qi+BIfeK\nSFSXqzLaqTOdEihlTfQAerAFgLe5V6mfZ2LCffWbTVpeaqCLdxu2pBQ2Xf0/Xdmyp15nxvQleM0R\neCMseExmen/xLlcMU+LA7/bdy7J3N89nUBP/te7/HxhizFm3PhGA9eubtk2C5mPrVigq0tLl5Yeu\nLQKBQCAQCARHAqaI4J4cryc4r+3COfSarIU38TvzZpDLyZFr1fypmXuYmrmnGVraMnHFxAKwbeQ1\n6iBuYwagJa/erdXvFLThlnv56fd/9fs8QJGQbrJILW4bTc1RohsTCARNiNcnmgl0g1cxaDeVnIFD\ndEVSQ+y2m5nN197Oz7O0/unq1HTa/fMnw+67Ts3bfdZFQetl+45p2uKd7B2qOA5FOcrU8gyUEJQn\nDLbx7lNJPHxlhtp35rRLRBodmHHTNXOW6hwIIHnF5FiBQCAQCAQtGyESErQoBg7XZuTdYJjM+VcN\nJzp3P1XpbdT8NigWqZ9PSFTFApVl+lP9/aeTmqQ9P38ex7tPJbHgt2jm/BDLxOeSePmeYIHBuJsU\n9yOXbNLNQJSNipCnklgWru8Y1lXk96n6GXReGSS8LPbFVo7dtztonbk/6zu8ls2N5rMJ2nF7PBKu\nGuKA+EQPVzGNp3iRSKvSzqxhI0K2KRI7zlilXRVtO7LnzAvVMqujQhVGCQQAH7+gnHvPfJLLDQ8q\nM3z8rlZNzdzp2rmfSIm6XNG+E2krl6ppv1UxgBu9WGfL2rqt3G0V0EouxRkbz5q7Hlfz//j8F31F\nScIbMLP0opGD1eWNK61cO7C9+lddKeF2QU6WqUGhz+rLiBGKeMQeEH69viKht9+uu47g8CBQIASI\n+7FAIBAIBAJBPSkpgdQ4JVx5IKYQ2v5u3auDM4G+H7zCw7wGQEZAmGO/I4M/hBTAnInfh23L329O\nqm+zWzyOhCR++2YuKx96lj8m/cb0n+uIiRyGpI1rdelAIVDN0GIHGr6rrPMxB7S+QCAQNDXhnMY8\n5vCTZQ0B9tJVfpGmD0dcK1265gS5Q4khhC125rjXg/IWTviIX75fgGw0sna0MrG4DC20mAUH/Y0r\ncbsh869ocvaYWbPEyqZVFjautBJtsgVtE4RISCAQCAQCQctHiIQELQp/OKyh/M3pLz2gxpV3Ryod\nePsHD8Mcp/TeOR0GvnhNcRHJ3WtWXXIAZK/izFNRdmCXwA8ftyLzr2hVAAHKoH9NsrYroZWqicZY\no3Nx1T1PqsvOECKh/GwjP3+mj4tc6bRixIPHquzL3ko5zhuZpNaZ/V1s2HYf43NPsVfrj99V5VHt\n0L2+XtCK9p3Cbqcyox0AVemtKe3aQ82PtJcjeyUO1/elw2gizFHD4HMUp6zrp93B9R/fCICnmYQL\nRp/L2L/0V/MWvfA+AJFFBSHXqUQvqnvnyeSQ9QKxVUrEUY4rNk6zMgaKex4XVNdcXakux+Tu4ynL\nBACmvqsPSXjbme248bT2PHxFa/Lzm+5EDTznk5P1TkL33gvFxcHr1OTTT5usOYI6yM2F0aP1Yq6G\nUPP7FCIhgUAgEAgEgrqZNAnefFNZnjFJP1HHaNQ/myelu7n5+p0A2BJTgiYKvMajyEiY0JxtonP2\nUZ2Sji1FC41c2OdENl91K7vPuoiCPv1026jKaHugh9SiKO/YFa85AldsPNWNPHZjjZlQnhpCoOk/\nL2bXuZewdPybjW6nQCAQtDQ8FqX/uLh776Ayyddh4IwO7keuTmutSzviE5jz4XcsePWTZmhlwwh0\nvXdFRfPjzJW6CXp+PNZIKtt1BEA2mSnsfQIxaH10RjxEy1W6PvLXH0rlhTFpZO8xs9eWHroB8mHa\n6S0QCAQCgUBQT4RISNCicDklDJLMPIapefb4BDZffRuOuFasv/ke7GkZHGPeHrSuxw3HDdSr/7ev\nb/zMsXnTo2stf+aTXKZkZqnpu89X3I6+3Hq2rt7ucy9hFMrsQb8IKpAHLm0TlDdl63DcaKKEFQ8/\nDygvNn6qK5XL+wH0nV892MQTvKSro1JUoYmEfGomd1R4C+78fgOxJaaQNex83aw8i1uZUdlcIhBB\n89Cc4qncHcr/zvN+IaZSEeo0V0i6kgIjRqNMP1YBipV/1pkXALD5qltDrmNHL+6zWGv/MGQZqiqM\nJFCiWuNnnzKU9TfdHdL/vTpF36kw1DGnzuMoLDjwz2f3bhg+HP6qEZFwbcAE29xc6BRGC1hWFjpf\n0LyMHw8TJ8J33zVu/cJCfVqIhAQCgUAgEAjq5uab4YUXlOXASUagOPH6eeaTXF7/JodoX7iSlQ8+\nQ3Gv4+vcfnTOXmxJKbo82Whk1f3jWfL8u8z55Ge2X3y1WuaKiau5CUEdrHzgaV06Oj9Hl67OaMvS\nZ/6PXSMuO5jNalJEuDGBQNBQ/K432y65Nqhs5wWX44yJY9ZXM+u1rYITBrD/9LPrrtjMZD75KgBe\no5Hv523EkVj3ZD+ArGHncwk/89zdimPdbXxClLeS0kJjyPpxhO4YE05CAoFAIBAIWjpCJCRoUbic\nEhFmDxIw58PvmJq5h59mr2HvsBH8+Odainr3wxkTywMuzV40EkWw4rAbiIz28sWCLB57Ox+A8pLQ\nLwD1ITB0V02MJplufZQZbPe+qAgiWndUbFD/b7jejsNrMnMhv6rH1xj8AohAkZCf85ilS9uIZC+K\nA9A377cKKrNiV9sFymwMP5Xpymw+W4Ly4lXYux8/z1zB9kuvQzYa2TvkHADMKMfaXCKQA0U4CR18\ndmzXzqPmPj/KioykGAsxEPxFr7p/PFMz9wTlP8ibnNfjP16erHQiH9u/dguX0iIDTpeR9mTh9HXe\nz3/rS/6785GQ9Q01ZrRGEtquOJD6hgGrjXHjYN68uuuVl0N+fnB+oEjojDMOvD2C+hHh068+/njt\n9cIhREICgUAgEAgEDaNnT306tpV+8M/tUt5d7hxfRLc+TiKsMuYK5WHZH4a7sFffWvcRnbs/KORV\nTZaPnaAu+7crqD9brryFqZl7WBPmvUwgEAiORgxupR/OHR08EbSiQxd++GtdUKixQLJPGdpcTWs0\nWcNGALDjoqvrqKmnqOdxSMCjX12AzRzDo7xKJDYKcjTrf5NZ60+cyQjd+r99MxeAvH6nNLLlAoFA\nIBAIBIcHIaKqC5obIVBoPAu/N2J3Kqet372jJtsuvZ6M1X+q6Td5kNFMBKDjun+IsBxLl54OQHPS\n+eCZJHr0tTNspBISyValdABGRof+ssI55AwYXsWyudFYDQ6uGdgBgIj2d/IOH7Jrs2J5enKHXb5g\nXwpekxELSntChFMOy1DjAkCz//ht2l8Yr96qq3MiK2jHXl3eHjoSgaI++Hd+FGNGtOGJ9/No09GN\nHasqXpB94cbckZq4Y+aU2Rgdds4cfQWRJYVINT6Iso5dabdgNiaU/MY6CXnccMOpystpoBuToGVS\nc3KNen64mudmWFZspI0zWAhUGwmmcl47aSJruz1OXIKHUGHcZRn+nhHNoHOqeeluJURAB/bgjB1e\n5/ZtKelYS4uZ9/bXDLvvOqKpUsseeLWA5HQ3T92YjixrO84r8lJSdWBKoZJSE/XVAy9a5uKMYfrv\nZE+2BD7Xsiqbl5Kq2i9qg0EiPjJ8rHtB/Uj1jR3l5NReDwh5juQXGQFNBFtS6aKkqmmvt1irCZNR\naM0FAoFAIBC0fLxe2LxZnxcVXVMkpPzv5ZtMMHz0FaStXgaAyzfoOufjH7n61C5h92MpLyOivLTe\n7fKHhxE0HH9/kfMIdGOSQr2sCgQCQS04WiUCDb8n2pJSSNimhNWE0CKjQ4U7Opbp05dgS65dfBu0\nXmQUAJaA32OpxiRDvzAYIMo3+dhPeceuzPhpEVXpwc7/AoFAIBAIBC0JIRISNDkeN3z1ZgIjrqkg\nrW3DVCL2aolfvowjrZ2bgmwTI28uw2dow4wv4yh3aoIVrzl0qLDSrt1pwxdqOlAk81v+aYz94lnW\nXX83ANUVBlYsiGTxH9Es/iNaFQndeW5bvF6YvFgvsPHjF7DUZMDwarof7+CBN7VwaOlZ63R1DFb9\nZScbTapIyF3DSSh3b8AsBly6EGP3Rk7Exitqujo1nR78olt/Jf3pxjZOZAUr6a/m38//8RiKLWtZ\nsZHHrtZiTPvbIhuVAWZXtPaZu6NjcEfHYEtOJX7PDiylJbr9rb/1Pnp/+b7qFON2S7jdMqY67jTv\njUti6Zxo3p6+n+R0D2uWRNa+gqBFsWiWPjSf//yQKqppDkO70iIjx5ILwM+/ZIasM33GUoY+eBOr\n7h1HdM4+ek96l45zfsFrNmMyvk5Rrv6kLSsyMOZ8xUlr5yYL2buVazGJIrJ69KmzTQte+5T0FYvJ\nHXAaM35cyCmXXaqWte/iJLWNh9e+zWHCvakU+vZ906goHn0rn+NPqd3VqDbyKpKBKDU99ZvlXHPV\nySQZiynyKJ1Edz2+j/cntOWyi8w88GoB/U/XXI7mzYgGFNe0glIXs9bn1bq/aIuRi/uKjpIDxS8S\nOu+82uu5PV5mrc8Nyt+Q1QrQOv+W7SjBkdb48ygU5xybRlKMpUm3KRAIBAKBQHAoqKoKzvO4Jfbv\nUp7L23Ry4yxRhNl9pn2Aa8gJqkBIQXmPl00mZn41kxE3aK4Dy8ZOIGnjWrrOmAZAyrqV9W+YiCvV\naLaPvAaj08nWy2881E1pcsRpIRAIwhHu/rD67rGUd+xKzoDTG7S9pU+/Rbu/Z7Hzwiso69I9ZLiy\nQ0l1I4Q6Jd17B+X9yCh1+aSh1fw7X+lHe7LH53QpL2bu2CnE7t2N3RcytKp1u0a2WCAQCAQCgeDw\n4ZCJhCRJ+hy4AMiXZTno6UySJAl4GxgBVAM3ybK8ylf2KnA+yujyHOA+WZZlSZL+ADJQjmshcJcs\nyx5Jkp4BbgMKfJt/Qpbl+gXaFTSY3L0m/voplr9+iuXrpVkN6sC4dZj+IXvtUivPf5FHeYmB7z7U\nh8aqDPNAXp2aQRd2qOnerFeXRzKd4z96nf2nnklUTDuqKyV2b9HERtcO1It/AtMTpuQQ18pDfFL4\nmMPHt9lHert8+rJWzasZVshj1g+qykbNSaik0EjH7pqd0EOXa+KdlZxIEUkM428AEg0l7A/crjWK\nu3mPk/iXwSxR8414+YobOJaNANyf8hkRBeEti1JRYg51/u17tlx5C7bktKA6pd16kb5yKYYaVkHe\nCAszflqI+dLJALw9Npkta611ugEtnaOISO4b2YYpmVm8+WiKWibLohOsJZK920R0nJf4RK/qzHUv\nb/PbtDlUL9wDH4Bc5QCaXhBWVmQg3ScSsqVmhKxTndaamVM0x7GeUz8mLmsnfT5/h2LeprjQTFG+\nkcQUDx4PLPpDEzr9PUObOdWzYyF7THU751Snt2HnBVcAUNWmPSWXnAM/3lPAdQAAIABJREFUK2Xd\nytZQ1qYPGe3dvD09m4JsI/dfqnR0zJwWe0AiISlAg3Ujk4gxdGJKZhYjrj2biTtG8n/cz+mnFZK5\nJJGV/0Sxb4dZJxLyh1WMpxSXM6rm5lX++imGnD0mCnPMDP8dYsJNLtu7F4qL4fjjG31MRwP1dZXz\nhjEHstv0N83DNfSjQCAQCAQCweFAebny32xWnsMMBpn5v8Yw/1floXZKZhZfTVTeK06e9hZR0/Tv\n+KVdewQs6+OW7TnzQvJPGKCKhP6Z8FGd7Vn+6Iuk/Lei0cfTEkmLszCgc/iQ7o2i/9Mc07RbDMI5\negxyRmsu6tu67spNRIRw8xQIBA3EHR3LlitvafB6joQktl96HQCbr7mtqZt1aKjRybzjwisY9Oti\nljAYgPZlm/mXfgA8XPoc3uhI8k46lbyTTj3oTRUIBAKBQCBoTg6lk9Ak4D3gqzDl5wHdfH8DgA+B\nAZIkDQIGA8f56i0ChgDzgStkWS73CYx+AC4HvvHVe0uW5deb/jAEflb+E0laO5fODWfuTzGceVkl\nAM+PTmXzaiuTl2Qx5e1W/PFtHGdeWsHNj5aE2ySJqR4A/v5FG3E+n99wRcXgjQjtYOCOjiWeMgBS\nIktpbctWy97mPgAsJUVExXipqjAQFeOp1/E9fq3SKfjlwiyOP8XG2qV6cYMXidLneuCO0g+kB4qE\nbucjvBF6BySv0YQVRQTw+kOpYQU1x6E4EiVQTAmJJBjLdSIh2WjEiJdBLMWLxPGs5XEmAKifB8DT\nsa9CAZS37cSvPywAYNMqCy+MUcRA5/M7AHuGn6+0L8LC1Ex96Ka8EwfR45vPKOp5HDWpat2e8h49\nYDNsWavYo3u9YGhAP1aExYvToazgdEhYrE0bJkdE/Gt+HrlK6SQ996py4hIUYd0EHmdW7D8Yzco9\nwtsM4ca8XigvVkRCa8Y8Vu/1dp99Mcd9+pYuL3eviQ3/Wvno+SQuvL4s5HrO5ORGtdPVKkFdPv+W\nC1j40gfsHaZcc1GxmhBx/fJIvB4wGIM2US8C+z4e4C32OV8DwOhw8Div8BivMN2zjHtfKuTGU9uH\nDYfZk01kVQdf7wAuJ3zxaqKafuvTKkZcEjpMWu/TTsOydw8rdxc37oAOY45tHYfV3Mgvqgb33qv8\nrys8qRzmbuao1t9wvfX7mRMIBAKBQCA4KnH6Hl0/+AD69YNrrpXZsll7kN65SXuHj6oxCWjzlbfg\nsQb0DRgMTM3co4Yf91isVLTvHPROXRvbL71OHZQ9WjAaJGIsLdDs/IP3ARD+mgKBQNAyKTy2H9OW\n3k6Hwg18wv/4dPX/1LJWuXso7dL9ELauaRGTcAUCgUAgEARyyN7AZVn+R5KkjrVUuRj4SpZlGciU\nJKmVJEkZKOP7ViACxdPZDOT5tumb/4XJVy60AAcJjxvefDQFs8VLr34ONf+L1xLZvMbC3c8XsXm1\nIhjZvj6C2d8p8eH/+im2VpHQigWK4Gb1Iq3T7afIq/hpZu0W3ftPP4uf/xnJibaVmHEzjLkUk0gS\nysD08HuvpbWxD7aSDjgSQj8h9x1sY83iYJeT3L1mJAnad3Uyd3svUsnHgxEJSNixGYCSbr2Y/8bn\nGNwuBlyqWZZO5E6WWvVCBAwG1UkoHKloIX7SyKOERDqVrAvwSFKoSmtNdF42EvAfmlNHBjn0ZCOP\nM4FWO7cCIAWMGpvM2qVSdspJrH5gChXtOoZtz/7TzuSH2WtwxieELPeLQPw4HRLWyPpdjm4XnDWq\nkt+nKKFybFVNLxISHDz++EYLeRSJHVdMPBEWRUjhdTbt9+r1wPWDFfevFArYetnt9V854E15Aacz\nhH9wOSQW/6Hcg36dHB+0SifjbuyJjRMJua2RbKOrmj7tiTGUdunOzCl/0u/79yAglOC/CyIZMMwW\nYiu1k5tlYvNqrbs6mUKOv+4cZk36DYNTuedIgNFhxxddEI9H+xycdom0ti7kfcX0YDN7Szrrtu9x\nK05FX7yWqMvPKbWxJVcfs93PiXuVwZEt2WUNUw62ALqmxjSZSMhPnSKh+joJeURPkEAgEAgEAkE4\n/C6OUVGKSKimQH/czekA3BQQ1hxg+4VXsur+8SG3aUtKIbKoALmu2NsCACQxcikQCASCg8SWUTfS\n/YcvAfBYLCRYq9k9/AI6zP2dPziXwICiq+8ae2gaKRAIBAKBQNDMHM4jdG2AvQHpfUAbWZaXAn8D\nOb6/2bIsb/JXkiRpNpAPVKC4Cfm5W5Kk/yRJ+lySpNDKBmX92yVJWiFJ0oqCgoJw1QQ1+HWyIgRw\nOQxBDjtL50RTUqidaiYzqrtQfbh2YHu2rVMGunedfTGOpGT9TL0QlHXpzkhm0I59OGPimMuZrPZZ\nhe4++yL2DD+fBE8RK5bGseTPKKLjPIx5tpBnP1VCFKW2cXHfi4Uht52TZcLpkEiw59GVHcRRQQKl\nujrF3Y/FlppBVev2eAb35jNu4ed7PkJCEQfUJFAk5NfurFliVfMyyFGXf+d8vuJ6Ygn+DJ1xrYLy\nAAzIbORYbmCymid5NbeSQJGQt0MaFe071Tm9IJxACMBYox80f1/9O0YddomFM7XQTg5b09+m5LpG\n3o9SDsbH4rFaMUQo55bHFT50H0BVhURRXv1FFyv/0a6tjcbeuKNj671uZKEmxEvxRaa0VdV+7i2K\nGIo9MaXWOuHwRFjoyg66BoRGbLVjC1G5+znx41d1dd95onH7GHt9OuUl2ufXBsVV7bybLsDo0EKY\nnfzKE5gcdoxGmcAIgn98F0vePjP5pOHCzH5HGm8+qoiiFs+O4oZT23P9oPYs+FUfW+zDZ+sWThmd\noZ2GWjTNcP009pq013AS8jSDk5C4iwoEAoFAIDhScPuegf16nk0bQr8HBL6XA9hS08O+N897ZwqL\nnn+vydooEAgEAoGgaXDFahMaPRYrHouF6BzFrz8ZZTzgfcYA+pCiAoFAIBAIBEcSh7NIKCSSJHUF\negJtUYREwyRJOs1fLsvyOUAGitvvMF/2h0AXoC+KsOiNcNuXZfljWZb7y7LcPyWlcQOzRyPWqNqH\nCwuyNZGI2wVul9aR5rAHd6rFxbvoPyTYiaLtgj/x1lSghKA6JV1d3nzVreryllE3suS5d9l54ZW0\n8gl7SgpMVJUbOev4bXTu6WTIhZU8NmYNcVV5fDxnL2/+kM3kJVoIMLtNwumQSN23iVA44uLZcfHV\nanr/oDO4hS844xclzE95x65B6+y64hp1udAnigi0NP+WK9Xlzuzier4OuW85hDPHmtGPBuVVJ6ci\nBYwaB36kUmREUP2GYjTrz4efPgt2YfHjduvTHzydrBM2NEQkIjh82UknddloVs7TeYuUkGQzvlTE\negBV5RL7dpmwVUk8fm0G917chrx6iszKAs6bsSnvN6h91iJNFBqHYkpnq5JY/69e1PfiV9rAQGvb\nHmyNFQlZrCHzR44cBMBuOujyqyoaPrPWH7IPYBbn6sqsZZqDW/qKxZz06pMYTTIet7afTas0F6Kl\nnALAyn+U72n5PH1YxVD0e+tZ4rdvpuOsn4jO3qsr8zsZCWqn5v2xJuFERDV/V73CSUggEAgEBwGP\nR9FLfPLJoW6JQNAw/E5CZnPt9dLJ1aVNttDumaBMXMo668IDbdpRg3haFQgEAsHBwmvSfvA9Vise\ni5XELesAGM2HmHBxAb9hT0jClpx2qJopEAgEAoFA0KwcziKh/UC7gHRbX94lQKYsy5WyLFcCs8A3\neulDlmU7MAMlZBmyLOfJsuyRZdkLfAKcfBDaHxb5CJx/bzBox9S1d/Dgb2WZNnjvdkm4XVpZcb5S\ntnSONujsLnPy4HP7Oe+qcjVvAJmYHHbi92jOG+FwtNJcbgLDZvkdiFzRMapIyM/IkYMwGOH2J4t5\n8MmTGXnhAKJjZdLaujEY4L3f9gEw8dlktq+3sFd3emr8+Od/FPY5UU17IxTRjb/doURCboM2GP/A\npW1wu+DHTxRXoHJi6c7WOo8ZCBJQ7R1yDpWt2+vyck4+jezBw8OGG/NEWDhQzCb9Of7vfO273bjS\nwk2ntyN7t9JWl0PfHbhmiV6U8dHzSQfcHkH9aM57UywV6rI1RtnPlp3Kdfrdh614f3wyHjfcfnY7\nHru6Nf8b3o7ifOUceXBUa7atr1u8Vl6i/KQt73MZ0SkNE5dlD1I0pdtGXqO2dd9O/T7jEz10PMbF\nBdeV88D9WwCwJzXeSag2OpDFy69oAQVXLaxblBOOCBycy+xa63Se+QNGk95xJiZOcXpqy17u5R1d\n/bLi2j/ftgtm0+Pbzzn/unMY9OwDXHzpqRhcmnuQ0XXkiYSa4/qpy3DJG0Yl5CzXWwd563DtEggE\nAoGgKXjmGeX/7Q2I+CoQHA7UdBLy8+hb+bq0XEPKktt/cHM2SyAQCAQCQTPgDfjBd1useCIsGHwd\nYsfzHy4iaM9eZn82HUJMyBUIBAKBQCA4Ejicn3J+AW6QFAYCZbIs5wBZwBBJkkySJJmBIcAmSZJi\nJEnKAJAkyQScD2z2pTMCtnsJsB5Bk+KwaZ1lFfleLjX8xIJXPuGFSYrrhjNACOJ2S1j27lfTfqeY\n98ZpIWqmcC1XDzmGscdNUfNmc06921PWubvWtlaayCR+pzKw74qOZRpXB613zcAOXDW4CwAGr35Q\n1RKpH4zdRreg9Wf8uDAoz2uuIW4IYUfeKaOEEfyuph+/Tjtl/WHFaooKZk7+I2g7Jcf00qVlo5Hq\ntAxdXtLGtXSdMY3IogKS1/4LgLmJRUKmGjMwM9prqrAX70rD5ZR45KrWlBQa1HOjxwl2QlGYa2Lz\nmgNvk+DgEcr9JFAkJEUYiaMMo8Grc0L5+fPwjlPzf4kJW+anrNhIdJyHbtUbGhwGbMfFV/Ht/C2s\neOQFYnzX3OzvYmndwcWA4VVMycziuwkzuGZgB+48N5Nze20AwJ5Yd2itUHgtdZ/Tfdrm0HewDQCj\nqfECFClAvLLhhjFh6xkNXp2TUHKG8kVO4HHu4x3OSVlC285OvF7UEJDhiM3aFZR31WndmM7FPMGL\nGB1HnkioKVi9Wn/9LFoEv/8evn64syLwNxnA6xQiIYFAIBA0P6tWHeoWCASNo6aTUNv2ylNWVKz+\nGWo4cylv14nv5/zHt/O3kDPojIPZzCOaOqKdCwQCgUDQZASKhLzmCNyRoSfm2ZJSD1aTBAKBQCAQ\nCA46h0wkJEnSNGAp0F2SpH2SJN0qSdKdkiTd6asyE9gJbEdx//GPbP4A7ADWAWuBtbIs/wpEA79I\nkvQfsAbIByb61nlVkqR1vrIzgAea/wiPLmZ/F6su24vdxHtLOf2x2zF5FRsEl0MbyvS6ZOLXrcOK\nMvhdlKefrufBwEhmAJC4ZQPX3V/CxykPEk859UU2KMKjirYdcEdpD/pJG9Yo7YmO4Uz+CrmuwaON\n0A4adw/9X3uKwU+OIUqu0tXLQu/QM/+Nz6lqo88D8ETUI3yXJYLfuYCICGXWQs4epXeyNZqYavFz\n77BtpBaWzNEqMWgza0c/ypKn36KgTz8AjA47hb37sWf4BWqdiErtczz7jlGc/NJjmNyaQCdcGKSG\nYAwQCSWnu3G7Q/f43X1BW7avV8QGftcSPxJa+vk7m9bataV5ec2aBXl5h7oV9WfzqmABSQRO/nr/\nGwBko4nRfIgkydiqtXPDZA7/zdRHJFReYiQ+wYu1qKDBIiEkCY/Vimw0Ygg4Q2zVEkYjmCvLOfv2\nywBIW7mUHtM+BRovEnIHXGf/TPiIbZdcG1Tn1CfH8L/RSqhDe3X9e81rmsuY0UR6/93xMDkDTqew\nV181b92t9wEQaSvDXWjDHwkswqJs6Eq+BcCKHZdTYsK9WifJVWOUsGWnnK0IqQafW0VKazdVGW1D\ntu0OPuJlnqCyUIhWarJrF/TrBw8+qM+/4ILQ9QHkGl+22wVzfoghr0DvyCachAQCgUDQXLjd8Oef\nyvIpPn/fvn3D1xcIDkf8Im2zGaisZPkpd/HJNxvoNn+6WmftbQ/Rmw38NfF7XLHxeKwH/t4s0JBE\nwDGBQCA4YMSdtH74xw0Aio49gTVjHmf9zfew4frRunreJugjFwgEAoFAIDhcMdVdpXmQZTnYxkVf\nLgN3hcj3AHeEyM8DTgqzresb2UxBPSkp1E4lmzuCSJ8AaNArjwLfIhWWA8qgvamqkvKEDDqV7GIT\nvfj4hSSiA2boBQ7QR+XncN7oCoYvWAoFSt7KB56usz2Vbdqz48Ir2HTNbVSntlbz/357MqCIhMZx\nPzM5H4AFnB5yOx3n/KIu7xtyDtADgMJefUnaqLgkrR7zOLbUdLIHDw+5Da9ZE0yEEgKAFpLsj+e/\nZNhjt6j5FWjiq+zBw8g+ZSjdpk8FwBkTS02c8QnsPu9SSo45lv5vjGfniFFgMLDt0mvpMPc3AOa9\nPZm43Tvo/9YzAHT95RsK8szAVxzLelzRdYsx6sIUoX2Hp56Yzay5bZHl0LMDF86KBqDj7mWsQJuJ\nGUsF5YR3ljlacDphxAjo0QM2bTrUrakf/8xUzqHjO+WwdlcGXw5/DfeSKPJPVEaOvCYT7cnC7TGy\nYbn2wl1RquhW3/t1P1PebUVpoZFNq+r/Ql5WbCDJWo51TzG2RoYB8/Mqj/Aor1FSYMJuc9LVd90B\nGNwu2v89C6DR+wkU+eWefBr7hp5Lft+TGfz0fWp+/O7tnDznM+BVFs2KZtjIqhBbAq8H/P0bW/+L\n4Nnb01UXNwATyqjHmjsfQTYa1ftgxpK/Sd6whi1X3ETqqmVYVlfz9/x2rBzp4cNZ+/F6lAvWiIeK\nth2YsU8JyZa3T1MBJmcowsaIinLid2whqqQrsrcdhsCYkgHkowj+IrbtxnVch3p/Xi2BMJG/6uSp\nFxy8OM5C30E2IJJ33w2uM215Vr229cKYtJAuT3IziIQae7wCgUAgODIoKoLhw2HtWiU9aRKU+qI5\nr1lzyJp1VLNoWyF7S6oPdTNaJBv+swBpLNiWR/ysifT/9kMGG90Ypi4A7iTC4iV19TKg8eGGBQKB\nQCAQHB6Yq5X+tfU334NsNFLarSel3XoCcOzkDw9l0wQCgUAgEAgOGodzuDFBC8WJRRUJpW9RPOft\nbm1QWXK7cWIhLsAZ6JsPWpGU5uYmvtBtKzp7L+aKMmL37cJtjWRq5h62XHkLdSEbjSx78jXKOx2D\nO0D0UtKjDwDuyGgGsoz5DKGaSE5HHyYsa+i5/PTbcl3e4PH3qstGu01d3nTDaHafe0nYtnjN2rGH\nEwl5fCHJznjsVm57skjN/4obAMgeOASvOUI3g8Fj1TtFBFLWpTtzP/iWvcMVEZQ7UhHiVKW1JnfA\n6Wy98mZd/YHLJvM8T/ErF1KV3ibsduuLKUJTAw36/V0cdkNYJ5R//1acnjrt+VeX70Ifs8zZlNGJ\nWtDgtlMx42Lz5ubfV1MN+i+fp3ynf+3qgxeJM9xzcUdFq+Vek1m9/uf/GnB9FipKl8gYL3c/V8Tt\nT2nXQmqb0KKT9cstrFqkXBflxUZ6blEcwhrr8OPnZLTrf/MaC1JADKh+776oLgeGM2wIpV20kIj+\nz2bPOSOZmrmHX7+dp5ZFe5QwbVvWWtXQjH5mfxfDtQPbc/3g9mxaZWHfLhPP3p4OwIoFUcQlKAKe\nHxgFwI6LrtKtnzPoDNbd9gDO+AQyx73GPtoBiiPTr1/F4vUqjl4SYE8IPs47xhXR4wQ7Pframbj0\nDM6/9mzaLvsb2e3ViYRsCcnk9h+kW7fPay/W3FyLp7GXz4vjFFHPmiWh7+nJ6W5kmbB/gcQnekJu\nQ4QbEwgEAkFTk5ysCYQAbroJ3nhDSy9bdtCbdNTjleVanxnEX/g/f8hdk9eB0a68eEpeLwafu22H\nbk7SVyw+ZN/t0YAINyYQCASCg0VERRkAzpi4oDKPyRyUJxAIBAKBQHAkcsichI5mjrTZ96GOxy8S\n8jtYSMWVapnkcuPyGjGjCW384bWiUGY+FvY+gcqMdnSc8wuXn3UcAAV9Tmy6NhuNuCKjGGL7R837\nbu4GEres58wxV1LRoQv25DTWjHmMvh+8otZZzCDmfPg9pueq2TniMjLHv1nnvrxGZWB/ww1jKD3m\n2NB1AkKStUrSBnn9YdfKO3RR89wWKyaHvUG9aM64VgDk+ZxcAKYu3Y25ohyD10P7v37lqdfHA7Cs\n9wn13m44AsONpaHEycreY6ZLL2fYdRIo0aVrioS2rbdw7IlNqRRqGQRoU1oMQy+qZPEPBpJRRD7t\nFsymvH1ntVw2GolBuSekttEOsKRAuVb8Ya5SMjwkpLipKjdgqwqtaX35XsWZ5rN5eykvkEklHyBs\nPPH68M8rHzPksdvVtKmiUp1lFEjWGechmxr3M+qODnYC8+MK6KTo9fVEQJnF9PGLiYx9p0Db/zbt\nvvHv/CidkMrllLBYZS5PnMnwYkV0VJtLmGzUH8c3HyRw0Y1lGPGQM+B0kGVuSfyWz4uvVOucfr7y\nmXx78pP0WLMFUFyHvB5ZFVXlkkZGSS6sADnA+NpGeJGjQE9DBkzS24W+YSjhxsTIi0AgEAgOHosW\nwYABh7oVRxfeI62j4SDi8b2CD33yDk4o/QOAHt98hgy8wqPcuP7LQ9c4gUAgEAjqicVspGNS4/vD\njhasHZRJclE9ugV9XkUXXkrqz9+y6q9lR9xnmRwT7DwtEAgEAoHg6EWIhAQNwuuFxbOjOOWsavxj\n415fh5oZJy6UQesSEnx5yqC1XKYJgiSXC4fbTGKASMiPX1zkMVtYM+YxSrv2oO+HryplRfmNbvfM\nybNwxCfq8tyR0Zhtmh27OzqG/H4Dmff21+T3U3q0N117ByVdeyIbTZzw3ksM2raU3HbZGO12PJb6\nDXLn9zuFhS99SPagM8LWCXQbsm8uBFLV9NJxb7DnzAvU9K/fL8BSWkRDqGzbgbnvTKHg+P5apiTh\nilPCeQV+Nl5zRM3VG4wpYBMFvjBz429JZ0pmFq07uMjeEzwrIwn9MY1gJr9wsZr2aa3I2mbGYZfo\n1ie84OhI4mCKhJpqWMHtgFaU6vKWPaGJ7bwmM9EoApPifM0dp6TQRITk4rpBHdh91kVUtOvI6uN2\nMHTxRHaXtqW0yECrpNCOKN9+2IoqW4QqSpMNjTfKc8Qr96+vn5nBdc9czMO8zrFffRBUz2Q7sHAO\nMyf/gTMuOKReqFCCAAnJepcYg0n7xhw2Sb1GAH6fogiNktij5tUWS90bQuz0y5e++0NcK6Lyc7ik\neDKfo4iEvn7jT64ZeA4lXXuSsF2Lg2fEg6m8EqdNRqpxRhnRTmYhEqo/LqfEtvURdOjmpLoy/DUA\nUF4S+rxXnISMIcsEAoFAIGgMxxwDW7cqy337BocYe/hheOihg98ugaAxuH1OQrGlubp8CXiU19T0\n9hrOnIKmQ8jZBQKB4MCJjzQzqOuBOWsfFYx/BE7qTY+RI9F1pgFMnQRL76DfGScfkqYJBAKBQCAQ\nHCxEuDFBg1i1MJKJzyYz4wvf4LFdUjvUMshR6/1ovIKinsepIiFdqCiPF5vHQqTBzir0rjVRVLP7\nrIvIHPc61Rlt2XzVrWrZ/DcnNbrdpd16YUtN1+V5rKEHzHMHnKYKZWSjkZxBZ5A74DTW/e9+AI6f\n+BoRFWU4Y4MtSUMhG43sHTai1vBg1uJCdfnVj/vpynadP0o3uG9LTQ/rSFQbeSefGlYkEChSagoi\nrIo4YDCLuJOJujKXK3T3X0d2q8txxgqmcbWuvLpSoijPyNjrM3jmtnSWzWvZIoOtW2HLltBl2dnK\n7GtomU5CmX9FkYt2vXmNRgqOP0lNuyMjVSehFQu0WTkF2SYiZUU81HHOL/T5/B06zP0dya4Iwjb8\nqz9/AydL5+9XRC6JFAOw94zzGt1+t+9abRtdhMsYwTheCFlv+eMvN3ofAKXdelKd1joov+Z16hfX\nWKP0ohuvW7uWHHYJoylY5uW/B899b2qtbZGNJmQkLj1uRVCZtbiA1LX/0ob9at5Fz1wHoBMIKW1V\nnIR25AZ3SnkDRCp2wguWWipyI2bvT5qk/I+JCx0mDKC0yMgz/0vn5iHtuev8tqowNxSBortA3E6Y\nOTU2bNjHxiC3pLiNAoFAIGhyogImVgc6Bo0adfDbIlAQRkKNx+XwhRuj9pevnIFDDkZzBAKBQCAQ\nNCdRUXDZZcECIQCrFc4IP9FXIBAIBAKB4EhBiIQEDaK0SHl4Li024HbDLUPbMfktvWsQwGtnT2b2\nF7+y9IV3AK3TDQAZKj2RWK0eTkA/5XQV/Vjy/LtUtVZsP70WK9XJqWy87k7KO3Zt0mNx1yLaCYUt\nSXHE6fLb9xg8bkoaIdQJR2AoNSsHP6RWU4uEUhNs/MBl/MqFRFNN59RCJIPSa+1yQs9+djr1cDDk\nAkUocjHTGc5c/id9wqVX5DCv9SiisDGNq7jprmwAbJUGKsu1W1ZhTuON0A6Hwe3u3aFHD9i1C1y+\nSycvD0pLldnYp50G+fmweXP4baxZA++8A3b7wWlzfbHZjDpBiDsyWhczyZ6YqnMaiqNMXS6jVdD2\nJnETAF+9maDLdwWYSbl9n2GsqYqpS3fjjWi8ha7HJ9KxFhVg8rh0ZRuv1cKQVae3afQ+6mLNnY+o\ny/tpg9nsDXKJ8QSIRZbOicYY4pLIoj0VbTuQ139wrfvzOwk9dNpMOvXQ34Mkr5ftF1+tu1/HVhQQ\nCiMePBjBWfsAy5bk/rWWH+ls2gQXXgg336ykpRBPY7voyLB+u4LyK0rDP7o57KHLvv2pE1PeSeDH\nT4OdqwQCgUAgaAzeAGO7igptOerIisrQojgc3nFaIqVFBt4bpwjca4bAronfcVTQDAgrIYFAIBAI\nBAKBQCAQCA4aQiQkaBBOu9JzExEhs3mVMgj/94wYQAsrBXBcO0XYYTAr9V1OrcdHliHfnUxiTHCo\nnpcZG5Q3/bd/WXN3cP6BEhhepyo1o8769kTt+Kb/soysgBBgB0oT+aP1AAAgAElEQVRFhy58P+c/\nNX0Sy3mJsWy75Nom20dteE0HHmJMvz0zl/ETCT4hyMC225C9Ev9lWiktNGGOkHlhUh63P1XMrM9/\nZTqXYMTLJ/Lt/Phda07c+ycAV/Etpw9QwkdVVepvV9IR0onYuTOMHq0IhdLT4fTTocCnv+jYMfzk\nFacTTjgB7rsPIg9zUyVXVLQu7bFaiR6gOejUDDVXk9NYCECfgXo1VKAgoqRQESVFxcoHfHK4I5XR\nrQETHg8qWzv6MQByTjr1gPZRFxtvupupSxSBSBr5dGxbga1Kfw14PfrjLMwNngFVSiu8odRDNfCa\nFKFgJHbadtYLo4p69WX52AmUdO3JEx0+ZswzhaE2AWgioQ4/f6fLP++qcl16TOGrdbappdGQYbkx\nY+C337R0Ran+u7s243c6sodji5cFrVtaHD5sWKAgtw//BZV7w0cqEwgEAoGgQQT+pvTvD7f7dNR+\nJ6FTm/dRSRAC4STUOPyOpADJ6J9zi3odr0vbUvTuxAKBQCAQCAQCgUAgEAgELREhEhI0CL/YJ8Iq\nM+mNRF1ZOYpDwbvcjdvnxGG0KIOZzoCBS68H7LKVqEjFBmMK19AmoYQSWhE3vGNzH4LK7nMuAaAy\nvS2zJs+qs77fSQjAlpLW5O1xxWoOD8sZwFgmYHA6a1mj6WhqJ6FAARZArFOZkfnK/akA/JcZSbu5\nvwNg8NnBlHbqFnJbV90wCABblYGSAm1w/EAGuw91B7o/hFjbtsr/DRug2qeZW7dOq2ezwWCfAUw/\nfRQ6VUgUyFtv1R3iYcYMOPdcfd7tt8NJJ0F1ddN9MBcxQ13OHP9GULkrOYmxUUp+PqlUEKOWTZ+x\nlIq2HdS0BJxoXUtFDSedwNBJ+3cpQreo+ANXj3kCXIjK23cGYO+Qc/jtm7nIJhO/T53DwgkTw63e\ndBgMLHj1UwAijXYcdok1S6xcO7A9f/4Qw+LZevHVT5/qXZiOYQvP8rQaPrE2ZJ/FssHtYuFM7bt4\nlvGsHa24Grkjo7gn5Stuz3lFLd828hpAuT/O/myGEm4MA060fUqSrIYgFCjU1LGZI7TP5+Wvc3hs\nxF8ARBD8G+AX64bCEfBbG01VUHlUtPgeBAKBQKAnOxteeaXhz8der/LcuXSpIlqfOFEJl3vBBTBk\nSOjoDYLm5VC/47RUAp/Llr/yLr9P+VNNb7niZnV55f3jqWjf6WA27ahCElZCAoFAIBAIBAKBQCAQ\nHDSESEjQIPxinwiLTO+TFFePmFjFdSLJN+vuRFaqoX4MEUr9P7f0Vrdhtys9xtYIRSlxDdNYnzCQ\nVpRRFkYo0hxsu+wGtoy6kXnvTcVZD9twr0/41JwsfOlDXdrkODhxpOQmtuWRa4qEHMVBdU57cgwd\nZk/H4IsTVV7ju/f6RhYsvvBrLqfEaw+mavtowY4Ypb5IW48+qgykOBzKXyieegqG9soj2qyvkJ+v\nr3fXXfDgg/Djj/qQD++9pziWfOg7tUaOhNmz9fv75BNYsQL2Zx34T4J/cOIEVvPbtDmsvmsseScO\nCqpnT0phv00R3lURQwxVvHzMO7xoGkd1Wmt+/eEfVt43Tq3f2b6Fojz9eaULY+jDktD4MHR+HAlJ\nqlAosjCfHRdewcJXPlZDHpZ1PgZ3dOwB76c+VPrEUiaviy1rrOo18OXriWHX+eH6d5i6aCdb6MEQ\n/qnXfvxuQ62X/E3/vsq9/Oaef/KE9XVkn8tQVF426SsWc/xHr6vrFffoA8D+QcMoOrYvBrx4MOpE\nQrIsYTgKBgobMjAXeMt9ZJydzj21C9JkktUbXIQn+DfA4wl/vw4U5MohBlrsNjH4IhAIBAI9t98O\njz+uiH0agtcLBgMMHKj8lyRF3O7/jVuwoOnbKqgdoRFqHG6XctLO4lycsfGUdenOigeeIfOJV1RH\n1OJjerHlqlsPZTMFAoFAIBAIBAKBQCAQCJqMAx9NFRxVOAIcDCKjlUHMygplAPk5xtOLjZxCJpv3\nHwuAZFZGhl1e7VSzO3ziD4uHXedeQqc/fqbVzq2AEoboYOGxWln58HMNWmffqWdSndp8FuN7h41g\n/hufM/ShWwDYOurGZttXIObqSgCyBw5pku15IhSBQGmX7riiYnDsD+2INPjp+8h8Ugk75KwhupCN\nJvB4MPi6u3/+LF5X7pX1IewaonPyyjB7Q66azs4y4rBLdDrGXf+NHAD7dhuBFPZVl1Jit1JcYeTP\n/0qA1KC6Owr3Y9y4CbulFa9/2YkIC3Tv42LlvxFAIglJHkqKjHzwgbbOLfdV8r+HKrFVS9xzj+Z6\nZe1YAL6wgLfcX0m/UxxYo2QgGYB33jBzx9PKQE9j8SoGYbjj4ynvdAzlnY4JWc+emMxl8g98xQ1q\n3v8iJhEdt4+fuQ0AZ5zmjJNIMdUBEateuT+Fjt2Dz6ukdDe5QbkNRJLIO/EUWi+dj7m6Erfl0MVz\ns7dSxECrdrattd5p51WycJbiAHTc5HfJGqA5n+WdeErdO/J96SnrVpJJGs9/kMXl877Du09zGYvO\nz9GtsnPEKHJPPpXq5FT2nHMxoIUbCxQJAURGKb8Xp5xdxdI/lcEWo60ajy+029FGoElcbraBWx4r\n4rFrlLCXBiNIPqs0E8H3JE8ttymnXeKUs6v4rGAUK1Yns4yBuvImDTcmRiIFAoHgiGD/fuX/jTfC\ntm31X88vEgpi/XoWLFAmiGRmKiIiwcFBFlZCjcIvEoqlgirfRJWtVyoOQq2XzAP07yWC5uFICScu\nEAgEAoFAIBAIBAJBS0CIhA4BLbnvLmLrbuA4ts2z0667F9CEG4aUGIYWKFNGJY+iFJDNwadYRaUy\n6GyIMrP0mf+j0x8/q2Vu6+E9YPzP6581+z5c0XHqckHfk5p9fwC2JEWcknvS4CbZnsfqE1XIMq7o\nGDzFNl35OjRnqU4zfwTAFRunq+M1mTA6w9jrAN992IrvPtQ6a1/8MoeO3V31bmNRpdPfRG4Z0R6A\nKZlZ9V7/QNizT3GpkSOceDDjdBrJLwk98m+1lmHAS7EjlkduSgLgw1n7WL5E+YxLioItWiqqZAor\nnOzZpg8jd8sITTgydWIMUyfG6MoXzY5i24YMXv8uB0kK7qjduSmCr95M4Il388OGj1JFCNbaQ9jZ\nk1K4iF+Z1+M6em+eDYClpAiPRQv1FRhyLIpq1SXF7VZC1v2XGSzeMaU2jcNP9sChtF46HwCD7352\nKKjL5exWPuUOPiKz7VMsRBHqGPBiqq7CFRnFjouvZtX94xu0TyNeRi2fQITHgccUOlSZ12BQw8hN\n/+3fgHU9uIigGL3T0dmXV+CwS1xwXTlpezfy76YMLjv3BL5bsKVBbTuckRugmlm0SFv2eKBtZxeR\n0V5sVQaMJhnJ96BgkoOFcKWF4W2ZPG6J+AQPiYWlXM8fXM/XpJFLPopY0FuLC5FAIBAIDj0bs8vr\nrtTEZHSIZM0aM1l7ZTZmV9S9gg+7M5oKh5eN2dpzfuTypXS65Fz8StLFq6uJa39wRPgCsLkO3TNr\nS6SyzMDeHWb27VTeWyJwUmnSv8OYq5TJNEIk1PyIp1SBQCAQCAQCgUAgEAgOHkIkJKg3741LYulK\nRUyxdns67VP1g7tmjzaY6TUrnWuy0chFzOAX3+A1wLzFbQDYZOtC5xr7cFsPnWPH4UJVWsZB32dJ\njz78Nm0O5R2bJtybX+wleTyUdunO2MyX+YC7APiN8+nNBrVu2uplALhiajgJNTA+0bJ5UXTsXtbg\ntv7x7cEJGxXI83cqA/bRcV5MZnC7JVyu0N2iidYq1tGHXLTzYvR5tbvKRFi9/PN7NB+/kNTgtuXt\nMzP2+nT27Yhg8pIs3Qzxr95MYNs6C7u3mklI9mC2yLRKUlRBOzZG0KmHE3e1MjgRk7ev1v3YEhXB\n0hmbp6h5sfuzVOccgMLjT2L+659jslUTNa4Eh8OALENFSehzQ0ZiZeLTDT7mUGy94ib6v/UMABHl\nJU2yzcYg+2Yzf8FN3MwkAB5+I5/XH1KEfb3/n73zDo+iavvwvX03PZBA6L1jQYpg74BYUVGxiwVf\n1NeKvffeu/iKBXsDBPwEkd4RFZAqkNBDets+3x+zO7OT3U0joYTnvq5cmTnnzJkzu9P2nN/5Payk\nP0vBtBBC91kPDqzuCqzuCvx1dOrp/fGbbDx7hHYvB1h15X/o9YlqWTX1s19ibrfmihvgU7iBD7S0\n868twmaH4aPUgU+T1YwfK1aPG4u7QhcVHkKcey789JO6POQcVdxosaoDqhYLmtrOpkQLH99+NIO3\nH4UhFxdzxe2FhrxAIORE5NcHZCPdiOrVSUgQBEGod1bkFFZfqJ5JbhEE0ujc21Or/bt9LgorvIZt\nTnzxeUOZ9TsqaJFTVl9NFYR65cbBxt9UdrwEQ2GzzSZIdFhxmdX3M1+r1iQ7pfusIXHaDoH4xIIg\nCIIgCIIgCIJwgCC9HEJMPn0ljX4nVdCjj+7ksuDXRGOhonLDqsOtDgBXNMnk71G3AaobTALGAfZW\n6YVsz03ivAGr8KE7hWw79hR2DDqpHo/i4KQis+HCmVVFvLBQdSEs9jIpCiVtOtKTbcx75FU2Dx3O\nsIFTYm7jTTQ6CUVOJXyPG7iR9wE48pgK/lrkNDhiJCQF8VTULUbWohm6iGLeLwm8/UgGNz+xh0Gn\nl1exVf1gsYDJpJC73cpLd2VG5ac1DWD2esglOi/MuJk5vPdEUxb/ph9HMGCqk0AozNaNqnvMFce0\n5ZYn9zDwtHKCQVj/t+ryEwyauG24KvY76rhyhl9XxMPXZtHjKDcmjyoWfJr7eZf4A03upvoxlbRu\nT/LWzQA4C/MN5bYfdyrJ2ZtI4BeCQTMBPxRUclKZwlDanpoKM9QwZvWCycSKm8Zy5DvPYy+t+az6\nhmIkEzSR0GFHu8ls4Sd3hxUbqojEGXBzS/8p/LkkkR78g+nhWwFqJRJaedUYeo9/S1vvNOlrQ74z\nL1dbLuoQW1CYVxi9v9QmlWa1W83sQr3PHfHuC6y4aSxdvx3P2otHoVgP4teSaoyEIsMi9uunioR8\nPlifG+CP7JA4CDCZFTJWLgfAqsR3X5j2VUqUSCgYMGGxKJhFJCQIgiDUkPAjY/UyJy/cmcndL+VW\nvUGIYMCE2Wx8+LWa95thfcNKO8cMLuNgfrwLhw52vAQt6sma6LBy9hEtoedoCBbR6fbb6ZSYWE0N\ngiAIgiAIgiAIgiAIBwfSXSdE4ferg4/TvkoxhF9q0dbHjmzdVSJ51Wqgj7auVKiD1ctvewh/ohrG\nSLFYmcGphvpLS9SR0KSWNgqA5bfcT/tffmTOs+8RtMUObbM3NE9x0K9dk+oLHkD4jz8B3znnMeyw\n+nUVys4v5+9ttXfbqS1hZxBTMEhez8MB6DDtBzYPHY7PlYCtIlqAEykaAfjzxrvo/6IaJulyPtNE\nQoEiN2aTg2BIRXTpzQVM+yoZT0XdDMrLinVx0duPqAKTNx/KYNDpDR96rGvWLtZ2dTBnCuTuUG/H\nxw4pY940tQP6P4/tweJ18y0XMtN0Cpsuv4pJn6oh/rr3cdO5lxenS+G/T+8BVMv8Gwe35ufPdcHV\n+/+XQ1AxMXpw1e5D8XjjwQwGnpbN6qV6GLDI6FvL5yaQ86963f6z3Mkpp5eyehXM4FTW813cektb\n6O0py2qpiYRiUZHRDBdqKAuP20RFufG7TqCcrO3bAXCn110cVZn1wy/nsMlfkPz0E/V+LdaEORty\nKa7ws+3YU7RBtw7dPVit+vmSjCpgchTs4eqB8zhqydOGOgIOZ43399dNY/GmpHLUG0/HzP/n8hvp\n9PM36krlWHQhVi6J3l/z1kahS3lALVOOi+5fjsNeXETHKd9i9vlYP/wKfCnqOZ64PQeLx01xHEHS\nwUTv3rBqFUyeDMOG6QOylgi9W0JSkKJ8C8GgCVu56rrQZPuGuHUmJEUrfsJOQuZAHJFQpXBjORtt\nfPV2Grc+tSduCMF4HMSRUwVBEIQIAhFulivmufC4TThq8ExQFLCXFZO4LRtMUNayLbuPHECzFYu1\nMjN+SGb9SgfPfLqzQdouNG7KS00U5VtosY9C1tnxRgvWbTZ48MF9sn9BEARBEARBEARBEIR9hYiE\nhCjcZbEdWSoPSHqx04PV/ENPAErbdoAtUNClh1YmaLHiw2bYrqTMjpkA1kzVcWLNZTey5rIb6/MQ\nDFgtZlITbNUXPJCYPQsrUN9BeFyl+8bC25OaDkDOiYMp7NqLHf2Pw1peCoDF6425zZ7euuBs/Xkj\nyT71LE0kFBaIAPRaNY31nIc/9Ok4nAoOp4LHXTeRUGlx3RyI9gaHM8jN7pcZMfRuNn+xDUjX8gad\nrouEevXzYFnj4Sx+4iz7Lzx/2kWaSOjul3NxuowDOFZ79IBOYooCKHTq6WHjakdUfpizryyiXRcf\nbz4U24nH49Y/p8r3iNzt+qPE7zPRkm30Zynr4+4Ngg4n+d1602TtSrKWzmfCwi2MHNguZll/QqIm\nhikvMeMpN+7fip/EndvUtjWJ77pUW3zJqfg2biJpP1nfW0JCnFkvjOOS4zuz6OI7WHPTbYYyXUKf\ncsqWjRR26RlVh9njiUqrijWX3UjTf/6m3fRJUXlhsc6uPgPjbr9np/G1YvQjezjsaLexzW3y+eUv\nGMNb/I9rsZWqLnRHvvsCR777AhMWbgHg3OHHAWjrBzoKsGgRHHEEOJ2wcye0aAHjxqkCIYCzzlIH\nVf3+sJOYug7qNT3vlwSaZAawF6sOQWGBT1rTAIV5xvPw6FONYktFCTsJxQ83lr9br2Ptn3Yev1F1\ndFq/yk6vvh4UBfJzLTRtFmDFfCcv3KGGtfvo9xx8HhNJqWJFJAiC0Njw+43v0Ov/ttO7f/XvD8Eg\ntJ81hXNnXQ/AD5MWU94sWlSdvb7+J4EIhwav3pvJqqVOPpmbjaWOPVcPXJXF5rV2PluQjckEG1fZ\nSUwOsmRW9C9tNdzYQdZvIAiCIAiCIAiCIAiCUAdEJLQfUA7g+fc7sq0EA7HzfBGzTF02LwVp7XHk\n6h3IPca058eu8ynPaqWlKRYLr3IbVzNeSyuqcJFGIb60tPo/AOGAwN00k0lf/05ZC/Vc8CUm4crb\nDcEg5oCf1ZfdSPZpZ1HWvCUZK5dT0rYj5VmtmPjtbCweNyWt2xF0OPlh4kIyVv7B8fffxIlHbWF3\nrot3c0bzJZdq+7LZFRwupc5OQq06+Cgu2LcikEDApIWJOufqM7iHlVpen+njgbu5g5cYdvE7JO3Y\nCkDQaqN9Nx9dDvNQlG8m2VfIRSerLk1/3nAnq669FZst/r3luDPL2LjawaDTy7TQgS99vZ2iAjOP\n35hF9yM9WK3G7Vu09dG6kw9FgZfH6uKbV+6NH9Jr/doEMtnK0jsfq/ZzsLgrqi0TplVmKeTC1C9T\n+OXrZEOeDR/Ogjygfp2EIK5hzj5B27fZjLtJBk1LthEet3huwg7yx05m4NaFAGQtW4ASY1CjLuG7\nIgVCwUojMt//vBRfYnLlTTRufz6XV0Lnyj2v7ubwge6oMhlN1OfGx1zDm9yMORDnoRPC7PM2iMtc\nfZO9xcTAgXDttaowaPVqNX3UqOiyfr86MR30d4Lmrf0MH1VM6sa12nWvCXxMxmszPdOPUkmvE352\nmy0KZr9PS7egf75/LXSxeZ2N9l19mkAIoKTAwor5TgrzLHzwVFMeeX+nJhACGHtJC/bstBrcBQVB\nEITGQeXH8DO3NGf8nGyq00rYCwsxoz+Mzj13IOZQXMsHeJKn0N1XIkNuCkJNWbNCneBQXGAhPbPq\n98V4bF6rvkOWFZtZPNPFuGfj/1Zw4iZo2T+TAwRBEARBEARBEARBEPYl+95CQzjg2LjKTsEeM34/\n3DWipWFgMMwHTzcxzAL1B83MyO3PdlqSjOoCodhtBoEQgC8pmSv5hCx2cCFqmJoSXwJNyMebmo7Q\neClp20Eb2PclJpP27zqa/bEIgKDdTn6Pw/E0yWDbCWdQ3L4zAKWt21HUqRvBUIikimYtKGnTHoDH\nL5rGe6O/IzV0voXp1MtLSaGZ5XMT6tTOf5bHDseUu6PhOogDfn3w324zdnh3n/oFAcy8yF2kbtnI\nzv6qm0pezyMAGPvKbp76ZCdN1unCoiPefwmA1otnxt1nOMxQhn8Xv4x9mzcmbiOrrZ9uR3j57Zbn\nuWLV07TtogoLrrorn1e/34bDqRDwQYTeAAAlGH+UJy/PTlPy8LkSq/0cLCGXm1nPfwDA9Le+ZNr/\noh1sAFKaq/8rC4QATXAFuotVY8AUMZrmbpKJMy+Xfi88yMiB7Th10Ts8u/UGIr+JFotmA7B94Ims\nvehq/vjPvWw8e8RetWHSN78b1t1NMwk444cw63eCLvxS4mjW7BGbL6E/rebNiCrjyt2lLTvzcmvW\n2P1MkWr+w/Ll4HbDa69Fl+nWDaZMgeeeU8tw//04/15hKNMxFNJt63GnafeJhETjh2k2qw4OkYQH\neRMLd5O6ZaOW7sUosHrgymiXhzcezOCFO5rxwVPqwNm//xi3iXSICgbgsoFtGXGuzLQXBEFoDPh9\n0e91y2bXwM/UHzCIhMwRD6YneYhfPviBkbcUANRZzC8c2qSkqy83hXl167aaM0X/PbJ9i5UNK6Nd\nVZ/8eIe2nExJTNG9IAiCIAiCIAiCIAhCY0NEQgIPj8rirhEt8XvVztvcHdHOE79PTNKWhzEZX0At\ns5vm7KAFJSTFnHXnS0zGBOygJc9wn5aeTgGeFHES2tfsrxm8/kT1/DltzCUAdPtyXM23DYlNbBXl\nJOTuBMCLjWtPWUynnh5atvORv7v2bimv3pvBxE9S4uZv/dfGy2Mz2Lqpfg3XgkFQFBNW/Kz4zz0E\ns4yzWa34MaNo4o81l44ir8fhmiNMQpJCQqKCqdK07+Tsfzn5jqsNafe+tpv0tStx5O/BWZwPQPeZ\n33LG82No0kzf/uQ37uGwca/Rds9Kvp22gvOOXUNr5y4sNoXlcxNY91fsMGU3P7EnKs3rtdCUPJQa\nzMJd8OirbB94ItuPORmA3X0Hkd/j8JhlXZVEEkOYqi1HioQw1+9jzcSBMajlSU2n1fyZdP3uUwD6\nvvZE3LILHn6ZZXc+xj9X3oQvObXW+1px01gAfv78/yhr2abW2/fsq7oHxRMJ+dq11JZP5ndmcAom\nFH7mTC09a/EcbTl184Zat2F/8Ee2qhL6808FlwsmTowuk1/k55FnIxy0nnmGjmeeQpvfppDx5xJa\nzf6VHhNU0dzKUf/VRELJaQGuuL1A20wVCRnPzbAQsOd3HwHgSUmjqF0nNtI5qh2XDWxb5bGYLdC2\nS+zQkItnqoLM2b9b8PliFhEEQRAOIgL+6HedBdOrF3sHMWsioeyThkTlnzZ6BK5ENb8iTjhrQaiK\n1HT1/CnKr/3kjT/mOXn3cf131mM3ZDFrcpKhzPFnltKhu+rUCuDAQ7AOLpyCIAiCIAiCIAiCIAgH\nG9JbJwDgLjez6LfqnVju5RkGsNiQlkg5SZQRjDXrzmTi3zMvUBcjwqwtYQABZw1mqAqNAl+isUPW\nFC+mXQwCdtXRwuz10vfVxwGw4WfUCQt4/KNdREZD8npi1RCbJb8n8NXbulDthS+3A/qM1X+WO1k2\nO4GPnmtS80prQO52tcEKJiqaZJKcYByIP4y/DevlzVoQtFox+f2GdEehKvrxudTr9uwRJxvyTzy7\nlGObr2ToVcO44My+vDauN4NHlPAgTwKQsGt7lIrjzCuGcualp3Pe+cdy/tkD2L1NbevTN6s2PjeY\n3jeUT2vi5/xRRQB0O0IPK/UT59ZIJJR7ZH9+f/WTGs3YdSXpbR101E6mciZpqKIJg0ioEWGOUPW1\niBDNVMad3pR5T7yhrQdtezcDevVVY5iwcAtFnbrVafuwAC21SezrXGluFIi+xn8BOIufuYdnARj0\nxJ38xsk8wqOcfNuVdWrHvsYXclBQlPjCstydVlb/YRTdmYJBjr//Js648UJOHHudlu5JTScYek1L\nSgky4KRSLc9sUaJCg4Z1g/aAei3u7nM0v735RZ2OxV1upqwk9iui2axfi2VldapeEARBOIDw+6Bp\nlp//zdJDSi6ZWf3vwkiRUKRD7M6+gwAwB/w4E9RnRkXZgSG6Fg4uktLUl5uSwtqLhF68M9oduTKj\nH1Z/T731n4kooakB4fdoCY8nCIIgCIIgCIIgCEJjRkRCgsb7TzaNSqvsBJFOgWFA/i8O08vGEQVU\nZGYBRpGQmiA9b4cKthJjiLDi9l1qvG04ZNnRz95rSDdHxMAadplav6ei9re05LQA16R+yYXjbuLz\nhdk89K4a5kgbzIjjhlJXxj2rio7mcDzujGYEXS5+aH8DR3TbzUdcE+VbU56ZRdBqw+z3M3JgO0YO\nbAeAMyQSslWUG8ovoR9pCRWMGF1oCNPkws24beeRQgkAJ91xNSMHtWf44CMN27sKVHcgcyBAYuFu\nQ16Cybivx8a05PtxaXw/cTHv/TlYSx/DWyjm+g3XZknShS9dm6nf0RCmAdCUPAC+mf539IZ7yf68\nTdVk13+MuY9JX83EnaaL2WIKNvchV92Zz5jH99Che2zxls1hvKic6AKz57lHO8dP5Tce5xHKSNDS\nDmRqeq6UlxrvU2suGcX68y+PKlfWsg25Kepx95z7LaPP7aDlxQo3FnYSCrsPFbftiFKNs9a433Ji\nOoJtXGUnb6eVpFSjEklRoLRYr7NyGwRBEIS6o8Sz4GtgPG4zTlcQuwPe+2VrjbcLKhEioQjnwkgX\nwrCTUFmpdDsItcduV68JX2xzwxphsVZ/XSXt0M97X2J0aGNBEARBEARBEARBEITGhvTWHeJU1xe9\nernR8WAPGdoAJEAzdBGBYoltzV2Roc7iixQJDU2YUdumCvXA/tI7ZP611LA+/e0va7xtPFeUwz54\nhVNuHskJd1/HicvU8DruitofYUmhhcyiLbT/VY0NZLWGO8VErnsAACAASURBVKNDde3Fh+b3Q3mp\nieICMx63ifzdFnZuVa8TJ24qmmbid7o4yTKbl8ZM5xo+jqoj4ErAXlJM8z8WamlHP3EXfV95LOY+\n+7GMH574kk47lmnh3cK0mvebtpy2ca3ajqIC4hEe+AnzcFDfZ2fWYw5d0y3nzyQfXaRyLR+xu8+A\nuPXWhUCCPqP9/GkPA/A+N7CY/qx79CGmfjwZX1L88HEHI5GikxlvfK4tT/l0mrbsbpKBLyWV0lZ6\n+ChlP4dJSEhSOOaM8rj59koioW8YUWV9uwk9Q/wHtmNUrFtFj6PcMVJVmqOGTyzo2gt3k4yYZfq0\n2gLAFcqnWNEFO6YY4cbCTkJW/Gw75mT+ufxGglYr3fknqt5bn8rl84XZOBMUBp1ezms/buONidv4\nfKHqIrF0lnq9lRYZxX4BP3g90SKhbdtgt1FTKAiCIBwkuMtNOFzqszkptebqzwBmKpplkXPiYP4Z\neT1znnqb9edfzpK7VdfKjWddpNX36HVZ9d9wodFjCf0M9Hrq/oMsVji9yhhcbmUikyAIgiAIgiAI\ngiAIhwAiEjrECVQT9cldZjYIifrwByXos+uCvXV3h+I2HYjFrr7HsKdXH7YedoyW1jFpe90aXAek\nm2//M/+x17Tlid/Oxl+LGZq+hKSY6Ym7tpO1dB5NV62g3Zr5QM2dhHZvNw58fx0SKSRv2UjHmT8B\nMGeKut+adCzH46ahrbn+tDbcNLQ1912exS3ntCJvpyrg6MMfuJuoIqG0jWtJ3bQ+avvS0Ezs9A3G\nQf5OP3+jLc9/5JWo7WzlZQy+7rw6tztMZfevNAqZh3odv81/tPSjn72XYfysrbdP2IG7afUW/7XB\nn5CoLfcIiR6SKaU/S9nTqw8F3Q+Lt+lesT/vH5FjFPk9DteWC7v00Jb9LjVsY1lWa81NaH87CVVH\n81Z+Tr+whJSU+KKf+QzSlsMiIVtZabziBywPvq0rZ7LYQddORdq6Ejq7ghYLyTn/xty+ZUs3CiaO\nyTLeA2KHG1PrK+rWg1kvf4w3NR3FbCZAtKuXJoIMkZEV0MLERXL8mcbPvLzUbJjNHxYJtW4NzZvH\nPARBEAThAKYo38xfC12a0ySoDp1WW/XuK0HM+NLTmPPc+3iaZJBz6jCW3PMUQbsDd3pTMv9aRst2\n+rN+PxklCQcxNlulyRu1ICFJF7w9/4Xe9/DGxG1RZcNOWOUZ9fv7RRAEQRAEQRAEQRAE4UBFREKH\nOP5qOtzKy0wEdOMgRvC1Ib/FyiXasi8llVgUdezK/437kdVnXamlZQdb16G1wsFKcYcuTFi4hQkL\nt1DaupZhg8xm/j3zAm11wzlGd5x/LrueRMoAyN1RsxBXebuMTiubUQVug0edx9FvGh166tIpDeD3\nQXmJfovdtdUo3HiEx/CkNcEcUur1e+XRqDq2nnCG2r4zzlHXjz89qszmocO1z3bqx5MB6Pviw1r+\n1I8ns/T26LprRIRKxWXxYAKOYQELHniB05luKGrHh4KJnX0GEcxMq9v+qsDv0p2EWmIUGcYLdXiw\nY4qQKIVDH2w491JDGS0kgtnM99P+YMLCLQf8DGiLFa6+q4An39wUMz+AmWOZr60/yYMAWN0V+6R9\ndaaaj30ZfQ3nbjD0CqZYrHHDGpaE7peVw4bFDDcWelZbrHpDFIs1pkjIVMO3vwGnGB2hls5yGe6J\nlYXGMgAsCIJwcHHHhS0BWLE6A1Popm62KDW6nwcxYzbFLugsyCMl+1+SnR76nag+SyJ/UwpCdWSv\nt2mhwvy+2r/bht9RWrT10aqDn88XZvP5wuyoUKoAZp8qZpv5+udReYIgCIIgCIIgCIIgCI0REQnt\nBw6kQbSAO7aV0AAWAVBRZsbvVRv8HGPJHnIuezr3rtO+lIgR1KObr61THcKhyT+X3agtVw5r50lt\nQhKq28WLd9Zs9qe5Uj/zBjoBYC8txoLxmujdP364oKooLqhauLLpwpEoFgubzzjXkL547FPq9m06\nsPxWVRyx4OFX+HrGSorbddLKfTdlGV/M3WDYNmhXwwNGhhAr6H4Y60ZcXW17Zz/7HnOffMvQjrCT\n0P2v76Q84NTyBj41Vt1fjBCDSdu2UJFZ/5YiQZtdWzY1T+XrGav0vAZ0zjHtR8FNZrKD1uku9a9J\nAnP+3sr2Z1+hdbpLK5PUq7te5gD4y0p1VHFERiypzpjp1krX4GTO5jjmYCmPH8LsQCBxa3bM9GvP\nWsH9PEVLduD0lkTlBy2WKGHX7GffU/Mc6ueZe0R/Q745Zrgxdd0UKRIyW2KKhMxVvP09/tFObbny\npdWqvd8gLh4xwtj0PXvglFNg2bL49deWJ5+E+++vv/oEQRAEHXe5/kBoFwq9G0uIGonHbWLlYgdB\nzNWKTu1FBXQ93APsXcgo4dBiw0o7913RQnN29dXh3DlikPob7pnPdhjSbXbo0cfNbc/mMnJgO0YO\nbMdxD44BwO+I/W4qCIIgCIIgCIIgCILQ2Ige4RUOKV68K1pU8QPnMZSpOPFQUWqGcnVmnQ0fpa3a\n4t+ojho+yQPMfu59ypq3xJeUUu2+OrbRw6xc0eQH5nJmPR2FUFP2p+Bhbwha9VtV0GYctfYnJJBm\nK4b4kYuiqChXP4dHP9zJI9e1MOSlURhzm42r7KRlBmgaIyRPLMpLqx418aSmA+Ct5MDlTUnT/4dG\n8hWrFb81mb9uuIOen72rbt8kI6rOQISQxoDJxIZzLqHzxC8NyTknnEGb2f+nFgkGyD51GHNC50jO\nyUPZ8XwWAElKtLABYPo7X3HGDarLU8Bqw+L3kbh7B7uPGljlsdeFsqxW5NGEEpIp6NITf6Iehi7y\n/GhM9G4V250NgIULYfZsBpzab981qAaUuH1M+nNH9QUBZ0rN70fzOI7CndOxxI5qqWFxV9DvpYf5\nc/Td9R7yrjrS16wEjo5KHze5j7bsDOiiw/C9RrFYopyCwve5sBCv8qBV6taNWOxNjduEbk3miFtk\n0GrRHIsiqepR0KaTlyOPqeDimwopKTZu6w+AN0IkNHeucdtmoY/8lFOgqIhqURRVWJSZGb/MQw+p\n/595Rk8LBg94wyxBEISDil85jR6fbWfzkPMxW0AJxr7J/vZjIuOe1Z8/awracGoV9dpLS7A7QiGj\nPCZIOoBmywgHLHm7jAJnbw2dXYMB9d3CYlX/t+rgpfLPI5MJHnxnd8ztA46ai90FQRAEQRAEQRAE\nQRAOZsRJ6BBn3eqEqDQfNhx4seOhotRE0Kt6w9vxUty2I13S1HApPVnNrj4DKeh+WI1CSJnMJhTU\nv7Zz/q9+D0Ro1JS00ZUBK6+5xZDndyaQ4Kx5/ILVyxy8cIc6ku1KUPAlJBryrQRQMPH5wmwcrqA2\nk/rhUVncO7JF5eriUlpc9e01EHL98UWIXQD2HHYU688byYJHXo7aJmh3sPT2R5n/6Ksx6wza44iE\nAE+6OqCz8qox5HftRc6Jg5nz7Hv8MHER/555AduPORVMJnJOHUbOqcPAbCYQ0pG2mfQ9ABVNjSP5\npa3asv78y9jV52g2DR2upRd27FblsdeFsuYtaUIB7cjGnW4UR1R2l6pPDlgdwtFHw9137+9W7BUO\nZ9UDhaefYRzAsfy9udo6e3z+Pp0mfc3h7720N02rE4EYr1QdpnxnWLcrukioP2q4zlgiIcVs0fIi\n/4dxlhVhLzQKGsNOQmabXlc8JyGTOf5nb3fA3S/n0rZLtPLy6THNmfpF9aLg4uJqiwDwzTeqsMhk\nMv5Nnw4ffRRfCLQ79tieIAiCUEuaZvm5MGs6pzGD8maqONwUCiEWy00oUiAEMH9Hzyrr7/nJO9ht\n6nu6OAkJNabSqVLTcGM3nNGaK49rC6jh7ar8iRDD3jngdMUoKAiCIAiCIAiCIAiC0PgQkZAQhQ/V\nhiCZEpZNt6K41Y5dGz58icmc1WExi+nP+fxocPOoHr1zb3el0CmCUCVmMxMWbmHCwi140ptSltVK\ny/KkN8Vl10VC/mochSZ9qg9wu1x+bOVlMctZKsoxmxWUoNrJDNW7A0WSv1sdmH/w7V0cO1jfx2sf\nr0PBRCDkDFJZJOR3ulhy7zOUtO0Ys951F1/D5iHnx8zzV9GxbS9WbT0qMrOY9skU5jz3PpjNVDTL\nYuHDLxNwRtvrv2e6AYCLpj8MwOrLRxvyvcmpLLnnaWa88zVbTx6ipeecPDRuO+qKP0H/nNrOnGrI\na6xOQo2dSAHIuVcVccr5JQy5WFeXOJs7OOV83cUqZcGSaus8/ANVXGeudCMw+7x72drq8QejxTiD\nHr/DsO4I6iKhD7kOUEVuSqV4LYWduqt5IbFQ5ZB6FgJRg7eBsJNQRLgxVewXI9xYDcdp23et2+c2\nfHj1ZQDmzYudfvrpMGpU/O22bq19mwRBEIRofB4TdpcqlkjI3YWtuIhASJBRVrL3XQUdp3xLp3lT\n1H3V0A1GECq/p/z6bTKb1kSHF/b74Y95Tl67P4PSIjMVZeo5u2aFg2DAhNVaSQikKDgK87G4K2g1\nd0ZUfQEJNyYIgiAIgiAIgiAIwiGCiIQOcXr3jo4HkkkuAHlksH1nIjdc1huAXDLxpqaRtGsb/VkK\nRLsbVIUzP1db3nDeyL1ptlBHGkvX/MRvZ1HaojUA+d16k5n3r5bnqaj6KLdt1juYT33xv3HLtZr3\nG66yQhw7drAjp3YilFmTE3nrYTUcWEYLP8lpeoiyREsFoDsJeZONIaUqiwFqQ2RdK68aw4SFW7T1\n8OdV1KFzjeu7QfkABRMOVKFAYZceWt768y8naNct+QNW3cXIHSMU2t4SKaYq7KwKKHb1UcOaVQ5B\nV59ISKOG5fgzSzn36iJG3FTEqHsKuOy/ujuO2QKj7ingoXd3AVDhq3kICFOEgqbD5G+45PguJOxo\nWGWJN1D9fcIZVK//i/iaBNTlYCUnoQkLt1ARcnNAUY+j8rPWQoBAsFKIshhOQqA/01/hNi3NVMO3\nv8Rkhc8XZvPR7zlVlps9G3ZERJnbtq1m9fes2oBC45JL1An/M2eq6zV1KhIEQTiYiGFs0uB43Cac\nJlXAmr5+NRedcThzf1ZF599/GB321O6IYS9UDS1nTwdg+5aGe18TDly+eieVT15OZ94vCTU+x2O9\npzx4dQvD9rnbLTx6XXNevLMZi39L4MbBrbW8J0Y3Z8V8F+ZKXRX9n7ufC4b04eKTutPtyw+j9rE3\nv8MEQRAEQRAEQRAEQRAOJkQkdIgTDBjXr+ATTmN6zLL9Ds9lT68+JG3LrtO+Irezl0SLkwShpihW\nG798NJEpn04Fsxk7uttFpAgoFnk79YH8nvN+AGDzGefy7S9/smnweawPCdjazJxCPk35aXY3tm+q\nXYfx+0/qoRiSU4OGmdgt16huKGFhiy85lfxuqhCvsEOXWrpzVSJCaLDt+NMMWWtGXs/0t79id99j\n6lz9rn7Hast/jjaGurKXqtd0WVarvTuGOPgSk7Xlma+MB2Dek28y/a0vDWKl+sYkKqEGZfTD+YwY\nrT8PzGawhGZ9t+6ougE5XeqAZIW7elHqnt592E4LvHbdVWvA8w8AkLplY721Oxbbi9OqzN/VZyBb\n3c2i0hWLNa4azRyyBwpWipcR00nIp35ulUVCUxnKB1zHbbzGCe1XA7UXvzmcCmdfEfu5/cEHcPzx\nkJUFX38NiYmwaBG8956xnKLAnj3GtNxcqsXhgA9D43gpISM4EQkJgiDsPYoCXreJBMoN6a4C9eZc\nURb9sDhuqNGB843TP6h2P9Y09T1t4fToMNdC4yZ7g42J41P55etk3n4kg8sHta3ZhnHeUyLPyduG\nt2LTmqp/A1isCkMvG8x5Zx8NQJcfJ2h5WcsWxNivXr+p0UyvEQRBEARBEARBEARBiEZEQoc4gUqh\nma7nA0zAnl59DOm9WEnKeT3AbMbdNLNO+zIp+ojmv2eNqFMdghDGk96Uwi6qDUVFZnMt3eupWYfu\nSczUlgs7d8ebmsaCx14j+7SzALBW6AMm839N1JYnvJHG+r9115zqcLgU5kzRRTOnPDVGrb9cr3/p\nnY+Rc+Jglt/2SI3rjcekr35j1VVjyOt5pCFdsVrZfdTAva5/xuufs/iep/GmGgUR2449lbUXXsXU\n8T/v9T5iEXBEuBa51EEmd9NMdvcd1CD7E/YfH8/K4Z2pWznmDPUacSao4pcP91wMQKs50+k5/q2Y\n2+b602nFdl7/4xwtLexClbR1S8xt6oOls1w8OenMuPmFHbpQntWSNSXtAFhGXy3P7PMZnIQiCYdN\nU6yxREL6vW5njpVFv6ohMkx24z2wNdu4jnEA3D/oO44dXMbhAytqemgal4wpYvzcbE46u5Te/fXt\n+/XTy1x0kSoWAhhtjE7Iu+9CZqY6/rZwofr/oYfUvBUr4u/3++9V4RGISEgQBKE+8XlBUUwkKEaR\nkD2gOgv5fdHv1IpiTDuh/ZqYdf/6ztcsuetx1g2/nHODqig/s6Wf335MZNns+OFxhcbFrq3RLovb\nN1fvvBjwx06v6e+8MLaAh/SNa0jI3Ym1rIR/z7wgqsyUT6fVqk5BEARBEARBEARBEITGgIiEDnH8\nXqPntw0fv4z7iUX3P0cKumtAImWa84kpUMl+qIZsH3Syvt+ExCpKCkLt2HjOJVzFxwB43fFva5HO\nG98zXFv2RZyPYZt5155dWtqSmfrM558/T+GDp5vUuG2u/FycLv2aCbseWTxuLW3P4f2Y89z77Dz6\n+BrXG4+Sdp3486axBlehvaUiPYPtg04CYNeA49hw/mVRZYIOJ8vuehxvanq97deAOPocFNSH85LZ\nAinp+sXavLU6UrTQfRQmv58T7x7Fke88j8WtX0PJ2ZtwFObz0LY7AJi6W3fM8jvVwcj+Lz60122L\nxx/zqh7wXDPyesqyWvEKtwPwL520PHtJUdz4X+HnrVIpXsY2U2tW5Hbih49SuGxgW+68qCVTv1Gv\nPbM1/rXfypnLfx7Lw1ZznaMBqxWufyCfLofr7m0JlYwhlqrRSOnRA95+G0pK4I034D//0csMqqTt\nO+II1dFCUeCdd+DFF/X1MyO0VyISEgRBqD98IcFFYrDUkH516J06tUn0bz5FgcQUPV2J89zP7XM0\n6y+8Cn9CEna3KkKaOD6Vcc825eWxmUz7Khmvpz6Oomq2b7Zy2cC2FOyRbo/9QawQc9W5vgIkpRrt\nEnsdoZ6jAb9+vmW1UYXU14zN59yrY7sdZq1eqi0n52zGmb8nqkxhlx6sG345ZVmtqm2XIAiCIAiC\nIAiCIAhCY0F6yw5xHNnbDOt2vARsNvxOF4XoTiEuKvRwJyFHoBlvfF6rfRV26gbAzn51D3ckCLHw\nO1zcxYuAOsP0ymPbcNnAtoZwesvnOrniGNXifvSwRaRTqOWlbPlXWw6LhJqsWx13f9s2xR9hVxQ9\nXFJHNjJ8WD8urRiv5Ye7tstatqnZwR0ATH/vG35/ZXz1BQWhATCZYETTn2nBDi49ThfXWMvVAaM2\nv03h7BEnccGQPnxXMgyAMr9TK7fO1xErPtbTucHa6KtmZnvA6aK0ZRvOYSJmAnzP+VqeO71p3O1M\nflUgFbRYmPLpNH7mTH7mTNYo3QH49v3oEGdme/y2mH2+uHm14fxr9ME4VyV9VFqa6ib0zz8wZowq\n7Ln11vh1vf22cX30aLjzzthlk0NRB2++WT0v6qhZFgRBEABPSFifoBhDiD3Ik4AaajIKBewOPT2e\nE14YX0IilhhqoE9fSefHj1Jr2+Rac/clLQF46JqsBt+XEE1JgX5+/PdpNYyd1RbjvKqEOeJVpgvr\nOO3YHCDaYWjQGWWcNryUYwbr5/C707biSlT7KxwB3flw6NVn0XLhLG09aLEwYaHqMrl07FP89OP8\nGh6VIAiCIAiCIAiCIAjCwY+IhA5xvBjFDna8KFYbAaeLyGFGE4omnvAlqVP5w+s1xmxm8he/MuuF\ncXvT5FojBiQ6jfWzCDidWFF7jUuLzQQC6oG+85g++P7SXc205Wa7Nxi2T966WVuubrCjOlYtdRDw\nm+h/bDG/cYraDm4ylPG5Esg+ddhe7Wdf4ncmVF9oH/DLuJ+Y9r9J+2x/jfV6ORhxWb2UooYN20R7\nxnMltrJSBj16G8ffr19fA8xLAOhi04V/F+R/QgArExjZYO2LYwSk4Xe42Dz4PExAACuDM+azacj5\nLHzgeXb3HUTS9uyY25nDTkJWK4rFwplM5UymVt0We/wwHuHwZXuLJWIXlUVCADt3Vl9H+/aqqPKm\nm6otquF0GtenT49fNi8P/HHClQiCIAjgdYechAKl7BhwPNPf+pLFY5/CBLgox++PFW6s0vtRNe/N\nYffYSzrMiMrLz7VEpTUUBblWysvkxW5fE3b+ueP5XJq18hvSqiIYoSMyE8TpKVG3Dejb+n0mrKGJ\nGa07+Hnqkx18PDub5LQgCcmqSCj8+zAW4XC0giAIgiAIgiAIgiAIhyLVB4QXGjVe7FzFx4znakAN\nN+Z3urTwLGF+52SCVnUQc8nYpyjs3J3cI/rXen/FHbrudZsFoTJ+V4LWCbx6mUNL37w2tuNPSo8U\nWKKvz3viDW3ZWRBtQw/QvquXzevU+sJOQZEU7DHzzXtp5G5Xb6vubeW0Q71mHHgNZfN6HnFQKVAC\nDmf1hfYBeb2O3Kf7O3i+ocZP8TEDKPtBHWjsyCYA3lozm3Om/WAo11rJYTH9KfDr7gTJJnVgyU3D\nncdmc9Wz4v1OF0G7fm/yJaWw4NFXtfUWi2bH3M4UCDsJWQ0CxlVJR9GrdHnsbWzxB2zb//IjJa3b\ns+G8S0neuoWOk79RR3wrkZyzidLW7VAi1E8Vmc1Ze/G1UfeuWCKh6ti8GVq0qP12lW+bQ4bEbD4e\nD2RkqCHO3nqr9vsRBEE4FPBo4cZKCDic7O47iN19BzHg+QdUd1l/9POkskhIqUYlG352fbTpLL6k\nwpA3Z0oSox/O38ujiE9l15mSAgsJiaIe3Zf4/WrYur4nVJCzUZ1gVPl7iYUSEW1sLd1x+GeFttVP\nvkDAKFpu31UXQicmBclD7dso6NyD9A3/RO3Dl5Bcu4MRBEEQBEEQBEEQBEFoRIhI6BDHY3bhCOoW\n8Ha8VGQ0Q7FEnxqlrdsD4G6ayd/X37GvmigI1eJ36iKhRTMStfQjBqmDEZGd0Xe+kMsxBWsA+PGH\neZS3aG2oK69nbCHKXXevo9SWyr1Xt6FFO70TOm+3hd9/SmL5XBeb19rperhb3c+wmRBncDpr2YLa\nHeA+ol3TBLpl6R3mwZQUzMXFnDSgE1gPvceFiIQOHCyZiXhw8gY3a2lluarLjhebJsQbrEwDoDiQ\nBKgjTF3NG/g70JtnuY/Pie3Ys7dUZaRQkZ5Baet2hrSCrj0N64vvfpIBLzzIjDcnGOuNdBIy644L\nLay747fFFv/MdRbk0f/Fh7C6y3Hl7qL7Vx/hryQCNAUCWEKOQ+G8cFrOyUMpb97SUD4hhtGYyRRb\nvAPx02vKo4+qfwAOR+wyW9ToIXz0kYiEBEEQ4uENiYTS83OiBOF2vPh90SpQRQFM8MH36zh3+LHk\nmG+och/h92oXbk46u5TfJxndW4IBMDeQoZC7wvg8LC0y07x1nMJCgxDwm7TwYuH/fl8NnISCxjK2\ngNpfEekQ6PeZ4oYui3QS8iUkGvLmPf46xz58K/7ExFibCoIgCIIgCIIgCIIgHBIceqO+BwB7O0BW\nFdkbbJQUmenV11Nt2QlvpLErmII9wuXk9/e+xBHhdrCIATzGI4zt+x3b2j7aEE0W9iGmRip78CUm\nYSGgrXfq5WHjKgdTv0xh6pcpPPj2LgDOu6aIo46vwPZVOaCHQIjEk96UCQu3YCspgtP19KuuH8iu\ns4cxYeDH/LXQRXGBmZT0IF+9nca8aXo9zgT1Am+ZaJwZ3Yqt9CB6FuuBhNNmISMpYtS9qAiAjP3U\nHuHgo6HuMD6vWvOt6K5fitvH/7ia23lFS/uFIQCUKQlAKQABpeEjq8YbpCpp1ZZJ383R1hc8/DKD\nHr+DjWddbCi34YIr2HDBFVHb53ftBUBhh64GJyG7VR8l692/gn/+cGqz681242irNzEZe1mJIc1e\nXIS1opzyjGb8OHmJIa/VnOmcePco/A4HX89aq6bN/j9OHHs9joI8TST098YK0uyumKZold9zLr4Y\nvvoK+vSJLltbMiJuSPHq27FD/e92q39Opxp+LBiEzMy9b4MgCEJjIPzccHmKCVp0kfimwedh/TUY\nV8xhNkFKqo9M9pBTjZNQXu8+rLlkFB0nfc31D+RzzT35/Pe8lhTuUbshfp6QzNlXlFRZR10Jvzuk\npAcoLrBQUiSR1vc1fp9Jc2AN/48Vxq4ykU5CAPagOgnjlbGZvPbjdq3ueO9fYTfZL7mUL/4yhpvd\n01t9edh2zClVtuEgMn0VBEEQBEEQBEEQBEGoNdJT1ohYu8LBfZe34OkxzWskRPr58xQANtBZS7Mm\nGE+JASzhZ86ifVpuvbZVEOoTX2KS5iQE8Pi4XZhM+kWwdLY6E7p3fzdtp0+m3yuPArFFQmEiXTu+\n/mkJSZTR5repNGmmipG++zCVgB88lWYpe9zqujOoCpEWPPgiFU0z2UobfuUM1l14JV/9vnYvjlYQ\nDj2OOq4iKq3z++9yLf+jiDQtzRYSvZaRSO8PX2XkwHbgD0RtW98ceazevh6s1panfjLFUG7T0OFM\n/mI6uwYcV6N6Nw27kMlfzmDXgOMMIiEs+v3pvjdyueK2Am3dVMlJqCKjWVS9pmAQi9djCIEWJhAj\nzZPWBIBTbr2Mvi89AkBaukLrOI4MqanG9TffVIVDy2NHSKsV27frywUFscu43fpyu5CJU0YGNIv+\nKARBEA5ZgoGQeIMATdau1NIViwW7yRtTzBEMmrC6yxhxam8A7EVxbsQRBOwOLF51AovVCm9N3s7l\n/1W3S04NVrXpXuELOSWdeLYqGi4rlq6PfY3fr5uRXeKxpQAAIABJREFUhv/XJNyYc9cOw7rdrz7Y\n9+zU57hF1l0Zd7nxu/72lxXMe/x1fvxxPmUt2zLp65n8Nfrumh2EIAiCIAiCIAiCIAhCI0R6yhoJ\nigKPj26uredssGnLwYDRmjtcPsw0hmrLCfpYK/Mf0d0ZKlvQC8KBhC8xGXMotFBymioI+GxBjpa/\nZrl6/qakBzjuwTFaetBmj1unEjEIn771XwD8LheXjikEYPp3yYx7rgnr/jIOqK9doe6r77gXAMg+\n7Wz29D5Ky1965+MEnAfm9SQzZoUDlc69vXy2wBgqrIxokZ8P9Zr24qD7h28CEKCB4phEEHntrKYX\nL3M7X3MR/sTkqILFHbrUquLi9qqQN/KeFLkMcNoFpdpyYqJxwHXm65+xeOxTxnoVVSRUOdQYRD7v\n9YPK73E4qy8fjTc5lawlc6tt9qxZ8PTTUFwM+flG95+95aqr9OW1a6G8HDZuhM8/V9NKSmDsWL3M\n7t1qmiAIglAJtxpa0kIAW5n+HFHMZuz48PuiN3Hk5+Eq2KOtZy2bX+1uAg4nFp9XtXML0XuAKvpw\nJTacSCgcTi0s8BcnoX1PZLix2jgJZc2bbVi3+L1RZapyErrrpd305m+KSWbNJaPwpqaz5YxzKc9q\nBUBJ245R71KCIAiCIAiCIAiCIAiHEtJT1kjwVeo3C0QYJzw5phlXHdfWmB8hGrqPp3mROxnKFLDp\n4qLNQ87Xy9vjiykEYX/jT0jQREIduusXw5uTtwKweZ16/qZl1NxRRDGbmcUJ/Hj8vSTtUAVH3pQ0\nkiJmPM+alERxQewO5oQC1X0r4HQSDE1zDVqsosQRhDpS+dLZSKcqyxeRygY64WXfPb/eYTQAt/Mq\nF/FtvdYd6W4WuQzqZ3P6MVsASEs3juqWN2/JhuGXG8srChaPO7aTkCOcpg+8BW12Vtx8H7lHDMBR\nmE+LhbOwrovviHbEEXDffZCcDOnpNTq8+GzeDFOnan9dy/4wZOfkQOfOcPnl6rvP44/DX38Zq0hJ\n0ZcbMuSrIAjC3rDPb09e9QehhQCL73tGTzeZcATKtXBkkWQtnoMp8vlgqT56edihLuwmBGCzq3V4\nvQ33XhwON5beVH3/LyuRro99jd+vhxsLC3pinVeVCVQKY+etZCgZDIAS1OsO02zZAhwFefQ51s2y\npONIppRVV9+8F0cgCIIgCIIgCIIgCILQOKm+V084KKgoq9SR5tbXw84mG1ba6dxbFVD4IjpkH+MR\nbPi5k5f5xvq3XknEiGyXHyew5N6IzmPhoKSx6lP8zgQy2cM0BpPz1IdaekKSseM4Mbnmwy+K2cIJ\nzIE5c/i7y60AlLTpUKf2tZvxMwDmmvjr70ca6ekhNFIe49Eq88/g/1hBH0OaojTsffAo6iGeVhwi\nw40FY8x+v/PyJUya35W5tv9VW5cpGMTi8cQMLRYrLYzf6cRZmM/Jt12Jt0kGK1asr2Hr6063ocNw\nrdFDuClmM0cPLGXRQjWM5BvjKgB12WqFVm0CEHKPsjsUzUkizNJNhTRNttIxM6nB2y4IgnBAExIJ\nrR05Cucxp2jJnSZ9jZ2xmPKLozZRMGnCfIgWrcZCEwl5PASc6v3a5lDfyX2ehhcJOVwKFqvC5jV2\nNq2x0aF7DIskoUHw+8AamoMU1pOFHaqCAcjbZSGzZfQkjmCEC2RPVuEpM54nPp+6HhabgSoQOm3M\nJQBMWLiF4rYd8aakaiFTBUEQBEEQBEEQBEEQBB0RCe0HlAaYJ1pZJDT1q2S6HekxpEU6noRtvl/l\nv6y9ejS9P1bDsgStjc8xyCTSh0ZPODzOYP6PL5x+lFDHssNpvNbMEZZbCx94vso6Iy3o0zasAaDN\nrF8YObAdl+37ud6CINSSygIhUF30rLYYhQ8CgqGGl4VCZfzFYcx4fQKQCoA16MOBF6UGrg7pa1fS\n/I9F7Ox3bFSe36UO4BZ16BqVFx7cBbDn72H19ugB5Pqm267d5Jw4mNVX3ETrOb/Sa/xb3H3v38xe\n1YHXH8hk2x4vYZEQwLYc/d597+u7ePzGLEN9q3JKaJ/lEJGQIAiHPEpIJGSyRQt9EimjpDha3B7E\nbHASUszV/84Khhxpm6z5m51HHw+oIk4wTlypb8IiUZtdwWZXWD43geVzE/h8YXY1Wwr1RaAKJ6EH\nrs4ie72d0y8s4ao7CwwibsWnCodmchIDWMyS2f2By7R8r1st3GLNMkYOPB1fQhJrL9LjkY4c2A5v\ncgq5h/dvyMMTBEEQBEEQBEEQBEE4aBHP7UZCUZ6xc3fJzISoMh633vPmD3XIOnEbXAPCYZHCzHnq\nbUpateWn7+fUZ3MFoV7xJyaR37UXYBQCRXLN3fnYiwoAcKem8++wi6quNKKnus3s/6tRO17+dnuN\nyh2omBqr1ZQghPBXBKsvVAf2RQgrb2oaS+56gtnPvc+OQSdxGCvp6dqg5ZtCcUYrP8fDrL7sBm25\n+R+LAFgXMaAWpqxFG5b99yEWPPJyVF5YkBmm009fcMxDt3DMQ7fQ7YsPo8pXR+L2HHp99DoE438v\ntvJSSlq3I693H4rbdgTAGvTicIVC1VThQtGyffQA94r5TjzuWjdVEASh8eENObg4op8baRRS6o52\nlvO5kgwiIbOveleevB6HA5C4c6uWFnaAaUiRULhuu0PRREnCvsVTFKDTH9MZPvQo+nzwAqBOVtq+\n2Ur2elU89uu3yTw1phm7t1n4fWIiANaSUgCasZsEKjiR2Yzkc0ANsz53qlpu5oymgPqu0Hv8W4Z9\n20uK474TCYIgCIIgCIIgCIIgHOqISKiR8NLYjKi0qV8k8/ukRFLS1Q7gNx/K0Mbhwv25DjyaOwEY\n3VMAck4dxqTv5lDWsm3DNFwQ6omw6MficdN86Txazf4Vk99H+65eLFaFs07cyMm3qQPiy+58DMx1\nv/21sW4D4N7XdhvSIy3vK5pksvSORwFY+OALdd6XIBxMNLTO7Pbnc0P7UTCZFNp389K8tY8LbyjU\nylx3X17c7f0VDRvyz9TALmPrL7ySgm692RYKCxMWBgGYQ/E7gnGskjaeO9Kwnn3SELaeODi6oMnE\n2kuvoziGk9CuvoMM673/9wat5s2g5YLf6f2/12t1LAD9n3+AI95/iZ6fvE3b6ZOj/tr9OhGrx40/\nUXX9CdrUYzP7fNqAr9cd/6RzuoJ8vjCbzxdmc8Xt+QC8dn8mQ45sxh9/1Lq5giAIjYuQW4vJFi2k\nSKWIMne0w6w3IckQbmz57Y9Uu5vi9l0AaLJmJS3nziBxWzY2W8OLhEqK1Hd9m13R3Gxg3wh7BRVv\nrps0CnEW5HHY+DexmfwE/HD3JS0N5f5Z7uSha7P44OmmBPwQVNTzIvJcG8BitU63CYdLTb+ZN6vc\nf7x3IkEQBEEQBEEQBEEQhEMdmVrVSFACam/ny9zOHbwCwGevpQOQ1lQfRJw7NZEThpVBsTqN3o6X\nTpO+0isSJxHhICXscJH67zpOvVkdDJ/z9Dvc/+YwLDYYfvIArawvce/CzHzX4SbmPPUuWW39XHhD\nId++nwZAYorekb1m5HWsG3ENAJuGDGfgk3fv1T73BXL1Cwc6/U6oiBsm5Pxr9dBXJhN88HRTjh1S\nxrxpiVp68CB2EjLsz6IOfEaKhMLLlcW+YUraduCLuRu5+MSuFLfrxNxn36v1fnf1O5YJC7fQ7YsP\n6fvaE9jKSsg5aQjelDQ6Tfyy1vVVNG0GwJHvVi2kLGumDiaGB/vMPp8WTjLSSeio48pZPld3Uowc\nG6z8sSxbBn2iI9IJgiAcMoTDjSkxnIQy2EN+aQLBQBHmiPtnUDGBxQyhx09+yCWoKgJO9R29xcLf\n6fLDZwBMWLgFi0XBF7qHb91kZcNKB+27emnfrXp3ouooyjfz7mPqJBqTEjCIkQIBEIOZfUOx20k6\nBdq6TfGglHpili0tUk80d7mJsowWgFEk5ETtv/B6TWzbrD7gh/FzlfuP904kCIIgCIIgCIIgCIJw\nqCPdY42Ek4/exoLfkridVykhmUd4XMsrydNHLyeOT+GEYWXsWK+mOXFjCgai6hOEg42AQw2JkLZx\njZaWuCOHxJTo0XtvUkqt65/8xa+cdenpALRNyiWrrTqwcv61xVSUmVn0k4lrTmqLw34FXq8Zn6uL\ntq1ykIxEiEZQaCycdE4Zxw4pw2aH/zyax2UDVTe8oKdhn3cN7SQURrGo95SwMOjkWy+nxWI1LGhV\ns+YVq5UfJi+JChtWW4I21V3CWlZK0GojaLVh9tfepamknRo+bOrHk7V7eGUUi42SNu0N+zX7fdgc\n0SKha+/NZ/lZukgo8p4W6SIB0Lx5rZsrCILQuAiFGzPZo99TO/IvHr+NrZtstO1cSbRj1kVCNWXz\nGefQ/v8mausjB7ZjlNPHT+NT+Wl8qqHsjQ/lqZNa9oL/nNlaW77rqnY84XQDqmAk6DeBVeyEGppg\nEEq9LtLQ3R5t+Ah6owXbGVl+9uxUz8NxzzXhlHRVJGSJONHCIqG7RrTEXa6KpQNHduaHJybRbPkC\njn3kv9Ft2AsnIflZJAiCIAiCIAiCIAhCY0bCjTUS3OWQguqiYKnUaxvAygdcB0Cv/m5WzHfy/FOd\nAUiilDnPvMukr3/n13e/2beNFoR6JDzA3P/Fh7W0hNxdAJgiBq/XXHwteb2OrHX9ZS3a8v1k1ebe\n7Pdq6c2Wzee1ouvILVWFRwOG+rma8WwKhT8TBGH/YIuIknL9MbOABhQJKft2KEkJhUs0h0S+YYEQ\nQLAaUaInvSn+hMQqy1RHwB4S6wSDBO12glYrJn/tnR/C9+bCzj0o7tA15l9J2w6a2id8bBafVw83\nFiESSs8IctGN6mDkzU/sMezLcnBoNQVBEPYZpvIKAAJJxmfCr+98TSAkqLn/yixDnqKYwFz7Z97G\nsy6OSnOavDFKwntPNK11/ZFEzn/pySosSpCyCl0sEpD5MfsEd7mJIGaDk5AdLwGPgs0RZMjFugNk\n5HeyaEYiz/x4GqA6CfmdLtYNvxwHnlC9ehdWUe/DqMhsTs5JQ1h6+6PMfu591l14Jf7Q78Lq3okE\nQRAEQRAEQRAEQRAOVUQk1Ejwlikkos64vIU3ovKbs4vmzdxUlJr59x995DSJUoo6qoNwuUcOiNpO\naFw0ZqeYoFU/r7NPHkpxmw50/3Icnb/7lNRN6wBYcdNYlt/+CEotZ5X+e+YFBJxO3BnN2Xr86WT+\nvRyLWx1Y6ffiw3SarAvsrBVlKCZTlCvG6stu4PcXP6rr4QmCsBd0aKYOUPk9DRNuLMy+dhKylpUC\nUJ6pD+IGbXWfNV9TghEKrIDNTtBmxxwMGsKf1QRzNSHSoverhxsLi4SK8ozbnndNMZ8tyGbQ6eWG\ndIvF+N2MH1+rpgqCIDQ4yj6OXWlyq+LOYJLLkF7auj0d+VdtU9BEYZ7eZRBUTJhMCkGLleyTh9Z4\nX/ndD4tKK/PYY5SsPYoC37yXyvbN6rOxKF9/Liwm+vetmOjuG7aHQoIFMbP68tHMffItbPjwuhV8\nHjNJqUHGz83mlPNLCPhN2OzR5385CezpfRQFXXtHTYQqMSVp7wVBh5N1F1/D1hMHs/SuJ/Amq+5U\nIhISBEEQBEEQBEEQBEGIjYiEGgmeCpMmEkqmJCo/hWISHR4qykz4vLpSZN0t/621YEIQDkTMPn02\n8txn3qWga08ABrzwIC0WqC4iOwaeWKe6Fz78srYc7nTuGBIGOYoKDWUdhQVqKJ9KiqwVtzzA9uNO\nrdP+9xUmMdYX9pID9RyyhMYhg+59NzK4acj5DVa3M283AEc/fQ8ApS30sCp7G0qsJkSKIIN2hzYI\nV1s3IVPAT9BiqbGCNSwGjRQJbVwdHaYsVnWVnYS++65WTRUEQWh0BIPqfdRkMXYJBOwOzmaStl4c\nIboJKGasBPhy3kbmPvNujfflS44O9esL1o+Ao6TQzI//S+XZ25oBsGW9+tv2mUeXk0h5VPlA4MB8\nV2lsLJ+ris82NjmCFTffR8DuwI6X8hL1fHO6FKxWsFrB7zfRumO0s1R31pCyZQMBh4NC0rT0l77I\nIUkpiyuM9oVCS0s/hyAIgiAIgiAIgiAIQmxEJLQfaIhJovYN2ZpIKFa3ZwrFZOSsYfncBCaOT9XS\nHQnSSSo0DkxB1SEkPKt5/mOva3kpWzYC4G6SWet6AzbjLOc/br4PgP4vPkSPT94haDfmt1g8B2vI\nZehgozE7TQmHNmZrKFyVt2FcGio/17+Y9y8LIsSF9U3YycdepoqCnYX5Wt6+EAnZysv0/dnsmkjI\nHBHasSaYAgHNFakm6E5CXuxOoytU/5OiB4IjqewkdPfdNd6tIAjCQcPubRZWLY0WT8Yi7KhjslYS\nCTmcht+Ti35L0NyE/IoFi7kOgluTiS/mbuDLOetjZjdp5ufVH7YBkJZRu2dJ6CcAeTvV50lJoSpq\napZQHLO8hBvbN7Tvqop+RjSdAqgCYxs+SkvV78nhUr84q00h4McwkQngN07GQhBbWSkBu0Nza7zw\nhkJatQiFyrPGdqPyJSUD4iQkCIIgCIIgCIIgCIIQDxEJVYOiKPX+1xCUkaiJhGKRTAl2omfnOZJE\nFXAoYToEVCDhwXPFamXxPU8D0Oln1fXHk5Zeq7p+GfcTE7+bY0gLOPWQDH3efpbEndv2prmCIOwD\nTCGREP6GHRkMD2ApFguYG+4VK+yKVp7ZnNNGX0RK9r9a3r4QCbly/5+9+w6TosoaOPyrzpNzgCFK\nRkAUVIKCggmzLIKAWfHDnBOGNa55dV3XhFnBjBkjIqI4ChIEREDSECfn6dz1/VEdp7snB4Y57/Pw\nWHXrVvXt6XGq+tapc/L9yx6TKZDhp5FBQjqXU8sk1EC+TG7H3HQxcdZAFresbk6ue7iozn1rxyJZ\nO2YspxBC1On6f+Twr6uyqCyr/xykev9k64yh3w/c3gD428doKdc+fjWJJ27WAu09qg6D0rRzqWow\n4jGa+OaFD0La5363kyc/3ENGFzcnTq3EYdfhsCkNLgtWO7ikqlx770lGLZB238ixnMcb/u0eySTU\nJnwZm/TeZD6+TEK+ICFLrHbNpDeouJxK2OeYiZY1UW+34TGZuYDXufnIjzjtvAp0Lm1eI1omIWOl\nFiAWU1TQsm9KCCGEEEIIIYQQ4gAhj1bVoaTawdu/7WzvYTRIpT6JOPcmlv3zSfoteIuStSnsI5vB\nbAC0TEI/cXTYfqZ4BVtbD1aIVrBr/AlsPnMGa2dd728rHDrCv+yyxPgDiBqq+ODhYW1uU8OezhZC\n7Ed8WRJaKUiodcJ/6+AN+IwtzCc2KGAHwNMGpTU2Tr2IQ154HAjNJGQuL2H4M/9i+W0PaYFS9dA1\nMpOQLSXVvzz47ReJTXiamkodblf9N3wVXeBTMhpVqqrkJrEQ4sBVWqgnIdlTZx9fBh5FX+vvoU6H\n22jiyPQNIccDbyYh6j5ufYoOOZzVV9zK3mezef6qT4mNz/ZvM5k91FTquOiY7gw5wsqEM6sYdqSN\nmLjwM+13C+LZ9peJrj0DpS7v+79MNq7RgmUTdVqQ0K7xJ/DGigvoPiWHf30wUTIJtRFf3LDepF2D\neYwmjDiprNa+j1litM/UYAC3S8FhD/097IeWdUrnduM2mTDi4tFfJzPfuANdldN7zMjXPEneLLLZ\nv/7Ysm9KCCGEEEIIIYQQ4gAhQUIHiCp9IoZ4E9snTcZtMnP02itCMgc5BvSCjYH+153xE6s/cWKI\nl18BcWDwmMwsv+2hkDZrRuCmg97eMuFwqqStF6LDUfTeG1Su1g3nUdo+XCjCIFo/+MUVF+9f9hhN\n/r+Lp0091r995XV313scxe1qVCkQZ3xiYMXj4eJbSnjmrnSK9tV/jKycQJajhCQP1dUNz2AkhBAd\nja4Bf+L85caM4VmH3GYLSWogY1t1hdbHreoxKI3LGhdJyYChDCefMUN3UkTgev3zeYG/8+t+i2Hd\nb1oGz3m5eSH726wKrz6aSm2+ACEAo9MOQI33+4DZrmXd9TQgsFQ0ny+A1xcL7Dab2Uw/qitiAXB6\nY7v0Bu3ayW4L/B7+dtMDmB4PBH/VLuWs8+7siVJubOOUCxjwweusvvK2Jo+/EyTgFUIIIYQQQggh\nRCcm5cYOEDa3GYtBmyyzpWUCEEeNf/v2mefzufkMAGZP+IknPzmaxUzAHRPb9oNtYzLB13k5kpL9\nyyWDhrX66727eEP9nfZj8v+KOFD5b4A6Wyl9QFBskKcRmXEOBCkb1+GMjQ9pS93wR4P2VdzuBmUc\nCuwQ+COl6vXEJTY8m0VO78BN7ZR0D1VVDX9ZIYToaJzhVabD+DMJGcIvAN0mM0meUv/6oUdpQRpu\nVYde17xMQhDIAKOvNdDeAyMP3GYNHWN1Zf3TGL4HBHylKo0eLWioo2USstUorPml9UuJtjSnNzOQ\nL47HbTJTTeB6oUdfbe7C4A0SqvF+poMOs6Gogd+xwqGH4YyNCzm2zvt7Ey3Q+Peb7uPtn7aw9fRz\nWuCdCCGEEEIIIYQQQhx4JEjoAOFQDRgN2oynNS0jbLs9JZUJcb+wrctwnvs+UHbMbYlpszGK9qdX\nFIz6zvXPZ8kL70Vsb46q7G4h6x4pRSbE/sngDURppXJjPgoq3z3/Xqu+hk/R4PByiO0haftmdo07\nPqTNXF4a1u+Ih25jxqieZP/6IzNG9SR27y76fTyfmOLCRr3ejw+/AIAtNZ3+w+wR+5hLiph4+TQy\nf/8lpP3QsdpN7vgEVYKEhBAHNJez/mtdfyYhQ/iUgCs2jmRHsX9d56va2QLlxgDcJi1yROcIDQq6\n58V8evYPDxT6e11oxhhrVd3TGEOOsGLwBwlp2Yn6famdn93ujhUV/8GLSTx6fSZb/mxc2eT2tmKJ\nNs8Qb9E+z9olm7v0cJG0dRM9v/rY3zbpnArufLYAPFrg0KL/zuOHJ18n//CjKO/ZB1tKGgDJW7QU\nyXVlcJTsr0IIIYQQQgghhBDRyczJAcLhMWLQHsjEmp7pb/+DodiwUJj8AKpeT6+9a0L2q/1Unjiw\nZSdZOHtk9/YeRtt64QXQ65l8VH9/k83pZsHK3U0+5Kqrbqeqaw/2jDmWaccM9Lc3KiPGfkihY900\nEfuf/TUbla/cmOpq/o3N+lhTwwN1W4Oq3z/ivJfd+zQec2iGg6Ttf5O0dRPlB/Wn+/cLOfyROVi8\ngUMTrj0PgDPPGtuk19sz+hgADNYaLDGRbw6mbN5A1qpcsq48h9+vvYtNUy9C1eu57uFC7FaFufdn\nYo8cXySEEAeEhgQJlVRp3wONMUpY2I8zLh5TTSCa0uHNClPsSqFP7C6ga7PG5zFqAS+1MwnpDXDZ\nHcXccUGXkHa3q3YmoejvL7u7k1ufKkT/SWgmIZM3k5Cng2US2r1d+5JfWbZ/nPcbat1yLUhIH6dN\nOfmyRwHc89I+krZu4pQZx/M0X/nbU0rzgEQU74dUMnCov9TonrET6LfgLQCOfOhWANLWrWLrqVNb\n/b0IIYQQQgghhBBCHGgkSOgA4PGACyN677xbcAmxoawDYEFKasQABmdcfFibEAeUyy4LazIbdEwc\nlBmhcwM9eDcA/YH8citZSdok+MRBmTiHHoLr4IObd/x2Em+WU4I4QPnKjbVSkJAaFKviNrdNRrGM\ntStD1osGD0fvaPvIl+quWuDp6stvYfhzj/rbT5lxPN8+9x5Hz7m8RV/PYzLj0esx1FQDMPGsStKy\nQu/4GoJubI/4z/0UHHokpQOHYjCCwahiMKpYK1t0WEIIsV9x1hMkVF2h8NbvYwDQGXQRg4RiivL9\n63argt2msNPZlQn635o9vtqZhPQ2K3q7DVdMLL0GwP++2MUd53ehRz8Hf+TGhAUJ1XgzCd387wIW\nfxLP1Q8WccFRPQAwmVV0OjBWa3/oXd6SmAa0spMNCaDan/iCmtb9ZmH4GFv7DqYOeZuNZOa4sMSG\nBvA6E7UgLdUQCBI6uHsBp5yoZSGcyyx6kgfAc1+P4fN716F4a+GpusD8hdtoQud0YCovxZaajqW0\nmL/Pmtmq70kIIYQQQgghhBDiQCV3hA8Abm2+E11M4OOcn7uD5E3rOfn8kwGwJ6eit9aE7SvlkURn\npCgKWYmW+js2lDdCIAvgj9UYASnkJ8T+QzG2Xbkxt6lxf1sSYwx0SWr+36Pdb7yDKz2DAc0+UtP8\necGV/HnBlcwY1dPfdvzldT/d//43f/hvHjaYouCKicPovaa5+Nbw0mbG6tBaYgabNXTdAI7wajZC\nCNGhFewOBFS4HPUECVUGZaWJUG7MbTKTtTKXe1/ax8PXZmK36bj5HC27j0M1hvVvLN+50pdJyJeZ\ns7TPQL6c9zXJaR7+98Vu9uYZuGlqDNbqwPtRVfj9R+2hmOxuLq5/pAiAgwbb2fqnGaf3vad7g2ld\nMdpVeQzauaBwr4G+Q5p3Enjj3ykMH2Nl2KjWD9op3Kt9x//ynUTOva6s1V+vKTauNnPf7CwA5uXm\nsWeHNuYZzPOXe/Po9eSwi910Y8qJh/j37cFOvuYEDmENiWiBXYrqCxIK/G56TGZ0bjdTTgyUWy0d\nMKR135gQQgghhBBCCCHEAUqChA4Avqch9ebQyWBbmlbyxJGQiGow+kt9hNhfa8MIIYQQLcVXbszZ\nOpmE4vO2A9o5t7GZhNLjzYzomdr4Fy0vh6++grFjYccODhnRtuFBv8z7ghI1/DLSlpQS+XoD+HPm\n/6Hq9ShuN8UHD298gJCXqaqCAe+9SlVODzZOuzhkW8bq3xj9wE0hbXp76E1cg1GVICEhxAHnrouy\n/cvbNxk57Ghr1L52WyD4Ijhbi09NllZObJT6C4NHnEjhHgPF+7S/+X/V9ObUZo7VbdGChEbfdwOj\n77vB356y5S+OvP8mfr3rcQBi47XzdnWVjn07Ddx4dmiZs9iEwHl90jmV/O9uM3vzjP6AVXtikv+h\nGAUtqP+Zu9IZfXxe08fugq/fS+Dr9xKYl9so/IbRAAAgAElEQVT04zSUxxP4vu6ww/74jE/h3tDf\noZunaZ9TEuX+cm8eg5H1HMzvF98Cr4Tuf0Tv7SRvKwAgcdsmfyYhlKAgIYNMXQkhhBBCCCGEEEK0\nlHYrbK8oyiuKohQoirIuynZFUZSnFUX5W1GUPxRFOSxo26OKoqxXFGWDt4/ibf9KUZQ13m3PK4qi\n97anKoryraIom73/TWmbd9k2XN7064ZaD3Xak1JRFQVbclpI+55R4/nqlU/55a4n2mqIQgghRLtx\npGpBOBmvv4+pvOWfwj9o4QeAdgOysRn6mhyqm5gIU6dCTg6MGdPUozRZ+bDDKO87MKz9m5c+Dllf\n/NQbfLLgJ1ZfcSurr7qdNVfcyuqr57BzwsnNHsOIJ+8Naxv52F3+5bWXXAuA3h5ahk2ChIQQ+yO1\n/i51GnV8IGtsfc+B2K1BmXl04VMCBm+2thNmTUZvAKdDISFZy8aXaqpo5kjBZYmec7PPF+/7l+O8\nQUCvP54aFiAEoUFCiSnh2QKtGYHAqT5s8S/bapr+oMyeHc3PpNQYB48MBLr6yqwF83gCmYXbS3CJ\nsZmjeviXc9gdVG7MQBIVZChFYfu7zYGMiqdOP57hzz6i7aMPvF9DrazIv972cMsMXgghhBBCCCGE\nEKITarcgIeA14KQ6tk8C+nn/XQY8B6AoyhhgLDAMGAIcDoz37jNVVdVDvO0ZwNne9tuARaqq9gMW\nedfbhKrC5rUmXzWiVuG2aZOjemPoZKdqMGBPTsWeHJqhYPktD1Ay+BC2nTKl9QYlhBBC7CfKDNp5\n8FJeZuSdN9TTu/HcwVkYGpmhT6frmBn9or3Nqu69yL3zMQCW3fMUe0eNp7prd/48/4pWy14Yv2sH\n6Wt/J33NcuLy9/jbd44/EQC9w07ypvVYirUsBUYjOJ2tMhQhhGg3ej3ExHkwmT1Yq+v+mr97eyDQ\nRdWHZxJad9FV/uXSfIW9eUYqy7R+Ol3zv9i6zQ0rzGswgqJEfz1fcpnY/D2kpmuRMgf3DQShLLvn\nP/7l7uziOp4EqPfnU5fgAKPW/I4PYLcpVJYFxvrqo6lsWGXm8RszmDmqB+XFOh67IYPzj+pB3t9G\nZo7qwfoVbZ9qKDjoLFgZyTjiveXGvE80mcuKw/rpopyU1aBMQrVLiW45c3qTxiqEEEIIIYQQQggh\n2jFISFXVH4GSOrqcAbyhanKBZEVRuqA9ZGkBTIAZMAL53mP6Hms0eLerQcd63bv8OnBmC76VOq36\nKYZ7ZmWz+JO4VnsNd402Iao3hW+r7NaTqq7dAZifu4P5uTuo7tojvOMBrGPefhVCCNFSBo8IpI2Z\n8dfjLX58nUs7DytNyANxIJ6jtp46lfm5O9h+0lmtcvyFbyz0L3f/fiGnTxnHCbMmc8L/TcFUFchw\n4YqNB7QbkieffzKTTzkckExCQogDk61GISbOQ2y8SnVl3V/zX3xAyzR7BL+GlHTyqejd37+8e1to\n5hyd0vzSnWqE0lG7jj4egKLBw0P7qnWfKZO2buLMM0Zz7G9zmfO/fOae+D8Avn75E8r6DQrpeyir\nAHDYm372DQ6IKc4PD7BqisoyHaWFocfK+9vIxcd05/cfY/1tK5bE8sDlWaz6WQuyuuKUbvyRqy3f\nfm4XAL5bkNAiY2oMmzXy79td3I8jQQsSQlHw6PUYqyoB+PPc2f5+OpeT6qzwTFHBWa4MNdUA5N7x\nKPNzd7TU0IUQQgghhBBCCCE6pfbMJFSfHGBn0PouIEdV1V+AxcBe77+vVVXd4OukKMrXQAFQCXzg\nbc5SVXWvd3kfkBXtRRVFuUxRlBWKoqyoLKsrhqlhSou0yb6/17feE30LXksGIK8y/G39+MhcVtx0\nX6u9thBCCLG/C05g81dlDyZePo0pE4eQtGVjixzfYLMCUBZ0U7UpY+tI2nPYZf0PprJbL0oGDCFt\n/Sp/+5ZTzw7p57Jo5UsOf/xuf1vfj+bRe8EbOGzhZWmEEKKjqizXseTzeKwFDjKL/8ZarfDDp3E8\nd29anfvlMipiubFgpprKkHV9C2QSiuTn+5+htN9gdK7oqd6e+mg3D76xN6Qtbq82ZdDllx84eIQd\ni6qV5yrrMyBs/1i0klV2W9PPYjZb4Oe1eW3zv+OXFumYfVI3rjoth21/aQFZW9ab/EE/jWU0tnJ6\nIyB/l4Ga6sDPcMnn4Q9E3XLWDyRSiSsmsE3VGzB5g4RKBg7l0/eXsO3EM9E7HehqRe8u++eTEPS7\n6TZrP2tbSnqLvpfoOugFmhBCCCGEEEIIIUQD7M9BQhEpitIXGAR0QwskmqAoytG+7aqqngh0Qcsy\nNKH2/qqqqhD9UX9VVV9UVXWkqqojE2qV6WoKo0l7qSWfxTf7WNE4tXuTDO+1K2ybPTUdZ0JSq722\nEEII0RE887l2jjyLj8halYupupJ+H74RsW+vLxeQvPnPBh/bd2OrKqdno8eldNQooXZWdPBwjEFZ\ngwAqevQJWbelZbLtxNDkkT2++wyLrRyHvdWHKIQQbWb2id0AsBKLESeq08Pcf6Xx05fhwRueoBhJ\nVaeLGq26evbNADiplUmohYOEljw6l4VvfonbYqGiR2/0dhsD588ldm/4d9uMLm569Xfyf3cVc98r\n+7T34M2ElLR1EwCm6krcBiNus8W/3w+Pv0LRkEOJQfvi7GhGkFBwJqFn7mp+wMrvSwKZgu68UAsM\nuvuS7CYfL7Obq9ljqs8NU7oya2J3/+/SFu8DUcNGWTl5hnZuHp69DQBXTKC0nMdgwFitBQm5LDFU\nde+F22RG53RitFaHvMbeI8eFrK++8jZWXH8Pe8aGTfEIIYQQQgghhBBCiEban4OEdgPdg9a7edvO\nAnJVVa1SVbUK+BIYHbyjqqo24BO0MmMA+d5SZXj/W9DKY/ez1WiTiLHxzU/LHs3uPG1S7oj+4ROp\nQgghhICUdA8Hs46lHM0KRrCLHHDWyiajqiRt2ciee3/Cct6jDT62zqllPfCYG59RoKOGCLV3cJMj\nIYmE3XkYrDX+NlVf67JWUVh19Rz/qtuo1WW1YMPu0uNpvUszIYRoEx/MTWLmqEAp6Qe4Az1uPK5A\nIE/toEibN8jl5pEfouqil8vafdRxAPQgL6TdoGuZTGzLb7qfvGMnsXvcCZT1G+xtVUjasYXDnn6A\nM88ay5EP3uzvP+2KMv/yuFOqGWFcw6A3niNz1a8AeExmLEX59H//dRSPOyT4ac9RE8mbcIo/k1Bz\nyo3VV8qtsWLi6j8ZjT6hmi49tWuNrj2jZ1qCwPxDWyjYY0D1/qoNHmHj1qcKmXlNGW/+nEef+D0A\nuM21goQqtSAiX/CQx2hEb7f5szL6OBKTQ9ZdcQlsmnZRx03BKIQQQgghhBBCCLEfMbT3AOrwKXCV\noijvAEcC5aqq7lUUJQ+YpSjKQ2j31sYDTymKEg8kePsYgFOApUHHugB42PvfT9rqTRTs1n7ENVWt\nF4/l9s4TqiZTq72GEEII0dH9TV/sWDicFQBc+9e7HBG0fcC8uRQ9s5yz+RqAebVujEZT2a0nbATz\nkYczvHty/TsESU+Qc3dTOBK1LIn9F7wVaFTCr7XsQVkh3SYzKAoJaFkMqqshIaF1xymEEK3po5dD\nM8bewb9YwGRcQYFBt0zvylML9vjXfaW2YnT28ODKIK4YLcPN15xIj6Aq4LGGlknFtnnK+Wyecn5I\nW89Fn4es9/nsPeBdAIYcbgvZdvJ5J4Wse/R6Jp96BNF4jMYWCRKqLAv9mXk8IVWxGs3lCh1LpCxH\nOb2cTL+yjMK9BuKT3Lz0rzTiEjysXhYT1jc405G/zabgdkNsXMtmgVq9LIbMHG0y4sgJgaBdnR4M\nNm3dZQkKEtIbMVdowV6+MmQeowlTZXnIcefn7mjRcQohhBBCCCGEEEKIUO2WSUhRlLeBX4ABiqLs\nUhTlEkVRZiuKMtvbZSGwFfgbmAtc4W3/ANgCrAXWAGtUVf0MiAM+VRTlD2A1Wrag5737PAwcryjK\nZuA473qb+PKdRP9y4d7oT2o2R0K8g2P5HrcECQkhhGhH+/vD3XYsIeu/bO6F4g5kRNj0zBZO8gYI\n+ehtNqaO70/Pb6LHF5cMGAJAlxPGMbhrYqP+ZSZYoh53f9beH7UrNryEjqoPv85SDUY+/GoVG6Zf\niqm6kuwVy0hEy2JQURHWXQghOhSzJTwLjR43q38P+g66J/S5IKc3QMais0cMrvRxe4M7urOL4Smb\n/O1XD1zQrDE3VXxS4HxtqKkO2560Y0ud+3sMQUFCzSg35nYq6PUqM68pBZqfucflDN1/xY+BoJpB\nh9p4fcqzPP/VkaRluhg43E633i7umZvPGRdqgTWz7y7mPx/v9u9jqwn9TL/7MJ6Lj+nOrIndaQnB\n5erefDKFJ27KBCCrVpkzg1XLDOQOChKKKS0itlArE2dNz9KOZzCiqC0bvCSEEEIIIYQQQggh6tZu\nQUKqqk5XVbWLqqpGVVW7qar6sqqqz6uq+rx3u6qq6pWqqvZRVXWoqqorvO1uVVX/T1XVQaqqDlZV\n9QZve76qqoerqjpMVdUhqqperaqqy7utWFXViaqq9lNV9ThVVUsaO96C3XpmjurB2l+bfjPvurNy\nmrxvXaw1ehKpwGNsfJkTIYQQorP6jSMhv9S/PoO3w/okbt+MwW5n7N3XELtvd9h2AFXKVrW5SCVy\n1CipHOzJqSE3KX2ZhCRISAixP2lKnERwjM9ho7S/bQZcUXprHHZtpz65X4aVeAoWnAEmJU7rN1M3\nj6T01gvo+OKtr6NuS0gKnGwtxYWNPrbHYCAG7X3s3Gps/OC8XC4Fg1El3jueyrLmPQjkqlU97M/f\nA/MN1mod539wJWl5mzBWhZ60+g9z8NSC3Rw1qZr0bDfnXOkNWgrKJLTtLyOvPhbIqPfU7em46v71\nqNeHLyVFbM/MCT2wuawEe2JSxABeAFtqOgB6eyBD1LaTzuKLed80b4BCCCGEEEIIIYQQol7tFiTU\n0axbrk3W/fJtbIP3KS5oncxBtW3bmYgFGx5j0yc7hRBCiM7I+OzndW6P27vLvzzi3/fU2VfRtXd+\nnbbT7lmjIkRmqXVkxPAYAtdIvkxClZUtPywhhGhLvnhJo9nDbfdsBbRMQnXxlxsjeoAQhGaAiddp\nGXgyPfk441uvTmN534FRA4UssYHgpJh6goS+e/bdsDaPwUgaxQAseKlxpUGDuZwKeiNkddOie/bs\naF4F99qZhBZ/Eu9fLi8NnNdS/1obtm9GV7f/fHzaeZUMOtTmL3Nuq1G488IuIf2XL47lgqN6NCkg\nzeezNxLD2g4ZbWXYviWYS4r8bTElhdhS0qMeRzVoP7cBH7zubyvtN5jyPgOaPjghhBBCCCGEEEII\n0SDNm9HqRKortcm2n76K47I7G5aIaM2y1i8hsmOzdtPrXc5htue1Vn89IYQQ4kByd+653OldHqpf\nx1r3EP+2uO1bsZSV8AdD6c7OqDdGFbx329o9cqbz0EVIhRAtWwEQEkjtyyT03sJqyLC3/OBEixrY\nJYFEiwTCCxFJUqqbmkodx/+jCoPTATQkk5B2rvKV3opG1etxmc0Y7HZMHi3bSwaF6ByOFhh5dOV9\nB7L0X89x9JzLAYinkioSQk6xluKCkH0+f/tbTp1+PADbTjyTgsNGhR3XYzCSQhkQCPBpqNIiHd9/\nHM9ZF1fgcoLBoJKerQVjLV0Yx6FjbfUcITqXK/q1g680HMDEq2cyP3dHnceKT/awe5v29zJ/d/Sp\nHrtVCQm6aiiPG9zu8PFecelfTLxkBrvHHMuSf78GaNmebGkZ9R5z68lTOGjhBwAUDz6k0WNqLXJJ\nJ4QQQgghhBBCiAOZBAk1kLVaCxJy1zGJV1vRXu3He9EtJbz6aCp6ffSJuJ+/isUSqzJiXN1PdNY2\n5zzt6cDZPIcjPqtR+wohhBCd3ZbqbsA+ALrrd4cECZWf8wpj+60kg3UALI+7OuIx/E/kd6I7Su39\nVo1VgTRA1pR0Pv78Nw5+/Rl/2ztLNob0D84kFJephwJ44t44DptU3PqDFc3SMy1WgoSEiKJ7Hyd7\ndxiZdnkZY67RzlH1ZRLyBZ7Ul0kI4KPPl3PCpWfhqtFOdOkUoXO2frbcnRNO5r3v/yQhbyubLuzP\n19c8RbclFYy79TKqs7oSl78HgAVfLEdVdNhT0/nz3NkMfut5iFJ60uPNXHMGH7PSfHKjxnPVqd0A\nOOwoK267m/iyfIZ//RpwB78uioMHm34ucXtjutKyXBTnB6ZnDju6hjMuqIBLG36shGQ3VeVaCfKC\nXdGneirKdFhi6/49ieS7BYEsR8eeUeXPepRj3w5A9opl/u0xxYUUDxoW8Tjv/hA4Ry+/5QEOWvgB\n5T37UHjokY0ekxBCCCGEEEIIIYRoPCk31kBfzNPSaqdnhz+Z6XZB4Z7AZKnLBU4HeDxgMHi49e/r\nOOGsMmLiw0tj+Dx7Tzr/viUDa3XT7rr9l6spGjaySfsKIYQQLUGh4wXJOFSTf1lH6Hm6iHTsm0v9\n6w++P4GINTp8iYQ6Ubmx9masDgQJlfUdiKrXk7R1s7/NYw7N5hicSahnWuAz9US/NBNCiP2e2wU9\n+jowGCFr1a9AIEjIaPbQq78jLGuOoxFBQs6EJOxJKXTVacG0RhqXgac5XLFx2NIy6cI+Lnz6HMbd\nehmAP0AIwJaSjj1VK2llT0oBQImQaQ5A8ZapTKaMmurI0yD5uwzs2hY9uMbtUtCVVWFWbRz56sON\nf1MRuJwKOr3KUx8F3te9L+3jxseK6DukVtamCNcgOT9+Q98FbwFgNqs47ApfzEvgl+8CZdLPuKA8\nZJ+SgqY9K1ZeEpjzmH5l4FyaWJYPgN5hZ8JVMxj64hMk7NoeNZOQ22IJWo5h8VNvsOjZd5o0JiGE\nEEIIIYQQQgjReBIk1EBJqdpka2V5+I/s7f8lc93kHMqKtW33XJrFheN68NmbSaTpSxmw4E1++8ZM\nVbme6srwG4grl8b4ly+d2N3/NGFDdO3pZGDMVsoGD23kOxJCCCE6l9o3yWrTK6ERIzfyb7bTy7+e\nyygmXnkOA959JXKwUCfS3gFh6y+6xr+serND/HHZjVH7u41m/7IvmwRAdYVcCgshOi63S0Fv0M5H\nld16AVBMGgBOu47ufR1hmXDttoYHCQF4TCb+lX8Fc3iQabyLPzK2DTiilPn0C8oaZE9KBrRAlUiK\nhhwGQBLlWKsi/+2/YUpXbp3elZU/WSgt0qGq8OuiwHf16kodao0DEw5M1qrGvBU2rzWxZb0prN3l\n1D5DnQ6OOa2KCWdWhgQHlffq61/uvvhLRt13A1krfmbg/Lkk7NjC+FtmccSjd6BzOtDpwVajY/5/\nU7QMR152u8K83Dye/HA3APvymhYkZDIHPvu4RJXXfszjxW93ElOU72/PXvEzQ195GgBramiQ0Iob\n7iF3ziNhx907ajy2tMwmjUkIIYQQQgghhBBCNJ6UG2ug7O5a+m+7VUdlmY6EZA/ffxzHoMPsrP5Z\nmzi88pRuYfulmCrBDmXVWp+VS2M5+uTqkD4vPZQasv7r97GMOaGmQeNyOhSGGdZhT05pytvqHCSx\ngxBCCGDq5eV01+3kmVcDJcViDYGbpLWDhAD20NW/fCyLyVqZS9bKXGoystk5wVuuxBswJJmE2o41\nI4u1l1zH0JefwqPXLmcre/Rm99iJ5Py8KHyHoI/GYzByV9dnuH/PVfz8dRwnTasM7y+EEB2A2w06\nb3KX6uyuOGNj2b0pB4BzrixlX54Bd1BVqe2bjDz7Ty3zTgKVVHUJ//5am6+E1IPcCYDShkGywVng\n6lM8eDgAO447LeJ2a2YX/rjsBpJeLMdareDxBGKMXC4o3heYGnnipsgBK3vzjFRWGjGhBQidNLWC\n7z5KQFVDy3DeeHYXho+x8o9Z5cTGaz+ve2ZlA3DwSBtzninwv64vYzHArDtKAgdRVRS3G2dcIFDq\n6DmXA3DQwg8BOOzpB/zbxt55Fe/lvBlx3L5AsbgE7TrHWtO0ANmC3drP6O7n94KqYjQpGE0qMcWF\nEfvXziS0aepFTXpdIYQQQgghhBBCCNGy5PHpBvIETa4u+iiegt16Xn44jdtmdmFvXvTJS4M+9Iaj\n78nNYOaY0D5rf7WE9YnGZlVIcpVgT05r8D5CCCFEZ6UkBDIC6HExyfUF5jLtppyihN/4nMr7gX2D\nsiccPedyUv5aq634bpgqEiTUllwx2mepC0rBuOTxl5m/bFtY35oM7ebs2ouvwWMw0lW/F4A3n5Qg\nayFEx+V2KRgMKtm/LiV7xTJi8/diQ/suec7nN9Pv6w9CMgmtWRY4B6Yby/h0wU+Nf9E2DBJS9dGf\naSoYfkTIennfgby7eAN5x0cOEgJwmS0kUoGqKtisgZ/LtWd25YYpXaPu5/Pmkyms2NLdv56UaMfl\nVHAFVWHbt9PAvp1Gvno3kVnHdae8WBeSuWf9isB3/Z+/CmT7qW30Pdcx/ag+pK9fVe+4ALov+ZpB\n818MaRs5voaTzqngrIu1TIpGbyagppY4/+GzeAD+OTuHId5sQQCWooKI/R0JSU16HSGEEEIIIYQQ\nQgjRuiRIqIHcblB02qTa+y8kc/0/tCc0Xc66J9jWlR0EwNV93gWgJkJq88wc7eaWb/Luxy/imTmq\nBzNH9aCmngk8W41CsrUARQ3PfiCEEEKIUP2OC9ycO5RV1BBLvw/eAECvq/tcOp+ZeIJS0ky68FSO\nePAWVF9bZwoS2g/eqsui3exWXEF1WhUlpPyMz97Rx7D4yddZd8l1qAYD/4j7AoDufRxhfYUQoqNw\nu0BvgAnXnguApbwUB1pJqy47/sDsqArJJBRcOluNj2nSeastMwnVHt+n7y9hyaMv8cudj7PksZfC\nurtjYus8nNtsIRYtY68z6OGdsqK6Eyxf82Boppy1DAOg2x8/A7D8B+11Swv13Hh2aLDR3p1Gbpwa\nOQBp4duBLEGnTJtAvw9eB1Xl8Efm0Pvrj+scUyTzmBmybolVOe+6MpJStesbo7fa2Ydzk/nzd7M/\n3sth17IaNZQOlWFz/+1f75r7Q8R+HlN4eTUhhBBCCCGEEEII0f4kSKiB3G6FmLimT4g+Vjgbo9lD\nVXn4jzwx2UNiipt/zCoP2zb7xOgp4D1ucDp0xFNF7y8XNHlsQgghRGeRlukmLtHNjKtLUVH4kpPJ\nfuktAIzu+gNGkixWFg04z7/e97N3SVu/GpAYobbm9gYJxRRHzmAQQlHYO/oYVL0ej8GIwe2k/zAb\niSkSZC2E6Lg2rrFgK7D71798/QvsmAGIpQYjTqor9Oz1ZrIJ/i5aldOjbQfbTLl3PkZV917sHnc8\n2049G2cTstS4TWZ/kJDd3vAz2ZAjbCHrr3EBAF1/+xGA/92tlXB74YHQMuIA98/OCmt78tZ09u00\nsGuLFkTzLlNJ2rGFwx+/G2NlBf0+mhfSf8fEUxo0zjEsC1l31wr8Cb5OefDKLM4d3YNn70njovE9\nuG1Gl3qP32ewHZM5cN40VpajuN3EFBdSNHg42084A7chkGU5f8ToBo1bCCGEEEIIIYQQQrQtCRJq\nII8bYmPd9Xes5cTEJQCYK8qIiVGx1mgzc9dN7srt52WjqrDsmzhUjxpSLsNn5PiaqMe2eZ9+jKOa\nVVfd3uixCSGEEJ3Ri9/s5pSZlfzOSACyKCCmYC8eS/Qn3nV6LVC4ymbmuI1v8NSCXf5tiTu95a06\nU5TQ/sCbAiF566ZG7eYxGFBcTvQGQjJsCCFER+Lxxmps3RkIlintfzButICgWGowoH2/vGW6FgDi\ndATOUxtmzGrQ62ycelHIet6xk5o85ubYcdzpzT5GcCYhuzUwFZKQHHoyeOTtPby6JA9Fp3LyjAri\nElRe/ymP137Mw4GRC9AyEH7IP/z7fP9xHGt/jaEhViyJDck4FFzaVO+0h/Vfd/G17Bx3ApU5Pfhz\n5mVRjzuXWbx63qucNK0CAJer/usSX8mzukqo+5jMKn37VvnX43fnkbH6VwB2HH8ay+57mhU33w/A\ne9//iccomYSEEEIIIYQQQggh9kcSJNRA+soquuRvaNQ+Z15YxoKKwCRqRZme7z/SUooX7jGQt9nE\nR68kAlBZbmD8TReHHSOnV/S832VFegAyKGTDubMbNTYhhBCipXXkGJnJpx/J+pr+Ube/snhnyPr1\nk3PIO+qEkLaO/P47IoPN2qT9PAYjeqcTvV7F3YAbqEII0RZUGpe11uF9YCSLfQBsP+H0kBNRDFb0\naMEvHrfW7vb+9yiWYk8Kz3oTye833IMjTvsOu3HKBRQdcnijxtlS3BZL/Z3qO4bZQhzVADx9RzpP\n35HGnRdmhWRYmpebR7feLkxmeGvZTmZeUwaAwaCV6zJ6A6/Wn3c5d+gf8u/38sNpTRrTcb3WhKzH\n7d3tX949diJv/7yV8j4DWProXD77cCmrr76Dt3/6m9WX3wLAov8Gsg7FUcOw5C0MPFQLNIrwDFKd\nXM66tzudCkZDIKDq4Nf/x3FXTgdg3xFHA7DljOnMz92BKzaucS8uhBBCCCGEEEIIIdqMBAk1kLvc\nTgaFUbcPHxO4UTX2pGqe/WIXlx73G7GE38BSg+Z/g28ods1dwvsvfsuhYwP7OOpIg75nh/a0X9ZB\nDXkHQgghhAh22NGh2fr+cAyO2jfSw/A3b7kBJwZUX/GtThQlZNLrMBva95/B+/PeOvncRu2HyYji\nckkmISFEh2a3an8D70LL3JKycT0ABTkDWMZourAPN/qQfXyZhBZyMq6Y2Aa/li0tAwCPqWNnhnGb\nLRjRImH2bDfy66I4tv1lRlUVTp5RwX8+3l3PEaCk/2AcCYnY0jM52f0Fk84MnSMYcoSVyZeElxGP\nxlPrPJTgy04IuGJiUfV6alMNRjZOu4TFT71B/sixLH7qDf82g92K3qBNOLic2uc96I3n6P/eq0Dd\nmYp/+iqO8uLoU0Quh0JS6V7/eo/FX+bzZZMAACAASURBVPqXq7Nzou7XEXWeKzohhBBCCCGEEEJ0\nRob2HsD+rHCPgfeeS+KY06vYVtWVUfwQta/RrE3E9R5o54p7igFI+e3PiH2Db0jFJ2p54q/kGQCm\nXHYCzp+2MOMoLfKnriChknxtwjDx4CSKG/aWhBBCCOF18vRKVi4N3CTNYh/5ZAOQlOrm/+4qJjXT\nTf6uyJdL7+09kdWs427uA0DRdZ5bSmP6prf3EGDQjeAp46B77+Wg+PgG71bVJR1TdYVkEuog1MYl\nVxGi07B7MwnFo5V/+u659wAwmlRGkwuAq9bXfXuNwiG99pCwvQq3ueGZeexJKQA44xOaPe725DZb\n6MvfEbf1H2onPTty5KilKJ/0davYdcxJOBKSKIuJw5qWCcD5k9bx5cfH+vvGxKn0OTi8ZFjUMblD\nz0M9v/20YftZLOwdNR6AvUeOY+0l1zH05afQW60kp2lzDF2qt5O6YQuHPvswAJumXkRyWvTo2LkP\nppGa6eK/n+6JuN3phIy88DmOneNOwBXX8POwEEIIIYQQQgghhGhfkkmoDlUVOj55PYnr/6E9Ffc2\nM6L2ze6mPZE489oyf1tMcQEAK6+eA8ComN8BWLMsxt+nvEQL9HmQO/xtmatymXnWZgA2rDRHfc3q\nSu3ji0mWG1x1UeQ5QCGEEBF0O8iJOcbDzDM2AfgDhAAemb+XQ0bb6N7HycjxWoa/+ETtxtqQIwIZ\n/zYxIHDATpRJaL8QGwtPPAGNCBAC8KSlYar0BglJJiEhRAdls2rfBeOoZvUVt2JP1YI3VYPR3yc4\nSEhVYcMqC+VV2vdLtyn698za3N4MQrbkppXUao6d409k26TJLXKsqpweHMS2iNuSM6KfEE666HTG\n3fZ/6Bx2FI8HVafHmq4FCWVW7gjpu2uLkeFjbDz/9a6w41x1f1FYW+0goZxli/3LBmv0rD8hFIW1\ns67HkZCIwWbloEEObr5oOW+vHcNJF53m75awYwsmxQHAIaMD1zJnXBDIfFRSYKCyXEdxfngGI6dD\nwYItrH3pIy82bJxCCCGEEEIIIYQQYr8gmYQa6cVec/jhtJuZ/1/tacpxp1Qx45oyYmI9DBhuZ9Ch\ngacGLcWFuCwx/DXjMjJXL+fqLa+Qax3Bv2/J8Pf56JUkQJvc3TdyDNkrljHx6plMBOahsnNL9JTu\n1jIPsVRDQsNTxQshhBBCk5Ds4ZXFu8j/xcq8T0K3xcR7wvr/5+M9uN0Ql6BitylcfEx3APLJ0jpI\nkFCHoCYkAmDAhdvVsUvnCCE6r+oKLUgomTKquvbwt3sM2ld8t9GEyxn4un/uaK3P9iIt0KcxmYR8\ngUf25NTmDboJWjIApSarK2W9+3FGzWI+yT82ZFtdGXZiC/cBYKypRnG78ZhM/vJavb/7FLjQ33dv\nnvazSkjyMOQIK5YYleseLkJRoLoi/DpBR/TXrerSraFvDQCXJRaDtRqAScM2kEJZyPbTpk3gJx5m\nIbcSmxC4zjl+ShUlhXqWLtSCbm+e1oXKMj3zcvNC9lcrbJixU3ZQf4oHH0Kfz9/HozfI9Y8QQggh\nhBBCCCFEByOZhOrQtZeWHSg10wVAGUlM5X0mnVPp73PZnSUM/v0zjrv5fA4dqz1VN/y/D3LO2D4M\nevslrGkZoCh0W/ot2Xs2RHydGMWGATfbTp4Scfs9s7IittvKPCRThjNWUnsLIYRofx31FpHNmw0g\nmCFCGLUlViUuQat9ZLaozOy6EIAb+TfQucqNdWSeBK1cjhEHHskkJITooCrKtK/yiUku8iae4m9X\nvCnSKnochJvwbDCDsnYD4DY3PJNQdVZXAFyWmHp67v9csfFclPZBWHtympuRj9/F0LlPcuLFp5P+\nx4qwPobqKnQeN6pOT012Dm6TGZ3TwfFTAvMDp51XxoSrptP1p0Xc/nQh1z9S5I+hGf/incQbrSHH\nvG3Am9RkZLNh+qUh7Yuemc+ay29p1HuzJ6VgLivV3s/myHMPJrRMQpYYlWGjtLEkpbmZfXcJ/YfZ\n6HaQg8oy7fem9jnSbfNgxo6pspzltzzIjw89z2fvLUYIIYQQQgghhBBCdCySSagOOm8IVUWpnu7G\nPSQ5K7CVGdAFzbVayks4es4VAAx7/jGGvPZMyDFsqYGsQWP5GYBBh9rYsCrw5KZVtWBLSmH7CWcw\n+r4b/O0vczGX8Aqb15opzteTlhU6S2etULUgoTgJEhJCCCGaKvgm2Kw5xZQUht9UjSR5z9bQBokR\n6hB8mYRMqhOXSz40IUTH5LBrf7+cfbqHZHJJ3bQegJQtf1GZ3hVqVbj6xjEBaFy5sXUXX4MjIZH8\nEaObOer254yNY4wtN6zdaIL+H7zhXx/5xD9Ze+n19Psw0Ja8dZO33Jg2UVA8aBiW0mIufLCUSedU\n8slriUyflkf2qcvIXJnLO8sCpc1yfvyG/h+8wdmM51Uu5qJbSjhuchUD/7kVt8nE6itvY9DbLwHw\n2bvfU9mzT6Pfmz05FUtZMQCmqoqIfXajZUBKTHFz6e0lIdtMFpVNfwQy7JUW60nLdOOwQ+EeAyXO\nJL7jOGwpz+Ixmdl17KRGj1EIIYQQQgghhBBCtD8JEqqDb67V5VSIM9cAYC4vJW7PTkBL137U7Zf7\n+9cOEAKwpab7l804iIlx+TMTBbOUl6LWSlvQjV3+5U9eS+TiW0tDti/LzQAycCT81qj3JYQQQoiA\nXgOczP5nEYcfo5UFaSidSYf3gXwAFCm30SF4UrVyOTGVxXjc4VmkhBCiI3j+Xu17pskUOSXajomn\ncuquH3m76LSQ9pzSTUDjyo3VZOew+uo7mjjS/YsrNo6YkkJueqKAqnI9z9+XFrFf6sZ1jL/5kpC2\nXl99RPyu7diGjgC0oJyEnVogUFY3F5fdWcKg194CQOfxEFOwF2tmFwDG3zILgJe4lEFvn0RObxeo\nKjk/f481LcNf0s2j1zcpQAjAnpRMTOE+4vbsJG7froh9XuViIFCuLti630IzRX33YTyfvp4U0raZ\n/qy87u4mja8jkWs6IYQQQgghhBBCHMik3FgddPrAjUKzagdAUVXOmHwUe0eMQUUha1X4U4jBUjau\nD1k3Gty4qsKDhCIZReDYiz5KoLQo/OOyYMWenNqg4wkhhBAinKLA0ZNqGhUgBFDdu3f4gcR+z9Wt\nOwBVqwopLTSwb6fEzO/PVBr3/6UQHZXaiF/14L7mKEFCf1x2A+PTV5KhL/a3rR37j0DSO13nnApw\nxsVjqK7m0LE2jj65mntf2sedz+bT47vP692356LPMVeU4/EG9NiTUjCXBx7kyVi9nOHPP+ZfP+v0\nUaCqGCvL/W06VAYYtwAw+M3nMFVVkLRDW5+fu4N3fq6VpbARXJZY4vbt5ozJR9Hrm0/97b/d/ADz\nc3fw7XPvsYl+pCZamXFNWdj+514X+lBS7QAhgKUcRcFho5o8RiGEEEIIIYQQQgjR/uSuSB2C5023\nO7uHbMv+/ZcGHSOmKB+A7//zFhOuPRejzo3Dqm17jJuoGjuCa36+0t//w69WkbHqV8bdPptEKvn1\nsjkc+eK/AJj3nxSuuj8wyRtntnOp/QVsKSOb8vaEEEKIFqUoCimxxvYeRpupGj0aNgbWFZ0ECXUE\nbm+Q0GK0kjsfv5rIrDkl6OWqWAjRQVhrAucbsynyAyhuswWP3sCTGf/k3H1axtsEW0nEvp2JKzYO\nY02Vf73vEAdnnno4sUUFUfcpGTCE1I3r/OuORC14RtXpiCkupNviL9l17CSStvwVtu+M0b3C2kze\noKHhzz7S1LcRkcdkwmC3hbebtdJyzrh4+vE3W9KHs9DybVi/Xv0dYW219SCPvOYPVQghhBBCCCGE\nEEK0I7kdUo//u6uYF+5P49XkK6kxZBFbmN+o/fMPHwtAdZduAJgUJ3abNqmbRjEzPC+SSikL3/wK\n0FKW7zp2Er/c9QSj77+RPj8tBLQgIYe91s1Hj4qCKpmEhBBC7Bf0OoVJQ7u09zDazLJutRoMclnV\nIXhvlvosXRjPto0mHpm3r50GJIQQjbPyx0BZqITywoh93CYzqsHAsH1L/G1d/lwOgK0Tf390xsZj\nqKkOaasrQAjg2xc+ZOjcfzN43gtYUzPYOFUr2ZW0bTMA426fzfxftpMcIUgoEl8mopZmsFlD1v8+\n/RzKe/dj20mTAXDGJQCQvHUTB7/6X9ZfcGXIk1FOR3iw8+ARNs69rpQ552nXd9HK2wkhhBBCCCGE\nEEKIjkPuZtVj3CnVjDulmpNO+ZrqjJxGBwmtvuI2IDARa3bbcNhjATDgousvP2BLTqWs36CQ/bad\nMoXR999I2p9r/G0GY2gOelXVnl50xcY1+n0JIYQQonmMnSdp0gHnx4eeZ/ztP7CEYwDYtcXUvgMS\nQohGeO7edP9y1+VLI/Zxm82oOj1u9P42nUfLOtSZHzJxxsahdznp8ssPlPfqS012Tsj2ooMPZdEz\n81ENBo67fCqrL78Ft8XC6qvnsPrqOSF9M9cs9y9nrFlO/wVvNWgMPRZ9TvcfvvSvr7jx3ma8owB9\nrSAha0Y2G6df6l8Pnjc45IXHMZeVsOW0aSTs3Ma+I45mwHAtSOi6hwoZeYyV4nw96dlaUFDvgXa2\n/WWm5ujDW2SsQgghhBBCCCGEEKL9SJBQA+kddmoys+HPyNvticmYK8r861++9jmlA4f6150JiQDE\nVxZQnnSQdky0CTe3JYaGMFtCg4RQvanDFSlvIoQQQrS1klpVW+R03HHsOnYSL3aZwoC9v/nbHHYw\nmevYSQgh2pmqauea7n0c7PQGN7qNkYMc3WYLOqeDHkHFoTwmM9jtbD15SpuMd38U6y0Hfuz1FwDw\n+dvfhWz/5uWPA8svfUxdqjO7EFewF4DjZ5/tb197ybUMffk/Ufcb8toz/uX1F1zJprMvbNjg61E8\neDg9FgeCj1xmS8h2V615h4HvvsLAd1/xr8/P3cG83MDviy9ACOD2/xYw4JzZYG7Y3IUQQgghhBBC\nCCGE2H/p6u8iUFUMNdVU5fSI2sUXIFQ8+BA+/HJlSIAQ4L9zGEsN1hrtaU4D2pOctSfrfP4+YzoA\nr3M+AD36OmsNS0W1yJPvQgghRHvYurW9RyCaI8lYFbJeVa6P0lMIIdrfj1/Ece7oHpQX68ju4fK3\nL7s3NBjFmpoBgKo3oHfYSaWUJ7iBYaOs2BOT2TNqPBvOm92mY9+fqIRG9J46/bgmH+vTBT+x5rIb\nQ9r2HjmO6lrZieribMGswBtmXsan7y9h19HHA1qgWLDa62FUNeqmuASVw1mOJ0pQmhBCCCGEEEII\nIYToOCRIqA7xu3cw8vG76PbDV+jcbu3JyyiqM7sAkHvn49hT0iL2KeszgAwKKS3XJtZ8mYSMVRUR\n+zsSkgA4nU+1hloZClSPluFICCGEEG3P4Qhdd7sj9xP7J5M+9AOzWSUVlBBi//X1uwkA7NtpxB70\n98qRmBTa79VPWfLoS6Ao6JzaieoGnuTdnleRsDtP+/7YiVPfRSvVvfbia/jsvcWNOpZqMLBnzLEh\nbdVZXdk17kTyDz0yrL81JT2sTdW3YICqTkdV915aBmRAQQ3bXpdDnn+MxG2boh/e6YiauUoIIYQQ\nQgghhBBCdBwSJFQHg9VK/w/eYNzt2pOWg956gcpuPcP6ffna5/z84P/YOf5EKnr2iXq8bSdNJpMC\n3G7tx25EywwUW1QQsf+W06YCQZN7QXN8hppqVBTM1ZEDjERAJ54DF0II0Yqs1tB1u8TtdiyG0Kq7\nN0/r2k4DEUKI+m3fpAVnOB1QUaoFlrzDNJxxCSH9arK6snuclklGH3Ri8pWVylqZ2xbD3W9tnHZR\nxPZd406gssdBjT6e78Een94LP8SRlMyiZ98l/9BR/vaCQw5n5Q3/DD+AJ3r2nqZyxsYD2pxBbbuO\nip456eDX/8fEq2ZE3a53OPAYjc0foBBCCCGEEEIIIYRoVxIkVIfqrNCbRX/NmMVnH/zI/GXb/G3v\nLN1M6cChFA0dwdJHXqzzSUBzWQmZBAKC0imK+Do+lT378NFnv/mDhBK3bAzZrqKEPx0ohBBCiDZx\n++2h6xIk1DH4Yoc9ej239Zgbss0j2aCEEPshd6C6GNYaHeUlOk4Zvp5pvIczLj7qfr5MQsHUTv4E\nhS0tM2J7vaW4onDGJ4asbz1tmragKCx67l3m5+5gfu4OvnvhA5wx4VmMFNXTpNetiy9bUqQgIbdZ\ny468bdLkiPvGFBdGPa7O6agzu7IQQgghhBBCCCGE6BgkSKgOvoAfZ2w8NRlZrJl9s7YhKE23pxHp\ntu1JKSFBQlvvuIXP31nEpx8ujbqPLSXNHwhkLi4KGpyKikJB0NOJQgghhGg7J50EpaXQu7e2brO1\n73hE46h6A9d0eYvnv9rlb3vm7sglY4UQoj2VlwQeRLFZFWqqdAxc/SUAzijlsyByaep3lm5u+QF2\nMGv+76awNldMbJOO5YwPzeS08po7GtwXwJaW0aTXrUtVTg8A7MkpYdtUvZZFz5oaeN13lmxk7cXX\n+NePn3UWEy+fFrKf4najc7s7Tbmxzh1KJ4QQQgghhBBCiAOdof4unZcvSMhYU0Vp34HNrlv195kz\nKHn2E/96Qoqbil596x6DwRCULSj49bUgIXQyfSWEEEK0l+Rk+PhjuOkmGDGivUcjGsNjMKC4XSQk\nB7I4/LooDh4sbsdRidpUSZopBGXFgSCh5+9NByCeKgBcEbLT+OgdETIJGaRc1J/nXc4hLzwe0uZI\nTG7SsVS9nkVPz8OWnklM4T7cdQQbFQ4/wr9cPHAoe8Ycy9aTpzTpdeuy4/jTUXV6dh5zUtg2vV2L\naA4OTvKYLay99HqGvvI0BcNGkvnHirD9Ujf8AYC5vLTFxyuEEEIIIYQQQggh2pYECdVBDcoY5Kr1\nhGbuHY+iuBuXGtxtNtOTHf71mDgITwAezhck5NEFJocVbyahTp4tXgghhGh3w4bBN9+09yhEY6l6\nPYpbqy82+dIyFryUzPCx1nYelRBChLPVhH/pS6ASALclpsHHKe0zsMXG1JGpBgMbz76QAe+/5m9r\naiYhgPwjjgKg/KD+9fZd+OZXDH3pSXLvejysVFmLURTyjjs14qb4PTsBsKWm89ut/wpkBtLpKO03\nOCRAyFJcwISrZxJTlI+5ohyAAe+/xu833ts64xZCCCGEEEIIIYQQbULKjdXBl4obwicNt542jS1n\nTm/U8TwmMxfxauD4Rn0dvQMqumt1TJzmoDF4g4QkD7YQQgghRON59AZ0LhcAZ11cAUB2d2d7DkkI\nIdi42swTN6WHZNHyRHg2xZdJyJf9NpIN0y8NWf9y3tctMsYDwe833sv83B1UZ+ewb8ToZmcNbqiy\nfoNY+siLrRcgVI+UzX8C4DEY+fusmWw79eywbT6TTzmc5K2b/AFCAFtOORshhBBCCCGEEEII0bFJ\nkFAdVJ2O6uwcoOnpx0MoCoopEHjkaWCq99x7ngTAbQzqr4KKgk4nNRiEEEIIIRpL1evRubUgIV/y\nyPXLLe04IiGEgPtmZ7Hyp1j+Xmfyt6me8ACW36m/xuXf/zivRcd2IPrk42V8/8zb7T2MNleTmd2k\n/Zbf+mALj0QIIYQQQgghhBBCtDUJEqrH0oee59fbH2btJde2yPHcJrN/2ZGQ1LCdvHeuVDUwOayV\nG9NJIqEGkJ+REEIIIWqL27ebtD/XoHPY/W07t5jq2CNUZbmODSvN9XcUQogmePCqTP+yL5PQPXP3\n+dvu4v4GHWfl1XNadFwHpE5Uw/ujz35j1VW3UzRsZNi21VfcWu/+HmPDz5NCCCGEEEIIIYQQYv8k\nQUL1KBk0jC1nTMea2aVFjucLEhrMeuzJqQ3aR/F9SkFJg1Rf/vnOM58phBBCCNFikrb/DUD62pVN\n2v/aM7vywBVZLPk8riWHJYToxPJ3BbLOOu2Br+q+r34Z637niff3kNf3cLqzq0HHlKAOEcyakcWG\nc2dH3KZ6JxesKen+tnUXXc07P24KdOpEAVVCCCGEEEIIIYQQBypD/V1ES/KYTGxgIBnGUr6O/a1B\n+6je+WE1uLKYW3ucVObohBBCCCGaTudyhqyXFOhJzXTXu5/dql2gvfhAGksXxrFhpVaq7Nb/FDDs\nSFvLD1QIccC7YUpX//LI8TX+ZY9b+9J3xH/+yd+T5xNjcjX4mPkjx7bcAMV+bUhOIhkJTc9wZzjn\nDHj2Yao++QzHzz+RdPvNpD32IOMNBmouuAjzVws5dmBGC454/2XSy/N0QgghhBBCCCGEOHBJkFAb\nc5vMDGQj1SldGhzho/jSBQVFCakeySQkhBBCCNFcE649j2X3PEVc4lVUV+jZvc1Yb5DQuuWBm7CH\nHVXDyp9i/euPXJvJaz/mIck7WoZafxchDki+EmPBy3rcmMvL+H/27jtMqur+4/j7Tt/eWHoTxIIK\nKEZRVESNit3ECvauiVFjEI2J+anRKIklRk1iw4a9oMSCDREL0myoSFFYOmyv0+/vjzs7s3dntsE2\n5PN6Hp6595xzz5xZdvaZ2f3M96QVb2r1PBVDdmnnlUl3lZfuoU9O2tZPcPAYME0K64+v/wPxesqP\nPwZA+9RXFhERERERERGRrqSPR3Wy+u3GWrvVGIDhsJJA9Rmh9atd+Gus/zpVEhIRERFpvfrXTu/f\nNz3eNubWa5l81xYA/LWpX1ytX+ViwWzrj68zHsuJtzcMCNWbPzu5TUR+nh5+GJYvhxUrtn6OYBDS\nPM74+ZDhAcKhxM8iM2K9EXQQxV1TRVrJljbN/8r/5vPaK3O3foEiIiIiIiIiIiLys6FKQp0slJEJ\nQCCvoNXX1G83hgmhIEw+vS8QK0WvkJCIiIhIm9X2Tmzr44hEyMi2SnUEg6lfXN14bm+Cgdbl6x/8\nSw/GHlW07YsUkW5tv/1gwYLEeTS6dR/iWL8+cXzYSVWs/dFNJJyYyFFVDfSMVRIqwxEJUzZsOIuu\nvqlV8/t79Gr7okRERERERERERORnSZWEOll9BSF/WyoJGYlKQhceNqBRX/utTURERGRHEU7LsJ17\nXNYWY6EmQkItBYSmzSni6c8SwaCvP/dt4wpFpDuLRu0BIQC/f+vmqqhIHGfmRHG6IBxOtLlqagDi\nISGAlSeczubRB2zdHYqIiIiIiIiIiMgOSyGhTuaPVRBqSyWh+pAQJgwYGmrU125LExEREdlhhNLt\nIaHM2mIAwk2EhFJxOs34scdrf11251U9qSjVS22Rn6vS0uS2QGDr5jr55MRx38EhXG7Ttt2Ys8oK\nCTmI4omFhMJeBRFFRERERERERESk7fSXi84W++tRIDu39dc4YpWEMNhtlP3jqQoJiYiIiLRdOLYF\nbL1fnT0eaLqS0K4jk0uE3Pf6OvoPCfL7qVvibUN2T6QEaiodRKPtsVoR6W6efDK5rXFI6KGH4Oij\nm5/n7bfhp58S5z16RXC5sG035qxOVBIac/sUAKIe71atW36+9LsBERERERERERFpDYWEOlnGxnUA\nBHLyWn9Rg0pCwcZ/uNIvAkVERES2yqxHXmXNIUcC4MMKASW91orxpiWqBu07rpa7X1pPbkGUO5/Z\nyOhD6uJ9v7u9OH48+Yy+PP73PAWFRH6GPvwwua3xdmOXXgqzZlnHK1ZYb+uefz7RHw7DhAn2a3zp\nUZwu07bdmBm0ThwkfphEFBISERERERERERGRreDq6gV0Zzlpbo7dq0+7zun821/xn3cuq488odXX\nmIaBQRTThFDA/oerRUUDGduuKxQRERHZMZTsuQ+f3vxPTh+/O16sEiBNVRKqfw02+e7NjDowuapQ\nvcI+EX57azH3/7kHAO+/msX7r2YxfV5RO69eRLrSMcfAzJn2tqa2G7v/frjySuv4jDPgtNOswJDb\nnTw2N7iFhXOs96CfzEpn7FG1mFHr54+TSHxcxKftxkRERERERERERKTtVEmoGU6HQU66u13/ZY4b\ny7K5Cwll5bR+IQYYmJimSShokFeY+Fjp8L4bO+CRi4iIiOwYImnpQKI446uP5hCNQiQMX33mIxyG\nD2Zk8P0X1h/kmwsI1XO5zaS2VT+kSAOIyHarvtLPcccl2poKCb3+uv28pqbpeU+95Ij48YzHrPeM\nZtT6mdKwkpARjiDSkKH9xkREREREREREpBUUEuoCRpv3CDOI4mT297sQrjPpX7I03nPxuE/bd3E/\nQ/plqYiIiDSnpqe9cmRlmYPbr+zJ1Gt6cu5BA3n0joI2zef2JIeEbjy3fatTiuwI3n4bPB4oL+/q\nlSQLhazbo45KtDXebqw+QDRggL199WqorbW33fPPKMP2ClDIFkwMBudtpv9Q604isTzQkkuujo8P\np6Vt60MQERERERERERGRHZBCQl2grZkVM3bB6pICFn6SSVq0hp34cesmExERERGbdx551XZumhD0\nJ7/GOvG8ilbN53Ilh4Rk65imvpY7sr//3QrjzJ/f1StJVl9JqEePRFt5ORQ12FnQFdvcu7jYfu2e\ne8LIkfa2iy8xefHAP8U/TtKvbBnVFdbbdTNWQGjjQYdRPnRXADbtq02nRUREREREREREpO0UEtoe\nNAoCzWd/FjGajfRSSEhERERkG9U1qiQUDhnse2idrc3tMTn10kRIyFtWwl4P3w3RKI25PB2zTpEd\njSf2XAqHmx/XHoqL23Y/9ZWEMjMTbUceCYMGJSof1Y/56afk61essG5/9zuYNAkcDhj5338k5s/O\n5rtF1jaHZv3OYi4Hb05/h2fmrdb7QBEREREREREREdkqCgltp/Iopxeb9cthERERkXYWCRtEI4lz\nwzA5aEKN7WXXryfsw16P/pN977op6fqKEvtL7FMuKY/N2yHLFfnZqn/OpcjitatgEAoL4YorWn/N\nypWQng4jRiT3rVpl3daHhL75xrp96im45BL72GuugaefTp5jfqU1cXWFI15Ry3DpvZ80Td8dIiIi\nIiIiIiLSGgoJdYE253oMg/OYNLmabAAAIABJREFUFj/9D5fGj02FhERERES22fcTL+YOpgBWNZFI\nJPEayzQNnM7EtldDZzwbP85b9h0AE8cMYuKYQaRvWMvoQxJViP7y0EbcHuvaUFCv20TawhF7t9rR\nIaHqaus2VVinKY89BrW1MHAgzJ1r7yspsW6DQXv74MHgdifOTz3VagOsfQ5j/Ln57N/D+tlSUeog\nGvt5ZDj19l1ERERERERERES2jX7L2AWMNn7GzzQMpnEBr13xIN/vdxyX8lBirkikmStFREREpDVq\ne/VlF5YB1nZj0UZVf5yuxPHI/0yNH68ZP4EJZ0+In5908lhcLpNzry3l0OOr2WVEMH6tKgmJtE19\nSMjv79j7qYvl+lobRnrxRft579728y1brNv6SkL1CgvtbePHJ47N8jIAisZPIOL1cf7gmQAEAwZm\nbF2qJCQiIiIiIiIiIiLbSiGhLtD24j/WBb2yK8mNltt6enz7RfssSkRERGQH0FRYO5iVgxvrr/eB\nOoPXnsix9fvqKkjftN6ao0GSYOAHb5C3/Dvb2NwVSzny1GouvrEUAKfLqhASDusP/CJtUf++qaND\nQjU11m2DYj7NOu006/a556zbHj3s/fWViRpXEtp5Z/j3vxPnmZmJY6O4GIC1hxxJ1O0mA2tR/joH\n0UhsYaokJM1QkWEREREREREREWkN/ZZxexD7bZ9hmjhC9t80rzl0QqorRERERKQNAjm5eLBeZ5Vu\ndiX17zTzRU468QAA3NWV8fYeS5ID2/3mvms7d8VCQtGI/oLbVq0NbcjPU33o4dxz4Z13Ou5+amut\n22AQpk5tfmxDQ4datzn2TGG8WlAoBEceCWeeCcXF4HRa1ZH23tvqt4eErPJDgdx8oi436ViLCvoN\nQmEnAC6ffoaIiIiIiIiIiIjItkn+C4h0uLZ+ws+sH2+aOENBanr2IWPzBgA27n9w+y7uZ0ifqBQR\nEZGWRDzeeEiorib5xcODXME9/J6JYwa1ONfIh+5i5EN3AfDJLffhcE6Mz5uWaeBLU/JFpDXc7sTx\nUUfB+edDr14wcyYsWZI83h+KsKUq0OycdbVW5aAehYm2lesdgA+AKVPg6F/Vkpff3CzpAKSVfA3G\nSIpfnAGcGO/dXB5kTWmYmjofTm+UO+8PUgvUlsYGOLyAk9qonzWlVmUy1+r19AH8eQVE3R4yolYl\nodXLPWRFnDiI4HA7aOWOaCIiIiIiIiIiIiIpKSTUBZra5qLpC6zx+029EYC1B/8yHhISERERkW0X\ndXvwxbYbq6myim1ecXMxD/7F2kfoQw5t8tqNow9g/vV34K6pYsJ5x9n6hsx8AecxZwIw+Yy+AEyf\nV9Teyxf5Waqrs59Pm5Y4Xr0aBjXK7JXUBJm7vLjZOe+Z0oOFc9J56tMiHLG6unM/z6A+JARwy9Qg\nv7qwMuX10Sg4nAPIK4xQ9dHbAFQ+MR2X+wT6Dg5RtNzD8o01zF1eRVVtH8r9QeYuL7HNURvuCTj5\nflMFxnIr1DR06Wr6UF9JyEWOaW0z/c6LmRzfx4GXAKbT2exjExEREREREREREWmJQkLbBXuoKOp0\n8vFfH8BX1vwvwEVERESkdaJuT7yS0HMP5AGQlZuo2XEA85KuWTf2MGp79mXhtTdjulK/rO6z4GM8\nR9al7BOR5q1ZA3vsYYWFfvzR3jdpEnz8sb0tGm25StfCOVYVoLpqg6hp4PaYfPRGhm3Myw/ncsK5\nlaR6Wn/waibRiEHJRleiZKkJ0+asIRgwuHD8ACJhqzkcMnC5k9fkjM0bCSfe53nLrTJDgdwCoi43\nY754DniW0YfUEVrqxEsADO0WLk1r84eRRERERERERERkh6TfMnaBtm9/Zf/F8sAP36boiONYdup5\n7bUkERERkR1axOPBHaskVC8aaf6aJedfyYIptzUZEKq3x4uP2M79dfpDrkhrrFsHhxwChx6a3PfJ\nJ9s2d9EKD5cd1Z8Lxw/gu0VWFaF7Xl4X7/9gRmbK6zavT36+OyJhHETjgaBw2MBfa1C80cWyr71J\n44+dZFUpGjgsGG/LKvqJsC+NiM9HdX+rRNLArM3UVDqoC3rIpBrTobfvIiIiIiIiIiIism26rJKQ\nYRiPAccBm03T3DNFvwH8EzgGqAXOM01zcaxvKnAsVsjpXeAqIA14ERgKRICZpmleHxt/HvB3oP63\nvvebpmn/a00nyklzM7hHeqvHu0ke25brd3QFGZ6uXoKIiIh0c1F3ckio7yDr3OuL4vfm4asoi/dV\n9R9MyZ77JM3z9UXXMOKRe2xtvZZ9aTsv3uCi/xD7fYlIsro6SE+HzZtT91dWQnZ24txsuZBQ3F+v\n6JXU1rNfIhlYVZ46kJNXaI257KYSiFqBv53efhVXbQ0f3fkwANGIwTfzreDRprXupDlGHei3bTuY\nvmk9Q994kbr8QgA++/Nd9J/zDnnOCqoqssgMWSEhjIykuUTqtf3DSCIiIiIiIiIisiPqyu3GHgfu\nB55son8CMCz2b3/g38D+hmEcCIwFRsTGfQyMA+YD/zBNc7ZhGB7gfcMwJpim+VZs3POmaf62Qx5J\nG/XK9tEr29f6C4b2sGrpr18Pb74J993HgVlZHbdAERERkR1MxOMhiD1YnJkT5cE31tL/y4/w3ZgI\nCK096Ag+vu2BlPMsueB3SSEhs9EWMGtWuhUSEmmFcBhcLhg5El5+OdG+226wdCksWwb77ptoj7Yl\nJdTI7U9tAODvz61n8hl9qSxzphxXW209n8ceXsmYcZPj7QM+egfDAIfTJBKG2a9ZlYh2GeFv8b7H\n/sl6m/rDGRdYDQ4HVf0Hkr6xhs/mp7HSNZzd+A5QSEhERERERERERES2TZfVKzdN8yOgtJkhJwJP\nmpZ5QK5hGH2w9t7yAR7AC7iBTaZp1pqmOTs2dxBYDPTvyMfQqcaOhVNPhWnTQAEhERERkXYVdXvx\nYf9j/uFTzqPAV8HxN06Kt31412N89I9HiXqbCHw7HHx+/R22pnJybeeP3pGvLcdEWiEcBrcb/vhH\n+PJL6/aMM+DJ2MdM1q+3j28pIhSNJrdNn1fE9HlFDBpmBff6Dg5T0DtM0J/6OfrOi9Z7sYzK4pT9\nTpdJTbWDdT9ZFYRunPRR84syTQq/WQTA5r33jzf78wv5rHIUAHVhL1+wd/PziIiIiIiIiIiIiLRC\nl4WEWqEfsKbB+Vqgn2manwGzgQ2xf7NM0/y+4YWGYeQCxwPvN2j+tWEYXxuG8ZJhGAOaulPDMC4x\nDGOhYRgLt2zZ0l6PRURERES6sYjHw+4sZQqJgM+gRbM58eSD4ufBzGzWjz28xbmibvv2QqXk287r\nahxcOH4AwcA2LlrkZywatf65ogGcTqua0G23wbPPQp8+1piNGxtd00IlIX9trArQ0TUU9Apz57Pr\nU47zeExCwdQhoeoKq8KQt7wkZb/TCe+9nEXxRqto7wlTTgPACIfIW/oNRtheRcxdUxU/DmUkPgwS\nyCsgy6hCREREREREREREpD115XZjW8UwjJ2B3UlUCXrXMIyDTdOcG+t3Ac8C95mm+WNszEzgWdM0\nA4ZhXAo8ARyWan7TNB8CHgLYd999t75evYiIiIh0O0YTBXyibmursTu4gY+PuILP30vHgYm3sjw+\nZtHVN7XqPhqHhM7hSa7l7qRx548byANvrCW3IEV5E5F2tqGijip/uKuX0WrBIEAWrttvYdmVU2xP\n3qBp9S1ZHmDZpmC8vbiq+eRdTZX1GZnho/1c8X+pQz4A7mZCQgB77V9HjyVfJHeYJv5a++dwMqgB\n4MyDdo63PTNvdfzYW5YorhvISVQdq8vvwVfuvRkSXAHAIt/+LOXFJtckovp0IiIiIiIiIiLSGt05\nJLQOaFjxp3+s7Sxgnmma1QCGYbwFHADMjY17CFhumua99ReaptnwN8CPAFM7cN0iIiIisp2JeDzx\n4yuvK+L+/o/A41A2bDjesmICuQX8dOwprZor6rKHhHrQdBjhlkt7cfdLG7ZqzSJt8eOWGlaX1Hb1\nMlot4DeALNyE+Oqb1YSyc2z9Xl8GP24IsHBVeeoJUqgPCWVkNR/Mc3tMggErcvH9F17mzMzg0j+X\nsmmN9fZ5+OgAjkYVgQCcgeSQkpswTr8/qR1g4phB8eNvz7kCf0HP+Lk/vwfDgyt5/v1vGfHQ3Qz5\n3/csbeHxiYiIiIiIiIiIiLSkO2839jpwjmEZA1SYprkBKALGGYbhMgzDDYwDvgcwDOOvQA5wdcOJ\nDMPo0+D0hPrxIiIiIiIApjORnXdFw3hC1h/1fcWbcfn9bBp9QNNliBoJZWTGj5efPIkl518ZPx8w\nNMg/XkhscbRprT1QJCKWSMS6dRHGXVud1O9wJsYAFC1303i3se8WeZk0ZiCvPJoNJEJC6S2EhFb9\n4OHreWm8+N8c/np5L+a+mcm0qXn84QzrbWVGVhRXTfKahr38ZMr5Cr+abzvPWfkD2T8tt7WtGT/B\ndh7I6wGAr7QERzhE1NWdP98jIiIiIiIiIiIi24suCwkZhvEs8Bmwq2EYaw3DuNAwjMsMw7gsNuRN\n4EdgBfAwcEWs/SVgJfAN8BXwlWmaMw3D6A/cCAwHFhuG8aVhGBfFrvmdYRjfGobxFfA74LxOeIgi\nIiIisr1oEAByhEI4g1ZFkLSyYjzVlUR8aa2eqnjPfeLHi675C6bDyaNcAMDVdxTTZ2CYaR+uiY9p\nHGwQ6Qjb2/dZJGw9J90kno8NOZ1mfMzXn/u44ew+fDAjk5rKxHP5tt/0AuDlh3M5f1x/bo+dp6ok\nlLZ5Y/yLFIlYc8yYlqhe9P6rWZhRI369u6aaiMfLTxN+FR+zz79us825mL0B6P/RO7b2YycdydCZ\nz9va/Ln59vP8+pDQFhzBINEG1c5EUtJ+YyIiIiIiIiIi0gpd9nFE0zTPbKHfBH6Toj0CXJqifS1N\n/FrMNM0bgBu2bqUiIiIisiOYd+NUxtx2HUY4hDNg3x4o3IaQUDgjk2fmrY6fR51OLmAaaR/fiBnb\niszjM8krDFO2xUVttUFG1naW4BDpYNGwdesinPR8BHC6EpWE7rzK2qbrsTvzeezOfKbPK2LdT/a3\nusFA4vMxjUNCmWtWccKp4/jiiuv5/pzLGX9iNbNfy6QpOQUR3DVVhNIzCGTn2vouOWMJDz23J06X\nyUjzG4jALi8/lTTH7s88bDsP5BXYzv2xc19ZCc5ggKhbISERERERERERERHZdt15uzERERERkU4T\njQV4jrjidHZ+/TlbXzgtfavnNWPbBBkN90YCTjq/EoBgQOUfRBqrr+ZjhYSSKwlVlDr54NUsopGk\nLiaNGch1Z/Ztcu70THtIKGPDWgD6fD4HgItuKGXcccnbidXbbVQAd001ocwsanr3s/Udc/BPAIw5\nvBZHJMXiGpn5wmxmPfpaUrUyf34hAL7SYpyhIBGFhERERERERERERKQdKCQkIiIiIkIizJMZCwys\nG3tYvG/NoUdv9bxRpxMgKTDg8VrVg0IKCckOqrbaIMVOYkCiSpCbEEdddBITxwwifeO6pHEVpc42\n32+TlbsabDs4/qSmQ0KGgRUSSs9g+SnnsGWv0fG+MY/cxl3PFnHxjSUpr119xPHx45XHn0bVwCGU\n7DEqaZw/z9p+zFdWgqu2hnBG05WNRERERERERERERFpLISERERERESDqtG9P9P3Ei+PHtY2qhbSF\nGZvXV7IFb1kiOOD2WEGFYFAhIel4Jt1vS7uLjxjAdWekrvjz6awMAJwkwnVHXH4aOSuWklX0Y7xt\nQ5H1/Kp/PrXkiv8rTmozzORrh+0ZZPq8IqbPK2Ly3Zvj7RdeX4K3rISeX84nlJFF1O3hm4uujvf3\n+uJzdg98Q6rCP19fdA2f/PX++PmPx57a5DpNl5tAdi49F3+Gp7qSYGZ2qx6f7LiM1Luvi4iIiIiI\niIiI2CgkJCIiIiICRBv9VT+YldMu85oO6yX3CaeO49cT9om3q5JQy1JkN+Rn4r1XrMo4WzbYw3lV\nFQ5ME174Ty4AG+gT78vcsJZjzzqK408bz/X/tII7t/2mFwB5hWHbPFPuTQR7ps8rIjvPChulZSR/\nUzlCwWbXOupAf/x4yPAgv56wD57qynhbxOO1jfdWlKWcZ+mZF9nOI15fs/frrSyn96LP6LHkC4JZ\nCgmJiIiIiIiIiIjItlNISEREREQEiLrsYYWo290u87prUm9bVB8SCvr1klw6XncLXE2bmp/U9s6L\nmVx2VH/OOmBgvO233J80DqCfucZ23vB5dPtTGxgxxm/rryyztiUb9eKDjL/qbFtf308/aPW6PQ0q\nFq05dAKQHPZxhEJJ160+4vikLcMah4uak7/0m1aPlR2TobypiIiIiIiIiIi0gqvlISIiIiIiP3+N\ntxur3GkX5kx9hMrBO2/TvDk/LbedZ61eSdWgobjrQ0KqJCQ7uGjUCjg8cZc9OHRN2v2k19WlvGZw\n+XfA6Pi5y209n66ZuoVBw5JDOvWC81fTh48gGmWvR/9JMCubXV55GoDeCz/llCP24qX3kgM5hsPE\njBrx5y0Q/9nQOOzjiCSqGpXuuidrDj2alcefljRnW0JCWeuKWj1WREREREREREREpCkKCYmIiIiI\nAHnLv01qW3fIL7d53ojHvo3Zno/dx2c3/xOXywobRCLbfBci25Wg3x6M27LeRW6P5CfCXoEv+O6s\ny+j38XvkrFph6xuy9CMgURHo3GvLWPmdh33Gpg4V1TuWNwDoO+9D9nr03qR+T3UljoCfaKPqQF6f\nib/WsFUSqu3ZG4CavgOoGDSUnNUrATDCVkgo7PWxcd+xfHv+lba5ok4njkgkqQLRyXv3s50HH38S\nz3nnABB44aWkfpGGvC5VpRMRERERERERkZYpJCQiIiIiAhSP2Dd+XFvYq93mdQaDtvOdZs1gwXV/\nxeW2qqaEQ6okJDuWkP0pgb/OiAeH8nuGKd1svU3NiFYRyB6Kq7YmaY5hrz8HPBw/79EnzD4HNx8Q\nAiigBICxN/6myTFpxZup6TfQ1rbPQXV8+k6GrZJQba++AITTM3jj+Q/IWr2S408/LF5JyIhEMJ3O\npPmjLlcsJGSvJJTmaTT23LOtf0Draw6JiIiIiIiIiIiINE0fNRMRERERAYr3Gs2M1z7jxXe/5o1n\n3m23ef15BUltpx2+JyeeewQADXYmEukwZstDOk0kYgWCevS2vvkDdQaBWEjo1xdVxMf58RH1eOJh\nnBkzPuWNZ95l+cmTcNdWc8t/18XHen2te4ROrIpF7rrapL4Ff7gFgBN/fTBpmzfa+i75Uwl3Prue\n9EyTqv6D2LjvgYTTM2xjzNiWhY5YJSEjmjokVDFkVwCi7kSVMUNZQREREREREREREekECgmJiIiI\niMTU9upLKCuHUFZOu8351eVTUrZ7sMqpqJKQ7Gjqt9jbdWQAgECdg9LNVpjG4zO57p7NABzBe0Rd\nLj6a+jBz/v4otb37UTFkF8p22QOAtNqy+JzetGjS/Rw7qZJL/mRVDjr9inI83ihNPdtmvPoJm0Yf\nGD8fOvN5W7/bA/13CpO9agVZa1dT1yO52ljUZYWEjHCIXgs/wRGN4koRRvrw7seZM/WRpJCRiIiI\niIiIiIiISEdTSEhEREREdhhdEceJ+Hzx4x9OPS9+7CYEQDiskJB0PNPsPrWEolHrez4t0wr2BPwG\nN1/SG4CSjU5GHuDnlZkL6MsGTKeLQF4B6w4+In59fUAno6o43uZJUUlo4pXljDvO2qrshHMqef65\neUljlp1yDu/fN53aPv2p7j8o3j7i4btTrr3PZx8CsHnv/ZMfVywk1HvBJxz+24kA7Pbco0njAnkF\nrDvkl7Y2/RQQERERERERERGRzqCQkIiIiIhIBysZPhKAVUedxDPzVrPw2ptVSUh2WNHYFnvpsZDQ\nh69nxvuG7GE9L4ywFaKrD940VFtohYSiGyvjbR5vyyEod21NUtvCP9zKpv0OsuZze3j19c8BqOnZ\nJ+UcnuoqAH487rSkvvrtxga/+3qLaxERERERERERERHpCgoJiYiIiIh0sFmPvsazH6+kZM+9AVh2\nyrn4+/cDIBLuypVtX/x+OP10WLasq1ci2yISsYJx6RlWSOiLT9IAuORPJewx2tqCzBG2nhhRlzvp\nen9BTwBGZyyJt51z0CAy165u9n7dtdXx4+/PvIhnP/kxaUxdz95EXG5WH3li6jmqKwlmZGE6nUl9\nqQJNVf0HN7umeoaygiIiIiIiIiIiItIJFBISEREREelohoHZMEBgGAQGWCGhJ+7KZ83K5CCEgIm9\nOsyiRfDCC3DeeV2zHmkf0Yh1m5Zp//8dOjwYP3bE0nOpwjjh2BZ+7lDA1p63bInt3FeymTG3/B6n\n32+Nr7FCQkvO/Q1f/ub6lHMDRLw+HLFKRn0++5A9H7k33rfb84/hqalK/bhSBJrefHpWyrEiIiIi\nIiIiIiIiXUEhIRERERGRLlC9y7D48VP35HXY/ZgmvPNi5s8iiPT999ZtWNWX2qzlzbg6T7ySUGy7\nsXq9+ofix0a8klBydZ76bb2MSJjz/lDCPPYHIGPDOtu4A/7vGoa8+TIDZr8JgCtWSajoiOMxUwR6\n6kXdbhwhK7A0/ppzGfHIPfT+fG6LjytV6CgSCzS1xEClhERERERERERERKTjKSQkIiIiItIFnL7E\nS/GODL18OiudJ+7K5/pJfZg0ZiBmd0qLpGCaMPn0Psx6ITOp7+qrrdsmCsDIdiISqyTk9pjc/MjG\neLvbkxhTX0koVXWeaOwbwBXwM+GYzezPfAD2+ddtGOFE0KjPgo8T84WC8UpCoYyMZtdnOp1kbFyP\nUb9Q4LCrzrKdp9J4rat+eUKz40VEREREREREREQ6m0JCIiIiIiJdwZtIRKz9seOq/Py01GM7ryjd\n9rcAZcUOln3taXngVqirNVi/2s2Td+cn9TliS9977w6565+3bhQOi8YqCTmdsPOewZRjHOGmtxur\nrwI04qG749WB6p150M5J43/x9z9zxsHDGHPbdQCE05MDaA2llWyh3yfvc+bYIbZ2b3kpAAuvvTn1\nhQ77c+vTW//V7P3YqJCQiIiIiIiIiIiIdILk2u0iIiIiItLhIp5EyKam0klZsYO8HtFmrtg6WXn2\nOctLnOQWbP39lBU7+O1x/QH454x19OjdfHWVNs+/2QqFOF3JqZaqKus22v5fJulE0di3zO4vPUpv\nzwD23O9XDNndHhaqrwiUqpKQ2SCM466tSeo//eBhtm2+3I2CRKH05isJNWWvR+4FoK6gZ4tjQ2np\nW3UfIiIiIiIiIiIiIh1JlYRERERERLpA1O3hF7FtkgDu/3OPDrmfmkrrJf8pl5QDUF2+9W8BTJN4\nQAjAX2vNFQlDbU37lEIpK7ZCQrkFTYePFBLavtXv2jXw8/c57KqzuOG+LZx+eYVtzC4vPQlA1JXi\ncy1G4ntt+JMPJnU7Q0E8VZVN3n/U492KVcOwV58GoK5H0yGhz266G4Dann3aNLcKCYmIiIiIiIiI\niEhnUEhIRERERKQLRDxe5rN//Nzjbd1+UKWbnbz2eHargzI1VQ5yCyKMOrAOAL/feguwfpWL4o3J\nWzk1pbbG4O7r7EGmYMCKNvz3rwVcfPiAVs/VnEVzrAosOfkRzEZfkmHDrFuFhLZP/jqDe2/owS2X\n9gbARThpjKeiHKffz+B3Xwegtle/Zucc+r8X232dxXvY97MLZmbbzpsLCVX3HWhdk53T7usSERER\nERERERER2VYKCYmIiIjIjqMbleuINKpmkpHduuTLM/fn8sJ/cvluYeuqodRUOUjPiuJLtxI3gTrr\nizD5jL5cdVI/fviydfNMPr0Pi+fat1AK+K25Pnnb2r6pPcI777yUBUB2fvJkgQDtdj87GpPWhdA6\n0p1XFbJgduJ7qD4k5KqxtgPrM28Opxw1kgGz34yPqe4/KOVc7/77ha1aw8e33t/imHcencEPp5wL\nwIzXPmPOPx6z9fvzmw4JhTIyAdj4i4PatC7D6EY/nERERERERERERORnSyEhEREREZEu0HjLo8rS\n1lX18cYqDm1a5wasikDT78ttMjhTWeogOy+C12dd9+BfejBpzMB4/y2X9Uq6dvHcNCaNGUhdbAux\n8hIH5cXJ2z4F/fZgQzjUqofQKm5PcqhFIaHtV02VwbKvfbY2J9a+Y666Gpx+P+OvPgeAA2++BoAv\nL7+uyfkqdxpmOzebCdmsOvLE+HFdYe9WrfeLq/7Em0+9RW2vvmwZua+tL+LzNXEVlA/bnbce/x/f\nXHRNq+5HREREREREREREpDMpJCQiIiIi0gUiHg8At181lx69w1SUtfzSfMrE3nw406pU8tid+Uwa\nM5DJZ/TlzWey2bA6EeJZ9YObFUs81FQZVJY5yS2I4E1rOlnz6N/ybed3TS4E4KLYFmILP0xPugYS\nVYnqrVnpafExNKdh+MdscHzppfDyywoJbYvGW7d1tnAwOcTTcLuxtC0bk/rLdt2z6fl89u/J9/79\nIouv/GP8vLpvYvu7T2+5L37szy9o1Xqjbg/lw4ZbJw0CSO898GyL15btthc42vZWW3WERERERERE\nREREpDMkfxxYREREREQ6XP12Y/sNW8uIMXUsnJM6iFMvGIC1PzYdwrnuzL5JbQOGBvHXGfjSTdLS\nm06JuNyJvosO72/rW/mth2l/t0JE519XyrSpiUBRZbm9+tFNF/Rm+ryiZh9HcyKJzEjs61FDbS08\n9JD1Ly3N6lNIaPsTCjUdEnKEwziDVgLsmwuvZq9H77WuiW3dlUrEa6/EVTZsN7aM+gVLJ10KgLuy\nglOPHJF0XTAze+seQMzm0Qdu0/UiIiIiIiIiIiIiXUmVhEREREREukDUbQV+nMEAPfpEqCxzxrf3\naugvF/Vi0piBrFjiTepryZqVHupqHPjSoziccNsTG/i/hxMVWx79YA0A772SRSC2dVhdjf0twutP\nJkIV/Qbb9xObNjWfuyZrY2OEAAAgAElEQVT3aPO6mhKJJD/+iorEsSoJbb9SVRIq3WsUEAsJBfwA\nlOyeCPb4c5up+mMYzL39wcT8aRm27qjbnfKyUGZWq9fcmZrZLU1ERERERERERESk3SgkJCIiIiLS\nBeq3G3MEg+QWRAB47YnkKif14aDbftMr5Ty3P7Wh2fvx1zriVYQG7xpi2F5Bps8rYvq8InwNqgvd\neE5vyksc5BVa1V3Ov64UwFbhaLe9A0nzL55rr4D02uPZbFq7dQVLG1YSAqirhcrKxHl9OEghobbr\n6u3GUlUSIs0K8jhCwXgloYjHyytvLODdf79A9YDBzc7pqqtLnDTa3st0pf4ejHraHrYTERERERER\nERER+blQSEhEREREpAvUhxWcwQDlxda2XTOfzLGNCYeSLosbNbaOf72+jrSMlhMzaz4oJ/un5c2O\n2VDk5jfH9qdsi4tfjK/l4GNqksa0ptrJC//J5d4btq66UCRsv4PHH3bbQkL1Xn11q6aXLpTqe9nw\nWkEeRzjMLy87FbCeF/6CnmzZe/8W5yz8emGTfVFX6kpCW+vtx17nw7sea9c5G1IlIRERERERERER\nEekMCgmJiIiIiHSB+kpChV/O58Scd1OOKd3sbPL6yXdtIb9nhJ59I/G2fQ6u5Y/3b+KJuUX8fuqW\nePuzqw7nuDOPoPDLBU3ON2JMoirLsq+8eH0mBxyZCAqde21pyw8qxrGVgYdIxH5eVkbKkFAwuHXz\nS9cJxbYbO/O3ZYlGrxXkyVv+XbzJU1lGa608/vSmOxulbhZf+UeKxk9o9dyNlQ4fyfqxh2/19SIi\nIiIiIiIiIiLdwdbtAyAiIiIiItskEqsktMsrT7MLT/PSoUuZtXCYbUzAb2X6L/5jCaMPqePTd9J5\n8u78pLme/qyI+bPT2PtAPx6fta/UPgcnQj87sxKAX152Cs/MW51yPV/PS4sfV5Ra4SRfWmKPqlFj\nrfkeencNhgHfLfZxz3WFKefKKYikbG9J40pCCxdBRZUf8CWNXVzU+jCJQHUg3PKgDlS/3diQ3RMJ\nr9ws69hXkgi0Vfcf3Oo5qxptR5ad5mJIj0z7mCOOZtSAXLh+CtXAqLYtu9O4nSolJCIiIiIiIiIi\nIh1PISERERERkS4QdXtt55llG4mEG4WE6qzgQG6PCFm5UY46rZq9x9aR39MewjEM2P+wuqQ2gONy\n3oeKRLsjFCTq9sTPp88r4uIj+lNbnSgy+p9ZawFY+kVijfUVizKyrODQvofUsdNuAX5aan8cAG6P\nyQ9febjl0t5MOKOSs64ub/oL0UB9SGgKd3An1/PFPA9fzLP6/vHCega+NYPbph3IV4xi6YaqVs0p\n3UMkFhJye0wev/Vt8v/8AL6sgQDs/cDfAPj8+r9RMWSXVs/Z8PsYIMPrYnjf7ERDSQlZmZkM93gQ\nEREREREREREREW03JiIiIiLSJSJee7jG568i3KiSTiBgnXu8iYo+PftFcLlbdx9PfVrE34+cbmvz\nlidX4Bl9SG38+LCTqsjKiQJw/DnWXl8XXl+Scv4b/rU5fpydlwguLZyTzi2X9gbgreeyiUZbt95I\nrNhNNsl7jGXmRNnVvZITeQ0A00waIt1Y/XZjLrdJv/wKjud/SVuCrf7l8W2aM5yewfKTz2L2vU+m\nHpCfDwoIiYiIiIiIiIiIiMQpJCQiIiIi0gUiXvsWWg6fk0jY4Pen9GHSmIGEgrDsKytI5PUlEjFO\nv59eCz9pVUrG4QBfRSkA5UN3BcBdXZE0btzxNQCMOrCOC6YkQkTjjqvhkffXcNhJNfG2vB+WkP/d\nVxQsWUxGlsltT2wA4Kjx65pcx7z30ltcK0AkYoVGMqlO6ktLj1L45QJ8+AEIBWHB7DSWfplcyUi6\nn3DIunV7wIhYgbKS3fYikJ2TGJOR1eZ5F0y5jQ1jxrXLGkVERERERERERER+7rTdmIiIiIhIV2hU\nRcUbtII4m9ZaZYLOO2RgvM/tSQSCdn/6P4x45B7eeehlikfs2+LdeCrLKR4+im/Pv5Jxky/E5fcn\njdltVIALry9h7NG1jZdFWkbivtM3rmPCucfGz5/9eAWDd4Wv0vdlp1d+4EVSbwGWkx9J2d5Y0G/d\neQ7JQSaXG/rMn4uP0QCcPy7x9Xn8oyLcKhjTrcUrCblMHLGSUXWFvZjx2jxOH787P5x2/jbfh9Hy\nEBEREREREREREZEdmioJiYiIiIh0kWc/XslrL8+lYtBQ0vzJW2zVG7BzKH6cv/QbAHxlqbcAa8xd\nU0UoM4twWhoATn8dABPHDGLimEHkrFiKYcBhJ9XYKhalMvD9N2znrthcI2oX4SHY5HWt3Rrspgut\nLcp6sanJMfWVhBr6xx8KW3cH0mXCoVhIyGPGKwmZTheRtHRefvsLFl/1565cnoiIiIiIiIiIiMgO\nQSEhEREREdlhGN2s1ojpclHTbyB1hb1Jq0uunlOvYXUf0+kEYLdnH2HimEGM+tftzdyBSeE3i8nY\nuI6wzwoJ/fLy05g4ZlB8yE5vv9rq9e7zr9ts5666uvixt5mQUH1ApLX6sKHJvlQhoSXz09o0v3S+\n+kpCbneiklA09r0cyM2Pf1+LiIiIiIiIiIiISMdRSEhEREREpIvVFRSSt/GnpPYjflXF9HlF8fP+\nc2aRuXY1AD2/nA/A8On/peeiz1LO6662qhNlF/1IxJs6SNNr8Wc4QvaAT/qGtRx69Tk4/X5yViwl\nfeM6ei76NOna+qpE9e5+cqXtfLe9rUBPa0JCwUDiOIcKlh5yMqdfUW4bE3U6MWhlWSLpVuq/B9yO\nEH0/fh+wKgmJiIiIiIiIiIiISOfRb2VFRERERLpY1rrVfM2xSe3jT6qOH6dt3sAhUy5Jef2hvz+P\nF2Z/b5UcMgwwTVy1NThCiW3K6gp7pby24Luv6LXwUzYccGi87aSTxwJw3GmHkrG56ao+Ln+t7fz0\nBy/k93wYPz/10gpuvczXqpDQW89lx4/7sY4twcGccE4l+42vxemMYoTDOCIRSslvcS7pftxrNgB5\nnHj+kRRuXAGg6kEiIiIiIiIiIiIinUwhIRERERGRLrb+gPG8s+TIpPbBuyRCPp7qqpTXfnvub9jj\niQeYeOBOSX1fXjEFgHk3TiWQm88LH3zHaYcNTxrnbmLu5gJCAAf+39Xkrvwhft533hxbf05+BIAG\nWaUmVZYmipy6CdN33hzSN62n94C+TBwziNWHHwdAf9YmXTtgaNNbnUn7iYRh3So3A3duxX9oAz98\n5WHaK9b3XcHGRLWpqCoJiYiIiIiIiIiIiHQqbTcmIiIiItLFvjvncqZyXfz8ohtKuPeVdQCMueVa\nJo4ZxLETf2m7ZvlJE/n23N9QsdOwJuctWPIFABGPF4BwegYvv7WYDfsfwuc33MHHt94PwEF//i3e\n8lIARj5wR5PzrT3oCNt5w4BQvaGsINNVwy9PqcLjtbYGe/u5bJYs8DY5L0AwYFUb2oMl8bacn5Zj\nRKyg0aD3/wfAqbzIjONvjY/JzovgcmsLss5w2297csNZfdhY1LZwz2uP58SPHQ22i1MlIRERERER\nEREREZHOpZCQiIiIiEgXi7o9HHB4YmuxUQf6KewbAdNkyJsvJY2v6j+IBdf/ja8uv45gVnZSf70B\nH70DJEJCAIG8Amb/8ylWnngmm/Y9MN6+93230W/ue+zx1L+bnO+jqQ+3+FhWMIz5p17NlENmsv+/\nbwFg1Q8e/nZl6u3O6n0wIwuANzkm3mYaBp7Kcts4AxiWvS5+7nCaRCItb2cm2+6HL30ALPgwrU3X\nVZSkDgNFXaokJCIiIiIiIiIiItKZFBISEREREekGTKeTJ/Ov4OgzKskrtKrnuGprUo7NWrs6fly6\n24gW5454fSnbw75E2KPnl58zbvKF8fNP/3JP8gWO1r19MKJRDv/dJPZ7+6FWjW9oIGts597ykqQx\nzlBie7Fe/cNEI22+G9kGzz2Yx+K5rQ8KbVybOgykSkIiIiIiIiIiIiIinUshIRERERGRbiDqcnOy\nZyZnX52onJNWsiXl2GWnnBM/9hcU8sy81aw44Yx4W3mjLchCGZkp52kYHspcnwjnLD95Eqsm/Iqo\nMxHuqC3sHT8Oe5vfOmy35x9L2R4ONXsZu/Qvtp2bhgNveVnSuF1fmMZlN5Vw8gUV5BZEVEmoC9w1\nubDVYzOzowD0ZZ2t3XQoJCQiIiIiIiIiIiLSmVTfXURERESkG4g6XTgiYVubr9QKCS34wy1s3O9g\nclcsJX3LRpb9+pyk6xdOvpW6wt5kr17JZ3+5m8x1RRx3xuEAlOy5T+o7baIykBGxSvOsOfRoBr3/\nP3445Vy+Pf9KAP733PsEs3JwBvyc+KuDWnxccziE6w5/i8/fz6Cu1kFWTjT5sUfBMEwOGLYK1sKX\nl01m1H/+TtTtxlNdlXLeg4+xqiw9cFOBKgl1Y8UbnRRvtN52rqO/ra9hCK09GIbCYiIiIiIiIiIi\nIiLNUUhIRERERKQbMF0uHMEAuz77CJU7DWPDmHH4YpWENo/an6qBQ6gaOKTJ66NuD99cfE38vHLw\nznx16R9Yd9DhzW7rtGbcUQyYM8vWtvPrzzH/j3fy+R/voK6wF19ddh0Rny8+bz1/bj6+8lIASnYf\nQcH3XyfNfwhz2XvfSiskVG2QlZO8hmDAwDQNMpx11rw9egLwy8tPo2j8hPi4ikFDyVm90nat02US\nVSWhDvfpO+lbdV1ZcdPfe9puTERERERERERERKRzabsxEREREdlhdOdCI1GnC19FGaP/eSvjrz4H\nV20NQ958CbC2FNsa355/JeXDhjc7Zu6dD7H0jAttbfP+9HcAwhlZLL76pnhAqLH3/v1C/HjLyF80\neR99sioAuObX/Zjzv4yk/kCd9R+TFba2WgulJ8YMnP1W/PiN595PutbhhIgqCXW4/9xckNR2wfj+\nVFc0/5YyFLA/6YIZWfFjs50rCYmIiIiIiIiIiIhI8xQSEhERERHpBkyXPTBx2mHD6ffJBwAEcvI6\n9L4XX30Tz8xbHf/343Gnteq6yp2G8elf7gGgrJkwkiMcih8/9NcCgn57cKSm0npbMuLDZwEIp2cm\nzfH8h0vBMFh+8lnU5SdCU06nKgl1hkiKr3GgzsGtV/Rs9rpFc9Ns5zNf/oi6vB4ARF0KCYmIiIiI\niIiIiIh0JoWERERERES6gdzl3zXd6ei+L9tXHX0ybzw9i6LDj0vqW3nsqQCM3HmTrf3lRxJ7jj3z\nr1wmn9EXgF5Y48Jee+WiqNNFJNYW8XhwBgPxPoeje1QSqixz8PS9uYSCXb2SjtGzXyhle16P5r/4\nSxbY/y9Nw8Gsaa/z5lNvJQXjRERERERERERERKRjdd+/NoiIiIiI7EB6L/qsq5ewdQyDip13S7kl\n2fqxhwHgCgds7SWbnQB8MiudN6Znx9t7shkAR8geSAlmZcf3iot4vHiqKzn+lHHsf9tkdn9lGtFu\nEBKaek0hbz2XzcI56V29lA5R2CfCriP9PPDGWn51YUW8ffjoQDNXwUFH1wAw9VirSpTpdFDbu1+L\n2+CJiIiIiIiIiIiISPtTSEhEREREpJvaPGJfVhx/elcvo9W+P/Oi+HHJ8JEEM60AUN6K723jdh1h\nBUse/EsPW3t9JaHS3faytTfclsp0WgGjrLWrGDrzBVyEoa7ry/f8tNQLwP1/7tHCyO1TKAguN+QW\nRHF5TFt7c8IhK9w1brD1PWAaegsqIiIiIiIiIiIi0lX0G1oRERERkW6gbOhuSW0f/Gs682+c2gWr\n2TpfXPVnwAo3zXrsdaIeKzgz5q+TWchozvtDKQDRKJhm8vUFlLD8pImEsnOY9ciMeHt68eb4sae6\n0naNizCRqNHeD2WbLJnv7eoltLu6Gge+9CgATmfiP++VR3JZtczd5HUvPZQLgJswAGY33jpPRERE\nRERERERE5OdOv6EVEREREekGZj0+M378+ksf8fpLHxH1Jm/h1d298sYCZt83HYBwgy3IRrOYA4+y\ntp6KRgyWfe1JurZsz5EsuvZmAEr23JuZL3yYNMZbXmY7dxIhEu3atzXRqP3820Xb3/9bc8JhWLPS\nQ22V9XWOFXOKu/GcPtTWJAe1tqxPDDRM64vUkSGh7hUVExEREREREREREel+XC0PERERERGRjhZ1\nJ0Iz1f0HdeFKto2/oGf8uHzn3W199eGSSAQ+fisj6dqS4aNsX4eqgTvx/n3TiXgTlXm85aW2a1yE\nidAotdLJ6mIBmT6DQmxY7ab3gHCXrqe9ffO5FXr6/gvr1uFMLgNVW+UgPSNia7v6V/0SJ/VJKlUS\nEhEREREREREREeky+g2tiIiIiEg3seL40/nyiildvYx2Y7rsn0moD5dEowYfzMhKGu/PzU9q27Tf\nQRSP/EX8/KvLr6Ns2PD4uYswUZxJ1Xw6U32FnV8cWgvYt+P6OfjHtVbw68Z/rCGr6CeMFO8iX/xv\nbpPXnzCxlNwflwFgOro20CUiIiIiIiIiIiKyI1NISERERESkm5h/41S+O+eKrl5Gh4i43IlKQg0K\n7dz32rr4cTgtvcV5SvYYxVtPvZVo8FmVh7oiJOSvM5gysTeP/M0KN+X1sCrpBAM/r42v+g4OAXDR\nqxdx/GmHEqi2QlBHn1HJhdeXAKkrQ9W7adPvGfzOawCYjfcqExEREREREREREZFOo5CQiIiIiIh0\nmBff+4Zvz74cZzjEWQdZ26hFIwbDR/vpPzRIQa8Il1y+ilkcScSX1ub56zxWRaKKks4Pn8x4LJu1\nP3pYssBadyIklHibFY3Ae69kEgp2+vLaTZ+BIQYOCzL4k3cA8BdbDyYrJ8qev/CnvCYaAcNhcsK5\nFQz/4s1OW6uIiIiIiIiIiIiINE0hIRERERER6TChzGwCuXkAGICTMNFQhEgYsnOt8j/HjV/NkbxL\neCtCQndW/g6AG87u3W5rbq1Q0F4xKDcWEqqpSrR/ODODaVPzmfVC8vZq24tgwMDtSWyhVldslYLK\nyIrSs1+E3fa2gkKTxgzk5kt6UlNlcPbYgZhRgw2r3TjCoS5Zt4iIiIiIiIiIiIjYKSQkIiIiIiId\nKmttUfzYRZiMH38iFEwET5yBOoA2hYQW/+5PLLrmL/RzbwRg+OhAO664dTw+03aeU2CFhF55JDfe\ntn6VGwDTPnS7EgoaeBqEhI7K+BCAvfazwkE/fOWN9y372kdlWaKq04Cdg3gryztnoSIiIiIiIiIi\nIiLSrC4LCRmG8ZhhGJsNw1jSRL9hGMZ9hmGsMAzja8Mw9mnQN9UwjG8Nw/g+NsYwDCPdMIw3DMNY\nGuu7o8F4r2EYz8fm+twwjMEd/whFRERERARg7cFHxI9dhDGDEYINQkKuuloAImnprZ5z6cSL+eH0\nCzirx2sA5BdG2nHFTXv/1UwmjRnIpDEDef2JHFtfRlY0afyyr60ATU5+ct/2IhQwcHsTIaFr3jiH\npz9dTe+BVkUhM5qonHTkqVUE6hLnJ59f2XkLFREREREREREREZFmdWUloceBo5vpnwAMi/27BPg3\ngGEYBwJjgRHAnsAvgHGxa/5hmuZuwN7AWMMwJsTaLwTKTNPcGbgHuLNdH4mIiIiIiDRpw4Hj48cu\nwoRxEgoY5JSvY+KYQRx5ya+BtlUSqndV36cA8KV1TgjnibvybOcFvcPx47QMe7mgH7/3sPI7KyTk\ncGy/pYSCAYPeP31tazvm3GPix784tDZ+HAoa1NVYbzP/+MAmctau7JxFioiIiIiIiIiIiEiLuiwk\nZJrmR0BpM0NOBJ40LfOAXMMw+gAm4AM8gBdwA5tM06w1TXN2bO4gsBjo32CuJ2LHLwGHG4aR+Hir\niIiIiOwQ9AKw67kIE3T4KC9xsuuyD219WxMSMt0ufIafcLhz/ncjje6nZKMrfuxwwJgjaugzKATA\nulWJvkhk+/vui0Zg7lvpBPwG+Zt+tPXlLf8ufnz1HcU8/VkRhX3DBAOJkFBaukmvhZ/Gx731xBud\ns3ARERERERERERERScnV8pAu0w9Y0+B8LdDPNM3PDMOYDWzA+jvP/aZpft/wQsMwcoHjgX82nss0\nzbBhGBVAAVDc+E4Nw7gEq3IRAwcObNcHJCIiIiKyo3MRprzKS6DOwWDfT7a+UEZWm+cznU5cRphI\n5+w2ltJRp1XRs6CWnos+xe05jg2r3VSWOfjPzT3iYyLhZibohkwTzh6beD/kSzeh1j6m7yfvs/7A\nw8AwMAxwe0xCQYNgwApEeXxRHNHEf0zZrnt26Jr1MRARERERERERERGR5nXldmNbxTCMnYHdsaoE\n9QMOMwzj4Ab9LuBZ4D7TNH9MPUvTTNN8yDTNfU3T3LewsLC9li0iIiIiskMr2X0EYIWE1pVkA9Cr\noM42pq6wV5vnjTpduAknVfjpKN4G25pdMKWUxz8q4pzfl3H7krM54jdnsnaptY7LJ/S3XRcObV8J\nlrpa+3oLa9cmjTn02gsYMPvN+LnHYxIMGISCRvzc6Mr0loiIiIiIiIiIiIjYdOeQ0DpgQIPz/rG2\nk4F5pmlWm6ZZDbwFHNBg3EPActM07001VyxElAOUdODaRURERESkgVnTZjLj1U9wEWZzReb/t3ff\ncXKV9R7HP8/OzPb0QiAkhF4EpASIcBEMFxVF9IIVLAhX7OWq2Pvl2huIelWqBVEUu4CKIKIGQQzd\nS09Ir7tJdne2zDz3j3N2ZmdLCrvZls/79cprzzlPmd+Z+M/iN78HgIOW/6U0vnn2XApP57ixTIZc\n6By2Tj2TppZDLyee1kKuOrne88+/B6Dq8ZX9rrvu25PpyI+doFDz+kzF/Tye7Hde7YZyc9aa+iL5\n1nInoVxN5OivfgqApn0O2DmFSpIkSZIkSZK222gOCf0SeG1ILACaY4wrgaXASSGEbAghB5wEPAQQ\nQriIJAD0rn72el16/VLgjzHGOBwvIUmSJCkRszmydNHSXgNAAy2lsdqNTy/DHzNZshSGrZNQT9W1\nya8UmXx+wDmX35KcoNy6uYrf/7RxWOoaCk29QkJzsiv6nVfsTkkBk6YW2bQhU9FJqNtfP3lxn7WS\nJEmSJEmSpOGVHakPDiH8EDgZmB5CWAZ8HMgBxBj/F/gt8ALgUaAVeH269CfAQuA+IAI3xhh/FULY\nE/gw8C/g7hACwKUxxsuAy4HvhRAeBTYArxyOd5QkSZJUVsxmydJFVzEJoNTTWhrLtbYMtGzre2Yy\n5Oika5hCQu1tff+dRfXm5tL1ZiZUjGVz5aBMW+to/jcaiTXLMzROKnLLzysDTTO7VrL05OeTnzqd\n6s2bmPf7XyYDPf7txaSpBR64q4bO9uQ+Vw0rFpzEHov+RNO+Bw3XK0iSJEmSJEmSBjBiIaEY46u2\nMR6Bt/bzvAC8sZ/ny4B+/5+BGGMeeNnTq1SSJEnSUOgOCXWro41bv3wlJ7/79Sw55fSntWfSSWj4\njhtrzwdOe+UmXv2uJoiR2g1rqV9TPmLs15zOsdxZus/0aMjT1jK6jxsrdMF/nTW74tn/XL2S+69c\nw/xb7yJza5FrFi3hiK99ujSea9lSup40tUDLpgytLUkYKlcTyU+dTn7yVKga/QEpSZIkSZIkSRrv\nRiwkJEmSJGnXUszmyNBeul+98BRWHL+Qa/76xNMOkRQzGarp3CnHjb31hbOpri3ylZ8mIaAYob0t\nUFOXdM859IpLOPw7Xy7Nv++8d3DMFZfw8n9/iB//4WDO/M8mQo+y1q0c3b9+bVhTecTYjD26mHdg\nJyctvI3MrUXaps4AoFhdPmIs11oZEgJYvSxLTW2REGCf3/50GCqXJEmSJEmSJG0P/zmnJEmSpGFR\nzOW4l2eW7rOTa5KLQXSZqSp0UV1oI9O0abDlVVixJEvT+gxrludoWp/U19EeiLEcEjrguqsq1rRN\n3w2AA3dfA8Cee3dWjPcO4Yw273vV7hX3tXVFAA780ZUA/PHSa4Dk77HbYZdfzPEfezsAk6Ym8++7\no47GyUXO+I8TdnrNkiRJkiRJkqTtZ0hIkiRJ0rCImcpOOnFS46D33O3uRTQxmUfur9725B1w4Sv2\nKF0vfzIJxbS3JW2BamqTMMzq+ZUhmO6Q0MkHPszHv72KYxe2UbtuNR895WcAPP5QzZDWONQ62it/\nPWzekISapj/wTwA2z54LJB2hepr3u19CsUh9Y/K9tG6pYuLkAo0rlwGwcb+Dd2rd3UL/p09LkiRJ\nkiRJklKGhCRJkrTLCMEQwYjq8f3fx6G0T5w86C3rV69gCfNY3zV10HsNZEtT8mtTd0iokS1MfPJR\nQldlp6C2GUlIqD7fzAGHdxACHPm1T/Opm88szSkWdlqZg9LrVQA48QUtFffFmloA6lct7zO3bv1a\nDnxm+Si5uoZYur7nLe8boiolSZIkSZIkSYNhSEiSJEnSsGughY4Jkwa9T4hx25Oehtl7d7DfoUno\nZdPGDDHCu86cDcBJX34vp7/yFObeemPFmvZJUwBYcNGFpWdT/3UfAP9xyiMAFIs7pdxBWfZElraW\n5FfDZ53aQv2EIu//6hpe8eYmAFYftYA1Rxxbmp9pT76XRR/5And88LPJuk+8k6oep6k9+I/a0vWW\nPebu7FeQJEmSJEmSJG0HQ0KSJEmShl0jW+gYgk5ChWyOj/MJoBzAeeqxHPm2p981qliANctz7HNw\nB6EqctUXp/LqZ5WDLg2UO+xsmrN3uZaa2op9Jix9gklLHgNgWsOWdO/R1c1q9bIs73/VHnzg1bMA\nOPiodr7z+2UcviBP9+lwmXyertq60ppMRxISKlTXQBrSmvWPv1Xsexj3ArBiwUlsmrffzn4NSZIk\nSZIkSdJ2MCQkSZIkadglIaHBdxL63eU/p5Y8kByZ1ZEPfOCc3fn6x6Y97T0/fO4sOjsCs+Z0Eot9\nQz2t1Jeuqzc1la6L2WzFvHk3/bx0nSsm53kVRtlxYyuXJjU3rUt+1tSWWx3lNjdz4LWXk21r6T8k\nlKvmiRecVXp+wrRMfcIAACAASURBVEfexsnPWcchuy3nnxwJQPvknXcMnCRJkiRJkiRpxxgSkiRJ\nkjTs6sgPyXFjzfscUAoJdXYE2lqTUM/df67f2rIBbW6qYukj1QCEAZr+7Mtjpeva5o2l686GCaXr\nCUufYLe7/lK6zxY7gKRL0WiypbnyV8Ka2vLxbcd+7sMc/dVPMfmJRyjUlb/PB1/zJtonTmbNUQso\nVteUnu/1h1/x+aO/yTf/6zdkKKZz37yT30CSJEmSJEmStL0MCUmSJEkaNlNCufNOx4SJg94vVmUq\nQ0JbBvcrzk3XlYM+Rz+7jbf99zoOPjJPbX2Rs9++kQ1M4Sj+WZrTlR4xtuaZxxCzWVYfeRwAL3r5\nycy8587SvFx3SKifzkQjKd/WKyRUVw4JNax4qnTds5PQ+kOP4qe/u4eOSVP67JdtaysdQQbQvO+B\nQ1muJEmSJEmSJGkQstueIkmSJElDY/Huz6ZmxWoAuuqeXrefnmJVFTUkx19d/aWp/P2P5T2LBajK\n7Nh+DY1JB5wXnrOJabsVeNaprTzr1NbS+JSvlUNON132czbufzC5li101Tcm448+1O+++914HbBw\n1B031t5WGVrauC79wmJk+oOLS88LaRhqW7L5NnJtyfd1y1euHpoiJUmSJEmSJElDwpCQJEmSpGEz\ntbiRRtYAQxMSIgRqQjtEKgJCAJubq5g0tbiD+yU/Xnxuc7/DxUyGqjTps/7QIwFo7xGgqd68qd91\nWbqS9YVR1kmotbKT0PyTkoBPrmVzxfP2iZMH3OOmy35ONt/KSe85j0y+lUwaEtp4wCFDXK0kSZIk\nSZIkaTA8bkySJEnSsGlctax0HbO5IdkzM0C3oN5dcrZH95qaukjNhnXUr15RMR7Djv0K9c+3fjCp\nkSRYNNo6CV1/+aTS9Yte00zDhOSosNr1ayvmtU+eOuAe6w89ktXzT6Crti7tJNQCQFftEITAJEmS\nJEmSJElDxpCQJEmSpDFtWthQcT9n3w4AOjt2LCS04sks130r6ZiTzcKLz/w3XvLiZ5XGqzo7yHR1\nArD6yAXbtedDr3lTsl/aSSjuYGOj4fKDRUt55VvL3ZOmPXRvxfjWQkLdCrV1ZPJ5sm1tpfvhFEZX\nkyZJkiRJkiRJGnUMCUmSJEka0/bNPlG63mOvTs48Pwm7dHZuf2qkIx+49GPTS/dnL9iLbD4Ju+Q2\nJftlW5NjtO694N3ccsn3trln7JFaKXcSGn1JlkOPbevzLLel8rix/JRp29wn6STUSibfSldNLXGg\nFk+SJEmSJEmSpBFhSEiSJEnSsPvjxd8fsr2ymfIZXue+bwPVtcmRWV1b6SS0cW2Gxx6oLt2//uQ5\nLHm4ut+5E59KQkjZ9Bit1um7Ucz1P/eX1/2JfNp1544PfrZcY9pJaHuPGztnwVzOWTCX6y+fyOam\nnfNrWzGt5YDDks5LoVDgyEsuomHFU8y4586KudvbSWjGvf8g19pKV51HjUmSJEmSJEnSaGNISJIk\nSdKwW3XciUO2V+OW9aXrmppIrjoJCXV3Err79lq6uirXvPcVu/Ox82cB0LS+8teil17QVHFft241\nAMd+7kMAdNU3DljLljnzuOmKX7D8hIUsOfUMAO4/922lkFBxBzsJ/fQ7k3nT8/fcoTXbq601qaW+\nMTkDbfIjD3LwNd/hxWf+G9Wbmyvmtm9HJ6HQ1UUxkyWbNyQkSZIkSZIkSaORISFJkiRJY1qOztL1\nHvM6yeaSkNCN107gqi9O4Uvvnck1l0ypWJNvTX4VihGWPZYrPZ81p5P/OG8Tm+bszeqjFgBQt3Y1\n0x5YzB5/uxWArvqtB2Ba9pjLn750JYU0KHPvmy6kef+DgHL3nq25747aPs862re9bke1bkm+g7o0\nJJRpz5fG9lj0J5Yf/xweOvsNyedPmLTN/VYfcwI1zRvItrYYEpIkSZIkSZKkUSg70gVIkiRJw6U6\nW8XsKXUjXYZgu/4e1m1up72ruM15dbSVrqfmV3HEG9/Mp7iLu/5UDqo8dHdNv2sfe6CaZU+UQ0Ih\nbfRTvWUTa45awG53L+KYL360Yk3nVjoJDeSRzIEA/PMvdcw7sJPFf63lC++eyfkfWM/Cl7RUzP3S\nhTMAeMb8PA/clQSGOvJVVNds+7vYEW3dIaGGZN/apg0V460zd+efb/8wi9/yfmIms8398lOmkWtr\npaZ5I111DUNaqyRJkiRJkiRp8AwJSZIkaZfRWJPlpANmjHQZu7aHH4aWlu36e/jDg6tZs3nbLXRa\n95zDPcsO5+af3Mikxx8hT99OPF2d5WO+Cj2OHvv4f86qmJdvC8y74XpqN66nfeLkfj/v6XTJ6cxU\nA7B2RfIr2BfePROAyz87jY1rs5z1hvLxXp0dSa0TJhd4/fs2cOXnp/Y5Lm0otLYkIaH6hgjFIsd8\n9kMV420zZ0EIxGyuv+V9dDROBGDm4r+zav7xQ1usJEmSJEmSJGnQPG5MkiRJ0vDZf3844ojtmhrC\ntucArDz2RA6YsoLd9kySNCfwlz5zuoM3AJ2dA28cCgWO/+R/JfMmTOx3Tqzadled3k6ddy8ABx+d\n58F/VHY1uv7ySbz1hbMBaNlcrm323uWj07q2UvPT1daS7FnfWKR24zrqNq6rGF9+wik7tN/kx/5V\nuu6q9bgxSZIkSZIkSRptDAlJkiRJGtOK1TVUdXQAkOloJwDf2vejvOnj5dDL2pXZUiimsJWuPI0b\nVpWuu2rqWHP4/D5zWmfO6vNsWzK57s8O/M9bd+sz3rQ+Q7EAN/ywHEw647WbyGZ3XkioNT1urKG2\nnWxra5/xjQceukP7LT3l9NJ1iHFwxT0NQ/8NSZIkSZIkSdL44nFjkiRJksa0YjZHpjMJCZ383vMA\nOGPKLTSe9gYKnev5zqenAXDF56by1k+t32rgJkdn6XrVcSfy8CteDzFuf1ujAYTaJJBT6Bx4Tns+\n8LMrJpXus7nkD7BTjhtbuTTZ/FXnLGB3VlWMXfeH+3Z4vzVHHle6Xvqc0wZXnCRJkiRJkiRpyNlJ\nSJIkSdKYVqiuJtPRTv2q5aVns+5Kjhw7+YyW0rPlTyahmHv+VlexPoRy15tQXw3A4jddyKZ5+3VP\nGHSNVbnukFCx9Oz7f1vKBy9ZXbpfsSRXur78j08B7NTjxn52eRJImkRz6dnt/30pv/vO9XQ29n/U\n2lZVlX+9fGrhCwZdnyRJkiRJkiRpaNlJSJIkSdKotL3ZnGIuCfac9tqtB1M2rs0AydFe3Q49po23\nXbSezRuruPCVe/DqvW5i86a5PHju255e0QPI1Caf2b4pCf284i1NhACHHttemvOx85JjzE5+0RZq\n65N53SGhwk4ICXWro610nZ82g3WHHf2091p24qkAdNU3DLouSZIkSZIkSdLQMiQkSZIkaUzrqqsH\noGZTU8XzUCgQMxne+em1XPyhGRz97CQMU1WVBG8uu/kp6hqS60n1eX70x4c44aM/IjQVGWpVNUlI\nqHl90m2ncWKhNPbCczbxmx+UO/fsMa98Jlk2m9T3sfOTANEPFi0d0rpmN64jbCnfd3+XT9dtX7hs\nkBVJkiRJkiRJknYWjxuTJEmSNKa1T5pScb/4Le8HoHb9WgCOXdjGlBldxPRUsaZ1GWpqi6VuPQCn\nvOWVvHzhIcz+y800rlw25DWGNCS0aUPSEahhYjmI9OLXNVfMrakt15XJVQzR2jJ0HYVy1ZHT9rij\n4lmhumbI9pckSZIkSZIkjS6GhCRJkiSNSoHtC8S0T5lWun7wnDfSMms2ALnWcouc2rpIe1uy3w3X\nTqQ9X8XRX/1kMm/LJmbc94+hKrtfpU5CG5Jmrg0TyiGh+gmxYm51beTsBXtx9oK9qCm0Voy1NA/N\nr3BdXdDZEWiMmyueh+LQd1GSJEmSJEmSJI0OhoQkSZIkjWn5yVNL10+cdiZdtcmRWZl8W+l5TV0k\n31rF8ifKJy4f9KMrANjrpl9U7LczuunE6moydLF5UxIWmpZfwUnveT3VzU2EUHmMWG1dOajzgred\nVbHPf79lN5Y93qu9ENCyObD4r7XbXU93YGruI5WdhJr2O2i795AkSZIkSZIkjS3ZbU+RJEmSpNGr\nvUdIqGWPOdRuWAfAjHvuIptvo2X3Pamtm0m+LXDLLxr7rJ/y6EMV992diIZSIVdNNR00NycBnxdf\n+DJm8xgvfd4zuf7Xf6eYq+EZ82fywF21TK4qHz9WTUfFPutXZbn8s1PIZKG6JvK+r6xlySM5PvSa\n3UtzLv31MqZM33pHoHxb8u9FGtlSORCG7jgzSZIkSZIkSdLoYkhIkiRJ0pjWPrl83FhXfQOFujoA\n5n/lE6XnX9jvUZbGOdxw7UQAttBQGsu0t1fst/awo4e8xmKumkk0s6o5CfNMohwEOvP0YwFY8uPl\n/PzKSZx15+dLY7GfI9cevreyY1DPgBDA1V+cyrs+u26r9bS3Jvt2h4SuWbRke19FkiRJkiRJkjRG\nedyYJEmSpDGtUFsZmumqreszZ3LLKpY9Vl26b6A1uSgWqeqs7NZz5/suGvIai7kcqyiHeXqGhLrt\nPreLD7zmbxz20+8A8Ksf30LngkN2+LN227Nrm3OWP5F0NMrRyQOvefMOf8aoZBMkSZIkSZIkSdoq\nQ0KSJEmSRqcdCH385ZMX89vv3QhAZ8OEPuMzVj7S77psvo1MR7mT0IYDD6VYU9vv3MEoVFdX3FfT\n2e+8Q773zdL15rn7kDl8Dnlq+P5tj/Pd25fygrM3Vcy/7DNTe2/Br7+fdEt68v9yLHkk1+/n/PaH\nyXf0OPvQPmVav3MkSZIkSZIkSeOLISFJkiRJY96S572Epv0PBqB15iw2HPAM7n3Du0vjy5nd77rD\nv/0l5vzpptJ9Z0PjTqmvmM1xErdufVKMNKx4qnJdrpoaOsgWO8lk4YDDKo9Gu+UX/dd795/r+PDr\ndu9zFFm345+bdFJ6Nd+nq65++15CkiRJkiRJkjSmGRKSJEmSNK7EbI4bv/tb7j//naVnq9mtdH3Q\nM7aUr6+9vGJtobpmp9RUrK7hB5xTuu+qqeWaRUu4/b8vLT2r6mhn5j13AvDkc89I1mWzyVh6JNph\nC/IccHiewxe09fmM//nuytL1ly6csdV6urqSNk11tJGf3LcbkSRJkiRJkiRp/DEkJEmSJGlU2oHT\nxgb00xv/SWddPVUUS88u+tR9A84v5qoHHBuMQq6aPVhRut9w0GEALD31RTzx/P8A4JUnHQjAk6ee\nwaKPfimtJzkurKqrC4DausjHv72GWXt2Vez/kW+sZt4B/R9h1q1lcyDfmnyrXUnmiFryHjcmSZIk\nSZIkSbsIQ0KSJEmSxq32yVO55ZLv00JD6dnEtSsGnN8dyhlqxVyuIvS0ad5+pesVJyysmLvqmBNK\nYaViNvlZ1VkZAGrPV0aoJk0rbLOGC06dw/kL5wDQ0ZGsr6GddjsJSZIkSZIkSdIuwZCQJEmSpHFt\n3aFHcRJ/AuDDX1/NsZ95f585bVOmA0nHn52hO/RTX93BK7iWtmnl48Ca9j6gYm7HpCnldelxY88/\n93R2u+svpecve2Mz9Y3l7khTpm89JNS6pTJU1NkRyFYVqCKSt5OQJEmSJEmSJO0SDAlJkiRJGt9C\n4OLq9/DbMz7KIUe30zZjVmloySmnc82iJdxy8XcBWP5v/75TSugOCf3ttR/gWl5F27SZpbHWmbtX\nzO1onNhjXdLZqG7DWk5529ml51NmFHjDh9aX7usaIgAXXbWSF5y9qc/nb1iTrbjv6gjUZDooZjJ0\nTJj0dF9LkiRJkiRJkjSGGBKSJEmSNO5lawP71CwDYPOcvSnkqvnRLQ/x109eDEDTAc/gxzffz9JT\nX7RTPr9QnYSEGlYmNeR7dBLqnDiJX/z0z6X7jgl9Q0LlB+XuQVVp7qcqE0vP9j6ok3Pe0dTn8596\nrHKf9vZAQ+cmqgoFqBofvxYGwrYnSZIkSZIkSdIubHz812BJkiRJ404IQxf6KNTUkulop7p5I/v/\n7PtkOjso1NUTs+UOO10NE4bs8/r7fIDGFUuBypAQQMvsuaXrzp6dhLKV4Z7ajeXuQaufSmovFgJn\nL9iLKf+6rzT27s+vBWD23h0UC3DpR6dX7NPWUsVE+nYckiRJkiRJkiSNX4aEJEmSJI17heoaMu15\n5n/xYyP2+QCNy5OQUM/jxnrr2EpIaOE7ziGTb2Ov3/+Sdfdsrhg77dzTOeS73wDg6Ge3seDfWygW\nA5ubKn/ty7cG/va7Bh5l/6f/QpIkSZIkSZKkMceQkCRJkqRxr1BTS6Y9T2dD48gUUFVFV20dDWtW\nApCfOr3PlAfPuQCArh41TlzyWMWcyY/9HwdcdzUnfPTtvPy2T/bZ44hvfI7Zf/5D90dSLEBnZ2VH\npvMXzhncu0iSJEmSJEmSxiRDQpIkSZJGpaE7bCwJCc295Qb2//k1APzw9se2sWLoZfNtSS25agq1\ndX3GF7/tQ/zw9seImUzpWeeEiX3mHfn1zwBwHlewz74t3MjzKsYbly8BoCoDxWKgq6P/b/JyzmPx\nm9/39F5GkiRJkiRJkjTmGBKSJEmSNO4VampL160zZhGz2RGrpaqrs/+BEPrU9fgLX8a/Xnk+P7lp\nMfed947K6cDXPnE7z+N3Fc9rmjYAMOXJ/yO05vt0Eup2HldWHG0mSZIkSZIkSRrfDAlJkiRJGvcK\nuerS9fpDnjmClUCIcQcmB+5+18fomDSF+y54T5/hvf7wqz7PDvjJd6nZsI6ZD91NtqmZgTJJ0H+n\nIkmSJEmSJEnS+GRISJIkSdK4t/udt5eu73/920ekhnsvePeg97jpsp9X3D/j6q/3mVO9ZRML3/ka\nsnRRIENnj+PG5u7fAcAZCx8HoLNxwqBrkiRJkiRJkiSNDYaEJEmSJO1SNh502Ih87sNnvXbQe6w/\n9EiuWbSE9Qcf3mfsmkVLStfVm5vJUEhCQj2OG7voylV8+ScruHzVWQAUqmsGXZMkSZIkSZIkaWww\nJCRJkiRpVAph23PGks6GxiHbq6qrq+L+19feXHHfsGp5KSRUSENCr3vPBjJZ2G3PLqY/uDiZuCNH\nn0mSJEmSJEmSxjRDQpIkSZJ2Gbd8+aoR++yYzbH4Le/nt9+7cdB7ZVu3lK47Giawad5+feYsYgEb\nmcrqZVkADjyivTT22OkvA2DNkQsGXctoMd5CZZIkSZIkSZI01AwJSZIkSRr37n3Du+lomMDK458z\nonU8+Nq30LT/wYPe5/7z3lm67pgwqXS9/PjnsOJZJwNwJ8cCcNUXpwIws7iabGtLaU1nXT0xmx10\nLZIkSZIkSZKkscGQkCRJkqRRKTB0rWHuP/+d/OTm+4dsv5H2xAtfyvITFgLQuGpZ6fmfvnwVt37l\nagA+wGcq1rz2dcfw8oWHAJDp7KCYqx6maiVJkiRJkiRJo4EhIUmSJEkag6b+674Bx67/zZ2cMfPW\nimc5ukrXVR0dFKoNCUmSJEmSJEnSrsSQkCRJkiSNQX//wGcB2LjvQX3G8tNmsveczVy/75v51BWr\nuOLi2yvGq7o67SQkSZIkSZIkSbsYQ0KSJEmSNAZ11dUB0DFxcr/jsSrDv9X/nX0P6WDPmlUVY5mO\nDgrVNTu9RkmSJEmSJEnS6GFISJIkSdKoFMJIVzC65adMB2DF8c/pdzxmMlQVCgDkWjZXjGXbWinU\nGBKSJEmSJEmSpF1JdqQLkCRJkiTtuOZ9D+RXP76VzXPm9TseM1lCKSS0pfT8yEsuYvZfbqazvmE4\nypQkSZIkSZIkjRKGhCRJkiRpjNo8d+8Bx4rZNCQUI4dd9tXS84Ov+Q4AudaWnV7fcLLxlCRJkiRJ\nkiRt3YgdNxZCuCKEsCaEcP8A4yGEcEkI4dEQwr0hhKN6jH0+hPBACOGhdE5In/9PCOGpEMKWXnud\nG0JYG0JYnP75z537dpIkSZIGy9DH4IRikYlLHmPKww8wcenjfcYffPWbRqAqSZIkSZIkSdJIGbGQ\nEHAV8PytjJ8G7J/+uQD4JkAI4XjgBOBw4FDgGOCkdM2vgGMH2O9HMcYj0j+XDbp6SZIkSRrF9vzz\n78l0drDnbb/vd3zxW94/zBVJkiRJkiRJkkbSiB03FmO8LYQwbytTXgx8N8YYgUUhhMkhhN2BCNQC\n1ST/uDgHrE73XASQNhaSJEmSpF3eYZeXjxq747u/oKqrk7ZZs5k2sXYEqxp6jbWepi1JkiRJkiRJ\nWzOa/yvqbOCpHvfLgNkxxr+FEG4BVpKEhC6NMT60HfudFUJ4NvAw8F8xxqf6mxRCuICkcxFz584d\nTP2SJEmSNGIKuWoynR3lB4sWcdxxx41cQZIkSZIkSZKkETWaQ0L9CiHsBxwM7Jk++n0I4cQY45+3\nsuxXwA9jjO0hhDcCVwML+5sYY/w28G2A+fPnx6GrXJIkSdKOmD9vKkftNWWkyxizuu68i8wRhwMQ\njz6aYEBIkiRJkiRJknZpozkktByY0+N+z/TZq4FFMcYtACGEG4BnAQOGhGKM63vcXgZ8fsirlSRJ\nkjSkqrNVI13C2PbMwyAm/+7BA5klSZIkSZIkSaP5v7r/EnhtSCwAmmOMK4GlwEkhhGwIIQecBGz1\nuLEQwu49bs/Y1nxJkiRJkiRJkiRJkiRpPBmxTkIhhB8CJwPTQwjLgI8DOYAY4/8CvwVeADwKtAKv\nT5f+hOSosPuACNwYY/xVuufngbOB+nTPy2KMnwDeEUI4A+gCNgDn7vw3lCRJkiRJkiRJkiRJkkaH\nENP28+pr/vz58a677hrpMiRJkiRJkiRJkiRJkqR+hRD+EWOcv615o/m4MUmSJEmSJEmSJEmSJElD\nwJCQJEmSJEmSJEmSJEmSNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZIkSZIkSZKkcc6QkCRJkiRJkiRJkiRJkjTOGRKSJEmSJEmSJEmSJEmSxjlDQpIk\nSZIkSZIkSZIkSdI4Z0hIkiRJkiRJkiRJkiRJGucMCUmSJEmSJEmSJEmSJEnjnCEhSZIkSZIkSZIk\nSZIkaZwzJCRJkiRJkiRJkiRJkiSNc4aEJEmSJEmSJEmSJEmSpHHOkJAkSZIkSZIkSZIkSZI0zhkS\nkiRJkiRJkiRJkiRJksY5Q0KSJEmSJEmSJEmSJEnSOBdijCNdw6gVQigCYaTrkCRJkiRJkiRJkiRJ\nkgYQY4zbbBRkJ6GtMyAkSZIkSZIkSZIkSZKk0Wy78i2GhCRJkiRJkiRJkiRJkqRxzpCQJEmSJEmS\nJEmSJEmSNM5lR7qAUW4dMBWI6X0YxdejpQ7rHt3Xo6WOXfEdRksd1j26r0dLHbtK3ePhHUZLHdY9\nuq9HSx27St3j4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHUZLHdY9uq9HSx27St3j\n4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHXreb2Q7hBjjtmdJkiRJkiRJkiRJkiRJ\nGrM8bkySJEmSJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSePcVkNCIYR3hxBirz/L0rHTez0vhhBO\nCCFc3Ov5qh77PTed13P86n4+9+5ec9amzzf2ev7cAeou9JpXCCE8I4RwRa/njwywvmuAd36kn+/j\nlF5rj+jnHVemY4v6Wf/Nfj6/95yHB1jfFkLI9Fr77X4+f1UIYXo/+7aka7b0M9a+tf9tSJIkSZIk\nSZIkSZIkaezYViehzcBfga8Dx6fPZocQPgVcn96vA1rS6xuBv6drCv3sdwMQgMeA2cArgG/1nBBC\naACOTG8/lv6cnn7mjene23IpcDTJ+xXSn7cCJwKrgXYgAvMGWP8AcG96fQTld54N5IGNJO8cgV/2\nWtsKbEnHuv/MCiH8O3BMuu7etAbSmnrrTH8W03r3DyHUpe/UCfwY6AJqgSt6rd2U/myi/PeyGVif\n3ucpf+f1IYQzgZuBXwEfTOeSfq4kSZIkSZIkSZIkSZLGgRBj3P7JIXRPvgE4Lb1+OTAZ+DZAjDGk\nc/NADbA6xjgrhPAc4I/pmqo4wAeHEH6b7h1jjFUhhC1APbA+xjijVx3PizH+biv1BpIwTg5Ymz7+\nJPAZoJEkwHN4jPGBfta+FLguxhhCCAXgJuB5JIGjtwNfTq+rYoxVvdZuTPfvGVK6ATidJPhzDHAL\nMLH7++m1vntNK7CBJJx0IfBFkrDPs0nCWA3AXTHGY3qsfRjYC7gHODitow3YG3gUWAk8DnR3Yfoj\nSRBqPXAysJwkyLUkxjhvoO9WkiRJkiRJkiRJkiRJY8e2OgmVhBA+3OP2I90XMcbrgMu2Y4vze1x3\nH4fVEUI4qNe8A0iCNN3ddJrSn43bW2tab3O6Ty59dDzwSK86qkgCMlvb583pvI8Aa9LHl6T7ZpIp\n4a3p+3TXXN89lq4tAlNIQklVwJ0kASGATSGEq9MjwppCCFWU/17qgT1JAjz7pM8mkXQ6akjv7+5d\ncvrnEMrfWV26Tx7YnyTs1D13Esl3PA94Kn0WSYJfkiRJkiRJkiRJkiRJGge2KyQUQpgPXJTe3hFj\nrAimDNQVqJe6HtdXkByXlQMWbU8NOyrGOAn4P5JOPkXgNyRdjyakf0I61rWNrb4B3AEsJgn+QBLa\nKa2LMX49xhhijLkQwhEknXs2pMMZkhBO99oOki4/3epjjK+LMVbFGCeTHO3Wln5mW/o500m6CZHu\n1dZj/b696u0+Jqz7++4+8mw28FXg/vR5IAlidaT3bcC/eq2RJEmSJEmSJEmSJEnSOLDNkFAIYQZJ\n5xuAVTHGBb3GXxZCeMN2fNZvui9ijOcDt6W3E9MuPDE9Rmz3tK7uDkDdHW22bKXG2ONPe/rsjyRd\ncr5OEnjZBO94vgAABM5JREFUL8a4PMa4P7A5fRaA2wfYtrsLT/c7TyAJ6wBMoxz66e1ZJB2ApqX7\nA8wAZqb3WeDAHvNre60/MX12LEnQJ9tjD0iOT6uiHOKZ12t9dzcgSEJQ3Z2FFpJ0F+qe391lqZbk\nO15DcjwZ6f7rB3g/SZIkSZIkSZIkSZIkjTFbDQmFEALlzjRtMcbdewx3H631DeArJKGVloH2ijFe\n0WPfDwMnpLetaReeEGMMlDvmhBDCB0mO1QrAt7ayd8/1tSGE24AFJKGYl6fv2RZC2CuE0H1MVwA6\nYozLB3jvy9K9d09/NgNPknQIKgKt6Ttv6LX8h5RDVQWSTj1F4NUkXYC2AM2Uu/Us7rX+ROD96dpW\nyh2LzgeWpc+v7TH/Nip9i3IA6uH0WStwM/A4Sejon5RDRs8lOb6smN4X0z/X9/5eJEmSJEmSJEmS\nJEmSNDZtq5PQ7yh3panr0a3nZuAV6fPpJEEegBeGEM5LOwLVpM92S9ccBfwgfXZROh6B5/X8wBhj\nE+XjuD6d/lwfY/xICKEp3bvbTd2dg3rIkARt6kgCPLPS588GvkYS0pmQPqvttV+3rnQfer3zemBq\nOtYdXvpTCOGt6ZxO4PXA8T1qqU6v24A8MJGkW1IgCeP8OoRwdQihGEJoIunm8zmSME99+vMJksDP\nJGAu8DrKx4VdH0JYnK5/mCTI1N09qLszUCdJZ6SPkHQOOjKtrQM4Ln2XA0n+91BFcuzYZ/v5XiRJ\nkiRJkiRJkiRJkjQGhRj7y8hIkiRJkiRJkiRJkiRJGi+21UlIkiRJkiRJkiRJkiRJ0hhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZI0pEIInwghvHcr4y8JIRwynDVJkiRJkiTt6gwJSZIkSZIkabi9BDAkJEmSJEmS\nNIxCjHGka5AkSZIkSdIYF0L4MPA6YA3wFPAPoBm4AKgGHgVeAxwB/DodawbOSrf4OjADaAXeEGP8\n13DWL0mSJEmSNN4ZEpIkSZIkSdKghBCOBq4CjgOywN3A/wJXxhjXp3MuAlbHGL8WQrgK+HWM8Sfp\n2M3Am2KMj4QQjgM+E2NcOPxvIkmSJEmSNH5lR7oASZIkSZIkjXknAj+LMbYChBB+mT4/NA0HTQYa\ngZt6LwwhNALHA9eFELof1+z0iiVJkiRJknYxhoQkSZIkSZK0s1wFvCTGeE8I4Vzg5H7mVAFNMcYj\nhrEuSZIkSZKkXU7VSBcgSZIkSZKkMe824CUhhLoQwgTgRenzCcDKEEIOOKfH/M3pGDHGTcATIYSX\nAYTEM4evdEmSJEmSpF2DISFJkiRJkiQNSozxbuBHwD3ADcCd6dBHgTuAvwD/6rHkWuDCEMI/Qwj7\nkgSIzg8h3AM8ALx4uGqXJEmSJEnaVYQY40jXIEmSJEmSJEmSJEmSJGknspOQJEmSJEmSJEmSJEmS\nNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmSJEmSJEmSJEka5wwJSZIk\nSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmSJI1z/w+m2leULXkXFAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJcCAYAAABTzWhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcZHdd7//3p2vvvXv2LQuZBAlh\nNSYs94oPUTbRcK+KCGJAlJ/3ct1ABQQvCKLwu1cQrtcFBVkkYESUiLJEIiBCQhIggSTADCGZ6Znp\nmZ7p7uqlqrq27/3jfKunZqZ7equqc07V6/l49GO6T5069a3q7pp3f5fP15xzAgAAQPj6wm4AAAAA\nAgQzAACAiCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghlCZWZ/bma/26JrXWJmC2aW8F9/zsx+\nsRXX9tf7pJnd2KrrbeBxf9/MTpvZ5DrPd2Z20H9+zutrZv/NzE7612mbmT3VzA75r5/XrucQBjP7\nITObCLsd3c7M3mhmf9Ohx3rIzH6kE4+1wmO/xMy+2PT1gpk9YhPXeZGZfaa1rUM3IZihbfybaNHM\n5s1s1sy+ZGa/bGbLP3fOuV92zr15nde66Buyc+6Ic27QOVdrQdsv+M/GOfds59z7t3rtDbbjEkmv\nknS1c273Ru/f/PqaWUrS2yU9w79OZyS9SdKf+K//sZVtj7NuDnXnBwxsjv+defBi55jZZf4PpWTT\n/T7knHtG+1uIuCKYod1+3Dk3JOlSSW+V9GpJ72n1gzS/8XWZSySdcc6dasG1dknKSrqv6dil5329\nbl38mqPL8bOLKCOYoSOcc3nn3C2SfkbSjWZ2jSSZ2fvM7Pf959vN7BO+d23azP7dzPrM7IMKAso/\n+eGD3276S/RlZnZE0m0r/XUq6Qoz+4qZzZnZx81s3D/WBT0ijV45M3uWpN+R9DP+8e7xty8Pjfp2\nvd7MHjazU2b2ATMb8bc12nGjmR3xw5CvW+21MbMRf/8pf73X++v/iKRbJe317XjfKvf/LTM7YWbH\nzewXzrvtfX4o9CpJ3/aHZ83sNjP7rqRHNL2uGd+W9/jrHfP3bQwNv8TM/sPM3mFmZyS90R//BTN7\nwMxmzOzTZnZp0+M730t6yH9f/6+ZWdPtv+TvO29m95vZE/3xvWb29/41+Z6Z/WrTfa4zs7v89/Sk\nmb19tdfWn/87/nvwkJm9qOl4xsz+t/8enbRg2DdnZgOSPtn0ui/49hTNbLu/7+vMrGpmw/7rN5vZ\nH1/suk2P+1wz+7qd7UV+bNNtD5nZb5rZvWaWN7O/NbPsKs/rCv99POOf34fMbLTp9gNm9jH/Gp4x\nsz8xs0dJ+nNJT/bPa9afe86wv104bPdOMzvqX/O7zew/X+w1b7rfmAW/01P+5+MTZra/6fbP+dfu\nP/zPwGcar7G//cUW/E6csYv8Dvlz3+df61v9tT6/ws/iK8zskKRD/tj3+fOnzezbZvb8pvO3mdkt\n/jl/RdIV5z1e85SBnJn9kW9r3sy+6L/nX/Cnz/rX+8krvLZPMbM7/f3uNLOnrPf1QZdyzvHBR1s+\nJD0k6UdWOH5E0n/zn79P0u/7z/9QwX8aKf/xnyXZSteSdJkkJ+kDkgYk5ZqOJf05n5N0TNI1/py/\nl/Q3/rYfkjSxWnsVhI6/Oe/2z0n6Rf/5L0g6rCDYDEr6mKQPnte2v/TtepykJUmPWuV1+oCkj0sa\n8vf9jqSXrdbO8+77LEknm57jTf6xD67w+p7z+qzyuv6DpL/w19op6SuS/j9/20skVSX9iqSkf243\n+NfhUf7Y6yV9qel6TtInJI0qCNdTkp7lb/tp//35AUkm6aCCHrw+SXdL+p+S0v41flDSM/39vizp\nxf7zQUlPWuW1+SHf3rdLykh6mqRFSY/0t79D0i2Sxv1r/0+S/vAiPx9fkPST/vPPSPqupGc33fZf\n1nHdJ0g6Jel6SQlJN/rvQabp+/EVSXv9/R+Q9MurPL+Dkn7UP7cdvg1/7G9LSLrHt2VAQU/pf2r6\nPn5xtZ/tlc6R9HOStvnv8askTUrKrva70nS/bZJ+UlK/fy3+TtI/nve435V0lYKfp89Jequ/7WpJ\nC5J+0D/Ht/vv5wXvKU0/6/NN57/zvOfgFPyhM+4fa0DSUUkv9c/rCZJOK5g2IEkfkXSzP+8aBT+r\n51+v8Xv2f33b9/nX/im+DZfpwt+55dfWt2VG0ot9G37Wf71trdeHj+79oMcMYTiu4A3pfBVJeyRd\n6pyrOOf+3fl3p4t4o3Nu0TlXXOX2DzrnvumcW5T0u5Keb74HaIteJOntzrkHnXMLkl4r6QV2bm/d\n7znnis65exT8J/m48y/i2/ICSa91zs075x6S9EcK3qjX4/mS/rrpOb5xs0/IzHZJeo6kX/ev6SkF\n/7G/oOm04865/+Ocq/rX/JcVhI4HnHNVSX8g6fHNPRUK/iOZdc4dkfRvkh7vj/+ipP/fOXenCxx2\nzj2sIKjtcM69yTlXdsE8nr9sakdF0kEz2+6cW3DO3b7GU/td59ySc+7zkv5Zwc+ASXq5pN9wzk07\n5+Z9219wket8XtLT/Pf4sZLe5b/O+jZ/YR3Xfbmkv3DO3eGcq7lgzuKSpCc1Pc67nHPHnXPTCkLd\n47UC/3rd6p/blILg8jR/83UKwt1v+e9lyTm36Xllzrm/cc6d8d/3P1IQOh65jvudcc79vXOu4F+L\ntzS1seGvnXPf8T9PN+vs8/0pSZ9wzn3BObek4Pe3vsZD/nPT+a9T0DN4oOn2P/Tfl6Kk50p6yDn3\n1/55fU3BH28/7X8vf1LS//Sv3zclrTi/1II5s78g6decc8f89/VLvg1r+TFJh5xzH/Rt+LCkb0n6\n8XW8PuhSBDOEYZ+k6RWO/y8FvS+fMbMHzew167jW0Q3c/rCCnrhWDAXs9ddrvnZSwTyuhuZVlAUF\nvTvn2+7bdP619m2gHec/x8261LflhB9mm1XQe7az6ZzzX+9LJb2z6fxpBb1fze1f7XU4oKA3YKV2\n7G1c01/3d3T2tX2Zgh6Eb/mhn+de5DnN+MDa8LCC12yHgl6cu5se41P++Go+r6An7YmSvqGg9+Vp\nCkLVYRcspljrupdKetV5z+2Ab1PDen5uZGa7zOwjFgw5z0n6G5392T4g6WEflrfMD68+4IfbZiWN\naB2/R2bWb2Z/4Yf45hT06o2e98fRas/3nJ9t/308s8ZDNp+/oODnce9Ktyv4Xlx/3vfiRZJ2K/h+\nJbW+363tCnokV/pZXsv57yONx1nP7w+6FBMg0VFm9gMK3nQu+Ovd/0X9KgX/cV2jYN7Ync65zyoY\nDljJWj1qzX8tX6Kgt+W0giGt/qZ2JXTuf8prXfe4gjf25mtXFQwr7l/xHis77dt0qaT7m651bJ33\nP6ELn+NmHVXQe7P9Iv+hn/+6HJX0Fufchzb5eFescvx7zrkrV2yAc4ck/azvqfivkj5qZtvOC2AN\nY2Y20HTbJZK+qeB1L0p6tHNupdd6pe//lxT0Ev0XSZ93zt1vwarZ5ygIbVrHdRuv11tWem4b9Ae+\nnY9xzk1bUO7kT5oe5xIzS67wvVzpuZ3z+6AgnEiS/Hyy35b0dEn3OefqZjajIICv5VUKXrPrnXOT\nZvZ4SV9b531PKBgib7SjX8HQ6MUs/y6Y2aCCnvnjTbc3P/ejCr6PP3r+Rfz7QdVf71v+8Gq/W6cl\nlRT8LN9z3m0bfR9pPM6n1rgfuhg9ZugIMxv2PRsfUTAf5RsrnPNcMzvoh4Pykmo6O3RxUsFco436\nOTO72r+pv0nSR11QTuM7krJm9mMWlJF4vYLhmYaTki6zptIe5/mwpN8ws8v9fwB/IOlvN9pD4dty\ns6S3mNmQHwJ8pYLej/W4WdJLmp7jGzby+Oe15YSCuVN/5L9ffRZMMD9/6KnZn0t6rZk9WlpeyPDT\n63zIv5L0m2b2/RY46J//VyTNm9mr/aTqhJld40O9zOznzGyHc64uadZf62JDXL9nZmkfMJ4r6e/8\nff9S0jvMbKe/7j4ze6a/z0lJ28wv6PCvT0HB3LdX6GwQ+5KC4dzP+3PWuu5fSvplM7veP+cB/zM4\ntM7XrNmQgjlYeTPbJ+m3mm77ioJg81b/GFkze2rTc9tvZumm878u6b/6Hq6DCnolmx+nqmB+YNLM\n/qek4Q20sahg8vu4Nvbz+VFJzzWz/+Tb+iat/X/Wc5rOf7Ok251zq/Wqf0LSVRYsMEj5jx8ws0f5\n38uPSXqjf02uVjAf8AL+e/5eSW+3YJFIwoJJ/hkFr1ldq793/YtvwwvNLGlmP6Ngbt0n1nie6GIE\nM7TbP5nZvIK/Tl+nYB7MS1c590pJ/6rgP5svS/pT59y/+dv+UNLr/ZDDb27g8T+oYFLwpILhhl+V\nglWikv67gnBwTEGPQfMqzb/z/54xs6+ucN33+mt/QdL3FPzF/CsbaFezX/GP/6CCnsSb/PXX5Jz7\npKQ/lnSbgmHg2zbZhoafVzDh/n4Fk5A/qmDe32qP/w+S3ibpI36o6puSnr2eB3LO/Z2COUc3KZi0\n/Y+Sxv1/is9VMJfmewp6JP5KwfCZFCx4uM/MFhRM8H7BReYYTvrncVzShxRMpG/0gLxawWt2u2/7\nv8rPm/LnfFjSg/5nrjEc9nkFw71fafp6SGdX36113bsk/ZKCnq0Zf95L1vN6reD3FAyr5hXMnftY\n4wb/Gv64ggUCRxT8bP+Mv/k2BSVSJs3stD/2DkllBaHt/Qpeq4ZPK+jB+Y6CYbaS1p5C0PDHCiat\nn5Z0uzbQE+Scu09BCL5JQcic0bm/oyu5SUH4m5b0/QoWLax2/XlJz1Aw/++4gp+Vt+nsH2j/Q8Gw\n4aSC95C/vsjj/qaC4e07/WO/TVKfD/NvkfQf/ueoeS6h/PD3cxX0LJ5R0DP5XOfcaaFnNVa8AQAQ\nWxaUk5lwzr0+7LYAW0GPGQAAQEQQzAAAACKCoUwAAICIoMcMAAAgItasY2Zm71WwauSUc66xv+H/\nUrDip6ygqN5LnXONPddeq2CpdU3SrzrnPu2PP0vBCqqEpL9yzr3VH79cQQmFbQqWor/YOVdeq13b\nt293l1122YaeLAAAQBjuvvvu0865ixWxlrSOoUwz+0EF5Qs+0BTMniHpNudc1czeJknOuVf7Wi8f\n1tntQP5VQYVuKVhq/aMKljvfKelnfYHGmyV9zDn3ETP7c0n3OOf+bK2GX3vtte6uu+5a6zQAAIDQ\nmdndzrlr1zpvzaFM59wXdN72Oc65zzQV0rxdZyud3yDpI37vtu8pqNFznf847IJ9BcsKeshu8IVE\nf1hBrSQpqJ/zvDWfHQAAQBdqxRyzX5D0Sf/5Pp1beHDCH1vt+DZJs00hr3F8RWb2cjO7y8zumpqa\nakHTAQAAomNLwczMXqdgq47N7JO3Yc65dzvnrnXOXbtjx5rDtAAAALGy6U3MzewlChYFPN2dnah2\nTOduqLxfZzdjXun4GUmjTRvtNp8PAADQUzbVY+ZXWP62pJ/we4E13CLpBWaW8astr1Swp9ydkq70\nGz6nFexNdosPdP8m6af8/W+U9PHNPRUAAIB4WzOYmdmHFWwo/UgzmzCzlynYgHdI0q1m9nW/mrKx\n6ezNCjZA/pSkVzjnar437H8o2Az3AUk3+3OlYMPfV5rZYQVzzt7T0mcIAAAQE7Gt/E+5DAAAEBct\nK5cBAACAziCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACA\niCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACAiEiG3QAA\nQGvc/fC0XvLeO5VLJzTan9JILvjYNpjRY/aNqM9MkvTC6y8JuaUAVkMwA4AucffDM5pfqmrfWE7z\npaqOzRS1WK5JkrLJPj1y93DILQSwFoIZAHSJyfyS0ok+vfhJl8p871ipUtPv//P9euhMgWAGxABz\nzACgS5ycK2k4l1wOZZKUTSW0dzSnh88shtgyAOtFMAOALjE5V9JwNnXB8UvH+zUxU1S1Xg+hVQA2\ngmAGAF1iMl/ScG6FYLZtQNW604nZUgitArARBDMA6AL1utOp+ZV7zC7Z1i9JDGcCMUAwA4AuMF0o\nq1JzGs5duKZrOJvSWH9KD08XQmgZgI0gmAFAF5jMB8OUK/WYScFw5pEzBTnnOtksABtEMAOALnBy\nLghmIyvMMZOkS8b7Nb9U1Uyh0slmAdggghkAdIFJH8xWmvwvSZcyzwyIBYIZAHSBk/mS+kwazKxc\nN3zXcFaZZB/zzICII5gBQBeYnCtpx1BGiT5b8fY+M10y3q8jZwhmQJQRzACgC0zOLWn3cPai51yy\nrV8n50rKF5lnBkQVwQwAusDJfEm71ghml44PyEn62pGZzjQKwIYRzACgC0zOlbR75OLB7MB4Tibp\nqw8TzICoIpgBQMyVKjXli5U1e8wyyYT2jGR1F8EMiCyCGQDEXKO47FpzzCTpkm0D+vrRWVVrbGgO\nRBHBDABirlHDbK2hTCmoZ1Yo1/Styfl2NwvAJhDMACDmGlX/1xrKlKRLx4NCs3c9NN3WNgHYHIIZ\nAMTc8lDmOnrMRvvTzDMDIoxgBgAxNzlX0mAmuWrV//N9/6VjrMwEIopgBgAxd3KupF3DmXWff+2l\nYzqeL+n4bLGNrQKwGQQzAIi5yfzaNcyaff+l45Kkr1JoFogcghkAxNzJuaV1TfxvOLhzUJL0vanF\ndjUJwCYRzAAgxup1p5NzpXXVMGvIpRPaPpjR0Rk2NAeihmAGADF2ZrGsat1taChTCrZnOjrNHDMg\naghmABBjG6lh1uzAWD89ZkAEEcwAIMY2sh1TswPjOZ3Il9iaCYgYghkAxNhGtmNqdmCsX7W60wkf\n7ABEA8EMAGLs5FxJiT7T9sH11zGTpAN+ayaGM4FoIZgBQIxN5kvaMZhRos82dL8DY0Ewm2ABABAp\nBDMAiLHJuZJ2bXAYU5L2jGbVZ/SYAVFDMAOAGAtqmG1sGFOSUok+7RnJ6eg0wQyIEoIZAMTYZH5j\nxWWbHRjP6egMQ5lAlBDMACCmiuWa5krVTQ1lSr6WGT1mQKQQzAAgppZLZWy6x6xfp+aXVKrUWtks\nAFtAMAOAmNpscdmGA+M5SdIEw5lAZBDMACCmlrdj2sJQpsTKTCBKkmE3AACwOZsdyrzpjiOSpHyx\nIkn6h68e04nZC3cAeOH1l2yxhQA2ih4zAIipyXxJQ5mkBjKb+xt7KJtUss80s1huccsAbBbBDABi\n6uQmi8s29JlptD+l6QLBDIgKghkAxNTk3OZrmDWM9ac1QzADIoNgBgAxdTJf0q6tBrOBtGYWKy1q\nEYCtYvI/AMRAY8J+Q905Tc6VdGZh6YLbNmK8P61ipaZSpaZsKrHVZgLYInrMACCGFpeqqjtpOJfa\n0nXGBtKSpGkWAACRQDADgBiaK1YlScPZLQaz/uD+zDMDooFgBgAxNFcK5oUN57Y2I2W8P+gxo2QG\nEA0EMwCIoUZx2K0OZebSCWWSfZousAAAiAKCGQDE0HypKpM0uMnisg1mFpTMoMcMiASCGQDEULFS\nVTaVUJ/Zlq81NkAtMyAqCGYAEEPFck25dGvKW4z3pzRTKMs515LrAdg8ghkAxFCxUlOuRXXHxgbS\nqtScFsu1llwPwOYRzAAghorlmvpb1GM2xspMIDIIZgAQQ8UWVupvBDM2MwfCRzADgBhqaY/ZgC8y\nS48ZEDqCGQDEjHOupXPMMsmE+tMJVmYCEUAwA4CYKVfrqju1bFWmJI0PpDWzSJFZIGwEMwCImUIl\nWD3Zqh4zKZhnxhwzIHwEMwCImaIva9HKHrOx/rTyhYrq1DIDQkUwA4CYKbajx2wgpZpzmisynAmE\niWAGADHTjh6zcUpmAJFAMAOAmGlPj1mjyCw9ZkCYCGYAEDPt6DEb7U/JJEpmACFbM5iZ2XvN7JSZ\nfbPp2LiZ3Wpmh/y/Y/64mdm7zOywmd1rZk9sus+N/vxDZnZj0/HvN7Nv+Pu8y8ys1U8SALpJsVJT\nwkzpROv+tk729Wkwk1SeOWZAqNbzW/0+Sc8679hrJH3WOXelpM/6ryXp2ZKu9B8vl/RnUhDkJL1B\n0vWSrpP0hkaY8+f8UtP9zn8sAECTYrmmbDqhVv8dO9KfIpgBIVszmDnnviBp+rzDN0h6v//8/ZKe\n13T8Ay5wu6RRM9sj6ZmSbnXOTTvnZiTdKulZ/rZh59ztzjkn6QNN1wIArKBQqam/hfPLGkZyKeUL\nBDMgTJvtB9/lnDvhP5+UtMt/vk/S0abzJvyxix2fWOH4iszs5WZ2l5ndNTU1tcmmA0C8lcq1ls4v\naxjJBT1mjlpmQGi2PEHB93R15LfYOfdu59y1zrlrd+zY0YmHBIDIaeU+mc1GcimVa3WVKvWWXxvA\n+mw2mJ30w5Dy/57yx49JOtB03n5/7GLH969wHACwikK52rYeM0nMMwNCtNlgdoukxsrKGyV9vOn4\nz/vVmU+SlPdDnp+W9AwzG/OT/p8h6dP+tjkze5JfjfnzTdcCAKygnT1mkpQvUjIDCEtyrRPM7MOS\nfkjSdjObULC68q2Sbjazl0l6WNLz/en/Iuk5kg5LKkh6qSQ556bN7M2S7vTnvck511hQ8N8VrPzM\nSfqk/wAArKDunJYq9bb2mM3SYwaEZs1g5pz72VVuevoK5zpJr1jlOu+V9N4Vjt8l6Zq12gEAkEqV\nmpxaW/W/YSgbFJllKBMID5X/ASBG2lH1vyHRZxqmZAYQKoIZAMRIO/bJbDaSSylfIpgBYSGYAUCM\nNHrM+tvQYyZRZBYIG8EMAGKk0WOWbWePGUVmgdAQzAAgRgod6DGr1t3y4wDoLIIZAMRIqQNzzCRW\nZgJhIZgBQIwUyzWlEqZkoj1v3wQzIFwEMwCIkUKbqv43jPQTzIAwEcwAIEaK5Vpbapg1DGaSSpgR\nzICQEMwAIEbatU9mQ5+ZhnNJghkQEoIZAMRI0GO25m56WzKcS2mWWmZAKAhmABAj7e4xkxq1zMpt\nfQwAKyOYAUCMFMu1ttUwaxjNpTRXqqpep8gs0GkEMwCIiVrdqVyrt63qf8NILqVa3enMIr1mQKcR\nzAAgJpY3MG9zj9lILi1JOpEvtvVxAFyIYAYAMVEoVyVJ/e3uMfO1zI7Pltr6OAAuRDADgJgolTvV\nYxYEM3rMgM4jmAFATBTavE9mw0A6oWSf6USeHjOg0whmABATxQ71mJmZhnMpghkQAoIZAMREsUM9\nZlIwnHlilqFMoNMIZgAQE40es3aXy5CCWmb0mAGdRzADgJgoVmrKJPuU6LO2P9ZILqXJuZJqFJkF\nOopgBgAxEeyT2f7eMikomVGrO03NL3Xk8QAECGYAEBPFSq3tNcwaRrKUzADCQDADgJgolmvKdrDH\nTBLzzIAOI5gBQEwUKrWOrMiUzhaZPc7KTKCjCGYAEBOlck39Heoxy6USyqUS9JgBHUYwA4AYcM6p\n2MEeMzPTntEsc8yADiOYAUAMVGpO1brrWDCTpL0jOXrMgA4jmAFADCxX/U8nO/aYu0eyOjFLMAM6\niWAGADFwNph1sscsq1PzJVVr9Y49JtDrCGYAEAPLG5h3cChzz2hOdSedpMgs0DEEMwCIgeVg1sEe\nsz0jWUliM3OggwhmABADxUpVUmd7zPaO5iRJx1kAAHQMwQwAYqDRY9apOmbS2R6zSUpmAB1DMAOA\nGChWajJJ6WTn3raHsikNZZI6zspMoGMIZgAQA4VyTdlUQn1mHX3cy3cM6NCp+Y4+JtDLCGYAEAPF\nSue2Y2r2mH0juvdoXvW66/hjA72IYAYAMVCq1Dq6IrPhcQdGNb9U1ffOLHb8sYFeRDADgBgolDu3\nT2azx+0flSTdOzHb8ccGehHBDABioFgOp8fs4M5B9acTuudovuOPDfQighkAxECxEk6PWaLPdM3e\nEd1DjxnQEQQzAIg451wwxyyEYCZJj90/ovuPz6nCnplA2xHMACDiFpaqqrvObsfU7HEHRrVUrevb\nk5TNANqNYAYAETdbqEjq7HZMzc4uAGCeGdBuBDMAiLh8MQhmYdQxk6QD4zmN9adYmQl0AMEMACJu\nzgezbEjBzMz0mP2j+vpRghnQbgQzAIi42WK4Q5mS9Lj9Izp0amF5M3UA7UEwA4CIOzuUmQytDY/d\nP6pa3em+48wzA9qJYAYAERf25H8p6DGTpHtYAAC0FcEMACIuX6woYaZUwkJrw87hrPaMZFkAALQZ\nwQwAIi5frCibTsgsvGAmBYVm72EBANBWBDMAiLjZQjm0UhnNHrt/VA+dKSjvh1YBtB7BDAAibnqx\nrIEIBLPlQrPH6DUD2oVgBgARN1uohLois+ExfgEAOwAA7UMwA4CIm4nIUOZILqVHbB9gnhnQRgQz\nAIgw55wPZuH3mEl+AQArM4G2IZgBQIQtlmuq1JwGMuH3mEnBAoCTc0s6OVcKuylAVyKYAUCEzSyW\nJYW3gfn5HnfAF5plOBNoC4IZAETYTKERzKIxlHn1nhEl+owFAECbEMwAIMKmI9Zjlksn9MhdQ/r3\nw6flnAu7OUDXIZgBQIQ19skciEiPmSS96EmX6J6js/r0fSfDbgrQdQhmABBhUesxk6SfufaArto1\nqD/85AMqV+thNwfoKgQzAIiw2UJZZlI2QsEsmejT637saj18pqAPfPmhsJsDdBWCGQBE2HShrNFc\nSn0hb2B+vqddtUNPu2qH3vXZQ8srRwFsXXQmLQAALjBTqGisPx3KY990x5GL3v74A6P64uHTeudn\nD+mNP/HoDrUK6G70mAFAhM0sljU2EE4wW8uu4ax+9roD+uDtD+vwqYWwmwN0BYIZAERY0GOWCrsZ\nq/r1H7lK/amE3vrJB8JuCtAVGMoEgAibLZR1zd7hsJuxqs/cd1JPPbhdn7pvUm/6p/t1cOfgiue9\n8PpLOtwyIJ7oMQOACJuO8FBmw5Ov2Kax/pQ+c/9k2E0BYo9gBgARVSzXtFSthzb5f71SiT5df/k2\nTcwUlS9Wwm4OEGsEMwCIqGm/T2aU55g1XLV7SJL0nZPzIbcEiDeCGQBEVKM+WNSHMiVp11BGI7kU\nwQzYIoIZAETUzHKPWfSDmZmiystFAAAgAElEQVTpql2DOnxqQbU6m5sDm0UwA4CImvEbmMdhKFOS\nrto1pKVqXQ9PL4bdFCC2CGYAEFFxGsqUpCt2DKrPpO9MUmwW2CyCGQBEVGMoczQXjx6zbCqhS7cN\nMM8M2AKCGQBE1MxiWcPZpJKJ+LxVP3LXkCbnSpTNADYpPr/tANBjZgqV2AxjNly1KyibcYheM2BT\nCGYAEFEzhXIsVmQ22zWc0XA2qW8TzIBNIZgBQEQFwSwe88sagrIZQ5TNADZpS8HMzH7DzO4zs2+a\n2YfNLGtml5vZHWZ22Mz+1szS/tyM//qwv/2ypuu81h//tpk9c2tPCQC6w8xi/IYypbNlM45MF8Ju\nChA7mw5mZrZP0q9KutY5d42khKQXSHqbpHc45w5KmpH0Mn+Xl0ma8cff4c+TmV3t7/doSc+S9Kdm\nlthsuwCgW8RxKFOSDu70ZTMYzgQ2bKtDmUlJOTNLSuqXdELSD0v6qL/9/ZKe5z+/wX8tf/vTzcz8\n8Y8455acc9+TdFjSdVtsFwDEWqlSU6Fc03gMe8womwFs3qaDmXPumKT/LemIgkCWl3S3pFnnXNWf\nNiFpn/98n6Sj/r5Vf/625uMr3OccZvZyM7vLzO6amprabNMBIPJmfdX/0ZjNMWu4ateQTuRLmqNs\nBrAhWxnKHFPQ23W5pL2SBhQMRbaNc+7dzrlrnXPX7tixo50PBQChahSXHY/hUKYkXbVrUJJ06BS9\nZsBGbGUo80ckfc85N+Wcq0j6mKSnShr1Q5uStF/SMf/5MUkHJMnfPiLpTPPxFe4DAD2psR3TaEyD\n2e7hrC+bwfZMwEZsJZgdkfQkM+v3c8WeLul+Sf8m6af8OTdK+rj//Bb/tfzttznnnD/+Ar9q83JJ\nV0r6yhbaBQCxt7yB+UA8hzLPls2YV/BWD2A9tjLH7A4Fk/i/Kukb/lrvlvRqSa80s8MK5pC9x9/l\nPZK2+eOvlPQaf537JN2sINR9StIrnHO1zbYLALrBdMyHMiVp90hWpUpdhTJv6cB6Jdc+ZXXOuTdI\nesN5hx/UCqsqnXMlST+9ynXeIuktW2kLAHST2ZgPZUrScDbo7WPfTGD9qPwPABE0XShrMJNUOhnf\nt+mRXBDMWJkJrF98f+MBoIvNFiqxLZXRMOyDWb5EMAPWi2AGABE0vViOZXHZZoOZpEz0mAEbQTAD\ngAiaLZRjPb9MkhJ9pqFsUvlide2TAUgimAFAJE0XyhqP+VCmFMwzm2MoE1g3ghkARNDsYiX2PWZS\nMM+MVZnA+hHMACBiKrW65peqsZ9jJgXBjDlmwPoRzAAgYhr7ZI51w1BmNqWlal3zDGcC60IwA4CI\nmfXbMXXLUKYknZwrhdwSIB4IZgAQMdO+6n83DGU2isyeyBPMgPUgmAFAxMwWGtsxdcFQpg9mkwQz\nYF0IZgAQMdOLwVBmN/SYDWWDLZkJZsD6EMwAIGLOTv6PfzBLJfrUn07oBHPMgHUhmAFAxMwslpVL\nJZRNJcJuSkuM5FI6SY8ZsC4EMwCImJlCpStKZTQMZ1NM/gfWiWAGABEzUyhrrAvmlzWM5FKaZCgT\nWBeCGQBEzEyh3BXzyxqGc0lNL5ZVqtTCbgoQeQQzAIiYmcXu6zGTpFNzSyG3BIg+ghkAREzXzTFr\n1DJjOBNYE8EMACKkWqsrX6x011BmtlH9vxhyS4DoI5gBQITki0Fx2W7qMaP6P7B+BDMAiJAZv4F5\nN80xy6YSGswkGcoE1oFgBgAR0k1V/5vtGs7QYwasA8EMACJkZrE7g9mekRxFZoF1IJgBQIQs95gN\ndM8cM0naPZLVSYYygTURzAAgQpbnmHVZj9nu4axOzS+pWquH3RQg0ghmABAhM4tlpZN96k93xwbm\nDbtHsqrVnU4vlMNuChBpBDMAiJBgO6aUzCzsprTU7uGsJIrMAmshmAFAhEwvdldx2YbdIz6YUWQW\nuCiCGQBEyEyhrPEuqmHWsMcHM1ZmAhdHMAOACJmaX9KOoUzYzWi58YG00ok+hjKBNRDMACAinHNB\nMBvsvmBmZto1QpFZYC0EMwCIiMVyTcVKrSt7zCRpzzBFZoG1EMwAICKm5pckqWuD2S6KzAJrIpgB\nQER0ezDbM5LViXxJzrmwmwJEVjLsBgBAL7vpjiPLn3/jWF6SdOf3ZnR0uvvKSuwezqpcrWumUOnK\nladAK9BjBgARMV8KtmMazHbn38xna5kxnAmshmAGABGxsFRVn6nrtmNqWA5mc93XGwi0CsEMACJi\noVTVQCapvi7bjqlheVum/FLILQGii2AGABExX6pqKNOdw5hSsKihz9iWCbgYghkARMTCUrVr55dJ\nUirRpx1DGWqZARdBMAOAiJgvVTSUSYXdjLbaPZxlWybgIghmABABdee6vsdMChYAsCoTWB3BDAAi\noFiuqe6koS4PZntGcgQz4CIIZgAQAfNLVUnSYBdP/pekXcNZzS9VteCfL4BzEcwAIAIWSkFQGcp2\n9xyzXcPBdlOnmGcGrIhgBgAR0Kj6383lMiRpzG/FNFOohNwSIJoIZgAQAY2hvW6f/D/e74PZYjnk\nlgDRRDADgAiYL1WVSpgyye5+W25sXj5dIJgBK+nudwAAiImFpaoGM0lZl27H1LAczOgxA1ZEMAOA\nCFgoVbt+RaYUbNCeTvYxlAmsgmAGABEwv1Tp+hWZkmRmGu9P02MGrIJgBgARMF/q/qr/DWMDac0w\nxwxYEcEMAEJWqzsVyrWuL5XRMD6QoscMWAXBDABC1iulMhrG+tPUMQNWQTADgJAtV/3PdP8cMylY\nmUmPGbAyghkAhGx+yVf975Ees/GBtPLFiqq1ethNASKHYAYAIWv0mPXKUOY42zIBqyKYAUDI5htz\nzHpk8v9YY1smVmYCF+iNdwEAiLD5UlXZVJ9Sie79W/mmO44sf3741IIk6ea7juoR2wfPOe+F11/S\n0XYBUdO97wIAEBMLS9WemfgvSQOZhCSpsFQLuSVA9BDMACBkC6VKz8wvk6T+dPBcF8vVkFsCRA/B\nDABCNt8j+2Q29Kd9j1mZHjPgfAQzAAjZwlK1Z0plSFIq0ad0sk+FJXrMgPMRzAAgROVqXUvVes9s\nx9QwkE5okR4z4AIEMwAI0dntmHpn8r8kDWSSKjDHDLgAwQwAQjRf6q2q/w396YQWWZUJXIBgBgAh\nmi/1VnHZhoF0klWZwAoIZgAQosZQZi/2mFHHDLgQwQwAQjRfqsoUzLnqJQOZpMq1uipsZA6cg2AG\nACFaWKpoIJNUn1nYTemoRpFZapkB5yKYAUCI5ku9VcOsoVFkdpFaZsA5CGYAEKKFpd6q+t/QGLql\nxww4F8EMAEK00KM9ZgONHjNWZgLnIJgBQEicc5rv0R6zfv+cGcoEzkUwA4CQzBWrqtVdz1X9l6Rc\nKiETQ5nA+QhmABCSqYWSJPXcPpmSlOgzZVMJesyA8xDMACAkp+aXJEmDPTjHTJIGMgl6zIDzEMwA\nICRTPpj1Yo+ZFNQyY/I/cC6CGQCEZDmY9eAcMylYmcm2TMC5CGYAEJKphSU/16o334r7M0kV6DED\nztGb7wYAEAFT80sayiRlPbYdU8NAOqnFck3OubCbAkTGloKZmY2a2UfN7Ftm9oCZPdnMxs3sVjM7\n5P8d8+eamb3LzA6b2b1m9sSm69zozz9kZjdu9UkBQBxMzS/17MR/KZj8X6s7latsZA40bLXH7J2S\nPuWc+z5Jj5P0gKTXSPqsc+5KSZ/1X0vSsyVd6T9eLunPJMnMxiW9QdL1kq6T9IZGmAOAbnZ6odyz\nE/+lsxuZL7IyE1i26WBmZiOSflDSeyTJOVd2zs1KukHS+/1p75f0PP/5DZI+4AK3Sxo1sz2Sninp\nVufctHNuRtKtkp612XYBQFycmiv1ZHHZhgE2MgcusJUes8slTUn6azP7mpn9lZkNSNrlnDvhz5mU\ntMt/vk/S0ab7T/hjqx2/gJm93MzuMrO7pqamttB0AAjXUrWmM4tljeR6uMdseSNzghnQsJVglpT0\nREl/5px7gqRFnR22lCS5YEZny2Z1Oufe7Zy71jl37Y4dO1p1WQDouFNzQamMkRw9ZgxlAmdtJZhN\nSJpwzt3hv/6ogqB20g9Ryv97yt9+TNKBpvvv98dWOw4AXetEPtiOabiHhzIbc8wKDGUCyzYdzJxz\nk5KOmtkj/aGnS7pf0i2SGisrb5T0cf/5LZJ+3q/OfJKkvB/y/LSkZ5jZmJ/0/wx/DAC61uScD2Y9\n3GOWTfWpz+gxA5ptdXLDr0j6kJmlJT0o6aUKwt7NZvYySQ9Ler4/918kPUfSYUkFf66cc9Nm9mZJ\nd/rz3uScm95iuwAg0ibzRUm9PZRpZhpIU2QWaLalYOac+7qka1e46ekrnOskvWKV67xX0nu30hYA\niJPJ/JIG0gllkr1d57s/k9Ai2zIBy3r7HQEAQjI5V9SukWzPVv1vYCNz4FwEMwAIwWS+pD0j2bCb\nETo2MgfORTADgBBM5kvaNUww68/QYwY0I5gBQIfV6k4n55foMVPQY1Ys11RnI3NAEsEMADruzMKS\nanWn3fSYqT+dlJNUomQGIIlgBgAd1yguu3skF3JLwjeQofo/0IxgBgAd1iguS4+ZNJBmv0ygGcEM\nADpscrnHjGDW2MicWmZAgGAGAB02OVdSKmHaNpAOuymha2xkTo8ZECCYAUCHTeZL2jmUVV9fbxeX\nlc5uZL7IRuaAJIIZAHTcZL7EMKaXTvYplTAm/wMewQwAOmxyjmDWrJ+NzIFlBDMA6CDnXNBjxorM\nZQNpNjIHGghmANBBc8WqipUaVf+b9GfoMQMaCGYA0EHLNcwIZssG0gnmmAEewQwAOuhEviiJ4rLN\n6DEDziKYAUAHnaTH7AID6YRKlbpqdTYyBwhmANBBjX0ydw4RzBqWa5nRawYQzACgk07OlbR9MKN0\nkrffhgG/LVOBlZkAwQwAOulEvqTdI5mwmxEp/X5bJnrMAIIZAHRUUMMsF3YzImXQ95gtsC0TQDAD\ngE4Kqv7TY9ZsOZiVCGYAwQwAOqRUqWm2UNGeEXrMmuXSCfUZG5kDEsEMADpm0q/I3EUNs3P0mWkg\nk2QoE5CUDLsBANCtbrrjyDlfPzi1IEm6//icbqoeWekuPWuQYAZIoscMADpmrlSRJA3n+Jv4fAQz\nIEAwA4AOyReD4DGSTYXckuhhKBMIEMwAoEPmihVlkn3KpBJhNyVyBjNJLS5V5RzbMqG3EcwAoEPy\nxYpGcvSWrWQwk1Sl5rRYpvo/ehvBDAA6ZK5U0TDBbEWNWman55dCbgkQLoIZAHTIXLHC/LJVDGaD\nYHZmkWCG3kYwA4AOqNWd5ktVVmSuotFjNjVfDrklQLgIZgDQAQtLVTmJocxVDDSGMhfoMUNvI5gB\nQAfMFYMaZgxlrmwgE6xUPbNAjxl6G8EMADogX2wUlyWYrSTZ16dcKkGPGXoewQwAOqBR9Z9yGasb\nzCQJZuh5BDMA6IB8saJkn6k/TXHZ1QxmkwxloucRzACgA/LFoIaZmYXdlMgaoMcMIJgBQCfMFasa\nzlIq42IYygQIZgDQEVT9X9tgJqm5UlVLVbZlQu8imAFAmznnqPq/Do0is8wzQy8jmAFAmxXKNVXr\njh6zNRDMAIIZALQdpTLWp7FfJvPM0MsIZgDQZhSXXZ/l/TIJZuhhBDMAaLNGMKPH7OIYygQIZgDQ\ndnPFikxngwdWlk6yLRNAMAOANpsrVjWUTSrRR3HZtWwfSusMwQw9jGAGAG2Wp4bZum0fzOg0Q5no\nYQQzAGizfLHC/LJ12jaQYSgTPY1gBgBtNlekx2y9dgyl6TFDTyOYAUAblSo1LVXrVP1fp+2DGU0v\nLqlWd2E3BQgFwQwA2miOGmYbsm0grbqTZgr0mqE3EcwAoI3yVP3fkO1DGUnUMkPvIpgBQBvNUVx2\nQ7YPBsGMBQDoVQQzAGijfLEqSRrKUlx2PbYPpiURzNC7CGYA0EZzxYr60wmlErzdrsfZHjOGMtGb\neKcAgDaihtnGDGdTSvYZPWboWQQzAGijuRLBbCP6+kzbBtmWCb2LYAYAbZSnuOyGsS0TehnBDADa\npFKrq1CuaZjishuybZBtmdC7CGYA0CaUytic7YNp6pihZxHMAKBN5kpBqQyC2cbsGMxoamFJzrEt\nE3oPwQwA2iS/vB0TNcw2YttgWuVqXfNL1bCbAnQcwQwA2mR5KJM5ZhvSqGXGcCZ6EcEMANokX6wo\nk+xTJpUIuymxwrZM6GUEMwBoE2qYbc42vy0TtczQiwhmANAmVP3fnB2+x2yKoUz0IIIZALTJXLFC\nDbNNGBvwG5nP02OG3kMwA4A2qNbqmi9Vqfq/CalEn8b6UzqzSDBD7yGYAUAbTC0syYkaZpu1fTCj\n0/MMZaL3EMwAoA1O5EuSpBFqmG3KtsE0qzLRkwhmANAGkz6YMZS5OdsHMzqzSI8Zeg/BDADaYLnH\njMn/mxIMZdJjht5DMAOANjg5V1Kyz5RLU1x2M7YPpjW/VFWpUgu7KUBHEcwAoA1O5EsayaVkZmE3\nJZaWt2ViOBM9hmAGAG0wmS8yv2wLlrdlYjgTPYZgBgBtMDlXolTGFixvy0QtM/QYghkAtFi97nQy\nv0TV/y3YMRT0mJ2cI5ihtxDMAKDFpgtllWt1aphtwe7hrBJ9puOzxbCbAnQUwQwAWowaZluXTPRp\n93BWEzMEM/QWghkAtNjkctV/gtlW7BvN6RjBDD1my8HMzBJm9jUz+4T/+nIzu8PMDpvZ35pZ2h/P\n+K8P+9sva7rGa/3xb5vZM7faJgAI04k5esxaYf9YTscYykSPaUWP2a9JeqDp67dJeodz7qCkGUkv\n88dfJmnGH3+HP09mdrWkF0h6tKRnSfpTM6MiI4DYmswXlewzDWaYY7YV+8ZyOpEvqlKrh90UoGO2\nFMzMbL+kH5P0V/5rk/TDkj7qT3m/pOf5z2/wX8vf/nR//g2SPuKcW3LOfU/SYUnXbaVdABCmE/mS\ndg5l1Edx2S3ZN5pT3Z0dGgZ6wVZ7zP5Y0m9Lavw5s03SrHOu6r+ekLTPf75P0lFJ8rfn/fnLx1e4\nzznM7OVmdpeZ3TU1NbXFpgNAe5ycK2n3SDbsZsTe/rF+SWI4Ez1l08HMzJ4r6ZRz7u4WtueinHPv\nds5d65y7dseOHZ16WADYkBP5kvaM5MJuRuztGwteQ1ZmopdspcfsqZJ+wswekvQRBUOY75Q0amaN\niRX7JR3znx+TdECS/O0jks40H1/hPgAQK845TebpMWuFPf41ZGUmesmmZ6Y6514r6bWSZGY/JOk3\nnXMvMrO/k/RTCsLajZI+7u9yi//6y/7225xzzsxukXSTmb1d0l5JV0r6ymbbBQBhmitVVSjXtHuY\nYLYZN91x5Jyvh7JJfeHQ1PJOAJL0wusv6XSzgI5pRx2zV0t6pZkdVjCH7D3++HskbfPHXynpNZLk\nnLtP0s2S7pf0KUmvcM7V2tAuAGi7RqX6PaMEs1YYzaU0UyiH3QygY1qylts59zlJn/OfP6gVVlU6\n50qSfnqV+79F0lta0RYACFNjPtSBsX7dV5wLuTXxN9qfZvI/egqV/wGghY5OFyQFxVGxdWP9aeUL\nFdWdC7spQEcQzACghSZmiupPJzQ+kA67KV1htD+lmnOaL1XXPhnoAgQzAGihiZmC9o/lZBSXbYmx\n/mBbq1nmmaFHEMwAoIWOzhR1wBdGxdaN9gc9j7OFSsgtATqDYAYALdToMUNrjPlgxspM9AqCGQC0\nSL5Y0XypuryVELYunexTfzpBjxl6BsEMAFqksSLzwDg9Zq001p/WbJEeM/QGghkAtEijhhk9Zq01\n2p/SzCI9ZugNBDMAaJGJGWqYtcNoLqXZYlmOWmboAQQzAGiRiZmihjJJjeRSYTelq4wNpFWpOS2W\n2a0P3Y9gBgAtMjFT0D5qmLXcaK5RMoN5Zuh+BDMAaJGj00UdGGd+WauN+iKzM6zMRA8gmAFACzjn\nqGHWJmP99JihdxDMAKAFZgsVLZZrrMhsg1w6oUyyjx4z9ASCGQC0wFG/IvMAPWZtMdafpscMPYFg\nBgAtQA2z9hrtT1H9Hz2BYAYALdCo+r+fqv9tMdqfZr9M9ASCGQC0wMRMUSO5lIaz1DBrh7H+lJaq\ndRWpZYYuRzADgBZgRWZ7jTZWZrJnJrocwQwAWuDoTFEHmF/WNmONWmbsmYkuRzADgC2ihln70WOG\nXkEwA4AtOrNYVqlSJ5i10UA6oVTCWJmJrkcwA4AtaqzIZDum9jEzjeZYmYnuRzADgC2ihllnjA1Q\nywzdj2AGAFvUqPrPUGZ70WOGXkAwA4AtmpgpanwgrYFMMuymdLXR/pQK5ZoK5WrYTQHahmAGAFs0\nMVOkt6wDxvzKzGN+6BjoRgQzANiiiekCNcw6YNTXMpuYJZihexHMAGAL6nWniVl6zDphlB4z9ACC\nGQBswdTCkspVaph1wlA2qWSf6eEzi2E3BWgbghkAbMFEY0UmNczars9MO4YyOnxqIeymAG1DMAOA\nLWjUMDtAj1lH7BjK6BDBDF2MYAYAW9Co+r9vlB6zTtg5lNHETJGSGehaFN0BgA266Y4jy59/7ttT\nGswk9Q9fOxZii3rHzqGsJOnBqUVds28k5NYArUePGQBswWyhojFfxgHtt3MoI0k6dGo+5JYA7UEw\nA4AtmC6Ul8s4oP22DWaU7DMdOsk8M3QnghkAbFLdOeULFY0PEMw6JdFnumz7ACsz0bUIZgCwSXPF\nimrOLVekR2dcuXOQYIauRTADgE2aXixLksYZyuyogzsH9dCZRS1Va2E3BWg5ghkAbNIxv2fjnlFq\nmHXSwZ2DqjvpodOFsJsCtBzBDAA26dhsUaO5lAYzVB7qpIM7ByWxMhPdiWAGAJs0MVPUPir+d9wV\nOwZlJlZmoisRzABgEwrlqqYXy9rPMGbHZVMJXTLer8NTBDN0H4IZAGzCMb9H5r4xtmIKw8EdgzpM\njxm6EMEMADZhwk/830ePWSgO7hrUg6cXVK3Vw24K0FIEMwDYhGMzRW0bSCuXToTdlJ505c4hVWpO\nR6ZZmYnuQjADgE2YmCloPxP/Q3N2ZSbDmeguBDMA2KC5UkVzpar2M78sNI1gxg4A6DYEMwDYoMbE\nf3rMwjOYSWrPSJZghq5DMAOADZqYKcok7RkhmIXp4M5Bisyi6xDMAGCDjs0WtGs4q3SSt9AwXblz\nSIdPLahed2E3BWgZ3lUAYAOcc1T8j4iDOwdVqtSX9ywFugHBDAA2YGKmqEK5xvyyCLhyFwsA0H0I\nZgCwAfdO5CVRWDYKDu5gM3N0H4IZAGzAvROzSvSZdo9kw25KzxsbSGv7YJoeM3QVghkAbMA9E7Pa\nM5JVso+3zygIVmYSzNA9eGcBgHWq152+eWyOYcwIObgz2MzcOVZmojsQzABgnR48vaiFpSoT/yPk\nyp1Dml+q6tT8UthNAVqCYAYA63TvxKwkaR9bMUXGlY09M08ynInuQDADgHW6dyKv/nRCO4cyYTcF\n3tnNzFmZie5AMAOAdbpnYlbX7B1Rn1nYTYG3Yyij4WySBQDoGgQzAFiHSq2u+4/P6TH7R8JuCpqY\nmR61Z1j3H58LuylASxDMAGAdvnNyXkvVuh5LMIucR+8d0QMn5lSt1cNuCrBlybAbAABxcMeD05Kk\nJxwY0xcPnw65Nb3tpjuOnPP1fKmipWpd/+e2w9o1fLbw7wuvv6TTTQO2jB4zAFiHT9x7XN+3e0iX\nbGNFZtTs8XXljrOZOboAwQwA1nB0uqCvHpnVTzx+b9hNwQp2DGaU7DOCGboCwQwA1vDP3zghSfrx\nxxLMoqixd+nxfCnspgBbRjADgDX80z3H9fgDozowzjBmVO0dzen4bFF1tmZCzBHMAOAivju1oPuO\nz+nHH0dvWZTtHclpqVrXzGI57KYAW8KqTABocv6Kv88+cFImqVytX3AbomPvaLAa83i+pG2D7MyA\n+KLHDABW4ZzTvRN5XbZ9QCO5VNjNwUXsGs6qz1iZifgjmAHAKibnSppaWKKobAykEn3aOZTViTzB\nDPFGMAOAVdw7kVefSdfsJZjFwd7RrI7NluRYAIAYI5gBwAqCYcxZHdw5qIEM03HjYO9oTotLVc2X\nqmE3Bdg0ghkArODoTFEzhYoeu2807KZgnfaMsAMA4o9gBgAruHdiVsk+09V7h8NuCtZp70hjZSbB\nDPFFMAOA89Sd0zeO5XXVriFlU4mwm4N1yqQS2jaQ1vFZdgBAfBHMAOA8D51e1HypymrMGNo7mqPH\nDLFGMAOA83zjWF6phOn7djOMGTd7R3OaLVRUWGIBAOKJYAYATZxzeuDEnK7cOaR0krfIuGneAQCI\nI951AKDJsdmi5kpVJv3H1F5WZiLmNh3MzOyAmf2bmd1vZveZ2a/54+NmdquZHfL/jvnjZmbvMrPD\nZnavmT2x6Vo3+vMPmdmNW39aALA595+YU59J37drKOymYBMGMkmN5FLMM0NsbaXHrCrpVc65qyU9\nSdIrzOxqSa+R9Fnn3JWSPuu/lqRnS7rSf7xc0p9JQZCT9AZJ10u6TtIbGmEOADrt/uNzunTbgPop\nKhtbe0eyrMxEbG06mDnnTjjnvuo/n5f0gKR9km6Q9H5/2vslPc9/foOkD7jA7ZJGzWyPpGdKutU5\nN+2cm5F0q6RnbbZdALBZD51e1Kn5JV29h2HMONs7mtOZhSUtsgAAMdSSOWZmdpmkJ0i6Q9Iu59wJ\nf9OkpF3+832SjjbdbcIfW+34So/zcjO7y8zumpqaakXTAWDZrfeflCSCWcztHc3JSXrgxFzYTQE2\nbMvBzMwGJf29pF93zp3zW+CCnWRbtpusc+7dzrlrnXPX7tixo1WXBQBJ0mfun9SekazGBtJhNwVb\nsHc0WABw33GCGeJnS8HMzFIKQtmHnHMf84dP+iFK+X9P+ePHJB1ouvt+f2y14wDQMacXlnTXwzN6\nFL1lsTecTWogndB9x2n9kCoAABjDSURBVPNhNwXYsK2syjRJ75H0gHPu7U033SKpsbLyRkkfbzr+\n83515pMk5f2Q56clPcPMxvyk/2f4YwDQMbc9cErOMYzZDcxM+8ZyuvvhmbCbAmzYVpYdPVXSiyV9\nw8y+7o/9jqS3SrrZzF4m6WFJz/e3/Yuk50g6LKkg6aWS5JybNrM3S7rTn/cm59z0FtoFABv2mfsn\ntW80pz1+I2zE2yO2D+pT903q1FxJO4f5niI+Nh3MnHNflGSr3Pz0Fc53kl6xyrXeK+m9m20LAGxF\noVzVvx86rRdef4mCwQDE3RU7B6X7pC9994ye94QV15MBkUTlfwA97wvfOa2lal0/evWutU9GLOwZ\nyWokl9KXvns67KYAG0IwA9DzPnP/pEZyKV132XjYTUGL9JnpSY8Y15e+eybspgAbQjAD0NOqtbpu\n+9YpPf1RO5VM8JbYTZ5yxXZNzBR1dLoQdlOAdeNdCEBPu/OhGc0WKnrG1bvDbgpa7ClXbJMkhjMR\nKwQzAD3t1vtPKpPs0w9etT3spqDFDu4c1I6hDMOZiBWCGYCe9h+HT+u6y8fVn2bT8m5jZnrKFdv0\npe+eUVAYAIg+ghmAnnVmYUnfPjmvJ/shL3Sfp1yxTVPzSzp8aiHspgDrQjAD0LNufzCoZf3kRxDM\nutVTrgiGqBnORFwQzAD0rC9997QGM0k9Zt9I2E1BmxwY79f+sRwLABAbBDMAPevLD57RdZePUyaj\nyz3lim26/cFp1erMM0P08W4EoCednCvpwalFhjF7wFOu2K58saIHTsyF3RRgTQQzAD3py37OERP/\nux/1zBAnrA8H0BNuuuPIOV9/7KsTyqX+X3t3Hh1Xfd5//P3MjPZ9s6zFi+QF49gyYMcmDksgCQmJ\nCSlNgZA0QJpD0zb0dEmTtPSXLr/8DrQ07Una01LqhCRNISQQmpilBFIWBxsvGFtmkxfZWJJlS7YW\na19mvr8/5soWHAlMGM29mvm8jufozp17r577zPjOo/u99/sNs7ulh8bWXp+ikmSYU5jN4jn5bDl4\nklsuWeR3OCJvSWfMRCQtHezsp648j5CZ36FIEqxfVMb2Q12MRWN+hyLyllSYiUja6R4cpXtwjPqK\nPL9DkSRZv6iMwdEoe1p6/A5F5C2pKVNE0k5z5wAA9RX5PkciM2ly8/Xg6DgG3PXMQS4/fqaz2RvW\nzfchMpHp6YyZiKSd5s5+8jLDVBZk+R2KJEluZoSq4mwOekW5SFCpMBORtOKco/nEAHUV+ZiuL0sr\nS+YU8PrJAQZHxv0ORWRaKsxEJK2cHBild2iMRbq+LO2srCki5uBl9WcmAabCTETSyunry8p1fVm6\nqSrKpjQvk5fa1D2KBJcKMxFJK80n+inIjlCen+l3KJJkZsbKmiIOdvYzoOZMCSgVZiKSNpxzNHcO\nUF+ep+vL0tREc+Yras6UgFJhJiJpo6NvhP6RcRapm4y0NdGcuVfNmRJQKsxEJG00d8b7r1L/Zelr\nojmzWc2ZElAqzEQkbRzsHKA4J4OS3Ay/QxEfnW7OPKrmTAkeFWYikhaGRqPsO97HsqpCXV+W5qqK\nsinLy2TvUTVnSvCoMBORtPDS0V7GY47z5xX7HYr4zMxY4TVndg2M+h2OyBuoMBORtPDikR7K87Oo\nLcnxOxQJgInmzMdfPuZ3KCJvoMJMRFJeS9cgh08OcP78YjVjCnCmOfORxna/QxF5AxVmIpLyfra7\nDYDzatWMKXETzZlbm09ysn/E73BETlNhJiIpzTnHT3e1sbAsj5I89fYvZ6ysKSIaczz+8nG/QxE5\nTYWZiKS0Pa29NJ+IN2OKTFZVlM3Cslwe3avmTAkOFWYiktIe2tVKZiTEypoiv0ORgDEzPt5Qxdbm\nk5xQc6YEhAozEUlZY9EYmxrb+fDySrIzwn6HIwG0oaGaaMzx2Eu6O1OCQYWZiKSsZ5o66RoY5Zrz\na/wORQJq2dwCFs/JZ9Oeo36HIgKoMBORFPbQi22U5WVyydIKv0ORgDIzrmqoZsfhLtp7h/wOR0SF\nmYikpt6hMZ549ThXraomI6xDnUxvw6oqnEN9mkkg6GglIinp0b3tjI7HuOYCNWPKW1tUkc97qgvZ\npMJMAkCFmYiknKHRKD98/nUWVeTpbkw5K1etqmZPSw9HTg76HYqkORVmIpJS+obHuPG723m1/RR/\n/OGlGoJJzsrHV1YB8PBe3QQg/lJhJiIpo3tglM9s3MauI918+9Pns6Gh2u+QZJaYV5rLBfOL2bRH\nzZniLxVmIpISOk4Nc93dW3ntWB93f261ijJ5x65aVc2r7ac40NHndyiSxlSYicis19o9yLX/vpXW\n7iG+d9N7uXxZpd8hySz08ZVVmKGzZuIrFWYiMqs1Hevj2ru20jUwyg+/sI71i8v9DklmqTmF2VxY\nV8amxqM45/wOR9JUxO8ARER+Xc8dOMEX//MFcjLD/OiW97G8utDvkGSWuXfbkTc8ryzMZmvzSb75\ni31UF+ecnn/DuvnJDk3SlAozEZmVHnyhla8+2Eh9RR6fPK+G3S097G7p8TssmeXeU13Iz/e00dja\n+4bCTCRZ1JQpIrOKc45vPbmfP/3JHtbVl/LA762nODfT77AkReRlRVg8J5/Gth41Z4ovVJiJyKwR\nizm++mAj//TkPn7zglruuWkthdkZfoclKea8ecX0DI6x73i/36FIGlJhJiKzxn9sbubHO1u59fLF\n/MNvNZAZ0SFMEm9FTRFFORk83dShs2aSdDqqicissLe1lzsfb+LKFXP5E/XoLzMoEgpxyZJyXu8a\n5NDJAb/DkTSji/9FJLAm7pgbHY/xL0/tJy8rwuoFJdy3vcXnyCTVrVlYylNNnTzd1El9eb7f4Uga\n0RkzEQm8hxuPcrJ/lN9aXUtupv6elJmXEQ5x0eJyDnT009qtgc0leVSYiUigvdTWy87Xu7lkaQX1\nFTpzIcmztq6U7IwQTzd1+h2KpBEVZiISWD2Dozz0Yhs1xTl88Nw5focjaSY7I8z6ReW80n6KpmMa\nP1OSQ4WZiARSNOb4yQutRGOO6947j0hIhytJvvX1ZWSGQ/zr0wf8DkXShI50IhI4zjn+8r/3cujE\nAFetqqI8P8vvkCRN5WZFWFdXyqY9Rzl8QndoysxTYSYigeKc4xuPvMp921v4wNIKVi8o9TskSXPv\nX1JOJBzirmcO+h2KpAEVZiISKP/05H6+86tD3LR+IR9eXul3OCIUZmdw3Zp5PLirVeOxyoxTYSYi\ngXHXMwf59i/3c+2aWr6+Ybk6kZXA+IPLFjOnIJtr79rKvduOaEQAmTEqzEQkEP5z62HueOw1NjRU\ncfs1DYRCKsokOOYWZbPp1otYV1/KXzy0l6880MjwWNTvsCQFqadGEUm6iR79J+xt6+W+7UdYNreA\ndXVl3L9DPftL8JTmZfK9m9fyrSf38e3/PcAr7ae467OrmVea63dokkJ0xkxEfNXRN8yDu1qZV5LD\np9fOJ6wzZRJg4ZDxJ1ecw3duXENL1yAb/vlXbNzcTP/IuN+hSYpQYSYivhkZj3LvtiNEQsYN6xaQ\nEdYhSWaHD55bycO3Xsy5VQV845FXed/tv+SOx17j+Klhv0OTWU5NmSLiC+ccD73YRmffCDe/v46i\nnAy/QxKZ1pub3yd8YlUN588rYfOBE9z97EG+86tmPnleDX9w2WIWluclOUpJBSrMRMQXzx/qorG1\nlyuWV7J4jsbAlNlrXmkuN6ydz/sXl/HdXx3i/p0t/PfuNj574QL+8PIllORl+h2izCJqNxCRpDvS\nNcijje0sm1vAJUsr/A5HJCEWlOXxN1ev4NmvXManVs/j+1sOc+mdT/EfzzYzMq47OOXs2Gzti2XN\nmjVu586dfochIu/Qyf4RLv/mM4QMvnTZEnIyw36HJDIjjp0a5n9eamff8X5KcjO4ZGkFDTXF/M7F\ndX6HJj4wsxecc2vebjk1ZYpI0sRijj+6fzcDI+N88dJFKsokpc0tzOam9XXs7+jj8ZeO8bPdR3mk\nsZ1dLd186oJaLvaGehKZTIWZiCTNvz1zkM37T3D1edVUF+f4HY5IUiyZU8Diy/Jp6xli15Eethw4\nwSON7ZTnZ3Htmlpufn8dFQVZfocpAaGmTBFJih2Hu7j+7ue5csVc3ldfpuGWJG2Nx2LsO9bHC0d6\neK39FOGQsXpBCZcsqXjDjQI3rJvvY5SSaGrKFJHA6BoY5dZ7X2ReSQ63X7OSTXva/Q5JxDeRUIjl\n1UUsry7iRN8Iz+7vZOfhbnYc7qKhtphLl1ZQWZjtd5jiExVmIjKjYjHHn/54N10Do/z099dTkK3+\nykQmlBdkcc0FtXzw3EqeO3CC7Ye62NPSw9q6Uj66Yi6l6moj7eiqQxGZUXdvbuappk7+z4ZzWVFT\n5Hc4IoFUlJPBx1ZW8ZWPnMOF9WXsONzFB+58inueO8RYNOZ3eJJEKsxEZMZsOXiCOx9v4mMr5/LZ\nCxf4HY5I4OVmRbhqVTW3Xr6EVfOK+ZtNr3DltzbzVFMHs/WacHlnVJiJSMINj0W547HX+OzGbcwv\nzeWO32zQxf4i70BlYTY/+PxaNn5uDePRGDffs4Nr/m2LCrQ0oGvMRCShdh3p5s9+soeDnQNct2Ye\nt204l0JdVybyjt23vQWAz19Uxwuvd/NMUyc337OD2pIcLl82h3MqC/iMzkSnHBVmIpIQw2NRvvmL\nJjZuPkRhTgY3rV/I0soCHtYdmCLvSiQUYl1dGasXlPDi6z08va+DH2x9naqibPpGxrlieSX1FRpv\nNlWoHzMReVc6+oa5b1sLP9z2Op19I6xdGL+bLDtDvfqLzIRozPHikW6eP3SSoz3DACyZk88V76nk\nQ+dWsqKmiAyNKBA4Z9uPmQozEfm17G7p4ftbDvNw41HGoo4PnFPBFy9dRHPngN+hiaSNS8+p4ImX\nj/GLV46z7VAX0ZgjMxLi3KpCVtYU0lBTzIqaIhbPySczomLNTyrMRCSh7t12hL7hMRpbe9nd0kNb\nzxBZkRAXLCjhfXVllGtIGRFfDY6Oc6Cjn7buIVp7hjjaM8TIeLyrjUjIqK/IY2llAcvmFnDO3EIa\naovUkW0Sqed/EUmIgZFxnnjlON/bcogDHf3EHFQXZbOhoYoL5peoyVIkIHIzIzTUFtNQWwxAzDm6\n+kdp6x3ieO8wx04N89yBEzzceOa6z+KcDOaV5jK/NJcvXFzH8upCsiL6P+2nwBRmZvZR4FtAGNjo\nnLvD55BEUpJzjr6RcTr7RhgYGad/ZJzBkSgDo/Hp9p5hWroHae0eorV7kOOnRgAozs3g4iUVnDev\nWH9li8wCITPKC7LiZ7Nrz8wfHoty/NQwrd1DHOkapKVrkL1tvTyyt51IyFg8J5/l1YUsryrkPdXx\nZtDy/Ex1eZMkgWjKNLMwsA/4MNAK7AA+7Zx7Zbp1/GzKdM4xHnNEY97PqCPmJh7x1x0QDhkZoRDh\nsBEJxR/hkOnDPYMmvzcT708sFn9vos4Ri0HI4u9NJBQiEo6/J+GQETYjFHr79yYac4yOxxgZjzI6\nHmN4LMbg2DgDI+MMjEQZHB1ncDSKWfzAOLHtcMjIzgiTkxkmJyN8etq8bcbjjjEec4yMxRgeizI0\nFmXYmx6Nxrx9gahz8c+ZAzMwM0IGhhFzjsHReCwDI+MMjEbpGx6jo2+EjlPDHD81wtBYdNr9C1m8\nF/KS3ExKcjMpzsugvjyfBWW5hPTZFUlJp4bGONI1yNGeIY72DtHeO0zf8Pjp1zPCRnFOJiV5Gbx3\nYSlzC7MpzsukOCeD4twMinMyycsKEzI7feyDM8enySbqjsnlh3PgcN7PM9+jzvtejbn4Md25M+vF\nl4gLmZEZCZERDpERNjLDISLedEY4FIjv39nWlLkWOOCcawYwsx8BVwPTFmYz7Uv37uKXr3YQ8z4c\neB+amIt/ib5bZwqB+JfphInPjL7+4qbK9Jv/A0+8N1GvaHm3Jt4bs0m/35uIegeH2SIzHCIzEiIr\nEqIgO4PCnAxqS3IpyI5QkB0hOxImMxI6/ciKhMnPihA+iwJVRFJHYU4GK2qK3jBsWt/wGO29w5zo\nH6FncIzuwVF6Bsd4dG873YNjPkb764uELF40xv/FC0eMzV+9jPL8YFwnG5TCrAZomfS8FVj35oXM\n7BbgFu9pv5k1zXBc5cCJGf4d6UT5TDzlNPGU08RSPhNPOU2wim8kJadn1RtwUAqzs+Kcuxu4O1m/\nz8x2ns1pRzk7ymfiKaeJp5wmlvKZeMpp4gUpp0Hp1KQNmDfpea03T0RERCRtBKUw2wEsMbM6M8sE\nrgd+7nNMIiIiIkkViKZM59y4mX0JeJx4dxnfdc697HNYkMRm0zShfCaecpp4ymliKZ+Jp5wmXmBy\nGojuMkREREQkOE2ZIiIiImlPhZmIiIhIQKRFYWZmpWb2hJnt936WTLPcjd4y+83sxknzV5vZXjM7\nYGbfNq/r4Om2a2ZXm1mjme02s51mdlFy9jR5fMjpZ7yc7jWzLWa2Kjl7mhw+5HOZmW01sxEz+3Jy\n9jI5zOyjZtbk5eJrU7yeZWb3e69vM7OFk177c29+k5l95O226d2wtM2bf79381LKSXJOv+TNc2ZW\nPtP75ock5/O/vPkvmdl3zSxjpvfPD0nO6XfMbI/3nfSAmeUndGfc6aFdUvcB/D3wNW/6a8DfTbFM\nKdDs/Szxpku817YDFxLvKPgx4Mq32i6Qz5nr9xqA1/zOQQrkdP2kda8Etvmdg1mezznAe4H/B3zZ\n7/1PYB7DwEGgHsgE9gDL37TM7wN3edPXA/d708u95bOAOm874bfaJvBj4Hpv+i7g9/zOQQrk9Hxg\nIXAYKPd7/1Mgnx/zjgsG3KfPaEJyWjhpu/+Id4xN1CMtzpgRH97p+97094FPTrHMR4AnnHNdzrlu\n4Ango2ZWRfxNeN7F34UfTFp/yu065/q9ZQHymHpkodku2Tnd4m0D4HneMCRvSkh2PjucczuA2Tmu\nyvROD+/mnBsFJoZ3m2xyTh4APuidYbwa+JFzbsQ5dwg44G1vym1661zubQOmf99mu6TlFMA596Jz\n7vBM75SPkp3PR52H+B9wqXbshOTn9BSAt34OCf6OT5fCrNI51+5NHwMqp1hmqmGharxH6xTz33K7\nZvYbZvYa8Ajw+Xe9B8GT9JxO8jvEzwqlEj/zmUqmy9GUyzjnxoFeoOwt1p1ufhnQ421jut+VCpKZ\n03TgSz69JszfBv7nXe9B8CQ9p2Z2D/Fj6jLgnxOxExMC0Y9ZIpjZk8DcKV66bfIT55wzs4SfwXrz\ndp1zDwEPmdklwP8FPpTo3znTgpZTL6bLiBdms+66vSDmU0TSxr8CzzrnNvsdSCpwzt1sZmHiRdl1\nwD2J2nbKFGbOuWkLHzM7bmZVzrl2r9mnY4rF2oAPTHpeCzztza990/yJ4aLedrvOuWfNrN7Myp1z\ns2rQ2aDl1MwagI3Er586+Wvskq+Cls8UdTbDu00s02pmEaAIOPk26041/yRQbGYR7y/wVB1KLpk5\nTQdJz6eZ/RVQAfxuAuIPIl8+o865qJn9CPgKCSzM0qUp8+fAxB1sNwI/m2KZx4ErzKzE4neuXQE8\n7jUDnTKzC7325M9NWn/K7ZrZYm9ZzOwC4hcVzrpC4m0kO6fzgZ8Cv+2c2zcTO+SzpOYzhZ3N8G6T\nc/Ip4H+9629+Dlzv3b1VBywhfk3OlNv01nnK2wakbn6TltMk7EsQJDWfZvYF4tenfto5F5vhffNL\n0nJqcYvh9DVmnwBeS+jeJOIOgqA/iLcj/xLYDzwJlHrz1wAbJy33eeIX/h0Abp40fw3wEvE7NP6F\nM3dcTrfdrwIvA7uBrcBFfucgBXK6Eej2crob2Ol3DmZ5PucSv2biFNDjTRcmY1+TkMuPAfu8XNzm\nzftb4BPedDbwEy+H24H6Seve5q3XhHdn63Tb9ObXe9s44G0zy+/9T4Gc/qH3eRwHjk7+/KfKI8n5\nHPfmTRw7v+73/s/mnBI/ofUcsJf4Mfe/En3s1JBMIiIiIgGRLk2ZIiIiIoGnwkxEREQkIFSYiYiI\niASECjMRERGRgFBhJiIiIhIQKsxEJK2Z2V+b2ZfN7G/N7EPevIvN7GUz221mOWZ2p/f8Tr/jFZHU\nljI9/4uIvBvOua9PevoZ4Hbn3A8BzOwW4n3ARX0JTkTShvoxE5G0Y2a3Ee8FvIP4QMUvACuAh4Fi\n4O+JD3K8BSgAPk68Q8nbnXP3+xGziKQHnTETkbRiZquJD69yHvFj4C7ihRkAzrmNZnYR8LBz7gFv\nnX7n3Hl+xCsi6UWFmYikm4uBh5xzgwBmli5jNIrILKCL/0VEREQCQoWZiKSbZ4FPendbFgBX+R2Q\niMgENWWKSFpxzu0ys/uBPcQv/t/hc0giIqfprkwRERGRgFBTpoiIiEhAqDATERERCQgVZiIiIiIB\nocJMREREJCBUmImIiIgEhAozERERkYBQYSYiIiISEP8f4TVwJfqINXMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAGoCAYAAABv1G0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4XOWZ/vHvoy6rWpKL3HvBjeKO\nAQNOQjMOCb0FQgkBAkk2QAgp7Aay2SRks0CAXyghDqEnhG4nENtgwAZTjG1sg3uTLctFxbLqvL8/\nZuSMZZWRNDNnNLo/1zWXpXPOnHlGAt3zlvMec84hIiIinUeC1wWIiIhI2yi8RUREOhmFt4iISCej\n8BYREelkFN4iIiKdjMJbRESkk1F4i4iIdDIKbxERkU5G4S0iItLJJHldQJRoGTkRiRfmdQHiPbW8\nRUREOpmu0vIWiSs+n+O6Jz5k7a5ykhMTSE40zhxXyPUzh5GQoIaZSLxTy1ukE3px+Xb+8dkuctOT\nyctIwTn4zT8+5ztPf0xVbb3X5YlIhKnlLdLJVNXW85v5nzO4IINbTxtFghnOOV5dUcSTS7ewbW8l\nD39jIj2z0rwuVUQiRC1vkU7miSWb2b7/IBdNHkCC+bvIzYyzxvfhe18awZqd5Xzz8Q+orfd5XKmI\nRIrCW6QTKT1Yy33/Wsf4fjmM65tzxP5Jg/L49syhrNxexh/e2uBBhSISDQpvkU7kwYXrKTtYy0WT\nBzR7zJTB+Uwdksfv3vicz3eVR7E6EYkWhbdIJ1FRXcfj725k+rACBuVntHjsldMHk56cyA+eW06d\nus9F4o7CW6ST+MeqnVTV+vjyUb1aPTY7PZkrpg/m022lPPz2xihUJyLRpPAW6SRe/GQHPbJSGd4z\nM6Tjpw7JY9Kg7tz75hcUlR6McHUiEk0Kb5FOYE9FNYu/KGHakHzMQluExcy4bOpA6nw+fvn6mghX\nKCLRpPAW6QReW1FEvXNMH5rfpuf1yErjrPF9ePGTHSzbtDdC1YlItCm8RTqBv3+yg/7d0xmQ163N\nzz17Qh/yM1L42Uur8Pl0jx6ReKDwFolx2/ZV8uHmfUwfWhByl3mwtORELpo8gFU7ynh22dYIVCgi\n0abwFolxLy8vAmBaG7vMg00fms+o3ln87KVVvLl6V7hKExGPKLxFYtxLy7czvGcmvbLbv1a5mfG9\nL42gX/d0rp37IX//eHsYKxSRaFN4i8SwVTtKWV1UzvShBR0+V3ZaMneccRSjCrP43jOf8Ls3Pqe4\nrCoMVYpItJlzXWICS5d4kxJ/fvriSp56fwsPXHwcmWnhuQlgTZ2P3y9cx/sb92LA1CH5XDi5P2dP\n6NOuMXWJOv2SROEtEquqauuZdPcbjO+bw42nDA/7+bfvO8h7G0p4b/0edpRWccrIHvzy6+Pp2YHu\neYkKhbeo21wkVr2+sojyqjpOGdUzIufv2z2dc4/rz6/Pm8A3pg1k8bo9fOl/3+L1FUUReT0RCR+F\nt0iMemrpVnpnpzG6MDuir5NgxmljC/nvr42jIDOF7zz1MZtKDkT0NUWkYxTeIjFow+4K3t+0l5kj\ne0RtHLpPbjo/+PJIkhKNX76+OiqvKSLto/AWiUHPLNtKgsFJI3pE9XVzu6Uwe3wf5q3axQdaTlUk\nZim8RWJMdV09zy/bxrEDupPbLSXqr3/m+ELyMlK465XPtJyqSIxSeIvEmL99tJ09B2r4Ugj37Y6E\n1KREzp/Yj+XbSnn50x2e1CAiLVN4i8SQunofDyxcx9AeGYzrm+NZHScM68Gg/G78et5a6up9ntUh\nIk1TeIvEkFc+LWLr3oN89ei+ni6YkpBgfO2Yfmzbf5B/rSn2rA4RaZrCWyRG+HyO+xeso39eOscO\n7O51ORwzMJe8jBSeXLrF61JEpBGFt0iM+MdnO1lXXMGcCX1JiIFlSpMSEpg5sgeLPt/N1r2VXpcj\nIkEU3iIxwDnHff9aR2FOGtOGtP/Wn+F2ysiemMFT76v1LRJLFN4iMWD+qp2s2lHG2RP6kJDgfau7\nQX5mKsf0784zH2ylpk4T10RihcJbxGM1dT7++/U19O+ezgnDo7soSyhOHd2TPQdq+Odnu7wuRUQC\nFN4iHvvL0s1s3lPJxVMGkBhDre4GE/rl0iMrlb8s3ex1KSISoPAW8VDpwVp+98YXjOubw4R+uV6X\n06SEBOOUkT15d/0e1u4s97ocEUHhLeKpBxaso+xgLRdPGeDpdd2tOXV0T1KTEnj47Q1elyIiKLxF\nPLN1byWPvbORE0f0YFB+htfltCgrLZmTRvTg7x9vZ2dpldfliHR5Cm8Rj/xq/loSzDjvuH5elxKS\nM8YV4nOOx9/d5HUpIl2ewlvEAx9t2cfLy3dwxrhC8jNTvS4nJL2y05g0KI+/LN1MRXWd1+WIdGkK\nb5Eoc85x1yufkdstmbMn9PG6nDaZPaEP5VV1PK1FW0Q8pfAWibLXVuzkoy37Oe+4/qQlJ3pdTpsM\n7ZHJUYVZPLp4I9V19V6XI9JlKbxFoqi6rp5fzlvNgLxuzBwRewuyhOKrx/SjqLSKBxas97oUkS5L\n4S0SRb9fsJ6tew9yyZQBMbUMaluM65vD8UPzeWDhOtYV67pvES8ovEWiZHVRGQ8sWMeMYQWMj9EF\nWUJ12bRBpCYlcvvfVuDzOa/LEelyFN4iUVBX7+OW55eTkZrE5dMGel1Oh+WkJ3PxlAF8sGkfzy7b\n6nU5Il2OwlskCh5ZvJGV28u4YvogstKSvS4nLGaO6MFRhdn84rXVut+3SJQpvEUibPnW/fzvPz9n\n0qDuTBmc53U5YWNmXHPCEOqd45uPf0B5Va3XJYl0GQpvkQhasmEPFz+yhJz0ZK48fnBMr1/eHr1z\n0vjuqSNYv7uCm576mPoYHf++7rrr+PnPfx6Wc23ZsoXMzEzq6/2Xys2cOZNHHnkkLOduTmZmJhs2\nRHddeTNLN7OXzazUzJ6L6ot7xMweN7O7wni+183sG+E6XzCFt0iELFhTzDcee5/cbin8bPYYundL\n8bqkiBjbN4crjx/MgrW7+cVrq6P++oMGDSI9PZ2srCxyc3OZPn06Dz30ED6f79AxDz30ED/5yU9C\nOtcbb7zR4jEDBgygoqKCxMSOX6N/5513cumllx62rakPAxUVFQwZMqTDr9dG5wK9gHzn3HnRfvF4\n4Jw73Tn3p0icOykSJxXpyg5U1/HQovU8uHA9A/K6cdvpo8iOk3Hu5swa3Yvt+w/y6OKN5GWkcMPJ\nw6L6+i+//DKzZs2itLSURYsWcfPNN7N06VL++Mc/hvV16urqSErqMn82BwKfO+c6vBaumSU1Pk9T\n29p6jlhl/i42c875Wj24ndTyFgmTep/jmQ+2MPPXC7nvX+uYMjiPO84cHffB3eCyKQM5YVgBv56/\nlt8vWOdJDTk5OZx99tk888wz/OlPf2LlypUAXHHFFfz4xz8GoKSkhLPOOovc3Fzy8vI44YQT8Pl8\nXHbZZWzZsoXZs2eTmZnJr371KzZt2oSZ8eijjzJgwABOOeWUQ9vq6v6dI+vXr2fy5MlkZ2czZ84c\n9u7dC8DChQvp1+/wG880tO7nzZvHL37xC5555hkyMzOZMGECd9xxB2+//TY33ngjmZmZ3HjjjYB/\nfsG6desavs4xs7lmttvMNpvZj80sIbDvCjNbbGa/MbN9ZrbRzE5v7udlZqPNbKGZ7TezVWZ2dmD7\nfwI/BS4wswozu6qJ5yaY2Q/NbL2Z7TGzZ80sL7BvkJk5M7vKzLYA/2pqW+DYswOvvT9Qy+ig19hk\nZreZ2afAATM74pOTmf2fmW01szIz+9DMTgjad2egrrlmVh54nYlB+48xs48C+54B0lr4WV1hZu+Y\n2f2BoYQ1ZnZq0P6FZna3mb0DVAJDAtuuDjrmGjNbHXi9z8zs2MD2Pmb218DvdKOZ3dRcHQ26zEdI\nkUhataOUH/1tBcu3lTKiVyY3nTqMYT2zvC4rqhISjOtOGooDfj1/LUDUW+ANJk+eTL9+/Xj77bcZ\nO3bsYfvuuece+vXrx+7duwFYsmQJZsaf//xn3n77bR555BFmzZoFwKZNmwBYtGgRq1evJiEhgV27\ndh3xenPnzmX+/PkMHjyYyy+/nJtuuoknnniixRpPO+00fvSjH7Fu3brDjn3nnXe49NJLufrqq5t7\n6n1ADjAEyAf+ARQBjwb2TwH+BBQA1wKPmllf59xhExLMLBl4GXgM+DIwA3jRzCY6535mZg4Y5pw7\nvF//374DfBU4CdgN3Av8Hrgo6JiTgNGAD38X/GHbzGwE8FTgPAuB7wEvm9lRzrmawPEXAWcCJc20\nvD8A/gsoBW4GnjOzQc65hnvXng18DbgSuAu4H5hqZinA34HfBbbNCdTyP828X/D/bJ/H/7P9GvA3\nMxvsnNsb2H8ZcDqwFjhsgouZnQfcGXivy4ChQG3gg9fLwIuB99oPeMPM1jrn5jdXiFreIh1QWVPH\n3a9+xtn3vcOmPZXccPIw7pw9pssFd4OEBOPbJw3l+EAL/Pa/fUpVrTdroPfp0+dQCzhYcnIyRUVF\nbN68meTkZE444YRWJxLeeeedZGRkkJ6e3uT+yy67jLFjx5KRkcHPf/5znn322UMT2sIpcM4Lgdud\nc+XOuU3APfhDo8Fm59zDzrl6/CFeyL+DM9hUIBP4pXOuxjn3L+AVDg/fllwH3OGc2+acq8YfTOc2\nah3f6Zw74Jw72My2C4BXnXP/dM7VAr8B0oHpQcff65zb2ugchzjnnnDO7XHO1Tnn7gFSgZFBhyx2\nzr0W+Hn8GZgQ9P6Tgd8552qdc8/j/yDQkuKg45/BH9JnBu1/3Dm3KlBL48svrgZ+5Zz7wPmtc85t\nBiYBPZxz/xX4PWwAHsb/e26WwlukndYVlzPn/nd4+O2NzBzZg9+cN4EZwwribkZ5WyUkGNefNJQ5\nR/fhqfe3Muf+d1i/uyLqdWzfvp28vCMvzbvlllsYNmwYX/7ylxkyZAi//OUvWz1X//79Q94/cOBA\namtrKSkpaXvRrQicMxnYHLR5M9A36PudDV845xouwM9s4nR9gK2NxmUbn6slA4EXAt3d+4HVQD2H\nf1BoagWf4G19CHovgVq2NqqhxVWAzOwHga7o0kAdOfhbxg12Bn1dCaQFPmD0AbY36pEI/rk2panj\ng28N2FKt/YGmbggwEOjT8HMMvIcf0fQHrkMU3iLt8OIn25l9/zvsKq/i9tNHcfUJQ8hM1ShUg4QE\n48JJA7jttFEUlR7krPsW8/BbG6ipi9j8ncN88MEHbN++nRkzZhyxLysri3vuuYcNGzbw0ksv8dvf\n/pY333wToNkPXq19INu69d9/s7ds2UJycjIFBQVkZGRQWfnvBWzq6+sPddc3d96WXqugoACgFv8f\n/AYDgO0tFti0HUD/hvHydpxrK3C6cy436JHmnAt+flPXDgZv20HQewlM9OrfqIZmrz8MjG/fCpwP\ndHfO5eLvPg/lE3QR0NcO/4EPaOU5TR2/I5Ra8f+8hjazfWOjn2OWc+6MlgpReIu0wbricr7152Xc\n/PQnDMzrxn+fM77Tr1MeSUf3z+UX54xjVO8s7n5tNV/53VssWFMcsdcrKyvjlVde4cILL+TSSy9l\n3LhxRxzzyiuvsG7dOpxz5OTkkJiYSEKC/09hr1692nU99RNPPMFnn31GZWUlP/3pTzn33HNJTExk\nxIgRVFVV8eqrr1JbW8tdd91FdXX1oef16tWLTZs2HXZZW0s1BC5Pexa428yyzGwg8H2g5QH2pi3F\n3xK91cySzWwmMBt4OsTnPxSoYyCAmfUwszltrOFZ4EwzOzUwBv8fQDXwbojPzwLq8I+5J5nZT4Hs\nEJ/7XuC5NwXe/9eAya08p2fQ8efhH7t/LcTXewT4gZkdZ37DAj+794HywMS8dDNLNLOxZjappZMp\nvEVase9ADe+uK+HW55fz5f99i7c+L+H8if2548zR5GXE57Xb4ZSfmcqtXxnFrV8ZSXVtPVc+/gHf\neOx9Pt8VvjuSzZ49m6ysLPr378/dd9/N97///WYvE/viiy+YNWsWmZmZTJs2jeuvv56TTz4ZgNtv\nv5277rqL3NxcfvOb34T8+pdddhlXXHEFvXv3pqqqinvvvRfwz35/4IEHuPrqq+nbty8ZGRmHzT4/\n7zz/5dP5+fkce+yxANx88808//zzdO/enZtuanLS8XeAA8AGYDHwJP5JZ20SmBA2G/8EqxLgAeBy\n59yaEE/xf8BLwD/MrBxYgn9CV1tqWAtcin8SXkmgntlBk9VaMx+YB3yOvwu7ila62YNeuwb/pLMr\ngL34x9//1srTlgLDA7XeDZzrnNsT4us9F3jOk0A5/slyeYGx+LOAo4GNgXM/gr/7v1nWaAJivOoS\nb1I6xjnH+t0H+HjLPr4oruDzXeWsKSpnZ5l/0mpSgvHlo3ox5+i+ZKd3jcu/wq2u3sf8Vbt44eNt\nVNX6uGhKf7514lD653XzurTOpGtPqvCImV0BXO2cO3IsxgMKb+my6n2ODbsrWL6tlPc37uHtL0oo\nKvUHdXKi0Sc3nX7duzEwrxsD87sxuCAjbm4q4rWyqlr++uE23li9C+dg5sgeXDxlIJMH55GjD0at\nUXh7QOHtjS7xJqVl1XX1LN9aypINe1iyYQ8fb93PwRr/5TwZqYmM6ZPDuL45jC7Mpnd2GokJ+hsZ\naSUV1SxYU8yCtcXsq/RfWZOfkcLgHhn0zk6jIDOVHlmp9MxKpTAnnd45qeRnpJKdntyVfz9d9o17\nSeHtjS7xJuXf6n2OnWVVbN1bycdb9vPu+hI+2LSXqlofBgwqyGBEryyG9shgSEEmhTlpJHTdMPBc\nnc/Hyu1lbN1bSVHpQYpKq9h/sJayg7VU1hx5vbQBWelJ5Gf4w71HZio9s1Ppk5NO75w0euek0TPL\nv69bStxdBaD/UKVrhfe64goqa/69QI9z/h3OuSbT3fBftuH/t2Fb5/r/pvE7a3jP/q+PfN/B7/nQ\nNjv8uT7ncM7/b73P/3XDcYb/MiF/DhoNr+Y/3v+aPndkXcH11fscPueoq3fU+XzU1vu/9zmHz+f/\nQ19T56Om3lFRVcf+gzWUVtayt7KGkopq9lbUUFxeTV3QHa7656UzpjCHo/pkM7p3NplpcfcHPW7V\n1PnYV1nD3gP+R1lVLRXVdVRU1VFWVUvpwdpDv/+q2iMvRUtLTiArLZmstCSyUpNIS04kPSWRtKRE\n0pITSEtOPLStW8O+5ETSA9uTE43kpASSExJITLDAA4IzNPj/kab9e0dTx5jZof9/Gv/NAeiZ5f9A\n0nB4yD88iVtdKrzPffBdlm3e53UtEmYZqYlkpSWTk5ZMTrdkctOT6ZGVSmFOGoU5aQzpkalZ4V2A\nc46K6jqKy/0f4PYcqGHPgWrKDtb5w766jsqaeqpr66mu81FV56O2zv91dZ2PgzX1h33giyU3njyM\nH3zl0KJhCm/pGuGdX1Dg+g/wrwOwp6SE/IKCVp4R+/Q+Yk+8vJd4eR8QP+8l+H307tmDefPmeVyR\nJ/ShJUiX6DvsP2AgbyxeCsCsGVMOfd2Z6X3Ennh5L/HyPiB+3kvw+zjtxKkeVyOxQIu0iIiIdDIK\nbxERkU6my4X35d9s9h65nYreR+yJl/cSL+8D4ue9xMv7kPDpEhPWjj72OBcP414SO+rratlfXERt\nTXVL1weJtI8ZySmp5PYsJDHp8BXnTjtxKsuWLfOoME9pwlqQLjFhTSTc9hcXkZudTfe8vC5//24J\nP+cc+/buYX9xEfl9WrtLpXRFXa7bXCQcamuqFdwSMWZG97x8f8+OSBMU3iLt4ZyCWyLKzJockllX\nXOFBNRJrFN4i0qk45/jed29i9MjhHHvMBD7+6KMmj5t1ysmMOWoUE487honHHUNxcTEAc//0OH16\n9zy0/bFHH4lm+Yd89OGHHHP0eEaPHM73vnsToc4/0hQLAY15i0iQuro6kpLC/2ehvr6exMTEsJxr\n3uuvs+6LdXy25nPeX7qUG2+4nnfeW9LksXPnPsFxEycesf2888/n/+69Pyz1tNeNN1zPQw/9gclT\npnD2WWcyf948Tjv99Faf19x9AaRrUctbpBPatGkTY8eM5vLLLmXc2KO44PzzqKysBPwtulNPnsmU\nyRM58/TTKCoqAuDRRx5m2tTJHHfs0Zx/3rmHjr/qm1dyw/XXcfy0qdx+2628tWjRoVbppInHUl5e\njnOOH956C0dPGMcxR4/n2WefAWDRwoXMOuVkLjj/vEP1NLQghw8dzO0/vI3Jk47j+eefC9t7f/nl\nF7nkssswM6ZMncr+0v2H3mNHTTzumCa3Dx86mB/edivHHD2e6VOnsG7dug69TlFREWXlZUyZOhUz\n45LLLuOll/7eoXNK16LwFumkPl+7luuu+zYrVn5GdnYWDz34ALW1tXz35pt4+tnnWPr+Mr5x5ZX8\n9Cd3APDVc77Ge0ve58OPPmHUqFH88bFHD51r+7btvLX4HX59z2/57W/v4d5772fZhx+zYOFbpKen\n88ILf2P58uV8+NEnzJv/T26/7dZDgfnJJx9zz2//l09XrGLjhg28+847h86bn5/P+x98yAUXXHhY\n7U8++ZdDHxCCHxecf16r73vH9h3079f/0Pf9+vZjx/btTR579dXfZOJxx3D3XT8/rFv6hb/9jWOP\nmcAF55/H1q1bD21f9uHHzb5uTk4OH3/yKd++4QZ+8P3vHbF/4YIFTb6nE2cc38R72E6/vv0avYcd\nLb/xAHWbC6jbXKTT6t+/P9OP9wfDxRdfyv3338eXv3Iaq1at5PTTvgz4u6sLexcCsGrlSn7205+w\nv3Q/Byoq+NKXv3zoXF8799xD3drTp0/nlh/8BxddfDFfPedr9OvXj3cXL+aCCy8kMTGRXr16ccKJ\nJ7Fs2QdkZ2UzadJk+vXzB9GEoyewafMmjp8xA4Dzzr+gydovvvgSLr74ksj8YAL+9Ocn6Nu3L+Xl\n5Vxw3rk88cSfueyyyznzrNlccOFFpKam8vAf/h9XXXkF/3jjzVbPd8GFFwFw4YUXcct/fP+I/TNP\nPrnF8A8Xn9JbUHiLdFqNZ7ubGc45jjpqDG+/8+4Rx1991ZU899cXmDBhAnP/9DiLFi06tC8jI+PQ\n17fe9kNOP+NM5r3+GjNPnMErr7V8B6vU1NRDXycmJlJfV9fkeYM9+eRf+O09vzli+9Chw3jm2cO7\n2B984Pc8GphU9tLLr9Knbx+2bvt3a3nb9m306dv3iHP1DWzLysriwosuYtkH73PZZZeTn59/6Jhv\nXnU1t//wthbfX4Pgn3dTVxosXLCAH/zgyFDvlt6Ntxa/c9i2Pn37sm37tkbvoU9IdSi7BdRtLtJp\nbdmyhSXvvQfA008/yfHHH8/IkSMpKdl9aHttbS2rVq0CoLy8nMLCQmpra3nqySebPe/69esZN24c\nt9x6G8dNnMTatWs4/oQTeO7ZZ6mvr2f37t0sfvstJk2a3O7aL774EpZ9+PERj8bBDfDt6284tL9P\nnz6cddbZ/OXPf8Y5x9IlS8jJzqGwsPCw59TV1VFSUnLoZ/Dqq68yZsxYgMPGx19++SVGjRp96Pux\nY0bTnOcC4/zPPvsMU6ZOO2J/Q8u78aNxcAMUFhaSnZXN0iVLcM7xlz//mdmz57T0IzvE51zIM9Ml\nfqnlLdJJjRg5kgcffIBrrrmK0aOP4lvXfZuUlBSeeuY5vv/dmyktK6Wuro6bbrqZMWPGcOd//hcz\npk+loKAHk6dMpry86euF77v3dyxcuJCEhASOOmoMp512OikpKSx97z2OO/ZozIxf/PJ/6N27N2vX\nrInyu4bTzziDefNeY/TI4aR368Yjjzx2aN/E445h2YcfU11dzZlnnEZtbS319fWceuqpXHX1NQDc\nf9+9vPLKyyQlJZHXPY9HHvsjACUlJS2G4r59+zj2mAmkpqby5yea//ATqvvu/z1XXXUlVQcP8pXT\nTgtppjmAA8qr68hOS271WIlfWttcpB12bvyckaOab6VF2qZNm/jqnNl8snyFZzXEm1dfeYWNGzdw\n43duOmLf8KGDeW/pBxQUFES1prVrVtN78IjDtvUdOpq1Kz5hUEHTQxJxTKsiBVHLW0QEOPOss7wu\nIWQb9xzoiuEtQTTmLdIJDRo0SK3uKPpi/caot7pbsl5LpHZ5Cm8RkU4k0YzPdpR5XYZ4TOEt0h6B\ny7JEIsU5B01ckpaeksiCtcXU1fs8qEpihcJbpB2SU1LZt3ePAlwiouF+3skpqUfsy0hNYl9lLR9s\n2udBZRIrNGFNpB1yexayv7iI3SUlWjVDws+M5JRUcnsWHrGrW3IivsQE/vbRNqYNzW/iydIVKLxF\n2iExKZn8PgOO2L5iV/UR28b1OrL1JNJeZnDq6J789aNtXHPiEEb0yvK6JPGAus1FwmDFruomgzt4\nX3P7RdrqnGP6kp6cyC9fj/4iORIbFN4iHdSWUFaISzhkpSVz9oQ+/GtNMa98GtrdyCS+KLxFOqC9\nQawQl446fVwhI3pl8oNnl7Nye6nX5UiUKbxF2ikc4asQl/ZKTkzge7NGkJmWxDVzl7G7XP8ddSUK\nb5F2CHfgKsClPXK7pfD9L41k74EaLn90KcXlVV6XJFGi8BZpo0gFrQJc2mNwQQbf/9IINpQc4NwH\n32Pr3kqvS5IoUHiLhNnKXVXNPlqjAJf2GN8vlzvOGM3eAzV87cF3Wbuz3OuSJMIU3iJhEkpAh3KM\nAlzaY3ivLH561lHU+xxff/Bd/vnZLq9LkghSeIu0QXPBGkqruvHxLT1HAS7t0T+vG/959hh6Zady\nzdxl3POPtdT7tAJgPFJ4i3RQW4O78XObe74CXNqjIDOVn541hpNH9uC+f63jyj++z/7KGq/LkjBT\neIvEgI58ABBpLCUpgWtPHMrVJwzm3fV7OPPexXy8RTcyiScKb5EOaC10VxVXH/Zo67nU+paOOHVU\nL+48ewy19T7Oe+g9Hnl7g+6EFycU3iIhakuQNhfWrQW5AlzCbWiPTO4+ZxxH98/lrldXc83cZepG\njwMKb5Ewa62FHXxcU8eqC13CLTM1ie9/aQSXTxvIwrW7OevexazaoSVVOzOFt0g7hStkQwlwtb6l\no8yM08cW8tOzjqKytp6vP/AqahZpAAAgAElEQVQuL3y8zeuypJ0U3iJhFGqruz3PU4BLOAzvlcXd\nXx3L4B4ZfO+Z5dz50ipq631elyVtpPAWiRGNA1zd5xIpud1S+NEZozljbG8ef3cTV/9pGZU1dV6X\nJW2g8BYJk1Bb3SuLmw/l1gJcrW8Jl6SEBC6bNohrThjC21/s5pKHl2oiWyei8BaJgpXFVYceTX0f\nrL1d7yLtccqonnz31BGs3FHKuQ+9R1HpQa9LkhAovEU81lSIBwe4Wt8SaZMG5/HD00axfd9BLnl4\nKaWVtV6XJK1QeItEWEvd5O05TiQSjuqTwy1fGcmWvZV8+y8fahJbjItYeJvZY2ZWbGYrm9lvZnav\nma0zs0/N7Nigfb8ys1VmtjpwjAW2LzSztWb2SeDRM1L1i3ghOMDV+pZoG12YzdUnDOHd9Xv46Yur\ntBpbDItky/tx4LQW9p8ODA88rgUeBDCz6cDxwHhgLDAJOCnoeZc4544OPIojULdIzGgpwEUi4aQR\nPZhzdB+een8L81ft9LocaUbEwts59xawt4VD5gBznd8SINfMCgEHpAEpQCqQDOjGtNJlhNp9rta3\nRMp5x/Wnf/d07n51NdV19V6XI03wcsy7L7A16PttQF/n3HvAAqAo8JjvnFsddNwfA13mP2noTm+K\nmV1rZsvMbNmekpJI1C8SMaF2n0vXMPexh5k1YwqzZkxh/949EX+9xATjkikD2brvIHPf3Rzx15O2\ni7kJa2Y2DBgN9MMf8KeY2QmB3Zc458YBJwQelzV3HufcH5xzE51zE/MLCiJdtki7FBUVUVRU1O7n\nq/XdNVz+zWt4Y/FS3li8lNy8/Ki85oT+uUzol8ODi9ZT79PYd6zxMry3A/2Dvu8X2HYOsMQ5V+Gc\nqwBeB6YBOOe2B/4tB54EJke1YpEWjOmZ2qbjg0O7qRDX5DXx2okjerD3QA2fbNW9wGONl+H9EnB5\nYNb5VKDUOVcEbAFOMrMkM0vGP1ltdeD7AoDA9rOAJmeyi0TCuF6Hh/PYXmkhPW9szyOPa6613ZFW\nuEi4TeiXS2KC8eZqzQ2ONZG8VOwp4D1gpJltM7OrzOw6M7sucMhrwAZgHfAwcH1g+/PAemAFsBxY\n7px7Gf/ktflm9inwCf5W+sORql8kFqj1LV7KSE1ieM9M3lsf+XF2aZukSJ3YOXdRK/sdcEMT2+uB\nbzWx/QBwXNgKFImAMT1TO7y8aVFREYWFhWGqSKRjemWnsWZnmddlSCMxN2FNpDNpquu8qbHvprrO\nQ6XWt3gpLyOFkvIa6rTiWkxReIvEoPaOfSvAJdxyuyVT7xz7tN55TFF4i7RB40lrzWnrzPPWNNf6\nFom0lER/TGixltii8BbpoFBnnbdVKK3vphZtUetbwin5UHir2zyWKLxFIqSl1nd7JqS1pfWtAJdw\nSUnyx8TBGrW8Y4nCW6SNmuo6D6X13Z5Ja+1tfYMCXMIjI9V/UVLZQY15xxKFt0gERXLs+7DtWvNc\nIiQjJRGAUoV3TFF4i7RDe1vf7dFc6zuUiWtqfUtHZacnA1Bcrv+WYonCWySMIhXgwUK9ZWgDBbh0\nRG56Mt1SElm/u8LrUiSIwlukndpz2Vh7F2sJpfWtrnOJBDOjX/d0Pt9V7nUpEkThLRJmoba+O7IE\naltb3yId0b97Nz4rKsOnW4PGDIW3SAeE2voOh460vtV1Lh0xvFcmZQfr1HUeQxTeIhHQuPUd7lnn\nItE0slc2AB9s0n29Y4XCW6SD2tr67shNSoJb36HesKSBWt/SXr2yU8lOT+LjLQrvWKHwFomQaMw8\nF4kGM2NQfgYrd5R6XYoEKLxFwqC9Y9/tmbTWXOtbJJIG5Wfwxa4KarTGeUxQeIvECV02JpHUJzed\nOp9jx/6DXpciKLxFwqa1Vdeam7TW0da3SDSkJBoAdT61vGOBwlvEAx2ZtNaYus4lGhISGsJb13rH\nAoW3SBhF87rv9tCMc2mvymr/LUFTkxI9rkRA4S0SVZHuOte4t0TK2l3l5HZLZlB+N69LERTeImHX\nuPXd3CVj6jqXzmTtzjImDcrDzLwuRVB4i8SMjqx1LhJJ64or2FlWzYxhBV6XIgEKb5EICHXsu6Ot\n79a6zkXC4cVPtpOTnszXj+vndSkSoPAWiYJQLhmD8Le+Ne4tHbVtXyXLNu/jG9MHkZma5HU5EqDw\nFvFYuMa+Ne4tkfDk+1vISE3kiumDvC5Fgii8RSKkpa7zcLa+tWCLRMpHm/fx8Zb9fG/WCPIyUrwu\nR4IovEWipKUblYRz5jlo3Fs6rqbOx9wlmxjaI4NvqNUdcxTeIh6JxNh3U13nGveW9pi/aie7yqr5\nz7PHkpyoqIg1+o2IRFCo13xD6K3vqi0rj9imrnMJp4rqOl5cvp2ZI3owY7guD4tFCm8RD7W19d0Q\n3E0FeKi0RKq05qVPtlNZXc9tp4/yuhRphsJbJMJaa30HB3hbxr6bC/CGrnONe0t71Pl8LFi7mzPG\nFzK6MNvrcqQZCm+RTiw4wFvqOte4t4RqTVE5FdV1zB7fx+tSpAUKb5EoiFTrWyTclm3eR2pSAieO\n0Fh3LFN4i8SwUGadN9X6bq3rXOPe0pzt+w8yqncW3VK0mlosU3iLRInXrW91nUsoUhKN2nrndRnS\nCoW3iIdaunSsLToy+1wkWHJiAlV19V6XIa1QeItEUWt3G2vp0rFQhdp1LtKUHlmpbNlTSUmF/ruJ\nZQpvEY951frWuLc0ZeaIntT5HM9/uM3rUqQFCm+RKGuq9d3ULUMbxr3bs1Rq49Z3A417S2v6dk9n\nVO8snly6hXqfxr5jlcJbJI401/pW17m0xWlje7NlbyVz39vkdSnSDIW3iAdaa32HqnrrinCUI3KY\nyYPymNA/h1/NX8v2/Qe9LkeaoPAWiUFtmbjWOMAbWt/NdZ0H07i3NMXMuOr4wfh8jp+8sALn1H0e\naxTeIh5pbeY5hH69dygt8Iauc417Syh6ZKVx3nH9+dfa3cxftdPrcqQRhbdIDGmu67ypSWuNA1td\n6BJup43tzcC8btz50mccqK7zuhwJovAW8VAore9gaQPGhnRca13nwa1vdZ1LcxITjG/OGMzOsiru\nffMLr8uRIApvkRgVjgVbGtOsc2mrEb2ymDYkn6c/2Epdvc/rciRA4S3isdbWPG9u3Du1/7gjtrW3\n61ytb2nJlCF5lB6s5YNN+7wuRQIU3iJxqnHXuUh7TeiXS3Ki8c/PdnldigQovEViQChj3+1ZaS2Y\nVluT9kpLTiQ7LZl9lTVelyIBCm+RGNTQdd7UuHeok9aao3Fvaauq2nr2HKhhaI8Mr0uRAIW3SCfQ\nlnHv9tK4tzSnYZW1oT0yPa5EGii8RWJEWy8ba6AAl0ibv3InKYkJHDuwu9elSIDCWyTGBXedN4x7\nN9d13lyQNzdpTePe0poNuyt4e10JV50wmF7Z4bl9rXScwlskRrXlRiWp/ceF1AJvmLTW0ri3Wt/S\nwDnHE0s3k5eRwvUzh3pdjgRReIt0EqGucx4OCnAB+OfqXawuKueWr4wkKy3Z63IkiMJbJIa05ZKx\njs46b6Cuc2nKztIqnly6hROHF3DhpP5elyONKLxFOoFILJXaGrW+uy7nHP/vrfWkJiXwq3MnYGZe\nlySNRCy8zewxMys2s5XN7Dczu9fM1pnZp2Z2bNC+X5nZKjNbHTjGGj33pebOKxJPWlsqtSOt7+Bx\n7+Za3yt2VSvEu6CVO8pYs7Oc204fRe8cTVKLRZFseT8OnNbC/tOB4YHHtcCDAGY2HTgeGA+MBSYB\nJzU8ycy+BlREpGKRTqIjq601XmlNpLFXP91BQWYK5x7Xz+tSpBkRC2/n3FvA3hYOmQPMdX5LgFwz\nKwQckAakAKlAMrALwMwyge8Dd0WqbpHOJhpj32p9dx3b9lWyfFspVx4/mNSkRK/LkWZ4OebdF9ga\n9P02oK9z7j1gAVAUeMx3zq0OHPNz4B6gsrWTm9m1ZrbMzJbtKSkJb+UinVBT13q3ZalUBbh35j72\nMLNmTGHWjCns37snoq9VUuH/PU8ZnBfR15GOibkJa2Y2DBgN9MMf8KeY2QlmdjQw1Dn3Qijncc79\nwTk30Tk3Mb+gIIIVi0RHw6S1hnHv4K7zaM08V4B74/JvXsMbi5fyxuKl5OblR/S1MlKSACirqo3o\n60jHeBne24Hg6w/6BbadAyxxzlU45yqA14FpgcdEM9sELAZGmNnCqFYsEsPaEuDB496NW98K8K4t\nM9Uf3sVl+j3HMi/D+yXg8sCs86lAqXOuCNgCnGRmSWaWjH+y2mrn3IPOuT7OuUHADOBz59xMr4oX\niYSOBqOu/ZaO6pGdSu/sNP7vzS8orVTrO1ZF8lKxp4D3gJFmts3MrjKz68zsusAhrwEbgHXAw8D1\nge3PA+uBFcByYLlz7uVI1SkSbxoCvKkgb26N86bGvjWBrWtKSkjgxlOGUVxezR1/X4FzzuuSpAlJ\nkTqxc+6iVvY74IYmttcD32rluZvwX0Ym0qUVFhY2G8itWVlc1eqSqyt3VbVpjXWJD0N7ZPL1Y/vx\n7LKtjOmTw3UnDdFCLTEm5iasiXRV4WzNtqf7vLmZ5y0t4CLxa86EPkwenMf/zFvDd576mAPVdV6X\nJEEU3iIxLBJjz8Et9cYLtrTl0jGJbwkJxs2nDufCSf15bUURc37/Dut3a32sWKHwFokBTbViGwd3\npII1lABX67trSjBjztF9+eHpoykuq+Ls+xfz5NIt+HwaB/eawltEjtDWCWwS38b1zeHuc8YxIK8b\nP3phBV9/8F1W7Sj1uqwuTeEt4rG2trqDW8rtnazW+Hla71xaU5CZyk/OPIpvnzSU9SUVzL5vMf/1\n8mdUaCzcEwpvkRgTKy3cULvp1XXedZgZJ47owT3nHc3JI3vyx3c2cspvFvLS8h26pCzKFN4iMa65\nVndLqraspGpLy3fNDaX13dbV16RryExN4uoThvBfc8aQkZrETU99zIV/WMLqojKvS+syFN4iHmrc\nam3LJLWmuswbh3ZrAS7SEcN6ZnHXnLFcPWMwnxWVcea9b/OzF1dqZbYoUHiLxKgjWr2tjHU3F9Rt\nCXCNfUtbJSQYp47uxW/PO5pZo3vx5yWbmfmbBbz4yXZ1pUeQwlskRgS3usMV3OGgrnMJRWZaElce\nP5hfnDOO/MxUbn76E66eu4ydpfrvJRIU3iIeCXWiV0vBHcrYdkua+iDQnta3Jq1Jg4H5Gfzn7DFc\nOmUgb39ewpf+dxHPfrBVrfAwU3iLxJhQLwvTeLbEqoQE48zxhfzy6+Po1z2dW//6KVc9/gGlBzUW\nHi4Kb5EY0FRXtIJbOrvCnHR+fOZRfGPaQBZ9UcKc+xezrrjc67LigsJbJIY0NbtcwS2dWYIZp40t\n5MdnjGZfZS1zfv8O//xsl9dldXot3hLUzF4Gmh2ocM6dHfaKRKTZcefGwV29dcURx6T2Hxfy6xQW\nFratMJF2GlWYzd1fHctv//k518xdxn+ePYZvTB/kdVmdVmv38/5N4N+vAb2BJwLfXwToo5NIO4U6\nwauh1R1KaAfva0uAi0RLfmYqP5s9hvv+9QU/e2kVKUkJXDR5gNdldUotdps75xY55xYBxzvnLnDO\nvRx4XAycEJ0SRbqm5tYtbym423KMiBdSkhK46dThHN0/lx/9bQUvfLzN65I6pVDHvDPMbEjDN2Y2\nGMiITEkiXVvjLvPgVnd7Q7mpcXJ1mYtXkhMT+N6sEYzpm81/PLucBWuLvS6p0wk1vL8HLDSzhWa2\nCFgAfDdyZYl0HaEuetI4uKu2fXbEo6XjQzW2Z1q7nifSFilJCfzHl0YyIK8b3336E7btq/S6pE4l\npPB2zs0DhgM3AzcBI51z8yNZmIj8u8UcHMRNBXXwPpHOIi05kZtPHUFtvY8b/vIRNXU+r0vqNEIK\nbzPrBtwC3OicWw4MMLOzIlqZiLRLKAHeXJd5R1rdWmVN2qN3ThrfOnEoy7eVcs8/1npdTqcRarf5\nH4EaYFrg++3AXRGpSESa1daWtSauSWcweXAep4zqySNvb9RtRUMUangPdc79CqgFcM5VAhaxqkS6\nuOCZ5q1dFtbwCNae7vPmWt1jeqa2+VwibXXRpAFkpCZyxwsr8Pm0DnprQg3vGjNLJ7Bgi5kNBdRH\nJhJFrU1IUytbOrPMtCQunjKQj7bs5++fbPe6nJgXanjfCcwD+pvZX4A3gdsiVZRIV9faZVzNBbVm\nmEtnduLwAgbmdePBhet1F7JWhDrb/B/4V1m7AngKmOicWxDBukS6jLG9IhOcmnkunY2Z/25kXxRX\nsHDtbq/LiWmhzjZ/0zm3xzn3qnPuFedciZm9GeniRKTjWmuNt9Tqbut4t2acS0dNG5pPQWYKj72z\n0etSYlqL4W1maWaWBxSYWXczyws8BgF9o1GgSFcXrnXKdTcy6QySEhKYPDifpRv2UlVb73U5Mau1\nlve3gA+BUYF/Gx4vAvdHtjSRrqm5lnBav6OiXImIN8YUZlNT7+OjLfu8LiVmtXZjkv9zzg0GfuCc\nG+KcGxx4THDOKbxFIixtwNg2P8frWefqOpeOGlWYhQHLNim8mxPqbHOfmeU2fBPoQr8+QjWJxL1x\nvTp27XRLXem6Hah0dt1SkkhKNCpr1G3enFDD+xrn3P6Gb5xz+4BrIlOSiMDhl4s1BHJw17lCWuKZ\nc5CgpcCaFWp4J5rZoR+jmSUCKZEpSaTrauvs7nAEeONbkAZbVdx0F3hrd0JT17l0RG29j3qfI1Hp\n3axQw3se8IyZnWpmp+K/1nte5MoS6VoaX+sdPGmtYdy7qdZ3w/bgh0hnt3J7KQ44dkB3r0uJWaGG\n92347+H97cDjTeDWSBUlIn7NrbTW0ZnnwWuni8Sa9zfuJTM1ienD8r0uJWaFusKazzn3oHPu3MDj\n/znnNJNAJAKa6jpv3PqG8F461lLXeXup61zao+xgLR9s3sus0T1JTUr0upyY1doiLc8G/l1hZp82\nfkSnRJGuobmu88at71ADPFzh3ty4t0i4Oed49J2N1NT5+PbMYV6XE9OSWtl/c+DfsyJdiEhXM65X\naptap2kDxh5aJS21/7hD13N7tXjLyl1VEVuXXbqmd9fv4f2Ne7nttFGM7J3ldTkxrbVFWooC/25u\n6hGdEkW6noau88at7+BFW0KdnBbqceo6Fy99saucx97ZyDH9c7n2xCFelxPzWus2LzezsuYe0SpS\nJFo6Q9g0DvBwzjCPRICLtGZ1URn//fpqCjJTuf+SY3WJWAhaa3lnOeeygf8Dfoj/ZiT98M8+/13k\nyxOJnobg9jLAg7uhm2t9w5HLpjZ1qVg4g13j3hIpK7aX8st5ayjMTee566bRNzfd65I6hVAvFTvb\nOfeAc67cOVfmnHsQmBPJwkSiqXFgRyvAQ10mtbkAb2rt81BDu7nLxdT6lmhwzvH6yiJ+NW8NQwoy\nePZb0+iVrTkUoQo1vA+Y2SVmlmhmCWZ2CXAgkoWJeM2rFnhTre9gjWefh3rzkvbc5CQcOsNQhERX\neVUt9/zzc+a+t5mZI3vwzLXTKMjs2Hr/XU2o4X0xcD6wK/A4L7BNJK7FUvAEr7pWWFjYZCu8uYBu\na3Cr9S2RsmZnGbf/bQXLt+7np2cdxcOXTySnW7LXZXU6rV0qBoBzbhPqJheJmrG90g6tHz6mZ+qh\nMeexPdMOC9bCwsIjur+9amGLtKSqtp7nPtzGvJVF9M/rxuNXTmZcvxyvy+q0Qmp5m9kIM3vTzFYG\nvh9vZj+ObGkiXUMo497B3efBLXA4shUuEmtWbC/ltr9+ymsrirhw8gBe+c4MBXcHhdpt/jBwO1AL\n4Jz7FLgwUkWJRFtH768dCY0XQGkc4OEIca1xLpFUUV3HQ4vW84vXVtMtJZGnr53KL84ZR1aausk7\nKtTw7uace7/RtrpwFyMSi2Jp3LuxxgEO4WuJNx731uViEirnHEs27OGW55az+IsSvj1zKPO+eyJT\nh+hGI+ES0pg3UGJmQwEHYGbnAvrILhImzS2VGjz2Df9ufQcHaUOANw7bhgBX61qiaU9FNX98dxMf\nbt7HmD7Z/M/XxzO2r7rIwy3U8L4B+AMwysy2AxuBSyJWlYgc0jjA4fBJbIeOayHEWwrwoqKiiI6Z\nx+KQhISfzzneXL2Lp97finOOO84YzZXHDyIpMdQOXmmLVsPbzBKAic65WWaWASQ458ojX5pIdLX1\nRiHRfP3mAhyO7M5uPCMdWg/w9tBNSaTB/soaHly0nk+3lXL8sHz++5zxDMjv5nVZca3Vj0TOOR9w\na+DrAwpuEW80F5ZNLeTS3Fi4SLit3F7K7S+sYO3Ocu766lieuGqKgjsKQu3PeMPMfmBm/c0sr+ER\n0cpEPOB1F297X7+jAR6pcXGvf54SOfU+x7PLtvKL11aTl5HCizcez6VTB2Kmm4pEQ6jhfQFwPbAI\nWBb0EIk7sRw4Y3ulqQUunqv3OX6/cB0vfLydc4/rxyvfmcGo3tlel9WlhBreRwG/B5YDnwD3AWMi\nVZRILIl2mIfyem0J8FCFu/Udyx+CpP18PsdDi9bz3vo93H76KH593gS6pYQ691nCJdTw/hMwGrgX\nf3AfFdgmEpc6Q/CEGuBNtb5F2sPnHH94ewOL15Vwy1dG8q2ThnpdUpcV6selsc65o4K+X2Bmn0Wi\nIJFY0VkCvPEsdGj6UrJo6gw/O2m7N1bvYtHnu7n51OHccPIwr8vp0kJteX9kZlMbvjGzKWjMWyRi\n2hJ+oVyy1dRSqpGi4I5PlTV1/PXDbUwdnMd3Zw33upwuL9TwPg5418w2mdkm4D1gkpmtMLNPm3qC\nmT1mZsUNNzNpYr+Z2b1mts7MPjWzY4P2/crMVpnZ6sAxFtg+z8yWB/Y9ZGaJbXq3Ip1IRwO8PePf\nLY17h3I+BXf8evGTHZRV1XHHmUdpRnkMCLXb/LR2nPtx4H5gbjP7TweGBx5TgAeBKWY2HTgeGB84\nbjFwErAQON85VxYI8+fx31f86XbUJtIptGXhmOa60EU6qqbOx7xVO5lzdB/dDSxGhHo/781tPbFz\n7i0zG9TCIXOAuc45Bywxs1wzK8S/fnoakAIYkAzsCpyzLKjulMCxIhKCplZeEwnFuuJyaup8zB7f\nx+tSJMDLRWf7AluDvt8G9HXOvQcswH/jkyJgvnNudcNBZjYfKAbK8be+m2Rm15rZMjNbtqekJBL1\ni0RFR7rPO3LpWFupyzxy5j72MLNmTGHWjCns37sn6q//WVEZCQaTBmttrlgRcyvGm9kw/Jel9cMf\n8KeY2QkN+51zXwEKgVTglObO45z7g3NuonNuYn5BQYSrFomsWAtGrWseXZd/8xreWLyUNxYvJTcv\n+rfVXLOznNGF2eSk6z7cscLL8N4O9A/6vl9g2znAEudchXOuAngdmBb8ROdcFfAi/q53ERGJEOcc\nm0oOMKF/rtelSBAvw/sl4PLArPOpQKlzrgjYApxkZklmlox/stpqM8sMjIljZknAmcAar4oXibZQ\nW9+hdp1rmVQJxa6yag7U1DNO9+SOKRFb087MngJmAgVmtg34Gf7JZzjnHgJeA84A1gGVwJWBpz6P\nvzt8Bf4JafOccy+bWS/gJTNLxf+hYwHwUKTqF4lHjSetReJWoRJfVu4oBWBCP7W8Y0nEwts5d1Er\n+x1wQxPb64FvNbF9FzApbAWKdEKRvue4WuMSzDnHv9YUM7JXFqMLs7wuR4LE3IQ1EWlZR25c0hQF\ntjRn/e4DbCw5wKXTdKvPWKPwFukCgse9m7tNqEJcgtX7HH9ZupmM1ES+erSu7441Cm+RTijWLh2T\n+PPch1tZs7Ocu786jqw0XSIWaxTeIl2QbhMqLflk6z5e/GQHF03uz1eP6et1OdIEhbdIJ9Va69vL\n1dak81pdVMa9b37BqN5Z/Gz2GK/LkWYovEW6qNZa321tnUdyFrxEx8rtpfzPvDUU5qYz95uTSUvW\njRtjlcJbpBPraOs71IBWqz3+fbptP7+ev5aB+d145tpp9MzW0EosU3iLdHEa/5YPNu7l1/PXMrRH\nBk9fO40eWfqwFusU3iKdXDjHvsf2TDv0aA91nXc+iz4v5ndvfs74fjk8fe008jJSvC5JQhCxFdZE\nJHaN6ZnKquJ/B61a313TvJVF/Om9zRw/LJ8/XDaRjFRFQmehlrdIHGhr6zuS1PruHN7+Yjd/em8z\nXxnTi8eumKTg7mQU3iJxoq0Lt4Q6CU2T1eLPZ0Vl/OGtDUwbks99Fx1LapJmlXc2Cm+RLqKp1nek\ngnnFrmq1wGNU0f6D/O8/P2dAfjceuvQ4UpIUA52RfmsicaQ93ectBXhHw10BHnsefWcjiQnG41dM\nJqeblj3trBTeInEm3AHeUWqFx46V20tZtaOM784azoD8bl6XIx2g8BaJQ+25ccmYnqmHhXi4A10B\n7i3nHM98sIXCnDQunjLA63KkgxTeIl1QS7PPG4d4OCnAvbNt30HW7T7At2cO1QS1OKDwFolTsXT5\nWDAFuDfWFVcAcPywAo8rkXBQeIvEMd33Wxqs311BdloSg/MzvC5FwkDhLRLnWgpwtb67ju37DzKy\ndxYJCeZ1KRIGCm+RLs6rAJfoqq7zkZWmS8PihcJbpAuIxe5ztb6jq7q2nvQUTVSLFwpvEVHruwuo\nqfeRplnmcUPhLdJFxOrsc4mOep8jJUnj3fFC4S0inlHXefTU+RxJCfqTHy/0mxSRQ9T6jl+19T5S\ndROSuKHfpIhInKur91FV6yMnXbPN44XCW0QkzlVU1wGQq7uIxQ2Ft4gcRl3n8ae8qiG8UzyuRMJF\n4S0ibbZyV5XXJUgb7KusAaBnVuxd7y/to/AWEYlz+ytrAeiZrV6VeKHwFhGJc2VV/vDOz1S3ebxQ\neIvIYdQlHn8qa+oxIDMlyetSJEwU3iLimVhccz0eVdbUk5mWpDuKxRGFt0gXodXMuq66eh8pifpz\nH0/02xSRQ6LZZa5Wd1YDIUUAAA4fSURBVPQkJSZQW+/zugwJI4W3iESdgju6khON6jqFdzxReIsI\nEL1Wt4I7+tKSE6mu86n1HUcU3iISNQpub2Sn+ZdF3XegxuNKJFwU3iKiy8PiXMMNSXZXaNJivFB4\ni3QBsTDTXK1u72Sm+a/vLg2stCadn8JbRCJOwe2ttMB9vCtr6j2uRMJF4S0iEudSkxMBOFBT53El\nEi4KbxGJKLW6vefzOQDMtMJavFB4i3RxmqwW/0oP+se6e2Tqg1S8UHiLSMSo1R0b9jeEt+7nHTcU\n3iIicW7LngMkJRh9c9O9LkXCROEtIhLnVhWVccyAXNJTEr0uRcJE4S0iEscOVNexqeQA04cWeF2K\nhJHCW6SLG9srLSLP0Xh3bPhoyz58Dk4c0cPrUiSMFN4iInHsnfUl9MtN59gBuV6XImGk8BYRiVOl\nB2tZsa2UOcf00TXecUbhLSJt0p5udvHG0o178DmYPaGP16VImCm8RUTi1JINexjWM5NRvbO9LkXC\nTOEtIiG1psf2SlOruxPZe6CGNUXlzB6vVnc8SvK6ABGJrFBvBzq2V9oRS6UqrDuvFdv344Avj+nl\ndSkSAQpvETlEYR0/PttRRm63ZEb2yvK6FIkAdZuLiMShNTvLmTo4n4QEzTKPRwpvEQk7LdDircqa\nOorLqxnfP8frUiRCIhbeZvaYmRWb2cpm9puZ3Wtm68zsUzM7Nmjfr8xslZmtDhxjZtbNzF41szWB\nfb+MVO0iIp3ZrjL/PIdB+RkeVyKREsmW9+PAaS3sPx0YHnhcCzwIYGbTgeOB8cBYYBJwUuA5v3HO\njQKOAY43s9MjUrmISCdWXOafeDgwv5vHlUikRCy8nXNvAXtbOGQOMNf5LQFyzawQcEAakAKkAsnA\nLudcpXNuQeDcNcBHQL9I1S8i0lmVBu7f3TNLExDjlZdj3n2BrUHfbwP6OufeAxYARYHHfOfc6uAn\nmlkuMBt4s7mTm9m1ZrbMzJbtKSkJe/EiItEy97GHmTVjCrNmTGH/3j2tHl9ZWw9AVpouKIpXMTdh\nzcyGAaPxt6r7AqeY2QlB+5OAp4B7nXMbmjuPc+4PzrmJzrmJ+QW6FZ5ItGiyWvhd/s1reGPxUt5Y\nvJTcvPxWjz9YU09SgpGaFHN/4iVMvPzNbgf6B33fL7DtHGCJc67COVcBvA5MCzruD8AXzrnfRa1S\nEZFOpLbeR2pygm5GEse8DO+XgMsDM8mnAqXOuSJgC3CSmSWZWTL+yWqrAczsLiAH+K5XRYtI89Tq\njg0+B4m6vjuuRWxAxMyeAmYCBWa2DfgZ/slnOOceAl4DzgDWAZXAlYGnPg+cAqzAP3ltnnPuZTPr\nB9wBrAE+CnyivN8590ik3oOISGdU73MkqtUd1yIW3s65i1rZ74AbmtheD3yrie3bAP3XKBKj1OqO\nHfU+R1KixrvjmX67IiJxpt7nI1nd5nFN4S0iHaZWd2xRyzv+6bcrIh2i4I49B2vryUzVNd7xTOEt\nIu2m4I5NFdV1dM9I9roMiSCFt4hInKmoriM3PcXrMiSCFN4i0i5qdcemep9jd3k1fbune12KRJDC\nW0TaTMEdu4rLqqitdwzvmel1KRJBCm8RkTiydd9BAIb3yvK4EokkhbdInAt3K1mt7ti2akcpaUkJ\njOqt8I5nCm8RkTjy6bb9TB+aT1pyotelSAQpvEUkZGp1x7Yd+w+ys6yamaN6el2KRJjCW0QkTixc\nW0yiGV8Z09vrUiTCFN4iXYBazPGvrt7Hoi92c+ronvTKTvO6HIkwhbeISBxYunEvZQfruHjKAK9L\nkShQeIt0ER1tfav1Hrucc/z/9u49Rq6yjOP496E3WtrSlkILVKC1BgQFlEoMFgJIwsVoMYZIQgwB\njRcw/kUUQ4IEY4hA/EONIaZKMBIBMRhFMQETg+FSQSgUItBKQdoClQJtKgK9PP5xXtPpZrcs3WHP\nvDPfTzLpmTPnvPM8zB5+e2bePfP7xzewaO5+nPKBA9suR+PA8Jakyj36r9d5ftMbXHLaYvbxq0AH\nguEtDZC9PXv2rLt3ZSa/XbmeBbOmsuz4Q9ouR+PE8JYGzLsNYoO7t61av5nVG7fy1VPfzyS/w3tg\n+EpLA2i0gWxw97bM5DePrGP+zH05b8mCtsvRODK8pQG1p2D+8LwpBncFntywhWde3sqlpy9mykSv\nqDZIJrZdgKT2GNB1u/PxDcydPpnzTvCse9B45i1JFXp+0394bN1mLvrEQq9jPoAMb0mq0F1PvMTU\nyRO4wIuyDCTDW5Iq8+a2HaxYu4llxx3CrGmT2y5HLTC8JakyK9a+ypvbdvI5P+seWIa3JFXmvjWv\ncNicaSw5fHbbpaglhrckVSQT/vHiFs48Zh4RXgp1UPmnYpJUkf9u20HsTJb6BSQDzTNvSarIm9t2\nMGlCcOIRc9ouRS0yvCWpIm9t38mR82cwdbJ/2z3IDG9JqsjbO3bywfkz2y5DLTO8JakiO3YmR86f\n0XYZapnhLUmVWTB7WtslqGWGtyRVZt5Mv1Bm0BneklSZg2bu23YJapnhLUmVmTV1UtslqGWGtyRV\nZpp/JjbwDG9Jqsg+EV4WVYa3JNVkH3NbGN6SVBXPugWGtyRVxegWGN6SVBVPvAWGtyRJ1TG8Jaki\nnngLDG9JqozxLcNbkupidgvDW5Kk6hjeklSRg/f3S0lkeEtSVaZPmdh2CeoBhrckSZUxvCVJqozh\nLUlSZQxvSZIqY3hLklQZw1uSpMoY3pIkVSYys+0a3nMR8W/g+XJ3LvBKi+V0i330nn7ppV/6gP7p\npbOPwzPzwDaLUfsGIrw7RcTDmbmk7TrGyj56T7/00i99QP/00i99qHt821ySpMoY3pIkVWYQw/un\nbRfQJfbRe/qll37pA/qnl37pQ10ycJ95S5JUu0E885YkqWqGtyRJlak2vCNiTkTcHRGry7+zR9ju\nwrLN6oi4sGP9CRGxKiLWRMQPIyL2NG5ELIuIxyNiZUQ8HBFLK+7lgtLLqoi4PyKOq7SPoyLigYh4\nKyIu60L9Z0XE0+X5Lx/m8SkRcWt5fEVEHNHx2LfL+qcj4sx3GjMiFpYx1pQxJ4+1/pb6+HpZlxEx\nt1s9tNTLzWX9ExHx84iYVGkfP4uIx8oxfntETO9WH+ohmVnlDbgWuLwsXw58f5ht5gDPln9nl+XZ\n5bG/AR8HArgLOHtP4wLT2TVH4FjgqYp7Oalj37OBFZX2cRDwMeB7wGVjrH0C8E9gETAZeAw4esg2\nlwA3lOXzgVvL8tFl+ynAwjLOhD2NCdwGnF+WbwC+1qXXYLz7+AhwBPAcMLfLx/h493JO+dkL4FcV\nvyYzO8b9AeXY8dZft2rPvIFlwE1l+Sbg3GG2ORO4OzNfzczXgLuBsyLiYJof8Aez+Qn/Rcf+w46b\nmVvLtgD7Ad2c6TfevdxfxgB4EFhQaR8bM/MhYFsXaj8RWJOZz2bm28At5XlH6u924JPl3YFlwC2Z\n+VZmrgXWlPGGHbPsc3oZY7eeauoDIDMfzcznulR72738MQuaXyS7dVyMdx9bAMr+U+nu/6vUI2oO\n73mZ+WJZfgmYN8w2hwIvdNxfV9YdWpaHrt/juBHx2Yh4CvgDcPGYO9hl3Hvp8EWas9xuaLOPsRqp\nrmG3ycztwGbggD3sO9L6A4DXyxgjPdfeGs8+3mut9FLeLv8C8KcxdzCkxpGeky73ERE30hwrRwE/\n6kYT6i0T2y5gTyLiHmD+MA9d0XknMzMiuv7b5dBxM/MO4I6IOAX4LnDGaMfqtV5KTafRhPeoP7/v\nxT6kLvsJcG9m/rXtQvZWZl4UERNogvvzwI0tl6Qu6+nwzswRwzEiXo6IgzPzxfKW68ZhNlsPnNpx\nfwHwl7J+wZD168vyO46bmfdGxKKImJuZo/rSg17rJSKOBZbTfK68aTQ99GIfXbQeeN8Izz90m3UR\nMRHYH9j0DvsOt34TMCsiJpazrOGeq4Y+3mvj3ktEfAc4EPhKF+ofWuOwzzlkm669Jpm5IyJuAb6J\n4d1/2v7QfW9vwHXsPonp2mG2mQOspZkYNbsszymPDZ0cdc6exgUWs2vC2kdpDpSotJfDaD47O6nm\n16RjzKsY+4S1iTST5xayawLQMUO2uZTdJxXdVpaPYfdJRc/STCgacUzg1+w+Ye2SLr0G49pHx5jP\n0f0Ja+P9mnwJuB+YWmsfNMfO4rJvANcD13ezH2+9cWu9gL0uvPk86M/AauAedgXAEmB5x3YX0wTV\nGuCijvVLgCdoZmz+mF3BPNK43wKeBFYCDwBLK+5lOfBa6WUl8HClfcyn+axvC/B6WZ45hvrPAZ4p\nz39FWXc18JmyvC9N6K6h+UVjUce+V5T9nqbMkh9pzLJ+URljTRlzShd/nsazj2+U/+7bgQ2dr3OF\nvWwv6/5/XFxZWx8085juA1bRHEs3j+WY8Na7Ny+PKklSZWqebS5J0kAyvCVJqozhLUlSZQxvSZIq\nY3hLklQZw1vaSxFxVURcFhFXR8QZZd3JEfFkNN8+NzUiriv3r2u7Xkn9o6evsCbVIDOv7Lh7AXBN\nZv4SICK+TPN36TtaKU5SX/LvvKV3ISKuAC6kuUTrC8DfgQ8BdwKzaL6+dDPNlbpmAJ+iuWDGNZl5\naxs1S+o/nnlLoxQRJ9BcuvJ4mmPnEZrwBiAzl0fEUuDOzLy97LM1M49vo15J/cvwlkbvZOCOzHwD\nICJ+13I9kgaUE9YkSaqM4S2N3r3AuWUW+Qzg020XJGkw+ba5NEqZ+UhE3Erz9YsbgYdaLknSgHK2\nuSRJlfFtc0mSKmN4S5JUGcNbkqTKGN6SJFXG8JYkqTKGtyRJlTG8JUmqzP8AH2BBxmjpd+QAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 6.42847482193e-09\n", + "MAE : 7.12554587774e-05\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.000069\n", + "std 0.000040\n", + "min -0.000283\n", + "25% 0.000046\n", + "50% 0.000068\n", + "75% 0.000095\n", + "max 0.000283\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low', 'high']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close'].values))\n", + "predictions['diff'].describe()\n" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb new file mode 100644 index 0000000..e75394a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/example 3d surface plot-checkpoint.ipynb @@ -0,0 +1,1247 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import pypyodbc\n", + "import sys\n", + "from IPython.core import display as ICD\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from IPython.core.display import display, HTML\n", + "\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "df_iboxx = pd.read_excel(\"out.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mem_datedateindexnameisd_bondmv_weight_rollspread_weight_rolldate_lmmv_weight_eom_lmspread_weight_eom_lmisNewmv_weight_change_on_rollspread_weight_change_on_roll
02012-01-312012-02-29ref loans + hy daily price > 604327290.0143560.095617NaT0.0143560.09561710.0143560.095617
12012-01-312012-02-29ref loans + hy daily price > 604350190.0123840.058010NaT0.0123840.05801010.0123840.058010
22012-01-312012-02-29ref loans + hy daily price > 604354910.0336520.074094NaT0.0336520.07409410.0336520.074094
32012-01-312012-02-29ref loans + hy daily price > 604372620.0733590.025315NaT0.0733590.02531510.0733590.025315
42012-01-312012-02-29ref loans + hy daily price > 604374440.0233630.079587NaT0.0233630.07958710.0233630.079587
\n", + "
" + ], + "text/plain": [ + " mem_date date indexname isd_bond \\\n", + "0 2012-01-31 2012-02-29 ref loans + hy daily price > 60 432729 \n", + "1 2012-01-31 2012-02-29 ref loans + hy daily price > 60 435019 \n", + "2 2012-01-31 2012-02-29 ref loans + hy daily price > 60 435491 \n", + "3 2012-01-31 2012-02-29 ref loans + hy daily price > 60 437262 \n", + "4 2012-01-31 2012-02-29 ref loans + hy daily price > 60 437444 \n", + "\n", + " mv_weight_roll spread_weight_roll date_lm mv_weight_eom_lm \\\n", + "0 0.014356 0.095617 NaT 0.014356 \n", + "1 0.012384 0.058010 NaT 0.012384 \n", + "2 0.033652 0.074094 NaT 0.033652 \n", + "3 0.073359 0.025315 NaT 0.073359 \n", + "4 0.023363 0.079587 NaT 0.023363 \n", + "\n", + " spread_weight_eom_lm isNew mv_weight_change_on_roll \\\n", + "0 0.095617 1 0.014356 \n", + "1 0.058010 1 0.012384 \n", + "2 0.074094 1 0.033652 \n", + "3 0.025315 1 0.073359 \n", + "4 0.079587 1 0.023363 \n", + "\n", + " spread_weight_change_on_roll \n", + "0 0.095617 \n", + "1 0.058010 \n", + "2 0.074094 \n", + "3 0.025315 \n", + "4 0.079587 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_iboxx.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_piv = pd.pivot_table(df_iboxx.loc[(df_iboxx.mem_date <= '2015-06-30')&(df_iboxx.indexname == 'ref loans + hy daily price > 60 stable spreads 10 day')]\n", + " , values=[\n", + " 'mv_weight_eom_lm', 'spread_weight_eom_lm'\n", + " , 'mv_weight_change_on_roll', 'spread_weight_change_on_roll'\n", + " ]\n", + " , index=['mem_date']\n", + " , columns=['indexname', 'isd_bond']\n", + " , aggfunc=np.sum)\n", + "\n", + "df_piv.fillna(0,inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + " " + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/vnd.plotly.v1+html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.plotly as py\n", + "import plotly.graph_objs as go\n", + "import plotly\n", + "\n", + "plotly.offline.init_notebook_mode()\n", + "\n", + "\n", + "def plot_3dsurface_with_slider(df, colFilter, nbDates, nbSecurities, title):\n", + " #nbSecurities = 30\n", + " #nbDates = 40\n", + " maxWeight = 1.0\n", + "\n", + "\n", + " dfn = df.loc[:,[colFilter]]\n", + " \n", + "\n", + " ellist = list(dfn.index)[:nbDates]\n", + " data = []\n", + " for el in ellist: \n", + "\n", + " znow= dfn.sort_values(by=[el], axis=1, ascending=0) # this needs to have access to every column\n", + " znow = znow.iloc[:,range(nbSecurities)].head(nbDates) \n", + " #znowup = [[zij+0.5 for zij in zi] for zi in znow.as_matrix()]\n", + " znowup = znow +0.5\n", + " #display(znow)\n", + " #display(znowup)\n", + " data.append(go.Surface(\n", + " z=znow.as_matrix()\n", + "\n", + " ))\n", + "\n", + "\n", + " steps = list()\n", + "\n", + " # make an entry in the slider for each day\n", + " for i in range(len(ellist)):\n", + "\n", + " step = dict(\n", + " method='restyle',\n", + " args=['visible', [False]*len(ellist)], # set rest to visible false\n", + " ) # this styles the slider?\n", + " step['args'][1][i] = True # set only these ones to visible\n", + " #step['args'][1][i*2+1] = True # set only these ones to visible\n", + " steps.append(step)\n", + "\n", + "\n", + " sliders = [dict(\n", + " active=0,\n", + " steps=steps\n", + " )]\n", + "\n", + " layout = go.Layout(\n", + " title=title,\n", + " autosize=False,\n", + " width=1200,\n", + " height=900,\n", + " sliders = sliders,\n", + " margin=dict(\n", + " l=0,\n", + " r=0,\n", + " b=0,\n", + " t=50\n", + " )\n", + " , scene = dict( aspectratio = dict(x = 1, y = 1.5, z = 1),\n", + " xaxis = dict(\n", + " title=\"enum\", nticks=4, range = [0,nbSecurities],),\n", + " yaxis = dict(\n", + " title=\"date\", nticks=4, range = [0,nbDates],),\n", + " zaxis = dict(\n", + " title=\"weight\",nticks=4, range = [0,maxWeight],),\n", + " ),\n", + " )\n", + "\n", + "\n", + " fig = go.Figure(data=data, layout=layout)\n", + " return fig\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = plot_3dsurface_with_slider(df_piv, colFilter=\"mv_weight_change_on_roll\", nbDates=5, nbSecurities=30, title=\"mv weight\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The draw time for this plot will be slow for all clients.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\plotly\\api\\v1\\clientresp.py:40: UserWarning:\n", + "\n", + "Estimated Draw Time Too Long\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = plot_3dsurface_with_slider(df_piv, colFilter=\"spread_weight_change_on_roll\", nbDates=40, nbSecurities=30, title=\"s weight\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mv_weight_eom_lm
indexnameref loans + hy daily price > 60 stable spreads 10 day
isd_bond459957471207B1284457361237473223449374473486B1286271269032472032471621B1285111736308...495671495672495673495707495709495710495716495719495731495760
mem_date
2012-01-310.7923100.6006710.4723310.4229990.4022230.3955780.3725440.3660740.3493870.371342...0.00.00.00.00.00.00.00.00.00.0
2012-02-290.8156820.5963920.4747370.4342090.4059990.3901780.3879120.3674550.3510220.376884...0.00.00.00.00.00.00.00.00.00.0
2012-03-310.8191890.6051050.4857560.4482400.4167830.3995250.3908240.3781580.3671310.365057...0.00.00.00.00.00.00.00.00.00.0
2012-04-300.7949130.6048170.4758740.4444690.4343480.4085410.3916410.3760430.3661980.370582...0.00.00.00.00.00.00.00.00.00.0
2012-05-310.6851360.5300090.4258260.3935370.3630840.3551870.3459120.3276170.3104240.327583...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 4998 columns

\n", + "
" + ], + "text/plain": [ + " mv_weight_eom_lm \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 459957 471207 \n", + "mem_date \n", + "2012-01-31 0.792310 0.600671 \n", + "2012-02-29 0.815682 0.596392 \n", + "2012-03-31 0.819189 0.605105 \n", + "2012-04-30 0.794913 0.604817 \n", + "2012-05-31 0.685136 0.530009 \n", + "\n", + " \\\n", + "indexname \n", + "isd_bond B1284457361237 473223 449374 473486 B1286271269032 \n", + "mem_date \n", + "2012-01-31 0.472331 0.422999 0.402223 0.395578 0.372544 \n", + "2012-02-29 0.474737 0.434209 0.405999 0.390178 0.387912 \n", + "2012-03-31 0.485756 0.448240 0.416783 0.399525 0.390824 \n", + "2012-04-30 0.475874 0.444469 0.434348 0.408541 0.391641 \n", + "2012-05-31 0.425826 0.393537 0.363084 0.355187 0.345912 \n", + "\n", + " ... \\\n", + "indexname ... \n", + "isd_bond 472032 471621 B1285111736308 ... 495671 495672 495673 \n", + "mem_date ... \n", + "2012-01-31 0.366074 0.349387 0.371342 ... 0.0 0.0 0.0 \n", + "2012-02-29 0.367455 0.351022 0.376884 ... 0.0 0.0 0.0 \n", + "2012-03-31 0.378158 0.367131 0.365057 ... 0.0 0.0 0.0 \n", + "2012-04-30 0.376043 0.366198 0.370582 ... 0.0 0.0 0.0 \n", + "2012-05-31 0.327617 0.310424 0.327583 ... 0.0 0.0 0.0 \n", + "\n", + " \n", + "indexname \n", + "isd_bond 495707 495709 495710 495716 495719 495731 495760 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-02-29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-03-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-04-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-05-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 4998 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mv_weight_change_on_roll...mv_weight_eom_lm
indexnameref loans + hy daily price > 60 stable spreads 10 day...ref loans + hy daily price > 60 stable spreads 10 day
isd_bond459957471207B1284457361237473223449374473486B1286271269032472032471621B1285111736308...495671495672495673495707495709495710495716495719495731495760
mem_date
2012-01-310.7923100.6006710.4723310.4229990.4022230.3955780.3725440.3660740.3493870.371342...0.00.00.00.00.00.00.00.00.00.0
2012-02-290.0100890.0074840.0078420.0053700.0067070.0044000.0064080.0060700.004496-0.005877...0.00.00.00.00.00.00.00.00.00.0
2012-03-31-0.025517-0.007446-0.012267-0.005929-0.003466-0.005351-0.003250-0.003145-0.004246-0.003036...0.00.00.00.00.00.00.00.00.00.0
2012-04-30-0.087991-0.066940-0.050917-0.049038-0.046474-0.045524-0.041904-0.045430-0.040317-0.039651...0.00.00.00.00.00.00.00.00.00.0
2012-05-31-0.027947-0.021575-0.065440-0.015903-0.013311-0.014823-0.026388-0.012011-0.012439-0.012010...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 9996 columns

\n", + "
" + ], + "text/plain": [ + " mv_weight_change_on_roll \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 459957 471207 \n", + "mem_date \n", + "2012-01-31 0.792310 0.600671 \n", + "2012-02-29 0.010089 0.007484 \n", + "2012-03-31 -0.025517 -0.007446 \n", + "2012-04-30 -0.087991 -0.066940 \n", + "2012-05-31 -0.027947 -0.021575 \n", + "\n", + " \\\n", + "indexname \n", + "isd_bond B1284457361237 473223 449374 473486 B1286271269032 \n", + "mem_date \n", + "2012-01-31 0.472331 0.422999 0.402223 0.395578 0.372544 \n", + "2012-02-29 0.007842 0.005370 0.006707 0.004400 0.006408 \n", + "2012-03-31 -0.012267 -0.005929 -0.003466 -0.005351 -0.003250 \n", + "2012-04-30 -0.050917 -0.049038 -0.046474 -0.045524 -0.041904 \n", + "2012-05-31 -0.065440 -0.015903 -0.013311 -0.014823 -0.026388 \n", + "\n", + " ... \\\n", + "indexname ... \n", + "isd_bond 472032 471621 B1285111736308 ... \n", + "mem_date ... \n", + "2012-01-31 0.366074 0.349387 0.371342 ... \n", + "2012-02-29 0.006070 0.004496 -0.005877 ... \n", + "2012-03-31 -0.003145 -0.004246 -0.003036 ... \n", + "2012-04-30 -0.045430 -0.040317 -0.039651 ... \n", + "2012-05-31 -0.012011 -0.012439 -0.012010 ... \n", + "\n", + " mv_weight_eom_lm \\\n", + "indexname ref loans + hy daily price > 60 stable spreads 10 day \n", + "isd_bond 495671 495672 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 \n", + "2012-02-29 0.0 0.0 \n", + "2012-03-31 0.0 0.0 \n", + "2012-04-30 0.0 0.0 \n", + "2012-05-31 0.0 0.0 \n", + "\n", + " \n", + "indexname \n", + "isd_bond 495673 495707 495709 495710 495716 495719 495731 495760 \n", + "mem_date \n", + "2012-01-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-02-29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-03-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-04-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2012-05-31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 9996 columns]" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = df_piv.loc[:,[\"mv_weight_eom_lm\", \"mv_weight_change_on_roll\"]]\n", + "asort = df_piv.loc[:,[\"mv_weight_eom_lm\"]].sort_values(by=[\"2012-03-31\"], axis='columns', ascending=0)\n", + "display(asort.head())\n", + "colsort = asort.columns.get_level_values(2) # to get sorted columns after a sort\n", + "#colsort = asort.columns\n", + "w = list(colsort)\n", + "#display(w)\n", + "b = a.loc[:,(slice(None), slice(None), w)]\n", + "\n", + "c = b.reindex(w, axis='columns', level=2)#471207\n", + "c.head()\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The draw time for this plot will be slow for all clients.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\plotly\\api\\v1\\clientresp.py:40: UserWarning:\n", + "\n", + "Estimated Draw Time Too Long\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col = \"mv_weight_change_on_roll\"\n", + "#col = \"mv_weight_eom_lm\"\n", + "fig = plot_3dsurface_with_slider(c, colFilter=col, nbDates=40, nbSecurities=30, title=\"order by mv weight, show change\")\n", + "py.iplot(fig, filename='elevations-3d-surface')" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import plotly.plotly as py\n", + "from plotly.graph_objs import Surface\n", + "df = c\n", + "\n", + "\n", + "\n", + "#dfn = df.loc[:,[\"mv_weight_eom_lm\"]]\n", + " \n", + "znow= df.loc[:,[\"mv_weight_eom_lm\"]] # this needs to have access to every column\n", + "#znow = znow.iloc[:,range(10)].head(10) \n", + "\n", + "znowup = df.loc[:,[\"mv_weight_change_on_roll\"]] # this needs to have access to every column\n", + "znowup = znowup +2\n", + "#display(znow)\n", + "#display(znowup)\n", + "\n", + "#z1 = znow.as_matrix()\n", + "\n", + "\n", + "l = go.Layout(\n", + " title=\"double\",\n", + " autosize=False,\n", + " width=1200,\n", + " height=900,\n", + " #sliders = sliders,\n", + " margin=dict(\n", + " l=0,\n", + " r=0,\n", + " b=0,\n", + " t=50\n", + " )\n", + " , scene = dict( aspectratio = dict(x = 1, y = 1.5, z = 1),\n", + " xaxis = dict(\n", + " title=\"enum\", nticks=4, range = [0,10],),\n", + " yaxis = dict(\n", + " title=\"date\", nticks=4, range = [0,40],),\n", + " zaxis = dict(\n", + " title=\"weight\",nticks=4, range = [0,7],),\n", + " ),\n", + ")\n", + "#f = go.Figure(data =dict(z=znow.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), layout=l)\n", + "#f2 = go.Figure(data= dict(z=znowup.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), layout=l)\n", + "py.iplot([\n", + " dict(z=znow.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface'), \n", + " dict(z=znowup.iloc[:,range(10)].as_matrix() ,visible=True, showscale=False, opacity=0.9, type='surface')\n", + " \n", + "], filename=\"sdfs\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": {}, + "toc_section_display": "block", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb new file mode 100644 index 0000000..55f379d --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/kaggle_bm-checkpoint.ipynb @@ -0,0 +1,1864 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29Dec15\n", + "31May16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hideCode": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + "df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekday15_mindatestamphigh_bidlow_bidavg_bo_spreadnb_ticksopen_bidclose_bidlast_10_tick_avg_bid_returnlast_10_tick_avg_bo_spread
020161317102016-01-03 17:00:001.087231.086610.0001651421.087011.08664-2.760660e-060.000139
1201613171152016-01-03 17:15:001.087141.086620.000149801.086661.086741.104220e-050.000154
2201613171302016-01-03 17:30:001.086991.086710.0001411091.086741.08674-9.201579e-070.000153
3201613171452016-01-03 17:45:001.086871.086550.000102931.086741.086627.362178e-060.000094
420161318102016-01-03 18:00:001.086651.085230.0001134591.086621.085741.013142e-050.000093
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday 15_min datestamp high_bid \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:00 1.08723 \n", + "1 2016 1 3 17 1 15 2016-01-03 17:15:00 1.08714 \n", + "2 2016 1 3 17 1 30 2016-01-03 17:30:00 1.08699 \n", + "3 2016 1 3 17 1 45 2016-01-03 17:45:00 1.08687 \n", + "4 2016 1 3 18 1 0 2016-01-03 18:00:00 1.08665 \n", + "\n", + " low_bid avg_bo_spread nb_ticks open_bid close_bid \\\n", + "0 1.08661 0.000165 142 1.08701 1.08664 \n", + "1 1.08662 0.000149 80 1.08666 1.08674 \n", + "2 1.08671 0.000141 109 1.08674 1.08674 \n", + "3 1.08655 0.000102 93 1.08674 1.08662 \n", + "4 1.08523 0.000113 459 1.08662 1.08574 \n", + "\n", + " last_10_tick_avg_bid_return last_10_tick_avg_bo_spread \n", + "0 -2.760660e-06 0.000139 \n", + "1 1.104220e-05 0.000154 \n", + "2 -9.201579e-07 0.000153 \n", + "3 7.362178e-06 0.000094 \n", + "4 1.013142e-05 0.000093 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "#print(str_query)\n", + "df = getQueryDataframe(str_query, [min_date, max_date])\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2016-01-03 17:00:00\n", + "max date 2016-05-30 23:45:00\n" + ] + } + ], + "source": [ + "df.set_index('datestamp', inplace=True)\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2015-12-29 00:00:00\n", + "max date 2016-05-31 23:45:00\n" + ] + } + ], + "source": [ + "# load kaggle reference dataset for comparison\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df = df_kaggle\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + "\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAKFCAYAAACeFkmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUnWWZL+xfDamQpAqBzxz0QCeYSEJLiGQ40MoKCEdO\nFDQiSEKqV1AIdoM2CrLoMIW5GYXmEIki0keGlYQIdjegdLcggkabpVHEQMchDMugYpiaVIVUJdn7\n+yPZm1RSmYBK7eG61sKq/b5v7Xru2tub0l8999tQLBaLAQAAAAAAgCrV2N8LAAAAAAAAgLdC4AUA\nAAAAAEBVE3gBAAAAAABQ1QReAAAAAAAAVDWBFwAAAAAAAFVN4AUAAAAAAEBVE3gBAABlP/vZz/Lh\nD384BxxwQObPn9/fy6konZ2dGT16dB577LEkyYwZM3L11Vdv8+uKxWIWLlyYrq6uLV5zzjnn5Atf\n+EKS5Nvf/nYOPvjgt7TW733ve/njH/+YJHnssccyevTodHZ2vqXnBAAAqGTN/b0AAACgctx0003Z\nZ5998s1vfjO77bZbfy+nos2ZMyfNzdv+n1Q//elPM3v27Bx99NEZOHBgr9ecf/75KRaLb8u6nn/+\n+fzd3/1d7rvvvrz73e/OuHHj8qMf/SiDBw9+W54fAACgEgm8AACAstdeey2HHXZY9t577/5eSsXb\n3kBwe4Kstra2t7qcLX6/lpaWDB069G17fgAAgEpkpCEAAJAkOeKII7JkyZLcdNNNGT16dJJk9OjR\nueGGG/LBD34wU6ZMybp16/LMM89k5syZef/735/DDz8811xzTbq7u8vP88QTT2TatGl5//vfnxNO\nOCG33357jjjiiCS9j9ebM2dOjj322PLjrT3/8uXLM3r06Pzbv/1bPvKRj+SAAw7I9OnT8/TTT5e/\nfunSpfnMZz6TcePG5bDDDsvNN9+cJLn44ovT3t7eo+Z77rknRxxxRK+h1Ouvv57zzz8/EyZMyKRJ\nk/LAAw/0OL/xSMMXXnghp556aiZMmJCJEyfmC1/4Ql566aUsX748J554YpJk/Pjx+fa3v505c+bk\nlFNOycyZMzNhwoT88z//c4+RhiVf+9rXcvDBB+fggw/OFVdckbVr1ybpfeThxl//v//3/06SfPzj\nH8+cOXM2+5m/+OKLmTVrVj7wgQ9k/Pjx+eIXv5g///nP5ecaPXp0vv3tb+fYY4/NAQcckClTpuQX\nv/hF+fxdd92VI488MmPGjMlHPvKR/Mu//MtmPzsAAICdTeAFAAAkSe6+++7st99+Ofnkk/OjH/2o\nfPw73/lObr/99lx99dVZu3ZtZs6cmX322Sf//M//nGuuuSY//OEPc/nllydJXn755cycObMcmkyZ\nMiX/+I//uN1r6Orq2urzl9x00025/PLLc/fdd+eVV17JtddeW/7+n/70p/M//sf/yLe+9a1ceuml\n+frXv5677747U6ZMyc9//vP86U9/6lHbxz72sTQ0NGy2lksuuSSLFy/OLbfckq985Su5/fbbt7ju\nSy65JGvWrMnChQtz55135vnnn89VV12Vd7/73ZkzZ06S5MEHH8xRRx2VJPnhD3+Ygw46KAsXLsxh\nhx222fO9+uqr+dGPfpTbbrst11xzTe6///584xvf2K6f4be+9a0kyR133JGTTz65x7m1a9fmM5/5\nTJ5//vnccsstue222/LCCy/k85//fI/Q78Ybb8wXv/jF/Ou//mtaW1tz0UUXJUmeeuqpXHzxxTnr\nrLPy7//+7znxxBNzzjnn5Nlnn92utQEAAPQVgRcAAJAk2WOPPdLU1JTBgwf3GIF3/PHH573vfW/+\n8i//Mvfff38GDBiQ2bNnZ8SIEflf/+t/5ZJLLsm3vvWtdHR05Lvf/W4GDhyY2bNnZ+TIkWlvby+H\nPNtjW89fctppp2XixIkZPXp02tvb86tf/SpJ8sADD2TAgAG5/PLL8973vjeHHXZYLrroogwePDjj\nx4/P3nvvXd6p9eKLL+Y///M/M2XKlM3W0dHRkfvvvz/nnHNOxo8fn/e///259NJLt7ju5cuXp7W1\nNXvvvXf222+/XH/99TnppJPS1NSUd7zjHeWf7y677JIkGTRoUP7mb/4mI0eOzB577LHZ8zU1NeXL\nX/5y9ttvvxx22GE57bTTMm/evO36GZaeb7fddsuQIUN6nPvhD3+YZ599Ntddd13GjBmTAw44IDfc\ncEOeeuqp/PjHPy5f197ensMOOywjRozIzJkz8+tf/zrd3d15/vnn09DQkHe/+93Za6+90t7enltv\nvbXXGgAAAHYm9/ACAAC26i/+4i/Kn//ud7/L73//+4wbN658rFgsplAo5Nlnn83vfve7jB49OgMG\nDCifnzhxYn7yk59s1/fa1vOX7ps1fPjw8vnW1tbyuL/S929paSmf3zjQmjJlSr773e/mpJNOygMP\nPJBRo0blve9972brePrpp7NmzZq8733vKx8bM2ZMGht7/5vBU089NbNmzcrBBx+cv/qrv8qHP/zh\nXoO0kr322qvXXWUle+65Z971rneVH++///554YUX8tprr23xa7bH7373u/zP//k/s+eee5aPvetd\n78pee+2V3/72tznkkEOSJPvss0/5fGtra5L1u8MmTZqUsWPHZurUqRkxYkQ+9KEP5ZOf/GR23XXX\nt7QuAACAt0rgBQAAbFVpV1KyPvQ48MADc+WVV2523Z577plBgwalUCj0OL5x+NRbyFMKq7bn+V98\n8cUk6RGoJSmP4xswYECv9+MqmTJlSubOnZvly5fnO9/5zhZDqdI6N36upqamNDU19Xr9UUcdlb/6\nq7/Kww8/nB/+8If5h3/4h9x333257bbber1+4MCBW1xjks2CtdLPtLm5eZs/w63Z0vctFAo9XrdN\nf77J+p/FLrvskvnz5+cXv/hFHnnkkXz/+9/PnXfema997WvlsAwAAKA/GGkIAABst5EjR+a5557L\nu971rgwfPjzDhw/PK6+8kmuuuSZr1qzJvvvum6VLl2b16tXlr1myZEn581KQ0tnZWT62fPny7X7+\nbdlnn33ym9/8pse1X/nKV/LFL36xfP6AAw7IPffckyVLluToo4/u9Xne8573ZMCAAXniiSfKx379\n619vcQ033HBDli9fnuOOOy433HBDvvKVr+Q///M/8+KLL251J9eWvPDCC3n11VfLjx9//PHstdde\nGTx4cAYMGJDXX3+9Rxi38c9wa99v5MiR+cMf/pAXXnihfOxPf/pT/vjHP2bkyJHbXNcvfvGLzJkz\nJ+PHj8+ZZ56Z++67L/vvv3/+4z/+Y0dLBAAAeFsJvAAAgO02ZcqUNDY2ZtasWfnNb36Tn//85zn3\n3HOzZs2atLW15WMf+1gGDRqU888/P8uWLcv999+f+fPnl79+3333zS677JKbb745v//973P33Xfn\nBz/4wXY///asb926dbnkkkvy9NNP55FHHsltt92Www47rHzNJz7xidx6662ZOHFij9F+G2ttbc3x\nxx+fK6+8Mo899liefPLJXHjhhVsMk55++ulceuml+dWvfpXnnnsu999/f/baa6/sscceGTx4cJLk\nySef7BH0bc26dety1llnZenSpfne976Xm2++OZ/97GeTrB+t2NXVlVtuuSW///3v8/Wvfz1PPfVU\n+WtL3++//uu/snLlyh7P+8EPfjCjR4/OWWedlSVLluRXv/pVvvSlL2WfffbJBz7wgW2ua9CgQbn5\n5ptz++23Z/ny5fnRj36UZcuWZezYsdtVFwAAQF8ReAEAANtt8ODB+ad/+qe89tprOf744/O5z30u\nBx54YL785S8nWT++8JZbbsmf//znHHPMMfl//+//ZerUqeWvb21tzRVXXJEf/OAHOfroo/Pggw/m\n7/7u77b7+beltbU1t9xyS55++ul84hOfyMUXX5zPfe5zOfbYY8vXHHXUUVmzZk0+/vGPb/W5zj33\n3BxxxBE5/fTTM3PmzBxzzDG9jvpLkksuuSTDhw/PKaeckilTpuQPf/hDbr755jQ2NmbUqFE5/PDD\nc/LJJ2fhwoXbVcfIkSMzZsyY/PVf/3UuvPDCfOYzn8kJJ5yQZP0utXPPPTe33357pkyZkmXLluXT\nn/50+Wt33333HH/88bngggty44039njehoaGzJ07N3vssUdmzJiRk046Ke9617vyzW9+s8foyS3Z\nb7/9cu2112bhwoX56Ec/mvPPPz8nnXRSjjvuuO2qCwAAoK80FLc24B4AAOAtuvPOO/NP//RP+f73\nv9/fS0mS/Pa3v82nPvWpLFq0KK2trf29HAAAAN4Gzf29AAAAgJ3hpZdeyk9/+tPceeed+djHPibs\nAgAAqCFGGgIAAHVh1apVOe+887J69eqceeaZ/b0cAAAA3kZGGgIAAAAAAFDV7PACAAAAAACgqgm8\nAAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqa\nwAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACg\nqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAA\nAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAA\nAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAA\nAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvAC\nAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoC\nLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICq\nJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAA\nqGoCL4Aq8ctf/jIzZszY7Pj3v//9HHfccZk2bVoWLlzYDysDqB16LUDf0mcB+pY+C9Sz5v5eAADb\ndsstt+Tee+/NoEGDehxfs2ZNrrzyytx9990ZNGhQpk+fniOOOCLvfOc7+2mlANVLrwXoW/osQN/S\nZ4F6V5GB14oVK3fK99l998F55ZVVO+V77Sy1WFNSm3WpqTINHdrW30vo1bBhwzJnzpz8/d//fY/j\ny5Yty7Bhw/KOd7wjSTJhwoT89Kc/zUc/+tGtPl+xWExDQ0OfrRegGr2dvVafBdic32kB+pY+C9S7\nigy8dpbm5qb+XsLbrhZrSmqzLjWxIyZPnpzly5dvdryjoyNtbW+EdEOGDElHR8c2n6+hoWGn/XFB\nfxo6tK3m66yHGhN11ppK/eOCt7PX6rO1RZ21ox5qTOqjzyb10Wvr6T2rztpRD3Xqs7WlHt6zSX3U\nWQ81JvVV545yDy+AKtba2prOzs7y487Ozh6/xALw1um1AH1LnwXoW/osUC8EXgBVbOTIkXnuuefy\n6quvpru7Oz/72c8ybty4/l4WQE3RawH6lj4L0Lf0WaBe1PVIQ4Bqdd9992XVqlWZNm1azjnnnMyc\nOTPFYjHHHXdc9txzz/5eHkBN0GsB+pY+C9C39Fmg3jQUi8Vify9iUztr/mQtzrqsxZqS2qxLTZWp\nUudw94Vqf622Ry28J7elHmpM1Flr6qXX1strqc7aUQ911kONSf302aT2e209vWfVWTvqoU59trbU\nw3s2qY8666HGpL7q3FFGGgIAAAAAAFDVBF4AAAAAAABUNYEXAAAAAAAAVa15WxesW7cuF1xwQZ55\n5pk0NDTkkksuycCBA3POOeekoaEh++67by666KI0NjZm4cKFWbBgQZqbm3Paaafl8MMPz+rVq3P2\n2WfnpZdeypAhQ3L11Vdnjz322Bm1AQAAAAAAUAe2ucPr4YcfTpIsWLAgZ5xxRv7xH/8xV155Zc44\n44zMmzcvxWIxDz30UFasWJE77rgjCxYsyK233prrr78+3d3dmT9/fkaNGpV58+blmGOOydy5c/u8\nKAAAAAAAAOrHNnd4ffjDH86HPvShJMkf/vCH7Lrrrvnxj3+cgw46KEly6KGHZtGiRWlsbMy4cePS\n0tKSlpaWDBs2LEuXLs3ixYtzyimnlK/dnsBr990Hp7m56S2Utf2GDm3bKd9nZ6qlml7r7M6FX/9x\nZnz0LzNhvz37ezlvu1p6rUpqsSYAAAAAACrbNgOvJGlubs6sWbPyve99LzfeeGMWLVqUhoaGJMmQ\nIUOycuXKdHR0pK3tjf+je8iQIeno6OhxvHTttrzyyqo3U8sOGzq0LStWbHs91aTWavrN71/NsuX/\nnSXLXsqw/29wfy/nbVVrr1VSGzUJ7AAAAAAAqs82RxqWXH311fn3f//3zJ49O11dXeXjnZ2d2XXX\nXdPa2prOzs4ex9va2nocL10L26tYLPb4CAAAAAAAsKltBl7/8i//kptvvjlJMmjQoDQ0NGTMmDF5\n7LHHkiSPPvpoJk6cmLFjx2bx4sXp6urKypUrs2zZsowaNSrjx4/PI488Ur52woQJfVgOtaZQ7PkR\nAAAAAABgU9scafh//s//ybnnnpu//uu/ztq1a3Peeedl5MiRmT17dq6//vqMGDEikydPTlNTU2bM\nmJH29vYUi8WceeaZGThwYKZPn55Zs2Zl+vTpGTBgQK677rqdURc1orSzqyDxAgAAAAAAtmCbgdfg\nwYPzf//v/93s+J133rnZsalTp2bq1Kk9jg0aNCg33njjW1gi9axgpCEAAAAAALAN230PL+gPxfJI\nQ4EXAAAAAADQO4EXFa1Y3uHVzwsBAAAAAAAqlsCLilYolD5KvAAAAAAAgN4JvKhopR1eRhoCAAAA\nAABbIvCiohWMNAQAAAAAALZB4EVFKwVdRYkXAAAAAACwBQIvKlpph9c69/ACAAAAAAC2QOBFRXtj\npKHACwAAAAAA6J3Ai4r2xkjD/l0HAAAAAABQuQReVLTChlGGBYkXAAAAAACwBQIvKlop5yq4hxcA\nAAAAALAFAi8qWrF8D69+XggAAAAAAFCxBF5UtNIoQyMNAQAAAACALRF4UdFKOVdR4AUAAAAAAGyB\nwIuKVt7hVejnhQAAAAAAABVL4EVFK23sMtIQAAAAAADYEoEXFa0UdBlpCAAAAAAAbInAi4pWLJQC\nr35eCAAAAAAAULEEXlS0QmmkYUHiBQAAAAAA9E7gRUUrjTJ0Dy8AAAAAAGBLBF5UtDfu4dXPCwEA\nAAAAACqWwIuKVgq67PACAAAAAAC2ROBFRSsFXe7hBQAAAAAAbInAi4pW2thVtMMLAAAAAADYAoEX\nFa20s0veBQAAAAAAbInAi4pWzIaRhhIvAAAAAABgCwReVLRSziXwAgAAAAAAtkTgRUUrjzQs9PNC\nAAAAAACAiiXwoqLZ4QUAAAAAAGyLwIuKVgq6igIvAAAAAABgCwReVLRS4GWHF/WsUCjkwgsvzLRp\n0zJjxow899xzPc7fe++9+eQnP5njjjsu8+bN66dVAlQ3vRagb+mzAH1LnwVImrd2cs2aNTnvvPPy\n/PPPp7u7O6eddlre/e5352//9m+zzz77JEmmT5+eo446KgsXLsyCBQvS3Nyc0047LYcffnhWr16d\ns88+Oy+99FKGDBmSq6++OnvsscfOqIsaUR5p6B5e1LEHH3ww3d3dueuuu/L444/nqquuyle/+tXy\n+WuuuSb3339/Bg8enKOPPjpHH3103vGOd/TjigGqj14L0Lf0WYC+pc8CbCPwuvfee7Pbbrvl2muv\nzauvvppjjjkmn//853PSSSfl5JNPLl+3YsWK3HHHHbnnnnvS1dWV9vb2HHLIIZk/f35GjRqV008/\nPd/5zncyd+7cXHDBBX1eFLXDSENIFi9enEmTJiVJDjzwwCxZsqTH+dGjR2flypVpbm5OsVhMQ0ND\nfywToKrptQB9S58F6Fv6LMA2Aq+PfOQjmTx5cpL1gUNTU1OWLFmSZ555Jg899FCGDx+e8847L088\n8UTGjRuXlpaWtLS0ZNiwYVm6dGkWL16cU045JUly6KGHZu7cuX1fETWllHPJu6hnHR0daW1tLT9u\namrK2rVr09y8voXvu+++Oe644zJo0KAceeSR2XXXXbfreYcObeuT9VaaeqizHmpM1Enf6oteWy+v\npTprSz3UWQ81ViK/07559VBjos5aUy91VhJ99q1RZ+2ohxqT+qlzR2018BoyZEiS9Q3zC1/4Qs44\n44x0d3fn+OOPz5gxY/LVr341N910U/bbb7+0tbX1+LqOjo50dHSUjw8ZMiQrV67crkXtvvvgNDc3\nvdmadkgtvjFqqaaBA9e/RdcVizVVV4ma2B6tra3p7OwsPy4UCuVfWJcuXZof/OAHeeihhzJ48OCc\nffbZeeCBB/LRj350m8+7YsX29eRqNnRoW83XWQ81JuqsNZX474q+6LX18lqqs3bUQ531UGNSP302\nqf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FYDryT54x//mM9//vNpb2/Pxz/+8bz22mvl\nvwA48sgjc9lll2XixIk9GmpnZ2fa2tp6NNrOzs7t/suBV15ZtcOFvBm1+MaotZpWrepOsn6HYS3V\nldTea5XURk2V+Evr+PHj8/DDD+eoo47K448/nlGjRpXPtbW1ZZdddsnAgQPT1NSUPfbYI6+99lo/\nrhagOum1AH1LnwXoW/oswDYCrxdffDEnn3xyLrzwwnzgAx9IksycOTOzZ8/O2LFj85Of/CT7779/\nxo4dmxtuuCFdXV3p7u7OsmXLMmrUqIwfPz6PPPJIxo4dm0cffTQTJkzYKUVRO8ojDQtmGlK/jjzy\nyCxatCgnnHBCisVirrjiitx3331ZtWpVpk2blmnTpqW9vT0DBgzIsGHD8slPfrK/lwxQdfRagL6l\nzwL0LX0WIGkoFrd8d6TLL788DzzwQEaMGFE+dsYZZ+Taa6/NgAED8s53vjOXXXZZWltbs3Dhwtx1\n110pFov527/920yePDmvv/56Zs2alRUrVmTAgAG57rrrMnTo0G0uamftEKmF3SibqrWavnH/U/nx\nkj9lj113yZc/98H+Xs7bqtZeq6Q2aqrEHV59pdpfq+1RC+/JbamHGhN11pp66bX18lqqs3bUQ531\nUGNSP302qf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FZ3eF1wwQW54IILNju+YMGCzY5N\nnTo1U6dO7XFs0KBBufHGG3d4UVBSymMLW85lAQAAAACAOtfY3wuArSlNMtzKRkQAAAAAAKDOCbyo\naOUdXoV+XggAAAAAAFCxBF5UNDu8AAAAAACAbRF4UdGKBffwAgAAAAAAtk7gRUUrBV12eAEAAAAA\nAFsi8KKilXKugrwLAAAAAADYAoEXFa28w0viBQAAAAAAbIHAi4pmhxcAAAAAALAtAi8qWmmHV8E9\nvAAAAAAAgC0QeFHRiqWRhgIvAAAAAABgCwReVLRCoRR4Cb0AAAAAAIDeCbyoaBtnXOIuAAAAAACg\nNwIvKtrGu7pKu70AAAAAAAA2JvCiom2ccZloCAAAAAAA9EbgRUXbeIeXe3gBAAAAAAC9EXhR0Qo9\nAq9+XAgAAAAAAFCxBF5UtI1HGhYkXgAAAAAAQC8EXlQ0Iw0BAAAAAIBtEXhR0QqFjT6XdwEAAAAA\nAL0QeFHRirHDCwAAAAAA2DqBFxWtsNG2Lju8AAAAAACA3gi8qGgbb+qywwsAAAAAAOiNwIuKtnHI\nJe8CAAAAAAB6I/CiohWK7uEFAAAAAABsncCLirZxxlVwEy8AAAAAAKAXAi8q2sY7vAr9uA4AAAAA\nAKByCbyoaBvv8DLSEAAAAAAA6I3Ai4rW8x5e/bgQAAAAAACgYgm8qGjFje7b5R5eAAAAAABAbwRe\nVLSCkYYAAAAAAMA2CLyoaEUjDQEAAAAAgG1o3trJNWvW5Lzzzsvzzz+f7u7unHbaaXnve9+bc845\nJw0NDdl3331z0UUXpbGxMQsXLsyCBQvS3Nyc0047LYcffnhWr16ds88+Oy+99FKGDBmSq6++Onvs\nscfOqo0asPEOr4LECwAAAAAA6MVWd3jde++92W233TJv3rx84xvfyGWXXZYrr7wyZ5xxRubNm5di\nsZiHHnooK1asyB133JEFCxbk1ltvzfXXX5/u7u7Mnz8/o0aNyrx583LMMcdk7ty5O6suaoQdXgAA\nAAAAwLZsdYfXRz7ykUyePDnJ+uChqakpTz75ZA466KAkyaGHHppFixalsbEx48aNS0tLS1paWjJs\n2LAsXbo0ixcvzimnnFK+VuDFjtp4V5cdXgAAAAAAQG+2GngNGTIkSdLR0ZEvfOELOeOMM3L11Ven\noaGhfH7lypXp6OhIW1tbj6/r6Ojocbx07fbYfffBaW5uelMF7aihQ9u2fVGVqamaNsq4dtttcG3V\nlhp7rTaoxZoAAAAAAKhsWw28kuSPf/xjPv/5z6e9vT0f//jHc+2115bPdXZ2Ztddd01ra2s6Ozt7\nHG9ra+txvHTt9njllVU7WsebMnRoW1as2L4QrlrUWk3rNrqJ18svd2bFoG2+ZatGrb1WSW3UJLAD\nAAAAAKg+W72H14svvpiTTz45Z599dj71qU8lSd73vvflscceS5I8+uijmThxYsaOHZvFixenq6sr\nK1euzLJlyzJq1KiMHz8+jzzySPnaCRMm9HE51JqNpxgaaQgAAAAAAPRmq9tlvva1r+W1117L3Llz\ny/ffOv/883P55Zfn+uuvz4gRIzJ58uQ0NTVlxowZaW9vT7FYzJlnnpmBAwdm+vTpmTVrVqZPn54B\nAwbkuuuu2ylFUTuKG4Vc8i4AAAAAAKA3Ww28LrjgglxwwQWbHb/zzjs3OzZ16tRMnTq1x7FBgwbl\nxhtvfIsDR9vhAAAgAElEQVRLpF4Vi8WNb+HVI/wCAAAAAAAo2epIQ+hPm+ZbBXkXAAAAAADQC4EX\nFWvTe3a5hxcAAAAAANCbrY40hP606QhDIw2pV4VCIRdffHF+/etfp6WlJZdffnmGDx9ePv/EE0/k\nqquuSrFYzNChQ3Pttddm4MCB/bhigOqj1wL0LX0WoG/pswB2eFHBNh1hKO+iXj344IPp7u7OXXfd\nlbPOOitXXXVV+VyxWMzs2bNz5ZVXZv78+Zk0aVKef/75flwtQHXSawH6lj4L0Lf0WQA7vKhghYId\nXpAkixcvzqRJk5IkBx54YJYsWVI+98wzz2S33XbLN7/5zfz2t7/NYYcdlhEjRmzX8w4d2tYn6600\n9VBnPdSYqJO+1Re9tl5eS3XWlnqosx5qrER+p33z6qHGRJ21pl7qrCT67FujztpRDzUm9VPnjhJ4\nUbE2zbcKhf5ZB/S3jo6OtLa2lh83NTVl7dq1aW5uziuvvJJf/OIXufDCCzNs2LCceuqpGTNmTD7w\ngQ9s83lXrFjZl8uuCEOHttV8nfVQY6LOWlOJv5j3Ra+tl9dSnbWjHuqshxqT+umzSe332np6z6qz\ndtRDnfpsbamH92xSH3XWQ41JfdW5o4w0pGIV3MMLkiStra3p7OwsPy4UCmluXv/3CrvttluGDx+e\nkSNHZsCAAZk0aVKPv+ICYPvotQB9S58F6Fv6LIDAiwq2acC16T29oF6MHz8+jz76aJLk8ccfz6hR\no8rn/uIv/iKdnZ157rnnkiQ/+9nPsu+++/bLOgGqmV4L0Lf0WYC+pc8CGGlIBdt0Q5cdXtSrI488\nMosWLcoJJ5yQYrGYK664Ivfdd19WrVqVadOm5R/+4R9y1llnpVgsZty4cfnQhz7U30sGqDp6LUDf\n0mcB+pY+C5A0FCswRdhZ8ydrcdZlLdX0akdXvvSVReXHp35i/xz0l3v244reXrX0WpXUQk2VOIe7\nr1T7a7U9auE9uS31UGOizlpTL722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJ\nfdRZDzUm9VXnjjLSkIq1+Q6v/lkHAAAAAABQ2QReVKzCJjftqsDNiAAAAAAAQAUQeFGxNg245F0A\nAAAAAEBvBF5UrMKmjyVeAAAAAABALwReVKzihpGGTY0NSQReAAAAAABA7wReVKxSwNW4IfCSdwEA\nAAAAAL0ReFGxNmzwKu/w2vSeXgAAAAAAAInAiwpWCrjeGGnYn6sBAAAAAAAqlcCLilXa0NXU1Ljh\nscQLAAAAAADYnMCLilUo9NzhJe8CAAAAAAB6I/CiYhWz6UhDiRcAAAAAALA5gRcVq1BY/7G8w8tN\nvAAAAAAAgF4IvKhYpXt2NZZ3ePXnagAAAAAAgEol8KJilSYYNjWuf5uWRhwCAAAAAABsTOBFxSrd\ns6s80lDeBQAAAAAA9ELgRcUqjTRsatow0tBMQwAAAAAAoBcCLypWKeB6Y4eXwAsAAAAAANicwIuK\nVdjw0UhDAAAAAABgawReVKziJvfwKki8AAAAAACAXgi8qFiFDVu8mprWv03dwgsAAAAAAOiNwIuK\nVdrh1djgHl4AAAAAAMCWCbyoWKURhk1N7uEFAAAAAABs2XYFXr/85S8zY8aMJMlTTz2VSZMmZcaM\nGZkxY0a++93vJkkWLlyYY489NlOnTs3DDz+cJFm9enVOP/30tLe357Of/WxefvnlPiqDWlQKuEr3\n8LLDCwAAAAAA6E3zti645ZZbcu+992bQoEFJkieffDInnXRSTj755PI1K1asyB133JF77rknXV1d\naW9vzyGHHJL58+dn1KhROf300/Od73wnc+fOzQUXXNB31VBTSgFXU2PpHl4CLwAAAAAAYHPbDLyG\nDRuWOXPm5O///u+TJEuWLMkzzzyThx56KMOHD895552XJ554IuPGjUtLS0taWloybNiwLF26NIsX\nL84pp5ySJDn00EMzd+7c7VrU7rsPTnNz01soa/sNHdq2U77PzlQrNbX+4bUkyZDBLUmSXXZpqZna\nSmqtnqQ2awIAAAAAoLJtM/CaPHlyli9fXn48duzYHH/88RkzZky++tWv5qabbsp+++2XtrY3/k/u\nIUOGpKOjIx0dHeXjQ4YMycqVK7drUa+8smpH63hThg5ty4oV27emalFLNf33f7+eJOnuXpsk6VzV\nVTO1JbX1WpXUQk0COwAAAACA6rNd9/Da2JFHHpkxY8aUP3/qqafS2tqazs7O8jWdnZ1pa2vrcbyz\nszO77rrr27Rs6kGhsGGkYVPpHl79uRoAAAAAAKBS7XDgNXPmzDzxxBNJkp/85CfZf//9M3bs2Cxe\nvDhdXV1ZuXJlli1bllGjRmX8+PF55JFHkiSPPvpoJkyY8PaunppWCriaGtcHXu7hBQAAAAAA9Gab\nIw03dfHFF+eyyy7LgAED8s53vjOXXXZZWltbM2PGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/P\ngAEDct111/VFDdSoUsBVCrzkXQAAAAAAQG+2K/Dae++9s3DhwiTJ/vvvnwULFmx2zdSpUzN16tQe\nxwYNGpQbb7zxbVgm9eiNwGv9RsSixAsAAAAAAOjFDo80hJ1l05GGAi8AAAAAAKA3Ai8qVnmHV9OG\ne3gV+nM1AAAAAABApRJ4UbHs8AIAAAAAALaHwIuKVQq4GjcEXgV5FwAAAAAA0AuBFxWrsCHhampc\n/zYtRuIFAAAAAABsTuBFxdp0pGHBFi8AAAAAAKAXAi8qVmmkYVNT6R5e/bkaAAAAAACgUgm8qFil\nDV1NDaXAS+IFAAAAAABsTuBFxbLDCwAAAAAA2B4CLypWoRR4NTb2eAwAAAAAALAxgRcVqzzSsNEO\nLwAAAAAAYMsEXlSs8kjDDYGXHV7Uq0KhkAsvvDDTpk3LjBkz8txzz/V63ezZs/PlL395J68OoDbo\ntQB9S58F6Fv6LIDAiwpW2LDFq9EOL+rcgw8+mO7u7tx1110566yzctVVV212zYIFC/Kb3/ymH1YH\nUBv0WoC+pc8C9C19FiBp7u8FwJaUAq6mJju8qG+LFy/OpEmTkiQHHnhglixZ0uP8z3/+8/zyl7/M\ntGnT8vTTT2/38w4d2va2rrNS1UOd9VBjok76Vl/02np5LdVZW+qhznqosRL5nfbNq4caE3XWmnqp\ns5Los2+NOmtHPdSY1E+dO0rgRcX5wePPJ0me/dNrSZIlT7+c5I0Rh1BvOjo60traWn7c1NSUtWvX\nprm5OX/+859z00035Stf+UoeeOCBHXreFStWvt1LrThDh7bVfJ31UGOizlpTib+Y90WvrZfXUp21\nox7qrIcak/rps0nt99p6es+qs3bUQ536bG2ph/dsUh911kONSX3VuaMEXlSsUr7V0NDzMdSb1tbW\ndHZ2lh8XCoU0N69v3//2b/+WV155JX/zN3+TFStWZPXq1RkxYkSOPfbY/louQFXSawH6lj4L0Lf0\nWQCBFxWslG+9cQ8viRf1afz48Xn44Ydz1FFH5fHHH8+oUaPK50488cSceOKJSZJvf/vbefrpp/3C\nCvAm6LUAfUufBehb+iyAwIsKVgq4GjZs8SoUBF7UpyOPPDKLFi3KCSeckGKxmCuuuCL33XdfVq1a\nlWnTpvX38gBqgl4L0Lf0WYC+pc8CCLyoYOWRhhv+KfTnYqAfNTY25tJLL+1xbOTIkZtd56+zAN48\nvRagb+mzAH1LnwVIGvt7AbAlxZR2eK3/x0hDAAAAAACgNwIvKlZ5h9eGxEveBQAAAAAA9EbgRcVr\naEgaG9zDCwAAAAAA6J3Ai4pVGmHYsOE/7fACAAAAAAB6I/CiYm080tA9vAAAAAAAgC0ReFGx3gi8\n1v9joiEAAAAAANAbgRcVq5g3Eq6GhgY7vAAAAAAAgF4JvKhYPUYaJikIvAAAAAAAgF4IvKhYpR1d\n60caNkTeBQAAAAAA9EbgRcUq5VsNaUhDQ4w0BAAAAAAAeiXwomK9MdJw/Q4vIw0BAAAAAIDeCLyo\nXBuPNHzjIQAAAAAAQA/bFXj98pe/zIwZM5Ikzz33XKZPn5729vZcdNFFKRQKSZKFCxfm2GOPzdSp\nU/Pwww8nSVavXp3TTz897e3t+exnP5uXX365j8qgFhlpCAAAAAAAbI9tBl633HJLLrjggnR1dSVJ\nrrzyypxxxhmZN29eisViHnrooaxYsSJ33HFHFixYkFtvvTXXX399uru7M3/+/IwaNSrz5s3LMccc\nk7lz5/Z5QdSOzUca9u96AAAAAACAyrTNwGvYsGGZM2dO+fGTTz6Zgw46KEly6KGH5sc//nGeeOKJ\njBs3Li0tLWlra8uwYcOydOnSLF68OJMmTSpf+5Of/KSPyqAWlXd0NawPvdzDCwAAAAAA6E3zti6Y\nPHlyli9fXn5cLBbT0NCQJBkyZEhWrlyZjo6OtLW1la8ZMmRIOjo6ehwvXbs9dt99cJqbm3aokDdr\n6NC2bV9UZaq9prbWXZIkTU3r89hdW3dJQ9bfyKvaa9tUrdWT1GZNAAAAAABUtm0GXptqbHxjU1hn\nZ2d23XXXtLa2prOzs8fxtra2HsdL126PV15ZtaPLelOGDm3LihXbF8JVi1qoaWXH6iTJmrXr7w/X\n0dmVhoZk7bpC1de2sVp4rTZVCzUJ7AAAAAAAqs82Rxpu6n3ve18ee+yxJMmjjz6aiRMnZuzYsVm8\neHG6urqycuXKLFu2LKNGjcr48ePzyCOPlK+dMGHC27t6alpppGFDw/rdXSYaAgAAAAAAvdnhHV6z\nZs3K7Nmzc/3112fEiBGZPHlympqaMmPGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/PgAEDct11\n1/VFDdSoUr7VkKSxoSGFgsQLAAAAAADY3HYFXnvvvXcWLlyYJHnPe96TO++8c7Nrpk6dmqlTp/Y4\nNmjQoNx4441vwzKpSxvyrQ23jEsxAi8AAAAAAGBzOzzSEHaWjUcaNjQ0xAYvAAAAAACgNwIvKlYx\n68cZJut3eRXdxAsAAAAAAOiFwIuKVSwWy4lXQxpSKPTvegAAAAAAgMok8KJiFYvrxxkmdngBAAAA\nAABbJvCiYm0+0rA/VwMAAAAAAFQqgRcVq1gspmGjkYZ2eAEAAAAAAL0ReFGxNhtpGGMNAQAAAACA\nzQm8qGhvjDRc/5m8CwAAAAAA2JTAi4q1fqThGzu8kqQg8QIAAAAAADYh8KJirR9puP7zho2OAQAA\nAAAAbEzgRcVav8Nr/eelnV52eAEAAAAAAJsSeFGx1kdbPUcaFgVeAAAAAADAJgReVKweIw03fCLv\nAgAAAAAANiXwomIVi8Xyvbs2PgYAAAAAALAxgRcVq5g3dnY1lu/h1Y8LAgAAAAAAKpLAi4rVc6Th\n+o8FO7wAAAAAAIBNCLyoYBuNNNzwibwLAAAAAADYlMCLirV+h9f6pKthQ+LlHl4AAAAAAMCmBF5U\nrN5GGsq7AAAAAACATQm8qFjFvJFulXZ6FQoSLwAAAAAAoCeBFxXl5ddW55HH/5COVWt6jjQs7/Aq\n5idL/pQ/vtTZj6sEAAAAAAAqSXN/LwA29uSzL+e5P63MnnsMSrFYfGOk4Ybz/93ZnVvufyof2H/P\nfPbj+/fbOmFnKhQKufjii/PrX/86LS0tufzyyzN8+PDy+fvvvz+33XZbmpqaMmrUqFx88cVpbPT3\nDAA7Qq8F6Fv6LEDf0mcB7PCiwnSvKSRJ1qxd/7EhpR1e6z92rl6bJFm14SPUgwcffDDd3d256667\nctZZZ+Wqq64qn1u9enVuuOGG3H777VmwYEE6Ojry8MMP9+NqAaqTXgvQt/RZgL6lzwIIvKgw3WvX\nJVkfeBWKb4wyLH1c3b12w3WF/lge9IvFixdn0qRJSZIDDzwwS5YsKZ9raWnJggULMmjQoCTJ2rVr\nM3DgwH5ZJ0A102sB+pY+C9C39FkAIw2pMD12eG080nDDJ13d6zZct65f1gf9oaOjI62treXHTU1N\nWbt2bZqbm9PY2Jh3vvOdSZI77rgjq1atyiGHHLJdzzt0aFufrLfS1EOd9VBjok76Vl/02np5LdVZ\nW+qhznqosRL5nfbNq4caE3XWmnqps5Los2+NOmtHPdSY1E+dO0rgRUUpBVlr1hZSLL4RdJXu4bV6\nw/muNXZ4UT9aW1vT2dlZflwoFNLc3Nzj8bXXXptnnnkmc+bMKf/3ZltWrFj5tq+10gwd2lbzddZD\njYk6a00l/mLeF722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJfdRZDzUm9VXn\njjLSkIrStSHQ6l5bSDFvBF2lfweXd3ittcOL+jF+/Pg8+uijSZLHH388o0aN6nH+wgsvTFdXV+bO\nnVseTwDAjtFrAfqWPgvQt/RZADu8qDDlkYalkYWbjDRc3V3a4SXwon4ceeSRWbRoUU444YQUi8Vc\nccUVue+++7Jq1aqMGTMmd999dyZOnJhPf/rTSZITTzwxRx55ZD+vGqC66LUAfUufBehb+iyAwIsK\nU9q51b12ffC12UjD7rXrzxtpSB1pbGzMpZde2uPYyJEjy58vXbp0Zy8JoObotQB9S58F6Fv6LICR\nhlSYUpBVupdXeZrwhuCrPNLQDi8AAAAAAGADgRcVpXwPrzU9d3g1bki+Vm84v65QzNp1dnkBAAAA\nAABvYaThJz/5ybS2tiZJ9t5775x66qk555xz0tDQkH333TcXXXRRGhsbs3DhwixYsCDNzc057bTT\ncvjhh79ti6f2lEYarllXCrzS42PpHl5JsmZtIc1NMlsAAAAAAKh3byrw6urqSrFYzB133FE+duqp\np+aMM87IwQcfnAsvvDAPPfRQDjzwwNxxxx2555570tXVlfb29hxyyCFpaWl52wqgtmx6b66GTT7r\n2ijw6l6zLoMGug0dAAAAAADUuzeVFixdujSvv/56Tj755KxduzZf+tKX8uSTT+aggw5Kkhx66KFZ\ntGhRGhsbM27cuLS0tKSlpSXDhg3L0qVLM3bs2Le1CGpH1yb35iqNNHxjh9faLV4LAAAAAADUpzcV\neO2yyy6ZOXNmjj/++Dz77LP57Gc/m2KxWA4nhgwZkpUrV6ajoyNtbW3lrxsyZEg6Ojq2+fy77z44\nzc1Nb2ZpO2zo0LZtX1RlqrmmteuKPR4PaG5KW+su5ffWmo3OD2kbVNW1JtX9Wm1JLdYEAAAAAEBl\ne1OB13ve854MHz48DQ0Nec973pPddtstTz75ZPl8Z2dndt1117S2tqazs7PH8Y0DsC155ZVVb2ZZ\nO2zo0LasWLFyp3yvnaXaa1rdtbbH43Xr1mVlx+ryDq/O19eUz/3pz69lSHNDqlW1v1a9qYWaBHYA\nAAAAANWn8c180d13352rrroqSfLCCy+ko6MjhxxySB577LEkyaOPPpqJEydm7NixWbx4cbq6urJy\n5cosW7Yso0aNevtWT83pXrvJmMLSSMPSPbzWbHwPr573+wIAAAAAAOrTm9rh9alPfSrnnntupk+f\nnoaGhlxxxRXZfffdM3v27Fx//fUZMWJEJk+enKampsyYMSPt7e0pFos588wzM3DgwLe7BmrEukJh\ns5GGpf1bpR1ea9a+EXJ1u4cXAAAAAACQNxl4tbS05Lrrrtvs+J133rnZsalTp2bq1Klv5ttQZ3rb\nsVUKuhp6mVzYJfACAAAAAADyJkcaQl/oXttb4NXQ42OP6400BAAAAAAAIvCigpR2bO3S0lQ+1rDJ\nx41tdr8vAAAAAACgLgm8qBile3INGvjGpM2t7fD6r+de2TkLAwAA4P9n796j9Krre/G/Z5655DIh\nARLAKkFIiS0iJwR7sTS9aFPq5dAl+UEQDf39Vs+hnrVae1qOtqeVNL8fiGnRc1wipbWHKuWoSUQs\nhKOoCJaKiBANGBCQEIIg5AKZJDOTzGTy7N8fk4wJhAQy82RmP/v1WotFnvv3M3vznqz15rsfAAAY\n1xRejBt7L1G47w6vHOQ7vAZ3u6QhAAAAAACg8GIc2bvDa9I+O7xaD1B47f3z4O7iSC0NAAAAAAAY\nxxRejBt7v5Nr30sa7t3i1bLPt3h1tg/tALPDCwAAAAAASBRejCPDlzTs/NklDVsOsMOrc88lD3fb\n4QUAAAAAAEThxTjSv+eShu1ttbTV9uzsGi68ftZ4TbDDCwAAAAAA2IfCi3Fj73d4tdVa0t42dGru\nvZThgXZ4Ddbt8AIAAAAAABRejCP9ey5p2FZrTXvbUKm1b9G114ThSxra4QUAAAAAACi8GEcGBod2\neNVa99nhdYBLGra31dLa4pKGAAAAAADAEIUX48bAfju89p6aQ0VX6z47vdpqLanVWjO42yUNAQAA\nAAAAhRdj7LkX+vIvtz2SgV279/sOr449hddw0bXPDq9arTVttZbhHV73P7Ixjz615YiuGwAAAAAA\nGD8UXoypf3/wp/nW6p/m4fVbhi9p2FZrTXttz6m5p+ja96u82lpb0lZrze7dRer1Ip9e+VCWffPx\nI7xyAAAAAABgvFB4Maa6tw8kSbb29O9zScOWtLfv+Q6vPc9r2e+Shq2ptbZksF7P9r6BDO4usmX7\nziO5bAAAAAAAYBxReDGmtvb2D/27ZyD9ey5pWKu1pr2tluRnRVfLPo1XW21oh9fgYJHunqHCbHvf\nruyu14/gygEAAAAAgPFC4cWY2rqnsOruHdjvO7za93yH196i68U7vNpqrakXRbZsHyrMiiTbencd\nuYUDAAAAAADjhsKLMdXds3eHV3/6B+tpaUlaW1rSUXvRJQ33+RavWq0lbbWh2xu7d7zkvQAAAAAA\ngGppG+sFUF27Buvp3TmYJOnuGcjuej0d7bW0tOy7wyv7/TvZ8x1eewqxTVt+Vnjt3S0GAAAAAABU\nix1ejJm939+1988Du+rp3FN0dU1qT5JM6BjqZPf/Dq9WO7wAAAAAAIBhdngxZvbdkbW1ZyBHTe5I\nR3stSTJ96oS8+zdOTtfEoeJrnw1eaau1pG3PDq+NW/qG71d4AQAAAABANdnhxZjp3qfw2l0v0t3T\nn8Hd9SRDO7qmTOoY3tm17yUNa62tqbUO3bF5687h+7f2uqQhAAAAAABUkcKLMbP3koYd7UOnYVFk\n+Lu5Xmz/Sxr+bIfX7nqRiZ1Du8L27hgriiJFUTRs3QAAAAAAwPii8OKIemHbzqz+8eYkP9vhdcxR\nE4Yfb2ttOeDr9t3hte93eCXJCcdMTlutdfiShld/6Ye58oZVo710AAAAAABgnFJ4cUStuPPxfPJL\nD+bZ53uzdU9BdexRncOPt73cDq893+LV2pK0trbs97xpXR2Z1tUxfEnENeuez9qfbsv2Ppc4BAAA\nAACAKlB4cUStfWbb8L/3fufWvju8arWD7/Dae8nDfS99OLWrM9O6OrOtd1ee3tSTwd1DlzNcv2H7\nqK8fAAAAAAAYfxReHDHbegfy/LadSZJ1z21Ld09/2motOWpSx/BzXm6H154NXsOXMtz3kobd23dm\nYHB36kWRlXc/OXz/+ucUXgAAAAAAUAUKLxrqx09357sPP5ckWffstuH71/10W7b2DGRiZ1smdrYN\n39/2Mju8Wlv2Fl2t+/07yX7v8fSmnuH7128Y+vOadc9n5d3rUhTFaIwEAAAAAACMM22HfgocnqIo\n8k8rH87mrTtz6munDRdetdaW/GRjT+pFkRnTJmZCZy0tSYocZIfXHrXWl+7wmtjZlkkDu5Mkm7t3\nptbaks72WtY/ty1FUeRzX38sG7bsyOmnHJuTX3NUQ2YFAAAAAADGjh1ejKp71jyXex/ekCR54qfb\nsnnr0CUM73tkY9Y9O3SJwbmzZ2R3vUhRDJVVrS0tmdBZS7L/d3Ptq+XFO7xaD7zDq0jy2umTc/Jr\npmRT98488lR3NmzZMbyGJHn86a254WuPpn/X7tEcHQAAAAAAGCMKL0bkqQ3bs7V3IEmy4YW+XPd/\nfpT/devD2bx1x3DxlST3Prwh657dlulTJ+SMWccO3z9xT9G1t7Bqaz3wJQ1bhr/Da+iUrb1oh9e+\nl0WcecKUzDxhSpLkxm+tHb7/vh9tTL1e5LO3PZI7f/BM7vz+M0mSHf2Due+Rjdk1WD+8HwIAAAAA\nADCmFF68rKIo8twLfanXh777akf/YL5w+4/z8JMvJEkefWpL/t/P3pcrrr8/vTt35Za716VeFNld\nL3Lzt9flvkc2ZvKEtrzx5GOyfsP29OzYlckT27Np647hz9hbVA0XXofc4bX/Tq+WJBM6a5k0oTb8\n3NefMCWvP2Ho0oXrnt2Wzo5a3vwLx+X5bTuz/I7H89PNvUmSr967PjsHBvOPtzyUa/91TVbc8XiS\n5OmNPfnEFx/Ij/bMmSTrn9uenQODI/hpAgAAAAAAjdLw7/Cq1+tZsmRJHn300XR0dOSKK67ISSed\n1OiPHfeKPcXQ3uKmKIrsGqyno702fLtnx650TWxPS0tLiqLI81t3ZmpXZ9rbWlMURZ7Z3JujJnXk\nqMkdKYoiTz63PX2DRSa1taReL/LQky9k12A9Z8w6Nq0tLbn/0Y15YVt/3nL6CZk8oS3/tvqneWT9\nlpzzyzPz+tdMyS13P5l/f/Cn+d1fOjFvnfu6fO4bj+XbDz6bX5g5Lf/PO34x/7Ty4Tz+zNbc+YOn\n83+//Rdy47fWpiiS57ftzNU3PpgfP701r5vRld31eu7+4XNJkt+c83OZ/bppeWjdUHk0feqEHDW5\nI+211uzaXc+kFxVe++7c2tfee/de8nBv8TWhs5bWlpb9dng9v21nenfuGr79c8dOytmnn5D7H9mY\nb9z/k7S2tORXTjs+9zz0XD62bHWe+OnQd4t98/tP5/hjJub/3LM+W3sH8shTW3Lpwjn53o825pur\nns4Jx0zKn/5fZ2Tztp35319/LK85ZlIWnfOGFEWRf/33dWlra83vn/36TJ7Ynnsf3pAd/YP5tdNP\nyEqgsiEAACAASURBVMTOtjz+zNZs6t6ROT8/I5MmtKW7pz/PbNmR6V0d6WyvZdfg7vx0c19+bvqk\ntLfVUhRFNm3dmWOmdA6fI707d6WzvTZ8e+fAYGqtrWlvG7pdL4aKydaWA/8MKa9D5egdd9yRa665\nJm1tbVmwYEEuuOCCMVwtQDnJWoDGkrMAjSVnAY5A4XX77bdnYGAgy5cvz+rVq7N06dJce+21o/b+\n9aLINTf9MN09Aznu6IkZ2LU7m7p3pLWlJccdPTFpacnGF/qyu17kuKMnpr2tNRu27MjOgd153XFd\naW9tyYYtO7K9byAzpk3MtK6ObOremS3bd+aYoyZk+tQJeX7rzmzs3pFpXZ05/phJ2drTn2ef70vX\nxPb83PTJ6du5K09v6k1He2tOPG5Kdg3W89SG7SmSzDy+K22trVn37Lbs3LU7Jx0/JZMntGXtM1uz\nfceunHhcV6ZPnZh1z27Llu39OeGYSXnt9Ml5Ys/tqZM7cvJrjspTG7fnhW396Wyv5dQTp+bZzb15\nflt/WlqSU187NS9s7x/+vqzXzZic/l27s6l76PZRkzsyoaOWjXu+y+rL//7E8JxJsuqxTZnW1ZHu\nnqFLE37xzrW59TtPZkf/7kye0JZHnurOX/7jPSmK5LTXH50fP701/+vWHyVJzvuNU/Lwky/kkae6\nkyTvnndydu2u5x9ufihJ0tleS8/OXam1tmR3vcixUyektaUlx06dkOde6BsuqiYdcodX9jw+9Ie9\nxdfe13e219LakhRFcvSUztRaW9Le1ppdg/W8/jVH5Y0nH5PJE9rSu3OohFr4tp/P6sc354mfbkvX\nxPZccu5p+eSNP8znb/9xkuTs00/IPQ9tyNL//f0USaZO7shzL/RlyWfuG/7urw0v9OXRn3Rn9+56\nBvZcDvG7Dz2XiZ1t2bK9f/hnfexRE/L0pqFdZZ0dj+Wk47ry42e2piiSCR21zHrt1Dz+zNb0D+zO\nhI5aZp84LU9t2J7unoF0dtTyhhOn5fmtO/PM5t50dtQy+3XT0rNjIE8+tz1ttdb8/GunprUleeLZ\nbakXySmvOSqd7bWhc25gd046vitHTe7ITzb2ZFvfQF47oyvHTOnMs8/35YVtO3Pc0ZNy/NETs6l7\nRzZ178gxR03ICcdMSndPfzZs2ZEpk9rzmmMnp3fHrjz3Ql8mdNTymmMnZ9dgPRu29KW1pSUnHDMp\nLS3J5m396R8YzPFHT0pHe2s27vlvbca0iZk8sS2bu3dm+45dQ8XnpI5s2b4zW3oGcnRXR46eMiHb\nevvzwvb+TJnYnmOnTkjPjsFs3rojkzrbMmPaxOwc2J1NW3ekvdaa446emN27i2zqHjqvZ0ybmNbW\nlmzcsiMDg7tz/NGT8gsnHZ3f/aUTX22sjDsHy9Fdu3blox/9aG688cZMnDgx73nPe/LWt74106dP\nH+NVA5SLrAVoLDkL0FhyFuAIFF6rVq3KvHnzkiRz5szJmjVrDvmaGTOmvKrP+P/ef/ZhrY3Geedv\n/Px+ty96+2n73T5//i+86Pah3/O9v/eL+91+3zveuN/tC373Fw96e9lH3rnf7RVX7n/7t3/59Yde\nBIyBg+Xo2rVrM3PmzEydOjVJctZZZ+W+++7L29/+9kO+76vN2rKqwpxVmDExJ43ViKytyrE0Z3Op\nwpxVmHE88nfaw1eFGRNzNpuqzDmeyNmRMWfzqMKMSXXmfLUa/h1ePT096erqGr5dq9UyOOi7kABe\nqYPlaE9PT6ZM+dkvuMmTJ6enp+eIrxGg7GQtQGPJWYDGkrMAR6Dw6urqSm9v7/Dter2etraGbywD\naBoHy9EXP9bb27vfX2IBeGVkLUBjyVmAxpKzAEeg8Jo7d27uuuuuJMnq1asze/bsRn8kQFM5WI7O\nmjUr69evT3d3dwYGBnL//ffnzDPPHKulApSWrAVoLDkL0FhyFiBpKYqiaOQH1Ov1LFmyJI899liK\nosiVV16ZWbNmNfIjAZrKgXL04YcfTl9fXxYuXJg77rgj11xzTYqiyIIFC/Le9753rJcMUDqyFqCx\n5CxAY8lZgCNQeAEAAAAAAEAjNfyShgAAAAAAANBICi8AAAAAAABKrSkLr507d+ZP/uRPctFFF+U/\n/+f/nBdeeOElz1mxYkXOO++8XHDBBbnzzjv3e+wb3/hGLr300uHbq1evzvnnn58LL7wwn/rUpxq+\n/gM53Jle7nXf+MY38ju/8ztZtGhRFi1alO9973tHbJZ6vZ7Fixdn4cKFWbRoUdavX7/f43fccUcW\nLFiQhQsXZsWKFQd9zfr16/Oe97wnF110Uf7mb/4m9Xr9iM2xr9Gc6eGHH868efOGj81XvvKVIz7P\nXocz114PPPBAFi1aNHx7vByrKhnJ8SuTQ8156623Dmf44sWLS3vuHWrOvS677LJ87GMfO8KrGz2H\nmvPBBx/MRRddlPe85z35wAc+kP7+/jFa6eE71Iy33HJL3v3ud2fBggX5/Oc/P0arHD0v/n2wV1Uy\nqBnmlLP7k7PlUKWslbPVmFPWloecHSJny0PODpGz5VKFrK1SziajmLVFE/rnf/7n4pOf/GRRFEVx\n6623Fpdffvl+j2/cuLF417veVfT39xfbtm0b/nNRFMXll19enHPOOcV//a//dfj55557brF+/fqi\nXq8X/+k//afioYceOnLD7HG4M73c6/7H//gfxW233XZkh9jja1/7WvEXf/EXRVEUxQ9+8IPi/e9/\n//BjAwMDxe/8zu8U3d3dRX9/f3HeeecVmzZtetnX/NEf/VHx3e9+tyiKorjsssuKr3/960d4miGj\nOdOKFSuK66677sgPcQCHM1dRFMWnP/3p4l3veldx/vnnDz9/vByrKjnc41c2B5tzx44dxdve9rai\nr6+vKIqi+LM/+7Pi9ttvH5N1jtTB5tzrC1/4QnHBBRcUV1111ZFe3qg52Jz1er0499xziyeffLIo\niqG8XLt27ZiscyQOdSzPPvvsYsuWLUV/f//wf6dldaDfB0VRnQxqljnl7M/I2fKoStbK2WrMKWvL\nRc4OkbPlIWflbBlVIWurkrNFMbpZ25Q7vFatWpV58+YlSX7jN34j99xzz36PP/jggznzzDPT0dGR\nKVOmZObMmXnkkUeSJHPnzs2SJUuGn9vT05OBgYHMnDkzLS0t+fVf//V85zvfOWKz7HW4M73c6x56\n6KF86UtfykUXXZSlS5dmcHBwTGaZM2dO1qxZM/zY2rVrM3PmzEydOjUdHR0566yzct99973sax56\n6KH88i//8vB8Y3FsktGdac2aNfnWt76V9773vfmrv/qr9PT0HPmB9jicuZJk5syZufrqq/d7r/Fy\nrKrkcI9f2Rxszo6OjixbtiwTJ05MkgwODqazs3NM1jlSB5szSb7//e/ngQceyMKFC8dieaPmYHOu\nW7cu06ZNy2c/+9m8733vS3d3d0455ZSxWuphO9SxfMMb3pDt27dnYGAgRVGkpaVlLJY5Kg70+yCp\nTgY1y5xydoicLZeqZK2crcacsrZc5OwQOVseclbOllEVsrYqOZuMbtaWvvD64he/mHe96137/bN9\n+/ZMmTIlSTJ58uRs3759v9f09PQMP773OXtLhXe84x37nRw9PT3p6ura77kvfr/RNpoz7Xv/vq87\n++yzc9lll+Vzn/tc+vr6smzZsobO9OK17vszrdVqw4XbweY40Gv2/Y/5SByblzOaM51xxhn50Ic+\nlM997nM58cQTc8011xy5QV7kcOZKknPOOSdtbW37vdd4OVZVcrjHr2wONmdra2umT5+eJLnhhhvS\n19eXs88+e0zWOVIHm3Pjxo255pprsnjx4rFa3qg52JxbtmzJD37wg7zvfe/LZz7zmXz3u999yf8A\nUgYHmzFJTj311CxYsCDvfOc781u/9Vs56qijxmKZo+JAvw+S6mRQs8wpZ+VsGVUla+VsNeaUteUi\nZ4fI2fKQs3K2jKqQtVXJ2WR0s/al71Iy559/fs4///z97vvjP/7j9Pb2Jkl6e3tfcrC7urqGH9/7\nnH1/cId6bqNPntGcad/7933dggULhv/8tre9LV/72tcaNs+LvXit9Xp9+IR+JXPs+5rW1tb9njtW\n/2GP5kzz588fnmP+/Pm5/PLLj9AUL3U4c72c8XKsqmQ0j994drA5996+6qqrsm7dulx99dWl/T9e\nDjbnbbfdli1btuSSSy7Jpk2bsnPnzpxyyik577zzxmq5h+1gc06bNi0nnXRSZs2alSSZN29e1qxZ\nk7e85S1jstbDdbAZH3nkkXzrW9/KN7/5zUyaNCkf/OAH89WvfjVvf/vbx2q5DVGVDGqWOeWsnC1b\nziaytlnyJ6lGziayNmmerJWzcrZs5OzPbsvZ8qhC1lY9Z5PDy6DS7/A6kLlz5+bf/u3fkiR33XVX\nzjrrrP0eP+OMM7Jq1ar09/dn+/btWbt2bWbPnn3A9+rq6kp7e3ueeuqpFEWRb3/723nzm9/c8Ble\n7HBnOtDriqLIueeem+eeey5Jcs899+SNb3zjEZ3lrrvuSpKsXr16v5/9rFmzsn79+nR3d2dgYCD3\n339/zjzzzJd9zWmnnZZ77713eL6xODbJ6M70h3/4h3nwwQeTHPlj82KHM9fLGS/HqkpG8/iNZweb\nM0kWL16c/v7+/P3f//3w5QnK6GBzXnzxxbnppptyww035JJLLsm73vWuUv6FNTn4nCeeeGJ6e3uH\nv6j1/vvvz6mnnjom6xyJg804ZcqUTJgwIZ2dnanVajnmmGOybdu2sVpqw1Qlg5plTjkrZ8uo6lnb\nLPmTVCNnE1mbNE/Wylk5WzZydoicLZcqZG3VczY5vAxqKYqiOELrO2J27NiRv/iLv8imTZvS3t6e\nj3/845kxY0Y+85nPZObMmXnb296WFStWZPny5SmKIn/0R3+Uc845Z/j19957b5YtW5b/+T//Z5Kh\nE+rKK6/M7t278+u//uv5sz/7s9LM9HKv+/a3v51PfOITmTBhQmbNmpUPf/jDaW9vPyKz1Ov1LFmy\nJI899liKosiVV16Zhx9+OH19fVm4cGHuuOOOXHPNNSmKIgsWLMh73/veA75m1qxZWbduXS677LLs\n2rUrp5xySq644orUarUjMkejZnrooYdy+eWXp729PdOnT8/ll1++3/bV8T7XXk8//XT+/M//PCtW\nrEiScXOsqmQkx69MDjbn6aefngULFuTNb37z8P+ddfHFF2f+/PljvOpX71DHc6+bbropTzzxRP7b\nf/tvY7jaw3eoOe+55558/OMfT1EUOfPMM/PhD394rJf8qh1qxi984Qv50pe+lPb29sycOTOXX355\nOjo6xnrZh23f3wcrV66sVAY1y5xyVs6WUZWyVs42/5yytlzkrJwtGzkrZ8uoCllbpZxNRi9rm7Lw\nAgAAAAAAoDqa8pKGAAAAAAAAVIfCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8GFd++MMf5q//+q9f1Wve8IY3jMpnP/jgg7nqqqtG5b0AAAAAAIAjp22sFwD7etOb3pQ3velN\nY/LZjz/+eJ5//vkx+WwAAAAAAODwKbwYdffee2+uvvrqtLW15dlnn80ZZ5yRj3zkI/nKV76S66+/\nPvV6PW984xvzN3/zN+ns7Myv/uqv5o1vfGM2b96cD33oQ/mHf/iH3HDDDVm3bl0WL16c7u7uTJo0\nKX/913+dM844I08//XQ++MEPpq+vL//hP/yHQ67npptuype//OV0d3fnt3/7t3PxxRdn8eLFee65\n59LS0pJLL700p59+ej75yU+mr68v1157bY4//vh873vfy9KlS5MkixYtyh//8R8nSa666qrU6/Wc\neuqped3rXpcNGzZk/fr1eeaZZ3L++efnv/yX/9LQny8AAAAAALA/lzSkIR588MEsXrw4t912W/r7\n+3PddddlxYoVWbZsWW6++eYce+yxue6665IkW7ZsySWXXJKbb745bW0/62A/+MEPZtGiRVm5cmX+\n+3//7/nTP/3TDAwM5PLLL895552Xm2++OXPnzn1F69mwYUO+/OUv58///M/zkY98JAsWLMhNN92U\na6+9NosXL05ra2s+8IEP5K1vfeshC6snn3wy119/ff72b/82SfLoo4/muuuuyxe/+MV8+tOfzrZt\n2w7zpwYAAAAAABwOO7xoiF/6pV/KKaeckiT5/d///fzJn/xJjj766FxwwQVJkl27duW0004bfv6L\nd2r19vbmqaeeyu/+7u8mSebMmZOpU6fmiSeeyPe+9718/OMfT5Kce+65+fCHP3zI9Zx22mnDZdp3\nvvOdPPHEE/nkJz+ZJBkcHMxPfvKTVzzbySefnClTpgzf/pVf+ZV0dHTk2GOPzbRp07J9+/YcddRR\nr/j9AAAAAACAkVF40RC1Wm34z0VRZPfu3Xn7298+XE719vZm9+7dw8+ZMGHCfq8viiJFUbzkvr2v\n2ftYS0tLWlpaDrmefd+/Xq/n+uuvz7Rp05IM7f6aPn16fvSjHw0/p6WlZb/P37Vr18uutbOz82Vf\nBwAAAAAANJ5LGtIQq1atyoYNG1Kv1/Ov//qv+au/+qt84xvfyPPPP5+iKLJkyZJcf/31L/v6rq6u\nnHjiifn617+eJFm9enU2b96cU089Nb/2a7+WW265JUny9a9/PQMDA69qbb/6q7+az3/+80mSxx9/\nPOeee2527NiRWq2WwcHBJMnRRx+dtWvXpiiK/OQnP8mjjz56OD8GAAAAAADgCLDDi4Y47rjj8qEP\nfSgbNmzI2Wefnfe9732ZNGlS/uAP/iD1ej2/+Iu/mEsuueSg73HVVVdlyZIlufrqq9Pe3p6rr746\nHR0dWbx4cT74wQ9m2bJledOb3pTJkye/qrV9+MMfzuLFi/Mf/+N/TJL83d/9Xbq6unLGGWfkU5/6\nVD72sY/lAx/4QL70pS/l937v93LyySfnrLPOOuyfBQAAAAAA0FgtheuvMcruvffefOpTn8oNN9ww\n1ksBAAAAAAAqwA4vmsJXvvKV/OM//uMBH7v55puP8GoAAAAAAIAjyQ4vAAAAAAAASq11rBcAAAAA\nAAAAI6HwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAA\nAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEA\nAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqY1a4fXAAw9k0aJFL7n/jjvuyIIFC7Jw4cKsWLFitD4O\noHLkLEDjyVqAxpKzAI0lZ4EqaxuNN/mnf/qn3HLLLZk4ceJ+9+/atSsf/ehHc+ONN2bixIl5z3ve\nk7e+9a2ZPn36aHwsQGXIWYDGk7UAjSVnARpLzgJVNyo7vGbOnJmrr776JfevXbs2M2fOzNSpU9PR\n0ZGzzjor991332h8JEClyFmAxpO1AI0lZwEaS84CVTcqhdc555yTtraXbhbr6enJlClThm9Pnjw5\nPT09h3y/oihGY1kATUPOAjTeaGatnAV4KX+nBWgsOQtU3ahc0vDldHV1pbe3d/h2b2/vfuH6clpa\nWrJp0/ZGLm3MzZgxpelnTMzZbKow54wZh86o8UTOHlxVztlmnzExZ7OpQtbK2eZizuZRhRmTauRs\nUo2srdI5a87mUYU55WxzqcI5m1RjzirMmFRrzldrVHZ4vZxZs2Zl/fr16e7uzsDAQO6///6ceeaZ\njfxIgEqRswCNJ2sBGkvOAjSWnAWqoiE7vFauXJm+vr4sXLgwf/mXf5k//MM/TFEUWbBgQY4//vhG\nfCRApchZgMaTtQCNJWcBGkvOAlXTUozTi7E2+5a8Km07NGfzqMKcZbsswUg0+7FMqnPONvuMiTmb\nTVWytirH0pzNowpzVmHGpDo5mzR/1lbpnDVn86jCnHK2uVThnE2qMWcVZkyqNeer1dBLGgIAAAAA\nAECjKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAA\nAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAA\nAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAA\nAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUA\nAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gB\nAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BRe\nAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLUR\nF171ej2LFy/OwoULs2jRoqxfv36/x2+55Za8+93vzoIFC/L5z39+pB8HUDlyFqDxZC1AY8lZgMaS\nswBJ20jf4Pbbb8/AwECWL1+e1atXZ+nSpbn22muHH/+7v/u73HrrrZk0aVLe+c535p3vfGemTp06\n0o8FqAw5C9B4shagseQsQGPJWYBRKLxWrVqVefPmJUnmzJmTNWvW7Pf4G97whmzfvj1tbW0piiIt\nLS2v6H1nzJgy0qWNe1WYMTFns6nKnOOJnB2ZKsxZhRkTc9JYjcjaqhxLczaXKsxZhRnHI3+nPXxV\nmDExZ7OpypzjiZwdGXM2jyrMmFRnzldrxIVXT09Purq6hm/XarUMDg6mrW3orU899dQsWLAgEydO\nzPz583PUUUe9ovfdtGn7SJc2rs2YMaXpZ0zM2WyqMOd4/GUhZw9fVc7ZZp8xMWezqUrWVuVYmrN5\nVGHOKsyYVCdnk+bP2iqds+ZsHlWYU842lyqcs0k15qzCjEm15ny1RvwdXl1dXent7R2+Xa/Xh4P0\nkUceybe+9a1885vfzB133JEXXnghX/3qV0f6kQCVImcBGk/WAjSWnAVoLDkLMAqF19y5c3PXXXcl\nSVavXp3Zs2cPPzZlypRMmDAhnZ2dqdVqOeaYY7Jt27aRfiRApchZgMaTtQCNJWcBGkvOAozCJQ3n\nz5+fu+++OxdeeGGKosiVV16ZlStXpq+vLwsXLszChQtz0UUXpb29PTNnzsy73/3u0Vg3QGXIWYDG\nk7UAjSVnARpLzgIkLUVRFGO9iANp9mtQVuk6m+ZsHlWYczxeh7tRmv1YJtU5Z5t9xsSczaYqWVuV\nY2nO5lGFOaswY1KdnE2aP2urdM6as3lUYU4521yqcM4m1ZizCjMm1Zrz1RrxJQ0BAAAAAABgLCm8\nAAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoK\nLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKm1jfQN6vV6lixZkkcffTQd\nHR254oorctJJJw0//uCDD2bp0qUpiiIzZszIVVddlc7OzpF+LEBlyFmAxpO1AI0lZwEaS84CjMIO\nr9tvvz0DAwNZvnx5Lr300ixdunT4saIoctlll+WjH/1ovvCFL2TevHl55plnRvqRAJUiZwEaT9YC\nNJacBWgsOQswCju8Vq1alXnz5iVJ5syZkzVr1gw/tm7dukybNi2f/exn8+Mf/zi/+Zu/mVNOOWWk\nHwlQKXIWoPFkLUBjyVmAxpKzAKNQePX09KSrq2v4dq1Wy+DgYNra2rJly5b84Ac/yOLFizNz5sy8\n//3vz+mnn563vOUth3zfGTOmjHRp414VZkzM2WyqMud4ImdHpgpzVmHGxJw0ViOytirH0pzNpQpz\nVmHG8cjfaQ9fFWZMzNlsqjLneCJnR8aczaMKMybVmfPVGnHh1dXVld7e3uHb9Xo9bW1Dbztt2rSc\ndNJJmTVrVpJk3rx5WbNmzSsK002bto90aePajBlTmn7GxJzNpgpzjsdfFnL28FXlnG32GRNzNpuq\nZG1VjqU5m0cV5qzCjEl1cjZp/qyt0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vE3+E1d+7c3HXX\nXUmS1atXZ/bs2cOPnXjiient7c369euTJPfff39OPfXUkX4kQKXIWYDGk7UAjSVnARpLzgKMwg6v\n+fPn5+67786FF16Yoihy5ZVXZuXKlenr68vChQvzkY98JJdeemmKosiZZ56Z3/qt3xqFZQNUh5wF\naDxZC9BYchagseQsQNJSFEUx1os4kGbfklelbYfmbB5VmHM8XpagUZr9WCbVOWebfcbEnM2mKllb\nlWNpzuZRhTmrMGNSnZxNmj9rq3TOmrN5VGFOOdtcqnDOJtWYswozJtWa89Ua8SUNAQAAAAAAYCwp\nvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAb0T6\nSwAAEYxJREFUAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAA\nAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpjbjw\nqtfrWbx4cRYuXJhFixZl/fr1B3zeZZddlo997GMj/TiAypGzAI0nawEaS84CNJacBRiFwuv222/P\nwMBAli9fnksvvTRLly59yXOWLVuWxx57bKQfBVBJchag8WQtQGPJWYDGkrMAo1B4rVq1KvPmzUuS\nzJkzJ2vWrNnv8e9///t54IEHsnDhwpF+FEAlyVmAxpO1AI0lZwEaS84CJG0jfYOenp50dXUN367V\nahkcHExbW1s2btyYa665Jp/61Kfy1a9+9VW974wZU0a6tHGvCjMm5mw2VZlzPJGzI1OFOaswY2JO\nGqsRWVuVY2nO5lKFOasw43jk77SHrwozJuZsNlWZczyRsyNjzuZRhRmT6sz5ao248Orq6kpvb+/w\n7Xq9nra2obe97bbbsmXLllxyySXZtGlTdu7cmVNOOSXnnXfeId9306btI13auDZjxpSmnzExZ7Op\nwpzj8ZeFnD18VTlnm33GxJzNpipZW5Vjac7mUYU5qzBjUp2cTZo/a6t0zpqzeVRhTjnbXKpwzibV\nmLMKMybVmvPVGnHhNXfu3Nx55515xzvekdWrV2f27NnDj1188cW5+OKLkyQ33XRTnnjiiVcUpAD8\njJwFaDxZC9BYchagseQswCgUXvPnz8/dd9+dCy+8MEVR5Morr8zKlSvT19fnmrAAo0DOAjSerAVo\nLDkL0FhyFiBpKYqiGOtFHEizb8mr0rZDczaPKsw5Hi9L0CjNfiyT6pyzzT5jYs5mU5WsrcqxNGfz\nqMKcVZgxqU7OJs2ftVU6Z83ZPKowp5xtLlU4Z5NqzFmFGZNqzflqtTZgHQAAAAAAAHDEKLwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwA\nAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagov\nAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrC\nCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLW2kb5BvV7PkiVL\n8uijj6ajoyNXXHFFTjrppOHHb7311lx//fWp1WqZPXt2lixZktZWPRvAKyVnARpP1gI0lpwFaCw5\nCzAKO7xuv/32DAwMZPny5bn00kuzdOnS4cd27tyZT3ziE/mXf/mXLFu2LD09PbnzzjtH+pEAlSJn\nARpP1gI0lpwFaCw5CzAKO7xWrVqVefPmJUnmzJmTNWvWDD/W0dGRZcuWZeLEiUmSwcHBdHZ2vqL3\nnTFjykiXNu5VYcbEnM2mKnOOJ3J2ZKowZxVmTMxJYzUia6tyLM3ZXKowZxVmHI/8nfbwVWHGxJzN\npipzjidydmTM2TyqMGNSnTlfrREXXj09Penq6hq+XavVMjg4mLa2trS2tmb69OlJkhtuuCF9fX05\n++yzX9H7btq0faRLG9dmzJjS9DMm5mw2VZhzPP6ykLOHryrnbLPPmJiz2VQla6tyLM3ZPKowZxVm\nTKqTs0nzZ22VzllzNo8qzClnm0sVztmkGnNWYcakWnO+WiMuvLq6utLb2zt8u16vp62tbb/bV111\nVdatW5err746LS0tI/1IgEqRswCNJ2sBGkvOAjSWnAUYhe/wmjt3bu66664kyerVqzN79uz9Hl+8\neHH6+/vz93//98PbZgF45eQsQOPJWoDGkrMAjSVnAUZhh9f8+fNz991358ILL0xRFLnyyiuzcuXK\n9PX15fTTT8+NN96YN7/5zfmDP/iDJMnFF1+c+fPnj3jhAFUhZwEaT9YCNJacBWgsOQuQtBRFUYz1\nIg6k2a9BWaXrbJqzeVRhzvF4He5GafZjmVTnnG32GRNzNpuqZG1VjqU5m0cV5qzCjEl1cjZp/qyt\n0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vElzQEAAAAAACAsaTwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAA\nAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAA\nAABAqSm8AAAAAAAAKDWFFwAAAAAAAKU24sKrXq9n8eLFWbhwYRYtWpT169fv9/gdd9yRBQsWZOHC\nhVmxYsVIPw6gcuQsQOPJWoDGkrMAjSVnAUah8Lr99tszMDCQ5cuX59JLL83SpUuHH9u1a1c++tGP\n5p//+Z9zww03ZPny5dm8efNIPxKgUuQsQOPJWoDGkrMAjSVnAUah8Fq1alXmzZuXJJkzZ07WrFkz\n/NjatWszc+bMTJ06NR0dHTnrrLNy3333jfQj4f9v7w5Cmn4fOI5/zKmFW0n0o1MGiXbpkNZNBKGk\nQxLosJlpHQLpFESHujS6JETdxA5eCoQKCQ8lVFASghRkqRERgZTXghy1LTZkz+8g7Uc//3z3//nd\n/Pbseb9u2zfs+TB6EzysAKfQWQAoPVoLAKVFZwGgtOgsAEghvz8gmUwqHA7nX1dWVmplZUWhUEjJ\nZFKRSCT/rLa2Vslk8v/6uX/9FSn8iyznwkaJneXGlZ1/Ejrrjws7XdgosROlVYrWuvJZsrO8uLDT\nhY1/Iv5Ou34ubJTYWW5c2fknobP+sLN8uLBRcmfnf+X7G17hcFipVCr/OpfLKRQK/c9nqVTqt7gC\nAAqjswBQerQWAEqLzgJAadFZACjChVdLS4ump6clSfPz82pqaso/a2ho0NLSkhKJhLLZrGZnZ9Xc\n3Oz3twQAp9BZACg9WgsApUVnAaC06CwASBXGGOPnB+RyOV25ckUfP36UMUZDQ0N6//690um0YrGY\npqamNDIyImOMotGoTp48WayzA4AT6CwAlB6tBYDSorMAUFp0FgCKcOEFAAAAAAAAAAAABMn3P2kI\nAAAAAAAAAAAABIkLLwAAAAAAAAAAAFiNCy8AAAAAAAAAAABYLbALr1wup3g8rlgspoGBAS0tLf32\nfGpqStFoVLFYTOPj4wGd0r9COycnJ9XT06Pe3l7F43HlcrmATupPoZ2/XL58WTdu3Njg0xVHoY1v\n375VX1+fTpw4oXPnzimTyQR0Un8K7Xzw4IG6uroUjUZ1586dgE5ZHAsLCxoYGFjzviv9cWUnnbWL\nC611qbMSrS2HnXT2d3TWDi61ls66sZPW2oPOrqKz9qCzq+isXVxorUudlYrYWhOQJ0+emIsXLxpj\njJmbmzNnz57NP8tms+bw4cMmkUiYTCZjuru7zdevX4M6qi9eO3/+/GkOHTpk0um0McaY8+fPm6dP\nnwZyTr+8dv5y9+5dc/z4cXP9+vWNPl5ReG3M5XLm2LFj5vPnz8YYY8bHx83i4mIg5/Sr0GfZ2tpq\nlpeXTSaTyf85tdHo6Kjp7Ow0PT09v73vSn9c2Uln7eNCa13prDG0tlx20tl/0Fl7uNJaOuvGTlpr\nFzq7is7ag87SWRu50FpXOmtMcVsb2De8Xr9+rba2NknS/v379e7du/yzxcVF1dfXa9u2baqurtaB\nAwf06tWroI7qi9fO6upq3bt3T1u2bJEkraysqKamJpBz+uW1U5LevHmjhYUFxWKxII5XFF4bP336\npLq6Ot2+fVv9/f1KJBLas2dPUEf1pdBnuXfvXv348UPZbFbGGFVUVARxTN/q6+s1PDy85n1X+uPK\nTjprHxda60pnJVpbLjvp7Co6axdXWktn3dhJa+1CZ1fRWXvQWTprIxda60pnpeK2NrALr2QyqXA4\nnH9dWVmplZWV/LNIJJJ/Vltbq2QyueFnLAavnZs2bdKOHTskSWNjY0qn02ptbQ3knH557fzy5YtG\nRkYUj8eDOl5ReG1cXl7W3Nyc+vv7devWLb18+VIvXrwI6qi+eO2UpMbGRkWjUR09elTt7e3aunVr\nEMf07ciRIwqFQmved6U/ruyks/ZxobWudFaiteWyk87SWRu50lo668ZOWmsXOruKztqDztJZG7nQ\nWlc6KxW3tYFdeIXDYaVSqfzrXC6XH/XvZ6lU6rdhNvHa+ev1tWvXNDMzo+HhYWtvYr12Pn78WMvL\nyxocHNTo6KgmJyc1MTER1FHXzWtjXV2ddu/erYaGBlVVVamtrW3NrbstvHZ++PBBz58/17NnzzQ1\nNaVv377p0aNHQR21JFzpjys7f72ms/ZwobWud1Zyp0HlspPO0lkbud7acumP5EZnJVorlU9r6Syd\ntQ2d/ec1nbWHC611vbPS+hoU2IVXS0uLpqenJUnz8/NqamrKP2toaNDS0pISiYSy2axmZ2fV3Nwc\n1FF98dopSfF4XJlMRjdv3sx/bdZGXjtPnTqliYkJjY2NaXBwUJ2dneru7g7qqOvmtXHXrl1KpVL5\n/zxwdnZWjY2NgZzTL6+dkUhEmzdvVk1NjSorK7V9+3Z9//49qKOWhCv9cWWnRGdt40JrXe+s5E6D\nymUnnaWzNnK9teXSH8mNzkq0Viqf1tJZOmsbOruKztrFhda63llpfQ1a+z2xDdLR0aGZmRn19vbK\nGKOhoSE9fPhQ6XRasVhMly5d0pkzZ2SMUTQa1c6dO4M6qi9eO/ft26f79+/r4MGDOn36tKTV8HR0\ndAR86v+u0OdZDgptvHr1qi5cuCBjjJqbm9Xe3h70kdel0M5YLKa+vj5VVVWpvr5eXV1dQR+5KFzr\njys76ax9XGitq52VaK2tO+ksnbWRq60tt/5IbnRWorXl1Fo6S2dtQ2fprI1caK2rnZX8tbbCGGM2\n6JwAAAAAAAAAAABA0QX2TxoCAAAAAAAAAAAAxcCFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUX\nAAAAAAAAAAAArMaFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUXAAAAAAAAAAAArPY37Py3bWHd\ngd8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 14880\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(2, 5, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "i_row, i_col = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[i_row, i_col])\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "# i_col += 1\n", + "# sns.distplot(df.bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " i_col += 1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + " x_axis_col = \"ohlc_price\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "\n", + " x_axis_col = \"period_return\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " i_row, i_col = 1, 0 # move down one row\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + " x_axis_col = \"day\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + "plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "hideCode": false, + "hideOutput": true + }, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# all at once\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"bo_spread\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, size, aspect, dropna, plot_kws, diag_kws, grid_kws)\u001b[0m\n\u001b[1;32m 2071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"scatter\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2072\u001b[0m \u001b[0mplot_kws\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"edgecolor\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"white\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2073\u001b[0;31m \u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mplot_kws\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2074\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"reg\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2075\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mregression\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mregplot\u001b[0m \u001b[0;31m# Avoid circular import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_offdiag\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1491\u001b[0m \"\"\"\n\u001b[1;32m 1492\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1493\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_lower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1494\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_upper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1495\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_lower\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1423\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpalette\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkw_color\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mkw_color\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1424\u001b[0m func(data_k[x_var], data_k[y_var], label=label_k,\n\u001b[0;32m-> 1425\u001b[0;31m color=color, **kwargs)\n\u001b[0m\u001b[1;32m 1426\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1427\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_clean_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, hold, data, **kwargs)\u001b[0m\n\u001b[1;32m 3432\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3433\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlinewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverts\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3434\u001b[0;31m edgecolors=edgecolors, data=data, **kwargs)\n\u001b[0m\u001b[1;32m 3435\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3436\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1896\u001b[0m warnings.warn(msg % (label_namer, func.__name__),\n\u001b[1;32m 1897\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1898\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1899\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)\u001b[0m\n\u001b[1;32m 4061\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ymargin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.05\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4062\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4063\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4064\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautoscale_view\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4065\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36madd_collection\u001b[0;34m(self, collection, autolim)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1761\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mautolim\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1762\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1763\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollections\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mget_datalim\u001b[0;34m(self, transData)\u001b[0m\n\u001b[1;32m 227\u001b[0m result = mpath.get_path_collection_extents(\n\u001b[1;32m 228\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m offsets, transOffset.frozen())\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minverse_transformed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mget_path_collection_extents\u001b[0;34m(master_transform, paths, transforms, offsets, offset_transform)\u001b[0m\n\u001b[1;32m 1008\u001b[0m return Bbox.from_extents(*_path.get_path_collection_extents(\n\u001b[1;32m 1009\u001b[0m \u001b[0mmaster_transform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_3d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1010\u001b[0;31m offsets, offset_transform))\n\u001b[0m\u001b[1;32m 1011\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_has_nonfinite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vertices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \"\"\"\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# all at once\n", + "#sns.pairplot(df, hue=\"bo_spread\")" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import dill as pickle\n", + "with open(simname+'_eurusd_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQpHV9P/D3c/fT9xw9187eF8rGIOb4eRAqlgajpCxA\nBDQLlMT8kZhDTEVNIlJlhDWS0hQVKY9UjMTERQIKhChRSYiKR5DFLAJ7zuzu7M5M90zfx3N9v78/\neqZnevrpc7qnu2c+r5Qpto/pb8/T08/n+X4/389H4JxzEEIIIYSQjhG7PQBCCCGEkM2OAi5CCCGE\nkA6jgIsQQgghpMMo4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixDSER/5yEfwD//wD673HTx4\nEIuLix19/bm5Odx8880dfQ1CCGkUBVyEkE1pdHQUX/va17o9DEIIAQDI3R4AIaS/HT16FA8++CBE\nUcTw8DA+9rGPYffu3QCA559/HjfffDNisRj279+Pv/3bv4XX6y17/uc//3k8+uijkGUZO3fuxJEj\nRxAIBKq+3uHDh7F3714cP34c8Xgc73znO/HHf/zHuHDhAt773vdi7969mJmZwZEjR/C+970Pzz//\nPGzbxqc//Wn813/9FyRJwmtf+1p8/OMfh6qqeOCBB/DUU0+BMYZt27bh4x//OEZHR8te8+abb8bt\nt9+Ot73tbQCA++67D5xz3H777fjwhz+MeDwOALj66qvxp3/6pxVjfvWrX43bbrsNP/7xj5HL5XDn\nnXfit37rt6q+f0mScPfdd2NqagrJZBI+nw/33Xcf9uzZ0/qBIoR0Fc1wEUJa9uyzz+JLX/oSvvKV\nr+Cxxx7Dtddeiz/8wz/EcgOLubk5/OM//iO+/e1vY25uDk899VTZ87/73e/ikUcewdGjR/HEE09g\ncnIS//zP/1z3dS9evIh//dd/xaOPPoonn3wSTz/9NABgdnYWf/AHf4Bvf/vbiEQipcf/y7/8C158\n8UV885vfxBNPPIFsNosnn3wS3/jGN3DixAl8/etfxze/+U1cffXV+Ku/+quK17vxxhvx6KOPAgAc\nx8Fjjz2GG2+8EQ899BAmJyfx6KOP4qtf/Sqmp6eRTqcrnu84DkKhEB555BF89rOfxV/8xV9gcXGx\n6vt/5plnEAwG8dBDD+Hb3/42Dh06hK9+9auNHxhCSM/pmxmuF154Affddx8efPDBmo+bnp7GBz7w\nATz++OMAgMXFRfzZn/0ZCoUCRkZGcO+990LX9Y0YMiGb3v/8z//g7W9/OwYHBwEA119/PT75yU/i\nwoULAIC3vOUtpb+3/fv3V+RtPfvss3jb296GUCgEAPjoRz/a0OvedNNNUBQFiqLgbW97G77//e9j\n//79kGUZV1xxRcXjf/jDH+Kd73wnPB4PAOCzn/0sAOBP/uRP8H//93+44YYbAACMMeTz+Yrn//Zv\n/zb+5m/+BtFoFL/4xS+wc+dO7Nq1C1dddRV+//d/H5cuXcIb3vAGfOhDH6o6O/e7v/u7AIDLLrsM\nBw4cwE9/+lP89Kc/rfr+t2/fjgcffBDT09P4yU9+gte+9rUN/W4IIb2pLwKuL37xi3jsscfqBkrf\n+MY38JWvfKXsS/1zn/scrr32Wlx//fX4whe+gKNHj+L222/v8IgJ2RrcWrFyzmHbNgBAlle+YgRB\nqHi8JEkQBKH071QqhVQqhcnJyZqvu/rncs4hisXJelVVy+5zezwAxGIxMMbAGMPv/d7v4T3veQ8A\nwDRNJJPJiud7vV5cc801eOKJJ/D888/jxhtvBAC85jWvwXe/+108++yz+NGPfoQbb7wRf//3f48r\nr7yy4mdIklT6b8YYJEmq+v6feeYZPPTQQ3jve9+L3/md30E4HC4FsYSQ/tQXS4o7duzA/fffX/r3\nK6+8gsOHD+Pw4cP4oz/6o9IUfigUqliOeO6553DVVVcBAH7jN34DP/zhDzdu4IRscm9605vw5JNP\nli5y/u3f/g3hcBg7d+5s6PlveMMb8J//+Z/IZDIAgPvvvx9f/vKX6z7vscceA2MMyWQS//Ef/4E3\nv/nNNR//+te/Hk888QRM0wRjDHfffTf+/d//HW9605vw8MMPl17/7/7u7/Dnf/7nrj/j3e9+Nx55\n5BE8//zzuOaaawAUc7k+97nP4S1veQv+8i//Evv27cPU1JTr87/xjW8AAF588UWcPXsWv/qrv1r1\n/X//+9/HddddhxtvvBG7d+/G9773PTiOU/f3QgjpXX0xw3XNNdeUXd197GMfwz333IN9+/bh61//\nOr70pS/hgx/8IH7zN3+z4rmZTKY0xe/z+VzzKwghrXnjG9+I22+/HbfddhsYYxgcHMTnP//50oxT\nPVdffTVOnTqFW265BQCwb98+fOITn6j7vEKhgHe9613IZrN4z3veg9e//vU1Z4BuvvlmzMzM4Prr\nrwfnHL/2a7+Gw4cPQxRFzM3N4d3vfjcEQcD4+DiOHDni+jMOHToEWZZxzTXXQNM0AMBtt92Gj3zk\nI7j22muhqioOHjyIa6+91vX5P/vZz/DQQw+BMYbPfOYzCIVCVd//yy+/jLvuuguPPPIIJEnC5Zdf\njhMnTtT9vRBCepfA3dYEetCFCxdw55134qGHHsLrXvc6vPrVrwYAWJaFXbt2lX1JvvGNb8QPfvAD\nAMB1112HL33pSxgaGsLLL7+Mz3zmM/j85z/flfdACFm/w4cP473vfW9px2A/OHjwIJ599tlSrhsh\nZOvpixmutXbv3o1PfepTmJiYwHPPPYdoNFr1sVdeeSX++7//G9dffz2eeeYZvO51r9vAkRJCmvWj\nH/0I9957r+t9v/7rv77BoyGEkPboyxmu48eP41Of+hRs24YgCPjkJz9ZqvsDlM9wxWIxfPjDH0Y2\nm8XAwIBrHSBCCCGEkE7qm4CLEEIIIaRf9cUuRUIIIYSQfkYBFyGEEEJIh/V80nw0SmUcmjEw4EU8\nnuv2MMg60DHsb3T8+hsdv/7WC8cvEnHvNkEzXJuMLEv1H0R6Gh3D/kbHr7/R8etvvXz81hVwvfDC\nCzh8+HDF7V/+8pfxjne8o1QN/syZM2CM4a677sJNN92Ew4cPY3p6ej0vTQghhBDSN1peUqzV33C5\nbMOhQ4dKtz311FMwTRNHjx7FsWPHcOTIETzwwAOtvjwhhBBCSN9oeYZrbX/D1V588UV84QtfwC23\n3FKq6r66p+EVV1yB48ePt/rShBBCCCF9peUZrrX9DVd7xzvegfe85z3w+/34wAc+gKeffhqZTAZ+\nv7/0GEmSYNs2ZLnn8/YJIYQQQtal7dEO5xy33XZbqWH01VdfjV/84hfw+/3IZrOlxzHGGgq2Bga8\nPZ0E14uq7ZAg/YOOYX+j49ff6Pj1t149fm0PuDKZDK699lo8+eST8Hq9+PGPf4wbbrgBhUIBTz/9\nNN7+9rfj2LFjOHDgQEM/r9vbO/tNJBKgUhp9jo5hf6Pj19/o+PW3Xjh+1QK+tgVcjz/+OHK5HG66\n6SZ88IMfxK233gpVVfH6178eV199NRhj+MEPfoCbb74ZnHPcc8897XppQgghhJCe1vO9FLsdqfab\nXojuyfrQMexvdPz6Gx2//tYLx48KnxJCCCGEdAkFXISQjrIZQ49PpBNCSMdRwEUI6ai5dAbJgtHt\nYRBCSFdRESxCSEdtCwW7PQRCCOk6muEihBBCCOkwCrgIIYQQQjqMAi5CCCGEkA6jgIsQQgghpMMo\n4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixBCCCGkwyjgIoQQQgjpMAq4CCGEEEI6jAIuQggh\nhJAOo4CLEEIIIaTDKOAihBBCCOkwCrhIX8hkCt0ewoZxGEPesLo9DEIIIW1EARfpC4lEDpzzbg9j\nQ5iWg0Q23+1hEEIIaSO52wMgpBGTk4PdHsKG0TUF44PBbg+DEEJIG9EMFyGkL/18bg5si8x6EkL6\nH81wEUL60i+NjEAQhG4PgxBCGkIzXISQvkTBFiGkn1DARQghhBDSYRRwEUIIIYR0GAVchBBCCCEd\nRgEXIX2Mc45XZqLdHgYhhJA6KOAipI8JgoDdo1unRlk/eTkRhcWcbg+DENIj1lUW4oUXXsB9992H\nBx98sOz2J554Av/0T/8ESZJw4MAB3H333RBFEddddx38fj8AYHJyEvfee+96Xp4QAkCVpW4PgbjY\nFxyELNKxIYQUtRxwffGLX8Rjjz0GXdfLbi8UCvjsZz+Lxx9/HLqu484778TTTz+NN73pTeCcVwRn\nhBCyGVGwRQhZreUlxR07duD++++vuF1VVXzta18rBWK2bUPTNLz88svI5/N43/veh1tvvRXHjh1r\nfdSEkJ5i2DZORhe6PQxCCOlZLc9wXXPNNbhw4ULF7aIoYnh4GADw4IMPIpfL4Y1vfCNOnDiBO+64\nAzfeeCOmpqbw/ve/H9/61rcgy7WHMDDghUxLJk2JRALdHsKGsW0HnAOKsrk+I/14DCdGwxDFrVWM\n9FImDZszbA+Eym7vx+NHVtDx62+9evw60tqHMYZPf/rTOHv2LO6///5iYu/u3di5c2fpv8PhMKLR\nKMbHx2v+rHg814khblqRSADRaLrbw9gwyVQOts0wNOjv9lCaMj27iMGgDwGvVnHfVjuG/UwGIENE\ntLByvOj49Tc6fv2tF45ftYCvI7sU77rrLhiGgc997nOlpcWHH34YR44cAQDMzc0hk8kgEol04uXJ\nFhIKevsu2AKAnWODrsEWIYSQzaltM1yPP/44crkcDh06hIcffhi/8iu/gttuuw0AcOutt+Jd73oX\nPvrRj+KWW26BIAi455576i4nEkIIIYRsBgLnnHd7ELV0e2qw3/TCdCpZHzqG/cNmDKdTizgYHi7d\nRsevv9Hx62+9cPw2dEmREEK2AlkUsTsw0LXXjxlZJK1C116fENI4WtMjhJB1UKXu7ZD1ySokYWvt\nDCWkX1HARQghfUqXlG4PgRDSIFpSJGQLmUumkTPMbg+DEEK2HAq4CNlCgroHmrJ1J7YLto25bKbb\nw9gyHM66PQRCegYFXIRsIbqqQBK37p+9LIrwKrQMt1FO5ma6PQRCesbW/eYlhGw5sigioFLB2Y1y\nmW97t4dASM+ggIuQVSzLQS5POU6EEELaiwIuQlaxbAcFw+r2MEgXzOUot6sXzBjzsJjd7WEQ0nZb\nN3uWEBdeXYVXV7s9DNIFDuvpphtbxpASgix0r7YZIZ1CM1ykZbbtIDqX7PYwthzHYZiej3d7GJvO\nhN+9HQfZWB5Rg0DFXMkmRAEXaZkoitA8tONro0mSiOGgr9vDIIQQ0gQKuEjLRFFAMOTt9jC2JJ+H\nlj1J/+Gclm3J1kUBFyGEkA0xVZhFgdEuYLI1UdI8IYSQDbFbH+/2EAjpGprhIoR0xXQ8gVSh0O1h\nEELIhqCAi5AGnJyOwrTKawMZJtUKWo8d4RCCHk+3h0EIIRuCAi5ScuFsFPms0fTzZs4tIJvZ3DMV\n+3dGoK5q+mw7DJdiqS6OqP/R1n9CyFZCOVykZGLHEESp+Rh8fNtAS8/rZ7IkYtfEYLeH0XOyhom8\nZWHYT2UrCCFkta11liQ1tRo0bUSwlUzmOv4aZP0USYKubK3abBZzuj2ErsvYBZhNtOMxmIkz+Ysd\nHBEhvYcCLtIXsjnaSt4PVFmCT2utRphh28hZ/dfH8kQi1u0hdJ3FbTicNfx4TVSxR5/o4IgI6T20\npEj6wsR4uNtDIB1m2DYczuHtsxmyywdHuz2ErhtQ/N0eAiE9jwIuQkhPoB2LpNdxzpFlKfilULeH\nQvoQLSkSQsgW8Upmbt05ZwkrB7vBn7H5Wvlw2JzSG0hrKOAiJbbtwLYoAZiQzWqvLwJFlNb1M2zu\ngKF+IJVzDJwrzK/rtXqNIIgIy5FuD4P0KQq4SEk2XUAqQbsBCdmsZGH9X/nDagCqWD8bxStp2KlT\nfhshyyiHi5SEBqh2EiGEENIJ67rceeGFF3D48OGK27/3ve/hhhtuwE033YSHHnoIAMAYw1133YWb\nbroJhw8fxvT09HpempBNwXEYGNtseS6EEELWanmG64tf/CIee+wx6LpedrtlWbj33nvx8MMPQ9d1\n3HLLLXjzm9+Mn/3sZzBNE0ePHsWxY8dw5MgRPPDAA+t+A4T0s2gyA4+qIOzX6z+YkC7inFM7JkLW\noeUZrh07duD++++vuP306dPYsWMHQqEQVFXF6173Ovz0pz/Fc889h6uuugoAcMUVV+D48eOtj5qQ\nTWJsMLjpgy3Drl+BPJ7Pb8BIWmMzBrbpdts172Rutqlq8oSQci0HXNdccw1kuXKCLJPJIBAIlP7t\n8/mQyWSQyWTg968Ux5MkCXYDX8SEkP7FOcfUYqLuYzJG7261n81lkDQ3d3P2RhzwjTeULE8Icdf2\nvx6/349sNlv6dzabRSAQqLidMeYasK01MOCFLK9vG/NWE4kE6j9oizhxeg67dwxDUfrrM9StY+gw\nBocxqA38bTZqZCTYlsd0SyvHIhIJ4Cez5/FrY9s7MKL2SVsFcHAElc09y9os+g7tb716/NoecO3d\nuxfT09NIJBLwer343//9X9xxxx0QBAFPP/003v72t+PYsWM4cOBAQz8vHqcyBc2IRAKIRtPdHkbP\nCHg1JPqs1EU3j2EyX0DetDAW6s0vrH6wfPx2S+Ge/1vM2gY4AEOm1YZl9B3a33rh+FUL+NoWcD3+\n+OPI5XK46aab8JGPfAR33HEHOOe44YYbMDo6ire+9a34wQ9+gJtvvhmcc9xzzz3temlCqqLZ0eaE\ndA9COrXY6ZTZfBphVYdH6o2lOZ+sdXsIhGwZAu/x3gvdjlT7Taej+3zOxPxsAjv3jHTsNba6XrhC\na4d4Pg+PLEOv0oz6UioNSRQx4t9c9d9qHb+UVYBXUiGLraXPOpxBakPxUlLdZvn726p64fhVm+Gi\nv1zSFN2rloKt+dkkCgWryyNqnGG6L5tYtoPzF+MbPJoVc/E0LLuzLZVmFpOwHdbR11hLhACxRhmB\n8WCgoWArYzaWUD+fzWIh35nl47OpOBLG+hPng4qn5WDLcGycSi+sewyEkO6ggIu0LBDUofZRMvpc\nNAXTqgy6ZEnE8KDf5Rkbw6MqEMXO1jcK6FrHX2OtkO6B1kDyvc0Yopls1fvns9mqZRl+PjdXum9Q\n1xHSOrMcujs4gHCHfnajNEnGwWB3+vj1+EJIXTPGDBjf2AsOQtbqjUQC0pd0r9rtITRlx7ZB19sF\nQYDucV/22gghX+dP5MEeycsybBucAx6l/KunVj3NPQMDVe97zehKr75WZ4664UI2CY+sYFjzdnso\ndSWsHDJ2AZO6+99PP4goEYi0FEu6jD6BpKMchyG+kOn2MKpKpvOYma1dJ6pfZA0Tl+K9nXtSsG3k\nrPIlQlkUMezbXHlc9Uz6Qn0RbAFAWPH2dbAFAKrYXxeHZHOiGS7Scb28GBEK6AgFNkcNIo8iQ/L3\n9jVUyNP5mTZqQUMI6UW9/e1M+p4kiRgc6l5+1FYiiWLFUt1WdDGTRizXX7XXusVw+mfTixuHOzhb\nONftYRDSEAq4CCGbyrZAEMPe/liua7fjyUtNJbhfNJJ93R9REiTs0nq7mj8hyyjgImAOw9xM98oi\nkPY5eSmGgstOTLI1XBYYbWo5dbd3uOP9EbNOAVmnc70oafmY9AsKuAgEUYDuK1aczmeNLo+GNMpx\nGE5fKtZlyhkm8qaF/ePD8CgyUvkCEtl8l0dYKW9ZMKhpfcf02k7NmJnEolW+kaNaiY9+YXMLjHe2\nbh7ZnHrrr5OsS/RiAtl081eSgiAgGPaCc47YfKrl1+ecg7H+/jKtJZnO91Q9IkkSsX04BACwHVZW\n2FSVZWhdzOdinMNyKk9KBcvGK9FYF0bU+2zmIGZUr0fWjwaVILZpw/BJxc0SNndwJn+xy6Nan5yT\ngsF772KG9D7KsN1EggNeeHQFuRarvwuCgO27Wy+smErmUcibGB0Pt/wzelmuYMHv0yD10BKGuhRU\nBb3lu/+6nTyfMQxkDAsTa5pgD3j1npuF6SU9FM+3xdpOA7IgYZ93W5dG0x5BeajbQyB9igKuTUTT\nVUgb2Kx5Yalf1dBS36hQ2ItQeHMlK+cKJryeYg2f8Uiw469ndrjFz0YJejwIVikBEfBQw2Q3sigh\n4tla9cg2M5ubMFgWPql64V6ytdClJmnZ4LAfg8Obu+TDXGxjC4lOzS5u6mVZQrYKASIkgeY0yAoK\nuEhdyXgWcxcrq7ELgrDpdwjtntzY5YMDk5EN73nYDqlC7dxBm1Efu1b0Us5gIxbMFGaN8u+KrFPA\nrBHHvLk5Ojo0ShJkJOxZSrAnJRRwkbpCAz6MjIeaek6vztJYFn35dUI8V4BTJajKGCYuJJIbPKLO\n2qhA6OeJ2Q15nXYZUoMY08pzOB3OEJB0DCuNfYdwzmGy/i7IumxM3Q9R2Lg0D9LbKODaouYvJmA3\nkS/U7EzW6RPNFWDcKBfnEjAbrFO1mMgik6MyGY3YORiGVCUZ3q+p2DW4ufJYTiQXkLc7HxT88sB4\nxW0Z20C+hyrEO5zV/FsPyl74ZE8pgX7OqF3zz+QWohbVBSSbDwVcWxBzGI4/dxbZZOe2Nu+/bGLD\nlhuzWQNWg8Hjzsmh0s6+ery6Ck2lHIxOO7O4CNOlhEQvOxgehi4rbf2ZNnNwKV+/LIvNGBze/SXa\npJVDwbEwZySQshv7Lnklex6iIIDVGL8mqhhXh9s1zI5j3EGeZbo9DNIHKODagkRJxJt/57UIufQ4\nPH8mCrvPlt0KhgXHaf8JyKMpUBrY9ck5x6nz0ba//laxLRiEKtGyiyAI8Ej1g7iwqsMvt3enZ8Y2\nMGc0X4NPEIAJzyBCSu3dyVFzZUlZ4gJeyk5XfSzjDGcKM02PxU3WydYM7tqBgcHiNBNO6qOAiwAo\nBg35rIGRiTBkpbWT3/SZKFgHAp/Vzl9YBFuTKzQ06IdHa+9sQzMEQcCOse4vmeXN3llmaoYmr8wi\n2owha5p1n3NyYaHvK5avJQkiBlS9K6+tSwpCsg6HM5zIzCFp1Z+xCileaOLK393apUXGOaw1fRoP\n+rbDr3ixUx+r+nNFQcQ+vT39EQvMgNPhpHVZUBCU+rc2F+c2HE4zdBuBAq5NgjGOmbOtz7I4DsNi\nLA3N03rgMjoRhih19iM1NOiH2IOFMxtdpuykS/FU3wchluMgbdQPuCaDwYqimqR1kiDCIyngnMMn\nqS3NoM2bSaTsXOnfeWYgZhVnzSLqSsK8KirwSxsTWA4pg1DE5r/TCiwHi9X/HPYai2eQcc429RwG\nCzbf2PI3W1X3zxKkLURRQNhlibBRsixh28715U141hGsNcrrVRt63NS5GMZGQ12d+doI8UwODucY\nDviwZ7R/r7KX6YoCXal/zBp5zGaQtU345MY+8+0gixK26a3N1o5r5c/zSZ5SS59+43CnL0veKIIf\nsthc8VxJ0CEJ3ZlZ3Wp6b6qAtMwXbP8fzcJ8ynUHEmO8qV2OG23H5NCmD7YAIKB7EPI2f1LjnGM+\n1dllhP+7NLfuGbefz85uyG5Xy3Hw4sJ8y8/vxBg557jYQBJ9o85kY8jZvTtrM2suIOPk6j8QQMbJ\n4pLZ+vGqxycFIELCvFmZS5Zz0jBY8z1rN0q7AkXeAxszNhsKuEhLctkCFuZ7dxq63cVDL0VTWEw2\ndjLYSLIkQmkg4fxiPLXhbYN+aXx03ct+rxkb25CZBkWScPnQSEvPtRnDi/GVk/9MJgXDaaz0SC2C\nICDvWG1bJt7pHYR3A2fLmjWshOEVVy4eDGYiVqU8hF/yYVxt7Xg1ShFVDCmjFbeLggQB/Tf7VQ/n\nNmxe3Nzg8CRMXn1jA2kNBVxbiJE3MXWiuUKKQyNB1xOeP6BjdGJzNql2Mx4JYjDUv30iAx4N8qr8\nOkEQMBLsn7ZMhm3jXLI3i6fKoohDgysnZp+sQBLa89X6mvB423LV1jOmlzIzsFmnk88liKvGKAsS\nfGJ3l7rcWvN4RC9UcfP1A+VwwHhxs4QkhKCJu7s8os2HAq4tRNNV7NxfecXWqNmZOJLxbBtH5O7S\npQQSid6bTepnAV3riyRzzjkupStnTlVJQsTbXMCbtUycXFxo19AaFvbokNuwseN0ZqHjQU6jXuXf\nBlnc2NIdkiBB79McsH4kChpUsfruUbJ+lDS/xaxneWZs28aUPhgf3zozZ6txzmE0WAV/MzmzGMew\nz4ugpkEQBNdgRRCEphPlfYqK/YPt3UhgOg5EARsSfIx7Ahse5LQb5xwWd6CKW+NUk3YWoIsByELv\nLt2S7qEZLkI6zLTshpKqLYdhLr716uHsGRxAUNOwkMthNp1BxNfcLqvFfA4po7nCk/O5LFJm88Uq\n40YeGWtjEs97Od9qNZNVv0goMAvRPmtabTMbZoslIRRBg0CnVVIFfTJIT8lkCjDN9s7yxBOdXwat\nZT6eaWjmSpUl7BztzCxiwbKRyje2s2qje2DmTBO2wzCg64j4ai8bGnbl79EjK9CarFQfVDXoUvOz\nLqNeP8IabaFfxjjHuUKs6v26pGKbp3/a9ACAwQoweP3Crxknibg9V3abR/S75n0RArS4pMgYw913\n341XXnkFqqrir//6r7Fz504AQDQaxZ133ll67EsvvYQPfehDuOWWW3DdddfB7y8m6k5OTuLee+9t\nw1sgmwljvKKS/HoZbWhVxBjHqXNRHNjV/M6oyZHuL5FyzsFYY4HUy7NR7BsZamj3YyNORhewe3Cg\nLGl/tYxpwacCPkkt9oqpgnGOqUQCB4eHYTNWWnr0NrnU+EJ0Fr80vP4dlAQQBQH7vGOYLcQhCRIi\nWrDbQ1qXpB1HQBhBQArVfaxPDADo7/dLNlZLAdd3vvMdmKaJo0eP4tixYzhy5AgeeOABAEAkEsGD\nDz4IAHj++efxmc98Bu9+97thGAY456X7yMZLxIrJyOHhQJdHUl2wA7XExiLr/1IURQF7dwzDshwo\nLbY+6iZdVaCrjQUmrxpv73b7HQOhqsEWAIz4G1tCFAUBB4eHUbBtXEglsW9VflbBtjGVjOOyoUjZ\nbR658ivAb/8RAAAgAElEQVTulyOdTQxOmQYuZJOY9NU+aRccG54WZtl6TcExEbXS2OWJ1H/wGjEz\nAb/shUdsfvk0Yaegix5oLTy3Gk30QBFlAPXbZCWcGFRBg6+B4KxXWay4qUQR+79ocj9oaUnxueee\nw1VXXQUAuOKKK3D8+PGKx3DO8YlPfAJ33303JEnCyy+/jHw+j/e973249dZbcezYsfWNnDTNH/bC\nH+7f0gZr5fMm5qPtKwxZz/lLcVyYT8Bqc3PvkzNR2B3uQdlNy70SU4UCLibXf7w8slwWbC3fNurz\n41xyJV/oYpvqYbkp2FbVHYReWUHOtpAwK5dwT6WLJziHM0xnO5/blHc6319TEkTs0iMIKO4XS6vb\n/azllTxQhNYuYFRBgdjmrBiPqDe8JDggj/R1sAUAkhCEJNAs3UZp6fIqk8mUlgYBQJIk2LYNedXV\n5Pe+9z3s378fe/bsAQB4PB7ccccduPHGGzE1NYX3v//9+Na3vlX2HDcDA17Icv/NKHRTJNJbM1id\nmhWyHQbTtOHVNya5WPep8HvbX39nYNBXMQPUa8ewHYa4HzZjUNu0VLlWBAFwzks7cTv5O5zNpqHL\nCkKae9mCN+5zr2GkBleeMzbSmZP1dGYRA6oXHllBIrOAHcHBjryOm7xtQpXksppfuWweEV+1Y7Ge\nY9S547sZ//62kl49fi0FXH6/H9nsSiIyY6wicHrsscdw6623lv69e/du7Ny5E4IgYPfu3QiHw4hG\noxgfH6/5WvE41WNqRiQSQDTaWxXgT5+cxZ59ow2VpGCMN10lPptpfrfZsjPnYtizo/Gk3ny28zvU\nqh1Dw7Jh2Q78+vqCvtlEGn6PBr9nY3fBZU0TjHEEPJ0tGnk2EcfucHHzgc0YXlmM4fLh9i6TSgBM\nWIi6LD3V+xt0e047KUxEPmfCECyEoW/o98GsEUdQ9sIrrRxjL3REc731nVRLL36Hksb1wvGrFvC1\nNB975ZVX4plnngEAHDt2DAcOHKh4zPHjx3HllVeW/v3www/jyJEjAIC5uTlkMhlEIs2v+ZPWnTs1\nV3cHWrt3CALA3v3l7VmYwzA9FXV97OlTcw0nd9eSTOUa2m03Mdr+WYbp2cWW30O2YCKedr/IcBhz\nXXpknMNpYqPBgE+Hrm587pBQ+n9FDmM4s7jouvNwPQY9K0tbsijiVUP98T1TcGw4a/rXZWwTC0Zz\nF52KKHVtQ8CYNlAWbK0WNZOwVpWQOJWbAetCv75cg/0aCWm3lgKut771rVBVFTfffDPuvfdefPSj\nH8Xjjz+Oo0ePAgAWFxfh9/vLTrLvete7kE6nccstt+CDH/wg7rnnnrrLiaS9IhPhurNMM1OxikCl\nkDfbEgQtEyURo2PuO/f2HxirOsN18VLj+VP5goVGqht0osH1cMjfci9HSRRxcSGFRLZyW7pXUxH2\nV+bJxDN5LFQJ0txoigypDZXQm+VVVQS0lZPxdCKJAV0v5XjVUyuAns9mcTFdzA8LeTxwGMOJpSrz\ny8FHyjBwIe2eQ8Y53/ByGGstGDnk7PLZL0UQoW2CxHoA8IhKWeue3fpY2b/XMpmFS4b7hdl6ZJw0\nHObAZK3PjLeDxfOwGig/QTYPgXf7W6aObk8N9pt2TqcuRtPQvSoS8SyGRoJQ2zArcn56AeMTYcgt\n5HTlciZ0XdmQZsbrkczkkStYGB9uLRm13jG0bAfKFstrzJomLqXT2DfU+G4qw7HLgpXlmUC3chez\n2QwEAKM+9/6SSbMAjyTXDX5ejM/j9Xt3IrXYOyfSqJGBX9agS8WLiwUziyG1cmdoysoj55gY83Qv\nEXx1Dh7nHAY34VnTtzDr5KCLnprBWj0WtxC3FzCiVO5Y3aglKYMVX0MTezPfqF9tuiVFsjXoPhWK\nJmN8crAtwRYAjIwFWwq2bNuB16u2PdhyGEOsRnX3ZpbqlgV9HowMdq4x9MxiCoUOLP02q5FrtVOx\n9vQy9Klq3WBrLpsBWzWmtcGRKAhVa4uN+fxVgy2gmAvGGni/lw+MIJbPYaHQ2JL2RtBEGfKq4CTv\nmK5j88kaBl0CsU7inKOwVNWdc46T+XOl+wRBqAi2ACDPChVLr81SBMU12NpImhigYGuLoYCLVLBt\nB2dPzEL3am3ZIWrbDk6dmAUAaC0s4dm2g3PnF13vS6byuHip9e31wtL/VXNxPolMrrmlB0EQOrZk\nZ1o2hgJeeLqQg7XWS7P1y1mMB9d/QkkbBrJm/c0KtY7jeg15vNDlxj67I14fbMYw0yOJ4kHFA2VV\nT8ZJfcD1wkUSxA3veWhxG4tWcZlXEAQc8O6s+5xhZXCpVhYh/YUCLlJBliUYhdZ3UiUTOdircq0Y\n49g22XrLGlmW4PEocFxO7qGgjvGx1pdARFHA0ED1q/rtYwOYjbVeOypvWFVno2LJLBKZ5paeHMZh\n2e2tA9aqV4+P1CxoChRnpprlMFY2s7g6ODBsG1OJlQA7a5ml3K0Rn2/dyeI5y0Lebv2zP5fPQBEl\njHr9mPStLCkzznEhm6z53EKHaoa1IucYKKyp4fVi+kLd5zHOUXAa38mrigomtP5q/UNIqyjgIq4O\nHJps6HGOw8qCK2CpjcyqJQvLdGAY6zuZBAOeqononc7pGg77WlpaBIozUtUCpJDP41riYSaWrLoc\npWsKBgO1i9faDsPUfLz5wbaJwxjsdbRnWsznsZgvBqKMc5yNx0uBmypJGF3V3NojyRjwtK87gckc\nWGvGfiJRfVn0bCpeVly12rKjANScIbOZg/NLhVAZ56X/ruVUJoas3ZnEb5M5sHn55/bV/m11n2dx\nGwtWjfxDZsNgnS/GSkgvooCLuGp0l102U0AiXt4cOjzgK8v58vk1yIqE+GL1XKl6/H5P15LlDcuB\nbbcWQIT8OgJViqUqsuQ6Q6RI0rreqyyJGA275yOZLiUYCg001m5GPJdHPNfYzF2qUMDMmurzEZ8P\nkaWgShQE/NLoaOk+QRCgL/VOfCkWhSSKpX+3Q1jzIKiWH6+JqkU7gXFfAOqq5bpxr/tjBUHAkFY9\nUJZFCfuDxZkeAYBfqV+rbJ9/GD65+Lj15jStFVa88MvlRV0b+UxqooJtnmKu3YnsTMX9eWYi56w/\nSGymnMSMMQOTNT7rxjhDnmWRcVIt7WTknIHx3piFJr2FAq4tgDkMrMHWMcxhFUt3tZYXgyEvhkfq\n78bTNBl6E1Xa0+k8ZmYan6XJZA2cv+Ce57Veo0MBaBuYMzUysP6Ee7e+iabt4Pxi5bLW+YVEzQRv\nxjmS+co2NdUM+32INNgf0auoSOQLMB0HZxbjpVytF+fn686S7QkPgHGO+WzW9f6Cbbclcd2vVF8W\n9Uhy2y8EBEHAgFqctXM4w1yhfi7Y6czChixJZuwC8g0uGe7xVialB2UvBhQ/YmailCzfLIOZmDFm\nG378uDoO1aXfYoHlXQM3hzvIsxwkSC3thMyzNDIsDs5Zz2ycIL2BAq4tILGQQaLO7FIuU0AuU0Aq\nkUNiofyxszPxhgO2ahRFhiw3/nELBHRMTJTX6qpVC8zv0zC5rfU8sV7kOO6FTpcVTNs1r60aVZaw\nd6Ryp9/+seGaQQNjHBmjsZOjzRjSRuOzArIk4vKxEaiShJ3hUGnp8PKREcguGw8upJKlZbvl+l0c\n7p+L2WwGhtP/Mw1SAyf9A4HIhjTC5uBga37f80YSBcesmGWTl3oknsxdrFie9Eqe0v21JKwUck55\nsK+JKrZpY6VgKeNk4dSYUaoWNKWdNBgqn6eICgblCHTJB1lofvbUK4UQlIaRZjHkWOf7ZdbDuAHO\neyc/cCujgGsLGBwJYjDiPgvFHIa5VTNJ4SE/hpZmrJjDkErksHPvCMQ6ydH12LaDc1Mx9/ssp+JK\ncH4+VXabbTuYnU0gna4+0yIIApKp3ql/tF6pfAFxl6T6RDaP+WQGiWweBctuqFzBesiSiG3hxmqK\nOYwh22BwtlYjOztVSS5LjBcFoWo5h12hMDwdLK5sVWle3U6SIGJYa65Uw7lcvGOfiYCswyuqZcGV\nX/bA4Qyns7Ol13U4wyvZYpL9Xn28IrjySsXlyrXB1FqaqEERVtdSYygwAxknh0W7GMxYzGqpYn1E\nGSkFVItWrO1V74PSCHxS9y8CLZ6Azd1ngd1QcNY5FHBtQaZhIR4rLlMIogCPV4XX74HXX56zwThv\nW6sfWZawZ9+o633z8ynkc+UnaU2TsboPzPkLixgZCSIQcG8WvCyXM9paFb+bBvxeREKVJ9uAR8OA\nT8fYQAAeVcaJi+urxt3OZQ9NljG2VAqCc45z8do78wBgJpVCslB/ydJmrJRMDwCzmQzOJev//E4o\nODam043NXjh8fZsImhVUPOvarWkyG5cK5e/NYg5OZovLeEk7h3lzJe/OK2nwycXSE2k7B8Y5JEHE\nfm8xyb7aWGxm183n0iWtrASExW2k7SyCsh/DSrEp94AShiKuL49PEiQYrPgZ5Jwj47S+M7nXaOIo\nFLHxndx59go45aB1BAVcW5AoiqXio4IgIFSlLIIsSxgeCWJmegFWBwttTmwbgNdXnt8VCnnLEvd3\n74q41gQzDKsUMKTSeQQDetWE/9loCulM47lIvSCRzcN2GAyrmI/kOAySJJYqzUuiiMu2uTdmzptW\nQzMdL87U77G5rNGlRaD42QpUaZCdMU08ffosgGJ199Utf6oRBQHbgyszbTnLQjSb7UqejEeSsS9U\nuxCrzRzM5zOIG3nEmuyHuB5hpfVdmxfycRQcC4E1CfOKKGG3Hln6+T6Ma5WtucKKD5Ig4sfJV1Bw\nzLpBn0fSMKwWA4Gsk8eFwnzVx+acPGaMOWiiiog62OzbqiluL0KAAJMvBVzgpeCrX1ms9QsRr3Q5\nhAaWe0nzKODagmRFQiBUu7TAakMjgZaqw2+E+Vi61F9RliVILnli+byJ8xcXMRT2wddE4r5lO1hI\nVJ+Kj6dzmFvobHHLYh6Xg/PRBM7Nx/HzqUsAinlVZp3dhfFMHkYDOxAPTY655nBF09mVJSJWHEcs\n0/jSBAAM6O4nf5+i4NcmJwAUlyyrnZxThQJiuWKwYjoO4qtmwvYMDOB1ExMd272aMg2cTa2nvIYA\nURAx7PFhTG98I4TFHMzmu1M0dUQLwC97cC6/UJmTJdb+DhhQ/PDLOg75d7oWJr1oLJQ1r17NJ+k1\n63F5JR3bNPcZ8vXyij74pABCcjGQEwURQ4r7RUy/MHkSvAuNwUltFHBtQRenYzAKFi6cjcJpoNyB\nRy+21GGM48SLlVu9m5HPm5g+29oSmNtMxvZtK22HvLrq2oxa11WMj4SgKJLr7JftODh3sXKHoyAI\nkFblrmVyRlkRVK+mYjjcWisUxnhDwdBQ0AePqmDfxDB2jg7itXuLyzR500JsTcPqtbNZE4NB6KoC\nhzHMp8o3QjiM4aWL1WcUgPLf91wqg7RhYtdQe3JSBEGAb9Ws1svzUZguCe4XUimoS7ldHlnGZLA8\nlyxZKGAq0f6aY1OpBAKKihHdh1PJlc/GpWwai4X6eYKMczicYdjT+IXNMlEQXBPgZwtp2E3kjbVS\nKkIVZVjchl/2NJSsD1TmsgVk3fW5YdlfM1G+WnL7opVAzulcbqYmapA2YEbH2sBZM5+0A8I6ek2S\nzqAjsgUNjYagajKGRoOuM0LViKKAA5dXFj+8dCEOq8FaTrquIjIaxNxs81Pec3MpJJKtLc2sXY6M\nJ3OYnS+OQZYkjAxV1k+SJRHhQHGGJp0tQBJFDC3lVBUMC3MLKUiSCKPJ3YIAUDAtLKZaX2byeVRM\nDJYHHy9dcA+gBEGomEGSRBEHxyM1X2Mk6C89byIcxIC3fQVGl52MLcCwbRyMDEN16XN4YHgYQU/1\nvL2Qx4Nd4fYnJoe1Yt03n6JiV6C4fHYysYAhj46QppUCqmVrg92cbSJaqD8baDOnorK9JIgIq5W/\na1WU4KwpKrz8Wqurwi8XYj2djZUVZa1nKreA09koVEHGiNp44/Wz+bmKMRnMKvv9nMzNQBGKJTRS\ndhYzheoXXZxzmKuKo/okr2tZh16WdmIVtbjSLEr1ubY4Cri2IM2jFAtIVlleu3R+AalEbum/F5Gp\ns/MvPOhrqueiR1MQCte/8l87ozU2FkLYZSn09Nlow3k8jHEwxhEO6hhdtXNz7czY2nIMjHEIAqAo\nErJ5E7MLaewYH0QmZyCeyiFvNFc92+tRMT7U+EmtHtO2oVU5BqIgYDhQORO33jY47bB7cACaXL2W\n1erSEJ3O1Tq+MF96jbC2EuQtj2HCF4AqyZAEEXEjj9lccdbQcGycSJbvwPUrGiZ99ROVC46DpNXY\nzMeg6sWimUPcLA/UT2djiBrFsTDOMZUrzsgd8I9UNPBeNm9ULlmOagEMq75i02ip8ST0A76J0mcp\nbmWwYKaQsLJl9br2e7eV+jkGZR+2eaoH+wY3EbNWkvY1UW2ohESnOC3s2pOgAGt6ew7K2yH2WG6U\nxRNw+ObZ2d3rKOAiFca3DyG4FBCNbhuAP1h7ZkOSRJyvUvLBjSiJ8HjKv9DddkOePRst3X7pUvXi\nnNu3uTfjdbOYyGIxkYUgCFWfwxjHmfMxLK7K3woF9FJQ5tNV7Joo5ntkcgYGQ174VwWv2byJZJM9\nEquJZ3J1G0QDgCrL2D1aP5mYcY5MoTPtYFrhVmvLTTSbxaVM650Klr0Ym69o0zSdSiBtGrhsoHY9\nMt9SAVSHMwxoOrYt9UrUJBmDmo7ZFppV+xUVY3pjDb6PJ2cR0fwYWlMmIqL5MakXZ+FEQcDBQO38\nI845LuQrl2F1SUVI8SLnmK7tdzjnmMq7z0xl7AJSdg5B2YuQ4sOoFoZf9uAXmXMNvbfVPKKGCa32\n7GsjYtZC00F6wl4se47FDMSs8iKrnDPE7drL8V4p1FLR1I1WbPje/gsvxhPgfOM2ivSL3v9EkK5y\ny3manYmDcw6jYGH6TBSqJmNisvrJfn4uiUKdZtjnz1f2q9uzZ6SUn6V7VdeTYS5vlrURqidfMOH3\n1U6cF0UB+3ZEYC0FOpblVPRDNEwbsUQGY8NBqEr565+bXWy4NVI9jPGGTxpr61jZDkMyVz57cmEh\ngTPR7vVZbFXE54PNmGuel5tLmTTmspUB2mWDwxW/p23+IPyKWhH8ZS0TpxKLSBh5xI2VAHo+l8Wi\nUR5QRzw+jDSRGN+KVwdHXQPU5RN7o8uHgiBgt7d6grrJbJguuWKCIGBICeBMbq4iIJMFEbIgQRLE\nUvAFAK/272hoTJ2gCAocl8KmtYhrTomKqGFUXdtXVoAmtGd5fdGegsW6N8MkCyFIQu1SO63hS/8j\nq1HARZqm+4rBj+ZRMLmzuDVeViRk0gXYS4HJxQsrV4qSLGIxVvvqf+/e2juQ3JYSASAaTeHsVLRi\n1iIaS2MhXnnCHYuEXBPr1xJFAYokwrQcnJ+NI5svL4cgSSK0VYFWwbQxt1h8j3snhxHwtudLbCjo\ngyJLmI03P3viMFYRKO4YHsBrtle2XOkmmzHMpFKwGYPh0utx2ZCuQ2lwRmzcH3AtiOpWXFUWRddg\n3qeoiBVyyNsW9FVLc+O+QEUyvFue3FoFxy4L3JpV7eePaMX3eSZbvcn2WgNq9SX9sOKtKAux7CfJ\nUxjXBqAt1b0qOCayTgEeSUXeMTFrxOERldL9jTKrNLSOWykk7dZmNr2ijnmr9kzUWkE5XHe2XBAE\neKXGZiXrGZB2QBHbnxvZbaIwAEFobUPRZkYBF2laaNXOvNW7+FLJHLKZ4nJVIKiXvrgGBvyIjJbn\nK9WauTFNGxfq9EV0GINh2ti5YxjbJgZKJ9Llnzs06Megyw5CpUp5iwuz8YqCqYIggIPD79VKyfPL\nZElEwLdyUlJkEX5dW7pPwktTczXH3yy3Jtf1aIqM4eDGfunlTBNnF5qbQROXktNzpon4qsKmacPA\n/0xNwWYMDmPwqe6znO02k0mVZtL2hwcx6PHCI9cOIBYKOczm0khbK8u1DmeYz69/GbQRgiDgVcGV\nixaHM6Tt9e+Ki5lpzBorG1xeH9oPXVpJYGdY2TwwoPgxpg3AI6lNB1yz5gLsNSUjlpPn803u7uOc\nI+tkoYgKJtSJpp670Wgn4dZCR5u4SiVyMJcSwTmvDI7cduWFwt7SVXhgVd6XKApQ1iy7LcTSSCwl\n5jOH4cQrl0r3KYqEkZEgGGM4cbKySW0qnceJE7M4O1XMJ1m9pDg3n0Q6U4AoVs/RchNyKZg6EPJC\nU2TXHYyrxVM5ZPMmfLpaer8Hd1TPo3EYq1tDa62NDpzWyhgmcmb9jQFeVcX2gerJ4tPxRKlB9TJR\nEBDWPQh6PBgLrPyudUXB6yYmIIsiXllY2LBq7XGjgIxlImuZiBuFqonnq4U1D4Y9Xszlq+9M9Egy\nBrSNmc2wGUPGXl+uns0cDCl+jK7aseiVy5fjvZKGoFycLTuVu1TRM9GNwUxk7PL8nh2eMchrancJ\ngoBRbQhjavXlTzcMDLkuLtMRUg0FXKSueCyDhWj5ktaFqVhForvP70Eg1NgJJTISxMBShXtREnHg\n4HjpPkEQoKoyRFHEPpelRr/Pgz27I9i5vbLS9/hYGMGAjniiuYTN1bNVq5lLFd5r0T0q9FXLlCfO\n1d41mTcsxNOdPyG02tNwLdthMO3qPRstx8Gl1MrnY22ekcMYXpwtLu1MBALwKpWzHynDgOU4KFg2\nMkvNr2VRhHepmfWrI5GGE+zX69DQCAY9OnyKin2h2hsRlhPlJUGELErYF1x5vCSIHc/rWmsmn0Te\nsaBJMsY9jbdzWZay85gzirXmzuZjsDmr3dicc7yUKfZMPOCbaGg3IUdxZixupVFwan9GDdb8Z1gS\nJESUlSAtz/KYNYsXdCYzkLA3PoeRLe10NFluQzsjcO7AYOtr/dVJnM+B89qrGZsJBVzEVTDshboU\nRAxGAhgeKV8S3Ll3pKlk9VatnnVyHIbv//AETNOGpinQ9craPI7DcPLMHEyzPFAyTBs/PTaFbK65\nq/7oYga5glnzS9KjyqVWOwCwd9tQ2VLrWn5dw+hge3JAACCezbuOL5bOVuS2tWIxm4MAAX5t5fe9\n/HM55zgVXaxZJFMSRbxqtLjr7PTiomvie8GykLMs5G0Lv4i2/wSRMcuPoc0YslbzJ/NXErGyBs2t\n7ExcjxPp2r+bAUWH5lLlvVE+ScOAUpyx2u8bLZVyqEYUBLzKvzapfEXCqmy95BFVBGUfknYWSbv6\n78/hDubN9Z+MdVHHqDKGvJPDvBWFJrYnv7LAcsg10HOx4KSQdIopBnmWAGsykX/9BFi8V3tDhgBs\n7EVJN1HA1YPmzjVeYqFTEosZzM3EsRhLIzqbBGugNIFZpwBoJlNoqBl2tcdIkohf/9W9S42tK+Xz\nJs7PLGLvrhGMjgTLrsw1VcahV0001doHALaNhpHNmVhcVXA1nTVqBmC1gq1WxDO5mknzecNy3Q+0\nc3jANUm8WSNBPwZ85TOXL80WT/yCIOBVYxGMuNT5Wm15qfmykQg0ufL4BTQNyYKBAV3HRDCIUwvF\nBPCXozH8fG79+XCxfA42YzgeK9baMhwbmTVLm2eS8bq7IHf6QxAFAdPpBAQI2BGoLLpqODYczjCV\naf9MyqRee9bKK6tlyfVrq81fLCRhVmmvwziHAAGqKBf7dq6zNYzBLCSsTHFGi3Ok1ywj7tLHMKoV\nZ6nPFWZRcAwUmIm0XVyWlQQJ2z2NbfA4lT+LS8Ysco77zLYgCNAlLya1Seg1ktTzrPGZcQkSZKF2\nrhrjDlIshpA0CosVEJInIAmdv1BdJggSNHEYJmt8Q8VGEgQPBKG/itquBwVcGyS1mEE63lgfOq3J\noKATwoN+jG4bwGI0jaGRIKZPz8Ne6ll4/mwUuWzlTFEqkXO9fZljs4YCt5kLi64BzaXZBGR5ZUfZ\nzMU40ukCEskcFhYz0HUVO7cPVS3JoGut/WGPDAUwtCoB/+S5+XVVia/l5EysrIgqYxx+j4ZIyD2g\nsR2GicEgREGAaTsNNatuh0MTzfe1y5kWzi7GXeuK6YqCHeFiMBHWNCzm8shZFnYPhHFwyL1JNOMc\nU4mVApkF28bpuPuMyK5QGIok4bLB4VIF+bW7GMd9/rJq95ZTWQV+OXk+oGgQBQGDa3KyOOf4zvQp\nmI6DwRo7AVvllZv7DL+ULq8C75e0qrORC2YGUbMY2P8sOY3vL54o3VdwLCSs4veXw1lDwZjBLPhl\nD0RBAAND1qn+3TCpjcAjaUsVoZrfGBGUAtBFHV5pfb/zjJMCW3pvDrcxb12s+lhF1KDW2WEoChJG\nlD2wuQmDN9eHdL0snkLOKdZB80m7N/S1iTuBb+SCcgui0e40cW23Qs6AKApQPZ2N5iORQN3f2eJ8\nCrIiIThQPxGbOQxiizM2mUwBHo/SVBX68+cWMDIahOZSuiGZzCG0qjwE5xyCIMBxGDjnpddJpvJQ\nFAneVUuOqXQekiQ2PcO1WjZfXJZaXeR0eQyW7SCVKZQFZq1afQwXUlkwDteAy7Qd/Oz0DP7fwWKt\nowsLSQz4dPga/IyZtoOpaBwHxoeRMUxkCgbGQu1b6lxWnC3hmFqMYyIULOVwpQwDpxcWccV4ZfNs\n03GQMYoziZIkIVylvU/SKCC0qiq86TiuLYJa8ZO5GWzzBTCseyEJQt3mzct8YQ3ZRG8Ul/1JfBq7\nvUOILJWOYJw31GGAcw6T26XdhgazUHAshBQv4lYWFrMxolWfbUvaWYRkH87mZ7HdE+lqpfhlBVaA\nAAGKoIDBqTo7tfrvz2QGVLH7F8CtKJ7aGYQe+N1vpEbOgRsxBjc0w7VBPF6t48FWo4IDPvgC1a/M\nzrxyCXMX4zh7orhD8JXjF1p6HaNgNd1jcHwiXAq2OOcoFFaWfaKxNCxrZcln+SQtSWJZUCfLIqQ1\ns1yyLLVUWmE1QVh5TcO0sZDI4mI0WRqLXKMv5cVYEukm88cAYDDgxXDQ/apdFAQc3LZSkXtyKAQI\nqOS+UrYAACAASURBVCh2ulo6b2AuWfwyUmUJ+8aKs0e6IiPcgV6JABDP5zGfzmDf8FBZwnyqUMAv\njY66zsqpkoRBrxd+Tauah/ZidB7eNeUa2hVsAcCvjExgmz+IpGkg00S+l1cp/zs3nPobL9wYjl1W\nZqIZJzNRZG0ThwJjCC7V1JrOLeB7868gaZVv2LiQj5f1YgSKn+fVpR00UUFoKbdrQPGVgq2ZwkLF\nzkTOOTJLJSl262OQBQnzZgI2d5B1CkhY7SmVEbUWSrNRtRSWyko43AHjDgxuIGmvzIzG7QXkHPfZ\np34NtgAsddPYWsFWr6OAawsxjWLuhqxINZtW79o/hmDIi6GRAERJxMFD1ZNiaxkaDrjOVNWyOnBy\nHIZYbOXLee+eESwsZErlJKrxebWK1/XqatNjSabzMCwbF5eaXHs9aqn0QzKTh6bK2DZSbKkiSyJC\n/uoBSyTsb3jmabVoMoto0v1kIEsiQj4PsoYJw7JLsxdrg83VvJpSlo+1PNshiSI8SmdySwa9XkyE\nKvtGToZCkCURL0eLiegnFxYqgi9NljGg6zi5UJmDcnlkBMqqAOtMfBEpo36AEs1VJnK7OZdOImkU\nMKL7EF61dLhYyCNao/zDSwvlxTYv5dIorKkC73CGmVztRGaHMxhV8q3q2e+PwCer8MpaqazFmCeE\nNw7vRUgp/5wOqj6oLon2jSwbBmUvpFWnEYs5OJW7hG2e8mVgTVRgMQecc6gN1OhinCFfYwkSADyC\nttSapraEnYDDHdjcggMGAQKCUrh0f0AKwiNWLg1fNKfBOcOMcabua7TSb7ETqDk2wNnG1L5rBQVc\nmxjnvCxn6uJ0rG4OVWIxA9t2ICsSxBoJ11YDye/rJcsSJle1DEokchgdDSK8qvF1OuM+m5PPm5i+\nsL5EUdthwJolxGUjg4GK2y3bwU9/Me16MldkqSK3LJ0zEE/XDh5Hwn6MhMtzjV48N1sq0mrZDpLZ\nAmLpLPKmBV1V4PdUvyqXRBGqS9J6N10+OgJREGBYNvJWZa0vURAwGawM2DjnSBorx3/PwCCCWu0Z\nCctxYK1qW2MzhvPplcKenHP8PFZM0t8VDCOkebBYyJc9J6iqCKnuS5ycc2wLlC+17QoMQF8zEydA\ngKdOfS+vrGJYa2yJ+mQmWjZGN5ooQ3dpSu2VVNdlxjO5aNUE+2UBWS9bDlZECfu84xWPC8k+GMyE\nAwavVH/WyOYOUk7tE2dA9jdUa29MHQMHh8FM6KKOnJ1BxllZMrSYVdb3kHMOi1sYUSYgCCLG1V11\nXyNqnQNvYZMBW5p1awfOOdLOifoPbJDDs3Cq5J3Z7CIc3v3NXa6cGaBHA08KuDaxbLqAuZniTinL\ntDG5O1KWj2WZdqm46TJRFCGgOLtk25Uf2unT88hmCrhYpxJ8LQsL6VLAwDnHKy9XJqa6BS2W7WDt\nzdVmu3RdxehwAIZRv1hnNUNhHzRVQdDf2DZyRZawfbSykXa15tOaIsGjrpwAZ2JJzCcqTzKxVBbm\nqmNx+Y6xUvCmKTICejGB26epMG0HL1/sTt2dC/EkcqaFE/OxUouehWwOc+mV9+QwVvX3cWhsFD51\nZRbwhdmVore6S+0uh/OGZrRWOxFfwIS/uIO1YNu4lEkjqK4EAIIg4NBQedFaxlnZ504WpapLl2fS\n8dJndzaXRrTgfsJqZHPDXCFTsdRXzU7vQN0SDs3a7xtFwsohYbn/jaXtfCkgM5iFhaWE+2pBUFjx\nIyS7B5AOdzCVv1RaIlRFBaOq+2aJ5cfHrWTV+9cSIcIv+SAJEnTZB2Vplo2Dg6H882hxE0lnsZTj\n1UgT6jF1T0tV4/MsDqNNJRsEQUBIflVbflaRs/S/SpIwAhG1a9TZ7GUwvvGzTYJyEOjRpdSWAi7G\nGO666y7cdNNNOHz4MKanp8vu//KXv4x3vOMdOHz4MA4fPowzZ87UfQ5pP39Qx/iO4pdWNpVHbs1s\nUCFvIpcpP2EFw14oqozkqh2VuayBwlIvwe27I/D5PRgZC9fckVjTqnONIAg4eFl5+w3GOE6drCwF\nMBIJVswSba/VNDuWxvSqwDCeyJblgDmMYWqds2BrjQ2Vz8QUDAsX5hOuj1UVuaxgqq5KOO/yWFkS\nayY6e1QZ+lKgosoSLpso5nXZDsMLU5eqPs9NPFtcRm3FsN8HjyJjX2SoVPohrHsw5FuZkTwVW8Qv\n5oulGRZyuZp1wn55rHZJAFkUsT0YQt6yEMs1tmv08uGVYEqVJAzqelnSPVDes/CVeAxhzdNQbljG\nMiAJAlRJQsYyMKL7MaRV2zXHMbUqOAOA2Xy6rJq+LsmQGzyJq6IMizlNV5c3mY3pXPW/gYSVw5yR\nQtIl6LK4UwqQRIilgG95WREozlQtFzc1mIXzhShs7lRcUKXsLFRRgSiISNjpsuXEeXMRmTXlHgQI\nDQVCy0RBhFcqBnu6qMO/1AtREz3wSeUzyKqoIaK0v9/oVOF/UXDKk7l90jB0sbK0SC+QhCAkoXJm\nGQAEQa4bYMriZRAFPxjvzZIU3dDS2sJ3vvMdmKaJo0eP4tixYzhy5AgeeOCB0v3Hjx/Hpz71KRw6\ndKh021NPPVXzOZtNfC4JX0jvmUT58HDlrolAlYbQADA6UfwSsC0HZ16+hMGRICa2D5YCnkbKO1Qz\ntGosjHGk03n4vBrkpT6Hoihg/4H1f+HtmCy/QhZFsWzHuSSKGIu4f6E0yrKdYt5UlYR8z/9n702a\nJUnT67zHP5+HGO+cc2XW1EBDDbSJEkmRIo1aaAHsYcAGpj0Mv6FX/A/kUlxpxwVXMploBCkQcze6\nu6qyMiunO08xh8/u36eFx43hRtybN7Oypkae1R0iPDx8PP6+5z3HNnmwc/2T4AXa9QBzRSWn6V+t\nDRuECQpFlGY0L7nlG7rAucKcth/F1Bx7yaerGgy40eouYZUG7PLyP9mcOYAfDccYmuBoNOKj9bUb\neYYlRYFzqSWqC4F5xfb/onPGx63VyxaTKpdnmMtVSSkZZSnrjofQBKWS15q7AviGheMbdJOIp8MO\nv7e2OsevVBJD6DystRc+twrRnr2ubr6ZQWcuS+IyJ5iL3+lmIb5uXxlPZGo6m/bV58BH/hYShVih\nlWqbM6JiCh1TeNOfP3C32EuqxAVbmNN8xS2rxVk2INBdasbsuG6ZdS5oh6WZC9u6bTaWPl9ogoZR\nI5c54zLE1z3O8y637Oq6cZaf42senjG7xh2mB+SqoKnXCYw6uqYTTdqW3iXSlcqYUI5pGxu8C2Qy\nYtv6FFtbfc1N5QhDc9Bf4+v1Q4RSQ9Curlb+Y8JbVbj+7u/+jn/5L/8lAL/7u7/Lr3/964X/f/bZ\nZ/z7f//v+aM/+iP+3b/7dzd6z28ajEk0zfcFpwe9qWj+TWCYOp/+zh1s26AsJXuT/EK/5uDX3uyG\nMBxEfPHZAXE8m/jqdEZ0zsc39o86OOiyuzfTDvT60crW5zz6g4gsL2jU3akjvFKKbj/Emasw9QYR\nhyfLbYq8KHn66nTp7wD9Ucw4fncWADX3zaaiNK162g+vaJ1+cmv1DeMqz66m574TjdfLbm/l8r84\nncUePVpr4dsWH66tJkRSKX4511ZMi4K9QbV/evHMXd/S9aUq1QU+uoJsTZdZFitNY8d5Rj9NkCjO\n4+hKkXwhJa9GVVVSm1hH3A4aV5Ktg3DAP3Sr73Q5V3Hd9l9L6q6DpmlT769xkVIqybjIGBarY6TO\n0hFhmeHqJkdJn7N0eZRe0zR0TdxIKzUPXRNsWy0sYdIyZw9YljDYsdsLZOsyPN1ZENYbmj6tZuWy\nWIj7EZrAFCaZzCnndDtNo8l50SGbe+2OdYv7zn1KJLnKJss2V9pDWJq9IKy/KS7ruFIZMShOGMsO\njgiurApJChTfTlbotw1dvPcAu8BbXVnH4zFBMHsi0HWdoigwJhfq3//93+eP//iPCYKAP/3TP+U/\n/+f//Nr3XIVWy3sjH6fvC67y4fiuPtu1DbzAnpLAIi+nFaV5xFGKe0kMrpRi53aLYT+iXndp1B20\nFYHUr8P6esDWVgPXtaZTkm+yncpSousanmcTRSm+byOERqPhXnuMmJaO61rYc9UepRQStfD5163L\nznZj5U3nuvckWT7VaI2jdKX4/ircdLtsUL3uQ1YTqzQvKEq5NCH5TR2fZ6MQ1zT4JNik7i6SoMPB\nkJCCtfXgtdWsL07O+HRznf9tLlLq5wdH/NNP7iM0jXG3oFH3VrrW7w8GNByH2jUC+rMo5DwMabV9\ntlZMUG5Q43A0pJCSlutSs1YvSymFm1o0HXfhb2vrwbQ1OcxSjsIhn7Q2qLVcPlZyyTriTXEaj3EN\nk5o5W6+9sEdgOQSmTRIWNB2PunJRVNW3w2hAKUtsw2TTqeEVFqbQsYQxPY6+DqIiRSpFMFeZGw1D\nNoLadAqykOWN/cwuMF9dHOUhhSppWcvr+wGLVfF26QIazkSkfxQf07ZabOgPpq+JS4O0TGleWt7m\nZjX4kJaVDMPWr364zGVGXIaYmsmoGLHhzKa6pfIoVRPztfYS3979opP8PWvOT7+1z/su8F3ef6/D\nWxGuIAgIw9kTn5RySpyUUvzJn/wJtVr1hf/Vv/pXfP7559e+5zr0et+Mo/dvKq4zfYsnFa6ykOw+\nO+GDucDozumQ5lrA3/yXx9z7aJtmy8cLbIqi5NVXpzz6dAelFLWGx8uX5xi6uLYleQGlFK9enLO9\n08CZWCrEyZsL2fO8ZG+/y8MPNvj5L15xcNjjt390m/X12o2OkTxbfsrXNbGwrY7OBuR5yb1bsxbg\n01en3L/Vxpojl71hRODamCsI6wWUUjzbP+fDuxtIqdg77XF/+/WtxTDJ6MYxphJsv4O8xXGSkRUF\n7eDdu56v/Lw0o1MU6EIjdRf3s4nG/7i5w9nZCE3TrtWleaU+tQTpxTEt1+W26dOZ/C2Lc74cnLIT\nLG8jVUjCJCER13tnNUuLLJScZSMOxyPCPOMsDvnntyoj2fNwzJYXEKUpiTZbllKK8ySqKmuWw3kS\nElvZNFxbr+k8P+pwP5hVSFrKXjjWQt6uKjouMgZZTNNyybScRJ+tl4PB2XBEbGQ4GIwmfmxKKYYq\nmv4cq4wzY7YuUilyVS5kMMZlhqu/GSkMy4TjpM+gCPlp4xEAbRo8GR4SGC6+7vA02ueRe/tG5qsX\nOExPaRpVmoIjbEDjjNXXuKP0mIZRx9M9xuUYDQ1/ot1S0mSgpWhz+7JQOYUqeJl/xqa1g6mZC9fQ\nq1qO8yhVQSojPL2ORoOz0WzdCpWhIdC1dxMk/27w0cI6/qbhN8749Kc//Sl//ud/DsAvfvELPv74\n4+n/xuMxf/AHf0AYVl43f/VXf8WPf/zja9/zHt8udEMskC1g4ugt+Kf/5rdY26hhuyZJnPHV54c8\n/KR6ctQ0jcO9LpZp3IhsARwf9Wm1/SnZusD52Yjx6GqDzsswTZ2HH1RVnHt31/if/8kj1lfo0q5C\nWUqevbx+em+zXVsyR/3o/uYC2XodBuOYopRomsaHd2dVp9eRrTDJiNIMzzb5nYc7NyJbF5Oe1yFw\nrG+NbAEEtoVvWQsi836c8KrXn7YYz6OI7kTk/rzbWzlpeGGQ+rLX43Byc/j87GwqKm+77kqyBeAY\nxlIFrZvE7A4HnEUho6z6PEPXp5+z6fk8qDf5vY3ZebHj1zhPIg7D4ULGogLiImcwWU71tWb7ou14\nC2QLrp7cm8e4yNiPZi3tf+gdLYnLXd1gzfbxDWtJl6WU4iSZ3WhGRcLLqMuoSDlKh5hCx9WtpXig\nsEw5z8YLyzlI3jwH0tcd1ldUnppmwLiI+So6ZMdaeyOyBXDL3iSVKa/iw9f6p+3Y23i6x6tkF1Mz\np2QLwBTWdD8cZYckMsbQTMbliLrexFzRWvT0AE8PKFVxpe2Drhl4elUlLVVBLGf7IJEjchUzLs+J\nytXDM98VbmrGq5QkLj/7htfmHwfeKtpHSsnPfvYznjx5glKKf/tv/y2ff/45URTxh3/4h/zH//gf\n+Q//4T9gWRb/7J/9M/7sz/5s5XsePXr02s/6rpnqDw1fh91fxNQA9DtjHM+i1xmzc2kS8OKQeVNd\nB8Deq3PiOOfBww10XVwb9NzvhxiGTrDCluHV7jn3760zGFRtzuvWpdMb02x4hGFKfxhz7/bNROxv\ng84gpO47U60YwONXJ3x8d/PKjEeoHODP+mMebLXZ2qov7MPPXh3z2/cr0psXJeMkoxW4vDztsVH3\n8R2LflhpmlrfIrm6ClIpnpye8+nWjHBmRcHzbo9PN68XIedlSS9O2Ax8pFKcjMfs1N5Ne0ApxVkc\nkpeS27XXD0t0kogwz6lZFrmUbLo+X/bPuRc0lny15nFxDhayRMGSXcOzUZcPgtYC8ZBKUcgSCdf6\ncxWyfK2maphXDzKPR8d85G/SunJScoaTtLImKJUkMGzqE41VJgsGRczGCiIFi9cMgE4+oqa7S0aq\nuSw5y/ooFLed9cuLWcBheoorHFrmbB+lMkPXBMYNg5+lkhxlRziiunasmWscZodsmpsYmrG03vNY\ndQ3tFac4wscV1/uiFSojkWMCffEaI5VEg7eyjvgmIFVKLF/g65/e6PVK5Wg/EEH/97nC9T5L8TcM\nX+dgO9ztUGt41Bou/e6YoD7TRn356/2p4/z5yRCha7SvqDBddTE7Puzx+PEh/+J//XRBcxWGlR5L\nSjmJo6jemyQ5ui5Wtu6iKMPzLI5PBivtIuZxQbh0Ia690F6HKMnwJjqot13G69AZhrRrHpubi4RL\nSoUQlTFoWpTkRclabfEmmhWV03yalzS8NxtmeNfY7faRKB6033zcvZCSUZrSct2qdRdFbPg+R8Mh\ndcdZ8OmCSbssTWlckbW4avmFlEuTjhfoJTG2bkwrX6WSJEWB0LQFkqWUopPGrDvLZObiHDxPIkCx\n7izepMd5SmAuanr6WcJJXHmC7bhXk8HdsEfb9jiMh9z3Wti6wX7cxxbGNC8xLDI0DaIiQ9M0WqZ3\n46pSIUuENrMhKWRJWKbTWJ955LLkRXzCx/6t6TZ5Gh3ysX976bWHaQdfd2gYPmGZ4AiLUpUrXedP\n0g6e7lIz3u3DQ6GKJcImlSSSYwJ9ts03Nmo8OXqOqVkE+tV5kTeBUpJUhTji+6kp+j5AqRLUV2ji\nk3eyvO8z4fp+0O33+F7g1r01ao3qybbZDhZI0Ue/dZtnX1beOutbddrrNZ58dsCLrxb9spIk59Xz\n1a0717f5yU/uLyxXlpJet9L2nZ2NGA5nWivHMZFScnCw3N5I0pyz8xHbWw3G4fWtycEwppj4b70N\nUZJSctqZaDqSjJeHy6avZSl5/HLZO+xNsFb3F9ZPSkVRyimZPOoOOTgfLJEtAMswMIRO9DWMXq/C\nq06PcXq1BqWQkpPheOoSX3Ns6rbNi06XYTzbN3v9AYMkoZSSZ51qGw6SZMFd3hCiWt54jKZpbPg+\nYZbxot/nJAyJ85zTOS1oqRTD7OZ6KEOIK8kWVFYR8+TkPI74vHfKnx+8XJi6VLDQZlyFdcdbIlvn\nSbTyGGxaDo9qa7SsxX37fNylmHOQv+e3GBcZG1YwbSnecZts2AFSKXpZVEX66BbrdkBSFjfKG7yA\nIfSF7z8sYsIrInZMoU/JFlTn1kNvJlzv5rOb3rbVnpqe/nL0nEKVHGdd8hVO9lv22rVkq5cPrmyH\nnWZnDIvlm+1xdjRZp2VPqFwtnzNNfQ1ffD3LGGDicH91DNR7UOU9am8XH/dDw3vC9R5LePXslCTO\nFlzohdC4/2jRgfvDH93izv01kiRjNKiIkuOYPHi0yclRn68mBK0oSuI4IwgcWmuL4lOhC+7crcrv\nm5t1Gg2PKMo4Pq70DrouFgKsL9Bqeqy1q2WN5rRgB0c9kkuko15zGb2lSesoTNg/GfDgduUjY1sG\nH9xeI79kRaHrgk8fbK1cxucvT3j86oTuMHqjEONxknLaHxOlGb9+ecyDrTaf3rm6JWfogp1W9WQV\nphlHvXfzlHe71SCwVwuowzRjvzfAt61p66yQkqwscU2TeOI4L5VilKYYmoYuBDv11U+Af7t/gJyY\nogIcDIco4J/fu8fDVgtzTncllaKUkrv166sQT3qdBUNRgL882luIBbpAP00Wcg+3vIB/snmH/+XW\nvQUiIjSNW/6bVy0c3cC85ILdz2LGeUpYZPyyd7SQYbjpBEtTfU3TXZhOvIBUiuiSM/1tt7Hw/pdR\nh1Fxc+1k2wrYsZsUsqRUkrBIOLxG32XMfbf5WKBcVRXYXBZ86N7CFib3nC3MFRmOr4NcYeRxYRWx\nYa5TN2b7pZt3yWVOXW8gENiTFmOucmIZITRBy1j2iNLewgpjHoOievgSmk7DePcmqtehUGMyufhQ\nmMrvJn3iptC0m0VY/dCh/+xnP/vZd70S1yGKvk/THdeje9zHcszv1H/L9+2vvc3qTQ8FnB4NqE9y\nC9Mkp98ZL3hvaZrG/qtzTvZ7OJ6F589HpEC96WOaOidHA4bDGNsxMU0DKRX7e100NMZhiudZfPn4\nkG63GtM3DB3bNqftRd+3p1UxKat2XvUdFYahU6/NRvJt28S2jIWLZRSnNGrukl7s1X4H17GWhPIX\nSNIcDY31VkXs8qLk5UGXRuDy6rhHu15tm94oIk5yXGe1xmGjGdCu+xycD/Aca0HfBbB/1scydYyJ\n0PxiH9qmQc2zkUqhlORsGHI6GFdWBJbJ5/unrNf8lTcGXWhYpnHld3sTXNeOsgx94t01y4r0TJPA\ntqg59pSolVIR5znrQbW+F6HTjmEsBFC7pknb82i6LroQ2LqOrc+qLmLi5A4Q5Tkv+j0KJalZNkop\nFLMqZlZWGqq6bWPpOi8H/ekybN3AN80lfVXdsqetw1LK6edal3RVSZFzlkTUTJu4yMmlnC7runPQ\n0vUlQX8vi+mkMbe9OpYw8IyZuNtaYaFgiNXJA0LTsIWBIQTn6ZhxkXKQDFizZjezmuHgrMhTnEc3\nCxkVCf7EQFXTNDr5mFyVBIaLo5s38gsLDJfH4R7rVoPTrI8lDAxNR1KZoV7GQXqKronXhlt7uoOm\naZSqnJjSlpzm59SN2tK5IJGYwsQWNpqmYQkLqSSZzDjOD3CFx2l+jFKQqRRLs7FdnSR++6zYUdkl\nKvtYwvtOjEwVCk0TCG32kFSoAYb2j6Ot+S7uge9iHVbhfYXrHeIbkPV8Jxh0x6Rxxp0HM3HrcBBh\nu5PKglQ8+7Iyb7z3wQZe4FCrLxoZ+oGD51kMhzE7t1vcf7CB0DSklKRpztp6gB/MrBU++fQWH3+y\ng5jorMbjhKdPj+l0RjgTIhPHGXuTKJ6ylCun9C6TLaim0VaR4FtbzQVvrssoJy09gCwviOKMD+9V\nYv9Hd2bbpuY51K44wS4ghMZmc3XY7nojwL5mEtI2DW6vN7m33qTuOTR8FyE01mse56PV7QpdiCXn\n98Peu8lsm8fRYFZFOx+HpEWxoMODKmLoeDTiQbu1RBSkUoTZ7OLYct0FUmWvmDgEGKQJpVJ81F7D\n1Q0KKfmH0xOe92ZP9p044mA0xNYNnvY6KBRNxyEtC0whVgrfL9ZvlKX89ckBabl44z2Oqmm+0cQY\nVSlFJsvXthevw7ZT42FQ6d02HP9GeqtSyWkl7qLVKZXiZVR9/3BCAj/0Fyui80QpvdTO62YhB0mf\nhunSNhcrDhtWnZZZrdtlQfx1+NirWkVrZp2vwgOUYtri7OcjzrOKBA+KMY5mc5pdXT0rLgUSv0r2\nJ99J57a9HJgNkMgUNamIhcWYTGYMij6n+TEP7Ec4wmXHvIOne1iaTSTHdLPVocyJjOgVr68UCQRN\nY+c7c43XNRvjUsXIEauNeC/jey7pXoKmDkDdPFPzu8Z7wnUNhudvdoNqbTXRfyAmrVlasDunv0ri\njIOX54SjBL/uLpmfOo6JP5kW/Pu/esatu9UNYtiPqLc87LnqznAQcTZxbB8Pq5tSHGecnw158viI\n/kSzdXTYYzAJn07TnF6vshL55S9fMR6nfPLJDhtz0Tuua3H7VotxmFCvu7iuRVGUSy3Ey2g2vGun\nIa+C71rUAwcpFeMovfJiZOhiqWp1GQdnA2zLXBm146wgiatgGjq32nWsyWdtNWtsNqrq2xf7p9Nc\nwqsCoq8jdTdBP1puRc1X0AxdpxvGdMOIL05mNyYhNOrOakIaZRn/7eWrqaZrFfKypJ8sfrYhBIYQ\nnIQhx2FIUhT8eGOTR6024yyjlJKW4071Wp5hIjSNg9GQ/eHsAn2ZUF2gZtn8eG0TU+gMs5RxnlJI\nyf64eu+G6/Oj1kYVGGw5NG2HvfGApFg+FnNZufpfEKPP+icLLc4Lh3rgyrDry0jKgpNkyN9299iP\nq3USmsaHwTqFLNl2aoQyvZa8vYw6C8d0Wua0DY/PR4dksmT8Bq3HeZwkvWlb9OLzTc2gYfgMy5BX\ncXXdqRs+bbNOXKb08iGe7nDLnj3IpDKjk1eE7DA95SA9XnCZf+jef+26OMJGUFXB9rI9YhlTNxps\nmtscZQfV9KCmYWgmtnDoFR02ndUtQFtzqF3hPq+UIpeVbMHXm/TLI7Tv0e1VqpRx+fja1+TynEwd\nfktr9G6g2ACu9kj7vuH7c0R8j5CEKePemHH/7cWOT/7uOUVR8PTvXxAOv7556/PP9ineMlS4LCTP\nv5idSEophr2QW3MVLMe12LrTotcZYVnGkgt9rTFz/P/wk22sSSSOX3NoNGcC19OTAZ4/02rdutNC\nKXjyxSGb203uf7DBzu0WrmuxvdPk7iRcO8tKTk8GaJrG7dtrKz22RqOEoigZzwVup2lBGM7/nnN4\n3F/423Q7zN3k8qJk//hmvjillKRZQbP+dlNTSVYgBFOi9HVRSsnz40Xxry60KckaRAm9cNnode01\nlhGH/SFxtkgY5onCKEmX4no2gtmTdN2xaXkuozRj3femlatKiC5WVoEC2+Z///gjHl4z0fj/rsV9\nZgAAIABJREFUPn/O/3cp7N43LTzT5E69zqfr6wSWNcki1BhmKflkEnHLr47Dtuuy5QXUrCptoT5x\njn8+6K0k0i+H/SlJExrsjQYch0Oca+wg1hxvqfUYFzm74YCzJJySqR81NqcmqfNQSjHMk6mtw5PR\n+dI2G+QJ4yLDNyzu+21+0rzFPa+58P/zLMTWjaXq1oWovlQSqRSfBFs8Hh8TF9V+qpkOJZJM5hyn\nAwZXRAK9Dn8z/Iq4TKekSyrF02ifu+4mdcObCuKraUhBrgpc4WALE1vM2mC6pk+MTqFlNLhn31r4\nP8DLZO/adfF1H6EJdE3nU+9HRDJEIPB0j01zaykA+479YOVywnJEqpKVMUAAJQWjcnZOblsf3Shc\nW6qCs/zJa1/3dSE0m2BiAZHJDoncX3qNKdaxxfKE6fcamgXaD6PIAe9tIVYiCROyJKe+9vqed+9k\ngFd3sd3VomIpJYdfnXDn49Ul75tCSnkjbdhVI7FlIadxOoevzlFScfuDqwXY/c4YoQvqTY/nXx7x\n4KPtldYLjz87YHunSbNd3Xh/9fNXfPSjW9M24AVGw3ip7XgZV8UNQTX9eHo25M7tFv/wyz1+73dX\nP91KKen1I8IoXQqvfvr8hIcPNm4UknyBKM4I44yN9ts/RWV5QZIV1P2bWRdctQ8POgN2WpUFRpzl\nuNbiNs6KgmGc0vRcsqLAu0LofhXiLMc2jYWqyMlwjNA0NmrXi1oP+kMO+gMerleBzGu+x7PzDo/W\nq31wHkZ4poFnvXmkTTeKCCzr2ozHUspls9M4xhCC+oqIn+Owag1u+6v36zBLycoS3zRxDZNngw5C\n03hQa722Gvl1xtLDIiOXkqblcJqMCYuMD4KZp9MoT9E1bWpeehAN0DS45S4ODnSzkOacHcQoTzhN\nh7iGTSJz0jzjR41bvAw7bNk13MnyTtIBvm4TGG9vLVI51xccpl0+cKtBkuusVJRSPIl3+cSrzulE\nZjhzxCouEzpFnzv2YuWpl/dxhYOjO5znHUzNomGsvmb3iz6ucLHnInYKla8kUKKecHh+TtNYwxHV\nNSuVCQINU9iMy8GEtL07f7hvwmbm+wipjoEC8Q1OJb63hfiBwfGdG5EtANM2rvWAEkJ8bbJ1sZyv\ngwuyBbB1u71Q3VoFr+ZMRfD3Hs5MO/denhHNVY/ufbBBNGfL8Du/d3+JbAHU6i5RmLK32yG/VKnL\nsoIkzjBMHSkVXz4+mv6v2x2TZQXjcUK75SOEYGfn6lBZRSV2v0y2AD56uPVaspUXJaO572NbxoI+\nqzMIGYYJSZpz2q1O6rPemHGU0htFC1W0C1imcWOydR18x5ruh8tkC5iK0bOiYLxisrMoJXudq/UO\nrmUutaC26sG1ZKuQkkGcsNOo0XQdXMucCuUvyJZSinXfox8nNw4pn0ep1MJcWlIUS1OHX5yfLVWq\nHMOYasEuTyS+GPRYd71K26UUaVlwFoc861etzbplY86J0wPTZtNd1OANs5TjqDoG0jk91Wk05m3h\nGxZNqzpWNp1ggWxBJaKfd4oXmlYNCyjFV+NZGzcsMl5EHcK56tWjYJNbToOsLOgVMS+jDve9Nq5h\nEZUZuSzZshsLZKtUks/Hy22mV/HZ0r5UkylEoWkIxJRswaIdS6FKMpkv/O+CbAEcpWfsJ7OweFd3\nJpXWxX2uMQuudjWXTKVE5eqqnC1sMpkynkT1pDJlP91d+dqa2aClr2POJd/ZwkHXDEpV4AgPS7w7\nr7t/LGQLQGjb3yjZ+r7jPeH6mgiaPqb93TrwRuOE04OrNTCXoRurR56zNGc40VRdtBWlVBztV8vu\nd0Nu31tfmEa0TB3jhtogw9QxLZ2L63SRl8hSVoQrLXj27IRf/WqXu/fajEYxT54eUxQle3sdev1w\n6ji/vdUgilbbPOhCcHunxav9DoNhPM1tLEvJq/0Oh69pI0opyfJy7ndFbzBrCQeujWubmIZO4Nns\nHffQNA3HNikKSWcQUV7ST+2e9BiE8Upd1U2we9ZnGCU0fZfeeLE9/eq0R5zlRGnGIEpoeA6ebVFz\nbY56wwUfLF1otN4B8ZtHKSXn44hBnICmoVQldI+yDKkU3SjiYFBpIW3D4OKo2+31F/y3oCJvqwjZ\nhu8vhFT3k4SjS1lwP97cWjqmPdMkLQteDvp0k9mNWCnFplsJwKMiqwidAg2N20F9+pphlk69rjZd\nH/9S4HQ3iSgm7bnno0rsraimMY/j60nXs1GXQXYzjdRBNKCQklyW7EbV8bsXVVFJLcsln+iQdpyZ\n3vGu1+KRvz51re9kVTszLnM+rW3zPzTu0DJmCQ1hkZLJghfROS/CGXHrZGM2L7nMS6UY5OESOU9k\nzknW54vxHi/iY55Gh9O2YqFKnkWHPIsOGRYh4yuIEcAD5xYts0ZcJoyKar03zPa0RZfIlESmDMph\nRcQokUgMdIbFTHc7KAaMyhEn2QmlKrGFMzU+1TVBXW+QyJioXJSOWMJCFzqnxdHC3yM5JpRDDM0k\nldGVUT9vCqkKusWLd7KsHwKU+uE4D7xrvLeFeMcIB5W79LcpntcNgeWY6Ib+tUZiy1JSFHJBAK9p\nGpZtYpo6/W44NUa9gNAFSlXarXCc4roW4pJAXUpFOiE+vU7I+qTc2umOkaXCtAzOzkbcu7eGYeg0\nmz7HRwMePtwgCBza7WDquXWxnmfnIxSKPC8pinIh7zCMUgK/CrktihJnSogV7aZ/bbXQ0PWpo/zF\n99d1gWXqdCf71p1UmkxDp+Y5+K6FpoHv2iRZjm2ZC1XPmudw1BnSGYSsNV7vNzO/D4tSYpsGgVuR\n3KPuiLpr8/K0SyvwMHTBMEoIHBtF5UtlGhWpLaREqVk1TNO0a9tylzGIEoTGUlVQKUWpFELTMITA\nt03GacZWrYY3+azj4RjXNKjZNvWJC7xnmdMbvGMaFQGb/K6U4mQcch6FBJZ1bSUysCz6aULdtnnS\n6bDuVZqgThxNPbou4BgGDdum5bjkZYmYTFBmsmScZdwK6thGZaXgmeZUW6VpGoWSeEZF2p70u2y4\ni/uuabvUrcqiYGNicCo0DSz4+dEhD2pX69LatntthM88SqVw9Wrd1iYxPaWSmJpOrko2nep8ujw9\nOCoSTtIRTdOlm0V4uslB0qdleRwnQ9asSt+Uljl10+U4HSCVIjDsqSWEq1uMiwRHmIA2nUBtm8GS\nNcSgCGkaPtt2i3Wrjqnp0wDsXJX0i5CWXmdQhJxkXZpGsNKHq7JvMJFITrMumiYIDI/n8R4No0am\nchSKDWuNUpWYmomj27i6i6d7pCpFR8cQBpZmUTNqWMLiODuibtQRmkBD4Ol+RQg1hamZlKokLkMM\nF2SiU5u4zCsl6RTHNI117EmLMZEhlnCmUT2H2RMC0V4i/Wf5CxwRIK7RGWmawNKuf81vCpTKkOoZ\nQrs+4uvr4L0txD8iVFWbryeLK/LyjcZzhRBTEftl9M5HvHpyfKPlWLY59d0a9EKkVJyfDHAmdhDb\nt2c3EKUUeVa1UYKaw517azSaHgpFElcH+6AfTScRv/zikFJKHjycnWgbG3XqEwLnOiaGobO5WSeO\nM3ZuNRcuXmUp6XTGnJ4N0XXBndttnr88J89LsmyxRVkUJUpBMIkLOj4bIoRGq1F5fF20/Tq9kOOz\n4fTni2rY4rbV8Cf6PN+1cC618kop2T3usXtcVTjWGv6S95UQGve3Wjy6fX0bdxXiLGccz6p5QmiM\nkpR00pa9qGZlRYGp64zilKwosQyd9Zq/EFz9pnLNMMtI8oKnJ4tj8qMk5XjODsI2DBzDYL7xd7fV\nWKhKXWCvPyDKsgWyBfDZ6RmbgX/jiJ77jSZC07hbrxNNKmVhvnpa9eJz9kZDHner77LtV+3BXF5t\n51CfmIvausFvtavj9h86x5X9wqhHXhYopZbam+uOz281N3g+qWIVsuTLwTm99O1E6C3LXagmKaVo\nmi4FknGxeGMpZElYVMdLzXC477WRSnHHbfL56HhqBXHPa08nIw/TAaksMDQdWzPo5xHddMxh0kdo\nGqbQ6eVjTrPqXOnnEcMVE4yOsDCEPt3evxy9pJSSXBbYwuRD9xZfxrs4msUj7/bCdypksXR82sLi\nnrNDfRJAfd+5hdAEvu7h6xMPvKJPrmbnv9AE/WJASYmhGehzJGbb2sHQDJ7EjznKDiefYeOKalkS\nSaJikkn17SjbJZMJmibw9UXX+bqxRqpiysln37I+Xtk1WDPu38ge4ruykPi2oWkWuvjRlf+v2uPP\nvsU1+nbxvsL1juF4NsY13k43wcluB93QMe03X85ldh8OY5prAeY165TEGcN+hDvHyof9CM+3SZMC\nz7c5PqjMTS+qQ2mS8/SLQ3rnY9a3qouRaRmkaU4UZpSlJE0LNrcajEcJ65s1glrVwihLyd7uOc3m\npCogBKZVGaJW76tunNbcOh8e9bDMiiwFk7aYbRk0Gx7epYEFZ1KRA3Ada1LtqpDlBbsHXRo1F9+z\np/9TKExz2ZTyMi7bPygFaV5gmzqOvayBuoAQ2rVav3nM70PbNPAdi+PeCKWgFbj4joVtGozjFN+x\nOOgMeXHapeW71D2H/U5/GmLdGUUYeuXu/vS4Q829vno0j6woqzak5y6Yk9qmQd11+Oqsg2dVxrGO\naU5fE+c5L7o91vyJaW5R8Oy8w7rv4xizylaSF+SyxNR1NoOqxeeZJorVIvhfnZyw7i3mAuZS0k9i\narZNw76erDVtB1s3pkQwsKwrY36UUjzun7N5qaolpcQzTYQmOEsiTCH47yd7eIaJoxv8snOEsHXW\nhEtrUsWKihyhiWkV7OviLA0ZlxktyyUwFp+kE1kQllWG4qhIcHWL51EHRxjc8Vo0TGehMtXNQrbt\nBqbQcYSJb9iEZcZZNiQwbGqGg6tb+IaDI0xexuesWzUsYSwsJ5tot+arbFt2k0JJ/nb4hG4+QtcE\nLTNg027h6jaGpvM02mPNbHCUdTA0faniNe/pViqJQi1M/wW6v+BuX/0tWDkhePG3NXO9akFqxsLr\ndE3H03026m2iKKOmN9AnLUhTWx72SGSIrpkLpC4qBxiaNTEf1VaSsO8SueyRqw6GthxbJFVWxex8\ng1CT9vdVqP4n0LS3lz58nytc7wnX9xC1lv9WZAuWDzYvcJbIVllITg96BJfag9bkM7vnQ4K6i2kZ\nCyTMdkzCcVJ5bzV9dFPQaPsLLUjTNPB8G9PQiaKU0TDGry0aowqh4bn2VMifZyW2YzIeJ5SlpNHw\nME29qh4UktE4oVF32dvrYjsmtYmWaxymeK61dAKrC03OKgd2XdBu+jx9eTp1kIdK2D5/g+/2Qwxj\nkYB9+fKUtcais7sQGpapc9IZc9IZEXg2g3GCZV4/THEdVl0whNBIi2ra0Xesqp2n6xi6wHdMdloN\nHKtybb8gW1Ip+mFM4NjoQrBW895oQtOzTGxz0Ql+Hg3XWWl1Yer6lGxB5Zl1MgppuQ7WXGUryquJ\nPPdSG7Afx8RFsRRUvRUEU7KVFgW/Oj3hXqNBbTKFKCfVpqu+o6ZpS1W3g/EQUwhMoVNIiQacxiGl\nUtytLUcGFaqym/AMk6btYOkGYZFxL6gidALT5tHGGp1hyItRb8kq4k22/xeDyq9rPsbnIBpgaIJh\nnrBmLxM4U+j4ho2kOgds3aBteVMX/MttwJNkxJPwhFtOs2qnKmhbPp5hUU7ai+fZCFuYGELHFRa2\nvki2noZHmEKnk49ozhmmVgRKZ9Nq4ukOkczYttsL77U0E0MTNK5oL85jVI4Jyxip5JI9xJviIN3F\nFR7W3HJKVXKQvWKnvnWj+44t3AWyBRDKPpKSTIXYYtmG5XWEYxUS2adUGYZ2vbnyTSBwMLSZI38m\nTyhVhK75JPIZulb7xkiXUjlSfYbQro86+jpkCybXz3CMYA+lXT1g9U3ifUvxPaYQurZAtgxTX4js\nGXQjwtFiyyCoV9UpKRX1VnVRrdU9knh1G0fogtOjAY5t4tgmJ0d9Dg+607bBBbmTUnEwEfw3Gh71\nCTELw5STk5kA1jB0bMdkc71GrxdyejpkY722kGl4dj4iywp6/YjzzvJYcF6U07bhJw+Xcw+H43i6\nfqueTlt1l+GKoGzLNPjo3ga2ZWLoAl1oaMBX++fT1t/r0B/H9MerW06jOCUvJGs1n42JBsw0dOIs\nR0qFZRhYxnJ1rijlQozOIEpWCvez4u383a4iD/04YRAnHA1n++C3tzeXiFvdcRgmKYOJqalSiqed\nDm3PIy8l59HV/nUK8AyD//T0S5RSDJKE/7r3iv/01aKn0Uk4ppdc3cpr2g5ZUZKWBfvjIeM8o2E5\nCwL503gmqm7ZLromSMtiGir94/bWtD3XS2NOozGuYfJhfTYpO8gSOumb+fF9Ut+kYHF/3XLrrNs+\nt93r8yNtYWDrxrS9CPBVeEahJKWSHCYDojKjZXns2A2EpjHII/7P/b8AwNdtWuYiYejn0TQWaH64\n4QNvk5O0Tz+vpnRLJRlNPLyUUvzF4HMaps+W3WQ3uRR2LzNydTOX/qZRp24E1yZ63LRt/sj9GF+f\nkcODdJdMpuxYd3k6ekwnPyWTKWf5IcWKcOtVeJn8CpSGrzep6avlA53iJcUbisYNzbmWbBUqZFS+\nvNGyquva7Lw1tQ1MrVpXV/94IQ7oXUPTTHTxk29s+YswkXxzOrG3xXvCdQMkUUr4NUxQvy+Ixglx\nmKJpGsE1nlgffLzN2mZVcu6cDhc0UoNuOG31WZbB5vbswv/08dF0Qm88irl1t01rLSDLC9Y2aqRx\nzt5uh+Ew4mQyLSiExgcPF0OxAYLAYWeniWnqhOOUPC/Z3mpwdNzHsnXW1oJKP7XbmUb8uK5VVbBa\nPpsbyyXzx0+PiOKrQ6xHYTqdoGw1vCUtlu9aV0YBnfbG3NtuYZkG47ia0Ht0e+3G7u6ebeKt0OGd\nD0N0TcMy9IUoozDJyIqCrCgXJhHnYRk6t1qz7fDspDMlCfPY7QxW2llEWbZkhHoTDOIE3zJZ919v\nFHuv2Zjqtr44PWPD8+lEEduBz5p79TEa5TkPmi1+e32TfppwHkd80l7jn95eHDlvOy6+aXEazc7f\nvCzZHVbHn29a5EqSS8mDehNHN+gl8bSSlhQFX/Yq3VchJbujylajlyaM85xClpxOJhL3xgNu+3V0\nTdBN44XWZ9t2MYXg+ejm08RC07jrLT6hXzwIXFhDSKVIypyX4Wy5R8mAUkkKWU41W6+iLmumj6EJ\nullEXGT8eniIoBLbHyUD6obL/3HvXwBMMg2rY3fdqqFrglFRPZBIpXgSzqwiDE3nI/8W99x1hKZV\nsUMTR3hN0/jXrZ+gawJbmDy45OKeyAxLW32OdLMBu8nipKAtLAJ9dWs2lgmH2dV61dPsZDqRmMnZ\ndWA3ecmoGBCVY2IZcsu9i4GBpKSpr11pdnoZ2+ZDGsbytWwe6+ZDjDckNYbmoF8iXKVKKSfEzdB8\nAnH3jZZ5gSqk+zeDBmiqi6YmdiKaBt/DQOzfjC39DUNJtTK374eIq54ApZyJ4C9+Pz8ZVNOPc8Tj\n7gqz1LKUKKX46NMddF3Q74WcnQwoi+rvv/7FHmmSE9RdPM/m4FWX1mTqUEr12qfSjY0atm1UZVoF\nf/Hfv+LJ02OiKKPRcKetu8C3r43w+eTDbWqBw2AUczapgEmpptFAt7ear20D5vkiYflq75w4zTjv\njdH16r1rE7J2USH74uXJa48fyzQWJi1LKfl8t3qfY5m4tsmX+6fTDMlfvDgkSnJennV5cVLdbMdJ\nSi+MOR+GxFm+RKI+3tnAMZdvHh9urS1Vqw77Q5J82e/qJrjXamDo+lJFqx8nvOz2OBzMKpeaplFI\nyecnp3y0voYhBAfDIblcbL0keb6wLp0oQimFb1kopXjUarMd1Fh3PV70e9MoIFPXMYRYqMgYQhCY\nFsmksvdfDl7g6AZPeuecJxHnSTQV078Y9bjj18hlia5pU4f6bS+gOdGMXeiAAtPi+bDLXx7uYly6\nibmGybrjT6cMvy7SsuCz4THnWcggS9iwZ+1xWxhoaMRlTi+vKk3bdp2m6dLPYwxNcNtt8pPGHWqm\ny7ZTx9BWW8XM4667Vg0aqIINq8FRWg2KpDLnKOmigJNJSPWGNXsQmyeelz9jzaxPt59SakrUqu9h\nIuf2eS8f8JeDn9PPV5tausK5MlOxWp5NJKsqY6foMCh6xGXEhrnFQ/cTLOHgaQG+4dMw2zjCw5z4\nd70OhcoIZe9b02wVKqJQs8rtN629+r5DUx2UclF8Ny3Em+K9husGMC3jSif57xuuEwyalrGg51JK\ncXrQJ5iYkp4c9mi2A2QpSZIcJRWNlo+mwf7Lc2oND03TCMfJgqD9+LCHLgRpkmM7Jnle0l6vUZu0\nIW3HRErF+kYNz7cRhmA8itGF4Bc/f0Wt7qw0S72APrGeCKOUjfU6D+6vU69Xovf5XvkXT49Q8hrB\noi5Is4I0yen2Q9bbVfWt24+murAL5MXMQuACtmWwe9yjXfemf2/WXCzT4PBswPZavWrhGfrC+9Yb\nPk/3z2j4zo00PL5vE8c5G40A36k0anlR0o8SNhoBSV6QZDl31htkRcmj7XVKJfnVq2NqroXvWAzj\ntMob1AVfHJyyXvPfKEuxlJKG5y4FYN8Ef7N7QDeMiIuc8zAisG16cUzTdfFME8vQp4akUN2QA9vC\nnrRGt4JgIfomznMen59jCEGYZYzSFNes2reuUVlwWLrOaRhSyJK6ZXOexLScqkKmaRqBtWj1kcqq\njeiZJr/V3kRoGllZ4pom9+uVnqmQki0vAK2ylxCaWBLZn8bRVFjvGiaWbnB3rYUj9ZU3X0c36KUx\nJ8mYprVYwTtJxjhCv1EkTKkkgzzmvt8mMG2UUjwLz1m3fVy9OmaejE+xNJ227U9jj8ZFim9YOHql\nnaosPiQ18+a6GanUdCLV023+qvdk6q/mGjaevnj+zTupn2V94jLF06vPm9dt5aqgkw+oGdX2zGRO\ntxjgCgdLmJRItq11fN17LbGRSiKRC9vSEQ7epDpW02toCHRhYAubTn7KqOjj6QH1wJ9eQ5WSnBfH\nBPr1LVyh6Xj6clX9m4KhuRhfU+v0mwSNUVXR0qz3ovmvg+96w71LZElGluTXTgx+XbzJwaZpGmUh\ncVwLyzIY9qog6iwtGPVj1rYuTCDheL9Le6OGEBpnxwOCwEGbVIM838Z2TM5OhpydDlnfqGPO3ag9\n38b1qhteFKYoqfB8m89/vc9Pfu8evu9wdNRHKYU9aatJqfjVr/YIo4xWy+f4uE+WldQCByEqLdnl\nala76ZNlBaahkxclur781G6aOp5nY06mCg1dXyJbAIcnAyzTwDR0nu2e47vVNN5l0fzFz5ahk6Y5\nx90Rx50RG81g4TXrDf/GgunL+/DZUQfL1NlsBOhCoKRiEKfstOo0fZdXZz2UAl3XyPKSduARTCYZ\ndzt91ms++50BgWMttUmvgmOab/S0HmU5Lzo9LF1H06DlORUxsiyklCggsKvPnydbwzRF1wSv+n1a\n7syIMy0K9AnhNXUdb7I+G75PzbbxLQtrUr26WJ5E0U1iHMNgkKbERY5UCvdS/uGvzk+4V2uQS8lo\nLnexZtl0kqpyZgjBV4Mu665XkTpN4zgck0xI2jCr1vv/3n/KXb8xNUi1dJ2tVo0oykjLYmVmomuY\nS2QLqqqVo1896ToPQwjW56pahhCsWTMiEpUZaPCBv5i4MCwSxmWKp1s8j845S8fsJz3aVjBpN46J\nygxPtzhJh3i6haLSzM17prm6NSVWcZmzZtXZcpoE+uK5lMqc3eSUlll5hfm6MyVbl6FrOpYweR7v\n4+sunj7RjSJx9Yp09YsRhco5K7pLMT5KKeIy5ig7pqQkkSmePtvOg6LPqBhOtVv9ogcobGEzLkc4\nustIDtmub9Afj9C1asDjKrIVlUNGsocrfjjhyfMoVYgkQbwDMf63BU3+CliDyw8lWjDNVPw+E673\nLcV3jCzNSa5wQc+zkix9c03Mm0JKRbwivPkyiqKk0Z71ue892qxc012LzVvNhdfVW/609Xf73trU\n3DRJcg53q9DW7dtN8rxgf7fD6fGALK1aNvMtQ8OsxO/HR30efrg5DZne2mpMxfNQabsM08CdVL40\nIYjCjOPjAUop9g+6lFJydNxnMIo5Ohmg64K1dsB5d8Svv9gnSa8Wgzdq1+c63t1pTT/70b31K7Vb\nF7Atk58/OaDuO3x4pxKhdocRp70Ruyc9ylIu+Gm9Ce5uNHh2eE6YVhcRyzSqibyJXs4xdZq+y8Ot\nNXZaNR4fnnLUq9ou99dbtHyXj3bWb1zhGqcZ56M30yx6lsnHm+vUHJsP1trIiXP73WaDUik2Ap+z\nccgoXdwGF21LzzSn4nmA4/F42vKDqsJ0YWq6NxwsvPazs1PCLON4POZhs03Dcfl0bZ3btfq0yjWP\nH7U30DSNk3BcVYrShF4S008TtryAUikGWcKnrUXhc1zmqImIfZgl9NKYn7S3qU3ajKWSU6+teff5\nVRjmyZIH2JrtERYZu2Gfs2TmVK+U4jgeTX+e1+E9Hp0SFxlfjk4XCLIjTDbt5XiyCw8tQ+jcdds0\nTJe2FXAQ9+jnETXDpW64lEry88FLBnlMPw+nHlxSKZ7FlU7ms1EVgPxJcItNuzG1Z6h0ZRNbE2Fy\n392il4+nbd3n0SH9bEQx0Zcdp51pm/A069LPxyQyo1QldT2YEiupJE2jRtNs0FxRTcpUzlCOuW3d\nIpEpa2Z7+r4XyQtSmeEKt6rsZye4wqM2Wc6WdQtbODT1Fq/CF/TL12vtPL1O21jUpKUypJMvB0O/\nx7uB0n4EV2j+fgh4X+F6x0jClDzJcS4x3CRKOdvtsHX/zc0vT/Y65GmB69u8fHyI69tXhjz7vs2g\nFzLojJdsHy5j/8U5rm8v5CwCfP7zVwhdYJo6w17E0V6XUpbE45RGa1GIaBg6aVJNy7mGUxX5AAAg\nAElEQVSeRXu9RmstQBMalmVwsN/l+KhPveGi6wJ9slzPs8nTHE2A69pV9eKS0H1tLcAwdExTJ4oy\nbNtAN3Rcx0QpOO+M6PZD9vY6WIa+4EYfhim3tpskacFf//0LpJQ0G2+vn8nygmd75yillny/pFRY\nps697TaGEBx3hzQDF02Dv3u8x+2NBoZRien9G7Smfd/mv/7Dc26tVdtDF4Km71JzZ8fURt2f6s2e\nn3SpezaWUVXktho16t7btxs0DTTgVafPWvB22ywpSrZqVWtwnKYEtl35NOmL05T+xMcrsG3cSbtO\n0zSajrOgATOE4Gg0olSKdc/DnbOX2PR9LF2nZtkLy75coesmMWdRiDepeG14PoFl83cnh9wJ6th6\nlb14YfZ5uTrVst3p9KIldI7jMQ/r7WrCL0s4CAcITbDVrBFH2dR367+dvAQ0fMMkkxJDCIZ5yu64\nz7qzWDG1hU7NtBnkKTXDmqtY5QSGxTBPeT7uTN3l1ywPUzcIDGs6KXnx3feiHo5uVpYXSiI0jXU7\noG64VbtZq7RtoyLmA38dT7fQJ23GXhHxib9DiQQNNibxPpqmsT75ed2qTfy+YgZFRCYLHGEyKiI+\nG7/ijrM+ifQ5QkfjPB/QMmu8jI/JZYEpDBzdJjA8nEm1rGEE+IZLQw8Iy5hIJvSLIQJBieQ4P6eu\nBxxlpwS6j0DjIDumbtToF/2pq3x9rvp1kO2zY+1QN+p0inNCGaJrOpEMkRPyepjvsWFuYwqLdq1O\nEWsYkwpXrjIGZQdX+OynT6npVweYG5qFK2pvVB1+1yhUhKRAvEbsLzTrB1XdApYrWyvwvsL1jwh5\nVlAUy5Ngjmdz70e33mqZW3fXaE2mBu99vP1aPZnlmGzdbV/5/zTJOdrrcO/R5tSeAaoQ6eePj7j3\naJNGuyJN/e4IP7DZ2GpMXegvwzB0LkQcFyRgPEwYjxMGgwg/qMTsWVrQ647J8wIhNHRTJ03LpexB\nqIi2EBqOY/LlkyOE0Dg87tOou1QRI7C5UefRg03W12ogBPHE4f7gqMdonPL3v9xlMIz4n376gLVW\nQBilZJdsGr746nhagUuznOe71UTa0emA/nA2xm+ZBh/d31iZ9XfcGU7tInZP+tP4HMcy+dc//YiN\nVg3HMths3bz10PIdzgbj6VCBO9dqPRuE0+rWQWdAO/CWwqzfJiT6AqauEzg299feTIAqleLXRyeU\nUnI6Gk89r7br1c3PnZijPj0757OTk6X3d8KIvTlBPUAvjqe5iXcbDdquO9UjXcZFa/FwPCLK8yqQ\nOgynE4ptxyUwbf6vL3/Nr85PUEoxzjJ+d2ObXpqwO+ozzjNs3VjQauWyJClmlelOEpFLyYeN9pSU\n1UybpuWy49X4ojMLXn456iEQNC2HsMgZ5tVxsuH4HCUjXo0Xq2CapqFrgtteffodNU1jzXIra4ks\nYt1ZbFcrpTjPwmluYS5L/p+TL1m3fFzdpJSSv+69mr5nN+6SlNX3GRQxa9YspucsGyFRaKoyMTU1\nnf14daVOaBpRmeLpNg3DI5UFimqI4I5TDdfoCB66O+w4a9x3tyiV5PfqH/Ghf5vTfDnXdFCMOUrP\nUChqhs+a2WTTbNMp+rjCxtIq09m22SRRKef/P3tv9mtLmp51/uKLOWLNe+3p7H2GHE5lVmXZVV02\nNGDsgm6EulH3BcLc+sKIvwBuEJLNFbbkC1tCQlxTF21LFqhpI0CysNrYBmNsp7PyZOaZpz2ueYo5\n4vv6ItaOvdcezlSZWWl3PVJKedaOtVZMK+KJ933e58lGGMuQ6YbeIC0y+ulgpaq+Y+1Wflsdo0vL\naOFoZTVrKqekKuWG/fbZo8Bh9oxYlb9/AwOT8ve1a99+6VTfD9vsVKkcxeXV/XnxyZe8LgqlXi0z\n9P8P+FGF63OG5ZjYro3QBXv3DtENHcs5zbL7QfGyz3gVdi+EwLaNqkrWP5yQ5wXzcYDt2RSFpNZw\nEEJwfDCl2fbxfBu/5qCU4tG9Izrd0ydITWiYlrGiqXJcC9s2WevWiKKU2Szi4b1jJqOAVruG61k4\njkW97vDhnz6lVrcr/db9+0eEYUK7XT79t1s+43HA9d01HKfU8riuxSKIyYuCet1lZ2khMZ4E9Psz\n3r61wa3rXXzP5vnBmGbDJUlzdCFW3OLXO2XEy2Fvim0Z1b9rno3rnKtkKXXh/b3xAl0IOs2y4tSu\ne0RJVmUfvskx930bWzd4dDgkXsbVnBCqh0dD5lFCp1aamApNYxJEBElGyy8rmoWU/N9/9Am3NtpX\nmpa+Cl7HpBPKbV2vlVmV4yDCtQySvCQrQtOYxgn3+wO2m40Lwvg7xz0WacI7a2urFZ9lK/FFuqYo\ny3g8mbC2zFQ8DkofLFTpvO6bFp8M+2z5NVJZcL3e4Ea9JJO9KGDd83k6G7O3mPFWs12ZhJ5gkaVM\nkpjjMGDN8ZilMcM4pG279KIFljDQNJhnKXXTptPwyZPyoatmlhmXHcfl6WLKrtestuXteoe2vVqF\n/v7kiDXLu7C9R/GCuMjY8Ro0zwjc+8mC52GZj+jqZkXYtt1mlYeoUGQyZ5pFWEInU5Km4fDZ4rjM\nOxRm5a8VFRmebhEVKVGR0rI8NqzTik2hJMfpFE+3eB4PCIqYluFjCp2a4XA32K9sHiSKTBWM8jkN\nw2Ocz4lliqeXFe2O0Vg51icC/i27i0Ixyecsioi64dMy6uSqwNEtDM3AETa2sPB1j9pSZK9rOobQ\nmRYzLM2qBPknAn9NK6tWhmZiCRtTmDSNFrYo92emMsbZAM+zaOQbZ9zlFZNiRO0NRPGzvEeuUizx\n4m7D5wldsy/YSADkao5BHf1LFdunSLWH0JbtXTmgkHsIsfaS9705vsoVrh8RrjeAUgolVSUaPwtN\naJW+qbFWr8jWF435JCQOEjrd+gv3mZRqqY86vamkSU695fEHv32H9799g8ay9bb3ZMDb720t2446\ncZRimgaua2GY5RRWGCbkucTzyhMsDBPMpct6nhfoQtBoevhLx/t608WyjJXKWmetzDg8IWxrazXa\nZ1qXRSFZBDGNulstk2UFmtBo1N2VCcckycml4vpOm9k8wrYN2k0Pc9mKPEuWnu4NAQ3HNitbhpMK\nnaZpTOcRtmVUVYTnR5OSjHp2OTU4iyhkweFgRqt+agVRc8955hSSg8EU1zZfSGKeHI0wDZ1W0yMM\nU2quzVrDw7MtpFTMwqSc6HMsfMdmFiZkhaRVc/n0+TFhmrPeKPdbp+bR9r+8i/wkjFZc3Ls1n4eD\nIUmeYxl6NQVo6QaebeGZJvMkob8IaDgOG7VSO5UvJwVPoGnalWSrkJJn0wnrvk/njODeNUzcZYRQ\nzbKxdJ0tv6wKnYjjDSHKVq3tIDStNFqNAza8Gq5hkktJmGVYuo6jGzQsh6ZlI7TSlX7Tqy23SWLr\nOklR0HHK341maQznQSW2N3UdRzdpWc4FMgfwcD7EMywSma8QsrOomzaDNLiQq+gbFos8ZcupM84i\nDqIpDdPhv4+ecsNtV/svU5K24eEZFp5ukcmCa24LX7erqUagCsRumh6+YfOHk4ds2I1zMT4ZljBw\ndYu2WeMomZDKDE+3SWVOw/SIihhHt5aasHK/eLqNK6yVyt0JclWgkIzyGY6wOUj7bNtd/DOi90Qm\nJCrlUfR0Obl4sdJfIGkbTQb5YOlib/AgfoAt7EuXPwuN0hRUdyQkq+dgTW8wy0cYywrbZVgUowvE\nytK8L5VsnYVSikH2ezhiC6EZFCQIzXxpq/HzhKYZFdkCkGqA0Bpo2udjj6KpPcBa0XV9lQnXj1qK\nb4BgEnL0pHfp3+Igob83/JLXCGzXWonhuQxpkvHswcVWTppkaMD/9rN/uaoyAaBg2JvSOyxL//2j\nKUUhGY8WlcN8ME8qEiSlYtCbV0ap/eMZi6VjfVmVMitrCCkVYZgSBgm2bVY2E1Iq9vZGPHhwjJSS\nwWDOkyc9umulw/wJ9vfHJEnGcLSgKCSjccAiSGg1PW4vjVSzvCiJ8bmn6M8elOaIhqFjmfpyIlG/\n4MF1PJiRpBlJmvN4b0jdd9jqLg1hpwH3n/VpeC5N38HQNeI0Z7RsQ2Z5wWReCqiHsxBNe3nF6OZm\nG/9MVc13TnMPpVJEaYahC7pL/daT3ogky5lHCd/95ju8v1O2cYSmsdW6KJj+IrFIUhRwNF/QX5TH\nqeG43Oq0ibOy1dT1S4uRSRRxNJ/jWxZhlldC+u16nY736hdiXQjW3CXJOXOMXfNqYjtPE/7ocL/y\n9IrznM9GA240mvyv199hnpbrMogCFllKlGdEy3biiUbqs/GAT0Z9AEZJyIPZkP3gtBU6SWMG8Wk7\n+iCco5RaIVtPFuNqHXa9JpM04uH8xdeNd2pr5FLyYL4aJn7L75R2LXlC3bD5s/Ee150WkTxtg9b0\nMpJHW+rTjpMZhZKYQl8hcKMs4GHYr/49SOYMknLbjpIJGmXLsJxkXFbQlCReflfdKMlFrHIsUV5L\nCiXpp6Vh7FE6YpoHy/edevAdJANyJblmr2MJk5tO6aeVyJThsvXo6S4towFKQ2iCoAjpp0NSmVWf\ns58ckMiE5/EetijXr2N08M7E7GTLdY2KkIPkVOAuNIGn+3TtU/PSUXZMtjQY1TUTjasrrcUljvlf\nZnvxrC/XyXc3jA8Qy3aoqTXQPyei86bQxQ2EeH0d81Uofbf+/AR//6jC9QawXIt653I9jia0Mnj6\nC7R+uAy6IdAN/YXsXjd0Wmvleg+Op+w97uN4Fu1u/dJqnVe3sR0LjTJH0TD1Ugy81azCoR/dO8Lz\nTOTS0qFed3j+dIBfc1jMY1zPxrKNyo9LCEGWFfy3P7iHaRrYjsl8FpetwqXdg5SS7e0WQggWi6Rq\nWX722QFrnVpFztotnw8/eooudPqDOc2GUxHG8TREF6KqvJ1A0zTWlq1K1zHJc4lhCJxLXN51Q8c2\nSzLoOiaTeUSzVt5Qap7N7maLg0FpH+G7NvMwpj9eMJyGtOouD/cHeI5Np+HR8J2XXnxP/u77Ngf9\nKULTeHA4rAhWzbXxbKuKWNruNFhECevNso13UonrzQJqZ4hbkuVMwgjP/uK85Dzb4slwzPV2k/3p\nnIZtMwgCmq5TZi4uW5t1xy49tITANgzWfI9CSp6MT1uCJzjfKjzBNIkZRWVgtW0YBFm6YjUBJZGa\nJnE12XiCrJCsuS7OUnRviDKmJy0KciU5CudIBYks2K03CLKUQkmcM9YSW16N9aX31pPFhE3XZ9ur\nVyRvp9PEKU6jfixdX4kKuj8bsOnUKgJUtlY1tt36Sz24MlXQTxaVaP4smqaLq1v0kjmLIqFQio7l\nERUZn8yP2PXa1bLPozGJzGmZHtOlGaqGhreM9NE1QVSkHCZTbnhr1USlZ9j00tIuwhZltcfVbXJV\nEBUJGhqGprNhN5lkC4I8wtVtMlXg6hZ1w8MRFpNswdP4GIXCFTZNo0auCvRLDFj34iNaZwxS18w2\nlrAwNB1b2AyyIfNiQcOo0zKaGJrBprVBL+sxzxfomo5EYgubQhX08mMm+ZhUJUzyEU2jVYVUw2qF\nRNcMTK1s1VrCRtME03zIYfqYumijcfK7K32/TPHmIvQ3yVk8+95Q7mGL9srrhuaiyAiKJ2jo6JpD\nWDxaZib+Bai3aNYFIf1XucL1I8L1OUMI8YWRrTwrePLZAe2NBv2DMQeP+rTXV8nSVSdbmmRkaVG1\nEg3TYG2j+UIBvhDlVKHtmKRpTjCP8c5NSNqOwXgUYpo6rmejCY12p0YUpghd4Hpl3E6SZNz77JDu\nep2ikLTbPrW6wycf7/Ho4THXb3YxDJ3DwzHTSUi94VYTio26i+taldu8rouqjfjs+Yida22aDRfH\nsZCFpNef0Wp6ZSD1svp2/9Exa+0a+0cTdF1gmQZ5VmYrti+ZXiwKiedY1ft1XWBbRjkgcAaObdJu\neGUgt2PRafi0G2ULc7PTeGUrht5kQbpsv9VqDs8PxzR9t8pOBLi318e1TA5GM+4fDNhZa1JIueKZ\nNVqE5Y3zDLlSlEkJb2Ji+qoQmoZnWfQXAXXHpu6UZEihLujIFmnKLEloLEOnTV2/QKpOXvdNkzDL\nsA2DXEqmcUzdsiuHelMInk2ndFwPqRR3RwO6nr+MtpEXPLgsXWcURwR5Vpmh1k0LzzBxdIOu49Gw\nbeqWzafjPjfqrbKik2eV19YJ4jznD4+e8/G4x7vNNRzDJJcFpqOTxmWV1xAC69zEo6XpuMZqFa6c\njly9cUilLtyATaFXZOtZOMHXyyBzpRQfTvZpmS43/A5du8aatZyAVIpn0ZgbZwjXUTyjYTjUTYdn\n0YhE5hzFU9btOsfJlFxJ6obLW25ZjVDAcTKjsbSNiIoUR5gMsjl1w+U4mWALE1e3iWRSkbB5EdE2\na7j66nXG0S1MoVPXPYb5jFwVjPMZk3yBo9uVxYTQBC2zjrEkRAfJMTXdryKOdE3gC49IxoQyZJCN\naBlNxHLa0tFdEplgC5t5PqOXHbNrX6em16jpDRIZY2gG/aysetvCuUC4jrJnOJpbkTJbc/BEg2fp\np5jCRiAY5UcEakJDf3Nt0qR4iqk5iDewPdA0rSJb0/wOQpnoy1amIkeRYYo2miYQl0QFvQxxcQeh\ntf5cONr/iHD9APhh77ivEoQuaHZLUXeeFmxcb6OfIwBXnWxxmJJnRUWwdENcGmPz2fef0VlvXLjQ\nF4UkDBJMQ1/RX5mWAUphGDrOGfJm2QZFIQmCMjC5yCWD/gzT0FksEjY2m1UboCgUN292S72J0HBc\nE8MwStH+8WypB5M8etRjc7NZkSClFLs7HYTQKApFHGdYpoFtGzx5PqS7dir2bdRddCHoDWZ0Wj66\nLjAM/YLFwwke7w2peyW56w3nWKaOfW4SUCm1ogkDqm24CtlS13YeutD4/qNjXNuk3fSI4wxn+X1Z\nXk5y2pbJLIq5vt5iZ600Y3SskmzNopg4zYjSnM1z7URdiFciW58d9mm4r+aGfxkMXVB3bLzleqdF\nwSJJqZ2rrJU6KuuVnuYzWeYcumapq4qyjHmWMotjTF3gmRadZVsxynOGYciGXwryz5OtEzydTbnV\nbK1oiX7v4Bm7tQaGrle6pzW71Et9POrhGSaWrle2DmlREBc5txotfqyzhdA05lnKw9mIuu8ilt08\nfWm98OH4iGteeVwOohmTNKLzgpifVBb8Xv8Ju17jhVUvd1klU8Asj/D0Uxf5g3iGv7SL6Fo+D4I+\nhiYqcf26VUNoAh3BQTwhUznbToujeErL9IllRqEknmFjC6PKVFRKkaocR1jES+1W26xVLcZCFTyL\n+1xz1miZpw8M42yxQrwehvvUdZeO2QBNq0hWw1i1yji7/aU56ur5NMrHCDQ6ZpuGUVYJ4yLhMDtk\ny9pkUSzwdX9JuubEKmJezKmLOrqm4wgPS9j080Maepua76xcQ+v6agWsrEqW1b1YBksRvkPb2PyB\nqkauaL0R2ToPW1snUf1SJK/5CM3EEKcVrTfRcOna+ueybl8G/sIRLiklv/iLv8i/+lf/in/37/4d\nP/ETP0GrdTpC/lu/9Vv803/6T/k3/+bf8NFHH/Hd734XTdP4u3/37/Lv//2/59/+23/LH/3RH/G3\n/tbfeul3/bB33FcNJxcix7MQl9wYrzrZLNvEckz2HvUrs9M8L5CFQuiCPCvI84Lnj4YMelNaHX+l\nkqXrglF/hmUbOK5FGCTMZxF+zcHz7RWy1T+eMp9FdLqlXktJhW7oaELjyeMeX/9glzwrmE5CPN+h\n2XBA05hMQtptvxTlG3ql4ZJS0mx6OI6BlApNK/VX9+4fEQQJR/0ZrYbHfBExmYVVxe+4NyUIS11X\nfzAnyyQba/WVzMKr0Gl61VSiVAr7jKD+BHef9mjXvZfmL4ZxyuFwhm2ZHAxmtC8xXTV0nesbLSaL\niDDLWARJ5aV15+lRmU1olELvE4uI/WGpi7FNg88O+hxN5qw3fFzr9VzioSSPdcd+rfifEwwWAbZh\nIDSNJM+JlhUptLKF55rGyvqEWcbTS1qIJ5glSSXAN3W9EtHrQuBbFnXLpu26K+L6k2U3/NNWfyEl\nGhd1NBuef+G1s/mKuhAUSvFoNmbNKT2/GpbNOIl5NB2z7deJipwgS3AMk7ppsRfO2PZqTNOUD7Y2\nCcOUTyY9bFFOWS6ypBLoR8upzaZ19bSYrgnatoujnx7Lu7M+dcOuqmWOfrpfZ3mMr5ei/pNKXKFk\nRa5MoeMIg0WRcC/o4eombcurvksBX6ttMs0jNu0GiczQNR19+V6Ap9GAuuFgCL0S2p+P8dE1gaNb\nNAwfqRRH8ZiGWX7POJ9TN06PeceoV/5bhSzKaqgwsIVFLFNSlVU6sOoYC5MH0RM6ZuvMd+oMszGh\njGgZ5YNIrGJ8vYYtrHJiUTMxhEHTaKKAul5jIscUqmBWTAiLBbvWWxjCuPIauiim7KUPaOgdYhlg\nCx9H+DjCxRIOErkU3l/87UmVMyt6OF+CK33Z/myiyNG1l8cgvepnfhFQKv3cq2ZfZcL1RnT8t3/7\nt0nTlN/4jd/gH/2jf8Qv//IvV3+L45hf+7Vf41//63/Nr//6r7NYLPid3/kdkiRBKcX3vvc9vve9\n7/FLv/RLb7YlX0EcPemRZxcFk181aJpGd6uJLCT9wwnTUcBiVgotozAlmMfcur3J1k5nhUCdoNn2\nqS/bb0Uh6R+VN/zZNKyE8lIqoiij1SpJnSwkjx70sCyDnd0Of+WvfY04znj+fIDtmLRaHusbTQb9\nOULTiOOMZOnGXxQKyzJxPRshBEfHMxZBwmQSUhSS9762zXF/ShJlzBcxg+ECWZQmpJZlcG27zdZm\neWF2bJP+aE6a5ewdXu0AfoJFmHB/ORhR951LQ7Hfv7W58np/vFgJqT4Jj3Ztk2vdJqNZQPOSGKGz\nuLbWYK3h01pqxfYGU97ZXmOjVcMxDbwzWrOtVr0yQ/Vtk7fW22gaPO69fPvOI80LerPFyxe8BCfR\nL1Bu84mvmgbomsafHR4RpKcXQM80ud0tWy9JniOV4vtHpS+WVIpREPKDIkhT/uvBHpMkZn8+Yxwv\nBxiikDuDHlmx+nvdqTXQhWAQh6RFgSEEG45PlGf0woBpmrDmeNxulevdiwJMXScuMhJZUCiJrgne\nb50Kgh1h4CwJu65pjJbrsOXW6cUBaVFUvlyXoWk6K4L2d2qdlbbmcTznMJoxzWKOojkarAjzU1mQ\nyFM/Js+wKJTkJ5rX6ZgeD4NSHG8KnQ27zrNwxCJPkCgSmXN/cYR1JuvwpMJ1FpnMVxzzx9mCsEgw\nhU5QRDyJj5nl5fG8Zpf7TilFXCQoSlE8wH7axxYWdjXFeLWP3DvOzer/C1VgaSa3nOvs2qXPYVRE\nDNIhlmaSyhRdO821jIoIRzg8T5/REV3qepOW0WbXvsXT5AHJMqg6VxmJPBWhKyVxhc+2+TYKRUGO\nJWxs4VSVo2nRJz0nXC8/K0VDYH/JEUCW6LzBg1dOLB98QWt02fc9frlPl7oP6vWSL76qeCPC9cd/\n/Mf89E//NADf/va3+fjjj6u/WZbFr//6r+O65Q0jz3Ns2+azzz4jiiJ+/ud/np/7uZ/jww8//BxW\n/6uBWstH6F++2Z0sJFJeNA19EVzfZjGLuPvRczzPqkT09aZLu1vHMAWb1y43vGy2S/F2EmeMhwve\n++YuAEqqKrIoWMT0j6eMRwFhmCClotF0OdgbkS1JmeOY3Ly5TqPhMpuWF6ibt7o0mi6zWcRgUBpd\nJknG5maDzvJ7339vm51rbTzPpt8vl3nv9jU++PoOO9stvvXN6+xca1OvuWxtNKnXnCqSp9X02Nlq\noetiaZ56EWmWM18amKZpTqfpk2Y5zw4uj/n45OHRyr+FVoZMh1GKUoqDwYx5mJQtCF2QZsWKdcJl\n0DSNTsOrphUbnl3psSzTwLFMZmFMmuVVVuTecMrbm2tstOqs1X3e3rza9PYq2KbBjdc0Oj3Bes2v\nqi6eZdHyyv1r6jptz+VGs0X/ChI1CELiLOObmxss0pQ4z1lkWTXBdxZxnjMIQ+70ehf+LpWikBKp\nFNMkxrcs/vruDdqOy6Zfo2mXRNc3LdY9j3xpEnocLOhHAYMopJCSxtJGYm8xQ6IIshTftFhzSm+s\n2lL8fqveouv4bLg1jsI5nn6xTfN2o0MvCfkPe/dQSnK4jOcRmsbX6l3MJcE7i6S4Oo7KOGcpsenU\n2XYb+LrJLb9DVGQE+SmxzVTBk/D03A3zlEke88n8kPtBny37NCNQQ+Oj+XPWLL+0fBAWe8moemgA\n8M9Vs8Ii4X5wxKI4vWGeELSDuJy4/Kn2NypbiBOctBz34z6DdEpcJLzt7mAKg72kfMhxdWfFEuIs\nNE0jKkoH+l42YD85YlbMeRw/pZAFru6yZq5RqIJBNuBh+IhncWn8up8+J1MZ6+YGh+kBn4QfUdPL\ntu26uVXNIBYqr6YTw2LBKO+jawau7mFoJnW9fWG9OsY2tvCY5Meo5fmllGSUPWdc7FfVLalypHq9\n6/ZViOQxUq3GxS2KxwCkcrJiAPsqkMTofHEeWechxHtoL/UFe6sMpv4LgDdqyi4WC2q1U7au6zp5\nnle6m263fMr73ve+RxiG/NRP/RT37t3jH/yDf8Df//t/nydPnvAP/+E/5D/+x/+I8ZIbULvtXRAq\nf9Wwvr6qmSkKyWB/xOaNH3z89eBJn42dzqVRPr39MYap0zn3/efX57L1bTRcbMek0fLIswJNK3MR\nZ0q99P0Au9c7RGHKdBLyzu1N/vN/+j5/7WfeZ329zq231vn9//cz1tZrbF9rsX2txR/+13sEi4Tb\n751eqJRSRGFCrzflgw92uXNnjzjOaDQcmk2XZ8+G3L69ieOUk4KffLrP1laL7e0mrmuhlOLp8yHN\n6x10Q1Cr2zj21e20dcrtCsIEw9Av5CNGcUoUZ3RaPuvrdfaPJ2x1G3Q6tSpX8RV0f4UAACAASURB\nVAT98YL33t1kfWkAO5lHvH2ry3gWMR4t2Nho8J2NVaPEV9mv55c9WecVTEpjVmfZqjNcg3bNZRbG\n9KYLdtdaOMtte9afsN2uX9CafVEIkrQkLu6Zi6gjaCkP2zRWX2d1n1hRjCE0bl67nDAmeU4ty/j6\nzc3yu9KUQRAQZjnrvsfd/oB31jrsBQve3V2/ch1nScIkjlhv1ums+RRK8dHxIU3PReQ63WYNUdNZ\n98qL/NFiTsdbDR9/PB3TdhwmccxbW2uksiBDUVvmKq6v17k/GfL2dhenYWIKg02vRt2yy1bbKODt\ntS4bZ86RMEvpzQLeazcvDb0+jz8d7PNjne1qWRXAk/mQW+01DCGIwpyadFhfOv13VY23tXK/xHlK\noRS+ufTPy1N+fvOnq89+0D/mZ9/7S+yFI27Xty71D5PKZ0s2sc+QzXXqPJgd0NBcmsuW5bOgz9eb\n16vlngbHaKJAFzoLGfC19rWyDaYZrIv3X7rdAJl0yGSOt7ShCPMIO9GoWSY102edOkop/NTkIMzZ\nda8xL8b81PpfAmCUjuhIj3busl5b/a2FecDu5qk1hFI1FAqhCSbpgKZ5as4rleQgesyu9061vJdL\nPP1UB9tVP0YmE2y93B+D5DlJsWDH+/orbeuLEBcFlqgjzrTlGsVNbL3OIptgCx2hGaRyiobA0psv\n1HAleYwu6hh/TgO5T/A619ovE5p6XQoM/NIv/RLf+ta3+Dt/5+8A8DM/8zP87u/+bvV3KSW/8iu/\nwuPHj/nVX/1VXNclTVOklDhOecH92Z/9Wf7Fv/gXbG9vv/C7TioZf54gpWQ2XOA3PKSUL43ieRHm\nkxB/6fr+Klhfr9PrzV5aSp5NQkDRaPmMB3M0TWPUn7Gx06b2kmDn2SRcRnhoHB9NePe9i8cwzwrE\n0gRWSkWe5zy8d8zt97Yr8hiGKcPhnE7HZzBYYFkGhiFYW6uTJBm2XRL4x0/63Li+hhAa40lAzXeY\nTEK63TpCaKRpThRnLBalvYTnWcwXMRvd05vZ4fEUxzGoeQ6LMMG2jCsF868CKRUKxWgSstbymcwj\nHMsgSlKyQrK19vqu1CdYX69fed7PwphJEHFjvc2dZ0d8cKMMzw2TFM+2CJKUZ4MJt7e6GLpgHiX4\njvVCp/bPE0GSIpd6MCgrT0LTCNOUtJC0zhGuvJAYl7RrXwVJXto51JYC/GkSV5UspRRJUaxE9MTL\n9uV5q4hn8yl106JpOzybT2nZDi37dD2PwwVd1yMtikqIHxc5d4ZHWIbBO401PMMkyjNMIbgTD1iT\nDuM05pvtMhD+z0aHbLo1Ppv02A9n/J/Xv85hvOC616yyHR8vRrQtj9YLtF0vglKK/+vZH/N/bH+A\nY5hMsqgKsE5kzuNgwPv1LTJZ8HvD+6xZNW7XNnF1k98fPuCn1t699HNnecQij7nmtAmKBE9cPfBw\nFI85iIfc9ne4H+3TNmplVJAGb7vldWKYTjlMRnzN30VQpiXcDZ+Ryoxv1W9fuW0npOc89pNDUpny\nlnsTqWS1TCpTxvmYTask6PN8zlF6wKa1zYPoLtftm/i6j6evVk9Cr894HLJl7aIBoVyQqYy20WVW\njEo7iOX2T/MBnqhfaQeRq5RRtkfL2K4MUJWSDPMntPQdYjWlpm9c+t7PA/PiPr54i0ItUOQY2osJ\n118EvOj6+WWuw2V4oyvdd77znYpgffjhh3zta19b+fsv/MIvkCQJ//Jf/suqtfibv/mbldbr+PiY\nxWLB+vrVT6FfRSilyNOrS/4nEELQWm+QRAnR/GJP/3VQb3mXkq3ZOGAxvdimSZOcx58dvvRzTVOv\nPrfdrdNaq7G22bySbM0mIcGibB04noXrmtSb7gWy1e/NSJOMw4NxlW0YhSnjUUi96TE6Y146HMxp\nt3183+HGjTW2t1s0mx5pmjObRaRpqQ1569Y6ui54/GTAeByUT8NWGacCYFkGjbpDFGf0h4vSUDVM\nmS9OWx1bGw1cx+KoP6Xu23iuRRRnS7f5izjsz5gtYp4ejPj00RGjaUgYn7ZrhNCYLWI+fniIlIpO\n08OyDAqlSLNiZVmAw8GM7JKMzRdhMLuoW2h4DjfW24Rxii4Ew1nAYBZwOJ4zDSN820KgVRqluvvl\nhNPO4pjj2WIpOi8PzCdHPe72SpNOXYgVsnV/MCRMUx4MhyttKyh/Z+Po5b8b2zCo2zaFUjyfTYnz\nvGqhpLLg2XRStRpzKUmKnIeTER8PesT56e/4Rr1J2yknEm81WrRsp8qiHMUhQZ6hFOwHM+IiZ5rG\nHIULvtXdpmW5HAQzDsM5uiaYpDG3mm2+Pz7mG6310jNNKXa8Bt4yvPp/au8wSiPea3QrsgXwVq3D\n02DEYbSaJ3keUinuzno8C0+zCKM85b8MHvG3t97nT6Z7WMKoyBaALQze8rskRdnOMjSDH2/u4giD\nQkner2+tfMdhPGGcleefjmCel7+lUbYglhlBkVxYr34643F0jI5gki+o6S5bVhuBoG2UFadxNqdj\nNvh67QaGpvOni3toaFyzu1eSLYDDtM/jaI/RJfmLW9YGb7k32Yv3eRw/LatOySGZKo/xiSFp3aiz\na1/H1AxuOrdoLO0jTlCoAqUUlrBxhU8/O+Bpch9Xq9E2ym5FQ1/VRRmaiaGdsWBRsmonhsWUWM7p\nmDvE6vSYKiTlbKiB8QWHR9f12wjNwBQtLNH93MhWrk7bpj/Cq+ONKlxSSv7ZP/tn3Lt3D6UU//yf\n/3M++eQTwjDkm9/8Jn/v7/09fvInf7I6MX/u536O7373u/yTf/JPODg4QNM0/vE//sd85zvfeel3\n/bCZ6lnEQczwYMzO7RdX5X5Q5FlxaQtxZV3CBCHEheigZB6RFor6uaBppRTj/pwn945otH3e/WDn\n0s/tHUzobjUvTN5FyzBpTWjMpxFrSwa/mEcsZjFbO2Wr8OmjHtNxyK13N2k0V8nbdBJi2waLRYJl\n6QSLBMe1iOK08twyTZ1Bf85at4brWkRRRlFIWlcEZw+G82oKUaIIg5Rmw2VjvcHewRghSoPTduv0\nKfazB0d4nsWNax0KKS+1QSgKiRAacZJjWTpRnGEu25CLMKHm2URJhi60C1OPiyjBEKtmqouonLzb\nG0x5a/vFGquTJ7Sj0byMYdIFnfrp9j/rjxnOAt69tk6UZKRFwXa7zh/cfcpffvc6f/r4gL98+3pV\n1bqzd8wHu5sv/E4o3eIH84Bb3Yv6lPPYG0/ZaZ22TXIpKaTk+XhK1/dpeQ5RllWThHf7A25318qq\n6GLBmltGIZ3s//907z5/8+23sAyDQkoOFwt2G69WJVRKMQxD5mnKrdap3cPefEbTtktTUynZ9Gsc\nBXM8w6y8vM6iHwV0HY9cSu5PR3yjs86dUY8POhsM45CmZZNJSZTnaBq0bZdMFvyP/gEbrseNWotF\nlqLXDO4f9PhmZxOpFM+CKe81u8yzBB3BMC2TB2xhYIkyOuhEDD9PE4TQ8I2L1dcgTxmmITe8FrMs\nLjVlhs1BNKVjeQzTgKNoSlwU3KqtseOW1iuTLKJteUyyCKkkHcsnLjL2owmTLMDUTX68cXo9eB6N\n2LQbGJp+aWU0LBKCImHdWj0+j6NjTM1g1yk1QJ8tnrNm1glkgqHpJDLFEiZtw+fjxWM04LZ/nf14\nwE13k4ZxuU5HKskkn+MJB10TmOJy0pCpHB3BR4vvc9u7ja979LM+mgJL2EQyIlMpTb3JZ9Edts0d\nGkaTml5nkPcQlBE+1zc3eHj4DFs4xDJE18wX5ijOivKhraGvMS9KzVxd7yBVOXmpn7NTUEqSqAWO\nePMq+OcNpQpi+QRXf+flCwO5PELXNr5481T5fdA+uGBu+iJ8lStcb0S4vkz8sHfc6yLPCmRRYNom\nwTSk1np9sd+jj59z6xs7K5WtwcEY27NXiFSe5SymEa0zQdLdbo3B4OK02R//7l1+/K+8g5SqrG4t\n2zjzSUiWFbS7NZRUDI5nOJ5Jo+UTRymWZVTLFoVkPg3RdVFWqwZzHt07pt5yuX5rHUMXPH82YHOr\niec7TCch7aUFxXgUkOcF6xsNnj8bUKs5mKbB8fGUZsul06mjaaUgNo4zZrOIvb0R3/jGNXr9klQJ\noVE7N+X3Z99/zjtvreN59gWSKKXiv/y3e/zEt29S807fV0hZepJd4i7/Knh2OGZ3s/VSO4izCOOU\nJMtxbbPy1wKIlsMG7pl1OXvBCOMU2zJWSOHhaEaSFdRdi7XG6fl10p47aeO9Ca4ioOcxDiPa3sVq\naJhmZEVBfxFwo9O64AAPMApDmk7p9/VoNGKrVkMBvmUxDENMIUDTKmPUV0GQpQRpxob/4t/bf3r8\ngHfbHXZqDRzDYH8xo27ZNCyb/cWMTddnmpUTiQCHwZym7TCMQnIlcQ2DNcerNE1KKe6MjpllKX9t\n6wZw9W/wMJwvrR4MgjxlP5yxZnt4ulm1Kv90fMB1r0nXvrgdUikyWVwwYJ1mMaYmOIxn3Jv3+cn2\nLuMs4u1aF4HGQTxl1704EJHLgv1owobTQGhlaI1AI5YZ/jJg+mk05JrdwhQ6j8Iem3bzgnj+BHcX\n+9zyNrCXhKifTpFKsWm3qvXvZxNawufDxQM+qN3C1W0+DZ5ww9m6lHBFRcx+0sMRFnXdp2mW17pc\nFeQqxxE2qUxJZIqnu2hoFKqoSFkZiF1wlB1iC4eW3kIqybyY0bXWqxbkx4s/4Rv+t0vx/LkbdixD\nnDPRQMfpM9aNawhhEBRTBDqu/sPTPMVyQFAc0NY/QLvEqf9VUagA/asmTlcZ8AC0V9e7fZUJ118A\nb/+vFuIgZj4OyJKMT//b/deeIgR4+5vXL7QRW+t1/PrLtR1X/dje+vo2YukaL85oZtyaTa3hcrw/\n5vv/4zFRkPDobjl9N5uElUUDlFOReS5B0/jvv3cPv+7Q6nggJbNJyB//94coqajVXQbHU9I0J8+K\nUgjfdDk+mvD4UY9rOx1Go4BCSubziOPj6cq6O0u7iHp9acegwLL0angiy3Lu3jtkPAn51o9dJ0lz\nRuOAJMnYOxhXrTshNP7qX3qHz+6f5keOl23Yq8hWf7Qgu8Ti4+xzyY3tdkW2BpNFRZquQprlPDse\nYy+nDM8iywvyZfvvYOmrdRb7oxkaGkmWl5mR8xDXNrm12WYSxDw+Pm2JnmihXkS25BXPVyevnydb\nSZ4zvGTC8DKyBeBZJpMo5lqjTpoXJPnFFnzHK6tISZ7zdqeDZ1n4loVchsI7pskguHwMXJ7J3zsL\n37TY8H3maUI/vHqE/G/feodNv0ahJFlR8FHvEHdJYHZqpQFnLiXDOKQXBoyTMvZGCOg6HqjV/atp\nGqM4pB8tVl47gVKKdHl8t706jm4QF2WL8muNLmu2hykEn0zL6byvNzZ4MB8ySSPm2WrbTmgaszy+\nMKHZNMvKz5rl879vf52uXUPXNASlget5siWVYpwGPAoH3PTXcHWTJ+GQSRYSFCk14zSGasOqYyyr\nC297G/i6TS6L6nzJVUGwnFL8mn8NW5QxXw/DQ9atZkW2oEw8cLXS4uV/bn2DmuGhazrfrL1zZXXL\nFhae7uCK04qkVJKoiAiKsu1cKElQBHwW3ieSMaYwK3uH0qTUwNU8HoT3OU6PiVVMx1xDKslhuk8s\nIzbsa5fqw5RSzIvVNqZUkumyqhWrkHFxTKFeLjX5oiAwaOnvE3NMql7fEiaRB0iVoms+hXoza5gv\nDJoJ3Phhr8Xnhh85zX8OmPZnhPMI27VIopT2RhPd0Nl5d+tzM4wTuriQdyh0wbP7R3Q2mys5fJft\nM9M2+PD377Ox214hc0IIdEMQRylbO22UUrz13jaapuHXHTQ0oiglChLms5iNrSamadDdbDA8nuP4\nJoZusHmtRbPl49ccbNsgTQvyLCdLCz69c0CW5RwdTnBdm97RFM+12NhqsrXdAlVWVkyzNDs9yQVs\nNNyyjalBrVZG/YyXIdVbmy3yoihF8q4FGjzfG+P7FkdHM1zHLAmaKvdJnhcsFjFSKXqDOXXfvlQb\nVxQFtnXR5PRPPnmOZV7uTG9dYop6FrouaDe8S01FbcuoXs8KiWubK8dwrV4aFz49HqO0UpOVF4rR\nIsTQBQ23bJm9yLD0zt4xG43yCfzTg371mScIkpSD8Yy27/KgN6Tpnvo/Samq+KBXgVSKtudiGjpB\nmpZ6u0uqXOMwIisKPOt0f6ZFwTxNabsubfdyQrc/n1MoVbUqn04nNO3Tm/EiSbk7HNB23EstOL4/\n6GFoGoM4xNYNhklUmpdaNsfhgkkS0XU83GXUj2MYuIZJWhSYus6HgyNu1le1P5tejd1aE8cw6YUL\nHkcTHKnzZD7BNUz+bHyIp5sUSmLpBnGRkyuJs5zaE5qgs3S1N4Rg12uSK4WhiQvTgWGR4urmBVK9\nF42RKOqmgwJimdM0Lz6gKaU4iCbEMmfLblQ2Dl2rhq4JaobNcTIjlwWGJrD1i1O/j8M++/GQTbvF\nk7BHpgoahre0a0j4/dEnvO1u4ZyL8xlkU46SIfejPa5Za2Tk7Md9WubV1SFN06gbPp7uYi8d5iMZ\nE6uErlm2vgsKJJJr1haO7pCrnGE+oq7XKFTBNJ8yLabU9QYZKfbSPytdkrK60cQ/U6EaaUeQlk7y\nmqbh6+eqFZrCFXV0zcATdXKVY2o2+g8p9kbXHISmo6FjavU3uOcoBGXVMpF7mOL1bWU+DyiVgrqD\npp2TP2ivN9z0F8749EcosX/vAFlI/JZPo1NDFpI0vrra8Trd2zTJePLp/kuX+9q3br7SD8wwdN77\n9o2KZBS5JDwjKq8I25LknCDPC5I4q0KloawcOY7Fzs01NARBkBAGCc2WRxjEpYh8rYYQgk63xgc/\ntsudj55z49Y67Y7P5nYTpZX7QxaSjc0mzabHaBQwHC7K70wyhsMFhqHTaLiVoWi77bO50cS2DY57\ns8poczhc0Gq6hGGK71kc9Wfcf9xDKbBMndkiJogSup0aO5vNK61GGjX3UpPTW9fWCKOU5MzQRJRk\neI6FoQuCKGU8v1gJOhHPv0qbrlP3yPKCabBqBCilwrMNao6NAg7HM9YbPtvtBpZpMA8vCpjP4us7\np1NQ39jZuHCz9m2Lt9bLi+z1dnNlXU1d4FqXk63Lzuc7R73q9bbn4i8J1cPBkEl0brvOvd3SdXZe\notvabTTouC5KKRZpStMuqzFZURBlGU3Hoem4REVWCeODLGWelvvox9c32VgSpKbt8N3dt7hWq3Mc\nLHg4HfF8OuXZfIohBKau01oSoWka4xsm/8vu2xf8sBzDpGWXBHGWxWx5Po5u8E6j3Ke1pTt8sdwv\nNdOmZZXLn/hunRiKKqW4MzmmZlgXoolyWTqZX2YZUSjFtlPuO6Fp7LjNC8tU+1no9JM5e9Fp5aZQ\nkv24/HfTcElUxiyPeBoOCPOE3+7fqZZ9x9/kxxul+eg1d41rdodCScJlePW0CBGaxkEyYpqfVhs3\nrBa3/V02zBaRSnGExXVndUIvlVl1/py0A8+eZ/N8QSQTumaHQhU8jJ6gI+iYbXRN5zA5IpUZ21Y5\nBDAv5kyLKbv2LsfZEbvWdTrmGrqm4+oes2K2NNyVHKTPSGXCtrODoRlXisLrehvrzFSiokAhCYqL\nFeoTSJUzzY+u/PvngUSOkKzef+bF/Ze+z9AaS7d3iY5PWHz80vf8ICjkfZS6uK80zUITP/7yD1gO\nQaCmaOrlA2JfJfyIcP0AaG+3EbrAMHUMy8CwDLo7Vz8dHD7qMR+/mmOuZZvcuMRu4VUgiysuFE2P\nw2fl1Fie5YTB6Y16baOBV3Pwz2ikRoM5jmvR6dZpr9XY3r24bZvbLd77YId6w2UyDqrAaykVh/tj\nxqMA17P463/j62xtNQkWCZ1OjTjOysrN02HlUq9p5eTiw4c9XNdie7tsR4zGAZNzE5lSKlrNMh9R\nCI1222djvVFVs96+uU63U+P+o2PyXNJpetzYKcW8r6PdevR8QJrlrLV9up0ax8NTbcDRYFZN2JmG\nuFBlUkqx17s4VXUZnh6Py8xJqUiznE+f9aq/RWnGh48PKaTkeDIniFOyorTd8GxrpU34pDe+4KL+\nOji/DXGWczS9qIcYBSH704vTdD+2vXnpA0DTcbjfH/B0XO6P9ZrPem21jfTxcY9FkpBfcf6eRS4l\noyhiHEdlxmKe83RWEqW3Wy0+7p9OIvbDgP356brqQqxYQ0ilMIQGUvH+2jo3Gxf1Ts8XMx7NVg1w\nPx4ds8hSjs+0EzfcOrlSJEWO0DRc3eDdRoeG5VRRPnGR82BWtqR+6/mnfDQ+vWlomsZ7jav8+9SV\nLeF3al0U8DQYrTi/B3nCo2Cw8vkbToOu7ZOeaYNpaCgUD4IeQZHQMWt0rDK3NVUFf2PtfXJZsBeP\n+HSxT7p0sL8732M/HpHJnF4yRWiCv9p6j4bp09BdoiKplu2lEzJV8F7tBp6wmOXBhTbeMJsSyxSp\nJA+i5wyzCYvi9Lffy4bUdJejpM8km9HUG5VeK1M5sUxZFKfX2JbR4pZzC1OY3LJvceJsOs5HHKeH\n7NrXAXgU36WtdznODhCaIFcZR9neFcdhFR1jG6kKMhkzyY/J1cXqiobA1NzXNiK9CoVKmeWPV17z\n9V30M9UguVyPXIXk6uWaJoVC0wws7bSFFxd3UerFkonXhS5uo2lXPxC8DBoPQIWAj+KHU417U/yo\npfgDwHzFG7dSiiKXNLv11/LkuqpydfdPn9LdvtwV3HFM7vzJUzobFysFsij1V0opHM/GqzkcPB0y\nn0VVZI8sJEmSoRuC/acDPM8uA6ovQRxn5Llc5h4qLNugvnRxH/TndDo1ag2X//D//An2MoOx3iwN\nV03LwLZN2m2ffn+OoQtMy8DzLHaXxG42i5jNItotvyrRBkHCH/zhQ27dXCMvJI5Ttjye7Y1otzxm\n85hazUETIAtFs+7iexa2bTKeBBi6fqGCtQgSDnoT5kFCGJVtsME4wLFM2g2vMg01DZ3mGduMdsOr\nqkW6Li4Nsp4sItp194VVyDjN6E/meLbJaBby7o310rBwWWm0DB1zOdG3223R9JxKgA/Q9Bz2hlMe\n9YbsrjUvVKQeHo/wbAtdaAzmIf65MOmP947o1i/mC0LpFt86o9caBWHZ5nFsGs6r+0W5pokuBNuN\nerXPcim5PxjS9ctzb7NWYxzH5blwrg35dDJBQNUm1IWg6ThYuo5jGNiGQZzn2IbO7zx+zI1mi516\nnY/6x7y/tk7dtnkwGdF1V6ddH05GaMBxGHCj0abrelWFb5Gl7AVTTKHzXqvLcRjQssqKmqZpbLg1\npJIUSlX2DgKwXROr0NkLpgzigExJ6qZNUuQYQmAIQcMscw8NBL5hVRUy4FItEcAwDWlbLromeBqM\nqyrZWQySoMzbXLYrLWHQNMvzLy7Kh5zH4YB1q44rTIIixTdsjpIpcZEhlaRm2DjLcGaAfjKnZXr8\n4eQB62addbPB07hP1yrF9oVU1EyH/XiELyzuhgdcd7r0synzIkKg4RulzswSJoMl8ZIo3HMC/Lrh\nYYrS0HfNbOLrXtVKBGgZJcHqZUPWrBZ1vcafLe4gNI2GXsfSzPI/YbEoFiQqwV5Wo2pGjVQm5TSj\nphPIBY7mYgqTp8lDbOGwaV2jXnOJwxwLm8+iP2HDunyiu1A506KPK2rM5JC63inNRTXnwm9J0zQC\nOUTXDPTPwZpBAxZyD09/0fSxhr50cQ+Kp9ha94XXIU3TEdhkHGJoZbtW15poXzXfLq1bars0AZcE\nan+VW4o/IlyviZMnlNfpk8dBwvBgTL3z+UyydLdbjHqzMsT5XEWiVnOwrzjY03FAGmUE84hgFuN6\nNvN5hAbV9OPR/pjB0bSsePk25tJ89DJEYYosJLZtMp9FzCchjmdxtD9m61oL17OQhSSYJ7z97iaN\npkfvaIbrWkwmIYP+DHvZkjs+nnJ0NMWyDAaDBbWaQ78/pVZzGI9D6vXy6XA2i7Adg067hm0bHB5N\nS5F90+OoN2U6i7i21eKTu4c0Gy61msOTvSGdlk+aFpiWzngSVo70UZziezathodhCOp+GQek6wLL\nNCpyFkQpB70p9ZqNWk4BxknG06MxncbllhUAnYbHZBHx2dNjNtuX6ysMXadT90jygk69HBaIovKp\nMsly7u33eWtrDUMXWIaOZegV2Xp0NKTm2ARpwmAW0vAcHNNYaRt2al4lqF8kKTVnlXBtNGoX1utB\nb0jdsS+0Qkstk7jSCT1IUqxL2rWaplGzbe72+uRSUrft8iZ57jtqlnWBbAHULetCWDWUbcgoy7g/\nHvFOu4MhBLmSCE2j6/lsLoOqDSHoOBeJr6OXE6BxkbNbaxDlGYVUGMsMRKkkYZ7jLQOsB0lYPrAs\nCdY4iUHTKsJ1fzbEdSxsqS8DqD1atsvdaZ//fPiY9xrdsiq7JDMFimte45WuJ3GR4+gGYhk27Z6L\nE/r/2HuvHkfSNEvz+YRpMyqnixAZqSqruqu70ZjFXs9id+/2j+5vGAwwwPZiMNuyqrJSZ4ZwD9dO\nTZoW314YSXcPd4+MrKia7AbyAImMIBmk8TOj2bH3Pe85QggGTnDr8aKpeJVOGNgBl/kSLSS7ToSr\nLP5x+gpf2fRtn1A59K2Aq3LJrtOhwWBJxWk+5VN/r9WHaZfaGAZOyHBtCRFol67lo4XiwOnhKpun\n7pBJucSVFk/dIafFhGBt6SCE4IfkBC00B851deIsHxOou0TlTWye71td9PpiawsLV7o4yiFrchoa\nXmevGeg+F+UFnXV0D8Dv4t8RiICX+XOe2E9xlUfcLHlsPaNjtdo837eJ45zT8pAPnc/u2Dpst2Ud\nVG0AYQABuYnx3tR8reHKDkpY22zF1qOtYlGf/WSLCCEkhk07+v7zfbttDQKFluGWfP3Y+27IVvv3\nf98pL/fhF8L1Hvi5F+5NTM5mJMsUf13J+f5fX9A/6N46UVRljVSS1Swmwm7ePAAAIABJREFUWWZE\n/eDPRrY2MI1pydAb1Zq3HWyubxN0PDq9AK0VtqPxPBs/9FB6fUFeJIQdryVb1sNkC9rW3KY957hW\nK7IXrV4sy0rSpGAyjvEDByEFjmsRRg6rZYa1tpsQQhD4DvN5Qn8QcnW5YLATUtcN83nK48d9Op2N\nQ7Nhucp59nSHV4cjjl6PicLWdT6K3O3n+p7N0ycDXNdCSsFgbc3hOhZpWlLVDZ5rU9cNl6PVtmq1\nIVhCCGxL3dqntqXoRi7jeUJR1riOxtLqVvXKGENZ1XcqaFpJOoG3jdt5E/Ha+mGyTAg9mzB0SZKC\nrCiZLBK6gUfo2by4GJOXFUIIHEvzw+mIZVqw1w3pBz4fDHvEWYH7ho3EBkKIO2TrIYSOjX2P6Ny1\n9INkyxjD69mCge8xTdKtCBzatt0iz4lch7yqttWxd9G2wfVk4NmybY1sKl3zPON8FbfkxnX5fjLm\nV4MdjhYzHoURSVVuRfsPVfBspejYLQFcFq1Tvqvb7xlaDkVTb72yOrazJVvQTkdepTFSCBylEQiw\nBKKC7xZjFmXGrhswyVP+l53H21bmNE9JqoJd95rsniQLbKnurG9jDLVpCLRN2rRu+SfpnK7lcpIu\n6FouizLjNJuzqnLKpsbXNkVT8Y+TQxyp8JSNoyxCfT1gUBvDh/6AVdXmfbYh1h3SpsCw8Qlr//ty\necyqaluNSshbIdZl05qpbh4TQmBLjSPbhANXWiyqhFWdMikXPHP3UVJgyTV5NAYB2PK2QL8xzfbv\ni2pF1hSMiimevBaoCyG2gvpl1QZ4Z3VGbnL2nD0iFaGFJm1SjrPXhDLkifuUVbkgJ8ORLhfFGfN6\nsjZCVaR6ziKNWdULJuUFPbXLUf4DPX07Y1AIgRY2hoaL8iV9fYC/9usqTc6kek1wT+bivD7Dki5S\naEAgb1S9alMA5p38rSwRoO6ppt1E20qssf4Cnl95/Q0152jxl3PKvwVTAiMQb7+W/kK43gM/98K9\nCT/ytmQLYPCod4uUGGN4+fkRg0c9WLceQGwJzY/h4mjUVo1+pPV4k2x9+7tXrcFn6L7zwWbZbdn+\n8IdLOv1gu31R18fzbZI4Rwpxi9A9/+aMwTDi6MUVaZwzm8Z01pWxoqhYzBJcr61qtVUgyRefH+H5\nLstlyt5+t70wuRauYxFF3jq+R7Ttx9Dlh+8vaEyD77cH7Nn5nOHaZyxNS5bLjG63rQK1YvqGx4/a\nUOr5MmW4E+K9QSqev7pCCsHZ5ZzxdMXTx33Ksub0cs6Hb9HcQWsT4a/blkIIAs9utVTjBd03WoVp\nXjKex3SC23eSSt7Vd21QNw3nkyW9sCVkWqvtPszLVjA8WSUkecnHewO0koyWCaN5zCcHOzwatCfS\nqq5RUhK49i0Sc7WIKav6jh0FwMV8RXxPxWuzzW+DMebetslg3X7MqwpLteTh9WxOUhQcTWc4WuNo\nC/8BIf6PwVaKpKq4iFf0XQ9bKbquy9D3ScqSbycjpllG33WRCCZZRu8dWp9/HF2w7wf4lsWqLJgX\nGZ5upwF9bT3Y5vv96IwPox5101CamrSu6EUe81XKosz5u8EBoyymY7nMy4yu7XKZrQi1zbeLEU/8\nDs+XYzqWy0kyZ8fxt9U1s17TWZkxL1N8ZXGeLRk6AUMn2Arol2VOpB1Oszm+tqmahj/Oz3jkdhjY\nPj3reirVlprKNLyIr9h3O3jK5jCdkFQF/XX2oSMtnPX04maKMVhXwE6yKaNiwbSK26xC7bCoUgpT\n88flIR3t46zbkZNywWF6Sd6U7NhtFU9JSaR9iqbispjiKYeLYoKrnK1/F7Ti+cP8lI4OyJuCUTml\nqEs8ZZM2BZZQNKbhm+QHdqw+UkhepofkpuSRc8DQbnVwmzggjUavSY2nPFKTbp3mC1NSmhJPetjS\nYbczoE4lvmwd5g2G2pTEzRJX+tckUQgaUzOpzjiwPwGu28FK6Ftka16dYQsPISSe7KzJVrt/b7YY\ns2aKoXknB/qHPLeKZratZinhvVNl60+BEBaW/J9k2WAMYID83iBrab5o9VxC/kK43gc/98L9GO69\n6Kz1VUorsjhvK2I/kk+4gR+6OP7DWWX3wXJ0GwGk3u1gy9MCY0xrVzCMbpHBo+eXnB9PaaoG17dv\nOd53uj5CCvK8IM8qnn3cRjNdns24ulyAMISRy+nJlDwrsR1NkZd8/Ku91hC2afjv//AdQhp21jmH\n00lMHOfbA7TbdXn8uE8QuJyfz9jf6+Ctyefl1YKD/Q5KSVZxRhS6W2IG7W/yPkuHQS/gXz8/xLE1\nRVnzaK+dUoxClzcn9i5GC6qq3rrEn13NGXRv2yjYlqYTuizj/FYAtqUVnaDVV71rRmC9Fog3TcM/\nfnvER/uD7T601872dd1wOY8xGPqhT+janI4X7HZDsrLk88MzBILu2tx1Grf+RJZq24+udX1yv4nQ\ntR+seBVVRfnAd2iM4auzS/aih+80XctqyUCeI4D9TsTjbofIdf5ksgUwTdPWINdAtLaD2OzDfzs/\n5dNen8C2OFkuCR2HDzrvJs49CK4rTbMiQ6//fLxa4Gu9nUw8T5YY04rou47D46BDWddkdUVk2ThS\nYXuaJCn4tNNWRGpjcJXFwPW5SmNGRUKgbF7GEx77EcfxnB3XJ7IcvLUNw2Uek1QF4fqxyHKRQt7S\nbQkhsIRiVMRE2uGR16VjufjaZmD7BLr9t1lT0rFcbKkZFSuKpsIY2HUiZmXCY7dH3w7aIY9sykWx\nINIulan5Pr7AEoqLYs6uHTF0otaqwkBaF3jKJtIenrLpaP9WW7AxECmPq3KGwXDg9AmVhxSStMlb\nM1Pt09EB9hvu8RLJoopxhEPSZIyrKbv2gHm9ZFXH+LrVdlWmpqPaVv3Q3iHS4bbVCHBenONIh5qa\nr5Mv8aVP1+ohETiytVPo6h59vYO7zjp0fcViFXOSH6KlJlAdAtWhMTWuCljWM9JmRdqs8GTIuDxB\noYmb+bbCdRONqciaFZ7s/uh53ZL+e8f9jKt/whJdSjNrV/IvpMGSfyEidx+E+RzEHoj727WGna2e\n698z4fplSvEnwhjDiz+8eufXR4OQncc/HpWywabN9lPQHYS3tFzPvzy5NQ1TVTXFDXPONC5u/X2D\num4Y7Eb85u+eUtcNZVmTpdcHblFUHB+O2Bl26A2u7zLqps0PE0IipeTDj3e5uphzejzh018/4tuv\nTtFa8f23Z+wMA5KkJElyqrJmsBOyu9vZmqR2uwFKKVarjEePeliWvraEWLdCAVarfPv4BmHgrON4\nrr9bWdW8ej3iyaM+H384xLEVs0U79dTUZvse42nMZBYzHIR0wuuLWuC1F/WyqklurEVjDKv0fjuG\nLK/Iix+f7JkuE16eTzAYbEvzv/76AyZvWEsoKTkYdPj1kyE/nI5ojMHSimE3ZBanzJOcvU7A40Hn\nxr8RLNMcYwyWUigpeXk5IX2HbdogLSuS4v6TlhSCv33841FBAK7Wd0T6b8Ks8w7fxJsGnwBl0zD0\nAx6/YR9xslzwKIyQUrLjBXRsB09pDufvNiUKrUVD1TQ8DiL2/JC8rgktG1vpreFqz3bxtObR+vnf\njc7456sTHKXb2Bml2PNDxnnKy8WE02RBZDl8Pj3nIl1ymcc887us1tWa58sJrrLI6prIum73DWyP\nfe/+i8tmW79bXrXic2NuWVVoIbePA1xkS+Zlul5r6Fgeny9PqU3DqsppuNalXhULDuwOr5IRjrT4\nyGsrPJ8FB2ip1garEU+9HZSS/LfxF9tzTaS9WzcwoXbpWD4d7fP16mg7PfkyPWNgdahMzWU+JWtu\nH2ezasllOeEj7wmB9tixenzoPiHS7ZDKb/xPaEzDam0/cZSfcFFcMi6mHGent97rsfMYW9pkdUqo\nOjxxn7ZrJC0a0zAqL9FC3yJpr5NDFvWMobWPJ4P1uhnGVWugHKkePb3LpDznqjjiifNrXBXeylS8\nibY9e33TVv+Zp/7exJ71nynMFEWA5HqbavN+ub4/J4z8+3sF8lv8B9Ga/VLh+okQQuB3vDti9XdF\nuspandBPiIV5COdHY4LO7bZWEDgo51rsXRYVP/zxGNux8Nas2/Vt7HsmLKuyIl62Plp13eC41vb/\n0LYhu70AqSTujZZnGLntxOGgrRJcnM9xbM0nv9rHcS3KokJbkt//yyv+t//zb9jb73B2MiNJCjzP\nRinJYpGSpQVFUeG6NvN5Qhi65Hm1/bN1S1dlOHw9Jklyut1r0XpR1rx4dYXjaCxLU1c13bW/VRg4\n7cSfpbEtzdV4ySYI27E1rttO0m0+YzJP2Ftr7/Ki2vpuQUs6ouD+OzzXvusoP1ul9z72bK+/bQPa\nWjFdpezvRHePe2Owtaa/JoMd38FSam0Bsda5JBmBa+NYmlmSErj29gI4CP17xehv4mS6oKxr+oH3\noP/WT4GSdycO38QizxnFbdzPBllV8Xo+x1aKeZZt/byiG3E/N9tujlL0PY8XsylPwoirNCa0bXxt\n4a7zGZdFzmUSUzXNLVuIDa7S1k5gVRZtK9GyOFrO6TkuF8mK0jTM8nzbyrSkYt8L+bjTx1GaeZEx\nyhIe97v4jSavKyyheLGa8rf9PdK6Im8qHvsdfliO+cDv8Em0Q992meYZkyKmZ3ukVcl3iyvSujUv\nvXfQQkq6locl1b3Tii/jMYWpCJRNaLmUTY2nLALdHhMfeH1sqUnrklWdE2l3TYgEAzugp1vLFWut\n/3oTQgjypsSRFntOl+NsvNZWXd/DZ3WrBZNCECiPZZ0Qag9fuizrmEm1xJU2panw1fW+d4RN0mQE\nytt+VqsHk3RUSNlUnBeXRCqkr9sK5sDqkzQpRjR09N0qkxKKuI45LY5Z1nN2rX1saZM2CbWpEEgU\nioYG25NYRcAP2ZeEqouzrny9Lr7Hkd425mdgHVCL1hutffx+t3wpJJa83kfj6iW+7P8JBqW3YdYa\nt2n1JZ68raOyZR8lnFtasLQ5xBLdd9KH/UfGv+cK1y+E6yciWaaMTyZ0hg/ffd7EcrK6NaE4vZjz\n6qsTBvtdTp5f0N15+H1Onl9g2fpBW4ambnD92zs2CByyG+arSsl24vCNWKAiL1FvTJMprdqWpmsR\ndT1sx8JxLdKkdZp33gjKbuqGoqiYTWNeH44JAofx1RK9zmrcWES4nk2vH/K3f/8B2lKYxnB6MuXq\naskHz3Za/ZlnY1maxTwlz0t2dztbl/m25WjTNAYpW/3E6+PWE0lbiu6NKUGt2imj2SIBA4evx+wO\nI7K8xHMs/u2LI7SWSCEo62YrqJfyujW1cVdfxm1INbTtwg3ZitMC+0fCxd/EfdquyL8boBz5zr0n\nDCEEr64mxGmxDbJWUvJ6NOfJoIO7dqw/Hs9xbYtB6N9pl96Hq2XMIm3F7AAd73bLr7lHq/Xnhqv1\nLbIFLaEYrN3m9T2k7dVsyslywYvZlA863a2x6L4frKtcPsuyoOe2beOqaZjnGU+j9rXLosB9Yygg\nsh0cpfh2OiIuSzq2w67n8/urc4QQPA46nCZLdlyPcZYQVyV5XfLtbIyjNH2ntWx4nS2IsAkth6u8\ntXKIbIfQsgm1zfeLMZ91hthKYUuFFJKatpoXWQ6WVOy6IeM85rvViA/8+y1gNvt3Wea38hWrpm1x\nPnI7/PP0iJ7lEdcFXev6or+ZGDzP5m1QtVRIBEpILovFViwPcJbOOM2neNLiKB3hKgtLakLtsuu0\n5EYLhbO2cwBYVAkv0wsi7eEoi47yOc4uGZVL9u0+cm370LGCW2Rr+x1MjaucO1pBIQRH+TGX5YRd\na4AUksvyito0eMohUm3o9pt4nj7nwD4gkhGv8pfsWntoaXFZnhOJgMTE2MJGCU0YuJQZaBQ9Pdzq\nN3esA6z1awBm1YjS5HgyeHCScYO8WVE0MZb0CNTgz/KbmlXf4sgejhhspx7fBlsOMNTvNXloTN1O\nSJry38cEoymRfI8R1951vxCu98DPvXAbNE3D/GpBNAjfmWylqwxjzK2WYtD12X06QOk2G/D0xSW9\n3fsnSIKOh/2WqbLJ5YKwe7fC9eaaJXGOvlEdqquGk1cj6qrBD+8eGGmSY92o4JmmbTrYtt5mI1q2\nJs0KVouU3f0u+496fPXH1+w/6jLYiVjME7K0IM8rAr+dUhRC0DSGi4s5nmuzu9+hqRvGoyWdjsf5\n+ZzdvQ6Oo4njnOk05vvvLxgOQw6Pxmil8NckZTAIiUIX17XRWvL//fML9oYRdWPwXJtu5LUVKyVx\nbE0Uunz3/ILf/qb12VFKcjFaMOzf1SHNFilxUrC3E1GU9VbHZIxhskhYrDJC725Y9tvwJtl6Gzb7\nMCuq7WcLIdjthLiOdct2YdgJUKolkEpK/PXz73pCl0LgaHXHQ2yDL08vt7FA74v7hPY/hjcrZGVd\n891kzKf9AftheEujdTSfURtDXBQtYXIc0qrE1W3lMrLbY71sGrK62la5lkXOLMsIbZuj1Zye7bDj\n+czzjP/n9BBXK0JtUTaGgePiaE1clvQcF0vqbaB1UdckZUksSvqy3d8dqyVa3y1GdLTDrEy5yhM6\nlkNjDC/jKVldMnB8QOCqa73dwPF54v247ufr5QW+sq9Jl4GzfEFaFpxnS3xl81GwQ1IXWFLRGMMf\n5sf0tbfVZBVNxVk+Z9dp9VA3tVgv0kv27S7P00vSpuSpM7gzRGDdIFubfb1n93Ckxbxu9YcfevtM\nqxWR9vCVe6sadhNCCNy1P9dZcbWeerTIm4Lj7Iwda0BHBRwXZyyrmAN7SE1NIAPstWdXbWom5ZRR\nNaaruxgajAAtNX29w7SeEqkOy2pBqCO6eoAS7e/G9gRlagh0uxaj8gxfRev4HMGymWEJm3F1Sk/v\nYQuXwmRUJr/VVqxMsRXtr+oRjTC48s83rV7TJjfkZowSFnL92ZVJyJortGg7Djd/d3HzA1r07lS5\nKjOnMBdo0ZL7pP4SvfbtakxKYY7QYkBhvgcjqDlHiZ/RdNTUtAJ6B0P3VkvxF8L1Hvi5F24D0xhW\n84TgLZ5Lb6JeT5nZ7l2/HADbtYj6wYPWC2+zZID2pOa+Mc1438E2Op/jh8524rDISpI45/TViL3H\nvVuTiMYYzl5P6N7QaCmtsNdVtqKsSJMCz29tI6qyZrlIybKS169G1HVD1PV49eIK29GMr5bs7nU4\nP5uhrfZ92jaeIi8qoo6L5ztorbaVLqUkZ2dTfN/GmFZb5vsOYehut+PV4YidnZAXLy+5mqz45KNd\nbEfzzXdn+L6zFbP7ns18kTKdJWhbM1+k7A5CtFa3yFZV19v19tzW7uLbFxcs4oxhL1yvDaySnMd7\n3S3Zmt/TKtwgL6utTcNPQRA4jKcxL87G7K0/u6hqVlnOKiuwlGSVFVzMV7y6nFI1DZ21YL6oakar\neFux+jFkZWsz8NAU5Z+LbF2t4tYWwnl4u5KyxFIKYwzfjyfs+Ld/a23Ui2HX929NUSZlyelqyUEY\nMUlTnkQdQttmVRR8Nb5ECUnnxuduzEc376GExF5PVPYcl8huW2OHyzl/O9jjN/1dTpMV382uUEIR\n2Q59x9u+j69t/ji5QAoomprX2ZJVkrHrXQvxx3nCRbLkv57+wP/19DfMywzfsjmO52jR2lIkdUmg\nbc7SBQbT2ky8A0ENtYMtr+06XiUTOpbLpEyILJfIcgi1w1EyZWC3vmSesviX2RFaSL6PL0irkot8\nwQfegEkRYwnF/zv5lidunyduH187HDg9Htk9hBD82+wFFQ1dy6dsKo7SEb6yOc9ndLTPSTbmqpgz\nqhY8c/cwGFZVyp7d56qcESmPeR2T1TmVqe+I5jeIbgjqtVB40qUwJTUVHzlPuSpbM9F9exclFItq\ngbUWiecmp2wKumu7h7qpWNYrBrq/Da9GCE7yw7Yytv6c3FrSZJLT4ohQdTgrjnCkh0ZhENRU7d+F\nRd4kXFXHRKqPwaCFTWMaGmryZkVDgyUcHBHgiNt+d5XJaai3E4s/FbbsoIWLLbtIYa+d5QWlmVOT\nYYseDRlJ8wotQmpSXPn43paiFC6KaPucEn0qc4mhQBIhRYAQGi2GSOH/vGQLgATBFETnjn7rF8L1\nHvi5F24DIcVPIlsA2tZ3yNabkFJSZHfbewCTi/k2OuhNfPu7Q56spwQ3aBrD4TenBL3b27mYxszG\nKzq9dspQKontaD78bP+Oj5cQYku2jDEUeYWUkrPjKVG3DZD2fKedrlvfOY2vluw/6hF1fTpdj/Fo\nxWAQIpXk0ZM+x0djqqpmsBMhpcB2NEIKfK91gNdaUVU1tt1OaI3HS87OWtNTz7PxfZt+P8CyFFK2\nsUG2rbFt3Ub+GHjyuN9WeDyb715eIhGE65iiqmpwHc2wHxIGDkpJlnGGY2uyvCTLK07OZ9v2IrQZ\niJZWfPh4cGttwjdauFfTmG54f/Wqqhvq+n5LhskiYbZKCb27E6lB4LBcZW1YttO2Ur86OsdgGIQ+\nF/NV670V+vQCD8+xsJQiyUv+7cUxgevQC95tKtbR+l6yFecPZ0DmZUVeVdhaUTXNndalMYasal3V\nhRAs85zaNOw/MNV4sVohgMu41V1toncspfhhPKbvtVXctKo4X622rcYvry7ZCwK0lG3YtNYtWVp/\nrpSCD7v9rafWBo0x/OvFKf21U/1Nv7ANBK1pqK8tXi4n+NrmcdBh1/OZ5hldx11HCrU+XzuOT8d2\n6dgu4zrlI6+HozRZVaKlomM5HPgRrtbsrM1QLSE5y5Z8FPZ4sZwSVwX7XsiqzFmWOf0b7vPLsh3Q\n2Gxn1dTbKlPVNLxOZ+w47fHbt30Egkg7dCyHQDs4SjOw2+dP0hm7dshTr8+yzknrgqden0+DPYQQ\nRNrFkopHTg9HWfzT9Dld7eOo1k9rUaXt0EiVs+90eZ5ekNU5j5w+WkpsqelZAX0rZM/ubde8weAr\nh/N8zDfxEaf5mJ4VYguLq3JKR9+vgboJLRW/W/2RXXuHcP36fef6PBjXCa50EQhc4fA6P2bH2sGW\nNlVTs2qWuLI1Ub4qz9HSwlU+o/KCju617V0r47vFtzyxPyKpV3T1gMvyGIPBCENhUqTR7VSjAF9F\nuDLYVrdSsyQ3MZHawVpPHG7akjdRmJiGCv2e035FsyBrrqhJ13q3PlLYZM0Zjhxiyx0aShqTocTD\n17CbRKx1nfeReGv7iT+NFP7FIOyWbN2DXwjXe+DnXriHML9acPjVazo70ZYsxfPkQYJljCFLijt6\nrCIvuTwe07nHGLVpDJZj3SFFwL3RPkIIPvpsnyQpOPr+HMdrbR06/QApBc764l6VNfNJTNi5fVEu\n8pIsbe0cAPKs5Px4yuuXV2irje+JVzl+4DCbrJjNEuJVxoef7HH0csT+QRfb0fT67YlwuUj54btz\nbFuT5wW7e13StODibIbrWWRZyXyeEoYul5etaeEm6yyKvG1kkLYUh4cjBoOwJUurjDjOCUOXQT9k\nuHO9dnpdjdOqJV/QTmm+Pp3S7XicXy7QWvL88Aq4Lrc/2mtbUyfnM9KsZND1CW6Qq1cnY+S6PXkT\nD5EtaPVkrm1RNw15Ud1q23mOReQ7fHV4sa1ibRAEDnlW4a+n+15dTul4Do8HXSbLlDgriNai+dPJ\nnD+8POWD3R4n4zl/82yfQfD2KKF3wTJrfdjuc43PqoqyrvEsi2/OrxiGt20z5lnOV2eX2yrbpnr0\nkHj+eLbAUZLHnc6W4G1e62i9NWBdFa0Ie1MlG3jtVJwQguNFK7D//PKCJ1GHyzjmdLVkzw+2JMUY\nw+lqSddx6ToO+obJ6E2tWt00SCnpOi0hC7TNrhcQWBa+ZdN1XI5Xcw5Xc76aXvIkiPh6dkXPdvnH\nqxP+7uAAURrypuZ87bllK7UWmtf8cXpB3/ZYVgW1MXw9v+KvO0Oe+q1PXWS1FbTaNFzlK0LtMC8z\nStMamgIcJjNsqZgUMQLBE/+6tVo0Fa/TKUfJlKKpefRGW3LzPkq0fl97ToeO5XGSzejc0HltJh9n\nZcKyzth1Ig7TMR2r1aqF2uWimPNZ8Ii0KdekqtmK7G8ScSUkjrTaPMWm4ok75JmzT94UxE1GR/uM\nyjkdHfCH1Xd4wt62Fd/EB+5j/LWgPlD+LYNUT3lU1IzKEQ0Nq2qJFJJABXye/IFPvV8xr6ac5ce8\nyL5HSsVH7icMrOE2Q9HxLGThMK4uKMnZ0fv09BBfRdjSRaIZlyc0oqY0GZ4ISZslmUlwpN9WtORd\nYlM0CatmvG0rauG+N9kCEEZhyw627Gxd5wUaLYKtzkoK661k6973vcfnqzJXGHKkeLcbuodgzAjD\nFULcr098H/xCuN4DP/fCPQQ3cLA9C/sGIbo4vCKexyC4Y1yaJwWf/8PXPPp4l3SVc3E4orvTagS6\nD2jC7AfI1tsQBM7WMiG6UelyblRSlJJ3yBZAWdacvR5jO5qyqPEDh7KsydOCT//qMctFynCvNTD0\nfIcgdMmykjByCSMXIQXPvz2nKhssW7G7321d01c5QejRX1fOyrJECkGvH+A4muc/XPDhR0POz2cs\nVyl1bbBtxdnZDNe1GY1XDHYCVquMxTJnNo+xLQvH1iRpQZoWuK6FMYbpLGG4E+HYmi++PqZuWpuE\nYb/VP3U7HmVZ04k8jk+nZEXJk/3eVl/2+mxKFDgE3u0fzCopmC5iQt99J3+tDV5fzqibZkuSbmIe\nZww6/h1S8+YJQ0nBZJWyEwUg4OmwS1nVrLKCySrm1492CVyHQdi22i7nK47HC4adH68YPATftu4l\nW9BmO25idnajgI0lYav3aCNhng16FHVFWpZErnOHbI2ThKPpDM+yeNyJ8O3bv5c/nJ9zEIZbl3iA\nSdqOtb+cTem5LklZMstSQttBIDhZLbhMYiLH5vl0wm92dlFSch634dKO1hRNTVqVZHVNz3X5enJF\nZDl8Oxsz9HwM8NXkirgsyeqKw8WMtC6ZFRlx1eq2AFxl8ciP2PfMF5GEAAAgAElEQVTCLXEZegEH\nXoByFLNVynE85697e0yKlEWR4yrNosz5NNrBVgqD4bvFFXlT0dDG/BzHc7rrvERDS9p8bWOAtC6J\nrPYY6tteS7jymApDx3JpjOGLxRmPvS47drBub8545HWI6wJXWczKhFWVbwX0nrK24vjKtGRpWsa3\n3OQ72uM4m+CstV4HTo+u5RNpj9JU2FJTmgpPORSmpKgrpuWSSF+ff+I6a9uerPenMBS004kHzgBX\nOYSqvVHQKApTclGOGVhv91GrTc3r/ISevn5daQoEgp7u0td9wCCQdHWX8+KMeT1lz37EE+cpl8U5\nO9bu1hYiNzmer7GLEE/69PUulSlZ1DNSsyJvUg6zL5FScmB9tPbiirCETdosH4z1gfZHIoW+pfOK\n6/Ed89Pr75G8NXfRmJqkvmBaf0WkbxuQthW1nyZqN6YCmjstx9os149bgEbivrdgXggf+HF94p+C\nXwjXe+DnXri3wfGcW4SoO4wI+wGOd3exta15+tkBUkpsx6K7E9E0DS+/OGZwcH2yWExWLMYrgnsI\n0X344Y+vGZ3NGOy3B28QOMSrjCTO8W9UX4wxvPzmjP7uW04Iov2hnh6OkVIQdX2axvDo6QCpJK9f\nXjHc63D4/JJOt7Va+PaPJ0Q9D8931lOFgtUq5fT1ZPueT54OSNM2vibPK/7xf/yAUpLhbsTl5ZJB\nP8BxLY5ej/jVrx7R6Xi4bttGzLKSDz8cUhYVi0XGZBJTlhXTWYxlW0Shi9KSNCtJ0pLnLy95tN/j\n/HJO4DtYWrIzCLEsRV03rTbGbp3uB/2APK8piroV9q+tHrpvmNTWdcNsmfL0oH8n8ufHELg2gWsT\nrTVW8zhjNFvRCVzqpkFJwfcnIwbR9VTh5oTx/emInu/iORa9oBX6ayUpq5rz6ZJ5nCGFwHOsbTUM\nIHQdqqYhfAcd1/FkjjFszVH/FEySlEXW6rMWWc40SYkcG+ctHlyb0GlX3x9DdBCGnK9WBNZ13EvH\nceg4DnFZcBnH1E1DTUPP9XC1ZugH9F2PcZryyaBPaDt8OxlTNw19t9Vc+ZaFoxS+1brI73ptBWxv\nnbn4u6uzNr5Hafb9EE9baCk4XM35bX/vOqx83bZ0lG6tGZzrqKKDfgdZwvPllKHj8y/jYz4M+7hK\nrzVfFpZU/N8vP+f/OPiUru0RlwX7XkRkOTiyzcJsXe7b9bOlYl5mFM11lQuga3t0rPazZ2XKvhNt\nK1MD2+eTYMioWLGqMvq2j6va732SzujbPq/T1gdsXiYUTY0nLfKmJVEbwqWlQtFOgYba2TrJH6ZX\nTIuYvhVyVSzwlc3AjniVXqCQdLTP98kpcZOxrBJ6OqQ0NbkpyOqCQDmUTUVS5/jK2bZIXWnjSJus\nzjkrLhna7dBR2VQcZSf01yTMGMPvVl/wV/6vbv0mtdBYot1GJRR5k7OsV9jCZlxNqE3F43WOolo7\n1s/rCbawcaXHIOoSxxlCSJb1nLReYkmbyhRgBL4K2bU+QEuNocGWG/sFgyUf/s3lJqY2BfYb1S8t\n7Ht1Vav6DFuED9o45GaCFGpdKbv9uvpGXuO7ojJjGvI7lbCGhDaCyEYI/WebTvxLTT//QrjeAz/3\nwv1UbA6i+WhJmVf3RvRUZc3LL4/ZOejdIlvQusZ7gfOjgvkNesOInUe97ecGgUOalrfI1ma7bvpn\nlUV1J/OvqhrKvOTZp/torZhPE/o74dYzzPNsHNfCD1201U5Z7h50WMxTNr3AqOOhLcXOMMRf66WE\ngK+/eE3TNJyfTinymg+eDWnqBs+zsddTic+etVMxL19c0u8HHB6NieOc4U7EYpHS6bh8/PEujw56\nOHZLmOw1iWuMwXEsHu23LvJ5UTHotc8vlm3A8HyRtFmLm0qTaA1PBz0fe004Nm2/sqyZzBMCz0ZK\ngeu0Xl2tNcW7nyg2JHQD19aE3rVDepKXPNnp3iIdmxNGd11NWyQZo0VMN3BJsoJFkvPBsMewG5Bk\nBUVV39Fsha7TtsY2nmKrBFurO3qrwLFxrXcTZz8E37a2bT7X0lhKcrGMyet665+1wSRJyKsa37Za\nC4JVGy90vlrdEcmnZYlvWXe2beB57AUBfc+j57bfe5KmeFY7jdhzXQLL5svRJb/qDyiaGiUErtZt\n5JSU23VYFTnfTSfs+W010NcWHdtBCYGnLb6fT/iw0wMDPcfbTjjaD7RH50VGJ/TI0pJnYRdLKT6J\nBuvQaUHZ1BzH83U8DHwcDejYDgPbpzaGnu3d2UcbbFzkH8K0SIjrYkvANlC0DvVFU/MqGVM2NU+9\nHpVpcKXFaTbjdTrjKBkhhaTBsKhSetb1/hgXSx65feK61ZKNyyWVaehbAV+tXvO30TMu8zlaSPo6\nXOviWl+ri2zKwAqJrPamol5PMJ4VE+qm5kV2Sqg8bGlxmJ0xsLrMyhX/tPySvo5wpUNjGk6LCx7b\n+9s2cjtN6VHTGqqqG0TgvLjAljZaaE6yU9I6ZcfeQUvNrrXHt+mXKBSBChECuqq/jtSxCAKHyWrB\nsp7Rt3bxVYQjPU7yl+zofSpKIt22wmzpbrdlVB3jyw5xM6E0Gba8/Zu0hHOHbClhPUioXHm/Z1bR\nLMmaCb7aRwsfKRzS5hx5Y1IxbY5RYpPX+G5QIkAJH2OqW58rhbd93/8I+IVwvQd+7oV7F2Rxxuhk\nQti/buEIIdC2vlcML5Wkv27NvYlW7PvuLSvxxgX9bQfb6GxGZ72Nr749o6kNfujS1A3T8ZKw423N\nUYUUaEuRpUVb8lZya5YaLzNWq4wsKfBDl8Us2VbHbEczGS3xAocsLzk/meH7Dp98dkBTG7Sl2d3r\nEMcpO8MI0xgWi5Tzkxle4OA4Gt9vJxXrusE0hjwv6Hbbac7TsxlSCF6+umJ/r435uRovSdOC4SDk\nh5eXrOKck7Mpj/a7OLZFWdXkRYkQgiyvtnYReV7Ri1wsW9275o0xW83WyeW81QpdtC3CwHNomnez\nOajqhvEixlJyG44Nrdj5q1fn9KM27mSyTPBde7sPN8TOsTSOViAErm0R3qigdgPvXoH8Ms25XMTb\nuJ9FmiMEdwKpF2l2h3BdLeOtQ/3bsMgyVnlxJ6pnsq5wbXIVb0IgMKZBSUlSFvzz8SlVU/M3+3t3\nyaD99oirWZZR1DWWUozTBEsqrPX0oRCCPT9ArclVbRqKuuY8jm9lKy6LgrN4yQdRe+OTr8nU88WU\nqyxhz/X53eictK4ZOj6VqcmqCt+6/wI0y1P6kc/3oxGNafC0tXVir41hVqSM84QPgh6R5fDF/AJP\n23Rtd2sJ8afCUxZKqFueXNDqp5ZV3k4sKoejbMojt8t3qwseuV0u8gW7TsieHdG3fCLLpW/524rT\n7xeHvEqu+NjfY14lnGQTVnVG0pSAwRKKfafXurGXSz5fHvLM28UWFoVpg62HdhdbWhgMl8W0NTxt\nKoSAvw0/wVPtZGikA6SQ2NLiM/8D9p0htalRQjG0B2ipeJEd0ddtRf+yGJE3OYHybxGuSEfbNuGk\nmpA1Gba0qU3FjjXEVwGWtDkrjnnqfEhpCoomRwuLMHAp0gZfhRjTcFEetxPh0ifQnbX7/PV5t2hS\nSlPS1/vttgsXW3g01AjeXsm5KL8mVLsPPn8fJBZaeLf0WVpEW/0WgC17SKFZVa9QwvtJxCs3L9Zi\n+b9MJNBfGr8QrvfAz71wN7ERxW9OoJsfktQSx7dvkSttqXvJ1gZ/znJqVdWUeYVUkjBsD7blPGE5\njW8ZnnZuEMLR+Zyo5+P6NsYY8qzEW1d+Xn3XCu6lFBR5hdK3JyVPjkZcnEyxLYsGw2wc8/y7C2aT\nJXleUWQlL364bE1XB0EbCfR6QlHVPH7Sx/UsdoZtnI+hFciHkcvp2QzLUmjdVrzOL+ZopUizkm+/\nO2d32EEIOL9c8Nu/fsTR8YR+z2c2j9kZdHh1eMX+boeyrPmrXx1sY4DkmlyFoUtRVEzmCVHgcHox\no98NODye3JpQ3MTMeK7FxWhB4NnYliYKXHodD9dqSdzx5Yz+O0yuNsYwX6VkRUXkt5Wn0WxF6Dl0\nA5eL6YrIa9uAnmMhtWwHFqZLjDGkecn5bMk8bVuIm6nHTQ7j1hl/lbBM863b/IZs1U2DpRXTOKXj\n3a5+jFcpcV6Q5OU2V7GqG1xLv5NxqlZ3xfBN0zBNM3o3PutsscTTrS5smmaAoeO6uFrTcR1Cx/nR\nz3s5nRLdeF0baSOZZimPwoiT5YKqbvgfp8d80uuT1zVxWRBYFq62uEpiHoURSkq+m45pjCGrKz7r\n7xBXJbMsw0BL2oTkw6iHwfCvV6f0HJd5kfMs6t0iW1dpzHmypGO7JOuJxL1eiFVJxnnCoiw4SRY4\nSnOetlWhv+61VRpPWzzxOhgD8zIjeEv16l0ghbxDtqDVhs3KhI7loqRkaAdUpuYka33LEPDMHdCx\nPP6wOGboRLjq+mI7sEKO0gmBdkjqHIPh77sfIYXgmTtkx46oTcNFMedDb4+j7IpfB08wNPjKZdfp\nbq0dGhoi5XOYX/Cx9whPOizqGFtopJBbkieF5LwYYQmNLS0saZHWGULA0GqNQxfVkrKp2LV3cKRN\nbWrOi0sC6VObeuuB1dEdPOURqIC4WrGs53R1j0CFSCSe8tHCojQFSR2TqgW6bG8WVvWc0/wlSbNk\nz36ClhbT+gohNhE9goYG1pYQcD2RuKxHINqWYVLPsORdgfxPJVvX76/eeOzuzZExhtQc48idn0S4\ntBj8hyVb8Avhei/83Au3QdM0XL0e0dmJePGHVxjYBlKbps3kexvB+ksiXmRcnU4pi4q9gy5JUmBZ\nCtu1SOOcsqixHc3lybRtBVqK/jC6Vc3ybgi6vcChKut2Yqrrb8mWMYbzkylKS548G9IfhixmCZ5v\n8/Gv9xEIhvutQ7wxhjDyuDhf0B+E7O51cF2Lqm44PZ6itOLqcsHOMCTPK774/IjhbutTkyQFFxdz\nLs4XdLs+g0GAVoowchgMQnaHEWfns9blfp6wSgp2hyH9XsAqznl80OPsYs7ZxRwh2mnPIHB4fTrh\nyUG/9QoLXfpdH7m2p5gvs+1U43yREqcFgWeTFxW+Z2NZm7vJttqntXonsgVtW7ETuFvR/GSRMF4k\n7HQC3HUFTilJd12pmsQJwgjOJkv6gctomdANXPa7YUuE1pWvi9mSxpgtAXMsjWdbt4hLXlYcjmbs\ndcM7ZAtaZ/nIdQhdmzgvWGU5/eDhttZNPDR5+P1ozK92d27dVNSNoVxnFfa8lrS2j2/ImXenonY4\nm2GM2Qr0baUQ689tjGGSpvRcl0maEDkuyzzHtTQf9/rYSrMqCi7iFVpJzuMlRd0w9NuJysiy0VIS\n2g4SgQDmec6+H7AqS76fjblMY5Kq5H9/8jFKSH7VvesQXpmmdWkXgsPljNNkya/3djmZzqmamt+P\nz/g47JM3NR+GPSypsJVa5zbWXGYx8zLF09a99hR/Dkgh6FguqyrHlprzvNVbWVJRmZpVnbNnR2RN\nSYNhWWVo0VYGl1XGqsqYVitsabFnRzzzhnwbn3Lg9FCizVeUCE6zMQdunz27S9oUTMp2WMG9EQ00\nKZc0GB7bO2uxuKI0FdZaF3YTrmxF+PN6Rah8VnWMEmpbuUqbnLheMbTbkPCGhqtyhCNtLssrRtXV\ndkLRlS5pnXJZXrCo5vT1AEtYCAS5yZjXM0LVwRYOB91dsrRa79+SJ84n9KzhVp/lyZBFNea0fEFP\n7SGRLOvxneDqm1YRSTPDEcFfTLd0H4QQuHL/T/b5AmhMhqH8D0XAfiFc74Gfe+E2EELQ2YkwxlAV\nFbtPd7bPJcuU1TQm6P60sds/FxzXojeMCDre9mATsiUGddWQp2WrlwocTNMwn7xdlK+1wnEtrLVm\nqa7bMXkhBKYxXJzO8HybIHSpqgakwLE1Qejy8ocLhBD4gcPufpez0ylh5FFVNYt5ymAnQmmJaVox\nvWVpVquMly8v+U//6WNc1+LLL17z+EmfL7484fHjLp7XftZGu3FyOiVNC4qyptPx8VyLTqe9YNd1\nQ16UWFoRBi6+72DfyE7sdX2qusFzLcqy5rtXl+wOQgRsdVyeaxGsyZfv2ixWraPzu0wnTuYJ//D7\n53x40EcgKKr6zr/zXZth9/rkG3oOeVlt/bCe7PfIs5JB5OHYFv3Qw3dsqrqhWQc9l1VNP2oJ4+W8\nrZBtdGG39qWSDMJ3PS7bFulmOvG/fvkDB93wwWnF+/DNxRW/PdjbfrfpWlvlWppvLkfMs6wVjtvt\n96lMW6Ur6hoJtwjcyWLRVijW4n8tJf/l+Q98NthBAGlVEdg2X1xdYEvFi/mU0LYpm4aT5YKnnS5D\n32+d1Ouaj7o9RmmCpy3SumJRtLmIZ/GSvKl4sZiS1zVKSn7d28GSkk+7A6QQvFhM0FIRvNFKVMCi\nKKhMQ8d2+Ky7QxA4vBxPyJua/7TzGF9bVE1NYLX2EBfpkkVZcJXFLKqcT8I+l1ncapK0TdnUW8H6\ntEjx1J9+sUvrkpN0xlWxYlokDO0QA3y9PCfSLjtOSNaUlKbiv1x+yX8e/oZZmVA1NY60uCqWuNrm\nt9FTutrn8+VrAu2Q1SU7dsR/n33D/ppgSaHo6Pa8MirnZE1JV/u3TE195eLKtT2Nab3EllVC1hR3\nIn7ypmBczlrzU2HhKZfK1CyqFbN6wa41oKs7NDTb6tjA6mNLm67usmPt4EmvNTgFaio8GVBSUZiC\naT3itDjBwiI3KVpoXuTf8lHvGf9w8d8IZEhFgUZzWhzRvRHJ40qfvtrDkg5ZvaKkIFAd4nqGLV1q\nU2HW29W+PnwnspU1CyqT/VnsIv4caIhb89P3tIH4n4lfCNd74OdeuDchhCDoBRx/e4qQ7aSi7Vo/\nG9mKl+mtIOo3D7aN75cxrV6rqmouXk8J1+L2H8NktGRytaS7bkc6roXtaPzAaXMRDVyczdC6dQh/\n8myHNCnYf9RDKUmWlXzw4RDXs+l2fQyGKGqJ4bZSczZvsxOVIIlzlquMx4/7/NVvHrVEt+NxcT7n\nm+/OsSzF+cWMwSBkf7/LcBBSruOGiqImSQsux0v2hhGvXo/od32c9foMByFKSqq6Js1KAt/m/GoO\nDazSHN+zuRqvKMqKZZyTFVXb9jQGva5qzZcp1toV/z7UTcOTnQ5l3TCax0yXCYMHKmHnkwVpXqKl\n4Gqe0FsHU281XDcrRHXD56/OsC1FnJeMFjGubfH96Zj9XvigU/xNxHnB5WJ1b6UL2AZob/Bs0H3Q\nRf8hNMbg29dC96tVQsd1KJtWQ/Wbvd2tBcTZcsHXlyMOohAQ5HVNeENk72pNx3HacOskoee6PI46\n1Ma0/ljr1z7rtvqhWZ7x2+EertJ8Mx79/+y92a4k93nt+Yt5ysg5c481k1UcTIqS2jZ0bB2f9tB9\nY6Av1LCAbvgB/A6GYT+CL3XZF0YDhhs4jW6g0bBh2ZYpWxYlUiJZrHHXnqecM+bx3xeRO2tv1q5i\nkdSxaLQWQHBXZmRkRGRkxMrvW99a1HUDazGNeOB5NE2TSRwxSxP6iwnEnfmUpMiZJQm/ubpJc5F5\nCBAV+ZktHB+NT3mt1VtW4UohGMUhWVlyGvnUdQNdVjBUlUjOqZUabcNmyxszSxNsVSfMM/aCKQ9m\nQ+40uhSiZC+YcsNtV6a2usWWP2GWRdhqVYE7jf0L4dR5WVKK8kI1aJyGDBL/QlYiQFxkbAcjQGKW\nR9xxVzhNPCylCrA+iCdLHy5FlnnDXUeTK4PUhmajSgqzLGTTai/3ORcFe9GIt+pXUWSZtlbjIB6R\nlAV+EdPRXH44vccbtSvYikFQJNTUZ8+3tMz44ewjrpp9nEXUD1QZiqfphJpqo8kqMjLfn/wbfaON\npVTWFxIStmKhSirzwuM972fUlTqmrBOWEcfpMa5SWe7ERcxusoOCii7rnKRHREXAbfs1UpGyrm9y\nkh2yblylprp01D71mo0cWThyjUkxpKY0yETCXvqQjrq6aOnJyIu2Xi5SFEnFkC3CcoYp1wjLKaXI\nL20jfhZS4ZOIOfrnrIhlwkeQ/UIF7rJk/ociW/ArwvWl8Ms+cM+D26lxujtcGpN6Ix/TMZicziiL\n8gIJgmoqcP/+0XNzE78oBodTanVrOUl42ckWhylpnLG/PWRlo02rV2f/yYDWJf5fQgjmkxDT0tnf\nHmI7BpOhh2Ub6IbKfBYiSaAsphTjKKXRctB0pWpj6iqP7h/jeRGdnkujabO3OybLch49OOFwb4zl\n6ERRimXplEVJGMWcnMzQdBVFUWi1bPK8IElyfD+u8hANDcfRsUydjfUWg6HHxiKj0rZ0bEtH1xXi\nJOP6lQ6aqrC9OyJJc8qiJIgS4jijKEoMQ10OAmRZjq6rtJvOUiDv1kwcW8cyNWZ+TLvhLFuKpxOf\nuR/TdC+/COmaSpRm5EXJWqf+XLJVFCUTryJZo3nI1f65vM3FZzicBfhximNWero4zZCoWqRZXum9\n6rZJ4yVzGlVFxtIvt2G4DEGSvhSRO49xFC2tIPKypG1X3kqKLGOq6rKC9XAwQiC41WlTMwxsTUNX\nFMZRuBClaxgLh3hL06gbVQUvzivdTJhl+Gm6zEP8ZDQgK0tcw2BvPmOSJKy7LjuzKTXdoGvbqIs8\nRU2p2nrvnxwRZCmvt3us1+oIIfhkMmScRNyfjrjVaDNOIlqmhSErNHWDPX++tKqYpTHTLOaNVp+k\nLKoWjqKSyAVSVv04C9KUvWCGkGDdctGkyhVfWVRkhknAJI1Zs1xMVUOXFVat+rK12NQtynOa0Uka\nLiOAzmAp2jNka5pFOIpOUGZct9vkVBOJsiSxG42pqQZJkVNS0tCqoQ1NUpaWElC1S/+3/X/mbfcK\nuqLyD+O76JKMIqmsmdWUXlykzPOYtuYuiJLJFauLqegoKPzc38JSDJxz1aujZIwua7xibfDe/B62\nbGApZ4ad0sISozo+kiThKjYN1UWTVRRJQZe1ZVvRlA1aap3D9Ahd1gjLiL7WIxUZSBJH6RF9vc9O\nvE1TaeEqdUqpxCvn1XVMUpgXcxRJwVHc6jhYEifeKXvpYwzJJBMJfW2DmtLgJNsFwCvGOIsWYpWx\nKDPMdulqV8hETCYSasrF+BshxCI8+vnfP1lS0eUammRzkv2cmrz6QtJVioxZ8RBT7lKySId4AeEq\nRUouPJQvWEFLyy0kjK90i/FXhOtL4Jd94J6HyrC0jmZolIUg8mNs10JCqojDp9owiiJTazpL366t\nD3dpdN0lUfqiqLccjvdGOAvj0csJV8Jk6HPrjfWloPM82dp/MiDLCjRNQZJlth8cc3o0JYtTag2L\n6ThAUarpyZ3HJ6xutJdVozwrUBSF0cBjurCR6K3UybKSOE7J0oLJyOfRg2NUXeHO6+voulJNPeoq\nk2nA4f4E3TTQNYXxOGA2i7h5c4UgSBiPgypDrxC0mjayUk2hbW8P6fWqKcW8qKbe9vfHDAYenYUj\nfb9bp9t2sW2DJMmJkgzLrG6WQZgSJzmr/QaObZDlJdN5SJxWy5xNE9YW/lxnqFkGzmKK8nnQVQVd\nU/Gj5LkVIi+MidIMP864tlKRLS9KCOKUbqtGGKZM/Cqq42wqUVdV7u8PuLnWYa3tYura8gYVZ/nS\nu2lvOF0K5s9jEkQY2ssRruOZx6OTEZvtFxtPfhppXnAwnVMKwcPBiL5bW1bqzshWKQTvbu9wrdVE\nV1WejCcgQU3XKURJlOcceR5d22Z/NqNuPg1SNlR1GceTFsVS92RpGh+fnuBoOptunUPPo6brVbi1\nBIMwQFeUJdkCKud4VcXRKyH+nj+nKEtW7BrX602MxaRmLkqeeBP8LKVvOZiKyiAKaBiV/YQiyTia\nvpwyXGvViaOMnw4PKSh5o9Vn3a4vKlYBqqwwigNKSfBOe4OWYXEc+2RluQixvogPpoeUogrCDosM\nRZY/s804TAMc1UBdEDxL1jGV6tx3VYOu4dLRK9NWL4to6w6aXHnMpWXOJAupKQY1RcdSDHbjEWtG\ni57e4IrdWX6mT6JTplnIitlgKzrBUDS6eh1ZkqqqnVZHlRSMRVsxKwssxUBfkL8Vo419LihbkiQ0\nSWU7PsBVqoiitt5Ak58S/0k2q84nWaUUJWEZcdXcRJd0xvmEttYiLCMUSaardZCReRJvMc6H+EVA\nR+vQ1brUlDqJSBCU9PRVysU0JEbGyJvyJHrAa87b6LKJLhtosl5Vu0hpKJ0LAn9V0pYES0JCRn7G\ntDQRAWE5wZRd4tIjKqcYzwmzLsnJRUxBgiE/3ztRkhRMuQtUROtFZAtAkFPy4oif5yErDwEFRXpW\ny/hVwq8I15fAL/vAvQxkRV4K6D9tBTE+mqKZGnsPjrAcY9niq3dqvzCRvSRVQdhnxqefPmampeO2\nbLbvH9FeVNhCP154SsmUZYk/j7EcnThMqdVNNq51sGomo9M5nX6dTr+Oaen0F63CM5SlYHQ6p9Vy\n8OYh/+///T5lUXLjlRXufXxAt+uyeaXDo4dHCCG4crXNzs6Y2SzEMDVGI59Wu4bnRQvzUcF0FtJs\nOqRpQa/nsrraQFGkhYt8DdPU2NhooWkqcZwxHPnU3apFGkYZXhDTbjlL0hRGKYahMZ2HKIuIlVbD\nXorkz46hIsu0Gw7beyO29oZYpo4fJjhWNcn5YGfA1AtpufYLCVc1hejxww+3ee3ayqXLlELg2hat\nmsXUj7AMrRKEKzKNukUYptiGjhclS32WBLRqFllREKeVqHd/OENVZIIkrUTsi9buZURvZzip9FOf\nMiP95PAUR9cvRA+Nw4hr3eYzNhKfhTQvWKu7i8lDHVOtqolhmvH9R0+41a0u1qoi4+g6tqbh6BoN\n08RLE1qWRZhl9GwbXamyGk1V5ZPBgKZpPg2clmWSoiKZuqIQ5Rl3Or3KawvBge/RtmwMVeHY9zkJ\nAroLny8BzJKYe5MhIDGMQ3q2syRQaVGw403JyspyAgF13bhxM/oAACAASURBVMDVjIURamVyaSgK\nfpZyHHl4Wbo0P3Ucg9E8ICkLXm/1+bvDx1xxGmiygqkotHWLvzt6zKtuF1vVkZBo6Sb6whj1/nxA\nTTWWVa6aaiz9uVRZwThnSjrLYkpRosmfvpYITmMfS9EwFuutROoyhlx9JkGekJYFuSgQwH48xZQ1\nVEmhWLjONzSHR8EJQgjaukNUpnh5hKUYeHnEXjSklEpqsomjmtRUk6TMiYuEvWSALEn4RYwqKXhF\nyHEyoak5y0raWRXrPCRJoq01+Mh/hKHoF7RdSZEgIaErT0X2qUgxZZNRPqajtVAlFVM2llWwXOQk\nZUpNdTEXLb6G2kAgUCQZW7ZJyoT70Yc4co1SjZlHc1paDyFK/HKOqzQWGkkZQ7aeEfgfp1vUlNZi\n+2WOs8cIUSxjfKCaVlQlg5ICTTLRJGtZ7TrN7pEKHwUdRdKQJQVTbi2MT39x5EaS1GeNTUXMy2Ql\nyjgo0tOA668qfkW4vgR+2QfuyyJNUgxLp7XSQNMr48X9h8dfqLXoz8KlGP48zsgWPHuyRUHC4GhK\no11bki2AKExBQJrkJHGG7RroukYUpORZgaopODWLwEto9+pomvqM71RZCh7fOwQEK+stBqdzbNug\n1XGpuRZlKWi0HIqy4GB3jBDQ6tS4dr1LHGUUpWA6Cen36/zw3fscH89I0oLX7qzTbNm4rkVRlHzw\nsx1MU+fKZnsZXu37CYahoWkKbs1k68mAlX4DTZORZYnauTbbweGU3YMxtqGRZAVFXkX7nIcsy2ia\nwt1HR6z167g1k0bNxNSfVrvqjkm/7b6QbAHMgxhNVXjn9ubyMS+sxOKyLLF7MqHlVpE+pRDEWYZt\n6AsneWX5GcZZzuFwxnAe0K07/PDeNlleULMMVEVm5se4loGhqbRrNpqqMI9iGpf4XwHULRPbuDjF\nCFU8z/5kjq1rS4F/wzI/N9mCcy0hWcJQn/p7aYrCldZTg1dTq0iWKsvVcsCTyRRNro5Jc1HVsjSN\ntCjwksqO4GyaD6gIzGIbR2G4JG22qrFZb5AWBUGWcb3RZMOt42cph/68IqayQlaWDOOQN9t9JmlM\nVhS8e7iDrqh0TYuabpAWOUlZUNeqv6dpjKOeTU2qlEKwYtVomU+PueMY/Phgjxtui7wsK+IoSuqa\nwcP5iJ1gykNviCJJ7AQTgjzjOPToGA5RmXEaB6zb7nI/DUVlnsX4eYqrGUuyBZCUVUh4kKccxx41\n1SAtc7b8EcPU5yTxaGoWhqKyG445jGf4RUJLtxmkPn3DRUjgqAaOqleGrAhOkzmyJDHNQmRJoqFZ\n/Gy2S03VmeUxq2aDnWjIbWeNDbPDPX8PWzEwFZ2CgkKIysE9D1EkmaTMsBWDvtFEk1WSsrr+xGV6\noXp1HqtG9wLZKkXJ/XALW7FwFHvRohNYytmxlzDkp95tWZnxSXiPhtpgzVhDlmQs2eQ4O8CUbXKR\nMc0nyJKCl89YUzeZFEMaTp1GsUJb6+GodZIyYpif0FSrQamw8EhEjH5On2XKzlLTBWBLLqqkX1rl\nKsnQZOsCcbHlDqbcRJWf/hjKRID6Aud6gEIkpGKK+pyKVSlySrLnTioKkROXO2hy59Lnz+OsO/JV\nx1eZcH0hqlqWJX/2Z3/Gd7/7Xf74j/+YnZ2dC8///d//Pd/5znf47ne/y1//9V+/1Gv+I0EIQVmU\nPP5g+zOXbXTrFypZkiTRXX+q10mTDG8SvNT75llBufBeelkUeYEoxTOP15s2B9tDRicz+utNmu0a\nhqnRXamj6gqzcbVNm9e76LpKnhV8/P4O6aKyApXdwdpme7l/d97Y4OrNLidHU44PJ5RlWfk0aSrN\nTo3f+NYtegvD1zTJ6ffrvP21q1iWTqNpo6gVsVE1mSjKyPOC/f0xpqVhWzoHhxPuPzxiNo+Ik+zC\nMb16pbpguDWLRt1me29U2VgMZmysN7lza4XVlQamoeJHKX4Qs3s4Zv9owmDkLdf1xitrzLwY09BQ\nVWWp3fr5/X0+fHDwUse85dq0XBs/TJaPhXFGXlSO2O26vSQeqiLTeU7moaWr3Nns8ea1VWRZ4nq/\nzZPjKXlWkmQFpqHRrFmM/RA/rt5r4kdLn7hPQ1erFpkQYqkLOsONXutSvdbHhyfPLPsiHM7nnPr+\npc8FScqJVz13NPeWfmdQfYY3Wk00RaZfq8TCkyhiEoZsTSbc7nYRSJxtSZCm7M2r1pKfpgRZhiJJ\nDMIQS9OwNY111+VqvUG2OO62qtEyLVqLKKCkyPlP65X4+8F4xN3xAFs16Fs2HcvhyPf4/v4TylJg\nqhpennGl1iDMc2Zpdby3vAk7/nS5H1lR8OPjfQ5DH1mSeOyNsVSNmqrzg5NtdFnlltvhv6zcoG1Y\nNDULS1XxixRJgofzIdec5gVSBeCoOtYlxKShmViKRl0z0SSZoEj4YLqPreq81djgZq2LqxrMsxhT\n0agpOtMsBGDTapGUOWGeEhcZmSgwZBVL0WlrNrvhCGdBYKIiZV5E6JJKQzN5f/4ER9bZjYaVCF9W\nWDfb3PV32QpPcNTK0qGrutyy17AXMT6qpDDPA3aiEw7iAT/zHj2zT0II0rL6fo+y6fJvWZLp692l\nwem88PgouM/jaLsaClIsSkr2kwMyUQ27SELCVmzG6ZioiEhETElJXEZEZUhdqWNIJsfpAY+T+4yy\nUxzVYZAeMs2HALS0HleMm+wmD4nLEF02MWWbk3SHQlTXw7P/n0GVjWec5gEsuY4lP9umv4zMxGJK\nKYrFMbn8ui+hIPOUpJUiJSoPl/8uCMnEbLmOqNz91Puq2Mqrl677V/jF4wtVuP72b/+WR48e8b3v\nfY+bN2/yl3/5l/zhH/4hUAUT/8mf/Al/9Vd/xR/90R/xF3/xF/ze7/0e77777nNf8yL8spkqQOTH\nhPMQc+Gj9OC9x/Q2OzS67udyhT/DWVsRoFjE6Zj2Z+fembbxmZOFjmMwn0VLrZhmqNiueel2tnou\nzc7FkvVsEnC4U11owiClvgjALkuxDKw+Q+DHfPDeE/Jc0Fup480j/q+/eY/5JGD9aodXbq/x+OEx\n3X69Er3XTKaTECFA11WmY5+trQHDwRzb1vmd33mN+TwiDCtBvSzLzOchrmuxuzvCdau8tfHEp9+r\nM51VbUhgWXWSJInDwwlBmDCdR+zsDQnDlNV+gyd7I/KsoNepkWUlpqHh+TGjWYCqnJmkSkRJxnQe\n0nTt5bHxoxTXMdA0BU1VeLg7IEnzymLCqMxwhQAhWGrKjkZzGk5VqQmilLwosU19aT8BcDicoanq\nBeuIMMvwvJj90ZyO65At1tdwTG6utkmLnH+9v1u1H+0qxFkIqsxFu3q/oiwZeyHGJQam4yDCi5KX\nylrs1ZyX8uQ6g6FWk3qXWUlMwoiiLFFlme3plPuDAQ3LxNY0Dmbzqop4zgV+niScBgFN01oGV5+5\nxOtK5ah+bzQkTFNyIUiKgrZlceDP6Vh2ZTibxPyfj+5xo1EZlj6ajHC0akrvvZND8qIkyFLe6a/R\nMExuNlocBB4dy2bXm7Fec/HSlLpuEBd5RXwW4nZFlhnFFXk5DD26pk0p4GEwoq2YrNv1qoVo2Fiq\nhiHLxGUVEHx3NuBbvWvIkkQJjNOIK3aDrulQ102GcYAqyU9bqJLMdjjB1cxnyBgsbGs0E1PRyIXg\nqtOq2nl5jKVonCQeZVkwSHxuuysYC/J2GM8YpwGmopGWOcM0oK6aTPOQnahquUZlSlAkvFW/UlWC\nJRUZib14hAA6ust1q09cJEzTkGE259fcawyzGZFIOU4mFGXBpllFd2WioKE6zIuA9U9VsQBSkTHK\nZriqQynKhd6r2mdbtjAXAntTNmiqDbpam1kxJyxibNniUfQYqIKtDVnHVV0m+ZiojJAlhRV1FU3R\nMBYVqlk5BiFQZIXX7LcRekocZ4RlQENtVYosSQYkdElHkw1kScGSayhS1bWYFqfP+HB9WRhyHUmS\nCYshg/xn1JUr5CIiFR7qYnJQkuQLDvNV5Ie81HIpkoEqOctzpHrsq2E58d8KX+UK1xdyRPvJT37C\nt7/9bQDeeecdPvroo+Vzjx8/5urVqzQaFYv/5je/yY9//GM++OCD577mqw5FkVHP3STv/Por1eOf\nQ4MVBwnTwZzV6886C/uzkMYlE4NfBGVZsvvohJuvrwOLiKHnbOfJ/pjOSgPdeLpvjZaztIAI5hHz\naUia5tSbNoPjGfWGRZZVRp2WbfCt//zasjLl1i3efOsKiiLT7lT7c3uxHY2mze72kJW1BkVRMPci\nXMfg9TfWybKCw8MJUZRx9WqHWs3EWJCYTsel23VRFZn1RWXw8GhS+X+dQ54Xy/2c+zGb662FOamF\noio83hmw1mvQqFeeYGlWMJtHjMY+iiYTJ1llXqtIqIpS+Y+VJbJc/X3rSrcKjR7OsVd1rq21LhCn\n8SykEALb1Jj7Meu9BtdWn04prbRd9k+nhHFKGKd0m5W2o+laz5CTKMnwooTNboMwqbITSyGoWQZC\nCPaGM1bbdR4dDXl8NOQPf/0NFEXmcDwHBCtNl6wo+en2AV+7usY8SgiSlHeur3My87F1jc5LenN9\n3hZCVpTPDaxWFQVLVRmGEVdcl9ypYWsa8zhmazzm1U6HB/6Qq80G5mJq8Xa3S5CmeElJ17LOvU9B\nVhbUDYOGYaJIEke+x4Zbp6brnAY+Hw8HNA2T31jbZBLH6IrKjUaramMqKj3LpmGYREXGPE2o69VF\n8narQ5RnrNVcvDQhFgV/t7/FhlOvwq6ReTgb8Wa7z5vtfpWfqBkM4oCWYfH13jrxPGGaxvzodJ+2\nafLN7gZenrFmuliqyv90tTqXT2KfFavGm40+uqIsydRuOOWa06Jzzjn+tvvstePD2RFv1FcukLDr\nTnXeDWKPaRrhZQmv11fZDkasWQ00SWGaBmSiZM2o09VrzLKInuHy/mxnEWSd0dNcojLlmtVhmHr0\n9co+IisLxrnPptlmw2xjLNpVBYK6bldtRVEyzXwaao2uVudheMA1e4VJ5rGyCKO+ZW9cep4Yss66\nUe1rTb14nmYi5yg55Zq5sVwWoK48vX7qks6mscF+ckBZ5hwlx6wbGzyJnqBJKpGIsIXFvJzQUFqo\nqNxx3iIpIlQ0FEnQUNr0tOp8uBe+zy3rTRIR0ZCffqeVxX5LkkRXeyofOI/T7DE99eaXasXZShdL\nPhPkqyhc/H6l5RxBgSG3KruKUmVefEJdfX25TC58FEw06eWGYITIgM/OWM3LfZA0FPr/IdqNv2x8\nIcLl+z612lMxoKIo5HmOqqr4vo/rPj35HcfB9/0XvuZFaLXs5xKG/0goOw79lfozYdZCCLrd2qUh\n189DGmfEUXohquc8fvM/37nw74cf7bN6pY37Ka+wmq1j2lXLYDYJ0PTKX+sMtqlyfDhFV2QefXTA\nb//+6yiKwvB0zmwacvPVlcrAMC84OpigaiqvvblBnhdMxz6Oo7O+0a4sDeKM06MpH/xkm9ff3Kh+\n2QtYW2uSJBmjoc8//cNd/uB/fJvT0zmvvFKt2/Niej2XXs9lb39Mp+3w6isreH5Cx1CrQG1d5ZP7\nR9x5dZV/fW+LtbUGt2722T0YI2syx4MZQZByZaNNr+cuzVw7nRoTP+S3fv2VZ8xJJ7OQVsNmMPbZ\nP5nwyrUePddlfa156THv9VxmflWFuXG1e+kyuqXimDofPj6i06ld6uWV5QV2XrDWqS9F7MdjD8uo\nKlVCQKttczrxWOnUaLkWKyuLXE5dwgsTGk0by9D4X9e/CVQVt7P9cxtW5Sn2EiauL4uyFPxkZ583\nN1bJNEGnZj+j//LihK4BSV7wzSubZEXB3aNTsGSypGBjpcHNtS7/8mQXw9VRZBlbM3Atk+k04etX\nnt7QjuYeh7OAr2+s4aUpx57Hj/b2WKvXWelXVYYNIXjj2ippUUW8zJOEohQ8OR3x+7duAfD7jVef\nCdfen88Is4yNTh0rM0CqTFlPt0O+cX2DvlNdw36nW+M0DFhxavRwuT8e4NRNAnLKvORUCni91aeT\nOWy6dZpNm3daFu8PjrhT79K1qu/u/9C7wzSJMBUVU32q97lj9rEUnZ59+RTbGX6355IWBXvBhFv1\ni+ddGcHBaM5vr1xftA1zNuotHFUnjQsMZNp2jUHssak2cTWL3+28gaGoTNOQ/7rzE9q6zUCd07Bt\n/mn+Cb/Vv4OhqHyzfQP3UyHZ47lH23KoqSaWofJ15xajZE7LdPifr/wWhSip5wau9izZP9NjfVqM\nfhnWRQtJkpimcwSClv6URMwzn28036Cpu3x8MiQtU9atVZp1EyYx6+51ZtmEVbNLWNhYisU1ZRWA\nYRLTNRqMkiGxM6Jv31w425fUGxod+Rqm8vk8qVrlm6jy8ydKS1GwE3zANeedCxqwz4Oi1Ckp0RYt\nzChPqJUb1PSn9+Eg8zAUE/WSNudlCLMn6HIHVfmsQkBF6sLkZ5j6HeSvSPWs1/vFFDB+0fhChKtW\nqxEET3VHZVkuidOnnwuCANd1X/iaF2EyCb/IJn7l4E0CkjChu9G+fAE/ufzxS5BEafVf/mxfv9dz\nGQw8sjSvLBPykuZKg09+vs/1O089XYq8RFFl/DBleDJDUWTsmkmwKMUWRUkYJARBgixXYdu72yNq\ndQskqYroOZiQLSpLWV4ymcyJohRJwNpGi9PTOUUh8LyY48MJN271ee2NDXRDo4bE3t6IvCiZTkNq\nNYN3vnGdf/7BfTRdZWd7SL1hUpQCz4/pdV2mk5Dx2Gd9rWqX7OyOMDSlqoK1awwGHo+3TlhfayLK\nKqJntV9nPAnotmtYhsZg4DGZBTx8csJvvHOT12+u8uDRMe2Gs2xLBlHCva0TvvnmVaI4Q5VkRiOf\nNM6fOd7ncTiYIcsyvWZ6qbDejxJSK6fnOoxGF3VO4cLzKoxTFEMl9BO6DYfRvPLiCpOMW6ttdE0l\nzXJ6toPkVJ/lcFit6ydbB7yx2cefx/jEL30+vQiTIMI1jRcSNCEEaiYxm4RossxsEj2zzMFsTssy\nAYntgxGOriPikp8c7VGUgjXX5aeP9unoFtNxyMPxiNe6XbbGAe8fHUEsaFvVpF6cpvQUi7s7JwRJ\ngqLI/MHmLR6Mh9zdPkaWJRxNR5Kq9mwpBB3L5tibYxUKg8FTzV5I9b0rheDAn1fZis0O4Szhf7//\nc37vyk1c3eC6XkcKBYPQWy5/d3JK5LZwNJ1aofH3h4/577obvH51Ff1wRDRLeHw84N7RCe51nZqm\nc1trI/ySdw+eoCkyN2rV9SAoEsIixVF15lmCIknsx1Myp9Iv6QvLhks/ozTiMJphRSrb4ZhXa1V1\nKC5SbkkdoknCv4y3cGSdYeqhWQ3qVDfGk2BOUubYus6PvC0k4Jrd4d8mW/SVOr9mbDBNI1blJj2r\nznQcABJNzSaWq22b5SGGpNJWXN6fb/G6c4Wh51VtR39EYcC7e3f5T803KUTJgRijSxqZqDRdddXh\nx/O7XDfX6emX/6C5DPlC3zSQnn6eWZkhEGSyx2Z5nb14D5M6O9EJSm5z339CV+8yD1N24j0ykfKK\ndYekjNmKH3DDFDTbJlbQZWu+h1/OaEhrTMYRlizj4ZGUEZlIqSkva5ny/O9iITJE0WQUPXufi8sJ\nuYioKesv+T5nx8GgECUzsY++1Iu5hOTnljn/PrsoOJ8SzncJLqwTkuI+BVNs5Tcvee+bBGRAdslz\n/744uwf+srfhMnyhn7nf+MY3+Kd/+icAPvjgA27fvr187tatW+zs7DCdTknTlPfee4+vf/3rL3zN\n/x/g1K1fmOmpYenU209/+ZZFycOf7y3/LYRg5+ExgRczWwjCb7y2duGCvbd1SprkFHmJZRvUm05l\n03A6J01zirzg5GDC6mab3mqDtc0Wqq6w+2RQeXSlBeNRwNaDEyZDH0WV6XRdRFlyfDLlo5/tceVq\n5TAfBDE1t9IWCQGBn2A7BpubLUxTQ5FlwjAl8BN+7a1NXnttHT+IOTiYomsqw+Gcj+8eoOsKH3yw\nSximbO8McSydKMkJgoTv/9M9BiOPr791jV7HpdWweeVGnywr2FxtEcc5H35yQBAmFIXg6kZ1cRlP\nw6o9KYHnx2ztDnEsg3deryoqlqnhOpVP12eh03BQZInR7OIQhBdWFhzDWcCDvcFSnO5HCcfjOZ/s\nnOCFCVle4Nom69065kLnZ+kaq02X16/0URSZNMt5cDDgYDQjSjN+eG+HNM95cjrmnetreFFMlFak\n+WTqESbV36UQ7I2mzKPPR8QqZ/MXi+YlSaIQgiSrCOmT0YQou3jh7dccilJUxyeMOJjP6To2RVlN\nJG5PptzpdnF0DUvXeKPXI8wy2pbF71y/zs5kQrhYZ03X2Z5OuDs4xdQ0hmHIaeCzPZ0yjiMOfY/3\njvd5Mp3QMi06VlVR2XTr3G49vamchD773oy8rHRcsyQGAX6WkhYF//3GDXqWg6VqvNp8Wj0qRIks\nSVx3W+iKwrY3ZRgHKEjsh3OOA4+kyJEk+PbaDf6XV75GTdOJ8oyfj4/48XAfR9VoqCb7wYwPJ0eM\nk5DTOGCcRCAE2/6EO/UehqJyGM0X2q/L0dIt3mysLiwONJKiWtZWdFq6zV40YdVoUNOsZ7Sch/FT\nUfrr7hq3nD6lEHhFzJreZJKG/HS2zaPgBF1WaWg2bc1BPyfgl5EqXxVgVW+SigxXtfnh7B6WYnCS\nTfh2861FYiUgKg+tWeYv9Vu/Xn/jAtnKypx5/uzwxSz3yBbbq0rq0vqhFCVHyTGjfEIqMgpRUIqS\nK+ZVGmqDqAhRJJUNY4NRNmCUDTGVyk0+L3O2ogfM8iGlKHkw/5hRdspB+oSm3MFVmpjnpgAVSUX7\nBbi5CyEIyiGu2r/weCYi5sU+ptx6LtkSoqQUl58ThYhJyykv0+ArREQp4peaUtTl21jyb1y6H1UL\n8lf4LHwh0fzNmzf5wQ9+wPe+9z1+8IMf8Od//ue8++67fPDBB7z99ttsbGzwp3/6p/zN3/wN3/nO\nd/jWt7516Wva7edUe87hly1++0VBkqWlkP3Jx3u0+p/PUPKz1t1ZqdbnOAaD4xmiFLT6dexaRXT8\neYSmVz35OKysH2RZYj4NaHXdZXurLEo0XUXTVfa3h9QbNrq5CBrOSwxTpdVxkYBm20FVZTwvptl0\nmIx9DnZGvPrGOo2mxXQSEoUJ9+8dcrQ/5uYrK0ynIUGQYOgK7Y6L78WYlso/fv9jXNfi4GDCxmaL\nbrfO1752jckk5Ph4imHoXLvaISsKWi0Ht2ZimhqyLOHWTLqdGqoi86P3tjANjZXF8bVMndHEp9Ww\n6XVqeH7CSq9qwela5dlkWTpHpzMURcE0VWxTRwKGk4C5H1N3TDRV+cw2nKrIOJaOszAqPRzMOBrN\nqyqja3Ey9qg7lfA/yws+3DrECxO+dmt9YfVQtRRc1yRPq1/vszAmTnMcU8ePErZPJxVxFtCpOzRt\nC0mCJM9pOhYH4zn7ozmtmlVVzNJs6bs1mPtIkvxSYvkzOIb+UkapqiRz6vu0bIuaoWN8qnqdFSXz\nJOFg5rFaqww3k6KgYZhcbTXpOQ62rmFpGtuTCS3LomlZqLLMvx0cYKoqV5tPb8iyJNFzHNKiYJrE\nFCW8vbKKplRu8k3DYsOtP7PtaVGwPZ/SNi0GoU+QZDyaj+jbNcZxhK4o9CyHj0an/OBwm5Zh8sSb\nsFF7+mNp25uiyTK1hUXDcejhZylZWTBLE17r9/HDhINgziyJSMqKoM3SBBmJURIyzxJWbJewyOib\nDpZaVeRqmsHHsxPiIuNardI6uaqOcU7LdRr7GLLKNIvQZYWdcIwuq0gSHEQz6pp5gRDthGOu2m16\nhkOQp1jKU2uNjl7DPRe9o0gysyyiqzok5GRlzo8nT2hqDqnIsRR9SZx+OH2AX8Q4srF0qT9KxqwZ\nbWRJpqc3kJC4Za0t/MM0DFljkvkkeUopV8aoaZkh4EI7sRAFqcgxZYNhNkFCRpNV0jJjlE9wlIte\nWJIkocoqpShwZJtxPsGSTRRJ5SDdZzvepqY4SBJMsglXzGu4iktaxmRkyJLMK9brJCJmvbFGHgvW\njWtoksa8GGPKNsP8EEepI0sK6sLuoRA5sQjQpJf/Tp3f5pIS7VNtOBkVCWUZfH0ZMuGRiCn6Jaao\nghKQzlW3XgyVzkt5a52fpBSiJCl/BpKKREEhTlCk1mes4d8HX2XRvCSeN0P+FcEvuzT4eVGW5YVf\nkXGQYH7q4KdxtiQxL8L4ZEaz6y6J2svgfDl1eDSlLAW1hsVsHLCy0SIKU06PptRcg95a9QWJwoQo\nSGme0xUJIXh495Dbb14ubH18/4hbd9aYz0JsS0fVVYancz58f5fX3lxjOPC5cr2LN4+YzyO6vTph\nENPpVh5de7tD+isNoijDMFR+8t5jhJC4crVNr9egVjM4PJxycDBG0xWuXOngzSPGk4BSCH79mzfJ\nsoIoTiviJUl8ePeAtZUGnbaDtqgiRXHGcOyx2m+gKjJhlGIaGkenMyRJYrVf3ZS//6/3uXmly7VF\n5csLEu4/OeHOjT7up6JzDgczHFOn8Zx4nzMcDaecjAM6TYe8KLB0lbpTESRZqjy5zkxAz6PTqT3T\ncoRKK/XDT7a5tdbBMTR0XatK1JJEVhSXitX3RlOudJrsDCdYmkaYpphaVTWDSt91MvfYaF1+cS6F\neOkpxTQvnht0fTz3GAQBLctiEsXc7nb44OiIjmNzrdlcutALIfjo5JTX+z1UWWZnOmUUhvxav7/U\nhX14esLrnS6DKCRMM5KiYM2tEWc5758c8Uq7ze12VZHKy5JRFHLoe7zRrSpGoyjkk/GA3964xifj\nAbcabY4Cj2FYTUTealY/BH90vM/b3RWSouA49LhZb+FnKfvBnLc7q8t9++fjba7YTeIyZ8Ou4+kZ\naziEecZ/3fmYP1h/hUEcsmI5PPRG1FUDJIl1y8VQT2RhtQAAIABJREFUVO7PB1x32qiyzDSL2LQb\n3JudcrveQ5Yk/p/De/x27waZKIiLDAmJnlFjmAZ09aryosoKWVmQi3LpQj/LIkxF4zCasmm10GSF\nQeLjqgY/Hu/Q1E3eajwr9v7EO+RRcMLt2gr/NtkiESnX7D6v2WtoikpWZrS1WuUpmIzp6nUMWcVW\nDPKy5CQdsxWd8JZzjZZWY5jPsWWDmvr0+/IkPKSjNahrDuNsjiapuOrlgxxxmaBJ6tIOIipiTNl4\npsVaiIKH4RbXzE0sxaIQBbvxHhv6Og+iB2Qi4bZ1h5P8hK7arUxXkThOD7ll3SYpY/aTbXJzThYp\nvGa9jSppzIsJx8kOpuzQ09cwJHtJ9obZPgUFK9q1F301PhdKUTArdmkoV5kUD+mor33pdQpRLklV\ntog1UqU6QXEPXVpBkz8fWRKiIlmq/LLtzn8/fJVbir8yPv0SKMuSYBaim9WNbnQ04eDhMaZjLAnV\nwaOLJqfeJMCwtJeyk4jDtBK1f474n/Ps3nZNZEUmzwq6qw3EYp1O3aTRqpHnVZXr0ccHmLaGN4uo\n1U0e3zukVrdQZAm7dpFsJHHGwc6IG69WNxzD1Dg6mFTBx6ZKt1+n3nRwHJ27Hx1w5VqH/mqDve0h\ns2nAjVdWmIwrd/npJERVZUZDj8DP+K1v31lMKFaVuIODCbdvr3H1SgfbNph7EaKEV26toOsqP/1g\nh739ETXHIAgS2i0Hw1A5Pp0xHPtLkXkYJTx4fIxAotdx8YKqrVZzDIxF1a/dsAmjlLpb6YQMXWW9\n31jmK144xpaBudjG8SzEWnzWo2kVKC1JEo/3h9QsA7dmstJyORl7XFttoSoKw1mAF8a4tnnB3V2I\nKiNxEkbEcYahqRQL37WzX5eb3eZi4ECwN5hWLbkFIfxk/5R+46LI+izix1BVGrZJy7EvVrgkkOBS\nD64ozdgdT2k7LzfR+KJKWCEETcukaVm0bYu0LHg4HHG12WDoh7QsszI4TVNkWaK1mEjUFYUrjcay\n+gdwOPdYc11+fHjAjVYL19BxNJ29eUWih2HArVab7dmEPW8OojJaVWSJHx3to8sKkyjES1MsVeM0\nDNjzp6zVXMI8ZWUhVB9HEaos0bWchaO9yv/x5C7fXr2GplSO/pIkcbXWpBAlQghOEp9+o4ZRKER5\nTs90OAw9SlEyiAO6psOdZg8vS9AlZZEFKeHqOraqE+c5cZlz1WkuCcWrbhdDUSuPLFnj+6ePeaOx\nQk01lpmDAGGeLXVgAGGRoi1idU4Sj5Zuk5QZs7zKWVy3mhjnIoL8PGGWRVyzu6waDUoEp+mcV+xV\nFGR6houp6MzziFWzyV4ywpFNRpnHqtFkKzpBReIfRh9SUw1yBOO8yinsnRO2l6JknHskIsVVbRzF\nWkb/XAZVUi9UszRZZZpXgvlUZMtcyqiMCYoAQzEwZZN5MScofcIypK/1sGUHS7WIioi60mCcj4iL\nsLJcUVtsR48YZwN+a+0/M/cDIhFQkxvkIsOSHVaMK0SFhyrrS4G7rdSpKS+vO3sZSJKMtZg4tKQO\nmfAJylOMl6hYZcKjJFvaQmSlR1aOicURsqQhoZCIA4TI0eSqAilJynPF7rmYXBpeLUiRpK9mpuJX\nucL1K8L1JVBkBfOhj7PwqlJ1lfZq64Kn1qd1W/ORx/7D4+eL58/BcoyXIltZmrN975B2v/7Myabp\n6nICMk1y/FlIu1dHkiW2HxzT7tXprTVxXAu3YXG0N2Z36xTL1knibGkRcQZVVdBNFU1Tlzcct26h\nGxrDU49W22Fna0CzZdNsO5WAuWbSW6mzebWLEIKDvTG+nyLLUHMtfv7BLp2eSxQllKWoomnMyhYi\nilJc1+TgYEKcZJimzmQa0GrarK01uXGtR80xcWsmtqXjeTFrq026bZeiKEmznHbTwbYMLFPDNDTS\nLKdeM7FMHSFg93CMIitYpo5lPHWqTrOcIEqfIV3nS+tTP8JdfN5BlGKbOlMvQtcUOs0apq6RFwX9\nVuXZlhclYZxyNPZoOBYClhWuWRDz08f7fOutGxRZRbROpz6FKJdRPXd3T+jUHf757jZfv7lBwzE5\nmfl4UcKt1c6lwuqJH+JaJjvDKbahXSBGkiQ9N6BaU5SXJltn54IQgrvHA/ruxfPGVFUMVWUSRoRZ\nTse2ud5uUQhB3TS5ezrgx3sHvLW6uiRbZ9sgSRJb4/EyB7FjWby7t7c0Sp1GEWGWLcxPZVqmRd9x\nuDca8o3VdXJR0rVtZnHCke8hSWAoGn6eUAqJa/UGR4HPJIn4em8ddWEO2zJNaprBPK0sHrqWzTvd\ntWU1rjI8lfDzFD9LWLNcxknEjU6b07nH/dmApm7StWpERc48S9CVKgvSUrSq2qWb9MynUTeWqjFJ\nI+raszfAsxDwO26v8puLFoL3BcEyFPVCqLUpV95armYyTgMUSSItC1zNZNVsLMlWKQQ70ZiWZjPL\nI+IyIy1ztqMhv9t9k02zzffHH7NmNunrdXpGFfRtyBolJRtmG0VSqCkmhSh4xVnDVk1etddpaA5t\nrfq1HxQxh8mQlubS1uo01Bof+Vs4qoX+AsJ1hqzM+cC7y4reIS0zNEklKRNUSVuGWne0NqZskouc\n/eQAW7ZRJZW6WmdaTAiLiJ7WQ5d1BtkxfX0VR3GJigBN0qhpdYSa8vPJTylERi4y5sWYRITYkouj\n1i+dJsxFSi6ypVXEZYjKGYVIUV/Qfhxk93CUp3rBKo7JQJfqL2W7UJItfMM0SpHiFY/QpTq2co1C\n+EiSjiH30RbkTZHsF04WZuIUhcYz710SACnyF8hk/G+NXxGuL4Ff9oF7EWRFXpItqHy5Pqv959Rt\n2qtN5mOf6emcWvNya4fLMDyaohnqMxNwiiLTXozDP+9kO9oZEvgxa+csC9rnyp5lUXJ8MEGSYPNG\nD8c1sW3zgkkrVG2tH/3jPTwvIvBj8qIgz0uyNMc0NfK85PRoymwesXm1g2FoSBKkaV5NM6YFk0lA\nnmcLawaX4WBOp+1gGBp+kGAYKpNJwN27BxSFoNm0MU2NZsPhkwdHmKZGmlbVubMQbYAHj44xDR23\nZiKE4OP7hzRcC7dmMvNiJpMAVZWZTAM6raqKsX88IUtLVvv1RZajRLlw5i8KQZrmyLLEdB5eyF48\ng3uOXEdJimNVIdymrjGaB2R5wTyodGBQVYHG85DVTp3dkwmlKGk4FcEwdY1r/dbyM/znj5/w+tU+\n1rlcxGbN4nTq8c1XNlEVmaKsXOfX23XGfkScZWiKcqE1PA4i6paJpWvPJVeX4cHJkJZjfeaFvihL\nPjkZ0ncrh/i2Yz23DZkWJVlR4BpVYPS/7O5hKDJHc5/fuLJJ7ZK2aJhl/MveHuuui63rJGfO8bpG\nTdM58Dw263XysqTnVCajYZ5xp1MZbdZ0HU1Wlv5bpRCsuDV+rbvKWs3FVDV6loOhqByFHpM4IhMl\nLcNCArZmY24128t98tKESRIhgOPQ44bb4jj02fanlMDrK30Gcx9LUbnqtrBVjb5Vo2va2KrKzyYn\n3HTbzLOYDbsKevazlEHisxNMeLXexc8SFFm+9DiefR5BntDQzCVZO49H/oBR6jPLY7pGjd1wQlGW\npJTUVfNC9qKgmvhzNRMvj5GRWTUbbJptTpIZ/zi+xzcaN3BVi1HmISExzDwMuarm6rLGo+CI7XhA\nS6sRFAkdzWVehBwnY07SCQ21xkEy4Jq1utwnSZKoqw4y0jKI+kXnmiLJuIqDqRjcDx+DkFgxKuf5\nuEzYTw5xZJv3vZ9xGB8xycccZSdYkoWlWKRlgl969LQ+qqxSU1wUFAbZKS21g604OIpLroc0ih4C\nWNWu0NA62LKLoED7VNROLjJkSWE/vY8hW+iyiV+MSUSE8SkLhooIqUvClomYqJygy0/vAWeVred9\n5p8FRdIpySuLDTRyMaOQQgy5tyBXn8+YQJWal763LJlfSbIFvyJcXwq/7AN3GfKsYPujPf4/9t7j\nSZIjzfL8mZoaN3MePBkStApV1ay6emYuc9rj/oF73vvK7mFlh4i01DSRru4uFAocSB6cOGfGTXUP\n5uGZkRmZyCygG5hdPJG8REa4u6mpmT3/vve9195+eSl5Ophf6x5f5iV5VhC2AoKm/9oXEtQxPbb7\n6nbkyzabRpNnBedHY8bDOUVRUeYV48GcsOGtqzZFXmKv2mXDixmeb78QTeSHFg++PMG0BGVWka4q\nYUIKirzEb3g8vneG0tDbaFAUFZ99vM/WTovFPMVxLSoFaVYwmSRoDPZudNh/0kdaJr1exMX5lHYn\n5O23N5jPUxoNH8syuX2zy0avgetIpDQZj5cEvlOTt05IGDoMhgsug2bbTZ/xNGYZ57x7d5OD4zHt\nVrAmT2Hg0GkFV6o+F8M5RakIA2fdLtRaX9teXJ/XSjFdJPhu7WJeW3JUDGcxYuUSf4lW6FFWim4j\nWBugXncOHcsicJ9W3NK8YDBbstdponRdCZSmSeDade7icIrnWLiWtSZchmHQ8Or3flPvrcCx19Wc\nV0EYxpWK1qs0XxerEGlp1lWkOM85ms7ZiUJut6+/ng5nMz7o9bBWuYuV1kzSlN2owaPJmLut2pdp\nMwjwLZtpnnFvNOB8sSAtSwLbXuUnCg7nM365scXj6QRhGAyTGE9aPJlPuNVoUmrF8XzGL3p16Hil\nNWlV0nHrh0teVRwtpwySmLPlAkeaVFpTqIq3G21yVVdPz6cLMlXRc33GWYInLeZFTqJKftHaQgrB\nlhciDINSKU7TGR3bp2179NMl/zw8YMOJSKra5kDrF1u2pVa4puQsmWMLSVzllFphC5NlmbPpRmw6\nIbMywxYmmS4Z5TGeaeGbNl8vzthwIobFkkfLPjtuLTvoOfWe7Ocz/nn8EA38VestFIphPufLxRG3\n3B5tOyTX5SrP0CZTBR07ZJjP+Hy+TyR9brgbVLrCFCY7Tne9N2blEg14poMlJIsyZljOXqrjusSl\n0em8WrLldIhVUuu5MBgWIxZVjEaRVjFLHfMfGr/BMiwO00O6Vpebzi1itcQRLgfpY0rKOvOxGnFe\nHKNRGLbidHnKu94vSHWMNCSeGbxAtgAuigMC0SI0W7gr4iQNB9twX7i3C8O8Uh0z6uTRK3mLl2Rr\nWfUxDfvaatq3odBzMGqXeUf0cMSLhrn/X8ZPhOs74IdeuOsgTEHjJbE+9//wiPZmk2l/RtB6kVBl\nSU66zPDCFy/Ib4Ozirt5HlVZk6fB2ZQgcCiuyVt03Jo4zUZLzg6GbGw1UUrjhy6OZzMZLpiNl7ie\nzWKaMp8lzKcxm9utF6p2x/sjuhsN3v35bh3b49YGpMP+nN6qrZnnJVWlaLV9bFvi+TaPHpzj+Tab\nW02aLb/27AI2ehFJUrCMM95/fwfXtZnOUm7c6KCUpj+Y0+1cjSCSq6nBJMnxfYf9w1rLZZoCYRpY\n0qTVrG0Hzvt1bp8lJVIKGqFLnOQcn0/ptgIqpfjnPz7BMk0C3+bwbMLN1UDBcLLEdSw859Utj/Es\n5uhiijCMumVly3WsTivyrpCdrCj5+vCCzVZ4RcN1iSBwmM/T+nWeqUgVpWI4X9L0XabLlCQv1xOI\nSisw6rBnyzQZzJcE7tVq0b2zAYFjMYnT9d+9Ct+nOeolbLMOnL4k+MIwqJQmq0o2g3BlfmnwdX9A\n5NjrcOuG4+BISVbWGXkniwU7YUjH8xjES6ZZyoPxiLPlAt+U3Gq2wIBFlhPaDq6U/N+P7xFKm2VZ\nkJYlp4s5vzs9rM1LvYBhmnAratFPY6Z5hmdaPJ6PsYRJ03bWn9e3bG5HLXaCiGmRUShF23bIlEKh\niQKXSNvkqiJXinmZ4QmL02TOrt/g8WKMb1oUVcVZuqDteLRtD9us98uDxZBbQZstN+Sz6RkGcJBM\naNs+Ugjuz/t0nQDXrCNvvpydM8pjWpbLKI8pdIUnbSLpYArBcTLlwbLP++EWbwVdAumgtGJRZnTs\nAN+02bQj7i/P163CTJWUWtGUPr9p3yVROa5pcZyNmBUJW3aDhuXXFhkrdyETwVfLY0LTxRQmmcpJ\ndcGe28MWV3VYuSqxDHMthLeF9a1k61mEpo8jbBKV4K0mFn3h0zBDunaHiopNa4v97ICO1aFpNVnq\nGE94HGRPCIyApmyT6Jhte5e27CIQJFXCwhzSVjuEMsQSNvaKaC2qCdKwrlSgQrO92hf1cYzLUzwR\nvZaBax3Lc/19RVEiDee1pgehFtpXJAjDBhSS4NrnS52rqBA/Qu3V94WfCNd3wA+9cC/Dy6pM3Z02\nhjAI21c3fFVWGIaB5Vh4KyH66eOL+gb3Bi7z1+HRF8e0txrkSVFrn15C5PbvnRE2PN758AZxnFFk\nFUVeEbV8vFU7TQiD08MBe7c3aHdDXN9e63Mu4QUOn/z+Ec12gOfZuJ7Nx//6iM3tFq5XX8iNps+o\nP68rUKFDELg4rkWj4dZj5atqGsBkskQpTaPpY5p1YHSa5BRFxeHRkJs3Oldah8/CXVWA2i1/3Wod\nT2OyrKwfuMuUi9GCX36wx9nFDK01/dGCf/7jPhudgNCvH0pCGAjTIApcNp7xOMvzEseW17rCPwvf\ntdloh7Qib10Ju4wH8lfEZzSL8RwLaYorTvLPIwgcJrOEj+4fcWujRaU0908GbHciulFdjfMd+wpp\nMoXAFPW0omNJSqWwpUlZVevKSNNzGcyXTOKUXvT6rezvE5earM/PLtgM62PZCkN2mw36y5hSVXiW\nRS+oyUWlFP90eMiddptKKR6tLCMmaUqpNYFtIzAoteJsMeez/jn/ae8WDcel7XpkqmIzqK/FbT9c\nVewM5nnGThDSdF26ro9vWXRcj0mW0nLcmsilMaFl03AczuIFYOBJa92Ok0LQsGzmZcbtqM1Xk35t\nWxL5/P3Bo5r4RS1atsf+csKdsIVtSrqOj2kI7s+HtByv9r0qU86SBYHlrMxPU+ZVxntRj54bsuVG\nzIqMWZkSSgf/GVf6G36LDSeg0tC1A47TMT27rp6dpBPuBF223QbVaoIxVeVahH9pH3F/ccaiyvh5\nY5d0pd/asiNyVTIulvTzObkq+Hl0k1t+lz/MH/O2v4UlJJYwebA8pZ9PuetvcpHPqIyKpvTpWg0G\nxRTXcK5YVSRVika/lnYLYFHFzKvl2rdLGvU+coTDaX5OJEMSlYABnunRlvUXJsMw2HP3VkTSJjAD\nurLHp/HHxGpJS7ZZqgUCgRQWw6LPXIwo8op+fsq0GtGztjjN97GFg2XYLyVT82pERYX/re7s3w5p\nuGuypXRJqkdYz7XwMjUhVQNAkespihLLCEjVOak6wzKaGM9VyEo9R5EijVcnGDwPpWMU2YrQ/bjx\nE+H6DvihF+5NURYVh9+cvCCWvzgYYhisJxoBonbwnckWQGeriRACP3LpbTauXbNkmZHnFTfeqgW3\nli2JViTFWbXNHNfCtiWWbdHuhtgrknO8P8SUAntFJCxbEkQu9744RmlNpxuhNRRFycXZBMex1kRs\ne7fNoD/n6GDIxdmEre02o9GizjKcxnQ6EePRkr2bXVqtgE/+eMDOTosocsnzgtm8Ng2V0ly//yWK\nomL/cIDv2fzxs9r4NS9LTs+mbPQihqMlGyuPsSh0sW1JI3IJfYedzQY7my3G0yX7J2MuhnPeubP5\nQtvGdaxryZbWmv54sfbcgtouwrHkOoqqrCoWSU6wOseTRS2m/7bKURA4ZGnJrY3WmgQ7sq6YKaX5\n4+OTNRkZLxJsS2IKgWXW2jFhGHi2xTLNmcYZ0eozCmEQeS7TJMWV8qWE798DrjSZpCmOKfnDyQka\n2Gs2cKVknmVrHy+tNQfTKXfadbpAz6+JWM+vHz5HsxkYcLKYozX851t3OJjP2ApCvhz2udtqr8/p\nZbVMo5HCZNMP8aRFpRWDJK4rbar2BvMtm4btorSi5dRanJqMeWitGa7ieCzTxDFNNHA7ajHMY361\ns0OeVLTdWk8GcJEsaNkuwjDIVMXvh8fs+g023ZCTZMq8yDlN5tzym7imZMuL6Ng+n0/P2fYiFJpp\nkdY6Jumshf1n6ZzIciiUYlIkNG2PnhMihckwX3KezlmUGb606wpVMmFaJnTsq+alhVaE0qWx0nGl\nVU5k+ZxkY275XbacBqf5lE/n+9zyerzj7wAwrxIOkgHvBXsoNHtul1JVZLrgJB/wjr9HQ/o8iI/Z\ncp6xHjCMldXD61Vw5tUSC4lj2kyKGZ8uv0JrTSTDVWNOkKuck+yUeTVnWs5wDZdhNWTT3uSb+Gv6\nxYCD9AkSkw1rk0g2sA2bluxgCQthmEzLCdvhFmbhsmPfYMPeQaEodEZbbnxr5cp/zerWm0DXn2Ad\nWL2ojtAoHNHCFg1AIA1v7bulyNEYWEZIqs+RPO0OGJfVyGsmD18FRQKU104s/tjwE+H6DvihF+51\ncfLgDMuR2K6NvwpMfhZhKyCN81XL6/tv1cwnMY5rvXSzDc9neIFNUZS1wadnEy9SsrTAD92VRYQg\nywoOH14wn8Y0V1OGjZZPlhZY0lxPTV6cTJmMluze6rCcp+zc6BAEDlHT52h/QLcXMezPSdOC0WDB\n9l6bZtOrjVQdiRCC5TytK0BhHcrcaHi0OwHTacJwOOeTTw7p9SLeurOB+1x77OJiRqPh0WkHZFlB\nnpVIS2DJetpw/3BIXpacnc84OZvUrx95lKXCNAXNyCeOMw5PJ3z47g6397rX2hrESc7R+YR24+q3\nS8MwSLJiXb2CusplW08jWO4f9dnbaK0Jm+9aHJyP6TRe3Tq5PIeXU38XkznzNKcV1Nqvk+GMvV6T\nvKyrWZety+fhWHJNtp5Fy/deyDr898LBZErTrasUD4YjPGmSFiV5WbIVhSitOZsvUFrjyrpSJ4ya\ncF629KDWiblS0vN9fnd8hG2abPoBe40GO2FdYdj0gyvrMs/qKcUbUYOT5ZzzRd1qdqUkLgsCy8Y1\nJZHtcLKco5Tio/4JDdthlmVMipSO43OwmHCwmLLp+khhMivq680xJR3HozA1aZKz4QXMi4xBFjNI\nYyQGD+ZDboUtbgZNQsthXmQoNHmleK/R45vZgFwpWnb9YNv2ovXxRpbDJE/qSUdx6UlVEKwI2GW2\n4WE8piFdAunUbdFFnwpNqWupwZ3gqat4UhUkVU6h60pWz46YlTENy8cRkkJXjIolHStkx22xY7eo\nUHimTakrJsWSm16vNrJVBbYhaVg+rrAYFgvaVogv3JXBp0michxhIQ3ztckW1HonR9iYhiBWKbNy\nwS239oAal1MOsyMW1ZxEZRRVzt9Of4s0JLe9W5znZ4RmRGAGWIYkN3J8M6BfXNCSHZZqzqQY4QqP\nTMc0g4hlnJCT0pJdKl2S6CWB+fKkkEqXjMoTIvntju1vCo0iVn1cUWscLSO6kolYa8OeXs8GgrQ6\npSJDGh5SBOsuhTCsK2RL6RTjNYT0wnAQhkeungAKgzeXxPx74cdMuL7/J///T7Fxs4vjO+RZwfB4\ndO3vlHlJpb49IuZPweOvT3iVh213q8GDz49ZTBPyLOfg4QVB5NLq1qXl+18cM+rPQcOTB+e89d72\nlWnILMnXnlAAGztN3vtwF1XpdeC1MAWWZaIqzf6jC548vEAYBh/+6iaOLZErPdJwsCDPCrzA5v79\nM7KkwPdt/vt/+4yPPnqM71tY0uQ3v3kLx5aUpSKOM9Rq7RbLlIv+bP1ZgsDlvXe32ew1aDY8+sM5\n3U6ANAW72002NkK+vn/GMs54fDDg9HyKUprJLOVn79bHmaTXR1P4ns1bN66/idrPTfxZsiZbT05H\nXIxmiOdMTU0heHvv+mDrlyHLSx6fj7m92V6/x1+/dxPfselEPg3ffS0n+Gfxukam/xaI7FrgLwyD\nv9rbxbNsGq7D5irYXhgGcVFQVFXdBpKSu50O0zQlK59GmRSrScWT2Yy3W208Kfn7wyf83eE+Xw36\nV6KFKqX4p5NDClVhmaImy2XBHwdnaDTTPKPleLRXbUgAxzQ5ief8zfZN5kUOBnzY3gA0PTfgP27d\nXIdNK61YFBlxWfDl+AJPWpwmtXHtH4YnxEXOr3t7NB2XX7a3qbRilMUoremnSxqmQ9txcU0LX9rc\nCdvkqqJU1dPjVRWLMidTFaApVT3Rt+nWhGxapFRaMSvS1e9m/B8nn2BgEEiXaZFQ6Ion8ZBB/tRU\nd14mfD4/oWdHtO2Afj5nx23TtUM80+aW16UhXc6yCU+SPunKFf6j6SMWZcr95enaed41bfbTPqN8\nzqCY8Tet97msz0Sy1rNq3txnO6kyKiqsVUWuYzX5y8Yv8EwPW9jsOdt0ZIuu1eUXwQcMqxF79i6u\n6dGzejiiljGUOucgO+AkPUKj2bS2GZTnJFVCScFJtk8gGozzAbZw8EW9J01DorViXPZf+hkLnbFp\n3XnjY8vV62QFa3L91MjzOqKjdEmh6vNqGh4t6xeE5h0cUd9vEnVAoSYv/F2qDtEviQi6DpZxC9Po\nkOsvUfr1839/Qo2fKlzfAWVespgscXwHc/WwxYAyr/AilzIvEaZgMVnSPxrVNxylX3Ce/z7guBZe\n4LyU3ZumYPtml0bbR1V67bF1WW2Lmh7Vitj82W/efqEK54fuFQI2HszJ0hLLMqkqRbDSpRmGQW+z\nwcnBkO5Gg92btd+Y7UiSuCZtnW6I69kc7A/Z2IhwPQvPd1Crb2G+bxMELh999ATft9nZafHw4QUY\nBoHvYNuSzZUNRpoV64y+/cMRvm8zGM7Z7DWZTJfcvb3BZq/Bo/0Bt292ubnbQSmFUpqNblRPE1YV\nh6cjbEuu25bnwzmO9aIFxyWKouLobEL3GVuPslKcDmd0mwHnozkn/Rlv7V5P1qaLhCQrrhXjP3sO\n86pir9d6Y1L1Y4VnWYyTmLQsKZVilMQs8oI7nVp8/GA04larRdu7ai0ROQ72amLy68GAUZKwEdRu\n7l8Ph8zSlBvNFr/Z3eNkPuNG1FhZfCjyqsLnaa54AAAgAElEQVSTkiezCe93NngwGfFuq4MnLT46\nPyFyHPbCiJPlAksIPro4pev6BJZNy6kf1o/nEzxp089imrbLRbzg68mQvaDBV5MLtr0IKQTjPGWz\nEbJp1vviTtim69Zkwzbr1q/SikmR0bRdmrbLP/b36Tg+R/GUXb+BI0xGeUyp9do1vp8tuT8f8MvW\nNraQPFwM8Z/Rk43zGNesW3SBtJkWCVopTrMZua5YVnUI+6+ae7imhWmIlQWEQccKCC2Xw2SE0ooH\ny3NcYSGFYFlmTIpl7fdlOiRVgSMsOlZApkqm5ZKeE6HRKKX5dL5PSUWFYtOuneQrrVhWCQ3TZz89\np2e/WazZsooZFGPa1svSEBSmIXiU7dORbSxh0RARHwY/J9MZaZWS67wWwBsWd713cU0XV7h0rC6F\nzrENtxbwG+B6NnYZoKgYlPXQQkN2iNX82iqX0opvkn+h1CkN+WZfqKbVMZ54tXFqTVlLHNFEa4Wm\nekFMX5HVonmsF3RbAJZoYT7nt6V1hTRaL7WKSNV9DJy1bqvUAyo9ROBjGDaG9qj06EdnD/FjrnD9\nRLi+A8qiYnAyQkq5dpZXlWY+WhC2Aw6+OibqhLi+Q6MTEjT975Vsaa2pygphClzfqWN8wpdvtsso\nmcUsYXg+oyyqtSWEtExsR2I7EmmZq2NRLzVeDRsey0XGcDhnNo7Z3nuqz6grbQZ7N6+auwqzzi/E\nMMjzEs93WC5SlILeRlQ/lGyTLCuZTJbcutVlc7NBWVZIadLtRi98u3v0pI9ry7V4fjJdsrfTIVpN\nInZaAUVZcfd2D9uSKKWwLIllmSRJTpzm9EcLNjrhyvrhqQ2EbV/fqoO6aoLBFQ1XWVUIw+B8uCDy\nHX5+d5tsNa0pn2kxp3nB333ykG4jWPtzPYtnbxizJKtdzld/v0gyziaLKzYT/9NBw/94/IRf7dQm\np1vhU41Jx/PWxOpliGx7/TehbTNOEr4cXPC/vvsBjpRsB+F6qOVkMefBZMQ77W6ddZhlHC9mvNPu\n0rAdBumS240W20FEx/X4etTn7VZNkkqtWBYFbbeufmHAbtDAEia+tDhezLgRNkmrsn7tIkNrzc1O\niyKtKJWi0opPR2dseyFqNYF5spzxX47v8bPmBrMio9AVd8I2aVWSrkKvu06AZ1pMixRbmESWQ9v2\nMFdt1a7jX/HSila5jrX9hUlc5limZMMJCUybbadBzwmJLBfTEJym03q/mxZN+/KBqWlKv9Z3GYLT\nbMq0ipmVKVII7vqbmMIkNB2sVTbittsirQoyVVChcIVNXGVIIXmUnJGqnIb0+Do+4oa78cZkC2or\niIYMEYbgUXJIJIO1TmpazrkoBkzLOS3ZoGO1VhW1iEAGHGVHWIZFqlJ27V3+uPyYYdGnZbU4yY84\nz0+56dzhIHtIJJuYhqATNjifXzAuLjjJDhCGQSCaCMMgUQsqXWKLp9ffZes/Eh1s8800Tt9GtmoI\npGGTqCG5WlCwfCFDURgWJi7z6gECicD+1pZfqSdULF4qoJdG94pIXhg+ptEEKpReoiko9AMs8WI8\n1A+JnwjXd8APvXCvgilNHM/GtMw64sexqMoKJ3AQQuAEDmmcXevH9TqY9GdYztMR+ueRLjNGFzOi\nlo9SmkdfHHPzrY1vXTPPd2h1Q+azBD9wyZK8DrYWxlp7pirFk/vnBA0P0xTEy2wtXr/E4GKGKhW/\n/Ms7658ppfn8j/u02iGev4oYiTPiZY4pa1KXZSUX51O+/uqEu29v0umEnJ9NcV2Lzz8/Znu7SVkq\notDFcVZCfstc5yM+i3sPznC9ugUZRS7Nho+UtfGn59kkacGjJwNc16KqFOf9Oa2GhykE+ycj5ssM\n25J02yEnZ1M6q4qV8wzZyvKS8TRei9+hrhjGSUGS5Wsd1yf3jwk9h91eg3mc0Qw9kqxAaX3F3kEp\nzW6vwcY1Hlzw9IaRZAWR57zQugy91wuU/qGQFAVn88Vaq/U8LFPwyckpvSAgdByysuR0Nqfp1rqQ\npCgQz+i1rsPjyYSO53GxXNLxPH7e28SzLEZJwiCJaTr11G3DcfAti/3plN2owflyyd1Wi8Cy0cDb\nrS7hyqcLoO14RHZ9vWoN4yyhUPWEcaEUgVWf60pr5kVGy/Zoux6lqogshz+OTtlrtTBLg3vTAYsi\n42bYwjElTxZjLCE4SubsuCGfjs/5VWcHUwg+Gh5zJ2yx4zVwn4nbGWRLfFlXpPrpAseUSGG+MDn8\nPELL4SAZ8164iS1MWra/dqSflynDPL4S7dPP5oyKmJ4TEkiHQbGgZQfsuR3Q0DA9plXCMJ/TtHyS\nKmdSLDlIBmS6oGuFFEohDGhbYa35sjtIYRJJj7aM+Lvxp7ztv3n23qxaMK8WhKZPqStKXWEZJsIQ\n2IbFRd7HMiQVJdKQnGQn9RfLak5XdrGEhYnJcX5IpjI+DH7JprNFS7YJjJCZmnDLuYtjuLjCY6PZ\n4XR+wU33bTIdM68mJHqOwKRr7WAbV3McK11iYDBW5zTl9+95dam9UrrAFiGueX1KiWEYuKJHrseY\nRvCtlhKm4b1yWrHUYwzsF16njgIKAY3WJaYRXVtV+6HwE+H6DvihF+7bIO26IrQY163Fj//2i5XW\nSXPvo4e4gYvt2uuq0cnDc4QpXiu8ejpaEM9TNKwnCZ/F5aQh1BdbZ+vFaJ+XoShK2t0IpRSPvjrB\n8Wwc1+LBVye0eyEXp1PSNGdzZe6arETcl87zdfxO7e01HS85ORzR6tRk5exkzMZWA8uSfP7JIecn\nE0ajRU2KVgRucDHn7Xe3+PyzQ6qirtJtbDZJkpy7dzfW75GmJY2Gd4XoPYvNXrTKWUwJA4fFMuPg\naEiaFZxdTPnymxPmi5SdrRZR6DKbJ6R5yWSWsLvVYrZI2d5o4NgWUfhUD1VWitP+lEbo1goV40XN\nlu9a+M8Ykzp27aofeA798YJOw8e2TKaL9EolzDTFupKWF+ULbcvLc3g6nuM7V8nVP32zT5KVdEL/\nW60qfiiYQuBI86WmqYZh0HBdWp6LbZqrnMJ6yrJSit8dHtH1PSzTZJZl2KbJIs/Xk4tpUZCX5Zqg\nnS3mTLKMhuvQcl2mWYoU5rpS9tuDJ/zh7Ji8qnin1eHL8QBDa3579ARXSgbJEgzIqorzeIlBHbEz\nWvlxBZZFx/XJqgpPWpRKMU4TTGHiShNbmHwxumBW5PxVb49b3TZxnNNzAzqOj2NK/vb0IcIwuBW2\nScqCXFUcxjO0odlyAnbcxnoa8lkkVcF5OuezyRl3ww5fTM/Y8Rp8Pj1jy42YFglgIIWgVBX9bEko\nHR4tB9iGoGMHDPIlh8kEy6gnFzWaRZWx5aza8lWBK2TtnVUVzMqUYbFgy6mz9v5x/A1aw3E6xDUt\nOnaIXLXfZkXMz6IbpKpgXqb84+Qrbno9BAY5JTtOp27Jpqf8uvH+G+sHS12RqowNuyYZ0jD5dPEV\ng3xE127z1fI+38QPUVoRqwTLkGhDc8e9TaYyhsUI0xBs2BtoNLNqxryasufcQBgmjukQmCGFLniU\nfc2imtHwIn4/+Cd6cguNAgE/8/+KggzffFplT9SCUuUc5feIzA4tc4tMxdcapH4fyPUCUzgvtAC1\nftpirHSOafhk6gJN9cI0YqkX1NJtjVr7dl2PSk8QhvdKMqV0DsQYBGgSjB+BbcRPhOs74IdeuNeF\ntCWWI+nstGiv9EXCNGl0ap2QXBGVoOm/thVE2PTxQ5fDe6d0r3G1H5xNMKXJ/jen3xrt8zw+/eeH\nVIUiXqZoXU8iXpxOamPQls/p4YidG+0rlhGXZOvB16dkWcHgYsqov2Bzp8nOjc66srSz12Y6jgkj\nF9sysRy5Nl51HIt4mWG7Etu2kNJke6fFZBLj+zZ7ex201hweDvn66zOiyKP9XJ7jeLzEW62hXE1O\nPnrSp9308T2bTjsgzUp8z+adu1s4dl3d8j0b15H87g+PGU9qh/puKyB8JnbnEoYBpmliW/UxPU+2\n6t+5WnmUZj0lKU1xZRIxLcor04zP4ugy3/AZ0vXUab4Oum74TytFtzbaOJbEXYVua60ZLxO01j+o\nzcOzMAzjpWRLac3RdIZvWQyWS0wEJ4s5oW2vydftdmvtKD9OElwpGacpDae+iQ3iJcuyzmP8Zjhg\nO4z4l+NDOr5H03YRhiBynt7wVKX49c4NtIZU1a7xD6ZD3m/3eLfd5SJZsuEGHC2mGBjciOq2V15V\n7AQRFZp/ONnHk5K263EeL5BCoNCcxHMCy+JwMcMUBk3bodcI6wplWfC7i0N806JpOeiV4F5rzTiL\n8aXNbzZu8o/9fcZFSigtPGkxSJdUSuGYklA6NCwXjWacx1hCsrny5QI4TWeEZh1dpIFcVVSq4iJf\n8na4gWkIpkVK2/KJLHcdcdSxg3VLclFllFrx2eyILafB343usWlHpKpkXC4JTIdA1v8KXeEYko9n\nj7nhdrntb9Ru/Cpn121zy+3RsSM+m++TqQJfuLimTSg9RsWcUL5Zy02jWVYJk3JGQ9ZEb9fZ4iwf\nMClnLKoFkQi55e6xKOdMqwXveHfJdUGpSzatDUIzJFUpg2KICZwXZ2w7O2tDU4B5OeXz5R/Ys2+D\nU2JkDhfFMaHZwBMBqVowLQe4IsASNrlKUbpCGhYduc2iGpHrjGl18cY6rtdBpQtSNcQ3r7621hWT\n8mssESAMm2V5wKy6R1P+bEW2KmJ1gL1qXRZ6siJsikKPkcb1k5daayo9w8AmU99giU0AlF5S6CcI\nGlR6iiEkUmyjSVF6jHjJ6/174ifC9R3wQy/c62L/yyPaWy0sW9atM9em2Wvg+PaabAGvFUZ9iYNv\nTglbPhvPBF1nSc7J4wua3YhypYNqbzz91vW6m23nVpc0yelsNLAckyDysCxBkZVELZ/uZgPDqNtf\nz1dgGqsWZtTwEaZBb6v5wu9kWYnn25wej+n2IuJlPdHS7gRIabJcZsxnCQ/un9NqBSRJTp5VSFmb\nkP7D39/jzls99vY6OM5VsjOdJYThUxKitaYsKppNn3sPz9noRuwfDChKVVsjhC6OI7FkLYI3hEGl\nFPaqyhSFLqf9KYH3tFVgGAa29XICcynWf34K8XmPLcMwriVbZaUQwqAVei+tcA2mS4pK0VplLT4+\nHxF5Dp5jUZQV/3L/kLwq2e9PCB2bwP23+Wb9fSOr6qmocZLw1cUFrmmy22i8UP0Qq5agFGJNtqAW\n0HdXPly2KenHC361tc0fzs6422pzvlzQcFbVr+WCeZ7j2xb9NGY3iGh7Hh90NjhezJhktbfVdhAS\nWQ69lZXELM+4PxnSsB0ezcd0XZe3Gm2Ol3MCy+beZIQw4GbYwLdsKq3YcgM6bkAYOAxnS+5NB3Sd\ngKwquRE2iasSadRO+1BX0QwM4qrgr7s3+B8Xj3kn6jHKY76annMraK/CiwWzMiWSDmlV8s18wK2g\nfoAuypy27a8tMyxh8r/v/ytbTsSe12JRZfx+csDdoEehSmxT4q8IGtRi+0i6+NImNJ11cPX70Q5b\nToODZMgH4S5Ny+cim/GOv8Xfjr7kP7Xfp2HV+3JWJmg0k2JJrko808YRkk/mj2lKj6VKkZgEqxif\nN0HtIO+uDU8HxZiKCkfY3HFvkKic94O7xCphy9rkm+Qh0jAodcEwH+JJly/jL0mrlIbZoDIUfx7+\nJZ8tPyWvMtpWfW/9cvkJLbMOvt5pbtKsNplWfeblBN+M8ESAY3jYpos0LIblKU2zixS183yucxzh\nE5hN5L9BlUcY5toWAmBYfo4vNjEMgSUiltUxsTrFMTosq0cYhqRiQaHn2EYbcxWYLY0AYVhkuo+B\nRBrXGyAbhkGh+2gjwxFvP3NftBG0UUzBUEhjc/Vz60dBtuAnwvWd8EMv3OuivfX0YnjyxSGz0ZI8\nKzClIEuKtYnom8CLXCzbIs8KjJXgXVomUSvAEAaOZ69/fonX3WxVqRhezFYVLAN3lZlYlgpvtVnm\n0wSl1JV2ZhLna2PTsih5dO8MIQxUpXE9m+l4ibkiTUVesbndRJqCIHLJ07LWGXg2ZVExnSb88pc3\n6fdnvP3ONq5nMRzOOToasbvb4p13tkiSoha3xxn+ajAgCK4KQoVhkKZ1BuRmL1qNn8PeTpvJNCYK\nfe4/vGC+TPF8mwePL7hzo8dbN3u135NjUVUad6WXex3EaVFXIV6Rr/gyaK15cDyg17x6s3tyPib0\nnFrwH+eEnrMmWwC+Y63F85q6WrTdjjCFge8465DrL48u6EZvltP574XLzzTP6lin9zZ7mEIQF+WV\nqtTr4r88uF8LuM06/iewbIQwGCcJoe1QKsVnF+d4UnKeLEnLgkIpup7PrMg4nE3ZjUKOl3MOFhNu\nRS3ioiApC/aiBpHt0HY8NrxaqG0Y0HJcXCl5MBthCsEkz9j0Ao7iOU3bBdtAFLDt1+fmPF2SqpK2\n4yENQVzmnCdLFJpC1eTTNATvNzZW7vUubcfHNS2GWYwlBF0nILQcNtyQL2dn3PbrydWmVRPLB4s+\nDenSzxbcDXv8rLGNBj6fnbEoUkZFzGE8IVXlujoGMM6X7KdDtpx6qnOYzWnZPh9Nn1Dpip9Fe0hh\nsqwyLENymk8IDIdvlse8E2yvX+cP04cMiwV7bofjdIRrWLwd7LLrdomkhyUkzmu6yj8LpRUP40M2\n7A4aTalLFlXMpt3DEpKe3UFeBkIb8CB5wGF8SKxSXOEiDZO2bNdTiqbFrrNHrGKW1Zw77ttYwqpt\nPdScSld0rC5bjR4fDz6iKbp07S027V0SvSDRSzqyJhiB2bxyfc3LPola0i+f0LX23vg4vw3Pa/b8\nVcUJasG8Y3TQlGCUdKy/WK1dgWGY2M8EYpd6TqmXGIhvzViUooM0nh5nqc7J1D2ksbOaTDTI9UOk\n8f1X9L4LfiJc3wE/9ML9KUiWGWVeUCQF0jI5+PqY7k77laHT1+FSwD44mSCluW7pvapK9rqbTQiD\nVjdctaUUBw/7dDYa+OHTjeL69gvasdPDEY1VRuT+wz4K2NpuEYR1gPTF+RTPd/jqsyPOTsbs7LX5\n7JNDHMdatw3LUuEHDu1OgO1Y7D8esLPbrj28lMbzbCxLEi8zLMuk0wnw/ZpkTacJ80X6woYOA4cs\nq72XpCkYDOccnow4Pp1y//E5v/hgh/kyxfdstjcatNt1rIy7IsJfPThls9u4oosqygqt6+lD0xQs\n4oxsFfVz+e9PgWEYL5AtANeu3d9fdg4vq2fDecw8ThktYqQQ3Oi11mQLoBv5P6jX1qsQ5zkfH5/i\n25JpmnFvOOSdboeN4MX1mD3jOA81way0vnJsHddjOwwZZxkazZeDPqD5tH+OJcw63qcqabkuf7G5\nw14Y0fPr93oynfDr7b2VI3wdUdN0XKrVwy1cCeSlEKuMTAPXXFWnVuL1ruthGYKO67PlheRVhbLg\ncDyh5dRi+qbt1lOOsMperPjXwRHbTsCkSLkdtpkUKZvuUwGzs3qfuMpxTEmhal3oosy56bfWAvhL\n+GZdnR3mS94KuvSzBUordr0mrpAcJiN+2dzjpt9GPiOCjix3reU6SkZsug0eLwfMioS/bt/FFpJS\nVZwkY46zEe8H22w6TZKqPo5JvmBeJiQqp2X5fDJ7gi8cHifnGMCgmLKsUozVZ3xTGIbBrFoQSR/T\nMHFNh4YMr5imLqols2pO02ygKs3t4Dab9gZ77i6RjLBFnS/YL/sIBJnO2LC2wICz/Ji21WFQnCMM\ng2k1orJykiTlIH/AlnMDT/jYhoMrAuQ1FgpKKVI1p6KgI2/giO/fjX1c3cMxnhKn69ZJGgGm4WMg\nqPQSBPjm7vpvtC6ZVZ/hGnuYhvtahqdX3gMfkJgrfzLDsDBpAuJH9eXuJ8L1HfBDL9yfAse3cTyb\nzVs93MBl82bvjcnWJRbTmM5Wc022vg2vs9lUpWodlSMxDPj8oyfcfmcL9zW0Zc1nMiJd18IA9h/1\niVp+XXWz5UoYb+CHLvEy590PdggCB9s2KQrFbBLT7taj+//1//mEv/r1W6RpwWKecP/BOdvbTRoN\nj+FwSW8VEp6mOZYlcVdu+tchSYq6tWLWn2Oz12CxSOh2QvaPRniujW0JPvr8ENs28X2bLHvqJdaM\nvCs3jsksIctL+qMF7VUQtoGB9YpW43eDwYPjAbd2Oi89h1lR4liSpu/S9D2aQf2Zx4sYW5prYvBD\nIs4LSqVe0HFprbGl5Fa7RdN1caRF1/Np+961BPF4NqftPX14zfOcYRLTWJGXYRxTKEVSlVjCoO15\n3G602AxC3mvX04eLPOedTpem45JVFV8OLjiLF2x6AU/mE95q1nYmGmisonekEGvCo3Tt0J5VFd+M\nB3S9upW5KHKUVnw8OOVG0GBeZASWzVfTPkggh6bjUmpNWhaEloM0BOcrvVjb8RhlSx4uxvyHzVsr\n7dmLa+DL2l19mC+Jq4LjZEbXCdZO85eQQtSWBrbPQTymVBUX6ZykKvGlTcNy2fNa2EKSVAWTIiaQ\nT6+jSit+O7zHL6I9Pp7uc5JO+LC5hyMsBvmCj6dP6FkhB+mA216PULp8Mt8n1yVPkj67bpv3w716\nHaXPaT7itrtJrgrO8jE/C28xL2PGf4KOq201OMkukIa8tiVZ20ZEKK343eL33PXucJAdYBuSk+KU\nr5OvcA0XGwvX8Cgp2HZ2cYRDa5W5GFdLbrh3EIbJrdYNvKzNg/RLpGEhkZzkj+latYj++eieTMcM\niiNynSAMi9B8c+uLV2FRnqN1iWe+2sXeMATCMFG6pDSWuMYWJYt1OxEMLNFEigBFhoH5rZOMV1/f\nwHyuBVmo+5R6HynefPr03wo/Ea7vgB964d4U4/MJ8SypR8rPp0SdNwsJfRZVWXHwzSndndfxaqnx\nOputKCoWk5ggclnMU7Zvdgmip5qo6XhJvMjWrcWX4dKz69ZbG3i+g5QmRwdDHNdCWpJON6LR9Cjy\nClMKDg8GKK3Z2WuvdUtB4NBoesRxzniy5M/+7BanJxPKSpHnFctlRhS5TKbxFd3W80izgjBwsCyT\nPC+ZLVKWccZkluD7LpYp+OL+MXlW8YsP9vjo0wM6rZAsLwkDB1MKDIwreirftfFdm3azfsha0nwp\n2Tq6mKxF838qhKgrXy87h0ppRvNLZ+r6s15WvS6mC84nS3qNHyaU+lnEeYHWXKlOAZzO5uSqqkXw\nScLFfEGl60Br15KUlSIpi/V04bNkC+rXuyRbAJ6UhLaN0oq263E0m3FvNMQxTdqef2Wo4Xgx4++P\n95GG4O12h8C2YVUt+/j8lGmWcRYv2Amu+ht9PRlgGnX+YdtxQRtM85RJniINg9ByaDkuaVUSWg6b\nbkAz9EjTYm0hMStzNHV1bpondG2fYZ7wdtilYbv03ICTZEbDevn+doWFb9ZWFl3n1UaTAoOuHbCo\nchwh2XGbnKUzdrxniIABzjPkRRgGP4t2eBBf0HMidpwWXTvCFpJAOmy6DX47+ooNq8GW2+I4HfEX\n0R3G5ZItu0UgHXJd8nB5xpPkghtul7+bfMGG3WBcLHnH38UWFp7p/ElZgw0ZrslWVuV8Gd9jy96g\n1CWjcoJvepjCROkKMIirJW95d9iyN9mxd7jIL1ioBQs15z3vA4QhGBUDpGFhGiaBWVfCAhGRWwv6\nywE9uUlHbrHUMzrmBqPqnEU1pSGfeg6e5o9QumTTvk3L3KLQCf4rIoD+FKRqRKnzFwTz16HSKbPq\nKyL5zsona4y10lbVOr/6np7rAcKwyfUZAueNq12XMEUP09j+wb/kPYufCNd3wA+9cG8KL3TxGx6L\n8RLbt/FeQRJehdF5bUxoORZ+dP1rVGWFVvpK9ex1NpspxZpg9U8mzGcxrU7IdLSkqlSt5xLitapq\n9sq/qygqvvr8kM3tJkf7Q4LIqT2+spInj/vM5zHzaUK8zNnebSOEQVUphBC4no3v21iWyenphDQt\n2N1t02r52LbE9+1Xki2Aw6MRrebTh2yc5LiuxWwRc3gy4s7NHh+8s0O7FRD4Du/f3aLZ8IiTHCnr\naB/zFYTpwUGfyHdf6jzvORaOJUnzknmcYZkCVpEnk0VyraP8dXiVee0izcmKkl4zYBqntXHlanqy\nFXg/ONkqqgqlNb5tv0C2ACK39sQqleLhcIQjLd7b6OKujuGLi3O+6Q/Za0RrX6xXwTAMKq05WczZ\nDOogakuYbIXhug1om3UChCkEv+hush1GZFXJf99/SGBabPkhj+cT/nJjhy0/XE+qVkoRFwV7K1F8\nYNmcLhcMs5jbUQvXlLRdn0JXaGDDq9f+y0mfj8en9KSHJy3uTQdsuAEXacyOH/HH0Sm3wzYdx+Pr\nWZ+u7RNYFl9MLrgVtJjkCaM8IZRXdYpPliMeL0cIQ3AYT2hYzhXj02dxkIwZpAu+nJ8RSpu4ypkU\nCXtuE80qxFvIdbLDJYb5gkkR07UCHizP8aRNQ9bVR8+02XXaBNKlX8yodMW226IhPU6zCQpFpkoG\n5Yz3/T2EEPwiusVNb5OGFdCygtUD/7v7x5mGwBE23kpIr9GrtiGEZsi4GrFn7zCuxtjCxhUuTdli\nXI7468bfcJ6fEskGCsWkHKOpOC9OOMkPMAyDt9p3mC8TxtWQG+4dKkoask3DbNOQVz2wHFxcEZLp\nhIUa0bNufufjex6OaL4W2QIo9BQDWds1GFyr04qrR1iiizR8DKwV4frTCZNiivEdX+P7xI+ZcP14\n3RP/J8V8tOD00Tmbt3rMR0vK/PVzqp6FFzi4vk3vFdWt2XjJZDh/6f+/DkzLpN0LGV7MsF2JZUuq\nUjEaLL79j5/B4ZM+WkFZKN7/cI92JyLPy5XhaMV0ktDpRrz7wc6atFSVIn0mw1ApRRi4vPvu9trw\ntNF4vfbD7k6Li369FoZh4DqSdtPnzz+8xa9+foP/9tsvsG2JaRp88+CM//O/fsJgtCAIbKQ06bQC\nvFd4o9290XtlK/EyR1GaAqUUH987Yn1Iup0AACAASURBVB6naF0bp74uHp+NSLLrcx0jz2GnU39b\n7UZ1lWO8qCteJ6MZw/nr5LL922GWZszSb89X+4fH+4SWw+1Wk6PpdJ0vGtkum2FwLVl7Gb4eDHi7\n3WGRZRzMpkSOwzRLr/yOMAwi20EYBl8N+wRS8me9bY7iOV8MLrhYLvjfPv89p4un11KhFNO8fp1S\nVfSTJW812/ysXT/AvhoPeDIf03E8wmf0VB+2N/mwu0mpNElVkpS1ieu7jbod9L/svkuhSv6vwy/5\n8/YOjmkyzGIiy1m9l2KeZ1T6aubq3bDLrzs3uem3CKXNonz5A+XdcIOG7fGfe+9Sas0oj7njdUhU\nwb+On3CcTDhMxjxcXs0GzFVFW/pMy4z/2H6HSLpMinpPaa2ZVwn9YsYH4S4fRjcxDAPPdPjL5lvc\n9DYITZfw/23vzmMkPesDj3/f+627+qo+5u45PQ6Djw2ErCcYvCxYWhSEjcZ4M4gE2QoEcoAsWHZl\n/0fiZNEmhBhzhOAMYINDJExWCxKQxGCsgI1tbDM2c/Z0T99VXdV1vPf77h9vdc30fUz3dA9+Ppal\n6erqqqf66ar61fP8nt9PTlD0qjw7fRovDJkOGtjB+r75SZLUavMjSzLpZhulMArRJQ1dMtAVg36z\nn0ZgUfbLjLvjNIIGQRQwHcTznFLS9Bh9uJGP7Vt0q9uxgjpOYDPsDlBQevhu6TFUdIJmYD2XriQI\nCagHFRJyhmowSRRtTL/cldClfLMVkEcQ2QteJyHvbp1OVKTkqrYVFxKEk9jBs0RRsPyVX+OkaKmO\nx1vAxMSVBRSbYe6JksFXh9m2r2def8K1mBieIteRbp16PPXCBfYd2dG6v66uzIp/Z67jMzlWId+R\nolqx6e7LNy/3kBUFVV39eEvFGpmsiaIoDJwdZ8++bp796VkOHd5GKr36pNkwDPH9uFFvsVSjp3vh\n/IggDHEcH11TOD9YZN+e+BTPk0//ikP7e9A0tbU1GIQh45M1HMdl9471P2FTbdjxNpmh0bBdRktV\n+hfpqbiQlc6h6/kEUTQrYf5aYHkeddcljOISEa7vs7ejo9WcejUB1+W3+W8XznP73v2zLrf9uO1O\nRjf4VWmS58ZHmWjUeX1nN7vzbQzWpvnh4FmO7TtMSjewQp+9uXgVo+a6TNoN2gwTLwpJKCp+FKJK\nMhN2g+2pLF4YcKZS4jc6ulv3OSE1eHFolLdu68cPAxRJxg0DplybnkScYjDaqPJSZYy96XbyeoKk\nqmEoKqerRYIoRJYk9qTaWyt9URThRSFO4DNu1+hPty+7ohBGEU7oc7o6TruRJqloZNS4BdCYU6Vg\nZGgELkW3xvZEG+cbk+xOdjJsl9lmtrVyyoJmr8JxZ5qErGFHHl16HPifa4zjhB5p1aRNTVMPLOq+\nAxKkFZNG6LArUaAe2KSUta32O6FLEIWt0hCLKXoliJq5RpHMC41fcFP6RobdYTrUDqLmf3HOV47T\n1qtklCyVYIpOtUDZL7Lb3I+RD7k4MYEmabihRSAFlNwxQinkcPI/oUqzn29WWCMKI0a8U3Tru0nJ\nbeu+2mOFRSAiIS/9ehVENuPuT2hTj9AIz5FU9mAu8zPrIYjGgAhF6ln2uhttNe+BGzmGhYgtxQ0w\n98lmJHS0NZSFmOvCr0bItqcwzLgchGt7dPbmV72l2BqnHCeAl4s1pkt1OrtzjAyWuDhQpDbdoL1r\ndbkIlak6phmfbPS8ANuKc3na2lNkc/FK1eX9GV85OUznIn+Y5XKdet2JTylN26TTJpJMq7n0jIsj\nU5iG1sqvkmWZXO5SEnZXZ4ZU0ohb9TR/T7IkocgSERGpNbZdWorj+kTAZLmO5fpsL+RWdWpwqTl8\n5vQQjufT1qzftViB0a1MUxSSuk5K18mZJu3NmlqqLC+6lbhUK5tio0Hd87ixpxfL81DkS6emnMDH\nCQKSmoahKOzM5Njf1sGpShFDVXl9Vw83dvVwsjzJnlx7s/yDxIRVZ8qxMVWVlKaT0038KCSK4HSl\nxO5MnnPTZV6aGmudQpQlmUm7ji379CfaMZS4eKsXBoQRnK4W2ZaMn1Nlx+JcfYo3FXbxw9GzHMp1\nIUlS/DNhRF5PkFC01uOoBy6/rIyxuxmgreTv6VRtggmnRm8iRxCFtBspVDleiU2r8RaQLqukVRO1\nWZX+l9WLDFkl0oqBG/rUfIdJt4YuK0x5DQbsCezQpdvIYwcunXqGYadErnmKsBG6FL1pVEnGVDQ6\ntLhMy4RbIavOzj1rBDa1wCKxzOlFL4yLmBqyzqnGeTq0hVf9k0oCK2jwVOVpfl5/nuuTh+g1e3ED\nl1etV5GRSCophp2LaJJGQetGx6BL76ER1sgoeUrBBH3ZHpyGz5g3TLe+jYScos/cQ07pRJPird5p\nv4ghJ5vjs5n0hhhzz9KfuHHdgi0/cgAJSZJRMVClxLKrUV5YQ5USJNU+VDmLE46iS51XPKYoipqV\n5Bd+H5OldLPdz+bbyluKIuC6CtQ1lA/wPX9ejS3d1EllEq2ApThaIZKgXmm0csVWFXA1W/Vkckk6\nmytHmVyCQm9+yWCrVrWYKtZJz8ktG7k4BZJEKmUgyxJmQsMwNFRNQVFkPM9ncKBILp+kXnPou6zh\n9VyKonD+/CSqKlMoxOUapqctbMdvVZkHiMKIZFKnYblMFmtYlkvmsnyv8nSD0+fH2dYz+75cz0dV\nlDWXdliKoauoisKpoQlcP64yX5pukFlhcLfUHOZTJoXc1nhhW6tio8HJsXEyusGUZZM24vkcqVap\nuy4DlQpdydl1xH4xNkZK0+atflUcm7rn0ZuJ39hfnhzH9n3azDjA1xWFpKZRtBqkdYO0buAEPjXP\nY7RRY6xRY0cmhx+F8QlURUZXFFKaTt4wyeiXcqVm6n31pjJcqFVo+B5ZVSela4RRXPh23K5TyGbA\nizAUlZrr8lxphH25DrrNNKemJ0kqGj4h1+e70WQFK/AomHGJFpk4IM0262vNOFMtktMT5LSFTzNe\nLooihu1pdiXbKRgZUqpBPXAwZW3BgHbm9ibdGnbg066nmPJrvFy9yI5EO31mW7x1p5oYska3nkOX\nVYacElk1QaeeRVfiFTpZkrACl6SiM+yW2GF2EQE5NUnZr6HJ6qw8LlmSly2GqkoKiiSjSAoJ2aTo\nT7W2ES/nhC4TXpHXp19HQS+w09zBqDvGqDtCv9mPJmtk1QyarJNQEphKgjP2KXRJo13rxJBNTDlJ\nPpPGavhM+mMEeNSDCoaURJXi9kfxfVmtgEuTDQwpSYiPKhnrVhbCCkvIyChS3M9wJVt/QWRjM0pC\n7kFGI5ICVCl9RQFXGDmE0TR+NIYi5ZAkmbr/JJq0Y91X8tbDVg64RA7XBvIcn/r02vJqJi5OYdcd\nfvnTM0wOTwHMOzVY2N5OKm2uy1al7wUMnBlb0XWTKZOOwvyVqT37uukqXDoRE4URjbqD5wbxAQBN\nZc/eAmEYUq8vnF8AMHB+EkWRaG+PG7DObHq3t6fJ55KEYcj5gUl8P2B4tExpqk61ZpNJGa1g6+VX\nLhJFEemUyesOXSpEWKlaPP3MGSZLNfRm3a+NEIQhh3Z1Y+oaiiyRzyz8Iuz5AVPL5F7FvTljI1Oz\nl8qL03UApi2bC5PlKxz11eEFAT3pNLbvMTw93bo8o+s0PI+DnfM/kXen0ws27M7oBoVUqhU03NDd\ny578/EA+jCLcIGCkVmW0UWNfWzuHO7rQZIl/HTxHhxknr8+cLIT4b3isUWPcqs+6LT8McfyA7mSS\nF6fGaDeSdCVSmIpKl5niV6UJap7L6ekiiizxpsJOIF7B25nKM9ioMGrV0JqP5/VtvQw3ppvXUUip\nOn4YcKo62brPg9kCqiRTcpd/PZEkibC5LTnze+k1c61SFzOGrKlmL8ZYp57mUKaHvakCBT3H67I7\nWsVK64FD2WuQVRMM2SXc0Gd3ootxt0IYhZiyRsVrMGQVuS6zg3rocEO6nzPWCONumWpgMZcmq8uu\nbgG4kce4VwIgIRt0ags3bzZknW1GHz4B242+uL+s1saexB5SalxDKy5bkUOTdarBNAcS16HKGvWg\nyoQ3hjazgiNFJKUE7WqBLn0bg86rTPmXct6y6qUUAS90GPHP0Kb3kVEXHttapJQCmpzCj2xG3WcI\nomVOn4c1/KiOHQzjhzXq4VlkLq1IRdHa8okjXCBEkbIEVAAIoip+OLym23stEwHXBgr8ANdaOAF6\nOb27u0ikTdK5JOYSuU+yIpPvXHhbbjXGR8qkMwlsy6VSqi95XVmWFmwmXa1YjA6XcZtJ4n4QcmFg\nkp8+/Su+939fYCZdUFUVuhfoDTmjuyeLLMv09OQoVxqtYqSyLCHLElEE7W0pHMenszPTajqdTput\n1a+pcoOG5ZIw4yryz710AQDL9jg1MMHwWIWzFyY5fX48bpK9SKL6Wp08N8pkpUZvR4ZTQ5NUGwsn\nk0fN/5dysVihbscvtnt7ZueCuX6cqJpNmPTkM60E9K2sJ5OhK5PG8gMK6RRT1sybsURaNxZchelJ\np0lq87czGq7LkwPn+f7Z0yyVjtqVTDHtOkDEjnSWbels3GWgebLx9FSJIIw4W5niZGmidVtnK1MY\ncz7QlN24r2MhkeYNhe3ossKYFR8yyekmfhhScx1eKI4Qhsx6PFXfIQijVkL+DHNOMFR0GrTrl4J0\nWZLYlszRYazsJOrZehE/vJTEXPcdTs9Jku81c2TV5km/KKLSTJAfs6c5VR9jZ6KDdPP7WTVBwciS\nUHQOpfvQm6tSqqQwZBcB0FE43xjjbGMUXVYZdovsMgv0Gu1k1SRtWiZuer1KhqzToeW56IzhRf6S\ntyEh4YUuT1d+ylnrHEWvSDWsUgtqXLAHqPnVZomOAIk4rcAOLSLAi5xLr1GSxq7EARJKCq/Ztkdf\npCm1Jhv06ftR2ZjGzTIqEjLSMm/XdjiGKifo0N6ALCVIK/sw5M7LtqXPEEbLH2qZS5EyqHInqtyN\nKnUQRVGz2vy1vdK+GUTAtYHMlEHbIkneK1Gftuja1kYytbZk09Xo29kR90+UJQbOjlMcn17y+rbl\nMjJUan0dRRFnTo1imGorGEunTfYd7OENb9rPbx89cOmJX1/6SW+aeqtqvNVwcF2PMIzwm8GF6/o4\nro+uq6RTJrqu0tVs6TOzYnXLb+0nlTQYHa/E/09UODc4SSZlcstv7qUtl+TiaJkdfW34fshEaXWn\nMpfzun19dOXTnLwwTkcuRaFt/otTuWbFjYQzS9dV2lloI7VI8+uZU4sA5brFcHF6ycBjq9Bkmc5k\nAl1RyDVb+piqSsZY+HGOVKtM1Od/ECjZFpoik1A1Bqcry95nxXaYdh38MAQkDubj9k5pLd4a7DDj\ncg5BFGH5Hj+fGCaaswqa0w26E3ETalVWkICi3WjeJpyplEhpGm8q7JzVuQAgpeo4gUemWXR0pq9k\npzk7kMpoBrkl6nItJ6MacQf21v0a7EvFJywbvovXTOafeU6GRNSapwm7zSyvy2yLk9+bgihkzJn/\n++3Ss+xttvhxIp+MmiQh6+jN1avltgvdcPkPOn4UN+Tu1jsZ94r4S6zU6LJGQk6QV3KYkkGP3sM2\nfRtZJcuh5HU4OGhojLhDEMVbmh1aF05o0y7PX1kteqMQwTajf8mtQkNO4OPSCJZ+3VwLWVIpaDc0\nm04vLqPuxZDbMeTOuNXRHJEUAmvP+QyiMmFkxf1h1ZtQ5JXXhxRiawq4bNvmIx/5CHfffTf33HMP\npVJp3nW+8pWv8J73vIf3vOc9fPaznwXiN+WjR49y/Phxjh8/zqc//ekrG/01xHd9rNri22hzhUFI\npVglsU5bhitlGBqGqS77pq0bGh2XJbxLksThIzuYLjfgsp8dulBiZDhePfvlS0NEUbSikhOVioVt\n+xQKWZ555hzj49OMjsUv+ImETldnBlmW0C47SdmwXE6fnb0t2t2Vpa83z62/dZB8NomuK+QyCTJp\nk8MH+uJim463ZEmI1XBcn4HRUlz9vWpx/e4euvLpBVeeHM+f93u+kmCpkEsjyRLhNRBwSZJEUtfj\n6v3NNzlVkUkssIoF8QpXZ3J+YOqHEUe6e+hOpyna8UrZz0dHWsHP5c5MlZBliZSmc6Zc4lB7J6NW\njbrnsj2TJaFq5AyT3dk8qixjKiq/d/AIeXP2/WqygiYrjFp18rqJqWr0JTMozcfx9t37mXIdar6L\nOedQg97MAwukkMFGheHGNF44/zh9UtVRF6mztRJH8ttmtfC5XD1wcMPZQYsiyWwz8zQClxG7jCor\nre1IN/SxAy8+KRkG2MH8IOlsY4yQkDY9TaeeRUZutfJpBA71YOHXvhG3iL9MOYFpv8aAM4IqKfTq\nXQu217mcFdrsS/WT0TLYoY2ExJAzRD2s0a31cNEbpEfbhiIpjLkjAHRoXVTCMnY4e+tTQWXcu4iM\njCkv/cGoTe1Z96KnM1aSv+VHdaIoou5fYNJ9GoCy/4vW9zPKdcsGbUsJojJ+NLn8FYVFremd/NFH\nH+XAgQN8/etf513vehcPPfTQrO8PDg7yxBNP8Nhjj/HNb36TH//4x7zyyitcuHCB66+/nhMnTnDi\nxAk+9rGPrcuD2IrCMGTw1Ut73N4qAy5ZkenbU1j+ihvg4G/sWPaEoixL8xpy67pKd1/brABx34Ee\nduzqYHK80ipMumPX8iUSCoUsyaSOacZ1slzPoy0/exWgWrMpV+JtkDCMGJ+Y5sC+2ceSJUlCUxUS\nCZ1T58Y4OzDJeLFKWy5BX3cOU9cwDJXsGgvUzmXoKr0dWabrNkQRpq5xfrS0YC2u7rbMrEKqQRjy\nyuDEvOutxvaO3IK5TltVbzazosTby6vGX66/rQ1Fkml4HjsyOcbrcYPqhbYl97a1kzNNap7Lzmy8\n8hwX/4SXS+Pzru+FIWPW4jlT21NZnMDnB0NnsIOgNb6EpjNp18lrxrygSZYkplyb/ZkOflmewA58\nat76J/jODbYuX63qMjKERLxYuYgzJ3iKooiSWyetmiSUeLXRCX2KXo1xdxo7dKktEDz1Gm20aRk6\n9QwT3jRJxSClmARRSNVvLPpBYpfZs+w2Y7uW43BqLwCj7iR2uPQKebvWhimb5NU8qWZyfa/Wy5g7\nihVa7DR2o8s6qqyRbbbhqfoVVEnDbK5iWUGdMArJa53sNPdfca2qq8EJS3EDaySyymEA8uqRdblt\nNzyPTPuWa1R9rVnTX9Gzzz7L0aNHAfid3/kdnn766Vnf7+np4Utf+hJKs8qz7/sYhsHLL7/M2NgY\nx48f55577uHs2bNX/gi2KM/x6ey7lLybSJu0L5G3tNWcPrl8QuSZV0fx5gQSgR8QBvNXF8ZGK3T1\nrOzTX6PhMnghzgtpa0vR3ZMnm0kwPFKmXre5MBh/L59L0tkRr7LJssTunQu/GEwUq1SqFgf6u9m9\no518JonrxZ+qS5U6ruuja+t3WlHXVBJGXFHd9XyySWPRSvOTlTquF/8OFVnmup0LB9kzOVy/Dk4X\ni9Td9Xs8WcNgb1s7vxgfZcq28Bc5CNGRSNJhJsnpJglV47nxYaIIfrt3B73JDDXXnbUSqckyPcml\n81S8MKAvmaHDTLSKlZYadWQkdHXhOY8ro6tcn++iO5FuFT3dSD8qnpm18mnKGn2J/Lwtv5RqcH02\nPmQyEyRlVJMOPc3eVDcZNUGnPjtndNAqUvctJAk0SaHPaKdNi39vcfK+vGD/xEF7nKpX56Kz8g8Z\n24xuzEVyqRZjhzYONkfSN5BT4wBr2B3ipfoL+PjYocV55ywXnYHWY66HVYLI56JzHpWrX+fOCxvL\nJsnPlVJ2IEsaKXUH+jr3c1SlAoqUQZbWvzH3a8my7zKPP/44jzzyyKzLOjo6yGTiJ10qlaJanX1y\nStM02tvbiaKIv/zLv+Tw4cPs2bOHyclJ7r33Xm6//XaeeeYZ7rvvPr71rW+t48PZGnzXZ/zCJDsO\nbnxDT8+Nt6XmrjZdqQPXb1v2Ov0HuuetOtRrNrqhzlrlMgyN192wa8X3nUzqyIUsr7wyzKFDfeza\n2YFte+zf1926vdWwbA9dU6g3XBqWS6lSZ3++gGW7JE2dzDrnyNUtl4lyjd298YmlPmPxFz9NVVbU\n2HysXKW/Z+XFU7eqMIqwXD/uZbiAquNgquqq6otVHYeTkxMcbO9kWzbLwY7FP4UHUdyCBuDGQvz8\nfLU0yXB9mp2ZHN859yv+254DqLJMEEVMORZZffE3+O3peG79MODV8iSH2wocKfSSCw1S6vzHqEgy\nN7T3xQn7ioYbBgRRiLrB6bT/tXDdrHISmqzQoc9PwB+0SmRUk7yW5IJVpF1Pk1FNUs3twbLXQG2W\niACoBzZhFOJFAaqk0KFnCaIQK3AwFR1FUujSF/7732HGHy5We3iu7E/jR/6ipxXnSipJksrs7cDt\n+k5q/jRE4EUeZa9Iv3mw9Xo2UyS1R9++KaUPAlyiKEKRNiYRf7VkaentVGFl1lRp/sMf/jD33nsv\nR44coVqt8t73vpd/+Zd/mXUdx3H45Cc/SSqV4oEHHkBRFCzLQlEU9OaL7dGjR3nyySeX/IP2/WDB\nE3FCrFysEYbhqouUbmWVSoPh4Sm6urJ0Nk9gnj03zq6dnYv2MlxIudLAsly6C7lW8vKLJ4dQFJn2\ntjS5jInvh7Pqdm1lURTh+QG6plKuWSiyRCZ5bYx9MQOlMvmESS5hEkUR337xJG850E/OXPnjGq/V\nsH2fkmVxpKdn2TpVQRiXTJAkicFKhUIqhSrL67oVG0URz4xf5De7ty/4/ZdLY1zf3r3g99ZbxbXi\nJPZFVtxWo+47rd6KEOd3NXyH/GXBmxN4TLk1vDAgr6fIaOu7KhIX4YyW7cv4avUUBzP7GbcnyGoZ\ntGaJC2XOFua52hkSUhJZkSiYm18pfYYfuqjy1gi4hPWxpn2Um266iX//93/nyJEjPPnkk9x8882z\nvh9FER/60Id44xvfyL333tu6/LOf/Sz5fJ577rmHV155hd7e3mU/PUxNbW5/uGuD1GplsBXaGlyp\nMAzJ5VJE0aXWTpl0gtIy5Srm304EERSLl5L0uzuy+EHIxEQVpdlc2l5j6Y6Nstgc1m2XqZrF9s4c\nddtFliXs+tYa+2ppAdi+i1vzmKw3SKNhT7u41ZU/robnYigq29Q0xRUcyLgwXSFnGOQME9txKTvS\nokHav108x75cB9vTK/9A09WVYXKyxm45N28ef1ke53C+QGgFjPvTV2X1ZMptYMgqyQVW3NaqRpxH\n5YY+w06J3YnZW+EKKgoqdsPHZnNej9rpYcKu4oYSFcmhGkwAUmtbcUaaAk5oY8gmE9XqvOffoHOa\nHca+qzx6GHB+xDbtDair3EJ9rdsK74GLtfZZ0wqXZVl8/OMfZ2JiAk3T+PSnP01XVxf/8A//wM6d\nOwnDkI9+9KPccMMNrZ/56Ec/Sn9/P/fddx+NRgNFUbj//vvZu3fvkve12b+4a81W+GMTrsxrdQ7D\nKIq3UVa50vT9c2foTWW4vrC6Qya272M2K9e/Uppkdzbf+vpKLDV/TuBjKCqjVpVu88oqgAvrZ8wd\npkvrQZbkefMXReGmJM37kYMqiWBrtbbC6+diAdea/ooSiQSf+cxnePTRR/nHf/xHurri+i6///u/\nz2233cbb3vY2XnzxxdZpxBMnTnDjjTeSy+X4whe+wFe/+lUeeeSRZYMtYWXed+sD63p7x297cM0/\n+9/f+X/WcSSrd+f7Pzfvsjs+8PCsr999z8PzrrMVvf1/fWmzh3BVvfXzf79ssHXr38//ndy6aw8H\nO+fnbf2XE1+cf92vxZedq0zx5se/3Cofcai9c12CreXMVHvvSVw6nfmb/++hpX5kRW79179Z/jo/\nWvq5+dan//ea7/+dP//Umn92s/yPgY+0/v2ZkU/N2qJ8YPCDrX9vdLD1yOSdC14ugq1fP1v/rKuw\npPe94QFYx13XaznYmrFU0HWtBFszXitB1y0Pf4mV5E67wG/PCboWanr9Wye+yNzNxTd+7YvMVFna\nkYm3lf7zNzb39zsTbF1p0OUAb1om6AqAo4sEXa+1YOty/3Pgw7O+/tDPf++q3fdiwZbw62lNW4pX\n02YvDV5rtsJyqnBlxBxe28T8XdvE/F3btsL8reuWoiAIgiAIgrByIuASBEEQBEHYYCLgEgRBEARB\n2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRBEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRB\nEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYFu+l6IgCIIgCMK1TqxwCYIgCIIgbDARcAmCIAiCIGww\nEXAJgiAIgiBsMBFwCYIgCIIgbDARcAmCIAiCIGwwEXAJgiAIgiBsMBFwXYNeeOEFjh8/Pu/yH/7w\nh9xxxx0cO3aMb37zmwB4nsfHPvYx7rrrLu6++27OnDlztYcrzLHY/AFYlsVdd93VmqcwDLn//vs5\nduwYx48fZ2Bg4GoOVVjAaubP8zzuu+8+7r77bu68805+8IMfXM2hCgtYzfzNKBaLvPnNbxavn1vE\naufw85//PMeOHePd7343jz/++NUa5jzqpt2zsCZf/OIXeeKJJ0gkErMu9zyPP//zP+ef/umfSCQS\nvPe97+Wtb30rzz//PL7v89hjj/HUU0/x13/91/zt3/7tJo1eWGz+AF588UUeeOABxsbGWpd9//vf\nx3VdvvGNb/D888/zF3/xF3zuc5+7mkMWLrPa+XviiSfI5/P81V/9FeVymXe9613cdtttV3PIwmVW\nO38Qv7bef//9mKZ5tYYpLGG1c/gf//EfPPfcczz66KNYlsWXv/zlqzncWcQK1zVm586dCwZMZ86c\nYefOneRyOXRd5+abb+ZnP/sZe/bsIQgCwjCkVquhqiLG3kyLzR+A67r83d/9Hf39/a3Lnn32WY4e\nPQrADTfcwEsvvXRVxiksbLXzh+tAwwAAAt1JREFU9453vIM/+ZM/ASCKIhRFuSrjFBa22vkDePDB\nB7nrrrsoFApXY4jCMlY7hz/+8Y85cOAAf/RHf8Qf/uEfcuutt16lkc4n3n2vMW9/+9sZGhqad3mt\nViOTybS+TqVS1Go1kskkFy9e5Pbbb2dqaoqHH374ag5XmGOx+QO4+eab511Wq9VIp9OtrxVFwfd9\nEThvktXOXyqVAuJ5/OM//mP+9E//dEPHJyxttfP3z//8z7S3t3P06FG+8IUvbPTwhBVY7RxOTU0x\nPDzMww8/zNDQEB/84Af57ne/iyRJGz3UecQK16+JdDpNvV5vfV2v18lkMnzlK1/hlltu4Xvf+x7f\n/va3+cQnPoHjOJs4UmE15s5rGIYi2LrGjIyM8L73vY/f/d3f5Z3vfOdmD0dYhW9961v85Cc/4fjx\n45w8eZKPf/zjTExMbPawhFXI5/Pccsst6LpOf38/hmFQKpU2ZSwi4Po1sXfvXgYGBiiXy7iuyzPP\nPMONN95INpttrXzlcjl83ycIgk0erbBSN910E08++SQAzz//PAcOHNjkEQmrMTk5yR/8wR9w3333\nceedd272cIRV+trXvsZXv/pVTpw4wXXXXceDDz5IV1fXZg9LWIWbb76ZH/3oR0RRxNjYGJZlkc/n\nN2Us4qPyNe473/kOjUaDY8eO8YlPfIIPfOADRFHEHXfcQXd3N+9///v55Cc/yd13343nefzZn/0Z\nyWRys4ctNF0+fwt529vexlNPPcVdd91FFEV86lOfusojFJay3Pw9/PDDTE9P89BDD/HQQw8BcdKv\nSMDeGpabP2HrW24O3/KWt/Czn/2MO++8kyiKuP/++zctl1KKoijalHsWBEEQBEF4jRBbioIgCIIg\nCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIgCIIgCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIg\nCIIgCBtMBFyCIAiCIAgb7P8D7tjtUAeyfHoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUY2WZP/DvXZObpZJUVaqqu6v3rgaBUQYd5yAwPTKD\nMIDDYZNuOQ2OjLOiDgwi6gj8VKAVZsSDI+M2OuIZaW1bNnEZhXFf0e6xhd7X2lKppLLn5i7v/f2R\nqlSlsm+VpOr5eDyHSqdy38rN8tznfd7n5SzLskAIIYQQQlqGb/cACCGEEEKWOwq4CCGEEEJajAIu\nQgghhJAWo4CLEEIIIaTFKOAihBBCCGkxCrgIIYQQQlqMAi5Cutw999yDz3/+80X/7ayzzkI4HG7p\n8QOBALZv397SYyy2Z88e/N3f/V3ebe985ztx2WWX4ZprrsE111yDBx98sKbH/MAHPoCf/vSnNf3O\n448/jj/90z/F+973vrL3++QnP4nvfe97NT02IWR5Eds9AEJIdxscHMSTTz65JMeKRCL4t3/7Nzzz\nzDP44z/+47x/++1vf4uvf/3rGBwcrOuxH3jggZp/Z8+ePXjkkUfwute9ruz9fvGLX2DLli11jYsQ\nsjxQwEVIl9i9ezeeeOIJ8DyP/v5+fPCDH8TGjRsBZION7du3Y3p6GiMjI/jXf/1XOByOvN//9Kc/\njW984xsQRRHr16/Hrl274Ha7Sx5v586d2Lx5Mw4cOICZmRlcc801eNe73oXR0VHcfPPN2Lx5M8bG\nxrBr1y68/e1vx29/+1sYhoGHH34Y//u//wtBEPCHf/iHuO+++yDLMh5//HF897vfBWMMa9aswX33\n3VdzcPStb30LAwMDuPvuu/GDH/wgd/uZM2eQTCZx3333YWxsDOeddx7e+973wuv1YufOnTj33HPx\n85//HKFQCLfccgtCoRB++ctfIp1O49FHH8VZZ52FnTt34uabb8Z5552Ht73tbdi2bRv279+PaDSK\nO+64A1deeWXeWP7pn/4JgUAAH/jAB/Dud78bX/nKV3DzzTfjiiuuyD1/N998M0KhEA4cOICPfexj\nEAQB3//+9zEyMoLbbrsNQDZDOffzpZdeile/+tU4dOgQ7rzzTrz61a/Ghz70IUxMTEDXdVx11VUF\nmb0TJ05g+/bt+NGPfgRZlmGaJt74xjfiP//zP3H8+HE8/vjj4DgOgiDg7rvvxh/90R/l/f7evXvx\nzW9+E4wxBAIBDA4OYteuXRgcHEQwGMR9992H48ePg+d5bN++Hbfccgv27duHhx9+GJqmIRgM4g1v\neEPNGUVCVhqaUiSkC/zsZz/D5z73OXzpS1/CM888g6uvvhr/+I//iLmNIgKBAL7whS/gO9/5DgKB\nAL773e/m/f73v/997N27F7t378Zzzz2H4eFhfPnLX6543PHxcXzlK1/BN77xDTz//PN48cUXAQCT\nk5P4h3/4B3znO9+B3+/P3f+///u/8fvf/x5PP/00nnvuOSSTSTz//PN46qmncPjwYXzta1/D008/\njW3btuFf/uVfan4eduzYgdtvvx12uz3v9nA4jDe84Q340Ic+hKeeegoOhwPvf//7c/8+NjaGp556\nCp/85CfxyCOP4PWvfz327t2LSy65pOjzcObMGVx88cXYs2cP7rrrLjz88MMF93n00UcxMDCARx55\npCAYW2guiLv77rtx2WWXVfwbR0ZG8K1vfQuXXXYZ3vOe9+D666/H3r17sWfPHvz0pz/F888/n3f/\njRs3YmRkBC+88AIA4Mc//jHWrFmDLVu24GMf+xjuu+8+7N27F+9+97vxi1/8ougxf/Ob3+Dee+/F\n888/j3PPPTeX7ft//+//YcOGDfj2t7+N3bt346tf/SpOnTqFL33pS3jXu96Fr33ta/jmN7+JF154\nAQcOHKj4txGyknVNhmv//v145JFH8MQTT5S936lTp3D77bfj2WefBZD9IL7rrrugqioGBgbw0EMP\nQVGUpRgyIU3zox/9CFdeeSV6e3sBANdddx0eeOABjI6OAgD+/M//PPe6HhkZKajb+tnPfoYrrrgC\nHo8HACrWHM256aabIEkSJEnCFVdcgR//+McYGRmBKIo4//zzC+7/05/+FNdcc00uIHr00UcBAO9+\n97vxu9/9Dtdffz0AgDGGdDpd69NQ0mte8xr8+7//e+7n22+/HRdffDE0TQOAXKCzdu1aAMAll1wC\nAFi3bh1++ctfFjyeJEnYtm0bAOCcc85BJBJp2lgrmZueTKVS+NWvfoVoNIpPfOITudsOHjxYEODd\neOON+MY3voErrrgCe/fuxY033ggAuOqqq3D77bdj27ZtuOiii/COd7yj6DEvuuiiXLb0LW95C665\n5hoA2fP5nve8BwDgdrvx3HPPAQB27dqFH/7wh/iP//gPHD9+HKqqIpVKNfmZIGR56YqA67Of/Sye\neeaZioHSU089hS996Ut5Xzaf+tSncPXVV+O6667DZz7zGezevRtve9vbWjxiQpqr2JanlmXBMAwA\ngCjOv5U5jiu4vyAI4Dgu93MsFkMsFsPw8HDZ4y58XMuywPPZpLgsy3n/Vuz+ADA9PQ3GGBhj+Ou/\n/mu89a1vBQBomoZoNFrw+x/4wAdymZLt27djx44dZcc359e//jWi0Sj+7M/+LDfWuWm0ufEuJElS\n2ceTJCn3ty583ipZ+Lzrul70PovPz+L7zU0FM8ZgWRaefPLJ3GdfOByGzWYreMwrrrgCDz30EI4d\nO4Zf/epX2LVrFwDgjjvuwA033IAf//jH2Lt3Lz7zmc9g7969ub9tztzzNHfcuZ9FUcz7+8+cOQOf\nz4e/+qu/wtlnn41LLrkEf/EXf4H9+/cXfY0SQuZ1xZTiunXr8Nhjj+V+PnToEHbu3ImdO3fine98\nJ+LxOADA4/EUTA+89NJLuavZP/mTP6l5FRIhneDiiy/G888/n7uY+PrXvw6v14v169dX9ftveMMb\n8D//8z9IJBIAgMceewxf/OIXK/7eM888A8YYotEovvWtb+HSSy8te/8LL7wQzz33HDRNA2MM999/\nP775zW/mpufmjv+JT3wCd999d8HvP/DAA3j66afx9NNPVx1sAUAymcRHPvKRXCbq85//PC6//PK8\nQKLVent7c8Hi6dOncejQody/CYKQC459Pl/ufuFwGL/+9a+LPp7L5cL555+PL3zhCwCyQfKOHTvw\n/e9/v+C+NpsNV111Fe655x686U1vgqIoMAwDl156KVKpFHbs2IH77rsPx44dy41joZ///OcIBAIA\ngCeffBJvfOMbAWTP59e//nUAQDwex6233oqTJ0/iwIEDuOuuu/CmN70JgUAAp0+fBmOsrueNkJWi\nKzJcl19+eW7qBAA++MEP4sEHH8SWLVvwta99DZ/73Odwxx135D4kFkokErnCYKfTmQvOCOkmF110\nEd72trfh1ltvBWMMvb29+PSnP12QqShl27ZtOHr0aC6I2bJlCz784Q9X/D1VVXHDDTcgmUzirW99\nKy688MK89+Ji27dvx9jYGK677jpYloXXv/712LlzJ3ieRyAQwFve8hZwHIdVq1blsjDNsG3bNuzc\nuRM7duwAYwxnnXVWVX9fM/393/897rnnHvzgBz/Apk2b8lYuvvGNb8RHP/pR6LqOnTt34q677sLl\nl1+O4eFhvP71ry/5mI888gg+/OEP481vfjM0TcPVV1+Nv/zLvyx63xtvvBFf/vKXcf/99wPIZqfe\n//7346677splqh588MGCbB+QXWn6nve8B8FgEFu2bMGHPvQhAMC9996L+++/H29+85thWRb+9m//\nFueddx7+5m/+Btdeey28Xi98Ph8uuOACnDp1ChdeeGEDzyAhyxtndUkeeHR0FHfeeSe++tWv4rWv\nfS3OOeccANl0/IYNG/I+vC+66CL85Cc/AQBce+21+NznPoe+vj4cPHgQH//4x/HpT3+6LX8DId1k\nbpXd3Ko7sjzt3bsX3/nOd+hzkZAW64oM12IbN27ERz/6UaxevRovvfQSgsFgyftecMEF+MEPfoDr\nrrsOP/zhD/Ha1752CUdKSOf6+c9/joceeqjovy3ucUUIIaQxXZnhOnDgAD760Y/CMAxwHIcHHngg\nt8IGyM9wTU9P473vfS+SySR8Pl/R/kSEEEIIIa3UNQEXIYQQQki36opVioQQQggh3YwCLkIIIYSQ\nFuv4ovlgkNo41MLnc2Bmhjo+dzM6h92Nzl93o/PX3Trh/Pn9xfeopQzXMiOKS9fokbQGncPuRuev\nu9H5626dfP4aCrj279+PnTt3Ftz+xS9+EVdddVWuG/zx48fBGMO9996Lm266CTt37sSpU6caOTQh\nhBBCSNeoe0qx3P6Gc20bzjvvvNxt3/3ud6FpGnbv3o19+/Zh165dePzxx+s9PCGEEEJI16g7w7V4\nf8OFfv/73+Mzn/kMduzYketevHBPw/PPPz+3lxghhBBCyHJXd4Zr8f6GC1111VV461vfCpfLhdtv\nvx0vvvgiEokEXC5X7j5zm7mKYsfX7RNCCCGENKTp0Y5lWbj11ltzG0Zv27YNL7/8MlwuF5LJZO5+\njLGqgi2fz9HRRXCdqNQKCdI96Bx2Nzp/3Y3OX3fr1PPX9IArkUjg6quvxvPPPw+Hw4Ff/OIXuP76\n66GqKl588UVceeWV2LdvH7Zu3VrV47V7eWe38fvd1Eqjy9E57G50/robnb/u1gnnr1TA17SA69ln\nn0UqlcJNN92EO+64A7fccgtkWcaFF16Ibdu2gTGGn/zkJ9i+fTssy8KDDz7YrEMTQgghhHS0jt9L\nsd2RarfphOieNIbOYXej89fd6Px1t044f9T4lBBCCCGkTSjgIoS0DbMsGIy1exiEENJyFHARQtom\nqqqYiifaPQxCCGk5aoJFCGkbn6LAV2S3CkIIWW4ow0UIIYQQ0mIUcBFCCCGEtBgFXIQQQgghLUYB\nFyGEEEJIi1HARQghhBDSYhRwEUIIIYS0GAVchBBCCCEtRgEXIYQQQkiLUcBFCCGEENJiFHARQggh\nhLQYBVyEEEIIIS1GARchhBBCSItRwEUIIYQQ0mIUcJGaMMaQSmlLftykuvTHJIQQQpqFAi5SE103\nkUioS37cYDQBy7KW/LiEEEJIM4jtHgDpLjabhIEBacmPu2Gwd8mPSQghhDQLZbgIIU1zKhrBjJpu\n9zAIIaTjUIaLENI06z3edg+BEEI6EmW4CCGEEEJajAIuQgghhJAWo4CLEEIIIaTFKOAihBBCCGkx\nCrgIabMTU2FkdKPdwyCEENJCFHAR0mZrej2wSbRguBsF1SQmU/F2D4MQ0gUa+pTfv38/HnnkETzx\nxBN5tz/33HP4r//6LwiCgK1bt+L+++8Hz/O49tpr4XK5AADDw8N46KGHGjk8IcuCLArtHgKpU5/N\n0e4hEEK6RN0B12c/+1k888wzUBQl73ZVVfHoo4/i2WefhaIouPPOO/Hiiy/i4osvhmVZBcEZIYR0\nK57j2j0EQkiXqHtKcd26dXjssccKbpdlGU8++WQuEDMMAzabDQcPHkQ6ncbb3/523HLLLdi3b1/9\noyaE1O30TAQxden3wySEkJWs7gzX5ZdfjtHR0YLbeZ5Hf38/AOCJJ55AKpXCRRddhMOHD+O2227D\njTfeiJMnT+Id73gHvv3tb0MUyw/B53NApCmXmvj97nYPYUUzDBOMWZDl+mfsW3kO+/pc4HnKzFTr\neCSMHpsN/Yqz6t+h92B3o/PX3Tr1/LWkUpcxhocffhgnTpzAY489Bo7jsHHjRqxfvz73316vF8Fg\nEKtWrSr7WDMzqVYMcdny+90IBqmIt9kOjwaxYdAHuYri9mgsDcMw0dfrqutYdA47ixsSLJ0hmKju\nnND56250/rpbJ5y/UgFfS1Yp3nvvvchkMvjUpz6Vm1rcs2cPdu3aBQAIBAJIJBLw+/2tODwhTbd1\n2F9VsAUAnh6l7mCLEELI8tS0DNezzz6LVCqF8847D3v27MHrXvc63HrrrQCAW265BTfccAPe9773\nYceOHeA4Dg8++GDF6URCCCGEkOWAsyzLavcgyml3arDbdEI6lTSGzmF3mzt/k6kERJ5Dv7362i/S\nfvT+626dcP6WdEqREEJWun67Az6bUvmOTWBZFk4kQ0tyLEJIfWhOjxBCWkDkl+56luM49MqUSSOk\nk1GGixBClgGPZG/3EAghZVDARcgKcCYUgWGydg+DEEJWLAq4CFkBfE4HBGp22nQmYzgTj7Z7GF3J\ntOgCgKwsFHARsgK47DI42vev6XiOg1uytXsYXelUOoAM09s9DEKWDBXNE0JInTiOg9dOtVP12OQo\nv8sIIcsNZbgIaaJEKgOTaqUIIYQsQgEXIU2USmtUnN4GKV1HQtPaPQzSBNN6BEkz3e5hENJ0NKVI\nSBMN9HXmLvXLHYNFRdjLRI/ghMBRLoAsP/SqJh2JmQxTkytv9deJQBiMdfRuWx3JJcnw2KiWajmQ\neQkCJ7R7GIQ0HQVcpDNxHGx2qd2jWHIDHhd4at9ACCHLDgVcpCPxPAeP19HuYSw5p11u9xAIIYS0\nAAVchBBCOkpIjyGgzbR7GIQ0FRXNE0II6Sh9Uk+7h0BI01GGixCyZIKJJCZi8XYPgxBClhwFXIQA\nyGgGACAaT2N0MtLm0SxffpcTQ25Xu4dBCCFLjgKuFYiZDMcPTrR7GE0xE04gGGisfYRumJicjgEA\nPG4Fw0PeZgyNlEB7OhJCViKq4VqBeIHH+pHBdg+jKbw+J6wG21ZJooD1q3ubMyBSYDqZgiKKcNpo\nBSYhZOWiDNcKJQjddepjsTSsIpEVx3HUt6rDKaIISaBGlgsZjIE1eqXQZgkjDZ0ZTX/ctJnByfRk\n0x+XkHbrrm9dsmKl0lrRgIt0PqdNhiwWBlxRVe36oKNeQTWJiKa2exgN0SyzJdspKYING5Shpj8u\nIe1GU4qkKwwNeto9BNJkCU2DU5LBCysvQ7nK0f17bvZKtPiBkFpQhosQ0hZrenogdtnUNiHlmJaB\nNEu0exikQ9GnHSGErAAnktNIGVrF+83oyZZMFa4EDAyGpbd7GKRD0ZTiCmLoJgBAlKiAmZCVZq2j\nFyJX+RrbsMxsvWQTZ3rDehwaMzBk8zXvQTuQxMmQBFqNS4qjgGsFScTTAABvL9VeELLSVBNsAYBf\nbv62Or1S99esEdIoCrhWEAq0CCGEkPZoqIZr//792LlzZ8HtL7zwAq6//nrcdNNN+OpXvwoAYIzh\n3nvvxU033YSdO3fi1KlTjRyakI7FmAXTpBoYQggh8+rOcH32s5/FM888A0VR8m7XdR0PPfQQ9uzZ\nA0VRsGPHDlx66aX4zW9+A03TsHv3buzbtw+7du3C448/3vAfQEiniaVUpDM6VvU1f2qGkE5iWRZt\n1URIlerOcK1btw6PPfZYwe3Hjh3DunXr4PF4IMsyXvva1+JXv/oVXnrpJVxyySUAgPPPPx8HDhyo\nf9SEdDCvS1mxwZbJGDTTrHg/y7Iwk04vwYhaz2CV/97lSGcmDiepIzwh1ao74Lr88sshioUJskQi\nAbd7vkDS6XQikUggkUjA5ZqvIRIEAYbR/G0hCCHtk9Q0TCdTFe9nAUhkKrco6AYHZ6bbPYS2kHgB\nZ7lWtXsYhHSNphfNu1wuJJPJ3M/JZBJut7vgdsZY0YBtMZ/PAbHItiCkNL+fVgRVKxpLI55QMby6\ns5arN/scqroBmyi0fPrHj+rHPTiwPLKAl/Q5sT84gdcOrsnd1s3vQZ2ZmMkkMaAsj/NTj24+f6Rz\nz1/TA67Nmzfj1KlTiEQicDgc+PWvf43bbrsNHMfhxRdfxJVXXol9+/Zh69atVT3ezEzlq2Uyz+93\nIxiMt3sYXcOyLIgC31HPWSvO4anQDIZ63LBJtDC5FdbxPblz1u3vQYOZiBoqOHll1mZ1+/lb6Trh\n/JUK+Jr26fvss88ilUrhpptuwj333IPbbrsNlmXh+uuvx+DgIC677DL85Cc/wfbt22FZFh588MFm\nHZqQunEcB2EFFP2u7+usDN5KMJqKYsjuhsh314YeIi+gT3a2exiELDucZVlWuwdRTrsj1W7Tzuj+\nyMvj2HzWEHjaH68hnXCFVqtAPAG/ywm+juD1lakgNvX6YKuixKAbzJ2/iJZGj2Sv6zmZY1oMQpUN\nS0lzdOP7j8zrhPNXKsNF72TSNCPnrIZhMkyOz7R7KDhyYqptvbDGQzEwVv91TFrTEYh21wc+z3F1\n7wTzqgE/bKKIhFZbEf3+6UmwGq8Xk7qG07FoTb9TL6+sNBRsAcDLsama/0ZCSGeigIs0lSgK6PE4\n2j0M8BxgGO1Zru+wSWjke1YSBDhttuYNaAn4Xc66C/Ity8JkPIGpZLKq4EI1DByansZr+odqDmgU\nUcKgs3umy87rGWw4aCun24M50zIxro23exiEVIUCLtJUPM/B4Wx/sLB5wwBsNqktx/a6lIZWA4oC\nD5d9+W+AmzEMZGZbw3AcsMnnqyq4sIsizurvr+uYPMfBJnTP1OX+mdb2uTqaCkBj3dueR+AE9Iv1\nvRYIWWoUcJGmUVUdibja7mG0zPRMAlPTnTPVZzKGk1Ptn76tV1LTkNYNcByHQRft81nM+b2t7XO1\n1TkEme+eALQYmV/+FydkeejudxrpLJaFDl+D0ZB+X2cFBQLPY8DTPdNji/U66pt6pu1kCCHdiDJc\npGnsigx3j1L5jqRpHLaVdXWvGgYOhUPtHkbXyph6u4dQs4A2hbiRaPcwCGkYBVyEkK5hF0Wc3bdy\nanZ0ZuJQfKppjzeqRqB32d6Pg/IA3GJnZZcJqQcFXCTP5Gh4WU8LLgcmY3h5tHlfwqRzSbyAzc7m\nBZibnX5IfGdvlRbW4zCt9rR0IaSVKOBawdLJTMFtitNG9TFLaHImjmiytoUGAs/jnOEBANll/WPh\n+b5SkWQaJuucL6tIevkuolgq3dapfk6xlhOGZeJoqnwbBwvdecFnWQyG1X1TtmTpdOc7mTRFeDpe\n0BzU4ytdhM1YflG8oZsYPzndsvF1i2Rag67XN03T3+OEW6m/jQYHwLmgjkszzLb2VtJNMxfwWZaF\nSDqNE+HuXUnZbKFMquum9OphWgxHU2MFt4ucgI3KUNnf7ZN6urK7vmapSJiRdg+DdDBapbiCrVlf\n21RFMBCFXZHh8WZXlwkiD19/Z+7KvpQymgGOAySp9qkascFtkDiOg9c5v1BhwNPeWpfpZAoOSYJH\nsYPjOGzo9SGuFmZSVyrL6tb8TW0EjsdW53DJf1uObLwDNr79TZ9J56KAi1RtcJU372eO46C4ymdn\nNM3A2OkQNm4ZbOXQ6qJmdMiSCJ5vbAq1t0JnfcYsMMtqOLjqBqt6CgNwt739jXA7Rb+9e9t4kOpk\nWAoMJhSeLkZJvuX/DUDaSpZFrN800O5hFBWOpqAvwfY/STWDqQgtaycr00pbhMNzAgR09sIE0h4U\ncJGqMWbhyMu171vWaAapVVYPeGCTW5/kdTvsWN3X0/LjdBqTMaQ0DVqb9rRcjjoxeBlTQziZChT9\nt6iexFgmvMQjai+JsyHBwlBZ5+xKQToDBVykajzPYfPZjW01wlgbC7rrLGwn9RmPxRGIJ3P7JS5H\nSxkAZUwDh+LBJTtetRRexqDNV/TfPJITw/a+hh5fZwZYl7WJ6BWHYacpRbIIBVwrSCKWLvlvhm5C\nTWkVH6PRbNXJY1Mw2hT4jAci0PTmfPkbJsNYgFYklbPW68HGPt+yruE6GgsjqVd+3zSDTRAx7PBA\nbXO3+MU9snplNxSh9I4HcSOFlFn/womQEUGGLc1zTEgrUcC1gkTDyaJX5IZh4tTRAEJTsZaPYdPI\nIMQ6VvM1Qs3oUDM61g/3QZaaM4Uo8Bw8btrGqJnCqRSmEsl2D6MmI54+OKX8YCOSSSOqtab/mMEY\nzCWeVlRNDVE9BQCIG2mMZ2pr88FzPPgivf0WZq1OpCYR14tfEA7J/VAEe03H7BQpM9aR08CkPSjg\nWkHWbOgv2tRUFAVsftVq8AIPNb38riR1zYSuNTerxnEcXI7qMjdnAhGkM9QQsZIeux29SvcHsRIv\nQGpRs1KvrMApls4mHU8GW/AFz+UCJreoYG2VU4Qq0xDRs3VMxTrHn1ID0Fj2feGT3DihjiFupJo0\n5nwJsz2LVjJWumsbuZLmo4CL5PQN9sBml3I/q2mtoDFqMZPjEaRSre21dPp0qO4vErfbDre7fVfI\nQ31u2FtUnK+bZlcXpSc1Dcbsa0zkeQg8h8Oh7t6c2inJcJQJilpp0NZT104RCUPFhBpBVE9BY/nT\n7nZBglusPRDmLA5zJZscCse0UVkFmc9+3nglJ17t3gK3mN9ipVlb/KRZui11YD5xEHwH9x0zrRQY\ndcdfMp37SiA1m56MIpWofypDlsW8D+tENI1MFRmv3n4X7PbWfsH097u7dsshSRRaNvaEqiGe7t7G\noglNg7ag8zrHcVjbs/JWdDaLU6yvXk4RZPTJLhgWa1pGhoEhzTJwCnY4hNrHlTIzGFObE3z7JX9T\nAh/LspAwo5Xv2CVMKwHdCiNuHm/3UFYEany6jLh6FMg2Ccl0c65Y+oc8Vd1PXoLWCg5H8YDu4JEJ\nnD3S2MrJTqcZBiZm4ljvL1wJ5nN29xTcoKuwM74iSUXuSYrJmAYEjoPY4IbUAsdD4Hj0yc3bqUAR\nbFhTR6A1xyHYsE7xN208zWFBX0YZIZnP9kiUqc5sSVCGaxmxO+SmFqQbuolIuHm1D7rW/PYAWzeX\n35dtOZAEYcm27ElrOqKp1hR8BxNJjEdbvzADACbjcQQSzXntvhya6tjWFlFdRcKov+5yKhNHINO+\nflHjmSBS5tJscB4xYghq1WXMkmYMOivMHHOzWbKk2f09tqwFU6zdOnvQbSjgIkvCMEyMnW5+bc5S\nNlX9/dGJJTvWQhzHQZGLZ30sy8Lp6e5oT+F3ObHaszTThUNud9HsWT3O6RvARDqOSJ0rD6OaiplM\n6ZYspRyITMKosNH1gN0Fr1x/ltMvuzDQxKxWrQZkHxS+uW1DTMvEpDZdcLtX7IFfrq7gn+f4XHC1\nmEfwwcGMTNlIAAAgAElEQVR39xZNzMogZf4OptVdq4K7HQVcK9DJw5NV1WaJkgBvb3M+jEVRwIYO\n3E+xFudu6bypS47j4HE0b0GAIktNfbx2OhmJQDObs6Bgg9sHr1zf82LjBdiE2qfdz/MONTxVWAnH\ncTVnN8J6AmNqc7rHi5zY9OwKDx5uobGASOFdELniFzk8J5QMxroFz9lgEzbBwvJbld7JuvtVQ+qy\nfmQQNqXxIvczJ4JIJVtTsH3kyCSMLl59t5Q6IUAyTIZgcumvlvdPTZZcvTrgdLasPUMt7KIEh1h7\nXZplWTgcL8zUtFuv5MIae2+7h1ESx3FwCt1d27gURM4NkSu+QwBpjfZ/GpEl16wryrUb/XA4W9NF\nfGRkCKJIG8AupGodXKzLAUKTMxWRtIpTM+WnS18zMFTy9eyQpKa91lVDB1viwmKO4zCsLL8Vm6bF\noFeYKu0UlsUQMYrvE0lIrSjgIqSDZEpsPWSYDJMz7WneWA2R59HrcFS+YxWYZeGVYBBexY71Pm9D\nj2UyhjOxKE7HItAbmF6cVlNIG0sf8Larn1cpi3t01SNhphE1Ove1nI+DzCnQWAam1R1BIulcFHCR\ntjBNhkik8a7SM5HlU/SpGyYmQ8VX8YkCjw2D1af/05qOZKZ8fUa7thyJZzJls0U8x2FL7/yUVSMr\nBHmOQ49sQ6/dAbGB6cVhl6dgC5+VxrIsnEo3vnm2R3SiX66u5Uw76CyDSe0kgGyW0SH0IM2S0C2q\ndyKNqauBEmMM999/Pw4dOgRZlvGRj3wE69evBwAEg0Hceeedufu+8sor+Od//mfs2LED1157LVyz\nK4eGh4fx0EMPNeFPIN3IsqyquthXkmliq4lILAVVMzDU355pHEkUsH6oObUxJrPKdtY2GcPBiSDO\nXbP0Cxmiqgq7KIIXslPGZyJR+BQFLtt8QCMJ89PJJyMRjPT1gec4GIzVFDhxHAePvbYat4PhaWzo\n8cIuUpvChTiOw4iz+MKRoBaDQ5DhXLTnocp0cABsfGf0VouZEcicDXa+dI2XxNswJG/Iu80jVv++\ntCzW9UX1pDXq+kT53ve+B03TsHv3buzbtw+7du3C448/DgDw+/144oknAAC//e1v8fGPfxxvectb\nkMlkYFlW7t9IczFm4cyxAPx+d7uHUhVRFNDX1/gKyKGB5l0pe9wKehYlXnTdhLTEm203g6tC53+B\n59sSbAHAsCf/nA25XRDKBFFn9fcDyE41HgpN41z/QNnHPzoThs9uR59S3xTn2b39Vd/XtBiEEl+u\nh6PT2OqZfyxmWTAYgyx0z+spaarQmQmvVH7Vn1uwF11RmTE1gONyAVfCSMEAg1dsfSuKgDaNAakv\nr47PxtkhcK19/qf0M+iTVpdc5dipTCsN3QrCzq9r91CWrbrC8JdeegmXXHIJAOD888/HgQMHCu5j\nWRY+/OEP4/7774cgCDh48CDS6TTe/va345ZbbsG+ffsaGznJw/MchtZW12NmOUkmMwg1qTkrx3F5\nfb3GAhEcPdPYFEpgJo5wrDUb8naSQ8HpuovKJUHIbY5cDs9xecHW/qnJovdzy3LRvfta4WgsDNWc\nz7ImdC03VbvGmZ8pTRoaptTqX6sJPYPJdO0NNjPMaNoehCInQOYrX5fbBRnibCCTMNK543skJzwL\n9keUeQl2fmmmZhXeVrBowsbbWx4IDcrruy7YAgAeNshc+YsZ0pi6MlyJRCI3NQgAgiDAMAyIC1Lw\nL7zwAkZGRrBp0yYAgN1ux2233YYbb7wRJ0+exDve8Q58+9vfzvudYnw+B61Wq1GnZbkYs2AxC4LY\n/DS7z+eAbphQWrCXY4/HDoHnG3r9zWXxam3Q2mnnsJIenwLbEk/BXdrvKhqoLeVzt/hYsUgYOmPw\n+91YvCmNH7WNy8sc0E0TjkW1Y+OpKGy8iD578azT6cQMnDYb3FLj7UJ0ZoBZFmxC9QGEntbhkx01\n/U4r1Pp85/1ul73/SL5OPX91fUK6XC4kF/TcYYwVBE7PPPMMbrnlltzPGzduxPr168FxHDZu3Aiv\n14tgMIhVq8o3k5yZWf7ZgWby+90IBjtr24loJAUtY8A/mL3in8sANLPhYSJeXT+wsckI+nudsJXo\n3N4JFp7DaFKF0y5DFJoTrI7PxOBx2OG0tSbLoJkm4pkM+pq0YnGhU9EI1vZ4qsqG1Uo3TRyNhPGq\nvsb27uuBBFkQmvoeTCL/tc0xCzpnIBgvfgwFItS0DhWNr6qM6kmYYOiVqv8CkyAhBhXA0mzZ02yd\n+BlKqtcJ569UwFfXp/gFF1yAH/7whwCAffv2YevWrQX3OXDgAC644ILcz3v27MGuXbsAAIFAAIlE\nAn5/p21MunKEgzHEy6wS1JpYjO7xOnLBFgCEQgmEw6VXF04H44jHa98KBcgGc9EyU3j9vU7IUnMy\nMbGkilC0taskddNEPJ1BJFH5+bAsC0aFhQi9LgfsTfr7i+Fm/1+KyfLHdzwcrnoVotdmb0mwBWSn\nNc+qoXarFUaTUcSr2D5I5IWSdWPN5pGcNQVbo2p1eyPqzMCU1hlbUqlMpZYPZEnU9a697LLLIMsy\ntm/fjoceegjve9/78Oyzz2L37t0AgHA4DJfLlZfBuOGGGxCPx7Fjxw7ccccdePDBBytOJ5LWcfU4\noLhKNy0dPdH48u90iS70/f3usgXzikNGNFZfwMUsC6pa+gvcJjevGaZik+BSmt/4dWomgclw9gqt\nv8cJRZYgVTGtmcxomIyUv7KzS2LZAvVGSYJQth/XK8HpvHYUwx5P0anIYi0riq02HI/H8NPR0wW3\nm4zhcLi2vTtLBXNL1fBU5HlMa92d0V9t64NDqDyVyXM8lDpquTJMK7pPYikay1Rsf5JmKehWa3us\nmZaGDOuW3mOkVTirXc14qtTu1GC3aSSdGo+mwRiDx1ffPmSnT05jzdpeCAIP02SYHA1jzfraswaM\nWchkdChN2H6oU50JROBzK3A5CgO2SudQN8yqArBuFUgkYAEYqmLzaWZZMBnLayMxJ2MaNe1hGEwn\n4VcKX/v/Nz2JV/cPVf04i89ftvg9gS09rVvU8nJ8AltdgxCXIPM1rkbQI9rhEisHVpZlNeUCx7BM\naEyDnbdBtwzYqgzWpvRJ+MQ+SDUUsbdiSkq30jAsFQpPW+m02rKbUiTLk02RYG8gyBlc5YEwW2sk\nCHxdwRaQLTAvFmw1urdiJJaCVqKTeynW7Bd6s63u74Gzjuc6ndExHi7eHLXdqrl2m06mMJMun70c\ndLmqCrbmhNXij1frhtGZEp3oywVbBjNxJFo+k+aSbLlgqxXZMsuyAAvgl2hlZr/sgkOoLrN7XB2D\nXqI7vWpWvw+raZnIMA08x1cdbAHAgDRUU7DVKhKnULBFKOAi82RZhM2e/XCKziQxNZ5fYxGLpTE+\nNlPy92221n6wnTgZLPqlfuhI6Q2MF6rnSjuRymAi2PwARxD4qsaTzuhILegYr9gkrB/ozA/uVyaD\nMCoEp26bDJfceOZyKpnMBS/NagEx7Kq94a3IC1jrqr4X3O9mmr8vH8dxOKdnVcvq2xaTebHqY21W\nhiGVaCsxpUfKNuddyMbL8Emd252ekGpQwEWK6vE60D/Yg/HTISRm66l6ehSsWl3f3nbBQBSJROVi\n2nA4gVSq+JXvyJbiGxWPbB6sKnjxuJWqC+YZs3D8zDTcTjuGByv/zYbJEE/VvyorFEsiHC+s3zEY\nq1gI3ynOWTVQsQu8TRSLTv9Voi3KPs2d7ZORGfTP1owFU0mEy2TPNNNEXKs+q1Ite5FMWkRT8/pz\nzXlN7xBGk9G8TBezrIK/rx2ierrm/l0vJ8YKsnY6M6ranHqdfRA8dWQnKwi92klRHMeBF3gMDffC\n1aPk3V6NjJpfhJrJGMikKxemOhwyZLm2qaBae1xV+5hrigRaiVTxIlyTMagNrOzscdjR48iviTFN\nBjWjF9xei2hKxVS0/cW6hskQSqVwMlL7yjSDMZyYyc+s+p1O8ByHQed8Ly6PzY4eW+mpLoOxktOG\n1ZpKJxHJ5AfWmmniWCycd1t2mq941lURpbyc3FxD1KCaQMqovF/fyWQYEa2+RSXlZJhec8D1Kufq\ngmxX3EwjuWil4uKfCVmJKOAiZdUbzEyMzeSvRlvXh77ZQkLGLIyNhov+nt0ud0yjW1uRwC+WUGGy\nwi9SmyTC761/uxJJFAp7bXHI1cTVy2WX4XXmB2zaojYMao11bfUIJBKQeB4bvPNB7GQ8jqSWDTD0\nEoFQQtMwEY/ntvdZzLlgelIWhLIZNockob/O7X7meGQbXFL+1LksCFjjyC+S9dkU2MXiU+x9Nkfe\nhYtbsmHY6YEiSEW3x1lsg7MXXrn0XoAL1RJADdh6quoqv9Dc36GaGk6mpwAAvZK7YCugkF7/tHy1\n047lZFgGx9JHSz5WhqlIms0pHTCt1r+fSHeigGuFqabw3DBMsCJBxZzF2atiNmweKJkN43kOHk/l\nLz7GGI4cLr59CwAkkhmcKRG4tcrqAU/TmpBWIvA8et2NBQgCz0Ne0HZBM0yMLiq6PxOKVKyBS2la\n1f2yilnj6UHPbFuHyXgCwWQSHrsdNlGEZpo4VSLz5ZAkDLpcSOs6Dk3ntwNIaFouYAOAtN7apf1A\nthC/WFBUKriqhUuyQV702ClDqzubpTMTRxK1t3dJmRkkjdoyUnZBxrC99CrMYVs/xtT6Ws0E9TDi\nRmNZWhtvg0d0wUL+69y0TGgsAx48BK7+NkXWgkBu2jid9zMhcyjgWkEyaQ2Tp0uvqLIsC9OBKEJT\nMSTjpT9wJ0bDVRWpl+Nyl58mMwwTPM9j85bSGyy7nDYMr/GVDQ6XO90wc6sodcOEViGglkUBmwZ6\n824bGeqvOFWc1g3oRWrJIunap4oGXE70OxxQJAkiz0MWBGzpK/5lzXMc5Nm9Fr2L+nBZVv7X52gi\nVrFov9tw4OpuqyDxAs52175BuQWgmmdxcfYsrCWQNucD4IPJM7n/5jkePWI26xXUZqCx6oJjwzIx\nKPfDvWCza9MykTBrbzjcLw0VbFytWRmkWQoSL8PO13dxozEVIWM09/OgtAlcm2vTTKu7+7ktVxRw\nrSA2RcbwpgHEIqmSARXHcRhc7YMg8iUzWRu2VFekvhgzGViJAvDJyfkMB2MWTs02Xq00pclxHMYn\nZhCJppBMZhpuHdENTgdnkJmdBgzFU0iqGphlIaFmEE83vygcAPqcDriKbAcUU9Wag2+eqy2IMBiD\nwPNQFi14cNtseSseR3x9FYv262FarGmbQddKESV4mrAnYi0SupbbiLqYDNNhWRaOJMfzbneJdhjM\nxLFUNiu91TGc9+/u2U2sbbxcVcBlWRbOqOMFt6fMdE0tJYrJMBUJMwaFd8AjNrbqV+bt6JfWNfQY\nzaayiYazbJbFKFPXZBRwrUCSLECU8j9QE7E0knEVfQPZpfGGbpYMjuoViaQQKbGdkN0+PyXD8xw2\nj1TfaHJ4TS/sdgnxhLrkU4ztMOh1Q56tcxvyudHjsGM6loTJLPSVmYJsRY/jdT4vzkTqr32pZmuf\ng9PTMBgDBw5j8cJj6abZ0sxWSE0jVKLXVyOqWcnXDg5BwrFUtn1FSEsgvmh6MajFkLEMnO2aD6gS\nRhp2XoZmmXDw2QCR57iifcdsvIQUqxwwcRyHjcragttTTIVHbGxzYp4TclOIGabCKFJ3xSyGpNmd\njbedwuaGs2yGFYRhVd/Vn1RGAdcKpDhsuX5bc0RRyCtW7/E6oDjnV3xNjs5ATVdeQVVOb58LvSW2\n9PF6q+9uPxGIFtxmt0kYGvRg44bs/pyZTPYK+tRoCHqHZ71C8VRuWjSt6RUbrdoksSBD5O9xwmkv\n39/q92NTLWm86V5w3ESm+GtEN00cDWWns18OTOVuX1tia585SU3DOX4/MqYBjZlwSIW1UqF0uiXt\nHuYMKE4MFOlAX0pS1xDJlA/QTIvhWLwzLg5OpqahLWhO6pbsONu5CgDgEGTYFhXSD9v7YOfzz0Pc\nVGFaDH2yC6vs8wsjDiXH8u43pUXBg8eAnJ9VOq2OI24kcTxdmNFabFDuh8Q3VjMncRKU2SnEbMA1\nn3ELZUJQWRoWLGSs7lpdySwDhtWcVckSPwiJH2jKY5EsCrgIAMDukGF3lP7C9vY5Ibe4sWm17BXG\noesmpma3dhj09+Dk6cav0mIJFakSAadlWTh8aqrov1XDNBksZDvaHzwzhcBM6avqV85MIakWjkM3\nTQRj5etazhserKs5pskYphOFjz2XVfIp2RVzzLIQjBcfgyQIWOvJNq4c6e/Lu72ccDqNhJZBIqOh\nT3HAZy9cnTfkchW9vZmORsNI6NVdcFQzZSpwPM72+Gsaw1gq2pKAebXdC5kXEdFTOJPOBsVzCwMU\nQa5q5eIqmw9SkcUEr3LlTysqvAyVaZjW8i+a1tlXwy06scFefWa7WXpEL+z8/OvHJbogcTIETkCv\nWNs5ajcLOgyr9vo2sjQo4FoBIqEEouH5N6FpMJw+VluAYFfkXD1VcDKKUJ17VR0+ONHwVKXPm70y\nLTVFJkkC1g5nC8PtNgkb1lXeYujkaKho8f14MIpUWgPPcyXryTiOw/pVvTDr/LsGvC4IPA+B5/GH\nm9dgdZ8H6UzxGpfhfg9iReq0ZFHEuv75zEKxL+bjU2GE40lEkrVPjxV7qo9OhfKasvIch439peth\n5jJZi4Os05Foye1+1no8cEpyrmD+5alslu7/pgINBR8pXUcglZ8JGE/GEVKLT3lv6vHBJVXukP/y\nTBCKKMEpynU3M2WWhfF0YRZXEaSKPfWZZdU8dTwXUHklB9YqfQhkYojqtb9GTItVPCduUYEi2OAS\niwfICxuhmpaJ8Uz9FzL1sgm2guL6Ruhs6bJkAqfAzte+UIIsDQq4VgCn2w7nglWBgshjsM6O8QDg\nH/Kgz++GphmYLLPVTzEjZw2Bb6CtQjiUQDyeRiyexvhEdU00F270PB1OYDpcmHIf7O/BTCxV8GXV\n73XCbpPgctjKZtZUTcd0JBvUpopkoGo1EYoV/eJ0Kzas8pWvXzFMhiPjhVm9DX4fHHZbzQseBJ6H\n3104pXb2kL8pLTLWenpyWbJQKoWJWH4wL/B8rt/W1v5+8ByHP/APNLSVjSwIcC4KoAYdTvhspQKB\n+WMF00kE08WnbTb3+MAsC3E9g3AN7Rwsy0JUU5EwMuCAolml3kX9uxaaqwcbV6OIzAZLGjMKAiCD\nmXg5No7RVOnpTJ/kgEusbq/Ehaa1GGJGfsCaYTqOpcaRNjWcSE9AZdmCfHsV+yEKnACX4GhKH652\niRpTiJqlW9uQlYUCrhVAksWCInlbDRsnv/DcvqJZKVEU4PFVX9sCFHaqr/Vq3OW2Q1Fk9LgVrFld\nfnVRJJrCdGj+i9E0Gfp8TvQVGbNil2CYJgwj/++UJTGX2Tp4MpDL6JgmywusPC4Fg33ZQCgQjjfc\nqmLT6r6ygVE8ncHp6eIBpyjwOGtN4VQIz3GwSyI8DXSub4WFf6dPUTDgmj8/i18fc6sQ622VsPBx\nXJIM3TRxMJwNTgWOryqI65FtGE8miq5ctAkiDs9MQ+YFDCnVN8I1LQtTagIzWgocx6HfVtv76lRq\nBqppYFjxwidnM8ABNY6UmR/8T6gxDNg8cBQJqFRTR1RPQ+ZFCHUUXA/avAUNT228BB4CAtoM1toH\nqgq0FsowveO61DOr+sylxNnQJ7Z/BWOGTbR7CAQUcJEq/OlfvLpoVornOSgOGcm4iokaM10AEIkk\nMT4eyZuKsywrr0XEYrIsVt2J3u22w+vJZix0w8TJ0RC4MvU1DruM4Exh5iIaT0M3TJy9YTCX0dFN\nhniyeKH2xtV9BdOPUzOJpu2JOB1LwmWXsaa39GbLyYxWsfi+E/EcB2E2qDIZw4Gp5k8p/W56fjpS\nEgQ4RKnkVCIATKbimFqQ0bIJIl7TP1TyYuHsXn9B9qwSkecx0tOPtY7qWhScTkUwo6WhmgbCWhJb\nXP0FezqudfjgEm0IZuJIm3rutn6bE71yYUBnAbBgQTX1vH5aAHAmHaqpNcaMnoA6+xir7b3YoAxC\n5AQcTI7W9Dh+2ZdrJ9EsGtMQM8qvrE2aCWSKTAVme25lV3CqLIVUhVWMDsHT9p5cWe0bg2lRsDen\nE14JpMNVmgIUJQHpVAaJeBqxBW0fgoFY2ZWNXq8z284hNj/1wnEclDLZN5MxqFV0ugeyU1FzwZkk\nClg14MFYmWDO7bRj9YAHjFmYmJ7/QDZZYV2MLArwuLKZouBMAjNFNp5eyCYJaDApkzMXuAllek5F\nUyrCiVTVQV5a03F4srOWgAs8jz8YnK9HOTEz05T2D+f0+vMyWWtcbvxuagq/CozCKNKqYUBxwW/P\nD1BU08CJeO37QjbLsOKBT1bAIdsctRSNGbALEsQqvvQVQYJXckC3TGRYfpsEn+TE8dRU3mpGIFsz\nNqYWNlMWOSFXj2VbsKLwbOdwXdmzRliWldf2gef4ijVa3Oz/FpN5O/zSagCAAAECV/9CoqQ5jaS5\nNO85W1vrulZuY+rFKOAiZUVL9M1ayGaXsH7TACRJhGzLXmWPng5BtouQiuxHqKp6rui+r88F76Ip\nvnLb/mgZA9EFAdqZsXCuBUQp6bSG06NhKHYJA/2V+/dwHGBfMG5ZEmAY2SnEyVAsl/EKzdZs+Xoc\n6HGWn6bzuJSyAVI5jFmYXLByccjnrjilttrXAw5c1VkuRZawdajy4oJWCSaSua15DJMVLTj3O51N\naWw6dx6SuoaTsRkIPI9ta9djxNuXV7Q9Z27V4cn4/BZIdkHEiKd4d/xIJo1kFZtQN2IuYLQJYm4K\nsZjjyRCcgq3oCsJS3KIdXin/MW28BAYGmRdxYkHgxXMc3LMF8IeSY4gZKaTMDNyiUnJ1o8GMsnVZ\nlmUhUsXei3EjWVV9V8bKIKTP16yJnAinUH7K1iE4IfPl69gk3gYbX//0vIPvg4MvvR3SciFwq9s9\nhI5BARcpK53SqqqzEgQekiTAPpudsttFeDyOopsviyIPZUELiomJCFKp6r6gFEXG4GxzVpMxDPp7\nIAg8dL10XYWiyFiz2guO4/IK6AHAME2MBfIzFRzHwdfjWHRbtp7LIcswTAabLGLNYHbhgSjwVQVT\nqmbg2GjtV7QcB0h1FKf39zhhk+rfHw7Ifvn9fqL1K8XskpgLpuJaBlFVxZFQCIenp3ONURd2lS+m\n1ilUhyhhjSv7WuI4Dl6bUraGyyvbcDw2g4Su4ZfBUcT10r2/ymWdmi3DjNyU4WJnu2trBXImHUJU\nL7zIkngBm5RslmTY3pcXTPWIDliWhS3KKvDgK04ZhoxYxcanehUbQKtMA6uwCVHSTEHmZAzKnddP\nqlx5A1meKOAiedLJDJKJ+dqFodnVjMWKwBmz8m4fG5tBKpX9IDWM+Wk4wzBx5Mj8Sh1RFOBY0FS1\nr88Fu11CJJrCVLD0lW06reHUqfmAJTAVQ0YzkExmEItns15j4zNFx1oqIBJ4Hh5X+R5OLocNil2G\nKPDocduRqGP7nHRGh10WsXF17Ve0HMehr6e2IupGWZaFUCJbwH3WYP2Zr1AqhUC8ciNGt82Waxfh\nUxT4nU6sdruxube3bGPUORnDwLGZ2uoIOY7Ly/zsD06WvbhwSTZMp7PByHqXB9Ml6r68NgWOJmxm\nXa2MaRQUx9drjb0XHql4xmzuuVr4nDHLgmkxRI0UAloELtGey3iVMij3wiUU3iesZ1fmchwHv9xb\n5Dfz+WUfxAobTqtMhVlDkTshrUQBFym06DsnFkkhWKT2aSaUwExofqpr7bo+OBzZQGpoNqMEZAOs\nkTJb9chydiVgj1tBX2/plV2KImPt2vmAZfWQF26XHR6PA329LhiGCa5Mv6xiOI6Dy1l+6iCj5V9t\n93lKBz+HTk0VfGkzZmEynA0kaxlbo0zGkNaqq3dbzAKQmO3eXs00nl5kCnAyFofXbofbbsPBQHZv\nzIXPTUxVy9aYOWUZAs8jlKpiWlsUsbXEBtjVeo1/qGzGQeR5rO/xwilKGFTc2OhubA++ZpnWkvCV\nCJJqNZcNO54Kls1UvZwYBbMsRPQkprU4vJITq+2Vg6SFmMWQYfOBomkxaMxAylTzbm9En9Rbsiv9\nmcwZ6EX2dMyYGUSM6oN3y2IwmQ6Nde6G0ZZlIMOC7R5GUZZlgrEj7R7GkqCAi+RRnDY4XPkBiMfn\nxGCRFgx9fjf6/KVXytWK57miU5CGYeLI0QBMk+H06cIC3TmMWbDN1pD94jcnECqy4nBONJ7GVKi6\n5q2nJ8J5gYLLUTpA2zLcX/ClzfMcNq5qfa3GzKKGppphFtxWLZ7joBksV6ReqaHm0WDheRF4fvZx\nzNzU5qHpUG6KMGOYVa1YS+t6rr6rHjEtkxt7Qqv+izxl6DgZj8C0GEaT9e8XWQvLsnA4XtsX44DN\n1VBPsmKGbJ6yxe3nuIbBcxx6ZRcGbZ6qHtOaDdDmqExD1Jj/2S97wcCQNjOY0pq37dFo5gy0IgHc\nsDxcNBgTOKGq2qykGUWGpaBaCcRYAGlW2Kx2jlnFFGmzZbf5mQ8Cl3KauxYcJ4Djln6HgXaggGuJ\npBMqYqHm7HHValPjEUTCCRx9eRymyQqmDmtRakVhKpUp+W+GYea1ihBFASNbBiEIPFYvath68PD8\nkmNZFtHny2bILviDdegtsz+jy2lDb5ni/DkmY+hx2jFWZP/GYooFjK0WiqcwFUkglcmvt1NkCat9\n9QfEIwN9uexWIJZAKFn6Cv5VQ4U1Mn6XM1sbpdixsTcbsJ/t789NEfpdztx/h1MpHA5OI6lpOBCY\nygV6R0IhDLhcGI1WH/D8bjqQ9/OMmoY5+7xMpZJla70SmoaxxOyxLAsix4EHl5siHHK4imbBDMbK\nrqBkloWT8cpZE47jMKxUF8DMKdaktFQgmzQymNbKfw7pzCzYK7EeR1OjedN5FoD0bO1WzEhB4W25\nPUp7qiAAACAASURBVBXjRgrMsqAINki8iEG5/AVK1IhjSssGpmOZCahlurkP29ZCLtL/a+48aiyT\nt4pR5EUofOWtokROBs+JUPge+MRheMRVRe/HLIaAfhSG1dqFFAXHhQbTyl5UcpwImW/fophKOK6x\nzci7BQVcS0QQBWiqhuh05+8+P7jGB2+vC1vOWQ1B4HHgt6fws/99pa7HCkxEigZrhsFKbvETiaSQ\nXNTjamJ2SlOWRaiqjpf2nUQsnsZZJaYqJUkoOz20sGVEOUdOBbOB2xJeHBqzQS4ATEUSmIoU/4I0\nTIaMbsDnVNDX48CaXk/LinBXedzod9VfR5aqMLUZy2QgCTwUScJaT08u0Fvn8UAWBIBDQUAzlUwi\nWSRjtcnjw9GZ+QzJ+h5v7vE2eX1lFzg4JAn9SjYQlwQBPVK2M79coY1AREsjnJkPSBN6BqPJ+SCd\n5zj02qqb9nOItfXwKuZEMlS0rkviBTgWBR9Hk4Fc3y2NGXgpehK/j48W9OIqZW7FYlRP5XpvAcAm\nZTUMK3/rp1W27LRjwlTzKheSZqZiAfxCHtGNATnb3FfiRKgVivDLUVka45lTNTU0BQAbr0DiKp8r\nnuPhFYZgWK3bYH0hjYWRZuMQOUeb20GQxTir1lbfSyxY5559nUjL6GAGg71CzVAj/H53Vc/ZqSMB\nrN3kr2qbHWayhrbjiUZS8HjrqzFhzMKJE1Po63fDuyAjpekGhEWrA4PTcfT6nBAEHvHZwn+3q3ld\n1ecKejXdQDKt5VYyTs0k0NvjaMo2NwCgwkQmqcNTpNVEMJqEz6VAFHgcmwhBNQycu7Z5H6qT0Tjc\ndhtmkmm47DK8jsY3hTYZw8mZCFa5XZAEoWAvxbkmpBnDgCQIOBgMwrKAcwfnt+/RTDMbeC2Q1DXY\nBLFojVnGNGATGluhGUwnoZkmhhwuHImGscXTW1U9m9/vRmAqBp2ZDY+hVuNqFL2SA3YhP0MVN1TM\naGmsK9JY1bIsWMjfvkhjBiSu/EXLnN/GTuA17g1ImCpkTsw79rHUBDYqQ02f8myUzjRICwJPjWUg\n8zbEjCg2Da3B9HR3zEYUk/1KZ+CauB9kN6n2O7DVYyiGMlxLSLZJLQ22ajG0thexSApTRfYjnBwN\n56b0TJMhMD6T+++jL4/XfKxUKlP1Fj6JhIrR0fnsBM9zWL++PxdsqbPb6ciSWJCpkGUhr1C/2o70\nVY0rlcHpyezzwIHL+wKRxfmmpumMXtXfmkxrGAsWb5y51u/NC7YWZghFYb4SY/OqvlywFYqnkNGr\nrxMxGcPxqcI6Ga9DgV0SscbX05RgC8hmEzf39SKh6QX9teKZDE7PZPtbKZIEkedx3uAg/C5n3vO4\nONgCAKckQ+R5xDIZHF+0QrEZgY5fcWKV0w2e4+CRbUgb1deR8RyXNwadmQ1ttj3HYAyRMns0ekQ7\nJF7A/0Xz36cuwYYB2YlX4oX7+nEch5fjEziZDEFjBs6kZyDzYlXBFrMsDNo84DkOPaICwEIgM/+6\n3uxYlXuv6MxAUMufms/e1pwGstki/GwWKW2mETNKB00hYxqGNX8+53pu6Zae3TRbG23KmNoh225i\nZQZbnY4CrhXIsizwPAdPrxP9g4X1Iq4eJbeajuc59Mw2JhUEHlvOqb2J3arVvqqnulwuO9asyb8K\nXxg4BYNxGEbx1L+nxwGe55DJ6JiYiECx116HEo4ki97usMu57IYkCfC454MRr3u+qWkokoReYnz5\njydhoMIm1EB2U+wTgfnAyOcq0dtM4MFx2UanSTVTMfgSeB6rvIXHt88Gsq2YmhxwOXObUM9xyTJS\nhoHD0/lF90MuV0FAndZ1nI4W1tL12GzY5PNhRk3jVHT+y9tgDDNqbYsGxpNxxLVM3s8hNY1VTjfc\ncuWLpSPR4os6AulkQd+u0WS05r1EGSyoZulz6xRtEDger/bkv085joNdlHGWq3g2dKtrAKsVD0RO\nQG+ZFY+La8N4jsNq2/zqRGl2H8a5+x1KjsGYnarjOT6v6/zcbbXur5gdh1mwktGwDMTMGHSmIayH\nIBVpGZFmaZiWiSF5NcQiXeL7pH5MqGdgWSbSrPhnAbMYrC7cUNvq0nGXZalAGxYk1IsCrmXONArf\nYJqqY2psBhxX2EIhNBWDoZu5rArHcXBWmJbTtea+4Mt92btcdqRLbBc0NhFBPKHCZpOwaWPh5s3V\n0EoESzzPwb1oii+d0RGJz3+ha7oBw2SQSzQbnY4mkcpkx16sCWsxdlnC5hIrHE9NzSCWyk6dehx2\nyKKAVEbHWDiOZKZy/Y0iL2GvKMPAK1OFq+84jsNGnxevGqh8vuyiiEFn8TqyjJGdQlzvmV9UwSyr\nZCE7s6xc8XwgmUBqdhVkr12BQ8o+LydiYaiGnqvpKmZxwLTKUbytybCzBx45//VjF6WaA1uZFzBg\nd+FgPFD5zkWUmtqTeREyL4LnODiLFOHPKba9z0ICx8OEmQuytjpWQ5zNtggcj55F+yIKHF/XXokZ\npiNu5i/ikHkZfskPkZPglwegCHZoLAOVpRf8noqJzDhiRums2pB9GKvltVD44q+1JJtBxGhOiwXT\nqi4j3gyqNQXNqi+bqNfYUkJnozCt5q00LYXHDDh0bjuOxSjgWsZMg+HEoQlkFq0GtCkyvCW2uBEE\nHobBYBXZP3CheDSF8TPZN9TkeARaFUGXZVk4+MoYphuYX9cNE9PhBHTDLBifv88FR5l9GKsx1F96\nVV/PosCT57i8ui1ZErFmwFOyt5Rik/Lql8LxVN6WPYuZJst7rKSqIZqcX421fsCHHsf8mDTDxKHx\n/8/em/TIsqZZuY/1Zm7eR9/s7rSZeTKprCrgKiWg7uhOYMAMwYQ/UKrfkEgIwS9AMEJihJgwvLdU\nUl0lcCFRFZWZp9/9jtYjvHdz682+7w7Mw5tw94jY++zTZOZZZ3K2h7u5dW627H3Xu1abumvTLL/d\nwN83xcfnF/z3F6+I0mwlqcpysbJdeIVOEHAyKqYGFUVZa4Ia5/mSdYSpaWyVVt80e1FIe2Ji6pom\nwzhiGEfYmj61Q6iZDgfuzVXIX/dmLbo4zzgN7nZur2ovRnnKRXS7dkhVFN5xv16bkct4RD9drvC8\n7+4uRfYchZ0Fd/odszGtZK0ilMkK76tVSETKeby6YljSbExFW+nXpSjKdCoxl/nCpGRdb1DRqzea\noRqqcWPgdEXbICVfmGx8U3j5BRnrJyzfJhx1F0t9Pa80uNL4vd6Epa7solJfej0VnyLl2yNIQtlD\nKm/PmujrxhuJ5oUQ/PznP+fLL7/ENE3+5b/8lzx48GD69//wH/4D//k//2eazeLg/ot/8S94+PDh\njZ9Zh29b/PbbhnnBYDCO8L2Irb3FE18IyflRl4OH68eEx6OQYd9nY7uKEEULUgi54BB/9frrQEpJ\ntzNmc42o8C7wxhGdroepaRwczi4g3d4YXdeoVe+mPRJC0u2P2dpYvy7HZ312t6oYxt01EU+O27xz\nsHFr3I+UEimXzVDHWYKrGQzGIZmQbE2MVqMkJRcS154T+06I55XPVS4EUhYtxijNOOoM+GBvkyTL\nMO/g2A7Q9nya7ptnP85DSEmQJJRMc2V15dOLS5CSH04E8u2xz9ZXmIaEYnqxalnYd9xegCjL0FV1\nSRT/yhuwYTuUjcWqTyZyno56/KC+de11wc52lednHVzdQL+WYThKI1IhKOsGj70uP6nvLiwzyFOq\nxpsPevST4MZsxbsiFTlHYZcHzgateIirWzQMlyd+i4fO1oLb/FnUw1FNGmaZMI8xVQMh5VJ+41F0\nySgNUVXBvrlJ3Vj83UkpeRmd8sg5BK40WSmOtrriNs59LMVca2z6pvgqoutBdoqrbmBMfLykFHSz\nIzaNh29xDX87IOQAhTLKLWkAbxvfZdH8G+2Jv/iLvyBJEv7Tf/pP/OpXv+Jf/+t/zb/9t/92+vdP\nPvmEf/Nv/g0//vGPp6/9+Z//+Y2f+V2H1/dRNQW3+s1VHkplm9KKdqCqKjeSrXZriD+OuP/ONlGY\nIIQA1AVvrKvlvC4URVkiW3ku8Mcx5bJ1p2nIStleOX14k0v96nW5fRu2Nsro+vI6pVleGLWuICXv\n37tbO7MQty6/3qy6JEFKo7J4rtgrWoBhkpILMRHuL66Pbeh8sLfJaXdIlGW8u7O6KtIbB19bRUxV\nFMpWccP8/LLNh1ubC8Tro51tXvUH5EKgqOpSCzDKstciTgCWrqEpCs/6PfbLFRzj9hvy1XeM06Tw\n3Zp8xlBVkMtTj7qq8V51uVqgT7bBS2O6ccC2XaZszAiyqeroigQU9p3qtc9qVF8jZHoVRlk8JVxx\nnuHnMU3z9QmsoWrs2XV0VePQmW3nI2driUTOO8yPsoBYpijAPXub46jNllHD1kx2zSYHloqQYmVW\noqIoHFozAqoq6gLZGuc+CgquVmxfeS6AOhYJlmrSSs6pajVKWolUpHSyLnvmLrnMOYqOMVWdA+tw\n6bsTERPkAVLJKOdvfgwq2jbqwm1VoaTOdLKhGGApFdTfA1G7JEDB4Q1pxu8k3ugR9q//+q/5+3//\n7wPw05/+lE8++WTh759++in//t//e/7pP/2n/Lt/9+/u9JnfdeiGhvYWp+beBOdH3bXeV/PY2K5S\nrhSEpuRalCsO/Y63EDj9OhgNA1orpiG9UUi/5yOEJM1ynj+/vHX9Tk57S4apQZAwGt0sjr7sjPD8\niPOLwYI+7eIWt3lNU3l6tKxf6A59wjXGrV8Vq+wg1r63ZGMbOi9WTBxewdC1tWQLIEqzhfbsVsX9\nytUtL4oXMhSFlBiKOiVbV9+X5jkbJQd9ItTfq1a4GI859zyElLwaDO4cSp0LwTCKqFk2hqbxoFa/\nE9m6voxcCoLJRKKmqPyme8kgLto+nShgNI08Wv17NjWNQ7fGO5XmAtkCsDWdi9DjPPQKMveWsWtX\nCPOURGSkMltyFz8Ph/xqeEQmBcfhzRqbkrb8e1+3zVfYsRpoqBxYxUPHrtnAnizHnAjqDVWnpK0+\nx41Ju1JIQZAvttp0RV+ZnZjLnG7am3zfHqUJITNUgw29OO8VFGzNoqatNpUd5z6BCKho9Tu5zK+D\nphjMZ6NJcuJJC62bHpGLhKXstN9RaMo+ivLdmMr/ruCNqOd4PKZcnlUTNE0jyzL0yVPiP/yH/5B/\n9s/+GeVymT/90z/lL//yL2/9zDo0GqW3Ot7/reErtNBe+6tWfFeW5tiGRmWFH1aW5ujXWmY7O7On\n7yRJKf9on+OXHd79YLcwcU0ykBLTuv2GtrlZRgi5NF1XqzkIIbFtY8lBHiBN86W4n1rNwTA0hJBE\nUYphaFQqNlmWU75B3C+QmIaGrqtsbVWmla0/ucNx2dtdNhS9vo/jJMMyV5/L4yC+MQ5oFdaVpNfh\nweF6QjW/rCBOismwuXV93e+6CxrCJcsFtqETJimjKOajR7tUHZtcCH5z2uIP7+3zvNNjq16hYs/2\nz/z6bG9V+NVZi5Jh8O7msg/WvD9Xkudk4zFbteLzl+MxqqqyUZqd890gYBhHlAwDW9ep27P2cy4E\nIlTYcct81rnk/kaDLaXCj5k5iLuphaaqt9pOuHWLF6M+H23skAuxQGCNqk7dejPLjU7kY6gqNXP1\n54dJSCJyFMDCYNMurrmn/oBNu4yWqXxk7hdVvNSkFY54VNnE/IqVtXnIMKeTDPhR7f7a92Qiv5G8\nJSKll6Rs2cWxzGWOdoMb+e5ELxRkIbqqY65oM4owpGk2sDSLVKQM0wGbE2K4RbFsLx2iKuqdfhNx\nHpLJFFefXSvD3GeU9tm2Z9u+QzF1Xc0fYWnfvrYyyjrkMsA11h+f33Z8Hde0t4E3Ilzlchnfnwkq\nhRBT4iSl5J//839OpVJs8J/8yZ/w2Wef3fiZm9Dv//ZMIHwb6F6O2Nie/eBX9a/zTPDq6QXv/GCP\n6Prf8snfPtwjzwWt495Su/G//fkn/O1/8CHVZpne5HiMBgFCSOrNWVn/yhj0OoSQPPnynA9/uNpS\nwvNWi0Z/8/ERB/sNNlZorB4/abG1WcGyDEqTylsYLlacOl0PyzSoVGxUFLJU4Fgm3WsRS0JIRuOI\n+g3aryTNeHbUwTJ03rk/2z+9YUC1bHNyOWB/s7pyQvFVq8e97cat7ctREOFHCX/rw4PpMXx61uFw\ns7aynfgm6PshuqpScd7+k+fl2KdmWwvCdo+iihWlGdI0CL0EVVE4tIvztIJBOIqJvPWiXDfXsBWV\nfndRxB1nGcejIe81Z2TTQp3uuzTPyYC2vyiQLkudOMqQqiD1Zq2t/3l+gqPrqFu7qJHk1y/POChX\nyYSYEr1+HFLWTYI8nU4dtoIxu3PTiVtbFfxBzJZ0aLc9no667Jeq03gggDZ315gIKXk27vJ+ZRM/\nS9AUlUS7WbAtKUjN6bCPlJDIjL7voykqPWb70c1Nhknxm85EsZ80RSUSKc6KCteN3ykl3dRDRyWX\nCu3EI8hjLpIBuqKyazamFayTqE3DqOCuqXQBaFi0PY9UpJwlbR7Y+2Qy53n4kvecR6grhO1e5mGo\nBvaKKpUUBkMlRlEShBREIkdqi8ehm7b5wX6NL89eoCk6NX35QfAKqYjJyQmu/a5VGrS9dce3eD0R\nIeYd4oO+HliARfAa5+BvE77LGq43qmn/0R/9Eb/4xS8A+NWvfsUHH3ww/dt4POYf/aN/hO/7SCn5\n5S9/yY9//OMbP/M93hzyllBhAE1XeecHq3O+NE3lnQ/3pv/f3KrQbg1Jkowszelcjvh7/9ePsW1j\nWmk6ftFGN7QFsgXQOh8wXOFjparKWrJ1etJbO+H4gw/3V5ItgA/e36XRcKdkaxWqFefGvwM8eX6B\nEOJW3yrT0Pnhu7vcP1h26gZ4uNdEVVR6o+UHhAe7zQWyFacZXrBMMsu2xVZtUYf23v7mWrJ1l2N/\nHQ3X+VrIFoCtaysDjw1N43g45MJbzGO8mtT79cUFn7SWbQ5ORiPavs84SVa2Bi1dXyBb12FOXO1z\nIfikcwnA82F/sq7LDvU/2dzmvXqTTAgaljMlUc9H/an3VZLnZFJMW4wAck2L6Orh473qxgLZmoeX\nxpwGq3Min3odxmmMqigcTPRerm5i38HUNcgTjsI+fpbgZTEV3cbPEl4Fi23E+UrdMIsYZCGxyG7N\nW1yFSKScRB0CkTDMihteSbN4aG+zZdSm9hAAh/YWpmIQrZgyvA5DNXhgF9ePMA/ZNDaXyFYmcz4e\nf4amaCvJViYzDNWcHhNVUfHyEUG+eL3aMHYYJAMkkppevzF02lAtbHVWsfLzmy0XOukLxGR5Y9F9\n64HW32RoTCrOyOTqCdLvsR5faUrx8ePHSCn5V//qX/HZZ58RBAH/5J/8E/7Lf/kv/Mf/+B8xTZOf\n/exn/Nmf/dnKz7z77ru3fte3zVR/2/BV2L0/jlCVYhrRdgqPoLEXUV3RhnyTCUWAXneMYWpUJsah\ngR9zdtrnvQ9mYlkhBK3WkP39gty0WkMajRLWivblYBgsRP6sQ54LRl5Id+Bz/6A5rURlWf7WWtZP\njtuULIOD7fVPxVBMG0ZJRr28+glXt3V++clL/vi9RXFvZ+SzUSlNbxqdkc+rdp8/fndZBPxdQpxl\nHPcHvLe1WDl91R/QcGyqdnGD7PgBFcucVsiklAyiCGfS/vsqEFKiKgrPBj22Si7VNSamn/cvERI+\nas7CuNuhT5znHJbvNn5+9Rs8DzxKmk7JMJcm9q6QyyL02tL0lfFF65CI/MY2oJdF+Fky1WFVDZte\n4iMlbFjrRfRHYZea7lAzSjwP2hzaDUxVZ5gGaIpKWV9fkZJScpEMUICmUV27zVfw84hIJGwYi/tV\nSEEoYlxt8fdxFJ1zaO2srGyNshG9dMBDZ3Wb7Cg64v6kzddO25RVF1t1Vlbkr45fKmIGeYct4+DG\n7bjCILugrq+P2cplhvY1TexJKfDFp5S1n3wty1/+vgxQb7TP+LbwXa5wfZ+l+DuGr3KyBeMYRZm0\nBtoe9x5t8fjTU97/0f7ChSnLcl49a/Puh6uDo9e1FjttDyEE3ijk/oNNDFNHSkn7csT2nON9HKeE\nYUK9PrFDiFJMU19J8M5bA/Z2byY4V+s88iIa9dJrm01GcYpprP7+eazb7teF7Rr0egGlawTzYuCx\nXSsvfEdv7JOkgp16+a1899tCmKY8vuzyBwfFOZLl4tasyX4YUjbNBa+yQVi0QDMpUWFKzlbBi+Np\nPNA6rLN/mMdl4NO0ndnEYRJh6QaZEGuJ2jyufoNhljJOY1AUtuzbJwWfel0OSzUU4Dz0eFheXU0F\neOJ1eOA2FkhXlKd8Orzgj5uHPBm3qesOrmEiZVEZi0WGAks+WuuQiGz6Xj+PUVFubTN2Eo9c5uxY\nxW9ylPqcJwM2zQpCSmp6aaW+avF7U4aZx5a5OAUaiRhb/erV2UxmaKzOicxlRuL2Mfw6iUgoaXeb\n8AyFh6N+N3VDvy2QMgGOUJT3vtJyvsuE67tHT7/Ht4ZS2cJxLUplm3sTp/YPPjpAURTCIOHLT07o\nXIzQdW2JbLVO+wwHRbvo+FWXIIiXll+p2mxsVnj3/V1evuxMX79+4fP9eEEob9sGqqrwy//1jJG3\nOI14nWx1+2NOz/tLE4S6rtFsuK9FSq6eRXrD4Na4njwXfPb8gi9fXd55+auQZDmVkr1EtgB26pWl\n9bcNg1+/OCOMv56JyXl8fn45bQOuc3AfhBF/fXxKmudsukWFIslznvdmrazH7c7K9kfDcaZkqxsE\njKKI31xc0PYDxnGMBI5XRPtcwU/Ttet1hVWtxOtQFQUpJc+GPVqBx387PybMbl/2dTi6wZZTZst2\nGSQRg+Rmg8v3KhvYmo6pauzYyxYnr/w+yURn9f6c0P04GBDmKanMuVcqHlwelprYmkFJM3H1giRZ\nEzf5VfjUO106JvPvdTXrTpquTbPCjlUnkzlPglNGecC7pV2aeoVNo8qT4JQgW742LH6vwZbZJBXZ\nQh7iTWSrnXQYZatbs/MY52PaaZtIrj4WmqJzWHpYpBS8RssvEt432tL7XYSimMBq6cvvCrSf//zn\nP/+2V+ImBMHrOdz+vsN1rTfaZ2maoWkqxy/aGIaO5MonqrjBG4ZGtebguBbq3A0rjlKSJKPedLEn\nLu+1emkqcDYn03AnR13cskWa5hiGzsbG7IZy2fGo10q8fNmh0XBxHHNl+3Bjo4xbstaSpjwXdLpj\nGnWXNM2wJ1mKT19eUinbr2118PK0h2XqNGvuQnWmMBeVyLm2qqoqbDfLbNYXn4ijJOVVq89ZZ4ht\n6li3iN+P2wM26mWSuIgJitMMQ9f4/PiSrZq7VEUzdI339jYZxwlhkn6tcT2NOTPUz1tttivLT/+K\nUmi2Toce709aiJqqUnNsVEUhTFM6fsBOZTI9NxyhqwpftjtFCztJKJsmz7s9dspl7tfrNB2Hmm1j\nTciYretEWXEzfNnv03AKYlc2zbVkahhH9KKAimmR5DmPB122nNn6e0nMhT9mkETsuxU0VcXUVDYd\nlw8bm5R0A2eNDus6Vv0Gj/wBigIV4+YKzWkwwjVMTE3nLBhR0o2plYahatgrQqVNVcNSdWzNmMby\nJCInyJMp2YJCFP94fMmmtUzmtsxlMr8K4yziNOrRMG6u/KiKSlOvUDNcVEWdXksc1WKQjhGIqV3E\nOgiZk8psJdGSUpLIdKoLc7US1rX3ddIulmottCCVyX+WYpHKBCEl2jVPrLJrE4f5a9lDOOri/hvl\nHXTFXNn+/CYhZY6fv0BVTFTlq6VwfBNQ3sI6vuk98G3CdVf/zr+vcL1lRH6E1399wem3jaMXRcXp\n4MEmpbJFv+MRXTtpTctA1zV++YsvSSYVlTwXZGm+dLEWUuKNZk+RWztVVFWh31sUqSqKgmMb/OY3\nx7iuheeF/PpXr8jz5YqSZRpkmVg71ahpKo5joOvqgq7rnftbS7mFQkievbo5H+zR4QZZJpaqW6cX\nAy46I/reokD+1XlvyRzWNg226mUa1dLajEWA3iig5wU83GlOLRviNGMcFcfgg4NNup7Pk7OZUPWL\nk6Ka9slRi5JpULa/Xs+beTLz0d72yvdYus52pUy9tKi/ufqsYxj8eHemc9kolbAnrzUdZ2rhsFet\nYE6qUVfnlqIo1CYtxVeDAaqiME7XX1jF3FBBxbSoGhZ/1TolzjI+bCzqyVRFoemUuFeuTT933V1+\nHl4SE+UZqciJssXqYi8KlkKe369ssO9UGacxL8f9tcu1NR114p1latqCj5armytJkYqCqih4WcQw\nDYnylLNouOSjpasa75VXH7d1ZOs47OHPVaTO4wH79vpW5/VlHkdt/Dk/LVs1SGQ6nVa8Qicd0E0X\nq5eGalDTV7dmMpnTS2f7cVVUj61aKChkcuYzd5YcUdEqGKpBJjMEOe20NV3Gi+jpnbZtFYJ8SCSK\na7+uGMQiIBavF57+9iFBUVH47pOt3wd8T7jeNuaqQr9NePeDXV49u5xWbHb2G5TKFpfnM6PQK/z4\njx6gGzpRlNJte5iWwYuni1Nmu3t1difeWkEQY1kGmqaxO4kZOjnukk2IzO5unT/4g/tsb1cplSyc\nksHHH58srePTZxdkWbZEaubh2Ms3pVXaK1VVuL9/e65YtiKzsVlzqVdLbNYXKwXbzcqS1xgUT+Mb\n1dKN1g5V117IRQRwbXMa66OpKpaus1GZEZl3dzemVS3L0DGvkcowSemNvxlblUEQEiQF8VAVBUNR\nV7ZY5ttyp8MRmqpMKzjanLZq3jvrCvMGrR9uFo71H2xs0g18/CQhuNZSbPljjr3CZV9VFHIkddvh\n/37xlEwI/DShe5WnaJiUjSJ+6Hg8ZJisbnu9GPWRUpJJQS4EYZYxShOCLMWbfCZI06WsxKtz0tVN\nDkvrxfcb1kxjuGm5a8Om5/Hc7+KnhcZKV1ROwyH37PpCdSueBE7rKyouich4PF4dhr1jVReIWLx+\nkQAAIABJREFU2/vu7jQn8Tb4eYSQAlOZvX+U+xiqhqvZjDKfXjoiEpM0i9foyKmKwp5VEHchBb/x\nP10638paGVVR6aYdYhkTipBto5h27KRtLMXGVCxctfgda4qGqRgIeXPrWMicy3T5+mSoFvqkQlNS\na2iKtmQ8+01DUXTK2iO016gcyVu2/9uEKh/DW57u/CbxPeF6A2RJRrBi/B/ALlmU618tC+7bghSC\nv/qvXy4QLNMyFuJnfvW/npPGGaqqYNsGtbpDEqU8em95OufZk1aRV9gunvo+/eSEX/3NS4SQfPn5\nGaNh8fR3PudC3+/7vPNoh+3t6tIF9IP3d3EcC9e1iCcVttEoXHhfpWyvNSCdR9HavH0irFl3MQ0d\nz79WVVtxc3DWmMDWys5KstUd+gzGxT7QNfVWUXnZsdiozs4tQ9dwTIP9ZpXnF8sj2po6C9cWUpKu\nqBreBUGS3mqboakq7bHPKIw4GQynLb/rOBkOGcdFVapqWQtt3n4YcjQoqhy5EAukJc4ynvV6JNe2\nwdZ1xmlKazzmxBsuVJv2yxXKhkU60T3VLJv36k3+aHuXX56f0PLHDOMIP1mskj2o1Klbq9tJTauY\nbGtYhSA9yBLKhomUklwK+nGAoijTCT0hJb044NW4OMcVRbnVrf06Hnvt6TaswrvlTb7w2ozSGFe3\nsBVj+v2fjM5J8uxGV/lMCjqxxziLiEVKlKfTdTdXtDCza9WkbjJaqugBuJrNvrXBSTyrJFe00vS4\nljSbilYiFimWalIzCuIT5NE0lDrKY1pxl246IMwjOklR1bpIulMnegWF9513FtYzErPf6465i63a\nJCLmOHnFRdrCUR3G+ZBAjClpswenA+vBrW1AVdGoa1ukMl4gJ4ZiTwnXFbz85ir6t41YXBCLRbId\niE+RN4R7f5sQ3INvOJvxbeJ7wnUDuqerL1JpkhKvEIU///ho2mqLgpiXnxwTeK9fUn7yq1ev/Znb\n0GkN6bVHdFrrRcf3Hm2ze69JPtdCqzcXheYP39umXJtVWeI4wzBnY/wLy3uwiaoq1BslRsOA99/f\n5Sd/6z6qqvDTP3yIaRWfc5y5rDlD5/nzS0rXtFpBEBNFCVJKojglCJPJ6wlXX3veGhBN9r+/4vhM\nlxUlnLfX74frkFIymDuO5ZJFybn9ibHVu1nEW3XthSDqN4fk6HLZA8jUdapOQRy8MKaz5iEBwI8T\nWsPFyZ6r1lqcZUtE5zoqtsV2xWUUJxiKyv1G4c4fZxmjMCaeELCHjQZly5x+Zr6C03AcgjQhyXMu\nfZ9+WOzzTAged7tLpqpXeFCr826zia0b2Nd0Vk3HoXJtsnCnXGHfLeMaBqqi0olW75dPuhd82rvk\n3PcYTny3ateIWNmwMFUN1zDRVY1eHNKcc6/vxQFxnnPfXR0pcx1eGnPkF8fyIioeVB65zSmBivKM\nbry4vqaq8cfNQ/acKkJKXsx5bf2osksoUh46hV+Zl0VT8paKnFEaMkpD3nU3uYxHhFlCJIpooKfB\n6gGQs6hHlC+3ctvJiNOwxxf+8fQ1Q9V55MwGbE7jDvtW0c7VFQ1D1anpLjWjPNVjZTKfEjhdKaph\ntmphqSYVvXjg2Le2p/FAvgiW/LwG2WCpzVjT6zyy32XX3MPVyjSMTcra6mpjLjMGWWfl3wBM1cLP\nB6RyfUvbUl02jHtr/w7g5Rf4+bfnZ2WpO1jq4sOyq/2EHJ8gf/EtrdUNUL4ts9i3g+9tIW767qMO\nW/fXhzxfh5SSYXuEXbaxSxZCCM6eXnD4wetNXgghFoTpr4N1I7FXVatBx6O5XSWJM86Pujx4f71v\nzBXGo5AkzmhuVWidDQqB/ESQ/stffMn/8Q8+pNvxGHTGvPPh7tITcRJnSORKIfwqzFefgiDBsnT6\nfR9vHLEzaTsCDAYB1aqDqipEcUqWCUqOiaoqHJ/22N+rLwnlkzTj5KzPOw/uFjANhaVBqz3i8A72\nE/PoDH02a69f7bx+DC8HY+quvVYDJqVkHCVoqkLJmhG4XAg6I5+d+u3j6rkQpJMoniucDz1MXWPD\nvXscSccPOOr20VSVPzjcYxwndHyfkmmyXb59X4RpSpLnU63WbZCysB1d1XrLhKDljzmsVBdee9Lv\n8sONrem/1wntM5EjJZz6HvtuhSjPMDUNW9N5Nuxx4FaWCB68+Vj6IAnpJyEHpRqmqnEejti7FnAd\n5xlhnhKLjG1r0QrkyO/j6gYbc6L4z70WVd2mabo4mkE79lBRURS4iD0eOhvkMqds2ByHPXas6p1t\nI67jMi50dRtG9bVkFa24i62a1I3F8/RqSvAqP/E0vqCh1zhPWrzrPJy+T0iBRNLPhmzojYXvDkVI\nKlKq+mpiddU+nK9qbW1VaF0M+CL8G951PsKeOMJ3sxZ1bfNr89L6fYSQR4CFqtx+H7orvreF+C3F\n65AtKNoFhmlMyZKqqq9Ntq4+97ahqgqqqtCcxACZls7ho7uRDrtkUq4WN8Dd/fqUbIlcYJcMsjRn\nY7OyMqcRYDyOSNOcQX9RMJ8k2TSI+ooQtlpDdF1lMPBptYb4fvHZzc0Kjx5uTb8bCvJ01dvzgxiF\nmV7r3kFz5VSiaeivRbaklDx5eUnZXaxEpVnOycWA/igoQpPH4UIVDHgjsrUKtqnfOGGpKAqaqkwF\n9vOvd7zgTq1ETVUXyBbAXq3yWmRrFEVoKGxVXMq2RZRmlC2Th83GncgWFMTptmraFfwkoR+FnHqr\nK4mqoqArCu2gOO+OvSGpyKnbNlJKgjTl/z15sXacX1c1NFWlbJiYmkYuZ23O+5UagySmEy2e0+M0\nIbhByH8T6qbDo3JzavdwnWzNv28VnVEUhXCi1Xrhd8lEzg8ru7i6RTsuqmVbVgUvj/hsdM4PK7vE\nMmWUF9Xge05zSraklIzSxfP5E29Rt5RLwVE4qwJtW3VqenlqXXEbrlqCu9bGAtkaZh7DzGOch4zz\nYh1CEaGjUtJsHk0MTM/iNrnMURUVFbXQTM2TrTwiFwJTLX67o2w0bTUKKQjzAC8f4eWj6TZnMkVI\ngaZqPLA+wJxrEZbVGiq/A7m+3yGoyv23Sra+6/iecL1luPUSpv31jea/KUa9Mb3LxRuTpq8+/J2L\nIf54poHQdW0hpLpzMdPZ7B40p8HXWztVRoPl9oxlG+jasog6jlI8L0QIwbNnhY4gTTOyLKded3Fd\nk07b4+x8QJJkfPrpKWdns9bZ9laVKMoQQrLRKK8dxfXGEZ98ccrRyax0n+eCy+7NT0Hn7RFRkmJb\nBlX32tSdptKslUhzwdnlkCTNljRcw3E4IYXQGficrmj73QWmrvHJqxb5DT5QYVIIw7Nc8PS8Q5wW\n/36w1VhL1rJccN5/O0+CXT+gH4SYusbpyMOLIiTyVvLU8jy6fjA9NyxdZ8u9nZzFWcbRcEDVsrlX\nLdp1XhLzfDBrp6lK8ZDRngjjN50SlqaTihwhJSXD4O/tP+DM9xajeubOU1VRMDWNQRzRsJxpRI+h\najz3enTCxfM9k4JMSoSUtIK779tnXo9ROluHI3+wkgg+94tzeNtetCEQUnIaDtg0i+rWtlVBVzUy\nKagbDvdLs8nCsmbxYWUHMdGdGSs0SwLJMAtpJx69ZMwoC+mn44V10hSVTbPCZ+NjgjzmOGpzkfR5\nEpyu3c5IJLwMLziJLnkVrRbqu5pDSXWo6xXqkynFcRZQ0ysMstG0GlXTy6iTW9iz6BUNvTgPjuNT\nEpGQU5CxVtIilzmGaqBNCJMgJxQBtmqjonKWnJHJhG7a4iR4WewnvYo6ZxlhrXGmvwmxCEjFzb5j\nAKP8jEQsx6L9rkHe0IL9fcD3PlxfEV5/jKoqaG8pHuarYp0HiWZoWLaBeoswG0CbEKx1zuqBH1Mq\n22iaihSSMEhonQ2wbQN/HFOuFNUwISR5LrBtA93QsCbO8n4Qc3kxpFyxefH8ErdsT2N88lxgmjqa\nphLHhZfWwUEDTVPxw6RoE85tQ7szWsh5XFjPsJh+8vyY3a0ajbq7sE1Zli9UzK6j1RnSrLpsrDBM\nVRQFQ9dwHZNKyaZcspZE71GcoWsauqbiRwnH7SF7zdvbLdePoa5pIIuqmqFpKwnUWW/Idq0MCry4\n7LNdK09zBK+IxxImqQLXK1vz8OOETOQL7u9XyHIxXa6Ukprj4JgGh/UahqYRZxmZECtzEK9g6jq9\nIERVFCxdX/IZuxiPKZvLOrcwTbF1Y+FvlqZjazon3oiG7ZBNhPf3KsWN2FA1UiEYxQm5FBPdlUpJ\nL6KDFEUhzjOeDHsLHl1SFv5i12N37pVrbDqL5NBSNU7iEWVM2lGAqih3yj5sWs5CrmGOoKQvb/fW\nXLtwmEZYqjb1uKoYNraqoSoqpqoR5xkvgy4b5uI6dlOfXEqEFIyzpJganPh3DZKAYVYMoliKTpRn\nk3akya5ZWyn4lxKaZpmy5lA3XLYnLvN+Hi20J78YH1PRioqpoqjsmHVimU6d5yOR8CI8w8t9Ns3F\n9n0qMxzVxs8DYpEQ5CElzUabrE/TmL2/opW5zC4xFJOy7lLX66iKiqEYU88tBRWQKCioioqruZiq\nRVmrUXFL9MYDBALjhum+dnqErpjoyvrzO8xH9LMzKvrN3RJDcdCU9R6DvwuQMkXIp6jK3TsMb4Lv\nsg/X983or4g8E0u2CW8LWZpPq0dfFVGQUJqcBKEfM+iO2bu/OvjXsg3OjjrUNyrTz8xjc6c2tWaw\nSwZSMA2ydkoWWZqT5YLjow6aqvDo3R3yTEyqWZKNzQquW1xcfvqHD4ttzXLiOKPZLG4ovh8Tx0Wk\nz9Fxl/v3NkjnWohXyHNJkmZTg9V5pGkOhkacZJRduUDKzi+HHMxpsl6ddGk2ypRLM1uJva0a+poq\n4DzmyUyrM8IwNPJcsN2ctUm26mVqrv1G+ZMAu80Kn7xqcdYbsdesUi0VbTFrQpYONmqYRkFYfniw\nPSVlXhhTtk30yWj/PKFRFYVaab1WqjP2GccJrmlg6cttzaPegP16FdvQca3FG5OQkkapNNVHvej1\n2a9WlkTvpqbxoFEch34Y4sUJ9+szgfk6hWnFssiFIEhTSnOEztZ19svFfs+EKMT6FvhpwjhJ6EYh\nuqrwwJl9x7yGy9J03q9tTLMXr5Z5HbksbAyO/SFCSuqmQ9N2yKXgIvTpxQGPKo1bLQbWoWne3sod\nJCElzcCYkIiaYTNMQ6qKjaIoWJrOB+VthmlIPw247zQL89k85YHT4DQasGVVsFS9mLBMfJ4Hl2yb\nVcq2VWgDk4htKpN9s0wshtnMc+x6cHk38XBsi2E6RgKvogv2rQ22rXox/CISlLnfs47Ke87hyjDw\nq0rXlrkxaQdGDLIRW+byNUxVVEpK6UZ7g1fxC2IRcWDdo6wt6m3CPMBSbDSl+D0dJ8+4b83iZmIR\noioaW8bq3MZ5VPQNXO123zL190AXpigGmvKjhdekPAJ234rh6W8Dvq9wfUXYrvXWSNE8kjjl/MUl\ntc3Xy+dax+5HfR9zUgnSDQ27ZE4JyMVpH6dkLZCBXsfDda3pBOI8nn15zhcfH1OplShXnKXWZBgm\ntC9GVGsOB/c2iligL87Y2a1TrV094V4T1ic5UZRMJxY1TUVVFTrdMQ8fbOL7MZapI+RMfN/tjdnZ\nrqJr2koiY1sGhqFRqzpLgnMpJfZcC7BeLdEb+IjJ61kusC3j1ifOIEoYjAJcpyCm5ZKFYxnESUbp\n2gTiqircPLojnywXNOvu0jFs9T32GlUONmuULJNxlBBnGY5pTJzvizbn1WTg/3h8hG3o7DYqGLpG\ne+SjoPCi3WNzhUP8KpiaTtW28eMEQ9OWqlwN1yHOMk4HI/phiK6pU0LlmuaCkL1kFKTt84s2DcdB\nUWbnQCYE4yShbtvUbJtMFB5XmqpStkzCNOV5v8/mNW+uKMsYRCEVa/ZQUNguFPtZV1XcSQVMnejc\nDspVNpyb8zTPfQ8h5Y3O8ueBx2kwommVCNKETcflPPBwNJ1SyWTkhxy6NY78EYaqLlSv3hYSkXMc\nDKiZ9tRfq5P4uPri9KetGdSNEp+PL2iYJWqGjaUZNEyXcRahKyqXyQg/i9m2qmzbVRzNxFR1NEXF\n0mZu95EovM5ehh2aZjFZ6Or2EtkCqBlFZbidDOklHptGjWfROQ+c7Yl1ho6pGkgpeRqekMmiGmup\ni7+bSMRT4TwUx9hUDVxtPSm1NRtbK6wgmFSxUpEiZI6maNT1BpvGFuYKF/vt2gZxKFAnmrCavujX\nF4sQBW6sbOUym7Y+F0X8Hjq3X1feFmLRQsgQTVn9my9CqOU3FkJ91ZKebb8C2G91f3yXK1zfa7i+\nozAtg/sf7r+15W3u1qfkyfcigjmNluNaqNrshE/iFLfiUCqvrn5s79XRdZ16czkiJMty3LJNvTGL\n+im5Fj/86IAszel1C/GuELKoQE1g28a0unX19zBMefSwKD8PhwEnZ33siZWE50UMhgFSwvPjzlp9\n07rqY62yPF68t12bvn503pvqr4SQXHRHk7zE1sJnRn5EcC3HUFEUNua82JI0o3eDJcMVXNtaG81T\nLVkLxqa1kk2zXNxwwjilP54JnG3D4A8f7U9NUwF0VcEyND7cu3s5/8obbLdWWbtermVyv1njnY3m\nAvG5jisi9uH2Jkme86w701rlQkxNU6EQ3w+iufPTMPhwc7klUzIKG4hzb6aVElIyTpLp+XA1MKCr\nKq6x/BT9fNifen5dCeIPylUaE2uHThjQi5atXQ7cKrtOhYbl8H59E1vT2bBLmJpOLPJpO3PLLt0a\n57MOx8GAp95MlJ6KnOfjmQ7Ry2LqpoM2J6E/dOorzU2hsIjQJ4a0V4L4DbOMo5k4qslpPJy0I/Wp\nJUhVd+inM21RmMekMuPQLkiIqeqkMqOdjDiLVtvo7FlNdp0Ghqbzs9oPp8u5sm1QFIV3nH32rA1c\nbfF3KaWknaxerpSSbnqzLjIQ/tS6IZExsVytpzqNX5HKu+WRuloVS725AtlOV1v7JCJCsHytehOz\n0VB0SOXN1xVT2cZQFn87fv7x9P9T2SWT65MP3jYkF0jOpv9WlOpbJ3syfQLfUR+x7wnX7yFMy5iS\nIYBqffGJv98dE47XB+1Wqg5795uIXCyI66MopTURtatzppsnR13Go6jQPJWLm08QxPR66yOQzs76\nRFFCFKVctkeomsrBfgMmNxfL0jnYa6CqCu8/nLXQciE4n4j6x37MWWvxghyEydTh/ur9Y3/5IvzO\n4eZCVaw3CBgHMT96ZzG0e3ejStmxuOyPedXqMQ6Xl3U1RXgbbFNfiCB62ZrdaEqWSXtSAbsOTVUX\nWoO5EERpRjhHYhrl0q1ZkskKV/27YN1yB2FxbrRGHv/j1dG0TVcyDd7bnLWCLF1nd5KteDQYoijK\nAuFahfOxx9loRDvwaTgOvTDgr87O+KxzybN+j1QIzscev768edhg23HRVJVeFHIZ+IyThDifmbZW\nTYswX30jbtrFtGA4MVu9yj38ycYOP93YQ0hBO/L5YrDaz6kTBTfub11Rue/O2lGGqi1MLj5ymxw4\nq3VVAL1kRpSiPKUde8Qiw8tiPh9fTN3nAZqGyx/XHtCKhwzTkM/GpxyHPbwsWjCgbRhlKrqDPWkv\nCilJREZJNTmOOrTj4ZJJ68vokqZR5aGzw8fjFxxHbcZ5SDp3U7yeZ3gFRVG4Z6+f9L7JyV1KSV1v\nTm0dXK280D48TY4QUhCJEFt1yOcczDOZ0ctmpqW5zPFzDy8fMM6XPfw+CX6xQJp2zXdXrlNN31qy\nlRAyo5M9X7sd66ArJTRWPwglYoCfn6Ao6lL1qKT+cPr/prqDob7eNP5XgarsoioHX++XaHuw5nz6\ntvF9S3EFoiAm9mPMt2JK+c3iejlV5IJ+18OZK3Fqurq2DSpyQRgk7K/Rd13BNA1aZwPiMKVcLaZ3\ndF2btgzjKCXPBeNxxO5enShKaF+OiKKEUsnEcUzKaypoUBCqeq2EBM5aAw4PmkghGAzDiUZKEkUp\npqWTZ2LarlMoLrSWZWCaOtWKw9FprxDuayqDUYCua1Nik2U53jjGLa2vQiiKwlazvNCChEI03u55\nKIpCuWQRJ9lS3A9MLBdeI1T66hjqmoqQEMQJlqGTCYE5aU1FkynEcRhPqzNXei5jItSPs5zWwKPh\n3s0s8POzS1zLxFyhWXoTXHhj6o6NpescVKsriVmcZSjAk06X+iTg2jVNXNNcKdSHIjrH0XWapRKK\nAqfeiDPP4+/sH6AqCmXTpGbb2Fqh57r+vf0onGq/roTwjq5TMgzGaYI2mUzshgFCSuI8p2paXARj\noiylZJi8HPWpmTaxyPnLsxfsOGUsTacTBVRcmyQqWkqubpKRUzWWz/VeHFIx1gulK4a11Koz5siV\noigIKemnIV4aTYXvmci5jMdEIqOqF+2aL8eXNM3i95Qjqek2icgYZRGOZvKF18JSDR65m9iawbZV\ntBW9PGLHWm3aOkwDuqnHjlXHVHUqmk0qMkxVXyCBG3OWD7tmg6pewtUdLpIepWvh0ifRBYaiL2Ut\nAvh5OBXYX22/o92gQUy75DKfhloP0wG+8NEVjf/p/YJ75gNsrYSKhqlaDPM+tupQdm0CPynanhNt\nkSAnERGuVsFYEUpdUTcwVrQn7wJFUXG122PGrkNTDBRFQ8icjHAhvkfFwlBWB5J/U+3DbwtuuULg\nj1E5Qip3y/186+vwfUvxNSAl4oa8vt86vEbRIsvFgm4rzwWdi2WfI6dk8uCdLQ4fbi7opy5aA0Qu\nuGwNGXshTqm4CHTaHr2uR7NZxlgxFXd9f3ujkCTNMU2ddx5uEYQxfpCwvVWh0/UwDI3jkx7jcUx/\n4NPpenhehKIoVK+1C/e2a1imzvOjDtWKgzOZTMwm7abtO+rkjlt9+tdag6qqYhg6lqHTnLTwztrD\nhcDrV60e3g3O9+tQdixAToXjtZLNf/38BS8ve/w/f/2Yx6dt/CihWipyGL84bU8rYEJKNsoltqvl\nIvMvub1dsllx17YOr5Z5Nljvnn+9WqOoCuOJ/ku/Rp7ORh5RmtELQ9p+UYnRVZUkL9pxV0J4IeVC\nPqKQEj9Jpl5PNdNiFEX83YNDxknCKI4LOwQh1k50hlnGyXg0Xd6fv3rKKIk5Ho/YdEqMkyLRoBuF\nRHnGYbmoKkVZOo38qVsOuZS0Q5+fbuxhT7ZPUxT+4ugp/sSLy1A16ivIFsChW71TVuJ1CCn5eHgO\nQDf2CbKYqjE75xOZE+Up+dyAxLvuJlXDwVJ1dEVl266yZVVwNAMVhT27hnNNFG+qOrsTsuVlEV42\nqzqex31qRolDe/ZgVjNcNEWjmxT79lW4HGtzNVEJ0NSrS5WtfWuLqyr2UXTGp+PH9NMh4zygmw5f\nqwK7ZW5SnQu/TmSCgYauGDS0bQaTsOyrCcZtY3e6Pqqi4qhzLXnFwFZLaIq+0vjUFwOyO7Yk3zYE\nKalY7BYU+/n37PYuA5BX+8FA8N3z9/o9OyJ3g+3aVDZeT6z+XYWqqVOz0+sYj0K84aI+pd/2FqJ9\npJDkec6w7+OPIwa9Za+YwI/JshwhJGdHPVAU3vtwj/3DDUoliyhKOT/v89M/eoQ7qWqNr7Usnzxu\n8eL5LEpke6c2tWy4qlTt7tSIopT9vQaGofGTHx9Sqzpsb1XJczl1pz+/GNKf8wO78tvSVGWhnegH\nyVI7cZ4ozeO8M6Qz8KnPkTldU9lqlqmVi+nDKx+uWtlZuNH7YfLGET62aVBzi332+KzDDw+32GtW\n+cc/+wjXtuj7wXSddVUhiAv9UntYHKeybZJkOX0/5PFZm2QSsbPqxrVbW64GzUOBtRYPQZLyrNPj\ny8s2jy87CCnZLDlEWcqnrdlxvSKENdtCUWCr5LJbqfD+pMW45boL3zGIoikhg6K69bTXm5JQXdNo\nOiXCLKXlj9l0SiR5fqPZ655bnsb9qIrC39k5oGbZPKzUp871iqLwTq3BTmlWsXRNa1q5qVs2mqJQ\nMUy2HZdRWpxHDcvh7+0/mAruVUWhfIuG6yIa88WgzTi9GylXFYUfV3cZZzFeFnNYatCKRlMfryhP\nqeo2m0aJL71i39taIU4XUk5beVJK6kYJIQVN051WyFZBUxS0SUXt8/EJpqIT5MvrKxXJadSnn/o0\n9BlheRm2CK+939GWq3uqotJO+wgpuGft8X7pIYaqE4mYXXODYTbmLCq26XqmYy5vbolvmdtUjcIi\n4tC6R1kvM84XHyCEFJyFJ6RiubMyyNsLbcd5bBqHN4rov07oik1J++6Ri28eOQqT46MooNzdtPmb\nwveE62uAEILRDfqk7wp0Q1sKcLZL5kKFK00ykEWLsNfxiMLZhUhOKoHeMCTLCk+mP/y77yxUvF48\nvUDXVf7B//kjdEMjSYofxPnZgN/8zavpBfLBw80FgbsQYoEcCSH58stzvvjyjJcviyfn+Yu1pilc\nPdDt7dRoTFzvcyGmxO3B4cZC67BWcWjOidvjJOP8cnXG4lajwnajQn+0PhvztD0kywVhnOKHMVJK\nPn9xwY8e7b6xHQRAlKR8/LLFhwdblCxzSlokkppbtHOllFQdk9+8OkdTVR5uz0rpjmmw36gSZdm0\nXfj0onunqtc8FEVZ254smQbvbjYZRwmuZfLfn78qWp1C8uH2TCPytNMlFwLXNBknyTQv8arSkwvB\ncE6/1XQc9irFw0/b95FS8rN79ygZxlRb9P7GBpamI6Tgy16H3XKZdhjQvyZ2PxoNGcYRYZaxMZd3\n2LCdycRjoVfadQuS9XH3gqcTI9Ungy5Na3HbMykwVI1xGvN0WIjZP+1f4hjGa1WudEXlverGrcRs\nHoqiUNYt3ikXRPVBqTFtWzZNl6blUjZsHrlNhJSchAM+91p0Ex9Xs3gZdDmNBgzSgJNoQDCXjfjM\nvyxsIlKfMC88y0qaRUkrph9/4B5Q00u04mXB+pZZ4yfVB6Qyo5uNCCfLfWDv4Gg3b18MtnziAAAg\nAElEQVQucz4eP+HQ2kadaI9M1aSsuWwaDSSS87iFPVnOUXRKJCJO47OCKMXnePnidfckPl7KVASo\n6jUctcRx/JJUzH4HqqJS1av0sg5+7hUGqpPPbxuHa2N9MpnSSr6D2YMrkIjL72w4NVKiiF+/2WeV\nClJ5vfi1bxrfE663jCzN8QcB0Qoh9jcBKSXhLd99RWRsx8QuLVZeag2XWmPSGjvu4bgW2/t1tnZr\n7OzV2T2Y3ci9UcjZSY84TpcMRI9etDk76bG5XUXXtSmxumgNefbkgvfe3+Hg/saUNNlOQSSu1m00\nihjMVak6nRFjP+Jgv8nhYZPnLy6JJ9OBrYshSZKRJEWV7cWrDpftUeEjNI7v3B62TJ37+6u1FLqm\ncrBTo1lbfGrqDMZ0Bz5CSD59fk6cpFRKFkJCbxTw4YNtoHCdf1O/tijJ2G2UeXXZxzENKhMLigdb\nDbygIHbtkc+ziz6PttdrQf7W/Zn4+P3dzRvbh1cIk5SL0e0PD0JKun7AH98/YK9a4WeP7tMeF7FH\n8z5XP9jZIkwz2mOfjVKJrbnIn09aF+RSLkwsAjzv9xjGEa5pTqcd275PLwz4/06OC0sKVeXDjS3+\n7v4hAIeV2aThFQ7KFapmUVmDYgJxnBSEIMxSzgOPcE4wXzNt7k3aiftuZYlExXnOII74deec9iQA\n+0f1rTtbQFyFUG9YhV/Zl6P2gmBfSMnnw4sF0ToUHmBBlvDFaFY5vNJzPfYW23gXsUeQJ2xZZbat\nCidRD1vV2bNrNIwST8YX7FlVgjyeTiPu23U0ReXxuIWmqLwI2iRzAvt+6vMq6qzUWcUixVYNts0a\nj5xdJJIgKyYbL+Ie3WREkEez60HSZZB6HEUXfBG8oqZVUFCI5ypMV15mmci4bx3QNIo25zvOfWzV\nZt/cI51E8iRzbT0v89DnzE4zmXEUz6YHLdXmA+cj2mmxH1vJySRXssqOuU8mM3zhEYjbz39dMdgx\nHgIwznuMsuV26ve4AxQFqXz0ba/F14bvRfNvERdHHcJxhMgFW4c3i87vguefnVKulVb6N335v1+y\nubfM5k1D4+RFe22uoZSSV49bNK6Fa4Z+zMd/9YLdwyaKUrTehn2fWsOl3RoSjGNOXnbZ2p0JaC3b\noFovEQQJqqpgmjreKCwc6IFyxcK2TVRN5fSkN9E7aTgT0XypZJKlOVGcYRgam5uVaY6kbRvTkGoo\nZGhJnFGvl7Asg3rDRdc1Xrxs07oY8sF7exyf9tEUhbPWgDjJiOOUcsli5EXoukrrsjAlvV7VWwXP\nj3j88pKNa+7012GbBnku6I4CPnq0i6FrjPyIKEmpujbm5Lv+5vEpmzV3YQrxOp6cdmiUHcrlxcGH\nOM1pVkrYE63YPDarxZSdRODHKe/vvb2Jo5P+EF0rMhbNW5IUJDBOEspWYRyrKgqGpmHq2pLZqaIU\nnmS6ujhBtVEqYWjakr1Ew3GwdX2qyXo1GFA2TTZKJTacEmXTXGpNrRILqxP9kKFqWJrGp51L6rbF\niTeiZllkQrBdchfef+Xjdd1l/tPeJbulMo6u4+gGf3vrYPq9uQFftgvyVIjw1QWxu5fGPPN6KEpB\n6q5QNxzasU9p4nslgYvIY8t2p2TPzxLa8ZhcSu6X6gvbqSgKrm4uCNZrhjN1e4/yjJJmUTUK3y5d\n0ajqNpaqY6kGtmbw1L9ARcHVLQ6dJq14yL5dX3CMt1WDhuEWxqUKc8tPOIm6lHUbXdF4HJziqCZn\nSY9hNsbLAvbtTf6395hdawNNUSlrJWzNwlZMqrrLltkglRmddEB10pJ8GZ2SyYzLtINAUNVnbd7j\n+BQv92kadWIZ4WqlaXaipVqUteK9XjZCU1RqWp12ekGQBQzzAZqiYSgGreSMLWMXQzWmQyu26qCj\nY0yW54kBoRgTigCdZS3X1bEwVQdLfTs5ql8FUuakcoimLD54aIr73dZ3fcV1+y77cH1PuN4i3KpD\nue5SqhYneOvFJaqmYlhv1tuvbZTR19zoVpEtKCwb1BuiWhRFIUtzVFVZaB2qmkq96WJaxv/P3pv9\nWpLf1Z6f+MUcsWOPZ86hMrMGl+fh0txuwCDde6WW/IaEBS/mAZq/gCcesPxmJB5AQkLiDeEXIyFB\nS4iGFmoazHDB2K6yqyqHyso887TnIeaIX/RD7BPn7DPk5LSroL2kUmXm3jt2ROwYVny/67sWMpcc\n7Y9I05xWp4brWcymEbOJz+rGaYWrdzxB01RqnoU5NwmdTSMMQ+Ngf0iz4cwd5/vcvLWEaeqMJyGF\nLKoDMk4y/Fl06QGaJBlFUSCEIMsk+wcj3JrJcBSQJDm5lHzn7U06bY+11QbHxxM2NpokcYpp6NiO\nia6rtNsucZzRadcwz2yzH8QcHE847I5pNxfje+IkQxMKUZJRe8oEY5ymOKZBmuUMxgGDccCt9faC\nrcSNleYTyRYwr4wV5EqBzE6rct3xDM820bXTqJ6d3oiGYzENIh4d9rnWabLaXCTR8lxMzvPC0nXs\nucv806AoCrW52/zOcDxvcVoVUVEUhXEY8c7h0Vy/pbA9HjOLy2lMgXIhGukEW6MRmhDVspqWVem8\ndLU0p8ykxE+TK6tL9wc9wiTlvWEXR9N5u3vET69fx9Z0emGAlAVRltGxHWRR8E7/mJv1UtPlZwmG\nWk6JHgRTPN2gY5dVqRPSeH/cY9Uub+7tuoOZCXQhOAhLE9WdYELHtJFFwSSNSWXGHa/D49kAhTL+\nRygKmcyxNb0Sl69ap5W1R7MBWZ7jaAZLlkteFPzLYJMVs1aRrJP/H0YTjqMpdd1CAe5Oj7jhNCtT\n1M2gx1Y44BWnU7bvUBgkPrrQaOslwZMUaIqKKRaNOvvpjEke0tRdTFGSw8fhEYnMaBs13PnkYEvz\nsFWDJaNOXSsjfzRFsGF2eBjsEciwcpDPyEiLDEsYqIpakS2All5nNzpgw1xhkvs0tNPpO0tYpEVa\nRkupDfaSQ1rzmJ+syCgoEIogLzJUpYxv6mddDGGyZm4gFBVN6LT1pcpc9ewNO5AzpMzoZocs6xso\nqOiKiaZcJPkfNRRIMmZoSo1p/h6m+NFF6hRFhPIRccv/CeH6IfBh77jnwfkTMApKg1Gv9WJPOy9y\nQj/TwabA0e6Q1nw6L45SFEXBsg3CIKZ3NMFxTWQuy4gQSyeJUpZXGgsh1oUsMMwy9/DRg0PaSx6O\nY6Kqgn5vhmFoeHWbf/7H+9TrNp5nYxgas1mE7yfUaha6rjIYzNB1rao8DfplSG4QJgwGPo2Ggz7P\ngqy5Jp2OR801sUydtZUGrZaLOV+uqqmMJiEry3VGk6DScvlBTM0941WVS6I4Y3W5Tqd1sYp11Juw\nulzHc0+FvfGcAJ4Vlt/fPMY2dUxdw7VN6q5Fp+FWlbrngSoEWS5L5/78tI2kKKVg3jZ0Hh+WgnHb\n1NkbTKhZBlGS0awtButuHg95fDzA0DR0TTzVg+uq9XmeY/BwMsUxDBqWyfZoTM3QGYWl6L3nB+ia\nSt0yadk25tzWwZkTus3hCFsv44PyM7E6ADXDwJwTq/PIpORur0vTsvCTBENV2ZlOaFqLk4HKfDmO\nrnPk+1yr1avKmC4EvSgkKyQrTo292ZS0yOlYDofBlK3pmHXXIy8kH0yGdCyHbuhjaxpCEUR5hqYo\nlRD/5BxUFUFdN2lbDm3DQhMqspD8YHTEp1trCEWhZdgLWYuxzDmMprSMxapEnGfkRc5gbljanL9u\nKAJTaAsVNChF8oPEZ5gGdObtRKEovDPdAxQ0ReW2u1Tt5wKYZCFhnrJseoyzkGHq0zFqF/b7KA0I\n8pgVs1F9XkFhlkesmS32on4pbZAx0zzEUDT24h5hHiMUgaWaLOkNPM2p7BUSmVFTy2P4YbBNc06q\nIhmTyZw1cxlTGLT0xsL6lITQRBcamtCoa161zGk+Iy2y+etG1Vpsam3ceZVMKIKsSJnlk8qvy3I0\netMBhjAxhYUhTOpa+aDZTw+pq80LthDPgmG2h4JA+zHF2CiKQFNqyCKBQkETFy1rXhby4jEKHsq5\nqdOiSCiKHZS5tqr0KhujKFfbefyw+Anh+iHwYe+4Z4HMJcolbSen7rww2XpRBJOQIEgujeQ5gWFo\neA0HoZau0+Nhqd0wTJ17b+9gWhqrGy3qzbKdubfVo73kLXh5le/XEGIenFu3UVVBFKUMejOu32jj\nzMnKnVdX8TwLRSh0jyc0mi7+NKo8u04I1QkUBXRdw3bMsi04n2wsigJtHjI8nUWY8wgeXVPRNJWZ\nH7OyVGep42GaOqomiOKyQnVWLF8UBb2BTyELHOfyJ1XT0EizvIoYAjjuTxiOQ+rzTMSpHzEOQpaa\nNbojn7prLYy9Z7nkoD/GNvUnEp5HB30sQy+3Yz75ePa4N3UNitLisVmz6U8DXNNgueHyzvYRQZKy\n0qgtfEfTtVlv1QmTtPLlepmIs4w4zTA0taqkRVmOo5fVEM80eDwYUTMN1ure3Ln8dNLxcDolznI8\nszxGWraFrqqMoohxFC+0FcWZfXqCcRwxTWI8w2R53oo8iRMyhHqhBVh6bml4hsmqW6vI1jv9Y2qa\nzs16k1Ec0bEd6vP2Yk03cHWDdae8+UtZ0DJtbE0nzFLcuYeWLlTqxukxiqEwmAaYaulHNU1j4jzD\n0nSEIli3PVKZsxdMKuIEpTZLKArL1sVrRj8JsDWdm06z+szJsRbkKYZQeewP0BWVSRbhqDqqIsgL\nSUO3SWRGXkg2rCaWqjNMfTzNWoif8TQLVzMJshhJwZJRbvdWUBq3npidZoVEn0f6dJMJrmpiqQZ+\nHuOpNtM8pG14TLMQoQg8zaGp16hrDgKBUAQSieCU0HfT4VyUL2ifIVWzPOAoGWDNSdVZbEW7SCmB\nAmteVbsX3Keu1dEUDUuYlQfXCbpptxLjn0BBQVXUqsJl2irD2bgiYEUhGec9LOFSUy+Gzwf5BKGo\nTyVhluK9sFfX82KWP0JXyv1YkFOQoSoO0/wBpvjh5S7nIZTOBbJVQkFRdE6zEjMK+ijK5d5uLwql\n2AEsULSPNOH6CDdy/+Ng671d0rmAu38wxH+GGJcfFbyGjWE9vYV5Ynw6OJ5SyILavA1667VVmu3T\nytewP2N3q8/jD44I/JjwigNZNzSSJEMIheFgRhyfimxHI5/ZrBTKnmi3LjNe7fWm9HpTUGA48un3\np0RRuZyjozFpmqPrKr3+lO2dciosyyTJPCJobbXBwRlneds0cOzLnyZlUTCehcTJ4ph3nKT0hjOS\nNGc8Dbn/+NSpPEwyWnX7xCYIXdeYTCOSJKNdL936s1wynJa//2QWYhk6j/b7PAm319qVpcRVcCwd\nTRNEScZGp852b8RWd8Qnb6zyU6/duNKstOM5F3RfLwNpLomyrMw57JWTfEvuaWKBrqq8vtwhm7dA\nl2suK56Ln6R8/+CQKE1p2qdPue8ed8mlpGXbbNSfbsniaHpVUbqgYzKuriBsT8b0w9Pzs2mYzLKy\nJXW73uLdfimgXnNqzNIEP00r0Xosc/w05W93P2DfnyIUhSTPuTc6FUgnMufQn9GN/Opzh8GUUVIO\nsjyc9tGFiq3qbJxxjZ+lCduzUSWkP49Vq0ZDt9gJRsyy8hyURUFNM1k2a2iKoKlbTNKITEr6iV+a\nnM4F5ycWElBORbZ0F1URhHnCTniaaGAKjazIGSUhO1GPXjLFVg3iPOU4npAXElNoyLm534n4Pchj\nGlr5+9c1h+N4zJrZYtloUBQFx0l5Xv7b+D7DZMpxMmKWn06RbpjLaIqGn4eMs1ORelOr86pzA+eM\nwel2tEecx9wwN5BIDpNjDuLyd9sw1jlIDvkgPHVuP5lClIWkrnm4akloZ/mUYTZAVVRMcbp8XehV\nfmJWpPTT4ydWpST5pYHb5/GyW5BZcfXEtCXWKp2WUAyMOclyxNMDt18mSqf72pm/6wjl5a9DQROu\ncN3/KOEnFa6XgNZqA3WuzxGqwDBLofiHgUbTIYqePu6/t9nDcU1q9dPMxNkkZDIMWDojjBeKwvXb\ny6yuN0nTUkifpXllaAqw9eiYNM3oHk7odMrqzNLc+ysKE2zHIApTdrcHbFxroSgKHzw8pN2uoWoC\n3y91X1km8byyUqaqgiBMGY19Vlbq+EFMUYDjmMz8iAcPjlhbbaBpKptbPVRV4NgmqhAYhkaeS7R5\n5Wv/cIRhaGWbI0wxDY2aa9JqOJdq5BQUigLqNYuVtlcNLbTrDpapU8iC7YMhSy0XTRV0mm5liKqq\ngr//3gestktPK9c2WWl5BFHC7vGIlndxmOH8hfjkCW0aRGhCsNsbYRkadcfCtQw0IVhreTRdG2Ne\n8RtMAwoKBrOAmnX6dDUOIrJcPlX0/rwwNBXH0NFVlbZ7uk0Pjns4us63t3foOM7CawAtx6Zl23im\nuUASD6ZT1rwaDwcDbF2/0mX+BLM04XA2o20/3UXfTxLCLMXSNDzdqKpwAFvTMZ5usD0b0w0DPrVU\n+hnlRcFxMA8z17RKQ+bqpX7qptcgyFJsTWd7NmLd8ciLgp1gzGfW1zGz0xZox3Iqw9RSsK/xeDak\nadinLTkFLE2nYz7ZO8gSGpaqkcicD2Z9lkx3/nkFRzMI8oQCSV6Argi+PdymbTgsmTUc9fScNdXy\nuNEUwSO/RywzVEWQyRxL6Awyn1edVRzVxNVMapqFLyO2wwErRp20yOevWciiIMoTVCF4a7LJslGe\n+87cvmEv6pOTU9dcHM1glgdICjpanUSmaOcqVwKBLjQ+CHdo6w1kIat9Oc6mGIrGOJ/S0Oo4qk1b\nb+HO25GWauEIh5wcV7gcpkdM8jGe6pEVGYfJQVnRQjDMBmiKSlSE2MIhL3Km+YS216juOwoKutCx\n1RpFIZHkjPMuAoGmlN5mSRERyilibqr6snEx8LlEIPfQlNoFAXwsu1V16yxCuUVBQV6Uuq7/VFBM\nTsaPP8oVrp8QrpcMTddeKtnqHYwwbf1STVB3f0gSpeRZTu9ghNdyn/lgMwwN3SwvunGYkOcSxzWp\nn5luFEJUGq3x0C+rU65ZDgLMK1SjgY9uqDiOyep6szRWjDNcz2J3u9RyKIqCaZb7xXFNimLe1uvN\nsCydf/vXR6yuNpjNYmazCM8rtV2bj7vcubNSrqumEkYJNdei5lrcvrXMUXeC65isrTWI4wzT0jBN\nnTjJ+PfvbRLGKa2Gi65r9Ic+aVoaI9pzE9JLJ9mEwNA1TENDm7dcz+u7hCi3R9dUak7ZVjJ0FcPQ\n0FSVV9baOJaBaWhVm0/X1EvJFpT7Yvt4iKVraJpa/YZjP8LUVdp1d6FKtd0d8WCvy2AWVkL53tTH\nsw2SXOKapzfWLJeoQnkqgXlZUBXBNIrxLJMV74qLugJbozEd53R/rHmlVqht2xfagQBhmhLnefXa\n3nTCmusySRIcXWcURTweDlh2L7bjUlkOWFiazmEwI8yyKsh6xXapGQZty2HZPp0GFIpC07R4NBni\nzgngyWumqjFKIv6vnYe8Vm/zve4BQoFlp4apqjQ958pz8ETUb6jqgnYLSjJ22TF5dvjhRKSvKOWf\nz7rDy6LgMJpiqhodw6Wb+Hy+eR1HNdgJhzR1Zx747FfkS1EU8kISyYx+PGWUhiRFxh1nuTKA3Q0H\nTLOQdauFIVSm8xzEulaSXT+P8GVMW/doaA7b0THXrA7TLKQAGrpDQyuHUhzVoqHXaGg1NqMDpnmI\nrpTaNk1o5dTgnIDVNRehCA6S3jxUuyQ4w3TMNXPtQmUTIMhDeukAioK6Xuc9/y63zFtM8gmRDHGE\nS11rUCBp6i0sYWMKi152xDSboCiw5LVPCZeioCoaw6zLNB+Rk+CpbXTF4IPoeyQypKWtoaAgyX8k\nLUNfdsmLGP1cYLYhmiiKYJLdQ1caZAQI9LlQ3r1wLAksBA5CMRFPEbiH+VtoyspHfjDgMvyEcP0Q\n+LB33IeNLM0w7ct1RrZrYrsmpmXgNsonvGc92DT99OIe+jF5LjEtnYd392m0SxF5luUIIZCy4Phg\nhFe30Q1tQW/lz2Ka7RqmuXjhNy0d3dCoNxwMQ+Ot724i81JkH4YpQlEQqsCydVzHYDqJuH6jTZ4X\n82UVjEYB9bpNkmZsbfWQeUGrdfJED8259sv3Y5Ikw7ENhCgtCYIoYX21gWWW2ijH0pnOImzbWJhU\nfBo29/q4jkEBHA+m1cSiPvcWO9mHqiqqG/JlNh5Sliagl1lMKEo5offP722y1vJQNEGeSlzLqJaV\n5ZIky9FUUWqyhMIb106njvzoNG/ROUO4DE19Ktl6d++ITs15oZiZ85jGMa5hXE22KMnMWbJ1grP7\n8zySPC8F+KFP27Zp2za6qjKOS72XoaoEaUYmJb3Ap3FGNG+oKu8PB6zOHeZPyBbAu4MuHaucOExl\nTpilC5OOy5bDnj8lyFIa5ukyZ0nC6/U2KHCn3uI49it912HqE4RJ5Tb/3uiYVOZlteyEcJ0TuR9H\nM+I8w9Eutq7eHR/RNhziPKMfB9R0E1lIpllM7Yw7vKRgnEZs2E268Yw108OaR/eYaims3w6HDJJZ\nlXcoFIW6btPQLKI8ZZD5fLp+HUnBg9lRJaBfMxvlgIDMUBWFmmZVxMgQOrU5+TKExopRisrTIkcT\napldOLqLpqh42hnDWb1OS/dIZMogm2AJE1VR6SUjTKFXmipPc6sMRV1o6EJf0GDlRV7ppzRFQyLL\nCUi9gSscduIdGloDR3XQFZ1ABtwP79HUWujzCUyBYJQOqOstWjXvwjXUFi6aopMXGbpiMJY92to6\ntlrqsnRh/Mj0WYZwL5Cts5BFjqZYpMUIVbHQxcXqFoBQtLnW7OnXP01Z/WhbRzwBH2XC9UJ7VErJ\nV7/6VX75l3+Zr3zlK2xtbS28/pd/+Zd8+ctf5ld+5Vf46le/Ohc2wi/+4i/yla98ha985Sv81m/9\n1ot89f/vUG/Xrpx4E2emyJ42Fbf7qHulAahQBZNRwPH+ECEUVFWQ55KdR13SJCOOEuIovVSIX/Ms\n/OmpM7iUkn63jNKx5/qpMEj41Gdu8Orrq/zj39/D9yOWVuqsrNYxdI12x0PVBJNJWFbC5kL81dUG\nUhYcHIwpFFhbO7XC+O5bW/hBzGAw4/BoTM01mfkx3d6U3f0Br1zvVDYMw7kx6e7+gLff3XnifjqP\nOzeWMPRyZP88Ubv7+OiJn908GBCnpUZsGkR0x1cbKNZsk//xhTcQQjCcBjw6WNR9/fv7O7yzuQ+A\naxncWG4hZcG3399hGsZoqiBMMo7HM4az59MQfvLaalWJexb3+SjNGIXRpa8t11ySvKwoHU1nF0w7\nr0KYprx9cHhlNItrGFxv1Hm1dWrsqigKG3MXeqEo3Go2WXIcNryLUVafXr48+uRTnZXKmDWXxYI7\n/e5sQpCl3K63qBtWtW6ZzPlub5+kkHQjn5yCT7ZWuDvqcW/UZcVxaZ1xpV+zamRSViqf/WCykA8J\nsGZ7LF0ilgf4VHMNTZQ2E+6ckGlCZc2q42cJD6c9+nE5+OJpJgIFR9Ur4lhWlgwSmfHOZJ9Vs0E3\nmjJKTyOTNKGyatf5TL00jlUVwce9dTKZM8mCSrPV1B1aeq1qF16GbjJGSomnlTYYBQU3rBVWzcut\nbFzVpql7aHPRtaaoKChkRc4HwTaDdDH9wVFP920sE96evUsk42pbW3qTW3apE5JIblm38VSPu+H3\nQYG62uBj9pucpSRHyT6r5gY19Uz2oow5TvfKbUr30BWTnBwVHU/tYKse1lP8tso4pUVX9yAfET+D\nmeqzQlVMQGCLDcRLmoD8UVe2ikJSXBGT9J8ZL0S4/vZv/5YkSfjTP/1TfvM3f5Pf+Z3fqV6Loojf\n//3f50/+5E/45je/yWw24+/+7u+I49IR+xvf+Abf+MY3+PrXv/7SNuKjhOlwxrg3/bBX4wI6q/WF\nVmcyF7UHswhFgfUbHTYfHHHzTlk1UVWBbqgcH46JoozVjYsXy+FghpSyItRQEr+N66c3xTyXvP3d\nTaQsL7w/9wtvcm3++mwa8fbbWyRJxo0bnYWJQEVRaLXcuZ2ERd21cByD73xvk4PDMetrDfr9Gbks\ncF2LvYMR793bZTDysUydLMtJkvJCJ+dtQa/uUHMt8md0nk/SjGAeZSSEwngaLYjsP3Fn7eI+mQbV\ne64tNxamA9fai0RgPAuZBovExTI0bq21ub226Bj/8RurLNVrHA6mJHMSJ4TCm9dXMHWNmmVQt002\nWnXeP+zjxy/2hHcwnlZDAk/EE4jUO4dHVazPedf4q2DrOl3fZxrF88W/mCs/wDvdY37QXSTDj8ZD\nAO72u3QDn3F8kTDamkYsT3MGT7RSmZR8r7tPNHeBVxXBz66/wqpTw1A1DoMZWVHwmfYqbdOuhOoA\ngzhAAp5u0tBNJmmMJkoric3Z8Lm2SxMq3rn4H1kUdEyHluFwb3rEpj8s26G6veBan8mcu9Mj/tvy\nx1g2a2zYTQSCRGbshkO2gwFKoVR5imGe8MA/JJIpjmqiXzqBdopU5qRzN/pMZvzr+D4AvXSMLApu\n2EtzP6yccTpbyEF8EG5TU08tIhy1nJ7UFJVb1rULgnRZSLL5d5nC4AveZ1ARFyJ8duJdPLU0U86K\nnDXjRvlAmPWRSPQ5OYllXJqZFjphfkpCDWHS0VaRhaQ2t4JQKTsD+jMSm0COGWWLx6IuLNSXaA1h\niOYzVa2ehqwYksrjp7/xpWBEwcEzvfOFo34+gnghwvWd73yHL37xiwB87nOf45133qleMwyDb37z\nm9hzMWuWZZimyb179wjDkF/7tV/jV3/1V3nrrbdewup/9GDaBqbz4/FZOUGWPv1JwXZNkjjl8f0D\n8kxysH1aQVEUBSEUPv75mwuVsmuvLHHtZodW+zTu5yyKeVTNaG4rkWU53/23D6q/AwyHPmvXmkzG\nAb3jKbWaVT09Oa7Jm29uEAQJUZTiuiamqZOmJ/E+IVmWU/csrs+d+7/wuVdYWVECIssAACAASURB\nVPFYXW3Q6dRQVQWZ57z+6io/9fk73LjWZmW5jlezaMwnLzut0kD2+nqTV6614QkPb0GYVITpqFeS\nmzjJ2D0ccetam9E0pD+6GOB9AqEoFSHKZcH24ZAoTpnNsxXPwjS0BXPUszj/hNlwLW6ttanZBpMg\nqmKCPNukP/XnflsqTdfmp1+7saDjeh7cWW4/1bPL0jWaztVi9V949XbpGG+ZBOkp4QqShOQJodJf\nvPUKo7jMM/yHza1L3zONYyZnyNLbR4tVsaIo+NTyCrcbrYo4FkVBa94OfK3ZxjNMJnFMLwwIs9P1\nO9nngyhgksT4WVJ6bAnBL1y7XbUI80KSzonZulPjjUYHS9Xw0wRZgKsbJHnGB9MBNc3E0w1GScSO\nP+bvDh4hZYE+t4d4Es4Spqvg6SYto2w3tQ23mnyMZca/DjdJ8owoTxGKwFGNSvPlaia9xOft8R51\nzaZjuPzfvXcXlq0rGn4WE8v00orHQ/+w+rOfR0zz8nfxtFKzFcuUG9Yy3XRYkbEwjzlKBqQyq363\njzmvVMsZZTO2o8MqzkcVKh198WFvmI7599nb+PlpJdeXPnvxHgdxSW4SmeKJGoEMyGRKVESEechh\nckAsI8bZoCJok3zMqnmNoewTn5v8UxWN/eQx9ryS1dCWrqz+TPMeWbH4oFOQowmNcXa6r3TFWph6\nPP+ZHxahPCYvEiJ5RJg/G6kpioKiyFB/TFmEitJGKDee6b3/maJ+XogWz2YzarVTjYaqqmRZhqZp\nCCFYWirjRb7xjW8QBAE/+7M/y4MHD/j1X/91vvzlL7O5uclv/MZv8Nd//ddoT3GxbrUunyT7j4Ki\nKDja6rF264dz+d3f7LJ6vV1NQ57F/be3eeMzN6oLwfLy1Rfyk+qSKApUBRxbZ3neqpNpRrtTisyf\nhMkowHZNlpc9wiChkAWqopDJgpWVBm9+YoP93SHLq3X63Slraw2Wluu89Z1NOkvXEKKsZM2mEWma\ncev2Mn/zN9/nv//3TxJFKY8eH/HZz7xCHKfU6zZBkLC87JEkGYahEYYJ43HI/sEQKQt+7mfeqNat\nKAqiOK2E8WexvOwxmgTUa/aVcT3DcWnQWXNNkjzn2lrpNt7p1LAtnQyJoWt0mpe3Elptl8d7fZaX\nPd66v8snX1/HdUxucHXG4WW46jdcxmO/P6HdcNDn545uaxwMp6y4Lo5pMJyFbLQvttV+nAiSFD3T\nue2c6p6Op7PSpLXpXKkru0EZtvwz5issNy7uAycp3fhPfLq+2LLZn0y43+vzv7/+GtM4phcEaKZK\nq+ZiahrHsxm2aS4sb0M2kEXB/3nvLr/0yU+VVVBF4bDwadgOigIN4bDsXPyd4zzjuN+lU1NZtj2S\nPGd7OiJXC171OgyiAL2u82ZrlaZp8XDU5/XmMooCr20s4+g674/6fKK9cmHZJ1ovU9W4Ozxmue5d\n6p4/TkKOwhlvNMrryuZ0gGdb2JpO03QYxD7/rfUxTFXjKJxyw6tTy0wctdSDFkVBo20vCPX/j/Wf\nn29fSlu4+JMYU2hoUr30t/Dapf8WlMflCe4eb7LSbtIvxlx3lnhNXccUOlvBMRtWm9vaKoNkyiTx\nCbKY1+rXeH+6yycbt1BiyS19+dKcxhMs43ErX0VBwVQNgixkWbtBPx5gqw6G0NkND7jjbJDJjFEy\nxtJM7BTWrDWO4y6DeMBKvY4u9GrdR8kQTy/Pm7PnX6f4zILHVl5k+NkU5pW3ul6e224Gplp6jUGB\nogiW8SgKSVokGHPribxIGSb7LJmvkBcZvfiYZevVK7f3eRHlObrikOSQyDEN02MU38PRrmGol19X\nikISZkMc/eV7dH0YeNI98MOEUrxA7f7rX/86n/3sZ/nSl74EwM///M/zD//wD9XrUkp+93d/l8eP\nH/N7v/d72LZNkiRIKbHmYtZf+qVf4g/+4A9YX1+/9DtO0O1+9NpzV0FKSewn2N6ii+7waExr9Ycz\nepuOAtz6orHmZVhe9p5pnx3vD4mjlP7xhE/91O3nIrV3v7/D7TfWsCydYX+Gaek450SCSVLmIyqK\nQpJk7Gz1uXGzPJm3trrcvrOy8J0ylwhV8N3vPKaz5HFz/t6TbU2SjP2DEdevldql0ShA1QQKpVWE\nZemluL87YTINeeO1tepzsiiwTJ3NnT5CwMZqE01TS2NTIa4kX5chlxIFZeEzw2mAa5lAQRhn+GHM\nxnKjrGrJAs99PlflZ/kN//6dR9xZbXFjuXTAlkXBdnfEWqtGlhfUzhDOwSygXXuy3cDLRpimRGlG\n61wlrDvzac5NTqEcBvhhTFkzKfGThIKC5rmw6ijLsC55oMukJEhTDFVlczLkzfYy3+8d8unO6mmq\nQJ7hpyntM8uMshRdlHmOB/6UWOZYqkbTsIjnlaSO5fDt2QH/xV3nIJxQ00z+5/EWN90mCIVPt8rj\n8geDQzShEEvJ59qn18CDYIIQglXr2cf23591sYXOht3gMJqwZLrshePKo+sE28GAVauOKTT+394D\nXGHwem2FcRbxinP6QHAQlZ/1NItYpphCr4KtW/pFAurnMa5qEsuUzeCIuuqgCZW3J4+oaRb/a+vj\nyKJgL+7S0es4qoUsJEIR/OPwbTp6g4/XbpXfHfdZN59+08+KHE0pB1ceho9paB5LeueC+eg4GyOL\nnGk+JZ1Xkm5ZdwhyH0tYSGTlwfV9/99Z06/xyWtvVOefLHIO0x1W9etVdmJeZARyhivKm7pEEskZ\nNbU8F4N8RJCPWDLKbUqLiEiO8dRSR1gUBRkx+jm39VnexRZN1JdgLZEXIbHs4ahlFcnPH2Eq62ji\n6TYq/9HxrPfAH/U6XIYXutJ94QtfqAjWW2+9xRtvvLHw+le/+lXiOOYP//APq9bin/3Zn1Var6Oj\nI2azGcvLP7psp5cJKSVZenUr5AR5Khn3Jxf+/YclWwBe00EIwdaDQ+JzPlsHm73nXp6mqWzcXOLV\nj288UXDfP56QnDMHvXF7CWturtrq1CqyJXPJ0eGYu+/sYBhadfPqd6esbzQxTA3D1Fha8rh/d58o\nSsmynNHQr/Rln//CLV55ZYmiKHj7+9tV6+zgsCRbmlaGT8dxSqddwzA0kjQjmhvPdvsTwvBM8HOS\nVb5kr1xvc/NapyJ6R91JpdE6wYPHpYZha39AECW89d4O77y/X71+QtCiOKU7KIWvUz9m93hEUZT6\nEtvUq1bkWbKVS8nu8YjnQX/iV/vgBO9uH/Fzn7jF8dhnGsb4cUKaZTRciyyX2OfE/X78bDqqF8Hu\naMzQD+jOFtuscZYzjWMGQcD2aFy91zhjrwCwMx4TJFe3VJI8Z3bF636SMAhDGpZVka3DWfmbRFnK\n5ly3lUm5IN7fHA8ZJSGWpvFmu7wGfWZpjXuDHum85WmqGt45A9Xd2YTv98uW1brr0dQNDvwJmign\nVLthQDf0+a+rN9jzJwzjiCjP+Ex7nbSQCzYQ15w6mlD5XHudKE9J8pxdvzQ+vYpsbQfDqpUJ8Ngf\nkEnJbafDdafJTjgkLyRvjfZIZE5dW7yh33Tac2NTyafr11CFiqMaqGd67LIoGGcB3vyzB9GYRGa4\nqol7TiifF5JJFrIfDZhkAftxHygtSB4E+7xZu8mbbnnDF4rCqtFmkobsxX0Okj6zLOAN5yYfc0+N\nMG3x5Fb4Pf8DMpmxEx0gC8lR2uWGuUFHb3OcdgnyEFlIEpmwPZ9ObGhNVHRW9FUc4aKg4Gl1hKJy\nmOyRFuX58Unn87S1ZSbpmKxIOU73OUr3WNEXdWSqouGpzfnEXynwVxDz2Bpw1Caq0E/bohhMsj6T\nuZar1IBdfAjTFBPlJXmRq4pdkS0AV73zwmSrKFKy4vnvMT/BRbyQLcSdO3f41re+xR/90R/xrW99\ni6997Wv80z/9E2+99RaKovC1r30N0zT5i7/4C/78z/8cz/P40pe+xF/91V/xx3/8x/zN3/wNv/3b\nv821a9ee+l0f9ngnwKQ/xR8HuPUnVwlUTVC7otX0PMiz/MpKVnPJu1CNKooCcz4R6Lomb/3LQ9qr\nixEUWZbz1r98gKar6IbKeODT6NQwLf3C9wx7U4QQaJpa2kWY+kJF5yRPUeaS7vF47qslefs7j2l3\naoCC45qVpcGJnYSUBWGQEIQpjmswGYUIVXB4MEKoAts2KAo42B9hWmVMSxSlaJqg0/EqYpikeWWQ\nahgajza7hFFKu+Uym8VlW7tTww/i0jvMPvUc2trt06w7PNw8JpcFa8uLrbdGvWw3eq6JqWs0GjZp\nltM876E1170ZukqjZtOqO2iqwDZ1bFMvQ6ilxDJOn1Y3D/o0a/bCv12Gs2PNszDBMQ0e7PVYqpfH\nVp5LcllgGzrH4xlxmmObOpMw5v7eMXGa0/FOj8Od/oiVxtUVEz9O2BtOaLnPf0HOpMSPS5uPIEkr\n7ZilazTsMmS6dhK5o6o87A+wNK0Kn27N7R0A3j44JEgTWvbZqlJGlGU4+sV9pgDqfLlQEtpjf0bb\ndkhySZLnNC2L/Vn5tGtpGmmeIxSFlbnnViZl+V8h6YchtXmsj6KUQvsl+/R3b1sO6+7pk2uYZ0yS\nhA3X4yAoCdZR5NOq2VhSpWVYLFkuTdMmyDNW7RqmqpEXklBm3HDLB7G9YMKWP6JjOtyoNa+051AV\nwX4wpqabqIrAECpCgXcnB9Q0E1No+FnCqulx3WnyzvgAP4tom4vXpA/8Y9q6wyD1SYqcSRqxbHrV\nNaehOaiKYDPo8YrdQRMqqiJQz1WPEpni5zErRp0cyZrZwhI6b083+ZnWxwEoFLDnbcf7/g6xTFg3\n26Qy439O3mWc+dy0V3kY7tLUaguO8sCC6SlALFM8zaWtN0t/P8XAlwF5kdHRO+hCZzPeZknv0NDK\n/asoCqNsyHb8mCAPcIRTaruKjG5yQEvvoCn6vDpWoFgZRaQxycdsGDfJi4xR3sO9oh1XWmBE7Ccf\nYIkamqJji9Prr6Io2MKbDwJcPd2pKeaHasUgi4ik2Ee7ELsjKQgRyo83pq5C8T5lbM+z6VI/yrYQ\nL9RS/HHiwy4NPi+yeQvrLCnJshyKAuMSXdFl2H98THOpjuNd3oravLvHrY9fTlY7HZf77+yxtH7J\nVGF3wsH2gI9/4RXSJFsIot55dMzajQ7jwQzLNrBsozRchCtzGaUsGA1mDPozVtcbfPuf32d5pcFr\nb25gWjqzaYjjmFWMT5JkDAczvLrD0eGIw4MRP/XTdzg6mnBt7kCfJBlxXIp0d3b6tNs1clmwcWZ7\nev0pmqbSbJRGjqNxgFAUGvNsxtksojuY4VgGrZazIEz3gxjXMQmj5FKd12XYPhhyfbX5XK3HsxjP\nwtI9X4gLET5FUTCahQumqJeVxKdhjGeXJ7EfJRwNp7iWQd2xFpZ5Mh34vG26XMoXCrgGSouIAnRV\nLIj1h0FInGX0goBPrZXtlJ7vs3SJOSlAnGaoatkm3h6PWXHdJ8b0XPh8ntEPQzZqV+s37g16TJOY\n67U66zWPYRSSSomj6ahCIc5zNEVQMwyOghnHoc+nO6eWEncHXTbcGg3TJskz3h8P+GR7hV7oM0oi\nXmt0WFqq0evN2PXHrNk1tHOeW5mU9GIfa26geqtWtqLuT7q4msG67V0gNyeI8rTKNITy+NkJRxiK\nSkaOoZSTldedJt/qfcA1q8Gd2tKlyyqKgq1wgKuZLBslIY9lhjnXT02zqKp0ncDPYt6ebvNTjdsY\nQuPubJc33WsLpCgv5CXkLOOBv8cde5VpHuKpNu/MHqEJlS/UP3bp+o3SCY+jPT5b+9hCq3CQjrCF\nhS50NEUlL3ISmZKTl0HV5yb2ummX5nzKcJpPqav1MtIHFVd16aZHOMKlqbeRhWR1pUG3OyWUAQpg\nzT2wygqWQlYkCEUllFMKSmd8V2080UfuR4FUltcIfd7aDPIDVMXEUMrj6XnXpXTSj1GVj1jbsUiB\nx8AdeIZpzP90LcWf4GqEs4jZmSm92cjneLvH8HD8hE8tYuP2ypVkC2D9CQL8k4nDszjh1F7L5drt\ncsrGOHfjr9Vt7n9/hw/u7uO4JUl6+O4ug3MHbhSl9HtT/un/eY8wiPFnEbNpSBRl/G8//3GEKtjZ\n6jIZB+xu9UtrBT/mB2/v4M9iVteaOI7B7TsrmJbOwcGQ4cCvwoH3dgd4nk2tZnHjRod226WQsmqr\n5blka7tfTUhu7/QJgrgiW3v7Qw57E9pNh9WVekW23n98jJRFFWL9NLKVpnnVMry53uKya9dwEjAL\n4icuB5iHUqsLxOj+9jG5lBQFRPOW7X7/8mNkEkQcj8p1yXLJ0WjKnfUOQZKSS0l/cnq8ibmJ6nk8\nyQ+rmAvGL0Oa5/Sf4uvVtC2CdHGSLUozhKKw5LoV2QIukK1pfLr/TL2M0PGTBM8wGIaLE2NPs6sY\nhlEVoXMVlmyHzy6vsey4FEXB7mxCwzDxs4RcFmRSYs91Xw3DpGlY7M4mPB4PGSdRqR2aV9SmaUIw\nzzW8O+ryWmNRd3jdbSyQrTgvA6Snacya7dE07IpszdIYXVF5PBsgUAizlF58cRpWU1S68amHk6Io\nLJs1LFXHUQ1WLI+6bpHKnC8uvXol2dqPRhxEY5q6XbXCEpmxF55aVZwnW1BON36+/gpRniCLgtft\ndeQ524YTsnUUjxik5fXDEBqf8l7BUk0c1cJUDX66+YkryRaUflsdrbVgIQGl0ekkm5IVGUdJl6Qo\npzATmbAT7Z7u77k3l6d6qIpKKlN2wx0ehR9QVxtkRUZWZBjCxJtXw3aTraoVaCk20/xUAjDO+/hy\nwkQO8LMJeZEhUBGc+p39OKEo6kJgtC3WMEWbqDgmLrpP+OTVSIsuefHyPMJeChQduPZMZOujjp8Q\nrpcMr11D01X6+0NG3Qn1jsf119dZfYEpxe33DwlnF/2CzCsCmaE86dvnNGPd/RGj3rTKFpwMfUaD\n2YIurbXk8an/cou1622UOWH7xOdvUSgQ+OWFa9ifIYSCbRv8Lz/zOkf7IzorDRpzv6wwTNi42Wbj\neocwSNjc7HJ8MELTVN78xDqKAh+8f8h77+zy8MEBr7+xRp4VvPGxNfq9KUIoXLvershVrWah6xq2\nbVSER1UFn//sK7Ra5Q3z3oNDVlZOt1ciicMEIQTjacjO3oDxJFzw3hpPrg59PYEQCqZxejG79+ii\nyall6hjz6t1hb0IQXV7GdiwD61yV8LXrS5UebL1TtjUvazVOgoj9/pRbqy2yvPQ8u95pMPJDFMDQ\nNSbhIum7t98lO7O9uZTc37/6Atyd+nSnpzf3SRhxOC5vlArKpWTzPDYaHo6hz8fLC/JCInlypS2T\nkkEQLvw9k5JhGLHkulxvLB7H93q9K4mjnybEWYahqjweDTn2Z/TDgChb1B+mMmd7OqYXBhz6Mz69\ntMqDUZ9xFGFpGoMoQBZFOYkY+izZDkuWg62XsUA3ao3KfLRt2hjzatDrc7L1b8c7vNc/5jAsb1rb\nsxGpzInzjB1/TC4l++FFnWdNN3ml1uSLK7fLOBkhnuh9VRQF/jyM2lZ1moZN23CJ84x3JgdkxdXk\nNMpT8pPILaGzYpbHX15IDKER5smCVuw8bNXAlzESybdG93jg75eay8ljEpnRSyaM04CO4XEcnxK4\nR8EBQlEYpTM+CPbZDA+I5NWtH0Po3LTXKpf5E1jCxBAGljBp6y0sxcQUBm29haM6yEKSypSj5Hj+\nfotIRrwXvEdGgqs66EKnpnmERUhWJKjzfX3TvF1V0xRFYVnfqL63qS1TUxs4wkNVNBxRRyjiglD/\nx4cCTTmtjJ8QPlusYomLE7BPg6IIVFwS+WRD5x8nCvmd8oHgw2pnvmT8JNrnORCHCf29wVN1Wpqh\nYdoG0+EMp26/8JNPo1Or2nlH231kLp9ItuDy/rVbt7Gc056yEIIsyzFMHaEKgllUWTVkSY57pro2\n6vsIVcF2TPxZhFuzynxFTeXB3X1aLZdarTQTbbZcLEsnzyXtTo2lJY/OksfOdp92x+Nf/vE+rbaL\nW7OIo4yl5TpLSx5SylJPk+UMhwGGoVY6tSzLcV2rGmXPc1lpw46OJzQaDu3WaW6YHyTkWU6alvYN\n37+7g+MYvHZ7pVrGYOzj1Z5cCSkJ1+mFvtN0iZKUzb1BZQmR5acaLW2uJ0vTnOEkwL3kd8pySZqX\n8TyXVZROKmCua+L7MYeDKYau0qmXmppZGBOmWTk4oAqaNQddU8s4H0NnGsaYuka75iy0B4WisFy/\n+ph1TWOhFaipZYKBqZWu/7ax2LJ80vHc9wMmcUyc5XimWRGuLJdMk3hhalAoCk27/B2KoqDr+6Wu\nrn6xHB+mKSu12pVtT4WTClJJ9jyzzLjUVYEmBLmUjOOyAmZrOm3bxjPKc2LVqdGxHbqhz/ujMrev\nbpqMoqj0EzNMLFUlySUrzqkWTlEU1uZ/r80NSW1N585ShzzM2ZyNWLLdKlanFwU0jbJd4+kmcV7G\n5Jzsz6NoSiLzsr2piAWR/TgpiamhariaQVrkdGOfhr7Y/tGE4IbTQhdXk7X9aMwkDcsAacNlNxri\nqCa70ZAVs06UpwR5XJmg3p8d0NJddqI+qiIwhYan2QhFsG42Wbda+HmEITRqms1u1GOYTVk325jC\noJuMqWtOpc86iHvccTZo6d4F+4dEpgjEpcdYURT4MmSUjVk2OvOcQ8FOvI8tLMbZBKEIXNVhmk+x\nhDWXswsG2YBJNuKz3uepz6tZx+khDbVFTa3j51Om+RhHrc3Pv+jK41xXDIQimORd6tpSFVidFSlJ\nES14bJ0gyEdIsktfexEURU4oDzDE032zsiIgKo7QlcutYsL8PqpSIyuGaEoLXfzorCGKIkUW7yCU\ni6bRl0FRNq6+3hQShS3AnFfBSnyUNVw/qXA9B3RTo/EM/h6qps5Jl0l3d/BSvnv5egvvEvPR54HM\nJYapYzkGzXklbjLyOd4flTozYGltsaqwdr1VidWXVuoL7cr/+nNv0Gy7uDUTr1Fe+O+/t8fB3pCH\nDw5pdWoYps6rr68hhILrWVi2geuafOzjGxhzIf3WZh+3ZtHtTllfb2Kdaffdv3/A1lY5IROGKYdH\np2235SUPVQhG49OW18Zqk431Nn4QEycpP/vTr3PrxhJ+EHNwNCrjYFafzdxv93BUtQyjJGU4Drl1\nrRyfz3PJcf+03WqZOqoQqOpFnVaWS7JcEkQJ0ye0IO/tHPP4sDxeigK2ukPqTkk2Hx70CZOUpbrL\nvz/YZTALKjKzXHcZ+iFb3bKacELmnjVW5zxUITiazBaqZCfYHoyYRJfH+gAs1VzW6x51y1yobuVF\nmQV5gjTPuXvUZRJFRGnGu8ddll2XlmMzjeML6z6OY+Jz1aqiKNgajTiczdBVlUmScDCbcKPeqMxN\nT4xX86LgKJjRDQNq53RhcZ4xSxM83eRzyxv0Qh9DqNysNzgOy8qfUMSFqcUkz3k47vMvhzv05u9r\nmw6mpiEpiGWOp5vV73Gz1sRQVWq6wXf7++wGY743OKgc51esGi3jcv1MAQuNO0No3HRaF94ni4Jp\nGnMQTebu8ocX3tMxXEKZsmaWk5KJzMmKnFfdFRzVICty2nqNu9PSNHPFrPPudJeW5uBpFrMsYj8q\n11kXGrMs5K+738NTyweDW/YKN60VojzBEjqGolX2EuPU56a1iiE0hFI6wI+z0xZWNx0SF4tTtf10\nyH58zH7SxREW+3GX46TPKCsrhdfNdQxhYAqTrMg4TI6oqTUaWoNpXrYe14w1Put9vqpk9dMua/oG\npjDRFI3H8UM0jPmxkrETP0YWObKQ7MSPL+xDTdHp6Is62qKQxDIgK1KyImGYnZqOqor2wu7yWREx\nzRcjyRRFpabeuvDe4lxlc5x9H6UQmMrlrWUAS7yOUCwKCmQRXojcSeQBWdG/4tPPB0XRUcVnf/gF\nFWMUNilYAX40GZY/CvykwvUcUBQF7TmCjy3XpNY4LflmSbYQr/O8332W6Xf3Sh8t+xyTvozdZ2mO\nIhS23z/C8WxUraxwZakkTTL0eQVjOg4wTJ3sTBUpzyRxlFJImE1CbOfiwb35qNRHOY7J0kqddqc2\nn1YsSd7h4Yjd7T77O0M++ZkbCEVBNzTSNCOOUpIko9F0KjI3HoekaYZpaqAodNouk2nE9u6A115d\nzMTLcolpaozGAaNxQH0+vTiZhNy83sbQNfJcMplFNOqLJrpZnvNwq0untTjB9+0fbNGoWcyCmJVO\nSbB1TcVzrarCIoRC07t4cywnFxePkdEsJE4zmp6Nc047Ng0iuqMZ4yCi6Zi06y6NeXv2+lJJDNN5\naHWaS+qOhalrLNXdal0mYcQ0jLAMHc8uKztDP+R4PEMVAvPc+pyQNVUIulOfSRjjWYu/a9t1Lh0S\naDo2hqpyOJld+MxZnLd/0IRYEMCXAdY2YZaVmh+lJJmWrtH1A2xdX6hm1QyjmkYECNKUrdEITVXp\nOE5VxRrEER3L5t3eMa+1OtiaRi8MmCYxd5ptNscjVpyyIprmOVvTMcMoYhLHrLk1XN3guleG/47j\niEkcseLU5u03lQejfjW5WFDG7bzaaC8EYgtTUCRFaRGi6QhF4fFkwOZsWLYnVR2hwKpVI8lz1m0P\nfR4kfdXTvKXqBFlCmKWM0vBCxM8JIpkxSHxsVcfVTDqGe2GZhtBYMT3uzg5Ztxoczj27zLkY/x8H\nD2loFtesJvf8fa5bHbajPn4e09JdTKEzyULCPOYwGZEUGXGecdNZQlNUtqNjbLWsAgkUxlkICthq\nOV3ZT8cYio4uVPJCEskEe245UdfcKlOx2nZh4qkuda38HVzVRlVULGGiC424iHnPf8A1cw1Pq6Er\nOofJEQKBJnQiGWKrZUVOFpKy2V38f+y9V5MsV5al9/k5flx76BRXAiig5NT02IwNh8YxGh/4e/nA\nh3mg2ZAc0eyxrq6uYlWjAFwtU4dWrt0PH05k3IybeQWAqkYNDdsMBgNSUc9vFwAAIABJREFURXh4\nuK/Ye+1v4Vguk2qEtGxc4eAJnz8lv6ftx4jCxZMBlmWRNQmu5W3F2k01rc7xREihc0DjWB7SUkjL\n4CGm9RGx/G4YJAuJbXkfjO/RWjOtH+AL83fW1QssJK4YIN7D9ro8P6QVUuspWCCubFMKfATBP7tH\n7b1leWB1TWfrrcf119zh+lFwfce69Kp87ElYFhUnT8/p7P15COCreUpvP77G0LrpZDs/nmIryd6t\nDtI233/0fESyzGh1Q2xb4AcurqdIk4I//v1TWp0Az3dMxyYwN3Fpi+3G4dVyHJvZJMG2JY67e1Go\n64bHD0/4/KeHhJGL2HSBvv7TkdlkXOV0OgGuq/inf3qFZRmejes6FEXFq5cjgsAFy6Isqs3WYsP5\nxYIodHFdm0bD2fmCg/02y2VKkhbcu9vj6fMhypZcjJZbPIRuNPNlaiC8rromtgBC3yEKPZSSO+Ip\nyQqOz2eEgbsVA49fDYmDNwiMm6ppNOP5mryqiPzdN6JjSyLfJfJcaq2JNh3Ay9cwKyoWSUpe1tzu\nmQ6jhq1gAnh2NibwHWwpcW2bdV6Q5iW3u60bfWFJUeLYNlKYrcKrwul8saKs6p0x4k2VldWN8UFV\nbWJv7BtGf/Msw8KIr4vVmqQsGYQhSkoCW+Epw25ree4HNyaVlHQ8j6PlgoMwQlgWkeNwGEb87uyE\nn3b7ZiRqWYTKIXYMYX0vCLdCUFgWx6sFn7U7HIbx9r3caM28yJlkCWfZmruhWem3LItQqe24TlgW\nnm3vXAOqpua8Sng8vuD5cs6nURdhWcTKZVqkzMqUljLixhYCLIu283Fg3HKzSWoLuTNu3DkuQtJW\n/hbF8GQ9pG1713xGszJhUWbc8tr8aXmMxKLnhEzLNT8LD8h0SakbPgnMks0dz3R2bSFxhY0jbGLl\n01MxXRXyWbCPbUkWVYKFYOC0UMLmrJiS6wLbkkS2j21JHEvxPDmhpqatoq3Yele9/WHTlx6+9Lbj\nSK2hLSNc6XKcnxDJiMfpE/p2j0JXaBoCaUTyrJrxLHvKXfceT7JHJNWant0ntlso4XBg3+KgM6DO\nxPb67gkf21Kcla/xLH9HeGltxFvSzAlFm3l9QVcdbsadavv4Q3lz0sTlxuOkeoH/jvGgZVnXxJaJ\n78muebguxRaw4YQF34q/Ja1oR2yZ33vziPevtX4UXN+jfugDd1NVZc2f/us3CPGGu1VX9XsBopPT\nKf3b3RsFy3cp3TQ4/nWG1k0nW9wOrqEdvMAhbvu4nkI5xqsjpcD1FJ1+SBh7PPn6hP6+EYhC3iy2\nwAgu33dwHHungzceLrEscD2HPCmIOz7rdY7jKLr9kCj0ePVyxP5BmyQp8DzFfJaY4OpeSJIWCCFp\nt3xaLZ9OJ+TR4zMG/ZjlMuXFqxGWZRFHHnFkwq19TxEEDo+fXfCTT/fwPEW75eN7ptOQpAVnF3Oi\nyMN9R7fSc81xfbtTpWxJO/Z5djzeYhx67QBbSvKieqdB3JYC37PxXefa95iLqfGWnYwXdCN/5zV8\neTEh8l201pxOl3RCn3WW89XLcw46ZqRqWRaDOCT2Xaq6Ic1LDjrxOzcPA0e9U9B4to2n7Hf+7OVj\nfldW46rIWeUFketQ1DWz1IissjYh0FIIlJRErrMVj5fLAx97UX82nW6jfWZZxkFoOkXPZ1P6QcAg\nCPl6dME8z9nfbEVeZSJdfR59L7gWnVNrzSRP8W3FL7t7O8fqJm/UPw6PSeuKWDlUTcO9fpd/OD7i\nf9y7i20Zv54Ugj0vZN8LyZuKZVXQcjwCW/Ffz59zL2i/8/mXTY3A4tFqyG2/hS8VqyrfGva/WZyx\nKHN6TsBptiCpCuZlyteLM5QQeFLtoCTALEMceDFVUxPYLveDPo3WnOZz9t0WSkhOsxmx7SMtwXE2\nZVqu6aoAJWzstzpySZ2b/29JPOEgLbHxXGWcZGPuuANcqah0jSsUbRUyq5Z01HWLxuWWYK4Lyqa6\n5vOalnOm1ZzYjig3OAhlKQpdEgoDiF7WSwbOHm073oqti+IcaUkW5YxhdcaBfYtcpwgL0ibFlwGl\nLqmchIezr3mcfElH9fGF6RLGso20JLWusDbnz0X5Ak9E5jon/C1tHmBVT8j0ElfcbAWpdcWiPsUX\nbSTOVqBp3VCTv7ejZeNjW+/3BwvLJWvOPsrn9W1rXf8nJB3ED4GQ0BeAgnd0HH8UXN+jfugDd1MJ\nKTj4dI9o46lKlimjozGt/puLR5bk2OqqQVjgeGq7AfiuWoxXzMdLwvb7Iauu7+y82ebjFckqY7Df\nIkkKLo4nKMe+MXsRDGn+1ZMLwtjbdr1gA1H1HIQQOK4RYzvr/lnBxemMuB2wXqb87f/5Ff39FmHk\nIaRgvcxYrTKmkxVB5GEJmM+TzZvA4BtabR/XVUgpsKWgrjWua6OU5GJoAq6llPQ2x3e1zhmPTZfq\n8MDcmKazhE8/GXAxXLI3iFHKxHycns9pxT69bogQgrKskVKwTnK+eXxGVTX4vqId+TtdqbpuePpq\neC0jsW4aJrP1Djy13zYX4IcvL+htWGCvz2d03wHGtSxrg4Z4tyAXwmKdFniOIoo8Hrw8px14ZEXN\nMs046MaEnoOrbELP5XS6pLWh2LcCbyuQbCkIroihoqo4mswZLRN8R70zw/Dq43if2PpQubZNtPn7\njdYUdc3Fas3r6RzXtumHb47RPMtBm5/5NiWFQANPphN+1h9sBc0oTVnlBVXT8Hg65k7U2oGo3lTC\nsphkKRfJeouUEJZFy3GJlHmPFXXNi8WMSDnXhGpeV/hC0fcC8rrm785fMohCfh4MWJUFeV3xbDmh\nbAxp/h/Hx9wJ2nQcj1mR4UmbeZEx8MJtF+rJckzPNcepahqOkjmutLkbvIGivkpm9Dah1W3b51ky\nQiK45Zvont9NXxPZLj0noEET2bs3ACUko2LFN8szfhnfMiNWbbxcse1hW5K+84YHNi3WeNJhVq6o\ntN5mMgI8WB0zzBcceObxPV6fMMrnnOQjPgtukTUlvnRZ1ykXxQxfujiW4jgf4lpqm8d4WefFhFKX\nSEvS0NDohkW1xpcela5I6gx3w+B6kb0mqTIC6XFSnJPWGY5wuOPeRlk2ta63x9W2lKHMq5hZNSGU\nMX1nj0i2OC5e0bX7WJYgCj2azGbfuU0sOzvXP601Z8VrsmZNKFtEsou0JLblMqxe4whvGwHkCB9X\nhFS6YNWMcMVuN11YAl8Yz+zVOJ+anKSZ4Ip3+4U/FPF2WVfFltaaUi+QN1Duv23Z1gHC8newFP8s\npTWQAR4WMyxG8Bao9UfB9T3qhz5w76qrJ7ty1Y7YAjh+ck6rH22/T7n2B8UWgOMrgtj71i1c5Uhc\n3yGOPZKkwBKGtfX239Rak6wyHFfRHUQ7YitNcv7wm6e0uyGOq5hP1khb7IRZSylIVjl+6HJ+NqfV\nCphM1nR7IVIKHj84wfOUyTasG/Ki4vi1EX9FXtFqBwzP5/iBsyXFO67EdRVKSeLYoxV7/PYfntHp\nBHS7IXHsbQWalMZ/lqQF3U64s6F4yfK67FA1jebF0YheJ2SdFASe4u7tLg8enRnz/s7mpkWn5W9v\naC+Ox8YILwV5UVHXZpPyUqRleUm3ZbYEhWXRbQXUm+6S8y26mGVVM5qvCVyHTuTz/z45pt8JsRpI\n8pJGazqhzyrLiTyH16M5ndDD3kBUH5+NOJ0sOezG29f3fL4i2owJxaZTd9COPii26qYhLUqcD+Rq\njtcJ0ySl9Q4PV1ZWXKxNZqKvFL0g4Ha7RcvbvdAHjvpWYktrzShJcKRkXZaGNC/EdvPRkzaPJ2OU\nLei4PrfieMf39a4ygc/Xb0KjLCGvKzxp82Q2NmZyz4ic16s5jpBcpGtK3RAqh0g5fBp16LUCisxs\nGwbK4cCPqHSNsgTn2YrYdpkVGU+XY2whaDsenlRvRLMQuNJGa803iwt+3tq71lm7FFuN1hRNxWdh\nn3WdE9nGJzVwI7pOQMcJGOYreo75IJFWBUld4ElF2VR8Hu6/2fCtMkLbpdQ1L5IRfSfid/MXtG2f\nlu1T6gpPuEzKFQMn3m79pnXBXX+wfYy2JYhVwF1vD41mWMwJpPFb7TsdHGFviPYh02pJy979kGNZ\nFmmd0VUtlGXzLH3N8/w1993b5I3JzfSEhyOMwd+XPi0VE0gfX3p4wqWhMST5akjWmA3PaTVh1Sw5\ncA6JRISwJLalUELRtrtUumBWj+hGbUTu4Qqfk+IlkYi3Vofj8hm3nE+whYNtKS7KVwgkRZNgWw7L\nZkwo3+4oWQjkVlTVuiLTixvjfQCEZb9XbH1MLevHKKvNvP4KT1z6XjWFHqPE97e1WJb6AcRWBjwG\n65NNd8sHWv9debh+3FL8jnX69JzkPTynT355570jxneVAZd++5+TttwxhAebjlNZVLx8ZDaV0nVO\nU2sWs5tBln7g8st/dR9nk5O4f7vD2dF0y8WaTw2gtMhLzo6nDPZa/OTnh3iu4vGDU/7x75/w6ef7\n5HmF5zt0+xHrVc5gL+Lpo1OULfnyD6/wAnf7O20lt4JuOFwRRWaT8X/69z/l6qJaWdbbTEQpBd3O\n7qho+xw2WAowIuqzewP+y98/IstK1pvcxH/3bz7bmuEBFquMo9Mp1pVMuXuH3e3mYb8Tsk7yHc5W\nXlYU5VuMp7phnX4YhHpZWVFyMp6TFRXlZgPvV58c0G+HtAKPXhywSnJWWUE78HCUzZ1ei0YbQGfg\nOhy2YxZpSlq82ey62kmzLIvjyZyL+eqDW4tFVbPMPvz4+2HAnc67L9pKCtrvMdS/rxqtt3mGN1XV\nNESOw34Y8mmnS9s10NVX8xmh4/CLwR5l3VA3DaFSPJt9+y3htDLHMlYOoW1iiQZBwEHw5pwZeAGj\nLOH5asYncQffNu+ZJ4sJ/9frZySb35FVJbMio+cGJHXJo8WY3wxf82Bxwb8b3OPQjxl4IdMiZZiZ\nTceW8qgagxP9defN+nxeVzxa7vLUiqZmVJifO/TMa6K1ptI1aV3S6IafhGZD7SSd82B1vt12/Gp5\nSn2Ft6WBJ+sLAulQbjbVfhoc0KANpkI47LstfhHdJmvM83ueXqCEZFi82R7uqIi0LiiaCguLnooA\nTdsOKXXFs8TwtywsZuV6h9UFEEqfQ9c85rNiTCRD/pfO/8CiXrGqEgLpM68XjErjD7scS9ZNzaic\nIi3JsByj0dx2btO3ByyqOQO1hyvMeRnaMbWuGZbm2mhbNq7w6dsHfD3/I8UGmmpZmtoyx6jSJXv2\nHTMKrEYMy9fsq/tIS5LrBCVc9tWn184nYYnrgdR/4YCXWiegBR37X27+22wWB/LuX/Tv/kXL8sD6\n1ZX/tuAHjEL6LvVjh+s7lh952I79ncTRepFeI71/TNVVzehkRth695jkbXUvpSBq+zS15vd/+5D7\nPz0gfs+4cj5dc/xixN4GD9G90qWbjVdELZ9217C0tN6In37E3kGLTjdEKZveIOLo1Yg4Nt6r5TKj\nvxeTFyVl0ZDlBctFymCw+ynud799xuGtzhbQ6l9hWbmu4uhoiuvanJ3P0cBsnhBHu93AyXQNlvXG\nGO85KMui34txHEmal3hvHXtlS1brDNsWW9/W5YbeZJ7guQZfYVnW1vflOeqaB8yWgtC/WWgsk8yE\nHF/pONpS0ol8Gq2xpUTZEseWO69hXlbsd0IcZbPOCpaZifhpBd72sftKcTJdErgKV9k7I0WAfhQw\nTzMCx7m2efhqPDMdA2XGjdF3FEpX6zI38bvU8XzBw9FoCz19OZvR3jC1LMvaerfAdOQsMD4l25jQ\nn89n/KzXx7UlSkocKflqeMGiyBn4AbMN4PR99XIxR1jWRrQ5/Lez10S2w2EYsy4LFkVG2/VoKZdP\n4100Q0t5/PJwHwrDA/tqNmRZ5lxkKwZuwL/t3+F1Mud/vfU5r9ZGpOR1RUt5+FIxytcGIjo7xbcV\ngW18YWbZwBji397+fJvFpYFpmXLbN6T7Py1O6TsBNQ13/M52vLjvxizrnLQ24imULl1l0A5KSPKm\noq0C3A3C4aoP7Cgb07YDek5EvTGOp3VBuKHTS0tuvVgath0u25K8TIdc5BMC28MVDh0VXdtMBLgo\nJhy6/W0HzLUc0JppveC2e0DVVCgh8YW5BlhA1mRoGmIZb8VVoxseZQ+5591HWQ55k/Eg+Yq+2mPP\nOSCrM46Kl3jCRwmHLwafG3Bz/gitwbE8XuWPCGWMpsGTAaFs4wiPVT0jEDGBbL+XsTWtX+Na0RaU\nqr5jkPTbpXVDrscUzQJ1ZWTpicOd62KuTxGW895txf+/1F9zh+tHwfUdS0jByeMzbNdG3SCehkdj\n8nWBv4GIzsYLvvy7R9z5/IDzlyPa/Q+3jI+fnqMce8fw3jT6vfDTm042IQRCCg7v9UyMy3tEYhh5\nW7G1fS5nc/zA3RFqeVayWqScn8yQtiBZ59RVQ7QRg7PJmqjl4Tg2QeCS5xV37/a5c69HGBpGk9ag\n0dvOXJLmTMZr9vdbNE1DWdYURcV8YTYg9/ZiTk5nZHlltg4D55p4ch2bNC9RtuR8uKQVeyzXOask\n59XxhLpuaG38W6PJygRMu4pW7GNLida7XbPFKiXwXXzP4DK+zbjwas1XGa6SN24z+q5CXelOXn0N\n48Bsdp5OFrw4n3J30N5Gy6yzgrPpknt7HTqhh2O/Mbs/PBkyuBJgHfvujZiHrKyoG010Q9TRhyCn\nf4lqed4OYd4CvE1w9VfDC3r+G8Hx+9MT0qraYiEA+n6ABlZFgb8JyT4IIwa+WWs/T1a0HXf7vOZ5\nhmUZ4aK1Zppn+NKEj385PKfluhwGEb8bnW5o8oa8LyyLaZER2IpVWfAfXj3gi1YfR0pe50uc2mAq\n7kVt+q5P3w3wpOLFakajG24HLRrdoIREbUaIwrLI64rQdjjwYnypeLgYUugaDTtjx3VVIK2b/XaW\nZXGeL+k7IZVuqJqaaZlwy2vz9fKM/U1QtS0kjiXxhM2wWOEJm3G5okETShclJEVjIppGxZKLYsFR\nOia2PfbdNyZ/TzpGUFlyG2W0qlNO8jGR7eFLlxfpOQNnEyatYVIv+Wlwd7u5eFOVTYW32WDUWlNT\n81XymD3VxxMuR7nhXGk0aZMhhaSrOiZ+yZLbbUJhCRzL8LaG5QUOLjUN0rI5K0+YViMiGRNJQ44P\nQ5c0KZFI2rJDYMcEMsYTIY54cyOdVGfYGwiq/ACywbMiVvUQ73uOCq9Wo0uW9XNc+rii8973qk0L\nEHzXcGyt6xt/Vuvyn3+0eEMJ/TWaLmxevx9aN/wouP6MNT2f4UcerUF8o9gCKPOKsBNsTeuu7zDY\nbCnaymZ0PP0gyDRs+TuB15ZlXRNbpy9HRO032yrvO9lePDxDNxovcCiLamcE+XYVRbUVZ/PpGj90\ndsSCUnJLndcalvOUIHIZD5dELY8w9rBtyVd/fEWr7TEarRkMImPGd8zPvHw5JC9Kg5NwbPr9mM6G\nx/Xll69J0xLXVdgbM31elAgh+OyTAWHg4l4GhG+6T0fHU6qq4uRsxv27ffpdw6pqt3yENOPFXifk\nP//9I+7f7hr/mC23AnQ8W5MV1Q4rKwpcqqoxG1wj05F4G2z6MRX6znvRETvfu3kNsyubj6HrEPsO\n4ZUOlGNLupERuFLs0utb/ofRCkle4NqSbnj903ZWVrwYz3ZM7t+nvmuw79Vu1DBZMwiC7fO8Hbfo\nbUzxWmvyukZJyYPxiGWem5unUjvbdB13tyO6LgtsIVgWBaMs4cFkyDeTIb/s7YFlUTS1eQxacxjG\nNGjjr0KTVhWhMnwwXyrarseyyOnGAaq2eLKY0nd9GjSrquTlasrAC7kVxNiW4O+HrxkXCZ9F3a0f\nKrCdTS5gRaM1h36LjuNf2zIc5+uNWLvClWtqvpyfUjUN43xNrRsWVYovHLpOgCNtOsrn0cqMDS/h\no2AE1cCJaSnzt6QlkJbgRTJCWBbP0iFFXZquloquYSbERsCByWR0N34tVypepmcIS9LdcLSEJbjn\n7X0wEse7got4kR0jsNAN5DrHEYpcFyzrNYHwCWyf0/yU2I7xhLsVW41umNUzXOGSNgmrakVp5Xzq\nfYYjHHzhUdOw5xxsifHKt1gnGb4MsYW5FtiWYt0sNhuRDkm9xNYKzw4Zlq+JZYdlM0FZN/tvk2ZB\n2ixwRPBBcfYxVeuCpDnCF4dkjDYjS4llCYrG5D9ayO1jqVhS6vE7afMAZXNBo9cUzSnC8qj1CE2J\nsHwK/QBJe0dcaV1Q6GfY74Gq/sVLayAxAFTrTVLHD60bfhRcf6bSWrMcrwg/EO9TZCXKUVtTumVZ\nW6yC4yrClv9BE/3HjCu11nhXRNjbJ5vhhYFuNGdHY27dH3D2esLwdHaNKn+15pOV6aZ5iqKojVDc\nCLSiqFgtUpJ1Thh7BIGJosmygjwvOT+ZMR4uSdY5x8cTbt3p0x+YmKI8LxmPVkSxh+c6xrPlGTFi\nWdb2b4Shy95ezIOHp0wna375i9sbg7qBmo4nK7TWOI7i5asRk8kaLIhCDyEsWhso6TrJWa4yzs7n\nDPrmk/1P7g+YL1JWSUEQONvjHPjOVmxdjJdM5gnt2Gc0XSGEoN+JSLOCwHeom4YkLa6hI64dx1W6\nY7Z/X6V5SVnXdFoBSVJwPJ4bhMPm2JxOl5xMFlR1Q+y7NFrzf3/5lLv9NlrDdJ3CJr/Q/oiRXlqW\naG7eErSl+LOJLYAvz845iK8zz95V66LYjiVfzeY4UnIQmp/XGw/b8/lsK7jyuuZsvaLWDb5S7IcR\nyyJnURS03TfxQZcsq8sKNlwt3zaC6SCI2PMN6uNWGHO6XnGWrKhp6Hs+zxZTlBCEytnCTn9z8ZqB\nGxAoh69n53Qin1fTGXteiBKCb2ZDTtIlX8Q9srridbLg0I9NFqaQLMqCYb7iePP/AZLK5B1eesPe\nrli514z0Gni+nvCr1iE9N+T/GT9lz43Z9yLOsyVn+ZzQdvGEIm1KQvlmVPu/n/2B+36XwHb5ennM\nosroOSFZXTKrEn4d32XfbdN1ItIm5/eL58TS46yY01EhZVNzlI2IbZ9VnVJRc5SPCaXHcTbmvreH\nKxW1rjnJx3jC4SwfEdsfB9TsqhaVrmirmH2nT1pneNJ0qpImZd8Z4AgXidigG8x2okaTNzmzasae\n2iNpVuypfZRQlLpkXs2IZcysmuIKAzfVbsFynaCBRtek9Zpxec6yntG1BwhLUlMxrI5xLA8sTSjb\npM0KT9z8fJTl4ljeNUyE1ppCr7915I+wJK7oIi0HV3TI9QRpOQjLpmxWCGzWzWMkEQ0Zymq9V2wB\nCDwsHCo9xJV3EHgIfCxLYFt71zpZliV/WLEFQIXFMVx5HD8Kru9RP/SBe7ssy/qg2AJwA2dnA/Da\n73mH2Ko2RuyrX19sgqbf9n1lSc7o1Hi6Xjw4pbffunayLWcJ88mKZJ3zyU8PUUrS7oUMDtuslxnK\nkTdeIPzQgFBXi5SqNPmKQhj46PGrMZ1+RJYWFEVJELjELZ+45dPpRpwcTfji57fp70VGLAiL+WyN\nUjauYyNtgec5+L6z3T48P58TBA7Pnl0wn6fs7bU4P59z+3aXvb0WaiP4HEdux5TrJMdREs9TzOYJ\nB/ttwsClsxl9zuZrvn50Shx5fHK3v/M8hWXhuYrXp1PAwlFyZ+SWZCWtyBjVo8DFUYZVdomHqKqa\nxTonuoG8f7XS3Gz9vS24lknO6XhBJ3rTXcrKiqbR9DohSVLQCd+gK8qq5o/PTrjXb2NZAmWb8efd\nXhvPsSnrmi9fnQEW8Ud0twBcZb9zSzAvK8pNx+imqhoT1VPU1Y3fU23yMS/rII7Iq4qiqpkk6RYd\n8Xo2J3KcrWfqxXRKx/N4NZ/TC8zr6Nn2JtdRcL5aGUCs43CxXuErhSMlthBEjoNn2wgMoLTj+Vux\nBZDVFSfrJV3P33mc58lqm6uopCSpSsZZSt8L6HsBZ8mSw8BwzSyg7/nb7sy8yDj0Y9qutw2M3mvF\nyMoATaUQdBzP/OP6RMql7Xi8Ws/ouj6zIufn7T0kgk/jLn+YmMifBs3tYPcG2WjNtEzxpaJq6p0O\n0bzMOMsW/E3ntgkNtyRt5dHeZB7uudEWiCqF4CxfMnBC/rB4TWi7/Jv2feKNF2zPbSE3Xa3Pw30i\n6fEyGVHqmlGxZFGn/DS8jSsUvnQM4DSfYiGYlmtueV084dC2Q5SwadsGNquEzevsAoGFJxweJ6/p\nqzaPkiMsbbGo18T2u0W+KxySJmVRLZlWcySSvupw4JibbdZkJjvRsjjOj4mlAdbmOqdrdzfxPx5l\nU+BKD4HgcfoQZSmG1Rl7ah9p2cShz5+mf2RdrZhXF4DAlT4H6u62O2VbDm05IGtS0mZJKFusm+kN\nG4qmTCC5usbk0tSkevq9txKVFZFrEzo9rb7CEwMCeQ9NSaNL5Efwsgzg1Ma2uliW3PzzV25KtyRY\nu1DZHwXX96gf+sC9Xcky5dkfXuJHLmVebTf63lVaa3SjrwmsIi9vZGSNz2ZbFtZlNY3GVvLa99vK\npjOIkVLQ2wBK3z7ZXN+hrmpm4xW9vXhHdIwv5vihe62T1jSa+XRtRn/A1394RV3X5HnFfLqmyiv2\nb3U2iImCuO1TlhVZUjIdrzi802W1ysjS0nQVyprxyGzJCSFAw8MHp/iBEVxVVdM0DY5j47qKOPZ4\n+OCUVsun2zW4ifU659HjM/r9CKVsbFsShR7nFwsC3+HWYQd3A3C9rKrWOMrm6HhCK/bwXEXTaEbj\nFVlZkWXlxjBfcDpa0OuE258PN5yz5Srb8YmdjxY4GwL9h8QWmPGjENbWV7Z9XZTNcLYi9JxtN8pV\ntuFsvfUavhrOiDyXbuQzXiVYYLbQiop5kuHYkvk64/ODHsssJ3Sdj+pwva+SwvCsLv1Tb9eDsyGh\no975PS8nM8q63gJSG615Np6yF4VI8cZU/3g0Zi8MzULBxmzv2PbdW7SQAAAgAElEQVRWbIHxV23R\nBWXJXhgyyzL2ghBfKeqm4dV8xrPZlLutNi/mU9ZVuePVAsOe6no+yyInqyo8295s9JlOUqM1GvBt\nm0g5KGE+jNwOWyZQWgimecqyLOi6Pqsy5z+8esTtIKblGFRHrFz+aX6Or20i5ZLVFcsi4+liSmAr\nvp5dUNQVd8I2kXJ5shpjac2kNCyuQz+m43hISxDYu12PWmtG+RoLi+N0QUu5vFpP6ToBnrTpblAR\nF/mSQteABRacpDPKpqF9mdOoNY6w8aUisl0a3Zhzvcq2hHpPKvacmIerU1q2z2kx457Xo6tC5uWa\ni2LOqs45dI3ACKXHWTHjrtcnqTM86WwFtxI2WVMyLhfYls2B00NagtvegOfJCYt6yRf+XQLpbblf\njW743fJr+qqz4/HyhEsoA3qqQ2QHO1BUZSnSJiXTOYfOwSZX8QxlmXGiRiMtyT+ufosvPE6LI5Jm\nxX33U5ImxbFMHmMrCrGzkFyn3Hc/p6LAlyGL2nTBKl0iLZtlPSHRCwbqDsZhVrOuZyjLvXFsuKjP\nDCDiinHdssT3FlsATVNjWyESl0je3dLlhaU+SmxdrQ95shqdUukzpPXuCcn7H+sTzPjz+/PAbqof\nBdf3qB/6wL1dylX4LQ9pS6bnc6J28M5u1fR8xtmLEUVWbon0l/X8T68Zn83oH3Zo6mb7O8KWvyO2\ngPcCTC8rTwvyrKTTDa8dM8936A7ia52suB1sxdZilrBapEgpmE9WFFnJelXQNJrPfnZIXWn2b7Xp\ndENaXSNMhDRgUduWnLweE8YerXaA49jGWCwEutGcn824d7/PrVsd8rzE8xX9foxuNNIWPHlyQVUa\nUn9RVLRaPtOZ2dbqdEL++MfXCGkBmsUyQzk2r16PqRtNUVZ0Ns9Da21E3eZ5Pn81omk0f/Oru1vR\n1DSa33/1mtsHbZQtWawyDvdaVHXDcpXiOm8M7E2jKYoa/4qofn48Zr8XfXDcO56vSbKCwHOo6obR\nbL0FlYLJV+zGPv4NxPa3Lxi2FHiOzcvhjHuDDp3Ix1WK2crgPfbakRkNKptO6PP4bEQn9Fmk+Qcj\net5VrrLfKbYA9uLwxu/RWlNUNf0wYLhKaPvedmw1CIOtqPr98SmOLfmi39+JAbq63fhwNCJynJ2v\n/+7kmEA524BrKQRPpxOKuubXewcIy+JiveLlbMYgCDhbr/CVvfM7vhyds8hyOp7JhfRtxaLIebGY\nMc1T9oIIaQkeTkecJ2uKpuZktdiEZ1vciVpYFpysl/zPh5/Qct5cXC3LYr8dUeY1vq0YZWvO0zU/\naXWZbaJ9QuWQ1iWv1jO+iAfMyoznKyPIYuVS6wYsrhHwhWXI/LVuuBt0sLB4vh5z4O2mCrxMptzx\n2kjLIpQOj1ZDHCnpOyHTIuHJ+oJP/J7xhAobTyr0BhbhvEV1H+YLZlXCZ8GAcbmmrXykkNz3B5RN\nRVLnRJvNRFfYrKuUXFfE9mbU25TkTUkoPULpkTclRVNS6oqiKQlsn58F95FCbsXW5XGMZcjr7Jys\nyWnZ7x9Hp3XKqJyw5/TxxZtNyVCGuMJhUk5Y1Stc6ZI3GaEwqAoN3PXuM1B75DrDES5R6JEmFRUl\noYxY1lNiq8O0HhJYEU/yfyISZmlAILmoXtK3b2MLl0DEW9/X2yUtB9tyqCmwMOf5oj7Bu4GLpXVD\nRXYdJ3Ht+zR5M2VY/5ZYfrrpUn2/rlSjM6x3+MxqvQINwgqwvvPGY/cvJrbgR8H1veqHPnA3leMq\nbMem1Yve68PyI4/OXutGc3zvsEP/sEORlxw/2c1YfPbVEe1BdOOo72o9/eqITj9iPlkxPp/jhS7d\nXnTjMXv56Iz4SgfnaiWrDLnJUxRSmMDp4yntbkh/v4UlLFbzhOUiJW4HHL8coVyTxffk4Smttk+r\nHZJnJa6n+G9/+4jHD0x+YrsTohxJtxexXGWMhguOjsbcudtntcpIkoL79/u4jk3c8gkCl0cPz/jZ\nz25thJtFVdWs1zlK2dS1RuuGP319zGefDLgYLalrY8jOi4rZPCWOzJu52wmII29rPK828Uuep+h2\njEg7O58z6EUMuhG+p3DUG7K+FGIrtrK85GKy4t5h94O+LTDbkr6rthT0q2ILTObg05MJiyQjcJ0b\ntxTLqub52YTDrhHLvcg32YgWPDy+IC8qGgz2wXNsLMxNea8VUTeavKwIPmDwf3g6pBP4N54X36Vm\nacY3F0NansdB693nsGObLMT3Ue0HV7YPwcQDzfMcYcF+GNFoTct12QtCTpdLbsemU9D3A6Rl8WAy\nYi+ITEew0Vsxdztq0feDnXGqK20GfsA0T2k0hMrBlTbPFzN+1dtjWRUUdcP9uI23CaTuujdHqzxc\nj+kJD0dKIuWiLdMxcoRgkmf8Te8WTxdjyqam0g3H6YJ/3bvNwca/ZQu5I7ZeJzPKpiawHXyptp0v\ny7K47be3242rKt90pkKmZYISEk8q7gc9+hvw6bxMueW2+GZ5xrhYs++avzkp1oT2G1juZXVVxHE+\n5a7XI7I9HqxP8CxFpLzNzb4kts1iwHE2ptQ1t70eWVMwLVcoYTOv1vx2/pCOiuipmD+snvDz8B6z\ncsmB02NVp+RNhSvMuTorVzxMnnPb26dlm9Dqq+PT83xETYMAxuWUcTll4PQIpM91M7/BMMS2wUS8\nSJ9TNBl9ZUz7y2pGLFskzYqO3dvZUgykEWXHxQu0Bb4MWTdzPvN+tcFQCELZoqEm2MT+vG8RQFim\nY7qoz1HCvTKevH5zrinImjHuByClmR6zal5w6Pz7G8/FRheYzdqPe39rXZM1L1Cif/PXScCykNbH\n+zHfrr/05vOPgut71A994L5taa05fXZB3DMn5Nsn1/GTM7Opt7mRS1teC7SOu8EHO1oAnX6EkAIv\ncOn0Y1xPvfNki9oBtpKslxmOa1MW1dYflKxyk6PoGwO5+bdFGHuojQAJYw9/s2nX3vC2hBTYtqQq\nK9rdEH9jQF/ME27d7hC3ffK0oKo1fuCwmKe4rsOjb06JYo/lIsPzFWHo8fVXx3i+g+cpBptuXJaV\nJEnOkycX3L3TYzCIODhoE0UeX3x+gO87HOy1zGMRgih0zZhQSRZLg3O4FFvLVcbpxRzLgl473BjR\nDUcsDBxW65wkLYjeeqOcXMyJQ49GG6jqu/IX3y7xjpX9y3I2vKxW4O1sRYJ5sy6XGU/PJvzksL8V\nQ1dFkWtLPj3oUZQVjjLMqZfDmQk3liav8KrYquqGeZpd63h1Q/+9kUPfto5mCz7tdbeP4e1aZjnL\nvMBXNtISpFXJPMso64az1ZLOe6J4Lsd9t1stHCkJrnTXDqOISZriK9OtSqqSn3UH9IOAcZpuWF3m\ntWu05tl8Qt/f9QvNspS8rmi7Riw9no35RW9AVld0XY/DIL72nLKqpGqa7YYewC8PD5guU4M8EYJo\ns8noSptllTFwQ7K6puMF3A/b2JYgst1rHa3Laivv2njxssb5Go3eRvP48k2+qnqrawRwnM7ouRHr\nusTGouuYpIaX6Zjfz1/RtQOOsikajbIkR9mEtvKZFCsGbkwoPbKmQFk2aVOSbbpXL7Mh9/09I1KT\nIbNyuXn+kpYdILDYczooYXPL6VE1FQ+T1xS6QCJY1GtG5YyWHXGaD1nVCeEmA3Fame1AicDCoqEh\nqVNadoS0JG27RaNrnmcviWW0Ey59VpxhYRmxlT3nJ97nOMLjqHyFK1x6zgBlKRoaPOFTNAXKhyLV\n1LriojziU+8XzOspAujZ+whLsqinhGJD26chbRZ4V/xZRZMxrU4J5PWxmyda25zEm8QWXNLmzX2h\nbFZkzQjnhtGjjUfWDAnk4bWvAaTNKcKyER9pyrcssSO2tK52OmbC8q6FW/+11Y+C63vUD33gPlQv\nvz7aifCxLAtuwDdcVtwN38vRAnYCoN9XN3XX3nWyXf7Oi+MJrW7I8fMhYWw2JZfzBK0N9f3y+4Q0\nWYpCWMwmK/zAZTZeEYSu6TitcoNVcGymkzWOpyiLynDDlCRZ57TbIXWjKYuKLKu4OJuzd9hisUxp\ntXw+/WyPPKtYrXPanYB222e1zEjSAt93qOuGLCtpdwxA1bYFi2VGmub85jdP+PTTPS5zCpMkJ0sL\nnr0Y8vpoasj70vDHpDBxQK3IJ80K1kmB6xgfmO85FGWF7zm4m43Aq1XXhvh9MV7gu4rpMkE3MJqv\nicOPb4tfIh4W68zciDaB19NlguconhyP6ESm0xSGLmla0ouC7eNpGk1e1tibjcVL4dQKvK0I6IQ+\nrrJ5cHzBXmv3E2jVNKRFYUChb4n5RZrj3dC1u1isUFJ+lAH/bLFECsFBbIKkVxtRdVV0VnVDjca1\nJc8mExxbMl4nnC5WfNrt0PU/FMZr4SvFPM+2HqzLarTm9WLGIAjxbJuOa46Lten+BOrNaLJoak6W\nS25Fb25gT2cTXq8WPFvM+Hl3gBTmvDldrzhazxGWieB5+/GtyoJSNzvbhGHocjZbYm0e1+PFmL4b\nbDpRhgDvSuMTS+qSo2Sx4XR9e1yA3hjkPanwr6AjLsXWKF/xMp2w55rzoe+Ehr8lJDWaeZlQNDUd\nFRBJl0OvbRYDHGM4d4RNVhf8b2e/4TN/j6qpeJWNadC8SC74IjjElYpYejjCZlqu6KqQtC7QWHy5\nfMkXwW1i5eNtRm3P0hOG5Yyf+Lc5dHtEdkBHxbRsA0ANpc99/xa+dHGFQ2yHFE2Jsmxe5sfccveJ\nbSMUsybnpDhj4PRxNziIq4Irr7ONT8plWa84L86JVEjX7qKEYlHN6Ko+oTTHp9QFjieoMoOvsJBM\nqyFd0SO2e8jNyLXUOa7wmVUjYtnBk7vvNwtrCzp9uy7KBwSi/9GdHoG9Caq+/gHGsiw8sffOMaJt\nhRR6BmjkdxBKWfMIabVv/Nt/rfWj4Poe9UMfODCbg5cm97ffJF7oot7qGrxPUP0526mX3q+qrKiq\nGrmhlE8nay6OpsSd3U/wj/90xGc/vwVAu2e6Y5ZlkWflputmc348Y71MTfdsI+jmkzVRy+fhV8d0\n++bCMjyb47iK3/7dYyxpMTybE7d8PN/h9//wjDQtids+F+dzXjwfouuGz396SOA7xLHP/iaE2g8c\nRqMl81nC/n4LKQXLZcp6nXF+PmexSMmLmjt3uti2JM1KLs7nVHVDUdQMJ0t6nYAsK7GVZLXO+Zf/\n4i79bsQ6uRxD1lyMVwx6Eat1Tl3XNFobsVVUzJYZrcjbEVtHZ1NakY+3gZK2YyOGHGXz6mzKYT++\nJlzeVy9OJ3Rjn7Kq0dqIHs9RnM+WnI2X/OqTgzc5jXXFxWRF5DvM1xl5WbLKcta5eS9MVymeo3Y6\nXuezJWVV4zvqmti6LE8pzuZLOsGbLlLdaOZpxulsuTHb747wvLdE07vKwsKxzVjzMsD60cWIjm+O\nW15VvJhODRnd9wzI07YBi5/vDXZYWTfVNE1ZlyWBUuiNd+tqt+nheEToOLRdj7Qq+e3pMb5ShMoh\nKUpWZUGwYXLZQnArivk/Xjzmk7iDFIJxlvCL7h4txyUpS1quy+PZiI7rcTdqM8tT/svJC37WMY91\nlBnzeuy4TPMUV5oRe6M1KwrKrOIomdPzAl6vZwS2wrcVLccDLLK6ou8ZkVXpZouD+LbliF1/2ts1\nLtfc97pb0Xx5jB+tzolsl7ypOM8W7LsxkW1M67Hyt767vKmIbI9fx/d4llzgSEVS5dz2u9zyDD9M\nWoJvVq95vD7hV/F9fOkwcFr0nZjPggMsCxzx5hrZsUN86TIsZvQ3MNRZuURaAtuSW5N8pWvSJmda\nLWjJkJqGfWd31PU6O+ET7w4AyrJZ1EuUUORNjhKKQAa4wqVsSlzhsqoXdGWHWLbNVqO1SYjBYlIN\nadtdunFre9+RluS4eMZp8RJHuATSvE7uxpR+VjwnkK0tw+uy1s2UmhLnClG+bDIaKlry8FvdB8xr\n8e5rzfs8Ww0luR4ZQ/13EFxKDP67Elvwo+D6XvVDHziAdJWxnK548vvnHH62v/M1+0pnIFtn2B85\ncvpz1NOvjunuxyTLjDwt8EOXMHTJ8hIvcEiTgqqst6T6bt94zo6fD4mucMD80MXbjhMVWVKQJDmu\nqxBSbOnxtzaip64bVvOEuOWTbkKkf/Yv7uD5jiFCNw37B23W64w0KfjX//YzlsuMVifg7HTG8HxJ\nlpfbwOrhcM6rFyMODtoMR0vStOD586EZHX5xyO1bHYajJatVxun5DNex+Ztf32M8XfHFZ/torZnN\nEgb9GFsK4sjj+GzGi9cj7t3uoZRNp+XTNJp/+MNz7t7u0d/46kyMkGC+zLbIB4AXRxM6LX9n208I\nC1sKBt3oW4ktgF7L8HlcZXMxM50jZUu6UcBosaYdetvf2WkHZgQ6mTNfZ7hKkRXVhjIv8JTN0XiO\n76itQPIdheeod17In56NaQce/WhXhAthEXsu/SjY/q7zxQpHCkLX/SixBcaTJSyLo/nCwHWVYhC9\n8QzmpQHpHrbMDcuTNkpKvrkYciuOrv2dB8MRsfumK2ULscU/TLN0G9sDmxHhbMqv9vZZFQXPZlN+\n2d+js8E/PJ1NiJTDebreGSP2XN8IRSkpqpq2a8Z6eV3ycDomr2tix0EKi30/5F7c3rK3yqbBERuR\nhfGHPVtMOUkWFJiN3kWZk9UVnlTcDd+MloqmQgmBIyS/HR9xN2jhScW8yHDFzZiW71quMKPby05L\nXpeMizU/Cfc4TmdYQGA79J2IZZWZxUYNXy2PCKXLpFpjW5JS13ziD1hWGbe9LkpIjrIxAkPJD4TB\nYuy55nlqrZmUK8Pk0jX+FYipsAQCSdJkdJT5cPA2Hb5oSk6LIX3VxpcmULvQJZ7YvZEZ47/Dqk4o\ndcVxcUIsIipM0Pa8mjMrZ3yTfMOBs4+ybHwZICzJi+wpoYzwhIcnfHwRIiyB7yumqzm2UGTNmkPn\nPrfcT8l1imO5DKsjItmm1hUlOaFs0+iGeT3E38TrOCLYEVsApd6Mmb8lc+v7lBlN9r6T2Hq7Gp2g\nqd9pqP9rqR8F1/eoH/rAATieImyZ8c77GFxHj07p7H+3VdnvUr2DlrngeA7+5gW+PNmkLbebf5fA\n1bppWM1TwtijqmryrKSp9fbrsMle3IgT11NUZb3tvEzHK5J1BhtsRRT7ho10MiVu+yglt/DSyWiF\nbQui2Of0ZEpdNxRFies6fPaTvW3uIsAf/vAKPzBcrpOTGb/85R1OT2fcv99nPk8INl2wXjdCa81q\nlTOdrmlqzaAfozV0Nt28N5ysZpvHeClkhuMlrrLZ60fYtuSbx6d02gFSGr7SVTP8waC1I7byoiJJ\ni3d6uFZpTlHWSCH4/cPXKFsS+g5V1VDV9U73rHVFXFmWxV47oqxrnM3/iyOPumxoBR57nYjAc2hv\nxpfrrKCsGg678VYgLZKMrCivZSherX4cfNRoEKBpGlxl883JBRfLNfvv6JjdVG3Po2wahqs1Le/N\nyPXpeMIqL9iPzCjowXBIxzdeqbQsWZclkePQaM2j8Rhf2fSvoCGkEORVxav5jEma0vF8JmlKWlVE\njsPdVov/+PwpjdZ40iatTM6eIyWN1uyFBiFRNPVWqA3ThOP1ksMw4jxZ0/V8krrkq/EFd6IWvx4c\n0HJcHs7G+LaibBoidYlNMGKrbGrGWUqtNS3H5cCP6LYCvhme80Wrx72oQ98zzyOvKy6yFauyoELT\ncjySqqSlTMdvXCQkZYknjW9yXRXbDtJ3rd/OXtJRAa/SKb6wsYU0BPoy4zSb868693iZjknrklWT\nk9QFrrD50/KYe36fA9eIwUo3/H/svcmz5PZ17/nBPOecd66ZLFIkRZq2Wpb6ORyv4/Wie61oa+WN\n/wVvHQ7vbP8J3njjlRSOHqJftNsdtp4tWTJl0SLFqYo13XnIm3MiMQM/9AJ5s+6tW6wqUrRFd+ts\nKuomEokEkMDBOd/z+Z6mU6Z5yJbVxlYMmqpDJDI81WRahEve1nEyYT8eMEgneJrNin6ZTVVS0tIq\njVKVXI3onFtOkRT66ZiG6hGLFEPRCYoQS65QH8fpKZZsYso6MjKWYmLKBit6F13Wl4lZImKaWpOr\nZmUybSsOh+kB82KGX0wZZX0USWZWzPBUD1lSOBD3uTP5CFO2mBcz3EVCpUgqmmwsEzNZkrFkl2ne\nR0KuqruyTVkKCjLkJypDqmS8ULJVlgJfHD1XMP/vHQU+IJD/DScMv4z4dcL1S8SvesedxXngqRDi\nwlPo6HjMfBKw+fL6v+s2Bf5lE+zzJ5umqxeSKVGUxFGKW7M52h1iu+aFhOx8GEZVLbn7wT6NloOi\nKhimhmXpBPOEerO6ccqyRJaLyvswzbEWljtezSKOMmzXwDR0tq60qdUt6o0Ko3F+/1271iHLctIk\nx7R0Gg2HbrfGdBoSxSmWrbO9M2B1pY4/iwijjPW1OjXP4vBoxA9/co/XXt0gijOUBbPJsnQkqeJg\nffqwhxAlq90a7ZZLXlTJWKNm8/6dfTZXm8zmEfe3+3RazgXkw/HplEKUaKpClheVbiTJ0DWV8TRc\nTjHmRXVOGLpKu+7g2gbzKGG/NyErxKUpRaiStKPhDMfUmQQR+kJ3dnYMn6z6nIx9TkYzCiHozwIc\nQ2PkR4zmIe2a81zx+/5wir4wdX5WGIs2YtdzaDv255pgnIQRnmlUhPxz+7HrOhxNZ5haVdmaJQk1\nw6SkpD8PmcUxa4spQyRpOXEIVQXro9NTtup1ClFys9XCUFU8w8DRH9/A0jzHVBQEcL3eICsK3jna\nX+IikiLnznDAplfdyOqGyTxL0WSZKM+p6wYnwZxrtQZdy1nuf1WSMVSVSRKzPRuzZleaTVGWjJIQ\nU1XJRIEuq8yyBEmT2dIrNte96YAH/pAgT2kbDqfxnKBIKcsK7xAXVYIlSxJd0yEoUqZZTJRnHEYz\nGrp5iSifi2KBP7l4vD+YHtE1Lk6Grugekyzio9khmqKiSyq9ZMbD4JTfbt1AXZhUb5hNaqrFmlnH\nVDRuu2uYikYqciQk3p9t85KzhquaSFAlZorGfjzgJJ5Q1xwUZFzFICxibEWnobrMigh7AUd9fDwF\n29EJAH4RUlMdmppHURb00tESfqpJKu9OP6agoK66lcn6IuFSUdAljVE+IRYJ02JGUiQ8iB5RU2vI\nVBosUzZJRcrd6C7zfE5drVcwVBHhKB7XzFuUUkmymFwE2Gpu0Mw3EKIgLVOmxZC4DElEvPRbPIuz\npOs038VVG2iSQVbGBGKCKX/+ST6/OEZQoEkmCp9dsX5WpGIKlF+6UbUsWV/5ZAt+nXD9UvGr3nFP\nRlmWPPj5Nu2Nim4b+hG6qRHNY8wFVuFZcfjgsiH1F43TgzFe86KVxPmTTRSCwK8seExbR1Yq9IMk\nSZzsDcmy4oK9jygE/izCOEMhRCnD3oyNq232t/sYpoamK4wGPoalkyzApitrdVzPwrINPvrFHq5n\n8tEv9igl2Niq/CNPTqa880/3WFtvLD0QAeI44/69EybjEN3QWFtrkOcFjlNV4Q4ORlzZajObRVim\njqIpbKw1sG0D2zao1SxevrWKqioMR3PEwox6NA545+fbeK5JmhZsrNZRFJksLzjuTReVLRnHMjAN\ntSLU1yzyXCDJj22VXNvAMqrWnWlopFlOlgsMXeXD+8esdWrIciXc11SFeZQwncfUHBNDq5KvJ5Ot\neZQw9iNaNZu6Y6IqCp5lsHNS6bzOjuF4Xo32j+Zh1UqbR9xYaVF3LN57dMh6q4YoS1YaHsYLoCrM\nBVj1RS7isyjG1LTPjYs4mc1pWOYy2UryfNkWbNnWUqu14jpsj0cEacYrKx26TtV+PPb9ar+fS6Qk\nSWLFqRL8WZLgGZWt0c5kQnMx1ThPU37eO8LSKqaULMvsTMcYSmVeLUkShqIu7YEeTcekRUHTNNmZ\nTXil2eYonFPTDZqmxU+O9mhbNoM4wtN0BnHIhuNxEs5Zd7ylAP7utM/L9Q6uVrUjXVXnOJ3jSlU7\n1JQrcn0scpq6yWkScMWp4+cp+8EEP0tpmw4gYSrqkkRvq9ql6cQzM/FhWgndn5xcXDUvsvbGacgo\nDVAXvoi33RWMhTG3rRhM8wiJqs2oywpxmWMvwKe5KPjFbJ8P/X324wHfaNziKB7TT2a0tKqyZco6\nUgkbVhNNVnkYHhMWGY5q0tRcCgRNzeEkmRAVCYKSII9xVJOWVmM3PuGquYokSTwID2hrla7zTO8V\ni8oz8SX7ajUYID8G2WpydR7bisU0n2HKBm29RSwS8jJHlzVUSSUqIvbiPTaNDabFGKmUKcqCUATk\nIgMJ1owN9IW+S5VUplKPNBGEYo4u6SCVrGhb7CX3aWpd/GJUTSkqVeIeiIqyX1Mr4r0iaZiyS1BM\nEOTLqlZZCkrEMzVXhuyhSRZFmTIpdjDlxnO5WrNiG1nSURafU5QJsqQ8NeFKxbCy8PmCbetUPETC\n/kq3FX+dcP0S8avecU+GJEnLZAsq4ChI6KaObj3/icT2rKWoXgjBow/3aa1+sTZkrVXdhI52+niL\n6tv5ky2cx8wmIaatL5Oos+isN0jibKnPisOUo/0hoZ+QpZUIfzyYc/XWCqqq8OmHBziewcHOkLIs\ncT0TSa6eIrVzFbL9nQHd1Rpb1zqkSc7B/ojZNOLRgxPqTYe1hWn0WfizGMPU+OAXu2ysN0nTguGw\n0nH1TmdYts76egND17DtiqAeJxnzIKHmVdY3YZjw4ccH3H5pjf3DEY26zTxIePWlVWzboFm3ieIM\nWZY4OJ5U/KZFdW/qRxW5foG4mPgR6kJfdXa8z4emKhgLPlin6V747gCqoiySmsqOR1Vk0iy/0FIM\n4pRSAsfUubt/Ssutqkitms1+f8LGSp0wTJnOYyxDI0oyXMsgSDK2T4esN2u8tNFZWvOUZVnthySl\n7wcYmvrU9qEiSwz8cEl/f1Y8OB0yjRNa9rMnB88iLwTDMAOgLdIAACAASURBVERTFII0JRcFSV5w\nMJ3RXqxDlWVmSUIuKr/DU3/Ow+GIlmlSSpXYfhrHnM4DmpaFKssEaco8SbAXCZij64yiCEfXL+i4\n3u+d0DBMojxnxXFpmhaWqlIIUSU+iynCsiyZJDG2Wu2jhmHStRwO5jMUSUKXFUxVw9MNXN2AsuT+\nbMSq7eBpBqKEWZrg6Tq9aM51r3mhAlWUJS+tdMjigqIU/D9HD1Blmbfb6xiqRtd0eOiP+Fp9BUmS\n2HLqHEWzitWmPU7MKyschZ1gREO3mGYxvdinoVsMkoCWbj9TLA8gI+HnCW3DWZLlNVnBVQ1c1aCp\nVZOTjmKgL5AVnmoyTgPSsiAsUr5Rv8GsiNk0GjR1F0NSicuMNaOBn0eMsjlt3cNUdJKFNu2fJnfY\nMtvosoqjmDRUh1IqMSUdUzGWLdKO3lieWzXFRpGVZbKVi5z9uMdNa+uZ518/HYAk09Gra3ImMhzF\nwZRNemmPeTHHVh0MyeA4PV4gIArW9U0UScZVPebFDFMysRWHQX5C122zM9tGQmLNuIJfzFBQ2TRv\nVBqzsgKeGgvAqi5b2Mrl9p8kgSKpy9ZiVE5JymBp7xMUI/IyQpOfYh4vJjjyGjOxg/UZTKyzOPNU\nPAtFMj+zupWXMxTJ/sJw1FQco0qNXwJ6+m8fv064fon4Ve+454Vu6miGhm4+O9lKk4xf/OMd1q53\nl9UTSZKot59PLX9+SMuE6vzJphsaXsPmcKdCQJz3dsyzgt7RGNPS0XWVLCvQdKWyENIU6k2HetOm\ndzQmSwuu3OgsvBIdOqtVa8da8LqiKGHnQY88F3zywT6trsf2wx6mpbG/M+CNt66Q54KV9QbDwZz7\nd48ZjwP6/RlZVtBs2hi6SpYXhGHKjRtdbNugUXeo1ywsS6csYTia4zgG9bq9hJtCdbOPk4xO24Oy\nMtfutD36w/lSV9YbzGg3XBo1m0II8rzAMqu2o64/nsRzLJ3j0yl3Hp6w3q0jyxJHp9OlnuvOox5R\nktHwns6vSvOCWRgzDxMGk4BWzebR0ZB2/bH2T5Kqtp2qVKP75jlLIkmSaDUc7u31WW1UWjPHrGyG\nFLkSzNtmNW03CSImQcRgFtLybHrTOYamYi+Aq09GfxYwCWPa3kXh/EcHPTqeU1HMRYksS+RC0LSt\nZ9Lmz4egJCsKOq6z8EmU0JQKE3H2u/jZ/kE1IVjzKvp+GPL66iqWrpHmObIk0bJtGpbFOAzxDGPp\nHrAzHuMtRPx+muLq+gUqvavruFo1tNG0LH56fMCa4zFKIiQkGgs9WZClxEVB07TY86d0LYf9+Yym\nYWIoKndGfTbcGpM0pqYbDJMIV9OJ8oy4yOla9lJsXwKebnAwny4rTqfRHMVQICsZJ5Um65bX4qeD\nfbqmi6motA0bQUlNM/hg3KNt2HiawSAJqOuXWzamomEqKo2FNY8uK0udl58lZGVxgRB/FE1QZQVV\nkikoaWgWrvo40RFlyXvTA7asBrqsVhZGCzhmJnI+nB2wbtSoaza6rJKXBfvRkLpqE4gEAE+1GOch\nB/GQw3iIq5j8y+Qeb9Su8VbtRkX8T6fsxD2CPMFWdY4WZtVPtkiBS+3RtKyqT34RLqteohTkZX5h\n+UlWIQ+8BYnelA0MSSctU+aFv8Q/5GWOLmms6xskpBiyQV1tMMnHeHKNoTjFUTx02WQmDxmHU47S\nbTrqGnW1jS7ry/NYlbVlsgUQFGeJVPW7mhdDsjLBlD3GxTGWVFUeFVQUSbsAPB3nO7hK99y6+mRl\niKtUvo6m9PwK1+cJVXKfur6q+pY+t3KlSq1fc7hecBueFr9OuP6dohQlXsvFck32Pj2i3qk0Kl8k\n2UqTjChIlvDU89Wrs5Pt0Z0j6gs+WLPjXTLSTtOcIiuwHQNNVzk9HFNbTO71j6a0uh6yLFFSLrVf\neS6WLcndh6d4dZs8KwjmMbZtkKYZeVawvtFifatFrV7hHzRdZToNabVdZpMAStjcbDEc+Oi6Snel\nxrvvPmI6CUiTnHbboz/wCcOEzc0Wdz89RtdV6nUL266e5CaTENPUePjolJVujW672p+6pjCZhNQ8\nC0NXMXSNk37FUfrFJwfIikzdtfDcqqyuL/RK86CCv3663ePqRhNFVqi5xnKZs6pXq+7Qqn+2we7E\nDzEXOq5WzWYyj9jsPq5gBlFKEKfUnermGSYpxjnEw5mX4mQacjCcVsMGec40rKxsHhwPMDQV1zLI\nikrc7kcJnmXgmDqaqi7F90+Grim0XftSMrayIMLPooRpFOOZBp5pPJXN9VlxxsgCmCcptq5dqsB0\n3UoTBhX6YrNWW2q6gjTl2J/TcarKTXhORG+qKrMkwV6I3tu2fckc21QrobwoBU3TQlnoBK/VGySi\nIMwyHE1j159yrdagF8zJikqTd2d4SsusEoEtr86+PyUtcqZJwqbjEeQppqLi6Aa9cI6pqiQiXyAe\nwNUMHE1nlia0TZtuo3J7OI0CPN1gw6lR000GScA7p7schFPGScTefMJPB/u8Vl8hyFJmWWWEPU1j\noJrMNM+xtaZZzCyLaeiPq45ZWeBnMcexT9uofr8fz07oxY/Bo5qsME6jZQvy7ryHn0UV/FSSl7BU\nQ1ZJRVXZWjXrOIqx0G/t0jFqdAyPsEiYZAHvz/ZYN+oISmxFp6lVGquyLDlOJ6wZDeIiIShiVo0G\np8mEVaPJMJviKiaCElGK5b9PJlyqpOIqNp7qLKte43zKIBtXk6WyVumnFAtTNpcoCVmS2U12aakt\n6loDv/DRJI2aWqOXHaFjkIgIXTaYFGMm2QBZVlnTNzhNT0jLhPXaKl7WRlcMOvo6aRkzKQakZbic\nQry4rTqaZCy/gyoZaJK5SLKUpdVPVsakZYC+SMwkScKROxce1HXZQZF0BBmypD4z2UrEePGdn/1Q\nlJfBc8GnBXPycowqPVuo/5U3s+arnXB9ob0nhOCP//iP+e53v8vv//7vs7u7e+H1H/zgB3znO9/h\nu9/9Lt///vdf6D3/EWP/7iGhH73QsqquUlswrLqbj1uSRV4w6c8+1+eWoiTPimcuc/Wl1eVNfDKc\nMziZXnjdn4TYrrmcbty83iHPcqajgNaqy3hQaWnqDQfHMzBtHVWVOT4YAeB4JkVeYFo6jmvSaDls\nXmnzyutbvPfuI2aTgN1HfWynEtF3ujXmfsztVze59fIq3dUab/7GVbI852//5n1EKWh367z51lVa\nbYfNzSan/RmTSYBlaoRRyv7BiDTNiaKUKEopy5KrVy4CBBVFRlEkhuN5VbmSqwnE9bU6nY7HxmoN\n1zEQQjCaBJycTjnsTdg7HFGWJV+7tYauqRiGwnhWHduiEPz9Tz9dtBuf/ZPpNFw8u7oRz6OEeZhU\nVRpRedUZuop3zvT6s8TunbrDq1srtGsOnmViaAquqTOPE0Z+5aGoyjJBnGAbOkVZMg1iouSzLzSa\nUqEbRFk+9fW6bbLeqBJXUZZ8fNR75nd9WhxPZ5wsdFhPRpCmDOYBWV5wOL14zncch67zOJFddV38\nJOHdw0MUWealdruaCiwEWVHwcFSdh7kQy/dMkphRHKErCi8122x6FZF+xXKWFaGXGi38JOFgPqs8\nGdOEb65t0bUdgjxlnEQ8mo5oGhZRnvGDw22yomCURoiy5EatiaVqnIRzoCLN358OAejHwXJbHs5G\nTJKInfmY/WCGLsncmwy5ajf5zdYmHdOmYzn8VnsTTZaZ5ckyaRCU9CKfcRotj0UuBI6iXWg7Ariq\nQVCkXLOby79tWHU2zQZ13WacVhU+WYJZFrMdDBCUfLN5A0fVCIuUYVJ9l2kWossK1+0OqqSQipwf\nj+/zsr3O3fkBh9GIw3hEP/V5y7uCIWuYskYkUnRZ5Ya1wj+MPqIsq2OSIVg3Wowyn4bq0NBcrltr\nzIqQo7jPQTLgOBlwnI6IxcXzNln8PxM5w2wCQEtrICjRZI1e2gcqYb0h60xzn2k+4zTt01Ca9LJT\n4iLmJO4hSsEoG9FSu+TkKLJCKmJKBKv6FtvxPcqy5F/nP0FQJUL76SPsRfKhSyZxEZKLi9fccd4j\nEnNkSUaRVBJRHS/5nMWPcY4+r8s2rtK5sI6ndUWKMiErgwt/O9un50NGW3oyXtx3A7JyvnhfQSJO\nLy1zFrE4RpQJquRhyJufudyv48uJL5Rw/d3f/R1pmvK9732PP/zDP+TP/uzPlq9lWcaf/umf8pd/\n+Zf81V/9Fd/73vcYDAbPfM9/pAgmAfNxgCgEkR9he5/PiR0qj8WzKEuWN+MXDcPSaXQ+G5RYliWc\n+x3Xmg7NJ5bvrjdotC8+rcmKTFkKTo+nOJ7JdBxwelRd7GRJwq1ZbF5tc7Q/pH8yw7R07n18SBRU\nvK+/+d9/zke/2KXb9VA1lck4ZDSofvittkvveIIoBPWGw+H+iN7JlDQp+PZ/epm33rzObBLQO53y\ns589wrJ0fuc/vcJ8HjMczul2XE77MwYDn9E4oNv12D8YLejzEUmSAfDOu4/44O7hBQp8khbs7A2q\nKl0mODwe8U8/e4Bl6uRCYGjyoj0q4wcxOwcD4jijvdDFybLEWtfjsP84aQ3j6obwycOT5d+EqBKr\nNKvaHuNZxHq7Qnfc3asuepUR9eMn0p2TKtFLspxP9nqMF4bUZ6EqFUyz6dqkecHtjRWudOr8890d\nTqcVLHKl4SDKkkwImq69XN8sismLizeJwTykP7t4MX9ayJLEa+srz13uydAUhVvt1lNfi7OcTAii\nPONWu8X9wYD/4+M77IxG7E+mtOyLlcMgTTEUhR/t7C51X23bRlMU1rwKpfHO4T4PRkOCNOVarY6j\n6zwYj8iFQJRVxeW93jEfDnqkRcHubEJWClZsh4+GPQZRwDCpbpSrtsuq7fIbK+scBT6OpmNKCtM0\noa4ZaIuK3SiJlm2xUVqZUZ+Ec9as6ve0PR2z7Y95ud7h292r1DQdUcI3u5vkUuWduGJ6dM3KTPow\nmvFSrU3HrM43RZJYt2t4atXKHKcRvdhHXbQSn4yX3O4FW6C8LGgZFmVZsmXVK5RKnnA/OMWQVDaM\nOqqscM1uM8kC7gfVuSmoErugSPjEP+RvTz/kFWeNjJwts8P98IS27vG6t8VxOgYkNs32wpMw5r8O\n/pX/vvEKDdVmOzwhFwWmotNLxmRldTzCPKGl1XBVG0qBKqlcMVeWFHpY2KOlg+V5qJ+r4Fw3N3EV\nmw3jopWNq9g4ik1X69DQ6mhofDD/hHExRZXUih2Y+/SyE3RJp613WdM3SMuYV+zXOcr2uWHcRgGi\nIqStrnOaHVIupkHb2urCW/Fx1JUOprSYXC8L5sXoqef95w1ddrHkNqP8U0RZIMqccfHgwjJZGVKQ\nXtBunYUiOSic+W0qOMqNz/wsVXKR+OoK4P+/Fl+opfj973+fb37zm9y+fZu1tTX+/M//nD/4gz8A\n4P79+3z88cf83u/9Hoqi8PDhQ4QQvPfee5/5nmfFr7o0+GRUdPfKC7G9+fQby4uEPw7YvXOI5ZrL\n9uKXEY5j0D+ZMhn4uPXHpevz02bjgU+WFpeE9JqmUm+5iFzQaLkYpobtmjy4e8zqRoMsLYjClEbL\nod12F7qsOrZTTY3N5zGvvrZJveUw7M94/c0ruF514S+FYGWtzvHhGMetpjnDIKHRsHE9i97xlG9+\n6xbNpotl6dQWYn5NU8nzgnbb5drVTvWZKzVkuRLr67pKsrDNURSZNMu4dX2FsoQgiNk7GFKUgpW2\ny81rK2iaQpbnGLqGZWn0B3PmYYbr6Di2wWA8R4hKy9Rc7D9VVVhperRqj1lWB70JzZpNZ4HHABhM\nAuI0YzgNcSydZu0xUqHbeHyxnkcJ9/b7rDQrWr2uqSiyhK2r6KpK3w+QBUuh/V5/zDRIaLgWEnD/\neER/OkeIkqORz1anQZJmjOYhTddiGiXsDsbcOexTd0wORzNcs6LI96ZzNlu1FxLCf5FJJlvXGS88\nDZ8MzzDwDINBELI9HOPqBrc7bZq2xTAM+fnhEbqiUF/orQZRRNdxWPVcLO2iRnISxxiqStOyqs9T\nNdzF+ttW1Zb8x/0ddqcTfqO7yprrMksTSmDNcfHTmDDLudVsVZiDRQsTwE8TbtZbNAyTWZZgKAo/\nPN5FCMGmW8dSNRqGSVLkDOKQVbOqjjUMk2kaY9saL1ttduZj3h8dcbvRYZCE1HWTOM95rVlhKhxN\nJysEjmqwYjoLsKvCceTT1K3KWijyaWgmLeOz29j3/f7CHLtKApu6TVlWk4Yfzo7Q5Ur/dd1uM8pC\nTEXDkFWG6RxbqaCnsUjZCYd8Mj+mppjshAPerl8DSWLdqJOXgk2zyZbVxpA11owGj8IemSjYNFt4\nmokuV9twmvo4qklDc/GLCEPW6Oh1ZkXAbtyjobnEImPT7C4REE+edw11IbmQZIxFMiZKwXZ8QEu7\nPGR0xsU6O0d6aR9PdVnXVxEICqngINmjo3XIRE5dq5hfFfjUws9nbBhbaLJBw/EYh2NW9C1Osj1M\nySYUM+rqk9Wpx58nSfIl4fw0ryrEXxR0akqtheG1/BThfDWxKiETimP0C8wuadlm9It7qJKHIKEy\nsX7S3Nt4Zpuwqqxdnqwsy5JU/BxV3vhC3+3fMr7KLcUvlNrO53Nc9/ENRFEU8jxHVVXm8zneOYaO\n4zjM5/NnvudZ0WzaqJ+T6v1vGt0vJzlqNW1W12qYjnnJv+9FYjYOKsG7efnGtnW1zYNPYrrntjVN\nMrTFdF29Xt24NV0l8GOEEHjndEmKVFHp7/xin0bb5Te+cb1aLi9wXYOV1TqzSVgJ3tsu00mAH6a8\n8uo6V653GA8DfvwPd3n5lXW6XY/jozEP7p3wtTe2+MY3b3J6MsVzDSajOaIU7O8P+e1v3eLgYES/\nP6O7UieYx2xsNqnVTFoth+FwzupqnTBKzn2v6t9u1+PDTw65eqWJZWrsHYxotWyiOCdKM7rtGtev\ndcnyAiFKbjVWidMMU9eo1y2OTqa8/spGVclaqxNEKYosYRoaO4dDrm20+ODuEa/eWsFYVKe6TzkP\nul2PeZiQ5QXN2tNvkPMwwU8TXrm5Srfr0X3KMrMgxl4kSH6U8LWba8iyxKOTIQ3P4r9cfZmiKHhw\nNOJKt45j6szCBNszWOvUyfoTfnv9OtqC63U+bK/Sen2Z4ccJeSFoOhZ7wwmyqdA+Zw11toyj65SU\nTMqEdrsCkRqqys/2DhgnEd9+5TqZKOh2PXIhmEoZa14Fu90ejbnSqNOwTKIsRy5CVjoeuqLw8cd9\nXq53GWUx4zTm7Y11DFXlf+m+ycPRCFPXGYchjm3wRrN6SOp2PV7N1i4YYJ9FNK0GKnZnE16/skrT\ntOmJENvU6XRcTsNgiZfYLBt8Oh7QdhyCssCxLe6O+vzO5nW+1b6G2df4MDzlf7rxCpMkIjQKnLrB\nw8mIr3fW+HbTJC0K6sbjimy36/HxqMc1r8Fvda88c9/v+CO+1blBLsSFIQKAfuzTUT1eW9ng3rSH\nqqtsOk38LKbtuUz8iCCLWTFdumYNL7EqREUJfi9iKM1ZsWvUXZtJEPLI73GSTelaNa45bW46K6xb\njaVxdy03+Wn/Plv1FitGDVezCHKLYTrH1XVumiu8zhVyUdAUNq5qUZTic4FdV8rLDwtRETPNfNbM\n6tcU5hG3apsE+ZztcA9Htlk1V3ij8QqlgN1oF72xtUy6ANrlq0zTMU2jzWG4x2q7RSwi3jbfIipC\nknhEJJ9y1b71wtvaKi1k5GcmNH42ZJ73WbdefeH1no+yFKRCxlhYDuUiZp6d0DBeBqBTvo0kyYR5\nD03W0D4nGyzJTynJMdWLiVWY/AJT/9ZXlsv1tOvzVyG+UMLlui5B8LgtIYRYJk5PvhYEAZ7nPfM9\nz4rxOHzuMv+R4uhhj/ZGc4mGCJPnt3eeFrPRHMPSL/k2drseJ8cTmmsNjo8ny2T1cLtPZ71xqaoV\nRymHOwNu3F5bMsSCecz+boV/UA2VJC1QDQ1/nnB8OCY9Vx3b3e0z6s/Zutbh6GBEcr9HURRcudal\nBPp9H1VTsR2D//u/vs9//h9fxzA0hCjZ2xvS6risrzX43/7Xd3ntjU1M2+DOnUOuXevy9z/4BF1X\n+OY3b1KvO5yezlAVhY8/OaTbucgcisKEnZ0hk2mMKApsXafu2fQHM+Io4Z//5SHra3UUWaYsS8I4\nw3NM5lGCBAyHVeuzN6xsh9qNCl5apILBYE6RFwwHwSUMxJMRpzlZnvPpox63Ni8+Ec+jSm9lyioa\nMv3+Ra1TXlRUetVUGQzn+GGMZxscDGa8stllNApZdz1mk6oF1jJN8rhgGlf/9/2Yn/f3qTsmc+LP\n3MbQT575Hc5vjx8nNJ1nt82jLEOIkjzMKZKCmq4v9+dZHE5ndBwbQ1XRMokszbk/HiBLsDMa0zRN\n0iClZdv0+z5JnvPx4TE7mkYpQcM0uedX8FNdUdAzmXv7lY5nRbUJpjE5JbfsBrNxRLyg0t9stpiH\nEX4Uc5ynqLF0wfQ6OLefsqKgH4XMspifBnO+vX6FwSDgWMyoCY03nFX6fZ+TcI4cPpYBnIymvFRr\n8/HwmJe8Nt9c32IyDPhg3CMrCh7NRxxYY6ZpTE03CcYJ01nEz2Z7XPeaxEVOKCVIEnwyOeWNxipT\nP2SQqERq9aReadXKZXJzFmmaMYh87s373HLa9JMAU1Fp6lXCbyYq+yeV9vG0nDLOI17xVhmnAS1s\n9LwyUZ+GIf/Q/5TXvHVsVWc0Dbhpd5CFxGk0o6N6eOoCIRNlHIZjDFnjwaRH7dzk4avyFe6M9kmU\nnFHmV1ZbioVrWPR9n7vBPpnI+JpzlUkZ8q/+p9y2q6Sy8xQi/YuEKAVFKdNfaAeLsiAvC4Iixyua\n1JU6w9AHSZCWGSvyFqeDKSflmJraoJ/10CWdoJixbki0Wh3++eAnXDde5SF7SJJETdmgKHP6gU8i\nYrIyxlW+2Paej6Dw0aQm/fll3eOs2MeQ6i9AnJeBx+8vyiaH5R663Dy3jA2UF5YDKMucQNzBVb7+\nGeu2yMshWfGPqPIKmry1+PtNAjIge862/ftHt+tdurb+KrbhafGFNFy/+Zu/yQ9/+EMA3n//fW7f\nvr187datW+zu7jKZTEjTlHfffZe33377me/5/1N0NptPrUp93qi13GWy9eDDfYq80uoIIegdjAhm\nEePT2VJXtHmjeynZEqJE01Qc1+T0uNJqiUIQzGJMS6coLhL1syxHUmT2d/rsPqrK5VlSkGcFUZiw\ndbXN4NTnX995RKNlEQYJwby6oZ0cT7l2vbusesiyRHelhmXp+POY3/rGTYpcMB4FeJ5JmuZ87Wvr\nqKrMhx8fcOfOEYOhT7/vM/Mj/uVnj3i4fcoHHx0wHM25ca1L3aumt155aZ1Ox8N1DLqdWmV9ZOv8\n9OfbTGYReSFYX6mjawpxXFHjhSjJsoJ5ENNturgLYbuhq/QGM66sNZ+bbAGYukqWC1RZIS/EUutV\nCMF79w4oqaj1QpQEcUJvXF0Ytk9GDGcB8yhlvV3DswxsU8c1Ddaa1cTo61dXKYRg5IfsnI74h48e\n0pv4zOOE3sTHjxIajoUQgii9fCFM84KhH3I6m1967WlxJtZ+XuiKshTBu4bOo8GI7Ant2Ga9xsls\nziSKsTSNQRBSliWGorDmuIRZTmsxfSjKEkNV+c2NddqOjaEoRHnOzVZrWcVpmCaaIvPRaY/d6YS/\nffSQNC+YxjE/Pzni3mjA0eImVjdMbjSafL2zeiHZ8tOEv999SFLkpEXBNI2ZpjG3ai1eb62gywpd\ny2bD8XijXWmGJEli1b5o73U22WfJCj862aUfVSiDrzdXuV3v8F82bmEoKgfhFE2W6UVzBlGAp2r8\nn/t3GKch/SRYMsPu+0OuOA2cc2DTaRYzTC8/fDb1Cnx83W4xSiOamkVde5wgX7Ga1DSTuMywNZ1E\nVJOJZ6FKMppU4UlecVaZZCE11eKt+hV24zFH8YRH4Sn35sdoskJQxCQipaZa1FRr0cZ7vD2arPB1\n9xqaLLOf9PnX6QM2jQ7GYtKwq9e5aa4RFgmGorNpdHEV66nJ1plY/iyKsmCcTS8tJ0sy+qLtGBYh\nHwd3USUVBQUJGSRwFJuwCLhh3iQuIxzJw1PrRCJEKiEXGXGZMsh63PM/IcpjHsV3EaVApdr2M5yD\nIilov6QfYiYiIjHGUdrLqcUnw5DqZOXlY16WArHAY1xe74yiDHjRW3ssdrHkz9Z4AahSG1N5G1W6\nLKovy69ewvVVji+k4bp58yY/+tGP+Iu/+At+9KMf8Sd/8if8+Mc/5v333+fNN99kc3OTP/qjP+Kv\n//qv+c53vsO3v/3tp76n1Xq+BupX3Yv9MuN0f4iiKuhfckuntVpf4iUsU0O3DQxTw/EsRqezpbE1\nwPH+kCTOsF0Tfxoxn4asbjaXAFSkaiovS3ICP6a98vjpKo4yNq60cD2TetMh8BNUTaHd9Spvwg8P\nMAyN175+lcP9IQ/unbD98JRrN7sUeWUR0l2pc/fOIUKUXLnaYTSYM51G7GwPGA5m1cVbknj11XUM\nQ2N1tU6W5gzHIa5tkqQZN2+sUKtZuI7J+noddyGQn85C5kHK8em0Er03XUxDw9BVbEunLCVWuzXK\nsiTPBWVZomsKzbrNPIz56NNjXr+9jq6pxEnG6XCOJIFt6i+UbJ2FZWg0PIuT0Yz+JCSMU9KsoFmz\nmAUJNcdkGsR8+PCIKM1Yb9dpuhbuIsk60yCcmVHv9yc03IrS/s7dXfwwoVN3uLHSQpFkciGoWSam\nrpJkOR/tn9KtVdY0UZovMRHDeUghCjRFwdKfn/QrsvxCkFSAnj9nxavaFa5hPBVNEecZD4fVKPtW\nvUbdMjFVlVKS+K2tjcojb1GlMNXH8NZ/OTzkG5ublyyJTuZzTE1Fl2Wu1GrkpaBumjQME0fTea27\ncgmB0QvmZKLAUjXSouDBdMSa7TJNYj4e9tlwajRN+bUpZwAAIABJREFUi3dPj/DTlH/u7VcIC3fh\n+1cUPJyOaJoW+/MpRSm44tZ55E+YZykdy+G1tVUG04AfneywH0x4o7lKJgSP/BGeZvDQHxKJjFfr\nK5VFkWayF0yIRE5NNRgkc7as+oWHHVvVcFWDonyMw9gLxkiSxHY4xJJ1TpMZdc1CXwjo4yIjKwse\nhQNedlaq4QvdwVEf60tUWVkyvOq6zYpRW9ogKcgcRGOO4wmBSAiKhLrmUNdssrIgEznvTO6jSyqq\npCyZXTtRj6vWCi/bm6iSwrrZIihidFnFVgxK4H3/Plet1SUD7Lz1z1kcJ/2FLuzxuZqWGQoK/WyI\nqzxOfEfZuEqEZI221kKTVdIyxS9mCASBCJBLlUTEOLJDXEbERUxcxliyRVDOaaltutoaV5qblIlG\nU2tRUKBKKvrCm3GQHWPIFvqCwxUKH5nHU4kvHiUgPVX0fhZSKaNIOsoT2IesnJOUY3T5chWlJEOS\nNLSnvPa0UKUG8HTI84VtkSRKUtLyU1SpGqYRZUAm7iFL3lcKhPpV1nBJZfkZM+JfkfhVlwY/bwgh\nkGWZOEgwn9jpWZqjqPILs7dGvSmNjvdcu6DHn10yPp7Q3mxeem06muPWbT786SNuvLpOFCSsbjUp\nSy5obfK8YNibsXpuHaOBT54VrKxffAoNwwRFlhkNfGqNCpL63rvb/M7/8Br1pkMYxMRxTs0zOTmZ\n0u54eDWTOM44Phzz8iuV9+TPf77NoD/j5s1VNrdafPThHl9/8xqffHKA65rcuNHlJ+884PrVDodH\nY954Ywvb0knTnPk8xvMsjk+nbKw1mE5CkjRnc6O51MYVQnB4NKHbrgT5SZJRlvCDdz7lt9+8xnAa\nsrnWqMCihsZoEhAlWQVGhaV4/nxESUZv6HN947MfGnaOR9zd7fGt168xmkfcWGsxCxNMvbLYSbO8\n8rJ84vielcTFAkJ6PkZ+yP2jAasNl812naIsSdMM1zIvLRsmKZ8cnvKNm1Ub4Mef7vD2jY0ltf0s\nDkZT1hveU+n0lWff88XzaV58Jv8LYBLF7I4nFKJAliVutFqMFnBTS9MueCKefeZHvR4vtdv8t0eP\n+J/PVcQfjcesOg6nYUDdMLgzGOCnCZuex7rrYaraUgA/T1PmWcokjtAVFUfXaJs206QS3buaznu9\nIwxVxdF0NFmhphu4uk5aFPzs5IA3u2vszadsOTVsTWPXn7BiOfhZiq1qZKIgzDOiPOdrzS6Kp/Dw\naIi74Ib9t+NH/Oe1G5iKxmE4xVBUgqxyG7jtddgPp6xaDnXNRJUVHs2HpEXBuuVR1y+2c394us2r\nXoemYbMfTmjpFo5qoMkK0YKrpckV0uE0meMoOraqUwhBgUBBpkDwk9FD/rvGdVr6xWodwIezA65Y\nLf6m9wGDdMZbjatYks40D3m7fh1NVjiKx9wwOxwnE/wi5jWvOsdSkePnESfpmLIsedO7jqDkMB6w\nZXYXWBLBg+CAm/YGSZkRFgndp1S4UpE9NRkry5KkTJcG1QBhEWHIOsdpj5baRJEUIhESFykSJTIy\nURlRUHAc73PduklDbZKJbKnlysuMn/r/wO9u/S4PTneQqbwYj9Jt3nZ/t9qmIiYrUxy1SsCH+TGp\niFjXb37muf9FIxZTijJFk0zickxNufpLra8sBVk5QZWcJbxUiJy43EaTO2jS5fvG86IoJ4CM8hx+\n179nfJVbir8Gn34Jkac5cZigGRp3f/qANErxxwH1J3RGilJNtQgh8MfBJf3VkxGHKaatI72gn50k\nSVy7tXJpn0VhQugnOK5Jd6OBYWlkaY7tmpzsj8izgv2HfRpth8HJDChxaxbjgY8sy3g1C8d7LI7c\n3+6jGxq2bXB6PKXWsHA9C8e1MG2dKExxXZM8FygyHB9NeOVrG+w96uPPIlbX6niehSTB/v6Q6TTi\njTeusLHZIs8LBv05hSh57bVN2m2P7Z0+b339Ks2mw9ZWi37f57Tvk8QZk1lEvWax2q28Ev+vv/0A\nWZW5uvV4qmcw9Dkd+Ni2zsd3j4jTnNVujU7TwTQ1bEvHtQ00VWEwntOo2dQ9C8vUlubUT4amKtSc\nx55kZVly1K8sWvRFNazmmBi6SsOzGU8jBrOA9bbHbm9Mkmd4lnkp2SrLEtPUmM8TPtnr0ak5FxIp\nQ1PZbNcJ04xZFNObBqSZQNeqaccnt7HpWMvK0NVO4zONq83P8Fj85OiUjuc88+kXeGqydj4kqeKG\nbTbq+EnKes1jGISc+HO6bjWhl56BSE/7tG2LNc9DlWU2PO8SVf693jGDMOR2u4MoS15pd/jh3i63\nWy1OgoCGaSJLEidzn14wpyhLNEUmyXOCLONoPuP93hF7/oy2bXO91uQomLHueghKhlHEtj/mZr2F\nIstossyOP2Waxlxx63i6QU03KiDqgjAvSRKuqtGtuzwYDAmylKTIiYucVxsrjJKQVctly2kQFRl1\nzVzaEXmagbWwH2rqNoaiYqraUlCei4I7s1Pebm7gaAb3531ue11M5fEykyyiBAxFJReCkpKW7iAB\nB/GYR8GQruniqSY3zDbjPKR2rv2YFBn91OeWs4KpaDR1m1EyX0wgqlyzOzQ0G1VWGKQ+vWzKFatN\nXgpausvd4IDt8IRR5qNJKrIEh8mAEmjp3rKtKEkSsyJknPt09UaFiHjaObVodT4ZBQXjfIooBbpU\nEeC1BQhVl3QOkkNEKRatPxVd1piKKQYGDbWBLi38JGWbO/GH2LLDdnIPCZl1bZP1xipjf0ZORkdb\nY12/RiJiBAJVVonLAHPRBrRlD0/5/InKi8Q036amXEWVDXTpxSaLoWJvheIYTfKAkrTso0oOodhB\nlClIAnWBs/CLDxYMrrVnrxQoSp+yjJCQkZagWfMrR57/Kle4fp1wfQmRRClxkGC5Jp3NFrql09lo\nPvUHUpYlD97bRdVVnGcQywEsx3ihZEsUggcfHdBerT/1ZBscT2mt1FA1BVmRicOE0I/x6jZe3cay\nDXYfnqKoMmVZQU3zvCCJqtbjkxU2r24vhh4UHM9AN6rW12wWUltM5wVBQpEL1jaadBdtyWbLQZJl\nhn2fvd0+cVKwsdFkbb3BycmUKEz44P19Xrq9RqfjMZ1GpGmOYWhYls79+z0+fXDC6kqNq1faNBoO\nK93a0ptRWrQir24+TraSNCfPChRZxnMtSlGwulLH0FUsU2cepmiawmAU4LkmSZpjGOqFqk4FL+VS\ncvTk8Z3MQ3RNxVxsz9FghmPqeLZBu+5Qd0x2exNe2uxwf79Pq2ajKjJJli+tgybziFEQMZqEOJax\ntAE6iw+2j/l4r8e1lSZrTY+2ZzPwA0xDe2qb8CzBKsuSSRgzDeNKI3Vunc8ytD6j0H+eeNAfYuna\nheROleVK3zUcVVosVaHt2OxPpjRtC0vT+PCkx7Hv89b62oX9f+L7SFRJnSxJ+EnCveGIt1bXqBkG\nSVGwM51gLZKUQRTRsix0pTKOfqnZRpMrntb+bIqja8sK12+srLMzm1AgyAuBrek0TWvB8IJNt8Zx\n4LPueGy5NVYs90Lyt+NPOAimS19GW9VJlIKBX5lGb9g1gjzlutskKQre6R9wzW2QFgXzPGXFrJLZ\nROQXNFt+nqAs/BSh0il1DQdFrh7aukbVvt0LqxatqWg4qr7kcamyvDSinmQhYZ5y1W5iyBqxyJBl\nmeaiurUbDnFVE0WSGWUBohRYik5UpOxHI0KR8HXvCo5q4KoV1b2jeegLEvqaWVWIGqqDIenYqsFt\ndxNXtVg1GjQ1D1VSlsf0XnDATWsDWzHppWMkoCjFU9uKT4uP5vdwFIewCDFlA/Xc+1RZpa21GOVj\nbMXCVmz62YCrxlW2k0dokr6g2Ht4Wo01fRNDNgmKKik/yQ6wDYP703uokoon13mU3KWfHdFU2xiy\ntUy2zkdZCpIyeC4CIhIz8jJBe0qSMsn3UNCWLUTrHIX+8/0GS4JiB11uUIqCDB9NrqHLTRTJoiRD\nkarvYMhrqPKLefkW5QyBv0BJfLmymC8zfp1w/RLxq95xLxKari5hppIkoT7DEkWSJJqrddwFVDOY\nhvQPhtRazx/XHfdnyLKE+oSeSJIl2gsD7KedbJZjMDqdMR0F1Bo2mq5ewEAArF9p4daqqtPO/R6O\nZ1WU+CcqPPc+OaTd9bj/0SFRlDGbRuw9OsVyDOIoJZjHBEFCu+PRaDkVGyvNqxumqmDZOkmScnQ0\n5etvXWV3d8D9eydsbTX59N4xK6sN2m0HVVUYjgL29gboukp/4LO52WR3b4AoBI3m0wnt/b5PlhVY\npsbdByfUPYssKxhOw6q1eDLl5RuVBqEsS0aTkOEkZHO1gaLIWKa2gB1WF7hCCPaPx3iOuTS0/qzj\n6tkmUZxhmdUU5r39U9ba3rLypMgyzgL3oCkKn+z2WG16nE4C6gsdmmVoXN1ooUoyrqVz77Cy8jmD\npa41PQytotVrSuUTmRcCVala1aN5hK1f9vUsgUkQ0fYcDE19oTYhwN5wgq4qn1kZe1pEWUYuyqfq\nvyRJIs5z9idTPMPgeqvJj7Z3CdOEG60mddO8xPDqBwH9sPIlVGSJtBDoqkJJ5ZvopwnrrsdGrcbh\nfMb/y957PUlypVl+v+vXtQqZkbIUgOpGN7q3e6Y5O5wll0sj+cJX/gn85/i+ZuRybbnG4azN9kyr\naTRk6aqsVJGhlWv3ywePjMxEZRUKohcYEscMZgAiw8Pjhovj33e+c95rtcnWOq3QquOZXMPYBFbb\nuo5jmPxqex/XMNj3Q+K8YJjGbDvuOrdS8GQ+pm27NEx7Q3yezyc0rdrO4E+jU0LD5m7YpG25TNKE\nf3/0kPd72zSFjaCuNt32W0hNw9dNWpbDOI04i5f4urnelqJlORyupqRlwbLMsDSdwLBeWbtrv6lS\nzIuEnnUzKX68GHCazpFoPFqeE+o2bcNlWabIdesRatG/L+tomqwqSKqC0HDwdZs7bpfn8ZBxtqJl\n1rrAZZkwLSJCw2VVpvh6fex+OH/OMJ/zjrfDYTzgJB3SMgIexUcoJTZTjk3DX3++TkP3KFSJhoa8\n4mv1JnjSxZMOh+kJUkgKchzN5iQ9w9B0Pl8+RAl4Ej/l09Un3LZuc5i+YM/aI1MZUug40sXQDPIq\no5+dcmDdJTQaaAi6QZtOuU9UrciqlAPzHlLqtPTrJi6lqq9rQgjO8icIBPbaduEse4IvX5UbCMS1\nQOtp8RJ7TXhM4aNfaZN+HR+8+n0ajtyhUAuW1UN04WOsJx01oW/I1leFFB5SNL/XZAt+IFzfCN/1\nwt2Ex394Snv35jJyVVUsxkss9/Vl1uX0sp1o2gZB68tbNlBXsnRTf6Nv180Hm6DIa22WJjUefXxE\ns+NzfjLFckziKMW06pvc4GxG2KorX5PRkjTOcK8447e7AWma8+xJn8UsJs8LOt2AoqjY3W/TP5vV\n/SMFnl/fdD78w3NabZ/JZMVnnx2znKf89b+6T5oWzGYRgW+yWCQkcUaeFxwcdDYRPp1uwHavsalk\nHey3aYQus3mMv96vsqw2bTfXMXHWQeLtpodpSM4Gc/rDGcPhkn/zNz+69tQY+jbN0NnYZyilePR8\nQLe1JsCqNj4NXnMCXftd45Qky/Fdi8kiwrOtTWi1UoonxyN66+2WlWK7HeBY5oZs3fQbCgTdK8HX\nR8MpndDDNvRN0LRrmRwOpjQ8myTLN2HX144AIQgca1Mlels4po6lv74CdhNC236t2H4axQS2xW4Q\noEtJpRSPRqNa/9Tr3WiYGto2J/M573bqyqUpJfthSFaW5GXJMs8QAkLLwjdMkrLk2XTCrh/w7548\nZMcLsHSdw/mc/SBky/X4eHC+yV38aNjH1nV2PB+pSaQmiIqcA69BVOaU6zzHq2v56WSArmmMkoij\n5ZySCtcw+EV7B8PW+afTY+74TYZpxCrPCM26/ezoBg3TJi4L7oe1bcjLaEbbcvH0OqT6OJ7z68Fz\ndp1w02YEiIp6IuyizaaUolQKVzc5jCYE+mWL+zSegYIdJ2RZpLRMh366QBMaxtoZPjQcPp4fU6iK\njuVTqopAt7GlQVzmmJrOH2eHnKZTumZAw3D4aPaCW04HXUj+MHvCHad7KWpXilt2l0mxwpEW58mE\nuMq4bfVIVUa4bh2uypjqSkXL1AyWZcSqTPDkl/s6mZpRTx5qDlJoHKdn9MwuAniWvGCYj2joIcty\nwS/9X6KEop+dc9+pvakqVWBoBmmVsKqW9PNjClWwKhekKsZzXE4Xp/TMXWblmIbRJryhbbgox1Si\nwhAWjubjystKkaOFNwrp69ify4cXgYa+rnYJobEsT28Uw38dFGqJLfewXjFN/f82fiBc3wDf9cLd\nhMZW+Frh+8mTPvPhgvbOzR4tSinGZzOC1uVN9G1vZqZlvEK2qrJicDrFCx0mgwWdreCVNRNCYDsm\nmoBomTI+X2CYkrDpIqUgSwuG5zNePD7n7v0dzk+m2I7FZLQkaLjYX9CavXg6wA8dfvTBPp1uSLPl\n0Vh/nyB00DRBGLo8e3hGnOS89+MdlILDZ0OC0OFH7+8ipYauS2zbYDxeMZ8n7O610A1Jtxvguiaj\n8Qqpge/bm/WWUsM0deIkx1uT2qfPBzQa9RSfWP9z8b2rSnE+nJOlOe/d2yYMHKpKsYxq36P+Wqd2\nNpjhuRbLKEWTgrwoMQ2d8Tyi0/BYrBImswj/DcTrP/zDAw56TTzHqluzjrmpwgkhNmamAJ88O6Pp\nO9difi5wccGYRymdLxioDmYrTENSlhXDeUS4zm3MygIpNBR1O+mm6t/JZM48Tmqd2VuaCV+0sL4t\nmLrElPLa+dN0HM6XEbomOJ7P8UzzWkVNE4K2W9tDWLrOp4Nz2utK1IW4/XixQAiYJDFPZmN+0dvh\n2WxKy64nFi1dZ5LEfDo8516zxbPZmN+fHXMer0iLgtCyQQiaVj05+dl4wLP5hJ+2e0RFXle91oRJ\nCkHDtNn3QlqWw/FqRtN00IXgs+mA2+0mRVrRdepz4ulizIHXYJLGDJIVLcvB0w0KpVgVtfDelrUG\nSWoacZExTFa4hokrayH/WTznd5Mjepa/CbR+sDxn2wo2IeESwYPlOYsixdF0SgVbtr+pZpVK4ekW\ncZWTqrqK1bNCumuy9dnilJ4VEpc5f5g9p2P63PO22Lda/Njf5ZPlEUmZ1XFSVkiouwSGs472ifF0\nm0+WL1kUMaaQJFXJll0HXm+blwapuaqPVf0K8XCk9VZk6/KY0DA1g6RK2LG211OSJoEMGOZD3rHv\n4q6rWIUqMDWTQuVYwsCTPud5H0uzaegtmnqHQhWUoiBXOcKosHIfV/PxtABDmOQqJVPpNTsIW3M3\nrcGrJCquFpQUN7YNvwj9C39Tv++rx8VBncGoKNGETqGWGKJ5bQoyqc6QuN/q+fx9xA+E6xvgu164\nm/CmKcOw7b9CtpRSVGU9vSiE2JCtLM158dkJre2366HfCAFVUVEWJc8+Pead9/duXLOyqDg9HOM3\nHO7e3+b54z7SkLS3QmzXxDB1wmZ9c8+yOsR6706b4As3/CwtePjJEY2Wx1avwWSyYjaNCC9alAL6\nJxN0U2cyXtJoujSaHlITbO82MQ0doQmUqkO4j4/GNJsu7763zYPPTglDh0ajjsQ5P5+hlCCOsw3R\nuoB3pYLYbtWtjtP+bC04r72/dF3yycMT3rmzhaHr2LbB85ej2p05rzgfLXjxcoRtGTR8h0rVOp5e\nO8Cxa1f0i/aksSaHbxKH39vvEK6rVVdd3ldxttFilWXFPEq4t9u5kWzB5QXj//z9Azqhe80Zvh24\n2KaBaegbsiWEwNB1sqLWgpmGvLafcZZjSElRVQwXK5qe89aE69vGBTn47HzAll9Xdj3TZMf3sHWd\nQim2vMuHEaUUx/M5yzxH1zRMWQup/93jR/xqdw/BZWj1vh/waDxmy/WYZRk/7W7R83xGSYyuaZwt\nl7zX6lAqRdNy2PF8JknCvz64S9f1yKuqjvkpCt5ptFgVOYFh1saaleLFYkZ3TfQENbna90LuBC18\nw+TBbMSOE3CczHkxnfJu2GaURLzf3OLRYsS+G9K0nPU6SA5XU0ytrh6eRQuysuAwmvJe2OV+uIVC\n8Xw1ZccJWJUZrjTp2f6mctK1/M165lWFLQ22LB9fNwkNhxfxiKKqatKlaZiaxJMmXcvH0nRsWVeC\ns6ogKlNWZcY0j9ixQgwhWRUpqyrlaTygqbtoSALTZlws2bNahFfI1t+NP+G+t4utmbyI+ti6yS/D\ne2Sq4DgZ0jFDDFF/V1MzOEtHhPqrE5JfhnE+pVAlcRVTUtHQw2vELa4iemaPQPcxZa3XSqsMW7Pp\nmdusyhWP48/Zt24R6g1mxYQn8QPu2vWU4Wn6ghUTkjynUBnLao6p2Qg05uUEhdpYQlyFUhWj4riO\n91GgITe+XV8FN5GtSpXEaoyxbgUuy5coFPoXXN6X5XMUJYYWEFdn6MJnWT3GFG2EEJQqRlEC1Sb6\n500o1RSB3Ajk/7ngB8L1DfBdL9xXRTSPGZ1M8K9UsKK1CemFbusCUpffjGxR32wtx8SwDHZud157\nsJ2fTOnuhAQND01qeIGN49objVZZVJRFhR84hE2P9laAYeqMBwtWy2TTVtR1ye13eqiqFhU7jsnf\n/8dPuPPONlGUMp9GTCcrDFOiScGt2x3iJKN/NiNJC+IopX82o382Q9M1dEPSbvsYhk6r7RGENotF\ngqZpHB+PyYsKqddRMTe1Ug9fjqiU4uXLMYdHY24ftJlMI5IkJ/Bt4jinLCv2dpp1u9Ey8Dyb0Lfp\nND28dRvu9x+9oNcJ2WpflvM1ITZTirWu5/Vkazyr7Sjyoty0IS+wiGoCeEHUV0n2xnidi9/w/l4X\n37FYJVmtWVKKPz47IXTsWr8TJQwXKwK7nrB0TAPb0K/tZ6UUh8Mpbd/FMQ22Qp95nDCLUwL7u5ku\nivOCCoWuaXzaP2eZ5mwHPqau07Rt5kmCudanPRyNkJrGnWZzI1Z3DIO7jWbdJpxN+c3xMbt+wDhN\n2AsCftTp0vM8PhkOaDsOTdveZDQ2LJvfnB7TcVzuNurBloZlk1Ylg3iFrmkIVQc5b7v+pQhdSkCh\nCw1dk2RViSt1DCmZZymuYbLvhQzTiF8dHCALQWBY9d/pBpbUebma0VrbPAzSFc9XE+75LXSh8ens\nHEvq3As6aAj+aXKMpen8KKx1Q9MsoWU6CASKy7biLI+plGJWJNiajq7VhPQ4nuJKg/NsRdf0OIzG\na12WxTxPyFWJsxbVD9MFCsEdt/5sQ9OJq4xRsSIpMz4I9jlKRvSzGT2zwfveHqUqSaqco2TElhly\nx9liWSY8XtXZjb9o3EMKjcN4wK7Vpmn4PI6O6ZhrLRHimr/WmxCVMVGV1AJ5oTPIJ5wkfXpmm/N8\nRKj75FVdNcurgv97+neUVUFHbxOpiExlpFXKaXrMsloRyAYNo8E4H1NSsG3u4UiXXGVIDEoj5b7+\nS0zNomNsU6icUpWEson5muzBi1xDQzORQv9aZOv1UJRkpNUIRYUrt18hWwBS2BgiZFE+wpV7aJjk\naom1dpzXhYciQyDQ3kKHVakZQliIb/W7/PnxA+H6BviuF+6rYnA0xmu41zRcpm1syFaWZMTL5Fs3\nPwUo8gIpBHlx6Q6eZwWrRYztmESrFKnXwdu2YzI8m2E7Boq6XWnZBvEq5Xd//xDHtXB9C8ezrmm4\nACajBYP+nMOn55iWzu5Bh6DhYDsm82lEsxOw1QtJk5yyUMznMVla0Gi6OI7JVq/B7l6LRw/PCEOH\nMHR4eTgiCB0cx8T3bYSAp08HPHnU5y/+4jbuDZq46SwiijLC0GG5StnfaxF4Nk+eD6hU3Uo8O5+B\ngPkiwdDrSamirDg6ndBp+XXIdMOl2/Hpti7Fx48PB3iOdWNr7iaYhsS2DPKyQpd1dStKMl72p+xv\nNVjGGXGW4ztfnmV4ccHQNME8SjgezeiGHpVSZHmFodetwzQvsA0dx3pVJH8BIQRt/3qV0jEN/Bt0\nXn9OFGXF2XJJYFmcL5cUZYWp11OFqzxjFie03Xo/T+dLAstkFMccNBr0lyssvW4nXnyni38fRBGB\nZVKUFaFpca95OR3c87xrejVDk/RXSx6MR+z5PoNoxSRN2PHqvMa4KFhkKUoIjpcLQsvClJLT1ZIn\nsxH7fogpdRSKP43OKKsKU+pMsoTmOgsxNCyagUuVVPx+eMyW4+PoBkerGYu8DhCOqxxXmrwTtDE0\nyYvVlD0n5DxdMS9SerbPnhPSMC/Pu9CotVXzPCGtCtz1RGNW1RO4bdMlrQoWRYIrTRxpEBoOe06D\nj2YnzLOYW26LF9GYhuFgaJKkyilVxSyPiauMtukxSBdYmkHb9OiZIYsyYZbHdM2Q9/09QsMhqwrO\nshmutOiaYd0e1CRxmWFrJl0zZFIsaRoeSZUjRD2FuG91GOYzPGm/Ndm6gCa02j1eaJjC4OPoc+7Z\nd7A1i4qKJ9EzjtITTGFylpzyMHmIUpComKbexNUcFuUSA51pNcbUTELZwJU+83KCL8N1dWyXyox5\nMnuMb4Q4mouqKqTQMTQTITSSKiJX2bX2YqkKJuUp/p/BIkJRklQjfHkLXXt9u1ETBkJodWtR5cTV\nMabWRF9XxpRSSGFvyJZSBeqGYOrL7dV607T6GF3bvr5PSn1vW5PfZ8L1z4u6/jOAJgXccBxeGKJW\nlaIsvzwu5W0xOJ7Q2a2d5vO0IFomcEX/ohRUpeLscFiPk18xL7Vdg/GgNjXt7jSwHZOnD07XlaTX\n++EmcU67U1ejbLd2Yb9ol3Z7Dc77M3LP4sGnx/zlX73D7l6LZ4/7lIWiUBVFURE2XMqi5OysLtMH\noc10uuLjj47Y32+xf9Bmayvkgw8OWCxSGleE40VRkmUlValI1lqu++9ub16zTB0NQRRnWLZBXpaY\n6IynK6SULFfJxjm+Nh8VtBvXq4/v3b4pVvr4hoKUAAAgAElEQVQ64rSemjMNnePBjG7TI/RsVnHG\nZDTH0CXvrC0q2q8Js/4yVJVCcFkVu7t9eUEPnK9XofouLpSaJvBMgyjL2AkuTVYbdm37sN24rPTq\nUrDMcrKyRBOC97e6PBmPCazL75uXJVlZEmc577ba/Ienj5mlMf1oyX9z6861z1ZK8XIxZ8fzOZrP\n2fMDGpbDfzp+QNdxKcuKF4sZO55f68Skzu2gQbImYIeLGYFp4K+nBpVS3G90aJg2n00GvBO2mGYJ\nGjDPU6qVxjxPuB92mWcpcZGzyDPu+PU0Y6kqPp8OeC/sYEmdPad2d9c0gaObnMZzdp26EhQVGY40\nqKj1Xh3L48HiHFcauLpJaFySskwVoGCUrjhL57wfbAOC300OObCbfDg7pmf5RGVGx/SY5wVRmaFr\nkl2zyXEyxddtpkWEq5sMswUNvdZ5rcqUl/GQQHc5SUagYIZkWSbM8iXbVgtHmkRVSscM+GjxnDtO\nj1t2l6wqOEqGBNL5yo7shSpZlhEt44ogXdr8z53/Yf16wXFyxp69i6PZZGVGz9raaA97Zg+B4FH8\nCEGFLkxMzSKUTc7zMzrGFlvGDrN8zOP0c37m/mVtECt0rHUV6bw4Zt+8jL8RaMD1a7iioqO/Gn3z\nNsiq6LXxPgAVJZlavvG8rVRBqRIMzceV9X5YqnftPcvqIZ52d+ObVag5FTmW2L5xmwBC6Fjaz77w\nWRGFeokpfvxW3+8HXOKHCte3hPlogdRl7SQv5Wbq7+jhaT2S36+z5rzQwX7DBONXRZ4V2G49+m6Y\nOlvbjWtrJnUN2zXpbDdodLxNW6uqFMOzGTv7bZodH92Q5FnBYh7zk39x+xXbiKsIQof+6azWJVm1\nc7vtGGiahtQ1wobLeX/GwZ0uRVHi+TaOYzKdrtjZbdY5jUXFhx8e8ld//V4dzaNqS4deL6CqFFJq\nnPWn5HnJzk6D07MprmNubCZWUUq77WE7JtYVbdeDx33u3OowGMzZWWvp9rZbPHxyys9/ekAzdOi2\nfdpNj7Kq+OzRKZ5rk6Q5UmrX2nGzRUy+JnBfRJLmzBZxrS0zdHzHYjhd4tkm55MFZ8M5ZanoNG/W\nqWR5QVlVTJYx7hcqXlef0GzToOHalJX6znRX3waEqEOjh6uIUqnNNOI/Hr6k4dhkVYVcV65C28Y2\ndMIrBKvtXD7ZF1XF3x2+YDfw0aXGyWJOXlUYmuRvDm7xfDbD1Y2Nbu3ZbIKuCXzTYpom/KjdxTdN\nXsynzNKY99tbfDYZ0LRskrLA0DSWecaqyDHWQvbjaE5RVXRsl2mWMM9TfMPk08k5XdtjmEZ4uoGj\nm3XVOKtoWDYN0yYwLHbcYDNxWKkKBBuy9J8HLxhlER3Lw9dNzHXcjSYER9GM43iOLXVWZU5gWJwm\ncw7cV4dy4jLH0CTa+omvUoo/zI7IygJDk/zr7rscRhP2nSZKKZKqoGW62NLA1CTjLOLz1QmLIuG2\n09m0HJ9HQ87SKb60GecL3vV2sKWJoelsmSGfLo7wNBtHN/nd9BHW2mw0qlJC3a2d4auCfjbhlv3l\nDzJXoVCM8xlZlePKV6s7mtBwpU1cpkRVzFF+Qktvc8e+zY7Zo2W0WFZLYhXTlG127F1aehsNDVfz\ncKSLFJJcZSyLGbNixM+2fk6z3OZJ8ik6BtvmAf38EE+r45Z0oaNf0UDlVcph+imOCBgWLwnkV5sK\nnJdnWMJ/baWpJENDYmqX1kGlyjdCfaUUhYqoSDaGpvDqg5Wlda+1B6Vw0LAB9cpnJ9UTBBJN2Ne2\nE5d/xBD7aIQUaoCGjSL9Idrnhn24CT8Qrm+ALMmYns9wA4doHmNYBkVeG21exPoMjsbs3usRtLwv\ndZb/OjAtA1XVuVxCiDcebBdkK0sL+scTokVCp9dA0wTLed129IJLXVdV1VWum56sWh2fo+dDhAaj\nwZKt7cY1R/QgdHBcE8+3SdOCJM42BqZZVnB0NOZnP79VT22Ol7Q7AZZlYFk6o9GKqqrY2a5vKo5j\n0lnrvKDWR7muRVlWTGcxwbrlmeclSimCwOZ8uODOQYdeN+R8MOPdu9vY1pWLZFGiKkWWlbSaLk8P\nh3Ra3jWdmFprsW5qK0ZJjmFIgrVIXtMERVHiWAZFWSE0wa1ek0Wc4ljXL0ZH51Men4yw1hE/9hcI\n3Rd/wzQviLMc1zJ5fDrEt803WoN8nxFYFi8mU1ZpxjRJ+dnONm3XpWnb2DdYQtwETQj2ggDPNAks\niwo4CBr84fSU9zs1mfLXZG0cx2RVhViTkN+fnrDj+fimxdF8zt1Gi/0g5HbQIMqz2uF9rdtaZBnb\nno9rGNwOag2Zs9ZjxUVBWpa8G7Y5TyKkEDQth/NoiW5Jpsto46NVoXgwGxIYVq1bm5wzzRMOV1N6\ntk8/XeJKnXtBG21tdvpkOcKVBlu2T9N0EEDbclnkKbduIFsAjqz3bVGkVOrS/NSTFj8Nt/F0ix27\nbgEWqiIpc6Z5TGDUpqdxmXHL6bBt1bmUQsCf5i8ZZgu6ZsAtp0PHDMiqnNBwcaRJqSosoVNQa8Js\nzWJWxBzGAxKVoSFIqpxpueR979ZXPl40oeFLF3vtE/Yoek5nHcWzKJZMihkNPeSj5adsGW32rT1a\nRpNpMWNZLWjqTXKV1yHbaMzKCafpKSf5Ictywayc0DV6nGXHaEIn1Fvshts8nT5BIjnNDjlLD0Eo\nNCSOfPUBSihBqlY0jC6B1n4tcXodHK3xxvfUWY0GmtDJqgVJNSaqznC02lakJCJTY1y5R6FWKBTa\nW+quMnWOokB+QayvizbaDToxQ9tZC/DHlOocTfgoVpv24/cB32fC9c/zqv29gSCNa2+csBtg2gZS\nSppbIZP+jGgR8+4v7nzJNm5GsSYP8TIhjV9/8MwnK2ajJU8+OeJtYzENU9Lphfz4F7dJ1tueTyKU\nYmMBkaY5Lx73mY1Xr91OWdZBuh/84taGAMRRxqcfvdyQNYDVMmG5jFks4vrzDcl4uGS1SkmznK2t\nkNUq5ZOPX6JUTZxc18K2awIWBDa6Lomi9Nrn67ok9GuR/flgzqOnfbx1RM8vf3YLw5CsopSz4RzT\n0MiLklWU1pNvpxNO+jNeHI0oS4Wmaa8Ymzp2HXydZgWD8fLaa6FvE3o2nz492/y/F2cTBtN6He/t\ndtB1yWJ1fZ+hDsP+1Y/22W4Fr3hwXaCqFElWH1uuZdIN6wv9vV4dNZMX5Wt/l+8Ko1XEOIre+Ddx\nnlOhOFsucdbrfTpfEOf1d02LAqirWK/DLEmYJgmfDQcA7PoBHdflf/2Lv+TxdHztvV3XrQOyUUR5\nzq929zZVzL/a3eeDbm2Cq2saPdenYVrYuk5gWuhaHeL8bD5hlee01hOG2to+4ixeYkqdHcejados\n8pTzZFm3s8uCRZ4yz1OOVnN+0tzaELmTaAFV7cV2uJrys+YOSsDD+YBlXp+P94PupiKWlgVRmaOU\n4jz58oy4Lcuna3m8iMbsO01+0dqnY12/Ic7zpH5A0y3kmowaUqdhOJwlcz5eHLEoEn7VuMu/at/H\n0gyeROcAnGd1tX5VpPzv57+nbQb4uoNSYGqSXzbu8V+3foyJTssI2DIbbBkN/nby4Zfu+014nhyj\n1hIHAeRVfawEuk/P6HCSnqFQrMqYUT7mOD2hUAVdY4txMSHUQxzhcJy/pK13yVXOfxX8DT/zfom9\n1kTdsd/lrvUeu+YB/eSEhuzQM/axNAtTWmhKZ5Af3bh/Qmj4skNcLphW51/rO74JQmgbkbyGgcSm\npV+283Th4a1zFiuVocjfetuWtoOh3ZwHW1TD175P13oY2h5lNULSe+vP+/87fqhwfQMoBXma44YO\nTz98QXu3xfnLEZom+N3/9Sds36Iq1caF/ujRGYalY9zQovoizg6H6HptI6CU2rQovwjbtXB8m852\n40srXBcQQhCtEs5PpiRxRtjyMCyd/smEsOmRxBmf/O453d0mnd7rQ0kbLW9Djh4/PCNPC0bDRW14\nKmC5SBgO5jz45ISw4WIYkjB0am3FdshwsODf/tvf86Mf7RGGDju7TY6Oxty/v42UAsPQCUMXKWvt\nW78/o/GFVmf/fE6z5eLYJju9BkenEwLf5k+fHDMcLjg5n1HkJasop9lwieOM6SJmuUrZ6YXYtkG3\n5dNquNeqRrUr/ZRGUFcXELySVQjQaVya1vbWInx/3eJ9+PIcJRSmoV9771WRu1KKvCivfbbnWUxm\nK0aLS5+tC2ia4A9PjxhMl+y2vz+BsVBHH1m6/sZpTkNKtjwPxzBQ1JYQula/TxOCw+kM1zD48PSM\nbc9/JZB7ntREofbmqm+Wh/MZL2czLF3n3Vab57Ppxr6hv1ryx/4plYL/5+VzftLe4uVyTl6WvJhP\neTwdcbfR4rf9Y2yp83A6oufWYvuoKBjGKxqWzZZTDy3MstrH7Pl8ypbt4psWJRV/e/KcD1o9TCn5\n8U4Pp6wrZbbUaZo2szTm/zh+yJ4bsu34/Hp0yHtBm47lcp6uaBkOt7wmUhPX8gN/PTykQlFrKgVH\nyYxhumLHvpymHWURptColGKYrvD0upL2eDUkrXK6ls8sj5kXCQ8Wfc7TObfdNram4+r18MSiSFBV\nRVoVnKZTdswGbcujn875zfQJ77nbHMZDDFFbjhii1m2mVU7T8DhJx0Rlwu/nT3jH3WFexISGR9vw\nOUlHuNLmPXf/K5nuXqBlNMhUzqKIOM5O2TI6PIifEEif/zT5B86zIV29xePkOctyxY/d97ClTVwl\neNLlLDvD0z32zX3O8mPyKkPXdAI9pGVctv9epE/Iqoy+ekmSZgyLE9rGFrvmHUxp48sGaRVfi/ZJ\nqoi0WjErBnXygb7zlXVqb4tK5VSU6yzEm6wpSjRhsCifYojmNW+w+nVFwRwpbEq1Wmci3ryvSilK\nxkjxhil6pVOos3UlrPzeONB/nytcPxCubwBNarhhfdH3Wz5Sl4RtH03T2L7VxWu4nDzp0+jUr/lN\nF/M1YchfRLAmQaPTKYap39iOPHsx5PxkTGvr8sb7NgdbGmd8+ocX3H5vmxeP+himpCwqTEvHcS10\nQ240Xq1ucGP76pMPX/DJPx3iujbNjk+7G2C7Bp1uSKPpkud1Beb0ZMI77/Y4uN0hCGw++dNLTEvH\n9SyaTRfXtUjTnGbLI03r3ETTlDx63Gc4nJOmJe12TWpMsyagF5YLs3lMGDpYps54siLLSvZ2mvUN\nwdBYxRm399vcuVUHHHdadRD0s8Mhz4/GzBYxP3+/Fph+kSRoQmz0WdpaGH8TrrZbNU1c+2/PsfAs\n48bq2QWSrGA4W238uy5+wywtCNaWENNVcm2ysRt4dBoehpQcj6avkLLvClLT3ki2LlCUFfMkIS0L\nRqsY1zJ5OZ3RcV1ajoOuaRRVtSFUF6iU4my1wjVqp/GyUvzu5GT9mRVJUVsw+OsqFbC5wd9pNHF0\nnYbl0LZtPhqe8/PuNk3L4WS1YNcNGCUxHcdBF7Xfl6vXE7w91+M8XvGbsyN80+R4uWDL8Xi+nLLt\neDxbTAlME083OYuX3O22mSzq+J5clZRVxW9Hx/xVdx/PMBlnMU3dpmt7vIxm/Ly1w2/GR7Qsl2eL\nMZoAKQS6JjGERtNwiIqcsqrwDJP7fpd5kWzyCaOiboUKBHGZoRRkqsSXJgJBoUpC3caUOqG0sNc+\nXVeJwThb8dvpMxzdYpqveBYN+SA8oGE4aAjO8znbVpPPV8fctbc4SSdYQq+vdVaDLbNBXpX82N9H\nCo3Hq1PiIsPVTXpmE0sz6GcTTE2/5pv1NpgXS6bFAk+63HNuUamSaTGna7T57eKf2DG2+JH7Lofp\nS3bM7fU5KKiocKVDS29RqYon0SOepI/4bxv/PQ29ySA/R0NDExofrn5DUsaEeotu0CRLFJUomOZD\npNDJVUpepdjSQRfGZu1ylZJUK3zZRFGxKEd4WvPPMpgSVQM0oWN9Ifswq+ZUKidW5xgiIKvm5NUC\nJUp04dWvVccYwidXE3QRkqsRQpiv9eMSQlCpnKT8CEPsX/s+SlWk1Z/QRANFitRCKjVFE9+PB8Af\nCNc3wHe9cG+DLMnpvxjQ6NZPnZrUsBwT0zLY2m8j1zfbtwmivoqqqhidzdi5XT+FHT48xV4TIgDL\nNTAt8xoZe5uDTTckOwdtDFMijdoo0187ykfLlKpSBA0Hx7Pw/Jtv5o5jcutuj+Ui2WQmSnnpSl6U\nJXleEMU5O3vNzVTg0eGYvYMWul77LB2fTJhOVpiW5OxsxnQa4bq1wD7PFa2muzFVTZK6VH5hgJpn\n5Xo78PTFkJ2tEF2XpGnOgyd9drYaLFYJtl2TOMvUQdVu57NlzHYnoBG6yPX06NlwvtFkwc0VrauY\nL5MbBfUXMHSJaehvzGA0dIlrm9cqORe/YVaUDKYrXLsOpl4lGYPZkpbvYkjJy+GUv/v0GW3fJStL\n7BsyFL+PUCjyskTTBB+e9YmynNC2aF4RxjftV487IQRN28bSdez1P55hcKvRIClLQtPid2cnOLpO\ny663NYojJmlC03LY80M+HQ3Y8X1+vrXNLEuRmuDFbMqeH9B1PNq2s/H7Ol4tOF7OmGUJFXAraNCx\nPfrREkOTTLKEbcejqiosqdO2HZqmzUrkDOYrmqbFyWpBw7Q48Jq0LIcXqymWlGw7AYN0iabqDMyf\nNbc5ieaUSjFMIhZFRs/28Q0LW+q8jKZEZc6+2+DD2SmONHD02ibB1U2kqCObDqMJ/3HwkDtOm8Cw\naJgO/zh+jm/YoBS+YREal+s8z+NaeK4ZlMD7wQ5JkdMyPbaskAfLU247HVqGyyCb40qLhuFyls64\n7XRZlQmhXletJ/lyM9vctUI+Xb4kLXN2rTafR0dsm3V49lc9Rg2hk1cFtmZSUGIInbhK6JgtDqxd\nENDQAzzp8yx5TlKmdYuxWjHJpyyrJcfZMctqzrv2fRzd4VnyhG1jB1e6jIsB03xCU2+zax6QGku2\nOCApY6blFF3TsTUHXzZAqHUskbXet3rqMVcZtuZhSx9D+/NUekzNR15xpk+rKXF5TlydIDUbV9th\nWT6nUEui6gW2tkVFhi48NGEghY0uQtLqDBAY2pstLHJ1iqYC9C8QyDp1oQeiAiJ0rfe9IVvwA+H6\nRviuF+5tIHW5IVtVVTEfLbAck6d/OqTIS+bjFV7D+coXGiEEXuhsCJtpGRsxPoCU8pXK19sebNPh\nguPDEbsHdWj1BVnK0gIpNSzbYHA220T2XMVFdmEcpcRxhmEaRMuUPC8wLZ35LGJ0vqDR8tjfbwOq\n/n+jFX5g0+7UepJnT89pNT1+8sEBDx/0uXevh20btNsepmkghCJOao3Xcpmg6xqua1EUJZqmYVk6\n+npqUWoazbVTvqLWd1mmTrPhIoD//Nun7PYagOJ8PMexTG7ttbGukJSyVNeE9W9CVSlGX6hMfR1E\naUZ/vKDhOxRlxeFgyn6vnjTVpUbTd3DWjvS6puGsszTLqiJKc3aaAd3QJStKpquEsqo2f/99RKUU\nz8YTKhSuYdJ2HZqOTcfzvlJA9gX+/ZPH3Gs1eTye4JkmW25NPqUQpGWJJXXSsuSz0ZCoyDhazmiY\nNi3bJq8qQtPmt/1aI2RLySCOaNkO0zRBAHcbLQLToud4eEbdfvMMk9CyeDobcxot2PFCFkVGpcCU\nOrc6TWQuMKXOSTxnkWc0zZrI6UIwz1Im6Yp+vOKdoCZGn8z6/KTRo2HY9ByPru0hhcayyMjKglte\nk20nQEfw4fSUv2wfXGs9KqUYpxGfL8/5X/Z/gWdYzPKEfjonVwVPVkMyVbIsUyrqiB+ARZFiaJJp\nETPKl2xbIWfZjH+aveCu22XHbmJoOqamMy9jpJAsi5hZHtE0PDJV0M+mPFqdoqra62zbavIiOueW\n3eUdd4eSih2rhaF9tUzOzXdDkaiUUT4lVwWe7hJIDykkjrRp6Q0UiriK+cPyQ3bNHhk5ZVXQz/sY\nQqdttNk3D5iXM3KVs6X3MISJrum40ierUlKVUlLyTusun4w/JtBCPN1n17yNJjTGRZ+eeWtDti6g\nCcm06DMuT8mrCE+2/ywPPl/0vtKFjaU1cLRtFCU5c0wRYIoGhmjVAdbM0UWwifhZlY/RRQNzLbh/\nE3TRvka2CjUir85QZEgtQAgDKZok5R+RYusrDwv8ufAD4foG+K4X7quiKitWsxjHt/n47x/w7i/u\ncPTwhO5uC+1rTJbJK9WR46fnNDr+G0/mtz3YHM/CcU3MddBz/2RCtExpbwWbCtpNZAsgjlJWi4RB\nf4HfdBAopBQkSYHrWnz+6cnG+sEPbB4/7PPrv3/Izm6TO3cvT3TXNTd2EHt7LTzPZD6PsW2DKEqR\nUnLvXu0lk2UFUgp0XfL46Tmd9qUIWNclhqmTJjmmqaMqxWSyYhVn/OMfnjGZrvjlBwfESUZelHiO\nxd5OE+eK+eeDp30C375GuJI0RyleaalOFzEKtQmm/iYwdEnDX4uxNYGpS5oN98bfUKzbnJ8dnTOY\nLdGE4J2dDqau49kmgWPhvCY0+vuCtCgZJzF/Ou1zOJ3xL28foKjbjPa6ojhP042x6QXytSfXF4/9\nbc/DNgyyqgSh+IfjI04W87rSImCZZ+x4AfdbbQ6CBj9pb9G0HZRSfDYasO8H/Hxrh30/ZJzEdB0P\nc20nYes6ltQxtCthw0JgSb2eANQNpCa5EzTp2LW/lkCwUBlPx2O6tsuOExCaNrasycYki7F1nV8P\nXhKYJlITPF9O+VHQ2Wz3wi0e6ozMCoWhSeIyJ1Mlt5zGJk9xs65VwTiPeD/Y5jxdEBo2nm4S6Daa\nECgEUZnxF81bONLctFpd3UTXJL5u0TMD/mn6Aokkqwru2J1N/E9cZPzD5Al/2biDrzucZ3McaVBW\nJbftLR6sjrnr9PjbyUekZY5E8Hezj7nv7HGUjuiaX68CUqmKZ8kR+9YOLSMk0L06c/JKW3JcTMlV\nfa5uGR1MaXLXuk3HbONKF196tGWLhVpSVAUVJfv2AaNiQFzFnGQvsTQDU7N5mT6l528zXA54FH/M\nbeddPBkgkASy8VoHeQ2NeTGgpe9j3zDJ+E1RqpxZ+RTnhiDq2uXeQAoLQ/OJqiMcuYvUTAwRXG8H\nkhOXpxha8FbxPtc+BwcNDyHUtQlGKdo/2ELcsA834QfC9S1D02pdlxCCZjfADR127mx9LbJ1gdU8\nxrQMmt3gS5+c3krDleRUZYXtWuRZyfNHZygFe3fezj/GNHVc36a7HXJ8OCJsevVnKlX7ca0J0p17\nW8RRRllU/OpfvkOW5AThZTvjvD/n2dM+SZyTlyVFXmGaOmHocHg4ZmcnZDJZ4fs2pqlvtFtXydYF\n8nWsjr3WTF1oyFZJyru3txjPIjptn+FkyW8/fM6dgy7Guq25XKWXGq/1+uZFydlwzjJKsS3jmjVE\nccVN/tvGi/MJ3ZZPlhY3vr6MU/baIU3Poek511qRaV6Q5uX31q9rlWVoQrATBPykt0XDspinCR3X\n3fhyAZwsFjTt6/4/x4vFJkvxKixd549np2RFQdfx+Ou9A37cqY0vtz2fnudvhPzLLOX356cUqqLj\nuBzOZ2y7PnFZ1NE/lr3ZvillTXKKnFLVMURRkfNiMaVh2Tybj2laNgrFp+NzjlYz3mt0MKWkny+J\nkoy25ZJV5YZsXeDFagooorLgL9r7GJqGZ1jXiN0FTFmTvrQqOI2XnCRzuraP+YW/1TVJ03RY5gnT\nPKZl1pXdP85e1nojofjr9r3aYFUIzpI55hViB7AoEp7GQ4qqZJSvWFQJO3YDQ5P84+QxZ+kUWxq0\nDJ9Slfx6+gBH1k7vtjR519thx2jyNO4TlSm37S4tMyAtCxZljBAwK1b4N/hpvQ5CCCzNZJCPCfWb\nrQdc6eBIh8PkJZNiSsMIGeZDHkaP6BpdPlp+RM/cZpJPmBRjPvB+jhQSXwZ40qNjdElUiiM87tr3\nyYwlx4sjUBots4ul2TxI/khLbqGvHfJLVVzTwD1J/lg7zwvxrbvN59WKSfGEln7/tVUkIbQrvlwF\nUnPRhCSvZsgr5EgXPrrmIdSF5c/bXyuEEAihb8hWUb2kUgtK+kjx5RWz/1L4gXB9A3zXC/dVsRgv\nGZ2MsTyL/uGAsBN+LbK1nEUgat3X6HS6Cbz+MrzNwRYtE8qiFp9Hy4Ttg9r89AJJnDHsz/DDL78w\ndnshtmMShPXN37IM/MDm7GSMAlptn7DhUhQlcZQRhA7Png5otTwcx0Rogv1bHcajJXfvdvHWNg/D\n4YzFIiGKMnpvmJS8QFVVeJ7NdBaRFyWGoTObRez2GgzHSx48OUPTBK2mgxQa40nEcX/K/k6T/nCB\n71q4V9qzUtNoBg6NwHmFWJlG3cocTVckabHJW/w20A5cGqHz2t/wcDCl6TsYuiTO6kDni5v54WDG\nKs1o+W9/Q/sviSjLAEFWluRVyeFsxjiOKCtF06lbqpVS+Ka5zi68RMO2XyFbUIc2dxwHTQg+HPQx\n1l5Z5tox/oJAx0XOfzp6wSJL107zNnFRcB5HPJoOmaYxO+6r1eMHkyFxUdCwLMpK4RkG4yRhGK9o\n2w62NAkMi47t4hn18SNMjS3NIa1KJkmMb1jkVUlSFZzFS267LXJV8d9t38PQJJ/NBji6gW+8uTpZ\nojhwGptYn5tgSYOW6fL5rI8pJXe8Dr5uMckitu3L86hSFZY0rk0NlqriltMmrnIU8D9u/RRDkxRV\nyXE2ZssIGBUrdqwGhar4m9aPcaTFSTrBEDqfrg6Z5BEdI+B300fklCRVRssIOLC7WJqJK62vPKlo\nasY1snWaDRjnU5p6/X3G+RQpNHasbTKVs2P2SKqUUlXsWDsEus9ZdootHDKV0DY7mJrJMD/H1uqH\nY1tzsDUbqUnaQUiZaJjSpqJkUgy5bd2nICOqFtiax2n+nFC2GOenjMs+d60P8GSTUmV1gPW3iIqC\nZXWCL3ff2LarVE6pYmLVx5E7ACRVH2mLuOIAACAASURBVFO77tumCZOsGpBWJ5ja17d0EARoIkTX\nvpqZ7Z8bPxCub4DveuG+KizHxG95FFlBtIhp9Rpfq58fLRMGx2NavcZryVaW5tdajvB2B5tlm1i2\nQVVVPPv8FC+wMS2D+TQizwqkLnE965Vtvw6jwQLDlBw+H9JoubU/VtPjT79/getb6LrG44dnLOYx\nQcPhvD/Hdkwc1yRsuJimTq8XIjTB40dnjIYLbt/pEoYut29/edUtL0rOzmc0wrqtM53Ftb9XNyDP\n6xbiz396QP98TqXg7q0ut/fbdJsew+mS7a2A1SrD+5IEgNF0xTJK8daROubatPRqlSkvSoaTJa5t\nUlWKSimWcfpGcf1VVJXC91//GxZlRVlV2KbBcL7CWpM/gJbvfC/IVpznm2iVq7ANA1OXDKIV54sV\n277Hj3tbG7H8w9GISRzTXy3Z9t/OSPF8tUJoAtc08U2DPT+s43l0nS/mKDYth/vNNqM04eV8StNy\naFgmL+czftLZ2hCmCyyzjF0voOO4TNOEfrzEkJJt16dtOXi6yWlUTyx6hslHkz4vlzMKWbJt+Ahg\nktU2FhdZire8BmfJkvfDLr8dHrHvNUjKgqNoxoHbYJRGKOqMRENcruE/jA4pK0U/mVOoCu9KW/Aq\n6vYS/G9Hv+c9f4uzZEY/nePpJm3Drc0lhMCSl6HsFxhnS46TKQ3DxtVNTuMpgW5TqIp3vW0OnA7L\nImGWR1RCsW01cKXFJF/haRbzPEZqkp4ZElUZ/1PnF3i6w67dJq1yLM34ymTrJphCxxEWxrraVFFh\nasbadd7hLOtjC4tda5t5MaNrdLE1h1k55Wf+v8CRDuN8hC4MzoszNCBXGU+TB2yZOww5IU1KCnLu\n2PcxhIkmNBzNx9Zqu5FwXcWy/t/27jw6sqs+8Pj37e/Vq02lKm3drd7sxgsmYM+EyYw7LB6G8AcJ\nB8yx8UxzSBj7JASywPGBIXPsf+ZAnAxnMgkxxhACGDBLyBlMzhmYABkMhOOxHWxs7MZ2L2qptUtV\nqv2td/546upWq7S21FLD/fzVLZVUt+qWXv3q3t/9/RQHU7FRUJgJx+i/oAXQVtEUg4y2Z80cqZAW\nEW3S2n4i0aIdT2Eo2SUrXAB+PEtMhK0Nbnhb8ULK4ha/EIKYha6FUneCDLguwU4/cZtx6pkz5EtZ\nqrN1cqW1twG7sVNW57TjSs6emsZJ20sCo4282FRVpTiQ49knTzOwpweUJOF8emKB3tL6P6WNjcxi\nGBo9hTSjp2fJF1xMU2f/oVJSOX62ytxsnXyPi66p7B3upVptke5yAjIII/L5FD09aex1rhxpqkou\nm6JWb9NuhziOQamYxTR0Uo7FE0+fZr7S5Nojg7TbAbWGx2NPnUbXNUqFNLZlrBlsQVI/y3XO532p\nqrK8TlSjzUy5gWloVBttbFOn6QXL2vd0E8UxL52dZXiwsOIcuraJvZgUf6746Xy9RTsIcXdJ/tZk\ntY6t6ytuuc7WG9Q8n5Sp40dR0jxd00ibBnXPx9C0TiPrtZiaxkhlAccw+Pn8HPtz+RVLU1S8FoaW\nnGwMRZw0oZ6Z6pxGrPs+ezPnj9zPtBpYmk4QR8QiZk86S2qxGOnZRg1L1XFNk6rv0QwDDmcLpHWT\n4d4eYl/wxNxZZr0m1+RKlJw0RdvFUJP8qBers0RCoKkqacMkrVtkTRsvCtFVlZl2g4xhdratBuwM\nA06GeujhaAYZw1r1ujJgZ+g1Xeb8OlndIYyTSvCPlU+TNxxszeDp6hi2anbywRaCFq5msTdVQAAl\nK8O4V0kKe+oWtbDNicYUN+YPMmAlqyaxEPSZWVzdRlc1qmGDn9ZPE8Uxr8gdICYmiCIqUZ2cvjW5\nTbqid4ItoBNsAcwF86S1NLqi0RYemqJhqiaeaFMNF2jEDXr1XiIRktYy9OgF5oI5KsEsvWYfKS2N\nZsdM1CdZCOcZ9V+ioBWx1BSaqi17zhVFxVBN6lGZdtzAUMxlSfWXi6aYIDQa0QiW2gtoxLTQL6oC\nr+KgK+lOE+tLF+FFzwIhmtK9C8LlJAOuS7DTT9xm5PtyaLpG/oLVrUa1xcJMDXcd23TndAu2fC9g\nfmoBN+tQryZNmC+s7bXeF9vs5AKKmiShCyFwsza6oWMYOm7aQumyQrGS3lIWJ2XRbvn0FNKY1vnV\nnPm5OrVqm76+HKmURW8pi6qqXYMtgPRi38Vz2m0fXdeYLzcQQnTa+3QzM1tDVZUlOV4L1RYnR2Z5\n7b89gm0Z9ORT9Pa4i8nqNj0bSHw/94luNY5lUOpJU2t69BcyPD8yxYHB7pWcL6YqCsWcu/4LhgKG\nppJ3nV0TbAHkHHvV/Dbb0NmTy/Lz2TliAYVUUntL17Skcnsms+LPXkxXVTKmyVi1SsFOUewSqE3W\n61R9j9lWEz+K+e6Zk7xQnmOvm+VALs+TU+Mcyha4qX+I4+VZinaKII7w4oi8ZdMIfE7XKuRNOzmt\n5rUw1KQ9zny7yZCbJWUkqze2rvPt8ZfIKhZHckX2udlOADjdqqOpKrqiUgu9pKG1mydtWKSNJGg4\nWZtj1m9wVabIVLve6beoKSpeFBIJgaoonUba3SiKQo+ZSmpk2Vkasc+MX2evk2c41dNJhLdUg3YU\nUIvaZHSbOb9Ov5VDU1Xm/DolK0uvmcbVTGIErdhjwMrTiDzSejKucW+e0fYcg3YPU36V69xhQhFx\nKDVAwcxgKDoTfplDzsC65/Ri0WIDa2uNcgte7DPnz1OJKiyEC3iiTY/eg6maZLUcOT2Pq6aYCWaw\nVIsR7xR5PY8nPPzYo88cYiaYJNY9hjhMSktjYhISMOafYNw/xYC5vHNIM6rSjBcwFQdFVbBWaUS9\nGX5coxXPYaqr/12EokEtOk47nsJW+/HFHClt77Lbrec6thGKoqIpOQR1NGVr89c2QwZcl2Cnn7jN\n6PZi1nUN09bXvU23kqnReSzbxHEtsj0upm3Qbnroi4HIel9sqqpimgaaphL4IULA6IlpUq7J4z94\nEU1XVzyluBLLNpibqZHOnA+mUq5FtdJk73AvcSyoVBq4aZuR0zNYltGpz3WhkZFZMhkLUJiaqpJK\nJb0DDUPr9IO82PhEhd5CulPJ/hzbNij2pkktbgOeu9hEUYRjW52aXlttbKpMyjYZ6M0yMVvdUPmI\nlebQC0JeODtDud6iN5uUUbgSeyoaWlKwc08uS9FNoV8wp5tJ+J9vt3ANk325HHXfw9SWzulcO+lr\n2Jdy6XVSDGey3FDs55unX+BVfYMcyvdgqBoCONLT29n2ioXgVLWcJMcLgaVpnKiWGXIzGKrGZLPO\n2UaVqt9m0M0SxhGxAAwFPVbJGEn/vyfnzlKyXQRgL+aWHV+Y5WA6z1S7jq6quLpJJAStKMDRDezF\n/CpncfUpiCNGmhWGU3lqgdfp07iSRujz1MIoad1CAP1WJimlop0vg+JoBmndwtWTvKoe02UuqPPY\n/Ak0VUUsHvX04oBpr8qp1gwlK8uZ9hy9RhpNUamFLVQFamGLopnBFyFp3cInYt6vYStJE+uC0T1Y\nmPTmcBb7JK4kEjHt2MPRbM56k+iKtmSF6xxd0fBin5OtUzzXeI4haw8HnP3ExFSDKv+08F16jSIK\nkNXzgEJWz5FSk7mZD6dx1TT7e/ZRbTaYDs5SMobI6T0MWvvJa32dpPlqNJ9sJSoK9ajMVDhKLEJc\nNbdlAVcgmmiKgYqBoaTW3FJUFRNNcdDVDBoO7XgCW+vfkrEAxMIjaXS9/G9UUcxdEWyBDLguyU4/\ncVtFUZUNB1vdcrRM2yCVPX+Ca/rsPJXZOvnFOmDrfbHphtbZDku5FpZl0NuXxTB19l/Vt2aw5XsB\n42NlcvnzF5czp2ZQdZVMZukqnp0y0XWNublkBcpeLAqbWmEbz7J0yuUm09NVBgZy1OttPD9ctioW\nRTFRFHeKro6Ol0EslpsAJmeqGLqK54fUG96SbcO2FyZ1vLbhRF/LC5hdaOBHET2ZFAuNZPzuOpuX\nXzyHSV/FENs0KOXS9Ga3/tj55VRptTk1P08QxTTDgLSZPC81z2O8WiNjWsu2al+am8OLIibr9SSp\n/oIgrRkECJJk+++fGWEonVlS0ytnWtQCn7Rp0gh8AhFzplblZYUS/3fsNC8v9VNut0CBopO8ns+t\nVvXaSS/GvOVgaTp9jks98Jn3WkRxDAiuyiUlHWbbTX46P8nRAwcZLS9QsByeK09jqir9TgZ7MdDK\nmUmV+bzpJFuJhsnz1RkGnAw9loOuatiaviQ5XkGhaCUdFxqhv2yF64XaDI5mdE46znh1rk6XcHWL\ntG4RLLbtSWlLX4Pn2iQJIXi2dpaMblOJmuy1CxyvT9BrpukxXfJGiqKZoRzUOZzqx1SToDalWdSC\nNnnDxdZMdEUlo6dQgSlvgdmwzsvTwyhKErg1Iw/rgmBJAJZqrrriogCGYqApKq7mMOHPdBLmL9SK\n27RFm0POQa5NvQxN0QhFwM9bP0dDY799gD3WHjw8XNXFUi10RacdtxjxT3GVcy2WapPPpGk0PGph\nhWZcpSnqZNQsoRKiYyw+libWYsK9o6XRSZ4PS3O2LOCqRxNYShpF0dZd40pbbLNTj07h6vsRxJeU\np3VOJBYI4zkgRlVSeNHzCAI0Zf2r0ZfLbg64rryPx1eApPhpfe0briIKI8ZPTjM5MsvI8XFa9TaQ\nbDNeuMqj6xr7XzZ4SfcFSf2w+ZkqtYXVmw+fY1oGA0NL9+uHD5YYHFr+KWdmKulnODjUQ19/jiiM\naXZp6nyO45jYtkG53CCKYvJ5l0LP+W3CZtNjcnKByakqp88kDVYNU8OxDBwnubhMz1bJpm10Q6NY\nSNNXzDBXrjMxVebxnyS1uWzLWNJke6s4lsH1hwbIpx38IKTaaFHIdr8Il2vNNRtRB1HEVKX766np\n+TQ9Hz8MeXFi5Wazu0kYR2SspOjpc1Pnm/06erKq40XLS2I4hkHBcTjY07OsRlfBcehdDJTecPDw\nkhITkLypx0LQDH2aQUA7DLmh1I+tadi6xs/mpnENk147xVx76ev/dK1CI1h68c4aFn4UMttucLpW\nIWMmF9eClSJrWrxYmaNop2iFAX2OS948P/fX5ft4rjJNJGKCOMaPQ2qBzwH3/N/NnNdY9hyMNStU\n/KT5+4Cz/E3uqnRxSYAWixj9gjfprGHTa3YP1Ke9KrN+nRuyeylZGQ6l+rBUg+syeyiaaWIhCOOI\nKX8BVVGZ9haS51UIZvwqRSvLQtjEiwO8OEBFoRI2uT4zjKVqTHjzXe8XIKOn1tze8mKf+bACgKZo\n7LW6r9o4qs2g2Y9AoCkae+whDMXgoHWQrJ4lr+eoRgsU9RJCEfgiuQapisY1zvWM+qdQF98SdUXH\n0hwcNU2/vo9GXGfMO0Gw+DNZvXfJuD2RnCq3lK37MJTTh1EUDT+uUwlforlKM2mARjRKO5xjIfgZ\nmqoT0UTh/AcPIbqXmlmPSNRRiDv1tkIxAbFJKK6Ma85uIQOubSBiQbvRvqTfoekaB67dQ+CHFAZy\nWKnuqyOF/lWai65THAtO/nyCTC5FGMa0W+v7dHBhE+5atYUQgrOjc8RR3Pn6s0+P8v3vPEul0mTs\nzBwApqVTWqPUg+ta3HDDPs6Ol5ckp8exII6htzdNf1+G/ft6abUD5ubqpNMWbspCCMGpM7MEYcT0\nTA3PD6nV21SqLVzX5sc/OcVsuUEUx0xMV5ivNPCDzV+MulEUhXrTZ6HeZmquvmJO03rCPcvQaflB\n1+9FsSCKBaauc6i/gLfFj2M7FF2XoptmttnghoEBJqo1AGabTYpuCtdc/lrfk81i6fqSlS2AH42O\n8NjYKCMLZWLR/dlUFYUBN03DDxbbAZmowHgjOWEYhjFeFJIxTUZrVZ6dnSKMY1phQBiHne3Dc9qL\nwdCr+/byyuIg8+0mZa8FCPrsNNONGl4UcnxhhoxhUrRT1AKP07Uyk60aKd1gvFGl4rcWE+lV9AtW\n9PwoOaF4oWG3h7y5cv7nxaf//Dhizm9Q9puMtsrM+40Vf7ZoZigYLgtBEmymNJNG5NFvZYmF4Hh9\nAl3VOOCU2GsX2OMkOYnn8sAmvDJFM0s7Cvh/lRcYbc9iqDoLYZMDTj8DVnJ7SzXI6htf/UkC5uSa\nEouYFaa5oxJU+Mfy92hFLVpxi0bcYMQ7zUQwgVj8i4tF3Pmd9ajGqfaL7DMPdoIoRVEZsvZjaoun\nIRVBRsuvWPh00DxMTi0iiLt+/1JoikkQtzFZ/eSupSZdPQytQE6/HkcdWtIKqBGfIBYhQgjEWk/i\nRUx1D6Z2oNPM2lSvTpYepQ2RW4rbQFVV3NylLyvHcUzoh+R60yvmLl1sM8upiqJQKGXRNBWv5TNy\nYop0NkkAXet+x0fnkpISCy1SrsX05ALZXApNT34uX3C55vo92I6BaemdnKkwjPAXeyFeLAwj4lhg\nWTo9PS6jo3O0F6vIx7GgstAkl0uSgjVNRSHZIs1mHOJYoKoKewd7sEwdN2XxwktT/OSZM+RzDoN9\neZqez56BHsYnK/SXsqiqQrMVLKnDdamabZ9as02pJ1kh6M12/yTvWMayU3Xn5rBSbyX5TqpCaYXk\nfsvQsYzzjZqfH5umJ22vq4n0TlJVBUNLDmykLbPzOC1NX7adCHCqXEZX1WWrW+0wpNxuk7UsJusN\n+tyVVxiaQcB8u814o0af6zKUypA1Lap+Gz+K6Eu5zLSaXN/bh66q1HyPx6bGyZs2KcPAWTyhqCkq\nrp4U2PUXK+Bbms6816LXTvFsdZrIj8hbqU6LHkvTyZhJLa+kmGpMzrSxNA1bN9AvKGRqqlonsX2z\nWlGy0pQ1bAqmi3PRVqIXBYQiRl88eScQzPsNsosnGJuRR3qxZlbJSlbUJr0KKW3p6UhHM+k1Mxiq\nzrg3jxCw1yliKhq1sEnJzC0prtqNHwdLKsdf7FyzaxWVQARUoipprfv11Ys9YqDfKGFpJm3RZsAc\noKD14uppsnqWCX8CQUQ1qpBbbDqdUl2cxd954TU0FjELUZkevYSm6BjKytufs+Eoea3/kuatG1XR\nSKlFtC55a0tvZ6KrKewV6mKZahFFUfHERNKeR9nYe1QsGsS0URULTcktFlfd2gMCW+EXbkux3W7z\nvve9jzvuuIM777yT+fnlS8af/exnefvb387b3/52Pv7xjwPJEvTRo0c5duwYx44d42Mf+9hm7v6K\n1W54+F73lYpu4igmDKJ1B1tbIZ1zKPXnabd8FuZX/lR8TrEvi2npDAzlOX1yGoGCYV7w5mHqtL2A\nJx47uSRny/dCGvXuq4DtdkC12mJ+vo7vB1RrLTwvYHyigqoqDA6c38r0/bDTCFsIwYsnpzrfU5Rk\nZezaI4O85t8e4cihAWbnaxzaV2KwL4dpaGRcm2zaoe0HW7bK1Wz7lKtNDg71cnZmgYMDBfw1tg0v\ndO7TZxBGRBv8JNqXc9mGXdItpyoKKcMgFgJl8aNyyjBWXAncn8+TsZZfxFKGQca0UFDZk80QxjFP\nTo4vu50fRZytVwFB3rJpBgGmrjPdaiyWY4hIGSY39g12VtEKdopb9h5iXyZHj3V+dSnJ7zKYb7fQ\nVJWi45I2TFwjadXzK32DZCwbQ9Wo+ue3zjVFJWfa5E2bs60a016T6XZz2crcWiUf1mPAzlCy0p1c\nq4u14oB2fP5apCkqe5weFoIWc16tE+RAsh0759cwFZ1m5C1bHWlHPuPteQbMHlRVJaM5QFIhXlNU\nqovbjd0IITjrzaz6WHwRcMabIBABpmrQb65c1bwRNUlrKfbae6hGVQbNQSIRMR/NUwurBHFAK65T\nMIrk9GQbtxotMOqfxIuXX49MxUSI5G/XUd1Vc6mGzKu3rXn8enK4QtFEiJhJ/3u0o2Q3YSF8FiGW\nrrrZ6tC6eileLBIVQrHy9rC0tk29kz/88MMcOXKEL33pS7zlLW/h/vvvX/L90dFRHnnkEb785S/z\n1a9+lR/+8IccP36cM2fOcP311/PQQw/x0EMP8YEPfGBLHsRuNfbCBNEFb7Reyydorz/g0g2dgf2X\nt2WCrmsUB3IUihl611Hh3bTOfxLft7+XQ4f7ll10KvNNrr1+aMmFOuVa9Ba7J1ym0zbFYgZNUwnD\nmHK5ieOYDO8rLFsRm5qu4vshU9NVhICXXbX8+LmqKmQzDifPzKCoCtMzC0zPVLnqQF8nf6rYk8bY\nogR6xzLoK2SYrdRJWQbz9SazK+RgdXN6sky12aaUT2/41F5/PtPpSXglKKRS6xrvSgUziykXW9co\n2Em/wrO1atcVlalmnSM9Ra7qSXJvclZyAMM1TJ6dnyIUy7eCYiEYb9RWHFPJcVGAJ6bPcrI632mV\nc02hjyCOGamV0S8at6oo6KpGLGKmWlUW/BZ+vPXbwJqytKxLJGKaUfKpvxn5zPn1pP/kMoKFsEXO\nOH/aNxQRp5uzuLrFWHuehXBpnpupGkkJCFVj2Orl581x8obLkJ1sJVbDRmf77mKKonDQGVr1sViq\nyfXu1aQ0hzFvkmCV56tg9GCrydwOmUOLP28RxSGe8GhEdQ47RxYfaYwvPPJagSPOy5cEXK0oGbOh\nWvSZy0sr7EZ+XCYmwFWGMRZzyXL6y7ekqXQsPCJRx1A2X95D2mTA9eSTT3L06FEAfv3Xf50f//jH\nS74/MDDApz/9aTQtWXkIwxDLsvjZz37G1NQUx44d48477+TkyZOX/gh2sd7BPEJAuNjXL1fMbMlW\n43abGJ2jWV85qf2cKIp56fnzqwmmaeB5AVG09OJ68HAfJ1+a3lDewKlTMziOSTptc/XVA3h+yMlT\nM1QWmszMnn8T3Le3gGnqHBju7boVBXB6dI5qvcVVB/pIpyxKvVl6e9LUmx6VavLmYVuXtoVzMUPX\nqDU9MikbQ9PozS3Pv5gq15Y9VwAHBwtkU0tPZDbaV97WejexEDwzObX2DdfJ1nWuK/UhFHhi8ixC\nCAa7VKnfl8mhKQonyvMc6eml3G7x9RefY086yxv3X02fnabcTvIQL1xx2pde/UNH1kza9gymMhiL\nK2NPz0ygAcPp/LLXVCRiji/McHP/fq7L9nF1tkg18FbMP9sqx2tTjLeSZHdT0SgZGXL68lIlOSPF\nIbevszImhMBUdW7KH8RSDfbahSWnDOthm/mgRjvyk7IXusU17p4lv9NWza5bhtWwwbiXJF23Io+5\nYGHNx7Hf3oOxwqrdSmIRo6rJKcW8kaxq1aMa094kzzaexlYdmnGTk60XmfKT61kjrhItJpmf9U5t\n6P42QghBO177ca9HStuDplhkjKvQ1K2t+q5gYqr7dk01+SvVmq/cr33ta3zuc59b8rXe3l4ymXNl\nCFxqtaWfAg3DoFAoIITgz/7sz7juuus4ePAgs7Oz3HXXXbzpTW/iiSee4O677+brX//6Fj6c3cXJ\nOFSmkz+mfN+lJ7d3I4Sg1fBIrVBIdDP2rHNVTdNUDl+z9IRks+ljGPqy+lD/6tWHNzSG/ft78f2Q\nEyem2b8/CabCxf6PG034HBrIMT5ZYXJqgZ5cimzWZnJmgULeJb/C6cFLMTFXxTENDg4lbYlWKgdh\n6ssrV3cTxTEzCw3cdVSr3+1UReGGgX5emp1jMJtZliBfbrXI2faGWsC0w5AzlQpDbpYD+ZVrATmG\nwdWFZE68KOIth69BVRROVcsEcczpaoWcZWFpOnvSWcI4puK1O6cQu7E0nV8bGE4CqcoM1/f0c2Pf\nEGfiMs5FTashWXn6lcIgURzjEaN36l1tr2szA53nVFc1shcl4DcijyAOyRsuz1THuCGbrOq81Jxi\n2OntBFnpi4I0TVGpR20MRSNvuDiYVMMmGc0hFBGGqlM0u1/7srpLdrH6vKHqOKyvQvuMP4elmmT1\n9ZUkUBWVvdbSVSpd0XE0lx69iEDwYvM5HNWlqCcnIMUFx1kGzH3rup/NEMSEogVsz/vDVklaRu3+\nxYLdThEbffcC3vve93LXXXfxile8glqtxjve8Q7+4R/+YcltPM/jwx/+MK7rcu+996JpGq1WC03T\nMBcvskePHuXRRx9d9U0nDLsnVkuJwA+ZGptn76HNNyHdbVotn5mZGkEQceBAEU1Tqdfb1GptBgfX\n3zrC80PGzs5z+GDy3JwanSUIIkq9GXRNoVJtMdiXu2JeX1GcNHc2NI0z0xWG+3a+jcZWGC1XyNg2\nURTx2Jkx/sM1Vy87jbiaM+UKKFD1PF7ev75Cj14YMtmosz+XJ4iiJXW7tsJYbQFVURhaYYXs+flp\nXtZT2pLegutVC9qoSlJk9WLtKCCMI9LGxj64xSKmHnrYmtFZFRtrzjJg9/BibYJrc1u/HReLGIXV\nq6WfaowwZA9gaRbT7RmyRibZWhQR+gUrZI2wTi2s0QjqDNp7SBm7J6gIYx99jer60pVlU8keN954\nI9///vd5xStewaOPPspNN9205PtCCN7znvfw6le/mrvuuqvz9Y9//OPk83nuvPNOjh8/zuDg4Jqf\n8Mvl9dWF+mVmZRxmZpJVxlIp0/n3lSqOBZqm4jgm8xck7uu6tuHH5lhm52dcy0SxFUI/ou4F1Bse\nZWP3vb5WmsNKo0XbDxnoydCse8woV/Y8n6NFUG01GalU2GtnKM+tfVjjQkqYtLvp11Lren20woCx\nWpWik2LGX/n2YRzxj6MnuXlweNVVrouVShmsdhIwzrSW/v7JVo0BJ0MRh7nZOmEccbJe5kh2+3M1\nq0E7aQukr/xYWqw/x/QcIQTPNke52k1Wuy0syo0mRXI7di1KU6Da9AEfP1ZYUDx8UaMWVSkZSz+c\naqTJkqbRjmhQo1TKMDY1g7W4LXfWO8mgeWDVavhbrRFNU4+mKBnXoq5QikLqbje8B5ZK3VdfN7XC\n1Wq1+OAHP8jMzAyGYfCxj32MUqnE3/7t3zI8PEwcx7z//e/nla98Zedn3v/+93Po0CHuvvtums0m\nmqZxzz33cPjw6ltNO/3EXWl2bcu5lwAAB7pJREFUw4tNujS/rHMYRvGqPRhX8tOpSYpuaslq0nSj\nQRhHDGW6rzCFcUwYx9i6zlSjToxg0N2aqtmrzd+5gOtCXhRiafJNdbfoLbr8bPwFBswkF02IeEsS\nzzciEgEKKuoq5TKk7nbD9XOlgGtTryLHcfjLv/xLHn74YT7/+c9TKiV1P377t3+bW265hTe84Q08\n88wzndOIDz30EK961avI5XI8+OCDfOELX+Bzn/vcmsGWtD7vfN29G85rWs2xW+7b9O/7j2/+H51/\nb+WY1nLuvm591yeWfe9t735gyVjeeucDl3Vsm/XG//rpnR7CZfXvP/WZNW/zur/59LK5e1lvkYGL\ngqU+1+Wd/+sry37+tV/8FEIIzlQrvOZrn2GqWacv5W5ZsLWWi4MtIQQ3/58HO//erNf+0/9c8zav\n+8Hqf5uv//F/39R9CyF48798ZFM/u5P+y8j7Os/Dn4y8t/NvVVH5xNR/69xuO4MtIQSfm7112dc1\nxZDB1i+g3V0dUVrTO3/1XmjAiz8d3ZLfd+yW+wB48bmzG/7ZC4OthUqTqYnKloxpPU6dmcVbrHHW\nLei69T9/koVqi7fe+QAAx09MXraxXYpflqDr5gc+TUiyyrUaD/h3n/mbJQGDpevLcqH+zUOfos7S\nwOLVX/wULeBsvUrKSHJjfvMbX2K0tjWnxDbjV7+VvFb/9f++n59WNvearPgtPODX1gi6QuDoYtA1\n0V5g1j9fqmSzwRbAb/7ko5v+2Z026p/mT0beC8BsmJyefc+//KfLct9+3ODzc2+/LPcl7Q6b2lK8\nnHZ6afBKsxuWU6VLI+fwyibn78om5+/Kthvmb0u3FCVJkiRJkqT1kwGXJEmSJEnSNpMBlyRJkiRJ\n0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJ\nkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNtv1vRQlSZIkSZKudHKFS5IkSZIkaZvJgEuSJEmSJGmb\nyYBLkiRJkiRpm8mAS5IkSZIkaZvJgEuSJEmSJGmbyYBLkiRJkiRpm8mA6wr09NNPc+zYsWVf/973\nvsfb3vY2brvtNr761a8CEAQBH/jAB7j99tu54447OHHixOUernSRleYPoNVqcfvtt3fmKY5j7rnn\nHm677TaOHTvGyMjI5Ryq1MVG5i8IAu6++27uuOMObr31Vr773e9ezqFKXWxk/s6Zm5vjNa95jbx+\n7hIbncNPfvKT3Hbbbbz1rW/la1/72uUa5jL6jt2ztCmf+tSneOSRR3AcZ8nXgyDgox/9KH/3d3+H\n4zi84x3v4PWvfz1PPfUUYRjy5S9/mR/96Ef8xV/8BX/1V3+1Q6OXVpo/gGeeeYZ7772Xqampzte+\n853v4Ps+X/nKV3jqqaf40z/9Uz7xiU9cziFLF9jo/D3yyCPk83n+/M//nEqlwlve8hZuueWWyzlk\n6QIbnT9Irq333HMPtm1frmFKq9joHD722GP85Cc/4eGHH6bVavGZz3zmcg53CbnCdYUZHh7uGjCd\nOHGC4eFhcrkcpmly00038fjjj3Pw4EGiKCKOY+r1OrouY+ydtNL8Afi+z1//9V9z6NChzteefPJJ\njh49CsArX/lKnn322csyTqm7jc7fb/zGb/CHf/iHAAgh0DTtsoxT6m6j8wdw3333cfvtt9PX13c5\nhiitYaNz+MMf/pAjR47w+7//+/zu7/4ur33tay/TSJeT775XmDe+8Y2MjY0t+3q9XieTyXT+77ou\n9XqdVCrF2bNnedOb3kS5XOaBBx64nMOVLrLS/AHcdNNNy75Wr9dJp9Od/2uaRhiGMnDeIRudP9d1\ngWQe/+AP/oA/+qM/2tbxSavb6Pz9/d//PYVCgaNHj/Lggw9u9/CkddjoHJbLZcbHx3nggQcYGxvj\n937v9/jWt76FoijbPdRl5ArXL4h0Ok2j0ej8v9FokMlk+OxnP8vNN9/Mt7/9bb7xjW/woQ99CM/z\ndnCk0kZcPK9xHMtg6wozMTHBO9/5Tn7rt36LN7/5zTs9HGkDvv71r/PP//zPHDt2jOeff54PfvCD\nzMzM7PSwpA3I5/PcfPPNmKbJoUOHsCyL+fn5HRmLDLh+QRw+fJiRkREqlQq+7/PEE0/wqle9imw2\n21n5yuVyhGFIFEU7PFppvW688UYeffRRAJ566imOHDmywyOSNmJ2dpbf+Z3f4e677+bWW2/d6eFI\nG/TFL36RL3zhCzz00ENce+213HfffZRKpZ0elrQBN910Ez/4wQ8QQjA1NUWr1SKfz+/IWORH5Svc\nN7/5TZrNJrfddhsf+tCHePe7340Qgre97W309/fzrne9iw9/+MPccccdBEHAH//xH5NKpXZ62NKi\nC+evmze84Q386Ec/4vbbb0cIwUc+8pHLPEJpNWvN3wMPPEC1WuX+++/n/vvvB5KkX5mAvTusNX/S\n7rfWHL7uda/j8ccf59Zbb0UIwT333LNjuZSKEELsyD1LkiRJkiT9kpBbipIkSZIkSdtMBlySJEmS\nJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlySJEmSJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlyS\nJEmSJEnb7P8DWHwd8XsUmLQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " \n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back_rows=20):\n", + " dataX, dataY = [], [] # for training\n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the data by 20!\n", + " for i in range(len(dataset)-look_back_rows-1): # \n", + " a = dataset[i:(i+look_back_rows)] # from example 1 to 21\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back_rows]) #get example 1+20, so the next point that is to be forecasted\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAM9CAYAAACITXI7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYFeX7x/H3WVhEQARR3BdQ3NcUl7Sy1Mo2bXFBs0wr\nzW+lqGiauaW5tWmZqW1mlpaVfct+reZXc7fEhVTIDVQQRATZOef3B3UU2Q7q8UB9XtfFdcXMPTP3\n3DNzOg/PM48Gq9VqRURERERERK45o7MTEBERERER+adSg0tERERERMRB1OASERERERFxEDW4RERE\nREREHEQNLhEREREREQcxOzsBEREREREpf3JZ6ewUimUi1NkpAOrhEhERERERcRg1uERERERERBxE\nDS4REREREREH0TtcIiIiIiJSahZLrrNTKJapjHQtlZE0RERERERE/nnU4BIREREREXEQDSkUERER\nEZFSs1pznJ1CuaAeLhEREREREQdRg0tERERERMRBNKRQRERERERKzWot27MUlhXq4RIREREREXEQ\nNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoWTQtvF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUi\nIiIiIlJqVg0ptIt6uERERERERBxEDS4REREREREH0ZBCEREREREpNQ0ptI96uERERERERBxEDS4R\nEREREREH0ZBCEREREREpNatFQwrtoR4uEflH6N69O8HBwbafJk2acMMNNzBs2DD++OMPZ6f3jxUc\nHMyXX35pV6zVauWLL74gMTERgG3bthEcHMzp06cdmWKxYmNjeeCBB2jevDnPPPNMoTEzZ86kTZs2\ntGvXjoSEhKs+Znp6OitXrrzq/YiISPmgBpeI/GMMHz6cTZs2sWnTJjZs2MD7779Pamoqjz76KKmp\nqc5O719v9+7dhIeHk56eDkCbNm3YtGkTVatWdVpOK1eu5NSpU3z55ZdMmTKlwPqoqChWrFhBeHg4\nX375JVWqVLnqY7733nssX778qvcjIiLlg4YUisg/hoeHB/7+/rbfq1WrRnh4OP3792fr1q3cdttt\nTsxOrFZrvt9dXV3zXS9nOH/+PPXr1ycwMLDQ9cnJyQB06dKFWrVqXZNjXl4HEZFyS7MU2kU9XCLy\nj2YymYC8L/eQ9wV64sSJhISE0KFDB4YPH86ff/5pi8/MzGT27NnccsstNG/enI4dOzJx4kRbr8za\ntWvp1asXU6dOpV27dowfP560tDQmTpxI586dadGiBQ899BBbtmyx7TM9PZ358+fTvXt3WrRowYMP\nPphv/YQJE3juueeYOXMmISEhtGnThrCwsGJ75RISEggLC6NDhw60b9+ep59+mvj4eNv6Tz/9lLvu\nuouWLVvSo0cPPvzwQ9u6ws6hsGUAO3fupH///rRs2ZJbb72VBQsWkJmZWWhOxdUuJiaG0NBQAG69\n9VYWLlxYYEihI+p08uRJRo8eTceOHWnTpg0jR47kxIkTAAwePJg1a9awY8cOgoOD2bZtW75t165d\ny8CBAwG47bbbmDBhAgCHDh3iscceo1WrVnTr1o0pU6Zw/vx523YxMTE8/fTThISE0KxZM7p3786y\nZcts+3zttdeIjY21HXPhwoX06NEj37EvXRYTE0NwcDBvvfUWnTp14o477iArK4tTp07x9NNP07Zt\nWzp37szo0aOJi4uz7eP333+nf//+tG7dmpCQEMaNG8e5c+eKrJWIiDiGGlwi8o914sQJFixYgL+/\nP23btsVisfD4448THx/PsmXL+Oijj6hRowYDBw4kKSkJgDlz5vDzzz8zb948vv32W6ZMmcLXX3/N\nJ598Ytvv0aNHSU1N5YsvvuCJJ57g9ddfJyoqiuXLl/PNN9/QpEkTRo0aRVpaGgCjR49m/fr1TJs2\njS+++IJWrVoxbNgw9uzZY9vnunXryM3N5eOPP+bVV1/lp59+4oMPPij0vHJychg6dCgxMTG8/fbb\nfPjhhyQkJPD0008D8O677zJjxgyGDBnCunXreOyxx5g7dy7vvPNOkedQ2LLIyEgee+wxevTowVdf\nfcXMmTP5+eefmTp1aqF5FVe76tWr8+abbwKwZs0ahg4dWmD7a12n1NRUBgwYQHJyMsuXL2fFihWk\npKQwaNAgUlJSWLhwIXfddZdtaGObNm3ybX/nnXfmy3nSpEnExcUxePBgGjVqxOeff2679qNGjbJt\nN2LECLKysvjggw/45ptvuPfee5k3bx6RkZHceeedDB8+nICAgEKPWZyvv/6aDz/8kPnz55OTk8Pg\nwYNxc3Pj448/Zvny5WRnZzNkyBCysrLIzc1lxIgRdOrUif/+97+8/fbb7N27lzlz5th9PBERuTY0\npFBE/jHefPNNli5dCkB2djY5OTk0bdqURYsW4enpya+//srevXvZvn07np6eAEybNo2tW7eyevVq\nnnjiCVq1akXv3r1p164dALVq1eKjjz7i0KFD+Y41cuRIateuDcCxY8eoWLEitWrVwsvLi/DwcHr1\n6oXJZCIqKoqff/6Z5cuXc+ONNwIwefJkIiIiWL58Oa+//joAPj4+TJ48GZPJRP369encuTO///57\noee5ZcsWDh48yA8//GDLYebMmaxdu5aMjAyWLVvGkCFDePDBBwGoV68eJ06cYNmyZTz66KOFnsPf\njZpLl40dO5abbrqJxx57DIC6desybdo0Bg4cyOjRowu8e1Vc7UwmE5UqVQLA19eXihUr5tvWEXX6\n8ssvOX/+PC+//DI+Pj4AvPbaa3Tv3p1169YRGhqKu7s7Li4uhQ5tdHd3z5ezl5cXy5Yto1atWoSH\nh9viXnnlFbp168Zvv/1GkyZN6NOnD71796ZatWoAPPXUU7z11lscPHiQJk2a4OHhgclkKvVwytDQ\nUNvQxzVr1pCens5LL71k68V9+eWXCQkJ4bvvvuPGG28kKSmJKlWqULNmTWrVqsUbb7xBdnZ2qY4p\nIiJXTw0uEfnHCA0NtQ0BM5lM+Pj42BpWAAcOHCA3N5euXbvm2y4zM5Po6GgA7r33XjZt2sTcuXM5\nevQoUVFRHD9+PN/7OwaDId/vjz32GCNHjqRTp060adOGrl27cs899+Dm5mZrqF3ek9GuXTs2bNhg\n+71OnTq2L84AXl5e+YaHXerQoUP4+vraGkYADRo0YOzYsSQmJpKQkFDgeO3bt2fZsmW2GQIvP4fC\nlkVGRnLs2LF8+/r7/aPo6OgCDS57alcUR9Tp8OHD1K9f39bYgryGU2BgYIEGtL0iIyOJjIwstGcq\nOjqaNm3aMGjQIL755hsiIiI4duwYkZGRWCwWLBbLFR3zb5de7wMHDnD27FluuOGGfDHp6elER0dz\n11138eijjzJ9+nQWLlxIly5duOWWW+jVq9dV5SAicimr3uGyixpcIvKPUalSJerWrVvkehcXF3x8\nfFi9enWBdR4eHgBMmjSJH3/8kT59+tCzZ09Gjx7N9OnT88UajUbbO2EAN9xwA7/88otthsSVK1ey\nePFiVq9ejbu7e6G5WCwWzOaLH8GX7u9vRU2ucOl2l3Nzcyt0eW5ubr5tLz+Hwpa5uLhw3333MXz4\n8AL7K6x3xp7aFcURdSpuny4uLnbldTkXFxe6dOnC5MmTC6zz9fXlwoULhIaGkpubS69evQgJCaFV\nq1bccsstpTpOTk7BLzGXXlsXFxeCgoJYtGhRgTgvLy8AwsPDCQ0Ntd2bEydOZPXq1UUOwRQREcfQ\nO1wi8q/RsGFD26QBdevWpW7dutSqVYtXX32VHTt2kJSUxKeffsr06dMJDw/nvvvuo379+pw4caLY\nmeUWLVrE7t276dGjB9OmTeO7777DxcWFDRs2EBQUBORNiX6p3bt329aVVmBgIGfPniU2Nta2LDo6\nmo4dO3Lu3DkCAgIKHG/Xrl34+/vbhsjZIygoiOjoaFut6taty9mzZ5kzZw4XLlzIF2tP7QwGQ7HH\ngmtfpyNHjuSbKOLs2bMcOXKkyFkJS/J3TWrUqGGridFoZNasWZw6dYpNmzYRGRnJihUrGDVqFL16\n9SItLQ2LxVJkHVxcXArU89ixY8Xm0bBhQ2JiYvDx8bHl4efnx+zZszl06BDHjx/nhRdewN/fn9DQ\nUBYvXsycOXPYtm2brZdTRESuDzW4RORfo1OnTrRu3Zpnn32WnTt3cuTIESZPnsxPP/1Eo0aN8PT0\nxNPTkx9//JHjx49z4MABwsLCOHXqFFlZWUXuNzY2lmnTprFt2zZiY2NZt24dKSkptGrVijp16tC7\nd2+mTp3Kpk2biI6OZvbs2ezfv5+HH374is6jc+fONG3alPDwcPbt28cff/zB888/T2BgILVq1WLE\niBF88MEHrFmzhmPHjrF69Wo+/PBDHnnkkWIbPZcbPnw4ERERzJ49m+joaLZv3054eDgpKSkFerjs\nqd3f721FRkaSkpKSb3tH1Omee+7B19eXMWPGsH//fvbv38+YMWPw9vamd+/eV7TPQYMGcf78eSZM\nmMDBgwfZu3cvY8aM4ejRo9SrV4/q1asD8NVXXxEbG8uWLVt49tlnAfLVITk5mT///JPMzExat25N\nYmIi7733HjExMXz00Uds3Lix2DzuvvtuKleuzLPPPsvevXs5dOgQYWFh7Nmzh4YNG1K5cmXWr1/P\n1KlTiY6OJjo6mvXr11OnTh0qV658RecuIlKAJbts/5QRanCJyL+GwWDgjTfeICgoiJEjR9KnTx+O\nHj3K8uXLCQoKwsXFhVdffZX9+/dz1113MXLkSCpVqsTQoUPZt29fkfudPHkyHTt2JCwsjF69evHe\ne+8xe/ZsOnToAMCMGTPo2rUr48aNo2/fvuzZs4fly5eXaoa6SxmNRhYvXkzlypUZPHgwQ4YMoXr1\n6raJJfr378/o0aNZsmQJvXv35t1332XChAkMGzasVMcJDg5myZIl7N69m/vuu49nn32W9u3bFzqM\nzZ7aBQUF0atXL0aPHm3L9VLXuk5ubm4sX74cV1dXBg0axJAhQ/Dy8mLlypV4e3tf0T79/f159913\nSUhI4KGHHmLYsGFUr16dd999F1dXV1q2bMn48eNZunQpd955J9OnT+eee+4hJCSEvXv3AtCrVy9q\n1qzJPffcw4YNG+jYsSP/+c9/WLp0Kb1792bLli22GSeL4u7uzrvvvou7uztDhgxhwIAB5OTk8P77\n7+Pn54eXlxdLly7lxIkTPPTQQzzwwANkZWXx9ttvYzTqf/0iIteTwap/gVFEREREREopJWWKs1Mo\nlpeXfe8RO5omzRARERERkVLTLIX20bgCERERERERB1GDS0RERERExEE0pFBERERERErPoiGF9lAP\nl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlpyGFdlEPl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIi\nIiKlp3/42C7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoGTQtvF/VwiYiI\niIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6GlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6\nGlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJqBquGFNpDPVwiIiIiIiIOogaXiIiIiIiI\ng2hIoYiIiIiIlJ4l19kZlAvq4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoG\ni6aFt4d6uERERERERBxEDS4REREREREH0ZBCEREREREpPU0Lbxf1cImIiIiIiDiIGlwiIiIiIiIO\noiGFIiIiIiJSepql0C7q4RIREREREXEQNbhEREREREQcREMKSyGXlc5OoVgmQst8jqA8rzUToaxv\nP8DZaZTojh2ryk09v75hoLPTKFbvnR8B5eMz6adODzg7jRJ13/Ip33Xo5+w0StRz+yfl5ln/seOD\nzk6jRLduXcMvXfo6O40S3bR5Lcf7dXB2GsWq88l2ALIWVHRyJsVzDbvAhs73OzuNEt3862fOTsFu\nBs1SaBf1cImIiIiIiDiIGlwiIiIiIiIOoiGFIiIiIiJSehpSaBf1cImIiIiIiDiIGlwiIiIiIvKv\nY7FYmDJlCv369WPw4MEcO3Ys3/p169bRp08f7r//fj766KMrPo6GFIqIiIiIyL/ODz/8QFZWFp98\n8gm///47L730EosXL7atnzt3Lv/973/x8PCgd+/e9O7dm0qVKpX6OGpwiYiIiIhIqZX3aeF37dpF\n165dAWjdujX79u3Ltz44OJiUlBTMZjNWqxWDwXBFx1GDS0RERERE/nVSU1Px9PS0/W4ymcjJycFs\nzmsiNWzYkPvvv58KFSrQo0cPvL29r+g4eodLRERERET+dTw9Pblw4YLtd4vFYmts/fHHH2zYsIEf\nf/yRn376ibNnz7J+/forOo4aXCIiIiIiUnqW3LL9U4K2bduyceNGAH7//XcaNWpkW+fl5YW7uztu\nbm6YTCZ8fX05f/78FZVJQwpFRERERORfp0ePHmzevJn+/ftjtVqZNWsWX331FWlpafTr149+/fox\ncOBAXFxcqFOnDn369Lmi46jBJSIiIiIi/zpGo5Hp06fnWxYYGGj77wEDBjBgwICrPo4aXCIiIiIi\nUmrlfZbC60XvcImIiIiIiDiIGlwiIiIiIiIOoiGFTmK1Wpk0cR1BDf0Z+lhnZ6dTJOV5bTkrT/8u\nbWj0VH+MrmZSDh9n38y3ybmQbnec0c2FZuOHUqlpAzAaSd4Xxf6572DJzMa3XVMaPzsIg8lEdnIK\nkS9/QMrh4w4/J2de86pdWhM86u86nSBiRuH1LCrOXLECLac8jme9GmAwEPP1//jz/a/ytunallZT\nnyT9dIJtP1uGTyc3LcOh5+SMevp1bkvgiFAMLmYuRB8n8sU3yU1LL1WMW1U/blg2i+2Dx5KdnJK3\nzY3taPr8KDIuqeHuEc9fVQ2rdGlDw5EDMLq6kBJ1nP0z3yK3kGteUpxbVT9C3pnJltDxtnz9b2xL\n8xeeIj3uYr47Hn/hivItq8+6X+e2BI4ciNHFhdSoY0S+uLjwa11YjNFIo2eG4BvSCoPJxPGP1hH7\n+ff5tq1+1y3439yBiLFzChy79kN3UuPeW9kWGlaKSoJvp3bUfzIUo6sLF6KOcXD2GwVyLirG6OpK\nUNhwvJoEYTAaOL//MFELlmLJysKjXi0ajR+BycMdq9XKkcUfkrT991LlVhT3Nl3wGTASg4sr2cej\nSHxrJtb0C/liPG68He97BoPVijUzg6T3FpD1ZySGChXxe3Iy5pr1MBgMpP7yDSnrPrgmeV3OUL8X\npq7TMZhcsZ7ZR853IyErpfDYoLsw376U7EXV/zrJyphuexWjf0us2WlY9q/A8ttb1yQv385tafDk\nIIwuZlKjj3FwVsHPpJJi3Kr60XbpbHY+HGZ7xs1enjQc8xge9WthcnPj2PufEfftL9ckZ6fTkEK7\nqIfLCaKjzzB0yAq+Xb/f2akUS3leW87K09XHixZTnuC38Ff43wNhpMfG02hUwRdAi4sLfLQPBpOR\nTQMnsGnAeIxurgQ+ci/mihVoO3c0B19fyeaB4ex/6R1az34Go4tj/5bjzGvu6uNFyxeeYNf4V/nl\n/rGkxcbReFT/UsU1GvEgGXFn2dgvnM0PP0/d+2/Dp0VDACq3bMifH37NptDnbD+Obmw5o54uPt40\nmfQUeyfOY1v/Z0iPjSNwZGipYgLuuIm2b83Azd8v33aVWgRz/KOv2DFknO3namro4uNF8+dHsGfC\ny2x+cDTpsXE0empgqeOq39mNDm9Pxb2qb/58WwZzdOVXbB0Ubvu5knzL6rPu4uNN08kj2TtxPlv7\nPUP6yTiCnip4rYuKqdnnNirUDmBb6Bh2DJ1A7X698W4aBIDZ25Pg8cMJDhuKAUOBY1dqGUzdwfeW\nupYuPt4ETxrFgUnz2DHgP6SfjKP+iMF2x9QZcj8Gk4ldQ8aw8+ExmNxcqfNwXwAahj3O6a9/ZNcj\nYRya9QZNZ4SB6eq/jhm9fPAb8TwJL0/g1OgHyYmLxWfgU/lizNXrUHnQ08TPeprT4YNIXvsOVcLy\nGqk+/Z4k52w8p8cO4PRzj+DVoy+uDVtcdV4FVKiC+fYl5KwbSPa7bbAmH8XUdXrhsT6BmLvNAsPF\n+phungNZF8h+rx05H92MsV5PDA1uv+q0XHy8aTxpFPufm8f2AU+TcTKOBiMHlSqm2u030WbxzAKf\nSY0njyLzTCK7HhnHnqenEvTsUNz8838OyD/bP7LBtXDhQlatWlVg+ahRowosW7VqFQsXLrweaV08\n5sqd9OnbmtvvaHZdj1tayvPaclaeVTq2JPnAn6SdOA3A8c++p8btXUoVl/RbJFHvfA5WK1isnD94\nFPcAfzzqVCc7NZ3EHXlf1C8cO0nOhXRb48FRnHnNL6/TsU9/oMYdJdfz0rgD8z8g8rWVALhV8cHo\naiYnNQ2Ayi0bUeWGZty44kU6LZ2Cb5vGDj8nZ9TTt0MrzkdGkR6TV5/Ytf9HQK+udse4VqlMlW4d\n2DNmVoF9V2oRTOV2zbnh3Tm0XTwDn9ZNripXv5BWJB+Itl3LE599T8DtN5Yqzq1KZare1J7do18q\nsJ1Py0b43tCcju/Ppv3bU6nc5sryLavPum9IS85HRpN+4u/r+F3Ba11MjP9NIZz6789Ycy3kpFwg\n7ofNBNyet67arZ3ISkzi8MIVBY7r6luJ4LHDOLyo4LqSVO7QmpTIKNJjTgFw8vNvqdazq90xyXsO\ncPz9NX/V0ULqoSO4BfgDYDAZMXt5AmDyqIAlK7vU+RXGvVUIWdEHyDl9AoCU7z+j4o35GyLWnGwS\nl7yI5VwiAFl/RmLy8QOTmaT3FnBuxet5eflUweDiiiUt9Zrkdilj3Vuxnt4F56IByN2zFGOTfgUD\nzRUw37mcnF8m5FtsqNYGy4FVYLWAJRvLkW8xNryyqbovVblDq/zXc+3/FXLNi475+zMpIuzF/Kfh\n5UnlDi05unw1AJlnzrJ7+ASyz1/72krZ9a8aUrho0SJnpwDA5Cl3ALB16xEnZ1I85XltOStP92p+\nZMQl2n7PiD+Li6cH5ooV8g01Ki4uYdvei3EBVag34A72zVpK2vFTmD3cqRLSgoRte6nUtAFeDWrh\nVqWyQ8/Jmde8QjVf0u2oZ0lx1lwLraePJODWDpzesJPUYycByE5OIeabTcRt2EnlVsHcsGAM/xs4\nkYz4sw47J2fU072aH5nxF+uTeSYRs2dFTB4VbMNziovJSkhi38R5he47OzmV09/+QsIv26nUsjEt\n54azfXAYmWeurIbu1fzIuDSP+ERcPD0wVayQb7hgcXGZCUnsCV9QZL6n1m8kfsMOfFoF03r+OLaE\njiezlNe8rD7r7lWrkHHJcMnM+ETMnh75r3UxMe5V8+ebGZ+IZ1BdANvQwuq9b85/UKORZtOeIWrR\nCiw5OSXmeDm3qn5kxl+STyH3Z3ExSdv3XNxXNX9q9ruLQ3MWA3B4wVJavT6NWv3uxqWyN5EvvAy5\nllLneDmzXzVyEuNtv+cmxmP08MRQoaJtWGHumVPknjlli6n88LOk79wIuX/VyJKL36hpeIR0J23H\nBnJOHrvqvArwroU1Jebi7ymxGNwqgatXvmGFph4LsUS8g/XMvnybW0/twNh0ALknt4DJDWPD+8By\n9Y1W92pVyIwr/poXF5OVkMT+5wp+JlWoFUBWwjlqD7gb345tMbqYObFqHeknThWILY80S6F9rluD\nKzs7m4kTJxITE0Nubi6PPvooq1aton79+hw5cgSr1corr7yCv78/CxYsYOfOnVgsFh555BHuuOMO\nBg8eTOPGjTl8+DCpqam89tpr1KxZs8jj/fDDD6xfv56MjAwmT55My5Yt6dKlC5s3b2bnzp3MmjUL\nb29vTCYTrVu3vl5lELn+DAWH2QBYL/8fvB1x3o3r03beGI6t/j/ObPoNgF1h82k0sh/BT4dy9rc/\nSNyxH0t26b/glBvGwgcGFKinHXG/T3kT0+zltJs7mobD+nL47c/YNf5V2/qkPQdJijhMlZAWxHz1\nDxnv/7ei6mOxlC6mEJc2xJIj/iB570F8O7Ti1Nc/lz5PwGAs/Nm4/EuyvXGXu7Qhdm7PQZIjDuHX\noSUn/7uhNGmW3We9iLrkv9ZFxxRW1wLndJmgkQM59/sBzm6PwKdt05JzvIzBjnvPnhjP4AY0mxXO\nyc/Wc/bXXRhcXWgyPYw/XlzI2V934dWsEc3nTCQlMirfHxeuiKGIQUuFfCE2uLnjN/IFTH5ViZ/1\nTL51iYte4OzSl6gSNodKDzxG8pqlV5dXwaOXmKex1XCw5GDZ9wF418kXlvvLREw3zcI8eAtcOI3l\n2E8Ya4Rcg7TsuE/tibl8t2YTFWpWI+dCOr89OYkKNQNovXgmaSdOkXrwz6tKWcqP69bg+uSTT/D1\n9WX+/PmkpqbSt29fXF1duf/++5k+fTorV65kyZIldO3alZiYGFatWkVmZiYPPfQQXbrkDXVo2bIl\nkyZN4pVXXuHrr7/m8ccfL/J4NWvWZPr06Rw+fJjx48fz+eef29ZNmzaN119/nfr16/PCCy84/NxF\nrreGTzxA1W7tADBXrEBK1AnbOjd/X7KSU8nNyMy3TUZcIj7Ng4qMq96jE03Dh3Jg3ruc+r9f84IM\nBnLTM9j+5Azbdl1XzyftryFg/xSNnniAqt3aAuBS0YPz0RcnCnAvqp6nE/BpHlhoXJWOLUmJOk5m\nwjly0zM5+X+/EtC9A2ZPD+o+2IPod7+8uCMDWK/gL/RlXcbpM3g3vTgczc3fl+zzKVguqaM9MZcz\ne3pQ8/7bOfb+2osLDYZS93IEPv4g/t1uyNtnxQqkRl285m7+vmQXcc0rNQsqMe7yfGs/0JMj731x\nSb72X/Py8KxnxiVQqdll1zE5Nd91LC4mIy4hX0+am79viY2TgNu7kZWUjP9NIZgquOPm70uHD+ax\n/eFxJeYLefee16X3XhW/Qu/P4mL8b+1Cw7GPE/XyMuK//x8AFRvUweTuxtlfdwGQsv8QaUdO4NW0\nEZnxW+y0UauzAAAgAElEQVTKrSg5CadxDbo4LNjk609uajLWzPzvA5r8quEf/jLZsUeInzYSa3Ze\nvu6tOpJ9PIrcpASsmemkbf4/PEK6X1VOhUqJwVC9/cXfPWtgTT8LOWm2RcZmg8DFA/PgLRhMLnnD\nCwdvIWdtHzCayd04GTKS8mLbj8F67uobLplxCXhfcg+6+he85vbEXC4rIS/P03/9wSc99jTJEZF4\nN22oBte/yHV7hys6Opr27fMeME9PTwIDAzl+/DgdO3YEoG3bthw5coRDhw6xf/9+Bg8ezLBhw8jJ\nySE2NhaApk3z/koVEBBAZmbRNzdgO1bDhg05c+ZMvnUJCQnUr1/fdlyRf5rDSz5lc+hENodOZMuj\nU/Bp3hCP2gEA1Ln/NuI37iywTcLWiCLjArp3oMnYIez4z+yLX8AArFZueDUc7yYN8uJuDcGSk3td\nZim8ng4t+dQ2gcXmR6dQOV+dbiXul10FtjmzdW+RcTV6hNDw8fsBMLqYqd6jI4k795OTlk69B3sQ\n0D3v88s7uC4+zQKJ/zXiepzmdXV2+x4qNW9IhVp59anRpycJG3eUOuZyOWkZ1Lq/F/435/3F27NR\nfbybBHF2a+lmgYt+e41tAovtQydT6ZJrWatvj0KfocRtEXbF5c83ndoP9KLqLR0A8GpUj0pNg0jY\nsqfY7f5WHp71xG1/Xce/jlezT0/O/G+H3TFnNu6g+t235L375OlBtR5dOFPCfbDprsfZPngc2x8e\nR+TsxaTHnra7sQWQtH0P3s0aUaFW3sx4Nfr0JPGynIuLqXJzJ4JGDyNi9HRbYwsgPeYU5ooeeDcP\nBsC9ZjU86tUi9fDVf/HOiNiGW8PmmANqA+DZo2/ecMFLGCt6U23qEtK2/0zia5NtjS0Aj4634f3A\nsLxfzC54dLqNjH3F379XwnL0RwzVO4BP3h+kTK2GYYn+Ol9Mzkc3kfN+e3JWdCJ7bV/ISSdnRSe4\ncBpTq2GYOk/+K+mqmFo8giXyk6vO6+z23/Nfz/t6kvC/yz+TSo65XMapeFL+iCbgzpsBcKlciUot\ngkn5I+qqcy4TLLll+6eMuG49XIGBgezcuZMePXqQmprKoUOHqFWrFvv27SMgIIDdu3cTFBREgwYN\nCAkJYcaMGVgsFt58801q165d6uNFRERw9913c/DgQWrUqJFvXbVq1YiOjiYwMJC9e/dSqVKla3Wa\nImVOVtJ59k5/izYvPYvRxUxaTBwRU98EwLtJA1pMHs7m0InFxjV6qj8Gg4EWk4fb9pu05xAH5r7L\nnucX0WLScAwuZjITktg9rvD3VP4pspLOs2f6EtrNyZuh7UJMHHteyHs3o1KT+rSYPJxNoc8VG3fg\nlZW0eO4xun0yB6vVStyGXRxZ9S1YrewMW0CzcY/Q6IkHsOTk8tvEhbaphf9JspPOEznzDZrPGovR\nxUx6bBwHpi/Eq3EgjSc+yY4h44qMKZbFQsT4uTQaM5T6w/phzc1l3/MvX1UNs5LOs3/GYlq9NAaD\n2Ux67Gn2Tn0DyHuGmk56gq2DwouNKzpfK7+Pm0fjsY8S9PhDWHJz2TPptSvKt6w+69lJ5zkw401a\nzArLu44xceyfvgivxg1o8twItj88rsgYyJtAo0LNADqsmI/RxUzs599z7rcDpa5PaWSfS+bgrEU0\nnTkOg4uZjNjT/DHjdTwbBxI8YSS7HgkrMgag/pN5MywGTxhp22dyxB9EvbyU/c/NIfDZxzC6umDN\nyeXQ3LfIiI276pwt55NIXDyDKmNewmA2k3M6lsQ3puLaoAm+T0zidPggPHvej6lKNTza34xH+5tt\n28bPeIqkFa/iO3wCAfNXgdVK+o5fSFn/8VXnVUD6GXL+70nMd6/EYHLBeu4IOd8Ox1CtDaaeb+Y1\nrIqRu20+5juXYR6S19DJ3TILa9zuq04rO+k8f7z4Bs1eHGu7npF/fSYFTxjBzkfGFhlTkn0T59Iw\nbDg17usFRgNH31lDSmT0Vecs5YfBarVar8eBsrKyeP755zl+/DiZmZkMHjyYtWvX4u3tTXJyMhUq\nVGDu3Ln4+Pjw0ksvsXfvXtLS0rjtttsYNWoUgwcPZurUqQQGBrJq1SoSEhL4z3/+U+ixFi5cyIED\nB7hw4QJZWVlMnTqVxo0b297hioiIYNq0aXh6elKxYkWaNGlS5L4ulcvKa12Wa8pEaJnPEZTntWYi\nlPXtC079XNbcsWNVuann1zcUnPK7LOm98yOgfHwm/dTpAWenUaLuWz7luw6FzJJWxvTc/km5edZ/\n7Pigs9Mo0a1b1/BLl77OTqNEN21ey/F+HZydRrHqfLIdgKwFFZ2cSfFcwy6wofP9zk6jRDf/+pmz\nU7Bb5u6Ozk6hWG5ttzo7BeA69nC5uroyZ07+f5Bw7dq1jBkzhsDAwHzLJ06cWGD7FSsuTus6YEDx\n/8MpqvG0efNmIO9dsM8+Kz83s4iIiIiIlE/lelr4UaNGkZycnG+Zp6cnixcvdlJGIiIiIiL/DoYS\nZo2VPE5tcF3aa3Ulysq/qyUiIiIiIlKY6zZLoYiIiIiIyL9NuR5SKCIiIiIiTlKGpl4vy9TDJSIi\nIiIi4iBqcImIiIiIiDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEip\nGaz6h4/toR4uERERERERB1GDS0RERERExEE0pFBEREREREpPsxTaRT1cIiIiIiIiDqIGl4iIiIiI\niIMYrFar1dlJiIiIiIhI+ZK9uZmzUyiWS5f9zk4B0DtcpZLLSmenUCwToWU+R1Ce15qJUL7r0M/Z\naZSo5/ZPyk09v+3Q39lpFOv27R8D5eMz6fuQh5ydRol6bFvNjx0fdHYaJbp165py86yXl3r+0qWv\ns9Mo0U2b13K8Xwdnp1GsOp9sByBrQUUnZ1I817AL5ebeLDcsmhbeHhpSKCIiIiIi4iBqcImIiIiI\niDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEipGSy5zk6hXFAPl4iI\niIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlp1kK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERK\nT0MK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERKT0MK7aIGl5NYrVYmTVxHUEN/hj7W2dnp\nFEl5XlvOyrNKlzY0HDkAo6sLKVHH2T/zLXIvpJc6zq2qHyHvzGRL6Hiyk1MA8L+xLc1feIr0uARb\n3I7HXyA3LcOh5+TMa+7fpQ2NRva31WnvzCWF1rOkOPeqfnR8ZwabQ8Nt9XTxrkiTsY/iWb8mRjdX\n/nz3C06u/5/Dz+l61rNKlzYEjRiI0dWF1Khj7H+x6Pux0DijgeBnh+AX0gqDycSxlV8R8/n3AHjU\nDqDp5BG4VPIiNy2DfdMWkXbsJAA+rZvQ8D+hmNxcyUlNY//0N0k/GW87nl/ntgSOHIjRJe94kS8u\nJjctf15FxhiNNHpmCL5/5XT8o3XE/pVThdoBNJ00EpdKXuSkZXBg+kJbTi1mh+EZVI/c9LznJWnX\nPg6/9j7u1f1pPP5x3KtXITctg2Mr19ld27L4rDuqtn+rftct+N/cgYixc2zLGjzRn2q3dSY3PZPk\nvQc5/Nr7WLKy7aojgG+ndtR/MhSjqwsXoo5xcPYbBXIuKsbo6kpQ2HC8mgRhMBo4v/8wUQuWYsnK\nsm3rXr0qbd+ZR8To6aT+EW13XsVxb9MFnwEjMbi4kn08isS3ZmJNv5AvxuPG2/G+ZzBYrVgzM0h6\nbwFZf0ZiqFARvycnY65ZD4PBQOov35Cy7oNrktflDPV7Yeo6HYPJFeuZfeR8NxKyUgqPDboL8+1L\nyV5U/a+TrIzptlcx+rfEmp2GZf8KLL+9VarjO+NZ92ndhKBRgzD+9flzYMYbZJyMp93bMzG5u9mO\n61GnRqnORcoHpw0pXLt2LfPnz8+3bPTo0WRd8mF0uS5duti9/+7du5OZmZlv2caNG/nkk08KxD70\n0EPExMTYve+rFR19hqFDVvDt+v3X7ZhXQnleW87K08XHi+bPj2DPhJfZ/OBo0mPjaPTUwFLHVb+z\nGx3enop7Vd9821VqGczRlV+xdVC47cfRjS1nXvO8Oj3JbxNe4X8PjiEtNp7gpwaUOq7GnV0JKaSe\nLaaMICP+LL8OnsiOUS/SJGwIbpfFXGvXs54uPl40mzySiIkL+PWhZ0mLjafhyMLvx6LiavXpgUft\nALYMDGPboxOp0/9OvJsGAtB82tPEfPYdW/qPIXrpalq9FAaAW1VfWs0dyx9zl7N10Hjift5G4/HD\nLjmeN00nj2TvxPls7fcM6SfjCHoq9LKcio6p2ec2KtQOYFvoGHYMnUDtfr3xbhoEQLOpzxCz9ju2\nDhjNkWWf0GL2WNs+KzVvxK4RU9j+8Di2PzyOw6+9D0DT50eRvP8QW/uPZveoadQddK9dtS2Lz7oj\na2v29iR4/HCCw4ZiwHDxHHrfTJUu7djx6AS2PzyOzIQkGjzRv8RcL80neNIoDkyax44B/yH9ZBz1\nRwy2O6bOkPsxmEzsGjKGnQ+PweTmSp2H+9q2Nbi60HjKsxjN1+7v3kYvH/xGPE/CyxM4NfpBcuJi\n8Rn4VL4Yc/U6VB70NPGznuZ0+CCS175DlbC8RqpPvyfJORvP6bEDOP3cI3j16ItrwxbXLD+bClUw\n376EnHUDyX63Ddbko5i6Ti881icQc7dZYLj4ddV08xzIukD2e+3I+ehmjPV6Ymhwu92Hd8az7ubv\nS8s54zg4bxnbB4/jzM/baDxuOAC7Hp9se/7/XPoJGafikX+eMvUO1yuvvIKrq6vD9t+tWzf69evn\nsP3ba9XKnfTp25rb72jm7FSKpTyvLWfl6RfSiuQD0aSdOA3Aic++J+D2G0sV51alMlVvas/u0S8V\n2M6nZSN8b2hOx/dn0/7tqVRu08SBZ5PHmde8SkjLAnWqXkg9i4v7u547L6uni3dF/Dq0JGrppwBk\nxp9ly9DnyU5OdeQpXdd6+oW0IjnyYl1i1n5HwO1dSxVX9aYOxH61AWuuhZyUC5z+/leq394NN//K\nVKxXg9Pf/wpA4pbfMbm74RVcn2rdO5L46++kHDwCQOznP3Dwlfdsx/MNacn5yGjS/zpe7NrvCOiV\nP6/iYvxvCuHUf3+25RT3w2YCbu+Km78vFevVIO77zRdzqpCXk3v1qpg8KtA4/HE6fDifJpNHYvb2\nBMCrcQNOfb0BgNy0DJJ2ldwYLqvPuqNqC1Dt1k5kJSZxeOGKfPvzahzImY3byUlNA+DMhm1U7d7R\nrnwBKndoTUpkFOkxpwA4+fm3VOvZ1e6Y5D0HOP7+GrBawWIh9dAR3AL8bds2HDOc09/8ZOs9vBbc\nW4WQFX2AnNMnAEj5/jMq3pi/IWLNySZxyYtYziUCkPVnJCYfPzCZSXpvAedWvA6AyacKBhdXLGnX\n/rPHWPdWrKd3wbm8Xr3cPUsxNinku5m5AuY7l5Pzy4R8iw3V2mA5sAqsFrBkYznyLcaGfew+vjOe\n9ardO5Kw5beLnz9ffM+hV9/Nf7renjQeP5z90xbafS5Sfjh1SOGePXsYOnQoZ8+eZcCAASxZsoT1\n69dz+vRpJkyYgNlspmbNmsTGxrJixQqysrIICwvj5MmT+Pj48Prrr+Pi4lLk/qdMmUJsbCx+fn7M\nmTOHb775hj///JOxY8fyyiuv8L///Y+AgACSkpKu41nD5Cl3ALB165HretzSUp7XlrPydK/mR0Z8\nou33zPhEXDw9MFWskH94WzFxmQlJ7AlfUOj+s5NTObV+I/EbduDTKpjW88exJXQ8mfFnHXZOzrzm\nl9cpw856ZlxWz9/DXy6wb49aAWQmJlEvtDf+nVpjdDVz5MP/knb8lEPP6XrW072aH5lx9t2PRcW5\nV/Mj87J71TOoDu7VqpB5JinvS+5fMs6cxb2qLx61q5ObkUGLmc/gUacGGXEJHHrl/YvHq1qFjEuG\nymXGJ2L29MDkUcE21Ki4GPeqfmTEXZ5TXdyq+hXIKTP+LG5V/TCYTZzdsZeD85aSlXSeRqMfoemk\nEUSEz+P8/sNU730LR5atxsXHG7/ObeyqbVl81h1VW8A2lKt675vzHfP8/sPUHtCbmDXfkn0+lYA7\nb8LNr3KxeV7KraofmfGX5HMmEbNnxXw5FxeTtH3PxX1V86dmv7s4NGcxAAF334bBbOb0Vz9Qd8gD\ndudUErNfNXISL/aO5CbGY/TwxFChom1YYe6ZU+Seufh5UvnhZ0nfuRFyc/IWWHLxGzUNj5DupO3Y\nQM7JY9csPxvvWlhTLhlVlBKLwa0SuHrlG1Zo6rEQS8Q7WM/sy7e59dQOjE0HkHtyC5jcMDa8Dyz2\nDxV1xrPuUacGlvRMms949uLnz6vv5cur7uB78xplf/xp97mUCZZcZ2dQLji1h8tsNrN8+XIWLVrE\n++9f/B/f3LlzefLJJ1mxYgVt27a1LU9LS2P06NGsWrWK1NRUIiMji93/gAED+PDDD6lZsyarV6+2\nLd+7dy87duzg008/Ze7cuVy4cKGYvYiUbwajofAVuZYrirvcnvAFxG/YAcC5PQdJjjiEX4eWpc6z\nvDAYi/jYLFBP++LybWM24VGzGrmp6Wwb/gJ7Jr1O49EP4924/pWmW/YYCq+L9fK6FBdX2L1qsYCh\n8HvYarFgMJvx79ae6CWfsO3hcM7u2EerOReH9hW6z7+2tSemsOfHmlv48r/Xnd8fxd4J88hKPAcW\nC38uXY1fl7YYzGYOTF9ExXo1CflwAU0mjSBh865C93OpMvusO6i2xTn97Ubif9xCmzde4Ia3Z5J2\nNBZLdk7Juf6lqOf30pztifEMbkDrN2dy8rP1nP11F56NGlDjvp4cnle6d47sUsQzU9gXYoObO1VG\nz8YcUIvEJS/mW5e46AVihvXE6FmJSg88du3zpIj775I8ja2GgyUHy76C75Dl/jIRsGIevAXzvR9j\nOfYT5Bb9OkoBTnjWDWYTVbq1J/rtj9k+ZDxnd+6l5UvjLh7O1YWa997G0ffW2n8eUq44tYeradOm\nGAwG/P39yci4OA48OjqaNm3y/prXrl07vvrqKwAqVapErVq1AKhSpQrp6QVfBP6bi4sLrVu3BqBt\n27Zs3ryZFi3yxiIfPXqU5s2bYzQa8fT0pFGjRg45PxFnCXz8Qfy73QCAuWIFUqOO29a5+fuSnZxK\nbkb+dxwzTidQqVlQiXGXMnt6UPuBnhx574uLCw1gzbH/i015EPT4g1Tt1g7Iq2dK1AnbOjd/X7IK\nqVN6IfUsLO5SmQl5ve0xX/8CQFpMHOf2HKRSsyDO/1G2e3CLE/j4Q/h3zbsfTRUrkBpd8H60XH4/\nxiVQqXnB+9GSkUnG6QRc/XzyrcuIP0tGXP7lAO5/rctMOMu5iIO2YXSx636icdijGN3yRklkxiVQ\nqVnDYvMqLiYjLgG3KpXzrcuMTyyQ66XrfFo1xuztScL/dgJgMBjAYsVqsWB0d+XAzDdtxw8eP7yI\n2pb9Z91RtS2O2duTuO82ceyDvHy9mwWRHnO6xFz/lnH6DF5NL8mnih/Z51Py5VxSjP+tXWg49nGi\nXl5G/Pd5E99Uu+NmTB4etFkyGwDXKpVp8sKz/PnGByRu2mF3foXJSTiNa9DFYcEmX39yU5OxZuZ/\nz87kVw3/8JfJjj1C/LSRWLPz8nVv1ZHs41HkJiVgzUwnbfP/4RHS/apyKlRKDIbq7S/+7lkDa/pZ\nyEmzLTI2GwQuHpgHb8FgcskbXjh4Czlr+4DRTO7GyZCR93lpbD8G6zn7e4Wc8axnnkkiee9B2xDF\nk+t+InjMUIxurlgys/Dr1IbUw0fJOKn3t/6pnNrDZSjir5GNGjXit99+A/KGHZYUX5js7GxbD9jO\nnTtp2PDigxMUFERERAQWi4W0tDSioqKuJH2RMiv67TW2l9q3D51MpeYN8agdAECtvj2I37izwDaJ\n2yLsirtUTlo6tR/oRdVbOgDg1agelZoGkbBlT7HblTdRb6/h10ET+HXQBLYOfR6f5kG2OtXpe1uR\n9bQn7lLpJ8+QHPknNXt3A8DVtxI+LRqRfODazGDmLNFvr2br4PFsHTye7Y9NKnif/a/gF83EbXuK\njDuzcSc17+6OwWTE7OlBtR6dOfPLdjLjz5IeG0e1HnmzLPqFtMJqsZAadZz4DdvxaRWMe/W892iq\n3dKB1OjjWDKz8x2vwl/Hq9mnJ2cuy6u4mDMbd1D97lsuyakLZzbuIPPMXzndlpeT7985RR/H5OFO\nozFDbe9t1Rl0D/E/bwWLhQbD+lGrb08AKtSubmuwFqxt2X/WHVXb4ng3bkCLOeMwmEwYTEbqPdyH\n0/9n/2yfSdv34N2sERVq5c2MV6NPTxIvy7m4mCo3dyJo9DAiRk+3NbYAol97hx0DRrHrkTB2PRJG\nVkISkdNeverGFkBGxDbcGjbHHFAbAM8effOGC17CWNGbalOXkLb9ZxJfm2xrbAF4dLwN7wf+mkjG\n7IJHp9vI2Ff8fXElLEd/xFC9A/jkTXRjajUMS/TX+WJyPrqJnPfbk7OiE9lr+0JOOjkrOsGF05ha\nDcPUefJfSVfF1OIRLJEFJ0QrijOe9TO/bMenZTDu1asCUPXmkL8+f/J65nzaNOXszr2lKWOZYbBY\nyvRPWVEmp4UfO3Yszz33HO+88w5eXl6Yr2AWHxcXF1asWMGxY8eoUaMGYWFhtp6yJk2a0K1bNx54\n4AGqVq2Kn5/ftT4FkTIjK+k8+2csptVLYzCYzaTHnmbv1DcA8G7SgKaTnmDroPBi44pksfL7uHk0\nHvsoQY8/hCU3lz2TXrumL4KXNVlJ59k74y1avzQao9lMWmxcvno2n/Q4vw6aUGxccX4bv4Cm44dS\nu+9tGAxGopd/xvnIcjamvxjZSec5MGMxLWf/fZ/FsW/aIiDvS3LTSU+ydfD4YuNi1n5HhVrV6Pjh\nPIwuZmI+/4Gk3/L+wLZ38qs0mfgEDR7tiyUrm4jnXgGrldTDx/hjzjJazx2HwWwiO+VC3rp8eb1J\ni1lhGF3MpMfEsX/6IrwaN6DJcyPY/vC4ImMg76X6CjUD6LBiPkYXM7Gff8+53w4AsO/5V2gy8Unq\nPXo/lqxs9k16GaxWErf8Tsyab7jh7RlgMHIh+jiRs/OGmkUtWkHTF/5D9Ttvxpqby4GZb9LmtcnF\n1rasPuuOrG1Rzm6PwKdtM0JWzgeDkTMbt3P846+L3SZfzueSOThrEU1njsPgYiYj9jR/zHgdz8aB\nBE8Yya5HwoqMAaj/ZN6MdsETRtr2mRzxB1EvL7U7h9KynE8icfEMqox5CYPZTM7pWBLfmIprgyb4\nPjGJ0+GD8Ox5P6Yq1fBofzMe7W+2bRs/4ymSVryK7/AJBMxfBVYr6Tt+IWX9x9c+0fQz5Pzfk5jv\nXonB5IL13BFyvh2OoVobTD3fzGtYFSN323zMdy7DPCSvAZS7ZRbWuN12H94Zz3rq4aP8MXcpLefk\nff7kpFxg76SL7/F61K5O3DX6pwGkbDJYrZe83VdGrFu3jlatWlG3bl3WrFnD7t27mT17trPTIpeV\nzk6hWCZCy3yOoDyvNROhfNfB+bNvlqTn9k/KTT2/7WD/9NHOcPv2vC9BZb2eJkL5PuQhZ6dRoh7b\nVvNjxwednUaJbt26ptw86+Wlnr906VtyoJPdtHktx/t1cHYaxarzyXYAshZUdHImxXMNu1Bu7s3y\nIvfr6s5OoVim3o6ddMpeZbKHq3r16owePZoKFSpgNBqZNWtWoXERERHMmzevwPI77riDgQML/tsj\nIiIiIiJyjZShYXtlWZlscLVv3561a0ueqaVly5asWLGixDgRERERERFnKFP/8LGIiIiIiMg/SZns\n4RIRERERkTJOQwrtoh4uERERERERB1GDS0RERERExEE0pFBEREREREpPQwrtoh4uERERERERB1GD\nS0RERERExEHU4BIREREREXEQvcMlIiIiIiKlZ7E6O4NyQT1cIiIiIiIiDqIGl4iIiIiIiINoSKGI\niIiIiJSepoW3i3q4REREREREHMRgtVr1tpuIiIiIiJRK7hofZ6dQLNOD55ydAqAhhSIiIiIiciU0\npNAuanCVQi4rnZ1CsUyElvkcQXleayZC+W+7UGenUaK7dq0sN/VcV8brec+uvDqW9XqaCOXHjg86\nO40S3bp1Dd+HPOTsNErUY9vqcvOsl5frvrFLH2enUaJumz/nRP/2zk6jWLU/3gFA1oKKTs6keK5h\nF8rNvSn/LHqHS0RERERExEHUwyUiIiIiIqWnf/jYLurhEhERERERcRA1uERERERERBxEQwpFRERE\nRKT0rJql0B7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUnqaFt4u6uESERER\nERFxEDW4REREREREHERDCkVEREREpPQ0pNAu6uESERERERFxEDW4REREREREHERDCkVEREREpPQ0\npNAuanA5idVqZdLEdQQ19GfoY52dnU6RlOe15aw8q97Ymsaj+mF0MXM+6gQR05eScyH9iuLazXuW\nzDNJ7Jv7PgB+NzSlyTMDMJpN5GZms3/e+5zb/6fDz6msXPOqN7am6SU1+72Y2hYV1+uHxWTEJ9li\no1b8l9j1v163c4DrV0+/zm0JHDkQo4sLqVHHiHxxMblp6fbFGI00emYIviGtMJhMHP9oHbGff59v\n2+p33YL/zR2IGDvHtqzF7DA8g+qRm54BQNKufRx+7f0Sc63SpQ1BIwZidM3LY/+Lb5FbyLUtMs5o\nIPjZIfj9le+xlV8Rc1m+Ne6+hao3deD3S/Jt+VIYXkF1bfme3bWfQ6+WnC+U3WfdGdf9b7UfupMa\n997KttAwu3L9m2+ndtR7chBGVxcuRB3j0OxFBXIuKsZU0YNGE5/Co24tMBiIW/8zMSs/B8CzcRCB\nz0ywxMoAACAASURBVAzFVMEdg9HIiQ8/J/67X0qVW1Hc23ShUv+nMLi4kn38MGeXzMSafiFfjMeN\n/8/efUdHVa19HP9OS2+kh05CKAFCb6KICAhYaVJCQEAQEZXem4B0Ua+KoIgFERBBX8tFio0OCQKh\nlyAJBNJ7z5T3j9EJIW0SEibxPp+1WIuZeWbO7+wz58zs2fuc9MHx6eFgAENuNkmfrSHv+sUCNW5T\nVqFLiiP509UVkuteigZPoHpkMQqVFYa4c2j3ToDctKJrGz6FuvfH5L3v8/dK1kDV4x2UHoEY8jLR\nn9+M/tT6cmep7PemjY8nHT5byanXl5B2KX9/UWjUtHxrNre/3Ufsb8fKnV9UD1VmSuGuXbtYs2ZN\nhb3erFmzOHDgQIH74uLiWLRoUaHaNWvWsGvXrgpbdmnCw+MYPXIzP+8+/8CWWR6Ss2JZKqeViyMt\nF47j5PR3+H3AdDJvxdLk1cHlqvMb8RSurRubbivUKtosn0jY0o0cGDqHq598R6vFL1f6OlWVbW7l\n4kjrheMImf4Ovw6YTsatWJoW07bF1dnX8yEvNYM/hs0x/XvQna0H1Z4aFycC5k3g7Ow1HBv8Olm3\nY2j4SpDZNbX69cC2jjfHg6YQMnoWdQY/iVNAQwDUTg40njGWxlNHo0BR4DWdmzfi5MsLODFiOidG\nTDers6VxcaTZvAmEzX6LI89PIjMqFv8Jw8pUV7tfT+zqeHN02FSOj5pN3SF9cQrw+zuvPU1njqXJ\n1FHcExeX5v6Ejl/IseAZHAueYXZnq6ru65ba7gDOgY2pF/ysWTnvzdNo7qtcmLuK0KETyb4dTYOX\ng82uqT92KDlxCZwMfp1TL06nZr/eODYztmfAmzOI+GQbf74whbNTl+D72ihsavuUOeO9lI4uuI5f\nQMLbM4meMhBtbBQuQycWqFH71MMl6DXilr9GzKwgUnd9gvuUVQVqHJ8OxrpJq/vOUyxbd9S9N6D9\nfhh5n7bGkHID1SOLi6518UPddRko8r+uqrqthNwM8j5ri/arbijr90Lh27tcUSrzvQmgtNLQ7I1X\nUWgKjm84NW9E+43LcAlsUq7covqpMh2uB8HDw6PIDteDtnVLKP36t6J3n2aWjlIiyVmxLJXTo3ML\nki9cJ+NmDAAR3+ynVp8uZa5zaxeAx0OBROz8xXSfQatjf59XSb0cAYBdLU9yU9Irc3WAqrPN722z\nG9/sp7YZbXt3nWugPwa9noc2zKXbtuU0GtsPlIW/OFamB9Werh0DSb0YTtbNaACidu3F+4lHzK7x\neLQjd378DYNOjzYtg5j9h/HubXzM6/HO5CYkcfW9zQVez8bHE5WdLU1mjqPDl2toOm8CaieHUrO6\ndWxJysVwMv/OcWvXXtOyzK3zfLQDUT/8bsobve8IPr27AuD9+EPkxCdx5T/35vVAZWdL05lj6fTl\nagLmv4zayb7UvFB193VLbHcAK1dnGk97kavvF36sNDU6tCLt4lWyb90B4Pa3P+PZq6vZNeHvfML1\n9z8z5nCrgUKjRpeRgcJKQ+Sn20kODQMgNy6BvORUrD3dypzxXjaBncgNv4A2+iYA6ft2YvdwwY6I\nQZtL4kdL0ScnGJd//SIqFzdQGTsE1gFtsWnZmfT9lfcjtLLe4xiiT0JyOAC6Mx+jbFr4hwHUtqj7\nfoL2j1kF7lZ4tUZ/YSsY9KDPQ//Xzyj9+5UrS2W+NwEaT3uROz/9Tl5KaoHXrPN8H8I3bCP1wtVy\n5a5KDPqq/a+qqHIdrk2bNjFgwAAGDx7M6tWr0el09OzZE61WS2xsLE2bNiUpKYnc3Fz69St5B/vq\nq68YOXIkw4cPJyIiglu3bvH8888DsGfPHp577jlGjx7NmTNnHsSqmcxb0Idnngt8oMssD8lZsSyV\n08bLjezoRNPt7NhENA52qO1tza6zdneh2bRgTs1bB7qCRzCDVoeVqxM9dr9H09eHEv7Fj5W7QlSd\nbW7r5UaWGW1bUp1CrSLu+DmOTVzJoReX4NkpEN/BTzywdYAH1542nu5kx8SbbufEJqB2sENlZ2tW\njY2nG9kxCQUe++eLatS3+/jrk2/Q5+QWWKaVqxOJIWe5tGIDJ0bMQJeVTcDc0kdmbLzcyLlnWRoH\nO1RF7DfF1dl4uZETe29eVwBufbuP6598g65QXmcSQ85yYcVHHBsxA11mNs3mTSg17z9ZquK+bont\njlJJszde59r7m8mJS6SsrD3dC267uATUDvYFMpdao9PTeMEk2m1+l5RT58mMvI0hN4/oH/M7st7P\n9ERla0PauStlzngvlZsXuoQY021dQixKOwcUtvkddl3cHbJPHTbddgmeTNbJA6DToqzhjsvIqSS8\nPx/0uvvOUyyn2hjSbuXfTotCYe0MVo4F16fne+jDNmGIO1fgfsOdEJQBQ0GpBo09Sv/nUDh4lytK\nZb43az7THYVaxe3/y9/e/zi/4F0SjvxZrsyieqpSHa6IiAh2797Ntm3b2LZtGxERERw4cIB27dpx\n+vRpDh48iL+/P0ePHuXo0aN06VL4l7u7tWnThs8//5yxY8eyenX+POS8vDxWrFjBp59+yieffIKN\njU1lr5oQFqNQFD1aYrjny1RxdSigzfJXOf/WZnLik4ssyU1MZX+fVzk8ahEtF76Efd3yffhVN/fb\ntgadnshvf+Pc6i/Q52nRpmcSvuW/eD/WrsKzVgnFjNwZ9HqzahRFPHZvW98r9fw1zs5aTW5CMuj1\nXP/4a9y6tEGhLuUUZkXRH4+FlldSXVHroi8975mZa/7Oa+D6xztw79IahVpVcl6q8L5uge3ecMIw\nkk9fIPFEWOn5inKfmf9xefE7HHlyJGonB+qNer5AXZ3h/ak3ZgjnZy5Dn5t778tUWOaiOk8Kaxvc\nJi1H7V2bxA1LQaXC7bU3Sf5irWn0q/KUnlPZcizotejPfVGoTPfHbMCAOvgo6me3oY/4FXTlbL9K\nem86Nm5ArX69uLTyo/LlEv86VeqiGRcvXqRbt25oNBoA2rVrx9WrV+nVqxd//PEHt27dYvLkyfzy\nyy8olUoGDhxY4uu1a2f80tK6dWtWrcqfo5yYmIizszM1atQwPS7Ev0mj8QPw6toWALW9LWnXbpoe\ns/FwJTclHV12ToHnZEUn4NK8YaE6hwa1sKvpQcDk4QBYuzmjUClRWmu48PYW3Ns3I/q3UABSL90g\n7UoEjg3rkBEZXdmraRGNxw/A+662Tb2PttVl51C778OkXonIfx2FAoO2En9dtqCcmHicm/mbblt7\nuJKXko7+rvYqqSY7Jh5r9xoFHrt7hKEoLi2boHZyIP6g8T2qUChAbyj4hepvfuOex+MR4+eGyt6W\n9PDIErMCZMfE43zXti2QNzoeKzeXAo9lx5Y82uLSqgkaR3viDp7k78DF5oXqsa9bYrt79+5KblIK\nHo92RGVrg7WHKx2+WM2JEdNLfJ4pT3Q8jgGN8pfp7kZealrBzCXU1OjQiozrEeTGJ6HPyiZu/0Hc\nH+0MGC+W0Hjua9jVr83pl2aREx1nVqbS6OJjsG7Y3HRb5eqBLj0FQ052gTqVmxfuM9aijbpB3OKX\nMeTlYOXfArVnLVyCJxtrXNxAqUShsSLpozcrJJ9J2i0UPu3zbzvUxJCVCNpM013KZsNBY4c6+CgK\nlcY4vTD4KNpd/UCpRndgHmQbLzSkbD8FQ3L5LtRUWe9N7z6Pora3pd3Hxrazdnc1jbj+cyz615Cr\nFJqlSo1wNW3alLCwMLRaLQaDgZCQEBo0aECXLl0ICQkhKSmJRx99lPPnz3Pp0iUCA0ueAhMWZvxl\nKzQ0FH///J3Fzc2N1NRUEhONH3xnz56tvJUSwgKurN/JwWFzODhsDodfWEiNFg2xr+MFQL2BjxPz\nx8lCz4k7drbIuuSz1/jlyddMrxe58xfu7D1G2JKNGHR6AheMo0ZL45cOB99a2NevSfK58Ae3sg/Y\n5fU7TRe3OPjCQlzvarP6Ax8nuoi2jT12ttg6R7/aNH55ICgVKK01NHi+J1H7/p1XrEo4fgbn5v7Y\n1jGOitTq14u4gyFm18QdCMHn6cdQqJSoHezw6tmFuAMFn38vlZ0NjaaMNp23VXf4M8YrghXRgQn/\n6GvThSpOjJmLc3N/7P7OUbt/T2IPFl7WP3mLqos7EEqtp7vflfch4v44UXJeWxsaTx1tOm+r3vBn\niPn1WLFfaqrDvm6J7X7oqXGcCDZeJOXi8g/Jioo2u7MFkHTiNE7NGpkuZuHT7wkSDp4wu8ajexfq\njTKel6TQqPHo3oXkP43fNQKWTkdlb8vp8bMrrLMFkB12DKuGzVF71wHAoccAskMLXjxMae+E58IN\nZJ34jYT/zMWQZ+xY5F49y51XniJmVhAxs4JI37+TzKP7Kr6zBehv/ILCpwO4GC8go2r5IvrwnwrU\naL96FO3n7dFu7kzerv6gzUK7uTNkRKNq+SKqh+YZC+08UbV4Af3F7eXKUlnvzavvfMbR5183Xagn\nJz6R8wvf/fd1toTZqtQIV7169WjTpg1Dhw5Fr9fTtm1bevTogUKhwNvbm5o1a6JUKmnQoAGurq6l\nvt6ZM2cYMWIECoWCZcuWYTAYP7DUajULFixgzJgxODs7oy5taokQ1VhuUipn3thA21Wvo9CoybwV\ny+kFHwLg3LQBgfPHcnDYnBLriqPLyiF06lqaTR2OQq1Gn5fHqXkflPor/r9FblIqp97YQLtVr6PU\nqMm4Fcupu9q21fyx/PF32xZXd+XjXbSYMZLHtq80zvfff5zIb3+z5GpVmrykVC4sWUeLZVNRatRk\n3Yrh/OL3cWziS9M5L3NixPRia8B4srptLW86bF6DUqMm6tt9JJ+6UOIyE46e5taO/9LuoyWgUJIR\nHsnF5aVfQtqY40MCl09BoVaTFRXDuTeMOZya+BIwdzzHgmeUWHdr115sa3vR6cvVKDVqbn27n6RT\nF0taLAlHT3Pz6920/2gJCqWS9PBILizbYE7zVtl93RLb/X7lJadwedl7BCydjlKjISsqmstL3sWh\niR+NZr3Cny9MKbYGIPz9T/GfPp62m98Fg4H4g8eJ+vpHnFo0we3hDmRGRtFq/XLT8v5a9wVJJ07f\nV2Z9ahKJ6xfjNnkFCrUGbcwtEj9YhMa3Ka7j5hEzKwj7ngNQuXtj2/4xbNs/Znpu3NIJ6NNT7mv5\nZsuKQ7tnPOqnt6BQaTAk/4X257EovFqj6rXO2LEqge74GtR9N6Ieaez06I4uwxBTvvOhquN7U1RP\nCsM/vRBRKh1bLB2hRCqCqnxGkJwVTUUQP7YNKr3Qwp46uaXatOf3Vbw9nzlpbMeq3p4qgvil0yBL\nxyjV48d2sK/j86UXWljP419Xm329umz3A13Kd3W7B6nr4W+5OaR96YUWVGebsfOT+5Z5V9S0FKup\nGdXmvVldaD+ytnSEEqnH5ZRe9ABU66Gd3NxcxowZU+j+Bg0asHhxMX/TQQghhBBCCCEekGrd4bKy\nsmLz5rL/fQ0hhBBCCCGEeBCq1EUzhBBCCCGEEOLfpFqPcAkhhBBCCCEspOQ/iSf+JiNcQgghhBBC\nCFFJpMMlhBBCCCGEEJVEphQKIYQQQgghyk7+uJRZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIh\nhBBCCCFEmRn0CktHqBZkhEsIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUTZyR8+NouMcAkh\nhBBCCCFEJZEOlxBCCCGEEEJUEoXBYJA/WSaEEEIIIYQok7x3bS0doUSa17MsHQGQc7jKRMcWS0co\nkYqgKp8RJGdFUxHE7vZDLR2jVH1Ctlab9vyp3TBLxyjRk6FfAdXjmLS3w2BLxyhVrxPb+bXzQEvH\nKFX3o99Um339l06DLB2jVI8f28EfXfpbOkapHj28i8jBHSwdo0R1t58AIPctewsnKZnV1Ixqc0wS\n/y4ypVAIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUSZGfQKS0eoFmSESwghhBBCCCEqiXS4\nhBBCCCGEEKKSyJRCIYQQQgghRNnJlEKzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKI\nsjPIlEJzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKIMpM/fGweGeESQgghhBBCiEoi\nHS4hhBBCCCGEqCQypVAIIYQQQghRdnoZuzGHtJIQQgghhBBCVBIZ4bIQg8HA3Nnf09Dfg9FjHrJ0\nnGJJzoplqZweXVrT6JUhKK3UpF2N5NzSj9BmZJldp7TW0GzGaJwDfEGpJOXcNc6v2oQ+Jw/XtgE0\nmTQchUpFXkoaF9d+QdrVyEpfJ0tuc88urWg88Z92uknYkqLbs7g6tb0tgQvG4VC/JigU3PrpINc/\n/wEAt7YBNHl9GEq1Cl1OLufXfEHK+fBKXydLtad7l9b4TxiK0kpD2rVIzi9dj66ItiytztrTjY6b\nlnI0aAZ5KWkAODX1o/GUkahsrVEoldz44v+48/OhMmd0e6gNfi8HodCoyQiP5OKb69BlZpWpxtrT\njXYbl3EieJopn2NTP/wnjUJlY41CpSRi83fE7DlY5nx3q6r7uttDbfCbMAylRkP6tQguvvlh0W1Y\nVI1SSaPXR+LasSUKlYrIr74n6tt9BZ7r89RjeHTrQNi0lab7XFo1peHE4SitrdCmZ3JhyQdk3441\nuy1dO7elwfgglFYaMq5FcHn5B4UyF1ejtLKi4dSxODZtiEKpIPX8Va699TH63Fzs6tem0YyXUdnZ\nYDAY+OvDL0k6cdrsXCWxad0Fl6ETUGisyIu8RsL6pRiyMgrU2D3cG6dngsFgwJCTTdJnb5F7/SIK\nW3vcxs9DXas+CoWC9D/+S9r3X1RIrnspGjyB6pHFKFRWGOLOod07AXLTiq5t+BTq3h+T977P3ytZ\nA1WPd1B6BGLIy0R/fjP6U+vvK899H4eUChpPGoF7J+N79MaWH7i1az8A9g1qETB7HCo7GzAYuPrB\nVhKOnaH+iGfx7pV/rLVycUJtZ8Ov3Ufd17qIqskiI1y7du1izZo1lfb6x48fZ/LkyYXuf/PNN7l9\n+3aB+8LDwwkODq60LEUJD49j9MjN/Lz7/ANdbllJzoplqZxWLo60WPASp2a+zcGBU8mKiqXRxKFl\nqvMb1Q+FSsmhYbM4NHQGSmsr/F54FrW9LW1WTebyf7ZweNhMzq/YRKvlr6PUVO5vOZbc5lYujgQu\nfImTM97hjwHTyIyKocnEIWWqa/TyILJjEjkweCaHR8yn3oAeuLTwR6FW0Xr5q5x982MODpvNtU++\no9Xilyt9nSzVnhoXR5rPf5kzs9ZyeNBksqJiaPTKsDLX+fTtSoePFmHj6VrgeS1XTiH8ox0cGz6T\nPyctp/GkEdjV8S5jRieazn2Fs7NXc3zI62RFxeA3IahMNd59HqXN+iVYe7gVeF6LZdP4a+N2QkZO\n58zkN/F/7QVsa5ct392q6r6ucXEiYN4Ezs5ew7HBr5N1O4aGrxRuw+JqavXrgW0db44HTSFk9Czq\nDH4Sp4CGAKidHGg8YyyNp45GQf7V0qw9XAlcOZ3LqzdyIng6cb8dp8n0sWa3pcbFicZzJ3Jh7mpC\nhr5K1u0YGrwcbHZN3ZEDUKhUnBw5hdARU1BZW1F3RH8A/KeOI/qnXzj5wlSuLPuAgCVTQXX/X8eU\nji64vTyf+LWzuDN5ENqYKFyGvVKgRu1TlxrDXyN22WtEzxxOyq5NuE81dlJdBo9HmxhL9LShRM95\nAcee/bHyb3HfuQqxdUfdewPa74eR92lrDCk3UD2yuOhaFz/UXZeBIr99VN1WQm4GeZ+1RftVN5T1\ne6Hw7V3uOBVxHKrTryd2dXw4MnQax16YQ70hfXEK8AOg6YwxRP3wG8eGz+T8kvUELpuEQmX8AejY\n8JkcGz6T0PFvoMvOJmzuu+VeD4vRK6r2vyrif2pK4dy5c6lZs6alY7B1Syj9+reid59mlo5SIslZ\nsSyV071TICkXrpN5MxqAyJ37qNm7S5nqkk5d5Nqmb8FgAL2B1Ms3sPH2wK6uD3npWSSEGL+oZ0Tc\nRpuRhUsL/0pdJ0tu83vbKeKb/dTsU3p73l13Yc0XXHx3CwDW7i4ordRo0zMxaHX80mciqZcjALCr\n5Ulecnqlr5Ol2tOtY0tSLoSb2ujmzn149364THXW7jXwfLQ9f05eUeA5SisN1zd+Q2LIWQByYhPJ\nTU7D2rNgp6c0rh1aknrxGlm3jMuO2rUH7yceMbvGyr0G7l07cGbKskL5/tq0g6R/8sUlkpeSWuZ8\nd6uq+7prx0BSL4aTdfOf9tlbuA1LqPF4tCN3fvwNg06PNi2DmP2H8e5tfMzr8c7kJiRx9b3NBV7P\ns3sn4o+eIu3yX8bX+24fV9751IxWNKrRoRVpF6+RdesOALe//RmvXo+YXZNy5gKRn+/4ux31pF/5\nC2tvDwAUKiVqRwcAVHa26HPzzM5VEpuWHckNv4A2+iYAaft2Yv9wwY6IQZtHwoY30ScnAJB7/SIq\nFzdQqUn67C2SN//HmMvFHYXGCn1mxR9/lPUexxB9EpKNI/e6Mx+jbDq4cKHaFnXfT9D+MavA3Qqv\n1ugvbAWDHvR56P/6GaV/v3LnqYjjkGe39tz+8XfTezR63xF8+hjfCwqVEs3f21ttb4s+J7fQazd6\nPZj4I6eJP1oxI52i6nkgUwqzs7OZPXs2t2/fJi8vjyeeeML02KZNm/jpp59Qq9W0a9eO6dOnc/Lk\nSVauXIlarcbW1pZ3330Xa2trFi5cSEREBHq9nkmTJtGxY8dilxkREcGYMWNISkpi6NChDBo0iODg\nYBYtWoSjoyPTpk3DYDDg4eHxIJqggHkL+gBw7NhfD3zZZSE5K5alctp4uZEdk2C6nR2biMbBDrW9\nbYGpRiXVxR8/m1/n7U79oX04t+xjMiPvoLazwb1jC+KPn8U5wBdH39pYu9eo1HWy5Da39XIly4z2\nLK3OoNPTavEEvB/vQPTvoaRHGEffDTodVq5OPPLlMjQujpya/V6lr5NF35ux+W2UE5uAxsEOlb1t\ngek8JdXlxCdxZuZbhV5bn5tH1Pe/mW7Xeu5xVHY2pJy7UuaMOXcvOy4BtYM9Kjtb0/Sykmpy45M4\nN3t1kfnu/PCr6XbNZ3ugsrUh9fzVMuW7N2tV3NdtPN3Jjok33c6JTUDtYFewDUuosfEsmDcnNgGH\nhvUATFMLfZ7sVmCZdnVros/KofmSSdjVrUl2TDxX3vms1Kz/sPZ0Iyf2rjxFbPeSapJOnMl/LS8P\nag1+iisrPwTg6lsf0/I/b1B78NNoajhxceFa0OnNzlYctZsX2oT8KZO6hFiUdg4obO1N0wp1cXfQ\nxd0x1dQYMYms0AOg0xrv0Otwm/gGdh27kxnyO9rbEfedqxCn2hjSbuXfTotCYe0MVo4FphWqer6H\nPmwThrhzBZ5uuBOCMmAouttHQWWN0v850Je/01oRx6Gi9in3v9+jF1dtot26+dQb2hcrV2fC5r6L\n4a7tbe9bG89H23Go32vlXgdR9T2QEa5t27ZRq1Yttm/fztq1a7G2tgbg8uXL7N69m23btrFt2zYi\nIiL47bff2L9/P3369OHLL79k6NChpKamsmPHDmrUqMGWLVtYt24dixcXM/z8t7y8PD788EO++uor\nNm7cSGJioumx9evX89RTT7F582Z69OhRqesuhMUpih5SN9z7AW9GnVOTBnT6eCERX+8h7tAptBlZ\nnJy6Bt9Rz9Flywpq9u1KQsh59HnaCotf5SiLPmwWak8z6k4vWMe+Hi9h5eSA/4v9TffnJqbyS9+J\nHBm1kJYLX8K+bvmnmVVlCmUx0z3uaUtz64pTf8SzNBw3iFNTV6HPKeMXs+K2o15ftpoS1At+jgYv\nDiZs+ooif/02W1Xd14vZfgXbsPiaorZ/oXW6h0Ktwr1re8I/2saJkTNIDD1L4IrppWf95/lmbFNz\nahwa+9Jq3VJu79xN4pGTKKw0NF08lUtvvsexfmM5/cp8/KePv6+RzbsCFX2/Xle41NoG98nLUXvX\nJmHDmwUeS3h/Ibde7IXSwRnngWPuP1fhpZeaU9lyLOi16M8VPodM98dswIA6+CjqZ7ehj/gVdOXf\nbyrkOFTUe1SvR2mlIfDNSZxb/CEHnp5AyEuLCJg9tsD2rje4Dzd37CnyXEvx7/FARriuX79O165d\nAahfvz5OTk7Ex8dz/fp1WrZsiUajAaBdu3ZcvXqV8ePHs379ekaOHImXlxeBgYFcuXKFkydPEhYW\nBoBWqyUxMRFXV9cil9mqVSusrKwA8PPz49at/F9Tbty4wfPPPw9AmzZt2Lp1a6WtuxCW4P/SQDy7\ntgWMUxjSrt00PWbt4UpuSjq67JwCz8mOScClecNi63x6diZg5mgurP6UO3uOGIsUCnRZ2ZwYv8T0\nvEe+XkPm31Or/i0avTQQz65tANDY25Eann+hAJvi2jM6HpfmfkXWuXcKJO1aJDnxyeiycri95wje\n3TugtrfFrX0zYn4PBSD18g1Sr0bg2LAOGZH/jjb1GzcIj67tAON7M/1afltae7iSV0xbOjdrWGrd\nvRQaNc0XTMDBtzbHx8wn+05cmfNmR8fhFJA/bc7aw5W81DT0dy3bnJri8gXMm4hdg9qcHDuH7Oiy\n56sO+3pOTDzOze5pn5T0Au1TUk12THyBkTRrD9cCI4pFLjMuiZSzl01TFG9//yuNp4xGaW1lVqc2\nOzoOx7u3qbtbkdu9pBqPx7vgP20c19ZuJHaf8WIo9r51UdlYk3jkJABp56+Q+ddNHAMakRN7tNRc\nJdHGR2PVMH9asMrVA116Coac7AJ1KjcvPGauJS/qL2LfmIAhz5jXpmUn8iKvoUuKx5CTRebhPdh1\n7H5fmYqUdguFT/v82w41MWQlgjbTdJey2XDQ2KEOPopCpTFOLww+inZXP1Cq0R2YB9lJxtr26ZRa\nbwAAIABJREFUUzAkXy9ThIo+DmVHJ2Dt7lLgsZzYBBz86qCysSL+0J8ApJy7Svr1m7g0b0jMrwmg\nVODZvSPHRswuU/6qxGCoOudJVWUPZITLz8+Ps2eN0xRu3rzJ2rVrAfD19SUsLAytVovBYCAkJIQG\nDRrw/fff069fPzZv3oy/vz9ff/01vr6+PPnkk2zevJmPP/6Y3r174+LiUuwyL1y4gFarJTMzk/Dw\ncOrWrVsgz6lTpwBMuYT4N7m64RsOB83mcNBsjo5agEtzf9PFAuoO6EHsgdBCz4k/FlZsnXf3DjSd\nNpKQV5fnfwEDMBho985MnJr6Guse74heq3sgVyl8kK5s+IZDQXM4FDSHw6MWUKNAOz1OzB8nCz0n\n7tjZYutq9uyI/7gBACg1anx6diIh9DwGvZ6WC16iRstGADj41sK+Xk2Sz1X+VQoflH8uYnFs+ExO\njJ6H811tVLt/zyLfmwnHw8yqu1fL5ZNR29tyopydLYDEE2dwbu5vuphFzX69iD8QUuaaojR/cyoq\ne1tOjptbrs4WVI99PeH43+3z9/Jq9etF3MEQs2viDoTg8/RjxnOfHOzw6tmFuFLaN+6PE7gENsbG\nxxMAz24dSQ+PNHsEMenEGZyaNcK2tvHKeDX79SLhnswl1bh360zDyS8SNnmxqbMFkHXrDmp7O5ya\nNwbAppYXdvVrk361bB2GomSHHcfavzlq7zoAOPTsb5wueBelvRNeizaQeeI3Et6dZ+psAdh16oHT\nwBeNN9Qa7Dr3IPtc6ftZWelv/ILCpwO4GH+QUrV8EX34TwVqtF89ivbz9mg3dyZvV3/QZqHd3Bky\nolG1fBHVQ/P+Du2JqsUL6C9uL1OGij4OxR4IpdZd71Hvng8R+3sImTejUTvY4dzCeEy3reWFff1a\npF6+AYCjX120qRnlPj6J6uOBjHANGTKEOXPmMHz4cHQ6HaNGjSIpKYnGjRvTp08fhg4dil6vp23b\ntvTo0YOwsDDmzZuHra0tSqWSxYsX4+Xlxbx58xg+fDjp6ekMGzYMZTHD+QDW1taMHTuW1NRUXn31\n1QKds5dffpnp06fz3//+l9q1az+IJhDCYnKTUjm7eD2tV0xCqVGTeSuGsEXrAHBq6kuLeWM5HDS7\nxLpGrwxBoVDQYl7+Vb6SzlzhwqpPOTP/fVrMHYtCoyYnPok/pxc+n+bfJDcplTOLN9B2pfEKbRm3\nYjiz0HhuhnPTBrSYN5ZDQXNKrLvw9hZazBlD1+0rMRgMxPx+kr+2/gwGA6HT3iJgSjAKtQp9npbT\n894nOzaxpEjVVm5SKueXfEjLFVNQqNVkRUVzdtEHgPG9GTD3JY4Nn1liXXFcAhvj2bUdGRG3ab8x\nfwr61fe/IuHYmRKeWVBeUioXl35A82XTUGrUZEXFcGHxezg28aPJ7PGEjJxebE1JnAMb4/FIezIi\nomi7Yanp/vB1X5J43Px8d6uq+3peUioXlqyjxbKpxva5FcP5xe/j2MSXpnNe5sSI6cXWgPECGra1\nvOmweQ1KjZqob/eRfOpCictMv3qDS6s+JnDldBRqFdq0DM7OXWt2W+Ylp3B52fsELJ2OQqMmOyqa\nS0v+g0MTPxrPmsDJF6YWWwPQYLzxCouNZ00wvWZK2CWurf2Y83NW4jdpDEorDQatjiur1pMdFWN2\ntuLoU5NI+HAJ7lNWoFCr0UZHkfDBIqx8m+L60lyiZw7HodcAVO5e2LXvhl37bqbnxi55haTN7+A6\ndhbea7aCwUBWyB+k7d5237kKyYpDu2c86qe3oFBpMCT/hfbnsSi8WqPqtc7YsSqB7vga1H03oh5p\n7Nzqji7DEPNnueNUxHHo1s692NXyovOWVSjUam59u5+kUxcBOD3jLZpMfcG0vS+s+Jisv7e3XV0f\nsqSz9T9BYTAYDJYOUV3o2GLpCCVSEVTlM4LkrGgqgtjdvvCln6uaPiFbq017/tSu8CWBq5InQ78C\nqscxaW+HIq4+VsX0OrGdXzsPtHSMUnU/+k212dd/6TTI0jFK9fixHfzRpX/phRb26OFdRA7uYOkY\nJaq7/QQAuW/ZWzhJyaymZlSbY1J1kb2kAs4/rEQ280uefvygVOs/fPz+++9z/PjxQvcvW7aMOnXq\nWCCREEIIIYQQQuSr1h2uiRMnMnHiREvHEEIIIYQQQogiVesOlxBCCCGEEMIyDHq5SqE5HshVCoUQ\nQgghhBDif5F0uIQQQgghhBCiksiUQiGEEEIIIUTZyZRCs8gIlxBCCCGEEEJUEulwCSGEEEIIIUQl\nkSmFQgghhBBCiDIzGGRKoTlkhEsIIYQQQgghKol0uIQQQgghhBCikkiHSwghhBBCCCEqiZzDJYQQ\nQgghhCg7vYzdmENaSQghhBBCCCEqiXS4hBBCCCGEEKKSKAwGg8HSIYQQQgghhBDVS8YcH0tHKJH9\nsjuWjgDIOVxlsrv9UEtHKFGfkK3s7TDY0jFK1evEdn5sG2TpGKV66uSWKr/NwbjddWyxdIxSqQiq\nNu2ZdaGHpWOUyDZgP1A9jkk/dxhi6Ril6n1iG78/NMDSMUrV7cjOarOv/9p5oKVjlKr70W9YVO9V\nS8co1aKI91jf5CVLxyjR+EsbANgaOMrCSUo2NOxTfmo3zNIxSvVk6FeWjiAqmEwpFEIIIYQQQvzP\n0ev1LFiwgMGDBxMcHExERESRdfPnz2fNmjXlXo50uIQQQgghhBBlZjAoqvS/0uzfv5/c3Fy2b9/O\n1KlTWbFiRaGabdu2ceXKlftqJ+lwCSGEEEIIIf7nnDx5kkceeQSAVq1ace7cuQKP//nnn5w5c4bB\ng+/vlB3pcAkhhBBCCCH+56Snp+Pg4GC6rVKp0Gq1AMTGxvLBBx+wYMGC+16OXDRDCCGEEEIIUXbV\n/A8fOzg4kJGRYbqt1+tRq43do59//pmkpCTGjRtHXFwc2dnZ+Pr60r9//zIvRzpcQgghhBBCiP85\nbdq04bfffqNv376cPn2aRo0amR4bMWIEI0aMAGDXrl1cv369XJ0tkA6XEEIIIYQQ4n9Qz549OXz4\nMEOGDMFgMLBs2TJ++OEHMjMz7/u8rbtJh0sIIYQQQghRZgZ96VcCrMqUSiWLFy8ucJ+fn1+huvKO\nbJmWc1/PFkIIIYQQQghRLOlwCSGEEEIIIUQlkQ6XEEIIIYQQQlQSOYdLCCGEEEIIUWYGQ/U+h+tB\nkREuIYQQQgghhKgk0uESQgghhBBCiEoiUwqFEEIIIYQQZaeXsRtzSIergnh0aU2jV4agtFKTdjWS\nc0s/QpuRZXad0lpDsxmjcQ7wBaWSlHPXOL9qE/qcPFzbBtBk0nAUKhV5KWlcXPsFaVcjy5XTvUtr\n/CcMRWmlIe1aJOeXrkdXRM7S6qw93ei4aSlHg2aQl5JmXLeH29B84StkxcSb6kLGLUSXmV3mnJ4P\nt6LJxMEoNWpSr90kbPHHRbanOXVtV08iJy6Jc6s+B8CtXQBNXx+KUq1Cl5PH+dWfk3z+epkzQvXZ\n7mVhMBiYO/t7Gvp7MHrMQ5W+vLtVt/Y8EJrFe1+mkJtnwL+ehkUTXXGwy//w+eG3DDZ/n2a6nZ6p\nJzZBx56NNVGr4M0NSVz+Kw9bGwXPdrdn6JOO95XnbtWlLT26tKbRhCGmY83ZpRuKPCYVV6e01hAw\nfTTOAX6gVJBy7hoXVhtz/qPW093w6taeP6euLldG14fa4Dt+OEqNmvTwCC4vW4cuM8usGqWVFf7T\nXsSxaUMUCiWpF65wdc1G9Lm5ODb1o+Hro1HZWINKyc0vvyNmz4FyZSyPB7mvuz3UBr+Xg1Bo1GSE\nR3LxzcJtWGyNUon/ayNx7dQKhUpJ5Fc/cPvbvQC4tGmG/2sjTe/Fq+98Svq1CNNrKjRqWq6ZTdR3\n+4j77ViFrY9/92b0mPE0Kis1MZdu8/2Mr8hJL/xZ12FkV9oNfxgMBhIj4vlh1lYyEtIrLEdR6j7a\nnI5T+qGyUpNwOYrf535BXkbxn8OPLR9J4tXbnNm0DwCFUsHD84fi094fgMgD5zi2ameF56z5SCAt\nXx+I0kpN8pVbHF+4CW0JOTsuGUPKtSguff5zgfvtvFzp+eU8dg9aQG7y/betZ5dWNJ74zzHxJmFL\nij52FlentrclcME4HOrXBIWCWz8d5PrnPwDgHOBLwNRgVDbWKFRKrn/+A1G7D993ZlH1Sbe0Ali5\nONJiwUucmvk2BwdOJSsqlkYTh5apzm9UPxQqJYeGzeLQ0Bkora3we+FZ1Pa2tFk1mcv/2cLhYTM5\nv2ITrZa/jlJT9r6yxsWR5vNf5systRweNJmsqBgavTKszHU+fbvS4aNF2Hi6Fniec2Bjbmz5gWPD\nZ5r+laezZeXiSMuF4zg5/R1+HzCdzFuxNHm18F/7NqfOb8RTuLZubLqtUKtos3wiYUs3cmDoHK5+\n8h2tFr9c5oz/LL86bPeyCA+PY/TIzfy8+3ylLqco1a09E1N0LHwvkTUz3Pi/D3yo7a3m3c3JBWqe\nfsyer9/25uu3vdmy2gt3FxWzxtbAzUXF6k3J2Nko2fUfbzav8OLQn9kcCCn8oV4e1aUtjcea8Zya\n9TYHB00hMyqWxq8UzllSnd+ofijUKg4HzeTwsBmorK3wHfmc8XlO9gTMGkPTaS+AonwndmtcnGgy\ndyLn56zmxNDXyL4dg++E4WbX1HthAAqVitARUwkZMQWltTV1Rxj/gGazN6dzY+N2Ql+YxtkpS/F7\n7QVsa/uUK2dZPch9XePiRNO5r3B29mqOD3mdrKgY/CYEmV1T67me2Nbx4UTQZEJHz6LO4CdxDGiI\nyt6OFsunc+39zZwInsrl1R/RbOkUFH+/F52aN6LdxuU4t2xSoetj5+rAc6uD2D7+E97vvpSkyHh6\nzHqmUJ1P8zo8NLY7n/Rfy7pey0m8EcdjU5+s0Cz3sqnhwGPLRrL3tQ1s67OQ1JvxdJrar8haF19v\nnv5sMr692xW4v9GznXBp4MWOZxbzzXNLqNm+Eb5PtKnQnNY1HOm4ZAwHp3zAT8/MIf1WHK0mDSqy\n1qmBD903zqBur/aFHqv/9EM8/tls7LxqVEguKxdHAhe+xMkZ7/DHgGlkRsXQZOKQMtU1enkQ2TGJ\nHBg8k8Mj5lNvQA9cWhg7r21XTeLKhp0cCppDyGuraDp5OHZ1vCsku6jaqmWHKzg4mPDwcEvHMHHv\nFEjKhetk3owGIHLnPmr27lKmuqRTF7m26VswGEBvIPXyDWy8PbCr60NeehYJIcYPxYyI22gzskw7\nb1m4dWxJyoVw0/Jv7tyHd++Hy1Rn7V4Dz0fb8+fkFYWe5xLYCNd2zen0+XLaf7SIGq2bljkjgEfn\nFiRfuE7GzRgAIr7ZT60+hduztDq3dgF4PBRIxM5fTPcZtDr293mV1MvGX0DtanmSm1K+X8Sqy3Yv\ni61bQunXvxW9+zSr1OUUpbq159HT2TTzt6JeTQ0Ag3o7sPtAJgaDocj6z75NxdVZycAnHAC4GJ7L\nk93sUKkUaDQKHmlrw76jmeXOc7fq0pbuHQMLHWt8ijgmlVSXeOoS4XfnvHIDWx93ALx7dCYnPpnL\n/9lS5mz/qNGhJWkXr5F16w4At3ftwavXI2bXJJ++QMRn3/ydT0/6levYeLujtNJwY9MOkkLDAMiJ\nSyQvORVrT7dyZy2LB7mvu3ZoSerFa2TdMm6/qF178H7iEbNrPB7twJ2ffsOg06NNyyB232G8n+iK\nXR0ftBmZJIWeBSAz4ja6jCycmxt/ZKszqC/XN2wl9fy1Cl0fv65NiAqLJPFGHAChXx6ixbPtCtXd\nOXeT/3RbTE5aNmprNY5eLmQlVcw+Xpw6XQKIPRtBSkQsABe2/UHDpzsWWds8qBuXdh3h+s+hBe5X\nKJWoba1RWalRWmlQalTocrUVmtO7czMSzv1FeqTx8/va179Sr2+nImv9hzzO9e8OErk3pMD9th4u\n1H6sDX+88naF5br3mBjxzX5qFvH9o6S6C2u+4OK7xmOOtbsLSis12vRMlFYarn68i4QT5wDIjk0k\nNzkN23t+vK5uDHpFlf5XVVTLDldVY+PlRnZMgul2dmwiGgc71Pa2ZtfFHz9LZqRxx7Xxdqf+0D5E\n/3KMzMg7qO1scO/YAjAORzv61sbavey/5th4uZEdm7/8nNgENA52qIrKWUxdTnwSZ2a+RcZfUYVe\nPy8lnZvf7OHYyNlc/WArLVdNxbocBxIbLzeyoxNNt0tsz2LqrN1daDYtmFPz1oFOX+B5Bq0OK1cn\neux+j6avDyX8ix/LnNG0/Gqw3cti3oI+PPNcYKUuozjVrT1j4nV4u6lMt73cVKRnGsjIKtzhSkrV\n8cX/pTF9TP7yWjSy5qffM8nTGsjM0vPL0Szik/SFnlse1aUt7z3WZJt5TLq7LuF4GJmRd0w56w3p\nQ/QvxwG4uWs/4Rt3os/OLXO2/GW7k3PXNOmcuATUDvao7GzNqkk6cYasm8Z81t4e1H7+KeJ+PYo+\nN4/oH/N/DPJ5ticqWxtSz10pd9ayeJD7uo2XGzl3f6YU2YbF11jf077ZsQlYe7qRGXkbla0Nrh1a\nAuDY1A973zpYu7sAcH7hOyQc+bPC18fZpwapt5NMt1PvJGPjZIu1g02hWr1WT5NegUw5toR6Hf04\ntaPipjUWxd6nBul3fS6mRydh7WiLxr5wtkNLtnH1++OF7r/87RFyUjMJ/mMlIw6uIjUyjojfwio0\np523K5l35cyMScLK0Q51ETlPLv+SGz8eLXR/Vlwyh6a8T+r12xWWy9bLlSwzjp2l1Rl0elotnkDX\n7StJOHmR9Ijb6HPzuPl/v5ueU6dfd9R2NiSdu1ph+UXVVaXO4Zo4cSIjRoygQ4cOnD17lvfeew8n\nJydu3bqFTqdj1KhR9O3b11T/3nvv4e7uztChQwkPD2fRokVs3ryZp59+mnbt2nH58mV8fX1xc3Mj\nNDQUKysrPvroI7Kzs5k7dy5JScYD5rx582jcuHFxsUpXzFQVwz1f9M2pc2rSgDarpxDx9R7iDp0C\n4OTUNTSaMJjGrwWReOoSCSHn0eeV/dcmhbKYnv49Oc2tu9eZmW+Z/p985jIpYVdw6xDI7R9/L0tM\nFGa2Z3F1KKDN8lc5/9ZmcuKTiyzJTUxlf59XcWpSn04fzuHw9QVk/P3lsgxBzcpp6e1ebVSz9tQX\nPZCFqoifsXbuzaBbB1tqeeUfcqeMcuHtz5IZMiUad1cVnVrZcOZSTrnzFFBN2lKhLOY3v0LHpNLr\nnJo0oPWqqUTu2EvcoQr8kl1cG+n1ZapxaOxL8+UziNq5m4QjJwvU1Q3uR61BTxI2ZQn63PJ3Dqus\nYrZfgTYsoabIY71ejy4zi7MzV+L70jD8JgaTfPoCSSfPVfpxsrjPSH0xn5GX9oZxaW8YbYY8RPDm\nCfyn6+JiR8LvP5sZbV2Ktq88RXZiGp8/PB21tYYnPphA4KgehH26v6JiFtuGZclZKYprv3u3rRl1\npxesQ7X8E9qumoz/i/25+lH+eXB+I5+m/tDenHh1ZYHzTcW/V5XqcA0aNIhvv/2WDh06sGvXLrp2\n7UpkZCRr1qwhPT2d/v3706lT0UPOd8vIyOCpp55i4cKF9O7dm9mzZzN58mSGDx/OtWvX+PHHH+nU\nqRPDhg3jxo0bzJ49m61bt5Ypq/9LA/Hs2hYAtb0taddumh6z9nAlNyUdXXbBL0/ZMQm4NG9YbJ1P\nz84EzBzNhdWfcmfPEWORQoEuK5sT45eYnvfI12vIvGVe58Bv3CA8urYz5Uy/ln9iu7WHK3lF5YyO\nx7lZw1Lr7qZ2sKPOwF789dl3+XcqwKA174Ov0fgBeBXTnjbFtGdWdMH2/KfOoUEt7Gp6EDDZeA6F\ntZszCpUSpbWGC29vwb19M6J/M06hSL10g7QrETg2rGNWh6u6bPfqojq3p4+7inNX8rPFJuhwclBi\na1P4g3jv4UxmjHEpcF9Gpp5JI5xxdjSOkn26K5U6PuU/JFeXtmw4blCZc2YVcUy6u867Z2cCZozh\n4ppPubOnYk9Az4mJx6lZ/nRJKw838lLT0N+VsbQazx5d8J82lqtvbSR23yFTnUKjpsm8V7GvX5tT\n42aTHR1XodmriuzoOJwC8tvH2sO1UBuWVJMdE4/VXSOo1h6uxhFPhQJdZjanXlloeqzj1ndM0xIr\n0mNT+tK4h3FU19rRhphL+aMqjt7OZCVnkJdVsLPsWs8dBw8nIkONF2U69fVRnlo2GBtnW7KSK25q\nYbtXn6Z+d+Mon5WDDQlX8meg2Hu5kJ2cgTbL/I68b8/WHHpzG/o8Hbl5Oq58dxTfJ9rcd4erxYTn\nqNWtNQAaBxuSr+bntPWsQU5KOroy5KwojV4aiGdX4zlqGns7UsPzvycV9/0jOzoel+Z+Rda5dwok\n7VokOfHJ6LJyuL3nCN7dOwCg1KgJXDQexwa1ODJqIVl34qnu5A8fm6dKTSl85JFHOHv2LMnJyYSG\nhnL16lXatzeeJOng4ICfnx83b94s5VWMmjUzzkt3cnLCz8/P9P+cnByuXLnCzp07CQ4OZv78+aSk\npJQ569UN33A4aDaHg2ZzdNQCXJr7m058rDugB7EHQgs9J/5YWLF13t070HTaSEJeXZ7/xQbAYKDd\nOzNxauprrHu8I3qtzuwrgoV/tMN0AYsTo+fhfNfya/fvWWTOhONhZtXdTZuZRZ2BT+D5mPGg4tio\nPs4BDYk/esasnFfW7+TgsDkcHDaHwy8spEaLhtjX8QKg3sDHifnjZKHnxB07W2Rd8tlr/PLka6bX\ni9z5C3f2HiNsyUYMOj2BC8ZRo2UjABx8a2FfvybJ58w7J7C6bPfqojq3Z+dWNoRdySXitvHXyW/2\npNOtQ+HpMKnpeiLvaGnZxLrA/Tv2pLNuayoACck6du3LoM8jduXOU13a8tpHOzgyfBZHhs/i2Oj5\nuDRvmL/8/kXnTDgeVmydV/eONJ36AqGvLavwzhZA4onTODVrZLqYRc3nehF/MMTsGo/HOtFw8hjC\nJi0p0NkCaLZ0Gmp7W/58ac6/trMFkHjiDM7N/bGtbdx+Nfv1Iv7AvW1YfE38gRBqPtUdhUqJ2sEO\nr55diD9wAgwGWq6dg2MT42e8R/fOGLS6AlcprCi/rf0v6/uuZH3flWx87i1qt66Pa30PANoFPcyl\nvWcLPcfB05mB77+AXQ17AAKfa0/s5TsV2tkCCH3vB77pt5Rv+i1l1+CVeLX0xbmeJwABQ7py41fz\nPof/EXchEr+/L6ShVCup91hLYk7/dd85z677jp+fX8jPzy9k7/CluAf64lDX+PntP+gxon47dd/L\nKI8rG77hUNAcDgXN4fCoBdQocEws4ftHMXU1e3bEf9wAwNjB8unZiYRQ4zmvbVa+jsbeliOjF/0r\nOlvCfFVqhEupVNK7d28WLVpEjx49TFMBe/bsSXp6OleuXKF27dqmemtra+LijB9S588XvNJSsdPN\nAF9fX5555hmefvppEhIS2LFjx33lzk1K5ezi9bReMQmlRk3mrRjCFq0DwKmpLy3mjeVw0OwS6xq9\nMgSFQkGLeWNNr5t05goXVn3Kmfnv02LuWBQaNTnxSfw5/a0ic5iT8/ySD2m5YgoKtZqsqGjOLvrA\nlDNg7kscGz6zxLpi6Q2cnr6aJtNG0XDc8+h1Os7Mfdd0yfiy5jzzxgbarnodhUZN5q1YTi/4EADn\npg0InD+Wg8PmlFhXHF1WDqFT19Js6nAUajX6vDxOzfuA7NjEEp9XXM7qsN2ri+rWnq4uKt541ZXp\nqxPIyzNQ21vN0tddOX8tlzc+SOTrt40fxJF38vCooUKjLnhMGjPAibnvJDLgtTsYgPGDnWjub13E\nksquurRlblIqZ5esp9WKySjVajKjYgock5rPHceR4bNKrGs0wZiz+dxxd+W8zMXVn5Yr073yklK5\n9OYHNHtzGgqNmuyoaC4ufg/HJn40nvUyoS9MK7YGoMF440h741n5V0NNOXuJmL0HcX+kPZkRUbRZ\n/6bpsfAPvyTp+OkKyV5V5CWlcnHpBzRfNg2lRk1WVAwX/m7DJrPHEzJyerE1AFHf7sG2thftv3gL\npUZN1Hf7SD51AYDzC9+lyezxKNRqchOSCJu5stLXJyMhnf+bvoXnPxyDykpFUkQ8307eDEDNFnV4\nZuUw1vddSWRIOAfe38sL219Dr9WTFpvCtnEfV2q27MQ0fp/zOT3fHYdKoyb1Zhy/zjTuCx7N6/Ho\nkmC+6be0xNc4smIHD88bwuD/voFBpyfq2CVOb/y5xOeUVU5iGsfmb+LhtyYY/5TCzViOzd0IgGtA\nfTosGsXPzy8s5VUqXm5SKmcWb6DtSuOVVzNuxXBmYf73jxbzxnIoaE6JdRfe3kKLOWPoun0lBoOB\nmN9P8tfWn6nRshFeXduSHnGbzp/kr9ul97YRf6xiz5ETVY/CUFkTicvpzp079OjRgz179uDp6cn8\n+fOJjIwkJyeH4OBg+vXrR3BwMIsWLcLKyopJkyZhZ2dHs2bNOH/+PJs3b6Z79+7s3r0ba2trnn/+\nedauXUvt2rWZMGEC48aNo169esydO5e0tDTS09OZOHEijz/+eKnZdrcvfLniqqRPyFb2dih8+fSq\npteJ7fzYNqj0Qgt76uSWKr/NwbjddZT/KmwPioqgatOeWRd6WDpGiWwDjFN7qnp79gnZys8dCl9S\nuarpfWIbvz80wNIxStXtyM5qs6//2nmgpWOUqvvRb1hU71VLxyjVooj3WN/kJUvHKNH4SxsA2Bo4\nysJJSjY07FN+alf4z+FUNU+GfmXpCGZLfrVh6UUW5PJexV6ltLyq1AgXgI+PT4HRqpUrC/9atXnz\nZtP/d+4s/Mf4fv31V9P/v/76a9P/161bV+T/hRBCCCGEEKIyVKlzuIQQQgghhBDi36TKjXAJIYQQ\nQgghqr6q9MeFqzIZ4RJCCCGEEEKISiIdLiGEEEIIIYSoJNLhEkIIIYQQQohKIudwCSGcSitHAAAg\nAElEQVSEEEIIIcrMYJBzuMwhI1xCCCGEEEIIUUmkwyWEEEIIIYQQlUSmFAohhBBCCCHKTC4Lbx4Z\n4RJCCCGEEEKISiIdLiGEEEIIIYSoJDKlUAghhBBCCFFmBoOM3ZhDWkkIIYQQQgghKol0uIQQQggh\nhBCiksiUQiGEEEIIIUTZyVUKzaIwGAwGS4cQQgghhBBCVC/xYwMsHaFE7h9fsHQEQEa4ykTHFktH\nKJGKoCqfESRnRVMRxO72Qy0do1R9QrZWm/b8qd0wS8co0ZOhXwHV45j0S6dBlo5RqseP7WBfx+ct\nHaNUPY9/XW329eqy3f/o0t/SMUr16OFdRA7uYOkYJaq7/QQAuW/ZWzhJyaymZlSb96b4d5EOlxBC\nCCGEEKLMDAaZUmgOuWiGEEIIIYQQQlQS6XAJIYQQQgghRCWRDpcQQgghhBBCVBI5h0sIIYQQQghR\nZga5LLxZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIhhBBCCCFEmRkMMnZjDmklIYQQQgghhKgk\n0uESQgghhBBCiEoiUwqFEEIIIYQQZSZXKTSPjHAJIYQQQgghRCWRDpcQQvw/e/cdHUXZ9nH8uy29\n99AJCYEQCEgXKVKUovLQpHepotJ7kd6kPCKKooAgYEUfGyiogHSC1IBAKIEE0nvPlvePhYSQDlmT\n+F6fc3IOu3vtzG/vmdnZe+aeQQghhBDCRGRIoRBCCCGEEKLEDAYZUlgccoZLCCGEEEIIIUxEznCV\nEYPBwJxZ3+Pt48qIkc+WdZwCSc7SVVY5XVs1ovbr/VCaqUm6fodLSz5Cm5JW7DqluYZ600dg7+cF\nSiUJl4IJWrUFfUYWTo39qDNxEAqViqyEJK6s3U7S9Tsm/0xluczdWjXEd8LDdrrLhcX5t2dBdWpr\nSxrMH41NjUqgUBD605/c/PQHAJwb+1HnrQEo1Sp0GZkEvbOdhKAbJv9MpmxP52efodb4ASg1GpKD\nQ7iy9AN0qWnFq1Eqqf3WUJyaB6BQqbiz63vCvt0PgGVVD/zmjEdjb4s2NZ3LizaQGnIv13SrvtqV\nSt07cHLgFABU1la0/nlznjoAl1aN8B43AKWZMUPQ0k3o8lmuBdYpFfhOHIrzg6whO38g9EFWq6oe\n+M0dh8beFl1qOpcWvpc3a98uVOnegeMDphqzWprjN3c8NjUrg7J4x0fL67ZuqnXgIc+Xnse1XTMu\nTF2Z/ZxDw7p4TxiE0twMbXIqlxdvJP1eZLHyAji1bEzNsQNRmmlICQ7h6vKNeTIXVKM0M8N7yihs\n63qjUCpIDLpO8JrN6DMzsapRhdrTx6GyssBgMHDrg8+IO3Wu2LkKY9GoFQ79x6PQmJF1J5iYTUsw\npKXkqrF6rjN2rwwGgwFDRjpx29aQefMKCktrnMfORV25BgqFguRDP5P0/fZSyfU4Rc0XUbVehEJl\nhiHqEtpfx0NmUv613i+h7ryZrPc8H3xIR1Qd16N0bYAhKxV90A70Zzc9cRZTrZu2dWtRe9IwVBYW\nKJRKQj77jvB9f+aa7uPfT+LfS85wlYEbN6IYMXQH+/YGlXWUQknO0lVWOc0cbKk/fwxnZ6zjz95T\nSAuLpPaE/iWqqzW8BwqVkiMDZnKk/3SU5mbUGtYdtbUlz6yaxNV3d3J0wAyCVmyh4fK3UGpMeyyn\nLJe5mYMtDRaM4cz09RzqNZXUsAjqTOhXorra4/qQHhHL4b4zODpkHtV7dcShvg8KtYpGy9/g4tLN\n/DlgFsGffEfDReNM/plM2Z4aBzv85o7n4qx3ONH3LdLuReD9+sBi11Tu0RHLqh6cHDiZ0yNmUrVv\nN+z8vAGo9/ZbhO75lRP9J3Hr4y+ov3xqrunaN/Cl+uDuuZ/z9yH+3BVODZmW/WfMYEu9ueO5MGsN\nx16dSGpYJD7jB+TzeQquq9KjE1ZVPTg+YAonh8+iWr+u2PnVAsB/4ZuEfvMrx/tN5sbmLwlYkfsH\nln0DX2o+lrX6wFfQZ2RyfMBUTo2cY6zz8yqwrcvrtm7KdUBtZ4Pv9FH4ThmBgpyhTeauTjRYOY2r\nqz/m1OBpRP1xkjrTRhWZ9dE8vnMmcHnOak73f4O0exHUHDe42DXVhvZCoVJxZuhkAodMRmVuRrUh\nPQHwmTKa8J9+48ywKVxbthG/xVNA9fQ/x5S2DjiPm0f02pncn9QHbUQYDgNez1Wj9qyG46A3iVz2\nJuEzBpGwZwsuU4ydVIe+Y9HGRhI+tT/hs4dh26knZj71nzpXHpYuqDt/iPb7AWRtbYQh4Taq1ovy\nr3WohbrNMlDktI+q3UrITCFrW2O0u9qhrPECCq/OTxTFlOtmg+VTubn5S04Nmca5SUvxeXMollU9\nsqeb3/dTRWQwKMr1X3nxr+1wffTRR1y4cKGsY+Rr985AevRsSOcu9co6SqEkZ+kqq5wuLRqQcPkm\nqXfDAbjzzX4qdW5Vorq4s1cI3vItGAygN5B49TYWHq5YVfMkKzmNmNPGH+opIffQpqThUN/HpJ+p\nLJf54+0U8vUBKnUpuj0frbv8znau/HcnAOYuDijN1GiTUzFodfzWZQKJV0MAsKrsRlZ8ssk/kynb\n06l5AxKv3CDtQTuE7fkVjxdbF7vGtW1z7v/4BwadHm1SChEHjuLRuTXmrk5Y16hExP6jAMQcP4fK\n0hxb35oAmDnZ4zv1Na6/tyPXvOzr+6Kxs6Hxh4tp9ukqKvd8AQDn5gEkXLmRvbxC9/yKR+fcOYuq\nc2vbjLAfDmZnDd9/DM/ObTB3dcS6RiXC9x/LyWqRO2vdaSO5tuGzXPNSqJSorCxQqJQozTQA6LO0\nBbZ1ed3WTbUOALh3aElmTBzXN+Rezm7tWxB9/CxJV28Zp/fdfq6t31pk1occmzUk6UowaaH3Abj3\n7T7cX2hd7JqE85e58+lXD9pRT/K1W5h7uALG5aq2tQFAZWWJPjOr2LkKYxHQnMwbl9GG3wUgaf83\nWD+XuyNi0GYR8+FS9PExAGTevILKwRlUauK2rSF+x7vGXA4uKDRm6FNL//tHWb0DhvAzEG88c687\nvxll3b55C9WWqLt+gvbQzFxPK9wbob+8Gwx60Gehv7UPpU+PJ8piqnVTaabh5idfEXf6IgAZUbFk\nJSRh4eoMFPz9JP69/rVDCkePHl3WEQo0d34XAE6cuFXGSQonOUtXWeW0cHcmPSIm+3F6ZCwaGyvU\n1pa5hhoVVhd98mJOnYcLNfp34dKyzaTeuY/aygKX5vWJPnkRez8vbL2qYO7iaNLPVJbL3NLdibRi\ntGdRdQadnoaLxuPRoRnhBwNJfjC8zKDTYeZkR+vPlqFxsOXsrA0m/0ymbE8LNxfSI6KzH2dExqC2\nsUJlZZk9bKewGgu33OtlRmQMNt7VMXdzJiMqzviDNvu1WMzdnEm6HkK9hW8R/N4O9NrcHRSDTkf0\nkUBubd2DubMDz2xcYMzg7kzGY/PR2FihsrbMNaywsDoLd2cyIh/PWg0Ld5c8WdOjYrFwcyLp+m38\nF73JtQ07MGh1ubLe3vE/mnzwNm1+/BCVtSVAoUP4yuu2bqp1AMgevuXZrV2ueVpVq4Q+LQP/xROx\nqlaJ9Ihorq3fVmTWh8zdnMmIfCRPVAxqG+tcmQuriTt1Pmda7q5U7vsS11Z+AMD1NZsJeHchVfq+\njMbRjisL1oJOX+xsBVE7u6ONyRkyqYuJRGllg8LSOntYoS7qPrqo+9k1jkMmkhZ4GHQPthO9DucJ\nC7Fq3p7U0wfR3gt56lx52FXBkBSa8zgpDIW5PZjZ5hpWqOq0Af2FLRiiLuV6u+H+aZR+/dHdOw4q\nc5Q+/wH9k3VaTbVu6jOzuP/D79nPV+reEZWlBQlB10GpLPD7Sfx7mbzDlZyczJw5c0hKSiIyMpIu\nXbrw448/8vPPP6NQKFi0aBEtW7bE3d2dhQsXYm1tjbOzM+bm5qxYsSLfaW7YsIGbN28SExNDYmIi\nc+fOpUmTJjz//PN4eXlRq1YtEhMT6dq1K82aNWPWrFncu3ePrKws5s2bh7+/PwsWLCAkJAS9Xs/E\niRNp3ry5qZtCiLKhyP+UuuHxHXwx6uzq1OSZ1ZMJ+fIXoo6cBeDMlHeoPb4vvm8OJPbs38ScDir0\nKHyFV8C1NHnasxh15+a/j2r5JzReNQmf13py/aNvAMiMTeS3rhOw861Biw/mcHRYKCl3wksn/z9N\nWcB6pdcXq0aRz2sGXf7PP3zNe/wA4s9dJvbUBRye8cv1+u2t32T/OyMqlrDv9uPz5tBcQ5Yen14u\nhdXll0mvL3jb0uvxGT+A+LNXiD11EcfHstaZNpKYkxcI/mA3Zk72tP35I9yfb0bEH6fynV653dZN\ntA4URqFW4fJcE86MnUfa3XCqvNqFBityhpAWRVHQ9vtI5uLU2Ph6UW/ZDO59s5fYY2dQmGmou2gK\nfy/dQOyxM9jWq43/ylkkXQnO1Vl/IgWsm+h1eZ5SmFvgPH4BKmc3Ipe9leu1mPcWELt5BS5TVmLf\neyQJX21+ulx5515kTmXAKNBr0V/aDnbVcpXpDs1C1XYZ6sHHISUcfcjvKCs94W+4f2DdrD74P1Tt\n25VzE5eiz8jEe8KgAr+fKiL5j4+Lx+QdrpCQELp168YLL7xAREQEgwcPxs/Pj8DAQAICAjh58iSz\nZ8+mT58+rFq1Ch8fH9atW0dERESh07WwsGD79u1cv36dKVOm8P3333P//n327NmDo6MjM2caT0F/\n/vnnVK5cmXXr1nH79m0OHjzIlStXcHR0ZNmyZcTFxTFo0CB++uknUzeFEP8YnzG9cWvTGAC1tSVJ\nwXezXzN3dSIzIRldekau96RHxODg711gnWenlvjNGMHl1Vu5/4txaBQKBbq0dE6NXZz9vtZfvkNq\naAXtHBSg9pjeuLV5BgCNtRWJN3LOMlgU1J7h0Tj418q3zqVFA5KC75ARHY8uLYN7vxzDo30z1NaW\nODetR8TBQAASr94m8XoItt5VK2yHKyMiGvt6OcPOzF2dyEpIRv9IexVWkx4RnessirmrExmRMaSH\nR2Pm7JBrXg9f8+jchsy4BFzbNkdlaYG5qxPNtq/m1JBpVOnTmajDgWREROM1qi+VXmkPQOXu7Ul+\nZLnmlxMgPSIa+8e2k+ysj2Uyd3UiPTKW9Ii8WS0evObZxZjVrV2z7KwtdqzixODpuLVrzvEBU8Bg\nIDMmHgDnJn65OlwVYVs31TpQ6Dyj4ki4eDV7GNi973/Hd/IIlOZm6DMyi8ycHh6Frd8jeVycyUpM\nypW5qBrXDq3wmTqa4LUfE7nfeLMEa69qqCzMiT12BoCkoGuk3rqLrV9tMiKPF5mrMNrocMy8c4YF\nq5xc0SUnYMhIz1WncnbHdcZassJuEblwPIYsY16LgBZk3QlGFxeNISON1KO/YNW8/VNlyldSKArP\npjmPbSphSIsFbWr2U8p6g0BjhXrwcRQqjXF44eDjaPf0AKUa3eG5kB5nrG06GUP8zSeKYsp1U6FR\n4zfvdaxrViFw1BzS70cBFPr9JP69TH4Nl4uLCwcOHGDq1Kl88MEHaLVaXn31Vb799lsOHDhA+/bt\nUavVREZG4uNjXKEbN25c5HRbtGgBgI+PD9HRxlO9jo6OODrmHt5w8+ZNGjZsCECNGjUYNmwY165d\n4/DhwwwePJg333wTrVZLbGxsaX5sIcrU9Q+/5ujAWRwdOIvjw+fj4O+D1YOLdav16kjk4cA874k+\ncaHAOo/2zag7dSin31ie8wMMwGCgyfoZ2NU1Xsjv0aE5eq3uH7lL4T/p2odfc2TgbI4MnM3R4fNx\nzNVOHYg4dCbPe6JOXCywrlKn5viM7gWAUqPGs1MLYgKDMOj1BMwfg2NAbQBsvCpjXb0S8ZdMf5dC\nU4k5eR57f5/si8Ur93iBqD9PF7sm6vBpPF9+3njdi40V7p1aEXX4NBlRsaSFReDe0XhHRafmARj0\nepJv3OHIS6M5Ndh4NuPK8g9ICwvP/jHjEFCX6oNeAeDOFz+hTTH+yDs1cg72jyyvKj07EflYzkez\n5lcXdTiQyi+3fyTrs0QdOkVG5IOsnYxZnR9mDb7D4W5jODFoOicGT+fysk2khYVzYvB0AJKu3sTj\nwXuUFuYAxF8KzpWnImzrploHChN16BQODXyx8HQDwK1dc5Jv3ClWZwsg7tR57OrVxrKK8c54lXq8\nQMxjmQurcWnXEu9Jr3Fh0qLszhZAWuh91NZW2Pn7AmBR2R2rGlVIvv5kHYZHpV84ibmPP2qPqgDY\ndOppHC74CKW1He5vf0jqqT+I+e/c7M4WgFWLjtj1fs34QK3BqmVH0i/lXX+elv72byg8m4GD8YCU\nKuA19DdyH/TW7mqL9tOmaHe0JGtPT9Cmod3RElLCUQW8hurZuQ9Cu6GqPwz9lS+eKIsp1836y6ag\ntrYicNTc7M4WUOj3k/j3MvkZri1bttCwYUMGDBjAiRMnOHToEC1btmT16tVERESwYIFx/LyHhwfB\nwcF4e3tz/vz5IqYKQUFBdO/enWvXruHu7g6AMp/T+7Vq1eLixYt07NiRu3fvsn79egICAvDw8GDs\n2LGkp6fzwQcf4ODgkOe9QvwbZMYlcnHRJhqtmIhSoyY1NIILb78PgF1dL+rPHcXRgbMKrav9ej8U\nCgX15+bc5Svu/DUur9rK+XnvUX/OKBQaNRnRcfw1bU2ZfM5/SmZcIucXfUjjlcY7tKWERnB+gfHa\nDPu6Nak/dxRHBs4utO7yup3Unz2SNl+sxGAwEHHwDLd27wODgcCpa/CbPBiFWoU+S8u5ue+RHllx\nDwhlxSVyefH71F82BaVGTVpoBEGL3sO2jhd1Z4/j1JBpBdaA8QJ1y8oeNNvxDkqNmrBv9xN/9jIA\nl+ato+6ssdQY3gt9ZhaX5qzNdZ1Ufq6+8wl1Zo6m+a61KNUq7n69D9/JIx5k+IAGyyejUKtJC4vg\n0kJjBrs6XvjNGcuJwdMLrQvd8yuWVdxp8dlqlBo1od8eIO7sFQAuzl1P3Vlj8BreE31mFhdmrysy\n66WFG6kzbSQtu7Y1Dk0E7u09UmB9ed3WTbkOFCT5+m3+XrWZBiunoVCr0CalcHHO2mLlBciKT+Dq\nsvfwWzINhUZNelg4fy9+F5s6tfCdOZ4zw6YUWANQc6zxLna+M8dnTzPhwt8Er91M0OyV1Jo4EqWZ\nBoNWx7VVm0gPK3xUT3HoE+OI+WAxLpNXoFCr0YaHEbPxbcy86uI0Zg7hMwZh80IvVC7uWDVth1XT\ndtnvjVz8OnE71uM0aiYe7+wGg4G004dI2vv5U+fKIy0K7S9jUb+8E4VKgyH+Ftp9o1C4N0L1wvvG\njlUhdCffQd31Y9RDjR0b3fFlGCL+eqIoplo37Rv44tq6CSkh92jy0ZLs+QVv/IzYk0X/xhX/PgqD\noYhv/Kd04sQJlixZgoODA7a2tly/fp2ff/6ZLVu2cOzYMbZvN/4fDxcuXGDJkiVYWVmh0Whwd3dn\nyZIl+U5zw4YNnDp1CqVSSVpaGvPnz8ff359WrVpx9KjxjlUzZ86ka9euNG/enNmzZxMREYFOp2P2\n7Nn4+voyd+5c7t27R3JyMgMGDODVV18t8rPo2Fl6DWMCKgaW+4wgOUubioHsbZr31s/lTZfTuytM\ne/7UJO/twMuTboG7gIrxnfRbiz5lHaNIHU58xf7mRe8Dylqnk19WmG29oiz3Q616lnWMIrU9uoc7\nfZuVdYxCVfvCOMw1c411GScpnNmUlAqzblYUoQOalHWEQlXZVfpnaZ+Eyc9wtWjRgh9//DHP82PH\njmXs2LHZjy9evMimTZtwcnJi3bp1aDSaQqfbtWtX+vfPveN52NkCct1wY82avEfhVq1aVezPIIQQ\nQgghhBBPotzcFt7Z2ZkRI0ZgZWWFra0tK1asYMKECSQkJOSqs7Gxwc+v4t/VRQghhBBCCPHvV246\nXJ07d6Zz59z/Qd97771XRmmEEEIIIYQQhZHbwhePye9SKIQQQgghhBD/X0mHSwghhBBCCCFMpNwM\nKRRCCCGEEEJUHAaDDCksDjnDJYQQQgghhBAmIh0uIYQQQgghhDARGVIohBBCCCGEKDEZUlg8coZL\nCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYvIfHxePnOESQgghhBBCCBORDpcQQgghhBBC\nmIh0uIQQQgghhBDCROQaLiGEEEIIIUSJyW3hi0dhMBgMZR1CCCGEEEIIUbHc6tWyrCMUquY3x8s6\nAiBnuErkpyYDyjpCoboF7mJfs35lHaNInU99zveNB5Z1jCK9cmZnuV/mYFzuaZc7lnWMIln6Hagw\n7aljZ1nHKJQK4/ZT3tuzW+Au/vfMoLKOUaTuf33G8TavlHWMIrU8/H2F2dZ/b9m7rGMUqf3xr1nr\nPb6sYxRpcvD77PAfWdYxCjX40icA5X577/7XZ3wRMKysYxSp7/ltZR1BlDLpcAkhhBBCCCFKzGCQ\n20EUh7SSEEIIIYQQQpiIdLiEEEIIIYQQwkRkSKEQQgghhBCixPRyl8JikTNcQgghhBBCCGEi0uES\nQgghhBBCCBORIYVCCCGEEEKIEjPoZUhhccgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQggh\nRIkZ5C6FxSJnuIQQQgghhBDCRKTDJYQQQgghhBAmIh0uIYQQQgghhDARuYZLCCGEEEIIUWJyDVfx\nyBkuIYQQQgghhDAROcNVStxaNcR3Qj+UZmqSrt/lwuKP0KakFbtObW1Jg/mjsalRCRQKQn/6k5uf\n/mB8T+tnCHh7LGnh0dnTOT5qEbrU9BLndG3ViNrj+6E005AUfIeLSz5El0/Oouos3JxpsWUxRwfO\nICshCQCNnTV1pw7HpmZllOZm3Nz6Hff2/lnijI9ze64hfhP6otSoSQy+y7lFm/Nv20LqXjzwAemR\ncdm1wTt+JGzvsafPZsLl7tzYjzpvDUCpVqHLyCTone0kBN14qryHA9PY8FkCmVkGfKpreHuCEzZW\nOcddfvgjhR3fJ2U/Tk7VExmj45ePK6FWwdIP47h6KwtLCwXd21vTv5vtU+V5XEVrz+IwGAzMmfU9\n3j6ujBj5rMnn91BFbUv35xpS941XUWk0JFy/w7lFH+ebu7C6Gn06Uv0/7VBZaIi/cptzCzejz9I+\ncSaHFk2oNmYISo2a1Bsh3Fj5LrrUtGLXuP+nC24vvYDS3IyUqze4sfJdDFlarOt4U+ONUagszFGo\nlITt3EP0/oNPnPNR5Xlbd372GWqNG4hCoyblxh2uLH0/T3sWVWPu5kyTj5dxavDU7H2Q83ON8Zs3\ngfRH9pV/jZv3RPvK/NRs589zU7ujMlMTfTWMX2d9RmZy3mnX7d6MJq91xGAwoE3P4o9FXxJx6Q5m\nNha8sGIQTl4eKJQKLu85wemP9pdKtkdVbtOARhN7otRoiL8WyvH5W8lKKbgNnl0ygvjgMC5v+wUA\njY0lLRcNw76mJygV3PzfMYK27H3qXKWxbXf+7f3c+/LtPxG69xi2NSsRMHckaisLDAYDlzd8QdTx\ni0+U07N1AA3e7I3STE3CtVBOvf0J2nzar6A6MztrGs8dgoNvNXRpGdz63xGu7z4AgFvTOjSc0g+F\nSkVGQjLnVu0i/trdJ8opKhY5w1UKzBxsabBgDGemr+dQr6mkhkVQZ0K/EtXVHteH9IhYDvedwdEh\n86jeqyMO9X0AcGzgw83PfuLIwNnZf0+yA9E42OI/byxnZ67jzz6TSQ2LxPf1/iWuq9S1Nc0/ehsL\nN6dc76s/fxzpkbEcGzyL0xOWUnfKUMwfqykpMwdbGi0Yzelp6/m91zRSQiOp+0bfEtVZV/ckKzGF\nQwNmZ/+VRmfLlMtdoVbRaPkbXFy6mT8HzCL4k+9ouGjcU+WNTdCxYEMs70x35n8bPanioea/O+Jz\n1bz8vDVfrvPgy3Ue7FztjouDipmjHHF2ULF6SzxWFkr2vOvBjhXuHPkrncOn8+4sn1RFa8/iuHEj\nihFDd7Bvb5DJ5/WoitqWZg62NHp7FKen/pffek4jNSwSv4K29wLqPNs3watfJ46NW87vvWeiMtdQ\na2CXJ86ktrfDe9abXJu3nHODxpN+P5xqY4YWu8apTUs8er3ElUnzOD9kAkpzMzxf7Q6A7+JZhG7Z\nxYWRE7kybSE1JozAoornE2d9qDxv6xoHO+rOeZ2Ls1Zzst9bpIVFUGv8wBLVeHRpyzObFmPu6pzr\nffb1fbmz6wdOD52W/VdanS1LJxteXDmYH17/iG0vLCThTjTPTftPnjrHmm60ntGDPSPe47NXlnNy\n415efn80AK0mvUzy/Xi2d13Czh4raTCgDZ6NapZKvofMHW14dvFwDk18n+9fnkNSaBSNJvXOt9bO\ny5NOn0yl+otNcj3f8I3/kBoRxw895rO332Jq922HS0Ctp8pVGtu2zYN9+cH+c7L/Qh/syxvMGs6d\n7w9xsP8czi3cTNMVb6BQlfwnrrmjLc0WjeTolPfY230WyWGRBLzVp0R1Daf1R5uawb4eszkwaDEe\nrerj2SYAjY0lrda+wbm1X/BLn3mcWbKdlqvHo9RU7HMfBoOiXP+VF9LhKgUuLRqQcPkmqXfDAQj5\n+gCVurQqUd3ld7Zz5b87ATB3cUBppkabnAqAY4PauDSpx3M7ltJy83ycGtV5spzNG5Bw+Ub2/O9+\nsx/Pzs+VqM7cxRG3tk0JnLQi13s0dtY4N2tA8OavAciIjOX4iHlkJSQ/UdaHXFvWJ/7yTVLuRgBw\n++sDVMmnbQurc2rgg0Gv59kP59Du8+XUHtUDlE+/EZpyuRu0On7rMoHEqyEAWFV2Iyv+6dry+Ll0\n6vmYUb2SBoA+nW3YezgVg8GQb/22bxNxslfS+0UbAK7cyKRbOytUKgUajYLWjS3Yfzz1qTI9qqK1\nZ3Hs3hlIj54N6dylnsnn9aiK2pZuLesTF3Qrezu+9dVvVOmS96xgYXVVuz1H8MX+I+4AACAASURB\nVI69ZCWmgMHA+aVbufvTkSfO5NCsEcl/Xyc99D4AEd/txaVT22LXuL74PPc//w5tUjIYDNx8532i\nf/kDhZmG0G2fk3DmPACZUTFkJSRi5uryxFkfKs/bulOzABKvBJMWalznwvb8gseLrYtdY+biiEub\nZpyfvCzPtO3r++LY2J8mW1fyzAeLcWhYt1QyA1R/ri7hF0KID4kC4Pyuw9R9pWmeOl2mlv2zd5IS\nlQhA+MUQrF3sUGpU/LH4Kw6t2AOAjZs9KjM1GUmld9AKoNKz9YgOuk3SnUgArn3xBzW7Nc+31rff\n8wR/d5SQXwJzPX96+W7OvPMlAJYPtv2spKdb/qWxbTsFPNyXz6bdF8uoPeo/2ftyhUqJxtYaALW1\nBbrMrCfK6dHSn9hLt0i+Y5x/8Jd/UK1ryxLVOfnV4PaPxzDoDei1Ou7/eYGqHZtiU82drKQ0Ik9d\nASDp9n20yWk4B3g/UVZRsVTsbnU5YenuRFpETPbj9MhYNDZWqK0tc50uL6rOoNPTcNF4PDo0I/xg\nIMkh9wDISkgi9OcjRBwMxDHAlyZrJvPngFmkR8aWKKeFuzPpkY/OPwaNjRUqa8vcwwULqcuIjuPc\njLV5pm1VxYOMmDhqDOyGa8uGKM3U3PrsR1Lv3C9RxsdZujuTFp7zOQtu24LrFGoVUScvcXn9LpTm\nZrT47zS0yWnc3L3vKbOZdrkbdDrMnOxo/dkyNA62nJ214anyRkTr8HBWZT92d1aRnGogJc2AjVXu\nDmhcoo7t/0vi8zUe2c/Vr23OTwdTaVjHnKwsA78dT0OtLr2jRxWtPYtj7nzjmZUTJ26ZfF6Pqqht\naenunDePbQHbewF1NtU9MQ+6SYv3pmPh6kDs2asErf/8iTOZubmQEZkzRC0jKhq1jTUqK8vsIW6F\n1VhUrYTG0YG6q99G4+JE0oUgQj7YhiEzi8ifcoaTub38IipLS5KDrj5x1ofK87Zu4e5MxiP7l4yo\nmDztWVhNZnQcl2atznfaWQnJhO87RPShU9g3qEODVTM4NXgKGVEl21fmx9bTkaT7OUPZksLjMbe1\nxMzGItewwsSwWBLDcubXbk5vbvx+AX2WDgCDTk+XNcPw6dyI4F/PEXcz4qmzPcrKw4nUR/aFqRFx\nmNlaobG2yDOs8PSyXQB4Ns/bMTXo9LRa8RrVOzXhzm9/kXg7/Klylca2rVApiTpxiaD1u4378nen\nok1J4+auX7iwYhvPbppNrYFdMHeyI3DWexh0+pLn9HAiNSKn/dIiYjGztUJtbZFrWGFhdTEXb1Lj\npWeJPncdlUZNlY6N0Wt1JIWEo7Yyx71lPSKOB+FUryZ2tSpj6WJf4pyi4qkwZ7j27NnDwIED6d+/\nP59++ilDhgyhT58+jB49mszMTPbs2cNbb73FmDFj6NKlC3v2GI8iXbhwgV69ejFkyBAmTZrEzJkz\nAdixYwd9+/alX79+bN++/enCKfNvxjwbezHqzs1/n/0dx2BmZ4PPaz0BODN9PREHjUeg4s5fJe7C\ndVya1y9xTEUB8+exnMWty/UetQqryu7oktM4OWoB5+e8S51JQ7Cr83TDJRSK/Hfyj7dtYXV3vv2D\nS6u3o8/Sok1O5cbOn/F4vkm+9SVi4uUOkBmbyG9dJ3Bs+AICFozBuppHfpMqFn3+B7fJb9TFN7+m\n0K6ZJZXdc47JTB7ugEIB/SaHM2llNC0aWlCqIyEqWHuWaxW1LQs485w3d8F1CrUK1+b+BM7YwKGB\n89DY2VB3Qt4hQcWlUBTQRnp9sWoUajX2TQK4tmAlF0dNRm1rS7VRg3PVVRrYi6oj+vP3zMXoMzOf\nOOtD5XpbL2ide6Q9i1WTj0uzVhN96BQACRf+JuHiVZyaBTxZzscoCljn9AXsF9WWZry04TUcqruy\nf9bOXK/tnbKND5pOx8LBmhZvdC2VfEXlLKrt8nN05sd8+dxbmNtbU3/cK08XrBS27ZBvD3Jx9Y6c\nfflne/F8vglKMw1NVkzg7Nsf8muXNzny2mIC5ozAwr3klzQU+FtCX8zfHHo959Z8DgYDL36xkFbr\n3iDieBD6LB3alHSOTPwvfiNf5sUvF1Hj5VZEnr6S3RmvqPQGZbn+Ky8q1BkuOzs7Nm7cyPvvv8+2\nbdtQKpWMHDmSixeNF0YmJyfzySefcPv2bcaOHUvPnj1ZsGABq1atwsfHh3Xr1hEREUFwcDA///wz\nu3YZj+4MHz6c5557Di8vr2JnqT2mN25tngFAY21F4o072a9ZuDqRmZCMLj0j13vSw6Nx8K+Vb51L\niwYkBd8hIzoeXVoG9345hkf7ZqhtrKjepxM3tv4vZ0IKMGiLdwG49+g+uLVpDIDa2pKk4JyLM80L\nyJkWHo19Pe8i6x6VEW088hf60yEAUkMjiD9/Fft63iT+XbKj+75je+HxSObERzIX1LZp4TE4+Hvn\nW1el63MkXgvJmY5CgUH7ZF9w/9hyt7bEuWm97I524tXbJF4Pwda7Kil3nuxIo6eLikvXcrJFxuiw\ns1FiaZH3C+nXo6lMH+mQ67mUVD0Th9hjb2s8cr51TyJVPZ/uK6Qit2d5U1Hbss7YXni0NebOs727\nORa4vTs+mvuRuvSoOML/CMw+ah7681F8R+W91qa4MiKisPGrnf3YzMUZbWIS+kcyFVaTFR1L7J8n\nss/eRP16kCrDjNekKDRqvGdNxLJGVS6Nm05GeOQT53xUedzWH0oPj8LOzyf7sbmrE1mPtWdxah6n\ntrGicq/OhHy6J+dJhQJ9MfeV+Xn2rZfw6mA8uGlmY0n0tbDs12zcHUiPT0GblreDbOvpyH8+GkfM\njXC+GrgebYZxeFv11nWJvnqPlMgEslIz+PuHQHw6N3rifA8FvN6dKs83BEBjbUn89dDs16zcHMlI\nyD9nQTyfrUf89TDSouLRpmVw6+dTVO/0TIlzlfa2XaVbKxKv3SHx+sN9ORi0OuxqVUFlYU7En+cA\niLt4g6QbYTj61+J+RNFnN/3H96BSW+Ny0NhYkPBI+1m6OZKRkIzusfZLDY/Bub5XvnXmHjacX/cl\nmYkpxnYY3tU49FChQJuawR+v5VyS0eXbZSTfLd2znKJ8Kj9dv2KoWbMmSqUSjUbD5MmTmT17NuHh\n4WgffKHWqWO8tsnT05PMB0cJIyMj8fExfnE3bmz8EX/t2jXu3bvHsGHDGDZsGPHx8YSEhJQoy7UP\nv86+gcXR4fNx9PfBqqrxCG+1Xh2IOHQmz3uiTlwssK5Sp+b4jO4FgFKjxrNTC2ICg9CmplGjTyc8\n2hvHitv5VsehXi0ij10oVs7gj77i2KCZHBs0kxMj5uHg750z/54diTwcmOc9MScvFKvuUWn3oki4\ncpPK3doAYOZkj0P92iRcLvmdy65u+ib75hZ/DluAU31vrKu6A1CjdwfC82nbyBMXC6yzrVUF33G9\nQalAaa6h5qudCNt/osS54J9b7ga9noD5Y3AMMP6Is/GqjHX1SsRfevI7wbVsaMGFa5mE3DPu/L/+\nJZl2zSzy1CUm67lzX0tAHfNcz3/1SzLv7zZelxATr2PP/hS6tLZ64jxQsduzvKmobfn3pm+yL4A/\nPPRtHB/djnt1IPzQX3neE3n8YoF19w6colKn5ijNjdcvebRrTNzlm0+UDSD+9Fls/Hyzb2bh0b0L\nsUdOFrsm5uBRnNu1QmlmBoBT6+ak/B0MQO1FM1BZW3JpfOl1tqB8busPxZ46j72/D5ZVjOtcpR4v\nEH34dIlrHqdNTadKrxdxbWe8Xsmmdk3s6noTe+LcE2c99t8f+eyV5Xz2ynJ2916FZ8OaOFR3BSBg\nQGuCD+TdD1vYW/Hqrklc//UcP0/ckt3ZAvDt2piWD85oqczU+HZ9hrvHn34I6fmN/+On3gv5qfdC\n9g1cikuAF7bV3ACo3bctd38/W6Lp1ejclAbjXgaM236NF5sQfvLvEucq7W3brlYV6oztlb0v9+r7\nAmG/niD5bgQaG0scGxh/61lVccOmZiUSrhbvd92l97/l177z+bXvfA4MXoxzg1rYVDPOv1af57l3\nMG/7hR+/VGBdrT7P4/96DwDMnezw6tmWO3tPgMFA642TcfSrAUCVTk3Ra3Vyl8L/JyrUGS6lUsnf\nf//NgQMH+Oqrr0hLS6Nnz57ZFwLnd4rXw8OD4OBgvL29OX/eeHGyl5cX3t7efPzxxygUCrZt24av\nr+8T58qMS+T8og9pvPItlBo1KaERnF/wAQD2dWtSf+4ojgycXWjd5XU7qT97JG2+WInBYCDi4Blu\n7d4HBgOBU9ZQb9owao/pjV6r4+ysDdm3wS1pzouLN9FwxSSUajWpYRFcfHsjAHZ1vfCfM5pjg2YW\nWleYs9PX4Dd9BFV7dkShUHLjk29IvPLkP3QeZj678EOarHrYZpGcnZ/Ttg3njeLQgNmF1l3bvIf6\n04fy/BcrUahV3Dtwkjvf/vFUuR5mM+lyn7oGv8mDUahV6LO0nJv7Xomv23uUk4OKhW84MW11DFlZ\nBqp4qFnylhNBwZks3BjLl+uMP27u3M/C1VGF5rFrNkb2smPO+lh6vXkfAzC2rx3+Pub5zOnJVLT2\nLM8qaltmxiVy9u2PaLr6zezt+K95mwBwqFuThvNf42D/OYXW3frqAGb2NrTbuQSFUkn837c5v3TX\nE2fSxidwY8V/qb1oJgqNmoywcIKXrsPa15ta0ydwYeTEAmsAwr/bi9rOlvofr0WhVJJy7SY3N27E\n1r8uTq2ak3YnFP+NK7PnF7LpUxJOl+wH8uPK87aeFZfIlSUb8V82FaVGTVpYBJcXbcC2Ti3qzBrL\n6aHTCqwplF7PhemrqD15BDVf64tBp+PSvLVPtK/MT1psMr/O2MHL741CqVGTcCeKfdM+BcDdvxqd\nlg3ks1eW02BAG2wrOeHdKQDvTjnDGb8e8i6Hln1Dh8X9GfLzXDAYCN5/nr+2Pf2+6FHpsUkcm7uV\nNuvGo9KoSLobxdFZnwDgVK86LRcO46feCwudRuDqL2gxfwgvf7sIg8HA3d/PcuWzA0+VqzS27asf\nfUv9GUNp/+WKB/vyU4R8exCAU1PWU3/aYFRmGvRaHeeXbiE1tOQHMTJikzg1/xNavfM6So2a5NBI\nTs7ZDICjXw2aLhjBr33nF1p35ZOfaL50NJ2/WQIKBUGbviM2yDjS58TMTTRdMNy4XkfFc2Tiu0/V\nruWBQV9+7gRYnikMBd22qJzZs2cPN2/e5PXXX2fMmDHZZ7DMzMzo3bs3Wq2WmzdvMnXqVDIyMujS\npQu///47Fy5cYMmSJVhZWaHRaHB3d2fJkiV8/PHHHDhwgMzMTBo0aMC8efNQqVSFZvipyYB/4qM+\nsW6Bu9jXLO+tn8ubzqc+5/vGA4suLGOvnNlZ7pc5GJd72uWOZR2jSJZ+BypMe+rYWXRhGVJh3H7K\ne3t2C9zF/54ZVNYxitT9r8843uYpr1H5B7Q8/H2F2dZ/b5n/rcjLk/bHv2at9/iyjlGkycHvs8N/\nZFnHKNTgS8ZOXXnf3rv/9RlfBAwr6xhF6nt+W1lHKLagLh3KOkKh6u39rawjABXoDFfPnjkXaxd1\nkwtzc3N+//13AC5evMimTZtwcnJi3bp1aDTGYSavvfYar732mukCCyGEEEIIIf7fqzAdrifl7OzM\niBEjsLKywtbWlhUrVhT9JiGEEEIIIUShytN/Llye/es7XJ07d6Zz585lHUMIIYQQQgjx/1CFukuh\nEEIIIYQQQlQk//ozXEIIIYQQQojSJ0MKi0fOcAkhhBBCCCGEiUiHSwghhBBCCCFMRDpcQgghhBBC\nCGEicg2XEEIIIYQQosT0cg1XscgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQgghRInJbeGL\nR85wCSGEEEIIIYSJSIdLCCGEEEIIIUxEhhQKIYQQQgghSkyGFBaPnOESQgghhBBCCBNRGAwGQ1mH\nEEIIIYQQQlQsZzt2LusIhWp0YF9ZRwBkSGGJ6NhZ1hEKpWJguc8IkrO0qRjI3qb9yzpGkbqc3l1h\n2vOnJgPKOkahugXuAirGd9JvLfqUdYwidTjxFfubv1rWMYrU6eSXFWZbryjL/VCrnmUdo0htj+7h\nTt9mZR2jUNW+OAVA5hrrMk5SOLMpKRVm3awo5D8+Lh4ZUiiEEEIIIYQQJiIdLiGEEEIIIYQwERlS\nKIQQQgghhCgxuUth8cgZLiGEEEIIIYQwEelwCSGEEEIIIYSJSIdLCCGEEEIIIUxEruESQgghhBBC\nlJhcw1U8coZLCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYnoZUlgscoZLCCGEEEIIIUxE\nOlxCCCGEEEIIYSIypFAIIYQQQghRYnKXwuKRM1xCCCGEEEIIYSLS4RJCCCGEEEIIE5EhhWXEYDAw\nZ9b3ePu4MmLks2Udp0CSs3SVVU7XVo2o/Xo/lGZqkq7f4dKSj9CmpBW7Tmmuod70Edj7eYFSScKl\nYIJWbUGfkYVTYz/qTByEQqUiKyGJK2u3k3T9jsk/U1kuc7dWDfGd8LCd7nJhcf7tWVCd2tqSBvNH\nY1OjEigUhP70Jzc//QEA58Z+1HlrAEq1Cl1GJkHvbCch6IbJP5Mp29P52WeoNX4ASo2G5OAQriz9\nAF1qWvFqlEpqvzUUp+YBKFQq7uz6nrBv9wNgWdUDvznj0djbok1N5/KiDaSG3APAa0w/3Ds+iy4t\ng4SLV7n+30/RZ2Zh7uZM3TnjMHOyR6FUErLz++wMLq0a4T1uAEozY4agpZvQ5bNcC6xTKvCdOBTn\nB1lDdv5A6IOsVlU98Js7Do29LbrUdC4tfC87a60xffHoZMwaf+Eq1/67HX1mFigVeI3ojWvrxqgs\nLYrV1uV1WzfVOvCQ50vP49quGRemrsx+zqFhXbwnDEJpboY2OZXLizeSfi+yWHkBnFo2pubYgSjN\nNKQEh3B1+cY8mQuqUZqZ4T1lFLZ1vVEoFSQGXSd4zWb0mZlY1ahC7enjUFlZYDAYuPXBZ8SdOlfs\nXIWxaNQKh/7jUWjMyLoTTMymJRjSUnLVWD3XGbtXBoPBgCEjnbhta8i8eQWFpTXOY+eirlwDhUJB\n8qGfSfp+e6nkepyi5ouoWi9CoTLDEHUJ7a/jITMp/1rvl1B33kzWe54PPqQjqo7rUbo2wJCVij5o\nB/qzm0oll6nWU8dn6uH9xmAUahX6jEyurd1K4uXgUslc1mRIYfH8o2e4Bg8ezI0buX84nDx5kkmT\nJpX6vPbs2cNvv/1W6tMtDTduRDFi6A727Q0q6yiFkpylq6xymjnYUn/+GM7OWMefvaeQFhZJ7Qn9\nS1RXa3gPFColRwbM5Ej/6SjNzag1rDtqa0ueWTWJq+/u5OiAGQSt2ELD5W+h1Jj2WE5ZLnMzB1sa\nLBjDmenrOdRrKqlhEdSZ0K9EdbXH9SE9IpbDfWdwdMg8qvfqiEN9HxRqFY2Wv8HFpZv5c8Asgj/5\njoaLxpn8M5myPTUOdvjNHc/FWe9wou9bpN2LwPv1gcWuqdyjI5ZVPTg5cDKnR8ykat9u2Pl5A1Dv\n7bcI3fMrJ/pP4tbHX1B/+VQAPLu1w6VVY04Pn8mpIdPIiI7Da4yx7X2nvUbMsb84NXgaZ99YhO+U\nEQ8y2FJv7nguzFrDsVcnkhoWic/4Afl8noLrqvTohFVVD44PmMLJ4bOo1q8rdn61APBf+Cah3/zK\n8X6TubH5SwJWTAGg0kvtcH2uMSeHzeLE4OlkxMRTa6wxa7W+XXF8xo/To+dxfOCDz9apZYFtXV63\ndVOuA2o7G3ynj8J3yggU5PzwM3d1osHKaVxd/TGnBk8j6o+T1Jk2qsisj+bxnTOBy3NWc7r/G6Td\ni6DmuMHFrqk2tBcKlYozQycTOGQyKnMzqg3pCYDPlNGE//QbZ4ZN4dqyjfgtngKqp/85prR1wHnc\nPKLXzuT+pD5oI8JwGPB6rhq1ZzUcB71J5LI3CZ8xiIQ9W3CZYuykOvQdizY2kvCp/QmfPQzbTj0x\n86n/1LnysHRB3flDtN8PIGtrIwwJt1G1XpR/rUMt1G2WgSKnfVTtVkJmClnbGqPd1Q5ljRdQeHV+\n6limWk8VajX+SyZxZfkmTg2exq2t3+C34I2nzisqln/tkMKePXvSoUOHso6Rr907A+nRsyGdu9Qr\n6yiFkpylq6xyurRoQMLlm6TeDQfgzjf7qdS5VYnq4s5eIXjLt2AwgN5A4tXbWHi4YlXNk6zkNGJO\nG3+op4TcQ5uShkN9H5N+prJc5o+3U8jXB6jUpej2fLTu8jvbufLfnQCYuzigNFOjTU7FoNXxW5cJ\nJF4NAcCqshtZ8ckm/0ymbE+n5g1IvHKDtAftELbnVzxebF3sGte2zbn/4x8YdHq0SSlEHDiKR+fW\nmLs6YV2jEhH7jwIQc/wcKktzbH1rYlunFlGHT6FNTgUg6uBJ3Nq3AODC9FXc/WofAObuLhi0egCc\nmweQcOVG9vIK3fMrHp1z5yyqzq1tM8J+OJidNXz/MTw7t8Hc1RHrGpUI338sJ6vFw6xeRB46nZ01\n8o+TuD/fHIBKXdtya+se9BlZGLK0xveevlRgW5fXbd1U6wCAe4eWZMbEcX3DjlzTc2vfgujjZ0m6\ness4ve/2c2391iKzPuTYrCFJV4JJC70PwL1v9+H+Quti1yScv8ydT7960I56kq/dwtzDFQCFSona\n1gYAlZWl8WxmKbAIaE7mjctow+8CkLT/G6yfy90RMWiziPlwKfr4GAAyb15B5eAMKjVx29YQv+Nd\nYy4HFxQaM/Sppf/9o6zeAUP4GYg3HoDXnd+Msm7fvIVqS9RdP0F7aGaupxXujdBf3g0GPeiz0N/a\nh9Knx1PnMtV6atBqOfLyGJKv3QbAsrI7WQn5n80T/14mOwydlZXFrFmzCA0NRafTMXz4cAA2btxI\ndHQ0aWlprF27Ntd7vvrqK3bv3o1er6d9+/a8+eab+U57z549HDhwgJSUFOLi4nj99dd58cUXeeml\nl6hRowYajQYvLy9cXFzo168fixcv5sKFC2RlZfHGG2/QsWNH1qxZQ2BgIHq9nmHDhtGlSxdTNUUe\nc+cb53XixK1/bJ5PQnKWrrLKaeHuTHpETPbj9MhYNDZWqK0tcw01Kqwu+uTFnDoPF2r078KlZZtJ\nvXMftZUFLs3rE33yIvZ+Xth6VcHcxdGkn6ksl7mluxNpxWjPouoMOj0NF43Ho0Mzwg8GkvxgeJlB\np8PMyY7Wny1D42DL2VkbTP6ZTNmeFm4upEdEZz/OiIxBbWOFysoye6hOYTUWbrnXy4zIGGy8q2Pu\n5kxGVJzxB232a7GYuzmTGHSdqv27EfrVPrISk/Ho2hZz5wfrpMEABgPPvP829g3qcPfzH6k+qDsW\n7s5kPDYfjY0VKmvLXMMKC6uzcHcmI/LxrNWwcHfJkzU9KhYLNycSg65TrV837j7I6tm1bfb2Y1XN\nE+uaVagx9D+YOdgBkJlY8A/g8rqtm2odALKHbHl2a5drnlbVKqFPy8B/8USsqlUiPSKaa+u3FZn1\nIXM3ZzIiH8kTFYPaxjpX5sJq4k6dz5mWuyuV+77EtZUfAHB9zWYC3l1Ilb4vo3G048qCtaDTFztb\nQdTO7mhjcoZM6mIiUVrZoLC0zh5WqIu6jy7qfnaN45CJpAUeBp2xQ49eh/OEhVg1b0/q6YNo74U8\nda487KpgSArNeZwUhsLcHsxscw0rVHXagP7CFgxRuQ8yGO6fRunXH92946AyR+nzH9A/fafVlOup\n8XvdnqbbVmHmYMvFueueOm95If/xcfGY7AzXF198gZOTE59//jlbt25l/fr1xMXF0bZtW7Zv306b\nNm3Yt29fdn1MTAybN29m165dfPvtt2RmZpKSklLg9NPS0ti6dStbtmxhxYoVaLVaUlNTGT9+POvW\n5azIBw4cIC4ujq+//prt27dz6dIlDh06RGhoKLt372b79u1s2rSJxMREUzWFEGVLkf+XoeHxHXwx\n6uzq1KTF5gWEfPkLUUfOok1J48yUd/Aa/h9a7VxBpa5tiDkdhP7B0fh/JWX+X5t52rMYdefmv8/+\njmMws7PB57We2c9nxibyW9cJHBu+gIAFY7Cu5vH0ucuKsoD1Sq8vVo0in9cMuvyff/ha+L7DRP52\nnEYbF9DkoyWk3g7Ls07+Nf5tjrw0GqdmAcYnFMVcroXV5ZdJry9429Lrub/3TyJ+P0HjjfNpunkx\nqSE5WRVqFfb+PpydtJzTo+cBUKNvIUOnyuu2bqJ1oDAKtQqXNk258dHnnBo6ndjAizRYMa3orA/f\nX9D2+0jm4tTY+HrR8P0l3PtmL7HHzqAw01B30RT+XrqBEz1Gce71efhMG4u5m3OxsxUSOv/n9bq8\npeYWuExajtqjCjEfLs31Wsx7Cwh97QWUNvbY9x759Lnyzr3InMqAUaDXor+U9xoy3aFZgAH14OOo\nu3+OPuR30GU+fSwTr6eZsQkcfWUMgaPm4Dd3PJZVPZ8ur6hQTHaG68aNGzz7rPHCaxsbG2rVqsXR\no0fx9/cHwMXFhejonKMEd+/excfHBwsL44XBU6dOLXT6TZs2RalU4uLigp2dHbGxsQDUrFkzV92t\nW7do2LAhAPb29kycOJHNmzcTFBTE4MHGsdZarZawsDDs7OxK4ZMLUfZ8xvTGrU1jANTWliQF381+\nzdzVicyEZHTpGbnekx4Rg4O/d4F1np1a4jdjBJdXb+X+L8ahUSgU6NLSOTV2cfb7Wn/5Dqmh4ab6\naGWi9pjeuLV5BgCNtRWJN3JuFGBRUHuGR+PgXyvfOpcWDUgKvkNGdDy6tAzu/XIMj/bNUFtb4ty0\nHhEHAwFIvHqbxOsh2HpXJeVOxWzTjIho7OvlDDszd3UiKyEZ/SPtVVhNekR0rrMo5q5OZETGkB4e\njZmzQ655PXxNbWdDxK9HCNn+HQB29bxJe7BOuj3fgpiT59ClplO1TxfMTBTQ/wAAIABJREFUnO0B\nqNy9PcmPLNf8cgKkR0Rj/9h2kp31sUzmrk6kR8aSHpE3q8WD19R21oT/coTbn+Zkfbj9ZETFEbH/\nKIYsLboHHRuH+j6we2/2dCrCtm6qdaDQeUbFkXDxavbQr3vf/47v5BEozc3QZxT94zw9PApbv0fy\nuDiTlZiUK3NRNa4dWuEzdTTBaz8mcv+fAFh7VUNlYU7ssTMAJAVdI/XWXWz9apMRebzIXIXRRodj\n5p0zLFjl5IouOQFDRnquOpWzO64z1pIVdovIheMxZBnzWgS0IOtOMLq4aAwZaaQe/QWr5u2fKlO+\nkkJReDbNeWxTCUNaLGhTs59S1hsEGivUg4+jUGmMwwsHH0e7pwco1egOz4X0OGNt08kY4m8+dSxT\nracqayucmvgTdeiU8eNfvUVycAg23tVIu5tztlH8u5nsDFetWrUIDDT+aEhOTubatWtUqVKlwPpq\n1apx8+ZNMjONX4RvvvkmERERBdYHBRnHkUdHR5OcnIyzs/HokPKxI05eXl5cvGgcIpGUlMTIkSPx\n8vKiefPm7Nixg08//ZQuXbpQtWrVJ/+wQpQz1z/8mqMDZ3F04CyOD5+Pg78PVlWNZ0mq9epI5OHA\nPO+JPnGhwDqP9s2oO3Uop99YnvMDDMBgoMn6GdjV9TLWdWiOXqv7R+5S+E+69uHXHBk4myMDZ3N0\n+Hwcc7VTByIOncnznqgTFwusq9SpOT6je/F/7N13dBRl28fx77b0RnogFJNACqEKoShFmiI2QHoH\nQZpKb6FXBRSxF8SCKEXQR/RVARuIhAQEQi+hJkI6Cekhu+8fC0tC2i5ks8nzXJ9zOIfsXjPz23tm\nd+beuWcWQKlR49O1NckHT6DTamky/0VqNGkAgINfLezr1uTGcfPfpdBckg8cxTm0Pra326FWz24k\n7o0yuiZxTxQ+Tz+mv+7FwQ6vro+QuCeK3MQUsuPi8eqi/2LPtVUTdFotGTFXcAryo9Fr01GoVChU\nSuoN7cn1X/QHvLV6dcO3j34I5eWvdpCXdAOAyFHhOBdaX769upJwT87CWUuqS9xzkFpPdyqUtS2J\nf0aSm3A7a1d9Vrc7Wc9fwSnYnyavTTNkfWhYT67/8hcACb9F4P1Ee1AoUKhUAKSdLLotVIf3urm2\ngbIk/hmJS+NAbHw8AfDs2IqMmCtGdbYAUiOP4tSwAba++rMQNXt2I/mezGXVuHdsQ8DkF4ievNjQ\n2QLIjr2G2t4Op9BAAGxqeWFXz5eMcw/eYciJPoB1/VDU3vrjGYeuvfTDBQtR2jvhtfBDsiJ/J3nt\nXENnC8CudRecnn9B/4dag12bLuQcL779PCjtpV9R+ISBi/4LKVWTF9DG/Fik5tZXHbj1eUtubWhD\n/vZecCubWxvaQOZ1VE1eQNV27u3QnqgaDUd7avMD5zLbdqrVEhw+DufG+nVu/5AvdnVrkX783ANn\nrgp0OkWV/ldVmO0MV9++fZk3bx4DBgwgNzeXiRMnsn379lLrXV1dGT16NIMHD0ahUPDYY4/h5eVV\nan1SUhLDhg3j5s2bLFiwANXtndG9OnfuzP79+xkwYAAFBQVMmDCB9u3bExkZycCBA8nKyqJLly44\nODg88GsWoirKS03n2OIPaPbqJJQaNVmx8UQvfA8Ap2A/Gs0dzb5Bs8usazChPwqFgkZz797lK/Xo\nWU6u/JSj896hUfhoFBo1uUmp/DP9dYu8zsqSl5rO0cUf8vBr+ju0ZcbGc3SB/toM5+CHaDR3NH8N\nmlNm3ck1G2k0ZxTtN7+GTqcj/o9DXPz6Z9DpODjtdUKm3L59cP4tjsx9h5yEFEu+5AeSn5rOySXv\n0Wj5VJQaNdmx8ZxY/A6OQX4EzxlH5NDppdaA/qJ021rehG1YjVKjJu7bXdw4fBKA4/PWEDx7LPVG\n9Eabl8/x8DdApyMlMhqX5g1ptXE1KJQk7onkyib9Ad3JJe8SNGsMXl+uBuDf/+wmMHDU7Qzv03jF\nFBRqNdlx8RxfpM/gFORHSPhYIobMKLMudvtObH29aP3lKpQaNbHf7ib18CkAjs19k+DZL+I3ohfa\nvHyi56zRZz0QTVKzEFpvXIVCqSThzyguf/0DAOc/3ET9CYNp8/XrKG7fxe5SobNb96qq73VzbgOl\nyTh3idMrP6bxa9NRqFXcupnJsfA3ypymSOYbaZxZ/g4hS6ej0KjJibvO6SVv4RDkT+Cs8RwaPrXU\nGoCHxurvXBc4a7xhnmnRpzn/xsecmPMa/pNGobTSoLtVwNmVH5ATV/oXzMbSpqeS/P4S3Ke8ikKt\n5tb1OJLfXYiVXzCuL4ZzfeZgHLr1RuXuhV3Ljti17GiYNmHJBFI3vInr6Fl4r/4adDqyo/7k5k+b\nHjhXMdmJ3PplLOqnN6JQadDduMitn0ej8GqGqtt7+o5VGQoOrEb95DrUw/QdnYL9y9HF//PAscy5\nnUbPXEWDScNRqNVo8/M5MX8tuYnV93NdmE6h0xW6irea2L59OxcuXCh32GFFK2BjpS7PVCoGVfmM\nIDkrmopB/NSy+K2fq5ruUV9Xm/b8sUXx24FXJT0OfgVUj8+kX1v3sXSMcnWO2MquVn0tHaNcXQ9s\nqTbv9eqy3v98pFf5hRbWYd92rvQLs3SMMtXZrB8ul/e6vYWTlM1qama12Tari78efc7SEcr06F/f\nWToCUMV/+HjhwoXFfrcLqNQ7CgohhBBCCCHE/aryHS4hhBBCCCFE1SO3hTfOf+0PHwshhBBCCCGE\npUmHSwghhBBCCCHMpEoPKRRCCCGEEEJUTbrSfshaFCFnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMK\nhRBCCCGEECbTyV0KjSJnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTHz42jpzhEkII\nIYQQQggzkQ6XEEIIIYQQQpiJDCkUQgghhBBCmKy636VQq9WycOFCzpw5g5WVFUuXLqVu3bqG53/7\n7Tfeffdd1Go1vXv3pm/fvve1HDnDJYQQQgghhPifs3v3bvLy8ti8eTNTp07l1VdfNTyXn5/PihUr\nWL9+PRs2bGDz5s0kJSXd13KkwyWEEEIIIYT4n3Po0CHatWsHQNOmTTl+/LjhuZiYGOrUqYOzszNW\nVlY8/PDDREVF3ddyZEihCVQMsnSEclWHjCA5K1r3qK8tHcEo1aU9exz8ytIRjFId2rNzxFZLRzBK\n1wNbLB3BKNXlvV5d1nuHfdstHcEodTZHWjqCUaymZlo6Qrmqy7YpKkdGRgYODg6Gv1UqFbdu3UKt\nVpORkYGjo6PhOXt7ezIyMu5rOdLhMsFvbZ63dIQyddr/Dbta3d/Y0srU9cAWfm3dx9IxytU5Yis7\nw/pZOka5ukVu5uew/paOUa4nIjdVm/X+n+aDLR2jTM/+8yVAlW/PzhFbKWCjpWOUS8UgFAqNpWOU\nS6fLrzbvddkXVZzOEVurxfEHVI/jpPTkly0do1xObm9ZOoLRqvtt4R0cHMjMvPtFgVarRa1Wl/hc\nZmZmkQ6YKWRIoRBCCCGEEOJ/TvPmzdmzZw8AR44coUGDBobn/P39uXz5Mjdu3CAvL4+DBw/SrFmz\n+1qOnOESQgghhBBC/M/p2rUr+/bto3///uh0OpYvX86OHTvIysqiX79+zJo1i1GjRqHT6ejduzde\nXl73tRzpcAkhhBBCCCFMVt1vC69UKlm8eHGRx/z9/Q3/79SpE506dXrw5TzwHIQQQgghhBBClEg6\nXEIIIYQQQghhJjKkUAghhBBCCGEyLdV7SGFlkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk1X3uxRWFjnDJYQQQgghhBBmIh0uIYQQQgghhDATGVIohBBCCCGEMJlWhhQaRc5wCSGEEEII\nIYSZSIdLCCGEEEIIIcxEOlxCCCGEEEIIYSZyDVcFcWvbHP9xg1Bo1GTGXOHUsvcoyMo2qcba040W\n65YTOWQa+Wk39dM8+jAh8yaScz3JUPfPuHkUZOUYnc39kWYEjBuI0kpDxvnLnFj2AQWZ2cbXKRUE\nThqGW6smKFQqLm/cQey3uwCwq+1NyNxxaJwdKcjK4fiid8i6/C8ALk2Dqf/SIFTWVtzKyOLE4vfI\n/jeh9PYbPxClRr/sU8veL7n9SqpRKmnwyjBcb+e78tX3xN3Od4fPU4/h0TGM6GmvGR5rtGIqDgH1\nKMjWt2XqoeOcW/u50e16p83qjx+A0krDzfNXOLG09LYtq87a041W65eyf9AMw7p3CvYncMowVLbW\nKJRKLn3xH679/JdJ+e7weKQZDcb3Nyz/2NIPS8xZWp3SWkPI9JE4h/iDUkHa8fOcXLUebW6+Ydpa\nT3fEq2NL/pm6qtQc5lrPtrW9CQkfj8bZkVtZOZxc/LZhO7yjdt8nqflsZw4MmgqAyt6Odv/3cZG6\nc29+ZnLbej3alOCX+qLSaEg7d4Uji9dxq4S2LauuXp8u1H2uIyobDTdOXeLIoo/R5t8qd9mWaE+/\nF/vj1aUtBdm5pB07w7m1n6PNy8fa043g8HFYuTqjUCq5vPF7k9vSGDqdjvDZ3xNQ34ORo9qaZRkV\n6dNPP+H48eO8/vqaSlleVXmv38uc+yG1kz1BU0di/5AvKmsrLn62nWs/7dVn7dmFOv2eRHergOxr\nCZxc+oHhM/ZeltgPASg0apq8Ppt/v91Fwu8RRrdpkUxmOP5wDPan/qQRqGysUaiUXN7wHfG/7DU5\nX2Vmrmh/7Uvk3Q/Okpevpb6/I3PnhOJgX/TQ+fc/4/lo3XkUSgVOjmrmzgrF19eOtPQ8Xl11irPn\n0rG1UfF0j1r061PXLDktSW4Lb5z/iTNcffv2JTY2lu3bt/Prr78CMGXKFHr37s3Zs2cZMmQI/fv3\nJy0t7b7mr3FxIjh8Asdmr+JA/1fIjovHf/wgk2q8u3eg+QdLsPZwKzKdc6NArny1g6hh0w3/TOls\naVwcaTh3PNGzX+fvvpPIikug/viBJtX59uyKXW1v9g+cyoERs6nT/0mcQvwBCF30MrHbdrK//xRi\nPt5Ck1f1B7PWnq40WTmN0ys/IWLwDOJ/P0DQjBdKbb+QueM5Nns1Ef1eIfvfeAImFG+/0mpq9eyC\nbW1vDgyaQtTIWdTu1wOnkAAA1E4OBM4YTeDUkSgo+qHgHNqAQ+PmEzl0OpFDp5vc2dK4OBI6bxxH\nZ73Bvj6TyY6Lp8GEktu2rDqfJ9sT9tFCbDxdi0zX5LUpxHy0lYjBM/ln0goCJw3Frra3SRnvLn8s\nh2etYW+fKWTFJRA4YYBJdf4jeqJQq9g3aCb7Bs5AZW2F37Dn9NM52RMyaxTB04aDouwPXnOt54YL\nXyF2+04iBkzm4rrNNFoxrch8nRsHUnfIs0UfC63PjSOnDOs/cuh0Uv85YXzDAlYujjRbOJqoaWv5\ntdd0suISCHmpn0l1Pp1a4Ne/K3+PW8Fvz89CZa3Bf1B3o5Zf2e3p06Mj7o88TNSIWUQOnU5uUip+\nL/YHIHD6CyT//Q+RQ6Zz+KXFBE4daVJbGiMmJpGRwzbw80+mrSdLCAoK4tdfd9K37/OVtsyq9F6/\nd3lm3Q/Nm0BOQgoHhs7k0EtLCJwyAmtPV2x8PAgY25+DY+YTMXg6OdcS8R/Tt5SMltkPOYU2oOW6\n5bg0DjK6Pe/NZK7jj0bLp3Fx3Waihk3n6ORl1H95OLa+pu+DKjNzRUpNzWPxsuO8trwp2za1o1ZN\nW95572yRmpzcAuYvOsbKFU356vO2tH/Uk9VrTgGwZu0Z7GxVbNn4KJ9+3Jq/I5LYu6/kL53Ff7//\niQ7XHb169aJz584A/P3332zbtg0HBwcyMzPZtGkTzs7O9zVf17AmpJ86T3bsdQDitv+C9+PtjK6x\ncq+Be/swjk5ZXmzezo0CqfFwKC0+fY3m7y/BpWmwSdncWjUh7VQMWVf1y43dvhPvJ9qZVOfZIYy4\nHX+gK9By62Ym13f9jc8T7bH2qIF9vZpc3/U3AMn7j6CyscYx8CG8OrUm+e8j3DxzUf96v93NmTWf\nldx+rRqTfiqG7Kt32mZn8fYro8ajQyuu/fC7IV/87n2G7F6d25CXnMq5tzcUmZ+NjycqO1uCZo4h\n7MvVBM8dj9rJwfS2PXm3za5u24X3E4+aVGftXgPPDi35Z/KrRaZRWmm4sO4bUqKOAZCbkELejZtY\ne5q+c3Fv1bjY8n1KyFlWXcrh08Ss/xZ0OtDqSD97CVsfdwC8u7QhN+kGZ97aWG4Wc6xnaw9X7OvV\nJH7XPuD2dmir3w4BrFydCZz2AufeKboNODcKROPkwMMfLiHs85XU6tXNiNYsyrNNI1JPXCTzajwA\nF7f+im/34mddyqqr3eNRzm/4ifz0TNDpOLrsU67+aNyZzMpuT8cgfxL3RHIrIwuAxD8O4NmpNQDR\nM1ZydevPAFh7uaO7pTWyFY339caD9OzVlCe6N6zweVe0CRPG8emnn7NlyzeVtsyq9F4vzJz7IbWT\nPa5hjbmwbiug/6yMHBlOfloGCpUShVqNyt4WFAqU1tZoc/NKzGiJ/RBA7b7diflwE+knz5nUpoZM\nZjr+UFppuLh+K6l39kGJKeSnpd/XPqiyMle0iMgkQoKdqFPbHoDeverw885r6HQ6Q422QIdOpyMj\nQz8iISu7ACtr/aH1qdPpPPlETVQqBRqNkkfaevDr7/FmzSyqrio7pDA/P5/Zs2cTGxtLQUEBI0aM\noFatWixfvhytVouXlxerV6/GxsamxOnXrFnD3r178fb2JjU1FYC3334bd3d3zpw5Q0ZGBuPGjePW\nrVtcunSJ+fPns3jx4vvKauPlRm5CsuHv3MRk1A72qOxsDae/y6rJS0rl+OySh2bkp2Vw/ec/Sfoz\nEufGQTReOZPIIVPJTUwxPlt8oeUmJKNxsENlb1tkOEdZdcWyJyTjEFAHGy93chNT9Tvm23ISU7Dx\ndMWutg8FOTk0WvoKdnVqkhOfxNk1JZ9BsvF0Jyf+7pDJ3IRk1A52RduvjBobTzdy4u/Npz9tf2dI\nh0+PjkWWaeXqRErUMc6s+pi81HQaTB5OSPg4omcaP0TGxsuNnATj2ra0utykVI7OfL3YvLV5+cR9\n/7vh71rPdUZlZ0Pa8bPFak3NmWNkzsJ1yQei79Z5u1O3f3dOrFgHwNXtu/UZe3QoN4s51rO1p1ux\n7TA3IQVrTzdunrtMw0WvcP6dDWhvFR2ipysoIOmvg1z8dDvWbi40f3cBuUmp5b6Gwmy93MiOL9xm\nKWgc7VDb2xYZVlhWnUNdH6xPXKD1OzOw8XAh5fAZTry5yajlV3Z7pp84R+0BPYjd+jP56Rl4P9kB\na7ca+iKdDnQ6mr+3EOfGQVzd9AN1Bxc9q/ig5s7Xn/mLiLhYofM1h5deegWAzp07Vdoyq9J7/d5c\n5toP2fl6k5ucSt2BT+HepilKKw2XNu4g6+o1smPjufzl9zyy5U3yMzK5lZFF1Ki5JWe0wH4I4MT8\ntQDUHfxM+Q1ZUm4zHX9o8/K5tuM3w981n+2CytaG9BP31zGsjMwVLT4+By+vu8eYnh7WZGbeIjOr\nwDCs0M5OzewZIYx68QDOzlZoC3Ss+zAMgNCGzvzfz//SpLELeXlafv89HrX6v2/4XcV/tfbfqcp2\nuDZv3oyrqyurV68mIyODXr16YWVlxdq1a/H392fr1q3ExMTQsGHxbzqPHTtGVFQU33zzDVlZWXTr\nVvSb64ULF7Jr1y7ef/99YmNjmTJlyn13tgBQlnyiUKfVmlZTgsIfKmnRp0k7dgbXsCZc+/H3MqYq\nRFHKcgu0xtcpS/iA0GpLHVKi02pRqNV4tHuYgy/OJ+vqdWr37U6T16YRMWRG8QlKmj/3tl8Zyyrh\nuWKv7x7pJ85zbNbdtr3w8Rba/d/HKNRqdLfKv3YGKHG5ANyzbGPrSlNv6LPU7d+dQ6+sKHIdhbEU\npWx7xXOWX+cU9BDNVk7lytadJP71j8lZSvKg67m09tUVaAkYP5AbR06SEhmNS/OQIs9f+nSb4f+5\niSnEfbcLzw5hpoUvY9nG1inUKjxahRI5ZQ0FuXk0XzyW4Il9OL76S9Oy3JmnGdvz+s97sPZ0pdm7\nC9Bm5xL33a5i15r9M34hGhcnmr01777yi/tXZd/rZtwPKdRq7Gp5cSszm6gx87H19aLlh4vJunoN\njbMjno+1Ys8z48i/cZP6EwfRcP4EjtxzDRVgkf1QhTDj8ccddYc8h2/fHhydvLTUM4QmqYTMFaHQ\nd05FqApFOx9zk3XrY9iy8VF8fe3YtOUyM+ccYePnbZn0UiBr3znDoGH7cXe3JizMjehjNyonvKhy\nqmyHKyYmhrZt9UNuHBwc8Pf357fffsPfXz9mu0+fPqVOe+nSJUJDQ1EqlTg4ONCgQQOzZs25nohT\nSH3D39YeruSn30Sbk2tSzb3UDnbU6v0Elz/ffvdBhaLYN/X38h/TF492LQBQ2duSEXOl6HLTMoot\nNyc+CefQgBLrcq4nYeXmUuS5nIQUcuKLPg5gc/u53KQUbkSfMQwNifv+N4KmjkBprSmWNzc+CeeG\n97TNPRnLqsmJT8LavUaR5wp/M1YSlyZBqJ0cSNp7EACFQgFaXbkf5v5j+uDRXt+2antbMs4Xb9uC\ne9v2ehLODYu37b1191Jo1ITOH4+Dny8HRs0j51pimfWFBYzpg2f7hw05b56/WmT5eSUsP7uEnIXr\nvLu2IWTGKE6t/pRrv+wzOkth966niljP926fhZ/zfqI9ealpeHRohcrWBmsPV8K+WEXk0On49nmC\nxD0HyTV8Y61AW1BQ7msIGtsb7w7NAX3bphdqWxvPGqW0bTI1Qv1LrMtJTOX67wcNZ8Ri/28fgaOf\nKzcHVH57qp0ciN/5F5e/+A4Ap4YBhiE/no+1JvnAEQqycsi/kU7inkgcG9Qz6nX8N1i0aAHPPPM0\nAN9/v4MFCxZVynKr6nu9svZDd0Z7/PvjH/rXFhvPjaOncQ4JwN6vNol7D5Kfmg7A1W9+oc1XxUcU\ngGX2QxXBXMcfoN8HhcydiN1DvhwaPYec68bvgyyVuSJ5edlw/MTdDlJiYi5Ojmpsbe8eOu8/kEST\nxjXw9bUDoE/vOqx56zRpafnk5BTw0oQGODtZAfD5hgvUvl0n/vdU2Wu4/P39OXhQfzCckZHB2bNn\n8fX15dKlSwB89NFH7Nq1q8RpAwICiI6ORqvVkpWVxfnz582aNSXyKM6h9Q0Xk9bs2Y2kPVEm19zr\nVlYOvr0fx6NjKwAcGjyEU3AAKRFHypwu5qMtRAyZQcSQGUSOCsc5tL7hZgu+vbqSsLf4cpMPHC21\nLnHPQWo93QmFSonawQ6vrm1J/DOS3IQUsuPi8eqq7xi7tWqCTqsl4/wVEv6IxKVJIDY+HgB4PRZG\nRsyVEs/Q3Fm27e1l1+rZjcR7MpZVk7gnCp+nHyuU7xESy2lblZ0NDaaMNFy3VWfwM/q7Q5XT4bpz\nE4uIwTOJHDm3eJvtOVjC64s2qu5eTVZMRm1vS6SJnS2A8x9t5e/Bs/h78CwiRs7DJTTAsPw6vbqU\nmrO0Oq9OrQieOpyDLy+/7wMwwCzrOTfx9nbYRb8dut7ZDmOu8NdTY4gcor8hxqkV75Mdd53IodMB\ncGkSbBjGo3ZyoOYznUjY/Xe5r+H0B9v4Y0A4fwwIZ8+whdRoFIB9bS8A6vXuzPU/i58NSNh/rNS6\nf3dHUrNrK8OXEd4dHyb15IUq2Z5OQX40em06CpUKhUpJvaE9uX77rmW1enXDt49+yJ/K3g6Pdi2N\neg3/LRYsWESzZi1o1qxFpXW2oOq+1ytrP5RzLZH00xeo+aR+mKOVqzPOjQJJP3WBm2cu4vFIc1S2\n1vrX9lirUodlW2I/VBHMdfwBELpsKip7Ww6NCa+wzpa5M1ek1mFuHD+RxpWrmQBs++4q7dt5FqkJ\nauDEP4dTSE7RdwT/3BNPTR9bXFys2PbdVT78WH/8mZySy3ffx/J4V59KfQ2VQadTVOl/VUWVPcPV\nt29f5s2bx4ABA8jNzWXixIn4+/szZ84clEolHh4eDB8+vMRpg4ODad++Pc8//zyenp64uZnvLjYA\n+anpnFr6LqHLp6HUqMmOi+fk4rdxDPInaPZYooZNL7WmTFot0TNW0mDKSB56oR+6ggKOz3vDpNuf\n5qemc3LJ+zReMQWFWr/c44veAcApyI+Q8LFEDJlRZl3s9p3Y+nrR+stVKDVqYr/dTeph/V14js19\nk+DZL+I3ohfavHyi56wBnY6Mc5c5/do6mq6cjkKtIv9mpv65UjO+R6PlU/VtExvPicXv4BjkR/Cc\ncUQOnV5qDegvXLat5U3YhtUoNWrivt3FjcMny2yX5P1HiN36f7T4aAkolPpbzq74wOh2BchLTefE\nkvdp8uqdNrvOsYXv6ts22I+Q8BeJGDyzzLrSuDQOxLN9CzIv/0vLdXeHu5575yuSI46anPPYkg9o\n+upklGo1WXHxRXKGho/h78GzyqxrML4/CoWC0PAxhvmmHj3DqVWfmpTFXOv5+Lw1BM8eS70RvdHm\n5XM8/I3Sx4Pcdmb1JwTNGkOrr95AqVZx9ZufSYmMLnOae+WlpnN44Ue0XPUySo2azNgE/pmn345c\ngh+i6fwX+GNAeJl1F7fuxsrZgY4bl6JQKrlx+hJHl31VJdtTPzSzIa02rgaFksQ9kVzZ9OPtLO8S\nNGsMXl+uBuDf/+wmMHCUSe0pHkxVeq8XZu790NEZqwia/gK+vbqCQsGF9d+QfiqG9FMx2Pp40Orz\n19Dm5ZNzPYkTS94rI2Pl7ocqgrmOP5wbB+LRriWZl+N4+MOlhsdj3vuSlAOm7YMqK3NFc3W1Zn54\nKLPCj5Cfr8O3lh0L54dy8lQaS189wVeft6VlCzcGD3qIsROi0GgUODlpWP2afgTE8CF+LFh8jH6D\n9qFDx+hRATQMub+bs4nqT6HTlXNUIgx+a1N5t/e9H532f8OuViU6P3zCAAAgAElEQVTf8rYq6Xpg\nC7+2Ln1IaFXROWIrO8OK3+K7qukWuZmfw/pbOka5nojcVG3W+3+aD7Z0jDI9+4/++q6q3p6dI7ZS\ngGl3tLMEFYNQKIoPd65qdLr8avNel31RxekcsbVaHH9A9ThOSk9+2dIxyuXk9palIxituuwvLa3K\nnuEyxubNm/nhhx+KPT5lyhSaNWtmgURCCCGEEEL8b9BWoWF7VVm17nD169ePfv2q/hkIIYQQQggh\nxP+mKnvTDCGEEEIIIYSo7qr1GS4hhBBCCCGEZeiQIYXGkDNcQgghhBBCCGEm0uESQgghhBBCCDOR\nIYVCCCGEEEIIk8ldCo0jZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiIdLiGEEEIIIYQwE7mGSwghhBBC\nCGEyrc7SCaoHOcMlhBBCCCGEEGYiHS4hhBBCCCGEMBMZUiiEEEIIIYQwmQ65Lbwx5AyXEEIIIYQQ\nQpiJQqfTyeVuQgghhBBCCJNsbjLc0hHK1O/oZ5aOAMiQQpPsDOtn6Qhl6ha5mV9b97F0jHJ1jtjK\nrlZ9LR2jXF0PbOG3Ns9bOka5Ou3/hj/a9rZ0jHJ1/HtbtVnv+9s/Y+kYZWqz53uAKt+eXQ9sQaHQ\nWDpGuXS6fArYaOkY5VIxqNq812VfVHG6HthSLY4/oHocJ9lZ17N0jHJl5V6ydASjaXUypNAYMqRQ\nCCGEEEIIIcxEOlxCCCGEEEIIYSYypFAIIYQQQghhMrkThHHkDJcQQgghhBBCmIl0uIQQQgghhBDC\nTGRIoRBCCCGEEMJkWvnhY6PIGS4hhBBCCCGEMBPpcAkhhBBCCCGEmUiHSwghhBBCCCHMRK7hEkII\nIYQQQphMp5NruIwhZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAm08qQQqPIGS4hhBBC\nCCGEMBPpcAkhhBBCCCGEmciQQiGEEEIIIYTJdJYOUE1Ih6uCuD/SjPrjB6C00nDz/BVOLP2Agsxs\nk+usPd1otX4p+wfNID/tJgAejzYndMEEsuOTDHVRYxZQkJVTYha3ts3xHz8QpUZDxvnLnFr2PgVZ\n2cbVKJU0eGUYrq2aoFCpuPLV98R9uwsA29rehISPR+PsyK2sHE4ufpusy/8C0GjFVBwC6lGQrc+U\neug459Z+jo2PB0EzxmDj405BVg6XN35fZhsGjBuI0kqf6cSy0tuwxDqlgsBJw3C7nf3yxh3E3s5+\nR82nH8OzQxhHpr1meKzxq1NxDKhryJ5y6ARn3/y81JxF2nDcIBQaNZkxVzi17L2S27mMGmtPN1qs\nW07kkGmG9e0Y7E/9SSNQ2VijUCm5vOE74n/ZW26e0ri2bY7f2MEoNWoyYi5zZnnxnKXVKK2sqD/t\nBRyDA1AolKSfPMu51evQ5uXhGOxPwCsjUdlYg0rJ1S+/I/6XPeXmMed6tqvtTcjccWicHSnIyuH4\noncM2+gdtft1x/fZzuwfOA0Ala01IXPH4/BQLVCWf9LfpXUL6rw4FKVGTVbMZWJee6tYe5ZV4/Vc\ndzyf6obS2orMMzHEvPYWuvxb2AcFUO+l0Yb1HrdxO0m7/qiy7en/Yj+8u7alIDuXG9FnOLv2C7R5\n+aBU4DfyeTzaPQzAG2+sZsqUaeW+DlN9+uknHD9+nNdfX1Ph864IOp2O8NnfE1Dfg5Gj2lbKMqva\ne70wc+2X1E4OBE4diX09X5TWVlz6bDvXf9Zn83uxP15d9Nto2rEznFv7uX4bLYOl9kMACo2aZq/P\nIva7XST8dsDotjXn8YdTsD+BU4ahsrVGoVRy6Yv/cO3nv4zOVlk576j5dEe8OoZxeOrK+8pYkie6\nP8aiJTOwtrbi+LHTjHtxJjdvZhSre+aZxwmfPwmdVkdqahrjx83k4oUr1KjhzNq3l9G4STBZmdl8\n8cVWPniv/GMM8d/FbEMKJ06caHRt3759iY2NfaDl7dq1i/j4+Aeax/3SuDgSOm8cR2e9wb4+k8mO\ni6fBhIEm1/k82Z6wjxZi4+laZDrnxoFc2riDiMEzDf9K62xpXJwImTueY7NXE9HvFbL/jSdgwiCj\na2r17IJtbW8ODJpC1MhZ1O7XA6eQAAAaLnyF2O07iRgwmYvrNtNoxd2DKOfQBhwaN5/IodOJHDqd\nc2v1HyYh8yaSduIsEf0n88/ERdQd/Gypbdhw7niiZ7/O330nkRWXQP3xJbdhaXW+PbtiV9ub/QOn\ncmDEbOr0fxKnEH8A1E72BM8cTdDUEXDP9Z0uofU5OHYBEUNmEDFkhlGdLY2LE8HhEzg2exUH+r9C\ndlw8/uOLt3NZNd7dO9D8gyVYe7gVma7R8mlcXLeZqGHTOTp5GfVfHo6tr3e5mUrLGRQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tennDzm\nXc+hi14mdttO9vefQszHW2jy6tQi83VuHMhDQ4pug3UHPYM2N4/9A6cROSocAPuggBLzq52dCJj9\nMmfnreDI4PHkXLtOnReHGV3j2r4N3r2f4tTkeRwdOhGltRU+ffV5ApfMJnb9V0SPmsSp6YuoN3Ek\nNlW0PWs+1RGPRx/mwPDZRAyZQW7yDfzH9gegTr8nqdE8hKgx8wBo06Y1/fr1LfN1mCIoKIhff91J\n377PV9g8K1pMTCIjh23g559OVNoyq9p7/d7lmmu/FDJvAjkJyUQOm8HhlxbTYMoIrD1c8enREfdH\nHiZqxCwih04nNykVvxf7l5PTcvsh59D6hH2yDJcmQUa3650s5jz+aPLaFGI+2krE4Jn8M2kFgZOG\nYlfb9P2RuXOqnewJnvUCwdOKt+2DcHd35YOPVjGw/ziaNurMxYtXWbJsZrE6GxtrPvlsDQP6jaV1\n2JP8+ONuXn9jIQCvrZpPZkYmzZt0pUO7njz+eEe6P9mp4kKKasFsHa533nnHXLMu0RdffEFGRvFv\nHCqDW6smpJ2MIevqdQCubtuF9xOPmlRn7V4Dzw4t+Wfyq8Wmc2ncANcWobT+fAUtP1pIjWbBpWZx\nbdWY9FMxZN9eRtz2nXg/3s7oGo8Orbj2w+/oCrTcuplJ/O59eD/RDmsPV+zr1SR+1z4AkvcfQWVr\njWPgQ9j4eKKysyVo5hjCvlxN8NzxqJ0cAHAM8uPaj38AUJCVQ+qhkg9A3Fo1Ie3U3baJ3b4T7yfa\nmVTn2SGMuB1/GLJf3/U3Pk+0B8C7c1tyk1I5+9aGIvOz8fFAZWdL8MzRtP5yFSHzxqF2si+1fQ1t\nGNaE9FPnyY6904a/FG/nMmqs3Gvg3j6Mo1OWF5lGaaXh4vqtpEYdAyA3MYX8tHSsPYt2yoxVI6wJ\nN0+dJzv2GgD/bv8Fr27tjK65ceQklz/7BnQ60GrJOHsBG293lFYaLq3fSurB6Ls5b5Sf05zr2dqj\nBvb1anJ919/A7W3URr+NAli5OhM8fRRn3/6yyLIUKiUqOxsUKiVKKw0AuvxbJeZ3CWtGxulz5Nxu\nq/jvfsK9awejazwef4xrm77j1s0M0Om4sPo9kn75HYWVhtjPNpF26CgAeYnJ5KelY+XhXiXb0zHI\nj4Q/o7iVkQVAwu8H8HqsFQA1n+zAxU+3o83Vn0no3bsvv/76W5mvwxQTJozj008/Z8uWbypsnhXt\n640H6dmrKU90b1hpy6xq7/XCzLVfUjs54NqyMRfXbTVkixo1h/z0DByD/EncE2nYRhP/OIBnp9Zl\n5rTUfgj0X1TEfLiJtBPnjGjRe7KY6fhDaaXhwrpvSLmzP0pIIe/GzfvaH5n7OMm7Sxtyk25w5q0v\niz33IDp3acc/h6KJOX8JgI8/+pJ+/Yt/caxSqVAoFDg7OQLgYG9HTk4uAM2ah/LVV9+i1WrJz8/n\n559+47meT1ZoTkvS6hRV+l9VUe6Qwu3bt7N7924yMzNJTU1lwoQJ1KhRgzVr1qBSqahduzaLFy9m\nx44dbNu2Da1Wy8svv8y0adPYt28fJ0+eZMmSJahUKqytrVmyZAk1a9ZkzZo17N27F29vb1JTU8vM\n8NRTT1GvXj00Gg2LFy8mPDzcMM3cuXO5du0ap06dYubMmaxatYqZM2eyZcsWQH/27I033uDbb7/l\n8OHDZGVlsWzZMubMmYO3tzdXr16lUaNGLFq06L4b0cbLjZyEZMPfuQnJaBzsUNnbFjkNXlZdblIq\nR2e+XuL889MyuPbTHhL+iMKlSSBNV09n/6AZ5CakFM/i6U5OoaGHuQnJqB3sUNnZGoZvlFVj4+lG\nTnzRjA4BdbH2dCM3MVW/MzY8l4K1pxsKtYqUqGOcWfUxeanpNJg8nJDwcUTPXEX6iXP49HiMi+u2\noHFxwq1ts1LbMDfeuDYsrc7Gy43chHuz1wEwDOnw6VH04NjK1ZmUqGOcWrmOvNQ0AicPp+Hc8Ryd\nsarEnEVyFF5WYjJqB/ui7VxGTV5SKsdnF1+GNi+fazvuHpzWfLYLKlsb0k3cCd/N6U5u4XVdYs7S\na1Ijjxoet/b2wLfvU5x97QO0eflc/+FXw3M+z3bV5zx+tpw85lvPNl7uxbbRnMQUbDxduXnuEqGL\nX+bs2xvQ3SookunShv/Q4v2FtP/hQ1T2tgBkxVwqMb+Vpzu5CYXbKqlYe5ZVY1O7JpoaLgSvWojG\n3ZWb0Se4/P5n6PLySfjx7rAjz6cfR2VrS8aJM1WyPdNPnKNO/x5c3foz+ekZ+DzZAWv3GgDY1fHB\n/iFf6g17DoBx415kwYL7/3y910svvQJA585V9xviufO7AxARcbHSllnV3utFsplpv2Tn601ecip1\nBj6FW5tmKDUarmz8nvir10g/cY7aA3oQe3sb9X6yA9ZuNcppQ8vshwCOzVsL6M+4m8Kcxx/avHzi\nvv/d8Het5zqjsrMhzYR1Xxk5AWK37wagZglt+yB8fWsSe/sLCoC42Gs4Ozvh6OhQZFhhZmYWL08M\n57c/t5GSfAOlSknnx/Rn4Q9GHmHgwJ7s//sg1tZWPPtcd/JvlfylnvjvZdQ1XNnZ2Xz66aekpKTQ\np08flEolW7Zswc3NjTfffJNvv/0WtVqNk5MT77//fpFp586dy7JlywgODmb37t28+uqrjB49mqio\nKL755huysrLo1q1bmcvPyspi/PjxhISEsGrVKlq3bs3AgQO5dOkSs2fP5uuvvyY4OJiFCxei0WhK\nnY+fnx9z584lNjaWS5cu8cknn2Bra0uXLl1ITEzEw8PDmOYoRqEspQddoL2vunsV/oC5cfQMadFn\ncQtrzL8//FG8uJRl6LRao2pKyqgrKPnxO8+lnzjPsVl3Ow8XPt5Cu//7GIVazcnF71D/lWG0+vJ1\nsq8lkLTvEA5+tYvPSFHyyVbdvW1TVl1JGbVlt236ifMcnbm6UPattP/pIxRqVZnTlXatT9F2NqKm\nDHWHPIdv3x4cnbwUbW6eUdMUozBiezCixiHQj9AVM4jb9hPJfx8qUldnSE9q9elB9JQlaPPKyWnO\n9VzG66g/fiA3Dp8iJfIYNZqHFHk+aPookg9Ec/79r7FydabD/32Ea4c2pPy5v3j80nIVaquyahRq\nNc4tmnBmzjK0efkEzJlEndFDuPT2OkNdzUG98Xn+aU5NW1hl2/PaT3ux9nTj4XfnU5CTS9x3u9He\nPiuoUKtwDq3P4ckr6PLXVzz66CO89NJE1q59q+zXIh5MVXuvF2au/ZJahW0tL25lZnNozDxsfb15\n+IPFZF29zvWf92Dt6Uqzdxegzc4l7rtdhm20VBbaDz0Icx9/3FFv6LPU7d+dQ6+sMJy9NkVl5axo\nylLyFBQU/eKuYcNAZoe/TPOmXbl44QrjJgznq00f0Lpld2bNXMaKV+ewP/JHrl9P4Ldf/6J1m+aV\nEV9UIUZ1uFq2bIlSqcTd3R1bW1suX77MpEmTAMjJyaFt27bUrVuXhx56qNi0CQkJBAcHG+bz+uuv\nc+nSJUJDQ1EqlTg4ONCgQYNyM9yZ99mzZ4mIiOCnn34CIC0trczpdIW+nS2cr06dOjg46Ie9eXh4\nkJubW26GwvzH9MGjfQsA1Pa2ZJy/YnjO2sOV/LQMCnKKzjPnehLODQPKrStM7WBH7ee7cfGz7+4+\nqABdKd+O5MYn4dywfrFlaAsto6yanPgkwzfVd57LTUgm53oSVm4uRZZ15zmXJkGonRxI2ntQH0+h\nAK0OnVaL0saKk0vfMyw/cMZow/T+Y/ri0U7fhip7WzJiireh9t42jE/CObR4G2pzcotltPZwJaeE\ns4CFuTQNQuNoT+Le2wcWhbKXJed6Ik4h97Rh+s0ieY2pKYlCoyZk7kTsHvLl0Og55FxPLLO+LLnx\nSTgVWtdWHm7FMpRX49nlEepPG82519eRsOvuxdIKjZqguS9hX8+Xw2Nml5qz3gv9cX9Uv55rPdvJ\nbOs5J774Nmpz+zmf7u3JS03Ds2MYKlsbrD1cab1hJRFDZuDZsRX7B04FnY685BsAODdrXGKHKzc+\nEYeQu59XVu5u3CrWnqXX5CelkLI3wvCtfuLOP/Ad3s/QngGzJ2FbrzbHx80g93pCie1Ze+Td6xks\n1Z5qJ3uu//IXlz7Xfy45NQwg6/bQ2dzEVOJ37TMMy9y6dRvt2z/K2rUlvpxyLVq0gGeeeRqA77/f\nUaFny/6bVIX3elnZzLFfyk3Uj3S5dvvLx+zY69w4ehqnhgFkX0sgfudfXP7i7jZ6Z3h3YVVhP2Sq\nyjr+AP26D50/Hgc/Xw6MmkfONePXfWXmrEjz5k+mx1NdAXB0cuDE8bsjDWrW8iYl5QZZ99zwpUu3\n9uz/+xAXL+hf44fvf8HKVfNwc6uBrZ0t4XNWkJqqP16dMnUsMTGXK+nVmJ9lusLVj1HXcJ04ob/u\nJikpidzcXOrUqcN7773Hhg0bGDt2LK1b68dFK0v4Rt/T05PTp08DEBUVRb169QgICCA6OhqtVktW\nVhbnz58vP+jtefv5+TF8+HA2bNjAm2++yTPP6E+/KxQKdDod1tbWJCcnU1BQQHp6epGbcRTOpyjl\nmz5j3bmINGLwTCJHzsU5tL7hQlLfXl1J2HOw2DTJB6KNqivsVlY2tZ9/HM/HwgBwbFAP55AAkvYf\nLbE++cBRnEPrY3t7GbV6diNxb5TRNYl7ovB5+jEUKiVqBzu8uj5C4p4ochNTyI6Lx6uL/m5brq2a\noNNqyYi5gsrOhgZTRhqu26oz+BkSfo8ArRa/F/rh20t/BtO2to9hx6Zvwy2GG1VEjgov3jb35C6c\nvaS6xD0HqfV0p0LZ25L4Z2SZ7auytSFw6kjDdVt1Bz9D/G8RoC37Rqcpkbfb8PbNLGr27EbSniiT\na0oSumwqKntbDo0Jf6DOlj7DEZwaNjBc4F7zuW4k7b03Z+k1Ho+1JmDyKKInLSlyAAbQcOk01Pa2\n/PNi2Z3CS+s2cXC4/gYr5lzPuQm3t9Gu+m3U7c42ev4Ke3q8SMRg/bZ2cvkHZMddJ2LIDABunrmA\n9+1plDbW+sdKGcp3I+owDiGBhptZeD/bnZS/Dhhdk/zHPtw6PoLSygoA13atyDyt//xrsHgmKntb\njo8vvbMFcHX9V4b/W6o9nYL9afLaNBQqFQqVkoeG9eT6L/rtI+G3CLyfaG84m/LUU08SFVX251xZ\nFixYRLNmLWjWrIV0tspQFd7rpTHXfinnWgLppy8YhuhZuTrj3CiQ9FMxOAX50ei16YZttN7Qnlwv\n4W6vVWE/ZKrKOv4AaLJiMmp7WyJN7GxVds6KtGTxGlqHPUnrsCfp2K4nLcOa4h9QD4AXRg/ixx27\nik1z5PBx2rVrhaen/rrbp5/pxqVLV0lOTmX06EHMWzAFAE9Pd0aM6s+WTf+ptNcjqgajznAlJSUx\nbNgwbt68yYIFC1AqlYwZMwadToe9vT0rV67k2rVrJU67dOlSlixZgk6nQ6VSsXz5cmrXrk379u15\n/vnn8fT0xM3N+Aswx44dS3h4OFu2bCEjI8NwN8RmzZoxY8YM1q9fzyOPPMLzzz9P7dq1qVu3rtHz\nvl95qemcWPI+TV6dgkKtJjvuOscWvguAU7AfIeEvEjF4Zpl1pdLqODJ9FUHTRhAwpi/aggKOhq8t\ndivUO/JT0zm55D0aLZ+KUqMmOzaeE4vfwTHIj+A544gcOr3UGtBfqGxby5uwDatRatTEfbuLG4dP\nAnB83hqCZ4+l3ojeaPPyOR7+Buh0JO8/QuzW/6PFR0tAodTf/nzFBwCcf2cDIQtewufJjugKCji5\n9D2arZ1bSu73abziTtvEc3yRPpNTkB8h4WOJGDKjzLrY7Tux9fWi9ZerUGrUxH67m9TDp8ps3uT9\nR7i65SdafrQEhVJJRswVTi7/sOx1cjvvqaXvErp8mr4N4+I5ufhtHIP8CZo9lqhh00utKYtz40A8\n2rUk83IcD3+41PB4zHtfknKg5E52eTlPL3uXhsumodCoyYm7zqnbOQNnjePg8Gml1gA8NFZ/B7PA\nWeMM80w7dpr4nXtxb9eSrMtxNP9g2d2c739J6oEjZeYx53o+NvdNgme/iN+IXmjz8omes6bINUgl\nOb7oXYKmj6LNkx0MQ39Kux37rRtpxLy6lgaLZ6HQqMmNu875ZWuwDwzAf8ZEokdNKrUG4Pp3P6F2\ncqTRujdQKJVknr3AhXffxTE0GNdHWpF9JZbQd+/eKvryB5+TFnW4yrVnyoFokpqF0HrjKhRKJQl/\nRnH56x8AOP/hJupPGEybr/VDoS9cuMibb8pwQnOrau/1e7OZa78UPXMVgdNHUatnNxRKBZfWb+Xm\nqRgAXJo3pNXG1aBQkrgnkiubfjQiZ+Xvhx6EOY8/XBoH4tm+BZmX/6XlusWGx8+98xXJEabtj8x6\nnGRGiYnJjB0znY1fv4+VlYaLFy7zwkh956l580a898FrtA57kj//2M+baz7k512byMvLJzXlBn17\n60f0rFr5Hp98uoaof35BoVCwbMmbHDoUbbHXJCxDodOVfTSyfft2Lly4wLRpFf87KtXNzrB+lo5Q\npm6Rm/m1dR9LxyhX54it7GpVcbeJNpeuB7bwW5uqe+vpOzrt/4Y/2va2dIxydfx7W7VZ7/vbm3bh\nemVrs0f/e3ZVvT27HtiCQlH6dbVVhU6XTwEbLR2jXCoGVZv3uuyLKk7XA1uqxfEHVI/jJDvrepaO\nUa6s3EuWjmC0j4PHWDpCmUaf+sjSEYAq9MPH0dHRrFpV/K5t3bt3Z+DA4r/VIIQQQgghhBBVXbkd\nrl69elVGDho3bsyGDcV/m0IIIYQQQgghqiuz/fCxEEIIIYQQQvyvqzJDCoUQQgghhBDVh1b3YHf9\n/l8hZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAmK/uXLsUdcoZLCCGEEEIIIcxEOlxC\nCCGEEEIIYSYypFAIIYQQQghhMrlLoXHkDJcQQgghhBBCmIl0uIQQQgghhBDCTGRIoRBCCCGEEMJk\nWksHqCbkDJcQQgghhBBCmIl0uIQQQgghhBDCTBQ6nU5+s0wIIYQQQghhkrcbjLN0hDK9dPZ9S0cA\n5Bouk/zUcoClI5Spe9TX7AzrZ+kY5eoWuZkfHh5k6RjleurQxiq/zkG/3gvYaOkY5VIxqNq0Z/bJ\nLpaOUSbbkN1A9fhM+jmsv6VjlOuJyE380ba3pWOUq+Pf26rNe/23Ns9bOka5Ou3/hoV1X7J0jHIt\nvPw2HwS9aOkYZRp7+kMAvm48wsJJyjYg+lN+bDHQ0jHK1ePgV5aOICqYDCkUQgghhBBCCDORDpcQ\nQgghhBBCmIkMKRRCCCGEEEKYTG4Lbxw5wyWEEEIIIYQQZiIdLiGEEEIIIYQwExlSKIQQQgghhDCZ\nTqewdIRqQc5wCSGEEEIIIYSZSIdLCCGEEEIIIcxEhhQKIYQQQgghTKbVWTpB9SBnuIQQQgghhBDC\nTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTEYXGkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk2nlh4+NIme4hBBCCCGEEMJM5AxXBfF4pBkNJvRHaaXm5rkrHF/6Ebcys42uU1praDhjJM4h\nfqBUknb8PCdWrkebm4/rwyEETRqMQqUiP+0mp974gpvnrtxXTvdHmlF//ACUVhpunr/CiaUfUFBC\nzvLqrD3daLV+KfsHzSA/7ab+tT3anNAFE8iOTzLURY1ZQEFWjsk5PR9tStDEfig1atLPXyV68ccl\ntqcxdQ+vmkRuYirHV34OgFuLEIJfGYBSraIgN58Tqz7nxokLJmeE6rPeTaHT6Qif/T0B9T0YOaqt\n2ZdXWHVrzz0Hs3n7yzTy8nXUr6th4URXHOzufo+14/dMNnx/0/B3RpaWhOQCfllXE7UKln2YypmL\n+djaKHi2kz0Dejg+UJ7CqktbejzSjAbj+xs+a44t/bDEz6TS6pTWGkKmj8Q5xB+UCtKOn+fkKn3O\nO2o93RGvji35Z+qq+8ro2rY5fmMHo9SoyYi5zJnl71GQlW1UjdLKivrTXsAxOACFQkn6ybOcW70O\nbV4ejsH+BLwyEpWNNaiUXP3yO+J/2XNfGe9HZb7X3do2x3/cIBQaNZkxVzi1rHgbllqjVFL/5WG4\ntm6KQqXkylc7+PfbnQC4NG9I/ZeHGbbFc29+Ssb5y4Z5KjRqmqyeTdx3u0j8PaLCXk/9Tg3pMuNp\nVFZq4k//y/czviI3o/i+LmxYe1oMfhR0OlIuJ7Fj1tdkJmdUWI6S1OkQSqspPVFZqUk+E8cf4V+Q\nn1n6fvixFcNIOfcvR9fvAkChVPDovAH4tKwPwJU9x4lYua3Cc9Zs15gmrzyP0krNjbOxHFiwnltl\n5Gy1ZBRp5+M4/fnPRR6383Kl65dz+anPfPJuPHjbej7SlMCJdz4TrxK9pOTPztLq1Pa2NJ4/Bod6\nNUGhIPbHvVz4fAcAziF+hEwdgsrGGoVKyYXPdxD3074HziNJK/QAACAASURBVCyqPjnDVQGsXBxp\nNP9FDs9cw97np5Idl0CDiQNMqvMf0ROFSslfA2fx14AZKK2t8B/+LGp7W5qvnMyZtzayb+BMTry6\nnqYrXkGpMb2vrHFxJHTeOI7OeoN9fSaTHRdPgwkDTa7zebI9YR8txMbTtch0zo0DubRxBxGDZxr+\n3U9ny8rFkSYLxnBo+pv80Xs6WbEJBL3U777q/Ic+hWuzQMPfCrWK5ismEr10HXsGzOHcJ9/RdPE4\nkzPeWX51WO+miIlJZOSwDfz80wmzLqck1a09U9IKWPB2CqtnuPGfd33w9VazdsONIjVPP2bPljXe\nbFnjzcZVXri7qJg1ugZuLipWrb+BnY2S7W95s+FVL/76J4c9UcV36vejurSl/rNmLIdnrWFvnylk\nxSUQOKF4zrLq/Ef0RKFWsW/QTPYNnIHK2gq/Yc/pp3OyJ2TWKIKnDQfF/Q170bg4ERQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tfnvnKa\nqjLf6xoXJ4LDJ3Bs9ioO9H+F7Lh4/McPMrqm1nNdsa3tQ+SgyRwcOYva/XrgGBKAyt6ORiumc/6d\nDUQOmcqZVR/RcOkUFLe3RafQBrRYtwLnJkEV+nrsXB14btUgNo/9hHc6LSX1ShJdZj1TrM4ntDZt\nR3fik15v8F63FaRcSuSxqT0qNMu9bGo48NjyYex8+UM2dV9A+tUkWk/tWWKti583T382Gb8nWhR5\nvMGzrXF5yIutzyzmm+eWULNlA/web16hOa1rONJqySj2TnmXH5+ZQ0ZsIk0n9Smx1ukhHzqtm0Gd\nbi2LPVfv6bZ0/mw2dl41KiSXlYsjjRe8yKEZb/Jn72lkxcUTNLG/SXUNxvUhJz6FPf1msm/oPOr2\n7oJLI33n9eGVkzj74Tb+GjSHqJdXEjx5MHa1vSsku6japMNVAdxbNybt5AWyrl4H4Mq2XdR84hGT\n6lIPn+L8+m9BpwOtjvQzl7Dx9sCujg/5GdkkR+l3ipmX/+VWZrbhzWsKt1ZNSDsZY1j+1W278H7i\nUZPqrN1r4NmhJf9MfrXYdC6NG+DaIpTWn6+g5UcLqdEs2OSMAB5tGnHj5AUyr8YDcPmb3dTqXrw9\ny6tzaxGCR9vGXN72q+Ex3a0Cdnd/ifQz+m9A7Wp5kpd2f9+IVZf1boqvNx6kZ6+mPNG9oVmXU5Lq\n1p77j+TQsL4VdWtqAOjzhAM/7clCpyv5JrmffZuOq7OS5x93AOBUTB49OtqhUinQaBS0e9iGXfuz\n7jtPYdWlLd1bNS72WeNTwmdSWXUp/8/efYc3Vb5/HH9nNd0t3UDZhZZSKLOAKCKKCooCsstW9pBV\n9p4iDlAUcKEiLhScXxFUFARKAdmbMkpL994r+f0RKJSuFBra8Ltf1+V1SXIn55M755zkyXnO6dFz\nhN6Z88JVrKq7AODxVHuy45I4/86Wcme7pVqAP6lnL5EZHgnAjW2/4/70Y0bXJB07w7VPv7uZT0fa\nhctYerigtNBw9ZOtJB4+AUB2bAK5SSlo3ZzvOWt5PMht3SnAn5Szl8gMN7x/Edt+x+OZx4yucX08\ngMhfd6PP15GXmk7Mrn14PNMR61rVyUvPIPHwSQAyrt0gPz0TBz/Dj2y1+nTj8savSDl9qUJfT4OO\nPkScCCPhaiwAh7/4l6Yvti5SF3nqOu90WkJ2ahZqrRo7d0cyEytmGy9JrQ6+xJy8RvK1GADOfP0P\nXt3bFlvrF9iJc9v2c3nH4UK3K5RK1FZaVBZqlBYalBoV+Tl5FZrTo30T4k9dIS3M8Pl96du/qNOt\nXbG1Dfs/yeUf9hK281Ch261cHfF8oiX/jH+7wnLdvU+89t0f1Cjm+0dpdWfe+Jyzaw37HK2LI0oL\nNXlpGSgtNFz8cBvxIacAyIpJICcpFau7frw2N7oq/l9V8dBNKdy2bRt//PEH6enpJCYmMn78eCws\nLFi3bh16vZ4mTZqwePFidu7cyZYtW8jLy0OhULBu3TqcnO5tpbd0dyYrOr7g31kxCWhsrVHbWBU6\nDF1aXdzBk7frPFyoO6Arp1Z8SEZYJGprS1zaNiXu4EkcfOtjV98TrUv5f82xdHcmK+b28rNj4tHY\nWqOysSo0hae0uuy4RI7PfLPY589NTiPytz3E/H0IR39vmr8RxIHAGWTHJJQ/Z9Ttx5TazxLqVFZa\nmkwfzMEJq6jTq3Oh59fn5WPhZE/HLcvRONrx3+x3y5Wv0PLN4H0vj3kLugIQHHzFpMspjrn1Mzou\nHw9nVcG/3Z1VpGXoSc/UY2td+GhKYko+n/+Yytdv3v4ls2kjLb/+nUFzHy25uXr+PJCJWl0xJx+b\nSy/v3tdkGblPurMu/uCJQjnr9O/K6ZUfAXB92x8A1Hzu8XJnu71sF7LvmCadHRuP2tYGlbVVwZS4\n0moSQ44X3K71cMWz7/NcWLUBXU4uUb/c/jGo+otdUFlZknLqwj1nLY8Hua1bujuTfednSrE9LLlG\ne1d/s2LicfaqQ0bYDVRWljgF+JMQchy7xg2wqV8LrYsjAKcXrgGgduCLFfp6HKpXI+VGYsG/UyKT\nsLS3QmtrWWRaoS5Ph8/TzXhh1QDycvLY/davFZrlbjbVq5F2x+diWlQiWjsrNDaWRaYV/rv0awA8\n2xc+Anh++37qP9uKwf+sQqFWEb7vDNd2n6AiWXs4kXFHzozoRCzsrFHbWBaZVnhk5RcAuLf1LXR7\nZmwS/05dV6G5rNydyDRi31lWnT5fR/Ml4/B4MoCovw+Tdu0G6PRc//HvgsfU6tkZtbUliacuVuhr\nEFXTQzfgAsjMzGTTpk0kJCTQs2dPFAoF27dvx9nZmQ8//JCoqCiuXr3KBx98gJWVFQsWLODff//l\nhReKTgkwSglTVfT5unLX2fvUo+XqqVz79ndi/z0KwJFpb9BoXD+8JwWScPQc8YdOo8st/69NCmUJ\nX+buymls3d3uHIglHT9P8okLOAc048Yvf5cnJgoj+1lSHQpouXIip9/cTHZcUrElOQkp/NF1IvY+\ndWm3fg77Li8gPSyqXDnN5X03G2bWT10Jf+1RVcy8ge93ptMpwIqa7rd3uVOHO/L2p0n0nxqFi5OK\nds0tOX4u+57zFGImvVQoS5hkUWSfVHadvU89Wrw+jbCtO4n9979yZylRST3S6cpVY+tdH7+VM4j4\n/jfi9x8pVFd7cE9q9nmOE1OXosvJuf/MVU0J71+hHpZSU+y+XqcjPyOTkzNXUX/0QBpMGEzSsTMk\nHjll8v1kSZ+RuhI+I8/tPMG5nSdo2f8RBm8exzsdl5R4JPz+sxnR6zK0Gv88WQmpfPZoEGqthmfe\nG0ez4U9xYtMfFRWzxB6WJ6dJlNS/u99bI+qOLXgf1cqPafX6FBq+0ouLH9w+D67B0O7UHfAsIRNX\nFTrfVDy8HsoBV5s2bVAqlbi4uGBjY0NOTg7OzoZpGiNHjgTA2dmZmTNnYmNjw+XLl2nevHm5ltFw\ndG/cOrYCQG1jReql6wX3aV2dyElOIz+r8JenrOh4HP28Sqyr3qU9vjNHcGb1JiJ/328oUijIz8wi\nZMzSgsc99u0bZIQbNzhoMKoPrh1bF+RMu3T7xHatqxO5xeWMisOhiVeZdXdS21pTq/fTXPn0h9s3\nKkCfZ9wHX6MxL+FeQj8tS+hnZlThft6qs61XE+sarvhOMZxDoXV2QKFSotRqOPP2FlzaNCFqt2EK\nRcq5q6ReuIadVy2jBlzm8r6bC3PuZ3UXFacu3M4WE5+Pva0SK8uiH8Q792Uw42XHQrelZ+iYPMQB\nBzvDUbJN21KoVf3ed8nm0kuvUX3KnTOzmH3SnXUeXdrjO+Nlzr6xicjfK/YE9OzoOOyb3J4uaeHq\nTG5KKro7MpZV4/ZUBxpOH8nFNz8iZte/BXUKjRqfeROxqevJ0VGzyYqKrdDsVUVWVCz2vrf7o3V1\nKtLD0mqyouOwuOMIqtbVyXDEU6EgPyOLo+MXFtzX9qs1BdMSK9ITU7vh/VRTw/LtLIk+d6PgPjsP\nBzKT0snNLDxYdqrjgq2rPWGHDRdlOvrtAZ5f0Q9LBysykypuamHrid2p29kfAAtbS+IvRBTcZ+Pu\nSFZSOnmZxg/k63dpwb/Lv0aXm09Obj4XfjhA/Wda3veAq+m4HtTs1AIAja0lSRdv57Ryq0Z2chr5\n5chZURqN7o1bR8M5ahoba1JCb39PKun7R1ZUHI5+DYqtc2nXjNRLYWTHJZGfmc2N3/fj0TkAAKVG\nTbNFY7CrV5P9wxeSGRmHudPLZeGN8lCew3X6tOHcgri4OHJzDb8cJCUZjnQsW7aMkJAQ3nnnHd5+\n+22WLVuGVqst969NFzd+x77A2ewLnM2B4Qtw9GtYcOJj7ZeeImbP4SKPiQs+UWKdR+cAGk8fyqGJ\nK29/sQHQ62m9Zib2jesb6p5siy4v3+grgoV+sLXgAhYhI+bhcMfyPXt1KTZn/METRtXdKS8jk1q9\nn8HtCcNOxa5RXRx8vYg7cLzUx91yYcP37B04h70D57Bv2EKqNfXCppY7AHV6P0n0P0eKPCY2+GSx\ndUknL/Hnc5MKni/s+z+J3BnMiaUfoc/X0WzBKKr5NwLAtn5NbOrWIOlUqFE5zeV9Nxfm3M/2zS05\ncSGHazcM+5jvfk+jU4BlkbqUNB1hkXn4+2gL3b719zTe/yoFgPikfLbtSqfrY9b3nMdcennpg63s\nHzSL/YNmETxiPo5+XreX36v4nPEHT5RY5965LY2nDePwpBUVPtgCSAg5hn2TRgUXs6jR42ni9h4y\nusb1iXZ4TXmZE5OXFhpsATRZNh21jRX/jZ7z0A62ABJCjuPg1xArT8P7V6Pn08TtubuHJdfE7TlE\njec7o1ApUdta496lA3F7QkCvx/+tOdj5GL74unZujz4vv9BVCivK7rf+x4Zuq9jQbRUf9XgTzxZ1\ncarrCkDrwEc5t/NkkcfYujnQe90wrKvZANCsRxtizkdW6GAL4PC7P/Ndz2V813MZ2/qtwt2/Pg51\n3ADw7d+Rq38Z9zl8S+yZMBrcvJCGUq2kzhP+RB+7/6mnJ9//gR19F7Kj70J2DlqGS7P62NY2fH43\n7PMEEbuP3vcy7sWFjd/xb+Ac/g2cw77hC6hWaJ9YyvePEupqdGlLw1EvAYYBVvUu7Yg/bPhe2nLV\nq2hsrNg/YtFDMdgSxnsoj3DFxcUxdOhQUlNTWbhwIXq9ntGjR6NUKvH19aVNmza0bNmSfv36oVar\nsbe3JyYm5p6Xl5OYwsklG2jx2mSUGjUZ4dGcWPQ+APaN69N03kj2Bc4uta7R+P4oFAqazhtZ8LyJ\nxy9w5vVNHJ+/jqZzR6LQqMmOS+S/oOLPoTIm5+ml6/F/bSoKtZrMiChOLnqvIKfv3NEED5pZal2J\ndHqOBa3GZ/pwvEb1RZefz/G5awsuGV/enMcXb6TV66+i0KjJCI/h2IL1ADg0rkez+SPZO3BOqXUl\nyc/M5vC0t2gybRAKtRpdbi5H571HVjnPM7uV0xzed3Nhbv10clSxeKITQavjyc3V4+mhZtmrTpy+\nlMPi9xL49m3DB3FYZC6u1VRo7jo/6+WX7Jm7JoGXJkWiB8b0s8evobaYJZWfufQyJzGFk0s30Py1\nKSjVajIiogvtk/zmjmL/oFml1jUaZ8jpN3fUHTnPc3b1pnvKdLfcxBTOLX+PJsuno9CoyYqI4uyS\nd7HzaYD3rLEcHja9xBqAemMMR9q9Z92+GmryyXNE79yLy2NtyLgWQcsNywvuC13/BYkHj1VI9qoi\nNzGFs8vew2/FdJQaNZkR0Zy52UOf2WM4NDSoxBqAiO2/Y+XpTpvP30SpURPxwy6Sjp4B4PTCtfjM\nHoNCrSYnPpETM1eZ/PWkx6fxY9AW+q5/GZWFisRrcWyfshmAGk1r8cKqgWzotoqwQ6HsWbeTYd9M\nQpenIzUmma9HfWjSbFkJqfw95zO6rB2FSqMm5Xosf800bAuufnV4fOlgvuu5rNTn2P/aVh6d159+\n/1uMPl9HRPA5jn20o9THlFd2QirB8z/h0TfHGf6UwvUYgucazr108q1LwKLh7Oi7sIxnqXg5iSkc\nX7KRVqsMV15ND4/m+MLb3z+azhvJv4FzSq078/YWms55mY7frEKv1xP99xGufLWDav6NcO/YirRr\nN2j/8e3Xdu7dr4kLrthz5ETVo9CbaiJxJdm2bRuXL19m+vTpFf7cv7UperniqqTroa/YGVD08ulV\nzdMh3/BLq8CyCyvZ80e2VPn3HAzvez73fhW2B0VFoNn0M/PMU5Udo1RWvoapPVW9n10PfcWOgKKX\nVK5qng35mr8feamyY5Sp0/7vzWZb/6t978qOUabOB75jUZ2JlR2jTIuuvcsGn9GVHaNUY85tBOCr\nZsMrOUnpBpzYxK+ti/45nKrmucNfVnYEo62oP6GyI5RqzuWKvbDKvXoopxQKIYQQQgghRFXw0E0p\n7NWrV2VHEEIIIYQQQgjgIRxwCSGEEEIIIUzv4ToxyXRkSqEQQgghhBBCmIgMuIQQQgghhBDCRGRK\noRBCCCGEEKLcdMgfPjaGHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm06uUmgUOcIl\nhBBCCCGEECYiAy4hhBBCCCGEMBEZcAkhhBBCCCGEicg5XEIIIYQQQohy08s5XEaRI1xCCCGEEEII\nYSIy4BJCCCGEEEIIE1Ho9XIwUAghhBBCCFE+C+pMquwIpVpy7Z3KjgDIOVzl8me7PpUdoVRPBm+t\n8hlBcla0J4O38lf73pUdo0ydD3wn/awgnQ98B5jHPmlX276VHaNMXQ5+W+V7CeaxboJh/cxnS2XH\nKJOKQFk/K8iTwVsB89gn7QzoV9kxyvR0yDeVHUFUMJlSKIQQQgghhBAmIke4hBBCCCGEEOUmJyYZ\nR45wCSGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk1X2QHMhBzhEkIIIYQQQggTkQGXEEII\nIYQQQpiITCkUQgghhBBClJtOrlJoFDnCJYQQQgghhBAmIgMuIYQQQgghhDARGXAJIYQQQgghhInI\nOVxCCCGEEEKIcpNTuIwjR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiJTCoUQQgghhBDlptMrKjuCWZAB\n1z1yfqQlDcYNRKnRkHbpGmeXryc/I9O4GqWSRq8OxamtPwqVirAvfyJi+65Cj63+/BO4dgrgxPRV\nRZZdq283arz4JAcDp1XJnPVH98f9qUfIz8wm+eR5Lq79DF1ObpXLaS79dGzeGK8Jg1BqLchLy+DM\n0vfIuhFTds6xgSg0atJDwzi7/P3icxZXo1TScNJQnNo1R6FSEvblz9zYvtOQpWUTGk4aikKlIjc5\nlYtrNpF26VrBcyo0avzfmE3ED7uI3R38UPSyQnt7k9bNmdYfrSBk8HRyk1MNj3m0Fb7zJ5AVFVdQ\n99/Y+eRnZBmfy0z66dKhBV5jB6K0MOQ4vXwD+emZxtcpFXhPHorzzbzXtvxM+M28ansbfKaNwKae\nJyqtBVc+3Ubkb3sBqNnzKWr364Y+L5/MyBjOLNtQ0P8H1U+1vS3e00ZgU9cTpdaCq59uI2rHHuA+\n9p1VfFu/X3q9nrmzf8KroSsjXn6kwp/flOujdS0PfOeNReNgR35GFqcWryPj2o2C51Ro1LR4cxbh\nP+wi5q+DAGgc7Wg8axTWnh4o1KqbhQq8Jg7GvXN7clPSAMgIu8GpeW8XyujZ51k8e3dFl51D+tVw\nzr/xMXk3642lcbTHd+EErDxc0et0nHttI8knLwBg06A23tNGoLaxvnnfB6Sev1zwWI+uHak9oHvB\nv9W21mjdnNj3whhyEpILbveaNKTM12LKnHdz6dCChuMGoLTQkHopjNPLSl4Hiq1TKvCePASXdoZ1\n4OqWnwnf9gcA1Vo1wfvVwShUSnKT0zj39mekXTRsS15j+uHWKQCAlLOhnHntI3TZOeXqgzAPMqXw\nHmgc7fGdN46Ts98guN+rZN6Ixmt8oNE1NXs+hVUtDw4GTuXQiFnU6vcc9r5ewM0P4xkj8Z42AgVF\nfzVwaOZNncEvVtmc1Z/rhEuHVhwaPouQIUFkxyVSf3T/KpfTXPqpdXWi2aogzq/+iJDBQcTuPohP\n0MgyczaeO56Ts1dzsP+rZEZE02Bc0Zwl1dTs0QWrWtUJCZzC4Zs57Xy9UNlY03RlEJfWbSZk8DTO\nr/6AJsumotAYfrex92tE649W4uDv89D0sqJ7C+DR9XFabliK1tW50OMcmnoT9uXPHBoaVPCfsYMt\nc+qnxtGOJvPGcWL2m+zvO5mMiBgajhtYrjrPnl2wruXBgYHTODh8NrX7d8PetwEAfvPHkxWTwMEh\nMzkycSneU4ejdXPCsrorXmP6c3jUAoIHBZEVGUuDUX0feD99548nKyaekKEzODpxCY2mDkfr6nTP\n+86qvq3fr9DQWEYM3cyO306b5PlNvj4unkT49zs50H8qoR9+i/9rt3/Yc/BrSMDHy3G8q4/ek4eR\nfiWc4EFBHBwyEzB8tjo29ebU/LcJGRJEyJCgIgOUai2bUGdwD45OWEzIkCDi9x+l8azR5e6J9/SX\nSTp2luABUzi96F38lk9DqbVAqbWgxdp5XNv8IyFDZ3Dlk+9osnhSocdG/banIN+h4bPIiU/iwhsf\nFxpsAWW+FlPnvJPG0Q6/+WM5Pust9vWZQmZENI3GF78OlFRXq2cXrGtVZ/+A6QQPm0Odm+uA2saK\n5qumcuHdLzgQOIMzqz7Cf8VkFBo1bp0CcG7bjAODZrC//zSUllrq9O9W7j4I82D2A65t27bxxhtv\nPNBlOrVtRsrZUDKvRwEQsW0nHs88ZnSN6+NtifxlN/p8HXmp6UT/sQ+PZw33uT/Znpz4RC6+u7nI\nci2cHPCe/goX1xW9r6rktPNpQOyeEPLSMgCI/fsgbp3bVbmcYB79dOvcjrgDR0k9f8XwfD/s4sKa\nTaXnDPAn5ewlMsNvZfi9aM5SalwfDyDy19s5Y3btw+OZjljXqk5eegaJh08CkHHtBvnpmTj4eQNQ\nq083Lm/8ipTTlx6aXhbJfZ+9tXCphkvHAI5PXVHkuR2aelOtlR+tN62i5fqlODZvbHwuM+qnc1t/\nks+GknEzR/i2nQXLMrbO7fEAIn7+uyBv1K79VH+2I2p7G5wCmnH5o60AZMckEDJiLrnJaShUShRq\nNSobK1AoUGq1Jf6SbKp+qu1tcWrTjCu38sUmcOjlOeSmpN3bvtMMtvX79dWWw/Ts1ZxnuzYxyfOb\ncn3UulbDpm4NonbtByD+wDFUllrsvOsBULtfN0I3fk3y6YuFlhXzTwjXt+4AKDjCaVnDHdtGdakd\n+AIBm1fTdOU0tO4uhR5n51OfhEMnyY5NMDzP3wdxebQVCrUahVpNw1eH0uazVQRsXk3j+eNRWVsV\neZ0KlRKXR1tx48c/AUi7eJXM8Eic2zfHqa0/mRHRxB84CkDc3sOcmvdWib2tM+RFchKTifjhj8LL\n0KhLfC2VkdO5rT/JZ26/t9e/34XHs4+Wq86tUxtu/HLXOtD1MaxrVycvLYOEQ6cAw7aUl56JY9NG\nxPwdQsgrC9Dn5aOyscKimj05JRxxr8r0+qr9X1Vh9gOuymDp5kJW9O1pP9kx8ahtrQvtFEqrsXRz\nJis6vtB9WjfDr90R23dx5ePvin4RUCppsvhVLq3bXLAzrYo5U05fxOWx1mgc7EChwKPb42idq1W5\nnObST+vaNdBlZuO3dDIBn72O37Ip6HLzSs/p7kx2zB3LiY1HbWtTOGcpNVp3F7LveA1ZN3NmhN1A\nZWWJU4A/AHaNG2BTvxZaF0cATi9cQ/z+/0rNZkyfjKl5UL0skvs+e5sTl8ip2avJuBpe5Llzk9MI\n/34Hh4fPJHT9Fpq+NgOtq5Nxucyon5buzmTftSyNrbVhIGRkXZEex8SjdXPC2tOD7PhE6gx8njYf\nLKHtpyux86mHLjuHzPBorn3xEx2+XUPH/22kWsvGXPl0+wPtp7WnBznxidQe+DytPlhKm02vYe9t\nyHdP+04z2Nbv17wFXXmhRzOTPb8p10dLdxeyYxMLfevLik3A0s2wXZ+cv5a4fUeLZIrZfbDgiJBd\no7oApJw6T+KRU4S+/yUhg4NIPnUR/9dnFHpcyplLOLXyw9LDMHip8fwTKC00aBxsqTukB/p8HYeG\nziRkcBA5sQlFjtoCaBzsQaEgNynlduZb62/t6uTEJ9F4zljabHqNFu/OR6FSFdtXjYMdtQd058Lb\nnxa5T+viVOJredA5wfDeZsUYtw6UVGfpXnibz4pJwNLNmfSwSFTWlji3NazD9o0bYFvfs2Bb0ufn\nU6vPM3T86T0sHO2I+TukxJzCvD0U53AdP36cESNGkJCQwIABA/D09GTNmjVotVocHR1ZsWIFZ8+e\n5euvv+bttw2HrTt06MC+ffuYNWsWSUlJJCUlsXHjRhwcHMpeoLL4EwT1Op1RNYpi7tPn64qpvs1r\n3ECSjp0hIeQEji19y85YSTmjduxB6+ZEi/cWosvMJuKHXWV/CZN+lkihVuHyaGuOjJlP5vUoPPt2\npdlrhikYJecs/neUwjlLrlEoinkNOh35GZmcnLmK+qMH0mDCYJKOnSHxyKlyD1oMyzeTXhbJfX+9\nLc2p2asL/j/5xDmST57HKcCfyF93G5HLjPqpKKE/dy+vtLriXotOh0KtxrqmO3npmRwatQArT3fa\nbFxCxvVINA52uD3Rlj0vjCU3KZWGEwJpsmA8x4o5r9NU/VSoVVjdzHdk1HysPD1otWEJGdej7nHf\naQbbelVnwvWR4vpL2fuCW5zb+uO3eCIA8fuPEr//9uAsbMtP1BvxEpbV3ciKNJw3mXTsLJc/3krT\nVUGg03Pjl7/ITU5Fl5uHc4dWaOyscQowfPFXatTkFDrwhwAAIABJREFUJCYXXWgJ6zX5OpRqNc6P\ntOC/8YtIOX0Jl8da4//WHPb1GFukvEaPp4jde7gg252yImM4PnVlsa/lQecEit1ebz2X0XXFbfM6\nHfnpmRyb/gZeY/vRaNIgEo+eJeFw4W3p+tbfub71d7zG9MP/takcHrO4+OUIs/ZQDLjUajUff/wx\nERERjBw5kuzsbL766ivc3d357LPPWL9+PZ06dSrx8e3atWPYsGFGLy87Og6HJg0L/q11dSI3OQ1d\nVrZRNVnRcWhdqhW6785fx4rj8WxHchKTcX28LSorS7SuTgR8vrrULzeVkVNtb0v0zn+59vkPANg3\n8SqYylKVcppLP7NjE0k+eb5g2tKNn/7Ce+oIlFqLEqdDZUXFYu97V4aU1EI5S6vJio7D4q6cWTHx\noFCQn5HF0fELC+5r+9WaMt/fYl+XmfTybvfb25Koba2p+dKzXPts2+0bFQp0ecZ9wa3q/Wwwqi+u\nj7UGQGVjRVpoWKlZAbKi43Dw8yo+b1QcFs6Ohe7LikkoOFp949e/AcgMjybp+DkcfL2wqV+L2L2H\nyU00/CJ+/bvfaf/lm8W/NhP1Mzs2EYDIX27liyLp+DnDfjIyptz7TnPY1qsiBc1QUBOAmi92Ntn6\nmBVd+HYAy5v3laX2gOeoN6QHJ+evpdW6+dh61cbWq27BBVZuvRL9HfsIlbUlSUfPEPnzX4Bh2nyD\nUf3JSzFMqb3w9ibiDxwz1FpZorTQYOdTn8Zzbg9EDg03nDOmtrMhLzW9IHNMTDyarGzSr0UUTCWN\n23sYxZyxWNV0L5Lf/alHuPBW8VOMS3stDypng1F9cO1o2CepbaxIu1R0Hci/ex2IisOhSdF1ID8r\nm6yo+IKjVrfuy765LeVlZnF47JKC+x755i0ywqOxbVgHhUJB6oWrAIT/+Be1+3UttmdVmXE/H4iH\nYkqhr68vCoUCV1dXIiMjsbW1xd3dsGG1adOGixcvFnmM/o5D/PXq1SvX8uIPHsfBryFWtTwAqNnz\naWL3HjK6JnbPIap3fwKFSona1hr3Lh2I3VP48Xf79/lRhAw2/Hp8duV6MiOiyvwluTJy2vvUp+mq\nIBQqFQqVkrpDehL1+94ql9Nc+hn7TwiOzbyxrO4GgFuntqSFhpU6QEgIuZnB05ChRs+nibtrOaXV\nxO05RI3nOxfKGbcnBPR6/N+ag52P4WRw187t0eflF7pymbHMpZd3u9/eliQvIwvPl57BtVNbAGwb\n1cO+sRcJwceMylXV+xn6wbcED55B8OAZhLw8Fwe/hljfzOHZqwsxe4su61be4upi9xymZvc719FH\niP0nhKzIWFLOXaZGt8cBwxdOh6bepJy9TOr5K7h2aInKSguA+xNtST514YH2MysyhpRzl6n+3N35\nQu9p32kO23pVpOcEOn4DMOn6mB2TQGZENO5dDFdWdG7rj16nK/Tlvji1BzxHrd7PEPLyXBIOGc6j\n0+v0NJo6vGB7q/nS06SFXis0JV7r4kTL9xcVTCmtO7w3UTv3AZAQfAzP3l1RqNWgUOAzezQNxg0k\n9dzlggtXhAwJQp+vI37/f9Ts0QUwDI5s6nmS+N8Z4g8cw8rDDTvv+oDhKqXo9UWuTKq2s8Ha04Pk\nE+eL738pr+VB5Qz9YCvBg2YSPGgmISPmFX1v9xwuZh04UWJdzJ7D1Lxjm/fo8ggxfx8CvZ6Wb8/C\nvrEhi/uT7dDn5ZF28Rp2XrVpsmAsSq0FADW6dSTh8KlS1w1hvh6KI1x3TouoVq0aaWlpxMTE4Obm\nRkhICHXr1kWr1RIbGwtAREQEycnJxT7eGLmJKZxZ+j5NV0xDqVGTGR7N6SXrCn6BCRkSVGINGE6u\ntqrpQcDmN1Bq1ERs30XS0TMV0InKz2mYoteEtlveAIWS2D0hhH39a5XLeS8qI2faxauce/1Dmq0K\nQqFWkZeazsm5JZ/8eyvn2WXv4bdiuiFDRDRnlryLnU8DfGaP4dDQoBJrACK2/26YivX5m4acP9zO\neXrhWnxmj0GhVpMTn8iJmcVMx3qIellc7vvpbYl0Ok7MeJ1GU0dQ75V+6PPzOTX/rRIvWV5cLnPp\npyHHepqtnIpCbejPqcWGHPY+9fGdO4bgwTNKrQvfthMrT3fafbEapUZN+PY/SDx6FoDjM1bjE/QK\nnr26gELB5U++I+VsKClnQ7Gq7krbz1ahy8klKyqO00vff+D9PDFzNd5BL1Oz59MolAqufrKV1LOh\nAPe076zq23pVZ+r18eS8NTSePZr6w3uhy8nlxJy3Sz2TX6FW4TW6H7mpGfivml5wu2vHNlx46xP8\n35iJQqUkKyaBU/PXFlonM8JucO3zH2jzyQpQKEk+fo7zb34MwJVN39Nw4mACPn8dhVJJ2sWrXFz7\nebEZzq/+CJ85Y2j77Jugh9OL3iU/PYP89AxOzHwd7xmvoLLUosvN48TsN4r86QIrTw+y45LQ5+cX\n3HZnzvTL14t9LQ865y05iSmcXroe/9duvbdRnFz0nmEdaFwf37mjCR40s9S68O93Yl3TnfZbXkeh\nvmsdmP8OvnNGodSoyY5L4liQ4UJvkb/txdrTg3afrUSfn0/a5XBOL9tY4rohzJtCr69K1/Aov23b\ntnH58mWmT59OdnY2Xbt2ZdmyZaxduxaFQoGDgwMrV67E3t6eiRMnEhcXR4MGDTh69Ci///47s2bN\nolu3bnTs2LHMZf3Zrs8DeEX37sngrVU+I0jOivZk8Fb+at+7smOUqfOB76SfFaTzge8A89gn7Wpb\n/KXXq5IuB7+t8r0E81g3wbB+5rOlsmOUSUWgrJ8V5Mlgw5U3zSHnzoB+lR2jTE+HfFPZEYw2tcar\nlR2hVG/dWFvZEYCH4AhXr169Cv5fq9Xy11+GucuPPFL0jyOuX7++yG2vvfaa6cIJIYQQQggh/l97\nKM7hEkIIIYQQQoiqyOyPcAkhhBBCCCEePLlKoXHkCJcQQgghhBBCmIgMuIQQQgghhBDCRGTAJYQQ\nQgghhBAmIudwCSGEEEIIIcpNZ9Z/XOrBkSNcQgghhBBCCGEiMuASQgghhBBCCBORAZcQQgghhBCi\n3PRV/L97kZWVxcSJExk4cCAjR44kISGh2DqdTscrr7zCV199VeZzyoBLCCGEEEIIIYCvvvqKRo0a\n8eWXX9KjRw/ef//9YuvWrFlDSkqKUc8pAy4hhBBCCCGEAI4cOcJjjz0GQMeOHTlw4ECRmh07dqBQ\nKArqyiJXKRRCCCGEEEKUm7lfpXDr1q189tlnhW5zdnbGzs4OABsbG1JTUwvdf+HCBX755Rfeeecd\n3nvvPaOWIwMuIYQQQgghxP87ffr0oU+fPoVumzBhAunp6QCkp6djb29f6P4ffviB6Ohohg4dSkRE\nBBqNhpo1a9KxY8cSlyMDLiGEEEIIIYQAWrZsyT///EOzZs3Ys2cPrVq1KnT/jBkzCv7/3XffxcXF\npdTBFsg5XEIIIYQQQoh7oNdX7f/uxYABA7h48SIDBgzgm2++YcKECQBs2rSJP//8856eU6HX32sc\nIYQQQgghxP9X49xfrewIpXo/em1lRwBkSmG5/NOhV2VHKNXj+7ZV+YxgyLmnQ8/KjlGmjvu2m00/\nF9WZWNkxyrTo2rtm08+3vMZVdoxSTb1kuERtVe/n4/u28We7PmUXVrIng7eyq23fyo5Rpi4HvzWb\nbd1c+pnPlsqOUSYVgWaxrQNsbzG4kpOUrufRzWazTxIPFxlwCSGEEEIIIcpNV9kBzIScwyWEEEII\nIYQQJiIDLiGEEEIIIYQwERlwCSGEEEIIIYSJyDlcQgghhBBCiHLTybXOjSJHuIQQQgghhBDCRGTA\nJYQQQgghhBAmIlMKhRBCCCGEEOUmMwqNI0e4hBBCCCGEEMJEZMAlhBBCCCGEECYiUwqFEEIIIYQQ\n5SZXKTSOHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm16mFBpFjnAJIYQQQgghhInI\nEa4K4tS+FfXGBKK00JB+6RrnV75HfkamUTVKCwu8po3ErrEXCqWClNMXufTmh+hycrCu60mjGWNR\nWVui1+u5sv4LEkOOVamMt1hWd6PlJ6s5MWUJaedC7ynjrQx1xwwqyHBh5bpicxZXo7KxptHs8VjX\n8QSFgujfdhO+ZTsAtj5eNHh1BCorSxRKJde/2E7Mzn/uK2dVf8/L0rBzE56a0R2VhZroczf4acaX\nZKdlFakLGNqR1oMeBb2ehGtx/DzrK9Lj0yo0i7n2s14nPx6d/iIqCzVx5yPYOfsLcorpYeMXA2j9\nylPo9XrysnLZveRbok+FYWFrydOvDcKpvgcKpYIz24I59MGu+85VVfvp/EhLGowbiFKjIe3SNc4u\nX18kV4k1SiWNXh2KU1t/FCoVYV/+RMT2wr2q/vwTuHYK4MT0VYVuV2jU+L85mxvbdxGzO9iorC4d\nWuA1diBKC0OO08s3kJ+eaXydUoH35KE438x7bcvPhN+Vt0b3J3B7PIBjxeRt8eYswn/YRcxfB43K\nW5YHvb2bsn/WtTzwnTcWjYMd+RlZnFq8joxrNwqes7j+aRztaDxrFNaeHijUqnK/nrLo9Xrmzv4J\nr4aujHj5kQp//pKYy2e7+6P+NJnYF6WFhpSL1/lv8YfkpRdd/0qrq9fnSer27IRKqyHx7FWOLv4I\nXW4eLq0b4zelP0q1mvysHE68vpnE05eNymXqfZJldTcCPl3F0VeXknrOkKnpymnYetUlP9PwuhKP\nnOLi2s/K3VNhPuQIVwXQONrjPXcCZ+au5tCAiWTeiKbe2MFG19Qe+hIKlYojQ6dyeMhUVFoLag/p\nBUDDaaOI+vVPjgybxoUV7+G7dBqoyv+2mTIjgMJCg8+CySjV9zeG1zja02juRM7MfZ3DAyaQdSOq\n2Jwl1dQdOYDs2HiODH6Vo68EUaPns9g18QbAd/kMrn38Nf8Nm8rJaUupP2k4lp7V7zlnVX/Py2Lt\nZEuP1YF8M+Zj1nVeRmJYHE/NeqFIXXW/WjwysjMf93qL959eScLVWJ6Y9lyFZjHXflo52fLMqsH8\nPP4DPn16MclhcTwa1KNIXbV6bjw2syfbRqzjixdWcvC93+j+/igAOkzpTlpkEp93W8aWnqtoNrAj\n1VvUu69cVbWfGkd7fOeN4+TsNwju9yqZN6LxGh9odE3Nnk9hVcuDg4FTOTRiFrX6PYe9rxcAantb\nvGeMxHvaCBQoCj2nvV8j2ny0AsdmPuXooR1N5o3jxOw32d93MhkRMTQcN7BcdZ49u2Bdy4MDA6dx\ncPhsavfvhr1vg5t5bWg8cyQ+04ZzV1wc/BoS8PFyHP2Nz1uWB729m7p/fosnEf79Tg70n0roh9/i\n/9q0gucsqX/ek4eRfiWc4EFBHBwyEwAF9cv92ooTGhrLiKGb2fHb6Qp5PmOZy2e7RTU7Wi0excGg\nd/ij5wzSw2NoMqlfuepqdG5Ng/5d+HfMa/zRezYqSwu8Bj2LQq0iYNUEji75hL/6zeX8Rz/SatkY\no3KZcp8EoLTQ0GTxRBSawv1z8GvEkbELCBkSRMiQILMebOmq+H9VxUM74MrOzqZz584PZFnVApqT\nevYSmeGRANzYvgP3px8zuib5+BnCPttqmAir05F24QpaD1cAFColajtbAFTWVuhycqtcRoCGU0cS\n9b+/yE1Ovad8hTNcJOuODG5PdzS6JnTNx1xe9ykAFs7VUGjU5Keno7DQELbpG5IOnwAgJzae3KQU\ntG7O95Gzar/nZWnQ0YeIE2EkXI0F4PAX/9L0xdZF6iJPXeedTkvITs1CrVVj5+5IZmJGhWYx137W\nebQxUSeukXTN0MPjX+6h8QttitTl5+Sxa84W0mNTAIg6eQ0bF3uUGhW7l27ln9e2AWDr5oDKQk12\natGjAOVRVfvp1LYZKWdDybweBUDEtp14PPOY0TWuj7cl8pfd6PN15KWmE/3HPjyeNdzn/mR7cuIT\nufju5iLLrdW3K6EbvyblzEWjszq39Sf5bCgZN3OEb9tZsCxj69weDyDi578L8kbt2k/1Zw37Ko8n\nHyE7LpEL7xTNW7tfN0I3fk3yaePzluVBb++m7J/WtRo2dWsQtWs/APEHjqGy1GLnbfihoqT+xfwT\nwvWtOwDuWG9tyv3aivPVlsP07NWcZ7s2qZDnM5a5fLa7tWtK4unLpIdFA3Bl65/U6lr0KGBpdbWe\nf5SLX/xGbko66PUcW76JsF/2oc/L57dnJpF8/hoA1p5u5CQbd0TWlPskAO/prxD569/kJqcU3GZZ\n3Q2VtRU+M0cR8MUbNJ43DrW9rVF5hfl6aAdcD5LWzZnsmLiCf2fHxqO2tUFlbWVUTWLIcTKvG3aE\nWndXavZ7nti/DB8kF9/8kNqDe9Fu+4c0W7uQi29shPzyj9lNmdGj+1Mo1Gqifv6j3LmK5nQhOya+\njJxl1OTr8F4wmdab15J89DQZYTfQ5+QS9cufBY/xeKELKitLUk9duMecVf89L4tD9Wqk3Egs+HdK\nZBKW9lZobS2L1OrydPg83YypwUup07YBR7caNyXLWObaT7vq1UiNvN3D1KgktHZWWNzVw5SIBK78\nfarg353m9ib0rxPocvMB0Ofr6PrmMIb8bx7hBy+QeDn6vnJV1X5aurmQFX3HMmPiUdtaF8pVWo2l\nmzNZ0fGF7rv1o0nE9l1c+fg7dNm3p0LdcnrBWuL3/2dUxoIc7s5k37Usja01Khsro+ss3Z0L76ti\n4tG6OQEQvn0Xlz/+jvxi8p6cv5a4fUfLlbcsD3p7N2X/LN1dyI5NLHS2flZsApY3e1tS/2J2HyQn\nIRkAu0Z1AdATXu7XVpx5C7ryQo9mFfJc5WEun+3WHk5k3vE+Z8YkoLGzRm1jaXSdbR0PtNXseWRd\nEJ2/WU7j0b3ITTX8GKDPy0frZM+zv6/Fb3J/Ln76q1G5TLlPqvFCZxRqFTd+vP3dA8DCyZ6EQyc5\n99pGQobMID8zC9+5Y43KK8zXQzXgSk9PZ+zYsQQGBrJo0SIAQkJCGDJkCIMHD6ZXr15cuXKFb775\nhlWrDPPl8/Pz6d69O9nZ2fe8XIWy+Dbqdbpy1dh616f5+8u48f1vJOw/gsJCQ+Ml0zi3/F2Ce47k\n2Pj5NAwac09HZUyV0bZRfWr0eJqLqzeUO1OxlIpib74zgzE155esYf9zQ1Hb21JneN9CdbUG9aLO\ny/05PXNFoXnq5WEO73lZFCX0UVfCl+dzO0/weovZ/P32bwzePA6FovjH31sW8+xneXuotrLg+Xdf\nwbGOK7tmbyl032/TPmV9mxlYOtrQbmK3+8xVRft5n9t3cf3Wm+DHCAAUJfTn7uWVVlfca9FVziSX\nB769m7J/JWTRG9lb57b+tHxn3s1/JZZaW9WZzWd7Se9Zvt7oOqVahVs7P0JmvsvuwAVoHGzwndC7\noCY7IYUdz7zKP0MX03LxSGxre5Sdy0T7JDvvetTs+TTnVn1Q5P6U05c4OWs1OfFJoNNx+cNvce7Q\nEsV9TtsUVdtD9e5+/fXXNGrUiClTpnD8+HEOHjzIxYsXWb16Ne7u7mzYsIEdO3YUDL6mT5/O3r17\nadu2LVqt9p6XmxUVi51vw4J/a12cyU1JRZeVbXSN65MdaDh9FJfe+oiYXXsBsKlfG5WlloT9RwBI\nPX2BjCvXsfNtRHbMgSqR0b1rJ1TW1rTYuBIAC5dqNF44mcvvfU78v4fKlREgOyoOO99GpeYsraZa\nQHPSL18jJy4RXWYWsX/sxeXx9oDhJGrvuZOwruvJsdGzyI6KLXe+W8zhPS/OE1O74f1UU0MeO0ui\nz90+ydzOw4HMpHRyMwsPQp3quGDrak/YYcPJvke/PcDzK/ph6WBFZlLFTC00p34+8urz1H/S0EML\nWyviLkQU3Gfr7khWUjp5mUUH8nbVq9Hjg7HEh0axNXANedmGKU11HmtM3PkbpMckk5uRzbmfD9Pw\n2Rb3lO2WqtrP7Og4HJrcsUxXJ3KT0wpv36XUZEXHoXWpVui+O4+A3K8Go/ri+phhmp3Kxoq00LBS\nswJkRcfh4OdVbF1WVBwWzo6F7suKSaiwvGV50Nv7ncur+WJnk/UvK7rw7QCWRva29oDnqDekByfn\nr6XVuvll1ld1VfmzvfHYXng83hIAjY0VKZeuF9xn6VaNnOQ08u9aHzKj4nFq2qDYuqzYJG7sPlJw\nAY3rv+7DZ1RP1LZWuLbxJXK3Yb+UfO4ayRfCsG/oSVpYVKkZTbVP8uj6OGobK1p/uNxwu4sTTRa/\nyqV1m8lLSUNtb0vc3sMAhh8zdHqjfzCoanRyWXijPFRHuK5evUrTpoadvb+/P2q1Gnd3d5YvX86s\nWbM4ePAgeXl52Nra0qZNG/7991+2bdtG7969y3jm0iWGHMe+SSOsbl6AoUbPp4nfe8joGpdO7fGa\n8gonpiwp2NkBZIZHoraxxt7PcNEHy5ruWNf1JO2icVfeeRAZQ9d+wqEBEzgybBpHhk0jJy6Rs4vX\n3NNgy5DhGPZNGhVczKJ6z2eI3xtidI1r5w7UGW44wVahUePauQNJ/50EwHdZECobK46NmX1fgy1D\nhqr/nhdn91v/Y0O3VWzotoqPeryJZ4u6ONU1zNdvHfgo53aeLPIYWzcHeq8bhnU1w7kOzXq0IeZ8\nZIUNtsC8+rl/7S988cJKvnhhJV/1fp3qzevhWMfQQ/+Bj3HpjxNFHmPpYE3fL6dwcecx/jf5k4LB\nFoB3t1a0v3lES2WhxrtbS64fOH/P+aDq9jP+4HEc/BpiVcvwy3PNnk8Te1eu0mpi9xyievcnDOeR\n2Vrj3qUDsXvubV9TnNAPviV48AyCB88g5OW5OPg1xPpmDs9eXYjZW3RZt/IWVxe75zA1u3e+I+8j\nxP4TUuQ5TOVBb++3lgeYtH/ZMQlkRkTj3sVwbo9zW3/0Oh1pl8KKPP+dag94jlq9nyHk5bkkHCr6\n2s1RVf5sP7t+G7v7z2N3/3n8PWQx1Zp6YVPbHYB6vZ8k8u+i03yjD5wqsS7ijxBqPhWAUqsxvI4n\nWpF4+jL6fB0tF43Eyd8wKLKrXxO7utVJOFn2FRVNtU+6uOZTDvR9teCiGNlxCZxeuJa4vYdRWVvS\naOqIgvO2ag96wXDlVDMdcAnjPFRHuBo0aMCxY8d46qmnOHPmDHl5ecyfP59du3Zha2vLzJkz0d+c\n8923b18+/PBDEhMT8fG5vytB5SYlc37FOnyXBaHQqMmKiOLc0new9WmA96xxHBk2rcQagHpjDFe7\n8Z41ruA5k0+c49JbH3J6zioaTH4ZpYUGfV4+F17fQFZE+c/vMGXGimTI8C6+y4JQajRkRkRxfula\nbH0a0GjWeP4bNrXEGoDQdZtoGDSGVpvXgl5P3N6DRHz7C/ZNfXB+NICMsAiab1hZsLwr739+T5cI\nN4f3vCzp8Wn8GLSFvutfRmWhIvFaHNunGE7gr9G0Fi+sGsiGbqsIOxTKnnU7GfbNJHR5OlJjkvl6\nlCned/PrZ2ZCGjtnbqb7upEoNWqSw2LZEWS42pS7X226rAjkixdW0mxgR+xqOOHVxR+vLv4Fj/9u\nyDv8s+J7nlw6gCH/mwd6PZd2Hee/T3ffV66q2s/cxBTOLH2fpiumodSoyQyP5vSSddj51KfxnLGE\nDAkqsQYMJ6tb1fQgYPMbKDVqIrbvIunomfvqVelZ19Ns5VQUajWZEdGcWmzIYe9TH9+5YwgePKPU\nuvBtO7HydKfdF6tRatSEb/+DxKNnTZK3LA96ezd1/07OW0Pj2aOpP7wXupxcTsx5u9S/wKpQq/Aa\n3Y/c1Az8V02/fTtN0PNgryxYkczlsz0nMYX/Fn1I29WTUKpVpIfHcHj+RgAcfevRYsHL7O4/r9S6\ny9/+gYW9LU98uRSFUknSuaucfOsT8jOzCZ66hmZBg1CoVehy8jg0Zz1ZMWVPF62MfVL8gWOEb/0f\nrT9YCgol6aFhnF1ZQVM3RZWl0Osfnr8RnZ2dzYwZM4iJiaF+/focPnyYTp06ERwcjJWVFS4uLjg6\nOrJs2TIAunfvTmBgIP379zfq+f/p0Kvsokr0+L5tVT4jGHLu6dCzsmOUqeO+7WbTz0V1JlZ2jDIt\nuvau2fTzLa9xZRdWoqmX3gfMY5/0Z7s+lR2jTE8Gb2VX275lF1ayLge/NZtt3Vz6mc+WsgsrmYpA\ns9jWAba3GFxGZeXqeXSz2eyTzMVg51crO0KpNsevrewIwEN2hEur1bJ2rXGN1el0WFtb8/zzz5s4\nlRBCCCGEEOL/q4fqHC5jXb9+nZ49e9KtWzdsbeVvHwghhBBCCCFM46E6wmWsWrVq8eOPP1Z2DCGE\nEEIIIcyWXKXQOP8vj3AJIYQQQgghxIMgAy4hhBBCCCGEMJH/l1MKhRBCCCGEEPfn4bnWuWnJES4h\nhBBCCCGEMBEZcAkhhBBCCCGEiciUQiGEEEIIIUS56So7gJmQI1xCCCGEEEIIYSIy4BJCCCGEEEII\nE5EphUIIIYQQQohy08llCo0iR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiIDLiGEEEIIIYQwETmHSwgh\nhBBCCFFucgaXcRR6vZztJoQQQgghhCifPo6TKjtCqbYmvVPZEQA5wlUuYf0CKjtCqWp/E1LlM4Ih\n5/X+bSo7RplqfX3IbPq5wWd0Zcco05hzG82mn5v9Xq7sGKUafOpjwDz2SX+1713ZMcrU+cB37Azo\nV9kxyvR0yDdms63/2a5PZcco05PBW/mnQ6/KjlGmx/dtI58tlR2jVCoCAcjd27iSk5RO89hZs9kn\niYeLDLiEEEIIIYQQ5aaTeXJGkYtmCCGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk0v1yk0\nihzhEkIIIYQQQggTkQGXEEIIIYQQQpiITCkUQgghhBBClJtcpdA4coRLCCGEEEIIIUxEBlxCCCGE\nEEIIYSIypVAIIYQQQghRbrrKDmAm5AiXEEJ09aeiAAAgAElEQVQIIYQQQpiIDLiEEEIIIYQQwkRk\nwCWEEEIIIYQQJiLncAkhhBBCCCHKTa+X68IbQ45wCSGEEEIIIYSJyBEuE7Bs0QHHAeNQaCzIDbtE\n/IZl6DPTC9VYP/os9i8MBr0efXYWiZ++Sc7lsyisbHAeMw91zbooFArS/vkfqT99/v8+p0P/8Tdz\nXiRhY3E5u2LXfRDoQZ+TReKnb5B7+WyhGuepr5OfGEvSptUmyWgOvQSo/bgfbaf2RGWhJv58BH/P\n/Zzc9KwS659YOZSEizc4/skuABRKBY/OH0D1Ng0BCNtziuDXv6/QjObUz5odm9Fici+UGg1JF8I5\nsGBTqf18ZNkIki5FcObT3wHQ2FrRfskwHOpVB6WCyz/u5/Qnv1VoxqraT+dHWtJgbCAKjZr00DDO\nLn+f/IzMctVo3Zxp/dEKQgZPJzc5FQC7xg1oOHk4KkstCpWSa5t/IPr3vfeV1aVDCxqOG4DSQkPq\npTBOL9tAfnpmueu0bs60/WQZBwJnFOS1b9wA76lDUVlpUSiVXP38RyJ3/HtfeaFqbOtek4bg3rk9\nuSlpAGSE3eDUvLcL1Xj2eRbP3l3RZeeQfjWc8298TN7NemNpHO3xXTgBKw9X9Dod517bSPLJCwDY\nNKiN97QRqG2sb973AannL5f5nE7tW1FvTCBKCw3pl65xfuV7RdbPkmqUFhZ4TRuJXWMvFEoFKacv\ncunND9Hl5BQ81rK6Gy0/Wc2JKUtIOxdartd7P/R6PXNn/4RXQ1dGvPzIA1vunf45oWfN93py86CR\nJywZpsDWSlFw/4/79Xy+6/aRk7RMiE6EP15XYGsFy7boOX3V8Ed3m9aDeYEKLC0UxSypbPe1H1Iq\naThpKE7tmqNQKQn78mdubN8JgHVdT3xmjUZlZQlA6PtfkHDwOAB+K6Zj27AO+RmG7THxv9NcWvvp\nPeUX5kGOcFUwpZ0jzmPnE/fWLCKn9CEvOgLHgeML1air16baoEnErJhE1MxBJG/7BJdpqwBw7DeG\nvIQYoqYPIGrOMOy69MKiYdP/1zmdxiwg/u2ZRE3tTV5MBI4DJtyVsw6OgZOIXTmJ6FmBpGz7GJep\nrxeqses+GK1P8wrPdyujOfQSwLKaLU+sGMrOSRv5uutCUq7H0W5az2JrHet70P3TKdR/tnWh2xu9\n2A7Heu5sfWEJ3/VYSo02jaj/TMsKy2hO/dRWs+WRpcP5Z/L7/NR9LqnhsbSY0rvYWvv61eny8XTq\nPFO4n80n9iAjOpGfey7gt/5LadSvEy7+DSosY1Xtp8bRnsZzx3Ny9moO9n+VzIhoGowLLFeNR9fH\nablhKVpX50KPa7piOlc++oZDQ4M4PmU5DScNw8rT4z6y2uE3fyzHZ73Fvj5TyIyIptH4geWuq96t\nIwEfLMLSzanQ4/xXTSX0g60ED5rJf5NX4j15CNa17j0vVJ1t3bGpN6fmv03IkCBChgQVGWxVa9mE\nOoN7cHTCYkKGBBG//yiNZ40u34sFvKe/TNKxswQPmMLpRe/it3waSq0FSq0FLdbO49rmHwkZOoMr\nn3xHk8WTynw+jaM93nMncGbuag4NmEjmjWjqjR1sdE3toS+hUKk4MnQqh4dMRaW1oPaQXgWPVVho\n8FkwGaX6wf7uHRoay4ihm9nx2+kHutw7JaTqmb9Jz5pxCn5ZrsTTFd7+vvC0tBcfUfD9QiXfL1Ty\n9VwFLvYwZ6ACFwcFH/yqJ18H3y9UsG2Rguxc+Oh/9zat7X73QzV7dMGqVnVCAqdweMQsavV7Djtf\nLwC8g0YS+ctuDg0N4uzy9/FbNhWFyvC128GvEf+NXcChoUEcGhpk1oMtXRX/r6r4fzngCg8Pp2/f\nviZ5bkv/tuSEniEv6joAqbu+x+bRZwvV6PNyid+4HF1SPAA5l8+icnQGlZrET98kafM7AKgcXVBo\nLNBllO+XvocqZ7N2hXKm7foe6yI5c/g/9u47Oqpq7eP4d1p6IYUkQKgJJRAINTQp0hQ7KgLSFRCw\n0nsHqVawUFQQFQHB9nJBVHoJCUgNPZSQhPTek5nz/jEwENIhY5J7n89aruXMPDPnlz2zz8w+e59D\n/JqFBeYEsGzcCiu/9qT+tb3M80HlaUuAmh0bE332Jkk3owE4/+N+vJ9tW2Ct78CuXNx+hGu7jue5\nX6VWo7W2RGOhRW2hQ63ToM/OLbOMlak9q3doQmzwDVJCje15efNe6j5dcHs27P84V385zM0/8rZn\n0OJNnFixBQBr1yqoLbTkpKSXWcaK2p7O/n4kX7hKRlgkAOHb/8DjiU4lrrFwdcK1sz+nx7+f5zlq\nCx3Xv95KQtBZALJi4slJSsbSLe+grDRc2vqRdD6E9FvGHLe2/YnHk4+Vqs7S1Qm3Lm34Z9ySfHmv\nrfuJ+Lt5o+PJTkx5pLxQMfq6SqfFrkEdag18Dv+Ny2m6eAKW7q55auwb1SM+6CxZMfEARO87hutj\nrVBptai0Wuq/O5Q2G5biv3E5PrPeRGNjnX87GjWuj7Ui4te/AUi9coOMsNu4tG+Oc1s/MsKjiDt6\nEoDYg8c5N/PDYrM7+Tcn5cJVMsJuAxDx8y7ce3UqcU3S6fOEbtgKigIGA6mXr2PpUdX03PrjRxL5\nnz2mWc5/y6bvj9PnxeY82bvJv7rd+x0JhiZ1oLa7cUaqX1cVO44Vfi7Q17vA2QFe6WKsb9VAxRtP\nq1CrVWjUKnxqqoiIe7gsj7ofqtrFn9s79qLoDeSmpBH952E8nugM3Ok/9rYAaG2sMGTnAMaZTY2N\nNQ0nj8J/4wf4zBiL1sHu4f4AUWnIksIypnVxJzcu2nRbHxeN2sYOlbWtaQmPPuY2+pjbphqnIe+R\ncfwA6O98kRn0uLw1D5u23UgP2kduxM3/2ZwaF3f0cVGlylll8DgyThhzqp1cqTJ0AjGL38aux4v5\nXr8sVJa2BLCt5kRqZLzpdmpkApb21uhsrfItNTq04EcAPNs3ynP/pZ+PUO/JVgzevxSVVkPY4fPc\n3HumzDJWpva08XAm/b72TI9KwMLepsD2DHr/BwCqtfXJ9zqK3kDHJSOo3bM1oX//Q/KNyDLLWFHb\n08rdhazoe7+SsmLi0NrZorGxNi3nKaomOzaBc9PyLw82ZOdw+/c9ptvVn++BxtqK5OArj5Q18/4c\n0XHo7GzQ2FrnWS5YVF1WbAKnp3xQYN7w3/aabtd4oTsaGyuSzl1+6LxQMfq6paszCSfOEfL5D6SH\nRlBr4HP4LZtM4NDJpprk81ep+cpTWHm4khkZS/VnHkdtoUPnaEeN53ug6A0EDZ0CgNfoAXi/OZBL\ny9fl2Y7O0QFUKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXfVd8dndXMiKjjXdLujzWVRN\nQuDpe6/lXpUa/Z7h8tIvAPB4tgcqrZbI3/+i9tCCZ8TNZebs3gAEBFz/V7d7v8h48Lhvktfdybhk\nMC0T7B4YTyekKGzYrbBl1r3lgh2b3Pv/iDiFjX8pzBnycMsJH3U/ZOnuSlbUvc9AZnQcLt61Abi0\nYh0tVs2hZv9nsHByIHjWxyh6AxZOjiQcP8Ol5WvJTkim/nvD8Jk+lrNT867MEf9dKt0M14svvkhc\nXBw5OTm0bNmS4GDjtHifPn3YsGED/fr1o3///nz7rfEcg9u3bzNixAgGDx7MiBEjuH373o8KvV7P\npEmTWLNmTdkFVBXSpAZ9/lJLK1zHLUbr4Unc6kV5HotbNYewEb1Q2zni+PLrZZevsuVUF7ITLSSn\ny3vGnPGrF4JGg8s7i0j89kPTkXuzqCxtifGIW0EUQ8kn3lu9+QyZ8SlseGwS33WZgqWjLc2G9yir\niJWsPQv+fJamPe86PHUdWx57F0tHW5qOee5Ro91TUduzJJ/FR/y81h78AnVH9OPMpCUYsrKLf0Ih\nCnuf0Rseqq4wdYY8j/eovpycsAxDVk5pIuZTEfp65u1oTo9fTHpoBACh3/+Gtac7VtXcTDWJpy5w\n7autNF06iTbfLEFRDOQkpWDIycWlYyuqdm6N/7fL8f92OVW7+GNb1zP/hopod7VWi0uHFoT/+idB\nw6dya8tO/D6cjkpX9PHmkrRfSWrsGtaj+ecLidi2k/gjJ7BrUI/qL/TiyvIvi9z+fzNDIav/CmrO\nrQfg8ebgWTX/exx8Q2HIUoUB3VR09Xu4Adej7odUqgK2azCgttDhu3AcFxZ+xpHn3+CfMbNpOGUU\nlm4uJJ+/wtmpy8mOSwSDgevrtuDSsSWqf3l5aVlRFKVC/1dRVLp3t1u3bhw8eBAPDw88PT05cuQI\nlpaW1KpVi127dvHDD8ajyMOHD+exxx7j008/ZfDgwXTp0oWjR4+yYsUKxo0bR25uLhMnTqR169YM\nHDiwmK2WXG5sJBbe96bqNc5V0acmoWTlPaKocXGn6pQPyQm/TvS8sSg5WQBY+bUjJ/Qq+oRYlKwM\n0g//gU3bbmWWr7Ll1MdGYentW6KcrpM/JDf8BjHzx6DkZGFRvylatxpUGTzOWFPFBdRqVDoLEtbk\n/TH5KCp6W7Z++1nqdPMDwMLOirjL4abHbN2rkJmYRm5GyX+M1uvZgkOLfsSQoyc7R8/lX45S74mW\nnPnmrzLJW9Hb0+/N5/F83Hg+oM7WmsQrYabHbNycyEoqXXtW69CExCvhZMQkkpuRxfX/BFK7Z9md\nE1dR2zMzMgaHxvVNty2rOpOTnIIhM6tUNQVR6bQ0nvkWNnU9OTFyOpmRMaXO5zWqL1U7G89p0tpa\nk3o1NG+OpFT0D+TIjIzFsYl3sXUF5fWdPRa7ep4ce30WmbdLnxcqXl+3866FnXcdIncduO9eFUru\nvWWJGhsrEk+eN81KWjg74jWqP7nJqag0ai5/9A1xR08Za62tUFvosG9UD5/pY0yvETTcOAOmtbcl\nN8U4a2tV1Zno6Dh0mVmk3QwnOfgqYFxSqJo+Busa7kVmz4yMwf7+z56rS4Gfz6JqqnbvSP2Jo7j6\n4Tqi/zRetMW9d1c0Nja0WL3Y+Pe6OuEz5z2uffYtcYeCStCqlV81Zzh73wRbdCI42ICNZf7By64g\nhWkD8t//n0CFhd8pzBio4um2DznY4tH3Q5lRsVi4OuV5LDM6Dtt6tdBYWhJ3+AQAycFXSLsehkOT\n+mRXc0Nnb0vsIeMSXpVKBQbloQ7Uicqj0s1w9erViwMHDnDw4EHGjRvH0aNH2bNnD0888QQREREM\nGzaMYcOGkZiYyM2bN7l8+TKrV69m8ODBfPbZZ8TFGWc6Ll26RFxcHOnpZXeuBEDmmWNY1vdF61ET\nALueLxqX5txHbeuA+9zVpAfuJe6TmaYfNgA27Xrg8PII4w2tDpv2Pcg8l3dd/f9WzgAsvO/L2eMl\nMgvI6TZnNRmBe4n7dIYpZ/aVs9x+8xmipg4kaupAUv/aRvrRP8t0sGXMWLHb8vjK3/mpz0J+6rOQ\n7f2W4u5XD8faxiPMjft35sae08W8Ql4x50PxunNyvVqrpvbjfkSdKrvlKRW9PU9/9is7Xp7Hjpfn\nsWvgIlz96mFfy9ieDfp14daek6V6vTpPtqHZmGcBUOu01HmiNZHHLpZZ3oranvGBp3H0rW+6mEX1\nPr2IPRBU6pqC+C6agMbWmhOjZjzUYAswXcQiYNAUAl+biaNvfdOFLDxf7En0gfxtEHfsTInqHuS3\neBxaW2sCH2GwBRWvrysGhQbjh5tmtGq81IvUkJum87XAuOyw5edzTedm1Rn+MpG7DwMQH3AKz5d7\nG4/8q1Q0mvYGXmNfJeXiNdNFOAKHTELRG4g78g81XugJGAd6tnU9SfjnPHFHT2Ht4YZ9w3oAVGnu\nA4pCZkQ0RUkIPI1DkwZYe1YDjJ+9uINBJa5x7doe73EjODNuvmmwBRDyydcEDXiLE8MmcGLYBLJj\nE7gw7+P/mcEWQIcmcDoEbkYZZx8271PoVsA1rZLSFG5FQ/MHriG0+7jCkk0Ka8Y/2mALHn0/FHsg\niOrPdEOlUaO1s8G9Z0diDwSSEXYbjZ0NDk0bAmBdwx3bOjVIvXwdjbUVDca/bjpvq9bA54neGwAy\n4PqvVulmuBo0aMCtW7eIiYlhwoQJrF69mr///pt58+bh7e3NunXrUKlUrF+/noYNG1KvXj1ee+01\nWrZsSUhICEFBxk7SpEkT1qxZQ9++fenUqRONGjUqZsslY0hOIO6LBbiOX4JKqyU3Mpy4z+ZiUc8H\n5zdmEDllEHa9XkLj6o5Nm67YtOlqem70gjdJ2PgxziOn4rFiEygKGUH7Sdn5Y5lkq6w547+cj8u4\nJai0OnKjwoj/bC66ej44j5pJ1NSB2PZ8CY2rB9ZtHse6zeOm58YsHIshNanMMxWUsTK0JUBmfAr7\npm+g5yej0Oi0JN+KYc+UbwCo6lubLgsG81OfhUW+xpElW3lsZn/6/Wceit5AeMBFTq3bVWYZK1t7\nHpn5DZ0/GotGpyHlVgyHp30FgHOT2rSfN4wdL88r8jWOL99Mu9lDePbn+SiKwq09J7nwXdnMFkLF\nbc+chGQuLPwM3/cnotZpyQiP4vz8ldg38qLRtNEEDZ1UaE1RHJs1pGqnNqTdDKfV6nuf5fsvyVxa\n2QnJBC/4Ar8l41FptWSER3J27mcAOPjUo/GMNwgYNKXIusJUadYQt86tSbsZQZt18033X1n1A3EB\nD5cXKkZfT7t2i8sffo3fiimoNGoyo+M5N+sT0wxV4JBJpIdGcPPbX2jz9fugUpN0+iKXPjD2oevf\nbKP+24Px/3YZKrWa1Cs3uPJJwf8kwaXl62g0fTRtn/wAFAieuxJ9Wjr6tHTOTFlGw8kj0FhZYsjJ\n5cy0FaYLGBQmJzGJS++vovHCSah0WjLDI7m44FPsGnnRcOpYTgybUGgNQN3RxpUzDaeONb1m0pmL\nXP1wbYnb77+Vi4OKhcNh3BcKObkKNd1g8Wsqzt1QmLNBYdsc41xAaDS4OoJOm3dQ9fF2BUWBORsU\nwDhoa+ENMweWfg7hUfdD4T//gbWnO22+/QC1Tkv4L3+SePI8AGenLqPBe8NRW+pQcvVcXLqajPAo\nMsKjuLX1P8b9k0pFWkgoF5dU3iWmMkwsGZVSkRY4ltDy5csJCwvjk08+4YMPPuDq1at88cUXrFu3\njr/++ovs7GyaNWvGrFmziIiIYO7cuWRlZZGZmcmMGTOoWrUq48ePZ8uWLRw/fpwFCxawdetWLCws\nitxuaD//f+kvfDi1NgdW+IxgzHmrf5vyjlGsmj8GVZr2/LJR6S+j/G8bfXF1pWnPjb7mOeerrAw+\nZ/xBWtHbs9bmQPa0/3cvCvAwuh39id3+/co7RrF6BW6uNH3973Z9yztGsboHbGV/R/NcTKksdTm8\nHT3fl3eMImkwDjBzDua/KFBFout0odLskyqLJ+3eLL6oHO1KLfqg17+l0s1wAUyaNMn0/xMmTDD9\n/4gRIxgxYkSe2po1a/LVV1/le40tW4yXYW7dujW//vqrmZIKIYQQQggh/pdVygGXEEIIIYQQonwZ\nKt9CuXJR6S6aIYQQQgghhBCVhQy4hBBCCCGEEMJMZEmhEEIIIYQQotQUZElhScgMlxBCCCGEEEKY\niQy4hBBCCCGEEMJMZMAlhBBCCCGEEGYi53AJIYQQQgghSs1Q3gEqCZnhEkIIIYQQQggzkQGXEEII\nIYQQQpiJLCkUQgghhBBClJpBLgtfIjLDJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD\nIksKS0JmuIQQQgghhBDCTFSKIkNTIYQQQgghROl0sXmjvCMUaX/66vKOAMiSwlLJ/sC2vCMUyWJC\nWoXPCJKzrFlMSGNTs+HlHaNYA858U2na89eWg8o7RpGe/+c7oHLsk/a0f7m8YxSr29Gf2O3fr7xj\nFKtX4OZK09f/bte3vGMUq3vAVn5uMbi8YxSrz8mN5Bz0Ke8YRdJ1ugCAnu/LOUnRNAysNJ/NykKR\nqxSWiCwpFEIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQgghhBBClJr8w8clIzNcQgghhBBCCGEmMuAS\nQgghhBBCCDORAZcQQgghhBBCmImcwyWEEEIIIYQoNTmHq2RkhksIIYQQQgghzEQGXEIIIYQQQghh\nJrKkUAghhBBCCFFqiiwpLBGZ4RJCCCGEEEIIM5EBlxBCCCGEEEKYiSwpFEIIIYQQQpSaXKWwZGSG\nSwghhBBCCCHMRAZcQgghhBBCCGEmsqTQDFR1n0DTaT4qjQVKzDlyd4+F7JSCa72fQfvkWnJWVTPe\nYeWEpsfHqKs2Q8lJxxC8EcPJLyVnBc9ZGTLeVb1TM/zefRm1hZbEy2Ecm/M1uWmZhda3XfA6SVfD\nubhhV577bdyd6fndTHb2nU12YmqZZqzo7en+WHN83n4FjU5H0pVQTs1fR25aRqnqnvz7czKjE0y1\nV7/dQdjOI9jXrY7fzNfR2lihKArnV24m5ujZR8pb0dvzLpcOLfEaMxCVTktaSCgXFn2OPj2jVDWW\nbi60Xvc+gYMnkpNU8N/4MFw7tqD+2AGoLXSkXA0leOGX6At4z4urs3Rzoe3XCzk6cHK+fNWf7Yp7\nV39OTlhWJpnLu6979O5MrQHPmm5r7WywdHPm8HOjyY5PMt3v/c4Q3Lu1JyfZ+NrpoRGcm/lRibcD\noKviQOM5b2HtURXFYODiktUknb0MgK1XLRpOeA2trc2dx9aQculaiV7X/TE/mrz9CmoLHclXbvHP\nvLUFtmFRdXX7dqdOn65oLHUkXLjByXnrMOTk4traB99x/VFrtegzszmzbCMJwSXLVZj9ZxQ+3qaQ\nkwsNPGH+MBV21irT478eUfj2z3tLwFIzICoB/lqmws4aFn6vEHwDDAo0rQszB6qwslAVsCXzUxSF\nGdN+w7t+VV57vYPZtuPSoSVeY19FrdORevUmFxZ9UfB+p6AatZoG7w7Fua0fKo2G0B9+I/znP7Gt\n40mT+e+anq9Sq7HzrsWZqcuJ2RdI08UTsPOugz7D+BlJOHGOK59sMNvfaE4GlaG8I1QK/1MzXJcu\nXSIoKAiAbt26kZWVVfYbsXZF++Rqcn97lZxvWqAk3UDTaX7BtVW80HZ+H1T33gZN16WQnUbO+lbk\n/tAVdZ1eqOo9KTkrcs7KkPEOSyd72i54nYPjP2PHc9NJDYuh+Xt9C6x1qFuNbusmU6tXm3yP1Xm2\nA93XT8PG3ansQ1bw9rSoYk+LuSMJmvgJf784ifTwaBq/3a9UdXa1q5GTnMa+ATNM/4XtPAJAs2nD\nCf1tP/sGzODUvLW0WfI2Ks0j7KoreHvepavigM+MNzk7bTnH+r9LRngUXmMHlqrGo3cXWn65AMuq\nLmWczR7fWWM4PfVDDvcdR0Z4FA3efLXUddWe6oz/mrlYuTnneZ7WwRafqSPwmTgcyui3bUXo65E7\nDxA4ZBKBQyYRNHwq2XGJXF7xVZ7BFkCVpg05N+sjU21pB1sADSe+TuKpCwQMGEfw3JX4LpqA2tIC\ntaUFLT6Zyc2NvxI4dDLXv/6JJvPeKdFrWjjZ02reKI5N+pS/+kwmLSyaJu8U0NeLqKverTVe/Xty\naPQS/np5GhorC7wHPYlKq8F/6VucnP81e/rN4NK6X2m1cHSp/+77xacozPpG4eOxKv5vkRrPqvDR\ntrzn1zzfQcW2OWq2zVHz4wwVrg4w/VUVro4q1uxQ0Btg2xwV2+eqyMqBdf8pn/NzQkJieG3oRnbt\nDDbrdnRVHGg8cyxnp60goN+7ZERE4f1m/v1OYTU1+vTAuqYHxwaOJ+i1qdTs9zQOjb1JuxFm+jwH\nDplEXOBpIv84RMy+QAAcfRtwYsxs0+OVdbAlSu5/asC1e/durl69atZtqGt3R4k8AYkhAOhPr0Xt\nk38HjdYa7VNfkbt/ap67Ve4tMJzfBIoBDDkYru9CXb+P5KzAOStDxrs82jch7tx1UkOjALi6ZQ+1\nn2pXYG39/t259stBQncH5bnfumoVPB9vyf43S/+jqCQqenu6tW9KQvB10m4Z2/D61r/x7J3/6GtR\ndc5+9VEMBjqsnk7Xze/TYOQLoDb+0lZp1OjsbY1/oq0V+uycR8pb0dvzLmd/P5IvXCUjLBKA8O1/\n4PFEpxLXWLg64drZn9Pj3y/zbC5t/Ug6H0L6LeN2b237E48nHytVnaWrE25d2vDPuCX5nufRoz1Z\nsYlc+vS7Mstc0fp67SHPk52QRPgvf+W5X6XTYtegDrUGPof/xuU0XTwBS3dX42NaLfXfHUqbDUvx\n37gcn1lvorGxzvfaKo0a18daEfHr3wCkXrlBRthtXNo3x7mtHxnhUcQdPQlA7MHjnJv5YYkyu7Vr\nSkLwNdJC7/XhmgX19SLqaj7zGFe+20lOchooCqcWfUPo/x1GydWz84l3SLp0EwAbTzeykx5tpcCR\nYGhSB2q7G/cl/bqq2HHMOFNUkK93gbMDvNLFWN+qgYo3nlahVqvQqFX41FQREfdIkR7apu+P0+fF\n5jzZu4lZt+PcthnJF0LIuHV3n7I7/36niJqqXdpy+//2ougN5KakEfXXYTyezPv8Kn6NcHu8HReX\nrgHAqpobGhtrGk0Zhf93K/CZORatg51Z/05R/ir8ksLt27ezd+9eMjMziYmJYciQIfz9999cuXKF\nyZMnk56ezoYNG7CwsKBOnTrMnz+f33//nf3795OZmUloaCgjR46kY8eO/Pzzz+h0Opo0MXbguXPn\nEhYWBsCqVatwdHR89MAOnigpYfdup4SjsnQEC/s8S3g0PVdiOPM1Ssy5PE9XbgehbjwAfcRR0Fii\nrv8CGB7tB5fkNHPOypDxDhsPZ9Ij402306MSsLC3QWtrlW+ZzInFxh9/7m0b57k/IyaRQ+NXmSUf\nUOHb09rdhYyoe79CMqPj0dnboLW1zrOssKg6lUZNTMA5gj/ehNrSgnafTiQ3LYNrP/zBmSXr6fDl\ndLwG9sbS2YHj01ah6B9hyUYFb8+7rAf/0DkAACAASURBVNxdyIq+115ZMXFo7WzR2FiblvcUVZMd\nm8C5acvLPNfd7Wbev93oOHR2NmhsrfMsFyyqLis2gdNTPijw9cO2Gwch1Z/uUmaZK1Jf1znaU2vA\nswQOnZLvMUtXZxJOnCPk8x9ID42g1sDn8Fs2mcChk6kz5AUUvYGgO8/zGj0A7zcHcmn5ugde3wFU\nKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXVWyga2Nh3OePpxh6sN527CoOrvaHliec6DD\nqklYVa1C3MnLnPv4RwCUXD2Wzg48vmkBFlXsCZryWYlyFSYyHjzumzx1dzIuGUzLBLsHxqkJKQob\nditsmXVvSrVjk3v/HxGnsPEvhTlDymc54czZvQEICLhu1u1YubmSGRVrup0VHYfWzibvfqeIGis3\nFzKj8vZ5O+/aebbh/c4Qrq3eZHo9C2cH4oPOcmn5WrITkmkwbhiNZ4zhzBTz7L/MTa5SWDKVYoYr\nLS2NtWvXMnLkSDZt2sSqVauYP38+P/30EytXrmTDhg1s2rQJe3t7Nm/eDEBqaiqrV6/miy++YM2a\nNbi7u9OnTx+GDRtGs2bNAHjppZfYuHEjNWrU4PDhw2WUtpCdk0Fv+l+130gw5GI4922+Mv3+aYCC\ndvBRtM//iOHmHtBnl1E2yWmenJUh452k6oKzKoaKtAa7grdnYW344KCoiLqbP+/j7PKNGHJyyU1N\nJ+S7nVR7vDVqCx2tl7zFybmr2d37HQ6NWIDfjNewcncu8LVKpoK3pylEwV9HeT6bJakxg8L6DQ+8\n5yWt+zdUpL5e/YUexBw8Tubt6HyPZd6O5vT4xaSHRgAQ+v1vWHu6Y1XNDZeOrajauTX+3y7H/9vl\nVO3ij21dz/wbKKLd1VotLh1aEP7rnwQNn8qtLTvx+3A6Kl0JjjerCuvDSonr1FoNbu18CZyykr0D\nZ6NztKXxWy+barLik9n1xLvsHzqPlvNGYlfLo/hchTAU8ru3oG6z9QA83hw8q+bPHnxDYchShQHd\nVHT1K58B17+mJP2kiJqC+tn93wWOTRugc7Qn8o9DpvuSg69ydupysuMSwWDg2totuHRsiUpb4edA\nxCOoFO+uj48PAPb29nh5eaFSqXB0dCQjIwNvb2/s7IxTsW3atOHQoUP4+fnRqFEjAKpVq0Z2dsE/\nDnx9fQFwdXUlM7PwE4lLJSUMVbX71sHbVUfJiIfcdNNd6iaDQGeDdvBRVBqdcSnP4KPkbu8Dai36\nAzMh03gyvbrNeJTERzuJVnKaOWcFz9h07AvU6NoCAJ2dFYlXwk2PWbs5kZWUij7DPAO8h1IB27PR\n6Jfw6NISAK2tNclXb5kes3JzIjspFX1m3nNCMyLjcPL1KrDO8+mOJF8OJfnKnddRGY92O3h5orGy\nJOrgKQASzoaQEhKOk68Xt6PieSgVsD0LkhkZg0Pj+qbbllWdyUlOwXBfu5akpqx4jepL1c6tAeN7\nnno1NO92C3jPMyNjcWziXWyduVTUvu7eowOXP/ymwMfsvGth512HyF0H7rtXhZKbi0qj5vJH3xB3\n1NgfNNZWqC102Deqh8/0MabqoOHGGTCtvS25KWkAWFV1Jjo6Dl1mFmk3w0kONp5OEHvwOKrpY7Cu\n4V5gHp8xL5r6uq4Ufd25acF9PTMmkYi9J0wzYrd2HKbRqD5o7ayp2qYxt/eeACDp4k2SLofiUN+T\n1NDIohu0ENWc4ex9E0LRieBgAzaW+QcFu4IUpg3If/9/AhUWfqcwY6CKp9v+lw+2gKyoWBybPLBP\nSUrNs08pqiYzKhZLV6c8j90/C+/eoyORO/fDfcs6q/g1QutgR+zB4wCoVCowKBXswKcoa5VihktV\nyNEjlUpFSEgI6enGHw6BgYHUrVu30OeoVCoM932gC3vdR2G48Teqav5Qxbjz1fiNwBCyI09N7g9d\nyN3QhtyN7cnZ/iLkZpC7sT2kRaLxG4Gmw0xjoY0bmqbDMFzYLDkrcM6KnvHs57+w65U57HplDrsH\nLcS1WT3sahl/bNTv+zjhe0+W2bbKQkVsz4tfbjNd3OLA0Lk4NfXGtqaxDeu81J3I/f/ke0700bOF\n1jl4edJo9EugVqG21FGvXy/CdweQeisKnZ01Ts2MX+42nm7Y1a1uOs/jYVTE9ixIfOBpHH3rY+1p\nPMJfvU8vYg8ElbqmrISs2UrAoCkEDJpC4GszcfStj01N43Y9X+xJ9IHj+Z4Td+xMierMpSL2da29\nLTaeHiSduVTg44pBocH44VhVcwOgxku9SA25SVZMPPEBp/B8ubfxyL9KRaNpb+A19lVSLl7Lc0EC\nRW8g7sg/1HihJ2AcxNnW9SThn/PEHT2FtYcb9g3rAVCluQ8oCpkR+WfbAC58sZ29/Weyt/9M9g2Z\nZ+zDd9qw7svdub0vf1+POnqu0LrwvwKp0cMftaUOgOqPtyIh+BqK3kDLuSNx9jP2dft6NbCvU434\nsyEP1c4AHZrA6RC4GWX8cb95n0K35vnrktIUbkVDc6+89+8+rrBkk8Ka8f8bgy2AuGN39il3+myN\nPr2IORhU4pqYA0FUe/ZxVBo1Wjsb3Ht2JOa+fVKVFo2JP553mbbGxooG418znbdVa9BzRO8NABlw\n/VerFDNchdFoNLz99tsMGTIEtVpNrVq1mDhxIjt27Ciw3tfXl2XLluHl5VXg42UiI4bcP0ajffZ7\nVBodSuJ1cneNROXeAk2vz40/YoqgP7YC7VPr0A41dlj90fdRovLv4CVnBcpZGTLekRWfQsCsr3ns\ng7GodVpSb0UTMMN4PoRz4zr4zx3OrlfmmGXbJVbB2zM7IZmTc9fQZvk7qHVa0sKi+WeW8TLpVXzq\n0nz2CPYNmFFk3aU1P9N0ylC6bVmCSqsh4q9Abv68D4DACR/TdNJgNBY6DLl6Ti/6mvSwgn8clkgF\nb8+7chKSubDwM3zfn4hapyUjPIrz81di38iLRtNGEzR0UqE15padkEzwgi/wWzIelVZLRngkZ+ca\nz7dx8KlH4xlvEDBoSpF1/7aK0tetPT3Iik1E0d9bwnp3hipwyCTSrt3i8odf47diCiqNmszoeM7N\n+gSA699so/7bg/H/dhkqtZrUKze48kn+Za8Al5avo9H00bR98gNQIHjuSvRp6ejT0jkzZRkNJ49A\nY2WJISeXM9NWYCjBxWiyE5L5Z+5a2i5/B7VWQ1pYNMdnrQagSuO6tJj9Onv7zyyy7tqWv7BwsOPx\nHxagUqtJvHiDsx9+jT4ji4DxH9Ns0iBUWg2G7FyCpn+R55+KKC0XBxULh8O4LxRychVqusHi11Sc\nu6EwZ4PCtjnGY+yh0eDqCDpt3kHVx9sVFAXmbFDgznk5Lbxh5sBKcWz+oeQkJHN+wec0fX+CcZ8S\nFkXw/FV5PqOF1YDxAhrWNTzw37gCtU5L+M9/knjyvOn1bWp65Bvcxx09RdjW/9B6zQJQqY3/vMVi\n8/1TMOamIAPFklAphV2+RuST/YFteUcoksWEtAqfESRnWbOYkMamZsPLO0axBpz5ptK0568tB5V3\njCI9/4/xpP+K3p4WE9LY0/7l4gvLWbejP7Hbv4ArN1YwvQI3V5q+/ne7gi9BX5F0D9jKzy0Gl3eM\nYvU5uZGcgz7lHaNIuk4XANDzfTknKZqGgZXms1lZtLSt2H3on7SN5R0BqCRLCoUQQgghhBCiMqrU\nSwqFEEIIIYQQ5UMuC18yMsMlhBBCCCGEEGYiAy4hhBBCCCGEMBNZUiiEEEIIIYQoNYNKrlJYEjLD\nJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD/MPHJSIzXEIIIYQQQghhJjLgEkIIIYQQ\nQggzkSWFQgghhBBCiFKTJYUlIzNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlNkSWGJ\nyAyXEEIIIYQQQpiJDLiEEEIIIYQQwkxUiqIo5R1CCCGEEEIIUbn42L1c3hGKdCH1p/KOAMg5XKWy\nr8NL5R2hSF2PbOPvdn3LO0axugdsrTQ5d/v3K+8YxeoVuJkdrV8t7xjFevr4D5Xmfd/sN6y8YxSp\n3+n1ABW+PbsHbCU57p3yjlEsB5dPsbGsU94xipWedaPS9PXKsu+s6H0IjP1oT/uK/aO221Hjj9qK\n3p7dA7ai5/vyjlEsDQPLO0KJGVRyDldJyJJCIYQQQgghhDATGXAJIYQQQgghhJnIkkIhhBBCCCFE\nqRnksvAlIjNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlPQl3eESkFmuIQQQgghhBDC\nTGTAJYQQQgghhBBmIksKhRBCCCGEEKUmVyksGZnhEkIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQggh\nhBBClJosKSwZmeESQgghhBBCCDORAZcQQgghhBBCmIkMuIQQQgghhBDCTOQcrjLi3KEl9UYPQq3T\nkhpyk0vvf44+PaNUNZZuLrRcu5jjQyaQk5QCgNbejvrjX8emricaS0tubthG1K79RWZx6dASr7Gv\notbpSL16kwuLvsiXpdAatZoG7w7Fua0fKo2G0B9+I/znPwGwrulB4xlj0Tnak5ueyfn5K0m/GQFA\nleY+eL81CLWlBbmp6Zxf8BmZEdG0WrMQjZWlabs2tar/q5nvsqrmhv/6pZx8dwEpF6+Z7lfptPh9\nMI2In/8kem9Ake16l2vHFtQfOwC1hY6Uq6EEL/wSfVpGyevUKhq+NwTXdsa8N77/nbDtfwFgW7cG\njaeNQmNjBYrClc82ERdwmjpDnsejVwfTa1tUcUBrY8WebsNLlNmtY3MavtUftYWWlCu3OLNgDbkF\nZC6sTmtrTbPZo7CrUx1UKsJ2HOTaht8BcGxcj8YTBqOxskSlUXNtw++E7zxcbCZzvef2Pl40GDcM\njZUVKrWam9/9QuSug3let+YrT1H9+e4cGzihRO33oGqd/Gj2zsuoLbQkXQ4jcO5X5KZllrjOwsGW\nVjOHUKVhLfQZWVz/9RBXNhk/A25tGtF8Qn9UGg1ZSamcWvYDiZdvlTqjudrXqWUTvN8ejEqrwZCV\nzeUPvyH5/NWHaMX8Dh2O4bMvL5OdY6C+lz0zp/tiZ5v3a2rv/ijWrLuKSq3CwV7LzKm+eHrakJSc\nzZLlF7h8JRlrKw3PPl2Dfn1rl0muBz3Z+3HmLZiMpaUF585eZMwbU0hJSc1X99xzTzBj9nsoBoWE\nhCTGjpnC9WuhODk58snKRTTz8yE9LYNvv93Kl59vKJNsFbGvg3n3m06tmtDw3cGoNGpyklK5+NEG\nUq/cBMB7dD/cuvoDkHwhhPNL1mHIyi4wY3l8DzVdPAE77zroM4z7j4QT57jySdGfBZcOLfEaMxCV\nTktaSCgXFuX/vVFojVpN/XeG4tyuOSqNmtAffifi590A2NTxpNHUN9BYWwEQ8vl3xB87DYDv+xOx\nq18bffqdnP8Ec/WT9cXnLOP2tK3jSZP575qer1KrsfOuxZmpy4nZF/hQ7fmoFEVhxrTf8K5fldde\n71D8E/7LKOjLO0Kl8F8zwxUUFMTFixfLZdu6Kg40mvEWwdOXEzjgHTIjoqg3dlCpatyf7EKLLxZi\nWdUlz/MazXyLrJg4TgybxOl35uL93mtYVnUuMkvjmWM5O20FAf3eJSMiCu83B5a4pkafHljX9ODY\nwPEEvTaVmv2exqGxNwBN5r5L2PbdBAwYx/V1m2m6eCIAllWdabZ0EpeWryNw8CRi9h6j0aSRAJwY\nNZPAIZMIHDKJa2s3k3k7+l/NDKC20NFk3tuodHl/uDn4NqDNuvep0qxRoe2ZP6s9vrPGcHrqhxzu\nO46M8CgavPlqqepq9umJTc1qHBkwkYBh06nd/ykcGnsB4DP5dcJ/30vAoCkEL/iSZu+/h0qj5sa3\nvxIwaAoBg6ZwfPQ89JmZnJnxSYkyW1Sxp9mcNzgx+WP2vzSR9PAoGr3Vv1R1Dcb0JTMqngP9pnB4\nyCxqv9SDKk3rA9Bq2XtcXr2NQwOnE/TOMnzGDcKmpkcx7Wi+97zZ4olcW7uFwCGTODVuEfXfGYr1\nfXkcmzWk9uDnS9R2BbF0ssd//uscnrCKnc9PIzU8Gr93+5aqrvmkAeSmZ7Grz3T+GrQAj45NqdbZ\nD52dNR0/fJtTH27mj76zOLHwW9ovH4taV7pjY+ZqX5VWi+/CcVxY/CWBgydx/ZttNJ7z9kO2ZF4J\nCdnMX3SOpe83Z9uPnahR3ZpVn1/OU5OZpWf2vLMsW9ycHzZ0oPNjbqz46AIAH31yCRtrDVu+f4xv\n1rbjSEAsBw/n3988KldXZ75cs5xX+4+hedPuXL9+iwWLpuSrs7Ky5Kv1HzGg32ja+T/Fjh1/8cGH\ncwFYunw2aalptPTrSZdOfXjiia70fqrbI2eriH0dzLvf1Npa03zpeC6v/I6jAydzfuk6/N5/D5VO\ni1tXf1zaNuPooMkc6T8BtZUltfs/VUjG8vkecvRtwIkxs03fk8UNDnRVHPCZ8SZnpy3nWP93yQiP\nwmts/pyF1dR4oSfWNasROHAcx+/ktL+Ts+Gkkdz+v70EDZ3EhUWf47twPCqN2pTznzGzCRo6iaCh\nk4odbJmrPdNuhJnaKnDIJOICTxP5xyFi9gU+VHs+qpCQGF4bupFdO4PNuh1R+f3XDLi2bdtGdHTZ\nf7mWhJO/HykXrpIRdhuAiO1/4N6rU4lrLFydcO3sz5kJi/I8R2tvh5N/M258tQWArJh4/hk5lZzk\n/EdS73Ju24zkCyFk3IoEIHz7bjye6FTimqpd2nL7//ai6A3kpqQR9ddhPJ7shGVVZ2zrVCfqT+PR\nzLijp9BYW2LfsC5u3doRe/QkKZeuG1/vlz+5/PE3ef8WBzsaTR5J8LyV/1rmuxpOHMHtHfvISUrO\n85o1X+lNyOofST5/pdD2fJBLWz+SzoeQfifHrW1/4vHkY6Wqc+vahoj/22fKG/nnEar1NuZVadTo\n7O2MbWZrXeCR2AbvDib2yClij54qUWbXds1IOn/NlOXmT39RvXfHUtWdX/EtFz75HgBL1yqoLbTk\npqajttBxZe124gLPAZAZHU92YgrWboUfFADzvedqCx3XvtpKQtBZwNhncpJSsLpzIMPC2ZGGE0dw\nZdXGErVdQTza+xJ/7jqpoVEAXN2yl1pPtS9VnXPjOtz4vyMoBgVDrp7bB89Qs0cb7Gq5k5OSQXSg\ncRCRcuM2uakZuPh553v9opirfZXcXA49+wapl28AYF3D3TQb/6gCAmNp7ONArZq2ALz0Yi127b6N\noiimGoNeQVEUUlNzAUjP0GNhafwau3AxmaeerI5Go0KnU9OxQ1X+3htVJtnu171HJ/45cYaQqzcA\nWLvmO/r1zz+A12g0qFQqHB3sAbCztSEzMwuAFi19+eGHnzEYDOTk5LBr5x5e6FPwQKA0KmJfB/Pu\nN21qVSM3NZ34IGOu9JsR5KZlUKVpA6L3BRI4YjZKrh6NrTUWTg5kF/J5LY/vIatqbmhsrGk0ZRT+\n363AZ+ZYtA52Rbals78fyReukhF2N8Mf+XMWUVO1iz+3d9zLGf3nYTye6AwYZ4u09sb+p7WxwpCd\nkydnw8mj8N/4AT4zSpDTzO0JUMWvEW6Pt+Pi0jUP3Z6PatP3x+nzYnOe7N3ErNsRlV+ZLCncvn07\ne/fuJTMzk5iYGIYMGcLff//NlStXmDx5Munp6WzYsAELCwvq1KnD/Pnz+f3334t8To8ePdi5cyfr\n169HrVbTqlUrJk6cyMqVKwkLCyMuLo6IiAimTZuGk5MTBw8eJDg4GG9vb/r27cvhw8aBwbhx4+jf\nvz/h4eHFbu9hWbm7khUVa7qdFROH1s4WjY21afq8qJrs2ASCpy/P97rWnh5kxyZSc8CzOLdriVqn\n5dam38i4dbvwLG6uZN6/neg4tHY2ebMUUWPl5kJmVFyex+y8a2Pp5kJWTALc9+MnKzoeSzcXbGpV\nx5CRhe+C97CpVZ3MqFguf7w+T67ag583DsruW85n7swA1Z/rhkqrIeLXv6kz7MU82w2ebZwhqj3o\nuULbM19Wdxcyo/NuS2dng8bWOs/ymKLqrNzz5s2Mjsf1Tt4Ly76m9eezqD3gKSycHTkz4xMU/b1L\nrtrW88StS2sO9XmnxJmt3Z3JeGB7OjsbtLbWeZYaFVen6A00nz8Wj+7+RO47TurNCDAo3Pp1n+k5\nNft0Q2tjRcK5ogex5nrPDdk53P59j+n+6s/3QGNtRVLwFVCraTLvXa6u2oghN7fE7fcgaw9n0qPi\nTbczouKxsLdBa2uVZ1lhUXVxZ69R55kOxJ66gkanxbNHKwy5elJuRqK1scS9fROijgbj3KQuDl41\nsHZ1LFVGc/YpRa/HwtmRNuuXYVHFnrMzPypVtsJERWXi7m5luu1W1ZK0tFzS0vWmZYU2NlqmTW7M\n628cw9HRAoNeYd1q43Ix3yaO/GdXBH7NqpCdbWDv3ii0WlWZZLufp2d1wsLu7YPDw27j6OiAvb1d\nnmWFaWnpvPPWDPbs30Z8XCJqjZruj78MwPHAU7z6ah+OHjmOpaUFz7/Qm5xH+EzeVRH7Oph3v5kW\nehuNjRUubZsRd+wMDj5e2NXzxNK1CmD8vNbs+wTeo/uRFRNP9J2ZkHwZy+F7yMLZgfigs1xavpbs\nhGQajBtG4xljODMl/++B+9so6/42KvD3RuE1lg/8FsmMjsPlTs5LK9bRYtUcavZ/BgsnB4JnfYyi\nN2Dh5EjC8TOmnPXfG4bP9LGcnbqs8JxmbM+7vN8ZwrXVm0yv9zDt+ahmzu4NQEDAdbNto6KTy8KX\nTJnNcKWlpbF27VpGjhzJpk2bWLVqFfPnz+enn35i5cqVbNiwgU2bNmFvb8/mzZuLfM727dtJTExk\n5cqVrF+/nk2bNhEVFWUaRFlYWLBu3TpmzJjB+vXr8fX1pVOnTkyaNInq1Qs+R6i47T0SVcFf6orB\nULqaB19Wq8G6hju5aRmcHD2D87M/wuud4dg1rFd4FnUJtlNEjaqAxxR9wfebHtNqcO3chpA1PxI4\ndDLxx8/SbMmke5uz0FHj+R7cWF9IO5sps33DutTo08t09KssFNYO6A0lrysor8GA2kJHs0XvcW7+\nFxx4dixBb8yl8bSRWLrdW2Zau19vbm39o8BzMgqlLribKw9kLkndqdmf82ePN7BwsKP+iLwDWK+h\nz9LgjZcIGrcCQ1ZOMZnM857fr/bgF6g38hVOT1yCISsb77GvknjqPPGBZ4rOVgxVCftyUXWnPvgR\nFIUnNs+j40dvE3U0GEOOnty0TA699wmNX3+WJ7bMp86zHYkOuoAhp5Rr5M3cvtnxSRx+7g2Oj5xB\n45ljsa5ZrXT5CtquUvD9mvs+lldDUlj3dQhbvn+Mnb91ZfjQekyZfgpFUXjv7YaoVDBw6FEmTTuF\nv78LWl3ZL+JQF9Juen3e96hJk4ZMm/EOLZv3xKtuW5Yt/YwffvwSgKlTFqEoCkcDd/Dj1tXs+fsQ\nOdkFn1dUynAF3l2ufR3z7jf1aRmcmriCusNeoP33y6j+dGfij5/DkHNvAHtr6x/s7f4a0fuC8Fsy\nvuBtlMP3UHLwVc5OXU52XCIYDFxbuwWXji1RaYs4Fl7Ye5cnZ+E1Be6X7nz/+C4cx4WFn3Hk+Tf4\nZ8xsGk4ZhaWbC8nnr+TJeX1dSXKadx/k2LQBOkd7Iv84ZLrvodpTiH9JmX0KfXx8ALC3t8fLy8u4\nlMLRkYyMDLy9vbGzM07rtmnThkOHDuHn51foc7KysggNDSU+Pp5Ro0YBxsFSaGhonm15eHiQXcyX\n1P3LUYra3qPIiorFoUl9022Lqi7kJKdgyMwqVc2DsmMTAIjcsReAjPBIks5cwKFxfVIv5Z8pursd\nx/u2Y1nVmZyk1HxZCqvJjIrF0tUpz2NZ0XFkRsZi4VIlz7buPpYVk0DS2UumZQERv+2h4fjXUFta\nYMjKxqV9C1Kv3CAzouAln+bK7NG7C1pba1qvNS7VtHR1Ns1wxB48XmCWgniN6kvVzq0B4zK/1Kuh\n+XLoH3gfMyNjcWziXWBdZmSc6ejr/XntvGqisbIg9tA/ACSdu0LqtVtU8fUmak8cqFW4dWtLwJBp\nxWZu8MbLuHVuCYDO1obkkHuZrao6k11I5iq+XgXWubZrRsrVULJiE9FnZBHxxxE8uhlnFtQ6Lc3m\njsa+bg2ODJ9Dxu1YimOu9xyMF0JpPOtNbOt6cnzkDDJvxwDg8WRnshOSqNqlLRprKyyrOuP/7XIC\nh9w7OFAY37F9qN6lhbE97axIuhJmeszazYmspFT0GXn3RemRcbg0rVdgnaWHHac/2kJ2choAjYY/\nZVx6qFKRm57F3hFLTM/r/fP7pN4q3dI4c7WvxtYG59a+xOw3zhKkXLpO6tWb2HnXKnLmvSTc3a04\nF5xouh0Tk4WDvRZr63tfU0ePxeLXzAlPTxsA+r5Ui48+vUhSUg6ZmXrefrMBjg4WAGzYeI2ad+oe\n1azZ43j6mZ4A2DvYEXzukumx6jU8iI9PJP2BiwH06NWZo0dOcP2ase+t/uJbli2fhYuLE9Y21syY\nvpiEhCQAxk8YTUjIzYfKVlH7+r+130SlIjcjk+Nj5pse67D5Q9LDorCrXxuVSkXKnSWwYb/uoVa/\n3gXmLY/vodzkVLQOdqbvI5VKBQalyAOxmZExODR+IMMDvyWKqsmMisXigZyZ0XHY1quFxtKSuMMn\nAEgOvkLa9TAcmtQnu5obOntbYg+VPKc59/EA7j06Erlzf54jNVX8GpW6PYX4t5TZ4b/CjuaqVCpC\nQkJIT08HIDAwkLp16xb5HABPT0+qVavG119/zcaNGxk0aBDNmzcv9Hkqlco0uMrNzSUtLY3s7Gyu\nXr2ap8Yc4gNP4dCkAdaexqO81V/oRezBoFLXPCjzdjQpF0PweKorADonRxybNiTlYuFXBIs7dhpH\n3/qmiwTU6NOLmAe2U1RNzIEgF8S7ZQAAIABJREFUqj37OCqNGq2dDe49OxJzIIismHgywqNw72G8\nAo9zWz8Ug4HUkFBi9gdSpVlDrKq5AeDWtS2pIaGm84+qtGhM/PGz/3rmKx+v5+gr75pOns2KjSd4\nzielGmwBhKzZarpgReBrM3H0rW86UdzzxZ5EH8j/enHHzhRaF33gODXuy+vRswPR+4JIvxWJ1s4G\nx6YNAOP5MbZ1apB86QYA9l61yE1OMw0ginJ59U8cGjidQwOnc3j4bJzuy1Lrpe5E7T+R7zkxAWcL\nravesy31R70EGH90VevZjrjjxpOEWy59F52tNUdem1uiwZaxfczzngM0fX8CWlsbjo+cmaetDj0z\nisDBxs/ChcVfkBEeWaLBFsC5z39md7/Z7O43m78GL8ClmRd2tdwB8Or7OBH7TuZ7TuTRc4XWefV9\nHN83+wBg6exAvRe7ELozABSFTp+Nx6lxHQA8e7bBkKsv9VUKzda+BgM+M8bg2KwhALZ1PbGpXYPk\nEiwrK047fxfOBScRess4CN32yy06d3LLU9OogQP/nIwnLt74o23/gSiqV7OmShULtv1yi9VrjfvG\nuPgsfvktjCd6PvrMG8CC+R/Rzv8p2vk/RddOfWjj3xwv7zoAjBg5kB2//5nvOadOnqNTp7a4ubkC\n8Oxzvbhx4xZxcQmMHDmQWXOMMy1ubq4Mf70/W3789aGyVdS+/m/tN1EUWn40FQcf48EN9+7tUHJz\nSb1yE3vvWjSZPQa1pXEQXv0p4+xXQcrje0hjY0WD8a+ZzjOqNeg549VyixggxAfeyeBpzFC9Ty9i\nDzz4e6PwmtgDQVR/pluenLEHAskIu43GzgaHpsa+fff7J/XydTTWVjQY//q9nAOfLzanOffxcPd3\nRd738mHaUzw6BUOF/q+iMPs8q0aj4e2332bIkCGo1Wpq1arFxIkT2bFjR5HPc3Z2ZtiwYQwePBi9\nXk+NGjXo3bvgI1MAfn5+rFixAk9PT4YMGUK/fv3w9PQscolhWclJSObios9osmgiKp2WzPBILsxf\niX0jLxpOHcPxYRMLrSnOuWnLqD9hJNVfeALUKm58vZWUCyFFZjm/4HOavj8BtU5LRlgUwfNXYd+o\nHj7TxxA4ZFKhNWA8adW6hgf+G1eg1mkJ//lPEk+eN2aZ9RE+00ZTZ/hLGLJzODfjQ1AUUq/c4OKy\ntTRbOgmVVkNuShpnZ3xoymRTsxpRF8snc1nLTkgmeMEX+C0Zj0qrJSM8krNzPwPAwacejWe8QcCg\nKUXWhW3bjU0Nd9p/vwyVVkvYz3+RcNJ4kYRTkz+g0YRhqC10KLl6zi9ZS0a4cXbDplY1Mkow2Coo\n8+n5q2m19F3UOi1pYVGcnvMFAI4+dWk6cySHBk4vsu78R9/TdPrrdN68FEVRiNp3guubduHk1wD3\nzq1IvRlB+6/mmLZ5ceWPxAYUvnTPXO+5Y7OGVO3UmrSbEbRes9C0vauf3bu88aPKik8hcPZXdFzx\npvGfeAiL5tiMtQA4Na5Dmzmvsbvf7CLrLny1g7aLRvHktoWgUhH85S/EBxvPAQiY+iVt5gw3/s0x\niRx679NSZzRnnzozZTkN3huGSqvFkJND8OxPyIqJLypOiTg7WzJ7hi9TZ5wiJ0fBs4YNc2f7cv5C\nEguXBPPDhg60ae3CoIF1Gf1mEDqdCgcHHSuWGmd3hg2ux5z5Z+k38DAKCiNf96ZJ49Kd+1YSMTFx\njB41ie83fYGFhY7r124y4jXj4Klly6Z8/uVS2vk/xf59R/n4o9Xs+vNHsrNzSIhP5JWXjFdvXb7s\nc7765iOC/vkDlUrFogUfc+LEoy11hYrZ1+/mMud+8+ysT2k8fRRqnZas2EROTVoBwO2dB7Hx9KDd\nhsUoej2p18IIXri6wIzl8T0Ud/QUYVv/Q+s1C0ClNl6+ffGXRT4nJyGZCws/w/f9icYM4VGcv/N7\no9G00QQNnVRoDUD4z39g7elOm28/MOb85V7Os1OX0eC94agtjd8/F5euJiM8iozwKG5t/Q+tVhv3\nV2khoVxcUnxOc7anTU2PfKtmHqY9hfi3qBSlsJXz4kH7OrxU3hGK1PXINv5ul//y1BVN94CtlSbn\nbv9+5R2jWL0CN7Ojdf5LLFc0Tx//odK875v9hpV3jCL1O70eoMK3Z/eArSTHlfwCL+XFweVTbCzr\nlHeMYqVn3ag0fb2y7Dsreh8CYz/a0/7l8o5RpG5HfwIqxz5Jz/flHaNYGgYWX1RBeNo/+j9pYU7/\n396dR0VV/38cf84AIrIoguKCqCCWZmqItlhaaibW91uSkJio5bGs1COKOyaikmuYWG5pKqdUTDjH\nXMq00lJzaaOfkQsGilruIYsoML8/PMwXZEBGm9B6Pc7xnLoz87nvz713PnPf9/O+l8zLX9z8TX8D\n3UkoIiIiIiJWK9IfPq6Uf8zf4RIREREREbnTKOESERERERGxEZUUioiIiIiI1e6kJwHeyTTDJSIi\nIiIiYiOa4RIREREREQGuXLnC6NGjOX/+PM7OzsycOZPatWuXes/y5cvZuHEjBoOBIUOG8OSTT1bY\nphIuERERERGxWpHpn/eUwtWrV9O8eXOGDRvGpk2beO+994iKijK/npWVxapVq9i6dSt5eXk899xz\nN024VFIoIiIiIiICfPfddzz22GMAdOrUiT179pR63cnJiQYNGpCXl0deXh4Gg+GmbWqGS0RERERE\n/nXWrVvHypUrSy3z8PDA1dUVAGdnZy5fvlzmc/Xr1+fpp5+msLCQV1999abrUcIlIiIiIiL/OiEh\nIYSEhJRaNnToUHJycgDIycnBzc2t1Os7d+7kzJkzbN++HYBBgwYREBBA69aty12PSgpFRERERMRq\nJoru6H+3IiAggB07dgDXk6t27dqVer1mzZpUr16datWq4ejoiKurK1lZWRW2qRkuERERERERICws\njLFjxxIWFoaDgwNz584F4IMPPsDHx4euXbuye/duQkNDMRqNBAQE0LFjxwrbVMIlIiIiIiLC9Ydi\nzJ8/v8zyl156yfzfw4cPZ/jw4ZVuUwmXiIiIiIhYzcQ/77HwtqB7uERERERERGzEYDKZTFUdhIiI\niIiI3F3quLSv6hAqdDZ7f1WHAKikUEREREREbkGR6daeBPhvo5JCERERERERG1HCJSIiIiIiYiMq\nKRQREREREavd6h8X/rfRDJeIiIiIiIiNKOESERERERGxEZUUioiIiIiI1Uwm/eHjytAMl4iIiIiI\niI0o4bpDxcfHs3r16jLLhw4dWmbZ6tWriY+PL7M8KSmJOXPmlFoWERHB1atXy11vx44dKx1jly5d\nyM/PL7Vs586drF27tsx7Q0NDyczMLLctS7HejnHjxrFz585Sy86ePUt0dHSZ986ZM4ekpKRKtftX\nx3mjvXv3EhERUWb59OnTOXXqVKllaWlphIeH39b6wsPDSUtLu6027nRLliwhJSWlqsOwOUv7srzj\n6XYlJSWxffv2v7zdW1U8vpSMa+TIkTz//PMcPnyY8PBw+vTpw59//mlVu5bG25vFcDs+//xz/vjj\nj9tq425k63HVVvLz8+nSpUtVh/GXyczMJDQ0tKrDqJRDhw6xf//1P2hr6VzkTrN//35+/fXXqg5D\nqpBKCu8yCxYsuK3Px8XF/UWRWNapUyebtn876tSpYzHhuhtMnDixqkO4a73yyitVHcI/TnBwcFWH\nYFHJuHbv3s23337LqVOnyMnJqfRFlZJud7y11qpVq4iOjsbLy+tvXa/I3Wbr1q14enrSvn37qg6l\nUtavX0/Pnj259957qzoUqSJKuKxw7do1xo8fT2ZmJoWFhbz00kusXr2apk2b8ttvv2EymYiLi6NO\nnTrMnTuXAwcOUFRUxMCBAwkKCiI8PJx7772XI0eOkJ2dzTvvvEPDhg3LXd+2bdvYsmULV65cISoq\nitatW9OxY0d27drFgQMHiI2Nxc3NDTs7O9q2bWuxjZ9++omXX36ZCxcuEBYWxuLFi9myZQu///47\n48aNw97enoYNG3Ly5EkSEhK4evUqo0aN4tSpU9SqVYv58+fj4OBQboxvvvkmJ0+exMPDg5kzZ7J5\n82aOHTtGZGQkcXFxfP3119SrV4+LFy9WahsvX76cTZs2YW9vT2BgICNHjqRHjx5s2bKFCxcu0Llz\nZ3bv3o2zszMvvPACycnJ5bb10UcfsWzZMgoLC5k+fTp2dnaMHDmSxMREPvvsMxYuXEjt2rW5du0a\nvr6+Ftu4cuUK48eP59SpU1y7do2nnnqq3FhHjx7Nd999x8yZM7G3t8fJyYl33nkHR0dHJk+eTEZG\nBkVFRYwYMYIHH3yw3LgzMjIYNGgQFy9eJCwsjJCQEMLDw4mOjsbV1ZXIyEhMJhN16tQpt42hQ4fS\nv39/OnTowM8//0x8fDxubm6ljt2ePXua3x8fH4+npydhYWGkpaURHR1NQkIC//nPfwgMDOTQoUP4\n+vri4eHBgQMHqFatGkuWLOHKlStMnDjRvH+joqK45557LMaUnZ3NxIkTuXz5MmfOnCEoKIiNGzey\nefNmDAYDMTExPPzww3h5eTFlyhScnZ3x8PDA0dGRGTNmWGwzPj6eY8eOcf78ebKysoiKiiIwMJAn\nnngCX19f/Pz8yMrKomfPnnTo0KHUvpw0aRKtWrWyat8US0pKYv369RQVFdGjRw+2b99OXl4e7u7u\nLFiwgI0bN7Jjxw6uXLnC8ePHGTx4MMHBwaSkpFjsW0JCAhs3bsRgMNCzZ0/69+9f4fotjUUA7777\nLufOnSMvL4+333671GfWrVvH6tWrKSoqokuXLgwfPrzcvm3bto2cnBwuXrzIG2+8wVNPPcUzzzxD\nkyZNcHBwwNfXF09PT/r06cPUqVNJSUnh2rVrDBs2jG7dulkc/yrTh4YNGxIbG0tRURFeXl7MmTOH\n6tWrW4zT0vhSfBwfOnSI7OxsXnvtNQoKCjhy5AhdunShUaNG5j65u7sTFxeHnZ0djRo1IiYmhk8+\n+cS8X4cPH05kZCS7du3il19+YerUqdjZ2eHo6MjUqVNp0KCBVWNcye0XExNT5ntz+vRpUlNTGTt2\nLLNnz2bs2LEkJiYC12fP3n77bZKTk/nhhx/Izc1l+vTpTJgwgXr16nHixAnuv/9+pkyZUul9Wq1a\nNRYsWIDJZOK+++5jypQpbN26lQ8//JCCggIMBgMLFiygdu3aFfbrr3Ljb5W3tzfz5s3D0dGRWrVq\nERsbS2pqKmvWrDFfOCz+PRw3bhyXLl3i0qVLLF68mJo1a9oszpycHCIjI8nKysLHxweAffv2mbdl\nTk4Oc+fOZd++faSnpzN27FgKCwt57rnn+Pjjj3F0dLRJXMHBwSxduhQ3NzcefPBBEhISuO++++jV\nqxfPPfeceZwtHl9Onz7NpEmTyM/PNx/TxQoLCxk3bhz+/v5/6QWrpKQkvvzyS65cucLZs2fp378/\n27dv58iRI4wZM4bc3FxWrlxJtWrVaNKkifk7eeNY2rFjR5KTk3FwcOC+++4DIDo62jzDvGDBglLH\nwK2ut6LPdOvWjS1btrBixQqMRiPt2rUjMjKS+Ph4MjMzOX/+PKdOnWL8+PG4u7vz9ddfc/DgQZo1\na0ZISAi7du0Crlcd9enTh5MnT950fXeqIj0WvlKUcFlh7dq11K5dmzlz5pCdnU1wcDDVqlXj+eef\nJyYmhg8//JDFixfz2GOPkZmZyerVq8nPzyc0NNRcqte6dWsmTpxIXFwcmzZtqnAwa9iwITExMeYv\nXMnkYsqUKcyfP5+mTZsyefLkctuwt7dn2bJlnDx5stS6Zs2axZAhQ+jcuTOJiYmcPHkSgNzcXCIi\nIvD29iY8PJzU1FRat25dbvthYWG0bduWWbNmkZiYiIuLCwA///wz+/fv5+OPPyY3N5fu3bvfdPtm\nZGSwd+9e1qxZg729PcOGDWPnzp0EBgby448/kpGRgb+/P3v27MHZ2fmm5Y8BAQG88sor7Nixg9mz\nZzNu3Djg+onejBkzSEpKolatWhXugzVr1tCwYUPi4uJIT0/nq6++4vLlyxw6dIgtW7aUivXLL79k\n3759BAUFMWDAAL744guysrL46quvcHd3JzY2losXL9KvXz82bdpU7jqvXbvGwoULKSoq4tlnn6Vr\n167m1xYtWsQzzzxDaGgomzdvtlh2ChASEkJycjIdOnQgKSmJTp06cfz48VLH7kMPPVTh9oPrJxfP\nPPMMkydPpkePHowfP56IiAj69evH0aNH2bhxIw899BB9+/YlPT2d8ePHlxtTRkYGTz/9NN27d+eP\nP/4gPDycli1bcuDAAdq0acPevXuZMGECISEhzJo1C39/f+Li4m5aYlW9enVWrVrFkSNHGDVqFBs2\nbOD06dMkJSXh7u5u3u+W9mVqaqpV+6YkNzc33n33Xd577z3zj+6gQYP4+eefgesJ5rJly0hPT2fI\nkCEEBwczefLkMn07evQomzdv5qOPPgLgpZde4tFHHy33IgCUPxb17t2bZ599lvj4eD799FPzd/f8\n+fMsXbqUDRs24OjoyNy5c8nJycHZ2dli+3l5eXzwwQdcuHCBkJAQunbtSm5uLq+//jotW7Y0lzBv\n27aNixcv8vHHH/Pnn3/ywQcf4ODgYHH8c3Nzq1Qf3nnnHfz8/Fi3bh1paWnmE6qSbja+REdH8/nn\nn7Nw4UIyMzMZOHAgjRo1YtmyZeY+GY1GEhMT8fDwYN68eSQnJ2Nvb4+bmxsLFy4s1V5UVBTTp0+n\nRYsWbNu2jRkzZjB48GCrxriS22/27NkWvzctWrQgOjq6wotcvr6+REVFkZmZSXp6OsuWLcPJyYlu\n3bpx9uzZci/ElNynvXr1wmAwkJycjIeHB0uXLuX3338nPT2dJUuW4OTkxJtvvsk333zDf//73wr7\n9Vcp+Vs1ePBg8vPzWb16NV5eXqxcuZKFCxfy+OOPl/v5hx56iIEDB9o8zjVr1tC8eXMiIiL46aef\n2Lt3L0eOHGH27Nl4eXmxaNEiPv30U8LDwwkODiYyMpKvv/6aBx980GbJFlwvqytO/r29vdm9ezeO\njo74+Pjw6aeflhlf5s+fT3h4OJ07d2bPnj3MmTOHiIgICgoKiIyMJDAwkBdffPEvjzMnJ8d8sXLF\nihUkJiayd+9eVqxYQVpaGsnJybi4uBAbG8vatWupUaOGxbG0V69eeHp6mse4559/nsDAQMaNG8eu\nXbtKXVC81fWW95lVq1YRGBhIfHw869evx8nJidGjR5uTqGrVqvH++++za9culi9fzrJly3jsscfo\n2bMnDRo0sHrbrFq16o5OuKRylHBZIS0tjUceeQQAFxcX/Pz82LVrl/nENSAggC+++AIvLy8OHjxo\nvr+moKDAnNC0bNkSgHr16nHu3LkK11c8Ve7v78/Zs2dLvXbu3DmaNm1qXu/x48ctttGyZUsMBgN1\n6tThypUrpfrywAMPANCuXTs++eQTAGrWrIm3tzcAnp6e5OXllRufg4ODeWYtICCAXbt2cf/99wOQ\nnp5Oq1atMBqNuLi40Lx58wr7CpCamsrjjz9uPtkIDAzkyJEjdO/enR07dpCZmUlERATbt2/HaDTS\nu3fvCtsLDAwE4IEHHmDWrFnm5RcuXKBmzZq4u7ubXy/PsWPHzGWSTZo0wc3NjXPnznHs2DHatGlT\nJtYhQ4awaNEiBgwYgJeXF61bt+bw4cN899135vuICgoKuHDhQrlXjtu2bUu1atUA8PPzK3VfSHp6\nurnGPiAgoNzk5rHHHmP27NlcunTJPNPw6KOPAv87dk+cOFHh9itWfMLr5uaGn5+f+b/z8/M5fPgw\n3377LVu2bAGo8B4ZT09PVq5cydatW3FxcaGgoIDQ0FCSk5M5e/YsXbp0wd7enjNnzuDv7w9cPzY3\nb95cYXzF3z9/f3/zd8rd3d28f4vduC8HDhxIdHS0VfumpKZNm2I0GnFwcGDkyJHUqFGD33//nYKC\nAgBz6Uj9+vXN901a6tvhw4c5deqU+WTxzz//JCMjo8KEq7yxqFWrVsD1bV1yfDlx4gT+/v7m2aLI\nyMgK+9a+fXuMRiOenp64ublx4cIFc59L+u2338xjQM2aNRkxYgRLly61OP7dmHBZ6sMXX3xhPsZC\nQkLKje9WxpeSfXJyciIjI4MRI0YA12eyH3nkERo3blymj3B9v7Vo0cLczty5c28phuK2rfneAJhM\npjJtAPj4+JgvctWpU6fC+1hK9t/Z2ZmrV6/i4eEBwODBgwHw8PBg7NixODs7c+zYsXIrJ2yh5G/V\n6dOn8fHxMZdWtm/fnrfffrtMwlXedrGl9PR0OnfuDECbNm2wt7fHy8uL6dOnU6NGDf744w8CAgJw\ncXGhffv2fPPNNyQlJfH666/bNK7u3buzaNEi6tevT0REBAkJCZhMJp566ilmzpxZZnw5fPgwixcv\n5v3338dkMmFvf/108NChQ7i4uJCbm2uTOIu/R66urvj5+WEwGKhZsyZ5eXk0a9bMfDwXb7s2bdpY\nHEtvVHLsK3muczvrLe8z+fn5HD9+nAsXLpgv2Obk5JjPw4o/V69evQrvmYfSx3BF65O7nx6aYQU/\nPz8OHDgAXL96ffjwYby9vfm///s/AL7//nuaNWuGr6+veUp/5cqVBAUF0ahRI6vXV3wSeOjQoTJX\nRby8vMw3yBdfUbfEYDBYXN68eXN++OEH4Hopx83eb8m1a9dITU0F4MCBA+YTSYBmzZqRkpJCUVER\nubm5HD169KbttWjRgpSUFAoKCjCZTOzfv5+mTZvSsWNH9u/fz8WLF+ncuTMHDx7k119/rXDmDf63\n/W6MzcPDg6ysLPNJZEXbz8/Pz/z6iRMnzGVavr6+FmPdsGEDvXr1IiEhAX9/fxITE/H19eXpp58m\nISGBpUuX0qNHD2rVqlXuOn/55RcKCgrIzc0lLS3NXLZSHE/xfqsobqPRSI8ePYiOjqZbt274+/tb\nPHaLOTo6mpP6gwcPlmqromPC19eXgQMHkpCQwLx58yq8Gr58+XLatm3LnDlz6NGjByaTiYcffpjU\n1FTWr19vPsGuV6+e+XgpeWyWpzjew4cPm0/QjMayQ9uN+3LUqFFW75uSjEYjv/76K9u2bWPevHlM\nmjSJoqIi8w+ope1mqW++vr40a9aMVatWkZCQQHBwcLllmSX7UtH+vJGPjw/Hjh0z//gPHz68wpnD\n4m167tw5srOzzSfmN25XX19f8za9fPkygwYNqvT4V14f0tPTgesPO/n8888txncr40vJPuXn5+Pj\n48N7771HQkICQ4YMMSfulo6dunXrmm94379/P02aNLmlGIrbLu97YzAYMJlMODo6cv78eQoLC8nK\nyip10aVkfNaM1yX7f+3aNQAuXboEwLRp09i3bx/z588nLi6OadOm4ejoWOpk0NZK9sXd3Z3s7GzO\nnDkDXC/Za9KkSalx6uTJk6USVWu2xe3w8/Pjxx9/BP43Vk+aNInY2FhmzJhB3bp1zdstNDSUdevW\ncf78eZvfu9O8eXNOnDhBSkoKnTt3Jjc3l+3bt5c7vvj6+hIZGUlCQgJTpkyhR48ewPULbEuWLGHD\nhg02echDefvJYDCQlpZmTvT27dtnTqItfcZgMFBUVFTq//+O9Rbz9vamfv36LF++nISEBPr162e+\nQFFevMXHRUFBATk5OVy9erXUuPF3HcN/NZOp6I7+d6fQDJcVQkNDmTRpEmFhYeTn5zN06FCSkpJI\nTk5mxYoVODk5MWvWLGrVqsW+ffvo27cvubm5dOvWzXz1xBqZmZn079+fq1evEhMTU+q1mJgYxowZ\ng4uLC87OzlbXrEdGRjJhwgSWL1+Oq6ur+eqWNRwcHEhISCAjI4MGDRowatQo80xZixYt6NSpE717\n96Zu3brmE7aKNG7cmICAAMLCwigqKqJdu3Z069YNg8FAvXr1aNCgAUajkaZNm1ZqBuKnn36if//+\nGAwGYmNjzYOdvb09b775JoMGDaJmzZoV9r1Pnz5MmDCBfv36me8zuXjxIvfccw9BQUFlYk1JSSEq\nKgonJyeMRiMxMTF4eXkRFRVFv379yM7Opm/fvhZP6oo5OjoyePBgsrKyGDZsWKkE4LXXXmP06NFs\n3ry5whNsuF5i0a1bNz777DPq1q1b5tgtuU+CgoIYMWIE+/fvt1jCVZ4hQ4YwceJEEhMTyc7OrvCp\nbk888QTTpk1j8+bNuLq6YmdnZ74vbvfu3ebEcvLkyUyYMIEaNWrg4OBw0wcIpKamMmDAAPLy8krd\nh3CjG/flhAkTuOeee6zaNzdq3LgxTk5O9OnTB7g+y1B8kmiJpb7de++9PPzww4SFhXH16lVat259\n0z6XNxaVp3bt2gwePJh+/fphMBh44oknKlzHuXPnGDBgAJcvX2by5MnY2dlZfF/Xrl3Zs2cPYWFh\nFBYW8sYbb9CpU6dKjX+W+uDn58eECRMwGo3UqVOn3BKxWxlfbuyT0WjklVdewWQy4ezszKxZszh9\n+rTFz06bNo2pU6diMpmws7MjNjaWRo0aWR1DsfK+Nw888ABjxoxh+fLldOzYkd69e9OoUSMaN25c\n6bYr23+TycSrr76K0WikZcuWtG/fnoCAAF544QVzaWVFx7ItGQwGpk2bxrBhw8xX+d966y3c3Nxw\ndXUlJCQEPz+/m46BthAWFsaYMWMICwvD19cXBwcHnnzySV588UWcnJzw9PQ0b7c2bdqQkZFhk9I8\nSzp06EBmZiZGo5H27dtz9OjRcseXsWPHEh0dTX5+vvle3GLVq1dn8uTJjB07lnXr1pkrLmzJzs6O\nYcOG0b9/f4xGIz4+PkRGRpZb4t2qVStmzZplnhH/u9ZbrHbt2gwcOJDw8HAKCwtp2LChxXtVi7Vp\n04Y5c+bg7e1N//79eeGFF/D29q6wxFD+WQymv/MS1j9Q8cMMbvdL/3fbsGEDbdq0oXHjxqxbt47v\nv/+et956q6rDEuHDDz8/kZgcAAADwklEQVQkKCiI2rVrExcXh4ODQ7mJXMmHfdwNrOlbVUlKSjI/\n+Oaf4p/YJ2v82/tfVYqKiggLC2PZsmW3dNFV5G7g5tSyqkOoUFbeL1UdAqAZrio3dOjQMvX7Li4u\nZW7a/qsV13kXz8TExsZafF9KSgqzZ88uszwoKIi+ffvaNMabuXr1KoMGDSqzvGnTpmVmBO80CxYs\nYO/evWWWF185/zfz8PDg5ZdfpkaNGri6ujJjxoxyvyfF90TeLSz1rapER0db/BtsFV2l/butXbuW\njRs3llk+cuTICu+9rCp38ngpf68TJ04wdOhQgoODlWzJP5qJwqoO4a6gGS4REREREbGaq1PF9xxX\ntct5h6o6BEAPzRAREREREbEZlRSKiIiIiIjV7qQnAd7JNMMlIiIiIiJiI0q4REREREREbEQlhSIi\nIiIiYjUTKimsDM1wiYiIiIiI2IgSLhERERERERtRwiUiIiIiImIjuodLRERERESsZjIVVnUIdwXN\ncImIiIiIiNiIEi4REREREREbUUmhiIiIiIhYzWTSY+ErQzNcIiIiIiIiNqKES0RERERExEZUUigi\nIiIiIlYzoZLCytAMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIR\nEREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjVTKbCqg7hrqAZ\nLhERERERERtRwiUiIiIiImIjSrhERERERERsRPdwiYiIiIjILdBj4StDM1wiIiIiIiI2ooRLRERE\nRETERlRSKCIiIiIiVjOZVFJYGZrhEhERERERsRElXCIiIiIiIjaikkIREREREbGaSU8prBTNcImI\niIiIiNiIEi4REREREREbUUmhiIiIiIjcApUUVoZmuERERERERGxECZeIiIiIiIiNqKRQRERERESs\npz98XCma4RIREREREbERJVwiIiIiIiI2ooRLRERERETERnQPl4iIiIiIWM2kx8JXima4RERERERE\nbEQJl4iIiIiIiI2opFBERERERG6BSgorQzNcIiIiIiIiNqKES0RERERExEZUUigiIiIiItYzmao6\ngruCZrhERERERERsRAmXiIiIiIiIjaikUERERERErGZCJYWVoRkuERERERERG1HCJSIiIiIiYiMG\nk0mPFxEREREREbEFzXCJiIiIiIjYiBIuERERERERG1HCJSIiIiIiYiNKuERERERERGxECZeIiIiI\niIiNKOESERERERGxkf8HmZWqmR+I/yUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEeCAYAAAAjC0L/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//H3TCYJqUASCDVAQkAQAUNRlwWU4gK63xWQ\nEiDAyqKI4EqRXkIxIlUFREVQyFcRUNgfolgABUW6AgpIldBrAiG9zPz+yGYgpNwkkEnC9/V8PObx\nSGbO3Pu55945cz/3nHPHZLPZbAIAAACAPJiLOwAAAAAAJR+JAwAAAABDJA4AAAAADJE4AAAAADBE\n4gAAAADAEIkDAAAAAEOW4g4AAAAA+L8iXR8X+D1O6l0EkRQcPQ4AAAAADNHjAAAAADiI1Zpe4Pc4\nlZBL/SQOAAAAgIPYbGnFHUKhkTgAAAAADmKzFbzHoaQgcQAAAAAcxEqPAwAAAAAjDFUCAAAAYIjE\nAQAAAIAhm5XEAQAAAIARehwAAAAAGGGoEgAAAABj1tTijqDQSBwAAAAAB6HHAQAAAIAxJkcDAAAA\nMETiAAAAAMAQQ5UAAAAAGDHR4wAAAADAUClOHMzFHQAAAACAko8eBwAAAMBRSnGPA4kDAAAA4CAm\nJkcDAAAAMGRNL+4ICo3EAQAAAHAQ7qoEAAAAwBg9DgAAAAAMFUGPg9VqVXh4uI4cOSIXFxdNnz5d\nNWrUsL++bt06ffjhhzKbzeratat69epVqPWQOAAAAAAOYiqCHoeNGzcqJSVFK1eu1L59+zRjxgwt\nWrTI/vrMmTO1fv16ubu766mnntJTTz2lsmXLFng9JA4AAACAoxRB4rB37161bNlSktS4cWP9/vvv\nWV6vW7eubt68KYvFIpvNJpPJVKj1kDgAAAAADlIUPQ5xcXHy9PS0/+/k5KS0tDRZLBmn+sHBwera\ntavc3NzUvn17eXt7F2o9/HI0AAAA4CjW9II/DHh6eio+Pv7WKqxWe9Lwxx9/6IcfftCmTZu0efNm\nRUdHa8OGDYUKncQBAAAAcBCTNb3ADyMhISHaunWrJGnfvn2qU6eO/TUvLy+VKVNGrq6ucnJyko+P\nj2JjYwsVO0OVAAAAAEcpgqFK7du317Zt29SzZ0/ZbDZFREToiy++UEJCgnr06KEePXqoV69ecnZ2\nVkBAgDp37lyo9ZhsNpvtHscOAAAAIAfJ+1oU+D2ujbcVQSQFR48DAAAA4Cj8ABwAAAAAIyartbhD\nKDQSBwAAAMBRSnGPA3dVAgAAAGCIHgcAAADAUUpxjwOJAwAAAOAgJhtzHAAAAAAYoccBAAAAgCHu\nqgQAAADAEIkDAAAAACMmhioBAAAAMESPAwAAAABDJA4AAAAADJE4AAAAADDEHAcAAAAARkz0OAAA\nAAAwROIAAAAAwBCJAwAAAABDJA4AAAAADFltxR1BoZE4AAAAAI5SinsczMUdAAAAAICSjx4HAAAA\nwFFKcY8DiQMAAADgKMxxAAAAAGDIRo8DAAAAACP0OAAAAAAwROIAAAAAwBCJAwAAAAAjpXiKA4kD\nAAAA4DD0OAAAAAAwRI8DAAAAAEMkDgAAAAAMld6RSiQOAAAAgKPYrKbiDqHQSBwAAAAAR2GoEgAA\nAABD9DgAAAAAMMJQJQAAAADGSnHiYC7uAAAAAACUfPQ4AAAAAI5iK709DiQOAAAAgIMwxwEAAACA\nMWvpnSlA4gAAAAA4Cj0OAAAAAIzYmOMAAAAAwBBDlQAAAAAYYXI0AAAAAGMkDgAAAACMFMUcB6vV\nqvDwcB05ckQuLi6aPn26atSoka3cxIkTVbZsWY0cObJQ6ym9g6wAAACA0sZqLvjDwMaNG5WSkqKV\nK1dqxIgRmjFjRrYyn376qY4ePXpXoZM4AAAAAA5is5oK/DCyd+9etWzZUpLUuHFj/f7771le/+WX\nX7R//3716NHjrmIncQAAAAAcxGYzFfhhJC4uTp6envb/nZyclJaWJkm6fPmyFi5cqEmTJt117Mxx\nAAAAABylCG7H6unpqfj4+FursFplsWSc5n/99deKiYnR888/rytXrigpKUmBgYHq0qVLgddD4gAA\nAAA4SFHcjjUkJETff/+9OnXqpH379qlOnTr21/r27au+fftKktasWaOTJ08WKmmQSBwAAAAAhymK\nuyq1b99e27ZtU8+ePWWz2RQREaEvvvhCCQkJdz2v4XYmm81mu2dLAwAAAJCr2OE1C/we77mn7nkc\nhUGPAwAAAOAgpfmXo7mrEgAAAABD9DgAAAAADlIUcxwchcQBAAAAcJQiuB2ro5A4AAAAAA5Smuc4\nkDgAAAAADsJQJQAAAACG6HEAAAAAYMhmY44DAAAAACP0OAAAAAAwwhwHAAAAAIaY4wAAAADAEHMc\nAAAAABiixwEAAACAIeY4AAAAADBE4gAAAADAEEOVAAAAABhicjQAAAAAQ6W5x6H0pjwAAAAAHIYe\nBwAAAMBBmBwNAAAAwBCJAwAAAABDpXmOA4kDAAAA4CD0OAAAAAAwxO1YAQAAABiy0uMAAAAAwAhz\nHAAAAAAYYo4DAAAAAEMkDgAAAAAMkTgAAAAAMGTlrkq5S9fHRb2Ku+ak3iU+ztIQo1S64tzQLLS4\nwzDUcfeKUlOfXzbtVdxhGHpqzyclvj6d1FuS9G3zHsUcSd6e3LVSmx97trjDMNRm+2el5rO+6dFu\nxR2GobY7VmtLiy7FHYah1tvW6HSP5sUdhqGAlbuUMsejuMPIk8uI+BLfHkkZbVJpweRoAAAAAIYY\nqgQAAADAEIkDAAAAAEP8ABwAAAAAQ6W5x6H0TusGAAAA4DD0OAAAAAAOUpp7HEgcAAAAAAdhjgMA\nAAAAQ/Q4AAAAADBE4gAAAADAEEOVAAAAABiixwEAAACAIRIHAAAAAIYYqgQAAADAED0ODmKz2TR+\n7DrVDq6g5wb8pbjDyRVx3lvFFWeFFg+rzks9ZXax6Oax0/p9+vtKi0/Mdzmzq7MeHPWcytYPlMxm\n3fj9uA7OXCprcqp8mtTXA6/0kcnJSak3burw3OW6eex0kW9Tce7zii0aq+6QzHo6owPTcq7P3MpZ\nPNzUcNLz8qxZRTKZdPbLH3Vy2ReSJN8m9fXAv3vJbHFSenKKDs5erhsHTxT5NhVXffq1eFjBg0Nl\ndnHWzeOndXD6u0rPoS6NyrlW9NUjS6dre+9RSr1xU5LkXS9IdYf3k5Obq0xms04t/3+68PVPBY7R\n9y8hCnqxt0zOFsWfOK3Dr72j9ITEApVxreirph9EaFfYSHt8XvWCFPzKP+VUxlUmJ7OiIv+jS9/8\nWOD4bldSP+u+fwlR0OBeMjs7K+54lA6/tijnOsypjNmsOv/uJ59HGsnk5KTTn6zTubXfZXlv5aef\nUIXHm+vAyDfsz5VrXE+1h/SR2dVFaXEJOjRtoZLOX853Xfo81kS1BvWW2cVZ8cejdOT1hdlizq2M\n2cVFtUcMlFe92jKZTYo9eEzH5yyWNSVF7jWrqc6oF+XkXkY2m01/Lvpfxezal++48lLm4RYqFzpY\nJmcXpZ4+rmvvTpctMT5LGfe/dpD3/4RJNptsyUmK+WiOUk4elsnNQ76DJshStaZMJpPitnylm+uW\n35O47mSq9Tc5tZwqk5OLbFd+V9q3g6WUmzmXrf20LB0WK3VB5f9uZHk5tXtT5goNZUtNkPVgpKy/\nvntX8dx1O2Q2qe4rfeX3aMYxeurjL3R2zUZJkketqqo/9nk5uZeRbDYdW7hC13bsV82+/1ClJ2+1\ntS7lvGVxL6PNbf55V9viaKW5x8Fc3AHk14kTV/Rcv0h9veFgcYeSJ+K8t4orTpdyXnpo0gv6dfQ8\n/fjsCCWeu6w6Q0ILVC7on51lcjLrp15j9FPoKJldXRTU/x+yeLgpZOYwHXn7Y23rNVoHZyxV49f/\nLbNz0ebxxbnPXcp5qeHkF7R31Jva0nWkEs5d0gNDehaoXJ0XuynpUrS29hitbX0nqkbXdir3ULBM\nFic9/PpQ/fbaYv3Ya6yOL/mPGk99sci3qbjq07mclxpMfFH7x8zVtm7DlHjukuq81KvA5Sp3aqXm\n74erTEWfLO9r9MZwnXh/tXb0Ga1fXnlddV/pK/fqlQoYo7fqjX9Jv42dpZ09/63Ec5cUNLh3gcpU\n6thaIe9Ok2sF3yzveyhipP78YKV293tV+4e9puCX+8utWsHiu11J/aw7l/NW/QmD9dvY2drR499K\nPH9JtV/KXoe5lanauZ3cqlfSzt7Dtfu5Mare4yl5168tSbJ4e6ruqIGqO+I5mXTrBMa1go8avvGq\njsz6QLvCXtWV73fqgVcH5rsunct5q+74ITo0fpZ2hw5V4vlLqvViWL7LBPTrKpOTk/b2G649fYfL\nydVFAX27SJKCRzyvi19u0t7+I3Q0YqHqTxshOd39KYzZq5x8X5yoq3PH6MKwbkq7dE7ler2UpYyl\ncoDK93lZlyNe1sXRfXRjzVL5jchItsr1GKS06Mu6ODJUF8f1l1f7LnIJfuiu48rGzU+WDu8pbV0v\npX74sGw3Tsmp5dScy5YLkqVVhGS6VT9Oj78hpcQr9aMmSvvkcZlrPilTYIdCh3Mv2qHqndvLvXpl\n/Rw6Ujv6j1ONnp3kXT9IklRv1ACd++J77egzWgenvauGEa/I5JRxIWNHn9Ha0We09gyaovSkJB0Y\n/1aht6O42GQq8KOkKDWJw4qP96hzl8bq0PHB4g4lT8R5bxVXnH6PNtSNQyeVcOaiJOn059+pSocW\nBSoX8+thHV+6VrLZJKtNsUdOqUylCnIPqKzUuERd251xwhkfdV5p8Ykq91BwkW5Tce7zO+sp6rON\nqtLRuD5vL3do9nIdfutjSZKrXzmZXSxKi0uQLS1dmzoOUeyRKEmSe9WKSr0eV+TbVFz16ftII904\ndMJeR2c+/06VOvy1QOVc/cqrYutm+mXYjCzvMbs46+QHnyl692+SpOTL0Uq5flOuFbOevBvxad5I\nsYePK/FsxrrPrflGlf7WMt9lXPzKy69Vc+0fHpEtvj+XrlZMZnxXopV6I7bA8d2upH7WfR5pqNjD\nJ5R4JrN+vs1eh3mUqdD6EV1Y/71s6Val3YzXpY3bVKlDxmv+bR9TyrUYHZsfmWV5Fds8qqvbf9XN\nI39mLO8/3+nomx/moxYzlG/eWDcPH1fi2QuSpPNrv5b/ky3zXebG/kM6vWz1f+vRqrijf8q1UgVJ\nksnJLIuXpyTJyd1N1pTUfMeVlzKNHlHKiUNKu3hGknTzu8/l8desJ9S2tFRde+81Wa9fkySlnDws\np3K+kpNFMR/N0fXItzPiKucnk7OLrAn3vv0x12gr28W90vWMntT0/Ytlrtcje0GLmyydlihty5gs\nT5v8H5b10ArJZpWsqbL++bXMwZ0LHc+9aIcqPt5M59f/YD9GL373syp3zDgWTE5mOf93f1s83GRN\nTsm27Dr/DtPVn/fp6vZ70/PkSDabqcAPI1arVZMmTVKPHj0UFhamqKioLK9v3rxZXbt2VY8ePbRq\n1apCx15qhipNmNRRkrRjx5/FHEneiPPeKq44y/j7KunSNfv/SZej5ezpLouHW5YhDHmVu7rzt1vl\nKvmpZmhH/R6xWAmnL8jiXkZ+jzykqzt/U9n6gfIKrCZXv/JFuk3Fuc/d/H2UmI/6NCpnS7eq8dTB\nqtS2uS7+sEdxUeclSbb0dLn4eKvl/0bIuZyXfh07v8i3qViPzcu36ij58jU5e7rLycMtyzCBvMol\nX43R/tFzsi3bmpKqc+u+t/9f9Zm2cnIvoxu/Hy1wjMm3r/vKNVk8PeTk7mYftpJXmZSrMfp97Kwc\n47vwxWb7/1X+0U5ObmUUe/BYgeK7M9aS+FkvU9FPSZeu2v9PvnxNFk/3rHWYR5kyFbPGm3z5mjxr\n15Ak+5Clyk89nmWd7gFVZE1MVoNpr8g9oIqSLl3V0Tc/Mow1k2tFXyVfvi2eHPZ7XmVidu2/tSz/\nCqra42kdfWORJOnYnMVq9PYUVevxdzmX99bhyXOldGu+Y8uNxddfadduDcVKv3ZZZndPmdw87MOV\n0q9cUPqVC/Yy5fu+osQ9W6X0tIwnrOnyHTJF7o+0UcLuH5R2PusJ2z3hXU22m2dv/X/znEyuZSUX\nryzDlZzaz5f1wFLZrvye5e22C7tlrh+q9PPbJSdXmYOfkayFT77uRTuU02fK77/H6OGZS9X0nYmq\nEdpJLj5ldWD8W7Ldtr89AqupYuum+qnzy4XehuJUFEOVNm7cqJSUFK1cuVL79u3TjBkztGhRxucn\nNTVVr7/+uj777DO5ubkpNDRUbdq0kZ+fX4HXk2fiEBYWJpMp541bvrxoxvABJUIux73tzi+qfJTz\nfqCWQmYNV9Sqb3Tlp18lSXtHzFadwT1U9+Xeiv71D13bfVDW1LR7E3tJZM65czNbfeaj3L5J78jp\n9SVqMnOYgv/VRcfe/1ySlBIdq02dhsi7bk09umi8tvU/q/jTF+9N/CWIyZzLF84ddZnfcrmp2fcf\nqtGzo/b++3VZkwt4gpHbfrRaC1YmDzXCnlG17k9p/7DpOV6NzLeS+lnPZf9lrcPcy+S0/7Nt0x1M\nFif5/bWp9g6aqMQzF1Wte0c1nPGqdvV91TheSaZ87NP8lPGsG6gHI0br/OcbFP3zXplcnFVv6gj9\n8dp8Rf+8V14P1lGDN8bq5uHjWZLPQjHlMvDCmp69qGsZ+Q6eLCffiroc8e8sr11bMFnRi2fIb8Qb\nKvvsAN1Yvfju4sq+dsM4zY0GStY0WX9fLnkHZCmWvmWsnFpHyBK2XYq/KGvUZpmrPFL4aO5FO5TT\nMWq1yuzirIavvaLfpy7S1Z9+UdkGwXp4zijdOHTCvr9r9OioM6u/yXEuUmlQFJOj9+7dq5YtM3ps\nGjdurN9/v5U8njhxQgEBASpbtqwkqUmTJtq9e7c6duxY4PXkmThMmTJFkrRw4UK1bdtWTZo00YED\nB/T999/n9TagVAp+4VlVbNVEUkbX6M3jZ+yvuVbwUcqNOKUnJWd5T9KlayrXoHau5Sq3f0z1Rz+n\nQ7M+1IVvfs4oZDIpPTFJuwZNs7+v5arZSjh7f53k1nnhWVVsFSJJcvZwV+yJWxNCy+RWnxevqlyD\noBzL+T3aUDePn1by1etKT0zW+W9+VqU2zWXxcJNvswd16Yc9kqTYI6cUeyxKXrWr3zeJQ9Dz3VSh\nVVNJGcdm3PFbdelawUepudRl2QdrG5a7k8nZogaTBsszsJp2DpiopAtXChxv0sUr8q5/aziOawUf\npcbelPW2deenTG7x1Z8wRO61qmnvwHFKuljw+ErDZz350lWVffCO+rkRl6V+8iqTdOlqlp4N1wo+\nhifZyVdidOO3I/ahT+fXbVbd4c/J7OqSr+Qs6eIVed2+T/18c9zveZWp0LaFgkc+r+NzP9Dl7zIm\nvXsEBsipjKuif94rSbp58KgS/jwjr/p1lHx5u2FceUm7elEutW8NN3TyqaD0uBuyJSdlKefk668K\no+cq9dyfujxlsGypGfGWafSoUk8fV3rMVdmSE5Ww7Ru5P9LmrmLK0c2zMlVudut/zyqyJUZLaQn2\np8wP9pGc3WUJ2y6Tk3PGsKWw7Upb01kyW5S+dYKUFJNRttlw2a6fLFAI97odSrp4Ta5+5bK8lnz5\nmjyDqsupjIuu/vSLJOnG78cUd/KMyjWorUubr0lmkyq2eUQ7+o4tUPwlSVH0OMTFxcnT09P+v5OT\nk9LS0mSxWBQXFycvLy/7ax4eHoqLK9yQujznOAQGBiowMFBXr15Vp06d5O/vr/bt2+vs2bN5vQ0o\nlY6995m29R6rbb3Havs/J6lcg2D7pNCAru10eeuebO+5uuNAruUqtWmueiP7affQ12+dSEiSzaam\nb46Wd73AjHJtH5E1Ld0hd1VypKPvfaafeo/TT73Hads/J6l8lnpqq0tb9mZ7z5Udv+Varkr7RxT8\nfFdJktnZosrtH9W1PQdls1rVaNILKt+ojiTJM7CqPGpU0fXfi/6uSo6SOVl5R5/R2vXcBJW9rY6q\ndWmf47F5beeBfJW7U6PXh8ni4aZdhUwaJCl6136VbRBsn7RcpfOTurp1d4HL5KTBayPk5OGmvc+P\nL1TSIJWOz/q1nf+tn/+ur2rnJ3Xlx935LnNl625V/vsTGXMDPN3l376FrhjU75Utu1SuYV2VqVxR\nklTx8UcUd+J0vnt0Ynbtl/eDdeRWLeNOPlU6P6lrd8ScVxm/xx9T7WH/0oFhU+1JgyQlnr0gi4e7\nvBvUlSSVqeov95rVFHesYCe+OUk6sFOuwQ1kqVRdkuTZvkvGMKTbmD285R/+nhJ2fa9rb02wJw2S\n5P5oO3k/+6+MfyzOcn+snZJ+N/6cFZT11CaZKjeXymVcWHFq9C9ZT3yZpUzaJ62VtqyZ0iIfU+qa\nLlJaotIiH5PiL8qp0b/k9JcJ/w26opwe6i/r4ZUFiuFet0OXt+5R1duO0Urt/6LLP+xWwpmLsni6\nq+xDGW26W1V/edSsqtgjpyRJXkEBSouNL3T7VBIUxRwHT09PxcffuhuY1WqVxWLJ8bX4+PgsiURB\n5HuOw+rVq9WwYUP9+uuvcnZ2LtTKgNIiJSZWv019Vw/PeEVmZ4sSzl7SgfB3JEne9QL10ISB2tZ7\nbJ7l6rzUUyaTSQ9NuHVXkpj9R3Vo5ofaP3GBHho/UCZni5KvxuiXV7OPN7+fpMTEav/U99TkjYw7\nysSfvaT9kzPGXpatV0sPTRion3qPy7PcoXkf66FxA9Rq5Ruy2Wy69MNe/bnia8lm056Rc1R/eJhM\nFidZU9O0b8ICJV2OLs5NLjIpMbE6OG2RGs0YLpPFosRzF/Vb+EJJGcdm/fEvaEef0XmWy025hnVV\nsVVTxUedV7MPbt2x5diCT3Rtx/483plVakysDk9fqAYRI2V2tijx3CUdmjpfXg8E6YGxg7S736u5\nlslL2YZ1VaFlM8VHnVOT96bbnz/xzv8qemf+47tdSf2sp8bE6tC0d/RQxIiM+jl7SQenLpDXA4Gq\nN+5F7er7aq5lpIyJ0m5VK6l55GyZnS06t/Y7Xf/1UJ7rjDt2Sn/MXKyGb7wqk8VJaTfj9dv4ufmu\ny9TrN3QkYoHqT39VJmeLks5d1B/T3pbnA0GqO2aw9vYfkWsZSao1KOOOUHXHDLYv88aBP3R87mId\nHPeGgl4ZILOLs2xp6To6810lnbuU79hyY42N0bVF0+Q3fIZMFovSLp7TtYXhcgmsJ58Xxuvi6D7y\nfLKrnPz85d7scbk3e9z+3svTXlJM5JvyGThGlWavkGw2Je7eopsbPr3ruLJJvKK0bwbJ8vePZXJy\nlu36n0r7eqBM/g/L6cl3MhKEPKTvnC1Lpw9k6ZeRpKVvj5Dt0i+FDudetENnP/9W7lX99djHM2Wy\nWHR27UbF/HpYkrRv1Bw9MKK/fX8fmrFYif/d3+4BlZVYipOGohISEqLvv/9enTp10r59+1SnTh37\na0FBQYqKitL169fl7u6uPXv2aMCAAYVaj8lms9mMCl25ckXvvvuuTp06pdq1a2vQoEEqXz5/EznT\n9XGhAnMkJ/Uu8XGWhhil0hXnhmbZb7lY0nTcvaLU1OeXTbPfiq+keWrPJyW+Pp2UcfL0bfMc7phS\ngjy5a6U2P/ZscYdhqM32z0rNZ33To92KOwxDbXes1pYWXYo7DEOtt63R6R7NizsMQwErdylljkdx\nh5EnlxHxJb49kjLapNLi6+bZb0dupMOuvBNSq9Wq8PBwHT16VDabTRERETp06JASEhLUo0cPbd68\nWQsXLpTNZlPXrl3Vu3fvPJeXmzx7HC5evKhKlSopLi5Offr0kc1mk8lk0vXr1/OdOAAAAADIUBST\no81ms6ZOzfrbHkFBt+YMtmnTRm3a3P38mzwThw8//FBjx47VpEmT7HdXykweuKsSAAAAUDCl+Zej\n80wcxo7NmLEeGRmp6OhonTt3TjVq1JC3t7dDggMAAADuJ0XR4+Ao+Zoc/fnnn2vx4sUKCgrSyZMn\nNXToUHXq1KmoYwMAAADuK3f/04XFJ1+Jw4oVK/T//t//k6urqxISEtSvXz8SBwAAAKCA7vseh3Ll\nytnvBVumTBmGKgEAAACFcN/OcRg+fLhMJpOio6PVpUsXNWrUSIcOHVKZMmUcFR8AAABw37DpPk0c\nevbMfp/Zp59+2v73uXPnVLVq1XsfFQAAAHAfum97HJo3z/vHU8aOHcttWQEAAIB8shr+9HLJla85\nDrnJx49OAwAAAPiv+3aokpHMH4UDAAAAYOy+HaoEAAAA4N4pzQN2GKoEAAAAOIi1FA9VMhek8PXr\n17P8/+ijj97TYAAAAID7mc1mKvCjpMhXj8OuXbs0depUpaenq0OHDqpSpYq6deuml156qajjAwAA\nAO4bpXmOQ756HN566y397//+r/z8/DRo0CCtWLGiqOMCAAAAUIKYbPmYqBAWFqbIyEj17dtXy5cv\nt/8PAAAAIP8+evBfBX5P/4MfFEEkBZevoUoBAQGaM2eOrl+/rvfff19VqlQp6rgAAACA+859P1Rp\nypQpqlKlipo0aSJ3d3dNmzatqOMCAAAA7jvWQjxKinwlDikpKXriiSc0ePBg3bhxQ1euXCnquAAA\nAID7Tmm+q1K+EoeXX35ZBw8e1KxZs+Ts7KxJkyYVdVwAAADAfcdqMxX4UVLkK3FISkpSmzZtdPHi\nRT3//PNKT08v6rgAAACA+46tEI+SIl+To1NTU7Vs2TI9+OCDOn78uBITE4s6LgAAAOC+U5J6EAoq\nXz0Oo0eP1uXLlzV48GDt2LFD48ePL+q4AAAAgPvOfT85OiQkRM2bN9fKlStVqVIlNWzYsKjjKpT5\n8+fn+ON0Q4YMyfbcihUrNH/+/GzPr1mzRrNnz87y3LBhw5SSkpLrelu0aJHvGNu0aaPk5OQsz23d\nulUrV67MVrZ79+46e/ZsrsvKKda7MWbMGG3dujXLc1euXFF4eHi2srNnz9aaNWvytdx7Heeddu7c\nqWHDhmV7/rXXXtP58+ezPHfixAmFhYXd1frCwsJ04sSJu1pGSff+++/rwIEDxR1GkctpX+Z2PN2t\nNWvWaNMkFm/IAAAevElEQVSmTfd8uYWV2b7cHtfw4cPVtWtXHT16VGFhYerZs6du3LhRoOXm1N4a\nxXA3vvvuO126dOmullEaFXW7WpSSk5PVpk2b4g7jnjl79qy6d+9e3GEYOnLkiHbv3i0p53ORkmb3\n7t36448/ijuMIlGaJ0fna6jSnDlzFBUVpZCQEP3nP//Rnj17NGbMmKKO7Z5ZsGDBXb1/3rx59yiS\nnLVq1apIl383KlSokGPiUBrQM1Z4zz//fHGHcN/p0qVLcYeQo9vj+vnnn7Vjxw6dP39e8fHx+b44\ncLu7bW8Lavny5QoPD5e/v79D1wuUNt9++638/PzUrFmz4g4lXz7//HN16tRJDzzwQHGHcs+VpB6E\ngspX4rB79259+umnkqR+/foVKLNOTU3V2LFjdfbsWaWnp+uf//ynVqxYoVq1aunPP/+UzWbTvHnz\nVKFCBc2ZM0d79uyR1WpV//791bFjR4WFhemBBx7QsWPHFBcXp7feektVq1bNdX0bN27Uhg0blJSU\npAkTJqhhw4Zq0aKFtm3bpj179igiIkLe3t5ycnJS48aNc1zG/v379dxzzyk6OlqhoaF67733tGHD\nBl28eFFjxoyRxWJR1apVde7cOUVGRiolJUUjRozQ+fPnVa5cOb399ttydnbONcZJkybp3Llz8vX1\n1RtvvKGvvvpKJ0+e1MiRIzVv3jz9+OOPqlSpkmJiYvJVx0uXLtWXX34pi8Wipk2bavjw4erQoYM2\nbNig6OhotW7dWj///LM8PDzUo0cPrV27NtdlffLJJ1qyZInS09P12muvycnJScOHD9eqVav0zTff\naNGiRfLx8VFqaqoCAwNzXEZSUpLGjh2r8+fPKzU1VX/7299yjfXVV1/V3r179cYbb8hiscjNzU1v\nvfWWXF1dNXnyZEVFRclqteqVV17RI488kmvcUVFRGjBggGJiYhQaGqpu3bopLCxM4eHh8vLy0siR\nI2Wz2VShQoVclzFkyBD17dtXzZs312+//ab58+fL29s7y7HbqVMne/n58+fLz89PoaGhOnHihMLD\nwxUZGam///3vatq0qY4cOaLAwED5+vpqz549cnFx0fvvv6+kpCSNHz/evn8nTJigunXr5hhTXFyc\nxo8fr5s3b+ry5cvq2LGj1q9fr6+++komk0lTp07VY489Jn9/f02ZMkUeHh7y9fWVq6urZsyYkeMy\n58+fr5MnT+ratWuKjY3VhAkT1LRpUz3xxBMKDAxUUFCQYmNj1alTJzVv3jzLvpw4caIaNGhQoH2T\nac2aNfr8889ltVrVoUMHbdq0SYmJiSpfvrwWLFig9evXa8uWLUpKStLp06c1cOBAdenSRQcOHMhx\n2yIjI7V+/XqZTCZ16tRJffv2zXP9ObVFkrRw4UJdvXpViYmJmjt3bpb3rF69WitWrJDValWbNm30\n8ssv57ptGzduVHx8vGJiYvTSSy/pb3/7m55++mnVrFlTzs7OCgwMlJ+fn3r27Klp06bpwIEDSk1N\n1dChQ9WuXbsc27/8bEPVqlUVEREhq9Uqf39/zZ49W2XKlMkxzpzal8zj+MiRI4qLi9OLL76otLQ0\nHTt2TG3atFH16tXt21S+fHnNmzdPTk5Oql69uqZOnaovvvjCvl9ffvlljRw5Utu2bdOhQ4c0bdo0\nOTk5ydXVVdOmTVOVKlUK1MbdXn9Tp07N9rm5cOGCDh8+rNGjR2vWrFkaPXq0Vq1aJSmjN2Pu3Lla\nu3atfv31VyUkJOi1117TuHHjVKlSJZ05c0YPPfSQpkyZku996uLiogULFshms+nBBx/UlClT9O23\n3+rjjz9WWlqaTCaTFixYIB8fnzy3616587uqWrVqevPNN+Xq6qpy5copIiJChw8f1qeffmq/AJb5\nfThmzBhdv35d169f13vvvaeyZcsWaazx8fEaOXKkYmNjFRAQIEnatWuXvT7j4+M1Z84c7dq1S6dO\nndLo0aOVnp6uZ555Rp999plcXV2LJK4uXbpo8eLF8vb21iOPPKLIyEg9+OCD6ty5s5555hl7W5vZ\nxly4cEETJ05UcnKy/bjOlJ6erjFjxig4OPieXXxZs2aNvv/+eyUlJenKlSvq27evNm3apGPHjmnU\nqFFKSEjQsmXL5OLiopo1a9o/k3e2pS1atNDatWvl7OysBx98UJIUHh5u7/FbsGBBlmOgsOvN6z3t\n2rXThg0b9NFHH8lsNqtJkyYaOXKk5s+fr7Nnz+ratWs6f/68xo4dq/Lly+vHH3/UwYMHVbt2bXXr\n1k3btm2TlDEKpGfPnjp37pzh+kqqktSDUFD5ShzS0tJktVplNptls9lkMuV/g1euXCkfHx/Nnj1b\ncXFx6tKli1xcXNS1a1dNnTpVH3/8sd577z21bNlSZ8+e1YoVK5ScnKzu3bvbhwA1bNhQ48eP17x5\n8/Tll1/m+YGsWrWqpk6daj9wbj9JnjJlit5++23VqlVLkydPznUZFotFS5Ys0blz57Ksa+bMmRo0\naJBat26tVatW6dy5c5KkhIQEDRs2TNWqVVNYWJgOHz6c53Cu0NBQNW7cWDNnztSqVavk6ekpSfrt\nt9+0e/duffbZZ0pISNCTTz5pWL9RUVHauXOnPv30U1ksFg0dOlRbt25V06ZNtW/fPkVFRSk4OFjb\nt2+Xh4eH4bCqkJAQPf/889qyZYtmzZpl71lKTU3VjBkztGbNGpUrVy7PffDpp5+qatWqmjdvnk6d\nOqUffvhBN2/e1JEjR7Rhw4YssX7//ffatWuXOnbsqH79+mnz5s2KjY3VDz/8oPLlyysiIkIxMTHq\n06ePvvzyy1zXmZqaqkWLFslqteof//iH2rZta3/t3Xff1dNPP63u3bvrq6++ynE4myR169ZNa9eu\nVfPmzbVmzRq1atVKp0+fznLsPvroo3nWn5TxBfn0009r8uTJ6tChg8aOHathw4apT58+On78uNav\nX69HH31UvXr10qlTpzR27NhcY4qKitJTTz2lJ598UpcuXVJYWJjq16+vPXv2qFGjRtq5c6fGjRun\nbt26aebMmQoODta8efMMh26UKVNGy5cv17FjxzRixAitW7dOFy5c0Jo1a1S+fHn7fs9pXx4+fLhA\n++Z23t7eWrhwod555x37l8eAAQP022+/ScpIlJYsWaJTp05p0KBB6tKliyZPnpxt244fP66vvvpK\nn3zyiSTpn//8p/7617/mmsxKubdFzz77rP7xj39o/vz5+vrrr+2f3WvXrmnx4sVat26dXF1dNWfO\nHMXHx8vDwyPH5ScmJurDDz9UdHS0unXrprZt2yohIUGDBw9W/fr17UMjN27cqJiYGH322We6ceOG\nPvzwQzk7O+fY/nl7e+drG9566y0FBQVp9erVOnHihP3E4HZG7Ut4eLi+++47LVq0SGfPnlX//v1V\nvXp1LVmyxL5NZrNZq1atkq+vr958802tXbtWFotF3t7eWrRoUZblTZgwQa+99prq1aunjRs3asaM\nGRo4cGCB2rjb62/WrFk5fm7q1aun8PDwPC/WBAYGasKECTp79qxOnTqlJUuWyM3NTe3atdOVK1dy\nvaBw+z7t3LmzTCaT1q5dK19fXy1evFgXL17UqVOn9P7778vNzU2TJk3STz/9pP/5n//Jc7vuldu/\nqwYOHKjk5GStWLFC/v7+WrZsmRYtWqTHH3881/c/+uij6t+/v0Ni/fTTT1WnTh0NGzZM+/fv186d\nO3Xs2DHNmjVL/v7+evfdd/X1118rLCxMXbp00ciRI/Xjjz/qkUceKbKkQcoYspOZyFarVk0///yz\nXF1dFRAQoK+//jpbG/P2228rLCxMrVu31vbt2zV79mwNGzZMaWlpGjlypJo2barevXvf0xjj4+Pt\nF90++ugjrVq1Sjt37tRHH32kEydOaO3atfL09FRERIRWrlwpd3f3HNvSzp07y8/Pz97Gde3aVU2b\nNtWYMWO0bdu2LBfGCrve3N6zfPlyNW3aVPPnz9fnn38uNzc3vfrqq/ZkwMXFRR988IG2bdumpUuX\nasmSJWrZsqU6deqkKlWqFLhuli9fXqITB2tJuk1SAeUrcejUqZNCQ0PVqFEjHThwINvBlZcTJ07o\nL3/5iyTJ09NTQUFB2rZtm/0ELCQkRJs3b5a/v78OHjxoH3+elpZmPzGvX7++JKlSpUq6evVqnuvL\n7IILDg7O9kN1V69eVa1atezrPX36dI7LqF+/vkwmkypUqKCkpKQs2/Lwww9Lkpo0aaIvvvhCklS2\nbFlVq1ZNkuTn55fnXaecnZ3tPR0hISHatm2bHnroIUnSqVOn1KBBA5nNZnl6eqpOnTp5bqskHT58\nWI8//rj9S7Np06Y6duyYnnzySW3ZskVnz57VsGHDtGnTJpnNZj377LN5Lq9p06aSpIcfflgzZ860\nPx8dHa2yZcuqfPny9tdzc/LkSfvwq5o1a8rb21tXr17VyZMn1ahRo2yxDho0SO+++6769esnf39/\nNWzYUEePHtXevXvt4+zT0tIUHR2d65W8xo0by8XFRZIUFBSUZdz0qVOn7L1kISEhuZ6kt2zZUrNm\nzdL169ftV37/+te/Srp17J45cybP+suUeeLm7e2toKAg+9/Jyck6evSoduzYoQ0bNkhSnmPI/fz8\ntGzZMn377bfy9PRUWlqaunfvrrVr1+rKlStq06aNLBaLLl++rODgYEkZx+ZXX32VZ3yZn7/g4GD7\nZ6p8+fL2/Zvpzn3Zv39/hYeHF2jf3K5WrVoym81ydnbW8OHD5e7urosXLyotLU2S7F3SlStXts8r\nymnbjh49qvPnz9tPem7cuKGoqKg8E4fc2qIGDRpIyqjr29uXM2fOKDg42H71fuTIkXluW7NmzWQ2\nm+Xn5ydvb29FR0fbt/l2f/75p70NKFu2rF555RUtXrw4x/bvzsQhp23YvHmz/Rjr1q1brvEVpn25\nfZvc3NwUFRWlV155RVJGz+Jf/vIX1ahRI9s2Shn7rV69evblzJkzp1AxZC67IJ8bSbLZbn0z3x5f\nQECA/WJNhQoV8hznffv2e3h4KCUlRb6+vpKkgQMHSpJ8fX01evRoeXh46OTJk7n2ZBeF27+rLly4\noICAAPuQrWbNmmnu3LnZEofc6qWonTp1Sq1bt5YkNWrUSBaLRf7+/nrttdfk7u6uS5cuKSQkRJ6e\nnmrWrJl++uknrVmzRoMHDy7SuJ588km9++67qly5soYNG6bIyEjZbDb97W9/0xtvvJGtjTl69Kje\ne+89ffDBB7LZbLJYMk6jjhw5Ik9PTyUkJNzzGDM/R15eXgoKCpLJZFLZsmWVmJio2rVr24/nzHpr\n1KhRjm3pnW5v+24/17mb9eb2nuTkZJ0+fVrR0dH2C4/x8fH287DM91WqVCnPOaVS1mM4r/WVZKU4\nb8jf5OjnnntO06ZNU0hIiKZOnVqgKxRBQUHas2ePpIyriUePHlW1atX0+++/S5J++eUX1a5dW4GB\ngfZuwmXLlqljx46qXr16gTco82TmyJEj2bJUf39/+0TIzCucOcmtR6VOnTr69ddfJWV0ERuVz0lq\naqoOHz4sSdqzZ4/9hEiSateurQMHDshqtSohIUHHjx83XF69evV04MABpaWlyWazaffu3apVq5Za\ntGih3bt3KyYmRq1bt9bBgwf1xx9/GE5sz6y/O2Pz9fVVbGys/WQor/oLCgqyv37mzBn78I/AwMAc\nY123bp06d+6syMhIBQcHa9WqVQoMDNRTTz2lyMhILV68WB06dFC5cuVyXeehQ4eUlpamhIQEnThx\nwt4VnhlP5n7LK26z2awOHTooPDxc7dq1U3BwcI7HbiZXV1d7cnrw4MEsy8rrmAgMDFT//v0VGRmp\nN998M8+rk0uXLlXjxo01e/ZsdejQQTabTY899pgOHz6szz//3H6iWKlSJfvxcvuxmZvMeI8ePWo/\n0TCbszcHd+7LESNGFHjf3M5sNuuPP/7Qxo0b9eabb2rixImyWq32L4Kc6i2nbQsMDFTt2rW1fPly\nRUZGqkuXLrkO97p9W/Lan3cKCAjQyZMn7V9iL7/8cp49OZl1evXqVcXFxdlPMO+s18DAQHud3rx5\nUwMGDMh3+5fbNpw6dUpSxqT27777Lsf4CtO+3L5NycnJCggI0DvvvKPIyEgNGjTInoDmdOxUrFjR\nPrFx9+7dqlmzZqFiyFx2bp8bk8kkm80mV1dXXbt2Tenp6YqNjc1y8eD2+ArSXt++/ampqZKk69ev\nS5KmT5+uXbt26e2339a8efM0ffp0ubq6ZjmpKWq3b0v58uUVFxeny5cvS8oYBlSzZs0s7dS5c+ey\nJFwFqYu7FRQUpH379km61V5PnDhRERERmjFjhipWrGivu+7du2v16tW6du1akY9vr1Onjs6cOaMD\nBw6odevWSkhI0KZNm3JtYwIDAzVy5EhFRkZqypQp6tChg6SMi0Xvv/++1q1bd88n9Oa2n0wmk06c\nOGFPVnbt2mVPBnN6j8lkktVqzfK/I9abqVq1aqpcubKWLl2qyMhI9enTx55o5xZv5jGRlpam+Ph4\npaSkZGk3HHkM30ul+Qfg8uxxmDNnTradcujQIUkZd9/Ij+7du2vixIkKDQ1VcnKyhgwZojVr1mjt\n2rX66KOP5ObmppkzZ6pcuXLatWuXevXqpYSEBLVr186ezRbE2bNn1bdvX6WkpGjq1KlZXps6dapG\njRolT09PeXh4FHhM58iRIzVu3DgtXbpUXl5e9isNBeHs7KzIyEhFRUWpSpUqGjFihL3nol69emrV\nqpWeffZZVaxY0X7ikZcaNWooJCREoaGhslqtatKkidq1ayeTyaRKlSqpSpUqMpvNqlWrVr6uCO/f\nv199+/aVyWRSRESE/UNrsVg0adIkDRgwQGXLls1z23v27Klx48apT58+9nHYMTExqlu3rjp27Jgt\n1gMHDmjChAlyc3OT2WzW1KlT5e/vrwkTJqhPnz6Ki4tTr169cjw5yeTq6qqBAwcqNjZWQ4cOzXIi\n++KLL+rVV1/VV199leeJopTRdduuXTt98803qlixYrZj9/Z90rFjR73yyivavXt3jkNDcjNo0CCN\nHz9eq1atUlxcXJ53oXniiSc0ffp0ffXVV/Ly8pKTk5N93sjPP/9sT5AmT56scePGyd3dXc7OzoYT\nRQ8fPqx+/fopMTExyxjdO925L8eNG6e6desWaN/cqUaNGnJzc1PPnj0lZVz1zTzZyUlO2/bAAw/o\nscceU2hoqFJSUtSwYUPDbc6tLcqNj4+PBg4cqD59+shkMumJJ57Icx1Xr15Vv379dPPmTU2ePFlO\nTk45lmvbtq22b9+u0NBQpaen66WXXlKrVq3y1f7ltA1BQUEaN26czGazKlSokOuFncK0L3duk9ls\n1vPPPy+bzSYPDw/NnDlTFy5cyPG906dP17Rp02Sz2eTk5KSIiAhVr169wDFkyu1z8/DDD2vUqFFa\nunSpWrRooWeffVbVq1dXjRo18r3s/G6/zWbTCy+8ILPZrPr166tZs2YKCQlRjx497EO28jqWi5LJ\nZNL06dM1dOhQ+1XX119/Xd7e3vLy8lK3bt0UFBRk2AYWldDQUI0aNUqhoaEKDAyUs7Oz2rdvr969\ne8vNzU1+fn72umvUqJGioqLu+ZCf3DRv3lxnz56V2WxWs2bNdPz48VzbmNGjRys8PFzJycn2+WqZ\nypQpo8mTJ2v06NFavXq1vRe8qDg5OWno0KHq27evzGazAgICNHLkyFyHjjZo0EAzZ86091A6ar2Z\nfHx81L9/f4WFhSk9PV1Vq1bNcS5XpkaNGmn27NmqVq2a+vbtqx49eqhatWp5Dl0qLUrz5GiTLY/L\nI5nzA65cuSJXV1d5e3tr7ty5eu655+wTCwsjc9Lq3R68jrZu3To1atRINWrU0OrVq/XLL7/o9ddf\nL+6wAH388cfq2LGjfHx8NG/ePDk7O+eakNw+qbs0KMi2FZc1a9bYb3Bwv7gft6kg/q9vf3GyWq0K\nDQ3VkiVLCnUBESjpZgQW/DtszEnH3rEuN3leMu/cubOkjKuw8+bNU0BAgH0izd0kDndryJAh2ca3\nenp6Zpucd69ljoHMvDIeERGRY7kDBw5o1qxZ2Z7v2LGjevXqVaQxGklJSdGAAQOyPV+rVq1sPTQl\nzYIFC7Rz585sz2deyfy/zNfXV88995zc3d3l5eWlGTNm5Po5yZwzVFrktG3FJTw8PMff8Mjrqpmj\nrVy5UuvXr8/2/PDhw/Ocm1RcSnJ7Ccc7c+aMhgwZoi5dupA04L513/Y4ZOrZs6f9dqxSRo9BZGRk\nkQYGAAAA3G8iCtHjMK409DhkqlKliubOnavGjRvrwIEDqlixYlHHBQAAANx3HHgPhXsuXzMaX3/9\ndfn4+GjLli3y8fFhXD8AAABQCFaZCvwoKfLV4+Dq6uqwH4kBAAAA7lf3/Q/AAQAAALh7pXmoEokD\nAAAA4CAlaehRQZE4AAAAAA5CjwMAAAAAQ6X5dxxIHAAAAAAHYXI0AAAAAEOlOG8gcQAAAAAcxWpj\ncjQAAAAAA0yOBgAAAGCIydEAAAAADJXmHgdzcQcAAAAA/F9hLcSjMJKSkjR06FD16tVLAwcOVHR0\ndM7xWK3617/+pRUrVhguk8QBAAAAcBCrreCPwlixYoXq1KmjTz75RM8884zeeeedHMu9+eabio2N\nzdcySRwAAAAAB7EV4lEYe/fuVcuWLSVJrVq10vbt27OV+frrr2UymezljDDHAQAAACjFVq9erWXL\nlmV5ztfXV15eXpIkDw8P3bx5M8vrR48e1fr16/X2229r4cKF+VoPiQMAAADgIEXxy9HdunVTt27d\nsjw3ZMgQxcfHS5Li4+Pl7e2d5fX//Oc/unTpkvr166dz587J2dlZVatWVatWrXJdD4kDAAAA4CCO\nuqtSSEiItmzZooYNG2rr1q1q0qRJltdHjRpl/3v+/Pny8/PLM2mQmOMAAAAAOIyj7qoUGhqqY8eO\nKTQ0VCtXrtSQIUMkSR9++KE2bdpUqGWabLbSfDdZAAAAoPR4vuK/C/ye9y+/VQSRFBxDlQAAAAAH\nKc1X7EkcAAAAAAcpisnRjkLiAAAAADhIaZ4kQOIAAAAAOEhhJzuXBCQOAAAAgIMwVAkAAACAoVKc\nN5A4AAAAAI5CjwMAAAAAQ0yOBgAAAGCIydEAAAAADFlLcZcDiQMAAADgIKU3bSBxAAAAABymNE+O\nNhd3AAAAAABKPnocAAAAAAexleLBSiQOAAAAgIOU5qFKJA4AAACAg3A7VgAAAACGbNyOFQAAAIAR\nehwAAAAAGKLHAQAAAIAhehwAAAAAGLLS4wAAAADACL/jAAAAAMAQQ5UAAAAAGLLS4wAAAADACHMc\nAAAAABhijgMAAAAAQwxVAgAAAGCIxAEAAACAodI8VMlc3AEAAAAAKPnocQAAAAAchKFKAAAAAAxZ\nTaX3J+BIHAAAAAAHoccBAAAAgCGb6HEAAAAAYIAeBwAAAACGmOMAAAAAwJCVoUoAAAAAjJA4AAAA\nADDE5GgAAAAAhpjjAAAAAMAQQ5UAAAAAGLIpvbhDKDQSBwAAAMBB6HEAAAAAYIjEAQAAAIAhhioB\nAAAAMESPAwAAAIASIykpSa+++qquXbsmDw8PvfHGG/Lx8clSZunSpVq/fr1MJpMGDRqk9u3b57lM\nc1EGDAAAAOAWm6wFfhTGihUrVKdOHX3yySd65pln9M4772R5PTY2VsuXL9enn36qpUuXKiIiwnCZ\nJA4AAACAg1iVXuBHYezdu1ctW7aUJLVq1Urbt2/P8rqbm5uqVKmixMREJSYmymQyGS6ToUoAAACA\ngxS2ByEvq1ev1rJly7I85+vrKy8vL0mSh4eHbt68me19lStX1lNPPaX09HS98MILhushcQAAAAAc\nxGq793dV6tatm7p165bluSFDhig+Pl6SFB8fL29v7yyvb926VZcvX9amTZskSQMGDFBISIgaNmyY\n63oYqgQAAAA4iKPmOISEhGjLli2SMpKEJk2aZHm9bNmyKlOmjFxcXOTq6iovLy/FxsbmuUx6HAAA\nAAAHcdTvOISGhmr06NEKDQ2Vs7Oz5syZI0n68MMPFRAQoLZt2+rnn39W9+7dZTabFRISohYtWuS5\nTJPNZrM5IngAAADg/zpfjybGhe5wLX5vEURScPQ4AAAAAA5SFJOjHYXEAQAAAHAQWxFMjnYUEgcA\nAADAQaz0OAAAAAAwYrOROAAAAAAw4Ki7KhUFEgcAAADAQehxAAAAAGCIuyoBAAAAMMRdlQAAAAAY\nYqgSAAAAAEOleaiSubgDAAAAAFDy0eMAAAAAOAhDlQAAAAAYKs1DlUgcAAAAAAfhrkoAAAAA8oEe\nBwAAAAAGmOMAAAAAwBBzHAAAAADkA4kDAAAAACMMVQIAAABghKFKAAAAAPKBxAEAAACAEZutuCMo\nNBIHAAAAwEFsKr2Jg8lmK8VpDwAAAACHMBd3AAAAAABKPhIHAAAAAIZIHAAAAAAYInEAAAAAYIjE\nAQAAAIAhEgcAAAAAhv4/nFu8rOoxCoYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "dataset = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_dataset(dataset, look_back_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,target_index]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14878, 11)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.shape\n", + "#y.shape\n", + "#X[0].shape\n", + "#X.shape[2]\n", + "#np.reshape(X, (X.shape[0]*10, X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. close_bid 3 (0.816391)\n", + "1. ohlc_price 7 (0.067108)\n", + "2. high_bid 1 (0.064573)\n", + "3. avg_price 5 (0.050164)\n", + "4. low_bid 2 (0.001339)\n", + "5. open_bid 0 (0.000077)\n", + "6. range 6 (0.000056)\n", + "7. momentum 15 (0.000053)\n", + "8. volume 4 (0.000046)\n", + "9. pca 10 (0.000045)\n", + "10. hour 11 (0.000038)\n", + "11. oc_diff 8 (0.000028)\n", + "12. period_return 9 (0.000028)\n", + "13. week 13 (0.000023)\n", + "14. day 12 (0.000023)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2Y1XWd//HX3AACgyDb5LYl3lC4phlCtnEl5uJSZpom\n6ADukOnuXq6V9ZPMm1ZUEMQss7W8yexmtQRzvRTsxhaj2MhMMUw0ajVlXfIiVFRmQGGY8/tjrpkV\nb9thmDP6eTyuy+uac75zznnzduY4PvmeMzWVSqUSAAAAAIpSW+0BAAAAAOh9ohAAAABAgUQhAAAA\ngAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAdpi99947Rx55ZI466qiufz73uc91+/5+85vfZObM\nmT044bZuv/32XHDBBTvs/l/Oo48+mk9+8pO9/rgAQNnqqz0AAPD69u1vfzvDhw/vkft68MEHs3bt\n2h65r5dy6KGH5tBDD91h9/9y/vjHP+bhhx/u9ccFAMpWU6lUKtUeAgB4fdp7771zxx13vGQUeuih\nhzJnzpw89dRT2bp1a5qbmzN58uS0t7dn7ty5uffee9Pa2ppKpZILLrggf/VXf5WpU6dmw4YNef/7\n35+jjz46s2fPzq233pokufPOO7suX3bZZVmxYkX+9Kc/Ze+9984XvvCFXHHFFfnxj3+c9vb2vPnN\nb865556bXXfddZuZbrrpptx222256qqr0tzcnH333Te//OUv88QTT2T69Ol54okn8qtf/SqbNm3K\npZdemr333jvNzc0ZOXJkVq5cmfXr1+eoo47KqaeemiRZvHhxvvKVr2Tr1q1paGjIWWedlf3333+b\n+d72trflvvvuy9q1a3PggQfmmmuuyZVXXpnFixfnueeey6ZNm3LGGWdk4sSJueyyy7JmzZqsW7cu\na9asyfDhw/OlL30pu+66ax5++OHMnDkzTz75ZGpra/PP//zPOfzww7N27drMmjUrjz32WLZs2ZIP\nfehDOfnkk9PW1pbZs2fnnnvuSb9+/fKWt7wlF154YQYPHrzjvzAAgD7BmUIAwA710Y9+NLW1//uK\n9W984xsZOnRoTj311Hz+85/Pvvvumw0bNqSpqSlvfetbU6lU8qc//SkLFixIbW1tvva1r+Xqq6/O\nlVdemVNPPTW33XZbLrzwwtx5552v+Lhr1qzJrbfemvr6+tx88835/e9/n+9973upr6/PggUL8i//\n8i+5+uqrX/U+br755tx777057rjjcsUVV+TMM8/M3Llzc91112X27NlJOs70uf7667Np06Ycd9xx\necc73pERI0bk3HPPzfz587PbbrvljjvuyCmnnJIf/ehHL5qvM2hdc801WbNmTX7xi1/kuuuuy047\n7ZTvf//7+dd//ddMnDgxSXL33Xfn5ptvTkNDQ04++eQsWLAgp556ak477bRMnjw5xx9/fB577LE0\nNzfn4IMPzumnn54TTjghEyZMyHPPPZd//Md/zIgRI/LGN74xv/rVr/KDH/wgNTU1ufjii/O73/0u\nY8aM2Z5/3QDAa4goBADsUC/18rEHH3ww//3f/52zzz6767pnn302DzzwQKZNm5ahQ4dm/vz5efTR\nR3PnnXd26+yV0aNHp76+40edJUuW5L777sukSZOSJO3t7dm0adOr3kdniNltt92SJOPHj0+SjBgx\nIr/61a+6Pq+pqSn9+vVLv379cthhh+XnP/959tprr7znPe/puu24ceMyfPjwrFy58kXzPd+b3/zm\nXHTRRVm0aFFWr17ddcZUp3e/+91paGhIkrz97W/P008/naeeeiqrVq3KsccemyR505velMWLF2fj\nxo2566678vTTT+fLX/5ykmTjxo1ZtWpVDjrooNTV1eXYY4/NQQcdlA984APZf//9/9z1AgCvA6IQ\nANDrtm7dmp133jm33HJL13WPP/54hgwZkp/+9KeZM2dOPvaxj+XQQw/NXnvtlYULF77oPmpqavL8\nV8Fv2bJlm+ODBg3q+ri9vT3/8A//kGnTpiVJNm/enKeffvpV5+zfv/82l/v16/eSn/f8uFOpVFJb\nW5uXeoV+pVJJW1vbi+Z7vvvvvz+nnHJKTjjhhLz3ve/NgQcemPPPP7/r+E477dT1cecOOh+/pqam\n69gf/vCHNDY2plKpZP78+Rk4cGCS5Mknn8yAAQMyePDg3HLLLbnnnnvyy1/+Mp/+9Kczffr0nHDC\nCa+0EgDgdcRvHwMAet2ee+6ZAQMGdEWhxx57LEcccURWrlyZZcuW5W//9m8zbdq0vOMd78jixYuz\ndevWJEldXV1XVBk+fHj++Mc/5oknnkilUsnixYtf9vEOOuig3HjjjWlpaUmSfPnLX85nP/vZHvvz\nLFy4MO3t7Xn66afzwx/+MBMmTMh73vOeLFu2LI8++miS5I477shjjz2Wd77znS+6fV1dXVfUuuuu\nu7LffvvlYx/7WN797nfn9ttv7/rzv5yGhobsu+++ufnmm5N07HPq1Kl59tlnM3r06Hzzm99Mkjzz\nzDOZOnVqbr/99ixZsiQnnHBCDjjggHzyk5/M0UcfnVWrVvXYTgCAvs+ZQgBAr+vfv38uv/zyzJkz\nJ1//+tfT1taWT33qUxk7dmyGDRuWz3zmMznyyCNTV1eXd73rXV1vEH3AAQfk0ksvzcc//vF89atf\nzZQpUzJp0qQ0NjbmkEMOednHO/bYY7N27docd9xxqampyZve9KbMmzevx/48zz77bCZPnpzW1tZM\nmzYt48aNS5Kce+65+cQnPpGtW7dmp512ypVXXpkhQ4a86PZve9vbUldXl8mTJ+fKK6/Mj3/84xx+\n+OHp169fxo0bl6effroraL2cL37xizn//PNz7bXXpqamJnPmzEljY2O+8IUvZPbs2TnyyCOzefPm\nHHHEEfnwhz+crVu3ZunSpTniiCMyaNCgDB06tOs9kgCAMvjtYwAA26G5uTnHH398DjvssGqPAgDw\nf+LlYwAAAAAFcqYQAAAAQIGcKQQAAABQIFEIAAAAoECiEAAAAECB+syvpF+3bkO1R+gTdtllUNav\n31jtMarKDjrYQwd7sINO9tDBHuygkz10sAc76GQPdtDJHjrYgx10amwc8rLHnCnUx9TX11V7hKqz\ngw720MEe7KCTPXSwBzvoZA8d7MEOOtmDHXSyhw72YAd/DlEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKNSHjB27X/bYY49qjwEAAAAUQBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABdquKHTvvfemubn5Rdf/5Cc/yaRJk9LU1JQb\nbrhhex4CAAAAgB2gvrs3vPrqq7Nw4cIMHDhwm+u3bNmSCy+8MDfeeGMGDhyYqVOnZsKECXnDG96w\n3cMCAAAA0DO6fabQiBEjctlll73o+oceeigjRozI0KFD079//4wdOzZ33XXXdg0JAAAAQM/q9plC\nH/jAB/I///M/L7q+paUlQ4YM6bo8ePDgtLS0vOr97bLLoNTX13V3nNeF2tqaJElj45BX+czXPzvo\nYA8d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA928Gq6HYVeTkNDQ1pbW7sut7a2bhOJXs769Rt7\nepTXnPb2Smpra7Ju3YZqj1JVjY1Dit9BYg+d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA920OmV\nwliP//axkSNHZvXq1XnqqaeyefPm3H333TnggAN6+mEAAAAA2A49dqbQokWLsnHjxjQ1NeXMM8/M\nSSedlEqlkkmTJmXXXXftqYcBAAAAoAdsVxR6y1ve0vUr54888siu6ydMmJAJEyZs32QAAAAA7DA9\n/vIxAAAAAPo+UQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIHqqz3Aa8Gwy8/rlcepfeapXnu8p07Z8Y8BAAAA9F3OFAIA\nAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq7c5vnDhwnzkIx/JpEmT8t3vfrdHBgUAAACg\n53TrPYUWL16czZs3Z8GCBVmxYkXmzZuXK664ouv45z//+dx6660ZNGhQPvShD+VDH/pQhg4d2mND\nAwAAALB9uhWFli9fnvHjxydJRo8enZUrV25zfO+9986GDRtSX1+fSqWSmpqa7Z8UAAAAgB7TrSjU\n0tKShoaGrst1dXVpa2tLfX3H3b3tbW/LpEmTMnDgwEycODE777zzq97nLrsMSn19XXfG2eG2VHuA\nHaCxcUi1R3hFfX2+3mIPHezBDjrZQwd7sINO9tDBHuygkz3YQSd76GAPdvBquhWFGhoa0tra2nW5\nvb29KwitWrUqP/3pT3P77bdn0KBBOf300/PDH/4wH/zgB1/xPtev39idUXrFsGoPsAOsW7eh2iO8\nrMbGIX16vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bQ6ZXCWLfeaHrMmDFZunRpkmTF\nihUZNWpU17EhQ4Zkp512yoABA1JXV5fhw4fnmWee6c7DAAAAALCDdOtMoYkTJ2bZsmWZMmVKKpVK\n5s6dm0WLFmXjxo1pampKU1NTpk2bln79+mXEiBH5yEc+0tNzAwAAALAduhWFamtrM2vWrG2uGzly\nZNfHU6dOzdSpU7dvMgAAAAB2mG69fAwAAACA1zZRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nqu/Ojdrb23Peeefld7/7Xfr3758LLrggu+++e9fx3/zmN5k3b14qlUoaGxtz8cUXZ8CAAT02NAAA\nAADbp1tnCi1evDibN2/OggULMmPGjMybN6/rWKVSyTnnnJMLL7ww119/fcaPH581a9b02MAAAAAA\nbL9unSm0fPnyjB8/PkkyevTorFy5suvYww8/nGHDhuVb3/pW/uu//ivve9/7stdee/XMtAAAAAD0\niG6dKdTS0pKGhoauy3V1dWlra0uSrF+/Pr/+9a/z93//9/nmN7+ZX/7yl7njjjt6ZloAAAAAekS3\nzhRqaGhIa2tr1+X29vbU13fc1bBhw7L77rtn5MiRSZLx48dn5cqVGTdu3Cve5y67DEp9fV13xtnh\ntlR7gB2gsXFItUd4RX19vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bwaroVhcaMGZMl\nS5bk8MMPz4oVKzJq1KiuY7vttltaW1uzevXq7L777rn77rszefLkV73P9es3dmeUXjGs2gPsAOvW\nbaj2CC+rsXFIn56vt9hDB3uwg0720MEe7KCTPXSwBzvoZA920MkeOtiDHXR6pTDWrSg0ceLELFu2\nLFOmTEmlUsncuXOzaNGibNy4MU1NTZkzZ05mzJiRSqWSAw44IIccckh3ZwcAAABgB+hWFKqtrc2s\nWbO2ua7z5WJJMm7cuNx4443bNxkAAAAAO0y33mgaAAAAgNc2UQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQPXVHoD/9V//7x+qPQIA\nAABQCGcKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq1/y884555x84Qtf\n2K4BAQAAAOh53YpCixcvzubNm7NgwYLMmDEj8+bNe9HnzJ8/P7///e+3e0AAAAAAel63otDy5csz\nfvz4JMno0aOzcuXKbY7fc889uffee9PU1LT9EwIAAADQ4+q7c6OWlpY0NDR0Xa6rq0tbW1vq6+vz\npz/9KV/96lfzla98JT/84Q//7PvcZZdBqa+v6844O9yWag+wAzQ2Dqn2CK+or8/XW+yhgz3YQSd7\n6GAPdtDJHjrYgx10sgc76GQPHezBDl5Nt6JQQ0NDWltbuy63t7envr7jrn70ox9l/fr1+ad/+qes\nW7cuzz77bPbaa68cc8wxr3if69dv7M4ovWJYtQfYAdat21DtEV5WY+OQPj1fb7GHDvZgB53soYM9\n2EEne+hgD3bQyR7soJM9dLAHO+j0SmGsW1FozJgxWbJkSQ4//PCsWLEio0aN6jo2ffr0TJ8+PUly\n00035Q9/+MOrBiEAAAAAele3otDEiROzbNmyTJkyJZVKJXPnzs2iRYuyceNG7yMEAAAA8BrQrShU\nW1ubWbNmbXPdyJEjX/R5zhACAAAA6Ju69dvHAAAAAHhtE4UAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokChE\nnzJ27H7ZY489qj0GAAAAvO6JQtAHiWMAAADsaKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgF91tix+2WPPfao9hgAAACvS6IQAAAAQIFEIQAAAIAC1XfnRu3t7TnvvPPyu9/9Lv37988FF1yQ\n3Xffvev4rbfemm9/+9upq6vLqFGjct5556W2Vn8CAAAA6Cu6VWoWL16czZs3Z8GCBZkxY0bmzZvX\ndezZZ5/NpZdemn/7t3/L/Pnz09LSkiVLlvTYwAAAAABsv25FoeXLl2f8+PFJktGjR2flypVdx/r3\n75/58+dn4MCBSZK2trYMGDCgB0YFAAAAoKd0Kwq1tLSkoaGh63JdXV3a2to67rC2Nm94wxuSJNde\ne202btyY9773vT0wKgAAAAA9pVvvKdTQ0JDW1tauy+3t7amvr9/m8sUXX5yHH344l112WWpqal71\nPnfZZVDq6+u6M84Ot6XaA+wAjY1Dqj3CS6qt7fha6avz9RZ76GAP/8sOOthDB3uwg0720MEe7KCT\nPdhBJ3voYA928Gq6FYXGjBmTJUuW5PDDD8+KFSsyatSobY7PnDkz/fv3z+WXX/5nv8H0+vUbuzNK\nrxhW7QF2gHXrNlR7hJfU3l5JbW1Nn52vt9hDB3vo0Ng4pPgdJPbQyR7soJM9dLAHO+hkD3bQyR46\n2IMddHqlMNatKDRx4sQsW7YsU6ZMSaVSydy5c7No0aJs3Lgx++23X2688ca8613vykc/+tEkyfTp\n0zNx4sTuTQ8AAABAj+tWFKqtrc2sWbO2uW7kyJFdH69atWr7pgIAAABgh+rWG00DAAAA8NomCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC1Vd7AF47hl1+3g5/jNpnnuq1\nx0qSp07pnccBAACAvkYUgv+j11scE8YAAADK5OVjAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQ\nKAQAAABQIL99DPg/643fipb4LWwAAAA7kjOFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACdSsKtbe3Z+bMmWlqakpzc3NWr169zfGf/OQnmTRpUpqamnLDDTf0\nyKAAAAAA9JxuRaHFixdn8+bNWbBgQWbMmJF58+Z1HduyZUsuvPDCfOMb38i1116bBQsW5PHHH++x\ngQFKMnbsftljjz2qPQYAAPA61K0otHz58owfPz5JMnr06KxcubLr2EMPPZQRI0Zk6NCh6d+/f8aO\nHZu77rqrZ6YFAAAAoEfUd+dGLS0taWho6LpcV1eXtra21NfXp6WlJUOGDOk6Nnjw4LS0tLzqfe6y\ny6DU19d1Z5wd79wvVnuCHtfYnRv1xh6++e9Jkn69tHN76MM7SPr+HnpBbW1NkqSxccirfGYZ7KGD\nPdhBJ3voYA920Mke7KCTPXSwBzt4Nd2KQg0NDWltbe263N7envr6+pc81trauk0kejnr12/sziiv\nO42NQ7IXSrrPAAAOA0lEQVRu3YZqj1E17e2V1NbWFL2DxB462YMdPF/pz4+d7MEOOtlDB3uwg072\nYAed7KGDPdhBp1cKY916+diYMWOydOnSJMmKFSsyatSormMjR47M6tWr89RTT2Xz5s25++67c8AB\nB3TnYQCKt3z5yjzyyCPVHgMAAHgd6taZQhMnTsyyZcsyZcqUVCqVzJ07N4sWLcrGjRvT1NSUM888\nMyeddFIqlUomTZqUXXfdtafnBgAAAGA7dCsK1dbWZtasWdtcN3LkyK6PJ0yYkAkTJmzfZAAAAADs\nMN16+RgAAAAAr22iEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiENBnLV++Mo888ki1xwAAAHhdEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAA\nUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoXoU5YvX5lHHnmk2mMAAADA654oBH2QOAYA\nAMCOJgoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAAChQfXdu9Oyzz+b000/PE088kcGDB+eiiy7K8OHDt/mcb33rW/n+97+f\nJHnf+96XT3ziE9s/LQAAAAA9oltnCl1//fUZNWpUvvvd7+boo4/O5Zdfvs3xRx99NAsXLsz8+fNz\nww035Oc//3lWrVrVIwMDAAAAsP26FYWWL1+e8ePHJ0kOPvjg3HHHHdsc/8u//Mt8/etfT11dXWpq\natLW1pYBAwZs/7QAAAAA9IiaSqVSeaVP+N73vpdvf/vb21z3F3/xF5k5c2ZGjhyZ9vb2HHLIIVm6\ndOmLblupVPL5z38+ra2tmTVr1isO0ta2NfX1dd34IwAAAADwf/Wq7yl07LHH5thjj93muk984hNp\nbW1NkrS2tmbnnXd+0e2ee+65nH322Rk8eHDOPffcVx1k/fqNf+7Mr2uNjUOybt2Gao9RVXbQwR46\n2IMddLKHDvZgB53soYM92EEne7CDTvbQwR7soFNj45CXPdatl4+NGTMmP/vZz5IkS5cuzdixY7c5\nXqlUcsopp2TvvffOrFmzUlfnDCAAAACAvuRVXz72UjZt2pQzzjgj69atS79+/fLFL34xjY2N+eY3\nv5kRI0akvb09p512WkaPHt11m9NOOy0HHHBAjw4PAAAAQPd0KwoBAAAA8NrWrZePAQAAAPDaJgoB\nAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiUB+wdevWnHXWWZkyZUqmTp2a3//+99UeqSpuuumm\nNDc3p7m5Occdd1ze8Y535Jlnnqn2WFVx7733prm5udpjVNVHPvKRrq+Hs846q9rjVMWWLVty+umn\nZ9q0aZk8eXJuv/32ao9UFe3t7Zk5c2aamprS3Nyc1atXV3ukqrjqqqvS1NSUY445Jt/73veqPU6v\ne/7z4gMPPJDx48d3PUf84Ac/qPJ0ve+JJ57I+973vjz00EPVHqXXPf9rYfXq1Zk6dWqmTZuWc889\nN+3t7VWerve81M8Kc+fOzfXXX1+liapjy5YtmTFjRqZMmZJp06YV+T2RJJs3b86MGTNy3HHH5cQT\nT8wjjzxS7ZF63fO/Jx588MFMnTo1U6ZMyZlnnpm2trYqT9c7nr+D3/72t5k2bVqam5tz0kkn5fHH\nH6/ydL3npZ4fFy1alKampipN1LfVV3sAkiVLliRJ5s+fnzvvvDNf+tKXcsUVV1R5qt53zDHH5Jhj\njkmSnH/++Zk0aVJ23nnnKk/V+66++uosXLgwAwcOrPYoVfPcc8+lUqnk2muvrfYoVbVw4cIMGzYs\nF198cZ566qkcffTROfTQQ6s9Vq9bvHhxNm/enAULFmTFihWZN29ecc+Rd955Z37961/n+uuvz6ZN\nm/KNb3yj2iP1qhc+L95///352Mc+lhNPPLHKk1XHli1bMnPmzOy0007VHqXXvfBr4cILL8ynP/3p\n/M3f/E1mzpyZ22+/PRMnTqzylDveC/fw5JNP5rOf/WweeeSRnHTSSVWernf97Gc/S1tbW+bPn59l\ny5bl0ksvzWWXXVbtsXrdDTfckEGDBuWGG27IH/7wh8yePTvXXHNNtcfqNS/8nrjkkkty2mmn5cAD\nD8yZZ56ZJUuWvO6fG164gzlz5uScc87JPvvsk/nz5+fqq68u4i9aX+r/pR544IHceOONqVQqVZys\n73KmUB/wd3/3d5k9e3aS5I9//GORIeT57rvvvjz44IPFltwRI0YU+cPM861atSqbNm3KiSeemOnT\np2fFihXVHqkqDjvssHzqU59KklQqldTV1VV5oupYvnx5xo8fnyQZPXp0Vq5cWeWJet/Pf/7zjBo1\nKh//+Mdz8skn55BDDqn2SL3qhc+LK1euzE9/+tMcf/zxOfvss9PS0lLF6XrfRRddlClTpuSNb3xj\ntUfpdS/8Wrj//vvz7ne/O0ly8MEH5xe/+EW1RutVL9xDa2trPvnJT+aoo46q4lTVseeee2br1q1p\nb29PS0tL6uvL/DvvBx98MAcffHCSZK+99irujKkXfk9cdtllOfDAA7N58+asW7cuDQ0NVZyud7xw\nB5dcckn22WefJB2vTBkwYEC1RutVL9zD+vXrc8kll+Tss8+u4lR9myjUR9TX1+eMM87I7Nmzc+SR\nR1Z7nKq66qqr8vGPf7zaY1TNBz7wgWJ/oOm000475aSTTso111yT888/P5/5zGeKOe33+QYPHpyG\nhoa0tLTk1FNPzac//elqj1QVLS0t2/wwV1dXV9zXw/r167Ny5cp8+ctf7vqeKOlvu174vLj//vvn\ns5/9bL7zne9kt912y1e/+tUqTte7brrppgwfPrwrlJbmhV8LlUolNTU1STqeMzds2FCt0XrVC/ew\n22675Z3vfGcVJ6qeQYMGZc2aNfngBz+Yc845p9iX3++zzz5ZsmRJKpVKVqxYkbVr12br1q3VHqvX\nvPB7oq6uLmvWrMkRRxyR9evX56//+q+rOF3veOEOOv/i4J577sl1112XE044oUqT9a7n72Hr1q35\n3Oc+l7POOiuDBw+u8mR9lyjUh1x00UW57bbbcs4552Tjxo3VHqcqnnnmmTz88MN5z3veU+1RqKI9\n99wzH/7wh1NTU5M999wzw4YNy7p166o9VlU89thjmT59eo466qhig3FDQ0NaW1u7Lre3txcXTocN\nG5aDDjoo/fv3z1577ZUBAwbkySefrPZYVTNx4sTst99+XR8/8MADVZ6o9/z7v/97fvGLX6S5uTm/\n/e1vc8YZZxT7/JgktbX/+6Nsa2tr8Wdbl+hb3/pWDjrooNx222255ZZbcuaZZ+a5556r9li9btKk\nSWloaMi0adPyH//xH9l3332LPcO405vf/Ob8+Mc/ztSpUzNv3rxqj1MVP/jBD3Luuefma1/7WoYP\nH17tcXrd/fffn9WrV+e8887LaaedlgcffDBz5syp9lh9jijUB9x888256qqrkiQDBw5MTU3NNj/k\nlOSuu+7KuHHjqj0GVXbjjTd2/cd77dq1aWlpSWNjY5Wn6n2PP/54TjzxxJx++umZPHlytcepmjFj\nxmTp0qVJkhUrVmTUqFFVnqj3jR07Nv/5n/+ZSqWStWvXZtOmTRk2bFi1x6qak046Kb/5zW+SJHfc\ncUf23XffKk/Ue77zne/kuuuuy7XXXpt99tknF110UZHPj53e/va3584770ySLF26NO9617uqPBG9\nbeedd86QIUOSJEOHDk1bW1tRZ8h0uu+++zJu3Lhcf/31Oeyww7LbbrtVe6SqOvnkk7vebHvw4MFF\n/r/VLbfc0vXfi1K/Hvbff/98//vfz7XXXptLLrkkb33rW/O5z32u2mP1OWX9VWsf9f73vz9nnXVW\njj/++LS1teXss88u8s0jk+Thhx/OW97ylmqPQZVNnjw5Z511VqZOnZqamprMnTu3uDNDkuTK/9/O\n3aKsGgRQAD43GBRsXzEJ7sEFGMQNGMRksimYFEER/ImCRdyQyd1YRd4vXLhL0AvzPCs4acKZmXO7\n5fl85nq95nq9Jvk7nlfa+dDv93O/3zMajVJVVU6n07cjfVyv18vj8chwOExVVdlut0XfAO92u+z3\n+9Rqtfz8/Pzb5aM8y+Uym80m5/M5nU4ng8Hg25H4sMlkkvV6nfF4nNfrlcVikUaj8e1YH9dut3O5\nXHK73dJsNot/DTGdTrNarVKr1VKv13M4HL4d6aPe73eOx2NarVZms1mSpNvtZj6ffzkZ/6M/VUmj\nBAAAAAAk8X0MAAAAoEhKIQAAAIACKYUAAAAACqQUAgAAACiQUggAAACgQEohAAAAgAIphQAAAAAK\npBQCAAAAKNAvnTbiiIhM3PgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + " \n", + "# Plot the feature importances coming from the forest of decision trees and their standard deviation\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "#df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJDCAYAAABHO5LzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVvP+//HXuk9zrplqks4HClERQhKJREWRConQbztt\nu03abJukr2SLTc52taUktqTSlooKHeRYKkrpMKWapjk1p/u0fn/cM/fM3Zxn7pl75p7n47pc1vqs\nz1rrfd8yK9ar98cwTdMUAAAAAAAAAAAAAAAAgCqzhLoAAAAAAAAAAAAAAAAAoL4jhAMAAAAAAAAA\nAAAAAABUEyEcAAAAAAAAAAAAAAAAoJoI4QAAAAAAAAAAAAAAAADVRAgHAAAAAAAAAAAAAAAAqCZC\nOAAAAAAAAAAAAAAAAEA1EcIBAAAAAAAogdPp1K5du4qNJyUlqUuXLurSpYsef/zxEFRWMcGoc+HC\nhf5rfPLJJ0GuUMrKytL+/fuDfl0AAAAAAIBQIIQDAAAAAABwgnXr1mnIkCFatmxZqEsJW8uWLdPA\ngQO1adOmUJcCAAAAAAAQFLZQFwAAAAAAAFCX/PHHH7r99ttDXUZY+/bbbzV+/PhQlwEAAAAAABBU\nhHAAAAAAAACK8Hg8ZR5v3bq1fv3111qqJrSGDRumYcOGBf265X3HAAAAAAAA9RHLUQEAAAAAAAAA\nAAAAAADVRAgHAAAAAAAAAAAAAAAAqCbDNE0z1EUAAAAAAAAUlZOTo/nz52vlypXavXu3jh8/rvj4\neJ155pkaPHiwBg4cKIul+J8t2rhxo2699VZJ0qJFi9SpUye9++67WrZsmX7//Xc5nU61atVKl156\nqcaOHatmzZoFnN+lS5dSa5ozZ4569eqlpKQkXX755ZKkESNGaPLkyf45Cxcu1COPPCJJ2rRpk1at\nWqU33nhDSUlJ/vpffPFFRURE+M/5448/9M477+irr77SgQMH5HK5lJiYqHPPPVcjR47U2WefXaXv\n8MQ6n3zySX388cdauHChfv31V+Xk5Oikk05Snz59NGbMGLVr167YNYp+nueff17XXHNNwPHc3Fy9\n//77WrFihXbs2KGsrCzFxsaqTZs26t27t2666SY1b968xJpKsmrVKrVu3TpgbOfOnZo3b542btyo\nQ4cOyTRNNW/eXOedd55GjRqlM888s8RrzZgxQy+//LLi4uK0adMmzZo1S/PmzdORI0fUtGlT9erV\nS+np6Vq9erUkaeXKlWrTpk2ptb311lt67rnnJElLlixR586dS50LAAAAAAAaJluoCwAAAAAAAChq\n8+bNuu+++3T48OGA8eTkZH3xxRf64osv9M477+ill14KCHicKCUlRQ8//LB27NgRML5r1y7t2rVL\nH3zwgWbPnl1qiKO63nvvPU2fPj2g/qysrIAAzgcffKCnnnpKeXl5AecmJSUpKSlJixYt0ogRI/SP\nf/xDdru9yrVkZWXp9ttv1/r16wPG9+3bp3nz5umjjz7SSy+9pD59+lT4mn/88YfGjh2r3bt3B4yn\npqYqNTVVmzdv1uzZszV9+nT179+/0jWbpqnp06dr5syZ8nq9Acf27t2rvXv36sMPP9TNN9+sRx55\nRDZb6f+ba/r06Xrrrbf8+4cOHZLVatXQoUP9IZwlS5bonnvuKfUaixcvliR17dqVAA4AAAAAACgR\nIRwAAAAAAFBn7Ny5U2PGjFF2drZiYmJ000036cILL1RcXJwOHDigpUuXauXKlfrhhx90xx13aMGC\nBYqOji7xWn/729+UnJysPn366IYbblDLli2VlJSkWbNmacuWLcrIyNDEiRO1dOlSGYYhydc958iR\nIxo3bpwkXweZUaNGSZLatm1bqc/ywgsv6OSTT9Zf/vIXtWnTRj/99JM6dOjgP75w4UI99thjkqTW\nrVvrlltu0VlnnSWr1arffvtN8+bN0/bt27VgwQK5XC5NnTq10t9ngaVLl0rydfoZPXq0OnXqpMOH\nD2v+/PnauHGjsrOzNXHiRH322WeKjY2t0DX/9re/affu3bJarRozZox69+6txo0b69ixY1qzZo0W\nLFig3NxcTZgwQcuXL1fz5s3VvHlzLVq0SD///LP/s99///3+7jhFQ1VPP/205syZI0lKSEjQbbfd\npp49e8pisWjz5s2aNWuWjhw5orlz5yorK0vPPPNMiXVmZWXprbfe0qmnnqr77rtPzZo104YNG3TJ\nJZfotNNOU3x8vNLS0soM4Wzfvt0f5ho6dGiFvh8AAAAAANDwEMIBAAAAAAB1xoQJE5Sdna0WLVro\nnXfeCQi+dOvWTQMHDtS8efM0efJk7dixQ6+++qoeeuihEq+VnJysP/3pTxo/fnzANfr376/hw4fr\nl19+0W+//abNmzere/fukqTTTz9dcXFx/vmJiYk6/fTTq/RZDMPQzJkz1alTJ0lSz549/ccOHz7s\nX8bqwgsv1KuvvhoQJjr77LM1dOhQf0ho4cKFGjhwoC655JIq1SJJV155paZPny6Hw+Efu+qqqzRu\n3DitXbtWKSkp+vLLLzVw4MByr3XgwAFt2LBBki9Ec/fddwcc79u3rzp16qTJkycrOztbS5cu1dix\nY+VwOHT66acrIyPDP7dly5bFvuPvvvvOH8Dp0KGD5syZExDQ6dmzp4YOHaqxY8dq69at+uijj9Sv\nXz9deeWVxWr1er2Ki4vTnDlz1KRJE0nSueee6z8+aNAgzZ07V7t379bPP/9cYmekjz/+WJJkt9uL\nLckFAAAAAABQoPji6QAAAAAAACHw9ddfa/v27ZKkiRMnltp55uabb9b5558vSZo/f75cLleJ8xIT\nE3X//fcXG3c4HAHdTH755Zfqll6i888/3x/AOdG7776rnJwc2Ww2TZs2rcRuPjabTZMmTfKHggpC\nKVXhcDg0efLkgACO5AsKFXT6kXydiCri6NGj/u127dqVOOeGG27Q8OHD9cADD6hbt26VqnfmzJn+\n7WeffbbEZcfi4+P1r3/9S1arVZIClps60YABA/wBnBMNGzbMv71kyZJixz0ej7+TUN++fUu9DgAA\nAAAAACEcAAAAAABQJ6xevdq/3bt37zLn9u3bV5J0/PhxbdmypcQ5F1xwgWy2kpsAFw34ZGVlVbLS\niinorlOSgs/aqVMnnXTSSaXOi4uL0znnnCNJ+vbbb0sNHJWnW7duSkhIKPFY0RBNenp6ha7Xtm1b\n/3f7zDPPaOXKlcVqi4iI0JQpU3TPPfcEdJ4pj9vt9nfZ6dq1a5kBnrZt2+riiy+WJG3ZskWpqakl\nzuvRo0ep1+jatas6d+4sSfrkk0/k8XgCjq9bt07JycmSWIoKAAAAAACUjeWoAAAAAABAnVDQBUeS\nv9NNRezfv98fVCmqVatWpZ5TtPOM2+2u8L0q4+STTy5x3O12a8eOHZKkX3/9VV26dKnQ9XJycpSS\nkqIWLVpUupayzomIiAiorSISEhI0fPhwzZ8/X4cPH9a9996rmJgY9erVSxdddJF69+6tjh07VrpO\nSTp48KA/GFVWkKlA9+7dtWbNGpmmqZ07d5b4a6e87+z666/X1KlTlZycrA0bNgSEwAqWokpISPCH\nvwAAAAAAAEpCJxwAAAAAAFAnlNbFpDwZGRkljsfExJR6jmEYVbpXZcTGxpY4npGRIa/XW6VrVrRT\nzYnK+i6KMk2zwtf8+9//rjFjxvg74mRlZenzzz/XlClTNHDgQF1xxRV64YUXdOzYsUrVmpaW5t9u\n2rRpufObNWvm3y7t+yntn0WBwYMH+z9H0SWpsrKytHLlSknSoEGDZLfby60HAAAAAAA0XHTCAQAA\nAAAAdUJBF5aEhATNnj27wueVtZxTKJUW9CnabaZPnz568MEHK3zNoktHhZrdbtejjz6qu+66S8uX\nL9cXX3yhb7/9Vrm5uZKkffv26fXXX9e7776rmTNnlrmsVFGVCQJJClg+qrTvvLzQVdOmTdW3b1+t\nWrVKn332mSZNmqTIyEitWLFCOTk5kliKCgAAAAAAlI8QDgAAAAAAqBPi4+MlSdnZ2erSpYsslvBs\n4FvwOSXJ6/Xq9NNPD2E11ZeYmKhbbrlFt9xyi5xOp77//nt9/fXX+uSTT3TgwAFlZGRowoQJ+t//\n/lehf6aNGzf2b6ekpJQ7v+icot9tZQ0bNkyrVq1SVlaW1q5dqyuvvFLLli2TJHXu3Fldu3at8rUB\nAAAAAEDDEJ7/NwsAAAAAANQ7p556qiQpLy9P27dvL3Pu2rVrNWvWLC1fvrzSyx2FmsPh8He02bp1\na0BnnJLMnz9f8+bN0+rVq8udW1u8Xq/279+v9evXB4w7HA5dcMEFevDBB/Xpp5+qR48ekqQ9e/bo\n999/r9C127Rpo+joaEnSTz/9VO78H3/80b/doUOHin6EYvr27asmTZpIkj+MU/D56IIDAAAAAAAq\nghAOAAAAAACoEy6++GL/9rvvvlvqPI/HoyeffFLTpk3Tn//8Z/9yQcFSGx14Cj5rWlqaPvnkk1Ln\n7d27V5MnT9bkyZP11FNPyWarG02N//GPf6h///667bbbtH///hLnFARyCuTl5fm3y/qOrVar/7yt\nW7fq559/LnXu3r17/UGZ0047TU2bNq3U5yjKbrdr8ODBkqTVq1drzZo1cjqdslqt/nEAAAAAAICy\nEMIBAAAAAAB1Qv/+/dWmTRtJ0ocffqjFixeXOG/q1KlKSkqSJF1++eVq1apVUOtwOBz+7ezs7KBe\nu8Ctt94qq9UqSXr66af166+/FpuTk5OjCRMmyOv1SpJGjx5dI7VUxWWXXebfnjp1qkzTLDYnJydH\nq1atkiTFxMQEdKkp7zu+/fbb/dsPP/ywjh49WmxOenq6xo8fL4/HI0kaO3ZsFT5JoGHDhknyhaNe\nfPFFSb7AVGJiYrWvDQAAAAAAwl/d+ONTAAAAAACgwbPZbJo2bZrGjBkjl8ulhx9+WF988YWuueYa\nJSYm6sCBA1qwYIE2bNggSWrcuLEeffTRoNeRkJAgu90ul8ulpUuX6qKLLlKjRo3Url07xcfHB+Ue\n7du31/jx4/Xcc88pLS1NN954o2666SZdcsklcjgc2rFjh/7zn/9oz549kqRu3brp5ptvDsq9g6Ff\nv34666yztGXLFq1atUrXX3+9Ro0apfbt28s0Te3evVtz587Vzp07JUl33HGHoqKi/OcXDbW89957\n6ty5s2w2m04//XRFRUXp/PPP1+jRo/XOO+9o165dGjJkiMaMGaOePXvKMAxt2bJFs2fP1qFDhyRJ\ngwYN0rXXXlvtz3XaaafpjDPO0LZt2/zf/XXXXVft6wIAAAAAgIaBEA4AAAAAAKgzevbsqTfffFPj\nx49XWlqali1bpmXLlhWb16JFC73yyitq3bp10GuwWq3q16+fli9friNHjujOO++U5OtYc/311wft\nPnfddZcMw9ALL7yg3NxczZo1S7NmzSo279xzz9XLL78su90etHtXl8Vi0csvv6w77rhDv/32m7Zu\n3arHHnus2DzDMDRq1Cjdc889AeMtW7ZU165dtXXrVu3cudPf5eftt9/2L0X16KOPym63a/bs2UpJ\nSdHzzz9f4vVvu+02Pfjgg0H7bMOGDdO2bdsk+YJe/fv3D9q1AQAAAABAeCOEAwAAAAAA6pSLLrpI\nq1at0vz587V69Wrt2rVLmZmZio6O1imnnKLLL79cI0eOVGxsbI3V8PTTT6tp06ZatWqVjh07pkaN\nGik1NTXo97nzzjs1YMAAzZs3T+vWrdPBgweVk5Oj+Ph4de3aVUOGDNHVV18ti6XurSjeokULffTR\nR/rwww+1YsUK7dixQ2lpabLb7WrevLl69eql66+/Xt27dy/x/Ndff13PPvus1q1bp4yMDMXHxwcs\nO2WxWDRx4kRde+21evfdd7Vx40YdPnxYFotFLVu2VK9evTR8+HCddtppQf1cAwcO1JQpU/zbRZfO\nAgAAAAAAKIthlrRoNwAAAAAAANAArVmzRuPGjZMkLViwQD169AhxRQAAAAAAoL6oe3+MCgAAAAAA\nAAiRhQsXSpJOOeUUAjgAAAAAAKBSCOEAAAAAAAAAktatW6eVK1dKkkaNGhXiagAAAAAAQH1jC3UB\nAAAAAAAAQKhMmTJFWVlZyszM1Jo1a+R2u9WiRQtdf/31oS4NAAAAAADUM4RwAAAAAAAA0GClpKRo\n2bJl/n273a6nn35aUVFRIawKAAAAAADURyxHBQAAAAAAgAbr3HPPVXx8vKKiotSzZ0/NnDlTvXv3\nDnVZAAAAAACgHjJM0zRDXYQkJSdnhrqECktIiFZqanaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH/H8\nAgA0JImJcaUeoxNOFdhs1lCXAABAreG5BwAIJZ5DAICGhmcfAKA+4vkFAIAPIRwAAAAAAAAAAAAA\nAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAAAAAACoJkI4AAAAAAAAAAAAAAAAQDURwgEA\nAAAAAAAAAAAAAACqiRAOAAAAAAAAAAAAAAAAUE2EcAAAAAAAAAAAAAAAAIBqIoQDAAAAAAAAAAAA\nAACAWrNs2RK99tqMGrv+999/qyeeeKTY+IsvTtehQ4cCxvbu3aP77hsXlPvagnIVAAAAAAAAAAAA\nAAAAoA574IEHa/T6hHAAAAAAAAAAAAAAAAAagJhJjyliyaKgXjNv8HXKmjSl7Dl5uXr66Sd16NAh\nuVwuXXbZ5f5j8+fP1apVn8lqtap797N1zz1/1ubNP+rll/8lm82myMhITZkyTQ5HhP75z6eVlLRf\nXq9Xd911t84559xS77l//3799a/3KT09XUOHXq9Bg67TffeN04QJjyomJlaTJz8m0zTVpEnToH0X\nhHAAAAAAAAAAAAAAAABQYxYt+lAtWrTUk09O1f79+7R+/Vc6fvy4du36TZ9/vkKvvz5LVqtVf//7\nw/r66y/144/fq1+//rrxxpv01VdrlZGRqfXr/6fGjeP1yCOPKz09TffeO05z575f6j09HremTXtB\nXq9HY8bcpN69+/qPzZkzU/37D9CQIUO1atVn+uij/wblcxLCAQAAAAAAAAAAAAAAaACyJk0pt2tN\nTdi3b68uuOAiSVKbNm21ZUucUlJStHfvHnXtepZsNl98pXv3Hvr9910aPfp2zZkzSw88cLcSE5vr\njDPO1K5dv2nz5h+0bdvPknwhm7S0NMXHx5d4zzPOOEt2u12SXR06dNChQwf9x/bv36fBg4dKks46\nq3vQQjiWoFwFAAAAAAAAAAAAAAAAKEG7dh20ffs2SdKBA0l6441X8sfba9u2n+V2u2Wapn788Qe1\nadNOn322TFdfPUgzZryhDh06avHihWrXrr369x+gl19+U9Onv6TLLuuvRo0alXrPnTt/ldvtVk5O\njvbs+V2tWrX2H2vfvqO2bt0sSf66goFOOAAAAAAAAAAAAAAAAKgx1147TFOnTtZ9942Tx+PRiBE3\nKz09TZ06naJ+/frr7rvvkGma6tatuy655FJt27ZVzzwzRVFRUTIMQw8//Hc1a5aoadOm6L77xikr\n67iGDh0ui6X03jMOh0MPPfRnHT9+XGPHjlOjRo39x8aMuUOTJz+mlSs/U8uWrYL2OQ3TNM2gXa0a\nkpMzQ11ChSUmxtWregEAqA6eewCAUOI5BABoaHj2AQDqI55fAICGJDExrtRjdMIBAAAAAAAAAAAA\nAABAvTN79lv67rtNxcYfffSJoHa4qShCOAAAAAAAAAAAAAAAAKh3br/9Lt1++12hLsOv9MWxAAAA\nAAAAAAAAAAAAAFQIIRwAAAAAAAAAAAAAAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAABA\ng+P1mqEuAQAQZgjhAAAAAAAAAAAAAGhwPF5TXpMgDgAgeAjhAAAAAAAAAAAAAGhwTNOUx+MNdRkA\ngDBCCAcAAAAAAAAAAABAg2Oavm44AAAEiy3UBQAAAAAAAAAAAABAbfOapkyWowIABFGFOuH89NNP\nGj16dInHcnJyNHLkSO3atcs/9sYbb2jEiBEaNmyYPvjgg+BUCgAAAAAAAAAAAABBRCMcAEAwldsJ\n56233tLixYsVFRVV7NiWLVv0xBNP6PDhw/6xjRs36ocfftD8+fOVk5OjWbNmBbdiAAAAAAAAAAAA\nAKimpv/vNnkcEcp7c2aoSwEAhIlyO+G0bdtWM2bMKPGY0+nUK6+8oo4dO/rHvvrqK3Xu3Fn33nuv\n/vSnP+nSSy8NWrEAAAAAAAAAAAAAEAwxyxar0aIPJI8n1KUAAMJEuZ1wBgwYoKSkpBKP9ezZs9hY\namqqDh48qNdff11JSUm6++679emnn8owjDLvk5AQLZvNWsGyQy8xMS7UJQAAUGt47gEAQonnEACg\noeHZBwCoj+rz8yvRlSm1aBPqMgAAYaDcEE5lxcfHq2PHjnI4HOrYsaMiIiJ07NgxNW3atMzzUlOz\ng11KjUlMjFNycmaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH9XL55fbrcT8zezn/qWsxyaFshoAQD1S\nVvC03OWoKqtnz5768ssvZZqmDh8+rJycHMXHxwf7NgAAAAAAAAAAAABQNbm5/s3ol54PYSEAgHBS\n6U44S5YsUXZ2tkaMGFHi8csuu0ybNm3SDTfcINM09fjjj8tqrT/LTAEAAAAAAAAAAAAIb5aM9FCX\nAAAIQ4Zpmmaoi5BUr1rU1cuWegAAVBHPPQBAKPEcAgA0NDz7AAD1UX18ftk2blDC4Cv9+8lHMkJY\nDQCgPqnV5agAAAAAAAAAAAAAoC4zXM7AgbrRtwAAUM8RwgEAAAAAAAAAAADQsDgDQzgGy1MBAIKA\nEA4AAAAAAAAAAACABsVwuwL2LSlHQ1QJACCcEMIBAAAAAAAAAAAA0LC43JIkb2JzSZLx85ZQVgMA\nCBOEcAAAAAAAAAAAAAA0KAWdcNxndZMkJdw5JpTlAADCBCEcAAAAAAAAAAAAAA2LyxfC8cbHh7gQ\nAEA4IYQDAAAAAAAAAAAAoGFx+5aj8rTvEOJCAADhhBAOAAAAAAAAAAAAgAbFyO+E4+l0qiTJGxsb\nynIAAGGCEA4AAAAAAAAAAACAhiU/hCO7Xe7Tz5BptYW2HgBAWOBpAgAAAAAAAAAAAKBBMdy+EI5p\ns8u2fZtvLD1NZuP4UJYFAKjn6IQDAAAAAAAAAAAAoGFxuX1/t9v9QxEfvBeiYgAA4YIQDgAAAAAA\nAAAAAIAGxbrnd0mSaWfhEABA8BDCAQAAAAAAAAAAANCgRL09U5JkOXpUru5nS5K8bdqFsiQAQBgg\nhAMAAAAAAAAAAACgQTIy0pU3fIQkyfr9dyGuBgBQ3xHCAQAAAAAAAAAAANAguc/uKTMiUpIU+8Kz\nIa4GAFDfEcIBAAAAAAAAAAAA0HCYpn/T3fM8mY0bh7AYAEA4IYQDAAAAAAAAAAAAoOHIywvY9bRr\nH5o6AABhhxAOAAAAAAAAAAAAgAbDyMqSJDnPv1CSZDZqVHiwSJccAAAqixAOAAAAAAAAAAAAgAbD\nyPaFcLzt2kmSPJ1O9R+LWPxRSGoCAIQHQjgAAAAAAAAAAAAAGgwjfzkqMzKq2DHbxvW1XQ4AIIwQ\nwgEAAAAAAAAAAADQcOTmSpLMyIhih7wtW9d2NQCAMEIIBwAAAAAAAAAAAECDYeT5QjiKiPSPHX9s\nkiTJ27JlCCoCAIQLQjgAAAAAAAAAAAAAGgz/clQRhZ1wzGaJvg2nMxQlAQDCBCEcAAAAAAAAAAAA\nAA2C1zSLLEdV2AnHdDgkSYbLFZK6AADhgRAOAAAAAAAAAAAAgLBn37BOia0T5fhilW+gaCec/BCO\nnHkhqAwAEC4I4QAAAAAAAAAAAAAIa44lixQ/5CpZXE5Fv/GKJMmMiCwywRfIMZwuudzeUJQIAAgD\nhHAAAAAAAAAAAAAAhCe3W2ZKihrfcWvxYwGdcOySJMfKz5Qw+EoZ6Wm1VSEAIIwQwgEAAAAAAAAA\nAAAQNkzT9G83GjNKTc/vXvK8IiEc2X3LUTm+XK2o775R5Nuza7RGAEB4IoQDAAAAAAAAAAAAIGx4\nvKay0o/Lm5eniBXLZc3MkKf5ScXmmY6IErclyXDm1XidAIDwYwt1AQAAAAAAAAAAAAAQLB6vqbZd\n28vbLNE/Zj1yuNg8b+vWhTv5y1EVMPII4QAAKo8QDgAAAAAAAAAAAICw4fV4ZXE6ZTl4oNixY19/\nK+ubryun7+Wynt3TP35iJxzl5lbsXl5TFotRrXoBAOGDEA4AAAAAAAAAAACAsOHNKT1A4zm1s45P\neVZREYGvSc2YmMD9zMwK3ctDCAcAUIQl1AUAAAAAAAAAAAAAQFCkHpPlwP6AIW+jRpIk0/CFZey2\n4q9IzbhGAfvG0aMVup3H661KlQCAMEUnHAAAAAAAAAAAAABhIbFL+2JjziuuUu65veQ+qYUkyWYt\nIYQTGxuwb6Qdq9D9vF6z8kUCAMIWIRwAAAAAAAAAAAAAYSvyw/eV+dq/y54UESHTapXh8UiSLKmp\nFbq215QsO3fI276DZLdXt1QAQD3HclQAAAAAAAAAAAAAwlbutcMqNK8ggCNJ1rSKhXASx92qpr3P\nVdz9f6pSbQCA8EIIBwAAAAAAAAAAAEBYcrdspczXZ1b6PGtaqmSWv9RU7PJPJEmRCz+o9D0AAOGH\nEA4AAAAAAAAAAACAsOO8sLdSf9gmWa2VPtdwuWRkHS97ktdbxcoAAOGKEA4AAAAAAAAAAACAsJM3\nfKRkGBWe7+pxdsC+kVrOklQuV1XKAgCEMUI4AAAAAAAAAAAAAMJO7s23Vmq+q2+/gH3LZ8t9G8eP\nyzhyxD/uye+AY7ic1SsQABB2COEAAAAAAAAAAAAACCvpjzxeqS44kiTTDNhNeORBGWmpanLxeWp2\n5imS2y1J8njy59EJBwBwAkI4AAAAAAAAAAAAAMKK1Wqt9DnZ4+7R8Qt6K33uAv9Y49EjZT14wLfj\n9HW+8Xh9IRz7NxurXygAIKwQwgEAAAAAAAAAAAAQXirbBUeS2by5jn2wRM4rByp71C2SJPvG9YWX\n9Pg64Zg/K8KdAAAgAElEQVSHDsl0ueRYtiQ4tQIAwgYhHAAAAAAAAAAAAADhpQqdcCQpwuE7z927\nT/GDbrcsfxxUu/POUNzokXKf1yvgsJGWKvtfH5B97eoq3RsAUP/ZQl0AAAAAAAAAAAAAAASTp2On\nKp1nye+gY7jdxQ+63LL+sl2SFPX5Ch0/IajTrHM7372/WKFjP2yr0v0BAPUbnXAAAAAAAAAAAAAA\n1HueI8n+beeAgdW6lvXnzcXGDI9bhsvp34996vGSzz2QVK17AwDqL0I4AAAAAAAAAAAAAOq9Fmf6\nut9kn3O+lN/RpqqcV13j3867erBvw+2W5eDBKl3Psm+vHEsWVasmAEDdx3JUAAAAAAAAAAAAAOq3\nlBT/pkVmtS/nuuRSZU59Tq7GCYr6ek3+oEtxD4+v0Pm2TRsV8d/35W7ZSq7hI9Tkkl4ysrN1bPV6\nec7oWu36AAB1EyEcAAAAAAAAAAAAAPWWkXpMzU7v4N+35uUG5bq5d4zzbWz4WpJkST1W4XMTrrnC\nv+2ZM0tGdrYkybbha0I4ABDGWI4KAAAAAAAAAAAAQL0VM+XJgH0jSCGcAmaEQ5IU8b9PqnS+df8+\n/3ajvz0UlJoAAHUTIRwAAAAAAAAAAAAA9VbUO7MD9o3c4IZwIpZ/KkmKfun5oF4XABB+COEAAAAA\nAAAAAAAAqLdcZ3YL2Ddyc4J6fTMmpsJzUzZtDuq9AQD1CyEcAAAAAAAAAAAAAPWW12INHHC7g3r9\n409NrdC8lO+3ytuuvY6u2ajjD07U0e2/K+ORx5V3yaX+OZ74hKDWBgCoWwjhAAAAAAAAAAAAAKg3\nvKbp37ZtWK+IzT8ETjCM4N6vxckB++7WbUqelz9unn66cib+XWbTpsob/5AyZ85Rxouvyt3pFBku\nZ1BrAwDULYRwAAAAAAAAAAAAANQbWTku/3bMc88UnxDkEI6ncxf/dvbd98uSU7nlrszG8cobdYsM\nl0uWrCzp+PFq1WMWCSEBAOoWQjgAAAAAAAAAAAAA6gXH4o/UsX0z2dd/LUly9b64+CRL8F+Bpr/w\nsnIGXK2sxyfLyMmu0jWs+/ZKkmJe+Ge1aiGDAwB1FyEcAAAAAAAAAAAAAPVC4zvHSJLirx0oSfI2\nbVZsjhkdG/T7Om++VcffeU+yWmVkF4Zw0l/9d6WvZdrt1arFFCkcAKirCOEAAAAAAAAAAAAAqJ9c\nTklSxouvKvvGUXJ27KT0/8yrlVtnPvaknDfcWOH5WeMfkiR5Tjm1WvelEw4A1F22UBcAAAAAAAAA\nAAAAAJVmmjKcLt9mQhNlvfyGnC6PHHZrjd42beFSRT43TXm3jZUkHf3oE7kjo1XeXb3tOvg23O5q\n3d8khQMAdRYhHAAAAAAAAAAAAAB13wnhk8STGhcecviWeLLban4hENfFl8h18SX+fWev3vKaZrkh\nHNPqm2F4vdW6PxkcAKi7COEAAAAAAAAAAAAAqPuysko9ZMbESZIMw6itavwsFslmVCD8Y8t/NVvt\nTjjVOh0AUINqPgoKAAAAAAAAAADCHsujAKhpztQ0SZKnbftix8yEhFquppDVYqlY+Ce/E061Qzji\n5y0A1FWEcAAAAAAAAAAAQLU5XdVbXgUAyuKYN0etep4hSfK0bq3UlWuVfef/8x/3No4PVWkVZlrz\nO+F4PdW7DhkcAKizCOEAAAAAAAAAAIBqy3NV76UyAJSl8fj7/NtGVpbc3XrI1beff8yMr/shnILl\nqIxqL0dFCgcA6ipCOAAAAAAAAAAAoNpcbjrhAOHM7ak7/45nznhdkuTucXbhYEREiKqpBGv+q1l3\nNTvhBKEUAEDNsIW6AAAAAAAAAAAAUP95vHXnBT2A4DuanqsWTaJDc/MTOr94OnSUJHlPaqGDr86W\n0SiuXrz0NAs64eTlVu86pHAAoM6iEw4AAAAAAAAAAKgej0eJTz8h6/Ztoa4EQE0wTTmPJEuScp3V\nW0qpSk5cvqlI15u8a4bI7Hd5LRdUNd7WbSVJ1t93V+s6LEcFAHVXfQiFAgAAAAAAAAAQUm6PVzYr\nf661NI5Pl6nx229Ib7+h5CMZoS4HQJBFT/s/9Xz+WeXeMEKJ/10gScq+7U7lXX+jb0JCtGyp2TV2\nfyM3x7+dNvOdgGMWw5DVUj9+Pnsbx/s28vKqdR0yOABQdxHCAQAAAAAAAACgHC43IZwyWa2hrgBA\nDYp5/llJUmR+AEeSov/zb0X/59/+/YRaqCP3umFyDb42YMxqNWSxGLVw9yCIcEiSjGqHcEjhAEBd\nRQgHAAAAAAAAAICyuN2KefZpWQZeJfe554e6mrrJRggHaIiy/vKQJCkm2qGsbGfN3sxiKG/o8GLD\ndlv9CUiajvxltKoZwvGSwQGAOosQDgAAAAAAAAAAZXCsWqHGM56Te8UnSl27MdTl1KoKL8Pl9dZ8\nMQDqnOxHH5ckxSTGKTs5MyQ1WIx60gVHkiJ8IZyIL1aGuJCGwZuUJEuzZlJkZKhLAdCA1J9oKAAA\nAAAAAAAAIWAc971Ytv2yPcSV1D7zm42yvvlG+RNd7povBkDImJbirxRTPltd+4XUd0WW7jMyM6p8\nGZajKp+RmaGTzjlDCVf1C3UpABoYQjgAAAAAAAAAAJSlPnVZCKacHLW8doCaPDZBxrGUMqcazuot\nrQKgbjs2pPgyUN4e54SgkvARNfPNKodpTFPysiZVmazbfcFZ27afQ1wJgIaGEA4AAAAAAAAAAGVp\noCGcqNn/Ltxxe8qe7HTWbDEAQsY4lqKmixYEjKV8vzVE1YQPy949yjmeU6VzPaaprFxXkCsKL7H/\nmBjqEgA0UIRwAAAAAAAAAAAoSwMN4RgZ6YXb5XS6MQjhAGErYvGiYmPeVq1DUEl4iZo3R+06tZA8\n5YQcS2B6Tbnc3hqoKnxYDh0q3D58qIyZABBchHAAAAAAAAAAIEzlOt2hLgH1mLdZM/+2kZdb9mSW\nowLCl81WfKyBhhODIWXjjwH7RQOPFWKa6tq1lVoPvyaIVYUfd5Hl0hpfd3UIKwHQ0BDCAQAAAAAA\nAIAwlZtHCCcoTDPUFYSEGZ9QuJNbTiecPDrhAGErz/fvf1a/K5Q+c45S/vliiAuq37wdOsobEenf\nj5n8eKXOt3+1VobHo5gfNgW7tLBiHDns37bt+i2ElQBoaAjhAAAAAAAAAEAYsn/9pU7t1FyOFZ+G\nupQ6z1teyMbdQMNMlsJXCOV1wjHL65QDoN4qWG7ONWasnIOvk3fM7SGuqP7zJib6t6PmzanUudYd\nv/q3zSosZdVQOL47IaTEdwWglhDCAQAAAAAAAIAwFPXqS5Kk6GenhriSui/7j2TJ6y19QkN9cVfk\ncxt5ZXfCiVi6uHDH5aqpigCEQsFycxERoa0jjFgquwRVPtv33yrukYf8++6U1GCVFF6cxbuzWQ4e\n8P19/z7ZvtlY2xUBaEAI4QAAAAAAAABAOLI7JEmGs+zwRENnHEtRhx6nqNHIYaXPaaidcIqGj3LL\n7nTj2PJT4faqFTVVEYAQ8IfwCOEEjSUjo0rnxV87MGDf+dsuZWSzHOCJHGs+LzbWtOeZinnwz2ra\n80wlDLpCic0bKfqFf4agOgDhjhAOAAAAAAAAAIQh02H3bZTwp8FRyLp/nyQpYnXxF3Z+Deg7dLmL\ndL8p0h2ozE44JyznZeRkB70uAKETOfdtSZLpcIS4kgYuJ6fYz+L2112hFldc3HCXTSyFfd3X/u3U\nV97yb0e/85+AeTFTn1LkCWMAUF2EcAAAAAAAAAAgDEUs+ViSZLh4MVcW02rzb3tKWZKqqsuG1BcF\nn9u25SdZ1q4pcqAwkGP78bvSL3BiSKkBhZaAhsB66A/fBp1wQip2wl9KHI/Z+YuiZ7xQy9XUbe4e\nZ0uSskbeIvPMs8qcG/fgn2X/ck2ZcwCgMgjhAAAAAAAAAEAYMvIDFNZ9e0JbSF1ntfo387JK7vYS\n8/Tk2qomJNweXyebhMv7qMXI6/zjpqdiAS4jNydgP9xDS0BDZdrphBMsWQ9O9G97YuMqdE7U+/NL\nPWakHK12TWElfwlFb68L5OncpVgXp5zhowL2WUYRQDARwgEAAAAAAAAANFyGUbidmVF79y3SZSbU\nPB5Tlr17ig5IkrxFlqaK+PCDUs+37N8vSXK3ONk3sPmnoNcIoA6IIIQTLNkT/659b/9XnvYdZFRk\nKamcnDIPG7llLBkYAuYJyxTWuvxwqBkZKVmtOpp0VMlHMpR8IEXJRzJ0/OXXlfpJYfDGQogJQBAR\nwgEAAAAAAACAMJY7bHioS6jbioRhjGPHauWWMVMmKfHkBBlH68ZLP292lpqe182/bxzP9G0cOOgf\ns+3dI5Xyojju4fG+OflL1kTSUQAIS6bBa8VgsvS/XN6mzWRUoOuY/acfyjzu/7ldBxjHMxX953tk\n3fFryGpwH88P4UREBh6w231/Nwy5z+tVOO5y1VJlABoCnpYAAAAAAAAAEM5Mb6grqNOKvvxs9K9/\nljnX64gIyj2jX3pekmT/blNQrlcdtm+/UdMJDwSMGZmZUk6O4l95IWDcciCpcMc0Zf6+W5Lk7tZd\nkpQxZZpMh0OG01mzRQMIjVB3NwkzEXarTLtdhstV7nfbeMRQ/7YZGVnseF0K4US99rJiF8xT45tD\nFwL2ZGfnF1P8uyoq7b0PJUlmTExNlwSgASGEAwAAAAAAAADhpmh3lzwCEWUq8l3FL/5v4YtQ01RO\n+vGAPx1vRgQnhFMgYAmoWub1+j5nwtX91WjJwoBjRmamjIIXmEVYfvxBMk05Fn+khG6nqXmvHoqY\nP1cR/31fkuS+vL/c3XrImpHOy3qgniv4GREw1qp1CCoJb8bx45Ikyw/fydzze+nziixHlbJtV6nX\nCTmnU44Vn0oq3l2u1paoyspS4j+n+O5ptZU51XPGmZKkiI8/kv3JJySvV2ZGupxHa6czHoDwRAgH\nAAAAAAAAAOo4y+FDsr2/oMLBBiM9zb/tzcurqbKqxOOtY515Tlhiyb5xvSSp0S03qu2pLWWkFX6X\nRinLMVVV3GMTg3q9ysh1lv5ZjMzMEpeeSrhrjCI+XqjGd46R7bBv6alGD9wjS0a6JMl7UgtZ9u2V\nJMU+8lANVA2gtuQ6CwOKnvgE5Z3SRQpyEBGS/efNkqSmV/VT8/O7lzvfednlMmPj5Ox0qiQp9/Ir\n5Y2JkTIyarTOioqd8BfZf8xfOssS+Bra6fKUcEbwOb5Y5d8uKVBalBkdLUmyZKQr/pUXFDn3bTU/\npY1andG+JksEEOYI4QAAAAAAAABAHdf42oFKuO8u2dd8UaH5ltQif4K7Di0NZFu7WpH33R3QXaao\nWvtT8kUYnsCXgpaDByRJESuWS5KsBwuXYDLcJddd3xiHD6vJHbfItnFDycePZ8hwlhzeiv3r/aVe\n14yNk/XIYUlS1Ky3ql8ogJAxft0uZWX5djweyWEPbUENVV6eGg+9xr+bMXOOJOnA5xv09aY9Sn/3\nA5mxjXzhyTogav7cwh2b1b8ZPXWyWrduIiM/tFkZlf29gRkdVbgdWXZwzIwOXIbK+su2St0LAEpC\nCAcAAAAAAAAA6jjbbt/SE5ZDf1RoftQbr/q3jVICL6GQcMMQxf93vhyfryzxeE5e7fwp+QAndHyx\n7N8XuH802b9tuFzBX2YpyN11KiJi6SLFrfifEgZfWeJxx+crZbgKw1tHJ0/zb1tKWfIku8+lQa0R\nQOhY9u1V2yt6K/7agb4Bj1uG1Vr2SQiOE57Ztv9+IMfXX0qSnJ1PkxkbJ0kyDCk6yiGLYchsFCfr\n4UOyr/681sstk6Xw10zMC89Jkmxbf670ZfIq2UHHKPKcdl3Wv+zJtsDlqoou+2X542Cl7gsABSoU\nwvnpp580evToEo/l5ORo5MiR2rUrcP3BlJQU9e3bt9g4AAAAAAAAAKCKDKNC06L+M7Nwp5SOJqFk\nSdpXbMy6c4eaXH+NLHv3yLLnd1leelEqspSW7ftvC7syBNMJIZjY/3tSxtGj/v3Go24IOO743ydB\nvb1ty09BvV6FOIp3BjhyqHDZreg3X5OchS+C7a1blnvJ7DdnB6c2ACFnTdovSbJv/lFGepqs2dmy\n7dwR4qrCU/b/uzdg37H2CzUaPEDN2rdQzG23KGH8PYUHowo7vFgMQ9GRvgCJGRsrS26O4m+8rsId\n82qDJfmIYm8cqshn/s8/lrdzd6Wv4927z9eNqaKK/l6hgr9vKuBYu9q/HbFkUaXOBYACtvImvPXW\nW1q8eLGiivxgL7BlyxY98cQTOnz4cMC4y+XS448/rsjIyOBVCgAAAAAAAAANXUVeJp3QqcVwuiSv\nV163WxaHo4YKK5+RkuLfjntkgnLv+H8Bx6P/+bQiN62X6+47Zf/2G0lSZmy0csfeJduG9UoYMkDO\nvpcp/YOPg1uXp3gnGtv2raXOt27ZLOcVA+WwB6crRMKAy5T8R6pUm10mSniZaVgsOrZijZpc0Ve5\nw25Q3IN/9h8z4xop96weitzyY6mXNJs2lSTl3DFOUTPflPvk8oM7AOom01r4+rCgs5olN6e06agG\n10UXS2+84t8vGvyMXrY4YK7jpx/82zarxR/CKarxmJuUM2as7/cCpinJLNzO//2BYZ4wZirgeLFz\nTLPwHClg3IyIUPZfHpI3sbmi/vZQsXqiVq+SVq/y75/00L1KvnG4VMF3yLbvv1W7q/opd8RNypzx\neoXOMfM7tmXc+5cKzT/25TeyLVuqRlMny1q0G14Ov+YBVE25IZy2bdtqxowZevjhh4sdczqdeuWV\nV4odmzZtmkaOHKk333wzeJUCAAAAAAAAQENnKb+5uZF1wnJBLqcSLusty287lHIgRR6vV9YKXCfY\nIhZ/VPYEb/7LwfTCjiyW5CO+c5f6/jS6oyb+hL+7hEBKGS+b3W6PnG5v0EI4khR3x2hl/ufdoF2v\nXO6Slygz4xN8G3aH7Js2Fh5wOHRwyUrF2Q3ZN6yTbda/FfuJLwyVfeXV8lzWzz/1+FPPKGrmm3K2\nbV9T1QOoabbCn29eAnU1y1a1Z4ndZpHV9AVzjYwM/7iRnaXo12YEpbSK8p7cUjJNxbw3t0LzLclH\n5G3TtvTrmaYs+aHjglBu5IJ3KxzCiViaH17q3r1C8z1dTpOnTVtp6uSAcYMQDoAqKjeEM2DAACUl\nJZV4rGfPnsXGFi5cqCZNmqhPnz6VCuEkJETLVsUHTSgkJsaFugQAAGoNzz0AQCjxHAIANDTFnn1e\nr3+zUW6mVN6zcfH7haee1EI2j1vWX3dKkuJnvy4jPUO2yZNqtfOK12vK0iiw23pis9jAzj75IR1r\nWqp/KGb6NMU894z05muF53mzpZNOKvE+uYePypOZqZhTOlS4tjxH8UBS4ycfK3V+zLo1MvpcrMbX\nXi2X2yubwyajMqGmIv88C0QuW6pIu0eKj6/4daqj4DPfcos01/fSNDExTnI389WjwGBS/KAr5XB6\nFB1pl4YN8v21fLnMvDxFDxkiSTrxV2X0xnWKjrXJZY+Q3Vb7oS8A1dCskX8ztmWib2PGjHL/24z/\ndquCpo2Kjw0aJP34o1Twfnb0aOmddySV8h1bi/yMnTFDuuAC37ZhlPxXsI7t3CldcYWi1n4u49ix\nin9kb06Zv5fJznX5njeS1DjGP17hX18rl0uSGrmyy/89UwFPdLGhGJsUw69pAFVQbginsj788EMZ\nhqH169dr+/btmjhxol577TUlJiaWeV5qanawS6kxiYlxSk7ODHUZAADUCp57AIBQ4jkEAGhoSnr2\nxfzfk/K/GvrrX5V8y51lXiNq/yHFSnL27iPj99+l3DwVxG3sE31dzdNPOU3OQUOCWnupTFOxQwcp\n8pv1KrqYVsqP2+Vt3ca/X/B/kI3k5IDTk5MzVfT/Lpsnn6yjh9OL38ftVmL+y+LkQ2kV6xqUnqZm\nI4ZLkjKnPqeImW/K8dsOaceOUs+xb/pGjW+4Vscfm6TYKZOUd8llyvhvJZbIyslRoqTcHj0V+eN3\n/uHcP92rzKnPVfw61RB9OEUxkrJOaqWC15vJyZkyjrvUTFJeRpYi8sezBg9VdkqWXG6vsoqGac65\nKP/E4r9XK/jn5epxjtzRMcq+9TZ5ZJHnltE184FQJxXtZoF6xOtVzIsv+587md9tViNJmW5DuWX8\ntxn/7VY1Eb/u1okxnKPPvyL7po1qfPONkqTkf86QpUcvqU8feUv4jhM8Xtkk5Q69XpkjxtR80fmM\nkzuomSTLN99U6ry0vX/I1a7kXyvWbVul9xco6/FJksWiyBy3P+RZ3q8vr9dU9DuzC+cPHFriM6o0\nJ77Jzk4/rix+TQMoRVnBwKCHcObNm+ffHj16tCZNmlRuAAcAAAAAAAAAULLoF6dX7oT88EnOuHsU\n9cTfZWRnFZ9SpNtMTTPS0xS17kv/vuucnrJ//52sSfvlatmq3KWxIue+HXg905SysqSYmIBxyx8H\nC+ekpsps2rTc2uxfFdYlm03OXhf6QjgnyHx+huL+en/AmOPLNZKkiLWVWyLLctQXMvK2aiUVCeFE\nLnhXkQtqcUkqSZ527X215HfgMe0O34G8PP8cS36GwmatfJjCvuMX2SVF5X/Oo9dcIzOhSZXrRf3i\ndHkU6Qj6ayjUsIj35yu6yM/dRs9NlSSZtdg9rSExXMWXBzTjE+S85DJlXXKZvNcOlSwWeUffWvpF\nTLMGKyzjtk2q9vPcSC8hSJsv4YpLfN/Jq/9S8v7kwI55ZfF6lXUkVSdN+EvhWGxslerz11nkWQgA\nlVHp3/0sWbJE2dnZGjFiRE3UAwAAAAAAAAAoRcFLUK/XlMVS8ospI9W3JISZkCA5HDJKCNxYd/xa\nc0WewJJyNGDf07ad7N9/JzMtTTl5HsVG+UI43oQEWVKL13pi+EWSrLt3yXNWt4Cx+CFXFd4z9Zg8\nFQjh2H7eXGTHpsynnlHsPN/L5+z7x8vYsF65/5gk9wUXycjJVuzfJ/qnGzk55V6/KJfbK7vNIvv6\nr30DkZE6unWXzP37FDv1KVkc9kpdr7rMJk2VN/g6pbVsJU+X03yDNt8rg4jPV/jnFfwqMyrR0STv\nvF6K2LSx2Lh19y65exLCaSjcHpNuOPWQbevPJY5bDyTVciUNg2kv/Nnv6niK8sbmd7uLiFD6ewtl\nt9Xh8JPNpuxB1yl66aKA4ewHHiwzQGzJKAzhWPb8rvih1yjjtZlyX3BhQCjJum+v/j979xngRNm1\nAfiekr690EGxgYq+KogVC3YFFbD72QuKvtgbir1gbyh2ee0FEVEsiNgLiGDvYgGkbC/pycz3I8kk\ns5lkk2za7t7XH2aeeWbmLAspM2fOKZl2SUqhOC45H7VPz9bWVas1xR8iMaG9vcvHIKLeKaUknEGD\nBuGll0J9hMePHx+3/elwH8JUx4mIiIiIiIiIiIgofUIwCHn5MjQN3xaldrPhnEgii1JRCfmfvyF6\n4pNF7A/NTKldUzaI69fp1oObbAYAqDzxGODoExC4/4HQBkXRzWt9dDbKzjjZ8JiVB++D+lX6tlWx\nN4gFtyul2Bx33qotq5IEucSB1lmPwTR/HpxXTNeSUgBAtdr0O7tSO0dEe0MzKvtWwXHrTQCAwKjR\nUGtrgdpatL88r5O9c8e/x17RFTn+loFaXpH2MU2//Gw4XnreFDR98iUTM3oJx9wXga22BrbfvtCh\nUBrEcCJnR5HKWZRd3olHomnZV1BOOx3KVlvrtqWagOO6dBrKzjoNnpNOy0WISTmfeArS/x0Fy8K3\nAQBN736IwIhtkybhBBsatGX73bdDWrMaZWechMZvOyQIC4JhpaBYkfcTe0wCDgAIHk96P4gB4c+V\nXT4GEfVOrANIRERERERERERE1I1UHHYQhD33g//RxwGbPjHEPuNG2P73OABAqawyTMDR5j54X07j\nNOLfZDMEtt5GW6988WnU3Tcz1G7CH9DGFbMF3sMmAgmScASvN2kih9DaGmrPkU6iRzgBxTvpKHgn\nHRW/vUMrllQTfQDAfsv1qL37DrQ8/hSkVf+EBlOo1JN3Bu1mXBdcnPZhYqsc6MZXrYL1sYdgnv0k\nWt9+r8utQqh4CW2tqL1gCgCgbkNrgaOhVAktzbC+9HzcuGvXMcavi9R1Fgsar78VZQ7jxNpUeCce\niT/2OQRl5fYsBpYGOVrNJ7jRxobvJbEqbrwGLX37wXf0sVDLygAAYlsbhLYOrxWBgH49GNQdW2ht\nQeW4A+A6/6K4cwQ23yK9nwH65F/FYoXQ3MykUSLKCJNwiIiIiIiIiIiIiIqVQSsEwetFxcI30Pzl\nEgS22x7qDz8Au+wKAHDcdZs2T60wrmCy5qOvYHfn96a4+YPFML35BlpfmAtp5e+6babPP4V/190h\n+H3amFJWDgDwHHIorAvmGx4zGAhCNBlf4q6YcAgAoOnl1xDcehuoNTWG81xTpkaTkQyqwMRSOybh\nxCQNCU2NUCsTt1ly3H0HAKD0suiNQlXOb/upTKx+6Q1YBg3O2vFEtwul0y4FAMi//4rAdjtk7diU\nOxndhA4Go8vpJsRRwdjvvctw3HnCqfwd5pDZ1PXKdDZH19svZcry5uvaslpalnCeUl4OsSWUpFn+\n38moO2Q87A8/CAAQXM5QAm3scefN0a2L69ZCGThIW7fNmgnzzz/CfFZ8BaCWV16PG+tMcOOh0Vhr\namD+4zeIb7wBGHSJISJKhkk4REREREREREREREVKbG9LuE1oaUbJRefB+tpctDw/B7599tdPsFgM\n95OHbYZAnm+mBrYfCVxwSWi5slK3rfyIQ1G/pkHXckKu3wAAaHvyGTS5Pag482T4Jx0Jy/x5sLzx\nGgBgwMCqTitsVB55GACgbn2L8Q3kmBZYce2mOuqYpBOTNGT65GP4xh+WfH8AvrH7RqtMqEryyUXA\n2qcaao6OLTQat7yh4uP1BWGzpHk7KbbdXSAAmIo/6ay3E+rrYZ95j/E2uy1nrwUEWM1dv11rkvPT\nYulBb2wAACAASURBVLJT4YTVwFYjIP/4vTYcrKpG48dLUbv1ptpY7SYDdLuaPv1Yt+6463bduu2J\nR+Gcfl10IDbZrwOlX/+0Q1dt0UpCkc8ktacdz2peRJS2InlFJiIiIiIiIiIiIqI47sTtpBy33Ajz\nh4sBANZnn4a8dElKhyx4WwVRf1laCAQAjyfhdNlmRfvTL8B7+CS0znw4o1M6rrrMcFzwebVl1dxJ\nK5AOSTixSUOptqaKbfOiOoq/FZNQlriiQTJqCgkXYhOTcPLO64V4/32Ql3wBefmylHfz+BLf6E5I\njUnZUIo/4YwA+btvEm4TbYWrskLFr/2qa+PGmt7/FHV/ro0OyDJQW5v0OGX/PSvpdtPHH0RXVBWm\nr5fr45gyFS3Pz0HD1z91FrIhNeZ9XnA6MzoGERHAJBwiIiIiIiIiIiKiomV+byEAwH3K6QgOGqLb\nJv/+K8TmZgChFg3JbqACQLBffzS9vjA3gaap/nt9Sypx3Vrdevt/LzTe0W6PGxKamyA9/VTS89kf\nfch4Q0wiDazJbzKrUodKBcFoOyrbg/dD+uJzw/3MC98yPvVeY5OerxgkamnWmebX4n/m1nsfRNsB\n47R1gUk4eWe59WZU33AVKsfvj8oDxyZNfouwPTQTQ3ccDqG1Jb2TxSbeMAmnW4h9HW5a+IFuW3C3\nMXmOhroTzymnI1BTC9f/nRQdFATA4dDGfAeHXv8bPzB+r0yF6esV2rL1qSdh/mCxbrsybDh8++wP\nZcDAzE4Qk4wrOuPbgSarvENEFItJOERERERERERERERFqnTapQAA6bdf0bj0a6x+cDbarpgeN8+0\nbCls99+d9Fi+/Q5EYKedcxJnutQ+feA56lht3fbc0wCAwNbbYNWUi+GeFv8zRvj22Eu3XnrBf1F1\n0bnaumvyFDRdeiXck47SzbM8/GDcsQRvTCWcBO27opP1FYTEpiZt2fTj96g69ACUnn06hJZm/bx/\n/42eQ5ahlJXBO3zruIpAxabxrKlQS0oz2jcwanT8oNUKz9PPofmV1wEAYkNDV8KjDJTN1L9G1A7p\nk3S+P6Cg5OppMDU2QF7+VXonU2Iq4fDGdbcgxrSIC26yqX4j24lREmppGZq+/gnOO++L2+a86378\nPudttN8wAwAQ3GprrPt9NVrPuwRKWbnh8VofeCTxycJJfdYXntHHYDbD2+F9P13KoMFomnoRmufM\n142XH7I/ysYfgNr+lQkr6xERxSruT/lEREREREREREREBMHlBGQZpokT4Dn/Yvh2GBU3R/53jbbc\nOv36uO2qtZMkk3yLSWqJVNnw7b0PvJdcDkhSwt3a7rpfty53aEfhPutcBC6+DO2zHsP6dS1wHzoB\nAFA2/fL4g8W2o7I7kserdJ5IYH3lJZRcfL5+t9poooMQCAA+PwRLJ62vCkyx2hC47obsHjSciKFU\nVQMAxDVrks2mLBP/+Tu9HdrbUTr5FG1VtcVXoUoqph2VoLISTncQaavXet8sqGXlaH34CQBA/bNz\nChkWdRdmc1yyaoR1552AmERXqawM3iuno+H3Vahb24TAViN08/277p74NIvfBQAInuj7d92GVtSv\nrtdVssmU/8qr4d9jL/j23id6zi+/gGVJqIKP/ZFZkL9Zgco9dtKqFRIRdcQkHCIiIiIqOCX2CTki\nIiIiIooT2G4HAIAoCoAgoOXtxaj/7je0GDwt/tfbn8Bz7nnxB7Ekb7eUb/6YRCL5m1CLCbWsDDZz\n4gQcAFCGbITARhsj0K8/3N5AXAUbZeAgbVkUBYjexC13BK9PW1bLjZ/I1+YGAkm3R1hfmwvLnBcB\ntxtCXR3KTzlet130uKFm4UZhrqz7cy3W/fQXhAQ3UzMWbv0V3GxzAIDthWcgrvwju+egxFL59+t0\naskz1hefRenrr2qbIgkaKYttQcVKON2C4HYDAIKbbgYA8E44An/8VQ91v/0LGRb1AGZTktvRkgR0\nSNRTS0sR7NPXcLrj8otRNWJzyD98l80QNdp7XzBx8mDlfntC/vknlB97BKTff8tJHETUvTEJh4iI\niIgKzh/gU3FEREREREZ8O+4EAGi/9qa4bWrfvvAdeUzcuGXr4dpNpNZZj0Xnd9ZuKc88J0arbJjC\nrW6Cg4dAllO4bC1JkNethXD/fbqn641Y3nlLW7Zf8F99MkJMJRylojL5OVNMwgGAsilnoPzk4yD/\n+L3xhCJOwhHsdsj2HCRsRdpvxfy+qnfePvvnIUOdVaMRmhpRvdWmKD1vSmhA1T8sE0nQyOh8SW5m\nUxHxhH7HqtWmDZlTeT0m6kRnSZ2+/Q/SrauOEiiDB2vrTW8ugvOyKwEA8j9/Q9qwPvtBdoxpr7Ep\nzbO++FyOIyGi7ojvnkRERERUUEJDA8wvP69/So6IiIiIiEKCQSgmM2BNnBThH7mjttx68x2QY1od\nKTW12rJqs6GoSBKUSn3ii1LbB2IqFVjC7aoG33Yt5J9+TDrVt8fe2rLj2f/B9NEHMRtDlXBWLf8Z\nsHfSbifNah7m99+D4IpWDwkM3URbNn37TVrHyidRELJaBcd54SVwXjEd3iOONtzesZ0Y5YjPbzwe\nTraR/lwJ0e2C9YVnQ+Md2rMJLmd654tN4uH3/W5BS7SyR98rTEzCoTxwXjoNa199G+03zkDr5HMA\nSYLgjlaxC4waDde55xvu2/TuhzmJyX32uWh6cxHq/tmAxntmoW7lv2hYEf95QxWzXDWOiHoEvnsS\nERERUUGVnfp/6HPBFFjmvlzoUIiIiIiIio7S1gY1SQIOALTdca+27B9/qH6jGHMJuMgq4QCA6/xL\ndOuqOcUYReNL266pF8aNtcx+Vrdu+vRjbVlwuaCaTJD69ev0lKm2o4pVftKx2rJaXaMti22taR+r\nuwpuvAlcF1yiJU51VHJZ/O+Msk+IqfqkEwgAqgr7zdfrhju+7qRbCSc28UZQ2I6qO4gkDcZWwpES\nvNYSZZXJBHm3XeE+cwq8N9wSGuuYDGrwGca7974I/CdHFdUkCYFRowGrFcHjjgdKSqAMHISml+YB\nADyHTgiFmSjBkYh6Nb57EhEREVHBKKoK0xefAQB7KBMRERERdeT3w/rbLwhusmnSacGtR6D55DPh\nvGI6lL4dkklibqCqlhy0GOoi9ymn6wcsKbZpEo0TOgyr/ZSUwDPhCG1V+OP36GGaGhEsr0it2kMn\nlXCc50xFw4dfJNxedJWI8sXg567/Lvr9z7SClXDywTJvrrbs22ssfGP2DK/4YPpgMSwxFaJaW12Q\nly/T7S8429M7YWz1G1bCKSilQ2uxRARPqPJIr32touLidsUNtZ91LgDAdda5qFtVh9bn8v9AX2Cv\nsVizpgmu8y4KDSRKcCSiXo1JOERERERUMMGgCphDF9mFcBl4IiIiIqKeTlFSuyFq/uA9AEBwy607\nneu/7Y5QtZGOYpNwOqmoUxAdn2xPsQ2S/NMPhuOqzbilVNuDj6Jl+g0AAPubr0NeuiR0utZWKKVl\nKZ3Te8ihCPTpi9b7ZhlvP+FkKFtulfgAKd4I72lU2RQ/1rcv6lauKUA0vZf0+6/acstzcwCE/q+J\n69dBrNugm7vpZv1gf0T/71yKSV5LSWziTZqt3Ci7fP7Q33+nyTju+Eo4RIUS284xwn3dTWia+wac\n064OfX5IUGEt18wmSfv8Inh5PZOI4jEJh4iIiIgKJqgoUE2hJBx52dICR0NERERElHvysqUw3X1H\nSnPtt94MAFBSaJWUiCoUdzuqjkk3Rjfd0pEw0UiS4Dt3qrZacs0VoYVAADDFJ4kYHrumBv9+9RO8\nxxxvvN3uSLq/f9TolM7T0/h32sV4Q0kp/KN3hioIrJSSB8HBQwAA6xZ+BMgyzB9/AAAouem6pAl6\nvuGhxDKhPc1KOLEJH0zCKZiSSy9A2RknQ/jqK9iuvDzp70L+4XsoJSWG1auI8i3SwtF5YUyCsSAg\nsPseQBEkFavaQ4WshENE8ZiEQ0REREQFoygq1JKS0EoRfIEmIiIiIsq1yoP3RdWtN0Bc+Uenc9Xy\ncgCAb98DMj+hrhJOcd5YbX7ldW3ZP3rnrh1MlhNvi0n4UcXQPCGYehIOAK1tVf30G7Wx9htnwHnC\nKVorsOZXFxjuqzoc8O6zX8rn6iki/46NyMuWQlBVyBeeD4Rb4VBuRKo1SLbQd2/v+MMBAJbX56H8\n9JMAAL6x+8bt1zpnfmjBm+aNZrajKgq22Y+j/K35qDlob5Q9NgvWZ5/Sbff4AlBUFeZ334a0YT3E\n9vaUK5IR5VLL40+h9eTT4Tr3gkKHYiyS2MzK3kRkgEk4RERERFQw0lfLIK1bG1pJsSQ/EREREVFP\nIAQCnc5Rwk+BK0OGZH4iMSbxpBgr4QDw774H/rnpHqxe/nPyJJosMn/5BVRVBQLBtM4pS6FL6hZH\n9CEC95lT4LrzXu3GtX+3MWie/zZab5wB56XTtHmC34/Ajjtl6Scofk0L3sXvN92bNMlJCCdnVD43\nG6XnnZ2v0HolwdkGABDDD8C0PvR43Bz/yB3jd7SEqj2oaSbhCGo08UZQWAknlzptMxWj9OLzIH+9\nXFuX334Lwe9/gG3WzFyERpQxZZNN4Z5xJxB5eK/IRCp7C0zCISIDTMIhIiIiooIZNCHmid40LhoR\nEREREXV7fn/nc8LtX1RH8jZHScVUwina6pOCAMvpp8AyaEBWjpWqdrcfQjAAVcog8aeTffw77wrv\nmVPguvhyqJHfQcDfq773BHbcCW2HH5l0TnOkygoA66uv5DqkXs06d05oIZKMZ5Ac5T14vG69/bgT\noZpD89O+0eyLeY3jQzc5paT592ta+kVowelE/9OPx4B9dkVg+5EAANfUC7MdHlHGRLGIqzKFExTh\n84aSeomIYjAJh4iIiIiKgxLkl1YiIiIi6jUEt6vTOdLqVQg6SqCWlGZ+oth2VEVaCQcAxAK0P9lk\n45pQYoEspb+zlPo+Sk0tAEAtrwSCvasiiMWU/O/Jv8de+QmENLFJZ60PP6EtN372FYJbj4Dr9MkA\ngIbDj4Lzjnsybrlieyimskov+3efb5leSxEbG7Rl+/13AwA8xx6flZiIerpIgqJYtwH+L7+C6ZOP\noHzzTYGjIqJiwSQcIiIiIsqrRGWSVUVBkE/HEREREVEvIbjdnc4RmxoRqKlNq7pLHCXaEka1FGkl\nnAy033ALWsZNxN/Lf4Fn3GHRDZ38XTWs+DF+MI2EGo2Y+qX11mdeRPPRJ8B9yulQ+oeq/fhHbJv+\nObuhSPsuKh5qVZW27J1wBJpffg0N3/yM4GabAwCcN92G9Wsa0H7fLIiyDIgigmVlEOs2pHUe0/Jl\n0ZWY1yHKvrQvpYRfJ2OTcCKCAwZlISKiXsAcqoRjWrEcA8eNRcXEcei735gCB0VExSI/DXaJiIiI\niMJUVTW8MK6aTAgG1YweQiUiIiIi6m5SqYQjuJxAuIpKxvyB6HKxtqPKgHvyOWg6zosyhwltTzyN\nwKyZKLlmGnz77Jd0P2XgILhG7QT7siXamOXzT9M+v5pGEk5gux3QOmMEyqxmeI45HoLLCe9hE9M+\nZ3ckFXMrkV4mWNsHSllZXNKZf8+99RMFAaLJBJMQrV6j9OsPaUN6STgQY87DSjg5lbASTrilYdz8\n8DUZ6wP3xW+02bIVFlHPJghQLBaIXq9+eMMGqH36FCgoIioWTEMnIiIiorxK+ACcP4Agn44jIiIi\nol6i00o4qgrB6YRgd3TtPP5oC5libkeVCVkSIIWTYdxnn4tff9+gVZpJxvbtiq6fPI0kHACwW8PP\nw5pMcE8+B0q//l2PoRuQpc6TcPzDt8pDJASfD6rJnPJ0XRUjmz3Uui0Nakyyj6AwCSeXEl1Kkdas\nTriPuPZf2Oa9oq2rsoy61fXZDo2oRzNqFyqtXVOASPIv0zZ4RL0Fk3CIiIiIKK8i7ahMMRd7AMD6\n+Scou/3mQoRERERERJR/nSXheDwQFAUo6VoSDmJvnMs9qzC6SdZf3pZSbH2UbjKBEbW6Oq35vbUt\nkymVUqcsh5offp/WPiUVQmwFW4sFgteT3vliE9X4wE1OJWr7nejv3fzRBxBaW7X1ltnPYf3q+rT+\nfRARoFRUxo0JTU0FiCS/VFWFP8DXdaJkeucnfyIiIiIqmMiTEhVnnhK3rfL+O/MdDhERERFRQQiu\nUDsqoaEB8Pvjtkt//QkAEMN/ZnyemGOrsqlLxyo2HZNwxBRbH7n+7yTdunf/A9M+t2/MXnBusz3a\nr7kx7X17k46/IyOuaVdHVzq09aDsEXx+wJTZa4BqsUIIBg1fqxIJbLdDdIXtqHIqUUUKIWD8+7K8\n/SaElhZt3Td2X62qGBGlwSBRWmhtMZjYs6jNTXD++kehwyAqanxXJSIiIqK8UlWWLCUiIuqJFIXv\n70TpENxuwOlEzZZDUTFuv7jtjluuBwDIf67s0nkC/9lOW1Zrarp0rGLT8aaxlGoSzvTrsOaZudq6\n6bNP0z+52Yy1ry2E+5yp6e9LOr59D4Bz4lEAAHH9ugJH07P4A6HkF3X9eogBP5TyioyOo9qsAJBW\nNZzAsGHRFX5GyJlAUEn41+tx6iuurb8x+uCT+f1F0Q1Way5CI+rxTN98HTcmtrcXIJL0yd99A3Hd\n2oz2rdltR2yx9ygonVV1JOrFmIRDRERERHkVVFQEA3wKjoiIqCcRGhtQsdcuML/zVqFDIeo2BLcL\njjtmAABMK5bD5w8iEIyW9g9s8x8AgFKR2U3zCKVff6z8eRXWrm0GhNSSVLqrVCvhqJVVkPYdGx0w\nZ1YdxGxiG6VsESrKQ392k5uX3YLHA8s9dwHr1kJdvhwAEBg5KrNjWcJJGp7UKxUJMdVvBIXXAHJF\nUVR4fYG4cdPid+F46kltfcPMx+A96RQEHSXwbb0NHHfeCgAIDhqct1iJerL2yeeGFrpD5a9AAJX7\njEH1tsM6nxsR095Oqq8DANRsvVm2IyPqMZiEQ0RERER5pSgqbM/MTjYhb7EQERFRdlhffgGWn39E\n+QlHJ50n/fYrhLbWPEVFVHyCzc3asuB2w/7Avdq6/Y4ZMD01W1tXqqoAAO233d3l80p2O2Sp518K\nTrUSTmhu9O9DtWRWBSKVVkuUIkcJACbhZJN91v2ovu0G1G47DH1PCr0/q1XVGR1LtVgAAMFwG72U\nxD580x1uShdIVysJqgDc3vi/34pjJqFszvMAgJbzL0Fg4iRYzBJUiwWK2wP/jjsBAFpnPd6l8xP1\nZp6jjgUABAYNhrL99qHBQHxSXNFJo7UgAJjfeQu1/SogL/lCNy61t8G8kA9hEBnhtwQiIiIiihP7\nBG62BRUV0srEJfWlX3/J2bmJiIgoN1STWVsOJkioFZoaUbXbKFSO3T1fYREVFdPid9FviyHRAbf+\nZnbl3bei5rLzQ/1bAQjO0HbV4ej6uXtJskiqlXA6UktKMtqvNyQ25YtqtwMABJezwJH0HOLff8WN\nZfp6oobbFZnfmJ/6TrGJN3zYJiGPQRWbdMjfrMDQKSdCaGpMOEc0m2GSJYiCAMFkhnXlb9r/ucA2\n23bp/ES9mi9UHUyQJKiyHBrrBpW/hEA0Ccf08YedJkra7wxVbnTcdWvcNvP772U3OKIegt8SiIiI\niEjHcflFKD1vSs6OH1QUBJI86VVy+UU5OzcRERHliDmahOPzK4aJOOKGDQAAyeCmIFGPpigQV6+C\n7dmndcPmxYuM59eFSvxHkhFUe9eTcHpLsoiYYbut1oeeyHIklC7VFk7C8XgKHEnPYf7w/bixSOJF\n2sKVcCqvnQY4U0uU0rWgYiUcQ0JzE6qPPhzyd99kfIx+B49F9SfvwfbYwwnniDG/C2n9WgAx/z5s\ntozPTdTb+Q44GADgOuscQAy1qBS6w+tdTLWeiknjUbX9Vkmna+/RBtXQlPKutU0l6ql6x7cvIiIi\nIkqZ/YlHUfLSczk7fjCowh9MnIQj1tdBUdQul2QmIiKi/FFNJm05qKjGD7ynWfacqKcwL5iP6h22\nhuX1ebpxeeUfxjs0hqoZRG50ZHzTPIaQYXJKbxFkJYiCi1RaETzuAkfSc0hrVseNqWXlGR1LlSRt\nOeWHdmJbsrASjqGaLTZCyecfo3KfMZ1P9nrh+/yLhJvNixYm3Ca0tSU+Lt8fiDLmnXgkVn6wDJ7T\nJgOR18kcVhfPmoA+UUhatzZpGy3z55+GFsKVf2KJzU1ZDY2op2ASDhERERHlVeXD96HPEw8m3C60\ntcEfVKCoTMIhIiLqNmIq4SiqCtNnn6Bilx0g/rtGG+eNVeqtbE8+lt4Ozc0AAHHDegDZqYRDxpwX\nXIz2Qw4rdBgEQI1U42AlnJSYXn0F4mvzks5RqqvjxwYPzuh8gtenLVvnv5raTjHVIIRu0J6l2JVc\ncTEGHrY/zAteN9xuWvEVhLo6iP/8Hb9RNU4KCAzbMpshEvU+ggB5001Cy5Gqg0VeCSeoKLp2VBGi\nQeImAJg+/Ti6vGI5TOGEnMCmmwEAhPDnViLSYxIOERERERnLURLMwLtvTrpd8HpQfdwklNxzR07O\nT0RERNmnytFKOIP23x21R4yD6Y/fYZt5jzZuVL6cqDcwf/JR0u3NL76KplcXwHPM8eGBcBLOX38C\nAIIbD81pfL2Z64qr0fzI7EKHQQAQqYTjZsJmKiomn4LqM05EIEnFBbWkVFsO1vZB88XTENxks4zO\nJ3gzSI6KvRHNSjhdZpk3FwBg+ix0Q1zdsAGWO2/VzanZelNUj9oGpg8W68ZdF15qeEzffgfkIFKi\n3sVqDlfACVfCUYOJK8oUA5cnYFj1RjJK4AMgtLTo1suPnQQAUPr1Dw00sRIOkREm4RARERGRMZ+v\n8zlpElf90/mcxkbYPlyM0ltvzPr5iYiIKPcsv/4cXfFGS5YL7e0FiIao+KmOEgR2GwP/9iNDA+Ek\nHKGtFYHKasBiKWB0PZ9Z5iXyYqBaQ5VwBFbCSYuybFn8oKrC/PprQExCk1S3Af5LL8+89VAGSThC\nbBJOd2jPUgBKeUVqE91uiO2hllKCJ/TZqnzK6Si79SbD6RVHHQ7FUQIAqFvfArUqWhUpMHST6ESR\nr39EXRVp+amKoSQc05LEbeMKzfzCsxi863ZQN2yI2yZ1uGYrff8dyk48FkKrPgkn8tCmWlkF1WyG\n0NSYs3iJujO+wxIRERGRIcGf/SQcx03XZbwv21MREREVr0RtJuxPz47OccYk4fCJeKIoayjJRi0v\nD60feyygqhDr66GWlBQwsN5ByDQpgbJKjVTC8biTVnch6CrMDBy/L6QfvtdtNr8xH+WnnQAp3NIu\nG8TGDG6yxlZaKPL2LIXi22c/AEBgyEZJ54mNDdGVcMsb09fLkx9cUeDfZLO4xKv2O+/TltlGhiiL\nwpVwrIveKXAgiZVPPRumf1ej5qCxAADfLruh+ZVQi7uOD06WH3cELG8vgL1DpXJVlkN/Wq1Q+vSF\nvPIPJuIQGWASDhEREREZy0ElnK6UFvcHeCGWiIioaBmUNO9IcDq1ZXnJ57mMhqhbUcpCyTdqWZk2\n5rj2KkhNjQj27VeosIjyyxaqhAOPGy5vAEEmayYkuPXtHSsP3Fu3Xn7aCXH7tF+XvC10Z5zTr0Og\nskqrrpLK+778zYroisrfp6HI34vfn3xeTCKNbfbjAACxtTXpLqLbBYRvlusO1damLfsOODDFQImo\nU+EknO5EtdsRHDwEAOC481bYHp0FqCqEX36BtG4tgPiWwmL4NUS12RDYfiSk1hbUDNsYpk7arxL1\nNkzCISIiIiJj/uz0MNZVsAl0cmEp0TEUFUE+DUlERFS8ktyMM7+1AHC5IC9bqo1VHnYQn4onClMr\nQu1IlNJybcw+634AgGnl7wWJiSjfVLsdQChh0+cLIhBgJdREYpNaAUCIaf0Y+14bS+1iW7vAttth\n9Te/wb/zLqGBmHMmYv7sk2iMfM83JARCfy/y2n917cPidPyclSRJzX3qGdEVOT4pQIhpLaaUpdgO\ni4g6V2SV9SyvzoHp4w+1daEtPnHPfeYUKAMGauslV16G2r7lqBmzozYWScZpfXS2bl/VakUwpr2d\n+a03shU6UY/AJBwiIiIiioq5kJaNdlTSr79AWbIk5pjGSTjuk09D65TzsPb5eYbbLU8+hppJ43JS\nnYeIiIi6LtnNtfKTjkXtxv1ge+l5/T6//pLrsIgKL0FL1WD/AdEpFZUAgMDonaJVJrRtvEFKvYNS\nUwsAEOrq4A0oCDJpw5DQ3ATzTTfEbwi/1lQevK821PLMi2i77W4AgO+gQ7p8bptZBizhtmExiRwp\nYWUjQ0F39O+xYtz+SSbq/z9UjhltOM0/ZGMENts8OiCb4ub49o05j92WWqBE1LnYZLnwa57XX6D3\nMr8fZZNPRcWk8Vpcpo8+jJ+2866A2ZzSIVWbDc4rpkcHrDatmiMAKOGKOkQUwiQcIiIiItJIK/+I\nrnRWDjkFVbvviP6HxlzgMTimc7c90X7NjfBeewPEsfoy2pELTRVXXATHl59D+uvPLsdEREREOZBC\nW4oIz257AABKLrsoV9EQFY8ESeTeQycAABS7IzooCHBPnqKfmOKNEaLuTkvCWb8eG59zEvrvaZxk\nkEvdoQWW45orUfrC03Hj8rdfx70X+/Y/CJ6TT8O/axqhxCT+ZUoUBaiW0GuSkO4DMkyqihcIwL7o\nbW3V9N03Cad2THaWf/vVeGJ5ORDzvqIatKNSS0q15WAftjwkyhb/yB1jVvyQv/sGgwZWomKfMXmP\nRfojWkmx/PgjIa5ZjfJTjtfNabx3VrQVZApUmx2uKVOj67IE1RF9vbHPuAlCYwOEn3/uQuREPQeT\ncIiIiIhIE9tbXkjjZlqnPKGnuwJbbqUbbrrpdqx75hUg/KVN7FC61XHddN3FOsGTpDwzERERFU4a\nN9esn34U+vOLT3MVDVHREJztxhssFjQs+RqNX/+oG5a//1a3rhpUMSDqkcxmBCoqIa38AxXveic1\nZgAAIABJREFUL4T5r5V5D8HrK/5EEenvv7Tl+nMuhH/TUNWTyv32RO2AKq2aVtMb72rzTKb4RIxM\nCeHKLeb33k0+sWMVMCbhxIm9/tKpNK7PqLE31Q2ScADAu81/4O/bH2rfvqnHQETJORxo3zNcjczv\nh/2u2wEkT7DLFVNMa0Lz+++hrEMCDgBIlZXasvuEkwEA3vGHJzxmcPAQwGLRqt+Ira2AGE0zEF1O\n1Awfipo9RsO84PWu/ghE3V72Pn0RERERUbcnrl+vLQstzdk7bnMTlH79ofTrrxtXdx8Dm0Xfo9x1\n7vmwz7wHAGB/aCak1auiMbUnuIlBREREhRVM/eaQUlMLsb4OACB/9SUCsU+NEvUwgtNpvCEYhDJ0\nk7hh19SLYFkYrYygDNkoV6ERFR25uQlAU3RAVYEOD2rkitDSDPHzL4ED98vL+dIWCKB89x1hjqle\na60sh7LlVsAfv2ljorMdvs22QGD0TjkJw/L2AgBA6QXnwnP8iYknujokmCRozUediPwfSDGJyfTd\nN3DZ7NGBBEk4jW+/j/Z2D9jwkCjLwhUMBb8PvjF7wrJgPgBAXPVPXsNw3Hy9bt309QptWTWbIfh8\nUC0Wbaz9ptvg33V3eA+fBHHtTZB+/QX+vfcBnE7UbhKqpKZsPDQ02RxOEHe54D1sAuTPPoHttbm6\n85WfcjzqNrTm4Ccj6j6YhENEREREmvKTjtWWpVX/IDAqVALcHwhCksS4SjWpijwBLHRsRxUMwiTr\nk3CcV1+vJeEAgOWN16Ibs9Aii4iIiLIvUQW9hi+/BWQZQa8PfXbeDgDQ9M77qB45AgBgffE5tDMJ\nh3owIXwj2rv/gfC3u1DyWagSlBRz0zxWYMfRUC68CK7KGmD1Gnj+e37eYiUqOoEAYMpPNaiyyaei\nZvEieA48GC3nXABxp9wksWRKaGzUJeAAgOpwoO2u+/TfmQGo5eU5i8N92pmwPf5I0jmKqkJu0998\nFf/6C2pdHYTaWt240N4G+HxQq6qzHmvR66T9mdDWiurhQ+HdZXe4p1+b8mF1lXAk41uAsklGabnd\ncBsRdUEkQcUfAJRo8lzku08xaJ67AL7XX4e46+7RQasV3klHAQCUQYOhDBocGi8pQcPXP2kVzgGg\n7Z4HUHrqiXBPmQq1qhrtj86G87a7UH70BF2yD1FvxyQcIiIiIjIW8wXLH1DQ5vKjqsya0aEiTwCr\n4SSatmP+D+rqNQgO39Jwvm/MXjB//EH8hjSesiciIqI8Chg/oa1stDEAIDaNVxk8BM0PP4mKyafk\nPi6iAhPa2wAAwc2HwXX19RBm3ADH3XfAt+feCXYQIN55B9x1bXmMkqhI+Xx5S8IxfRJulfj2m7C+\n/WZhn+B3OiH99SeCW0dv2gZ/j0/cU/r2g1pRGTdu/uG7nIXWfvPtsD3+CJSysoRz/H4FppYW3VjJ\n3beh5O7b4v5eq0ZvB7G+rndWTDCobiP+9adWbcJx03UQ/H5YP3of3n9OTemQ9X+shvTzT9GBJK3I\npJg2MkSUHUJMJZzSaZdq4/6RoxAMtw/MNetLzyfdHhi9E7z/GQmbJbUUAWXAQN26b/+D8OsPq1Bd\nHr1GrFZWoXnhh7DMfRllZ52WftBEPRCTcIiIiIjIkBCThGN+5034RAsw/sDMjuV0Qvrhe+2JOe9x\nJ8AzcjQsHargRLQ++TRqNhscfxw/k3CIiIiKkkGirBq+CB3h23NvCGvXhqZvvwMA/ecNAAgEFcgS\nbwpRz1Ey7RIAgLziKwiCANelV6Jp1G6w7Du2wJERFT/B74MKR17OFRw0GHJspZk8tsLqqOLoCTAt\n/QKNn3yJ4BbDAADmF+JvqiqDQ9+Z26+6FjCZIX33LWxzXoh7b80qQYBn0y1gaqwPrf70I4SKCij9\nQ+1K4HSi+rgjIfTpAwAIDhwEac3qhIeLtKeE0wk48vO7LhpKfIsuwefTlq0vPKstO66fbniI5lMn\nI3jWFLhW/Yuyf/+GWqpPjpKXLslSsESUCtERqjAldGjJ5znuRHhOODk/Qfi8sM6ba7ip8YPPASDl\nBJxETCbj72veCUcAZ52GYHVNl45P1BPwqgYRERERadSYfuHyD9+HFtxu9D/jBGx+2lEZH1dob0PV\n3rtCamkGAEgWMywm4wQcAHEXjjQJWl0QERFRYRm1o1JLSnTrLS+/huZPloa22cItENzumB1UCJ9+\nqqvGR9RdWF56HtL38dUnTCuWAwDEdaEENEgS1D33LNjNfaJi5u/YntDrM56YA6pD/55VyPci09Iv\nAADSnyu1sdYhm8bNCw4MJeG4p14I99nnwnfwOACAUl6R2wAryiG2twHBIGr23BnV/xkOcdG7AADr\na3Nh+/wTWF8L3QBOloAjNDVqy7bHHoK7zZVwbo9k1I4qpgV37E18+e+/QrtUVWHDyWdp4+3Xz4Cy\n8VB4d9gRvqOPCw1ao9UpxHZWVSPKJyXcck/qUL1MzVNVNwBwXXpl3FjbzaFKZMGtts7KORJe0xUE\nBLYY1mm7PaLegEk4RERERKRR7dGe4LannoBQXw+hLbOLNkJrtPx0pB2Vdh65ky+fggDPAQfHDwf8\nBpOJiIio4AxaKiS9CWi3hf50RT8jmN+Yj35HHILSi6ZmOzqinBLWr0fZuZNRNXa30HpDQ9z/ieYF\ni7TlZMnoRL1Z+zU36tYFf/6ScNChepvQmv/2SOK6tTA/87/oQLhyrLBhAza67Zq4+Wp1tW7dd/A4\ntF91LZrfWZzTOIWyMgh+P0wfvq+NVR83KVR1xZf678xx43XacslN16H2sMwq73ZXghJ6n/BMmITm\nyeeGxrweKIqa8AGk9lvugDI19DkpWF0Dc7gaRWxaZ2Cb/6D1hFD7qsCWW+UoeiIyItaFqnuVn3Ss\nNubbaRf4xh2atxiCm22O4MBBUM1muE84GS2zn4Pn9LM63zENZjlxeoFqtUHwerN6PqLuiEk4RERE\nRAQAUFUVCOqfVBCbGiH4ol+cTO+/B+v/noDickFR40snx4q9aBmXyJPCEyBtT78QP8hKOERERMWp\nQzsq14j/oPXpFxNOV62hJBzVGa2EI//wLQDA+rLBZwCiIibWbdCWpZ9/Qs2WQ1Fy1WWQv16ujcfe\nLBdYBYfIUGDnXfQDaSR0dFXHFopie/6TcMonjUf5hf/V1lUxlIQTezMXAFquug4r3/ksvqKWKMI9\n9UIEN9ksp3FGKtdWHDNRN145bj+IG9brxlxT9Im15vcWasuCx63bZvv+62yGWdQCQSVaKUKUIIar\n1wheL7yffYHaAVWG+6mlpZAGDcK/cxagftHH2vtJx38Knjvuxj9vLEbz3AU5+xmIKF6kEk6sltff\ngVpSmtc4Gr9YgfrfVqH9zvu0KmnZlPSzrMmU3yRaoiLFJBwiIiIiAgD4A0pckou49l9Iq/7R1iuO\nnoDSS85HyXXTQ0k7CZQdPQGlJx8fPU6kz3uEKbPew+q//7KkKRERURES/NHPEJ6tt8Xq1xYhuMWw\nxDuYTKGy7O5oqwXVXpJ4PlERsz73lLZs+nIJAMD2+COo3H+vAkVE1H21nzZZWxbymIQDU+Er4ci/\n/apbj7SjCg4erBtXR4yAMDzJe2yOqaWJbyY77pihLStWW9xnAcc14TYpqqol3SqxFX16Q/UEVYV8\ny02Ql38VWhdFiLZQEo7p808xZOIB2lTvQeN0FYvV8L9T/+hdgAEDtPGON8QFQYCw3XZx1ZKIKLfc\nZ0zRrXv33b8wgVgsgM1WkFOrZjMEv5/Xb6nXYxIOEREREQEAFFWFoASh2B3aWMURh6LisIPi5pq+\n+wbJCuFY3n8P5m+jT7FJP/6g295pO6qw4MBBuvXyG65Gbb8KVsQhIiIqMkFP6KbZX6+9hzVvLIYp\nSYnyCNVqhW3FMki//hJaT6FSHlExUgZvpC2rBjc8Wo49MZ/hEHVr7quuhWfUTgDiK6XkUsdKOIVI\nwumo9PKLAABqeaU21n7RZfDvvS9KbIV7z+xY6bZpwbuG81SrVZdsCwDyr7/APP9VwOPRxgLDttSW\nS66+IouRFifTF5+h9r7bUX7q/4UGJAkIVwg0LflcNze48VB4Dx6vrQvt7eFdBIgxiTdGRSnMbH1I\nlHcdkxRdl11ZoEgKx/z5pwAA26OzChwJUWExCYeIiIiIAACWRQsh+P2GNw46UsTEF3Ok776NG7O+\nNlc/kOJNtsYv448FAJY3XktpfyIiIsqP4LpQ+wnJZoEoCjBJnV9yEsM38SrH7gYAKL1mWu4CJMoh\nweXUlm0PPRC33XvP/fkMh6h7czigbL89AKDi4H3T3t3tzeyBDaXDd1ShtSWj42RdIADEtIh2X3al\nccZFHikxD8u4pl6IwI474Z/FS+LmSc1N8B1yaNx4+eknQfrjdwCA5/CJEBsbtG22Jx/LQcTFJZJ8\nHKGKIlSLBQBgfv89AIB/p13Q+MxLcF46De033wb3pKPQeuhE+MJVNTp+zjL6FyGy9SFR/oX/L0cE\nh2yUYGLPZ174TqFDICooJuEQEREREQCgz8nHAACkhvpO51qXfg5x1d+G2xwzbuh0f7VDqe+EZBn1\ny75D2x336oaFhoYEOxAREVG+yd+sQMUboYRbyWqBKAgpVcKJMGo3In8ZfzOPqFgJzc3asimmGiQA\neA4eF9cmhIiSE5yhxDYhEEgrqcb0yUcwv2dclaUzHZtmiAWohGP0QIzQ1grBG6oa49ll93yHZMg7\n8Qht2XnlNQAAddPNDOd2rDAUURVOwDV9uRTOSztUioipktMTRarZaCQJsFp1Q55jjkdw/wMBhwNq\nRSXaZz2G9oee0G7wi2J8+ykiKj5qZVWhQygY88cfAB1f72IEgmxXRT0bk3CIiIiISCcwZCMoJfE9\n3p2XX6Vb7zv6P4b7J+sPrzHJKcejDtkISk2tbkzwx9+sIyIiosIwffhBdMVigSjG3xzqjLxsqW7d\n/MlHWYiMKD/sD8dXv4lom/lIHiMh6iFiEgpaGlpgnXV/0ht5ERUTx6HfyUdnds5AULdaesG5EOo7\nf0Alm7zjDosbE3w+WOfOAQA0P/50XuNJJDBiW3gOnYDWh5/QfleyLKLlgUfQeupkbZ5SUwskSMKJ\ncJ82Gb5xh8J96hnaWOn55+Qm8CIRWz1No+hvRivlFXFT0klwJqLCaznp9EKHUBCx14/t998VP2Hd\nOkBVoX7xBeA0eD0k6iH4rk1EREREOqrFCt/B4+LGXWedi59+Ww//yFFJ9w+MME7O0Z1DTrN/fcek\nHZ8/vf2JiIgoZ1SHPbpiNmf0NHZlx5Yj3p79FDz1IiUlhY6AqNsRAtHqN9tsNxSl11yJsjNPydn5\ngooC62cfAwDWTr9ZG7c99lDOzmkcSOjn9m+3Pfw77QIAKLn4fG2zYLMa7pZ3koS2x/4H74RoRRxZ\nFuE78hh4Z9wO5yVXAACaFn+iq4LrH7Ft3KHcU/4LAPAeOkEbM7+/KFeRFwXB5dKt256eHfe5Rxkw\nIL1jshAOUdGRrJbOJ/VA/l1205Ydd9+hLSuqCrz/Pmq33QJVO/4HAyYciNqh/QsRIlFeMAmHiIiI\niHQEUYBqMkiSsdtRZjdDLS1Lvn9Mv/qEjI6fhCrpk3BYCYeIiKiICNHLS4LNijSL4BgfsgBtQDoS\n16yG5flnAFUtdCjUTbRcF7p5337R5fBvMRytMx8ucERE3VQgvgWVZdE7OTudcOONkJyhSjvKFsO0\nccddt+XsnIbC1Xhanp2DwOZbAAAs77ypbRatRZKEY0CMyQJxXXIFfvh5LZR+/XXf/Vufn6Pbx3n5\nVYAY+gwRSToKraTegqw7MqqE4514pG49sNWI9I7JLByiotH07BwES0rhO/7EQodSEP6RO+rWhc8+\nBQBYrroCtUeHKr5J//yV77CI8i71PgBERERE1Gu0z7gTTtGMmqcfAwA0rPgRAGA2SZ0m4STq3+4f\nOQqmr5aFVtJMwuk43/LS83BddFl6xyAiIqLcEGOe8Sorz86NoHSr5uVAxf57QarbgDaPB55TQuXk\nxXVrYb9wKtzX3IDgsOEFjpCKQkySlvesc7B+8jkQRQHuy6YVMCiibi5onIRRcvRE+I86Bt5JR2Xv\nXG43+s6MPqkv7baLbnP5UYdDqazM3vmSMEVaM8qSLsFVI0l5iSMbKstsoQVRhHvkaCiSDKVvP9St\nqkPN5oMheDzwxN6gjvnZhAS//57C8uLzcWNqVTXWr21C3/7hf2uW9CpoZCMBmoiyI7Df/lj949+w\nW3vpLXizGa5zzoP9gXsBADWHH4T6n/5ExaMPFjgwovzqpa8ARERERKQT+4S3JAMWC4K334nGM8+E\nUlEJtW9fbbNSljwJxz7zHsPxtvsfRtWuI0MrYpoFGWX9x9bgkI3S25+IiIhyJxjUFkVRhIosVI5R\nFQBAIKhAlvJbyFloboJl/jxIdRsAAJbX52lJOPbbZ8C26B2Y1qxC04df5DUuKk7y999qy4IgsCUI\nURYIQcVw3Pb+Ili++7rTJBzp++8QHLFNSueyvPm6tqzYHZBKSvDvqnoMGFwDADB/sDi1oLMk2K8/\n1JJSWBa8ltfzZptJjr531736FlxuP6oBwGJB/T8boKiqrnpOLMHthv3Wm+C6dFqP7LMkdqiE03Zz\nqOKSGJtklfbP3fP+noi6s16bgBPmvOYGeI45HlVjRgMAxJYmw3lKTU0+wyLKq979KkBEREREITE3\nz9RwwosoCsZPeEvJP0IKHUqH+/beBy13zwQGDMw4PLVDEg6c8eWbiYiIqDAEX6hNZMutd4XvGaV2\nI0iprITYZHxBVly/DuZ334Z50SL4Ztye15twNVt0SPaNSVaOtMSUf/oxb/FQcVN545Mo+5K0ARTr\n60Pbk7wvVI3dDXUbUmtraH3uGW1Z8IaquposZtRtaIXQ0AAh4E8x6OxQyisAkwn+nXaF5a038nru\nXDGZJAi+oG4sUQJOhOPOWxEYOQq+fQ/IZWjZ5/HAvGghfAePS/nhI7W2j7bc+sAjQAYtOXtgrhIR\ndXPBYcMRHDgI0prVgNNlPIcPWVIPxiQcIiIiItIl4UBOXuLae8RRsD31ROfHCVMt1i4l4ACAarXp\n1oXGBqiqyr7nRERERSBy01LdaONQJZBUdwzEf25ovW8WyqaeDeu8ubDOmwsAaDj7HCgbD81StJ0w\nuvG7YUN0c8fEYOr1BJ+30CEQ9Tjt06+D5Y3ElWAsc1/OWksq88cfaMtCh++zanV1Nmq7ZcR5xXRY\n3noD7TfOgGKzI9DSVqBIuk4UhYyq2km//QZ0syQcxyXnw/7ic2i75XZ4Tpuc0j5CW/R36z3ymIzO\ny0sjRFSMAjuMgrRmNSwL3zLcrtodeY6IKH/yW8+XiIiIiIpTzMVGIcET6RH+nXdFYOOhUIy+KHk8\n0UP2CbWw8u+2uzbWctd9aH4oQQJPEkqfvrp188o/oP7ya9rHISIiohzwhpMQLJa0dmu/6db4Qx11\nbDYiypxBQrH5t19gXvQOAECtqtbGPR5f3sKi4iWuXw8AaL/sygJHQtRzKEM3QeMlif9PiWtWd3oM\n0+J3UT7uAAhtqVcVUSoqUp6ba8HhW6JuXTPcZ5wN7wknw3PWlEKHlDFRECBLGWSJ+PNbhairLE8+\nBvuLzwEA5O+/022Tli7R/i0qjhL4RmyrbRPr67p87jRSoImI8kapqAQAOG69yXiCyZTHaIjyi0k4\nRERERARBid5wkv9c2el8tabW8KlfISYJp+njJWia9ybcp5+ljfn+72T4Jx6RdnyqQY/gvnvsmPZx\niIiIKPuEcBKOmmYSjveY43XrnqOPM2zdEGl3lRde46om5ccdCbjdUMrKtTHH9dfkKyoqYtKqvwEA\nwc23KHAkRD2L9/yLsOrj5Wg+/1KoHW7SqeGberGUDpXMKo6ZBPPSz2EJV1VLRCkrC/1ps8N1/iVd\njDrLRFErcZJJJZliImUQf6QFZHdRdtmFhuPisi9RNW4/VG82GOa3FkB0tgMmE9ruvA8A4B13WNdP\nzhwcIipCamX8+7V+QqHqzRHlHmvoEhEREREQCKQ1XbVYIAQCQDCIwNxXIe++K9B/AASPOzqnvAKB\nXXdPcpQ0SMlbZBEREVEB+TKrhNNRcOgmhuPWl19AsIutLVMltjRry/4R2yK4xRawzp0DALDPul/3\nmanqsQdQd/MteYmLipfgdAIA1JgELSLqOtkkQx62GfzTrkLLzjuj4piJ8Ew8Eta5L0O1WODx+mG1\nhJJzvP4g1AQ38hK1EVQDAQiyDFWU4NtiOFo++Awo4paD3b0VsyT2/Eo4sQS/H+1uP8rX/o3SE0NV\n/gRVRflJoWVVluE54WS0HXsiTHLXE6zEbv7vg4h6JtVq7WQCk3Co5yreT5VERERElD9BRVt0/feC\nzueHb7KZPvsEteecisDgIWj66nsILld0jsGT7F2xctnPaPcp2HbXrbJ6XCIiIuoawRt6Ul21dHKR\ntROJbpTa772zS8fNlDJkIzinX68l4QgN9YDVpp/kdAIOgxad1GtoSTj8d0CUM/6x++LfNY1wvPU6\nrHNfhv3eO+G44hI0L/4EysZDgbfeArY0/p4o//wj/D//BGX4ltqYuOofVI8cgfYrpkNwuwG7vagT\ncHqCVCr5KLV9INZt0NYFvx9BRYGU5WsLOdHhRrL1pecx9KXnE063fLkEALKSgENEVKxUcycPaShK\n8u1E3Rg/WRIREREREIy2o1JNnX9EjHyJkn/+MfTnqn8AAIKzHQDg22hotiOEqV8fVPHpLiIioqIj\neEPtKFWzuYsHCt2Ian7ldVRMGg8A8I8cBffkc7p23DSUnXmKttx29/1QKyqhVFZCbGqC114Kk7NN\nN19sbYHC5IteLfL5V3WUFDgSop7NZJIR3HoEAED+/TcAgP3B+9Ay5XwMOv24hPvZZ82EfdZMAEDj\nx0sRHDYc5kULAQAlt9wQmsTX8aLQ+P5nCC5fjr4nHhUa8Hnh8yuwWYo/UUVtbip0CERExcei/37Y\n8PVP8C35EvL4cagdUJWwih1RT8AkHCIiIiKCoMQk4djsne8QfhKt5MrL9McJPwnsmXhU9oILM8sS\nRFGAUl6htYpQVbXbl+UmIiLq9rLUjsq311gAgH/Mnlrii/usc+E9bGJXI0xZS2kpyo89Am233AG1\nsgoA0Dz/HVSNGY3Ke29H23En6ebb7pgB55335S0+Kj6shEOUP8H++taEttmPwzb78ZT3LzvzZDQt\nWATpz5W6ccHny0p81DVqnz5Qx47V1i2vvgJ7RQ3Uiy4uYFSdk7/6EtZbbix0GERERUf643dt2XPA\nQVAGDITvoD6Qw9eVBSbhUA9W/CnERERERJR7MZVwPKee0el0obHBeDz8JLBYVpqduGKI4R7yLS/P\n08akH77P+nmIiIgoPYInlISjZpCE4xuzFwBg7fKfENxmW228ef47aLl4GrzjD89KjCnHs8/++Ov3\ntfCcdqY2pvTpoy1Lq/7Wzbc/PRvysqV5i4+KTzQJh5VwiHLOnsIDI0kEBw5C9fZbwv7QTN24/MN3\nXTouZY9kMkWXN6xHza3XQ1y/roARda7yoH1g++h9APGfhTwJEom9hxya87iIiApN3BBtMegLv+7J\nkghEHqhUmIRDPReTcIiIiIhIS8JpmXAU1NKyTqcLMUk7uvE8PAkc2GqEtlw9drecnYeIiIhSFK6E\nE2lXmY6W5+fgj29WQh6kr24QHDYcvksv16rv5ZNk1f8cakWltmz/+IO4+Zb58+LGAEBctxbweLIa\nGxUftT3SjoqVcIiKnWXRQogtLfEbEny/pQIQBHhHbKsfqq8vUDDJqRs2wL9qtW6s9eEndettj85G\n0/x30PjeJ1BqarRxobU1LzESERWS8+rrtGXvoRMAALIck4TDSjjUgzEJh4iIiIi0i46SKcVupYpi\nOCw0NgIA1C4+oZiUbByjEjSOiYiIiHJL8IbbUVmt6e9sNkOurMhuQF0kSx0ulwkCGq+foRtyXnip\ntqzU1MYdQ/x3Daq3HYbaIX1QtucuEBqMqwhSD9DeDlUUM/v3T0QZa33w0U7nBDcemtKxWp6b09Vw\nKIvWL1gMxRJ9TRUibS+LTJ8Rm2HAyK10Y4FttoX34PH6sZ13QXCbbeE6e6o25j14XF5iJCIqpOAm\nm+GvZT/hz+W/atXsxHACjioIgMprudRzMQmHiIiIiCAooSQcMcUkHP/onQ3H5d9/BQAEN9k0O4EZ\n6fhEvN+P2j5l6Nu/AuYFr+fuvERERGTM6w0lISRIlO2M2VRcl6fiknAASNXV2rJSUQHXZVdq60LA\nHz//55+0ZctPP8D0+adZjpKKhehyQnE4ok/0ElFOtTz7Elr2PQjecYfBE36qPhHprz8BAMGNNk44\np+7l1+Efs2c2Q6QuEiUJojemkpzXV7hg0qQ6HGid/Sxa/vc8GpZ8rdvmPvtcrP38a6z7dDk8p5xe\noAiJiPLLMrA/Sgb1i98gCKyEQz1aZldHiIiIiKhnCYSScATZ1MnEENcFF8M+6/64cSFc2lvp1z97\nsXXC9Nkn2nL5Kcej9aHH83ZuSBJ8e42FWl5cT/ATERHllccD1ZJ5FRCjpJeiE1OtxzvpqFB1nCnn\no+rBe6C0O+OmCy6Xbl1sZCWcnkpwOqHa2YqKKF98+x0I55h94LCa4Dl9MqzzX00413PoBFjnvwr3\nKWeg5NpQ8qTzsElw3fsAajcO3RCUy0oQyEvklCqLWdKtF2MlHPGfvw3H1apQ0q7voEPiN8oy5E03\nyWVYRERFJ+F3PVFkEg71aEzCISIiIiKtHRVSvAmmVlTq1v0DBgEAxPXrQtvLy7MXW2dM+sShsrNO\ny9+5AbjO/i+c192U13MSEREVE8HnhWo2FzqMnFLKokk4kYQL9/gJwIP3oHTm3TAtW4q2197UqqHI\n3+qffhec8Yk61DOILieU0rJCh0HUqzisoe+AqhhN1nCN3R/2xQsBAIGqarivvAaeCUd/1VCwAAAg\nAElEQVTAe+zx8I3dD6alX8D89gK47nsQsNm0/VRTz37/6q58O+4E85dLABRnEo7p048LHQIRUfcm\nCIDCdlTUczEJh4iIiIi0JBxVkjqZaEwNt4iS/voT/j59oebxRoTg0t/Uarv9nrycV2xqhOPm6/lk\nOxERkccL1WIpdBS5ZY4m/arhm7diSbT6ifWLTyEdsBeaF34Y2tZQr9td9bjzECQVguB0Qs1jFUgi\niiHHfH8dtgVayiugHHssGkbtjvKS0PuSb5/9AQCtj/0PTfUtqIxJwAkdg7dIilH7Hfeias9wG+wi\nbEdlffG5QodARNS9sR0V9XD8hElEREREEJRwJRwxsyQcwRt+Ms3nAxwlWYoqNe76JkTq7vhHjoLn\npFPzcl5x3Vo4br4eqrf4nsojIiLKJ3nNKgRq+xY6jJwKDN9KW5ZXfAUAEMtKdXNMX68IXUgWBK1F\nZ4T90YfgueCS3AdK+aUoEF1OqHZ7oSMh6p1iHiJxXjINit0BURRg9Qfj58oyyvtUaauNH34B76vz\nIA8bno9IKU1qafQ9VvAXXxKOURvC1htmFCASIqJuiu2oqIfrBk23iYiIiCjntHZUXUzC8Xp1T4rn\nQ7+pZwIAnNOuRvMrb+TtvJG2G7Z5r+TtnERERMVG+uM3CH4/TP+uLnQouWW1aotifR0AQCqNTzy2\nhJ+M71gJRwrvQz1M5DN0D2/HRlSsVCnmGeOSEohiqCWgxWT8vTayHQCCW24F5ZLLtDaCVFxURzTJ\nRf7u2wJGoid+tQzSLz/Dsugd3fgvv2+Ad/KUAkVFRNT9qGA7KurZmIRDRERElAK1p2fmdzUJx+cJ\n/en3AQVqRxHYYjiQx6eQVXMPb7tBRESUgmK6MZZr3j32BgC03f8wAOOn4OU/fof450qYP/0YitUG\n7+575DVGyrPIdwSRl1iJCiLD768R5gTJOlR4amW0apH9/rsLGEmU7ZEHUX3QWFSNGa0b92+/Axy2\n/D6MRETU7bEdFfVw/IZIRERElIIe/5UgGHryQM3wIqbk8QDr10N0OoECJafElqvOiwIlGxERERUT\nVe49N52aX56HFT/8i+AWw0IDBokX9nvvRPVO24VWJAmtc+bnMULKu8jTu0zCISoM/t/r0dwnnFLo\nEHRKrro8bqzlvlloeeblhNWXiIgogV7ejqrHP/BLTMIhIiIiSkVP/2AsKOFKOGlcxGx+YS68I7bV\n1mu32RwAIP36S1ZjM6IYJNyoJfEtIXLKFHPTMVJJiIiIqIdSEn0WkmXj8R5IFASUpPGku+j8f/bu\nOzyKcm0D+P3O9mTTCQjSxI7iUey9i11RVESxYFcUj733w/HYEOzlWLHr0WNFFMtnx4roUekI0hJS\nN1tn5v3+2N3Z3WzJbrItm/t3XV7OvPPOzJOQZHdnnnkeF6AocO8eqobj9+coMiqYUBKOYDsbooLQ\nBw6E7nDAfcqkQodCORDzGb8IPnPrVVVxY/7xJ0HW1xcgGiKiXk4IiD7cjsrrL/zrGuUWk3CIiIiI\n0lDiOTiAqgb/n8GNtMB+B2D97E/jxpW21mxFlVT7JVfGjenVNTk/b2fuw44EAKgrVuT93ERERPmk\nacmScPrWk98OW+L3Su13z0i6j2KzBhcCAWOs1BO8+4zQv6NkNQ6igpCVVVj4wyJ03Fkc7Yoou9zn\nX2Qsiw5XASMBEAhAac39tQ4ioj5DiD77mchx/3QMGVoHsW4dPD610OFQjvATIhEREfUZWh/Oro+m\nJXiCTLiCF7QyrSZjNhXm7WTHOZOx9uJIIk7LpHOhbzQi73FoQ4YCAOqOPBj2mU/n/fxERET5outJ\nLpCGKoC4z7kgj9EUjtmUuOKJXluH5vc/TrhNWINJOEILXmBV/loJ9YM5uQmQ8kpItqMiKjSzw2a8\nFlFpkQMGwHvEUQAA8/yfoXzwfsFisc58xljuuCzYlsr7t9GFCoeIqPdTRF6eetV0HapWXPcEnLdc\nDyElKiefjdYOVkstVfyESERERH1GT3JwSiUz37R4ITYYWAPbyy/EjItQ9RpZGV9eOZVCld4XAkBd\nP2NdverqwsRhswEArGtWoeKSCwsSAxERUT4kvXgZCCaW6IM2zHNEhWHqlGzR/P7HcE08Hf4xh0Dd\nbnv4QlXyAKDljXdDO4Wq54S+V3XbjcSgk4+BaGzMS8yUQ+EPGEwAICoYh7VvVWTrc6zBz9zVYw9D\n3UnHQVu9uiBhVF35dwCA59jj4Tn/QrSddT7WPvF8QWIhIioJQvTsYn2anCePR9mlU3J+nnSJtWuN\nZesnH6HqoeQVVal3YxIOERER9RlJn+BOQ4nk4MD2UjD5pmLK+THjSmsLAEDPMAkHAAI77tzzwLrB\n0hS5cSUL0IoKiDzZTkREVPKWLoHy9FNxb4qE1wMAkH30NVHdbnt47p5utPRsv3s6Vl9+AxoXrUBg\ntz0AANISSsJR1ZhEJqWlOe/xUpaFfx8EL7ESFYqlj7VF7Gtk6MGXMOW77/MeQ33/SmPZtG4tpLMC\nvn/cDtG/f95jISIqGUJA9uBafbqcH85C1fPFU73c8sqLMetDp0+F6ddfChQN5RI/IRIREVGfofUk\nCSeLcRQj0dYGAJCVlV3MjNf6/CvZDqdLQgCmIvhX6as3HImIqO8ZtveOGHDVxbB1umgo1geTYmW/\nfol263NkbR28k6fEVhcMVcIRagBef6QtqGASTu+nsx0VEVFOhavJhZS99mKSiTni88WsmpYvN5bt\nrMJERNRtSnMzbAt/jwyoavYrhapqZLkInrC1vfwCqm65Pm686pTxcWM9eZiYigM/IRIREVGfoffg\nzXaptKMydH6KvTXcjirzJBxZVQ0t6um0wHa574suhIBSDP8mlvgknIBaXH2GiYiIeswf6VNv/iNy\noVRrboayLlhOW+9Xn/ewipXTYYkdMEcq4US/T3A8MD2PUVFOhC+Osx0VEVFOOJ59Mmbd+e6beT1/\n+IGlMN9hR0S28W8/EVGPmRb8AQBwXnoR+o0cAWXpEmNbwnbImfB6I8uBAOByxSVX5lPl5HMSjut1\ndXFjbp/ao3sZVHhMwiEiIqI+g+2oACS5RqSHK+FUVHTvuFFPp7W+9Hr3jpEBRQgIEfxHkYV88jj6\niQoA6OhAxeknAf95rTDxEBER5UA4WReItFYyf/8tNth8GMqn3QUA0OvZkiEZaQkm5YhAAMP33t4Y\nt7/zVqFComwJf0hgJRwiopxwn31eQc+vtLfGrPv3O6BAkRARlSbr++9BV1U4XpgJAKg8YyKUNath\nn3weHLfdBMuXnwMATL//BtsD09O6SN/Y6oHXr0JEJdyIDhfqRwxC5YRxOfk6ekIdvUPcWMDjgxbQ\nEswOKrkHhkuQuespRERERKWhJ+2oSk6nN+p6uys4XO7s3vGibjzEtF/IId9xJ8I57S603/tAXs6X\niPDHPj3Rb9MhEKqKivffQcMxxxYoKiIiouwSgUglHJgtgMeDmkP2j5mj17MSTlKhZGVl9SpYV/4Z\nt1lKCSEERFsrZEUlq6r0ElJKiFA7qoImhRMRlTDvaWei7NGHYsZsL7+Qt+RH808/AADcZ52LtpMn\nwbTlFnk5LxFRqXNPuRRl0++G89Yb4Lz1BmPc8st81G2zeWTiA/eiYV0bavfaGQDQvOMuUHfaOelx\nTfN/Rv1dd6Hfe2/Afe7kyPjChQAA22efAg0NUKI/4+aBXlVtLKsjt0brE8+ibpftggPRFXsAoKMD\nww7ZE/qw4XC9nPhhV1XTYTGzLWIxYxIOERER9Rl6dAlLlwv6+vVQhg1La9+SyS5PclOn8p03AADS\n2b0knPANCAB5uximb7IpFixah5pKe17Ol4j/oINRfsdUY11EV8bRNMDED0NERFQC/LEXKK0ffRiz\nrpvNkFEXFSlWuHqQ8tfKuG3mj+egfbe9UbHgV9TsvydcN0+F57zJcfOo+Gi6hEmG3gMzb4qIKCcS\nJfkma+eRS7Kyigk4RERZ5D7zXJRNvzu9yYGAsai0taScWrv/HsZy2cP3G8v2118xluu32jjNKLNH\nr62FusmmMC9aiNYXX4O+wUCsn/c76v62BYTXEzPXMu9H2JYuBpYuhsvjgfm3X6FuOzrmmntAZRJO\nsWMSDhEREfUJpgV/YIs9dkTb9AfhO/FkVJ8wFpZvv0Hjr4sh03hyu0RScGD5dm5wISoZx3Hfvcay\nLCvv1nGFpnY9KQdM5iJ+6jgQYBIOERGVBBGdhNPcDN1mi9muqCrb8aQSqoQjFi6I21RzwljUAPCN\nOQQA4LzxGibh9BKqpsPKdlRERDnVOcnXPfE0aNuOztv5Ky69CACgDxyUt3MSEfUFcsCAtOfGPAQS\n/SBoBpTly2LWfQcf2v2K8Bkyz/sR5kULoTQ1QR04CPoGAwEA0h58sFR4YivhKCsi1VPrhwW/T95x\nJ6D9vocBkwmO+6fD+d47cL01i59DihiTcIiIiKhPsL/yIgCg4rIp8J14MizffgMAMC9agEA6STgl\nkoVj/exTALGVa6JLfnb7jXvoiQT34Ud3O7busJgK+0FDHbk1XIcdBec7/43bJgJ+48MUERFRrxaV\nhFP+2EMof+yhFJMpjsUCALB9ODvpFNv77xnLpj9+h7Y5n7bPJ8+Kv+DYoL/xb5UOVZORmwCCF7+J\niHKl+d0PYZk+DZ7HnwI6JQLnmn+PvSBnzYKceFpez0tE1Bet/+FX1I3eKm5ctDRHVvRuXqR3lMWs\ntj30b6C8ew+jZqr8tptgnnEPACCw6+7GuLQ7ggudKuGYFy2MO4b91ZegDR4C9zU3wHnL9QCAjvXr\n03q4mAqDnxCJiIioT5BKqPKLpsWMOy+bAmXFn9C6yKIvmXZUORJO6lEc+U06MZsKXPvfbEbLo09h\n/Uefx2/z5be3MBERAR5fYSqzlToRSP6apg0chIa/1ucxmt5HmoPPwFl/+zWt+bV77gRl6ZJchkRR\nTP/7FUO33xKO229Lex8pJWRbG6TPFxxI0vKViIh6Tt1hJ3iefSHvCTgAoG80Av6zzuHfeSKiHGtY\ntgb64CGJN0Zdl5fdrMYumptiB/KUgNOZ//CjIivhhzc9HkDXoTaFko283vgdAThmPh1TJce0fGmu\nwkxLV/dT+jom4RAREVHfoATbAolObw7NCxeg+qhDsMEG1XA8MCPp7r05Bcftjf9w4t9u+5ycK9+V\nX0wFroQDADaLCfrW20DdalTMeKoblkRElH3KmtWovOkalJ88HlCZjJNVKRJLm774LqPqIX1SN9pT\n1hx+UA4CoUQsP3wHAHDeNy3tfQJvvY0RozZC5VmnBQdYBp6IqGRZzGwzTUSUC60zXwIAtF91HVAW\nrFTT9vC/4+YJt9tYdjx0f7fOpSyLJKy0TX+wW8foLvcFFxnL/n33j2wQAtJmh2nlClSNPQwDtxgG\n06+/QISScLzHnwjPoUcY05XGBlQfEtnfeeO1uQ8+hbaOQEHPX+z4CZGIiIj6huibH52q2phWrgAA\nOG++Lvn+vTQLx3nJhRi4R6Rfum/0jgAAXTGho6Ep2W7dJvP8ZJpSRE+jtbz+Nnx77Qt1s82DA34m\n4RAR5VPt6K1Q/e+HUTb7XZi//67Q4ZSUZImlrmtvBJzOPEfTC3WRhKP1HwDvJpvFjCkN6yKtjii3\nMvw+m36Zjw3PPAkAYP35p+Agk3CIiIiIiDLiP+gQNKxrg/eSKyJju+9lLPt23xMAIFztxpht7tdJ\nj2cOvzcHoG04GGuPPB7uKZcGt4Wu/zf8uhi+E0/OzheQJllTi78+/wHNsz6Kq8AjHXaYV66A9asv\nAACWrz6H8AWTcDouvxqup56D9+hjjPmmdWuN5cAOO+Uh+iSkRKDD3fW8PoyfEImIiKhviLr5YX/i\nscx2/exT2P/v42xHlBeOmU/D+ucyIFQq37RoAQDA/v1cDN9qOJQ/l0OvrgYAND3+TM9PaMtvJZxi\nIqtr0Pbqf6FuHayI47z5+gJHRETUt4jo6jdFlKRZEkJJOHpNTcywf78DCxFNr2N747WYdbWuH/SK\nSmPdfckVaP3iW6xd0YCVvy0zxqt32yFfIfZpor2960lRTAlahUn+zSEiIiIi6jHZr5+x3HF18Nqq\n0tbWaVKnp2U1DbKxEc5LpxhDzR9/Afnoo5BRVdQDm28J1NdnP+g0iBEbQR0d//lOaWmJWdcHbBBs\nTwUY7araH4qvDgQA2iabZjfIDJRffxVGbjcCorGxYDEUOybhEBERUZ8go55Otb3+akb71h57BDY8\n9bhsh5RXor0d1lnvwtzWGjNu+fJzaEOGQSt3Qjvy6B6fJ9+VcIqRsmoVAMD29n9RccTBsP33PwWO\niIioD1KCN8TZozw7RKgdlfviy7FiZRMWv/A2Vj37KrRR2xQ4st7BvOCPmPU1M18DLGYAgFpdC++p\nk6AIAcVmg7W2Bt7jxgMALEsWwdRpX8o+tbnZWLa8/V8jeT0ZqSRIuGElHCIiIiKinouuIhp6cEF0\nup5tf2FmzHrZPXeg/8gRsMz70RiT1TUwKQpEIPKwjrbV1jkIOD1mU3qfF5R166AsXQIpBPTauuBg\nssqqgcK1gyp79CEITYPl6y8LFkOx4ydEIiIi6huUqDerURfak1G10rppJ9rbUHXK+Lhx86/zIbxe\nyGxVsLH33Uo4Yd6JpxnL9m++ROVZpyWdS0REuRGuiqOqvbSfZJExLQxW0pNWC+xWM5TddoXpQFbB\n6S6zxw29/wAAgPu0M2IuqgohYHv1JWPdedmUuP0puxwfzDKWqydNRMUFZ6ecL1UtfpBJOERERERE\nWdE24yGsv3MGZKj1sfJlbKJHxcUXQITaS6majvI7/xmz3XXDrcZydMsm/8GH5irkLok0K2dWXH0Z\nrD//BL2yCrBYUs61fjInC5H1jNIpQYoi0vqEOG/ePEycODHhNo/Hg/Hjx2Px4sUAgEAggMsvvxwT\nJkzAuHHjMGdO4X8AiIiIiKIvjFsXdv1EsaaX1k07pb0t4XjZIw8CPi9gz04Fm6wl8/RivuPik52I\niCjPvMEe6oESS6otFOdtNwIAlFAis9NhgZKoGggl5J5yacy6vt12aHtyJjpOOhX+C+OTbDxnn2cs\ni46OnMfXp/l8sP32a8yQ/c3XU+5Sc9apcWOigE+hEhERERGVEt/4k6CfepqRhGNb8FvcnH6jt0LV\n0Ydig8F1cdv8Yw6JLB9yGJqeexXNM1+B7+hjcxd0lnW+lt824yFj2X3O+QAA26x38xpTQl1UEe3L\nukzCeeyxx3DdddfBl+CbOH/+fJx00klYsWKFMfbmm2+iuroazz//PB5//HHceuutcfsRERER5Z2a\n3oVxj9sHx333wvH0EwAA2x3/7GKP3kH5YHbMeseOuxrLor09a8kz0mrNynGIiIh6QoSScEqtsl2h\nhb+vlBnPhMiDberIrWEqc0DbeFO4p90HGSqxHq3jpn+g9cnnAAD68I3yFmdfpDStT7zB70fFicfC\n/vjDgNsNZe2a1AeSpZXAT0RERERUaIk+K0Wzfvk5hBZfpVKvqY1Z1w48COpBY7IaW7b4d9sDAKB2\n+twnOrXW9p0wAR2Tp6DljXcBc+oKOXnl9RQ6gqLVZRLO0KFDcd999yXc5vf78cADD2DEiBHG2MEH\nH4wpU4JP8UgpYUrWp4yIiIgoj4Tfn9Y8+913wHnrDai75lJgzWpU3lUaSThV/7rNWG74cx28Z55j\nrJuam7JWCYftqIiIqBgIrwdi/XpsPHIoHI8+WOhwSoZ0OAodQq+k1/c3lltfeBVKV6XITSb4Dzgo\nuBwq7y2Z5JETojVx+XTnVZfCPucDVFxzBaqPOwp1ozaDaG5KepzA37bNVYhERERERH2T2QzPpLPS\nmuo96hj4tx2NwEYbQ9bFV8cpVq2vv4O1q5rQ+p+3U08UAu4bbkVgtz3gO2psfoJLg+5ydz2nxDoO\npMvc1YQxY8Zg5cqVCbdtv/32cWPl5eUAAJfLhYsuuggXX3xxWoHU1JTBbO49CTv19RWFDoGIiChv\nSuJ1zxJ/s0M740woO2wPcV6k5H//++40lm3zfoiZXwrfB9m/P+qH1EOrjr2JZi4vy8rXV1FfjYoS\n+D5lWyn87BAVEn+HKFOVVgH88h3g9cB53VVwXntloUMqCeW1lSjn72Pm6ivQPG4CzFtshrptNk9z\npwpImw3WJYtQ52tD4J13YTv6SGDAgJyG2ucsin9yFgAcM582li3ffgMA6LfsDwTMmyacX7HbTll/\nD8zXPiIi6o34+kVEWbXvXsATj0XW77sPuPDCuGn2444BTjgBEAL1vbFASE38Ay9J/54euDcAQO68\nS8H/5lbd+Q/gjttixlpdPlQ5Qw/8NjTA95/XYTv3LKCrh1FKTJdJON2xevVqXHDBBZgwYQKOOOKI\ntPZpbu46U6pY1NdXoKGhvdBhEBER5UWpvO6Vt7hQ1mms+aobIKuqgSOPR/2G8RnylRNPjFnvTd8H\nKSWEEKjvvKGtDQ0N7bC6/KiKGg6YLGjtwdcXPk+rT4e/F32fciX6++7bYiTa+D0h6rZSeR2i3Iv+\n29u+rhna0EpUh9b5M9Qz4e9t0y57Q+P3slsWXfsvjBhUCW8G37/aikqYVqyAGDIYNgDqv25H8zc/\n5S7IPsiyqhHVANQtt4L5t19TTx4zBhYAekUFlPbYf8fmjgDULP5u8LWPiIh6I75+EVG2lf04H+Wh\n5TWvvA3T3nuh+pHHYPnlZwBA+13T4d1tD2CTTYHm3t0aqfN1/FR/T2srq6C3taGlQH9zo2ONjlO0\nNKPfZsPQfvNUeM+bjOrDj4Rt7tdo96vwRrVpLhWpkqC6bEeVqcbGRkyaNAmXX345xo0bl+3DExER\nEXWLcLnixmRV6NacxQLfEUfnOaLcUjUJJGhbILxeAIDWqc8sbFlqI2WxZuc4pcTjgc4WEkREeSV8\nXoCtk7ImsMVI6FYbtC1HFjqUXstqVrpuQ9WJ0t4Ws25eugQen5rNsPo84Q1eqJe29N/DSmuCNq5W\nvgcmIiIiIso20dFhLCvOYDpO++NPwXvceDQuXgnvKacHE3D6GOkoA9xFknQkJcTatajvX4l+mw0D\nAFTceA0AwDL3awCA6fffChZeoWSchPPWW2/hpZdeSrr94YcfRltbGx588EFMnDgREydOhDd0s4eI\niIioUEwrlqfc7r740jxFkh+qpkNZ8WfS7dqobWLWpT3BzYTusOSk0GKvpVdXw7JmNXRNT38fJuwQ\nEfWc1wuo6SUrSCnhDyRuSUMhug6tvLzreZSU1ZJ5SXTh88WNBTJ4T0FdE57ghWv/mEOh1vaD65ap\naFz4J9qn3Y/1P/4v4T5KSzOk2Yy2K681xqTSC0veExEREREVucBOuxjLJqsFAKCN2ATtDzwKWVFZ\nqLByTttwcMrt0uGA8BSgy5CUwLJlkFEPISh/rUS/UfGJULb/vGIsmxYtyEt4xSStuySDBw/Gyy+/\nDAAJ20s9++yzxvJ1112H6667LkvhEREREWWJ359yszrqb2h5+Q1UH18CFXGkxMDdtoOli8SjmF1q\narNzarMlK8fp7fSKSijtbVC3HQ3rJx9Brl4DDNkwvX3bXbDOfg/qEUcBtiwlRxER9QHqkKEwhxJQ\nhccDBAJp7Vd1/NHQdQnXa2/mMrxeTeh6n+vfnm0Oa3aSNGpuuxHa1H9m5VgEIJSEow3aEGvnLzSS\npbwnnQLRqRJRmNA0+LfeBr5LrwT+9Y/gmLsAF8CJiIiIiEqc//AjjWXRR6pPescei45rbkw9qbwM\nYn1jfgJC8OElIQSss2ehauIJMdusH32YcJ/Kc88wlk1//ZXT+IpR1ttRERERERUj0UUSDgAE9tkP\nUkn89kgv60VPf6tqTALO+smXoH3a/Sl30QdskJ1zW5iEAwBNX/2AdR9+Dhn6ftg+fD/tfZ233oCa\n889E2bQ7chUeEVFpiqp8I3w+CDW9JBzbpx/D8dknOQqqNEgpk75HovRUlGd+wVjvVx83Vvv4A4CU\nsD/5OJTly7IQWd9mJM84HHHVimSq9/+dEqXVHXbMdmhERERERBT9MIi5tKtPts14CM1nT0b7I09C\nHzY89WRHGUztbXAedlDO4zItXoia3XaAef48WGfPituuLFtiLLc+/wpa/vN23BytPv6zbanjFRQi\nIiIqfboeV/IwsMlmCae2PfMC1GHD8ef7n8du6E0tgjrFGhhzKLwTJqJ90tlofer5hLuYfk9cbj/j\nU5vYjgoAZP/+ENtsA9sHweSbuisvTnvfiqf/DQCwfP9dTmIjIipVIioJx/rf/0C0thYwmhKj6xCs\nhNMjSje+f+7zL0o4bvr6K1RceQlq994F5u+/RdnUW6B7PAnfr6qd2lc5LzwXZRdPzjiWUhVuRyUd\nZfEbTSas+WM5Vi1ZA//o2CQb08oVAIA1q5qwaPE6wFTaNwSIiIiIiAqt1Cuw+8afBPW2qWnNDX9+\ncXz7NWSaVYC7RUrU7ro9LIsXouKCsxNWyC2/fzoAoPWp5+E/YAwCe+wVN0f3eHMXY5FiEg4RERGV\nvPIbr4HS3Bwzpo3ePuFc/0GHoPnbn2EetTWanngOgaHDoQ0Z2iuScIybLJ1itThsgBDw3n4X/Ice\nnnBf78mnZScIC5NwekTTIss+H8rumIqym68vXDxERL2JqkK3BKuNmFeuQMXfI4kGYv36QkVVGqSE\nZBJO3nkuuAgNN/wjbtz07jsAglVcag7ZH+X33oUBwwbA8cgDcXM7J+E4Xnoe5c8/k3a7tlInPMFK\nONLhSLjdVFMDc7kDrW+/D++obSPja9cAABSTCYqJl1eJiIiIiHLOzOvOYbI88hCBnDkzZ+epmHK+\nsSxcLtiffTLp3MAOOxnLvoMPAwA0zfkcuqMMcl0DvB5fzuIsRvyUSERERCWv7JEH48bc512Ych+L\nWYF2+BFo+e5n6PX1gK6nnF9o+odz0PZrqNpPp1jT6ZerdVXiMl1sRxVDr6jscmzOIhYAACAASURB\nVE5Ajfr3imqbJvw+lN91O8ofmJ6L0IiISk8gAN3pNFajW1FWXJq4okiMXpBwWyhC6oDgJaS8EwL+\nc86PG6565L6E08tvui5uTNUS/1w7HnuYP/MAhDf4RKa0J07CARCsAmU2Q997n4TbLGb+bhARERER\n5Vz0w4t9nHRWGMsDrpySs8929hefM5aFqx0ixXlkVMup9gcfRdP/fQNt1DZQPG6ULV+MIcPqEViy\nNCdxFiN+SiQiIqI+SR+wQfqThQKB4r1JIdpaMWDCWGx+QCjbvHPCkLXrxBhpt/cohrZHnkD7gYdA\nHbl1j45Talpfe9NYtnz1Rdx2XUoE1MgHSBGISsLpVL2JiIhSE5oGWe5MuE1pWAevX4Wup3g99/a9\n8shpkzJh2WnKPavFhPXfzYe61agu54rOidjtbai75HyYfv8tOBB1wdR507WoH1CFijNP7dvJOF1U\nwokRddG//fa7jWWrma2oiIiIiIhypfXxp+EedwL0wUMKHUrR0DccHLMuGhtzfk6lpSXptvZLr4y5\nZiCdFdC22DJunn3GvTmJrRgxCYeIiIj6pkwulitKcVfC8UUlbrjag0+rR0nWL1ePyphHOjceUoUw\ndhzWPPIMYOJNiGjqtqONZcunH8VsE2vXwnL7VNgfuj8yGFCNRfPSJRmdy+NTu55ERFTKVBV6eXni\nTcOGw/z0U9BdrqS7C68nV5H1flIG3w9RQehDh0EdtU1acx3nnIGK8ceiYsJxKL/5BlS+9hKqTj4e\nAGD98P24+fY3X4eyfFk2w+1VhCf0e1/W9Xth+/PPGsuB3fYwlhWFCWpERERERLniP3IsOh58jJ9J\no3W6V6GsW5v1U5jmfpP2XDl0WPJtUW3Eap9/EmLduh7F1Vvwp5WIiIj6pGSJKQkJUdRJOMIf6aeq\nLFsWH2uSFlFtz71sLPe0Eg4AKHxCPqHWp18AAMjK6pjxqgnjUDvtXxjwzxtRfttNAGIr4WTK1dG3\n+uoSEXUm1ABkZRU8E0+L2+Z49SUMvPYSVJ13ZvL9C1gJJ2WFnmKg66yEU2DSaosb08vLERixCVw3\nTzXGnK+/AvtHH8D+4ftwPPMEAECsXw8ASZNtRHt7/KDfnzJprVQId7gSTlnXky2Ri8d6bV2uQiIi\nIiIiIkrNF3v9Qlm7JuunkEsjraP8++4ft13rF2k/Jauq47aH+Y45Lmbd/NEHWYiu+DEJh4iIiPqm\nqAzsrkhFKe4y/f5I4oZp2dK4WGVZ4psKgV13j8yxZSEJh08BJySrqgAAoi22ZKdl/jxjuWzGPcEF\nf/eScCrOOR0jtxgI83dzuxckEVFvp+sQUkJYLXDdPQOuW/+ZcJr9q8+SH8NTuEo41rv/Beuc2QU7\nf5dYCafgpM0aN7bq16Vo+fqHhIln0ZSOYDKNnuTCaDgRJVrVicdiwIhB3X5vUtSkDL5n0nWjEk46\n7ajcF18WOUT//jkLj4iIiIiIKBXR6fpFLirhOB+cAQDwHHoEtKj2V3pd8IEEoUWqskt7/EMjYe13\nz4D7pFMic5uasx1qUeIVFCIiIuozZHRFmAyScKAoEFIWbSKOCASMZdNfK+Iq4aTKRDdkpRJOjw9R\nkvTKcBJOW8y4jLqZ6Tv4UACA6c/l3TqH/fXXAAA1hx7Qrf2JiHo9NXTxJ/T67jntTLSfMglN/xdb\nPllPUQmvYJVwXC7U3DkVVSeOK8z508FKOIVniU/CsZWF3r/Zkl/wjFZ1wdkAAGkyoeHnP9Bx5bUA\nAOHuiJ0oJayffQoAsM56B4iqiKMsXVLUFSLTUT+gCjWHHoB+g2qhNARLoadTCcdz9vlYP/EMtN33\ncK5DJCIiIiIiSqrzQwTZroRj/vkn2H77BQAQOPxI6PWRqjf6gIHBhahrBCLVZ0SbDR3T7kfro08G\n929uST63hDAJh4iIiPoMWV4eWTGZ0t8x/IaySJNwYp5Q9nqB7rS0yMKNNcGbcwnJykoAgNLaGrsh\n6mdQhP4NwzeC4g+S/N/UdN/0ngVIRFQCLF9/CQCwffpxcMBmg/vOadC22DJmnqm108WeqAtFwluY\nSjhCDXQ9qdAkWAmnwFJWakkjuVw0NxnLbc++CGwwENLpDG4LVcIRTetRs91IOK+4xJhbdeapqN1x\nG0DXUXb7bajbeVvY77+3m19FcRG6Dku4imCaiUye2++C74QJOYyKiIiIiIgoNfeV16LlzPPR8uqb\nAAD7009k9fjK6tWRFU2DrK41VgM77AQg+CBT6xMz4dlzH/j32LvLY+ojNgYA1E2/I6uxFiteQSEi\nIqI+Q9s86kZcJgkj4ZtORZqEIwKRJBzh9Wb0dLJ/730RGLhhVuJgO6rEjFZfnds5RP88hZ5AL7tj\nKgBADyXuGFQViZjnfoPaW6/PSpxERL2Z/dWX4saUBK/1ovNruaZFthWoHZX5f78W5LyZEJKVcArN\nfcEUrD9pEtqnJrhgGfVv0/zm+wn377f5cGPZf8AYAIAsCyaomz4PtmlzXn81zH+thOPpf8fsa1rf\niJr99kD5PcFzV9x2Uze/isKz//vRxBvS/Pm2WTJI5CciIiIiIsoBWVGJwNTboW49CgBgXrkiuyeI\nulYiq6qhV0cq7XsmnQXdbEb7tPvhP/xIuF57M60q+3pF5Hq3adHC7MZbhJiEQ0RERKUt6mZb22NP\nYd3Pf2D5+59neJDQRfmo5BY5d27Wyzx2mz/yBL3w+TJKwml9+Q0s/+KnrISR6GYnAbAEn06PbhsG\nKSGiEmusX38Fyxefwbx4EQBAHzw09hhJknBMK/+MWfftvW8WAiYi6oUCyavJeE48Oek24Yu0oCpU\nJZzqow+NrOg6ICU8bl9BYklKSlbCKTSnE21T74SsqEy4efVX87Bq/mKou+wK103/SOuQpgV/BA/9\n74chGhpgf+XFpHPN//sl85izyN3S3q39Opqj9nO5UHH1ZVmKiIiIiIiIqLBkbV1kJSpxJuPjeL3w\n/PwrEHo4SbS3BcctFvgPOAiBXXYDAHiPPxHayK3w2y8r4BubWUvtmM+ynR9WLUFd16slIiIi6sXM\n8+cBALT6/tA3GAgBQK2sS71TZ0psOyrR3IT6ww+AtNnQuKIhi9F2T3QlHPh9EIgkHsmu2m4JAbst\nO28JeW8uCYsl+P+odiOiwxU/7bNPjGV1081ibnYJTUWiOkyioyN2vT3+uEREfYKWOFkRAHzHjYfj\nhZmRAVU12vc4r4rckHeePQlNfyxLq7VProgOF6qOOhT1v/wM7977of2VNwoWSwxdZ9vJIuCwmeJe\n+8PERsPCaeOQFRVpHc970ikoe+QBAEDtbtvHbfeNOQS2999LuG/V+GPSOkc2WD/60Fj273dARvvV\nA3Dddjs8p52Jfhsnrv7oO/jQhONERERERETFruOAg1H+4SyIDhdkZVXmBwgEYLntFvR/9H4AQOPi\nlRCu4MMMbQ//GzCboW80Ao3/WwJZFTx+RXl67XyjyX79IC0WiEAAwl9kDx7lAJNwiIiIqKQ5r7wU\nAGBqWGeMWUwZZouEs0tCFWZEe/BNqPAVyZvFqDetwhtbCafxvY+63D1bZfV5cy4xaQ4m4URXwhFN\nTXHzRIc7shxVmQFA0ko4cdWYGgufFEZEVAhCS14FLrDHXmh57S2U3X8vrB/PgWhthawLJuTaX37B\nmGdqb4Nl7tcI7LZHzuONppc7oYSSM22vvwbLLz8HY/v0I7TrenFkuUoJWQxx9HEmRYFv3PEwPz8T\n/iuuitsWJp3OpMfwnHqGsaxtEWnVqrS2xMzz774n2p55ER1L/sTwXYMlzlufeRHmuV+j/P57YxJj\n8qk753VedxXMc7+JaUfX9PGXqN03+DSnf5/9sxYfERERERFRPimVwQozpo8/gnrU2Iz3rzjndNjf\nftNYrzpxHPwHHAQAkOWRz5ayXz9j2Wzq3n0Az/kXoWz63TGV/UsVk3CIiIiopIWztqOZM0zCkVYr\nAEBZ3wh9w8FJn0AuFMu8qHZSumYk4TQdcSyw7XZ5i4PtqJIIV1RQVVScewbUbbeDNij+SWzrB7OM\nZeHtlIQTSJaEsxYA4B13AmxvvAbrn8uCpUe7qoBERFRiZBf9xwN77g3t9VcBAEpzE7S6xFXxbDOm\n5T0JJ7DLrrDN+QAAUHHZlJhtornZSBgqKF0H+DpfFGRlFda/91HKJOpwAnAinrPPS3l83+gdseaV\nt1BWbgeEQNmIofBMPB3W2e/BP+YQ+A8+FO4rrolp+Zpr5nk/oebIMQCAxt+XQjrK0trP+t7bqDo3\nmHRkf/N1AEBg1DZoefYlYNCG0IYMhWnFn5GqhURERERERL1N6F5HzVmnok3XMm4TFZ2AAwBSVaH8\n9VdwOUmVVVOmDzmHjx367MVKOERERES9nPmP3+PHMszU1gcMBBCVhBOV2OOccn7PAsyQ76ixCOx3\nYMxY+T9vjaxokSQci8WE7neCpawJJeEojQ2wfvYp8J9XjE2BkVvDf/AhKL/nTpiXLDbG9dramENI\nNfHTAaK9FQDQcf3NEM1NwZu4Hg+Q4gl4IqJSFNh6FOyvvIiOK65JOkdW1wAItpVMxvHRB8h3Yz+R\nohe68LghUQRJOFIWR0UeAtB1FUOhJ38HqI3YOGY9sN32sPz4vbHuvuoaWBx2499bCAHX3dMBTI/s\n1EXSW7apu+yKxl8WYc0fyzGgNv3fB/8xx0G//mooURUxXXdMA0LJ0G1PPQfLSy/Ae/yJWY+ZiIiI\niIgoHxyvvGgsV54zCQ0JknBMv/8GfPcttJNP6fJ41h++A374DgAgKyoTzunuw7jSFmpjxSQcIiIi\notLgnnKpsZxp2yRZXh5cCLejckVuzzlemNnz4DJg/uM3tHRKwokmYpJwzPAmnUl5IwSk2Qzzb/+L\n26SP2Bjq1n+LG3fdcjv06lqYli+Fbc4H8HT44Eh06NDPonQ6AXtwhvB649pQ6LqEorCCARGVsFCL\nyMDo7ZNO0WuCCY5KiiQcAIDfD4Sq4OVDovaWgVF/g2X+PAiPJ29xpCIkK+H0Jr7Djky+sVO1vPb7\nH0Ht7jsgsN32aH3xNciaWhRjXRjZvz+qazJPSHOfcz6ct91krKvbRf5GqKP+BnVU/PswIiIiIiKi\n3qLllf+i+rijUs6p3WtnAID6yP1Y894nsDnTqy6arBJOd0ln8HhKS0sXM3s/JuEQERFRSdMrq6C0\ntcJz5jndPobwBm+Ald0xFW3Pv2okPnSceQ68Z+evEk7NAXt1fTNO04z2AJJPrBcNoSZuJ9Vx7Q1Q\n1qyJG5d1dei4/S6j0tIGJx2D1m9+jD9uOAmn3Gm0YhFeDzo3iNB0HYrCFlVEVLqEL1RNxmpLOkeW\nhdIZO7f866Tf0P5oXJPHC0KdknA8J54Me6hqmv25Z9Bx0235iyUZKQEmc/Ye5sSX+9Tq2rgxbdPN\nsGrpWljKE6X7FpeuKgAl4rnoEnj22heVN1yNwK67s6ITERERERGVlMDe+xrLXd0PMP/xOwZtMRTr\nVzYG53fRZlgPVRHNFn3wEACA7YnH4DvmuKweu9gwCYeIiIhKmrrdaFg//dh4+r07TKEKJrYPZwMA\nREcw8UHfahT04Rv1PMg0Sbs97kZdHD1SCYc3GYpb2wOPQtt4U4im2IoM6oiNI0+ph26iWZcu7rx7\nUHs79LIyQFEgHZFKONGklFA1CQvf+RNRKfMF//bJFEk4MId6jwfiW/w1nzwJNTOfCG4Pv47mifD7\nIIWACF38ck27H9ZPP4Zp1V8w/fFbXmNJSmclnN6m8b2PoLz9FhxNDXC8MBPt/7oHzceemLCyXm9I\nwOmRbbdD25uzCh0FERERERFRTsmqKkBVYx/M6NQCW/H74f/oE9i22Rp1u25njDe/NRvi4zmwz/kA\n9nk/BAezfB1A23AwAMA29+usHjffxNq1cFx9OfDW60nn8FI8ERERlbbwjTZLDwrrd0pmsb73NgDE\ntfzJOZsNwu+HMnsWhKpCO/Tw+DmaHmwZATAJp8jJ2mBimLr9jsaYZ/zJcM14MDIpumVE5w9QAKzz\n50WOF6qEI70eeHwqHLbgXH9Ah6YnearB54Pu7oDSgyQ1IqKiEE5StaVoIxX+G5qgOpmwWaENHQ7T\nn8uCA1GtJ3NNdHRAq+8P87q1wQFFQfuMh1A97khoW2+TtzhSkmASTi8jt98B/u1GQ9N1rDv7IpRt\ntUXCBBwiIiIiIiIqDUpzM+oH1aL93gfgnTARAGBavixu3obj41sYqzvvArnTzghcdS1M++wKdatR\nWY9P1tdn/ZiFUH7HVDjefiPlHCbhEBERUWnz+yEtlp7dOIpKZjF/+w3s770DAJBl6fVOzRpFgWn5\nMtSdfDwAoGHJKqBTIpDQNMBIuODNsmIWGLVtcEFR0PD1j7DOnoXA+Akxc2RU0o1wd0BWVgFSwjpn\nNvwjt449oD14a836xOMom/sNOl5/GzCbUDvxRLScexFw+GFxMVQdfzSsX32Bxt+XQtbWZfcLJCLK\nI6U5WFVMlidPkA3/TVUaGuK2uY8cC/Xa69FvRLDUcv2IQTmIMjlptaJ51kdG20lZWRnc0EXrrLzR\ndSb39kImRQEUBWKTTQodChEREREREeVI81vvo+aIMcZ6xcUXGEk49peeBwAEthsNy48/pDyOCN1D\nafnkq5zEGdOtwOuFR5iNB0l7E9OK5V3O6X1fFREREVEm/H5Icw+q4ACAiNx0ss2OlLLXhg7v2XEz\n1DlrXWlYBzSsi52ksR1VsfPuuz/WXXsrHP37RwZHbAz/uRfET4762VXmfgOvrRyDjj0kZkpgx50B\nRCrhVMx8Kjj/ykugjtwKZXO/gv3Xn7HqoJWwWYOVdQKqDotZgfWrLwAAVeOPQcvsT7P1JRIR5Z1p\nzWoAgDZsePI5oddR5y3XwzN5CgBAHTIUcLmg77ATpMWEtkeegPWVl/JW9MW0eBHMSxZD+P1QR+9g\njIfbaomAP9mu+SUlmNzbe1nMfE9IRERERERUqtSdd40flBLQdZTNuAcA4J58MarOOCXPkXVijVQv\ntv33P9Bb2oFzzilgQKmZf/weaG2Fus9+MePKn392vW+ugiIiIiLKB1XTYTYlv7EgAqFKOD2hRG46\nlU2/21jWNt+iZ8ftIaWhAY4nH4sd1DUIX/CpeWm3FSAq6oqw2eHYZuuuJwIxH0xqJ4xLOMV7/IkA\nAOmIrcwkWpqBJUsAAEpHB7Tffwe22QqipRnOv0+BdsFkY67lpx8z+RKIiIpPuMWUOfllDmX1qrgx\n4fdDq6yCJfRewjd2HHxjE/+9zQXH9Lvh/MfN8RtCbbXsL8yE6/a747fnmYAEUrzfouKW6r0yERER\nERERlZ7y666E0hipBKzutAvULbeC+bdf4+ZKW/7uI3gmngbHs0+h8sJzUQmg4eyzi6/9tZTAKy+j\nZvJZAICmT76CNnIrwO+H8HlhWroY3l12hz3FIfgpnIiIiHo1TZOpJwTUmESGbklQUab55dd7dsxu\naH36hZh1Zd3a+JuNmgZ4Qq0rQu2JqLh4J56a9lyZRjUj35FHB+d2ao+mbrElyl990VgfdkDwiYiy\ne+5E5TtvoObQA2KPE9DSjouIqOioarDdVKoLN9HbXK7g/30+wGaDohTmgo9I0m7KqIQTak9VcLoO\nVsIhIiIiIiIiKk5tDzwK3xZbGetljz0M++uvGev6gA3QcfnVMfuoQ4YCAGQe7yPIyqrYgfBDVUWk\nfkAV6kMJOABQds8dUFb9hbqNB6Nmtx0gpIS+404pj8EkHCIiIurVtHDrpSSyUQlHmkzxY/36J5iZ\nW/5DDoN/192N9apJJxs9XcOErkNZtwYAgjcjqehIW6oc+VhC6zoxRlZVB//vdKa1r1i4IOG49aH7\n046LiKjYCE2DVOJfr5OpPCuYECn8fiCPT3x1Jnw+AIDe+SJUF+9v8k5KtrkkIiIiIiIiKlK+48aj\n5dMvU87xH34kGta2Guv6JpsCAKQ9/evVPaXX1MYOBAJ5O3d32d98HXXbbgnF54VpbfDei7rlyJT7\n8AoKERER9Wqa3kUlHL8f6Gk7qgRP1Wubbd6zY3aTrK5JPUHT4bz6cgCA/cXn8hARZUJaLAjssVfa\n85VVf6UxKfiWXjorYof/Whk/V9PgmDM74WH633Z9xk8eqFrim8TJxomIckZVEybNRvNOPM1Yts35\nAAAg/D7InlbM6wH/vvsDADpuuCVmXN9wcCHCSU7Xi688NBEREREREREZFCHQ+MsirL3rfgR2iFRq\ncV0X1QZbCLQ+9zLWX3tzJCEmj0k4sjY2CUeoxZWEo8su7jeFaEOHp9zOJBwiIiLqtURjI2pvvhZi\n3brkk/x+SEsPb64lehq9QDfsPJPOih879Ag0/Pi/4Iqmwr/fgQAA9+Qp+QyNUnBPvhgA0Ljgz4wq\nCShrVqc9V5aXx6zbZs+KP15Dit8VAEookz9dATX+d0O0tWLgwGrU96+E5bNPMzoeEVG3qWp8i8bO\nU7bZNnZA1yFUFbAWrhJOYM+98dfCv+A95fTYDWYzAsNHQO0/ADLNC0A5JWVaLRKJiIiIiIiIqHBk\n//7wnTABbQ8+BgBQt9wKnov+HjPHf+DB0Kf83WiRLR35a0cVVwmnyNpROW7/h7G8/M05Sefpw4al\nPA6voBAREVGv5bzhalQ/+Qgqrrwk+aSAClh7Vgkn3CqiGAT23heNC/+MGVP3PxAYtGFwRdMhA/7g\n+PY75js8SqLjhlvw+8J1QKdEma74jjomZt1z0iloWNOScK4s6/rYtpdfiBzrlElx20Vra9xYKokq\n3ih//GEsVx97RLAaFRFRrmlal0k46FwpJ/T6LgvYjgoArFUVCceFzQoEAtB0WfAKY0JKVsIhIiIi\nIiIi6gWsFgX68I3Q/O6HaH3xtaTztE03AwAE8ngfoXMlHASKKwmnctodxnLZLjvCF1XVfv1389F+\n9wy4L7oEev8BKY/DJBwiIiLqtZRQBZxU1TtEoOeVcITH06P9s01WVaP9n3dGBkItIqSiAJqGstde\nDs4zdXEzkvLKZk3dJiUR76mTsGDOXGjDhgNA8OmEqEoE7dPuj0xOo1KC87abAACBTTeH685pWLck\ntt2VcHekH5yqwvn4Q3HVevTVsev2554JxpbP/4io70mjHVVnwh9Ksi1wEk4y0mKFubkJ5q++gKZL\naIkq8+UlkNDfVVbCISIiIiIiIip6ptDnd3WHnaAPHJR0XsffL8e6O6bDdevt+QoN0umMWS+qdlSa\nZiy23zENAOA9b7Ixpg8dBu/E09Bx3U1dPqjEOzNERETUe4Xf56S46W7yuKFZelYJJ7qSh3fzkVj/\n/KsoTDOqCN+xx6Pi6suDy0eHqqWYTJBaJHNc22TTQoRGSdi7kYQDIWAaMQII/4jL2Buw/n33N5bV\nHXdCInpNDZTm5pgx7+lnAEJAOGOrLwi3O2U4UspgNQRdh/2Fmai47XoE3nwNLR/+X3gC+p05MWaf\niisvSV2tKsukw4GWl/8Ldedd8nZOIioCabSjiuMNJeHksfd5JhRXOwCg/pjDsGJlEzQNMBUiDyac\n/MNKOERERERERESlo6wM6smnwmLO38UG2bkleBG1oxIdLgCANmgwvKedAQAIbLs9AMB9wZSMjsUk\nHCIiIioBiZNwLF9/CQCwfv9tj47umnYfag4Ilh1cf83NsAzesEfHywZZXYP2ex+AuvUoyKpqAIAI\nBGD74TsAQKBffyCPvVypa+Zu3jm1WhT4DzgQjiceQ2DPfQAAzW++D+8PP8E8KOpnMUmFAmmLv7ms\nD9ggcYy/zEdgr32SB/PAA6i/5RoAgBY6t3n+PGNz+INKNP/ueyY/XpYp6xth/v03mOf/xCQcor5G\n0zKuhKN0BJNcOj+FVSxEU5Ox7HjpBcjKSuCoo/IfSDjZWbASDhEREREREVEpyWcCDgBom2+Bv664\nEf3nvAPL998VVRcC4Qpe2w7ssqsxJuvr0bC2NeNjMQmHiIiIeq8unsi2vv9eVk6jbrOtsWyyWSGK\n5Elw74SJSbfJsrI8RkK5ZDErcN08Fe1jDoPYZ18AgLrLrujYejSqOs31HHQI0NICx9yvjDFtxMYw\ndW4Z1T+ShNP4yyLIZctQf/gBMP/2a9I4zN9+g5pQAg4AmFaFWllF/T44Hn7AWJYmEzquuRGeCy9O\n+2vtKesHs1B10vGw/+dVeM88N2/nJaLCEz4vZFXnv4qp2V5+MbhvEV3wiRFVBrnfpRcAABqOast/\nHKyEQ0RERERERERZYr70EvhVDyzffwdlfSO0rnfJi3ASjuxUPb4710P4GBMRERH1XuE3P8naUel6\n4vEesJfZup5UBGRZeaFDoCwxKQpgs0Hsu1/MG/5ETym4Zr6E9rdmxYy13/cwWo+bEDOmDxhgLMv+\n/SG22BxAbNUFANCjfrdqDjswcYBRMZXfMdVYblzdnNcEHACQ9mD1J8t3c1F+/VV5PTcRFZbi7sj4\nta/8njsAANbZs7qYWRgiwfsb4WqPaZPZpY4OaAsX9SyQcBwKk3CIiIiIiIiIqGcUISLV/VszrzKT\nK9YPZwPITsVkJuEQERFR79VVBnIOknC0YcOzfsycKGclnFKXrFRo50pN+uAhaLxzBpreeDcy1qkd\nlayohDSbIZrWx4z7A2k8h5Bh+5dckvZI662yRx6EridJ0COi0qLrMLndQDcvksjq6iwHlC3xf8P6\njdgQNTtvm2BurPDfv5ox+2CD3UfH/X3PCCvhEBEREREREVEWha/jCr+vwJFEOG+6FgAgvD2vmMwk\nHCIiIur9klXCSXDzqqf0ysxaXRRMOSvhlDqzKflbeWmO6jorBMpsZmg77BQZczhidxACek1tTCUc\nTdcRUCOJbNqQoQCAlXN/Rdud0yLnqorcvPbvtgcAoPXJ5zL6WrJF71cfs+7qCH6Is73yIsxzPihE\nSESUD2538P/dTcKpqMxiMLln/mtlyu3K6lUoO3UClDWrYV7wR3Bs1aruwTyopQAAIABJREFUnzD0\nPksqvIRERERERERERFkQeuCn8uzTCxxIAlloW84rKERERNRryU5PZMtOyTiyLAfVYDonLxSr8p6X\nTKTi1rniTbTmTkkwZpMCWK1oWNeGhnVtCffRa2qhRFVKsL7+GiovvzhSASEQgHfIcNiGD4FA5Nx6\nVRVUTYeq6RCqGpy6487d/bJ6RB++Ucz6xhv3h1i7FpUXnI2aE48tSExElHuiowMAILuZgOo7/Mhs\nhpM1IpxclKGK885ExfvvoPzGayLH8gSPpSdNXE6BlXCIiIiIiIiIKIusX35uLIvmphQzcyQQSLop\nfJ2pJ5iEQ0RERL1X+GaQLqHrEgG1U+WOzbcEAHhOmZS9c/aSp8BzkoBEvYZ60MFY+6/paP/X3Wnv\nI2trobS1AlqwBVXteWeg3yszYfm/TwAAwt0BxRm6wa0Govarg+X5mRDvvw/L3K+Dg+YCtagSAu0T\nTo0ZqjptQmFiIaK8ER0uAIDsZgKqe/LF2QynIKLb7ylrVgcXohJuhNsNv8uNpnUtEI2NGR1bhCsL\n9pL3QERERERERERU3LTBQ4xl89xv8npu2xuvoX7DOlgffyQyGJWU4z/iqB6fw9z1FCIiIqLipmo6\n/D4/TAsXQlu9GpYxBwY3hJIJ1L9t2/NzbDQC5qVLenycfJFlbEfVlwkh0DH+ZCgOS9r7yIpKCCkh\nOlyQUW3XhMsFXdODFRlCVSZkdU1kR01Fv0snxx7MXLiPGe133Quha3C+OBMAYPn+24LFQkT5IcJl\ngkP9xFPxjj0W9tdfix1MY79CaPriO9TssytEiqezwnx+FVi9CtXffG4kyygLFhjby/55K6p/+A4b\nhtabZ30EdfQO6QXCSjhERERERERElEUdV1+PsofuAwBUTzwB/t32yNt1h/CDpFXXXI6GM84GhICy\nPvjAUmCHneA76pgen4NJOERERNR7hd6UOX6ZhyHD6o3hhrWtwW2hJByZhYSA5i+/R3ubGxU9PlJ+\nsBIOmZQMP7RYQgk7ATW2eoKrHdbbbgm2mgr9XPmOOgbr/1iAunvvgGhtjTuUNKef/JNtJpMCE+8T\nE/UtoSQRmUallvb7HolPwinS5BJt083gmXQ2yh55oMu5A/fYHpY/l8WMWf/3S2T5h+9ittUcvB88\nBx0C9xFjoZ8wPvXBw68JRfp9IiIiIiIiIqJexm5H4/yFqDxhLKz/+yWmPVU+lU27E+5LroCybi0A\nIDB6+6wcl0k4REREVHp8PsBuhwgl4WSlfYLJhLKq4q4u4znpFDieewYAIMuZhNPXmTPMRJHhJBxV\nNRLYAKD89ttgWvVX8Jjz54UOboZ29bXQnn0iYRJOISvhKEJARCURhRlfHxGVHKNdUjpJIlYrPKO2\nhWP+T7kNKkvcF1/WZRKOacmiuAScdDhmvwfH7PeAC89G4/yFkAMGJJ5oVMJhOyoiIiIiIiIiyg45\nYABaP/ky5oHQfKnddkuYVq9C+e23wT35YjhmTAMA6P2TXBvJEK+gEBERUe+V5Gab6OgILoQTCUym\nrJzOlI1knhxyTbvfWGY7KjKZMvx5DSXOCDUAuWxZ5DihBBwAUJqbjWUhBKTNBqWtuJJwAEDdbIu4\nMREIxPT2JaISkmmlluqqrucUCVlXh/WXXhO/we8Hvp0LV2sHqsYe3uPzWL/8LEUQrIRDRERERERE\nRDkiRN7/a3typnH6+sH9YH/zdQCAXt8/K19Scd9JIiIiIkolWRKOO5SEo6rB/xc4IaAQ2I6KlExv\nlhrtqAKonHJeWrtIuwPC50tw8sJ+zPCcNxmNd81A46+Lsf7nP+A76GAAgPB6ChoXEeWI8cRUen/3\nRGVl7mLJAfWKK9F0/sUxY2XT70b9YQdgo00HwrR6VY/P4XjwvuQbw9/eIk9GJiIiIiIiIiJKhzp6\nh4Tjsr4+K8fnFRQiIiIqOcLtDi7owUo4MkuVcHoVVsKhDEmjEo4KZfXqhHPULUfGDthtcXOabrk9\n67FlzGSCPOU0yPp66BsMhHSEktLcTMIhKknhJJx0k0ScFbmLJQcUIdB+5XUxY+V3/jNuXuP0h9M6\nnuvmqVg/fwGaPptrjFnm/Rhs55mI0Y6KlXCIiIiIiIiIqHRJmz0rx2ESDhEREfVeXVTCEUY7qj5Y\nCaecSTiUoXDFKI8H1pV/xm1uu/8RtLz835gxaXfEH6amOifh9YgjGKfwuAscCBHlRIZJItLpzGEw\nuWGxpJFQfHh6bak8502GPmADyE4Vgar22ClxH/bQmGQlHCIiIiIiIiIqQYFtt4Nn7DgEdt41K8fj\nFRQiIiLqtWyz3k04blTCUcNJOH2vEg7bUVGmZKgdVcVlUxJu9x1/IuSAAbGDCZ4M0LNUsjObwr8P\nxt8GIiot4cSRNJNw9Ire1Y4KAMwmBb4xh8SNu8+70FiWZeVoe+SJtI/Z+b2CdflSOGbcE1xxuSC/\n/gaQEkKGk5wyj5uIiIiIiIiIqBi5p1wa/P/E09Ay62O4HnkCsFqzcmwm4RAREVHJCVfCgVEJp++9\n5UlUoYQoFevHcwAAlh+/j9sWblUVJ0E7qmJshRZuR8VKOEQlKsMkHPTCRFUhBNqefA4t+xwYM+6+\n/CoAgG6zAyYTfGPHpTyO1j+STCkT/L12/uNmwO9H2c3Xof+RB8L69puZt/siIiIiIiIiIipyHdfe\niIZ1bei4e0bWr3nwCgoRERGVHNERbkelAgBkX2xHZclOxjb1Hd4TJybdFthjr7SPkzRhp4Ck0Y7K\nU+BIiCgnMkzC6bWvkWYzWv41zVj1jjkE0lmBpjmfY91XP6Z1iJY5n0VWLBY0LlgO1yVXwHPK6cZw\n9YF7ofzpYEUd05JFkXZfLIVDRERERERERNSl4rtCTkRERNRDlWefjlZNj6qE0/faUcHCt3mUGd/x\n4+G89YaYMb22Fu0jNkfgsaeS7OSLHwu1tSom4Uo4mqujwJEQUU6EcnDSTcKx/PBd7mLJsfL+dcay\nuvueAABt1DZI552O98Ax0AdsEDMmq2vgueo6AIDjmScBAJbf/heZYLGyEg4RERERERERUQZ4BYWI\niIh6LXXjTZJuqzrvDFjmfh1c6ZNJOMWXCEHFTSZoz9Ly1my0vv4OZFV1wn2Ezxt/HHPx/ezJsmAl\nnKqLzgX8/gJHQ0RZl2ElHNG0PofB5Jgt0gZQljsz2lV04/2QtFkjlXDSbfdFRERERERERNSHMQmH\niIiIeq9wpZskrJ98BKBvtaPynDIJAKCOSJ6gRJRIuFpMNL2qGlZL8o8Mwts7KuGYli0DAJhbmlF+\n5z8LGwwRZV8oCUem244q1KIOANZ9+3NOQsqZqJZ/srw8rV10I5GyG0k0Qsk4yYmIiIiIiIiIqC9j\nEg4RERH1XuEns7ti6jtveVx33YtVKxoBZ2ZPxxNF39gNk3V1MKVqPxKqhKNXVEb2SXCcQvONPdZY\ntnz9ZQEjIaJcEOF+VOnmiEQlHYphw7MeT74kSp5MRB+0IQBA22hEynlt9z0cN2aePw8iVEFMRlXh\nISIiIiIiIiKixPrOHSkiIiIqPV1UwjEUYVJALlls1kKHQCXAdczxXbZyk1VVAAAt+iZ2EbZ/U0fv\ngLUP/BsAENhx5wJHQ0RZl2GlFnWrrXMYTP5oSRKIWt54F4GRka+x9ann0HzGeei46rqUx/MdNz5u\nzPHcM5ALFgCIrSBERERERERERESJMQmHiIiIei0Ruunm3fpvcdt0Z0VkpQiTAoiKUfuUy4xlUxrJ\na+13zUDzkePgunOaMZZuZYZ8U7bcAgAgPO4CR0JEWRdOwkmzFI77gim5iyUPGhetwPJ3P4U2cquE\n2wO77YHAvvsb6/pGI+C5dSrQVRJNVOUzdeAgY7nutBODC0X6952IiIiIiIiIqJgwCYeIiIh6L01D\nYKONsfbtD+E67Ci4rr3R2OQ74ihjObpVDhElFzj8iMhKGm3ctK22RuO9D0HdfkesvfRarL/vUcj+\n/XMYYfcpZaGbx15vYQMhouzLsBIObDa4J52NjrPOzV1MOSQrqyBGjUo9ye+LWbWYM0tIbnr/4+Bh\n9toncl62oyIiIiIiIiIi6lLf6s1AREREJUOXEtB1QFFgtVnQ9thTsJhNkOXlEB9/DBHVokHfcHDh\nAiXqTcqdkWVLem3Nyu3BjxTN505BXZU9F1FlR6iyz/+zd9/xbdT3/8Bfn7vTsLyTOJu9Z8OmbCh7\nlVXGjw2FsmehhUJL+2UTSluggbIbNrTsMsIqq6wQwk6AJJAdJ96WNe7u8/vjtE7DlmxJd2e/no9H\nHrn73J3ubVmWZd1L748odho7IvKOUkM4AHqvn1qhYqoj4O8/VCOiMQCAMXpMSbe7cNZcCENHMPE7\nQHR3p7Ypy5eXWCURERERERER0cjDTjhERETkSaYpAcMAVAWaqqQ+4R355RnouP9hmA0Z3W/8xYUJ\niEY6s7EptRy+6JKijkn+7Glq8Re/HZGcXkvXna2DiMovGcJRRs5bHMpAgaO4FcJBqd1rWsbAN3lS\nqhua6OpMbRJRdhIjIiIiIiIiIhoIO+EQERGRJ8V1E0KagMi94BbwqfC/964DVRF5m2xpQevUW6Fv\nshm0iZNKOlYtYvoqJ0k18aePwRAO0bBjmtb/JXTCGfYSwUPZ1FzSYQGfCiFE6njt++/SGxliJCIi\nIiIiIiIakLvfKSciIiIqIG6YgGFAFvjUe+TQw6tcEdHwYB53AjBlSsnHqYrLL34np6OK8yIy0bAz\niOmohrvwpZcjsv+B6Lrr/pKOE4n7MBVczGCstXY5SiMiIiIiIiIiGtbYCYeIiIg8SddN65Pvqpp3\ne2y/AwEAxugx1SyLyPMURUBB6Rey3T8dlfVcEXj+Geu5YwRNW0M07DGEk8McNx7d9z88+BvQct8u\nCp9zwRAqIiIiIiIiIiIaGRjCISIiIk/STQkY/VxI1zSs+vRryIaG6hZGNEKpLg+1ZHZ1UJYthVni\ndFtuZpoSits7ERFVkuR0VGWXFXJuvfUfQE2NQ8UQEREREREREXkHQzhERETkSWP+cgOUvnDBTjgA\nhtVFdiK3c30IJLOrQzzuXB0VoE67Hb5wD5SWFshAANFjjnO6JKKqajramoJSMoRTPlnBShEMQjpU\nChERERERERGRlzCEQ0RERN4TjWLc3/8MADDXXMvhYojIEzJCOKK318FCykudOwej/ni5bayVIRwa\nqRjCqRg14IfudBFERERERERERB7g7p7xRERERPno6ctAsrnZwUKIyDMyumaJnh4HCymvpoP3cboE\nIhdhCKecottsl1pWJPvgEBEREREREREVgyEcIiIi8hxhZIRwakIOVkJEniEEYptubi32dDtcTPko\nbW1Ol0CUXzRa/XOyE05Zdb0wI7VsTpjgYCVERERERERERN7BEA4RERF5T2YnHJ/PwUKIyEv6jjoW\nwPAK4fQd+HMAgMyYbguG4VA1RJbQTdehZbUWqN/Ore6JGcIpu+Vvf4TOv9wOfcqWTpdCRERERERE\nROQJDOEQERGR5yirVqWWRbjXwUqIyFPWXBMAoM2d42wdZSQjVrcRY73104PxuEPVEFlqb7oOAOB/\n7ZWqnlf9dvj8bLuFssEGiP2/450ug4iIiIiIiIjIMxjCISIiIs+pvf7q1LKIODDdBRF5krHOugAA\nZfEihyspD/9rryD06ksAALNlXGpc6AzhkEsYZlVPV/PIg1U9HxERERERERERUTaGcIiIiMhzlKVL\nUsvshENExTIbGgEAoqenpOOiMXdO79R4zBGp5fhOO6c3sBMOuYVZ3RAOERERERERERGR0xjCISIi\nIu+JxVKL0f0OdLAQIvIUnwYAELpe9CH1552JUQf8rFIVlUxKmXc8fO6F6RXdnaEhGiEyf74kQzhE\nRERERERERDSyMIRDRERE3qOmX8LEDvq5g4UQkadoVggHxsAhnL7uMAAg+OhDCM3+pJJVlUTPmN7H\nrAkBAKTfD6gq+g61OuNwOipyUuDfT6RXCoTGiIiIiIiIiIiIhiuGcIiIiMhzYrvvCQDovehShysh\nIi+RaiKE0990TbEYak8/BauvMx7Nu2yXcXB5wgTGEKfn0Q0JM1GLbGqG0dSMVd/MBwAIn8/aidNR\nkYOCGSEcwemoiIiIiIiIiIhohGEIh4iIiLxHsV7CxHfaxeFCiMhTkp1w+pmOqu7K3yL09JPW7t98\nnRoXnR1DPr1oWwX52uvFHxCJwPz3v20BIFNKhCOJ+sO9MMeNg6yrBwDIRAiHnXCo2jI7NMlgTXqD\nwanRiIiIiIiIiIhoZGEIh4iIiLzHTFzUS15QJyIqRhEhnJr77s4/fvedQz5906EHYsKxh0H77NOi\n9q+/4CyMO+MkBB+eDsTjqDn5eKy+7kSMOeVYAIDa2WEPPGjJTjgDT7dFzonGhl8wJZLxNUm/L7Us\nIpGq1mG2jK3q+YiIiIiIiIiIiLIxhENERESeI3TrYp9UVIcrISJPURRIISD7CeHoa6yZd1z09Q35\n9NrXXwIA1Llzito/8Pyz1v7fzoX5zLOoe+EZKLEo6l97CdqHHwAA/LNnpfaXviKm2yLHReLDL4Rj\nCxb5A+nlvnBV6+i+8Zaqno+IiIiIiIiIiCgbQzhERETkPcnpLVS+lCGi0ggpEfzgf/k3SgnthwUA\ngPa//N2+ye9PLZsZ00MNqobe3oLb+qIZAaFEZxvtm68w7qyTbfsF//147sEap6PyAl03B97JY4zW\nFTASv5szf1bKEV4rhWxsrOr5iIiIiIiIiIiIsvHKFREREXmPwemoiKgCYrHUornrbrZN+kYbp5aH\nPJ2Qkf940dqK+rNOg/7pZwAAGbDCDP7XX83ZV9aEcm/Al5gGqJ9OP+Q8Y4ghLrfxv/QfbLLDpvA/\ncB8AwNQypqMKV7cTDhERERERERERkdMYwiEiIiLvMawLzJyOiogGy/fGa/DdeD10w+pK0hfVIaIR\nAEB07/0gGxps+4uMYEt8qJ1MCoQwQrf/Fc3P/QsT9t4JAKC0txe+iURAp/eSy9JjiemoBEM4rmaa\nwyuEE3z4nwCA2vvvBgCI5ctS22Q/XZ/6E9cNyGEWViIiIiIiIiIiopGBHx8nIiIizxHshENEQ9R0\n1KEAgJ4jjkZAxjHm+P8H44STAABKextkbZ39gIwuOcngzmBJM//xob//rejbUFauAgCYEyamB5Md\nSOJx+N5/D/omm0LWN+Q5mpw03EI4iFvTnwW++QqQEiIjPFbz8n/QM5ib1E2YEgj4SgzbCjGIsxER\nEREREREREZUPO+EQERGR9+iJEI7KTjhENDRNf7wCo366FULfzUH9762uMr6PPgAUBV1/vyu1n0gE\nDQCg4dHp0N55q+C0UgNp+N2lUL/71j6YNW2P/8H7+70N39tvAgCk358ak4npqHz/exdNB++LpoP3\nG1R9VFnmMOvwIuIZnZc+eB/qoh8hhxKG0XWMOvFohK68bOB9c4phCIeIiIiIiIiIiJzFEA4RERF5\nj5kM4fClDBGVxhg7zrZe9+KzOfvIUAgAEN9mu/RgMoRjGJhwxcVoPuxAtExohujpLuq8osM+tVTT\nPrunt3V1Qs6ebdveeNF5/d6eNn+eVWtmxx7V6g6mfjfX2ufLz4uqjapHnfMN6t58FXF9cAEu1wiH\nEX/nPWtqNT0dUBtzxEHwL1oIkRk0KjF0pM2aifo3ZmDUvXeUq1oiIiIiIiIiIqKq4ZUrIiIi8p5E\n9wmpcjoqIipN9133D7jPyjk/AADMNdZEz8GHAQBE3JqOSoR7bfuq8+cBsRjUl18EIhGEIzryUVpb\n7evdXanlUdtvibE/36foryGTrEuHcGRjIwBA+/bbQruTw0btvC3WO/sERLoGM0mTc7JDQ7U3XYeJ\nh+2LwJOPQejpx7zImLYtRc//M1GIMndOeqXUrkHshENERERERERERA5jCIeIiIg8J3XBj9NREVGJ\n4j/dceCdAoHUYuTwI62FmNXtQ2RNGyVVDY1HHYpRxx+F0K23YPJma8P/3NM5N9lfxxxlZTqgo2+0\nSb+lRffa137++vrUsjFpEgB2wPGCiYfsC5im02UURc6bh/hnX9jG/M8/Y/3/8ouQ3fkf27E99rQW\nMqZyK0bjheeklkV7W0nHEhEREREREREROY0fHyciIiLvSXTCgcaXMkRUOrOmBkpfn22s6677YXT3\nQG68sW1crbECOSI55U6vvROO//VX4X/3bQBWdxAAaDz1BLQuabM/R2V1AzGaR+WtrfuWW9G87x55\nt/UeczzCt9yKlvFN6a9l9Jj08sTJeY8j9wl+8yV6Fy+CudrqTpfSv3gcY7efAgCpx3TNXdOg/bAA\nABB89qmCh0qfD4D1s1NiP5sUZflyGKNGD/JoIiIiIiIiIiKi6mMnHCIiIvKe5HRUCjvhENEg5OlA\nYoyfCP24E2BsubVtXPj81kIsOR2VvRNO3Z+uzHsK38cf2m/HsE/no3R1AlJCN9K19F50KfSs82cK\nXz8VUOx/wpnjJ6SWZSiUe1CJUwERZcqcfk2b+TF8776Nut/9pqhjlWXLrOO+KK0zU3z1NdPnnPtN\nSceaLWNL2p+IiIiIiIiIiKjcGMIhIiIiz0ldzOZ0VEQ0CEo0mjMmx+TvtiETIRwjcYz/kQeLOofv\nsUcg3ns3PZAIw6w44wL07bEnhGGg5u47MGGC1dXGaBmL8G+vyLkdY+Kk9EowaI1NXg0AsHRxm23q\nLPj9Ocf7X3mpqHrJAVnBLFeKpaeSaj5obzQdekDe3cInnZoz5ps9CwBQd/mlJZ3S9+OC1LKyYH5R\nx5hNiZ+jddcr6VxERERERERERETlxhAOEREReU9qOiqGcIioPMxCU974rSl1Gm77C7BoIerumlbU\n7dU+9ADGHLJfeiARwgk21kIkwjS2jiIZHW56TjgltWysvkZ6HyEAAG3vzcSKL7+H5rNPySc1X04d\ngaeeLKpeqj6RJwzmNiIaGXCf2DbbIXbQIbYxfYMNU8u2x/BApH3iKmXVqqIOM8eOg15gijciIiIi\nIiIiIqJq0gbehYiIiMhljMT0KuyEQ0RlIhub8o9nBFtG/2yngscbkyZDXbyo4HaReN5SfH4E//N8\nnhOlwweZz2zGuusB779n3zcYTAV5bPy5IRyRZ+otcgcRi6LmjtsgOjsR/s3vnC4nLxHrPyi0cu4P\nkLV1OVO8hS+8BJASDWf+EvqGGxV/wkQwyRg9BuqqlVBWthZ3nJSpkBoREREREREREZGT2AmHiIiI\nvCfRCUeqzBMT0eB13XlvekUp8KdRxhRPSnt7allfa+3UcnTfA2wBnNjOu+bejp7s4JX/ecucPDm1\nLLo60uMldBHJ1wknOxxBLhKJoO73l6P25hucrqSwSG4Ix6yrh9nYiPbX3oZsagZ8Pvu0aACih/0C\nxnrrAwCUrk7U7bcn6g/Zf8DTJTvvxDfexDr2qy+Lr5UhHCIiIiIiIiIicgGGcIiIiMhzhM5OOEQ0\ndPHtd0D7q29hxavvFNxH+vIEWwDIMS2pZX3KFrZtPddNTS2ryRBB8nlLU9H+4ms5t9d34qmpZaWr\ny6pvyhYQieWiZASG0oXK3DFyBRGLOV3CgLI74Sxb1oFV8xZj1bcLoW/2k36PlTUhAEDNvXehZuaH\nCL73DpTly/o/YSL0IxPTw/m/+iI9BWW/J+PjnIiIiIiIiIiI3IEfHyciIiLvSXZ2YAiHiIbAbGyC\nOWEi+u2fUSCEo2+2OXwffQAACJ9/MWqvvzq1zVht9dTyqN1+itYVXalp9KSqQd9qm9T2vpNORdcl\nl0MZMyZ944lAgTl6TGnPc6oKGQgApgkRjye+yCICDOSI4H13p5brLj6/qp1c9M1/gsgJJw+8Y1Yn\nHLVQx6g8ZCiUM6bNnoXY3vsVPEaEe62FjOnWmnfeFu3vzRz4hOyEQ0RERERERERELlBUCGf27NmY\nOnUqpk+fnrOtr68PJ598Mq655hqss846ME0TV111FebMmQO/34+rr74aa6xRfAt1IiIiogElPxXP\nEA4RDULPFX8E3nsXqKkZcF/py9NdBkDvry9Dzx57Qw34AVVF3/Eno2b6fdbGPLdrRhNdTxKhnsXf\nLoL8eCYCu+0CJeu5rOfaGxG6/FL0Xn8zgo/k/g1WkBBY+d/3YSoqxm27OQDA2GCj4o+nqgo++1Rq\nOfXYqRIpBCLHHFcwZJaU2Qmn+6a/9Ltvx1MvoOnQA9B9w5+tc+T5OQhdeXm/IRx10UIAgDlpUmpM\n++5biO4uyPqGwidnJxwiIiIiIiIiInKJAUM4d911F5599lnU5HkD7fPPP8cf/vAHLF++PDX26quv\nIhaL4bHHHsOnn36K66+/HtOmTStv1URERDSiCV2HVBR+6p2IBqXvvAthnnsBlGKeQ/wFpqNqagL2\n3gfJPjPxnXa2BSnMunooPd3p9ViiM41m/Qnmb2wAfrZ73ts21lkP3Y8lAhpKiWHDtdeBAqDr9n+g\n4ezTYUxerbTjyRHtz8+AbG6uyrnqfn0+/P97F4jFBg7hRCMAgM4r/ojYiaf0u298x52xcOEqBAPW\nbSano8rkm/89tI8/hL71tvnP1xe2jq2zB25ER0f/IRyArwmIiIiIiIiIiMgVBgzhrL766rj11ltx\n6aWX5myLxWK4/fbbbdtmzpyJnXfeGQAwZcoUfPHFF2Usl4iIiAhWJxyNs2oS0eAVFcBB/iABgJxO\nXPGttoFZU4O+8y8GAIjeHtt20d1l3V6JHbwiRxyF2qnXo/svt5d0HPyJDj66XtpxVHXxDTeGvu12\nVTufbLLCPiIeg0Rt/zsnOjipNcH+90tIBnCslfQxfSeeipoH7rFua9HCgiEcGOnpJruvvRH1l1vv\nNdTcchN6/3xr4ROzEw4REREREREREbnEgFev9tlnHyxatCjvtq222ipnrKenB3V1dal1VVWh6zq0\nAS6UNTeHoGnemVKipaXe6RKIiIiqxnW/94SEVFX31UVEw1A9wu8+Uf9HAAAgAElEQVS8j9BO29tG\nW8ZmdeVo2RRoa0NtIIBaIWyhgJaWeuD3vwUANIyqB0p57mqZgh+WdGCNCY0o6RlvlLV3fciH+mHw\nXDmcn+99SpW/vnorWDamITDwYzFghdXqxjShbgg11px4LJAI4TR0tBY+b50VHqtrDAHnn49oRzsC\nN16H0IMPIDT9/oK3L1UFUlWG9eOEiEYePqcREZEX8fcXERFRESGcUtXV1aG3tze1bprmgAEcAGhv\nD5e7lIppaalHa2v3wDsSERENA278vdcUjUNVFKx0WV1ENDz1rbE+Vs8aK/i82G1NO1V3wimo+ee9\nqX1bEpu7wnFES3zu6umJlvw87O+NoxFAT0cv+jz+XOnG30OD1ZJnLF5Ti44qfn31pkAQgLH1Noht\ntAl6Hnq84L6BlZ1oANAVNUt+3ALpr7djRTvEP+5D4+knI/zdfPQWuK1AWzcaAHT36Yi0dsO88DcY\nd+N1AIDWFV0Fp5xq1g3AlFg1TB4nRETD6XcfERGNHPz9RUREI0l/wVOl3Cfbcsst8dZbbwEAPv30\nU6y//vrlPgURERGNcMIwIFVOR0VE1aEq6Qv/kQMORuuMtwY8pue6mwAA8bXXAeLx1Phgnrv82iD+\nbFMTx3A6KlcxGhoRXWc9GIkpoQDkTG1WadpXX1qnXbQQNTNegrLwR/ifexq+12fk7CsiEWshWNx0\nVIXoP9kS+vY7AACU5csL72gY1v+J+0RRMx770Wj/JylyijkiIiIiIiIiIqJKKvkd4Oeeew7hcBhH\nHXVU3u177bUX3n33XRx99NGQUuLaa68dXGXRKER3N+SYMYM7noiIiIYvQ6/6RUsiGrkURcCsrYPS\n24PY3vsCP5ky8EE+H/QJEwHdgAj32sZLpamlh3BSYR/TKPlYqiDDAAJBKN1dqaG+Y0+oagnaV1/Y\n1pv23QNq6woAQNu7H8NYL/1BGhGzgi/SHxjUuVqXdwKmCagqpK5DCgGxfFnhA7JCOAAQ3Xd/BF76\nD0Q0AlkoDJQx/RsREREREREREZGTigrhTJ48GY8/brWoPuigg3K2T58+PbWsKAr+9Kc/DbmwxuOO\nhP+/b2Dl1/MhR48e8u0RERHRMGIYQBHTXRIRlYOmKuh49iX4HrgP0cOPLPo4oWmQhg7R15d5YyWf\nP7MTT/EHWecR7ITjKsIwAE1F9x+vRcMVv0HHA48gvs9+Va2hfcZ/0bzXrqn1ZAAHAHxvvWkP4XR2\nAgBkcHAhHAiRDtRoGmSoFqKnp/D+eUI4MmAFb7SvvkT8pzv2fy4iIiIiIiIiIiKHlX06qnLx//cN\nAICydInDlRAREZHbCF2HVFz7MoaIhiFjs80RmXoL4PcXfYzUNCsEEw6nxwYxHZVvMNNRJYOKDOG4\nQzyOaHfYCpmoGqKnnYHWha2I73cAUOXfZ/pPtkB0r33zbhPxmG1dXTAfAGCOn1iWc8tQCCLj50E3\nTPv5EyEcmRHC8b3/HgCg6ef7QZv5EdDbixzshENERERERERERC7h+qtXmW/QEREREQFIXMTkdFRE\n5G7q8mXQli+z/00ziC5eg+mEw+mo3GXUtlMwacPVIEwDQlOtri2BQXaXKYOu6Y8ifMY5uRticduq\niEQAAObYceU5cW0tRG+iE45pou78s+H795Pp7Xk64ZhrrJlabt7vZ6i94ZrUeuim61Bz841WBoed\ncIiIiIiIiIiIyAVcE8IRPd15x5WOtipXQkRERK5nmpyOiohcLxm+afx5eroh6S89eCEGEy5QrT/1\nhM4QjhuoixdCxOMQhmHr8uIYRUHvFVdh5W13oe3N/6HjsacA5HbCCTz/TGKh+A5Q/TIMaMuXAQCC\n9/4D9Y8/hKYzTrFtB2AL4XTdea/tJvwzXkot1950HepuuBpS2jvqEBEREREREREROcU1IZwxa09C\n6NKLIFassLWSFm0M4RANN6Zp/YwbpgmTreOJaDB0HVJxwUVMIqIiqN1d6ZVBdLUZlGRQ0WAIx3GJ\nbjJJSjjPdEpO8PshjzwKxsabAMGgNZYVwkkaTHgsH3XhjwAA3+szEPjP87k7JDo3yYygrTlpsv02\nFi1E4IF7bGP+hT9CshMOERERERERERG5gGtCOABQe//dGLPputBmzUyNqcuWOlgREVVCMngT103E\n4/zUKhENAqejIiKvqlZQIBFikLpenfNRQer8ebZ132ezHaqkMOnzAQBE5nRUmWF5f5k64SSEbr4J\n/nfeyhlPnV/zFTxWRKNouORC+N57J2sDQzhEREREREREROQ8V4Vwkpr33SO1rCyY72AlRFQJpikB\nKTH6xGNQe+stTpdDRF4Ui0GW+YIgEVG5rfz829zBKgUFkt3CzMxQBTlC6exwuoSBJX+ndnWmx6LR\n9HKZH7f+j963D0gJ/5/+AP/LL1qrdXW2zeFzL8y5jboLzylrTUREREREREREROXgyhBOJmXxIqdL\nIKIyM6UEensReu1lNN/wJ6fLcZ6UUGfNBGL52/8TUS4RjaanziAicik5blzOmDk2d6wiEp1wah+Z\nXp3zUUGis9O2Hj71Vw5VUpix1toAAHXBgtSYiPSV/TwdTz6bd7z+rNPQeNst8L/3NoDcEE7vb36H\nJfc/ZhsTfdn1sRMOERERERERERE5zzUhnOje++YdV+bPR+jGa4He3ipXRESVYpqA0Pmp7CT/c09j\n1D67o+63FztdCpE3SAklGoEMBJyuhIioJF033gJz8mrVOVliyj4lGoFYtao656S8RFYnHH2jjR2q\npDBZV2/9n9H9RkQiAIDIIYeX7Tz6T6bkHQ/+63F7PaFa+w5+P/Sf7WUb4tTVRERERERERETkRq4J\n4XRNfww9V12TM+77cQFqp16P0F9vdqAqIqoEU0qAUyOk+D76EAAQePrfDldC5BHJrlHshENEHhDN\nCA7oO+5ctfPKRCccAIBhVO28lEu2t9vWheKaP8PThIAMBCAjVghHSgkkOs3IUKhsp5GNTYgcdsTA\n+/l8OWOa6sL7jYiIiIiIiIiIKIt73sUSAn1nnYu+407Mu1nW1uYdJyLvkVICcU69lCKs1vnCNB0u\nhMgblPY2AIAMMIRDRO4XzegiYgvGVJrfn1oUkq8xKsEwTUDKgUNOWdNRKSuWV7CqwRPRKGpmzwSk\nhG7I9HRPZQ69xvbcZ+CdMh6/SZoqsOqdj9D2/id5D2GnTSIiIiIiIiIicgP3hHASem76S95x2TK2\nypUQlV9c5wUQAGi65QaM2cJ9bfiJyBuUH38EAJhrre1wJURERUhMCwUAyNPdo1KkLyPEEGc4oRJM\nE2g46Vi0TGi2VvKREo1Tr7OP6XrlixuKWAxx3YToCwMAZLCmrDdvTpg44D62x2+CEALm+hvAWHvd\nvMcIt9+vREREREREREQ0IrguhJP5JnXPlX9Kj7OFOg0DMZ2PYwAY9debnC7BXRKdcCCls3VQRcW6\neyF6up0uY1gQ0QgAdskjIo/IDGdUMYQDf/pcNfffU73zjiCmlAi8+DwAwFjwQ/6denurWFGZ6Dp0\nw4Q6fx4AwCzzB2Li2++A8Nnno+31dwvv5B/EzwrDZkRERERERERE5ALuC+Fk6DvrXHTdea+1wk+1\nkcdpn8/GuF8cBGXJYqdLcZ+RHrJLTkeV+LQxDU8te++CMWtPYtiqDBqPOhQAICIRhyshIipCRghH\nqtWbjiqzk0job3+u2nlHEtNM/04fv/1P4Hv91Zx9hJnnda5LXwvEN58CABCxKCYdsDsazjoNAGBO\nmFDeE6kqev/wfzA23QyRw47Iu0u+TjhERERERERERERe4OoQDlQVUku8UW0whEPe1nDqCaj54D2E\nbrjG6VLcJxZzugLHKEsWI/T3vzldBlVaNAr/998CAERnh8PFeF9yugll2VKHKyEiKoKWEbzR1ML7\nlVs1u+4MknRpGKVYZlb9TUcflruTh8Lm5mqrAwDEDz8g+NXnqXGpVS481n3HvVj45YLcDf7+Qzid\nDz9RmYKIiIiIiIiIiIiGyJUhHH2jjaGPT8wTn/i0qPDQm5dEeSUew4JdnXKI+MgN4TTvsaPTJVAV\niM7O1LJv5kcOVkJERNUmGxvTy03N1TtxBYMT5RLTzYF3cjGzmKlmDetrjGy3Q4WrGbpk2Cb64yL7\nBq2yga5gyyj0br+TfXCAEFlsz32w8pv56Lj+ZkT3OzAx6u1QFxERERERERERDQ+uDOG0v/Ee2md9\naa2oiU+LFvMGJ5GbJaYccmv7eUdFR24IR2lrc7oEqgKR0c2t9ne/cbCSYSb5vEpE5GKx3fdE+LAj\n0fHEM9U9scufI5WlSxCcfr9tui5PkRIt555mG4puvW3ufskPk4wbV4WihigRwpn4y2OzxivfwWnF\ng0+i95zz0wNFPH7lqNGIn3Ja6j0Ddz/iiYiIiIiIiIhopHDnxyOVjGxQ8g0/dsIhz2MIBwAQjeYM\nqT/Mh97S4kAxDhvpj4URxMyYci2+3U8drISIiKpO09B7x92OnDp84qkIPXAPzMYmR87fn8ZD9oc2\nfx46J05AbN/9nS6nZOp336L+BXuwSv3xB+vvVlUFpETD/nsiuv9B1sbMIItbXwPK/IEoWeFOOAAQ\nCAUgRw/t7wHJGA4REREREREREbmAKzvhZJJK4lNtBqfwIY9Lvifs1jfdq0RZtTJnrO6i8xyoxHnB\nB+51ugSqEvlhegoqEY04WMnwYqy/gdMlEBG5Wl+is4gbQy7a/HkAAGVlq8OVDFI8njOkrViO2Pfz\nAQCBxx9BYOZHaPi/31sbFRXS5d2Jgv9+Mu+40raq4uf2aSr8b785uIMT96vgdFREREREREREROQC\nrg/hJFtiQ2cIh7xNJjs8FfiE6YgRyQ0giJ5uBwpxXuiGa5wugapALF+OsWefmh7o7HKumGFCX3c9\nAED49LMcroSIyOV8iQ4meQIjbiH9fqdLGJyMQE332ecjfPqZAICxvzgI/pf+A5Hd/VHNnNLJW2GR\nnK+lUufp6RnUcW4PNxERERERERER0cji+hCOrK0FMPg35IhcQ3A6KgAQZp4Q0gi9T8zmZqdLoCoI\nPv6IbV39/juHKhk+zAmTrAVf5afHICLyMumzAi7CbSGcjHpkMOhgIYMn4umpJkVTE2TI+rvVt3Qx\nGk84GuqXn9v2l6pqC+64UficC/KOV+t71HfCyVU5DxERERERERERUSW5PoRjNo8CACjtbQ5XQjRE\nLn/TvWryhHC0xYscKMR5vu++dboEqgJzwgTbeva0G+YIDaENSbKjmK2rABER5fAluoq6LIQjIn3p\nFc2jgcq+dHfHwIyXYY4da9scuu9u+/6qll526e/+6H4H5Iy1n3UBogcfWp3zH/YLAICReA+gaPw7\ni4iIiIiIiIiIXEQbeBdnJT9RiMw3amlIdMOEpro+fzX8pDrhOFuG4/J1wgEgVqyAzLp4MawZRv5x\n0wQU/nwOJ6LbPt2a2tNtXQxNdHHRdRN+H8MkJUn+/PCiGxFRv2Qy4KK7K4SDcMbfdoVeE7mciKZD\nOOq87xDbY6/+D1AV1//e0rfZDotnvINJe+0EAOi8ZzriBx4MUa26NQ2t734MtdS/Vd19txIRERER\nERER0Qjj/iu9mpUTEpFI0Z8YZFeB/vVFdadLGNEM3UBczx9EGREKhXDcdnGowkR3FwAgutse9g3R\nqAPVUCVlTqdojkp0d8vohqMbI/j5YJCEaUIK4fqLmUREjvMnpqOKuet1Vu0tN6aWM6d18pLMEE73\nX26HufY6iBx6ROEDMru3ufjPVd/mm6VXQjXVC+Akrbc+jLXXre45iYiIiIiIiIiIysj9IZzEp+AC\nL/0HDaccDwDwPfUkRGtr3t21D96H/M1voX70IQBe3MwWfOBejD35mIJBCKocEbMuMNS+8AwaLjrH\n4WqGRlm+DMasWYM7OOPTziuu+L/0+Ai7mO57520AgP/DD2zjIsYQznATfPRBAEDHMy9CabOmVhz9\nkw1Rc+ftAAD5ww9AOOxYfZ5kmpyKioioGD57Jxzt00+gzp3jYEGWmnvvSq/EvBnCQST9ms2YvDoA\noGfqX2CMT09D2bqiCzIQAJDRlcjlMkM3Zn2jg5WUINVx1MXpJiIiIiIiIiIiGjHcH8LR0jNmBV54\nFr7XX0XTr05B0+EH5t29+aC9Mf7+aRh1wJ4AAH3OXKC3tyqlekH9JReg7o0ZUJYtdbqUITOl9FbX\no0j607J1iYvyXjV6s/Uxfp9drSl1SiRkOgCm7L1PeoNHpyIYLNFnhS4iRxwFY/U10xsiDOEMN9q3\ncwEAZmMTogf+PDVed+VlMFa1Yc2dt0Tz/ns6VZ7jBvU8bhqcto2IqBhCQKoqRDwO9PWh8aB9MWqn\nbVwVVhC6N7t0iszpkhMdh2R9A3pu/qt9v0SXQ3PsuKrVNlQdT72A3lNPh771Nk6XQkRERERERERE\n5Dmuv4IlFfsn3dUliwEA2jdfD9jNRZv5EVbbbVvUXXVFzjbf6zPgf+LR8hXqNV7vOmIYqDvqcPhu\nusHpSopme6N+mBjU15T4uW0//lTIDTdMj3v0AkyxsrtyiUQ4ML7Djmh/YUZqPPDqy1Wti6rH2Ghj\nRPe3B0jHb7QmAED76gsHKnJeze1/Q/3xR5d+oGnmvD4gIqL8hGHA99EH8L/7FpTEFErKwh8drSmW\nOd2QRzvhmL3pLnYy44MjsV12z7//+PGe+RssvuPOCF831TuBV4/cr0RERERERERENDK4/121jDc0\nAdjeYFOWL0st117zR7SMbbAf+sXnAICaB+5JjfVFdWifz0bT0Yej8ezTrTd9R+DUTNLjX3PNtNtQ\n++arGDX1WohVq5wupyhKV5fTJZSFrWtFX6TwjgVvwHrsqXW1AIDY7j8DAAhjeIdwzLlzbUEjkXg8\nyIYGyHHpT0bXX2ifqsxT3Z4oLzNUi/DGmwFCIHr4kei++W9Ol+QadX+8AqFXXkTNXdNyN0oJo0CH\nLN+sT6AMw2AjEVElhf7659SyOn+eIzXU/v5y1F5wNpRVK1NjIu7NEI5sbwcAdB1yJMw110pvCATQ\nfdmV6Jhq/31vZOwj+PquzBjCISIiIiIiIiIi9/BcCEedOye9KdE5QFm8CKG/3pxzqO+5Z2zroqcb\nY/bbHc0/2zk1Fnjm3xi97mTUXXC2Z8Ic5RCPezvwoH3zVXp59iwHKxka5ccfoHzxmdNllMQ00xcN\nklMqlSRxUV2oVhcLY401rXF9+E5HFXjkQUzaddt0wCYeRzAxJZnZ0GT9X1efc5zo7ICx2PtTx41k\nUkqIaAQIBq0BIRA5/iT0HXeis4W5TOjG63LGGo4+DI2HHJC78zDvmkVEVCmiuzu93NNT9fPrPb0I\n3XEbQg9Ph9bZAbPJeg0Ej/5dItraAACRk3+Zsy1y4SWIn3ASAKDtjfew7PfXQd96W3ZsISIiIiIi\nIiIiGgG0gXdxWFYL7NC0W1PLgWeegvnSywjG8n8aPvjWG7b1uovPQ/CL2baxhrNPBwDUPDwd6pxv\n0P7Cq1CU4f/mqPjsM2DNNZ0uY9AyW+g3HX0YWle4v8uMMXoM1IxP/cIwMHrrzQDAE/UnGbYQzmCm\no7KOF6r1s51q3x+PD7k2t2o4/ywAQPCxh9F96x2omXYbtO++BQDIxkYAgNnSAqUnfXEsFjcwbv89\noc6fh5ULWwGVU+94UeAf0yAMA2ooZBs3J0x0qCJ3Ujo7csYCb7wGAMi8TKx+8TlG7bFjlaoiIhpe\nMqc+DP77CWhzv6neyaVE7fVX24b0jTaB/3/verYTjtJuhXC0cWPQX5Tc2GRT9K29AeoyAzjshFNe\nDDcREREREREREZGLuD+E04/gow8hWML+srau3+3+mR8h9OsLELlhKuDzDa04lxv/y+PQuqQtd7ov\nj1A6O4d0vCkllCq/WSt6emCGQjBCtfCtbLV3c5DSM28eD7UTjpDWdFTJTjjQrJ+14T4dVSbfxx+m\nlmVDYhq9YE1qTFm+DEZHD7Rv5wKw7meZp1MOuV/jlb+1FkI1tnF9iy0dqMajwmGYNTVQhLAFcOIb\nbOhgUURE3hZ47mkEnnva0RrMsYnpOKNRR+sYrLrnnwIAmE3NA+4b8Fnhc7NlLNQliyFrayta24jj\nkb+jiIiIiIiIiIhoZPBmAmMA8e1+Ct8H/8vdoA785dY/eB/kT3+K6C+OrkBl7qIsWwpz8mpOlzEo\n+uY/SX2aN7b9Dtab94FA0cfLN/8LsdmmkGPGVKpEu3gcSjSC8E93hhkMwvfGDHvnl1ispPqdZBhm\nanlQnXAS01Glulwlg2AOTTEjpYSo9hv3evp7b9ZbIRyZEfwbvdn6GJ25f18EYAjH2wL2yGhsz33Q\ncf/DaDrp/6UHPRTGK4tY4c4HZsb0kLVTr0frpVfC77N3gzLXWKtipRERDWcdV/4fsNlmVTtf8LGH\nEfzX4znj5uprAABE19DC9Y4Ih6GErTC6bGwacHefZv0O63z8aai3/Q2x086saHlERERERERERETk\nnGEVwlk5ZwGUb76G2tGBxuwQTiQCJXMqoH6Ifi4MDiciXHoXE9cw0k3f/e+/h/rzzkD3nfcVdaj6\n1ZdoOepgAEDnI09WpLxsoisx3dSoZihxK2wiMoIYIhqB9EgIp/Hm61LLg+mEAzMR4lGypqPS+2vk\nXxmmlIjrJgK+yk31lO/CkohlBLDqEh26tMI1iEgfOGmBt8R1Ez4tPZ2iDOb2bYvvf6B9IBoFEvs5\n0a2r2pS2VXnHA48/goZzfpUeaFuF4EsvwJTW/SgiEQDw7PQlREROi590MpAIAVeDb+ZHeceNtdYG\nAMi2tqrVUi7qsiUZK8W/jjTW3wDt192Chlp/BaoawYb5ayYiIiIiIiIiIvKWYRXCkc2jYPx0Ryj/\nezdnmzbnayjffZtaN0ePhpL4pH3HE88g+I+/IzjjZet2PBKGGKq+9k549u3frKmLgk/9q/gQzvff\npZYbjzmirGUNaLXV4Xv/PQBA8K470uN9EaChsbq1DNKoW29Or4QH0QknGcJJXrBI/O/EdFTG8hWo\n+9ufYW63PYyfH1qRc4iVWeG/eBxi0cKc/WK77QHfJzPz38ZgOg6RY9TPP4Py6gyYF1yUGpPBmn6O\nsIhoJBXWicYM1ASG1a/oHNrns3PGRFcnfC++YBsLPTwdoYenAwD6Tj0dNff8w9rgQHCPiGhYqGIA\nB4C9+2MGY02ro1ntv59AeNrd3gpSJEL10bXWLf1YD32ZnuGlxw4REREREREREQ17nrjC13fwoah5\n9qnUenTvfRF45SXbPp0PP5FaNse05NyGFAKiswPxCZMQvvZGxHfeBaM32wCiL4z4Trsg+OhD6Z0d\nmhan2mR3j9MlDN4QLr6G/v43AEB8yhaIHnhIuSoaUBQK5FFHY8wdtwEA6m7K6CjjlU4nWV2ihtIJ\nRyano0q8ae5/9inEd9hpSOWVauLm61kLd09Da6VCONGobV395mv45llBsLY33kuNhy/+LWpu/SuU\nPN091O+/g7H+BhWpj8pv1M+sx3HHNtukxmRw4HCn6OmBbGxCX1SH8c0cmGYcyhZTKlan0xqPPdI+\nEIthzLr9T5GozPs+vaLnv6hLRETuoi78Me945t9s/hkvIbb3ftUqaegSfy/Gdt295EMZF6kgT/xB\nRUREREREREREw50nQjjtd9wH2dGJ0FuvAwB6/3hNKoTTfd1UyHfeQWz3PVP7G+uuh7ZfX45RU69N\njZmRKJTOTsTXXgexAw4CAKz8biHikRh8WS3Esy+aD1fKgvlOlzBoIvHGd9ffpqHhvDNLOjbZEr/n\n5r9B3+wnZa+tkGjcKDjtkVcec8EnH7OtD6ZDS6rjjWLdF75PPgYAhO69C73X31zosLJTflhgH5Cy\nIp+iFdGIbd2X0f3D2GTTjA0+9O25D2pffC73NsK9BW8/rhvwZUxlJaWE4KeBXUF+nw6MKO3tA+6v\nzfoEsUmTgffexVpHWb+nWld0Vay+atJmz0LzXrui8+4HEDv4UOjx3LBr04F75YzFtt8R/vfT3e0C\nb7yWWhYjJDBLRDRUKz/5EqN23hZKby+MlrFVP78M1drWOx9+AtoLz9sCxr4PP/BUCCc5rawSKL2v\nKF+nVUDyPuVdS0RERERERERELqA4XUAxFAUQGd0hZG0d2l58Has++gyRU09H9L5/pqe2AQAhEL7g\nEqx66Y3UUPCRB6GEe4GmpvR+Ph989dabwj1XXYO+9Ta0bt8jgYjBSHUfATDx8guhzco//Y3rJYIc\nyUAVgKK/FmPSZACoagAHAHyadd933v1AzjYR8cZ0Q6Kr077eF4ZumEUfH9cNiB6rA5Osq7MGM7rr\nKAvmQ1myuCr/tNmz7MWFB9HVpxiRrE44X35ecFcRKjBlUSy3Ow4AiPY2KA89mJ7iC/wAsJuE/nlv\najk7wJaXtL6Pqx+Vfl4rNIWH1wQfsO6L+t9cDITDWPLWxzn7+D61/0xGdtkd8R12LHyj7IRDRFQU\nOXk1LPjfF1j05H/Q9sW3Ax9QZpGjjkkt9/38MMT23AfhW261/shLKvBax7USQVChlf6ZFmZwKoB3\nKhERERERERERuYgnOuEoQqDmf++k1qXmg7nV1v0eo2kC5pZboevEU9HwwD2oeygRfGhsyru/HDcO\nnZf9ATWnHAMj7I1AxKBomu1Nbt/HH0LfYisHCxqkxBvfUk0/hMUAnSZMU0JRBGRDI4zu7oqWl4+S\neHM4dvChiO10D/zvvJXeGPFG8EsGgvb1SAS9fXE01g081Q4AdPTEUNNhBXlkfb01mBGgG71tdYNR\nmURvL2Rt7cA7lnq7Mfv3NnTXHQCs4F/OvjX5QzgiEsk7XnfFbxF84lH0dKxE3/kXQ0oJWaGOPmSn\nL18BbVz+bgLS54OIxxHI6Hqkr73OgLcpwmH4X3nRPtbZCTlmzNCKdQHZ0AgAUFatRMua45E7aWSu\n7iefQe0ffldwe/TwIwtuIyIiO625EYFdqjvtZ5K+9bap5T4AZD0AACAASURBVJ5/3Jd/p0BxryVd\nI9HRTfp8JR+q8HVa5fC+JSIiIiIiIiIiF/BECCe7ZbccPXrAY9TEJyvVrO4W6rzvCh4TrA8BAOr+\neS86Lrio1DLdT0qIrE+ZZreH94rUNCSZnz71998O3jBNKIoKRPogg8F+9620VBeYBK90wsm+QFLz\n6ENoCscgL798wEN9b72J9c74JbT2VQAAWd9gbTDtnXQiVbywHvzX46ll0dsDifJP0ZCcjkoqCkRm\nx5o8F5sKPS6zp7RK0j79BADg+2w2+gAYJvvgVEPNP/6Ouit+i877HrJ140rx+XI62MR322PA29U+\n+xTq0qX2QcMYSqmuIRsaStq/44lnrOMKBOOWvvI2tCnOhfaIiLxGU51tgKqvux60777NCUn0Xvhr\n1N4yFcZqqztU2eCkpldV80812++xzImUneSdSkRERERERERELuKJEE6OEt5kk6PtHQS0r78qvG+i\ny4dv0Y9Q5s+Dudbag6vPrfK1eTeLn0rITURvr7Wgqui95DLU3nRdwaBCkm5I+FQJ0dUFs7au330r\nTf3xR9v6QLW7hcwKOmnzvseYv1yP1iJCOE1HHGy/rWQnnGSgCkB0r33QPe3uoRdaJHsIp7cyJ4la\nP3ci+2ctX+AmmL8TjtlX4PEhrdCNFAKmlOjtiyMULP0T2TQw3TBTFzCD9/wDABB45l95QzjS54dA\nOgBqBoJ5Ox9lC911B8K//JVtTJiGZ6YYM0wzFYDNUWgcgL7BhtDmfJNa77j7n4jvujsAIHLcidBm\nfgR1wXxo8+el9hGbb1aeoomIRojktKhOaX/rA5ixWM5cyPpmUwBY3RW9RFm00FoYRCec7A+YUBnx\nviUiIiIiIiIiIhdw9t3YQYgecPDAO2XovdQeDoge+PPCOwfSAQNhDo/uA5lE3AoDyIwpbzzTgSWD\n7/VX4fv4Q2tFVdNhjmiekFFC4F+PY9Lm60JZsRzqqpUw1hl4aphK6rnqavtAJAJl2VLUnnwclHnf\nO1NUlSW/b+bk1RyroW/PfVLLmSEc0d6G2ssugbJk8dBPUuCiUt4OHwVCcaKtLf9tJ0I4UATEZ7Nh\nfDPHmo6Kykp0d0E883S6K03yPi50ocdnz7f2/Wzv/KGrfOfKfgx4qBOOrvfz2OsL5x1eMfcHxLfb\nIbVuNjYifvAh6fWJk9D12FNof/tD23EFwz5EROROmgYlFModr7F+PzZc8ZsqFzQ0DeeeAQCQWumf\naeF0VBXA+5SIiIiIiIiIiFzEc1exIr84uqT9lbpaRDbcOLUe3We/gvsmO+EAAGLxgvt5ViKkYtan\npwWp+5233vAGgOBjD9kHkm3g++nq03DmL6G2t6F5p22tgfrSpkYpt/hue2Dll9+j9ze/AwBo33yN\n0ZtvgNALz6Lh7NMdra1f8QI/F4MICujrrg8A6Ln6+vTNZ1yMr4bO6Y+iO/E9qP31+alwRWjq9Qjd\ncyfqy/C9iHT1AEDqe50k/bnTUcX23T/vbdTfeVv+G88Ig4zdaxdssP9OYAan/OovOAfjzzgJwUce\ntAYy7nczzx1uZj2/KCWEHXM6MnkphFPoOXjJEmiff2YbMiavhtZ//BOiqRnSn+4iED3sF/lvI6ML\nV+ynOw65ViIicod8r4fcTvvog/TKIKa4ZV6kAninEhERERERERGRi3gmhGOMGw8AMCdMKPlYNZz+\nBH58h50K75jRCUfpaC/5PG4nYlEAgLna6g5XMjSyrt6+nuyIUET3IqWzwzomXxeSKpMtLTBWXwMA\nEHw0HSwSiRrdSBQK4RQa70+iI5NsHoXWZR1ov+9B9J12xhCqK52qqlASHaL8c76G/8UXIKWE0mF9\nD9SFP/Z3eFF8M14GABhrr4O2J59NjesbbZyzb3z7EkNIee53Kb05xZyb+f73DgBAm/0pgIwGRKtW\nYdy4Rvgfnm7b3xw7zrZe8/qMos8l5s4BAPTsua814KEQTixuPfaklDASgRxlwXy0TNkQgVdfse0r\nQyHInyc606npLgL6hrk/F0ntjz+F1rMvQtddD5S5ciIicorocO/r3kJC0zLC0Xrpv6cVhYGRimEY\nh4iIiIiIiIiIXMAzIZyOV97E8mn3Qd9iq5KPjR13gnUb9z/cfwAlrqcWa6++quTzuF08bE2LY6y7\nHlZd4L0OOEkylBWgUaxOODnTuPQnY0ouJ8lExwzbBYhSvo5qi+ef8kvopYVwIjvtah9QFOgHHOzI\n9yW2/0GpZdHbA+Wxx9JTC8QKT3EGAAiHUX/IAdAef6TgLloiyCP9ARi77IbW5Z1YNfsbmGutXVqh\neTquJG9b7+hOfw3t3ruY5XYyaD0uk9P3+X5cAADw//cNAEDjBWfbD4hGbavxzacUfa7ArJnWuRob\nrf/d/HyQQVm2FJP33xW+t/8Lw5Spqal8H76fd39t7hyIxIUy0ZfuFCSi+advAwB9t58Bf7gKcuzY\nMlZORERO0rfZNr0ymFC3A6Smppb1jTcp+XhOR1UBvE+JiIiIiIiIiMhFPBPCMSdMhH7wIYM6Nnze\nRVg18wvE9z+w3/2MddZNLce33Brq7FlQ5n0/qHO6UV/iQr30B6BP2cLhagZP1tXZB5KdcEroGGEm\nLnA7zRw1GgCgdHelxoSLO1+IQtO0lXjRRIF75kwyW9IX9Ot+fxnGnHc6ahLTDqnLlkJ0deY5yApG\n+F99GcH33kbzOb/Ke9u+12egYe6XAID41omLTELAnDCx5DqVFctt65l11b2R7jLSdPWVJd829U8G\nElNlRCNFPdbVHxaklleceSG6Hnq85HMqyec5Fz8fZKq5+06E5nyFpsMPQuOZp6Jv3g8A+umelUH0\npENkxhprVaxGIiJyH3P8BHTvZU3HKbq6BtjbJTI6uMV328PBQiiFIRwiIiIiIiIiInIRz4RwAMCn\nDbJcRSluCiafD+3THwNgvSE8aq9dMXp774ZVMmmzZmKt/XYGAMiAH5qH26Anu8ekqIlPo2Z0jDDz\ndA3JZGywUbnLGpR802KpPyxA8JabrO39dMEwTYmevip/YjjRCafzxluyxvU8O2fI/n74fGUsamjM\n0WNSy8qqVTnbm362M3zHHQPt4w8BAKGp12PUxutArFo1YGCq6ejDU8s54bEC2v90Q/4NWd1VtC+/\nyLtb3eMPp5YH+jmgIqU64UQAvcBjPeOxkNkZqvdXZ8NMTKdYErX0cKGTfG++nloOPf0vrLfLFMAw\nUH/hOXn3j/zi6NSyCPemlmP77l+5IomIyJVkIhyvdLZDeuG1i6oOvA85g2EcIiIiIiIiIiJyAW3g\nXdxDVOFNNeGz7pKau6ZV/FzVFHj26fSKzw9z190cq2WopN8KcHReN9UayNMJJx43EfAXfoM8tve+\nFauvJAXCKPXX/R+0H3+A/6X/oO2r7/O+oWx+8zXihgJstmGlq0xJdrUQWeEhocf7722T1Q1Dz+g6\n5Ti/v9/N2g8L0PTDApizPoJY2QqRuDjUePhB0LfYMr1jJAIEg4VvKE/gKp/4KaeiVVXhW7wQaF0J\nXyiI2gfusU3ZAwCidcWAt2WaEorKixFDJRPfV9HXV3C6OGXpEhihEMSo0YBuPRd1HXMClOamwZ0z\neYHPKyGczz7NGRNtbTljC79aAN/SJVDXSz8HiJ4eAEB82+158YyIaCSqr7f+7w2jN6KjrsY9YW3y\nCpH1PxERERERERERkXM8FcKpBiVx0VBdstjhSspLX3+D1LIMBICaGuhrrQ309vZzlDslu4/I8ROs\n/xMhHO3rr5DsFRLTjXQIJyu8AACytriuJJUm++kIU/PQP62F3l4gTxeVCbttjwkAOp54BvFdd69I\nfdrjjwEBPwxVg9LQkOqEI0NZgZIBppwR3dZ0M2ZtHboOPgzGeRdVpN7B6jv0CNQ89WS/+4j2tlQA\nBwB8X30B31fpbjSiszMV1si2/J+PF912TPj96DvhFEQEEI2bmHjDVQAA9dGHYfz+j6mQgtLaOuBt\nGaaExg9rD1ny8S66uyBk/hDO6C03AQC0Lu+EMA1Et9gaPTf/FepgP9CvWN84YXojhJPPmE3Wsa3L\nQADBMaOAMaNs48nnh2K7RRER0fCi1Vm/Z43eXsilS4C1Vnd1KLO/1+/kEBc/XoiIiIiIiIiIaOTx\n1HRUVVFoqhGPExlfV/Dpf1kLgUCqs4mnJLpMCM3KkPk++RgAEJp2q7VdSvjeeRtIdFfInBomxS1v\n1BbxJr7S25N72BuvpZbrL7mgrCUlaZ99iuZzTkPzaSdizCnHYtQRB0HErPtShkK2ffPexxlCd9wG\nwPpaOm64BWYiQOUWvdfdNOA+YoDnBqWrs/DGvfYqqR6fpkBVFGiqgLnaagCAxtv/gtFrjIdITJnl\nHyA0BADRmHcDHG5iTpwIAFCWLRuwM40yfx6g6xCqAp+mQhtEJ6Lw4Uemp7rwSCec2PY7FNwWPuQI\n9B1zHDpemJF3e/TAg63/Dz60IrUREZG7yRpr2sfm44/G2ttvVlRHUken3NSs1+9dd9zjXA2Ul3TL\n33hERERERERERDSiMYSTRZ+y5cA7eVFG2EZdMB8AIH1+iFi00BHuZSTCEIkWH9nT9Phf+g9WO+5Q\nNJx7hjVQYPoYVygihCPyhHCajkpfrFaWLilrSUnNe+6SOxiNAABkjT2Eg/gAAZXFi1LLAZ/7WrPI\nUaOHfBvKysKdaRS1tK9ZUxWoqoCmKjDHjkvfTqQP/hkvAVIi8OH7AIC26/9sOza68Wap5Y6eKHTD\nxY9/j5CJwJ/U9QGfTwIvvgBhGKljVKW0X7ORjTZF77S7PRfCkY2NBbfFDzwIPX/9O/TNp+Td3nfu\nhWh75yNEjjmuUuUREZGLyYDVSVDrbAcABB+aDqD/MHFcd+71jegLWzVsva1jNVAWhm+IiIiIiIiI\niMhFGMLJYmy4kdMlVIQw0iGJzrsfsBb8Pk92wklNR6UmLoxnBlmkhDZrJgDA/9IL1ljWRfP4Bu75\nHkutiBBOT24Ix7Y9WuYglZTQPvs07yZ1SSLwU5sdwin8OBKffoLgk4+l1jXVnU87HXfcg6W33GEb\ni48bj9jk1WAGa2zj+bp+NP18P8A0yxZ6UYSAporcrkOmieA/70vXst8BWHnzbVh21sUwGxvTXYnC\nYUz48zUYvct2UOfOKUtNI5WybCkAQFux3Bb6m7dgJbpuu9O2b+r7VWLwKnzOBeg472KsePpF63ZS\nIRxvhKhEX6TgtgHDrYoCY/0NeAGNiGikyp7qMfH7oLsvMQ2qlMDy5VBfedna/N57UD76sKol2kQS\nofSs14fkPL6SICIiIiIiIiIiN9CcLoCqJNGpZPlxv4SSmPJD+gMQsRggpbcufianBUpepM4I4dTc\neXs6lBIIWP9nXcQOX3lVhQssgd8ewjGDNVAi9s4+A4Vwyi3w7FNoOO2kvNuS3V6yO+EUmo5K/eJz\njNp7t3KWVzHxw34BRUrgwjNSY62zvoFhmpi8VrobzarP58IcNx7NO24N7du5tttQFsyH+O/bEAce\nADna6q4T3WGnQdekKgpkqNY+2NeH+st+nV4fNw7GscfDNE3Ipx9NhUTqLzwbwaesqefqLzoXHc+/\nMug6RjqlvS21rH39JQCg98BD4PepiGd9f1MdkbTifr1GDzgYgReeRWy3PRDdeVeoyU/2JzroCNMD\nnXAMA6JtZcHN5uprVLEYIiLympwpP6UEenqw5v57wNhqa9Q9+iAAYBSAtmn3YtSZpwAAWld0VblS\niwhbnXAQYgjHNRJ/ynI6KiIiIiIiIiIicgN3tqSg8ku8uR3ddY/0mM9v/e+1bjiJeqXfCtlkdsKp\n+/3lkJD2/bM64Zjjxle2vhJkh1nM0bnTIome7mqVAwDwvfFawW3JaaWkz2fvQFRgOqpRe+xoW++9\n6JKhF1hBStYb9z5NQdCv2TpGJR8/+lbb5Bxff9mvMf4356H+/DPTP1dFhjEKkbX2EE5mJxZ9nXWh\nKgoURcCnqVYwLfF497/1Zmo/dd53Q6phxMt8fCeXVQUBnwpz0mR0/e4qdJx5HgCg9qbrEtuL64TT\nNe1uLH3hdcR32Q2KEPBpiv14D0xHVX/emfB98bltrPvaG7Hy7unoePxph6oiIiLPyDM9rv9/76Dm\n229SAZykZAAHAOTzzycWJIwq/r6Uiddi7ITjInLgXYiIiIiIiIiIiKqFIZw84ltu5XQJZSdjVjv3\nQG0wPZbowiLyvPHtZiLxtaS6yGQFJ0J3WVMKJT+lmt1JwlVvmGsaOh54BACw6v1ZkGNacveJ2Kd5\nqbnyssrVIyVqHp5ecLO6aKG14Pdj8fdLYTQ0AsjfCUdZ+GPOmLHRJuWp0wXyfdLWnwgwBV59Jd2x\nyTfwlGP9nicrqCV7exDdc28AQGd2wEEoEIkpHURvb3o8+xPmVJLMT+iLqPXzKJIhGSEQPf8iGL88\n3X5QseGrYBDKVunfOSL5uPJQCCf4xKO29VUPPYnIL8+AedDBiO+2R4GjiIiILLK+0T4gBBqPPXLA\n40afa/3ubTz8IDTvuG0lSsslJYLvvmUtDzFoTRXATjhEREREREREROQCDOHk0fGv523rUnr/o3Xq\nxx8BAPz1denB5BvHHrjIaxO3Qjgy2cknq/7MC+bq3Dk526XfX9n6ShTf7wB8+tVSmGuvA7MlN4Qj\nMkI4orsLdXfebttu1tZlHzK4OnQTNXffUdS+0udHIOhH+FdnJw7ODeGM3mrTvMd5Wfd1N6WWY3vt\nCwDoueIq9B13Ys6+gQcfsBaGGMLJvpgge8NAdzekEDAnTc7aF+nOTxnPW/qULYdWwwikZ05jlxEy\nU1YsBwAI2L8vZstY+w0oxXXCAQBFyb1gJJMhHC9MR5VFaWgAkBEoIiIi6kffaWeg46LfpgekWXjn\nDGpvDyAl/O+8hcC8byE6O3J3WrqkTFVatNdmlPX2iIiIiIiIiIiIaPhhCCef2lrIQCC12rDnLlCS\nHUC8SMr/3959B7ZVXn0c/11Jlix5xXacvRghBMoKM+yyoewAAcpMCoWwR14SRkspI5TQEvYuLZQs\n9p4BSiGMsAlJGNmDxHFsx1Pzvn/I1rDkIcuSLPv7+cf3PveR7pEt+bF0j8+Ra95bkqRA//7hcWtT\nEo4vuy7yGu7mSjhNCR2uvFbnWn/+KaYdVUfbxKRTcwsas7RvzDHHk0+EtgsuPC/muOfQw7okBrfX\nL/vLL0aNVb4xL/7knOBzx2iuRuTvYKUVe5IJKRlmFpeEtj1HH6tNn3yphkuuUO2td8TMLbyh6WJS\nkolHgUGDJEn+IUOD9/vgPXJ8Ol+GaUqW6F/hpsUSSr4xCwpC4/b3W/k5olW+zTWSaSrQ6Jbtpx9D\n43l//bMkyfncnOgb5Oaq4cxzw/vJ/p5pSuIxsi1JUsr61zkAIM3sdnmnXBvatS36ocM3df0pfDvH\ni89HHcv99z9VttO2crz4XPIxNik+/aQuuy90oR7wTzMAAAAAAADoOUjCaUXFgu9D27nffaPSMdvL\n+vH/MhhR5xkbNoS2A8NHhLbNLGp3EiVUCSd4obf+4staneq6a7q0sTx6sBsm4diaKmGYdkfMMcen\n88Pbb70ec9xojG0nFggk9kG0/aXn1ee2v8i3W3Qpf9/OY7Tpv59qxYP/jhoPtfRqSuRqmShgVG4K\nbfsjEleyvRJOy6o0/i23Do7l5srXsipN85xhw5M6pZlfoA1L16jquVfan2yxhJLO/IOHJnXeXq22\nVkNHDVXxgWPVf1h0dSqjRXu4SGafPuHtZH/PhH4/d6waQCYFCgvl6RuuBJT1r3MAQLdT86ebtOmD\nT1R9/MlR43kRFSID/fpHHXM2HbO/8GyXxJD7+CPhcxUVtTETGUMVPgAAAAAAAHQDJOG0wuzfX75t\nRkWNlRx/VIaiSU6gslKSVPf7s6M/mLQGf/xGFrQ7iWwNY3iaKuE0VSsy+xRr2YoK1UyfEXO7nK+/\nVOnhvw3tbz5zggKDBqc22E6wNv0sIn8+/gED27xN46GHB2/ijk0K8Pj8CiTwH6FFfzhbxQ/eLbOp\njYwkbb7ocslikX/b0XIddUT0DZqrENmaEgVaVFMquGxSaLtywbfhA47YJKPuZvOM++XdehttejdO\n0l0bH+z79tkv7riZ13qlpo4y8gtinreevfaOM9EIV8JxOqMOBTyxLcMQn3X9OkmJ/Se+JLmPOyG0\nXX/F5CSDaPqdkAVJkkZjowJDhspz0CGSpMCwYRmOCACQjar/PavVY8Y118g/ejs1PvRo63fgCSem\ne30BGdXVkqTcV1+OmlbX2MG/ierq5K8Kt7gqmHJVOJ66uo7dB9KDSjgAAAAAAADoRkjCaYslu789\nzdVQnPf8Q5JkRCRYSIpoR9XBVkIZVNfoUyBgBpNxvMEPziOrLeTarWo88eRgO542bJ52Z7f8D0m7\nLTYJp2USRaTyVeWqeXJ2cMcdWwnH+P57aUN5zHi76uslSb88NkfuP98UHs/NVcDlkiQFHLmhOE1b\n/OeQ9ZefQ9tmQfh511y9qDtzn3aGqj5eIP8OO4bGPPsdIEnyjRrd6u3Mpu9PzLgjt2sCs0dXFwn0\nHxA7x2IJtqmSZAQCUdVYch99sGviyCamKc2bF/qd0fHbde50vh13VuPe+6n8uPHyb/+bzt1JcwjN\nP7vuniQZCMjweGQJ+FX99DPa+MtqmYVUBwAAJM5z+JFx/5b3DxuufFfw7yBLG3/HF/3hbBmVm+SY\nM1POyy6SdcP6mDnW77+Tc9ot8ja3t41g+/xTGR+8L19Do4xFP6hsi4EasM2wuAmxtbf8LZGHhpRr\n+uOtG77PAwAAAAAAQO+T3VkmqWbE+fa00Yqku6mp90herwrmzpQUW6JdWdSOyuP1a1NVvbR4kXJf\nej44aA8ndNisFik/X9UvvNbm/eTYuudT3umwxQ62SLpobjPkGbtPsKKMxSLTbo99TjY2asgR+6vf\nmNYTRlpj1NVKkgrL+sQc85eUSpLMyGo2luBzyPAHk3Dy/vpnFR5/lLz7HyhJ2nztjW0/pixR/dQc\nrXn7I/lHb9fqnFb/I9rRdY+5duoNoe3GsyfECcIIPU8UCEgWi9y/O1aSVHTjdV0WR7bIffxhlZ16\nvPJu+Uurc5wP3y/XZReFv29S9HaCNj//ijbPuK/9ie1pWn9atnrrbuzvvRP8+u3Xwd9JBYXt3AIA\ngFYYhoyINXjTY0+p8tW3Vfn2Bx2+i5K9dlHhxX9U8dz/RN/1pgpJUvERv1X/+/+uQUP7yrJqZdSc\n4t8dqr4nH6uBw/up7wF7hcYta1bLqKiImtt47h86HBPSiCQcAAAAAAAAdAPdMyOhm4isItEs7/Zb\nMhBJ4nLeeE39Tj1O1lUrQmPuo4+NmmNmQRKOaZoyAwHlz3lao7cdqIG/HRs+lhOb3BCqzNKKtv57\ntluIDC/y5+L3h6t5RCSymA5HTBKO4fU0fU28/VBzIok1P04LpZKS4NfI10XT99v2zFyptlaue/4h\nx8f/k/OxhyVJ3kMOjboL0xm/Wky353TKtmPblU1s334dd9zYuLHLwmi4YrJ+/nShNn72jbz77h87\nwWIJJ5CYAZmGJesreiXD/t67wa/vz2t1Tv71U5Q380kVTDxTxuZqFRyyvxzPzI6Zt/GTL6P2q+a+\nGPf+DMNQoasLEq+y4PezJFmX/pLpEAAAPZT/mGPl231PmcUlUeOBvPxWb2NpasPbku3r4Doeamsr\nyf5mOHnf0sZ6ZtlYroLJl3coZgAAAAAAAABoO2Oht8uJ/fbYvvoiA4Ekrs9Zp0qS6p/8lyQpUFKq\nwPAR0ZOa2lEZSVR9SDXnXdPlevwRWdf/GnswXlWVLGh31KaIJKGoJBqPR4avqQ1XRCUa05EbWwkn\niYv2Rm2wEo6csS2Umi+AWCs3hQebknBcb70myxUXx96fK9hSq+H0M5U78yn5Wz4Hs0h7CVyB0r7x\nbxfvuZuEwhFDZLYWi2EJtmCSQpVwav90kxwvv9ClMWSN5pZ7HWjplPvqyzL79Vfut19LLRKqAiWl\nMrfcOmrMe8BvuyzMuLIkCcfvC8ZX+6e/ZjgSAEBvUXv7nSq8+I8J3cb+3w9kFkVXeox8D2Q0tWSN\nJ+/Wv8qyIfz3XFRVSHQPZid7iQIAAAAAAAAp0HtLJHRAoG9ZzJhZmF2tNpr/67NuyvWxB61NP36f\nL40RJabgtr/GT8CRQgkgkUxrlueVRSRX+LYZFR7/5hsVHPe74HZEBaBASamsG9ZHf/Ds6/xFe0t1\nlaT4FWvcRx0TMxZZLSr3xedijgeKiiVJtXfdpx8Wrc3+JKk21Nz3cMyYLy9fdTdP69LzGG0lAxmG\nDLO5HZUpWS0KDB8h75jdZObk9LoLFGZzol4Hq0I5//lozJh3z7GqWLS0K8PqmObXVjdOkrQs/UVF\nf75WkuTbdbcMRwMA6C3cJ5/a4bk1dwVbRLruv1vFRx4cdcz27TehbcPdesth+3/fk3XF8tB+5byP\nOnx+pFl3r3oKAAAAAACAXoEknDYE+g+IGfPtPCYDkXSedfkySVJg0KDYY0uDF5adjz6U1phSKiLJ\nY9Ot06MqhlTN6f7VQPxDhoW2AwMGyr3fAZKksmMPk+P74IUCMy/cKiowZKistTVSUxspSTL8nU+q\nsn/wXvAcTmfMscCAgbE3aKP9l7+gUGZpaWi/IK9n/9dwYPAQff3lUm1YV6mG08+UJK15dZ7MgvQl\n7pmW6Eo4ZlMrqkBpqQyvV0ZdbXTMPT0ppynR0PbLz52+i0C//qELOht/XiXPTruoatrfuyS8tjQn\nEEW2zehucr74PLQd6N8/g5EAAHoVw1D1Xfe3OWXDf55V1Q1/VeNpZ7Q6x2/LCf0tZF21MjTecNoZ\nKl+7SZs+/Cx8yoYGSVLFq2/LP3KbZKJHKvT0v2kBAAAAAACQVUjCaYNZWBQ72I2rxsRjXbNaUvyE\nIvt/gwkXzn8/ntaYuoJ77D5xx82CgtC2f8edtemdiHA8dAAAIABJREFUD0P7vjG7pjyuZDWcd0HU\nvlnWL2ZOoE+4lL5ZGHy8lrffktl0cSDyORqore3Uh9LxKuGYRXFeDxGVcGIO1WyO2nfYW5/bU5T2\n6yPDalXt9Bla+/1S5W47qv0bdSWLJVgBR5Lh9wfbUyncSsyoqIia3uju3q2OkuV45aU2j+f877/t\n3kdkIp9ZWKTqtz+Q+9yJScfW7nmbXoNGQ+vtMTLNzA23rfMPHJzBSAAAPUX52k3afOyJqv7nf9qc\n5xl/WpvHjYMPlveSyyTD0Ob7H4k7J+/pf8vvD1acy535VPB+DzpEtTPul2w2BQbEvn/S4CEdeBTI\nGCrhAAAAAAAAoBvI8t49qeXb/jcxY7Yli6WXXpK9uiEDEXVeZHJKT+A+4+y444FB4QvBlrJSmQXh\nxBHTkgVJIA6H/P0HhFtwWWLz5Mz8/PD0t96UJJX+8Rw1HD9Om+57VLkRSTj9txykmtumq3Hi+QnH\n0RGJtP+y9IIPxXPtTd8Pm005/fqmPwBD4fZFZiD0/AmUBCsSWSo3KTB8RGi6PxBQIGDKYuk5Pxuf\nPyBbUwWc9qrI9Dnx6Pbv0Br7GkzHc9l0NSfhdM+1xrJmtYomniVJ8m21tRSnehYAAAmz2eR+9In2\n51mtWv/kXPU/8+T4xyP+hvbusVerd2N++ZW0x27ybbud7O+9q/rzJ4WPxfmHjMj3Gug+jKbWo0YH\nW5ACAAAAAAAAqUQSThvc405RxXvvy6GA8p+ZJUlyvPyC9PILilMTpFtLJFkiG0RWYGhpzdxXZPvy\nC1m22EpG5abwgTgJLd1S8wX+QEC2r76IOex45SXVT7khOLU+3IbK+cKzMk7+vYytRkTNz7/u/xJP\nwomTZODdaRd5ho2Q+w9/DA+20Y7KR6n+9GvRjqr5OW+WBCvhWCo2Rk/fsF6BviWy5Ocpm9k+/URu\nq03W3XaTd9kKFV9wjur/cU/0JLc7lFwWMM1WE2l82+8g28Lvwvu77p6yuNsSqoRTW9vOzMxwTbs5\ntG2WZiDhDADQ61kOP1ybnpojbbGlSvbZrdV5gaHDovZNw5DR9PfS4KMPUvmydTKqqyRJ/hFbhCca\nhhrOmhCqGrrp3f918SNAV8mdM1OSZNlYnuFIAAAAAAAAAJJw2maxyHPP/XKbUsN9D8k6d7bsFRuV\nn+9Qba0709G1yfbdN8p9ZnZ4ICcnZk7DmefI+eQT6QuqK+XYWz1kP2B/+fbdN9hrLTLxpo3WSd1K\nU4KR0dAgoz62FY3n0CNavemg35+ouqunRI159zsgodPX77pH/AN5edr4ydfKsUV8T23R39NAcYlq\nZtyv3Dv/ppqZzyR0XnQBwyLDbKqEE4ithFN02kkq39DUJszj0Yg9tpdvyFBVfrkwE9F2meJjDpMk\nVXzylYbtvYskyfaHs6LmGPV1MpuScDxev+w54eeub+uRsv38kySp8ZTTpLpj5HzyCdWcdpa8512Y\njocQIzB0qCTJsmpFRs7fGsvKFQoMGSrn7KfDg72gyhUAoHvyHxb7d3HtzdOiB1quU06XFJHIbl25\nQpZNwZadZmlp9H1Nv0u1E85XwO+XZYcduiZoAAAAAAAAAD0aSTjtsEW0IvGfcqoaJOWXFaihvCZz\nQXWA9cclUUk4pi1OEs4FF2dtEo6luV1TK0I/tyxMwgnkF8gqyairlVlcIq1bq/pz/yDXPx+VJDVM\nOC80t2banSqYclXU7e3vvhW1bzQ2JnR+1xefqa6VY1EJOIqtsFQ5738KDB4izxFHJXROdBHDCLej\nCgRkNlfCKQrX7rIu+kH+0dvJcAefF7bVq9IeZqqU7rVLaNu2bGnUMaOhQWZxcDv3P09Ko7cNHat6\n9W3lX36xcl9/Jfj6cjjUcPUUmaYpI0MJJmZhoaTu1Y7K/tbrKjpjvExXdOUk75jWqw8AAJBu8d73\nbPpogYpO+J2sG9bLdDlVf/lVyrv1JknBv7ktFRUyrda4Lai03XbKknqaAAAAAAAAALoBPk/sqVpe\nOLbFJqAEWvynZ1ZpbrnT3jRLxOPOkiSc2tvvlK//ANX933Wq/dNf1Lj7nmq4YnLoeOQFcO+Bv425\nvW+XXaP2cz6d3+HvV8Iivqfrbr5TgcFDUnMedExr7agc4fZthRdMDG74fOmOLjWak47aYTQEq0pZ\nli1V2TWXqezYwyVJDSeNl1lcopp/Pa3166tDLaskZSwBR4pIcPN6MxZDSznvz5MU3QZPkuovvjwT\n4QAAEF+cCqD+kdvIfcI4SZJv5CjVXxZOYne8/qqMTRXy9ymmuhsAAAAAAACApFEJp4cKDBwYPRDn\nw2izqUWNb+CgdITUpXyjt+/YxMhKOFnyobpv9z218ZvFslos8kvyHnRo1HGzT5/Qtn/g4Jjb2996\nI2bM9tUX8rVSrcKybm3UftV/5nY82IgkHO/Z5/ILJdMiKuEYkZVwcnNjp3o8aQ0tZTpaKaY+OC//\nz9dFDZt9y0Lblu70O8LW9GrqLslSjY1yPfpQ3ENmQUGagwEAoHVmnPc9klR/zXXyu71yT54iGYZM\nq1WG3y/nw/fLcHfvVsMAAAAAAAAAsgeVcHooM79AmyaHLza3bBvUzDdocNyS7d2db8+9OjbRkp1P\ncWucuDff97DW3nh7dEUfp1MbrpwaPbGpEop73/3laUq8yfnof62ey/HyC1H73oMO6XigEQkCufbs\nqDTUk5kWi4ymn791xXIZTVVUvHvvG5pjW7RQ9nffkmP20xmJsat1tN1ac1sn21dfRI0Hyvp1eUxd\norsl4fz3v3GH1/3jQSlOkhcAAJlitLJ2mvkFavzbnTLLggm41c+/GpxPAg4AAAAAAACALpSdGQro\nkNyN68M7rfxHqGy27nORt6WuaKGUJS2oOsJ98qlqOHtizHjdZVdHDzRVQnGfcbYaJ5wnScr/659a\nvd9ASbgtWflXPyT0PYu8aJHJ1j1o0pS8ZV36c/Br+YbguN0eNS3nvXeV+/yzoX3HrP+kJ74u5Pb4\nJYXbTDWeNF6b3p+vxn0PCM0pv3Sy6i+9UpJkqdgYnF8X3UrJzM9PR7iJs1hkGobk88ky713Zvvsm\ns/G8807MUMNue8kz7uQMBAMAQOssa1Z3aF5U21pJ/iFDUxEO0qDyzfe0ecddtfGXjv3sAQAAAAAA\ngFQiCacHazznD+Gd1hIrrFYZ/m6ahOP3R+16d9gp8fvI0ko4rXE6Yn+O+c4WCVbNlUGsVnkOPLj9\nO21Kwqq54y5p8JDEAnJ3rAoJ0qQpEcr6ww8xh+r/OCm07Xr4AdkWfhfaL7z0wtTH1sUaXnhJRlWl\nik48WpJkOl3yb7e9ap57WRu++1nrflqlhslTZfv+W0lSwWXBx2jURyfhtExQ6lZyciSvV6WnnqDi\ng/fLbCx33CFJCrjytHrZepWvWK/Nz78se07PSXQEAPQMgaHDOjTPt8uYqP3mxF1kH98uu2rJUy/K\nLCjMdCgAAAAAAAAASTg9melyhXdaS0ax2SSfP/6xTGuq6NKseuazrUxsQw+rzpJja/+Ct7Vyk6Rg\nCzKzXz+ZNps8u+3R6vzmkv2m05l4QE23MR2OxG+LrmcEX+dFE86QJNUfPy50qOHc8zISUio4np2j\nkRefrYKLzpdt+TJJkukMt0Qy+veTrahITodN9RdfLkmyVFUpsHatjBa/V/wDB6Uv8AQZHo8cXy7I\ndBhRvAf8Vo48p+R0yuJwyGblzwgAQOa5DzlMkrT+iqlqPO2Mjt2oRaVQs6ioq8NCGjlIDAYAAAAA\nAEA3wdWznqwjiRE2W1QlHOviRbK/+5bkdsu7Zq0kydhUIds3X6Uqyta1qISj3E4kevSwJJyENCVe\nGT6f7As+k1FVKZmmHI89LMfMp8LzmtuRtdayrA2egw9TxZVTVTnvo66IGMmyRD/fLdXV4Z1O/Hy7\nK9eMOyVJ9vfnhcZatplq5h27T2i735jtYo//tgPVorqLFglEaRPZGtDjbn0eAAAZsvmpOfpu/iLV\nXnZVQn//BwrDlVMCJOFkNXsH/lkBAAAAAAAASAeScHowswNtVkyrLZTsYtTWqGT/PVV02kkquOJi\nDdplW1lWLFfx4b9V8aEHyLJqZapDjhaRhFNz23SZFj5YTYTh9UTt58z/WI5nZqtw6tUqvGySjA0b\nggd8XkmSabMlfhKLRbWXT5Z/5DbJhouu0PKiU0R1mI4k4Xi7a1WsFmyLF0mSDK83NOY98KD4kyNa\n8UVWwQkUFanynf9mVaJe2YA+st/9j7Sf1/LrutC20UgLOgBAN2SxyNm/r1yOxP6erZz9QmjbLCQJ\nJ5vZc/hoAwAAAAAAAN0Dn1T1YKYz2I6qzWQcm1VGU7JL0cnHhYZzn5kdPPzt17KuWC5JsqxbF3Pz\nVDLM4AVz9+FHqnHi+cHWWYhr0wefqPb0s6IHGxqidk2HXYUXnR/aN+qDlUMsVVXBAWvnvr9OB8lR\n3Ya/RaWUiItJZl5e27dtaJDHF5AZWfWkG2lwBys2WZp+H0Vq/N2xch97Qqu3rbvw4pixip9Wybfj\nzl0WXyr4hw6LGSu6+c9SGhNhbAs+U/4lF4b2GyZdkrZzAwCQiHxXTsJtEs0RW4S3i/p0dUhII6sl\nexKrAQAAAAAA0LOR1dCTOZ1a+/b/ZB3Qv/VsK6tNampHlfPFgpjDhi/cqspobIg5nlLNlXCMpuit\nJHu0xj96O3kuuEh6+t8xxxpOGi/nM7PV59Rx0QeaqoLk/e1WSZJl/a+dOreRRZVEejrDHZ2c4T7q\nmNC2WVCoNa9/oNLH7g8l2UVyPXCPNl9wuXz+gHK6YTn/BrdPNquhXHdsOyTf2L3brGhjqalJZWgp\nU3/hxSq49v9ixnPnzlKgT3ouFBZNDCf31U29QZ5Dj0jLeQEASJTVkvj/l5guV2g70L9/V4aDNOM9\nCQAAAAAAALoLknB6uMB228va1n+E2mxRiTYtGdXVoW3LpoquDK19zVU9mpNvSMJpW4tKQe5xp0iS\nfLvvKcVJujAbG6OqnljWrU1tfEi9FgkqniOOitq37rKTam+/M24SjmXdOvWdeqUajz1ROriV1k4Z\n5PEF1OjxyxknGTBn/sdqOH9SBqJKsVxn3OGCqy5NcyBBgf4DMnJeAABSJjfcupN2VNnNQhIOAAAA\nAAAAugmScHo4m9WQpY3S3LYvF8gIBGRs3KhAnz7h1kRN8qb9NbRtXfyDpBbVVFKk4KhDZY4cKUky\nm5NvOvHfrb2J6XBED+TkBL+20o7Msnq13D8vDe17jj42VaEhTSIr4XiGxLYyslosMgsKtfaJ2Rp0\nzvjoY8uWqui/76lo5r9VvmFzymNNiNer7XYbKWttjSpfejP2eHPVrNa0SFCrvf4vXRhc6pjO2CSc\nmml3SmYgzuzUsP30o5yPPyJJCpT2Tdt5AQBICxI3egzeKgIAAAAAAKC7IAmnh2uvLLvh9UoKtqIx\n7Q55Rmwp+/JwYoZl06bwdmVlaoJsGdPmauUu+FRa8GnTicMfjlc985J8CVZjWPO/LxXIzVVu+1Oz\nmllcHH+8ORmnhZIzTg5te0vL5Ntx55TEhTRqej1LUt2Z57Y6zdm3JLS9+b6HVXjR+TILC1MaWjJy\nPv9U1tpgSylr0++nuqunKG/6NEmS+/gT27x93dVT5XzisdC+d+99UhRp1zLjVMJpnHBeWmOwrFsb\nkYRTmtZzAwCQDjWTr5W/X79Mh4Ek0Y4KAAAAAAAA3QX/LwZJUs7H/5N1w3pZ6utVd8XV8Sd5PKkP\npK5OfbceGj1mCbeh8u5/oMxR2yZ0l/7hI2T2gjYqZl5+aLv2zzeHtiPbTPkHDpJnz7Ext/WNGJHS\n2JAehjfcWi7H1XraWWSFFf/Q4U0b7VSTySCjYmN4Z/lySZLpdKnq+VdVNf1uuU84qc3bm/36ybfl\nVpKkTTdNk2+3PVIVapeK/Dk1nHmuKr76If0xuFzh7ZKSNmYCAJCdGidPkffsCZkOA0lqq/orAAAA\nAAAAkE5UwoEkKeeLzyVJtg2/qvKSK1VfWKqSB2fIuv7X0BzD7U55HHm3xmkTY7XGjiXAMCRDveBD\nWcPQyp/WymdKBX3CCTmW6urQdvVzLyv3n4/K/un8qJsGmhMxkN384SQc0+5ofZ7LGbNtlG9IVVRJ\nM2prQ9uFf789uJHrkHef/aR99uvQfVS9/q5qKjYrb6vh2fPbICIJp/bOGRkJwXTlhbYDBUUZiQEA\nAKA9FirhAAAAAAAAoJugEg6imC6XlJ8v93kXyPB5o46lIwnH9ciDsYPttNTqiN7ymayjME95RXlR\nY5GtdwJl/SRrbO6dkZcXM4YsFNGOSo7Wk3BMI/yaMp3BSif2BZ+lLKykmKZyn5sbOxynVVObd1Nc\nIseIoVnVqiCyEk7GRLSzMwsKMhgIAAAAAAAAAAAA0P2RhIMolW++L0my51hkqaiIOma6G1N+fjNO\n4oCZbCUcGVl14T0ZFsOI+S9QzyGHh7bNgsL4lYVIwukRIhPnzDae82bfvpIk7047d49EjzbkTzhT\n9g/eixm3fbkg4fvKsSX3uyTdzPxulvSS23qLMwAAAAAAAAAAAAAk4aAF/5ChkiTDMFT/x4skSTXT\n7pQk5b71hiwrV6T2/AMHxw4mmYQjo/dUwmlN7RWTVXXmRMkwZNpiK+GY+STh9Ag+f2jTqK9rdZpZ\nWKTln3ynqlfellkUp8WQ3x87lgHuyio5X30p/sFe8KIO9OuX6RAAAAAAAAAAAAAAJIAknF6u4awJ\n0QMRFVHqbrpVFd8sVuM5E0Njrhl3pjQey4b18pf2Ve0tt0cMJl+9omV1mN6mYeoNqrntjuBOnKQm\n//At0hwRUiGyEo4RCLQ51z5siORwBKsjtVA2sLjLY0uU8flnGjJqWKvH66+eksZoMsMsLFL5LdO1\ndnYriUhpUnfF1TKvuSajMQAAAAAAAAAAAADZgCScXs79u2NaP2gYCgwcJFkiniammdJ4DK9H/hFb\nyj9sRHjQklwCjaFeUTSjXfbmVjxxKuEEho9IbzBIDW84Cae912q7rZnaSeJJtT7n/D5mrHzD5tB2\noDBOBZ8eqO7Mc+Xea5+MxlA/9U8ypk3LaAwAAAAAAAAAAABANoi9Go/eJScntFlz69/anW7ZtCll\noRg1m2V4vZI9R6bTGRo3k2xHZRjB9lq9naUpmck7NvaCvn+LLdMdDlLASCAJp937qquNWyUnHSzL\nl8lWvj7usdqbp8n84ouoql09mdNhUyCQ2uRHAAAAAAAAAAAAAF2DSji9XURVFLOoT7vTvbuMSVko\nhb8/RZJkn/+RTJcrfCDpJBwScCJ5995Xmx96XHUHHapN8z7SmqdfCFY8Qo/i33pkUrc3amq6KJLE\n5U27ObRdc/vfo441nD9JjQ891mvKW1kMQzYrSzUAAAAAAAAAAACQDTp0Ze+bb77RmWeeGTM+b948\njRs3TuPHj9ecOXMkSV6vV1dddZVOPfVUnX766frll1+6NmJ0KTMyCcfhaP8GKbzwbf/k43Aszogk\nHCO5C9CWXnKxPhHuE05S5ZNz5P/NDjIOPDDT4aCLefbeT56DDu3wfPdhR4S2/X3LJEnG5s2tTU+9\niApdjaedoYZjT1DVsy9nLh4AAAAAAAAAAAAA6IB2sxseeeQRXX/99XK73VHjXq9Xt912mx5//HE9\n+eSTmj17tjZu3KgPPvhAPp9Ps2bN0kUXXaS77rorZcGjC3SwEk7V3BclSUZ9fcpDkhTVjirZSjjN\nbZgQzZET/L7m2Kiy0dN4Dj08oYQ5/1bBqjmNhx4u92lnSAq2h8uUyORA5eaq9tF/ybvfARmLBwAA\nAAAAAAAAAAA6ot2r78OGDdM999wTM/7LL79o2LBhKioqkt1u16677qrPP/9cW2yxhfx+vwKBgGpr\na2WLvJiKbse0hStO+Eds0fq8ggJJktHYmLJY/EOHhXe6sB0V0OvkJPZ7t37yFFVc9n+q/cd9CvQp\nliS5ZtypgvEnSl5vKiJsk2ll3QAAAAAAAAAAAACQfdq90nn44Ydr9erVMeO1tbUqaErMkKS8vDzV\n1tbK5XJpzZo1OvLII1VZWakHH3ywQ4EUF7tks2VPskVZWUH7k7JBv6LQZunQflJrj2twsEWNUz65\nuvixm6YpwzCkgw+SnnhCWrBApcP6h4678nO7/JxAT5bfJ1/5ibxmygpUc+tfVeCyS7v8RpLkeOsN\nSVLu2qXSbrulIsz4/H7p349Lkszjju85v2t7AH4WAIBMYh0CAPQ2rH0AgGzE+gUAQAeScFqTn5+v\nurq60H5dXZ0KCgr0xBNPaN9999VVV12ldevW6eyzz9bLL78sh8PR5v1VVqanzVFXKCsrUHl5TabD\n6BLWGrdKmrY31vtltvK4LPV+lUpq2FStui587PWNXlmtFjlyrCqoqVeupAqrS4E6v8qa5tQ1+lTf\nQ77fQCo1v2ZqGv1qTPA14/b41VjnlrXf0NDvBEmq/naxPMNHdVmM7cm9++9qfpu26dobFeC13y30\npHUPAJB9WIcAAL0Nax8AIBuxfgEAepO2Ek87nYSz1VZbacWKFaqqqpLL5dKCBQs0ceJE/fLLL8rJ\nCbY4Kioqks/nk9/v7+xpkGKRbV/MXGfrE51NxxoauvT87k3VspcUyZFjlXy+YBy2HCkn3CaLdlRA\nYszI108H2WyGpNi2dIXnnZ2216DRovVVYNjwtJwXAAAAAAAAAAAAALpCwkk4L7/8surr6zV+/HhN\nmTJFEydOlGmaGjdunPr3769zzjlH1157rU4//XR5vV5dccUVcrlcqYgdXSHyYr2t9aeDmZsb3Gho\n7LJTOx++X2XXT9HaJ+ZIRx0RvgCf0yIOi6XLzgn0Cp1ImrE2v87sdgVcebLUByud+cakrxVVzoLP\nWgRFAh4AAAAAAAAAAACA7NGhJJwhQ4Zozpw5kqRjjjkmNH7QQQfpoIMOipqbl5enGTNmdGGISKk2\nEm8imc5gIpXrrddU187cjnI+cK8kqeCZp9V41BGSrzkJp0UVDy7EAx3iHzBQ1l/XKTBocFL305yA\nI0lVr72TbFgdljPvbfU5dVzazgcAAAAAAAAAAAAAXYkSI72caetg2xq7PbRpVFd1aQwFr7wgBQKh\nSjgtYzItJOEAHVH1+rtaeesMeffZL6n7qb3hJklS/aRLuyKsDvMedKg2LFyqqof+qY0/r0rruQEA\nAAAAAAAAAAAgWQm3o0IPY+tggothhDcbG2UWJX9q65rVoe38yVdIPl9wh0o4QKcEBg9R1QmnyBnx\neu2MhksuV8Mll3dRVIkxyvrKewLVcAAAAAAAAAAAAABkHyrh9HJmrlOS5C8pbX+uwxHcqK/v8jic\nT/4znITTMunGwtMU6CiLJbkEHAAAAAAAAAAAAABA55Dd0Ns5HFr78VfaOP+Ldqc2/v4sScFKOKlg\nn/9RcCPJKh5Ab2bw+gEAAAAAAAAAAACAjKAdFWTdaktZOnDh3nS6JElGQ9dXwmmTx53e8wFZjMxK\nAAAAAAAAAAAAAMgMrteiQwk4kmTm5ga/1jekMpwYRkN6zwdkM3uOtf1JAAAAAAAAAAAAAIAuRxIO\nOqy5Ek6gti69Jw4E0ns+IIsV5tkzHQIAAAAAAAAAAAAA9Eok4aDDTJdTklRw9/SUnaP+oEND25vv\nfUiS5B5/WsrOBwAAAAAAAAAAAAAA0BVIwkHCHAs+65L7CbW3sljk3XEnVT/2b9XNejZ03H3Kafp5\n2Ub5txrZJecDAAAAAAAAAAAAAABIFZJw0GHuE0/u0Dyvr2PtoxrOnihJ2vzUbFW986E8xxwfM6fA\nmdPxAAEAAAAAAAAAAAAAADKEJBx0mFlSqvpddpNptUqm2cokU/l/mqrCA8bK2LCh7Tu02SRJgZLS\nVqdYLEZnwwUAAAAAAAAAAAAAAEgbknCQEKO0VIbfL2PjxrjHrUt/VuGjD8ixaKEKLz6/1fvxBwJS\noKlijoWnIQAAAAAAAAAAAAAAyG5kPyAhFqtVkmT74fv4E/zhVlTWZUvjz2lslOeLr0nCAQAAAAAA\nAAAAAAAAPYYt0wEgu3h331OON1+T4W6Me9zMyQlt+7YeGXdOwcQzVfb2m+HbGCThAAAAAAAAAAAA\nAACA7Eb2AxLjsEuS8qZOjn/cMMLbuc64U3IjEnAkUQkHAAAAAAAAAAAAAABkPbIfkBCjulqSZFu1\nMvZgXZ0cLz0f3q+tiZniWfdr7O1IwgEAAAAAAAAAAAAAAFmO7AckJqLdVCBgRh3Ku/0W5d98Y3ig\noSHquOtvt2rwTtvE3idJOAAAAAAAAAAAAAAAIMuR/YCENEw4L7RtnTMrtG379BO5Hry3xeSGqESd\nvOnT4t6nmZfXtUECAAAAAAAAAAAAAACkGUk4SIhZ1Ce03ffSP4a28267KWau0dAg5+QrlDPv7Vbv\nr+rk3ysweEjXBgkAAAAAAAAAAAAAAJBmtkwHgOxjOp0ymltN1dZK+fmyf/y/mHn2n3+U/ecfpScf\nV/mGzXHva/Pf75HTMFIZLgAAAAAAAAAAAAAAQMpRCQcJMy3W0Lb113UKBAKdux9XnnJsPAUBAAAA\nAAAAAAAAAED2oxIOEmcNJ+HY33pD1oULO3U3/oEDZbVQBQcAAAAAAAAAAAAAAGQ/ypAgYfWXXB7a\nzr/xOhXNfVqS5NlmlAJ9+rRyo/rYoSnXy6AVFQAAAAAAAAAAAAAA6AFIwkHCGi65Iu64f7c95Ntx\nF0lSoLBI1U88HTpmqdwUM9993ImpCRAAAAAAAAAAAAAAACDNSMJB4iwWuXcaEzPcMOlSNZ50iiTJ\nt/MYeY46Wp6995MkmXV1aQ0RAAAAAAAAAAAAAAAgnWyZDgDZyTvuJDm++TJqzMzPl/uU07TZapXn\n4EODgw578NjmzVFzq158PS1xAgAAAAAAAAAAAAAApAOVcNAp3j32ihkLlPYNVsk5+VSZJaWSJNNq\nlSSVHXWwJKn+iKP1/eJf5R27T/qCBQAAAABhv+nqAAARzklEQVQAAAAAAAAASDGScNAppt0RO+iI\nHXO881bUvuuNV+TMpQATAAAAAAAAAAAAAADoWUjCQefY7aFN98GHqmruix26WfVlV8tu42kHAAAA\nAAAAAAAAAAB6FrIh0ClmRBJO47l/kPeA38ad591x56h9//AtZBhGSmMDAAAAAAAAAAAAAABIN5Jw\n0DkRSTjG5s2tTmu48OKofe/2O4gUHAAAAAAAAAAAAAAA0NOQhINOMXPCSTi2RT+0Os99wklR+77f\n7EAlHAAAAAAAAAAAAAAA0OOQhIPOcYSTcBrOmdj6PItFG6+6VpJUc+fdMgyJHBwAAAAAAAAAAAAA\nANDT2DIdALJTZCWcwNBhbc6tvfhy1R15jFw7bi/DHyAJBwAAAAAAAAAAAAAA9Dgk4aBz7Pb25zRx\n5Npl2WG70D7tqAAAAAAAAAAAAAAAQE9DEg46x2rt8FSbNdz1zDAkUnAAAAAAAAAAAAAAAEBPY2l/\nCtB1DMOgEg4AAAAAAAAAAAAAAOhxqISDTmv87cHyDhme0G0sJOAAAAAAAAAAAAAAAIAeiCQcdFr1\nzOfk9QfkyHQgAAAAAAAAAAAAAAAAGUYSDjrNYjHksFgzHQYAAAAAAAAAAAAAAEDGWTIdAAAAAAAA\nAAAAAAAAAJDtSMIBAAAAAAAAAAAAAAAAkkQSDgAAAAAAAAAAAAAAAJAkknAAAAAAAAAAAAAAAACA\nJJGEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAA\nAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIOAAAAAAAAAAAAAAAA\nkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAAAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAA\nAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgSSTgAAAAAAAAAAAAAAABAkkjCAQAAAAAAAAAAAAAA\nAJJEEg4AAAAAAAAAAAAAAACQJJJwAAAAAAAAAAAAAAAAgCSRhAMAAAAAAAAAAAAAAAAkyTBN08x0\nEAAAAAAAAAAAAAAAAEA2oxIOAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAA\nAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAAAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgS\nSTgAAECSZJpmpkMAAAAAAAAAAAAAshZJOHGYpimv15vpMAAASBu/36/q6urQPgk5AIB0CQQCamxs\nzHQYAACkjd/vV3l5uaTgOggAQDbwer2aP3++amtrMx0KAADdGkk4EUzTVGVlpW666SYtWbIk0+EA\nAJAWzzzzjCZOnKjbb79dL7zwgnw+nwzDyHRYAIBeYNasWZo0aZLuuOMOrVy5MtPhAACQcg0NDbrt\nttt07733SpIsFj6eBQB0f3PnztWECRO0aNEiORyOTIcDAEC3xrs8hf/b3zAMrV69Wq+//roWLFig\nqqqqDEcGAEBqNK99ixYt0rvvvqubbrpJBx98sBYuXKj169dnODoAQE/WvAb99NNPmjdvnqZOnSrT\nNDV79mxJVAQAAPQ8kZVGrVarVq9erdWrV2vevHmSgpVxAADobkzTlGma+uCDDzRnzhzdeuutOuWU\nU1RRURE1BwAAROv1STiVlZWqr68P7X/xxRf63e9+p19++UU//vhjBiMDACA1Ite+Dz/8UMOHD9ew\nYcM0atQofffddyotLc1whACAnipyDfroo4+09dZba/jw4dp77721ePFilZeXy+PxZDhKAAC6TsvP\nHtetW6eioiJNnDhR7733nioqKuTz+TIYIQAAsSorK1VXVyfDMJSfn6/dd99dM2fO1KRJk0IV3crL\ny6mmDQBAHNYbb7zxxkwHkSlPPPGE/v73v2vlypVasmSJxowZI5fLpRNPPFFLlizRihUrNGLECOXn\n52c6VAAAukTz2rd8+XKtXr1a55xzjkaPHi2Xy6Xy8nL9+OOPOuqoozIdJgCgB4pcg1atWqWzzjpL\ne++9t6qqqnTXXXepuLhYCxYs0Pr167XTTjtlOlwAAJIW+dnj4sWLteuuu6q+vl5+v19jxozRv/71\nL73xxhsaO3asioqKuJAJAOgWItevpUuX6sgjj9RTTz2lvn376o477tBWW22lH3/8UevWrdOOO+6Y\n6XABAOh2bJkOIFOWL1+uDz/8UA888IC8Xq+mTp2q4uJijRs3TpJ0wgknaMaMGVq4cKFKSkpkt9sz\nHDEAAMlpufZde+21stlsOuWUU2Sapl577TVtt912kqRvvvlGgwcPVt++fTMcNQCgJ4i3BlmtVp16\n6qkqLi7WvffeK4fDoZkzZ4ZuY5omFyMBAFmr5dp33XXXacCAAerbt6+effZZvffee+rXr58Mw1Cf\nPn1Y8wAA3ULL9euaa67RoEGDNHny5FBlt2222UbvvfeeioqKJPHeDQCAlnptO6qKigpts802ys3N\n1cCBA3XJJZfowQcfDJV/HTBggHbccUe98847Ki8vz3C0AAAkr+Xad/HFF+uRRx6Rz+eTYRjasGGD\n+vTpo6lTp+qZZ57JdLgAgB4k3hr02GOPyefzadWqVfr555+1evVqffDBB3I4HJLEh7gAgKzWcu2b\nNGmS7r33Xnk8Hm233Xa64IILdPfdd2vLLbfUq6++mulwAQCQFLt+XXrppZo+fbqGDx+unJwczZ8/\nX7/++qu+/fZb5ebmSuK9GwAALfWKdlTNFxcNw1AgEJBhGKqvr9ebb76pnXbaSX369NGgQYO0cOHC\nqNLno0aNUllZmUaNGpXhRwAAQGISWfsqKio0YMAATZ48WV6vV4cccoguuOACuVyuTD8MAEAWSmQN\nqq+vl91u11NPPaW5c+dq3LhxOv744zP9EAAASEhH1r7BgwdryZIlamxs1NVXX63+/ftLCn7+uOee\ne2b4EQAAeqOOrl/ff/+96uvrZbVaNXPmTD3zzDM64YQTdOSRR2b6IQAA0C31+CScBx98MPTfJFts\nsUXoD4nS0lL98MMPWrZsmUaOHCmn06nNmzcrLy9Po0aNUiAQkM1m08CBAzP8CAAASEyia5/T6dSY\nMWPkdDp13XXXafTo0Rl+BACAbJXIGlRdXa2cnBwdeOCB2m+//XTKKado2223zfAjAAAgMYmsfZWV\nlSouLtaoUaPk8/lktVr55wcAQEYk+t7NZrPpkEMO0eGHH66TTjqJ924AALShx7aj8ng8uvnmm1Vd\nXa1zzz1XHo9HkmS1WmUYhr7//nuNGDFCa9as0cyZM/Xqq69q1qxZKiwslCRZLD32WwMA6KE6s/bN\nnDlTBQUFkqSJEyfKZrNl8iEAALJUZ9ag2bNnh95/5ebm8h4MAJBVkv3skfdeAIBMSPa9m8Vi4b0b\nAADt6LHv9qxWa6ilxtNPPy2/368VK1bovPPO06233qpFixbpb3/7m/bcc0999dVXmjdvnq688kqN\nHTs206EDANApnVn7rrrqKtY+AEDSeP8FAOhtWPsAANmI9QsAgNQzTNM0Mx1EV5k1a5YMw9D48eO1\ndu1aPfjggxo0aJD69eun/fffX1dccYV23313nXHGGSopKcl0uAAAJI21DwCQKaxBAIDehrUPAJCN\nWL8AAEivHlUz7vPPP9dDDz2khoYGDRo0SHl5eXr77bc1cuRI9e3bV3/+85/1/vvvh8rm+f3+DEcM\nAEByWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA9MrqJJzy8vLQ9k8//aT8/HxtscUWmj59uiTp1FNPVVlZ\nmZYsWSK/3681a9Zor732CvVctlqtGYkbAIDOYu0DAGQKaxAAoLdh7QMAZCPWLwAAMisr21H9+uuv\nuueee1RRUaGDDjpI++yzjwoLC1VeXq7+/fvr2GOP1UMPPaStt95a77zzjubPn6/ly5eroaFBkyZN\n0r777pvphwAAQEJY+wAAmcIaBADobVj7AADZiPULAIDuISuTcO6//355vV6deOKJevHFF1VZWakr\nr7xSeXl5kqR7771XixYt0n333SfTNGUYhr755hvttNNOGY4cAIDOYe0DAGQKaxAAoLdh7QMAZCPW\nLwAAugfrjTfeeGOmg+iIZ599Vv/617+0ZMkSrV69WmeddZaGDh2q/v37a/HixVq5cqV23nlnSdIe\ne+yhadOmadiwYdpqq60kSQMGDMhk+AAAJIy1DwCQKaxBAIDehrUPAJCNWL8AAOh+siIJZ/r06fru\nu+80YcIEvfnmm3r11Vdlt9u1zz77yOl0ymq1auHChdphhx2Um5srSRo9erSGDBmikpKSDEcPAEDi\nWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA7smW6QA6oqamRuPHj9f222+v3//+9+rXr59eeeUVHX300Ro9\nerRKS0vldrvlcrlCJfTGjh2b6bABAOg01j4AQKawBgEAehvWPgBANmL9AgCge7JkOoD2BAIBHXbY\nYdpxxx0lSa+99pr2339/TZo0SbfccouWLVumjz/+WFVVVQoEAjIMI8MRAwCQHNY+AECmsAYBAHob\n1j4AQDZi/QIAoPsyTNM0Mx1ER9XW1uqcc87RAw88oLKyMj3wwAOqrq7Wxo0bdc0116isrCzTIQIA\n0KVY+wAAmcIaBADobVj7AADZiPULAIDuJSvaUTVbv3699t57b9XU1Ojmm2/WyJEjddVVVyknJyfT\noQEAkBKsfQCATGENAgD0Nqx9AIBsxPoFAED3klVJOJ9//rkefvhhLVy4UMcdd5yOPfbYTIcEAEBK\nsfYBADKFNQgA0Nuw9gEAshHrFwAA3UtWtaN69tlnVV5ergkTJshut2c6HAAAUo61DwCQKaxBAIDe\nhrUPAJCNWL8AAOhesioJxzRNGYaR6TAAAEgb1j4AQKawBgEAehvWPgBANmL9AgCge8mqJBwAAAAA\nAAAAAAAAAACgO7JkOgAAAAAAAAAAAAAAAAAg25GEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAA\nAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAAACCLTZkyRc8991yrx6dOnao1a9akMSIAAAAAAIDe\niSQcAAAAAACAHuzTTz+VaZqZDgMAAAAAAKDHM0w+hQEAAAAAAMgapmlq2rRpev/999WvXz/5/X6d\ndNJJWrFihebPn6/q6moVFxfrnnvu0fPPP6+7775bw4YN03/+8x+tWrVKt912mxobG1VcXKy//OUv\nGjp0aKYfEgAAAAAAQI9AJRwAAAAAAIAs8uabb+qHH37QK6+8ohkzZmjlypXy+/1aunSpZs2apTff\nfFPDhg3Tyy+/rPPPP1/9+vXTww8/rLy8PF1//fW688479fzzz+vcc8/VDTfckOmHAwAAAAAA0GPY\nMh0AAAAAAAAAOu6zzz7TYYcdppycHJWUlGj//feX1WrVNddco7lz52rZsmX6+uuvNWzYsKjbLV++\nXKtWrdKFF14YGqutrU13+AAAAAAAAD0WSTgAAAAAAABZxDAMBQKB0L7NZlNVVZUmTpyoc845R4cf\nfrgsFotadiAPBAIaMmSIXnzxRUmS3+/Xxo0b0xo7AAAAAABAT0Y7KgAAAAAAgCwyduxYvfHGG/J4\nPKqurtaHH34owzC0xx576LTTTtPWW2+tjz76SH6/X5JktVrl9/u15ZZbqrq6WgsWLJAkPfvss7r6\n6qsz+VAAAAAAAAB6FCrhAAAAAAAAZJFDDjlE3333nY4++mj17dtXW221lRobG7V48WIdc8wxysnJ\n0ahRo7R69WpJ0oEHHqjzzz9fjz76qGbMmKFbbrlFbrdb+fn5uv322zP8aAAAAAAAAHoOw2xZmxgA\nAAAAAAAAAAAAAABAQmhHBQAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAA\nAAAAAEkiCQcAAAAAAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIO\nAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAk/T9xGUjzVTpaiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VWW+xvHnnPQeUqjSQUGkBimKIEVwLCg4iFKUcRQs\ngIKKF0RFBEXnIigooKAOiIwVBkeUIirg0KVJJ0BIIT05SU7aafcPbo6J6YeEBPh+1mK5s9/9vvvd\nSSBr7Tz+fgaHw+EQAAAAAAAAAAAAAAAAgCplrOkNAAAAAAAAAAAAAAAAAFcigjkAAAAAAAAAAAAA\nAABANSCYAwAAAAAAAAAAAAAAAFQDgjkAAAAAAAAAAAAAAABANSCYAwAAAAAAAAAAAAAAAFQDgjkA\nAAAAAAAAAAAAAABANXCv6Q0AAAAAAADANf369VNsbKy6deumFStWVMs9Dh06pPfff18HDx6UyWRS\nnTp11KNHDz399NPq37+/JGn48OGaOXNmtdy/Io4dO6Y2bdq4PN/hcOjHH3/Uv//9bx06dEgpKSly\nd3dXw4YN1bNnT40ePVpNmzYtd41vv/1WX3/9tY4ePars7GzVrVtXERERGj16tDp06FDuPlJTU/XJ\nJ59o8+bNio6Olpubm6655hoNHDhQo0aNUnBwsMvPCAAAAAAAagbBHAAAAAAAAJTo8OHDGjlypPLy\n8pznEhMT5e5eO14pRUVF6bXXXlNeXp7LwaSMjAxNmjRJ27ZtK3I+Pz9fp06d0qlTp/Svf/1LU6dO\n1ciRI0tcIzc3V08//bR+/vnnIudjY2MVGxur//znP3rmmWc0bty4Uvdx6NAhjRs3TikpKUXOHz9+\nXMePH9eXX36p999/X+3atXPpOQEAAAAAQM2oHW9RAAAAAAAAUOssXbrUGcoZMWKE7rjjDhkMBoWE\nhNTwzi74+9//rujoaHXr1s2l+Q6HQxMmTNCOHTskSTfccINGjhypli1bKjc3V9u3b9fy5ctlNps1\nc+ZM+fv765577im2zvTp052hnJ49e2rUqFEKCwvT4cOHtWTJEiUkJOjtt99WvXr1dO+99xabn5iY\nqLFjxyo1NVUeHh4aM2aM+vTpI5vNpg0bNmjVqlWKj4/X448/rtWrVyssLMyl5wUAAAAAAJcewRwA\nAAAAAACU6NSpU5KkevXq6eWXX5bBYCgyfvz48ZrYlpPdbr+o+evWrXOGcm6//XbNnTu3SDWg7t27\n66677tKIESNkMpn0+uuvq3///vL393des2PHDn377bfONebPn+/8PHXq1EmDBg3S8OHDFRMTo7fe\neku33Xab/Pz8iuxj7ty5Sk1NlSQtXLhQt956q3OsR48e6tq1qyZPnqzExEQtXLhQM2bMuKjnBgAA\nAAAAl46xpjcAAAAAAACA2ik7O1uS1KhRo2KhnCvB119/LUny9vbWjBkzSmzR1apVKz3xxBOSpPT0\ndP3yyy9Fxj/55BNJkpeXl6ZNm1bs8xQWFqYXX3xRkpSSkqI1a9YUGU9KStJ//vMfSVLfvn2LhHIK\n3HHHHbrtttskSV999ZVMJlMlnxQAAAAAANQUgjkAAAAAAAAokcPhkKQSAyuXO4fDod9++02S1KVL\nF9WpU6fUa2+66Sbn8bFjx5zH2dnZ2rZtm6QLLazq1atX4vx+/fopNDRUkvTDDz8UGfvpp59ktVol\nqcQ2VwX++te/SpIsFot+/PHHUq8DAAAAAAC1y5X3VgUAAAAAAFSL0aNHa9euXZWaU1Kro5SUFK1a\ntUq//PKLzp49q5ycHIWEhKhDhw66++67NXDgwHKrs5w8eVIrV67Uzp07FR8fL4fDobp16+rGG2/U\ngw8+qBtuuKHEeQsWLNDChQsVHBysnTt3KiYmRh999JF++eUXJSYmKjg4WJ07d9Zjjz2m9u3bS5LM\nZrM+/vhjrV+/XtHR0TIajWrbtq1GjhypO+64o8x97t+/X59//rl2796txMREubu7q1GjRurVq5dG\njx6thg0bljk/KSlJK1as0M8//6zo6Gh5enqqffv2GjNmjHr16lXmXFft3LlTDz30UJFzu3bt0nXX\nXSdJ6tatm1asWKGYmBj1799fkjR8+HDNnDnTef0333yjqVOnSpJ2796tH3/8UUuWLFFMTIyCg4N1\nww036J133pGXl5ckafv27frqq6+0b98+JSYmysPDQ+Hh4YqIiNC9996r7t27F9nPn78XC+9v/Pjx\nmjBhQrnPmZ+fryeffFIJCQlq0aJFmdcWBJQkKS8vz3l86NAhWSwW5+elLF27dtX69eu1b98+5efn\ny9PTU5Kc4aDy1oiIiJDBYJDD4dCOHTs0dOjQMu8HAAAAAABqB4I5AAAAAACgWri5uRU7t27dOr38\n8svKzMwscj4hIUEbN27Uxo0bdeONN+rdd99VSEhIsfkOh0Nz587VsmXLZLfbi4xFRUUpKipKX3/9\ntUaOHKmpU6eWWell69ateuaZZ5SVleU8l5iYqPXr1+unn37S4sWL1bhxYz366KOKiooqMnfPnj3a\ns2ePTp06pYkTJxZb22q1atasWVq1alWR83l5eTpx4oROnDihTz/9VNOnT9fw4cNL3N+vv/6qCRMm\nyGw2O89lZ2dr69at2rp1qx5//PFSn602+de//qW5c+c6P05KSpLZbHaGcmbOnKmVK1cWmWOxWJxf\nz2+++UaDBw/WG2+8UaWVe7y8vDR27NgKXVs4BFQ4TBUZGek8btq0aZlrNG7cWNIfz9a6desiawQG\nBpb4PV/A399fISEhSklJKXJfAAAAAABQuxHMAQAAAAAAFTJr1ixlZ2eXOu5wOPTyyy/r0KFDkqQp\nU6YUGd+wYYOeffZZ2e12eXh4aNiwYerXr58CAwN1+vRpffbZZzp48KB2796thx56SJ9//rn8/PyK\nrPH6669r+fLlkqQ6depozJgxioiIkNFo1MGDB/XRRx8pMTFRn376qcxms+bMmVPiXrOzs/X000/L\narXq0Ucf1S233KK8vDytXr1a33//vfLz8/Xqq6/KYDAoJiZGI0aM0IABA+Tj46Nff/1VS5YskcVi\n0aJFizRkyBBn6KLA9OnTtXr1akkXKp3cf//9at68ufLy8rRv3z6tWLFCSUlJevnll+Xp6akhQ4YU\nmX/kyBGNGzdOFotFHh4eGjFihPr16ycPDw/t2rVLy5Yt0+LFi2U0Vn2X8htuuEFr1qyRJD322GNK\nSkpSu3btNHv2bEmSr69vpdabN2+eGjRooGeeeUaNGzfWgQMH1Lx5c0nSmjVrnKGcbt266YEHHlDj\nxo2Vl5enY8eO6aOPPlJcXJzWrl2rDh06aPTo0ZL++F4saX9hYWFV8nkokJeXp3/+85/Oj2+55Rbn\ncUJCgvO4vOpHDRo0KDKvIJhTsEbh8dLUr19fKSkpRe4LAAAAAABqN4I5AAAAAACgQsqrCDJv3jxn\nKGfo0KEaM2aMcywrK0svvfSS7Ha7fHx8tHTpUnXt2tU53rFjR91zzz166aWX9NVXX+nkyZOaN2+e\npk+f7rxm7969zlBO8+bNtXz5ctWtW9c5HhERoSFDhuiRRx7R4cOHtXr1avXr108DBw4sttf8/HxZ\nLBZ9/PHH6tmzp/N8nz59FBsbq4MHDzqr5MybN69Iy6ouXbqoTp06eu2112S327V582Y9/PDDzvFN\nmzY5Qznjxo3T5MmTi9y7W7duGjZsmEaPHq1Tp05p5syZuvXWW1WnTh3nNTNnzpTFYpHRaNSiRYuK\nhEEiIiI0aNAgjRgxQmlpaWV9SVzi5+entm3bSpKz3VLhc5VlMBi0bNkytWzZUtKF/Rf4+uuvJUmt\nWrXSsmXLnPeTpBtvvFG33XabBg8eLJPJpC+++MIZzCn4XqyK/ZXnzTffVExMjCSpd+/ezueQJJPJ\n5Dz+c4jsz3x8fJzHGRkZxdYob770RyjqzxWnAAAAAABA7VX1/1sVAAAAAAC46qxZs0aLFy+WJHXu\n3FmvvvpqkfGvvvpK6enpkqQJEyYUCeUUMBqNeuWVV9SsWTNJ0hdffOGcI0nLli1zHr/11ltFQjkF\ngoODNX/+fGcbrQ8//LDUPd92221FQjkFCgd5unXrViSUU6B///7O43PnzhUZW7p0qSSpdevWmjRp\nUon3DgkJ0SuvvCLpQvWeL7/80jl24sQJ7du3T5J03333FQnlFGjRooWef/75Up+tNunWrVuRMEth\nycnJki5UmykcyilQv359TZw4UY8++qhGjRolh8NRrXv9s08++cRZ0cfX11dTp04tMp6fn+88LmjN\nVRpvb+8S5xUclze/8DWF5wMAAAAAgNqNYA4AAAAAALgou3fvdla2adiwod57771iIYtt27ZJktzc\n3DRs2LBS1/L09HSO5+XladeuXZIkq9WqHTt2SJLatWunDh06lLpGkyZN1KtXL0nSoUOHSq0qU1Io\nR5Lq1avnPO7Ro0eJ14SGhjqPC7f3MplM2r9/v3OuwWAodZ8RERHOKikFzyZJv/zyi/P4rrvuKnX+\nnXfeWSTsUVt17Nix1LEWLVpIkrZu3ap58+YpJSWl2DWjRo3S888/r+HDh5f5+axqK1ascLZCMxgM\nmjVrlnO/BQoCYAXXVFThawvWcHU+AAAAAACo3QjmAAAAAAAAl0VFRWn8+PGyWCzy8fHR+++/XyS0\nUuDkyZOSLrSgCgwMLHPNTp06OY9PnDghSYqLi5PZbJZUdtCjQME1DofDee8/a9SoUYnnC4eKSqrK\n8+drCldxOXr0qPPjFStW6Lrrriv1z/XXX+98pujoaOcap0+fdh6X1Z7J29tb1157banjtUWDBg1K\nHXvkkUfk7u4uh8OhxYsXq1evXrrvvvs0d+5cbd++vcYqwyxcuFCzZs1yfi3/53/+R3feeWex6wpa\nS0kXgmRlyc3NdR4Xro5TsEZ58wtfU5HqOgAAAAAAoHYgmAMAAAAAAFxiMpk0btw4paeny2AwaM6c\nOaUGSQpaUoWEhJS7buFgT8G8wi2tSgr+/FlYWFiRfZakoFpNWQpXRKmI0qrzlCcjI8N5XFA1xmg0\nKigoqMx5Fflc1DR/f/9SxyIiIrRw4ULVr19fkmS32/X777/rgw8+0JgxY9S9e3dNmjRJe/bsuSR7\ntVgsmjp1qhYsWCDpQmWaadOmacyYMSVeX/h7qHDlpJLk5OQ4jwt/XQvWKDxemoJ7lPd9AQAAAAAA\nag/3mt4AAAAAAAC4/FgsFk2cOFFnzpyRJI0fP1633357qdcXripTHrvd7jw2Go2Vni9JNpvNeVxa\n2x9396p/LVL4vk888YQGDRpUoXkFzykV3a/D4SizbZGHh4cLu7y0ymu71LdvX/Xq1Utbt27Vpk2b\ntG3bNiUkJEi6EERZt26d1q1bp3Hjxmny5MnVts/MzEyNHz/e2VbM3d1dr732moYOHVrqnIYNGzqP\n4+Pj1aZNm1KvPX/+vPO4cCWmhg0bKi4ursh4aeLj44vNBwAAAAAAtRvBHAAAAAAAUGkzZsxwBhgG\nDRqkp556qszrg4KClJiYqNTU1HLXTk5OLjKv8H+lPyrKlKXwNcHBweVeX1UK79Pb27vMVlSlCQ8P\nl3QhoJSWllZmlaHClYQuZx4eHurXr5/69esnSYqMjNT27du1adMm7dixQw6HQ0uWLFHv3r3VtWvX\nKr9/cnKyHnnkER0/flzShfZS8+fPV58+fcqc17p1a+fxuXPnyry2oF2Zh4eHmjZt6jzfqlUr7dmz\nR2lpacrMzFRAQECJ87Oyspx/f1q2bFn+QwEAAAAAgFqBVlYAAAAAAKBSli5dqq+++kqS1LZtW735\n5pvlVkW57rrrJElnzpwp0rapJAcOHHAet2jRQpLUuHFj+fr6Fhsvzf79+53HzZs3L/f6qnLttdeW\nuIeS5Ofna+HChfryyy+1b98+5/lWrVo5jw8dOlTqfLvdrhMnTlzEbmteenq6fvvtNyUmJhY537Jl\nS40aNUqffPKJpk2b5jz/008/Vfke0tLS9PDDDztDOaGhoVq+fHm5oRzpwve1j4+PJJXbbqtgvFOn\nTkWqNXXq1Ml5vHfv3lLn792711k5qjrCSQAAAAAAoHoQzAEAAAAAABW2adMmzZ07V5IUFhamRYsW\nOYMJZenVq5ekC62eCkI9JcnPz9fXX38t6UIroe7du0uS3Nzc1KNHD0nS4cOH9fvvv5e6RlRUlLZv\n3y5JatOmjUJDQyvwZFWjXr16zioq27Ztc1ZJKcnatWu1YMECTZ8+XV988YXz/MCBA53HBZ+Lkvz8\n88+XdcWcPXv2qHv37nrwwQe1atWqUq8rHJDJy8srMlZeIKw8drtdEydO1KlTpyRJjRo10qpVq9S+\nffsKzff29lbv3r0lSVu2bCm1mtPmzZudYwMGDCgy1r9/f2dLsm+++abUexX8vfHw8NCtt95aof0B\nAAAAAICaRzAHAAAAAABUyOHDh/Xcc8/JbrfL29tb77//vho0aFChuffdd58CAwMlSQsWLChSIaaA\n3W7XzJkzdfbsWUnSvffeW6SN09/+9jfn8ZQpU4q0vCpgMpk0adIk2Ww2SdIjjzxS4eerKgX7tFgs\nmjx5cokVgs6cOaN//OMfki6ES0aPHu0ca9iwoQYNGiRJWr9+fYlhjYSEBM2aNas6tn/JdOjQwRma\nWrlypaKiokq87ttvv3Ue/zkw4+npKUkym80u7eGjjz7Srl27JF1oebZ8+fIibaYqYtSoUZKknJwc\nTZ8+XVartch4cnKyZs+eLelCq7OhQ4cWGQ8MDNTdd98tSdqwYYPWrVtX7B7r1q3Txo0bJUl33333\nJQ2bAQAAAACAi+Ne/iUAAAAAAOBql5CQoMcff1w5OTmSpBdffFFhYWGKjIyUxWJxttj5swYNGig4\nOFgBAQGaNWuWJk6cqOzsbI0ePVrDhw9X3759FRAQoDNnzuizzz5ztqlq1qxZkRZGktStWzeNHj1a\nK1asUGRkpAYPHqyHH35YERERMhgMOnTokD7++GPFx8dLku666y7dc8891fhZKdnQoUO1YcMG/fzz\nzzp48KDuvvtujRkzRh06dFB+fr727t2rf/7zn87AzsMPP6zrr7++yBrTp0/Xzp07lZ6ermnTpmnn\nzp266667FBAQoP3792vp0qVKSkqSr6+vsrOzS9zHggULtHDhQknS+PHjNWHChOp98Ery9PTUk08+\nqddee00mk0nDhg3TqFGj1LFjRwUFBSkxMVHr16/Xd999J+lCW7M77rijyBrh4eE6ffq0jh8/ri+/\n/FJt2rRRUFCQmjRpUu79s7Ky9MEHHzg/HjNmjDIzM3X06NEy5wUFBalhw4bOj7t166bBgwdr7dq1\n2rx5s0aOHKkxY8aoQYMGOnr0qBYtWqSEhARJFwJlBQG1wp577jlt3rxZ6enpevbZZ/Xbb7/ptttu\nkyRt3LhRK1eulMPhUGhoqCZNmlTuswEAAAAAgNqDYA4AAAAAACjXr7/+qsTEROfHL730UoXmvfHG\nG84KIYMGDdLbb7+t6dOnKzs7W59++qk+/fTTYnNuvvlmvfXWW/Lz8ys2Nm3aNHl4eOjjjz9WSkqK\n3n777WLXGAwGjRkzRs8++2xFH69KGQwGvfPOO3rxxRf1n//8R/Hx8ZozZ06J144cOVIvvPBCsfN1\n69bVypUrNXbsWMXGxmrNmjVas2ZNkWuGDx+uhIQE/fzzz9XxGJfEyJEjdfbsWa1YsUImk0nvvfde\nide1atVKH3zwgbPlU4GBAwdq586dslqtmj59uqQLlZbefPPNcu/9ww8/yGQyOT+eP3++5s+fX+68\nIUOGFPt6zpo1S+np6dqyZYv279+vZ555psi4wWDQ+PHj9de//rXENUNDQ7V06VKNHTtWqampWrFi\nhVasWFHsmg8++EB169Ytd48AAAAAAKD2IJgDAAAAAAAumTvvvFPdu3fXp59+qi1btig6Olp5eXmq\nX7++2rZtq6FDh6p3794yGAwlzjcajXrhhRd0zz336LPPPtPOnTuVkJAgo9Gohg0bqnv37ho2bJja\ntGlziZ+sKG9vb82dO1cPPPCAvv76a+3du1dJSUmy2WwKDw9X165dNXz4cEVERJS6RqtWrfTtt9/q\niy++0HfffaeoqCjZ7Xa1bt1aDz74oO655x6NGzfuEj5V1TMYDJo+fbpuv/12ffnll9q/f78SEhJk\ntVpVp04dtWnTRgMHDtSQIUPk7l78NdbIkSOVn5+vL7/8UrGxsfL09Cy1gtCfHTlypMqew8vLSx9+\n+KG+/fZbrV69WkeOHFFWVpaCg4MVERGhhx56qMyvtXShTdf333+vjz/+WJs3b1ZMTIxsNpsaN26s\nfv366W9/+1uR1m4AAAAAAODyYHCUVmsaAAAAAAAAl7W0tDT16NFDL7zwgh555JGa3g4AAAAAAMBV\nx1jTGwAAAAAAAED1OHnypCSpcePGNbwTAAAAAACAqxPBHAAAAAAAgCtQZmam3n77bQUHB+uWW26p\n6e0AAAAAAABclQjmAAAAAAAAXIHWrl2rM2fO6N1335W3t3dNbwcAAAAAAOCqZHA4HI6a3gQAAAAA\nAACqlt1uV0ZGhoKDg2t6KwAAAAAAAFetWh3MsVptSkvLrultAAAAAAAAVEqdOr680wAAAAAAAJcd\n3mm4Jjw8oNSxWt3Kyt3draa3AAAAAAAAUGm80wAAAAAAAJcj3mlUvVodzAEAAAAAAAAAAAAAAAAu\nVwRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAA\nAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAA\ngGpAMAcAAAAAAAAAAAAAAAA1at26b7Vo0YJqW/+33/bolVemFjv/zjtzFR8fX+RcVNRZjR8/tkru\n614lqwAAAAAAAAAAAAAAAACXmaeffrZa1yeYAwAAAAAAAAAAAAAAcBXzmzFdXt+ukYwGhdgdVbJm\n3t33yjxjVunjebl6/fVXFR8fL4vFor59+zvHVq36VD/+uEFubm7q2LGznnxyog4e3K+FC+fL3d1d\n3t7emjXrTXl6eukf/3hdMTHRstvteuyxJ9SlS9dS7xkdHa3Jk8fLZDJpyJD7dNdd92r8+LF6/vlp\n8vPz18yZ0+VwOBQSElolnwOJYA4AAAAAAAAAAAAAAAAusTVrvlb9+g316qtvKDr6nLZv36asrCxF\nRp7S5s0btXjxR3Jzc9OLL07Rr79u1f79v6lfvwG6//4R2rZtizIyMrV9+/cKCgrW1Kkvy2RK11NP\njdWnn35R6j1tNqvefHOe7HabHn54hG6+uY9zbPnyZRowYJAGDx6iH3/coNWrv6qS5ySYAwAAAAAA\nAAAAAAAAcBUzz5gl84xZCg8PUGpS5iW557lzUerR4yZJUuPGTXToUIBSUlIUFXVW7dq1l7v7hUhL\nx46ddOZMpEaP/puWL/9ITz/9hMLD6+r6629QZOQpHTy4T0eO/C7pQvAmPT1dwcHBJd7z+uvby8PD\nQ5KHmjdvrvj4OOdYdPQ53X33EElS+/YdqyyYY6ySVQAAAAAAAAAAAAAAAIAKatq0uY4ePSJJio2N\n0ZIl7/3/+WY6cuR3Wa1WORwO7d+/T40bN9WGDet0xx13acGCJWrevIXWrv1GTZs204ABg7Rw4Qea\nO/dd9e07QIGBgaXe8+TJ47JarcrJydHZs2fUqNE1zrFmzVro8OGDkuTcV1WgYg4AAAAAAAAAAAAA\nAAAuqXvuGao33pip8ePHymazafjwkTKZ0tWyZSv16zdATzzxdzkcDnXo0FG9e9+qI0cOa86cWfLx\n8ZHBYNCUKS8qLCxcb745S+PHj5XZnKUhQ4bJaCy9Ro2np6eee26isrKy9MgjYxUYGOQce/jhv2vm\nzOnatGmDGjZsVGXPaXA4HI4qW60aJF2iEkkAAAAAAABVJTw8gHcaAAAAAADgssM7DdeEhweUOkbF\nHAAAAAAAAAAAAAAAAFwRPv74Q+3du7vY+WnTXqnSSjgVRcUcAAAAAACAKsb/XQYAAAAAAC5HvNNw\nTVkVc0pvrAUAAAAAAAAAAAAAAADAZQRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRz\nAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAABXtAxzvg6dTpHJnF/TWwEAAAAAAAAA\nAABwlXGv6Q0AAFBdMsz5OhiZIqvdrpSMXIUGeqt5g0D5+3jU9NYAAAAAAAAAAAAAXAUI5gAArkiF\nQzkFUjJylZKRq7rBPmpWP1C+3vwYBAAAAAAAAAAAAFB9+I0kAOCKYzLn69CfQjmFJabnKNmUq3p1\nfNS0foC8PflxCAAAAAAAAAAAAKDq8ZtIAMAVpbxQTgG7w6HzqdlKSMtRw1A/Na3vLw93t0u0SwAA\nAAAAAAAAAABXA2NNbwAAgKpSUijH05SmkCP7Sp1jdzgUk5ylHUcSdOZ8hqy2sgM9AAAAAAAAAAAA\nAFBRBHMAAFeEkkI5BptVt0x7TP0mjZR/7Nky59vsDkUlZOrQ6ZRq3ikAAAAAAAAAAACAqwXBHADA\nZc9kztfByORi7auu/fJjhZw8LIPDoWt++aHCa8Umm6tjmwAAAAAAAAAAAACuMgRzAACXtYJQjs3u\nKHI+4Fyk2q1YoNw6YbK7e6jxlvUVXvNMXIby8m1VvVUAAAAAAAAAAAAAVxmCOQCAy1ZpoRzZbLpx\n7otys1i09+kZio+4WcGnj8k/5kyF1rXa7ToZm14NOwYAAAAAAAAAAABwNSGYAwC4LJUaypHUes0K\nhR49oHO33qG4m/orpvcgSdI1laiak2zKVVJ6TpXtFwAAAAAAAAAAAMDVh2AOAOCyY861lBrK8YuN\n0g2fvKO8oDra9+SLkqS4nv0q3c5Kkk7FmGS12atkzwAAAAAAAAAAAACuPgRzAACXFZvdrsNnUksM\n5chuV9d5L8k9L1e/PTVd+cEhkiSLf2Cl21lJUp7VptNxGVW1dQAAAAAAAAAAAABXGYI5AIDLyslo\nk7LzrCVujef9AAAgAElEQVSOtfjuc9U9uFuxN/VXTJ+/FBlzpZ2VJMWlmGXKynNtswAAAAAAAAAA\nAACuagRzAACXjfMpZsWnZZc45psQqw5L/1f5/oH6bcLLksFQZDyuZz/ZPDzUeMsPlb7v8eh02Uuq\n0AMAAAAAAAAAAAAAZSCYAwC4LJhzLToVYyp50OFQxPxX5JGTrf2PT1VuaN1il1j8A5XQ5WYFnz4u\n/+iKt7OSpOw8q6ISMl3ZNgAAAAAAAAAAAICrGMEcAECtZ7PbdfhMqmyOkqvWNNuwWvX3/qrzXW9R\n1G33lLpOQTsrV6rmRCdmyZxrqfQ8AAAAAAAAAAAAAFcvgjkAgFrvRLRJ2XnWEse8UxLVcfEcWXz9\ntPeZGcVaWBVW0M7qmq3rK70Hu8OhE+fSKz0PAAAAAAAAAAAAwNWLYA4AoFY7n2JWQlp2yYMOhyLe\nmSFPc6YOPvq8cuo2LHOti2lnJUmm7HzFJpsrPQ8AAAAAAAAAAADA1YlgDgCg1srKsehUjKnU8cY/\nfaeGO35SYsfuOn3HsAqtGd3n9gtzXWhnJUln4jKUl29zaS4AAAAAAAAAAACAqwvBHABArWSz23Xk\nbKpsDkeJ415pyer83ixZvXy0Z/JrkrFiP9Iupp2VJFntdp2MpaUVAAAAAAAAAAAAgPIRzAEA1Eon\nok3KzrOWOt75vdnyyjTp0COTZG7QuMLrWv0CLqqdlSQlm3KVlJ7j0lwAAAAAAAAAAAAAVw+COQCA\nWud8ilkJadmljjfaukGNt/yg5HZddOqekZVe/2LbWUnSqRiTrDa7y/MBAAAAAAAAAAAAXPkI5gAA\napWsHItOxZhKHXfPNqvze7Nk8/DU7smzKtzCqrCLbWclSXlWm07HZbg8HwAAAAAAAAAAAMCVj2AO\nAKDWsNntOnI2VTaHo9Rr2n62SD6pSTr2wFhlNW7u0n2sfgFKiOh1Ue2sJCk+NVu5+aW32wIAAAAA\nAAAAAABwdSOYAwCoNU5Em5SdV3rQxT/2rK79ZrnM9Rrq2P1/v6h7RfceJOni2lnZHQ6dS8i6qH0A\nAAAAAAAAAAAAuHIRzAEA1AopplwlpGWXeU3HxXNktFp04LEpsnt5V3hto8FQ7JyzndVFBHOkC1Vz\n8vJtF7UGAAAAAAAAAAAAgCsTwRwAQK0Qm2wuc7z+rl/UcOcvSuzYXbG3DKzwum4Gg5rWCyh23tnO\n6syJi2pnZXc4FJ1I1RwAAAAAAAAAAAAAxRHMAQDUuJw8q1Izc0sdN1jy1WnxHDmMRu17cppUQgWc\n0oQGeatRuJ/cjcV/5FVFOytJOp9iVp6FqjkAAAAAAAAAAAAAiiKYAwCocXEpZVfLab3mUwXEnNWp\nux9URvNrK7V2eLCP3N2MahjmV/y+VdTOyuZwKIaqOQAAAAAAAAAAAAD+hGAOAKBG2e0Oxadklzru\nlZqk61e+r7zAYB0ePb5Sa7sZDAoJ9JIkNQr3k/FPlXYKt7MKOHe68psvJC7ZLIuVqjkAAAAAAAAA\nAAAA/kAwBwBQo5LSc2Sx2Usdb//RPHlkm/X7mKdlCQyu1NqhQd5y+/8WVl4ebqpXx6fYNQXtrKqi\nak50YtmVfwAAAAAAAAAAAABcXQjmAABqVGxy6WGWOscOqvmG1Upv0Uan/zKs0muHBxcN4lxT17/Y\nNc52VlvXV3r9P4tNzpLFWnrICAAAAAAAAAAAAMDVhWAOAKDGZOVYlJGdX/Kg3a7O782WJO17cprk\n5laptQu3sSrg5+2h0EDvIueqsp2Vze5QbHLWRa0BAAAAAAAAAAAA4MpBMAcAUGNik0oPsTTdtFah\nxw/qXJ+/KLnDjZVeu3Abq8KuCS9eNaeq2llJUkyiWdYyWnMBAAAAAAAAAAAAuHoQzAEA1Airza7E\ntJwSx9zNWeqwbK6sXt46+NjzLq3/5zZWBeoEeCnAx7PIuapsZ2W12xWbVHp7LgAAAAAAAAAAAABX\nD4I5AIAaEZ+aLZvDUeJY288WyTstWceGP6acug0qvXZJbawKa1yvaNWcqmxnJUkxSVlUzQEAAAAA\nAAAAAABAMAcAUDPOp2SXeN4/5oyuXb1C5nqNdHzYIy6tXVobqwLhQd7y9nQrci669+2SqqadlcVm\nV1wyVXMAAAAAAAAAAACAqx3BHADAJZeWmSdzrqXEsU6L58hotejAuCmye3m7tH5pbawKGAwGNQ4v\nWjUnrmffKmtnJV2ommOzUzUHAAAAAAAAAAAAuJoRzAEAXHJxKSVXk6m/82c12LVFCZ16KPbm21xa\n281Ydhsr571CfeXh9sePwcLtrIJOH3fp3oXlW+2lVgUCAAAAAAAAAAAAcHUgmAMAuKTyLDalmHKL\nnTfm56vT4jmyG920/4mpksHg0vqhgWW3sSrgZjSqYZhfkXNnbr9PktTj9Wflbs506f6FRSdkyW53\nXPQ6AAAAAAAAAAAAAC5PBHMAAJdUfEq27I7iYZXWa5YrIDZKkXc/qIzm17q8fnltrAprFOYnY6EA\nUNxN/XVi6MMKPBepnrMmyWCzurwPScqz2nQ+lao5AAAAAAAAAAAAwNWKYA4A4JJxOBw6X0IbK5/E\n82q7cpHyAoN1+KHxLq/vZjQoNNC7wtd7eripfohvkXMHHntecd37qP7eX9Vp0Rsu76VAdEJmiUEk\nAAAAAAAAAAAAAFc+gjkAgEsmxZSrXIut6EmHQxHvvCKPnGwdfPQ5WQKCXF4/NNBbRmPlWmBdE+6v\nIjPc3LTzf/5Xpmat1WrtZ2q5dqXL+5GkXItNCVTNAQAAAAAAAAAAAK5KBHMAAJdMXAnVcppu+rca\n7N6q+C436eygoRe1fmXaWBXw9XZXaFDRKjtWP39tm7lIuUEh6vT+G6q359eL2te5hCyq5gAAAAAA\nAAAAAABXIYI5AIBLIifPqtTMvCLnvFMS1WnRG7L4+GrvpJmSoXLVbgqrbBurwhrXDSh2Lrt+I/13\nxkI53NzUc9YzCjgX6fLecvKtSkzLcXk+AAAAAAAAAAAAgMsTwRwAwCURl/ynajkOh7osmCnPrAwd\n+vuzyq7X6KLWd6WNVYEgP08F+XkWO5/SrrP2TJ4lj+ws9XrpCXma0lze37mETNnsdpfnAwAAAAAA\nAAAAALj8EMwBAFQ7u92h+NTsIueu+eV7Nfrvj0pq31WRdz1w0feo60Ibq8Iah/uXeP5c/7t1ZMTj\n8j8frZtenSBjfr5L62fnWXX8XPrFbBEAAAAAAAAAAADAZYZgDgCg2iWm58hi+6NajGd6qrq8N0tW\nL2/tnjxLMl7cjyM3o0EhLraxKhAW7CNfL/cSxw4/NEHRtwxS+O971eXdGZLD4dI9EtNzdC4h8yJ2\nCQAAAAAAAAAAAOByUvJvIOGUlpmns/EZcjMaZDQa5GY0ys1okJubQe6Fjo3GCx8bDZIMrrVSKYvB\nIPn7eMjdreayVKkZuUo25apVoyCX28UAuDr9uY1V5/dny8uUpv1jX5C5UdOLXv9i2lgV1riuv45H\nl1DVxmjU7uffkF9CrJpvWK3MJi10/P5HXbrHmfMZ8vfxuOggEQAAAAAAAAAAAIDaj2BOGVJMuTp8\nNlX2ClRG8E5OUMQ7M1Tvt1+V1KGbYnoPUuzNA5QfWKfK9mM0GBTg66HQQG+FBHrL38ejytYuS3au\nRadiM5SamStJMuda1L5FaI2GhABcPjKz85WR/Uf7p4a/blKTn9cppW1HnRwyukrucbFtrArUq+Or\nM+czlG+1Fxuzefvo11ffU/8J96v9sreV2aiZ4m4eUOl7OCQdOZumLteGy9ebH8MAAAAAAAAAAADA\nlczgcLjYj+MSSUqqmZYfiek5OhaVVn4ox+FQ041r1GnRG/I0Zyo7rL58k+MlSXajmxI796iWkI4k\nebm7KSTQS3UCvRUS4FXlQRmL1a6z8Rk6n5Jd7PPg7+2h9i1D5eXhVqX3BHDlOX4uTedTsyVJHpkm\nDXrsLnlmmrRx0WplNml50eu7GQ26+YYGVVbJKzUjV2fOZyozJ7/E8eBTR9R30ihJ0ub5K2Vq2dal\n+/h5e6hz6zBCjgAAAFeo8PCAGnunAQAAAAAA4CreabgmPDyg1DGCOSWIT83W8XNpKu8T452coK7z\nX1aDXVtk8fHVwcem6PSd98s3PlbXbF2vxlt+UMiJ3yVVf0inoJpOSIC3QgK9FODr6fJadodDcclm\nRcVnymIrXjWigLeHmzq0DJWv96Wp3APg8mO12bX993jZ/v9HzY3/mKpmG9fo0N8m6diDY6vkHvWC\nfdS2WUiVrFVYhjlfsUlZSjLlFgsnNty2UTfPnKjssPr6ccHnyg2t69I9woK8dUPz0KrYLgAAAGoZ\nXmIBAAAAAIDLEe80XEMwpxJik7J0MtZU9kV/qpKT0Lmn9kx+Tdn1GhW71Pd8zIWQztb1Cjl+SNIf\nIZ3o3rcrasBgOTxcD9GUxsPNqCA/TwX5eynIz1P+vh4yGsqvJpFiylVknEnZedYK36d9i1AF+lX9\nMwC4/J2Oy9C5xAv/jtfftUW3TB+ntFbX68d3/yWHe9WE+m5oFqKwKmplVZI8i01xyWadTzEXaXF1\n3ecfqsOyt5V8fWf9/I9PXP63vFn9ADWrH1hV2wUAAEAtwUssAAAAAABwOeKdhmsI5lTQuYRMnT6f\nUeY1f66Sc2DsCzpzxzCpAqGXkkI68V176b8vvyubd/X9UlmS3AwGBfh5KsjPU8H+Xgr085Cb8Y/2\nKdm5Fp2KzVBqZq5La1/fLEShQd5VueVa7/czKcrKtsjHy73QHzf5ernL29O9ytrqAJeryFiTopOy\nJEnu5iwNeuxueacla9PCL2Vq2aZK7lHVbazKYnc4lJSWo5gk84U2Vw6Hur/xnJr8vE4n7x2t/U9O\nc3nt6g4XAQAA4NLjJRYAAAAAALgc8U7DNQRzKuDM+QxFJZRxr0pUyakI3/Mx6vLea2qwa4uS2nfV\ntpmLZPXzd3H3fzDm5+v6le8rLzBYJ+8bU/p1BoP8vD0U7O8pm92h+NTsYq1aKnVfg0HXNg5W/RBf\nl9e4nJT3/WKQ5OXhViS00zDMt0gYCrhS2R0OHT+XroS0bOe5Lu/MUMvvPtfhUU/qyEMTquxe1dXG\nqjwFba5S41PUd8L9CoqK1I6p/6vovne6tJ6b0aAu14bLj9aAAAAAVwxeYgEAAAAAgMsR7zRcQzCn\nHKdiTIpJzip1vEiVHF8/HRg7RWf+UrEqOWUxWPLV/c0X1HjLD0q9rr22zP5AlsBgl9fzTklUz9ee\nVtiR/ZKk3c/O1tlBQy9qj5XVokGgmtQr/RvuSpCUnqPDZ1MrPS/Yz0vtW4YQzsEVzWa36/CZVKVm\n5jnPhe/boVtf+JtMzVpr43tfVWn7vpquNGPKytPJn3ZrwIRhMtjs+nHB58po1tqltXw83dXl2nB5\nuPNvBAAAwJWAl1gAAAAAAOByxDsN15QVzLmqf/vncDh0/FxamaGcJpvWatBjd6vBri2K73KT1n+w\nVmfuuP+iQzmS5PDw1M6p/9DZ2+5VyPFDuvX5h+WVluzSWiFHD2jA+GEKO7JfMb0GKt8/UF3enaGQ\nowcuep+Vcfp8hk7Fmi7pPS+lrByLjkWluTQ33ZynQ5GpstntVbwroHawWG3afzKlSCjHLSdbXee9\nJIfRqN3Pzq7SUI6b0aCQwJptoRfk7yVry1ba/ezrcs/L0U0zJ8rdXPrPlLLk5Ft1NCpVtTwvCwAA\nAAAAAAAAAKASrtpgjt3h0NGoNJ1PzS5x3JiXq4i3p6v7Wy/I4LBrzzOvausbS5VTt2GV7sPh5q7d\nz87WqcEjFHzmhPo+O1o+iecrtUbTDat163Oj5Z2WrANjp2j7S/O1Y9rbMtpsumnmRHmnJFbpnssT\nk5Slo2dTL6o1Vm1ksV6oBGK7iOcinIMrVU6eVftOJiszJ7/I+Rs+mS//+Bgd/+vflHZd+yq9Z1ig\nt4zGiw9JXqy6wb6KvWWgjg17RAExZ3Xj3GmSi/9OpGbm6XRcRhXvEAAAAAAAAAAAAEBNcZsxY8aM\nmt5EWbKz88u/qJKsNruOnk1Tkim3xHH/2LPqPfUxNdi9VWmt2uqXNz9WYpebqqRKTokMBsXf2Ftu\nljw12r5ZjX7dqLgefWUJCCp7mtWiTovfVIeP5snq66//vrJQ5wYMlgwGmRs2kdXLR9ds26iwI/sU\n1X+wHG5u1bP/EphzrcrNsyq8BlvMVCWHw6Hfz6QqM8dy4YTNpiY/fSerl3el24/lWmzKyLIovI63\njNX1PQVcQlk5Fh08laJci63I+eBTR3Tj29OVdU0z7Zj2thzu7lV63+b1A+Xr7VGla7rCw92ouBSz\nkjp1V9jve9Vg91ZZvX2U0q6LS+tlZOfLx8td/j41/2wAAABwnZ+fV7W80wAAAAAAAKhOvNNwjZ+f\nV6ljFQrmHDhwQM8//7yGDh1a5PzmzZv13HPP6ZtvvpHD4VC7du2Un5+vKVOmaNmyZfr+++/VsWNH\nBQcH6+jRo3rqqaf0zTffaO/everXr58MFQglVMUX3GK1KS0jT3Ep2TpzPlOn4zJkzrOWeG2jrRt0\ny/Rx8ks8r8g7h2v7S/OVHxx60Xsol8GgxM49ZXd31zW/btI1W9br/I23KD84pMTLPU1p6vXKU2ry\nyzqZmrbSL299rLQ2RatRpFzfSf5x59Rg9xZ5pybpfI++1RcuKoE516rQQG95eVy6QFB1iYzLUGJ6\njqQLgajub72gdivfV4t1X8hgtyulbadKBZ8I5+BKkZ6Vp4ORKbLYileBavfPBQo5eVi7psxRZtNW\nLt/D3WiUt6eb/Hw8FOTrqToB3goL8la9EN8K/Rypbp4ebkpMy5HFLsXfeIua/PSdGm3/UUk3dFV2\n/WtcWjMtI092h0M2m10Gg0Ee7ldtgTsAAIDLFi+xAAAAAADA5Yh3Gq4pK5hjcDjK7rfx4Ycfau3a\ntfLx8dEXX3zhPG+xWHTHHXfoq6++ko+Pjx588EEtWbJEP/zwg44fP67XXntNp0+f1uzZs7Vs2TI9\n9dRTuv/++9WnTx89++yzuvPOO9WvX79yN5+UlFmJR70gJ8+qDHO+0rPyZDLnK7uUEE5hBku+Oiz9\nX127eoWsXj7a+/SMC9VnakDrb/6pTovnKC+ojra8/qHSW7crMh4UeUw3zxgvv4RYxd7UX7umvCmr\nr1+JaxnzctVv0kjVOXVEv42frsjBIy/FIziFBHirQ8tLEGyqRgmp2Tp6Lk2SZMzPU4/Zk9Vo+2al\nXnuDfFIS5ZOSqMxrmum3CS8rsXPPSq0d7Oel9i1D5Gbkl+64/CSl5+hoVFqJbevccsy6+4HesvgH\n6bvlG6UKBNd8vdzVKNxfXu5GeXq4ycPdKC8Pt1rRrqo8Z+MzdDb+ws+r0MP7dOtzDyk/IEgb3/9a\nuWH1Lnp9d6NR/r4e8vf544+vtzvBPgAAgFosPDzApXcaAAAAAAAANYl3Gq4JDw8odazcNECTJk20\nYMGCYucjIyPVpEkTBQUFydPTUxEREdq9e7dOnTql3r17S5JatGihyMhISVLbtm2Vnp4uh8Mhs9ks\n9ypuaZKakaujZ1O1/XC8dh5N0NFzaTqfml2hUI5PYpz6PveQrl29QhlNWmrTwi9qLJQjSSeHPqw9\nk2bKMyNdfab8TaGH9znHrvnle/V7ZoT8EmJ1ePR4/ffld0sN5UiS3ctbv85YoNygEHVaNEdhB3e5\nvC9jfr78o89Uak5qZq5M5ss3TZeRna/j0emSJLecbPV66XE12r5Z8V1u0s//+Kd+WPqdTgwZLf+4\nc+rzwiPqNmeKvNKSK7x+ujlPhyJTZbMXrzYC1GaxyWYdOZtaYihHkhpvWS+PnGydGTS0QqEcSWpS\nL0CNwvwUFuyjQD9P+Xi5XxahHEmqW6htX0q7zjow7gV5p6eo56xnZLBc/L+BVrtd6Vl5iknK0rFz\nadpzPFHbDp7X3uNJOn4uTVkFbfYAAAAAAAAAAAAA1CrlpmMGDRqkmJiYYuezsrIUEPBH4sfPz09Z\nWVlq27atfvrpJw0YMEAHDhxQQkKCbDabmjVrppkzZ2rRokUKCAhQ9+7dK7TBslJFBU5Gp+lMolmS\n5OnlIU8vjwqtLUlh239Wh1cnyTMjXXED79HhKbMlXz+Vf9fqlTxstA4GBan9a5PVe9qj2jdniUL2\nblfL5e/L6uun395YosQ+Ayu2T/8WOvDGIt04YaRunjVJ/132b+U2qER7FYdDdbds1HULX5dfbJT2\n/mOZkm4uv9pRgbRsi1o1u/yq5uRZbDp8Ll1+fl5yz8pQxEvjVOfgHiXccpsOvLZAvp4XSlGdfn6m\nkgffr3Zvvqimm79Vw92/6MQTLyh68ANSBSrh2CSdS85RRJu6cnOjcg5qv8iYdMWn58rf37vUa1pt\n+EYOg0FJQx5QQBnXFfBwN+r61nXldpkEcUoSm5arjP8PIiaM/LviTh5Sw41rdePHb+vo5BnVdt+s\nfLvy7FLzCvy8BAAAwKVVkXcaAAAAAAAAtQ3vNKqWy2Vr/P39ZTabnR+bzWYFBARowIABioyM1IgR\nI9SlSxe1a9dObm5umj17tlauXKnWrVtr5cqVmjNnjl555ZVy71NWiSSrza5jUWlKzsit9P4NNquu\nX75Q169aIpuHh/ZOnKHTd94v2Q1SVuXXqw6ZNw1U1kvvqMfsSbrx6dGSpKyGTfTrjIXKaNa6UvvM\nbNVB7k9OU8SCmer4wlj99PZK2bx9yp0XFHlMnRbPUd0DO2V3u/Dt0mzpOzrdoadUwRYqmVm5CvZx\nV7B/6T3Vahu7w6EDp5JlMufL05Sm7lMfVZ1TRxTV9y7tfv51OfIdUv4fn//MRq0UO+8ztfzuX2r/\n0Xy1e+tF1f/2C+2dOEOmlm3KvV9mVq7STdnq0DKUtlao1VIzcnXwdEqZ1wSci1SdQ3sVH3GzkgLC\nKvRvVeNwf6WmZFXVNmuEl/HC3+UCO8a/ov4njqjpV//U+VY3KLrfXdV279PRNoX6VTyUCgAAgOpH\n2WcAAAAAAHA54p2Gay6qlVVpWrZsqaioKKWnpys/P1979uxR586ddejQIfXs2VOrVq3S7bffrsaN\nG0uSgoKC5O/vL0mqW7euMjIyXL21JCk716rfTiS5FMrxSk1S7/95VNevWqKs+tdo8/xVOn3X8AoH\nTS6luJv6a9vMRbL4+ul811u06d3PL4RyXHD6rgd0+i/DVOfUUXWd95JUSgsaSfJKS1HEvJd125ND\nVffATsV176MNS/6tmF63KfT4QdXdv6NS9z5z/uK+3pfaqRiTTOZ8eack6tbnRqvOqSM6/Ze/ateU\nOXK4l/LLbzc3RQ4eqR+Wfadzff6i0KMHNOCpv6rDB2/JLcdc8pxCTOZ8HYxMoa1VLWS12WW3l/73\n5WqRb7Hp2P+xd9/RcZRXG8Cfme1dW9SbZRV3G3dTTUvoEAKBjxZCCRBIKKYnAUxNaAkECC0QQgkJ\nCR3TwRhwMC64W7YsW1YvK+2utL3NfH8IjI1taXa1siT7+Z3Dsa2d+77vyquVj+bh3gZvv9eVvf8q\nAKDuuNMVr13g2vNIvpEix75z2DFpMOJ/t/0FcaMJM/58K6x1NYO2dzASRzSeHLT1iYiIiIiIiIiI\niIiIiCg9giz3kc74VlNTE+bNm4dXXnkFb7/9NkKhEM4880x8+umneOyxxyDLMk477TScc8458Hg8\nmDdvHsLhMCwWC+6++27k5uZi+fLleOCBB6BWq6HRaHDnnXeiqKj/cUq7S2J5eiLYsM2LxI4BBlmG\n1u+D3tMJvcfd+6t3598bPG7ovZ3Q+rsBAM0HHYVl192DuNmawqdsaAjxGGSNNiPrHH79L+DasBKr\nL74ONWdctNPjYiyGijdewPh/Pg5NKIieknKsuuwmtM84BABgr1mHo3/9M7QfMAef3/f3lPaePNoJ\nh7X/kTZDraUziJomH4ztzZh744UwtzSg5tTzsPqym1MKb+Uu/xLTHrkD5tZGhFx5WH3pDWg69Jh+\nx1vZTFpMGu2EmmOthlwoEkeTO4h2bwiluRaU5O7fLdvWbOmExx/t8xohHsNJZx8OAHjnpc8gaft/\n33JYdJhc7srEEYfcyho3ukOxnT5W8OVHOPiOK+EvLMXHj/4HCdPgvI7GltiR5zAOytpERERElDr+\n32VERERERERENBLxZxrp6atjjqJgzlD64V94Q7sfda092PHQeUs/x6z7b4Kuu+9ODlFrFiKObETs\nTjQffDS2nHR2Rrvk6DQqjMqzQBQHofOODHj8UXT6wkgO8K9M53Hj6F//DAaPG1/c9WRv6EaWUbD4\nY0x5+n6YWxsRtdiw/vzfYOsJZ0JW7Tzx7NCbL0beisX45OGX4Rl3gOJ9rUYtplVlD+jsg83rj2Lt\n1i4YG7di7o0XwehuxYazL8P6869M67UiRiMY9/KTGPvKMxATcXgrxmPtBVf3fs77WE+nVqG8yIac\nrP7HjVHmdXVH0NwZ2CmEohZFzB6fC416/wxMNXYEsKWlu9/rCj//AAfddTVqfno+Vl92k6K1J45y\nwLWPvNab3AHUNu/6eZr0twcw9pVn0D51Dv536yNImMwZ3zvXbsS4UnvG1yUiIiKi9PCHWERERERE\nREQ0EvFnGunZJ4I5SUnCpgYfOnzhnR4vf+ufmPrXuyGpNWibfggiThfCjmxE7Nm9IRyHCxG7CxG7\nMyMdZ/bEYdFhXKkdGrVq0PYAekfqdHjDaPOE0PODrgypsG9aiyPmnYukTo9l196NyjdeQM7qpZBU\natSefDY2nHs54hbbbmtda5biiOvOR8ucI7D4jr+mtO/EMgdctuFzA16SZXQHYvD0RNDVE0EomoC1\nrgZzb7oIem8n1lw0D5vO/GXa61sMGuQ5jMj3tsJ0390wv/UaAMA9cTrWXngNuiZO77PeYdGjssgG\ng07d53U0cImkhLauEJo7gwjHEru9pjjbjPLC3X9d7Mv8oRhWbu6EpODbxSG/vQT5y7/AB0+9pWjs\nnrE9UtgAACAASURBVE6jwpzxuRCG4SjBdETjSSxZ34YffqaEZAIH3nEVCr/6FN2jKvHFXU8gnFOQ\n0b11ahUOnJiX0TWJiIiIKH38IRYRERERERERjUT8mUZ6RnwwJxJLYN1WDwKR+PcPJJOY8tR9qHr9\neUSynFh8+2PwjJuy188nABiVZ0VJrnmv31gOReJo9YTQ4QkjmkimXF/64RuY9cDN2//cMnsuVl9y\nIwLFZX0XyjKOmHcuXOu/wYdPvIHu0WMU72nWazBjbE7KZ82kcDQBjz8Kb08EXn90pw5E9pp1OPTm\ni6Hzd+ObX/8eW04+J+X1NSoRuQ4j8hxGmA2anR5TrVsL7V23w/zphwCA1pmHYt0FV8NXMX6P66kE\nASW5FhTnmiHuI+GF4WTHcVVJqe+3Q1EQMGtcDvTa/ScolUhK+KbGjVB092GlHRk6WnDCeUeja9wU\nLHzoZUXrl+VZUZq3b40IW1XbCV9g15FfQjKBKU/ci8o3X0TY4cLiOx6Ht2piRveeMSZnl/cdIiIi\nIhoa/CEWEREREREREY1E/JlGevoK5qjmz58/f+8dJXUtHX6sru1CJP598EQVDuLAu+eh7KM30F1a\njkX3/wM9Zf13Zsg0rVrExDIn8pzGIen2oFGr4LDoUZhtgsWogSTLiMSSu3Rq2JPu8rGQBQFiPI7l\n19yJ6nMvR8ymYAyKICDicKH003egCfSg+dBjFJ85lpBg0mtg0u+9G8eSJMPrj6K5M4itW9vRvnYz\n4uvXQ79mJVyrvkbBV5+iZOECjH73Pxj/4mPQhENYdu3dqDv+DMV7CACcVj1G51tRVZIFp1UPrWbX\n7klyTi4Sp5+B2OFHQtqyFY6lX6J8wSuw1m9B96iq3X7+ZQC+QBSd3RGY9er9KhQyaBIJ6K+fh9bq\nrVhlLoY/HIeSiKIMIJGQ95mxS0rUNPrg3U3IZHeqXnseOauXYv25V8BXueew2XdEQcDYUjvUqn1r\nPJgsy+jqiez6gCiibdZhiJltKFr8EUo/fgs9JeXwl5RnbG+DTg2bafC6wxERERGRciaTDqEBdLol\nIiIiIiIiIhoK/JlGekwm3R4fG9Ydc9q6gli8smmn8Sn6rg4ccstlsNdWo33qgfjqlocQN1v3+tls\nJi3Gj3JAt5vwxVCKJ5Jo94TR5A7sFGYaKAFAvtMEk0GDzU0+QJbxo1/9FLZtNXj/mQUIFI5SvJZJ\nr8GMMdmDHmaSJBnedz+G4y/3Qd/ZAb23E9pg38m+mMWGFVfNR9Nhxyraw6hTI89hRK7DmPprQZah\n+fwzaO+4Dca1qyCLIrb96CfYcO7lCOUW7rEs32HE6ALroI9N25cZHn4Q5rtvhyyKWPjgi+iaMFVx\nrQBg+n7SlaTdG0J1vVfZxckkjj//R9D6u/H2vz5H0mDqtyQ7y4AJoxwDPOXwE09I+Gp9W5+jv/K/\nWog5f7gOqmgYay6+DjWnXwBk4D3RYdFjcrlzwOsQERER0cDx/y4jIiIiIiIiopGIP9NIz4gdZbWx\n3oO1NR3b/2zbshGH3PIrGDvbsPW40/HNb26FrE7t5rhOrcKofAtEQYDbF4bHH+3z5unuFOeYUZZv\nHdZjhSRZRktnEA3tfsQS0oDWyjLrUFFo2x5EWF/ngbs7jKJF7+HAu+dh63GnY8U1d6a05rhSO3Lt\nxgGdqy8d3hDqt7bj8PN+DGNnOyI2ByLObETsrt7/dvh92JmNiD0bEUc2EkZTnzfHtWoRNpMONpMW\nNrMWFmMGOlPIMjTvvgP93XdAX7sJklqD2pPOwrpfXLnHcINGJWJ0gRX5zv7DD7QzVc0mZB15COI6\nPbSBHgTzivDR46/3/t0r5LTqMWn0vh1+CEcTWLHJjYSk7P0jd/liHPbbi1N6P5hS7oLdsufk6Ei2\ndmvX7rvm7CCrdgMOueVXMHR1YMsJZ2LlFb9L+XvaD6kEAQdPyocoDt/vT0RERET7C/4Qi4iIiIiI\niIhGIv5MIz19BXNGzEycvKWLMOfuedCEQ1hz8bXY9LOLUuouIAoCinPMKMk1QyX2jk3JdRiRSEro\n6o4oCuloVCLGlGTBZRv+Y2xEQUBRthn5TiOa3UE0dgQQT6YW0DFo1SgvsO4ytqeiyAZfIIqmQ34M\nf9EojProTWw49wqEs/MUr13f5kdOliHjXXN6QjFsae5GdzCGMf/9B4yd7ag+85dYd9G8tNYzaNXb\nQzg2kw5G/SB8yQgC4iechPixxyP62n+g/8NdqHr9eRR89SmWz7sL7gNm71IST0rY1OhDuyeMymLb\nXh0NNqIlkzBeeTnEWBTLb34Ajo1rMO7fT2PKE3/Ainl3KV6mqycCXyCKLPO+GSqRZBnV9V7FoRwA\nKPvgvwCAumNPU3S9UafeZ0M5AJCTZeg3mOOrGI9P/vJvHHzr5Shf8G+Y2prw1e//jIRpz9+0+5OU\nZXQHY/v055aIiIiIiIiIiIiIiIhoJFHNnz9//lAfYk86u8Po6Aqi/K2XMPu+mwBBwJLf/gl1x/8s\npVBOTpYBE0c7kJ1l2KXLjSgKMBs0yLEbUZjdO6oJMhCJJbFjRMdi0GJyuRO2PuaCDUeiIMBm1qHA\nZYIgCAiE4uivP5BaFFGWb8XYUnvv5+OHj6tEaDUqdPqjSOiNKFr8ESBLaJ95qOJzxZMSDDp1xsYB\nReNJ1DZ1Y3NzN6LxJDQ9Phx49zwkdXos+f2fIWmV/b0ZtGrk2g0ozjajoigLpXkWuLIMsBi10KjF\njJx1j0QRyQkTET3/QsSjMVgWfYKyD1+HzueBe/IMyJpdu/NE4km0dYWQlGRYTZph3cVpONA/9ThM\n/3weDXOPw8ZzfgX3pOnIX7oIBUs/h2/0WPhLRiteKxRJ7LMdi+pa/ejwhRVfr+32Ysafb0VP8Wis\nu+AaRe/PpXkWWE0Z6Dg1TOm1KjS7g/2+3yZMZtQfdSJsdZuQv+wLFCxZiNbZcwc0olGnUTGYQ0RE\nRDQMcB47EREREREREY1E/JlGekx9ZEkGOWkwQMkkpjx+D6Y9eheiVjs+u/8faD70x4rLLQYtplZm\nY/woB/Ta/judqFUicu1GTBztxEET8zCu1A6XTY9ClwlTq1ww6EZMg6FdqFW9YZvZ43NR5DLvNsAh\nAChwmjB7fA6Kc3Z/zXfyHEY4rXrUH3kiQtn5GP3uf6D1eVI607a2npTHiP2QJMmob/Nj6YZ2tHlD\n2z8+9t9PQxvoQfVZlyq+wa0SBRxQ4UJlURZy7EboNKoBnS1tej3i8+9Ex1sfwj+qAhVvv4wfX/oT\nZK/6ereXS7KMhg4/lm3sgKefDh37M7FuK4z33I6ozY6VV/weACBrtPj6xvuQ1Oow46FbofO4Fa/X\nE4rBnUJ4ZaTw+qNo7EitNV3px29CTMR7u+UoCOWoBAF5jsEbZTccqFUiHFa9omuTBhMWz38Mm39y\nHmz1tTjqyv+DfeOatPf2+qNp1xIRERERERERERERERFRZg3rjjm6M05Hwbuvobu0HIvu/wd6yiqV\n1alVqCzKQlVxFvTa9MIVO3bScVr1GR+5NFRU394sznUYkEzKCIbjAAC7WYcJZU7kO03bR331J8uk\nQ6sviqQoonDJQkhqDdxT5yg+SyIpQ6dRwWJMr2tGhzeEdXUedPZEdupKYehoxex7b0DEmYOlN94L\nWaUsUFWeb1N8I31vEAoLET7rPLg9QeQs+azf7jmJpIx2bxjBSAI2kxZq1fDO3e1VkgTTL86Bdlsd\nll17N7xjJ29/KJblQNxgQtGXH8FaX4uGI09U3JErGI5v70a1L4gnklizpQsJKYXAnCxjxp9vhTbo\nx9Ib/oikvv9Rf3kOI3Ls+3YwBwAgQHl4SxTRNvNQxMw2FC3+CKWfvI2eknL4S8pT3jaeSKLQZYZK\n3Ddel0REREQjFf/vMiIiIiIiIiIaifgzjfSM2I45lo/fR9u0g/DpQy8jlFfY7/UqQUBprgWzxufs\n890YBkqvVWNMiR0zx+ZiUpkTUypcKY+V0mlVKC+0YutxpyOS5UTFW/+EOphap436dj+kFEIASUlC\nhy+MlZvd2FDvRSSe3OWaCS88ClU8hnXnX6l4hJXFoEFh9vAbS6QxG2G8/w9Y8bfegFrF2y/jmEtO\n2WP3HKA3CLC0uh1N7gDkAXYk2lfonnsGhiWL0XzQUWiae9wuj9eecg7aph+M/GVfoPztlxWvG4om\n0NoV6v/CEWJTgw/RxK5fU31xbFwNW30tmg8+CjGbXVFNgWv4fa0NBpdVn3I4pvbU87B4/qOAIGL2\nvTek/J4KADIAb4Bdc4iIiIiIiIiIiIiIiIiGg2HdMaehcjK+OuF8SAo6MGSZdJhS4UR2lqHPEUy0\nM41ahFGf/ogui1ELX0RCJBxDwdJFSBjN6Jw0XXF9UpKhUYuwmvbcNScpSejsjmBbmx81DT50+MKI\n7iaQAwDWuhpM/8vt6CmtwDe/uRVQ0P1HADChzKlo3NlQEAUBtspR2HjkTxAMxZC39PPe7jneLrgn\nz9xt9xxZBjz+KDw9EZiNmqEbyzUMiI0NsP7iHCR0Bnx515NIGM27XiQI6Jg6B6M+fB35yz5H06HH\nKA6ZBEJxFLiMI/59p9kdQFNnMOW68S88CnttNVZfehOCBSX9Xm81ajEqT9l4uZFOEASEIgkEI/GU\n6gJFZRAkCXkrFsNfPBrd5WNT3lstCnDZ+v/eSURERESDh/93GRERERERERGNRPyZRnpGbMec0CGH\nQ1b338VFp1ZhQpl92AYr9nVVxVnYdvJZiJksqHztH1BFFI5u+VZjewBJSdrpY991xlm/zYP/rW3D\nhm0euH1hJPvpADPp7w9BkCSsuWgeoFIWRsl3mvoMBg0HgiCgqiIP/ptuwad/+Re6SytQ8c6/ervn\nrFyyxzp/OI6VNW5sbvIhkZT2eN0+S5ZhuPo3UIWCWHXZzYg4c/Z4acSZgxVX3Q51NILZ994AIaEs\nTBFNJNHUkXqgZThJShK2tvakXKcOBVHy2XsI5hagfdqBimr2l24538nJSi8c03DECQCAkoXvpFXP\njjlEREREREREREREREREw8OwDuYoIQAYW2qHRr3/dgQZagadGsWVhag9+Wzouz0oe//VlOqjiSRa\nOkNph3G+41q7HAVLFsI9aQbaZs1VVKNTqzC6YOR07yjLt8J1xMH45LFXUX3WpTC42zD3pgvhWrN0\njzUygObOIJZVd6DDu++MXVJC+88XYPxiIVpnHIr6H53S7/XNhx2DbT/6CRw16zD+xb8q3qexI4B4\niiOghpOuniiSKYyU+07RovegjoRQd8xPFXWn0qjEtIMqI5XdqoNGlfq32mBBCbrGTEbOyiXQeTtT\nro/EkghHEynXEREREREREREREREREVFmjfhgTnGOBXbLnlsC0d5RlG1G+7kXI6EzYMwrz0CIK29t\nZXC3Qfen+1Dzwhsph3G2k2VMeuZBAMCai68FFI4VGl1ohTqNm+ZDqTDbjDFVedhw4TX4/N5nAQDT\nHrmz3w4v0UQSG+q9WLnZDf9+0HpMbGuF6ZbfIm40YcXV8xW/JlZe/jsEcwsx7l9Pwbl+paKahCSh\nvj0wgNMOrXQDW6Pf/y9kQcC2H5+q6Po8hxGiOLJHfqVKFAS4bPq0ahuOPAGilETR5x+kVe/xs2sO\nERERERERERERERER0VAbWYmEH7AatRiVbxnqY9C3Rk8qR90JZ8DY2YbST97u+2JZhnPdCsy5+xoc\nf97RmPDsQzjkpotRtOi9tPYu+N8ncG1YhaZDfgTPuAMU1TgsOuTajWntN9RysgyYNNoJ79Q52Hrc\nz2Crr0XFGy8pqu0OxrCixo2N9V5E4yO3y0ufZBm6a66EOtCDNRdfj3BOgeLShMmMpTf8EZBlzLrv\nRqhDysZUtXQGEYmNvA4liaQET0/qAQ7rts1wVq9G2/RDFH9+97cxVt/JSfN9pumwYyGLYvrjrPyR\ntOqIiIiIiIiIiIiIiIiIKHNGbDBHJQoYV2qHqLALBg0+o16N8K9+DUmtwdh/Pw0kdw19iLEoRn3w\nGo6+4jQcOe9cFC96Hz2jKrH2gquR1Okw5w/XYdQHr6W0r5BMYNKzf4YkqrD2gmsU1YiCgMqirJT2\nGW7sFh0OqHRh0y/nIWqxYcKLj0Lf1aG4vs0bwtLqdtS3+SGlMcZoOFO/+h+YP/kA7QfMwdYTzki5\nvnPSDGw885cwtzbigMfvUVQjyTLqWv0p7zXUOrsjkFLtUAVsH1lXd9zpiq53WHQw6NQp77MvyDJr\noUtj3GLEmYOOKbPg2rAKxtamlOt9/hjkNP5uiYiIiIiIiIiIiIiIiChzRmwwp6o4a7+9yTuc5U2u\nQstxp8LSXI+iL74fv2Jwt2Hi3x/CieccgZkP/g62rTVoPPQYLHzwBXz0+GvYeNalWHTfc4iZLJj5\n4O9Q/qay7i8AMOrD12Ft3Iq6Y09DoLhMUU1prmWfeP2YDRpUTinHugvnQRMKYvJT96dUn5Rk1LX1\nYGl1e9rjjIYbwe2G+ebrkdAZsOKaOxSPsPqh9eddAW/FeJR98BoKv/xQUU2HN4RAuO+RYsNNhzec\nco0Yi6H04zcRsTnQMudwRTUFzv2zWw4ACIKA7CxDWrUNR5wIACj57N2UaxOSBH9oZL0eiYiIiIiI\niIiIiIiIiPY1IzKYk2s3jtgRRPs6QRCA66+HLIoY96+n4Fq7HHPu6h1XNe7lJwFZRvX/XYJ3n/8I\nS255CJ2TZmwPTnirJuKzB55HxO7CtMfuwph/Pd3vfqpIGBOefxQJnR4bzrtC0RmNOjWKc80Dep7D\nSZZZh/jPz4dnzCSULnwH2auXprxGJJ7EhnovVm52oycUG4RT7j3a666BptuLtRdeg2B+cdrryBot\nvr7pPiS1Okx/6DZF3YhkAFtbetLec2+LJ5LwBaKoeP0FHHHNOZj85L0oWPwxtN3ePusKlnwKXY8P\n9T86BbJG2+8+eo0KTps+U8cekbLt6QVzmg/5EZIazQDGWaU+poyIiIiIiIiIiIiIiIiIMmfEBXMM\nWjUqi2xDfQzqg27sGHiOORlZWzfhiGvPQ/HnveOqls27C++8tBDrLrwG4Zz83db2lFVh4Z9eQCg7\nH5Of/RMm/P0hoI9RLBVvvAhDVwc2//R8RJw5is5XWZS1z41AKyuyY+O82yELAqY+eieERHpdMrqD\nMXxT48bGei+i8V1HkQ13qjdfh/W9t9A5YRpqTzlnwOv5S8qx+pfXQ9fjw/SH5yuq8fgj6A6MjDBE\nhy8Clb8bk/7+EFzrv8GYV5/Dwbf/Bqf87CAcc/GJmPbQbSj5+C0Y25t3qit7778AgLpjT1O0T77T\n1Bva24/ZTFroNamPs4qbrWibeRhs2zbDWleTcr3HH0m5hoiIiIiIiIiIiIiIiIgyZ0TN8hEFAeNG\n2aFWjbg80X5H/t3vEFq5HF2VE1D7k3PROXG64pFCgcJRWPinF3DYjRdi/MtPQh0JYfVlN+9Sr+3x\nYuy/n0bUYsPGMy5StHau3Qi7RZfy8xnuREFAwXFzUXf8zzB6wSuoeOMlbD79F2mv1+YNocMXhiaF\nrzWHVYeyfCu0aYQPBiIpSfD5Ywhu2owJN1yLpEaLZfPuAsTMvE9sOflsjPr4TeR//RnUQT8SJku/\nNe3eMGzm4f86c3vDKHvvv1BHQlj381+jc9JMuNYuh2vdCrg2rEL5u6+g/N1XAACh7Hx0TpwGb8V4\n5H7zP3SOnwp/SXm/e4iCgDwnO5wBvV1zGjsCKdc1HHkiCv/3CUoWLsC6sqqUav2hOBJJid83iYiI\niIiIiIiIiIiIiIbIiArmjMqzwGrsf2wKDT25agx836xFLJZEYVJGniQhKcmQJBnJpIykJCMhSdt/\nn5QkeP1RJKXe7jih3EJ89uALOOymi1D1+gtQh0NYcdXtgOr70MfYfz0NbdCPVZfeqCgsoVGJKC+w\nDtpzHmomvQatv70V0c8/wIQXHkHjEccr7iK0O5IsI5pQ3jWn1dMb5inNtaAo2wxRHLwOKaFIHJ6e\nKDz+CHyBGJwrl+DAu66GrseHVZfciEBxWdprqwQBoihApRKgFkWoRAE9sw6GY9NaODatRce0g/pd\nw+0Lo6LINqw7M0XjSfT0BHHQmy8ioTOg9pRzEbfY4J4yCwAgJBPI2rJxe1Ane90KlCxcgJKFCwAA\ndcedrmgfl00P3V4Oaw1XuXYjmt1BSH10AdudltmHI24womThO1h3wdWKQ45A79dxdyC2V0aJdQei\nEAQBVhO/TxMRERERERERERERERF9Z8QEcxwWHUpy+w9f0PChUaugUSu/IR9PSGjpDKLJHUA8KSHi\nzMFnDz6PQ2/+JUa//yrUkTCW3vBHyGoNjO3NqHjzRQRzC7DlpLMVrT8U3Vz2tvzKEmy5/EaMv/e3\nmPLUffj65gf26v5JScbW1h60doUwusCK7CxDhtbt7Yrj8Ufg6YkiHEv0PiDLqHjzJUx54o+AKGL5\nVbej7oQzFK1ZlG1Grt0AlShAJYpQqQSoRGG3I5e0R88FXngCjo1rFAVz4kkJPn8UDuvghyHS5faG\nkb/4E5g6WlF70lmIW3YeESir1PBWTYS3aiI2n/YLQJZhaayDa91y6Lq9qD/yxH73UAkCyvL33TBc\nqswGDSaWObC+zoNkCuEcSadH88FHY9THb8G5YRW6JkxNaV+vPzrowRxZlrG5qRsJScKMMTns0ENE\nRERERERERERERET0rRFx50yjEjGmxD7Ux6BBplGLKM2zYM6EXJQX2KBTqxCz2rHovr/DPXE6Sj57\nFwfeeTXEWBQTnn8Uqngc686/EpK2/+4MNqMWBS7TXngWQ896xaXwjpmEkoULkL166ZCcIRxLYP02\nD1Zt7kQgHE9rjVAkjqaOANZs6cTitW1YW9eF5s7g9lCOGItixp9+j6l/vRsxmx2f3f+c4lBOeYEN\nFYU2WIxaGPUa6LQqqFXibkM5ABCfNgMA4Kxerfj8bl9Y8bVDocMXRtXrzwMANv/kvP4LBAH+ktGo\nO/4MbDzrUsia/r/uSvMsMOhGTP5zr3BY9ZhS4UppTBwANBzRG4Qq/mxBynt6/JGUa1LV0hVCIBJH\nJJbE5kbfoO9HRERERERERERERERENFKMiGDOuFI7R6HsR1SiiOIcM2ZPyEVVURY0dju+uPsptE07\nCIVffYrDrz8fpR+/Cd/oMdtvVvdFFARUFmfthZMPDzq9Bp6774csCJj66B0QEmkEY5JJFH3+PkZ9\n8Bryln4O25Zq6DxuIKl8tBUA+IJRrNjUgU0NXsTifdcmJQld3RHUNPqwZEMblm7sQG1LNzz+6C6j\nf/RdHTj8up+j7IPX4KmaiI8f/Q+6Jkzr9zyiIGBciR3FOeaUnoecm4tYYREcG9cACjuduH2RlEcW\n7S3haAKqlSvgWv8NWmcdNqDRX3ti1mtQlOLneX9hNWkxtTIbeq3y72sdU+cgYnOg+LP3ICQTKe0X\niiYQjaX2tZuKeELCttae7X9u94XR5gkN2n5EREREREREREREREREI8mwb2VQlG0e1uNgaPCIgoAC\nlwn5TiM6fBasvvdpJG/9DQq/+hQAsPbCeYCq/xvbhdkmmA2awT7usGI97CC0nno2Cl57CZVvvIia\n0y9QXGuvWYdpD8+HY/P6XR6TRRGRLAcijmxE7K7eX7/9fdvMQxAoHLVrDYBWTwgdvjBKcy0oyjZD\nFHs704QicXh6ovD4I/AFYoqCLI7qVTjo9ith8Lix7eiTseKq2yHp+n+PUAkCJpQ50n4/iU+dAdM7\nb8DU1oRgfnG/1yckCd6ewR8hlA63L4zK118AANSc+vNB2aOyyAZxDx2ICDDq1ZhamY21W7oQiPQf\nnpPVGjTNPRYVb/0TOSuXoH3GISnt5w1EkecwpnvcPm1r60E8Ke30sc1NPliNWhj1w/6fGURERERE\nRERERERERESDaljfMbOatLAbhvURaS8QBAG5diNy7UZ0PfMC6uf/HvFYHN4DD4dFq4JWo4JWLe78\n6/bfi1CJI6IxVMaJd96J2McLMP6FR9FwxAmIOHP6vF4d9GPicw+j4q1/QpBlbDv6FLinzILe44be\n09n7q7cTBo8blsZtsNdW71QfM1nw4ZNvIJxTsNv1k5KMra09aOkKwmHRw+OPIJJiF49R77+KaY/c\nDjGZxKpLb8Tmn54PKAh/aFQiJo12wmrqf/zSnsgzZwHvvAHHxjWKgjlA77io4RjM6d68DVMXvYfu\n0nJ0TDso4+vnO4ywmXUZX3dfo9OocEClC+u2euALRvu9vuGIE1Dx1j9RsnBB6sGcnsigBHMC4Tha\nOoO7fDwpyaiu92BqVTYDWkRERERERERERERERLRfG9aplwKXGW63f6iPQcOI02UBHn0YAHDgEJ9l\nuFNlu+C96Vbk/nYepjx1H76++YHdXyjLKFr0Hg544g8weDrRU1SGb66aD/eUWX2vHw7C8G1oJ2fl\nEkx48THMuv9mLLr370AfYahILImWrl1v5PdFSMQx5cl7UfnmS4hZbPjyd39SHCjRa1WYPNo14M4d\n8ekzAQDO6tVoPOIERTVd3RFIkry9Q9BwEIrEkfef5yEmE9h86s8VBZtSoVGJGF1gy+ia+zK1SsTk\ncieq671wd4f7vLZr3AEI5hagcPFHWHHlbYo6RX3HG+g/+JOO2uZu7KnPlT8cR11LD8oL+XogIiIi\nIiIiIiIiIiKi/df+2UqEaD8hXnghAhMPQMnCBche9fUuj5taGnDo7y7BgfdcC62/B+vOvxIfPfFG\nv6EcAEgaTAgUjkLnpBnYcN4VaD7oKOSsXoqqV5/L6HPQ+jw47OaLUfnmS+geVYmPH/2P4lCOWa/B\n1MrsjIzTSUyaDEmthmPjauU1kgRPT2TAe2dSR6sH5Qv+jag1C/VHnZzx9csLbdCo+a0lFaIoYPwo\nOwqcpv4uRMPhJ0ATCiL/60Up7RFLSAiE+x+ZlQq3LwxfP4GfRndg2H0NpCuRlBBPSP1fSERErJK0\nFQAAIABJREFURERERERERERERLQD3j0l2peJIqIP/hmyIGDqY3dCSPTemBdjMYx76XEcc8nJyFv+\nJdqmH4wPnnoL1ef8CpI2jXFPgoDlV9+BiN2Fic89BNuWjRk5vqVhC47+zc+Qs3opmg75MT55+GXF\nY6SyTDocUOmCTqPKyFlgMCA6biKytlRDjMUUl7l9fXdB2dt0/30Fuh4ftp5wZkodV5TIMukGZVzS\n/kAQBFQVZ6Esz9rndd91ayr5bEHKe3j9meuak5QkbGnuVnTtxgYvYvHUxtYNN0lJwrqtHqyr64Ik\n7alHEBEREREREREREREREdGuGMwh2sdJU6cjcPb5sNVvQeUbLyJ79VL86FenYuI//oKY2YKvfvsg\nvrjnaQQLSwe0TyzLgWXX3g1VPI7Zf7weYmxgIQBjezMOu+kimNpbsO7nv8FXtzyEpKGfjiLfyrYZ\nMLncCbUqs29x0vSZUMXjyNpSrbimsyeCpDQ8umz4g1GUvvJ3SCo1ak86K6Nri4KAqmKOLBqo0jwL\nqoqysKcBY91lVegurUD+14ugCfSktLbXn7nONU0dQUQUhm1iCQkbG3wZ23tvk2QZ6+s88AWj6A7G\nUN3gzej6SUlCdb0Xmxq8aGj3o8MXRiAcRyI5PN43iIiIiIiIiIiIiIiIaGAYzCHaD0RvuQ2JLDsm\nPftnHH79+bA01aH25LPx/jPvounw4wFhTzGA1LTNOgy1J50FW30tJj3757TX+W58lbGzHasuuRHV\n516u+IwFThPGj7JDFDPznHaUnDkTAFIaZ5WUZHT1ZK5TyUBE3/8QtvpaNB52LCKu3IyuXZxjhlGv\nyeia+6sClwkTRjkg7u41LwhoOPJEqOIxFC7+OKV1uwOxjHR7icQSaGj3p1Tj8UfQ2BEY8N57myTL\n2LDNA88O3YbcvrDibkH9SUoS1m7xoN0bQqsnhK2tPdiwzYPlmzrw5dpWfLWuDSs3u3cK7YQiiYzs\nTURERERERERERERERHsHgzlE+wHZ4UR4/l0QE3F4K8bhk7/8Gyt/fQsSJktG1t8xPrDml9ejp6gM\nVa/9Azkrv0p5LXUoiEN/fyksTduw8YyLsPn0XyiuLXKZUVWcBSFDQaMfSkyfAQBwblyTUt1wGWfl\neO4pAMDm087P6LoGrRolueaMrrm/c2UZUFWctdvHGg8/HgBQ8uk7Ka2ZlGV0B5WPYduTLS09SMqp\nB3zqWnvgDw18/71FlmVsqveis3vXTkON7gCa3QMLGn0XyrG/8gKOP+8oWOtqdrkmmkiiOxjbKbSz\nqTGzHXuIiIiIiIiIiIiIiIhocDGYQ7SfiJx9Hrr+twLNb36E+JRpGVlTFATkO4yYOTYXlYW9Y4yS\negOW3nQfJJUaM++/GZoe5SNsxFgMB93+Gzhq1qHumJ9i7UXXKq416zUYXWhN+TmkIllWjoTNDkeK\nwRxP99CPswqtWY/crxehc8I0eKsmZnTtyiIbVCK/nWRansOIIteugadgfjG6xk1BzuqvofO4U1rT\n6x9Y9yZfIJp20EySZVTXe4f8a0GpmkYf2vt4rrXN3ejsTu9zkZQkrK3tQsETf8KMh2+Dqb0FrvXf\nKKqNxJSNECMiIiIiIiIiIiIiIqLhgXdSifYjUkUlcrOtmDE2BxPLHLAatWmtoxIEFLnMmD0uF2NK\n7DDq1SjMNm8P53irJmL9eVfA2NmOaY/cASjpriFJmHn/Tchd+RWaDzwSK66+XfH4KlEQMLbUvvvR\nP5kkCIhOnQ5zayO0Po/isqQso2s3XTf2Jt2TjwMAak79eUbXzc4ywGHVZ3RN+t7oQiuyzLpdPt5w\nxIkQJAnFi95PaT2vP/3XoSzLqG0a2AinUDQx4DX2htqmbrR6Qn1eIwOo3uZFT4pdiJKShLU1boz+\nw28x4YVHkdAZAAB6hSGrWDwJKY2ORURERERERERERERERDQ0GMwh2k+5bAZMq8rGlHIX7Lu58b87\nalFEaa4FcybkoqLIBp1WtdPjO4ZzNp15MTrHT0XJovf6H7kjyzjg8XtQsug9uCdOx5LfPghZpVb8\nXEbnW2E2aBRfPxDyzFkAAOfG1SnVdQzlOCuvB663/4NgTj5aDj4qY8uqRREV3/590+AQBQETRtmh\n/8HXWuPcYyGLIkoWpjbOKhCOI55Ir+NKS1cIgUg8rdodtXpC6PD2HXoZSnWtPWjqVDamKinLWFfX\nhXA0oex6ScL6Da0Y99vLUb7g3/CNHosv7/grAMDQpSyYIwOIsmsOERERERERERERERHRiMFgDtF+\nzm7RYUqFC9OqsuGy7b7ziVYtYnS+FXMm5KIs3wqNWrXb64DvwzmySo2lN96LuMGIaY/cAWN78x5r\nxr30OCrffAm+siosvuOvkHTKO7DYzToU5ew67mewJKbPAAA4qlML5nh6okgkh2iEz7N/hzoSRu0p\n56YUeOrPqHwLdJo9vxYoMzRqFSaWOaHaoSNU1O5C+wFz4Ny4BqbWRsVryQC8gdQ6vABAPCFhW2tP\nynV7UtPYje7AwMZqDYaGdj/q2/0p1cQSEtZu7eo38JSUJFSv2obJV52Hoi8/QseUWVj44PPwVYwD\noLxjDsBxVkRERERERERERERERCMJgzlEBACwGrWYWObEzLE5yLUbIQoC9BoVKgttmDM+DyW5FqhV\nyt4yvgvnBPOLsery30ETCmDm/TcDyV1vJo9+51+Y+PwjCOYW4ot7nkbcbFV8Zo1KxNgSu+LrMyEx\nbToAwLlxTUp10lCNs0okYHnuaST0RtQde1rGlrUYNCh0mTK2HvXNbNBgTOnOr/WGI08EABQvXJDS\nWlubu7GluRtef1TxSKRtbT2IZzBYlpAkrKztxIpNbrR7QsNiNFOTO4CtaYaPQtEE1tV5IEm7fx5J\nSULNkmpM/dUZyF67HI2HHYsv7n4aCZMFcbMVSY02xWCOsg49RERERERERERERERENPQYzCGinZj0\nGowrtWP2+FzMGp+LwmwzRFHov/AHvgvnbPvxqWg6+GjkrFmGqlef2/mazz/AtEfuQMTmwOd//Bsi\nzpyU9qgsztplnNZgk7PsiJRVwLFpLSClFlQYinFWmgVvQd/egm0//gnilsyMnRIAVBVnQRBSf11Q\n+nKyDCjJsWz/c/PBRyOp0faOs0oh2BKJJ9HoDmD1lk4sXtuKdXVdaOkM7jHsEQjH0dIZHPD5d8cf\njqG6wYsl69tQ19qDaHxoOsG0dgVR29w9oDW6g73P5YeSkoQtny7H9EtPQ1ZdDWpPPhtLbn4Aklbb\ne4EgIOLIht7bqXgvdswhIiIiIiIiIiIiIiIaORjMIaLd0mlUEAcYvCjMNqOy2I4VV9+BsMOFSc89\nDNuWagBAzsqvMPve65EwGPHFPU8hUDgqpbVz7UbkZBkGdL50JabPgCYUgKVxa0p1Xv/eH2elffwx\nAMDmn5ybsTULs82wGLUZW4+UK8u3wGntHfWWMFnQOnsubPVbYKurSWu9pCSjszuCmiYflmxox7KN\nHbt006lt7sZg97OJJSTUt/vx9YZ2VG/zoDuY+ritdLV7Q6hp9GVkLbcvjC07BHySkoT6tz7FjMtO\nh6m9BWt/cRVWXvF7QLVzoDDszIbe26U47MdgDhERERERERERERER0cjBYA4RDapClwmlE8qw7Np7\nICbimP3HG+Bc/w0Omv9rAMDi2x6Fr3JCSmvqNSpUFmWm+0s65JmzAADO6tUp1UmyDPde7Jqj/mY5\njN8sQ8vsuQgUlQ14PbNeg0llTlQUDt3nfn8nCALGldph1KkBAA1H9I6zKln4TkbWD0biO3XTWbW5\nE75ANCNrKyHJMtp9Yazc7B70MVexeBL1bX5savApCh7ZtlSj9MM34Fy3Ajpv5x67FDW6A2hyB5CU\nJLS8+Bqm/+YcaAM9WH7NHdh49mXAbgKPEUc2xGQCuu5dO+7sDkdZERERERERERERERERjRzqoT4A\nEe37Cl0m4NSTUPv12ah46584Yl5v95avfv8Q3FPnpLSWAGBsqR1q1dDlChMzZgIAHBvXYNuxp6VU\n6/ZFkO80DcaxdqF/8q8AgM2n/nxA6xh1aozKsyDHbszEsWiA1CoRE8sc+KamE62zDkPcaEbxwgVY\ne8E1gJi5r4ukJMMX3HuhnB/qHXMVw5aWbuQ5TMixG2A2aAa+biiGZncQHb6w4tBP2buvYNpf7oAo\nfd+pJm40IVBQgkBBKQKFpQgUlMBf2Pv7LbIM8aWXcMC9N0NWqbD4tkfQeuCRe1w/4sgGAOg9bkTt\nzn7Pw445REREREREREREREREIweDOUS0VxS6TGi57U70rFwCa+NWrLhyPpoP/XHK6xTlmJFl1g3C\nCZVLjJuApF4P58bUOuYAgC8QRTyRhEat6v/iARBbmqF/+w10l1agY+qBaa2h16hQmmdBnsMIYYBj\nzSizjHoNxpXasa5OQtOhP0bZB69hxp9+jxVXzYesGZoxY8b2ZqhDQfSMqtxtV5h0xRISGjr8aOjw\nw6hTIzvLgOys1EI6kiyj0xdGszuI7lAKY7IkCZOeeRBj//MsojY7qv/vEui9nTA318Pc0gBLYx3s\ntdW7lMUNRmjCIcQsNnx5x1/RNWFan9uEdwjmdJeP7fdYsXgSkiwPeNwgERERERERERERERERDT4G\nc4horykozkb9y2/CvWxNvzeqd8es16As3zoIJ0uRWo3oxCmwfbMMqnAQSYPyDjiSLKOze/C75hj+\n/jcIiQQ2//TnKYcktGoRJbkWFDhNEEXe+B+unDY9RuVZsfbCebDV1aDsw9dham/B/259GHHL3h03\npunx4ejLT4PO342QKxdtMw5B28zD0D7tQCRMloztE4omUN/uR327spBOLJ5Ea1cILZ1BRBOpdZlR\nRcKYdd+NKPryI/QUleHLu55AsKBk54skCXqPG5bmephb6rcHdszN9ZC0Oiy79u7eoFI/vuuYY/C4\nFZ1NBhCNJWHQ8Z9xREREREREREREREREwx3v6BDRXpVXVQpjYT60Xb2jZJKSslEyoiBg3Cj7sOkQ\nkZwxE8Lyr+GoWQ/3lFkp1XZ4w4MbzAmHoX/+WUStWag/8iTFZWpRRHGOGUU5JqgyOBKJBk9pngWB\nSBE+e+B5zLr3BhQt/hhHXnXW7kMkg2j8P5+Azt+NrnFTYG6ux+j3X8Xo91+FpFKjc8JUtM08FG0z\nD0N3WVXGuun0FdLp+XZclTuFcVU70nncOOS2K+DYtBYdU2bhf7f+ZfdhJ1FExJWLiCs35feBHe04\nykpxDYM5REREREREREREREREIwLv6BDRXmc1aWE1aVFRZIPbF0GbJwRfINpnzegCK0x65aNrBps0\ncxbwBODYuDrlG/K+QBSxeBJazeCMs9K98SpErxdb/+8SSDq9opribDNKci3QqBnIGWnGlmRhZSSB\nr255GJP/9iDG/PdZHHXV/2Hx/EfT6kyVKlNLAyre+ieCuYX47P7nIalUcNSsQ96yL5C37Atkr12O\nnDXLMPmZP+3UTadj6hzEzZnpgLVjSEejEhFPSmmvZd22GYfcchlM7S3Y9qOfYPnVtw/6eLCwM51g\nTgLA0I71IyIiIiIiIiIiIiIiov4xmENEQ0YlishzGJHnMCIcTaDNE0K7J4RIfOeRM3azDkXZ5iE6\n5e4lps8EADirV6dcKwNwd0dQ6BqErjmyDMMzT0IWRWw58UxFJSa9BuWFe3f0EWWOShQxcbQD39S4\nseaS6+EvLMW0R+7A3BsuwLLr7kHjEScM6v6T/v5niIk41l54DSRtb4DFM24KPOOmYMPPfw2tz4O8\n5V/2/rfiy+3ddAAgUFACb/k4+CrGwVc+Fr7ycYg4cwZ0noGEcnJWLMZBd14NTSiAtb+4ChvPujRj\nHX76ErG7AACGrtQ65hAREREREREREREREdHwx2AOEQ0LBp0aZflWjMqzwOuPos0TQmd3BCpRwNgS\n+1AfbxdSQSFiOXlwbFwNyHLKN+/d3vCgBHPUK5ZBs2Y1mg86CuGcAkU1+Q5jxs9Be5deq8aEMidW\n13ai7oQzEMotxIF3XY05f7gO5pYGVJ992aAETBzVq1C86H10jZmMxsOP3+01sSwHGo4+GQ1Hnwwk\nk7BvXo/8ZV/AtW45smqrUfzFByj+4oPt10fsrt6wTvnY3sBOxTgE8kuAQR6vVrbgFUx75A7IKhWW\n3PzAoAeadhS1OSCLYsqjrIiIiIiIiIiIiIiIiGj4YzCHiIYVQRDgsOrhsOqRSEqIxJLQaQdn5NNA\nxaZOh/mDBTC4WxWHYL7THYwiGk9Cl+FxVoZnngIA1J5yjqLrRUFALoM5+wSbSYsxJVmorveifcbB\n+PTPL+GQWy7DxH/8BeaWhsyPZJJlTHnqfgDAmkuuVxb8UangHTsZ3rGTt69hcLcha0s17LXVyKqt\nRtbWauQv/wL5y7/YXpbU6hA3WZAwGJHQG3t//eHvDUbEDSYkDCaEcvIRKCxFoKAEkrafcU+StH0E\nWNRmx+L5j6FrwtR0PyvpUakQyXKmMcqKiIiIiIiIiIiIiIiIhjsGc4ho2FKrRJgNg9slYyDkmbOA\nDxbAuXENmlIM5sgA3L5wRkd0CR0d0L39BnqKR6PjgDmKarJtemjUw/dzTKnJtRsRiiRQ3+5HT1kV\nPvnLv3HIbVdg1EdvwNjRgv/d8jDi1qyM7FW4+CO41n+D5oOOQuekGektIggI5+QjnJOP1gOP3P5h\nTY8PWVs2wr6lGllbqmFprIM6FIQ6EoKx2wtNOAhB6n9klSwICLvy4P82pBMoLN0e2AkUlECQJMy6\n9wYULf4YPUVl+PKuJxAsKEnvuQyAw6JDxJENa8MWxR24ouyYQ0RERERERERERERENCIwmENElKbk\nzFkAAEf1ajQddmzK9ZkO5hhe+geEWAy1J5+teGxRnjPz47RoaJXlWxGKJuD2hRF1ZOOz+/+BWffd\niKIvP8JRV5+FL+56csDhEyEew6S/PQhJpcaai6/N0Mm/F7dmwT11DtxT9xAwk2WI8RjU4dD2wI46\nHIQ6HII26IeprQnm5gaYW+phbm5A7qolyF21ZOclBAEJgxGaUBAdU2bjf7c+jLjFlvHn0h+dWoVc\nuxFhZzbstRugDgWQMFn6rYvGk5BkGeIgjCgjIiIiIiIiIiIiIiKizGEwh4goTfHJB0BWqeDcuCat\n+u5gDNFMjepKJKB77hnEDUbUH32KohKjTg27pZ8xPzQijS3JQiSahD8cQ1JvwFe/fwiTnnkQY//z\nLI668kx8fs/f4KuakPb65QtegaWlAbUnn41AUVkGT66QIEDS6hDT6hCz2fu9XBUJw9TaCHNzPSzf\nhnXMLfUwtTWj/uhTsOrSGzM75isFOXYD9FoVIo5sAIChyw2/gmCOjN6uOQYd/ylHRERERERERERE\nREQ0nPFuDhFRukwmRKrGwb55PYREHLJak/IS7d4QSnL7vwnfH+3770Ld2oLak85CwqSsC0+ewzjg\nfWl4UokiJo524JsaN6LxJCCKWPvL6xEoKMX0R27HYTdfhM8eeB49ZVUpr60J9GD8i48hbjRh/blX\nDMLpMy+pN6CnrCqt5zvYch1GqEQBgW+DOXqPG/6S0YpqIwzmEBERERERERERERERDXviUB+AiGgk\ni0+bAVUsCtvWmrTqG9oDvcGJATI88yQA9I6xUkAUBOQ7GczZl+k0Kkwsc0C1w6ijuhPOwLJ5d0Hn\n78bcmy6Cuaku5XXH/vtp6Hp8qP6/SxHLcmTyyMOaShQyPjbKpNfAbNBAt0PHHL3Hrbg+Ektk9DxE\nRERERERERERERESUeQzmEBENxKxZAADnxtVplSckCbVN3QM6gmrTRmgXf4GOKbPhL61QVOO06aFR\nZ2CEFg1rFqMW40p3HvVU/+NT8c2vb4He24m5N1wIY1uz4vWM7c2ofO15hLLzsfnU8zJ93GHLbtZh\n5tgcZGcZMrpuzrfriYKARHYuAMCQUjBn4KE+IiIiIiIiIiIiIiIiGlwM5hARDUBi+kwAgCPNYA4A\nuLvD6PSF0643PPsUAKD2FGXdcgCgwGlKez8aWVxZBozOt+70sS0nn43VF18HY2cb5t54AfRdHYrW\nmvjcw1DFY1h7wVWQdPrBOO6wohIFVBZlYUqFC3qtGoWuzH7d5Ni/D/okc/IApNYxJ8pgDhERERER\nERERERER0bDHYA4R0QAkKyqRMFvh3LhmQOtsbu5GIimlXCf4e6B75WWEXHloOfBIRTUGrRp2iy7l\nvWjkKsm1IM++8+iymjMuwvpzL4e5tRFzb7wQWp+nzzWyataj9JO34a0Yh4YjTxrM4w4L33XJ2TGM\nYzVpYTFoM7K+zaSFQaf+/gP53wZzutgxh4iIiIiIiIiIiIiIaF/CYA4R0UCIIiJTpsLStA2aHl/a\ny0TjSWxt6Um5TvfKyxCDQWw58UzIKnX/BQDyncb+L6J9TlVJFmymnUMlG877NTadfgGsDVsw96aL\noPHvYayaLGPK0/cBAFb/8gZA3Hf/+aASBVTt0CXnhwqzM9M1J+cHQSkhN51RVomMnIWIiIiIiIiI\niIiIiIgGz757Z42IaC9Jzvh2nNWmtQNap6UriO5gTHmBLEP/zFNIajSoO+5nikpEQUCug8Gc/ZEo\nCJhY5oBhx7CJIGDNL6/HlhPPRNbWjTj0d5dAHQruUpv/9WfIWb0ULbPnwj11zl489d71XZecgj5G\nVuVkGaBRDeyfT6IgICdr51FgWrMRUYsttVFW8SQkWR7QWYiIiIiIiIiIiIiIiGhwMZhDRDRQs2YB\nAJzVqwe8VE2jT/GNds0Xi6Cp3YymQ49F1O5UVOOw6qDTqAZyRBrBNGoVJpc7d34NCAK++fWt2Hb0\nKXBuXIODb/0VVJHw9w8nE5j89AOQRRFrLr5uCE49+PrrkrMjURSQ7xxY1xyHRQeNeuevQ51WhYgj\nO6VgjgwgynFWREREREREREREREREwxqDOUREAxSfOgMA4Ni4ZsBrBSNxNLYHFF2r/9uTAIDaU85W\nvH7BAAMFNPIZdGocUOHaOZwjilh+7V1oPPQY5KxZhgPvuApirLd7U9l7r8LauBVbjz0d/tKKITr1\n4FHSJeeHClxGCAPYM8du2OVjOk1vMEcb9EOMRhSvFWEwh4iIiIiIiIiIiIiIaFhjMIeIaIBklwuR\n4lFwbloDZGCsTH27H6FIvM9rxKZG6D58D57KCfCMnaJoXb1GBbtFN+Dz0ci3u3COrFLj65vuQ8vs\nuchf/v/s3Xt8nHWd9//3nJKZSSbnySQ9pGegtCC1LFLZG7GiIAsq9rccxdtbbtd1793lsbqrrvhw\n8fZGdm9Xb71x73UX3YcLeFhkReiKKALKghzaAqXnJmnTpE2bZDKnzPlwXb8/0hRKk+aaZJJMJq/n\n48GjyeT6fuczQKYz17yvz+c/9Y57PiPXSFTr7r9XebdXez76p7NeZ7XToY5Wn9avaFJTif/frXW7\ndP7yJktdct7KXeVUc5178gPH4bDb1Fx/5lq3y6FUs3/061DQ8n6ZHMEcAAAAAAAAAACAckYwBwBK\nILvh7aoaiar2WM+09zJMUwf6Imc9xv3978lmGOr+wC2SzVrvjvbmGtksHovKN244x1WlF774TQ1c\ndKmWPP9rve+TH5I7Mqz9N3xcmSb/rNRlt9nkb/DoghXNunRdQCsX1aml3qMLV7Vo4zl++Rs80+pW\nU19TpQtWNOvi81rV2nBm5xqriumw82b+eo8c9jNfflW57Kf+HXuKGGeVzuanVAcAAAAAAAAAAABm\nB8EcACgB85J3SJKa9+0syX7RRFbHgonxf5hOq/qBf1XGV6/eK66xtJ9NUluTtyS1oXKMF84xqt16\n/svfVvD8DfIGTyjV5NfBLf9txmupdbu0enG9Nq0LaN3yJjXXu88Ikvm8VVq3vEm/d16r2hq9shcR\nNGvyVeui1S3asMY/bseaYjXVueWtLq7TjjT+GCtJstlsyvkDkiR3McGcDB1zAAAAAAAAAAAAylnx\nnygBAM5gXPx7kqSm/a/ryHs/VJI9D/fH1FLvPi00IUnVjz0iZ3hYXTfcLqPaWsCgqc6t6irH5Adi\nwRkL57zWFTw1FqngqdF/3v1PuvB7X1ff5e9XwTMzoS6Xw65Ao1eBJo983irL67xul85b1qjl7T4d\nHUzo+HBChXHGyNkktdR71BGoLWp/qxa11KjrWNTy8dXOs4+TK7ROIZjDKCsAAAAAAAAAAICyRjAH\nAEogv/5CGVXVJeuYI0l5w1Dn0YjWr2g+7faq+/5Jps2m7j+4yfJe7c10y8HExgvn5Gt8euXP7yr5\nfdkkNfrcamv2qqXOLbt96oOp3FVOrV5Sr45ArY4OJdQfTChvGLLbbGptGA3keN2u0hX/Fm1NXh0+\nHlPBODMUNB5/o+es4+TMQJskRlkBAAAAAAAAAABUEoI5AFAKVVVKrV2v+t075UinVHCPP66mWMFo\nWsFISi0No/s5X90h985X1H/pu5VsX2Jpj2qXQ8110x/dg8o2Fs7Z2RWckS4s3mqnAo1etTV5S969\nqcrl0MpFdeoI1GownFJTXbXcVTP/Esd5suNP//AEY+feYqIxVqe0tUsqrmNONmfINM2zBn4AAAAA\nAAAAAAAwd+xzXQAAVIrcxotlL+TV0LW3pPt2Ho0qXzAkSVXf/WdJUtcHbrG8vq3Jy4f2sMRT7dTb\nVrfI7SpNcMZht6m9yasNq1t0ydqAlrX5ZnSkmtNh16KWmlkJ5YxZ1FJj6ThvtVN1k4zTsi06GcwZ\nth7MMUzzVJcjAAAAAAAAAAAAlB+COQBQKpdcIklq3v96SbfN5As61B+TLRiU59GfamTxMg28/Z2W\n1trEGCsUpxThnPqaKp27tEGb1rXp3I5G1ddWl7DC8lLrcamhZvLHF2ic/PewqqFOOY+3qFFWkpTO\nEswBAAAAAAAAAAAoV4yyAoASKVw8Gsxp2rez5Hv3Dyd0zpM/kD2bGe2WY7eWq2z0uWd1RDk7AAAg\nAElEQVS1ewgqw1g4Z6KxVjZJDrtdDodNDvvYP3bV11Yp0OiV172w/p9b5K9RJJE56zGTjrGSVFXl\nULrJX9QoK4lgDgAAAAAAAAAAQDlbWJ+cAcAMMpZ2KNvUUvKOOZKkQkHe+/9F+WqPjrz3Q5aX0S0H\nU+WpdmrDOX6ls4VT4Runwyb7yRAO3tBS71a1yzHhSKk6b5U81ZO/5Kp2OZRubFFtf69shbxMh7WX\naRmCOQAAAAAAAAAAAGWLT9YAoFRsNqUv2ijv0HF5B46VdOtFLz6jmoF+HXnPdcrV1llaU+10qLne\nXdI6sLBUuxyqr6lSrcclT7VTLqeDUM447DabFjXXTPjzgIVuOdLJYE5zq2ymqerwsOX7T2fzlo8F\nAAAAAAAAAADA7OLTNQAoodxV75ckrXj8JyXdd83PHpQkdX3wVstrAk1e2W22ktYBYHztzeP/vtlt\nNktjrMbkWlolSZ4ixlml6JgDAAAAAAAAAABQtgjmAEAJGTfdrExdg1b9/N9kz6RLsmfd4YNq3fmS\nBi66VLEV51hexxgrYPZUuRzyj9OhqqG2Wi6nw/I+hdaAJMldRDCHjjkAAAAAAAAAAADli2AOAJSS\nx6PjH75V1bGIlj29tSRbrn70B5Kkrg99xPKaxtpqeaqdJbl/ANYs8teecVugyXq3HGlqwZxszpBp\nmkXdDwAAAAAAAAAAAGYHwRwAKLH8Jz4pw+HUmp/eL03zw3JXLKJlTz2mRGCx+t9xheV17S0107pf\nAMWrr6mSz+M69b3DZlPLOF10zsZsa5dUXDDHME1lcoyzAgAAAAAAAAAAKEcEcwCgxOrXLNfxzdeo\n/kiXWl99YVp7rXji3+XMpNX1wVslh7VxOC6HvegwAIDSWPSmUFxLvVsOe3EvtWyLRoM5niKCOZKU\nyRLMAQAAAAAAAAAAKEcEcwBgBiT/6FOSpHN++q9T36RQ0OqtP1S+2qPDV33Y8rK2Jq/sNtvU7xfA\nlLU2euRyjL68CjR5i15vb2+TJLmHg0WtSxPMAQAAAAAAAAAAKEsEcwBgBtT9l3dqeP3b1f7ys6rt\nOzylPRa9+IxqBvp15MoPKOert7yuvZkxVsBccdjtamvyqsppV4Ovuuj1rla/Ci5XUaOsJII5AAAA\nAAAAAAAA5YpgDgDMALvdpvDH/kiStOZnD0xpjzU/e1CSRsdYWdRQUy2v2zml+wNQGotaatTaMLXO\nVdVVDqUbW4oeZZXO5ou+LwAAAAAAAAAAAMw8gjkAMEO8N2xRonWRlv/qZ3KNRItaW3f4oFp3vqSB\nDZcqtnyN5XXtLcWPzgFQWp5qp5a3+6a01uV0KNPUKnc4KJmm5XV0zAEAAAAAAAAAAChPBHMAYIa4\n3NUavPljcmZSWvGLh4taO9Ytp/NDt1m/P4dd/npPUfcDYGY4HVN/iZVtaZU9n1NVLGJ5DcEcAAAA\nAAAAAACA8kQwBwBmkPP225V3e7Xm0R/IVrA2asYVi6jj6a2Kty3R8UveZfm+Ak1e2e3Fj84BUF7y\nfr8kyV3EOKtMriCziA47AAAAAAAAAAAAmB0EcwBgBrnb/Dpx7RZ5h45r8fO/trRmxRP/Lmcmre4P\n3CI5HJbvq72ZMVZAJSj42yRJnmHrwRzDNJXNGTNVEgAAAAAAAAAAAKaIYA4AzLDcH/8PSdKan94/\n6bG2Ql6rH/uB8tUeHb7qw5bvo76mSjVu15RrBFA+jLaApOI65khSOmutKxcAAAAAAAAAAABmD8Ec\nAJhhtReer8FN71bL3lfVuP/1sx7b/sIzqhk8riPv/YByvnrL99HeXDPdMgGUCbOtXZLkDhcbzCnM\nRDkAAAAAAAAAAACYBoI5ADALEp/4lCRpzSMPnPW4NY8+KEnq/OBHLO/ttNvlb3BPvTgAZcW+6GQw\np+iOOQRzAAAAAAAAAAAAyg3BHACYBd5r3qfYinO09Nkn5A4OjHtM3eGDat35sgY2bNLIstWW9w40\neeSw83QOVIqxYI6HUVYAAAAAAAAAAADzHp/kAsAssNvtCn3sj2Qv5LV664/GPWbNz052y/mQ9W45\nEmOsgErjam+TabPJPUzHHAAAAAAAAAAAgPmOYA4AzJKqj9yqTH2jVv7Hj+VIp07/WSysjqe3Kt62\nRMcveZflPeu8Var1uEpdKoA55KyuUqahmVFWAAAAAAAAAAAAFYBgDgDMEpevRoN/eJuqR6LqeGrr\naT9b8cS/y5lJq+sDt0oOh+U925u9pS4TQBnItPjlCQWLW5MjmAMAAAAAAAAAAFBuCOYAwCyyf/KT\nMpwunfPI/ZJpSpJshbxWPfZD5as96rn6w5b3cthtam30zFSpAOZQrqVVznRSzmTC8hrDNJWhaw4A\nAAAAAAAAAEBZIZgDALOoatlSDV75B6rr7VZgx+8kSe0vPKOawePqee8Hlauts7xXoNErh52ncaAS\n5f0BSZI7NFjUujRdcwAAAAAAAAAAAMoKn+gCwCzLfepPJUlrHvnX0T8ffVCS1PXBW4vahzFWQOUy\nAm2SJHdoqKh16Wx+JsoBAAAAAAAAAADAFBHMAYBZ5t50icIXXqz2bf+pJc8+odadL2tgwyaNLFtt\neQ+fxyWft2oGqwQwl8zAaMccz3CRwZwMHXMAAAAAAAAAAADKCcEcAJgDI//9jyVJl/zd5yRJnR+6\nraj17c01Ja8JQPmwtbdLomMOAAAAAAAAAADAfEcwBwDmgHvL9UoGFsuRyyrevlTHL7nc8lqHzabW\nRs8MVgdgrtmnGMzJ5OiYAwAAAAAAAAAAUE4I5gDAHLC5XAr9109Ikro+eKvkcFhe29rokdPB0zdQ\nyRyLTwZzwsGi1qWzBHMAAAAAAAAAAADKiXOuCwCAhcrx53+m55qX6fjbLilqHWOsgAWgfZEkyTNc\n7CgrgjkAAAAAAAAAAADlhJYLADBHnFUu1V57lbyeKstrat0u1dVYPx7APOV2K1dbV/QoK8M0GWcF\nAAAAAAAAAABQRiwFc3bu3KnbbrvtjNuffvppbdmyRTfeeKMeeughSVI2m9VnPvMZ3XDDDfr4xz+u\nnp4eSdLw8LA+9alP6dZbb9VNN92k3t7e0j0KAJinFvtrdcnagData9P5y5u0pKVWPo9LtgmOb2/2\nzmp9AOZOtqW16GCORNccAAAAAAAAAACAcjLpKKv77rtPjz32mDwez2m353I53XPPPXr44Yfl8Xh0\n8803a/PmzXriiSfk9Xr10EMP6dChQ/rKV76i733ve/ra176m6667Ttdcc41efPFFHTp0SB0dHTP2\nwABgPql2OdTa4FFrw+hzbb5gKJbIKprIKhrPKpbMyiYp0EQwB1gocv5W1fR0yZ7Nyqiy3ikrnc2r\nns5aAAAAAAAAAAAAZWHSYE5HR4fuvfdeffaznz3t9u7ubnV0dKi+vl6StHHjRm3btk1dXV26/PLL\nJUkrV65Ud3e3JOmVV17Rueeeq4997GNavHix7rzzTksF+v2+oh4QAFSK9jd9XTBMpTJ51Xpcc1YP\ngNk1smSxtE1qzsSUblpieZ23xs3rJwAAygR/JwMAAAAAgPmIcxqlNWkw56qrrtLRo0fPuD0ej8vn\ne+M/Rk1NjeLxuNauXatnnnlGV155pXbu3KmBgQEVCgUdO3ZMdXV1+v73v69vf/vbuu+++3THHXdM\nWuDQ0EiRDwkAKlcqnp7rEgDMlsYW+SQVjh7ViK/F8rLjAzH5qixNKwUAADPI7/dxTgMAAAAAAMw7\nnNOYmrOFmab8qU1tba0SicSp7xOJhHw+n7Zs2aLa2lrdcsstevLJJ7Vu3To5HA41NDRo8+bNkqTN\nmzdr9+7dU71rAACAime2jfbNcg8PFbUunc3PRDkAAAAAAAAAAACYgikHc1atWqUjR44oEokom81q\n+/bt2rBhg3bt2qVNmzbpRz/6ka6++motXbpU0uioq9/+9reSpG3btmn16tWleQQAAAAVyN4+Gszx\nhIoN5hRmohwAAAAAAAAAAABMwaSjrN5q69atSiaTuvHGG/X5z39et99+u0zT1JYtWxQIBORyufSt\nb31L3/nOd+Tz+XT33XdLkj73uc/pi1/8on784x+rtrZWX//610v+YAAAACqFvb1NkuQmmAMAAAAA\nAAAAADBv2UzTNOe6iLNhdhkAAFiIHJ0H1XTZxTp09Rbt+PT/KmrtpnVtqnY5ZqgyAABgBfPYAQAA\nAADAfMQ5janx+30T/mzKo6wAAAAwc4xAQJLkDgeLXpuhaw4AAAAAAAAAAEBZIJgDAABQhkxfnQrV\nbnmGixtlJUnpbH4GKgIAAAAAAAAAAECxCOYAAACUI5tNOX+r3KGpBHPomAMAAAAAAAAAAFAOCOYA\nAACUqbw/IHdkWCoUF7QhmAMAAAAAAAAAAFAeCOYAAACUqUJrQDbDUHU0VNQ6gjkAAAAAAAAAAADl\ngWAOAABAmTLb2iRJniLHWaWz+ZkoBwAAAAAAAAAAAEUimAMAAFCu2tslSe4igzkZOuYAAAAAAAAA\nAACUBYI5AAAAZco2FswZLi6YUzBNZXOEcwAAAAAAAAAAAOYawRwAAIAyZQamNspKktJ0zQEAAAAA\nAAAAAJhzBHMAAADKlNEakFT8KCtJStMxBwAAAAAAAAAAYM4RzAEAAChTxsmOOVMK5mTypS4HAAAA\nAAAAAAAARSKYAwAAUKbM5mYZTiejrAAAAAAAAAAAAOYpgjkAAADlym5XvtkvdyhY9FKCOQAAAAAA\nAAAAAHOPYA4AAEAZK/gDo6OsTLOodekso6wAAAAAAAAAAADmGsEcAACAMmYEAnLksnLFY0WtS2cL\nKhjGDFUFAAAAAAAAAAAAKwjmAAAAlDGzrU2SRrvmFMEwTcUSuZkoCQAAAAAAAAAAABYRzAEAAChj\ntvZ2SZKnyGCOJEXimVKXAwAAAAAAAAAAgCIQzAEAAChjRuBkx5zh4oM50US21OUAAAAAAAAAAACg\nCARzAAAAytipYM4UOubEElkZplnqkgAAAAAAAAAAAGARwRwAAIAyZgQCkqY2ysowTY3QNQcAAAAA\nAAAAAGDOEMwBAAAoY9PpmCNJkTjBHAAAAAAAAAAAgLlCMAcAAKCMGS1+SVMP5kQTmVKWAwAAAAAA\nAAAAgCIQzAEAAChnVVXKNzZPaZSVJEUTWRmmWeKiAAAAAAAAAAAAYAXBHAAAgDJXCASm3DGnYJiK\nJ3MlrggAAAAAAAAAAABWEMwBAAAoc2agTa5kQo5UckrrI3HGWQEAAAAAAAAAAMwFgjkAAADlrq1N\nkuQOB6e0PJrIlrIaAAAAAAAAAAAAWEQwBwAAoMwZgZPBnCmOs4rGszJNs5QlAQAAAAAAAAAAwAKC\nOQAAAGXOCAQkSZ4pBnPyhqF4KlfKkgAAAAAAAAAAAGABwRwAAIAyVxjrmDM8tWCOxDgrAAAAAAAA\nAACAuUAwBwAAoMwZrdMbZSVJkXimVOUAAAAAAAAAAADAIoI5AAAAZW66o6wkKRqnYw4AAAAAAAAA\nAMBsI5gDAABQ5ozA9Dvm5AqGEulcqUoCAAAAAAAAAACABQRzAAAAyp3XK8Pnm1YwR5IidM0BAAAA\nAAAAAACYVQRzAAAA5gHDH5jWKCtJisYzJaoGAAAAAAAAAAAAVhDMAQAAmAeMtjZVR8Oy5abe9SZK\nxxwAAAAAAAAAAIBZRTAHAABgHjACAUmSOxKa8h6ZfEHJdL5UJQEAAAAAAAAAAGASBHMAAADmAaO1\nTZLknu44qwTjrAAAAAAAAAAAAGYLwRwAAIB5wAiUJpgTYZwVAAAAAAAAAADArCGYAwAAMA+MjbLy\nDE+zY06cjjkAAAAAAAAAAACzhWAOAADAPPBGx5zBae2TzhWUzuZLURIAAAAAAAAAAAAmQTAHAABg\nHiisOUem3a7Fz/9aMoxp7cU4KwAAAAAAAAAAgNlBMAcAAGAeMNoXKbPlBjUcPjgazpkGxlkBAAAA\nAAAAAADMDoI5AAAA80Ty038l027X+Q/+w7S65tAxBwAAAAAAAAAAYHYQzAEAAJgnCqvWKHn9H067\na04qm1cmVyhhZQAAAAAAAAAAABgPwRwAAIB5JPOXny1J1xzGWQEAAAAAAAAAAMw8gjkAAADzSGHV\nGoWv/fC0u+YwzgoAAAAAAAAAAGDmEcwBAACYZ3J/9blpd82JJgjmAAAAAAAAAAAAzDSCOQAAAPOM\n/dxzdeKqD452zXnuySntkUjnlMsXSlwZAAAAAAAAAAAA3oxgDgAAwDw0csdfyrTbtW4aXXMYZwUA\nAAAAAAAAADCzCOYAAADMQ3UXrVPv5utU39M55a45UYI5AAAAAAAAAAAAM4pgDgAAwDzksNs18Km/\nmFbXnEg8MwOVAQAAAAAAAAAAYAzBHAAAgHmq/m3n68g0uuYk0jnlC1MbgwUAAAAAAAAAAIDJEcwB\nAACYpxp91er66J9MuWuOKbrmAAAAAAAAAAAAzCSCOQAAAPOUzWZTzfrpdc2JxrMzUBkAAAAAAAAA\nAAAkgjkAAADzWmujR/tu/eMpd82JEMwBAAAAAAAAAACYMQRzAAAA5rG6mioVVqyectecRDqnfKG4\nMA8AAAAAAAAAAACsIZgDAAAwzwWapt41xzBNxRJ0zQEAAAAAAAAAAJgJBHMAAADmudYGr+KLl0+5\na06UYA4AAAAAAAAAAMCMIJgDAAAwz3ndTvk8Vdp36x/LsDuK7poTiWdmsDoAAAAAAAAAAICFi2AO\nAABABQg0eRRfvFy97ym+a85IMqdCEUEeAAAAAAAAAAAAWEMwBwAAoAK0Nnhkk7T3luK75himqXS2\nMLMFAgAAAAAAAAAALEAEcwAAACpAlcuhRl+1EouXTalrTjZHxxwAAAAAAAAAAIBSI5gDAABQIQKN\nXkmjXXNMm02rt/7Q8tpsjo45AAAAAAAAAAAApUYwBwAAoEI017vlsNmUWLxM6Sa/vAP9ltdm83TM\nAQAAAAAAAAAAKDWCOQAAABXC6bCrud4tSUo1+eUJDUmmaWktHXMAAAAAAAAAAABKj2AOAABABRkb\nZ5Vu8suRzciVGLG0jmAOAAAAAAAAAABA6RHMAQAAqCCNddVyOexKN/klSe7QkKV1jLICAAAAAAAA\nAAAoPYI5AAAAFcRus8nf4FGq+WQwZ5hgDgAAAAAAAAAAwFwhmAMAAFBhAk1epRtbJEnucNDSGkZZ\nAQAAAAAAAAAAlB7BHAAAgApTX1MlozUgSfJYHGWVKxgyTHMmywIAAAAAAAAAAFhwCOYAAABUIO/y\npZIkt8VgjkTXHAAAAAAAAAAAgFIjmAMAAFCBfKuWSZLcw0UEc/LGTJUDAAAAAAAAAACwIBHMAQAA\nqEDVi9slWR9lJdExBwAAAAAAAAAAoNQI5gAAAFQgu8etjK9e7nDQ8pocHXMAAAAAAAAAAABKimAO\nAABAhco0t8pdVMccgjkAAAAAAAAAAAClRDAHAACgQmVbWlUVj8meSVs6PsMoKwAAAAAAAAAAgJIi\nmAMAAFChcv5WSZI7ZG2cFaOsAAAAAAAAAAAASotgDgAAQIUq+AOSJI/FcVZZOuYAAAAAAAAAAACU\nFMEcAACACjUWzHGHrQVzMnmCOQAAAAAAAAAAAKVEMAcAAKBCGYGTwRyLHXNyOUZZAQAAAAAAAAAA\nlBLBHAAAgApltrVJktzD1oI5BdNUvkA4BwAAAAAAAAAAoFQI5gAAAFSq9nZJksdixxxJytI1BwAA\nAADmJS60AAAAAMqTc64LAAAAwAxpP9kxp5hgTr4gLy8RAQAAAGDeSGfzOtAbUSyZ1RJ/rZa21srp\n4JpcAAAAoFzwqQsAAECFctXXKV/tkTsctLwmm+cKSwAAAACYL44FEzrUH1XBMCVJRwZG1B9MaGlr\nrRb7a+SwE9ABAAAA5hqvygEAACqUy+VQutlfXMecXGEGKwIAAACA8hdP5bTncGiuyzirdDavnV1B\ndR6NnArljMkVDB06HtPLewd1LJiQYZoT7AIAAABgNhDMAQAAqFAOu13pJr/ckZBUsBa4yebomNN9\nLKqRZHauywAAAAAwB3J5Q3sOhzQUTalvMD7X5YzrWDChbfsHFY5nznpcJl9Q59GIXt43oBOhpEwC\nOkBRToSSc10CAACoEARzAAAAKli2pVU2w5A7MmzteDrmaCia0qudQR0LJua6FAAAAACzyDRN7e0J\nKZXNS5IOH4+VVWg/lZm4S87ZpLMF7e8Na/uBIQ1FUjNYIVA5kum8uo5GlS9wARMAAJg+gjkAAAAV\nLNfslyS5w0FLx2fzC/uEUy5vKJ0tyDBNdR6NaF9PSAVjYf87AQAAABaKQ/2x07rQGKapfUfCZfHB\n/LFgQtsPTN4l52wS6Zz29IS048CQItPYB1gIhmNp5Q1Dx4fpmgMAAKaPYA4AAEAFy7cGJEnu0JCl\n4xd6x5x4Knfa9wORlHYcGFIinZtgBQAAAIBKMBBKqm/ozNFVycxo14y5ksrk9doUuuSczUgqq9e6\nguo+FpXBeCtgXMOxtCTp6GCc3xMAADBtBHMAAAAqWN5/MpgzbC2Yk1vgHXPeGsyRRk/Ev3JgSAPM\nlgcAAAAqUiyZ1YG+yIQ/PxFOaiA8++8HhiIpbT8wOGPdbfqG4nr14JCSXIgAnCZfMBRLjI6xy+QL\nnA8AAADTRjAHAACgghlto8Ecj9WOOfmCzAV8Jdh4wRxJKpim9vWGdbAvIqNEV6kCAAAAmHvZXEF7\nDocm7YjR2RdVKpOfpaqk3oER7ekJlaxLzkRGUjntODCk/mBiRu8HmE9CI5nTnhP6BuML+lwJAACY\nPoI5AAAAFcxsbZNkfZSVqYXdNWeiYM6Y/uGEXu0cmtUT8gAAAABmhmGa2tMTUsbCSN+8YWjfkfCM\nj7QxTFMHesM6dDw2o/fzZgXT1MGjEe0+PKxcfmGPNwYkKRRNn/Z9MpNX8C23AQAAFINgDgAAQCVr\nPxnMCQctL8ku0GCOYZhKJ1Jq2rfzrMeNXVEajKRmqTKg/LzWGdSREyPKFxbm8wUAAKgMXUejip4c\nV2NFLJlVz/GRGasnXzC0q3tYx+dobE4wmtb2/UMKj8zM6CxgPjBNU8OxM0M4vQPxOagGAABUCoI5\nAAAAFcze4pfhcFrumCONtnJfiOLpnFY89kO9546b1Lrj+bMemzcM7e4JqXdg5k7KA+Uqly8oksjo\n8ImYXthzQt390QX7vAEAAOav/mBC/cPFj2/qGxyZkeBKKpPXq51BheNzG4rJ5Ava2R1U97HojHcH\nAspRLJlTbpwLEEZSWUJrAABgygjmAAAAVDBXlVPpxmZ5hosI5izQjjnxZE7+XTskSW07fmdpzfHh\nubmSFZhLkfgbV5UXDFN9g3G9uHdAB/sijHkDAADzQjSeUdex6JTWmpL2HwmXdORTLJHVq51DSqTP\nPlp3NvUNxfXqwSEly6gmYDaExumWM6ZvkItzAADA1BDMAQAAqGAup13pJv9oxxyLVzsu1M4X8VRO\njZ17JEktu7dbWpPK5pVZoP++sHBF42eOezBMU/3DCW3bP6h9R8J8gAMAAMpWJlvQnp7QtLrBZPIF\nHeiNlKSewUhKO7uCZXmBxNgY38EwFyRg4RiOThzMCY1kNJK0Pv4OAABgDMEcAACAClblGg3mOHJZ\nueIxS2uyufI7ITwbMgNDqhk4Jklq7NwrR8rayefoHLeaB2Zb5Cz/zxumqYFwUi/vH9Tuw8OKcdIa\nAACUEcMwtfvwcElCMMFYWseG4tPao3dgRHt7QiqU8ciogmmqd2B6jxOYLzLZguKTXGTQO8jvAwAA\nKB7BHAAAgArmsNuVaWqRJLnDQUtrsiVsyT5fmKYp166dkqSCyyV7Ia+m/a9bWhsZp3sIUKnyBcPy\niIVgNK1XDg7ptc6gjpwYUSSekWGU74dOAACg8h3oi2gkVbrOft39McWnsJ9hmjrQG9ah49Yunphr\niXROuTLs6AOUWvAsY6xOHRNJMcIXAAAUzVIwZ+fOnbrtttvOuP3pp5/Wli1bdOONN+qhhx6SJGWz\nWX3mM5/RDTfcoI9//OPq6ek5bc3WrVt14403Tr9yAAAAWJJtaZUkuYeHrB2/ADvmJDN51R/cLUnq\ne9c1kiT/7h2W1kYTBHOwcETjWRUbrYkkMjp8IqbXuoJ6btdxvXpwSN39UQ1H03zAAwAAZs2xobgG\nSjySyTBN7TsSVsGY/DWNaZrKFwylMnnt6h7W8dDcjYdyDw9qybNPWB53bEqKJugUisoXshDMMSX1\n0TUHAAAUyTnZAffdd58ee+wxeTye027P5XK655579PDDD8vj8ejmm2/W5s2b9cQTT8jr9eqhhx7S\noUOH9JWvfEXf+973JEl79+7Vww8/LLOMW3MCAABUmrw/IEnyhCwGcxZgx5x4KqfGzr2SpM4P3abl\nv35ULbu3W1o7evVoQS6nYyZLBMrC2cZYjafjqa069yf/ou1/8T8VPvcCGaapaDKraDKrPo2ezK51\nu1RXU6WG2irV11ar2sXvEgAAKK1oIqvqr35F7zx0QL+769uSzVayvRPpnHYdCsntcqhgmCoYhgoF\nUwXDVP5NXxvlcE7cNLXsyUd10T9+VVWJET3/N/eq/7IrLS2NJrJqqfdMfiAwTxUMQ5ERa+93ToSS\nWt7mUxXvXQAAgEWTdszp6OjQvffee8bt3d3d6ujoUH19vaqqqrRx40Zt27ZNXV1duvzyyyVJK1eu\nVHd3tyQpHA7rG9/4hr7whS+U+CEAAADgbPKto8Ect9VgzgLsmBNP5tTYtVdZX70ia85XdPkaNe/d\nKVveWlv6KOOssEBY7RBlK+R14T//b73j7z6rhkP7te7+M99Tjomnc+ofTmjvkbBe2jtAFyoAAFBS\n2VxBnbsO65yHvqvFLzytpn2vlfw+IvGMToSTGoqmFBrJKJrMKp7OKZ0tKFcwyiKU4w4O6LIvfUqX\n/P1fy5lOSZL8r2+zvJ73PKh0kZGsChZ/Vw3T1NGhxAxXBAAAKsmkHXOuuuoqHQzUnFsAACAASURB\nVD169Izb4/G4fD7fqe9ramoUj8e1du1aPfPMM7ryyiu1c+dODQwMqFAo6M4779Rf//Vfq7q6uqgC\n/X7f5AcBAABgQtFVyyVJdSMh+WrdltY0NdXI4bA09bQi9Hb3q7a/V8Hfu0w+n0fRDe9QfU+nFh/r\nUnTdhknX26qcvG5FxcsXDMkx+fOIKxbR2770Z2rZ9pziHStlVLvVvu0/1RY8psTyVZPeT28woUvb\n6uR1u0pVOjBn+LsBAOaWaZratm9AHc8+IUduNHS/+rlfat8lm+a4sllkmlr0i59q7Te/LFd8RMGL\nL9O+T39Zl/3XaxTY96rl94iy2Rbc+0QsLIMjWeu/D5JGMgU1NNbI5eR3AgBQmTinUVqTBnMmUltb\nq0TijURwIpGQz+fTlVdeqe7ubt1yyy16+9vfrnXr1mnPnj06cuSI7rrrLmUyGXV1denuu+/WnXfe\nOen9DA2NTLVEAAAASIp56yVJ9oEBjcQnn5cuSceOR+WpnvJLxXkn9fyLkqTgyrUaiafVf95F6tCD\n8r78go4uWzvp+p4+Q81eQgSobKFYWrGR1FmPqTt8UO/48p+ptr9X/e94l176/NcUePUFvfN/3qH2\nH35Xr/7531i6r99u69VFa1rk5IMfzGN+v49zGgAwBZlsQdVVpRkP090fVd9gXJu3/kSm3a6cp0aB\np36ul2//K8lR+SNo3MEBbfzW32jRS79VzuPVjj+/S4f+4AbJZlNozTo179+p1OCw8t4aS/t1Hwmp\n0VfchbfAfHGoN6R0rrjR3q/vP6GOQPEfWibTeXndC+ecCwBg/uGcxtScLcw05bOcq1at0pEjRxSJ\nRJTNZrV9+3Zt2LBBu3bt0qZNm/SjH/1IV199tZYuXaoLL7xQP//5z/XAAw/oG9/4hlavXm0plAMA\nAIASaBsdZeWxOMpKkrL5hTPOKp3Ny7d/tyQpvPp8SVJw/UZJUsvuHZb2iKeyo91EgAo22YipRc89\nqffccbNq+3u17+ZP6vm7/kH5Gp+ObXqPEoHFWv7ko3LFIpbuK57Oad+RsMwyGPsAAABm14G+sPb0\nhGQY03sdMBRJqW8wLt+RLjUfeF0nNl6mvne9X+5wsKgRTvOSaWrZrx7RVZ+4Tote+q0GNlyqX/3T\nYzp07Y2SzSZJCl6wUTbDKGq0VySemamKgTkVT+WKDuVI0rGhRFHPValMXrsPD2vHgcFpP8cBAID5\npehI7tatW5VMJnXjjTfq85//vG6//XaZpqktW7YoEAjI5XLpW9/6lr7zne/I5/Pp7rvvnom6AQAA\nYJHT41amrkHuIoI5uSmckJqv4smcGrv2SpLCa9ZJklL+NiUCi0eDOYYh2c+eZzclxRJZNdVZb3sN\nzDcTfhBjGDr/wf+ndQ/+g/LVHr3wxf+jo5df/cbPHQ51fvAjuuif/04rf/ETHbjxE5bubziWVnd/\nTKsX15egegAAMB/EUzmFRkZfc2SyBa1f0aQqV/GdbZLpvA70jgaClz/5M0lSz/uuV6ahWasef0gd\nv3lcQxsuLV3hM8UwZDMKMp3Wu3O6gwO6+JtfUvvLz57RJefNguveLklq2fOKBjdeZmnvaPzsQW1g\nvhqOWusu/FaZfEED4aTam8/edSpfMHRkYGQ0yHPy4oNIPMM5BAAAFhBLwZwlS5booYcekiRdd911\np27fvHmzNm/efNqxTU1N+v73v29pLwAAAMw8l9OudJNfnqETltdkFlDHnHg6pyWde5StrVOifemp\n24cu2Kjlv35Mdb3dii1fM+k+UYI5qGAFw9BIMnfG7c5kQpf83ee0+IWnlAgs1vN3fVvRVeedcdzh\n92/Rugfu1epHf6iDWz5m+cOlo0NxeaudWtRibbwCAACY3/oG3miXH0tm9UrnkC5c2Syv23owpWAY\n2tMTUt4wZCvktezXjylbW6f+TZtlOJxKNfm1+Llf6ZU//aJMV9VMPIyScKSS2vwXt6r+8AFl6hqV\nbmpRurFF6Sb/6NdN/lPfp07etvj5X+uif7xHVYkRDWzYpO2f/oqSgcXj7j8WzPHvstYlVBr9b2KY\npuxvCfkA810oNrVgjiT1DcbV1uSVbZzfC9M0dXw4qZ4TsTM6Ew/H0pxDAABgAWGIJQAAQIWrcjqU\navKrvqdT9kxaRvXkJ36yC6hjTmpwWL5jRzRw0aWnXUUaXD8azGnZvcNSMIe27qhksUTu1JWdY2qO\nHdFld/0P1R/p1sBFl+rFO7+hbH3juOvzNT71vO/DWvPog1r83JM6esU1lu+761hUnmqnGn3V03oM\nxeADJwAAZl86m9fQW7pWpLMFvXIwqHUrmiy/FjjQG1EiPRooDuz4nTyhIXVde5OMqtH1fe+6Wuc8\n8oACr76gE5e8q7QPooQu+s7fquHQfsU6VkmGIe/gcTUcPjjpupzHq+13fFmHr/nDM7rkjLHbbPIE\n/IouX6Om/Ttly+csBacN09RIIqv62tl7XQbMtFy+oFhy6t2gkpnR567WBs9pt4dHMuo+FlU8feYF\nDtJoMGfyMw0AAKBSEMwBAACocKMdc1okSe5QUMn2JZOuWUjBHOeu1yVJkdXnn3Z7cP3FkiT/ru06\ndO1Nk+4zkszJMEzZ7XyYj8oTTZwePAtsf06XfvUzqorHdPD62/T6H31WpuPsby87P/QRrX7sBzrn\nkfuLCuYYpqm9PSFtWOOX1z1zb2FN09RwLK1jQwnl8oY2nNMixyRj7AAAQOkcfdOIlzfLG4Z2HRrW\nmiX1k46LOToU12Akder75U8+IknquerDp27ru+IanfPIA+p45udlG8xZ/OwvtfIXP1F41Vo9/a0f\ny6ga7ezjSKdUHR6WJzQkd3hI7tCQ3KGg3OGg3KEh5WrqtPu/3TFhlxxpNJSzfkWTcnlDQ+s3qr6n\nUw1d+xQ+70JLtUUJ5qDCDMcyOvOZpzh9AyOngjmpTF7d/VEFJxmPlc4WlEjnVFNERzAAADB/EcwB\nAACocC6nXdEmvyTJExqyFMzJLZBRVrl8Qd59uyVJ4TWnB3NGlq5Qur5JLbt2SKY54dWmYwzTVCyZ\nVQMnqVGBIvE3riBd/Owvtemrn5bhcOjlv/yqjrzvekt7JBYvU/+l79biF55W077XFFp7keX7zxUM\n7T48rA1r/HI5SxuWyRcMHR9O6lgwrnT2jVDiwb6o1i4bvwMQAAAordG/jxMT/twwTR3oiyiVKWjl\norpxj4kmsjrUHzv1vWskqkW/e0rRZasUPmf9qdtD571NicBiLfrdU5Y7is4mz2C/Lv7ml5Sv9ujF\nL3z9VChHkgpuj5LtSyy9pxvPWCinqc6tZDqn4+s3avV//Fj+3TssB3Mi8aw6AlO6e6AsDU9jjNWY\nkVROQ5GUYomsjgXHDxmOe9/RNMEcAAAWCC7/AwAAqHBOh12Z5lZJkjs0ZGlNJrcwgjnxVF6NnXsk\nSeFz1p3+Q5tNwQs2yhs8Ie9Av6X9ovGpt78GytXYyIIx5/3bfTJl02/+/n7LoZwxndd/VJK05pEH\niq4jmclrT0/I8knuySTSOR3si+iF3SfU3R89LZQjSQPhpI4FJ/6AEAAAlE5/MKGCMfnf8b2DI9rT\nE1LBOP39SjZX0N7Dp79OWPqbx+XI5dTz3utPD9nbbOq94hq5Ukm1v/xsyR5DKdgKeb3jbz+rqnhM\nr/7JFxRfuqJke785lCNJXrdL4QtHu4S27N5heZ9YIiuzRK/HgLlmmKbCsdKMpd7TE1LfULyo9yul\nCAUBAID5gWAOAADAApBrKS6Yk8svjFFWI8msGjv3KOetVby944yfB9dvlCS17N5uab+3jvsBKsFI\nIqvCyZPLvt5Daurco4GLLyuq482YobddosjKc7Xk2V/KM3Si6PWReEadfZGi140xTVPBSEqvdQW1\nbf+g+ocTpx7beLqPRRVLELgDAGAmGaapY0PWw7BDkZR2dg2fGr87OvYyrMxb3sOs+NUjMu129b7n\nujP26Ds5VnPpbx6fRuWlt/YH35F/9w71vetq9Vy9pWT7vjWUM8a5bJkSre1q2fPKaJdQC/KGoXgq\nV7LagLkUjWeVN+buwqRYIrtgOhYDALDQEcwBAABYAAr+4oI52QVyYigdDMt3rEfh1Wsl+5kvjYfW\nj15B6t9l7QrSaCJbsm4eQLmIvimY0vH0VknSkc1nfsBlic2mzus/KrtR0KrHfjilLY6Hkjo6GLd8\nfC5vKJbIqm8wrpf2DWh3T0iRuLUQnWGa2tMTWjBhRQAA5sJAKHlGqGYysWRWr3QOKZHO6XB/TJG3\nBOTrejrVdGCXTlz8+0qf7B76ZtGV5yq2dKUWvfQbOZPl0SGvZdd2nf/Df1QisEg77vjypKN0rZoo\nlCNJPq9LwXUbVR0Ny9d32PKedApFpQjNcccaU1JohK45AAAsBM65LgAAAAAzrxAISJI8FoM5hmkq\nlzfkclZ2jtu263XZTFPhNevG/Xl01bnKebyWW7sXDFPxVE513qpSlgnMqVMhFtNUxzM/V97tVf+m\nzVPer/fdf6ALvvt1rXr8Ie279VMquD1F79HdH5Wn2qnm+tEPmHJ5Q6lMXqlsfvTPdF6pbEGpTF65\nwvSChplcQXt7wrpwVbNsJfqADAAAvOFoEd1y3iydLeiVg0PjjsBa9uTPJEk9E43dtNnUd8U1WvfA\nt7Xod0+p98oPTKmGUnHFInrH335Wpmx66fN/r1xtXUn2PVsoRzoZzLlgo5Y98x9q2b1dIx0rLe0b\nSWS0RLUlqRGYS5ONknIm4nIl43KmknKmk6N/JhMnv06Mfn/yT9ls2n/Df1eurqGoGkLRtAKN3uk8\nDAAAMA8QzAEAAFgAzEC7JOsdcyQpmy9UdDCnYBjy7n1dkiYM5pgOp4bP36C2Hc+rOjysTGPzpPtG\n41mCOagYpmme6pjTtO811R7v05HN16ngmfqJY6OqWt3X3aR1D/4/Lfv1ozp07U3F1yVp75GQatyu\nkoRvJhOOZ3T4+IhWLirNh2QAAGDUcDStRHrqY5HGC+XYCnkte+oxZX316r/03ROu7T0ZzFn628fn\nNphjmrr4m1+Sd+i4dn/0zzS8bkNJtp0slCNJPm+Vjq57uySpZfcrOnzNDZb2pmMOKkEqk1cyk5/w\n5+f96J+1/vvflK2IrrjphhZ1/n8fK6qO0EhGpmlyEQAAABWOYA4AAMACYK+vU97tlTsUtLwmmzNU\nM/E53HkvkcqrsXOPpImDOZIUXL9RbTueV8ueHTr2+++bdN9oPKOlrVw9isowksqd+sBr2dP/IUnq\n3XzttPftvvYmrf3xfVrzyAM6dM0N446Sm0zBMBVLWvtQyDN4XLXH+zT0tkuKvp8xvYMjqvO61NJQ\nfIcfAAAwvr4ixlNaFdjxvDyhoLquu1lGVfWEx8WXrlB49Vq1bX9erlik6C4XpbLi8Z9oyXNPauiC\ni7Xv5k+WZE8roRxJ8lQ7lVp5jrK+estdQiUpVzCUSOdU43ZNt1RgzgxHJ+6WU3f4oNbdf6/Sjc0a\nfNulynu8J/+peeNrt/fU1850Spfd9adqOvB60XXkCqOjd+trJ36+AgAA8x/BHAAAgAWgymlXqqnF\n8igrabRjTiUbSeW0snOvch6v4ouXTXjc0AUbJUktuywGcxJcPYrKMXY1tC2f09Lf/kLp+iYNbHzn\ntPfNNPnVe8U1Wv7rRxXY8bwGfu+/THvPidgzaV3xlx9V7Ymj+u0939XgxsumvNf+3oje7nbJ6+at\nNAAA0xVLZhVJZEq+7/JfTTLG6k36rrhGjV1f15Lnn9Th9/9hyWuZjO9Ily76zj3K+ur10uf+t+Rw\nTHtPq6GcMbU11Qqev0GLXvqN3MEBpVsCltZF4lmCOZjXJhxjZRja+H+/LHshr+2f/l86ccm7Jt/M\nNJXx1avp4O4p1RKMpQnmACiJXL6gXN6Ql7+jgbJTubMJAAAAcIrLaVe6ya/qaEgqWAvcZHMzOxpm\nriWHI/L1HVJk1dqzdusInXuhDKfL8hWkuYKheGrq7fiBchKNj35YFtjxvKqjYfVdcY1MR2lCKZ3X\n3yZJOueR+0uy30TO+7fvqvbEUUnSxd/8khypxJT3yhuG9vaEVDAq+/kRAIDZMBPdclyxiBa98JSi\ny1YpfM76yWu4/P2SpKW/ebzktUzGns3o0q9+Rs5MWtv+4itKtbZPf88iQznS6Dir4NjFCHtesbwu\nFi99qAqYLfmCMeFFNSt++e9q2fOKjv7++6yFciTJZlP43AtUe7xPVbFw0fWEYvw+AZg+wzS153BY\nXceic10KULRc3lB4JKO+wbj29YS0bf+gnt3Zr51dQfUHE8pVwEXEBHMAAAAWgLFgjs0w5I4MW1qT\nzc3/F7tnY3/9ddlM86xjrCTJqHYrdO4FauzeJ2fS2gf6UU5SowKYpqnIyY45pRxjNSayZp2GLrhY\nbdufk+9IV8n2fbOa/l6d92/3KdXcqoPX36aagX5d8C//Z1p7xtM5HeyNlKhCAAAWplQmr2AkVfJ9\nO37zuBy5nHree71ks016fLJtsYLnX6TWnS+ruojuoqVw4X1fU8Phg+q+9kb1//57p72fTSo6lCNJ\nPq9LwXUngzlFjLOK0CkU81h4JCPDNM+4vSoS0oXf/bpyHq9e/ZMvFLVn6GQYsPFA8V1zEumcUpl8\n0esA4M06+yKKJDIKjWQUmqgrGFAG0tnR9wI9J2LafWhYL+45oed3H9fO7qC6+6MaiKSUSOdkmKbC\n8YwOHo3od7tPzPuQDsEcAACABcDldCjd5JckuS2ecM7mK7cjhGGacu/ZKUmTBnMkaWj9RtkMQ817\nX7O0P+OsUAkS6bzyhiFHKqFFv3ta8UUdCp13YUnv4+D1H9X/z959x0dV5f8ff01PJn3SSEIKJdTQ\ni6BYsLv2dddddXV1i6hfu2t3bauu2MvPtrqWVdd1i32tyAoKAtJJQgqEkF4m03u59/fHQKQk5M5k\nEkg4z8eDByVzzr2EMLn3nvf5fABKP3grrvPuNv2FP6MJBth0+S1s+e0fcBSNofTDt8nasrZf87bb\nvDR3xn+XvyAIgiAcLpo6Xey/JN5/JV99gKTW0HDCmYrHNB77E1SSROHyLwbgjHqW9/1SSj98G3vx\nWDYuui0uc47OT4s6lAORYI61dDJhvYGscuUVc/zBsAgSCENWl73nBetpLz+K3mmn/NLrFLd1280y\nfgoApuotsZ2TWEQXBKEfGtqdtFo83b+va3Eg9xBAFISDxRcIUdfiYGV5K6sq2ymvt1Df5sTs8OFT\nsEFYhr1COhuHYEhHBHMEQRAEQRAOA3qtGm+0wZxhXDHH4wuRXlMBgLV0Up+v7y7tXq5sMd/uEsEc\nYeiz7ar8VLDia7R+LzuPP0PRzvNotMw/HnduAcVLPoyp5PuB5H3/P/JXf0PHtCNoPO4nSHo9P9z0\nILJazezH70Tj698u/e0tDhHCEwRBEIQYBENh2ro8fb8wSqn1tZiqt9A2ZwG+zBzF45qOOQVZrR60\ndlYJ5nbmPH4nYZ2eVXc8jmSIPkyzr+y0RApzkmM7H70WrTFSJTS9rgqt26l4rLgWEoYqi3P/EEz2\npjWUfPUB1rET2X7WhVHPubt9nqkm+oo5gKhuIQhCzMw2LztaHXv9mcsXpM0S/+stQYiWzeWnYoeF\n1ZXtNHQ4FW0GNljNFH/5ATOfuZe0uur9Pi7vmneohXREMEcQBEEQBOEwsLuVFUCiwmBOcBhXzHF5\ng2RsqySUYMQ5clSfr++aNANZpSJbYZUNf0jsHhWGvt0Bs6IBaGPVTaOh9pxfofX7GPXpv+M2rdrv\nY8bzDyJptKy/+q7uQJFl4jRqfvprUloamPy3Z/t1DEmWqay3DOsQoyAIgiAMhBazh/AA7OAu/uoD\ngEgbqyj4MnPomDqXrMoNGNub435ee1KFghyx+FYMDhubFt2KY9S4fs9pNGgZX5TerzmSE/WYy2ah\nkmXFVUJBtPAVhiaHO7DfoqA6EGDmM/chq1Ssu/ZeZI026nl9mTl4skZEKubE8B5ncwUIS8P3OYwg\nCAPD5Q2ydae1x0qE9W1O8b4iHBRhSaK1y83aqg42bjPTafcesFqmKhwis2I9k197ihOvOo+zfnE0\ncx+7nTGfvMvCG39F9qY1vY7tKaTTfIiGdEQwRxAEQRAE4TCg1agJmLIASLCYFY3xD+PFZo/FQWrD\ndmxjJoBG0+frg8mp2EeNx1S1GXVA2a5Qm3hILQxxNpcfg9XMiPUrsIyfgktBiK0n6j6q7Ow49TyC\niUbGfvQ2qlAwpmPsa8K7r5DU3kztuZfgLB6718cqLrkGZ34R4957A9NW5QtPPfEHw1TutIry0IIg\nCIKgUFiSaBqAdpCqcIjirz8ikJJG67yFUY9vPO40AEYu+zzep9ZNFQoy76E/kLNpNc3zT2D7mRf0\ne06NSsXkUSa0mv495k8x6ugsi1QJzS5fp3icTVQKFYagnlpGjfv3q6Q21rH9zAuw9qN9r2V8GQlW\nM4mdbVGPlWQZq0M8RxAEQTl/MEx5XVevgWd/MExTh3uQz0o4nPkCIba32FlV0U51ow2Xr/fnfAZL\nJ8Vfvs+8B2/grJ8fxfE3XMSkd14irb6W9unz2PT7m1l/9R/RBPwcfcfvKPj2yz6PvzukU3uIhnRE\nMEcQBEEQBOEwEcqJ9EdX2soqGJaQhulis2rLZlSShLV0suIxnVNmoQkGyKhVVpZatLMShjKPL0gw\nLFH4zWeoJCnSxioGapWKWeOzKcpJobd4TigphfpTzsNobmekgpvsviS1NDDh3ZfxZuZQ+aur9vt4\nOCGRtTc+gEqSmPP4XYrDdr2xufzU7VMyWhAEQRCAYXstDZGATUO7E38guofcbRYvwXD8d27nrltB\nosVMw8LTkfT6qMc3LzgJSaOl6Jv/xv3c4MdQzsjvvqRj6hxW3/ZIXFqEji9KJylB1+95Uow6uiZN\nR1apyIoimOMNhIb1hg5heNq3ZVRSSwOT/v4iXlMWWy67vl9zW8dNAcBUsyWm8T2FhgRBEHoiSTIV\nOyz4+vg+3NDhFJV+hQFndfop39HF6sp2GjtcvV7v622WXVVxfspZvzyGuY/dQeGyzwkak9h++i9Y\nce//48N/f8/yR16j5ue/YftZF/LtAy8iaXXMf+B6Rn/8juJzOhRDOiKYIwiCIAiCcJgIRxnMAQgG\nh2e5U8OWTQBYSycpHmPetYM0a4uyB9U2t9jpJgxd1j3aWMlqNY3HnhbTPAVZSSQl6Bidn8rUMVkY\ndD1XqKo951fIKhWl7/0tprLve5r+wkNoggE2LrqVkDGpx9eYp85h21kXktqwnYlvP9+v4wE0drgw\n27z9nkcQBEEY+vYs275pm5nQAIRQDgXbmuzUtTpYvbWdinqLopZGsizT1BH/ajkAJV+8D0D9ydG1\nsdotkJpB+6wjydi2leTGHfE8tf1COd/96UXCicZ+zzsyK5mcjP7PA5Bi1BNKSsE2egKm6i1RBZdF\nOythKAlLEi7vHrv3ZZmZ/+9PaAJ+Ni26jVBSSr/mt0yIBHMyqpVt6NlvvKiYIwiCQlUNVhyevr9f\nhyWZ+jbnIJyRcLhxuANsb7azqqKNTdvNmO2+A7ar0tutHHfzJUx65yVSd26jfcY8Nl1+C5+//DGf\nvvk166+7l5YjT9jvWV7HzCP55tG/4U8zMevZ+5n0t2ejfnbYU0jnYNyniWCOIAiCIAjC4SIzE0mj\nJTGKYI7/ECnzGE9ef4jU2goArGOjD+Zkl69V9HpfIBz1DmJBOFTYXX6Sm+vJrN5M+4z5+E3ZUc9h\n0GooHvHjg+2MFAOzx+eQnZa432vd+UW0zDuezOrN/Wovlff9/8hfvYz26fNo6iNMtOU3N+LOzWfC\nu6+Qvq0y5mPuVtVgw+ML9XseQRAEYWjqqWy73R1gY6152F0Ttls8tFo8QKQqUKfNy4ZtZtZWddDa\n5UaSen5Qbrb78Abi/71S77CSv2op9uKxUVXE3FfDcT8BoHDZp/E6tQEL5aQl6RldkBqHM4ww6DQY\ntBrMZTPRBPxk7LpfUsLuFpVChaHD7QvttWg4cvnnjFj7HW2zjqJx13tAf+x+D4q1Yo4/FMapYKFd\nEITDW32bg44oNge1WTx4DtBSSBCUcrgDbNsVxllf20ljp6vPqk0AOpeDY27/LWk7t1N79q8iVXEW\nv0bNzy6LtKDvo5Kkbdxklj75Nq68Qia/9Twzn74XVTi2+4rdIZ2DUe1eBHMEQRAEQRAOEzqdFl9G\n1mFfMcflDZJRW0HIkICzaLTicb7MHFz5RWRWbICwssUVUTVHGKrsrgBFX38CQEOMbaxG5aei1ex9\ny6nTqpk8ysT4wnQ0+9x01/70EgDmPXQTpq2boj6e2u9jxvMPImm0bLj6rj5v6kPGJNZefz9qKcyc\nx+5EFerfQ6qQJFFZbyEsDb/3TUEQBKF3Vqefih2WXsu2u3xBNtR2DpvFEI8vSE2jrcePuXxBqhtt\nfF/RRl2LA98+IZzGAaqWU/jNp2iCwUi1nH60h2qZfwJhvYGi/33a7wp+MHChHINWw6QSE+o4tMLa\nU0qS7scqoRXK21mJFr7CUOLeo1qO1u1k+gt/JqzTs/7qP8alvVwwORXnyBJM1eUQ432BaGclCMKB\ndFg9UVfAkWSZuhbRgluIjX2fME6TwjDObhqvmwV3LSJj21bqTvs5G6+6g3BizxWu9xqnUjF1dCb5\nmZHXuguKWfrU37GOnciYT//J/D9dj9of+/dM20Go+iiCOYIgCIIgCIcJnVaDz5RFgsWs+EFzYBhW\nzHFbHaTWb8M2ZgKyRhvV2M4ps9G7naTV1yp6vXhILQxFXn8IfzBE0dKPCRkSaD7qpKjnSDXqGWHq\nfeEpLzOJWeNzSEnUd/9Z59Q5bLnseozmdhbedDFj338zqkWxCe++TFJ7MzU/vQRn0RhFYzpmHUXd\nqeeRXlfFhHdfUXys3rh8QWoael6sFARBEIaPvdpVbTfTafcesGy7Lxhmw5YNkgAAIABJREFUQ60Z\nxyBXFvH6Q1TssGB1xuehc1iSqKy3Eu7j+3MwLNHQ4WR1ZTsVOyy7dqT6FbVbAEjo6kDj9Sg+r5Iv\nP0BSa2IOE+8WSkqmde6xpDbWkbajpl9zDVQoR61SMbEko9f2oP2RkqiPun0vRK5/giERTBaGBrf3\nx8Bg2evPkGjpZOsFi3AXFMftGJZxU9B5XCQ374xpfJddbPARBKFnDneAqhifOZgdvrhdEwpDk6ex\nhfY2K20Wj6IfVfUWVlW0sSGGMM5uar+PBXf/H1mVG9l5/Jmsu/YeRUFYFTCxOANTagLjCtOZUZpN\ncoIOf0YW3zz6N9pnzKNg5dccc/vv0DntMXw2RDBHEARBEARBGEA6rRqfKRtNMIDOpWyXRGAYVsxR\nbdmCWgrHVOa+u53VFmXtrERZd2Eosrn8ZFRvIaWlgZb5x+/X21mJsQVpfb7GmKBlxrgsinJSUAGo\nVFRdsIhlf/4rgeRUZrzwEPMeuAGtu+/d9UktDUx49xU8WblsveiqqM5106Jb8WTlMuntF0jt5yIc\nQLvNS1PnwFQEEARBEA4iWUb9+qt0/eM/e7WrUioYlti0zUyXfeArIUiyTEO7k7VVHXTavZTXdcVl\nIWZbkz2qv7MMdNq9bNxmZvP2LkVjCr79kjMuWsi558zmlN/8hCMeuonx/3yF3LUr0Nss+70+dUcN\npppy2uYswJeZo/jcetPdzuqb2NtZRUI5N0VCOdPmxi2UAzAqL5X0ZENc5tpXilEXqRKaV0hW5Yao\nqn3YRaVQYYjY/R6WUVPO2I/exjFyFNXn/y6ux7CMnwKAqTq2dlZObwB/DIufgiAMb75AJHAt9aOq\nX11LbAEGYehzfPYVhUdMYdz8MlKuXoT9n+9Rs62dqgZrrz/qWx0xhXF2UwUDHPmn68jZtJqmo07k\nh5sfAo2ycPnYgjSy0hO7f5+WpGfm+GzG5KchJ6fw3Z9eovHYU8kuX8fCmy4mwdwe9fm5vIMfLhfB\nHEEQBEEQhMOEXqfGa8oGUNzOajhWzNFv2QyAbeykqMd27t5BWq5sB6nbFyQ4DD+HwvBmdwUoXhp7\nG6sRGUZSk/R9v5DIru/R+alMG5tFwq6d350z5vHVC+/RWTaLwm+/4MT/O4+07VW9TyLLzHj+QTTB\nAJsW3Rp1kCiUlML6a+9BHQoy54m7Yu5Rvae6FocI5gmCIAwTYUmizeLBecsdZN5yPWNuuwbJ7Y5t\nLlmmot5Cm0V5NZho2V1+1lV3Utfq6K5sE5blfodz2i0eWvtx3n1V2QHIrNjAEYtvIWRIoHPKbBKs\nZoq++ZSprzzOMXf8jrPPP4rTLzyOo/54BZNff5qC776k9IO3AKg/6dyYz21PbXOPIZhojARzYlj4\n+jGU81UklHP/C3EL5WSnJ1KYkxyXuXqSYtQBYJ48E73TTurObYrHikqhw4cky8hxaOV2qHJ7gxAO\nM+upe1DJMuuvvQdJr+zeRSnL+DIATDXlsc8h2lkJgrCHsCRRXmfB389njE5vkHbrwF2HCoceSZZp\nWF9FwXWXgywTMiZTsuRDFtx9FWf+YgFzHrmVvFX/Qx2I77WcKhxi3p9vJm/NclpnH83q2x9XXLm+\nMDuZguz9r3nVKhWFOcnMmZiDKSuVVbc/Tu3ZvyKtvpbjr7+AlIa6qM5RJnLvNJhEMEcQBEEQBOEw\nodNEKuYAJCoN5gyzijmBYJjkXbvWYqmY484vwmvKIqt8reIH9eIhtTDU2O1uCr/5FH9qOm2zF0Q1\nVqNWMSo/NepjpicbmDU+h5xdu2F8mTkse/R1qn7xO1JaGjjhul9S8tm/e/x/l7fqf+StWU779Hk0\nHXNq1McGaJ23kJ0nnImpegul/3kjpjn2JMkylfUWAmKnqyAIwpBldweobrDyfXk7LF7M6DeeQ1ar\n0Xlc5K/8OuZ5JVmmqsFKQ7szjmcLwVCY6gYrG7aZcfdQ1aY/4RyPL0hN48C2akxurueoe65CFQrx\n/V1Pseyxv/Hhe6v57xtfsfLup6m88ApajjgOgPzVy5j09xc58v7rGP3Zv/CnpNE6b2FcziOckEjL\n/BNIbmvCVLU5qrEDGcoxGrSML0yPy1y90Wk1JOg0mMtmApBVsV7xWJu45xk2drQ6aDHHFj481PmD\nYYJhibEfv0PGtkrqTzyLzulHxP04tjETkTRaTNXRvYfsqUsEcwRB2ENNY3RVCw9kR4sDSRq+AUzh\nR8FQmC1VrRTfuIgEWxebLr+F/771NV8//Q+qz7uUYFIyJUs+YsHdV3HW+UfFL6QjScx+/M7u6pEr\n73lGcQg2Oz2RMX1U4U7QaykbnUnZ6CyqrvsjWy67gaSOVhbecCHpNRVRnepgX8MqiyYJgiAIgiAI\nQ55Oq8a+u2JOl9JgzvBaVHZ5g+TUVhLWG3AUj4l+ApUKc9lsCpd/TlJLg6I+9DZ3YK/Sm0o4PQES\nDVq0GpGjFwaXLxAidfV3JNi62HbGL5G1uqjGF+emYNApK0u7L51WzaQSE4WeAA3tLsx2L1t+exPm\nSTOZ+9jtzHnyj2SXr2P9NXcTToj8n1L7fcx4/iEkjZYNV9+lqE91bzZeeTu561ZS9sYztMw/Hlfh\nqJjngsiD/8qdVqaNyUTVj/MSBEEQBo8/GKbd4qHN4sHjj1RQG/v+m0x57UncOXmsvelBjr31N4z6\n4j0aY6gqt6e6VgeBoMTYkX23f+xLa5ebuhYHwfCBQ/W7wzllozPJSFHWDiksSVTWWxVVvImV3mbh\n6DsXYXDYWHvD/bTPOTryAZUKT95IPHkjaV5w8l6vT9++lYztW0mrq6F17jFxrXjRsPAnFC/9mMJv\nPsUycZqiMQMZytGoVUweZRqUe4OUJD3mstkAZG1ZR90Zv1Q0zu0LEpYkNGpx/zKUWZ1+Gjtc6DRq\ncjIS0Wlju64/VLm9QRLM7ZS9/hSB5FQ2//6WATmOZEjAXlJK+vYqVKFg1PdUEPm3kGQZtbiPEITD\nXmuXO65VbnzBME2dLopyU+I2p3DocXmDlO/oYsKTD5BVuYGGhaez7ZxfgUqFZeI0LBOnsfnyWzBV\nbWbkt18wcvnnlCz5iJIlHxE0JtN85PF0nXwm7klzo7vOlmVmPns/JUs+omviNFbc9zySIUHR0LQk\nPROLMhQfKis9kYxUA/XX3shaUxazH7+TqX99jOWLX1M8h3WQK+aIYI4gCIIgCMJhQqfV4DNlAZBg\nNSsaExjkPqsDzW1zklZfi7V0kuLymfsyl82icPnnZJevUxTMibYkptnuZWu9lRnjsklOFA+2hcEV\naWP1MQANJ5wV1VijQcvIOLRXSDHqmTzKhMcXpKHdRfuRx/PVc/9h/gPXU/LVB2TUVvD9XU/hLBrN\nhHdfJqm9marzf4uzKIaw3R4CqRmsv+ZujvzTdcx54i6+eeQ1ZF3/FvlsLj91rQ7G5Pd/0VUQBGEo\nsDh8uLxBEgxajAYtCXrN4AeNw2F0y/+Hf858MPYdjJCRsTj8tFk8WBw+9oyflHz2b2a88BBeUzbL\nFr+Gu6AY8+SZ5GxcRWJHC96c/H6dapPZRTAUZnxxRkyLr5FKNnZsbuXXm9GGc7Y1xW+Hdk80Pi8L\n7r6S5JYGKi+8gh2n/bzPMYF0Ex2zjqJj1lEDck7tM48kkJJG4bJPsY2ZqGhMwYqvKPh+adxDOQDj\nizJISoh+YT8WKYk6OgtH4U/LIKtCWfteiFSCsrsCmFKVLbwIh55gKEzVTmvk12GJHa1Oxg1wlabB\n5vaFmPLqk+g8btZedx/+jMwBO5Zl/JRIeLC+NqY22mFJxub0i/9TgnCYc3mDbGuyx33ehnYXeZnG\nYRfAFCI6bF6qd1rJX/oJpR++hb14LGuvv3//zWx7hnR+f3OPIZ2pu0I6TUefSvusow4c0pFlpr20\nmDH/fRfrmIl8++BfFLebNxq0lI0yoVZHd0+kUasZU5CG69orcH7wJlkVG1AH/Eh6ZZsQ3L4ggWAY\nfYybDKMlgjmCIAiCIAiHCZ1WjXd3xRzFrayGV8UcubwCdTiENYYHY7t1TpkFQFb5OupP+Wmfr3d5\ng4TCkqJFqaZOF9ub7ciAPxAmOXFwHsALQ0tYkggEJQLBMP6QRDAYJhCK/L7756BEMCyRkWJgVF6q\n4q8lR6eVCSu+xjViJF2Tpkd1XmML0uK6o9OYoGNCcQYleSk0ZhpZ/uTfKXvpYcZ+9HdOuObnVF58\nNRPefQVPVi6VF10Zl2M2H30yjUefQuG3X3DKorPZdPkttB5xXL8q8TR2uEg16smOsnKWIAjCUCLL\nMvU7zeTedj2h/CIqL/6/7vdOg1ZDgkGD0aAl0aAdkNBOMBTG7gpgdwfIffR+Rv39ZZz5Rfzwh4fo\nKpsV05yFSz9h9lN3409NZ9niV7sD2fUnn0NWxXqKl3xE1YVX9Pvc221ejOvXMOWdF/HcfhehmbP7\nHBOWJBraXTR2uJBiqGSjNJzTbvHQaonfDu39TyTMEQ/fTGbVZupPPIuKX18b9RQ56YmYUhPY1mQn\nJMVnU4Gs09N49CmM+fSfzH3sdsXjognlqFUq9Do1eq2m+2eDLvJrnVaNXqfBoNWg06kHtWJGilEf\nqRI6eSYFK7+OKoBmd4tgzlBW1WDDH/rx/r+1y01+VtKwuid1eYNM2LgarymbHaf9bECPZR1fBp/+\nk4zq8piCOQAWhwjmCMLhLBSWqKy3DEjVwpAksbPNFZfKjcKhQ5ZldrQ6aehwkrqjhtlP/JGgMYmV\n9zzT9/VpDyGd0auWkPP1f/erpNNbSGfy355l3Htv4Cgaw/I/v0IwWVmre71WzZTRmf0KiiUn6mDh\nQjSvVJG5dROd0+YqHmtz+cnJiF+o/kBEMEcQBEEQBOEwodOqCWTmAJCoMJgTlmXFoZKhQL9lIwDW\n0skxz2EvGUfQmEz2lrWKXi8Djj4eUsuyzLZmO81md/ef+YZZKEqIj/o2B/VtTsWv73L46HL4yElP\npGREKsaEA98CJn75GVqfh4aFF0cVRslMTRiwh8YJei2lI9Mpzk2h6f5HsEyZw4wn7mTaXx4BYNOi\nWwknKtuBo0T7w0+R9dcnSH7jVRbcfRVtM49k0xW34SgpjXnO6gYbSQm6Pj//giAIQ5E/GGbrTitF\nj/+pu+paormNddfdBxoN/lAYfyiM3R3Yb2ysoR1fINQdxLG5/N1tpzIrNlDyziv4U9JIbm1k4U0X\nU3vOxZRfdn13G0Ql8lcsYe4jtxE0JrP84b/iLB7b/bHGY05l+vMPUfLl+1RdsKhf4U0AZJnRT/4J\nQ/UWtCu/Y8P199Fw8rkHHgIxBXL21Fc4J1KNx9avYxyQLDP9xYcpWPk1HdOOYO0Nf4rpczkyO5nU\nJD0ZyQZqmmx0OXxxOb0tv70Rc9lM1GFl1+ShhERa5i3ss1R/epKBMQWpkQDMISjFGAlhmMtmUbDy\na7LK19N4vMJgjmv//+PC0NDU6drv/45MpGLW9NKsg3NSA8BrdWA0t9Ex7QgY4LZrlnFTADBVb2bH\n6efHNEeXw8dYxKK5IByuahtt3de4A6Gly01BdhKJBvGcYjgIhSW27rTS5fChdbs48k/XofV7WXn3\n07hGRtmqfVdIJzjnCNZeeuMB213tDumUvv8Gk95+AVd+EcsWv0og3aToUBqVirJRmXH5OpSOPQ5e\neYHsTaujDOYERDBHEARBEARBiL9wVnQVcwACweERzAmFJZIqtwBgHRd7MAeNBvPkGeT98C0JXR34\ndoWdDsR2gLLue9447Wm4VSsS4qPd4o1pXIfNi9nuIzcjEtAx6PffheIPhsn98kMAGk44U/HcapVq\nUFo16XUaRuenErr6MqrmziT/9utx5+bTdMypcTvGiAwjxcUZuB5+HO+lv0N72y2MWLmM3CvOYfvp\nv6DikmsIpCnvd71bSJKoqLcwc1wWmgFeBBAEQRhMVqefqp1W0r//hvH/eR3nyBKCiUmM/vw/aH1e\n1tzyMLK292oL0YR2NGoVDnckjNNTgFnj9TDn0dsAWHH/84CKOY/fwbj3/0be6m8UV8/JXfsd8x66\nEUlv4NsHX9qv0kEoKYXmo06ieOnHZFZuoGvyzD7nPJDMivWYqrdgHTuJpLYmZj96O6nbKtl8+S0x\nt15VqrdwTliSqKi3DsgO7d1K33uju7T+ynueial9ZKpRT2pSZJxBr2HK6EzaLJ64VM8JpqTRcOLZ\n/ZpjTwl6DWPy0w75CnpajRqjQUtn2Y9VQhuPP0PRWIcngCTJUbcgEA4ulzdIXYujx4/Z3H46rJ5B\nW6waSJIso66vA8CpoCV1fzlKxhIyJGCqKY95Dm8ghMcXxDhIrewEQTh0tHa5abfF9vxHKUmWqWtx\nMHmUsgCFcOjy+IKU77BEglyyzJzHbielqZ6q839L84KT+zf5PpV0Mqq3ULj8871DOolGdF4Pnuw8\nli1+VdGzcgAVMLEko/t6vr+C849EVqvJ2biaykuuUTzO5lLeFri/xBNBQRAEQRCEw4g2MQF/ajoJ\nXcqDOcHQ8AiIuL1BMmorCOt0OPbY9RyLzilzgMiDaiXs7p4v8P2BMBtrzT3u7PUFhsfnXYgfhyeA\nNxD7bilJlmm1eFi9tZ1tzfb9/m+7GpoZ8cN3WMdOxFk0RvG8BdlJg1oJRqtRM2L+DIJL/8eOxc/1\nv1LBLhnJBsYVpXf/PjxhIv73P2LnS2/hyi9i7MfvcNqlp1D6n9dRBaPfEe72BalqsBEKx6fNhiAI\nwsG2s83J5u1m6Ghj7qO3E9bpWHXH4yx75DU6y2ZR9M2nHHn/dagDsT3o3B3YabV4qGt1UNtsp93m\n7bWq4JRXnyClpYGa8y6ja/JMuibP4MsX3qf6Z7/prp4z7YWH0Ph6X+TI2ryGo+69GlRqvrv/eSyT\nZvT4uvpTIhVtSr58P6a/257G//s1ADZeeTtLnv0n9uIxjHv/TY6+/ffo7dZ+z9+X3eEcq/PHf6dt\nTXbcvuCAHbNg+RdM+8sjeDNz+PbBvyguc7+vkdn7V8wbYTIyZ0IOmYdI+xeNWsXovFTmTsg95EM5\nu6Uk6rCNnUjIkEi2wvsdiFxrOj2ias5QEpYibVIOVIGrrsVBOE5t4g4mrz+EsWknAK4ogjmaGO81\nZI0W29hJpNZvQ+ONvSWg2R6fKmCCIAwdLm+QbU32QTlWp91Lh83b70qMwsFjdfpZX2Purq40/l9/\nZeSKJXRMO4Lyy66P78FUKqwTprL58lv49M2vWfLMu1T/7DICKWl4skawbPFf8eQWKJ5ubEEaWWnx\nuz6WU9NwTZhCZtXmqL73evwh/IP0HF4EcwRBEARBEA4jOq0anymbBKtZ8Rh/aOg/hANw292k1ddi\nHzX+gDu3lTBP+XEHqRJOTxBJkvf5swDrazpx9bLo4RcVc4R9dFjjs1tKkmWaOl2sqmxnR6ujOyii\n++B91FKYncefpXgug1ZDcW5KXM4rWhq1mkklJkZmJfd7ruQEHZNHmVDv++BdpcJ47lm0LlnJ5qvu\nAJWK6S8t5pTLzyLv+/9BlA+vOm1eVpa3UVlvweLwIYuHX4IgDEHBUJjN27vY0eZAliTmPno7CbYu\ntvz2JmxjJxFKSuHbB/9C28wjyV/1Pxb88Yp+LUoqkb1hFaUfvo2jaAzll17b/eeSIYHNl9/M0iff\nxlVQzLj33+TkK84hq4eWpKatm1jwxytRSRIr736GzulH9Hq8jmlH4MnOo3DZZwcM+vQlqXkn+d8v\nxTJ+CuayWbgLiln69Ls0H3kCuRtXceLVPyetrjrm+ZXaM5zTZvHQahm4f6/MivUcsfgWQgmJfPvA\ni3hz8mKax6DTkNVL0GV39ZwJRRloD1KlOhWQZzJyxMRcinJThlQVmWSjHlmro2viNNLqa9E5lS8O\n2kQ7qyFlW5O9zzYpvmCYhnbXIJ3RwHF7g6S0RB/MGVeUji7GCsKWcWWopTDp27fGNB7A4hi8XfyC\nIBx8oXAkMDmQVQv3VVlvYeWWNip2WGjtcg9aQEHoP1mWqW2ydVeKzN64mimvPok3M4dVdzzWr+qb\nGpWKpATd/s/JdtsnpPPft76OqmVWYXYyBdn9f563L8/8BahDQbIqNkQ1zjpIVXNEMEcQBEEQBOEw\notOq8Zqy0budqP3Kdl4Nl5ZKUkU56lAQa2k/2ljtYi0tI6zTk71FWTBHkmUce+weNdu9bKw14z9A\nNSJxIyzsSZZlOuMUzNktLMnsbHeyurKdhnYnpk/eQ1apaFz4E8VzjMpPPeit7saOTGN0Xmw77SGy\nsDdldOYB/x4ZpmRSbr2Jr9/8itqzLyKptYkF91zF0bf/jtQdNVEdT5JlOmxeNtd1sXpXOMo7gH3j\nhaFhOOxEFw4PDneAddWdWJyR68hx773BiHUraJ1zNLXnXtL9unCikRX3P0/z/OPJ3bCKY+74PVq3\nc0DOSet2MefxO5DUGtbc8jCS3rDfayyTfqyek9TWxHF/uCRSPWdXYCht+1aOvvNyNH4/q+54jLa5\nxxz4oGo19Sedjc7jpmDFkpjPfdz7f0Mly9T89NfdFeBCxiRW3v0MFRdfTVJ7M8dfdwEjl38e8zGU\n2h3OqW20Ddgxkpt2cNTdV6EKh/n+j09jHzMx5rkKspJ6XyjYZYTJyJyJsVXP0ahUJOg0xBKnSU82\nMGt8DuOLMtDr9m8feqhLMUY2MZjLIm3asirWKx7bW6XQ3kiyLILKB0mHzas4hNfY4Rry16sub4jk\n5kgwJ5pWVqlGPWWjM/t8v+mJZfwUAEzVW6Ieu5vDExAVNwXhMFLbaOszMDkQQpJEp91LdaON7yvb\nWFvVwfYWO1anX1TTOYR12X3dXy8J5nbmPXQTskrN93c9hT8jK+Z5E/VaZozL5ugZBSyYmscRE3OZ\nOjqT0oI0RmYlk5magNGg/fF7o0oFfYTh1SoVOo2aBJ2GPJORMQVpMZ/fgQSOOhqAnE2rohpncw5O\nMGfw6o0LgiAIgiAIB51eq8FnygYg0dKJO6+wzzGBYOwPgcKShCxz0BfuAXSbNgJgLZ3U77kkvR7L\nhKlkla9D53IoKr9vdwVITzbQ1OFie4udvm5rRcWcgSfLMqo4tUEaaDZX4IBBrv4IhiXa11cwq2ID\n7TPmKe4FnWrUM8JkHJBzilZRbgo6rZqaRluf/7f2pFGrmDI6E4O+70Wz5EQdk2eXssV0L9vP+CXT\nX1rMiLXfkXvlubjyi3DlF+EsKMaVX4yroBhXfhGe3PwD7lDyBcPsbHeys91JepKBEZlGstMT0Byk\n3f3CwREKS6zZ2o4xQUeeyUiW+BoQDlFNnS7qWhzdD+fTayqY8uqT+DKy+OEPf96vtaCkN/D9H59i\n7qO3U/S//3LczZey/M+vEEjLiOt5TfvLYpI6Wqm86Eqs48p6fd3u6jlNC05kzmN3Mu79N8lfvYzK\ni65k6l8eRed2submh2lecLKi49afdA6T/v4iJV++T8MJZ0Z93jqHjZIv3sedk0fTMafs/UG1msqL\n/w/b6PHMfeRW5j9wA1svqKL819f2+dC7PwZyd7bB2sXRdy7C4LTzww1/on32gpjn0qhU5GXu38aq\nx+PuCuC2WTxsa7J37yjePU+iQbvHD033rw27AjWSLOPzh/D6w3j9IbyBUORnfxhfILTXdUeiXsvo\n/NQh07KqN8mJOlSAefKPwZzWeQsVjbW7A4qusV3eIG1dHtqtHkoL08kZ4p+zocYXCFHToDyEJ8ky\ndS0OJo8yxXzMsCRhdwUwHaQ2c25fkFHNO5FVKkXPQXbTadUkGrSML0xna0N07QW7gzk15VGN25Mk\ny1gcPnIyDo37LkEQBk5rl5t2W3w3ZMXK5Qvi8gVp7HChVatJT9GTmZqAKTWh+xpJOPgaOyIV7VTB\nAPMfuJ4EWxfr/+8uuib33I5XCVOKgYnFJnTayD2Heo/r5X1Jsow/ELlGDoYlNCoVGo0ajVqFRqOK\n/KxWo9GoYgq4xkJ99AIkjZbsjWuiGmcbpIo5IpgjCIIgCIJwGNFp1fgyI8GcBIXBnGA/wgDbmuzd\nu/AiF+e7LsjVe/xao0KjUqHVqsnJSCTVqI/5eL2RZBljZWSXWjwq5gB0ls0ie8taMis30Db32D5f\nb3X58TeGaelyK5pfkmWCoTA6rbjhHSiddh9NHS4KspLIzkgctJvEWHRYB7YFSNHXHwPQcLzyhcWx\nIwdmd0us8jKT0GnVbK23KlpYVKtUTC4xkZyovLVdokHLjNIsNqsn8e1DLzNizXImvPsyqTu3kddU\nz77NOCSNFveIAlwFxd2hneYFJ/UYfrK5/djcfmqbVOSkJzIiM4m0pPi/HwqHnvo2J4GQRMDlx+by\no21Sk52eQF5mEqnia0A4BITCEtWNNjr3WCjQetzMe+hG1KEga25+GH9GZo9jZa2O1bcsJpSQyOjP\n/s1xf7iY5Q+/qjgE2pcRa5Yx+rN/Yx0zkcoLr1A0xjJpBl+98B5lbzzLuPdeZ+6jtwOw9rr7aDhR\neTtHd0ExnWWzyNm4isSOFrw5+VGd++hP/4XW76XinGt6DXG2HHUiS5/+B0fdezUT33mJtLoqVt/2\nKKGkg9NGMlYan5ej7r6K5NZGKi+6kvrTftav+XJNxu7FAqVGmIxkpBiwOHz7hW8ORK1SYUzQYUzY\n/3ohEtqJLEaEJInstMQh1bKqN1qNGmOCDsvE6UhqDVkKq4RCpCKj0xvs8Z4uGJJot3pot3hwen9s\n59vS6RbBnEEkyzJbd1r3Cqkp0Wn3YnX6yUjZvypZX/zBMOV1FnyBEEdMyj0oG3fc3iApzTvxZI/o\nsbJaT9QqVfe55pqMePwhdrYrr/7mzi8ikJJGRj8q5kCkIoII5gjC8ObyBqltUt46cjCFJAmz3YfZ\n7kOtUlEyIoXCnOQhs9FtuLK7/Nh3VWef9pdHyKrcyM6FZ7D9rAtjnrMwO5nR+amK/20PFNo5WPRp\nqVgnTMW0dSNat1PxfZMvGLmmH+i/y6HzmRIEQRAEQRAGnE6rxrchHjqjAAAgAElEQVSrlGWCxaxo\njL8fFXMse5SBDMsy4ZAM9D5fU6eLjGQDRbkpMT3w643HFyJ9WyWSVoejuDQuc5qnzIZ3XiJryzpF\nwRzbrgXXaPgCIpgzkJzuAA5PAEdDgO0tdvIyk8jPSjrkdv9IskynTVnruVhklq9j/L9fJWRIoGnB\nSYrG5JmMAxKi66+stESmjtVQXtdFsI+S76Uj02LasavTapg2NpPKegttc4/pbneic9pJbmmI/Giu\nJ7mlgZTmnSS3NJC3Znl3aCd3/UpW3vdcr/OHJZlWi4dWi4e5E3IxJojb9uHM4wvSYt47sBmSpO6v\nAaNBywiTkVyT8ZB7bxIOD20WDztaHPtVbZvx3AOktDRQ9fPf0D77qANPotGw7vr7CSUkMu79N1l4\n08UsW/wqntyCfp2bzmFj9hN/RNLqWHPLw8g65d+X9qyeM+W1p2g89jR2nH5+1OdQf9I5ZJevo3jJ\nR1QpDAZBZFdr6YdvETQmUddHSMVRUsqSZ95l3p//QP7qZZxwzS9Ycd9zuApHRX2+B4MqFGTegzeQ\nWb2Z+hPPouKSa/o958hsZdVy9mXQaRRX2lEiEtrRDsvv1SmJOtzGJGxjJmCqKUft9yEZlF032V2B\n7utEWZaxOv20Wjx02X09tsOwuf24vMGowtJC7OrbnNjdgb5f2IPtzXZmjs+OakODyxukvK4L366K\nsC1mN0W5gxsuDIUlgg4niV0dtM+Yp3jcvgHAUXmpeHwhOu0KK1qoVFhKJzNi/Up0DhvB1PRoTrub\nxeknFJYOiUrEgiDEXygsUVlvGRItoyRZpq7VgdnuY0JReo/BZWFwNHZGquUUff0xpR++jb2klHXX\n37dfFVMl1CoV4wvTyT1EqmL3l23OkWRWrCd781pa5yur+giRZ/cDHcwR38kFQRAEQRAOIzqtGq/p\nx4o5SsRaMcflDcbUjsnq8rNpu5n1NZ2YlT7w6oPT7iatrhp7SSmSPj5hgq6J05HVarIq1sdlvp6I\ndlYDy+H58YF0ICSxs93J6sp2ttZbcMT4sHogWOy+qHe0KpWzbgXH3P47NH4/P/zhIUU7SXQaNaPz\n+27fdrCkJemZUZpFwgFCDMW5Kf1amNNq1JSNziR3j93dwZQ0rOOn0LjwdLb+6v/44ZbFLH36H3z0\nr5V88N5qlvy/f+HOySOrfB0ofOC259eoMDxta7Yf8AGsxx+irtXB6sp2ttR10WnzDokHtsLQZ3cH\nWFfdSVWDdb9QTuHSTyj56gMs48oov/Q6ZROqVGy64nYqL7yC5JYGFt54MclNO/p1jjOef4hESycV\nF1+NY9S4mOawTJrBskffoO6MX8Y0vumYUwkZEij58n3F7+0Ahcs+I7Grgx2n/kzR995gajrfPfAi\n1T/7DalNOzjxmvMZ969X0TkPzZ3V3SSJ2U/cRf7qZbTNXsDaG/4U02LBnkwpBrEINAiSjZHPsbls\nFupQMKpWPHa3H48vRF2Lg1WV7WxW8P1r35CqMDBsLj8NUVR82Zerh0DxgVgcPjbWmrtDORBpuxEe\noHub3ri9QZJbGgBwFRQrHqfrIQgzoTidlChCZD+2s6pQPGZfwbDE9uZD/P1eEISY1Tba8PhDvX48\nuXEHcx69nclvPIMqFOz1dYPJ4QmwtrqThnYn8iDen8qyjGPXJrvDmccXosvuI6WhjllP3UPQmMzK\nu58mnBh9sMag0zC9NGvYhHIAPPOPBiBn0+qoxtmcA9/OSgRzBEEQBEEQDiN6rRrfrmBOosJgTiDG\nijkWR/8qfDg8Acp3WFhb1UG71dOvGz25ohJNMBC3NlYAoaRk7CXjIjtIAwNzQ9ifakXCgUmyjMuz\n/wMNSZZpt3lZX9vJuupO2i2eg74IPlA9xvNXfs2Cu69EJUmsvOcZmo49TdG4sSPTDvlKTsYEHTNK\ns0nqYeFuRIaRUXn9DxapVSomlpgoykmhryXGYHIq1nFlmCfPwuC0k9yyU9ExDqWAmBB/Zpt3r8py\nByLJMl0OHxX1FlZVtLGj1YE/IMKbQvz5AiEq6y1sqO3E6d3/PSiptZFZz9xLMNHIqtsfi6pKDSoV\nFZdex+bf3oixs5WFN11C6o6amM6z4LsvKV76MV3jp1J9/m9imiMeQknJNC84iZSWBjKVhrVlmfH/\nfh1Zrab23IsVH0vWaNl8+c2svvURVJLEtJcf5YwLj2PmU/fE/HkcaFNfeYySJR/RNWEqK//4dHRf\nL70YmZ0chzMT+pKyq+KNuWwWQCRYrFCX3ceaqnYaOpyKNxq0Wz2E+qh2KPRPMCRRtdNKf+9sdrY5\nFW3eaTa7Kd9h2W+DQTAs0Woe2Da9+3L5Qt3BHGd+ieJxet3+y2cadSSgr7SSoXVXMCejpn/trHZX\nnRIEYXhpMbt7feZjbG9m9uN3curvz6Dkqw+Y9PYLHHfzpSSY2wf5LHu2u3rOhlozbt/ABYYCwTDt\nFg9b6y2sLG9jfW0nG2o6qW9zDGoo6FDS1OlClmWmP/8gWr+XH258ANfI6KtppiXpmTUu+5CsiN0f\n4TlzCOv05GyMMpjjGvhncCKYIwiCIAiCcBjRadX4MqOsmBOWYrrRsTj9EIedcC5fkK07razZ2kGL\n2Y0kKTsXSZLx+kPY3QHUGyILJfEM5gCEjpiHJuAnfVvsu98ORCy6Dhy3N0i4j69rpzfA1gZr9yL4\nwVgsCIUlLAPwALbwf/9l/v3XIWt0fPfAi7TOU1baNSstgdyMobGLxqDXMH1sFmlJPz5gyEg2MK4o\nthLyvRmdn8rsCTmYFLTfs0ycBoBp6yZFc4tgzvAlSTLbWxwxje2u8LW1nYp6C/Yo2yQKQk/CksSO\nVgdrtnbQ0cvigCoU5IiH/oDO42b9NXfjjqLqwJ6qf/F71l99FwlWMyde/XNmPHMfxtYmxeMN1i5m\nPn0fYb2BH27+M7Lm4LYRqj/5XIBI1RwFsjeuJr2uiqajT46pnVfDCWfyydtL2XT5Lfgyshjz6T85\nZdHZHHvzpeSvWALhQ+P6cdw//8r4f7+Go2gM3z3wYkw7ePeVlKCLqQ2lEL3kRC1qlQpz2UwgumBO\nLEtkYUmmzTK4YY3DhiSR+MwTtH26dK/KNbEKhiV2tPZedUeWZbY326ltsvW6waGxw6X4vj4e3N4g\nyc2RYHx/K+ZApLpA2SgTGgUVwLor5lQrrzrVm5pGG8GQCLAJwnDh9gXZ1kM1LIOlk+nPPchpl53G\nqC/ew1E4mu/vfILGY08lq2I9J195LjnrVsTlHHJ/+JapLy0msaMl5jkcnkilzX5VzwkGu6tPyrKM\n3R1gR6uDddWdrKxoY2uDlXabt7tluUykNePGWjPeA1QbGo4CwTBtFg8j1ixjxPqVtM06iuajT456\nnvzMJKaNzUI/DFtmG9NSME+eSXpdFXq7VfE4fyiMZwBDZgDDrwGuIAiCIAiC0CudVvNjK6suZcEc\nSZYJhqSoLtTDkoR6/TrOu/aXrLj/OdrmHhvT+e7JGwhR02RjZ5uTSdVrSO5qw3LqOXgNiQRCEoFg\n+Mefg9JeO/NmbI3sTrOWTur3eexmSjGgP2YBvPM6WRUbsEyaEbe5d/MHDq+by8Hk6KFaTm92L4Kb\n7T4ml5gwJgzebVSX3ddngChaoz77V3ep2+8eeImuycq+dnUaNaUj4xtqGWg6rZqpYzLZWm/FFwgz\neZQJdT9baPQkKUHH1DFZmO1e6locvZah7toVzMms3EjDiWf3Oa/bFyQUltD2siggDF2NHS68/XyP\nl2SZTpuXTpuXlEQdBdnJ5KQnolbH/2tcGN7aLB52tDj2a1m1r8l/+39kVm9m5/FnKnoPO5DWn/+a\n7aMKKXjiQcZ+8g9Gf/ovGo4/napf/B5n8djeB8oyM5+9jwS7hY1X3IazaHS/ziMeOqYdgSc7j8Ll\nn7Pxyjv6DKCM/89rAFSfd1nMxwympFHzs8uoOfcS8tYso/SDN8ndsIqcTatx5+az7cwL2XHqeQRT\nD8737ZIv3mPaK4/hyRrB8odeJpCaEZd5C7Jib0MpREejVmM0aHFlZOEsKCarYkMk9KUZuMWbFrNb\nVEQaAPr/fkzyA/dSMn4K25/9Z1zmbO1yk5+VRPI+LZ3CksTWnVbMfWws8IfCtHa5KRikf2+3N0h+\ncz0QZTDnAM9AUox6JhRnUFFvOeAcvswcvJk5mKo3Kz5ub/yhMNuabEwsMfV7LkEQDr7Wrr0rNOuc\ndsb/61VK338Trd+LK6+QiouvpmHh6aDR0HTMqXSWzWb6S4s55o7fU3nRVVRedGVM35tTdm5j2kuP\nkLf2WwDGfPIuFZdcTe25FyNro28Zurt6jtnuY3xReo/Vi/elrtuOfulX6L/+Ct2K7winZ1Bzw93U\nzjqOoMLwpn1XKKh0ZNqwasV0IM1mN3IwwLSXHkFWq9m06NaoWsWqVSrGFKQN6+tqY4KWjulHkLtx\nFdmbf4gquGR1BQa0ba54uicIgiAIgnAY0WnVyMZkQglGEqxmxeMCUe7KsjkD5K1YgloKM/LbL6M9\nzQOfi99P8U2LGHHXHyg9Zhopd9+GdWMFHTYvNpcfjz+0X7nsjNoKJI0W+6hxcTuP4twUgnPnAZCl\ntHVBlEQrq4HjjKESidsXZH1NZ7/btEWj3RrfNlal773B7CfvJpCSxrJHXlMcygEYU5CmuGT7oUSj\nVjN5lIlpYzMHPOCSlZbI7Ak5jM1PQ6ve/1i20eMJ6w1kVimrmCMDzihCZMLQ4A+EaWjvfad5LJze\nIFUNVr4Xba6EKNhdftZVd1LVYO0zlJO9YRUT3n0ZV14h66+5O6bjadQq8kxGZpRmM3diLqkXX4Dz\nh42Yn34JT/EYSpZ8xKm/P5P5911DRnXPLT+Kln7CyO++onPKbGrPUd4GakCp1dSfdDY6j5uCFUsO\n+NKUhu3krVmOefJMrBOm9v/YGg2t849n+eLX+OIvH7H9jF9gsFmZ9spjnHHRQmY9efegt7nK+34p\ns568G39KGsv//DLenLy4zKvTqMk1JcZlLkGZFGNkUcJcNgudx0Vafe2AHs/jDw3qdfbhQAqF0fz5\nQQBM1Vuiqk52IDJQ22Tb68/8wTAba7v6DOXs1tjhGrSWwW5fiOTmnchqNe4RIxWP661izm7Z6YmM\nVtAi1zJ+ComWzri0n2nfFcoWBGHoM+/6v6zxupnwzkv85JKTmPiPvxBMSmbdtffw+Suf0HDiWT8G\nb1Qqtp99EUufeAtPTh6T33qOY+74PQZrl+Jj6h1Wpj/3ICcvOoe8td/SPn0eG6+4jbDBwLSXH+XE\nq3+OqXJDzH+n3qrnSLKM1+bA9/GnyDfcQPLsaWTOm0HKHbdg+PorXNl5qLs6mXzrFcy98wqMbc2K\njxmSJLY2WNlabxn2bTHDkkSL2c2Yj/9BatMOtv/kfBwlpYrH6zRqpo3JHNahHIhUtrPOjDyzz9m4\nKqqxNoXtxmMlKuYIgiAIgiAcZrQaFV5TFokKW1lBpEwmicrT4hanj7G7buTiHVpJ216NzuPGNno8\nBpuFce+/ybj336R17jHUnnMx7TOPhD0WxFXhEOl11dhLSpH0fbeaUSI92UBasgEpqZBAzggyKzZE\nSq7GuRKHPw6lxoWeuaxOjr/2QpoXnET1+b9TPC4kSWyp62JUXipFuSkDeIYQDIWx7dGiJrGjlWNv\n+w3OgmLqT/4pLfOOQ9Yp7AMty0x45yWmvP40XlM2yxa/euCKBPswpSQwYgjvPlKpVOi0gxMqUqtU\njMxJJteUyI5WJ61d7u6WDrJOj7V0Mqatm9B4PYraejjcATIUtMkSho66FnvcK2HtFgxHKnw1drjI\nTEtgZHbyXu3cBAEiD3RrGu20W5W1jdHbrRyx+BZktYZVtz9GKCm6CgfpSQZGZBrJTk9As29oUatF\nvuACvL/4BV3/+YDUZ59g5IoljFyxhLaZR1J1wSI6p84BlYqErg5mPPcAoQQjP/zhob2u9w62+pPO\nYdLfX6Tkq/cjCyi9GPefNwCoPu/SuJ+Do6SU9dfey5bLbqDki/cZ+9HbjP7sX4z+7F9UXrCIisuu\nj/sx95W1ZS3zH7wRSafnuwdejOpaoy95mUn7f/0IAyrZqAeLB3PZLEZ98R4nXnM+ksJd+dvP+CWb\nF90a9TFbzG7RrixOgqEwHa/+nenbqvBlZJFgNTPy2y+oOf+3cZnf7g7QbvWQm2HE5Q1SXtcVVass\nXzBMW5eH/AFeHPTu2riT3LITT3Yekl75dZFe1/d7TlFuCh5fiLYDfE+1jJ9CwcqvMVVvoSUrV/Hx\ne1PTaCM9WT9o9zeCIMSfwxMg4PYy9r/vMvGdl0iwdeFPSWPT729m21kXIhl6/15onTCVr577D3Mf\nvY381cs46aqf8v2dT9BVNqvXMapQkDEf/4PJbz2H3mnHlV/EpstvoWX+8aBSsfPEs5jyyuOM/vw/\nnHD9hWz/yfls+e2NBFPSov677a6e02H1ktbWQMp3S8n6fhn5m39A64+EN4OJRpqPPIHWOcfQNmcB\n3px8kht3MPPZ+8lf/Q05G1dR+aurqDnvUsUVfNptXuyeABOLMkhLHp7PUFq7PGC1MPmt5wgkpVBx\nyTVRjR9flD5sPzf78k+bQSjBSM6mNVGNsw1wq3ARzBEEQRAEQTjM6LUafKZskivWowqHkDV9XxJG\nWzHHanFhqoqUak5pqsdg7cKfkRnT+e4rq2IdANU/u4zGY09j5HdfMfbDt8lbs5y8Nctxjiyh9uxf\nsfOkcwgZk0jduR1NwB/XNlbFuwMZKhX+ufNI+eQDklt24iooidsxQARzBkooLGGo2ERm1WbS6rdR\nd9rPo3rYIAN1rQ7c3iDjitIHbJGow+bbaxfp2I/eJqWpnpSmevJXL8OflsHO48+g/uSfYh8z4QAn\nLDPl1SeY8O4ruHPzWbb4Ndz5RYrPQ6NWMa4w+ocxhzudVsO4wnQKspPY3mzHsmvXTdfEaWRVrCej\ntgLz1Dl9zmOPobqTcOiyu/y0D8Iu5z3bXE0dnSkWOYVuXn+Iih0WXL69q3GpggG0Xg9anwedx939\na63Xw5hP/kGipZPNv71RcZWXBJ2GXJORESYjiQYFjx/Vaow//ym+c8+m/MPPyf7L04xYv5IR61fS\nNXEaW3+5iDGfvIPe5WDdtffgziuM5a/fLxq1iuy0RCxO337Xxu6CYjrLZpGzcTXG9mY8uQX7jdfb\nLBQv+RBXflFkEWSABFPSqP3ZpdSeezF5a5Yx4/mHmPjuyzQuPD2qHbXRSqur5qi7r0IVDrPi/mex\nTJwet7nVKtWw39l7KErdVTGnef7xFM5egN5pVzTO2NbM+P+8TvNRJx5wkbAnXQ4fvkCIBL1YtugP\njy/Ilm1mFvz1aWS1mhX3PsvCG35FYRyDOQB1LQ7UKhXVDbb9qtYq0dDhZESmcUBaze7m9gXRetwk\nWsy0zTwyqrF9VczZbVxROt5AqNfrdsu4MgBMNeW0HHViVOfQk2BYorrRRtmo+DxjEQRh8Fl3tnLy\n5WeS0tJAMNFIxa/+j5rzfk0oSdkGsGBqOivue57x//wrU15/iuP+8Gu2/PZGan522X6bBkesWc60\nlxaT2lhH0JjMpstvYdtZF+0VVAykZrDuxgeoP/lcZj19L2M+/ScFK5awadGtNJxwpuKNiGq/j5xN\naxjxw7eM+GE5KS0N3R+zF4+lbc4xtM49BvPkGfttNHMVjmL54lcp+vpjpr20mKl/fYLirz9m3XX3\n0jV5pqLj+wJhNm4zU5SbQsmIFFQD+P1lsMmyTFOni0lvP4/eaWfT5bcQSFfe2jA7PZGstMOn+qQx\n2Uhn2Szy1n5LQlcHvswcReOCYQmXN7hfu854EVe4giAIgiAIhxmtVo0vMxuVLGOwWRRdmAaiCIh4\n/SEMlVvQ+n2EdTo0wSCZFetpWXBSf067W/aWSDDHXDYbWaenceHpNC48nYyacsZ+8BaFyz5l5nMP\nMOW1J6k/+acEkiM3tdbSyXE5flqSfq/qFfL8I+GTD8is2BD3YI4kywSCYfRDsH3QoczpCXYHx7S+\nyIJj1QWLop6n3ebF4w8xeZRpQBYPOvbYdakO+Bn1xXv4U9NZ/tArFP3vE4qXfNRdMco6dhI7Tvkp\nDQtPJ5ia/uMkksSM5x9k7Ed/xzmyhGUPvxp1S4nR+WlicaQfkv4/e2ceHldZt//P7JOZSSaZ7GuT\npnu6l26UspWyyY6AigqyKCryvqK+oj8V3BXcUEARRQVkpyAF2feltNA9S5MmafY022T2feb8/pgk\ntDTLOZOZbnk+19UraXK+z3nSTuac8zz3976NOhZW5jDgDNDU5WRgziIAsvfslCXMcfuEMOd4QZIk\nGjvlbWomk/o2ByfMyRVd1QIG3UFqW+zkv/Ycqx77G3q3A63fh87vQx0ZPzavZ8kq6i8bfzPXZNCS\naTGQYzWSlW5IaCFcq9WQf+mncJ29nqaX3mTav/5M8abXOOnWrwGwf+mJNH/qCsXjTgarWU+BzURu\nZhpajRqHJ8iupoFDIlha1l9EbvVWpr36LHVXfvWQcWZsfARNOETDxV/8OJIglQzFXKFScdKPvsai\ne3/NO7+4L+kOjwCm7g7Wfv869F43H9xyBz3L1yZ1/ByrEYNevIcdbsxpOtQqFeGMzPhrRya22u2s\n+9/PsezO23jlnqfkOzwSF8B39fuYXjRxPJBgdAbdQWr22cl/8wUy9zXQcsaF2OcupnfJKgq2voep\nuwNfofw4p/EIhqPUtNgTrg+EovQO+lPqzOn1RzB3xzeGPcXTFNXqZD6Hq1Uq5lfY2NrQR2CUONHB\nYWHO0DNoMuh3BkYciwQCwbFH2pOPkd7VRuvp57PjhlsUCSxGUKup/8z1DMxbxKpffItF991BTvVW\nPvz2LwinW0lvbWTRvbdT+NE7SGo1TeddQfUXbxr3XAPzl/HKPU8xa8O/mPfQPay8/btUvLSBrTfd\niqe0YtQac2crhUNCnLydW9CE4k1Jo7niTIhKRdsZF9C94mQW3P97Kv/7OKd/80qaz/k0u6+9mVBG\n1oRDSEBrjxuHO8icaVnymgSOAfocfrRNjcx49hE8RWU0XnCl7FqtWs2M4qnVcGc2auldvJLCj94h\nd+cW2k8/T3atwx0UwhyBQCAQCAQCQXLQadX4bbkAGAf65AlzFDjm2F2Bkfiq1jMuZPoLT5KTLGGO\nJJFTsw1fTj6+/IMf6AZnzefD//sVu67/DtP/+ziVGx9h5jMPjnzfMSM5jjnTPhFfFF0Zz6zNqdlG\n65kXJ+UcBxIUwpyk4/KGyGuoBiCq0zHzmYdouPTqhKLO3P4wW+v7qKqwkZlEO9jAJzouS95+CYNz\nkD2XX4tjVhWOWVXsvuabFG55m/KXn6Zw81ssvftnLPrrr+k6cR37zrqU3kUrWHbnbVS8/DSOilm8\n/au/E8zKUTSPTItBdKgniWyrkQyzjm0dcWGOrW6nrLpwNIYvEMZkTM2igODwsd/uw+0fX/yQCoKR\nKHWtDhZWiq7qqUxHr4d9LX0s/MsvmfHco0R1OgK2PALZeXjSTESMJiJpH/8Jp5njnxvNhNMzaD/5\nrIOio9QqFWajjkyLHqtZjzXJkRoZZj2Wi9fTedKJ1L3/ETMfu4+M1kY+uvlnKRGWfBKDTkPBGI4/\nmRYDFYUZNHUdLLTrOOUcltzzC8pfeYa6z91w0DzVoSCVzz5MyJJBy5kXpXz+B+I6ZT09S1ZTsPU9\nCj58m/0rTknq+IbBfk7+3rWk2fvZ/tXvK1r0lktJrrL4NEFyGP49d/uViYTt85bQdO7lVP73cWZt\n+Bf1V1yvqL57wEt5QTpq9fHT5X642G/30dDuIBaNUvXQ3UhqNXVX3gBAx8lnUbD1vaTGWSWDth43\n+VlpKXM18ATCpHe2xj9XKsyR6ZgDcbfMuWVZbG/sP+R74XQr7uJpZO2tSWoEdmOHk0yLAYNYLxAI\njik8/jBFL2wgptaw8yvKXE9Go3/hCl65ZwOrfvkdije9jvXrn6Z3yWrKX9qAOhalZ8kqdtzwPVwV\ns2SNJ+n01F9xPe2nnMuSu39K0ea3OPOGC9lzxfXs+cyXQZLGdsUpn0n38rXsXz66K45cwhmZbPvf\nH9O6/iKW/vE2pr/wJMXvv8bO6/+P1vUXynofdfpCfFTfS1W57bhwkG3v9bDor7ejjkbYef13FEUz\nVhZnTLlrhcmoo3VxfM0+b+dmZcIcT5CSvNQ8fwhhjkAgEAgEAsEUQ69VE8gaEuYM9smqUeKYY3cH\nmVWzHYCGS66i/OVnRoQ6k8Xc1YZxsJ+2U84Z8yEsmJVN3ZVfZc8V11H87ivM/M+/UYeCOCrnTvr8\n6Wn6Qx7mIvPmE00zkTP0MyebYChKumiCSypuX4g59bsJpVtpPvtS5jxxP9Nee5Z951yW0HjhaIxd\nTQNUFmVQnKSNo97Bg6NuKp97FEmlOsglQNLp6VpzBl1rzsBg72PaaxupeGkDpW+9SOlbLxJOM6Hz\n+7DPXsDbP//rwU46MtCoVMwuVVYjGB+dVoO2rBRfTj7ZdTtkL8w7vSEhzDnGiURjNHe5jtj57e4A\nHb2epC0u+QJhXL5wSjvcpzoxScLtDaHTajAZE1++i8UkGtoduGobOPXn38TWUI2zfCbv//DOMbte\nR0OjUpFp1g8JcQxkmHUpi3IcRq1SUZpnIffck2hctIB+ZyDl58u2Gim0mSZ0/CnNs+Dyhuhzfny9\njpjMdKxdT/mrz5Jds+2gCJ9prz2L0Wmn7orriaYdHsGrWqWiojCDklwzjd/8IXlXn8eie2+nZ+mJ\nSNrkXFO0Xg9r/9+XSe9qo/azX6Hx4i8kZdwDyTDpyTAntqkjmDzpJuXCHIDd13yT4vdeZd5D99B+\nyrn4Cg6NdxuLcDRGryO1LirHI/u6XbT2uAEofvcVrC17aTnjwhFX1841Z7D0zh9T+vaLR5UwxxeM\n0Ovwp8z5xesPkz0kzHErFObodcquc9Yh17jRrlf2WQuY9g9HSPIAACAASURBVMZzSY3ADkdj1LcJ\n8bVAcKzh/Wg7FY21dK08VXHz1FgEbbm89au/U/XgXcx7+C9YXngCd/E0dn75u3SvOjUhQaCvoJj3\nfvJnit97hcX3/IKqh+5h+n+fQO9xfeyKYzLTseYM9i9fy/4T1ip2aJ6IgaolvHr3k8x8+kGqHriL\nFb/5HuUvb2DbTbfiLqucsD4ak2jv9RzzwpxBd5C0d9+kaPOb9C5aQdeJ62TXZpoNFGZPvYY7S5oW\nR+UcQpYM8nZsVlTr8ISQJCklomEhzBEIBAKBQCCYYui1GgJDjjlpdpnCHJmOOTFJwuEKkF27DX92\nHu6ySgZnziNrby2agJ+ocXJZtrnVQzFWC5ZNcCRIWh0dp55Lx6nnTuqcBzKtYJQNTa2WwJJlZLz/\nDnrXoCxbVSUEFYiiBPLwd/dg6Wpj/7I17L3kqngc1BP/YN9Zlx7kBqCEmCSxt9OJxx9mZmkm6kk+\nvB0ozLE27SGndjvdy9fiLSwd9figLZeGy66h4dNfwrZnF+UvP03ZG8/Tu2gl7912FxGz8s34isKM\n48by92giM92Afc4iSt59mbS+bll2zi5vaEoupBxPtHS7CUdHuZZGoxRtep38HR/gKSpjcMZcHJVz\niZjTDz12kjR3u7Ba9KSbJrfBHQxF2dU0gEqlSmmH+1QjEo3h8oZwekM4PSFcvtBIVJIt3UhJrlnx\ngnIwFKV6nx3L6y+x/o5b0Htc7DvzYrbf+ENF92QzSzIpzDZN+tqWKEa9lvkV2fgCYWLSxMcPE41J\nRKOx+MdDPpeIxuJ/j8UkstIN5GWZ0Gnl3wfMLsvE2xDGF4yMfK1l/cWUv/os5S8//bEwR5KY9dS/\niGm0NF4o33J+MlhNemaXZY6IOm2rT6D5nMuofP4xKp97jMaLPj/pc6hDQdbcdiNZjXU0n3MZNVf/\nz6THHI2SXHH9O5Kkm3QwoLwunJHJzq98l5W3f5cld/+U937yZ0Wbgp19XiHMkUksJrGnbZBeh3/4\nC4e45QCEMrJSEmeVDNp6PCkR5sRiEv5gBEsCjjlqlQqtAsecYaYXZmB3BQ+JOxycPZ9pbzxHVn11\nUiOw7e4A3QNe8awgEBxDmJ58HCDu/JJMNBpqrv4fepesxtLVSssZFx7kWKMC1GoVWrUajUaFRq1C\nrY5/HA//Oeez5eTTmP63P1Dy1EN4SsrpXr6W7hPWTsoVRy6SVkfDZdfQfsrZLLn75xRvep11N32G\n/z7wsqw1WIcnSOgYdyPv6HKw7N5fI6lU7LjhFtn3VGqVillTtOFOp9Wg0+voW7Cc4k2vYerpxJcv\nTygeicVw+8IpaQ4Qq6wCgUAgEAgEUwytVo3rgCgrOch1zHF6Qhi720mz99N+8tmgUtE/fxnZe3Zh\nq99N36IVCc8bIGdYmFM1sTAn2ViMOnKso29ixVathvffIbtmB92rT0vqeYNh+TFigokJhCJYancB\nYJ+9gEB2Hq2nn0fFy09TuPlNulefPqnxu+0+fIEIVRW2hB/6fYEwnsDHcTeVzz0KQNN5n524WKXC\nPncR9rmL2HbjD+NCowQ2Uq0mPcViIywlZFkMDMyNC3Oy63bSIUeY4zv88UeC5OENhOka8B70NZ3L\nwfQXn6Ry4yOYe7oOqfEUluKonIujck5crDNjXlxUOwlhREySqGsdZNns3ISdTsKRGLuaBwgM3RcM\nOAPkZE5OdDtVCYWjOLwhXJ4QTm8Qjz/MWJoTuzuA3R3AZNBSlGOmwGaacLPQ6Q1R19jLzPt+y5zH\n/05Ub+DDm39Gy9mXKppneUH6URNpeLQ5h2k1aqoqbGyr7yM6tAHbt2gF3rxCSt9+kR1f/T7RNBMF\nH75DRlsTLWdcQCAnP6VzOtAl50DRXLbVyK4v30zZG88z78G7aF13PuF0a+InkiSW//b/kbdzMx0n\nrWfrTbemJGLMqNOI95gjzGTEnG3rzqfipQ0UbX6LovdeVRRt7PaHcHlDwi1pAsKRKNXNdpy+j12N\nRnPLGab95LOPyjgrbyBMr8NPXpJ/372B+LU1vbMVSa3GK3NDDpTFWB2IyaijwGY65N7PPnshALb6\nXUmP/GvsdJKVbsCoF9t9AsHRjs8bpPDlZwhZMuhalfj6oVqlQq9Vo9dp0OvU6LUHfCw/G51WzTKN\nGs2Q8CYuxJmM22UO/PEPDNz5e1CpyJIk0kJRCoMR/MEI/mAUfyj+eSAUPUScmAz8eUW8/+O7mX//\n75n76F8p2PI2bWdMLG6SgD5n4Kh5plGKxx/G+sRDWFv20nz2pTgVOMJPy0+flPvqsY45TUfv4pUU\nb3qN3J1baD3zYtm1Dk9QCHMEAoFAIBAIBJNHp1Xjzx4S5sh1zJEpDrG7A2QPxVb1Vy2Jf5y3hNn8\ng5zqrUkR5oTM6TjLZ05qnESYVjC2e0F05WoAcmq3JV+YE4pMfJBANi5fGFv9sDAnvjja8OkvUfHy\n08x+4v5JC3MgnmO9q2mAxTNzEuqy7DnALUfr9TDttY148wrpXnGysoE0iQmD1CoVs8syhQtGirBa\n9HTPWwwQF+accs6ENd5AmEg0ltDrSXDkaexwjixMZuxrYOYzD1H2+ka0wQARQxpN511B22nnkdbf\nQ2ZjLVmNdWQ21VHy7suUvPvyyDiBzOy4UGdmFXsv/kJCtue+YITGDiezy5S7u0VjMXY3D+A9QDjY\n0ecVm+YKCT36OO1RPe3zTlAsZPAFIzR2OtnX7aLQZqYoxzzqQmv3gJf2HQ2s+vnN5FZvxV08jU0/\n+APOyjmKzldoM1FekKGoZqphNuqYXZZJbetg/AtqNa3rL2Lev+O2/21nXMisp/4JQMOlV6d0Lp90\nyfkk+bOnUfu5G1j0t98w76F72PnV7yV8rtlP/J2yN56nf94SNt9yR8L3HBNRlGM+Yk5NgjhmoxaN\nSjUiPlOESsXWm27lzBsuZMk9P6d36YlETPI3xTr7vUKYMw6+QJjdzXb8Bz4vjuGWM0zXmnXE7rzt\nqIuzAmjb706BMCf+b2PpbMWbX6zI1UGJg9onqShMp3fQTyT28TqKo3IOMbUGW311wuOORTQmsafN\nweIZyYnEEQgEqSP48iukDfTS9KkriOkNsuvS9FpmlWaOiG8m8x41KYbuy1QqFWkG7aguy5IkEQhF\n8QUidPR5GPQEkzqF1nXnM/fRv1K06Q1ZwhyAvkH/MSvM6W7uYtm//kg4zUS1AodKi1FHaX5yoqyP\nVcxGLb2LVwKQt+MDxcKcsvzkOxkLYY5AIBAIBALBFEOvVRMY2syTG2UVicWIxSTUE9ibDrqCzKrZ\nDsBA1dKDPmYPfT1RDIP9pHe20r18bcoW/8fCYtSRO84iYeSE5Uhq9aR/xtEIiCirpOL2higbWgy1\nz54PgKt8Jt0rTqZwy9vY6nZgn7t40ufxBMJUN9tZWJk94e/NJzkwxmraa/9BG/BR99kvH7bXfXlB\n+lHnSnA8oVGriS5cTEyjxbZnp+w6lzd0zOeiT0X6HX4cTi9Fm95g5n8eIm/nFgA8BSU0XnAlLWdd\nfJBrRftpn4p/IklDQp24SCezqY6sxjoKtr4X//PRO7zxu38nFBHZbfeRlWFUtPkVkyRq9g3iOqAj\nH8DhDeL2hSYdjzVV0Lz9JsU3XUcxMHdaJY0Xfp7WdRcQTVMW3xGNSXT0e+jo9xwUcxWTJBo7nERe\neYV1v/wORqed9rVn8dHNP1McaWhLNzBzitqeKyUvy4TLG6aj3wNAy5Awp/zlZ3BWzCZ/+yZ6Fq9S\n1N2qhLFccj5JblYaH112NZXPP8aMZx+m6bzP4CmtUHy+/A/fYcHff4cvJ5/3f3Sn7E2lomwzoUiU\nQXeQqIxMMo1KJaJZjgJUKhWWNN1BjixK8JRWUH/5dcz795+peuBP7LzhFtm1fQ4/M4oz0GmP3eiJ\nVDHoDlKzz36Q8APGd8uBozvOyhMI0+/0j+lSmwhefxit14PRMcD+Gcregyez6a3TaijNs7Bvv2vk\na1FjGq7ymWQ21aGKhJG0yX3ecniCdPR5KMmd2puwAsHRjuXJxwBolSkoGabAZiIrXb6Q50hyoGgn\n22qk3+mnuct1UPzrZHCXVeIpKqNg67uoQyFi+omfRZ3eIMFwFMMRjLOSJElxA1wwFCXnnt9jcA6y\n+0vfJDjkgD8RKmBWaeaUF7ibjDo6p80gYLWRt2MLSJLs5hinJx4tnex/Q9FuJxAIBAKBQDDF0GnV\nhDIyiWm0GAf7ZdcFJxCIBMNRPIEwOTXbiBjScEyfHf96VjbuknJyardDNHGRSU71kBPP/BMSHiNR\nyiboMJDSMwjMnoetfjfqUGKL1mMx0b+7QBkubxBb/W68eYUHPdDWXxbvGJ39xP1JO5fDG6S21Y6k\noMPY5Q193PUqSVRufISYVsc+hdEjiZKepqc0TyzmphprbiaO6bPJ2lsr+z3jk4IIwdFPtH8A6be/\n4ZyrzmTNT24ib+cWepas5t0f380L/3iRvZ++euwoGZUKf24B3atPo+7zX2PTrX/ivw++yjMbNtN8\n9qVkNdZxwu9/GF9YSoCGNgd+BQuj9a2D2N2BUb/X2ecd9euCTyBJ6H/2EwA6V68jvbONZX/8Medd\neRoL7/015u72hIa1uwPsah5gS10PO+p7sd55Oyd/7zr0Xjfbv/p9PvjB7xWLcixGHfPKbVN+IVcJ\n04szsA45e3iLyuibv4z8HR+w6K+/BqDh0qtScl6rSc8Js3MpzbNMuNCvVqkoKrGx6/pvo45GWHTf\nHYrPZ+lsYdUvvkVMq+P92+6SvTmQYdIzqzST+RXZrFlQyKLKHErzLFjGEQLn20xHrhtccBCTFV/W\nffYreIrKmPnMg2Q21squi0kS3QO+SZ37eKR7wMvu5oFDRDkTueUM037y2QCUvvNiKqeZEK37PUkd\nz+MPY+lqBcBdPE1RrX6S7z8leeZDNoDtsxegDQbIaG2c1Nhjsa/LhS8gHHcFgqOV4ICdvLdfwl1U\nxsA8ZQ1heVnHrktpjjWNE+bkUVlkRTupOK0hVCq6Vp2Gzucld9eHskok4oLfI4XLG2JLXS9d/V5i\nMgTqw/Rt282Mpx/Em1+k6HmiOMciXAeJO+agVtO3aAWm/v0j9wRyiEoSbm/y1+HE041AIBAIBALB\nFEOvVYM67pojN8oKIBwZP87K7gqgczuxtuzFPmfhQR1g/VVL0fk8WFv2JjzvnOqt8bHmL014jEQw\nGbTjuuUME125Ck04RGZjTVLPLzdGTDAxMUki2tKK0THA4KwFB32vb+Fy7LPmU/zeq1g6W5J2zn5n\ngIZ2h+zjD3TLydn9EdbWJjpOWp9QZI1SRITV4SMz3YB97iI04RDW5j2yalwpWBAQpA7jQ/9CVVrK\nvHvvwOB00HTeFbx430be/vVQZF6CDlhhSwbbvvEj+uctoeyN55mVoJgwEouxp3VwJGJrPBo7nPSM\ns4jZ6/ATEiLSCVG/+jKWHR/ReeI63v/xXTz/4KvUfP7rxHR6Zj/1T865+ixOvPXr5G17X7HgSuv1\nYNi9g0XfvJr5D9yFP6eAN377II0Xf0FxXJZBp2HB9GwRnacQtUrFvHIbhiFnj5Yhm/T87R/gKp3O\n/uUK4yhlnK+yyMrimTmKXO4Ks030nnwWvQuXU/TBG/HXm0y0Xg9rbr0RvdfNR9/8CYOz5suqUwEz\nSz4WIapVKrLSDVQWWTlhTh6r5xUwuzSTXGvaQZs1JbnCLedoId00OWePmN7Atht/hCoWY+mdP1bU\nrNHV71Ukcj/eae5yUd/uGPX6PeyW03r6+aO65QzTtWYdMbWGkrdfSuFME8PtD2F3jS4ETgRvIIyl\nM74J5ylSJsyZrFOTRq2movDgOMhhx1Zb/e5JjT0WUUmivm1Q/M4IBEcp0Sc3oA0G4m45Cu7RrWb9\nqJFRxxJqlYrSPAsr5+VRlG1msqtOXUMx9EUfvC675kgKc1r2u/CHIjR0ONhc20N7r4dIdPz13kg0\nRv7tP0UdCbPrum/Ldqk06jSUFyY/gulYxDwU+zwSZ7V9s6J6h0cIcwQCgUAgEAgEk0SrUaMCAtm5\ncWGOzEWbiTbd7O4g2XU7AOivWnLQ9/rnLwMgp2ar8gkPkVO9lahOh332gokPTiJl+emyhAqxVasB\nyElynFVMkoRrTpLw+sNk7tkFgH3OJ15HKhX1l12DSpKY9dQ/k3rebruP5i7XhMdJknTQQkHlxkcA\naDr/s0mdz1iU5VuwpIkIq8NBuknH4FCHXHadvDgrlzecyikJkoiqpwfzD24hqtez48vf5bmH32Db\nTbfhnjYjKeNLOj3v/+hOfDn5LLz/d+R/9G5C4zh9IVr3u8c9pq3HPRLPMxYxSaKzX7jmjIskof/5\nTwGo+eI3AAhk51H7xRt57qHX2Pzd27HPXkDxptc55ZZrOfPL5zP9uUfR+D92itB6PWTuraHkzf8y\n5+G/sPyO73Ha/36O8y8/iYsvXs4ZN15Gwdb36F5xMq/8+SnscxcpnqZWrWbB9GwMehEbkwgGnYa5\n5VmoVSo6Tj6biCEu7G645CpQ0B2s06ixGHXY0g3kZ5kozbMwo8jK3GlZLKrMYcWcPE6cXyDLJeeT\naNRqSvLS2fmV7yKpVCy699fyRBKxGCtu/y4ZbU00XHIVbQriFwqzzeM6rhj0GgqzzVRV2DhxQQGL\nZ+QwqyRTxGoeRUxWmAPQc8Ia2k49l+z6XUz/7+Oy6wLhKAPO5Ak1jlViMYmaFjttvWNct4fccmJq\nDbVXfnXcsYbjrGwN1Zi6O1Iw28kx0b2JXELhKKFIjPRhYY5Cx5xkOHblZ6WRfsDz1fBahm0oWjkV\nOH0halsHiX7SUUkgEBxx0jckHmN1vKDTaphVmskJc/KwJRDNpdeqsaUbcC8+gVC6laJNb8he13Z6\nQwRDh3991eUNYXcHR/4ejERp6nKyubaHlv2uMRth3S+8StG7r9BftZSOIbc7OcwsyRRNFkPotBr0\nWvWIMCd3pzJhzqAnOPFBCjm2JXYCgUAgEAgEAsWoVCq0GjV+Wy62+t3o3E7CGZkT1gXHccyRJAmH\nO8jsIVFKf9XBrjbDQp2c6m00XXCl4jlrfV6ymuoYmLtYdodAMkjTa2XbxYZXrAIgp2YbDZddk9R5\nHOkc5OMFly+MbU+8O9E+e+Eh3+88aT2eghLKX36Gmi98g2BWdtLO3dbrRqdVjxsT5fCECEbiiwQG\nex8l772Kc9qMEWFbMlGrVJiNWixpupE/6cLm9rChVqmILFsOQPaenTTyhQlrIrFY3I5fiKeOesy/\n+zVqn5e67/yMvetTE0MXtOXy/q1/4rSbP8+qX3yLV//0OF6FG04QF95kpRvItBx6be0e8NLcPbGo\ncPjYafnpqNXCcWs0Ys8+S3rtLtpPORvnUNTnMJJOT9u682lbdz62up3M+M+/KX37RZb98ccs+Pvv\ncE2rxNLVjtExcOi4ag2+gmK6Z8zDU1yGffYC2k4/X5EIZBi1SkVVhU28x0ySTIuBisIMmrok9l70\neQq2vkvrGReMebwKsFoM5GamYUs3YNBrUh4hVpRjpm3WfFrOvJiKlzZQ8eJT7PvU5ePWzHvoboo3\nvU7PklXsuv7bss+l0xzqGDEeapWKTMvo70mCI0eaQYtGrSKqIHphNHZ+5bsUbnmbBff/ns41Z8iO\nQuvs95Ijw8H0eCUUjlK9zz5urGnJuy9jbdlLy/qLZN0PtJ98NgVb36P0nRepv/y6ZE530jh9IQbd\nQbIS2LA9EO9QpNOwY47iKCvd5Dc1VSoV04us7GyKR4i7ps0gqjeQ1ZA6YQ7EXSH8gQhVFbZj3mVD\nIDheiDTvI3f7ZnoXLsdXUCy7Tq1SyXLxPtYwG3UsrMyh3+mnucuFb5SY5TS9FotJh8U4tG5l0o2s\njbbsd9G9/GSmvb4Ra/MenJVzZZ231+E/7PHtLftdqENBtD4voUzbyNfD0Rgt+92093ooyjZTkmcZ\n+flikQj5v/ghADtuuEW2w1JuZhrZVmPyf4hjGJNRh6O4HH92Hnk7t8SFXDL/PV3eELGYlNR1DnFV\nFggEAoFAIJiC6HUaAkPROGn2PlnCnHBk7K4Cty9MOBoju2Ybkkp1SFayp7icgNWWsJuMrW4Hqljs\nsMdYleVbZG+OxEpKCRUUkV2zXdFNvhxCoSgcPw0yRwy3N0RRw24klYrBmVWHfF/SaGm49GqW3v0z\nKjc+TO2Qq0GyaOpyoteqyR+j26l38GNnhIoXn0IdCcfdcib5WtKq1R8LcEzxjyajNuUbf4LxMc6Z\nRTAjE5tMxxwAty8kNs2PcjTNjRgf/Cfu4ml0nH85BFLXkTc4ewFb//fHrLjje6y57eu8fudjREzK\nol8koK51kBNm5x3UGd7v8CuK4QtFYvQM+ijMFtEzhxCLYfr1z5HUamq+cOO4h9rnLmLL3EXs/PJ3\nqHz+caY//yi2PbsPEN9Mw1NUFv9YXIY3vxiVTo9eq0an1cS740dZ1JbDrNLMSW+CCuKU5llw+UJU\nX3sz1dfefMj3DxTj5FqN6A+z+FqnVVOYY6b66v+h9K0Xmf/PO2k/9Rwi5tEt74vefYWqh+7BU1DC\nB//vd0ga+cvJ04sykuI6ITiyqFQq0tP0OLyT6xoOZOex+5pvsvSun7Lo3tvZ8r07ZNUNeoL4AuEp\n6aLkC4TZ1TxAYLwO/1iMeQ8OueV87gZZ43atWUfsztsoefulo06YA3HXnEkLc/xxt0lLV2tcyJpf\npKhelyS3gax0A7Z0I3Z3AEmrY3DGPGx7dqEJ+IkaU7fZ7gmE2dbQx7xym7i+CwRHAw//G1DulpOd\nYTyu3U9yrGnYMox09XnjjUimj5vHxvu5czPT6Fp9GtNe30jRptdlC3P6DrMwx+kNYXf4OP1bXyS7\nfhd+Wy6Oyjk4ZsxjsHIujso5eAtLae/z0NnvpcAWd8tUP/BP8hvraDnjAgZlOsfrNGpmFlsnPnCK\nYTHqcHiC9C5eybTXNpLR2oirfKas2pgk4fSGknodFcIcgUAgEAgEgimITqMmMNShaBzsl3VDGgqP\n7ZhjdwdQRcLY6nfjrJh16MK+SkX//KWUvPcqab1d+POULYrl1GwDoC8FziFjYdRpxhRQjEV4+UrM\nG5/G0tWKp7g8aXMJiCirpOBy+7E11OAqqxxz87rlzIupeuBPzHj2Yeovvy7pi6X17Q60GvUhHSyx\nmESfY8imPxql8vnHiRhNtK4bu8t+InKtaUwvyhBdkkcpmRlGBuYuomjzWxgG+wkOiSXHw+UNHbXC\nh5gkEQhGMRmn9uvN9MufoYpE2P2lbyJpdUBq379b119EZmMds55+gBW//i7v3/pHxW4pwXCU+vZB\n5lfEXcIcniC1rYMo9UXo7PMeta/PI0no8SfJbdxDyxkX4C6rlFUTtOVS+4WvU3flV8k0adEbDeh1\nmvgfrZp8nYZSnXpEkHMgLl+I/QM+egf9RGTGWFQUZBxXFvlHA7NLM/H6wyPdv0dajPNJSnMtdPXn\nU/eZ61nwzzuZ+8i97L7uUCecjJa9rLjjFiKGNN6/7S5CGVmyz5Fh0ov3hOOIdJNu0sIcgKZPXUH5\nK88w7Y3naDnrYnqXniirrrPfy8ySiZtJAKKxGH2OAN5AmMqiY3eDatAdpGaffcL38pJ3X8ba2ijb\nLQeG4qyWrqbgo3cxdXfgKyxJxpSThsMbxOkJYp2Ee5ZnSJiT3tmKt6B46L5MPskUFVYWZzC4J4AE\n2GfPJ6d2O5lNexj4RAR4sglHY+xuHmB6UQYluYfXIUIgEByAJJHx9ONEDEY61p6lqDRfpov3sYxa\npaJEoVjGbNThOvFUYlodRZveoO7zX5dV5/KF8Acjh22drHW/i8rnHyO7fhfuknI0wSCFH75D4Yfv\njBwTNplxTJ+Do3IujhlzaSyr5MTf/IKIwUj1l74p+1zTizKO+DPG0cjwGlXv4lVMe20jeTs2yxbm\nQHx9RAhzBAKBQCAQCASTQqc7QJgz0CerJjSOOMTuCpLZWIc2GKB/3uiLS/1Vyyh571VyqrfRfroy\nYU7u7q1DTjypXbg6kNL8dMWOIrETT4SNT5NTvS2pwpygEOZMmkg0hnZvPdqAD/s43SbRNBNNF3yO\nef/+M+Uvb0goem08YpJEbYudhTNysB4QHWV3BUYW3Qu3vIWpr5um864gYk5sAdVi1DFnWiaaBOJM\nBIcHS5qO/nmLKdr8FrY9u+heffqENU7v2BEGh4O4+CaCPxjFH4zgC0YIhOIfg6EoEjC9MIOy/NFd\nF453tNu3YvzPBgZmL6Rz7Zko+VfQadSoVBCNSkQlZZKYXV/+DtZ9DRRveo15D91D7RfHd2UZjX5n\ngM5+L1aznupmOzGFc4B4Z3YyoieOJ2KRCBm//WXcxeDKrymuz7WZmVdum/jAA8gw6ckw6ZlRbKXP\n6Wf/gI9Bz9ib6YU2E9MKpubvbCrRatTMr7DR2Okk23p0iHEOxKDXkJeZRsOlVzP9v48z8+kHaP7U\nFXgLS0eO0bkcrLntRnR+H+//4A+HxLCNhwqYWXLsCiIEh1KUYyZDZuxpJBqjfizXNY2GrTfdyhnf\nuJylf/oJL9/7H1lRxfvtPioKM8btnnd6Q+wf8NLr8I/EbqlQMb1Ifpza0UL3gJe9Hc6Jr8cJuOUM\n0772LAo+eveojLMCaO1xs3ASwhxvIIzO48LgHMQ+a77i+k8KXyeD2aijwGai2+5jcFb8WTSrYXfK\nhTkQv39v7HTi8YWZVZopYkcFgiPB5s2Y21toPe08RWs8Oo0am4glGpOskjx6Fy6nYNv7pPXtx59b\nIKuuz+E/LGsWTm8Ib1sXa/95JyFzOm/89kGCWTnonYNkNtWR2bSHzMY6sprqyKndTm711oPqaz7/\nddk/U6bFIATxY2AeFuYsWglA3o4PaLzo87LrHe4gFCZvPkKYIxAIBAKBQDAF0WnU+LOHhDl2mcKc\nyOideuFIDLcvxIwhV5uBqtHjpoZjqHKqt9J++nmybDLuSQAAIABJREFU56qKhLHt2YmzfCbh9MOz\nwG/QaihMoHM8smIVANk122g565KkzSc4nnW5QBZuX9zRCRhXmAPQeMGVzH7ifmY99S+aPvUZ0CR3\nIy0qSVQ3D7B4Zg7mIUv+Hod/5PuVGx8FoOm8zyY0vk6jpqrCJkQ5xwChZcvhH5Bdt1OWMMcXjBCO\nxA5bLIiqr4/0Sy+g4cqv0LL27BHxzXjs63ZhNuqmXq65JGH+6a0A7L7uW4oi6HQaNSvm5h20ARSJ\nxojGpLhQJxYjFpOIxiQiMQmPL0xbr/vjU2u0fPD/fscZN15G1UN345g+m66T1iv+EZo6nWg1Ktku\nK6PR2ecRwpwD8D/wb/Jbm2g++1LZLgYHMpkFY7VaRX6WifwsE4FQhB67n26796A4FFu6gZml8hwo\nBMoxGXUsrJzYDe1IUZZvYf+gj93XfotVv/w2C+/7DZt+dCcAqmiEVb/8NpauNmo/+xU6T1bW3V2Y\nbSbdJE/EITg2SDNoFXWXt+53j+n66ZhZxd4LP8+spx9gzqP3yRKURmMSPYN+inMO3nQKhqP02H3s\nt/tGHKoOpK3XjcmoPaZcwZq7XAdd58cjEbecYY72OCu7OxiPNUkgxlWSJHyBCBldbQAJNc3odcm9\n3y4vzKB30I99TvxZ1FZfndTxJ2L/YPx3pKrChuEoEooKBFMB9b8fBKB1vbIYq9zMNBFBPg65mWl0\nrzqNgm3vU7j5TZrP+4ysusMlzGnd72LB/b9D73Gx7es/GHFJDlmz6F164kGugZqAH+u+hhHBjjoc\nov6ya2SdR61SMVs8043JcBSqr6AYT0EJubs/gmhU9lqv2x+ON3smKVJOrNQKBAKBQCAQTEH0Bzjm\npMkV5oyxsDrojlsy59RsB6B/DGGOY8ZcIgYjObXbFc01a29t3IlnjHFTQWm+JaFOssjcKqIm88i/\nRbIQjjmTx+UNHSDMWTjuscGsbFrWX4Slu52S915JyXzC0Ri7mgYIhCJEojHszniMlbmrjcKP3qG/\naqmizvRhVMC8cpuIrzpG0KxYjqRSkV23U3aN6zC65hifeRLDnhoKHvsXARmiHAAJqGsdxBc4dHPs\neEb3xmvo332b7uVr6Vu0QlHtjGLrIV3ZWo0ag06Dyagl3aTHajFgyzCSl5lGeWE6+k+Is0LWLN77\n8d1EDGmsuOMWMlr2Kv4ZYpI0pghXLgOuAP5RNkanIuFAiJw//YaYVkfdlV9VXJ9rTUtoM3I0jHot\n0wrSWTWvgEWVOeRnmbCa9Mwrt4nF/imMyagjx2qk/dRzGZi7iJJ3XyZn14cALPj77ynY+h5dK0+l\n5qqbFI2r06ipKDz2HEoEyWWiCKKaq27Cl5PPnMf+iqVj38ffkCTUoSB65yCm/Z1k7GvAVreDvK3v\nEd3wNLpN7xGTJPocfnY3D/BBzX6au12jinKGaWh34BzHOexIIkkS/mAEuytAZ5+HXU0DskU5k3HL\ngY/jrGwN1Zi72xXXHw7aez0J1fmDEaKShKWzFQC3QtGSWqVK2gbcMAadhtJ8C56iaYQsGdjqdyV1\nfDm4fCG21fcdcRdOgWBKEQiQ8d//4Lfl0rNktaLSY0lUeiSwpOkYPPkMAIo2vS67zu0Pp/yZ1ekN\nweYPqHhpA4OVc2k+74pxj48a07DPXUTzeZ9h2//cxkff/gXRtLH//406DZkWA0XZZuZNyxJrgOOg\n06oxDK239C1agd7tJLN5j+z6mCQldR1O/E8JBAKBQCAQTEF0GjWBIaW+cbBfVs1Ym3V2VxAkiZya\nbfiz8/Dljx5TJWl12OcsJHfXh+g8LsIWeQv2OUNOPP0LTpB1/GTRa9UUZif48KvVElx6AhnvvoXe\nNUgoIyspcxKOOZPH7QtRWb+bqE6Ps2LiLOGGS69i+n8fZ/YT98czwFOwcRkMR9nVNEBhtnkkumb6\n848B0CSz0+eTVBZZhVvFMURGYS6ussq4aExmx47LFzpsbjS6Z58BIKd2u6L3tEgsRvW+AZbOyk36\npsZRSSyG5ae3IqlU7L7mZkWltnQD+QoXXNUqFQU28yEbd87ps/nwO79g9c++yZrbbuTVPz5GOOPw\nds5JQGeflxkiwgbf3/5BUWcrjed/Fl9+seL6svzEogwnIivdIK4TghHK8tLpdwbYccP3WPc/n2Hx\nX35FwyVXMfvJ+3GVVLD5lttBoQPf9KKMw+bsJjh6ybTo6Rn0jfn9iMnMjq9+nxN/+j+c/r+fI6o3\novV70fp9qGPjP/u8/tf/MFA+S/ZcYpJE9T47S2flHpGNK0mSCITiMaD+4UjQUPzzQCiaUHwkTM4t\nZ5jhOKuSd45O15w+h5+KwnSMemX/b54hgbilsyX+d4X/ProU3b+W5lno7vcxOLOK/O2bFK2LJItg\nJMrOxn5mllhF7IlAcBjQvvQCOreLpsuuUeTGnKbXyo6QnMqY58zEMX02eTs+QOP3Ek2T977WO+hP\naZxva+cgS//0UwC23/hDJI3y+w+jToPRoMU05FqYpteQZtSSpteKWEKFmIxagp4ovYtXUfHSBvJ2\nbMYxs0p2/aAniC0jOetw4ilJIBAIBAKBYAqi02kIZGUD8qOsYpJEeBRxzqA7iLm7HeNgf9zVZhwB\nQ3/VUlSSRHbtDtlzzdm9daQ2lWjUKqxmPZXF1klFAMVWxTtgsmvk/4wTEYrEkBJcsBXE8Qy6sO5r\nwDFjLpJu4sUNT0kFXatPx1a/m5zdH6ZsXr5ghKYuJwDqUJCKlzYQtGbFxUAKKcgyUZKXmo1cQWpI\nM2hxVi1BG/BhbW2UVXO4HHPUPfvRb/kAAFUsRsGH7yqq9wUj7GkdTMXUjjoMG55AW7Ob1nXn46yc\nI7tOo1IxsyQx4UxhtonRrrYdJ59N3We/gqWrjVW//Daq6OF3r+m2e4lEJ+e8c6zjc3kpvPf3RHV6\n6j77FcX12RlGEQMkOCxkmPVkmg3Y5y6i9bTzyGqsZcUdtxA2WeIuXGZlGxYZJr3Y6BUAYDVPLADs\nPGk9+868GEmlJqbT4csvwj5nIfuXraHjpPW0rL+Ixgs+x54rrqP6qptovOBzABS//Izi+YSjMar3\n2Q/79ckbCPPOrm421/Wwq3mAvZ1OOvo9DLgC+IKRhEU5k3XLGaZrzTpiGi0lb7+U8BipJCZJdPZ5\nFdd5/WEA0occcxQLc1IkLtSo1ZQXpo9EK2c1HN44q2FikkR9u4OGdkfir0GBQCALzcMPAdB6hrIY\nq3xbWiqmc9yRm2mka9VpaMJhCra+J7uu74A4+WTj9IbIevRfZDXVse/MixmoWqKo3mTQsmZ+Aauq\nClg8I4dZpZmU5lnIyUzDbNQJUU4CmIfirHoXrwQgb+dmRfUOd/KcF4VjjkAgEAgEAsEURKdRI+n0\nBK1ZGAfkCXMAwpHoQYtUHn+YYCRKwbCrzQQPG/3zlwFxF5z9K06e+ISSRE7NVrz5RfjzCmXPcyL0\nWjWWND2WNB0Wkw6LUYfJmJxb48iKVQDk1G6je/VpSRlzOF5EZMEnhj8YwVRfgzoawT5rgey6+suu\npfj915j9xP30L1QWTZMIJW+/iMHlYM8V1xHTK9uQTU/TM0tkSh+TBJcug/8+ga1up6z4MpcvhCRJ\nqFIcP6N/fiMqSaL5nMuY/sITFG55i7Z15ysao98VYF+36/iONAkGMf/yp0R1Omq+qCzupbwwI+HO\n/TSDlqx0I3Z34JDvVV91E9bmPRRtfosFf/89u778nbEHkiTU4TDaQNylIGi1ETVObhE4GpPoHvBR\nOoWFgoF7/4a5p4uGi79IICdfcX0quzcFgk9SmmfBsS/I7mtvpvj9V9GEgnzw/d/gKa1QNI4KmCnc\nsgRDmIxaDFoNwcg47jcqFR99+xeyx1SHQpS9/hxlbzzPrmu/pch5AOIimdoWOwumZ6f8PmqYve3O\nlAgfit9/ddJuOTAUZ7VkFQUfvYu5ux1vYWkSZ5kcuga8TCtIV+TC6A3EhTmWzlZiGi0+hWsJqXT9\nKrCZaF+wBB4FW/1uepeemLJzTUTXgBeDTiPuOwSCFKHq6yP97dcZnDEPV4V8pzeA/CwRYyWHdJOe\nzpPXw8N/oWjTG3SedKasOk8gjC8QxmRMTnTwgXTVNrPqH3cSMqez+9pvKarVadTMr8g+JOpaMDnM\nafF1l0B2Hq6SCnJ2f4QqEkbSyvj/j8XI/s8TpAX78H/vB8Q0GkLhKKFwLP4xEiMUOfjvZ+WOfV0V\nwhyBQCAQCASCKYheF19o8ttyMfd0ya4LhmOYDnButLviG4LZNdsB6K9aNm79wNxFSCoV2UNCnolI\nb2/G4HKw/4S1suc4GtkZRjJMetJNOsxpupQKXCInLEdSq0f+TZJFMBQVwpwEcftC8aggGOlOlMNA\n1RL65y2haPNbpLc24p42I1VTBGDGxkeQVCqazh0/e/qTGLQa5lfYRNfMMYpqVVzMl71nJ/s+dfmE\nx0djEt5ABEta8heQDkS/Md6NXvv5r5G/9V0KPnwHVTSi2IK5tceNJU1Hbubx2fGX9sD9aNrbaLjk\nKnwF8uOK0tN0lOROzlWiKNs0qjAHtZrNt9zBum9cwewn78fS2YpKiqH1+9AGfPGPPu/I5+oDXHWC\nGZls+b9fyxPPjkNnv4eSXPNh2/hMJh5/mD6HH18gQmm+hQyFzjWDfQ5K/3EXEUMaez5zveLz29IN\nis8pEEyGbKsRi1GHJ6+Qd37+VzShED0nrFE8TmG2WTg9CQ7CatHTm8SO9JheT8fas5j+whPk7vqQ\nviWrFI9hdwdp6nQdlsjF7gEvDm/yOqwPZOaGBwDYc8Xk46eO9jiraEyiq99LWb588YjH/7Ewx1tY\novj+VZ9CYY5KpcJ62knAx7HdR5I+R2rjXASCqYx+w+OoolFa1l+kqM5q0h+R6MVjFd2KE/Dbcinc\n/KbsiHCAXoef8oLkrqs4vSFK//gr9F43277+A4JDbvVyUKtUzCu3Ja1xVPAxBwqwehevZMZzj5K1\ntwb73MXj1mW07GXpH39MbnXczX+vzkbj2ZdOai4iykogEAgEAoFgCjKcmR6w5aLzedAE5C2Yhj7R\n8WgfsnLMqdlGxGjCWTm+20PEnI6zYjbZe3ahCk8cx5IzdOM77LSTCDqNmqoKG9MK0rFlGFMubpEs\n6QTnVmGr3406lLzImWB4nG5Twbi4fGFse4aEOXPkC3MA6i+7BoDZT/4j6fM6kMzGWrLrdrJ/+Vp8\nhSWy69QqFfMqbBj0QrR1rGJaNJ+wyUx23U7ZNc4Ux1mp+vrQb3qP/nlL8OcW0L3yVPQeV8KCwz2t\ngyMbJMcTKreLtN/eTthsURRXpFapmFWaOWnRSrZ17GtaxJzO+7fdRdCaRfGm1yj64A3ydm4mo2Uv\neucgMa0WX24B9tnzRyJD2k49F63fy9offIWqf/whvqiZIIFQlH7nKKKhoxSPP0xzl4stdT18VN9L\na4+bPqefbQ19VO8bGOm8nwhJkoj85a+Y+ntovOhKglk5iucyTcHGo0CQLErz4w5X/QuXJyTK0WnU\nTC86jt3RBAlhtUwcZ6WU1nXnATDt9Y0Jj9HR76GzX3k8khLCkSjNXa6UjJ3ZUENu9Va6T1iLu6xy\n0uONxFm99WISZpcaOvu8sp2HItEYgVAUncuBwe3EnYCjUKqdCqwzpuEtqyCneusRiR09EE8gjD94\nZOcgEByv6B55mJhGS/up5yqqy7MJtxwl5GaZ6Vp1GgaXg+y6HbLr+hzJf151vPwGFS9tYLByLs3n\nKWu6m1liJSs9+fdOAjAfIHbqXRwXduftGDvOShPwM//vv2P9Vy8ht3ornavXETEYmfOvP8reQxkL\nIcwRCAQCgUAgmIIMWzMHhjaMjIP9supC4djI55FoDJc3hM7txNrayMCchbI60frnL0UTCpLVWDvh\nsTnV20ZqEiXHakR9mDv2oytXoQmHyGysSdqYQpiTOG5vCFvDbkKWDDxFyhZmu1afjruknGmvbcQ4\n0JuiGULlxkcBaDz/s4rqZhRbsZpFd/qxjM6gxzl3ERltTeg88jZw3CkW5hheeA5VLEbH2rgNdPfK\nUwDiHWgJEJUkavbZCUdiEx98DJF29x/R2AfYc/l1hKxZsuuKc5PjKqFSqSjMHnvR1l02necffI2N\nD7/J009v4ckXdvP0xu1sfOI9XnjgFV659z+88YdHeOeXf2PTj/7I5u//ltf/8AieghLmPXIvp9xy\nLQa7/LjLT9LR50m49nDg9oVo7nKxuTYuxmnrdeMbZWOq3xngoz291LUOTrhx1d3Rz/SH/kLYZB4R\ndioh02JIyUa2QDAReZlpGCch8p1elKEoZkYwNci0JP8etX/+CfhyCyl552XUocTdaJo6nSPur6mg\nuctFOJqa+56Zz8TdcvZe8sWkjDccZ2XbW4O5uz0pYyabYCRKj90n61hvIH6ttnS1ASh+/oPURlkN\nE15zMjqfl8y9E6+LpJpjSUwtEBwraGprSKvdzf7laxW7puQdp26zqSLDrKf/pHUAFG16XXadNxBO\nagOR0+mj8vYfAbD9xh8qcmsrzbVQmD05R13B2Gg16pGmpr5FKwDI2/HBqMcWbH6Ts64/n7mP3Yc/\nJ593fvpn3v/xXey95CrSBnqZ8cxDk5qLeGISCAQCgUAgmIKoVCp0GjWB7FwAjDI33g50zHF4gsQk\naaQbYaBqiawx+qviIpth0c145FRvJZRuxTWJTsAjEZ8SXbkakPczyiUYEsKcRIhJEoGePtI7W7HP\nmg9qhY9AajX1l34JdSTMzGceTMkctV43Za8/hze/SFFsW1G2maIc8eB+PBBYcgIAtj27ZB2fascc\n/bPxGKthYU7vopVEDEYKt7yV8Jj+UITaFjuSzG7nox1VTw9pf74Lvy2XvRd9QXZdml5LeRLjAgpt\nZsaTnkaNaQRy8omY02UtDDpmVvHqPU/ReeI68nZuZv3XLiFn15aE5ub0hnD7UvtaVYIkSQeJcbY2\n9NHW68YfmrhLXAJ6Bn18uKeXhnbHqGLZSDSG5t6/YBzsZ+/FXySUIV+sNYxwyxEcKVQqFaW5loRq\nrSa92EgQjIrZqBtxak0aajVtp52Lzueh8IM3Ex4mJknUtgzik+mIpgSnJ0i3TBGJUowDvZS9+QKu\nskp6lil3txqL9rVnAVDyzktJGzPZdPTJcznyDm2ypne2AuBJyDEn9dtm0ilx4XvezrE79g8X/c7k\nRc4JBII4hscfBlAcY2XLMByW96DjjtNOI2JIo2jTG4rK+pIYuRn981/Iaqpj31mXyF4jB8jOMArn\nycPAsGtOyJqFY/pscmq2H+R0n9a3n9U/uYm1P/wqaf091F1xPS/dt5H9K08FYM/l1xJMtzLnsfvQ\nuwYTnof47RYIBAKBQCCYoui0avy2IWHOgExhzgGOOXbXcIxVPNpkWHAzEcOxVBOJVoz9PVj2d8TH\nVSqmGEKnUZN5BGxAwyvitpg5Cca+jIZwzEkMrz9MZn01AIOzlcVYDdO6/kICmdlUbnwUrdedzOkB\nUP7Kf9AG/TSfe4XsLGyrWc+MEmvS5yI4QqxcCSA7zsofihCOpOY9QWUfQP/e2wzMWYg/rwiAmMFI\n75LVWFubJtVJPegJpizW4XBj/u2vUPt91HzhRqJp8q3GZ5VmoknwmjYaBr2G7Axj0sYDCFsyeP/W\nP7Hzy/+HwTHIqf/3JeY88leIKe/8l7uJliwkScIfjDDoDtLZ76Wp00l18wBb6np4Z1e3IjHOaMQk\nia4BL1tqe2jqdB70e9je1M3MR+8jZMmg4dKrFY9tNeuFdbngiFKQbVIsolCBuB8RjEtmSuKsLgAm\nF2cFEInF2N1sT+o9VUySaOhwJm28T1K58RHUkXBcFJxEV9hjIc7KGwgzIMPZZTh+0jIkzEkkykp/\nGDbFo2viDRl5OxMTQCcTlzdESKw3CATJIxLB8MRjhNKtdA9t6sslP0vEWCVCdoGNnmUnktGxD0v7\nPtl1yRLmeFo7qbj3t4QsGey+5mbZdRajjrnTsiYdcy2YGLNRN/J576IVaEJBbHt2oIpGmLnhX5x1\n3acoefcV+uYv45U/b6D62puJGj9u9o2Y06n73A3ovW7mPHpfwvMQwhyBQCAQCASCKYpeqyEwJMxJ\nk+mYc+Ci5aB7SJhTvRVJpWJg7iJZY/hzC/DmFZJTuw3GcU7Iqd4KHHsxVgCx4hLChcVk124f92dU\ngnDMSQyXL4ytPu5CYk9QmBPTG2i9/EvofB5mPPtIMqcHkkTlc48S0+rYd/alskqMOg1V5bYj8toW\npAbdiXExn02mMAdS55pjeOF5VNEoHUOd08N0DS0oFm5O3DUHoL3PIzuKQAnRWIw+h5/aFjubqvfT\n1uMmliJ3Hk3TXowP/hN3STktZ18iu64gy5QS4UVKnCpUKho+/SXe/O0D+G25LPjH71lz69fQuRyK\nhulz+FMqLPUFwoeIbzbX9bCzqZ+9HQ7a+zz0uwL4gpGkvh6ikkR7n4fNtb207Hfh9oUw/+0vGFwO\n6j/9JcIW5R2Pwi1HcKTRqNWUKHTNKcpJTjSf4PjFmoI4K1fFLBwVsyj48G107smJYPyhCDX7BpN2\njejo9YwIQ5KNOhig8vn4Rm/rGRckdexjIc4KoL134pjM4VgSy4hjTrni8xwWx5z8fLzlM8ip3oYq\nkprXjOy5IOKsBIJkonv7TbR9vbSdcg4xvfzroE6jJtua3KaLqYLVrKf3pDMAKPpAvmuOLxhJisur\n4bYfoPe6qb76JtnRZXqtmvnTbSIO9jBhMn7sINy7OL4GV7nxUdZ943IW/+VXxLQ6Prz5Z7z5mwdw\nlc8cdYym8z+HN7+IGf95CFNPZ0LzEP/bAoFAIBAIBFMUnVY9IsyRHWU15JjjC0TwhyKowiFs9btx\nVswiYpa/odRftQyDcxBLR8uYx+TUxB11+oYcdhLhSMRYDRNesRKj046lsyUp4wnHnMRwe+OvUUhc\nmAPgu+paoukZzNzwLzSB5Fnd5u7cQkZbEx1rz5T18K5RqaiqsKHXyXPWERwbqHNz8ZZMI7t+l2xX\nEpc3NQv4uuEYq5POPOjr+1ecDEDh5jcnfY76dgeuJCx+HSjGeX/3fmpa7PQ6/AQjUZq7XXxY10t/\nEq2phzH98meoolF2X/NN2bnxOo2ayuLU2FPbMgwYU/SeMFC1lFfu2cD+ZWso2vwW6792CVkyI9dg\nyGGmPzWuOR5/mO17+1MmvpFDJBajZb+bXduamPnkPwhmZNKoINpsmAyTHluSnY8EgkQoyjFTkmOh\nLC+dioIMZhRbmV2aybxyGwunZ7NkRg7LZuWyYk4+q6sKqCwWbjmC8UmFYw5A2+nnoQmHkxK95PAG\nqW9zTDpu0x+M0Lr/YHdNVSQ8afHQMGWvP4fBOUjTuZcf1MGdLNpPPhuAkrePXtcchzc44T2k1x93\nxUvvaiWq0+HLLVB8nsMVI+NZuQZtwIdtyOH1SCLirASC5GF8LB5j1br+QkV1uZlpogFrEkTOPBtJ\npaJo0+uK6vockxMmBt96h6Lnn2JwxlyaPvUZWTVqlYqqimyMennrCYLJc6BjTv+CE5DUasreeoGs\nxjr2nXkxL97/Ai1nXzqua39Mr6f6qpvQhMNUPXBXQvMQwhyBQCAQCASCKUpcmJMDgHGwX1bNsDhk\n0B1/aMlqrEMTCtI/T352LnzsgjPsijMaubu3EtUbGJxZpWjsYY5UjNUw0VWrgeTFWYUisUkvFk9F\nXN4gtvrd+HIKCGTnJTxOdlk+/uu+jNH5/9m77/i66vqP469z7l65M7nJzU6a1XQ3nbRAgVIEmTJU\nRJShgijTAaIICPpTZIiiAoLiBJS9R6EUWlq6d5u2adomaXZyk9zc3Pn7I0lJ24w726T9Ph+PPpTk\nnO85aW/uPed7Pt/3p4X8t/6XmJMLhyl/5lEAKs+/PKJdctNNYmX6cap7ynTUHe0HV/eOxJ2ExByp\nrRXN0g9pKSrHk5F16PmlptNaWEbqhpUouuMrtAiFw2yuaqGpvRu3x0ePLxhxQcVQxTjBQfbv9gXY\ntKeFdTubDq6ejpdyzSq0r7xIc+kkak5aGPF+47LMqJTJKZ6RJCkhqTkpejXjMs0oDpsM9llsLP3F\nn9n09RvQNx7gtFu+xriX/hFxIlxtUxehUGI/v9xdPtbvbMIfjL69VjIU/++vqDvdbLv0GgL66P8t\nRFqOMFqolDLjsswUuFLITTeRlWokw24gzaLDlqLFbNRg0qvRa5VoVArx8EgYkUGrRJnAFo799i44\nB+gtVkmE+lYPm6paCMTxubKzpv2Q6xEp4GfBrVdw9jcWoWuoje8Ew2GKX3yGkELJrvO+Gt9YQ6iZ\n29fO6qP4i50GIwUDqN2tcY8zXGqO1xcg0FfkbqzdS1d6dsStggdK1jXb4Xx97axSNxz7dlZtnb64\nXv+CIPSSOtyo33iNjsxcWkojSxbv57Qeu8WFxwNrQRbNZVNwbFmLuj3yz5uGtjgSfQMBzHfcBsCa\nG34a8WdOSY4Fs0HM7R1NAxNz/MYU9p56Dq3jxvPBA39j1W334zNbIxpn74Iv0lZQQu57L5NStSPq\n8xCFOYIgCIIgCCcolVKmuz8xpznCVlbBEKFwmJa+Nlb2vqKTpihTbfq370/FOZyyqwNz1XaaSycR\nVsV2o3Ks2lj188/sLcyxD/EzRisUDh9MLBIiEwiGCO/fj7a1iZbS2NNyUvRqdBol3m99l6BWR8nz\nTyH54y+KSF+5hNRNq6mdvYCWCIrbtCpF1C0mhLEjXDETAHuE7aw6PL6Ep4Oo33oDKRA4oo1Vv7pZ\np6Dw+3GuWR73sXr8QTZVtbBmRyPLtxzgo/W1fLKxjlXbGtiwq4mt1a3sqm1nf0Mn9a0eGlo9ERXj\nDKats4fV2xvYvrcVXzzpY+EwhnvvAmDDNbdChJ8xNpMWp1Uf+3EjkG7Xx/WZp5AkynKtZKUaqShN\nw2I4rLBVoWDr177LR798Ep/BxNTH7mPWL2+HzroJAAAgAElEQVSD4Mh/n/5giLrmxKXmtHb0sH7X\nsSnKUXi7MdTtw755LZlL36HwlX9S/tdHKHrhb3itjpgelpp0KhFZLwjCcUuSpKS0s+pOc9E4sYK0\nDZ/FX/TSp9ntZV1lU0wthBvbuml2H7rivvQ/j2Pfuh51RzvTHr0nrhbHaes+xbynkv0nL6I7hgSY\nSPhTLAlrZ6Xo9mDbspbCV/7F9Id+xuk3XMKF503n/Ivnxn1/3NTWTXdPYNDv9aflqN2tqDva6czM\njXp8WZKOWmIO83sTKdPWrTg6xxtGKBw+4jUsCEL0NK+8hNzjZc/CCyK+XwTQqhWYk5Qyd6JIMahp\nOOl0pFCIjJWRt+D2+oKxJ/o+/mdMlVupWnRRRPN60LsoI9nzA8KRlAr5kKThlT/+Ne899j+aJs2M\nbiCFgo1X3YIUDjPxqQejP4+o9xAEQRAEQRCOCyqlTFBnwK/To4uwlRVAjy9IW19hjmNL76Rac3l0\niTnu3HH4DKYhC3Mcm9cihcM0lU+LatyBjmUbK4Dg+HKCBmPCEnOg90G2Ri1aGEXKPbCNVXHshTlp\nfauWwnY7nZdfifkvfyL3/Vd7I05jFQwy6S8PEpZlNn7zpoh2yU03IctiZfrxSp7b2+Pavm0d1Wde\nMOL2wXCYrm5/QhOU1K/2trGqmT94EkzdrFMZ/68/kbHiQ2pPOiNhx+3nD4Z6iy2S8EwgDNS1eGhs\n85LjNJKVZoy6kEX1wXuoP1lK7axTIp68UUgSRVnJb/WiUSmwp2hpjLENQWGmGZ2md4pIp1EypchB\nTWMnu2vdhxRANUyby7t/fIG5995IzodvsO+UL0T0WqisaafLG6DAlYJSEfvDrha3l81VLREXZcVK\n11BL0Uv/QNd4AF1LI9rWJrQtTag8Q6/SX/ed22NqLZIj0nIEQTjOmQ3qpDzwrz7tXFI3riLng9fZ\nftm1CRmz0+tnzY5GJhTYIr7GCgRD7Kw5tF2VZecWxv/zT3gc6XRlZOFasYSsJW+y/9SzYzqvohee\nAWDHhV+Paf9I7Tv5LNJXfUzWkrfYfunVEe2jdrdh2bUV666tWHb2/jHV7EEa8FkdVKnoSs8mZd9u\ncha/RnMc9/lhYH9jJ0VZliO+1+XtTUjsT6DsiKEwRxXHdUq0NC4n7XlF2LesRfb5CKmPbXpCU5tX\nPCwWhDhpnvs3AHtPPzeq/cTvXvwkScK76AvwxAO4ln9A9cKR51X6NbZ2kxLl3IrU0ID5gfvxGVPY\neNUtEe2TatGRn5GcFtfCyPRaFd54Fmv1OTBjPg2TZ+JasQTHhpVRFfeIwhxBEARBEIQTlLpvFZjX\nloo2isKcxv6UgnAYx+a1eBxOPGmu6A4uyzSPn0LGZ0vRtDbRY3Uc8u3+gp2miRXRjdvnWLexAkCh\nwDetgpSlH6J2t+JLiSwSczhefxBx+xa5Do8f2/YNALSUxFaYIwFpA4q8At+7kdDf/kLps0/0roCK\nIRodIPf9VzHvqaRq0UW484tH3N6oVZFuExM1x7NQ+USCag22rRsi3sfd5UtYYY7kbkf94Qe0FZTS\nmZk36DYtJRPxmm29q89CoWF7b49WgVCI3XVu6po9FLpScERQxBkKhwm3t2P56R2EJSniSTeAvIyU\ngwUvyeZyGGIqzHGkaHE5jmy/lJlqxJaiZfveNtq6eg5+3etwsuqme1j07fMpeP25iIu0apu7aHF7\nKcmxYo3hM7qxrZut1a0Hk6KkYIAFt3yNHrONZXf9jrAiMX/PSk8XJ99+LSn7dgMQliR6zDa60jPx\n2lLxWh14bQ66B/x/T1omnvTMqI9l1KqOeSGxIAhCslmSlACw/+RFTH3sF+Qsfi1hhTkAPYEg6yqb\nKMuz4jCP/B6950DHwZbPALLPx8xf/xg5GGDVLb+gMyOLRd8+n6mP3U/9tLn4U44sKBmOsWYPrhUf\n0jR+Cq2lk6L+eaJRM/d0pj/ycyY99SCTYlgFDuAzmGicWEFbYSltheNpG1eGO6cAJInzLp2Ha/kH\nrL3hp1ElSRzuQLOHvHTTES2nuroPLcyJJTHnqKXl0PsQua1iDub/VmLbviHm+Y9EaXF7CYZCKMbg\nNb4gjAaKyh2ol39Cw+RZeJzR3RuIwpzEME6ZSIcrh/RVHyP7egipI7sGaWzrpjAz8gU1fn8Q9Y9+\niKqzgzU3/JQeq33EfUw6NaU50V0DCIll0Cpp6UjAQJLEhqtv5YzvX8akJ3/L4kf+E/F1jSjMEQRB\nEARBOEH1T2J1ZuSQsWop6Ss+5MCsU0fc70BLb+9dQ90+tK1N7DvlrJgm1ZomTCfjs6U4Nq+hZt6Z\nh3zPsXEVYVmmuWxK1OPCsW9j1S80ew4s/RD75nXUzVkQ93i+GGLVT2Ruj4+c7RsJSxKtxeUxjWE1\naVAPiDoNuTJpu/AybM//g6yP32H/KV+IekzZ18OEv/2OoErN5ituiGifvAwT0ih4TQtJpFLRPWEy\nlnWrUHR7COpGnphzd/nITE3M4dXvvIXs97F//plDbyTLHJh5MnnvvoR15xZaiyck5uDHQLcvwKY9\nLZgNarRqJcFQiGAwTDAUJhQKEwiGCIZ6/zvs9zHvzu+gqtzOjguviKiYDsBsVJOVemTBS7JYTRp0\naiXdvsHbOwxGrZQpzh56cnCo9Bx3fjFN46eSvvpj9HX78WRkRXQ8rz/I+l1NuOyGqNJzDrR42L63\nlYE5OZmfvHew9dukx3/D+utuj2isYYXDVDx4Jyn7dlN5/uVs+/K36DFbCStV8Y89iBynaE8oCMLx\nz6hXoZAlgqHEpp35TWYOzDiZzGXvk1K1I+LP50gEw2E2V7VQmGketpVsZ7efmsZD09TG/+MPmPdU\nsuuLl1FfcRIAm6/4LpP+8iCTn/gNq269L6pzGffSPwCoTHJaDoAp00nbD3+C9sP38XgDhCL4Nwvo\n9LQVlNA2roy2wjK60rOGnB+om3kyue+/iqVyC20x3p9B779PbZOH3PRDU+e6vL3XQKYxUpgD4Jk1\nD/77DKnrVxzzwpxgOEyruyeiwnVBEAbo7kb7p99jeOS3AFRFma6colej14rH9YlgMWmoP+l0xj3/\nNKnrV1I/Y35E+3n9Qdq7fJgNwy986vEHqdnbSPpPf4DrvZdpHVfGrnMuG3F8rVrBhAKbKHw8xgy6\nxN3Xt5ZOYv+8M8n6+B0yP3n3iGcbQxGvAEEQBEEQhBNU/4TTxqtvJqhSM/PXP0bXUDfifp6+fu6O\nTX2pNuNji6Hub1PVP04/2dfbfqgtv4SAIbYHVqNl9bl/Zm9rGsfm1QkZrycBcZsnEre7G2vlZjqy\nCwgYYmsVMthrKXTLLYRlmbJ/Pw4xtFMZ98q/0DfWUXnB1+hOyxhxe7NBHdFqXWHsC1TMRAqFsFZu\nimj79lj7oA9C/UpvG6v98xcNu11tXwFnxorIe7YfTVLAT+raT5F9kf3dtHf5qG/10NTupbWzB7fH\nR6fXj9cfxB8MEQqFmP7Iz0lfs4zaWaey4Vs/jGhchSwxodBx1AvqMuzRrbQsybYeUnw4lMxUIxWl\naYekHuz64mVI4TAFbz4f9XnWNnexalsDrR09I25b09TFtsOKcgiHKXn+KcKSRGdGNsUvPkPuuy9F\nfR6HK/rf38j+6C0aJ0xn/bd/hNeelrSiHL1GOWquVwRBEJJJlqQRH3TFqvq03lYhuYtfTfjYYWBn\nTTuV+9sID3LNHw6H2bGv7ZDPJ9vWdZQ+9ySd6Vmsv/YHB7++40vfoK2glPy3XyB13YqIz0HV6Sb/\n7RfxpGZQM2/wVqOJoNcomZhvZ1Khg+DNt9L18hv433iLrU88y5Lf/HXYP5/c8xibv3EjNfPOpCsj\ne9hFOzVze1P2Mpe9F/c572/sJBgKHfzvUDh8cK4irlZWR7kwJ3DSPMKSRNr6lUf1uENpak9CT1lB\nOE6FQiH8/34W0+zpmH55Lz6VllU33c3e074Y1ThOq7gnSBRJkuhe2LuAzrV8cVT7NrYOnT7b3RNg\nx742NixZT9GVF5H73ss0l0zi43v+OGKStkalYHKhA00E991CciW6AG7jN28iJCuY+NRDSMHIFkiJ\nwhxBEARBEIQTVP+EU3thGeuuuwNNRzuz778FKeCPaP+D7aZi7A/fUjKRkFKFffPaQ75urdyEwu+j\nacL0mMZVKeSYWmQkQ2B6BWFZxnHYzxirRPTBPVF09wTQVu9C5emKuY2VLEmDPjQNF46j+cxzseze\nRvrK6IoTVJ1uyv79Z3zGFLZFGLlf4Io8TlcY26RZswAOpoCMxOsL4kvA+4LU2YF68Xu0546jI6dg\n2G3rp59ESKEkY8WHcR830cy7t3P69y/j1B99k5NvvxpVpzvuMcv++Rj5b79AS1E5n97x24jaJcmS\nRHmeLWFtxqKRYddHnBjnshuwm7URj63TKJkyzkFRphmFJLF//iJ8JjP5b/0PyR99kVh/es6OfW0E\ngqFBt9lb30Hl/rYjvu7Y+Bm27RupmXs6S+9/HJ8xhekP34V1W+St4I4Yc8NnTHryAbptDj79yYNJ\nK8jpl+sUSWiCIJw4zIbk3J/VzT4Vv95IzuLXe9tsJkFNUxebqlqO+KyqbfbgHlAkrfB2M/M3t0M4\nzGe33U9Q93lqXlipYtUt9xKWZaY//DPknsiKH/Lf+h9Kr4ed5381YS0bB1IpZMZlmqkoTTvimkCp\nkBmfZ6Msx4pCTszn1YGKkwiq1FE/LB2MPxjiQMvnD1E93sDBdpfGmmqCKjXdjvSox1Urj+6DU116\nKm0Fpdi3rEP2jVywPBJlVye6htqY9292ew/+PQqCcKRQOEyL20vNW0tQnHE6rhuvRdVUz7ZLr+bN\nv75F1dmXRpUqLksSaaIwJ6HUJ8/DZzLj+vSDqBbTNbYdWZjT2e1n654WVm6tp+ejpZz23Yux7dhE\n1ZkX8uFvn8HrcA5/LkqZyYX2o9beWhieIcGFOZ3Z+VR94WJM+/eQ99YLEe0jCnMEQRAEQRBOUANX\ngu0+51L2nno2ji3rmPD0wxHtb9+yhoBWT3thSUzHD2m0tBaNx7pzC4puz8GvOzb1pss0TYit4Mdh\n1o6aB11howlfWTnWHZsiTm8YjmhlFbkOT2/yEkBLSWztduwp2iHbrPhuuQ2Asn//Oaob/ZJnn0Td\n0c62L1+LP2Xk3tIOszZpK4yF0SdQMQOIvDAHettZxUv93jvIvp4R03IAAgYjjZMqsO3YhLa5Ie5j\nJ4IU8FP2jz9wxg2XYN25FXdOIakbV3HqrVfEdY6577zEhGd+T5czk4/v/WNE7cUkoDTHgi0l8oKX\nRFIpFTgiKLbRa5QUZqbEdIz+9Byd2cSehRegbWsmM44HbEOl51TVudldN3hxVcnzTwGw/ZKr6MzM\n49PbH0AOBph7z/fRtDRGfQ7a5gZm338LAJ/+5CG89rSox4iGTq0UE/CCIJxQLMbkXM+G1Br2zz8T\nfWPdwfvIZGh2e1lX2URP3/2Yzx+kqvbQz6gJTz+Maf8eKi/8Ok2TZhwxRmvxBCovuAJT7V7G//OP\nIx5TCgYY99LfCWh07D7r4sT8IH1kSSLTYWBmmZOsVOOwRb1Om56KkjRSElBwHNQZaJg6G0vVDvR1\n++Meb39D58E0o67uvgVG4TDG2r10urIhhpYhRzsxx6BT0Th5Jgq/L6p7gKHMvv8WFn3r/EPmWKLh\nD4Zo70xcKqcgHA/6i3G2721l7YfrUV//baZ8/Vwcm1azf95C3n7iNTZec1tMSc02kwbVUS4IPN5Z\nrAbqZ52Cvqkey84tEe/XEwjS3tl7T+ru8rFpdzOrtjdQ39ZN3hvPceoPvoG6vZW1193BqlvvI6Qe\nvuhYpZCZVOhAr03ugg8hcgpZRqtO7O/blq9dT0Cjo/zvv0fhHTp1qZ8ozBEEQRAEQThByZKEqr/o\nQJJYfePddGTmUvr8U2R8+sGw+6rcbZird9FcOimulXtN5dORg4GDBRQwsDAntsSc0dYWIjhrDgq/\nD2vl5rjHEok5kXN7/Nj6khNaSibFNEbqMA9NVVMm0zDvDBxb1uHY+FlE42mb6il+8Rk8DieV539t\nxO0loCAjtgfnwtgUynDhS3dh27Y+4oKvRLSzUh1sYxVZT+y6vnZW6Ss/ivvY8TLv2sbp37uMCc/8\nHq/FxtJf/Jm3//wyO8/7KpaqHZx201cw7quKety01Z9Q8dBP8ZnMLL3vcXpsqRHtNy7TTJo1unZS\nieZyGIb9vixJlOZY4+pvr9MoyUkzsvvsSwEoeO3ZmMeCI9NzdtW0U13fMei2puqduFYsoal8Gi3j\npwJQP2M+G6+6GX1TPXPvuTGqYlgp4Gf2fbega2liw7W30TSxIq6fJRI5TuOoKSIWBEE4GkwGNYok\nve/1twzJfT/x7awG6vT6WbOjkQ6Pj1017QQGJPSkrl9J8YvP4M7KZ+M3bxpyjE1Xfo8up4uS55/C\nvHv7sMdzffI+hoY69iw8P6KC/kjZTFoqSlIpyrJEXISi0yiZUuToTXuL8/g1c04HIHP5+3GOBN2+\nwMHWS53e3sIcdXsr6q4OOl15MY15tAtzlAqZtum9LbBT10fe5mww+voaMj5bisrTiblq+NfXcAZL\njRCEE5XHG2DF5no2ba3B/PsHOePKs8h/50XaCkr58Nd/ZfnPfkeXKyfm8dNsx/be8XgkSxKdZ5wF\ngGv58PPbh6uu72TdzibWVDbS5PYi+X1M/d3dVDx8F369gY9++SQ7L7xixFQkhSwxsdCOUSeKckYb\nQ4ILpbz2NHZc9HV0LY0Uvfj3EbcXhTmCIAiCIAgnsIGTTgGDkeV3PkRQpWbGb24fNv7YvnUdEHuq\nTb/+/Q+ubgyFcGxeS2dGdkyr1UdTG6t+gdlzALD3tf6Kh88fPLgiUBheR1dvYk5QpaI9P/pUJ6Us\n4xgh8aLzezcDUPavP0c0Zvnff4/C18Pmr3+PkGbkRIt0m16srDkBBaZXoGtpQh9hBH3ciTldXWje\nfwd3Vj7uvKKIdqmbdQoArmPYzuqQlJxdW6ladBHvPP4KB2aeDAoFa797Jxu/cSOG+lpOu/mrUbU4\nMu/eztx7byQsS3zy89+P2N6rX67TRGaqMdYfKWEsRg36YaKyc50mUhKQxJVq0eHNH0fD5Jk4132K\nsWZP3GPWNnexfPMB9jV2DrlNyX+fBnrTcgbafsnVfel/a5ny2H0RH3PSEw+Qumk1+045i8qLrozp\nvPUaJRajJqI/DrMWp5iAFwThBCNLEqYkpUA2TJpJtz2NrKVvJySldDg9gSDrKpuoH1C4oPR0MeOB\nOwjLMp/94JfDXucHdQZWf//nyMEAFQ/9FIJDL7wofvEZAHZecEVCzl2vUTKpwM6kQntM9xiyJJGf\nkcKUcQ60qthXm9fNPhUgIe2sAPY19F4zdHUHADDVVAPQmZkb03hHuzAHoGfWXMKyTNq6+Apzct99\n+eD/t+7cGvM4ze2RtVoThONdjy/Ihp2NpL7/Gmddcw4T//oIAa2OVTffw7t/+C+NU2bFNX4k805C\nbJSLFhFSqnB9Gt1nTUuHl7a+1BxNazOn/Ogqxr32H9oKSnjv0edpnDp7xDEUksSkAntCkuaExNPH\n2M5quGuf7ZdeTU+KhdJnn0Dtbh12HFGYIwiCIAiCcAI7fNKpvbCMddfdgaajndn334oU8A+6n2Pz\nWgCax8dZmNO30t3RV7SSUr0Tdac75rSc0dTGqp9/Zu9NW//fWTzCgM8fGnG7E10oHKarvRPL7u20\nFZQRUkd/M+wwa5Hl4V9LhlPn0Th1NulrlmEdkPo0GNPeXeS//QLunEKqF54/4vEVkkSeSMs5IYVm\n9E7u2SKMsu/w+AnFUbCnXvwecnd3b1pOhO+fnZl5dGTl4VyzPOkPwAZzSEqO1c7SX/yZVbfeh984\n4HdGktj21e+w6uZ7UHe6OfUH38D52dIRx9Y1HmDend9G5eli5Q9+FXF6istuIH8U/c667IOn5qTo\n1eQ4E1M8JMsSTpv+89Sc159PyLjB0NCvZ21zA7nvv4o7K5/a2QsO/aYkseqWX9BaWEbhG89R8Np/\nRjxW1pI3exMOcgr57JZfRPw7MJDToqOiJI0p4xwR/ZmQbx+2ZYggCMLxKlntrFAo2LvgHNSdbtI/\nS36aX/Cw665JT/wGQ30N2y67lpayySPuXz9jPtULvoht+0bGvfLPQbexbt+IY/Ma6mbMj7hAeDhO\ni46K0rSEtNo0GzVUlKbhjDGp1mtPo7l0Eo6Nq1G52+I+H7fHR3tnz8FWVsa+wpyOGAtz1MegMEeb\nZqe1sAz7tg0RtcEYVDhM3rsvEe67xrDsir0wpycQpD0B7XIjFQ6HCYbEPIcwuvgDITbsbqbk9/cz\n575b0LY0su2ya3jz6beo+sIloIi/HU66TT/ivJMQmxSXg8Yps7Du3IquoS7q/S2Vmznjhkt6F3Cc\nfBaLH/oXnoysEfeTJYnyfBtm4+haNCp8LpbEnDSLjtnl6UwrSsVlN6A8LH04YDCx9avfQeXppPTf\njw87lijMEQRBEARBOIENthps9zmX9q04X8eEpx8edD/H5jWEZZnmCCYeh+Oz2HBnF/Qm8ASDA9pY\nxVbwc6zbhwwm5MrE78rCvmVtxK1phiPaWY2sq9tPys6tyMEALaUTYxojbZg2Vv1kSaLxut6o+tL/\nDH/jNfGph5BCITZedXNE7d8yU41o4liJKoxd/ukzALBHWJgTCofp7B68iDIS6ldeBGD/yYui2q92\n1qkovR5SN0TWyi0RpICf8X8/NCXn7Sde7U3JGULVFy7hk7seRQqHmPez68l57+Uht1V2dTDvzm+j\nb6pn/TW3sf/UsyM6r1SLjqIsc9Q/TzI5bfojij8UskRZrjWhBawuu56akxbiNdvIe+cFZF9PwsYe\nTNFLf0cO+Nlx8TdgkFZcQa2OZT9/lB6zlal/uA/HxlVDjmWq3smM396JX6dn2c9+R1A3fAuwweQ6\nTZTl2cSEuiAIQgTMhuQ9pOpvZ5Wz+LWkHWMwzlUfU/j6s7TlF7Pl8usj3m/9d35Mj8nMxKcfQV9f\nc8T3+1shVF4YW5LbQFqVgqJsS0KLQpUKmbI8G2U5VvQaJVq1IqI//Q+yauecjhwKkrFySULOZ3ed\nm55A731yf4LfWErMMWhVNE6ehRzw984bxMCxaTXGun3sO/VsgioVljgScwCajmI7qz0HOvhsawP1\nrZ6jdkxBGE4wFGLT7mbU61ZT9OIzdGTl8fYTr7Hx6lsJGBKzyEEhSWQnaMGEcCRZkuhYsBAA16fR\ntbPKXvwap918ObqmA2z85s18+pMHCepGnm+WJYnxedaEFMEKyWOIMjFHp1ZSnN3bUjTFoKY428Kc\nCU7KcqxYBhRg7friV+hyuoYsuu4nCnMEQRAEQRBOYGrlIA/+JYnVN95NR2Yupc8/RcZhNzCSv7dF\nUHtecUJuSJvKp6LydGHeswPHpt7knMYJkSUUDKRSyMlbhRmnwKzZaNtbEtLmo0cU5ozI7fFj60uw\naS2eEPX+amXkLdGMZy2kuXQSWZ+8h6l656Db2DevJXPZ+zSNn0rtnNNGHFOlkBOWaCGMPYFJkwkr\nldi3RVaYA3G0s+ruRv3uW3S6cmgvKI1q17pZpwKQcZTaWfWn5JT//fd4rQ4+uu9xVt16HwGDacR9\n6+acxpL/e4qATs+sX/+Y4uefOmIbye9j7j03Yqnawc5zv8KOw9okDcVq1CS82CURVEqZtMNWso/L\nNKMbpsVVLPRaFSlWE3sWXYjG3Ubmx+8mdPyBlJ4uCl57Fq/VQfUZQyePeZyZLL/zYQiHmXPvTYOu\nkFR2dTL37u+j9Hr47Nb7o04jkCWJshzrqEpJEgRBGO1SDKqkJYa1FZbhzinE9ekHKLs6knKMw6k6\n3VQ8eCchhZKVP/xVVCmdPVY767/9Y5ReD9MeveeQBRza5gayl7xJe24h9dPnxn2exdkWlIrkPAZy\n2vTMLHMye3x6RH+Kc3ofbNXM7b0nylyWmHZWA9NdTLXxtrI6+osjjDoVDVNmApC6fmVMY+S901ts\nv/sLl+DOLcK8Z8eQCciRaDpK7aya2rupru/A6w+ytbqVtTsa42/VKwhxCIXDbNnTirvDw/Tf/Rwp\nHGbVTXfT5cpJ6HFcDoNYjJVs5/QW7Q5XmCMF/OgaD2DdsYmMTz9gyh/uY/avfkBIqeLjex5j21e+\nFVGqqgSU5lhwmGNLkxOOHr1WSaRXo/0JSIdfRylkGadNz5RxDmaVOclLN6E26Nh05Y0o/MN/9orC\nHEEQBEEQhBPYUKvBAgYjy+98mKBKzczf3I6uofbg96w7t6Dw9dBUPjUh59DftsqxaQ2pm1bjNdvo\nzMqLepzR2MaqXyCB7ax6fKIwZyQdXT5s2zcA0FIyKer9Uy26iF9LOq2K/VfdAEDZYKk54TAT//Jb\nADZcc2tEN/Q5TlPSJs+FMUCnw18+EcvOLRG3iYp18lr9wfsoPJ6o2lj1a5owDb/e2FuYk4A0sKHo\nGmqZ8of7DkvJeYX6GfOjGqe5fBofPPgPPA4nk5/4DZP+/H/QH5kfDlPx8F041y6ndvYC1l7/k4j+\nPkw6FeX5tlHblijD8XkCjMOsJWOI9lbxcjk+b2dVGEH7qFjlv/E86q4OKs+/nJB6+OLJxskzWXfd\n7Wjbmjnp5zcg9wx4uBQOM+O3PyFlfxXbv/QNaqJMi1IpZCYV2nHaRl9KnyAIwmimkGVM+ujbB0RE\nkqg+7Yso/D6yklgkOtCUx+5H31TPlsuvo72wLOr9qxeeT/3UOWSs/IjsD984+PXCV/6FHAxQeeHX\nY2qxOJDLbhhVK/cdKVpUCpmOnEI6XDmkr/o44Wl7xpq9BNUauu1pUe8rS9IxSczRaZS0TqwgJCtI\ni6EwR9HtIeujt+hyumicNIPWcWUo/H5M+6piPqduXyCuVM6IjtETYFv1oe3M2j0+1lQ2srW6Vcx9\nCMfE9r1tNLu9FL7yL6w7t7Jn4QU0TRONr54AACAASURBVJqZ0GMoZEksxjoKTGXjaCssJW3dCor/\n+zQTn/gNM379I+b/+GrO/NZ5nHfJXC4+exJfvHwBZ9xwCfN+dj1FL/8Dd1Y+7z36HAf6FiNFojjb\nMipT3IUjKWQZrTqyBUuFmWaMuuGvXXUaJXnpKcwuT8d67TfoLBr+mlDM9gqCIAiCIJzAhpt0ai8s\nZe31P0Hd0c6c+245uNqqv7ikqTy2dlOH6x8n54PX0DfW9baximECcjTfAPn7C3P6WnXFQyTmjMzt\n6U118uuNdMRQ5BXta0l13rm05xWR/cEbGOr2HfK9jE8/JHXTamrmnEZzXxHacLQqBZmO5Dw8F8aO\nYMUMFH4/ll2RRdDHXJjzyksA7J8fXWECQFip4kDFPIwH9mPatzum4w/HtHc3FQ/cwdlXLqLo5X/Q\n7XBGlZIzGHdeEYsf/hfunEJK/vdXZv76x0h+H+P//gfy3n2JlpKJfHr7A6AYeeWiXqNkUqF9VBfR\nmQ1qjFoVaqVMSV/0cjI4LDp82XkcmDaX1E2rh0wPi4cU8FP84jMENDp2f/GyiPbZdd5XqVp0Edad\nW6h46GcHC8iK//dXsj5+h8aJFWy8+paozkOnVjK1KPWQyGpBEAQhckltZ7Wgr53V+68m7Rj9XMve\nJ++9l2kpnsC2L18b2yCSxOobf05Ao2XKY/ejdrci93gpfP1ZelIsVJ9+XlznqFMrKcwcXclusiyR\natGBJFE79wyUXg9pa5cn7gDhMMbaajpdOYO2vByJUnHsiq21diutReXYtm9E0d0V1b5ZH7+DqtvD\nnoUXgCzTNq73oaB155a4zqmpPXntrIKhEJurWgj0F8ofpr7Vw8qt9ew54CY4xDaCkGg7a9qpb/Wg\nbapnwl8focdkZv21P0j4cTIdxmOSznWikSWJ9gWLkAN+Jj/+a0qff4q8914hfc0ydE319KRYaZg8\ni70LzmHHRVey/prbWPGjX/P+o8/RmZ0f8XGKMs1JWwQjJEck7azSLLqo52etZh3+h3437DaJzTAW\nBEEQBEEQxpSRVoNVnX0JaRtWkvPB60x86mE2fOsH2Df3tptqTlBiTpcrB6/VgWPLOgCaykcuXjjc\naG5jBRAcX05YqUzIw2tRmDO8QDCEv7kF0/491E+dHfWErFatwGyI7rVkt+rZefl1TL/vFkqe/wtr\nvv/z3m8Eg0x86reEZZlN37wporHyMlKQ5dGZviEcPf7pM9D95XFs29bTUjZ5xO29/iA9/mB0Udg9\nPajffoMuZyatReUxnWfdrFPI/ugtMj79kI6cwpjGOJylcjOl/3mCrI/fQQqHcWcXsO3L17J3wTmE\nlZGtsreZNITCvatwD3/P7E5z8cGDf+ekn11P7uJXMVdtx1K1g870LD6+57GIesdrlAomFtjHxGRq\nhsOAVqVI6rnKkkS6Xc/ucy4jfc0yCl9/jnXX35HQY2R/+Cb6xjoqz/8avhRrZDtJEmu+dxcpe3eR\nu/hV2saV0VJczsQnf0u3LZXlP3kw4tcU9BY6Tci3jYl/d0EQhNHKYlSztyE5Y3sysmgqn0ba+hVo\nm+rxOpxJOY66vZXpD99FUKVm5Q9+GdVnyeG6XDlsvuIGJj/5AJMe/w3N5VPRuNvY+pVvE9LEnnQj\nASU5FhQxFKckW7pNT21zFzVzT6Pkv0+RuWxxVKkEw9G0NaPydNERYxurQVt9HyUGnYrGKTOxb9+A\nY/Na6ivmRbxv3ju9xfb9rT7bCscDYNm5leqFF8R8Tk1tXvLSk1PctWNfO53e4RN5guEwew50cKDZ\nQ74rBecoXowljH176zvY39gJwJQ//hJVt4fPbr4Xn8WW0OMoZZnsNJGWc7R0f/dGVlrT8esMeO2p\neK2peG2OERNYI1WQkUJmqvj3HGv0WhW4h27ZqNcoKY5xcVNg5qxhvz/6rswEQRAEQRCEo2bEiSdJ\nYvWNd9ORmUvJf58iY/kHODavxeNw4klzJeYkJOmQtlhNE6JP4hnNbawAUCgIZrjQN9TFPZSIcx6e\nu8uHdccmILY2VmmW6Cf7ZEkieNFFdLpyyHv7BbTNvU8b8t57GXP1LvYsvAB3XtGI4xi1KpxW0Y9a\n6C3MAbBvXR/xPlurW3F7Ik/OUS9ZjKKrszctJ8b3z7oZJxOWJFwrPoxp/4EcG1cx745vsfC7F5O9\n9G1ax41n2c8e4e0nXqV64QURPfTSKBVMyLcxqdDBlHEO5pSnM39SBhUlaUzIs1GQkUKGTY/elc6K\n3/6N2lmnYqnaQY/JzNL7HqfH6hjxGCqFzMRCOzrN2Fjn5LLrsZuT38LCZTdQO2cB3TYHue+9jMKb\nwBXW4TAl/32KsCyz46Iro9o1pFaz7Ge/o9uWyqQnH2Du3d8HSWL5nQ/RY0uNeBynRcfkQocoyhEE\nQYhTikGd1BaQ1ad9ESkcJmdAa6iECoWY/shdaNua2fSNG+nIHRf3kJVfupLWcWXkv/MiE55+hJBC\nyc5zvxLXmJmpxlGb7pZiUGPQqmgum4LXbCNjxQeftxeNk7GmGoDOGAtzlMegjVU/g05Fw+Teh3lp\n61dEvJ/+QA1p61fQOLGCLlcOAG0FxYQlKeL0zaF0ev109wTiGmMwNU1d1Ld6It7e6w+ytbqVNTsa\nY04KFYTh1DV3sbvODUD6yiVkL32bpvJp7Fl0UcKPlZVmOCYt805U1gw7+xddSO28hbSUTcGTnhlX\nUY5KIeNI0VKQkcK0olRynLGl+QrHlkE39HyOLEmMz7MlLR1Z/PYLgiAIgiCcwCK5GQzoDSy/82GC\nKjWzf3kb2rbm3vZTCZxQ7W9nFdDoDsYuR2M0t7HqF8rMQtfSiBSMb2JLJOYMr9ntxbZ9IwAtxROi\n3j8txsKYDGcK2y+9GoXfT/H//orc46X8b48SVGvYfMUNEY2Rn5EyugvMhKMmlJdP0O4gbf3KiAsc\n2jp7WLOjkU1VzXSNsPoUQHWwjdWZMZ+nz2KjuWwy9s1rUbnboh8gHCZ95UecesvXWHDrFWSsWkrD\n5Jl8dP+TvP/756mZd2bEqVdOq56K0jQc5kN/hxWyjFGnwmHRkeM0UZJjZco4BzOn5yP/77803/t/\nHPjPy+SfXMH4XCsl2RbGZZrJT08hJ81EpsNAulVPqlmHzaRhQr5txB7jo8nRek/RaZRYrUaqFn0J\ndaebrI/eStjYztXLsOzezr75i/BkZEW9v9eexrK7HiWkUKDpaGfDtbdF1FqwX166ibI8m0gzEwRB\nSAClQsagTd7n6P6TzyKkUJKzOAntrEIhKh76KVkfv0vjhOlRF4sOJaxQsuqmewnLMtq2ZvadfFZc\naT96jZKCjNHVwupwTqsOFArqZp+KrqUJ2/YNCRnXFGdhjvoYPiw36lQ0lU8lpFCSum5lxPvlvtd7\nTb/nzAsPfi2oM9CZmYtl17aDrTxj1dQ+dKJALNxdPnbVtMe2r8fHmspGmhN8TsKJramtmx37eu9l\nFd5upj16LyGFktXfvyumlnjDUSlkskS6ylElyxKZDiN6jRJlDP+eGpUCp0VHUZaFipI0TpqYwYQC\nOzlOEylRpm0Lo8dw16KFmeakzvmMjSVegiAIgiAIQlJEukqjvbCUtdf/hIpH7gKguTz6VJvhNPU9\nIGsumxx1FPhob2PVL5SZhRQKoW1uoDuOtCGfP0goHE7qStOxyusLUNfsIXdbX2FOaXSJOUatKuab\nL61aifuiy/D84zEKX3uWsEKBvukA2y69mu60jBH3txg0RyXVQhgjJImer16B/tGHKH32CTZf+f2I\nd21q99Lc7iXNqicv3TR4sovPh+atN/CkZkT9e3K4upmn4NiyjvTVn7BvwTkR75e+cgkTnn4Ea99K\n3tpZp7Lty9+Kuk2iRqmgKNt8REFOJBRqNaFvX4ceGP3lnaNfht1A1dmXUPafxyl8/VmqBzwgikfJ\n838BYPslV8c8RkvZZD6+90+Y9lWx67yvRrSPLEmUZFtw2sSrQxAEIZEsRjUd3clJvfCZrRyomIdr\nxYeY9u5KWKvN/qKc/LdfoKWonE/u/gMoEpei1lZczvZLr6H4v0+z4+JvxDyOBJTmWEd9ManTpqeq\nzk3tnNPIf/sFXMsW01I2Je5x+xNzYm1ldSxTLAxaJUGdgZaSCdi2bUTZ1UnAMMID/FCIvHdeIqDV\ns+/kRYd8q7WwjJwlb2I4sJ+ujOyYz6uprTthbXf8gSBb9rQQirtYqFvcOwsJ0dbZw5bqVvpfkWX/\n+hOG+hq2XXo17vzihB8vO82YtBQOYWgFrhQKXL0Fq8FQCJ8/hC8Qwu8P0hMI4fMHe/8EQgQCIfRa\nJRajhhSDeswk5QrR0WuUSMDhn0ZpFh2ZDkNSjy3eAQRBEARBEE5g0Uw8VZ19CdWnnUtYlqmfNifu\nYytkCaNWRapFR8q82Ry47mZ2X3NT1OOkWnRjImUklNm7yj/edlZheotzhCPtre8kFAph276ebnta\n1CtNY03L6ZeeYWXHxd9E6fVQ+uyT+IwpbLvs2oj27Z8kEIR+XTf/gEB6BiXP/QVD30OGSIWB+lYP\nn21rYMe+tiOStlQfL0Hhbmf/vIVxp5/VzToVgIwVSyLaXuVuY+b//ZD5d34HS9V29i44h3f+9BKf\n3PvHqItyhkrJEY4Nu1lLMDOHAzPmY9+6HvOubXGPadm5Befa5TRMnkVbcXlcYzVMm8uu8y+P6DUv\nSxITC+yiKEcQBCEJzHEsqohkccLe074IQM77CUrNOawo56Nf/QW/yZyQoSV6C/SLMs0YH/gVDRt2\noJ05I+bxstPGxgp+jUqB1aSlftpcAhotmcsXJ2Tcz1tZ5cW0/4itvpNIqZDRqZU0Tp6FHAri2Lx6\nxH0cm1ZjPLCf/fPPJKg79EFifxKxZWd87azaPb6EpPaGw2G27GnFm4CxWtw9cY8hCJ3dfjbt/rxQ\nLGVPJSXPP0WX08WWy69P+PFUCpnM1OQ+8BdGppBldBolZoMaR18RRn5GCiU5ViYW2JlanEpJjhWn\nTS+Kco5jsiwd8e+r1ygpzrYk/9hJP4IgCIIgCIIwasmSFHmUpySx8oe/4o2/vRPxykOF9HnxTa7T\nREm2hanjHMwpT2f+JBcVpWmU59nIz7SguPtu8i8+K+rK9FTL2HggG3RlAqBvPBD3WD3+UNxjHG+6\newIcaPGga6pH19JES8nEqMeI97VkT9FSc96X6UnpvZHb+uVvRTRpn2rWjYkJdOEoMxrx3PtLFH4f\nUx+7L6YY+lA4TG1zFyu31LOrph1/oHciXN3fxuqwlbWxaC8oweNIJ/2zj0Zs1ZexfDGLvnUuue+/\nSkvJRN7544usuP0B2gtKojqmRqlgYr6dslzrMV3ZLBxKliTS7Xp2nfNlAApefzbuMYuffxqA7Zdc\nFfdY0SjKMmM1aY7qMQVBEE4UFqOGWMqCbSYNs8Y7cY7Qxrh2zmn4dXpyF78WdxufZBTlDCzGmV2e\nzpQiB5mpRjRqJQqHndJcK+NzrVG33DBqVeRlmOI6t6Mp3a4nqNVRP20uKXt3YazZE/eYxtq9BDQ6\nvLbUmPZXHuPrSqNORcPkmQCkRdDOKu/dI9tY9WsrHA/0FjnHKxHtrKrqOmjtTExBTU8gSIcnOalb\nwokhGAqxcVczgVDf3FooxLTf3Y0cDLD2u3cS1CW+OD/HaUKR4NZYgiDETq/9vDBHliTG59mOSqKV\neBcQBEEQBEE4walVUVwSyjIeZ2bEm+emmz4vvslIIcNuwGzUoFENvhJNIcsUZVmYmG9HFcHF8Fhp\nYwUQyupPzKmNe6we3/APv09E1Qc6CIXDWLf3tbEqia49j1kff0StJEmkZTlYd90d7Ju/iJ3nXz7i\nMcfnWinLs8Z1XOH41XPehXTOmU/GZ0txxbGSOBgOs6+xkxVbGqje14z69dfotqXSnICWAUgSdbNP\nQdPRjm3r+kE36U/JmXfXd1F3tLPh6ltY/PC/YooHT+9LyRHx9aNThl1P/cz5eBzp5C5+FUV3V8xj\n6etryF7yJu15RRyYMT+BZzm87DQjGXaxmlUQBCFZlAoZgza69rF6jZLxeTY0KgVluVYmFzrQD3Ht\nHtTqqDlpIYb6Goqff2rEwuEhJbAoZ8hinCHui9OseipKUzFHWLwvSxKludYx1e7YkaJFpZCpnXMa\nAK5lcabmhMOYaqrpzMyJORFSPQoKc5rHTyWkVJG6fsWw2yq6u8he8hZdzkwaJ1Yc8f3WvsSc/rax\n8Whu745r/6b2bvY2dMR9HgOJ1BwhHg2t3fQEPk9vynv3JVI3rWb/SWdQN3tBwo+nUSpwOUQSpyCM\nJgOvRcdlmjHqors2jZUozBEEQRAEQTjBRVIAE6toJ1z72c1aZpSmYTMN/+B1rLSxAgi6+gpzRGJO\nwnm8fupbPQDYDhbmTIhqjHjbWPXLsBnYd/q5fPrThwlpjnz9ypJEulXP9OJUphankmbVj6kJdOEo\nkyS8v3mQkFLFlD/ej8Ib36R4IBTC+9qbKNtb2T//TEjQir3avnZWrhUfHvG9w1Ny3n3sBbZfdi1h\nRXSFcP0pOaUiJWdU06qVWK1Gdp99MSpPFzkfvB7zWEUvPIMcCrL94qvibrkWKYdZS0GGaC0oCIKQ\nbBZj5KlkKoXMxAL7IauYrSYNFSVp5KWbBr2Wrrzo6/j1BiY/+QALv3MBzlWfRHeCCSzKKXRFVoxz\nOK1ayZRxDvLTU0a8X8h1mo7aA6VEkWWJVIuO2tkLCMsymcvej2s8bUsjSq+HTlduzGMc68Icg1ZJ\nUKujuXQS1l1bUXW6h9w26+N3UXo97Fl4waDX9D6LDY/DGXcrK4C2Th+BYGxzEN09AbZVt8V9Dodr\ndsef4iOcuOqaPQf/v7q9lUlP/IaAVs+66+5IyvFynEaRliMIo0x/Yo7TosMVZXp/PMQ7gSAIgiAI\nwglOFU1iTpQGxkJGS61SMKnQzrhM85ATkWOljRV8npijS0Rhji/+vuzHk+oDHfSH1PcX5rQWR16Y\nI5G415JGrRg0yUOjVJCfnsKccieluVZM+rGR9CQce+HiEuq/fi2G+lpKn30irrH0B2qoePBOQrKC\nPQuPjLyPVePkWQTVGjJWLDn4NZW7jZm/OjIlpyN3XNTjmw1qKkpTRUrOGJFh11N11sWEZAUFrz8X\n0xiqjnYK3vwvHoeTvQvOTvAZDs6oVVGWax0zBb+CIAhjmTnC1FNZkijPtw2abCnLEnnpKVSUpGE9\nrNCnbdx43nz6LXadfSkpe3dz8h3XcNJPv4NxX9XIBx1YlFM8Ia6iHJ1aSXZa5MU4h5Mkidx0E1PG\nOdCpB7+3NunUZDuNMY1/rKXb9fgsNprGT8W+ZS2a1uaYxzLWVAPQkRl7Yc6xLv429BVXNUyZhRQK\n4di4esht897pbWNVvfD8IbdpKyxD19KIprUprvMKhcM0x9DOKhgKsbmq5fN2QQnU4fEdbNMrCNHo\n7PbjHtAKbdKTD6Bxt7Hp69+jOy0j4cfTqhQijVMQRiGDVoVeo6Qo23JUjysKcwRBEARBEE5wyUrM\nkSUJrTq2CciBslKNTCtOPSJ9Zyy1sQIImy2E9Ab0DXVxj9XjFxNQ/Tq7/TS09aWIhELYdmzEnZWP\n3xh54oHVpEEd42T5YFwDJl3621XNKneSm25CpUzccYQTR+jHt+NJTafkuScx9D10iJayq5N5P7sO\nbXsL666/nbbi8oSdX1Cro37qbMx7KtEfqMG17H3OuvZcchfHl5ID4LTqmTzOIX53xhB7ipZwhou6\n2adiq9yMdcemqMcoeP05lF4PlRdcQViV/M96jVLBhAKbWMkqCIJwlER6H1eUZR4xXUevVTJ5nIOy\nXOshiSc9Vgdrbrqbdx97gYbJM3GtWMKib53H5D/ej8o9RILH4UU5v3wy5qIcAFtK5MlAw0kxqJle\nkkq69dBWKL0trCxjNoEzRa/GoFVRO+c0pHCYjEHSFyPVX5jTOYYLc3QaJUpZpnHSTADShmhnpT9Q\nQ9r6FTRMmkFXRvaQ47X1tbOy7NoW97k1xtDOase+djq9/riPPZgwop2VEJu65s9b7To2riL/7Rdo\nKyhl54VfS8rxcpwmZHlsvkcLwvGsv02qMomdBAYjZhwEQRAEQRBOcMl62KnXKBO26tyoUzG9OJXM\nAdGSY6mNFQCSRNCVib5RFOYk0sC0HNP+KlSeLlpKJ0Y1Rpo1sb2+rSYN2alG0a5KSBi1xcyem3+K\nwu9n6mP3QTg88k4DBYPM/uWtmPdUUnn+5ew67/KEn2NdXzur+Xd+m5N+fgOqzvhScgDy0k2U5VrF\n788YI0kSGXY9u865DICC15+Nan/Z56PopWfw6w3sPufSZJziocfrS2PQDpFEIAiCICSeSqkYse1x\ndpoxqpQBp1XPzDInLruBgVcO7YWlLPn1X/nkrkfxOF0Uv/h3vvDNsyh8+Z9IgQFFAwkuygFGbM0c\nDaVCpjTXyvhcK8q+QtK8dFPM7aNHC6dVR+3c0wBwLV8c8zim2vgKcySSNzcSDYNOSfP4KQRValLX\nrxx0m9z3etNy9pw5fAJma2FfYU4C2lm1unsIDpN8Ew6HD7aY3lXbzrqdTQfbTSeLaGclRCsYClHf\n0ltkJvl9TPvdzwlLEqtv/HlMi0hGolUrSLcndr5JEITEkGXpmLQBFYU5giAIgiAIJ7hk9VGPp43V\nYGRZoijLwsR8O2qlPKbaWPULZ2Whcbeh8Ea/2mwg0cqqV4fHd8jKvbR1vSsKW0onRzyGLEk4Etwe\nR5IkCjPNol2VkFCaL19K/dQ5ZHy2NOqHFpMf/zUZKz/iQMU81n/nx0k5v7qZpwCQsncXzSWT4krJ\nkSWJshwreemRJ18Jo0uGzUDD9JPocmaSs/h1lF0dEe+bs/hVdC1N7D77UgIGUxLPsldpjoUUg3i/\nFgRBONrMw7z3OsxaCjKivw5QKmSKsy1MLUrFOLBgRZKoPekM3n78VdZf+wPkYJBpf/gFZ37nQpyr\nPk5KUY4sSVhMif98SbPqqShNJSvVSHba2GxhNZDTpqcrMw93TiHONctivlc21uwFYm9ldazTcvoZ\ndSpCag3N46dg2b3tyHSnUIi8d14ioNWzf/6Zw47VNm48ANZdW+I+r2A4TGtfQk0oFMbt8VHb1MWO\nfW2s2dHIxxvqWLmtga3Vrexr6KStM/lpNq0dPYSjXbAgnNAa27wHW6sV/+9vmKt3sfucS2kpi3wO\nKRp56SlikYkgCIcYHVcbgiAIgiAIwjGjUo2Nwpx+drOWipK0MdXGql8wMwsAXeOBuMbxBYKExAQU\new4c+qDXtex9AGpnL4h4DHuK9qjHlgpCLFKMGipvu5uQUsWUP94f8UOL/Nefo/jFZ3DnFLL8Jw8m\nZSUgQHdaBuu+82PWXv8TPnj4nzGn5KgUMpML7ThtYmXhWKZRK7Bb9ew++1KUPd3kvv/qsNvLPh+m\nvbvJWP4Bpc89SUihpPKCK5J+nnnppoSnpgmCIAiRGep+zqhVUZZrjSsdtb/1U0m25ZCFKCG1mh2X\nXMWbT7/FrrMvxbS/ipPvuJazrvpCQotyoPfnS1aLRK1aybhM89hKkB2CRqXAlqKlZs5pKHu8ONcs\ni2kcY201fp2eHqsjpv3VoyAtBzi4er9h8kykcJjUDZ8d8n3HplUYD+xn//wzCeqGT5TyOF34TOaE\nJOYA7K5zs2pbAx9vrGPNjkZ27G+jtrkLt8dH8BjMT/iDIdxdvqN+XGHs6m9jpa/bz/h/PobXYmfj\nN29OyrH0GiVO69hbUCgIQnKJnF5BEARBEIQTnCpJRQn6JEZqq1WjY9IsWqG+whx9Yx2d2fkxjxMG\nfP7gCd12w93lOyS6WtXRTtr6lbQUldOdlhHxOGliokQYQywVk9jxpSspffZJSv/zOJu/ceOw26eu\n/ZRpv7+XnhQLH9/7x6Snj1RedGVc++s1SiYW2NFpTtz3tuOJy25g+6ILKX/mUQpef5aqsy7GcGA/\nxppqjLXVff+7F1NNNfrGOqQB7RGqFl0U1Xt5LJwWnUhlEgRBOIbMRs0RX9MoFUwosCWkoKW3taKB\nVIuO6voOahq7Di5u6LHaWXPT3ew69ytM+dOvSFu/IqFFOZDYNlbHO6dNT+3c0yh79glcyxdTO/f0\n6AYIhzHW7KUjKw9iLFZSjpLEnP7WZI2TZwG/J239SmrnLTz4/bx3ImtjBYAk0VZQStr6FSg9XQT0\nkbeGG4ynJxDX/snQ7O4Z9L1EEA7X5fXT3lfINfnx/0PZ42X1Tfck7D3/cLnppuOieFIQhMQSs12C\nIAiCIAgnuGRFNuvFg9Uj9Cfm6Bvq4h6rxze6CnPcXT4a2ropdKUclcmHPQfch/x3xsqPkIMBak46\nI+IxlLKMPUVMmAtjR6pFx6qvf5ec91+j5Pm/sGfhBXQNEddv3F/F3HtvBEli2V2P0pWRfZTPNjoW\ng4byfNuoaSMgxM9q0iClp1Nz0hlkf/QWF507BWmQ1dTdtlSayqfR6cqhIzOPzqzcqJLPYpGiV1OS\nY03qMQRBEIThaVQKdGol3b7eh/2yJFGeb0v4PY5SIVPoMuOyG9hd6z6kFW57YSlLfv00lsotdOQU\nENQmrmjfliKKBSLlSNFSOX4K3TYHGZ9+CMEgKCJfjKNtbkDZ001njG2sYPS0sjLolEhAS8kkgmoN\nqRtWHvyeoruL7I/epsuZSePEiojGayvsLcwx795G84TpSTrrY6fF7aXAJQqthZHVNXsA0DbVk7l8\nMS3FE9h72heTciyDVkWaRSwCEwThSKNnJl8QBEEQBEE4JpIR2SwhCnMGE3JlAqCPs5UVQI8/GPcY\nidTa0cP+xk68PQHK8qxJi20HaO/soaXj0J71B9tYRbG60p6iQZbFCiZh7JAlibTsVNZ958fM/cVN\nTH3sPj7+xZ+PWBmscrcx76fXoe50s/K2X9IU4cT9seK06inJsSCLFYXHFUmScNkNbLvsGsx7Kukx\nWz8vvnHl0JmZS6cre8Q2DImmrcA8MAAAIABJREFUVSmYkG8T7/+CIAijgMWoprultzCnNMdCiiF5\n7Yp1GiXl+TZaO3rYVdNOp9ff+w1Joq24PKHH0qoVSU2QPd7IskSqzUDdrAUUvPk89q3roioiMdVU\nA8RVmKMeJYU5CllGp1HiAZrKp+Jc+ynqthZ8FhtZS99F6fWw/eJvQoT3263jygCw7tx6XBbmdHr9\neH2BUbVoSRh9QqEw9S29hTk5i19DCoWoWnRRzAlbI8kTaTmCIAwhok/v9evXc8UVR/b2Xrx4MV/6\n0pe47LLLeO655wDw+XzceuutXHrppVx11VXs2bMHgK1bt/LVr36VK664gquvvpqmpqbE/RSCIAiC\nIAhCzFSqxE9AadVK8cBrEKGs/sSc2rjH8vpGWWFOZ2+hTJPby7rKpqQWDlXVdRzy33KPl4zPltLh\nysGdOy7icexmkZYjjD0ZdgN1Jy/iwLS5ZHy29GBRWj8p4GfuvTdhqqlm22XXUH3mBXEdz2xQk2bR\nYU/RYjFoMOlU6DVKNCoFSlkm3nf6vHQTZblWUZRznEq36XEXT+DtJ1/jw9/+nVW3/j97dx4fV1nv\nD/xzzpl9n8k6mexp0qYbbaF0ZWkBAUHRC4jg9brggtcrelUQF/QKsqmAuCII6k8UBERZZJWCbIVS\nWrovadJm3zNLttnOmd8faUPTTJJzZibJ0H7er1dfr2bmnOc8SZr0zDPf5/u5Cfs+/nm0nn4uglXz\nZrwoRxIFLKzMed9GYhIRHW+ORNCUF9qR77bMyDXddiNOnpuHuSWuaSvGYIyVdoU5FrSuGdlk4Tvm\n/nYqttZDAID+tApzsufewGoeKerqOmkFACBv+9sAgPIX/g4AOHSO+vv7QNVIYY6rfk8mp5hVekOR\nqQ+iE1p3cBgxWQESCZS/8A/Iej2azzh/Wq5lN+uRx245RDSBKctI7733XjzxxBMwm8f+IonFYrjl\nllvw6KOPwmw24/LLL8f69evx7LPPwmKx4OGHH0ZDQwNuvPFG3Hfffbjppptw/fXXo7a2Fg899BDu\nvfdefPvb3562T4yIiIiI1BEFATpRRFxRMjam1cTdSsnI3pGOOeYMdMyJxjL3/UqXoiQQOpzVDQD9\nwzFs2d+NRZU5sJkzu1PU3x9BYHDswlvB1o3QhYdGYqxUvrkvCgI8jLGi9yGjXkKey4ytX/4ezv3i\nRVhy9y3oPHnNSPRCIoFlv7gR+dveQuvqs7DjM/+b8nUkURiJfcidunBCVhQoSgJxOQFZOfxHVpL/\n/aiPc5wmFMzQm3A0Owx6CTlOE7oDw1MfPM3MBh3m+JwZ/3+JiIhS57KNFACXF85sFI0gCPDmWJHn\nMqOpcwAt3QNQksQtpooxVto5LAbUrTgNcZMFRW+8iO2fv0b1aztbWxOA9Drm6LKkYw4A2Ex6dGMY\n3YcLc/K3vQV/9QLkb9uErpNOxZC3WPVY/aWVkA1GuA4cv4U5faEwfCpes9CJ60iMlevAbjgbD6Bl\n7QcQc7gyfh2LUYd5ZYzLJaKJTfmOSWlpKX7xi1/g2muvHfN4fX09SktL4XQ6AQAnn3wy3n77bRw4\ncACnn346AKCyshL19fUAgDvuuAP5+fkAAFmWYTTy5pSIiIgoW5gMEgbCmSv0YNvuCVgskD05GYmy\nCsfiGZhQZgQHo+MWsiMxGVvrujG/zJPRzjSH2kPjHnsvxups1eM4rAbopOxZfCXSwpdvw5aSCuy7\n+NOo/eu9mPfQPdj16a+i+rE/ovKZR+CfU4u3vvVj1S3uj+WxG1FT4lLdEl4SRUgioGdNJiVRlGOd\nlcIcURDgshngcZjgsZtgYdEwEVHWMRlm901MnSSissiBXKcJW+q6MzLmyP8/fO8jFXmFLnScshbF\nrz0Pe1M9+lV2Q7UdibIqKk352vpsKsw5XETcN3ch4kYz8rdtQsSVAwA4dM5HNY2VkHQIVtTAVb8X\nQiyKhH764uJmS6A/AkVJsGszJTUUjiNwuMNz+QuPAwAOnXNRxq+T7zKjpsTFdSYimtSUqxLnnnsu\nWlpaxj0+MDAAu90++rHVasXAwABqa2vx0ksv4eyzz8a2bdvQ2dkJWZZHi3K2bNmCBx54AH/+859V\nTTAvzz71QURERESUFl8wjLbuwYyNV1zkRF6eLWPjHU8SpaWw7N0Lu9WYVp61yWzImntl/3Acdlvy\n4pvGnkGYbUaUZWAXbJd/CIoojr2WLMP35suIeHIRXb4CdpWFCNXlnqz5+hFplQegKxRFyxe+hvKX\n/4l5j9wPIS8f8+75McK5+Xj3p/fBkufRPK5OEjC3zIOSAv5sZAp/z4x8DTqDEQyGY9N+LYtJh1yX\nGbmH49ckLowTEZEKeXlAZygypgtoqnKcJngLnRmY1YnH7jRj//pzUfza86h85xU0LFio6jxnezPi\nFhsMxT4YUnyN7S1wZE1HVZvDjEPdgwBMCJx0CnI3vYo5/3wIcbMFwfM+BLtF2zwH5y2EZ98OeLua\n0T93wfRMepaJBj3y3IwPovH2NfbBbjNBiMdQ9vI/EXV5MLjuHNh1mdlQKAgCasvdKJ3hzm9EM4Vr\nGpmV8nYhm82GwcH33rwZHByE3W7H2Wefjfr6elxxxRVYtmwZFixYAEkayed8+umn8Zvf/Ab33HMP\nPB51i4Td3f2pTpGIiIiIVJIjcfQPhDM2Xngwgm5krhX48cRR6IXx3a0It3em1To3Eo5mzb3yoWY/\n+ocmXsTetKMNbe0hVPkcENIoRtqyrwv9w2Pf2M3dsRnGQC/qP/ixSedwLFGWs+brR5QKu1FEiyxi\n6xe+hdU3fhW1d92AuNGE1/7vV/Bb3IDG3+keuxE1PidMIl+HZ0penp1fy8MKnEa0RmPo649kNCpk\nwq44cRl9fZkrOCYiouOfRS+iNQOvifMdRv7/n4bAmvVQRAk5Lz+Hbf/x2XHPC/EY7M0H4T6wG64D\ne+Bq2AvboToEKueh/5jIYy36g0OQI9NfRKxWeDiKmKygbeFy5G56Fca+Hhz8wEcRUCTN9/ldZTUo\nAWDYuQ39vqrpmfAsqzvUA8QzH01E729KIoE99T2IyQq8G1+CIdCHuo98EqGwDEBOe3yTQcL8cg/M\nksDf+3Rc4ppGaiYrZkq5MKeqqgqNjY0IBAKwWCzYvHkzrrzySuzYsQOrVq3Cd77zHezYsQNtbW0A\ngMcffxx//etf8ac//QkuF/+DJCIiIsomNktmo6cYFzExxTeSB2/pbkcwjcKcaFyBkkhATKPQJRPi\nsjKuWCaZlp4BhKNx1Ja7IaUQr9MTGE56nfdirM5SPZbFqIPZyH+j9P6W5zKjoTWE1rXnoP2U0+Dd\n/Co2XXMr/DXqdhYfIYkCqoqcKMq1TtNMiQC33Qi33Yi4rKA3FEZ3YBh9odSKdMwGHTwOIzx2E1x2\nQ0r/pxARER2rwG1GQ2sQcpoFpB4HY6zSkVNRhJ5FJyN/2yZYWxthCvTBVb9n5M+BPXAeqoMUe29D\nRkIQ0O8rR91HPpnWdbMpygoArCY9AoMRdJ906uhjhz7wkZTGClTVAgBcB/YA52ZkelmnL5R6URYd\nv3qCYcRkBQBQ/sI/AGQuxirHYcK8UnfW/e4gouymeTX6ySefxNDQEC677DJcd911uPLKK5FIJHDx\nxRejoKAAer0ed911F+6++27Y7XbcdNNNkGUZN910E7xeL77yla8AAJYvX46rr746458QEREREWl3\nJMM8E4x6iZnKk5CLDhfmdHUgeHiBLFWRqDzrBSbBgajqN1Z7QmG8W9eDhRU5MBokTdc51JFkh0Yi\nAd8bLyJmtqBryUrVY+VkSYtyonSIggBvrgWHOvrxxv/9EpauVgwUV2gaw2M3oqbEBZOBhWo0M3SS\niAK3BQVui+oinZGuOMbRYhwW/xIR0XTQSSJyXWZ0+odSHsOkl2A1ZXbTy4km12FC55qzkL9tEz74\nmfPGPCfr9QiW1yBQNQ+BObUIVM1HoLIGsjm9AnMByLo1DJt5pDDHX7MAEYcLUZsDPQtPSWmsYEUN\nEqIIV/2eDM8yewxH4xgKx2Dhzx8dpb1npIOmPhSA962XECybg8Cc+WmNKQoCygvtKGX8MxGlQNVq\nRnFxMR5++GEAwIc+9KHRx9evX4/169ePOdbj8eAPf/jDuDE2bdqUxjSJiIiIaDrpJBFmgw7D0Xja\nY1nYiWRSSvF7HXPSFY3NfmGOf0DbzrT+4Ri21HWjJM8GSRIgSSJ0ogBJFCCKAiRRHHlcFEYXR7v8\nQxgIj++W4zy4H7b2ZjSfcR4Ug0H1HHKcLMyh40NRjhVNnQNQDAZNRTmSKGCOzwlvDrvk0OyZrEjH\nqJfYFYeIiGacN8eSVmGOhxsA0iaKAsIfvQT+5x9HzGJFoKp25M+cWoRKK5HQZb7wQq8T04pcng5W\n88jr/ISkw0t3/BmywQikeD8km8wIlVSMFOYoSsrjZLveUISFOTRqOBIfXa8q+fczkGIxNJ5zEZDG\nz7pRJ2F+uRtOGzujEVFq+K4JEREREQEYibPKRGEOdwhObrRjTgYKc8IxGc60R0lPoF97y+j85x6H\n+eA+7Pjs16dcFJEEARP14yl6418AgNbVZ6u+tl4S4bSqL+IhymYGvYQ8DTu7jToJ3lwLinKsMOi1\nda0imk5HF+lkQ0wjERGdmFw2IyxGHYYiqb0u9tj5Zm0meKrL8K9f/23GrqfXZd99sfWorsb9pZVp\njxeomg9nYz1s7U0Y8JWnPV426g2FUZJvm+1pUJZo733vNXL5vx5HQhTReNaHUx7PbTOitszN19FE\nlJbjszSWiIiIiDSzZyjOysyIiUkpPh8AwNzVkfZYkaic9hjpiMXlpJ1sJuM4uB+n/vQ7mPfX38H7\n5stTHi8nEhPGm/jeeBGKTo/2U09XfX2P3Zh1uyGJ0uHLm7rrjcNiQG2ZGysWFKC80MHFRMpqLMoh\nIqLZVOixpHSeKAhwsTAnIxwWA2wzuOFHr8u+t8lsJj0yeUcUmDMSo+06cPzGWYUGo4jLymxPg7KA\nkkigs2+kMMfWchA5e7ahc+kqhHPyUxqvJN+GxVU5fB1NRGnLvjsOIiIiIpoVtgwV5jDKanJKoRcJ\nUcxIx5xIbHYLc/wDUU3HC7EoTv3xdRDjMSQEAQv/+PORVtopsHS2wn1gD7qWrEDcqj7bmzFWdLxx\nWAxwWMZ3gRIFAQUuM5ZV52FZTR4K3BYWPBARERFNodCT2j2Tw2oYjeKl9BXlWjNamDKZbCzMEUUh\no7HVgap5AI7vwhwlkYA/hY6+dPzpC4YRiY+sl5W98DgA4NA5H0lpLKfFgKoiJzd4EVFGZN8dBxER\nERHNCrslM4U5VnbMmZxOB7mg8LgozNEaY1X74G/hrt+Dg+f+B5rWXQhXw174XnshpWsXvfEiAG0x\nVqIgwONgYQ4df47ummPUSSgvtGPF/ALUlnvgYHQbERERkWoGvQSPQ3vnG8ZYZVZRrhUrFxSi0uuY\n9s0/hiwszAEyt3kKAPxVIx1z3PXHb2EOAPSFwrM9BcoCbUdirBQFZS8+gZjZgrbVZ2keRwBQXeLK\n7OSI6ISWnXccRERERDTj9DoJpjTbsuolka1dVVCKS2Du6QLk9AprZjvKKjCgvjDHvX8nav/yWwzm\ne/HuVd/G7k/+NxRRwoI//SKlr4PvcGFO26p1qs/hLlY6XuW5zMhxmMbEVRn5u5iIiIgoJV7P1FGh\nx+IGgMwz6iWUFthxam0BllbnweuxQCdm/vVcNnbMATJbmBNzuDCY7x3pmDNBVPTxoC/EjjknunA0\nDn//SIFW3va3Ye1qR8vp50E2mTWPVZRrzejPIRFRdt5xEBEREdGssKXZNYcxVuooPh9EOQ6Tvyet\ncWazY04kKmMoEld1rBiNYPlProOoyNj8jZsQt9ow4CtH4zkXwdlYj5J/P6Pp2oaQH3k7NqO39iRN\nGeG5XCyn45QoCFhUmcO4KiIiIqIM8DiMMOrUFzkb9RLfvJ1mTqsBc0vdWLWwALWlbrhsmetQpNfw\nvZ5JVlNm/00FqubDFOiFqa87o+Nmk0hcRv+QtshtOr609w7hSOlZ2b+OxFhdpHkcg05EhdeRwZkR\nEbEwh4iIiIiOYjenF3liYYyVKkpRMQCkHWcVjStQlNnZ7ebX0C1nwR9/DmdjPQ58+Ap0LV01+vju\nK74ERdJhwZ9+CUFWV+QDAN43X4agKGjV2Io4x8nCHCIiIiIimpwgCCjMsag+njFWM0cSRRR4LFgy\nJxcragtQVmBPv/PvCdAxBwACc0birFwHdmd03GzDrjknrkQigY6+kRgraXgIxa8+h8GCIvQsPEXz\nWJVFTnZcJqKM428VIiIiIhplNadXWGPJ8I6u45VcfLgwpyu9whxg9rrmBPrVLXbl7NqKuY/+HgNF\npdh+5TfGPDfkLcbB8y+GvbURZf96QvW1fa+PxFi1rjlb9TkWow5mdnQiIiIiIiIVCj3qC3Pc7Mw5\nK8xGHSq8DpwyLx/p9Iw0ZGlhjtEgQZ/BwgD/4cIc94E9GRszG/WGwprPicZk7Gn0T8NsaCb1hSKj\na2S+1/8F/fAQGs/6MKAxAs9pMWj6P4CISK3svOMgIiIiolmRdsccFj6o8l7HnI60x5qtwhw1HXOk\n4SEs/8l1AIBN19wC2Tx+YWPP5VdB1hsw/4FfQ4hN3XJaCg+jYMvrCJVWYaC4QvV82S2HiIiIiIjU\nMht1quKSREFgx5xZppPEtGKfsrVjDgBYNXbNyXeZUehOXlAQqDrcMad+b9rzymb9Q1HE4urXSQbD\nMWzZ341O/xCCGjoDU/Zp7x0c/fuRGKtGjTFWAoDqElcmp0VENCp77ziIiIiIaMYZDVJau8UYZaWO\ncrhjjjnNKCsAiERnvjBnKBxXVRC06P47YG9rwv6LP4PeBcuSHjOcV4iGCy6DtbMVFc/9fcoxC955\nHbpIWHOMVS53sRIRERERkQZeFXFWdouecSdZwGFNfZNRtnbMAbTFWZUV2DG/3IMqnwO6JB1ChvMK\nEXG44Ko/vjvmJAD0qoyz6guFsXV/D8KH1zeOxCDR+084Gh/tlmTu7kDB1o3omb8EA75yTeMU5Voz\nHiNHRHRE9t5xEBEREdGssKXYNUcSBEYFqSQXvb+jrNR0y8nb+iaqH/8zQqVV2Pnpqyc9ds/HP4+4\n0YTav9wNMTr52L7X/wVAW4yVXhLTWqglIiIiIqITT57TPGWUkMfODQDZINXXewKQ1YVVagoEREHA\nvFI3KrwOAIBeJ6G80D7+QEFAoKoWtvZm6Ab7Mz3VrKImzqqtZxA7D/Yhriijj3UFhiEf9TG9f9S3\nhZA4/PfSDU9CSCTQePZHNI1h0ImjP0dERNMhe+84iIiIiGhW2C2p7Qxhtxz1Ejk5UIymjERZhWeh\nY05gisIc3eAAlt/+HSiihE3X3ALFMHlr94gnDwc+fAUsPR2o/OfDEx4nyHEUvfUyhnIL4K9eoHq+\nHocJgiCoPp6IiIiIiEgUBeS7zZMe43EwxiobOCypFeboJDGrXytap1hn0UsiFlfloNAztrtTUZ41\nabyXf86ROKvju2uOPxSBkkgkfS6RSKC+NYj9LYFxx8hKAl3+4ZmYImVQXyiM7sDh71sigfIXHoes\n16P5jPM0jVNZ5MzqQj0iev/jbxgiIiIiGiPVlq0WdstRTxAgF/ky0jEnqqFjzmA4hs4MtGYO9E9e\nmHPSPbfB2tWOvZd/Af65i1SNue9jn0PMbEHtQ/dACidfCMvd8Q4M/UG0rVoPJGnNPZEcJ3exEhER\nERGRdt4c64TPGXUS7CkWhFBmWUy6KbsbJWPQS9Mwm8yxmvQQJygcMht0WFqdB5dtfHGYKAiY43OO\nezwwZz4AwH3g+C7MiSsKQoPRcY/LioJdh/rQ3D0w4bmMs3p/kRUFdS3B0Y/ddbvgaKpH28r1iNnH\n/wxMxGk1jCtwIyLKNBbmEBEREdEYKRfmJNmNRRNTfD6YAr1TRjdNRU2UVWgwip0He/H23i7saw5g\nOBJP+XoDwzHE5IlbOxdu+jcqn3kU/qpa7L7iKtXjRp1u1H3kkzD5e1D15INJjxmNsVp9lupxRUGA\nx85drEREREREpJ3NrId9gtfIbr7OyCqpxFmlUswzk0QxeWS402rAsprcSTsXu+1G5B6zSSVQdbhj\nTpYU5ghyHKfeei1O+el3Mj72sXFWkZiMd+t60ROcPOYqOBjFUDj1NROaWU2dAxiOvvf9KnvhcQBA\n4zkXqR5DAFBd7Mr01IiIxsnuuw4iIiIimnFmow46Dd1IjmCUlTaJ4hIAgDnNOKvJoqz8/RG8e6AH\nW+q6RxeflEQCh9pDKV/PP0m3HH0ogFPuuB6KTo+3r7kFCb22hdH9l3wGUasd8x7+HXRDg2OfTCTg\ne+NFRK12dJ90quoxHVYDWxETEREREVHKCifomsMYq+ySSpyVXp/9rxVtx6y1FLjMOKkqF3rd1N1+\nqoqcYzru9PvKEDeasybK6qS7b0XZhidR8fzfYW1tzOjYfaH31i4GhmPYur8b/cPju+gkw6457w+D\n4Riau97rfiTEoih96SmEnR50nLJW9Ti+XFvKmxSJiLTI/rsOIiIiIppxNov2F6QszNFGLvIBACxp\nFubEZAWKMjYXvScwjC37u7GtvgeBgfGFNJ2BYQwMx1K6XrLxjlj665th7uvGrk9+GcHKuZrHjtmd\n2H/xp2AM+jHn8QfGPOc6sBuW7na0rzgTCZ36f5+5DsZYERERERFR6grcZkjHxAkJANx2vtbIJsdj\nxxwAsB5VMFBWYEdtuQeimDze6lhmow4l+bb3HpAkBCtr4GisT7t7b7qqnvgLqh//M2Lmkfig0pef\nzuj4g+EYwtE4+kJhvFvXg7CGGPBO/xASicTUB5JmDW2hcWtYqaprDkI56vvkfftVGEMBNK2/UPW6\nkUEnotxrz8h8iIimkv13HUREREQ04yZq1T0RUUjeXpkmpviKAQCW7vb0BpJlxLp6kEgk0Nk3hLf3\ndmHnoT6EhibfCdbQFpz0+WSURGLCwhzfa8+jbMOT6J27GPs+dqXmsY+o++inELE7MfeR+6EfeK+z\nj++NFwFoi7ECgBwnF8uJiIiIiCh1OklEnss85jGHxQC9jm+vZBO7RQ915SrvMbwfOuaY9RAFAbWl\nblR4HZrPLy2wwah/r7uOv6oWoiLDeaguk9PUpGDz61jy65sRduVgw88ehKw3oHTDU0CGi2H2Nwew\n82Af4srEcdzJRGLymI47x4OD7SHEJ4klnwmRmIzmrn7safSnXfjU0TeEwODY71HZC/8AoC3GqrLI\nyS7LRDRj+NuGiIiIiMbR2jHHZJDGtEemqclHCnO60ivMWfDAr+BdPh97nngJe5r8GAyr64TT1x+Z\nNJYqmf6hGOQkO5uEWBRLf3kjZINxJMJKSr1IK261Yd/HroRhIITqx/44+rjv9X9B1hvQsVx9O2KL\nUceCMSIiIiIiSps3xzLmYw87c2YdnSTCatK2lqEmDmq22S16LK7KQYHHMvXBSUiiiMqi9wp6AnNq\nAYx0pZ0N9qZ6rPrR15CQJLz+f79AqKIGbSvXwdHcAGfD3oxeq68/MqajihbHU5xVY0c/Gjv7x8Q+\nzYbuwDASALqDw6hvSz1iPRaXUd86drOZIeRH0Vv/RrC8GoGqWlXjOK0GFKb4c0VElAoW5hARERHR\nOFo75jDGSrsjHXPMaUZZFWx5A1Ikgvl33ah5d1mDxoWQwASFPEVvvgxzXw/qL7gM/aWVmsZM5sCH\nP4GwKwc1j/0RhpAf1tZGOA/VoXPZashmq+px2C2HiIiIiIgywWkzwnJU0b/bYZzF2dBE7Bo3Gb0f\nuh7pdRJctvT+vRW4LXAejvoKzJkPAHAd2JP23LQyBP1Ye/2XoB8awOav/wh985cCAJrXfRAAUPrS\nP2d8ThPpDYURi6uPv8pWnf4hHOwYWftp6RpAJDp7n1N3YHj07y3dA2jpTq1QqKEthNgx3X9KXn4G\nYjyGQ+d8BFCxcVAAUF3sSun6RESpyv67DiIiIiKacWajDpKGDjgWo7bFLwIUnw9Aeh1zBDkOZ8M+\nAEDezndQ/O9nNJ3fPxxFl1/9LjD/BDFWFc88CgA4eP4lmq4/Edlswd7LPgf90CBqHvk9fBs3ANAe\nY5XLXaxERERERJQhRzorGHQiHBbDLM+GknFYtX1f9CdQhM0cnxMCgGB5NRRRgivD3WmmIsSiWH3D\n1bC1N2P3FVeh6awPjT7XfuoZiFlsKH3paUBj7NR0URIJdPqHpz5wGq6bKf7+CPY1BUY/lhMJHGxP\nvVNNOiIxGaHBsZHr9a3BMcU6agQHImhP0s2o7IXHkRBFNK2/UNU4vlwbbBo3JRIRpevEuesgIiIi\nItUEQdD0AtXKjjmaJWx2yA4nLN2pF+bYmxqgi4TRuWQlZL0eJ93zE0jD2totH2zvV7XwoyiJcYso\nAGDuakfhO6+ht/YkhMqrNV17MvUXfhzDOfmo/scDKHvhH0iIItpXrlN9vl4SNS/KEhERERERTaTQ\nY4EoCHDbuQEgWzk1vgY06E+ct8jslpHYHsVgRKisCq76fYA8Q91TEgmc/PMfIm/HZjSfdi52/ddX\nxjytGIxoOe0DsHS3I3fXlpmZkwodvTMfZ7V1fw+CE2yK0mIwHMOug33j1ns6/UMYGFYXgZ5JR2Ks\njpYAsLfRj2CStaZklEQCdS3BcY87Du5Hzr7t6Fi2BuGc/CnHkQQB5V67qmsSEWXSiXPXQURERESa\n2DS0gDazMCclcpEPljSirNx1uwAALad9APsv+SwsPR2Y9/DvNI0xHI2jvWdwyuOCg9GkBTzlzz8G\nIZFAw3mZ6ZZzhGI0Yc/lX4QuMgzXwf3omb8UEXeO6vM9DhMEDV2fiIiIiIiIJmPQS/A4jPAwxipr\nWUx6TV1wDO+DKKtMqixyQCeKCFTVQhcZhr21cUauW/PI/ah47jH01SzE29fcAojjv+5NZ47EWZVk\nUZzVQDiG/iF1RSOZEBonevEvAAAgAElEQVSMon84im31vWhTsU4zkUhMxo76XsSTdB9KYKRTzUyb\nqDOOnEhgZ0MvhiPxKcdo6RrAQHh8UVHVkw8CABou+JiqubgdRuhOoG5ZRJQ9+JuHiIiIiJLS0jHH\nYmRhTioSxSXQDw1AN9if0vme/TsBAP7qBdjz8c9jOCcfcx++D5b2Fk3jNHb2Iy5P3i46kGzHlqKg\n4rnHEDNb0Hzm+ZquqcbB8y7BYL4XANC6+mxN5+Y4uYuViIiIiIgyqyjHCo+dhTnZzK4yZkwATrg3\n5/U6CeVeOwJzagEArvo9035N78YNWHzf7RjKLcDrP/wVZJM56XHdS1Yg7M5FySvPQojPfEeXibTP\nYNecnmAYwEhnmP0tAexvDmiOtorLCnY29CIcm7gbkn8ggt7D15oJkZg8aVecmKxge30vYvGJ5zwc\niaOxY/zamW5oEGUvPoGh3EK0rzxT1Xxyncn/DRIRTbcT666DiIiIiFRTu5hl0ksn3GJWpii+YgCA\npSu1OCt33S4okg7ByrmQzVZs/9w3IcWiOOneH2saJxpX0NI9MOkx/v7xhTn5WzfC2tmG5jPOh2y2\narqmGorBgHf/+7vwz5mP5nUfVH2eKAhcLCciIiIioozzOEzQ66TZngZNQm2clU4ST8guq0W5VoTn\nLwIAuA7sntZrOev3YOUt10A2mPD6D381acxQQtKh+YzzYQwFULDljWmdlxbdgWEoirbimFT1BMd2\nlWnrHcS2Az2ITlJkczQlkcDuQ370q4iqamgPIaGx6CdVE3XLOdpwNI4dDX2Qk3T5AYADrUHISeZb\n+uIT0A8PoeGDlyIhTb1pUBQE5Di4kYuIZgffQSEiIiKipCwmHUQVi1QWxlilTC4+XJjTrb0wR5Dj\ncDbsQ7C8GophpAilaf2F6Jm/FMWvvYD8rRs1jdfcNTDhYk9cVpK2b6589lEAwMHzMxtjdbS21Wfh\nX7/+m6qc8COcVgOLxYiIiIiIiE5AdpWx3PoTLMbqCFEQkHv6SgCA+8D0dcwx9XZh7fX/DV14CG99\n6zYEqhdMeU7T4Q05pRmIs7K0t2DJr26COY34cGCkm8uxBTPTYTAcw1CSOKfgYBRb9neritSqaw6g\nr19dJ5zBcAwdfTPTDUhNYQ4AhIai2NPoH1cw1B0YRm8oyeeVSKDqqYegSDrV61JOq+GE/dknotnH\n3z5ERERElJQoCLCqKLqxmNRHXtFYSpEPAGDp0r5QZG9qgC4Shr96/nsPCgK2fvm7SAgClvz6Zk3t\nn2UlgcbO5JFawYEojt2XZAj64Xv9RQTL5qBv3kma5z+dGGNFRERERER0YnKo7JhjOIE7HzmL8jDs\nKx2JspqGriliJIzV//cVWHo6sP2zX0fb2nNUndc37yQMFBbD9/qLkMLpFcOc/IsfovrxB7D6hqsh\nRqcuapnMTBSw9AQmLqgJx2S8W9eDTv/E82js6Ee7xnkeau+fsENNpkwVY3WsnmAY9a2h0Y/jsoID\nrcGkx+bs3grXwf1oXXO26s1cuS7GWBHR7GFhDhERERFNyGaeuujGYmTHnFQdibIyp9Axx7N/JwDA\nf8yus0D1Ahw87xI4Gw+g6smHNI3Z3juE4SQ7tPwD42Osyl58AmI8hoPnXQxkWftvtiUmIiIiIiI6\nMekkEVYVG4j0+hP77bHE4sUwhgJpd5QZP3ACy3/6HeTs245DZ1+EfZd9Tv25goCmdRdAFx6C982X\nUp5C/taNKNz8GmS9AZ59O7DkNzenPBYwEu0djo5fK8mkqbryyIkE9jT6Ud8aHNdRptM/hIMdoQnO\nnFgkLqO5a/JY83Sp7ZZztJaeAbQcntehjn5EJujuXPXEgwCA+gs/rnrsXG7kIqJZdGLfeRARERHR\npGyWqXeaqemqQ8nJvtSjrNx1uwAA/pqF457b8ZmvIWq1Y8GffglDoE/1mEoigYPt4xdzAv3HFOYk\nEqh45lEoOj0az75I28SnmdWkh5nFYkRERERERCcsh4o4K/0JHn+srFoNAKh98LcZHbfqyQdR+u9n\n0LNgGd752g2aN/I0r7sAQBpxVoqCRb+7HQDwyq33wV9Vi6p//hVlz/89tfEAJAB09k1fnNVwJI7+\nYXUdj5u7B7CjoRex+EinG39/BPuaAilfu7lzYMLCl0xIpTAHAOrbgjjUEUJrd/LCIaO/F8WvPYdQ\nSSW6TzpV1ZhOiwFG/YnbKYuIZt+JfedBRERERJOyq+mYw8KclCneIiQEAZYUdqi563ZBkXQIVtSM\ney7q8mDXf/0PDAMhLPzjzzWN2xUYHpNdHovLGAiPXSDy7N0OZ+MBtK45C1GnW/Pcp4tRJ6G80D7b\n0yAiIiIiIqJZpCbOSq87sd8eG/705xBbsAhV//wrfK89n5ExHQf346Tf3oaIw4WN37sTikFdrNjR\nQuXVCFTOhfftV6HvTx5hNJniV5+Dp24Xms44Hz2LTsHG79+FqM2Bk3/+Qzjr92ge74j2vsGUz51K\nb3DiGKtk+voj2LK/G12BYew62AcljTgyOZHAoSQbtDJBa4zV0RIY6ZYz0WdW/txjkGKxkW45Kou/\nGHtORLPtxL7zICIiIqJJ2cx6iJO8wNVLIvQncC572gwGyHn5sHRp65gjyHE4G/YhWF4NxWBMekz9\nhy5HsKwKlU8/DNeB3ZrGP7prjn9g/CJKxbOPjhx37iWaxp0ueklEpdeBU+fnI4954URERERERCc0\nNYU5hhO8MAcmE/p/ez8Ukxmn3HE9zF1taQ0nhYex8uZvQIpF8fY3bkY4Jz/lsZrWXQAxHkOxxoIh\nIR7Dot//DIqkw85PfxUAMOgtwaZrb4UUjWD1D69OqdgHAMJRGf5juwlnSPcUMVbJDEfj2H2oD3FF\nSfv6HX1DGFDZsUeLVLvlTEmWUfXPvyJuNKPxHPVdnLleRESz7QS/8yAiIiKiyYiiAMsksUDslpM+\nxVcMc08HoGExxd7UAF0kDH/1/AmPSej0ePeqb0NIJLDk1zcDGnZQ9fVHRhecjo2xkoYHUfLy0xgs\nKELnslWqx5wOkiigrMCOFfMLUFpghyTy5Q0REREREdGJzmrSQzfF60M9I20g18zF4E23wTAQwopb\nrwXk1CONTrrnNjgbD6Duok+gfdW6tObVfOYHAQClG7TFWVU+/QhsbU1ouOBjGPSVjT7evnIddn/i\nS7B1tGDFbddqWn85WkffUErnTSYakxFKsatMpiQANLRlvmvOdBXmFG5+FdbOVjStvwAxm0PVOTbG\nnhNRFuDKNRERERFNyjZJnJXVNHXUFU0u4SuGFIvBGOxTfY5n/04AgL96waTHdZ28Bq2rz0LezndQ\n8vLTmubV0Dayi+zYHWEl/34W+uEhHPrAfwCzVAgjCgJK8mxYOb8AFV4HdBJf1hAREREREdF7HNbJ\n1yv0fB0JAAj/56cwdMFFyNv5DmofvDulMXyvPY+qp/6KQEUNtn/+mrTnNFTgQ8+CZcjbvgmm3i5V\n50jDg5j/wK8RN1mw+xNfGvf8rv/8MjpOXgPvpldQ+5fUPs+ewDDicvodao7WGwpPGNc0k/r6wxnt\nCJROjNVUqp56CABGYqxUynUxxoqIZh/vPIiIiIhoUjbLxItZk3XTIXVkXzEAaIqzctftAgD4axZO\neey2L34Lst6Axff+BNKw+t1d/cMxNHX2YzgaH/N4xbOPIiEIOHjuR1WPdSyLUYeTa/JQW+pGcZ4N\nLptxyt2MwEhBTlGOFStqC1DlczJGjYiIiIiIiJKyWyaPs9Kf6FFWRwgChu78OaJeHxY88Gvk7HxH\n0+nmrnaccuf3ETea8OZ3bp8wblurpnUXQEgkVG8yqvnbH2EK9GLfJZ9BxJ07/gBJwlvf/gkG871Y\n8KdfomDza5rnJCcS6PJntgtMdyCc0fHSUd8aREJDt+XJJOuWY2+qx7Kf/QBGf2/K41raW+Dd9Ap6\n5y1GYIrNakfLdTLGiohmH+88iIiIiGhS9kk65jDKKn2KzwcAsHRrK8xRJB2CFTVTHjvoLcG+Sz4D\nS08n5j10j6a5HWwf28rY3ngAubvfRcfJazGcX6RprKPNLXHBbjGgwGPBHJ8TS+bkYu1iL1bUFmBh\nuQdlBXbkOEwwHm4tLgAocJmxfF4+akpcMBpYkENEREREREQTc1onL8wxsDBnVMLlxuBv7wMArLj1\nGuj7g+pOlGWsuO1aGPqDePeqb6O/bE7G5tR8+nlQRAmlL00dZ2UI9GHuI/ch7PRg/yWfmfC4qMON\njdffBUWnw4pbvglLR6vmeWUyziouKwgMZK5LTboGwjF0ZqjwKFlhztxH7kfV0w9j5c1fhyDHk5w1\ntcqnH4aQSKD+Q5erPsds0E3aDZyIaKbwzoOIiIiIJmVlYc60kn0lANR3zBHkOFz1exEsr1a9E23v\nx7+AodwCzH3097C2N6ue27H7pCqe/RsA4OB5F6se41jFuTY4bcnnbTbqkOsyo8LrwKLKHKxaUIg1\nCwtxam0Bass9zAMnIiIiIiIiVRxTFOawY85Y8ZWr4b/6m7B2tePkn/0AUNE5pfbB3yJvx2a0rD0H\nBz94aUbnE3V50LlsNTz7d8LWemjSY+f/5W7oh4ew+z//G3GLddJj/XMXYeuXvwdjfxCrbvwqxKi2\nwpjQUBSD4ZimcybSGwpDyVCHmkw52B6CrKQX15U0xkqW4X3zZQBA/rZNWPj7n2keV4xGUfnso4jY\nnWg+43zV5+U6GWNFRNmBdx5ERERENCmdJCaNrJIEASYDCyXSdaRjjrm7Q9XxjsZ6SNEI/NXzVV9D\nNluw/fPXQIpFcdJvb0tpnmI0ivJ/PY6I0422VetSGsNkkFBRZNd0jl4nsSCHiIiIiIiINJloLQMA\n9JIIQRBmeEbZT772OoSWnoqSV59DxbOPTnpszq4tWPDArzCU58Xmr90ATMPXs2n9BQCAkkm65ljb\nm1H11EMY8JagQWVx0MHzL8XBc/8DnrpdWPqrH2meV0dvZrrm9ARnKMZKllH64pOwdE7dISgSk9HS\nNZjW5ZJ1y8nZux2mYB+azzgP/b4yzHv4Pvhee17TuL7Xnocx6Mehcy/WFJmW62KMFRFlBxbmEBER\nEdGUkrV8ZbeczFB8xQAAi8rCHHfdLgCAv2ahpus0n/lBdC88Gb43XkTF0w9rmySAojc3jCyAnPMR\nJPST7zycyNwSNySRL0GIiIiIiIho+k0UZ8VuORPQ6TB8z32I2hxY8uubYW+qT3qYfiCEFbd8EwDw\n1nU/RszhmpbptK0+G7LBiNIN/5ywg8+CP/wcYjyGnZ/+qvq1CkHAlv+5Hv45tah85lGUH+4OrFZH\n3xDicnpdZRQlgb4ZKMwRo1GsvPkbWHHbtVjzgy8DsjzlOU1d/RhKoytQssIc75svAQAa138Yb3z/\n54gbzVj+0+/A1nxQ9bhznnwQAFB/wcdUn2PUSVPG2hERzRTefRARERHRlJIX5jCfOROUvHwk9HpY\nutpUHT9amFO9QNuFBAFbvvJ9ROxOnPKzH2Dh/XcCGtoTpxtj5fVY4Lar39FERERERERElA67Jfkb\n8gadNMMzef8Qy8rQccud0EXCWHnzN8dHPSUSOPlnP4C1qx27r/gSehadMm1ziVusaFu5Do6Wg3DV\n7xn3vOvAbpS99BT8c+ZrijYCAMVowsbr70LU7sSyX9wA1+G1FjVisoJDHf2arnesvlAY8jTHWOkG\n+3Had7+AklefQ9xkgathHyqef2zK82Qlge31vYhEpy7iOVbSGCuMbPaKG03oWroSoYoabP76jdAP\nDWL1DVdDGp66Q4+zYR9yd21BxylrMegrUz2fHMZYEVEWYWEOEREREU0p2WLWRC2hSSNRRLywSFPH\nHEXSIVhRo/lSoYoabLjrQfQXlaL2oXuw8uZvQIxMvUPL0tmKgndeR8/8pegvrdJ8XaNeQpXPqfk8\nIiIiIiIiolQ52DEnJebLLkXrRy6Hq2EvFv/u9jHPlT/7N5S88ix6FizDnk9cNe1zaVo3EmdVumF8\nnNWi++4AAGz/3DeAFLrzDnpL8Na3boMYj2H1DV+FPhRQfW5bzyAGhlPvKjPdMVbGvm6c+c1PIX/b\nW2hdfRae/+0/EDdZsPD3d0E3ODDl+eGYjO0NvYjFtXUGStYtx9raCGdjPTqXrYZsGomVal53Aeou\n+k84Gw/glDu/P2FHpCOqnjrcLefCj2uaTy4Lc4goi/Dug4iIiIimlKxjjpVRVhmjFBfD1NcNITZ+\nV9HRBDkOV/1eBMurNeVpH22guAIb7noI3QtPRskrz+LMaz8No7930nPKn/s7hEQi5W45NcUu6CS+\n9CAiIiIiIqKZYzXpoEtSsMHCnKkpP/4JQqVVqP7Hn0ZjiOxN9Vj665sRtTnw1nU/RkKa/nWhjuWn\nI2q1o+Tlf47p+pu/5Q0UvvM6OpatRtey1amPf+oZ2P2JL8Ha2Yp5f71X9XlKIoEDLcGUrqkkEugN\nTV9hjq31ENZ/7Qq46/eg/oLL8Mb1d2HQW4K9l30OpkAv5j10j6pxBsMx7Gjohayh23Kywpyiw/9+\n2lauG/P4ti9cg575S1D68tOY848HJhxTNziA0hefxFCeF+0rzlA9F50owsXOzUSURXj3QURERERT\n0utEmPRjWz1bWJiTMQlfMYREAube7kmPczTWQ4pG4K/RGGN1jKjTjVduvR+N6z+EnD3bcNbVl8He\neCD5wbKM8ucfQ8xsQfMZ52m+VqHbwtbBRERERERENOMEQYDdMn6jEQtzpmZyOdByx92Q9QYsv/27\nsLS3YOXN34QuMozNX7sBQwW+GZmHYjCgde05sPR0Infn5sMPKqPdcnZc+fW0r9H1ua9AMZpQ+M7r\nms4LDEbQ2Tek+XrBgShisrZONGq59+/Euq99AraOFuz65P9gy9U/AKSR9bx9l3wGQ3le1Dz2R1ja\nW1SNFxqKYtdBPxQVsVuR6EQxVi8hIQhoX3nmmMcTegM2fu9nCLtycNI9P0bOri1Jxy178Qnoh4fQ\n8MFLNRWD5ThNEAVB9fFERNONdx9EREREpIrtqMUsURBgYpRVxii+YgCApbt90uPchzPP/dXpFeYA\nI4tbm751G3Z98n9g7WzF+q9dgfytG8cdV7B1I6xd7Wg+8wLIZqumaxh1jLAiIiIiIiKi2ZMszsrA\nwhxVck47FXv/+zoYg3584EsfhathLxrOvxStp587o/NoWn8hAKD0pacBAMWvPAtP3S40rbsAgTTX\nRzx2I+bPK0J8xSq4GvZN2VH4WA1tIcQ1Ftkk6yqTCQWbX8eZ3/wUjP0BvHP1D7D7k18GjipMUYwm\nbP/cNyDFolh83+2TjDRWX38Y+5qmjvnqDo7/vPShAHJ3vIO+eYsRceeOez6cW4A3v3sHkEhg1Y1f\ng7HvmA1riQSqnnoIiqRDw/mXqJ4zAORxkxgRZRnefRARERGRKnbze4tZZqOOu04ySD5SmNM1c4U5\nAABBwO5PfhlvXXsbpGgYp33nCyh/5tExh1Qc/jiVGKvqYid3IhIREREREdGscVjGF+bwdao6oiDA\nePX/oG3lOuiHBhAqqcS7V1034/PoWnwqhj25KH7lWUjDQ1j0h7ug6PTY+emvpjWux27EwoociKKA\n6OkjEUl5297SNEYkLuNQR7+mc3qDmY+xKtnwFNZefxUEOY6N37sTDRd+POlxzWd+EL21J6HklWeR\ns/Md1eN3+odwoHXy6K5kBUfet1+FqMhoW7l+4vNOOhU7Pvu/MPd1Y9VNX4cQj40+l7NrC5yH6tC6\n9mxEPHmq5ysJAtwOxlgRUXbh3QcRERERqWIzv9cxx8JuORml+EZaQJu7OyY9zr1/JxRJh2BFTUav\n33T2h/HKrfcjZrFi+Z3XY+F9dwCKAkOgD76NGxAsr0bfvMWaxsxzmZHrMmd0nkRERERERERaJOuY\no9dJSY6kZJx2E5p+dCf2XPZ5vH7DryCbLTM/CUlC8xkfhLE/iJU3fwO2tibUX3AZBr0lKQ/psZtG\ni3IAIHbaSGFOwdY3NY/V1jOIgeHY1AcCCA1GEYnLSZ8zd7Wh+m9/QOGmV2Dq7VJ9/epH/4CVt16D\nuMmMV275HVrXfmDigwVhtLhqyW9uART13X5augfQ1Jm8CGniGKsNAIC2VesmHXv/pZ9Fy9pzkLdj\nMxbdf+fo43OefBAAcOBDl6ueJwC4HUZIIt8CJ6LswndUiIiIiEiVo6OsLCbeRmaS7BtZTLJ0tU14\njCDH4WrYh2B5NRRD5nf99Cw6BRt+/hDWfu8q1P71XtjamxGonAsxHhtpF6yhQ5JeElFTzAgrIiIi\nIiIiml16nQiLUYehSHzMY6Re6fwybPrCNxHTGNmUSU3rLkDN3/8fit56GTGzBXuuuCrlsUaKcjyj\nRTkAEF+8BLLDmTTieypKIoG6lgCWVk/d0SVZ3BMAiNEo1n7/y3A17B19LOzOhb+qFoE5h/9UzcOA\ntxQ4UnCiKFh03+2Y98j9GPbk4ZVbfoeQio1cfbVL0LjuQpS99BTKXnwCjed8RN0nCqChPQS9ToQ3\nZ2zUebLPS4hFUfj2qxjwliBUNmfygQUBb3/jZjgOHcDcR3+P3nknoWfRKSh+9XkEy6rQs2i56jkC\nQJ6TG8WIKPvwHRUiIiIiUsWol2DUSYjEZRbmZNiRjjmWSTrmOBrrIUUj8NdkKMYqiQFfOTbc9SBW\n//BqlLzyLEpeeRayXo+msz6kaZw5xU7uQCQiIiIiIqKs4LAYxhTmGFiYo4leJ6Hc60BdS2DW5uCf\nuwgDRaWwtTVh36WfRcSdk9I4yYpyAACShNia02B75ilY2lsw5C3WNG5wMIrOviEUeCbvKDRRjNWC\n//dzuBr2omXtOQiW18BVvwfuA3vg3fwqvJtfHT0uZrEiUDkPgapamPq6UfLqcwgVV+DVW+7FUIFP\n9Xx3XPm/KH79BSy6/060rP2Apk5I+5sD0EvimC7JyWKs8ra/Df3QIA6ee7GqzV5xqw0bv38XzvrK\nZVh++3fQcvp5EOMx1F94uabNYqIgIMdpUn08EdFM4TsqRERERKSazaJHJCQzyirDEg4nFKt10sIc\nd90uAIC/evoKcwAg6nDjlVvuwyl3fg9lLz6J1rUfQNThVn1+rtOEAvcstLYmIiIiIiIiSsJuNaDD\nPzT6sY6FOZoVuM1oaAtCVhKzMwFBwK7//DJKX3oK+y/+dEpDTFiUc1js9DNheuYpFLy7EQe9l2oe\nv6EthBynCTop+b+vgeHYmAKxI3K3b8LcR+7HQFEpNl1zC2Tze91oDCE/XPV74TqwZ+RPwx7k7t6K\nvJ3vAAB65y3GazfejahT/boNAAznF2HfpZ/F/D//BnMfuQ+7/+srqs9NANjd6MdinQiXzThJjNVL\nAIC2VetVjx0qr8bmr9+Ilbd8ExXPPYa40YzGsz+s+nwAcNkME34PiIhmE99RISIiIiLVbGY9ekNh\ndszJNEFAvKgYlo72CQ9x798JYPoLcwBAMRiw6drbcOgDH0VfzSLV5+klEdXFrmmcGREREREREZE2\nTqth9O96SYSoofsGjdBJIvJdZrT3DU198DRpOvvDaNJYpHHEVEU5wEhhDgDkb30TB8/XXpgTics4\n1N6PORNEeyfrlqMb7MepP74OEAS8de2tY4pygJHNU11LV6Fr6arRx6TwMByH6mDu7ULnyWsgm1KL\nbdr7sStR8cyjmPvI/Th43iUYzveqPldJJLCzoQ9LqnMRGIiMPyCRQNHGDYjaHOhZuEzTvJrXXQDP\n3m2o+fuf0HjWhxC32jWdn8MYKyLKUiwZJCIiIiLVbGY9TAYJksjbyExTfMUw9AchDQ8mfd5dtwuK\npENQRV54RggCupauQtxqU31Klc8Jo54RVkRERERERJQ9rCYdpMMFGXp2y0lZYY516oOmmdNq0Lzu\noKYoBwDkOdWI5Rcif+ubgKKkNL/WngEMDMeSPpcs7mnZL2+Etasdu6+4Cn3zl6q6hmwywz9vMdrW\nnJ1yUQ4AyGYrdnz269BFwlh0/52az48rCrbX96C9d3yxlrNhH6xd7WhffjoSOr3msbd//hq8de2t\n2PHZ/9V0noCRTs5ERNmIdyBEREREpJrNrIfFqP0FNU0tUVICAEnjrAQ5DlfDPgQrqqEYjDM9tSlZ\njDrMLXGhcIosdSIiIiIiIqKZJggC7JaRrjkszEmd02qA1TR7a0ImvYQlc3KxakEh1iwsxOLKHFR6\nHch3mWEx6pCs7EZtUQ4AQBAQWXs6TME+OA/VpTTHBIC6lsC4x4cjcQyExxbsFP/7GZS9+CT65i7C\nniuuSul66Wo8+8Poq16Asg1Pwr13u+bzo3EFg+HxhUhFGzcAANpWrUtpXgmdHk1nX4SYQ1tXZodF\ne+EWEdFM4R0IEREREalmNurGtICmzFGKfAAAS9f4whxHYz2kaGRGYqy0sJn0mF/uwfJ5+fBmwc45\nIiIiIiIiomSOrGUYdHzTPh2zuSHHm2OFIBzpfCTB4zChtMCO+eUenFpbgLWLvVhanYfqYhe8Hgu8\nHov6opzDlHXrAQD5WzemPM/gYBSdx0R+9RwTY2Xu7sDJP/8h4kYz3vrWbSl1lckIUcS2q64DACy5\n+xYgkcjIsEVvvgRF0qFj+WkZGU+tXBdjrIgoe7Ewh4iIiIg0yXfzRe50kH3FAABzd/u459z7dwJA\nRgpzJEH9gtREnFYDFlXk4JR5+ch3mUcXxoiIiIiIiIiykd0yUvjAjjnpKfSYIc7CGoAoCCjMmbwo\nSBJFOK0G+HKtmFvqxtxSt6aiHACInX4mAKAgjcIcAGhoCyEuvxeH1RM8KsZKUbD8p9+GoT+IbV/8\nFgaKK9K6Vrp6Fp2C5tPORe7ud1Hy8tNpj2fq6YRn/050L16OuNWegRmqxxgrIspmvAMhIiIiIk3M\nRt1sT+G4pBwuzLEkK8yp2wUgM4U5NSUurFpQiPnlHhTn2mA365O2e07GYzdiyZxcLK3OQw4XO4iI\niIiIiOh94kjHHAtS78cAACAASURBVBbmpEevk2ZlPcDjMM5IRJHiLcJweRVyd2yGEB8f0aRWJC7j\nUHv/yN9jMkKD0dHnqv/xJxRsfRNtK85EwwUfS3vOmbDjc9+ArNdj0X23Q4yEpz5hEkVvvgwAaFu1\nPgMzU89m0nPNkoiyGu9AiIiIiIiygOI7HGXVPT7Kyl23C4pOj2DF3LSvY7foYdRLyHeZMafYiZPn\n5mPNIi8WV+agrMAOp9UwZvebACDPZcbJNXlYXJULl82Y9hyIiIiIiIiIZpJeJ8Fs0LEwJwO8sxBn\nVTSD8dnhNadDPzwEz74daY3T2jOAgeEYeoNhHAmIchzcj0X33YGw04PNX78RyJIOxIPeEtR99L9g\n7WpHzd/+kNZYRW9uAAC0rVyXgZmpl+viBjIiym68AyEiIiIiygKy93BhTlfbmMeFeAyuhn0Ils+B\nYjCkdQ2dKMJiGp9brpNEeBwmVHgdWFqdh7WLvFg6JxdzipxYPi8fC8o9sFvSuzYRERERERHRbHJY\nDTCwMCdtbrsRphnoXnOE2aCDxzFzRReJ9SOdXvLTjLNKAKhrCYzGWInRKFbcdi2kWBSbv34jIu7c\ndKeaUXsuvwphVw5qH7oXpt6ulMaQhgeRv/VNBCrnYqjQl+EZTi7XaZ7R6xERacU7ECIiIiKibGA2\nI+7JHdcxx9FYDykayUiMlc0yvignGVEU4LQZUZxvS1rIQ0RERERERPR+47AaoNfNXEHJ8UoQBBTm\nzFzXHO8MXgsAlNNOR0IUUbAlvcIcAAgORtHXHwEALPjjXXA17EPD+ZeifYZjntSIW23Y+amroQsP\nYdF9t6c0RsE7b0CKRWe8W47HboLNzPUrIspuLMwhIiIiIsoSis8Hc3cHkEiMPuau2wUAGSnMsass\nzCEiIiIiIiI63jgsekZZZUihx4KZCGESBQGFMxydlXC5MTB3IXL2boc0PJSRMXO3b8LcR3+P/qJS\nvHvVtzIy5nQ4eN7F8M+Zj/J/PYGKpx/WfH7Rmy8BANpmqPAox2HC0uo8LK7KmZHrERGlg3cgRERE\nRERZQikugS4ShiEUGH0ss4U5jKMiIiIiIiKiE5PVrIfJwI45mWAy6OC2G6f9OjlOEwwzGJt1xNCa\n0yHGY8jd+U7aY+kHQjj1x9chIYjY9K3bIJutaY8pCcL0/FuWJLxx/V2IOFxY9ssfIWfXFvXnyjKK\n3noZw568jKxhTUQAkO8y45S5+VhUmQOnlWtdRPT+wMIcIiIiIqIsofhG8rct3e2jj7nrdkHR6RGs\nmJv2+Ha29SUiIiIiIqITlCgI0El8WyxTCnPSLzCZStEMXCMZZd1IFFPB1jfTHmvpL38Ea1c79lxx\nFfpql6Q0hl4Skes0oarIiWU1eViz2IvFldPTJWbIW4yN370TUBSsvuGrI52dVcjZuw3GoH8kxkrM\n/M+ZKAjweiw4tbYA88s9jK4iovcd3oEQEREREWUJxVcCALB0jRTmCPEYXPV7ESyfA8WQ3g4gvSTC\nbNSlPUciIiIiIiIiolynCfppLHSyGGemK08y0po1kPUG5G/dmNY4xS8/jbINT6J37mLsueKLqs8z\nGSQUuC2YW+LCqfPysWaRFwsrclCSb4PDYoAoCLCY9HBZp+fr0710JbZ98VqY/D1YfcPVEKORKc8p\n2rgBANC2al1G5yIJAorzbFhRW4C5pW6ubRHR+xZ/exERERERZYkjHXOO7EZyNNZDikUZY0VERERE\nREREWUUUBBR4LGjpHpiW8b2z1C0HAATL/2/v3sPsrMu70X/XWnM+z2RyJiGZEJCDCCEvgVcbLYWC\n11Uu3WqFYGMRLrFstza8CgRJCJZEQDy8iG1F3LVujsK2CrRF3y0ewgYMUApbg0qBEJDQQJDEJOQw\nmVn7D0sk5DCZZNbMJPl8/mKt9fye5/eEi2fCPd913w1Z89bj0vHog6lZ82o2t7b3+xyljRtyzNeu\nzJbaujw09+qUq/ru8HLI+NaMbK1P7W6OqRrX2ZDV6/sOzeyJp947O+1P/TKT/p/v5bj/uSAPX3hl\nUijsfC8P/jhbauvz0jEnDMj1q4rFjB/ZmINGNqa6ygg6YN+nYw4AAAwTPeMPSvKHUVbt/7E0SQYo\nmKPFLwAAADBwxo5oqMh5i4VCxnTUV+Tcu2v9iX+UJBn1+JI9Wj/ln29L/W9X5T/e95dZN35Sn8e3\nNdXmoJFNux3KSZLOtvrKdS0qFPJvf315Xjns6Ez64Z2Z+t3/a6eHNv1mWVqefyYrp/339NbW7fWl\nG2qrctxhIzN5bItQDrDfEMwBAIBhovf1YM5LbwrmHHrUXp+7RcccAAAAYAA11lWntQL1hpGtdUMe\nyNjyrnclSUb9+8/6vba0YX3e8u0b0t3QlF+//+zdWtM1tqXf1ykWChlToXBUkvTW1OaBBV/Jho7O\nHP31a3Y62mvcz36SZGDGWDXX1+TYqZ1GVgH7HcEcAAAYJnpHj0m5VErDf42yan9yaXqrqrNm0qF7\nfe4mHXMAAACAAVaJYMi4zqEbY/W66uP/W7obmjJ6J2GUXZn6vZtSu+bVPPn+s9Pd0tbn8Z2tdWlp\n3LOA07gKj/za2Dk6D87/SlIs5oSFF6Txxee338ODP0q5UMiLM965V9fqaK7N2w4ZMeShLIBKEMwB\nAIDholTKltFj0/DSiyls6U7bM7/KmkmHpLdm7759VltdSm21ogYAAAAwsEa116dULAzY+RrrqtPa\nVDtg59tTtfW1eeWYGWla8VwaVr6w2+uq1q/NYf/3N7OpuTVPvu/DfR5fSDJ5D7rlvK6+tiodzZX9\n83rlyGPz6Cfmp3btmvz3y/+PlDas3/pZze9eTefSR/PK4W/LpvbOPb7G6Lb6HNU1IlWVGs0FMMQ8\n3QAAYBjpHT8+da+8lNZlT6bUvTmvTj1yr8/ZrFsOAAAAUAGlYjGj2uoH7HxjKziaqb/WnfiOJP0b\nZ3Xod76VmrVr8us/PzdbGpv7PH5Ue0Ma6/aubjN2ALvmNNdXp30Hwahl7/7zPHX6rLQtezL/7QuX\nJuVykmTMQ4tT6O3NihNO2uNrThjZlMMndaRYGLiAF8BwI5gDAADDSO9BE1Ls7cnYJT9JkgEJ5rRU\nYN47AAAAQDJwwZBSoZAxHcMnmNM984+TZLfHWdX87tUc+k/fysbWjjz1nrP6PL5YKGTSmL7DO30Z\n0VqX2gEa/zRlfGuOnNyR5vrta0mPnX9JXn7r9Ey47wd5y63XJ0nG/ewnSZIVJ/7xnl1vXGumjG/d\n4/0C7CsEcwAAYBgpjz8oSTL+/nuTJK8eetRen7OpXsccAAAAoDJaGmvStJddX5JkZFv9sBplVPPW\nI7OhY2RGPbZka4eYXTn0jm+m+rV1+dUZH01Pfd9hpTEdDamvrdrrfRYLhYwZgE5DnS11aWuqTVWp\nmKOndKThTXsrV1XnwXn/M6+NHJujvvWVjP9//1fGPHJf1o2bmLUTp/R7z4dPbM+EUU17vW+AfcHw\n+ekGAACkZ/z4JEn7079Mb1V11kw6dK/P2axjDgAAAFBBA9HpZlznwI1kGghNDTV5+dgTUvfqqrQ8\n+x+7PLb21Vcy9Xs3ZUPHyDx9+pl9nrtUKOTgAeiW87qxIxqyN4OgioVCusa1bH1dXVXK0VNGpLZ6\n2048m9pH5P7Lr0tPTW1OWPg/Uv3a+qw44Y+TfoyhKhUKOWpyR0YPo+5IAJUmmAMAAMNI7/gJW/95\nzaRD0luzd6Ga+pqqVFf5az8AAABQOaM76lPsRzjjzZrqqtPSOLy+WFQsFrLm+HckSUY99rNdHnvY\n7d9I1aYN+eVZH0tvbV2f5x4/smm70MveqKupSkdL39fdmTEdDWl4U9ejupqqHD1lRKrf1MVo9dQj\n88gFV6TY25MkWXHiSbt9nepSMW87pHOv9gqwL1KhBwCAYaT3vzrmJMmrU4/c6/O1NBhjBQAAAFRW\ndVUpI1r3PGwxdph1y3nd5ne8M0ky+tEHd3pM3Ssv5ZC7b81rI8dm2Wl/3uc5q4rFioxwGruH46xK\nxUIm7aR7T2NddY7qGpHSm0JXz5/0Z/n/zvkfWTHjnVl11LTduk5dTSnHTh057AJYAINh7wcXAgAA\nA6Zn/EFb//nVqUft9fmajLECAAAABsHYjoa8vHpDv9eVioWMbq+vwI72Xt0hk7J2/MEZ+fOHU+jZ\nknJp+1+tvuW2r6e0eVOe+NBf7Vbn4wmjmirS3XhES11qq0vZ1N3Tr3UTRzWnZhfde1oba3LEpI4s\nffa36S2Xt77/6zM/ml/no32ev5Bk7IjGTB7bnOqqgesSBLAv0TEHAACGkXJ7R3rrfl+MevVQHXMA\nAACAfUNHS13qavofvBjd3pCq0vD8lWVzQ01eOvaEVL+2Pu2//vl2n9e/tCJd/3p71o2dkGf/9H/r\n83w1VcUcNKoy3YEKhUK/u+bUVpd2az8jWuty2IS2fu+po7k2098yKodOaBPKAQ5ow/OnHAAAHKgK\nhWwZf1B6q6qzZtKhe3eqJE2COQAAAMAgGdvR/9DJno5gGgz1tVX57XFvT5KM/vefbff5ETd/LaXu\n7jzxF/97ylV912Amjm5OqVi5X8+O7WhMoe/Dtpo8tmW39zO6oyFTxrXu1rENtVV56+QROXpKZxrr\n1KYAjLICAIBhZs3Cq/PUL57drfbHu9JYV13RYg8AAADAG43rbEx1VTHrNnRn3YburN/QnZ43jD96\ns+b6mjQP8zHcG9/+jpQLhYz69wfzyw+dv/X9xhefz6T/9d387qDJWX7S6X2ep666lHGdlemW87ra\nmlJGtNZl1ZqNfR7bVFfd7xFiE0Y1ZfOWnjz/0rodfl5dKubgMc0Z19mYYqE/ESGA/ZtgDgAADDd/\ncnJWdK5IdlG42h1N9b6RBAAAAAye6qriNuGTcrmcDZu2ZO2G7qx7rXtrYKe7pzdJMq5z+HbLeV3D\n2NFZPeXwjPjlYylt3JCe/xpBfsRNf5diz5Y8MfvjSanvMU0Hj2kelLDKuBGNuxXMmTK+NYU92M+U\nca3ZsqU3L/72ta3vFf9rjNakMS2prvIlMYA3E8wBAIBhqL25Nq/8ru8iyq40Nw7vb5wBAAAA+7dC\noZCGuuo01FVndPsf3t+4eUvWbehOe3Pt0G1uNzU31GTlsSek/akn0vmLR7Ny+tvT/NwzOfjeu7Jm\n0tQ8/85393mOhtqqjOkYnBBSe3Nt6mpK2bi5Z6fHdDTX7dWf/aET2tLd05tVazamo7k2U8a3GlkF\nsAsiiwAAMAz1t5XwjjQ3KIgAAAAAw09dTVU6W+v3iRHcLY3VefnYE5Mkox57MElyxE1/m0Jvb37x\n4U8ku3EPk8a27FF3mj1RKBQybsTOR2YVkkwZ37LX1zji4I68bUpnjp7SKZQD0Ifh/9MOAAAOQJ2t\n9anai+JUsVAwygoAAABgL5WKxWw4bkZ6q6oz+tEH07LsyUz46T159ZAjsuLtJ/e5vrm+OqPa9v4L\nWP0xpqNhp2OzxnQ0DEiQplgs7BMdjwCGA8EcAAAYhorFQka21e3x+sa6qkGZWw4AAACwv2vsbMuq\nI45J29O/zDF/f2UK5XJ+8ZefSHaj9jJ57N51p9kTNdWljGjdvq5UKhQyaQj2A3CgE8wBAIBham9m\njzc31AzgTgAAAAAOXC2NNXnpmBNSKJcz+rGf5ZXD35b/PP6dfa5ra6xNR8uef/Fqb+xonNWE0U2p\nrS4NwW4ADmyCOQAAMEy1NtWmvqZqj9Y2NxhjBQAAADAQWhqq89KxJ259/Yu//GSf3XKKhUImjxu6\n7jTtzbVpqP1DXam2qpQJo5qGbD8ABzLBHAAAGMZGd+zZDHIdcwAAAAAGRkNdddYecXReGzk2/zn9\nHduEdHakulTM0VNGpLVxaOszY9/QNWfS2OaUin41DDAU9uzrtwAAwKAY3d6QZ/9zbb/WlAqFNNb5\nqz4AAADAQGlqacz3/89/SW+ptMtuOc311Tlyckfq9rAL8kAa01GfZS/+LvW1VXs1Mh2AvTP0PxEA\nAICdqq+tSmtjTdas37zba5oaqlPoo50yAAAAALuvpbE6v127687Go9vqc+jEtmHTmaa6qpSRrXUZ\n1d6gVgQwhARzAABgmBvT0dCvYI4xVgAAAAADq2UX9ZZCksljWzJxdPPgbWg3dY1rTW1Naai3AXBA\nGx5xTQAAYKdGttWn1I9vNTU3VFdwNwAAAAAHnpbGHQdzqorFvLVrxLAM5SQRygEYBgRzAABgmKsq\nFTOitW63j2+u1zEHAAAAYCBVlYppqN12GEljXXWOO2xkOlp2v24DwIFHMAcAAPYBYzoaduu4qmIx\nDXUm1gIAAAAMtDeOs+psrcuxUztTX6sOA8CuCeYAAMA+oL25NrVVfbceNsYKAAAAoDJeH2d18Ojm\nHDV5RKpKftUKQN/8tAAAgH1AoVDIqPb6Po9rbjDGCgAAAKAS2ppqctSkjkwe2zLUWwFgHyKYAwAA\n+4jRuzHOSsccAAAAgMpoqKtOZ1vfX5wCgDcSzAEAgH1EU311mup2HbwRzAEAAAAAgOFDMAcAAPYh\nY3bRNaemqpi6mqpB3A0AAAAAALArgjkAALAPGdVen2KhsMPPmhtqBnk3AAAAAADArgjmAADAPqSm\nupT25todfmaMFQAAAAAADC+COQAAsI8ZvZNxVs31OuYAAAAAAMBwIpgDAAD7mM6WulQVt/+rvI45\nAAAAAAAwvAjmAADAPqZYLGRUe/0279VVl1JTXRqiHQEAAAAAADuyW8Gcxx9/PLNnz97u/R/96Ed5\n//vfnzPOOCO33357kmTz5s351Kc+lQ9+8IM555xz8uyzzyZJli9fnlmzZuWss87KggUL0tvbO3B3\nAQAAB5g3j7NqbjDGCgAAAAAAhps+gzk33HBD5s2bl02bNm3zfnd3d6688sr8wz/8Q2688cZ8+9vf\nzqpVq3L77benoaEht99+e+bNm5crrrgiSXLllVdmzpw5ueWWW1Iul3PvvfdW5o4AAOAA0NpYk/qa\nqq2vjbECAAAAAIDhp6qvAyZOnJjrrrsuF1100TbvP/3005k4cWJaW1uTJMcdd1wefvjhPPXUU5k5\nc2aSpKurK08//XSSZOnSpTn++OOTJDNnzsz999+fU045pc8NjhzZ3L87AgCAA8RbpvTkqedXJ0km\nTWjPiNb6PlYAMJjUNAAAAIB9kZrGwOozmHPqqafmN7/5zXbvr1u3Ls3Nf/iX0djYmHXr1uXwww/P\nj3/845x88sl5/PHHs3LlyvT09KRcLqdQKGw9du3atbu1wZdf3r3jAADgQFOTctau25gk2bxhc17e\nvGWIdwTA60aObFbTAAAAAPY5ahp7Zldhpj6DOTvT1NSU9evXb329fv36NDc35+STT87TTz+ds846\nK9OmTcuRRx6ZUqmUYrG4zbEtLS17emkAACBJfW1V2hprs3lLT6pKfU6pBQAAAAAABtkeV++nTJmS\n5cuXZ/Xq1dm8eXMeeeSRHHvssfn5z3+eE088MbfeemtOO+20TJgwIUlyxBFHZMmSJUmSxYsXZ/r0\n6QNzBwAAcAAb3VGf5vrqod4GAAAAAACwA/3umHP33XfntddeyxlnnJG5c+fm3HPPTblczvvf//6M\nHj061dXVufbaa/O1r30tzc3NWbRoUZLk4osvzvz58/OlL30pXV1dOfXUUwf8ZgAA4EAzsq0+5fJQ\n7wIAAAAAANiRQrk8vMv4ZpcBAMCu9ZbLKRYKQ70NAN7APHYAAABgX6SmsWdGjmze6Wd7PMoKAAAY\nHoRyAAAAAABgeBLMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAA\nAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAA\nAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDM\nAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nCiiUy+XyUG8CAAAAAAAAAAD2NzrmAAAAAAAAAABABQjmAAAAAAAAAABABQjmAAAAAAAAAABABQjm\nAMNWb29vLrvsspxxxhmZPXt2li9fnldeeSXnn39+PvShD+XMM8/Mc8891+eaJFm+fHlmzZqVs846\nKwsWLEhvb+9Q3BIwCB5//PHMnj07SfLLX/4yZ511VmbPnp1zzz03q1at2uZYzwwg2f658cEPfjCz\nZs3KJZdcst1//54bAMDuUNMA9oSaBtAf6hkA+w7BHGDY+uEPf5jNmzfn29/+dj71qU/lqquuyjXX\nXJPTTz89N998c+bMmZNnnnmmzzVJcuWVV2bOnDm55ZZbUi6Xc++99w7FLQEVdsMNN2TevHnZtGlT\nkmTRokWZP39+brzxxpxyyim54YYbtjneMwN483Pjq1/9aj7+8Y/n1ltvzebNm/OTn/xkm+M9NwCA\n3aGmAfSXmgbQH+oZAPsWwRxg2Pq3f/u3/NEf/VGS5JhjjskvfvGLPProo1m5cmXOPvvs3H333Tn+\n+OOTJBdddFFWrFixwzVJsnTp0q3Hzpw5Mw888MAQ3BFQaRMnTsx111239fWXvvSlHH744UmSnp6e\n1NbWJvHMAP7gzc+Nww8/PKtXr065XM769etTVVWVxHMDAOgfNQ2gv9Q0gP5QzwDYtwjmAMPWunXr\n0tTUtPV1qVTK8uXL09LSkn/8x3/M2LFjt35T5POf/3zGjRu3wzVbtmxJuVxOoVBIkjQ2Nmbt2rWD\nezPAoDj11FO3/k9nkowaNSpJ8uijj+amm27K2WefncQzA/iDNz83Jk2alEWLFuXd7353XnnllcyY\nMSOJ5wYA0D9qGkB/qWkA/aGeAbBvqer7kIHT29ubyy+/PL/+9a9TU1OThQsXJknmzp2bQqGQqVOn\nZsGCBSkWi7tcc/DBB2f58uW7XAfs+5qamrJ+/fqtr3t7e9PZ2ZmTTjopSXLSSSfly1/+cp9rqqqq\ntnk+rF+/Pi0tLRXePTBc/Ou//mv+/u//Pl//+tfT0dGxzWeeGcCbLVq0KDfffHOmTp2am2++OVdd\ndVUWLFiw9XPPDThwqWkA/aGmAQwENQ1gd6lnALuipjH0BvVPaEfzC/uaXWjmIRy4pk2blsWLFydJ\nHnvssRx66KE57rjj8tOf/jRJ8vDDD+eQQw7pc02SHHHEEVmyZEmSZPHixZk+ffpg3QYwhO68887c\ndNNNufHGGzNhwoTtPvfMAN6stbV16zfIRo0ald/97nfbfO65AQcuNQ2gP9Q0gL2lpgH0h3oGsCtq\nGkNvUIM5O5pfuLPZhWYeAqecckpqampy5pln5sorr8wll1ySiy++OHfeeWfOPPPM3Hffffmrv/qr\nJH94ZuxoTZJcfPHFue6663LGGWeku7s7p5566lDeGjAIenp6smjRoqxfvz6f+MQnMnv27HzlK19J\n4pkB7NzChQtzwQUX5C/+4i9yyy235IILLkjiuQGoaQD9o6YB7A01DaC/1DOAXVHTGHqDOspqZ/ML\ndzS78POf//wu15h5CPu/YrGYv/mbv9nu/W9+85vbvff6MyPJDtdMnjw5N91008BuEBiWDjrooNx+\n++1JkoceemiHx3hmAG/0xufG9OnTc9ttt213jOcGoKYB9IeaBrAn1DSA/lDPAHaXmsbQG9SOOTua\nX9jX7EIzDwEAAIChpqYBAAAA7IvUNIbeoAZzdjS/sK/ZhWYeAgAAAENNTQMAAADYF6lpDL1CuVwu\nD9bFent7c/nll+fJJ59MuVzO5z73uRSLxcyfPz/d3d3p6urKwoULUyqVctFFF2XOnDkZM2bMdmum\nTJmSZcuW7XAdAAAAwEBT0wAAAAD2RWoaQ29QgzkAAAAAAAAAAHCgGNRRVgAAAAAAAAAAcKAQzAEA\nAAAAAAAAgAqoqvQFuru785nPfCYvvPBCNm/enPPPPz9jxozJggULUlNTk8MPPzyXXnppisVtM0Jz\n587N0qVL09bWli1btqS9vT2XXHJJJkyYUOktAwAAAKSnpyfz5s3LsmXLUigU8tnPfja1tbWZO3du\nCoVCpk6dmgULFqhpAAAAAMPGjuoZhx56aJLkc5/7XCZPnpxZs2Ztt049o3IqHsy566670tbWlmuu\nuSarV6/Oe9/73nR0dGTevHmZNm1avvzlL+fuu+/Oe97znu3WXnjhhZk5c2aS5JFHHsmcOXPyne98\np9JbBgAAAMiPf/zjJMltt92WJUuW5Mtf/nLK5XLmzJmTGTNm5LLLLsu9996bU045Zbu1ahoAAADA\nUNhRPWPRokW56KKL8uyzz+bcc8/d6Vr1jMqoeDDntNNOy6mnnpokKZfLKZVKWblyZaZNm5YkmTZt\nWu69994dBnPeaPr06amurs7y5ctTU1OT+fPnZ9OmTamtrc0VV1yRsWPH5u/+7u/ywx/+MD09PZk1\na1bOPPPMSt8eAAAAsJ86+eST8653vStJsmLFirS0tOSBBx7I8ccfnySZOXNm7r///h0Gc95ITQMA\nAAAYLDuqZ6xfvz6f+MQnsnjx4t0+j3rGwCn2fcjeaWxsTFNTU9atW5dPfvKTmTNnTiZMmJCHHnoo\nye/TWhs2bNitc40YMSKvvvpqrr766syePTs33nhjzj333HzhC1/IE088kcWLF+eOO+7IHXfckWef\nfTblcrmStwYAAADs56qqqnLxxRfniiuuyOmnn55yuZxCoZDk9zWPtWvX7tZ51DQAAACAwfLmesaE\nCRPytre9rd/nUc8YGBXvmJMkL774Yj7+8Y/nrLPOyumnn54jjzwyixYtyt/+7d9m+vTpqampyfe/\n//3cfPPNXfIrcwAAB2BJREFUSZKLL754h+dZsWJFxowZkyeffDLXX399vvGNb6RcLqeqqirLli3L\n0UcfnVKplFKplLlz5w7GrQEAAAD7uauvvjqf/vSn88EPfjCbNm3a+v769evT0tKipgEAAAAMO2+s\nZ/zLv/xLGhoatvlcPWPwVDyYs2rVqpxzzjm57LLLcuKJJyZJfvrTn+YLX/hC2tvbc8UVV2TmzJl5\n5zvfmdNOO22n57n//vtTV1eXMWPGpKurK+ecc06mTZuWp59+Og8//HC6urpy6623pre3Nz09PTnv\nvPNy/fXXp6amptK3CAAAAOyHvve972XlypX52Mc+lvr6+hQKhRx11FFZsmRJZsyYkcWLF+eEE07I\naaedpqYBAAAADAs7qmcUi9sPU1LPGDyFcoV7CS1cuDD33HNPurq6tr73kY98JNdee23q6+szY8aM\nXHDBBdutmzt3bpYuXZq2trYUi8U0NjZmwYIFGT16dJ5//vlcfvnl2bRpUzZu3JhLL700xx57bK6/\n/vr86Ec/Sm9vb2bNmpX3ve99lbw1AAAAYD/22muv5ZJLLsmqVauyZcuWfPSjH82UKVMyf/78dHd3\np6urKwsXLkypVNpmnZoGAAAAMFR2VM84+eSTkyTXXXddOjs7M2vWrO3WqWdUTsWDOQAAAAAAAAAA\ncCDavl8RAAAAAAAAAACw1wRzAAAAAAAAAACgAgRzAAAAAAAAAACgAqoG+4Ld3d35zGc+kxdeeCGb\nN2/O+eefn0MOOSRz585NoVDI1KlTs2DBghSLv88M/fa3v82sWbNy1113pba2NuVyOTNnzsykSZOS\nJMccc0w+9alPDfZtAAAAAAAAAADALg16MOeuu+5KW1tbrrnmmqxevTrvfe9785a3vCVz5szJjBkz\nctlll+Xee+/NKaeckvvuuy9f/OIX8/LLL29d/9xzz+XII4/M1772tcHeOgAAAAAAAAAA7LZBH2V1\n2mmn5a//+q+TJOVyOaVSKUuXLs3xxx+fJJk5c2YeeOCB32+uWMw3v/nNtLW1bV2/dOnSrFy5MrNn\nz85HP/rRPPPMM4N9CwAAAAAAAAAA0KdBD+Y0Njamqakp69atyyc/+cnMmTMn5XI5hUJh6+dr165N\nkrz97W9Pe3v7NutHjhyZ8847LzfeeGM+9rGP5cILLxzsWwAAAAAAAAAAgD4NejAnSV588cV8+MMf\nznve856cfvrpKRb/sI3169enpaVlp2uPOuqo/Mmf/EmSZPr06XnppZdSLpcrvmcAAAAAAAAAAOiP\nQQ/mrFq1Kuecc04uvPDCfOADH0iSHHHEEVmyZEmSZPHixZk+ffpO13/1q1/Nt771rSTJr371q4wd\nO3Zrtx0AAAAAAAAAABguCuVBbjezcOHC3HPPPenq6tr63qWXXpqFCxemu7s7XV1dWbhwYUql0tbP\nTzrppNxzzz2pra3NmjVrcuGFF+a1115LqVTKZZddlilTpgzmLQAAAAAAAAAAQJ8GPZgDAAAAAAAA\nAAAHgkEfZQUAAAAAAAAAAAcCwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwA\nAAAAAAAAAKgAwRwAAACA/dDcuXPzT//0Tzv9/JJLLskLL7wwiDsCAAAAOPAI5gAAAAAcgJYsWZJy\nuTzU2wAAAADYrxXKKjAAAAAA+7xyuZyrrroqP/nJTzJq1Kj09PTkAx/4QJYvX54HH3wwa9asSXt7\ne6677rp897vfzVe+8pVMnDgxN998c55//vlceeWV2bhxY9rb2/PZz342EyZMGOpbAgAAANjn6ZgD\nAAAAsB/4wQ9+kCeeeCL//M//nGuvvTbPPfdcenp68swzz+S2227LD37wg0ycODF33313zjvvvIwa\nNSpf//rX09jYmHnz5uWLX/xivvvd7+YjH/lI5s+fP9S3AwAAALBfqBrqDQAAAACw9x566KH86Z/+\naaqrq9PR0ZGZM2emVCrl4osvzh133JFly5blsccey8SJE7dZ9+yzz+b555/P+eefv/W9devWDfb2\nAQAAAPZLgjkAAAAA+4FCoZDe3t6tr6uqqrJ69eqce+65Ofvss3PqqaemWCzmzVPNe3t7c9BBB+XO\nO+9MkvT09GTVqlWDuncAAACA/ZVRVgAAAAD7gRNPPDHf//73s3nz5qxZsyb33XdfCoVCjj/++Mya\nNSuHHHJI7r///vT09CRJSqVSenp60tXVlTVr1uSRRx5JknznO9/Jpz/96aG8FQAAAID9ho45AAAA\nAPuBk08+OT//+c/zZ3/2Z+ns7MyUKVOycePG/OpXv8rpp5+e6urqHHbYYfnNb36TJHnXu96V8847\nL9/4xjdy7bXXZtGiRdm0aVOamppy9dVXD/HdAAAAAOwfCuU39y8GAAAAAAAAAAD2mlFWAAAAAAAA\nAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAA\nAAAAAABQAYI5AAAAAAAAAABQAf8/+TJBU5zSnn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid')\n", + "high_index = df.columns.tolist().index('high_bid')\n", + "low_index = df.columns.tolist().index('low_bid')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close_bid'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back_rows=20)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 20, 20) 2960 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 20, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 20, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 20, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 7,745\n", + "Trainable params: 7,745\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.26399, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.26399 to 0.17870, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.17870 to 0.07720, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.07720 to 0.02238, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.02238 to 0.01324, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error improved from 0.01324 to 0.01135, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.01135 to 0.00217, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00217 to 0.00062, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00062 to 0.00048, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error improved from 0.00048 to 0.00037, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00012: val_mean_squared_error improved from 0.00037 to 0.00028, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error improved from 0.00028 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "Epoch 00016: val_mean_squared_error improved from 0.00020 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00017: val_mean_squared_error improved from 0.00020 to 0.00018, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error improved from 0.00018 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error improved from 0.00016 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error improved from 0.00016 to 0.00015, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error improved from 0.00015 to 0.00014, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error improved from 0.00014 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00035: val_mean_squared_error improved from 0.00013 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error improved from 0.00013 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00011 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error improved from 0.00011 to 0.00010, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error improved from 0.00010 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00009 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error improved from 0.00009 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error did not improve\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n", + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00118: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00126: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00175: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error did not improve\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Wall time: 8min 11s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "#simname = \"15_min_replication_1\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=200, batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 200\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmYpGV99+9vVVcv1dOzMTMsCiI7KBoERNRBHyWKC7Io\ni0Q2IRr/xpjHJQmo8CAicgQxJBiMII5CJKjjCgJucLiMijIRBXFgQGNEZBtn66W6u7rq/6JnSkdm\nYJbuvgfqPF/dXXXfVb+eoy9fcHy8rlKz2WwGAAAAAAAAAACYcuWiBwAAAAAAAAAAgHYl3gEAAAAA\nAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAA\nAJ5A7rvvvuy1117Za6+9cvbZZxc9DgAAAABbSLwDAAAAAAAAAAAFEe8AAAAAAAAAAEBBxDsAAAAA\nAAAAAFAQ8Q4AAAAAAAAAABREvAMAAAAAAAAAAAWpFD0AAAAAABNr6dKl+cxnPpNbbrklDzzwQJrN\nZrbddts897nPzQknnJB99913g8/W6/V89atfzfXXX58777wzK1euzLRp0/KUpzwlBx98cE444YTs\nvPPOE/4sAAAAQLsqNZvNZtFDAAAAALBx7rvvvhx66KFJkuOPPz7nnntu671ms5mLLrooV1xxRRqN\nxnqfL5VKecMb3pAzzzwzlcq6/7+u1atX581vfnP++7//e4Pf39HRkfe+9715wxveMGHPAgAAALQz\nO+8AAAAAPEmcf/75ufLKK5Mks2fPzqmnnpoDDjgg5XI5P//5z/PJT34yDz30UP7zP/8zAwMDueCC\nC9Z5/kMf+lArvjnmmGPyspe9LHPmzMnKlSvz4x//OFdddVUGBwdz3nnn5YADDsjee+89Ic8CAAAA\ntDPxDgAAAMCTwOLFi1vhzi677JIrr7wy2267bev9Aw44IEcffXROO+20/OIXv8iXvvSlvPSlL83L\nX/7yJMnIyEiuvfbaJMmxxx6b8847b53Pnz9/fg444IC8+c1vTqPRyOc///mcddZZW/wsAAAAQLsT\n7wAAAAA8CVxxxRWt63/+539eJ9xZa9asWbn44ovzile8ImNjY7n88stb8c6qVasyMjKSJNl5553X\n+x0vfvGLc9JJJ2XmzJl59rOf3Xp9S54FAAAAaHfiHQAAAIAnuHq9nh/96EdJkmc+85mPGcc87WlP\ny/z58/Od73wnt99+e5YvX57Zs2dnzpw5mTVrVlasWJGPf/zjmTt3bl75ylemp6dnneff9773Peoz\nt+RZAAAAgHZXLnoAAAAAALbM/fffn4GBgSTJX/zFXzzu/WvvaTabWbp0aZKkVCrlr//6r5Mkq1ev\nzhlnnJGDDjoop512Wi6//PL88pe/TLPZXO/nbcmzAAAAAO3OzjsAAAAAT3ArVqxoXc+ZM+dx7587\nd27reuXKla3rN73pTWk0Grn00ktTq9UyPDycRYsWZdGiRfnwhz+cbbfdNocddlhOPfXU7Ljjjut8\n5pY8CwAAANDO7LwDAAAA8AS3qbvajI2Nta5LpdI67/3N3/xNvvvd7+aDH/xgDj300EybNq313kMP\nPZSrrroqr3rVq3LTTTc96nO35FkAAACAdmXnHQAAAIAnuJkzZ7auly1b9rj3/+k9s2bNWu/nHXPM\nMTnmmGNSr9dz++23Z9GiRbnxxhuzdOnSDA8P54wzzshNN92Uvr6+CXsWAAAAoB3ZeQcAAADgCW6n\nnXZKb29vkuRnP/vZ495/2223ta532WWX1vUDDzyQH/zgB6nX663XKpVKnvOc5+Rtb3tbrr322hx2\n2GFJxo/bWrx48YQ8CwAAANDOxDsAAAAAT3AdHR05+OCDkyS/+MUvcscdd2zw3t/85jf54Q9/mCTZ\ne++9M2fOnCTJpZdemhe/+MV54xvfmJ/85CfrfbZUKuWQQw5p/TwyMrLFzwIAAAC0O/EOAAAAwJPA\nG9/4xtb1P/7jP+aRRx551D0rV67MO97xjoyNjSVJTjvttNZ7L3nJS1rXH/nIRzI8PPyo5xuNRq6/\n/vokSblczjOe8YwtfhYAAACg3VWKHgAAAACALXfQQQflpJNOylVXXZV77703RxxxRE455ZQccMAB\nKZVKuf3227NgwYI88MADSZLDDz88Rx55ZOv5ffbZJ4cddli+/vWv5+c//3mOOOKInHzyydl1113T\n2dmZ++67L9dcc01++tOfJkmOPvroPPWpT93iZwEAAADaXanZbDaLHgIAAACAjXPffffl0EMPTZIc\nf/zxOffcc1vvNRqNXHjhhVmwYEE29J98SqVSTj311LzrXe9KZ2fnOu+tXr06b3nLW3Lrrbc+5gwv\nf/nLc9FFF6Wrq2tCngUAAABoZ+IdAAAAgCeQx4p31lqyZEmuvvrq3HLLLXnwwQdTLpfzlKc8Jc97\n3vNy7LHHZu+9997g5zcajVx33XW5/vrr88tf/jLLli1LR0dH5s6dm/333z9HHnlk5s+fP+HPAgAA\nALQr8Q4AAAAAAAAAABSkXPQAAAAAAAAAAADQrsQ7AAAAAAAAAABQEPEOAAAAAAAAAAAURLwDAAAA\nAAAAAAAFEe8AAAAAAAAAAEBBKkUPsKUefnh10SPwZ2bP7s3y5YNFjwFMMWsf2pO1D+3J2of2ZO1D\ne7L2oT1Z+9CerH1oT9b+1Jk3b/oG37PzDhOuUukoegSgANY+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWfvQnqz9rYN4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgH\nAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAAAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi\n3gEAAAAAAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACA\ngoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgHAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAA\nAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi3gEAAAAAAAAAgIKId5hQt/x+cd5xw/tTq9eKHgUA\nAAAAAAAAYKsn3mFC/Xb17/K7VQ/k4aFlRY8CAAAAAAAAALDVE+8woaqVniTJ4OhQwZMAAAAAAAAA\nAGz9xDtMqN7O3iTJUH3T45177lk60eNskre97c2ZP//AvPSlLyh0DgAAAAAAAACgfYh3mFCtnXfq\ntY1+pr+/Pxdf/OGcfvqJkzUWAAAAAAAAAMBWqVL0ADy5VCvVJMlgfXCjn7nkko/ka1/76mSNBAAA\nAAAAAACw1RLvMKF618Q7Q5uw806j0ZiscTbJRz96WdEjAAAAAAAAAABtxrFZTKjezrXxzlDBkwAA\nAAAAAAAAbP3EO0yoaqUnSTI4Kt4BAAAAAAAAAHg8js1iQv3x2KzHj3euuOLjWbDg8nVemz//wCTJ\nfvvtn49+9LJ88IPn5IYbrsvuu++ZT3ziylx++cdy443XZfXq1ZkzZ15e8pJD89a3vr31/PDwcL7+\n9evzwx8uytKld2XlyhWp1+uZPn1Gdtllt7zwhfPzmtccnWq1+qh53va2N+e22/47XV1duemmH6x3\nrre//Z057ri/yne+c1OuvfbLufvuu7J69arMnr1N9t//wBx33AnZc8+9N+0fDQAAAAAAAABoW+Id\nJlR3R3fKpXIG67UJ/+wPfODsfPvb32j9/Pvf/y49PT2tn++6a0nOPPNdeeihBx/17B/+sCx/+MOy\nLF7843zxiwtzySX/kXnztt3kGcbGGnn/+9+Xb37zxnVef+ihB3PjjV/LN75xQ9797jNzxBFHb/Jn\nAwAAAAAAAADtR7zDhCqVSpnWWc3gRuy8c9RRr8uLXvR/8olP/EcWLfpekmTBgs8kSarV3nXu/dWv\n7sk999ydZz3rL3LSSW9MT09PFi36Xl71qiOSJCtXrsg73vG3WbVqZTo6OvKqV70mL3jB/MyePSer\nV6/M0qV353OfuzorVqzIfff9bz760Yvz/vefv8m/3zXXXJVly5bl6U/fJccd91fZbbc9snr1qtxw\nw7X59re/mUajkYsvvjAHHfT8bL/99pv8+QAAAAAAAABAexHvMOF6u3ozNPL48c6cOXMzZ87czJgx\ns/XaHnvstd57G41GnvrUHXPxxf+e7u7x3Xb23//A1vuf/ezVWbVqZZLkb//273PccX+1zvPPf/78\nvPKVh+ekk45Lf39/vve976Rer6dS2bQlsGzZshxwwEH553/+l3R3d7deP/jgF2T69Bn58pe/kJGR\nkXzrWzfmxBNP3aTPBgAAAAAAAADaT7noAXjymdZZzdBG7LyzqV75ysNb4c6fe+SRhzN37rzMmTMn\nr33tceu9Z968bfOc5xyQJBkZGW7FPpvq//7fd68T7qx15JGvbV3fc8/SzfpsAAAAAAAAAKC92Hln\nI33upnvykyUPFT3GlHru3tvmuJfuvsnPTevqzUhjNPVGPZXyxP2JPfOZz9rge+95z/9LMr5DT7m8\n4SZtm23mtK5HRkY3eYZ587bNLrvsut73nvrUHVvXg4ODm/zZAAAAAAAAAED7Ee8w4aZ19iZJhuq1\nTO/qm7DP3W677R73nrXhTr1ezwMP/D733/+7/Pa3v8m9996TX/zi9tx77z2te5vNxibPsP32O2zw\nvWq1t3U9Nja2yZ8NAAAAAAAAALQf8c5GOu6lu2/WLjTtqLermiQZrA9NaLzT2/vYn1Wr1fLFL34+\n3/rWjbn33nvWG9CUy+U0Gpse7az1p4HOnyuVSq3rZrO52d8BAAAAAAAAALQP8Q4Trq9rPHAZHB2a\n0M/9kzbmUe6//3d55zvflvvu+23rtc7Ozuy009Oy8867ZK+99s5++x2Qr3/9+nzpS5+f0LkAAAAA\nAAAAADaXeIcJ19s5vvPOUH1i453Hcs45722FO3/5l4flmGOOz957PyOVyrp/4l/5yhembCYAAAAA\nAAAAgMcj3mHCTesc33lnquKdJUvuzJ133pEk2X//A3POOR/c4L0PPvjAlMwEAAAAAAAAALAxykUP\nwJPPtLXHZm1kvFN6rPOwNsKfHpW11177bPC+3//+/tx++89aP4+NjW3R9wIAAAAAAAAAbCnxDhNu\nWteaY7NGaxt1f1dXV+t6cHBwk79v5sxZretbb70l9Xr9UfcsW/ZIzjrrjIyOjrZeGxkZ2eTvAgAA\nAAAAAACYSI7NYsKtPTZrY3femTNnbuv6ssv+Pa94xatTLpez5557b9Tzz372fpkzZ26WLXskS5fe\nnb//+/8vr33tcdl++x2yatXK3Hbbf+drX/tKVqxYsc5zAwP9G/kbAQAAAAAAAABMDvEOE25Tj82a\nP/9F+dSnPpGxsbEsXPjZLFz42Wy33fb5wheu26jnu7u7c9ZZ5+af/ukdGR4ezs9+9tP87Gc/fdR9\nO+30tBx++JH52McuSZL8+te/yrOe9Rcb+VsBAAAAAAAAAEy8SYt3Go1GzjnnnNx1113p6urKeeed\nl5133rn1/nXXXZdPf/rT6ejoyJ577plzzjkn5XI5Rx99dPr6+pIkO+64Yz70oQ9N1ohMkmmda47N\n2sh4Z4899soFF1yUT3/6k7n33nvSaIylUqmkVtu4Y7eS5MADD8qCBZ/Jf/3Xf+bWW3+SRx55KMn4\nkVq77LJrXvKSv8xhh70yY2NjWbDg8tRqtdx00zdzxBFHb/ovCAAAAAAAAAAwQUrNZrM5GR/8jW98\nIzfddFMuuOCC3Hbbbfn4xz+ej33sY0mSWq2Www8/PNdee22q1Wre+c535tWvfnXmz5+f448/Pl/+\n8pc3+nsefnj1ZIzPFpi5TU9OXPj27D17j/zdc95U9DjAFJk3b7r/TYY2ZO1De7L2oT1Z+9CerH1o\nT9Y+tCdrH9qTtT915s2bvsH3ypP1pYsXL84hhxySJNlvv/1yxx13tN7r6urKNddck2p1fIeWer2e\n7u7uLFmyJENDQznttNNy8skn57bbbpus8ZhEXR2d6SxXMlTf+J1zAAAAAAAAAADa0aQdm9Xf3986\n/ipJOjo6Uq/XU6lUUi6XM3fu3CTJVVddlcHBwbzwhS/M3XffndNPPz3HHnts/ud//idvetObcuON\nN6ZS2fCYs2f3plLpmKxfg800ras3I83hxyzHgCcfax7ak7UP7cnah/Zk7UN7svahPVn70J6sfWhP\n1n7xJi3e6evry8DAQOvnRqOxToTTaDRy4YUX5te//nUuueSSlEql7LLLLtl5551b17NmzcrDDz+c\nHXbYYYPfs3z54GT9CmymefOmp7vck9XDA7bXgjZiSz1oT9Y+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWftTp5Bjs/bff/9897vfTZLcdttt2XPPPdd5/+yzz87w8HAuvfTS1vFZCxcuzAUXXJAkefDBB9Pf\n35958+ZN1ohMot5KNYP1oTSbzaJHAQAAAAAAAADYak3azjsve9nLsmjRorz+9a9Ps9nM+eefn2uv\nvTaDg4PZd999s3Dhwhx44IE55ZRTkiQnn3xyjjnmmJx55pk54YQTUiqVcv755z/mkVlsvaqdPWk0\nGxlpjKa7o6vocQAAAAAAAAAAtkqTVsaUy+Wce+6567y22267ta6XLFmy3ucuuuiiyRqJKTLWaKa3\nMr6b0uDooHgHAAAAAAAAAGADJu3YLNrTtxffl5P+3w3pTHeSZKheK3giAAAAAAAAAICtl3iHCfWH\n1bWsHhxNfbQjSTJYHyp4IgAAAAAAAACArZd4hwk1u298x51mffxEtiHxDgAAAAAAAADABol3mFCz\n1sQ79eHxeGdwVLwDAAAAAAAAALAh4h0m1Ozp4/HOyPD4n9ZQvVbkOAAAAAAAAAAAWzXxDhNq7c47\ntaHxP63B+mCR4wAAAAAAAAAAbNXEO0yomX1dSZLBgfGf7bwDAAAAAAAAALBh4h0mVKWjnFl93env\nbyZJButDBU8EAAAAAAAAALD1Eu8w4baZ2ZNVq8avh0bFOwAAAAAAAAAAGyLeYcJtM6Mnw7VSEjvv\nAAAAAAAAAAA8FvEOE27OzJ4k5XSVuzJUrxU9DgAAAAAAAADAVku8w4SbM7OaJOkq99h5BwAAAAAA\nAADgMYh3mHDbzOhJklSaXRkS7wAAAAAAAAAAbJB4hwk3fmxWUm52pVYfTqPZKHgiAAAAAAAAAICt\nk3iHCbc23mnWK2mmmVq9tlHP3XPP0skca4v8/vf3Z3BwoOgxAAAAAAAAAIAnGfEOE27tsVmNeiVJ\nMvg48U5/f38uvvjDOf30Eyd9tk01MjKSBQsuz4knHpuVK1cWPQ4AAAAAAAAA8CRTKXoAnnxmTOtK\npaOU0eGOpCsZqg895v2XXPKRfO1rX52i6TbN1VdfmSuu+HjRYwAAAAAAAAAAT1J23mHClUqlzOrr\nzkht/M9rcPSx451GozEVY22WsbGxokcAAAAAAAAAAJ7ExDtMill93akNjf95Pd7OOwAAAAAAAAAA\n7Uq8w6SYNb07jfr4qWyD9VrB0wAAAAAAAAAAbJ0qRQ/Ak9Osvq40H+hMkgzWB9d7zxVXfDwLFly+\nzmvz5x+YJNlvv/3z0Y9ets57t9zyw1x//Vdzxx23Z/nyP6Srqzs77rhTnv/8F+Z1rzs+s2bN2uA8\nDz/8UL74xc/nllt+mN/+9n9Tr49mxoyZ2W23PfLCFx6Sww8/It3dPa37r7/+2px//vvX+Yxjjz0i\nSbL99jtk4cJrN/JfAgAAAAAAAABgw8Q7TIrZ07uTsfE/r6Et3HlnaGgoH/jA2fnud29e5/WRkZEs\nWXJnliy5M5/73NU566wPZP78Fz3q+cWLf5L3vOfdGRgYWOf1ZcseybJlj+THP/5h/uu/rspHPvLR\nPO1pO2/RrAAAAAAAAAAAm0K8w6SY1dedZn3NzjujQ+u956ijXpcXvej/5BOf+I8sWvS9JMmCBZ9J\nklSrvUmSRqORM854ZxYv/kmS5AUvOCSHHfaq7LDDDhkcHMzixT/Jl770+fT39+e97/2HXHTRJTnw\nwINa37F69eqcddYZGRgYyKxZs/OGN5ySffZ5Rrq6uvLggw/ka1/7an70ox/kgQd+n/e//335xCeu\nTKlUyvz5L8qCBZ/Jl7/8hXzlK19Mklx44cWZO3deKpXOyflHAwAAAAAAAADajniHSTG770933ll/\nvDNnztzMmTM3M2bMbL22xx57rXPPwoXXtMKdd7/7zBx11OvWef/AAw/K4Ycfmbe+9fQsW7Ys55//\n/nzuc19JpTL+3d///neyatXKJMn551+YZz97v9azz3jGvnnJS/4yZ511Rm6++Vu5665f5q67lmTv\nvffJjBkzM2PGzGyzzZzW/U9/+q7ZYYenbO4/CQAAAAAAAADAo5SLHoAnp1nT/7jzzobincfTaDRy\nzTXjO/EcfPALHhXurPXUp+6Yt7zl75IkDz30YL7znZta7y1b9kjreqednrbe508++Y056qhj8ta3\n/n2mT5++WbMCAAAAAAAAAGwOO+9spC/ec11++tDtRY8xpZ6z7bPy2t0P36xnZ/V1JY2OpFnK4GbG\nO/feuzQPPfRgkuS5z33eY9578MEvaF3feutPcuihL0+S7Lzz01uvv+c9/5C3v/2d2WefZ67z7B57\n7JV3v/uMzZoRAAAAAAAAAGBLiHeYFD1dlVS7Kyk1OjNYr23WZ9x9912t60su+Zdccsm/bNRz99//\nu9b1858/P7vttkfuvXdpbr/9Z3nTm07J3Lnz8tznPi8HHnhQnvvc561zNBYAAAAAAAAAwFQS72yk\n1+5++GbvQtOuZvV1Z0W9kqHRzdt5Z+XKFZv13OrVq1rXlUolF130b7nggg/kRz/6QZLkkUcezg03\nXJcbbrgupVIp++zzzLziFa/Oa15zVDo7OzfrOwEAAAAAAAAANod4h0kze3p3/lCvbPaxWWNjY63r\nd73rjOy777M26rnu7u51fp47d14+/OF/y69+dU9uvvnb+eEPF+Xuu5ek0Wik2WzmzjvvyJ133pGv\nfOWL+dd//VhmzZq1WfMCAAAAAAAAAGwq8Q6TZlZfd5qjnRltrMpoo57O8qb9uU2fPqN1PW1aX/bY\nY68tmmfXXXfPrrvuntNP/5usWrUqP/3prfnRj36Qm2/+Vvr7+3PvvUvzsY/9W8488+wt+h4AAAAA\nAAAAgI1VLnoAnrxmT+9OxsaDnVq9tsnP77rrbq3rO++8/THvXb58eT75yctyww3XZenSu1uvj46O\n5le/ujdLlvxynftnzJiRF7/4pfmnf3pfPvWp/0pf3/QkyQ9+8P1NnhMAAAAAAAAAYHOJd5g0s/q6\n06x3JkkGRwc3eF+pVFrv6/vs88zMmDEzSfLNb96Y/v7+DX7GF77w2Xzyk5flgx88J9///ndar594\n4rE5+eTj8973/sMGn91++x2yyy67JklGRobXea9ctkQAAAAAAAAAgMmjTGDSzOrrTnNsTbzzGDvv\ndHV1ta4HB/8Y+XR2duZ1rzsuSbJy5cp84ANnZWRk5FHP//znt+Xqq69KknR3d+c1rzm69d4LXnBI\nkuTBBx/INdf853q//ze/+Z/cffeSJMneez9znfc6Oztb10NDGw6QAAAAAAAAAAA2R6XoAXjymjW9\nK6mP/4kN1Yc2eN+cOXNb15dd9u95xStenXK5nD333DsnnnhqFi36Xu6+e0kWLfpe3vjGv8qxx56Q\n3XffM/39q3PrrT/Ol770+daOOW95y99l7tw/ft4JJ5yYG264Nv39/fn3f//X3H77z/LSl7482223\nfQYG+vPLX/4iCxdek+Hh4ZTL5ZxyymkbnO1Tn7oir3/9G9JoNLPvvs+akH8jAAAAAAAAAKC9lZrN\nZrPoIbbEww+vLnoE/sy8edPz8MOr84dVtfzTwmvS9fQ788Zn/lUO3G6/9d6/dOld+eu/PjljY2Ot\n17bbbvt84QvXJUlWrlyRs88+M4sX/2SD39nR0ZHTT/+bnHzyaY96b/Hin+S97/3H9Pdv+G+lp6cn\n73rXGXnlKw9f5/VHHnkkJ5zw2nV23alUKvnmN7+3zq48wB/XPtBerH1oT9Y+tCdrH9qTtQ/tydqH\n9mTtQ3uy9qfOvHnTN/ienXeYNDOmbdzOO3vssVcuuOCifPrTn8y9996TRmMslUoltVotPT09mTlz\nVv71Xz+W73//u/nGN27IL35xe5YvX54k2W677bL//gfmta89Lrvttvt6P/+AA56bq69emC99aWF+\n/OMf5X//9zcZHBzItGl92X77HfK85z0/Rx31umy33faPenbu3Lm5+OJLc9lll+auu+7MyMhIttlm\nTh588IHsuONOE/CvBAAAAAAAAAC0MzvvMOH+tMz7+wVfSH3nW3Lkrq/My5/+koInAyaTKhfak7UP\n7cnah/Zk7UN7svahPVn70J6sfWhP1v7Ueaydd8pTOAdtaHrXtCTJQH3wce4EAAAAAAAAAGg/4h0m\n1czqeLyzeli8AwAAAAAAAADw58Q7TKrZvePxzqraQMGTAAAAAAAAAABsfcQ7TKo5feNnttl5BwAA\nAAAAAADg0cQ7TKo506el2ShnsD5U9CgAAAAAAAAAAFsd8Q6Tavb07qTemdpYrehRAAAAAAAAAAC2\nOuIdJtXsvu40xyoZaQwXPQoAAAAAAAAAwFZHvMOkmjW9O816Z+oZTrPZLHocAAAAAAAAAICtiniH\nSTWtp5JSozMpNTPSGC16HAAAAAAAAACArYp4h0lVKpXSWepOkgyODhY8DQAAAAAAAADA1kW8w6Tr\n6ehJkgyMDBU8CQAAAAAAAADA1kW8w6TrrVSTJA/3ry54EgAAAAAAAACArYt4h0nX19WbJFnWv6rg\nSQAAAAAAAAAAti7iHSbd9O7xeOcPA/0FTwIAAAAAAAAAsHUR7zDpZvVOS5KsqIl3AAAAAAAAAAD+\nlHiHSTend3qSZNXwYMGTAAAAAAAAAABsXcQ7TLo508fjnYGRoYInAQAAAAAAAADYuoh3mHTbTp+R\nJBmsi3civ82KAAAgAElEQVQAAAAAAAAAAP6UeIdJN6valyQZHqsVPAkAAAAAAAAAwNZFvMOk6+no\nTpKMNocLngQAAAAAAAAAYOsi3mHSdZQ7UmpU0iiNZGR0rOhxAAAAAAAAAAC2GuIdpkRnupPKaFb0\n230HAAAAAAAAAGAt8Q5ToqvcnVJHPctXi3cAAAAAAAAAANYS7zAlejqqKVXq+cPqWtGjAAAAAAAA\nAABsNcQ7TInezmqS5OHVqwueBAAAAAAAAABg6yHeYUpM7+5NkvxhQLwDAAAAAAAAALCWeIcpMbNn\nWpJk+WB/wZMAAAAAAAAAAGw9xDtMiZnV8Xhn5dBAwZMAAAAAAAAAAGw9xDtMiWmd48dmrR4ZLHgS\nAAAAAAAAAICth3iHKdFbqSZJBkaH0mw2C54GAAAAAAAAAGDrIN5hSlQrPUmSRmkkA7V6wdMAAAAA\nAAAAAGwdxDtMieqanXfSUc+K/uFihwEAAAAAAAAA2EqId5gSvZ3j8U6pMpoVq8U7AAAAAAAAAACJ\neIcp0tvaeWc0y+28AwAAAAAAAACQRLzDFKlWepIkpUrdzjsAAAAAAAAAAGuId5gS3R3dKaWUdIxm\nRf9I0eMAAAAAAAAAAGwVxDtMiVKplGqlmlJHPcvtvAMAAAAAAAAAkES8wxTq7aymVBnNin7xDgAA\nAAAAAABAIt5hCvVWqilV6lku3gEAAAAAAAAASCLeYQr1VqpJeSyrBmsZazSKHgcAAAAAAAAAoHDi\nHaZMtdKTJGmWR7NqYLTgaQAAAAAAAAAAiifeYcr0dlaTJKXKaJavdnQWAAAAAAAAAIB4hylTrYzH\nO+moZ0W/eAcAAAAAAAAAQLzDlFkb79h5BwAAAAAAAABgnHiHKdO7Nt6x8w4AAAAAAAAAQBLxDlOo\nt9IzftExmhV23gEAAAAAAAAAEO8wdaqdfzw2y847AAAAAAAAAADiHabQ2mOzOrsbWd4/UvA0AAAA\nAAAAAADFq0zWBzcajZxzzjm566670tXVlfPOOy8777xz6/3rrrsun/70p9PR0ZE999wz55xzTpI8\n5jM8sVXXxDvdPY2s+L2ddwAAAAAAAAAAJm3nnW9961sZGRnJZz/72bzrXe/KBRdc0HqvVqvl4osv\nzpVXXplrrrkm/f39ufnmmx/zGZ74etccm1XpGsvgcD3Do2MFTwQAAAAAAAAAUKxJi3cWL16cQw45\nJEmy33775Y477mi919XVlWuuuSbV6njMUa/X093d/ZjP8MRX7ehJkpQ760mSFf123wEAAAAAAAAA\n2tukxTv9/f3p6+tr/dzR0ZF6fTzaKJfLmTt3bpLkqquuyuDgYF74whc+5jM88XV2dKazXEmpYzRJ\nsmK1eAcAAAAAAAAAaG+Vyfrgvr6+DAwMtH5uNBqpVCrr/HzhhRfm17/+dS655JKUSqXHfWZ9Zs/u\nTaXSMfG/AFtk3rzp6329r2ta6vXxeGesVN7gfcATkzUN7cnah/Zk7UN7svahPVn70J6sfWhP1j60\nJ2u/eJMW7+y///65+eab86pXvSq33XZb9txzz3XeP/vss9PV1ZVLL7005XJ5o55Zn+XLBydlfjbf\nvHnT8/DDq9f7Xne5O0ON8ff+9/6VeXinmVM5GjCJHmvtA09e1j60J2sf2pO1D+3J2of2ZO1De7L2\noT1Z+1PnsSKpSYt3Xvayl2XRokV5/etfn2azmfPPPz/XXnttBgcHs++++2bhwoU58MADc8oppyRJ\nTj755PU+w5NLtVLNQ41HkjSz3LFZAAAAAAAAAECbm7R4p1wu59xzz13ntd122611vWTJkvU+9+fP\n8OTS21lNI42kPJYV/eIdAAAAAAAAAKC9lYsegPZSrfQkScqVepaLdwAAAAAAAACANifeYUr1VqpJ\nkukzSlnh2CwAAAAAAAAAoM2Jd5hSa+OdvmnNrOgfSbPZLHgiAAAAAAAAAIDiiHeYUtXO8XinOi2p\njzUyUKsXPBEAAAAAAAAAQHHEO0ypaqUnSdJTbSRJljs6CwAAAAAAAABoY+IdplRvpTdJ0tU9Hu+s\n6BfvAAAAAAAAAADtS7zDlFq7805H5/hxWSv7R4ocBwAAAAAAAACgUOIdplRvpTp+0TGaJOkfGi1w\nGgAAAAAAAACAYol3mFK9nePxzlhpPNoZqIl3AAAAAAAAAID2Jd5hSlUra+Od8eOy7LwDAAAAAAAA\nALQz8Q5TqlrpSZLUm8NJkgHxDgAAAAAAAADQxsQ7TKlyqZyejp4MN2pJ7LwDAAAAAAAAALQ38Q5T\nrlrpydBYLdXujvQP1YseBwAAAAAAAACgMOIdplxvZzVD9aFM6+nMQM3OOwAAAAAAAABA+xLvMOV6\nK9UM1WuZVq04NgsAAAAAAAAAaGviHaZctVJNkvT2JqP1RoZHxwqeCAAAAAAAAACgGOIdply10pMk\n6ak2kiQDdt8BAAAAAAAAANqUeIcp19s5vvNOV894vOPoLAAAAAAAAACgXYl3mHJrj83q7B4/LsvO\nOwAAAAAAAABAuxLvMOV618Q7HZ31JEl/rV7kOAAAAAAAAAAAhRHvMOXWxjvltfGOnXcAAAAAAAAA\ngDYl3mHKVSs9SZJSh3gHAAAAAAAAAGhv4h2mXG9nb5KkWR5JkgyIdwAAAAAAAACANiXeYcqt3Xln\nrDwe7dh5BwAAAAAAAABoV+IdplxvpZokGYuddwAAAAAAAACA9ibeYcpV18Q7w2O1dJRL6a+JdwAA\nAAAAAACA9iTeYcp1d3SlXCpnaGwo03oq6R+qFz0SAAAAAAAAAEAhxDtMuVKplGqlJ4P1WqZVOx2b\nBQAAAAAAAAC0LfEOheitVDM0Opi+amcGaqNpNJtFjwQAAAAAAAAAMOXEOxSiWqlmsF5LX7UzzWYy\nWHN0FgAAAAAAAADQfsQ7FKK3Us1oYzTV6vifoKOzAAAAAAAAAIB2JN6hENXOapKkp6eRJOmviXcA\nAAAAAAAAgPYj3qEQvZWeJEnXmnjHzjsAAAAAAAAAQDsS71CIamV8551K11iSpF+8AwAAAAAAAAC0\nIfEOhehdE+90dNaTJP1D9SLHAQAAAAAAAAAohHiHQqzdeadcWRvv2HkHAAAAAAAAAGg/4h0K0VPp\nHr9YE+8MiHcAAAAAAAAAgDYk3qEQ1UrP+EV5TbxTE+8AAAAAAAAAAO1HvEMhejrGd95plhybBQAA\nAAAAAAC0L/EOhehec2zWSHM43Z0d4h0AAAAAAAAAoC2JdyhET8f4sVm1+nD6qpUMiHcAAAAAAAAA\ngDYk3qEQ1craeKeWadXO9A/VC54IAAAAAAAAAGDqiXcoRE/H+LFZtbHh9FU7Mzw6ltF6o+CpAAAA\nAAAAAACmlniHQlTKlZRL5TXHZnUmSfodnQUAAAAAAAAAtBnxDoUolUqpdvSkNjZ+bFaSDNTEOwAA\nAAAAAABAexHvUJieSvf4zjs9a+IdO+8AAAAAAAAAAG1GvENheio9qY0Nt3becWwWAAAAAAAAANBu\nxDsUprujO7V6LdN6OpKIdwAAAAAAAACA9iPeoTA9le4000xPz/jP4h0AAAAAAAAAoN2IdyhMtWO8\n2unsbiZJBobqRY4DAAAAAAAAADDlxDsUpqfSnSSpdI4lsfMOAAAAAAAAANB+xDsUprtjPN4pr4l3\nBmriHQAAAAAAAACgvYh3KExPZfzYrGa5nlLJzjsAAAAAAAAAQPsR71CY6pqdd0bGRjKtp1O8AwAA\nAAAAAAC0HfEOhemujMc7tXot06qdGRDvAAAAAAAAAABtRrxDYXo6xo/Nqo0Np69ayUCtnmazWfBU\nAAAAAAAAAABTR7xDYXoqa+Kdei19PZ0ZazQzNDxW8FQAAAAAAAAAAFNHvENhqmuPzRobTl+1M0nS\nX3N0FgAAAAAAAADQPsQ7FKa7Y028Ux/OtDXxzsCQeAcAAAAAAAAAaB/iHQrT07Hm2KyxWmvnHfEO\nAAAAAAAAANBOxDsUpnVs1p/svNMv3gEAAAAAAAAA2oh4h8K0js0aG27tvCPeAQAAAAAAAADaiXiH\nwnSUO9JZ7kytXktfTyWJeAcAAAAAAAAAaC/iHQrVU+lObazWOjZrYKhe8EQAAAAAAAAAAFNHvEOh\nqh09qdX/eGzWQM3OOwAAAAAAAABA+xDvUKjxnXf+GO84NgsAAAAAAAAAaCfiHQrV3dGdkbGRVCql\ndFbK4h0AAAAAAAAAoK2IdyhUT6UnSVpHZ4l3AAAAAAAAAIB2It6hUD0da+KdsVqm9XRmoCbeAQAA\nAAAAAADah3iHQlUr3UnW7rxTydDwWOpjjYKnAgAAAAAAAACYGuIdCtXdsSbeGRs/NitJBmr1IkcC\nAAAAAAAAAJgy4h0K1VNZc2xWvfbHeGfI0VkAAAAAAAAAQHsQ71Consofd96Ztibe6RfvAAAAAAAA\nAABtQrxDoaoda3feGc60HjvvAAAAAAAAAADtRbxDobpbO+/88dgsO+8AAAAAAAAAAO1CvEOhejrW\nxDv1P4l3auIdAAAAAAAAAKA9iHcoVLWy5tissWE77/z/7N19sOQFfef7Tz+c7j7n9HliGGAQRUCJ\n60Mkoq5mY65hg240WaVEwZvC2shNpbK5KetuYl29qVLjA1KVWLmVrNe72UqyCbtbhcUmMaxGVtSU\nNyQxyu4oRNBEFnziYRjmPJ/unn64f5wHmDADM8P06e7Tr1cV5Uw/nPOlip9/vev7BQAAAAAAAADG\njniHgarubN5pZnqynCRZE+8AAAAAAAAAAGNCvMNA1cpPPpu1ttEe5EgAAAAAAAAAALtGvMNA1UqP\nn82arjmbBQAAAAAAAACMF/EOA1UtVVJIIY12M8ViIVPVclYb4h0AAAAAAAAAYDyIdxioQqGQaqma\nRqeRJKlPTti8AwAAAAAAAACMDfEOA1crV9NoN5Mk05MTWds4ml6vN+CpAAAAAAAAAAD6T7zDwNXK\ntWM277Q7vTSPdgY8FQAAAAAAAABA/4l3GLjJUjXNrc079clykjidBQAAAAAAAACMBfEOA1ctVdPu\ndXK028705ESSZG2jPeCpAAAAAAAAAAD6r9yvH9ztdvOBD3wg3/zmN1OpVPLhD384F1544TGf2djY\nyM/93M/lIx/5SC655JIkyVVXXZV6vZ4kueCCC/LRj360XyMyJGrlWpKk0W6kvhXvrDZs3gEAAAAA\nAAAA9r6+xTu33357Wq1Wbr755hw8eDA33nhjPvGJT+y8f9ddd+X9739/Hn744Z3Xms1mer1ebrrp\npn6NxRCqlatJkka7mena9uYd8Q4AAAAAAAAAsPf17WzWnXfemde85jVJkssuuyx33333Me+3Wq18\n/OMfz8UXX7zz2r333puNjY28853vzDve8Y4cPHiwX+MxRCZLW5t3Os3HN++IdwAAAAAAAACAMdC3\nzTurq6s756+SpFQqpd1up1ze/JWXX375k75Tq9Vy/fXX561vfWvuv//+/PzP/3w++9nP7nzneBYW\nplIul878vwDPyP79Myf92YWHNj9bqxfzrPNmkyS9YvGUfgYwHDy3MJ48+zCePPswnjz7MJ48+zCe\nPPswnjz7MJ48+4PXt3inXq9nbW1t5+/dbvcpI5wkueiii3LhhRemUCjkoosuyvz8fA4dOpQDBw6c\n8DtHjqyfsZk5M/bvn8mhQysn/flus5AkeejwY5ltTydJHn509ZR+BjB4p/rsA3uDZx/Gk2cfxpNn\nH8aTZx/Gk2cfxpNnH8aTZ3/3PFUk1bezWS972cvypS99KUly8ODBXHrppU/7nVtuuSU33nhjkuTh\nhx/O6upq9u/f368RGRK18tbZrHYz05Obgdeas1kAAAAAAAAAwBjo2+adK6+8MnfccUeuvfba9Hq9\n3HDDDbn11luzvr6ea6655rjfufrqq/Pe9743b3/721MoFHLDDTc87bYeRt9kqZokaXSaqU9OJEnW\nGu1BjgQAAAAAAAAAsCv6VsYUi8V88IMfPOa1Sy655Emfu+mmm3b+XKlU8rGPfaxfIzGkquWteKfd\nSHWilFKxkFWbdwAAAAAAAACAMdC3s1lwsmqlrbNZnWYKhULqkxPiHQAAAAAAAABgLIh3GLhaeSve\naTeSJPXJiayJdwAAAAAAAACAMSDeYeAmt89mdZpJkunJiaw32ul2e4McCwAAAAAAAACg78Q7DFy1\ntBXvtDfjnfrkRHpJ1hq27wAAAAAAAAAAe5t4h4F78tmscpJkrdEe2EwAAAAAAAAAALtBvMPATRTL\nKRdKx5zNSpLVDZt3AAAAAAAAAIC9TbzDUKiWqzvxTr0m3gEAAAAAAAAAxoN4h6FQK9V2zmZtb95Z\nE+8AAAAAAAAAAHuceIehUCtX02hvbd5xNgsAAAAAAAAAGBPiHYZCrVRLs9NMr9cT7wAAAAAAAAAA\nY0O8w1ColavppZdmp+VsFgAAAAAAAAAwNsQ7DIVaqZokaXQaj2/eabQHORIAAAAAAAAAQN+JdxgK\ntXItSdJoNzNdKyexeQcAAAAAAAAA2PvEOwyFWnlz806z00y5VEytUsqqeAcAAAAAAAAA2OPEOwyF\n7bNZG+1GkqQ+OSHeAQAAAAAAAAD2PPEOQ2HnbFanmSSZnpxwNgsAAAAAAAAA2PPEOwyFWmkr3nnC\n5p1Wu5vW0c4gxwIAAAAAAAAA6CvxDkOhVt48m7W9eac+OZEkTmcBAAAAAAAAAHuaeIehUCttxTvt\nrXinthnvrDXaA5sJAAAAAAAAAKDfxDsMhVr52LNZ05PlJDbvAAAAAAAAAAB7m3iHobCzeWfrbNb0\n1tmsNfEOAAAAAAAAALCHiXcYCpM7m3e2zmZtxTs27wAAAAAAAAAAe9lJxTtf//rX8wd/8AdptVp5\n5zvfmVe96lW57bbb+j0bY6S6s3ln82yWeAcAAAAAAAAAGAcnFe98+MMfzotf/OLcdtttqdVq+ZM/\n+ZP87u/+br9nY4zUylvxTlu8AwAAAAAAAACMj5OKd7rdbl7xilfkL/7iL/K6170uBw4cSKfT6fds\njJFioZhKqZJGZ/Ns1vRWvLMm3gEAAAAAAAAA9rCTincmJyfz+7//+/nyl7+cn/iJn8gf/uEfZnp6\nut+zMWYmS9U025vxTr22Fe802oMcCQAAAAAAAACgr04q3vnN3/zNrK+v57d/+7czNzeXRx55JB/7\n2Mf6PRtjplquZqOzeTZrslpKsVBwNgsAAAAAAAAA2NPKJ/OhhYWF/ORP/mRe8IIX5NZbb023202x\neFLdD5y0WqmWI42lJEmhUMj0ZFm8AwAAAAAAAADsaSdV4Lz73e/Obbfdlq997Wv5nd/5ndTr9bzn\nPe/p92yMmVq5lqPdo+l0O0mS+uSEeAcAAAAAAAAA2NNOKt753ve+l3e961257bbbcvXVV+eXfumX\nsrS01O/ZGDO1UjVJ0uw0kyTTkxNZaxxNt9cb5FgAAAAAAAAAAH1zUvFOp9PJY489ls9//vN57Wtf\nm0OHDqXRaPR7NsZMrbwZ72y0N+Odem0ivV6y0WwPciwAAAAAAAAAgL4pn8yHrr/++rztbW/LFVdc\nkUsvvTSvf/3r8653vavfszFmaqVakqTR2QzD6pMTSZK1jaOZrk0MbC4AAAAAAAAAgH45qXjnZ37m\nZ/L6178+999/f+655558+tOfTrl8Ul+Fk7a9eaexvXlnK95Z3WjnnIWBjQUAAAAAAAAA0DcnVeDc\nddddede73pX5+fl0u908+uij+fjHP56XvvSl/Z6PMVIrbcU7nc14Z3py8z/P1Y2jA5sJAAAAAAAA\nAKCfTire+chHPpLf+q3f2ol1Dh48mA996EO55ZZb+joc46VW3jqb1d48mzX9hLNZAAAAAAAAAAB7\nUfFkPrS+vn7Mlp3LLrsszWazb0Mxnh7fvLMZ79Rr22ezxDsAAAAAAAAAwN50UvHO3Nxcbr/99p2/\nf+5zn8v8/HzfhmI8Pb55ZzMMq0+KdwAAAAAAAACAve2kzmZ96EMfyrvf/e782q/9WpLk2c9+dn7j\nN36jr4Mxfh7fvPOP4p2GeAcAAAAAAAAA2JueMt657rrrUigUkiS1Wi0XXHBBer1eJicn8/73vz9/\n9Ed/tCtDMh5q5a14p715Nmt6K95Zs3kHAAAAAAAAANijnjLe+eVf/uXdmgOOczZr8z9P8Q4AAAAA\nAAAAsFc9Zbzzyle+crfmgNRKm/FOc+ts1kS5lMpEMasb7UGOBQAAAAAAAADQN8VBDwDbts9mbXQa\nO6/VJyeyavMOAAAAAAAAALBHiXcYGpXiRAop7JzNSpJ6bSKrDfEOAAAAAAAAALA3iXcYGoVCIbVy\nLY3245t3picn0mx10u50BzgZAAAAAAAAAEB/iHcYKrVSNc3OEzbvTE4kidNZAAAAAAAAAMCeJN5h\nqNTK1WPPZm3FO2viHQAAAAAAAABgDxLvMFRqpVo2Oo30er0km2ezEpt3AAAAAAAAAIC9SbzDUKmV\nq+n2ujnabSdJ6rVykmR1oz3IsQAAAAAAAAAA+kK8w1CplWtJkmZn83TW9uadtYbNOwAAAAAAAADA\n3iPeYajUStUkyUa7kSSpO5sFAAAAAAAAAOxh4h2GSq28Ge80Ov8o3lkX7wAAAAAAAAAAe494h6FS\nK22ezWq0N89mzdUrSZKltebAZgIAAAAAAAAA6BfxDkNle/NOs7MZ68zXN/9+ZEW8AwAAAAAAAADs\nPeIdhkqttBnrbLQ3z2aVS8XMTE1kcbU1yLEAAAAAAAAAAPpCvMNQqZWPPZuVbG7fWVy1eQcAAAAA\nAAAA2HvEOwyV7c07jU5j57X5ejWNVicbzfagxgIAAAAAAAAA6AvxDkNle/NO8wmbdxZmKkli+w4A\nAAAAAAAAsOeIdxgq25t3NjrHns1KksXV1kBmAgAAAAAAAADoF/EOQ2V7806jfezZrCRZXLF5BwAA\nAAAAAADYW8Q7DJVaeTPUaTxx887M9uYd8Q4AAAAAAAAAsLeIdxgq22ezmu3HQ52Frc07R2zeAQAA\nAAAAAAD2GPEOQ6VcLKdcLGej84SzWTbvAAAAAAAAAAB7lHiHoVMrVdN4wuadmamJFAuFLK62BjgV\nAAAAAAAAAMCZJ95h6NTKtTTaj2/eKRYKmatXnM0CAAAAAAAAAPYc8Q5Dp1aqptk5NtRZmKlmcbWZ\nXq83oKkAAAAAAAAAAM488Q5Dp1auptFpptvr7rw2X6+m0+1ldePoACcDAAAAAAAAADizxDsMnVqp\nliRpdlo7r83XK0nidBYAAAAAAAAAsKeIdxg6tXI1SY45nbUws/na4mrruN8BAAAAAAAAABhF4h2G\nTq20Geo02o2d1+br2/GOzTsAAAAAAAAAwN4h3mHo1MqbZ7M22o+HOjvxjrNZAAAAAAAAAMAeIt5h\n6NRKm/FOo/OEzTszNu8AAAAAAAAAAHuPeIehUytvhjrNJ2zeWahXkiRHbN4BAAAAAAAAAPYQ8Q5D\np1bajHc2Oo+HOpPVcioTxSyutgY1FgAAAAAAAADAGSfeYejUyltns9qPn80qFAqZr1edzQIAAAAA\nAAAA9hTxDkNn+2xWo31sqDNfr2Z5rZV2pzuIsQAAAAAAAAAAzjjxDkNn+2xWs3NsvLMwU00vyfKa\n01kAAAAAAAAAwN4g3mHobJ/N2ug0jnl9vl5JkiyuincAAAAAAAAAgL1BvMPQ2d6802j/43hn8/Uj\nK80nfQcAAAAAAAAAYBSJdxg625t3Gu0nn81KksVV8Q4AAAAAAAAAsDeIdxg61dLmeaxm59hIZ3vz\njngHAAAAAAAAANgrxDsMnWKhmGqpcpyzWZtRz6KzWQAAAAAAAADAHiHeYSjVSrVs2LwDAAAAAAAA\nAOxx4h2GUq1ce9LmncpEKdO1chZXWwOaCgAAAAAAAADgzBLvMJRqpWqanSdv2JmfqeaIs1kAAAAA\nAAAAwB4h3mEo1crVHO220+62j3l9vl7NerOd5tHOgCYDAAAAAAAAADhz+hbvdLvdvO9978s111yT\n6667Lg888MCTPrOxsZFrr7023/72t0/6O4yHWrmWJGn8o+078/VKkmRx1fYdAAAAAAAAAGD09S3e\nuf3229NqtXLzzTfnV37lV3LjjTce8/5dd92Vn/3Zn813v/vdk/4O46NWqiZJGu1jI52Fmc3XF53O\nAgAAAAAAAAD2gL7FO3feeWde85rXJEkuu+yy3H333ce832q18vGPfzwXX3zxSX+H8VErb0Y6zSdt\n3tmKd1Zbuz4TAAAAAAAAAMCZVu7XD15dXU29Xt/5e6lUSrvdTrm8+Ssvv/zyU/4O46NW2jybtdFu\nHPP6drxzxOYdAAAAAAAAAGAP6FsVU6/Xs7a2tvP3brf7tBHO6XxnYWEq5XLpmQ3LGbd//8wz+v6+\nR2eTJNXp4jE/66KNdpKk1e09498BnHmeSxhPnn0YT559GE+efRhPnn0YT559GE+efRhPnv3B61u8\n87KXvSxf/OIX84Y3vCEHDx7MpZde2pfvHDmyfibG5Qzav38mhw6tPKOf0WkUkiQPP3Ykhyae8LPa\nnSTJDx5Zeca/AzizzsSzD4wezz6MJ88+jCfPPownzz6MJ88+jCfPPownz/7ueapIqm/xzpVXXpk7\n7rgj1157bXq9Xm644YbceuutWV9fzzXXXHPS32E81cqb57Ga7WPPY81OT6RQSBadzQIAAAAAAAAA\n9oC+xTvFYjEf/OAHj3ntkksuedLnbrrppqf8DuOpVtqMdzY6jWNeLxWLmZ2uZHG1NYixAAAAAAAA\nAADOqOKgB4DjqZVrSZJG+8kbdubr1SyuNtPr9XZ7LAAAAAAAAACAM0q8w1DaPpvV+Eebd5JkoV5N\nq93NerO922MBAAAAAAAAAJxR4h2G0vbZrObxNu/MbL63uPLk9wAAAAAAAAAARol4h6G0fTZro3O8\ns1mVJMmRVfEOAAAAAAAAADDaxDsMpVppM95ptI9/NitJFldauzoTAAAAAAAAAMCZJt5hKE0UyykW\nig69pG4AACAASURBVGkeb/PO9tksm3cAAAAAAAAAgBEn3mEoFQqF1ErVNNrHO5u1Ge84mwUAAAAA\nAAAAjDrxDkOrVq5l43hns7Y376yIdwAAAAAAAACA0SbeYWjVStU0jnM2a7pWTrlUyOJqawBTAQAA\nAAAAAACcOeIdhlatXE2z00yv1zvm9UKhkPl6NYvOZgEAAAAAAAAAI068w9CqlWrp9ro52j36pPfm\nZ6pZWm2l2+0d55sAAAAAAAAAAKNBvMPQqpWrSZKN9pM37MzXq+n2ellZdzoLAAAAAAAAABhd4h2G\nVq1US5I0Oo0nvbdQ3wx7jjidBQAAAAAAAACMMPEOQ2t7807zeJt3ZipJksUVm3cAAAAAAAAAgNEl\n3mFo1Uqb8c7xNu/Mb23eWbR5BwAAAAAAAAAYYeIdhlatvHk2a+M4m3d2zmatiHcAAAAAAAAAgNEl\n3mFobZ/NarSPs3lnxuYdAAAAAAAAAGD0iXcYWttns5qdJwc68/VKkuSIeAcAAAAAAAAAGGHiHYbW\n9tmsxnHOZtUq5UxWS1lcae32WAAAAAAAAAAAZ4x4h6FVK23GOxudJ5/NSpL5etXZLAAAAAAAAABg\npIl3GFq18ubZrONt3kk2453VjaM52u7u5lgAAAAAAAAAAGeMeIehVSttxjvNzonjnSRZsn0HAAAA\nAAAAABhR4h2GVq28eTar0T7B2ayZSpJkcbW1azMBAAAAAAAAAJxJ4h2G1vbmnY0TbN5Z2Nq8c8Tm\nHQAAAAAAAABgRIl3GFqlYikTxYkTb97ZincWV8Q7AAAAAAAAAMBoEu8w1Gqlapon2LwzP7MV79i8\nAwAAAAAAAACMKPEOQ61Wrp5w846zWQAAAAAAAADAqBPvMNRq5Vo2TrB5Z65eSeJsFgAAAAAAAAAw\nusQ7DLVaqZpWp5Vur/uk98qlYmamJnJktTWAyQAAAAAAAAAAnjnxDkOtVt48jdU8wfadhXo1i85m\nAQAAAAAAAAAjSrzDUKuVakmSRvv4gc78TDXNVicbzfZujgUAAAAAAAAAcEaIdxhqtfJmvLPRbhz3\n/fn65mYe23cAAAAAAAAAgFEk3mGo1UpPfTZrvl5JkiyuiHcAAAAAAAAAgNEj3mGo1cqb8c5Tnc1K\nksXV1q7NBAAAAAAAAABwpoh3GGq10tbZrM7xz2YtbJ3NOuJsFgAAAAAAAAAwgsQ7DLWn3byzFe84\nmwUAAAAAAAAAjCLxDkOtVtqMc5qdpzubJd4BAAAAAAAAAEaPeIehVitvns1qtI9/NmtmaiKlYsHZ\nLAAAAAAAAABgJIl3GGrbZ7PW2xvHfb9YKGSuXsniSms3xwIAAAAAAAAAOCPEOwy1mYmZJMlKa/WE\nn5mvV7O42ky319utsQAAAAAAAAAAzgjxDkNttroZ7yy1Vk74mYV6NZ1uL6sbR3drLAAAAAAAAACA\nM0K8w1CbKJYzPTGVpebyCT8zX988rbW40tytsQAAAAAAAAAAzgjxDkNvrjKb5dZTxDszlSTJ4qp4\nBwAAAAAAAAAYLeIdht5cdTYb7UZandZx39/ZvLN6/PcBAAAAAAAAAIaVeIehN1uZSZIsNVeO+/78\njLNZAAAAAAAAAMBoEu8w9Oaqs0mSpROczlrY2rxzxNksAAAAAAAAAGDEiHcYenOVrXinefx4Z+ds\nls07AAAAAAAAAMCIEe8w9Garm2ezllvHP5s1WS2lMlHM4mprN8cCAAAAAAAAAHjGxDsMvfnqU2/e\nKRQKWahXnc0CAAAAAAAAAEaOeIehN7t9Nqt1/Hgn2TydtbLWSrvT3a2xAAAAAAAAAACeMfEOQ2+u\nsnk260Sbd5JkfqaaXpLlNaezAAAAAAAAAIDRId5h6E2UJjJVnsxSa+WEn1moV5PE6SwAAAAAAAAA\nYKSIdxgJc9XZLD/V5p16JUmyuGLzDgAAAAAAAAAwOsQ7jIS5ymzW2xtpdY4e9/35mc3NO4s27wAA\nAAAAAAAAI0S8w0iYq84mSZZPcDprvi7eAQAAAAAAAABGj3iHkTBbmUmSLJ3gdNbO5p0V8Q4AAAAA\nAAAAMDrEO4yE7c07S63jxzsL9UoKSb7/6NouTgUAAAAAAAAA8MyIdxgJO/HOCTbvTJRLeckl+3L/\nQyv51ncXd3M0AAAAAAAAAIDTJt5hJGyfzVpurZzwMz/96ucmSf7rX92/CxMBAAAAAAAAADxz4h1G\nwvzTbN5JkuddMJcXPGc+d//Px3L/Qyf+HAAAAAAAAADAsBDvMBJmK08f7yTJG3/0uUmST//VA/0e\nCQAAAAAAAADgGRPvMBIqpYlMlief8mxWkrzwwoVcdGAmd37rUL7/6NouTQcAAAAAAAAAcHrEO4yM\nucrM027eKRQK+elXPzdJ8pm/vr/vMwEAAAAAAAAAPBPiHUbGbHU2a+31HO22n/JzL33+2XnW/ul8\n+RuP5JHFjV2aDgAAAAAAAADg1Il3GBlzldkkyfLTbN8pFgp546svTLfXy2f/5oHdGA0AAAAAAAAA\n4LSIdxgZc9WZJMlSa+VpP/vKF5ybcxYm85d3PZgjK81+jwYAAAAAAAAAcFrEO4yMuerJbd5JkmKx\nkDe86sK0O73c9rff6fdoAAAAAAAAAACnRbzDyJirbG7eWWw9fbyTJD/64vOyMFPNXxz8flbWW/0c\nDQAAAAAAAADgtIh3GBlz1bkkyXLz6c9mJUm5VMy/+KfPSetoN5/76vf6ORoAAAAAAAAAwGkR7zAy\nZrc27yydxNmsbT/+0vMzMzWRz9/5vaw32v0aDQAAAAAAAADgtIh3GBlz1dkkydJJns1KkupEKa97\nxbOz0Wzni//D9h0AAAAAAAAAYLiIdxgZ1VIltVIty62TO5u17Sd+5IJMVsv5b1/5bppHO32aDgAA\nAAAAAADg1Il3GClz1ZlTOpuVJFO1cv755RdkZf1ovnTwB32aDAAAAAAAAADg1Il3GClzldmsHl1L\nu9s+pe9d+fILUpko5rN/+520O90+TQcAAAAAAAAAcGrEO4yU2epMkpzy6ayZqUpee9mzcmSlmb+6\n+6F+jAYAAAAAAAAAcMrEO4yUuepskmSpeWrxTpK8/pXPSblUyGf++oF0urbvAAAAAAAAAACDJ95h\npMxVtuKd1vIpf3dhppofe8mBPLK4ka/c88iZHg0AAAAAAAAA4JSVBz0AnIrtzTvLzVOPd5Lkp151\nYb70tQfze5++J//pc99KqVRMqVjY/KdUTHnnz4WUisWUS4WUy8VMlIqZKG//U9r5e2XrtdnpSl75\nT87NRFkPBwAAAAAAAACcPPEOI2WuMpMkWWqd+tmsJNk/P5mrfvyifOWeR9Lp9tLu9tLpdNPp9tJq\nt3f+3On20un00u31Tvpnf/M7i/m5N7wghULhtGYDAAAAAAAAAMaPeIeRMru1eWfpNDfvJMkbX/3c\nvPHVzz2pz3a7vRztdHO0vflP+wl/fuLrf/L/3Ze/vOvBXPys2bz2smed9mwAAAAAAAAAwHgR7zBS\nHt+8c/rxzqkoFgupFkupTpSe8nPnnz2VX/+Dr+Q/f+5bec45M7n4/NldmQ8AAAAAAAAAGG3FQQ8A\np6JWrqVaqjyjzTv9cPbcZH7hTS9Kp9PL//Ond2V5vTXokQAAAAAAAACAESDeYeTMVWez3FwZ9BhP\n8uKL9uXNP35xHltu5t996u/S7fYGPRIAAAAAAAAAMOTEO4ycucpsVo6uptPtDHqUJ3njqy/MZc87\nO/c8cCR//KX7Bj0OAAAAAAAAADDkxDuMnLnqbJJkuTV823eKhUL+t5/+JzlnYTKf+ZsHcuc3Dw16\nJAAAAAAAAABgiIl3GDmzlZkkwxnvJMlUbSL/+1UvSaVczO99+ht56LH1QY8EAAAAAAAAAAypvsU7\n3W4373vf+3LNNdfkuuuuywMPPHDM+1/4whfylre8Jddcc00++clP7rx+1VVX5brrrst1112X9773\nvf0ajxG2vXlnsbk84ElO7IJz6vlXP/WCNFqd/Ns/viuNVnvQIwEAAAAAAAAAQ6jcrx98++23p9Vq\n5eabb87Bgwdz44035hOf+ESS5OjRo/noRz+aW265JZOTk3n729+eK664IjMzM+n1ernpppv6NRZ7\nwFxl+2zW8MY7SfKqF52X+36wnNvv/F7+w5/fm1/4ly9KoVAY9FgAAAAAAAAAwBDp2+adO++8M695\nzWuSJJdddlnuvvvunfe+/e1v5znPeU7m5uZSqVRy+eWX5ytf+UruvffebGxs5J3vfGfe8Y535ODB\ng/0ajxE2V908m7U0xJt3tr3tiufleRfM5W/veSSf++r3Bj0OAAAAAAAAADBk+hbvrK6upl6v7/y9\nVCql3W7vvDczM7Pz3vT0dFZXV1Or1XL99dfn937v9/Lrv/7r+dVf/dWd78C27c07S82VAU/y9Mql\nYn7xTS/O3HQln/zCP+Sb3zky6JEAAAAAAAAAgCHSt7NZ9Xo9a2trO3/vdrspl8vHfW9tbS0zMzO5\n6KKLcuGFF6ZQKOSiiy7K/Px8Dh06lAMHDpzw9ywsTKVcLvXrX4PTtH//zNN/6DRNz2/+d7SR9b7+\nnjNl//6ZvPdfvTL/1yfuyL+79Rv5v/+P/yX75iYHPRb0xSg8k8CZ59mH8eTZh/Hk2Yfx5NmH8eTZ\nh/Hk2Yfx5NkfvL7FOy972cvyxS9+MW94wxty8ODBXHrppTvvXXLJJXnggQeyuLiYqampfPWrX831\n11+fW265Jd/61rfygQ98IA8//HBWV1ezf//+p/w9R46s9+tfgdO0f/9MDh3q31acXq+XSqmSR1ce\n6+vvOZPOmankra+9JDd/4R9y83+7N2997fMGPRKccf1+9oHh5NmH8eTZh/Hk2Yfx5NmH8eTZh/Hk\n2Yfx5NnfPU8VSfUt3rnyyitzxx135Nprr02v18sNN9yQW2+9Nevr67nmmmvynve8J9dff316vV7e\n8pa35Nxzz83VV1+d9773vXn729+eQqGQG264YWdbD2wrFAqZq8xkqTVa/wfyz15yIDd/4R/y/UNr\nT/9hAAAAAAAAAGAs9K2MKRaL+eAHP3jMa5dccsnOn6+44opcccUVx7xfqVTysY99rF8jsYfMVmZz\n39L96XQ7KRVH42xafXIiM1MTeeiwbVEAAAAAAAAAwKbioAeA0zFfnU0vvawcXR30KKfkwFlTObS0\nkaPtzqBHAQAAAAAAAACGgHiHkTRb3bwFt9RcHvAkp+bA2dPp9ZKHHtsY9CgAAAAAAAAAwBAQ7zCS\n5iqzSZLl1sqAJzk1B86aSpI8eHhtwJMAAAAAAAAAAMNAvMNImqtuxjuLI7h5J0kePLw+4EkAAAAA\nAAAAgGEg3mEk7WzeGbV4Z5/NOwAAAAAAAADA48Q7jKS56kySZGnEzmadNVtLZaJo8w4AAAAAAAAA\nkES8w4jaPpu1NGKbd4qFQs47ayoPPbaebq836HEAAAAAAAAAgAET7zCSaqVaJooTWW6NVryTJAf2\nTedou5vDS41BjwIAAAAAAAAADJh4h5FUKBQyV5kZuc07SXJg31SSOJ0FAAAAAAAAAIh3GF1z1dks\nt1bT7XUHPcopObBvOkny4OG1AU8CAAAAAAAAAAyaeIeRNVudTS+9rLRGK4KxeQcAAAAAAAAA2Cbe\nYWTNV2aTJEutpQFPcmrOXZhKoWDzDgAAAAAAAAAg3mGEzVZnkiTLzZUBT3JqJsrF7J+ftHkHAAAA\nAAAAABDvMLrmtjfvNJcHPMmpO3DWVFY3jmZlvTXoUQAAAAAAAACAARLvMLLmqttns0Yw3jl7Okls\n3wEAAAAAAACAMSfeYWTNVjbPZo3q5p0kefDw2oAnAQAAAAAAAAAGSbzDyJrf2byzMuBJTp3NOwAA\nAAAAAABAIt5hhE2WJ1MulrPcHMF4Z9/25h3xDgAAAAAAAACMM/EOI6tQKGSuMpul1uidzZquTWR2\nuuJsFgAAAAAAAACMOfEOI22uOpPl1kq6ve6gRzll5++byuGlRlpHO4MeBQAAAAAAAAAYEPEOI22u\nMptur5vVo6O3wea8fdPpJXnoMaezAAAAAAAAAGBciXcYabPV2STJUnNlwJOcugP7ppIkDx4W7wAA\nAAAAAADAuBLvMNLmK9vxztKAJzl1j8c7o7c1CAAAAAAAAAA4M8Q7jLTZ6kySZLk1ept3zt83ncTm\nHQAAAAAAAAAYZ+IdRtpcZXTPZi3MVFOdKNm8AwAAAAAAAABjTLzDSJurbsU7reUBT3LqCoVCzts3\nlYce20i32xv0OAAAAAAAAADAAIh3GGk7Z7OaoxfvJMmBfVNpd7p5dGlj0KMAAAAAAAAAAAMg3mGk\nTZenUi6UsjiCm3eS5MC+6STJg4fXBzwJAAAAAAAAADAI4h1GWqFQyGx1NsvNlUGPcloOnDWVRLwD\nAAAAAAAAAONKvMPIm6vMZqm1nG6vO+hRTtmBs7c376wNeBIAAAAAAAAAYBDEO4y8uepMur1u1o6O\n3vaacxcmUywUbN4BAAAAAAAAgDEl3mHkzVZmkyTLrdE7nVUuFbN/YTIPHl5Lr9cb9DgAAAAAAAAA\nwC4T7zDy5qqb8c5ic3nAk5yeA2dNZa3Rzsr60UGPAgAAAAAAAADsMvEOI2+uMpMkWR7VeOfsqSTJ\ng4fXBjwJAAAAAAAAALDbxDuMvO3NO0ut0Yx3zt83nSR58PD6gCcBAAAAAAAAAHabeIeRtxPvNFcG\nPMnpOW/f9uYd8Q4AAAAAAAAAjBvxDiNvrjLam3cOnLW9ecfZLAAAAAAAAAAYN+IdRt70xFRKhVKW\nm6MZ70zVypmrV8Q7AAAAAAAAADCGxDuMvEKhkNnKTJZao3k2K0nO3zedw8vNNFudQY8CAAAAAAAA\nAOwi8Q57wlx1NsvN5fR6vUGPclrO2zeVJHnosfUBTwIAAAAAAAAA7CbxDnvCXGUm7V4na+3RjF/O\n3zedJE5nAQAAAAAAAMCYEe+wJ8xVZ5MkS83lAU9yerY37/zg8GjGRwAAAAAAAADA6RHvsCfMVjbj\nneXmyoAnOT3bm3cesnkHAAAAAAAAAMaKeIc9YWfzTms0N+/M1yupVUp50OYdAAAAAAAAABgr4h32\nhLnqTJLRPZtVKBRyYN9UHj6ynk63O+hxAAAAAAAAAIBdIt5hT5irbG/eGc2zWUly3lnTaXd6eXSx\nMehRAAAAAAAAAIBdIt5hT9g5mzWim3eS5Pyzp5LE6SwAAAAAAAAAGCPiHfaE6Ymp1Cemc+9jf5+l\n5mhu3zmwbzpJ8uDhtQFPAgAAAAAAAADsFvEOe0KxUMwbL3pdGp1GPvXtzwx6nNNyYJ/NOwAAAAAA\nAAAwbsQ77Bk/9qx/mmfXz8+XH7oz3168f9DjnLL985MpFQs27wAAAAAAAADAGBHvsGcUC8W87Yeu\nSpJ88lt/mm6vO+CJTk25VMw5C5N58PB6er3eoMcBAAAAAAAAAHaBeIc95eK5C/Oq816e763+IH/5\n/b8Z9Din7MC+6aw321leaw16FAAAAAAAAABgF4h32HPe9LyfymS5lj+777astFYHPc4pObBvKkny\n4OH1AU8CAAAAAAAAAOwG8Q57zmxlJm+86HXZaG/kz77954Me55Q8Hu+sDXgSAAAAAAAAAGA3iHfY\nk378Wa/O+dPn5a8e/EruX/7OoMc5aQf2TSexeQcAAAAAAAAAxoV4hz2pVCzlbZe+OUly8zf/NN1e\nd8ATnZzzzrJ5BwAAAAAAAADGiXiHPev5Cxfn5edelu+sfC9//YOvDHqckzJZLWdhppof2LwDAAAA\nAAAAAGNBvMOedtXz3phqqZJP3ffnWTs6GkHMgX1TObLSzEazPehRAAAAAAAAAIA+E++wp81X5/KG\ni67M2tH13HrfbYMe56QcOGs6SfLQY6MRGwEAAAAAAAAAp0+8w573Exf8WM6bOid/+f2/yXdWvjfo\ncZ7WgbOnkiQPOZ0FAAAAAAAAAHteedADQL+ViqW89dI35XcO/vt88pufyr+5/BdTLDx1t/bI+qF8\n/dFv5Lsr30+7206720mn19n5c7vXTmfrf9vdTsrFUl534RV51XmXp1AoPKN5D5y1Ge/84PDaM/o5\nAAAAAAAAAMDwE+8wFl5w1vPzI+f8cP7HI1/Plx/673n1gZcf83631839y9/NXY9+I18/9Hd5aP2R\nE/6sUqGUcrGUcqGcUrGUcrGcI42l/Md7PpmvHborb/+hqzNXnTntWQ+cvXk267uPrJ72zwAAAAAA\nAAAARoN4h7Hxluf9dP7u0XvyqX/4TF569otSLpbzzSN/n68f+kbuOvyNrLQ2Y5mJ4kR++OwX5SVn\nvzCXLlySWqmacrGUUrGccqF03M06hzeO5D/e88nc9eg9uW/xY7nmh67K5ee+9LTmnJuu5Nnn1HPX\nfYfz4OG1HNg3/Yz+vQEAAAAAAACA4SXeYWws1ObzL577z/Nn9302v3nnx/NY40iOdo8mSWYm6vnR\nA6/IS85+YV5w1vNTKVVO6Wfvm1zIL//Iz+dL3//r/Ok/fCa//3f/KV87dHfe9kNvTn3i1OKbQqGQ\nN/3YRfm3f3xX/uyO+/ML//JFp/R9AAAAAAAAAGB0iHcYK1c858fz5Yf+ex5efyTnTp2THz77hfnh\n/S/Mc2efk2Kh+Ix+drFQzGsv+Gd54VmX5o++8cnc+cjX8veL9+V/fcFb8pKzX3hKP+tHnn92nnNu\nPX/7jYfz06++MM/aX39GswEAAAAAAAAAw0m8w1iZKJbzq5f/66y3N3L25L6+/I5zpvbn31z+i/n8\nd76U/3rfbfl/v/4f8qoDL8/Vz/+ZTJYnT+pnFAqFvPnHLs5v/5ev51N33J9//eYX92VWAAAAAAAA\nAGCwntmqERhBUxNTfQt3thULxVx54Wvzf77iXXl2/fz8zYNfzUe+/Fu597G/P+mf8dLn7ctzz5vJ\nV+99JN99ZLWP0wIAAAAAAAAAgyLegT46v35e3v3yX84bnvuTWWot53cO/vvc8f0vn9R3C4VC3vya\ni5Mkn/rL/9nPMfn/27vXMCuqe8/jv1W1dzcNzR3xSKABUQiaIKIGPYpnYoajjxMDUY+KUYz6PBON\nidGMMWjGOyKGRPPEqImaFzOYRDKIF05iMseYPOQoJ1EJGuTijbRHgoyCCN3Y3XtXrXlRl1371t1A\nN9Xs/n6wrXvVqtq1LtX7X6sBAAAAAAAAAAAAAEgJwTtAL3MdV//t8H/Wt477mhoyDVrx5q+0q2N3\nt7b99OEjNGnMEK15/X01v9e9bQAAAAAAAAAAAAAAwMGD4B3gAGkaMlafP/yf1ea16am3nunWNsYY\nzZk1URK97wAAAAAAAAAAAAAAUIsI3gEOoFljTtQnGg/Tf2x9SZs/au7WNkdPGKEjxg7V2jc/0Oat\nu3o5hQAAAAAAAAAAAAAA4EAieAc4gFzH1XmT50qSfvn6k/Kt3+U2xhh98RR63wEAAAAAAAAAAAAA\noBYRvAMcYEcMm6gTDj1W7+zeotV/f7Fb23xy/HBNGTdMr761XW/9/aNeTiEAAAAAAAAAAAAAADhQ\nCN4BUjD3iDNV79bpqbefUWtuT5frG2M0d1bY+84f6X0HAAAAAAAAAAAAAIBaQfAOkIJh9UN15sTZ\nas3t0b++/dtubTOlabimjh+udZt36I13d/ZyCgEAAAAAAAAAAAAAwIFA8A6Qkv8y9mQdOvAQ/XHL\nf+g/d2/p1jZzTgl633mS3ncAAAAAAAAAAAAAAKgJBO8AKck4Gf3LkXNkZfXL15+UtbbLbSaPG6aj\nJ47QhuYPtemdDw9AKgEAAAAAAAAAAAAAQG8ieAdI0dSRkzX9kE/p7Y+a9ef31nRrm7lh7ztP/Tu9\n7wAAAAAAAAAAAAAAcLAjeAdI2dlHnKWsk9ETb/1KH+fbulx/0ieG6tOHj9TGd3ZqQzO97wAAAAAA\nAAAAAAAAcDAjeAdI2ciG4Tp9/Gna3dGiZzY/261t5s4Ket958o9vd+vPbQEAAAAAAAAAAAAAgL6J\n4B2gD/ivTf+kUQNG6Pfv/ru2tm7rcv2Jhw3R9CNG6Y13P9L6v9H7DgAAAAAAAAAAAAAAByuCd4A+\nIOtmde7kL8i3vv7P6091qzedOacEve/8r99s1L+99J/a2dLe28kEAAAAAAAAAAAAAAA9jOAdoI/4\n1MipOmrkFG368E395f2/drn++H8YrNM/M07bd7XpF8++of/xo+f13Z+v0R/WbtHuPR0HIMUAAAAA\nAAAAAAAAAGB/ZdJOAICAMUb/cuQXdOeOe7TijX/V0SM/qXq3rtNtzj/tSJ3xmSa9tOl9/WnDNm18\nZ6c2vrNTj/72dR01cbhmTj1Uxx55iAYOIKsDAAAAAAAAAAAAANAX8Y0+0IeMHniITms6Vf+3+fd6\n+K//WzP/4ThNHTlZjdlBVbcZ2livzx03Vp87bqx27GrTnzf8P/15wzate3uH1r29Qxl3oz59+EhN\nP2KUhg+p15CBdRoyqE6NDVllXDrfAgAAAAAAAAAAAAAgTQTvAH3MGRM+p/XbN2nDjte1YcfrMjIa\nP2Scjho5RUePnKKmwWPlmMpBNyOGDNAZM5t0xswmbftwTxzI85c3PtBf3vigbP1BAzIaMqhOgwfW\nacjArAYPqtPghqzqs66yGUd1WVd1GUfZjKu6rFMYzzjKZh1lXUeuY+SGw4zryHWNHGN6+zIBAAAA\nAAAAAAAAAFATei14x/d93Xrrrdq0aZPq6uq0cOFCjR8/Pl7+3HPP6f7771cmk9E555yj8847r8tt\ngP6g3q3Tt0+4Wltatuq17Zu0fvsmbd7VrL/teke/3vxvaswO0tQRk3XUyCk6asQUNdZV7pXn0OED\nddY/TtBZ/zhB777foje3fKTdrR3atSen3Xs6tCsc39Xaofe275HtwXNwjJHrGmVcI9cJAnoypUE+\nRcNgmWOMHMfImGAfxiiYlpHjBH9azDFGjpGMY+TIyDgK5yXWj7cP1y3bb7X5iX2V7jfaLpxvs25i\nbAAAG6hJREFUnEJanGjcKaxvEgFM1nZ+dbtKT+n8eN0q5wwAAAAAAAAAAAAAOHj0WvDOs88+q46O\nDi1btkxr167V4sWL9eCDD0qScrmc7rrrLi1fvlwNDQ2aN2+eTjvtNK1Zs6bqNkB/4hhH4wZ/QuMG\nf0JnTDhNe3Ifa+OHb2j99k1av32jXtz2F7247S8yMho+YJgyxpXjuMoYV65xg4CZeDyY72RcucMc\nZYZnNMRxNDxc5hpXjhx5nlE+Z5XLS9Y3stbI94ysb+T7Rr4veflgPO9Jfl7y/GBdz5N8X7LhMO8b\n+Z6V51n5vlXes/I9qzbry+sI5nmeL89aeX53wob2IyClaPemyjIjGRvMMFbG2KLpovHkfmxif8lx\nmXDfpvgYkmy8XmKdOC0V9pvch+NLxpdx/Hhcji9jfMnxCtPWkcIfY91g3Hdl5MTLjHWD05aVcRSe\ntx/MC8/ZOOG1CNMRbC/JuDLWhPNMOB4EYvl+uLYJloYHCc/MhPOCfUtWchQcV1bW8WVkw1P2ZYwN\ntjMmSHeQuOAjMUF6CnsNljnWFNZTtK5TWMtE6StcYxNeh2jCRLdElOpoG9l4O5ucb6KzC69jYiMT\nj4bnZTxZ+bLGl+QXxk1hPDizjBy55T/GlStXxriJY4bHUZzQ6ucQr2KK1otOyhir4J8vq+S4L1Vc\nllgeTdvCuo6cMN0ZuXLj88qYrByF96SJUx6nv5NJyZg4IM6Exyx8JjZMh4qG4ckl5trwTrQKwwDl\nGCceN3Kq9nCWvI4V01glgK5qKVZlQbX19yZAr9qq1dNSvsRaK195eTanvM3LU055m1M+mqe8BtS7\n6mi3ck1GGWXkmvBHhWHWycoJ79tusVZ526EO264O21Y89INhzrbLVUb1zgDVmQGqi4amXnXOANU7\nA5Q1dUWfpWe98Fxyytlc8bhysrJhveiG5+Eqo2xYp2bC+UFeTOYF3/rxvWVtNN8P1rBW1vhx/oiX\n2eh+LeSX+NpFdXh8HaPjB+cS7MGL9+1bX758+dYL0+PJSEHeC8sNxyTLkOLP2re+crZN7X6b2vyP\n1eZ/rPZwGI13+O3Kmrrw2tarzqkPrr0TXm9TmHaMG+Ws4FhV78UKC/Y6T1S7iarkxe4fcu/S3en6\ne3PMyvlQ4X2W/Jw960nGhp+vE9+bTnTdy3a9d+2p6mVIsOCDlpx27tzT6UmZMP02Tr8nzwb1hpc4\njygPuSZqz2bkFI13P0C5q3R3195cri7itMN1rPI2H5Shfj4oU60nSXHelkxYL5q4biq0YQrzjTGS\nrTK/i3NIzqt0TSpvk2jrFDYuH+2BIPK93UN0f1lZBf8F/4wpBNBHLYLCMcqvW6HN1POB8D2xz0p7\nsMl6xMa1UMk1sUHZ74Rlg7P/ackbRzs+3NP1ip3poevcE3vpsU+8B3a0t+VU1f30kfc5+tKLJT2V\nlB7ZTQplZU/sqK6lXbv2dPRaWg7k/bI3h9qLp6+qS3zry/M9+fLDF7Kc8Pmze+2b4JnMl+/74fOM\nH7afvPCZIrFulVfzHGOUcRLPOOHvA5N14F6e1n599vv+ce/7UdMqkvb1uPtVJ/TgptbaLl9KlPpW\nmb8/4t831cj51ALf+vKsLyPF5RYA7Avf+rLWBu0wyhL0Yb0WvPPyyy9r1qxZkqTp06dr3bp18bK3\n3npLTU1NGjp0qCTpuOOO04svvqi1a9dW3QbozwZmGzRj9DTNGD1N1lptadkaBPLs2KT3P96uj/2c\n/Fzw8J63njzfq/rA3iPc8CfdXaCH2ZIh+i5rTfc/qGQ7NPkLl5LtjSmf19usleS7QcCaSR7chulO\nzDPRL1AOYNqsCYPparQxb6udVxTl5cu4Xtf7aenm4aJrGh2jLGgxnGckuflE8OC+s1aSFzZ3HS8M\nHDx4WdszecD6JgzsdMLrnevVvBWXWTYMUIjzVjfta9oqBfCWBNWWbdKNdHV9b0YBoV0mqsI6yXIv\nCIbcl/s2/oytI/lGNrz2ldNuE+koTXtpeku3r7BtvG4wr0fu2ej+8Z3CfbT3e+nGOsn7pFIgVek8\nU/2eigOuvXD8wJQ/hTZCJ+Vs6bLu7LNbEutVPN1O9lMpv5YF1wd5ovDj93jZFTeVOq2vSuYnllcM\n1LcqzieJNk4hTybmJ9tAJjlM5s99y1uFsiEYWr8wfuDsY16o0eaYpAqXZF+/6Y3yRcmLKMmfite/\ntI7sIj2Vyr2obg/LGhuXOaXlTeV7vZDmTs5vP6/TXpdl1cr3KE+HaTal1zc5ndxHN8vkquVIUdRk\n8nrZkrIkeaFKy67S61Bh37Z8m+L67gCL75dCHVBeJ4Tjla5ZxevZjWu9V23VQhqCl6uS6eu8rqra\nTk7Wdb3YhihuMzrdzCdd1fcl6+yXPvD8tt+n0nvn0P1n5irPJxXag5XvgSpt3mrlR8XtEuuWtulU\nIV9HhW3cbgnrFls8r+sPKPl8VVqWlObXQnka5I2ojWSkMK8UpUGmsP+ScllGMsllReVOtTLKFNcl\nif0G10eFZYmyuqjOjT+HxHRcPtmya6DwhcrgVBJ1eXR+pdd+XzNEZ2VL/Fn4RWWnws+n9D4vKrei\ntMafj5M47+7kj8p5w5Tm24rJ72z/1fJM6YEqPAvEm5TU55XyUoU8XFZ/FyW3lhvUVZQ+T3X6wraU\nvO8rjktd3M9dJWg/64SK6Zek4KXs8vZ+aRs0mchK7VOVjJcOK6W/MK+4zVNh3UrXp7M2ftX7tsI6\nybKj4njJZ11Wp5QM97Y92C3p5EHXDtD/nPXfNXrokFSOj73Xa8E7LS0tamxsjKdd11U+n1cmk1FL\nS4sGDx4cLxs0aJBaWlo63aaa4cMHKpMhBKCvOeSQwV2vhH02evQQHXv4lE7Xid7syftBME/eesr7\neXnRdLTMRtN55cO3eKL18ol1g/mJfVhPnu/H0e++H7zxE70F5NvCW0H71STpzqvM1TaVCkFMtjAe\nvZkbjVuFf+rLuIlh9Ge8iufF21hbYah4Wjbok0FW8uWHw+T8rpcH+/PjVGecjLJuVnVOVhk3Uxi6\nGWWcbDjMyPN95fyccl6+MPRyyvnFQxO+8eUaV47jyC0ad+WaQu8jvk181omhH94D0Y9NXP3C287R\ndOGzcR2n/NiOWzhuuDy6PtZa+TbotcKXjaOkg/mJ3i1KpuP15MuLugUqYorGKt1t1d926rqxZaLH\nPRt8foVzLPR8lTGZxDV3gx4w/LzyfvD55b3g7fycF83LK+/n4nsuPpYpZJdkmm2nKS1e4oQ9zkTR\n545xwh4cnHhZcn7yjcHCeGG9qDzJh2nO+3nlbE55PxefY97PyVfQE07UW1Oy5yYjhZHwJj63Qs9B\nRVsp6jmp0AtR4k36CttFV8izfnBvxb1ahNMq3Nu9YT+Kt/0/dsndXvomXaEHjKyyTjYc1ikTjxeG\nRiboTcIPe+fxw54lynqYyMfHiv9FZWZiWlLQq4sb9J5T7wY96gxwG8KeXYLxOqdeOT+nDq9NbX6b\n2v2P1e63qd0rjHf4bWrz2mSkQtpNcB5Zk1XGqQuGJquMk5WRI8/m5Vsv7hXDKxoGP758Rb00FXpv\nSLxBKyNjnKJ1nHjdxDoy8Ta+fHk2X3RcPxwm50kK86CbyH9uIU8metaJ3sj1rBf2eOLF+4ymJane\naSj/MQNU7zRogDNQ9U6DsqZOeduhdtuuDj/oASkXjdu2cF4w7oc9qxT3NhSNB9OlbwlH9u4xtvpT\nf/kdXbLM2rKl1bcvrS3Kl1RbXn27StsW5gdlX1imJspho0Q5m+yJyQY9u/kK38J2gx56wlpTvvWK\n929Kj2yK0lp+VpXWrbTcJKajGsjE5xDkAFflvZ6F+SDsnceXF6fbkycbzovOqfck7wZbdq8Ur2HL\ntkhOu6Yu0XteJsynUU9YUQ97TsmebNkwebxkbyqFdUqWVRq3pfsuP4+isQr5s/qLAZXzTNV9V91P\n8jjBOkEp6RbKUhXfL8lhtL7CsdL/l/6ysfR6xOMmXGZKr1XpdoltquwzOV1Im5NouSTzS3GLRUXj\nleapk2XFeTRIQVgeOH5hXMXjB8x+tX/27Zed1bbqLCk90QtO916o6fwX4JWmqz2zBGnOVMkjhenk\nXoryZoVTrngOiS+UCvd7oidO2aJpxdPJ+zb60rPyvVz9TLuZxm5uX75taWlVvjyo3aJzSLTrbMl1\ntiXXOtlLqKlcXiTLnvKyJsqn0ZVyEnndFPWOW35+0YOiLTrn4uXJ9lJ5+debujpCfD/bqF5wVHxf\nOzJ+ocwLLn/pNe2i/C/6bHxVv68KqUqOGevIKJNIa9hjsQ3a50GPeU7x8aPeOZP5xVhZYwv3mHVk\nvOjcC/WgbKE+7N41top6zQ16BfWKx40vm+msPqhUDnW3jNuf8jSdL7nK9PiXd/uj2jNE9bnVlxU/\nB1VvryU+8WSwQYUtS/dZtE70q5pkeWmNFLb3gvs6Gkb79YP87BTuYRmveFm1Uyo596J8pahX8aCX\ncuMX0hTsxo/3bxUElsTjxpdVXsnnnTgvxmWxpERdFyj8jre0vC9uMyb2Ge+vEOBnZMLZxc8OUZmS\nLE+Cyx7WV/H5uorrLz+ZxmQ5FPWqHZZPUa/p+9Rm7LysKC7Tsole44PyT3GZr7jsSvZgLuPLuuFn\nYkrL7715Pq+yzFaZr8rtxaLPNdFmKl5W8uxioznJtlDpvqs8x3VyjLL8aNTVx1GjKuUpI1m3eH78\nLBjd91H7yxbaFd1qG/VmnVFo8xXagI6C1+STy6Sye8aU3pOJtp+RCm3NZNs1uX5xOorEt2O1c+/q\nmpQfo+heNpXXKZtnE/WJDcsTP9F2il40iNp7cQBjWHY4UT2zn8/I+/VCas9nUmN9DRs5QIcM7973\n9ny/n75eC95pbGxUa2trPO37fhyEU7qstbVVgwcP7nSbaj7c3+6a0eMOOWSw3n9/d9rJQBkjKStH\nWTmSsqWLnfAH2EfkfaB/Iu8D/RN5H+ifyPtA/0TeB/on8j7QP5H3gRqTV7fyNHn/wOksSKrXvqqf\nMWOGVq1aJUlau3atJk+eHC+bNGmSmpubtXPnTnV0dOill17Sscce2+k2AAAAAAAAAAAAAAAAQK3p\ntZ53Zs+ereeff14XXHCBrLVatGiRVq5cqT179uj888/XggULdPnll8taq3POOUeHHnpoxW0AAAAA\nAAAAAAAAAACAWmWsrfAH7Q8idN/U99CtFtA/kfeB/om8D/RP5H2gfyLvA/0TeR/on8j7QP9E3gf6\nJ/L+gZPKn80CAAAAAAAAAAAAAAAA0DmCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAAAAAApITg\nHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEgJwTsAAAAAAAAA\nAAAAAABASgjeAQAAAAAAAAAAAAAAAFJC8A4AAAAAAAAAAAAAAACQEoJ3AAAAAAAAAAAAAAAAgJQQ\nvAMAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAA\nAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAAAAAAAAAAAAUkLwDgAAAAAAAAAAAAAAAJAS\ngncAAAAAAAAAAAAAAACAlBC8AwAAAAAAAAAAAAAAAKSE4B0AAAAAAAAAAAAAAAAgJcZaa9NOBAAA\nAAAAAAAAAAAAANAf0fMOAAAAAAAAAAAAAAAAkBKCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAA\nAAAApITgHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEhJJu0E\noHb4vq9bb71VmzZtUl1dnRYuXKjx48ennSwAvSCXy+nGG2/Uli1b1NHRoSuvvFKHHXaYvvKVr2jC\nhAmSpHnz5unMM89MN6EAetwXv/hFNTY2SpLGjh2rK664QgsWLJAxRkceeaRuueUWOQ7x4UAtWbFi\nhZ544glJUnt7uzZs2KBly5ZR7wM17JVXXtH3vvc9LV26VM3NzRXr+l/+8pd67LHHlMlkdOWVV+qz\nn/1s2skGsJ+SeX/Dhg2644475Lqu6urqdPfdd2vUqFFauHCh1qxZo0GDBkmSHnjgAQ0ePDjllAPY\nV8l8v379+optfOp8oPYk8/61116rDz74QJK0ZcsWHXPMMbr33nup84EaUuk7vSOOOIJn/T6I4B30\nmGeffVYdHR1atmyZ1q5dq8WLF+vBBx9MO1kAesHTTz+tYcOGacmSJdq5c6fmzp2rq666Spdeeqku\nu+yytJMHoJe0t7fLWqulS5fG86644gpdc801mjlzpm6++Wb97ne/0+zZs1NMJYCedvbZZ+vss8+W\nJN12220655xz9Nprr1HvAzXq4Ycf1tNPP62GhgZJ0l133VVW10+fPl1Lly7V448/rvb2dl144YU6\n+eSTVVdXl3LqAeyr0rx/55136qabbtLUqVP12GOP6eGHH9YNN9yg1157TY888ohGjBiRcooB7K/S\nfF+pjf/+++9T5wM1pjTv33vvvZKkjz76SPPnz9cNN9wgSdT5QA2p9J3eJz/5SZ71+yBei0aPefnl\nlzVr1ixJ0vTp07Vu3bqUUwSgt5xxxhn6xje+IUmy1sp1Xa1bt05/+MMf9KUvfUk33nijWlpaUk4l\ngJ62ceNGffzxx7rssss0f/58rV27Vq+99po+85nPSJJOPfVUvfDCCymnEkBv+etf/6o333xT559/\nPvU+UMOampp03333xdOV6vpXX31Vxx57rOrq6jR48GA1NTVp48aNaSUZQA8ozfv33HOPpk6dKkny\nPE/19fXyfV/Nzc26+eabdcEFF2j58uVpJRdADyjN95Xa+NT5QO0pzfuR++67TxdddJFGjx5NnQ/U\nmErf6fGs3zcRvIMe09LSEv8ZDUlyXVf5fD7FFAHoLYMGDVJjY6NaWlp09dVX65prrtG0adN0/fXX\n62c/+5nGjRun+++/P+1kAuhhAwYM0OWXX66f/vSnuu2223TdddfJWitjjKSgbNi9e3fKqQTQW37y\nk5/oqquukiTqfaCGnX766cpkCh01V6rrW1pairrMHzRoEEF8wEGuNO+PHj1akrRmzRo9+uij+vKX\nv6w9e/booosu0pIlS/TII4/o5z//Ob/MBw5ipfm+UhufOh+oPaV5X5K2b9+u1atXx73uUucDtaXS\nd3o86/dNBO+gxzQ2Nqq1tTWe9n2/rAEAoHZs3bpV8+fP15w5c3TWWWdp9uzZ+tSnPiVJmj17ttav\nX59yCgH0tIkTJ+oLX/iCjDGaOHGihg0bpu3bt8fLW1tbNWTIkBRTCKC37Nq1S5s3b9aJJ54oSdT7\nQD/iOIVfHUV1fenzf2tra9Ev+ADUhl//+te65ZZb9NBDD2nEiBFqaGjQ/Pnz1dDQoMbGRp144ol8\nkQfUkEptfOp8oH/4zW9+o89//vNyXVeSqPOBGlT6nR7P+n0TwTvoMTNmzNCqVaskSWvXrtXkyZNT\nThGA3vLBBx/osssu07e+9S2de+65kqTLL79cr776qiRp9erVOvroo9NMIoBesHz5ci1evFiStG3b\nNrW0tOjkk0/Wn/70J0nSqlWrdPzxx6eZRAC95MUXX9RJJ50UT1PvA/3HUUcdVVbXT5s2TS+//LLa\n29u1e/duvfXWW/wOAKgxTz31lB599FEtXbpU48aNkyT97W9/07x58+R5nnK5nNasWUMbAKghldr4\n1PlA/7B69Wqdeuqp8TR1PlBbKn2nx7N+30S3KOgxs2fP1vPPP68LLrhA1lotWrQo7SQB6CU//vGP\ntWvXLj3wwAN64IEHJEkLFizQokWLlM1mNWrUKN1xxx0ppxJATzv33HN1ww03aN68eTLGaNGiRRo+\nfLhuuukm3XPPPTr88MN1+umnp51MAL1g8+bNGjt2bDx966236o477qDeB/qBb3/722V1veu6uvji\ni3XhhRfKWqtrr71W9fX1aScVQA/xPE933nmnDjvsMH3961+XJJ1wwgm6+uqrNWfOHJ133nnKZrOa\nM2eOjjzyyJRTC6CnVGrjNzY2UucD/cDmzZvjYF1JmjRpEnU+UEMqfaf3ne98RwsXLuRZv48x1lqb\ndiIAAAAAAAAAAAAAAACA/og/mwUAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAA\nAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAADAXlmxYoUW\nLFiQdjIAAAAAAABqAsE7AAAAAAAAAAAAAAAAQEoyaScAAAAAAAAAveOhhx7SM888I8/zdMopp2je\nvHn66le/qnHjxqm5uVljxozRkiVLNGzYMP3+97/XD37wA/m+r3Hjxun222/XqFGj9MILL2jx4sWy\n1mrMmDH6/ve/L0lqbm7WxRdfrL///e866aSTtHDhwpTPFgAAAAAA4OBEzzsAAAAAAAA1aNWqVVq3\nbp2WL1+uJ598Utu2bdPKlSv1+uuv65JLLtGvfvUrTZo0ST/60Y+0fft23Xzzzbr//vu1cuVKzZgx\nQ7fffrs6Ojp03XXX6e6779bKlSs1ZcoUPfHEE5KkrVu36r777tMzzzyjVatW6Y033kj5jAEAAAAA\nAA5O9LwDAAAAAABQg1avXq1XX31VZ599tiSpra1N1lpNmDBBM2fOlCTNnTtX1113nU4++WRNmzZN\nY8eOlSSdf/75euihh7Rp0yYdeuihmjp1qiTpm9/8piRpxYoVOv744zVs2DBJUlNTkz788MMDfYoA\nAAAAAAA1geAdAAAAAACAGuR5ni655BJdeumlkqRdu3bpvffe07XXXhuvY62V67ryfb9oW2ut8vm8\nstls0fzdu3ertbVVkpTJFH6tZIyRtba3TgUAAAAAAKCm8WezAAAAAAAAatCJJ56op556Sq2trcrn\n87rqqqu0bt06bd68WRs2bJAkPf744zr11FN1zDHH6JVXXtG7774rSVq2bJlmzpypiRMnaseOHXrz\nzTclSY888oh+8YtfpHZOAAAAAAAAtYiedwAAAAAAAGrQaaedpo0bN+q8886T53maNWuWTjjhBA0d\nOlQ//OEP9c4772jKlClauHChBg4cqNtvv11f+9rXlMvlNGbMGN15552qr6/XkiVLdP311yuXy6mp\nqUnf/e539dvf/jbt0wMAAAAAAKgZxtKnMQAAAAAAQL/w7rvvav78+XruuefSTgoAAAAAAABC/Nks\nAAAAAAAAAAAAAAAAICX0vAMAAAAAAAAAAAAAAACkhJ53AAAAAAAAAAAAAAAAgJQQvAMAAAAAAAAA\nAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnB\nOwAAAAAAAAAAAAAAAEBK/j8f2/XossdQIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOkAAAJoCAYAAAA5hyfyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX6//HPJJNMSA9JaNKR5oIiIixdEL8CgiKISBFU\nWCvqsoKLuijIirK66gosyk8FQUB6F1hKBAQEQVqkhCItBBJCJm1In98fMWczpBCSmYRl3q+/Ts5z\nznPuMzPPXtfqx/sx2e12uwAAAAAAAAAAAAAAAAC4jEdFFwAAAAAAAAAAAAAAAADc6gjpAAAAAAAA\nAAAAAAAAAC5GSAcAAAAAAAAAAAAAAABwMUI6AAAAAAAAAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABc\njJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAACrA0qVL1bhxYzVu3Fhr1qyp6HJKJa/+4cOHu+wZGRkZ\nOnnypMvmBwAAAAAAKC+EdAAAAAAAAHBT2rFjhx5++GF9//33FV0KAAAAAABAmZkrugAAAAAAAADg\nWjExMXr66acrugwAAAAAAACnoZMOAAAAAAAAbjrZ2dkVXQIAAAAAAIBTEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBi5oouAAAAAAAAOEfjxo0lSePGjdPgwYO1cuVKLVq0SFFRUcrMzFTN\nmjX18MMPa9iwYfL29pYk7d69W998840OHDggq9WqKlWqqFOnTnrxxRdVpUqVIp919epVzZ8/Xxs3\nbtSpU6eUkpKi4OBgNWvWTL1791aPHj3k4VH8fxv0ww8/aP369dq3b5/i4+Nls9nk7++vmjVrqm3b\nthoyZIiqVatW4L4pU6Zo6tSpCggI0J49exQXF6eZM2cqIiJCMTExMpvNatCggXr06KFBgwYZ7+oq\ne/bs0apVq/TLL78oNjZWKSkp8vPzU9WqVdW6dWsNGjRIDRo0uO48V65c0eeff65Nmzbp0qVLCg4O\nVosWLdS/f3917ty5yPvS0tK0cOFCbdiwQVFRUUpNTZW/v79q1aql9u3ba9CgQcV+l9nZ2Vq/fr1W\nrVqlQ4cOyWq1ys/PT3Xr1lXnzp01ePBgBQUF3dBnsmvXLg0dOlSS9Nprr+nZZ58t9Lp169bp1Vdf\nlSS9//776tu3r6T//pbzTJ06VVOnTpUkzZ49W23atHEYt1qt+vbbb/XDDz/o7Nmzunr1qkJDQ3XX\nXXepb9++xX5+zmK327V27VqtWrVKkZGRSkhIkJ+fnxo0aKD7779fTzzxhPz8/Aq9N+9933jjDd13\n332aOHGi9u7dK7PZrNq1a2v06NFq166dunbtqujoaA0dOlTPPfecJk6cqG3btslut6tmzZp69tln\n1bt3b2PejIwMLV++XOvXr9eRI0eUlJSkgIAA3X777erWrZsGDBggHx+fMtUEAAAAAABKjpAOAAAA\nAAC3mMzMTL3wwguKiIhwOB8VFaWPPvpIO3bs0FdffaVp06Zp2rRpstvtxjXR0dGaP3++Nm3apMWL\nF6tq1aoF5j948KBGjhypS5cuOZyPi4tTRESEIiIiNGfOHH322WeFhkMSEhI0cuRI7dmzp8CY1WqV\n1WpVZGSk5s6dq3//+99q27Ztke+6Z88evfTSS7JarQ7n9+/fr/3792vp0qWaPXu2goODi5yjtNLS\n0vT6669r/fr1BcYSExOVmJioqKgofffdd3r//ff18MMPFznXqVOn9P777ysuLs44FxcXpw0bNmjD\nhg3q1auXJk+eLLPZ8R/lxMTE6JlnntGpU6cczickJCghIUEHDx7UzJkz9c9//lPdunUr8Nzo6GiN\nGjVKBw4ccDhvtVqNz3DWrFn66KOP1KlTpxJ9LuVty5YtGj16tJKSkhzOx8TEKCYmRuvWrVPXrl31\n4Ycfyt/f3yU1xMfHa+TIkfrll18czlutVu3du1d79+7VrFmz9Nlnn+nuu+8ucp6LFy9q4MCBunLl\ninHu8OHDql27tsN1KSkpGjx4sE6fPm2ci4qKclivR48e1Z///Gf99ttvDvdeuXJFu3fv1u7duzVz\n5kxNmTJFzZs3L3NNAAAAAADg+gjpAAAAAABwi/niiy+UkJCg5s2ba+jQoapZs6aOHz+ujz/+WFar\nVTt27NDzzz+vLVu2qH79+ho+fLgaNmyo2NhYzZgxQwcPHlRsbKw++eQTffDBBw5zHz9+XMOGDZPN\nZpOfn58GDRqktm3bKiAgQNHR0Vq9erU2btyoffv2afjw4VqwYIF8fX0d5njllVeMgE67du306KOP\nqkaNGsrMzNSZM2f07bff6vjx47LZbBo7dqw2b94sT0/PAu+ZlpamF198UampqRo4cKDuv/9++fv7\n6/Dhw/r8888VGxurY8eO6ZNPPtGECROc/jm/8847RkCnWbNmGjhwoGrXri0PDw+dO3dOCxYs0L59\n+5SVlaV33nlHHTt2VEhISKFz5YWlOnXqpAEDBigsLExHjhzRF198oZiYGK1evVrBwcEaN26cw31j\nx47VqVOn5OnpqWHDhql9+/YKCgrSlStXtGXLFi1YsEBpaWkaM2aM1q9f7xCaunLlip555hkj6HHP\nPfdowIABqlu3rqxWqzZu3KglS5YoMTFRzz//vL788sty65yyfPlyxcbGGh14BgwYoIEDB0qSQzhk\n586deuGFF5Sdna3Q0FANHjxYrVq1ko+Pj06fPq3Fixdr9+7d2rx5s0aOHKmvvvqq0N9SWdhsNg0d\nOlQnTpyQyWRS79699eCDD6pKlSqyWq3aunWrFi5cqNjYWD3zzDNauHChGjZsWOhc33zzjex2u0aM\nGKEuXbro8uXLOnLkiGrWrFng88nJydFjjz2mPn36KDk5WTt27FDr1q0lSadPn9bTTz9tBGu6dOmi\nPn36qEaNGoqNjdXq1au1du1axcTEaOjQoVqwYIEaNWpUppoAAAAAAMD1EdIBAAAAAOAWk5CQoPbt\n2+vzzz83tnpq2bKlqlWrZoQetmzZoubNm2v27NkOIZqOHTvqwQcf1MWLFxURESG73S6TyWSMjxkz\nRjabTdWqVdOcOXMcAhN33nmnevTooblz5+rdd99VVFSU/v3vf2v06NHGNTt27NDu3bslSQ888ICm\nTJniMH/btm3Vv39/DRw4UAcOHNDFixe1b98+tWrVqsB7ZmZmKiUlRZ9//rlDl5e7775bnTp1Uu/e\nvXX16lWtXr1af/vb3+Tl5VXWj9Zw+vRprVixQpJ011136dtvv3XYVqtVq1Z69NFH9corr2j9+vWy\n2WzaunWrHnnkkULnywtBjBkzxjjXokULPfjggxo8eLBOnTqluXPn6vHHHze2IYqOjtZPP/0kSXr5\n5Zf1wgsvOMzZuXNnNWjQQO+++65sNptWr16tZ555xhj/+OOPjYDOk08+qbfeesvhu+jcubO6d++u\n5557TpmZmRozZow2btyoSpUqleGTK5mmTZsqICDA+Ds8PFxNmzZ1uCYvfJSdna1GjRrpm2++UeXK\nlY3xu+66S4888og+/PBDffnll9q5c6cWLlxohH2c5ZNPPtGJEydkNps1depUdenSxWG8U6dOeuSR\nR/Tkk0/KZrPprbfe0sKFCwudKycnR88//7xGjRplnOvevXuh1/Xq1Uvvvfeeca5r167G8YQJE4yA\nztixY/X000873N+tWzd17txZY8eOlc1m0+jRo7VixQqH7/9GawIAAAAAANdX/ObwAAAAAADgf9Jf\n//pXh9CIlBsWyB+wGDNmTIEuNz4+Pmrfvr2k/249lWf79u06cuSIMX9R290MHjzY6Ogxf/58ZWZm\nGmO//fabatWqJS8vL40cObLQUICnp6d69uxp/B0bG1vkez7wwAOFbsNUq1Yto+tLSkqKzp8/X+Qc\npXH8+HHVqVNHFotFzz33XIHPOk/+La6u3R4sv8aNG+svf/lLgfOVK1c2ugDZ7XYtWLDAGLt8+bJx\nXKdOnULnfeyxx9S/f3+9+uqruvPOO43zV65c0bJly4xnv/HGG4V+F+3bt9fzzz9vPC/vnpvBypUr\nje3B3nvvPYeATn6jRo0yPp/Zs2c7tYakpCQtWrRIktS/f/8CAZ08zZs314gRIyRJBw4cKLC9WH4l\nDREVdd2RI0e0Y8cOSdJ9991XIKCT59FHH1Xfvn0lSceOHdPWrVvLXBMAAAAAACgeIR0AAAAAAG4x\noaGhRreV/Ewmk7Hdkbe3t+65554i789js9mM4x9++ME4zgvyFKVz586ScgMyhw4dMs4PHjxYGzdu\n1MGDB9WkSZMi7w8PDzeOMzIyiryuQ4cORY7lDxGlpqYWW++NeuCBB7R+/XodOHDAoYPJtcLCwozj\n4t7jscceK3IbptatW+u2226TlBuUylO7dm2ZzblNkj/44ANt3LjRIRAlSRaLRX//+9/14osvOnQj\n+umnn5SVlSUpN1xS3BZQ+QMaxQU5ylve7zEgIMAhgHQts9ls/F5PnTpVbFjqRu3evVtXr16VdP01\nkT9MtnPnzkKvqVq1qqpVq3bd55rNZjVv3rzQsW3bthnHAwYMKHae/N9t/vtKUxMAAAAAALg+trsC\nAAAAAOAWkxfoKExex5eQkBAj4FHUNVJu95Y8eV10JBmdckri3LlzatmypcM5Dw8PY/7Y2FidO3dO\np0+f1okTJ3To0CGHTiM5OTlFzl3cu+bvEpSdnV3iem9E/u4zly9f1rlz53TmzBmdPHlSkZGR2rdv\nnzGe/7O81l133VXsc5o2baro6GidPn1a6enpslgsCgkJUf/+/TV//nxdunRJL730kvz8/NSmTRu1\na9dO7du3V/369QudLyoqqsTPDg0NVa1atXTu3DmH+ypa3u8xOTm50FBaUc6dO6eqVas6pYbDhw8b\nxyNHjryhGgpTvXr1Et0fEhIii8VS6Njx48eN4xYtWhQ7zx133CEvLy9lZmbq2LFjZaoJAAAAAABc\nHyEdAAAAAABuMX5+fte9pqiATnESEhJKU46SkpIc/rbb7Vq7dq0WLlyoAwcOOHTryZMX4rmea7fr\nyi9/gKa4gExZbNu2TfPmzdPPP/+s5OTkAuMlfY+itmrKExISYhwnJiYaHZHeeusteXt7a+7cucrK\nylJqaqo2b96szZs3S8rtttOzZ08NGzbM4Rn5tzHL3zmpKGFhYTp37pwSExNL9D7lwVm/x5upBn9/\n/xLdX9waz/tuPTw8HH43hTGbzQoODlZcXFyR321JawIAAAAAANdHSAcAAAAAgFtMcVsXlUXe9kgh\nISGaOXNmie/L37UkPT1dr7zyisPWWSaTSTVr1lT9+vXVtGlTtWzZUlarVa+//rrTanc2u92ucePG\nadGiRQ7nq1evrvr166tx48a6++67FRAQoKeeesopz8uTv9ORl5eX3nzzTf3pT3/S+vXrFRERoT17\n9igtLU2SdPbsWX3++eeaN2+evvrqK2NbqBsNLeV1Iipp6KikiuuSdD15v8fGjRtr8uTJJb6vZs2a\npX7mtfJ3aJo2bVqxnZ3yK2vwJX8A7Vo3+t3mfQfO/m4BAAAAAEBBhHQAAAAAAECJBAcHS5JsNpsa\nN25cqn+p/9lnnxkBnWbNmumll15S69atC4QWli5dWuZ6XWn+/PlGQKdu3bp65ZVX1L59e+MzyrNr\n164SzZeYmKhatWoVOR4fHy8pt/NJQEBAgfHw8HANGTJEQ4YMUUZGhn755Rdt375da9asUXR0tJKS\nkjRmzBitXbtWHh4eDnXGx8dfN1yS9/ygoKASvU9JuxilpKSUaL7C5HWASU9PV9OmTUs9T1nk/zwq\nV65cYXXkl1dTTk6OEhISiu3SlJmZaXT1Kel3CwAAAAAASo//RAYAAAAAAJRIw4YNJeV2wzly5Eix\n127dulVff/211q9frytXrkjK7Try3XffSZICAwP1zTffqGvXroV2Fblw4YKTq3euefPmScrtWvTl\nl1/qoYceKhDQkaSYmJgSzXfixIkix+x2uyIjIyXldo3J65SUk5Ojc+fOaefOnQ7Xe3t7649//KNe\ne+01rVu3Ti1atJAknT59Wr/99psxT56DBw8WW1tsbKyio6MlSfXr1y/R++Tv5nT16tUiryvL95z3\nezxz5ozxGyvKmjVr9M0332jjxo2Fbq9W1hok6cCBA8Ve+9tvv2n69OlauXKlTp8+7bQarpX/u71e\nTb/++qsyMzMllfy7BQAAAAAApUdIBwAAAAAAlEiHDh2M47yQSmGys7M1YcIETZ48Wa+88ooR0rhy\n5YrROaV27dpFbvmTmZmpdevWOcx3szlz5oyk3LBRcR1wVq1aZRznbc9UmO+//77IsR9++EFxcXGS\npI4dOxrnx40bp27duumpp57SuXPnCr03L7CTJz09XZLUpk0beXl5SZIWLVpU7LZTecEqSWrXrl2R\n1+UXGBhoHOcFfAqzdevWIseu16kp7/dot9sdarxWcnKyxo0bp0mTJmnMmDHFbhV1o9q2bSuzObdR\n9aJFi4zAS2GmT5+uTz/9VGPGjNH+/fudVsO18q/TBQsWFHvt/PnzjeP27du7rCYAAAAAAJCLkA4A\nAAAAACiRbt26GYGUJUuWaOXKlYVe9/777+v8+fOSpPvvv9/YSikgIMAINJw4caLQLioZGRl65513\ndPz4cYdzN5uQkBBJUkJCgg4dOlRg3G6367PPPtOPP/5onCvuPbZs2aKFCxcWOB8TE6N3331XkmSx\nWDRo0CBjrEuXLsbx+++/X+i2UlevXtWmTZskSX5+fqpXr54kKTQ0VL1795YkHT16VP/4xz8KrWvH\njh2aMWOGpNztnB599NEi3yG/2rVrq1KlSpKkjRs3FtpRaNasWfr111+LnMPb29s4Lqz7Tf/+/Y2g\n1/Tp0wt0FJJyuw2NHTtWqampkqTHHnvMqMsZwsPD1atXL0nSyZMnNXHixEK/h7Vr1xqBrfDwcHXv\n3t1pNVzrjjvuUOvWrSVJERERmj17dqHXLV++XMuXL5eU20Xnvvvuc1lNAAAAAAAgl7miCwAAAAAA\nAP8bzGazJk+erGHDhikzM1Ovv/66IiIi9NBDDyk8PFzR0dFasGCBfvrpJ0lSUFCQ3nzzTeN+Hx8f\ndenSRRs2bFBaWpqefPJJjRgxQo0aNVJGRoaOHj2qhQsX6tSpUw7PTU5OLtf3LIkePXpo1qxZkqTn\nnntOI0aMULNmzWQymXT8+HEtXbq0QHgnr4tQYSpVqqRx48Zp37596tmzp/z9/bV//37NmDHD2Mpp\n7Nixqlq1qnFP165d1bx5cx06dEibNm1Sv379NHDgQNWtW1d2u12nTp3St99+awSehg8f7hBQ+etf\n/6pdu3YpOjpaM2fO1KFDhzRgwADVrVtXVqtVGzdu1JIlS5SVlSWTyaTJkycrKCioRJ+PxWJRjx49\ntHTpUtlsNg0ePFgvvPCCGjZsqMuXL2vFihX6z3/+o9q1a+vs2bOFzhESEiIvLy9lZmZq9erVateu\nnQIDA1WnTh0FBwcrMDBQEydO1KhRo5SRkaERI0aoX79+uv/++xUYGKjTp09rzpw5RhCoZs2aevnl\nl0tU/43I+xxjYmK0YMECHT16VIMGDVK9evUUHx+vzZs3a9myZcrJyZHJZNL48ePl4+Pj9Drye++9\n99SvXz8lJSXpvffe086dO9WnTx9Vr15dcXFxWrNmjdG9yWKx6JNPPjECdAAAAAAAwHX4f98AAAAA\nAKDE7rnnHs2YMUOjRo2S1WrV999/X+hWTdWqVdO0adNUs2ZNh/Pjxo3TkSNHdP78eZ0/f17jx48v\ncK+/v7/eeOMNvf3228rOznboqnOzePnll7Vnzx5FRkYqPj5ekydPLnCNl5eXXnvtNc2cOVOXLl0q\n9j0mTpyoCRMmaOnSpVq6dKnDmKenp0aPHu3QRUfK3Q5q6tSpGj58uE6cOKFff/1Vf/vb3wrMbTKZ\nNHDgQL344osO54ODg/Xtt9/qpZde0uHDh7Vnzx7t2bOnwP2VK1fWP/7xD4ettkpizJgxioyMVFRU\nlKKjowvUVq9ePU2dOlUPPfRQofd7enqqa9euWr9+vWJjYzVixAhJ0qRJk9SvXz9JUs+ePZWVlaW3\n335bV69e1YIFCwrd4qlhw4aaPn26wzZczlK5cmXjczx69KgOHDigAwcOFLjOx8dH48ePV7du3Zxe\nw7Vq166tOXPm6KWXXtL58+e1efNmbd68ucB1tWrV0ieffKImTZq4vCYAAAAAAEBIBwAAAAAA3KB2\n7dpp06ZNmj9/vn744QedPHlSycnJ8vX11e233677779fTzzxhLEVUX5Vq1bVsmXL9PXXX2vTpk06\ne/assrKy5O/vr3r16qlDhw4aMGCAwsPDtXTpUu3du1dbt26VzWaTr69vBbxt4fz9/TVv3jzNmTNH\na9eu1alTp5Seni4/Pz/VqlVLbdq00aBBg1SrVi0dPnxYK1eu1MGDBxUdHW1s/5XfnXfeqeXLl+vf\n//63fvzxR125ckWhoaFq27atnn76aTVu3LjQOqpVq6Zly5ZpyZIl2rBhg6KiomS1WuXl5aUqVaqo\nTZs26tevn+66665C769Ro4YWL16s1atXa+3atYqMjJTValVwcLBq166t7t2765FHHilxB538Kleu\nrMWLF2v+/Plas2aNTp48Kbvdrjp16qhHjx4aNmyYsrOzi51j0qRJCg0N1aZNm3TlyhUFBgYqISHB\n4ZqHH35Y7dq109y5c7Vt2zadPXtWqamp8vf3V5MmTdSjRw/17dvXYfssZ6tZs6aWLl2q1atXa926\ndYqMjFRCQoLMZrNq1aql9u3ba/DgwcZ2ceWhSZMmWrt2rRYtWqQNGzbo2LFjSk5OVmhoqOrVq6de\nvXrpoYcecur2XwAAAAAAoHgme2EbZQMAAAAAAAAAAAAAAABwGo+KLgAAAAAAAAAAAAAAAAC41RHS\nAQAAAAAAAAAAAAAAAFzMXNEFAAAAAAAAlIfU1FSdPXu2zPPUrl1bfn5+TqgIFeXEiRPKzMws0xxB\nQUGqUaOGkyoCAAAAAADuwGS32+0VXQQAAAAAAICr7dq1S0OHDi3zPLNnz1abNm2cUBEqSteuXRUd\nHV2mOR599FF98MEHTqoIAAAAAAC4A7a7AgAAAAAAAAAAAAAAAFzsf6aTTlxcckWXgEKEhPgqIcFW\n0WUAKGesfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNrv/yEhwcUOUYnHZSJ2exZ0SUAqACs\nfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr/+ZASAcAAAAAAAAAAAAAAABwMUI6AAAAAAAA\nAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABcjJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAAAAAAAAAAAAX\nI6QDAAAAAAAAAAAAAAAAuBghHQAAAAAAAAAAAAAAAMDFCOkAAAAAAAAAAAAAAAAALkZIBwAAAAAA\nAAAAAAAAAHAxQjoAAAAAAAAAAAAAAACAixHSAQAAAAAAAAAAAAAAAFyMkA4AAAAAAAAAAAAAAADg\nYoR0AAAAAAAAAAAAAAAAABcjpAMAAAAAAAAAAAAAAAC4GCEdAAAAAAAAAAAAAAAAwMUI6QAAAAAA\nAAAAAAAAAAAuRkgHAAAAAAAAAAAAAAAAcDFCOgAAAAAAAAAAAAAAAICLEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBihHQAAAAAAAAAAAAAAAAAFyOkAwAAAAAAAAAAAAAAALgYIR2USlpW\nmt796SNtPb2roksBAAAAAAAAAAAAAAC46RHSQanYsq7qki1W+2IiK7oUAAAAAAAAAAAAAACAmx4h\nHZRKkHegTDIp3pZQ0aUAAAAAAAAAAAAAAADc9AjpoFQ8PTwVZAksdUjnxInjTq7oxowc+aw6dGil\nrl3bVWgdAAAAAAAAAAAAAADAPRDSQamFWIJ05apVOfacEt+TkpKiTz/9SMOHD3FhZQAAAAAAAAAA\nAAAAADcXs6smzsnJ0fjx43Xs2DF5e3vr73//u+rUqWOMz5o1S4sWLVLlypUlSRMmTFD9+vVdVQ5c\nINgnWL8lnVVyRoqCLIElumfKlI+1Zs1KF1cGAAAAAAAAAAAAAABwc3FZSGfjxo3KyMjQggULtH//\nfn3wwQeaPn26MR4ZGanJkyerWbNmrioBLhZiCZIkJaRbSxzSyckpedcdV5o6dUZFlwAAAAAAAAAA\nAAAAANyIy7a72rt3rzp27ChJatGihSIjIx3Gf/31V82YMUMDBw7UF1984aoy4EIhPsGSpIS0xAqu\nBAAAAAAAAAAAAAAA4ObmspBOSkqK/P39jb89PT2VlZVl/P3QQw9p/Pjx+uabb7R3715FRES4qhS4\nSHC+TjoAAAAAAAAAAAAAAAAomsu2u/L391dqaqrxd05Ojszm3MfZ7XYNGzZMAQEBkqTOnTvr8OHD\n6tKlS5HzhYT4ymz2dFW5KIX6HjWkSCndZFN4eECx106ZMkVTp051ONehQytJUuvWrTVnzhyNHTtW\ny5YtU5MmTbR48WL961//0vLly5WYmKgqVaqoe/fuGjNmjHF/enq6VqxYoS1btujIkSNKSEhQZmam\ngoKC1LBhQ9133316/PHH5evrW6CeJ598Urt375a3t7cOHTrkMNa4cWNJ0htvvKGnnnpK//nPf7Ro\n0SIdPnxYiYmJCgsLU5s2bTRs2DDdcccdpfrsgFvB9dY9gFsTax9wP6x7wD2x9gH3xNoH3BNrH3BP\nrH3APbH2K57LQjotW7ZURESEevbsqf3796tRo0bGWEpKinr16qXvv/9evr6+2rVrl/r161fsfAkJ\nNleVitJK95IkRVvjFBeXXOylqanpRY5lZGQpLi5ZaWmZkqSsrBy9+upftGnTf4xrzp8/r5wcD+M5\nx44d1RtvvKbY2EsF5rt8+bIuX76snTt3as6cuZoy5XOFh1cp8Mw8RdWelHRVI0e+qg0b1jmcj4mJ\n0fLly7Vy5UqNHv2GHn740WLfHbgVhYcHXHfdA7j1sPYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr\nv/wUF4ZtYlc0AAAgAElEQVRyWUjngQce0Pbt2/XEE0/Ibrdr0qRJWrVqlWw2mwYMGKBRo0Zp6NCh\n8vb2Vtu2bdW5c2dXlQIXCfQOkKfJQ9a062931adPP3XqdJ++/PJzbd++TZI0c+ZcSVKlSo6dbk6d\nOqETJ6LUvPldevLJp+Xj46Pt27epZ8+HJUmJiVaNGvWSkpIS5enpqZ49e6tduw4KCQlVcnKijh+P\n0sKF82S1WnX+/FlNnfqpJkyYdMPv9913cxQfH6+6devp8ccHqUGDhkpOTtLatau0adMG5eTk6NNP\nP1Tr1m1VrVq1G54fAAAAAAAAAAAAAAC4D5eFdDw8PPTuu+86nGvQoIFx3KdPH/Xp08dVj0c58DB5\nqHKlYCWkJ1732tDQMIWGhikwMMg417Bh40KvzcnJ0W231dSnn06TxeIjSWrZspUxvmDBPCUl5T7z\npZde1eOPD3K4v23bDurRo5eefPJxpaSkaNu2LcrKyjK2Wyup+Ph43XNPa/3jH5/IYrEY5//4x3YK\nCAjU8uVLlJGRoY0b12nIkKduaG4AAAAAAAAAAAAAAOBePCq6APxvC/UNUWJ6krJzsp06b48evYyA\nzrUuX45TWFi4QkND1bfv44VeEx5eRXfffY8kKSMj3Qj13Kg//3m0Q0AnzyOP9DWOT5w4Xqq5AQAA\nAAAAAAAAAACA+3BZJ53/VQs3n9DPR2MruoxydW+TKnq86+2lujfUN0R22ZWUkawQn2Cn1fSHPzQv\ncuzNN9+RlNtxx8Oj6JxZ5cqhxnFGRuYN1xAeXkX16tUvdOy222oaxzab7YbnBgAAAAAAAAAAAAAA\n7oWQDsok1LeyJCkh3erUkE7VqlWve01eQCcrK0sXL8bowoVonTt3RidPntCvvx7SyZMnjGvt9pwb\nrqFatepFjlWq5GscZ2c7t4sQAAAAAAAAAAAAAAC49RDSucbjXW8vdVcZdxRaKTeYk5BmlYKcN6+v\nr3+x42lpaVq6dJE2blynkydPFBqU8fDwUE7OjYdz8uQP4lzLZDIZx3a7vdTPAAAAAAAAAAAAAAAA\n7oGQDsok1DdEkpSQnujUefNlYAq4cCFaf/nLSJ0/f8445+XlpVq1aqtOnXpq3LiJWrS4R+vXf69l\nyxY5tS4AAAAAAAAAAAAAAIDSIKSDMgnLC+mkWcvtmePHv2UEdLp1e1CPPTZATZrcIbPZ8ee8YsWS\ncqsJAAAAAAAAAAAAAACgOIR0UCau6qRTlKNHD+vw4UhJUsuWrTR+/HtFXnvp0sVyqQkAAAAAAAAA\nAAAAAOB6PCq6APxvC7QEyOxhljWtZCEdU3H7WJVA/i2uGjduWuR1MTEXdOjQAePv7OzsMj0XAAAA\nAAAAAAAAAACgLAjpoExMJpOCLUFKSC/Zdlfe3t7Gsc1mu+HnBQUFG8d79uxSVlZWgWvi4y9r3Lix\nyszMNM5lZGTc8LMAAAAAAAAAAAAAAACche2uUGYhliCdsP6mrJwsmT2K/0mFhoYZxzNmTFP37g/J\nw8NDjRo1KdGz7ryzhUJDwxQff1nHj0fp1VdfUN++j6tatepKSkrU/v2/aM2aFbJaHUNDqakpN/5i\nAAAAAAAAAAAAAAAATkJIB2UW4hMsu+yypicprFLlYq/t0KGTZs36UtnZ2Vq8eIEWL16gqlWracmS\n1SV6lsVi0bhx7+qvfx2l9PR0HTiwTwcO7CtwXa1atdWr1yOaPn2KJOm3306pefO7bvzlAAAAAAAA\nAAAAAAAAnIDtrlBmwZYgSVJC2vW3vGrYsLE++OCfatbsTlWq5CuLxSKz2ay0tLQSP69Vq9aaOXOu\nevfuo+rVb5OXl5e8vLwUFhaue+9to9dff0uzZs3To48+Jh8fH0nS5s0bSvdyAAAAAAAAAAAAAAAA\nTmCy2+32ii6iJOLikiu6BBQiPDxAS/b9RwuilmnYHU+odbWWFV0SgHIQHh7A/y4Dboi1D7gf1j3g\nnlj7gHti7QPuibUPuCfWPuCeWPvlJzw8oMgxOumgzEJ8cjvpWNMSK7gSAAAAAAAAAAAAAACAmxMh\nHZRZiCVYkpSQfv3trgAAAAAAAAAAAAAAANwRIR2UWYhPXkiHTjoAAAAAAAAAAAAAAACFIaSDMvM1\nV5K3h5esaXTSAQAAAAAAAAAAAAAAKAwhHZSZyWRSiE8wnXQAAAAAAAAAAAAAAACKQEgHThFiCVZK\nZqoysjMruhQAAAAAAAAAAAAAAICbDiEdOEWwJUiSZE1nyysAAAAAAAAAAAAAAIBrEdKBU4T45IZ0\nEtLY8goAAAAAAAAAAAAAAOBahHTgFCGWYElSAp10AAAAAAAAAAAAAAAACiCkA6cI9vk9pEMnHQAA\nAAAAAAAAAAAAgAII6cApQiy5211Z6aQDAAAAAAAAAAAAAABQACEdOEVIXieddDrpAAAAAAAAAAAA\nAAAAXIuQDpyiktlHPp4+Skijkw4AAAAAAAAAAAAAAMC1COnAaUJ8guikAwAAAAAAAAAAAAAAUAhC\nOnCaYEuQrmZdVVpWekWXAgAAAAAAAAAAAAAAcFMhpAOnCbEES5Ks6Wx5BQAAAAAAAAAAAAAAkB8h\nHThNiE+QJCkhjS2vAAAAAAAAAAAAAAAA8iOkA6fJ66STQCcdAAAAAAAAAAAAAAAAB4R04DQhPnkh\nHTrpAAAAAAAAAAAAAAAA5EdIB04TYsnd7sqaRicdAAAAAAAAAAAAAACA/AjpwGlupJPOiRPHXV1O\nqcXEXJDNllrRZQAAAAAAAAAAAAAAgFsIIR04jbent/zMvkooppNOSkqKPv30Iw0fPqQcKyuZjIwM\nzZz5/zRkSH8lJrJlFwAAAAAAAAAAAAAAcB5zRReAW0uwT5AuX42X3W6XyWQqMD5lysdas2ZlBVR2\nffPmzdZXX31R0WUAAAAAAAAAAAAAAIBbEJ104FQhliClZ2foalZaoeM5OTnlXFHJZWdnV3QJAAAA\nAAAAAAAAAADgFkVIB04V7BMsSUpIL3rLKwAAAAAAAAAAAAAAAHdDSAdOFWL5PaSTRkgHAAAAAAAA\nAAAAAAAgj7miC8CtJcQSJEmypic6nP/qqy80c+b/czjXoUMrSVKLFi01deoMh7Fdu3bq++9XKjLy\nkBISrsjb26KaNWupbdv26tdvgIKDg4usIS4uVkuXLtKuXTt17txZZWVlKjAwSA0aNFT79h3Vq9fD\nslh8jOu//36VJk2a4DBH//4PS5KqVauuxYtX3eCnAAAAAAAAAAAAAAAA4IiQDpwqxNjuKvE6Vxbu\n6tWrmjjxbW3dGuFwPiMjQ0ePHtbRo4e1cOE8jRs3UR06dCpw/969P+vNN0crNTXV4Xx8/GXFx1/W\n7t07NX/+HH388VTVrl2nVDUCAAAAAAAAAAAAAADcKEI6cKqitrvq06efOnW6T19++bm2b98mSZo5\nc64kqVIlX0lSTk6Oxo79i/bu/VmS1K5dRz34YE9Vr15dNptNe/f+rGXLFiklJUVvvTVG//znFLVq\n1dp4RnJyssaNG6vU1FQFB4do8OBhatr0Dnl7e+vSpYtas2alfvpphy5ejNGECX/Tl1/OlslkUocO\nnTRz5lwtX75EK1YslSR9+OGnCgsLl9ns5doPDAAAAAAAAAAAAAAAuAVCOnCqYEugpIKddEJDwxQa\nGqbAwCDjXMOGjR2uWbz4OyOgM3r0G+rTp5/DeKtWrdWr1yN68cXhio+P16RJE7Rw4QqZzbk/4x9/\n3KKkpNznTpr0oe68s4Vx7x13NFOXLt00btxYRURs1LFjR3Ts2FE1adJUgYFBCgwMUuXKocb1devW\nV/XqNcr6cQAAAAAAAAAAAAAAAEiSPCq6ANxavDy95O/lJ+s1nXSuJycnR999l9tZ549/bFcgoJPn\ntttq6vnnX5YkxcZe0pYtm42x+PjLxnGtWrULvX/o0KfVp89jevHFVxUQEHBDNQIAAAAAAAAAAAAA\nAJQWnXSusfTEau2LPVTRZZSru6s0V9/bezltvhCfYF1MvSS73S6TyVSie06ePK7Y2EuSpHvvbVPs\ntX/8YzvjeM+en3X//f8nSapTp65x/s03x+iVV/6ipk3/4HBvw4aNNXr02BLVBAAAAAAAAAAAAAAA\n4CyEdOB0IZZgnUuOVmqmTf7efiW6JyrqmHE8ZconmjLlkxLdd+FCtHHctm0HNWjQUCdPHtehQwf0\npz8NU1hYuO69t41atWqte+9t47ClFQAAAAAAAAAAAAAAQHkhpHONvrf3cmpXGXcU4hMkSUpIt5Y4\npJOYeGPbY+VJTk4yjs1ms/75z8/0wQcT9dNPOyRJly/Hae3a1Vq7drVMJpOaNv2Dund/SL1795GX\nl1epngkAAAAAAAAAAAAAAHCjCOnA6UIswZIka3qiagXcVqJ7srOzjePXXhurZs2al+g+i8Xi8HdY\nWLg++ugznTp1QhERm7Rz53ZFRR1VTk6O7Ha7Dh+O1OHDkVqxYqn+9a/pCg4OLuFbAQAAAAAAAAAA\nAAAAlB4hHThdiOX3TjppJe+OExAQaBz7+fmrYcPGZaqhfv3bVb/+7Ro+/DklJSVp3749+umnHYqI\n2KiUlBSdPHlc06d/pjfeeLtMzwEAAAAAAAAAAAAAACgJj4ouALeeYJ/c7jQJ6Yklvqd+/QbG8eHD\nh4q9NiEhQV9/PUNr167W8eNRxvnMzEydOnVSR48ecbg+MDBQnTt31V//+jfNmjVf/v4BkqQdO34s\ncX0AAAAAAAAAAAAAAABlQUgHTpe33VVhnXRMJlOh9zRt+gcFBuZ24NmwYZ1SUlKKnH/JkgX6+usZ\neu+98frxxy3G+SFD+mvo0AF6660xRd5brVp11atXX5KUkZHuMObhwXIAAAAAAAAAAAAAAACuQSoB\nThdsCZRJJiWkFwzpeHt7G8c2m8049vLyUr9+j0uSEhMTNXHiOGVkZBS4/+DB/Zo3b44kyWKxqHfv\nR42xdu06SpIuXbqo7777ttDazpw5raioo5KkJk3+4DDm5eVlHF+9ahMAAAAAAAAAAAAAAICzmCu6\nANx6PD08Fejtr4S0gttdhYaGGcczZkxT9+4PycPDQ40aNdGQIU9p+/Ztioo6qu3bt+nppwepf/+B\nuv32RkpJSdaePbu1bNkiowPO88+/rLCw/843cOAQrV27SikpKZo27V86dOiAunb9P1WtWk2pqSk6\ncuRXLV78ndLT0+Xh4aFhw54psrZZs77SE08MVk6OXc2aNXf2RwQAAAAAAAAAAAAAANyMyW632yu6\niJKIi0uu6BJQiPDwgEK/m3/smaLzyRf06X3vycP034ZNx48f04gRQ5WdnW2cq1q1mpYsWS1JSky0\n6u2339DevT8X+UxPT08NH/6chg59psDY3r0/6623XldKStG/Fx8fH7322lj16NHL4fzly5c1cGBf\nhy46ZrNZGzZsc+iyA6DotQ/g1sbaB9wP6x5wT6x9wD2x9gH3xNoH3BNrH3BPrP3yEx4eUOSY5/jx\n48eXXymlZ7MV3PoIFc/Pz1Lod3M4PkoxqRfV8ba28jFbjPOhoWFq0qSpYmIuKDk5WZ6eHvL3D1Dv\n3n1kNpvl4+OjHj16qVGjJsrJyZHNZlNmZqY8Pc2qUeM2delyv8aOfVtdutxfaD01atymnj17y8en\nkjIzM5WWlqbs7CwFBASqTp166tmzt956a7xatGhZ4F5fX1/dc8+9v9eWaNTbsWNnBQYGOekTA24N\nRa19ALc21j7gflj3gHti7QPuibUPuCfWPuCeWPuAe2Ltlx8/P0uRY3TSQZkUlbZbfHylIs79qNdb\nvaw6gbUqoDIArkTSFnBPrH3A/bDuAffE2gfcE2sfcE+sfcA9sfYB98TaLz/FddLxKHIEKEZOjl0r\nf/xNZy4mFToeYgmWJCWkJ5ZnWQAAAAAAAAAAAAAAADclQjoolYTkdC3/8TctjThR6HiIz+8hnTRr\neZYFAAAAAAAAAAAAAABwUyKkg1IJDvCW2dOks5cKb4cVYgmSJCWkE9IBAAAAAAAAAAAAAAAgpINS\n8fTwUNXKvjp/KVl2u73AePDvIR1rGttdAQAAAAAAAAAAAAAAENJBqdUI9VNaRrauJKUXGAuyBMrD\n5EEnHQAAAAAAAAAAAAAAABHSQRnUCPOTJF2ITy0w5mHyUJB3oBLopAMAAAAAAAAAAAAAAEBIB6Vn\nhHQuFwzpSFKIT5ASM5KUY88pz7IAAAAAAAAAAAAAAABuOoR0UGo1Qn0lFRPSsQQrx56jpIzk8iwL\nAAAAAAAAAAAAAADgpkNIB6VWtbKvPDxMiom3FToe7BMkSUpIs5ZnWQAAAAAAAAAAAAAAADcdQjoo\nNbOnh6qH+unC5VTZ7fYC4yGWYElSQnpieZcGAAAAAAAAAAAAAABwUyGkgzKpXS1AtvQsJaZmFBgL\nsdBJBwAAAAAAAAAAAAAAQCKkgzKqVTVAknThcmqBsRCfvE46hHQAAAAAAAAAAAAAAIB7I6SDMiku\npBOct91VGttdAQAAAAAAAAAAAAAA90ZIB2VSq4q/JCkm3lZgLMDbT54mTzrpAAAAAAAAAAAAAAAA\nt0dIB2VyWxV/mVR4Jx0Pk4eCLUGy0kkHAAAAAAAAAAAAAAC4OUI6KBMfb7PCgn10Ib5gSEeSQnyC\nlJSRrOyc7HKuDAAAAAAAAAAAAAAA4OZBSAdlViPUT8m2TCXZMgqMhViCZZdd1vSkCqgMAAAAAAAA\nAAAAAADg5kBIB2VWI8xPkhRTyJZXIT7BkqSEdGu51gQAAAAAAAAAAAAAAHAzIaSDMjNCOvG2AmPB\nliBJkjWNkA4AAAAAAAAAAAAAAHBfhHRQZtVDc0M6FwrrpPN7SCchPbFcawIAAAAAAAAAAAAAALiZ\nENJBmVUP9ZUkXYhnuysAAAAAAAAAAAAAAIDCENJBmVWymFU50FJEJ53fQzppdNIBAAAAAAAAAAAA\nAADui5AOnKJGqJ+sKRmypWU5nPfz8pXZw6zE9KQKqgwAAAAAAAAAAAAAAKDiEdKBU9QI85MkxVyz\n5ZXJZJKfuZJsWbaKKAsAAAAAAAAAAAAAAOCmQEgHTlE91FeSCt3yytfLV7bMq+VdEgAAAAAAAAAA\nAAAAwE2DkA6cIq+TzoX4QkI6Zl/Zsq4qx55T3mUBAAAAAAAAAAAAAADcFAjpwCmqh/4e0rlccFsr\nPy9f2WVXWlZaeZcFAAAAAAAAAAAAAABwUyCkA6fwr+SlID9vxRTWScerkiQplS2vAAAAAAAAAAAA\nAACAmyKkA6epEeany4lpSs/IdjjvZ/aVJNmyCnbZAQAAAAAAAAAAAAAAcAeEdOA01UNzwzgxVxy7\n6fh65Z5PzSSkAwAAAAAAAAAAAAAA3BMhHThNjTA/SdKFy44hHb/ft7uyEdIBAAAAAAAAAAAAAABu\nipAOnKZGaF5IxzGM4/v7dlepWVfLvSYAAAAAAAAAAAAAAICbASEdOE1eJ52Y+Gs76eSGdOikAwAA\nAAAAAAAAAAAA3BUhHThNgK+X/Ct5Fdjuyvf37a5SswjpAAAAAAAAAAAAAAAA9+SykE5OTo7efvtt\nDRgwQE8++aTOnDlT6HXjxo3TRx995KoyUI5MJpOqh/oq1npVmVnZxvm87a5smWx3BQAAAAAAAAAA\nAAAA3JPLQjobN25URkaGFixYoNdee00ffPBBgWu+++47RUVFuaoEVIAaYX6y26WLV/4byPH7vZOO\njU46AAAAAAAAAAAAAADATbkspLN371517NhRktSiRQtFRkY6jP/yyy86cOCABgwY4KoSUAFqhPpJ\nksOWVz6ePvIweSiVTjoAAAAAAAAAAAAAAMBNuSykk5KSIn9/f+NvT09PZWVlSZJiY2M1bdo0vf32\n2656PCpIjbDckE5M/H9DOiaTSb7mSrJl0kkHAAAAAAAAAAAAAAC4J7OrJvb391dq6n+DGjk5OTKb\ncx+3bt06JSQk6Nlnn1VcXJzS0tJUv3599e3bt8j5QkJ8ZTZ7uqpclEF4eIBx3Nw79zuOT85wOB/g\n4ydbZprDOQD/21jPgHti7QPuh3UPuCfWPuCeWPuAe2LtA+6JtQ+4J9Z+xXNZSKdly5aKiIhQz549\ntX//fjVq1MgYGzp0qIYOHSpJWrp0qU6dOlVsQEeSEhLownIzCg8PUFxcsvG33W6Xj7enfruQ6HDe\nx+Sj2PR4xcYmyWQyVUSpAJzo2rUPwD2w9gH3w7oH3BNrH3BPrH3APbH2AffE2gfcE2u//BQXhnJZ\nSOeBBx7Q9u3b9cQTT8hut2vSpElatWqVbDabBgwY4KrHooKZTCbVCPPTmYvJysrOkdkzd0c1Xy9f\nZduzlZ6dIR+zpYKrxP9n7+6D3L7re9G/pZX2QdKu7fVDEicOD3mAMwSS8hAokB6SJpw2lIY2FwLN\nEChcCkPTFoahTYeSaZMUGBigtLQzMH2ahHChodycC5feMnmCwuFkgNOEeoCeUiBxcGLHdmzvSmuv\ndqX7x9ob0lAjx9Zq5d/rNeNZ6aeftO8d6/vfez4fAAAAAAAAAGBl9a2kUy6Xc9111z3m2hlnnPG4\n+37aBB2Gz+b19Xx/+/7sfGQumzfUkyS1Si1J0lpoKekAAAAAAAAAAIVTHnQATjyHizkP7m4uX6tX\nJ5IkzfbcQDIBAAAAAAAAAAySkg7H3eYNS1Nztu96tKRTqx6apNNuDSQTAAAAAAAAAMAgKelw3G1e\nvzRJZ/vuRws59UPrrpoLSjoAAAAAAAAAQPEo6XDcTa8Zz2i1/B8m6SytuzJJBwAAAAAAAAAoIiUd\njrtyqZRTput5cHcrnU43SVJfXnc1N8hoAAAAAAAAAAADoaRDX2zeUMvCYie79i2VcmrWXQEAAAAA\nAAAABaakQ19s3lBPkmzftVTKqVt3BQAAAAAAAAAUmJIOfbF5/aGSzu5mkqRWPTxJx7orAAAAAAAA\nAKB4lHToi1OWJ+kcKulUTNIBAAAAAAAAAIpLSYe+2Lh2PJWR0nJJp1wqZ6IynpZJOgAAAAAAAABA\nASnp0Bcj5XJOnq7lwd2tdLvdJEmtUkvTJB0AAAAAAAAAoICUdOibzRvqOdhezJ79B5Mk9eqEdVcA\nAAAAAAAAQCEp6dA3m9fXkyTbdy+tvKpVapnvtNNebA8yFgAAAAAAAADAilPSoW9O2XCopLNrqaRT\nr9aSJK2FuYFlAgAAAAAAAAAYBCUd+mbz+qVSzuGSTu1QSadp5RUAAAAAAAAAUDBKOvTNSdO1lEul\nPLh7qZRTr0wkMUkHAAAAAAAAACgeJR36pjJSzknTE9m+q5lut2uSDgAAAAAAAABQWEo69NXm9fW0\nDi5kX3N+uaTTUtIBAAAAAAAAAApGSYe+OmXDUjFn+67m8rqr5oKSDgAAAAAAAABQLEo69NXm9fUk\nSyWdRyfpzA0yEgAAAAAAAADAilPSoa82b1gq6Ty4u5X6oZKOSToAAAAAAAAAQNEo6dBXJ0/XUsqh\nSTqVw5N0lHQAAAAAAAAAgGJR0qGvRqsjWdMYze79B1KrTiSx7goAAAAAAAAAKB4lHfpu/dR4Hpk5\nmJGMZLRcte4KAAAAAAAAACgcJR36bt3UeBY73exrzqdWrZmkAwAAAAAAAAAUjpIOfbd+aixJsmf/\ngdSrtbRM0gEAAAAAAAAACkZJh76bnhpPkuyZOZhaZSJzCwey2FkccCoAAAAAAAAAgJWjpEPfTU8u\nlXR271uapJMkcwsHBhkJAAAAAAAAAGBFKenQd+vXHFp3NXMgtcpSSadp5RUAAAAAAAAAUCBKOvTd\n4Uk6e/YfXJ6k02or6QAAAAAAAAAAxaGkQ99N1qqpjJSzZ/+B1KoTSZKmkg4AAAAAAAAAUCBKOvRd\nqVTK9NRY9uw/kPqhdVethbkBpwIAAAAAAAAAWDlKOqyI9VPj2d9qZ6y8tPrKJB0AAAAAAAAAoEiU\ndFgR01NjSZKFdiVJ0lLSAQAAAAAAAAAKREmHFTE9uTRBpz239JVrWncFAAAAAAAAABSIkg4rYv2a\npZLO3NxIEpN0AAAAAAAAAIBiUdJhRUxPLq27mp1det5cUNIBAAAAAAAAAIpDSYcVMT21NEln38xi\nKqWRtNrWXQEAAAAAAAAAxaGkw4qYnlqapPPI/oOZqE5YdwUAAAAAAAAAFIqSDitifLSS+ngle2YO\npl6ppbVgkg4AAAAAAAAAUBxKOqyY6anx7N5/ILVqLc12K51uZ9CRAAAAAAAAAABWhJIOK2Z6ciwH\n5xczVh5PN90cXDw46EgAAAAAAAAAACtCSYcVM71mPEky0h1LkjTbVl4BAAAAAAAAAMWgpMOKmZ5c\nKudksZokabVbA0wDAAAAAAAAALBylHRYMeunlibpdNuVJElzQUkHAAAAAAAAACgGJR1WzPShkk77\n4FJJxyQdAAAAAAAAAKAolHRYMdNTS+uuDswtfe2a7blBxgEAAAAAAAAAWDFKOqyYtY2xlErJXLOU\nJGlZdwUAAAAAAAAAFISSDiumMlLO2sZY9s8sPW9adwUAAAAAAAAAFISSDitqemosM/uXHresuwIA\nAAAAAAAACkJJhxU1PTmexXYlSdK07goAAAAAAAAAKAglHVbU+qnxZLGSUkppWXcFAAAAAAAAABSE\nkg4rat3UWJJSRktjaS5YdwUAAAAAAAAAFIOSDitq/dR4kqSSMZN0AAAAAAAAAIDCUNJhRR0u6ZQ6\no2m1W+l2uwNOBAAAAAAAAADQf0o6rKildVdJd6Gahe5i2p32gBMBAAAAAAAAAPSfkg4ranKimmql\nnIX5SpKkaeUVAAAAAAAAAFAASjqsqFKplOnJscwfWPrqtRbmBpwIAAAAAAAAAKD/lHRYcdNT45k/\nMJLEJB0AAAAAAAAAoBiUdFhx01Nj6S5UkyQtJR0AAAAAAAAAoACUdFhx66fGk0MlneaCkg4AAAAA\nAAAAcOJT0mHFTU+N/9gknbkBpwEAAAAAAAAA6D8lHVbc9NRYsnhoko51VwAAAAAAAABAASjpsOLW\n/+UcdpsAACAASURBVPgkHeuuAAAAAAAAAIACUNJhxU1Pjqe7MJokaVp3BQAAAAAAAAAUgJIOK25s\ndCS1yniSpGXdFQAAAAAAAABQAEo6DMT6qVq6i5U0rbsCAAAAAAAAAApASYeBWD81nu5CNc15JR0A\nAAAAAAAA4MSnpMNATE+NJQtVk3QAAAAAAAAAgEJQ0mEgpg9N0ml32ml3FgYdBwAAAAAAAACgr5R0\nGIjpqbF0F6pJklZ7bsBpAAAAAAAAAAD6S0mHgZieHE8Wl0o6c1ZeAQAAAAAAAAAnOCUdBmL9oXVX\nSdI0SQcAAAAAAAAAOMEp6TAQaydHlyfptEzSAQAAAAAAAABOcEo6DMRIuZyJkYkkSbOtpAMAAAAA\nAAAAnNiUdBiYqbF6kmR2XkkHAAAAAAAAADixKekwMGsnGkmSR1ozA04CAAAAAAAAANBfSjoMzHRt\nMknyyNzsgJMAAAAAAAAAAPSXkg4Ds6GxVNLZd0BJBwAAAAAAAAA4sSnpMDAnr1mTJGm2WwNOAgAA\nAAAAAADQX0o6DMymNZPpLpbTWpgbdBQAAAAAAAAAgL6qDDoAxTU9NZYsVjOfA4OOAgAAAAAAAADQ\nVybpMDCNiWqyOJqFHBx0FAAAAAAAAACAvlLSYWBKpVIqGUt3pJ1OtzPoOAAAAAAAAAAAfaOkw0CN\nlceTJPvmZgecBAAAAAAAAACgf5R0GKiJkYkkyfZ9+wacBAAAAAAAAACgf3oq6ezZs6ffOSioxmgt\nSbJDSQcAAAAAAAAAOIH1VNK58sor+52DgpoarydJds3uH3ASAAAAAAAAAID+qfRy09Of/vTceuut\nedaznpXx8fHl65s3b+5bMIphemIyaSV7mjODjgIAAAAAAAAA0Dc9lXTuvffe3HvvvY+5ViqVcvvt\nt/clFMWxvjGZ7E72HZgddBQAAAAAAAAAgL7pqaRzxx13HPUHdzqd/OEf/mH+9V//NaOjo7nhhhvy\npCc9afn1f/zHf8zHP/7xlEqlvPzlL8/rXve6o/4dDL9Nk2uSJDPzrQEnAQAAAAAAAADon3IvN+3Z\nsydve9vb8vznPz/Pfe5zc/XVV2fXrl1HfM9tt92W+fn5fPrTn8473vGOvO9971t+bXFxMR/84Afz\nt3/7t/n0pz+dT37yk9mzZ8+x/SUMpbUTjSRJs62kAwAAAAAAAACcuHoq6Vx77bV55jOfmdtvvz13\n3HFHzj333LzrXe864nu++c1v5oILLkiSnHfeedm6devyayMjI/nCF76QycnJ7N27N51OJ6Ojo8fw\nZzCsapVakuRg50C63e6A0wAAAAAAAAAA9EdPJZ1t27bljW98YxqNRqampvKmN70p27dvP+J7Zmdn\n02g0lp+PjIxkYWFh+XmlUskXv/jFXHbZZTn//PMzMTHxBP8Ehlm9uvT/3inPp3lg4afcDQAAAAAA\nAAAwnCq93FQqlfLggw/mlFNOSZJs3749lcqR39poNNJsNpefdzqdx73npS99aS6++OJcc801ufXW\nW3P55Zf/p5+3bl0tlcpIL3FZYRs3Tj7h93a7jZRSTkba6Y6MHNNnASvLeYVicvaheJx7KCZnH4rJ\n2YdicvahmJx9KCZnf/B6Kun8zu/8Tq644oqce+656Xa7uffee3P99dcf8T3Pfvazc+edd+bSSy/N\nPffck7PPPnv5tdnZ2bzlLW/JX//1X2d0dDQTExMpl4881OeRR1q9RGWFbdw4mYcfnjmmz6hmLIuV\ndv79vj2ZHO1puBMwYMfj7APDx9mH4nHuoZicfSgmZx+KydmHYnL2oZic/ZVzpDJUTyWdU045Jbfe\nemu+9a1vpdPp5I/+6I+yfv36I77nkksuyVe/+tW8+tWvTrfbzXve85587nOfS6vVyhVXXJGXv/zl\nufLKK1OpVPK0pz0tv/zLv3x0fxUnjImRiRyszGb3/gODjgIAAAAAAAAA0Bc9lXTe/va35x/+4R/y\nkpe8pOcPLpfLue666x5z7Ywzzlh+fMUVV+SKK67o+fM4cdWqtexdeCS7988NOgoAAAAAAAAAQF/0\nVNI588wz89GPfjTnnntuxsfHl68/73nP61swimNyrJbSgW52zcwOOgoAAAAAAAAAQF/0VNLZu3dv\n7r777tx9993L10qlUm688ca+BaM41ozXk33J7qb9dwAAAAAAAADAiamnks6ll16a17zmNf3OQkE1\nqvUkyd6Wkg4AAAAAAAAAcGIq93LTzTff3O8cFFitOpEk2T/fSqfTHXAaAAAAAAAAAIDjr6dJOief\nfHKuuuqqnHvuuRkbG1u+fvXVV/ctGMVRq9aWHozMZ+/swUxPjQ82EAAAAAAAAADAcdZTSee8887r\ndw4KrF45XNJpZ89+JR0AAAAAAAAA4MTTU0nn6quvTqvVyv3335+zzz47Bw4cSK1W63c2CuLwJJ1S\npZ09MweSrBlsIAAAAAAAAACA46zcy01f+9rXctlll+Wtb31rdu3alYsuuihf+cpX+p2NgqhXJ5Ye\nVNrZvf/AYMMAAAAAAAAAAPRBTyWdD33oQ/nkJz+ZqampbNq0KZ/4xCfy/ve/v9/ZKIha5ccm6ew/\nOOA0AAAAAAAAAADHX08lnU6nk40bNy4/P/PMM/sWiOKpH153NdLOHpN0AAAAAAAAAIATUKWXm04+\n+eTceeedKZVK2b9/f26++eZs3ry539koiInKeEoppVxdyO49SjoAAAAAAAAAwImnp0k61113XT73\nuc/lwQcfzCWXXJLvfOc7ue666/qdjYIol8qZqIxnZHTBuisAAAAAAAAA4ITU0ySd9evX50Mf+tBP\nfO3d7353rr/++uMaiuKpVWs5WG1ldq6d/a35TNVGBx0JAAAAAAAAAOC46WmSzpFs3br1eOSg4OqV\nWrrl+STJtp2zA04DAAAAAAAAAHB8HXNJB46HWnUinSwmpcVs26GkAwAAAAAAAACcWJR0WBVqlYml\nB5V2tu2cGWwYAAAAAAAAAIDjTEmHVaFerSVJxsYXrbsCAAAAAAAAAE44x1zS6Xa7xyMHBVc7VNLZ\nuGEkD+5upb3QGXAiAAAAAAAAAIDj55hLOi984QuPRw4Krn5o3dX6dSNZ7HSzfVdzwIkAAAAAAAAA\nAI6fnko6P/rRj/Lrv/7reelLX5qdO3fmqquuygMPPJAk+d3f/d2+BqQYDk/SmZpaen7/zpkBpgEA\nAAAAAAAAOL56Kulce+21eeMb35h6vZ6NGzfml37pl/J7v/d7/c5GgdQPlXQm6kvr07btmB1kHAAA\nAAAAAACA46qnks4jjzySF7/4xel2uymVSnnVq16V2VklCo6fWmWppDM61kkpybadvl8AAAAAAAAA\nwImjp5LO+Ph4HnrooZRKpSTJN77xjYyOjvY1GMVSr04kSQ525nLSdC3375xNt9sdcCoAAAAAAAAA\ngOOj0stN11xzTd785jfn/vvvz2WXXZZ9+/blIx/5SL+zUSC1Q+uumgtz2bKpkYe+uzO79x/IhjUT\nA04GAAAAAAAAAHDseirpPOlJT8pnPvOZ/PCHP8zi4mKe+tSn5uGHH+53NgqkVlkq47TarZxxUiNf\n/+7ObNsxq6QDAAAAAAAAAJwQjrju6sEHH8z27dtz5ZVXZteuXanX65mamsqOHTvyxje+caUyUgCV\nciVjI6NptVvZsqmRJNm2c3bAqQAAAAAAAAAAjo8jTtL50z/909x9993ZuXNnrrzyykffVKnkJS95\nSb+zUTC1Su3QuqvJJMn9SjoAAAAAAAAAwAniiCWd9773vUmSj3/84/mN3/iNFQlEcdWrtTw8tytr\nG6NpTFSzbefMoCMBAAAAAAAAABwXRyzpHDY/P5+PfvSjj7t+9dVXH/dAFFetWsvB2fksdhdz+kmN\nfPuHj2Tu4EImxnr6mgIAAAAAAAAArFrlo31Du93OHXfckd27d/cjDwVWr9aSJM12K1s2NZIk26y8\nAgAAAAAAAABOAD2NKPmPE3N+8zd/M294wxv6EojialTrSZZKOqdvmkyyVNI5e8vaQcYCAAAAAAAA\nADhmRz1JJ0mazWa2b99+vLNQcI9O0mlmy0mHJ+nMDDISAAAAAAAAAMBx0dMknYsuuiilUilJ0u12\ns3//fpN0OO5+fN3VU9bXUhkp5f4d1l0BAAAAAAAAAMOvp5LOTTfdtPy4VCplamoqjUajb6Eopnrl\n0ZJOZaScUzc08sDDzSx2OhkpP6GhTwAAAAAAAAAAq8IRSzq33nrrEd/8ile84riGodgOT9KZbTeT\nJFs2NXLfjpk8tGcup26oDzIaAAAAAAAAAMAxOWJJ5+677z7im5V0OJ4ao0tFnGa7lSTZclIj+Zdk\n244ZJR0AAAAAAAAAYKgdsaTz3ve+d/lxu93OD37wgywuLuass85KpdLTpizoWb3y2JLO6ZuWVqpt\n2zmbFzxjYLEAAAAAAAAAAI5ZT02brVu35rd/+7ezdu3adDqd7Nq1K3/+53+ec889t9/5KJDD666a\nC4+uu0qS+3fODiwTAAAAAAAAAMDx0FNJ54YbbsiHP/zh5VLOPffck+uvvz6f+cxn+hqOYpmojKdc\nKmd2fmmSTm28mvVT49mmpAMAAAAAAAAADLlyLze1Wq3HTM0577zzcvDgwb6FophKpVLqldryJJ0k\nOf2kRvY357Nv1vcNAAAAAAAAABhePZV01qxZk9tuu235+W233Za1a9f2LRTFVa/W0my3lp8fXnll\nmg4AAAAAAAAAMMx6Wnd1/fXX553vfGfe9a53pdvt5vTTT8/73//+fmejgOrVWna0Hk6n20m5VM6W\nTZNJkvt3zuacp64fcDoAAAAAAAAAgCemp5LOk5/85Nxyyy1ptVrpdDpJkkaj0ddgFFO9Wk833bQW\n5tKo1rPlJJN0AAAAAAAAAIDh19O6qzvvvDMf+MAH0u1288pXvjI///M/n5tvvrnf2SigRrWWJMsr\nrzasGc/E2Eju3zEzyFgAAAAAAAAAAMekp5LORz/60fzqr/5qvvCFL+RZz3pW7rjjjvz93/99v7NR\nQPVqPcmjJZ1yqZQtGxt5aE8r8+3FQUYDAAAAAAAAAHjCeirpJMkZZ5yRu+66KxdddFHq9Xra7XY/\nc1FQ9eVJOs3la1s2TabbTX60q/mfvQ0AAAAAAAAAYFXrqaSzYcOGXH/99dm6dWsuuOCCvO9978vm\nzZv7nY0COlzSmT00SSdJtpzUSBIrrwAAAAAAAACAodVTSeeDH/xgnvnMZ+amm25KrVbLli1b8sEP\nfrDf2SigR9dd/fgknaWSzradswPJBAAAAAAAAABwrCq93NRoNDI1NZVPfvKTqVQqeeELX5hGo9Hv\nbBTQo+uuHp2kc+qGesqlUu5X0gEAAAAAAAAAhlTPk3T+8i//Mqeeemo2bdqUj3zkI/nYxz7W72wU\nUOMnlHRGqyM5eX0tD+ycTafbHVQ0AAAAAAAAAIAnrKdJOnfddVc++9nPplqtJkmuuOKKXH755Xnz\nm9/c13AUz09ad5Ukp29qZPuuZnbtncumdbVBRAMAAAAAAAAAeMJ6mqSzZs2aNJuPliba7bZ1V/RF\nrTKR5LGTdJJky6al79s2K68AAAAAAAAAgCF0xEk6v//7v58k6XQ6ueyyy3LRRRdlZGQkX/7yl/PU\npz51RQJSLCPlkUxUJh5f0jlpqaRz/47ZPOdpmwYRDQAAAAAAAADgCTtiSef8889/zM/DnvGMZ/Qv\nEYVXr9Yet+5qy6bJJCbpAAAAAAAAAADD6YglnV/5lV9Zfrx3797Mzc2l2+1mcXExDzzwQN/DUUz1\nai0PHNibbrebUqmUJFlTH82a+mi27ZwZcDoAAAAAAAAAgKN3xJLOYR/60Idy8803Z2FhIevWrcuO\nHTtyzjnn5JZbbul3PgqoUa1nsbuYg4sHM14ZX76+5aRGtn5/T5oH2qmPVweYEAAAAAAAAADg6JR7\nuenzn/98vvSlL+XSSy/NjTfemL/5m7/J9PR0v7NRUPVqLUnSbLcec33LpkaSZNsOK68AAAAAAAAA\ngOHSU0ln06ZNaTQaOeuss/Ld7343L3jBC7Jr165+Z6Og/rOSzumbJpMk9+9U0gEAAAAAAAAAhktP\n664ajUZuvfXWPOMZz8gnPvGJbNq0Kfv37+93NgqqXqknSWbbzcdcX56ks3NmxTMBAAAAAAAAAByL\nnibp/PEf/3H27NmT5z//+Tn11FNz7bXX5m1ve1u/s1FQjdGfPEnn5OlaRitl664AAAAAAAAAgKHT\n0ySdk046KW94wxuSJNdcc81jXnvzm9+cj33sY8c/GYVVry5N0vmPJZ1yuZRTN9azbedsFhY7qYz0\n1DEDAAAAAAAAABi4Y2457Nix43jkgGX1yuFJOs3HvbZl02QWFrt5cHfrca8BAAAAAAAAAKxWx1zS\nKZVKxyMHLKtXD5V0Fh5fxNmyqZEk2bZzZkUzAQAAAAAAAAAcC/uCWHUao0vrrmbnHz9J5/STlko6\n9++YXdFMAAAAAAAAAADHQkmHVefRdVePn6Rz2sbDk3SUdAAAAAAAAACA4XHMJZ1ut3s8csCy6kg1\no+XqT1x3NTFWyaa1E9m2c9Z3DwAAAAAAAAAYGsdc0nnFK15xPHLAY9Sr9Z84SSdJtmxqZHaunYf3\nzq1wKgAAAAAAAACAJ6bSy03/9E//lA9/+MPZv39/ut1uut1uSqVSbr/99rz+9a/vc0SKqF6tZefc\nrp/42nlnbcg3//fD+fzX7ssbLv0vK5wMAAAAAAAAAODo9VTSueGGG3LNNdfkrLPOSqlU6ncmSKNa\nzwOz29PuLKRafuzX9GefcXL+v7vvz1f/5cH8t+dtyakbGwNKCQAAAAAAAADQm57WXa1bty4XXnhh\nTjvttJx66qnL/6Bf6tVakqTZbj7utXK5lMtfcka63eTvv/T9lY4GAAAAAAAAAHDUepqk85znPCfv\nfe97c8EFF2RsbGz5+vOe97y+BaPYHi3ptLJ2bM3jXj/3jPU5+7Q1ued7u/JvD+zNWaetXemIAAAA\nAAAAAAA966mk861vfStJ8u1vf3v5WqlUyo033tifVBTekSbpJEvfv//jwjPznpu+mVvu+vf8/pXP\ntooNAAAAAAAAAFi1eirp3HTTTf3OAY9Rr9aTJLPt1n96z5mnrsnPnLUh//xvu3LP93blZ87auFLx\nAAAAAAAAAACOSk8lnW984xv5q7/6q7RarXS73XQ6nWzfvj133HFHv/NRUD++7upILv+vZ+Se7+3K\n33/p+zn3jA0pl03TAQAAAAAAAABWn3IvN/3BH/xBLr744iwuLubKK6/Mk570pFx88cX9zkaBHZ6k\n89NKOps31HPBs07J9l3NfHXrgysRDQAAAAAAAADgqPVU0hkfH8/ll1+e888/P1NTU7nhhhvy9a9/\nvd/ZKLDG8iSd5k+997IXPzXVSjm3/tMPMt9e7Hc0AAAAAAAAAICj1lNJZ2xsLHv37s1TnvKU3Hvv\nvSmVSmm1jjzhBI5Fr5N0kmTd5Fgufu5peWTmYG7/Xw/0OxoAAAAAAAAAwFHrqaTz+te/Pm9/+9tz\n4YUX5tZbb83LXvaynHPOOf3ORoHVj2KSTpJc+oInpT5eyf/7P+5L80C7n9EAAAAAAAAAAI5apZeb\nfvEXfzG/8Au/kFKplM9+9rP54Q9/mKc//en9zkaBjY+MpVwq9zRJJ0nq49W87GefnL+783v5wtfu\nyysvPLPPCQEAAAAAAAAAetfTJJ19+/bl3e9+d6666qocPHgwN910U2ZmZvqdjQIrlUqpV2uZ7XGS\nTpL8/HNOzfTUWG775gPZs/9AH9MBAAAAAAAAABydnko67373u/PMZz4ze/fuTb1ez6ZNm/LOd76z\n39kouEa13vMknSSpVkZy2YufkvZCJ//9Kz/oYzIAAAAAAAAAgKPTU0nngQceyBVXXJFyuZzR0dG8\n/e1vz0MPPdTvbBRcvVrL3MKBdLqdnt/zonNOyakb6vnKvzyYH+3qfQoPAAAAAAAAAEA/9VTSGRkZ\nyczMTEqlUpLkhz/8Ycrlnt4KT1i9Wk833bTacz2/p1wu5fL/eka63eSzX/r3PqYDAAAAAAAAAOhd\nT02b3/qt38prX/vabN++PW9961vza7/2a3nb297W72wUXL1SS5LMto9uIs65Z67PWaetyT//2658\n74F9/YgGAAAAAAAAAHBUeirpnHPOObn44otz2mmn5cEHH8wll1ySrVu39jsbBdcYrSdJmu3WUb2v\nVCrllS85M0lyy13fS7fbPe7ZAAAAAAAAAACORqWXm970pjflaU97Wi688MJ+54Fl9erSJJ3mUU7S\nSZIzT1uTnzlrQ/7533blrR/6ctbUR7OmMXro51jWNkYzVR/N2sbY0rX6aJKkvdhJe2Hp38JiN+2F\nxeVrC4vdLCx0cuZpa7Jx7cRx/VsBAAAAAAAAgBNbTyWdJHnPe97TzxzwOIfXXR3tJJ3Drrzk7IyM\nlLPzkVb2zc7nez/al+MxVGfTuonc8H8+P5WRngZRAQAAAAAAAAD0VtK5+OKLc8stt+QFL3hBRkZG\nlq9v3ry5b8Hg8CSd2ScwSSdJpqfG89ZXnLP8vNPpZqY1n33N+eydnc++2YPZ15zPvtn57GvNp5Sk\nWimnWimnMrL0szpSTuXQz2qlnO/c90j+1/9+OHf+849yyXO3HI8/EwAAAAAAAAAogJ5KOjMzM/n4\nxz+edevWLV8rlUq5/fbb+xYMGqP1JE98ks5/VC6XsqYxljWNsZx+0hP7jOf9l035zn178v985Qd5\n0TknpzZePS7ZAAAAAAAAAIATW08lnS9+8Yv52te+lvHx8X7ngWXHuu6qH6Zqo3nZzz45n7nr3/P5\nr92XV1145qAjAQAAAAAAAABDoNzLTVu2bMm+ffuO6oM7nU6uvfbaXHHFFXnta1+b++677zGvf/7z\nn88rX/nKvPrVr861116bTqdzVJ/Pia9ePTRJZ2H1lHSS5OLnnJbpqbHc9o0Hsmvv3KDjAAAAAAAA\nAABDoKeSTqlUyste9rK85jWvyVVXXbX870huu+22zM/P59Of/nTe8Y535H3ve9/yawcOHMif/Mmf\n5MYbb8ynPvWpzM7O5s477zy2v4QTTq06kVJKmZ1vDjrKY4xWR3L5z52RhcVOPvvl7w86DgAAAAAA\nAAAwBHpad/WWt7zlqD/4m9/8Zi644IIkyXnnnZetW7cuvzY6OppPfepTmZiYSJIsLCxkbGzsqH8H\nJ7ZyqZxaZWLVTdJJkuc/46R88evb8j+/vSOXPG9LnnLK1KAjAQAAAAAAAACrWE8lnfPPP/+oP3h2\ndjaNRmP5+cjISBYWFlKpVFIul7Nhw4YkyU033ZRWq5UXvehFR/07OPHVq7U026trkk6SlEulvOqi\nM/OB/+uf83d3fC+/+2s/k1KpNOhYAAAAAAAAAMAq1VNJ54loNBppNh8tV3Q6nVQqlcc8/8AHPpAf\n/OAH+bM/+7OfWnBYt66WSmWkX3E5Bhs3Tvbts9fUJrN7z55s2NBYdSWYjRsnc9e92/P1b+/ID3Y2\n8/xzThl0JFhR/Tz7wOrl7EPxOPdQTM4+FJOzD8Xk7EMxOftQTM7+4PWtpPPsZz87d955Zy699NLc\nc889Ofvssx/z+rXXXpvR0dH8xV/8Rcrl8k/9vEceWX0rj1g6xA8/PNO3zx/LWBa7nWx7aFcmKuN9\n+z1P1GUvfHK++Z2d+cv/vjWnb6ilMvLTv8twIuj32QdWJ2cfise5h2Jy9qGYnH0oJmcfisnZh2Jy\n9lfOkcpQfSvpXHLJJfnqV7+aV7/61el2u3nPe96Tz33uc2m1WjnnnHPymc98Js997nPzute9Lkly\n1VVX5ZJLLulXHIZUvVpPkjTbzVVZ0tm8oZ6fO/eU3HXP9vzTvdtz4bNPG3QkAAAAAAAAAGAV6ltJ\np1wu57rrrnvMtTPOOGP58Xe/+91+/WpOIPVqLUnSbLeyYWL9gNP8ZJe9+Cn52rd35Nav/CAveMbJ\nmRjr27ECAAAAAAAAAIaU3Tysaocn6cy2V++6szWNsVz6/NMz02rnC//zvkHHAQAAAAAAAABWISUd\nVrVHJ+k0B5zkyF56/ulZ2xjNF7++LXv2Hxh0HAAAAAAAAABglVHSYVX78XVXq9lYdSS/8nNPTXuh\nk//7y98fdBwAAAAAAAAAYJVR0mFVaxxad7XaJ+kkyYvOOSWnbWzkf2x9KPc9NDPoOAAAAAAAAADA\nKqKkw6o2LJN0kqRcLuVVF52RbpK/u/N76Xa7g44EAAAAAAAAAKwSSjqsasNU0kmSc56yPuc8ZTrf\nue+R/Mv39ww6DgAAAAAAAACwSijpsKrVD627mh2CdVeHverCM1MqJZ/90r8POgoAAAAAAAAAsEoo\n6bCqVcuVjI2MDs0knSQ5bVMjZ526JvfvnM3CYmfQcQAAAAAAAACAVUBJh1WvXq0PVUknSdZNjSdJ\n9jfnB5wEAAAAAAAAAFgNlHRY9erVWppDtO4qSdY2RpMkj8weHHASAAAAAAAAAGA1UNJh1atXapnv\ntDO/2B50lJ6tbYwlSfbOmKQDAAAAAAAAACjpMAQao/UkGappOsslHZN0AAAAAAAAAIAo6TAE6tVa\nkqTZbg04Se8Or7tS0gEAAAAAAAAAEiUdhkC9MoQlnUmTdAAAAAAAAACARynpsOrVq0vrrmaHct3V\n/ICTAAAAAAAAAACrgZIOq15jCNddjVVHUhurmKQDAAAAAAAAACRR0mEIHJ6kM0wlnWRp5dXeGSUd\nAAAAAAAAAEBJhyFQPzxJZ2F41l0lydrGaJoHFtJeWBx0FAAAAAAAAABgwJR0WPUOl3Rm54dskk5j\nLEmyd3Z+wEkAAAAAAAAAgEFT0mHVW153NXSTdA6XdKy8AgAAAAAAAICiU9Jh1RsbGU2lNJJme9gm\n6YwmMUkHAAAAAAAAAFDSYQiUSqXUq7UhLOkcmqQzY5IOAAAAAAAAABSdkg5DoV6tp9kesnVX0Coa\nKAAAIABJREFUk9ZdAQAAAAAAAABLlHQYCvVqLXMLB7LYWRx0lJ49uu5KSQcAAAAAAAAAik5Jh6FQ\nr9aTJK2FuQEn6d2a+uFJOvMDTgIAAAAAAAAADJqSDkOhXq0lyVCtvKpWymlMVE3SAQAAAAAAAACU\ndBgOh0s6s+3WgJMcnbWNMSUdAAAAAAAAAEBJh+HQOLTuapgm6STJ2snRzB1czIH5hUFHAQAAAAAA\nAAAGSEmHofDouqvhm6STJPtm5wecBAAAAAAAAAAYJCUdhsKwl3SsvAIAAAAAAACAYlPSYSjUl9dd\nDVdJZ11jNEnyiJIOAAAAAAAAABSakg5DoXFoks5suzngJEdneZLOjHVXAAAAAAAAAFBkSjoMhWGd\npLN20rorAAAAAAAAAEBJhyExURlPKaU0h3WSjpIOAAAAAAAAABSakg5DoVwqp1adGLpJOlP1akpJ\n9s5adwUAAAAAAAAARaakw9CoV2uZHbJJOiPlcqbqoybpAAAAAAAAAEDBKekwNBrVeloLc+l2u4OO\nclTWNsayd/bg0OUGAAAAAAAAAI4fJR2GRr1aS6fbydzCgUFHOSprG6OZb3cyd3Bx0FEAAAAAAAAA\ngAFR0mFo1Cv1JEmz3RpwkqOzdnIsSay8AgAAAAAAAIACU9JhaNSrtSTJbLs54CRHZ21DSQcAAAAA\nAAAAik5Jh6HRqB6epDNsJZ3RJEo6AAAAAAAAAFBkSjoMjcOTdIZu3dXyJJ35AScBAAAAAAAAAAZF\nSYehsVzSWRjSks6MSToAAAAAAAAAUFRKOgyN5ZLO/JCtu5o8PElHSQcAAAAAAAAAikpJh6FRr9aT\nJLNDNklnslZNuVSy7goAAAAAAAAACkxJh6FxuKTTbA9XSadcKmVNY9QkHQAAAAAAAAAoMCUdhka9\nOpFk+Eo6SbK2MZa9swfT7XYHHQUAAAAAAAAAGAAlHYZGpVzJ+MhYmu3moKMctbWN0SwsdtM8sDDo\nKAAAAAAAAADAACjpMFTq1fpwTtKZHEuS7J2x8goAAAAAAAAAikhJh6FSr9aGdJLOoZLOrJIOAAAA\nAAAAABSRkg5DpV6tpd1ZyPzi/KCjHJW1jdEkySNKOgAAAAAAAABQSEo6DJV6tZYkmR2yaTrrlifp\nDFe5CAAAAAAAAAA4PpR0GCqNaj1J0my3Bpzk6Fh3BQAAAAAAAADFpqTDUDk8SWfoSjqTh0o6M0o6\nAAAAAAAAAFBESjoMlfryJJ3hWndVH6+kMlKy7goAAAAAAAAACkpJh6FyeJLO7JBN0imVSlnbGLPu\nCgAAAAAAAAAKSkmHodIY0kk6SbK2MZZ9s/PpdLuDjgIAAAAAAAAArDAlHYbK4Uk6zSGbpJMkaxuj\n6XS7mWm1Bx0FAAAAAAAAAFhhSjoMleEu6YwlSfbOWHkFAAAAAAAAAEWjpMNQqR9adzU7jOuuJg+V\ndGaVdAAAAAAAAACgaJR0GCqj5Wqq5cqQTtIZTaKkAwAAAAAAAABFpKTDUCmVSqlX60Na0jk8SWd+\nwEkAAAAAAAAAgJWmpMPQqVdrQ17SMUkHAAAAAAAAAIpGSYehU6/UcmDxQBY7i4OOclSWSzozSjoA\nAAAAAAAAUDRKOgyd+mg9STI7ZNN0JsZGMlotW3cFAAAAAAAAAAWkpMPQmRptJEn2HNgz4CRHp1Qq\nZW1jzLorAAAAAAAAACggJR2Gztlrz0iSbN31nQEnOXprG2PZ35zPYqcz6CgAAAAAAAAAwApS0mHo\nPH367FTKlXxr17cHHeWorW2Mpptkf7M96CgAAAAAAAAAwApS0mHojFfG8vR1Z2Z786E83No96DhH\nZW1jLEn+f/buMziu/D7z/XNCR3QjEIEkMpgwjMPJQZpkzYykUQ62gq8taX293q3yeu9W3fWt2jd2\neW2Xa/eFvbvWWk67VlwrWFma0WiCJmhGM9JEksOMDAYEooFuoNMJ98XpbgAkB0xogCS+n6rmOX1w\n+vSvwznd7H7692fIKwAAAAAAAAAAAAAA1hhCOrgm7WnaKUl6c+LAKldyaSohnTQhHQAAAAAAAAAA\nAAAA1hJCOrgm7WraIUPGtRfSSYYl0UkHAAAAAAAAAAAAAIC1hpAOrkl1kaS6azt1PDWgTGF2tcu5\naA2lTjpTmcIqVwIAAAAAAAAAAAAAAFYSIR1cs/Y075AvX/snD652KRetMtwVnXQAAAAAAAAAAAAA\nAFhTCOngmrWnaack6c2Jt1a5kotXl2C4KwAAAAAAAAAAAAAA1iJCOrhmbahp0fp4sw5OHlbBLa52\nORclGrYVi1hKpRnuCgAAAAAAAAAAAACAtYSQDq5pe5p2quAVdXjq6GqXctHqExE66QAAAAAAAAAA\nAAAAsMYQ0sE1bU/zDknSm+MHVrmSi1efiCiTLaroeKtdCgAAAAAAAAAAAAAAWCGEdHBN667tVDKc\n0L6Jg/L8ayP0Up8IS5Km6aYDAAAAAAAAAAAAAMCaQUgH1zTTMLW7cYfSxYz6p4dWu5yLUp+ISJJS\nmcIqVwIAAAAAAAAAAAAAAFYKIR1c8ypDXk1cG0NezYd06KQDAAAAAAAAAAAAAMBaQUgH17zehq0K\nm6FrJ6STDEI6U4R0AAAAAAAAAAAAAABYMwjp4JoXtkLa0dirsbkJnZodW+1yLqg+EZZEJx0AAAAA\nAAAAAAAAANYSQjq4Luxp2ilJenP86u+mUxnuKl1Y5UoAAAAAAAAAAAAAAMBKIaSD68LOphtkGuY1\nMeQVnXQAAAAAAAAAAAAAAFh7COngupAI1WhzXbcGZoY1nU+vdjlLCtmWaqI2IR0AAAAAAAAAAAAA\nANYQQjq4buxp3ilfvvZPvLXapVxQfTKiVIbhrgAAAAAAAAAAAAAAWCsI6eC6sadppyRdI0NeRZTN\nO8oX3NUuBQAAAAAAAAAAAAAArABCOrhuNMXWqbVmgw5NHVPOubqHkqpPhCVJqdmru04AAAAAAAAA\nAAAAALA8COngurKneaccz9HBM0dWu5Ql1ScikqRUmpAOAAAAAAAAAAAAAABrASEdXFduvEaGvKqE\ndDKFVa4EAAAAAAAAAAAAAACsBLtaG/Y8T3/8x3+sw4cPKxwO60//9E/V1dW1aJ1sNqvPfe5z+rM/\n+zNt3ry5WqVgDelItqk+Uqf9Ewfleq4s07qoy/m+r4JXVM7JBSc3r5yTL01zypfO5928tjf2akt9\nzxXVOR/SoZMOAAAAAAAAAAAAAABrQdVCOk888YQKhYK+/vWv6/XXX9df/MVf6G/+5m8qf9+3b5/+\n6I/+SKdPn65WCViDDMPQnqYdenb0RR2f7te2hi1Lru/5nn5+4iX94PhPNOvMXdR1/GzkBf2n2/+D\nGmMNl11nfTIsiZAOAAAAAAAAAAAAAABrRdVCOq+88oruueceSdLevXu1f//+RX8vFAr6/Oc/rz/8\nwz+sVglYo/Y07dSzoy/qzfG3lgzpnJ4d09cO/4uOpfoVs6Pa2XiDolZEUTuiiBVR1I5WzkdL50fT\nJ/W9vkf1pYP/rH9/0+/JNC5vxLgGhrsCAAAAAAAAAAAAAGBNqVpIJ5PJKJFIVM5bliXHcWTbwVXe\ncsst1bpqrHFbGzYpakX15sQBfWzrB2QYxqK/u56rnw49o0cHnpDjOdrbvEu/se3DqovUXnDbO9b1\najA9rNfH9+uJoWf0cNcDl1VjbU2pk06aTjoAAAAAAAAAAAAAAKwFVQvpJBIJzc7OVs57nlcJ6FyO\nhoa4bNtajtKwzJqbk6tdwjlubtulF4Z+pWx4Rl317ZXlx88M6guvfkWDqRHVR2v1r27+hO7suPmS\ntv377/iM/t/H/rN+2P+47t58k3oaOi6rxvpEROls8aq8/4CLwXMXWJvY94G1h/0eWJvY94G1iX0f\nWJvY94G1iX0fWJvY91df1UI6N998s55++mk98sgjev3117Vt27Yr2t7U1NwyVYbl1Nyc1Ph4erXL\nOEdvcpte0K/0syMv65GeOhXcgn7Y/7ieGnpOvnzdvfE2fWTL+xQPxS+r/t/s/XV9/o1/1F8+/w/6\n/2779wpboUveRm08pNNTWY2NzZzT7Qe42l2t+z6A6mLfB9Ye9ntgbWLfB9Ym9n1gbWLfB9Ym9n1g\nbWLfXzlLhaGqFtJ56KGH9POf/1yf/OQn5fu+/vzP/1w/+MEPNDc3p0984hPVulpAkrSzsVeWYenN\nibe0qa5b/+fQv2gid0ZN0XX69A0fV++6LVe0/R2Nvbqv/W49M/KCvnv8x/qNbR+65G3UJyMaGsso\nV3AVi1RtVwQAAAAAAAAAAAAAAFeBqiUDTNPUn/zJnyxatnnz5nPW+/KXv1ytErCGxeyYtjVs1sEz\nR/Q/Xv97GTL0rs579f6ehxW2wstyHR/e/IgOnzmmZ0Z+rl2NN2hHY+8lXb4+EZEkpTJ5QjoAAAAA\nAAAAAAAAAFznzNUuAKiWm1tulCS1JTbqP976+/rolvcvW0BHksJWWJ/Z+UlZhqWvHPyGMsXZS7p8\nfSKoJZXOL1tNAAAAAAAAAAAAAADg6kT7Dly37tp4q1oT69WRaJNlWlW5js5ku97f87C+1/eo/s+h\nf9H/veu3ZBjGRV22PlnupFOoSm0AAAAAAAAAAAAAAODqQScdXLcMw1B3bWfVAjplD3bdp811PXp9\nfL9+ceqVi77cwuGuAAAAAAAAAAAAAADA9Y2QDnCFTMPUZ3Z8QlErom8e+a4mspMXdbmGUkhnipAO\nAAAAAAAAAAAAAADXPUI6wDJojK3Tb2z7sPJuQV986+vyfO+Cl6lPhCUx3BUAAAAAAAAAAAAAAGsB\nIR1gmdy+4Wbd1LJHfdMDenzwZxdcPxkPyzQMhrsCAAAAAAAAAAAAAGANIKQDLBPDMPSp3o+qLlyr\nH/U/rsGZ4SXXN01DdYmwUmlCOgAAAAAAAAAAAAAAXO8I6QDLqCYU12/v+IQ839NXDn7zguvXJ8JK\nZQryfX8FqgMAAAAAAAAAAAAAAKuFkA6wzG5Yt1W7GrfrxOwpTeVSS65bn4jIcT3N5pwVqg4AAAAA\nAAAAAAAAAKwGQjpAFWyu75Yk9c8MLbleY11UknRqcq7aJQEAAAAAAAAAAAAAgFVESAeogp7aTknS\nwPTSIZ1t7fWSpMPDU1WvCQAAAAAAAAAAAAAArB5COkAVdNZ2yJBxwU462zqCkM6hoaWHxQIAAAAA\nAAAAAAAAANc2QjpAFUSssNoSGzWcHpHjOW+7Xm1NWG1NNTo6kpLjeitYIQAAAAAAAAAAAAAAWEmE\ndIAq6anrUtFzNJo5ueR62zrrVSh6GjiVXqHKAAAAAAAAAAAAAADASiOkA1RJT22nJKl/eukhr27o\nbJAkHR6aqnpNAAAAAAAAAAAAAABgdRDSAaqku64U0pkZXHK93o56SdLhoVTVawIAAAAAAAAAAAAA\nAKuDkA5QJS2xJtXYcQ1coJNObU1YrU01OjoyLcf1Vqg6AAAAAAAAAAAAAACwkgjpAFViGIa66zo1\nkTujdCGz5Lq9nfXKF10NnkqvUHUAAAAAAAAAAAAAAGAlEdIBqqintjTk1fTFDXl1aGiq6jUBAAAA\nAAAAAAAAAICVR0gHqKLuulJIZ2bpIa96OxskSYeHUlWvCQAAAAAAAAAAAAAArDxCOkAVddd2yJBx\nwU46dTVhbWyM6+jotBzXW6HqAAAAAAAAAAAAAADASiGkA1RRzI5pQ02LBtMjcj13yXVv6GxQvuBq\n8HR6haoDAAAAAAAAAAAAAAArhZAOUGU9tZ0quAWdnD295Hq9nfWSGPIKAAAAAAAAAAAAAIDrESEd\noMq66zolSf0zQ0uu19sRhHQODU1VvSYAAAAAAAAAAAAAALCyCOkAVdZT2yVJ6p8eXHK9ukREGxvj\nOjoyLcf1VqI0AAAAAAAAAAAAAACwQgjpAFW2oaZFUSuqgQt00pGk3s4G5QuuBk+nV6AyAAAAAAAA\nAAAAAACwUgjpAFVmGqa6azt0em5cs8W5Jde9oTMY8urIUGolSgMAAAAAAAAAAAAAACuEkA6wAnrq\nOiVJAzPDS67X2xGEdA4R0gEAAAAAAAAAAAAA4LpCSAdYAd21QUinf3pwyfXqEhFtWBfXkZGUXM9b\nidIAAAAAAAAAAAAAAMAKIKQDrIDuSiedoQuue0NnvfIFV4OnMtUuCwAAAAAAAAAAAAAArBBCOsAK\nSIRq1BJr0sDMkDx/6Q45vZ0NkqTDQ1MrURoAAAAAAAAAAAAAAFgBhHSAFdJT16Wsk9PY3PiS6/V2\n1kuSDg+nVqIsAAAAAAAAAAAAAACwAgjpACukuzYY8qpveukhr+oTEW1YF9eR4ZRcb+muOwAAAAAA\nAAAAAAAA4NpASAdYIT11QUhnYGbwguv2dtYrV3A1dDpT7bIAAAAAAAAAAAAAAMAKIKQDrJDWmg0K\nmyH1X6CTjjQ/5NWhoalqlwUAAAAAAAAAAAAAAFYAIR1ghVimpa7aDp2cPa2ck1ty3d6OBknS4aHU\nSpQGAAAAAAAAAAAAAACqjJAOsIK6azvly9fAzPCS6zUkI1q/Lq4jwym5nrdC1QEAAAAAAAAAAAAA\ngGohpAOsoJ66TknSwMyFh7y6obNeuYKrodOZapcFAAAAAAAAAAAAAACqjJAOsIK6a7skSf3TFw7p\n9HbUS2LIKwAAAAAAAAAAAAAArgeEdIAVVBdJqjHaoIGZIfm+v+S6vZ0NkqRDQ1MrURoAAAAAAAAA\nAAAAAKgiQjrACuuu7VSmOKvx7OSS6zUkI1rfENPRkZRcz1uh6gAAAAAAAAAAAAAAQDUQ0gFWWE9d\nMOTVwMxFDHnV2aBs3tXQ6Uy1ywIAAAAAAAAAAAAAAFVESAdYYT11nZKk/ukLh3Ru6KyXJB0eSlW1\nJgAAAAAAAAAAAAAAUF2EdIAV1p5olW3a6p8ZvOC6vZ0NkqTDQ1PVLgsAAAAAAAAAAAAAAFQRIR1g\nhdmmrY5Em0YzJ1VwC0uu25CMqKUhpiMjKXmev0IVAgAAAAAAAAAAAACA5UZIB1gFPXWd8nxPQ+nR\nC657Q2e9snlXQ2PpFagMAAAAAAAAAAAAAABUAyEdYBX01HVJkvqnL37Iq0ODqarWBAAAAAAAAAAA\nAAAAqoeQDrAKemo7JUn9M0MXXLe3o16SdHhoqqo1AQAAAAAAAAAAAACA6iGkA6yC+kid6sK16p8e\nlO/7S667rjaqloaYjoxMy/OWXhcAAAAAAAAAAAAAAFydCOkAq8AwDPXUdWmmkNZU/sLDWPV21Cub\ndzRwKr0C1QEAAAAAAAAAAAAAgOVGSAdYJT11pSGvpi885NXerU2SpH969KCyeaeqdQEAAAAAAAAA\nAAAAgOVHSAdYJd21pZDOzOAF171pa7N+7eY2jYzP6m+/f4BhrwAAAAAAAAAAAAAAuMYQ0gFWSWey\nXaZhauAiOulI0qce3KqdPev05vFJfePpY1WuDgAAAAAAAAAAAAAALCdCOsAqCVshtSdaNZweVdG7\n8BBWlmnq335ol1qbavT4L4f1s9dGV6BKAAAAAAAAAAAAAACwHAjpAKtoa8MmOb6rX51+/aLWj0dt\n/cHH9ygRC+krjx/RgYEzVa4QAAAAAAAAAAAAAAAsB0I6wCp6oP2dsk1bj/Y/IeciuulIUkt9TL//\n0d0yTel/fme/Tk7OVrlKAAAAAAAAAAAAAABwpQjpAKuoIVqve1rv1GTujF48+auLvty2jnp99r03\nKJt39N+++aYy2WIVqwQAAAAAAAAAAAAAAFeKkA6wyh7qekAhM6THBp5U0b34sM3duzbq/Xd3aSyV\n1V9/e58c16tilQAAAAAAAAAAAAAA4EoQ0gFWWV0kqfvb36FUflrPn3jpki774Xs26dbeZh0ZTulL\njx2W7/tVqhIAAAAAAAAAAAAAAFwJQjrAVeDBrvsUtSL6ycBTyruFi76caRj6nffvUPeGpJ7fd1KP\nvTRUxSoBAAAAAAAAAAAAAMDlIqQDXAUSoRo90HGP0sWMnh154ZIuGwlZ+oOP71FDMqJv/ey4Xjk8\nXqUqAQAAAAAAAAAAAADA5SKkA1wlfq3jHsXsmH46+DNlndwlXbY+EdEffGyPQiFTf//DA3r54Gk5\nrlelSgEAAAAAAAAAAAAAwKUipANcJeKhmB7svE+zzpyeHn7uki/ftSGp3/vAThUdT1/43gH94d+8\noO8+16epdL4K1QIAAAAAAAAAAAAAgEtBSAe4itzf/g4lQjV6cug5zRbnLvnyN21r1n/+nTv0rpvb\nlS+6+v7PB/Qf/+cL+utv79OB/jPyfL8KVQMAAAAAAAAAAAAAgAuxV7sAAPOidkQPdz2gbx/7oZ4c\nelYf3PyeS95Ga1ONfvPhbfrY/Zv00lun9fRro3r1yLhePTKuloaY7t/bpnfu2ahELFSFWwAAAAAA\nAAAAAAAAAM6HkA5wlbmn7S49OfSMnh55Xg90vFPJcOKythMN27pvb5vuvbFVfSdn9LNXR/XyoTF9\n4+lj+vazfbp9e4tu3tastuYaNdfFZJrGMt8SAAAAAAAAAAAAAABQRkgHuMqErZDe3f0ufePId/X4\n4NP62NYPXNH2DMPQ5tY6bW6t0yfetVXPv3lSP3t9VC/sP6UX9p+SJIVsUxsb42prSqituUZtTcFp\nXV1UpkF4BwAAAAAAAAAAAACAK0VIB7gK3d16u346+DM9N/qi3tV5r+ojdcuy3UQspPfc0amHb+/Q\n4aGU+k5M68TErEYnZnVyck5DpzOL1o+ELLU21WjDurga6yJaVxvVumRUjbXBfCzCIQQAAAAAAAAA\nAAAAgIvBN+zAVShk2nqk50F99dC39JOBp/WJ3g8v6/ZNw9D2rgZt72qoLPM8X+OprEZLoZ3R8YxO\nTMxqeCyt/pMz591OPGJrXW0ptFMX1bpkRI210dKyqOqTYVmmuay1AwAAAAAAAAAAAABwLSKkA1yl\n7thwi34y+LR+fuIlPdh5nxpjDRe+0BUwTUPr18W1fl1cN29rrix3XE+pdF6TMzmdmSlPc5qcyevM\nTE7j01mNjGfOu03DkBqS5Q488wGehmREkZClkG0GJ8uszNsLzlumIYPhtgAAAAAAAAAAAAAA1wFC\nOsBVyjItva/nIX3xrX/WYwNP6De3//qq1GFbpprqY2qqj533777vK5t3zhvgKZ/vG53RMd+/5Os2\nDUPxqK1kPKRkLKREPKxkPKRELDifjIeViIfml8XDioSsK73JAAAAAAAAAAAAAAAsO0I6wFXs1vV7\n9ZOBp/SLU6/ooa771RJvvvCFVphhGIpHQ4pHQ2pvSZx3HdfzNJ0pVII8qUxeBcdT0fFUdNzS1FPR\n9ebnHU8Fx9VczlF6rqhTk3O6mJhP2DaD4E7s3ABPMhZSTSykaNhSNGwpFraD+UgwtS2G5gIAAAAA\nAAAAAAAAVAchHeAqZhqm3rfpYf3j/q/ox/1P6LM7P7XaJV0WyzSDIa9qo9qiusvahuf5ms0VlZ4r\nKpMtKj1XUDpbVGauvKyg9FyxsuzkmVkVTnuXdB22ZQbhnUgQ4KmJhVQTLU9DqonZwTQaUiJmKx4N\nKRa25Hr+4tCR66lYnA8dFRxPjuspEQtpXTKi+mREDYmIwnT9AQBcRQpuQX+//8tqjjXq41s/KNMg\nvAoAAAAAAAAAwHIipANc5fY271JbYqN+dfp1mYap1sQGtdVsVGtig2rDSRmGsdolrgjTNIJuOPHw\nRV8mX3SVKYd6SiGeuZyjXMFRruAqmw+mi+eD6elUVvmxTBVvkVQTtdVQCu2sS0ZUn4ioIRlRIhZW\nPGorHrEVK08jliyTL0sBrD0vnHhZY3MT+uDm9xAaqbJ/OfoDvTV5WJJUcIv69A0f4z4HAAAAAAAA\nAGAZEdIBrnKmYerXt35Qf7vvi3rp1CuL/pYI1ai1ZoNaE8GpLbFRG2s2KGJdfJDlehYJWYrUWWqs\ni17W5R3X01zO0WyuqNmso0yuqNlsUbM5pzQtKpt3FbINhSxLoZCpkGUqZAensG3KLs3bpql0tqip\ndE5T6bxS6bzOpIPhv0bGZy/69sQiVtDBJ2LJNk05nifH9eW6wdRxPbleMHVcX67nyTAM1deEVZeI\nqD4RVn0iorrSdH55RLGItWZCXwCuDa+OvamvHvqWpGB4xQ9tfu8qV3T9em1sn54/8ZLaEhtlGZZe\nPPlL2aatT2z7MK8NAAAAAAAAAAAsE0I6wDVga8Nm/Zd7/ljjcxManT2lE5lTOjF7SqOZkzqa6tOR\n1PHKuoYMbahp0aa6LvXUdWtTbada4s18wXYZbMtUbU1YtTXVDT3lCo6m0vnKaTbnaK4UAJrLl6YL\nzs/MFnRq0pHn+7JMQ5ZlyDZN2ZYhywqm0XBIVmmZ6/mani1obDglf8nbG1zeMgyZZnCyTEOmEUyN\nBedrE2GFLTPo+FPq9lMTDSkenZ/Go7bCtlnajnnO9srnDUM8PwGcYyg9oi+99XVFrLASoRo9Pvi0\nOpJturllz2qXdt05k5vSVw99SyEzpH+189NKhpP6b6/9rZ4bfVG2aeljWz7AcRoAAAAAAAAAgGVA\nSAe4RpiGqfU1LVpf07LoC8q8W9DJUmDnRCaYDs4M6+Tsaf38xMuSpJpQXD21XaXgTpe6ajvotnMV\niYZtbWy0tbGx5qIv4/u+fEnmJXxp6rie0nNFpTJ5pTJ5TWcKpflgmp4ryvU8eZ4vz5dcz5fnefI8\nqeh6cou+PC/ozjM6kZG/VOLnEpVDO6ZpVEJCC4M85allGoqELIVDlsK2qUjYUti2SstMhUPBfLmb\nkW0Zsi1TlmkqZJdCTKYhu9TdyC6vc858ECbiS2lgXtEtrth1TefT+ts3vyjHc/Svd/+2mmKN+q+v\n/LW+fPAb2hBvUWtiw2Vv2/d9nZob0/p4M0M5SXI9V/904J+VdbL69A0f04aa9ZKkf7f3d/VXr/2t\nnh5+XiEzpA9ueg/HRAAAAAAAAAAArhAhHeAaF7HC6q7tVHdtZ2WZ67kanT2p/ukh9U29bLDnAAAg\nAElEQVQPqH96UPsnD2r/5EFJQeCnPbFRWxs2a3fjDm2q65JlWqt1E3AZDMPQpX5ValumGpIRNSQj\nV3z9jY0JDY9Olbr+BJ1/ZnOO5vJOZYiwubwjxwlCP65fDvi8zfSsv5+9TtHxlPN8OY6nguPKcZcx\nIfQ2DKkS3Cl3AjIW/NHQfAcgo3ReMmRbQZAoEg4CQ283H7LNxUGks8JJZqWjUdAhq3Kd5StUuYZS\nSUZwvdGIpWjYVjQcBJmW80t11/NUKHoqFF3li64KRU95x5XvS9GQpWjYUjQSXLdtEX64Xni+px/1\n/1Q/GXhKD2y6W+/veG9Vg55Fz9Hf7/uSUvlpfXDTe7Sneack6be2/4b+cf9X9Hf7vqg/vPUPFA/F\nLnnbrufqywe/qV+eflUdyTZ9bMsHtLVh03LfhPPyfV9ncimFLFu14eSKXOfFeGzwKR2f7tdNzbt1\n98bbK8uT4YT+YO+/1l+99jd6fPBphUxbj/Q8tIqVAgAAAAAAAABw7TN8fzl7IVTP+Hh6tUvAeTQ3\nJ3lsrhHT+Rn1Tw+qr3QaTo/I8V1JUtyOaUdjr3Y37dCOddsUD8VXuVpciOM58n1fISu0Kte/2vv+\necMiRbd0vhzk8eS4fmXqup6KZ827rl+aLl43mC6e98qvlqUuRvIlX36lo5BfWui4vvJFV/mCu+Tw\nYivBMBQEZ0qhnfK8YUieF9Tu+X5w8oIQwcJ5x/Uq9+/bhqOsomT4krM4tBEMu7b4eiOhUmjICIJH\nC/NDZ4eeygGtCwW5LDPollTpnGSbCpXOh6xyh6Ty3+eXL+y0tHiZWdmGbZ9//WCYtrXRUSTvFvSl\nt76u18f3yTRMeb6nlniTPrfz0+pMti/79fm+ry8f/IZeOvWKbl2/V5/d8alF9/X3jj+qxwef1s7G\nG/Rv9nz2kjrh5N2C/mH/l/XW5GE1ROo1lU9JkvY279ZHtjyipljjst4W13M1kjmhvulBHZ8eUF9q\nQNOFGVmGpYc679O7u9+l8Codw8uOpfr1V69+QfWROv2n2/+f877+T+VS+stXv6DJ3Bl9aPN79XDX\nA6tQKVbTar/mA1gd7PvA2sS+D6xN7PvA2sS+D6xN7Psrp7n57X+sS0gHV4Qd+dpVcIs6MnVM+yYP\nav/EQaXy05KCLjub67q1u2mHdjdtV0u8eZUrxUJFt6hnR1/UTwaeUtF3dPfG2/RAxz1qiq1b0TrY\n9y/M94MOQOXATr7oKltwdHz6uF5P/UpZd07b47eoPbxFnq9K8GR+qLEgMON6/nwwSCqFg4Ltz19X\nEBjKFzzlCo5yBbd0cpTNu4uWOa63qE5DCroEGaWuPUapi48RdBKK2MFQYguHGbPCRc1FRjVtD2ra\nHJUvqdXbpabsjSoUtOj6F85fyTuOszsNBd2HJM+Xik4QpHK9lXlLYxhBZ6pKtyNDi7sfGaX7sbTM\n8+cfz3Me5wXLLMuYDwedFTRaODWM0mNeel5U5v1gu8F8UKtlBXXY5oLOTVZ5+Lj5ZQu7RAUTQ3ll\ndND4qTLGhOr8jbrBeEBjobfUX3xdhkxtD9+l3ujN8/VZ80Gmyv1x1n1hmKXH0ghCWq7nz4friq7e\nmHlZr2aeVb3ZolvtD8l1TBWKrhzPL23L10HzcU0ZI+rSTdps3V56zqryvAjbVmkovPnnrWvm9P0T\n39TJ7Ki21W3Vb/V+WmPZ0/rBwI81kB6SZVi6t/UderjzAcVC0eAeMOafdxdjrjhXCcL2TQ9ocGZY\nBW9+iLBkOKFNdd0amhnRVD6lplijPtn7EW1ft+2Kno+u515WN7y54pz+/OW/Uio/rf9w87/V5vru\nt113MntGf/nqFzSVT+njWz+oBzreeQUV41qznK/5BbeoQ2eOqDnepI2lodXWgmOpfp3JTWlr/SY1\nROtXuxzgovB+H1ib2PevPulCRoMzw3J8V67nyvVdub4nz3flel7pvCvP8xSyQrpjw838+A6XjH0f\nWJvY94G1iX1/5RDSQdWwI18ffN/XSOak9k+8pX0TBzWYHq78rSXepF2N29XbsEVb6nsUtaOrWOnq\nKLgFzRbnlCnOabY4q9niXOVU8AraEG9Re7JVG+ItVRs2zPM9vXzqVf2w73FN5VOK2VFFrIhS+WkZ\nMrS3eZfe1Xmfeuo6L7yxZcC+f2lyTk6/OPWKnh15QafnxiUFIQhfvjqSbfrQpvfqhnVbV6Q7Szmk\nUw5JXOx1ZgqzemNiv14b26fDU8fk+cF2OpNtmi1mNZk7o8boOn2q96Pa3nhu6KDcmccvhYzKnYiC\nv2nBNFhqGqUgiVUOdFy4Ts/zS92SvCC44wQdk4qlqeME3ZHKoZ7igr877vmW+SqWOgidb1vndiCa\n70RU7lDk+zpPiMeodOOxSkOamYYhx/Pnaz9nurJv14yaaUW2viojnJcz1q7i4A7JD7rWmHXjCvfs\nkxEuyJ1uVKFvt1S88tcGs25c4W2vSMWIcgfuevttWgVFdr4oM5pV/uhN8qaW/qLfCGcV7v2VzNis\nnIlWFft3VW6L5Mtad0p2x2GZkZz8YljFka1yx9tVTixZphEMH1ca0i1SmpqRvJzohHLhcc2apzVn\nTM1fqS/F/AYl/BbVuC2Ku82yvYR8Typ6BZ0Ov66p6GHJ8BWd7VT8zB55hfA5zy/LXNzFaf7kKVcz\nonT8qPKhSdUVu9VRvF0xK6GQZQaBL3txcCoIlknllNcvZn+skeIx7YrdqV3xOxd1uCp32Vo47GDa\nmdLPc99W3p/TdutetRo7ZBpSPGIrGrEVj9iKRWxFI1awLBwsC4eWd9i9hXzfV8HxlMsHwy3mCq6y\n+SCcmM07ypbCgfPDCOqssJ9ZWRayTIXPGaIwWLacw/f5/vwwjuXH2lgYQiwFJhcOfWgYhjLFWYXN\n8Kp0X1qO1/xTs6f1/OhLeunUK5pzsjJk6N72u/X+nocva+i6a4XjOfre8Uf11PBzlWUtsSZta9hc\nOm1RMpxYxQqBt8f7fWBtYt+/ekxkJ/Xk0LN68eQvVfSci75cIlSjD295n+7YcPMldR7F2sa+D6xN\n7PvA2sS+v3II6aBq2JGvT9P5tA5MHtS+iYM6dOZIpROAaZjqru1Qb8NW9TZsUU9dp2zTXuVql4fn\nezqRORUMSTI9oJOzp0tBnNmL/jDENm211mxQR7JV7Yk2dSRb1ZbYqLAVvvCF34bv+zoweUjfO/6o\nTsyekm3auq/9br2769cUtSJ6ZewNPTX0rIYzJyRJm+q69a7Oe7WnacdFfRgzU0hrcGZYgzMjOpOb\nUmtigzbVdasj2abQEo/tle77qfy0jk316WiqT0dT/fJ8Vx3JNnUm29WZbFdHsu26+NJubG5cz4y8\noF+c/JVybl62Yenm9Tfq/vZ3KGbH9KP+x/Wr069LkrbVb9YHN793xYJWFyNdyOiN8SCYcyR1fEEw\np103t+zRTS271RRrVMEt6Mf9T+jJ4Wfl+Z5uW3+TPrb1A3zxuIym82m9MXZA+ybeUtSO6o6W27Sp\nrnu+C1IpcFUOXpUjEeUhw1y31Jmp1HHIKYcvztOB6K3UAT164vtyfVf3r39Qt6wLutX4vpRMxjQ+\nmVG6kNZT4z/WcK5PESOm2xMPab3dUwpCeQtCS+cOo7YwyGSZhiIhSwUrpRfy35YvVw83fkJt8bYg\nMFHq5GRZpvxyCMr3NZY9ra8O/JMMGfqNjs+oIdRUun1BsKo8TNtEflwvzn1POc2q1dut1uItKhaD\nIenK74A935cnR1PRQ5qKH5BvOAoX67Uuc5Mi+fUqukGHqqw/o3x4XE5sQqo5IzOardxnvmvJm62T\nl26Ql6mXl6mX3KXDFEZ8RuHuAzIT05Jryzy1XeF0j0KWpVCpG9E5Q+9ZGbkNgzIbh2WEikHorRAN\nAkaOHQSMxjolLR2KsZqHFe45IHemQYVDt19w/UrN0Ywi21+WESqo0LdL7sSFhzwzDUORsKkgAlTa\nTrlj04LwTmkkvMoZQ1rQ2encQGGh6Cqbd+WtwH9lys/TSNhSyDZLtQX7nbRgn6vchuDfReG/BaG7\ni6/Yl1k3IXv9kMy6cckJyxjfJGOyW5YRWhT6WxzyMd7mb5K5oIOWaRpBiMsMwlyWdXYgLAgy1dVF\nNZvJV27r+RgLHqsyV65GC8fUV9inCSd4nxIx4uoM9+pUsV9pL6WIEdeN8XeqJ7Jdhlm+9+aHQ1w0\npOFZQxOWA2wh2yoFH+fv//nn2PzjYxjn+ZuMyuN29m1zPU+O488HNB13QbgqONYUXU+2ZQYBtbCl\nWMRWLByE087kUvpfB76qgZkhrY83666Nt+lYql/HUv3KubnK9awLNasl1K46v1XRQovcol3p5FWp\nv9yVbMF5yzRUEwspGQsrGQ8pGQ+ptiaseMReM0MyLuT7vnJuXtP5GU3nM6oNJ7Q+3iTTvPQvJ8th\nOtf15XilMJ1pqCZqy7qM7VWL53sazZzS8VS/+mcG1RRdp4e6HlDUjizL9vm/PrA2se9fmQOTh/TY\nwJOyzZBuat6tvS27VBt++w/mz2c4fUI/HXxar469KV++GqMNumPjrYrZUVmGJcswg6lpySzPG6Ys\n09Jw+oR+MvCkCl5RPbVd+kTvh9WRbKvSrcX1ZK3t+77vq+g5qz4ENeZ5vqcnh57VgclD+uDm92hT\nXfdql7QmrLV9H2tD0XP05vgBbanvUV2kdrXLuSqx768cQjqoGnbk61/RLer49IAOTx3T4aljGpoZ\nqXS/CJshba7vUW/DFvWu26K2mo3KujllCrNKFzLKFMvTBfOFWc06c5XtG+Uv7SpfKhuVL0xMGYrZ\nMdWEapQIx5UIJZQIxZUI1agmVKNkOJjWhOKX/OugvFvQwPSQ+qYHdHx6QP3TQ4u+MIlYYSVCCdWE\n4gtONZX5hB2ct0xLJ2ZPaTR9QsOZEzqZOSXHdxfdvpZ4cym406qOZJvak61KhGouWGPf9KC+e+zH\nOj7dL0OG7th4i97X85DWRRsWref7vo5MHdeTw8F/ZCSpOdaoX+u4R3duvLUSEso6WQ3NjGowHYRy\nBmeGNZVPnfe6bdNWZ7Jdm+q6tKmuSz11XYs+WLrUfT+Vn9bRqT4dTR3X0VSfxuYmFt3XtmEvel6U\nb0Nnsl2dte3qTLapI9mmmH31B3c839PBM0f1s5Hn9dbkYUlSXTipe9ru0jva7jjnA7rh9An9oO+x\nymN3Y9NOfWDze1Z8GBDf9zWenQieG+lhDc4Ma2BmuBLM6artCII5zbvV+DbDqw2nT+hrh76lofSI\nauy4PrL1/bpzwy2r8mXhXHFOb00e1r7Jg3pr8rAs09Luxh3a07xDvQ1br4kPYlL5ab0+vl+vj+3T\nsVS//LO+2l8fb9E7W2/X7RtvuahjyoX4vq8f9/9UPx54QlEros/t/LR2NW1ftM7Cfd/3fT0z8oK+\nc/xHcjxH97bdrY9sed8l37ezxTn9l1/9D01kJ/XZHZ/SbRtuuqjLvXL6df2vA19TS6xJf3jbvzvn\n+NA3PagvvPG/NevM6cObH9FDXfdfcJvT+Rl9v+8xvXTyFfnytatxu8JWSMdS/ZopzB/zYnZMPcku\ndSa61BrtUIPdIkPnHwJt4bBZhmHMD2tmmTJNXz8/8ZK+d/wx5dycemq79KkbPqq2xMbKdXm+pwOT\nh/Ts6Is6OHlEvnwlQjW6c8NtumP9bUrYtXrx1Mt6fPinyrk5bYhu1IMb3qum8IYgNOXNd4LyfWnK\nmdCPJ74qy7D0yLrfUtwMjknlYfOC7k9nhTsWhD5Szri+e/Jryns53d/0bnVFdqhYUKmDjaNspZvN\nfEeb+VBUqXvW/OzbDN+nSoutt+u8FQlbioWDzj2xsK1YZD4gEY3YioUtRSP24iHnSqG18vmFnYIc\ntzQ8YdGtDMFWHqqwcioEoQwtqLGccSvfhkr9kkLljka2VZk/3xB2voJAnV+qpaicpsPHNR09KsfO\nBNsqNMixM/LNogw3osjUVoVSPfJcqxIomL99WnT7ViLItJARzchqHpHdNCojFAS93elGOWMd8lIt\nQScrw5O9oV92a58My5WbrldxYIf87Op/eFJ+xbqSe82qH1N40z7JLiqc6VBj+jbJtZWeKyg9l1c+\nNCWr9ozM2kmZiSkZVvBa6/uSl6mXO94ud3Kj5F96h0bLNJSIhUrBnbBqYiH5XtB1qhw0KjiLg0fl\n80al25RZGhZxfohE0zRll5bNB6rmw0/SgrBdOQBVmT83hLfwrUH5fcJSYT3J11zopPJGRkVl5RhZ\nOWZOrpmVZ+UlOyeZi4f09B1b3lytNFcnI1cnM1cvs5gIhoAsdeqTtDgM6QYB1rd7/OMRW4lYSDWx\nkBKLTsHyaMQO7tPifGC04ATT8vGlUPq7Vxqz0tdZxzpfpWNLUIVpBCE6w/TkRs4oHx5XLjSuOXtc\nnlFcVF9UCe0I3afWcLfCdhAsLB97wiFzUajtQurr40ql5i64nqHgeXJ297aQHTyPytPleD9YHtLT\nPeuYPn/eO+dYWD5fvmz5te7sYULLw4hWhhy1zcpQr7ZtKmybCttWZRhMz/c1l3OUyRaVmSsG00Wn\ngjJZR77vl4bfDC4fXjBf7thWvp7wovUWr3Op96Hv+yvyHvzsx6T8mlMOVF4tfN+vvJbniq5s01Q8\nGgQsr/R+cj1X6WJGdeHay97Wwk57bilIX+7st9L/l7raP+c7MnVcmeKsdjbeoMh5fhDleX5w3HWC\n14R4xL7i56Lv+8rmXc3liwqHrPNu8+TsaX376A/11pnDla65UnCM3FLfo5ta9mhv8663/aKo/LnO\nT4d+poNnjkiS2hIb9VDn/bq5Zc8ldW2eyqX0L8d+qNfG3ix1L7xL7+95d+WHUJ7nK1dwFA3bFz20\n79WsUHRl22bldR2X52rf95fTydnT+uaR7+loqk/3t79Dj/Q8pNga6Bzv+77G5sbVHG+66rpsTeVS\n+uJb/6yjqT5JwbHzwc779L5NDy/5I1JcubW072NtGJgZ0pcPflOnZk8rbIX1YOd9elfHvcv2Y5br\nBfv+yiGkg6phR1575opZHU316fDUUR0+c0yn5sYueRtRK1LpylD6mLTyZVf5KzlfwReT5YDAUgwZ\nilgRRe2IonZUUSsSnMrz9vz56fyMjk8PaCRzYtG218ebtamuW5vqurW5vlstsabL+jDM8Rydmh3T\ncOaERtKjGk6f0GjmhHJuftF6DZF6tSdb1ZFoVXuyTe2JVq2L1sswDJ2aHdP3+x7TG+P7JUm7m7br\ng5veq9bEhgte/8nZ03pq6Dm9fPpVOZ6jGjuubQ2bdWL2VGWYpbJkOKGuZIe6atvVVduhxug6jWRO\nqG96QH3TgxrNnFx0HzXFGoPATm2nmhvqNTOTrTx2wUuJX/liwZcv1/c0kj6hY6k+jWXnQzlRK6LN\n9T3aWr9JWxs2qSPRJtMwNZmb0lB6RMPpUQ3NjGgoPaI5J7uo5qboOrXUNGt9vFktsWa1xJu0Pt6s\nukjtiv8H0/d9zRbnlMpPK5Wf1lR+WlO5lF4be7NyezfVdem+9ndob/OuC3adOjrVp+/3Paq+6cEg\nlLXhFj3S85AaYw1LXu5ypfLTlS5KgzPD59zfhgx113Zob8tu3dS856Lr8HxPz4y8oO/3PaaCW9C2\n+s361A0fVUu8uSq3o6z8YcO+yYPaP3FQx6cHKs/f+kidHM9RpjgrKQgYbm/s1e6mHdrduF2J8JUH\nXJbLRHayEszpnxmqLO+p7dLell3a27xLqfyMnh/9hV4b3yfHc2Sbtm5q3q13tt2pzXXdl3XsKrhF\nffng1/Xq2JtqjK7Tv9nz2fMec873uj+aOan/feBrOjl7Whtr1utzOz+9KGSyFNdz9fk3/lGHp47p\n4a4H9KHN772kur9z7Ed6YugZ7Wrcrt/b85nKcWD/xEH9w/6vyPVdffqGj+uujbde0naHZkb0raM/\n0PHpfklSbTipLfU92lK/SVvqe7SxZv2yHnOm8zP61tHv69WxN2Uapn6t4x7d23aXXjn9hp478Qud\nyQVDaW2q69I9bXfpppY953xQNVNI69tHf6Rfnn5Vhgzd03aXPrDp3Yu6khXdov7rK3+t0cxJ/e7u\n39be5l2XVe9QekT//bW/U9bJKWyFtXNdr/Y079Suxu3XRRe01TKcHtWzIy/ol6dfV9ErKmTaunX9\nTbq3/S51Jts1V8zq6eHn9NTw88q5OSVDCT3Udb/uabtzya59i75AXRBQKn8J6JSm5S8GFwYVHNdX\nPBHRzPTi12P/rO0XvaKG88d0dG6fThWCYVOjZkybYzu1JbZbtXbDomBWeSbjTuuV9DMaLhyTIUNb\nozdqV/xOhY3gQ3L37GEMK8MZ+iq6roqlTjeuOx9yqdzmSn0LzpcDEW8XrloQmKh8Ub+wk8+C8+Wg\nleN686G0QkEj1itKxQ9Knqnw6T0qjrcpl/dkmlIyHq4EaIJpWDVRU4XIpKZ1QqedYZ3KjcqXr6gZ\n1c76G7Wn7mbVhRrOCRU4rq9MtqD0XLF0Ks0vWJbNn9sN0jKNIKxhBYGN+fngmOacp/vawudLEHbQ\ngvd88/ezSuEHLVjmL1jpsj54MDxZTaOyN/Yt6mA2fyWGDCcq04vI9mKyvahsReVYc8rbZ+RY6cUt\nnjxbVj4I7RjZOlm5BtlurUKWNR8wMYNQTDlcYlumPN/XbCl8kc4WNZstLttQlAuDTUHXJF+yHBmR\nrIxwVoqnpMQZmTXTMsz56/SycXmZhkoXN6vphOwN/TJMX87ERhWHtkvO5Xf0XG62VQqsVm7nfGBr\nUTfA8rCLZ4UNy+dXm2Uasm1ThQVd+VaCaZT2XXvp9x9+bEpeY5/82pOS4QfByIUnzzxnmeHZkmtL\nni25oeD8wmWeLTkh+bka+a4tzzs3lPN2NYdCC0JiZx13bMtY0HXx/N0Xy8e+cuD5fCFia0EXuaLj\nKVdwlSs4QSCnFMopFNzzHoMs01AsYqsmaiseDakmaqsmFlI8GiwLWWYQ4vO8oLvWgi6HWW9Wk9YR\nnYkckWtmZbkxRQpNCheaFMo3yyrUyveMc25T+fV24ZC7b3c8KXdNK9eVWFBjuWYpCEuXb3d5+M9c\n+faXlvm+X+r8Vgo3Lwg7RyPzy5oaa5ROBz9gmg9OlifzoUrflwrlsGcxCH6WQ58Fx1OxOH9+4fOk\n8hp81uvI2a/RwaL5MwUzrana15SLBt35DM9WKNMqI9Uhd6YheE/gnNslVJKiYSsIWEZDqonZpWnp\nvoyGFI1YypZDd6XT7ILj/WzOOWe7kXAQ1onFXRWbDisTPyYZvur9Nu0Iv0M14bjG/T6NFo9pvHii\ncrn2eKd2rdupPU271FLTIMdz9cqpfXru5PM6lQvWa7bb1WPtVbzQqmze0WzOUdHxSh0ESx0Pz+ow\nWO4uaBqqXOZUYVCD9osqWGkZbkShsR0qjG1UNu9VHsfaeFh1NWHVJSKlaVj1C+brasJBWGxh18bS\n8KwLh2a9XOX3qcH+vnjoaMfxND1bCE6ZgqZn85rOFJSaLWg6k68szxddGaVheGsWPM7B/lLan0uP\nt+sFAcv5HxUEw+YunGbzwfYq79tiISXi5fdvYSXL7+XiIUXDduV5Wgnflm5P6Wk9/0PHcgCz1DE2\nFLq4YFHlxwSFxT8eMIxzfwRwdsfJS3lsVvozft/39erYG3p04El1Jtv1wc3vUX2kbtHfy0OQF0rH\nFVNSuBRgDNuXPqxy1snp0f4n9PTI8/J8TzE7pqyTVW04qY9seZ9uW39T6fNqvxKwzheD41zYNhUJ\nW4qG7Uu+b68GJ2dP6+uHv6OjqT611mzQ+zY9rBubdl4Vt+O1sX362qFvac7Jak/TTt3depu+deT7\nmsidUWvNBn1mxyfVnmxddBnXC35UU37PfiUhPddzdTTVpwOThxQyQ9rR2Kue2s5LCkdey66X7/e8\n0n/qr4fw6cXKOXmdyU2pKdZ4TfwYtdoKblE/6n9cTw49K1++bm7Zo6OpPqULGdWGk3p/z8O6c+Ot\na2bfvpDrZd+/FhDSQdWwIyOVn9aRqeM6fOaYxrMTlQ43iVBCyXBCiVDNOdNLeSHMu4Wg+05xVpkF\np9nC4vNZJ6eck1fODabugm42Z7MMS53Jdm2u7y4Fc7qqOiyP53uazE5pODOqkfSJynRhVwZJqrHj\naok3a2BmSL589dR26cNbHtGW+p5Lvs6ZQlrPjryoZ0df0GxxTlErqs7adnUlg0BOV227GiL1S/5n\nLOfkNZQe1vHUoPpmgm5DWec8X45cQNSKakt9t7Y2bNbW+k1qT7Re1HPA931N5s5oaEFoZzRzshK0\nWChshtQcb1JLvFnrY01aF21QwSsq7+ZLz4u8ck6uMi0vz7sF2aaliBVR2AorYoUr0/n5iMJmSFkn\np6l8qhTKmVEqPy3nPEOh2YalW9bv1X3td6urtuOS7ivf97V/8qC+f/yxYHgzw9IdG2/VumiDQqat\nkGnLNkML5oNTyAzJNi0V3ELpNga3Ob/gdudLy7JOTicyJzV91vOvOdYYPDeS7eqq7VRHsvWKhmo7\nk5vS1w9/R/snD8k2bb23+0E92HnvorCS67nKujnlnJyyC055Ny/LsBS2QgqZocr07HnLMNU3Paj9\nkwe1b+ItjWcnJc0HjHY1bdeuxu1qS2yUL1/900N6c+KA3pw4UOnmZMjQprpu7WneoT1NO9USbzrv\n4+L5nlzfk+u7cv3gQ+7gS6bSB5MyZBimDC08H+xf5cclv+hxWTw/W5zTwTNHNFIaus6Qoa31m7S3\nZbdubN656MOqskxxVi+ffEXPn3ipEsLbEG/RO9ru0B0bblFNKH5Rj1UqP62/e/NLGkwPa3Ndt353\n92+/7THx7V73C25R3zn2Iz07+oJs09bOdb1qijWqKdao5nijmmONaojUn7Pvf+PId/XMyAva07RT\nv7v7ty45+OL5nj7/+j/q0NRRPdL9oN636WG9dPIVfeXQN2UZpn5n1/+l3U07Lm89ByYAACAASURB\nVGmbZb7vazA9rLgdV3OscUU+vDoweVhfP/wdTebOVJaFzZBu23Cz7mm7Sx1nfTB1PofPHNPXj3xH\np+fGlQwn9LEtH9Ct6/fKMAx948j39MzIz/XOtjv1qd6PXlGtp+fG9cKJl/XG+P7KvmcZlrY1bNaN\nzTu1p2nnJbWUDfaDWVmmJdsoH9vs6/4/z47n6LWxfXp29AX1TQ9KCgKp97TfpTs33nreLllzxTk9\nNfycnh5+Xjk3r9pwUg913a93tt5ZlQ9m3m6/z7sFHZg8pFfH3tSBiYOV4VG31W/WO9vu0J7mXRf9\nq8eDk0f0jaPf1djchJKhhD685RH9/+3deZRcdZ03/vddat9639d09sQQQiAJSwQ06iAIAg+LIzjK\nc87oODo6j+Ogc9wAGRxmdM446LjMc87vh+OIwyIiKo4CE4EQICH73unu9L5WV9d+1+ePe+t2VaeT\ndCdd6ZB+v84pblV307ldVd97b93v+34+V9Ssu+Cu8DydaGYc/3f/T3E81olKXznuW32PM2ZzH7ln\nsh0ZTUfxat92vNq33TnmWVG2FJvrN2F1xYpZPSeabiCZ0axqJrkT2BfAScv8EFUu3D013KMZKrYP\n7MTvu19CNDsOWZCxoWY92kpaEPGEEHaHEPaE4Jd9p31OMloGPYl+dMd7nVt/crCgOl3A5UdbpBVt\nJS1os9u+nilcnavKkUipSGQmJ3UzWR0uWXQqp3jyqqTk7rtkAXEthmh2HGPZcYxnxjGWGbceZ8YR\nzUSd8ZQjCiLqg3VoDTWjJdSMhkAT/FLACdrlJvr7kgP474HnMZTth0f0YV1gM+rlZfYk12TYbSb8\nfjdSKeWMP2eFACfbw+m63RYuP9CgGVD16avZ5Cbl8ydq8yu6nSqckZssPim0Md3PCwIEEQUBoamt\nQnNDQ80PGUypNqWoutMCz+uSrJZz/ukqK7mcikuSKFgVlXLVlezfk6uyNLXiUu57WU0v+Lnc99Rp\nXj8TBtRgL7KRY9C9VrBXVIIQdA8gGDAFAxAMQNCd+ybsr4kzez8AAAwJnmQj/Mk2eLQySKJ40msl\niYITRJl8LvUpz6sBzVQgeNIws37AsPb1k63+rADA5HE2TgqZnonHJcHrluwJVQlel1VhL9e+Ure3\nj6mMhmRGdZYzCd8JgRjk6i5IZf0QRNNqexovg+ifgOCevDjH1GUgWQokSyEkyyFmSiFBgiyLVqtJ\n2QoFFiydaosCsoqOZGYyJJLMqIXBMFGDGBqDqXlgJsOYrn2pLIl2O0brObYCPPqMtwMXBFGDXNcO\nuaYTgmhCnygDkqUQy/usICMAQfXBm2xCMNsKv1lib2utfUMqo9nPoYpE2qrwOBMCAL9XLhjPAa8M\nRTWs1yWjIOY7CrX8ECCrMDJ+qCeWwxivxEmvhSsDqWwAUukgxFDUqWamx0sguBSI3pS1/YtWQ+1v\nhZksmaMnD3b1wk7Ide0QJB1yphyVifUIi5VIZtSCoMtZ/xOAXTU092jK96d8aTJ4XLj/n9W/mQsY\nBd0I+d1QVN2qbpY5+yCtxyXB75Xh88gwDBPxlIJkZso5H1GD6I9DCMQgBiYgSKrV9jgZgZGIAPrs\nzqGcVEVNFu12y9Y+IKNo0KUMRG8KgicFwZt07kMwAUOCaYjWdjT/vinCNCSIpgQJLkiGGxI8kE0P\nZMEDt+CFR/DCJbmcoI/f70Y2q555pWfBMOFUC51siW0iLY5iLLQTimck74clyCNLYAwtgqoCqnrm\nNsG5Y63cMZbHfpxf6Sp3SWHC04mxwC7oUhqyHkR5fB082RqMefcjEToIiAaEZBn0E6uQjZ/+Qi5J\nFPL2MbKzz/G6rW3t1IC7Ybcczw/CA7lxY1fiFaxqlWLePtCQ0hBEDZIWLggyTh5HWX9hbreYq3op\nSVbVSFkUIYgaRn17Mew+AAgm/EY5UsIYIJgIohxt4hWolpohy6JTTTPXCjkXVi+sljj5tVyVYAhw\nQpenqpJrYjKArWrW8WJay+KV0T/gcHIPJMi4NLAZza7V0DQDE5k0DiivYlA8BJgiIvFVkEYXI5Ux\nkMpaQdx8LrvqYX4lRJddkdAlSxAEOwxoV1vUoSDtHkDK04O0tw+mOOXY23ShxKxHldSMOk8LSr0R\nu4KvFWp12++zXOXRXKVOWcp7DkXruVHzjyPtYyFF06GqecebuuEcpzrHQgLs98TkMREEIJPVC45d\nrOMZ+1ghPfl1wAqUWpUZCz+b5Co1elwSSiI+6Kpm/Zy78HNL/v+Xu4DhVMfds634ON172cx7H+Vf\nWJPKaHZAczKwGcsPbCYVTCQVGIbpHJ+H7IticiHLgNeFuNyDw5mdmNCieFfJWqwvuwJ++9xprhI2\n8j4nANZnal2f8jlHKwxu64Zh70Mmg95+jxWmPlPAfjY0e//QOzGI1wZex57obihGFgIElLhLUemt\nQpW3EtX+KtT4a1Dtr4DH5S54T872fIBhmtbnGDv47gRGFR2aXrhtzy1zF/bkHrsk0XodfNbrEbQD\n8XNRAc+wL+w6OtaB/2p/CiOZUZS4S/EndTei1tOEiWwKb42+jr3xN6FDQ1AowyJsgE+tRTZrOGF2\ntywiHHA7t0jAjbB/8nHAe/G1Fefc/vnDkA4VDQcyXahUQ3PCGGktay/T8Mk+NIca4LoA0sWxbBw9\nTnDHqrwznB5Fjb8KH2r7E6ypWHnOO39FVzGhxFHmLTnniS7DNDCYGsaJiR74AjISiSxgBxGsNga5\nq+oEp41Zpb8CjaH6OZ1kS6lpDKdHMJgaxlBqGEOpEQylhjGYHoGin3kiAbAmvb2yF27JDc3QoOgK\nsrpy2nBXjgABIXcQJZ4ISj0RROxliTeCEk8YdYHac67MYpgG3hrchV8dfwGjdgWNuRRxh9ESbkST\nHdhqDjU4H0rmkmmaeHt4L35+5BeIKwmUekrgltzIaGmktcxJE1DnwiO5saJsGVZXrMCq8mUntRWb\naiA5hL0jB7BnZD86YiecybqgK2CVmzd1J5Qzk4pec0ESJCwvW4K1lauxpmLVjN9Hpmni2PhxvNK3\nHbuG9kIzdciijMWRVsiiDEkQIQh2KyZBnLzZ7Zn2jR7CeDaGjbXrcdeyW087qX6m/f7ekQP4z0NP\nI6ZMnPQ9URBR7i21gju+cgDA1t5tqAvU4P9c9hfwnmV56YSaxD+8+S8YzUSxoeYybB/YAZ/sw6fW\nfBxtJS1n9Tvnk6IreKHzRbTHOnFJ5WpsrL1s1q3+VEPDH078D37b+QeohoZlpYuxpnIV/uvIs6gN\nVOOL6z87Z2EO0zTRnxzE7uH92D2yD93xXud7reEmXFK5Gm0lLUipaUwocecWy8YLHp9q+y1AcEKJ\nrrxgYrmvDDWBKtQGalAXqEa1v2reS9capoGUmrbbfKaQUlNIaenJpZZG0r6fVq3HsewEMrp1UmVl\n+TJsrt+EleXLZrTfTKopvHhiK17qeQVZXUHEHcKW5uuwoeayvLEvnPM+OH/cO8Gcwd3YP3rI2Y5X\n+SpwadUabKhZh+pA1Vn9O6qh4aUTf8RvOn8PxVCxKNKM9zdfjwpfGSKeyKxL0Cu6mne8YB0rRDPj\nVts5QbJOQgsSJEGCOOWxLEqo9JWjLliLukDNGStE7R89jP//wM+QUJNYV7UGH1l++zmXzFcNDbuH\n9mJr7za0xzoBWJUYr6nfiCvrrpg2TGmaJjJ6Fik1haSWQlJNIaNlEfGEUO4tR9gdvOBPLKmGhtf7\n38QLnXY4R5Rxdd0GbGm+dtrA6tlQdAW9iX6ciPeiI9aF9linU7EMAFyijJZwE9oiLWgraUVrpPmc\nXk9FV9A10YOOmBV8Px7rQlKdvo1UwOVHmacEpd5SlHpLUOqJoCFUh9Zw04z3k4Zp4OWeV/Hc8Reg\n6AqWly7B3ctvRYW9752p+fqsrxma1ULrHEKaiq5iMDWE/uQg+pODSKpJNIYa0BZpQU2g6h0VADyd\nhJrEq73bsbV3G8azMQgQsLpiBa5vvBpLStpmNN5N04RiqFaw3w73p/MubshdDJPSUtg9vN8JEjcG\n63B1/Uasr1474/fmeDZmHX8PH8CR6DFopg4BAip8ZagN1KA+WOMsK30Vp30PTNe60jBMKyTnls7q\npL9pWq0B84M7ueolgmiiPXkIO8feRF/aOtap8FbgqtpNuLxqHQJuLwQBGFOiVkvt8Q60xzoK2jzL\ngoSmcANaw81oiTShNdyEUu/MwxiaoaNjrBd7Rw7i8PhR9KV6YMD6nBKWS7AivAprytagIVwDr8dq\n5XWqNk9WxSGrTWkmr2VpJqvB7XUhHs8UhCnzFgWlbmR5MljgskMGuYnShDGB9vhhdCY6Ue2vwrvK\nVk2eG5jsiHhS28Tc0jRN7BjchV8c/zUmlDhKPSW4dcmNuLTyXdbktWmgfbwTbwzswM6hPU714uZQ\nI66oXYf1VWun/TylagZSGRWJXHgnrSKj6PDlBXKCPhf8nlO3gto/eghPHf0VBlND8MlefKD5PVhf\ncQUUxXTCXxlFK6jEkbsl1AQGjeMYEzqQlIYgQECZ3oZmcS0qvRXweQsrO+WWbll0wo+qZjiVBjXN\ntCd4re/phgmfR5qsION1weeREFNiePror/D28F6n6uYVNZeiNlANr+xFRtGcSc/xvCo1sWTWqVBk\nGCdXZ3Qm5k4RuDnVrIMoFk5E50/25iZKJUlExD9Z0ScS9KDEvh/yu0/5+uTGshNws0NaueCy32NN\ntOcCOblJd0ksHC+qrqI73oejYyfQGetGb7IXY8rISW2o83nNMIJmJUKoQghVCKIckmBtyxTNqvwx\n2QZTsy4eM9NQzDQUpKEJGUi+NERvCnAnYbiSMMVpKiNChgAJBjQYOPuAlamLgO6CqblgZn3Qx6ug\nR6uLV4lPzsLVcBRSZY8VmohWQ+9dDlckCtQeAmQFgupHaHwNgmoTPLJUsF0x7ApeWbtCWjYv8Go9\nt9b4yCf44nA1H4AUjsI0RGh9i6D1tyLXVlaWBLj9WQgNB2CEBgBTQDC5GBXZS+CXffDa4YTc65dR\nNGRUq1JZVtGRVrNQvENAaAhiKGo9j2M10MerrOp0gNVmdUpLWWCyklz+ODKgQSgZgFDeAzE0Zj1P\niQi0wSYY0RoIpmwHjAHADhnbIZnCIKsJsXQIrqaDED0ZGFkv1K6VMMarIHgTkOvbrbCp/fvV3sUw\nYhWYLmhXDII/Bnfbboi+FIxkCEr7JTAzJ3++ESPDcLfus0KwyRL4BtcjKJbYLStlaIZhh13s198O\nOucCMAWhVDkLqXQIUukQxPAoBDuobGa9MMarYcaqYUCDGBmGWDIC0TN5oaqRDEGPVcCIVcJIlFjV\nCOeCpEAMRyH64k6FzHP53S5ZdLb9AjDZzlszTllVcK4IApxwfH4IH3n3i/Hvy5Lo7BskUUA8bVWV\nTaZV698TDEjlfZBrOiH6rXbipi5BkHSYugRtqBHaQAugFqflnVsW7X27y26XKUwGkHI/lHue8v4/\nTc+1ap2slmiGh6ygeMS6UM5UPNBj5RA8aYj+BAS58Dy7aQgwMwEY6SDMdBBGogRmMgIJbkiSWBjs\ny1uq2mQoR1Hzt6kmhMAEpNAYxFAUEEyYqgum5gFUN0zNDdNe5h7nwvhTCQKcY65coMrjlgqPc+yl\ndaGJdbzjXHxif1+Hau1Xqq2L3vTBZqg9S6xKoPlcGbjqjzn7Hz1WBrV7OczUzC4ulEQBIb8LPrvl\n6WRrcNEJQOW3C5fEU4wD+46dSyuovGctT1EVGrnjZsFpE567nwvwCfYFE9evq8eShjN/xuDc/vnD\nkA4VDQcy0dxSdKu9xYU+gXIhjn3TNBFTJuxJuBjckrug1ZlX8sAjeeCR3Kc84asbOrK6gqyetYI7\nhoKspkAxFPhkL0o8EUTc4fNW2UEzNHROdEPRFaiGBs2+qYbqPM6/75bcTos3z5S2bx7ZA6/ktb93\nflsfpNQUftH+G7w1+DZcdkDKL3vhlX3wyV74JC98shde2Vp6JDd007D+Nl2FkrdUdNX+m62v1QVr\n8K6KlWgraT3rPtUTShz7Rg7ZFXaGIQr5E7eifZWwBMn5uhV6sa7yMGHAhGka9tK+YXKZe108+a9N\nwWtkLRtCdbMOY0yVUJJ4feAtvNq3vWBS4HQECLhl8Q14T+PmM257ZjL2TdNEQk1iOD2KkfQohlMj\nGE6PWffTIwXVsIKuAP5m/WdQ4Sub0bqeSne8D/+04zGohoqIO4y/XPu/Z9Qi8GI3kh7FE0d+gQOj\nhwEAsijji+s/M+N2ZGdjNB3FnpH92D28D8fGO057EluAgLA7iLA7hJAnhKArAMM07G2blrdUoRk6\nVHuZ1bMntUMEgHJvKWoC1ajNu/ll/2RjTXtMOh+C88apkauUZejQ7KVu6tDsZe7rqq4goaacIE7C\nruyXVJNIqqnT/r35JEGCX/Yh4PJjVcVyXFO3CZX+2U2g5yTUJP5wYite7nn1lGGnyXDeZFjPJcp2\nNZIwItMt3WGEPSGUlfvxP4ffws7B3dg3eghqXjBnXdUaXFq1BvXB2jk7dhnLRJ1JpHxeyYOIxwrE\nlngiebcwZFG2gjjpYQwmhzGUHkE0Mz7j1+NMSjwR1AVqUBessZe1qPFXQhRE/Lrjv/HbrhchCxJu\nW3ITrqnfNOfHcT3xPvyxdxveGHwbiq5AEiSsLF8KwAprJdW0E8w5XbDULblR4S1DpV3prMJX5lQ9\nK/eWQhREZHUFGT3jVH/Lr1SZqwqnmidPFk3HJcoo85SgzFeKMm8pwu7QKcMRqq7itf438buulzCe\njcElyri6fiO2NF07q6pcZyuaGUe7M7Heib7EgPP+ESCgyl9hHQd6woi4w9bSE0aJ/TjsCTvHIdHM\nOI7HuqxQTqwL3Ynegtel3FuKlnATqvwVKPWWoMxjB3K8JXN6jDaajuJnR57GgdHDcIku3Ljofbiu\n4eoZH8fO5fG+aZrI6llMKAk7qDkx/VKZQFJNQYBgP78RJxhvBeIjeUH5MEzTxEBqGP3JAfQnBzGQ\nHEJ/cgAj6bFTjn+/7MOiSLPd5rgVTaGGGQdXFV3BhBJHXEnAa382ONdA3tnoSwzg5Z5X8cbATqiG\nCo/kxpW1V+DdDVed9b5kJgzTwKGxo3ilbzv2jhyAYRrwSG6r4l/dxpNaUVivzxB2D1uVLLsmup3v\nNQTr0BRqwHB6BH3JgZOCa7IgoTpQNWXbW3PGarCnWu+h1Ag6J0447X4NGM74nRzPEedx0BWAIAiI\nZeN4pe91vNL7OiaUOAQIWFW+HNc2XIVlZYvPGPiaUOI4Pt6JY7EOtI93oDveV/DeLPFE0BJuQmuk\nCS3hJjSF6guqmcaVBA6NHcWBscM4OHoEcdWaXBIgoCnUgOVlSzCaGcOe4f1OcLYhWIf11Wuxvnrt\nrEJAOWc79k3TxIl4D/aMHMCe4f3oSw6c9DOlnhKsrVzthLhP9fydmOjBfx19FsdjXXCJMrY0XYst\nzdeestKroqvYM7IfbwzsxMGxIzBMA6IgYlnpYtQFa1Djr0ZNwLqyfKbVRqf7+/qTg3jm2PM4MHYY\nAgRcVb8BN7a+76wrMyeUJARBOOt1Ohv51Qtzyr1lqAtWoy5Q64y3an/lafcXqq5OVre2j4dV5yIc\nIe+/AATBuS9AgFf2oCFY77R8LxbN0HAi3otj48dxbLwDx2OdUHUVsl2J2GVXKZ6sTjx5UUAsG0Nv\ncqBg/+0WXWgM1aMp3ICmkHWxk1f24US8G50T3eiMnUBXvBtpLeP8P7IgoSFUj7pANTJ61nmucrfT\nHrfZFaMrfRWoKliWI+wOOc9d7vNT7ryJOuW8SVrLFlw8kMwtp9zP6Lk2dwJaQs1YWboSK0tXnnVI\n2rTbzlgV1jS8OrAN/939ErJ6FrWBGty+5CYsL1vi/Hxay+CFzhfxUvcfoZk62iKt+F9LP4TGUP2s\n/l3DrjCY1tP4befv8Urf6zBg4F3lK3FL240F5x6sUMHkdmj/6CH8/MizGEmPIuQO4sNtH8QVNesK\n3qemaWIwNYT9o4dxYPQwjo0fh2Zf8CeLslNxO3cR1rqqNVhTseq0oX/DNHAk2o7tAzuwa2ivsz1v\ni7TAI3lxcOwwTJgIugLYVHs5rqnfiPJTnEOx1m8E/3XkWRyKHoEkSLi65ipcU7MZImToeq4qnYHB\n1CBeG/4jjiUPAQCq3fW4NHwVquRGq0piXgtkzbAmxCfvT37NRGHo0glc2k9yLospClY1j15hD46b\nb8KEgTbXWqz2XQmP7MqrzmNVtfLb7SghKfhl1/PYMbQLLtGFWxbfgM31m067DzZMAyPpMQwkhtAd\n78fB6CGncj0A1AVqsKZiFS6pWoXGYH3eeDKRVXSkMip6JgZxePwI2uPH0JfpdgJxMtwImzXwm2Xw\nGmXw6CWQtaDVDtR+frW8KkquvEpZoqwj4xpGXOpHDH2Io/C8nVvwokZuRa3chkqxAQLkyXag9oS9\n150Lc9rtG/MDna5Tb7etFnKGFW5TJ6s5+gIeDA3HnccFwR7n56wQlDElHK3nBTbzg9P5rW2Rdz/3\nnshlLHPPu2i/gUxo0OQ4FDkGRYo5Sxe8KJfq0eBtQnO4GRWhoBPM8Xmmn0dJKim8eGIbXul7DQnN\nOoZrdC9Fg7kGohpEn3kQPdgLRUhCMEVUmUtRa7wLHtOqXGXYKQpJsqqN5SpH5R4XVJUSBWRVu8JR\nNlepUUM6V+nI/loqo52yVaww5YEkWtUQPV4dZvkJKOEO6LJ1PjWgV6HWXIVauQ1uWXLecxk9hYQ5\nioQZRUqIIi1GkRVjMIS88I4JyGoEcrYcUqYMQqrMChfqKAy9uyS43SIk3wQ0/wiy7iEk5cHC3zUD\nsuCCXwzChxK49TAkNQgjHYCS8iOdEJ0Wo6c6c5NrNTy17bhLEqH7hxErfROanIRbD6MhcyVKhBrn\n+7Is2lXOZPjcVlXNFMbwxvjL6EwdhwABl1ZegpsWfQBBKeRUZJpIqdYyqWAipTj3Y0kFGUV3tqG5\n8X4yExB1O6B0/uf4brqyBR/evOiMP3chzu9drBjSoaLhQCZamDj2iS5spmlCNVTopmEFiEzTug8D\numEv7e/5ZN+MJ0DnYuyntQxG0mMYTY+iLliDKn/lOf2+nL0jB/B6/w7cuvhGlPtK5+R3XgxM08Su\n4X14oetFXNdwNTbUXnbe/u2EksTekQPoSw4gZIdxwu4QIp4wwu4QAi7/WVczSKhJZzK2P5mrljCA\nuJKY47/i9ARYEysBVwBBVwBBdwBB+3HA5Ydf9sPv8jmBHL/sg9/lh1t0zfmkREJJ4qXuP6I70QfD\nNApa9Zkw7BN7ur00oOgKYko8b0JleqIgOhMIVf4KrKuc+2DOdI5G23F0/HhBm8nxbOyUFUjyRdxh\nVPkrUO2vtFph+itR5a9Audc6mZ1rXagbxrT3FV3FUGoYfckB9CUG0JccwHg2VvBviIKIgMuPuJJA\nubcM/3v1R9EUbijKc5GT1tLYPrATf+zZhoHUEIDJ96Df5UNADiDgst5jAZcfAdkPj+RGTInbQUkr\nPJmdJsyVmz4rzvWNFkmQUOqJoMxbat9KUOYtRVpL4w/df7TDOS5cU78R7226FhHP6aviFVNKTaNj\nogvt4504Nt6BgeQgktrp33sBlx+yIBW0FJUECY2heicU0hppmrOKQDNhmibeGtyFJ4/+Egk1icZQ\nPW5oeS8EQXCC6VndCqVn9SwUY/K+4AIM1bTaqwoyZFFyWq3mf00SJWQ1KzxptS5NI6VlkLGXafvr\nZ6pM6JO9CLutkKBuGs6YP12lSwHCSe/ZgMtvBzVr8gKbPnRNdFtBrFgnRuw2jUCuFXI9FpW0oDnU\n4FQiLbjZ1d9ylTryeSUvSrxWcKg0FyLyljhLWZCtCVNDsUPnmj2Bqtihc80JoZowCsLeTgA8b9mX\nGMCh6FEA1sT6tY1XYVPt+nMOes/WeDaG1/rewKt9bzjbx5ZwE66u34hKX7nVYnZ4v9MSUxRELC5Z\nhDUVVovZ/GM10zQxoSTQl+xHf2IAvckB9Ces/frUypteyYu6oPX65od38ttDTihxa7J8wpo4nzpp\nbgXxBajTtC7O/5mIJ4xYdgK6qcMne7Gp9nJsrr/ynIJQGS2L7ngPOiZOoDN2AscnugqOXURBREOw\nFvXBOvQlBnAi3uO8x0PuIFaWLcPKsqVYXra0oEpMVlewd3g/3hrahf2jh53x1hZpxeU1a3Fp5ZoZ\nV+mczfG+Zmg4Em3HnpED2DtywHkvyKKM5aWLsaZiFZaVLUFPog+7h/dh78gB57UIugK4pHIVLqlc\njaWli+ESZcSVBJ47/lu81vcmTJhYW/ku3Lr4g6ecjJ5OLBvHjsG3sX1gp9NKOF/QFbDaQAQqUeOv\nQnWgCmXe0pOqPk5MqfoYVxLO9mhZ6WLctuSmogbfi0k1NOwc3I3ueC96kwPom6atuCRIdtXKaoiC\n6IRxkmoScTU54yrGpxNw+dEUarCCL6EGNIXqUeYtPevjS0VX0BE74YRyOiZOFBznVvkqEHAFoNkX\nOuUuBlDzLhDIjTeXKFthQjuQ0xRqmFEltvxQYOdENzonTqA30V+wD/TJXutzgytgfYZwB5zHQVcA\n5b4yVPkrEHGHz+sFfIYvgxcPb8fu4X1OG17Aqk61tnI1LqlajepZfnbPtXR/6uhzGE6PIuDy48bW\n9+OquitOGQIbTo3imWO/wu6R/RAgYFPtetzU9oEzVkt2/g7TwPaBnXj22K8RVxOo8lXg9qU3Y1X5\nshn9/6qu4vcntuKFrhehGioWRVpw6+IPYkJJ4MDoIRwYO1JQgbEhWIeV5cuwqnw5WsNNGEmP4u3h\nvdg5tAe9iX4Ak4GdS6vW4JKKlU4l64HkELYP7MAbAzud7We5twwbatbhiprLnP3NSHoMr/S+jtf6\n33DCzKsrlmNz/ZVYXrbEeV+quorfnXgZv+t6CZpdUffOpbecsdJpd7wPodJ2EwAAHQZJREFUz3f8\nDntHDgAAlpQswgdb34cqf2XeNrBwe5i/jXRLblT4ylDpq3AqJ1farc/zj0/GszH8fweewJHoMUTc\nIdyz8k6sKFs6o9cFAHYO7cHPDj+NpJrCstLFuGfFHfC7/BhKDWMgOYTB1BAGUsMYTA5hKDXshKeA\nyVb3udbcs92XZ3UFR6PtdjjrEEbyWpQD1jbDqgZYa99qUBeohVtyoyPWhSPRYzgcbUdXvNvZHsiC\nhNZIM5aWtqEuUIPD0XbsHt7nVKb2SG6sKl+OtZWrsap8+VlXnz6T2Z7nK6jCaFdezDgXeGSgGErB\nxY+SmHfRoyg5XxcEASPpUafy5UBycNqgfUD2I61PfpYQBREt4UYsLWnDktI2LIo0F4R4o5lxvNTz\nCl7t3Y6MnoVHcuOqug24rvFqlHkLzxWqhoY3Bnbgd10vYyQ9ClEQcVnVWryv+do5u/AvrWXQm+hH\nX6IfvQkr/BnIfV53+a3P7vLkZ3i/7IdbcqE73ov/6XkNbw2+DdXQ4BJduKLmUmyuv/KkYPzpmKaJ\naHYcvYl+50KSzonugv1j0BVAa6QJi8ItaAjVYSA1hCPRdhwb70A67wK5Sl85lpa2YUlJG5aULoJX\n8iChJhFXEvYyiYSSQFxNWPfVBBJKAqOZ6LQX2gVkP6rsczWlrjKE5BKE3AEEPD6E3H6EPNb5jan7\ni4yWwTPtv8Yrva9DgID3Nr0bN7RumVXF8INjR/DMsefRm+iHLMpYWbYMtYFq1ASqrJu/6pTh8Hyq\nrqI3PoATcatLRk+iD/2pASiGYl+cZ52XCbgC1n1X0HkcdAXgl33OZ+pcVWdnKUqQBQmyKELMVcu2\n6uIDEApaxhlOmR4g5J/Z+UbO750/DOlQ0XAgEy1MHPtECxPHPl3opoZ3snoWYq4po5Br0Sg4/d4n\n7wt2i6jCD8SSYH0oFu0Pxy7JZZ9A9yPoCsLv8r2j26ZY7ZEymMjGEVPimMhOIGZXs8h9zRQ0tIUW\nYV31JagL1Mx7tT9FVxGzQzuxbAzRbAyaoaHSV46qQCWqfBVFOYGZVFPoSwygPzlgT2gNYCg1jGWl\ni3HXslvP2BJrLpmmifFszKnMNpv34NRqZ9ZtDCNp60Szz6n4NlmJzzelIp8syJjJ2yCrKxjLjGM0\nM4axzDjGMlGMZaLThuncogvXNGzCe5vePeNJmPNN1VVrfGQnEFMmrGV2AuN5j7N6Fk2hBiyKNKM1\n0jyrKi3FlFCSePrYr7B9YMd5+zfdogs+2Qefy2dXUPQi5Ao61YjCnpBdtcQKcE53EtQwDSTVFKLZ\ncYxnrNBO1A7vjGdiMGA4FdTqAtWoCVQj5DpzW7dYdgLHY11oj3WgfbwTPXa4cToCBARdAYTt9Qy7\nQwi6A8hoWWt9MuMYz8amPfFcLEtKFuG6xqvxroqV874P0g0dB8YO45Xe17F/9HDBxIpbcmNV2TKs\nqVyFVeXLZ10txDANjKaj6Ev2oy8xaC8HMJQeOen1CrtDqPZXYtTezuSr8legOdSElkgjWsKNqA/W\nQRYkpLV0wfjNje1xZ2zHEHD5cXXdRlxRs64obTVN08RYZhydE11OcKc73gvN1CEKItoiLVhZtgwr\nypehPlgzo9c7oSaxa2gv3hrc5VQ1FAUR9cFauEWXVT1EkiHbVURcU5bhkB/xRNpuX2RVC9VN3Qn/\nWu1YDCSUJA6NHXHCawHZj9UVK7CmYiWWly2d9vnSDA1Ho8exa3gvdo/sd/YHXsmL5WWLcTh6DGkt\ng9pANW5f8qGCKhtnI6EmMZgctiduhzCYHMZAagijp6m2NZVTedAOml9Rc9mctCa/0EwocSeYnFv2\nJwqDci5RRtAVdEIlAZcfIVfQDpr44RYnt+O55zfX1sG5DyChJnAi3ovuiZ6TJroDLj8ag1a1mtpA\nNQQI0waqjbz7GT2Lzlg3TsR7nCCVAAF1wRosLmnF4pJFaIu0njH8m2t7rRoq3OKpKzDPlqKrGMuM\nwSf7EXT5z1tl5tnK/6wfy05Y7YyH9+HIeLuzza0NVGNV+XIEXQF4JDc8kgduyT3t/bgSxzPHnseh\n6FGIgojN9ZtwQ+uWGe8LDo0dxVNHn0NfcgBeyYMPtLwH66rWIK4mpoToEnnBOqsyn2pocIsu/EnL\ne3Fd0zVnVXV5NB3FU8eew+7hfQVf98k+LC9bglVly7CyfNlpL3gaTA3j7aG9eHtojxMalAQJy0oX\nI6mm0BW3Ksx5JS/WVa3BhtrLsCjSfMptvaKr2Dm0G1t7tjn/b6WvHJvrN6HcV4anjz2PkfQoIu4Q\nbltyE9ZVXTKrbVXXRDd+1fE7pxLvmQRcfoTcISi6csoqpgGX3w7vlOHg6BEktRTeVbESH13+v2Yc\nHs0Xy8bx00NPYt/oQUiCNG2Y2yO57TBmlbX0V6KtpPWsq55NJ64k0Jvod259iX70JwcLgkFA4QUv\noiCiOdSApaWLsXSacAlgHft0TXRj1/A+7Bra62wjZVHGirIlWFOxGmXekoL2zZOVv0WnjbNoT+bD\n2Raf/NrkpoWDJW50Dw471YEnb3mPtRRSatqpsFqMCzuCroAdkiisjhxyB5HRMmiPdeFotB1Hxttx\nYmIyxCwJkhXaKW3DWGYcbw6+DcM0EHaHcF3D1bi6fuMZP6vrho63h/bgha6XnEqAl1Sswnua3o1y\nX6lz/CSfpvtB7ri1N9GHnrz3xuiU/dxM5FflqvCWYXPDldhUu94J+J0r3dCd0M7xWCc6Jk6cdPyc\n+7eXlLbZwZxFZ1WhEZg8B2G1IreOxYZSwxhMDWMkPXbGizk8khs+2br4zSd7MZqJYjwbQ22gGves\nuAPN4cazWi/DNPDGwE483/HfJ/39AgSUeUud0E6t33pv6qaOnngfuhO96In3oT85WLAdEgUR1f5K\nlHpKkNLSSChWFe5ctbq5Itpj3ukEYG8PZFHGB1u34IqadWf8HTzHf/4wpENFw4FMtDBx7BMtTBz7\nRAsPxz3NNVVXMZadDO0ouor11Wvn9MQ5Te+IXaHKc4oJtfxlTVUJBodi0Mz8lqu63YJQg2bo0EwN\nuqE7LUutm3XyVD7LNqTzIasr6IydQG+iD17Zh7A76FR9C7oCM5pQzWhZJzgYtUNE0ew4dFO3TuxL\nrryAxMn3JVGCCHEyTCoIEPPu55Z+2YcKX/FaWp2L0XQU2/rfRFJNYVX5MiwrXQxXEUJqqqFhMDnk\nhAn6kwPoTQwgmh1H0BVAS7gRLWG7fVS44by2EpoLub+v3Fd2zu3Uoplx7BjajR2DuzCQHIKaVylk\nLlR4y7CmcpXVfjjSMqvwgWEaOB7rwu7hfdg1vA9jmSh8shcfbH0fNtdvKmqQQdVVDKdHneBONBtF\nwBWwwziT1R/DnhC8kveiC+TMlGEaGMuMW2FFd6AobbNTasoK7MR7cSLegxPTBHdmQhRENIbqsbik\nFUtKFmFRpOUdN/bn26mO+ZNqCntHDmDX8D4cHDviTBzP1IqypbhtyU2oDVTPep10Q8erfW/gVx0v\nnLGapiiIzthtCNbihtYtZz2hnO/A6GG82rcd1f4qrCxfhtZw01ltn4ZSI3h7aA/eHtqD7kQfBAhY\nUb4UG2ouw5qKVbMOdXdNdON/el7DjqHdzmsiCiKubbgKN7RuOaf9x/FYF17ufgUGzMnt4ZRtY9AV\nKDjWUw0NY+kxDNvVO4ftducj6VGMpqPQTR0u0YXbltyIq+s2ntN21TRNbOt/Cy91/xFBdxA1/kpU\n25UvagJV570KVY5u6BhKjxQEdxJqCosizVhWuhhtJa2zel1M00RfcgC7hvZi1/C+adtIni9eyYuA\nyzflQg7rAo78Czy8sgce0W0FfHOtxE0dhqFDt1uM51qKG6aBMm8pagNVqA3UzOqzYFrLoH28A0fH\nj+NItB3d8V7n+KbGX4X3NL0bl9dcOuuAnmEa2DdyEL/terGgTWuOAMFpjZh/HC8KIobTIydVrA26\nAmgI1qEuWGMva+ESZaQ0K/yUUtN2AMpqYZ1Uk0hp1jLiCePquo1YWb7svITyx7MxHI91oTfehyp/\nJZaULjqp8lAxaIaGkfQYBlPDiGbG7aqs6ckqrWraqdSaq9AqCSK2NF+L97e856xCmFOZpom4msBA\nchD9ySEMJIes+6nB01brdoky6oK1aAzWoSFUj8ZQnV1B6+TtuWpoSOa1CM3dUmoKet74sELJeY+n\nfM84RTVo3RlXJm5o3YIr6y4/49/Nc33nz7yEdAzDwNe//nUcPnwYbrcbDz30EJqbm53vv/jii3js\nsccgyzJuu+023HHHHaf9fXyzXJg4kIkWJo59ooWJY59o4eG4J1qYOPbpnUbRVbhOc4UzwamGo9hh\nO0VXoRlWG7Zc259g2I2JWAaiIObd7OL6eY9dohtl3pI5eb5N08Rgahhhd+i8VqajC1MuuDOUGobg\nXCUu5rVJKbwviy7UBqqLUu1qIZnJft9q2ddrt8vMIqurTutMxW6jaS0V6KaBjbWXYXX5inPeTqTU\nFH5/YivGMtGCynb5oRG//M6pcDqWiUK2q3Sdq4SSxLb+NzGYGsZ1jVdfkG34coE/r+wpaE9JszOU\nGsb+0cNIa2mnrXXhpL3hhF904+QKQ9ONQwECgn4fZN1d0IIp174710L5Qq0AlpPW0mgf74Qsylha\n2nbO2wLTNHEk2o63BnfZLYEnj5vU3H1Dhapb91VTQ4W3zAnj5Nqehd0hHpfOsVxr9/P1nkyqKSe0\nk2s53hiqR0OwDtX+ygt+bJwOP++fP/MS0vnd736HF198EY888gh27dqFH/zgB/j+978PAFBVFTfc\ncAOefPJJ+Hw+3H333fjBD36AioqKU/4+vlkuTBzIRAsTxz7RwsSxT7TwcNwTLUwc+0QLE8c+0cLE\nsU+0MHHsEy1MHPvnz+lCOkWLF+/YsQPXXHMNAGDt2rXYt2+yf2d7ezuampoQiUTgdrtx2WWX4c03\n3yzWqhARERERERERERERERERERERzauihXQSiQSCwck+gpIkQdM053uh0GRyKBAIIJE4dW83IiIi\nIiIiIiIiIiIiIiIiIqJ3MrlYvzgYDCKZTDqPDcOALMvTfi+ZTBaEdqZTWuqHLL9z+7tdzE5XqomI\nLl4c+0QLE8c+0cLDcU+0MHHsEy1MHPtECxPHPtHCxLFPtDBx7M+/ooV01q1bh5deegk33HADdu3a\nhaVLlzrfa2trQ1dXF8bHx+H3+/HWW2/hvvvuO+3vi0ZTxVpVOgfsW0e0MHHsEy1MHPtECw/HPdHC\nxLFPtDBx7BMtTBz7RAsTxz7RwsSxf/6cLgxVtJDOli1b8Oqrr+Kuu+6CaZp4+OGH8dxzzyGVSuHO\nO+/E/fffj/vuuw+maeK2225DdXV1sVaFiIiIiIiIiIiIiIiIiIiIiGheFS2kI4oiHnjggYKvtbW1\nOfevv/56XH/99cX654mIiIiIiIiIiIiIiIiIiIiILhjifK8AEREREREREREREREREREREdHFjiEd\nIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIi\nIioyhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiI\niIiIiIiIqMgY0iEiIiIiIiIiIiIiIiIiIiIiKjKGdIiIiIiIiIiIiIiIiIiIiIiIiowhHSIiIiIi\nIiIiIiIiIiIiIiKiImNIh4iIiIiIiIiIiIiIiIiIiIioyBjSISIiIiIiIiIiIiIiIiIiIiIqMoZ0\niIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiI\niKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiIiIiIiIpMME3TnO+VICIiIiIi\nIiIiIiIiIiIiIiK6mLGSDhERERERERERERERERERERFRkTGkQ0RERERERERERERERERERERUZAzp\nEBEREREREREREREREREREREVGUM6RERERERERERERERERERERERFxpAOERERERERERERERERERER\nEVGRMaRDRERERERERERERERERERERFRk8nyvAL3zGIaBr3/96zh8+DDcbjceeughNDc3z/dqEVER\nqKqKL3/5y+jt7YWiKPjUpz6F2tpa/Pmf/zlaWloAAHfffTduuOGG+V1RIppzH/7whxEMBgEADQ0N\n+OQnP4n7778fgiBgyZIl+NrXvgZRZN6b6GLy9NNP45lnngEAZLNZHDx4EE888QT3+0QXsd27d+Mf\n//Ef8fjjj6Orq2vaff3Pf/5z/OxnP4Msy/jUpz6F6667br5Xm4jOUf7YP3jwIB588EFIkgS3241v\nfetbqKiowEMPPYSdO3ciEAgAAL73ve8hFArN85oT0bnIH/sHDhyY9jif+32ii0/+2P/85z+PkZER\nAEBvby8uueQSfOc73+F+n+giMt283uLFi/l5/wLDkA7N2u9//3soioInnngCu3btwiOPPILvf//7\n871aRFQEv/zlL1FSUoJHH30U4+PjuOWWW/DpT38aH//4x/GJT3xivlePiIokm83CNE08/vjjztc+\n+clP4nOf+xw2bNiAr371q/jDH/6ALVu2zONaEtFcu/XWW3HrrbcCAL7xjW/gtttuw/79+7nfJ7pI\n/ehHP8Ivf/lL+Hw+AMDf//3fn7SvX7t2LR5//HE89dRTyGaz+MhHPoKrrroKbrd7nteeiM7W1LH/\nzW9+E1/5ylewYsUK/OxnP8OPfvQjfOlLX8L+/fvx4x//GGVlZfO8xkQ0F6aO/emO84eHh7nfJ7rI\nTB373/nOdwAAsVgM9957L770pS8BAPf7RBeR6eb1li9fzs/7Fxhe/kyztmPHDlxzzTUAgLVr12Lf\nvn3zvEZEVCwf+MAH8Fd/9VcAANM0IUkS9u3bh5dffhl/+qd/ii9/+ctIJBLzvJZENNcOHTqEdDqN\nT3ziE7j33nuxa9cu7N+/H1dccQUAYPPmzXjttdfmeS2JqFj27t2LY8eO4c477+R+n+gi1tTUhO9+\n97vO4+n29Xv27MGll14Kt9uNUCiEpqYmHDp0aL5WmYjmwNSx/+1vfxsrVqwAAOi6Do/HA8Mw0NXV\nha9+9au466678OSTT87X6hLRHJk69qc7zud+n+jiM3Xs53z3u9/FRz/6UVRVVXG/T3SRmW5ej5/3\nLzwM6dCsJRIJp/0FAEiSBE3T5nGNiKhYAoEAgsEgEokEPvvZz+Jzn/sc1qxZgy9+8Yv4j//4DzQ2\nNuKxxx6b79Ukojnm9Xpx33334d///d/xjW98A1/4whdgmiYEQQBgbRvi8fg8ryURFcsPfvADfPrT\nnwYA7veJLmLvf//7IcuTBZan29cnEomCMveBQIBhPaJ3uKljv6qqCgCwc+dO/OQnP8Gf/dmfIZVK\n4aMf/SgeffRR/PjHP8ZPf/pTnrAneoebOvanO87nfp/o4jN17APA6Ogotm3b5lTS5X6f6OIy3bwe\nP+9feBjSoVkLBoNIJpPOY8MwTtrJE9HFo7+/H/feey9uvvlm3HTTTdiyZQtWr14NANiyZQsOHDgw\nz2tIRHOttbUVH/rQhyAIAlpbW1FSUoLR0VHn+8lkEuFweB7XkIiKZWJiAh0dHdi4cSMAcL9PtICI\n4uQpoty+furn/2QyWXASj4guDr/+9a/xta99DT/84Q9RVlYGn8+He++9Fz6fD8FgEBs3buRkHdFF\nZrrjfO73iRaG3/72t7jxxhshSRIAcL9PdBGaOq/Hz/sXHoZ0aNbWrVuHrVu3AgB27dqFpUuXzvMa\nEVGxjIyM4BOf+AT+5m/+BrfffjsA4L777sOePXsAANu2bcOqVavmcxWJqAiefPJJPPLIIwCAwcFB\nJBIJXHXVVdi+fTsAYOvWrVi/fv18riIRFcmbb76JTZs2OY+53ydaOFauXHnSvn7NmjXYsWMHstks\n4vE42tvbeQ6A6CLz7LPP4ic/+Qkef/xxNDY2AgA6Oztx9913Q9d1qKqKnTt38hiA6CIz3XE+9/tE\nC8O2bduwefNm5zH3+0QXl+nm9fh5/8LD8ic0a1u2bMGrr76Ku+66C6Zp4uGHH57vVSKiIvm3f/s3\nTExM4Hvf+x6+973vAQDuv/9+PPzww3C5XKioqMCDDz44z2tJRHPt9ttvx5e+9CXcfffdEAQBDz/8\nMEpLS/GVr3wF3/72t7Fo0SK8//3vn+/VJKIi6OjoQENDg/P461//Oh588EHu94kWgL/92789aV8v\nSRLuuecefOQjH4Fpmvj85z8Pj8cz36tKRHNE13V885vfRG1tLT7zmc8AAC6//HJ89rOfxc0334w7\n7rgDLpcLN998M5YsWTLPa0tEc2m64/xgMMj9PtEC0NHR4QRzAaCtrY37faKLyHTzen/3d3+Hhx56\niJ/3LyCCaZrmfK8EEREREREREREREREREREREdHFjO2uiIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIi\nIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioy\nhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIjqlp59+Gvfff/98rwYRERERERER0TseQzpE\nREREREREREREREREREREREUmz/cKEBERERERERHRufvhD3+I3/zmN9B1HVdffTXuvvtu/MVf/AUa\nGxvR1dWFuro6PProoygpKcFLL72Ef/7nf4ZhGGhsbMQDDzyAiooKvPbaa3jkkUdgmibq6urwT//0\nTwCArq4u3HPPPejr68OmTZvw0EMPzfNfS0RERERERET0zsNKOkRERERERERE73Bbt27Fvn378OST\nT+IXv/gFBgcH8dxzz+HIkSP42Mc+hueffx5tbW3413/9V4yOjuKrX/0qHnvsMTz33HNYt24dHnjg\nASiKgi984Qv41re+heeeew7Lli3DM888AwDo7+/Hd7/7XfzmN7/B1q1bcfTo0Xn+i4mIiIiIiIiI\n3nlYSYeIiIiIiIiI6B1u27Zt2LNnD2699VYAQCaTgWmaaGlpwYYNGwAAt9xyC77whS/gqquuwpo1\na9DQ0AAAuPPOO/HDH/4Qhw8fRnV1NVasWAEA+Ou//msAwNNPP43169ejpKQEANDU1IRoNHq+/0Qi\nIiIiIiIionc8hnSIiIiIiIiIiN7hdF3Hxz72MXz84x8HAExMTGBgYACf//znnZ8xTROSJMEwjIL/\n1zRNaJoGl8tV8PV4PI5kMgkAkOXJU0iCIMA0zWL9KUREREREREREFy22uyIiIiIiIiIieofbuHEj\nnn32WSSTSWiahk9/+tPYt28fOjo6cPDgQQDAU089hc2bN+OSSy7B7t270dPTAwB44oknsGHDBrS2\ntmJsbAzHjh0DAPz4xz/Gf/7nf87b30REREREREREdLFhJR0iIiIiIiIione466+/HocOHcIdd9wB\nXddxzTXX4PLLL0ckEsG//Mu/4MSJE1i2bBkeeugh+P1+PPDAA/jLv/xLqKqKuro6fPOb34TH48Gj\njz6KL37xi1BVFU1NTfiHf/gHvPDCC/P95xERERERERERXRQEk/WJiYiIiIiIiIguOj09Pbj33nvx\n4osvzveqEBERERERERER2O6KiIiIiIiIiIiIiIiIiIiIiKjoWEmHiIiIiIiIiIiIiIiIiIiIiKjI\nWEmHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiI\niIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiIiIiIiIiIqMgY0iEiIiIiIiIi\nIiIiIiIiIiIiKrL/B8QZwLn1LW59AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmAV2W9P/D3rDAwA8iieEXNBdHSMkVNQSvJvGZ6lXLf\nbpndm5VWVmo3zaXU6mYmaWop7itSuZsaaWKuv9xSFlETcQERkGFmmPX3B/HNiRlkmeHLdV6vv873\nnPOc8zmH8/gHvP08JW1tbW0BAAAAAAAAAADWuNJiFwAAAAAAAAAAAD2V8A4AAAAAAAAAABSJ8A4A\nAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAPcLEiRMz\nYsSIjBgxIo888kixywEAAABIIrwDAAAAAAAAAABFI7wDAAAAAAAAAABFIrwDAAAAAAAAAABFIrwD\nAAAAAAAAAABFIrwDAAAAAAAAAABFUl7sAgAAAIA1Y8SIEUmSU045JYcddlhuueWW3HTTTZk2bVqa\nmpoybNiw7LvvvjnqqKNSWVmZJHn00UdzxRVX5Kmnnsr8+fOz7rrrZrfddsuxxx6bddddt9N71dfX\n57rrrsu9996bF198MbW1tRkwYEC23nrr7LPPPtlrr71SWrr8/6foT3/6U+6+++789a9/zdy5c1NX\nV5fq6uoMGzYsO++8cw4//PAMHTp0mXHjxo3LL3/5y9TU1OTxxx/PnDlzMn78+EyaNCmvv/56ysvL\ns9lmm2WvvfbKoYceWnjW7vDMM8/khhtuyGOPPZbXX389paWlGThwYLbddtt85jOfyZgxY1JSUtLp\n+L/85S+55ppr8re//S1z587NeuutlzFjxuTLX/5yysvLs8MOOyRJzj777IwdO7Yw7qSTTspvf/vb\nJMmDDz6YIUOGdHj9//qv/8qf/vSnJMnUqVM7PGfmzJm56aab8uijj2bmzJlZsGBBKisrM3DgwHzk\nIx/J2LFjM2rUqGXGvfrqqxkzZkyS5IILLsiQIUNy9tln57nnnkvv3r2z2Wab5Qc/+EG23HLLwpjV\n/W7a2trypz/9Kdddd12mTZuWt99+O+uvv3723HPPHHPMMZ2O62qr+hyPPPJIjjzyyCTJ7373u8ye\nPTs///nPM2PGjPTt2zcjRozIT37ykzQ1Na30u507d26uu+663H///Xn55ZdTX1+fgQMH5sMf/nD2\n2WeffPrTn+7wW1zRmtZbb73ueJUAAADQIwjvAAAAQA/T1NSUr3zlK5k0aVK7/dOmTcv//u//5qGH\nHsqll16aCy64IBdccEHa2toK58yaNSvXXXdd7rvvvkyYMKHDf7B/+umn87WvfS1vvvlmu/1z5szJ\npEmTMmnSpFx11VU5//zzOwwAzZs3L1/72tfy+OOPL3Ns/vz5mT9/fp599tlcc801ufDCC7Pzzjt3\n+qyPP/54vvrVr2b+/Pnt9j/55JN58sknM3HixFx55ZUZMGBAp9dYVb/+9a/zs5/9rN37S5a8w1mz\nZuX222/PLrvskgsuuCB9+vRpd05zc3NOP/303Hjjje32v/LKKxk/fnzuuOOOjBs3rstr/lcXX3xx\nzj///DQ3N7fb39TUlEWLFmXmzJm57bbbcsghh+S0007r9DrPPfdcLr300jQ0NCRJFi9enClTpmTD\nDTcsnLO6301DQ0NOOOGE3Hvvve32v/zyy7n44otzyy23ZP/991/ZV7DSVvc5lrr//vvzi1/8Iq2t\nrUmSxsbGzJo1K+uuu25mzZpVOG9F3u0dd9yRU089NQsXLmx3jzfffDP33HNP7rnnnuywww45//zz\nM3DgwFWqCQAAAFh1wjsAAADQw1x88cWZN29ettlmmxx55JEZNmxYpk+fnnPPPTfz58/PQw89lP/+\n7//O/fffn0033TRHH310hg8fntmzZ+eSSy7J008/Xei+cc4557S79vTp03PUUUelrq4uffv2zaGH\nHpqdd945NTU1mTVrVm677bbce++9+etf/5qjjz46N9xwwzLBleOOO64Q3Nlll12y//7759/+7d/S\n1NSUv//977n66qszffr01NXV5aSTTsof//jHlJWVLfOcDQ0NOfbYY7No0aIccsghGTNmTKqrq/Pc\nc8/loosuyuzZszN16tT8/Oc/z+mnn96l7/ixxx4rBHe23HLLHHXUUdlkk03S2tqaF198MZdffnle\neOGFPPTQQzn//PNz0kkntRv/4x//uBDc2WCDDfLlL385W265ZebMmZPrr78+Dz74YI4//vgurflf\n3XzzzTn33HOTJEOHDs3hhx+eD37wg+nbt29ee+21TJo0KbfddltaW1tz3XXXZcyYMdl11107vNav\nfvWrVFRU5IQTTsjIkSPzyiuv5O23307fvn2TdM13893vfrcQ3BkxYkS++MUvZpNNNsmbb76Z66+/\nPpMnT85FF13UjW+sa55jqV/84hepqanJ8ccfn6222irTpk1LZWXlMt1x3uvd/uEPf8gJJ5yQ1tbW\nVFRU5IADDsjuu++efv365cUXX8y1116bp59+Oo899liOPPLI3HDDDYWxq1oTAAAAsHJK2v71f/8C\nAAAA3peWLpuVJKNGjcpFF13Ubsmo+++/P1/+8pcLv7fZZptceeWV7cIFDQ0N2XPPPfPGG29kwIAB\nefjhh9v9w/1+++2X559/PkOHDs1VV12VjTbaaJk6rrnmmpxxxhlJkmOOOSbf/va3C8ceeuihfOEL\nX0iS7LHHHhk3btwywYCWlpYccsgheeqppwrXGzlyZOH40mWzkqSsrCwXXXRRdtttt3bXmDlzZvbZ\nZ5/U19enuro6Dz/8cCoqKt7rFa6wk08+ORMnTsyAAQNy7733pqampt3x2tra7L///nnllVdSU1OT\nRx55pBBAmjJlSsaOHZuWlpZsvvnmueaaa5bpDPSjH/0oV155ZeF3Vy+b1dbWlk984hN544030q9f\nv0ycOLFdJ5elrr766px55plJks9//vP50Y9+VDj27mWzkuTMM8/MgQce2GEdq/vdTJ48OV/84heT\nJDvvvHMuueSSZZZD++EPf5irrrqq8PvKK6/MTjvt1GE9q2p1n+PdS1QlyWWXXfaeS5Ilnb/b2tra\njBkzJvPnz09VVVV+85vftJsrSdLa2ppTTjklEyZMSJIcccQR+f73v7/SNQEAAACrbvmLywMAAADv\nSyeeeOIy4YbddtstVVVVhd/f+c53lukK0rt378I/3C9dwmqpyZMn5/nnny9cv6PgQpIcdthh2XHH\nHZMk1113XZqamgrHXnrppWy44YapqKjI1772tQ47epSVleUzn/lM4ffs2bM7fc499thjmeBOkmy4\n4YbZZZddkiwJOLz66qudXmNVzJkzJ0kyaNCgZYI7SVJdXZ1vfOMb+cIXvpBvfvObWbx4ceHYxIkT\n09LSkiQ57bTTOlzS68QTT8zw4cO7tOZ3mzVrVvr375+ampqMHTu2w+BOkuy7776F7X9dJurdevfu\nnf3226/DY13x3dxwww1JlnwbZ5111jLf9tJrb7zxxp3WuLq64jnebaONNlqhkMzy3u2ECRMKc/Tr\nX//6MsGdJCktLc0PfvCDfOADH0iS3HjjjcssM7eyNQEAAAArR3gHAAAAephBgwa168KzVElJSdZd\nd90kSWVlZbbffvtOxy9VV1dX2F7awSXJe/4D/8c//vEkS4IzzzzzTGH/YYcdlnvvvTdPP/10ttxy\ny07Hv7uTTGNjY6fnjR49utNj7w5XLFq0aLn1rqxNN900STJjxox8//vfz6xZs5Y5Z++9985JJ52U\nww47rF1Iaul7XH/99bPDDjt0eP3y8vIccMABXVrzuw0bNiy33HJLHn/88Zx44omdnldTU5PevXsn\nWf6fwwc/+MEOAzXJ6n83zc3NmTx5cpJku+22y7/92791OLaioqJd2KirdcX3/24f+chHVui+y3u3\nDz74YJIloablfS+VlZWF44sXL86jjz66WjUBAAAAK6e82AUAAAAAa9YGG2zQ6bGlIYB11lkn5eUd\n/7XBu4MC716Ne2nXkSSFziIrYubMmdluu+3a7SstLS1cf/bs2Zk5c2ZefvnlvPDCC3nmmWcKS2Yl\nS5b96czynvXdgZmlnW66ymGHHZYJEyZk0aJFuemmm3LTTTdl+PDh2WWXXbLLLrtkxx13XKar0dI6\nZs6cmSTLDS8lyUc/+tEurbkzS/8samtrM3PmzLzyyiuZMWNGnn/++TzxxBNpaGhI0v5b+Ffrr79+\np8dW97uZPXt2amtrk7z3O9tmm21W+Porqyu//2T572xFz5s+fXqSZJNNNkm/fv2We51tt922sD1t\n2rR8+tOfXuWaAAAAgJUjvAMAAAA9TN++fd/znM6CO8szb968VSkn77zzTrvfbW1tufPOO3PjjTfm\nqaeeatfdZ6mlgZL30lFAZql3L8m1vODJqth4441z6aWX5nvf+15efPHFJEuCFNOnT88VV1yRysrK\njBo1KgcffHA+8YlPFMbNmzevEEZaZ511lnuP9dZbr0tr7siMGTMyfvz4PPDAAx0ui9XRsmYdqa6u\n7vTY6n43b731VmFfR0uMvdvgwYNX6V4roqu+/6WW985W9Lyly18NHDjwPa/z7o5anS2btaI1AQAA\nACtHeAcAAAB6mLKysm65bnNzc5IloZPx48ev8Lh3h1AWL16c4447rt0SRCUlJRk2bFg23XTTbLXV\nVtluu+0yf/78fPe73+2y2rvDRz/60dx+++155JFHcs899+TPf/5zXnnllSRLlpiaNGlSJk2alH33\n3Tc//vGPU1pausKhpGTJMlCra3ldi26++eaceuqphT/XZEk4ZtNNN83w4cPzkY98JKNGjcpee+3V\nYcBqRa3ud7OiAaJk1UJpK6orvv93W5nn6szKhNLe/S109h12RU0AAADAsoR3AAAAgC6xtOtJXV1d\nRowYsVJBlKXOP//8QnBn6623zle/+tXsuOOOy3T8mDhx4mrXuyaUlpZm5513zs4775wkefXVV/OX\nv/wlkyZNyv3335/m5ubccsstGTVqVPbbb7/069cvZWVlaWlpydy5c5d77QULFnR6bEW7Ci1cuLDD\n/VOnTi0Ed/r27Zuvf/3r2WOPPTJs2LB257W2thaWzVpVq/vdrLvuuoXtt99+e7nnLu+dra6u+P67\nWv/+/TN79uz3fC9J+w5G/fv3786yAAAAgH9R/L9FAAAAAN4Xhg8fnmRJ95znn39+uec+8MADueyy\ny3L33XcXggUtLS25/vrrkyT9+vXLFVdckd13373DpXpee+21Lq6+a9XW1ubpp5/OzJkz2+0fNmxY\nDjjggFx44YU5//zzC/uXBpbKy8szYsSIJMnf/va35XbGWd47fnd3peWFa15//fUO999www2FTjKn\nnnpqvvCFLywT3EmSN954Y7k1rojV/W4GDx5cCM4888wzyx3/XtdfHav7HN1h6bf00ksvdbo811JP\nPfVUYXvTTTfttpoAAACAZQnvAAAAAF1i9OjRhe1rr7220/NaWlpy+umn58c//nGOO+641NfXJ1nS\nNaW2tjZJstFGG3UY2kmSpqam3HXXXe2utzZ5/fXXs/322+eAAw7IuHHjOj1v1113LXRnWbx4cWH/\nJz7xiSRLOqFMmjSp0/G///3vOz1WU1NT2J41a1aH50ydOjVvvPFGh8f+/ve/F7Y/9KEPdXqfW265\npbD97uW1VsbqfjdlZWUZM2ZMkuTpp5/O1KlTOxzf1tbWrt6utrrP0Z01tbS0ZMKECZ2e19jYmJtv\nvjnJkgDZTjvt1G01AQAAAMsS3gEAAAC6xKc+9alsuOGGSZKbb76506DE2WefnVdffTVJMmbMmGyw\nwQZJlgROysuXrPD9wgsvdNhdp7GxMT/4wQ8yffr0dvvWJuuvv3623HLLJMmdd96Zv/71rx2ed/vt\ntxe61myzzTaF/YccckiqqqqSJGeccUaH4ZsJEyYUuvV0ZGnHlSS5+uqrlzm+aNGinH766Z2OX2ed\ndQrbDzzwQIfn3H///bngggsKv1f1z2F1v5skOeKIIwrdhk488cQOu8xcfPHFefbZZ1epxhXRFc/R\n1T73uc+lX79+SZJx48Z1+C22trbmjDPOyMsvv5wk2W+//TJw4MBuqwkAAABYVnmxCwAAAADeH8rL\ny/PjH/84Rx11VJqamvLd7343kyZNyt57750hQ4Zk1qxZueGGG/Lwww8nSfr375/vfe97hfG9e/fO\nJz/5ydxzzz1paGjIEUcckS996UvZYost0tjYmClTpuTGG2/Miy++2O6+CxcuXKPPuSKOP/74fOUr\nX0ljY2P+8z//MwcffHB23HHHDB48OG+99VYeeOCBQqeTgQMH5tBDDy2MXXfddXPqqafm5JNPzhtv\nvJGxY8fmmGOOyXbbbZf6+vrcfvvtmThx4nLvv/vuu6dfv3555513cu+99+bYY4/NgQcemH79+uX5\n55/PlVdemZdffjkbbbRRXnnllWXG77XXXrn11luTJD//+c8zZ86cjBo1KtXV1Zk1a1buvvvu3HPP\nPWlrayuMWdo1aWWt7neTJFtttVW+9KUv5eKLL87zzz+f/fbbL8ccc0w++MEPZt68eZk4cWLuvvvu\n9OnTJ3V1datU55p4jq5WU1OTH/7whznuuONSV1eXI444IgcddFA++clPpqamJi+99FKuvfbawpJZ\nH/jAB7q9JgAAAGBZwjsAAABAl9l+++1zySWX5Jvf/Gbmz5+fO+64I3fccccy5w0dOjQXXHBBhg0b\n1m7/Kaeckueffz6vvvpqXn311Zx22mnLjK2urs7JJ5+cU089NS0tLe268Kwtdt9993znO9/Jueee\nm4aGhlx++eW5/PLLlzlv6NChufDCCzNgwIB2+8eOHZuGhoacddZZmT9/fn7605+2O15TU5PPf/7z\nGT9+fIf379evX84+++x84xvfSFNTU+67777cd9997c459NBDs9lmm+XMM89cZvyYMWNy0EEH5YYb\nbkhTU1PGjx/f4b3Gjh2bBQsW5L777susWbNSX19f6Bq0Mlb3u0mSb37zm2lubs6ll16aWbNmLfPt\nDBgwICeeeGJOPvnkla5vRXXFc3S1PffcM+eee26+//3vp66uLldffXWH3ZhGjRqVn/zkJ+nbt2+3\n1wQAAAC0J7wDAAAAdKlddtkl9913X6677rr86U9/yowZM7Jw4cL06dMnm2++ecaMGZODDz441dXV\ny4xdb7318tvf/jaXXXZZ7rvvvrzyyitpbm5OdXV1Ntlkk4wePToHHXRQhgwZkokTJ+aJJ57IAw88\nkLq6uvTp06cIT9u5L33pSxk9enSuu+66PPHEE3nttdeyePHiDBgwIJtttlnGjBmTAw88sNOwy6GH\nHpqPfexjueyyyzJ58uTMmTMnAwcOzCc+8Yl85StfKXRL6cynPvWp3H777bn00kszefLkzJ49OzU1\nNdlmm21y6KGH5uMf/3iHIY6lzjjjjHzsYx/LhAkT8re//S0LFy5Mr169MnTo0Hz4wx/OAQcckJEj\nR+amm27Kfffdl6amptxzzz3Zd999V+l9rc53kyQlJSX57ne/mz333DNXXHFFnnrqqcyePTuDBg3K\nbrvtlmOPPTZz5sxZpdrW5HN0h7333js77bRTrr766jzwwAOZOXNmFi9enKFDh2arrbbK2LFjs9tu\nu6WkpGSN1QQAAAD8U0nbu/sbAwAAAPB/wl133ZXjjz8+SXL22Wdn7NixRa4IAAAAgFVRWuwCAAAA\nAAAAAACgpxLeAQAAAAAAAACAIikvdgEAAAAAa4NFixbllVdeWe3rbLTRRunbt28XVER3a2xszIwZ\nM1b7Ouuvv34GDBjQBRUBAAAAPZHwDgAAAECSZ599NkceeeRqX+fKK6/MTjvt1AUV0d1mz56d/fbb\nb7Wvc/bZZ2fs2LFdUBEAAADQE1k2CwAAAAAAAAAAiqSkra2trdhFrI45cxYWuwT+xTrr9Mm8eXXF\nLgNYw8x96JnMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo/pvEOXKy8vK3YJQBGY+9Az\nmfvQM5n70DOZ+9AzmfvQM5n70DOZ+9AzmftrB+EdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEd\nAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAo\nEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAA\nAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdutQjrz+Rb955ehqaG4pdCgAAAAAAAADAWk94hy41c+GszHrnjcypn1vsUgAAAAAA\nAAAA1nrCO3SpqvLeSZK6pvoiVwIAAAAAAAAAsPYT3qFL9anokySpb1758M4LL0zv6nJWyte+9uWM\nHj0yu+++S1HrAAAAAAAAAAB6DuEdulSh805zwwqPqa2tzXnn/W+OPvrw7ioLAAAAAAAAAGCtVF7s\nAnh/qSqvSpLUNdet8Jhx487N7bff0l0lAQAAAAAAAACstYR36FJ9/hHeqV+Jzjutra3dVc5K+eUv\nLyl2CQAAAAAAAABAD2PZLLpUn4ql4Z36IlcCAAAAAAAAALD2E96hS1WV906S1DUJ7wAAAAAAAAAA\nvBfLZtGl/rls1nuHdy699OKMH//rdvtGjx6ZJNl22+3yy19ekh/96LTceedt2XzzLfKb31yZX//6\nV7nrrtuycOHCDBo0JJ/85Jgce+xxhfGLFy/O3Xffkb/8ZXKmT5+aBQvmp7m5OTU1/bLJJptl1KjR\n2Wef/VNVVbVMPV/72pfz5JP/L5WVlfnjHx/qsK7jjvtWDjzw0Nx//x9z662/y7RpU7Nw4TtZZ52B\n2W67kTnwwEOyxRZbrtxLAwAAAAAAAAB6LOEdulSvsl4pLSlNXXNDl1/7zDNPzX33/aHw+/XXZ6V3\n796F31OnTsnJJ5+Q2bPfXGbs22/Pzdtvz80TTzyaiRMnZNy4izJkyLorXUNLS2tOP/37ueeeu9rt\nnz37zdx11+35wx/uzLe/fXL23Xf/lb42AAAAAAAAANDzCO/QpUpKStK3oip1K9B5Z7/9PpfddvtE\nfvObizJ58p+TJOPHX5Mkqarq0+7cF198IS+8MC3bbPORHHHEF9K7d+9MnvznfOYz+yZJFiyYn29+\n86t5550FKSsry2c+s0922WV01llnUBYuXJDp06flxhuvzfz58/Pqq6/kl788L6efftZKP9/111+V\nuXPn5gMf2CQHHnhoNttseBYufCd33nlr7rvvnrS2tua8836aHXfcOUOHDl3p6wMAAAAAAAAAPYvw\nDl2uT2Wf1De+d3hn0KDBGTRocPr161/YN3z4iA7PbW1tzQYbDMt5512QXr2WdNvZbruRheM33HBt\n3nlnQZLkq189PgceeGi78TvvPDp77fXZHHHEgamtrc2f/3x/mpubU16+clNg7ty52X77HfOTn/w8\nvXr1Kuz/2Md2SU1Nv/zudzensbEx9957Vw4//D9X6toAAAAAAAAAQM9TWuwCeP/pW1GV+hXovLOy\n9trrs4Xgzr966605GTx4SAYNGpSxYw/s8JwhQ9bNRz+6fZKksXFxIeyzsr7xjW+3C+4s9R//Mbaw\n/cIL01fp2gAAAAAAAABAz6Lzzgq68Y8v5LEps4tdxhq1w5br5sDdN1/pcX0r+6SxtSnNrc0pL+26\nT+xDH9qm02Pf+94Pkizp0FNa2nkmbeDAQYXtxsamla5hyJB1s8kmm3Z4bIMNhhW26+rqVvraAAAA\nAAAAAEDPI7xDl+tb0SdJUt/ckJrK6i677nrrrfee5ywN7jQ3N+eNN17Pa6/NysyZf8+MGS/kb397\nJjNmvFA4t62tdaVrGDp0/U6PVVX1KWy3tLSs9LUBAAAAAAAAgJ5HeGcFHbj75qvUhaYn6lNZlSSp\na67v0vBOnz7Lv1ZDQ0MmTrwp9957V2bMeKHDAE1paWlaW1c+tLPUuwM6/6qkpKSw3dbWtsr3AAAA\nAAAAAAB6DuEdulx15ZKAS11TfZde913ZmGW89tqsfOtbX8urr84s7KuoqMiGG26UjTfeJCNGbJlt\nt90+d999R37725u6tC4AAAAAAAAAgFUlvEOX61OxpPNOfXPXhneW57TT/qcQ3PnUp/bM5z9/ULbc\n8oMpL2//if/+9zevsZoAAAAAAAAAAN6L8A5drm/Fks47ayq8M2XKc3nuuWeTJNttNzKnnfajTs99\n88031khNAAAAAAAAAAArorTYBfD+03fpslkrGN4pWd56WCvg3UtljRixVafnvf76a3nmmacKv1ta\nWlbrvgAAAAAAAAAAq0t4hy7Xt/Ify2Y1NazQ+ZWVlYXturq6lb5f//4DCtuPP/5Impublzln7ty3\ncsopJ6Wpqamwr7GxcaXvBQAAAAAAAADQlSybRZdbumzWinbeGTRocGH7kksuyL//+94pLS3NFlts\nuULjP/zhbTNo0ODMnftWpk+fluOP/0rGjj0wQ4eun3feWZAnn/x/uf3232f+/Pntxi1aVLuCTwQA\nAAAAAAAA0D2Ed+hyK7ts1ujRu+Xyy3+TlpaWTJhwQyZMuCHrrTc0N9982wqN79WrV0455YyceOI3\ns3jx4jz11F/z1FN/Xea8DTfcKJ/97H/kV78alyR56aUXs802H1nBpwIAAAAAAAAA6HrdFt5pbW3N\naaedlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlpKS0uz//77p7q6OkkybNiw\nnH322d1VIt2kb8U/ls1awfDO8OEjcs45P8sVV1yWGTNeSGtrS8rLy9PQsGLLbiXJyJE7Zvz4a3Ld\ndVfn8ceoAuYZAAAgAElEQVQfy1tvzU6yZEmtTTbZNJ/85Key5557paWlJePH/zoNDQ354x/vyb77\n7r/yDwgAAAAAAAAA0EVK2tra2rrjwn/4wx/yxz/+Meecc06efPLJXHzxxfnVr36VJGloaMhnP/vZ\n3Hrrramqqsq3vvWt7L333hk9enQOOuig/O53v1vh+8yZs7A7ymc19B/YO4dPOC5brjM8X//oMcUu\nB1hDhgyp8d9k6IHMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo+VdtdNn3jiiey6665J\nkm233TbPPvts4VhlZWWuv/76VFUt6dDS3NycXr16ZcqUKamvr88Xv/jFHHnkkXnyySe7qzy6UWVZ\nRSpKy1PfvOKdcwAAAAAAAAAAeqJuWzartra2sPxVkpSVlaW5uTnl5eUpLS3N4MGDkyRXXXVV6urq\nMmrUqEybNi1HH310DjjggLz88ss55phjctddd6W8vPMy11mnT8rLy7rrMVhFfSv7pLFt8XKTY8D7\njzkPPZO5Dz2TuQ89k7kPPZO5Dz2TuQ89k7kPPZO5X3zdFt6prq7OokWLCr9bW1vbhXBaW1vz05/+\nNC+99FLGjRuXkpKSbLLJJtl4440L2wMGDMicOXOy/vrrd3qfefPquusRWEVDhtSkV2nvLFy8SHst\n6EG01IOeydyHnsnch57J3IeeydyHnsnch57J3Ieeydxfc4qybNZ2222XBx54IEny5JNPZosttmh3\n/NRTT83ixYtz4YUXFpbPmjBhQs4555wkyZtvvpna2toMGTKku0qkG/Upr0pdc33a2tqKXQoAAAAA\nAAAAwFqr2zrv7LHHHpk8eXIOPvjgtLW15ayzzsqtt96aurq6bL311pkwYUJGjhyZo446Kkly5JFH\n5vOf/3xOPvnkHHLIISkpKclZZ5213CWzWHtVVfROa1trGlub0qusstjlAAAAAAAAAACslbotGVNa\nWpozzjij3b7NNtussD1lypQOx/3sZz/rrpJYQ1pa29KnfEk3pbqmOuEdAAAAAAAAAIBOdNuyWfRM\n9z3xao74wZ2pSK8kSX1zQ5ErAgAAAAAAAABYewnv0KXeXtiQhXVNaW4qS5LUNdcXuSIAAAAAAAAA\ngLWX8A5dap3qJR132pqXrMhWL7wDAAAAAAAAANAp4R261IB/hHeaFy8J79Q1Ce8AAAAAAAAAAHRG\neIcutU7NkvBO4+Iln1Z9c0MxywEAAAAAAAAAWKsJ79Cllnbeaahf8mnVNdcVsxwAAAAAAAAAgLWa\n8A5dqn91ZZKkbtGS3zrvAAAAAAAAAAB0TniHLlVeVpoB1b1SW9uWJKlrri9yRQAAAAAAAAAAay/h\nHbrcwP698847S7brm4R3AAAAAAAAAAA6I7xDlxvYr3cWN5Qk0XkHAAAAAAAAAGB5hHfocoP6905S\nmsrSytQ3NxS7HAAAAAAAAACAtZbwDl1uUP+qJEllaW+ddwAAAAAAAAAAlkN4hy43sF/vJEl5W2Xq\nhXcAAAAAAAAAADolvEOXW7JsVlLaVpmG5sVpbWstckUAAAAAAAAAAGsn4R263NLwTltzedrSlobm\nhhUa98IL07uzrNXy+uuvpa5uUbHLAAAAAAAAAADeZ4R36HJLl81qbS5PktS9R3intrY25533vzn6\n6MO7vbaV1djYmPHjf53DDz8gCxYsKHY5AAAAAAAAAMD7THmxC+D9p1/fypSXlaRpcVlSmdQ31y/3\n/HHjzs3tt9+yhqpbOddee2UuvfTiYpcBAAAAAAAAALxP6bxDlyspKcmA6l5pbFjyedU1LT+809ra\nuibKWiUtLS3FLgEAAAAAAAAAeB8T3qFbDKjulYb6JZ/Xe3XeAQAAAAAAAADoqYR36BYDanqltXnJ\nqmx1zQ1FrgYAAAAAAAAAYO1UXuwCeH8aUF2ZtjcqkiR1zXUdnnPppRdn/Phft9s3evTIJMm2226X\nX/7yknbHHnnkL7njjlvy7LPPZN68t1NZ2SvDhm2YnXcelc997qAMGDCg03rmzJmdiRNvyiOP/CUz\nZ76S5uam9OvXP5ttNjyjRu2az3523/Tq1btw/h133Jqzzjq93TUOOGDfJMnQoetnwoRbV/BNAAAA\nAAAAAAB0TniHbrFOTa+kZcnnVb+anXfq6+tz5pmn5oEHJrXb39jYmClTnsuUKc/lxhuvzSmnnJnR\no3dbZvwTTzyW733v21m0aFG7/XPnvpW5c9/Ko4/+Jdddd1XOPfeX2WijjVerVgAAAAAAAACAlSG8\nQ7cYUN0rbc3/6LzTVN/hOfvt97nsttsn8pvfXJTJk/+cJBk//pokSVVVnyRJa2trTjrpW3niiceS\nJLvssmv23PMzWX/99VNXV5cnnngsv/3tTamtrc3//M938rOfjcvIkTsW7rFw4cKccspJWbRoUQYM\nWCeHHXZUttrqg6msrMybb76R22+/JQ8//FDeeOP1nH769/Ob31yZkpKSjB69W8aPvya/+93N+f3v\nJyZJfvrT8zJ48JCUl1d0z0sDAAAAAAAAAHoc4R26xTrV7+6803F4Z9CgwRk0aHD69etf2Dd8+Ih2\n50yYcH0huPPtb5+c/fb7XLvjI0fumM9+9j9y7LFHZ+7cuTnrrNNz442/T3n5kns/+OD9eeedBUmS\ns876aT784W0LYz/4wa3zyU9+KqecclImTbo3U6c+n6lTp2TLLbdKv379069f/wwcOKhw/gc+sGnW\nX//fVvWVAAAAAAAAAAAso7TYBfD+NKDmn513OgvvvJfW1tZcf/2STjwf+9guywR3ltpgg2H57//+\nepJk9uw3c//9fywcmzv3rcL2hhtu1OH4I4/8Qvbb7/M59tjjU1NTs0q1AgAAAAAAAACsCp13VtDE\nF27LX2c/U+wy1qiPrrtNxm7+2VUaO6C6MmktS9pKUreK4Z0ZM6Zn9uw3kyQ77LDTcs/92Md2KWw/\n/vhjGTPm00mSjTf+QGH/9773nRx33Ley1VYfajd2+PAR+fa3T1qlGgEAAAAAAAAAVofwDt2id2V5\nqnqVp6S1InXNDat0jWnTpha2x437ecaN+/kKjXvttVmF7Z13Hp3NNhueGTOm55lnnsoxxxyVwYOH\nZIcddsrIkTtmhx12arc0FgAAAAAAAADAmiS8s4LGbv7ZVe5C01MNqO6V+c3lqW9atc47CxbMX6Vx\nCxe+U9guLy/Pz352fs4558w8/PBDSZK33pqTO++8LXfeeVtKSkqy1VYfyr//+97ZZ5/9UlFRsUr3\nBAAAAAAAAABYFcI7dJt1anrl7ebyVV42q6WlpbB9wgknZeutt1mhcb169Wr3e/DgIfnf/z0/L774\nQiZNui9/+cvkTJs2Ja2trWlra8tzzz2b5557Nr///cT84he/yoABA1apXgAAAAAAAACAlSW8Q7cZ\nUN0rbU0VaWp9J02tzakoXbnPraamX2G7b9/qDB8+YrXq2XTTzbPpppvn6KP/K++8807++tfH8/DD\nD2XSpHtTW1ubGTOm51e/Oj8nn3zqat0HAAAAAAAAAGBFlRa7AN6/1qnplbQsCew0NDes9PhNN92s\nsP3cc88s99x58+blsssuyZ133pbp06cV9jc1NeXFF2dkypTn253fr1+/fPzju+fEE7+fyy+/LtXV\nNUmShx56cKXrBAAAAAAAAABYVcI7dJsB1b3S1lyRJKlrquv0vJKSkg73b7XVh9KvX/8kyT333JXa\n2tpOr3HzzTfksssuyY9+dFoefPD+wv7DDz8gRx55UP7nf77T6dihQ9fPJptsmiRpbFzc7lhpqSkC\nAAAAAAAAAHQfyQS6zYDqXmlr+Ud4ZzmddyorKwvbdXX/DPlUVFTkc587MEmyYMGCnHnmKWlsbFxm\n/NNPP5lrr70qSdKrV6/ss8/+hWO77LJrkuTNN9/I9ddf3eH9//73lzNt2pQkyZZbfqjdsYqKisJ2\nfX3nASQAAAAAAAAAgFVRXuwCeP8aUFOZNC/5xOqb6zs9b9CgwYXtSy65IP/+73untLQ0W2yxZQ4/\n/D8zefKfM23alEye/Od84QuH5oADDsnmm2+R2tqFefzxR/Pb395U6Jjz3//99Qwe/M/rHXLI4bnz\nzltTW1ubCy74RZ555qnsvvuns956Q7NoUW2ef/5vmTDh+ixevDilpaU56qgvdlrb5ZdfmoMPPiyt\nrW3ZeuttuuQdAQAAAAAAAAA9W0lbW1tbsYtYHXPmLCx2CfyLIUNqMmfOwrz9TkNOnHB9Kj/wXL7w\noUMzcr1tOzx/+vSp+dKXjkxLS0th33rrDc3NN9+WJFmwYH5OPfXkPPHEY53es6ysLEcf/V858sgv\nLnPsiScey//8z3dTW9v5t9K7d++ccMJJ2Wuvz7bb/9Zbb+WQQ8a267pTXl6ee+75c7uuPMA/5z7Q\ns5j70DOZ+9AzmfvQM5n70DOZ+9AzmfvQM5n7a86QITWdHtN5h27Tr++Kdd4ZPnxEzjnnZ7niissy\nY8YLaW1tSXl5eRoaGtK7d+/07z8gv/jFr/Lggw/kD3+4M3/72zOZN29ekmS99dbLdtuNzNixB2az\nzTbv8Prbb79Drr12Qn772wl59NGH88orf09d3aL07VudoUPXz0477Zz99vtc1ltv6DJjBw8enPPO\nuzCXXHJhpk59Lo2NjRk4cFDefPONDBu2YRe8JQAAAAAAAACgJ9N5hy737mTe8eNvTvPGj+Q/Nt0r\nn/7AJ4tcGdCdpHKhZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL315zldd4pXYN10APVVPZNkixq\nrnuPMwEAAAAAAAAAeh7hHbpV/6ol4Z2Fi4V3AAAAAAAAAAD+lfAO3WqdPkvCO+80LCpyJQAAAAAA\nAAAAax/hHbrVoOola7bpvAMAAAAAAAAAsCzhHbrVoJq+aWstTV1zfbFLAQAAAAAAAABY6wjv0K3W\nqemVNFekoaWh2KUAAAAAAAAAAKx1hHfoVutU90pbS3kaWxcXuxQAAAAAAAAAgLWO8A7dakBNr7Q1\nV6Q5i9PW1lbscgAAAAAAAAAA1irCO3Srvr3LU9JakZS0pbG1qdjlAAAAAAAAAACsVYR36FYlJSWp\nKOmVJKlrqityNQAAAAAAAAAAaxfhHbpd77LeSZJFjfVFrgQAAAAAAAAAYO0ivEO361NelSSZU7uw\nyJUAAAAAAAAAAKxdhHfodtWVfZIkc2vfKXIlAAAAAAAAAABrF+Edul1NryXhnbcX1Ra5EgAAAAAA\nAACAtYvwDt1uQJ++SZL5DcI7AAAAAAAAAADvJrxDtxvUpyZJ8s7iuiJXAgAAAAAAAACwdhHeodsN\nqlkS3lnUWF/kSgAAAAAAAAAA1i7CO3S7dWv6JUnqmoV3AAAAAAAAAADeTXiHbjegqjpJsrilociV\nAAAAAAAAAACsXYR36Ha9y3olSZraFhe5EgAAAAAAAACAtYvwDt2urLQsJa3laS1pTGNTS7HLAQAA\nAAAAAABYawjvsEZUpFdS3pT5tbrvAAAAAAAAAAAsJbzDGlFZ2islZc2Zt1B4BwAAAAAAAABgKeEd\n1ojeZVUpKW/O2wsbil0KAAAAAAAAAMBaQ3iHNaJPRVWSZM7ChUWuBAAAAAAAAABg7SG8wxpR06tP\nkuTtRcI7AAAAAAAAAABLCe+wRvTv3TdJMq+utsiVAAAAAAAAAACsPYR3WCP6Vy0J7yyoX1TkSgAA\nAAAAAAAA1h7CO6wRfSuWLJu1sLGuyJUAAAAAAAAAAKw9hHdYI/qUVyVJFjXVp62trcjVAAAAAAAA\nAACsHYR3WCOqynsnSVpLGrOoobnI1QAAAAAAAAAArB2Ed1gjqv7ReSdlzZlfu7i4xQAAAAAAAAAA\nrCWEd1gj+lQsCe+UlDdl/kLhHQAAAAAAAACARHiHNaRPofNOU+bpvAMAAAAAAAAAkER4hzWkqrx3\nkqSkvFnnHQAAAAAAAACAfxDeYY3oVdYrJSlJypoyv7ax2OUAAAAAAAAAAKwVhHdYI0pKSlJVXpWS\nsubM03kHAAAAAAAAACCJ8A5rUJ+KqpSUN2V+rfAOAAAAAAAAAEAivMMa1Ke8KiXlzZknvAMAAAAA\nAAAAkER4hzWoT3lVUtqSd+oa0tLaWuxyAAAAAAAAAACKTniHNaaqvHeSpK20Ke8saipyNQAAAAAA\nAAAAxSe8wxrTp6IqSVJS3pR5Cy2dBQAAAAAAAAAgvMMaU1W+JLyTsubMrxXeAQAAAAAAAAAQ3mGN\nWRre0XkHAAAAAAAAAGAJ4R3WmD5Lwzs67wAAAAAAAAAAJBHeYQ3qU957yUZZU+brvAMAAAAAAAAA\nILzDmlNV8c9ls3TeAQAAAAAAAAAQ3mENWrpsVkWv1syrbSxyNQAAAAAAAAAAxVfeXRdubW3Naaed\nlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlqSLHcM/7dV/SO806t3a+a/rvMO\nAAAAAAAAAEC3dd65995709jYmBtuuCEnnHBCzjnnnMKxhoaGnHfeebnyyitz/fXXp7a2NpMmTVru\nGP7v6/OPZbPKK1tSt7g5i5tailwRAAAAAAAAAEBxdVt454knnsiuu+6aJNl2223z7LPPFo5VVlbm\n+uuvT1XVkjBHc3NzevXqtdwx/N9XVdY7SVJa0ZwkmV+r+w4AAAAAAAAA0LN1W3intrY21dXVhd9l\nZWVpbl4S2igtLc3gwYOTJFdddVXq6uoyatSo5Y7h/76KsopUlJanpKwpSTJ/ofAOAAAAAAAAANCz\nlXfXhaurq7No0aLC79bW1pSXl7f7/dOf/jQvvfRSxo0bl5KSkvcc05F11umT8vKyrn8AVsuQITUd\n7q+u7Jvm5iXhnZaS0k7PA/5vMqehZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL3i6/bwjvbbbdd\nJk2alM985jN58skns8UWW7Q7fuqpp6aysjIXXnhhSktLV2hMR+bNq+uW+ll1Q4bUZM6chR0e61Xa\nK/WtS4698tqCzNmw/5osDehGy5v7wPuXuQ89k7kPPZO5Dz2TuQ89k7kPPZO5Dz2Tub/mLC8k1W3h\nnT322COTJ0/OwQcfnLa2tpx11lm59dZbU1dXl6233joTJkzIyJEjc9RRRyVJjjzyyA7H8P5SVV6V\n2a1vJWnLPMtmAQAAAAAAAAA9XLeFd0pLS3PGGWe027fZZpsVtqdMmdLhuH8dw/tLn4qqtKY1KW3J\n/FrhHQAAAAAAAACgZystdgH0LFXlvZMkpeXNmSe8AwAAAAAAAAD0cMI7rFF9yquSJDX9SjLfslkA\nAAAAAAAAQA8nvMMatTS8U923LfNrG9PW1lbkigAAAAAAAAAAikd4hzWqqmJJeKeqb9Lc0ppFDc1F\nrggAAAAAAAAAoHiEd1ijqsp7J0l6V7UmSeZZOgsAAAAAAID/z979B0le0Peff/WPmf70zsz+iIJK\nUAKikgsETiJKSlLgwZ1C6gJqghRZy+hRsSxMgpYpqYgaJGCs0uQPjZVUmbuCmCqM8bgyiYkBvMQk\nfPkilUW5+OOCATUsIMfO7szsdM/2j/ujZwY27EIvTE/PzOfxqKJq59Pds2+qtv971vsNACUm3mFd\nbatvS5JMNgbxzuy8eAcAAAAAAAAAKC/xDutqZfNObWJwLmv//NI4xwEAAAAAAAAAGCvxDutqW705\n+EPtUJJkfvHQGKcBAAAAAAAAABgv8Q7ratvEIN7pVgbRzkJLvAMAAAAAAAAAlJd4h3XVrK/EO4Nz\nWTbvAAAAAAAAAABlJt5hXTXrRZKk028nSRbEOwAAAAAAAABAiYl3WFfVSjVFrUi710pi8w4AAAAA\nAAAAUG7iHdZds15ksdtKs1HL/GJn3OMAAAAAAAAAAIyNeId1t22imcXOYqaKiSy0bN4BAAAAAAAA\nAMpLvMO621ZvZrHTylSz7mwWAAAAAAAAAFBq4h3WXbPeTJJs25Yc6vTSPtQd80QAAAAAAAAAAOMh\n3mHdNetFkqRo9pIkC7bvAAAAAAAAAAAlJd5h3W2bGGzemSwG8Y7TWQAAAAAAAABAWYl3WHcrZ7Mm\nGoNzWTbvAAAAAAAAAABlJd5h3W1bjndqE50kyXyrM85xAAAAAAAAAADGRrzDuluJd6or8Y7NOwAA\nAAAAAABASYl3WHfNepEkqdTEOwAAAAAAAABAuYl3WHfbJrYlSfrVpSTJgngHAAAAAAAAACgp8Q7r\nbmXzTrc6iHZs3gEAAAAAAAAAykq8w7rbVm8mSbqxeQcAAAAAAAAAKDfxDuuuuRzvtLut1KqVzLfE\nOwAAAAAAAABAOYl3WHeN2mSqlWoWu4uZKuqZX+yMeyQAAAAAAAAAgLEQ77DuKpVKmvUiBzutTDUn\nnM0CAAAAAAAAAEpLvMNYbKs3s3joYKabE1loHUqv3x/3SAAAAAAAAAAA6068w1g0680c7LQy3ZxI\nv58cbDmdBQAAAAAAAACUj3iHsdhWb+ZQ71CazcE/QaezAAAAAAAAAIAyEu8wFs2JZpKkKHpJkvmW\neAcAAAAAAAAAKB/xDmOxrV4kSSaX4x2bdwAAAAAAAACAMhLvMBbN+mDzTn2ymySZF+8AAAAAAAAA\nACUk3mEsti3HO7WJTpJkfrEzznEAAAAAAAAAAMZCvMNYrGzeqdZX4h2bdwAAAAAAAACA8hHvMBZF\nvTH4w3K8syDeAQAAAAAAAABKSLzDWDTrxeAP1eV4pyXeAQAAAAAAAADKR7zDWBS1weadfsXZLAAA\nAAAAAACgvMQ7jEVj+WzWUr+dxkRNvAMAAAAAAAAAlJJ4h7EoaoOzWa1OO9PNehbEOwAAAAAAAABA\nCYl3GItmfSXeaWWqOZH5xc6YJwIAAAAAAAAAWH/iHcaiqA3OZrW67Uw3J9I+1M2hTm/MUwEAAAAA\nAAAArC/xDmNRr9ZTrVSXz2ZNJEnmnc4CAAAAAAAAAEpGvMNYVCqVNGtFWt3B2awkWWiJdwAAAAAA\nAACAchHvMDZFvTHYvFMsxzs27wAAAAAAAAAAJSPeYWyKepFWt726ecfZLAAAAAAAAACgbMQ7jE2j\n1kir08pUUUsi3gEAAAAAAAAAyke8w9gU9Ub66acoBj+LdwAAAAAAAACAshHvMDbN2qDamWj0kyQL\ni51xjgMAAAAAAAAAsO7EO4xNUW8kSeoT3SQ27wAAAAAAAAAA5SPeYWwatUG8U12OdxZa4h0AAAAA\nAAAAoFzEO4xNUR+czepXO6lUbN4BAAAAAAAAAMpHvMPYNJc37yx1lzJVTIh3AAAAAAAAAIDSEe8w\nNo36IN5pdVqZak5kQbwDAAAAAAAAAJSMeIexKWqDs1mtbjvTzXoWWp30+/0xTwUAAAAAAAAAsH7E\nO4xNUV+OdzqtTBcT6fb6WWx3xzwVAAAAAAAAAMD6Ee8wNs2Vs1nddqabE0mS+ZbTWQAAAAAAAABA\neYh3GJtGbTne6bQztRzvLCyKdwAAAAAAAACA8hDvMDZFbflsVre1unlHvAMAAAAAAAAAlIl4h7FZ\nPZv1lM078+IdAAAAAAAAAKBExDuMzerZrG57dfOOeAcAAAAAAAAAKBPxDmNTq9YyUZ1Iq9PKdFFP\nIt4BAAAAAAAAAMpFvMNYFfVGWt3W6tmshcXOmCcCAAAAAAAAAFg/4h3Gqlkr0uo8eTZroWXzDgAA\nAAAAAABQHuIdxmqweefJeMfZLAAAAAAAAACgTMQ7jFWj1shSdyn1eiUT9ap4BwAAAAAAAAAoFfEO\nY1XUiyRZPZ0l3gEAAAAAAAAAykS8w1gVteV4p9vKVDGRhZZ4BwAAAAAAAAAoD/EOY9WsN5KsbN6p\nZ7HdTafbG/NUAAAAAAAAAADrQ7zDWDVqy/FOd3A2K0kWWp1xjgQAAAAAAAAAsG7EO4xVUV8+m9Vp\nPRnvLDqdBQAAAAAAAACUg3iHsSrqT27emVqOd+bFOwAAAAAAAABASQwV7zzxxBOjnoOSatZWNu+0\nM1XYvAMAAAAAAAAAlMtQ8c6VV1456jkoqcbq5p0nz2bZvAMAAAAAAAAAlEV9mDeddtppue222/Kz\nP/uzKYpi9fkJJ5wwssEoh6K2HO90WvmJlXinJd4BAAAAAAAAAMphqHjnvvvuy3333XfYs0qlkjvu\nuGMkQ1Eezfry2axu2+YdAAAAAAAAAKB0hop37rzzzlHPQUk1VjfvtDPVHPxzXBDvAAAAAAAAAAAl\nUR3mTU888UR+67d+K6997Wvzcz/3c7n66qvz+OOPj3o2SqCoP3k2a2XzzsJiZ5wjAQAAAAAAAACs\nm6HinQ9/+MM544wzcscdd+TOO+/MmWeemd/5nd8Z9WyUQFF78mzWVOFsFgAAAAAAAABQLkPFOz/8\n4Q/zrne9K9PT09m+fXuuuuqqPPzww6OejRJo1CZTSSWtTjvVaiXbGvXMt8Q7AAAAAAAAAEA5DBXv\nVCqV7N27d/Xnhx9+OPV6fWRDUR6VSiWNWiOtbitJMt2csHkHAAAAAAAAACiNoQqc3/zN38zll1+e\nM888M/1+P/fdd18+9rGPjXo2SqKoN9LqtJMkU82JPPFYK/1+P5VKZcyTAQAAAAAAAACM1lDxzkte\n8pLcdttt+eY3v5ler5ff/d3fzQte8IJRz0ZJFPUic0tzSQabdzrdftqHuikmbXcCAAAAAAAAALa2\noeqIa665Jl/5yldy/vnnj3gcyqhZa+TxzuNJkunm4J/k/OIh8Q4AAAAAAAAAsOUNVUeceuqp+fSn\nP50zzzwzRVGsPn/Na14zssEoj0atkU6/m0O9TqaaE0mShcVOXrhjzIMBAAAAAAAAAIzYUPHO7Oxs\n7r777tx9992rzyqVSm6++eajfqbX6+WjH/1ovvvd72ZycjI33HBDTjrppMPes7i4mF/7tV/L7/3e\n7+XlL395kuSyyy7L9PR0kuTEE0/MTTfddMz/U2wuRX0QhLU6rUwvxzvzrUPjHAkAAAAAAAAAYF0M\nFTahQqYAACAASURBVO9cfPHFueKKK47pF99+++1ZWlrKrbfemj179uTjH/94PvvZz66+/q1vfSsf\n+chH8uijj64+a7fb6ff7ueWWW47p72JzK+qNJEmr085UsbJ5R7wDAAAAAAAAAGx91WHe9PnPf/6Y\nf/G9996b8847L0ly1lln5f777z/s9aWlpXzmM5/JKaecsvrsO9/5ThYXF/POd74zb3/727Nnz55j\n/nvZfJq15c073faTm3fEOwAAAAAAAABACQy1eefFL35x3v72t+fMM89Mo9FYfX711Vcf9TPz8/Or\n56+SpFarpdPppF4f/JVnn3320z5TFEXe9a535Zd/+Zfz4IMP5qqrrsrf/u3frn7mSHbt2pZ6vTbM\n/wbr6LjjZoZ+765HBu8tpqv5yRdvT5L0q9Vj+h3AxuB7C+Xkuw/l5LsP5eS7D+Xkuw/l5LsP5eS7\nD+Xkuz9+Q8U7Z5111jH/4unp6SwsLKz+3Ov1njHCSZKTTz45J510UiqVSk4++eTs3LkzP/7xj/OS\nl7zkqJ/Zt+/gMc/GaB133Ex+/OO5od/fa1eSJI/8f09ke2cqSfLo4/PH9DuA8TvW7z6wNfjuQzn5\n7kM5+e5DOfnuQzn57kM5+e5DOfnur59niqSGineuvvrqHDx4MD/4wQ/yyle+Mq1WK9u2bXvGz7z6\n1a/O1772tVx88cXZs2dPXvnKVz7r3/PFL34x3/ve9/LRj340jz76aObn53PccccNMyKbWFFfPpvV\naeclzcE/yQVnswAAAAAAAACAEqgO86a77rorv/RLv5T3vOc9efzxx/OGN7wh//RP//SMn7nooosy\nOTmZt73tbbnpppty7bXX5stf/nJuvfXWo37mrW99a+bm5nLFFVfkmmuuyY033vis23rY/Jq1wSm2\nVred6eZEkmSh1RnnSAAAAAAAAAAA62KoMuZTn/pU/vzP/zxXXXVVjj/++PzZn/1Z3ve+9+X1r3/9\nUT9TrVZz/fXXH/bs5S9/+dPed8stt6z+eXJyMp/85CeHnZ0tolFfjnc6rTQmaqlVK5m3eQcAAAAA\nAAAAKIGhNu/0er3DzledeuqpIxuI8ilqy2ezuu1UKpVMNyfEOwAAAAAAAABAKQy1eefFL35xvva1\nr6VSqeTAgQP5/Oc/nxNOOGHUs1ESRX053um0kiTTzYnMzrfHORIAAAAAAAAAwLoYavPO9ddfny9/\n+cvZu3dvLrroonz7299+2kkseK6aK2ezuoNgZ6o5kYOtTnq9/jjHAgAAAAAAAAAYuaE277zgBS/I\npz71qSO+dt111+VjH/vYmg5FuTRqy/FOZxDvTDcn0k+y0DqUmW2TY5wMAAAAAAAAAGC0htq880zu\nv//+tZiDEnv62axBU7bQ6oxtJgAAAAAAAACA9fC84x14viaq9dQrtcPOZiXJ/OKhcY4FAAAAAAAA\nADBy4h02hEa9sRrvTBfiHQAAAAAAAACgHMQ7bAhFrVg9m7WyeWdBvAMAAAAAAAAAbHHPO97p9/tr\nMQclV9QbaXWWN+84mwUAAAAAAAAAlMTzjnd+/ud/fi3moOSKWpF2t51+vy/eAQAAAAAAAABKo/5M\nL+7evTuVSuWor99888357d/+7TUfivIp6o3000+7u+RsFgAAAAAAAABQGs8Y77z3ve9NknzhC19I\nURS59NJLU6/X81d/9Vdpt9vrMiDlUNQaSZJWt5XpZjNJMt/qjHMkAAAAAAAAAICRe8Z455xzzkmS\n/P7v/37+8i//cvX5WWedlTe/+c2jnYxSKepFkqTVaeeFxUwSm3cAAAAAAAAAgK2vOsyb2u12/uM/\n/mP15+9+97vpdGxFYe0U9cHmnXa3nXqtmmKylnnxDgAAAAAAAACwxT3j5p0VH/zgB7N79+686EUv\nSq/XyxNPPJFPfvKTo56NElk5m7XYaSVJppsT4h0AAAAAAAAAYMsbKt55/etfnzvvvDPf+973UqlU\n8qpXvSr1+lAfhaGsns3qtpMkU82J7H18YZwjAQAAAAAAAACM3FBns/bv35/rr78+n/jEJ3LCCSfk\nuuuuy/79+0c9GyVS1Jbjnads3lnq9LJ0qDvOsQAAAAAAAAAARmqoeOe6667LGWeckdnZ2UxNTeX4\n44/PBz7wgVHPRokU9cHZrJXNO9PNiSRxOgsAAAAAAAAA2NKGind+9KMf5fLLL0+1Ws3k5GSuueaa\nPPLII6OejRIpasvxTmc53ikG8c5CqzO2mQAAAAAAAAAARm2oeKdWq2Vubi6VSiVJ8uCDD6ZaHeqj\nMJSifvjZrKlmPYnNOwAAAAAAAADA1lYf5k2/8Ru/kd27d2fv3r15z3vekz179uTGG28c9WyUyOrm\nneWzWVPLZ7MWxDsAAAAAAAAAwBY2VLxz3HHH5U//9E/zzW9+M91uN9dff31e+MIXjno2SqS5unln\n+WzWcrxj8w4AAAAAAAAAsJUNFe9cc801+cpXvpLzzz9/xONQVo3VzTuDs1niHQAAAAAAAACgDIaK\nd0499dR8+tOfzplnnpmiKFafv+Y1rxnZYJRLUV+OdzriHQAAAAAAAACgPIaKd2ZnZ3P33Xfn7rvv\nXn1WqVRy8803j2wwyqVaqWayNplWd3A2a2o53lkQ7wAAAAAAAAAAW9hQ8c4tt9wy6jkgzVoj7c4g\n3pkuluOdVmecIwEAAAAAAAAAjNRQ8c43vvGNfO5zn8vBgwfT7/fT6/Xy8MMP58477xz1fJRIo97I\n4vLZrGajlmql4mwWAAAAAAAAALClVYd504c+9KFceOGF6Xa7ufLKK3PSSSflwgsvHPVslExRK9Ja\n3rxTqVQy1ayLdwAAAAAAAACALW2oeKcoirzlLW/JOeeck+3bt+eGG27IPffcM+rZKJmiXuRQ71C6\nvW6SZLo5Id4BAAAAAAAAALa0oeKdRqOR2dnZnHzyybnvvvtSqVRy8ODBUc9GyRS1RpKk3R1s35lq\nTmShdSi9fn+cYwEAAAAAAAAAjMxQ8c473vGOXHPNNbngggty22235ZJLLsnpp58+6tkomaI+iHcW\nl09nTRcT6feTxXZnnGMBAAAAAAAAAIxMfZg3velNb8ob3/jGVCqVfOlLX8qDDz6Yn/7pnx71bJRM\nUSuSJK1uK8ngbFaSLCweylQxMba5AAAAAAAAAABGZah459prrz3i85tuumlNh6HcVjbvtFY27yzH\nO/OLnRy/a2xjAQAAAAAAAACMzFDxzjnnnLP6506nkzvuuCOnnHLKyIainIracrzTHcQ7U83BP8/5\nxUNjmwkAAAAAAAAAYJSGincuu+yyw35+61vfmiuuuGIkA1FeRX35bFZncDZr6ilnswAAAAAAAAAA\ntqLqc/nQAw88kMcee2ytZ6Hknty8M4h3pouVs1niHQAAAAAAAABgaxpq885pp52WSqWSfr+fJPmJ\nn/iJvO997xvpYJTPk5t3BmezppviHQAAAAAAAABgaxsq3vnOd74z6jngKZt3/ku80xLvAAAAAAAA\nAABb01Dxzqc//elnfP3qq69ek2Eot6K+HO90BmezppbjnQWbdwAAAAAAAACALao6zJv27t2bv/u7\nv8vExESazWa+/vWv51//9V9HPRsl8/SzWYO2TLwDAAAAAAAAAGxVQ23eeeCBB3Lrrbdm27ZtSZLd\nu3dn9+7dNu6wporaIN5pL5/NmqjXMjlRzfxiZ5xjAQAAAAAAAACMzFCbd/bt25dKpbL689LSUg4e\nPDiyoSinlbNZi93W6rPp5kTmbd4BAAAAAAAAALaooTbvvPWtb82b3/zmnH/++en1evmHf/iHvPvd\n7x71bJTMZHUilVRWz2YlyXQxkUdnF8c4FQAAAAAAAADA6AwV71x11VV57Wtfm3vuuSdFUeSP/uiP\ncsopp4x6NkqmUqmkqBdpdZ7cvDPVnEj7sfl0ur3Ua0MtigIAAAAAAAAA2DSGqiFmZ2czPz+fd73r\nXZmbm8sf/uEf5t///d9HPRslVNQaaXefsnmnOZEkTmcBAAAAAAAAAFvSUPHO+9///nz/+9/PXXfd\nla9+9at5wxvekI985COjno0SKuqNw89mLcc7C+IdAAAAAAAAAGALGire2b9/f371V381t99+ey69\n9NJceumlWVxcHPVslFBRK7LYbaXf7ycZnM1KbN4BAAAAAAAAALamoeKdXq+X+++/P7fffnsuuOCC\nfPvb30632x31bJRQUW+k1+/lUK+TJJku6kmS+cXOOMcCAAAAAAAAABiJ+jBv+sAHPpBPfOITeec7\n35mXvvSl+ZVf+ZVce+21o56NEirqRZKk3W1nsjaxunlnoWXzDgAAAAAAAACw9QwV75x77rk599xz\nV3/+whe+sPrnX//1X88f//Efr/1klFJRayRJFjutzExOZ9rZLAAAAAAAAABgCxvqbNYzefTRR9di\nDkgyOJuVJK1uK0mejHcOincAAAAAAAAAgK3necc7lUplLeaAJElRG5zNanXaSZId05NJkv0L7bHN\nBAAAAAAAAAAwKs873oG1tLJ5p90dxDo7pwc/75sT7wAAAAAAAAAAW494hw2lqA1incXO4GxWvVbN\nzLaJzM4vjXMsAAAAAAAAAICReN7xTr/fX4s5IElS1A8/m5UMtu/Mztu8AwAAAAAAAABsPc873rn0\n0kvXYg5I8uTmnVa3tfps53QjraVuFtudcY0FAAAAAAAAADAS9WHe9PWvfz1/8Ad/kAMHDqTf76ff\n76dSqeSOO+7IO97xjhGPSJmsbN5pP2Xzzq6ZySTJ7Hw7zcZQ/2QBAAAAAAAAADaFoUqIG264IR/8\n4Afzile8IpVKZdQzUWIrm3cWu4efzUqS2fmlvOQFU2OZCwAAAAAAAABgFIaKd3bt2pULLrhg1LPA\n6uadVufws1lJMjvXPuJnAAAAAAAAAAA2q6HinbPPPjs33XRTzjvvvDQajdXnr3nNa0Y2GOVU1Af/\nvlpP3bwzs7J5R7wDAAAAAAAAAGwtQ8U73/zmN5Mk//Zv/7b6rFKp5Oabbx7NVJTWytmsdufJUGfX\n8uadfTbvAAAAAAAAAABbzFDxzi233DLqOSBJUq/WU6/Ws9h9ytksm3cAAAAAAAAAgC1qqHjnG9/4\nRj73uc/l4MGD6ff76fV6efjhh3PnnXeOej5KqKg10nrK5p2ZbROpViqZnV8a41QAAAAAAAAAAGuv\nOsybPvShD+XCCy9Mt9vNlVdemZNOOikXXnjhqGejpIp6kVbnyc071UolO6Ynnc0CAAAAAAAAALac\noeKdoijylre8Jeecc062b9+eG264Iffcc8+oZ6Okiloj7e7hoc6umUZm59vp9/tjmgoAAAAAAAAA\nYO0NFe80Go3Mzs7m5JNPzn333ZdKpZKDBw+OejZKqqg30uq20+v3Vp/tnG6k2+tnfvHQGCcDAAAA\nAAAAAFhbQ8U773jHO3LNNdfkggsuyG233ZZLLrkkp59++qhno6SKWpEkaXeXVp/tnJ5MEqezAAAA\nAAAAAIAtpT7Mm970pjfljW98YyqVSr70pS/lwQcfzGmnnTbq2Sipot5IkrS77TTrg5Bn18zg2ez8\nUl72orGNBgAAAAAAAACwpobavLN///5cd911efvb3552u51bbrklc3Nzo56Nkipqg1Cn1WmtPts5\nvRLv2LwDAAAAAAAAAGwdQ8U71113Xc4444zMzs5mamoqxx9/fD7wgQ+MejZKqljetrPYeTLUWY13\nnM0CAAAAAAAAALaQoeKdH/3oR7n88stTrVYzOTmZa665Jo888sioZ6Okitog3ml1n7J5Z8bmHQAA\nAAAAAABg6xkq3qnVapmbm0ulUkmSPPjgg6lWh/ooHLOiPgh12k/ZvLNrejJJss/mHQAAAAAAAABg\nC6kP86b3vve92b17d/bu3Zv3vOc92bNnT2688cZRz0ZJFbVBvLPYfTLUaTbqmZyoZnZ+aVxjAQAA\nAAAAAACsuaHW55x++um58MILc+KJJ2bv3r256KKLcv/99496NkqqqC+fzeo8eTarUqlk53TD2SwA\nAAAAAAAAYEsZavPOVVddlVe96lW54IILRj0PrJ7NanUOD3V2Tjfy//5wNp1uL/Was20AAAAAAAAA\nwOY3VLyTxJks1s3K2ax29/B4Z9dMI/0kBxaW8hPbizFMBgAAAAAAAACwtoaKdy688ML8xV/8RV73\nutelVqutPj/hhBNGNhjltXI2a7HbOuz5zunJJMnsvHgHAAAAAAAAANgahop35ubm8id/8ifZtWvX\n6rNKpZI77rhjZINRXiubd1qd/xrvDJ7vm2s/7TMAAAAAAAAAAJvRUPHOV7/61dx1110pCttOGL2V\nzTutztPPZiXJ7Lx4BwAAAAAAAADYGqrDvOmlL31p9u/fP+pZIEnSqA3OY7W7h0c6K5t3xDsAAAAA\nAAAAwFYx1OadSqWSSy65JK94xSsyMTGx+vzmm28e2WCUV7VSTaM2eYSzWYOoZ9bZLAAAAAAAAABg\nixgq3nn3u9896jngMEWtyKLNOwAAAAAAAADAFjdUvHPOOeeMeg44TFEvsnBo4bBnkxO1TBX1zM4v\njWkqAAAAAAAAAIC1VR33AHAkRa2RdvfpG3Z2zjSyz9ksAAAAAAAAAGCLEO+wIRX1Rg71Oun0Ooc9\n3zndyMF2J+1D3TFNBgAAAAAAAACwdkYW7/R6vXz4wx/O5Zdfnt27d+ehhx562nsWFxfztre9LQ88\n8MDQn6EcinqRJGn9l+07O6cnkySz87bvAAAAAAAAAACb38jindtvvz1LS0u59dZb8/73vz8f//jH\nD3v9W9/6Vq688sr88Ic/HPozlEdRayRJWp3DI51dM4Pns05nAQAAAAAAAABbwMjinXvvvTfnnXde\nkuSss87K/ffff9jrS0tL+cxnPpNTTjll6M9QHkV9EOm0n7Z5ZznemV9a95kAAAAAAAAAANZafVS/\neH5+PtPT06s/12q1dDqd1OuDv/Lss88+5s9QHkVtcDZrsdM67PlKvLPP5h0AAAAAAAAAYAsYWRUz\nPT2dhYWF1Z97vd6zRjjP5TO7dm1LvV57fsOy5o47buZ5ff4Fj29PkjSmqof9rpMXO0mSpV7/ef8d\nwNrzvYRy8t2HcvLdh3Ly3Ydy8t2HcvLdh3Ly3Ydy8t0fv5HFO69+9avzta99LRdffHH27NmTV77y\nlSP5zL59B9diXNbQccfN5Mc/nntev6PbqiRJHn1iX3488ZTf1ekmSR5+bO55/x3A2lqL7z6w+fju\nQzn57kM5+e5DOfnuQzn57kM5+e5DOfnur59niqRGFu9cdNFF+ed//ue87W1vS7/fz4033pgvf/nL\nOXjwYC6//PKhP0M5FfXBeax25/DzWNunJlKpJLPOZgEAAAAAAAAAW8DI4p1qtZrrr7/+sGcvf/nL\nn/a+W2655Rk/QzkVtUG8s9htHfa8Vq1m+9RkZueXxjEWAAAAAAAAAMCaqo57ADiSol4kSVqdp2/Y\n2TndyOx8O/1+f73HAgAAAAAAAABYU+IdNqSVs1mt/7J5J0l2TTey1OnlYLuz3mMBAAAAAAAAAKwp\n8Q4b0srZrPaRNu/MDF6bnXv6awAAAAAAAAAAm4l4hw1p5WzWYvdIZ7MmkyT75sU7AAAAAAAAAMDm\nJt5hQypqg3in1Tny2awkmZ1bWteZAAAAAAAAAADWmniHDWmiWk+1Uk37SJt3Vs5m2bwDAAAAAAAA\nAGxy4h02pEqlkqLWSKtzpLNZg3jH2SwAAAAAAAAAYLMT77BhFfUii0c6m7WyeWdOvAMAAAAAAAAA\nbG7iHTasotZI6whns6aKeuq1Smbnl8YwFQAAAAAAAADA2hHvsGEV9Uba3Xb6/f5hzyuVSnZONzLr\nbBYAAAAAAAAAsMmJd9iwilqRXr+XQ71DT3tt50wj++eX0uv1j/BJAAAAAAAAAIDNQbzDhlXUG0mS\nxc7TN+zsnG6k1+9n7qDTWQAAAAAAAADA5iXeYcMqakWSpNVtPe21XdODsGef01kAAAAAAAAAwCYm\n3mHDWtm80z7S5p2ZySTJ7JzNOwAAAAAAAADA5iXeYcMqaoN450ibd3Yub96ZtXkHAAAAAAAAANjE\nxDtsWEV9cDZr8Qibd1bPZs2JdwAAAAAAAACAzUu8w4a1cjar1TnC5p0Zm3cAAAAAAAAAgM1PvMOG\ntXI2q919eqCzc3oySbJPvAMAAAAAAAAAbGLiHTaslbNZrSOczSom62k2apmdW1rvsQAAAAAAAAAA\n1ox4hw2rqA3incXu089mJcnO6YazWQAAAAAAAADApibeYcMq6oOzWUfavJMM4p35xUM51Omt51gA\nAAAAAAAAAGtGvMOGVdQG8U67e/R4J0n2274DAAAAAAAAAGxS4h02rKI+OJvV6hzlbNbMZJJkdn5p\n3WYCAAAAAAAAAFhL4h02rJXNO4tH2byza3nzzj6bdwAAAAAAAACATUq8w4ZVq9YyUZ04+uad5Xhn\ndk68AwAAAAAAAABsTuIdNrSi1kj7KJt3ds4sxzs27wAAAAAAAAAAm5R4hw2tqDeOunnH2SwAAAAA\nAAAAYLMT77ChFfUii0fZvLNjejKJs1kAAAAAAAAAwOYl3mFDK2qNLHWX0uv3nvZavVbNzLaJ7Jtf\nGsNkAAAAAAAAAADPn3iHDa2oD05jtY+yfWfXdCOzzmYBAAAAAAAAAJuUeIcNragVSZJW58iBzs6Z\nRtpL3Sy2O+s5FgAAAAAAAADAmhDvsKEV9UG8s9hpHfH1ndODzTy27wAAAAAAAAAAm5F4hw2tqD3z\n2ayd05NJktk58Q4AAAAAAAAAsPmId9jQivog3nmms1lJMju/tG4zAQAAAAAAAACsFfEOG1pRWz6b\n1T3y2axdy2ez9jmbBQAAAAAAAABsQuIdNrRn3byzHO84mwUAAAAAAAAAbEbiHTa0ojaIc9rdZzub\nJd4BAAAAAAAAADYf8Q4bWlEfnM1qdY58Nmtm20Rq1YqzWQAAAAAAAADApiTeYUNbOZt1sLN4xNer\nlUp2TE9mdm5pPccCAAAAAAAAAFgT4h02tJmJmSTJ3NL8Ud+zc7qR2fl2ev3+eo0FAAAAAAAAALAm\nxDtsaNsbg3hn/9LcUd+za7qRbq+f+cVD6zUWAAAAAAAAAMCaEO+woU1U65ma2Jb97QNHfc/O6cFp\nrdm59nqNBQAAAAAAAACwJsQ7bHg7JrfnwNIzxDszk0mS2XnxDgAAAAAAAACwuYh32PB2NLZnsdPK\nUnfpiK+vbt6ZP/LrAAAAAAAAAAAblXiHDW/75EySZH977oiv75xxNgsAAAAAAAAA2JzEO2x4Oxrb\nkyT7j3I6a9fy5p19zmYBAAAAAAAAAJuMeIcNb8fkcrzTPnK8s3o2y+YdAAAAAAAAAGCTEe+w4W1v\nDM5mHVg68tmsZqOWyYlqZueX1nMsAAAAAAAAAIDnTbzDhrez8cybdyqVSnZNN5zNAgAAAAAAAAA2\nHfEOG972lbNZS0eOd5LB6ay5haV0ur31GgsAAAAAAAAA4HkT77Dh7ZgcnM062uadJNk500g/yYEF\np7MAAAAAAAAAgM1DvMOGN1GbyLZ6M/uX5o76nl3TjSRxOgsAAAAAAAAA2FTEO2wKOxrbc+CZNu9M\nTyZJZuds3gEAAAAAAAAANg/xDpvCjsntOdhZzFL30BFf3zkz2Lwza/MOAAAAAAAAALCJiHfYFHY0\ntidJDhzldNbOafEOAAAAAAAAALD5iHfYFLZPziRJ9h/ldNbq5p058Q4AAAAAAAAAsHmId9gUVjbv\n7F86cryza3oylST/+fjCOk4FAAAAAAAAAPD8iHfYFFbjnaNs3pmo13LGy1+QBx+Zy/d+OLueowEA\nAAAAAAAAPGfiHTaFlbNZB5bmjvqeXzz3p5Ikf/UvD67DRAAAAAAAAAAAz594h01h57Ns3kmSU0/c\nkdNetjP3/8cTefCRo78PAAAAAAAAAGCjEO+wKWyffPZ4J0ku+fmfSpL89b88NOqRAAAAAAAAAACe\nN/EOm8JkbSLNevMZz2Ylyf9w0q6c/JKZ3Pu9H+c/H19Yp+kAAAAAAAAAAJ4b8Q6bxo7JmWfdvFOp\nVPKL5/5UkuRv7npw5DMBAAAAAAAAADwf4h02je2N7VnoHMyhXucZ33fmK16YnzxuKnf/22N5bHZx\nnaYDAAAAAAAAADh24h02jR2T25MkB55l+061Uskl556UXr+fv/1vD63HaAAAAAAAAAAAz4l4h01j\nR2MmSbJ/ae5Z33vOaS/K8bua+adv7c2+ufaoRwMAAAAAAAAAeE7EO2waOxrDbd5Jkmq1kotfd1I6\n3X7+7r//YNSjAQAAAAAAAAA8J+IdNo0dk4PNO7NLzx7vJMnPn/7i7Jpp5P/e85+ZO7g0ytEAAAAA\nAAAAAJ4T8Q6bxo7GjiTJgfazn81Kknqtmje+9mVZOtTL33/jR6McDQAAAAAAAADgORHvsGlsX968\ns3+Is1krfuHMEzKzbSJ33PujHGx1RjUaAAAAAAAAAMBzIt5h09jR2J4k2T/k2awkaUzU8j+/5qVZ\nbHfytX+1fQcAAAAAAAAA2FjEO2wajdpkilqRA0vDnc1accH/eGKajXq+es8P0z7UHdF0AAAAAAAA\nAADHTrzDprKjMXNMZ7OSZFtRz/909omZO3go/7jn4RFNBgAAAAAAAABw7MQ7bCo7Jrdn/tBCOr3O\nMX3uop87MZMT1fztf/9BOt3eiKYDAAAAAAAAADg24h02le2NmSQ55tNZM9smc/5ZP5l9c+38y/2P\njGI0AAAAAAAAAIBjJt5hU9nR2J4k2d8+tngnSf6Xc16Weq2Sv7nroXR7tu8AAAAAAAAAAOMn3mFT\n2TG5HO8sHTjmz+6aaeT1Z7wkj80u5p5vP7bWowEAAAAAAAAAHLP6uAeAY7GyeedA+9jjnSR50+tO\nyj/etzef++tv5/N//73UatXUqpXBf7Vq6qt/rqRWraZeq6Rer2aiVs1EfeW/2urPk8vPtk9NTNs1\nGQAAIABJREFU5pyfflEm6no4AAAAAAAAAGB44h02lR2TM0mS/UvHfjYrSY7b2cxlv3By7vn2Y+n2\n+un0+ul2e+n2+lnqdFb/3O310+320+v3h/7d3/3BbH7t4tNSqVSe02wAAAAAAAAAQPmId9hUti9v\n3tn/HDfvJMkl5/5ULjn3p4Z6b6/Xz6FuL4c6g/86T/nzU5//n1//fv7pW3tzyk9uz/ln/eRzng0A\nAAAAAAAAKBfxDpvKk5t3nnu8cyyq1Uoa1VoaE7VnfN8JL9yW3/3f78mf//338rLjZ3LKCdvXZT4A\nAAAAAAAAYHOrjnsAOBZFvUijNvm8Nu+Mwgt3NPPrv/Qz6Xb7+aPbvpUDB5fGPRIAAAAAAAAAsAmI\nd9h0djS250B7btxjPM3pJ78gl/7CKXniQDt//H/9P+n1+uMeCQAAAAAAAADY4MQ7bDo7Jrdn7tB8\nur3uuEd5mkvOPSlnnfrCfPuhffnSP35/3OMAAAAAAAAAABuceIdNZ0dje5LkwNLG275TrVTyv/3i\nT+f4Xc38zX97KPd+98fjHgkAAAAAAAAA2MDEO2w62ydnkmzMeCdJthUTufqyMzJZr+Zzf/1veeSJ\ng+MeCQAAAAAAAADYoEYW7/R6vXz4wx/O5Zdfnt27d+ehhx467PU777wzb3nLW3L55ZfnC1/4wurz\nyy67LLt3787u3btz7bXXjmo8NrGVzTuz7QNjnuToTjx+Ou9402lpLXXz6S99K62lzrhHAgAAAAAA\nAAA2oPqofvHtt9+epaWl3HrrrdmzZ08+/vGP57Of/WyS5NChQ7npppvyxS9+Mc1mM1dccUXe8IY3\nZGZmJv1+P7fccsuoxmIL2DG5cjZr48Y7SfK6n3lxvv/wgdx+74/yf3zlO/n1//VnUqlUxj0WAAAA\nAAAAALCBjGzzzr333pvzzjsvSXLWWWfl/vvvX33tgQceyMte9rLs2LEjk5OTOfvss3PPPffkO9/5\nThYXF/P/t3fncZLV9d3oP6eql9l6dpZBGBhWQUXEBYzik5CH6DUqKATEKEZ53RuNidFcYsDnuiNq\njJpXjJq43Ne9DyYRLy5IovGJ0bxIkBgVR2RfHQQHhAFmpnuY6e6qc/+opat7umfvqenu9xvHOvv5\nnlPn9/ud0/WtX73xjW/MRRddlLVr105XeMxgS/obP5u18QDueafl/DOPzbGHL8l/3far/MuPHuh2\nOAAAAAAAAADAAWbakncGBwezaNGi9ni1Ws3o6Gh73sDAQHvewoULMzg4mHnz5uXiiy/OF77whbzv\nfe/LJZdc0l4HWlo972zctrnLkexcT7WSN5/99CxZ2Jcvf/fu3HH/490OCQAAAAAAAAA4gEzbz2Yt\nWrQoQ0ND7fF6vZ6enp5J5w0NDWVgYCBr1qzJkUcemaIosmbNmixdujSPPPJIVq1aNeV+li1bkJ6e\n6nQdBnvooIMGdr7QHlq4tHEdPZkt07qffeWggwZy2e89L+/8zPX522tvzV++/b9lxZL53Q4LpsVM\nKJPAvqfsw9yk7MPcpOzD3KTsw9yk7MPcpOzD3KTsd9+0Je+ceuqp+d73vpeXvvSlWbt2bY4//vj2\nvGOOOSbr1q3LE088kQULFuRHP/pRLr744lx99dW588478973vjcPP/xwBgcHc9BBB+1wP48/vmW6\nDoE9dNBBA3nkkenrFacsy/RV+/Lo5semdT/70sEDffmdXz8mV3337lz1v27P7/z6sd0OCfa56S77\nwIFJ2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ2d9/dpQkNW3JO2eddVauv/76vPrVr05Zlrniiity\n7bXXZsuWLbngggty6aWX5uKLL05Zljn33HNzyCGH5Lzzzstll12WCy+8MEVR5Iorrmj31gMtRVFk\nSd9ANg7PrArkBc9Ylau+e3cefGRo5wsDAAAAAAAAAHPCtGXGVCqVvP/97x837ZhjjmkPn3nmmTnz\nzDPHze/r68vHPvax6QqJWWRx3+Lcu/HnqdVrqVZmxs+mLZrfm4EFvXlog96iAAAAAAAAAICGSrcD\ngD2xtH9xypTZPDLY7VB2y6rlC/LIxiczMlrrdigAAAAAAAAAwAFA8g4z0uL+xm/Bbdy2qcuR7J5V\nKxemLJOHHnuy26EAAAAAAAAAAAcAyTvMSEv6FidJNg1v7nIku2fV8gVJkvUbhrocCQAAAAAAAABw\nIJC8w4y0pL+RvPPEDOx5J0nWb9jS5UgAAAAAAAAAgAOB5B1mpHbPOzMteWeFnncAAAAAAAAAgDGS\nd5iRlvQPJEk2zrCfzVq+eF76eit63gEAAAAAAAAAkkjeYYZq/WzWxhnW806lKHLo8gV56LEtqZdl\nt8MBAAAAAAAAALpM8g4z0rzqvPRWerNpeGYl7yTJqhULMzJaz4aNW7sdCgAAAAAAAADQZZJ3mJGK\nosiSvoEZ1/NOkqxasSBJ/HQWAAAAAAAAACB5h5lrSf/ibBoeTL2sdzuU3bJqxcIkyfoNQ12OBAAA\nAAAAAADoNsk7zFiL+xenTJnNwzMrCUbPOwAAAAAAAABAi+QdZqylfYuTJBuHN3Y5kt1zyLIFKQo9\n7wAAAAAAAAAAkneYwRb3DyRJNm3b3OVIdk9vTyUHLZ2v5x0AAAAAAAAAQPIOM9eSVs872zZ1OZLd\nt2r5ggw+OZLNW4a7HQoAAAAAAAAA0EWSd5ixlvS3fjZrBibvrFyYJHrfAQAAAAAAAIA5TvIOM9bi\nvsbPZs3UnneSZP2GoS5HAgAAAAAAAAB0k+QdZqyl7Z53Nnc5kt2n5x0AAAAAAAAAIJG8www2v2d+\neio92bRtBibvrGj1vCN5BwAAAAAAAADmMsk7zFhFUWRJ3+JsHJ55P5u1cF5vFi/s87NZAAAAAAAA\nADDHSd5hRlvSP5BNw5tTL+vdDmW3HbZiQTZs3JrhkVq3QwEAAAAAAAAAukTyDjPakr7FqZf1DI7M\nvB5sDl2xMGWShx7z01kAAAAAAAAAMFdJ3mFGW9y/OEmycdvmLkey+1atWJAkWb9B8g4AAAAAAAAA\nzFWSd5jRlva1knc2djmS3TeWvDPzeg0CAAAAAAAAAPYNyTvMaIv7B5Ikm4ZnXs87h61YmETPOwAA\nAAAAAAAwl0neYUZb0jdzfzZr2UB/+nuret4BAAAAAAAAgDlM8g4z2pL+ZvLO8KYuR7L7iqLIoSsW\n5KHHnky9XnY7HAAAAAAAAACgCyTvMKO1fzZr28xL3kmSVSsWZLRWz6Mbn+x2KAAAAAAAAABAF0je\nYUZb2LMgPUU1T8zAnneSZNWKhUmS9Ru2dDkSAAAAAAAAAKAbJO8woxVFkcX9i7Np2+Zuh7JHVi1f\nkETyDgAAAAAAAADMVZJ3mPGW9C3OxuFNqZf1boey21atbPW8M9TlSAAAAAAAAACAbpC8w4y3pH8g\n9bKeoZGZ13vNIcvmp1IUet4BAAAAAAAAgDlK8g4z3uK+xUmSTcMz76ezeqqVHLRsftZvGEpZlt0O\nBwAAAAAAAADYzyTvMOMt6W8k7zyxbVOXI9kzq5YvyNDW0WzeMtLtUAAAAAAAAACA/UzyDjPekr6B\nJMmmmZq8s3JBkmT9hqEuRwIAAAAAAAAA7G+Sd5jxWj3vbByemck7h61YmCRZv2FLlyMBAAAAAAAA\nAPY3yTvMeO3knW2buxzJnjl0RavnHck7AAAAAAAAADDXSN5hxlvSN7N73lm1vNXzjp/NAgAAAAAA\nAIC5RvIOM97C3gWpFtVs2jYzk3cWzOvJkkV9kncAAAAAAAAAYA6SvMOMVxRFFvcNZOPwzPzZrCQ5\nbMXCbNi0LduGa90OBQAAAAAAAADYjyTvMCss6V+cTds2pSzLboeyRw5dsSBJ8tBjW7ocCQAAAAAA\nAACwP0neYVZY0jeQ0bKWodGZmfxy2IqFSeKnswAAAAAAAABgjpG8w6ywpH9xkmTjtk1djmTPtHre\n+eWGmZl8BAAAAAAAAADsGck7zAqL+xrJO5u2be5yJHum1fPOQ3reAQAAAAAAAIA5RfIOs0K7553h\nmdnzztJFfZnXV816Pe8AAAAAAAAAwJwieYdZYUn/QJKZ+7NZRVFk1YoFefjxLanV690OBwAAAAAA\nAADYTyTvMCss6Wv1vDMzfzYrSQ5dvjCjtTKPPrG126EAAAAAAAAAAPuJ5B1mhfbPZs3QnneS5LCV\nC5LET2cBAAAAAAAAwBwieYdZYWHvgizqXZjbH7srG7fNzN53Vq1YmCRZv2Goy5EAAAAAAAAAAPuL\n5B1mhUpRyW+v+a1srW3NNfd8s9vh7JFVK/S8AwAAAAAAAABzjeQdZo0XPuW0HLHosPzgoR/nnid+\n3u1wdttBS+enWin0vAMAAAAAAAAAc4jkHWaNSlHJ+Se8Mkny5Tu/nnpZ73JEu6enWsnBy+Zn/YYt\nKcuy2+EAAAAAAAAAAPuB5B1mlaOXHJnTD31OHhj8Zf7jwf/sdji7bdWKhdmybTSbhoa7HQoAAAAA\nAAAAsB9I3mHWOfvY/y3ze+blG/d+O5uHB7sdzm5ZtWJBkmT9hi1djgQAAAAAAAAA2B8k7zDrLO4b\nyG+v+a08OfpkvnHPt7odzm4ZS94Z6nIkAAAAAAAAAMD+IHmHWelFT3l+Dlt4aL6//of5+ab7ux3O\nLlu1YmESPe8AAAAAAAAAwFwheYdZqVqp5vzjz0mSXHXH11Mv612OaNcculzPOwAAAAAAAAAwl0je\nYdY6btnRec4hp+T+zQ/khl/+sNvh7JL5/T1ZNtCfX+p5BwAAAAAAAADmBMk7zGqvPPa301/tyzX3\nfitDIzMjIWbVigV5fPO2PLlttNuhAAAAAAAAAADTTPIOs9rS/iV56ZqzMjSyJdfe++1uh7NLVi1f\nmCR56LGZkWwEAAAAAAAAAOw5yTvMer9x+Atz6IKD8x8P/mfu3/xAt8PZqVUrFyRJHvLTWQAAAAAA\nAAAw6/V0OwCYbtVKNb9z/Nn55NrP5ct3XJM/efabUyl2nLf2qy2P5KZHb80vNj+Y0fpoRuu11Mpa\ne3i0HE2t+Tpar6WnUs1vHXlmTj/02SmKYq/iXbW8kbzzyw1De7UdAAAAAAAAAODAJ3mHOeGpy4/L\nsw4+OT/51U35wUM35vmrnjNufr2s5+ebfpGfPXprbnrkljy05VdTbqtaVNNTqaan6Em1Uk1PpSeP\nb92YL9725fz0kZ/lwhPOy5L+gT2OddXKxs9m/eJXg3u8DQAAAAAAAABgZpC8w5xx7rEvyy2P3pZr\n7v5mnrnyaemp9OSOx+/KTY/cmp9tuDWbhxvJMr2V3py88ml5xsqTcvyyYzKv2p+eSjXVSk96iuqk\nPetsePLxfPG2L+dnj96We5/4WC444ZV59iHP3KM4lyzsyxEHL8rP7t2Q9RuGsmrFwr06bgAAAAAA\nAADgwCV5hzlj2byleclRv5lv3PvP+YsffyqPbX08I/WRJMlA76L82qrn5hkrT8pTlx+Xvmrfbm17\nxfxl+aNn/e+57sEb8vW7v5n/+5a/y08fuTnnn3BOFvXuXvJNURQ5+4Vr8tdf/Vm+cf3P8/uveNpu\nrQ8AAAAAAAAAzBySd5hTzlz9ovzgoRvz8JZf5ZAFB+fklSfl5INOylGLV6dSVPZq25Wikl8//AU5\nafnx+Z+3fjk//tVPc9cT9+Y1Tz03z1h50m5t61nHrczqQxblv259OC97/pF5ykGL9io2AAAAAAAA\nAODAJHmHOaW30pNLnv0H2TL6ZFbOXzEt+zh4wUH5k2e/Of96/3X5x3u/nb+56f/J6auek/OOe3nm\n98zfpW0URZFzXnh0/uorN+Wa63+ePzjn6dMSKwAAAAAAAADQXXvX1QjMQAt6F0xb4k5LpajkrCN/\nPX/23D/OEYsOy3+u/1E++INP5PbH7trlbTzz2BU56tCB/Oj2X+UXvxqcxmgBAAAAAAAAgG6RvAPT\n6LBFh+ZPn/NHeelR/z0bhzflk2s/l+sf/MEurVsURc454+gkyTX/cd90hgkAAAAAAAAAdInkHZhm\n1Uo1v330b+VPn/2Hmd8zP1+9+5+yaXjzLq37jKOX55jDFufGOx/Juod2bR0AAAAAAAAAYOaQvAP7\nyerFh+dlR/9Wtta25pp7vrVL6xRFkbPPWJNE7zsAAAAAAAAAMBtJ3oH96IzDTs9TFq3Kf67/Ue7b\nuG6X1nnaUctz7OFLsvbuR3Pf+k3THCEAAAAAAAAAsD9J3oH9qFqp5vzjz0mSfPnOr6de1ne6TlEU\neeUL9b4DAAAAAAAAALOR5B3Yz45duibPPeRZuX/zg7nhlz/cpXWeeuSynHDE0tx0z4bc88uN0xwh\nAAAAAAAAALC/SN6BLjjn2Jemv9qXa+79VoZGtux0+aIocs4Zzd53/l3vOwAAAAAAAAAwW0jegS5Y\n2r8kL11zVoZGtuQf7/32Lq1zwuplOfHIZbn5vsdy1wNPTHOEAAAAAAAAAMD+IHkHuuTXD39BDllw\nUP79wf/MLzY/uEvrnP3CRu87X9f7DgAAAAAAAADMCpJ3oEt6Kj35nePOTpkyX77z6ynLcqfrHH/E\n0jxtzfLctu7x3HH/4/shSgAAAAAAAABgOknegS46ccXxOeWgp+fejevyXw/duEvrnNPsfeea/9D7\nDgAAAAAAAADMdJJ3oMtedezL01vpydfu+ac8Obp1p8sf85QlecbRK3L7/U/ktnV63wEAAAAAAACA\nmUzyDnTZivnL8uIjz8zm4cF8677v7NI655zR6H3n6/9+7y793BYAAAAAAAAAcGCSvAMHgP+++r9l\n5bzl+d4D/5H1Qw/vdPk1qxbnlGNX5q4HNubWn+t9BwAAAAAAAABmKsk7cADorfbmvONfkXpZz/93\n5zW71JvO2S9s9L7z//7z7fmXH/0iTwxum+4wAQAAAAAAAIB9TPIOHCCevuLEnLTihNzx+N35ySM/\n2+nyRx46kBc/74hs2LQ1//Cdu/J//vX1+fO/vzH/tvbBbN4yvB8iBgAAAAAAAAD2Vk+3AwAaiqLI\n7xz3inzwsY/nq3f9Y5624qnpr/btcJ0LzjwuL3ne6vzojkfyg9sezu33P5Hb738iX/z2nTlpzbKc\nduIhedZxB2XBPEUdAAAAAAAAAA5EPtGHA8jBCw7KmatflP+17nv53M/+Z0479Nk5ccXxWdS7cMp1\nlizqz28++/D85rMPz2Obtua/bvtV/uu2h3PzvY/l5nsfS0/19jzj6BU55diVWba4P4sX9GXxwr4s\nmt+bnqrOtwAAAAAAAACgmyTvwAHmJUf9Zm7dcEdue+zO3PbYnSlS5MjFR+SkFSfkaStOyOqBw1Mp\nJk+6Wb54Xl5y2uq85LTVefjxLe1Enp/c9Wh+ctej2y2/cF5PFi/sy8CCvixe0JuBhX0ZmN+b/t5q\nensq6eutpq+nkt6eavp6K2PDPZX09lbSW62kWilSbb72VCupVotUimK6TxMAAAAAAAAAzArTlrxT\nr9fz3ve+N3fccUf6+vpy+eWX58gjj2zP/+53v5tPfepT6enpybnnnpvzzz9/p+vAXNBf7cufPfet\neXBwfW7ZcEdu3XBH7tu0Lj/fdH++ed+/ZFHvwpy4/PictOKEnLT8hCzqm7xXnkOWLcjLf+2ovPzX\njsoDjwzm7gc3ZvPQcDZtGcnmLcPZ1BzeNDSchzZsSbkPj6FSFKlWi/RUi1QrjYSenolJPuNeG/Mq\nRZFKpUhRNLZRFGmMp0il0vhpsUpRpFIkRaVIJUWKSprTOpZvr99cdrvtTjW9Y1sTt9tarzm9qIzF\nUmkNV8aWLzoSmMpyx2d3Z/FMnN5edopjBgAAAAAAAGDmmLbkne985zsZHh7OVVddlbVr1+bDH/5w\nPvOZzyRJRkZG8qEPfShXX3115s+fnwsvvDBnnnlmbrzxxinXgbmkUlRyxMBTcsTAU/KSo87MlpEn\nc/vjd+XWDXfk1g2354cP/yQ/fPgnKVJk2byl6SmqqVSq6SmqqRbVRsJMe7gxvdJTTXVpJT3LerK4\nUsmy5rxqUU0lldRqRUZHyoyMJmW9SFkWqdeKlPUi9XqRej2pjTaGR2tJfTSp1RvL1mpJvZ6UzdfR\nepF6rUytVqZeLzNaK1Ovldla1lMbbkyr1eqplWVq9V1JG9qLhJRxmy+mmFckRdmYUJQpinLc+Ljh\nzu2UHdvrHE7R3HYxfh9JyvZyHcu0Y5lku53bqNSTop6iUm8Pp1JPUdSTSm1svKwkzX9FWW0M16sp\nUmnPK8pq47BTpqikedz1xrTmMReV5rloxtFYP0lRTVEWzWlFc7iRiFWvN5cuGnObO2keWdGc1th2\nUiaVNPabMmWlniJl85DrKYqysV5RNOJuBNd4S4pGPGNbbcyrlMXYcmktWxlbqmjFN3aOi+Z5aI0U\nrUuiFXVrnZTt9crO6UXr6JrnsWOloj3YPK6iljL1lEU9SX1suBgbbhxZTyqpbv+vqKaaaoqi2rHP\n5n7SDnTqY2gvUoxbrnVQRVGm8V89ZTqH68mk8zrmt8bLsWUrqTTj7kk11fZx9RS9qaR5TRbtyNvx\n72A0KYp2QlzR3OfYe1I248i41+bBdUwtm1dimWYaYCpFpT1cpDJlD2ed53HSGKdIoJuyFptixlTL\n706C3lSLTh3L9nPKskw9o6mVIxktR1PLSEbLkYy2pmU08/qrGd5Wplr0pCc9qRbNfxl77a30ptK8\nbndJWWa0HM5wuS3D5dbxr/XG60i5LdX0pL8yL33FvPS1Xov+9FXmpb8yL71F37j3slbWmscykpFy\nZPxwRlKmbLaL1eZxVNOT3mab2tOc3iiLnWWhXtbb11ZZtqbXG0uUZcqi3i4f7Xll63odKy/tc9dq\nw9vnsbX/xrE0tlBrb7te1lNPPfWy1oynliJplL1mvVEpOuuQ8e91vaxnpNyabfWt2Vp/MlvrT2Zb\n87U1PFzflt6ir3lu+9NX6W+c+0rzfBdj45Wi2ipZjX1NeS1OMmO3y8RUF9EUZXHXd7l7ce9w+d3Z\n5+TlMM3rrPN9rpW1pCib72+lfW1WWud9u03v3v3U1HVIY8ajgyN54oktOzyoohl/2Y6/llrZaDdq\nHcfRKkPVonU/25PKuOFdT1DeWdy7andO107ytJvLlBktRxt1aH20UaeWtSRpl+2kaLaLRbttGruH\nGZteFEVSTjF9J8fQOW2yczL5Oh33OmMrbz+4D5LId3cLreurTJnG/xr/FcVYAn3rjmBsH9uft7F7\npn2fCL8vtjnZFsrOdqRst0ITzknZqPsrzbqhsvexjBaVPPb4lp0vuCP76Dzvi63ss3d8H2xod+up\nKbdzgHyf40D6Ysm+CmWfbKYLdeW+2FDf4LZs2jI8bbHsz+tld3a1G09fU86pl/XU6rXUU29+IavS\nfP7ctfubxjNZPfV6vfk8U2/eP9WazxQdy07x1bxKUaSn0vGM0/x7YGcbuJuHtVfv/Z6/3Xu+125V\nSXu6371qE/bhqmVZ7vRLicmBVefvjfbfm2bJ8cwG9bKeWllPkbTrLYA9US/rKcuycR+mLuEANm3J\nOz/+8Y9zxhlnJElOOeWU3Hzzze1599xzT1avXp0lS5YkSZ797Gfnhz/8YdauXTvlOjCXLeidn1MP\nPjmnHnxyyrLMg4PrG4k8j92RR57ckCfrI6mPNB7eR8taavXalA/s+0S1+a+7m2AfKye8cuAqy2LX\n36jO+9DOP7hMWL8otp823coySb3aSFgrOndeNuPumFa0/oCyH2Mri2Yy3Sy9mS+nOq5Wllc9RbW2\n8+0M7uLuWue0tY/tkhab04ok1dGO5ME9V5ZJas3b3UqtmTg4c5XlvikDZb1oJnZWmud7ZFrLVrvO\nKpsJCu2ytYv2NLbJEngnJNVut8ouxLXza7OVELrToCZZprPeayRD7sl1236Py0pSL1I2z/3ksZcd\ncUyMfWK8E9efZN32so1p++SabV0/9crYdbT7W9mFZTqvk8kSqSZOK6a+ptoJ17Xm8P6pf8buEXZQ\nz06ctyvb3CUdy016uDvYzmTldbvk+kaZGPtX3+d1V/tWaYft1YTpHfMnTdQvM76cdNzjjJXJjumd\n90BF52tn+dyzsjVWNzRey/rY8P6zh2Vhlt6OJZnklOzpJ72tcjHhiyid/yY9/xPbyJ3EM1m912rb\nm3VN2a5zJtY3k1/rYzHv4Pj28jztdl02Vf3eKtPNmIuJ57dzvHMbu1gnT1mPjMua7Dxf5YS6pPNE\nTay7Jp6HSbZdbr/O+PZuP2tfL2NtwPZtQnN4snM26fnchXO9W/eqYzE0vlzVGd+O26op75M727pp\nvIcYf89Y2cVysrP2fsIye+UAeH7b60OZvmPY9WfmKZ5PJrkfnPwamOKed6r6Y9L1OpadeE+XScp1\nq7Jt37c025Zy/LSdv0Gdz1cT65KJ5XWsPm2UjdY9UpE0y8q4GFKMbX9CvZwiKTrnjat3pqqjivFt\nScd2G+cnY/M66upxbW77fegYb9dP5XbnIM0vVDYOpaMtbx3fxHO/pwViR3VL+72oj6s703x/Jl7n\n4+qtVqzt96fScdy7Uj4mLxvFxHI7afg72v5UZWbijiZ5FmivMqE9n6wsTVKGt2u/x4U7m2+opzDx\neWqHX9hOOq/7SYeTnVzPOwtoL9uESeNPksaXsre/3594D9oZ5GT3p5kwPPF1svjHpo2/55lk2cnO\nz47u8ae8bidZprPumHR4wnu9XZsy4XV37wd3SXfKYLWcl//rjP8jBy9Z3JX9s/umLXlncHAwixYt\nao9Xq9WMjo6mp6cng4ODGRgYaM9buHBhBgcHd7jOVJYtW5CeHikAB5qDDhrY+ULssYMPXpxnHX3C\nDpdpfbNntN5I5hktaxmtj6bWGm/NK1vjoxltfountdxox7KN6R3bKGup1evt7Pd6vfGNn9a3gOrl\n2LeC9uqWZFe+yjzVqslYElM5Ntz6Zm5ruEzzp76Kasdr62e8xk9rr1OWk7ymPZ6y0SdNduOdAAAS\n60lEQVRDyqSeevO1c/rO5ze2V29H3VPpSW+1N32V3vRUe8Zeqz3pqfQ2X3tSq9czUh/JSG107LU2\nkpH6+Nei+Y2valFNpVJJddxwNdVirPeRetnxXne81pvXQOtf2XH2x77t3Bofe2+qlcr2+65Ux/bb\nnN86P2VZpl42eq2op2xnSTemd/RuMWG8vVzqqbW6BRqnGDc02dU29beddn6zVbQe98rG+zd2jGM9\nX/UUPR3nvNroAaM+mtF64/0brTW+nT9Sa00bzWh9pH3NtfdVjBWXzpjLHUY6fk6l2eNMK/u8UlSa\nPThU2vM6p3d+Y3BseGy5Vn0y2ox5tD6akXIko/WR9jGO1kdST6MnnFZvTZ09NxVJMxO+aB/bWM9B\n49ZKq+eksV6IOr5JP8l6rTNUK+uNa6vdq0VzPGPX9nTYi+pt7/c94Wqf+E26sR4wetNb6W2+9qWn\nPTz2WqRo9CZRb/bOU2/2LLFdDxOj7X21/2vVmR3jSRq9ulQbvef0Vxs96syrzm/27NIY7qv0Z6Q+\nkuHa1mytb822+pPZVt+abbWx4eH61mytbU2RjMVeNI6jt+hNT6Wv8Vr0pqfSmyKV1MrR1Mtau1eM\n2rjXxr966mn10jTWe0PHN2hTpCgq45aptJftWCZFe5166qmVo+P2W2++dk5L0iyD1Y7yVx0rkx09\n67S+kVsra80eT2rtbbbGk6S/Mn/7f8W89FfmZ15lQfor89Nb9GW0HM62cluG640ekEZaw+XW5rTG\ncL3Zs8r43oZaw43xid8Sbtm9x9ipn/q3v6InzCvL7eZOvf7E1mL7OVPNn3q9ydYdm96o+5p1akc9\nXKSjnu3sials9OxWT/Nb2NVGDz3NVjP1sjZ++8XEPRfjYt3+qCZbdrL5Rcd4qwUq2sfQKAHVbN/r\nWbMcNHvnqafWjruWWsrmtNYxTZ/Oq6Hc7loZv0S53Rqd49Wir6P3vJ5mOW31hNXqYa8yYUvldq+d\n++vsTWVsmQnzJhsuJ257++MYNzRJ+Zz6iwGTl5kptz3ldjr301imUUtWx+rSjL9eOl9by6c5NPH/\nJ/6xceL5aA8XzXnFxHM1cb2OdabYZuf4WGyVjjuXzvIy/o4l44Ynm5YdzBtfRhsRNOuDSn1sOOOH\n95u9uv/Zsz92TrXWjkLZF73g7NoXanb8B/DJxqd6ZmnE3DNFGRkb79zKuLI5ySFPegwdHyiNXe8d\nPXGmHDee9njnddv60HPya3nqI93FGHdx/e3XnVhbbT+/0bq1jqHjvq6ccJ7LCee6s5fQYvL6orPu\n2b6uaZXT1pmqdJT1YlzvuNsfX+tBsRx3zOPnd94vbV//Taed7aF9PZetdqGS8dd1JUV9rM5rnP6J\n53Qn9f+496aeqa+rsag6h4qykiI9HbE2eywuG/fnjR7zKuP33+qds7O8FGXKohy7xspKilrr2Mfa\nwZRj7eGuneMyrV5zG72C1sYPF/WUPTtqDyarh3a1jtub+rQ7H3JtZ59/eLc3pnqGmHrq1PPGPwdN\nfb/W8Y53JhtMsubEbY5bpvWnms76siyS5v1e47puvba2W2+U58rYNZyiNn7eVIc04djHlau0ehVv\n9FJe1Mdiamym3t5+mUZiSXu4qKfMaDqfd9plsV0XJ+lo6xrG/sY7sb4ff8/Ysc329sYS/IoUzcnj\nnx1adUpnfdI47c32qn281bTbr3pnjJ31UKtX7Wb91Oo1fY/uGXdcV4yv03o7eo1v1H9p1/lp112d\nPZinqKesNt+TYmL9vTvP51PMK6eYnsnvF8e9rx33TOPnTXh2KVtTOu+FJm57iue4Hexju/JYZGdv\nxyw1WZkqkrI6fnr7WbB13bfuv8qx+4pdujeazjZj7J5v7B6wksbX5DvnJdtdM8XEa7Lj3q9Ixu41\nO+9dO5cfH8c47ctxqmPf2TnZfh/jruVi8mW2m1Z2tCdlsz6pd9w7tb5o0LrfaycwNuuOSqud2ctn\n5L36Quq+L6RFWc/SFfNy0LJd+9ze5/vdN23JO4sWLcrQ0FB7vF6vt5NwJs4bGhrKwMDADteZyuN7\n210z+9xBBw3kkUc2dzsMtlMk6U0lvakk6Z04u9L8B3tI2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ\n2YdZZjS7VKaV/f1nR0lS0/ZR/amnnprrrrsuSbJ27docf/zx7XnHHHNM1q1blyeeeCLDw8P50Y9+\nlGc961k7XAcAAAAAAAAAAGabaet556yzzsr111+fV7/61SnLMldccUWuvfbabNmyJRdccEEuvfTS\nXHzxxSnLMueee24OOeSQSdcBAAAAAAAAAIDZqijLSX7QfgbRfdOBR7daMDcp+zA3KfswNyn7MDcp\n+zA3KfswNyn7MDcp+zA3Kfv7T1d+NgsAAAAAAAAAANgxyTsAAAAAAAAAANAlkncAAAAAAAAAAKBL\nJO8AAAAAAAAAAECXSN4BAAAAAAAAAIAukbwDAAAAAAAAAABdInkHAAAAAAAAAAC6RPIOAAAAAAAA\nAAB0ieQdAAAAAAAAAADoEsk7AAAAAAAAAADQJZJ3AAAAAAAAAACgSyTvAAAAAAAAAABAl0jeAQAA\nAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInkHQAAAAAAAAAA6BLJ\nOwAAAAAAAAAA0CWSdwAAAAAAAAAAoEsk7wAAAAAAAAAAQJcUZVmW3Q4CAAAAAAAAAADmIj3vAAAA\nAAAAAABAl0jeAQAAAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInk\nHQAAAAAAAAAA6JKebgfA7FGv1/Pe9743d9xxR/r6+nL55ZfnyCOP7HZYwDQYGRnJO9/5zjz44IMZ\nHh7Om9/85qxatSq///u/n6OOOipJcuGFF+alL31pdwMF9rlXvvKVWbRoUZLk8MMPz5ve9KZceuml\nKYoixx13XN7znvekUpEfDrPJV7/61Xzta19Lkmzbti233XZbrrrqKu0+zGI//elP8xd/8Re58sor\ns27duknb+i9/+cv50pe+lJ6enrz5zW/Ob/zGb3Q7bGAvdZb92267LR/4wAdSrVbT19eXj3zkI1m5\ncmUuv/zy3HjjjVm4cGGS5NOf/nQGBga6HDmwpzrL/a233jrpPb42H2afzrL/9re/PY8++miS5MEH\nH8wzn/nMfOITn9Dmwywy2Wd6xx57rGf9A5DkHfaZ73znOxkeHs5VV12VtWvX5sMf/nA+85nPdDss\nYBp84xvfyNKlS/PRj340TzzxRM4555y85S1vyRve8Ia88Y1v7HZ4wDTZtm1byrLMlVde2Z72pje9\nKW9729ty2mmn5d3vfnf+9V//NWeddVYXowT2tVe96lV51atelSR53/vel3PPPTe33HKLdh9mqc99\n7nP5xje+kfnz5ydJPvShD23X1p9yyim58sor85WvfCXbtm3La17zmrzgBS9IX19fl6MH9tTEsv/B\nD34w73rXu3LiiSfmS1/6Uj73uc/lsssuyy233JLPf/7zWb58eZcjBvbWxHI/2T3+I488os2HWWZi\n2f/EJz6RJNm4cWMuuuiiXHbZZUmizYdZZLLP9J761Kd61j8A+Vo0+8yPf/zjnHHGGUmSU045JTff\nfHOXIwKmy0te8pL88R//cZKkLMtUq9XcfPPN+bd/+7f87u/+bt75zndmcHCwy1EC+9rtt9+eJ598\nMm984xtz0UUXZe3atbnlllvyvOc9L0nyohe9KN///ve7HCUwXX72s5/l7rvvzgUXXKDdh1ls9erV\n+eQnP9ken6ytv+mmm/KsZz0rfX19GRgYyOrVq3P77bd3K2RgH5hY9j/+8Y/nxBNPTJLUarX09/en\nXq9n3bp1efe7351Xv/rVufrqq7sVLrAPTCz3k93ja/Nh9plY9ls++clP5rWvfW0OPvhgbT7MMpN9\npudZ/8AkeYd9ZnBwsP0zGklSrVYzOjraxYiA6bJw4cIsWrQog4ODeetb35q3ve1tOfnkk/OOd7wj\nf/d3f5cjjjgin/rUp7odJrCPzZs3LxdffHG+8IUv5H3ve18uueSSlGWZoiiSNOqGzZs3dzlKYLr8\n7d/+bd7ylrckiXYfZrEXv/jF6ekZ66h5srZ+cHBwXJf5CxculMQHM9zEsn/wwQcnSW688cZ88Ytf\nzO/93u9ly5Ytee1rX5uPfvSj+fznP5+///u/98d8mMEmlvvJ7vG1+TD7TCz7SbJhw4bccMMN7V53\ntfkwu0z2mZ5n/QOT5B32mUWLFmVoaKg9Xq/Xt7sBAGaP9evX56KLLsrZZ5+dl7/85TnrrLPy9Kc/\nPUly1lln5dZbb+1yhMC+tmbNmrziFa9IURRZs2ZNli5dmg0bNrTnDw0NZfHixV2MEJgumzZtyn33\n3ZfTTz89SbT7MIdUKmN/Omq19ROf/4eGhsb9gQ+YHb75zW/mPe95Tz772c9m+fLlmT9/fi666KLM\nnz8/ixYtyumnn+6DPJhFJrvH1+bD3PDP//zPednLXpZqtZok2nyYhSZ+pudZ/8AkeYd95tRTT811\n112XJFm7dm2OP/74LkcETJdHH300b3zjG/Onf/qnOe+885IkF198cW666aYkyQ033JCnPe1p3QwR\nmAZXX311PvzhDydJHn744QwODuYFL3hBfvCDHyRJrrvuujznOc/pZojANPnhD3+Y5z//+e1x7T7M\nHSeddNJ2bf3JJ5+cH//4x9m2bVs2b96ce+65x98AYJa55ppr8sUvfjFXXnlljjjiiCTJz3/+81x4\n4YWp1WoZGRnJjTfe6B4AZpHJ7vG1+TA33HDDDXnRi17UHtfmw+wy2Wd6nvUPTLpFYZ8566yzcv31\n1+fVr351yrLMFVdc0e2QgGnyN3/zN9m0aVM+/elP59Of/nSS5NJLL80VV1yR3t7erFy5Mh/4wAe6\nHCWwr5133nm57LLLcuGFF6YoilxxxRVZtmxZ3vWud+XjH/94jj766Lz4xS/udpjANLjvvvty+OGH\nt8ff+9735gMf+IB2H+aAP/uzP9uura9Wq3nd616X17zmNSnLMm9/+9vT39/f7VCBfaRWq+WDH/xg\nVq1alT/6oz9Kkjz3uc/NW9/61px99tk5//zz09vbm7PPPjvHHXdcl6MF9pXJ7vEXLVqkzYc54L77\n7msn6ybJMccco82HWWSyz/T+x//4H7n88ss96x9girIsy24HAQAAAAAAAAAAc5GfzQIAAAAAAAAA\ngC6RvAMAAAAAAAAAAF0ieQcAAAAAAAAAALpE8g4AAAAAAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAA\n7JavfvWrufTSS7sdBgAAAMCsIHkHAAAAAAAAAAC6pKfbAQAAAAAwPT772c/mW9/6Vmq1Wl74whfm\nwgsvzB/8wR/kiCOOyLp163LYYYflox/9aJYuXZrvfe97+cu//MvU6/UcccQRef/735+VK1fm+9//\nfj784Q+nLMscdthh+djHPpYkWbduXV73utfll7/8ZZ7//Ofn8ssv7/LRAgAAAMxMet4BAAAAmIWu\nu+663Hzzzbn66qvz9a9/PQ8//HCuvfba3HnnnXn961+ff/qnf8oxxxyTv/7rv86GDRvy7ne/O5/6\n1Kdy7bXX5tRTT8373//+DA8P55JLLslHPvKRXHvttTnhhBPyta99LUmyfv36fPKTn8y3vvWtXHfd\ndbnrrru6fMQAAAAAM5OedwAAAABmoRtuuCE33XRTXvWqVyVJtm7dmrIsc9RRR+W0005Lkpxzzjm5\n5JJL8oIXvCAnn3xyDj/88CTJBRdckM9+9rO54447csghh+TEE09MkvzJn/xJkuSrX/1qnvOc52Tp\n0qVJktWrV+fxxx/f34cIAAAAMCtI3gEAAACYhWq1Wl7/+tfnDW94Q5Jk06ZNeeihh/L2t7+9vUxZ\nlqlWq6nX6+PWLcsyo6Oj6e3tHTd98+bNGRoaSpL09Iz9WakoipRlOV2HAgAAADCr+dksAAAAgFno\n9NNPzzXXXJOhoaGMjo7mLW95S26++ebcd999ue2225IkX/nKV/KiF70oz3zmM/PTn/40DzzwQJLk\nqquuymmnnZY1a9bksccey913350k+fznP59/+Id/6NoxAQAAAMxGet4BAAAAmIXOPPPM3H777Tn/\n/PNTq9Vyxhln5LnPfW6WLFmSv/qrv8r999+fE044IZdffnkWLFiQ97///fnDP/zDjIyM5LDDDssH\nP/jB9Pf356Mf/Wje8Y53ZGRkJKtXr86f//mf59vf/na3Dw8AAABg1ihKfRoDAAAAzAkPPPBALrro\nonz3u9/tdigAAAAANPnZLAAAAAAAAAAA6BI97wAAAAAAAAAAQJfoeQcAAAAAAAAAALpE8g4AAAAA\nAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAAAAAAANAlkncAAAAAAAAAAKBLJO8AAAAAAAAAAECX/P/F\nN2YK5ZjUdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0034859505006226755" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error did not improve\n", + "Epoch 00001: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00016677183302817866\n", + "Epoch 00026: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "lr changed to 0.00015009464841568844\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.0001350851875031367\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00012157666351413355\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "lr changed to 0.00010941899454337544\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "lr changed to 9.847709443420172e-05\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "lr changed to 8.862938630045391e-05\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "lr changed to 7.976644701557234e-05\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "lr changed to 7.178980231401511e-05\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "lr changed to 6.461082011810504e-05\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "lr changed to 5.8149741380475466e-05\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "lr changed to 5.233476658759173e-05\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "lr changed to 4.7101289601414466e-05\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "lr changed to 4.239116096869111e-05\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "lr changed to 3.815204618149437e-05\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "lr changed to 3.4336842873017304e-05\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "lr changed to 3.0903160222806036e-05\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "lr changed to 2.7812844200525434e-05\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "lr changed to 2.5031560107890984e-05\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "lr changed to 2.2528404588229024e-05\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3GcnJHmRvkjACJGyQEQcuHIgbtI66WrX1\n1jraqq1eOxy3VmuvvVrroHUV3FtcKEjYKySBQAYGsvceJ2fcPwJHIgFZ4SQnr+fjwSPnnN/v+zuf\nk8DnnId5+/kanE6nUwAAAAAAAAAAAAAAAAAGHaO7CwAAAAAAAAAAAAAAAABwdAj/AAAAAAAAAAAA\nAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAAAACAQYrw\nDwAAAAAAAAAAAAAAADBIEf4BAAAAAAAYYkpLSzV69GiNHj1aDzzwgLvLAQAAAAAAwDEg/AMAAAAA\nAAAAAAAAAAAMUoR/AAAAAAAAAAAAAAAAgEGK8A8AAAAAAAAAAAAAAAAwSBH+AQAAAAAAAAAAAAAA\nAAYpwj8AAAAAAAAAAAAAAADAIGV2dwEAAAAAAAAYeAoKCvTqq69q7dq1qqyslNPpVGRkpKZNm6Yr\nr7xS6enpB11rs9n0/vvv6+OPP9a2bdvU1NQkf39/xcbGasaMGbryyiuVlJR03NcCAAAAAAAMRQan\n0+l0dxEAAAAAAAA4cUpLS3XGGWdIkhYuXKg//OEPrmNOp1OPP/64XnjhBTkcjj7XGwwGXXXVVbr3\n3ntlNvf+f8taWlr005/+VJs2bTro85tMJv32t7/VVVddddzWAgAAAAAADFVM/gEAAAAAAIDLww8/\nrJdeekmSFBoaquuuu05TpkyR0WjU1q1b9eKLL6q6ulqvvPKK2tra9Oijj/Za/8gjj7jCO5dddpnO\nOusshYWFqampSevWrdPLL7+s9vZ2/elPf9KUKVOUlpZ2XNYCAAAAAAAMVYR/AAAAAAAAIEnauHGj\nK/iTnJysl156SZGRka7jU6ZM0cUXX6wbbrhBeXl5euedd3T66afr7LPPliRZrVZ98MEHkqTLL79c\nf/rTn3pdPzMzU1OmTNFPf/pTORwOvfHGG7r//vuPeS0AAAAAAMBQRvgHAAAAAAAAkqQXXnjBdfvP\nf/5zr+DPPiEhIXryySd1zjnnyG6367nnnnOFf5qbm2W1WiVJSUlJfT7HqaeeqmuuuUbBwcEaP368\n6/FjWQsAAAAAADCUEf4BAAAAAACAbDab1qxZI0kaN27cIcM1iYmJyszM1PLly5WTk6OGhgaFhoYq\nLCxMISEhamxs1LPPPqvw8HCde+658vHx6bX+d7/73QHXPJa1AAAAAAAAQ5nR3QUAAAAAAADA/crL\ny9XW1iZJmjBhwg+ev+8cp9OpgoICSZLBYNBNN90kSWppadE999yj6dOn64YbbtBzzz2n7du3y+l0\n9nm9Y1kLAAAAAAAwlDH5BwAAAAAAAGpsbHTdDgsL+8Hzw8PDXbebmppct3/yk5/I4XDo6aefVmdn\np7q6upSVlaWsrCz95S9/UWRkpObOnavrrrtO8fHxva55LGsBAAAAAACGKib/AAAAAAAA4Iin6tjt\ndtdtg8HQ69jNN9+sFStW6KGHHtIZZ5whf39/17Hq6mq9/PLLOu+887Rs2bIDrnssawEAAAAAAIYi\nJv8AAAAAAABAwcHBrtt1dXU/eP7+54SEhPR5vcsuu0yXXXaZbDabcnJylJWVpaVLl6qgoEBdXV26\n5557tGzZMgUEBBy3tQAAAAAAAEMNk38AAAAAAACghIQE+fn5SZKys7N/8PwtW7a4bicnJ7tuV1ZW\natWqVbLZbK7HzGazJk2apNtuu00ffPCB5s6dK6lnu7CNGzcel7UAAAAAAABDFeEfAAAAAAAAyGQy\nacaMGZKkvLw85ebmHvTckpISrV69WpKUlpamsLAwSdLTTz+tU089Vddff73Wr1/f51qDwaCTTz7Z\ndd9qtR7zWgAAAAAAgKGM8A8AAAAAAAAkSddff73r9q9//WvV1tYecE5TU5PuuOMO2e12SdINN9zg\nOjZnzhzX7SeeeEJdXV0HrHc4HPr4448lSUajUWPHjj3mtQAAAAAAAEOZ2d0FAAAAAAAAYGCYPn26\nrrnmGr388ssqKirS/Pnz9eMf/1hTpkyRwWBQTk6OFi1apMrKSknSvHnzdOGFF7rWjxkzRnPnztWn\nn36qrVu3av78+br22muVkpIiLy8vlZaWavHixdq8ebMk6eKLL1ZcXNwxrwUAAAAAABjKDE6n0+nu\nIgAAAAAAAHDilJaW6owzzpAkLVy4UH/4wx9cxxwOhx577DEtWrRIB/vPRgaDQdddd53uuusueXl5\n9TrW0tKiW265RRs2bDhkDWeffbYef/xxeXt7H5e1AAAAAAAAQxXhHwAAAAAAgCHmUOGfffLz8/Xa\na69p7dq1qqqqktFoVGxsrE466SRdfvnlSktLO+j1HQ6HPvzwQ3388cfavn276urqZDKZFB4ersmT\nJ+vCCy9UZmbmcV8LAAAAAAAwFBH+AQAAAAAAAAAAAAAAAAYpo7sLAAAAAAAAAAAAAAAAAHB0CP8A\nAAAAAAAAAAAAAAAAgxThHwAAAAAAAAAAAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAA\nAAAAAIBByuzuAgaCmpoWd5eA7wkN9VNDQ7u7ywCA447+BsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0N\nQEREYJ+PM/kHA5LZbHJ3CQDQL+hvADwV/Q2AJ6PHAfBU9DcAnor+BsBT0d8AHAzhHwAAAAAAAAAA\nAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAAAAAAAIBBivAPAAAAAAAAAAAAAAAAMEgR\n/gEAAAAAAAAAAAAAAAAGKcI/AAAAAAAAAAAAAAAAwCBF+AcAAAAAAAAAAAAAAAAYpAj/AAAAAAAA\nAAAAAAAAAINUv4V/HA6HHnjgAS1cuFDXXHONSkpKeh1ftmyZLr30Ui1cuFCvv/76IdeUlJToyiuv\n1I9+9CP993//txwOh+s69fX1mjt3rrq6uiRJLS0tuuWWW3T11Vdr4cKF2rx5c3+9RAAAAAAAAAAA\nAAAAAMCt+i3888UXX8hqtWrJkiW666679Oijj7qOdXd365FHHtGLL76ol19+WUuWLFFtbe1B1zzy\nyCP65S9/qddee01Op1NffvmlJOmbb77RDTfcoJqaGte1Fy1apBkzZuiVV17RI488oj/84Q/99RIB\nAAAAAAAAAAAAAAAAt+q38M/GjRt18sknS5ImTpyo3Nxc17GioiIlJiYqODhY3t7emjJlitavX3/Q\nNXl5eZo+fbok6ZRTTtGqVat6ijcatWjRIoWEhLiufd111+mKK66QJNntdlkslv56iQAAAAAAAAAA\nAAAAAIBbmfvrwq2trQoICHDdN5lMstlsMpvNam1tVWBgoOuYv7+/WltbD7rG6XTKYDC4zm1paZEk\nzZ49+4DnDQoKkiTV1NToV7/6le67774frDU01E9ms+noXij6TURE4A+fBACDEP0NgKeivwHwZPQ4\nAJ6K/gbAU9HfAHgq+huAvvRb+CcgIEBtbW2u+w6HQ2azuc9jbW1tCgwMPOgao9HY69x9AZ+D2bFj\nh+688079+te/dk0MOpSGhvbDfl04MSIiAlVT0+LuMgDguKO/AfBU9DcAnoweB8BT0d8AeCr6GwBP\nRX8DcLAAYL9t+zV58mStWLFCkrRlyxaNGjXKdSw1NVUlJSVqbGyU1WrVhg0bNGnSpIOuGTt2rNau\nXStJWrFihaZOnXrQ5y0sLNTtt9+uxx9/XKeeemp/vTwAAAAAAAAAAAAAAADA7fpt8s9ZZ52lrKws\nXXHFFXI6nXr44Yf1wQcfqL29XQsXLtQ999yjG2+8UU6nU5deeqmioqL6XCNJv/nNb3T//ffriSee\nUEpKiubOnXvQ53388cdltVr10EMPSeqZMvTMM8/018sEAAAAAAAAAAAAAAAA3MbgdDqd7i7C3RiN\nNvAwsg6Ap6K/AfBU9DcAnoweB8BT0d8AeCr6GwBPRX8DcMK3/QIAAAAAAAAAAAAAAADQvwj/AAAA\nAAAAAAAAAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAA\nAACAQYrwDwAAAAAAAAAAAAAAADBIEf7BgPPhqm91x5PL1dTa5e5SAAAAAAAAAAAAAAAABjTCPxhw\nLN4mFe5p1JNvbFVHl83d5QAAAAAAAAAAAAAAAAxYhH8w4Jw5JV5zZySppKpFz7ybK5vd4e6SAAAA\nAAAAAAAAAAAABiTCPxhwDAaDbr1kvManhil3V73+vTRfTqfzsNYWFhb0c3WHdtttP1Vm5lSdfvos\nt9YBAAAAAAAAAAAAAACGBsI/GJBMJqNuvTBdyTGBysqp1Lvf7Drk+a2trXryyb/oxhuvPkEVAgAA\nAAAAAAAAAAAAuB/hHwxYFm+Tbr9sgiJDfPXBqm/19Zayg5771FNP6M03F8tut5/ACgEAAAAAAAAA\nAAAAANzL7O4CgEMJ8vfWHQsn6KGXNurlT3coJMCiiSPCDzjP4XC4oboD/f3v/3R3CQAAAAAAAAAA\nAAAAYAhh8g8GvKhQP91++Xh5mYz6x3u5Ki5vdndJAAAAAAAAAAAAAAAAAwLhHwwKqbHBuuWidHXb\nHHryjWxVNbS7uyQAAAAAAAAAAAAAAAC3Y9svDBoTR4Trmrmj9dLSHfrrkmzdd80UvbF4kRYteq7X\neZmZU3vOnzhZf//7P/XQQw/qk08+1IgRo/T88y/pueee0dKlH6qlpUVhYRGaM+cM/exnv3Ct7+rq\n0qeffqzVq7NUULBDTU2NstlsCgwMUnJyqmbPztQFF1wsX1/fA2q87bafasuWTfL29tayZav6rOsX\nv7hTCxb8SMuXL9MHH7yrnTt3qKWlWaGhwzR58lQtWHClRo1KO97fPgAAAAAAAAAAAAAA4IEI/2BQ\nOW1inOqbu/Thqm/1tzezFWV3HtH6P/7xAX355Weu+xUVZfLx8XHd37EjX/fee5eqq6sOWFtfX6f6\n+jpt3LhOb7/9pp566h+KiIg84tdgtzv0+9//Tp9/vrTX49XVVVq69CN99tknuvvuezV//sVHfG0A\nAAAAAAAAAAAAADC0EP7BoHPxyclqaOlUVk6lvKLH6vkXXtGiF59VVtY3kqRFi16VJPn6+vVaV1xc\nqMLCncrImKBrrrlePj4+ysr6RuedN1+S1NTUqDvu+Lmam5tkMpl03nkXaNasTIWGhqmlpUkFBTv1\n+uuvqbGxUaWlu/X3vz+p3//+4SOuf/Hil1VXV6fhw5O1YMGPlJo6Ui0tzXr3vXe18ptlcjgc+utf\nH9P06TMVHR19jN8tAAAAAAAAAAAAAADgyQj/YNAxGAz68Tlpamq1KndXvdYUS4GBQa7jI0eO7nOd\nw+FQXFy8nnzy/2Sx9Ez7mTx5quv4kiWvqbm5SZL085/frgULftRr/cyZmTr33Hm65poFam1t1Tff\nLJfNZpPZfGT/jOrq6jRlynT9+c9/lcVikSRtLqhRa+Q8BSe1q6lkjbq7rfrz06/o9p/drKTowCO6\nPgAAAAAAAAAAAAAAGDqM7i4AOBpmk1G3XpSupKhArcguV2lN62GtO/fcea7gz/fV1tYoPDxCYWFh\nuuSSBX2eExERqUmTpkiSrNYuV1joSP3yl3fLYrHI7nDoja8L9dRbOeq2O3Tlgu+ed3t+vn7/r/V6\ncNE6fbWpVO2dtqN6LgAAAAAAAAAAAAAA4LmY/HMCvb6sUOvzq91dxgk1LS1SC04f0S/X9rWY9cvL\nx+uhlzcqd8vhhX/Gjcs46LH77vtvST0TgozGg+fihg0Lc922WrsPs9rvREREKjk5RY2tXfrHe3na\nuadRkaG++tlF6QoPNOofj/WclxRh0dgR4dpaVKeXP9upJV8ValpapE6ZEKsRccEyGAxH/NwAAAAA\nAAAAAAAAAMCzEP7BoBYcYNEdCybo5pWHN8QqKirqB8/ZF/yx2WyqrKxQeXmZ9uwpUVFRofLyclRU\nVOg61+l0HHHN0dExyi9p0D/ez1Nzm1VTRkXo+vPGyM/HLKfT6TrP38ekX1w2Xg0tXcrKqdCK7HJl\n5VQqK6dSseH+OmV8jGamRyvQz/uIawAAAAAAAAAAAAAAAJ6B8M8JtOD0Ef02BWcoiwnz15ikUGWV\n9NzfVdGs5JigPs/18ws45LU6Ozv19ttv6IsvlqqoqFB2u/2Ac4xGoxyOIw/97NPaZdBjizfLaDDo\nitNH6KxpCa4pPvtP89kXBAoNtGjerOE6b2aS8ksatCK7XJt21mjxskK9ubxIk0dF6JQJsUpLCpWR\naUAAAAAAAAAAAAAAAAwphH/gEYL8v5t+87c3snXftVMVGeJ7wHmHysaUl5fpzjtvU2npHtdjXl5e\nSkhIVFJSskaPTtPEiVP06acf65133jjqWqsa2pURYNGtF6ZrRHzwYa8zGgwaO3yYxg4fppZ2q1bn\nVmp5drnWba/Wuu3Vigjx0cnjY5U5PkYhAZajrg8AAAAAAAAAAAAAAAwehH/gcZrbu/XXJVt03zVT\njmhLrAcf/K0r+HPmmXN12WULlZY2VmZz738m77331hHXtKui2XU7wNdL/339NAUdw3ZdgX7eOnt6\nos6alqDCsiatyC7X+u3VentFsd79ZpfGp4bplImxykgZJpPx8LZEAwAAAAAAAAAAAAAAgw/hH3ic\nc2ck6pM1u/W/b27V3VdOOqw1+fnbtG1briRp8uSpevDBhw56blVV5WHX4nQ69fXmMv3nywLXY8Oj\nA48p+LM/g8GgkfEhGhkfoivPGKW123qmAW0prNWWwlqFBlo0OyNGp4yPUXgfk5AAAAAAAAAAAAAA\nAMDgRvgHHsGw335el56aqoaWLq3Jq9I/38+T0+n8wfX7b/U1evSYg55XUVGunJxs13273X7Qczut\nNr306Q6tyatSgK/X/tX+YD1Hw8/HrDmT4zVncrxKKlu0PLtca/Iq9eGqb/XRqm81NnmYTpkQq0kj\nw2U2MQ0IAAAAAAAAAAAAAABPQPgHHsHb+7tJOp0dHbrhvDFqarVqc0GtVN58iJU9goNDXLc3bFgr\nm812wHZfdXW1uv/+e9Td3e16zGq19nk9p1P64783qKKuXamxQbr1onTNf+NIX9XRS4oO1LXRo7Vw\nzgitz6/Wiuxy5e2qV96uegX6eWl2eoxOnhCjmDD/E1cUAAAAAAAAAAAAAAA47gj/wCOEhYW7bv/z\nn/+nc845X3PTvdXSHqANW9p/cP348RMVFhauurpaFRTs1O2336pLLlmg6OgYNTc3acuWTfroo/fU\n2NjYa11bW2uf17PZHaqoa9eZU+O1YM4It03asXiblDk+RpnjY1RW26Zvssu1KrdSS9ft1tJ1uzUq\nPlinTIzV1NGR8vYyuaVGuIfT6VR1Q4dCAiyyePOzBwAAAAAAAAAAAIDBivAPPEJm5in617+el91u\n15tvLtGbby5RVFS0nv/XW7r+6x8ONlgsFt1//x/0m9/coa6uLmVnb1Z29uYDzktISNS8eRfqmWee\nkiTt2lWsjIwJkqRum0NVDR2uc2+9KF3T0iKP0ys8dnHh/rrijJG69NRUbS6o0fIt5dpe0qCdpU16\n9fMCzRwXpQkjwpUQGaBgf+9eW6nBc9Q3d2p1XqVW5Vaqoq5dZpNRaUkhmpAarvGpYYoI8XV3iQAA\nAAAAAAAAAACAI0D4Bx5h5MjRevTRx/Xvf7+ooqJCORx2mc1m+Xo5NW74MC3f1XPejt2NmrXflKD9\nTZ06XYsWvar//OcVbdiwXrW11ZJ6tgRLTk7RnDlnau7cc2W327Vo0XPq7OzUsmWfa/78i1Xb2KFn\n3stVY0uXJMlsMg6o4M/+vMxGTR8TpeljolTd2KFvssu1MqdCyzaVadmmMklSgK+XEiIDlBAZoPiI\nnq+x4X7yMjMhZjDqstq1aWeNsnIrtP3bBjnV83d00shw1TR2Kre4XrnF9Xr1cyk23F/jU8M0ITVM\nqXHBbptaBQAAAAAAAAAAAAA4PAan0+l0dxHuVlPT4u4S8D0REYHH9eeyY3eDHl+yRWaTUfdcNVmJ\nUYHH7drZhbV6/sNtauu0aVZ6tK6ZO1qWQbaFlt3hUN6uehWXN6u0pk17qltU09jZ6xyjwaDoMD/F\nR/j3CgaFBlqYEjQAOZxO7dzdqFW5lVq/o1pdVrskaURcsGZlRGt6WqT8fLwkSXVNndpaXKethbXa\nXtIgq80hSfKzmJWeMkwTUsOVnjJMgX7ebns9nuR49zcAGCjobwA8GT0OgKeivwHwVPQ3AJ6K/gYg\nIqLvrAPhHxH+GYj6441rfX61/vFuroL8vfXba6coPPjYtjeyOxx695td+mh1icwmo646a6ROmRDr\nMUGYji6bymrbtKe6VaXVrdpT0/O1c2+IZB9/H7NrOlB85L4pQf6DLgDlKaoa2rUqp1Kr8ypV29QT\n4AoLsmhmeoxmp0crapjfIddbu+3K392g7KKeMFBdc880K4OklLgg1/ZgCZEBHvN3/UTjgzkAT0V/\nA+DJ6HEAPBX9DYCnor8B8FT0NwCEfw6BBjnw9Ncb12fr92jxlwWKCfPTvVdPUYCv11Fdp6nNqmff\ny1X+7kZFhPjoZxdlKCn6+E0TGqgcTqfqmjp7wkD7BYKqGzq0fyMxGKSoUD9XGCghIkDxkf4KC/Ih\nMNIP2jttWp9fpazcShWWNkmSLF4mTU2L0Oz0GI1KDJHxKL7vTqdTZbVt2lpUp+zCWhWWNWnfO0Zo\noEUTUsM0PjVcY4aHEvY6AnwwB+Cp6G8APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgB57+fONa/GWB\nPlu/RyPjg3X3FRPlZT6y0MLOPY165r1cNbVaNWlkuG48f4xr+6ShqtPaMyWotLpVpdU924btqWlT\nR5et13m+FrMSIvwVv9+UoPjwAFm8CY4cKYfDqbxv65WVU6HNBbXqtjlkkJSWFKrZGdGaMiryuH9f\nWzu6lVtcp61FdcoprlNbZ8/P18tsVFpiqManhmlCapjCQ45tqpan44M5AE9FfwPgyehxADwV/Q2A\np6K/AfBU9DcAhH8OgQY58PTnG5fD6dQ/38/Tuu3VmjI6QrdemC6j8YenojidTi1dt1tvfV0sSbrs\ntFTNnZ7AJJuDcDqdqm/u6jUhqLSmVZX17dq/6xgkRYT6amR88DFNqRkqSmtatSq3Z1uvplarJClq\nmJ9mp0dr5rhohQX7nJA67A6HisqatbWoTluLalVa0+Y6Fhfu3xMEGhGu1LggmYzGE1LTYMEHcwCe\niv4GwJPR4wB4KvobAE9FfwPgqehvAAj/HAINcuDp7zeubptDTyzZoh17GnXmlHhdeebIQ4Z42ju7\n9cJH27W5oFbBAd669cJ0jUoI6bf6PFlXt13le6cE7dkbCNpT3eqaIhMe7KPZGTGanR7NBJm9Wtqt\nWrOtSqtyKlVS1fPvws9i1vSxUZqdHq2U2CC3h9BqmzqUU1Sn7KI6bS9pULfNIUny9zErPSVM41PD\nlJESdtRb7XkSPpgD8FT0NwCejB4HwFPR3wB4KvobAE9FfwNA+OcQaJADz4l442rv7NYjr2xSWW2b\nFswZoXNOSuzzvJLKFj39bo5qGjuVlhiimy9MV7C/d7/WNtQ4nE4V7GnUyq0VWr+jWtbunuBIWmKI\nZmfEaOro47+F1UBnszuUXVinVbkV2lpUJ7vDKaPBoIyUYZqdEaMJI8KOeMu6E6Wr2678kgZl750K\nVN/cJUkyGKTUuGBNSA3T+NRwxUf4uz205A58MAfgqehvADwZPQ6Ap6K/AfBU9DcAnor+BoDwzyHQ\nIAeeE/XGVd/cqYde3qiGli79dP5YzRgb7TrmdDq1Irtcr35eIJvdoXmzknRRZsphbRGGo9fRZdPG\nHTVamVOhnXsaJUkWb5OmpUUqMyNGI+ODPTYw4nQ69W1li1blVGrt9iq1dnRLkhIiAzQ7PVonjYse\ndMEzp9Opspo2ZRfVKruoTkVlTa5t34wGg/x8zPL39VKAj1l+Pl7y9zXL38dL/j57v7ruf3fbz8cs\ns2nwbiXGB3MAnor+BsCT0eMAeCr6GwBPRX8D4KnobwAI/xwCDXLgOZFvXKXVrXrk1Y2ydjt058KJ\nGpMUqi6rXS9/tkOrcivl72PWTfPGasKI8BNSD75T3dCuVbmVysqpVF1zpyQpMsRXszOiNSs9RmHB\nPm6u8PhoaOnSmrxKZeVWqry2TZIU5OelGeOiNSs9WolRfTfwwai1o1s5xXXKKa5TTWOH2jttauvo\nVlunTXbH4b8dWbxN3wWG9gaI/HvdNn/vfk9oyMfb5PbwGB/MAXgq+hsAT0aPA+Cp6G8APBX9DYCn\nor8BIPxzCDTIgedEv3FtL2nQE0u2yNvLqBvOG6N3V+5SWU2bkmMCdetF6QoP9j1hteBADqdTO0oa\ntDKnUht3VMtqc8ggaczwUM3OiNHkURGyeA3MLbD60mm16duKFu2qaNa2kgZt+7ZeTqdkNhk0cUS4\nZmXEKD152KCebnOknE6nurrtauuwqa2zJwzUEwrqVnunTa2d3WrrsKm917Geczut9sN+HpPRIH8f\ns0ICLUqMDFRiVIASowKVEBkgX4u5H1/hd/hgDsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0NAOGfQ6BB\nDjzueONas61S/3x/m+v+6ZPjtPD0kfIyD50AxmDQ0WXT+vxqZeVUqKC0SZLkazFpWlqUMjNilBoX\n5PbJLvuzOxwqq2nTropmFZc3q7iiWeW1bdq/86bGBmlWRoympUUqwNfLfcUOUja7Q+1d+wWCOvYP\nDPXcdgWKOrvV2mFTfXOnum0O1zUMkiJDfZUY1RMISooKVGJUoIL6YZs1PpgD8FT0NwCejB4HwFPR\n3wB4KvobAE9FfwNwsPDPiRlzAAwCM8ZGq6W9W0vX7tblc1I1Y2y0u0tCH3wtZp0yIVanTIhVVX27\nsnIrlJXrgoKdAAAgAElEQVRTqRXZ5VqRXa6oYX7KzIjWzHHRGhZ0YrcFczqdqm/uUnFFs3aVN6u4\nvEnfVrXI2v1dyMTby6iRccFKiQ1WcmyQUmODTnidnsZsMirIz1tBfocf1LE7HKqsa9fuqlaVVLVo\nd1WLdle1an1+tdbnV7vOCwnw3hsIClTS3ilB4cE+Aypg9kOcTqc6umxqaOlSV7dDw6MDZTQOnvoB\nAAAAAAAAAAAAHBqTf8Tkn4GI1CqOhMPh1PaSBmXlVGjjzhp12xwyGKRxw4dpdkaMJo0Ml3c/bAvW\n3tmtXZUtKi7fG/apaFZzm9V13GCQ4sL9lRwTpJTYICXHBCkuwl8mI9OkBiKn06m6pk6VVLXuDQO1\naHd1qxpaunqd52cxu7YL2/c1JszvsH+ux7O/OZxOtbZ3q6GlS/UtnWps6VJ9S5cavvenq/u7rdEm\nj4rQzfPHMdUMwHHH5zcAnoweB8BT0d8AeCr6GwBPRX8DwOQfAB7LaDRoXPIwjUsepvZOm9blVykr\np0K5u+qVu6tevhazThoTqdnjY5QSc3TbgtnsDu2pbnVt37WrolkVde29zgkNtGjK6Ail7A37JEYF\nytdCmx0sDAaDwkN8FR7iqymjI1yPN7dbXZOB9n3dsbtR+bsbXed4mY2Kj/BXQuR3E4LiIwNkOYbQ\nmd3hUFOr1RXg6Qn1dPYK9TS2dslmP3iGN8DXS1GhvgoJtGhYoEWlNW3atLNGT729VbddnNEvoTgA\nAAAAAAAAAAAAJxaTf8Tkn4GI1CqOh4q6NmXlVGpVboUaW3sm8sSE+Wl2RoxmjotWaKClz3VOp1M1\njR0q3hf0KW9WSVWrbPbvtu/y8TYpOSao11Sfg10PnqfTalNpdVuvLcPKalt7BXEMBil6mJ+S9m4b\ntm9KUHLiMJVXNPYK9Rw4sadTTW1WHewd2mCQQgIsCgnoCfWEfv9PkI9CA7zlZe4d7rF22/X0u7na\nWlSntMQQ/del4wmoAThu+PwGwJPR4wB4KvobAE9FfwPgqehvAA42+Yfwjwj/DES8ceF4cjic2vZt\nvVbmVGjTzlrZ7D3bgqUnh2l2RrRGJYRod1XvqT6tHd2u9UaDQfGR/kqJDVZyTKBSYoMVM8xPRuOR\nTxCC57LZHSqvbdtvQlDPtmGdVnuv8/x9zGrrtB30OmaT4btQT5CPQgMODPcEB3gf9fZxNrtDz76f\np407apQaG6RfLpggfx+vo7oWAOyPz28APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgBx7euNBf2jq7\ntW57tVZurdCuiuY+zwkP9lFKbJBSYoKUvHf7rmPZvglDl2PvFKl9gaCSqhY1t3fL32LeG+6xKDRw\nv4BPkEWBvl5HtTXdkbA7HHrxo3ytzqtUYmSA7rxiooL8vPv1OQF4Pj6/AfBk9DgAnor+BsBT0d8A\neCr6G4CDhX/Y6wPAkOLv46U5k+I0Z1KcymrblJVTocq6diVEBri27wryJwSB48NoMCgq1E9RoX6a\nlhYpaWB8MDcZjbpx3hhZvE36enOZ/ufVTbr7iklsXQcAAAAAAAAAAAAMQoR/AAxZceH+WjBnhLvL\nANzCaDDomrNHydts1Gfr9+jRVzfqV1dMUniIr7tLAwAAAAAAAAAAAHAEjO4uAAAAuIfBYNDC00do\n/uzhqmns1KOvbVJlfbu7ywIAAAAAAAAAAABwBJj8AwDAEGYwGHTRySmyeJn0xtdFevTVTbp74UTF\nRwa4u7Tjwul0asOOGpVUtsjhdMrhcMru2O/r3se+f3//c5zOvtcc+hy5bgf4mnXS2ChlZsQoLsIz\nvq8AAAAAAAAAAAAYOAj/wKMUFhZoxIiR7i6jTxUV5QoODpafn7+7SwGAA5w7I0neXia9+vlO/c9r\nm3TnwolKjglyd1nHpKGlS/9emq+tRXXHfC2DQTIZDTIaDT1fDT2397/v7WX87pz9jlfVt+vTdXv0\n6bo9So4JVGZGjKaPjZK/j9dxeJUAAAAAAAAAAAAY6gj/wCO0trbq+ef/oXfeeUPLl691dzm9WK1W\nvfrqv/XKK//SK6+8QfgHwIB1xpR4WbxMWvTJdj32n8365eUTNCohxN1lHTGn06k1eVV69fOdau+y\naezwUM2bOVzeXiZXOMdoNMjYK9Bj7OOxfecZZDAYjrqebptD2YW1WplToZziOu2qaNF/vizU5FHh\nysyI0djhw2Q0Hv31AQAAAAAAAAAAMLQR/oFHeOqpJ/TRR++7u4w+vfbaS3rhhWfdXQYAHJbM8THy\n9jLquQ+26YnXt+i/Lh2vccOHubusw9bUZtVLS/O1uaBWFi+Trpk7WqdNjD2m8M6x8jIbNTUtUlPT\nItXQ0qXVeZVaubVC67ZXa932aoUGWjQrPVqZGTGKGubntjoBAAAAAAAAAAAwOBH+gUdwOBzuLuGg\n7Ha7u0sAgCMyfUyUvM0mPf1ujv72xlb97KJ0TRwZ7u6yftC67VV65bOdau3o1uiEEF1//hhFhvi6\nu6xeQgMtOm9Gks49KVHF5c1amVOhddur9NHqEn20ukQj4oOVmRGjaWmR8rXwMQ0AAAAAAAAAAAA/\njN8qAQCAA0wcGa7bL5+gp97aqv97J0c/uWCspo+JcndZfWppt+qVz3ZqfX61vM1GXXnmSJ0xJV5G\nN077+SEGg0GpccFKjQvWFWeM1KadNcrKqdD2bxtUWNqk177YqamjI5WZEaNRiSED+rUAAAAAAAAA\nAADAvQj/AACAPo0bPkx3Lpiov72ZrWffz5O126HM8THuLquXTTtr9NLSfDW3d2tEXLBuOH+MogfZ\n1lkWL5NmjovWzHHRqm3q0KrcSmXlVGhVbqVW5VYqPNhHmRkxmpUerfABNskIAAAAAAAAAAAA7mdw\nOp1OdxfhbjU1Le4uAd8TERF4WD+XF154VosWPdfnsYkTJ+vvf/9nr8fWrl2tjz9+X7m5OWpoqJe3\nt0Xx8QmaOXO2Lr10oUJCQg76XDU11Xr77Te0du1q7dmzWzZbt4KCgpWaOlKzZ5+sefPmy2LxcZ3/\n8ccf6OGHf9/ntaKjY/Tmmx/84OsD4HkOt78NJLsqmvXEki1q67Tp6rNH6fTJ8e4uSW2d3Xrt851a\nnVcls8moS05J0dnTEmQ0esaEHIfTqYI9jVq5tULrd1TL2t2zveWYpFBlZsRo8ugIWbxMbq4S6G0w\n9jcAOFz0OACeiv4GwFPR3wB4KvobgIiIwD4fZ/IPhoSOjg798Y8PaMWKr3o9brValZ+/Tfn52/T6\n66/p/vv/qMzMUw5Yv3Hjet13391qa2vr9XhdXa3q6mq1bt1q/ec/L+uJJ/6uxMSkfn0tAHCiJccE\n6Tc/mqy/LNmiVz7bqa5uu849yX29bmtRrRZ9kq+mVquSYwJ14/ljFRvu77Z6+oPRYNDoxFCNTgzV\nj84apQ07qpW1tULbSxq0vaRBvp+bNC0tSpkZMUqNC5KBbcEGjPZOmyrq2mR3OOVwOGV37v3qcMq5\n96vD6fzu+N77rtuO793+/rl7r+n83v19x30tZs0cG6W0pFD+XgAAAAAAAAAAMEQw+UdM/hmIDje1\nWldXq/r6Oj3//D+UlfWNJGnRolclSb6+foqPT5DD4dAdd/xcGzeulyTNmnWy5s49TzExMWpvb9fG\njev1zjtvqLW1VSaTSY8//pSmTp3ueo6WlhYtXHiRmpubFBISqquu+rHGjBkrb29vVVVV6qOP3tea\nNaskSaNHj9Hzz78kg8Gg5uYmVVVV6t1339J7770tSXrssScVHh4hs9lLyckpx/V7BmBwGMyp/Mr6\ndj32n81qaOnS/NnDdWFm8gkNF7R32rR4WYFWbq2QyWjQhZnJOndGokxG4wmrwd2qGtqVlVOhrJxK\nNbR0SZKih/lpdka0ZqXHKDTQ4uYKh7ac4jo9/+E2tbR3u7sURQ3z06kTYpU5PkYBvl4n5DkHc38D\ngB9CjwPgqehvADwV/Q2Ap6K/AWDyDzxSWFi4wsLCFRQU7Hps5MjRvc55883FruDP3Xffq4suurTX\n8alTp2vevAv1s5/dqLq6Oj388O/1+uvvyWzu+eexcuVyNTc3SZIefvgxjR8/0bV27Nh0zZlzpu6/\n/x599dUX2rFju3bsyFda2hgFBQUrKChYw4aFuc4fPjxFMTGxx/ebAAAnSPQwP9171WQ9tniz3s/6\nVl3ddi2YM+KEBIDydtVr0SfbVd/cpcSoAN10/ljFRwb0+/MONFGhfrrklFRdlJmi7SUNWplToY07\navTW8mK9vaJY6clhyhwfo4kjwuVlHjqhKHez2R16e0Wxlq7dLbPJoNMnx8nPxyyjwSCj0SCTce/X\n790/4Ph+jx/w2EEe33fNfX8q69q1fEuZ1ufX6PWvCvX2imJNTYvQaRPjNDI+mGlAAAAAAAAAAAB4\nIMI/8GgOh0OLF/dMApoxY9YBwZ994uLidcst/6WHHnpQ1dVVWr58mc4442xJPdOF9klISOxz/bXX\nXq/g4BDFxsYpMLDvpB0AeILwEF/dc9UU/WXxZn26bo+6uh26+uxRMvZToKCjy6Y3virU11vKZTIa\nNH/2cM2bNVxm09AOthiNBo1LHqZxycPU3tmttdurtXJrhXKK65RTXCd/H7NOGhulmenRSogIkLeX\nyd0le6yaxg49+36eisubFRXqq1suTFdStPs+CwT5eWtUQoiuPLNbWTkV+npLudbkVWlNXpViw/11\n6sRYzU6Plp/PiZkGBAAAAAAAAAAA+h/hnxPo7cIPtbk6x91lnFCTIjN0yYh5bnv+oqICVVdXSZKm\nTTvpkOfOmDHLdXvDhvWu8E9S0nDX4/fd9yv94hd3asyYcb3Wjhw5Wnfffc9xqhoABrbQQIt+c9Vk\nPbF4i77eXKYuq103nJ923Lffyi9p0Isfb1dtU6fiIvx10/lj3RqqGKj8fLw0Z1Kc5kyKU1lNq7Jy\nKrUqr1LLNpVp2aYySVJIgLciQ3wVEeq731c/RYb6nrAtoTzRhvxqLfokXx1dNs0cF6Wrzx4tX8vA\n+Hgd4OuludMTdfa0BO3Y3aivt5Rp444a/eeLAr31dZGmjYnUaZPilBITxDQgAAAAAAAAAAAGuYHx\n2wmgn+zcucN1+6mn/qqnnvrrYa0rLy9z3Z45M1OpqSNVVFSgnJxs/eQnP1Z4eISmTTtJU6dO17Rp\nJ/Xa2gsAhoIgP2/96keT9NfXs7U6r1LdNrt+On/ccZnI09Vt15tfF+nLjaUyGKTzZyZp/uxktrE6\nDHERAVpw+ghdelqKcorrtbWwVlUNHapu6FBBWZN2ljYdsMbPYnaFgiJDfRUR8t3tkEBLv011Gsys\n3XYtXlaorzeXydvLqBvOG6PZGdEDMkRjMBiUlhSqtKRQNbdZtTKnQsu3lCkrp1JZOZVKiAzQaZPi\nNGNs1IAJLgEAAAAAAAAAgCPDf+E/gS4ZMc+tU3CGoqamxqNa19LS7LptNpv1+OP/q0cf/aPWrFkl\nSaqtrdEnn3yoTz75UAaDQWPGjNM555yvCy64SF5eTFAAMDT4+3jproUT9b9vbtWGHTWyvp2jn12U\nfkxbTBWUNuqFj7aruqFDMWF+uvH8sUqJDTqOVQ8NJqNRE0eEa+KIcNdjNrtDtU2dqm7oUE1jx3df\nGztUVtOmksqWA65jNhkVEeLTKxC0LyAUHuw7JANZFXVteubdPJXWtCo+wl+3XJiu2HB/d5d1WIL8\nvXXejCSdc1Kitn1br+Wby7W5oFYvf7pDry8r1IxxUTptYhwTtgAAAAAAAAAAGGQI/8Cj2e121+27\n7rpH6ekZh7XOYrH0uh8eHqG//OV/VVxcqK+++lKrV2dp5858ORwOOZ1ObduWq23bcvXee2/rb397\nRiEhIcf1dQDAQOVrMeuXCybo/97J0daiOj35RrZ+cdl4+Xgf2UeMbptd76zYpU/X7ZYkzZ2eoItP\nTjmmIBF6M5uMih7mp+hhfgccczidamzpcoWCqht7B4Qq6toPWGOQNCzI0hMM2jcxKNSvZ1uxEF/5\n+XjWx0yn06msnEq98vkOWbsdmjMpTgtPHzEo/44aDQalJ4cpPTlMDS1dWrm1XCuyy7V8S8+f4dGB\nOm1SnE4aEyWL9+B7fQAAAAAAAAAADDWe9VsZ4HsCA7+bFuHvH6CRI0cf0/VSUkYoJWWEbrzxZjU3\nN2vz5g1as2aVvvrqC7W2tqqoqEDPPPO/uvfeB461dAAYNCxeJv3XJeP17Pt52rSzRo8v2aI7Lp8g\nP5/Dm4RWXN6sFz7apoq6dkWG+urG88doZDwhyhPJaDBoWJCPhgX5aHRi6AHHWzu6eweD9gsI5e9u\nVP7uAyftBfp5aea4aJ17UqKCAywHHB9MOrpseuWzHVqdVyVfi1k/u2ispqZFurus4yI00KILZifr\n/JnDlVNcp+VbypVdVKt/fZKvJcsKNHNctE6bGKf4yAB3lwoAAAAAAAAAAA6C8A88WkpKquv2tm05\nOvvscw56bkNDg9555w3FxMRqxIhRGjlylCSpu7tbe/bsltVqVVraGNf5QUFBOvXU03Xqqafrxz++\nUddd9yO1trZo1aqV/feCAGCA8jIbdetF4/TCR9u1Jq9Kf/7PZt21cKIC/bwPuqbb5tD7Wbv08ZoS\nOZ3SmVPidempqUwaGYACfL0U4Oul5JgDt2CzdttV09TZEwhqaFf13q3Edle16rP1e/T15jKdNilO\n585IUrD/wf8+DFQllS36x3u5qmroUEpskG6eP04RIb7uLuu4MxoNmjAiXBNGhKu+uVMrsnumAS3b\nVKZlm8o0Ii5Yp06M1bS0yEE57QgAAAAAAAAAAE9G+AcewWAw9Pn4mDHjFBQUrObmJn3++VLddNOt\nCgjo+/9cf+utJfrXv56XJN14482u8M/VV1+usrJSRUVF6623PuxzbXR0jJKTU5STky2rtavXMaPR\neLQvCwAGFZPRqJvmjZXFy6TlW8r1P69t1t1XTFRIH1NfSipb9MJH21Ra06bwYB/dcN4YpSUdOHEG\nA5+3l0lx4f6KC/fv9Xi3zaGVORX6cNW3PSGgLWU6fVK8zjkpUUGDIATkdDr15cZSvf5VoWx2p845\nKVGXnJIis8nz39eHBfnoopNTdMHs4courNPXW8qUV1yvwrImLf6yQLPSY3TapFjFhPn/8MUAAAAA\nAAAAAEC/8/zfXmBI8Pb+7peI7e3trtteXl669NIFkqSmpib98Y/3y2q1HrB+69Yteu21lyVJFotF\nF1xwsevYrFknS5Kqqiq1ePErfT5/Scm32rkzX5KUljau1zEvr++2venoaBcAeDKjwaBr547WWVMT\nVF7bpkdf2aTapg7XcZvdofdW7tKfXtqg0po2nTYpTr+/YTrBHw/kZTZqzqQ4PXrzTF199ij5+3hp\n6brd+vU/VumNrwrV0n7g+/FA0drRrb+/naPXviiQj7dZv7x8ghbMGTEkgj/7MxmNmjwqQncumKhH\nb5mp82cmyWQy6vMNe/Tb59bqf17dpLXbqtRtc7i7VAAAAAAAAAAAhjTTgw8++KC7i3C39gH8y6eh\nyt/fckQ/lx078rV580ZJPQGbkJBQ1dfXKSwsXOPGZWjNmlWqq6vVnj279fXXX8pkMslms6u4uEjv\nvvuWnnzyMdfEnttuu0PTpk13XTslJVUfffS+rFar1q9fq6KiAkkGtbe3a9euYn3xxaf6y18eVltb\nm4xGo+6553eKiYl1rS8rK9U333wtqSeAFBUVraqqKkVGRh37NwrAoHOk/W0wMhgMSk8eJodT2lxQ\nq407azQhNVyNLV168s1srdterZAAi35+cYbOmpogL/PQClQMNSajQckxQTp9cpyC/S36tqJZubvq\n9dWmMnVa7UqIDJBlAG0jVVjapMeXbFZxRYvSEkN01xWTNDw60N1luZ2/j5fGDh+mM6fGKz4yQG0d\n3crf3aiNO2r09eYytXR0Kz4qUAPnJwkAx9dQ+AwHYGiivwHwVPQ3AJ6K/gbA3//AHTckyeB0Op0n\nuJYBp6amxd0l4HsiIgKP6OdSULBDN910rex2u+ux/bfpampq1AMP3KuNG9cf9Bomk0k33nizrr32\nhgOObdy4Xr/97a/V2nrwmnx8fHTXXffo3HPn9Xq8trZWV155Sa+pP2azWZ9//k2vqUAAhoYj7W+D\n3Uerv9Vby4sV4Oulji6b7A6nMsfH6IrTR8rPh91Hh6Jum13Lt5TrozUlamq1yuJt0plT4jV3eqIC\nfN33vuhwOvXJmhK9s2KXnHLqwtnJmjdruIzGvrcWhVRV367lW8q1MqdCrR3dMhikOZPidOmpqfK1\n8O8bgGcZap/hAAwd9DcAnor+BsBT0d8ARET0/T8sM/lHTP4ZiI40tRoWFq60tDGqqChXS0uLTCaj\nAgICdcEFF8lsNsvHx0fnnjtPo0alyeFwqL29Xd3d3TKZzIqNjdOcOWfonnse0Jw5Z/R5/djYOJ13\n3gXy8fFVd3e3Ojs7ZbfbFBgYpKSkZJ133gX67W8f1MSJkw9Y6+fnpylTpu2trclV78knn6qgoOCj\n+wYBGLSGWip/VEKI/H3M2rizRkH+3rpl/jide1IS036GMJPRqJTYYJ0+KU6Bft7aVdGsnOJ6fbW5\nTF3ddiVEBsr7BE8Camqz6um3c7Q8u0LBAd66/bLxmp0RI4OB4M+hBPh6aVxyzzSg2DB/VTd2KLuw\nTmu3VSku3F+Rob7uLhHwKCWVLXo/61utzqtUU5tVZpNBgX7e9KoTZKh9hgMwdNDfAHgq+hsAT0V/\nA8Dkn0MgHTnwkFoF4KmGan8rq2lVaKAP035wAGu3XV9vLtPHa3eruc0qX4tJZ05J0NnTE+Tv0/+T\ngPK+rddzH2xTc5tV41PDdOP5YxTo593vz+uJQkL99OJ7Ofp49W45nPumfI2Q3wn4OQKeqtvm0IYd\n1Vq2qVRFZc0HHPe1mDUyPnjvnxAlxwQRsO0nQ/UzHADPR38D4KnobwA8Ff0NwMEm/xD+EeGfgYg3\nLgCeiv4G9K2r266vNpVp6doSNbd3y9di0llTE3T2tIR+CY/YHQ69+80ufby6REajQZedlqqzpyUw\nQeMY7OtvJf/P3p1Gt3XYd97/AQQBkgDBFdwlipv2XbItS5Fly3GS2tlaJ3HTdDKTttP2RXvOvOmZ\nvphp+5ynp9M+PXnZp5NJO5l22nniNk0TO4lTx5ZkybslkZKoheImUtwJkAAIYgfu8wIgRFkStZgU\niavv5xwKy8UFL0ngfy+An/7/iTl972eXNTwVUpnLrm9+dpP2dHhWe/OAvDITjOpE16hOdo0pGE7I\nImlHW5WO7m1UTUWJeq/7dXXEr97rAU35I7n1bAVWtdaXqmNduTqaytXeWEbwdplwDAfArKhvAMyK\n+gbArKhvAAj/LIECufaw4wJgVtQ3YGmxeErHO0f12gdDmgsnVOyw6TOPrdNz+9ct2wfYvkBU33n1\novpGAvKUF+l3v7RdLfXuZbnvR9ni+pZMpfXaB8N69Z1BJVOGnthaq1/7dAddlYAlGIahK0OzOnZ2\nVJ29XqUNQ84imz61s17P7MmEfm7HH4qpdySgq9f96r3u1/WpkBZe5Fss0jqPSx3ryrVxXbk6mspU\n7rp9W2AsjWM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JhpP6vjZUb32wbBCkYRKHDZ9\n5vFMCKjY8eAhoM6r0/qfP7us+WhSj2+p0Tc/u5muGMvkdvVt1Duv7/3ssgbGgiotKdQ3ntuoxzbX\n0GEJWCQSS+rd7gkdOzuicV9YkrS+1qVn9zbp8a21chQW3Nf9haNJ9Y9lw0AjAQ2MBZVMpXPLa8qL\n1bGuTBubMoGgmopinpP3gGM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JxpP6s0zI/r5\nB8OajyblLLLpM4+v16f3Nd1XCCiRTOufjvfpzTMjKrRZ9Wuf7tBTuxr4wHsZ3am+pdOGfnH6un54\nckCJZFp7Oqr17z67ie4jecIwDM2FE/IFo5oJRuULROULxuQLRpVIpnVga632b65Roc262puad0a9\n8zp2dkTvdk8oFk+pwGrRY1tqdHRvk9oa3MtWnxLJtK5NBHNhoN6RgCKxZG6522lXR9ONMFBTjVMF\nVv6eH8cxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+ABxOJZUJA//bhjRDQZx9fr2fvIQQ0\nORPWX/+4W8OTITVUO/W7X9qmJo/rIW35o+Nu9W1yNqz/9bMr6rnuV4nDpq9/ukMHt9cRwFplyVRa\nM3Mx+QKLwz2Z895gTDPZkM9S3CWFOrK7UU/vaVRFKaGupSRTaXX1enXs7IiuDPslSRWlDj29p1FP\n7WpQmXPlR+OlDUOj0/PZMJBfV6/75Q/Fc8uL7AVqayzTxqYybVxXrpZ6t+z32X3IjDiGA2BW1DcA\nZkV9A2BW1DcAhH+WQIFce9hxATAr6hvwyURiSb1xZkSvZ0NAruJCffbxdXp2X5OK7LeGgN67OKG/\n/7cexeIpHd5Zr197buN9j9DBvbmX+pY2DL3VOap/OtGvWDyl7a2V+vef3ayqsqKHtJWPFsMwFIkl\n5Q1ENZPt1nNzB5+oAqG47vSC0FVcqKqyIlW5i1TpdqjaXaRKd1HuumgipRNnR3Xy3JjCsaQKrBbt\n2+TRp/etU1vj8nWuMYNAKKa3zo3pROdoLmizpblCR/c2aXdH1ap22jEMQ95ANBcG6h0J5MaPSVKB\n1aIN9aXa2FSuLc0V2rKh4pHsDMQxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+A5RGOJvXG\nmet6/cPrCscyIaBfemK9ju5tksNeoFg8pX/8xVW9fWFcRfYCffNzm3Rga91qb7ap3U998wYi+vuf\n96h7cEYOe4G+9ky7juxukJWwyH1JG4b8c9lQTzbM48t261m4LhpP3XbdAqtFFaUOVWXDPJXuIlWX\nZT0bJosAACAASURBVEI+VdmQz70G5WLxlN67NKE3z4xodHpektRcV6pP72vS41tqVGh7NAN3hmGo\ndySgY2dHdKZnWqm0oSJ7gQ5tr9czexvVUO1c7U28o2A4rt7rgWwYyK+hiZDS2bcOyl12HdpRr8M7\n61VTUbLKW/rwcAwHwKyobwDMivoGwKyobwAI/yyBArn2sOMCYFbUN2B5haMJ/eL0iF7/6LoisaRK\nSwr17N4mfXB5UuO+sJrrSvW7X9qm2kfoA+rVcr/1zTAMvXNhQt9/s1fhWFKb15frP/zS5kcqTPAg\n0mlDvSN+nb4yrdNXpxRYNK5psWKHTVULQZ6yolu69pQ57bJalzdsZRiGeob9euPMiDp7p2UYme5B\nR3Y36Jk9jap0PxodnmLxlN6/NKFjZ0d1fSokSWqodurZvY06sK3urqMK16JoPKn+saDOXp3W+xcn\nFYklJUmb15fr8K4G7dvoMf1oMI7hAJgV9Q2AWVHfAJgV9Q0A4Z8lUCDXHnZcAMyK+gasjHA0odc/\nuq5fnL6uSCzT6eS5/ev0lafbVGh79MbTrIYHrW+zczH9w+s96uz1ym6z6leeatWn969b9mBKPkul\n07o67NfpnmmduTqt4Hwm8OMssmnLhkp5yjOBnoWvSneRSopWN2DiDUR0vHNUJ7vGNB9NymqxaO8m\njz69r0kdTWWmHAk2ORPW8c5RnTo/rkgs+zNvrNbRvU3atL7cND9zLJHS2Z5pnTw3pp7rfklSicOm\nA9tq9dSuBq2vvf2bD/mOYzgAZkV9A2BW1DcAZkV9A0D4ZwkUyLWHHRcAs6K+AStrPprQya4xNdW4\ntKO1arU355HySeqbYRj66MqU/uH1qwpFEmprcOtbz29Z02ORVloylVbPsF+ne6Z09uq05sIJSZlO\nOns3erR/s0eb11fIVrC2w23xRErvX5rUm2dGcl1w1te49Oy+Jj2xtTbvu8Wk04bO9/t07OyIugdn\nJElup11HdjXoyO4G03c7mpwJ69T5cb1zYVyBbCitubZUT+2q1xNba1VSVLjKW7h8OIYDYFbUNwBm\nRX0DYFbUNwCEf5ZAgVx72HEBMCvqGwCzWo76FgzH9X9+cVUfXp6SrcCiLx5q0eeeWL/mAy7LJZlK\n6/LQrD66MqXOq9Oaj2ZGK7lLCrV3U40e2+TRxvXlKrDm3+/DMAz1jgT0xunrOnvVq7RhyFVcqMO7\n6nV0T5OqyvIrJDMXjuvU+XGd6ByVNxCVJLU3lenZvU3at8nzyDxmF6TSaZ3v9+nUuXGd7/cpbRgq\ntFm1f1ONntpVr43r8r/zEcdwAMyK+gbArKhvAMyK+gaA8M8SKJBrDzsuAGZFfQNgVstZ3zqvTuvv\nX+9RIBTX+lqXfuP5LaYdJZRIpnXx2ozOXJlSZ69X4Vgm8FPmsmv/xhrt3+xRR1O5qcagzQSjOt45\nqre6xhSKJGSxSHs7PHp239ocj5U2DHkDUY1Nz2vUG9LwZEidvV4lU2nZC606sLVOR/c2mvYxer/8\noZjeuTCuU+fHNTUbkSTVVhTrUzvrdWhHvcpdjlXewgfDMRwAs6K+ATAr6hsAs6K+ASD8swQK5NrD\njguAWVHfAJjVcte3+WhCL7/Zp7cvjKvAatHzB5r1+YMbVGjL/44q8URKFwdndLpnSl19XkViKUlS\nRalD+zZ5tH9TjdqbymRdYyGY5ZZIpvTBpSm9cea6hiczI8GaPE49u69JB7bVyfGQR4KlDUO+QFSj\n3nmNeec1Op05HffNK55M33TbmopiHd3TqEM76+U00Wir5WQYhq5e9+vkuTGd7plWIpmW1WLRzrYq\nHd5Vr51tVXnVxYpjOABmRX0DYFbUNwBmRX0DQPhnCRTItYcdFwCzor4BMKuVqm/dAz793c+vyBeM\nqaHaqW89v1ltDWXL/n1WWiyR0oV+n073TOlcv0+xeCbwU+Uu0v7NmcBPS4Pb9IGf2zEMQ32jAb15\nZkRneqaVShtyFtl0eGeDju5tVHV58bJ+v7RhaGZxyCf7Ne6bVzxxc8jHVmBVfVWJGqudaqh25k49\nFcWP5N/qQYWjCX1waVInz41raDJTJ8pcdh3aXq/Du+pVW1Gyylt4dxzDATAr6hsAs6K+ATAr6hsA\nwj9LoECuPey4AJgV9Q2AWa1kfYvEkvrBW/06fnZUFov02cfW68uHW2R/yJ1h7lc0ntT5fp9O90zr\nfL83FyypLivSY5trtH9zjTbUla65MVeraXYulh0JNqq5cGYk2O72aj27r0lbmivu63dlGIZ8wWgu\n4DOW+worlkjddFtbgUV1lU41ej4W8ikvyqvuNPlgaGJOp86P6b2Lk4pkx9xtWleup3Y1aN8mz5p9\nXnMMB8CsqG8AzIr6BsCsqG8ACP8sgQK59rDjAmBW1DcAZvUw6lvP8Ky+99oVTc1GVFtRrG89v0Ub\n15Wv6Pe8X5FYUuf6vTpzZVoXBny5cVE1FcWZwM+mGq2vdRH4uYtEMq2PrkzqjdMjujaReVw1VGdG\ngh3cVieH/UZAxDAMzQRjGvPdGNU16p3XmG8+12FpQSbkU3JTwKeh2qmaimJCPg9ZPJHSmavTOnVu\nTFeG/ZKkYodNB7bV6qmdDWquu/2bGKuFYzgAZkV9A1bOyFRILx/vU99IQAe21eqFJ5tVXba8XS1x\nZ9Q3AGZFfQNA+GcJFMi1hx0XALOivgEwq4dV32KJlH50akCvf3RdhiEd3duoF4+0qdhhW/HvfSfh\naFLn+rz66MqUugdnlExlAj/1VSXavynT4afJ4yTw8wAMw9DAWFBvnhnRR1emlEobuYBIIpnOdfOJ\nfizkU2C1qK6qRA1VN0I+jR5CPmvV5GxYb58f19sXxhUIxSVJ62tdOryzQQe21cpZVLjKW/jwj+EW\nxtONz4RVX1my7OPv1rq0YWgunJCzyCZbgbmes2nDUCAUly8YlS8QlS8YlTdw4/zsXFT2wgJVuByq\nKHWovNShcpfjpssVLoeKHQXsV7AseI0KLL/AfFw/OjWgk+fGZBiSq7hQoUhCBVaLDu2o1+efbH7k\n9u2rgfoGwKyobwAI/yyBArn2sOMCYFbUNwBm9bDrW/9YQN/72RWNeedV5S7S5vXlMiQZhmTIkIzM\nB6ySlM4uyCzLBEoMI3uavb90duHCdbnli9fJnmrRdem0NDIdUiqduadGjzMT+NnkUaPH9dB+H48C\nfyimE52jOtE1puB8JiBSYLWodlEnn8ZFnXzMFhh4FKTSaV0YmNGpc2M61+dT2jBUaLNq3yaPDu2o\n17oal0qLC1cl8LBSNe6W8XTTmdNx343xdAVWi47ubdIXDm2Qq3j1g1Ar7fK1Gb18vE/DkyFJkrPI\npnKXQ26nXWUuu8qcdpU5HSpz2uXOXi53OeQssq2JMEwyldbMXCwT5skGehafzsxFlUzd/q24YodN\nlW6H4omUZufiuTDp7TgKC1Tust8UCPr4aZnLTi3EXT3MYzjDMHR9KqRzfV519fmUSqW1taVSO1oq\n1d5UrkIbj1fkt3gipV+cvq6fvDekWDylhmqnXjrarq0bKvThpSm98u41Tc6EsyGgOr3w5AZ5CAGt\nGN6DA2BW1DcAhH+WQIFce9hxATAr6hsAs1qN+pZIpvXqu9f02vtDufDNSrFk/7FmP1i2WCyyWDLX\n11aWaP8mj/ZvrlF9lXNFtwOZD9Z7RwJyO+2qJeRjWoFQTO90T+jUuTFNzkZy1zvsBfKUFctTXiRP\nebGqyzKnC+fthQVL3OuD+6Q1bmE83ah3YTRdKNO5yhdecjxdTUWxPrg0qWl/VM4im75wcIOO7msy\n5eN+dDqkfz7Rr/P9PknStg0VShuZ7gmBUEzz0eSS6xdYLZmA0MKXyy53NiRU7soEhhbCQo5P8DiJ\nJVK3DfV4s+f9czHdaY/kdtpV5S5SVVmRqrOnVYtOS4pudLEzDEPz0aRm52Lyh2KZ07mYZhed94di\nCoYTd9xWi6RSp/1G1yCXPRcMyoWGSh0qcayN4BRWx0ofwyVTaV0ZntW5Xp+6+qblC8YkZZ6zFosl\nF3JzFBZoS3OFtrdWantrlWoIRCCPGIahDy5P6l9O9MsXjKm0pFBfPtyqp3bV39R1Mp3O3O7Vd65p\nIhsCenJ7nT5/cAOP+RXAe3AAzIr6BoDwzxIokGsPOy4AZkV9A2BWq1nfQpGEIrFkNoyTDeUsCudo\n0fkb1y/cLnM+E+yRtPh6iyW3DoDVYRiGrl73q7PXq2l/JPMViN4SmFlQ5rLnwkHVZcXZYFAmIFTu\ncshqfbDn873WOMMwNDuXCfmMTs/f6Ojjm79lmxfG0+VG0y3qXLX4g8JEMq03z4zoJ+9eUziWVE15\nsb7ydJv2bfKYoj75QzH96NSgTp3PjEbZvL5cX32mXS317ptul0imNReOyx+KKzAfU2A+rmAongkH\nzWevy15OJO/cMUeSiuwFi0JCjkVhoUxIyFlkU2A+fnO4J3saitw+bGO1WFRR6rgp0FO96HxlqWNF\nwmnJVFr+UEz+ufgtwaDZbFjIPxdTfInfid1mVXm2Y1Cl26Hqsszzp8qd+Rkq3UV0ZDGxlTiGC0US\nutDvU2efV90Dvtx4zhKHTTvaqrS7vVo7WitVUGDV1et+XRjwqXtgRhMz4dx91FYUa3trlXa0VmrT\n+opPFNoDVlLviF/ff7NPg+NB2Qoseu6xdXrhwIabAp0fl04b+vDypF5995rGfWFZLRYd3F6nzx9s\nVk1FyUPcenPjPTgAZkV9A0D4ZwkUyLWHHRcAs6K+ATAr6huAh8UwDM1FEvL6o5r2R+QNZENB2csz\nwVhu7N9itgKLqtzZjkELoaBFAaGSojuP1Pp4jVsI+SyEe0a98xrPhnwisduEfBaNp2uodqrRc2vI\n525CkYReeXtQxztHlUob6mgq00tHO9Ta4L77ymtQNJ7Uzz8Y1r99eF2xREr1VSX66jPt2tVW9YlC\nTYZhKBJLKTAfU3AhGBSKyz8f+1hYKK65+fgdu/R8XKHNqkp3kardHw/4ZEIy5aX2+/p7PkyGYSgc\nu10XoXjmdKGL0BK/j3KXPffzVpfd2r1opbpuYeUt1zHc5ExYnb1edfV51Tvi10IZ9pQXaXe7R7s7\nqtXRVLZk57Jpf0TdgzPqHvDp0tBsLjRpK7Bq07oybW+t0vbWKjVUlZgi/Ij8NuWP6Acn+nX6ypQk\n6fEtNXrxSNt9jfFKpw19dGVKr7wzmAsBPbm9Vp8/uEG1hIA+MV6jAjAr6hsAwj9LoECuPey4AJgV\n9Q2AWVHfAKwVqXRaM8FYNhgUvdExyB+VNxDR3B3GJJU4bNlgUHaUWHakWIW7SGmrVZf7pjXmy3by\n8YYVid08hqrAalHtopDP4k4+yzmma2ImrB+c6NfZq9OSpCe21urFI62qLsuPcSGpdFpvnx/Xj04N\nKjAfl9tp15c/1aLDHxuN8rC2JRROKDB/o6NQcD6u+UgyM6JrUcjHXVJo+rBBMpWWfy6WG2HmDWSe\nMwtjze4UrJMyI82qF3U7ygSEbgSF6Nqydj3oMVw6bahvNKCuPq+6er25rj0WSa2Nbu1ur9buDs8D\nB3WSqbT6RgK5MNDwVCi3rNLt0PaWTFegLc2VS3ZYwcOTNgyFwgnNzsU0MxfNdB+bi2kmeON8VVmR\nntxWp70bPSp25OffLRxN6ifvXdMbp68rmTLU2uDWrz7bofbGsge+z3Ta0OmeKb3yzjWNeedltVh0\nYFutvnBwg2orCQE9KF6jAjAr6hsAwj9LoECuPey4AJgV9Q2AWVHfAOSLSCwp3+JQUCCaCwp5/ZEl\nxyNJmZBPTUXxoi4+LjVUO1W7zCGfu+kZntX3j/VpaGJOtgKrnnus6a5jRlaTYRg63+/TP5/o15h3\nXvZCqz73+Hp99vH1efsB8KMmlU7LPxfPBoOyz5lAZhzawoi0VPr2bzOWlhQuCgYV3xiLlr2Ox8Dq\nuZ9juEgsqYuDM+rq8+p8vy83Bs9eaNW2DZXa3V6tne3VKnPal307/aGYLg7O6MKATxcHZzQfzQQw\nrRaL2hvd2RFhVVpX65LV5EG91ZA2DAXn49kwT0yzi8M92YCPPxRTMnXnjxpcxYU3HjM2q/Zu9Ojg\n9jpt2VCxZjunLZZKp/VW15h+dGpQoUhCVW6HvvJ0ux7fUrNs4dC0Yej0lSm9+s41jXrnZbFIB7bW\n6QuHNqiOENB94zUqHoaJmbC6er0yDEMHttWpotSx2puERwD1DQDhnyVQINcedlwAzIr6BsCsqG8A\nzMDIfrg57Y9qOjtObCYYU0NNqcpLbGqsdqq2suShhnyWkjYMfXBxUv9ysl8zwZhcxYX68uEWPbWr\nYc1soyQNTczp5WO9ujLsl8UiHd5Zry99qpUPR0wmnTbkD8UWdQ1aCAZFct2E7hQMcBUXqtxlV5Hd\nJoe9QEWFBSqyF8iR/Sqy21RUuHA+u6wwe/3C7bLLCX7cn7sdw80Eo5nuPn1eXRmazf0Ny1z2THef\n9mptaa54qKPf0mlDgxNBdQ9kugINjAdzY8bcJYXalu0KtLWlUu6S5Q8imU06bSgwH8916JmZuxHu\nmZmLaTaYGQ14p3CfRZnHQ0VpkSpLHaoodajC7VBlaZEqSh2qLHWovNQhW4FVU7NhvXdxUu91T2jK\nH5EklTntemJrrQ5ur9P62tt/iLGaDMPQhQGfXj7Wp3FfWEX2Ar3wZLOe279uxR73acPQ2Z5p/fid\nQY1OL4SAMuPA6qucK/I9zYjXqFgJ6bShgbGgOnun1bmo852UCaTuaq/Skd2N2t5SKauVYxKsDOob\nAMI/S6BArj3suACYFfUNgFlR3wCY2VqvcfFESr84fV0/fW9I0XhK9VUl+uoz7drVVrWqo6p8gah+\neLJf712clCTtaK3SV59pU5PHtWrbhNWz0Dlk8TixhZFi3kBUgfm4YvHUHUeL3SvH4pBQ4Y3w0MdD\nRUUL1xcuChTZbw4UFdsLZCuwmnrk28frm2EYGpqcU1dvJvAzPHlj3Na6Gld2nFe1mutK10zQKhRJ\n6NK1TFeg7oEZBebjkjKhlA31pdkRYVVqaSjNiw4zy80wDPlDcY16QxrzhuULRG8K9wRC8Ts+76wW\ni8pL7ZlAz+JwT2km3FPpdsjttN934NQwDPWPBfVu94Q+ujyZ6+TU5HHqye11OrB1bXTPGJkK6eVj\nvbp4bVYWi3RkV4O+dLh1Rbpb3c5CCOiVdwY1kg0BPbE1Mw6MENDdrfXjN+SPWCKlS9dm1Nnr1fk+\nr4Lhmzvf7enwKJntDjY0kXnMVbmL9NTuBh3eWa9y1+rXM5gL9Q0A4Z8lUCDXHnZcAMyK+gbArKhv\nAMwsX2pcYD6uH789qLe6RmUY0pbmCr10tP2hd1IIRxP66XtD+sXpESVTaa2vcemrR9u1bUPlQ90O\n5B/DMJRMpRWNpxSNpxSLpxRNpBSNJzPn4ynFEqmbl8eTuesWbhNNpBSLJ3PXfZI3PwuslkxAyHFz\nt6EbgaFFlwsLVOSwLepMdPPtFzoUraUwkcdTqrFxvy4Pzaqrz6dzfV7NzsUkZX72zc0V2t1erV3t\nVaouK17lrb07wzA0Mj2v7gGfLgz41DsSyHWsKXHYtHVDhba3VmlLc4Wq3EWm68oQDMc1Oj2vMe+8\nRqdDGvXOa3R6XuFY8pbbFlgtKnctdOm50alncecet7NwxQNTiWRa5/t9erd7XOf7fUqlDVks0tbm\nCj25vU57N3pUZH+4owEDoZj+9dSgTp0fk2FI21sq9bWj7asWXk0bhjqvTuuVd67p+lRIFkmPZ0NA\nDdWEgO4kX47fsDYF5uM61+dVV69Xl67N5EYDu532XBB26206312bCOpE55g+uDSpWCKlAqtFu9ur\ndWRPg7ZuqFwzwVnkt0epviVTaQVCmdGjwXBcG+pKVekuWu3NAlYd4Z8lPCoFMp88SjsuAI8W6hsA\ns6K+ATCzfKtxo9Mh/dPxfl0Y8Mki6eCOOv3KU20r3kUhmUrreOeoXn3nmkKRhCpKHfqVp1r15PY6\nPujAqjEMQ/FkOhcUWhwgyoWFFgWIorGUoonkLQGjaPxG6CiZSj/w9likW8aZFRRYZLFkuqxYLRZZ\nrRZZLZLFarnlOmv2OovFIqtVi85nl+fOW2Sx3nqfi9eXpOveeZ29MqVYIiVJchbZtLOtWns6qrWt\npVLFjocbulhukVhSV4Zn1T2Q6QzkDURzywqsFlW5i1RdXqTqsiJVlxVnzxfLU1Ykt9O+poJai4Wj\niVywZ3RR0Gcu241igcUi1VaUqNHjVGO1Uw3VTnnKi1VZ6lCp077manMoktBHlyf1bveE+seCkjLd\nvPZu9Ojg9jptaa5Y0cBWPJHS6x9d10/fH1IsnlJDtVMvHW3XjtaqFfue9yNtGOrq9eqVtwc1nA0B\nPbalRl841KJGQkC3yLfjN6wuwzA0MRNWZ69Xnb3TGhgN5sLDDdVO7enIjLpsaXDfU+2MxJJ6/9Kk\n3uoc1fBUpotedVmRjuxu0Kd2Njy0DmIwJ7PUt0QyLX8olu1GmO1KGMxcnp2LamYupmAofkuQf12N\nS7uy42c31K+dbpTAw0T4ZwlmKJBmY5YdFwB8HPUNgFlR3wCYWb7WuIuDM3r5WK9Gpudlt1n12cfX\n65cOrF/2DgqGYehMz7R+8Fa/pmYjKrIX6IUnm/Xc/nW3/G9owAySqXQmLBS70Zno40GhWDylSPzm\nrkWZ65O57kQLt0ul00qnM8+l1XijtraiWHs6PNrVXqX2pjLTjsYyDEOTsxFdGPBpYCworz+i6UBU\nweyYsI+z26yqWhQK8pQVZ0JC2YCQs8i24uGgaDypMW9Yo97QjY4+3vlcd6bFPOVFaqx2qdGTCfk0\nVjtVX1WiQlt+1uHJmbDeuzihd7sncqGtcpddB7bV6eC2OjXVLF8XnrRh6INLk/qXt/o1E4yptKRQ\nXz7cqqd21a/J54ORDQH9+J1BDU8uCgEd3KBGRmvmrOTxWyKZ1lw4rmA4ruB8XMH5xI3z4bgssuQ6\njRHyWLvSaUN9owF1ZQM/k7MRSZngZEdTeSbw01Gt2oqSB/4ehmFocHxOJ7pG9eHlScUTaRVYLdrT\nUa0jexozoUaCC7hP+fD6NJFMaWYuptngzeGehbGjs8FoboTe7dgKLLkxoxXuTGfCEodNPcN+XRme\nVTKVOWouc9q1s61Ku9urtXVDpRz2/DzuAe4X4Z8lrPUC+SjKhx0XADwI6hsAs6K+ATCzfK5x6bSh\nty+M619PDigwH1eZ065ffqpVn9pRvyzdE/pGAnr5eK/6R4MqsFr09O5GfeFTG+Qu4YMu4EEYhqG0\nYSidVvbUyF6XeT4vXJc2DBmGFl2WjIXld1rfMG7cJrt8a7tHRWsv2/BQxRIp+QJReQMRTfuj8gWi\nmg5E5PVnrpuP3joyS5KKHQWqchfLkw0DLQSDPNmw0P0ELRPJlMZ94Vs6+SzuVLSgotSR6+STC/tU\nOU37YZdhGOodCei9ixP68PKUItkRZutrXHpye50ObK1VmevBO9v1jvj1/Tf7NDgelK3Aqucea9IL\nBzaopGjtd70yDENdfV698vY1DU3OySJp/+YafeHQhlUbUbaW3M/xm2EYiiVStwZ55uMfO59QcD5+\n21F6d9JcV6odrVXa2VqllobSNRkoe5TE4il1D86oq29a5/p8CkUy4QNHYYG2t1Rqd0e1drZVqXQF\njmXD0aTevzShE51jGpnOdAOqKS/Wkd0NOrSjXm6CYrhHq/36NJZIZYI8wUx3nplsqGc2GM2Fexae\nW7dTaLOqcmHUaGmRKrMjSCsWRpC6HSotLrxjyDoSS+rStRmd6/PpfL83FyKyFVi1pblCu9urtKu9\nmvFgMDXCP0vI1zfwzGy1d1wAsFKobwDMivoGwMzMUOOi8aR+/sGwfv7BsOLJtJo8Lr10tF3bWiof\n6P4mZ8P6wYl+nemZliTt3ejRV55uU13lg//PaAAPnxnq20oLR5PyBiLyBqKZL//C+UznoFg8ddv1\nXMWF2UBQJhjkyZ53l9g1ORvOdfIZ8c5rajasj79L73baswEfpxo8TjVVu9RQXaKSosKH8FOvTYlk\nSuf6fHq3e0IXBnxKpQ1ZLNK2lkod3FanPRs9ctxjx7kpf0Q/ON6n09n92ONbavSVI22qLi9eyR9h\nRRiGoXN9Pv34nUENTWSez/s3efTFQy3L2iEp31RVuTQ0MntriOd23Xrm44onlx7paJHkKimU22mX\nu8S+6LTwxuXsdZF4Mjdu8Op1v1LpzBPcWWTT1g2V2tFapR2tlZ8ouIZ7FwjF1NXnVVevV5eGZpXI\n/q3LXHbtbs+MutzSXPHQOqUZhqGBsaBOdI3qo8tTiicz3YD2bvTo6d0N2txcsWbHTq62WCKlnuFZ\nXRiYUc/wrFzFhWquK9WGOrc21JXKU1H8SHRSepjHb4FQTANjQQ2MB9U/GtD1qdAdg9GSZC+0qjIb\n6MmFe3JBH4cq3UXL2j0xbRgaHAuqq8+rc31ejUzP55atXxgP1lGt5jrGg8FcHnr4J51O60/+5E/U\n09Mju92uP/3TP1Vzc3Nu+bFjx/RXf/VXstlsevHFF/W1r33tjusMDQ3pD//wD2WxWNTR0aE//uM/\nljWbjp6ZmdHXv/51vfLKK3I4HIpGo/qDP/gD+Xw+OZ1O/cVf/IUqK5d+I4sXuGsPbzwAMCvqGwCz\nor4BMDMz1bjZuZh+eLJf716YkCFpe2ulXnqm/Z7HhMyF43r1nWs63jmqVNpQa4NbX3umXRvXla/s\nhgNYEWaqb6vBMAyFIombgkHT2WBQpnNQVMnU0oECZ5EtG/BxqbHaqabs2K6V6DphJsFwXB9dntK7\n3RMaHA9Kkhz2Au3f5NHBbXXadIdROuFoQj95d0hvnLmuZMpQW4NbLz3bofbGsof9Iyw7wzB0vt+n\nH789qGvZENC+TR699Ex7XoaaHpTXH9H3XrtyU+jmTgqslo+FeQpvCvHcOF8oV0nhA3XticSSbi6m\nJQAAIABJREFUujI0qwsDPl0Y8MkXvDG2b32tKxsEqlJbo5uuQMvEMAyNeefV1edVZ69XA2PB3LJG\njzMb+PFoQ/3qhwHC0YTe7Z7QW11jGvVmQgu1FcU6srtRh3bUPfL7AsMwNDET1oWBGXUP+HRl2J/b\nr9ptViWS6ZtGphY7bGqudWXCQPWlaq4rVU15senCVCt1/BZLpDQ0MZcL+wyOBW6qWZJUW1mi6rKi\n7EiuTJgnF+wpdajYsfJjUZfi9Ud0rt+nrj6vej42HmxXe5V2tTEeDObw0MM/r7/+uo4dO6Y///M/\nV1dXl77zne/or//6ryVJiURCzz//vH7wgx+ouLhYX//61/Wd73xHZ8+eve06v/u7v6tvfetbeuKJ\nJ/RHf/RHOnz4sJ577jmdOnVK3/72tzU8PKz33ntPDodD3/ve9xQKhfT7v//7+ulPf6rOzk79l//y\nX5bcVl7grj288QDArKhvAMyK+gbAzMxY44Yn5/TysT5dHpqVxSId2dWgLx1uVdkdxg0kkim9cXpE\nP3lvSJFYUp7yIn3l6Xbt3+Qx3ZvpwKPEjPVtLUkbhoLzcXn92VFigaiC83F5yoszXX08TpU57dTR\nT2jcN6/3Lk7ove5J+YKZUWkVpQ49ua1OT26vU2O1U8lUWm91jenHbw8qFEmoyl2krz7Tpsc215ju\n928Yhi4M+PTjt69pcDyoYkeBfv0zm/TktrrV3rQV9+HlSf3dz3sUiSXV2lCmMmcmzFNaYleZ89aA\nT8lD/pDaMAyN+cK60J8JAvWO+HMfTJc4bNraUqkdrZXa3lKlilK6At2PVDqtvpGAOnszHX6m/BFJ\nktVi0cZ1Zdqd7f5RU7E2u1QahqG+0YDe6hrTR1emlEimZSuwaN+mGj29u0Eb15WbrlbdSTSe1JUh\nfy4wt3gEZpPHmQvMtTeVKZFMa3hyTtcm5jQ0kTmdnAnfEgjaUFea7RCU+fLkeSBoOY7f0oahyZlw\nJuiT/bo+FVJ6UWygtKRQrfVutTaWqbXBrZY6d16MxVwQiSV1cXBG5/q8Otd/Y8xfoS0zHmxXe7V2\ntVUxHgx56aGHf/7bf/tv2rlzp1544QVJ0uHDh3Xq1ClJ0pUrV/SXf/mX+tu//VtJ0p/92Z9pz549\n6urquu06hw8f1smTJ2WxWPTGG2/onXfe0R//8R/rnXfe0datW/Xiiy/qtddek8Ph0O/93u/pt37r\nt7R7927Nzc3pV3/1V/XTn/50yW3lBe7awxsPAMyK+gbArKhvAMzMrDXOMAyd6/fpn4/3adwXlsNe\noBcONOszj62TPTs2JW0Y+uDipH54sl++YEzOIpu+cKhFz+xpVKGN/50O5Duz1jc8mtKGod7rfr3b\nPaHTPVOKxDIj2ZprSxVPpjTuC6vIXqDPH9yg5/Y3PbQRP6vFMAy92z2hf/jFVcXiKR3YWqtf/8ym\nvPrg9l7F4in94xtX9fb5cdkLrfrGcxv1y0c3yusNrfamLSkaT+ryUGaE0YV+Xy68Jknraly58WBt\njWWyFXDc9XH+UEzdAzPqHvTp4uBMbhSRw16gHS2V2tPh0Y62KrmK82tcYiiS0HvdEzrRNapxX1iS\nVF9VoiO7GnRwR33e/Tx3s9Cp6UJ2VN7iUFyxw6ZtGyq0PRv4uZdQXCSWzAWCri0KBC1W4rDlwkDN\neRgIepDjt2A4rsGxoPrHMh19BsbnFIndGN9lK7Cqudal1oZM0Ke1wa3qsqK8+Z3cTTptaGA8qHN9\nXnX1eTW6eDxYrUu726u1q53xYMgfdwr/rNhRXigUkst1o2V0QUGBksmkbDabQqGQSktvbJDT6VQo\nFLrjOoZh5IqL0+nU3FymoB06dOi233fhvhffFgAAAAAAADdYLBbtbq/W9pZKnTw3ph+dGtQPTw7o\neOeoXjzSqnKXQ/98vF9Dk3OyFVj0ucfX64WDzXIWmesDBwCAOVgtFm1aX6FN6yv0jec2qqvPq3e7\nJ9Q9MCNDhp7e06gvf6pF7jt0uTMbi8WiQzvq1dFUpu++eknvX5pU70hA//ELW001rnNoYk7feeWi\nJmbCWl/r0u98cZvqq5x58YF1kd2mPR0e7enw3BhvlO0K1HPdr+tTIf3s/SEVOwq0dUNlruPJo9oV\nKJlKq380kAuJXJ+6Ee6qdDv02JZa7emo1ub1FXkdUncVF+q5x9bp0/ub1DsS0ImuUZ2+Mq3vH+vT\nD94a0P7NHj29u1EdTWV58Ti/nUgsqUvXMuPwugd9mrnDOLzWBvd9B9+KHbbcvmBBOHojEDQ0Oadr\n40FdHprV5aHZ3G2cRTatr812B6p3q7muVJ48Db8sdERaGN81MBbQtD96021qK4q1u70qF/ZZV+My\ndcjQarWovbFM7Y1levFIm7z+iLr6vDrX59WVYb+GJ0N65Z1rKnPZtautSrvas+PBCs0dFIb5rFj4\nx+VyaX7+RmounU7LZrPddtn8/LxKS0vvuI510ZzT+fl5ud3ue/q+d7vtgoqKEtlMnvLPR3dKrAFA\nvqO+ATAr6hsAMzN7jXuprkyff6pd//zmVb1yakB/85PLuWVH9jTp3z2/RbWVa3NMAoBPxuz1DY+u\nxoZyvfBUuwKhmFJp45Ed6+HxlOrb/8mjl9+4qpd/0aP/5/+c1Vef3ahf/cymvP6g1zAMvXJqQP/r\nJ5eUTKX15SNt+ubzW27q6JRv9a2mxq2dmzPj2aKxpM73e3Xm8qTOXJnSmZ5pnemZliRtqHdr3+Ya\n7dtcqy0tlXn9d7ybqdmwzl6Z0tmeKXVdnc51KrEVWLV7o0f7Ntdo76YarastzcuQxt3U1Lh1aO86\nBefjOnZ6WD9/b0jvX5zU+xcnta62VJ870Kxn9q9TacnaDjUahqFr48HMY/nKpC4PziiVznT3cRUX\n6vDuxtzfsmKFanXzugodXnR5PpLQwGhAvdf96h/xq2/Ef0sgyFVcqPamcrU1laljXYXamspUW1my\nJh5rC/XNMAyN++Z1dWhWPcOz6hma1eBYINc9Scr8HHs312jT+gptzH49KkHYO/F4SrWlo0ZflxSO\nJtR5dVofXpzQ6cuTOnluXCfPjctus2pnh0ePb6vT41trVVVWLCnzO08bmW5ChmEonTaUzp6m0oYM\nQ7nLuWU3XdZN6yxeZmSXpRYtM9KG6qqcaq6/e+YBWLHwz969e3X8+HE9//zz6urq0saNG3PL2tra\nNDQ0JL/fr5KSEp0+fVq/+Zu/KYvFctt1tm7dqg8++EBPPPGETp48qQMHDiz5fd966y3t3LlTJ0+e\n1L59++66rbOz4bveBg8XLYcBmBX1DYBZUd8AmNmjVONeeGK9ntjk0b+eGlQoktCXD7eopd4tpVKP\nzO8AeJQ8SvUNmJ5OrPYmrKrn9jZqQ41T3331kl5+46o+vDih3/7iVtVW5F+4Nzgf19/+9LIuDPjk\nLinUb35+h3a0Vsm/6LMeM9S3Fo9TLZ5WvXi4JdMVaGBG3QM+XRn269p4UP9yvE9F9oWuQJnOQPke\nckskU7p6PZDtCDOjMe+NhgE15cU6uK1O21srtXl9hRz2G0GvtT7ibTkc2lqrg1tqdPW6Xye6xnSm\nZ0rf/XG3vvvjbpU4bCpz2VXmtKvc5ciez5yWO+0qy15X4rA9tOBKOJrQxYXuPgM++UNxSZJF0ob6\nUm1vqdKOtiq11rtltWa2KRlLPNRaXVfmUF1ZrQ5vr81uc1JDk3MampjTtYmgrk3Mqat3Wl2907l1\nnEWZkWGV7iIVWC2yWiyyZk8LrBZZrLrp+o/fJndd7rJuWv/m+7KoYGHdRfdlKSxQ5+VJDYwFNTge\nVChy43dWYLVoXY0rN7qrraFMNRU3jzSLhWOaDt/otgRpY32pNtaX6teOtmtgLJjrCnT68qROX57U\n/6vM7zZtZAI6q6Gtwa2n9zTqsc01uTHdeHTdKeBsMYyVeYim02n9yZ/8ia5evSrDMPRnf/ZnunTp\nksLhsF566SUdO3ZMf/VXfyXDMPTiiy/qG9/4xm3XaWtr0+DgoP7rf/2vSiQSam1t1Z/+6Z+qoODG\ng/ro0aN67bXX5HA4FIlE9J//83/W9PS0CgsL9e1vf1sej2fJbc33A0AzMsOBOQDcDvUNgFlR3wCY\nGTUOgFlR34BHTzia1D/+okfvXZyUo7BAv/Zchz61o35NdLK4F92DPv3NTy4rOB/X9pZK/ebnt6rs\nNh0szFzfYomUeoZndaE/M/5qyh/JLauvKlGTx6XayhLVVRartrJEtRUlchWv3bGtk7NhdWdHeV0Z\nnlU8kZYk2W1WbW6u0I7WKm1vrczLoNpKCobjevfChLoHfQqE4vKHYpqPJpdcp9BmVZnTfvtw0KLg\nkLvEngvk3Ku0Yej6ZEjnBzKj6wZGg0obN7r7bM8G1La1VMq9xjsVLRaOJjJhoIVQ0PjcTc+51VZd\nVpQN+mTGdzXXum7qgIZPZjo7Hqx7YEbhWCIT2LJYZLHopkCXRTcuW6wWWS3K3i4b8Mqdv/0yqzV7\nn5bb38eV4Vld6PfJUCaAdmhHvZ7Z00h33kfYQw//5BOzHgDmMzMfmAN4tFHfAJgV9Q2AmVHjAJgV\n9Q14dL1/cUL/+/UeRWIp7d9co29+dtOaDogkU2n98K0B/fzDYRVYLfrK02167rF1st4htPQo1bfJ\nmXAucHH1uj8XnlnMVVyo2spi1VWUZINBmdOaimI5HnIHiVg8pSvDs5nAz6BPU7M3h5d2tFZpR2uV\nNq4rI8RwnxLJtILzcfnnYwqG4vLPxxUIxeQPxTPXh2IKzGfOL4zduh2LRSotuTkYVObKhoMWwkMu\nh+w2a+5v2T04o+B8PLd+a4NbO7LdfZrrSu/4XM1H4WhCoUhCaUNKpT823ik7+umWy8aNkU+pdDq7\nTiY0dcf7WDT66cZtpMryYtWWFamlwX3b8CPMadof0clzYzp1bkzBcKbb05bmCj2zp1G7O6pNPQIS\ntyL8s4RH5QAwnzxKB+YAHi3UNwBmRX0DYGbUOABmRX0DHm1ef0Tf/ckl9Y4EVFHq0H/8/FZtbq5Y\n7c26xeRMWP/9lYsamphTbUWxfudL27Shzr3kOo9qfUsbhvxzMU3OhDUxG8mczoQ1ORuR1x+5beCj\n0u1Q7UIoqKI4Fw6qKitalg+TDcPQmC+s7uz4p57rASVTmYDSwtiy7a2V2t5Sqeqy4k/8/XB3acNQ\nKJJQIHQjHBSYj2U6CM3HFQzFssGhuGKJ1D3dp9tp146WSm3PdvdZy2HCfPeo1jdkJFNpnemZ1onO\nUfVc90uSylx2PbWzQUd2N+T9+EfcG8I/S6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wCk04Z++v6Q\nfnxqUIZh6HMH1uuXD7euiQ4ChmHo3e4J/cPrVxVLpPSpHfX6tec6VGS33XVd6tutkqm0fIFoJgy0\nKBw0ORvWTDB2y+0LrBZVlxfnAkGLw0HlpY4lO7lEYkldujar7sFM4Me36P7X17i0vbVKO1or1dZY\ntiYea7izSCx5U9egxUGhcDSZ6fDTWqV1tS5TdfdZy6hvWDDqndeJzlG92z2hSCwpi0Xa3V6tp/c0\naltLJc9JEyP8swQK5NrDjguAWVHfAJgV9Q2AmVHjAJgV9Q3Agv6xgL77yiVN+SNqri3Vb39xq+qr\nnKu2PeFoUv/79R59cGlSxY4CffOzm/XE1tp7Xp/6dn9iiZSmFncKmglrYjasyZmIQpHELbe3F1pz\n3YJqK4pVV1miylKHBsaD6h6YUd9oINdlyFlk07aWSm1vqdL21kqVuxwP+8cDTIX6ho+LxVP64PKk\njneOamgi89jwlBfp6d2NOrSzXu4SxsOZDeGfJVAg1x52XADMivoGwKyobwDMjBoHwKyobwAWi8SS\n+v/e7NXb58dlL7Tq68926KldDbI85M4B/aMBfeeVi/IGomprcOu3v7hNnvL7GwdFfVs+oUhCk7PZ\nQNBMtltQNhwUT6Rvub1F0oZ6t3a0ZkZAtda7ZbXSfQJYLtQ3LGVwPKjjnaP68NKk4sm0bAUW7d9U\no6f3NKqjqeyh79OxMgj/LIECufaw4wJgVtQ3AGZFfQNgZtQ4AGZFfQNwOx9dmdLfvXZF4VhSezqq\n9R9+abNKH0LXgHTa0M/eH9KPsiPIXjjYrC8eanmgsVDUt5VnGIb8oXguCOQLRNVY7dTWlkq6TAAr\niPqGezEfTejd7gmd6BzVuC8sSWr0OPX07kYd3F6nYsfdR2hi7SL8swQK5NrDjguAWVHfAJgV9Q2A\nmVHjAJgV9Q3AncwEo/qbn1zSlWG/ylx2/dYLW7WtpXLFvt/sXEzfffWirgz7VVHq0G99fqu2NFc8\n8P1R3wCYFfUN98MwDPUM+3Wia1RneqaVShtyFBboia21emZPo5rrbh8iwdpG+GcJFMi1hx0XALOi\nvgEwK+obADOjxgEwK+obgKWk04b+7cNh/fDkgFJpQ595bJ1ePNKmQtv9d+JZSmfvtL73sysKRRLa\n01Gtbz2/Ra7iwk90n9Q3AGZFfcODCszH9fb5MZ3oHJMvGJUktTa49fTuRj2+pUb2woJV3kLcK8I/\nS6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wDci2sTQX3nlUuanAmryePS73xxqxo9rk98v/FESv90\nvE/Hzo6q0GbVS0fb9cyeRlkslk9839Q3AGZFfcMnlU4bujDg04nOUZ3v98mQ5Cyy6dCOeh3Z3aD6\nKudqbyLugvDPEiiQaw87LgBmRX0DYFbUNwBmRo0DYFbUNwD3KhZP6eVjvTrRNaZCm1Vfe6ZdR/c+\neFBndDqk//7KRY1Oz6ux2qnf+dI2NS1DoGgB9Q2AWVHfsJy8gYje6hrTqXNjCoYTkqQtzRV6Zk+j\ndndUy1awvN3+sDzuFP6xPeTtAAAAAAAAAAAAQB5x2Av0zc9t1o7WKn3vtSv6x19c1YUBn37j+S1y\nO+33fD+GYehE15i+/2avEsm0ntnbqJeeaWfUCAAAq6C6rFgvHmnTlz7VorNXp3Wic1SXh2Z1eWhW\nZU67PvPYOn3uifXL0pUPK4/wDwAAAAAAAAAAAO5qz0aPNtS79T9/eknn+336o7/9QL/xwlbtbKu6\n67qhSELf+9lldfZ65Syy6Xe+uE17N3oewlYDAICl2AqsenxLrR7fUqsx77xOdI3qnQsT+vHbgzq6\nr0kOQrp5gbFfYuzXWkTLOgBmRX0DYFbUNwBmRo0DYFbUNwAPKm0YeuOj6/rBW/1Kpgw9u69JX326\n7Y4dfHqGZ/U/Xr2k2bmYNq8v1299fqsq3UUrtn3UNwBmRX3DwxJLpBSNJVXmcqz2puBjGPsFAAAA\nAAAAAACAT8xqsegzj6/X5uYK/Y9XL+nNMyO6MjSr3/7iNq2rceVul0qn9crb1/STd6/JYrHol59q\n1QsHmmW1Mj4EAIC1zFFYQMefPGNd7Q0AAAAAAAAAAABA/llfW6o/+vf79ezeJo165/V//91Hev2j\n60obhrz+iP7iHzv16rvXVFVWpD/89b36wsENBH8AAABWAJ1/AAAAAAAAAAAA8EDshQX6xmc2antr\npb73s8v6/pu9OtMzpZHpeUViST2+pUbf/OxmlRTxkRQAAMBKofMPAAAAAAAAAAAAPpFd7dX6v37z\nCe1orVLvSEDptKHfeH6LfueL2wj+AAAArDCOtgAAAAAAAAAAAPCJlTnt+k9f3amuPq8aPS7VlBev\n9iYBAAA8Egj/AAAAAAAAAAAAYFlYLBbt6fCs9mYAAAA8Uhj7BQAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8A\nAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAA\nAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8\nAwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAA\nAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQp\nwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAA\nAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABA\nniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj//P3t3HxznYd8H/rsLEMQ7SJEAKYoE+CLSL7HeKEdJr3Uu\ndl6UetLO9dxRMs3lbiZu08l0HCeXycSdJmMncaNM07qdJr5cm7F7rVOP5EuTpk6m1cV2EjdO6+qN\nerEtkSIJECRFAnzBO/G6e38AC1uWSIIkFstdfj5/kdjd5/ktRT3ELr77+wIAAAAAAAAAQJ0S/gEA\nAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhT\nwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAA\nAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAA\nAAAAAACgTgn/AAAAAAAAAABAnRL+AQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTw\nDwAAAAAAAAAA1CnhHwAAAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAA\nQJ0S/gEAAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAA\nAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwD\nAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUqeZqHbhUKuVjH/tYXn311bS0tOTjH/94\nBgYGVm//0pe+lE9+8pNpbm7OBz7wgTz22GNXfczQ0FA+8pGPpFAo5ODBg/noRz+aYrGYz33uc3ni\niSfS3Nycn/qpn8p73/veTE5O5md/9mczMzOTlpaW/MZv/EZ6e3ur9TQBAAAAAAAAAKBmqrb55wtf\n+ELm5+fz5JNP5ud+7ufy67/+66u3LSws5PHHH8+nP/3pfOYzn8mTTz6ZCxcuXPUxjz/+eH7mZ34m\nn/3sZ1Mul/PFL34xo6Oj+cxnPpMnnngin/rUp/KJT3wi8/Pz+f3f//0cOnQon/3sZ/P+978/n/rU\np6r1FAEAAAAAAAAAoKaqtvnn2WefzXve854kyYMPPpiXX3559bbjx4+nv78/PT09SZKHH344Tz/9\ndI4cOfKWj/na176WRx55JEnyPd/zPfnKV76SYrGYhx56KC0tLWlpaUl/f39eeeWVHDp0KCdOnEiS\nTE1Npbm5ak8RAAAAAAAAAABqqmrJmKmpqXR2dq7+vqmpKYuLi2lubs7U1FS6urpWb+vo6MjU1NRV\nH1Mul1MoFFbvOzk5edVj3HXXXfnKV76S97///RkfH8+///f//rqzbt3anubmpvV42qyj3t6u698J\noA65vgGNyvUNaGSucUCjcn0DGpXrG9CoXN+At1K18E9nZ2emp6dXf18qlVa38Hz7bdPT0+nq6rrq\nY4rF4hvu293dfdVj/NZv/Vb+7t/9u/nRH/3RvPLKK/nQhz6Uz3/+89ec9fLlmVt+vqyv3t6ujI5O\n1noMgHXn+gY0Ktc3oJG5xgGNyvUNaFSub0Cjcn0DrhYALL7lV9fB4cOH8+UvfzlJcuTIkRw6dGj1\ntgMHDmRoaChjY2OZn5/PM888k4ceeuiqj3nnO9+Zr371q0mSL3/5y3n3u9+d+++/P88++2zm5uYy\nOTmZ48eP59ChQ+nu7l7dCLRt27Y3BIQAAAAAAAAAAKCRFMrlcrkaBy6VSvnYxz6Wo0ePplwu59d+\n7dfy9a9/PTMzM/mRH/mRfOlLX8onP/nJlMvlfOADH8iP/diPveVjDhw4kJMnT+aXfumXsrCwkP37\n9+fjH/94mpqa8rnPfS5PPvlkyuVy/v7f//t59NFHc/78+fziL/5iZmZmsri4mJ/+6Z/OX/2rf/Wa\ns0pH3n6kVoFG5foGNCrXN6CRucYBjcr1DWhUrm9Ao3J9A662+adq4Z964gJ5+/EPF9CoXN+ARuX6\nBjQy1zigUbm+AY3K9Q1oVK5vwIbXfgEAAAAAAAAAANUl/AMAAAAAAAAAAHVK+AcAAACL/VsDAAAg\nAElEQVQAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAA\nAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAA\nAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAAAAAAAACgTgn/AAAAAAAAAABAnRL+\nAQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTwDwAAAAAAAAAA1Kk1hX9efPHF/Jt/\n828yPz+fn/iJn8h3f/d356mnnqr2bAAAAAAAAAAAwDWsKfzz8Y9/PO9617vy1FNPpbW1NX/wB3+Q\nf/2v/3W1ZwMAAAAAAAAAAK5hTeGfUqmU7/zO78yf/dmf5Qd/8Adz9913Z2lpqdqzAQAAAAAAAAAA\n17Cm8E9bW1s+/elP56tf/Wre+9735t/+23+bjo6Oas8GAAAAAAAAAABcw5rCP//0n/7TzMzM5F/+\ny3+Znp6ejIyM5J/9s39W7dkAAAAAAAAAAIBraF7LnbZu3Zrv//7vz9vf/vZ8/vOfT6lUSrG4ptwQ\nAAAAAAAAAABQJWtK8Pz8z/98nnrqqbzwwgv5zd/8zXR2duYjH/lItWcDAAAAAAAAAACuYU3hn9On\nT+fDH/5wnnrqqfztv/238w/+wT/I+Ph4tWcDAAAAAAAAAACuYU3hn6WlpVy6dClf/OIX873f+70Z\nHR3N7OxstWcDAAAAAAAAAACuoXktd/rgBz+Yxx57LO973/ty6NChPProo/nwhz9c7dkAAAAAAAAA\nAIBrWFP452/8jb+RRx99NIODg/nGN76RP/7jP05z85oeCgAAAAAAAAAAVMmaEjwvvfRSPvzhD2fL\nli0plUq5cOFCPvnJT+aBBx6o9nwAAAAAAAAAAMBVrCn884//8T/OP//n/3w17HPkyJH86q/+an7v\n936vqsMBAAAAAAAAAABXV1zLnWZmZt6w5efBBx/M3Nxc1YYCAAAAAAAAAACub03hn56ennzhC19Y\n/f2f/MmfZMuWLVUbCgAAAAAAAAAAuL411X796q/+an7+538+/+gf/aMkyZ49e/Ibv/EbVR0MAAAA\nAAAAAAC4tmuGf378x388hUIhSdLa2prdu3enXC6nra0tH/3oR/Pv/t2/25AhAQAAAAAAAACAN7tm\n+OdDH/rQRs0BAAAAAAAAAADcoGuGfx555JGNmgMAAAAAAAAAALhBxVoPAAAAAAAAAAAA3BzhHwAA\nAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAAQJ0S/gEAAAAAAAAAgDol\n/AMAAAAAAAAAAHVK+AcA7gDlcjlDE8MplUu1HgUAAAAAAABYR8I/AHAHePniN/JPnvnNPH3u+VqP\nAgAAAAAAAKwj4R8AuAMcvXw8STI8dabGkwAAAAAAAADrSfgHAO4AQxOnkyQjMxdqPAkAAAAAAACw\nnoR/AKDBlcql1Y0/o8I/AAAAAAAA0FCEfwCgwZ2bHsn80nyS5MLspSyVlmo8EQAAAAAAALBehH8A\noMENTS5XfjUVmlIql3Jx9nKNJwIAAAAAAADWi/APADS4UxPDSZLv2Pb2JMnIzGgtxwEAAAAAAADW\nkfAPADS4oYnTaSo05cHedyVJRq9crPFEAAAAAAAAwHoR/gGABrZYWsyZqbO5p/Pu7OrcmSQZmblQ\n46kAAAAAAACA9SL8AwAN7MzU61ksL2Wge09627YlSUavCP8AAAAAAABAoxD+AYAGNjRxOknS37U7\nrc2t6W7pysjMaI2nAgAAAAAAANaL8A8ANLChyeEkyUD37iRJb9v2XJody0JpsZZjAQAAAAAAAOtE\n+AcAGtipidNpKW7Kzva+JMmO9u0pp5yLVy7WeDIAAAAAAABgPQj/AECDmluaz+vT57On6540FZuS\nJL3t25MkIzMXajkaAAAAAAAAsE6EfwCgQQ1Pnkk55Qx071n9Wl/bSvjnivAPAAAAAAAANALhHwBo\nUKcmhpMkA127V79m8w8AAAAAAAA0FuEfAGhQQ5OnkyT937L5p7dtW5JkVPgHAAAAAAAAGoLwDwA0\nqKGJ4bQ1t60GfpKkpaklWzdvUfsFAAAAAAAADUL4BwAa0MzCTEavXMxA1+4UCoU33Nbbvj1jc+OZ\nX5qv0XQAAAAAAADAehH+AYAGdGryTJKkv3v3m27rq1R/Xbm4oTMBAAAAAAAA60/4BwAa0NDEcJJk\noHvPm27rbd+eJBmZUf0FAAAAAAAA9U74BwAa0NDk6STJQNebN//saO9NkowK/wAAAAAAAEDdE/4B\ngAY0NDGc7paubNnc86bbettWNv9cEf4BAAAAAACAeif8AwANZnxuMmNz4xno3p1CofCm27e33ZVC\nChmZGa3BdAAAAAAAAMB6Ev4BgAZzanI4SdL/FpVfSdJcbM5drVtt/gEAAAAAAIAGIPwDAA1maGI5\n/DPQveeq9+lr357J+alcWZzdqLEAAAAAAACAKhD+AYAGMzR5Okky0HXt8E+SjNr+AwAAAAAAAHVN\n+AcAGki5XM6pidPZ1ro1nS0dV71fb9tK+GdG+AcAAAAAAADqmfAPADSQS7OXM7Uwnf5rVH4l39z8\nMyL8AwAAAAAAAHVN+AcAGsg3K792X/N+lc0/I2q/AAAAAAAAoK4J/wBAAxmaGE6SDHRfO/yzrXVr\nioWi2i8AAAAAAACoc8I/ANBAhiaGU0ghe66z+aep2JTtbXfZ/AMAAAAAAAB1TvgHABpEqVzK8OSZ\n9LX3pq259br372vbnumFmUwvzGzAdAAAAAAAAEA1CP8AQIMYmbmQ2aW561Z+VfS2b199HAAAAAAA\nAFCfhH8AoEEMTQwnSQa69qzp/n1tvUmSUdVfAAAAAAAAULeEfwCgQQxNnk6SNW/+6bP5BwAAAAAA\nAOqe8A8ANIhTE8MpFoq5p3PXmu7f21YJ/4xWcywAAAAAAACgioR/AKABLJWWcnrqbHZ17ExL06Y1\nPWZra0+ai81qvwAAAAAAAKCOCf8AQAM4O30uC6XFNVd+JUmxUExv27aMzFxMuVyu4nQAAAAAAABA\ntQj/AEADGJoYTpIMdO25ocf1tW3P7NJsphamqzEWAAAAAAAAUGXCPwDQAE5Nnk6S9HffWPint317\nkmRkRvUXAAAAAAAA1CPhHwBoAEMTp7Op2JxdHTtu6HF9bZXwz2g1xgIAAAAAAACqTPgHAOrc/NJC\nzk6fy+7Oe9JUbLqhx65u/rli8w8AAAAAAADUI+EfIKVyKU+++h/zwujLtR4FuAmnp86mVC5loHv3\nDT+2byX8M6r2CwAAAAAAAOqS8A+Q18ZO5stn/jJPDf5prUcBbsLQxHCSpL/rxsM/PS3daWlqsfkH\nAAAAAAAA6pTwD5DnR15MkgxPncn80nyNpwFu1NDE6STJQPeeG35soVBIb9u2jM5cSLlcXu/RAAAA\nAAAAgCoT/oE7XKlcyvOjL63+uhIiAOrHqcnhtDa1rlZ43ai+tu2ZLy1kfH5inScDAAAAAAAAqk34\nB+5wr42dzOT8VLZs7kmSnBwfqvFEwI24sjib8zOj6e+6J8XCzf2z3tfemyQZmVH9BQAAAAAAAPVG\n+AfucJXKr7+5/4eSJCcmBms4DXCjhidvvvKrondlY9Co8A8AAAAAAADUHeEfuINVKr86N3Xk3Tse\nzLbWrTkxPpRyuVzr0YA1qlT19Xfvvulj9LUth3/OXxldl5kAAAAAAACAjSP8A3ewSuXXA73vSlOx\nKft6BjK9MJORK7Z/QL0YmhhOkgx03fzmn77VzT8X12UmAAAAAAAAYOMI/8Ad7LmVyq/DffcnSfb3\n7E2SnBgfqtVIwA0amjydzk0duat1y00fo3NTR9qaWwX/AAAAAAAAoA4J/8AdqlQu5chK5dfBLfuT\nJPt6+pMkJ8cHazgZsFaT81O5NHs5/d27UygUbvo4hUIhvW3bc+HKxZTKpXWcEAAAAAAAAKg24R+4\nQ1Uqvx5cqfxKkns67k5LcZPNP1An1qPyq6KvfXsWS4u5PDt+y8cCAAAAAAAANo7wD9yhKpVfD61U\nfiVJU7Epe7v78/r0+cwsXKnVaMAanZo8nSQZ6N59y8fqbdueJBm5MnrLxwIAAAAAAAA2jvAP3IFK\n5VKOjLyx8qtif89AkuTkxKlajAbcgKGJSvhnfTb/JMnozIVbPhYAAAAAAACwcYR/4A702tiJTC68\nsfKrYl8l/DM+WIPJgLUql8sZmhzO1s1b0t3SdcvHq4R/Rq4I/wAAAAAAAEA9Ef6BO9BzIy8leWPl\nV0Ul/HNifGhDZ6qV89Mj+W+vP5NyuVzrUeCGjM2NZ3J+al0qv5Kkr83mHwAAAAAAAKhHzdU6cKlU\nysc+9rG8+uqraWlpycc//vEMDAys3v6lL30pn/zkJ9Pc3JwPfOADeeyxx676mKGhoXzkIx9JoVDI\nwYMH89GPfjTFYjGf+9zn8sQTT6S5uTk/9VM/lfe+971ZWlrK448/npdffjnz8/P50Ic+lPe+973V\neppQd65V+ZUkHZvas7O9L4MTp7JUWnrTZqBG8x9e+6N87eIr2dnel309/bUeB9ZsaGI4SdLftT7h\nn/ZN7enY1J4R4R8AAAAAAACoK1Xb/POFL3wh8/PzefLJJ/NzP/dz+fVf//XV2xYWFvL444/n05/+\ndD7zmc/kySefzIULF676mMcffzw/8zM/k89+9rMpl8v54he/mNHR0XzmM5/JE088kU996lP5xCc+\nkfn5+fzhH/5hFhcX88QTT+S3f/u3MzR0Z2wvgbW6VuVXxf6egcwtzefs9PkNnm5jLZWW8trYiSTJ\ncyMv1HgauDFDk6eTJAPde9btmH1t23Nh9lKWSkvrdkwAAAAAAACguqoW/nn22Wfznve8J0ny4IMP\n5uWXX1697fjx4+nv709PT09aWlry8MMP5+mnn77qY772ta/lkUceSZJ8z/d8T/7yL/8yL774Yh56\n6KG0tLSkq6sr/f39eeWVV/IXf/EX2bFjR37yJ38yv/iLv5j3ve991XqKUJeuVflVsa9nb5Lk5Pjg\nBkxUO6cmz2RuaT5J8vzIS6q/qCvrvfknSfrae1Mql3Jx9vK6HRMAAAAANtITr/5BPv3ck7UeAwBg\nQ1Ut/DM1NZXOzs7V3zc1NWVxcXH1tq6urtXbOjo6MjU1ddXHlMvlFAqF1ftOTk5e9RiXL1/OqVOn\n8q/+1b/K3/t7fy//8B/+w2o9Rag716v8qtjfs1zRd2K8sTdnHbt8PEnStakzl+fGMjhxqsYTwdqU\ny+Wcmjydvrbtad/Utm7H7W3bniQZvaL6CwAAAID6c2XxSv7izH/Pnxz/r1lYWqj1OAAAG6a5Wgfu\n7OzM9PT06u9LpVKam5vf8rbp6el0dXVd9THFYvEN9+3u7r7qMbZs2ZLv/d7vTaFQyCOPPJLBwcHr\nzrp1a3uam9+6/oja6e3tuv6duCEvn381kwtT+f4D78nOHVuuer9t2zvS+XxHhqZONfR/h8GvL4eb\n/rcH/1Z+++nP5BuTr+SRe99V46m4E9zq/1evT47kyuJsHt5137r+P3rvld3JyWSmONnQ/+8D1ePa\nATQy1zigUbm+AY3kubODKaecpdJSpprHcmj71T8EC1CvfP8GvJWqhX8OHz6cP/3TP8373//+HDly\nJIcOHVq97cCBAxkaGsrY2Fja29vzzDPP5IMf/GAKhcJbPuad73xnvvrVr+a7vuu78uUvfznf/d3f\nnfvvvz//4l/8i8zNzWV+fj7Hjx/PoUOH8vDDD+fP//zP8+ijj+aVV17J3Xfffd1ZL1+eqdYfAzep\nt7cro6OTtR6j4fzpsa8mSd7Z9Y7r/vnu7dqTly++ktdOn0nP5u6NGG9DLZWW8o3R17KzvS9v73hH\n2prb8pWhZ/JD9/xAioWqLUWDdbm+PX/ulSTJjs071/VauXmxI0lyYuRMRre6BgM3xvdvQCNzjQMa\nlesb0GieHnp59dfPn3olW8u9NZwGYP35/g24WgCwauGfH/iBH8hXvvKV/OiP/mjK5XJ+7dd+LZ//\n/OczMzOTH/mRH8lHPvKRfPCDH0y5XM4HPvCB7Nix4y0fkyS/8Au/kF/6pV/KJz7xiezfvz+PPvpo\nmpqa8uM//uP5O3/n76RcLudnf/Zns3nz5jz22GP56Ec/msceeyzlcjm//Mu/XK2nCHXlWyu/7t2y\n77r339ezNy9ffCUnx4fyYN99GzDhxhqaPJ35pfkc2nogzcXmPLD9O/Lfzz2TwYlT2d+zt9bjwTUN\nTQ4nSQa69qzrcfvUfgEAAABQx167fHL114Pjp5L1ffsMAOC2VbXwT7FYzK/8yq+84WsHDhxY/fX7\n3ve+vO9977vuY5Jk3759+d3f/d03ff2xxx7LY4899oavtbS05PHHH7+V0aEhvTZ2IpMLU/lru74r\nTcXr19zt7xlIkpxo0PDP0cvHkyQHty5flw7vuD///dwzee78i8I/De7/PfqHGZo4nf/z4Z+q2y1P\nQxOnU0ghu7t2retxW5tb093SlZEZ4R8AAAAA6suVxdmcmjyd/T0DGZ29mMGJU7UeCQBgw9TnTz2B\nG/bsyItJksN9D6zp/gPde1IsFHNifKiaY9XMsUr4Z8ty5/Pbtt6b9ua2PD/6UkrlUi1Ho4rK5XKe\nPvd8Tk4M5dXLr9V6nJuyVFrK8OSZ3N2xI5ubWtb9+L1t23Np9nIWSovrfmwAoH6VyqXMLy3UegwA\nALiqE+ODKaecg1sO5OBde3Nx9nIm56dqPRYAwIYQ/oE7QKlcygsjL6+58itJNje1ZHfn3RmePN1w\nIYDF0mKOjw9mV8fOdLV0Jsly9VfvuzI2N56T4z4R0qhGr1zM9OJMkuR/nHuuxtPcnHMzI1koLWSg\nuzo7i/vat6ecci5euViV4wMA9ek/Hf8v+cW//MeZXpip9SgAAPCWjl0+kWT5A5/3blt+H9z2HwDg\nTiH8A3eASuXXg333ranyq2Jfz94slpe3jDSSwYnhLJQWViu/Kg733Z8keW7khVqMxQYYmhhe/fWR\n0ZcztzRfw2luztDE6STJQPfuqhy/r317kqj+AgDe4OuXXs30wszqBk0AALjdHBs7kWKhmH09Azm0\nEv7xQU8A4E4h/AN3gNXKr977b+hx+3sGkiyvS20klR9YHFqp/Kp429Z709HcnudHXlT91aAqn/R5\n29Z7M780nxdGX67xRDduaHI5wDTQVaXNP20r4Z8rwj8AwLL5pYW8Pn0+SXJ0TPgHAIDbz+zibE5N\nns5A1+60Nm/OgbuW39u2+QcAuFMI/0CDWyot3XDlV0Ul/HNyfKgao9XM0bETKaSQe7e+MfzTVGzK\nA73fkfH5yZxosOfMsqGJ4RQLxfyv9/5wkvqs/jo1MZzmQlN2de6syvF7Vzb/jNr8AwCsODv9+mo4\n/qjNPwAA3IZOjA+lVC6tbnvvaGnPzva+DE0M+6AnAHBHEP6BBvfa2MmbqvxKkq2bt2TL5p6cGB9K\nuVyu0oQba6G0mJPjg9nVuTOdmzredPvhvgeSqP5qRIulxQxPnc3uzruzu2tXBrr35JVLxzI+N1Hr\n0dZsobSYM1Pnck/XrjQXm6tyjt62bUnUfgEA31SpAS4Winl9+nwm56dqPBEAALzRsbETSZJ7v2Xb\n+97u/swuzeXc9EitxgIA2DDCP9Dgnhu9ucqvJCkUCtnXM5CJ+clcnL283qPVxOD4UBZKizm05cBb\n3n5o64F0bGrPkZGXfCKkwZyZej2LpcUMdPcnSR7ZeTjllPP0+edrPNnanZk6m6XyUga6dlftHC1N\nLdmyuUftFwCwqhL+eaj3viTf/MEKAADcLo5dPpFioZgDK9vsk2Rvz54kyeDEcK3GAgDYMMI/0MCW\nSks5MvJSujZ13nDlV0Wl+uvE+OA6TlY7R1d+UFFZ//rtmopNebD3XRmfn8zxscENnIxqq7zIH+he\nftH/7r4HUywU66r6a2jidJKkf+U5VEtfe2/G5sYzvzRf1fMAAPVhePJMmovNec89fyWJ6i8AAG4v\nc0vzGZoczp6ue9La3Lr69b3dy+9tD04M1Wo0AIANI/wDDey1sZOZWpjOA33vuuHKr4pK+OfkeGO8\nQDp2+XgKKeTgNcJQ36z+enGjxmIDDK2Ef/atBGc6WzryHdvenjNTr+fM1Ou1HG3NKs+hmpt/kqRv\npfpr9MrFqp4HALj9LZYWc3bqXO7puDv7ewbS0tSSY8I/AADcRk6MD6ZULr1p2/uujh1pKW6y+QcA\nuCMI/0ADq1R+Pdx345VfFbs7d2VTsTknGiD8M7+0kJPjQ9ndeXfaN7Vf9X4Ht+xP56aOPD/6ouqv\nBjI4cSqtTa3pa+9d/dojOw8nSd1s/zk1eTotTS3Z2dFX1fP0tm9PkozMqP4CgDvd69MjWSwvZU/X\nrjQVm3KgZ2/OzYxkfG6y1qMBAECS5cqvJG/aft9UbEp/9+6cnTqX2cW5WowGALBhhH+gQb2x8mv/\nTR+nudic/q49OTP1emYXZ9dxwo03ODGUxfLSVSu/KpqKTXmg912ZnJ/Ka2MnN2g6qmlm4UrOz4xm\noHt3ioVv/tN337Z3pK25NU+fe/62D3rNLs7l3PRI+rvuecNzqIa+tuXwz6jwDwDc8YYnl2tH93Td\nkySrn6Y+Nmb7DwAAt4djYydSSCEH3mLb+97u/pRTzqmV72sBABqV8A80qG+t/LrVoMD+noGUU677\n9ahHV+oJDl0n/JMkh1e2Jan+agxDkyt1WSuVXxWbmjblcN/9GZ+fWP37cbsanjyTcsoZ6Npz/Tvf\nosp2pJErwj8AcKcbnjyTJOlfqR2tBOlVfwEAcDuYX5rP0MRw9nTdk7bm1jfdvre7P8nyVnAAgEYm\n/AMN6rmRF5LcWuVXxf6egSTJyTqv/jp6efkTIN++/vWtVKq/joy8dNtvhOH6hlaCa5UX+9/qkZ0P\nJ7n9q7++GWDaXfVzbW+7K4UU1H4BABmePJNioZi7O3cmSfq77snmppYctfkHAIDbwInxoSyVl3Jw\n61tvv9/XsxL+GRf+AQAam/APNKCl0lKOjL58y5VfFftWwj8n6jj8M780n8GJUyufAGm77v2bik15\nsO++TC5M5bWxExswIdU0uBr+efPWnP09A9nWujXPj76UuaX5jR5tzU5NLK8m7t+AzT/Nxebc1bo1\nI1dGq34uAOD2tVRayump17OrY2c2FZuTLH+ffGDLvozMXMjY3HiNJwQA4E53bOW924NXeR98y+ae\nbNnck5MTp1IulzdyNACADSX8Aw2oUvn1YN99t1z5lSRdLZ3pa9uekxNDdbsF53qfAHkrla1Jz6r+\nqmvlcjmDE6eydfOW9GzuftPtxUIx37nzcOaX5vPC6Ms1mHBthiaG09Hcnu1td23I+frat2dyfipX\nFmc35HwAwO3n/MxoFkoL2dN1zxu+fmhLpfpLSB4AgNo6trLt/UDP1be97+3uz8T8ZC7PjW3gZAAA\nG0v4BxpQpfLrcN9963bMfT0DubI4m3PTI+t2zI107PJyLUHlBxVrce+W/ena1JkjIy9lqbRUrdGo\nsstzY5mcn8rAW2z9qXhk5+Ekt2/119TCdC7MXkp/9+4UCoUNOWdf+/YkyegV1V8AcKcanjyTJG8O\n/2xd/p766GXVXwAA1M780kKGJk5ld9eutG+6+rb3yjbwynZwAIBGJPwDDWa9K78q9q9Uf52s0+qv\no2PHUywUc2DL1T8B8u2KhWIe7LsvUwvTq+tjqT/Xqvyq2NHem4HuPXnl0rGMz01s1GhrNjyx/IO3\nga7dG3bO3raV8M+M8A8A3KmuFv7Z3bkrrU2tOTom/AMAQO0MTgxlsbx01cqvir3d/cv3Hz+1EWMB\nANSE8A80mGNjJ9a18qtif8/eJMv1WfVmdnEugxPD2dN1T9qaW2/osYdXqr+eV/1VtwYnll/UXyv8\nkyxv/ymnnGfOH9mIsW7I0ORygKn/Os9hPVU2/4zMXNywcwIAt5dTk2dSSCG7O+9+w9ebik25d8u+\nXLhyMZdnVScAAFAbR1dqaK8X/unv3p1ioZiTE8I/AEDjEv6BBlMJqaxn5VeS7OzoS2tTa05MDK7r\ncTfCyfGhlMqlG6r8qrh3y750tXTmyOjLqr/q1OD4cAopZM91tua8u+/BFAvFfPXcsxs02doNTZxO\nkgx0b/zmn5Eroxt2TgDg9lEql3J66kx2dvSlpanlTber/gIAoNZeGzuRQgq59zrb3jc3tWRXx84M\nT572Hi8A0LCEf6CBVKvyK1muwNrX05+RmQuZmp9e12NXW6WO4ODWGw//FAvFPNR7v+qvOrVUWsrw\n5Onc3bEjrc2br3nfzpaOfMe2t+XM1Os5M/X6Bk24NkMTw+lp6c6WzT0bds5trVtTLBTVfgHAHWr0\nysXMLc2/qfKr4uDW5dcbqr8AAKiFhaWFnJw4lXs67077pvbr3n9vT38WSou33ft+AADrRfgHGki1\nKr8q9vUMJElOTtRX9dfRy8dTLBRzYKW67EZVtig9N/LCOk7FRnh9+nzmSwurvd7X88jOh5Mk/+Pc\nc9Uc64aMzY1nfH4i/Ru49SdZrvPY3nZXRq4I/wDAnWh48kySXDX8s7tzV9qa23LssoA8AAAbb3Di\nVBZLi6uh9OupvD84qPoLAGhQwj/QQKpV+VWxfyX8c2K8fsI/s4uzOTV5OgNde667+eVqDmzZl+6W\nLtVfdWhoYjhJsrd7z5ruf9+2d6StuTVPn3s+pXKpmqOt2WrlV9fansN66mvbnumFmUwvzGz4uQGA\n2loN/3S+dfinWCjm4Jb9uTh7KRevXN7I0QAAIEdXtrQf3LK2be/7Vt4fHFx5vxAAoNEI/0CDqGbl\nV8Xe7v4UUsiJ8cGqHL8ajo8PplQurfkTIG+lWCjmob77Mr0wk6OX1RrUk8oneZA2X+kAACAASURB\nVPb2rG3zz6amTXmo9/6Mz0/cNv+tT628ITGwwZt/kqS3fXuSZET1FwDccSrhn91du656H9VfAADU\nymuXT6SQQu7dsm9N9+9r701bc2vdbbUHAFgr4R9oENWu/EqStubW7OrcmaGJ4brZgFMJcBzaurZP\ngFzN4b4HkiTPrWxXoj4MTgynpbgpO9v71vyYR3YeTnL7VH8NTS5v/tno2q9kefNPkoyq/gKAO0q5\nXM7w5Jn0tW1PW3PrVe93aOVT1sduk9A0AAB3hoXSYk5ODGVX5850bGpf02OKhWIGuvZkZOaCLdcA\nQEMS/oEG8c3Kr/urep59PQNZKC3m9NTZqp5nvRy7fCJNhabs79l7S8fZ3zOQnpauvKD6q27MLs7l\n9enz6e/enaZi05ofd2DL3tzVujXPj76UuaX5Kk54feVyOacmTmd7613p3NSx4efva+9NYvMPANxp\nLs5ezszilezpeuvKr4pdnTvT0dyeo5ePp1wub9B0AADc6YYmhrNQWszBG9yAv29lO7jqLwCgEQn/\nQANYrfxq6VzzmtObtb97IElyYvz2X496ZfFKTk2ezkD3nmxuarmlYy1Xf92f6cWZvHr5tXWakGoa\nnjydcsoZWOnzXqtioZhHdjyU+aX5vDD6cpWmW5uLs5cyvThzw89hvfTa/AMAd6RK5df1wj/FQjH3\nbt2fy3NjuTh7aSNGAwCA1c2TB29w2/ve7kr459S6zwQAUGvCP9AAViu/eqtX+VVR2aBzYnywqudZ\nD6+NnUw55Vuu/Kp4aGWrkuqv+lD5BE/lRf2NuF2qv4ZWnkMtKr+SZGtrT5qLzRmZGa3J+QGA2lhr\n+Cf5ZvXX0csnqjoTAABUHBtb/t7z3p4b+yBs5QN2wj8AQCMS/oEG8NwGVX4lyfa2u9K1qbMuNv8c\nW/kBROUHErdqufqrOy+MvpzF0uK6HJPq+Wb458a35uzo6MtA1568culYxucm1nu0NRuaOJ0kGeiq\nTfinWChme9u2jMxcVOUBAHeQGwr/bK2Ef45XdSYAAEiSxdJiTowPZVfHznS2dNzQY7taOrO9bVuG\nxoe91wUANBzhH6hzS6WlvLBBlV9JUigUsr9nIGNz47k8O1b1892Ko2PH01xoyr6egXU5XrFQzOG+\n+zOzeKUhqr8a/QXu4MSpdLd0ZevmLTf1+EfuPpxyynnm/JF1nmzthiaHU0hhTT94q5YdbdszuzSb\nqYXpms0AAGyccrmcU5Ons611azo2tV/3/nd37Ejnpo4cGzve8N9fAgBQe0MTp7NQWsjBrftv6vF7\nu/dkenFGzT0A0HCEf6DOVSq/HtqAyq+KSpjmdq7+mlm4ktOTZ7O3pz8tTZvW7biHdzRG9de56fP5\nhf/6y/nKma/WepSqGJsbz9jceAa696RQKNzUMd7d92CKhWLNqr9K5VJOTZ7Jjo6+tDa31mSGJOlt\n354kGZnxhggA3AnG5ycytTC95vBxoVDIwS37MzY3ntErF6s8HQAAd7pjY8sbJw/e5Lb3fd3L722f\nHFf9BQA0FuEfqHOVEMpDG1D5VbG/Z2+S2/sF0mtjJ1JO+aZfBF7N3u7+bNnckxdGv1bX1V//4bU/\nyvTiTL5ao2BLtQ3dQuVXRWdLR75j29tyeupszk6dW6/R1uz8zGjml+ZrVvlV0de2Ev7xaSgAuCOc\nWqkdvZHNg5Xqr2OqvwAAqLJjl08kyU1vwd/bs/x+4eDK+4cAAI1C+Afq2EZXflX0d92TpkJTTowP\nbdg5b9TRlU+AVH4QsV4q1V9XFq/klUvH1vXYG+UbF4/m6xdfTZKcnBjK7OJcjSdaf4Or4Z/+WzrO\nIzsfTpKabP+pBJgGbiHAtB6+uflntKZzAAAbY3jyTJKbC/9UvgcHAIBqWCwt5sT4YO7u2JGuls6b\nOsY9nbvSXGjK4MTt+8FWAICbIfwDdawWlV9JsqlpU/q77snw1JnML81v2HlvxLHLJ9JcbM6+Wwx/\nvJXKlqV6rP4qlUv5/df+KIUU8q5t70ipXMprYydqPda6q4R/+m9xa859296RtubWPH3++ZTKpfUY\nbc2GVj51P9Bd480/K+GfUbVfAHBHGJ668fDPjva+dLV05tjl4ymXy9UaDQCAO9ypydOZLy3k4Jb9\nN32MTcXm7Om6J6enzmZ+aWEdpwMAqC3hH6hjtaj8qtjXM5BSubQaULidTC/M5MzU69nX3Z9NTZvW\n/fh7u/dk6+YtefHC17JQZ9Vf/+3s0zk7fS7fffe7833970mSvHK5PjcYXU2pXMqpieHsaO9L+6a2\nWzrWpqZNeaj3/ozNjefoBtdYDE0Op6nQlHs6d23oeb9dT0t3Woqb1H4BwB1iePJstmzuSXdL15of\nUygUcmjLgYzPT9oWCABA1VQqvw7e4rb3vd39KZVLOb0SfAcAaATCP1CnalX5VbG/Z2+S5ORtWP11\nbOxEyimve+VXRbFQzEN99+XK4mxeuXS0KueohtnF2Xz+xFNpaWrJD+//wezr2ZtNxU159dJrtR5t\nXZ2fGc3s0lz2rlNd1iM7DyfZ2OqvxdJizkyeza7OndlUbN6w876VQqGQ3vbtGZ254JP8ANDgJuYn\nMzY3nj1dNx4+Prha/dV4WyUBALg9HFv5XvNW3w/f27O8Lf7kuOovAKBxCP9AnapV5VfFvpUXSCcm\nBjf83NdzbGVDy6Gt91btHIf7HkiSPD/yUtXOsd7+ZOjPMrkwlR/s/95s2dyTTcXm3LtlX85On8v4\n3EStx1s3lcqv9Qr/HNiyN3e1bs2R0Zc2rObu7NS5LJaXMnCLtWXrpa9te+ZLCxmfb5y/JwDAmw1P\nnk2S7Olce+VXxaGV6oVjG7wtEQCAO8NSaSnHxwezs73vhrZUvpW93cvvbQ9OCP8AAI1D+AfqVC0r\nv5Jky+aebGvdmhPjQ7fdNpCjl49nU7E5A+sU/ngrleqvF0bro/rr0uzlfHH4y9myuSff1/89q19/\n+10HkySvXm6c7T+VF+3r9d+/WCjmkR0PZW5pPi+Mfm1djnk9Q5PLAaZq/h2+Eb3t25MkIzOqvwCg\nkQ1PLlf67um68fBPX3tvelq6cnTs+G33+gAAgPp3avJ05pfmc+/W/bd8rG2tW9O5qWP1Q4QAAI1A\n+Ae+TalcqvUI11Xryq+KfT0DmV6YyciV2ycQMDk/lbPT57K/Z29V65IKhUIO77g/s0v1Uf31n47/\nlyyUFvM39/9QWppaVr/+9q3L4Z9XLh2r1WjrbmhiOM3F5tzTefe6HXOjq79OTSz/4O12Cf/0tfcm\nSUaFfwCgoQ1Pnklyc+GfQqGQg1sPZHJ+KudnRtZ7NNgw5XI5gxOn6uK9AQC4k1QqvyobJ29FoVDI\nvp7+XJq9nPG5yVs+HgDA7UD4B77FX559Oh/5i1/Jyxe+UetRrqnWlV8V+3v2JklOjA/VbIZv99rY\nySTJoa0Hqn6uwytbl549/2LVz3UrBidO5enzz2dP1z35zp0PveG2XZ0707mpI69cOtYQn9CeX1rI\nmanXs6dzV5rXMfy1o6MvA1178o1LRzfkDYGhydPZVNyUne19VT/XWvS1rWz+uY2CfgDA+huePJOu\nTZ3Zsrnnph5/aMvy9+BHVX9Rx545fyS/8cxv5QtDf17rUQCAb3Hs8nL4594t6/O+r+ovAKDRCP/A\niiuLs/mPx/840wsz+Z2XP5NXL92+NUiVyq/DNar8qtjfM5AkOTk+WNM5vlXlBw0H1+lF4LUMdO3J\nXa1b89KFr2VhaaHq57sZ5XI5v3/sj5IkH7j3h98UFisWinn7XQczPj+Rcw3wCe3TU2dSKpdWX7yv\np0d2Hk455Tx7/vl1P/a3ml+az+vT57On6540FZuqeq616lP7BWv2zPkjeWrwS1kqLdV6FIAbMr0w\nk4uzl7On654UCoWbOsbBrcI/1L+nV77f//9O/WmmF2ZqPA0AkCxvwj8+fjI72nvTs7lrXY4p/AMA\nNBrhH1jxp8P/NdMLM3mg911JuZz/+6X/57baaFPxrZVfB2pY+ZUkuzp2pqWp5bb6czo6djwtxU0Z\n6N5d9XMVCoUc7rs/s0tz+cZtWv11ZPTlHB8fzAPbv2P1hzHf7m0NVP1V6emuRl3WwzseSLFQrHr1\n1/Dk2ZTKpQ35O7xWnZs60trUavMPXMf80nw++8rv5T+d+C/5zSO/k8n5qVqPBLBmt1L5VdHbti1b\nNvfk2NiJhtgqyZ1nZmEmr1w6lmKhmCuLs/mToT+r9UgAQJLhqTOZW5rPvetQ+VUx0L0nhRQyOC78\nAwA0BuEfSDK1MJ0vnvpyOjd15H9/x4/kJ971Y1ksLeb/euFTGZ48W+vx3uB2qfxKkqZiU/Z29+f1\n6fOZWbhS01mSZHJ+Kuemz2d/z951rXy6lsr2pco2ptvJQmkx//G1P06xUMz/cu/7r3q/t991b5IG\nCf+svFivxuafrpbOvPOut2V46mzOTp1b9+NXDE0uB5j6u26f8E+hUEhf+/ZcuHIxpXKp1uPAbevF\nC1/P3NJ8ulu6cmzsRP7JM795230fAXA16xH+KRQKObjlQKYWpvP69Pn1Gg02zAsXvp6l8lIeHXhv\ntmzuyZ+d/krG5yZqPRYA3PEqlV+H1jH809bcmh0dfRmaHPZ+FwDQEIR/IMmfDP1ZZpfm8kN7vy+t\nzZvzQO+78uPveCyzi3P5rSO/k3PTt08d0nMjLySpfeVXxWr1122wHrVSL3DoKhtuqqG/a3e2td6V\nFy98LfO3WfXXl0//ZS7MXsr/fM//lL723qve767Wrelr355jY8frvqZmaGI4HZvas73trqoc/5Gd\nh5Okqtt/hqq4vehW9LVvz2JpMZdnx2s9Cty2nj63XBPy0w/9ZH543w/m0uzlfOLZT96WAVGAb7ce\n4Z/km9+Lq/6iHj2/8m/2Izsfzl/f+31ZKC3kPw9+scZTAQDHxpbDP/duXb/wT5Ls6+7P3NK84DoA\n0BCEf7jjjc2N589PfyVbN2/JX9v1Xatff2Tn4fzo2/5Wpham85tHficXrlyq4ZTLliu/vnZbVH5V\nrIZ/xgdrO0i++SJwI8M/leqvuaX5fOPSqxt23uuZmp/Ofx78Qtqb2/LX933/de//9q2HMrc0f1uE\nuG7W5PxULsxeWl7ZWyhU5Rz3bX9nWpta8/T556v2iaBTE6fT1tya3rZtVTn+zept254kGVX9BW9p\nan46X7/0avZ07srdHTvy1/d9f37yvv8jhUIhn3r5d/P5E0/5JCFwWxuePJO25rZsa916S8epfC9+\nbEz4h/pSqfza07krfe3b81fu/s70tm3LV85+NReuXKz1eAD8/+zdd3hb93n3//fBIkGCBLj3HqK2\nRE1vW5ElD3nHSWrXSZPG2bN10j6/J+31+zW/tk+z2sZ22szGaewkdbwl25L31t4SKe69B0iQAEiM\n8/xBQpYdSiIpAOeAvF/X5UuxCHy/txRLxDnn/t4fsWgFggEanS1kWtNxxNnDunbx9OG7lhi+JyqE\nEEIIESLNP2LRe7HlVXxBPzeVbMVsNH/ga1fmbeaO8ptxTozw4yM/wzmh7cSL9yO/Vmke+RVSMh2v\n1DTSqnElU6eLLUZL1OOS9Bj99XzLy3j8Xm4s2UqiOeGirw9Ff52J4eiv0MSc4qTITcyxGM1UZ67E\nOTFydtxwOLl9Hvo8AxQm5evmz3hIZsJU80+fu1/jSoTQp8N9xwmqQdZnrz37c6szlvPAuq+Qbk3j\nxZZX+NmJR/D4vRpWKYQQM/P4vfR5BihIyrvkJuq0+BRS4hzUDzdJ06OIKaHIr7XT13dGg5EdJdsI\nqkF2Nr2kcXVCCCHE4tUx1oU34KU8jJFfISXTB1tbRqT5RwghhBCxT19PFoWIsgHPIO907SPTms6m\n7HUzvmZr4TXcVLyVQe8QPz7yc1yTY1Gu8n3vR36t1KyGD0swJ5CdmEXLaJumkVEjE6P0uvsot5dg\nNBijundBUh7p8akcHziti+iv3vE+3up8jwxrGlfnXTar91SmlKGgUDscu80/LaHmH3thRPcJRX/t\n6zkU9rXbXB2A/iK/4JzmH5n8I8SMDvQeQUFhfdaaD/x8ri2bb6//KlUpFZwYqOEHhx6mzy1/joQQ\n+tLh6gKg8BIjv2BqMmZlShnjfjddYz2XvJ4Q0RKK/Fp7TsR2ddZq8mw5HOw9QudYt1alCSGEEIta\naNp7RZgjvwByErOwGC1n7ysKIYQQQsQyaf4Ri9rzzS8TVIPcXLrtgg0jN5Vcz0cKrqbX3cdDR3+B\n2+eJYpVTAsEAR/tP6iryK6Q0uYiJwCRdGmYjaxH5FaIoCtVZq5kMTHJaB9FfTzU+T1ANcnv5zZgM\nplm9x2qyUpxcQMtoe8xOpQhN/imK4OQfgDJHCSlxDo72n2AyMBnWtdtGp5t/ojy9ajYyQ7Ff0rQg\nxJ8Y9AzRNNJChaN0xhHkieYEvrT6M2wpuIqe8V6+d/BBagbrNKhUCCFm1j7WCUw1tYfD+9Ff4Z+U\nKEQkfDjyK8SgGLi19AZUVJ5r2q1hhUIIIcTiFZq+XRGByT8GxUBRUj7d4714Y/SeqBBCCCFEiDT/\niEWra6yH/T2HybPlnI1tOh9FUbij/GauzN1Ex1gXPzn2S7z+iShVOqXO2ci4z62ryK+Q0unxqM0j\nLZrVUDfcCETmBMhsnI3+6j2myf4hdcMNnBg4TbmjhNXpy+f03qrUCoJqkPrp38tYoqoqraPtpFvT\nsFkSI7qXQTGwMbuaicAkx/pPhXXtVtd0A5MOJ/8kmBNINCfI5B8hZnCg9ygAG86J/Powo8HIXRW3\ncN/Sj+ELTPLwsV/yStubqKoarTKFEOK82l3hbf6pcEw1/9TF4OdKsTh9OPLrXMvTqii1F3Ni4LQu\n4q6FEEKIxSSoBmkcaSbdmkZKvCMiexQnF6Ki0jp9KE8IIYQQIlbpq4NAiCja1bwHFZVbSrfPqplG\nURQ+vuQONmStpXm0jZ+eeARfFCOeQiPI9RT5FRJq/tHyRmj9cCPxxjgKbOF5YDFX+bZcMqxpnBis\nCfs0mNkKqkGeqN8JwJ3lO1AUZU7vX5JSAUDtcEPYa4u0fs8g4343xVFqmglFf+3vORzWdVtHO0gy\n22acHKIHmdZ0BjxDmkb8CaE3qqpyoPcIJsXImoyLf4/enLOeb1R/kWSLjScbdvLfNf8T1c8TQggx\nk3ZXJ3FGCxnWtLCsl2ZNIS0+lXpnE0E1GJY1hYikmSK/QhRF4bayGwF4tvEFadwVQgghoqhjrAuP\n3xuRqT8hxfZCAFpG2yK2hxBCCCFENEjzj1iUWkfbOdp/kpLkIlakLZ31+wyKgfuWfozV6cupG27g\nFyd/G5WH4KHIr2RLku4ivwAyEzJINCVo1vzjnBihzzNAuaPkgvFtkaQoCmszVzEZmOTUoDbRX/t6\nDtMx1sXG7Op5TY4psRdiMVo4M1QfgeoiK3RxXpxcGJX9shMzKUoqoGaojpEJV1jWHJ10MTzhpCg5\nf86NW9GSkZBOUA0y6B3WuhQhdKNjrJue8V5WpC8lwWyd1XtK7IV8e8PXKE4uZF/PIf718H/inBiJ\ncKVCCDGzycAkPeN95NvywjphtDKlDI/fQ+dYd9jWFCISzhf5da5yRwnL0pZQ72yidjj2rpeEEEKI\nWNUQwcivkNBhwmZp/hFCCCFEjJPmH7EoPde0G4Bby26Y80N2o8HIp1fcy9LUSk4O1vDI6d9H/DRr\nKPJrTcZK3UV+wVTjS4m9iEHvECMTo1Hf//3Ir7Ko732u6szVABzui37010RgkucaX8BsMHNr6Q3z\nWsNkMFHhKKXH3cew1xnmCiOrdTT6cVkbs6tRUTnUeyQs64V+DYU6jPwKybRmANAv0V9CnHWgd2oC\n2Ias80d+zcQRZ+cbaz/Ppux1tLra+ZcDP6ZZokSEEBroGOtGRaUwTJFfIaEHNBL9JfTuQpFf5wpd\nZz3b+KJM/xExT1VV9nUf4n+/84/89tiTWpcjhBDnVeecbv5JiVzzjyPOTkqcg5bRNvkeL4QQQoiY\npr8uAiEirH64kZqhOqpSKqicZ7OI2WDicys/SZm9mEN9x3is9omINgDpOfIrJBT9pcWDy/rpBwqV\nDm2bf/JtOWRa0zk5EP3or5dbX2dk0sVHCq++pPzrqtSp6K8zMRb91TLajkExUGDLjdqe67JWY1AM\nYYv+apvOFS9Kyg/LepGQmTAVBdLnluYfIWAqbvFQ7zGspniWp1XN+f1mo5n7ln6MuypuwTU5xr8d\n/k/e6zoQgUqFEOL82l2dABSEufkndK0lzT9C7y4U+XWugqQ8qjNX0ebq4Gj/yWiUJkRE9LsHeejo\nL/hNzR9wToywu/4NvH6v1mUJIcSfCKpBGp3NpMWnkhqfEtG9ipMLcE2OMRRjByKFEEIIIc4lzT9i\nUVFVlWenp/7cUrb9ktayGC18cfWnKUzK473uAzxR/1xETgboPfIrJNT8o0X0V52zCaspnvyk6DV+\nzERRFKozVzEZ9HFysDZq+zonRni57Q2SLUlcX3jtJa1VlTLV/FMbQ9Ff/qCfDlcn+bYczEZz1PZN\nsthYlrqE9rEuusZ6Lnm9Vtd084+OJ/9kTMcgSPOPEFManM04J0ZYm7Fy3n//KIrCloKr+Mqaz2Ix\nWvht7eP8se7ZqMSKCiEERK75JyXeQYY1jQZnc8QnpQoxX7OJ/DrXjtLtGBQDzzXtlu/VIuYEggF2\nt7zKP+7/IbXD9SxLW8JVeZcxEZjkcN8JrcsTQog/0TnWg9vviWjkV0ixvRCAllGZyCuEEEKI2CXN\nP2JROTVYS9NIC6vTl1OcXHjJ61lNVr685rPkJmbzesc77JxuLAonvUd+hRQlF2BQDFFv/hn2Ohnw\nDFLuKNHF7091Vij663jU9nyucTeTQR+3lG4n3hR3SWvlJGaRbEmidrg+Zsbcdo5141cDFIXhz/Rc\nbcyuBrjk6T+qqtI62k5qfApJFls4SouITOvUAxGJ/RJiyoGeqdi/Ddlzi/yaSVVqBd9e/zVyErN4\nreNtHjr2S8Z845e8rhBCXEy7qxOzwUxWQkbY165wlOENeM82GAmhN7ON/ArJSshgc/Z6et19YZsA\nKkQ0NI+08n8O/DvPNr1IvCmezyy/hy+t+gzbiq5FQWFv90GtSxRCiD/REIXIr5DQs4KW0faI7yWE\nEEIIESnaPykXIkqCapDnmnajoLCj9NKm/pzLZk7kK2vuJ8Oaxoutr7Kn5bWwrQ3nRn7N7makVixG\nC/m2HNpdHfgCvqjtW6eTyK+Q3MRsshIyODlQw0QUor/aXZ3s6zlEni2HzTnrL3k9RVFYklKBa3KM\nrvFLn2YTDaGL8mINJuasTF9GvDGeA71HLulE+5DXyZhvXNeRXwDxpniSLUky+UcIwBf0c6T/BI44\nO+VhOoWYkZDGA+u+zKr05dQNN/D9Aw+GZbKYEEKcjy/op2u8h3xbDkaDMezrS/SX0LvZRn6d66aS\nrZgMJnY1v4Qv6I9UaUKEhcfv4Q9nnuKHh35C13gPV+Ru5O83PcC6rDUoikJqfAorspbQONIs13lC\nCN2pn/4MGY3JP4VJeRgUA80jbRHfSwghhBAiUqT5RywaR/pO0DHWxfqsteTassO6tj0uia+u+Rwp\ncQ6eaXqB1zveCcu6H4z8Kg7LmpFUYi/GrwZoH4veyd465/RFYIo+mn8URWFt5ip8QR8nB2oiupeq\nqjxZvxMVlTvLd4Rt8lFVajkAZ2Ik+qtldOqiXIvmH4vRTHXmSpwTI9QPN817nVbXVANTYbK+m38A\nMqzpDHmH8cuDDrHInRqsxeP3sC5rdVgnz8Wb4rl/5X3cWLyVAe8Q3z/0EEf7T4ZtfSGEOFf3WA9B\nNRj2yK+Q0Cnteuf8PycJESlzjfwKSYl3cHXeZQxPOHm7c28EKxRi/lRV5WjfCb6794e82fkeWQkZ\nfLP6i9xT9VESzAkfeO21xZcBsK/nkBalCiHEjIJqkAZnM6nxKaRZUyO+n8VoIc+WQ/tYp9zzEkII\nIUTMkuYfsSgEggF2Ne/BoBi4ueT6iOyRZk3ha2vvJ8li4/G6Z3gvDCOTYyXyK6TUXgQQ1eiv+uFG\nEkxW8mw5UdvzYkJTmiId/XVi4DR1zkZWpFVRlVoRtnVDa9UMx0bzT+toO/HGeDIjEFUxG+GI/mob\n7QCgKCn6DUxzlZmQjorKgGdI61KE0NTZyK+s6rCvbVAM7CjdxmdX3Aeqys9P/Ibnm1+6pAljQggx\nkzbX1GeQSDX/OOLsZCak0+hsJhAMRGQPIeZrrpFf59pWdB1xRgsvtryC1z8RgeqEmL9hr5OfnniE\nn5/8b8Z94+wo2cbfbvwG5Y6SGV+/MX8N8cZ49nUfks+bQgjd6B7vZdzvjsrUn5Di5EL8QT+dY91R\n21MIIYQQIpz0300gRBjs7zlMr7ufy3M2kJGQFrF9MhMy+Oqa+0k0JfBozeOX3PxxuDc2Ir9Cot38\nM+gZYtA7TIWjVFfNUVPRX5mcGqyJ2I3gQDDAU427MCgG7ii/OaxrO+LsZCdk0jDcpPuTLm6fm153\nP0XJ+Zr9N1DmKCElzsGR/uNMzjPqrXU0NPknMg/ewinTOnUqus/dr3ElQmjH4/dwcrCG7MQs8iPY\nfLo2cyUPrP8KafEp7Gp+iV+e/K08YBRChFW7a2piZ6Saf2AqntcbmKDNFb3poELMxnwiv0KSLDY+\nUnA1Y75xXmt/O9ylCTEvQTXIa+1v8919P+DEwGkqHKX8Pxu/yY0lWzEbTOd9X5zJwrqsVQxPOCWm\nUQihG6EJ29Fs/ilJLgSgeVSiv4QQQggRm/TztFyICPEF/exqfgmTwcSNJVsjvl+eLYcvr/lL4owW\n/uvUY/OOfgoEAxwbiJ3IL4CUOAeOODtNIy2oqhrx/eqm4wP0EvkVoigK1Zmr8AX9nBqMTPTXW517\n6XMPcGXuJrITs8K+flVqBZNBH81RnOI0H63Tp9WLpy/OtWBQDGzMrmYidLYvSQAAIABJREFUMMnx\n/lNzfn9QDdLm6iQrIQOryRqBCsMrFInQ5xnQuBIhtHOk7yT+oJ8NWWtRFCWie+XZcvj2+q9R6Sjj\naP9JfnjoYQY8gxHdUwixeLS7ujApRnIi8HkypHL6s3q9Ux4oC/2Yb+TXubYUXk2iOYGX295gzDce\n5gqFmJt2Vxc/OPgwf6x/FqNi5N6qu/n62s+TlZg5q/dvzlkPwN4wTLEWQohwCH12jOZ93+LkqYnc\nLSPtUdtTCCGEECKcpPlHLHjvdO5jeMLJNXmX44izR2XPouQCvrDq0xgVI784+d/zOjkVivxamxkb\nkV8w1fRSYi/CNTnGoDfykUD107+vlTpr/oHIRn+5fW6eb36JeGM8N0Uoxi4U/VU73BCR9cMldDFe\nlKxtXFYo+mtf79yjv/rdA3gDXgpjIPILIGP64Ui/W5p/xOJ1oHcq8mt91pqo7GezJPKVNZ/lmvzL\n6Rrv4XsHHuTMkL7/fhZC6F8gGKBzvJtcWzamC0yEuFTljqnP6jJNQujJpUR+hVhN8Wwv2oI34OWl\n1tfDV5wQczARmOSphl187+CPaXW1syFrLX+/+VtcnrthTk3qJclFZCakc7T/BB6/J4IVCyHExQXV\nIA3OZlLiHKTFp0Rt34yEdKwmKy2j+j4MKYQQQghxPrHRUSDEPE0EJnmx5RXijBa2FV0X1b0rUkr5\n3MpPElRV/uP4f815gkoo8mttRmxEfoVEK/pLVVXqhhtJNCdE9KTyfOXasslOzOLUYC1evzesa7/Q\n8grjfjc3FG8hyWIL69ohoSi12qH6iKwfLq2uqTG8xRo3/2QnZlKYlE/tUD2jk645vTc0vagoOT8S\npYVdhnUqOrFPJo+IRco5MUL9cCOl9iLSralR29doMPKxytu5p+ouvIEJHjr2C15vfycqk/aEEAtT\nj7sPf9Af0cgvAHtcEtkJmTSOtBAIBiK6lxCzdSmRX+e6Ou8yHHF23uh4B+fESDhKE2LWTg2e4R/3\n/ZCX294gJc7BV1Z/lr9Y/mfzuk+gKAqbs9fjC/rP3o8SQgit9Iz3MeYbpyKlNOLTds9lUAwUJxfQ\n7xmUqX5CCCGEiEnS/CMWtNfb38blG+MjBVdjsyRGff9laUv4zIp78Qf9PHzsV7S7umb1vliM/AoJ\nNf9EOi5q0DvE8ITzbJOKHlVnrMQX9M87+m0mfe4B3uh4l7T4FK7NvyJs635YvCme4uRCWkfbcfv0\neepPVVVaRtpJiXNgj0vWuhw2ZlcTVIMc7D06p/e1jupjetFsWYwWHHF2+tz9WpcihCYO9h5FRWVD\n1lpN9r8idxPfqP48ieYEHq9/hkdr/4gv6NekFiFEbGtzdQJEvPkHpiZ1TgYmzzY9C6GlcER+hZiN\nZm4q2Yov6OeFllfCVKEQFzY66eK/Tj3GT479kuGJEa4vvJbvbPorlqZVXtK6G7OrUVDY2yPRX0II\nbdU7m4Cpw4nRVpxcCLx/v04IIYQQIpbo84m5EGHg9nl4qe0NEk0JbCm8WrM61mSs4L6lH8Pr9/LQ\n0Z/TM9530ffUDcde5FdIvi0Xs8EU8ck/odiAaOY+z9XaCER/PdP4AgE1wG1lN2E2msO27kyqUitQ\nUalz6jOiYcjrxOUb03zqT8j6rDUYFAP7e+YW/dU62oFBMZBvy4lQZeGXaU3HOTHCZGBS61KEiLqD\nPUcwKAaqM1drVkOpvZi/Wf81CpPyeK/7AP9++KeMTIxqVo8QIja1R7H5J/SZXaK/hB6EI/LrXJuz\n15NpTefdrv30u2U6poicoBrkna59/MPeH3Cw9yhFyQX8zfqvcXv5TViMlktePyXeQVVqBU0jrfTO\n4t6VEEJESn3ovq8j+vd9S+xTzT/NI21R31sIIYQQ4lLFVleBEHPwStsbePweri+6FqspXtNaNmZX\n8/EldzDmG+fBoz9nwDN0wdeHmkViLfILwGQwUZhUQOdYd9jjrs5VNzx1AqRSg4vA2cq1ZZOTmMWp\noTNh+b1ocDZztP8EJclFVIfpRvWFVKVUAHBGp9FfLaNTF+F6mZiTZLGxLLWSdlcn3eO9s3pPIBig\nY6yTnMSssNysjZbQCel+if4Si0zPeC/tY10sS63UZKLguVLiHXyz+ktsyFpL82gr3zv4oJxMFELM\nSbtrqgE5NzHyDcihU9v10vwjdCBckV8hRoORHaXbCKpBdjbvDsuaQnxYz3gf/37kpzxW+wSqGuTu\nytt4YN2XyU/KDes+m3PWA7C351BY1xVCiNlSVZV6ZxOOOHtUo7ZDQvcZQ/cdhRBCCCFiiTT/iAVp\ndNLFqx1vY7ckcU3+5VqXA8BVeZu5o/xmnBMjPHjkZzgnRmZ8XSjyyx6DkV8hpfYiVFRaIvQQcuoi\nsBGbOZGcxKyI7BEu1Zmr8Af9nLjE6K+gGuSJ+ucAuKtiR1TyrouTC4g3xlGr0+af0EPu0DhePdiY\nXQ0w6+k/XeO9+IJ+ipL00cA0Wxmh5h/3gMaVCBFdB6Zj/bSK/Powi9HMp5Z9gjvKb2ZkYpQfHf4P\n9nXLgxohxMUF1SAdri6yEzKxRHiaJEw1SecmZtM40oJfogqFhsIZ+XWutZmryLflcqj3GJ1j3WFb\nVwhf0M+upj388/5/pcHZzOqMFXxn019zbf4VEZkUvSp9OVZTPPt7DhNUg2FfXwghLqbH3ceYb5wK\nR2lU7n9+mM2cSIY1jZbRdvl7UAghhBAxR5p/xIK0p+U1JgOT3FC8VVfTNLYWXsONxVsZ8A7x4JGf\n45oc+5PXhCK/1sRg5FdIqb0IgOYIRX/1ewZwToxQkVKmyUXgXFSHKfrrYO9R2lwdrMtcTcn072+k\nGQ1GKlJK6fMMMOgZjsqec9Ey2oaCEpWoitlamb6ceGM8B3qOzOoGQZtrqoGpKDk/0qWFVaZ16kFJ\nnzT/iEVEVVUO9hzBYrSwMmO51uWcpSgKWwuv4YurP4PZYOI3NX/gp8cfYcirv7+3hRD60efuZzLo\ni+rnqIqUUnxBX8QOCAgxG+GO/AoxKAZuLbsBFZVnG18M69pi8aofbuSf9/8rz7e8jM1i43MrP8nn\nVn6SlHhHxPa0GM2sy1yNc2JEtweBhBALW/30tPfQ5EgtFCcX4fF75NCbEEIIIWJObHYWCHEBQ95h\n3up8j7T4VC7P3aB1OX/i5pLr2VJwFT3uPh4++gvcPs8Hvh7LkV8hoeaUpgg1/9SfjfzS7iJwtrIT\ns8hNzOb0YC2eeUZ/TQYmeabxBUwGE7eV3RjmCi+sKqUSgDPD+rrpFwgGaHN1kmvLJt4Up3U5Z1mM\nZtZmrmR4wkmDs+mir28d7QD0E102W6FT0n0euQkiFo/m0TYGvEOsTl9BnI4ai0OWpy3h2+u/Srmj\nhOMDp/juvh/yctsbBIIBrUsTQuhQm6sTgMKk6DUgh+J6JfpLaCnckV/nWpa6hDJ7CScHa2gaaQn7\n+mLxGPe5ebTmcf7tyE/pcw9wTf7lfGfTX7M6Y0VU9t+cM3UvbW/3wajsJ4QQ56p3Tn1WrEjRsPnH\nHor+kqZ1IYQQQsQWaf4RC84LzS/jVwPcXHI9JoNJ63L+hKIo3Fm+gytyN9E+1sV/HP8VXv8EMB35\n1R/bkV8wNdY/05pO82hrRMaj1k1fBFamlIV97UiozlyFXw1wYuD0vN7/avtbOCdGuC7/StKinHVd\nlVoOoLsTf93jvfiCPl3GZW2ajv7aN4vor7bRdswGE7mJ2ZEuK6zSrGkoKDL5R5yX2+fhtzWP0+Hq\n0rqUsDnQcwSADdn6iPyaSWZCBt9Y+wXuW/oxzAYTTzXs4l8O/jhik/iEELGrfbr5J5qTf8qnH+DU\nzaJBWohIiFTkV4iiKGcPazzb+CKqqoZ9D7GwqarKgZ4jfHfvD3i3+wB5thz+et2X+Vjl7VhN8VGr\nozi5gKyETI4NnMLtc0dtXyGEUFWVemcTdksSGdbwf6+erZLkQmDqEJAQQgghRCyR5h+xoPS6+9nb\nc4jsxCxdP5xTFIVPLLmD9VlraBpp5acnHsEX8E1FfvljO/IrpMRehMfvpWe8L6zrqqpK3XAjSRYb\nWQmZYV07Utaejf46Nuf3jky42NP6GjZzItuLrwt3aReVlZCJ3ZLMmeEGXeVct0xffIdO4uhJmaOE\nlDgHR/tOMBmYPO/rfAEfneM95NtyMRqMUazw0pkNJlLjU+iXyT/iPF5rf4v3ug/w2JknFsSDr0Aw\nwOG+YySZbVSllGtdzgUpisLmnPX8/eZvcXnOBjrHuvnhoZ/wu9on5OGNEOKsdlcnCgp5tpyo7Wkz\nJ5Jny6F5pAVf0B+1fYUIiVTk17nKHMWsSKui3tlEzVBdxPYRC8+AZ4iHj/2SX5/+Hd7ABLeX3cTf\nrP8aJfbCqNeiKAqX5azHH/RzaB73MYQQYr563f24JseoSClDURTN6siz5WAymM7efxRCCCGEiBWx\n3V0gxIfsatpDUA1yS8k23TfPGBQDn1z6cValL6duuIFfnvotB3qnpgpUZ67WuLpLVzod/RXuaQN9\n7n5GJ11UOrS9CJyL7MRM8mw51AzW4fF7Lv6Gc+xq3s1EYJIdpduwmqwRqvD8FEWhKrWCMd84nWM9\nUd//fFqnx+4WJ0f/RujFGBQDG7Or8QYmOH6BaU8dY10E1SCFydGL2winzIR0Ridd846zEwvXZGCS\nNzrfBab+rF7oz0GsqBmqY8w3TnXW6php1rOZE7l36d18s/qLZCdm8nbXPv5h7w/Y33N4QTRkCSHm\nL6gGaXd1kZmQEfX41EpHGb6gnxaZSCY0EMnIr3PtKL0BgGebXtTVAQqhT0E1yEutr/P/7/shNUN1\nLE2t5Dub/orri67V9HPnhuy1KCjs7T6kWQ1CiMWnfnpCZLlDu8gvAJPBRIEtj86x7gse7BNCCCGE\n0Bt9d0cIMQcdri4O9R2jMCkvajnol8poMPKZFfdSlVLBiYEa9vUcwm5JOts4E8tK7cUANIX5xn7d\n2dzn2Ij8CglFfx3vn/1D8M6xbt7tOkB2YhaX52yMYHUXVpVaAcCZYf1Ef7WMtmMxWshJzNK6lBlt\nnI7+2n+B6K/W0Q4AXUaXzUZo/LJM/xEf9l73QcZ9btZlrkZBYWfT7ph/8BVqzt2Qpd+pgudT7ijh\nbzd8ndvKbsQbmOCR07/nwaM/p9fdr3VpQgiNDHiG8Aa8FCTlRn3v0Gd4if4S0RbpyK9zFSTlsi5z\nNe2uTo72n4zoXiK2qarK43XP8HTj88QZLXxq2Sf48uq/JN2apnVpOOLsLE2rpGW0jZ7xXq3LEUIs\nEvXDU/d9KzVu/gEosRcSVIO0TcflCiGEEELEAmn+EQvGc027Abi19MaYmQgDU/E5n1v1Kcqmm2UW\nQuQXTE27iTfG0zTaEtZ160IXgTHW/PN+9NfxWb1eVVWerN+Jisqd5TdreuJvScpU80/tkD6af7x+\nL93jvRQm5en2z0p2YiaFSfnUDNUxOuma8TWtrqnpRUUxPPkHoN8tzT/ifYFggFfa3sRsMHF35W1s\nzK6ma7yHw72xGxfg9U9wvP8U6dY0ipNjs1nPZDCxreg6vrPpr1meVsWZ4Qb+ad+P2NX8Er6AT+vy\nhBBR1j79AKMgKS/qe1c4SlBQzj7YESJaohH5da4dpVPTiHc27SYQDERlTxF7djbv4c3O98iz5fB3\nmx5gY3a1ru5nXZazAUCm/wghokJVVRqcTSRZbGQmZGhdztnrf4n+EkIIIUQs0edTUyHmqGmkhZOD\nNVQ4Ss9OKYklcUYLX1z9aW4tvYHtRVu0LicsDIqBEnshfe4BxibHw7KmqqrUDzdhtySRaY3sac1w\ny0rIIN+WS81QHW7fxaO/Tg+doXa4nqWplSxLXRKFCs/PHpdEbmI2Dc5mXTwkbnN1oqLqMvLrXBuz\nqwmqQQ72Hp3x622jHcQb43RxQ2M+Qs0/fe5BjSsRenK0/wSD3iE252wgyWLjppLrMSpGdjbvidkH\nX8cHTjEZ9LEha42uHsbMR7o1lS+u+jSfXXEfieZEnm9+iX/a/6+6ae4UQkRHqPmnMCn6DcgJ5gTy\nbTk0j7QyqYPPlWLxiFbkV0hmQgaX5Wyg193PvgtMAxWL1yttb/JiyyukW9P48urPYrMkal3Sn1iZ\ntpQEk5X9PYdi9rO8ECJ29HkGGJl0Ueko08W1d3Hy1GT+lhFp/hFCCCFE7JDmHxHzVFXl2cYXAbil\n9AZdXBzMh9VkZXvxFuxxyVqXEjah+LLm0fBEf/W4+3D5xqhI0cdF4FytzVxFQA1wfODUBV8XCAZ4\nsn4nCgp3lN+si19rVWoFvqAv7DFu89E6GpqYo+8JHOuz1mBQDDNGf3n9Xnrd/RToeHrRxUjsl/gw\nVVV5qe0NFBS2FFwFTDWbXJG7kX7PIHt7Dmpc4fzEcuTXTBRFYW3mSv5+8wNcV3Al/Z5BHjz6c359\n6nfnnVQmhFhYQs0/+bbox37BVPSXXw3QEqZrBCEuJpqRX+e6qWQrZoOJ52XSnviQd7sO8GTDTuyW\nZL625n7scUlalzQjs9HM+qw1jEy6qBmq07ocIcQC1zA8FQtbroPIL4DUeAdJFhst0/chhRBCCCFi\nQWw+cRTiHGeGG6h3NrE8rYoyR7HW5YhzlE5HmYWrYeT93OfYivwKqc5cCVw8+uudrv30uPu4PHcD\nebacaJR2UUtSygGoHdZ+OkRo3G6Jzif/JFlsLEutpN3VSfd47we+FppepPcGpgtJi0/BoBjoc/dr\nXYrQibrhRtpdnazJWPGBB2vbi7dMP/h6OeYefLkmx6gdqqcwKY+sxEytywmreFM8H624lW9v+CqF\nSfkc6D3CP+z9AW917iWoBrUuTwgRIaqq0j7WSbo1jQSzVZMaQvG9dRL9JaIk2pFfIY44O1fnX87w\nhJO3uvZGdW+hX0f6TvBY7R9JNCfw1bX3k2ZN1bqkC9qcsx6AvT0S/SWEiKw65/R93xR9NP8oikJx\nciHDE06cEyNalyOEEEIIMSvS/CNi2gen/mzXuBrxYUXJBSgoNI20hGW90AOCipTYbP7JTMigwJZL\n7VA9bp97xtd4/B52Ne8hzmjh5hL9/Ddd7ijFqBh1EQ3TMtpOsiUJR5xd61IuamN2NcCfTP+JlelF\nF2I0GEmPT6VPJv+IaS+1vQ7A9UXXfuDnQw++nBMjvN21L/qFXYJDfccIqsEFM/VnJoVJ+Xxr/Vf4\nWOXtqKrK7888yY8O/YQOV5fWpcUM1+QYHv/FIz2F0IPhCSfjPjcFSXma1VDuKEFBkeYfETXRjvw6\n17bC64g3xrG75VW8fm/U9xf6UjNUx69PPYbFaObLq/+SnMQsrUu6qMKkfHISszjRf4rx89zHEEKI\nS6WqKvXDTSSZbWQl6OfgTejgoUz/EUIIIUSskOYfEdOOD5yi1dVOdeYqTW9gi5lZTfHk2rJpHW2/\n5Hz4oBqk3tmEI85OhjUtTBVGX3XmagJqgGMDp2f8+u6W1xjzjbOt6Dpdjf6ON8VRYi+k3dWp6Q0/\n58QIzomRqcYyHcShXczK9OXEG+M50HPkA5M0Wl0dwNSN1FiWmZDOuM993mY2sXh0uLqoGaqjwlE6\nY1PbBx98TWhQ4fwc7DmKgsK6rDValxJRBsXANfmX8/ebH2Bd5mqaR9v4l4M/5sn6nTH1/5cWRiZG\n+e6+H/Cdd/6ZV9vevOTPO0JEWtt05FehTbtrJ6vJSkFSHi2j7UwGJjWrQywOWkV+hdgsiXyk8GrG\nfOO82v5W1PcX+tE00srPjj8CisIXVv1FzBwEURSFzTnr8asBDvYe1bocIcQC1e8ZZGRylPKUUl3d\n7ysONf+MtGlciRBCCCHE7Ji0LkCI+QqqQZ5r2o2Cwo6SbVqXI86j1F5M51g3HWNdl3Rzq2e8jzHf\nOBuyqnV1EThXazNX8UzTCxzuO8Zl0+OzQwY9Q7zW/hYpcQ62FFytUYXnV5VSSYOzmTPDDVRrcGoW\n3p+YU6zzyK8Qi9HM2syVvNd9gAZnE5XT8Wlto+0kmhNIi0/RuMJLk5GQDoPQ5xmg2Bwb/5+IyHi5\n7U0AthZeM+PXbZZEthRcxfMtL/N6xzvcULwlmuXNy4BnkObRVqpSKrDHJWtdTlTY45L5zIp72Ty4\nnj/UPc0r7W9yqO8YH6u8jdUZK7QuT3dUVeUPZ55i3OfGbDDxRMNO3u7az0crbmFZ2hKtyxNiRu3T\nzT9aH5yoTCmjzdVB00grVakVmtYiFjatIr/OtaXgKt7oeJdX2t7k6rzLsVkSNavlQnrG+/hj/bN0\nj/diVAwoiuEDPxpQMChGDIqCQTHM8E/o6x987UxrKYqCUTFOv+79NTITMliTsSKmr/ln0jnWzU+O\n/Qq/GuD+FfedvS6MFRuyqnmm8QX2dh/kmvzLtS5HCLEA1U9HflU49BH5FVKUnI+CQsuoNP8IIYQQ\nIjZI84+IWQd7j9I93stlORvIStTPOFDxQaX2It7qfI+mkdZLav4JxQJUxmjkV0hGQhqFSXnUDtUz\n7nOTaE44+7VnGl/Arwa4tewGLEazhlXOrCq1nJ3NuzkzVK9Z80/L2eaf2DglCVPRX+91H2Bfz2Eq\nU8oZ9boY9A6zLHVJzN/UzrROnZ7ucw/ETEOWCL9BzzCH+o6Sm5jN8rSq875uS+HVvNHxLi+3vcHV\neZeRYLZGscq5O9AzdbJ5ffbCjfw6n2VpS/jfG/+K3a2v8lLr6/zsxG9Ymb6MuytuI80a202L4XS4\n7zjHBk5R7ijh/hWfZFfzHt7q3MvDx37JyvSl3Fl+iyZTJoS4EL00/1Q4Snm57Q3qhhul+UdElJaR\nXyHxpni2F2/hifrn2NP2GneW79Cslpn4g372tL7G7pZX8asBUuIcBFWVYNDHBEGCanDq39XA9I9T\nP6eiRqSejdnV3LPkLsw6vCaejz73AA8e/Tkev4dPLv04qzKWa13SnNnjkliWuoSTgzV0jfWQa8vW\nuiQhZi2oBvH6J/D4PVhN8SSccx9O6Ef9cDOgv+afeFM8OYlZtLo6CAQDGA1GrUsSQgghhLggaf4R\nMSkQDLCraQ9GxciNxVu1LkdcQKm9CICmkRauK7hy3uvUORdG8w9M3Xhuc3VyrP8Ul+duAKZGgB/q\nO0ZhUj7rdRovU5iUj9UUT+1QvWY1hJp/ipJjJy6r3FFCSpyDo30n+Hjl7XQO9wCx9Ws4n4yE95t/\nxOL1WsdbBNUgWwuvuWBDm9UUz/VF1/J04/O80vYGt5TdEMUq50ZVVQ70HsFsMLFmkU68sRjN3FK6\nnQ1Za/n9mSc5MXCaM0P13Fy6jevyr1z0Nz3HJsf5n7qnMRvM3Ft1NzZLIh9fcgdX5G7ij/XPcmKg\nhprBOrYUXs32oi3Em+K0LlkIYKr5JyXOofnkkXJHCQbFcPaUtxCRoHXk17muyt3Mq21v8WbHu2wp\nuApHnF3TekIanS08duYJesZ7sVuS+fiS22c97S+oBlGnm4ECahCV6R9VlYAamP4xeLZZ6Ow/H2go\nev/n/UE/L7S8wv6ew/S6+/ncyk/q5vdpvpwTIzx09Oe4Jse4u+I2NuWs07qkeducs56TgzXs7T7I\nnRX6amATC5uqqviCPtx+D26fB4/fi9vvnv7Rg8fnmfqaf+proX/3+D24/V68fu/ZZkWbOZG/2/wA\nNrM+J7AtVqqqUu9sxGZOJCcxS+ty/kRxcgFd4z10j/eSn5SrdTlCCCGEEBckzT8iJr3bfYAB7xDX\n5F8hJ9B1Li0+lSSLjaaR1nmvEVSDNAw3kRLniPmYJIDqzFU80zgV/XV57gZUVeXJ+ucAuKviFgyK\nQeMKZ2Y0GKl0lHFs4BQDnkHSrWlR3T+oBmkbbScrIROrSd8TQ85lUAxsyF7LntbXOD5wmnHFBXBJ\nk7D0ItOaAUC/R5p/Fiu3z807XftxxNlZl7X6oq+/Jv9yXm1/i1c73ubagitJstiiUOXctY910uvu\nY23mKqymeK3L0VR2YiZfX/t59vcc5smGnTzVsIt93Yf4s6o7KbUXa12eZh6vf4Yx3zh3lu/4wAPl\n/KRcvr728xzuO85TDbvY0/oa+7oPcXv5TWzIWhvzE99EbBuZGGV00sXqdO2nTsSb4ilMyqdltB2v\nf0Ia5ERE6CHyK8RsNHNTyfU8Wvs4zze/zD1Vd2laj8fv4ZnGF3mr8z0UFK7Ou4xby26Y03WWQTGA\nAkaMhGtGz5KUch478wT7ew7zvQMP8vlVn4rZ66Yx3zgPHv0Fg95hbi65nmsLrtC6pEuyMn0pieYE\n9vce5rayGxd9I7iYu0AwgHNiBJdvDI/Pe07DTqipx3O2oeeDP+8loAbmtFec0YLVZCUlzo41MZsE\nczwT/knqnI3sbnmVuypuidCvUszHoHcI58QIazJW6vJ6qdheyLvdB2gZbZPmHyGEEELonjT/iJgz\nGfDxQvPLWAxmthdt0boccRGKolBqL+ZY/0mGvU5S4h1zXqNrrIdxv5sV6Ut1eRE4V+nWNAqT8jkz\n3MCYb5wzQw00j7axJmMl5Y4Srcu7oKrUCo4NnKJ2qJ4r86Lb/NPr7scbmGB1DN783ZRdzZ7W19jf\nc5j4uKlb44VJsffr+LCUeDsmg0km/yxib3buZTIwyc0l12MyXPxjpcVo4cbij/CHuqfZ3foqH624\nNQpVzt2BniMAbMhafJFfM1EUhU0561iRvpRnGp/nna79/PDQT7gidxO3ld34gQjLxeDEwGkO9h6l\nOLlwxqmGiqKwLms1K9OX8lLr67zU9jqPnP49b3a8x92Vt8bsQ0wR+/QS+RVS4SilZbSNppEWlqUt\n0bocsQDpIfLrXJuyq3m57XXe6z7A1sKryUzI0KSOY/0n+cOZpxmZHCU7MYt7q+7STUOv2Wjmk0s/\nTp4th6cbnudHh/+De6s+ysbsaq1LmxOv38tPjv6KnvFeriu4ckFMrDYZTKzPWssbHe9weugMK9OX\naV2S0BlVVRn3uxn0DDHgGZr60Tv9o2eQoQknQTU4q7WMipEEk5XeniHoAAAgAElEQVREcwLp1rSp\nuC6TFavZSoJp6h+rKR6ryUqC+f1/TzAlYDXFz9ic5gv6+e7e7/Nmx7tck38F6dbUcP8WiHmqG24C\n9Bf5FRKKuW8ZbefKvM0aVyOEEEIIcWHS/CNizpud7zIyOcq2ouuwxyVpXY6YhVJ7Ecf6T9I00sK6\n+LlHWi2kyK+Q6sxVtLk6ONR7jFfa3sCoGLm97Caty7qoJakVANQON0T9grdlpA2YGrcba7ITsyhM\nyqNmqA6rKQ5HnH1B/P1lUAykW9Pocw+gquqCaM4Ts+cL+Hi9/W2spniuyN006/ddnruRl9ve4K2O\n9/hIwdXzagqNpKAa5FDvURJMVpbLw+gPSDQncE/VR9mUvZ7fn3mSd7r2caz/JHdV3LJoGqXcPg+/\nq30Sk2Lk3qqPXnBan8Vo4ebSbWzOWc9TDbs40n+C7x98iMty1nNr2Y26nXwlFi69Nf9UppTxUtvr\n1DubpPlHhJ2eIr9CjAYjO0q388uTv2Vn0x4+s+LeqO7vnBjhf+qe4Vj/SUyKkZtLruf6ouswz6KB\nO5oURWFr4TXkJGbzX6ce5ZHTv6drrIdby27Q7ZTcc/kCPn56/BFaXe1szl7PneU7Fsx10uacdbzR\n8Q57uw9K888i5Qv4GPIOM+D9YIPPgGeQQc8w3oB3xvclmW0UJeWTZk3FbknGarJiNcef08gz1cQT\navIxG8xh/3NjNpi4pfQGfn36dzzX9CKfXn5PWNcX89fgnG7+SdFn809OYhZxRgvNo21alyKEEEII\ncVH6usIX4iI8fi97Wl/Daorn+sJrtC5HzFKpvQiAppFW1mXNvfmn/uwJkIXV/PN04/M81bALX9DH\nloKryEiI7iSd+ci0ppMS56BuqIGgGozqzdcWVzvw/ombWLMxex1t9c8y7vOwOl2fNzTmI9OaTs94\nL2O+cXmQvcjs6zmEyzfGtqLr5hSNZTKYuLHken5b8z+80PIy91R9NIJVzl3dcCMjky6uyN04q2lG\ni1GZo5i/3fB1Xm1/i13NL/HI6d/zXtcBvnTZn2MmUevyIuqphp2MTI6yo2Q7ubbsWb0nzZrKZ1fe\nR91wA4/XPcu73Qc40n+Cm4q3ck3+FRKbIaKmTWfNP6X2YgyKgbrhRq1LEQuQniK/zrUmYwUFSXkc\n6jvG9a7rKIhCfEhQDfJO1z6ebngBb8BLmb2Ye6ruIjsxK+J7X4rlaUv41rqv8J8nfs1Lba/TNd7D\np5f/ma4joAPBAL869Rh1zkZWZ6zgnqq7YqJhabYKbHnk2XI4MVDD2OQ4NsvC/ty3GAXVIKOTrhkm\n9wydjWaaicVgJs2aSrq1hPT4tOn/nUpafCpp1lTijJYo/0pmti5rNa+0v8nB3qN8pOBqCpPztS5J\nMHUNnmhKIEen35cMioGipALqnU14/B5dfx8SQgghhJAnGiKmvNr+FuM+N7eUbidhkUVMxLICWx4m\nxUjTSOuc3xtUg9Q7m6ZvGKREoDptpFlTKUoqoNXVTqIpgRuLP6J1SbOiKApVqRW8132ADldXVG+U\ntI60YTKYZv2wVW/WZ63hyYadBNUghTE4veh8Qiep+9wD0vyziATVIK+0vYlJMXJt/hVzfv/GrLW8\n1Po673UfZGvhtbo5kQ9woFciv2bDaDByfdG1VGeu4n/qnuHkYA0P7P5H7l9xHyvSl2pdXkTUDNXx\nbvcB8m25bCu6ds7vr0wp5283fJ23uvayq2kPTzTs5O2u/dxdcStL0yrDX7AQH9Lu6iTZkoQ9Llnr\nUgCIN8Wd/Tzs9XuJn0MjqRAXo7fIrxCDYuDW0ht4+Ngv2dn0Il9c/ZmI7tcz3stjtU/QONJCvDGe\nTyy5kytyN8ZMQ0pWYibfWvdVfnXqUU4N1vL9gw/z+VWfIkujyLQLCapBHq39I8cHTrEkpZxPL/uz\nBdfgqygKm7PX8UTDTg70Hpkx/lTo30Rgkn73AIPT03tCjT2hH/1B/5+8R0EhJd5BhaOUdGsaafFT\nzT3p1qnmniSzLSYmXBkUA3eU3cyPj/6Mpxqf52tr7o+JuheyQc8QwxNOVmes0PX3pmJ7IXXORlpH\nO6ianoouhBBCCKFH0vwjYsaYb5xX297EZk7k2ny5wRBLzEYzBUn5tLramQhMzunET8dYFx6/h9UZ\nyyNYoTY2ZK+l1dXOTSXXx1QzW1VKOe91H6B2uD5qzT+TAR+d4z0UJRXE7CSOJIuNpamVnBqspWgB\nnS7LtE43/3gGKHMUa1uMiJrjA6fp8wxwec6GeT1Enoq92MYvT/6WXc17dDNy3RfwcbTvJClxDsoc\nJVqXExPSrKl8YdVfcKz/JL+u+T2/Pv07vr3+q2Tq8KHcpfD6J3is9gkMioE/X3r3vB/mGQ1TDXPr\nM9ews3kPb3fu5aFjv2Bl+jLuKr8lJqYAitjkmhxjeMLJ8rQqrUv5gMqUMppHW2kcadFdbSJ2uX0e\n3UV+nWtpaiUVjlJODtbS6GyJyGdoX9DPntbX2NPyKn41wJqMldxdeSuOOHvY94q0BLOVL63+DE83\nPM8r7W/y/YMP8ZfL79VV46yqqjxR/xz7eg5RnFzI51Z+CrPRrHVZEbEhu5qnGp9nX/dBaf6JQe2u\nLn585Ke4/Z4/+VqiKYHcxCzSrGmkT0/sCU3vSY13xOy9mA9bklrOsrQlnB48w+mhOol61lhdKPLL\noe8J2aEp5C2jbdL8I4QQQghdWxif2sWi8FLr63gDE3y0dDvxpjityxFzVGovonm0lbbRdipSZh/f\nFYr8qlxAkV8h1+RfTlFyPiXJRVqXMidLpi9ya4fq2VZ0XVT2bHd1ElSDFMf4xJw7y3ewNLuMJSnl\nWpcSNhnTD1T63QMaVyKiRVVVXmp9HYCPXEIE55qMFeTbcjnUe4ztRVt0MdXrxGAN3oCXq/I26/rU\nod4oisKazJV8PtHIQ/t+zc9O/IYH1n1lQX1ee7bpBYa8w2wv2hKWyCSbJZFPLLmDK3M38Xj9M5wY\nOE3N4Bm2FF7N9qItC+r3TuhDh6sLgEKdRH6FVKaUsbv1VeqGG6X5R4TN8YFTuoz8ClEUhVvLbuSH\nhx7mmcYX+Gb1F8I6eaLR2cJjtX+kx92HI87Oxypvj/nDNAbFwJ0VO8iz5fBY7R95+NgvubP8Zq4r\nuEoXUzueb36J1zveIScxiy+t/syC/j6eZLGxIm0pxwdO0eHqIj8K0XUiPHwBH4+c/h1uv4fLczaS\nlZgx3eSTRro1ZVFFGd1edhM1g3U83bCLpakVcu2noYbh2Gv+EUIIIYTQM/lkK2KCc2KENzreISXO\nwZW5m7QuR8xDiX2qwWWu0V91w43A1IOBhcagGCi1F+viZuVcJFls5NlyaBxpYTLgi8qerdMX17He\n/JOdmMnHVuxYUDeW3o/96te4EhEtjSMttIy2sTJ9GdmJmfNex6AYuKV0OyoqO5t2h7HC+TvYMx35\nlS2RX/NxdfEmrsm/gu7xXh6tfRxVVbUuKSwanM280fEuWQmZYY/pzE/K5Rtrv8Bnlt9DkiWJPa2v\n8Q97v8/+nsML5vdP6EO7qxMgLM1r4VRqL8KoGM9+5hciHA7rNPLrXKX2IlamL6VxpJnTQ2fCsqbH\n7+F3Z57kR4d/Qq+7n6vzLuc7m/465ht/zrUpZx3fqP4CSRYbTzTs5Lc1j+ObIaIoml5rf5vnW14m\nPT6Vr6z5LIkxNNV3vjbnrANgb89BjSsRc/FM0wt0j/dyTf7l3Lv0o2wtvIY1mSspSMpdVI0/AHm2\nHDZlr6NrvId9PYe1LmdRq3c2kmCy6uIw0IXY45JIjU+heaRNrtOEEEIIoWsL5+mjWNBebHkVX9DP\nTSVbF+zo5IWuxD51QmIuzT+BYIAGZzPp1jRS4h2RKk3MQ1VqBf6gn8aR5qjs1zLaDkDR9EkboR92\nSzIWg5k+j0z+WSxebnsdgOsLr73ktZanVVFqL+LYwCnNT9C5fW5ODdaSm5hNni1H01pi2V3lOyiz\nF3O47zivtL+pdTmXbDLg49Gax1FQ+POld0fkc6iiKKzLWsPfb36AG4u34va7eeT07/nR4Z/QNtoR\n9v3E4tQ2ps/mH4vRQnFyAe2uTjwzRJAIMVehyK98nUZ+neuW0htQUHi28UWCavCS1jraf5Lv7v0h\nb3fuJTsxi79a90U+vuR2rKb4MFWrHyX2Iv5mw9coTMpnb89B/v3wTxmZcGlSy97ug/yx/lnsliS+\nuvb+mIxVm48VaUuxmRM50HMEv8bNV2J2aobqeK39bbISMrm97Caty9GFHaXbMBtM7GzaHbWDbeKD\nBj3DDHqHKXeUxsQhueLkAsZ84wx6h7UuRQghhBDivPT/qUosegOeQd7p2kemNZ1N2eu0LkfMkyPO\nTlp8Cs2jrbM+IdEx1oU34F2QkV+xriplKvrrzFBDVPZrGW0n0ZxAujU1KvuJ2VMUhYyEdPo9g3L6\naRHoHu/lxEANpfYiyhzFl7yeoijcUnoDAM81ajv950j/CfxqgA1ZMvXnUhgNRv5yxX3YLUk83fA8\ntUP1Wpd0SZ5vfok+zwDXFlxBqT2yMZ0Wo4Udpdv4u00PsCZjJU0jrXzv4IM8WvNHXJNjEd1bLHzt\nrk4SzQmkxOmvob4ypQwVlQZndJrKxcIWivyq1vHUn5A8Ww7rslbTMdbFkb4T81rDOTHCz078hp+f\n+A3jvnF2lGzjf234OqX24vAWqzOOODvfrP4i67PW0DzayvcO/pjW6QMj0XKs/ySP1v6RBJOVr6y5\nn3RrWlT315LRYGRD9lrGfOOcGqzVuhxxEeM+N/99+n8wKAb+YvknsBgtWpekCynxDq4ruArnxAiv\nt7+tdTmLUoNzOvIrRd+RXyFno7/mONVeCCGEECKapPlH6N6u5pcIqkFuLt2G0WDUuhxxCUrsRYz7\n3LOeELKQI79iXbmjBJNipHaoLuJ7uSbHGPQOUZRcEHMRaYtFpjWdycAkI5OjWpciIuzltjcA2BqG\nqT8hlSllVKVUUDtcr2nsy4HpyK91WWs0q2GhsMcl8dmVn8SgGPjVqUcZ9MTmycjW0XZebnuD9PjU\ns01q0ZBmTeX+lffxtTWfIzsxk3e79/P/7f0er7a/RSAYiFodYuFw+zwMeAYpsOXp8rNUxXSjv0R/\niXCIhcivc+0o2Y5BMbCzefec/o4PqkHe6nyP7+79Icf6T1JmL+F/bfwmN5ZsxWQwRbBi/bAYzfzF\nsj/jtrIbGZkY5V8P/wcHe49GZe/aoXp+dfJRTAYTX1r9l7qPq4mEzdnrAdjbfUjjSsSFqKrK7888\nycjkKDeXbKMwKV/rknRlW9G1JJoT2N36GmOT41qXs+jUh5p/HLHR/BOaat8S5WZTIYQQQoi5kOYf\noWtdYz0c6DlCni0nJk7uiQsLnT6cbfRXfYydAFlMLEYLpfZi2se6In6DJHSCs1giv3QrYzpSoc8t\n0V8LmXNihAM9R8hKyGBl+tKwrn1L2XYAnmt6UZMJUsNeJw3OZsrsJaRZU6K+/0JUai/i7spbGfe5\n+cXJ38TcKH1/0M9vax5HReXepR8lToMT0ktSy/lfG77B3ZW3AQpP1D/HP+3/V2qi0HgrFpYOnUZ+\nhZTYizApxrOf/YWYr1iK/ArJSEjj8tyN9LkH2NtzcFbv6Rnv5d8O/ye/P/MUigL3LLmLb1R/nuzE\nzAhXqz+KorCt6Do+v+pTGBUj/3XqMZ5pfOGSY9QupHmkjZ+eeASAz6/81NmHwYtNflIuBbZcTg7W\nyIRCHTvQe4TDfccptRezreharcvRHavJyo3FW/EGvLzY8orW5Sw69cONWE3WmIndzrflYVAMmkeW\nCyGEEEJciDT/CF3b1bwHFZVbSrfHRPavuLBQXEbzSMtFXxsIBmh0NpOZkI4jzh7hysR8VKVOR38N\nRzbSJXRRXZxcENF9xPxlWqcervRL88+C9nr7OwTUAB8pvDrs35OLkwtZlb6cppFWTaIDDvYeRUVl\nQ7ZEfoXTlbmb2ZyznjZXJ38481RMRQPubnmVrvEerszdRGVKuWZ1GA1Grs2/gv9387e5Mm8zve5+\nHjr6C356/BEGPIOa1SViS5tL380/FqOZEnsRHa4u3D631uWIGBZLkV/nurH4I5gNZp5vfhnfBZpl\nfUE/u5r28E/7/43GkRbWZqzk7zY9wBV5mxb9/ZKV6cv41vqvkGFNY0/ra/zsxCN4/N6w79M11sN/\nHPsVvoCPTy+/5+w18WK1KWc9QTXIgZ7DWpciZjDoGeYPZ54mzmjhU8s+sej/njifq/I2kx6fypud\n79Hvls/X0TLsdTLgHaLcURwz/21ajGbybbm0uzrxBf1alyOEEEIIMaPY+GQlFqXW0XaO9p+kJLmI\nFWnhnTAgtJGbmI3FaJnV5J82VyfewASVDon80qvQjc7aoYaI7hMap1skzT+6lZmQATDrSD8Rezx+\nD2917iXZksTGrOqI7LGjdBsKCs817Y7oae2ZHOg9glExxtzDQr1TFIVPVN5BYVI+e3sO8lbnXq1L\nmpXOsW5ebH0VR5yd28tv1rocAGyWRP5syZ38zYavU2Yv4fjAKb679wc82/giXv+E1uUJnWufbv7R\nc9RHhaMUFZV6Z7PWpYgYFmuRXyGOODvX5l+Bc2KENzvfm/E1Dc5m/s/+f+P5lpdJstj4/MpP8dmV\n92GPS45ytfqVnZjFt9Z/laqUCk4M1PCDQw+HdTLpgGeQh47+nHG/m3uX3s2azJVhWztWbchai1Ex\n8l73wZhq8l4MgmqQ/675A96Al7srbiPdmqp1SbplMpi4tewGAmqA55pe1LqcReP9yK/Yuu9bnFyI\nXw3QOdaldSlCCCGEEDOS5h+hW881/V/27ju+zeps/P9H05Is2Zb33jPOdnZCEjKAsFcYCWFTZsto\n++vT3e/TFto+paWFUsqGsBIgrDADWWQ7TjzjvfeUt2Vr/f7wgJSELMu3JJ/368UrJtJ935djWTr3\nOde5rs8BuDzhImQymcTRCONBIVcQ6xNNY18z/ZaB731uaWc5AElG97oJnEyiDBHolFqKTKVOm+hz\nOBxUd9cSqA1Ar/J2yjWEczfaVkFU/vFce+oPYraZOT9yCSqFyinXiNCHkREyg7reBrJb851yjRNp\n6G2ivreRKQEpeKt0E3bdyUKlUHHXtA3oVd68U/ohFadR/U9KNruN1wo3Y3fYuTHlarRKjdQhHSfK\nEM7Ds+/h9vR16NV6Pq/ezu8P/lWSilmC+6jtaUCr1Lj0wl/yyJh/9B5AEM6UO7b8+rZVMcvQKDR8\nXr39uIo1A9YB3izewt+P/Jvm/laWRiziV/N/zPSgdAmjdV3eKh33zbid86OW0NTXzP8dfpKijnOv\nVNs12M2TR5+ja6iHa5IuY2HYnHGI1v3p1d5MC0yjoa+J2pEWk4Jr+KpmN6WdFcwMmsoC8Xo9pVnB\n04kxRJHVkjPWel5wrlLTaPJPvMSRnJnRquSVXaL1lyAIgiAIrkkk/wguqaClhMKOElKNSWMTwYJn\nGGv9dYr+yCWmkeQfN9sBMpnIZXKSjYl0mE20Oqn1SOtAG/3WAdHyy8XpVd5oFBqaReUfj2S1W9lR\nuwcvhZolEQuceq1L4i5ALpOzteILbHabU681KrP5KABzQ2ZOyPUmI3+NkdvT12N32Hk+byNdg91S\nh3RS22u/pqannnmhs5ka6JqVJ2UyGRkhM/nNgp9yUexKuod6eDrnRV49tok+0TJJ+C9m6yAt/a1E\n6sNdekNFrE80Krly7B5AEM6Uu7b8GqVXebMqehl9ln62134NQHZrPr8/8Dh76g8Q5h3CIxn3cX3K\nlS6XmOpqFHIF1yZdzvrUtQzahvhXzgvsqN1z1htW+iz9PJX9PG3mDtbErmRF1HnjHLF7G00sOdCY\nJXEkwqjangY+qvgcH7WBG1OucenPf1chl8m5MvFiAN4r+1hUspoApZ3laBQaIg3hUodyRuJ8owGo\nOsW8tiAIgiAIglRE8o/gchwOB2/lfgDAZQkXShyNMN7Gkn++Z+e/zW6jvKuKEF0wvl6GCYpMOBvf\ntP46992UJzLa8ivWJ9op5xfGh0wmI1gXQNtA+4S3axKcL7M5m66hbhaHz0en0jr1WsG6QBaGzaG5\nv4VDI0k5zmR32DncnI2XQs20wClOv95kluKfyJWJF9M11MPz+a9htVulDuk7mvta2Fr5BQa1nmuT\nLpc6nFPyUqi5LP5C/mfug0QbIjjYlMUfDj5OzgRWzhJcX11vAw4cRBkipA7le6kUKuJ8YqjvbaTX\n0id1OIIbcteWX992ftQSDCo922t285/cV3gu71X6LH1cGjf8Xj96Ly2cnkXhc3lw1t14K3W8U/oh\nbxS9g+UMxx9m6yBP57xIQ18TyyIXc0ncBU6K1n1N8U/BoNJzuOnoGf/7CuPPYrPwyrE3sTls3JR2\nHXq1qKB8upKNCUwNSKO0s0JU1XSyzsEuWgfaSfSLRS5zr+WpIG0g3krd2HylIAiCIAiCq3Gv0ZUw\nKRS0F1HcXsGMwHSx4O+B4kZ+phVd1Sd9TnVPHUO2IVH1yQ2kGoeTf4pNzk7+EZV/XF2wLgir3YrJ\n3CV1KMI4sjvsfFmzC7lMPmG7nNfErkIpU/BJ5TanLyBUdFXTYTYxM2gaaoXaqdcSYGXUUjKCZ1DR\nVcWWsq1Sh3Mcu8POa0XvYLVbuT75KrdqARehD+MnGQ9wRfwa+i39PJv3Ki/mv07PUK/UoQkuoLZn\nuA2Lqyf/wDetv8o6KyWORHA37t7ya5RG6cWFsSsw2wbJbSsg0S+OX8x7mDVxK1HKlVKH55YS/GL5\n2dwfEWWIYF9jJv88+izdQz2ndazFbuW5vFep6q5hXuhsrk26TFRQOQGFXMG80Nn0WfvJbyuUOpxJ\n74OKT2nsa2ZpxCLSA1KkDsftXJGwBhky3iv/ZMIq0U5GYy2/3HDeVyaTEeMbRdtAu7jfEgSGN3E3\n9jWLimmCIAguRCT/CC4nqyUHGTIujRdVfzyRTqUj1DuEqu6ak95Ij5b7F8k/ri9Q60+Axkixqdwp\nFV+qu2uRy+RE6t2rDPBkFKQdXmhpFa2/PEpBexFNfc3MCZmJUeM3Idc0avw4L3IhHWYT+xoOOfVa\n37T8muXU6wjDZDIZ69PWEu4dyq66fRx0ofYQu+v2U9FVxaygacwKniZ1OGdMIVdwQez5/HzeQ8T5\nRJPVksMfDj5OVnOOmISb5EaTf6LdIPlndAFItP4SzpS7t/z6tiURCzg/cgnrU9fy4Ky7CfEOljok\nt2fU+PHI7HvHEpD/kvnk2HvjydjsNl4ueIMiUynTAqdwU+pat6tOMZG+af11WOJIJreijlJ21O4h\nRBfMVSMtrIQzE64PZWHYXJr6mjnY5Dr3Kp6mtHMk+ccvXuJIzs7oZuVqUf1HmMTaBtr5qPwzfr3v\nMf5w8HFeL3pHVIMXBEFwEeLOVXA5l8ZdwP9b8Qjh+lCpQxGcJN4nhkHbEA19zSd8vHRkwt9dbwIn\nE5lMRqp/EgPWAWp66sb13Ba7lbqeeiL1YagUqnE9tzD+RndZt/SL5B9P8mXNLgBWRS+b0OteGLMC\ntULNZ1VfMWQbcso1rHYrR5tzMaj1Itl0Ankp1Nw17Wa0Sg1vFr877p8dZ6NtoIMPKj7FW6njupQr\npQ7nnIR6h/BIxn1cnXgpg7ZBXix4nefzN9I1eHpVDgTPU9tTj1qhJlgXJHUopxTjE4VKrhq7FxCE\n0+UJLb9GqeRKrk2+nEXhc0WyyThSK9Tclr6Oy+IvwjTYyeNZT5PVnHPC59oddt4ofpfs1nyS/OK5\nI309CrligiN2L+H6UKINkRzrKBZjDon0WfrZWLgZuUzOrVNuEFVNz8El8atRyVVsrfiCQSfdi052\npZ3laBRebrvRbzT5p7K7RuJIBGFiWWwWDjdn88+jz/Lb/X/ms+rtDNqGCNQGsL8xk1ePbRZV0wRB\nEFyAmEkQXE6A1p/UoESpwxCcKN43BoDKrqrvPGa1WynvqiLMOwSDWj/BkQlnI2Wk9VdRx/i2/mro\nbcTqsIn2f25itPJPy0CrxJEI46Wyq5qyzkqmBKQQoQ+b0Gsb1HrOj1xC91APu+r2OeUahR0l9Fn7\nmRM8UyzoTLBgXSC3TrlxpJ3GRnqH+iSLxeFw8GbRuwzZhrg2+XJ81AbJYhkvcpmcldFL+cW8h0nw\njSO7NZ8/HnycQ01HRBWgSWbIZqGpv4VIfbhbJBGo5EoSfGNp6GsSbRSE0+YpLb8E55PJZFwUu4K7\np92CXCbjxYLX+aji8+N2qTscDt4r+5gDjYeJNkRyz/RbxUaU07QgbA52h53M5iNShzLpOBwONhW/\nR+dgF5fErSbaJ1LqkNyan5cvK6POo2uomx21X0sdjsfpGuympb+NeL9Yt70Pj/WJAqCqSyT/CJND\nfW8jb5d8wC/2/oGXCt6g2FRGgm8cN6ddz2NLfsXP5vyIOJ9oMpuP8PKxN0UCkCAIgsRcfwZQEASP\nM5r8U9FV/Z3HqrprsdgtogqDG0kxJiJDNu7JP6M7aGJGbqoF1za62NIqKv94jNGqP6ujl0ty/VXR\nS9EqtWyr3smAdWDcz5/ZNNLyK1S0/JLC1MA0Lo5bTYfZxEsFb0g2ObS/MZMiUylTA1I9rv1bsC6I\nh2bfzdrkK7A4rLxy7C2eyX2ZzsEuqUMTJkhDXyN2h50oN2j5NWq09ddoOwhBOBVPavklTIzpQen8\nJOMBAjX+fFb1Fc/lbcRsNQPwWdV2ttd+TagumPtn3IFGqZE4WvcxJ2QmSpmCA42HRbLxBMtsPkpW\nSw7xvjGS3bt5mlUxy9GrvNlWvVMkJI+z0TFesp/7zvt6q3QE6wKp7qkVbY4Ej2W2mtlbf5C/HH6S\nRw/9nZ11e1HIFKyOXs5v5v+ERzLuZX5YBmqFGp1KywMz7yTBN44jLbm8kP8aFrtV6m9BEARh0hLJ\nP4IgTLhgXRDeSt0Jk3++afnlvjeBk41e7U2kIZyKrupxLSvJqMEAACAASURBVIk82jtbVP5xD94q\nHd4qHS0DIvnHEzT3t5LTWkC0IVKyFow6lY5V0cvos/azvWZ8d1yarWZy244RrA0k2iB2xkplTexK\npgWmUWQq5aOKzyf8+p2DXbxbuhWNQsMNKVcjk8kmPAZnk8vkLI9czC/nPUKKMZH89kJ+f+Bx9jUc\nEgtzk0BtTz2AWyX/JBuHP3NE6y/hdHlSyy9h4oTrQ/np3B+S7JdAblsBf836F1srvmBr5ef4a4w8\nMPNO9GpvqcN0K94qHdOC0mnsa3aJtq6TRfuAiU3F7+OlUHPLlBvctpKKq9EqNayJW4XZNsinVV9K\nHY5HGU3+SZRonmG8xPnEMGA109Ivql8LnsPhcFDRVcXGws38fO8feKP4XWq660gPSOWuaTfzx8W/\n5MrEiwnxDv7OsRqlhvtn3kGyMZGctgKey3sVi80iwXchCIIgiOQfQRAmnEwmI843hnZzB12D3cc9\nVjJyEyjVYrNwdlKNSdgcNso6K8ftnFXdNWiVGlG+340EawNpG+gQ5V09wPaa3ThwsDpmuaQJEcsj\nF2NQ6dle+/W4tobKaS3AYrcwJ3SWRyZ8uAu5TM4tU24gWBvItpqdYwu4E2G43dcWzDYzVydeglHj\nN2HXlkKg1p8fzryLG1OuBhy8XvQOT2U/T/uASerQBCeq6R5O/ol2o+SfGEMUaoV67J5AEL6PaPkl\nnAu9ypsHZt7JsshFNPY182nVlxjUen448y6PHxc4y4LQDAAONB6WOJLJwe6ws7FwE2abmbVJVxCo\nDZA6JI+yJHw+QdoAvq4/IBI8xlGpqQIvhdqtxqcnMtr6q3Jk46IguLOeoV6+qtnNHw4+zuNZT3Og\n8TAGlTeXxl3I7xf9nPtm3M7MoKmnTDD1Uqi5d/ptTPFPoaC9iGdyX2ZoHDcKC4IgCKdHJP8IgiCJ\n0dZfld+q/mOxW6nsqiJCHyZ22bmZVP8kAIrHqfVXv6Wflv42YgxRyGXio8pdBOkCsTvstJvFYrI7\n6x7q4UBTFoEaf2YGTZU0Fo3SiwtjV2C2DfJFzY5xO29m80jLLw9r8+SOtEotd027GbVCzcbCzTT2\nNU/IdQ83Z5PfXkiyMZFF4fMm5JpSk8lkLIlYwK/m/5gp/ikUmUr546HH2V23X5Sr91C1vfUo5UpC\ndd/dmemqFHIFCb6xNPU10z3UI3U4gosTLb+Ec6WQK7gu+UrWp15Lgm8sD8y4UySSnYM0/2R81QYO\nN2eL3f4T4Kua3ZR2VjAjaCoLwuZIHY7HUcqVXJ6wBrvDzofln0kdjkfoHuqhub+FeN9Yt69SNVql\nvOoEVe0FwR3YHXaOtRfzfN5Gfrn3j2wp20rbQDsZwTP44cy7+N3Cn7EmbuUZJ0SrFSp+MP2WsSrP\nT+e8iNk66KTvQhAEQTgRp62o2u12fvOb33D99dezYcMGqquPHwht376da665huuvv57Nmzd/7zHV\n1dXceOONrFu3jt/+9rfY7cOT05s3b+bqq6/muuuuY8eO4xeEysvLycjIYHBQfLAIgisaTf75duuv\nqq4aLHarqPrjhhJ8Y1HJlRSZxif5p7p7uEx4zMhOGsE9BGuHJ8pbResvt7ardi9Wu5WV0UtdIvlu\nSfh8/Lx82V23j87BrnM+X/dQD0UdpcT4RInFHRcRrg9lQ9p1DNmGeDb3FQasA069Xs9QL2+XfoBa\nrmJ96jWTrvqTUePHfTNuZ0PadchlCjaVvMc/jz5La3+71KEJ48hqt9LQ20SEd5jbLa4kj7T/Fa2/\nhFMRLb+E8bIofB6PZNxHpCFc6lDcmkKuYF5oBv3WAXLbjkkdjker62ngo4rP8VEbWJcy+cazE2VW\n0DRifaI52pp33OZF4eyUmoYrO46O9dxZhD4MlVxJlaj8I7iZDrOJjyu38Zt9f+JfOS9wtDWPYF0g\n1yRdxh8X/4rbp64n1T/pnOYDVXIld07dwMygaZR2VvCvnOedPs8jCIIgfMNpKzpffvklQ0NDbNq0\niR//+Mf86U9/GnvMYrHw2GOP8eKLL7Jx40Y2bdpEW1vbSY957LHHeOihh3jjjTdwOBx89dVXtLa2\nsnHjRt566y1eeOEF/va3vzE0NFxCrre3lz//+c+o1WpnfXuCIJyjGJ/hii7fTv4p6Rye4E82uv9N\n4GSjUqhI8I2jvrdxXHZpj948x4rkH7cymkjR0i+Sf9yV2TrI7vr96FXeLrN7VKVQcXHsKix2K59V\nbT/n82U15+DAIar+uJjZwdNZFb2MloE2Xjn2llMr0WwueZ8+Sz+XJ6yZtO0RZDIZC8Lm8Kv5jzAt\ncAqlnRX88dDf2F77tagC5CEa+5qxOWxEueFCdtLIvYBo/SV8H9HySxBc0/ywkdZfTa7f+svhcEgd\nwlmx2Cy8fOxNbA4bN6WtFZWznUgmk3FV4iUAvFf2idu+ZlxF2cjYLtHo/ps+FXIFUYZIGvqaGBRt\njQQXZ7VbOdKSy7+yX+A3+/7EJ5Xb6LP2syhsHj/JeIBfznuEFVHnjevniVKu5Pb0dcwJmUlFVzVP\nHn2efkv/uJ1fEARBODmnJf9kZWVx3nnnATBz5kzy8/PHHisvLyc6OhpfX1/UajUZGRlkZmae9JiC\nggLmzRsux7906VL27dtHbm4us2bNQq1WYzAYiI6OpqioCIfDwa9//WseeeQRtFqts749QRDOkVqh\nJlIfTm1P3Vg56FJTOTJkJIrKP27pm9ZfZed8rqruGgBiRsroCu4hSCcq/7i7/Y2Z9FsHWBa5CLXC\ndZKoF4TNIUgbwN6Gg7QNdJzTuTKbjyJDxuzgGeMUnTBeLo+/iBRjInlthXw+DoleJ5Ldms+Rllzi\nfWNYFrnIKddwJ35evtw97RZum3IjaoWKd0s/4u9H/k1TX4vUoQnnqLanHoBoQ6TEkZy5aEMEXgq1\nqPwjfC/R8ksQXFOYdwgxPlEUtpeMS9VOZxiyWXi54C1+vuf3YxXE3MmHFZ/R2NfM0oiFpAekSh2O\nx0v0i2N6YDrlXZXkiYpW56SkswK1XEWMG45PTyTOJxq7w07NSPVyQXA1TX3NbCndyi/3/pEX8l/j\nWEcxsT5RrE+9lscW/4r1adcS5xvttOpxCrmCW6bcwPzQDKp7avnn0WfpHepzyrUEwRM5HA76LP3U\n9jSQ21pAZVeNSEQWTovSWSfu7e1Fr9eP/b9CocBqtaJUKunt7cVgMIw95u3tTW9v70mPcTgcYx9A\n3t7e9PT0nPQcTz31FMuWLSM1Vdz8CIKri/eNoaanjtreeqL0EVR21xChD8NbpZM6NOEspPgnQjkU\nmUqZG3r2FTUcDgfV3bUYvfzw9TKc+gDBZYy2/RKVf9yTzW7jq5rdqOUqlrpYUoRCruCSuAt4+dib\nfFK5jZunXH9W52npb6W6u5Y0/2Tx/uKCFHIFt6ev50+Z/+Djym1EGSKYGpg2bufvt/Szqfg9lHIl\n61PXukRbO1cgk8mYEzqLFP8kNpW8z9GWXB7LfIJL4lazMmqp27WMEoaNJv9EGSIkjuTMKeQKEvzi\nONZeTOdgF35evlKHNGnZ7DYcOFDKnTZ1dNaOipZfguCyFobNobq7lkNNR7gg5nypwzlO52AX/8l9\nhZqe4cX6F/JfozBsLtcmX4GXC21+OJmijlK2135NiC5orCKN4HxXJKwhv72Q98s/JT0gVYyPz0LP\nUC9Nfc2kGpM85t8v1jcaaoc3MCZ5QDUjwTMM2oY40pLLvoZDVHRVAeCt0rEi6jwWhs0lXB86ofHI\nZXJuSluLUq5gb8Mh/nH0P/xw1l34qMWcnCDY7Da6h3poN5swmTvpMJvoGBz509yJyWz6TnW5OJ8Y\nVscsZ1pgmpjXFE7KaTM4er2evr5vsjjtdjtKpfKEj/X19WEwGE56jFwuP+65Pj4+Jz3Hhx9+SGho\nKO+++y6tra3cfvvtvP76698bq9GoQ6n0jEGnJwkKEgMATzdzIJWddXtptjbhLVNjtVuZEZ4mfvZu\nKiAwBUOON6Wd5QQG6s9610BLXzs9ll4WRM722NeCp35fYMBX40P7YLsHf4+e6+uqQ5gGO7kocTlx\n4RM7GXA6Lgpcwlf1uzjUfITrZ11CpE/YGZ9jZ/4uAFYkLhSvUSc513/XIAz8THsPv/7qr7xa+BaP\nrf4fQg3B4xLb0wffo3uoh3XTr2RarGgx+t+CMPDziHs5UHuEF7Le4oPyT8k3HePeuRuI9nO/BJLJ\nrjG7EYVMzvTYRFQKldThnLHZkVM41l5Ms62RpCDX2R0+mT47zNZBfr/jCZr62rhn7k3MjXCdinl9\nQ/0UmkqJ9YskPSZO6nAEwSOM5/vbBb6Lebf0Iw63HGVdxmVOqyhwpsraq/hr1jOYzF0sj13IJSkr\n+NfBV9jXmElVbw0PLryDOKPrth7vHerj9f1vo5DJeWjxHUT4T872tVIICjKwom0xX5Z/TX5vHqsS\nzpM6JLdTXlsKwMzIiZ/3ddb1MnRpvJAPDYMNk2qMKLgeh8NBeUc12yv2srfmMANWMwDTQ9JYEb+Y\nuRHTJb8n/FHQrRiO6PisbCdP5TzHr89/EH+tn6QxeQLx3uPazNZB2vo7aOsz0dbfTlt/B619HSN/\n10H7QCd2h/2Ex3qrtIQaggnUGQnSBRCgM1LUVkZWQx7P5r1ChCGUy1JXc17MXMl/vwXX47Tkn9mz\nZ7Njxw4uvvhisrOzSU5OHnssISGB6upqOjs70el0HD58mDvuuAOZTHbCY6ZMmcLBgweZP38+u3fv\nZsGCBUyfPp0nnniCwcFBhoaGKC8vJzk5mW3bto1dZ8WKFbz44ounjNVkEr0mXU1QkIHW1h6pwxCc\nLFAWAkBeQwntXcPloCO9IsXP3o0l+SVwpCWXguoKQrzPbrH2SHMhAGGaMI98LXj6+1ugVwAVXVU0\nNptccpe4cGIOh4MtBZ8hQ8bCoAUu+xpdE72aZ/NeYePh97hz2oYzOtbhcLCr4iAquYp4TYLLfo/u\nbLze3wz4c0PK1Wws3Myfdv2bn8x54Jx3Yhe0F7Ozaj9RhggW+M8XP//vkaBJ4hfzHuGdkg/JbD7K\nz754jDWxq7ggZrnH7NL1dDa7jarOOsK8Q+nsMANmqUM6Y+Gq4YSfrJp8UnSuUdXX08dw32Z32Hk2\n71VKO6oA+L89z7A0YiFXJV6K2gUmFg80HsZmtzHdf+qk+ZkIgjM54/1temA6WS05ZJYXEOcbM67n\nPhtZzdlsLNyM1W7jqsRLWBm1FJlFxkMz7+PD8k/ZXvs1v9z2Z65IWMPyqCUut5Pa4XDwUsEbdAx0\ncmnchfjY/MX73wRbEbqc3VUHeSv3I1J0aWiUXlKH5FayagqA4THeRL52nTl+cziU+KoNlLRWit9H\nQTJ2h523irewt+EQMNzae3nkYhaEzSVQ6w/gMveEl0atwTJo56va3fx62195cNbdGDUiAehsTab7\nU1fkcDjotfQdV6Wn47+q9/RZTpx7IEOGr5cPsT5R+GuMGL388NcY8dcM/2nU+KFVar5z3KLAhVwU\n2cRXNbs51HyEZzI38mbOB6yIPo/F4fNPeIzg2U6WAOi0VbnVq1ezd+9ebrjhBhwOB48++igfffQR\n/f39XH/99fzP//wPd9xxBw6Hg2uuuYaQkJATHgPws5/9jF//+tf87W9/Iz4+ngsvvBCFQsGGDRtY\nt24dDoeDhx9+GC8vMegWBHdi1Pjh5+VLRVcVvUO9yJCR6CfKpLqzVGMSR1pyKTSVnnXyT1V3DQAx\nBtfdcSecXLAukPKuStoGOgg9y9eAMPGKOkqp720kI3jG2OSAK5oeOIUYnyiOtuZR01NHtOH0q0HU\n9NTRMtBGRvAMNOJmyOUtGGkXsbt+P68Xvs1t6evOetf4gNXMm0XvDpebTl0rElhOg17lza3pN5IR\nMoM3i7awtfJzslvzuCltrVu2kZpsmvtbsditbv2zitSHo1FoKDGVSx3KpLSlbCt5bcdIMSZyVeIl\nvHpsE7vr91PSWcHt6euI0J959b3xJFp+CYLrWxA2h6yWHA40HpY0+cfusPNJ5TY+rfoKjcKLO6dv\nOK6trEqu5Jqky0j1T2bjsU28W7aVwo5SNky5zqVakmQ2HyWrJYd43xguiFkudTiTkq+XgVVRS/mk\n6ku21+7m4rjVUofkVkpNFajkKmJ8XKei47mSyWTE+kST01aAydwpkhiECedwONhSupW9DYeI0Idx\nRcIa0vyTXS6BdZRMJuOqxEtQyZV8Vr2dvx/5Nz+adbdLz0MKwiiTuZMddXuo72mkY3C4TZfFbj3h\nc1VyFf4aP6INkf+V2DP8tZ+X71nPTYbrQ9kw5Toujb+AHbV72NNwgPfKPuazqq84L2IhyyOX4Ovl\nOmNYQRpOS/6Ry+X87//+73F/l5DwTXn9FStWsGLFilMeAxAXF8drr732nb+/7rrruO66604aw/bt\n2880bEEQJli8bwxHWnLpHeojyhCOTqWVOiThHKT6JwFQ3FHG8sjFZ3WO6u5aZMiI9qAJgckkWBsI\nQOtAm0j+cSPbanYCsCpmmbSBnIJMJuPy+It4Mvs5Pqr4nPtn3HHax2Y2HQVgbugsZ4UnjLNrki6j\nrreBrJYcYnyiWBm99KzO80H5p5gGO1kTu5JIQ/g4R+nZpgVOIWF+HFvKtrK/MZO/HH6SC2LO56LY\nlahEdTeXVdtTD+DWyT8KuYJEvzjy2wvFYsoE21W3jx21ewjVBXPn1A3oVFp+OueHvF/+Mbvq9vGX\nw09yVeIlLItYJEkrn37LAIUdpUTqwwnWBU749QVBOD2p/kn4efmS1ZLDNUmXS1I1bNA2xKvHNpHd\nmkeAxp97pt9KuP7E7Y3TA1L4xfyHefXYJo51FPPoob9zc9r1TAlImeCov6vDbGJzyft4KdTcMuUG\nkcguoZXRS/m6/gDbanaxJGKBSyWIubLeoT4a+ppIMSZ6XIXoWN/h5J+q7loxXhUm3MeV29hRt4dQ\n7xB+NPMH6NXeUod0SjKZjMsSLkIpV7K18gueOPIMP5r1AzGuF1yWydzJ59U72NdwCJvDBgxvmAvz\nDsE4mtQzluAzXLVHr/J2+r2yUePH1UmXclHsCnbXH2Bn7R6+qN7B9prdzA/LYGX0MkJ0QU6NQXBd\nit/97ne/kzoIqfX3D0kdgvBfvL29xM9lkuga7OZYRzEAc0JmkRaQfIojBFemU2k51HSExr5mVkUv\nPeOdBja7jbdLPyTUO5jzo5Y4KUppefr7W/dQL0dacokyRBDvGyt1OMJpqOmp44PyT0kxJnJBzPlS\nh3NKARp/SjsrKDaVkWJMxF9jPOUxdoedjUWbUcmU3JBylcvugnJ34/3+JpfJmRKQwuHmbHLbjpHo\nF0vAGe4IKzGVs7nkfcK8Q7gl/UYU4md/xlQKFdOD0on3iaHEVE5+eyE5rflE+0Ti5+UrdXjCCRxo\nPExVdw1rYle69SJE91APhR0lRBkiJK80A54/hgPIbyvk1WOb0Ku8eXD2Pfh6+QDDyVjpAalEGyI4\n1l5M9kgFvlT/pHNuy3imslpyyG7NZ3nkYhL94ib02oLgqZzx/iaTyei19FFsKiPcO4TwCX4fN5k7\neSr7OUo6y0nyi+eHM+865TjSS+HFnJCZaJUa8tsKOdiUhdlqJsmYINkYcrQNY3N/KzekXE2Kf6Ik\ncQjDlHIlaoWa3LYChmyW46pICSd3rL2YIy25LAybS5JxYiu+O3v8ZnPYOdiUhb/GSJq/mNMWJs5X\nNbv5qOIzAjT+PDT7bnzcrNJHkjEelVxJdms+2S25pAekuUXykiuZDPenUjKZO/mw/FM2Fm6mqruG\nAK0/1yRdxq3pN3JR7EqWRCwgI2QGUwJSiPONIdQ7BF8vH7wU6gndJKNSqEj0i2Np5CKMGj8a+pop\nNpWxu24/9b1NBGiNYu7Og3l7n7gjlpj9FgRBUvHfKv+cbEz4nmcK7iLVPwmzzUx1T90ZH9vQ14zF\nbiHWR7T8clejOzVa+9skjkQ4XV9W7wJgdfRyaQM5TTKZjMsTLgLgo4rPcDgcpzym2FRGz1Avs0Km\ne9xOQ0/n5+XLnVM3APBC/uuYzJ2nfeyQbYjXi95Bhoyb0taKSjXnKC0gmV/Of4TzIhbS2NfMXw//\ni/fKPsZmt0kdmvBfanrqkSFziYSZczG6OCRaf02Mup4GXix4HaVcwT3Tbz1h+f1pgVP4xbyHSTUm\nkd9exKOH/k5hR8mExilafgmC+1gQmgHAgaasCb1uZVc1fz78T2p7G1gcPo8HZt552guKcpmcldFL\n+cmc+wnWBbK99msez/oXzf2tTo76xLbXfk1pZwUzAtNZGDZHkhiE4y0On0ewLpC9DQdp7muROhy3\nUNpZATDhiT8TIdoQiQwZlV01UociTCJ76w+ypWwrvmoffjTrLrdd2L8g5nyuSbqMrqEenjjyDA29\nTVKHJAiYzJ1sKn6f3+3/M7vr9+Pn5ctNadfxm/k/YUHYnAnf/HK61AoV50Us4LcLfsodU28iyhBO\ndmse/3f4KZ448gwF7cWnNYcueAaR/CMIgqQi9eGo5CpkyEgQOzc9QqpxuPVX0VksBFR1D98sx4jk\nH7cVpA0AoGWgXeJIhNPRNtDBkZZcIvRhY2373EG8byxTA1Ip66ykqKP0lM8fa/kVIlp+uaMEv1iu\nTbqcXksfz+a9isVmOa3jPqr4nLaBdlZEn0esT7STo5wctEoNN6RcxYOzfoC/xsiXNbv4V84L9FsG\npA5NGGF32KnrrSfUOxi1i05Kna5IfThapZZSkfzjdJ2DXfw79yUGbUPcPOUG4r61QeO/+Xr5cP/M\nO7gq8RL6LP08lf08W8q2YrVbnR6naPklCO4lxDuYOJ8YijpKzyiB+1wcajrCE0f/Q+9QH9cmXc6N\nKdecVfJ/tCGSn815kAVhc6jtqedPmf9gf0PmhC6a1Pc28lH5ZxjUem5MvUaSVovCdynkCq5IuBi7\nw84HFZ9JHY5bKO2sQCVXeuRcn0bpRbg+lNqeOrEpQpgQh5uzebN4C94qHT+cdReBI/Ow7mpF1Hlc\nn3wVPZZenjj6zFgLa0GYaJ2DXWwuGU362Tec9JO6lt8s+CkLw+a4TdtVuUzO7ODp/H9zfsSPZv6A\nNP9kSjsreDrnBR7LfIJDTUfE59UkIJJ/BEGQlEKu4MKYFayOWY5WqZE6HGEcpBgTkCGjqKPsjI+t\n7q4FEIu0bkytUOPn5Ssq/7iJ7bW7ceBgVfQyt5tMvjR+uPrPh6eo/jNks5DTmo+/xnhctTnBvSyN\nWMj80AxqeurYVPL+KRdeKruq2VG7hyBtAJfGXTBBUU4eycZEfjHvYaYFplFsKuNvR56mfcAkdVgC\nw5X3Bm1DRBkipA7lnMllcpL84mkzd9BhFq8vZzFbB3km5yU6B7u4ImENs0+joo5cJmdV9DJ+knE/\nwdpAvqrZzV+z/uX0Cgi5bQXYHLbTilEQBNewMGwODhwcbDri1OvYHXY+KP+UV469hUqu5L4Zt3N+\n1JJzusfRKL3YkHYdt6evQ46c14re5qWCNyYk6dlis/BywZtYHTZuSl2LQa13+jWF0zcjMJ143xhy\nWvOp6KqSOhyX1mfpp6G3iTifGI+txBrrE8WQ3UJDX7PUoQgeLq/tGK8cewsvhRcPzLiTMO8QqUMa\nF0sjF7I+dS39lgH+cfTZsc3BgjARhpN+PuC3+//Mrrp9+Hr5sn406Sd8rtsk/fw3mUxGin8iD8y8\nk/+Z+xBzQmbS0NvEK8fe4ncH/sLO2r0M2kTbOE8lkn8EQZDcmriVXJGwRuowhHGiU+mINkRS2V2N\n2Wo+o2OrumtQK9Qec/MyWQVrAzENdjIkBpAurXeoj30NmRi9/MgIniF1OGcsyhDOrODp1PTUkdNW\ncNLn5bUdw2wbZE7ITOQyMfR1VzKZjBtSribKEMH+xkz2NBw86XMtdiuvFb6NAwfrU9e6ffUTV6VR\nevGDabewPHLxcBuwrKfGkngF6YzulPSE5B/4pi2waP3lHHaHnZePvUFtbwOLwuaecQvQaJ9Ifjb3\nQRaGzR2rjLHPiZUxRMsvQXA/s0Omo5IrOdh42GnvDWarmefyNvJF9Q6CtAH8JOMBpgSkjNv5M0Jm\n8ot5DxHnE0NWSw6PZT7h9ISPDys+o6GvifMiFjI1MM2p1xLOnEwm46rESwB4r+xj0Ubje5R1VuDA\n4ZEtv0bF+gxvMqrqrpY4EsGTlZjKeD7/NRQyBffOuI1on0ipQxpXi8LncvOU6zFbzTx59DmRWCk4\n3fFJP3vxVfuwPnUtv13wUxa5cdLPiUQZwrktfR2/W/gzlkUuomeol7dLP+DX+x7l44ov6B3qkzpE\nYZyJFRBBEARh3KX6J2F32CnrrDztY8xWM019LcQYIsUCvZsLGmnD0Cpaf7m03fX7sNgtrIxe6rY3\nNJfGXYAMGVsrPsfusJ/wOZnNouWXp1ArVNw19Wa8VTreLvmAyq4TT65+VvUVTf0tLI1Y6NGTzK5A\nLpOzNvkKrk26nJ6hXp448gw5rSdPxhOcr6Z3JPlH7xnJP0l+w7/DpaYKiSPxTFvKtpLXVkiKMZEb\nUq4+qwoZGqUXN6Wt5fb09SjkCl4vepsXCl6n39I/rrGKll+C4J60Si0zgqbSMtBGxUnGbueifcDE\n41lPk9tWQLIxkZ/O+SGh3sHjfp0ArT8Pz76HNbErMZk7+fuRZ/i08suT3oOci6KOUrbXfk2wLpCr\nRxJMBNcT7xvLzKCpVHRVf+9mlMmutHN4DDc6pvNEsSPtzKq6xEYIwTkqu2p4JvdlHA4HP5h2M4l+\ncVKH5BTzQmdzW/o6huwWnsx+XrR/Fpyia7Cbt49L+jGwPvVaj0z6+W+BWn+uS76S3y/6OWtiV4ED\nPqn6kl/te5TNJR/QPtAhdYjCOBGrq4IgCMK4S/VPBIYnrU5XTU89Dhwe2QN8shldkBGtv1zXkG2I\nXXX70Cm1LAybK3U4Zy3UO5j5oRk09jVzuDn7O4/3BTz9PAAAIABJREFUWfo51l5MhD6McH2oBBEK\n4y1Aa+T29PXYHXaey9tI12DPcY/X9jTwRfUOjF5+oqrgBDo/agk/mHYzAM/lvcqO2j0SRzR51fY0\nABBpCJc4kvERrg/FW6WjpFNM/I63XXX72FG7h1DvEO6cuuGcJzkzQmbw87kPE+8by9GWXB499MQZ\nbQQ4FdHySxDc1+j9xoHGw+N63vLOKv5y+J809DWxNGIhD8y4A2+Vblyv8W0KuYJL4y/kwVl346M2\nsLXyC/5x9D+YzJ3jdo1+Sz8bCzcjl8m5dcqNooKli7s8YQ1ymZwPyj/BZrdJHY5LKjVVoJQrifWJ\nljoUpwn1Dkaj8KJStCoSnKC+t5Gnc15gyGbhtvR141rZzhVlhMzgzqk3YbPb+FfOi2e0tiAI36dr\nsJt3Sj7kt/v/xM66vfioDaxLvYbfLPgpi8LneXTSz38zqPVcGn8Bv1/8C65Nuhy9yptddXv53YG/\n8FLBG9SNzCsJ7ksk/wiCIAjjLs43FpVcRZHp9Afoo/18RfKP+wvWDif/tAyI5B9XdaDxML2WPpZG\nLESj9JI6nHNycdwqFDIFH1d88Z0J1yMtudgcNlH1x8Ok+idxRcIauoa6eSH/tbGfu81u4/XCzdgd\ndtanXotGqZE40sllelA6D8++F4NazzulH7K55AOn7IYXTs7hcFDbU0+wLhCth7z+5TI5SX7xdJhN\ntIldaOMmv62Qt0s+wKDSc+/029CptONy3gCtkYdm3c3FcavpHOziiSPPsPUEn89nQ7T8EgT3lWxM\nwOjlx5GWnHFrDb2/8TD/OPof+q0DXJ98JdenXDVhizZJxnh+Me9hZgZNpayzkkcP/Z3slrxxOfdb\nxe/ROdjFxbGrxdyIGwjRBbEkfD4t/W3sbTgkdTiSsNgsNPW1UNBexO66fWwp28pzeRv5U+Y/+Onu\n31LX20CcTzQqhUrqUJ1GLpMT4xNFc38L/ZYBqcMRPEhLfytPZj9Hv3WAm9LWMit4mtQhTYgZQVP5\nwbSbceDg37kvkd9WKHVIghvrGuzmndLhpJ8ddXswqA2sS7mG3y74KYvD56OUK6UOUTJeCjXnRy3h\n/y38GbdMuYFQXTCHm7N5LPMJnsp+nhJTmWht6qYm76taEARBcBqVXEmiXxyFHSV0DXbj6+VzymOq\nu4fL48Z58G6gyWK08k+LqPzjkuwOO1/V7EYpV7IsarHU4ZyzAK0/i8Pns7t+H/sbM1kSsWDsscym\no8iQMSdkpoQRCs6wKnoZ1d21HG3NY0vZVtYmX8G2ml3U9jawIGwOaQHJUoc4KUX7RPKTjAf4d+6L\n7KrbS4e5g1unrHP7JEN30W42MWAdYIq/Z73+k/wSyG7Np9RUTqDWX+pw3F5dTwMvFryOUq7g7um3\njvu/qUKu4JK41aQak3j52Jt8WvUlxaZSbp1yIwFneS3R8ksQ3JtcJmd+6Gw+q95Odms+80Jnn/W5\n7A4775d9wle1u9Eptdwx9SZS/ZPGMdrT463ScefUDextOMg7pR/xXP5GFofP59qky866Wk9m01Gy\nWnKI84nhgpjl4xuw4DRr4lZxsCmLTyq3MS90lsdtQLDZbXQOdtFu7qBtwES7uYP2gY6xP7uGek54\nnEquIkBjJM43hlXRyyY46okX6xNNsamM6p5a0jxsLC5Io8Ns4p9Hn6NnqJe1yVewIGyO1CFNqKmB\nadwz/Vb+k/sKz+a9yh1T1zMjaKrUYXkEh8PBoG0Is82M2TrIgNV8gq/Nw19bBzHbvvu13WEn1DuE\nKH04kYZwIvXhhOiCXKp6TtdgD1/W7OTr+v1Y7FaMXn6siV3J/LCMSZ3wcyIKuYJ5obOZGzKLYx3F\nbKveSWFHCYUdJcQYolgVs4yZQVORy0Q9GXchXuGCIAiCU6T6J1HYUUJRRynzwzJO+fyq7lp81Ab8\nvHwnIDrBmQK0AciQieQfF5Xdmk+buYMl4fPxURukDmdcXBS7gv2NmXxa9RXzQzNQKVS0D5go76ok\nyS8eo8ZP6hCFcSaTybgpbS2N/S3srNuLVqllW/UOfNUGrkm8VOrwJrUArZEfZ9zH83mvkddWyBNH\nn+He6bedViKwcG5qe+oBiDJESBzJ+Eo2JgBQ0lnOwnD3bVXpCjoHu/h37ksM2oa4Y+pNxPk6L+k+\nwS+Wn899iLeKt5DVksOjh57gxtSrzyohV7T8EgT3Nz9sDp9Vb+dA4+GzTv4ZsJp5ueAN8tuLCNEF\ncc/0WwnWBY1zpKdPJpOxJGIBCX5xvFTwBnsbDlLeWclt6evOuP1mh9nEppL38FKouWXKDS61eCZ8\nPx+1gdXRy9la+QVf1uzm0vgLpA7pjDgcDrqHekaSezpoHzDRYe6gzWyifaAD02DnCat5ymVyjF5+\nJBsTCdQYCdD6E6DxH/vTR61HJpNJ8B1JY3RMVdVVI5J/hHPWPdTDk9nPYRrs5LL4i1ge6f4b985G\nmn8y9824nX/nvsTz+a9xW/o6cT8wwmwdpLyjg4aOdsy2wZMk65gx2wZP+LWDM6/mIpfJ0So0aJQa\nFDI5JaYySkxlY4+r5ErC9WEjCUERROrDidCHoZ7gym8nSvq5KHYFC8LmiKSfU5DJZKQHpJIekEpl\nVw1f1uwkp7WAF/JfI1Ifzk/nPCD+Dd2E+CkJgiAITpFqHN59V2wqO2XyT+dgF52DXUwPTJ9UkwOe\nSiVX4q8x0irafrkch8PBtuodyJCxMnqp1OGMG18vH5ZFLuLLml18Xb+fFdFLyWrOBhAtvzyYRqnh\nB9Nu5i+ZT/Jp1ZcAXJ9yNTqVTuLIBK1Sy30zbuet4i3sa8zk/w4/xb0zbiNCHyZ1aB6tpqcO8Lzk\nnzDvEPQqb0pM5TgcDjFWPEtm6yDP5LxE52AXVyZcPCET5zqVltvS15EWkMLmkvd5qeANjrUXc13y\nFWdUGUG0/BIE9xesCyTBN5YSUzntAyYCtMYzOr5toJ1/575MU18zaf7J3J6+ftxaFp6rMO8Qfprx\nAO+Xf8LOur38X9ZTXJVwCcsiF53WZ5bdYefVY5sYsJpZn3otQbqACYhaGE8ropeyu34/X9Xs4ryI\nBS6X9D5gHaB1oJ32b1XuaTN/k+hjsVtPeJyv2kCsT9RxST2BWiMBGn/8vHxFktq3xI5UMa/qrpE4\nksnL7rDTM9SHXqVz69dmv6Wfp7Kfp6W/jdXRy7kw5nypQ5JUsjGBB2bcydM5L/Bi/utYp1jPqYKg\nOxuyDZHfXsSR5hzy24uw2C2ndZwMGRqlBo3CC6OXLxrvEDRKr7FEnuGvtWiUXmiUGrQjz9UqRx5X\nDP+dSq48blwzYDVT39tIbU89dT0N1PbWU9tTP9bdYfTaId7BYxWCovQRRBrC8XbCvF33UA/bqnfy\ndf0BLHYLRi8/LoxdwUKR9HNW4nyjuWvazTT3t/JVzW46B7uQIeZi3IV4xQuCIAhOEa4PxaDSU9RR\ncsqFmqqRQaHoae85gnWBFHaUYLaaPa7stTsr7SynpqeemUFTJd0l6wyrY5azp/4An1fvYFH4PDKb\nj6KUKSZNT/TJKkQXxK3pN/Cf3FeYEzKTGUHpUockjFDIFaxLvZZAbQAfVnzG37Ke5s6pG0RLNify\n1Mo/MpmMJL94jrbmUWwqI8WYKBKAzpDdYeflY29Q29vAorB5E9p+QyaTsTBsDgm+MbxU8AYHm7Ko\n6KritvR1pzX2Fy2/BMFzLAibQ3lXFYeaslgTt+q0jys1lfNc/kb6LP2cH7mEqxIvcbmFXZVCxdrk\nK0j1T+K1wrd5u/QDCjtKuCltLQa1/nuP3V77NaWdFcwITGdhmKhw5468FGouiVvNm8Vb+LhyG+tS\nr5E6JCx2K7mtBexvzKSoo/SEVR50Si2h3iEjyT1GAr+V5OOvMU54tQZ3ZlDrCdAYqeyuEcnqTmS1\nW2k3m2gbaKd1oJ22kf9aBzpoH2jHYrcSoDFyXfKVTA1MkzrcM2a2DvJ0zovU9zayJGIBVySsEa8l\nhiuK/nDWXTyV/QKvHtuE1W5j0SSpCGuxWSjoKOZIcw55bccYGkn4CdEFMSsiHblVNZKsM5LEM5as\n4zWWuOOlUDvldaRVakj0iyPRL+6beO1Wmvqaqe1poK63ntqeBup7G2jqayaz+ejY84xefkQZIkYS\ngsKJMkTg5+V7VnF2D/XwZfUudtfv/1bSz/ksCJuLSiT9nLMQXZBLjGuEMyNe+YIgCIJTyGVyUvwT\nOdycTVN/C2HeISd97mhGeKxI/vEYQdpACimhdaDd4xYh3dm2ml0ArIpeLm0gTqBXebMieimfVG7j\njaJ3aehrYkZguqgCMwlMC5zCHxf/8pQLK8LEk8lkXBi7ggCtPxsLN/N07ovckHIVi8PnSx2ax3E4\nHNT21BOgMTplF53UZgZP42hrHk9mP0eUPpwlEQuYEzJTJBifpi2lW8lrKyTVmMQNKVdJsogQrAvi\nxxn3s7XiC7bV7OSvWf/isvgLWRW9DLlMftLjRMsvQfAcs4On83bJBxxoPMxFsStP671ob/1B3ip5\nD4B1KdewOMK1xxDTAqfwi3kP8+qxTeS3F/LYob9z85QbSPVPOuHz63sb+aj8MwxqPTemXiMWed3Y\nwrC5bK/dw76GQ6yIWkLo98yBOVN9byP7Gg6R2XSUPms/MFyVJsYn8jsVfLRK16ie5SlifaLJasmh\nbaBDVPA6B2armdaBjm8l9nyT5NNh7jxhIptWqSHUOwQftYHCjhL+nfsSM4KmsjbpcrdpA2+xWXg2\n7xUqu2uYGzKL65OvFJ8J3xLrE82PZt3FU9nP83rR29gcVs6LWCh1WE5hsVsp6ighayThx2wbBCBI\nG0BG8Axmh8wg3DuU4GAfWlt7JI72eCq5kihDxMhawHCClt1hp22gfSQhqGGsUlBuWwG5bQVjx3qr\ndER+q0JQlCGcYF3QSe8Ve4Z62Vazk911w0k/fl6+I+29RNKPIIjfAEEQBMFpUoxJHG7Opqij9HuT\nf6q6apAhI8YncgKjE5xpdGd2S3+rSP5xEfW9jRxrLybRL26sH72nWRF1Hrvq9pLVkgPAnFDR8muy\ncLXS+sLx5oTMxOjlx3/yXuaNondpG+jgsvgLv3fBXzgznYNd9Fr6jtt150nmhMzEW6VjT/0BctuO\n8WbxFraUbWVu6GzOC19ApCFc6hBd1s66veyo20Oodwh3TrtJ0moZSrmSKxMvJtU/iVePvcUH5Z9S\n2FHKLVOux8/L94THiJZfguA5NEoNM4OncajpCGWdlSQZ40/6XJvdxntlH7Ojbg/eKh13Td1AkjFh\nAqM9e75ePtw/8w6+qtnNhxWf8VT286yKXsal8Rcc13bCYrPwcsGbWB02bko9dYUgwbUp5AquTFjD\nf/Je4f3yT7ln+q0Tdu1+ywCHm7PZ33iImpFKkAaVnpXRS1kYNvd75+OE8RPrO5z8U9VdI5J/vofD\n4aDX0kfrQBut/d9U7hlN8Omx9J7wOF+1gXjfGAK1AQSN/BeoCyBQG4C3UjeWKNPQ28RbxVvIac2n\nsKOES+JWc37kEperGPdtNruNFwpep9hUxvTAdDakXSfulU8g2hDJg7Pu5smjz/FW8XtY7TbOj1oi\ndVjjwmq3UtRRypGWXHLbChiwmgEI0Bg5L2Ihs0OmE6WPcMuEMLlMTrAuiGBdEBkhM8b+vmuwezgR\nqLdhLDGo2FRGsals7DkquYoIfdhxFYJ81AZ21u1ld90+hkaSfi6MWcHCcJH0IwijxG+CIAiC4DSp\n/okAFHWUnnQwbnfYqempI0QXJHYdeZBvkn/aJY5EGPXlWNWfiWv1MdG0Sg0XxJzPe2Ufo1FomBbg\nfmWeBcFTJfjF8pOM+/l3zkt8Ub2D9oEONqRdh0q0ExgX37T88txE6jT/ZNL8k+kc7GJ/QyZ7Gw6x\np/4Ae+oPEOsTzZKIBWQET0etUEsdqsvIbyvknZIPMaj03Df9NpcZa6f6J/HzeQ/zetHb5LUV8uih\nv7M+de13WjeKll+C4HkWhM7hUNMRDjQdPmnyT79lgBcLXqewo4RQ7xDunX4rgVr3WkiXy+SsjllO\nsjGBFwveYFvNTopNZdyWvm7s/ezDis9o6GtiScQCt2xPI3zXtMApJPjGkdd2jLLOSqcmZdsddso6\nK9jXkEl2ax4WuxUZMqYGpLEofC5TA9JcOtnBE8X6DG+yquyuYe4k34hkd9jpMHeeoD3X8J+DtqHv\nHCOXyfHXGIk0hBOoDSBQ6z+S5BNIoNb/tMf44fpQHpp9Dwcas3i//GPeK/uYg41Z3Jh6NfG+seP8\nnZ47u8POq4WbyGs7RooxkdvT14nf3e8RoQ/jodl388+jz/JO6YdY7VZWxyyXOqyzYrPbKDGVk9WS\nQ05rPv3WAWC4JdaisHnMDplOjCHKLRN+Toevlw++Xj7HjYEGrAPU9TR+UyGot4Ganjqqumu+c7yf\nly9XxZzPwvB5IulHEP6L+I0QBEEQnMZfYyRYF0hpZzk2u+2ENy9NfS2YbYPEiJZfHiVIOzyh2TrQ\nJnEkAoDJ3Mnh5mxCvUNID0iVOhynWhqxiJzWfNL8k0VSgSC4mGBdED+ecz/P5r5CVksOpsFO7p52\nK3q1t9Shub1vkn88v9qen5cva+JWcWHsCgrai9hTf4CC9mKqumt4t/Qj5ofOZknEgkm/y722p4EX\nCl5HKVdwz4xbCdD6Sx3ScQxqPXdPu5Wv6/ezpWwrz+a9wtKIhVyVeCnqkc9v0fJLEDxPkjEef42R\nIy25rE26Ao3S67jHW/pbeSb3ZZr7W0kPSOW29HVo3bjFY4xPFD+f+yCbSz7gYFMWf8p8guuTr8LP\ny5fttV8TrAvk6sRLpQ5TGCcymYyrEi/hr1lP8V7Zx/wk4/5xX7Q1mTs50JjFgcZM2swdAARrA1kY\nNpd5YbNPWklPcL4ofTgKmeKEi9STQUNvE4ebs8lpK6C1vw2bw/ad56jlqrHKPYEj/wVpAwjSBWD0\n8hu3pBe5TM6i8LlMD5rCB2WfsK8xk8eznmZR2DyuSFyDXuUa958Oh4NNJe9zuDmbOJ8YfjDtFjGP\ndRpCvUN4aPY9/OPos7xf/glHW/OI8A4lzDuEMO9QwvQh+Kp9XDJpxu6wU2qqIKslh+zWPPosw+0Z\nfdU+nB+ZweyQGcT6RE3ayk9apZYkY/xxCeIWu5XGvibqeoYrBLUNtDM1MI1FIulHEE5K/GYIgiAI\nTpVqTGZ3/T4qu2tOuOupursW+GaHjOAZAjRG5DI5Lf0i+ccVbK/9GrvDzqroZR5/A6lWqPhxxv1S\nhyEIwknoVd78cOZdvFb0Noebs/lr1lPcN+N2gnVBUofm1mrGkn8mT/sruUzOtMApTAucQvuAiX2N\nh9jfcIiddXvZWbeXBN84zotYwMzgaZNuUrBzsItncl9iyDbEnVM3uOw4WyaTsTRyEYl+8bxU8Aa7\n6/dT0lnB7enriNCHiZZfguCB5DI580Mz+LTqS7Jb81gQNmfssaKOUl7If41+6wAro5dyZcLFHnHv\nolFquHnK9aT5J/NW8RZeLdyESq5ELpNz65Qb8RIV6zxKnG80s4Knc7Qll6OteeOSwGqxW8lrO8b+\nhkwKO0pw4EAtVzE/NINF4fNI8I11yUXuyUalUBGpD6eupwGLzTIpkjjaBjrIas7mcHM2DX1NwHCC\nT5QhYqxyzzdJPoH4qPUT+lrVq7xZn7aWBWFzeat4C/saD5HbVsCVCRezIGyOpL83DoeD98s/YU/9\nASL0Ydw34/bvJMQKJxesC+Lh2ffycsGbVPfUjq0vjNIqtSPJQMP/hY8kBRlUE/sahOGEn/LOSo60\n5HK0JW+stZ1BrWdpxCIyQmYQ7xvjEWMeZ1D9/+3dd3xb9b3/8beWLdmyLXnv2I5HpnESOzsBApRV\nNpfRXwOFll4oHdDSW9rSlkJugY5fB+1tGYX+mgJlFkjbkEISCNl7OIkdJ3G894j3ks7vDzsmuQkl\nQGxZyuv5eOQRWdKRPueB80XnnLc+H7NVqWHJSg3gLsfAmXZ2nQEDAIy6CZGZWlO1XkXNJacM/xz7\nRkwanX8CisVsUbQ9UvXdDb4u5azX1d+lddWbFBEUroK4PF+XAwCyWWy6ddJNirZH6q2yVfr51t/p\ny7m3juhohEBX0V4lV3CEwoPCfF2KT0Q53Loi42Jdlnah9jTu0/tVG1XUUqJDR0sVWvKGZifka37i\nrLMiZNYz0Ks/7HpWrb1HdfX4yzQtdqqvS/pIic54fTv/a3r90D/0XuV6/XTr47o8/SJGfgEBanbC\nYPhnY83W4fDPmsr1ernkTZlk0ucn3qA5x4WCAkVB/DSlR6Tqmb3Pq6ytQp9N/wwdkAPUlRmXaFdD\nod48tFy50ZNk/YQh5KqOGm2o2aLNtduHu0Okh6dqTkKBpsed49ddsQJVWkSqytorVNlRrfSIcb4u\nZ0S09bVre91uba3bqdK2MkmSxWTR1OhJKojL05ToSWMu1Djelab7C76h1ZVr9Y/St/WXope1oWar\nbsq5RonOeJ/UtKJsld4pf09xITH6Wt4dCrGNjfG8/iTaEan78u/WgHdA9V2NqumsVU1nnWo661Td\nWavSo2U6fPTICduE2kKGOwQlDoeD4s94N2Kv4VXp0fLBDj/1u3W0r13SYCDt2LjqTFcGgR8AI4Lw\nDwBgRGW7x8skk4pbSvRZfeakx8vaKmQ1W5XkTPBBdRhJMSHRqm8qUld/l0JsIb4u56z1ftVG9Xr6\ndGnahZ/4pCMAnGlmk1lXjL9EUY4ovVD8qh7f8aQ+P/EGFcRP83Vpfudob7uO9rVpavREX5ficxaz\nRXmxU5UXO1X1XY1aX71ZG2q2aGX5Gq0sX6Mcd6bmJ83WOdGTz9hYgbHEa3j17N7nVdFRrXmJM3Vh\n6rm+Lum0BVlsuiH7ak2MzNbS/S/pjUPLJYmRX0AAinZEKcuVoZLWw6rvatDqirVaU7VBTluovjz1\nVo13pfm6xBET7YjSt6Z/RVWdNUpxBv6ozrNVbEi0FiTN0XuV67S2epPOS5532tt2D3Rra91Obaje\nqrL2wU4WTluoLkhZqNkJ+T4LKuD0pIWn6D1JR9oqAir809XfrV0Nhdpat1PFLQdlyJBJJmW7M1UQ\nl6e8mClj/ryfxWzRhannakbsOXq55E3taijUI1t+pQtSFurS9AtHNbD0bsU6LTu8Qu5gl76Wd4fC\ngpyj9t6ByGq2KtEZf9L62O/pV11Xw3Ag6Fgo6FDrER1sLT3huWE252AQyBl/XLeguI/1e20Yho60\nVWh7/S5tr9+t1t6jkqRQa4jmJszUjLhzlOXKCMjjUABjC1eAAAAjymF1KC08RUfaKtQ90C2H9YNv\nMvR5+lTVWatxYSl88A1AsSHR2tsk1Xc3Ks02NsdNBLp+T7/erVwnu8Wu+UmzfF0OAJxkbmKBIu0u\nPbVnqf607wU19TTr4nGLGF3wMVR2DI384iLiCWJDonV15mW6POMz2tVQqLVVG1XcclDFLQcVFuTU\n3ISZmpc4U1GOSF+Xesa8WrJMhU37NcGdpRuzr/HLf0dToyfpezPv1dJ9L6msvUL5dC0EAtKshHyV\ntB7Wz7f+Tp0DXUpyJug/p35BUQ63r0sbcRazhdEVZ4FL0y7QppqtWl76jmbFz/i3XXoMw1BJ62Ft\nqNmiHfV71O/tl0kmTYmaoDmJMzUlagJf5PETx0atlh4t0/kp831czafT5+lXYdN+ba3dob1NRRow\nPJIG9zE/Lk/TY3MVERzu4yo/PrfdpS9PvUV7GvfppQNv6O3yd7W1bqduyL5KuTGTR/z9N9Rs1csl\nbyg8KExfn/Zlue2uEX/Ps5XNYlNyWKKS/9do7D5Pn2q76lXTcSwUNNgx6EDrIR1oPXTCcyOCwpQw\nNDLsWJeghNC44TXdMAyVt1dqe/1uba/freaeFkmSw2rX7Ph8TY87RxPcmVz3ADCq+NQIABhxEyKz\nVNpWrpKWwyccSFW0V8treJUWQavrQBTrGBzRUN/VOHwCBKNrc912tfW166LU804I3gHAWDIhMkvf\nmvEV/c+uZ7Ts8Ao1dDfpcznXcYLsNFW0D4V/wgj/nIrNbFV+XJ7y4/JU21mntdWbtKlmm1aUrdK/\nylZrYlS2FiTO1uSoCX79O/duxTq9W7lOCaFx+tLUz/v1vriCI/S1aXfI4/X49X4A+HDTYqbqpQOv\nq3OgS7nRk3XrpJtktwb7uizgjAkLcuqicedr2eG39E7Zu7pi/CUnPae196g21mzThpotauxukiTF\nOKI0J6FAsxJmyBUcMdpl41OKcUQp1BaiI20Vvi7lE/F4PSpqKdGW2p3a3VioXk+fJCk+NE4FcXma\nEZunmJAoH1d5ZkyNnqQcd6aWH1mpd8rf0xN7/p+mRk/Sf2RdNWJB1B31e/Tc/pcVYnXoq3lfYrSt\njwRZgpQalnxSELdnoFd1XfWqPhYIGgoHFbWUqKil5ITnuoNdig+NVUN30/D6bbcEa2b8dE2PzdWE\nyGzZCG0C8BFWHwDAiMtxZ2n5kZUqaik5IfxzpK1ckpQWRvgnEMWEfBD+wejzGl69U/6eLCaLzks5\n/TbjAOALic54fTv/a/rD7me1sWarWnpa9aUpixViI7j4UY6Ff1LD6SLwUeJD43R91pW6MuNS7ajf\nrferNmpfU7H2NRXLFRyhuYmD3YD87WLbnsZ9eqXkTYUFOXVX7m0BE/gl+AMELrs1WLdOukltvW2a\nnzRbZpPZ1yUBZ9yilPlaU7leKyve14LkOXIFR2jAO6A9jfu1oWaL9jUVy5Ahm9mmWfEzNCehQJmu\ndL/s3IdBJpNJaeGp2ttUpPa+Dr8Y5+Q1vDrUekRb63dqR/1udfZ3SZIi7W6dmzxP+XF5SgyND8jf\nyyBLkK4af6lmxk/Xi8V/057GfSpuLtFl6RdpUcqCM/pZdF9TsZ7d+7yCLDbdnfdFJTkTzthr48yw\nW4M1LjxF48JPvE7RPdCj2uNHh3UMdgra33wIiaDIAAAdQ0lEQVRAQZag4U5YkyJzZLPYfFQ9AHyA\n8A8AYMSlR6QqyBKkouaDJ9xfNvRNmLQIusIEomOdfxq6Cf+MtuqOWr1buU71XY2anZDvdxcxAZyd\nIoLDdM/0O/WnvS9od+Ne/WL7/+grubefFSNAPo2K9iqF2ZyKCPK/tvu+EmSxaVbCDM1KmKGqjhqt\nrdqozbXb9c/St/XWkZWaEjVR85Nma2Jk1pi/IF3RXqVn9j4vq9mqO3O/EFBjzAAEtryYKb4uARhR\nQZYgfTbjYj1X9LJePvCmIu0uba7dro7+TkmD45PmJORrRlzevx0LBv+SPhT+OdJWrqnRk3xdzikZ\nhqHKjmptqduhbXW71Np7VJIUZnPq3OS5yo+bpvTw1IAM/JxKQmicvjHtP7W5drteO/h3vX7on9pU\nu0035VyrTFf6p379g62lenLPn2U2mXRn7m10R/czDqtd6RHjlB4x7oT7u/q7ZTNbCfwAGHMI/wAA\nRpzVbFWWK0N7m4rU0tM6PM/4SFu5nLZQRdm5SBGI3HaXrGYrnX9GSfdAj7bV7dT6mi3DwbqIoHBd\nPG6RjysDgNMXbAnSHVMX67WDf9fqirX62bbHdVfubSd9+w6DOvo71dTTokmROWfNyfkzLcmZoBtz\nrtFV4y/TtvqdWlu1Ubsb92p3415F2d2alzhLcxILFKMwX5d6kpaeVv1+17Pq9/Tri1M+z4UEAADG\nmNkJM7SqYo12NuyRJDltoVqUskBzEgqU6Iz3cXUYCcc+jx05OvbCP3VdDdpat1Pb6naqrqtBkmS3\n2DU7Pl/58XnKdo0/azsvmkwmzUqYoSnRE/XGoeVaV71Jv9z+e81OyNc14y+XMyj0E71ueVulfr/r\nWXkMj/5z6q3Kdo8/w5XDV+hSDGCsIvwDABgVEyKztLepSEUtBzUnIV/tfR1q6mnR5KgJXKwKUGaT\nWdGOKDV0N8owDP47jwDDMHSwtVQbarZoe/1u9Xv7ZZJJk6MmaG5CgaZET5SVGdMA/IzZZNb1WVcq\n2hGlVw68qV9u/4Num/w5nXPc6FAMqmyvliSlhCX5uBL/Z7cGa17iLM1LnKWytgqtrdqkrXU79Obh\nt/T30n9pYkymMpzpynFnKjUs2ecXRnoGevWH3X/S0b42XZN5uabFTvVpPQAA4GRmk1mLJ96g9yrX\na2r0JE3lGD3gHfvSQmlbuY8rGdTS06pt9bu0rW6nyofGBdvMVk2LzVV+XJ4mM6roBKG2EH1uwnWa\nk5CvF4pf08aardrTsE9XZV6qOQkFH6sraE1nnX6762n1enp12+SbNSV64ghWDgDAID5pAgBGxQR3\nliSpqPmA5iTk68jQQTDf5A9ssY5o1XbWqaO/0y9mnfuL1t6j2lyzXRtqtqh+aKxatCNKcxIKNCt+\n+nB3LQDwZ+clz1OU3a1nCp/TU3v+rGuzPqvzk+cTJj1OxdAJfMI/Z9a48BSNC0/RtVmXa0vtDm2o\n2ap99SXaW39Ay7RCdotdWe4MTXBnKScyU/EhsaP6e+k1vHp273Oq7KjWvMRZuiBl4ai9NwAA+HjG\nhafolkk3+roMjJIQm0NxIbE6fLRMf9r7giwmiyxmi6xmy+Bt07HbVlnMZllNFlnMVllMZlnM1qGf\nj3/ecbeP3X/cNlaz9YP3MFlkNpnVOdClHfV7tK1upw62lsqQIbPJrElROcqPzVNuzGRGzX2E9Ihx\n+k7+1/Ve1Xr9/fAKPV/0qjbWbNVNOdcqyZnwkds3djfp8R1PqbO/S5+bcJ1mxOWNQtUAABD+AQCM\nkoTQOIUHham4+aAMwxgeS8R4gsAWExIlSarvaiT88yl5vB4VNu3X+uot2tdcLK/hlc1sVUHcdM1N\nLFCmK/1jfQMJAPzB1OhJunfGXfrDrmf1askyNXY36fqsK1nvhhD+GVkOq0MLk+dqYfJc2cNNWn9w\nl4qbS1TcclB7GvdpT+M+SVJEUJiyh4JAE9yZIx7CfaVkmQqbijQxMls3Zl9NIA4AAGAMyY2epLfL\n39WWuh2+LkXjI9KVH5enabFTOS/3MVnMFi1KWaBpMVP1asky7WjYo0e3/FrnJ8/XZekXyW4NPuV2\nrb1H9ZsdT+loX5uuy/ys5iXOGuXKAQBnM8I/AIBRYTKZlOPO0pa67arurNWRofDPuPBkH1eGkRTn\niJEk1Xc3arwrzbfF+Knaznqtr9mszTXb1d7fIUlKDUvW3MQC5cflyWFlxjSAwJYalqz78r+q3+96\nVu9VrldTd4tum/y5Dz3ZejapaK9SiNWhKLvb16UEvLBgp6bH5mp6bK4kqam7RcUtB1XcUqLi5oPa\nUrddW+q2S5JiQ6KV487SBHemst3jFWILOWN1rK5Yq/cq1ykhNE5fnPJ/fD5+DAAAACe6avyluiB1\noQa8A/IYHg14PfIYHnm8Hg0M/T14/4A8hveD28fuP+45J2/jkccYkMfr1YBxbJvjb3tk1mCXnxlx\n5yiS44RPzW136UtTF2tvU5FeKn5dKyvWaFv9Lv1H9lU6J3ryCUH8jr5OPb7jKTX1NOuytAu1KJUO\nnQCA0UX4BwAwaiZEZmpL3Xbtbz6gI20VinFEyWkL9XVZGEExIdGSpIauRh9X4l96Bnq0vX63NtRs\n0eGjZZKkUGuIzk+erzmJBafVYhgAAkmk3a1vzviK/lj4FxU27devtv9eX5h8s+JD43xdms90D/So\nvrtROe5MOr/4QJTDrbmOAs1NLJBhGKrprFPRUBCopPWQ3q/aoPerNsgkk1LCkpTjztSEyCxlRKQp\nyGL7RO+5p3GfXi1ZprAgp+7KvZ0AMAAAwBhkMpnoshOAJkdN0PdnfUsrylbp7bJ39dSeP2tK1AT9\nR/bVinZEqnugW7/d9bRqu+q1KGWBLku/yNclAwDOQoR/AACjZkJkliRpXfUmdQ90a3JUjo8rwkiL\nHQr/1Hf7JvxjGIZaeltlGJLbHjGmx8QYhqHDR8u0oWaLttXvUp+nTyaZNDEyW3MSCpQbM1k2Mx/d\nAJy9HFa77sq9TS8e+JvWVW/Wkk3/V3kxU3Rx2gVKCUv0dXmjrrK9WhIjv8YCk8mkRGe8Ep3xWpSy\nQB6vR2XtFSpuPqiilhKVHi1XeXul3i5/V1azVRnh45QTmaUcd6ZSw5JOq3tPRXuVntn7vKxmq+7K\nvU1RDr7FDQAAAIymIItNV2RcrJlx0/TXA6+rsKlIxZt+oUvSLtC+piJVtFdpbkKBrs38LF/QAAD4\nBFeQAACjxhUcofiQWNV21UuS0sJTfVwRRlpEULiCzDbVdzWM+Ht19XerurNW1R01quqsVXVHrWo6\na9U90CNJsposinJEKcYRpZiQKMU4ogdvO6IVaXf5bGzG0d52ba7dpg01W1U39G8jyu7W7NRzNTsh\nnxbNAHAci9mim3Ou0+SoiXrryErtaNijHQ17NCVqoi5JW6T0iHG+LnHUVLRXSiL8MxZZzBZlRKQp\nIyJNl6ZfqF5Pnw62lg6PCDvQekgHWg9pmQZDbVmu8UOdgTIVFxJ70oWClp5W/X7Xs+r39OtLUxdr\nXHiKb3YMAAAAgOJCY/X1vDu0pW6HXiv5u5YdfkuSND02VzdPuI7gDwDAZwj/AABG1YTIrOPCP1y4\nCHQmk0kxIdFq6G6SYRhn5OB3wDuguq4GVXXUqLqjdijwU6uW3tYT31smxYbEaEJktiwmsxq6mlTf\n3TgYsGk68TXNJrOi7O7BQFBIlKKPhYQc0YpyRJ7xjjser0f7mou1vnqLCpv2y2t4ZTVblR+XpzkJ\nBcp2jx/TXYoAwJdMJpPOiZms3OhJ2t98QG8dWanCpv0qbNqvHHemLkm7QFmujIA/4VpO5x+/EWwJ\n0uSonOGulx19nTrQekhFzSUqbjmo3Y17tbtxr6TB4HROZKZy3IN/HFa7/rD7Tzra16ZrMi9XXswU\nX+4KAAAAAA0el86Mn64pURO1/Mg76vcO6PqsKzifBwDwKcI/AIBRNSEyS+9WrpPFZFGy8+wb0XE2\ninVEq6qjRkf72uQKjjjt7QzDUHNPq6o7Twz51HbVy2t4T3huRFCYJkZmKzF0cORGkjNB8SGxslls\nJ71uZ3+XGrob1dDVNPh3d5MauprU2N2kfc3FUvOJzzfJJLfdNRQGilJMyAcdg6IdkQqyBJ32PtV1\nNWhD9RZtqt2mtr52SVKKM1FzEmcqPy5PobaQ034tADjbmUwmTYrK0aSoHJW0HNZbR1aqqGUwTJER\nMU6XpF2gSZE5ARsCquioUrAlSDGOKF+Xgo/JGRSq6bG5mh6bK0lq6m5WcctBFTWX6EDLIW2u3a7N\ntdslSQ6rQ90D3ZqfOEsXpCz0ZdkAAAAA/pcQm0PXZV3h6zIAAJBE+AcAMMqyXBmyma1KdiadMpiB\nwBMTEi1Jauhq/NDwz0eN7DomyBKk1LDkE0I+iaHxcgaFnnY9obYQhdpSTzl2rnugR43dTUOBoKFg\n0FBQqLjloIpbDp60jSs44oNgkCNa0cMjxSJlt9rV6+nT9vrd2lC9RYeOlkoavJC3MGmu5iYW0LEB\nAM6ALHeGstwZOtJWrreOrNKexn36n13PKCUsSZekXaDc6EkB9Q3MXk+f6jrrlRGRFlD7dbaKckRq\nrmOm5ibOlGEYqu6sVfFQV6CS1sOaEjVRN2RfHbBBNgAAAAAAAHx6hH8AAKPKbrXrnul3KtR6+mEN\n+LdYx2D4p76rUekR4z72yK6k0HglOhOU5IxXpN09ohc5HVa7UsKSThnI6fX0nSIYNHj7YGupSloP\nn7RNmM2pPm+fej19kqQcd6bmJhQoN2aKggi/AcAZlxaeqjtzv6DK9mqtKFulHfV79NSePyshNE4X\nj1uk6bG5spgtvi7zU6vqqJEhQ6nhBEgDjclkUpIzQUnOBC1KXXjGxqYCAAAAAAAgsBH+AQCMulN1\nXEHgOtb55/VD/9RfD/zt347sSnImKNEZ/6Eju3wp2BI0fDHuf+v39Kupp/m4QNAHI8WCFaxFcXma\nnVCgaEekDyoHgLNPcliivjjl86rtrNe/ylZrS90O/WnfC/pH6b/0mXGLNDN+mqxm/z0crmivkiSl\nOAn/BDqCPwAAAAAAADgd/nu2EwAA+IUkZ4KctlD1efuHR3YdC/kkOuPltPl/Fyibxab40DjFh8b5\nuhQAwHHiQ2N1y6QbdVn6RXq7bLU21mzVc0Uv65+lb+uicedpbkLBmAubno7y9kpJYnQkAAAAAAAA\nAEmEfwAAwAhzWO36ybwHZDKZRnRkFwAAHybaEambJ1ynS9Iu0MryNVpbvUkvHXhdbx1ZqQtSF2p+\n4mzZrcG+LvO0VbRXyWa2KS4kxtelAAAAAAAAABgDCP8AAIARZzFbfF0CAABy2126PvtKXZy2SKsq\n3td7lev0t4P/0L/KVmtRygItTJqrEJvD12X+W/2eftV01mlcWDL/fwUAAAAAAAAgifAPAAAAAOAs\nExbk1FXjL9WFqefq3cp1erdirZYdXqG3y97TeclzdX7KAjmDxuZYyurOWnkNLyO/AAAAAAAAAAwj\n/AMAAAAAOCuF2kJ0efpFuiBlgd6v2qiV5Wv0Vtkqrap4X/OTZuvC1HMVERzu6zJPUNFeJUmEfwAA\nAAAAAAAMI/wDAAAAADir2a12XTTuPJ2bPFfrqjfrnfL3tKrifa2p2qC5CQW6MPU8RTncvi5T0vHh\nn2QfVwIAAAAAAABgrCD8AwAAAACApCBLkM5Pma/5SbO1uWabVpSt1pqqDVpbvUkz46fr4nHnKzYk\nxqc1VrRXy2qyKCE01qd1AAAAAAAAABg7CP8AAAAAAHAcm9mqeUmzNDshX1vrdmpF2WptrNmqTTXb\nNCPuHOVGT1ak3SW33aXwoDCZTeZRqcvj9aiqs0aJznhZzRzOAwAAAAAAABjE2UIAAAAAAE7BYrZo\nVsIMFcRP086GQr11ZKW21u3U1rqdw88xm8xyB0fIbXfJHeyW2x4xGAwKHgwHRdpdclgdZ6Sems46\nDXgHlBKWdEZeDwAAAAAAAEBgIPwDAAAAAMC/YTaZNT02V9NipupAyyFVd9aqpbdVLT2Df5p7WnWo\n9YgMlZ5ye7vFrki7Sy57hCKDXXLb3UMBoQi57W65gsNPq5NPRXuVJBH+AQAAAAAAAHACwj8AAAAA\nAJwGk8mknMhM5URmnvTYgHdAR3vb1NzTOhwMaj4uINTS26rqztpTv65MCg8KG+weZHcNBYROvO20\nhaqig/APAAAAAAAAgJMR/gEAAAAA4FOymq2KckQqyhH5oc/pHuhWS89RtfQOdgs61jWodejn8vZK\nHWkrP+W2NrNVhga7ECWGJozQXgAAAAAAAADwR4R/AAAAAAAYBQ6rQw6nQ4nO+FM+7jW8autrPy4g\n1KLWnqNDHYRa1NzTqomR2Qqy2Ea5cgAAAAAAAABjGeEfAAAAAADGALPJLFdwhFzBEUpXqq/LAQAA\nAAAAAOAnzL4uAAAAAAAAAAAAAAAAAMAnQ/gHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/\nRfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAA\nAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA\n8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAA\nAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAA\nAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAA\nAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/ZTIMw/B1EQAAAAAA\nAAAAAAAAAAA+Pjr/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAA\nAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgp6y+LgA4\nntfr1YMPPqji4mIFBQVpyZIlGjdunK/LAoBPZdeuXfr5z3+upUuXqqysTPfff79MJpOysrL0ox/9\nSGYzWVwA/qW/v1/f+973VFVVpb6+Pt11113KzMxkfQPg9zwejx544AGVlpbKZDLpxz/+sYKDg1nf\nAASMpqYmXXvttXrmmWdktVpZ3wAEjGuuuUZOp1OSlJycrDvvvJM1DkBAeOKJJ7Rq1Sr19/fr5ptv\n1syZM1nfAJwSKwHGlHfeeUd9fX168cUX9a1vfUuPPvqor0sCgE/lqaee0gMPPKDe3l5J0iOPPKJ7\n7rlHzz//vAzD0MqVK31cIQB8fG+++aZcLpeef/55Pf3003r44YdZ3wAEhNWrV0uS/vrXv+qee+7R\nL3/5S9Y3AAGjv79fP/zhD2W32yVxfAogcPT29sowDC1dulRLly7VI488whoHICBs2rRJO3bs0Asv\nvKClS5eqtraW9Q3AhyL8gzFl27ZtWrBggSQpLy9PhYWFPq4IAD6d1NRUPf7448M/7927VzNnzpQk\nLVy4UOvXr/dVaQDwiV1yySX6xje+IUkyDEMWi4X1DUBAuPDCC/Xwww9LkqqrqxUeHs76BiBgPPbY\nY7rpppsUGxsrieNTAIGjqKhI3d3duv3223XLLbdo586drHEAAsLatWuVnZ2tu+++W3feeafOO+88\n1jcAH4rwD8aUjo6O4dackmSxWDQwMODDigDg07n44otltX4wZdMwDJlMJklSaGio2tvbfVUaAHxi\noaGhcjqd6ujo0Ne//nXdc889rG8AAobVatV3vvMdPfzww7riiitY3wAEhNdee02RkZHDX7qTOD4F\nEDjsdru++MUv6o9//KN+/OMf67777mONAxAQWlpaVFhYqF//+tesbwA+EuEfjClOp1OdnZ3DP3u9\n3hMumgOAvzt+9m5nZ6fCw8N9WA0AfHI1NTW65ZZbdNVVV+mKK65gfQMQUB577DGtWLFCP/jBD4bH\nt0qsbwD816uvvqr169dr8eLF2r9/v77zne+oubl5+HHWNwD+LD09XVdeeaVMJpPS09PlcrnU1NQ0\n/DhrHAB/5XK5NH/+fAUFBSkjI0PBwcEnhH1Y3wAcj/APxpTp06drzZo1kqSdO3cqOzvbxxUBwJk1\nadIkbdq0SZK0Zs0a5efn+7giAPj4Ghsbdfvtt+vb3/62rr/+ekmsbwACw+uvv64nnnhCkuRwOGQy\nmTRlyhTWNwB+77nnntNf/vIXLV26VBMnTtRjjz2mhQsXsr4BCAivvPKKHn30UUlSXV2dOjo6NG/e\nPNY4AH5vxowZev/992UYhurq6tTd3a05c+awvgE4JZNhGIaviwCO8Xq9evDBB3XgwAEZhqGf/OQn\nGj9+vK/LAoBPpbKyUt/85jf10ksvqbS0VD/4wQ/U39+vjIwMLVmyRBaLxdclAsDHsmTJEi1fvlwZ\nGRnD933/+9/XkiVLWN8A+LWuri5997vfVWNjowYGBnTHHXdo/PjxfH4DEFAWL16sBx98UGazmfUN\nQEDo6+vTd7/7XVVXV8tkMum+++6T2+1mjQMQEH76059q06ZNMgxD9957r5KTk1nfAJwS4R8AAAAA\nAAAAAAAAAADATzH2CwAAAAAAAAAAAAAAAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAA\nAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAAAPBThH8AAAAAAAAw6l577TXdf//9vi4D\nAAAAAADA7xH+AQAAAAAAAAAAAAAAAPyU1dcFAAAAAAAAYOx68skntXz5cnk8Hs2fP18333yzvvKV\nryglJUVlZWVKTEzUz372M7lcLq1evVq/+tWv5PV6lZKSooceekjR0dFav369Hn30URmGocTERP3i\nF7+QJJWVlWnx4sWqrq7WnDlztGTJEh/vLQAAAAAAgP+h8w8AAAAAAABOac2aNSosLNQrr7yi119/\nXXV1dVq2bJkOHDigW2+9Vf/4xz80fvx4/fa3v1VTU5N++MMf6ne/+52WLVum6dOn66GHHlJfX5/u\nu+8+PfbYY1q2bJlycnL0t7/9TZJUU1Ojxx9/XMuXL9eaNWtUUlLi4z0GAAAAAADwP3T+AQAAAAAA\nwClt2LBBu3fv1rXXXitJ6unpkWEYSktL06xZsyRJV199te677z7NmzdPubm5Sk5OliTdeOONevLJ\nJ1VcXKy4uDhNnDhRkvTNb35TkvTaa68pPz9fLpdLkpSamqqWlpbR3kUAAAAAAAC/R/gHAAAAAAAA\np+TxeHTrrbfqtttukyS1tbWptrZW99577/BzDMOQxWKR1+s9YVvDMDQwMCCbzXbC/e3t7ers7JQk\nWa0fnJoymUwyDGOkdgUAAAAAACBgMfYLAAAAAAAApzR79my98cYb6uzs1MDAgO6++24VFhaqtLRU\n+/fvlyS9+uqrWrhwoc455xzt2rVLlZWVkqQXX3xRs2bNUnp6upqbm3Xw4EFJ0tNPP60XXnjBZ/sE\nAAAAAAAQaOj8AwAAAAAAgFNatGiRioqKdMMNN8jj8WjBggUqKChQRESEfvOb36i8vFw5OTlasmSJ\nQkJC9NBDD+mrX/2q+vv7lZiYqP/+7/9WcHCwfvazn+m//uu/1N/fr9TUVP30pz/VihUrfL17AAAA\nAAAAAcFk0E8ZAAAAAAAAp6myslK33HKLVq1a5etSAAAAAAAAIMZ+AQAAAAAAAAAAAAAAAH6Lzj8A\nAAAAAAAAAAAAAACAn6LzDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAA\nAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAfur/\nA6FZTqEsfzMdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPQAAAJoCAYAAADr1y2qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3yd6TDCAEwkpAloBsQRAvoOIEKaDgal1I\nayutVmm1XrW2vdWrOOpVEVCQISqCgCxBmYIQVkISQggJIftkj7PuHyHHRBIIkJBw8no+HjzyO7/x\nPd8z8jmn6dvP12Cz2WwCAAAAAAAAAAAAAAAA0CI4NfcEAAAAAAAAAAAAAAAAAPyMQA8AAAAAAAAA\nAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAAAGhB\nCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAgBZu5cqVio6OVnR0tNasWdPc07kk1fN/6KGHmuw+Kisr\ndfz48SYbHwAAAAAA4Eoh0AMAAAAAAICr3o4dO3Tbbbfpm2++ae6pAAAAAAAAXDaX5p4AAAAAAAAA\ncDkyMjL0wAMPNPc0AAAAAAAAGg0degAAAAAAAHBVs1gszT0FAAAAAACARkWgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALYhLc08AAAAAAABcedHR0ZKkuXPnavr06Vq1apWWL1+uhIQEmUwm\nRURE6LbbbtPMmTPl5uYmSdqzZ48WLFig2NhYGY1GhYaGauTIkXr88ccVGhpa732VlZVpyZIl2rhx\no5KTk1VcXKyAgAD16tVLEydO1IQJE+TkdP7/5ui7777T+vXrtX//fuXm5qq0tFQ+Pj6KiIjQ0KFD\nde+99yo8PPyc69566y3NmzdPvr6+2rt3r7KzszV//nxt2bJFGRkZcnFxUZcuXTRhwgRNmzbN/lib\nyt69e/X111/rp59+UlZWloqLi+Xt7a2wsDANGjRI06ZNU5cuXS44Tl5ent577z1t2rRJmZmZCggI\nUL9+/TR58mSNGjWq3uvKy8u1bNkybdiwQQkJCSopKZGPj486dOig4cOHa9q0aed9LS0Wi9avX6+v\nv/5ahw4dktFolLe3tzp16qRRo0Zp+vTp8vf3v6jnZPfu3ZoxY4Yk6Q9/+IN+85vf1HneunXr9Nvf\n/laS9Oqrr+quu+6S9PN7udq8efM0b948SdLChQs1ePDgWseNRqM++eQTfffdd0pNTVVZWZmCg4PV\nt29f3XXXXed9/hqLzWbT2rVr9fXXX+vw4cPKz8+Xt7e3unTpohtvvFG/+tWv5O3tXee11Y/32Wef\n1Q033KCXXnpJ+/btk4uLiyIjI/X0009r2LBhGjNmjNLT0zVjxgw98sgjeumll/T999/LZrMpIiJC\nv/nNbzRx4kT7uJWVlfryyy+1fv16xcXFqbCwUL6+vuratavGjh2rKVOmyMPD47LmBAAAAAAAGo5A\nDwAAAAAArZjJZNJjjz2mLVu21NqfkJCgf/3rX9qxY4c+/PBDvf3223r77bdls9ns56Snp2vJkiXa\ntGmTVqxYobCwsHPGP3jwoGbNmqXMzMxa+7Ozs7VlyxZt2bJFixYt0ptvvllnkCQ/P1+zZs3S3r17\nzzlmNBplNBp1+PBhffrpp3rnnXc0dOjQeh/r3r179cQTT8hoNNbaf+DAAR04cEArV67UwoULFRAQ\nUO8Yl6q8vFx//OMftX79+nOOFRQUqKCgQAkJCfrss8/06quv6rbbbqt3rOTkZL366qvKzs6278vO\nztaGDRu0YcMG3XrrrXrttdfk4lL7zz4ZGRl68MEHlZycXGt/fn6+8vPzdfDgQc2fP1//8z//o7Fj\nx55zv+np6XrqqacUGxtba7/RaLQ/hx9//LH+9a9/aeTIkQ16Xq60rVu36umnn1ZhYWGt/RkZGcrI\nyNC6des0ZswY/fOf/5SPj0+TzCE3N1ezZs3STz/9VGu/0WjUvn37tG/fPn388cd68803de2119Y7\nzpkzZzR16lTl5eXZ9x09elSRkZG1zisuLtb06dOVkpJi35eQkFDr9zU+Pl6/+93vdOLEiVrX5uXl\nac+ePdqzZ4/mz5+vt956S717977sOQEAAAAAgAsj0AMAAAAAQCv2n//8R/n5+erdu7dmzJihiIgI\nJSYm6t///reMRqN27NihRx99VFu3blXnzp310EMPqVu3bsrKytL777+vgwcPKisrS6+//rr+/ve/\n1xo7MTFRM2fOVGlpqby9vTVt2jQNHTpUvr6+Sk9P1+rVq7Vx40bt379fDz30kJYuXSovL69aY8ye\nPdse5hk2bJjuvPNOtWvXTiaTSSdPntQnn3yixMRElZaW6plnntHmzZvl7Ox8zuMsLy/X448/rpKS\nEk2dOlU33nijfHx8dPToUb333nvKysrSsWPH9Prrr+vFF19s9Of5r3/9qz3M06tXL02dOlWRkZFy\ncnLSqVOntHTpUu3fv19ms1l//etfdf311yswMLDOsaqDVSNHjtSUKVPUpk0bxcXF6T//+Y8yMjK0\nevVqBQQEaO7cubWue+aZZ5ScnCxnZ2fNnDlTw4cPl7+/v/Ly8rR161YtXbpU5eXlmjNnjtavX18r\nYJWXl6cHH3zQHgoZMGCApkyZok6dOsloNGrjxo36/PPPVVBQoEcffVQffPDBFevI8uWXXyorK8ve\n2WfKlCmaOnWqJNUKkuzcuVOPPfaYLBaLgoODNX36dA0cOFAeHh5KSUnRihUrtGfPHm3evFmzZs3S\nhx9+WOd76XKUlpZqxowZSkpKksFg0MSJEzVu3DiFhobKaDRq27ZtWrZsmbKysvTggw9q2bJl6tat\nW51jLViwQDabTQ8//LBGjx6tnJwcxcXFKSIi4pznx2q1atKkSbrjjjtUVFSkHTt2aNCgQZKklJQU\nPfDAA/YQzujRo3XHHXeoXbt2ysrK0urVq7V27VplZGRoxowZWrp0qbp3735ZcwIAAAAAABdGoAcA\nAAAAgFYsPz9fw4cP13vvvWdfbqp///4KDw+3ByS2bt2q3r17a+HChbUCN9dff73GjRunM2fOaMuW\nLbLZbDIYDPbjc+bMUWlpqcLDw7Vo0aJa4Yo+ffpowoQJ+vTTT/W3v/1NCQkJeuedd/T000/bz9mx\nY4f27NkjSbrpppv01ltv1Rp/6NChmjx5sqZOnarY2FidOXNG+/fv18CBA895nCaTScXFxXrvvfdq\ndY+59tprNXLkSE2cOFFlZWVavXq1nn/+ebm6ul7uU2uXkpKir776SpLUt29fffLJJ7WW9ho4cKDu\nvPNOzZ49W+vXr1dpaam2bdum22+/vc7xqgMTc+bMse/r16+fxo0bp+nTpys5OVmffvqp7rnnHvtS\nSOnp6dq1a5ck6cknn9Rjjz1Wa8xRo0apS5cu+tvf/qbS0lKtXr1aDz74oP34v//9b3uY57777tNz\nzz1X67UYNWqUxo8fr0ceeUQmk0lz5szRxo0b5enpeRnPXMP06NFDvr6+9tshISHq0aNHrXOqg0oW\ni0Xdu3fXggULFBQUZD/et29f3X777frnP/+pDz74QDt37tSyZcvswaDG8vrrryspKUkuLi6aN2+e\nRo8eXev4yJEjdfvtt+u+++5TaWmpnnvuOS1btqzOsaxWqx599FE99dRT9n3jx4+v87xbb71VL7/8\nsn3fmDFj7NsvvviiPczzzDPP6IEHHqh1/dixYzVq1Cg988wzKi0t1dNPP62vvvqq1ut/sXMCAAAA\nAAAXdv4F6gEAAAAAgMP705/+VCtgIlUFC2qGMebMmXNO9xwPDw8NHz5c0s/LX1Xbvn274uLi7OPX\nt+TO9OnT7Z1ClixZIpPJZD924sQJdejQQa6urpo1a1adAQJnZ2fdfPPN9ttZWVn1Ps6bbrqpzqWg\nOnToYO8mU1xcrLS0tHrHuBSJiYnq2LGj3N3d9cgjj5zzXFeruczWL5coqyk6Olq///3vz9kfFBRk\n7y5ks9m0dOlS+7GcnBz7dseOHescd9KkSZo8ebJ++9vfqk+fPvb9eXl5+uKLL+z3/eyzz9b5Wgwf\nPlyPPvqo/f6qr2kJVq1aZV+i7OWXX64V5qnpqaeesj8/CxcubNQ5FBYWavny5ZKkyZMnnxPmqda7\nd289/PDDkqTY2NhzljirqaGBo/rOi4uL044dOyRJN9xwwzlhnmp33nmn7rrrLknSsWPHtG3btsue\nEwAAAAAAOD8CPQAAAAAAtGLBwcH2Li41GQwG+5JLbm5uGjBgQL3XVystLbVvf/fdd/bt6tBPfUaN\nGiWpKkxz6NAh+/7p06dr48aNOnjwoGJiYuq9PiQkxL5dWVlZ73kjRoyo91jNwFFJScl553uxbrrp\nJq1fv16xsbG1OqP8Ups2bezb53sckyZNqncpqEGDBql9+/aSqkJV1SIjI+XiUtWo+e9//7s2btxY\nKzwlSe7u7vrv//5vPf7447W6HO3atUtms1lSVRDlfMtQ1QxznC/0caVVvx99fX1rhZV+ycXFxf5+\nTU5OPm+w6mLt2bNHZWVlki78O1EzeLZz5846zwkLC1N4ePgF79fFxUW9e/eu89j3339v354yZcp5\nx6n52ta87lLmBAAAAAAALowltwAAAAAAaMWqwx91qe4kExgYaA+D1HeOVNUVplp1dx5J9g48DXHq\n1Cn179+/1j4nJyf7+FlZWTp16pRSUlKUlJSkQ4cO1epgYrVa6x37fI+1Zvchi8XS4PlejJpdbXJy\ncnTq1CmdPHlSx48f1+HDh7V//3778ZrP5S/17dv3vPfTo0cPpaenKyUlRRUVFXJ3d1dgYKAmT56s\nJUuWKDMzU0888YS8vb01ePBgDRs2TMOHD1fnzp3rHC8hIaHB9x0cHKwOHTro1KlTta5rbtXvx6Ki\nojoDbPU5deqUwsLCGmUOR48etW/PmjXrouZQl7Zt2zbo+sDAQLm7u9d5LDEx0b7dr1+/847Ts2dP\nubq6ymQy6dixY5c1JwAAAAAAcGEEegAAAAAAaMW8vb0veE59YZ7zyc/Pv5TpqLCwsNZtm82mtWvX\natmyZYqNja3VBahadeDnQn65ZFhNNcM25wvTXI7vv/9eixcv1o8//qiioqJzjjf0cdS3XFS1wMBA\n+3ZBQYG909Jzzz0nNzc3ffrppzKbzSopKdHmzZu1efNmSVVdfG6++WbNnDmz1n3UXEqtZkem+rRp\n00anTp1SQUFBgx7PldBY78eWNAcfH58GXX++3/Hq19bJyanW+6YuLi4uCggIUHZ2dr2vbUPnBAAA\nAAAALoxADwAAAAAArdj5lk+6HNVLNAUGBmr+/PkNvq5mN5SKigrNnj271vJdBoNBERER6ty5s3r0\n6KH+/fvLaDTqj3/8Y6PNvbHZbDbNnTtXy5cvr7W/bdu26ty5s6Kjo3XttdfK19dX999/f6PcX7Wa\nHZRcXV315z//Wb/+9a+1fv16bdmyRXv37lV5ebkkKTU1Ve+9954WL16sDz/80L401cUGnKo7HDU0\noNRQ5+u+dCHV78fo6Gi99tprDb4uIiLiku/zl2p2fnr77bfP2zGqpssNydQMq/3Sxb621a9BY7+2\nAAAAAADgXAR6AAAAAABAowsICJAklZaWKjo6+pICAG+++aY9zNOrVy898cQTGjRo0DkBh5UrV172\nfJvSkiVL7GGeTp06afbs2Ro+fLj9Oaq2e/fuBo1XUFCgDh061Hs8NzdXUlVHFV9f33OOh4SE6N57\n79W9996ryspK/fTTT9q+fbvWrFmj9PR0FRYWas6cOVq7dq2cnJxqzTM3N/eCQZTq+/f392/Q42lo\nd6Ti4uIGjVeX6s4yFRUV6tGjxyWPczlqPh9BQUHNNo+aqudktVqVn59/3u5PJpPJ3i2ooa8tAAAA\nAAC4dPznNAAAAAAAoNF169ZNUlWXnbi4uPOeu23bNn300Udav3698vLyJFV1M/nss88kSX5+flqw\nYIHGjBlTZ7eS06dPN/LsG9fixYslVXVD+uCDD3TLLbecE+aRpIyMjAaNl5SUVO8xm82mw4cPS6rq\nRlPdgclqterUqVPauXNnrfPd3Nw0ZMgQ/eEPf9C6devUr18/SVJKSopOnDhhH6fawYMHzzu3rKws\npaenS5I6d+7coMdTs0tUWVlZveddzutc/X48efKk/T1WnzVr1mjBggXauHFjnUu8Xe4cJCk2Nva8\n5544cULvvvuuVq1apZSUlEabwy/VfG0vNKcjR47IZDJJavhrCwAAAAAALh2BHgAAAAAA0OhGjBhh\n364OtNTFYrHoxRdf1GuvvabZs2fbAx15eXn2jiyRkZH1LjtkMpm0bt26WuO1NCdPnpRUFUw6X2ed\nr7/+2r5dvURUXb755pt6j3333XfKzs6WJF1//fX2/XPnztXYsWN1//3369SpU3VeWx3uqVZRUSFJ\nGjx4sFxdXSVJy5cvP+/SV9UhLEkaNmxYvefV5OfnZ9+uDgPVZdu2bfUeu1AHqOr3o81mqzXHXyoq\nKtLcuXP1yiuvaM6cOeddrupiDR06VC4uVc2yly9fbg/H1OXdd9/VG2+8oTlz5ujAgQONNodfqvl7\nunTp0vOeu2TJEvv28OHDm2xOAAAAAACgCoEeAAAAAADQ6MaOHWsPr3z++edatWpVnee9+uqrSktL\nkyTdeOON9uWcfH197eGHpKSkOruzVFZW6q9//asSExNr7WtpAgMDJUn5+fk6dOjQOcdtNpvefPNN\n/fDDD/Z953scW7du1bJly87Zn5GRob/97W+SJHd3d02bNs1+bPTo0fbtV199tc6lrcrKyrRp0yZJ\nkre3t6KioiRJwcHBmjhxoiQpPj5e//jHP+qc144dO/T+++9LqlpS6s4776z3MdQUGRkpT09PSdLG\njRvr7FT08ccf68iRI/WO4ebmZt+uq6vO5MmT7aGwd99995xORVJVF6NnnnlGJSUlkqRJkybZ59UY\nQkJCdOutt0qSjh8/rpdeeqnO12Ht2rX2cFdISIjGjx/faHP4pZ49e2rQoEGSpC1btmjhwoV1nvfl\nl1/qyy+/lFTVneeGG25osjkBAAAAAIAqLs09AQAAAAAA4HhcXFz02muvaebMmTKZTPrjH/+oLVu2\n6JZbblFISIjS09O1dOlS7dq1S5Lk7++vP//5z/brPTw8NHr0aG3YsEHl5eW677779PDDD6t79+6q\nrKxUfHy8li1bpuTk5Fr3W1RUdEUfZ0NMmDBBH3/8sSTpkUce0cMPP6xevXrJYDAoMTFRK1euPCfo\nU92dqC6enp6aO3eu9u/fr5tvvlk+Pj46cOCA3n//fftyUs8884zCwsLs14wZM0a9e/fWoUOHtGnT\nJt19992aOnWqOnXqJJvNpuTkZH3yySf2cNRDDz1UK8zypz/9Sbt371Z6errmz5+vQ4cOacqUKerU\nqZOMRqM2btyozz//XGazWQaDQa+99pr8/f0b9Py4u7trwoQJWrlypUpLSzV9+nQ99thj6tatm3Jy\ncvTVV1/p22+/VWRkpFJTU+scIzAwUK6urjKZTFq9erWGDRsmPz8/dezYUQEBAfLz89NLL72kp556\nSpWVlXr44Yd1991368Ybb5Sfn59SUlK0aNEie2goIiJCTz75ZIPmfzGqn8eMjAwtXbpU8fHxmjZt\nmqKiopSbm6vNmzfriy++kNVqlcFg0AsvvCAPD49Gn0dNL7/8su6++24VFhbq5Zdf1s6dO3XHHXeo\nbdu2ys7O1po1a+xdodzd3fX666/bw3YAAAAAAKDp8L++AQAAAABAkxgwYIDef/99PfXUUzIajfrm\nm2/qXC4qPDxcb7/9tiIiImrtnzt3ruLi4pSWlqa0tDS98MIL51zr4+OjZ599Vn/5y19ksVhqdetp\nKZ588knt3btXhw8fVm5url577bVzznF1ddUf/vAHzZ8/X5mZmed9HC+99JJefPFFrVy5UitXrqx1\nzNnZWU8//XSt7jxS1ZJU8+bN00MPPaSkpCQdOXJEzz///DljGwwGTZ06VY8//nit/QEBAfrkk0/0\nxBNP6OjRo9q7d6/27t17zvVBQUH6xz/+UWu5r4aYM2eODh8+rISEBKWnp58zt6ioKM2bN0+33HJL\nndc7OztrzJgxWr9+vbKysvTwww9Lkl555RXdfffdkqSbb75ZZrNZf/nLX1RWVqalS5fWucxUt27d\n9O6779ZaCqyxBAUF2Z/H+Ph4xcbGKjY29pzzPDw89MILL2js2LGNPodfioyM1KJFi/TEE08oLS1N\nmzdv1ubNm885r0OHDnr99dcVExPT5HMCAAAAAAAEegAAAAAAQBMaNmyYNm3apCVLlui7777T8ePH\nVVRUJC8vL3Xt2lU33nijfvWrX9mXQ6opLCxMX3zxhT766CNt2rRJqampMpvN8vHxUVRUlEaMGKEp\nU6YoJCREK1eu1L59+7Rt2zaVlpbKy8urGR5t3Xx8fLR48WItWrRIa9euVXJysioqKuTt7a0OHTpo\n8ODBmjZtmjp06KCjR49q1apVOnjwoNLT0+1LkNXUp08fffnll3rnnXf0ww8/KC8vT8HBwRo6dKge\neOABRUdH1zmP8PBwffHFF/r888+1YcMGJSQkyGg0ytXVVaGhoRo8eLDuvvtu9e3bt87r27VrpxUr\nVmj16tVau3atDh8+LKPRqICAAEVGRmr8+PG6/fbbG9yZp6agoCCtWLFCS5Ys0Zo1a3T8+HHZbDZ1\n7NhREyZM0MyZM2WxWM47xiuvvKLg4GBt2rRJeXl58vPzU35+fq1zbrvtNg0bNkyffvqpvv/+e6Wm\npqqkpEQ+Pj6KiYnRhAkTdNddd9VawquxRUREaOXKlVq9erXWrVunw4cPKz8/Xy4uLurQoYOGDx+u\n6dOn25esuxJiYmK0du1aLV++XBs2bNCxY8dUVFSk4OBgRUVF6dZbb9Utt9zSqEuQAQAAAACA8zPY\n6lqsGwAAAAAAAAAAAAAAAECzcGruCQAAAAAAAAAAAAAAAAD4GYEeAAAAAAAAAAAAAAAAoAVxae4J\nAAAAAAAAtDQlJSVKTU297HEiIyPl7e3dCDNCc0lKSpLJZLqsMfz9/dWuXbtGmhEAAAAAAGgNDDab\nzdbckwAAAAAAAGhJdu/erRkzZlz2OAsXLtTgwYMbYUZoLmPGjFF6evpljXHnnXfq73//eyPNCAAA\nAAAAtAYsuQUAAAAAAAAAAAAAAAC0IA7ZoSc7u6i5p4A6BAZ6KT+/tLmnAQCNjvoGwFFR3wA4Kuob\nAEdGjQPgqKhvABwV9Q1o3UJCfOs9RoceXDEuLs7NPQUAaBLUNwCOivoGwFFR3wA4MmocAEdFfQPg\nqKhvAOpDoAcAAAAAAAAAAAAAAABoQQj0AAAAAAAAAAAAAAAAAC0IgR4AAAAAAAAAAAAAAACgBSHQ\nAwAAAAAAAAAAAAAAALQgBHoAAAAAAAAAAAAAAACAFoRADwAAAAAAAAAAAAAAANCCEOgBAAAAAAAA\nAAAAAAAAWhACPQAAAAAAAAAAAAAAAEALQqAHAAAAAAAAAAAAAAAAaEEI9AAAAAAAAAAAAAAAAAAt\nCIEeAAAAAAAAAAAAAAAAoAUh0AMAAAAAAAAAAAAAAAC0IAR6AAAAAAAAAAAAAAAAgBaEQA8AAAAA\nAAAAAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAAAAAAAAAAKAFIdADAAAAAAAAAAAAAAAAtCAEegAA\nAAAAAAAAAAAAAIAWhEAPAAAAAAAAAAAAAAAA0IK4NPcE0Dq88+Vhubk56/5x0XJxJkcGAAAAAAAA\nAAAAAABQH5IVuCJcnQ3acTBDi9Yfk81ma+7pAAAAAAAAAAAAAAAAtFgEenBFzBgXo64R/vr+YIa+\n2XWyuacDAAAAAAAAAAAAAADQYhHowRXh7uasuQ8NUZCfuz7fmqw9cZkNvjYpKbEJZ3Zhs2b9RiNG\nDNSYMcOadR4AAAAAAAAAAAAAAKB1INCDKybIz0O/m9RXHm7O+mB1nJLSC857fnFxsd5441966KF7\nr9AMAQAAAAAAAAAAAAAAmh+BHlxREaE+evyOXrJabXpzxUFlGcvqPfett/6tFSs+k8ViuYIzBAAA\nAAAAAAAAAAAAaF4EenDF9eocrHvHdVdxmUlvLItVSbmpzvOsVusVnlnd5s17Xz/8sFebN+9o7qkA\nAAAAAAAAAAAAAIBWgEAPmsUN/dpr/OBInckr1dsrD8lsaRnhHQAAAAAAAAAAAAAAgOZGoAfNZtIN\nXTQgOkTxqUYtWBsvm83W3FMCAAAAAAAAAAAAAABodi7NPQG0Xk4Ggx6+tafyCvdr++EzCg301MTh\nUfrww/9o/vz/q3XuiBEDJUn9+vXXvHnv6+WXX9DatavVtWt3ffDBQv3f/72rdetWq6ioSMHBIRo9\n+kY9/vhs+/UVFRVav/4b7dy5XYmJx1RQYJTZbJavr5+iorpo+PARmjjxTnl6ep4zz1mzfqMDB36S\nm5vbOctuVc9r9uzf6557pmnr1s36+usvlZBwTEVFhQoMDFL//gN1zz1T1b17TGM/hQAAAAAAAAAA\nAAAAwAER6EGzcnd11uxJffTfC/bqi+9PKCTw3EDNhbz00l+0adO39tsZGeny8PCw3z52LF7PPvsH\nZWVlnnNtXl6u8vJytW/fHq1cuUJvvfWeQkJCL3oOFotVL774vDZsWFdrf1ZWptatW6Nvv12rp59+\nVrfddudFjw0AAAAAAAAAAAAAAFoXAj1odv7ebvrd5D565ZN9+mhNnH49/ibNH3mDPvjgPW3f/r0k\naf78TyVJnp5eta5NTk5SUlKCevfuq/vue0AeHh7avv173XzzbZKkggKjnnrqCRUWFsjZ2Vk33zxR\nw4aNUGBgsIqKCpSYmKBlyxbLaDQqLS1V8+a9oRdffOWiH8Nnny1Sbm6uOnWK0j33TFOXLt1UVFSo\ntWu/1qZNG2S1WvXGG//UoEFDFR4efpnPGAAAAAAAAAAAAAAAcGQEetAitA/x0eN39tYby2K1aHO6\nnpsxQH59BFGRAAAgAElEQVR+/vbj3bpF13md1WpV+/YReuONt+XuXtWVp3//gfbjS5cuVmFhgSTp\niSd+q3vumVbr+qFDR2jChFt13333qLi4WN9/v1Vms1kuLhf3q5Gbm6sBAwbpH/94Xe7u7vb9Q4YM\nk6+vn7788nNVVlZq48Z1uvfe+y9qbAAAAAAAAAAAAAAA0Lo4NfcEgGrXdArSfeOiVVxm0hvLYmUy\nWxt03YQJt9rDPL+Uk5OtNm1CFBwcrLvuuqfOc0JCQnXttQMkSZWVFfYA0MX63e+erhXmqXb77XfZ\nt5OSEi9pbAAAAAAAAAAAAAAA0HrQoecyLNucpB/js5p7GlfUdTGhumdM1yYbf2TfdsrKL9M3u06q\nNDW/Qddcc03veo/9+c9/lVTVycfJqf78WlBQsH27stLUwNn+LCQkVFFRnes81r59hH27tLT0oscG\nAAAAAAAAAAAAAACtC4EetDh3jeqsLGOZVh+obND5YWFhFzynOsxjNpt15kyGTp9O16lTJ3X8eJKO\nHDmk48eT7OfabA3rDFRTeHjbeo95enrZty0Wy0WPDQAAAAAAAAAAAAAAWhcCPZfhnjFdm7RbTWvl\nZDDo4Vt6aOsqVxU24HwvL5/zHi8vL9fKlcu1ceM6HT+eVGeoxsnJSVbrxQd5qtUM7dR0OqdEh5Jz\n7bdtNtsl3wcAAAAAAAAAAAAAAGgdCPSgRXJzdVaPjkFKT6i6vfPwGQ3tFV7nuQZD/eOcPp2u3/9+\nltLSTtn3ubq6qkOHSHXsGKXo6Bj16zdA69d/oy++WN5o8zeZrVqzM0Vrdp6UxfpziOdMXqlOZBSq\nU7ivDOebOAAAAAAAAAAAAAAAaLUI9KDFcnVxsm9/9E2cgvzcFR0ZeFFjvPDCc/Ywz9ix4zRp0hTF\nxPSUi0vtt/5XX31++RM+K+GUUQvWxSsjt1SBvu4aPzhSL66uOpZTUKaXFuxVG38PXdcjVNfFhKpj\nGOEeAAAAAAAAAAAAAADwMwI9uGrMW3lIf75vgNoGezfo/Pj4ozp69LAkqX//gXrhhZfrPTcz88xl\nz6+03KwVW4/ru/3pMkga3b+9Jo3qIk93F7149pyOYb66rmeY9iflaO2uVK3dlaqQAA9dFxOm62JC\nFRnmQ7gHlyw9u1gnM4vUt2sbeXu4Nvd0AAAAAAAAAAAAAACXiEAPWqyawZaZ42P00Tdx+t/lB/Xc\njAENur7mMlvR0T3qPS8j47QOHYq137ZYLBc918LSSj3/wS4ZiyvVro237h8fo64R/uec5+vlpt/c\ndo0qTRYdPpGnH+OzdCAxR9/sOqlvdp1UaKCnroup6tzTIZRwDy4sr7Bcu+MytetIpk5lFUuSfL1c\nNfmGrhrWO1xOvIcAAAAAAAAAAAAA4KpDoActlpubm327f1d/ZQ3rpNU7UvTWykOyWm0XvN7fP8C+\nvXfvbpnN5nOW2srNzdHcuc/IZDLZ91VWVl70XFMzi9Spi0l3jIjShCEday0XVhc3V2f17x6i/t1D\nVGmy6FByblW4JylHa3ae1JqdJxUW6Hl2Wa4wRYR4E+6BXUm5SXvjs7TrSKYSThllk+TsZFC/rm3U\nto2XNu1L00ffxGlb7Gnd+1/dFRnm29xTBgAAAAAAAAAAAABcBAI9aLGCg9vYt99//22NG3ezjgWX\nKzFNMqcZL3h9nz79FBzcRrm5OUpMTNBvf/uY7rrrHoWHt1VhYYEOHPhJa9Z8JaOx9lglJcUXHNtq\ns2nbgdP2294eLnrhgUFq16Zhy4HV5ObqrAHRoRoQHaoKk0WHjleFe2KP52j1jpNaveOkwoO87J17\n2hPuaZVMZotik3K188gZHUrOldlSFWrrHuGvIdeEa2BMqHw8q5bZurF/hD7blKi9x7L14sc/akz/\nCN15fZS8WIYLAAAAAAAAAAAAAK4KBHrQYo0YMVIff/yBLBaLVqxYqhUrliosLFwD7nxRPxwov+D1\n7u7umjv3b/rTn55SRUWFYmP3KzZ2/znndegQqVtvvV3vvvuWJOnEiWT17t233nEzcku0YG28EtIK\n7Pui2vpdUpjnnDm7OmtgTKgGxoSqotKig8m5+jEuUweP5+rrHSn6ekeK2gbXDPf4XPZ9ouWyWm2K\nS83XriNn9FNCtsoqqpaDax/irSE9wzS4Z5ja+Huec12Qn4cev7O3Dp/I1acbErVpX5p+jMvU5NFd\nNaxXOIEwAAAAAAAAAAAAAGjhCPSgxerWLVp///v/aMGCj3T8eJKsVotcXFz065u7ae+3zipswBgD\nBw7S/PmfasmST7R374/KycmSVLUcV1RUZ40ePVbjxk2QxWLR/Pn/p/Lycm3evEG33XbnOWPZJK3a\nfkKrd6TIbLGpf/cQJdiPNn5Awt3N2R7cqai0KPZ4jn6Mz9LB47latT1Fq7anqF0bb113NgDUvhEC\nRWh+NptNKWeKtPtopnbHZaqguGoJuCA/d91wbXsN7RmuiNCGBbl6RQXrbw8G6tsfU/X19hR9uKZ6\nGa5odWjgGAAAAAAAAAAAAACAK89gs9lszT2JxpadXdTcU0AdQkJ8G+21OZNXqpcX7lV5pUW/v6ev\nenQKapRx65OUXqAFa+OVnlMifx833XtTtAZEhzTpfdanvNKs2KSqZbkOJefKZLZKktqfDfdc1yNU\nbYMJ91xtsvJLtetIpnYdzdSZvFJJVUu5DYwJ1ZCeYerWIUBOl9FZJ7egXJ9tStS+hGw5GQwaM6C9\n7hjRWV4e5DobQ2PWNwBoSahvABwV9Q2AI6PGAXBU1DcAjor6BrRuISG+9R4j0IMrprE/jI6l5utf\nnx2Qu6uz/nzfgEZZ8uqXyirM+nzrcW35KV02STdc216TRnVpMSGIsgpzVeeeuCwdSs6T2VIV7okI\n8a5auis6VMH+HnJ1cbqsMAiaRkFJpX6MqwrxJJ+u6jnl6uKkfl3baMg1YerdOVguzk6Nep+HknP1\n6YYEZeWXyc/bTVNGd9WQa8JYhusy8WUbgKOivgFwVNQ3AI6MGgfAUVHfADgq6hvQuhHoQYvQFB9G\nOw+f0f+tPqo2/h56fsZA+Xm7NdrYBxJztOjbY8ovqlDbYC/NHB+j7h0CGm38xlZWYVZsUo69c4/Z\nUvtX28XZIFcXZ7m5OMnVxUlurs5yrd52cZKbi7N929XVWa7OTnJzrT5e85iTXJ2d5eZ69nb1mK5O\nZ6/5eVxCROcqqzBrf2K2dh3J1NGUfFltNhkMUs9OQRrSM0z9u4fI071pA2Mms1Xr9qRqzY4UVZqt\n6h7hr3v/K7rBS3nhXHzZBuCoqG8AHBX1DYAjo8YBcFTUNwCOivoGtG4EetAiNNWH0Vc/nNBXP5xQ\nl3Z+mjP1Wrm5Ol/WeAXFFfp0Y6L2xmfJ2cmgW4Z21C1DO8nVpXE7pTSl0vKqcM/B5FyVlJtkMllV\nabbKZLbIZK7etqrSbJHJZFVTFYHwIC/FdAxUj46Bio4MkJ9X4wWuriZmi1WHk/O06+gZHUjMUeXZ\nZdKi2vpqSM9wDeoRKn8f9ys+rxxjmZZsStT+xBw5GQwaOzBCt4+IavJAkSPiyzYAR0V9A+CoqG8A\nHBk1DoCjor4BcFTUN6B1I9CDFqGpPoxsNps+WH1UO49kamBMqB69/ZpL6gxjs9n0/cEMLducpNIK\ns7q099P942PUPsSxu5bYbDaZLbZaYZ/q8E+lqSr4Yw//VB8zWeyhoOpj9pCQySKTxaqKSotSs4pV\nUWmx31dEiHdVwCeyKuDj5eHajI+8aVltNiWlFWjX0Uz9GJepknKzJCks0FNDrgnXkJ5hCgvyauZZ\nVjl4PEeLNyQqy1gmf5+qZbgG92QZrovBl20Ajor6BsBRUd8AODJqHABHRX0D4Kiob0Drdr5AD20Y\ncNUzGAy6f0IP5RZWaG98llYGeGrSDV0uaowzeaVasDZex04Z5eHmrHv/q7tuuLZ9q1gyymAwyNXF\n0CQdiMwWq06eKVLcyXzFp+YrMa1Aadkl2rg3TQaDFBnmqx4dAxUTGajuHfzl4Xb1liSbzabCkkql\n5ZQo/mS+dh3JVG5huSTJz9tNYwdGaOg14eoU7tvigjJ9urRRj46BWrs7VWt2ntT7Xx/VttjTmn5T\nd4cPtF3NzBarjqbk60xeqW7o1+6yu5MBAAAAAAAAAAAAaDno0IMrpqnTpcVlJr28aJ8y80p1/4QY\njezb7oLXmC1WrdudqlXbU2S2WHVttzaaflN3Bfl5NNk8WzOT2ark0wVVAZ+T+Tp+ulAWa1UJcnYy\nqFPbnwM+Xdv7t9iAQmm5Sek5JUrPLlFadrHSs0uUnlOi4jKT/RwPN2cN6B6iIdeEK6ZjgJydro4l\n27KNZVqyMVEHknLk7GTQTQM7aOLwTizDdQFXKj1vtdl0PL2681OW/T0X1dZPT97dWwHNsHQbAMfG\nfx0EwFFR3wA4MmocAEdFfQPgqKhvQOvGkltoEa7Eh1FmfqleXrhPpeVmPXVPX10TFVTvucdPF2jB\n2nilZZfI39tN02/qrgHRIS2ue4ojqzBZlJRWoPjUfMWdzFdKRpGsZ0uSi7NBXdv7KyYyUDEdA9W5\nnZ9cnK9sKKbSZFFGbqk9tJOWU/Uzv6ii1nkGSSGBnmrfxlsRIT6KDPNV785BLTaQ1BAHknK0eEOC\ncgrKFeDjpl/d2E3XxYTy+1GPpq5vaVnF2nU0U7uP/tz5ydfLVYNiwlRSYdKuI5kK9HXX7Lv7qGN4\n/R/6AHCx+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfqwygxzah/LtkvVxcn/fneAecsGVRW\nYdYX25K1aV+abJJG9m2nyaO7yNvDtcnnhvMrqzAr4ZTRHvA5lVms6gLl5uqkbhEBiokMUI+OQeoY\n7tNoXW/MFquy8stqddtJzy5WVn6ZflkgA33d7cGd9iHeah/irbbB3nK/isM79ak0WezLcJktVvXo\nGKjpN3VXuzbezT21Fqcp6luOsUy74zK162im0rNLJP3c+WnwNWHq0TFQzk5OstlsWrcnVSu2HJer\ni5MeurWnrosJbdS5AGi9+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfyw2jX0TN6f9VRBft5\n6PkZA+R/dhma2KQcLfr2mPIKKxQW5KX7x0crOjLwiswJF6+4zKRjqVUBn/iT+UrPKbEf83R3VveI\nAMV0DFSPjoGKCPWR0wW6x1htNuUVlCstu0TpZ7vtpGWX6ExeicyW2qXQ28NF7UN8FBHirfYhPmrf\npiq80xqDX1n5pVq8MVEHj+fK2cmg/7quahkuD7fmWYarvNKsHGO5sgvKqn4ay5RTUC5vDxd1jfBX\n14gAtQ32uuD7oTE1Vn0rLKnUj/FZ2n00U0npBZKqulX16dJGQ3qGqU+X4Ho7Px1IzNF/vj6iikqL\nbh8RpduGd6KjEoDLxh8TADgq6hsAR0aNA+CoqG8AHBX1DWjdCPSgRbjSH0Zf70jRF9uSFdXWV4/d\n3ksrth7XnrgsOTsZNGFIR00c1lGuLo7XVcWRFZRU6tjZ7j3xJ/OVmV9mP+bt4WJfniumY6B8PFyU\nllNS1XEnu7iq605OiSoqLbXGdHN1OhvW8VHE2Z/tQ7zl7+1GGKIGm82mA0k5WrIxUTkF5Qr0ddev\nbuymgU2wTJ3ZYlVeUYVyzgZ1so1lZ/+VK6egTEWlpguO4e3hoi7t/dW1vb+6RfirU1u/Ju2idDn1\nrazCrP2J2dp1NFNHT+TLarPJICmmY6CG9AzTgOgQeTUwSJaWVaw3Pz+onIJyXRcTqgdv6eGQ3aMA\nXDn8MQGAo6K+AXBk1DgAjor6BsBRUd+A1o1AD1qEK/1hZLPZ9NE3cdp+6IwMkmySOrfz0/3jYxQR\n6nOhy3EVyCssty/PFX8yX7mFFfWe6+xkUHiw1y+Wy/JRG3+PK9rJ5WpXYbLom50ntXb3SZktNvXs\nVLUMV9vghi/DZbPZVFhqUo6xTNkFZ4M6Z0M7OQXlyiuskLWOjyZnJ4Pa+HuoTYCnQgI8FWLf9lAb\nf08ZiyuUlFagxLQCJaUblW0sr3VtZJivukX8HPKp7tzVGC62vpnMVh1KztXuo5k6kJQjk9kqSYpq\n66vBPcN1XUyoAn0vbX6FpZV6Z+UhJaQVqGO4r2bf3eeSxwIA/pgAwFFR3wA4MmocAEdFfQPgqKhv\nQOtGoActQnN8GJktVv3vioNKSi/Q3SM7a0z/CDk5Ed5wRDabTdkF5Yo/G+6pMFl+XjKrjbfCgrzk\n4uzU3NN0GJn5pVq8IVGHkquW4Ro3KFITh3WSu1tVN5iay2JVB3bs3XYKylRpstY5boCPW1VIx//n\noE5IgIdCAjwV4ON+Ub+/BcUVSkqvDvgU6OSZIlmsP3/ktfH3qAr4RASoW3t/tQvxvuRwV0Pqm9Vq\n07HUfO06mql9x7JVWmGWJIUHeWlIzzAN7hmmsCCvS7r/XzJbrFq4/ph+OJghfx83zb67j6La+jXK\n2ABaF/6YAMBRUd8AODJqHABHRX0D4Kiob0DrRqAHLUJzfRhZbTZZLFaW1wIamc1m0/7EHC3ZmKDc\nwgoF+rorwMf9vMtiebo7nw3reKqNPbBTFdoJ9vOQWxMuD1VpsuhERqE95HM8vUAl5eYac3NRl/Z+\n6ta+KuTTua2fPaB0IfXVN5vNppQzRdp9NFO74zJVUFwpSQr0ddfgHlUhnsgwnyZZ3s1ms+nbH09p\n2ZYkuTg76cGbe2hwz7BGv5/mUFxm0uaf0mQyWxXo617jn4d8vVzpugU0Iv6YAMBRUd8AODJqHABH\nRX0D4Kiob0Drdr5Aj8sVnAfQLJwMBjkR5gEancFgUP/uIbomKkhrdqZo3e5TKiqtVLCfhzqG+Z7t\ntONRK7zj7eHSJOGVhnBzdVZ0ZKCiIwMlVYX9MnJLlZRmVNLZLj6Hk/N0ODlPUlXtiAzzUVf7Ml0B\nDV66KiO3pCrEczRTmfllkiRvDxeN6tdOQ3qGqVuHgCYPnRgMVZ2T2gZ76b2vjug/q44oPadEd1wf\nddUGXixWq77bf1pffp9cK4xVk7OTQQE+7r8I+tT45+OuAF93OnYBAAAAAAAAAACgRaNDD64Y0qWA\nYzOZrXJ2MlzVy9oVllQqKb1ASWkFSkw3KiWj9jJdwX7Vy3RVhXwiQnzk5GRQSIivEpJztCcuU7uO\nZurkmapa5+bipH7d2mhIz3D16hzUbCGS9JwSvbkiVtnGcg3oHqKHb+3Z4O5DLcWRlDx9tjFR6Tkl\n8nR31sRhUYpq66v84grlF/38z1hUobyiChUUV8p6nq84fl6uCvT1sAd9AnzdFVTzp4+7PN3JPQN8\nfwPgqKhvABwZNQ6Ao6K+AXBU1DegdWPJLbQIfBgBuNqYzBadyCiyh3yS0gtUXPbzcmKe7s7q3M5f\nTk5OOnw8RzZVdfbp1TlIg3uG6dpubeTh1jJCIUWllXrni8M6dsqoyFAfzZ7UR0F+Hs09rQvKzC/V\n0k1JOpCUI4Ok6/u2010jO8vP2+2811mtNhWUVMpYXKG8woqqn0XlMhbVDgBVmq31juHh5lxHlx8P\nBfq4q20bL4UGeDZbxym0HharVQaDodk6a/H9DYCjor4BcGTUOACOivoGwFFR34DWjUAPWgQ+jABc\n7Ww2m87klSrxbLgnKa1AZ/JKJUndI/w1uGeYBsSEys/r/GGT5mK2WPXJtwnaFntaft5uevKu3urS\n3r+5p1WnsgqzVu9I0bc/npLFalP3DgGaemM3dQyv/0vNxbLZbCqtMCu/sOIXnX7KlV9UefZnRb3L\newX4uCkmMlDRkQGKjgxUWCABH1wem82mvMIKHT9doOTThUrOKNTJM0XycnfRlBu7anCPsCv+HuP7\nGwBHRX0D4MiocQAcFfUNgKOivgGtG4EetAh8GAFwREWllQoM9Ja5wnThk1sAm82mjfvS9NmmRDk7\nOemBCTEa2iu8uadlZ7XZtP1ghj7flqzCkkoF+3loypiuGhAd0mxhmQqTRcbiCnvwJ6+wXCczi3Us\nNV9FpT+/7v7VAZ8OAYqODFB4kBcBH5xXWYVZKWeKlFwd4DldqIKSSvtxg0Fq38ZHmfmlMpmt6hUV\npHvHRSs0wPOKzZHvbwAcFfUNgCOjxgFwVNQ3AI6K+ga0bgR60CLwYQTAUV2N9e1wcq7e/eqIyirM\nunlIR901qnOzLelTLTHNqMUbE3XyTJHcXJ10y5COGjcoUm6uzs06r/rYbDadzi1VQmq+4lONOpaa\nr8KaAR9vN3v3nhgCPq2e1WrT6dySs8GdqgBPek6Jan4TD/R1V+d2flX/2vqpU7if3N2clWUs06L1\nx3TkRJ5cXZx02/BOGjcoUi7OTk0+76uxvgFAQ1DfADgyahwAR0V9A+CoqG9A60agBy0CH0YAHNXV\nWt8yckv0vysOKiu/TNd2a6NfT+wpDzeXKz6P3IJyLf8uSXvisiRJQ68J092juijIz+OKz+VyVC/J\nVh3uOZZqrNVtxc/bTdEdAhQTGaDukYFqF0zAx5EVFFfYl806nl6gE2eKVFFpsR93c3VSp/Cq8E6X\ndn7q3M5fgb7u9Y5ns9m0Jy5LSzYlqrCkUu1DvDVzXIy6RjTtsnlXa30DgAuhvgFwZNQ4AI6K+gbA\nUVHfgNaNQA9ahEv9MEpKSlTXrt2aYEaXLyPjtPz9/eXl5d3cUwHQjK7mL9vFZSa9++VhxZ3MV0SI\nj2ZP6q02/ldmOZ8Kk0Vrd53Uut2pqjRbFdXWV1PHdlfX9k0bULhSqgM+x04ZdSzVqPjUfBUU1wj4\neLmq+9klumIiA9SujTcBn6tUpcmik5lF9mWzkk8XKrewvNY5bYO91KWdv70DT/sQbzk7XXyHnZJy\nkz7/7ri+O3BaknRDv3a6+4Yu8vZwbZTH8ktXc30DgPOhvgFwZNQ4AI6K+gbAUVHfgNaNQA9ahIv9\nMCouLtYHH7ynL75Yrq1bdzfhzC5eZWWlPv10gT755GN98slytW3brrmnBKAZXe1fts0Wq5ZsTNSW\n/eny9XLVrLt6q1tEQJPdX3WnkeXfJSmvsEL+Pm6aNKqLhvYKb/Zlv5qSzWZTVn6Z4lPz7SGf/KIK\n+3EfT1dFRwYoJjJQ0WcDPo78fFytbDabMvPLlHy6QMfPhnfSsoplsf78ldrXy1Wd255dOqu9v6LC\n/eTl0bjdrxLTjFq47pjSc0rk5+2mqTd206AeoY0eCrva6xsA1If6BsCRUeMAOCrqGwBHRX0DWrfz\nBXqu/LoaQAO99da/tWbNquaeRp0WL16oDz/8T3NPAwAahYuzk+4bF632Id5avCFR/1i8XzPHx2hE\nn7aNfl8pZwq1eGOiktIK5OLspFuGdtQtQzs2y1JfV5rBYFBYkJfCgrw0ql/7qoCPsUzHzi7RFZ9q\n1L5j2dp3LFvS2YBPhwB1PxvyaR9CwKc5WK22swGsfCVnFOrE6UKVlJvtx12cDeoU7quos513Orfz\nV4i/R5N3W+oWEaC/PnCd1u9J1artKfrPqiPafihD946LVmjAlemyBQAAAAAAAAAAmo7j/79nuGpZ\nrdbmnkK9LBZLc08BABrdmP4RCgvy0rtfHNZH38TpdE6JJt3QRU5Olx9MKCiu0Odbk7X9UIZskgZ0\nD9HkMV1bdfDAYDAoLNBLYYFeGtm3nWw2m7ILynXsZFW459ipfO1LyNa+hKqAj7eHi7p3CFBUWz95\nurvIw81ZHm4u8nB3loerc+3bbs6XtJwTfpaZX6rthzK04/AZ5RX+3EkpNMBTvTsH28M7HUJ95OrS\nPM91VSiuk66LCdWibxN0+ESe5n6wW7cN76RxgyLl4sx7AAAAAAAAAACAqxWBHgAAYHdNpyA9P3Og\n/nfFQa3bk6qM3BL95rZr5Ol+aV8ZTGarNu49pa93pKi80qKIEB9NHdtNPToGNvLMr34Gg0GhAZ4K\nDfDU9WcDPjkF5YpPzVdCqlHxqUbtT8zR/sScBo3n6uIkDzdnubvWDvp4uFWHgeq6XbXtfnbb8+x+\n91YSECqrMOvH+CxtP5ShxLQCSZKHm7NG9m2ra7uFKKqdn/y83Jp5lucKDfTS7+/pq91xmfpsY6I+\n35qsXUczNXN8jLq292/u6QEAAAAAAAAAgEtAoAcAANQSHuSl52cM0HtfHlbs8Vy9smifnpzU56K6\n6dhsNh1IzNHSzUnKMpbJx9NV943rqpF927aKYEhjMBgMCgnwVEiAp67v006SlGMs0+ncEpVXWqr+\nVZirfprO3q40q7zi7M9KiyrO7s8tLFN5hUW2/2fvvqMjy+sz4T+Vc1YlxVZqtVrqnLsn9AQwYbBZ\nj20YMwZsvMd47d19MX73Ndj4xQfvmD02ToAxNn4xZteMhwGM08wA090TOk3nUWhJ3WrlUCWpcg73\nvn/cUkk1LamTYun5nKNzb926t+qqSvWrW7pPfb8PsD9qpRwGnQqtdTbsaqpAe739voNe64kgiugd\nCuLNjklc6vMjkxUgA7B9iw3Hdnixd6sTGpVirXfzjmQyGQ5v92BHgwMvnurHa1fH8UffvoRH91Th\n5x5tgF6rWutdJCIiIiIiIiIiIiKieyATRfFBzu2sS1NT0bXeBVqA02m6q+fm7/7u6/jmN/92wet2\n796Lr3zlb0qWnT9/Fv/xH/+Czs4OBIMBqNUaVFfX4MiRY3j66Q/BarUuel9TU358//vfxfnzZzEy\nMoxcLguz2YLGxmYcO/Ywnnrqp6HRaIvr/8d//Cuee+4PFrwtj8eLF1/81zv+fkRUfu52fNto8oKA\n51+9iVcvjcKoU+E3/lM7WmrvXFlndCqG51+9ge7BIBRyGR7fW42ffmgLDAwUrClRFJHJClLYJ5sv\nCf4Uwz/pucvzr5udD0TTiMQzAACFXIatNVbsaqrA7iYHXDb9Gv+G98YfSuJMxwROd0xiJpICILXT\nOrbDg6PtXjgs2jvcwvp2YzSEb73ci/HpOCwGNZ55shkHtrkgk91bC71yHd+IiDi+EVE54xhHROWK\n418oWHMAACAASURBVBsRlSuOb0Sbm9NpWvS6jf+1atq0kskkvvCF38frr58sWZ7JZNDT042enm68\n8MI/4nOf+wIeeuiR27a/dOkCPvvZ30Y8Hi9ZPjMzjZmZabz11ll85zvfxp/+6VdQW1u3or8LEdF6\npJDL8ZF3bUVVhQH/58d9+JPnr+KXfqoFj+yqXHD9WDKLf37jFk5dGYcgimhvsOOZJ5rhdRhWec9p\nITKZDJpC+6z7bcIkiCKGfVFcuzmDazencX0oiOtDQTz/6g14HXrsaqrArkYHmqot67ISUyqTw8We\nKbzZMYG+kRAAQKNW4KGdXjy0w4vmass9B17Wq+ZqKz7/ywfw8vlh/OuZQfz1D7vwZscEfundLXDe\nQ7UtIiIiIiIiIiIiIiJaG6zQQ6vmbtOlMzPTCARm8I1v/DVOn34DAPDNb/4fAIBOp0d1dQ0EQcCn\nPvUbuHTpAgDg6NGH8VM/9T54vV4kEglcunQBP/jBdxGLxaBQKPClL30Z+/cfLN5HNBrFhz70QUQi\nYVitNnzkIx9Da+t2qNVq+HyT+Pd//xecO3cGANDS0opvfOMfIJPJEImE4fNN4p//+Xv44Q+/DwD4\n4z/+c1RUOKFUqlBf37CsjxkRbQybIT1/fSiIv/pBB+KpHN59oAY//1hjMbCRyws4dWUMP3xzAPFU\nDm67Hs880YSdjRVrvNe00oLRNDpuzeDqjWl0DwaQyQkAAINWiR0NDuxscmBHg2NNqzMJoogbIyG8\n+fYELvZOIZ3NAwBa62w4tsODfVtd0KjXf0utB+ELJvC/X+lF12AQaqUcP/NQPd51oAZKxZ1DV5th\nfCOizYnjGxGVM45xRFSuOL4RUbni+Ea0ubFCD20oDkcFHI4KmM1z9QOam1tK1nnxxeeLYZ7f/u3P\n4IMffLrk+v37D+Kpp34G/+W/fAIzMzN47rk/wAsv/BBKpfQn/+abryESCQMAnnvuj7Fz5+7ittu3\nt+Oxx57E5z73Ozh58ifo7b2O3t4ebNvWCrPZArPZArvdUVx/y5YGeL0LV6sgIioXrXU2/N7H9uMv\nX3wbP7owgvGZOD750+0YmIjgO6/ewPh0HDqNEh9+vAmP76u+q6AAbXw2kwaP7KrEI7sqkcnm0TMc\nlKr39E/jXLcP57p9kMtkaK62SNV7mhyrVrFpOpTE6c5JnO6YwHRYaqlVYdHivTtqcbTdg4pNVKXG\nbdPjtz60G+e7fXj+1Rv47ql+nO2axMfesw2NVfdbr4mIiIiIiIiIiIiIiFYSAz204QiCgOeflyr2\nHD589LYwz6yqqmp88pP/Ff/zf34efr8Pr712Ak888W4AUhWgWTU1tQtu/9GP/jIsFisqK6tgMi2e\niiMi2izcNj1+95f246//pROdtwL4f/76DOKpHGQAju+uxAcfaYBZr17r3aQ1olYpsLOxAjsbK/Cs\nuBUj/hiu9UutufpGQugdCeGFkzfhtumKrbmaa6zLGv5KZ/K42OvH6Y4J9AwXWmqpFDi2wyO11Kqx\nQl4mLbXulUwmw+E2D9obHHjxVD9evzaO5759Ccf3VOHpRxugX8MqSkREREREREREREREdDsGeh7A\n92/+G674O9Z6N1bVHtcO/GzTU2u6D/39N+D3+wAABw4cWnLdw4ePFucvXrxQDPTU1W0pLv/sZ/9v\n/Lf/9ltobW0r2ba5uQW//du/s0x7TURUHvRaJf77z+3ECyf68eOLI2ipseKZJ5tR62bwkebIZDLU\nuk2odZvwgaNbEI5n0FEI93QOBvCjCyP40YUR6DQKtNc7sLupAjsaHTDq7j1UIooiboyG8WbHBC70\n+JHOSC21WmqseGinF/tanNCqecg7y6hT4ePv3Yaj7R78wyu9OHllDJf7pvDMk804sM0F2SYNPBER\nERERERERERERrTc8u0EbTl9fb3H+y1/+M3z5y392V9uNj48V548ceQiNjc3o77+Bjo5r+M//+WOo\nqHDiwIFD2L//IA4cOFTSVouIiOYo5HI882Qz3nekDma9igEAuiOLQY2Hdnrx0E4vsjkBvSOF1lw3\np3Ghx48LPX7IZEBjlQW7C9V7KisMS/5tzYRTONM5gdMdk/CHkgAAh1mLnzpQg6M7vHBtopZa92Nr\njRWf/+UDePn8MP7l9CD++oddONM5iWfftXVTtSMjIiIiIiIiIiIiIlqvGOh5AD/b9NSaV6vZjMLh\n0H1tF41GivNKpRJf+tJf4otf/ALOnTsDAJiensJLL/0bXnrp3yCTydDa2ob3vOf9+MAHPgiVim0o\niIjeyWJgey26dyqlHO31DrTXO/CLTzZjfDpebM11cyyMm6NhvHiqHxUWLXY1VWB3UwW21lihUsqR\nzuZxuW8KpzsmcH0wCBGAWiXH0XYPju3woqV287bUuh9KhRxPHd2CA60ufPuVXrzdP4PfGzqPn3m4\nHu/aX7Os7dCIiIiIiIiIiIiIiOjeMNBDG04+ny/Of/rTv4P29h13tZ1Goym5XFHhxJ/8yV/i1q2b\nOHnyVZw9exp9fT0QBAGiKKK7uxPd3Z344Q+/j7/4i6/BarUu6+9BRES02clkMlQ5jahyGvG+w3WI\nJjLovBXA1ZvT6ByYwauXRvHqpVFo1Ao0VZrRPx5BqtBSa2u1Bcd2eLF/mws6DQ9pH4TbpsenP7Qb\n57p9eP7VG/juyX6c7fThY+9pgdPJdnpERERERERERERERGuBZz9owzGZzMV5g8GI5uaWB7q9hoYm\nNDQ04ROf+DVEIhFcuXIR586dwcmTP0EsFkN//w187Wt/ic985vcfdNeJiIhoCSa9GkfaPTjS7kEu\nL+DGaBjXbk7j6s1pdA0GYTdr8OT+Ghzb4YHbpl/r3S0rMpkMR9o82NHgwIunbuL1axN47tuX8O4b\n0zjW5ka107jWu1j2YsksznRO4s23x5HJCaj3mgs/JtS6TdCoFGu9i7QC0tk8hiajUCrkcNt1MGhZ\nGZSIiIiIiIiIiIgkDPTQhtPQ0Fic7+7uwLvf/Z5F1w0Gg/jBD74Lr7cSTU1b0dy8FQCQzWYxMjKM\nTCaDbdtai+ubzWY8+ujjePTRx/Gxj30CH//4LyIWi+LMmTdX7hciIiKi2ygVcrTW2dBaZ8OHn2hG\nOJ6BSa9iS60VZtSp8PH3tuJouxfferkHr5wbwivnhlDrMuJouweHtrthMWrufEN0V0RRxK3xCE5d\nGcNbPX5kcwKUChnUSgXOd/twvtsHAJDLZKhyGooBn3qvGVVOAxRytkXbaBKpLG6MhtE3EkLfaAiD\nE1HkBbF4vVGngtuug9umh9umg9uuh9umh8umYzUyIiIiIiIiIiKiTYb/EaR1S7bICbvW1jaYzRZE\nImH8+Mcv41d/9ddhNC78rfHvfe+f8Pd//w0AwCc+8WvFQM+zz/48xsZG4XZ78L3v/duC23o8XtTX\nN6Cj4xoymXTJdXKePCEiIlpVFoN6rXdhU9laY8Uf/MpB3PLF8fKZAXTcmsHzJ27ihZP9aKu340i7\nG3uanawac5+S6RzOd/tw6soYhv0xAIDLqsPxPVU4tsMDo04FfzCJgYkIbk1EMDgRxZAvihF/DK9f\nk25DrZSj1m2aC/lUmuGy6hY9hqa1EY5ncGMkhN6REG6MhDDij2E2viOXyVDnMaK52gpRBHzBBHyB\nBAYnougfi9x2W2aDGh6bDi57Iexj08Ntl8I+fC0SERERERERERGVHwZ6aN1Sq+dO3CUSCej1UmsN\nlUqFp5/+BXzzm3+LcDiML3zhc/jCF/5XyfoA8PbbV/GP//htAIBGo8EHPvCfitcdPfowvvvd78Dn\nm8Tzz/9vfPjDz952/0NDg+jr6wEAbNvWVnKdSjVXCj+ZTDzgb0pERES0/igVchzbVYmtlSZEEhlc\nuO7Hmc4JdNyaQcetGWjVCuxvceFouwdba62snnQXRvwxnLwyhrNdk0hn8pDLZNi31Ynje6vQWmcr\neQzddimscbjNAwDI5QWMT8cLAZ8Ibo1HcWs8gptj4eI2Bq0SW+ZV8an3mmFlRaVVNR1OStV3RkLo\nHQnDF5j7rKBUyLG1xormGitaaqxorDJDq779I3kuL2AmkoIvkCyGfHzBJHyBBG6MhdE3Gr5tG5tJ\nU1LRx10I/risWqiUDPsQERERERERERFtRAz00LrlcFQU5//mb76K97zn/ZDL5di6dRueffbjOH36\nDfT19eD06Tfwy7/8i/j5n38GTU1bEYtFcfHiW/jBD75brKzzyU/+V1RUzN3eM888i5de+lfEYjF8\n9at/gY6Oa3j88XfD7fYgHo/h+vUuvPji80in05DL5fjYx35l0X37+7//O3z4wx+BIIhob9+xwo8K\nERER0eoz69V4Yl81nthXjYmZOM50TuJc1yTe7JjAmx0TcJg1ONzmwdF2D7wOw1rv7rqSyeZxoceP\nU1fHilVXbCYN3nuoFg/vrITNdHeBG6VCqshT6zYBu6sAAOlsHsO+KAbGIxiYlKZdAwF0DQSK29lM\nmpJWXVs8Zui1/Bi4HERRxMRMAn2joWKIJxCZq+ypVSvQ3mBHS40VzdVW1HvNUCnvXOlTqZAXQjl6\nAI6S67I5AdPh5O1hn2ACPcMh9AyHStaXAbCbtXNtvOxzrbwqLFooFaw8SkREREREREREtF7JRFEU\n77zaxjI1FV3rXaAFOJ2me3pubtzoxa/+6keRz+eLy+a3yAqHQ/j93/8MLl26sOhtKBQKfOITv4aP\nfvRXbrvu0qUL+N3f/R+IxRbfJ61Wi09/+nfw3vc+VbJ8enoazzzzsyXVeZRKJX784zdKqvcQ0eZw\nr+MbEdFGsdT4Jogi+oZDONM1iYs9fqQy0jFbvdeEI20eHNzuhlm/eVulTQYSOHVlDKc7JhBP5SAD\n0N7gwGN7qrCj0Q7FCrVwjSWzGJyIYGAigoGJKAYmIgjHMyXreOz6kio+tW4jq7jcBUEQMeKPFdtn\n9Y2GEE1ki9cbdSpsrbEWfiyocRlX7HleSCabhz+ULKnoMxv2Cccyt60vl8lQYdHCZdfBMxv2KQR/\nHGYt5PLyrrrF4zciKmcc44ioXHF8I6JyxfGNaHNzOk2LXsdAD62a+3kzOnv2TXzrW/8f+vtvQhDy\nqKhw4lvfeh5arba4zptvvo4f/egldHV1IBgMAgDcbjf27t2Pn/3ZX0BjY9Oitx8IzOAHP3gRb711\nDsPDQ0gk4jAYjPB4vDh06Ag++MGn4XZ7Fty2q6sTf/M3f4Xe3m5kMhnY7Q78+Z//Faqra+7pdySi\njY8H20RUru52fEtn87h6YxpnOifRNRCAIIpQyGXY0eDA0XYPdjU5NkVgJJcXcOXGNE5dGcP1Iem4\n1KxX4eFdlXhkVyWcVt2q75MoighG0yUBn8HJCJLpudC8Qi5DtdOIeq9UAchp08Fp0cJu3twVXLI5\nAYOTkUL7rBD6x8Ilj5vNpEFLMcBjhdehh2ydtp5LpnPwF8I9vmAS/kLYZzKQQCyZvW19pUIGp1UH\nz2wLr3kVfqxG9br9Pe8Fj9+IqJxxjCOicsXxjYjKFcc3os2NgR5aF/hmRETliuMbEZWr+xnfwrE0\nznf7cKZrEsO+GABAp1HiYKsLR9o8aK62lEUYYL7pcBKvXxvH69cmEClUw9lWa8XxPVXYu9W57kIx\ngijCF0iUhHyGfTHk8kLJejIZYDdp4bRqUWHVwWnVwWnVwmmR5k16VVk9l6lMDv3jEfQNS+2zbk1E\nkM3NPSZuux5bqy3YWmNFS40VDou2LH7/RCpbrOgzGUjAXwj6+IJJJNO529bXqBRwFdp2uW2loR+j\nbuP8TfD4jYjKGcc4IipXHN+IqFxxfCPa3BjooXWBb0ZEVK44vhFRuXrQ8W10KoaznZM42zWJUKHl\nj9OqxZE2D460e+C26ZdrV1edIIjouDWDk1fG0NE/AxGAXqPEsR1eHN9TCa/DsNa7eE9yeQGjUzGM\nTcUxFUpiOpzCVCiJqVCy+Ny9k0alQEUh4FNh1UqBH4uuGADSqNa+KpMgikikcogmMogls4glsogm\ns/PmM4glsgjFMhjxxyAUPh7LAFS7jHMttKotsBg1a/vLrDJRFBFNZKWqPoFCdZ9AApOBJPzBBDI5\n4bZt9BplsXWXx6aHa7ayj00PvVa5Br/F4nj8RkTljGMcEZUrjm9EVK44vhFtbgz00LrANyMiKlcc\n34ioXC3X+CYIIq4PB3GmYxKX+6aQzkptixqrzDja7sWBbS4YdaoHvp/VEI6l8frbE3j96hhmImkA\nQEOlGcd3V+FAq2tdhFiWWzaXLwR85kI+8wM/qUx+we3MBnWxok+FVWrj5bRK4R+7SQu5/N4quYii\niGQ6j1gyI4VyElIwJ1qYxpKZefPS8ngqi7v5xKtUyFDnNmFrjRXNNVY0V1tg0G6Mv8m1IIgiQtG0\nVNmnEPSZDf34g0nkhdsfdLNeVajqM9fCy+vQw+PQQyFf/SpWPH6jlZTN5THsi+HWRASDExGMTydg\n0quKY+D8ICTHGloJHOOIqFxxfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlaiXGt1Qmh8t9UzjbOYnu\nwSBESGGKXY0VONLuwc5Gx7prUSWKIq4PBXHqyhiu3JhGXhChUSlwuM2N47urUOdZ/ANXuRNFEfFU\nrhjueWfYJxBJLxjuUMhlcFi080I+OlgMaqmaTrGCjlRVZ354Z6HbeicZAINOBZNeBaNO+pHm1fPm\nVTDqVTDppOU6jWLDtIpa7/KCgJlIGv5CC6/5oZ/pcOq2gJVSIUe104Batwl1biNq3SZUO43QqFc2\nHMfjN1oueUHA+LTUxnBwIoJbExGMTcVLxiulQoZcfuHxS6dRlgQeKwqVzpxWHSosWqiU5RcUpZXH\nMY6IyhXHNyIqVxzfiDY3BnpoXeCbERGVK45vRFSuVnp8C0bTONc9iTOdkxibigMADFolDm5341Cr\nG1aTBiqFHCqlHCqFHEqlbFUrecSSWZzumMCpq+PwBRIAgGqnAY/tqcLhNg90mvXVQmg9ygsCgpE0\npsILV/eJJrJ3vA29RjkvfDMbxFHDWAjmmArLpLCOGnqN8p6r/9DqyOUFTIWS8AWSmAwkMD4Tx7Av\nelv4QSYDPHY9at0m1LqkkE+t2wiTXr1s+8LjN7ofoihiKpTEwEQUAxMRDExEMOSLIpOda0GnVMhR\n5zZii9eMBq8ZW7wmuO16pDNStbPp2QBkYX52TFyojR0AWIzqQktDKexTYdXCZdWhwqKDzaTheEcL\n4hhHtHJiySyu9E0hlc3j8Hb3sh6f0J1xfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlarXGN1EUMeKP\n4UznJM51+xCJZxZdVy6TQaWUQ6mYnc4FfuZffue0eL1SVggHyUumqnmXBUHEhR4/3rruRy4vQKmQ\n48A2Fx7bW4XGSjMruSyjVCaH6VAKU+EkIvEMDNr5FXTUMGiV665iEy2/XF7A+HQcw74Yhn1RDPtj\nGPFHkUyXtnOzmTTzAj5SRR+HRXtfr8nVPn7L5vIIxTIIxdKIJbNoqLTAYtg8JwCHfVGcujIGXzAJ\nq1EDu1kDu0kDm0kLm0m6bNSp1t34Go6lMTARLbbOGpiIIJ7KFa+XyYCqCkMxvFPvNaPKabjncUsU\nRUQS2UXDPoFIGsIC/76bX+2solDRx2nVFav7rMfHlFYHP6NuHtmcgNGpGJxW3YZpYbsRxZJZXO6b\nwoUeP3qGgsUgskopx5E2N57cV4Nql3GN93Jz4PhGROWK4xvR5sZAD60LfDMionLF8Y2IytVajG95\nQUD3YBBv35xBKptDNicgmxOQy4vI5vKFqYBcXlqezQsll++mJdPdctt0OL6nCsd2eHmChGiVCaKI\n6VBSCvn4oxj2xTDkiyIcKw386TVK1BZaddW4jKhzm+Bx6O8YqFiu8S2VySFcCOqEYhmEY2mE4oVp\nYXk4lkEinSvZTiGXYe9WJ47vqcK2WmtZhi5yeQGX+6Zw4tIo+kbDd1xfqZDDXgj32Aphn9l5u0kL\nm1kD0woGVBKpHAYnI4XWWVKIJxhNl6zjtGpRXwju1HvNqHObVrw9HCA9lsFouqTKWXEaSiKySLUz\njVoBp0ULi0ENg04Fg1YFg04Jg1YKTs6/LF3PEGW54GfU8iYIInpHQjjXNYlLvVPF9xiHWYs6jxR4\nlaYmWIyaNd7bjWt+iOf6YLAYrNziMeHANhcUchlevTyKqVAKANBaZ8OT+6uxq7GC1dNWEMc3IipX\nHN+INjcGemhd4JsREZUrjm9EVK424vgmiCJyCwZ+xEI46O5CQc3VFrTW2cryJDvRRhaOZzDii2LI\nFy1W9PEFkyXrKBVyVDsNxaBPrduEGqexJHix1PgmiiKS6VxJQGc2mFOcFpalM/kFb2OWQauE1aiB\nxaguTjUqBS72+DFaaDXosetxfE8VjrZ7yiI8GI6l8drVcZy8OlYMYLXX2/H43mq0brEhEs8gEEkh\nGE0jGE0jEEkjEJUuB6LpJau0KRVy2Ezq28I+dpMGNrMUAjLpVZDfYezO5vIY9sWKbbMGJqKYLLRW\nnGU2qIsts6Sped0+P6lMrtDOS6p4Nh2aDf1I1X7u9Hc6n0atgFFbGvJ5ZxhICgSVrqNWrXywie7e\nRjyGo6WJooghXxTnunx467oPocL4ajNpsKPBgWA0jaHJyG0BP4tRjTq3FO6ZDfnYzRoe4y5iyRBP\nqwv7W1xwWnXF9QVBxLX+afzk4iiuDwUBSOHPJ/bV4KEdXui1bNG73Di+EVG54vhGtLmtSaBHEAR8\n/vOfR29vL9RqNf7wD/8QdXV1xetPnDiBr371q1AqlXj66afxC7/wC4tu86lPfQrT09MAgLGxMeza\ntQt/9md/tuh9c8Bbn/hmRETlaq3Gt0Q2iYHIMNocLat+30S0OfD4jYg2gmQ6h9GpWLGKz4gvhrHp\nGHL5uX93yAC47XrUuqUqPlvrHZj0RxesrBOOZZDJCYvenwyASa+CZTaoY9DAalLDYtDAalTDYtTA\nalDDYlRDpVw45CCKIvrHIjh5ZQwXeqT2fiqlHAe3uXB8bxUavBurvd/s7/Pq5VFc7PEjL4jQaRQ4\ntsOLx/dWw2PX3/Vt5fICQoVwz2zQJxiRLgejKSn0E8tgsX9mKRUyqa2XSQO7WVuo9qOBUinH8GQU\nAxNRjE7FSiq66TQKbPHMhXfqvWbYTOVzwjuTzSOeyiGeyiKezErzs9PCslhxWRbxpLQ8dQ9BIJVS\nXhr+KcxbDGo4zFrYzVo4LFo4zBpo1TzBvdJ4DFc+fIEEznf7cK7bVwwe6jVK7N/mwuHtbmytsRar\nwYiiiFAsI4VeJ6Xw65AvikCktNqYUadCnduIWs9c0Mdp1d0xDFmuFgvx1HtN2L/t9hDPYkb9Mfzk\n0gjOdvmQzQnQqBV4aIcXT+6rhvse3gdpaRzfiKhccXwj2tzWJNDzox/9CCdOnMAXv/hFXL16FV//\n+tfxta99DQCQzWbxvve9Dy+++CJ0Oh2eeeYZfP3rX8fly5cX3QYAwuEwPvrRj+Jv//Zv4XK5Fr1v\nDnjrE9+MiKhcrdX49i/9L+OVoRP47MFPocroXfX7J6Lyx+M3ItqocnkB49PxkpZdI/4okunFAwoy\nGWAxzA/kSAGdkgo7BjXMBvWytiWKJjI43TGJU1fH4C9UG6p1GXF8TxUOt7nXdfghk83jfLcPr14e\nxbAvBgCoqjDg8X3VOLKC+57LCwjF0gtX+YlIwZ/wIqEfpUKOWrex0DbLhHqvGW67ftOeyF5KLi8g\nUQz95BC7LRD0jvlCECiRyi0auAKkylXFkE8h6GM3a4rzZoN6XT8feUFANJFFOJZBOD5XtStSuByK\nZ5DJ5NFQaUbrFjtaaq0w69Wruo9rcQwnCCLGZ+JQyGVwWnVs3/YAQrE03rrux/nuSQxMSM+jSinH\n7qYKHG5zo73eAZXy7h/fSCKDYV8UQ5NRDPliGJ6Mwh8qrW6n0yhQ65qr4lPrMcFr15dt66hoIoMr\nN6Zx4boP14dC9x3iWey2X782jhOXxxCMpiEDsKPRgXftr8H2LawA+qD4GZWIytVmGt9EUcTETAJ9\nIyFMhZPYUe/A1lrruv4MQLTSlgr0rNh/hS5duoSHH34YALB79250dnYWr+vv70dtbS0sFgsAYN++\nfbhw4QKuXr266DYA8OUvfxnPPvvskmEeIiKizcKX8AMAAqkgAz1ERERE80ihDandFiAdJwmiiOlQ\nEsO+GOJZATJBkCrqFCrrmPTqNTlxadKr8Z5DtXj3wRpcHwri1JUxXOmbxj+80osXTt7EkTYPju+p\nQo3LuOr7tpipUBInr4zhjWvjiKdykMtk2NfixBN7q9FSa13xk5VKhRwVFh0qLIufbM3lBYRjmUIr\nL6ntVK3bhCqngUGDu6RUyGEuhNjuhSCISKSloE8oJoWspiMpBCIpzIRTmImkMBlMYNgfW3B7hVw2\nF/Apqe4jBX/sZi00y9ziSxRFpDJ5hGcrdcUzhaBOuhDUyRSviyaySwaWZDJAIZdj2B/DqavjAIAa\nlxGtdTa01tmwtcYKnWb9BvXuVi4vYHAiir7REPpGQrgxGkYynQMgPYcumw5ehwFehx4eux5ehwEe\nu54tiBaRSOVwqc+Pc10+9AwHIYqAXCZDe4Mdh7e7safZed9/N2a9Gu31DrTXO+bdX7ZY2W6oEPbp\nGwmhdyRUXEetkqPGZSxp2VVZsXHH0Ggig8t9U7jY41/2EM98Jr0a7z+yBT91sBaX+6bw44sjeLt/\nBm/3z6CywoAn91XjSLtn2cexzSAYTUOhUUEURQajiIg2EEEQMeKPoW8kVDzeiCXn2oS+dG4YDrMG\nh9s8ONrugddhWMO9JVp/VuwTVCwWg9E4988mhUKBXC4HpVKJWCwGk2kuZWQwGBCLxZbcZmZmBmfP\nnsVnPvOZldplIiKiDSWQkvqzx7KJNd4TIiIiovVPLpPBZdPDZdOvy28/ymUytG2xo22LHcFoBzHO\nJQAAIABJREFUGm++PY7Xro3j5JUxnLwyhsYqMx7bU4UD21yLtvJaSYIoonsggBOXx3Dt5jREAGa9\nCk8drcPx3VWwm7Wrvk9LUSrkUgjEogVgWevd2VTkchmMOhWMOtWibWZEUUQ8lcNMuBD0Kf6ki8Gf\nnuHQgtsCUtu7YoUfs9TKa37wx6RXQSaTIS8IiMSzxUo67wzsSEEd6XImu3irPQDQqhWwGNTw2PVS\ny71Caz2LQVOYSpW9TDoVBFHE0GQU3UNB9AwFcWM0jBF/DD+6MAK5TIZ6rwmtW2xorbWhqdqyJq/p\ne5XO5HFzPIwbhRMxt8YjJe0JXTYd9m6tAERgIpDAxIz0805Wo1oK9zj08BaCPl6Hvqza3N2tbC6P\nazdncL7bh2v9M8jlpcezqcqCQ9vdOLDNdc+Burul16qwrc6GbXW24rJUJodRf7wY8BnyRTE4EUX/\nWKS4jlIhQ5XTWAz41LqNcFp1MOpU6/Jb9UuFeA5sc2N/ixMVyxDiWYhSIcfBVjcOtroxMBHBjy+O\n4MJ1P/7hlV5877V+PLKrEo/vrS68T9Fi8oKAqzdmcPLKKLoHpf+DadUKuO3SGOK26+G26+C1G+Cy\n6coiMElrLy8I6BsJI58X4LLpYDdrN2yYkWgtzAa/e0eC6BsJ4+ZYqKRart2swZEGN5prrLCbNLjY\nM4WLvX78+9kh/PvZIWzxmHCk3YNDre4VOxYi2khW7OjGaDQiHo8XLwuCAKVSueB18XgcJpNpyW1e\nfvllPPXUU1Ao7vwB12bTQ7kBPghvRkuViyIi2sjWYnwLZsLSjDrH8ZWIVgzHFyIqV+t5fHM6Tdja\nUIGPfaAdl3r8eOnsIC71+NA/FsE/nbiJJw7U4r1HtqDSufJVe+LJLF69MIx/Pz2A8WnpfzYtdTY8\ndawex3ZVboggAq1f9Utcl83lMR1KwR9MYCqYxFQoianifAIT03EMTS4czFMr5dBqlIgmMhCXKKcj\nlwFWkwY1bhNsJi1sJg1s5sLUpIXNrCku197jSWKvx4LDu6sBSO3prg8G8PbNaVy7MYUbIyH0j0fw\nb2eGoFLK0brFjp3NFdjV7ERztRWKZThp+KBjXDSRQfetGXTemkH3wAxujoYhCNKDKZMBdR4z2hsc\n2N7gQFuD47ZQnyiKCEXTGPXHMOqPFqZS+8PrQ0FcHwqWrK9VK1DlMqLGZUK1y4jqwtRbYYC6jCqZ\n5AURHTen8NrlMZzpGEciJVU1qnGbcHxvNR7ZUwXPGn4rvabKhiPzLmeyeQxNRnBzNIz+0RD6x8IY\nHI9Ir71rc+sp5DJYTZria8hu1sJqkoJ2xWUmadlKP5/hWBrnOifw5rVxvH1zuvh3u7XWimM7q3Bs\nV+WiYcOV4nSacHBnFQKRFP7jzABePjuIl84P45W3hnFkRyU+8HADttfbN12obSnBSAqvnB/Cy2cH\nMRNOAQDaGhwwG9QYn4phfJH3ALtZgyqnCZVOA6qcRlS5jKhyGuG26xnIoCUJgojrgwG8dmUUp6+N\nIxLPFK+Ty2Vw2/RSGLXCIP04DPBUGOBxGFhxi5bNev6MupRUJofeoSC6bs2g69YMeoaCyGTnAjxV\nTgPaGirQ1uBAe4MDrne8Dz9xuB6pTA5vdU3i5KVRXO71Y/AnN/BPJ25ib4sLj++rwUFWt6NNTCaK\nS32svX+vvPIKTp48iS9+8Yu4evUqvvKVr+Ab3/gGACCbzeL9738/XnjhBej1enz4wx/G1772NVy9\nenXRbX7zN38Tv/7rv462trY73vd6+5YdSdbjNyCJiJbDWoxv6XwGv/Xa7wEA3lV7HB9set+q3j8R\nbQ48fiOicrURx7epUBKvXxvHG9fGEUlI5clb62x4bE8VdjdXLPtJqtGpGE5cHsPZzkmks3koFXIc\n2u7C43urUe81L+t9Ed0PURQRTWSlyj7FSj/pYrWfVCYPi0ENq1FqGybNS5V1zIV5o061Jq32kukc\n+kZCxWDLyLz2Y1q1Ai01VrQWqqdUu4z3XPnkfsa4YDRdbIPQNxrC2NTcly4Vchm2eEzYWmNFc40V\nzdUWGLSqe7r9+dKZPCYDCUwE4picmavmMxlIFKvUzJLJAKdFJ51EdcxV9PE6DDDq7n8fVpMoihiY\niOJc9yQuXPcjXDhJbDdrcKjVjcNtHlQ7DRsmzJHLC1KYwhfFiC+GYDSNUKEKViiWue05fCeDVll8\nDb6z0pXVoIbZKLXC1GuUd/2YzFbiudDjR09JJR4zDmxzrWglnvuRzeVxvtuPn1wcKbYfrHOb8OT+\nahxsdUOl3JzBE1EU0TcSwskrY7jUO4W8IEKjVuBouweP76lCldNYHN8EQUSg0MLRF0hiciZRmE9g\nJpy6rTWiQi5DhVUHj00Ht10KZnhsUoUfq1G9YV5/tLxEUcTgZBRvXffhret+BKNpAFIVyv3bXDDr\n1fCHkvAHk/CHkiUhn/lsJg1cVh2cNh3cNh2cVh1cNh1cVraapLu3kT6jJlI53ByTWmf1jYQwOBFF\nfjb4DaDKaURLjRVba63YWm2Bxai5p9sPxzM43+3D2c5JDPmkx0SnUWBfiwvH2j1orrGuy8qARA9i\nqUDfigV6BEHA5z//efT19UEURTz33HPo7u5GIpHAhz70IZw4cQJf/epXIYoinn76aXzkIx9ZcJvG\nxkYAwPvf/3585zvfgdl8538abZQBb7PZSG9GRET3Yi3Gt8m4D184/yUAwBHvATzb+vOrev9EtDnw\n+I2IytVGHt9yeQGX+6Zw6spYsSWRxaDGw7sq8eiuygdq3ZEXBFzpm8aJy6PF23aYNXhsbzUe3umF\nSc9y50QrIZLIoHe4EPAZDMAXTBavM+qk1kjb62xorbPBZdPd8cTzncY4URThDybROxLCjRHpZMx0\noQIGIFU4aqyyYGuNdBKmodICjXrlvxEtCCJmIikp3DMTx3hhOhFIIFoIMs5n1KkK4R49PHYDKixa\nGLRK6LUqGHRKGLQqaNWKNTtRPzETx/luH851++AvPKcGrRIHWt04vN2NpmpL2Z2MEkURyXQO4bgU\n7iltcZeWlhVa38UL1YkWo1TIS0J5JQGgwvywL7phQjwLmQ2w/OTiKC7fmIIoAmaDGsd3V+KxPVX3\nfAJ0o0qmczjbNYmTl8cwVqgGWOU04PE9VTjc5ilpo3U3x3CZbB7+kBTy8QWlsOBkQAr+xJK3jyUa\ntaIQ7tHBY9fDU2jl5bHrV7SFlyiKyAsi8nkROUGQpnkBOUFEPi8gV7icz4tQKGRw2XQPFKakOWPT\n0vj81vW58VmnUWJfixOHWt3YVmeFQn57sC6ZzmGqEPCZCiXhK0z9wQQCkfRtQTJAeq+Swj1SyMdp\n1cFt08Np08FcaBFKBKzvz6iReKYY+u4bCWHEFyv+vctlMmzxSsHvrcsQ/H6nsek4znZO4lz3JAIR\nKXTnMGtwuM2Do+0eeNewsiHRclqTQM9aWq8D3ma3nt+MiIgexFqMb10zvfira38HANhRsR2f3Pnx\nVb1/ItocePxGROWqXMa3iZk4Tl4Zw5mOSSTSOchkwK7GChzfU4n2esddVx6JxDN47do4Tl0ZK34z\nefsWG57YW41dTRVrUsGEaDMLRFLF6j3Xh4LF1yUgVXVprZWq97TW2W5rdQXcPsYJgojRqVjhREwY\nfSOhkioDeo2yUH1HCvHUuU3rrjVNLJktVPORAj6z8/5Q8g5t1WTQa5XQa5UwaKWQj36RqaG4nrTs\nfsJAwWga57t9ON/tK36jXK2SY2+zE4e2u9FWb193j+1ayeYEROKZYnWf2aDPbAAoVJiPxDPFb/0v\nphji2eZEhWV9h3gWMx1K4sTlMbx+bRyJdA4KuQwHW91414FqbPGUZ2W80akYTl4ew5muSaQzeSjk\nMuxrceLxvdVorrYs+Pp70GO4WDJbCPfMD/ok4Asmkc3dXl3KYlAXwz1GnaoYsMkJwtz8bPhGKL2c\nL4RzpPXmAjrzAzv3yqhTScEjmx6u2fCRTQqIrEbwciPzh5K4cN2H891+jE5JlbHUKjl2N1Xg0HY3\n2usdD1QdK5sTMB0uVPMpVPSZnU6HkguOYxq1ohj0KZ3qYTNryi70SUtbT59RA5FUsfpO30gIEzOJ\n4nVKhRyNlWYpwFNrRWOlGVr1yleiEkQRvcMhnO2cxMVeP1IZqaXXFo8JR9o9ONTqhtnAL6DQxsVA\nD60L6+nNiIhoOa3F+PbG2Dk83/t9AECDpQ6f3vcbq3r/RLQ58PiNiMpVuY1v6WweF677cerqGG6N\nRwAAFRYtHt1diYd2VsKywD82RVHErYkITlwaxYUeP3J5EVq1AsfavXhsbxUqK/hNR6L1QBRF+ILJ\nYvWenuFQSYUJt12P1kIFn5ZaK0x6Naw2Ay52jBe/RX1jNIxkeq4aisWoRkuNFc3VVrTUWFHpNGzY\nk4bZnAB/UGrZFYimkUhlEU/l5k1ziM9bdi8n0BVyGXQaJQy628M+7wwHRRNSa4je4RDEwrZt9XYc\n3u7G7uaKVTnRVa4EUUQ8mZVCPiXhnwzsZg32tWzcEM9C0pk8znRO4CeXRosnUJuqLXjX/hrs3Vqx\nYNWQjWS20uCJy2PoG5GqAdpMGhzfU4VHdnrvWJVopY7hBFFq4eULJEuCPpOLtPBaigyAUimHUiGD\nQi5NlQo5FIrCfGFZ8bJCDoVcms4tl0Mpn91OhkxWgC8oBY8WC4fYTBop3GPXw22brTQkVYTZrEHC\nYDSNiz1+nL/uKx4jK+Qy7Ghw4NB2N3Y3VaxaBbpAJAVfKImpksBPAv5QEpns7WEyjVqBxkozmqos\naK62oqHSvKIVo2jtzY5v80/bl7zSxfmz89ZZYIASF9lQFBdaCoSi6ZIAz/zKjRq1As2zlRtrrKj3\nmte8NWQ6m8fVG9M42zWJzlsBCKIIuUyG9gY7jrZ7sLupAmoVQ460sTDQQ+tCuf3DlIho1lqMbz/s\nfwk/GjoJAHDpKvD/Hvkfq3r/RLQ58PiNiMpVOY9vQ5NRnLo6hnNdPqSz0rfd92514vieKmyrtSKX\nF/DWdT9evTSKwUnpMfA69HhiXzWOvKOtBRGtP4IoYtQfK1bv6R0JIV34hjIAeOx6BKJpZLJzy1w2\nHbZWSxV4WmqscFrv3LarHImiiExOKIZ8imGf5DsCQOls6TpJ6bo7VYkBgOZqCw5vd2P/NhfbFNID\nEUQR3QMB/PjiKDpuzQCQKnQ9vrcaj+yqhFG3sVovBSIpnLo6jtevjRcrhLVtseGxvdXY1eS466DS\nWhzDZXN5+IJJpNJ5KJVSIEehmA3gFObnBXdWurJhLi9gJpwqtBNLFioMSQGkhdo+yWSA06KDq1DZ\nx10I+nhsetjN2rKrxBhLZnGx14+35oUsZTJge50NB1vd2NviXFety0RRRDieKWnj5Q8mMOKPlVRF\nkcmAaqcRTdUWKeRTZYHDot2U7+flIBLPYGAiUviJYmAismBLwLVg0EqVG1tqrGiusaLWbVzXYdJw\nXApVn+2cLFZH1GkU2NfiwrF2D5prrBs2uE6bCwM9tC6U8z9MiWhzW4vx7e+7voMLvivQKrSQy2T4\n40f+YFXvn4g2Bx6/EVG52gzjWzKdw9muSZy8MoaxqTgAqZJHPJlFLJmFTAbsaXbiib1V2FZn48kA\nog0qlxcwOBktVvC5NRFBZYURDV6T1Ear2gqbaemKF3RnoigikxVKgkCJVA6xwlQul2FPc0VZVYqh\n9WNiJo5XL43idMdkMazrdehR4zKixmVCjduIGpcR5nUWIhNEEdeHgjh5eQxXbkxBFKUWfw/t9OL4\nnip47Pp7vs3NcAz3IDLZPPyhZLGN2PyWYvNbLc5SKuRw2XRw23SFij764rzZoN4wx4fJdA5Xb0zj\n/HUfugYCxQBmU7UFh1qlkOVCFSvXu1gyi5tjYdwcDePmaAgDk9GS1nBWoxpNVRY0VVvRVGVBrdu4\naasxrWfJdA7DvihuTUQwMC4FeGYiqZJ1KixauB0G5AqB7MVeeou9Jucvli2wsGSrknWlCwatEs3V\nUhUeb8XGrdw4Nh3H2c5JnOueRCAitax1mDU43ObB0XYPvI7Vr0IriiJSmfy8ILkUFI+nsnBadWiu\ntkClZDUhYqCH1gkebBNRuVqL8e1PL/0VboWHUG+pw63wIP7y+B9BIeeBHxEtLx6/EVG52kzjmyiK\n6B+L4OSVMVzo8UOrVuDR3ZU4vrsKDot2rXePiFbAZhrjiDaTRCqLN96ewMUeP0amYre16bEa1VLA\nx2VEbSHk47bpV70CSzyVxekOKVTsC0gVRmrdRjy+txqHtruheYA2KBzf7l8ilSu07UrAN6+yz2Qg\nWdKWcZZGrYDHpofLpoPNpIHVqIHFqIbVqIHVqIbFoIFOo1iz0E8mm0fHrRmc7/bhWv9MMehS6zbi\n0HY3Dm5zl92xbi4vYMgXlQI+haBPeF5QS62Uo95rLlbxaayybLhqXhtdLi9gxB/D4EQEtyYiGJyI\nYnw6XlI5y6RXod5rLv5s8Zpg1qs5vi0jQRTROxzC2c5JXOz1I1WoZrnFY8KRdg8OtbphvseQnyCI\nSKTnqjuWhHOS2WLIe35g526qPKqVcrTU2tBeb0dbvR1eh37DhClpeTHQQ+sC34yIqFytxfj2e6ef\nAwBsMdfgylQH/uihz8GsXvwNn4jofvD4jYjK1WYd3zLZPORyGb+5S1TmNusYR7SZCIIIfyiJEX8M\nI/4ohn0xjPhjCEbTJeuplXJUOY2Faj5zPyvRYnNoMoqTV0ZxrsuHTE6AUiHHwVYXHttbhQaveVlO\nUHJ8W36iKCKazMIXSGAykIB/XmUffzCJTE5YdFu1Sg6rYS7oYzGqYStMLUZNMfyj1yiX5fnP5QV0\nDwbx1nUfLvdNFU/Se+x6KcTT6lqTChxrRRRFTIdTuDkaxo1CwGdsKlYSHvE69GiulsI9zdVWuG1r\n23ZTFEXEUzmE4xlE4hmE42lE4llECpfjqSyMOhWsRo0UJDNpYDNKU5Neta4qxwiiCF8gIbXNGo9i\nYDKCYV8UufzcM6BRKbDFY5LCO5Vm1HtMi7ZK4/i2MtLZPK7emMbZrkl03gpAEEXIZTK0N9hxeLsb\nGrViLqAzP6xTDOcU2rMuEHxcjFwmg0GnhF6rglGrhEGngkGrhEGrgkGngl6rhE6txOhUDF0DAYxN\nx4vb2s2aQrjHge1bbOuqRSCtLAZ6aF3gmxERlavVHt/yQh7//dRn0WCpQ6XRizfGzuJ3D/4WKo2e\nVdsHItocePxGROWK4xsRlTOOcUSbVyyZxYgvWgj6xDDsj2F8On5bdQCnVYsalwm180I+i51kXko2\nl8eFHj9OXh5D/3gEgNQ65rG9VXhohxemZW4DxvFtdQmiiHAsg1AsjVAsPW8+M3c5nkYknsFSZxpV\nSjkshnnVfQrT0qo/Ghi0twd/BFHEjZEQznf7cLF3CrFkFgDgMGtxcLsLh1rdqHEZWdGiIJHK4da4\nVMHnxmgYt8YjSBfaOAGAUadCU5WlGPKp95oeuN2PIIqIJ7OFgE6mGM4JJ2bns4XgTgbRRHbJaiVL\nUchlxb+X2ZCP1aguVpCana5EYFEURQSjaSm8MxHFwEQEg5MRJNNzj61CLkO1y1iovGNCg9cMr8Nw\n11XSOL6tvHA8g/PdPpztnMSQ786PtVopLwnj6AvhHKNWBYOuNKBj1BbW06mgVd9b9bJAJIWugQA6\nBwLoHgwgnpLCQzIZ0OA1o63ejvZ6B+orTVDI+eWccsVAD60LfDMionK12uPbTDKA3z/7RRxw70GF\nzo6XBl/F/7Xn19Bsa1y1fSCizYHHb0RUrji+EVE54xhHRPPl8gImZhIYnhf0GfHHisGIWTqNshju\nqXUZUeM2oqrCsODJ/qlQEqeujOGNtycQS2YhA7Cj0YHH91ahvd6xYm2+OL6tT4IgIpKYC/uE3zGd\nDQRF4lkIS5ySVCpksBjmQj86tQJdgwGEYlJbKbNBjQPbpBBPY9XyVH0qd3lBwKg/LrXoGgvj5mgI\nM5G5Sl5KhQx1HhOaqixoqrKiqdoCi0ENQRQRS2YRic0P5swL68wL7cTuIqSjVslh1qthMahhNsxN\nzQY1zPq5ZQadCtFERvq7iaYRjKXnpoX5UCyz5P1p1Aop8DMv7DO/0s9sFamlqpbGU9m58M54BAOT\nEYRjmZJ1PHY96r1z1XdqXcYHCkdxfFtdY9NxXLs5XaymYyyEcwxaqbKOQauE+gFaRN4vQRAxOBlF\n58AMugYC6B+LFMdNnUaJ7XU2tDXY0V5vR4VFt+r7RytnqUDP8scUiYiIaEUFUkEAgF1rg0EllZGN\nZuNLbUJERERERERERJuQUiEvBnVmiaKIUCyDEb8U8plt2XVjJIS+kVBxPblMBo9DX6zkYzVqcP66\nDx39MxAhVft47+FaHN9dBaeVJxY3K7lcVqyysxRBkNp7haJphOPzwz6l4Z/BySjyglTxSa9R4uGd\nXhza7kZLrZXVKe6RQi5HnceEOo8JT+yrBiBVA7lZaNF1cyyMgfEo+scieAUjAKTXdSKVWzJ8BUjt\npMwGFbZ4TYuHdQqXteq7Px1t1KmWbJ0miCJiiSyCUSnkEywGfaS/oWA0jWA0jclAYsn7MetVxbCP\n1aiB2aDGdCiJgYkIfMFkybo2kwZ7tzqLAZ4tHhP0bIW0oVVVGFBVsf5a9MnlMjRUmtFQacZPH6tH\nIpXD9aEgugYD6Lw1g0t9U7jUNwUAcNv1aK+Xwj0ttdZ7ep3RxsJnloiIaIMJpKR/rNi1VmgV0gfl\nOAM9RERERERERER0F2QyGWwmqUXNzsaK4vJ0Jo/R6bkqPiO+GEampLZd57p9xfUaK814bG8VDmxz\nPXC7Hto85HIZLIWAB7B4JYLZwEY0mYXLqoNKyRDPcrKbtTho1uJgqxuA9Lq/NREphnz8oSQ8dn1J\nIGe2ko40r4L5HkM6y0kukxX3rW6Jv6NsTigGxRaq9BOMpjEZTGDYHyvZTq9Rom2LDVu8ZjR4zdji\nNcNmWjqsRrRS9Fol9rU4sa/FCVEU4Q8m0TkQQNdAANeHgnj10ihevTQKhVyG5moL2hscaNtiR43b\nCDmrmJUNBnqIiIg2mPkVemZLy8YyS3/jgIiIiIiIiIiIaCkatQKNlRY0VlqKywRRxHQoiWFfDFPh\nJLbX2VHnWfwkOtGDmh/YoJWnUSvQWmdDa51trXdlWamUclRYdahYonqYKIpIpvMIxdIIx9KwmbVw\n2XQMQtC6JJPJ4Lbr4bbr8cS+auTyAvrHwugcCKDzVgA9wyH0DIfwIvph1qvQVm8v/DgKQUraqBjo\nISIi2mDmB3qygtTvPJaNLbUJERERERERERHRPZPLZHDZ9HDZ9Gu9K0REy0omk0GvVUKvVaJyHbZf\nIlqKUiFHS60NLbU2PP1oIyKJDLoHAsUKPme7fDjbJVXXq3UZ0VZoz9VUbWXlsw2GgR4iIqINZn7L\nrXhWqswTY8stIiIiIiIiIiIiIiKiTcesV+NwmweH2zwQRRGjU3F0DsygayCAvpEQhv0xvHR+GGqV\nHE/uq8HPHW9c612mu8RADxER0QYTSAVhVBmgVqgBSOU/Z4M9REREREREREREREREtDnJZDLUuIyo\ncRnx3kN1SGfz6B0OoWsggO7BAAKR1FrvIt0DBnqIiIg2EEEUEEiHUGnwAADUChXUCjViGbbcIiIi\nIiIiIiIiIiIiojkalQI7Gx3Y2ehY612h+8AGaURERBtINBNHTsjBrrUVl5lUBsRYoYeIiIiIiIiI\niIiIiIiobDDQQ0REtIEEUkEAgF1rLS4zqAyIZeNrtUtEREREREREREREREREtMwY6CEiItpA5gI9\ncxV6jCoDskIW6XxmrXaLiIiIiIiIiIiIiIiIiJYRAz1EREQbyIKBHrUBABDLsEoPERERERERERER\nERERUTlgoIeIiGgDCaRCAG6v0AMAcbbdIiIiIiIiIiIiIiIiIioLDPQQERFtILMVehxaa3GZoRDo\niTLQQ0RERERERERERERERFQWGOghIiLaQAKpIDQKNXRKXXGZiRV6iIiIiIiIiIiIiIiIiMoKAz1E\nREQbSCAVgl1rg0wmKy4zqKVAT4yBHiIiIiIiIiIiIiIiIqKywEAPERHRBpHMJZHKp2DX2kqWG2cr\n9GQY6CEiIiIiIiIiIiIiIiIqBwz0EBERbRCBVAgAFg30RFmhh4iIiIiIiIiIiIiIiKgsMNBDRES0\nQQRSQQCAXWstWV6s0MNADxEREREREREREREREVFZYKCHiIhog5gpBnpKK/ToVTrIIEOMgR4iIiIi\nIiIiIiIiIiKissBADxER0QYRWCTQI5fJoVfpEMsw0ENERERERERERERERERUDhjoISIi2iACqRCA\n21tuAYBRZWSFHiIiIiIiIiIiIiIiIqIywUAPERHRBhFIBaGUKWBWm267zqjSI55NQBCFNdgzIiIi\nIiIiIiIiIiIiIlpODPQQERFtEIFUEFatFXLZ7W/fRpUBIkQkcsk12DMiIiIiIiIiIiIiIiIiWk4M\n9BAREW0A2XwW0UwMdq1tweuNagMAIJ5h2y0iIiIiIiIiIiIiIiKijY6BHiIiog0gkA4BAOxa64LX\nG1RSoCeWTazaPhERERERERERERERERHRymCgh4iIaAMIpIIAsHiFnmKgJ7Zq+0RERERERET/P3t3\nHuTqYZd7/nm1qyW1pJb6LH2623bsOIuv7UBIYKikKmNuwp0MVHLJgMO4kiG4gAJSBRRTJAyQIjZz\nkyEkqaQ8BQGGhITkErbrGdeFGm5ihztQwTchFTteshAvvZ2lta+v1nf+0Puqz9Z91N16Jb3q7+ev\n45b06udzTveRXj3v8wMAAAAAwB0EegAA8IDRAz2s3AIAAAAAAAAAAAC8jkAPAAAeUDAHK7cy+6zc\niocGgZ56m5VbAAAAAAAAAAAAgNcR6AEAwANGbeipsnILAAAAAAAAAAAA8DwCPQAAeEBf2uY4AAAg\nAElEQVTBLMqQoVQ4ed3bnUBPvUNDDwAAAAAAAAAAAOB1BHoAAPCAgllSMryogC9w3dtjdqCn1qlP\nciwAAAAAAAAAAAAALiDQAwDAjOv1eyq1ylqKpPa9T9gfUsAXUK1NoAcAAAAAAAAAAADwOgI9AADM\nuHK7or7V11Ikve99DMNQPBijoQcAAAAAAAAAAACYAwR6AACYcQWzJEkHBnokKR6MqU6gBwAAAAAA\nAAAAAPA8Aj0AAMy4glmUJKXD+6/ckgaBHrPXUqffncRYAAAAAAAAAAAAAFxCoAcAgBm319Bzg0BP\nKCZJtPQAAAAAAAAAAAAAHkegBwCAGec09Nxo5VYsOAj01NoEegAAAAAAAAAAAAAvI9ADAMCMGzXQ\nEw8uSJJqNPQAAAAAAAAAAAAAnkagBwCAGVcwS4oFFhQJhA+8XzwYl0SgBwAAAAAAAAAAAPA6Aj0A\nAMwwy7JUMItaiqRueN94yF65RaAHAAAAAAAAAAAA8DQCPQAAzLBap65Ov3PDdVvS3sqteptADwAA\nAAAAAAAAAOBlBHoAAJhhBbMoSSMFemJBGnoAAAAAAAAAAACAeUCgBwCAGVYwS5I02sqtYFwSgR4A\nAAAAAAAAAADA6wj0AAAwww7T0OOs3Kp1Gq7OBAAAAAAAAAAAAMBdBHoAAJhhhwn0+H1+RQMR1do1\nt8cCAAAAAAAAAAAA4CICPQAAzLC9lVs3DvRIUjwYU52VWwAAAAAAAAAAAICnEegBAGCGFcyiQr6g\nYvY6rRuJB2OqdRqyLMvlyQAAAAAAAAAAAAC4hUAPAAAzrGAWtRRJyzCMke4fC8bUs3oye6bLkwEA\nAAAAAAAAAABwC4EeAABmlNk11eg2R163JUnxUEySVGs33BoLAAAAAAAAAAAAgMsI9AAAMKMKZkmS\ntBRJjfyYeNAO9HTqrswEAAAAAAAAAAAAwH0EegAAmFEFsyhJh2voGQZ6aq7MBAAAAAAAAAAAAMB9\nBHoAAJhRxwv0sHILAAAAAAAAAAAA8CoCPQAAzKi9lVuHCPSEBoGeOiu3AAAAAAAAAAAAAM8i0AMA\nwIzaa+hJjfyYmNPQ0ybQAwAAAAAAAAAAAHgVgR4AAGZUwSzKZ/iUDC+O/Ji9lVsEegAAAAAAAAAA\nAACvItADAMCMKpglpcNJ+YzR/7km0AMAAAAAAAAAAAB4H4EeAABmULffVaVd1VIkfajHRQMR+Qwf\nK7cAAAAAAAAAAAAADyPQAwDADCqaZVmyDh3oMQxD8WBMdRp6AAAAAAAAAAAAAM8i0AMAwAwqmEVJ\n0lIkdejHxoMxVm4BAAAAAAAAAAAAHkagBwCAGbQX6DlcQ48kxYILanSb6vV74x4LAAAAAAAAAAAA\nwAQQ6AEAYAYdJ9ATD8UlSfVuY6wzAQAAAAAAAAAAAJgMAj3AHKu0q+pb/WmPAeAICmZJ0tFXbklS\nrc3aLQAAAAAAAAAAAMCLCPQAc2qjsqX/7R9/R49f+Nq0RwFwBE5DTzp8lEDPgiSp1iHQAwAAAAAA\nAAAAAHgRgR5gTn2r+K+yZOmFysa0RwFwBAWzqMVQQkF/8NCPjTkNPQR6AAAAAAAAAAAAAE8i0APM\nqc3qtiQp3yxMeRIAh9W3+iq2ylqKpI/0+IQd6KkT6AEAAAAAAAAAAAA8iUAPMKc2qluSpLxJoAfw\nmkq7qp7V01Lk8Ou2JCkWsht62o1xjgUAAAAAAAAAAABgQgj0AHOo2W1qt5mXJBWaRfWt/pQnAnAY\nBbMoSUdu6IkPV27VxjYTAAAAAAAAAAAAgMkh0APMoc3qzvDXXauncqsyxWkAHFahOa5ADyu3AAAA\nAAAA4H19qy/LsqY9BgAAwEQR6AHmkLNuKxtZkiTl7bYPAN5QMEuSdPSVW3agp95h5RYAAAAAAAC8\nrdVr6zf/6X/X55/6f6Y9CgAAwEQR6AHm0GZ1W5L0PafukiTlm4VpjgPgkPKt4zX0hPxBhfwh1dqs\n3AIAAAAAAIC3XWxcUrld1bO73532KAAAABNFoAeYQxvVLUUDEb0sfZskKdfMT3kiAIdRMI8X6JGk\nRDCmGg09AAAAAAAA8LicfcFqvsGFqwAA4GQh0APMmWbX1KVGTqvxFWWirNwCvKhglhQNRBUNRI58\njFgwplqnPsapAAAAAAAAgMnLNQYXrOabJfWt/pSnAQAAmBwCPcCc2aruSJLWE6taiqRkyBhewQBg\n9lmWpYJZ1FIkdazjxIMxdfodtXrtMU0GAAAAAAAATN6u3UDf6/dUbXMBGwAAODkI9ABzZrO6JUla\nT5xTwBdQKpxU3iTQA3hFvdtQu9c+1rotSYqHYpKkGic5AAAAAAAA4GG5y85vF1u00QMAgJODQA8w\nZzbshp61xVVJUja6pHKrok6/O82xAIyoYK/IG0dDjyTVWbsFAAAAAAAAD8vZDT2SVDTLU5wEAABg\nsgj0AHNms7qliD+s5WhGkpSJLMmSNQwJAJhtRbMkScdu6InZgZ4qgR4AAAAAAAB4VLffHZ4vk6Ri\nq3TAvQEAAOYLgR5gjpjdli42drWaWJHPGHx7Z6NLkqR8k7VbgBcUxhToSdDQAwAAAAAAAI/Lm0VZ\nsnRm4ZQkXRHuAQAAmHcEeoA5slXbkSVL64nV4dcyTqDHJNADeMG4Vm7FQoNAT41ADwAAAAAAADwq\nZ1+o+tL0rZKkYouVWwAA4OQg0APMkc3qtiRpLXFu+LVMxGnoYeUW4AV7gZ7jNfTE7YaeWptADwAA\nAAAAALwp18xLkm5ZXJff8KlEQw8AADhBCPQAc8QJ9KxfHuiJDkIBORp6AE8omEUFfQElgvFjHWcY\n6KGhBwAAAAAAAB7lBHpOLWS1tJCmoQcAAJwoBHqAObJR3VLIH9KpheXh1xZDCQV8AeXtNz4nwSef\n/pz+z6//X9MeAziSgllSOpKSYRjHOo4T6KkT6AEAAAAAAIBH7drntbPRjLILaZVbFfX6vSlPBQAA\nMBkEeoA50eq1daF+SWvxFfmMvW9tn+FTJrJ0YlZuWZalp3LP6pnCt9TsNqc9DnAorV5btU5dS+Hj\nrduSpIVgVIYMVVm5BQAAAAAAAI/KNwuK+MOKB2PKRNOyZKncrkx7LAAAgIkg0APMie3aeVmytHbZ\nui1HJppWvdtQs2tOYbLJqnXqMnstSdJ27cKUpwEOp2gOgndLkeMHenyGT7HgAg09AAAAAAAA8CTL\nspRr5pWJLskwDGUWBufMiiZrtwAAwMlAoAeYExvVLUnSemL1mtuykSVJg6sZ5t1uMzf89WZ1e4qT\nAIeXN0uSxhPokaRYMKYagR4AAAAAAAB4UKVdVbvf0XI0I0l7gZ5WaZpjAQAATAyBHmBObFYG4ZXr\nN/QMAj058wQEehr54a+3ajtTnAQ4vMKwoSc1luPFgwuqdxrqW/2xHA8AAAAAAACYlJx9gWrWDvRk\nhw09BHoAAMDJQKAHmBObtW0FfUGdiZ265rbMCW3o2aoS6Dkp/u/v/p3+afvxaY9xbIUxrtySpHgo\nLkuWGt3mWI4HAAAAAAAATEquObh4Mzts6Bmc56ahBwAAnBQEeoA50O51dL5+UavxFfmMa7+ts3ZD\nT/4kNPTYb/KSoYTO1y+q2+9OeSK4rdPr6O9ffEx/98IXpz3KsY090BNckCTV26zdAgAAAAAAgLfs\nDgM9g/Pbw5VbZnlqMwEAAEwSgR5gDmzXzqtv9bW+eO26LemkNfTkFTD8uiPzCvWsns7XL017JLis\n3K5IGlyZU/N4cKVgluQzfEqFF8dyvFgwJkmqdrz9+wIAAAAAAICTx2noWbYbehKhmIK+AA09AADg\nxCDQA8yBzeqWJGktsXrd2xeCUUUDUeXs9o95lmvklYlmhuGmrRprt+ZdqVUZ/nqztj3FSY6vYBaV\nDC3K7/OP5XhxO9BTJ9ADAAAAAAAAj8k1C/IZPqXDKUmSYRhKh1MqmgR6AADAyUCgB5gDm9VBiGE9\ncf2GHknKRtLKNwuyLGtSY01cvdNQvdvQcnRJq/EVSdJW1dsBD9xYqbVXsbtZ8e6fd6/fU7lVGdu6\nLWkv0FMj0AMAAK7j+fKGvlt6YdpjAAAAANeVa+a1FElfcfFbKpJSrVNXp9eZ4mQAAACTQaAHmAMb\n1W0FfQGdWTi1730y0Yw6/Y4q7doEJ5usvQrWrM7Fz8qQQUPPCXB5oGfDww09xVZZlqzxBnpCdkNP\nuzG2YwIAgPnx6Wf+XH/81GemPQYAAABwDbNrqtqpKRtZuuLrS3ZbT/Gyc4IAAADzikAP4HGdXkc7\n9Qs6F185cE1PJjoICeTNwqRGm7jdRk6SlF3IKOQP6dTCsraq5+e6lQhXN/RsTXGS4ynYK/EykdTY\njuk09FQ78xvkAwAAR2NZlgpmUZV2VY1Oc9rjAAAAAFfINQfnsbMLmSu+no4kJUmlFmu3AADA/CPQ\nA3jcTv2C+lb/wHVbkoZXMuSbcxzouayhR5LWEisye+Zch5gglVoVSdJK7IxyZkGNjjfbaJxAjxsr\nt+oe/T0BAADuaXSb6lo9SXtNlwAAAMCsyNnndJejVwV6nIYek4YeAAAw/wj0AB63UR2sGFpLrB54\nv0zUDvTMcbhlL9AzeJO3Gl+RJG1VWbs1z8qtsnyGT6/I3C5Jnl2z5kagJ2YHemqd+tiOCQAA5kPZ\nDkVL0m4zN8VJAAAAgGs5ofPsVYGeVMRZuUVDDwAAmH8EegCP26wOVgyt3aChJ2M39OTmuqEnJ5/h\nU8YORKwmBoGeTY8GPDCaUquixVBCNyXWJO2F3LymYA5OQiyNceVW2B9SwBdQrU2gBwAAXKncvjzQ\nQ0MPAAAAZovzGtVpnnekw4OVW0WTQA8AAJh/BHoAj9uobivgC2gldvrA+zkhl7leudXIaymSlt/n\nl0RDz0nQt/oqtcpKhZNat1uqNj0a6HFOQqTHGOgxDEPxYIyGHgAAcI0rGnoaBHoAAAAwW3INp6Hn\nqkCPfe6sQEMPAAA4AQj0AB7W7Xe1U7ugc7GzwxDLfoL+oJKhxbldudXsmqp2alfsVE6E4kqFk55d\nwYQbq3Xq6lt9pcJJZaNLigYi2rBbq7ymYBYVD8YU8ofGetx4MKY6gR4AAHCVSqs6/DUrtwAAADBr\ncmZBiWBckUDkiq9HAxFF/BGVzPKUJgMAAJgcAj2Ah+3UL6hn9bS2ePC6LUcmuqRiq6xev+fyZJPn\n7FRejmav+Ppq/KxKrbKq7do0xoLLSq3BG/dUeFGGYWg1vqJLjZyaXXPKkx1O3+qr0CppyW7SGqd4\nMCaz11Kn3x37sQEAgHeV7JVbhgxWbgEAAGCm9Po9FcyispddvHm5dCSpIg09AADgBCDQA3jYZmWw\nWmg9PmKgJ7KkvtWfyzc7zocQywtXvslbTQx+b2jpmU/OqoiUvTvbWbu1XTs/tZmOotquq9vvuhPo\nCcUkiZYeAABwhYr9OmolfkaVdlVmtzXliQAAAICBYqukvtW/Zt2WIx1Oqdk1ZXrsoj4AAIDDItAD\neJizWmjUhp5sdBAWyDXnb+3WbmOwJmD5qqs2VuMrkqStKoGeeeQ09CTDi5KkNTvA5bW1WwWzKEla\nsneAj1MsOAj01NoEegAAwJ5yuyKf4dMtyZsk7TVeAgAAANPmXLx5UEOPJBVbrN0CAADzjUAP4GGb\n1R0FDL9WYmdGun/GfgOUN+cv0LP/yi070ENDz1wqXdPQMwj0bFa3pzbTUewFetxYubUgSarR0AMA\nAC5TblWVCMZ1emFZkli7BQAAgJnhXJB69cWbjnR4cFFc0Zy/JnoAAIDLEegBPKrX72m7fl4r8TMK\n+AIjPSZrhwXyzaKbo03FbjMvQ4YyV9WwZqJpRfwRGnrmVMkcXIWTsht6lheyCvtD2iDQMxQPxiUR\n6AEAAHssy1KlXVEyvDj8kGS3mZvyVAAAAMCAc/Hm1ed6HWm75brYItADAADmG4EewKN26hfV7XeH\nK4ZG4bwBmseGnt1mXulISsGrwk0+w6dz8bO62NhVu9ee0nRwi7Nyy2no8Rk+rcZXdLF+SS0P/XkX\n7KuJXAn0hOyVWwR6AACArdltqtPvKhlODBsudxs09AAAAGA27LWx36ihh5VbAABgvhHoATxqs7ol\nSVpLrI78mFQ4Kb/hH1aWzot2r61Sq7zvTuW1xIosWdquXZjwZHBbqV3RQiCqkD80/Np6YtX+8z4/\nxckOx2noydhXF43TcOVWm0APAAAYKLerkqRkaFGZ6JIMGTT0AAAAYGbkmgWFfEEthhLXvT0dGVzc\nR0MPAACYd64Fevr9vt73vvfp3nvv1Tve8Q69+OKLV9z+6KOP6m1ve5vuvfde/cVf/MWBj8nn8/r5\nn/953XfffXr729+ujY0Nt8YGPGPTXim0foiGHp/h01IkpfycBXputFN5Nb4iSdqqsXZr3pRb5WE7\nj8NprdqwQ29eUDCLivjDigaiYz+2s3KrTkMPAACwlVsVSdJieFFBX0DpSEq7TRp6AAAAMH2WZSnX\nzCsbzcgwjOveJ2U39JRo6AEAAHPOtUDPF77wBbXbbX3+85/Xr/7qr+qDH/zg8LZOp6MPfOAD+pM/\n+RN95jOf0ec//3nlcrl9H/OhD31IP/qjP6rPfvaz+uVf/mU999xzbo0NeMZGdVs+w6eV2JlDPS4T\nWVK1U/PUOqIbca4m3jfQYwc8tuwQFOaD2W2p2TWVDC9e8XUn0LPpoT/vglnSUiS970mK44gFWbkF\nAACu5AR6UqHB66jlaEalVlntXmeaYwEAAACqdeoyey1lokv73ifkDyoejNHQAwAA5t5IgZ5C4fBt\nHv/yL/+i17/+9ZKkV73qVXrqqaeGt333u9/V+vq6ksmkQqGQXv3qV+srX/nKvo/52te+posXL+qn\nfuqn9Mgjj+i1r33toecB5kmv39N2bUcrsTMK+oOHeqzzRmieWnqcq4mXF7LXvf1s7JT8hl9bHlrB\nhBsrtwZX4Fzd0HN6YVlBX9AzgZ5GpymzZ2rJhXVbEiu3AADAtcptp6FnsMLACcbnaOkBAADAlDmv\nSfe7eNORDidVMEuyLGsSYwEAAEzFSIGe++6779AHrtVqisfjw//2+/3qdrvD2xKJvd2nsVhMtVpt\n38dsb29rcXFRn/rUp3T27Fn90R/90aHnAebJhcYldfrdQ63bcmQjdqDHnKNAT+Pghp6AL6CzsdPa\nrp1X3+pPcjS4qORcWX5VoMfv82s1flbn6xfV8cBV5gWzKElaiqRdOb7f51c0EKWhBwAADFVaVUka\nNh06wXjWbgEAAGDacvaFqNkbBHpSkZQ6/Y7q3cYkxgIAAJiKwCh3evnLX66HH35Yd911lyKRyPDr\nKysr+z4mHo+rXt/78LDf7ysQCFz3tnq9rkQise9jUqmU7rnnHknSPffco49+9KMHzptOLygQ8I/y\nv4YJW15O3PhOuKGna4P2qleu3Hro39NbmivSc5Lpr8/Nn0f56UG16svXblIkEL7ufW7L3qStF3bU\niTS0unh2kuPBJc/WB2vj1rKnrvm7fPupW/R8ZUONYEW3ZW6eyDxH/X56sW1KktYyZ1z7nkxG4mp2\nm3PzPQ9gsvjZAcyf5ncGH3q85OyK0tGEbm2tSv8qNX21E/U9f5L+XwGcPPyMA+BVjUs1SdJtZ1av\n+7PM+dpKalnfyElGtKPlND/zAHgfr98AXM9IgZ4nnnhCTzzxxBVfMwxDX/ziF/d9zPd+7/fqscce\n05vf/GZ9/etf1+233z687dZbb9WLL76oUqmkhYUFffWrX9X9998vwzCu+5hXv/rV+od/+Ae99a1v\n1Ve+8hXddtttB85bLJLInkXLywnt7lanPcZceHrnXyVJKWUP/Xsa6gzW77yYO6/d9Hz8eWyXLykZ\nWlS12FZV7eveJxtcliQ9+eJ3FD4Tv+594C2buxclSf52+Jrvg2zglCTpyc1vK9k/+GqecTjOz7fn\nLw5WwYV7Udd+RkZ9Ue22Crp0qSLDMFx5DgDziddvwHzarRRkyFC7Ku3Wqgp3YpKk53PbJ+Z7np9v\nAOYZP+MAeNmLuR1JUqB97bmyy3++RazBee7nLuwo1nVnlT0ATAqv34CT7aBA30iBnkcfffTQT/rG\nN75R//RP/6S3v/3tsixL/+E//Ac98sgjajQauvfee/Xe975X999/vyzL0tve9jadPn36uo+RpPe8\n5z36zd/8Tf35n/+54vG4PvzhDx96HmCebFS25TN8Ohc/fNNMxlm51SyOe6yp6PS7Kpol3Zq6+cD7\nrcYHjWJbtR29Rt8zgcngtlK7LElKXrVyS9JwHd1mdXuiMx2F2yu3JCkWjKln9WT2TEUDUdeeBwAA\neEO5VdFiKC6fMdjCnY0O3iPkGqzcAgAAwHTlmnkZMpS5wbmydHgQ4imapUmMBQAAMBUjBXoKhYIe\neOABffnLX1av19MP/MAP6Ld/+7eVzWb3fYzP59MDDzxwxdduvfXW4a/vueee4Rqtgx4jSefOndMn\nP/nJUUYF5l7f6murtqOzsdMK+YOHfnwsuKCwP6S8WXBhusnLNwuyZGk5uv/PI0laTQzCT1vVnUmM\nhQkomYNATyq8eM1tZ2OnFTD82iDQI0mKhwZX3dfaDQI9AACccJZlqdyu6kzs1PBrIX9IqXBSu83c\nFCcDAAAApFyzoHQkpYDv4I+v0hE70NMqT2IsAACAqfCNcqf3ve99uvPOO/XFL35Rjz76qO6++279\nxm/8htuzAbiOC/VL6vQ7WrMbSA7LMAxlIkvKNfOyLGvM002e86HDcvTgtUrRQFTZyJK2ajtz8f8N\nqdSqKGD4FQ/GrrnN7/NrJX5WO7UL6va7U5hudAWzpIDhVyLk3io45/eo1qm59hwAAMAbml1TnX5H\nydCVoejlaEYFs6TOjL92AgAAwPxq9zoqtyvK3uBcr0RDDwAAOBlGCvRsbm7q/vvvVzwe1+Lion7m\nZ35GOzu0XADT4KwQOmqgR5Iy0SW1em3VO41xjTU1u83BWoDlhYMbeiRpNbGiWqeuEldtzIVSq6xk\nOCnDMK57+3rinHpWT+frFyc82eEUzKLSkdRw5YUb9gI9ddeeAwAAeEOlXZEkJcNX7uZejmZkyVKh\nOR9NngAAAPCenH2uNxtZuuF9U+FFGTJUbBHoAQAA82ukTw8Nw9D58+eH/72zs6NAYKRtXQDGbKO6\nJUlaT6we+RjZ6OAN0Tys3XLe5N2ooUeSVuODENRWjUCi1/X6PVXa1euu23I4oTfne2YWtXsdVTs1\nV9dtSZcHerwf4gMAAMdTatmBnmsaegYBeScwDwAAAEzaYc71+n1+LYYSKppcvAkAAObXSKmcX/ql\nX9K9996ru+++W5Zl6YknntCDDz7o9mwArmOzui1DhlbjZ498jIx9hUOuWdBNi2vjGm0qdhv2VRuj\nBHoSg9+zreqO7sy+0tW54K5qpyZLllLh5L73cUJvm9XZDXA5VxA5O7/dEg8NAj11GnoAADjxKu2q\nJGnxqmB0dmHweppADwAAAKYlZ1+A6rw2vZF0JKXN6rb6Vt/V9msAAIBpGSnQc/bsWT388MN68skn\n1e/39f73v1+ZzGgvqACMT9/qa7O2o7Ox0wr5Q0c+zjw19Ow2c0oE44oGIje8r9PYQkOP9zlr05IH\nNPScjZ+Rz/DNdENPwSxKkusNPTGnoadNoAcAgJOubDf0XN10uNfQk5v4TAAAAIB0uJVbkpQOJ/VC\nZUPVdu3A84QAAABeNVKg51d+5Vf0d3/3d3rDG97g8jgADnKpsat2rz0MphzV5Q09Xtbr95Q3i7p5\nxJahZGhR8WBMWzPc2ILRlOwq3YMaeoK+gFZiZ7RdO69evye/zz+p8UY2qUDP3sotAj0AAJx05fYg\n0LMYSlzx9WU79O80YAIAAACT5rRFjtLGLu21XhdbJQI9AABgLo0U6Lntttv00EMP6e6771YksteC\n8ZrXvMa1wQBca6O6LUnHDvQ44YG8xwM9BbOkvtUf+Q2eYRhaja/om8XvqNltKhqIujwh3FIaXlm+\nf6BHktYT57RV29GFxiWdO8aaOrcUzMHKrYzbK7cI9AAAAJvT0HP1Bx6RQESJUJyGHgAAAExNvllQ\nLLCgheBo523T9rnBolnWzeR5AADAHBop0FMqlfT444/r8ccfH37NMAx9+tOfdm0wANfatAM964nV\nYx0nEggrEYx7fuWW82HD8oiBHklaTQwCPVvV83pp+iVujQaXOSu3bhToWUuck85/RRvV7RkN9Eym\noScaiMhn+Fi5BQAAVG5VZchQIhi/5rblaFYvVDZmtt0QAAAA86tv9ZVvFnQuvjLyY1KXNfQAAADM\no5ECPW9+85v1kz/5k27PAuAGNqpbMmRoNTH6m5r9ZKJL2qxuq2/15TN8Y5hu8pwK1uVoduTHrNlv\nCLdqOwR6PGyvoefgS2/W7PDbZnVb/93Z73N9rsMqmEUZMm4YTDouwzAUD8ZUp6EHAIATr9KuKBGK\nXzewsxzN6LnyCyqYJS0vjB6aBwAAAI6r1Cqra/WUtVfBjiIdtgM9JoEeAAAwn0b6FP+zn/2s23MA\nuIG+1ddWdUenF5YV9oeOfbxMJK2e1RtW7nvRsKHnEB82OGGoreqOKzNhMsp2Q8+NdmOfi5+Vz/Bp\ns7o1ibEOrWAO9nsHfCPla48lHoyxcgsAgBPOsiyVWxUlQ4nr3u4E5Vm7BQAAgEnL2RdvZg/Rxp6O\n2Cu37HOFAAAA82akTxDPnDmjd77znbr77rsVDoeHX3/3u9/t2mAArrTbzMvstYaNI8eVsa90yDXz\nStvVpF6z2zh8Q8+phWUFfUFt1rbdGgsTUGqVFQ/GbhiECfmDOrNwSlvVnZlro+r1eyq1yrp5cW0i\nzxcLLminfoEVGgAAnGBmr6V2v7NvKNoJyjtNmAAAAMCk5JoFSYcL9CyGEvIZPpVo6AEAAHNqpE82\nX/WqV+m1r33tFWEeAJO1WRk0jKwvnhvL8Zzq0pxZHMvxpmG3mddCIKpYcGHkx2QpyZoAACAASURB\nVPgMn87Fz+pC/ZK6/a6L08EtlmWp1CqPvKZqLXFO7X5Hlxq7Lk92OOV2RX2rr6VIeiLPFw/FJUn1\nbmMizwcAAGaP0865GNon0BN1Aj009AAAAGCynFD58iFWbvkMn9LhJA09AABgbo3U0PPud79bjUZD\nGxsbuv3222WaphYWRv8AHcDxbVQHjTLr42roiQzeGOXtKx+8pm/1lW/mdS6+cujHrsbP6oXKhs7X\nL2otMZ6AFCan2TXV7ncOFeh5/MK/aKO6rTOx0y5PN7qCfeXQxAI9wZgkqdaua3GfNRsAAGC+VdqD\nQM++DT1OoKdBQw8AAAAm6ygrtyQpFU7pufILtFIDAIC5NFJDz5e//GW95S1v0S/8wi8ol8vpnnvu\n0T/+4z+6PRuAy2xUt2TI0Gr87FiO5zT05E1vBnqKZlldqzdcC3AYq3aIZ6u6M+6xMAEl+4qb1D4f\nRF3NCcFtVmdrzVrBbsdamtDKu7jdZFXr1CfyfAAAYPaUWk6g5/rh3oXggmLBBVZuAQAAYOJyzbwC\nvsC+4fP9pCNJWbJUtsPrAAAA82SkQM9HPvIRfe5zn9Pi4qJOnTqlP/uzP9Pv/u7vuj0bAFvf6muz\nuqNTC1lFApGxHDMdTsmQMdxN7DXOGoDlQ16xIUmrdqvPZo1Ajxc5qyJGbeg5Fz8rQ8YMB3om1dAz\nWLlFoAcAgJOr0q5KkpL7rNySpOVoVvlmXn2rP6mxAAAAAOWaBWUiS/IZI31sNZQODy6WK5qs3QIA\nAPNnpFdG/X5fy8vLw/++7bbbXBsIwLVyzYLMnjnW9VB+n1/pSMqzK7f2dipnD/3Yc/EzMmTQ0ONR\nTkNPcsRATyQQ1qmFZW1Wt2fqg6nJB3oGDT11Aj0AAJxY5dbBK7ekQWC+a/X4QAQAAAAT0+g01Og2\ntWy3yh9GOuIEeorjHgsAAGDqRgr0nDlzRo899pgMw1ClUtHv//7va2Vlxe3ZANg2q1uSNNZAjyRl\nI0sqtyvq9DpjPe4kODuVj7JyK+QP6fTCsrZrOzMV8MBoDrtyS5LWE+dk9lrDvzezoGCWJE0u0BML\nxSRJtTaBHgAATion0LMYuv7KLWmvAdNpxAQAAADc5ly8mTlCG3vavuiv2CKQDgAA5s9IgZ4HHnhA\njzzyiM6fP683vvGNevbZZ/XAAw+4PRsA24a9Kmg9sTrW42bsKx4KHrx64TgNPZK0mliR2Wsp3/Te\n//tJtxfoGa2hR9oLw23M0NqtgllULLigsD80kedj5RYAACi3KzJkHBzoWRi8vt6doSA0AAAA5tvw\n4s2jBHqchp5WaawzAQAAzIKRAj2ZTEYf+chH9M///M96/PHH9fGPf1ynTp2SJP3Wb/2WqwMCkDbt\nEMJaYrzNWJnIINCT82Kgp5FTxB9WPBg70uNX44Pfy60aa7e8pmRfWX6YQM+6HejZnJFAj2VZKpil\nibXzSHsrtwj0AABwclVaVcWDMfl9/n3vQ0MPAAAAJi3XLEiSskdZuRV2Vm7R0AMAAObPSIGegzz1\n1FPjmAPAPizL0mZ1W6eiWUUD0bEeOxMdhAnyHrv61rIs7TbzWo5mZBjGkY7hNLZszUjAA6Mrt8oK\n+YKKBiIjP2bVDsPNSqCn1qmr0+9MNNATC7JyCwCAk67Urih5g7WlTgNmruGt9wgAAADwruM09MSC\nCwr6AjT0AACAuXTsQA8Ad+XNghrd5jCAMk7OFQ85szD2Y7up3K6o0+8oe4Q3eA4aeryr1KooFU4e\nKswVDUS1HM1os7oty7JcnG40zpq7JbsSeBJC/qBC/pDqNPQAAHAimV1T7V5bi+H9121Jgw9EooEI\nK7cAAAAwMc5rz6XI4Rt6DMNQOpxS0STQAwAA5g+BHmDGbQzXbY0/0JOJDAIx+aa3Vm7t2lcLLy9k\nj3yMeCimVDipzSqBHi/p9Luqdmo3vLL8etYTq2p0m8rPwIq5/DDQM7mGHklKBGOqdRoTfU4AADAb\nys7a0tDBr6MMw9ByNKPdZl59qz+J0QAAAHDC5ZoFpcJJhfzBIz0+FUkNGrF7nTFPBgAAMF0EeoAZ\n56wIWk+sjv3Yi6G4gr6g8h5r6Nk9RgXr5VbjKyq3K6q2a+MYCxNQcT6ICicP/VgnFLdR3RrrTEdR\nmFKgJxaMqdapzURLEQAAmKxyuypJWhwhGL0czarT76hiPwYAAABwS6ffValVHrbJH8VSeNCCXWyV\nxzUWAADATDh2oIcPBQF3bVQG4QM3GnoMw1Amklau6bVAT07SGAI9CXvtFi09nlEaQ6DHCclNk1MB\nPMmVW5IUD8bU6XfV7nO1EgAAJ43T0JO8QUOPtPc6e7eRc3UmAAAAoNAsyJKlbOTo53rTkcG5wlKL\ntVsAAGC+HDvQ84M/+IPjmAPAdViWpc3qtrKRJS0Eo648Rya6pGa3qUan6crx3TBs6DnGyi1JWovb\ngZ4agR6vKNlX2Xg90FNwAj3hyTb0xEMxSVKtXZ/o8wIAgOkrt+1ATzhxw/tm7dfZzutuAAAAwC3O\na87sMS7eTDsNPSYNPQAAYL6MFOjZ3t7Wu971Lr3pTW/SpUuX9M53vlNbW4PWkF/7tV9zdUDgJCuY\nJdW7Da0tjn/dlsOpMvXS2q1cI6egL6jF0I0/jDiI09AzCwEPjKY8DPTc+Mryq8WCC8pE0tqsbk+9\nXa5gFhXyBRULLkz0eeNBO9DTYc0cAAAnzbChZ6SVW3ZDD4EeAAAAuCxnn5dePsbKrVTEWblFQw8A\nAJgvIwV63ve+9+n+++9XLBbT8vKyfuRHfkTvec973J4NOPE2q4Pg3LoL67YcmYgd6PHI2i3LsrTb\nzGs5mpHPOF7JWCaypIg/oq3a+TFNB7eVhh9EHb6hR5LWEquqderDpp9pKZhFLUXSMgxjos8bGwZ6\nGhN9XgAAMH2VdlXSqCu37IYeVm4BAADAZTmnoWfhOA09g3OFTis2AADAvBjp0/BisajXve51sixL\nhmHoJ37iJ1SrcXU/4LYNuzlmPeFeQ0/GvvIh55GGnlqnLrPXGl41fByGYWg1cVaXGrtq9dpjmA5u\nKx2joUfaW7u1YYflpsHsmmp0m1qKTHbdliQl7EBPvcPKLQAAThqnoWeUlsvFUFwhf4iGHgAAALhu\nGOiJHCPQQ0MPAACYUyMFeiKRiC5cuDBsEvjqV7+qUCjk6mAA9kIHzmooN3itoWe3ObhK+DhXbFxu\nLX5Olizt0NLjCaVWWYaMI69bc9quprlmzblSaMk+0TBJsZDT0EOgBwCAk6bcrigejMnv89/wvoZh\naDma0W4zN/VVpQAAAJhvu82CIv7IsVbTRwMRRfwRlczptnIDAACMW2CUO733ve/Vz/3cz2ljY0Nv\nectbVC6X9bGPfczt2YATzbIsbVa3lYmkFbdbNdyQjQ5aQrzS0LPbGFyx4awBOK5zdlhqs7qjW5I3\njeWYcE+pVdFiKDHSB1HXszYTgZ6iJE2locf5WVJrE+gBAOCkqbSqw3bOUSxHs9qunVe1UztymBoA\nAAA4iGVZyjfzOrNw6tir6dORJA09AABg7owU6Lnpppv0V3/1V3rhhRfU6/X0kpe8RLu7u27PBpxo\npVZZtU5dt6Ve4urzRANRxQILyjeLrj7PuDi1/+NYuSVJa/FBoGertjOW48E9lmWp3K7oXOzskY+R\nCMWVCieH6+ymYSYCPTT0AABwopjdlsxeS8nQ6GtLndfbu408gR4AAAC4otyuqNPvKjuGc73pcErn\n6xdldk1FApExTAcAADB9B67cOn/+vHZ2dnTfffcpl8spFotpcXFRFy9e1P333z+pGYETyVm35awI\nclMmmlbBLHiiTt9ZuTWuhp4zsVPyG/65CPQ8X97Q+//5d3Whfmnao7ii3mmo2+8qFR79g6jrWU+s\nqtKuqtyqjGmyw9lbuTW9QE+dQA8AACdKpT143ZM8xOuoYaDHfv0NAAAAjFuuOWiNH0ugJ5KUJBVb\nrN0CAADz48CGno9//ON6/PHHdenSJd133317DwoE9IY3vMHt2YATzWkQWZtEoCeypI3qtirt6qFO\n8k/DbjOvgOEfvkE7roAvoJXYae3UzqvX7x15ldMs+P+2v6xLjZy+WfiOzsROTXucsXPejCfDx/uz\nX0us6Mnc09qobunO8CvHMdqh7DX0pCb+3AvBqAwZqrJyCwCAE8UJMicP0bSzvOAEevKuzAQAAAA4\nrzWzh1gNu590eHCurWiWdDZ2+tjHAwAAmAUHBno+8IEPSJL+8A//UD/7sz87kYEADGzagZ71xKrr\nz5Wx3zDlmoWZD/TkGnllohn5jAMLxg7lXGJFm7UdXWrmPPtmr9fv6an8s5KknDmfH7qU7UDPOBp6\npMH32J3Z6QR6fIZvKt9rPsOnWHCBhh4AAE6Ycrsq6bANPYNGzN0GDT0AAABwR34Y6BlHQ48d6GmV\njn0sAACAWXFgoMfRbrf10EMPXfP1d7/73WMfCIBkWZY2qltKh1OKh2KuP18mMgj05M2CbtXNrj/f\nUdU7DdW7Dd2SXB/rcVfjK5IGAQ+vBnqer2yo3mlI2quqnTelYaDnuA09g9arzep01qwVzKLS4dRY\nQ2mHEQvGVCPQAwDAieI09CweItCTDC8q4AvQ0AMAAADXOK81l8cR6Bk29LByCwAAzI9Df5rY6XT0\n6KOPKp/npB7glnK7omq7pvVF99t5pL1K0/yMB0Fywzd42bEe1wl4bNWmE/AYhyd3nx7+etb/HI+q\nZH8QddxATzK8qMVQQhvVrXGMdSidflfldnUq67Yc8eCC6p2G+lZ/ajMAAIDJKrcPv3LLZ/iUjWa0\n28zJsiy3RgMAAMAJlmsW5DN8xz7fJ0npyOAYNPQAAIB5MlJDz9VNPL/4i7+on/7pn3ZlIAB767bW\n4ucm8nzDlVvmbAdBnLr/7MLxr9i43Ln4WUnS1pQaW47Lsiw9mXtaIX9I6XBKObMgy7JkGMa0Rxur\nca3ckqT1xDk9lf+mqu2aEqH4sY83qqI5OKGwFElP7DmvFg/FZclSo9tUPOh+AxgAAJg+p6HnsCs/\nl6MZXahfVL3b4HUDAAAAxi7XzCsTScvv8x/7WCm7oadEQw8AAJgjR9r3Ua/XtbPjzQ++AS/YqAya\nQ9YXJxPoWYqkZciY+WaXXZcaeqKBiLLRjLZqO568+vhiY1e7zbxeuXS7zsZOqd1rz+VKpdLwg6jj\nX7HjtDJt2OG5SSmYRUlTDvQEFyRJ9fb8/R0BAADXV2lVJUmLh2jokfZWH+w2aOiFt/X6vWG4HgAA\nzIZm11StU1d2DOu2JCnkDyoejKnQKo7leAAAALNgpIaee+65Z9j0YFmWKpUKDT2Ai5yQgRM6cFvQ\nF1AyvKicZwI9423okaTV+Iq+vvsNlVplpae4DukonswN1m3dlb1D27XzkgZXt0yyeWYSSq2yIv6I\nIoHwsY+1lhiss9usbuuOzMuOfbxRFWagoSdmX11f7dR1empTAACASSq3K4oHYwr4RjoFMOQE6Xeb\nOd2SXHdjNGAi/svGP+g/P//3+vXX/LJW4memPQ4AAJCG56LHea43HU7qQmN3LtvLAQDAyTTS2bzP\nfOYzw18bhqHFxUXF4/P1QTEwSzarW0qFk4e+gvY4MpElPVd+Qb1+bywVp27YbebkM3zKuBCGWEsM\nAj1btR3PBXq+kXtGhgzdkXm5Wr2WpMEb4luSN015svEqtcpKRY7fziMNVm5Je+vtJmWvoWd6f8cS\ndqCnPoctTgAA4PrKreqRXn8s26tunWA94FX/WnpOfauvJ3NPE+gBAGBG5OzXmJno0tiOmYqktFnb\nYWUsAACYGwcGeh5++OEDH/zWt751rMMAkMqtisrtqu7MvnKiz5uNLum75edVMEvDE/ezZreR19KY\ndipfbTW+ImkQ8Jj07/1xVNpVPV/e0K2pmxUPxZSxr2iZ9balw2r3Omp0m1q3m3WOKxVOKh6MabO6\nNZbjjWoWVm45DT3zuJYNcEun35Xf8MlnHGlbLQBMVavXltkzlQwvHvqxw4YeVm7B43ZqFyRJT+e/\nqX938w9NeRoAACDtBXrG29AzCLEXzTKBHgAAMBcODPQ8/vjjBz6YQA8wfk5jyPqE1m05nNabvFmY\nyUBPs2uq2qlpNbHiyvGd427ZK6u84qncN2XJGoaQsvYVLTlzvj50KbXKkgZBnHEwDENriXN6tvBt\n1TsNxYILYznujTiBnmm2QMVDdqCnTaAHGEWv39Nvf/n/0ErsjH7+7ncR6gHgOeVWRZKUDB0+0JMO\nJ+U3/Mo1c+MeC5iYeqehcnvwffB8eUO1Tp0P+AAAmAFOoCc7zkCP3e5dapW05tJ5ZAAAgEk6MNDz\ngQ98YPjrTqej559/Xr1eTy996UsVCIy0rQvAIW3YjSHjaiIZlVNtOngj9dKJPvco9q7YyLpy/GRo\nUfFgTFvVHVeO75Ync09Lku6yAz1LkbQMGcrPWUNPeRjoOfwHUftxAj2b1W29fGkyf+cLZknJUEJB\n3/T+DY3T0AMcyoXGJZVaZZVaZX3hxX/Qm27+76c9EgAcyjDQc4TXUX6fX5lompVb8LQd+6KNsD+k\nVq+tb+a/re878z1TngoAADgN45nI+FZu7TX0lMZ2TAAAgGka6RLjp556Sj/8wz+s9773vfr1X/91\nveENb9ATTzzh9mzAibRhN/SsTbyhZ/DGKW83iMwa50MEt9qDnMaWvFlQo9N05TnGrd1r65uF7+jM\nwimdWliWJAV9AaXCyblbuVW0Az3JMTX0SHuhOacVy219q69SqzzVdVvSXqCn3mlMdQ7AK7Yva257\n5Pn/Vy9UNqY4DQAcXsVuJlkMJ470+OVoVrVO3TOvkYGr7dQvSpJet/IDkqSn8t+a5jgAAMC228wr\nEYorEgiP7ZhOK7ZzLhEAAMDrRgr0/M7v/I4++tGP6m/+5m/08MMP66GHHtKDDz7o9mzAibRZ3VYy\nlDjSFbTH4axqmtVml1xj/DuVr7YaH9Swbte80dLzzcJ31Ol3dNfyHVd8PRNNq9Qqq9vvTmmy8XOu\nLHdqc8fBCc1NKtBTaVfVs3pTXbclSTE70FPt1KY6B+AVTqDnf7j538qyLH3y6f8os2tOeSoAGJ3z\nOip1hJVb0t7r7xwtPfAop6HnNWe+V8lQQs8WvqW+1Z/yVAAAnGy9fk/FVmns53pp6AEAAPNmpEBP\no9HQ3XffPfzvV73qVWq1Wq4NBZxU1XZNpVZZaxNetyUNKvgDhl85czYDPbvNnCT3Vm5J0mr8rCRp\n0yOBnm/knpEk3Wmv23JkIxlZslSY0baloygNG3rGF3TLRNJaCESHa+7c5vx5TLuhJ+wPKeALqN6m\noQcYhRPouWftdXrjTW9QrpnX57/98JSnAoDRldtVSdLiEV9HOa+/ndfjgNfs1C/IZ/h0JnZKd2Re\nrlqnrhcrk3kPAAAArq9gltS3+sqOOdCTCi/KkKFii0APAACYDyMFepLJpL7whS8M//sLX/iCUqnp\nNgwA88gJFqxPeN2WJPkMn5Yi6Zlt6Nlt5mXIUCY6vp3KV1u1f9+3qrMf6OlbfX0j96wSwbhuXly7\n4janbWme1m6VnCvLx7hyy1mzttvMq9l1f4VEoTkbgR7DMBQPxlTr1Kc6B+AV27XzSodTWggu6Edu\neZNuSqzpv134mv7bha9NezQAGEm5NQj0JI/a0GOvvN2loQceZFmWdmoXdWphWUFfQHdkXyFJejr/\nzSlPBgDAyea0P2Yj4z3X6/f5tRhKqGiycgsAAMyHkQI9Dz74oD7xiU/o+7//+/Xa175Wf/AHf6D3\nv//9bs8GnDjO6p+1KQR6JCkTXVKtU5fZnb0Grt1mXulISkFfwLXnOLWQVcgX1JYHGnpeqGyq2qnp\nzuwr5DOu/FGemcNAT7lVlt/wK26vixqXvbVb7v+ZF+yq36Upr9ySZAd6WLkF3Ei1XVOlXdU5u8HN\n7/PrXXf8zwr7Q/r8t/4T62cAeEK5PQhGL4YTR3q8swZht8HPPHhPwSzJ7JlaiZ2WJL0sfZv8hp9A\nDwAAU+aExcfd0CNJ6UhKpVaZFZsAAGAujBToufnmm/WXf/mXeuyxx/Too4/qU5/6lF7ykpe4PRtw\n4mzYgZ71xcmv3JIGK4gkKT9ja7favbZKrbIrb/Au5zN8Ohc/q/P1i+r0u64+13E9ufu0JOmu5Tuu\nuc35fZq1P8fjKLUqWgwlrgkvHdf6MNCzPdbjXk++NRsNPdIg0NPqtdXpdaY9CjDTnHVbzkpGadBU\nce/t/15mr6VPPv0f1ev3pjUeAIyk0qooFlw4cjB+KZKWz/CxcguetFMf/Fu+Ehv8Wx4NRHRr6hZt\nVLdUsdfRAQCAycuZg0CP0wY5TulwUj2rp2qbi9kAAID3jfTJ6GOPPaYPfehDsixLP/7jP64f+qEf\n0mc/+1m3ZwNOnI3KlhKh+JHr8I9rGASZsWYXp2lm2eVAjySdS6yob/V1vn7B9ec6jm/knlHQF9TL\n0rddc9u8rdzqW32V25WxrttyrE0w0FMwZyjQExo0HdW7jSlPAsw2J9CzclmgR5K+/+yr9ZrT36MX\nKhv6z8//l2mMBgAjK7crx3p/EfAFtBROsXILnnS+dlGStBI/M/zaHZmXSZKeyX9rKjMBAIC985Zu\nNfRIUrFVGvuxAQAAJm2kQM9DDz2kH/uxH9Pf/u3f6q677tKjjz6qv/7rv3Z7NuBEqbXrKrZKWk+s\nyjCMqczgrGrK28GDWeFcDTyJQM9afEWStFU97/pzHdWlxq4uNC7pFUu3K+QPXXN7IhhXyBdUfk4+\ndKm2a+pbfaUi4w/0ZKMZRfzhYTuWmwpmSdFAVNFAxPXnupGYvbqs2q5PeRJgtl2vocdx78v+vTKR\nJf39i4/p28V/nfRoADCSdq+tZtdUMny8CwaWF7KqtKszuZoXOMi23dBz7rJAz7/JvFySWLsFAMAU\n5Zp5hfwhJYLxsR87bV8UWDTLYz82AADApI28u+TWW2/Vl770Jd1zzz2KxWLqdFjTAYyT0xDiNIZM\ng7NyKzdjQRDnauDlhazrz7WasAM9NfcDHkf1ZO4ZSdKd2Vde93bDMJSJLmm3WZBlWZMczRWl1uDN\nd+qYH0Rdj8/waS1xTpcau65+QGVZlgpmUUv2FULTFg8uSJLqHQI9wEG2a+cV9AWv++9PNBDRu+74\nSRmGoT995vOq8f0EYAaVW4OVQouhxLGO4wTrZ+19AnAjO7ULCvlDV7Rknl44pUwkrWcL32Z1JuYS\nf68BzDrLsrTbzCsbWXLlwtYUDT0AAGCOjBToyWazevDBB/XUU0/p9a9/vT74wQ9qZWXF7dmAE2Wj\nuiVJWp9moGfY0DNbq5p2G5Nr6FmJnZUhQ1vVHdef66ie3H1GhgzdmX3FvvfJRpdk9kw1us0JTuaO\nUqsiSa6s3JIGITpLlrZq7v2Z17sNtXvtmVi3JUlx++onAgjA/nr9ni7UL2oldkY+4/ovmW9J3qT/\n8ZY3qdQq63PP/tVchCgBzJdye/A66tgNPfbrcNZuwUt6/Z4uNnav+bfcMAzdkXm5ml1Tz5VfnOKE\nwPg9lXtW/+t/fZ/+6wuPT3sUANhXrVNXu9d27VxvOmwHekwCPQAAwPtGCvR8+MMf1p133qnPfOYz\nWlhY0Nramj784Q+7PRtwojgrf9YTq1ObIRZYUMQfUb45ayu3Bh8cuLFT+Wohf1CnY6e0VdtR3+q7\n/nyHVWvX9Vz5Bd2SXFcitH8lbTYyP1dRl52GntD4G3qkvVasTRfXbhXsNXYzE+gJDVZuEegB9nex\nsauu1btiRcf1vOmmN+ilqZfoidzT+sedf57QdAAwmrIdjE4e83WU01TmrMIFvOBiY1c9q6eV2Olr\nbruDtVuYQ9u18/rk059Tu9/R188/Pe1xAGBfbp/rTUfslVstVm4BAADvGynQE4/Htbi4qM997nP6\nvd/7Pd1yyy2Kx8e/2xQ4yTarW4oHY661kIxisKoprZw5W6uadpt5JUOLCvtDE3m+tfiKWr22cs3Z\naiqSpKfyz8qSpbuydxx4v722pdkKZx2F8+Y76dL3xvpEAj2DK4JmbeVWrU2gB9iP09p1Ln5wK6XP\n8Ol/eeXbFQss6K+/84h2ahcmMR4AjKTSHqzcGltDT8P7YXGcHDv1wb/JK/Gz19x2e/pWBXwBAj2Y\nG5V2VX/w5Kdk9lryGT69WNqa9kgAsK/cMNCz5MrxF0MJ+QyfSjT0AACAOTByQ88f//Ef69y5czp1\n6pQ+9rGP6ROf+ITbswEnRr3TUN4sai1xzpW9wYeRjSyp3WvPTHNHp99V0SxpecH9dh7HamLw4a2b\nK5iO6hu5ZyRJd2ZfeeD9nDfE89HQM7iy3Lm6ZtxOLSwr5A+drIYee+VWfUa+z4FZ5ARzbtTQI0np\nSEr3veJ/Uqff1Sef/pw6vY7b4wHASIYNPeHEsY6TiSzJkEFDDzzF+bd8JXbtv+Uhf0i3p27VTv0C\n6zjgeZ1eR3/45KdVMIv6kVvepJsX17VdvchrUgAzy+2GHp/hUyqcpKEHAADMhZECPV/60pf0p3/6\np3rHO96hd77znfr0pz+tRx55xO3ZgBNjcwbWbTkywyDIbLTT5JsFWbK0HM1O7DlX7TaGrepsBXo6\nvY6eKXxbpxayOhM7deB9M5HZ+nM8jpLT0OPSyi2f4dNqfEXn6xfV7rVdeQ4n0JOZkUBPLMjKLeBG\n9hp6rr2q/3ruXv43et25H9BO/YL+03f/1s3RAGBk5fYg0LN4zNdRQX9QqXBy+OEL4AU79fOSpJV9\nwrms3cI8sCxLf/bNv9TzlRf1fadfpX938w9pNX5Wfauv8/WL0x4PAK4rb5+vdCvQI0np/5+9Ow+P\n467TRf9W9b7vWluyvEq2bCckIQkECI4dEhKWkBBCFmfhDNvcYQbOnBlgzsC9c4aBuZdz+APuXBiY\nQ0JMErKQyQJJWBJCSFjihNiSJUuWF60tyb3ve9X9o7vadmJJLalW6ft5DMcXtAAAIABJREFUHj8E\nW131syW1uqve3/s1uZEsplDlqpKdgxBCCCFEDk0FelwuF7LZMzf9yuUyjdwiREST6VoVsjD6R0lC\nECRaUEcQRGiYCUj4Bu/NGoEelTX0jMaPo1QtLdnOA5xp6ImuiUBPCjaDFQadQbJzdDk6wYPHTGZW\nkuOfGbmljkAPjdwiZGkzmVl4TG5Y698vzbhpywfQZmvFb6dfaTSqEUKIkhoNPcbVNfQAQMDqR6KY\nRIkaH4hGhDJzcBjtcBjPf/1qh68XADAUHZVzWYSI6rnx5/Ha/CFsdG7AHX03g2EY1V7TIIQQQTgf\nBQNG0tH0HrMLPPhGwJ0QQgghRKsWDfR8+ctfxpe//GVwHIcPf/jD+Kd/+id87Wtfw4033gi3W7oX\nW4SIieM51dcMT9YberpU0NCjtiCIsAs4YJWvocdutMFtcmFawhFMKzFQvzm829+/5McadUY4jY41\nMnIrCbdJmnFbAiFMJ9XYrVghDgNrgL3ejKM0HauDRW+hhh5CFpAuZZAqpZtu5xEYdUZ8ov826Fk9\nfnz00caNdEIIUUqylIZVbxElGC0E7NfC60uy9hUqBUQLcXTaFv5Z3mL1o8Xqx0h8DGWuIuPqCBHH\n6/OH8bNTv4TX7MGndt/ZeK7vdNS+7qcl2rBCCCGrFclH4TW7oWf1kp3DY6rdv4rRaE1CCCGEaNyi\nr5guvfTSc/5X0N+/9M1kQtTioZHHMRgZxpcu/RvJQwErNZWegU1vlXRXQrOEkVtqaegJ5yMA5G3o\nAYAuRwcGI0eRKqXhFGFH82pxPIcjkWHYDTZscm1o6jF+ixfjqSlUuSp0rE7iFUojXymgUC3CZZJm\n3JagS4ZAj9fsBsMwkhx/JewGK7IU6CHkvIS2ruUGeoTHfGTz9Xh07EncP/ww/o8L/wtYpqlSTEII\nEV2ymIJbpNdRwuvxcD664AgjQtQiVB811G5vXfTj+n19+M3UyziROIU+71Y5lkaIKMZTkzhw9GGY\ndEZ8Zvfd51y36LC1gWEY1Y0RJ4QQAChVS0iV0uj1bJH0PJ76dfYEBXoIIYQQonGL3l34yEc+0vi1\nZ88eXH755bjssstwySWXoK2NLuAR9StzFbx++hDS5QweHn0CPM8rvaS3yJXziOSj6HJ0quJmv68+\nEiiajyu8kppwrrYDWMqZyufTqKhWyQWwyfQ0kqU0dvq2N31j2Gf2geM5xItJiVcnnWR97W6jtGG8\nNmsLDKy+0ZYlpmK1hGw5p5pxWwK7wYZMOafK50VClLaaQA8AXBl8J3b6tmMkPobnJ18Sc2mEENK0\nUrWMfCUPl1GkQE+9MVMI3BOiZrOZOQBAxyINPUAt0AMAQ9ERyddEiFjihQT+feBHqHBVfKL/9re8\nZjXqjOiwt2ImM0vv9wghqhOpt8JLfa3XU9/Yq+XrooQQQgghwBKBHsG3vvUt7N27F9deey1uu+02\nvO9978O3vvUtqddGyKodj59EsVoCAwYDkSG8ER5UeklvITSCdDuVH7cF1C78OIx21VTph/MROAx2\nWPRmWc8brDe2qGXm/GC4Nm5rV2BH049R2/i0lUjUx9W4zdIGenSsDp32DoSyc6LX7ccKtXCcGhq4\nzmY32lDlqyhUC0ovhRDVEQI9wRUGehiGwR3bb4bL6MBTJ5/DRGpKzOURQkhTUqXa6yixmg7Pbugh\nRO1msrVAT+cSbVJb3JtgZA0U6CGaUagU8d2Be5EqpXHT1g9ip3/7eT9ugyeIQrU2eo4QQtREeC0p\nXLeUitDQEy9SQw8hhBBCtK2pQM/PfvYz/Pa3v8V1112H+++/H/feey+8XmlfcBEihoFILQRxa++N\nMLB6PDL6BLLlnMKrOtdUphboEUb+qIHf7EWsmADHc4quo8pVES3EZW/nAdTX0DMQGYae1WO7d1vT\njxHGp0UK2r3pkhAaeiQeuQXUvgc5nkOofiNfLGcCPepq6LEZbACATEldz4mEqMFMZhYG1tBoo1gJ\nh9GOO3d8HBzP4d6hB1GoUHiOECKvZDENAKKNjxVek0dy2n1tSdaPUGYWDBi02xYfuWVg9ej1bsV8\nLtxohyVErTiew33DD2EmM4t3dVyG9wavWPBje9y1TWMzKtmkRAghgkhenjZ2j6ke6ClQQw8hhBBC\ntK2pQE9LSwvsdju2bt2KkZERXH755YhEqGabqBvP8xiMDMOit+Dy9ktw3carkS5n8PjYz5Re2jkm\nU9MAgG4VBXp8Fm9tVJPCb3hihVqoKGCVP9DjM3tg0ZtV0dATyUcRys6hz7MFJp2x6cf5zfVAz1po\n6DFJ29ADnPkenBJ57FasPqtbbYEeuxDoKWcUXgkh6lLlqpjLzqPD1tb0iMOF9Hm3Yl/3lQjno3jk\n2JMirZAQQpqTFLmhx6QzwmV00sgtono8zyOUnYPf4oWxifdPjbFbMWrpIer25IlnMRgZRq9nCz62\n7YZFx7YLgR61bFIihBCBcJ0yIHGgx2awwsDqqaGHEEIIIZrX1F0Ku92OJ554Av39/Xj66adx6NAh\npFIpqddGyKrMZGYRLybQ7+uFjtVhb9d70GXvwB/nXsPR2DGll9cwlZ6BVW+Bz6ye1ishCBItKBsE\nEW4WSP0G73wYhkHQ3oHTuQgKlaLs5z+b0DS129+/rMethZFbyUZDj/SBni7JAj21hh5hZ5BanAn0\nZBVeCSHqMp8Lo8JXlxzR0awPbroG3Y4g/jT3Ol6be0OUYxJCSDOSRXEDPQAQsPoQKyREH1FKiJhS\npTSy5Rw6bM39LO/39QIAjd0iqvb70Kv49eRv0WL14y923gEdq1v04zc0GnrEbaAlhJDVisg0coth\nGHhMbsQLFOghhBBCiLY1Fej5l3/5F8RiMVx22WXo7OzEV7/6VXz+85+Xem2ErMpgPQSxy78DAKBj\ndbh9+81gGRYPjfwUxWpJyeUBAPKVPE7nI+hydC66s0pujVFNCgdBhJnKAcvKR56sRtDRAR613Z1K\nGgzXvpZ3+rcv63EukxN6Rqf453E14vVAj5g3ohbSbmuFntFhUqJAj3obemjkFiFnE5rZOuujF1dL\nz+pxT/+tMOqMeGj0PzX9nEwI0ZZUqTZyy2UUMdBj8YMHjxg9lxEVC2Vq7986mgznes0edNjaMBY/\ngZIKrhMQ8mbH4ifw0OjjsOmt+Ozue2A1WJd8jNvshMNgV0XrMCGEnC2Sj8JmsMKit0h+LrfZjUw5\ni3K1LPm5CCGEEEKk0lSgp7W1FZ/4xCcAAF/60pfw1FNP4frrrwcAfPrTn5ZudYSswmDkKFiGxQ5v\nb+P3uhyd2Nv1HkQLcfzs5C8UXF2NUH3cpaJxWwAabUGqaehRYOQWAATrN3OnRQ54LEe2nMPx5Cn0\nOLuXHWphGRY+ixeRQlSi1UkvWUzCwOph0y99wXK19KweHfY2hDKzqHJV0Y4bKyTAMizcMoSSlsNu\nrAd6SjRyi5CzCTcBxWroAYAWawC3bLsBhWoB9w09JOpzDCGELORMQ49DtGMKzZlC8J4QNRI2ZHTY\n25t+TL+vD2WugmPxE1Iti5AVOZ2L4D8GD4ABg0/u2o8Wa6CpxzEMg057O6KFOPKVvMSrJISQ5nA8\nh2ghDr9MbeyeeuO3sGGQEEIIIUSLmgr0LGZ+fl6MdRAiqkQxiYn0FLa4N8FqODftf93Gq9Fi8eM3\nUy9jPDWp0AprhCaQbrUFelQyqimcU7ihRwj0KLijbSg6Ao7nGk1Ty+WzeJEt55CvFERemTwSxRRc\nJpdsDVZdjk5U+CpCWfF+tsUKcbiMziUr0eVmqzf0ZKmhh5BznGnoaf4mYDMua7sYF7dcgFOpCTwz\n/mtRj00IIecjBHqcYjb0WGuvyynQQ9Ss0dDT5Mgt4OyxW6OSrImQlciVc/jewL3IVnL4eO+N2OrZ\nvKzHBx21axozGWVbhwkhRBAvJFHlq42QuNS8ZjcAIFGksVuEEEII0a5VB3rUNCaIEMFQZAQAsPs8\nIQijzoDb+m4CDx4PHH0MFa4i9/IaJtPTAIAuR1CxNZyPx+QCy7AqaOiJwqq3wNZEnbQU2mwt0DM6\nTKeVmzk/UB8dd76v5Wb4zbU3yEqHs1aiylWRLmVkbbYRvhenRGplqnJVJIsp1Y3bAs4euZVVeCWE\nqEsoMwuPyd3UKIPlYBgGt/bdCJ/Zg1+Mv4AxagAghEgsWUrBorfAqDOIdswzDT0R0Y5JiNhC2Vno\nWf2ybhZucvXAojdjKHoUPM9LuDpCmlPlqviPIz/GfC6Mfd1X4p0db1/2MYSAutAOTQghSovUQ+Hy\nNfTUAj3xAjX0EEIIIUS7Vh3oIUSNhBDELv/28/75Vs9mXNFxGULZOfxq4kUZV3auqfQMLHqzbLsS\nmqVjdfCY3IqGQDieQzQfVaydB6iNYGq3tSKUFXcEU7PKXAVHo6Pwm71ot7Wu6Bg+Sy1IElE4nLUS\nqVIaPHi46/W4chDassQK9MSLSfDgVR7ooZFbhAjSpQySpbTo7TwCi96Cu/tvA8MwuG/4J9SQRQiR\nVKqYXvbI1qUIN1+EJk1C1IbjOcxm59FubVlWQ6aO1aHPuw3RQhzzubCEKyRkaTzP45FjT2A0fhy7\n/Dvw4c3vX9FxhNbhGQVbhwkh5GyNQI/ZK8v53PWGnliBGnoIIYQQol0U6CFrTqlawmh8DO221kXT\n/h/Zch1cRieeG38ecyKO12lWoVLA6VwEQXuHKpuufBYvkqU0StWyIudPFJOo8FUErMqGnYKOTpS5\niiIXdcfiJ1CoFrErsGPFXyPC90BEg2MRhPnWYt+IWkyHrQ0sw2Kq3p61WrFCHADgq19AUBOL3gyW\nYZEpUaCAEMFMptbIJlWgBwA2uTbgup6rkSgm8eDIY9QCQAiRRLlaRraSg8voEPW4Fr0ZDoOdGnqI\naoXzUZS5CtrtzY/bEvT7+gDUxh4ToqQXp1/By6E/odPejrt33AqWWdnl21ZrAHpWr+gYcUIIOVtY\n9oae2ibBOI3cIoQQQoiGrTrQQzchiNqMxMZQ5irYtcSIIoveglt6P4IKX8UDI4+B4zmZVlgznZkF\nDx7dKhu3JfDXG0ViCjW7CLt+lW4vEna0KXEBbLAxbqt/xccQdrxoceRWoh7okbOhx6AzoN3WiumM\nOK1MQqBHjQ09DMPAbrAhSyO3CGmQI9ADANf07MEW90YcCh/BK6E/SXouQsj6lCqlAUgTjA5YfYgW\n4oo0WBKylNnMHIBaUH+5dnh7AVCghyjrSOQofjr2NJxGBz67+x6Y9aYVH0vH6uqtw/P0nE0IUQWh\nQVyuDZye+gY7CvQQQgghRMtWHei54YYbxFgHIaIZjBwFgCUDPQBwQaAfb2vZjZPJCbw08wepl3aO\nyXoDiDDiR218jWYXhQI99V2/So7cAoCgox7okXnmPM/zGIgMw6q3YLOrZ8XH8VlqgR6lPo+rkSym\nAMgb6AGALkcnylxZlFYmNQd6gNrYrTQFeghpkCvQwzIs7t5xK6x6Cx4bexqzCjQFEkLWtmSp9jrK\nZZQg0GPxg+M5Gl1AVGkmWw/0rOBnucvkQLejE8cTp1CoFMReGiFLmsnM4t6hB6FndfjM7rsbN6JX\nI2jvQEWh1mFCCHmzSD4KA6uHU+QWyYVY9GaYdWYkCklZzkcIIYQQIoWmAj2/+93vcOONN2Lfvn3Y\nu3cvrrrqKuzduxcAcPfdd0u5PkKWheM5DEaHYTfY0OPsauoxH9v2YVj1Fjx14tnGzXc5TKVnAABd\nTnU39ERl/Dc5m1DBqvTILeGm7pTMDT1TmRkkikn0+7ZDx+pWfByL3gy7wYaoQk1Lq6FEQw+ARmuW\n8D26GsKNLq8KR24BgM1gRb6Sp92ahNTNZGZhYA1osUofJvWY3bi976Moc2XcO/QgygqNuCSErE3J\nooQNPfXgP43dImoUqjf0dK5g5BZQG7tV5asYjR8Xc1mELCldyuB7A/ehUC1i//ZbsKHJa1pLEa5p\nCMF1QghRCs/ziOSj8Jm9Kx4luBIes4saegghhBCiaU29cvra176Gz33uc7jvvvtw//3348CBA7j/\n/vulXhshyzaZnka6lMFO//am3xg4jQ7cuPWDKFZLeGj0cdnGyE2mZ2DWmRQfKbUQodlFqVFNjUCP\nwg09Fr0ZAYsPM+mQrCMGB8L1cVuBpZumluKzeBHNx2QfK7daZwI94t+IWkxXvTVLnEBPLRDnUWtD\nj9EOAMhWcgqvhBDlVbkq5rLz6LC1yXZx8cKWXbii4zLMZGbx5IlnZTknIWR9EJoOpdj9fCbQExX9\n2ISsVig7C6vesuJ2qn5fHwAau0XkVa6W8e8DP0KsEMcHNr4PF7deINqxlRwjTgghZ8tV8shXCvDL\nfC3cY3IjXylQ+x4hhBBCNKupuxUejwd79uxBMBhEZ2dn4xchajMohCCaGLd1tsvbLkafZyuGo6M4\nOP+GFEs7R7Fawnz2NIKODll3JCxHY1STQs0u4VwEZp0JdoNNkfOfLWjvQLaSk3U3x2BkGHpGhx3e\nbas+lt/sRYWvNm7saEWymAIDRpJREYsJ2tvBgGmMxVuNWCEOh8EOo84gwsrEJ3x/ZUo0douQ+VwY\nFb664h39K3XT1g+i1dqC30y/jCP1saGEELJajZFbUjT01FvMqKGHqE2pWkY4F0W7rQ0Mw6zoGBuc\nXbAZrBiKjsq6oYOsXzzP48cjj+JUagKXtF6Ia3v2inp8aughhKhFpLF5U+ZAj7nW/B0v0tgtQggh\nhGhTU0mCiy++GN/4xjfw8ssv4+DBg41fhKjNYPQo9KwefcsMQTAMg1v7boKRNeCxsaeQLmUkWmHN\ndDoEHnxjtI8aOQx2GFmDIg09PM8jnI/Cb/Gt+EKsmIL1xpbptDw72qL5OKYzIWz1bIZZb1718Rrh\nLIXallYqXkzCbrStauTYShh1RrTZWjCVCa2q1YjjOcQLCXhV2s4DAHaDFQCQKVOghxBh13JnfRez\nXEw6Iz7Rfxv0jA4Hjj6iufAlIUSdhOcSKYLRjYaeHDX0EHWZy86DB7+qcC7LsNjh7UWimEQoOyfi\n6gg5v+fGX8Br84ew0bkBd/TdLPo1EKvBAp/ZI9v1DEIIWYjQ7ihcp5SLx+QGAMQLNHaLEEIIIdrU\nVKBnYGAAw8PD+Pd//3d8+9vfxre//W185zvfkXpthCxLNB/DTGYWvZ4tMOmMy3683+LFBzddg2w5\nh8fGnpJghWcIo3yE0T5qxDBMbVSTAg09yVIKZa6smnFkwfqOtimZKqoHo0LTVL8ox/Mr3La0EjzP\nI1lMwmNyKXL+LkcnStUSTudWvvM8XcqgwlfhNbtFXJm47IbayC0K9BAChDK1m3ZyN/QAQNDRgRu2\nXI9MOYsDRx/R3IhEQoj6pEppAIDLJP7ILavBCpveSiO3iOoIAZyOVf4sb4zditDYLSKt1+cP42en\nfgGv2YNP774LBomaXTvtHUiXM0gW05IcnxBCmqFUQ4+7fl1OzuZ1QgghhBAx6Zv5oAMHDki9DkJW\nbbA+pmKXf/uKj/HernfhtdOH8dr8Iby99W3YuYpjLUYY5dOt4kAPAPjMXsxm55Er52CtN3nIQdjt\nK9T5K00IXs3ItKNNGB23mq/ls/nNtTfKUQ3ddMlV8ihzFbgUCvR0O4J4de7PmErPoM3WsqJjxApx\nANBEQ0+WAj2EnNXQ067I+d8bvALDsVEMR0fxwtTvsK/7SkXWQQhZG5LFFCx6M4wr2OjQDL/Vh5l0\nrc1QrSOEyfojhHM7bKv7Wb7dtw0MGByJHsX7evaIsTRC3mIiNYUDRx+GWWfCZ3ffA4fRLtm5gvZ2\nDESGMJ0JwWXqlew8hBCyGKE53C9zoMfbaOihkVuEEEII0aamrry99tpr+OxnP4u77roLd955J+64\n4w5cddVVUq+NkGUZjNRCEDt9Kw9BsAyL2/s+CpZh8ZPR/0ShUhBreeeYSs/AqDOixRqQ5PhiUWpU\nU1ihHRsLcRodcBjssjT05Ct5HEucQLejEx6Rml38Ghy5lajPtXYr2NADnGnTWgktBHpsRhsAIFOi\nQA8hocwsPCa3rAHWszEMgzu33wKH0Y6nTjyHydS0IusghKwNyVIKTgnGbQkCFh8qfJVujBBVOdPQ\n07qq49gNNvQ4u3EyOYFcOSfG0gg5R7yQwPcG7kOFq+Ke/ttW3Sq1lE5HbaTsjEytw4QQcj6RfBQM\nGPhkvk7mMdeuLVJDDyGEEEK0qqlAzz/+4z9i3759qFaruP3227Fhwwbs27dP6rUR0rR8pYCxxEl0\niRCC6LS345oNexAvJvDkiedEWuEZpWoJs9l5dNk7VL+b1V9/gyX3qKZwvjbmSC2BHoZhEHR0IFaI\nS35Bdyg6Co7nsMu/Q7Rjuk0usAyryPi0lUoUUwAAt0m6G1GLCdrbwYBptGmtRKw+m5tGbhGifulS\nBslSWrF2HoHDaMdd2z+OKl/FvUMPolApKroeQog2lbkKsuUcXBK+jgpYak2awut2QtRACOda9JZV\nH6vf1wcePI7GjomwMkLOKFSK+O7AvUiV0rhp6wcla4Y+W9BeC/RMy9Q6TAgh5xPOR+EyOSUbL7gQ\nd6OhhwI9hBBCCNGmptIEZrMZN910Ey699FI4nU587Wtfw8GDB6VeGyFNOxo7hipfFS0EcU3PXrRZ\nW/C7mT/gRGJclGMKZjKz4MGj2xEU9bhSEBp6oko19Khk5BZw1gWwzKyk5xGapnb7+0U7po7VwWty\na6yhp/YmW6mRW2a9GS1WP6bqoyRWQgsNPcLILQr0kPVupv7crnSgB6iN+djb9R6czkfw2NhTSi+H\nEKJBqWIaAOAyOiQ7hxC8D2topCtZ2zLlLJKltGhNJ/3+2liioeioKMcjBAA4nsN9ww9hJjOLd3Ve\njvcGr5DlvD6zB2adufGalxBC5FaulpEsphTZvGnUGWA32KihhxBCCCGa1VSgx2QyIZFIYOPGjTh8\n+DAYhkEuR7XDRD0GwrUQxC6RdjYZWD1u3/5RAMADI4+hXC2LclwAmKyP8BFG+qiZMNM4Wg8myCWS\ni8DAGuCU8CbEcgUdwo62lY9gWkqVq2IoOgKv2SP6TWW/xYdUKY1StSTqcaWidEMPUPseLVQLiOZX\n9vWvjUAPjdwiBFBXoAcAPrT5WnQ5OvGH2YN4ff6w0sshhGhMslR7HSVpQ4+VGnqIuoQy9XFbNnEC\nPUF7B5xGB4aiIysO+BPyZk+eeBaDkWH0erbgY1s/DIZhZDkvwzDotLdjPhdGScTrW4QQ0qxoIQ4e\nfONas9w8JhfihSR4nlfk/IQQQgghq9FUoOfuu+/GF77wBezZswdPPPEErr/+euzcuVPqtRHSlCpX\nxXB0BG6TC1128UIym1w9eE/wHZjPncZzEy+IdlxhhI8WAj3CTGM5G3p4nkc4H0XA4lPVSLIuGRp6\nxhInka8UsMu/Q/QLe0LbklZaepLFJIDaG26lCN+jKx27FSskYNaZYTWsvvJfKgadASadEVlq6CHr\nnNoCPXpWj3t23Aoja8BDoz+VvSmPEKJtqXowWo6GnkiOGnqIOoSy9UCPSA09LMNih68XmXIWUxJu\n6iDrx+9DB/Hryd+i1RrAX+y8AzpWJ+v5g4528OAxW/9eIYQQOUXqrY5KBXrcZjfKXBnZCm1SJ4QQ\nQoj2NHW3/P3vfz9++MMfwm634/HHH8c3v/lNfPOb35R6bYQ05WRyAtlKDjv920UPQXxo07XwmNz4\n5cRvRKsmnkrPwMAa0GZrEeV4UjLrzbAZrIgU5LtQnylnUagWFalgXUzA6oeRNUh6MXegMW5LnNFx\nZ/ML49MK2rgpLDT0KDVyCwC664GelX7OY4UEvGa3mEuShN1gQ6ZMFzTI+jaTmYWB1aNFRaMeW20t\nuHnbDchXCrh36CFUuIrSSyKEaESyVB+5JWFDj91gg1lnppFbRDWEhh4xw7n9vj4AwJHoiGjHJOvT\nWPwEHhr9KWx6Kz6z+x5Y66OP5dQYI54OyX5uQggJNwI9XkXO7zHVrs/FC0lFzk8IIYQQshpNBXqS\nySS+8pWv4M4770SxWMSBAweQTqelXhshTRmMSheCMOvNuLXvRnA8hweOPrbqqu1ytYzZ7DyC9g5V\ntc8sxmf2IpaPy1Yz3niDZ1VXoIdlWHTaOzCXOy3qCDYBz/MYjAzDojdjq3uT6McXdsBopaEnUUzC\npDPCojcrtoagfeWBnlw5j0K1oIlAj81gQ6acodphsm5VuSrmsvNot7Wp7mfzO9ovwcUtF+BUagKP\nH/+50sshhGhEsh6MdhqlC/QwDIOA1YdwPkrjiIgqhDJzYBkWrdaAaMfc7t0KlmExRIEesgqncxH8\nYPAAGDD45K79igXIhbCblK3DhBCyEKGhR6kNnB5zbcNgophQ5PyEEEIIIavR1F2Lr3zlK9i1axcS\niQRsNhtaWlrwd3/3d1KvjZCmDEaGYdQZsc29WZLj9/v68PbWt2EiPYXfTL28qmPNZGfB8Ry6neof\ntyXwW7yo8FWkSvKE+MK5CAAgYFFPS4Ig6OgAx3OYzc6LfuxQdg6xQhw7vL2SVG/7zfWGHo0EepLF\nFNwKtvMAgNVggd/iw1R6Ztlhl1ghDgDw1sfWqZndaEOZq6DEiR9UI0QL5nNhVPgqgioZt3U2hmFw\nW99H0WZrxW+nX8Grc39WekmEEA1IloSmQ+kCPUDthkyZK8v2PoGQhfB8bYxQizUAPasX7bgWvQWb\nXT2YTE0jXcqIdlyyfuTKOXxv4F5kKznc2nsjtnqkuW7VDCG8Pp2hhh5CiPyEDYZKjdw609BDgR5C\nCCGEaE9TgZ7p6WnccsstYFkWRqMRX/jCFzA3RzOXifLms6dxOhfBdu82GHQGyc7z0a0fgt1gw9Mn\nf9HYUbASk6la00eXIyjW0iTnqwdB5Gp2CSu8Y2MxXUJFtQQXwAbCQwCA3YF+0Y8NAL56pa2c49NW\nqlwtI1POKjpuS9Dl6ES2kkNsmW/4NRXoMdgAAJlSVuGVEKIMYaTesuwxAAAgAElEQVRmhwoDPQBg\n1pvwqV13wqwz48GRn2KKxiQQQpaQLMoV6KkF8IVAPiFKiRXiKFSL6LS1iX7sfl8fePAYjo6Kfmyy\ntlW5Kv7jyI8xnwtjX/eVeEfH2xVdj1FnQIs1gFBmlprVCCGyi+SjsOgtsCkwchAAPPUG7XiRRm4R\nQgghRHuaCvTodDqk02kwDAMAGB8fB8uqayQBWZ8Go0cBALt82yU9j91ow0e3fghlroyHRh5f8Wga\nYXRPt0M7DT1CEESuZpdwXt0NPQAkuZk6EBkGy7DY4e0V/dgAYNVbYNGbNTFyS9hV7lFBoEf4Xp1K\nTy/rcUIASAsjtxqBnjLtOibrkxDoUWNDj6DVGsBdO25BmSvjB4P3I1vOKb0kQoiKpUppmHVmmHRG\nSc8jBPDDq9jwQIgYQtnahrMOuzSBHgA0dossC8/zeOTYExiNH8dufz8+vPn9Si8JQO31bqFaRDQf\nV3ophJB1hOM5RAox+OvXmJUgXGOkhh5CCCGEaFFTqZzPfe5z2L9/P0KhEP7yL/8St912Gz7/+c9L\nvTZCljQYGQYDBjv90gZ6AOCS1gvR7+vDSHwMf5x9bUXHmEpPw8Dq0WZtEXl10hFGNUUK8jX06Bld\nY7axmkhVUZ0oJjGZnsY292ZYDRZRjy1gGAZ+sxeRfGzFgTS5JGTaVd6MrkagZ2ZZj9NSQ4+tEeih\ngABZn4Tn9E4VB3qAWoPbtT17ES3EcN/QQ7SzmhCyoGQxBZfJIfl5AtZ6Qw8FeojCQpl6oEeChp52\nWys8JjeOxo6hylVFPz5Zm16d+zNeDv0JnfZ23LXj42AZdWyKDNZbh2do7BYhREbJYgoVrqLYuC0A\ncJtcYMAgXqRADyGEEEK0p6l3lDt37sS+ffsQDAYxOzuLq6++GkeOHJF6bYQsKlPO4kRiHD3ObjiM\ndsnPxzAMPt77EZh0Rvz0+M+QLKaX9fgyV0EoO49Oewd0rE6iVYrPZ6kFEuRq6InkovBZvKq54HU2\no86AVmsAM5mQqDdSByPDAIBd/h2iHfN8fBYfylwZqZK6m1gS9fpbtwoaeoRAz+QaDvQ46oGebJlG\nbpH1KZSZhcfkhlWh6u/luH7j1djh7cVwbBTPnPqV0sshhKhQhavURpcapQ9GNxp6aOQWUdiZhh7x\nw7kMw6Df34dcJY/x1JToxydrT5Wr4uenfgU9q8end90Ns96k9JIaghKOESeEkIUIbeEBBQM9OlYH\np9GBeIFGbhFCCCFEe5q6Y/7JT34SoVAIe/bswd69exEIBKReFyFLGo6OggeP3RKHIM7mNXvw4c3X\nIV/J49FjTyzrsaHMLKp8VVPjtoDa35kBg6gMDT3Zcg7ZSk7RN3hLCdo7UKyWEBFxJ/JAWJ5Aj1Bt\nGy2oexf1mUCP8g09doMNXrMHk+npZTUbxQoJ6BmdLGHD1bIZ6w09Kg96ESKFdCmDZCmt+nYeAcuw\nuLv/VvjMXjw7/jwGwkNKL4kQojKpUm3TgVOGhh6n0QEja6CGHqK4UGYOJp1RsnG3O2nsFlmGg/Nv\nIFqI4Z3tlzY2SKlFp6P2mne6PnKWEELkIFxDFVrgleIxu5EoJqntlhBCCCGa03QFxte//nX81V/9\n1Tm/CFHSgNBqEpAv0AMA7+68HJtcPXgjPIhD4eabqoSRPV2OoFRLk4Se1cNtcskyY114gxew+CU/\n10oFHbUdbVNpcXa0FSoFHIsfR6e9XfKLfUKgJyJT29JKqamhB6i19GTKWSRLqaYfEyvE4TG7Vdk0\n9WZ2GrlF1rGZ+s0MrQR6AMBmsOJTu+6EgTXgR8MPYz4XVnpJhBAVEVpE5RhdyjAMAlY/wvmI6ke6\nkrWrwlUwlzvdGI8shW2eLdAzOgr0kCVxPIdfjL8AHaPD+za8V+nlvIXT6IDT6Gi8BiaEEDk0Aj0K\nb+D0mFyo8lWkaUMbIYQQQjSmqasd+/btw6OPPoqpqSmEQqHGL0KUUuEqOBodhd/sRZu1RdZzswyL\n2/s+Cj2jwyOj/4lcOd/U4yYbgR5tNfQAtbFbiWISZa4i6XmEun6/Vd0NPYB4FdXDsWOo8FXs9veL\ncrzF+Oo7YeQan7ZSiWItOCPHjahmCK1ak6nppj6+VC0jXc5oYtwWcHagh0ZukfVHi4EeoBYuva3v\nJhSqBXx/8H4UKkWll0QIUQkhgCzHyC2gNjqhWC0hXaYbI0QZ87kwOJ5Dh61NsnOYdEZs9WzGdCbU\n2HxAyPm8Pn8Yp/MRXN5+CTwSNUatVqe9HbFCHDna0EEIkUmk3vqueKCn/rwcLyYUXQchhBBCyHI1\nFehJp9P4+te/jrvuugt33HEH7rjjDuzfv1/qtRGyoLHESRSqRewK7ADDMLKfv83Wgmt79iFZSuM/\nj/+8qcdMpaehZ/XosLVKvDrx+cxe8OARL0jb0hPWUEOPWIGewXrTlByj47TS0JMsJsEyLJxG6UdF\nNEMI4QktW0sRvk8o0EOI+mk10AMAl7ZdhCuDV2AuO48HRh6ldgxCCAAgJXMwWnjdHs7R2C2ijNnM\nHACgwy5doAcA+utjt4ajo5Keh2gXx3N4bvx5sAyL923Yo/RyFiRsUqKWHkKIXML5KHSMDh6zsk3c\nnnoTeLxA4VxCCCGEaEtTgZ5f/vKX+MMf/oAXXnih8ev555+Xem2ELEgIQezyyTtu62xXb7gSHbY2\n/H72VRyLH1/0YytcBaHMHDpt7dCxOplWKB6fRWh2kSvQo96GHrvBBo/JjWkRRm5VuSqGIiNwm1yy\nNDd5zR4wYBApqPuGS6KYgtPoUM24KuFzM9lkoCdWqO308ap0R+abWQ0WMGCQKVGghywumo/j0WNP\nolApKL0U0cxkZmFg9WixqjdIupgbt1yPza4e/Pn0AJ6feknp5RBCVCApBHpkCkYLr9vD+Ygs5yPk\nzWaytUBPp+SBnl4AoLFbZEGHwkcwlzuNS1svamymUaNgPcg+TYEeQohMIvkofGaP4tf53NTQQwgh\nhBCNaupVVFdXF5JJSi4TdeB5HoORo7Dozdji3qjYOvSsHndsvxkMGDww8lOUqqUFP3Y2O48KX0WX\nU3vjtgDAXx/VJFSkSiWcj4BlWPhU3mwSdHQgVUojWUyv6jgnk+PIVnLY5ZenaUrP6uE2uVTd0MPx\nHJLFFNwmZXftnM1pdMBtcjXd0BPTWEMPy7CwGazIUkMPWcJvZ17Bi9Ov4OD8IaWXIooqV8Vcdh7t\ntjbFLyyulJ7V47/svAMuowNPHH8Go7HFA8aEkLUvWaq9PnXK1dBjFQI96g6Mk7UrJDT02KRt22ux\nBhCw+DASG0NF4lHURHuEdh4GDK7pUW87DyB+6zAhhCwmX8kjW84pPm4LADymeqCnQIEeQgghhGhL\nU3cvGIbB9ddfj1tvvRV33nln4xchSghl5xArxLHD26t4280GZxf2dL0LkXwUPz/1qwU/bjI9DQDo\ntmsz0HOmoUfqQE8UXrNH8c/rUoSK6tVeABuQcdyWwG/xIllMoVwty3bO5ciWc6jyVbhlugnVrC5H\nB5KlVFMhLq0FegDAZrDRyC2ypPHkFABgJDam8ErEMZ8Lo8JXG7uUtcplcuIvdu0HwzD44dADdHGS\nkHVO/oYeYeQWNfQQZYSyc3AaHbAbbZKfq9/Xh0K1iJPJccnPRbRlMDKMmcwsLmm9EC3WgNLLWVTA\n4oeB1WNGhNZhQghZirCpUBWBnvrIr3iRNq4TQgghRFv0zXzQZz7zGanXQUjTBhUIQSzmA5uuweHw\nEJ6ffAkXt1yAbmfwLR8jjOrRbEOPRfqGnkKlgHQpg6C3Q7JziKWrvqNtJh1qVK8vF8/zGIgMw6wz\nYatns5jLW5Tf4sNY4iRihThabS2ynbdZQu2tS0UNPQDQ5QhiMHIUU+lpuEzbF/3YaGPklnYCPXaD\nFadzYXA8p9mmEiKtKlfFVD2ceix+fE18rczUxwx0aDzQAwCbXD346NYP4ZFjT+AHgwfwhYs+A4PO\noPSyCCEKSJZSMOmMMOvNspzPZXJCz+qpoYcoIl8pIFaIo8+zVZbz9fv68OL0KzgSHcE2zxZZzknU\nj+d5PFtv57m25yqll7MkHatDh60dM5kQqlxV9RuqCCHaJrxGDKhgFKHT6ADLsEjQJhhCCCGEaExT\nd2IuvfTS8/4iRAkDkWGwDIsdKwxSiM2kM+K2vpvAg8ePRx5Flau+5WOm0jPQMzp02NoUWOHqOY0O\n6Fm9pA094fqxhV2+aiY09ExlmhvBdD6z2XlE8lFs9/XCwDaVrRTFmXBWXLZzLoewq9yjskBPt6MW\nxptqYhdjrBAHA0Z1f4fF2I128OCRq+SVXgpRqVB2HiWu1uyVq+SbHkGnZkKgR+sNPYL3dL4Dl7Vd\njIn0FB4de1Lp5RBCFJIspuCSsemQZVj4LT6E8xHwPC/beQkBgNlsfdyWXZ732Vvdm2BgDRiKjspy\nPqINQ9ERTKVn8LaWXWiztSq9nKZ02ttR4auYy51WeimEkDUuUg/0+FTQ0MMyLNwmFzX0EEIIIURz\ntL21mqw7yWIaE6kpbHFthNVgVXo5DX3erbi8/RLMZGbx68nfnvNnVa6KmcwsOuxt0MsY3BATy7Dw\nmT2IStjQE87XavoDVuXf4C3Fa/bAoresauSWUk1TPrMwPk2du6gT9TfVct6IakZXI9AzveTHxgpx\nuExOTe10tNefT7MlGrtFzm88NQEAjR3wo7HjSi5HFEKgp3ONBHoYhsHHe29E0N6BV0Kv4pWZPym9\nJEKIzKpcFZlyFi6jvK+jAhYf8pUCspWcrOclJJSpB3pk2jhj0BnQ69mCuey85OOoiTYI7TwAcG3P\nXoVX07yg0Dpcfz1MCCFSiTQaetRxvddjciNZTJ13Qy4hhBBCiFpRoIdoypFoLQSxy7/4yBsl3LTl\nA3AY7Xhm/NeYz57Z5TSbnUeFqzQCAVrlM3uRLedQqBQkOX4kp643eIthGAZBezvCuSgKleKKjiE0\nTfX7+kRe3eIaDT0qvQCdqDf0uFXWbuMyOuEw2hvj8xZS5apIllKaGrcFADaDDQCQLlOgh5zfeHIK\nAHBNzx4AwEh8TMnliGImE4LH5FZVQHi1jDoDPrnrTlj1Fjxy7AmMpyaVXhIhREapUhqA/MFo4fV7\nOKfOwDhZu0IyN/QAaLx/o5YeAtReE4+nJnFBYKemQuLCWqebaKAlhJDVEK4/+lUwcgsAPGYXePBI\nllJKL4UQQgghpGkU6CGaMhg5CgDY5e9XeCVvZTVY8bFtN6DCVfDAyE/B8RwANAIAXY6gkstbNV/9\njVdUolFNjYYeDYzcAmo72njwCGWXv6MtWUxjPDWJza4e2GS+keyv33CJSNi2tBpCQ49bZQ09DMOg\ny9GJeDGBzCItNoliChzPwWt2y7i61XPUAz1ZCvSQBYynJmHWmbDFvQmd9nacSI6jVC0rvawVS5cy\nSJbSmrrx0iy/xYt7+m9Dlefwg8EDSJcySi+JECIT4caE0+iQ9bzC63fh9Twhcgll5sCAQbuMY476\n66O/h6Ijsp1zNapcFU8cfwZPnXgOh8NDjfdbZPV4nsezp34NALi25yqFV7M8wmtgaughhEgtko/C\nZXTAqDMqvRQAtYYeAIgVEgqvhBBCCCGkedqc/0PWpVK1jJHYGNqsLaody/S2wC5c4O/H4cgQXgn9\nCe/ufAem6oGebs039NQaRyL5qCQ3QMP5KBgwjeCQ2nXZhRFMIWxy9SzrsUcUGrcFAHaDDUadsVF5\nqzaJghDoUVdDDwB0O4IYjo5iKj2D7b5t5/2YeLF2QUCrDT0ZCvSQ88hX8pjPhbHVsxksw6LPsxUz\nmVmcTI6jz7tV6eWtyFobt/VmO3y9+MCma/D0yefwwyMP4K8u/AtNjQFUg2K1BCNrAMMwSi+FkKYl\niwo19NTfm4VV+vqSrE08zyOUmYPf4pX1JqHP4kWbrRWj8eMoV8sw6AyynXslfnbql/jV5Ivn/J7L\n6ESPswvdzi5scAaxwRFcU42FchlLnMSJ5Dh2+vrQrbENXBa9GX6zF9OZEHiep9c7hBBJVLgKYoUE\nNro2KL2UBk99A16CAj2EEEII0RAK9BDNGI2PocyVsUuBEESzGIbBx3pvwLHECTxx/Bns9G3HVHoa\nLMOiQ+M3DRsNPRKNagrno3CbXDCw2nhaEmbOr6SieiAijI6Tv2mKYRj4zV5E8zFVXrhLlFKw6C2q\n2blzNmFs3mKBnli9wUprgR67sR7oWaR9iKxfE6lp8ODR4+wCAPR5t+L5qZcwEhujQI+KvW/DezGZ\nmsLhyBCePPksbtzyAaWXpBnxQgL/44/fxNtadmP/9o+p7mclIQtJ1keXuoxyj9yqN/TQyC0io2Qp\nhWwlhy2eTbKfu9/Xi+cnX8KxxMlGY48ajcaO41cTL8Jv9uLmbR/GdCaEidQ0JlKTOBwZwuHIUONj\nWyx+dDuD6HF2Y4MziKC9E0aVh5WU9uz48wCAa3v2KbySlel0dOBw+AiSpZQqN9QQQrQvVoiDB98Y\nz6oGnvrzXZwa6wghhBCiIdq4c04IgMFGCEK9gR6g1izykS3X48GRn+Ino49jOjOLDlubZoIqCxFm\nHUckGLlVqpaQKCaxzbNF9GNLpc3aAj2jw3RmZlmPK1ZLGI2Pod3WqljTlN/iQyg7h2wlB3u9mUUt\nksVko/5WbYRWpsn09IIfcybQo86/w0Ls1NBDFnEqOQkA6HF2AwA2uzdCz+gwEh9Tclmrsh4CPSzD\nYv+OWzD72rfx/ORL2ODowsWtFyi9LE04FD6CElfGn+ZeR4vVj2t79iq9JEKakqqP3JK7ocdjckHH\n6BChkVtERqHMHACgw9Ym+7l3+vrw/ORLGIqOqDbQkyln8aPhn4BhGNyz8zb0OLux07+98eeJYhIT\nqSmMp6YwmZrGRHoKr80fwmvzhwDUXkd02NrqDT5d2ODsQrutlRr/6k4kxnEsfhzbvduw0dWt9HJW\nJGhvx+HwEUynQxToIYRIIlLfFOpXURu70NAjNGwTQgghhGiBthMGZN3geA6DkaOwG2yauFjyzvZL\n8drcIRyJjgDQ/rgtAPCbpWvoEd7gqWnHxlJ0rA7t9jaEsvOoctWmL2yOxI6hzFWwW4F2HoHPUmuP\nieZjqgr0FKsl5CsF9DjlvQnVLK/ZDZvB2hijdz6abeipfx1kyzmFV0LUaDx1bqDHpDNio2sDjidO\nIVPKNhqetGQmMwsDq0eL1a/0UiRl0ZvxqV134f957Tv48cijaLe1osMu/41PrRFC5C6jE0+f/AXa\nrC24sGWXwqsiZGlnGnocsp5Xx+rgs3ho5BaRVShbD/Qo8HNtk6sHZp0JQ5Gj4Ld+SHVNbjzP48Gj\njyFZSuFDm65tvIY7m9vkgjvgwgWBnQBq11zC+Sgm6gGf8dQUpjMzmM6E8ApeBQAYWAO6HB3Y4Oxq\nhHwCFp/q/v5yeHb81wCg6dBvp73WOjyTmT0n7EWI2pW5CgqVAvKVAgrVAgIWPyx6s9LLIucRqb82\n9Kvoeq+wiTBeoIYeQgghhGgHBXqIJkylZ5AqpXFZ28VgGVbp5SyJYRjc2ncTvv7qt1DmKujS2Dz1\n87EarLDozYgUxA/0hOu7ebUU6AGALnsHptIzmM+Fm76QPBBWvmnKb679O0fyUWyoj9BRg0S97lat\nuwMZhkGXvRMj8THkyjlYDda3fEysPoNba4EeWz3Qky5nFF4JURue5zGemoTX7IHLdOYGcZ93K8YS\nJ3EscQIXtexWcIXLV+WqmMvOo8PeronXFKvVbmvF/u0fw/8+8mP8YPB+/P3bPweL3qL0slQrV85j\nLHES3Y4gbu/7KP7Xn/8//Gj4J/BZvI3Ri4SoVbKUBiB/Qw9QG7s1lBtBrpyH1UDPMUR6QkNPpwIN\nPXpWjz7vVhwKH8HpfASt1oDsa1jMy6E/4nBkCNvcm3H1hvc29RiWYdFqDaDVGsClbRcBqL1mCmXn\nMJGaqo3qStcafU4mJxqPs+ot6HYE0ePsQrezCxucQdW+nxPLeGoSR2PHsM29GVvcG5VezooF64Ge\n6czyx4gTshJVrop8tYBCpXhOICdfqf/eef+79itfLTb+u8JXzznuVvcmfP6izyj0tyKLCasw0GMz\nWGFg9dTQQwghhBBNoUAP0YSB+k7p3Soft3W2FqsfH9nyATxx4hn0ebUzSmoxPrMXp3Nh8Dwv6i48\n4Q1eQGNNCZ2ODmC2FjhrJtDD8RyORI/CaXRgg1O5kFdjfJoEbUurkWwEetTZ0AMA3c4gRuJjmEqH\n0Hue7+tYIQ6bwQqTzqjA6lbOpDPCwOqRLVFDDzlXtBBHppzFRZ7N5/x+r2crnsYvMBIb01ygZz4X\nRoWvIriGx2292UUtuzHZ/V78avJF/Gj4YXxq153rIsy0EsPREXA8h93+fgQdHbh7x8fx/cH78b2B\n+/D3l/z1OcE2QtQmWUzBqDPCrMAudSGYH8lH0W3Q/mYGon6h7Bz0rF6x95D9vj4cCh/BUHREVYGe\n2ew8fjr2NGx6K+7cccuqft7rWB26HJ3ocnTiXfVMa6lawlQ6hInUJCbS05hITWEkPnbOKFaX0XlO\nwGezayOMOsNq/2qq8dz48wCA92/UbjsPUGugtegtjVG0hKxEopjEQHgYyVLqrJDO+QM7Za68onOY\ndEaYdWbYDTb4LT6YdSZY9GaY9WYci5/A8cSpBTddEWVFVdjIzjAMPCY34gUK9BBCCCFEOyjQQzRh\nMDIMPaNDn3eb0ktZliuD78S7Oy9fMzfNfBYvpjMhpMsZOEWs8g/ntNrQU7uqOZ0J4TJcvOTHn0xO\nIFPO4oqOSxX9mlBroEeou3WpeEen0M4wlZl5S6CH53nECgm02VqUWNqqMAwDm8GGTDmr9FKIyrx5\n3Jag29EJi96M0djY+R6masJNi451FOgBgA9uugYT6WkMRobxi/HfaP4mlFQaIfJALUR+QWAnPrTp\nWjx18jl8f/BH+PzbPg3DGropSdaWZCkFt1GZYHTAUgtVhPMRdCsYXCfrA8dzmMvOo93aotj7qh2+\nXgDAUGQEV3W9W5E1vFm5Wsa9Qw+izFVwT/9t8Jjdop/DqDNis7sHm909jd/LlnOYPKvBZyI1hcOR\nIRyODAEAOmxt+G+X/JXmNj2cz1R6BoORo9jk6sFW9+alH6BiDMMgaG/H8cQpFKulNfH5IfJIlzJ4\n4/QgXj99CCcS4+DBn/fjDKweZr0ZFp0ZHpO7/t8mmOthHIvefE44p/bfFpj19d/TmWHWmxZ9nn/m\n1K/w81O/wmj8BN5GI3JVJ5yPwqQzNsa8q4Xb7MbpeATlapne2xFCCCFEEyjQQ1Qvmo9jJjOLHd5e\nmPUmpZezbGslzAMAfnMtCBLNx8QN9KiwgrUZnfY2MGAwnW6uonqw0TTVL+WyluStfx6lGJ+2Gsli\nCgDgUXOgpx7imkxNv+XPMuUsylxZc+O2BHaDrTH+jhDBePL8gR4dq8M292Ycjgwhko9q6vlbCPSs\np4YeoPY5+0T/bfi/D34bPz/1S3Q7g+iv34wkNRWugqHoKHxmDzrOGuHyvg17MJs9jYPzf8YDI4/h\nrh0fF7WpkBAxVLkqMqUsWt3KNIUErLWfA8LrekKkFM5FUOYqioZz3SYXgvYOHE+cRKFSVMW1iidO\nPIOZzCze1Xk5LgjslO28NoMV233bsN1X24DF8zwSxSQm0tM4OPdnHAofweNjT+PWvptkW5NUhHae\n63r2rYnXAp32dowlTiKUmcNGV/fSDyDrVq6cx+HIEF6fP4TR+HFwPAcA2OLeiItbLkC7rRVmvQUW\nvakRztGz0t926PNuw89P/Qoj8TEK9KgMz/OIFGIIWHyqe74UrjvGi0m0aKwtnhBCCCHrEwV6iOod\niR4FAOzS0LittcpnORPo2ejaINpxI/koXEan5naEmfVmBCw+TGdCTY0hG4gMwcgasM2j7Ag2o84A\nl9HZqL5Vi0RJ/Q09fosXFr0ZU5mZt/xZrBAHUKsu1yK7wYbpTIh2KJFzjKcmwTJso53qbH3erTgc\nGcJo7Dj8ndoL9HSus0APADiMdnxy135868/fxX1DD+KLb/9rTYWxpDaWOIlCtYB3tF9yzs90hmFw\ne99NiOQjODj/Btptrbim5yoFV0rIW6XLGfDg4VKsoace6MlRoIdIL5SdB4Cmxh5Lqd/Xh+lMCMfi\nx7E7oOymjSORo3hx+hW0WVtw05YPKLoWhmHgMbvhMbvR7+3FN1//f/Fy6E/Y4evDBQr/O61GKDOH\nQ+Ej2ODsQp93q9LLEUXQ3gGg1jpMgR7yZsVqCYORYbw+fxjD0RFU+CoAYIOjCxe3XoCLWnZL0gS2\nHBscQZh1ZoxosDl2rUuVMihVS6p8vylct0sUExToIYQQQogmSFYdwnEcvvrVr+KWW27B/v37MTEx\ncc6fv/DCC7jppptwyy234JFHHln0McPDw3j3u9+N/fv3Y//+/XjmmWekWjZRIaHVZJd/u8IrIb56\n84iYzS5lroJYIdHY1as1nY4O5Cp5xJaYvTyfPY3TuQi2+3phVEFYwmfxIl5MoMpVlV5KQ6Le0OM2\nKXMjqhkMw6DL3onTuQjylcI5fxZtBHo02tBjrFUgZys5hVdC1KLCVTCVCSFobz/v81Zv/UbG0bi2\nLp7OZELwmNywGqxKL0URG5xduGXbR5Cr5PH9wftRqpaUXpJqnHnN+dYQuUFnwKd23wWPyY2nTj6H\nw+Ejci+PkEUJTYcuhV5Hec0esAxLbX9EFiFhfKZN2UDPTn8fAGAoOqLoOpLFNA4cfQR6Rod7+m+D\nUUUbZQw6A+7ecSsMrB4PjDzaeK7SIqGd5/09e1XXNrFSnY5awF0IvBNS5io4HB7CD488gC/97p9w\n79CDGIgMocUawAc3XYv/6/Iv4u/f/jns7X6P4mEeoN4c69mMSD6qurHy6120ILSxexVeyVt5TLWv\n3XghqfBKCCGEEEKaI1mg59e//jVKpRIefvhh/O3f/i3+9dqgyDwAACAASURBVF//tfFn5XIZ3/jG\nN/DDH/4QBw4cwMMPP4xIJLLgY4aGhnDPPffgwIEDOHDgAK677jqplk1UJl8p4Fj8BLrsHap4o7je\n+c9q6BFLLB8DDx4BizZ3RJy9o20xA4vcJFSC3+IFx3OIFxcPIskpUUxCz+hUN1v7zbqctaaSN49a\ni2k80GOr/7unS1mFV0LUYiYziwpXecu4LUGLxQ+PyY1jsTOV62qXLmWQLKXRqfCOfqW9s+PtuKLj\nMsxkZvHQ6OPgeV7pJSmO53kMhIdh0Vuwxb3xvB/jNDrw6d13w8gacN/wT5oeuUmIHJQO9OhZPbwm\nN43cIrIIZecAKN/Q0+Pshk1vxVB0VLGfpRzP4cDRh5EpZ3HDlusRdHQoso7FdNjbcMOW65Et53Dg\n6COaed14trnsafz59AC67B3Y6Vs7m83ara1gGZZe06xzVa6K4egoDgw/gi+//D/w/cEf4fXTh+Ey\nOXFtz17890v/K/77Zf8V1/ZcpcrNeEJj1ii19KiK0NoYUGFDj7t+j2GpzZmEEEIIIWohWaDn9ddf\nx7vf/W4AwIUXXogjR87sYj1x4gS6u7vhcrlgNBpx8cUX4+DBgws+5siRI3jxxRdx++234x/+4R+Q\nyWSkWjZRmaOxY6jyVexUSQhivfOaa4GeSD24IAbhor8a3+A1o6t+wXQ6/dYRTGcbiAyDAYOdvj45\nlrUkv/C5VNEOpkQhCZfJqfrdjt32WqDnzWO3hAsB2h25VWsryZYp0ENqTiUnAWDBQA/DMOj1bkG2\nklsy1KgWZ8Ztqe9ml9xu3vZhbHB24dW5P+O3M79XejmKm86EEC8m0O/rhY7VLfhxXY4O3NV/K0rV\nEr43cB9SpbSMqyRkYclSLdDjNDoUW0PA6keqlEahUlRsDWR9CGXmYNVbFBsxJ2AZFtt92xAvJjBb\nHwMmt99MvYyjsWPY4evFe4NXKLKGZlzZ+U70+/pwNHYML06/ovRylu0XEy+AB49rN+5T/fvV5TDo\nDGiztmAmO6vJoBVZOY7nMBY/iZ+M/if+4ZWv4d8O/2/8ce41mHQm7O1+D754yV/j/7z87/HBTdco\nHp5cSl99rL3WmmPXukj9eq/frL7rvR6TCwBUtcmREEIIIWQxeqkOnMlkYLfbG/9fp9OhUqlAr9cj\nk8nA4ThzodFmsyGTySz4mN27d+Pmm2/Gzp078d3vfhf/9m//hi9+8YsLntvjsUKvX/hCPFFOILC8\nC8xjJ2tvxq7cegkCXuUuTpMzPGYXEqX4sj+XC8nHawG9zW1B0Y4ppwvs24DDwOlyeMH1JwspnEpO\noNe/CZs622Ve4fltzHQC40BRn1XFv3uVqyJVTmObb5Mq1rOYC0zbgGHgdGn+nLVmudpN3W2dXXCY\n7As9XLXakz7gFMBaqqr/HBB5zJ6ohV8u6ulDwHn+r4lLc7vwx9nXMF2cwsWb1L9b+U+xWiB1e4f6\nn2vk8KUrP4sv/vLreHzsaewKbkFfYMt5P249/Fu9OH8cAPCuTZcs+fe9OvAOpJHATwafwr1HH8BX\n93xeFeM0yfpWma+FaDa0tCr2PdvlbattyDAXEPBoo31zPTy/rTXFSgnhfBR9gS1oaVF+VO/lPRfi\ntflDGC+cwgUbt8p67lPxKTx58lm4zE584V2fgMus/L/HYv7mXffgvz33z3jyxLO4fNNubHAHlV5S\nU+bSp3Fw/g10uTqwd/tlYBnJ9kaKrpnnuM3+boQm5sBZimh1tMiwKqIUnudxIjaB30++ht9PvY5Y\nvhZmcJkcuGbLlbii+xJs82/S1Nc4APj9dvgGPRhLnIDPZwPLamv9a1X6RC1svi3YjYBd/Ndbq3kN\nZ3PrgVeBHJ+h14KEENWh5yVCyPlIFuix2+3IZs/s8uc4Dnq9/rx/ls1m4XA4FnzM1VdfDaezdmHi\n6quvxj//8z8veu54PCfmX4WIJBBwIBxufhczx3N4fWYQLqMT9opnWY8l0vGY3BhPTWFuPrHoDvZm\nnQrXWk5MZZtGP8csHEY7TkQmFlz/H0KvgQeP7e4+1fwdjZVaG8up0yGEncqvKVFMgud52Fm7av6N\nFqLjLTDpjBg763MeCDgwmwrDqDMin+RQYNT9dzgfvlj7GR2KRBG2aG/9RHyjp0/AqrdAV7AgXDz/\n10S7vnYj5vWpI3in/x1yLm9FRudOAQAcnFv1zzXy0OOeHbfjO4d+gP/58vfxpbf/zVvG9Sz39ZtW\n/XHiDegYHYKG7qb+vu/yX4ETrVM4OP8Gvv3yfbhz+y1rasc+0Z5QLAIA4PMGxb5nHag9fxwLTcJW\ncSmyhuVYL89va81Eaqo2stkYUMXnL2joBgMGr04elvW1ULFawrcO/gBVroo7em9GKc0gnFb+32Nx\nDG7vvRnfHbgX33r5P/D3l/y1JgKxDx39GXiex9XBPYhGtNNm2uxznN8QAAAMTI5B32KRellEAaHM\nHF6bP4TX5w8hUqi1NFv0Fryj/e24uPUCbHNvblzf09LX+Nm2ubbgD7MH8capUXQ7tREWXOtmEvO1\ncFjWgHBe3J9PYryGM+vMmE9FVfFaghBCBPQelZD1bbFAn2SR9YsuuggvvfQSAODQoUPYtm1b4882\nb96MiYmJ/5+9+w6P4z7vRf+d2d4reicIohHsVu8mLUuy3GSruVC2EiuJc05uTsrNc3Nz006Se3MS\n5zlJHDsukVzULMmSLduSrWJ1URKbAKISJEB0YHexve/O3D92ZylZLCi7+5vZfT9/6RGJ3VciCe7M\nvL/vF4FAAKlUCocPH8bu3bvP+zX33nsvBgcHAQBvvvkm+vv7SzU2kZHTwTOIpmMYcPfSAxIZcemd\nEEQB/mSwKK8ndSq7FVq5BQDN5kb4kwFE0+deJhz0jgAABmRUHec2SPVp8qjcCuR/P/3mg2Q54jke\nzeYmLEdXkMymCv9+NRGAU+9Q7PcrqXIrQpVbBLnfB564D23Wlgue0LRqLWg01eNUcArpbLqME27M\nQmQRGl6NWqMykiPKYZujE5/svBmhVBjfOfFDZIQM65HKzp8IYDaygG2OThjU+jV9Dcdx+FzPZ9Bu\nbcXbS0fx3MxLpR2SkIsI5Su3bDq2lVsA4Il7mc1AKt9CvtpKLhUwFq0ZbdYWnApOI56Jl+19H5/4\nKZZjHtzQcjX6XN1le9/N2u7uxTVNV2AxuoynTv2c9TgX5Yuv4q2lI6gz1mJ37QDrcUqiOV9FOx9W\nRoUuWZuVmBfPTL2A//nWP+Pv3v4afnnmRYRSYeyr24Xf2XEP/uGqv8Dnez+LXue2ohzWY02q3Rpb\npdotufDEfXDq7LL9/eXQ26hyixBCCCGKUbKEngMHDuD111/HnXfeCVEU8fd///d4+umnEYvFcMcd\nd+DP/uzPcO+990IURdx2222oq6s759cAwF/91V/hb//2b6HRaOB2uy+a0EMqw5AMlyAI4Movgvji\nq4WlkM3wxL0wa0xrfoAmRy2WJoyuTmAuvIBu5/vrSlLZNEZXJ1BnrEWdsYbRhB9k1Vqg5tXwxeWy\n0JN7CGXXyf80NwC0WptwKjiF+cgCttjaEUvHEc/E0WFrZT3ahpk1uZqwKC30EOROvwNAu/Xiv6d7\nnF1YmF3C6eCZD3wPlJOskMVidBmN5gbFxciX2g0tV+NMaBZHVt7Fjyd/htu3fZL1SGW10cVbjUqD\nrwwcxD8e/lf89NSzqDfWYkcNHTwgbASTIWh5DfQqdp+pa/IL+tLCPiGlsBDJVYI2yWShBwD6Xd2Y\nDs1gdPUk9tTuKPn7HV0ZxBuLb6PF3IiPd95U8vcrtk9tvQUTgVN4ee4N9Dm7sd0t39rWX535NQRR\nwEfbb6jYz49N5lwt+Fz+zxZRLn8igCMr7+LI8nHMhHNp2GpejZ0127G3die2u3uhU2kZT1ka3c5c\n5eGo/yQ+0n4942lIIpNEOBVBk6O8VZTr4dDZsRhdRiKTgF7B96QJIYQQUh1KttDD8zz+5m/+5n3/\nrrOzs/DPN9xwA2644YaLfg0A9Pf345FHHinNoES2hryj0PIabHPI9+FgNXLr8ws9RUh2yQpZ+BJ+\ntFlaNv1aLDUXboB9cKFn3H8SaSGNHTJbTOM5Hi69Uz4LPYlcQo9dAQk9ANBibgIAzITnscXWDm80\n9//RqXewHGtTTBoTACBMCz0EwFRwBgDQbr349+ceZxdenH0VY/6Tsl7oWY55kBGzhe/Z5CyO4/C5\n3s9iMbqMl+feQJulBZc27GU9VtlIS+Qb+bvaprPgd3bcg68d+Q/cP/Iw/njvVwsPxggpp2AqDKvO\nyjQp0KV3ggNHCT2kpBYiSwCABpOcFnp68POp5zDsGyv5Qs9qwo+Hxp6AltfgS/13Q8OX7LZeyWhV\nGnyp7y78r8P/hh+OPob/69I/hFXLLl3sfPyJAN5cPIwagwt7a3eyHqdkLFozbFor5mmhR7GCyRDu\nH34IJwOnAeTu9/Q5u7G3bid21vTDoK78KjWL1oxmcyNOB6aQyqagrdDFJaWQ7hkX4yBoqTj0uQOF\n/mQQDbTQQwghhBCZq8zjJUTxlmMeLMdW0OPcpohO9Wry3oSezVpNBCCIAmqMyq3bAoBmS265Yy7y\nwYjqQU/+IWGNvBZ6gNyFdTQTQyxdvmj48zlbuaWMhJ6W/K/5bCh36s0Ty/15cOmUu9AjVW5FU7TQ\nQ4DpkLTQc/GEnk5bB1ScSvbx5tJDikZatjgnnUqL3x74AgxqPR4efwKz+VO9lS6eiWPCfwotliY4\n9PYNvUaLpQkH++5EKpvCN969H+FUpMhTEnJhWSGLcCoCm5btYrRGpYFdZ4MnTgk9pHQWoktw6Oyy\nSnhtsTTBojFjxDcOQRRK9j6CKOCB4UcQz8TxmW0fR52ptmTvVWrNlkZ8ovMmhNMR/HD0MYiiyHqk\nD3hu5iVkxSxubLtBtpUxxdJkabhgjTiRtxdmXsHJwGlssbXjzu5P4x+u/At8dde9uKxhX1Us80i6\nnVuREbM4FZhmPUrV8+Y/C7oN8r3f69Dlrv38CardIoQQQoj80UIPkSWq25IvVz6hx1uEhB7p9G6N\njC/w1qLG4IJWpcXcb3TOC6KAId8IzBrTmh6Kl5t0UqYYaUubJVVuORSy0FNvqoWG12A2kl/oieZu\nVjg3+DBYDlS8Cga1ARFK6Kl6oijiTGgWNQYXzFrTRX++Xq1Dh60Vs+F5WT8EkBZ6KKHn/GqNNTjY\ndyfSQgbfHvq+rH89i2XEN4GsmN30Z85dtQP4WMeN8CcD+NbQ95EWMkWakJCLC6cjECHCpmOfcFFj\ndCOQDCKVTbMehVSgSCqKUCosq7otIJ+G4epGKBU+5yGPYvnl9Is4FZzCrpoBXNFwScnep1yua7kK\nPY4uDPvG8Mr8m6zHeZ9gMoTXF96GS+/AJfV7WI9Tcs3mRgDAfAl//5LSEEURR1cGoVfp8d93fwVX\nN122pmu4StTr2AYAGPVPMJ6ESMvdcr7fa8/fv/MnaaGHEEIIIfJHCz1Elk54R8GBw3Z3D+tRyG9w\n6G3gOb4oCT1nL/Dcm34tlniOR7O5AUuxFaTf8/DiTGgW4VQEA+4+8Jz8vt1K9WleGdRuBQsJPcqo\n3Mr9mjdiMbqMdDYNbz6hx2lQbkIPkEvpoYUeshL3IpaJr2sRscfRBREiJvynSjjZ5kgLPVSHdGED\n7j7c1L4fvoQf9w8/BEEoXdKAHAx6hwEAO9z9m36tj7bfgH11u3A6OI2Hx56QZdoAqUyhZBiAPD5H\nSQ9uvJTSQ0pgISrftL1+V+7exbB3vCSvfzo4jV9MPw+Hzo7P9dzGtF6vWHiOxxf6bodJY8STkz8r\n1KnJwfMzLyMjZPCRtusrPp0HeE+NeJgWepRmOjQLfzKAHTV9iqzgK6ZOewfUvBrjq5OsR6l60n1G\nl4wXepyFhJ4g40kIIYQQQi5Ofk+YSdWLpmM4FZxGu7VFlj3q1Y7neDh19uIm9Ci8cgvInWgTRAEL\n0bM3IQdlnjTlktEDl0AqCLPGBLWCbkC1WpsgiALmo4vwRvMLPXqlL/SYEElH6SF0lZsOrr1uS9Lt\n7AIAjPnlW7s1H1mAQ2eHMV8vR87v5o796Hf1YHR1Aj8afpr1OCWTFbIY9o3DobMXJbmJ4zh8ruez\naLO04K2lI3h+5uUiTEnIxQVTuaRD1pVbwNmFHqrdIqWwEFkGADSa5JXQAwC9zi7wHI9h31jRXzue\nieOB4YchiiIO9t1ZUZ9l7DobPtfzGaSFDB4YeVgWCXfhVASvzh+CXWfDpQ37WI9TFlJCz1x+AZ4o\nx9GVdwEAe2p3MJ6EPa1Kgy22dsxFFqgClzFv4QCnk/Ek5+fQ5xLCqXKLEEIIIUpACz1EdoZ9YxBE\nAdtlugRBch3I4VQEqWxqU6/jiVVGQg/w3htgZ0+0DXpHoOHV6M0/6Jabs5VbfqZziKKIQDIEu0Lq\ntiQt5iYAwGx4Hp7YKlScSvFLiGatCYIoIJFNsB6FMDQdyi/02FrW/DVtlmboVTqMr8pzoSeciiAo\nw4oOueI5Hvf03Qm33okfjzxbSDeqNJOBKcQzceyo6Sta0oFWpcF9Ow7CrrPhJ6eewaBnuCivS8iF\nBPPVpbJI6DHmPtdLi/uEFNPZhB75/X1u1BjRYW3DdGgGkVTxEi9FUcQj40/Cl/DjxvYb0OXYUrTX\nloudNdtxZeOlmI8s4qennmE9Dl6YeQVpIY0DbddVTeJJjdENDa8paWUcKT5RFHFsZQh6lR49zm2s\nx5GFXkfu/ptcr0urhTfug1ljgl6tZz3Kedl1VLlFCCGEEOWghR4iO0P5VJMdtNAjW658rdBmF0G8\ncR+MagNMFXDCsNmSX+jJR1SvxLxYii6jx9kFrUrLcrTzcuXTZFgn9MQzCaSyKdhl8BBqPVosuYWe\nmdA8vNFVOHQ2WVarrYdJYwIARFIxxpMQlqZDM1BzKjTlFxXXQsWr0OXohCfuK0olY7Gdrdta+39T\ntTNqjPjU1lsAAG8uvsN4mtIYKlGSnk1nxX07DkLNq/HAyMMVuxBF5ENa6JHDYjEl9JBSWogsged4\n1BlrWI9yTttdPRAhYnR1omiv+fbSURxePo4Oaxtubt9ftNeVm9u6bkWt0Y0XZ18t6v+/9Yqko3hl\n/g3YtBZc2XAJsznKjed4NJkbsBRdQUYGKUlkbaZDM/AnA9hZ0181y2cX01NIjqXaLVayQha+hL/w\nmVCutCoNzBoTLfQQQgghRBGU/eSRVJyMkMGIbwIuvQMNpjrW45DzcOlzyS6bWQQRRAHeuK8i0nmA\nXOw7z/GFE21nF9P6WY51QXq1HmaNifnD90Ay11dtU1hCT4OpDmpejanQGfgTQTj0dtYjbZpZWuhJ\nUzx1tUpl05iLLKLF0rTum8LSzdNxGd48XSgs9MjvRL+cbXf3wqIz452lYxX3cEcURQx6h6FX6dFl\nL37aQaulGV/suwPJbArfHHyAYv9JSQVTYQCQxXK0W6p0jdFCDykuqd64zlgj25refncPABStdmsl\n5sWjE09Cr9Lhnv67oOJVRXldOdKptPhS393gOR4/GHm0qClH6/Hr2deQzKawv/VaaFQaJjOw0mRu\nQFbMYim6wnoUskZHVwYBUN3WezVbGmFSGzG2epKqxBnxJ4MQRAEuGddtSRw6G/yJIP1eIYQQQojs\n0UIPkZXJwBQS2QQG3MWrPiDFJ12U+eIbT+gJJIPIiFnUGOV9YmOtNCoN6o21mIssQhAFDHqHwYHD\ndncv69EuyG1wwZfwQxAFZjNIp8odClvoUfEqNJkasBhdBgA484lHSnZ2oYfNDXTC3lxkHoIooN3a\nuu6v7cnHm4/JMN58jhJ6NkTNq3FN26WIpKM44R1lPU5RLUSX4Ev40e/qLtmD4T21O3BLxwGsJvz4\n1tD3ka6wpSgiH2cTetgv9OhUWti0VqrcIkW3mgggmU2h0STf5dxGUz3sOhtGVsc3fX2VETJ4YPhh\nJLMp3Nn96UJdciVrtTbj1i03IpgK48Gxx8v+gDWWjuOl2ddh0ZhxVdNlZX1vOZBqxClZUBkEUcCx\nlSEY1PrCwQqSS5va5twKfzKAlZiH9ThVSTr8KfeEHgCw6+1IC2lEM5RSTQghhBB5o4UeIiulqj4g\nxSUl9PgSG0928cSUc4G3Vk3mRqSyKUyHZnEqMI12a6ssqg8uxG1wIitmCyk5LCg1oQcAWqxNhX+u\nrIUeuplRraaDMwCAdmvLur+2zlgDu86Gcf8k0yXBc1mILELDq1FrrIxUuHK6vuNyAJVXuzXoKU/F\n603t+7G3didOB6fxyNiP6fQnKYlQKgQNr4FBrWc9CgCgxujCaiJAS2ykqKS0vUZzA+NJzo/jOPS7\nuhFNx3AmNLup1/r51HM4E57FpfV78aH63UWaUP72t16LbfZODHqH8frCW2V975fnXkcim8CHW6+R\nbW12KTVbcn+2pNRhIm/ToVn4kwHscPfLNrWMlV4H1W6xJC30uBVwv9ehyyVt+xPs7okSQgghhKwF\nLfQQ2RBFEUPeEehVemy1d7Aeh1yAu5DQs4mFnvyp3Uqp3AKAFkvuRNsvp1+ACLHkDwmLwV2oT2NX\nuxXInyqXQ03EerWaK2yhR5tf6KFqmKo1Fcov9NjWn9DDcRy6HVsRSUcxH1kq9mgblhWyWIwuoyFf\njUjWp9XehFZLM4Z940yXP4tt0DsMnuPR5+op6ftwHIfP996OVkszDi0dxguzr5T0/Uh1CiZDsGkt\nskk4rTG4IULEKuNaV1JZFvKpmHKvz+x3bb52a3x1Es+deQluvRO3b/tEsUZTBJ7j8cW+O2BUG/D4\nyafLVv8UzyTw4uyrMKmNuLoK03mAXMIUB66QbEnk7ejKuwCobutcup3yTY6tBtL9RUUs9OhzBwsD\nyQDjSQghhBBCLoyeahDZWIwul7z6gBSHWWOCVqWFdzMJPVIEa4VUbgFnI6pP5G/e7qiR/0KPK3+B\nvZnlrM2SLpztSkzosbx3ocfOcJLikBJ6opTQU7WmQ7Mwa0yFJLb1kuLex/3yuXm6HPMgI2bRLOMT\n/XJ3ecM+iBDx9tJR1qMURSAZxEx4Dl32LTBqDCV/P61Kg/t2HIRNa8VTk78oJFISUgyCKCCUisAm\no8VoKYFT+rxPSDEUEnpkXLkFAN2OrVBxqg0v9ERSUXxv5BFwHIcvbb8bepkkb5WTQ2/HXT23IS2k\n8cDIw8iUIe3r1bk3EcvEcUPr1VX5/xwA9Go93AYn5sMLlCgoc2frtgxUt3UOboMTboMLE/5TyApZ\n1uNUHU8hoUf+VZFnE3pooYcQQggh8kYLPUQ2BvMPN7a7exlPQi6G4zi49U744qsbvtFTWOipoISe\n5nxCD5B7kFFnrGU4zdq4DblUmc0sZ22WkhN6Gsz1UHEqAJWR0GMqVG5FGU9CWAilwlhN+NFubd1w\nykO3YysAeZ2GnFdARYfc7avbBTWvxpuL71TEAx5poWaHu79s72nX2XDfjoNQ82rcP/wQFmSUYkWU\nLZyKQIQIq4w+R9Xk6w1poYcU00J0CTqVFg6ZL9Hr1bnE4ZnwPIL565y1EkURD449jmAqhFs7bkS7\ndf2JiZViT+0OXNawD7Phefzs9K9K+l7JbAovzL4Cg9qAa5uvKOl7yV2zuRHRTKyiUhkr0XRoBoFk\nEDupbuu8epxdSGQTOBOeYz1K1fHFfdDwGti08vlsej7SZwo/fc8jhBBCiMzRQg+RjRPeEfAcX4io\nJvLmMjiQyCYRzWwsycMT80Kn0hYSQSqBSWMsnO7Y4e6XTe3Bhbj0uRPUXoYPXILJILS8BgZ16VMS\nik3Dq9FkroeKV8n+4cJamAsLPVS5VY2mg/m6rU08PLLprGgw1WEyMIV0GU5Tr4W00EMJPRtn1Bix\nq2Y7VmJeTIXOsB5n06Ql8oEyV2O2WVvwhd7bkcym8M3B+xGmekNSBMFUfjFaRg9Nzib0eBlPQipF\nRshgOeZBo0LqM6V7GiO+8XV93avzhzDoHcY2eyf2t11bitEU5bNdH4fb4MLzMy9jwj9Zsvd5df5N\nRNJRXNd8pSKvSYupKZ86PBdZYDwJuZCjy4MAgD11VLd1Pj0OqXZrgvEk1UUURXjiq3AbnIq4J+rI\nJ4VTQg8hhBBC5E7+d0JIVQilwpgOzaLT1g6Txsh6HLIGbv3Gq5pyF3g+1BjcirjAWw+pgqncDwk3\nyqG3ged4xpVbIdh1NsX+Xri75zP4kyt/B5oKOBlnUOvBczwiKarcqkbToVkAQLutZVOv0+PoQlpI\nYyooj8UPaaGniRZ6NuWyhn0AgDcX3mE8yeYkMglMrE6iydwAl6H8yWp763bi5vb98CX8+PbQD8pS\nI0Iqm5QAYtVZGE9yllta6IlRQg8pjuWYB4IooNEs77otibTQs57arYXIEn48+TRMaiMO9t+piMWl\nUtOr9bin7y5wHIfvjTxaklrgVDaN52dehl6lw/UtVxX99ZWm2ZL7vCx9fibyI4gCjnmGYFQbCumo\n5IO6HZ3gwMkqObYaRNMxJLIJRdRtAbkUVQ4c/Ela6CGEEEKIvNEdAiILJ7xjECEqZgmCAK78xZkv\n4V/31wZTIaSFdOH0biW5peMAPrX1FnTa21mPsiY8x8Old8DLaKEnI2QQTkdgk1FNxHq1WJqwp3E7\n6zGKguM4mDUmRKlyqypNhXIJPW2WTS70OHOnIcdlcvN0PrIIh84OIy0Mb0q3YyscOjuOrLyLZDbF\nepwNG109iYyYxQ6Gnzlv6tiP3bU7cCo4hUfGn6yIGjPCTigZBgBZ1RoY1HpYNGZK6CFFI9UUNpqU\nsZxbZ6yBW+/E6OpJZIXsRX9+OpvG/cMPIS1k8Lnez8CeTwwgQIetFTe3H0AgGcTDY08U/e/MNxbe\nRjgVwTXNV9DhMuQqtwBgLkwJPXI1FczVbe2oobqtCzFqjGi1NmMqNINEJsF6nKoh1a26FXK/V8Wr\nYNVaKKGHEEIIIbJHCz1EFoYK1Qe9jCcha+XS5061h6sdcAAAIABJREFUb6SqSTqtW2N0F3UmOWi2\nNGJ/67WKOlHpNrgQTkeQyCTL/t7B/EMoumktH2aNCWFa6Kk6gihgJjSLOmMtjJrNVQ1stXeA53iM\n+tkv9ERSUQRTITQp5ES/nPEcj8sa9iGZTeHYyiDrcTZs0DsMIFeNyQrP8fhi7+1otTThzcV38OLs\nq8xmIcoXyFduyW05usbogi/hX9MyAyEXsxDNL/Qo5O9zjuPQ7+5BIpvA6eD0RX/+k6d+gYXoEq5q\nugw7ayrjoEAx3dh+PTpt7TjmGcKhpSNFe920kMFzMy9By2twQ8vVRXtdJbPrbDCqDZTQI2NHV94F\nAOyp3cl4EvnrcXRBEAWcDJxmPUrV8ClsoQcAHHo7AskQBFFgPQohhBBCyHkp54kzqVipbBqjqxOo\nM9ai1ljDehyyRoWEng0ku0gnNioxoUeJzqYtlT+lJ5AMAqCFHjkxaYyIZ+L0AK7KLEVXkMgm0WFt\n3fRr6dV6dFhbMROaQ6wE1QjrMRfJnS5uyp82JptTqN1aVGbtVlbIYtg7BrvOVqjIZEWr0uK+HffA\nprXgycmf44R3lOk8RLlCUuWWVj6VWwBQY3BDEAWs0olnUgQL+eWCRpMyFnqA99ZujV/w553wjuLl\nuddRb6rDbVs/Vo7RFIfneBzsuxN6lR6PTTyFlVhx0r8OLb6DQDKIq5svh0VrLsprKh3HcWg2N8IT\n9zE58EMuTBAFHFvJ1W31UN3WRUnJsVS7VT6e/D1iJd3vdehsyIpZhFMR1qMQQgghhJwXLfQQ5ib8\nk0gLaUrnURiXfuOVW1L8vpIu8CqZW7/x5azNkhZ65HaqvJqZ8zezoxm2ixikvKZDswCAdtvm6rYk\n3c4uiBAxwfg0pPQAkBJ6isNtcGKbvROTgamiPUwrp9PBaUQzMQy4+8BxHOtxYNfZcN+Oe6DmVbh/\n+KFCpQwh6xHMJ/TYZfZZSvqcT7VbpBjmI0uwai0wa02sR1mzLnsnNLwaw76x8/6cYDKEH4z+CGpe\njS/33w2tSlvGCZXFZXDiru5PIZlN4Xsjj2z68EFGyOCX07+Ghlfjwy3XFmnKytBkaYAIsZCMReTj\ndPAMgqkQdtZsh4pXsR5H9jpsbdDyGoz5J1mPUjWkFHfpPqMSOPR2AIA/SUvohBBCCJEvWughzA0W\n6rb6GE9C1kOv1sGsMW1oCUS6wKvEyi0lkhJ6vAwSeoL5hR4HJfTIhlmTe1ASSVHtVjWZDs0AANqL\nkNAD5OLNAWCc8WnIucJCDyX0FIuU0vPW4mHGk6yfHD9ztllb8IXe25HIJvHNwQfoey9Zt2AyDDWv\nhkG9ubrEYju70LP+el5C3iueicOfDCgqnQcAtCoNtjm2YiG6hNVzHIIRRAHfH3kUkXQUn+y8GU3m\nBgZTKsu++t34UN0eTIdm8Ivp5zf1Wm8vHYU/GcCVjZfCppNXwhlrzfnPzXPhBcaTkN90NF97u6d2\nB+NJlEHDq7HVvgVL0eXCYTJSWp64Dxw4OA0KWujJ34/0J+j3CCGEEELkixZ6CFOCKOCEdxQmjRFb\nbG2sxyHr5DI4sZrwr7tn2BP3QcNrZFcNUK3c0kIPk4Se3KlyGy30yIZZYwQARNL0ULmaTIdmoOE1\nRXtY1m5tgU6lxZif7ULPQmQRGl5NiXBFtLt2AHqVDoeWjqz773+WRFHEoHcEOpUW2xydrMd5n711\nu3BT+374Eqv49onvIyNkWI9EFCSYDMGmtcoideq9pMV9Sughm7UQWQYANCowbe9CtVsvzr6KMf9J\n9Lt6cF3zleUeTbHu6P4EXHoHfjn9IiYDUxt6jayQxS+nX4SaU+FA23XFHbACSIvw8xFa6JETQRRw\nfGUQJrUR3VS3tWZUu1VevsQq7DobNLya9ShrZqeEHkI+YDIwhZ+d/hXSdG+CEEJkgxZ6CFOz4XkE\nUyFsd/WC5+i3o9K49U5kxCyC+aWMtRBFEZ6YDzUGF/2ay4Rbn3vQ7WNwglo6JSW3mohqZtbkKrdo\noad6JDJJLESW0GppKlp0u4pXocveiZWY95yn0sshK2SxGF1Gg6meIumLSKvSYm/dLgSSQUXdGF+M\nLsMb96HP2S3LG8w3d+zH7poBTAam8Oj4UxBFkfVIRAEEUUA4HZFlukQhoSdGCT1kc6Tan0YFJtj0\nu7oB4AO1WzOhOfz01LOwaM34Qu/tslvIkzOD2oCDfXcBAB4YfhixdHzdr3F4+Ti8iVVc3ngJ7HSw\n5AMaTLVQcapC0iWRh1zdVhg7a/rp2mYdzi70UO1WqaWyaQSSQcUdpnHo8gs9CVroIQTIfU7612Pf\nwjPTzysymZkQQioVPU0nTA15RwEA2929jCchG+HaQLJLJB1FIptQ3AVeJTNqDDCqDYwSeoLgwFFa\nk4wUEnqo9qVqzIbnIEJEu604dVsS6ebpOKObp8sxDzJiliosSuDyfO3Wm4vvMJ5k7YbydVs7avoZ\nT3JuPMfji313oMXShDcW38ZLc6+zHokoQCQdhSAKsGnltxht1BhhUhupcots2kIkt9DTpLDKLQBw\nG1yoM9ZifPVk4YRzIpPE/cMPIStmcbD3Tli0ZsZTKk+nvR0fbf8w/MkAHp14cl1fK4gCnj3zAniO\nx4HW60ozoMKpeTXqTbVYiCwqKo2x0h1deRcAsKd2J+NJlKXRVA+L1oxx/0lamC8xXyJ3T9GtoLot\nAHDo85VbVMtGCF6cfRX3Dz8EDa+BmlPhhZlX6LMAIYTIBC30EKaGvCNQcyr0ObexHoVsgEvvAHD2\nom0tpJv6biMt9MiJ2+CEL7Fa9hscgWQIVq2ZTpjJiElrAgBEKaGnakyHZgEA7dbSLPSwqt2az58q\npoWe4mu3tqLeWItBzzCi6RjrcdZk0DsCnuML9SdypFVpcd/AQVi1Fjw5+XPMhOdYj0RkTkrJtMo0\n6dBtdMEX99FNYLIpC9FFcOBQb6plPcqG9Lu6kRLSmAycBgA8cfKnWIl78eGWa9DrovsgG3VT+4fR\nYW3F4eXjeHvp6Jq/7ujKIFZiXlxWvw8ug6OEEypbs7kRKSENT4xqE+VAEAUcWxmCSWOUXXWs3HEc\nhx5HF0KpcCHxjZSGV7rfq7ADnFatBTzHI0AJPaSKiaKIpyZ/gSdOPg2r1oI/3PM7uKR+L1biXrzr\nGWY9HiGEENBCD2HInwhgLrKALkcn9Go963HIBkgXab51JLtIN4RqDO6SzEQ2xqV3Ii1kEEqFy/ae\noigimArBno+3JfJAlVvVZzo0AwDoKPJCT72xFjatBWOrJ5k8zJUWepppoafoOI7DZQ37kBGzeGf5\nGOtxLiqYDGM6NINOWztM+RQyuXLo7fhi7x3Iilk8MPwIUtkU65GIjEkLPXYZJvQAudqtjJiFP0En\nnsnGiKKIhcgSagwuaFVa1uNsiLRIOuwbw9GVQbyx+A5azI24tfOjjCdTNhWvwsG+u6BTafHo+FNr\nSpsVRAHPTufSeW5sv74MUyqXtBBPtVvycCowjVAqjF012+kw1AacTY5VTl2wEknfh5W20MNzPOw6\nGyX0kKqVFbL4weiP8NzMS6g1uvHHe7+KZksj9rdeAw4cnjvzEiWcEUKIDNBCD2FGqj4YcPcxnoRs\nlEufr9zaQEIPVW7Ji3TBXc7arWg6hoyQgV2mp8qrVaFyixZ6qsZUcAY2rQV2na2or8txHLqdXYik\no1iMLhf1tdeCEnpK65L6veA5HocU0Kl+QuZ1W7+p17UN1zdfheXYCp6c/AXrcYiMBVNSQo88q0ul\nBX5PnBIeyMYEUyHEMnE0mpVXtyXptHdAp9Li2MoQHhp7HFpegy/13w0Nr2Y9muLVGF24fdsnkcgm\n8L2RR5AVshf8+e96hrEYXcaH6nYr7oFzuTWbGwGc/TxN2Dq6MggA2F27g/EkyiQt9IwySo6tFoVE\ndoVVbgGAQ2dHMBm66N8jhFSaZDaFbw49gLeWjqDN2oL/sef34Mr/Ga4z1WJHTT/OhGcLSZOEEELY\noYUewsyQdxQAMODuZTwJ2Sin3g4O3PoSeuKU0CNH0od1KSK3HAL50y+2Ii8RkM0xa3KVW5EULfRU\nA38igGAqhHZrKziOK/rr9zjytVsMTkPORxbh0NlhlHkii1LZdBb0u3owG57HbHiB9TgXNCgt9Cho\nifzjnTehwVSHV+bfwIn8Z2ZCflMomUtWtMl0OVpa4PeU8fMlqSzzkVw9SqNJuQs9Gl6NHkcXAskg\n4pkEPrvtE6hTaH2YHF1avxd7anfgdHAavzrz6/P+PFEU8cz08+DA4cY2Sue5mCaLlNAj78941UAQ\nBRzzDObqtuxUt7URdp0N9cZaTPpPIy1kWI9TsbwKPsDp0NsgQkQgn35JSDWIpKL438f+EyO+cfS5\nuvEHu++DRWt+38850HotAOC5mZdZjEgIIeQ9aKGHMJHIJDDhn0STuQFOPfWWK5WKV8Gus8GX8K/5\nazxxH1ScCg49LXHIiXSCZj1pS5slLfRQQo+8aFQa6FRaRCmhpypMh2YBAO224tZtSbqdWwEAY2U+\nDRlJRRFMhdCk4BP9SnB5wz4AwKHFdxhPcn7JbArj/pNoNNUr6jS+VqXBPX13Qc2p8MOxxxBORViP\nRGQokE/oscm1cstICT1kcxaj+YUehaftbc8fYtpdM4DLGz7EeJrKwnEc7ur+NBw6O34x/TymgmfO\n+fOGvCOYjyxib91OWqhaA7PGBLvORgk9MnAqMIVwKoJdNQNUt7UJPc4upIQ0ps/zPYJsnje+CqPa\noMgDNQ6dHQDgTwYYT0JIefjiq/jno1/HmdAsLq3fi98ZuAe6c9Tbdtja0GnrwLBvjD4TEEIIY7TQ\nQ5gYWz2JjJhV1Elpcm5ugxPBZGjNp1y8MR/cBid4jr79yIlbn3vIuZ60pc06u9BDy11yY9aYEKaF\nnqowHZoBALRbS7PQ897TkJkynoY8W7fVWLb3rEbbXb2waMx4Z/mYbE+7jq1OIC1kFFnx2mxpxK2d\nH0U4FcGDY49Tbz35AKUk9HhjlNBDNmZBSuhR+ILupfV7cbDvTnyh746SJCJWO6PGiIN9d0AURTww\n/DASmcT7fjyXzvMCAODGthtYjKhIzeYGBJJBSm5lTKrb2kN1W5si1W6xSI6tBoIowJdYVdQBivdy\n6HMLPYEELfSQyjcXXsA/Hfk6VmJeHGi9Dl/ovf2CC6MH2nIpPS/MvFKuEQkhhJwDPVEnTEjVB0p8\nuELez2VwQoSI1TWk9ETTMUQzMUXGr1Y6qT6tvJVbuVPltNAjPyaNCdF0lB4eV4Hp0Aw4cGi1NJfs\nPbrzpyGngjMle4/fNJ+vB6CEntJS8SpcUr8H0XQMQ/nPdnIz6MnXbdUo8zPnDS1XY5u9E0PeEbyx\n8DbrcYjMBJMhqHk1jGoD61HOyawxQa/SU+UW2bCFyCI0vFrx14/S35fnOvlMiqPL0YkDbdfBm1jF\njyZ+8r4fG1mdwEx4DrtrBhS/HFZOzfnFeKrdYidXtzUEs8aELvsW1uMoWpd9C3iOx5h/kvUoFSmY\nDCEjZArp30rjyN+X9OcPHhJSqSb8p/AvR7+JUCqMz3R9HJ/cevNFl837XT2oN9XhneVja3r+Qwgh\npDRooYeUnSAKGPaNwaa1oMXSxHocsklufb6qaQ3JLmf7lN0lnYmsn4pXwaG3r6s+bbOCVLklW2at\nCWkhg5SQZj0KKaGskMVMaA4Npjro1bqSvU9v/jTkeBlrt+bzJ/opoaf0LivUbh1mPMkHCaKAE75R\n2LSWki6tlRLP8fhi3x0wqA14/ORPsRLzsB6JyEgwFYJNa5Ft4gfHcagxuuCJ+yCIAutxiMJkhSwW\nYyuoN9VRuitZk1s6DqDV0oy3lo7gyPJxAPl0nqnnAQAfbf8wy/EUp8lCCz2sTRbqtrZT3dYm6dV6\ndFhbcSY0i1g6xnqciiMtbys9oYcqt0glO7oyiK8f/w7SQhpf6r8b17dctaav4zke+1uvhSAK+PXs\nayWekhBCyPnQXRFSdlPBGUTSUWx399KNuQrgyp++WEtVkyfmBQC4jcq8wKt0br0TgWQQ6Wx5ljik\nhB4bJfTIjlljAgCKV69wC9FlpIR0yeq2JFul05BljDefjyxUxIl+JWg016PN2oIR33ihSlEuTgfP\n5D9z9in6M6dDb8dd3Z9CSkjjgZFHkBWyrEciMiCIAkKpMKxaeS9G1xhcSAtphFJh1qMQhfHEfcgI\nGTSaKFGFrI2aV+Oe/rug5TV4ePxJrCb8GPdPYip0BgPuPjRbaNF7PZrNDQDOVtmS8pPqtnZT3VZR\ndDu7IELEhP8U61EqjnTIU6nX3w5dfqEnIa/rWUKK5eW5N/BfJx6Emlfj93Z+Gfvqdq3r6z9Utwt2\nnQ2vLbxFS5GEEMKIcu9sE8UaorqtiuLKJ/T4EmtY6KGEHlmTonHLldITSAahV+lLmgxCNqaw0JOO\nMJ6ElNJ0KFeB1WEr7UKPQa1Hu7UF06FZxDPxkr4XkD/RH11Gg6meTrKWyeUN+yBCxFuLR1iP8j6D\n3mEAwI4K+My5t24XLqnfgzOhWTwz/QLrcYgMRNMxCKIAm8yTDqXP/dJiPyFrtRDNpe1RRRJZjzpj\nDT6z7eOIZ+L43sgjeGY6l85zE6XzrJvb4IJWpcVcmBJ6WMgKWRxfobqtYpKSY6l2q/i8Ck/oMWmM\n0PBqSughFUcURTx96ln8aOIpmDUm/MGe+9CT/164HmpejetbrkIqm8Ir84dKMCkhhJCLoYUeUnZD\n3hFoeA26Hev/8EDkx72ehJ7CQo8yL/AqnSv/6yJdiJdaIBmkui2ZOrvQQ6cuKpm00FPqhB4A6HZI\npyFPl/y9lmMeZMQsmvKniknp7a3dBQ2vxqHFwxBFkfU4BUPeEWh5DbodW1mPUhS3b/sEnHoHnp1+\nAaeD06zHIYydTTq0MJ7kwqTP/Z4yfb4klWNBqs800d/nZH2uaLgEO2u2YzIwhcnAFPpc3WiztrAe\nS3F4jkeTqQFLsRWkhQzrcarOZGAK4XQEu2oH6JBCkbRZWqBX6TC2OsF6lIpzdqHHyXiSjeE4Dg6d\nHf4ELfSQypEVsnhw7HE8e+ZFuA0u/NHer26qivzKxkthUOvx0uxrZUv3J4QQchYt9JCyWol5sRRb\nQY+zC1qVhvU4pAisWgs0vHrNCT08x8Old5RhMrJe0oW3dw2/lpuVyqYRy8Rhp7otWZIWeqJpqtyq\nZNOhWehUWtSbakv+XtIJoHF/6Wu3pFoAWugpH6PGgF01A1iJe3FKJosmS9EVrMS86HV1Q1MhnzkN\nagMO9t0JAHhg+BEkMgnGExGWQqn8Qo/cK7eM+YQeWugh6yQl9DSY6xhPQpSG4zjc3XNb4fvjTe37\nGU+kXE2WBgiigKXoMutRqs5RT65uay/VbRWNilehy9EJT9y3pkOJZO08cR/UnErR9/jsejsi6Sgt\nKpCKkMqm8K2h7+PNxXfQamnCH+/9KmqMmztgbVDrcXXT5QinI3hrSV7pzIQQUg1ooYeU1YlC3VYv\n40lIsXAcB6feWehLvhBP3Aun3kGni2RqPWlLmxVI5nqplXyxX8lM2nxCT4oqtypVPBPHcnQFbZYW\n8FzpPw62W1ugVWkxtlr6eHNa6GHjsoZ9AIBDi4cZT5IjVbxWQt3We221d+BA23XwJVbx2Mmfsh6H\nMBTMJ/RYZZ52WEjoocotsk4LkUWY1EbZL60ReTJrTPj9Xb+Fe7d/HltsbazHUaxmcyMAYC7/+ZqU\nh1S3ZdGYsZXqtoqqp1C7VfqDJtXEF1+Fy+Asy72FUnHk70/68/crCVGqSDqKfz32bZzwjaLH0YU/\n2H0fLFpzUV77uuYroeZUeH7mZQiiUJTXJIQQsjbK/ZRFFGkw/3Blu6uyHq5UO5fBgVgmjngmft6f\nk8gkEE5FqG5Lxlz6fEJPGRZ6goWFHrpBL0dUuVX5zoTmIEJEu630dVtArm+7y74Fy7GVksdYSws9\nzbTQU1bbHJ1w6h04svIuEpkk63Ew6B0GBw7bXZW3RH5LxwG0WJpwaPEwjq0MsR6HMBJMhgEANq28\nK7esWgu0vIYSesi6JLMpeOOraDTXg+M41uMQhWo012MPpZtsivR5ej68wHiS6nIycBqRdBS7agcU\nvSAhR72O/ELPKi30FEssHUc0E4Nb4fd7nXo7ACCQpNotolyrCT++duQbmAqdwb66XfjdnV+CXq0v\n2uvbdFZcUr8XnrgP73qGi/a6hBBCLo6uCkjZRFJRnApOo83aAptO3jeeyfq4C4sg/vP+HE9+SaTG\n4C7LTGT9zBoTdCrtmurTNiuQP1Vuo4QeWTq70EOVW5VqOjQDAGi3lmehB3hv7VZpU3rmI4tw6Oww\naowlfR/yfjzH47L6vUhlUzi2Msh0lnAqgqngDLbY2mHOJ45VEjWvxj19d0HDa/Dw2BOF1DtSXYJS\n5ZbMl6M5jkON0Q1P3AtRFFmPQxRiKboMESIazfWsRyGkqjWaG8CBw1yEFnrKSfosTQtpxVdrrIFd\nZ8O4f5LSJYrEm1/allK/lcqhyy30rJb4ABIhpTIfWcQ/Hf46lmMruKHlahzsuxNqXl3099nfeg04\ncHjuzEt0fUcIIWVECz2kbI4vDkMQhYqrPiCAS6pqusAiiCeei9nfbF8rKR2O4+A2uOCN+0r+gTxA\nCT2yRgs9lY/JQk8ZTkNGUlEEUyE00QNAJqTarTcZ124NeUchQsSOmsr9zFlvqsWnt34M0UwMPxj5\nET2QqEIhaTlaAXVENQYXktkUwmmq8iRrsxBZAgA0mujvc0JY0qm0qDG6MBdZpId2ZZIVsjjuOQGL\n1oyt9g7W41QcjuPQ4+xCNB2jRbUi8RQWepR9v9eeT+jxJ+iwBFGek/7T+Jej30AwFcKntt6C27pu\nLVnCW52pFjtq+nEmPIvJwOmSvAchhJAPooUeUjaHF3KVAAO00FNxzib0nD9K3xvL/RhVbsmbW+9E\nMpsq+SLH2YUeSuiRI6PGAA4cIila6KlEoihiOjgLh85e1sS8BlMdLFozxvwnS/ZAQKrbajI3luT1\nyYW5DE50O7biVHAKKzEPszmG8hWvlb5EfnXTZeh39WDMfxIvz73BehxSZoFUCCpOBZMC0sikhE5P\njGq3yNosRPMLPVSfSQhzzeZGxDNx+KmGpiykuq3dNVS3VSpUu1VcvkIiu7Lv9zry9yfpex1RmuOe\nE/j3d7+DZDaFg313Yn/rtSV/zwP593hu5uWSvxchlSyQDCKdTbMegygEXRmQssgKWRxfHIZT76BT\ndhWokNBzwcqtfEIPVW7JmvRr6Y2XtnZLqtyy62mhR454jodJY0SUEnoqki/hRzgdQbutfOk8QP40\npKML4VQEi9HlkrzHfP6UJSX0sCOl9BxaPMLk/VPZFEZXJ1BvrEWtsYbJDOXCcRw+3/tZmDUmPHXq\nF4VEC1IdQskwrFoLOI5jPcpFSQ94pOsBQi5G+n7WYKpjPAkhRFqUnwtTmkk5HKW6rZLrdtJCTzFV\nSkKPQ0rooYUeoiCvzr+J7wz9ADzH43d3fAmX1O8py/t22NrQaevAsG+scLCOEHJxyWwKJ7yj+NHE\nU/jrN/8Rf/763+Ffjn4TiUyC9WhEAWihh5TFZGAKsXQcA+5eRdx0Juvj0q+lcssHDlxhYYTIk3QB\n7rtA2lIxBJNBqDhVodqJyI9JY6LKrQp1tm6rpezvXbh56i/NzdP5/ANASuhhZ1fNAAxqPQ4tHmZS\nAzXun0RaSFdNIqRVa8Hnej6DjJDBAyMPIy1kWI9EykAQBQRTIcVUl0qVu54Sf74klWM+ugin3gGD\nWs96FEKqXnM+KYse2JVerm5rCBatGZ1Ut1UyFq0ZTeYGnApOI0Wn4jdNSmuX7g0rlUGth16lR4Aq\nt4gCiKKIn53+FR4ZfxImjRH/x+770OfqLusMB9pyKT3PU0oPIecliiLmI4t47sxL+N/HvoU/feUv\n8Y3B+/Hy3BsIpkJoMjfgTHgW/zn4PUrqIRelZj0AqQ5S9UG1PFypNkaNAQa1oRCzei6euA92nQ0a\nnr7tyJlbSui5wHJWMQSSIVi1FoqQljGzxoiVmAeCKNCvU4WRFno6rG1lf+8ex1YAwPjqSdzQcnXR\nX38+sgANr1Z83LeSaVUa7K3bhdfmD2F0dQL9rp6yvv+gZxgAsKOmv6zvy9KOmn5c2XgpXl94C0+f\nfhaf3vox1iOREoumYxBEAValLPQUKrcooYdcXDgVQTgVwXZXL+tRCCEAmi35hJ6I/BN6crUFmcIi\nqdJMBE4hmo7hmqYr6Bq8xHqcXZiPLOJUcAq9zm2sx1E0b2IVNq0VWpWG9Sib5tDbKKGHyF5WyOLR\niafw+sJbcOmd+P1d9zJJJ+539aDeVIfDy8dx65Yb4dQ7yj4DIXIUSUcxtnoSo74JjK6OI5gKF36s\nxdKEXuc29Dm3ocPWBg4c/mv4QRz3nMB3hx/Eb2//AlS8iuH0RM7oyTopizH/SRjUenTZt7AehZSI\n2+DEUnQZoih+IIUplU0hkAxiW/5BLpGvQtpSCSu3pFPlbZbyp4OQtTNrzRAhIpaJU5JShZkOzoLn\neLRYmsr+3g69HXXGGkwETiMrZIt6kZIVsliMLqPR3EAXP4xd3rAPr80fwpuLh8u60COIAoa8o7Bo\nzEwSqFi6retWnPSfwoszr6Lf2YNuJ33mqmSh/A0hm1YZCz02nRVqXk0JPWRNpLqtRqrPJEQWbFor\nzBoT5mSe0JPOpvG1I/+BaDqOv7jsj2DXKa/e+xjVbZVNj6MLL8y8grHVk7TQswkZIQN/IoAttnbW\noxSFQ2fHYnQZiUwCekoJJDKUyqZx//BDGPQOo9nciN/beS9sOguTWXiOx4HWa/GD0R/h17Ov4bau\nW5nMQQhrWSGL6dAsRlfHMbI6gZnQHESIAACzxoQP1e1Gn6sbPc4uWLUf/PN6T//d+Ma7/4Uh7wge\nHHscn+/9LC12k3OihR5SFlc0fAi1DgfUlM49tbpcAAAgAElEQVRSsVx6J2bD8wilwrD9xmlhb345\nhBIT5M+V36b3lnChJ5yKQBAFxdREVCuzxggAiKSitNBTQTJCBrOReTSZG5idoOtxduHluTcwFZrB\n1iJGyS/HPMiIWTTlawEIO22WFjSY6jDkGUYkXb7vIdOhWYTTEVzR8KGqu/jVqbS4p/8u/NORr+P7\no4/izy/5Qxjz38dJ5QkkQwDA7ObtevEcD7fBBU/ce87lf0LeayGar8800UIPIXLAcRyazA0Y908i\nnknItgrv1YVD8CX8AIAnTj6Ne7d/nvFE65Or2zoBq9aCTns763Eq3lZ7B9ScCuOrpamCrha+hB8i\nxELat9I59LlFQH8yiAaZfq8j1SuajuGbgw/gdHAa2xxb8ZWBLzL/O3lf3S48ffqXeG3hLdzU/mG6\nB0GqxmrCj1HfBEZWJzDuP4l4JgEgd++j096OXmc3+lzb0GxuvOj9SQ2vxlcGDuLfjn8bby0dgUGt\nx2e6Pk73TcgHVNedbsLMDa3X4PotV7Aeg5SQy5BbBPGdo6rJE8/F69NCj/xpVBrYdbaSVm4Fkrk+\naiWemKsmpvwD+Eg6yngSUkzzkUVkhAzara3MZuh2dAFA0W+eLuRPDdNCD3scx+Gyhn3IiFkcXjpe\ntveV6raqteK1zdqCm9sPIJAM4uHxH0MURdYjkRIJSQs9CknoAXLXAfFMAtFMjPUoVU0QBfzzkf/A\nQ2OPsx7lvM4m9NDf54TIRbM5V7sl/fmUm3gmgV9Ovwi9So9WSxOOrgxi1DfBeqx1mfDn6rZ21w5U\n3WI6C1qVFlvsHZiNLCCcirAeR7G8+fTFSrnf69DZAQD+BNVuEXnxJwL42tFv4HRwGntrd+L3dn6Z\n+TIPAKh5Na5vuQqpbAqvzB9iPQ4hJZPKpjHiG8fjJ3+Kvz30T/iLN/4BD40/geOeIRjVRlzVdBm+\nMvBF/OPVf4U/3PO7+Gj7DWi1NK/5M51ercPv7vwSGkx1eGnudTwz/XyJ/4uIEtEVAiGkKNz5qqZz\nJbtI8fo1RndZZyIb49I74U8EkBEyJXl96VS5XU8LPXJmyS/0RGmhp6JMhWYAgGkd0TbHFnDgMOYv\n7kLPHC30yMol9XvAczzeXHynbO855B2Bhtegx9lVtveUm4+0XYcttjYcXRnEO8vHWI9DSiSYyn2W\nsioo7VB60OOJUe0WS2OrJ3E6OI3XF97GiG+c9TjntBBdAs/xqKVrR0JkQ/p8PRdZYDzJub0w8woi\n6SgOtF2Lu3s+Cw4cHp14EulsmvVoa3a0ULe1k/Ek1aPHkauoHfdPMp5EuaR7wO4KWeix6/MLPUla\n6CHysRhdxj8d+TqWosu4vvkq3NN/FzQyasG4svFSGNR6vDT7mqL+3iXkQkRRxGJ0GS/OvIJ/P/4d\n/Omrf4mvv/td/Hr2Nawm/Nju6sFnuz6Bv7zsT/DXl/+fuKv709hZs31Ti3ZmjQm/v+u34NI78fOp\n5/DS7OtF/C8ilYAWegghReHKX7z54v4P/Jinwk5sVDq3wQkRIlZLdCIlKCX0KOhUeTUqJPSkaKGn\nkkwHZwEAHQwTegxqA9qtLZgOzRYiSYthPkoLPXJi1Vow4OrFXGQBs+H5kr/fSsyDpdgKep3boFVp\nS/5+cqXiVTjYdyd0Ki0eHX8KvhJWaBJ2gskwACiqvrTGkFvOkJI7CRtvLR0p/PNjEz9BukQL/Bsl\niAIWokuoN9ZSXTchMtJsySX0zMtwoSeUCuOF2Vdg0ZpxfcvVaLE04rqWK+GJ+/CrM79mPd6aZIUs\n3vWcgE1rwRZbG+txqoZ0CIBqtzZOSuiplIUeZyGhJ8h4EkJyTgWm8bUj/4FAMohPdN6E27pulV2K\nm0Gtx9VNlyOcjuDQe641CFGaWDqOoyuDeHD0cfzfb/w9/udb/4wnJn+G0dUJ1Bjc2N96Lf7brt/G\nP17z1/jdnV/GdS1XotZYU9RqLLvOhv+267dh1Vrw2Mmf4K1F+jNFzpLXd39CiGK59eev3PLGKusC\nr9JJ3deleggoJfTYqHJL1sxaqtyqRGdCMzCoDcwT07qdXRBEAZOB00V7zfnwIuw6G0zU2S0blzXs\nAwC8uXi45O816B0BUL11W+/lNrjw2W2fRCKbwPdGHoUgCqxHIkVWSOjRWhhPsnY1xnxCT5wSeliJ\nZ+J413MCtQY3rm2+AitxL16ceYX1WO+zmvAjlU2h0VzPehRCyHvUGWug5lSYCy+yHuUDnp1+Aals\nCje374cuv9T9sY6PwK6z4Vdnfo2VmIfxhBc37p9ENBPDrtodsntQW8laLE0wqY0YXT1JVbUb5Cks\n9DgZT1IcjnySOFVuETkY9o3h345/C4lsEl/ovR0fabu+qIsDxXRd85VQcyq8MPMy3X8gipIWMvjV\nmV/jn498HX/66l/huyd+iDcW30Y6m8be2p34fO/t+Lsr/xx/fun/wKe23oIeZ1fJE7JqjC78/q7f\ngkFtwA/HHsOgZ7ik70eUg64SCCFF4cwv9HjPcZPeE/fCprUWbq4QeXNJ9WnnWM4qhoCU0EMLPbJm\n1tBCT6WJpKNYiXvRbm1hfqNYijcfK9JpyEgqimAqhGZK55GVflcPLFozDi8dK3kKxKBnBBw4DLh7\nS/o+SnFZ/V7srhnAqeAUnjvzEutxSJGFkiGoOJWiFhgLCT1UucXM0ZVBpIUMLm3Yi4913AiLxoxn\npl/AauKDCauszEeWAACNJlroIURO1Lwa9aY6LEQXkRWyrMcp8MZ9eG3+LbgNLlzZeGnh3+vVetzW\ndSsyYhaPjj8l+2WNs3VbOxhPUl14jsc2Ryf8yQBWKEFwQ7xxH/QqXeH+kdLZdVS5ReQhI2Tww9HH\nAAD3DRwsHJaSK5vOikvq98IT9+FdWj4gCiGIAr4/8gh+cuoZTAVn0GFrxS0dB/An+34f/+/V/w++\nvP1zuLxhH5NnWE3mBvzezi9Dzanw3eEHMeE/VfYZiPzQQg8hpCg0Kg1sWit8v3FDOC1ksJoIFE7l\nEvlzF+rTSrvQY1NQTUQ1ooWeynMmlKvbare2MJ4EaLe1QctrMOafLMrrzUekuq3GorweKQ4Vr8Il\n9XsQzcQwlE/QKYVIKorTwWl02Fph0ZpL9j5KwnEc7uz5NGxaK3429SvMhOZYj0SKKJAMwaq1MF/O\nXA+HzgYVp4KXHpgx89biEXDgcEn9Hhg1Bnxy681IC2k8cfJp1qMVLEbzCz2U0EOI7DSbG5EWMrKq\nTvzZ6V8hK2Zxa8dHoOJV7/ux3TUD6HN2Y8x/EkdX3mU04cWdrduyUt0WA1S7tXGiKMIbX4Xb4JJt\nash6aVUamDUmWughzB1dGUQoFcbVTZdju0IOLe1vvQYcODx35iXZL9ISAgBPTv4cR1cG0WnrwP93\n9V/ij/Z+FTd3HEC7tVUW91q22NrwlYGDEEUR/zn4QOG+Pqle7H9XEkIqhsvghD8ReN+JrdX4KkSI\nhVO5RP6kqNxzpS0VQyAZgkljhFalKcnrk+Iw0UJPxZkOzgAA2q2tjCcBNLwaW+1bsBRdLiz5bcZ8\nZAEA0EQPAGXn8oYPAQDeXHinZO9xwjcKESJ2uPtL9h5KZNaY8IW+2yGIAh4YeRipbIr1SKQIRFFE\nKBVW3GK0ilfBZXBQ5RYjnpgPp4LT6HJ0FpJVL6nfgy22dhz3nMCIb5zxhDkLlNBDiGw1WXJJmHMR\nedRuzYUXcHj5OFrMjdhTt/MDP85xHG7f9kloeDWeOPk04pkEgykvbsw/iVgmjt21A7J4eFRtepzb\nABQvObaahFJhpIV04VBgpXDobPAngrSQQJgRRREvzb4ODhyubb6C9ThrVmeqxY6afpwJz2IycJr1\nOIRc0Aszr+DF2VdRb6zFfTsOyjb9uNe1Dff034VkNoWvv/tdLEWXWY9EGKIrBUJI0bgNTogQ33eS\nQbppX1NhF3iVzKq1QMOrS1a5FUwGqW5LAXQqLTS8GtFUjPUopEimCwk97Bd6gPeehtx8So9U0UEJ\nPfLTYKpDh7UVo6sT8CdKc9JRSv8ZcPeV5PWVrNe5Dde3XIXlmAdPTv6c9TikCKLpGLJiFjathfUo\n61ZjcCOSjiKWjrMepeq8tXQEQK6OT8JzPO7Y9klw4PDYxE9KXo24FvPRJehVusLSESFEPprzn7Pn\nZbLQ89PTz0KEiI933nTeRZgaows3tt2AYCqMn53+ZZknXBspPWhP7QeXkkjpuQ1OuPVOjPtPyapO\nTgmk+73SocBKYdfbkRbSiGboXhhhYyo0gzPhWQy4+xS3MHeg9VoAwHMzLzOehJDzO7x8HD+e/Bls\nWiu+uute2S7zSPbU7sDdPbchmo7h345/B764fCqzSXnRQg8hpGhceinZ5ewiSGGhx0gJPUrBcRxc\nBtf7fh2LJZFJIJFNKu5UeTXiOA4mjQmRdIT1KKQIRFHEmdAs3AYXzFp59NsXFnqKULs1H1mAhlfT\n8qhMXdawDyJEvLV0tOivnc6mMbI6gVqjG/Wm2qK/fiX4xJab0Giqxyvzb+KEd5T1OGSTgqkQAGVW\nl0rfo0uVAknOTRAFvL10BFqVFjtrtr/vx5otjbim+QqsxL14ceYVRhPmpIUMVmIeNJjqK6a6g5BK\n0mzOJ/SEFxhPApz0n8awbwxd9i3ozSesnM/+tutQa3Tj5bk3MBOWVwVpRshg0DMMu86GDps8Dl1U\nox5nFxLZhOx+f8idt7DQU1nX4A6dHQDgT2w+SZiQjXhp9jUAwHXNVzKeZP06bG3otHVg2DcmmwVg\nQt5rwn8KPxh5FHqVHl/dda9iDpJc0XgJPrX1FgSSQfz78W8jlAqzHokwQAs9hJCiceVPZfjet9CT\n61enh6zK4tY7Ec/EEUsX90RKIJl7CGXXUkKPEpg1JqrcqhCeuBfRTAzt1hbWoxQ0mOpg0Zgxtjqx\nqTjrrJDFYnQZDaZ6qHhVESckxbK3bic0vAaHFt8penT5uH8SqWyK0nkuQKPS4J7+u6DmVPjh6GMI\np2hRU8mC+c9SVq0SF3pyC/7S9QEpj1OBKfgSfuyuGYBerfvAj3+s4yOwaMx4ZvoFrCbYnfZbjq5A\nEAU0Un0mIbJk1Bjh0NkLVbesiKKIn5x6BgDwic6bL7oAqOHVuGPbpyBCxCNjT0IQhXKMuSbjUt1W\nDdVtsUS1WxsjHQKstPu9Dn3ufmUgWZp0WUIuJJAM4phnCI2memxzdLIeZ0MOtOVSep6nlB4iM/OR\nRXxr6HsQAXxl4Itoyi+rK8X+1mvxkbbrsRL34uvHv0vJx1WIrhYIIUXjzm+0vreqyROrzBMblU5a\nzip2Sk8gmTvhYlfgqfJqZNaYkMymkM6mWY9CNmkqOANAPnVbQK7qo9u5FcFUGEuxlQ2/znLMg4yY\nVdyFWDUxqA3YXTsAT9yHU8Hpor72YL5ua4e7v6ivW2mazA34eOdNCKcjeHDssaIvVpHyCeZPYtl0\nCqzcMuauBzyU0FNWh6S6rYa95/xxo8aAT269GWnh/2fvvqPbuu88778vGgECLGDvvalLlKxiFcuW\nJVfZlpO4JOMkTmInmdSZ59mdfXJmd5+ZZ3cy2dmdlJk0p0zsZGLHHnfZli3JKlbvEiWSIin23kCw\nAUR9/mCxFVsSSQG8APh9nZNzcg6Aiy8tErj3dz+/79fNy7U757K0q7SPjI/PlECPEKErKyYdu2tI\n1XBwRW8lDYNNLEtePO2uNmUJxaxKXU7TUAuH2o4HucLpO9N1AYDy1KUqVzK/lVgLUVCokkDPjER+\nhx4J9Ii5d7D1KD6/j83Z68O2Y+WixDLSzKmc6jqn6mYBIT7K5hzgZ+d/i8Pj5IkFj1CaUKR2SbPy\nQMHdbMhYQ+twO7+48G+4vC61SxJzSAI9QoiAuVaHHovejElnVKssMQuTM7A/Gs4KhA8DPdKhJxxM\njmaS2eHhr3GwBQitQA9AqXV87NbN7IZsn2jjK4Ge0LYufRUAR9tPBuyYPr+Pit5KLHozBXG5ATtu\npLo9ewMl1iIqeqs43B46N7PEzEx26AnnkVuTgX8RfGNeF2e7L5BgtFIUX3DN561OK6cgLo9zPRVU\n9l2ewwo/1D48HujJNEugR4hQlWXJAKBVpS49Pr+PN+p3oaDwQMFdM3rtw0XbMWqNvFH/TkiMKfD4\nPJzvHR+3FWrXaPONWR9NTkwWDYNNOD1japcTNnodfWgUDdYIW9+zGicCPWMyckvMLZfXzaH2Y5h1\n0dySukLtcmZNo2jYmnMbPr+PfRPjw4RQ06jbwU/P/4aBMTs7iu7jlrTw/ftSFIVHS3ewMmUZV+yN\n/Ori7/H4PGqXJeaIBHqEEAETHxWHVtHSN5G+9vq89DltU+31RfhIMn48nBUIUyO3jJF1wR+pzPrx\nQM+QS8ZuhbvGwWZ0ipasmAy1S7lK2cSOiMu22Qd6WiXQExaK4gtINCZwpvs8To8zIMdsHmpl0DXE\n4sQFMqZgGjSKhs8veASTzsTLtW/SNdqjdkliFgZd4TtyK8FoRaNoZOTWHDrfc5Exr4vVaeXX/ZzU\nKBoeLXkIBYWXal7HrcKi4GSHnnTp0CNEyMqcDPQMqRPoOdF5ho6RLtamryLNnDqj18ZFxbC98C4c\nHiev1L4VpAqnr7q/FofHQXnKUjmPDQFlCcX4/D7qBurVLiVs9Dr6STBaI27s9WRASTr0iLl2qusc\nI+5R1meuwaA1qF3OTVmVupz4qDgOtR9n1C2bRIV63F43z1Q8S8dIF5uz1rMle5PaJd00jaLh8wsf\nZWFiKZV9l3mu8k8hNVJWBI9cMQghAkajaEgwxk+1Xe13DuDz+6ba64vwMdkytzfAIxHs0qEnrMRM\nBHpG3BLoCWcur5vW4XayYjLRa3Rql3OVBKOVFFMStbZ6vD7vrI7RNiKBnnCgUTSsTV+Jy+fmTHdF\nQI55oWdi3FbywoAcbz6wGuN5vPRhXD43z156YdZ/d0I9kx16wnF8qU6jIyEqXkZuzaHjHePjttak\nld/wuVkxGWzKupVuRy/vNx8Mdmkf0z7cSZwhBsvE+acQIvRMduhpmwjUzyW3183O+vfQaXTcl791\nVsfYlLmOnJhMTnadocZWF+AKZ+ZM9/i4rRUpMm4rFExuNLmZzrHzidPjZMg9PNV9MZLER8WhoNAv\ngR4xh/x+P/tbD6FRNGzKXKd2OTdNp9Fxe/YGXF4XB9uOqV2OmKd8fh/PVf2J2oF6ViQv4VPF28N2\nlN2f02l0PLX4CQri8jjdfZ4/1byG3+9XuywRZBLoEUIEVKIxgWH3CE7P2NTu20i8wIt0k+PTeoPU\noSccx0TMR5MdeoYl0BPWWofb8Pl95MVmq13KJypLKMbpHaNpqGVWr28b6iA+Kg6zPjrAlYlAW5O2\nCgWFox2BGbtV0VuJXqOjLKEkIMebL1amLmN1WjlNQy283bhH7XLEDNnHhtAomrD9zEuOTmLQNSQj\nLeaAzTnAZVsdBXG5pEQnT+s19+dvI0Zv4Z3GvfRPdF2dC6NuB7axATIknCtESEs0WYnSGlQZufVB\n21FsYwPclnnr1EicmdIoGh4rfRgFhRcuv6baiAKPz8OF3ktYo+JD9hptvsmPy8Og0VN9E51j55PJ\ntcKkCFzv1Wq0xBpiGBiTQI+YO3UD9bQNd7AsefGsv+NCzfqMNZh0Rva3HMLldatdjpiHXq17izPd\nFyiMy+cLCx+LuI6IBq2Bry99kkxLOofajvFm/btqlySCLLJ+g4UQqpsMgvQ7bVPdXWTkVviJ0hqI\nMVjodQY60GNHp9Fh1oXnTaj5xmKYCPTIyK2w1mhvBiAvNkflSj5ZaUIxMLvdkMOuEeyuQbLkBmBY\nSDRZKbUWUW9vpGuk+6aO1evoo32kk1JrMVFh3o5aDY+UPESi0cq7je9zZaBR7XLEDNhdg8QaYsJ2\nMSo5SF0gxced6DyDHz9r0lZO+zXRehMPFd2L2+fm5dqdQazuapPjtjLMMm5LiFCmUTRkWjLoGu3B\nPYc35xweJ7ua3seoNbIt7/abOlZubDYbM9fRNdrNHhW6kcHkuC0nK1KWhO33eaTRa3QUxRfQMdLF\nwERnaXFtk+dxSRNrwJHGaoxnYGxQRpiIObOv9TAAt2dtULmSwDHpjGzMXMeQe5jjnafVLkfMM3ub\nD/J+ywekmVP52tIvoNfq1S4pKKL1Jr65/CskmxJ5t+l99jQfULskEURy1SCECKjJi7k+Z/9UO30Z\nuRWekowJ9DttAb2AHRizE2+IjZj2hpHOMrH7Xzr0hLfGwfHON6Ea6CmJL0BBmVWgZ7Ldv+zoDx/r\n0lcBcOwmF3Qu9E6M20qScVuzYdIZ+fzCxwB4tvIFHB6nyhWJ6fD7/QyODRJnCN9Oh5OBHhm7FVx+\nv5/jnafRaXSUpyyb0WtXp5VTEJfHuZ4KqvpqglTh1TomAz0WCfQIEeqyLOn4/D46Rrrm7D33Nh9g\nxD3K1tzbAjKWb3vBXcQYLOxq3BPwrsTTMTluq1zGbYWU0omxW5f71R3HFg4mN/9FYoceAGtUHF6/\nlyHXsNqliHmgz9HPhZ5L5MRkUhCXq3Y5AbU5az06Rcve5gMSkBNz5lTXOV6p20mcIZZvLPsS0WHa\n3Xi6Yg0xfGv5U8RHxfFq3VscaT+hdkkiSCTQI4QIqETjh6OaPhy5JR16wlGiKQGf34fNGZjdSV7f\n+MVwvDEuIMcTwWfRWwAYkUBPWGscbMaiN4fs7rlofTQ5sVk0DDbjnGGooG1kPNAjHXrCx9LkxZh0\nJo53nMLr8876OBd6LgGwWAI9s1YUn8+23Nvpc/bzHzVvqF2OmIZRjwOP3xvWo0uTo8evCyavE0Rw\nNA620DXaw7KkRUTrTTN6rUbR8GjJQygovFj7Gu45GEnTPiwdeoQIF1mWDABaJ4L1wTboGmJvywfE\nGCzcnr0xIMeM1pv4VNF23D4PL9W8ht/vD8hxp8N91bit0NxwMV8tmBjjK2O3bmxqA2ekBnomRh7Z\nZOyWmAMH2o7gx8/mrA0RtwE2LiqWNekr6XH0cX5iDUeIYKqx1fH7yj9h1Br5xvIvk2C0ql3SnEg0\nJfDN5V/BrI/mj9Uvc7a7Qu2SRBBIoEcIEVBTHXoc/fSM9hGtM2GO8BRspJrcadPnDMwO6kHXEH78\nxEdJoCdcmCd2Pw5JoCdsDbqG6HPayIvNDumFgTJrMT6/j7qBhhm9rm1o/EZCpgR6woZBq2dV6nLs\nriGq+mfX+WHEPcoVeyN5sTnERcUEuML55d78O8mJyeRY56mp3eIidNnHBgGIDePf+6kOPaPSoSeY\nJtvar0mf/ritj8qKyWBT1q10j/by/hyMpGkb7kRBIc2cGvT3EkLcnMyY8fPu1uH2OXm/XY17cXld\n3Jt3Z0DHrK5KXU6ptYiLfdWc7527m4zV/TU4PE7KU5aG9PXZfJRhTiNGb+Fyf+2chrzCUe/EeVxi\nhN4otU6sWwZqg6MQ1zLmdXGk/SQxBgvlqTPrqhkutmRvQkFhd9N++WwVQdU23MEvLzyHH3h6yefn\n3VpxujmVbyz7Mgatnt9d+uOs11xF6JJAjxAioCY79PQ4+uh19El3njCW9JFuS4EwOYc8nHeVzzeT\nI7dGXBLoCVeN9mYgdMdtTSqbaG8+092QbSMd6DU6+a4JM5Njt452nJrV6y/1VePz+2TcVgDoNDq+\nsPBx9Bo9z1e/PPVdLUKT3TUe6IkP45FbicYEFBTp0BNEbp+H013niDXEUGYtnvVx7s/fRozewjuN\ne+l32gJY4dX8fj/tI50kRydi0OqD9j5CiMDIMKehoNA2B4GeXkcfh9qOk2RKZH3GmoAeW1EUHi15\nCJ2i5aWa13F6xgJ6/GuZDFCvkHFbIUdRFEoTirC7huZ0pFw46nX0EaO3YNQZ1S4lKOKlQ4+YIyc6\nT+PwONiYsRa9Rqd2OUGRak5hafIimoZaqBuoV7scEaFszgF+dv63OL1OPr/gkakxmvNNbmw2X1v6\nRVAUnql4jgZ7k9oliQCSQI8QIqDM+miitAbq7Y14/F6SoyOz/ep8MNltKXCBnombUNKhJ2xoNVpM\nOhPD0qEnbDUOtgChH+jJj81Fr9Fzub9u2q/x+rx0jHSRbk5Dq9EGsToRaDkxWWSY06jorWR4FoHB\nyXFbSyTQExBp5hQ+VXw/ox4Hv698UWbbh7BI6NCj1+qJj4qbGtUgAq+it5JRj4Nb0lbc1PdjtN7E\nQ0X34va5ebl2ZwArvNrAmB2Hx0GGeX7toBQiXBm0BlKik2kb7gj6Tvud9e/h9XvZnr8tKOf7qeYU\n7szdzMCYnbcbdgf8+H/O7fNwoadyYtxWdtDfT8xcmYzduiGvz0v/2MBUV+9IZI2aCPQ4JdAjgsfv\n97O/5TBaRcuGzHVqlxNUW3NuA+C95v3qFiIi0qh7lJ+e/w0DY3Z2FN3HqrQVapekqhJrEV9a9Dk8\nPg8/O/9b2uZoTK4IPgn0CCECSlEUkkyJjHocQOTOU54PJi/OewN0w2Vy178EesKLRR8tgZ4w1jg4\n3qEnN8QXjPVaPUXx+bSPdGIfG5rWa7pGe/D4PPOuhWokUBSFdemr8Pq9nOw6O6PXun0eKvsvk2RK\nJF1GswTMhoy1LE4so9pWy/7Ww2qXI65hcOLzMS6MO/QAJEcnMTBmx+V1q11KRDreMT5ua23aqps+\n1uq0cgricjnXU0FVX3BadrePdAKQYUkLyvGFEIGXZUnH4XEGtXtX61A7p7rOkW3JCOoYkrty7yDJ\nmMC+1kNBv+FR3V+D0+ukPFXGbYWqMutE59h+CfRci21sAJ/fF9mBHuPEyC3pXiqCqLq/ls7RbspT\nlkX8KPH8uFwK4/Kp7Lss4QIRUG6vm19WPEvHSBe3Z21gS/YmtUsKCcuSF/EXZZ9h1OPgX8/9OmD3\n94S6JNAjhAi4ybFbgIxBCWNxUbFoFS29zsCO3IqXkVthxaI3M+wekTnHYcjn99E02EpqdArRepPa\n5dxQWcL4WJDL09wN2T6xCCCBnvB0Sy1RoaAAACAASURBVFo5GkXD0Y6TM/p8qbFdYczrYmnSQrkR\nEkCKovC5BZ/Bojfz+pV3ZDdqiBqYGLkV7uNLkwMcGhcfGnQNUdl/mZyYzIAEZDSKhkdKdqCg8GLt\na7h9ngBUebX24fFAT6ZZAj1ChIssSwYArUEcu/VG/S78+Hmg8B40SvCWrw1aPY+UPoTP7+OFy68E\ntVPh6a7xcVvlMm4rZFmN8aRGp1A7UI8nCN954a5tuINX694CPuzqHYliDTFoFA0Dck0kgmh/6yEA\nbs9er3Ilc2Nr7niXnj3NB1SuREzy+DzU2Op4re5tvn/iR/z9sf/N0faTeH1etUubFp/fx7NVf6Ju\noIEVKUt5uPh+WSf8iDXpK/l08QMMuob4ydlfTd2bE+FLAj1CiIBLNFmn/r+M3ApfGkVDotFKX8BG\nbkmHnnBkMZjx+X04vU61SxEz1DXag9PrDJt27qXWiUDPNMdutUqgJ6zFGCwsTVpI23AHLcNt035d\nRW8lAEtl3FbAxRpieKjwXjw+D7sa96pdjvgEg2ORFeiRsVuBd6rzLD6/jzUB6M4zKTsmg01Zt9I9\n2sv7zQcDdtxJkx160qVDjxBhIzNmMtATnF32tbZ6LvVVUxxfwIKJEUjBtCixjOXJS6i3N3Gs41RQ\n3sPtdVPRe4kEo5XcmPC4PpuvyhKKcXldNNib1S4lJPj9fmptV/jZ+d/yDyd+yLmei6SbU1mfsVrt\n0oJGo2iIj4qTDj0iaLpHe7jYV01+bG7Id9QOlEWJZaSbUznVdS6oHf7E9XWP9nKg9Qi/uPBv/KcP\n/l9+fPYZdjfvp3O0mz5nP3+ofmnqsz6UN/f6/X5eqd3J2e4LFMXn84UFjwY1AB6ubs/ewL15d9Ln\n7Oen537DiHtU7ZLETdCpXYAQIvJ8tENPJLdgnQ8STQl099fg9Dgx6ow3dSz72CAKStiPiZhvzHoz\nAEOuEUy60O/yIj40uQCZF5ujciXTk2lJw6I3U22rxe/333BXRduIBHrC3dr0VZzrucjR9lPklGbd\n8Pl+v5+K3krMumgK4vKCX+A8tDqtnN3N+znScZKtuZvlPC7E2F2DaBQNlonv5nCVHD3ewbPH0aty\nJZHnWOdptIqWVanLA3rc+/O3cabrPLsa93JL2goSjNYbv2ia2oc70Wv0MqpZiDCSNXH+3TYU+A49\nfr+f16+8A8CDhffO2U7rTxdvp6r/Mq/Vvc3SpEVYDIH9rq3qr8HpHWND5lrZPR7iFiQUc6D1MNW2\nWoqtBWqXoxqf38eF3kp2N+2fGuVdGJfH1tzNLEosi/gbp9aoeOrtjXh9XrQardrliAizv/UIMH+6\n88B4UO7OnNv4fdWL7Gs5xKeKt6td0rzg9DipsV2hqr+Gyv6aq7rkpkYnszChlAWJJRTHFzDiHuXt\nhj0c7TjJryqeIzc2m4cK76FkYhxlKNnbcpB9rYdIM6fy1SVfQK/Vq11SyLo3fyujHgf7Ww/zs/O/\n5VvLn8Koi1K7LDELEugRQgTcZNvVKK2BGL1F5WrEzZi8kdfntN30TfOBMTsWg1kuhMPM5E3DEfcI\nICP0wsnkolteXHjs9tEoGkqtRZzuPk/XaA9p5pTrPr9tqIP4qDjM+ug5qlAE2sKEUmINMZzsOsvD\nRffd8AK8ZaiNgTE7q9PK5bskSLQaLfflb+W3l/7I2w17+PzCR9UuSXyEfWxoagRAOJMOPcHRMtRO\n23AHy4JwIzpab+Khonv5fdWLvFy7k6eWPBGQ43p9XjpHu8kwp4b977UQ80msIYYYvSUoHXou9FbS\nMNjEsuTF5MfN3cYEqzGe+/O38XLdTl678jZ/seAzAT3+mW4ZtxUuiuIL0Cgaqvtr2V5wl9rlzDm3\nz8PJzjPsaT5A12gPAEuSFrItd/O82lRhNcbht/sZGBu8qhO9EDfL4XFyrOMk8VFxLE9eonY5c2pV\n6nLerH+XQ+3HuSdvC9GynhdwPr+PtuFOqvouU9l/mXp7E17/+Agto9bIsuTFLEwoYUFC6cc+2wxa\nA59b8Gm25GxiZ/27nO2p4Mdnn2FBQgkPFNxNTuyNN+LNhVNd53i17i3io+L45rIvy+/RDSiKwqeK\ntzPqcXCi8wy/qniOry17Er1G4iHhRv7FhBABN9mhJ9mUJDuPwtxkOKvX0XdTgR6/38/AmJ00c2qg\nShNzZDLQM+weUbkSMVONg83oNToyzeHTwaY0YTzQU22rvW6gZ9g1gt01yOLEsjmsTgSaVqNlTdpK\ndjfv50LvJVbeoKPEhd5LACxNWjQX5c1bK1KWktm0jxOdZ9iWu1m+u0OE3+/H7hokwxz+Y4kmA+O9\noxLoCaTjneNjYtakrwzK8VenlXO4/Tjneiqo6qthQeLNj8HpcfTi8XnICKNzFSHE+I2BTEs61bZa\nHB5HwDq5+vw+3qjfhYLCAyoEKW7LWs+xztMc7TjJuvRbKIzPC8hxx8dtVZJotJITExo3w8S1mXRG\n8mJzaLA3Mep2EK2fH52KHR4nh9qOsa/lEHbXIFpFy9r0VWzNuW1eXg9Yo+IBsI0NSKBHBNSxjlOM\neV1sy71j3m1U0ml03J69gVfr3uJg21HuztuidkkRYcg1TFV/zdT/hlzDACgoZMdkjgd4EkvJj82Z\n1u9cmjmFryx5gqbBFt64smvquOUpS7m/4C5So5OD/SNd0+X+Op6r/BNGrZG/XPYlrMZ41WoJJxpF\nw1+UfQaHx0lFbyW/u/RHvrToc/PuMyjcyRYoIUTAJZsSiTPEUBSfr3Yp4iYlGScDPf03dZxRjwO3\nz0N8lIzbCjdTgR6XBHrCyZjXRftwJzkxWWF1cl5mLQbGL9Cup21iN3CGjNsKe2vTVwFwtOPUDZ97\nobcSnaJlQUJxsMua1zSKhvvzt+HHz86G3WqXIyY4PA48Pg9xEXAuFaU1EGeIlZFbAeT1eTnZeRaz\nPppFQQq7ahQNj5TsQEHhxdrXcPs8N33MtuFOADIs4R9UE2K+yYrJAD78Ow6E451n6BzpYm36KlUC\nBFqNlsdKHwbghcuv4PV5A3LcyolxW+Upy2TTW5goSyjGj5+agStqlxJ09rFBXqt7m789/A+8duVt\nnF4nW7I38Xfr/oYnFjwyL8M8wNRN4gHngMqViEji8/vY33oYnUbHhow1apejivUZazDpjOxvOYzL\n61a7nLDk9XmptdXzxpVd/ODkj/l/Dv1/PFv5Aic6zwCwJm0lX1z4ON/f8F/5m1u+zfbCuymKz5/x\n+nBubDbfWvEU31r+FLkx2ZzpvsD/OP5/+GP1ywyM2YPxo11X23AHz1Q8B8BXl37+pqdJzDdajZYv\nL/ocxfEFnOu5yPOXX8Hv96tdlpgB6dAjhAg4vVbP3637L2F1E1l8ssTJHdQ3GeiZPMmLj5LUdLiZ\nHNkgHXrCS/NgK3785MXOXZv6QEg0JZBkSqTGduW6s+rbRsYDPVly8Rb20swpFMTlUt1fi805cM3d\nNX2OftqGO1iYWIpRZ5zjKuefJUkLyY3N5mz3BVqG2siOyVS7pHlvYGwQgDhDjMqVBEZydCJXBhpx\n+zzS6jkAKvsvM+we4bas9eiC+N8zOyaDTVnrONB6hPebD3JX3h03dbyOkYlATwR0nhJivpm8idI6\n1B6QzVxur5u36t9Dp9FxX/7Wmz7ebBXE5bI+YzWH20+wr/UQd+bcdtPHPNN9HpBxW+GkzFrM2w27\nqe6vZXnyYrXLCYru0R72NB/geMdpPH4vMXoLW3PvZlPmWhlfAlij4gCwqXDTWkSuS33V9Dr6WJd+\nS8BH5IYLk87Ixsx1vNe0j+Odp9mYuVbtksJCr6Ofqv7LVPXVcNlWh9M7BoBW0VIcX8CCxBIWJpSS\naUkPeHi4LKGYUmsR53ou8mb9Lg63H+dE52k2Z21ga+5mzHPwndHvtPHTc7/B6XXy5KLPUmItCvp7\nRiK9Vs9Xl36Rn5z9JUc7ThIXFTsvx4uGK1k5E0IEhV6rV7sEEQBJE21l+5w3G+gZvwklHXrCz2SH\nnhH3qMqViJloHGwGIC8uvAI9MH6heKjtGM1DreTH5X7ic9qGxgM9shsjMqxNX0W9vYljHae5J/+T\nWy5X9FYBsDRp4VyWNm8pisL2grv413O/Zmf9e3x92ZNqlzTvDbqGACKiQw+Mj+atG2ig39FP6nVG\nLIrpOdZxGoC1acEZt/VR9+ffxemu8+xq3MstaStIMM5+DEW7dOgRImxlWSY79LQH5HgftB3FNjbA\nluxNqo9PeLDwXs73XOKtht2sTFl2U/W4psZtJUhAOozkxWZj1EZxub9W7VICrmmwhfea9nO+5yJ+\n/CSZErkzZxNr0lZhkLXcKZN/97Yx6dAjAmd/y2EAbs/eoHIl6tqctYH3mw+yt/kA6zNWo1FkkMyf\nG/O6qLVdobK/hqr+y3SPftjdNsmUyOqElSxMLKE4vhCjLiro9SiKwoqUJSxNWsjxztO81bCb3c37\nOdR+jK05m9mcvYEorSEo7z3qHuWn53+L3TXIjqL7WJW6PCjvM1+YdEa+sewr/PjsL6mx1QES6AkX\nEugRQghxTSadCbMu+qY79NgndrTETexwEeHDPBHoGXIPq1yJmImpQE9stsqVzFyZdTzQU91fd+1A\nz0gHeo2OZFPSHFcngqE8ZRn/UfMGxzpOclfe7Z+4mHOh9xIw3jlGzI0yazFF8flc7Kuiwd50zb9H\nMTfsUx16IiXQM94FssfRJ4GemzTiHuVibyXp5tQ5uVkcrTexo+g+fl/1Ii/X7uSpJU/M+lhtI52Y\n9dHERkjnKSHmk9ToZHQaHa0BCPQ4PE52Nb2PUWtkW97tAaju5pj10TxUdB9/qHqRl2rf4Okln5/1\nsar6LzPmdbEpc6mM2wojWo2WYmshFb2V9DlsJJpmH14NBX6/n8r+GnY37aN2oB6AnJhMtubezvLk\nxXIz/RNYJzqM25zSoUcERsdIF9W2WorjC+b95rS4qBjWpK/kcPsJzvdcYkXKErVLCgm9jj6OVh/j\nZPMFrgw04PGPj/40aA0sSVrAwoRSFiSUkhydqFqNWo2WWzNWsyp1BQfbjvBe4z7eqN/F/tbD3JN3\nJ+szVgd0aofb6+YXF56lc6SL27M3sCV7U8COPZ9ZDGb+yy3fwY+M3AonEugRQghxXYmmBNpHOvH5\nfbO+yP9w5FZk3ISaTz7s0CMjt8JJ42ALsYaYqUWocFJiLURBodpW84ndWrw+Lx0jXWSYU2W0Y4Qw\n6YysSFnK8c7TXBlooNhaeNXjo24HtQP15MRkES/B0Dkz3qXnbn545ue8Wf8u317xtNolzWt213ig\nJzYqMoIPydHjgcweR5/KlYS/013n8Pi9rElbOWc3i1enlXO4/Tjneiqo6qthQWLJjI8x5nXR5+in\nKD5fbnILEYa0Gi0Z5lTaR7quOyp3OvY2H2DEPcr2grumrj/VtjZtJUfbT3K+5yIVvZWzDpWf6b4A\nQHmqjNsKN2XWYip6K6m21bDetEbtcmbF6/NypvsCu5v30zY83uW2zFrM1tzNlFqL5Pv3Osz6aPQa\nnXToUZHX56VpqIWmwVZWpCwJ+7WA/S2HANg8z7vzTNqSvYkj7SfZ3bSf5cmL5/Xnkd/v50DrEV69\n8hYenwcY74S4IKGEhYmlFMTlBnWs8mwYtHruzLmN9Rmr2dN8kPebD/KnmlfZ23KQ7fnbKE9ddtNh\nUZ/fx7OVL3DF3sCKlKU8XHT/vP49CTRZUw8/ofUpIIQQIuQkmRJoHmpl0DU064unDwM94X3xNR+Z\ndEY0ioZhl4zcChcDY3YGxuwsS1oUlhc6Zn002TGZNNibcXrGPtY6ttvRi8fnIXOizb+IDOvSV3G8\n8zRHO059LNBT2VeNz+9jadIilaqbv4ri81mQUEJVfw01tjqZU66iqQ49ERKO/rBDT+8Nnilu5Fjn\naRQUVqeVz9l7ahQNj5Ts4Acnf8yLta/xPetfo5/hInPHSCd+/GTM8x3KQoSzTEsGzUNtdDt6STen\nzuoYg64h9rZ8QIzBwu3ZGwNc4ewpisJjpTv4/skf8VLN65RaizDMcJSEy+vmQm8lScYEsi0ybivc\nlCUUA3C5v471GeEV6HF5XRzpOMn7zQfpc9pQUFiZsow7c28jJyZL7fLCgqIoWKPisTkl0DNXfH4f\nrcPt1NiucNlWR91AAy6vC4CTnWf5v1b+ZdjegB5xj3K88wyJRquMEZ+Qak5hafIizvdcpHagnpI/\nWweaL4Zcw/yh6iUu9lVh1kfzpfJHyYsqIC5MNvKYdCa2F9zFbVm3sqtxL4fajvNvlc/zXvN+Hiy8\nh4UJpbNam/b7/bxc+yZneyoois/nCwselW5yYt6TQI8QQojrSpq44dLr6L+JQM/4TSjp0BN+FEXB\nojczLCO3wkajfXLcVo7KlcxeWUIxzUOtXLE3sCix7KrH2obG2/rP9xbFkaYovoAkUyJnuy/wmZIH\nMemMU49d6K0EYGmyLHypYXvBXVT11/Bm/bv8dXlhWAYFI4HdNQREzsityfPLnlHp0HMzOke6aRps\nYWFC6ZyHvbJjMtiUtY4DrUfY1/zBjMfktA93AZBpTgtGeUKIOTB5Pt461D7rQM+uxr24vC52FN5L\n1AwDM8GWYUljS/Ymdjfv553GvTxYeM+MXl/ZfxmX10V51jI5fwpDqdHJxEfFcdlWd1Mdq+fSsHuE\ng61HONB6hGH3CHqNjk2Z69iSs2nq3EtMX7wxnm5bL26vG71Wr3Y5Ecfv99M52s1lWx01tivU2q4w\n6nFMPZ4anUyJtQibc4CLfVW83bCb7YV3q1jx7B1pP4Hb52ZT1q1h8VkyV7bm3Mb5novsbt4/LwM9\n1f21PFf5AnbXEKXWIj6/8FGKs7Lo6RlSu7QZizXE8EjJQ9yRvZGd9bs51XWWn53/LUXx+TxYeA8F\ncXkzOt7eloPsbz1MujmVry75gnwGC4EEeoQQQtxAkjEBGJ/jWhSfP6tjDIzZidIaMGqNN36yCDkW\nvRnbmMwNDxcNgxOBnrhslSuZvVJrEe817aO6v/bjgZ6RTkACPZFGURTWpq1iZ8O7nOk+P7UL1uPz\ncKnvMolGKxly01cVubHZLEtaxPneS1zqq2Zx0gK1S5qX7GODKCjEGCxqlxIQJp2RGL1FOvTcpOOd\npwFYk75Slfe/P/8uTned553GPaxKW06C0Trt17aPjI/+SLfIZ7sQ4SpromNm23AHt7Bixq/vdfRx\nqO04SabEkO2Ack/+nZzqOsfe5oOsSSsnbQbBpTNd5wEoT5FxW+FIURTKrMUc6zxF63B7SHe26XPY\neL/lIEfaT+DyuYnWmbg7bwubs9ZHzLmjGqwTmxptY3ZSJsbFitnz+/30OvqpGaib6sIz5Ppw82CC\n0cqy5MWUWAspsRZObSp1eJx8/8SPeLdpHwsSS2e9Nq0Wr8/LgdYjGDR6bk2/Re1yQkp+XC6FcflU\n9l2mbbhj3qzzeXwe3qx/lz3NB9AoGh4qvJctOZsiIuyVZErki4seY2vubbxxZRcX+6r4P6d/xpKk\nhTxQcDcZ07j2O9V5llfr3iI+Ko5vLPsy0froOahciNAngR4hhBDXlWiaDPT0z/oY9rFB4qPiZFda\nmLLozbSPdOL1ecO2ve180jjYjIIS0guON1IYl4deo+Oyre5jj7UOS4eeSLU2fSVvNbzH0fZTUzd1\nagfqcXqdrE1fKd8hKrqvYBsXeivZWf8uixLL5N9CBYNjg8QaLBGxyDcpOTqRxsEWOb+YJZ/fx4nO\nM5h0RtVGEkbrTewouo/fV73Iy7U7eWrJE9N+bfvweEA3Y5ZdPYQQ6pvq0DNxfj5TO+vfw+v3sj1/\nW8h+D0RpDXym5EGeqXiWFy6/yndWfHVa50Eur5uKviqSTYlTwScRfsoSxgM9l/vrQvL6um24g91N\nBzjdfQ6f30d8VBzbszdya8aaj42uFjOXYIwHwOYckEDPLA2M2bnc/2GAxzb24QizWEMMq1KXU2ot\nosRaRNLE+vOfM+mMfGHhY/zwzM95tvIFvrf6u5h0prn6EW7ahd5KbGMDbMxcJ8GET7AtdzM/v9DA\nnuYDfGHhY2qXE3Tdoz3826XnaR5qJdmUyJOLPktubPhuyLyWTEs6X1/2JFcGGnn9yttU9FZysbeK\n1Wnl3Je/dep+05+73F/Hc1UvYtQa+ctlX8I68TkshJBAjxBCiBuYvKDqc84u0OP2uhl2j5AhN9/D\nltlgBmDEM0qsITxm+M5XXp+X5sFW0s2pGHXh2xFLr9VTGJdPta2WQdfQVb93bUMdxEfFYZaFkIhj\nNcZTllBMVX8NnSPdpJlTqJgct6XSzWoxLtOSzsrUZZzqOse5nousSFmidknzit/vx+4aIt2conYp\nAZVhSafe3sQrdTv5dPEDEhSbocu2OgbG7KzPWI1BxRbkq9PKOdx+nHM9FVT11bAgsWRar2sf7iTR\naA3r8xUh5rtovYlEo3VWgZ7WoXZOdZ0j25JBeeqyIFQXOMuSF7EkaSEVvZWc6Dwzra5olX3VuLwu\nVqQsle+3MFaaUASMj0XZmrtZ3WI+on24k9euvM2lvmoA0s2pbM3ZzMrUZeg0crsnUKxRE4Gej4RQ\nxPUNuYapHaifGKNVR/foh904zbpolicvocRaSKm1kNTolGl/PhbG53F33h2807iXF2teD6vgx/7W\nQwBszrpV5UpC08LEUtLNqZzqOsf2grtm1PEznPj9fo53nuZPNa/h8rpYk7aSR0oejPhrocL4PP6q\n/Otc6qvmjfpdHO88zamuc2zMXMvdeVuu6iLXNtzBMxXPoQBfXfp52cgpxJ+RMzwhhBDXZY2KR6No\nZt2hx+4aBCA+KjaQZYk5ZNGPB3qGXSMS6AlxHSNduHxu8mJz1C7lppUlFFNtq6Wmv45VaeMt/Idd\nI9hdgyz+szFcInKsS19FVX8NxzpO8WDhPVzoqcSkM4VdW+1IdG/+Vs50X2Bnw3ssS14UUZ1iQp3D\n48TtcxNriKxzqe35d3FloIH9rYcxaA08UHC33PScgeMdE+O20lapWodG0fBIyQ5+cPLHvFj7Gt+z\n/jX6G9xMHHINM+QeZkmcjPATItxlWjK40HsJ+9gQcVHTv1Z8o34Xfvw8UHhPWJxTfKb4QS731/JK\n3U6WJC24YZeFM90XAChPCe2wkri+WEMMmZZ06uwNuLxuVQO0MH5D+FD7MV6ufRO3z0NhXB5bczez\nKLEsLP6Owk38VIceGUF/LQ6Pg7qBhokAzxXahjumHovSGlicWEbJRAeeTEvaTf2e3pN3J5X9NZzo\nPMPixDJWpi4PxI8QVC1D7dQNNLAgoWRGIxvnE42i4c6c2/h91Yu83/IBny5+QO2SAs7hcfB89Suc\n7j6PUWvkyYWPT61zzgeKorA4aQELE0s53XWenfXvsr/1MEc6TrIlexNbcjbh8Dj46bnf4PQ6eXLR\nZymxFqldthAhRwI9Qgghrkur0WKNiqfP0Ter1w+MTQZ64gJZlphDU4Ee94jKlYgbaRxsBiAvLvzb\ntZYmFMEVqLZ9GOiZXBySjl+Ra2nSIqJ1Jo53nmZFyhJsYwOsSl0esmMY5pPU6GTWpK3kaMdJTnWd\nY3VaudolzRuDE+HouAgLR1sMZr61/Gl+dObnvNe0D4PGwD35W9QuKyw4PE7O9Vwk2ZRIQVyu2uWQ\nHZPBpqx1HGg9wr7mD9iWd/t1nz/1fW6W73Mhwl2WJZ0LvZdoG24nLqp0Wq+ptdVzqa+a4vgCFiRM\nr6uX2hJNVu7Jv5PXr7zD6/W7eLz04Ws+1+V1UdFbSYopiSy5bgl7ZdZi2oY7qLc3UpZQrFodI+5R\n/lj9H5zruYhZF82Tiz7LsuTFqtUzH1gn1jGlQ8+Hxrwu6gcapwI8zUOt+PEDoNfopsZnlVoLyYnJ\nCuh1vFaj5YsLH+P7J3/M85dfpSAuL+TH8XzYnWe9ypWEtlWpy3mz/l0Ot5/gnrw7I6ojd729id9d\n+iN9Thv5sTl8cdFnrzleLtJpFA23pK1gRcoSjrSf4O3GPbzTuIeDbUcwaY3YXYM8XHQ/q8IgrCeE\nGiTQI4QQ4oaSTAlcttXh8rowaA0zeu3A2PhOFgn0hC8J9ISPhslATwR06MmyZGDWRVPdX4vf70dR\nFNpGOiYek4XxSKXX6lmVuoKDbUd4qeZ1QMZthZJ78rZwovMMbzXsZmXKMglazZHJcHRcBHbJi4uK\n4dsrnuafz/ycnQ3vYtDq2ZKzSe2yQt7Z7grcPjdr0laGTFej+/Pv4nTXed5p3MOqtOXXbZffMdIF\nQIYlba7KE0IESWZMBgCtw+0sTLxxoMfv9/P6lXcAeLDw3pD5DJuOO7I3crzzDIfbjrMufdU1r7ku\n9lXj8rll3FaEKE0oZm/LQar7a1UL9NQNNPC7S89jGxugOL6ALyx8LOSDDJFg8r/xfA/0jLpH2d96\nmOr+OhoHm/H6vcD4zfmCuNypAE9ebA76IHexSolO5tPF2/lj9cs8W/kC317xdMh2pxpyDXOq6xwp\npqRpfT/OZzqNjtuzN/Bq3Vt80HaUu/PCf5OHz+/j3cZ9vN24G7/fz915W7g3705ZQ2H833tT1q2s\nSV/FvpYP2N10gF53P3dkb5S1ACGuIzS/7YQQQoSUyeR4n9M249d+GOiJrF3l84llYmfEsEsCPaGu\ncbCFKK2B9Aho5atRNJQkFGEbG6DbMT53vW1oPNAjc5Qj27qM8fExDYPNaBWtLH6FkERTAusz1tDr\n6ONYxym1y5k3Bl1DQOR16JlkNcbznRVPE2eI5ZW6nXzQdlTtkkLe8c7xv79Q6pQVrTfxUNF9uHxu\nXqnded3ntk916JFAjxDhLssyHuj56JiV67nQW0nDYBPLkheTHxdemxB0Gh2PlezAj58Xql/B6/N+\n4vPOTo3bWjqX5YkgKY7PR6doqbbVzvl7+/w+3m7YzY/O/IKBMTv352/j2yueljDPHDHpjBi1Rgbm\n8citIdcwPzzzC95q2E29vZFMJLiXWwAAIABJREFUSzpbczbzjWVf5p82/h1/vfIvub9gG8XWwqCH\neSbdmr6aZUmLqB2oZ2/zwTl5z9k41HYcj8/DbVnrQzZ0FErWZ6zBpDOyv+UwLq9b7XJuis05wI/P\n/pKdDe8Sa4jhOyueZnvBXRLm+TNRWgN3523h7279G7657CvsKLpP7ZKECGnyTSKEEOKGEo3jgZ7e\nWYzdssvIrbBnNox36BmRDj0hzeFx0jXSTU5MVsQsFpRNzEy+3D++eNo20oFeoyPZlKRmWSLIsi2Z\nU6GtEmshJp1R5YrER92Vdzt6jY63G/fgDvOFtnAxeS4VqYEegCRTIt9e8TQWvZkXLr8qgbHr6HX0\nUzfQQHF8AYkh1q59TVo5BXG5nO2poKqv5prPaxvpRKtoSY1OnsPqhBDBkGi0YtQaaR1qv+FzfX4f\nb9TvQkHhgYK75qC6wCu2FrAmbSUtw+0c/IQA6pjXxcXeKlKik2QTQoQwaA0UxOXROtQ+p5ucJm8I\nv9Wwm/ioOL5b/jXuyb8zYq71w4XVGDdvO/QMjNn54Zlf0D7SycbMdfyvjf+dv7nl2zxUdC8LE0sx\n6qJUqUtRFD5b9mliDTG8Wf8uLUNtqtRxPV6flw/ajmDUGlmbvlLtcsKCSWdkY+Y6htzDHO88rXY5\ns3auu4J/OPFD6gYaWJa8mO+t/iuKrYVqlxXSLHozCxJL5PtNiBuQvxAhhBA3NNWhxzH7Dj2RfBMq\n0ln0FkBGboW6psEW/PjJj8tVu5SAmWxpXm2rw+vz0jHSRbo5VXa1RDhFUbg1YzUAy5IXq1yN+HPx\nUXFsyrqVgTE7h9qPq13OvGB3TY7ciuxzqTRzCt9e8TTROhN/qHqJ013n1S4pJE0ucK9JX6VyJR+n\nUTQ8UrIDBYUXa1/D7fN87Dk+v4+OkS5So5Pl+1yICKAoCpmWdLpGe264o/545xk6R7pYm76KtDDu\nKLqj6D6idSZ21r87td4x6dLEuK3yZBm3FUlKE4rx4+fyHHXpOd9zke+f+BF1Aw0sT17C91Z/l6L4\n/Dl5b3E1a1Q8Do8Tp8epdilzqt9p40dnfkHXaDdbsjfxaMlDRE907w4FFoOZJxY8gtfv5XeXnsfl\ndald0lXOdl/A7hpiXcYqjLJBado2Z21Ap2jZ23wAn9+ndjkz4vK6+GP1y/zq4u9x+zw8XvowTy1+\nAnMI/d0IIcKbBHqEEELcUJIpEYBe58w79AyM2dEoGmINMYEuS8yRqZFbEugJaY2DLQDkxWarXEng\nJJkSSTQmUGOro3O0G4/PQ+ZEW38R2TZlruOby77C+olgjwgt23JuJ0pr4N2m9xkLscXTSDTZoSc2\nKvLPpTIt6Xxz+VeI0hr4XeXzVPRWql1SSPH7/ZzoOI1Bo2dFiAYes2My2JS1ju7RXvY1f/Cxx/sc\nNlxeFxkWGbclRKTIiknHj5+Okc5rPsftdfNW/XvoNDruy986h9UFXozBwoOF9+D0jvFy7ZtXPXZm\nctxW6jI1ShNBsmByo0l/XVDfx+V186fLr/JMxXO4fC4eL32Yryz+i5AKUsw3VuN4t3Hb2PwZu9Xr\n6OdHZ35Bj6OPu3PvYEfRfSEZUFyYWMrmrPV0jnbzat3bapdzlX2th1FQuC1zvdqlhJW4qBjWpK+k\nx9HHD8/8nP0thz8WnA1FrUPt/OPJn3C4/TiZlnT+5pZvsyFzbUj+3QghwpcEeoQQQtzQZDv/Xkf/\njF87MDZIrCFG2iaGMYt+fOTWXLaXFjPXONgEQF5sjsqVBFZZQjEOj5OjHScBpHX9PKFRNNJyN4RZ\nDGbuyN7IkGuYA62H1S4n4tnHhlBQiJnomBfpcmOz+fqyL6FTtPy64vdU9V97dNN8c8XeSK+zn+Up\nS0J6t+/9+Xdh0Zt5p3EP/c6rO3y2j3QAkGmW73MhIkXWROC+dfjaY7c+aDuKbWyA2zJvxWqMn6vS\ngubWjNXkx+ZwpvvC1IjByXFbqdHJZJgltBhJsmMyidaZqLbV4vf7g/IeHSNd/NOpf+Fg21EyzGn8\n51VyQzgUWKPGP69szvkxdqtrtIcfnvk5fU4b9+ffxfbCu0P6d/DBwntJN6dysO0IF3ur1C4HgAZ7\nM42DzSxOKiM5OlHtcsLOvflbKY4voMHezEu1r/O3h/+B/3P6Z+xrORRyf4d+v599LYf4p1P/Qtdo\nN5uz1vOfVn6T9DDuQiiECF2yQi6EEOKGzLpojFojfTMM9Pj8Puxjg8RHxQWpMjEX9Fo9UVoDI9Kh\nJ2T5/X4a7S1Yo+Ijbrzd5NitI+0nAAn0CBEq7sjehElnYnfTfhweh9rlRDS7a5AYg2VejScqis/n\nq0u/CIrCLy88S62tXu2SQsLxjlMArElbqXIl1xetN/FQ0X24fG5eqd151WPtw10ApFtkoVuISDF5\nft461PGJjzs8DnY1vY9Ra2Rb3u1zWVrQaBQNj5Y+jILCn2pexe11c7G3CrfPzYoUGbcVaTSKhhJr\nEf1OGz2O3oAe2+/3c6jtGD84+RPaRzrZlLmO/7TqW9LJLkTETwQQbWOhFSQIhvbhTn545ucMjNnZ\nUXQf9+RvUbukGzJo9Xxx4ePoFC1/qHqJIdew2iWxv/UQMD4+SsxcfFQc3y3/Gv9j/ff4TMmDFMXn\n02Bv4j9q3+Bvj/wD//vUT9nbfJA+h+3GBwuiIdcwP7/wb/xH7RsYdUa+vvRJPlPyIHqtXtW6hBCR\nSwI9QgghbkhRFJJMCfQ6+ma0G2nEPYrX7yU+wgIG85FFb2ZIAj0hq99pY8g9HFHjtiaVxBeioEyN\n9ZFAjxChIVpvYmvObYx6HLz/CWN1RGD4/X4GxwYjLqw5HWUJxTy1+Am8fi8/v/BbGgeb1S5JVS6v\nizPdF7BGxVNiLVS7nBtak1ZOQVwuZ3sqruqyNNmhJ0M69AgRMdLNaWgUDW3X6NCzt/kgI+5Rtube\nNtX9NRJkx2SwOXs9PY4+3mvax9nJcVspS1WuTARDWRDGbo26R/nNxT/w/OVX0Gt0PLXk8zxaugOD\n3BAOGQnzpENPy1A7Pz77S4Zcw3ym5EHuzLlN7ZKmLSsmg+2FdzPkHubfq18KWhet6RgYs3Om+wLp\n5lRKrUWq1REJ4qPi2Jy1nu+Wf43/uf5vebRkByXWIhoHm3mlbif/7ej3+V+n/oXdTftnNVHgZlT1\n1fA/T/wzl/qqKbMW873Vf8XipAVzWoMQYv6RQI8QQohpSTQl4PK5GXJPf7fD5JzbOOnQE/bMejMj\n7hFVL4zFtU3e5MyLi6xxWzA+2icrZryNf3xUHGZ9tMoVCSEm3Za1nhi9hfdbPmBYQp9B4fQ6cfnc\nxBli1C5FFYuTFvDkos/i8rr513O/oXXo2uNcIt35nks4vWOsTisPi3GEGkXDIyU7UFB4seY13D4P\nML7726g1khABI3eEEOMMWj0p0cm0DXfg8/uuemzQNcTelg+IMVi4PXujShUGz/3524iPiuO9pn1c\n7KsiNTpFxm1FqAWTgR5bbUCOd2WgkX848SPO9lRQGJfP91b/FcuTFwfk2CJwrMbx9Uyb065yJcHT\nNNjCj8/+khH3KJ8t+xSbs9arXdKM3ZG9kVJrERW9VRxqP65aHYfajuHz+9ictV46tQVQXFQMm7LW\n8Z0VT/P9Df+Vx0sfpsxaTMtQG69deZv/fvQf+cHJH/Ne4z66RwPbRe2jPD4Pr9Tu5F/P/5pRt4Md\nRffxjeVfnpebb4QQcy/0V4GEEEKEhCRjAsCMxm5NBnqkQ0/4sxjMuH0eXD632qWIT9A42AJAXmzk\nBXoAyqzji6dZ0p1HiJBi1EWxLe92nN4x9jQdULuciGQfGwKY14uE5SlLeWLBIzg9Tv7l3K/oHOlS\nuyRVHO88DYx3vgkX2TEZbMpaR/doL/uaP8Dt89Dt6CXDkio3OYSIMFmWdJzeMfqdV4/A2NW4F5fX\nxb15dxKlNahUXfAYdUY+Vbwdj9+L2+ehXMZtRawkUyKJxgRqbHV4fd5ZH8fn9/FOw56p0Ub35m/l\nOyuexipB15AUHxXZI7euDDTyk7PP4PQ4eWLBI6zPWKN2SbOiUTQ8seARonUmXq59k66R7jmvwe11\n80HbMaJ1JlaH0fl6uIkxWNiQuZZvrXiK76//r3yu7NMsTCildbiD1+vf4e+O/S++f+JH7GrcS9do\nT8Det2u0h/99+qfsbTlIiimJ/3vlN7gz57aw2GghhIgM8mkjhBBiWpJM44GembSx/DDQIx16wt1k\na/ThEJhHLT6uwd6MRtGQE5OpdilBsSixFIDcCBwpJkS425ixlvioOPa3Hp4Kn4jAsY8NAhBrmL+B\nHoA16St5tHQHw+4RfnL2GXpG+9QuaU4NjNmp7q8lPzaHVHOK2uXMyP35d2HRm3mncQ/V/TX4/D7p\nXiFEBMqyjHfU/GgntV5HH4fajpNkSgzbm8TTsSJ5CQsTS1FQWJm6TO1yRBCVJRTj8DhpHmqb1ett\nzgF+cvYZdja8R3xUHN8t/xr35W9Fq9EGuFIRKAatHoveHJGBnhrbFf71/K9x+dw8ueizrElfqXZJ\nN8VqjOfxsk/h9rn5XeXzeCa6Q86V093nGXaPsD5jDYYIDLCGIovBzK0Zq/nG8i/zjxv+G3+x4BEW\nJZbRMdLFm/Xv8vfH/on/efyfeadhz6w3hfj9fo62n+QfT/6YlqE21qav4m9u+Q45sVkB/mmEEOL6\ndGoXIIQQIjwkmhKBmQZ6xm9CSaAn/E0FetwjJE6Eu0Ro8Pg8tAy3kWlOi9hFg2JrId9d8TW5YBYi\nBOm1eu7O28ILl1/h3ab3eaTkQbVLiih21/i5VFzU/By59VEbM9fi9rl5ufZNfnLuGf6q/GskGK1q\nlzUnTnSewY+fNemr1C5lxqL1Jh4quo8/VL3IH6peAiBDOu4JEXGmAj3DHSxPWQLAzvr38Pq9bM/f\nFtGBBUVR+MriJ+gZ7SXdnKp2OSKIyhKKOdx+fDxkO8Nx1+d7LvHvVS8x4hllWfJiPlf2aRknHSas\nUXF0jvbg9/sjpgNXZd9lnql4Fp/fz1cWP8Gy5EVqlxQQ5SlLuZS2imOdp3i7YQ8PFN49J+/r9/vZ\n33IIBYVNWevm5D3F1cz6aNalr2Jd+ipG3Q4qeis523OBqr4adja8x86G90gzp1KevIQVKUtJN9+4\nY+io28Hzl1/mTPcFTDojX1r0WVamLp+jn0gIIa4mgR4hhBDTMtWhxzn9HdEycityfBjoGVW5EvHn\n2oY78Pg85M5wQTHcFFsL1C5BCHEN69JXsbtpP4fbjnFnzqZ5E7KYC5MdeuLmeYeeSXdkb8TldfFm\n/bv85Owz/FX51yN+HJnf7+d4x2l0Gh0rU8Kz88OatHKOtB+n3t4EQIbc8BYi4mTGjAf1WofHO/S0\nDrVzqusc2ZYMyudB15oorYGsmAy1yxBBVmItREGh2lbDPflbpvUat9fNq1fe4kDrEfQaHY+V7mBD\nxtqICYbMB/HGeFqG2xnxjE6tjYWzit5Kfl3xexRF4atLv8CixDK1SwqoT5c8QO1APe817WNhYilF\n8flBf88r9kZahttZnrxEroVDQLTexJr0laxJX4nD4+RibxVnuy9wqf8ybzfu4e3GPaRGp7AiZQkr\nkpeQaUn/2GfylYFGflf5PP1OGwVxuXxx4eOywVUIoSoZuSWEEGJaEoxWFBT6ZtChxy4deiKGjNwK\nXY2DLQDkx0Z2oEcIEbp0Gh335W/F4/fyTsNetcuJKIOu8TFmkR5amYm787ZwV+4d9Dj6+Mm5XzEU\n4ecmzUOtdI52szRpIdF6k9rlzIpG0fBIyQ4UxhfKpUOPEJEn1hBDrCGGtuEOAN6o34UfPw8U3oNG\nkeVnERksejPZMZk02JtxesZu+PzOkS7+6fS/cqD1COnmVP7zqm+zMXOdhHnCjDUqHgCb065yJTfv\nbHcFz1Q8h0bR8LWlT0ZcmAfApDPyxUWPAfBs5Qs4PI6gv+f+lkMA3J69IejvJWbGpDNyS9oKnl76\nBX6w4b/xpUWfZXnyEvqdNnY17uX7J3/E3x/7J16/8g4tQ214fV7ebtjND8/8HJtzgHvy7uS7K74m\nYR4hhOqkQ48QQohp0Wt0xEXFznDklh2TzhSxY4DmE7NhPNAz4h5RuRLx5xoHmwHIk0CPEEJFt6St\n4N2mfRzrPMXW3M2kRCepXVJEmOrQI4Geq2wvuAuX18W+1kP89Nyv+faKr4Zt2OVGjnWcBmBN2kqV\nK7k52TEZPFx8P/1Om4wYESJCZVrSqeqv4ULPJS71VVMcX8CChBK1yxIioMoSimkeaqVuoJ7FSQs+\n8Tl+v58jHSd4qeYN3D43GzLX8qmi+2VtLExZjeObFAfGBsgO405cJzvP8lzVnzBo9Hx92ZfmpHON\nWgri8rg7bwvvNO7hT5df44uLHg/ae/U7bZzvvUS2JYPCuLygvY+4eUadkZWpy1mZupwxr4tLfdWc\n7b7Axd4q3mvax3tN+zBqjTi9TqxR8Xxx0eMR/XcihAgvskVCCCHEtCWZEhgYs+P2eab1/IExu4zb\nihAycit0NdqbMemMcvNcCKEqjaLh/oJt+Pw+3m7YrXY5EcPuGkRBIUZvUbuUkKIoCp8q3s76jDW0\nDLfzs/O/welxql1WwLl9Hk53nSPWEBMRN8XvyN7Ip4sfULsMIUSQZFnGb3T/ofolAB4svFc6kYiI\nU2YtBqDaVvuJj4+6Hfzm0r/zx+qX0Wl0fGXxEzxe+rCEecLYhx16BlSuZPaOtJ/k2coXiNIa+Oby\np+ZFSOGevC3kxeZwsusspzrPBu19DrYexef3cVv2BvnOCyNRWgPlKUv58uK/4Acb/ztPLX6CVanL\n0Wm0rExZxvdWf3de/J0IIcKHdOgRQggxbUnGROpowOa0kRKdfN3njnldODxO6RoSIT4M9ET2WItw\nM+IepdvRS5m1WFrZCyFUtzx5MZmWdE51nWNb7u1kWNLULinsDY4NYTGY0Wq0apcSchRF4bHSHbi8\nbk52neEXF37HXy77UkTdMLvU+/+3d+fRURZm+8ev2TPJJJNksgFJCAkkJOyLgrKoqFVftb5Va6W+\nYsXW4lK32lartlZp1W621da1aotVUVzRWlxQqaIoaICQDQgkbAGyTfbMZGZ+fyRE+QnKkuSZTL6f\nczgnZDIz1xySh8nM9dx3iVo6W3Vyxmy+BwCEvfTudXot/lZNSB6rEW5eC0DkyY7Pks1sU1ndpi9d\nVuHdqsc3PK269nrluLP0vTFzlRiVYEBK9KaEqO5CT8fAXLm1YvuHWlz+omJs0bp64veVGZtudKR+\nYTFbdEnBhbrrkz/pmfIXlR2f1es/j76ATx/sXCWXLUZTUyb06m2j/9gtdk1MGaeJKeOMjgIAB8U7\nPwCAQ5bUvS/2UNZuNXT/ohvvcPdpJvQPJvSEp62N2yRJWbxYDiAMmE1mnZ19mkIK6bUtbxgdJyI0\n+BrltjPt8GDMJrMuzv+2JiaP08aGCj28/p+HPElyIPiounvd1pCBvW4LwOCQ3r2KxiSTvpl9msFp\ngL5hM1s1Mn6EdrZU96xGDYaC+s/Wt3Xvpw+qvr1B/5N1iq6d9EPKPBEioft1zYE4oWd51QotLn9R\nsTaXrpu0YNCUefZJiU7St0d9U22d7fpn8WIFQ8Fevf2Pqz9Va2ebZg2bLpvF1qu3DQDAF1HoAQAc\nMs9hFHq8PYUe3oSKBNE2p0wyqdnXYnQUfMHWxipJ0ggmYQEIE2M9+cqKy1Th3iJVNW43Os6A1t7Z\nLl/AJzfPpb6SxWzRpWPmaqxntErqyvV40b8UCAaMjnXUmnzN2lBbqgzXUA3rnnoBAOEsJTpZOe4R\nOnX4iUqLSTU6DtBnRid2r92q26iGDq/u++wRLa1Ypjh7rK6ddLnOzP4Gk/UiSLzDLZNMqhtghZ5l\nW5fr+U2vym2P03WTFwza6anHDTlGE5LHamNDhd6qeq/XbjcUCund7R/IbDJr5rDpvXa7AAAcCIUe\nAMAhS3J6JEk17bVf+7UN3WcquZnQExHMJrNibNFq9lPoCSf7Cj3D4zIMTgIAXUwmk87uPit/6ZZl\nBqcZ2Pad9e22xxqcJPxZzVZ9f+zFyksYqbU1G/SP4md6/Qzc/vbJ7s8UDAU1bchUo6MAwCExm8y6\nYcoVOifnDKOjAH1qdEJXoefd7R/oNx/fq/KGzRqfNEY3H3udRiXkGJwOvc1itijOHquGjoFR6AmF\nQnq14g29UvEfJTjidf3kK5QWk2J0LMOYTCZ9d/R5cttj9WrFG6pq6p2TTsrqN2lXy25NThnPdHoA\nQJ+j0AMAOGT7Vm7VHsrKrXYm9ESaGFuMWij0hI1QKKRK7zYlRSUq1u4yOg4A9MhLGKlR8dkqri3T\n5oatRscZsLy+JkliQs8hslls+uH47ynbnaU1e9bqqdLnB3SpZ9WuNTKbzJqaOtHoKAAA4AuGutIU\na3Opqmm7OgI+fSf3f3X5uHk9q8oReRKi4tXQ0Rj2zy1DoZBe3vy6Xt/6lpKiEnX95CuUHO0xOpbh\nXLYYXZz/HQVCAT2x4Wn5Ar6jvs13t78vSTopY+ZR3xYAAF+HQg8A4JDF2lyym22HtHKrwbev0MNZ\nCpHCZYtRi7817F/AGCz2ttWopbNVWW7WbQEIL11Tek6XJC2t+I9CoZDBiQamfRN64uwUeg6Vw2LX\nlRMuVWZsuj7c9YmWbHxlQH7/7Wjepe3NOzXGM5rSLgAAYcZsMmtO5iyNis/WT6f+SLPTj5fJZDI6\nFvpQgsOtQCigJl+z0VEOKhQKacnGV/Rm1btKjU7W9VOukMeZYHSssJHvydVJ6TO1u3WvXtz02lHd\n1t7WWhXVlCorLlNZcbwmBwDoexR6AACHzGQyyeNMVE1b3de+ObJv5RaFnsjhsscopJBaO9uMjgJJ\nWxu3SRIvHgAISznxWSrw5GljQ4XK6jcZHWdA8vr2rS+l0HM4nFanrpp4mYbGpOm97Sv18ubXB1yp\n56NdqyVJ09OmGJwEAAAcyDeGn6TrJi/QMNcQo6OgHyRExUuS6sN07VYwFNTTZS/o3e0faGhMmq6b\nvIDXYw/gnJwzNDQmTSt2fKiimpIjvp33dnygkEI6KX1GL6YDAODgKPQAAA5LkjNR7YH2ry11NHR4\nZTVZGDkcQVy2aElSs4+1W+Fga2OVJAo9AMLX2SNOkyQtrVg24AoV4WDfhB63I9bgJAOPyxajH036\ngVKjk/Vm1bt6fetbRkc6ZIFgQJ/s/kwx1miNSco3Og4AAMCgl9Bdjqlv9xqc5MuCoaCeLHlOH+xc\npQzXUF076YeKs/P7w4HYLDZ9b8xcWU0WPVny3BFNXGrvbNeHO1fLbY/TpJTxfZASAIAvo9ADADgs\nSVFdu5dr2mq/8uu8HY1yO+IYOxxBYrrLWc1+Cj3hYKt3m6wmi9JjhxodBQAOKDMuXROTx2prY5WK\nao/8DMjBqtHXJElys3LriMTZY/WjiT+QJypRr215U29VvWd0pENSUleuJl+zpqROlM1sNToOAADA\noBcfphN6AsGAntjwtFZVr9HwuAxdM+lyueycWPlVhrmG6JycM9Tkb9aTJc8e9oknH1WvUXugXbOG\nHSeL2dJHKQEA2B+FHgDAYfE4EyVJNW11B/2aQDCgRl+T3Ix3jSix3YWeFgo9hvMH/NrevFPDYofy\nZh+AsHbmiG/IJJOWVixTMBQ0Os6A4u1olEkmzrA9CglR8bpm0uWKd7j14qbXtGL7SqMjfa2PqtdI\nkqYPYd0WAABAOEhwdBd62sOn0OMPdurvRU9qzZ61ynFn6UcTf6Do7sna+GonZszU6IRRKqot1fs7\nPzrk6wVDQb237QNZzVbNHDatDxMCALA/Cj0AgMOS1F3oqf2KQk+Tv1nBUFDxDs4ojyQ9E3pYuWW4\nbc07FQgFWLcFIOwNdaVpaupE7WjepcK9RUbHGVC8vka5bDGc+XmUkpyJumbS5Yq1u7S4/CV9uPMT\noyMdVKu/Vev3blBadIoyY9ONjgMAAABJCVHdK7c6wmPllj/g1yPr/6m1NRuUmzBSV038vpzWKKNj\nDRhmk1kXF1ygGGu0nt/4qqpb9hzS9Ypry7SnrUZTUycq1u7q45QAAHyOQg8A4LB4oron9LQffOVW\nQ/cvuPFM6Iko+8b2snLLeFsbqyRJIyj0ABgA/mfEqTKbzHq14g2m9BwGb0ej4hxM5+kNqdHJumbi\n5YqxRutfpUu0Zneh0ZEOaM2eteoMBTRtyBTW1gIAAISJOHuszCazdjZXq6S2XDubq9Xibz3sdU29\noSPg04PrntCG2lIVJObpivGXymGx93uOgS7e4dbc0efJH/TrieKn1Rns/NrrvLv9A0nSiekz+zoe\nAAD76bMdDcFgULfffrvKyspkt9u1cOFCDR8+vOfy5cuX669//ausVqvOO+88XXDBBV97naVLl+rJ\nJ5/U4sWL+yo2AOBrfD6hp/6gX9PQ0SiJQk+kcdko9ISLrd6uQg8TegAMBCnRSZqeNlUrd32sT6o/\n0zRWCX2t9s52dQR8cjPtsNcMdaXp6onf158/e1hPFD8jT0KcsuzZRsfaz6pda2SSScemTTY6CgAA\nALqZTWalOJNU3bpH9699tOfzVrNVbnuc3I6uP/Ff+PiLn4+yOHqlrN3e2a6/rX1cm71bND5pjOaP\nvYg17EdhUso4TR8yVR/tWq3Xtrypc3LOOOjXVrfsUUlduUbGj1BG7NB+TAkAQB8Wet566y35fD4t\nXrxYhYWFuvvuu/XAAw9Ikvx+v+666y4tWbJETqdTc+fO1Zw5c/Tpp58e9DrFxcVasmSJIa1nAMDn\n7Ba74uyxqmk7lAk9vAkVSSj0hI+tjdvkssX0FOwAINydMeJkfVy9Rq9teVNTUifIygvPX8nra5Ik\nue08l+pNmXHpumrifN1X+KjuXfmoTsk8QSdnzFa0zWl0NO1u2aMtjVXKT8ylFA8AABBmFoy/VBsb\nNsvb0agGX6O8HZ//2eLo3bwLAAAgAElEQVStVEgHf9/KbrF/qewTv+9jh7u7/BMr+1dM2mn1t+lv\na/+uLY1VmpQyXpcWzGU1by/49qhvalN9hd6sfFcFibkalZBzwK97r3s6z0lM5wEAGKDPXkVds2aN\nZs2aJUmaOHGiioqKei7bvHmzMjMz5XZ3vUg1ZcoUffLJJyosLDzgderr6/XHP/5RP//5z3Xbbbf1\nVWQAwCFKciZqa+M2BYKBA/7y6O2e0OPmzYiIEkOhJyw0+ZpV216nMZ7RrOMAMGAkRiVoxrDpem/7\nB/pw12rNGjbd6EhhrXHfcyk7K7d6W7Y7S1eMv1RPFD+l/2x9W+9tX6mTM2brpIwZirJGGZZrVfWn\nkqRpaUywAgAACDfJ0R4lR3sOeFkwFFSTr7mr4ONrVMMXyj7eL5R/9rTVfOV9OK3OA076iXPE6o3K\nd7StaYeOTZus/xv9bco8vSTKGqVLxszVvZ8+oH8UL9bPj73+S2X/Vn+bPqpeowRHvMYlFRiUFAAw\nmPVZoae5uVkul6vn7xaLRZ2dnbJarWpublZs7OcvTMbExKi5ufmA1/H5fLrlllt08803y+FwHNJ9\nJyREy2rlCU04Sk7mBWkgEgyLT1WFt1LmmE4lu+K/dHnb5q7CR86QoUp2DY6f+8FwfAuFXLJZbOoI\ntQ+KxxuuKndskSSNGTKSfwf0C77P0Fsucp2tD3d9rDeqluuscSfKbrEZHSlslbX6JUnDPCn8DPaB\n5OSJmpKdr2Ub39PLpW/o1S3L9N6O93VO/mk6beQJclgPfnZ0XwiGglr90WdyWqN0cv70fr9/AJGJ\n/z8ARKpwPL6lyi1p2Fd+TWegUw0djapv86q+zau6toaej+vbG1TX/XF1y+4DXn9O9gxdPuW7MpvN\nffAIBq/k5LE6t/0MLdnwml6ufFXXHDd/v8uXlq6SL+DTBWPPVFrql18HB3pTOB7fABivzwo9LpdL\nLS2fn8EfDAZltVoPeFlLS4tiY2MPeJ3S0lJVVlbq9ttvV0dHhzZt2qRf//rXuuWWWw563/X1rX3w\niHC0kpNjtXdvk9ExAPQCl6lr/UPZjiqZEr9cttzt7VrH1dli0d62yP+5H0zHtxhrtBpaGwfN4w1H\n67aVSZJSLGn8O6DPDabjG/qDWScMm6E3q97Vi2vf1JyMWUYHClvba/ZIksx+Oz+DfSQ5OVbHJx2n\nSdMn6d1t7+utqhV6cu0LeqXkTZ02fI5mDJsmWz+thiut26ja1nodP+QYNdZ3SOrol/sFELl4Dgcg\nUg3845tN8UpSvCNJIxySDtAP8Qf88vqa9pvwE2116pi0SaqtZWp2X5idPFNr4tbr/apPNNI1Usek\nTZLUVbz/d9ly2c02TYibMMC/9xDuBv7xDcDR+KpCX59VeSdPnqwVK1ZIkgoLC5Wbm9tzWU5Ojior\nK9XQ0CCfz6fVq1dr0qRJB7zO+PHj9dprr2nRokX64x//qJEjR35lmQcA0Pc8zkRJUm1b3QEvb/B5\n5bLF9NubIOg/LlsMK7cMtrVxmyRpeFyGwUkA4PCdMvwERVkcWrZ1udo7KS0cTM/6UnucwUkin9Ma\npTNGnKI7j79Jpw+fo/ZAh57b+LJu//Aevb/jIwWCgT7PsKp6jSRp2pCpfX5fAAAACG82i01JzkTl\nxGdpcsp4nZQxU9OGTJHZxGSevmIxW3RJwVzZLXY9U/aiatvqJUnra4pV216vY9MmK9oWbXBKAMBg\n1WfPAE499VTZ7XZdeOGFuuuuu3TzzTdr6dKlWrx4sWw2m2666SZddtlluvDCC3XeeecpNTX1gNcB\nAISfpKiuQk9N+5cLPaFQSA0djYp3uPs7FvqByxajjoBP/oDf6CiDUjAU1NbGbUqNTv7STm8AGAhc\nthjNyZilZn+L3tv+gdFxwpbX113ocTBuu79E26J1ds7puuO4m3Ry5my1+Fv0dNkL+tVHv9NHu1b3\nWbGnvbNdhXvWKykqUTnurD65DwAAAABfLTnao2+POkftgXb9o/gZBUNBvbPtfUnSiRkzDU4HABjM\n+mx0gtls1h133LHf53Jycno+njNnjubMmfO11/mi9PR0Pfvss70bFABw2JK+YkJPe6BdvoBP8Q7O\nKI9ELnuMJKnZ36IEC3uj+9vu1r1qD7RrQtwYo6MAwBGbkzlL721fqTer3tOsYcdRUDyAxo6uMdtx\ndgo9/S3W7tK5I8/SyRmztazyHX2w4yMtKnlWyyqX68wR39DklPG9enb0Z3uL5Av6deyQKTKZTL12\nuwAAAAAOz3FDpmpDbYkK9xbpyZLntLGhQqMTRmlITKrR0QAAgxgz+gAAh83tiJPVZFHNAQo9DftW\nRDChJyLF2PYVeloNTjI4bfVWSZKyWLcFYABzWp06ZfgJauts0/JtK4yOE5a8vka5bDGysr7UMG5H\nnC7IPUe/PO6nmjF0mmra6vT4hqd018d/UuHeIoVCoV65n1W7VkuSpqVN6ZXbAwAAAHBkTCaT5o4+\nT257XM9a3BMzZhicCgAw2FHoAQAcNrPJLI8zUTXttV+6rKHdK0lM6IlQsd2FnhZ/i8FJBp9AMKDC\nvUWSpCx3psFpAODonJA+Q7F2l5Zv+6+afM1Gxwk73o4muXkuFRYSoxL03dHn6ZfTf6JpaVO0q2W3\nHln/T92z+i8qqik5qmJPbVudNjZUaGT8iJ4JmAAAAACM47LF6OKCCyRJyU6PxnhGG5wIADDYUegB\nABwRjzNRLf5WtXW27ff5ho59hR7WMUWingk9vPnarzoCPj1S9E8V1ZYoMzZdw2KGGB0JAI6Kw2LX\nacPnqCPg05tV7xodJ6x0BHxqD7SzbivMJDk9mlfwHd067ceakjJB25p26IF1j+sPa/6q0rqNR1Ts\n+bj6U0nS9LSpvR0XAAAAwBHKT8zVlRMu0+XjLunVdbsAABwJ/icCAByRpKius4hr2ur3+/y+lVtM\n6IlMLjsrt/pbk69Zf/70Ia2vKdHohFG6ZtLlspgtRscCgKM2c9h0JTjitWL7yp5CMCRvz/pSnkuF\no7SYFM0fe5F+fuz1mpA8Vlsaq3Rf4SP682cPaVPDlkO+nVAopFXVa2Q32zQpZVwfJgYAAABwuMZ4\n8jTUlWZ0DAAAKPQAAI6Mp3stQG3b/mu3Gnz7JvS4+z0T+p5r34QeVm71iz2te/X71fersmmbpqdN\n1ZUT5stpjTI6FgD0CpvZqjOyTpY/2KllW98xOk7Y6Cn02Cn0hLNhriG6fNw8/XTqj1TgydPGhgrd\n++kDur/wUVU2bvva61d4K7W3rVYTkscpiv/bAQAAAAAAcABWowMAAAamJKdHklTTXrff5709K7d4\nEyoSUejpPxXeSj247nG1+Ft1RtYpOnPEqTKZTEbHAoBeNX3IVL1R9a4+2LlKp2TO7ikMD2aNPib0\nDCTD4zJ01YTLVOHdqqUVb6ikrlwldeUal1Sgs0Z8Q+mxQw94vVXVqyVJ04dM6c+4AAAAAAAAGECY\n0AMAOCL7Vm7Vtu1f6Glo98pmtslpdRoRC30shkJPvyjcW6S/fPaQ2jrbddHo83VW9jco8wCISBaz\nRWeOOFWBUECvb33b6Dhh4fMJPbEGJ8HhyHZn6dpJl+vaSZcr252l9TXFuuuTP+nRoie1q2X3fl/r\nC/i1Zvc6xTvcyk3IMSgxAAAAAAAAwh0TegAAR2TfGfQ1/3+hp6NR8Y44ygcRymWLliS1+Cj09JV3\nt32gJRtfkc1i04Jx8zTGM9roSADQp6amTtSyyne0qnqNZg2bruFxGUZHMpTX1ySJCT0DVW7CSN0w\nOUcldeVaWrFMn+1Zp8I96zU1dZL+Z8QpSolO0rqaDWoPtGt2+nEymzjPCgAAAAAAAAdGoQcAcESc\n1ii5bDGqaa/t+VxnsFNN/malxaQYmAx9yWK2yGl1MqGnDwRDQb20+d96u2qFYu0uXTlhvjJj042O\nBQB9zmwy67yRZ+lvax/Tg+ue0E+mXq3EqASjYxlm34SeODuFnoHKZDKpwJOn/MRcra8p1qtb3tAn\nuz/Vmj2Fmp42Rbtb90qSpqexbgsAAAAAAAAHx6lgAIAj5olKVF1bvYKhoCTJ29F1Rnm8w21kLPQx\nly2aQk8v8wf8emLD03q7aoVSo1P0kylXU+YBMKgUePJ03qiz1ehr0gNrH1dbZ5vRkQyzb0JPnIOV\nWwOdyWTS+OQxuumYa3XZ2P9TsjNJK3d9os3ercqKy1QqJXgAAAAAAAB8BQo9AIAjluRMVGco0HMm\nudfnlUShJ9K5bDFq9rcoFAoZHSUitPhbdf/aR7Vmz1rluEfox1Ou7FlpBwCDyUkZM3VC+gztbKnW\no+ufVCAYMDqSIbwdjYqxRctmZqBupDCbzJqcMl63TrtBlxRcqJHxI3TmiFONjgUAAAAAAIAwxyuE\nAIAjtq90UNNWp4SoeNW3dxV63A5WREQylz1GwVBQ7YF2Oa1Oo+MMaLVt9frb2r+runWPJqeM17z8\n78hmsRkdCwAMc/6os1XXXqf1NSV6puwFfXf0+TKZTEbH6leNvkYlOOKNjoE+YDaZdWzaZB2bNtno\nKAAAAAAAABgAmNADADhiSfsKPe11kiRvBxN6BoMYW4wkqcnH2q2jUdW0Xb9fc7+qW/fo5IzZunTM\ndynzABj0zCazLh1zkTJjh2nlrk/0RuU7RkfqV76AT22d7ZSjAQAAAAAAAFDoAQAcuaQojySptq1W\nktTQvXqLQk9kc3UXelr8FHqO1IbaMt376YNq8jXr/FHf1LmjzpLZxNMyAJAkh8WuBeMvVYIjXq9U\n/Eerqz8zOlK/8XY0SZLcdgo9AAAAAAAAwGDHO0cAgCOW9IWVW5LU0DOhhzehItm+Qk8zhZ4jsnLn\nJ3pw3eMKhYL6/tj/00kZM42OBABhx+2I05UT5ivKEqVFJc9qU8MWoyP1C6+vqxwd54g1OAkAAAAA\nAAAAo1HoAQAcsXiHW2aT+QuFnkaZZFKcnTehIllPoYeVW4clFArptYo39K/S5+S0RumaSZdrYso4\no2MBQNga6krT98f9n4IK6eF1/9Ce1r1GR+pz3u5ph0zoAQAAAAAAAEChBwBwxCxmixId8app71q5\n5e3wKs7uksVsMTgZ+pLLzoSewxUIBvRk6XP699a35IlK1I+nXKVsd5bRsQAg7OUn5mpu3rlq6WzV\n39Y+FvFl0n0TetxMOwQAAAAAAAAGPQo9AICjkuT0qMnXrI6ATw2+RrkdbqMjoY/tm9DT4m81OMnA\n0N7ZrgfWPa6Pdq1WZmy6bpx6lVKjk42OBQADxvFDj9Vpw+dob1utHlr/hPwBv9GR+kxjR5Mkyc3K\nLQAAAAAAAGDQo9ADADgqHmeiJKmqcZs6g52Kp9AT8WK6Cz1N/maDk4S/hg6v7v30QZXUlWusJ1/X\nTV7ASjoAOAJnZX9DU1ImqMJbqUUlzyoYChodqU/0TOhh5RYAAAAAAAAw6FmNDgAAGNiSugs9mxq2\nShKFnkHg8wk9/bv2pCPg08b6zSquK9fG+s2Kd7g1LqlA45LylRAV369ZDsXO5mr9be1jqu9o0Mxh\n03XBqHNYRwcAR8hsMuvi/AtU3+HVmj1r5XEm6pycM4yO1eu8HV2FHsqfAAAAAAAAACj0AACOSpLT\nI0na7N0iSYp3cEZ5pHNao2Q2mdXs69uVW6FQSLtadqu4rkwlteXa1FChzlBAkmQzW7WzpVrFdWVa\nXP6iMlxDu8o9yQXKcA2TyWTq02xfp7x+sx5e/w+1dbbrnOwzdOrwEw3PBAADnc1i0w/HXaI/rPmr\n3qh8R0lRiZoxbJrRsXqV19ekGGu0bBab0VEAAAAAAAAAGIxCDwDgqCRFdU3oqfBulcSEnsHAZDLJ\nZYtRcx+s3Gr1t6q0fpNKastUXFeuhg5vz2XprqEq8OSpIDFXI9zD5e1o0vraYhXVlKi8frO2Ne/U\nv7e+pXiHW2OT8jU+qUC58Tn9/qbo6t2FWlS8WCFJlxRcqGPTJvfr/QNAJHPZY3TFhPn6/Zr79Uz5\ni0qMSlC+J9foWL3G29FIORoAAAAAAACAJAo9AICj5OleudUR8EmS3LwJNSi4bDGq/0LZ5kgFQ0FV\nNW1XSW25iuvKtMVbpZBCkqQYW7Smpk5UQWKeRifmyu3Yf/2Ix5mgE9Nn6MT0GWrrbFdJXbnW1xRr\nQ02p3t/xkd7f8ZHsFrvyE3M1zpOvsUn5irW7jjrzwYRCIb1V9Z5e2vxvRVmidPm4ecpLHNln9wcA\ng1VKdJJ+OO57+kvhw3q0aJFumHKlhrmGGB3rqPkCfrV1tml4bLrRUQAAAAAAAACEAQo9AICjEm11\nymmNUltnuyQm9AwWLluMdrZUKxAMyGK2HNZ1vR1NKq3rKvCU1JWrxd+1usskk0a4M1WQmKcCT54y\nYofJbDIf0m06rVGanDJek1PGKxAMqMJbqfW1xVpfU6y1e4u0dm9Rz+2P83St5kqLTum1NVjBUFDP\nlb+iFTtWKt7h1pUT5kfEm8sAEK5y4rM0L/8CPbbhKT2w9nHdOPWqAf8cpNHXKIlyNAAAAAAAAIAu\nFHoAAEfFZDIpKSpR25p3ShJrIgaJGHuMJKnZ3/qlyTn/v85gpyq8lSqpK1dxbZm2d3+vSF0FsOOH\nHKN8T55GJ4xUtC36qLNZzBaNSsjWqIRsnTvyLO1u2aP1tSVaX1OszQ1bVeGt1MsVryspKlHjkgs0\nPqlAOe4Rh11M2scX8OnxDU9rXc0GDY1J05UT5ishKv6oHwcA4KtNSZ2o2rZ6vVzxuh5c+7ium3yF\noqwOo2MdMW9HkyQKPQAAAAAAAAC6UOgBABw1j9Ojbc07FWWJUpQ1yug46AcuW1ehp8XfcsBCT01b\nnUrqylRcW66y+o09K9msJotGJ4xSvidXBYl5GhKT2mtTcg4mNSZFqTEpOiXzBDX7W7ShplTra0tU\nUlumd7a9r3e2vS+n1akxnjyNSypQQWKeom3OQ7rtJl+zHlz3hLY2VikvYaR+MO5iOa2Hdl0AwNE7\ndfiJ2ttWq5W7PtbjG57SD8dfcsjT3cKNt3tCT5z9q4uyAAAAAAAAAAYHCj0AgKOW5EyUxHSewWRf\noafZ3yKpa0rNxoYKFdeWqbiuTHtaa3q+NsWZpHxPngoSczUqIUcOi92QzFJX7mlDpmjakCnyBzu1\nqb5C62uLtW5vsVbvLtTq3YUym8waGZ+tcUn5Gp9UoCSn54C3tae1Rn9b+3ftbavVsWmTddHo82U1\n89QKAPqTyWTShXnfUn1Hg4pqS/Rc+Su6IPecPi+L9gVvByu3AAAAAAAAAHyOd50AAEft80KP2+Ak\n6C/7Cj3v7/hIy7Yu1ybvFnUGOyVJdou9Z9JNgSf3oIUYo9nMVuV7cpXvydW3R52jnS3VWre3WOtr\nilVev0nl9Zv0/MalGhKTqnFJBRqXVKCsuAyZTWZt8VbpwXWPq9nfotOHz9FZ2acNyDePASASWMwW\nXTb2Iv1xzQNasWOlkp2JmpM52+hYh62n0GOn0AMAAAAAAACAQg8AoBd4oroKPZxRPnjE2l2SpDV7\n1kqShrmG9BR4st1ZA25Sjclk0jDXEA1zDdEZI06Wt6NRRTUlWldTrLL6jXqj8h29UfmOYm0u5SWO\n1Nq9G9QZ7NTcvHM1c9h0o+MDwKDntDp15YT5+t3q+/TCpteU6EzUxOSxRsc6LI2+Jkk8nwIAAAAA\nAADQZWC92wYACEtZcZnKisvUhOQxRkdBPxmXlK/Th89RUnSS8hNHRdx0JrcjTjOGTdOMYdPkC/hU\nWrdR62tKtL62azWX3WzTgvHf09ikfKOjAgC6JUTFa8GES3Xvpw/qiQ1P67rJP1RWXKbRsQ7Z5xN6\nYg1OAgAAAAAAACAcUOgBABy1aJtTP5l6tdEx0I/sFrvOzjnd6Bj9wm6xa3zyGI1PHqNgKKhtTTsU\nbY1WcnR4rhIDgMEsMzZd88d8Vw+t+4ceXPuEbpx6dc9q0HDn9TUq2uqUzWIzOgoAAAAAAACAMGA2\nOgAAAMBAYTaZNTwugzIPAISxcUkF+nbuOWryN+uBtY+p1d9qdKRD4u1oVBzrtgAAAAAAAAB0o9AD\nAAAAAIgoJ6QfrzkZs1TdukePrF+kzmCn0ZG+kj/gV2tnm+LtFHoAAAAAAAAAdKHQAwAAAACION8a\neaYmJI9VecNmPVX6vEKhkNGRDsrra5IkxTliDU4CAAAAAAAAIFxQ6AEAAAAARByzyazvFVyo4bEZ\nWlW9Rq9vfcvoSAfV6GuUJLmZ0AMAAAAAAACgG4UeAAAAAEBEslvsWjDhe/JEJei1LW/q4+pPjY50\nQA0d3YUeB4UeAAAAAAAAAF0o9AAAAAAAIlacPVZXTJgvpzVKT5Y8p431m42O9CWNHd0rt+ys3AIA\nAAAAAADQhUIPAAAAACCiDYlJ1Q/GzlNIIT20/p+qbtljdKT9eH1M6AEAAAAAAACwPwo9AAAAAICI\nl5c4UheNPl9tnW3629rH1ORrNjpSD+++lVt2Cj0AAAAAAAAAulDoAQAAAAAMCtOHTNUZWaeotr1O\nD617Qr6A3+hIkqRGX9fKLbeDlVsAAAAAAAAAulDoAQAAAAAMGmeOOFXHpE7WlsYq/aP4GQVDQaMj\nydvRKKc1SnaL3egoAAAAAAAAAMIEhR4AAAAAwKBhMpl0Uf75GhWfrcK96/XS5n8bHUleXyPrtgAA\nAAAAAADsh0IPAAAAAGBQsZmtunzcPKVGJ+vtqhX6744PDcviD3aqxd+qOAeFHgAAAAAAAACfo9AD\nAAAAABh0om3RunLCfLlsMVpc9pKeKl2itXs3qL2zo19zNHY0SRITegAAAAAAAADsx2p0AAAAAAAA\njJDk9GjB+O/pofX/0Ac7P9YHOz+W1WTRyPhsjfHkaYxntFKik2Uymfosg9fXKElyO2L77D4AAAAA\nAAAADDwUegAAAAAAg9YI93D9Zsat2tq4TRtqSrShtlSl9RtVWr9Rz296VUlRiRqTNFpjPPkaFZ8t\nu8XWq/ff2LGv0MOEHgAAAAAAAACfo9ADAAAAABjUzCazst3Dle0errNzTldDh1fFteVd5Z66cr23\nfaXe275SNrNNeQk5GuMZrTGe0fI4E4/6vhv2TeixM6EHAAAAAAAAwOco9AAAAAAA8AXxDreOH3qM\njh96jDqDnarwVmpDbak21JaqqPuPJKVFp2iMZ7TGJo1WtjtLVvPh/4rd2NEkSXI73L36GAAAAAAA\nAAAMbBR6AAAAAAA4CKvZqtyEHOUm5OhbI89UbVudNtSWaUNtqcrqN+ntbSv09rYVirI4NDpxlMZ4\nRqvAk6f4QyzoeLtXbsUxoQcAAAAAAADAF1DoAQAAAADgEHmciZqdfpxmpx8nf8CvjQ0VPZN7CvcW\nqXBvkSQp3TW0Z3pPVlymzCbzAW/Pu2/lliOu3x4DAAAAAAAAgPBHoQcAAAAAgCNgs9hU4MlTgSdP\n39Y52t26t2s1V02pNjVUaHvzTi2rXK4Ya7TyPbka4xmt/MRcxdpdPbfh7WhUlCVKDovdwEcCAAAA\nAAAAINxQ6AEAAAAAoBekRicrNTpZczJmqb2zQ+X1m3qm96zeXajVuwtlkknD4zI0xpOnMZ7R8voa\nmc4DAAAAAAAA4Eso9AAAAAAA0MuirA6NTx6j8cljFAqFtKtld9f0ntpSbfZu1dbGKr225U1J0rCY\nIQanBQAAAAAAABBuKPQAAAAAANCHTCaThrrSNNSVplOHn6hWf5tK6zdqQ02pNjZs1rjkAqMjAgAA\nAAAAAAgzFHoAAAAAAOhH0TanJqeM1+SU8UZHAQAAAAAAABCmzEYHAAAAAAAAAAAAAAAAAPA5Cj0A\nAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAA\nAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQ\nAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAA\nAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQR\nCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAA\nAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABA\nGKHQAwAAAAAAAAAAAAAAAIQRUygUChkdAgAAAAAAAAAAAAAAAEAXJvQAAAAAAAAAAAAAAAAAYYRC\nDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAAAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAA\nAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGrEYHQOQLBoO6/fbbVVZWJrvdroULF2r48OFGxwKAo7J2\n7Vr9/ve/16JFi1RZWambbrpJJpNJo0aN0i9/+UuZzXRmAQwsfr9fP//5z7Vjxw75fD5dccUVGjly\nJMc3AANeIBDQrbfeqi1btshkMulXv/qVHA4HxzcAEaO2tlbnnnuuHnvsMVmtVo5vACLGt771Lblc\nLklSenq6FixYwDEOQER46KGHtHz5cvn9fs2dO1fHHnssxzcAB8SRAH3urbfeks/n0+LFi/XjH/9Y\nd999t9GRAOCoPPLII7r11lvV0dEhSbrrrrt03XXX6amnnlIoFNLbb79tcEIAOHyvvPKK4uPj9dRT\nT+nRRx/VnXfeyfENQER45513JEnPPPOMrrvuOt17770c3wBEDL/fr1/84heKioqSxO+nACJHR0eH\nQqGQFi1apEWLFumuu+7iGAcgIqxatUqfffaZnn76aS1atEjV1dUc3wAcFIUe9Lk1a9Zo1qxZkqSJ\nEyeqqKjI4EQAcC+M3toAAAcESURBVHQyMzN133339fx9w4YNOvbYYyVJs2fP1sqVK42KBgBH7PTT\nT9e1114rSQqFQrJYLBzfAESEU045RXfeeackaefOnYqLi+P4BiBi3HPPPbrwwguVkpIiid9PAUSO\n0tJStbW1af78+Zo3b54KCws5xgGICO+//75yc3N11VVXacGCBTrxxBM5vgE4KAo96HPNzc09YzEl\nyWKxqLOz08BEAHB0TjvtNFmtn2+tDIVCMplMkqSYmBg1NTUZFQ0AjlhMTIxcLpeam5t1zTXX6Lrr\nruP4BiBiWK1W/exnP9Odd96ps88+m+MbgIjwwgsvKDExsedEOonfTwFEjqioKF122WX6+9//rl/9\n6le68cYbOcYBiAj19fUqKirSn//8Z45vAL4WhR70OZfLpZaWlp6/B4PB/d4IB4CB7ou7bFtaWhQX\nF2dgGgA4crt27dK8efN0zjnn6Oyzz+b4BiCi3HPPPVq2bJluu+22ntWpEsc3AAPX888/r5UrV+ri\niy9WSUmJfvazn6murq7nco5vAAayESNG6Jvf/KZMJpNGjBih+Ph41dbW9lzOMQ7AQBUfH6+ZM2fK\nbrcrOztbDodjvwIPxzcAX0ShB31u8uTJWrFihSSpsLBQubm5BicCgN5VUFCgVatWSZJWrFihqVOn\nGpwIAA5fTU2N5s+fr5/85Cc6//zzJXF8AxAZXnrpJT300EOSJKfTKZPJpLFjx3J8AzDg/etf/9KT\nTz6pRYsWKT8/X/fcc49mz57N8Q1ARFiyZInuvvtuSdLu3bvV3NysGTNmcIwDMOBNmTJF//3vfxUK\nhbR79261tbXpuOOO4/gG4IBMoVAoZHQIRLZgMKjbb79d5eXlCoVC+s1vfqOcnByjYwHAUdm+fbtu\nuOEGPfvss9qyZYtuu+02+f1+ZWdna+HChbJYLEZHBIDDsnDhQr3++uvKzs7u+dwtt9yihQsXcnwD\nMKC1trbq5ptvVk1NjTo7O/WDH/xAOTk5PH8DEFEuvvhi3X777TKbzRzfAEQEn8+nm2++WTt37pTJ\nZNKNN96ohIQEjnEAIsJvf/tbrVq1SqFQSNdff73S09M5vgE4IAo9AAAAAAAAAAAAAAAAQBhh5RYA\nAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAAAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAA\nAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAoFe88MILuummm4yOAQAAAAAAMOBR6AEAAAAA\nAAAAAAAAAADCiNXoAAAAAAAAAOhfDz/8sF5//XUFAgHNnDlTc+fO1ZVXXqmMjAxVVlZq6NCh+t3v\nfqf4+Hi98847+tOf/qRgMKiMjAzdcccdSkpK0sqVK3X33XcrFApp6NCh+sMf/iBJqqys1MUXX6yd\nO3fquOOO08KFCw1+tAAAAAAAAAMPE3oAAAAAAAAGkRUrVqioqEhLlizRSy+9pN27d2vp0qUqLy/X\nJZdcotdee005OTm6//77VVtbq1/84hf661//qqVLl2ry5Mm644475PP5dOONN+qee+7R0qVLlZeX\npxdffFGStGvXLt133316/fXXtWLFCm3cuNHgRwwAAAAAADDwMKEHAAAAAABgEPnwww+1bt06nXvu\nuZKk9vZ2hUIhZWVladq0aZKk//3f/9WNN96oGTNmaPz48UpPT5ckfec739HDDz+ssrIypaamKj8/\nX5J0ww03SJJeeOEFTZ06VfHx8ZKkzMxM1dfX9/dDBAAAAAAAGPAo9AAAAAAAAAwigUBAl1xyiS69\n9FJJUmNjo6qrq3X99df3fE0oFJLFYlEwGNzvuqFQSJ2dnbLZbPt9vqmpSS0tLZIkq/Xzl5tMJpNC\noVBfPRQAAAAAAICIxcotAAAAAACAQWT69Ol6+eWX1dLSos7OTl111VUqKirSli1bVFJSIkl6/vnn\nNXv2bE2YMEFr167V9u3bJUmLFy/WtGnTNGLECNXV1WnTpk2SpEcffVRPP/20YY8JAAAAAAAg0jCh\nBwAAAAAAYBCZM2eOSktLdcEFFygQCGjWrFk65phj5Ha79Ze//EVVVVXKy8vTwoULFR0drTvuuENX\nX321/H6/hg4dql//+tdyOBz63e9+p5/+9Kfy+/3KzMzUb3/7Wy1btszohwcAAAAAABARTCHmHgMA\nAAAAAAxq27dv17x587R8+XKjowAAAAAAAECs3AIAAAAAAAAAAAAAAADCChN6AAAAAAAAAAAAAAAA\ngDDChB4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAA\nAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMLI/wN+hAwRaafF+AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7JpOeSa8QAiF0CSAgColYUPnaWEQFRdG1\n7uq6ltW1/da+iq4r7op9VRRBqqgoNkAECUoTQgKhJZQQ0ntvM78/QsbEFBJImGR4v66LKzPnPOfM\n50wOn5lLbp/HYLVarQIAAAAAAAAAAAAAAADQ7RjtXQAAAAAAAAAAAAAAAACAE0P4BwAAAAAAAAAA\nAAAAAOimCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAAAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOE\nfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAA0EbLli3TwIEDNXDgQG3cuNHe5QAAAAAAABD+AQAAAAAA\nAAAAAAAAALorwj8AAAAAAAAAAAAAAABAN0X4BwAAAAAAAAAAAAAAAOimCP8AAAAAAAAAAAAAAAAA\n3RThHwAAAAAAAAAAAAAAAKCbMtm7AAAAAAAA0H0MHDhQkvTEE0/ohhtu0PLly7VkyRLt3btX1dXV\nCg8P16RJk3TzzTfLxcVFkrRp0yZ99NFHio+PV0FBgYKDgzV+/HjdfffdCg4ObvG1ysvLtWDBAq1a\ntUopKSkqKSmRr6+vhg4dqiuvvFKXXnqpjMbW/7+mH3/8Ud999522bdum3NxclZWVycvLS+Hh4Ro7\ndqxuvPFGhYaGNjlu9uzZev3112U2m7VlyxZlZ2drzpw5WrNmjdLT02UymRQVFaVLL71U06dPt11r\nZ0hISNCiRYu0efNmpaeny2g0yt/fXyNGjNBll12mCRMmyGAwtHj8zz//rPnz52vnzp3Kzc1VSEiI\nJkyYoDvvvFMmk0lnnXWWJGnmzJmaMmWK7bhHH31Un332mSRp/fr1CgoKavb8f/rTn/Tjjz9Kkvbs\n2dPsmNTUVC1ZskSbNm1SamqqCgsL5eLiIn9/fw0fPlxTpkxRTExMk+OOHDmiCRMmSJLeeOMNBQUF\naebMmdq1a5fc3NwUFRWlp556SoMGDbIdc7L3jdVq1Y8//qgFCxZo7969ysvLU1hYmCZOnKg77rij\nxeM62olex8aNG3XTTTdJkj7//HNlZWXp1VdfVXJysjw9PTVw4ED961//UnV1dbvf29zcXC1YsEBr\n167VwYMHVV5eLn9/fw0bNkxXXnmlLrnkkmbvxbbWFBIS0hlvJQAAAAAADo/wDwAAAAAAaLfq6mrd\nddddWrNmTaPte/fu1b///W9t2LBB77//vt544w298cYbslqttjFpaWlasGCBVq9eraVLlzb7D/47\nduzQPffco8zMzEbbs7OztWbNGq1Zs0Yff/yxXnvttWYDRPn5+brnnnu0ZcuWJvsKCgpUUFCgxMRE\nzZ8/X2+++abGjh3b4rVu2bJFf/nLX1RQUNBo+/bt27V9+3YtW7ZMc+fOla+vb4vnOFH/+9//9Mor\nrzR6/6S69zAtLU0rVqzQuHHj9MYbb8jDw6PRmJqaGj3zzDNavHhxo+2HDx/WnDlz9PXXX2v27Nkd\nXvPvvfPOO3rttddUU1PTaHt1dbVKS0uVmpqqr776Stdff72efvrpFs+za9cuvf/++6qoqJAkVVZW\navfu3erVq5dtzMneNxUVFXrwwQe1atWqRtsPHjyod955R8uXL9dVV13V3reg3U72OuqtXbtW//3v\nf2WxWCRJVVVVSktLU3BwsNLS0mzj2vLefv3113ryySdVXFzc6DUyMzO1cuVKrVy5UmeddZZee+01\n+fv7n1BNAAAAAADgxBD+AQAAAAAA7fbOO+8oPz9f0dHRuummmxQeHq59+/Zp1qxZKigo0IYNG/Tn\nP/9Za9euVd++fXXbbbepf//+ysrK0rvvvqsdO3bYZv948cUXG5173759uvnmm1VWViZPT09Nnz5d\nY8eOldlsVlpamr766iutWrVK27Zt02233aZFixY1Cb7ce++9tuDPuHHjdNVVV6lHjx6qrq7WoUOH\nNG/ePO3bt09lZWV69NFH9cMPP8jJyanJdVZUVOjuu+9WaWmprr/+ek2YMEFeXl7atWuX3n77bWVl\nZWnPnj169dVX9cwzz3Toe7x582Zb8GfQoEG6+eabFRkZKYvFopSUFH344Yfav3+/NmzYoNdee02P\nPvpoo+NfeuklW/CnZ8+euvPOOzVo0CBlZ2dr4cKFWr9+ve67774Orfn3Pv30U82aNUuSFBoaqhtv\nvFFDhgyRp6enjh49qjVr1uirr76SxWLRggULNGHCBJ177rnNnuutt96Ss7OzHnzwQY0ePVqHDx9W\nXl6ePD09JXXMffPwww/bgj8DBw7UrbfeqsjISGVmZmrhwoWKi4vT22+/3YnvWMdcR73//ve/MpvN\nuu+++zR48GDt3btXLi4uTWbnOd57+/333+vBBx+UxWKRs7Ozrr32Wl144YXy9vZWSkqKPvnkE+3Y\nsUObN2/WTTfdpEWLFtmOPdGaAAAAAABA2xmsv/9fxwAAAAAAAFpQv+yXJMXExOjtt99utOTV2rVr\ndeedd9qeR0dHa+7cuY3CCRUVFZo4caIyMjLk6+urX375pdE//E+ePFlJSUkKDQ3Vxx9/rIiIiCZ1\nzJ8/X88++6wk6Y477tBDDz1k27dhwwbdcsstkqSLL75Ys2fPbhIsqK2t1fXXX6/4+Hjb+UaPHm3b\nX7/slyQ5OTnp7bff1vjx4xudIzU1VVdeeaXKy8vl5eWlX375Rc7Ozsd7C9vsscce07Jly+Tr66tV\nq1bJbDY32l9SUqKrrrpKhw8fltls1saNG20Bpt27d2vKlCmqra1Vv379NH/+/CYzEz3//POaO3eu\n7XlHL/tltVp1/vnnKyMjQ97e3lq2bFmjmWTqzZs3T88995wk6ZprrtHzzz9v29dw2S9Jeu655zR1\n6tRm6zjZ+yYuLk633nqrJGns2LF69913myzn9s9//lMff/yx7fncuXN19tlnN1vPiTrZ62i4xJYk\nffDBB8ddUk1q+b0tKSnRhAkTVFBQIHd3d7333nuN/q5IksVi0RNPPKGlS5dKkmbMmKF//OMf7a4J\nAAAAAACcmJYXOAcAAAAAAGjFI4880iQcMX78eLm7u9ue//3vf28yK4mbm5vtH/7rl+CqFxcXp6Sk\nJNv5mws+SNINN9ygMWPGSJIWLFig6upq274DBw6oV69ecnZ21j333NPsjCJOTk667LLLbM+zsrJa\nvM6LL764SfBHknr16qVx48ZJqgtIHDlypMVznIjs7GxJUkBAQJPgjyR5eXnp/vvv1y233KIHHnhA\nlZWVtn3Lli1TbW2tJOnpp59udkmyRx55RP379+/QmhtKS0uTj4+PzGazpkyZ0mzwR5ImTZpke/z7\nZa4acnNz0+TJk5vd1xH3zaJFiyTV3RsvvPBCk3u7/ty9e/duscaT1RHX0VBERESbQjatvbdLly61\n/R3961//2iT4I0lGo1FPPfWU+vTpI0lavHhxk2Xy2lsTAAAAAABoO8I/AAAAAACg3QICAhrNAlTP\nYDAoODhYkuTi4qJRo0a1eHy9srIy2+P6GWQkHTcgcN5550mqC94kJCTYtt9www1atWqVduzYoUGD\nBrV4fMOZbKqqqlocFxsb2+K+huGM0tLSVuttr759+0qSkpOT9Y9//ENpaWlNxlx++eV69NFHdcMN\nNzQKWdW/j2FhYTrrrLOaPb/JZNK1117boTU3FB4eruXLl2vLli165JFHWhxnNpvl5uYmqfXfw5Ah\nQ5oN5Egnf9/U1NQoLi5OkjRy5Ej16NGj2WOdnZ0bhZU6Wkfc/w0NHz68Ta/b2nu7fv16SXWhqNbu\nFxcXF9v+yspKbdq06aRqAgAAAAAAbWeydwEAAAAAAKD76dmzZ4v76kMEfn5+Mpma/08PDYMGDVck\nr5/1RJJtZpO2SE1N1ciRIxttMxqNtvNnZWUpNTVVBw8e1P79+5WQkGBb8kuqW7aoJa1da8PATf1M\nOx3lhhtu0NKlS1VaWqolS5ZoyZIl6t+/v8aNG6dx48ZpzJgxTWZVqq8jNTVVkloNP0nSmWee2aE1\nt6T+d1FSUqLU1FQdPnxYycnJSkpK0tatW1VRUSGp8b3we2FhYS3uO9n7JisrSyUlJZKO/55FR0e3\n+fzt1ZH3v9T6e9bWcfv27ZMkRUZGytvbu9XzjBgxwvZ47969uuSSS064JgAAAAAA0HaEfwAAAAAA\nQLt5enoed0xLwZ/W5Ofnn0g5KioqavTcarXqm2++0eLFixUfH99odqF69YGU42kuYFOv4ZJirQVX\nTkTv3r31/vvv6/HHH1dKSoqkuiDGvn379NFHH8nFxUUxMTG67rrrdP7559uOy8/Pt4WZ/Pz8Wn2N\nkJCQDq25OcnJyZozZ47WrVvX7LJezS3L1hwvL68W953sfZOTk2Pb1twSaQ0FBgae0Gu1RUfd//Va\ne8/aOq5++S5/f//jnqfhjF4tLfvV1poAAAAAAEDbEf4BAAAAAADt5uTk1CnnrampkVQXWpkzZ06b\nj2sYYqmsrNS9997baAklg8Gg8PBw9e3bV4MHD9bIkSNVUFCghx9+uMNq7wxnnnmmVqxYoY0bN2rl\nypX66aefdPjwYUl1S2StWbNGa9as0aRJk/TSSy/JaDS2OdQk1S1jdbJamzXp008/1ZNPPmn7vUp1\n4Zq+ffuqf//+Gj58uGJiYnTppZc2G9Bqq5O9b9oaQJJOLNTWVh1x/zfUnutqSXtCbQ3vhZbuw46o\nCQAAAAAANEb4BwAAAAAAdBn1s66UlZVp4MCB7Qqy1HvttddswZ+hQ4fqL3/5i8aMGdNkxpFly5ad\ndL2ngtFo1NixYzV27FhJ0pEjR/Tzzz9rzZo1Wrt2rWpqarR8+XLFxMRo8uTJ8vb2lpOTk2pra5Wb\nm9vquQsLC1vc19ZZjYqLi5vdvmfPHlvwx9PTU3/961918cUXKzw8vNE4i8ViW/brRJ3sfRMcHGx7\nnJeX1+rY1t6zk9UR939H8/HxUVZW1nHfF6nxDEo+Pj6dWRYAAAAAAGjA/v8FAQAAAAAA4Jj+/ftL\nqpu9JykpqdWx69at0wcffKDvvvvOFkyora3VwoULJUne3t766KOPdOGFFza71NDRo0c7uPqOVVJS\noh07dig1NbXR9vDwcF177bV688039dprr9m21weeTCaTBg4cKEnauXNnqzPztPYeN5zdqbVwTnp6\nerPbFy1aZJvJ5sknn9Qtt9zSJPgjSRkZGa3W2BYne98EBgbagjcJCQmtHn+885+Mk72OzlB/Lx04\ncKDF5cXqxcfH2x737du302oCAAAAAACNEf4BAAAAAABdRmxsrO3xJ5980uK42tpaPfPMM3rppZd0\n7733qry8XFLdrC0lJSWSpIiIiGZDP5JUXV2tb7/9ttH5upL09HSNGjVK1157rWbPnt3iuHPPPdc2\nO0xlZaVt+/nnny+pbiaWNWvWtHj8F1980eI+s9lse5yWltbsmD179igjI6PZfYcOHbI9PuOMM1p8\nneXLl9seN1werD1O9r5xcnLShAkTJEk7duzQnj17mj3earU2qrejnex1dGZNtbW1Wrp0aYvjqqqq\n9Omnn0qqC6CdffbZnVYTAAAAAABojPAPAAAAAADoMi666CL16tVLkvTpp5+2GLSYOXOmjhw5Ikma\nMGGCevbsKakusGIy1a1yvn///mZn96mqqtJTTz2lffv2NdrWlYSFhWnQoEGSpG+++Ubbtm1rdtyK\nFStss+ZER0fbtl9//fVyd3eXJD377LPNhneWLl1qmy2oOfUzvkjSvHnzmuwvLS3VM8880+Lxfn5+\ntsfr1q1rdszatWv1xhtv2J6f6O/hZO8bSZoxY4ZttqNHHnmk2Vlu3nnnHSUmJp5QjW3REdfR0a6+\n+mp5e3tLkmbPnt3svWixWPTss8/q4MGDkqTJkyfL39+/02oCAAAAAACNmexdAAAAAAAAQD2TyaSX\nXnpJN998s6qrq/Xwww9rzZo1uvzyyxUUFKS0tDQtWrRIv/zyiyTJx8dHjz/+uO14Nzc3XXDBBVq5\ncqUqKio0Y8YM3X777RowYICqqqq0e/duLV68WCkpKY1et7i4+JReZ1vcd999uuuuu1RVVaU//vGP\nuu666zRmzBgFBgYqJydH69ats8204u/vr+nTp9uODQ4O1pNPPqnHHntMGRkZmjJliu644w6NHDlS\n5eXlWrFihZYtW9bq61944YXy9vZWUVGRVq1apbvvvltTp06Vt7e3kpKSNHfuXB08eFARERE6fPhw\nk+MvvfRSffnll5KkV199VdnZ2YqJiZGXl5fS0tL03XffaeXKlbJarbZj6mdtaq+TvW8kafDgwbr9\n9tv1zjvvKCkpSZMnT9Ydd9yhIUOGKD8/X8uWLdN3330nDw8PlZWVnVCdp+I6OprZbNY///lP3Xvv\nvSorK9OMGTM0bdo0XXDBBTKbzTpw4IA++eQT25Jfffr06fSaAAAAAABAY4R/AAAAAABAlzJq1Ci9\n++67euCBB1RQUKCvv/5aX3/9dZNxoaGheuONNxQeHt5o+xNPPKGkpCQdOXJER44c0dNPP93kWC8v\nLz322GN68sknVVtb22gWoK7iwgsv1N///nfNmjVLFRUV+vDDD/Xhhx82GRcaGqo333xTvr6+jbZP\nmTJFFRUVeuGFF1RQUKCXX3650X6z2axrrrlGc+bMafb1vb29NXPmTN1///2qrq7W6tWrtXr16kZj\npk+frqioKD333HNNjp8wYYKmTZumRYsWqbq6WnPmzGn2taZMmaLCwkKtXr1aaWlpKi8vt81a1B4n\ne99I0gMPPKCamhq9//77SktLa3Lv+Pr66pFHHtFjjz3W7vraqiOuo6NNnDhRs2bN0j/+8Q+VlZVp\n3rx5zc4GFRMTo3/961/y9PTs9JoAAAAAAMBvCP8AAAAAAIAuZ9y4cVq9erUWLFigH3/8UcnJySou\nLpaHh4f69eunCRMm6LrrrpOXl1eTY0NCQvTZZ5/pgw8+0OrVq3X48GHV1NTIy8tLkZGRio2N1bRp\n0xQUFKRly5Zp69atWrduncrKyuTh4WGHq23Z7bffrtjYWC1YsEBbt27V0aNHVVlZKV9fX0VFRWnC\nhAmaOnVqi2GZ6dOn65xzztEHH3yguLg4ZWdny9/fX+eff77uuusu22wtLbnooou0YsUKvf/++4qL\ni1NWVpbMZrOio6M1ffp0nXfeec2GQOo9++yzOuecc7R06VLt3LlTxcXFcnV1VWhoqIYNG6Zrr71W\no0eP1pIlS7R69WpVV1dr5cqVmjRp0gm9Xydz30iSwWDQww8/rIkTJ+qjjz5SfHy8srKyFBAQoPHj\nx+vuu+9Wdnb2CdV2Kq+jM1x++eU6++yzNW/ePK1bt06pqamqrKxUaGioBg8erClTpmj8+PEyGAyn\nrCYAAAAAAFDHYG04tzIAAAAAAABOG99++63uu+8+SdLMmTM1ZcoUO1cEAAAAAACA9jLauwAAAAAA\nAAAAAAAAAAAAJ4bwDwAAAAAAAAAAAAAAANBNmexdAAAAAAAAgKMoLS3V4cOHT/o8ERER8vT07ICK\n0NmqqqqUnJx80ucJCwuTr69vB1QEAAAAAABON4R/AAAAAAAAOkhiYqJuuummkz7P3LlzdfbZZ3dA\nRehsWVlZmjx58kmfZ+bMmZoyZUoHVAQAAAAAAE43LPsFAAAAAAAAAAAAAAAAdFMGq9VqtXcR9pad\nXWzvEvA7fn4eys8vs3cZANDh6G8AHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAEBZmb3c7MP+iSTCYn\ne5cAAJ2C/gbAUdHfADgyehwAR0V/A+Co6G8AHBX9DUBLCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAA\nAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOEfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAAAAAAAAAA\n0E0R/gEAAAAAAAAAAAAAAAC6KcI/AAAAAAAAAAAAAAAAQDdF+AcAAAAAAAAAAAAAAADopjot/GOx\nWPTkk09q2rRpmjFjhg4dOtRo/w8//KCrr75a06ZN0+LFi1s95tChQ7r++us1ffp0PfXUU7JYLLbz\n5OXlaeLEiaqsrJQkFRcX689//rNuvPFGTZs2Tdu2beusSwQAAAAAAAAAAAAAAADsqtPCP6tWrVJV\nVZUWLVqkBx98UC+++KJtX3V1tWbOnKkPPvhAH3/8sRYtWqScnJwWj5k5c6buv/9+ffLJJ7JarVq9\nerUk6aefftKtt96q7Oxs27nnzJmjc845R/PmzdPMmTP17LPPdtYlAgAAAAAAAAAAAAAAAHbVaeGf\nrVu36txzz5UkjRgxQomJibZ9ycnJioiIkI+Pj1xcXDRq1Cht3ry5xWN27typMWPGSJLGjx+vDRs2\n1BVvNGrOnDny9fW1nfuPf/yjrrvuOklSbW2tXF1dO+sSAQAAAAAAAAAAAAAAALsyddaJS0pK5OXl\nZXvu5OSkmpoamUwmlZSUyGw22/Z5enqqpKSkxWOsVqsMBoNtbHFxsSQpJiamyet6e3tLkrKzs/X3\nv/9djz/++HFr9fPzkMnkdGIXik4TFGQ+/iAA6IbobwAcFf0NgCOjxwFwVPQ3AI6K/gbAUdHfADSn\n08I/Xl5eKi0ttT23WCwymUzN7istLZXZbG7xGKPR2GhsfcCnJXv27NHf/vY3Pfzww7YZg1qTn1/W\n5uvCqREUZFZ2drG9ywCADkd/A+Co6G8AHBk9DoCjor8BcFT0NwCOiv4GoKUAYKct+zVy5EitW7dO\nkrR9+3YNGDDAti8qKkqHDh1SQUGBqqqqtGXLFp155pktHjNkyBBt3LhRkrRu3TqNHj26xdfdv3+/\n7rvvPr3yyis677zzOuvyAAAAAAAAAAAAAAAAALvrtJl/Lr74YsXFxem6666T1WrVCy+8oC+//FJl\nZWWaNm2aHn30Ud12222yWq26+uqrFRIS0uwxkvTII4/oiSee0KxZs9S3b19NnDixxdd95ZVXVFVV\npeeff15S3SxDb731VmddJgAAAAAAAAAAAAAAAGA3BqvVarV3EfbG1GhdD1PWAXBU9DcAjor+BsCR\n0eMAOCr6GwBHRX8D4KjobwBO+bJfAAAAAAAAAAAAAAAAADoX4R8AAAAAAAAAAAAAAACgmyL8AwAA\nAAAAAAAAAAAAAHRThH8AAAAAAAAAAAAAAACAborwDwAAAAAAAAAAAAAAANBNEf4BAAAAAAAAAAAA\nAAAAuinCP+hyvtpwUA/8Z60KSyrtXQoAAAAAAAAAAAAAAECXRvgHXY6ri5P2pxboP0t2qLyyxt7l\nAAAAAAAAAAAAAAAAdFmEf9DlXDQqXBPP6a1DmcV66/NE1dRa7F0SAAAAAAAAAAAAAABAl0T4B12O\nwWDQXVOGaVhUgBIP5Omjb3fLarW26dj9+/d1cnWtu+eeOxUbO1oXXjjOrnUAAAAAAAAAAAAAAIDT\nA+EfdElOTkbd9YehigwzKy4hQ5//dKDV8SUlJfrPf/6t22678RRVCAAAAAAAAAAAAAAAYH+Ef9Bl\nubo46b5rhivY111fbjioH7entTh29uxZWrp0oWpra09hhQAAAAAAAAAAAAAAAPZlsncBQGu8PV30\nwLThen7uVn383R75erlqRL/AJuMsFosdqmvq9dfftXcJAAAAAAAAAAAAAADgNMLMP+jyQvw8dN+1\nw+TsZNTbXyQq5WiRvUsCAAAAAAAAAAAAAADoEgj/oFuI6uGjP08equoai/6zJF6Z+WX2LgkAAAAA\nAAAAAAAAAMDuWPYL3caIfoGaMXGg5n67R68uitfjM0ZpycI5mjPnf43GxcaOrhs/YqRef/1dPf/8\n0/rmm6/Ur98AvffeXP3vf2/p22+/UnFxsQICgnTBBRN099332o6vrKzUd999rZ9/jtO+fXtUWFig\nmpoamc3eioyMUkxMrK688iq5u7s3qfGee+7U9u2/ysXFRT/8sKHZuu6992+aOnW61q79QV9++bn2\n7t2j4uIi+fn5a+TI0Zo69XoNGDCoo98+AAAAAAAAAAAAAADggAj/oFs5f0RP5RVV6qsNB/XfpfEK\nqbW26/jnnntSq1d/b3uenp4mNzc32/M9e3brscceVFZWZpNj8/JylZeXq61bN2nZsqWaPfttBQUF\nt/saamsteuaZf2jlym8bbc/KytS3367Q999/o4ceekyTJl3V7nMDAAAAAAAAAAAAAIDTC+EfdDtX\nnRup/OIKxSVkyDl0iN57f57mfPCO4uJ+kiTNmTNfkuTu7tHouJSU/dq/f6+io4drxoxb5Obmpri4\nn3TZZZMkSYWFBXrggb+oqKhQTk5OuuyyKzVuXKz8/AJUXFyoffv2avHiT1RQUKAjRw7r9df/o2ee\neaHd9S9c+LFyc3PVp0+kpk6drqio/iouLtLnX3yu9T/9IIvFoldffVljxoxVaGjoSb5bAAAAAAAA\nAAAAAADAkRH+QbdjMBh08/8NUmFJlRIP5OmXFMls9rbt799/YLPHWSwW9ewZrv/85w25utbN9jNy\n5Gjb/kWLPlFRUaEk6S9/uU9Tp05vdPzYsbG69NIrNGPGVJWUlOinn9aqpqZGJlP7/hrl5uZq1Kgx\n+te/XpWrq6skadu+bJUEXyGf3mUqPPSLqqur9K835+m+u/+k3qHmdp0fAAAAAAAAAAAAAACcPoz2\nLgA4ESYno+6aPFS9Q8xaF39UR7JL2nTcpZdeYQv+/F5OTrYCA4MUEBCgKVOmNjsmKChYZ545SpJU\nVVVpCwu11/33PyRXV1fVWixa8uN+zf40QdW1Fl0/9bfXTdq9W898uFlPz9mkNb8eUVlFzQm9FgAA\nAAAAAAAAAAAAcFzM/HMKLf5hvzbvzrJ3GafUWYOCNfXCfp1ybndXk+6/dpie/3irEre3LfxzxhnR\nLe57/PGnJNXNEGQ0tpyL8/cPsD2uqqpuY7W/CQoKVmRkXxWUVOrtL3Zqb2qBgv3cdffkoQo0G/X2\ny3XjegcVre1KAAAgAElEQVS5aki/QO1IztXH3+/VojX7ddagYI0f3kP9evrIYDC0+7UBAAAAAAAA\nAAAAAIBjIfyDbs3Hy1UPTB2uP61v2yRWISEhxx1TH/ypqalRRka6jh5NU2rqISUn79fOnQlKTt5v\nG2u1Wtpdc2homHYfytfby3eqqLRKowYE6ZbLBsvDzSSr1Wob5+nmpHuvGab84krFJaRrXfxRxSVk\nKC4hQz0CPTV+WJjGDg2V2cOl3TUAAAAAAAAAAAAAAADHQPjnFJp6Yb9OmwXndBYW4KnBvf0Ud6ju\n+YH0IkWGeTc71sPDq9VzVVRUaNmyJVq16lslJ+9XbW1tkzFGo1EWS/tDP/VKKg16eeE2GQ0GXXdh\nP118Vi/bLD4NZ/OpDwL5mV11xbg+umxsb+0+lK918Uf1695sLfxhv5auTdbIAUEaP7yHBvX2k5HZ\ngAAAAAAAAAAAAAAAOK0Q/oFD8Pb8bfab/y6J1+M3jVawr3uTca1lY44eTdPf/naPjhxJtW1zdnZW\nr14R6t07UgMHDtKIEaP03Xdf67PPlpxwrZn5ZYr2ctVdfxiqfuE+bT7OaDBoSB9/Denjr+KyKv2c\nmKG18Ue1KSlLm5KyFOTrpnOH9VDssDD5ermecH0AAAAAAAAAAAAAAKD7IPwDh1NUVq1XF23X4zNG\ntWtJrKef/n+24M9FF03UNddM06BBQ2QyNf5r8sUXn7a7pgPpRbbHXu7OeuqWs+R9Est1mT1cdMmY\nCF18Vi/tTyvUuvij2pyUpWXrUvT5Twc0LCpA40f0UHRffzkZ27YkGgAAAAAAAAAAAAAA6H4I/8Dh\nXHpOhL755bBeW7pDD11/ZpuO2b17l3btSpQkjRw5Wk8//XyLYzMzM9pci9Vq1Y/b0rRg9T7btj6h\n5pMK/jRkMBjUP9xX/cN9df2EAdq4q242oO37c7R9f478zK6KiQ7T+GFhCmxmJiQAAAAAAAAAAAAA\nANC9Ef6BQzA0WM/r6vOilF9cqV92Zurd5TtltVqPe3zDpb4GDhzc4rj09KNKSIi3Pa+trW1xbEVV\njeZ+t0e/7MyUl7tzw2qPW8+J8HAz6YKR4bpgZLgOZRRrbfxR/bIzQ19tOKgVGw5qSKS/xg/voTP7\nB8rkxGxAAAAAAAAAAAAAAAA4AsI/cAguLr/NpFNRXq5bLxuswpIqbduXIx0tauXIOj4+vrbHW7Zs\nVE1NTZPlvnJzc/TEE4+qurratq2qqqrZ81mt0nMfbVF6bpmienjrrslDNWlJe6/qxPUONeum0IGa\ndkE/bd6dpXXxR7XzQJ52HsiT2cNZMUPDdO7wMIUFeJ66ogAAAAAAAAAAAAAAQIcj/AOHEBAQaHv8\n7rtv6P/+73JNHOqi4jIvbdledtzjhw0boYCAQOXm5mjfvr267767NGXKVIWGhqmoqFDbt/+qFSu+\nUEFBQaPjSktLmj1fTa1F6bllumh0uKZe0M9uM+24ujgpdliYYoeFKS2nVD/FH9WGxAx9u+mwvt10\nWAPCfTR+RA+NHhgsF2cnu9QI+7BarcrKL5evl6tcXfjdAwAAAAAAAAAAAEB3RfgHDiE2drw+/PA9\n1dbWaunSRVq6dJFCQkL13oef6pYfjx9scHV11RNPPKtHHnlAlZWVio/fpvj4bU3G9eoVoSuu+IPe\nemu2JOnAgRRFRw+XJFXXWJSZX24be9fkoTprUHAHXeHJ6xnoqesm9NfV50Vp275srd1+VEmH8rX3\nSKHmr9ynsWeEaHi/QPUK9pKPp0ujpdTgOPKKKvTzzgxtSMxQem6ZTE5GDertq+FRgRoWFaAgX3d7\nlwgAAAAAAAAAAAAAaAfCP3AI/fsP1IsvvqKPPvpAycn7ZbHUymQyyd3ZqjP6+Gvtgbpxew4XaFyD\nWYIaGj16jObMma8FC+Zpy5bNysnJklS3JFhkZF9dcMFFmjjxUtXW1mrOnP+poqJCP/ywUpMmXaWc\ngnK99UWiCoorJUkmJ2OXCv405GwyaszgEI0ZHKKsgnL9FH9U6xPS9cOvafrh1zRJkpe7s3oFe6lX\nsJfCg+p+9gj0kLOJGWK6o8qqWv26N1txielKOpgvq+ru0TP7Byq7oEKJKXlKTMnT/JVSj0BPDYsK\n0PCoAEX19LHbrFUAAAAAAAAAAAAAgLYxWK1Wq72LsLfs7GJ7l4DfCQoyd+jvZc/hfL2yaLtMTkY9\nesNIRYSYO+zc8ftz9N5Xu1RaUaNxQ0M1Y+JAuXazJbRqLRbtPJCnlKNFOpJdqtSsYmUXVDQaYzQY\nFBrgofAgz0bBID+zK7MEdUEWq1V7DxdoQ2KGNu/JUmVVrSSpX08fjYsO1ZhBwfJwc5Yk5RZWaEdK\nrnbsz1HSoXxV1VgkSR6uJg3t66/hUYEa2tdfZg8Xu12PI+no/gYAXQX9DYAjo8cBcFT0NwCOiv4G\nwFHR3wAEBTWfdSD8I8I/XVFnfHBt3p2ltz9PlLeni/7fTaMU6HNyyxvVWiz6/KcDWvHzIZmcjLrh\n4v4aP7yHwwRhyitrlJZTqtSsEh3JKlFqdt3PimMhknqebibb7EDhwfWzBHl2uwCUo8jML9OGhAz9\nvDNDOYV1Aa4Ab1eNHRqmmKGhCvH3aPX4qupa7T6cr/jkujBQblHdbFYGSX17etuWB+sV7OUw9/qp\nxhdzAI6K/gbAkdHjADgq+hsAR0V/A+Co6G8ACP+0ggbZ9XTWB9f3m1O1cPU+hQV46LEbR8nL3fmE\nzlNYWqV3vkjU7sMFCvJ1092To9U7tONmE+qqLFarcgsr6sJADQJBWfnlathIDAYpxM/DFgbqFeSl\n8GBPBXi7ERjpBGUVNdq8O1NxiRnaf6RQkuTq7KTRg4IUMzRMAyJ8ZTyB991qtSotp1Q7knMVvz9H\n+9MKVf+J4Wd21fCoAA2LCtTgPn6EvdqBL+YAHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAQ/mkFDbLr\n6cwProWr9+n7zanqH+6jh64bIWdT+0ILe1ML9NYXiSosqdKZ/QN12+WDbcsnna4qqupmCTqSVaIj\nWXXLhqVml6q8sqbROHdXk3oFeSq8wSxB4YFecnUhONJeFotVOw/mKS4hXdv25ai6xiKDpEG9/RQT\nHapRA4I7/H0tKa9WYkqudiTnKiElV6UVdb9fZ5NRgyL8NCwqQMOjAhToe3Kzajk6vpgDcFT0NwCO\njB4HwFHR3wA4KvobAEdFfwNA+KcVNMiupzM/uCxWq95dvlObkrI0amCQ7vrDUBmNx58VxWq16ttN\nh/XpjymSpGvOj9LEMb2YyaYFVqtVeUWVjWYIOpJdooy8MjXsOgZJQX7u6h/uc1Kz1JwujmSXaENi\n3bJehSVVkqQQfw/FDA3V2DNCFeDjdkrqqLVYlJxWpB3JudqRnKMj2aW2fT0DPeuCQP0CFdXTW05G\n4ympqbvgizkAR0V/A+DI6HEAHBX9DYCjor8BcFT0NwCEf1pBg+x6OvuDq7rGolmLtmtPaoEuGhWu\n6y/q32qIp6yiWu+vSNK2fTny8XLRXX8YqgG9fDutPkdWWV2ro8dmCUo9FghKzSqxzSIT6OOmmOgw\nxQwNZQaZY4rLqvTLrkxtSMjQocy6vxceriaNGRKimKGh6tvD2+4htJzCciUk5yo+OVdJh/JVXWOR\nJHm6mTS0b4CGRQUoum/ACS+150j4Yg7AUdHfADgyehwAR0V/A+Co6G8AHBX9DQDhn1bQILueU/HB\nVVZRrZnzflVaTqmmXtBP/3d2RLPjDmUU683PE5RdUKFBEb760x+GysfTpVNrO91YrFbtSy3Q+h3p\n2rwnS1XVdcGRQRG+iokO0+iBHb+EVVdXU2tR/P5cbUhM147kXNVarDIaDIru66+Y6DAN7xfQ7iXr\nTpXK6lrtPpSv+GOzAuUVVUqSDAYpqqePhkcFaFhUoMKDPO0eWrIHvpgDcFT0NwCOjB4HwFHR3wA4\nKvobAEdFfwNA+KcVNMiu51R9cOUVVej5j7cqv7hSd04aonOGhNr2Wa1WrYs/qvkr96mm1qIrxvXW\n5Ni+bVoiDCeuvLJGW/dka31CuvamFkiSXF2cdNagYMVGh6l/uI/DBkasVqsOZhRrQ0KGNiZlqqS8\nWpLUK9hLMUNDdfYZod0ueGa1WpWWXar45BzFJ+cqOa3Qtuyb0WCQh5tJnu7O8nIzycPNWZ7uJnm6\nOcvT7dhP2/PfHnu4mWRy6r5LifHFHICjor8BcGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n8oPr\nSFaJZs7fqqpqi/42bYQG9/ZTZVWtPv5+jzYkZsjTzaTbrxii4f0CT0k9+E1Wfpk2JGYoLiFDuUUV\nkqRgX3fFRIdq3NAwBfi42bnCjpFfXKlfdmYoLjFDR3NKJUneHs4654xQjRsaqoiQ5ht4d1RSXq2E\nlFwlpOQqu6BcZRU1Ki2vVmlFjWotbf84cnVx+i0wdCxA5Nnosel3z+tCQ24uTnYPj/HFHICjor8B\ncGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n+oMr6VC+Zi3aLhdno269bLA+X39Aadmligwz667J\nQxXo437KakFTFqtVew7la31ChrbuyVJVjUUGSYP7+CkmOkwjBwTJ1blrLoHVnIqqGh1ML9aB9CLt\nOpSvXQfzZLVKJieDRvQL1LjoMA2N9O/Ws9u0l9VqVWV1rUrLa1RaURcGqgsFVausokYlFdUqLa9R\nWaN9dWMrqmrb/DpORoM83UzyNbsqItisiBAvRYSY1SvYS+6upk68wt/wxRyAo6K/AXBk9DgAjor+\nBsBR0d8AOCr6GwDCP62gQXY99vjg+mVXht5dvsv2/MKRPTXtwv5yNp0+AYzuoLyyRpt3ZykuIV37\njhRKktxdnXTWoBDFRocpqqe33Wd2aajWYlFadqkOpBcp5WiRUtKLdDSnVA07b1QPb42LDtNZg4Ll\n5e5sv2K7qZpai8oqGwSCyhsGhuoe2wJFFdUqKa9RXlGFqmsstnMYJAX7uSsipC4Q1DvErIgQs7w7\nYZk1vpgDcFT0NwCOjB4HwFHR3wA4KvobAEdFfwPQUvjn1ExzAHQD5wwJVXFZtb7deFjXXhClc4aE\n2rskNMPd1aTxw3to/PAeyswrU1xiuuISMrQu/qjWxR9ViL+HYqNDNfaMUPl7n9plwaxWq/KKKpWS\nXqQDR4uUcrRQBzOLVVX9W8jExdmo/j191LeHjyJ7eCuqh/cpr9PRmJyM8vZwkbdH24M6tRaLMnLL\ndDizRIcyi3U4s1iHM0u0eXeWNu/Oso3z9XI5Fggyq/exWYICfdy6VMDseKxWq8ora5RfXKnKaov6\nhJplNHaf+gEAAAAAAAAAAAC0jpl/xMw/XRGpVbSHxWJV0qF8xSWka+vebFXXWGQwSGf08VdMdJjO\n7B8ol05YFqysoloHMoqVcvRY2Ce9SEWlVbb9BoPUM9BTkWHe6tvDW5Fh3uoZ5CknI7NJdUVWq1W5\nhRU6lFlyLAxUrMNZJcovrmw0zsPVZFsurP5nWIBHm3+vHdnfLFarSsqqlV9cqbziChUUVyqvuFL5\nv/tTWf3b0mgjBwTpT5POYFYzAB2O728AHBk9DoCjor8BcFT0NwCOiv4GgJl/ADgso9GgMyL9dUak\nv8oqarRpd6biEtKVeCBPiQfy5O5q0tmDgxUzLEx9w05sWbCaWotSs0psy3cdSC9Sem5ZozF+ZleN\nGhikvsfCPhEhZrm70ma7C4PBoEBfdwX6umvUwCDb9qKyKtvMQPU/9xwu0O7DBbYxziajwoM81Sv4\ntxmCwoO95HoSobNai0WFJVW2AE9dqKeiUainoKRSNbUtZ3i93J0V4ucuX7Or/M2uOpJdql/3Zmv2\nsh2656roTgnFAQAAAAAAAAAAADi1mPlHzPzTFZFaRUdIzy1VXEKGNiSmq6CkbkaesAAPxUSHaewZ\nofIzuzZ7nNVqVXZBuVLqgz5Hi3Qos0Q1tb8t3+Xm4qTIMO9Gs/q0dD44noqqGh3JKm20ZFhaTkmj\nII7BIIX6e6j3sWXD6mcJiozw19H0gkahnqYz9lSosLRKLX1CGwySr5erfL3qQj1+v//j7SY/Lxc5\nmxqHe6qqa/Xm54nakZyrQRG++uvVwwioAegwfH8D4MjocQAcFf0NgKOivwFwVPQ3AC3N/EP4R4R/\nuiI+uNCRLBardh3M0/qEdP26N0c1tXXLgg2NDFBMdKgG9PLV4czGs/qUlFfbjjcaDAoP9lTfHj6K\nDDOrbw8fhfl7yGhs/wxCcFw1tRYdzSltMENQ3bJhFVW1jcZ5uplUWlHT4nlMTobfQj3ebvLzahru\n8fFyOeHl42pqLXpn+U5t3ZOtqB7eun/qcHm6OZ/QuQCgIb6/AXBk9DgAjor+BsBR0d8AOCr6GwDC\nP62gQXY9fHChs5RWVGtTUpbW70jXgfSiZscE+ripbw9v9Q3zVuSx5btOZvkmnL4sx2aRqg8EHcos\nVlFZtTxdTcfCPa7yMzcI+Hi7yuzufEJL07VHrcWiD1bs1s87MxQR7KW/XTdC3h4unfqaABwf398A\nODJ6HABHRX8D4KjobwAcFf0NQEvhH9b6AHBa8XRz1gVn9tQFZ/ZUWk6p4hLSlZFbpl7BXrblu7w9\nCUGgYxgNBoX4eSjEz0NnDQqW1DW+mDsZjbrtisFydXHSj9vS9NL8X/XQdWeydB0AAAAAAAAAAADQ\nDRH+AXDa6hnoqakX9LN3GYBdGA0GzbhkgFxMRn2/OVUvzt+qv193pgJ93e1dGgAAAAAAAAAAAIB2\nMNq7AAAAYB8Gg0HTLuynSTF9lF1QoRc/+VUZeWX2LgsAAAAAAAAAAABAOzDzDwAApzGDwaDJ5/aV\nq7OTlvyYrBfn/6qHpo1QeLCXvUvrEFarVVv2ZOtQRrEsVqssFqtqLQ1+Htv2++cNx1itzR/T+hjZ\nHnu5m3T2kBDFRoepZ5BjvK8AAAAAAAAAAADoOgj/wKHs379P/fr1t3cZzUpPPyofHx95eHjauxQA\naOLSc3rLxdlJ81fu1Uuf/Kq/TRuhyDBve5d1UvKLK/XRt7u1Izn3pM9lMEhORoOMRkPdT0Pd44bP\nXZyNv41psD8zr0zfbUrVd5tSFRlmVmx0mMYMCZGnm3MHXCUAAAAAAAAAAABOd4R/4BBKSkr03ntv\n67PPlmjt2o32LqeRqqoqzZ//kebN+1Dz5i0h/AOgy5owKlyuzk6a802SXl6wTfdfO1wDevnau6x2\ns1qt+mVnpuav3KuyyhoN6eOnK8b2kYuzky2cYzQaZGwU6DE2s61+nEEGg+GE66musSh+f47WJ6Qr\nISVXB9KLtWD1fo0cEKjY6DAN6eMvo/HEzw8AAAAAAAAAAIDTG+EfOITZs2dpxYrl9i6jWZ98Mlfv\nv/+OvcsAgDaJHRYmF2ej/vflLs1avF1/vXqYzujjb++y2qywtEpzv92tbfty5OrspBkTB+r8ET1O\nKrxzspxNRo0eFKzRg4KVX1ypn3dmaP2OdG1KytKmpCz5mV01bmioYqPDFOLvYbc6AQAAAAAAAAAA\n0D0R/oFDsFgs9i6hRbW1tfYuAQDaZczgELmYnPTm5wn675IdunvyUI3oH2jvso5rU1Km5n2/VyXl\n1RrYy1e3XD5Ywb7u9i6rET+zqy47p7cuPTtCKUeLtD4hXZuSMrXi50Na8fMh9Qv3UWx0mM4aFCx3\nV76mAQAAAAAAAAAA4Pj4VyUAANDEiP6Buu/a4Zr96Q698VmC7rhyiMYMDrF3Wc0qLqvSvO/3avPu\nLLmYjLr+ov6aMCpcRjvO9nM8BoNBUT19FNXTR9dN6K9f92YrLiFdSQfztf9IoT5ZtVejBwYrNjpM\nAyJ8u/S1AAAAAAAAAAAAwL4I/wAAgGad0cdff5s6Qv9dGq93lu9UVbVFscPC7F1WI7/uzdbcb3er\nqKxa/Xr66NbLByu0my2d5erspLFnhGrsGaHKKSzXhsQMxSWka0NihjYkZijQx02x0WEaNzRUgV1s\nJiMAAAAAAAAAAADYn8FqtVrtXYS9ZWcX27sE/E5QkLlNv5f3339Hc+b8r9l9I0aM1Ouvv9to28aN\nP+vrr5crMTFB+fl5cnFxVXh4L40dG6Orr54mX1/fFl8rOztLy5Yt0caNPys19bBqaqrl7e2jqKj+\niok5V1dcMUmurm628V9//aVeeOGZZs8VGhqmpUu/PO71AXA8be1vXcmB9CLNWrRdpRU1uvGSAbpw\nZLi9S1JpRbU+WblXP+/MlMnJqCnj++qSs3rJaHSMGXIsVqv2pRZo/Y50bd6TparquuUtB/f2U2x0\nmEYODJKrs5OdqwQa6479DQDaih4HwFHR3wA4KvobAEdFfwMQFGRudjsz/+C0UF5erueee1Lr1q1p\ntL2qqkq7d+/S7t27tHjxJ3riiecUGzu+yfFbt27W448/pNLS0kbbc3NzlJubo02bftaCBR9r1qzX\nFRHRu1OvBQBOtcgwbz0yfaT+vWi75n2/V5XVtbr0bPv1uh3JOZrzzW4VllQpMsys2y4foh6Bnnar\npzMYDQYNjPDTwAg/Tb94gLbsyVLcjnQlHcpX0qF8ua900lmDQhQbHaaont4ysCxYl1FWUaP03FLV\nWqyyWKyqtR77abHKeuynxWr9bf+x57bHlt89/v3YY+e0/u55/X53V5PGDgnRoN5+3BcAAAAAAAAA\nAJwmmPlHzPzTFbU1tZqbm6O8vFy9997biov7SZI0Z858SZK7u4fCw3vJYrHogQf+oq1bN0uSxo07\nVxMnXqawsDCVlZVp69bN+uyzJSopKZGTk5NeeWW2Ro8eY3uN4uJiTZs2WUVFhfL19dMNN9yswYOH\nyMXFRZmZGVqxYrl++WWDJGngwMF67725MhgMKioqVGZmhj7//FN98cUySdLLL/9HgYFBMpmcFRnZ\nt0PfMwDdQ3dO5WfklenlBduUX1ypSTF99IfYyFMaLiirqNHCH/Zp/Y50ORkN+kNspC49J0JORuMp\nq8HeMvPLFJeQrriEDOUXV0qSQv09FBMdqnFDw+RndrVzhae3hJRcvffVLhWXVdu7FIX4e+i84T0U\nOyxMXu7Op+Q1u3N/A4DjoccBcFT0NwCOiv4GwFHR3wAw8w8cUkBAoAICAuXt7WPb1r//wEZjli5d\naAv+PPTQY5o8+epG+0ePHqMrrviD7r77NuXm5uqFF57R4sVfyGSq++uxfv1aFRUVSpJeeOFlDRs2\nwnbskCFDdcEFF+mJJx7VmjWrtGdPkvbs2a1BgwbL29tH3t4+8vcPsI3v06evwsJ6dOybAACnSKi/\nhx67YaReXrhNy+MOqrK6VlMv6HdKAkA7D+RpzjdJyiuqVESIl26/fIjCg706/XW7mhA/D00ZH6XJ\nsX2VdChf6xPStXVPtj5dm6Jl61I0NDJAscPCNKJfoJxNp08oyt5qai1ati5F3248LJOTQReO7CkP\nN5OMBoOMRoOcjMd+/u55k/0NtjfZ1sL2+nPW/8nILdPa7WnavDtbi9fs17J1KRo9KEjnj+ip/uE+\nzAYEAAAAAAAAAIADIvwDh2axWLRwYd1MQOecM65J8Kdez57h+vOf/6rnn39aWVmZWrv2B02YcImk\nutmF6vXqFdHs8TfddIt8fHzVo0dPmc3NJ+0AwBEE+rrr0RtG6d8Lt+m7TamqrLboxksGyNhJgYLy\nyhotWbNfP24/KiejQZNi+uiKcX1kcjq9gy1Go0FnRPrrjEh/lVVUa2NSltbvSFdCSq4SUnLl6WbS\n2UNCNHbo/2fvvsPbSsw7339RiEKAABvYKYpNlZKoNmrWqEyzp9gTj+1xyTqbjLP27k327q43G+8m\ncXyf+PE6m/huNrlerx+v42ziJJ54XGY843GmqI7ajCRSIiWRYhN7A0gARG/n/gEQJFU4kkYkwcP3\n8zwUwHNwwEMSeM8h8NP7llDpsGLI0i31LqvWuDvId1+5QveQl+I8M1/6WANVJUt3LmDLNrCmMpfP\nPBrlVMswx5qHOHtllLNXRikrtHCgsYx9DSVkmxanG5AQQgghhBBCCCGEEEIIIRaehH8W0U87X6Vp\nrGWpd2NRbS3axMfrnl6yr9/V1cHY2CgAO3fumve2u3fvTV8/f/69dPinqmp1evl/+S+/x7/9t/+B\n9es3ztm2vn4t//E/fuUB7bUQQmS2vBwjv/+5bfy/P2rmWNMg4Uic33pq3QMfv9XWO8lf//IaTk+I\ncoeFLzy1YUlDFZkq25TFoa3lHNpazuC4j1MtI5y+MsKRi4McuTgIQK7VQFGuGUeeedZlNkV55kUb\nCaVG59vG+MHrbQTDMfZsLObXH1+L2ZgZp9dWcxZPPLSKx3dW0t7n5ljzIBfax/nHtzr4ybEudq4v\n4uDWcmpKbdINSAghhBBCCCGEEEIIIYRY5jLj3QkhFsj16+3p63/1V/+dv/qr/35X2w0NDaav79nz\nIWpr6+nq6qCl5RK//du/QWGhg507d7Fjx0Ps3LlrzmgvIYRYCWzZBn7vs1v57/90iTNXRojG4vyr\nj258IB15wtE4Lx3r4u0LA2g08NSeKj66r1rGWN2FcoeVTx2u47mDNbR0T3C508noZJCxySAdgx6u\nD3hu2SbbqE+HgoryzDhyZ67n5hgXrKvTchaJxvnRkU6ONQ1iyNLyW0+uZ9+mkowM0Wg0GtZV5bGu\nKg+vP8I7LcMcbx7kVMsIp1pGqCyycnBrObs3FGdMcEkIIYQQQgghhBBCCCGEEPdGXuFfRB+ve3pJ\nu+CsRB6P+762m5rypq/r9Xq+9a2/5Jvf/BPOnj0NgNM5zuuvv8rrr7+KRqNh/fqNfPjDT/HMM8+S\nlSUdFIQQK4PFlMWXn2/kL1+6zPn2cSI/beHfPNvwgUZMdQy4+f5r1xibDFJakM0LT22gpsz2APd6\nZdBptTTWFdJYV5heFosncHpCjE0GGXcHZy7dQQbH/fSOTN1yP3qdFkeuaU4gaDogVGg3r8hA1rDL\nz+SlUIIAACAASURBVHd+foWBcR8VDgtf+lgDZYWWpd6tu2KzGHhydxUf3rWKqzcmON40RFOHk7/7\n53b+6UgnuzcWc7CxXDpsCSGEEEIIIYQQQgghhBDLjIR/hKrF4/H09S9/+Ss0NGy6q+2MRuOczwsL\nHfz5n/8l3d2dHD36NmfOnOL69TYSiQSKonD1aitXr7by8ss/5X/8j++Qm5v7QL8PIYTIVGajnn/3\nqS18+2ctXO5y8Rc/vsS//cRmTIZ7O8WIxuL87EQP//xuHwBPPFTJr+2v+UBBIjGXXqelJD+bkvzs\nW9YlFAX3VDgdChpzzw0IDbsCt2yjAfJtxmQwaLpjUF52cqxYrplsk7pOMxVF4VTLCD98s51INMGh\nreU8f7huWT5GtRoNDdUFNFQXMDkV5p3LQ5y4NMTx5uTH6pIcDm4tZ9f6YoyG5ff9CSGEEEIIIYQQ\nQgghhBArjbrelRHiJjk5M90iLBYr9fVrP9D91dTUUVNTxwsvfBGv10tT03nOnj3N0aNv4fP56Orq\n4Dvf+Uv+83/+6gfddSGEWDaMWTp+9+Ob+e4rV7h4fZxvvdjMv//kFrJNd9cJrXvIy/dfu8qwK0BR\nnpkXnlpPfYWEKBeTVqMh32Yi32Zi7aq8W9b7gtG5waBZAaG2Pjdtfbd22svJzmLPxhI+smsVdqvx\nlvXLSTAc44dvtHPmyihmo55/8+wGdqwrWurdeiDycow8s6+ap/aspqXbxfHmIS51Ofmb19t48UgH\nezaWcLCxnIoi61LvqhBCCCGEEEIIIYQQQggh7kDCP0LVampq09evXm3h8cc/fMfbTk5O8rOf/ZjS\n0jLq6tZQX78GgGg0Sn9/H5FIhHXr1qdvb7PZOHDgMAcOHOY3fuMF/uW//Cw+3xSnT7+zcN+QEEJk\nqCy9ln/97Ea+/9o1zl4Z5b/9YxNffr6RnGzDHbeJxhK8cqqHX57tRVHg0e0VPHegVjqNZCCrOQur\nOYvq0ltHsEWiccY9oWQgaDLAWGqUWN+ojzfe6+dY0yAHt5bzkd1V2C13fjxkqt6RKf7Xy62MTgap\nKbPxxY9uxJFrXurdeuC0Wg1b6grZUlfIhDfEiUvJbkBHLg5y5OIgdeV2DjSWsXNd0bLsdiSEEEII\nIYQQQgghhBBCqJmEf4QqaDSa2y5fv34jNpsdr9fDm2/+ii984V9jtd7+f67/5Ccv8jd/878BeOGF\nL6bDP7/+659kcHCA4uISfvKTV2+7bUlJKdXVNbS0XCISCc9Zp9Vq7/fbEkKIZUWn1fKFpzdgzNJx\nvHmIP/2HJv7jpxvJvU3Xl96RKb7/2lUGxv0U2k381pPrWVd1a8cZkfkMWTrKCy2UF1rmLI/GErzT\nMsyrp28kQ0DNgxzeWsGHd63CtgxCQIqi8PaFAf7paCexuMKHd63i4w/XoNep/7iebzPx7P4antm3\nmkudLo41D3Kle4LOQQ8/eruDvQ2lHNxaRmmB5f3vTAghhBBCCCGEEEIIIYQQC079716IFcFgmHkT\nMRAIpK9nZWXx3HOfAsDj8fAnf/JHRCKRW7a/fLmZf/iHvwPAaDTyzDO/ll63d+9+AEZHR/jRj354\n26/f23uD69fbAFi3buOcdVlZM2NvgsEAQgihZlqNhs8/sZbHdlQy5PTzzR9exOkJptfH4glefqeH\nr//teQbG/RzcWs7/81sPSfBHhbL0Wg5tLeebX9zDrz++Bospi1+928d/+l+n+fHRTqYCtx6PM4Uv\nGOX/+2kL//BWByaDnn/3yS186lDdigj+zKbTatm2xsF/+FQj3/zSHp7aU4VOp+XN8/38wffO8ad/\nf5FzV0eJxhJLvatCCCGEEEIIIYQQQgghxIqm+9rXvva1pd6JpRbI4DefViqLxXhPv5f29jaami4A\nyYBNbm4eExMuCgoK2bhxE2fPnsblctLf38exY2+j0+mIxeJ0d3fx85//hL/4iz9Ld+z5nd/59+zc\n+VD6vmtqannttVeIRCK89945uro6AA2BQICenm7eeuuf+fM//wZ+vx+tVstXvvKHlJaWpbcfHBzg\n5MljQDKAVFxcwujoKEVFxR/8ByWEWHbutb4tRxqNhobqfBIKNHU4uXB9nC21hbinwvzFS5d499oY\nuVYj/9evbeKxHZVk6VdWoGKl0Wk1VJfaOLytHLvFyI1hL609Exy9OEgoEqeyyIoxg8ZIdQ54+NaL\nTXQPT7FuVS5f/vRWVpfkLPVuLTmLKYsNq/N5dEcFFUVW/MEobX1uLrSPc6xpkKlglIriHDLnNymE\nEA/WSjiHE0KsTFLfhBBqJfVNCKFWUt+EEBbLrRM3ADSKoiiLvC8ZZ3x8aql3QdzE4ci5p99LR0c7\nX/jC54nH4+lls8d0eTxuvvrV/8yFC+/d8T50Oh0vvPBFPv/537pl3YUL7/EHf/Cf8PnuvE8mk4kv\nf/krfOQjT89Z7nQ6+cxnPj6n649er+fNN0/O6QokhFgZ7rW+LXevnbnBT453YzVnEQzHiCcUPrS5\nlE8frifbJNNHV6JoLM7x5iFeO9uLxxfBaNDx6PYKnnhoFVbz0h0XE4rC62d7+dmJHhQUPravmqf3\nrkarvf1oUQGjEwGONw/xTsswvmAUjQYObS3nuQO1mI3y/BZCqMtKO4cTQqwcUt+EEGol9U0IoVZS\n34QQDsft/8OydP5BOv9kontNrRYUFLJu3XqGh4eYmppCp9NitebwzDPPotfrMZlMfOQjT7NmzToS\niQSBQIBoNIpOp6esrJxDhx7hK1/5KocOPXLb+y8rK+fJJ5/BZDITjUYJhULE4zFycmxUVVXz5JPP\n8Ad/8DUaG7fdsm12djbbt+9M7Zsnvb/79x/AZrPf3w9ICLFsrbRU/prKXCwmPReuj2OzGPjSRzfy\nkV1V0u1nBdNptdSU2Tm8tZycbAM9w15auic42jRIOBqnsigHwyJ3AvL4I/zPn7Zw/NIwdquB//sT\nm9m3qRSNRoI/87Gas9hYnewGVFZgYcwd5FKni3NXRykvtFCUZ17qXRRCVXpHpnjl1A3OXBnB44+g\n12nIyTZIrVokK+0cTgixckh9E0KoldQ3IYRaSX0TQkjnn3lIOjLzSGpVCKFWK7W+DY77yMsxSbcf\ncYtINM6xpkF+ea4Prz+C2ajj0e2VPP5QJRbTwncCunJjgu/94ipef4TNtQW88NR6crINC/511Sg3\nL5u/frmFX57pI6FMd/mqI3sRfo9CqFU0luB8+xhHLg7QNei9Zb3ZqKe+wp76yKW61CYB2wWyUs/h\nhBDqJ/VNCKFWUt+EEGol9U0IcafOPxL+QcI/mUgOXEIItZL6JsTthaNxjl4c5FfnevEGopiNOh7b\nUcnjOysXJDwSTyT4+ckefnmmF61WwycO1vL4zkrpoPEBTNe33pEpfvDLa/SN+bBbDXz+ibVsrXcs\n9e4JsaxMeEMcax7kRPMQ3kAUDbCptoDD28opysumo9/N9QE3Hf0extzB9HZ6nZaa0hzqK3Opr8il\nrtwuwdsHRM7hhBBqJfVNCKFWUt+EEGol9U0IIeGfeUiBzDxy4BJCqJXUNyHmF47EOdo0yOvnepkK\nRDEb9Ty+s5LHdlQ+sDewXZ4Q3/3FFToHPDhyTXzpYw1Ul9oeyH2vZLPrWyye4PVzffziVA+xuMKu\nDcV89tF66aokxDwURaGtd5IjFwdp6nCSUBQsJj0f2lzKoa3J0M/tuH1hOgY8XO9309Hvpn/Mx/Qf\n+RoNVDqs1FfmsqYyl/oKO7nW27cFFvOTczghhFpJfRNCqJXUNyGEWkl9E0JI+GceUiAzjxy4hBBq\nJfVNiLsTisQ4enGQ18/14QtGyTbqefyhZAjIbLz/EFDT9XH++pfX8IdiPLS+iM8/sU66Yjwgt6tv\ng04/P/jlNbqHvORkZ/G5x9awc12RdFgSYpZgOMbp1hGOXBxg2BUAYFWxlUe2VfDQhmKMWbp7ur9A\nKEbXUCoMNOChe8hLLJ5Iry/KNVNfaWdNRTIQVJRnlufkXZBzOCGEWkl9E0KoldQ3IYRaSX0TQkj4\nZx5SIDOPHLiEEGol9U2IexOKxHj7wgC/OteHPxTDYtLz+EOreHR7xT2FgKKxBP90tJO3LwyQpdfy\n2UfreXhLmbzh/QDdqb4lEgpvnu/npye6icYSbK0v5F88sVa6jywTiqIwFYji8oaY8IZweUK4vGFc\n3hDRWILdG4rZsa6ILL12qXd12Rl0+jlycYDTrSOEI3F0Wg071xdxeFsFtWW2B1aforEEN0a86TBQ\nx4CHYDiWXm+zGKivmAkDVRRZ0Gnl93kzOYcTQqiV1DchhFpJfRNCqJXUNyGEhH/mIQUy88iBSwih\nVlLfhLg/wXAyBPTP786EgJ54aBWP3EUIaHQiwHdebqVv1EdZoYUvfWwjFQ7rIu35yvF+9W10MsDf\n/LKN9n432UY9n3m0nr0NJRLAWmKxeIKJqTAuz+xwT/K60xtmIhXymY8tO4sDjeUc3FpOXo6EuuYT\niydo7nBy5OIAbX1uAPJyjBzcWs7DW8qwWxZ+NF5CURgc96fCQG6u97tx+yLp9SaDjtpyO2sq7Kyp\nzKW61IbhHrsPqZGcwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CfDDBcIy3Lgzw\nRioEZDVn8cRDlTyyvQKT4dYQ0JkrI/ztP7cTjsTZv7mUzz625p5H6Ii7czf1LaEoHG8a5J+OdRGO\nxGmoyec3nlhHgd20SHu5siiKQjAcw+kJMZHq1jO3g08Ijy/Cnf4gtJqzKLCbKLCZyLcZKbSZyLeZ\n0stC0TjHLg5y4tIQgXAMnVbD9rUOHt1eSW35g+tcowYeX5jjl4Y41jSYDtqsr8rj8LYKGusLlrTT\njqIoOD2hdBioY8CTHj8GoNNqWF2aw5qKXNZX5bF+dd6K7Awk53BCCLWS+iaEUCupb0IItZL6JoSQ\n8M88pEBmHjlwCSHUSuqbEA9GIBTjrQv9vPFuP4FwMgT0kV2rOLytAqNBRzgS5+/fvM47LcOYDDo+\n/+G17N5QstS7rWr3Ut+cniB/+6t2WnsmMBp0fOpQHQcay9BKWOSeJBQF91Qq1JMK87hS3Xqml4Ui\n8dtuq9NqyMsxUpAK8+TbTBTakyGfglTI526DcuFInDNXR3j7wgCD434AqkpyeHR7BQ+tLyJLvzID\nd4qi0DHg4cjFAS60jxNPKJgMOvY1lHJoWzllhZal3sU78gYidPR7UmEgN70jPhKplw5yrQb2bSpl\n/+ZSivKyl3hPF4+cwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CPFiBUJQ3zw/w\nxnv9BMMxcrKzeGRbBeeujTLsClBVksOXPraR4hX0BvVSudf6pigKp1pG+NHbHQTCMdatyuVffmTd\nigoT3I9EQqFjwM35tnHOXx/DM2tc02xmo56C6SCP3XRL1x67xYBW+2DDVoqi0N7n5q0LAzR1jKMo\nye5BBxrLOLS1nHzbyujwFI7EOXt1hCMXB+kf8wFQVmjhkW3l7N5Y8r6jCjNRKBKja8jLxevjnL0y\nSjAcA2Ddqlz2bylj+xqH6keDyTmcEEKtpL4JIdRK6psQQq2kvgkhJPwzDymQmUcOXEIItZL6JsTC\nCISivPFeP2+e7ycYTnY6eWxHJZ84WEuWfuWNp1kK91vfJqfC/PCNdpo6nBj0Wj7+cA2P7qh84MGU\n5SyeSHC9z8359nEuXB/H608GfiwmPetX5+PITQZ6pj/ybSayTUsbMHF6ghxtGuRE8xD+UAytRsO2\ntQ4e3V5BfYVdlSPBRicCHG0a5OTlYYLh1Pe8ppDD2ypYuypXNd9zOBrnYvs4Jy4N0d7vBiDbqGf3\nxmIe3lLGquLbv/iw3Mk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+ibEwvKHopxo\nHqKiyMqmmoKl3p0V5YPUN0VReK9tjB++cR1fMEptmY3ffHJ9Ro9FWmixeIL2Pjfn28e4eH2cqUAU\nSHbS2bbGwY51DtatykOvy+xwWyQa5+zVUd6+MJDugrOqyMoj2yvYtaF42XeLSSQULne5OHJxgNae\nCQBsFgMHtpRxoLFM9d2ORicCnLw8zKmWYTypUFpVcQ4Pbyll14Zisk1ZS7yHD46cwwkh1ErqmxBC\nraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CCLV6EPXNG4jwD29e591rY+h1Gj66r5oP71qV8QGX\nByUWT3Ctd5L32sZouj6OP5QcrWTLzmLb2iJ2rnWwZlUuOu3y+3koikLHgIe3zvdz8bqThKJgNWex\nf0sph7dWUGBfXiGZqUCEk5eHOdY0iNMTAqCuws4j2yrYvtaxYh6z0+KJBJe7XJy8NMzlLhcJRSFL\nr2XH2iIe3lLKmsrl3/lIzuGEEGol9U0IoVZS34QQaiX1TQgh4Z95SIHMPHLgEkKoldQ3IYRaPcj6\n1nR9nL99ox2PL8KqYiu/9eR61Y4SisYSXLkxwYW2MZo6nATCycCP3Wpgx5oidqxzUF+Rq6oxaBPe\nEEebBjnePIQvGEWjgW31Dh7ZnpnjsRKKgtMTYmjcz6DTR9+oj6YOJ7F4AkOWlt0bSji8rVy1j9F7\n5faFOdUyzMnLw4xNBgEozjPzoc2l7NtUSq7VuMR7eH/kHE4IoVZS34QQaiX1TQihVlLfhBAS/pmH\nFMjMIwcuIYRaSX0TQqjVg65v/lCUF9/u5J2WYXRaDU/uruLpvavJ0i//jiqRaJwrPROcbx+judNJ\nMBwHIC/HyPa1DnasLaKuwo42w0IwD1o0Fufc1THeutBP32hyJFiFw8Ij2yvYvbEE4yKPBEsoCi5P\niEGnnyGnn8Hx5OWwy08klphz26I8M4e3lrNvcykWFY22epAUReF6v5sTl4Y43z5ONJZAq9GwubaA\n/VtK2VxbsKy6WMk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+iaEUKuFqm+t3S7+\nz6/acHnDlBVa+M0n11FbZn/gX2ehhaNxWrpcnG8f41KXi3AkGfgpsJnYsS4Z+Kkus6k+8HM7iqLQ\nOejh7QsDXGgfJ55QsJj07N9cxuFt5RTmmh/o10soChOzQz6pj2GXn0h0bshHr9NSWpBNeaGFskJL\n+tKRZ16Rv6v7FQhFOXd1lBOXhukdTdYJu9XAvoZS9m8ppTgve4n38P3JOZwQQq2kvgkh1ErqmxBC\nraS+CSEk/DMPKZCZRw5cQgi1kvomhFCrhaxvwXCMl453cfTiIBoNPLFzFc/ur8awyJ1h7lUoEuNy\nl4vz7eNc7nKmgyWFdhM71xWxY10Rq0tyMm7M1VKanAqnRoINMhVIjgRrrCvkke0VrK/Ku6eflaIo\nuLyhdMBnKP0RIByNz7mtXqehJN9CueOmkE+uaVl1p1kOekemOHl5iDNXRgmmxtytrczl4S1lbF/r\nyNjntZzDCSHUSuqbEEKtpL4JIdRK6psQQsI/85ACmXnkwCWEUCupb0IItVqM+tbeN8kPXm9jbDJI\ncZ6Z33xyPWsqcxf0a96rYDjGpS4nF9rGael2pcdFFeWZk4GftUWsKrZK4Od9RGMJ3msb5a3zA9wY\nST6uygqTI8H2bizBaJgJiCiKwoQ3zJBrZlTXoNPPkMuf7rA0LRnyyZ4T8CkrtFCUZ5aQzyKLRONc\nuD7OyUtDtPW5ATAb9ezeWMzDm8uoKrn9ixhLRc7hhBBqJfVNiIUzMObjxaOddA542L2xmKf2VFFo\nf7BdLcWdSX0TQqiV1DchhIR/5iEFMvPIgUsIoVZS34QQarVY9S0cjfPzk9288V4/igKHt5Xz3IFa\nzEb9gn/tOwmEYlzqdPJe2xitPRPE4snAT2lBNjvWJjv8VDgsEvi5D4qi0D3k5e0LA7zXNkY8oaQD\nItFYIt3NJ3RTyEen1VBSkE1ZwUzIp9whIZ9MNToZ4J3Lw7zTMozHFwFgVbGV/ZvL2L2xGIspa4n3\ncPHP4abH0w1PBCjNz37g4+8yXUJRmApEsZj06HXqes4mFAWPL4LLG8LlCeHyhnB6Zq5PToUwZOnI\nsxrJyzGSm2Mk12qc83me1YjZqJPjingg5G9UIR48jz/Cz092c+LSEIoCVnMWvmAUnVbDvk2lPL2n\nasUd25eC1DchhFpJfRNCSPhnHlIgM48cuIQQaiX1TQihVotd37qGPPzgl20MOf0U2EysW5WLAigK\nKCigJN9gBUikViTXJQMlipK6TN1fIrVyell6/extUpfMWpZIwMC4j3gieU/lDksy8LPWQbnDumg/\nj5XA7QtzrGmQY81DeP3JgIhOq6F4Vief8lmdfNQWGFgJ4okELd0TnLw0xKVOFwlFIUuvZftaB/s2\nlVJZZCXHnLUkgYeFqnG3jKcbT14Ou2bG0+m0Gg5vq+CZfauxmpc+CLXQrt2Y4MWjnfSN+gCwmPTk\nWo3YLAbsVgN2iwG7xYjdYsCW+jzXasRi0mdEGCYWTzAxFU6GeVKBntmXE1MhYvHbvxRnNurJtxmJ\nRONMTkXSYdLbMWbpyLUa5gSCbr60Ww1SC8X7WsxzOEVR6B/zcanTSXOni3g8wYbqfDZV51NXkUuW\nXh6vYnmLROO8eb6fV8/0Eo7EKSu08PzhOjaszuPdq2O8cvoGoxOBVAiohKf2rMYhIaAFI6/BCSHU\nSuqbEELCP/OQApl55MAlhFArqW9CCLVaivoWjSX4xekbvH62Nx2+WSia1D/a1BvLGo0GjSa5vDg/\nmx1rHexYV0RpgWVB90Mk31jvGPBgsxgolpCPanl8YU61jnDy0hCjk8H0cqNBh8NuxpFrwpFrptCe\nvJy+bsjSzXOv9++D1rjp8XSDzunRdL5k5ypXYN7xdEV5Zs5dHWXcHcJi0vPM3tUc3l6hysf94LiP\nHx/r4nKXC4CNq/NIKMnuCR5fGH8oNu/2Oq0mGRCa/rAasKVCQrnWZGBoOixk/ACPk3A0fttQjzN1\n3T0V5k5HJJvFQIHNRIHdRGHqsmDWZbZppoudoij4QzEmp8K4feHk5VSYyVnX3b4w3kD0jvuqAXIs\nhpmuQVZDOhiUDg3lGMk2ZkZwSiyNhT6Hi8UTtPVNcqnDRXPnOC5vGEg+ZzUaTTrkZszSsb4qj4aa\nfBpqCiiSQIRYRhRF4dy1UX5yrAuXN0xOdhbP7q/h4S2lc7pOJhLJ2/3i1A1GUiGgPQ0lPL13tTzm\nF4C8BieEUCupb0IICf/MQwpk5pEDlxBCraS+CSHUainrmy8YJRiOpcI4qVDOrHAOs67PLJ++XfJ6\nMtgDzF6u0aS3EUIsDUVRuN7vpqnDybg7mPzwhG4JzEyzWw3pcFCh3ZwKBiUDQrlWI1rt/T2f77bG\nKYrC5FQy5DM47p/p6OPy37LP0+Pp0qPpZnWumv1GYTSW4O0LA7x6+gaBcIyiXDOfOFjL9rUOVdQn\nty/Mz0/2cPJycjTKulW5fPJQHdWltjm3i8YSTAUiuH0RPP4wHn8Ery+SDAf5U8tSn0djd+6YA2Ay\n6GaFhIyzwkLJkJDFpMfjj8wN96QufcHbh220Gg15OcY5gZ7CWdfzc4wLEk6LxRO4fWHcU5FbgkGT\nqbCQeypMZJ6fiUGvJTfVMSjfZqTQnnz+FNiS30O+zSQdWVRsIc7hfMEoLV0umjqdtHa70uM5s416\nNtUW0FhXyKaafHQ6Ldf73bR0u2jtnmBkIpC+j+I8Mw01BWyqyWftqrwPFNoTYiF1DLj50dud9Ax7\n0es0PLazkqd2r54T6LxZIqHw7rVRfnH6BsOuAFqNhr0NJTy9t4qivOxF3Ht1k9fghBBqJfVNCCHh\nn3lIgcw8cuASQqiV1DchhFpJfRNCLBZFUZgKRnG6Q4y7gzg9qVBQ6vMJbzg99m82vU5DgS3VMWg6\nFDQrIJRtuvNIrZtr3HTIZzrcM+j0M5wK+QTDtwn5zBpPV1Zoodxxa8jn/fiCUV55p4ejTYPEEwr1\nFXaeP1xPTZnt/TfOQKFIjF+d6+Of3+0nHI1TWpDNJw/VsaW24AOFmhRFIRiO4/GH8U4Hg3wR3P7w\nTWGhCFP+yB279NwsS68l32ai0HZzwCcZksnNMdzT73MxKYpCIHy7LkKR5OV0F6F5fh65VkP6+y20\n39q9aKG6bomF96DO4UYnAjR1OGnudNIx4Ga6DDtyTTTWOWisL6S+wj5v57Jxd5DWnglau11c7Z1M\nhyb1Oi1rK+001BTQUFNAWUG2KsKPYnkbcwd56VgX59vGAHhofRHPHai9pzFeiYTCe21jvHKqJx0C\n2tNQzNN7V1MsIaAPTP5GFUKoldQ3IYSEf+YhBTLzyIFLCKFWUt+EEGol9U0IkSniiQQT3nAqGBSa\n6RjkDuH0BJm6w5ikbKM+FQxKjRJLjRTLs5lIaLVc6xxnyJXq5OMMEAzPHUOl02oonhXymd3J50GO\n6RqZCPDSsS4uXh8HYNeGYp47UEOhfXmMC4knErxzeZifn+zB449gsxh49kPV7L9pNMpi7YsvEMXj\nn+ko5PVH8AdjyRFds0I+tuws1YcNYvEE7qlweoSZ05N8zkyPNbtTsA6SI80KZ3U7SgaEZoJC0rUl\nc93vOVwiodA56KG500lzhzPdtUcD1JTbaKwrpLHecd9BnVg8QeeAJx0G6hvzpdfl24w0VCe7Aq2v\nyp+3w4pYPAlFwReIMjkVZmIqlOw+NhVmwjtzvcBuYs/GEratcWA2Ls/fWyAU49UzN3jrfD+xuEJN\nmY1PP1JPXbn9vu8zkVA43z7GK6duMOT0o9Vo2L2xmGf2rqY4X0JA90v+RhVCqJXUNyGEhH/mIQUy\n88iBSwihVlLfhBBqJfVNCLFcBMMxXLNDQZ5QOijkdAfnHY8EyZBPUZ55VhcfK2WFFoofcMjn/bT3\nTfKjI530jkyh12l5bGfF+44ZWUqKonC5y8WPj3Ux5PRjyNLy4YdW8cRDq5btG8ArTTyRwD0V8r3i\ntgAAIABJREFUSQWDUs8ZT3Ic2vSItHji9i8z5mRnzQoGmWfGoqWWyWNg6dzLOVwwHONKzwTNnU4u\nd7nSY/AMWVo2rs6nsa6QzXWF2C2GB76fbl+YKz0TtHS7uNIzgT+UDGBqNRrqym2pEWEFVBZb0ao8\nqLcUEoqC1x9JhXnCTM4O96QCPm5fmFj8zm81WM1ZM48ZvZZtaxzsbShh/eq8jO2cNls8keB48xA/\nP9mDLxilwGbkEwfreGh90QMLhyYUhfNtY/zi1A0GnX40Gti9oYRn9q2mREJA90z+RhWLYWQiQHOH\nE0VR2L2xhLwc41LvklgBpL4JIST8Mw8pkJlHDlxCCLWS+iaEUCupb0IINVBSb26Ou0OMp8aJTXjD\nlBXlkJutp7zQQnF+9qKGfOaTUBTOXRnlJye6mPCGsZqzeHZ/NQ9vKcuYfQToHZnixSMdtPW50Whg\n/+ZSPvahGnlzRGUSCQW3Lzyra9B0MCiY7iZ0p2CA1ZxFrtWAyaDHaNBhytJhMugwpj5MBj2mrOnr\nqXVZqeXTt0utl+DHvXm/c7gJbyjZ3afTSVvvZPp3aLcakt196gpZX5W3qKPfEgmFnhEvrd3JrkDd\nw970mDFbdhYbU12BNlTnY8t+8EEktUkkFDz+SLpDz8TUTLhnYirMpDc5GvBO4T4NycdDXo6J/Bwj\neTlG8mxG8nNM5OUYyc8xkptjRK/TMjYZ4MyVUc60jjDmDgJgtxjYtaGYvQ0lrCq+/ZsYS0lRFFq6\nXbx4pJNhVwCTQcdTe6p4bEflgj3uE4rCxfZxXj7Vw+D4dAgoOQ6stMCyIF9TjeRvVLEQEgmF7iEv\nTR3jNM3qfAfJQOqWugIONJbTUJ2PVivnJGJhSH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQapbp\nNS4SjfPm+X5eO9NLKBKntCCbTx6qY0ttwZKOqnJ5Qvz0RBdnrowCsKmmgE8eqqXCYV2yfRJLZ7pz\nyOxxYtMjxZyeEB5/hHAkfsfRYnfLODsklDUTHro5VGSaXp41K1BkmBsoMht06HVaVY98u7m+KYpC\n7+gUzR3JwE/f6My4rcoia2qcVyFVJTkZE7TyBaNcvZHsCtTaPYHHHwGSoZTVpTmpEWEFVJflLIsO\nMw+aoii4fREGnT6GnAFcntCccI/HF7nj806r0ZCbY0gGemaHe3KS4Z58mxGbxXDPgVNFUega8nK6\ndYT3ro2mOzlVOCzsaShh94bM6J4xMObjxSMdXLkxiUYDB7aU8bH9NQvS3ep2pkNAr5zqYSAVAtq1\nITkOTEJA7y/Tz9/E8hGOxrl6Y4KmDieXO514A3M7322tdxBLdQfrHUk+5gpsJh5uLGP/5lJyrUtf\nz4S6SH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQarZcapzHH+Hld3o43jyIosD6qjyeP1y36J0U\nAqEor53p5c3zA8TiCVYVWfnk4To2rs5f1P0Qy4+iKMTiCUKROKFInHAkTigaJxSJJa9H4oSj8bnr\nI7H0sunbhKJxwpFYetkHefFTp9UkA0LGud2GZgJDsz7P0mEy6md1Jpp7++kORZkUJnI4chgadnOt\nd5LmTheXOp1MToWB5Pe+riqPxrpCttQVUGg3L/Hevj9FURgY99Pa7aKl20XHgCfdsSbbqGfD6jwa\nagpYX5VHgc2kuq4M3kCEwXE/Q04/g+M+Bp1+Bsf9BMKxW26r02rItU536Znp1DO7c4/NkrXggalo\nLMHlLhenW4e53OUinlDQaGBDVR57GkrYtsaBybC4owE9vjA/O9nDyctDKAo0VOfzqcN1SxZeTSgK\nTdfHeeXUDfrHfGiAh1IhoLJCCQHdyXI5fxOZyeOPcKnTSXOHk6s3JtKjgW0WQzoIu+E2ne9ujHg5\n1jTEuaujhKNxdFoNjXWFHNhaxobV+RkTnBXL20qqb7F4Ao8vOXrUG4iwuiSHfJtpqXdLiCUn4Z95\nrJQCuZyspAOXEGJlkfomhFArqW9CCDVbbjVucNzHPx3toqXbhQbYu6mEjz9cu+BdFGLxBEebBvnF\nqRv4glHycox8/OEa9jSUyBsdYskoikIklkgHhWYHiNJhoVkBolA4TigauyVgFIrMhI5i8cR9748G\nbhlnptNp0GiSXVa0Gg1arQatBjRazS3LtKllGo0GrZZZ11Pr09c1aLS33ufs7QH6nX4uto0RjsYB\nsJj0bK4tZGt9IRur8zEbFzd08aAFwzHa+iZp7U52BnJ6Qul1Oq2GApuJwlwThXYThXZz6roZh92E\nzWLIqKDWbIFQNB3sGZwV9JlKdaOYptFAcV425Q4L5YUWygotOHLN5OcYybEYMq42+4JR3rs2yunW\nEbqGvECym9e2NQ72NpSwvipvQQNbkWicN97r57WzvYQjccoKLTx/uI5NNQUL9jXvRUJRaO5w8so7\nPfSlQkA71xfxzL5qyiUEdIvldv4mlpaiKIxMBGjqcNLUMU73oDcdHi4rtLC1PjnqsrrMdle1MxiO\ncfbqKMebBukbS3bRK7SbONBYxoc2ly1aBzGhTmqpb9FYArcvnOpGmOpK6E1+PjkVYmIqjNcXuSXI\nX1lkZUtq/Ozq0szpRinEYpLwzzzUUCDVRi0HLiGEuJnUNyGEWkl9E0Ko2XKtcVd6JnjxSAcD434M\nei1PPLSKj+xe9cA7KCiKwoX2cV463sXYZBCTQcdTe6p4bEflLf8bWgg1iMUTybBQeKYz0c1BoXAk\nTjAyt2tRcnks3Z1o+nbxRIJEIvlcWooXaovzzGytd7ClroC6CrtqR2MpisLoZJCWbhfdQ16c7iDj\nnhDe1Jiwmxn0WgpmhYIcdnMyJJQKCFlM+gUPB4UiMYacAQadvpmOPk5/ujvTbI5cE+WFVsodyZBP\neaGF0oJssvTLsw6PTgQ4c2WE060j6dBWrtXA7o0l7N1YQkXRg+vCk1AUzl0d5SfHu5jwhsnJzuLZ\n/TU8vKU0I58PSioE9PKpHvpGZ4WA9q6mXEZrpi3k+Vs0lmAqEMEbiOD1R/D6ozPXAxE0aNKdxiTk\nkbkSCYXOQQ/NqcDP6GQQSAYn6ytyk4Gf+kKK87Lv+2soikLP8BTHmgd599ookWgCnVbD1vpCDmwt\nT4YaJbgg7tFy+Ps0GoszMRVm0js33DM9dnTSG0qP0LsdvU6THjOaZ0t2Jsw26mnvc9PWN0ksnjxr\ntlsMbK4toLGukA2r8zEalud5jxD3SsI/88j0ArkSLYcDlxBC3A+pb0IItZL6JoRQs+Vc4xIJhXda\nhvnZiW48/gh2i4Ffe7iGD20qfSDdEzoHPLx4tIOuQS86rYaDjeU886HV2LLljS4h7oeiKCQUhUSC\n1KWSWpZ8Pk8vSygKisKsz0GZXn+n7RVl5jap9RvqHJgyL9uwqMLROC5PCKcnyLg7hMsTYtwTxOlO\nLvOHbh2ZBWA26iiwmXGkwkDTwSBHKix0L0HLaCzOsCtwSyef2Z2KpuXlGNOdfNJhnwKLat/sUhSF\njgEPZ66M8O61MYKpEWariqzsaShh94Zi7Nb772zXMeDmR2930jPsRa/T8tjOCp7avZpsU+Z3vVIU\nheZOJ6+8c4Pe0Sk0wI51RTyzb/WSjSjLJPdy/qYoCuFo/NYgjz9y0/UoXn/ktqP07qSqJIdNNQVs\nrimguiwnIwNlK0k4Eqe1Z4LmznEudbrwBZPhA2OWjobqfBrrC9lcW0DOApzLBkIxzl4d4VjTEAPj\nyW5ARblmDjSWsW9TKTYJiom7tNR/n4aj8WSQx5vszjORCvVMekPpcM/0c+t2svRa8qdHjeaYyE+N\nIM2bHkFqM5JjzrpjyDoYjnH1xgSXOl1c7nKmQ0R6nZb1VXk01hWwpa5QxoMJVZPwzzyW6wt4arbU\nBy4hhFgoUt+EEGol9U0IoWZqqHGhSIxfnevjV+f6iMQSVDisPH+4jo3V+fd1f6OTAV461sWF9nEA\ntq1x8ImDtZTk3///jBZCLD411LeFFgjFcHqCOD2h5Id7+nqyc1A4Er/tdlZzVioQlAwGOVLXbdkG\nRicD6U4+A04/Y5MBbn6V3mYxpAI+FsocFioKrZQVZpNtylqE7zozRWNxLnW6ON06Qku3i3hCQaOB\njdX57N1YwtY1Dox32XFuzB3kpaOdnE8dxx5aX8QnDtRSmGteyG9hQSiKwqVOFy+f6qF3JPl83rHW\nwUf3VT/QDknLTUGBld6ByVtDPLfr1uOPEInNP9JRA1izs7BZDNiyDbMus2Y+Ty0LRmLpcYPX+93E\nE8knuMWkZ8PqfDbVFLCpJv8DBdfE3fP4wjR3OmnucHK1d5Jo6ndttxporEuOulxflbdondIURaF7\nyMux5kHeuzZGJJbsBrRtjYODjWWsq8rL2LGTSy0cjdPeN0lL9wTtfZNYzVlUleSwusTG6pIcHHnm\nFdFJaTHP3zy+MN1DXrqHvXQNeugf890xGA1gyNKSnwr0pMM96aCPkXyb6YF2T0woCj1DXpo7nVzq\ndDIw7k+vWzU9Hqy+kKoSGQ8m1GXRwz+JRIKvfe1rtLe3YzAY+PrXv05VVVV6/ZEjR/j2t7+NXq/n\nueee41Of+tQdt+nt7eUrX/kKGo2G+vp6/viP/xhtKh09MTHBZz7zGV555RWMRiOhUIjf+73fw+Vy\nYbFY+NM//VPy8+d/IUv+wM088sKDEEKtpL4JIdRK6psQQs3UVOMmp8L89EQXp1tGUICGmnyeP1R3\n12NCpgIRfnHqBkebBoknFGrKbHzqUB1rKnMXdseFEAtCTfVtKSiKgi8YnRMMGk8Fg5Kdg0LE4vMH\nCiwmfSrgY6W80EJFamzXQnSdUBNvIMJ718Y43TpCz7AXAKNBx461DvZuLGHtHUbpBEJRXj3dy1sX\n+onFFWrLbDz/SD115fbF/hYeOEVRuNzl4uV3eriRCgFtX+vg+UN1yzLUdL+c7iA/eL1tTujmTnRa\nzU1hnqw5IZ6Z61lYs7Puq2tPMByjrXeSlm4XLd0uXN6ZsX2riq2pIFABteU26Qr0gCiKwpDTT3On\nk6YOJ91D3vS6coclFfhxsLp06cMAgVCU060jHG8eYtCZDC0U55k50FjOvk0lK/5YoCgKIxMBWron\naO120dbnTh9XDXot0VhizshUs1FPVbE1GQYqzaGqJIeiXLPqwlQLdf4WjsbpHZlKh316hjxzahZA\ncX42hXZTaiRXMsyTDvbkGDEbF34s6nyc7iCXulw0dzppv2k82Ja6ArbUyngwoQ6LHv554403OHLk\nCN/85jdpbm7mu9/9Lt/5zncAiEajPPnkk7z00kuYzWY+85nP8N3vfpeLFy/edpsvfelL/OZv/ia7\ndu3iq1/9Kvv37+exxx7j5MmTfOtb36Kvr48zZ85gNBr5wQ9+gM/n43d/93d57bXXaGpq4g//8A/n\n3Vf5AzfzyAsPQgi1kvomhFArqW9CCDVTY43rG53ixSOdXOudRKOBA1vK+Nj+Gux3GDcQjcV56/wA\nr57pJRiO4cg18YmDdexY61Ddi+lCrCRqrG+ZJKEoeP0RnO7UKDFPCK8/giPXnOzq47Bgtxikjn5A\nwy4/Z66McKZ1FJc3OSotL8fIno0l7GkoobzQQiye4HjzEC+/04MvGKXAZuKTh2rZua5IdT9/RVFo\n6Xbx8js36Bn2Yjbq+PXH17JnY8lS79qCe/faKP/nV+0EwzFqyuzYLckwT062Abvl1oBP9iK/Sa0o\nCkOuAC1dySBQx4A7/cZ0tlHPhup8NtXk01BdQF6OdAW6F/FEgs4BD00dyQ4/Y+4gAFqNhjWVdhpT\n3T+K8jKzS6WiKHQOejjePMR7bWNEYwn0Og3b1xZxsLGMNZW5qqtVdxKKxGjrdacDc7NHYFY4LOnA\nXF2FnWgsQd/oFDdGpugdSV6OTgRuCQStLslJdQhKfjiWeSDoQZy/JRSF0YlAMuiT+ugf85GYFRvI\nyc6iptRGTbmdmjIb1SW2ZTEWc1owHONKzwSXOp1c6poZ85elT44H21JXyJbaAhkPJpalRQ///Nf/\n+l/ZvHkzTz31FAD79+/n5MmTALS1tfFnf/ZnfP/73wfgG9/4Blu3bqW5ufm22+zfv58TJ06g0Wh4\n6623OHXqFH/8x3/MqVOn2LBhA8899xyvv/46RqOR3/md3+ELX/gCjY2NTE1N8elPf5rXXntt3n2V\nP3Azj7zwIIRQK6lvQgi1kvomhFAztdY4RVG41OXix0c7GXYFMBp0PLW7isd3VmJIjU1JKArnrozy\n0xNduLxhLCY9z+yr5tDWcrL08r/ThVju1FrfxMqUUBQ6+t2cbh3hfPsYwXByJFtVcQ6RWJxhVwCT\nQcfTe1fz2I6KRRvxs1QUReF06wg/fPM64Uic3RuK+fXH1y6rN27vVjgS5+/fus47l4cxZGn53GNr\n+LXDa3A6fUu9a/MKRWJc602OMGrpcqXDawCVRdb0eLDacjt6nZx33cztC9PaPUFrj4srPRPpUURG\ng45N1flsrXewqbYAq3l5jUv0BaOcaR3hWPMgw64AAKUF2RzYUsbeTaXL7vt5P9OdmlpSo/Jmh+LM\nRj0bV+fRkAr83E0oLhiOpQNBN2YFgmbLNurTYaCqZRgIup/zN28gQs+Ql66hZEef7uEpguGZ8V16\nnZaqYis1ZcmgT02ZjUK7adn8TN5PIqHQPezlUqeT5k4ng7PHgxVbaawrZEudjAcTy8edwj8Ldpbn\n8/mwWmdaRut0OmKxGHq9Hp/PR07OzA5ZLBZ8Pt8dt1EUJV1cLBYLU1PJgrZv377bft3p+559WyGE\nEEIIIYQQQggxQ6PR0FhXSEN1PicuDfHzkz389EQ3R5sGee5ADblWIz8+2kXv6BR6nYYPP7SKp/ZW\nYTGp6w0HIYQQ6qDVaFi7Ko+1q/L43GNraO50crp1hNbuCRQUDm4t59kPVWO7Q5c7tdFoNOzbVEp9\nhZ3v/eIqZ6+O0jHg4bef2aCqcZ29I1N895UrjEwEWFVs5Ysf3UhpgWVZvGFtMujZWu9ga71jZrxR\nqitQe7+b/jEfvzzbi9moY8Pq/HTHk5XaFSgWT9A16EmHRPrHZsJd+TYjO9cXs7W+kHWr8pZ1SN1q\nzuKxnZU8uqOCjgEPx5oHOd82zo+OdPLS8W52rHNwsLGc+gr7snic304wHOPqjeQ4vNYeFxN3GIdX\nU2a75+Cb2ahPHwumBUIzgaDe0SluDHu51jvJtd7J9G0sJj2rilPdgUptVJXk4Fim4ZfpjkjT47u6\nhzyMu0NzblOcZ6axriAd9qkssqo6ZKjVaqgrt1NXbue5A7U43UGaO51c6nTS1uemb9THK6duYLca\n2FJbwJa61HiwLHUHhYX6LFj4x2q14vfPpOYSiQR6vf626/x+Pzk5OXfcRjtrzqnf78dms93V132/\n207Ly8tGr/KU/3J0p8SaEEIsd1LfhBBqJfVNCKFmaq9xz5fYefrhOn789nVeOdnN/371Wnrdga0V\n/Isn11Ocn5ljEoQQH4za65tYucrLcnnq4To8vjDxhLJix3o4HDl86985ePGt67z4Zjv/7R8u8slH\n1vDpx9cu6zd6FUXhlZPd/M2rV4nFEzx7oJbPP7l+Tken5VbfiopsbF6XHM8WCse43OXkwrVRLrSN\ncaF9nAvt4wCsLrWxfV0R29cVs746f1n/Ht/P2GSAi21jXGwfo/n6eLpTiV6npXGNg+3riti2tojK\n4pxlGdJ4P0VFNvZtq8Trj3DkfB+/OtPL2SujnL0ySmVxDh/eXcWhHZXkZGd2qFFRFG4Me5OP5bZR\nrvVMEE8ku/tYzVnsbyxP/y7zFqhWV1XmsX/W5/5glO5BDx39broG3HQOuG8JBFnNWdRV5FJbYae+\nMo/aCjvF+dkZ8Vibrm+KojDs8nO9d5L2vknaeyfpGfKkuydB8vvYtq6ItavyWJP6WClB2DtxOHJY\nX1/EZ4BAKErT9XHevTLC+WujnLg0zIlLwxj0WjbXO3hoYwkPbSimwG4Gkj/zhJLsJqQoComEQiJ1\nGU8oKArpz9Pr5nzOnG1mr1NS6+Kz1ikJhZICC1Wl7595EGLBwj/btm3j6NGjPPnkkzQ3N7NmzZr0\nutraWnp7e3G73WRnZ3P+/HleeOEFNBrNbbfZsGED586dY9euXZw4cYLdu3fP+3WPHz/O5s2bOXHi\nBNu3b3/ffZ2cDLzvbcTikpbDQgi1kvomhFArqW9CCDVbSTXuqV2r2LXWwc9O9uALRnl2fzXVpTaI\nx1fMz0CIlWQl1TchxsejS70LS+qxbeWsLrLwvV9c5cW3rvPulRH+1Uc3UJy3/MK9Xn+E7792jZZu\nF7bsLF54ehObagpwz3qvRw31rdphodpRw3P7q5NdgbonaO120dbn5sawl58c7cRkmO4KlOwMtNxD\nbtFYnOv9nlRHmAmGnDMNA4pyzezdWEJDTT7rVuVhNMwEvTJ9xNuDsG9DMXvXF3G9382x5iEutI/x\nvZdb+d7LrWQb9ditBuwWA7lWY+p68jLXYsCeWpZt1C9acCUQinJlurtPtwu3LwKABlhdmkNDdQGb\naguoKbWh1Sb3KRaOLmqtLrEbKbEXs7+hOLXPMXpHp+gdmeLGiJcbI1M0d4zT3DGe3sZiSo4My7eZ\n0Gk1aDUatKlLnVaDRsuc5TffJr0s/Tlztp97Xxp009vOui9Nlo6ma6N0D3npGfbiC878zHRaDZVF\n1vTortoyO0V5c0eahQNhxgMz3ZYErCnNYU1pDp89XEf3kDfdFej8tVHOXxvlf5L82SaUZEBnKdSW\n2Ti4tZyd64rSY7rFynWngLNGURbmIZpIJPja177G9evXURSFb3zjG1y9epVAIMDzzz/PkSNH+Pa3\nv42iKDz33HN87nOfu+02tbW19PT08Ed/9EdEo1Fqamr4+te/jk4386A+fPgwr7/+OkajkWAwyO//\n/u8zPj5OVlYW3/rWt3A4HPPu63I/AVQjNZyYCyHE7Uh9E0KoldQ3IYSaSY0TQqiV1DchVp5AKMbf\nv9nOmSujGLN0fPaxej60qTQjOlncjdYeF//71Wt4/REaqvN54ekN2G/TwULN9S0cjdPeN0lLV3L8\n1Zg7mF5XWpBNhcNKcX42JflmivOzKc7LxmrO3LGto5MBWlOjvNr6JolEEwAY9FrWVeWxqaaAhpr8\nZRlUW0jeQITTLSO09rjw+CK4fWH8odi822TptdgthtuHg2YFh2zZhnQg524lFIX+UR+Xu5Oj67oH\nvSSUme4+DamA2sbqfGwZ3qlotkAomgwDTYeChqfmPOeWWqHdlAr6JMd3VRVb53RAEx/MeGo8WGv3\nBIFwNBnY0mjQaJgT6NIw87lGq0GrIXW7VMArff3267Ta1H1qbn8fbX2TtHS5UEgG0PZtKuXQ1nLp\nzruCLXr4ZzlR6wngcqbmE3MhxMom9U0IoVZS34QQaiY1TgihVlLfhFi5zl4Z4e/eaCcYjrNjXRGf\nf2JtRgdEYvEEPz3eza/e7UOn1fCJg7U8trMS7R1CSyupvo1OBNKBi+v97nR4ZjarOYvifDMledmp\nYFDysijPjHGRO0iEI3Ha+iaTgZ8eF2OTc8NLm2oK2FRTwJpKu4QY7lE0lsDrj+D2h/H6Irj9ETy+\nMG5fJLncF8bjT16fHrt1OxoN5GTPDQbZralw0HR4yGrEoNemf5etPRN4/ZH09jVlNjaluvtUleTc\n8bm6HAVCUXzBKAkF4ombxjulRj/d8rkyM/IpnkiktkmGpu54H7NGP83cBvJzzRTbTVSX2W4bfhTq\nNO4OcuLSECcvDeENJLs9ra/K49DWchrrC1U9AlLcSsI/81gpJ4DLyUo6MRdCrCxS34QQaiX1TQih\nZlLjhBBqJfVNiJXN6Q7yvVev0jHgIS/HyG8/vYF1VXlLvVu3GJ0I8L9euULvyBTFeWa++LGNrC6x\nzbvNSq1vCUXBPRVmdCLAyGQweTkRYHQyiNMdvG3gI99mpHg6FJRnToeDCuymB/JmsqIoDLkCtKbG\nP7X3e4jFkwGl6bFlDTX5NFTnU2g3f+CvJ95fQlHwBaN4fDPhII8/nOwg5I/g9YVTwaEI4Wj8ru7T\nZjGwqTqfhlR3n0wOEy53K7W+iaRYPMGF9nGONQ3S3u8GwG418PDmMg40li378Y/i7kj4Zx5SIDOP\nHLiEEGol9U0IoVZS34QQaiY1TgihVlLfhBCJhMJrZ3t5+WQPiqLw4d2r+LX9NRnRQUBRFE63jvDD\nN64Tjsb50KZSPvtYPSaD/n23lfp2q1g8gcsTSoaBZoWDRicDTHjDt9xep9VQmGtOB4Jmh4Nyc4zz\ndnIJhmNcvTFJa08y8OOadf+riqw01BSwqSaf2nJ7RjzWxJ0Fw7E5XYNmB4UCoViyw09NAZXFVlV1\n98lkUt/EtEGnn2NNg5xuHSEYjqHRQGNdIQe3lrOxOl+ekyom4Z95SIHMPHLgEkKoldQ3IYRaSX0T\nQqiZ1DghhFpJfRNCTOsa8vC9V64y5g5SVZzDv/roBkoLLEu2P4FQjL97o51zV0cxG3V8/ol17NpQ\nfNfbS327N+FonLHZnYImAoxMBhidCOILRm+5vSFLm+4WVJxnpiQ/m/wcI93DXlq7J+gc9KS7DFlM\nejZW59NQXUBDTT65VuNif3tCqIrUN3GzcCTOuWujHG0apHck+dhw5Jo42FjOvs2l2LJlPJzaSPhn\nHlIgM48cuIQQaiX1TQihVlLfhBBqJjVOCKFWUt+EELMFwzH+8e0O3rk8jCFLy2ceqefhLf8/e/ce\nXXd9n4n63ZIsS7YlY2zJ4JuwDQ4QLgYS07RJihloLvRk0pCBhNQ5nJA0bSeZhnalJWuATEgmtFkz\ntKsrM2l6DukpNFlAmxxacprTDJArSSk3mzjBXHyR71g21s2yLUt7nz9sqaHB8ratbXlvP89arCX9\nbnrlxF/J0ru/nzkpnOCdA9Zu6cmX/+Gn2dmzL4vntOa33vX6tJ12dOOgrG/jp3/vgbwQbemsAAAg\nAElEQVS8+1Ah6JVDuwUdKgcNHij+wvWFJGed2ZoLFx0cAbXozNbU1dl9AsaL9Y2xrN/Wm+88syX/\n8rOXMzhUTEN9IW94XXuuuGRuzpk3/YR/TacylH/GYIE8+fjCBdQq6xtQq6xvQC2zxgG1yvoGvJYn\n1uzIX39rTQb2D+WSc2blxnecm5YTsGtAsVjKP/5zZx48NILsml/uyLt+ZeExjYWyvlVeqVRKd//g\naBFoV8++zJ01NecvPN0uE1BB1jfKsWffgfxo9fZ895kt2bZrIEkyt21qrlg6N798wRlpnnzkEZqc\nvJR/xmCBPPn4wgXUKusbUKusb0Ats8YBtcr6BhzOK7378n9982dZs7E706c15sPXnJ/XLzy9Yh9v\nd9/+/J8P/TRrNnZnRsvkfPjXz895HTOO+XnWN6BWWd84GqVSKc9v7M53V27JU893ZbhYyuRJ9bn8\n/NlZfsncdJzx2iUSTm7KP2OwQJ58fOECapX1DahV1jegllnjgFplfQPGUiyW8k//sjHf+P66DBdL\n+bU3zs+1v7o4kxqOfieesTzzYlf+6h/XpH/vgVxyzqz8H+88L9OaJx3XM61vQK2yvnGsevYM5ofP\nbs13n9maXb37kiSL5rTmiqVzs+y89jROqp/ghJRL+WcMFsiTjy9cQK2yvgG1yvoG1DJrHFCrrG9A\nOTZs782X/+FnefmVgcxrm5aPvuv8zG2bdtzPHTwwnAe+81IefXpLJjXU5forz87yS+amUCgc97Ot\nb0Ctsr5xvIrFUn6yble++8yWPLt2V0pJpjY15FcuPDO/unROzpw5daIjcgTKP2OwQJ58fOECapX1\nDahV1jegllnjgFplfQPKtX9wOPc/+mK+u3JrJjXU5brlZ+fKS4+9qLOlqz9/8Q8/zZauPZk7a2o+\n+u9fn3njUCgaYX0DapX1jfG0s2dvvrdya36wamt6Bw4kSc7rmJHll8zN0nNmpaF+fHf7Y3wcrvzT\ncIJzAAAAAAAAUEUmN9bng28/Nxcumpm/+taafPV/vZCfrNuVD73zvLRObSz7OaVSKd9duTX3PfJi\nDgwVs/zSubl++dlGjQDABJg1vTnX/uri/Ps3L8zTL3Tlu89syXOdu/Nc5+5Mn9qYX3vj/Lz98gXj\nsisflaf8AwAAAAAAwBFdsqQtZ53Zmq/8vz/Ls2t35fa7H8+Hrjk/Fy2eecR7+/ceyF/943N55sWd\nmdrUkI++6/W5dEnbCUgNAIylob4uy86bnWXnzc7WnXvy3ZVb8thPtufvf7g+V142L5OVdKuCsV8x\n9utkZMs6oFZZ34BaZX0Dapk1DqhV1jfgWBVLpTz8xKb83ffWZmi4lH932bz8hysWH3YHn+c37s5f\nPvSz7O7bn3MXnJYP//r5Ob21qWL5rG9ArbK+caLsPzCcffuHMn3a5ImOwr9h7BcAAAAAAADHra5Q\nyK8tW5BzO2bkLx/6WR55anPWdO7Ob73r9ZnfPm30uuFiMf/www355o82pFAo5DfeuijX/FJH6uqM\nDwGAk9nkSfV2/KkydRMdAAAAAAAAgOqzYHZLbv/f35B/d+m8bNm5J5/96yfy7Sc2pVgqZWf33vzJ\nV5/JQz/akJnTm3LLb16a/+2Xz1L8AQCoADv/AAAAAAAAcEwaJ9XnA7+2JBcsOj1/9Y/P5b5HXsxT\nz+/I5q492bt/KMvOa88H33ZupjT5lRQAQKXY+QcAAAAAAIDjcvHZs/KZmy7PhYtm5sXNPSkWS/nQ\nO8/LR9/1esUfAIAK890WAAAAAAAAx2361MZ84j9clJUv7czctmlpP615oiMBAJwSlH8AAAAAAAAY\nF4VCIZec0zbRMQAATinGfgEAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK+QcAAAAA\nAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAAAKBKKf8A\nAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAAAAAAAABU\nKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+AQAAAAAA\nAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAAqFLKPwAA\nAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK\n+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAA\nAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAA\nAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+\nAQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAA\nqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAA\nAAAAAFVK+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8A\nAAAAAAAAAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACq\nlPIPAAAAAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAA\nAABAlVL+AQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAA\nAAAAAAAAqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJUqq/zzyiuvVDoHAAAA\nAAAAAABwlMoq/3zgAx+odA4AAAAAAAAAAOAoNZRz0bnnnpsHH3wwF110UZqamkaPz5kzp2LBAAAA\nAAAAAACAsZVV/lm1alVWrVr1qmOFQiGPPPJIRUIBAAAAAAAAAABHVlb559FHH610DgAAAAAAAAAA\n4CjVlXPRK6+8kk984hO5/PLL84Y3vCEf+9jHsnPnzkpnAwAAAAAAAAAAxlBW+ef222/PhRdemEce\neSSPPvpoLr744vzn//yfK50NAAAAAAAAAAAYQ1nln02bNuWmm27KtGnT0tramo985CPZunVrpbMB\nAAAAAAAAAABjKKv8UygUsm3bttH3t27dmoaGhoqFAgAAAAAAAAAAjqysBs/v/d7v5frrr8/FF1+c\nUqmUVatW5bOf/WylswEAAAAAAAAAAGMoq/xz5pln5sEHH8yzzz6bYrGYz3zmM5k5c2alswEAAAAA\nAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlqaho9/sY3\nvrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjKKv+8853v\nzPvf//5KZwEAAAAAAAAAAI5CXTkXffWrXz3qBxeLxdx+++25/vrrs2LFinR2dr7q/KOPPpprr702\n119/fR544IEx7+ns7Mz73//+3HDDDfn0pz+dYrGYJHnggQfynve8J9ddd12+853vJEn6+vry4Q9/\nODfccENuvPHGdHV1HXV2AAAAAAAAAACoBmXt/HPGGWfkgx/8YC6++OJMnjx59PjHPvaxw97z8MMP\nZ3BwMPfff39WrlyZP/7jP86XvvSlJMmBAwdy55135u/+7u/S3Nyc97///bnyyivz9NNPv+Y9d955\nZz7xiU/k8ssvz+23355HHnkkS5cuzb333puvf/3r2b9/f2644Yb8yq/8Sr7xjW9kyZIl+cM//MM8\n8MADufvuu3PLLbcc5x8TAAAAAAAAAACcfMoq/yxduvSoH/zUU0/lLW95y+j9q1evHj23du3aLFiw\nINOnT0+SXHbZZXniiSeycuXK17znpz/9aZYtW5Ykeetb35rHHnssdXV1ueSSS9LY2JjGxsYsWLAg\na9asyZIlS7Ju3bokSX9/fxoayvoUAQAAAAAAAACg6pTVjPnYxz6WgYGBbNy4MUuWLMm+ffsyZcqU\nMe/p7+/PtGnTRt+vr6/P0NBQGhoa0t/fn5aWltFzU6dOTX9//2HvKZVKKRQKo9f29fUd9hmnn356\nHnvssbzzne9MT09PWSPLZsyYkoaG+nL+KDiB2tpajnwRQBWyvgG1yvoG1DJrHFCrrG9ArbK+AbXK\n+ga8lrLKPz/+8Y9z++23Z3h4OPfdd1/e9a535b/9t/+WN7/5zYe9Z9q0admzZ8/o+8VicXQXnn97\nbs+ePWlpaTnsPXV1da+6trW19bDP+OIXv5gPf/jDed/73pc1a9bk4x//eB566KExP7/duwfK+WPg\nBGpra0lXV99ExwAYd9Y3oFZZ34BaZo0DapX1DahV1jegVlnfgMMVAOte8+i/cdddd+VrX/taWltb\n097enr/5m7/JF77whTHvufTSS/P9738/SbJy5cosWbJk9NzixYvT2dmZ7u7uDA4O5sknn8wll1xy\n2HvOP//8PP7440mS73//+3nDG96Qiy66KE899VT279+fvr6+rF27NkuWLElra+vojkAzZ858VUEI\nAAAAAAAAAABqSVk7/xSLxbS1tY2+f/bZZx/xnquvvjqPPfZY3ve+96VUKuXzn/98HnrooQwMDOT6\n66/PLbfckptuuimlUinXXnttZs+e/Zr3JMkf/dEf5bbbbstdd92VRYsW5W1ve1vq6+uzYsWK3HDD\nDSmVSrn55pszefLk/N7v/V5uvfXWfO1rX8vQ0FA++9nPHuMfDQAAAAAAAAAAnNwKpVKpdKSL/uN/\n/I9573vfmz//8z/PX//1X+erX/1qVq1alb/4i784ERkrztZoJx9b1gG1yvoG1CrrG1DLrHFArbK+\nAbXK+gbUKusbcFxjv+6444489NBD2bZtW66++uo899xzueOOO8Y1IAAAAAAAAAAAcHTKGvs1c+bM\n3HXXXa957rbbbjNaCwAAAAAAAAAAJkBZO/+MZfXq1eORAwAAAAAAAAAAOErHXf4BAAAAAAAAAAAm\nhvIPAAAAAAAAAABUKeUfAAAAAAAAAACoUsdd/imVSuORAwAAAAAAAAAAOErHXf755V/+5fHIAQAA\nAAAAAAAAHKWGsU6uWLEihULhsOfvueee/OEf/uG4hwIAAAAAAAAAAI5szPLPxz/+8STJAw88kKam\nprz73e9OQ0NDvvnNb2b//v0nJCAAAAAAAAAAAPDaxiz/LFu2LEnyJ3/yJ/n6178+enzp0qV5z3ve\nU9lkAAAAAAAAAADAmOrKuWj//v1Zv3796PvPP/98hoaGKhYKAAAAAAAAAAA4sjF3/hlxyy23ZMWK\nFZk9e3aKxWJeeeWV/Pf//t8rnQ0AAAAAAAAAABhDWeWfN7/5zXn00UfzwgsvpFAo5HWve10aGsq6\nFQAAAAAAAAAAqJCyxn719PTkjjvuyBe+8IXMmTMnt912W3p6eiqdDQAAAAAAAAAAGENZ5Z/bbrst\nF154Ybq7uzN16tS0t7fnk5/8ZKWzAQAAAAAAAAAAYyir/LN58+Zcf/31qaurS2NjY26++eZs3769\n0tkAAAAAAAAAAIAxlFX+qa+vT19fXwqFQpJkw4YNqasr61YAAAAAAAAAAKBCGsq56D/9p/+UFStW\nZNu2bfnd3/3drFy5Mp///OcrnQ0AAAAAAAAAABhDWeWftra2fOUrX8mzzz6b4eHh3HHHHZk1a1al\nswEAAAAAAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlq\naho9/sY3vrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjK\nKv/ce++9lc4BAAAAAAAAAAAcpbLKP08++WTuvvvuDAwMpFQqpVgsZuvWrXn00UcrnQ8AAAAAAAAA\nADiMunIuuvXWW3PVVVdleHg4H/jAB9LR0ZGrrrqq0tkAAAAAAAAAAIAxlFX+aWpqyrXXXptly5al\ntbU1n/vc5/LEE09UOhsAAAAAAAAAADCGsso/kydPTnd3dxYuXJhVq1alUChkYGCg0tkAAAAAAAAA\nAIAxlFX+ufHGG3PzzTdn+fLlefDBB3PNNdfkggsuqHQ2AAAAAAAAAABgDA3lXPSOd7wjb3/721Mo\nFPKNb3wjGzZsyHnnnVfpbAAAAAAAAAAAwBjKKv986lOfes3jd95557iGAQAAAAAAAAAAyldW+WfZ\nsmWjbw8NDeWRRx7JokWLKhYKAAAAAAAAAAA4srLKP7/xG7/xqvff+9735v3vf39FAgEAAAAAAAAA\nAOWpO5ab1q5dmx07dox3FgAAAAAAAAAA4CiUtfPPueeem0KhkFKplCQ5/fTT8/u///sVDQYAAAAA\nAAAAAIytrPLPmjVrKp0DAAAAAAAAAAA4SmWVf774xS+Oef5jH/vYuIQBAAAAAAAAAADKV1fORdu2\nbcs//dM/ZdKkSWlubs4PfvCDPPPMM5XOBgAAAAAAAAAAjKGsnX/Wrl2b+++/P1OmTEmSrFixIitW\nrLDjDwAAAAAAAAAATKCydv7ZvXt3CoXC6PuDg4MZGBioWCgAAAAAAAAAAODIytr5573vfW/e8573\n5IorrkixWMz3vve9/PZv/3alswEAAAAAAAAAAGMoq/zzkY98JJdffnmeeOKJNDU15X/+z/+ZRYsW\nVTobAAAAAAAAAAAwhrLGfnV3d6e/vz833XRT+vr68md/9md56aWXKp0NAAAAAAAAAAAYQ1nlnz/4\ngz/IunXr8uMf/zjf/va3c+WVV+bTn/50pbMBAAAAAAAAAABjKKv809PTk9/8zd/Mww8/nHe/+915\n97vfnb1791Y6GwAAAAAAAAAAMIayyj/FYjGrV6/Oww8/nOXLl+e5557L8PBwpbMBAAAAAAAAAABj\naCjnok9+8pP5whe+kA996EOZP39+rrvuunzqU5+qdDYAYJyUSqVs7Nuc+S1zU1coq/sLAAAAAAAA\nVIGyyj9vetOb8qY3vWn0/QceeGD07Y9+9KP58pe/PP7JAIBxs3rXc/mLZ//vfPC863P5mZdNdBwA\nAAAAAABgnBz3S/9ffvnl8cgBAFTQC7vXJkk29W+Z4CQAAAAAAADAeDru8k+hUBiPHABABXX2bk6S\n7BjYOcFJAAAAAAAAgPF03OUfAODkViwVR3f86VL+AQAAAAAAgJqi/AMANW77nh0ZHB5Mkuzc90qG\ni8MTnAgAAAAAAAAYL8dd/imVSuORAwCokM6+gyO/6gv1KZaK2bVv9wQnAgAAAAAAAMbLcZd/3v3u\nd49HDgCgQjb2bkqSvH7muUmSHQNdExkHAAAAAAAAGEcN5Vz0gx/8IH/6p3+a3t7elEqllEqlFAqF\nPPLII7nxxhsrHBEAOB6dvZtTX6jP0rYL8uzOn6Zr766JjgQAAAAAAACMk7LKP5/73Odyyy235Jxz\nzkmhUKh0JgBgnAwVh7Klf2vmTjszc6adkSTZMbBzglMBAAAAAAAA46Ws8s+MGTOyfPnySmcBAMbZ\nlv5tGSoNp6N1ftqaZyZJuvYq/wAAAAAAAECtKKv8c9lll+XOO+/MW97ylkyePHn0+Bvf+MaKBQMA\njl9n7+YkyYKWeWlqaEprY0t2DHRNcCoAAAAAAABgvJRV/nn22WeTJD/72c9GjxUKhdxzzz2VSQUA\njIvOvk1Jko7WeUmStuZZWdezIQeKQ5lUV9a3AQAAAAAAAMBJrKzf+t17772VzgEAVMDG3s1prJuU\nM6a0J0lmT5mVtT3rs2vvrpwxdfYEpwMAAAAAAACOV1nlnyeffDJ33313BgYGUiqVUiwWs3Xr1jz6\n6KOVzgcAHKP9w4PZtuflLJrekfq6+iRJ25RZSZIdAzuVfwAAAAAAAKAG1JVz0a233pqrrroqw8PD\n+cAHPpCOjo5cddVVlc4GAByHTX1bUkopHa3zR4+1Nx8q/+zdOVGxAAAAAAAAgHFUVvmnqakp1157\nbZYtW5bW1tZ87nOfyxNPPFHpbADAcdjYuylJ0tEyb/TYz+/8AwAAAAAAAFS/sso/kydPTnd3dxYu\nXJhVq1alUChkYGCg0tkAgOPQ2bc5SbLg53b+aWuemSTpUv4BAAAAAACAmlBW+efGG2/MzTffnOXL\nl+fBBx/MNddckwsuuKDS2QCA49DZuynNDc2jhZ8kaaxvzIzJpxn7BQAAAAAAADWioZyL3vGOd+Tt\nb397CoVCvvGNb2TDhg0599xzK50NADhGAwcG0rV3V86dcU4KhcKrzrVNmZUXdr+UweHBNNY3TlBC\nAAAAAAAAYDyUtfNPT09Pbrvttnzwgx/M/v37c++996avr6/S2QCAY7Sxb0uSZEHrvF841z4y+mvv\nrhOaCQAAAAAAABh/ZZV/brvttlx44YXp7u7O1KlT097enk9+8pOVzgYAHKPO3k1Jko7W+b9wrm3K\nrCTJjgGjvwAAAAAAAKDalVX+2bx5c66//vrU1dWlsbExN998c7Zv317pbADAMers25wk6Wj5xZ1/\nZk9pS5J0Kf8AAAAAAABA1Sur/FNfX5++vr4UCoUkyYYNG1JXV9atAMAE6OzdlNbGlpw2efovnGtr\nPrTzz17lHwAAAAAAAKh2DeVc9PGPfzwrVqzItm3b8ru/+7tZuXJlPv/5z1c6GwBwDHr296V7f08u\nnHXeaHH3581qPj2FFLJjoGsC0gEAAAAAAADjqaztey644IJcddVVmTdvXrZt25arr746q1evrnQ2\nAOAYbOzblCRZ8Bojv5Kkoa4hpzfNsPMPAAAAAAAA1ICydv75yEc+kte97nVZvnx5pfMAAMeps/dg\n+aejdf5hr2mfMivPvfJC9g7tS3ND04mKBgAAAAAAAIyzsso/SYz5AoAq0dm3OUnS0XLk8k/X3p2H\n3SEIAAAAAAAAOPmVNfbrqquuyt/+7d9m06ZN2bp16+h/AMDJpVQqZWPv5sxsmpFpjVMPe11b86wk\nSdeA0V8AAAAAAABQzcra+aevry9/+Zd/mRkzZoweKxQKeeSRRyoWDAA4eq/s253+A3tyzozFY17X\nPuVg+WeH8g8AAAAAAABUtbLKP9/+9rfz4x//OE1NTZXOAwAch38d+TX2KK+RnX927FX+AQAAAAAA\ngGpW1tiv+fPnp6enp9JZAIDj1Nm7KUnS0Tp2+Wdm04zUFeqM/QIAAAAAAIAqV9bOP4VCIddcc03O\nOeecTJo0afT4PffcU7FgAMDR6+zdlEIKmX+EnX/q6+ozq/l0O/8AAAAAAABAlSur/PPbv/3blc4B\nABynYqmYTX1b0j6lLc0NRx7V2d48K6sH1mTPgYFMnTTlBCQEAAAAAAAAxltZ5Z9ly5ZVOgcAcJx2\nDOzMvuH9uegII79GtE2Zlew6eN/C6QsqnA4AAAAAAACohLqJDgAAjI/O3k1Jko6W+WVd397cliTp\nMvoLAAAAAAAAqpbyDwDUiM6+zUmSjjJ3/mmfMivJwZ1/AAAAAAAAgOqk/AMANWJj76bUFeoyd9qc\nsq5vax4p/3RVMhYAAAAAAABQQco/AFADhovD2dy/NXOmnpHG+kll3TOjaXoa6hqM/QIAAAAAAIAq\npvwDADVg657tOVAcKnvkV5LUFerS1jwzOwZ2pVQqVTAdAAAAAAAAUCnKPwBQAzp7NyVJOlrmH9V9\n7c2zsm94X/oP7KlELAAAAAAAAKDClH8AoAZs7NucJFnQenTln7Yps5IkOwaM/gIAAAAAAIBqpPwD\nADWgs3dzJtU1ZM7U2Ud1X3vzSPmnqxKxAAAAAAAAgApT/gGAKjc4fCBb92zPvGlzU19Xf1T3ju78\ns9fOPwAAAAAAAFCNlH+AFEvF3P/8g1nVtXqiowDHYHP/1hRLxXS0zjvqe9sPlX+6jP0CAAAAAACA\nqqT8A+Sl7vX5/pYf5Z82fGeiowDHoLN3U5JkQcvRl3+mN7amsb7Rzj8AAAAAAABQpZR/gDyz49kk\nyab+LRkcHpzgNMDR6uzdnCTpaJ1/1PcWCoW0Nc9M18DOlEql8Y4GAAAAAAAAVJjyD5ziiqVinun6\nyejbIyUCoHps7NuUpvqm0RFeR6u9eVYGiwfSM9g7zskAAAAAAACASlP+gVPcS93r0zfYn9MmT0+S\nrO/pnOBEwNHYO7QvLw90ZUHL3NQVju3LevuUtiTJjgGjvwAAAAAAAKDaKP/AKW5k5Ne7Fr09SbKu\nd8MEpgGO1qa+Yx/5NaLt0I5BXco/AAAAAAAAUHWUf+AUNjLya9qkqXnD7KWZ2TQj63o6UyqVJjoa\nUKaRUX0LWucd8zPamw+Wf17e2zUumQAAAAAAAIATR/kHTmEjI78ubrsg9XX1WTi9I3sODGTHXrt/\nQLXo7N2UJOloOfadf9pHd/7ZNS6ZAAAAAAAAgBNH+QdOYU8fGvl1aftFSZJF089Kkqzr6ZyoSMBR\n6uzbnGmTpub0ptOO+RnTJk1Nc0OT4h8AAAAAAABUIeUfOEUVS8WsPDTy65zTFiVJFk5fkCRZ37Nh\nApMB5eob7M8r+3ZnQeu8FAqFY35OoVBIW/Os7Ny7K8VScRwTAgAAAAAAAJWm/AOnqJGRX0sPjfxK\nkrlTz0xj3SQ7/0CVGI+RXyPap8zKUHEou/f1HPezAAAAAAAAgBNH+QdOUSMjvy45NPIrSerr6nNW\n64Js2/NyBg7snahoQJk29m1OknS0zjvuZ7U1z0qS7NjbddzPAgAAAAAAAE4c5fE1akMAACAASURB\nVB84BRVLxazc8eqRXyMWTe9Ikqzv3TgR0YCj0Nk7Uv4Zn51/kqRrYOdxPwsAAAAAAAA4cZR/4BT0\nUve69B149civEQtHyj89GyYgGVCuUqmUzr5NmTH5tLQ2thz380bKPzv2Kv8AAAAAAABANVH+gVPQ\n0zt+kuTVI79GjJR/1vV0ntBME+XlPTvy421PplQqTXQUOCrd+3vSN9g/LiO/kqS92c4/AAAAAAAA\nUI0aKvXgYrGY//Jf/kuef/75NDY25nOf+1w6OjpGzz/66KP5H//jf6ShoSHXXnttrrvuusPe09nZ\nmVtuuSWFQiHnnHNOPv3pT6euri4PPPBA7rvvvjQ0NOR3fud3snz58gwPD+fOO+/M6tWrMzg4mI9/\n/ONZvnx5pT5NqDpjjfxKkqmTpuSMKe3Z0Lsxw8XhX9gZqNZ8/aVv5qe71uSMKe1ZOH3BRMeBsnX2\nbkqSLGgZn/LPlElTMnXSlOxQ/gEAAAAAAICqUrGdfx5++OEMDg7m/vvvzx/8wR/kj//4j0fPHThw\nIHfeeWe+8pWv5N57783999+fnTt3HvaeO++8M5/4xCfyta99LaVSKY888ki6urpy77335r777svd\nd9+du+66K4ODg/n7v//7DA0N5b777suXvvSldHaeGruXQLnGGvk1YtH0juwfHszWPS+f4HQn1nBx\nOC91r0uSPL1j1QSngaPT2bc5SdLROn/cntnePCs7972S4eLwuD0TAAAAAAAAqKyKlX+eeuqpvOUt\nb0mSLF26NKtXrx49t3bt2ixYsCDTp09PY2NjLrvssjzxxBOHveenP/1pli1bliR561vfmh/96Ed5\n9tlnc8kll6SxsTEtLS1ZsGBB1qxZkx/+8IeZPXt2fuu3fiu33nprrrzyykp9ilCVxhr5NWLh9LOS\nJOt7NpyARBNnY9+W7B8eTJI8s+MnRn9RVcZ7558kaZ/SlmKpmF37do/bMwEAAADgRLrv+f8nX3n6\n/omOAQBwQlWs/NPf359p06aNvl9fX5+hoaHRcy0tLaPnpk6dmv7+/sPeUyqVUigURq/t6+s77DN2\n796djRs35stf/nI+8pGP5FOf+lSlPkWoOkca+TVi0fSDI/rW9dT2zlkv7l6bJGmZNC2793dnQ+/G\nCU4E5SmVStnYtzntzbMyZVLzuD23rXlWkqRrr9FfAAAAAFSfvUN788Mt/5z/tfYHOTB8YKLjAACc\nMA2VevC0adOyZ8+e0feLxWIaGhpe89yePXvS0tJy2Hvq6upedW1ra+thn3HaaafliiuuSKFQyLJl\ny7Jhw4YjZp0xY0oaGl57/BETp62t5cgXcVRWv/x8+g7056rFb8kZs0877HUzZ03NtGemprN/Y03/\n77DhZwfLTb+59DfypSfuzXN9a7Ls7AsmOBWnguP9e7Wtb0f2Du3LZXMuHNe/o2fvnZesTwbq+mr6\n7z5QOdYOoJZZ44BaZX0DasnTWzeklFKGi8Ppb+jOklmHfxEsQLXy/RvwWipW/rn00kvzne98J+98\n5zuzcuXKLFmyZPTc4sWL09nZme7u7kyZMiVPPvlkbrrpphQKhde85/zzz8/jjz+eyy+/PN///vfz\nS7/0S7nooovyZ3/2Z9m/f38GBwezdu3aLFmyJJdddlm+973v5W1ve1vWrFmTM88884hZd+8eqNQf\nA8eora0lXV19Ex2j5nznxceTJOe3nHfEP9+zWuZn9a41eWnzlkyf3Hoi4p1Qw8XhPNf1Us6Y0p5z\np56X5obmPNb5ZN4+9+rUFSq2KRqMy/r2zPY1SZLZk88Y17Vy8tDUJMm6HVvSNcMaDBwd378Btcwa\nB9Qq6xtQa57oXD369jMb12RGqW0C0wCMP9+/AYcrAFas/HP11Vfnsccey/ve976USqV8/vOfz0MP\nPZSBgYFcf/31ueWWW3LTTTelVCrl2muvzezZs1/zniT5oz/6o9x222256667smjRorztbW9LfX19\nVqxYkRtuuCGlUik333xzJk+enOuuuy6f/vSnc91116VUKuUzn/lMpT5FqCo/P/Lr7NMWHvH6hdPP\nyupda7K+pzNL2y88AQlPrM6+zRkcHsySGYvTUNeQi2e9Pv+8/cls6N2YRdPPmuh4MKbOvk1Jko6W\n+eP63HZjvwAAAACoYi/tXj/69oaejcn4/vgMAOCkVbHyT11dXe64445XHVu8ePHo21deeWWuvPLK\nI96TJAsXLszf/M3f/MLx6667Ltddd92rjjU2NubOO+88nuhQk17qXpe+A/1585zLU1935DF3i6Z3\nJEnW1Wj554Xda5Mk58w4uC5dOvui/PP2J/P0y88q/9S4v33h79PZuzm/f9nvVO0uT529m1NIIfNa\n5ozrc5samtLa2JIdA8o/AAAAAFSXvUP7srFvcxZN70jXvl3Z0LtxoiMBAJww1flbT+CoPbXj2STJ\npe0Xl3V9R+v81BXqsq6ns5KxJsyLI+Wf0w7OfH7djLMzpaE5z3T9JMVScSKjUUGlUilPbH8m63s7\n8/zulyY6zjEZLg5nU9+WnDl1dibXN47789uaZ+WVfbtzoDg07s8GAKpXsVTM4PCBiY4BAACHta5n\nQ0op5ZzTFuec08/Krn270zfYP9GxAABOCOUfOAUUS8Ws2rG67JFfSTK5vjHzpp2ZTX2ba64EMFQc\nytqeDZkz9Yy0NE5LkoOjv9ouSPf+nqzv8YqQWtW1d1f2DA0kSf5l+9MTnObYbB/YkQPFA+lorcye\nxe1TZqWUUnbt3VWR5wMA1ekf1v5/ufVH/zV7DgxMdBQAAHhNL+5el+TgCz7Pnnnw5+B2/wEAThXK\nP3AKGBn5tbT9wrJGfo1YOP2sDJUO7jJSSzb0bsqB4oHRkV8jLm2/KEny9I5VExGLE6Czd9Po2yu7\nVmf/8OAEpjk2nb2bkyQdrfMq8vz2KbOSxOgvAOBVfvbK89lzYGB0B00AADjZvNi9LnWFuiyc3pEl\nh8o/XugJAJwqlH/gFDA68qvtoqO6b9H0jiQHt0utJSO/sFhyaOTXiNfNODtTG6bkmR3PGv1Vo0Ze\n6fO6GWdncHgwq7pWT3Cio9fZd7DA1NFSoZ1/mg+Vf/Yq/wAABw0OH8i2PS8nSV7oVv4BAODks29o\nXzb2bU5Hy7w0NUzO4tMP/mzbzj8AwKlC+Qdq3HBx+KhHfo0YKf+s7+msRLQJ80L3uhRSyNkzXl3+\nqa+rz8Vtr0/PYF/W1djnzEGdvZtSV6jLe87+9STVOfprY++mNBTqM2faGRV5ftuhnX+67PwDAByy\ndc+20XL8C3b+AQDgJLSupzPFUnF0t/epjVNyxpT2dPZu8kJPAOCUoPwDNe6l7vXHNPIrSWZMPi2n\nTZ6edT2dKZVKFUp4Yh0oDmV9z4bMmXZGpk2a+gvnL22/OInRX7VoqDiUTf1bM2/amZnXMicdrfOz\n5pUX07O/d6Kjle1AcShb+rdnbsucNNQ1VORjtDXPTGLsFwDwr0bGANcV6rJtz8vpG+yf4EQAAPBq\nL3avS5Kc/XO7vZ/VuiD7hvdn+54dExULAOCEUf6BGvd017GN/EqSQqGQhdM70jvYl137do93tAmx\noaczB4pDWXLa4tc8v2TG4kydNCUrd/zEK0JqzJb+bRkqDqWjdUGSZNkZl6aUUp54+ZkJTla+Lf1b\nM1waTkfLvIp9jMb6xpw2ebqxXwDAqJHyzyVtFyb511+sAADAyeLF3etSV6jL4kO72SfJWdPnJ0k2\n9G6aqFgAACeM8g/UsOHicFbu+ElaJk076pFfI0ZGf63r2TCOySbOC4d+UTGy/eu/VV9Xn6VtF6Rn\nsC9ruzecwGRU2sg/8jtaD/6j/w3tS1NXqKuq0V+dvZuTJAsOfQ6V0j6lLd37ezI4PFjRjwMAVIdN\nfVvSUNeQt8x9UxKjvwAAOLnsHx5MZ9+mzG+Zm6aGptHjZ7Ue/Nn2ht7OiYoGAHDCKP9ADXupe336\nD+zJxe0XHPXIrxEj5Z/1PbXxD6QXd69NIYWcM0YZ6l9Hfz17omJxAnQeKv8sPFScmdY4Na+feW62\n9G/Llv5tExmtbCOfQyV3/kmS9kOjv7r27qroxwEATn5DxaFs7d+euVPPzKLpHWmsb8yLyj8AAJxE\n1vVsSLFU/IXd3udMnZ3Gukl2/gEATgnKP1DDRkZ+XdZ+9CO/RsybNieT6hqyrgbKP4PDB7K+pzPz\npp2ZKZOmHPa6c05blGmTpuaZrmeN/qohG3o3pqm+Ke1T2kaPLTvj0iSpmt1/NvZtTmN9Y86Y2l7R\nj9M2ZVaSZMeA0V8AcKrbtmdHhkrDmd8yJ/V19Vk8/axsH9iRnv19Ex0NAACSHBz5leQXdr+vr6vP\ngtZ52dq/PfuG9k9ENACAE0b5B2rUq0d+LTrm5zTUNWRBy/xs6d+WfUP7xjHhibehtzNDpeHDjvwa\nUV9Xn4vbLkjfYH9e6l5/gtJRSQMH9ublga50tM5LXeFfv/RdOPO8NDc05Yntz5z0Ra99Q/uzfc+O\nLGiZ+6rPoRLamw+Wf7qUfwDglLep7+DY0fktc5Nk9NXUL3bb/QcAgJPDi93rUkghi19jt/ezWhek\nlFI2Hvq+FgCgVin/QI36+ZFfx1sUWDS9I6WUqn571BcOjSdYcoTyT5Jcemi3JKO/akNn36FxWYdG\nfo2YVD8pl7ZflJ7B3tH/f5ysNvVtSSmldLTMP/LFx2lkd6Qde5V/AOBUt6lvS5JkwaGxoyNFeqO/\nAAA4GQwOD6azd1Pmt8xNc0PTL5w/q3VBkoO7ggMA1DLlH6hRT+9YleT4Rn6NWDS9I0myvspHf72w\n++ArQP7t9q+vZWT018odPznpd4ThyDoPFddG/rH/85adcVmSk3/0178WmOZV/GPNaj49hRSM/QIA\nsqlvS+oKdTlz2hlJkgUtczO5vjEv2PkHAICTwLqezgyXhnPOjNfe/X7h9EPlnx7lHwCgtin/QA0a\nLg5nZdfq4x75NWLhofLPuiou/wwOD2ZD78ZDrwBpPuL19XX1Wdp+YfoO9Oel7nUnICGVtGG0/POL\nu+Ysmt6RmU0z8kzXT7J/ePBERyvbxt6DWxMvOAE7/zTUNeT0phnZsber4h8LADh5DReHs7l/W+ZM\nPSOT6hqSHPw+efFpC7NjYGe69/dMcEIAAE51Lx762e05h/k5+GmTp+e0ydOzvndjSqXSiYwGAHBC\n/f/s3XeUW+d5Lvpnow3qAJiC6Zg+JCW2GRZRsqxm9WrZsZ0TLzsnjksclzTHybrHJ2vd5OTkxrGT\nE8t24shO4sRx4mNLtrqo3iX2YRPJwRRgML2hd2Dv+wewRyNpSE4BsIGZ57eWFpdmgO97SZEi9t7v\n9z5s/iHagOTIr92OHeuO/AIAi84Mh6EGI0FP2U7BudwJkOXIU5OOMfqrrEmSBHdwFPYKG6wVle/7\nvkpQYV99H5KZJE7OnlGgwpXxBL0waYyoMVQVZT+HsQahZBixdLwo+xEREVHpmY7OIiWm0GJpetfX\ne2xy9Beb5ImIiIhIWa7ctPdO68WnvbdVOhFMhuBL+ItYGREREVFxsfmHaAOSI7/6HDvytma7tRWx\ndBxTkZm8rVlMLl82lkB+ULESXbYOWLRm9M+cRkbMFKo0KjBfwo9QMozWZab+yPbX9wEo3eivcCqC\nufgCnJXNEAShKHs6jDUAgNkYo7+IiIg2K29oHADe3/xjz36mHvAx+ouIiIiIlJPMpOAJjqLZ0gij\n9uLT3uVp4PJ0cCIiIqKNiM0/RBtMviO/ZB256K+RMo3+GvAPQSWo0Gm7+AmQ91IJKux27EA4FVkc\nH0vl51KRX7I6Yy1aK1twfsGFQCJYrNJWzBvMPnhrtTQXbc9aQ675J8rmHyIios3qYs0/zeZG6NV6\nDPjZ/ENEREREynEHPUhLmYtGfsnaKp3Z1wdGi1EWERERkSLY/EO0wbj8w3mN/JJ1WNsAZOOzyk08\nnYA76EWLpQkGjX5V7+3LRX+dYPRX2XIHsxf1l2r+AbLTfyRIODrdX4yyVsUTyjYwOS/zc8gnefLP\nTHS+aHsSERFRaRkNjUOAgGZzw7u+rlap0WVrx1xsHr44oxOIiIiISBkDuRjayzX/OCuboRJUGAmy\n+YeIiIg2Ljb/EG0wcpNKPiO/AKDe5IBercdw0J3XdYthJOCBKImrivySddnaYdGZ0T97htFfZcod\n8EKAgJbLTM3Z69gNlaDCoaljRaps5TzBMQBAa2XxJ//MxGaLticRERGVDlESMRYeR73JAZ1a977v\nM/qLiIiIiJQ26B+GAAFdl5n2XqHWodFUD29ojPd4iYiIaMNi8w/RBlKoyC8gG4HVbnViJjqHcDKS\n17ULTY4j6LavvvlHJajQW7uT0V9lKiNm4A2NocFUB72m4pKvNetMuLJ6C8bDkxgPTxapwpXxBL2w\n6iphq7AWbc9qvR0qQcXYLyIiok1qNjaPRCb5vsgvWbc9e73B6C8iIiIiUkIqk8JIcBRN5gYYtcbL\nvr7N6kRKTJfcfT8iIiKifGHzD9EGUqjIL1m7tRUAMBIsr+ivAd8QVIIKnbnostWSpygdnzmZx6qo\nGCYj00iKqcVc78vZX78HAHB46nghy1oVfyKAQDIIZxGn/gDZOI8aQxVmYmz+ISIi2oy8oXEAuGjz\nT7O5EQaNAS4fG+SJiIiIqPjcwVGkxfRiU/rlyPcH3Yz+IiIiog2KzT9EG0ihIr9kHbnmn+FA+TT/\nxNNxjIbG0Gppuezkl4vptLWjUmdh9FcZ8gS9AIC2ypYVvX5H9TYYNHocmToBURILWdqKLUZ+WVb2\nc8gnh6EGkVQUkVS06HsTERGRshabf8zLN/+oBBW6bR2Yjy9gPuYrZmlERERERBjITWnvtq1s2nt7\n7v6gO3e/kIiIiGijYfMP0QZRyMgvWVulEwIEDAfcBVm/EIYCboiSuOITIMtRCSr0OnYgkopiwMdY\ng3Iin+Rps65s8o9WrUVv7U4EksGS+W89mrsh0VrkyT8AUGusAQDMMPqLiIho05Gbf5otjRd9DaO/\niIiIiEgpg75hCBDQZWtf0esdxloYNPqym2pPREREtFJs/iHaIAod+QUABo0ejeZ6eILespmAIzdw\n9NhXdgLkYvocuwAAx3PTlag8uINe6FRa1BsdK37P/vo+AKUT/eUJZSf/FDv2C8hO/gGAWUZ/ERER\nbSqSJMEbGofDUAODRn/R1/XkTlm7SqRpmoiIiIg2h5SYxkjQg0ZzPUxa44reoxJUaLW0YCY6xynX\nREREtCGx+Ydog3gn8mtnQfdpt7YiJaYxFp4o6D754vINQy2o0WFtW9c6HdZWWHUWnGT0V9mIpxOY\njEzDWdkMtUq94vd12tpQpbfjxOxpJDLJAlZ4eZIkYTQ4hhp9FcxaU9H3dxhrAXDyDxER0WYzH/ch\nmo6hxbJ85Jes0VwPk8aIAd8QJEkqUnVEREREtNl5gl6kxDS6VzkBvz03HZzRX0RERLQRsfmHaANY\njPzSmVc85nStOipbAQDDgdIfjxpLxzAaGkNrZQsq1Lp1rZWN/tqJSDqKC77BPFVIheQNjUGChNZc\nnvdKqQQV9tf1IplJ4uTsmQJVtzLz8QVE0tFV/xzypZaTf4iIiDYlOfLrcs0/KkGFLnsHfAk/5uML\nxSiNiIiIiGhx8mT3Kqe9t1XKzT+jea+JiIiISGls/iHaABYjv2oLF/klkyfoDAfcBd0nHwb9I5Ag\nrTvyS9abm6rE6K/yIJ/gkS/qV6NUor88uZ+DEpFfAGDXW6FRaTATnVVkfyIiIlLGSpt/gHeivwZ8\nwwWtiYiIiIhI5vJnP3t2WVd3EFY+YMfmHyIiItqI2PxDtAEcL1LkFwDUGKpg0ZrLYvKPK/cAQn4g\nsV7Z6K9KnJw9g7SYzsuaVDjvNP+sfmpOncmBVksLzi+4EEgE813ainmCYwCAVosyzT8qQYUaQzVm\novOM8iAiItpEVtX8Y5ebf4YKWhMREREREQCkxTSGAx40muph1plW9V6LzowaQzU8AS/vdREREdGG\nw+YfojKXETM4WaTILwAQBAEd1lb4EwH44v6C77ceA/4haAQ12q2teVlPJajQ59iJaDq2IaK/NvoF\nrjs4ikqdBfYK25rev7+hDxIkHJ3uz3NlK+cJeSFAWNGDt0KpM9QgnokjnIooVgMREREVjyRJGA2N\noVpvh0lrvOzrG0x1MGtNcPmHNvznSyIiIiJSnic4hpSYQre9Y03vb6tsQSQdZcw9ERERbThs/iEq\nc3LkV28RIr9kcjNNKUd/RVMxjIUm0GZ1QqfW5m3dvrqNEf01FZnGn7z6/+L18UNKl1IQ/kQA/kQA\nrZUtEARhTWvsdeyGSlApFv0lSiJGQ+OoMzmg1+gVqQEAao01AICZKG+IEBERbQaBZBDhVGTFzceC\nIKDb1gF/IoDZ2HyBqyMiIiKizc7lz06c7F7jtPf2yuy97ZEAo7+IiIhoY2HzD1GZk5tQeosQ+SXr\nsLYBKO0LpEH/MCRIa74IvJi2SidsFVacnD1b1tFfDw0+jkg6ikMKNbYUmmcdkV8ys86EK6u3YCw8\ngYnwVL5KW7Hp6CySmaRikV8yhyHX/MPTUERERJvCaC52dDWTB+XoLxejv4iIiIiowFy+YQBY8xT8\nNmv2fqE7d/+QiIiIaKNg8w9RGSt25JfMaWmCWlBjOOAp2p6rNZA7ASI/iMgXOforlo7h/IIrr2sX\ny7n5Abw9fwEAMBL0IJ5OKFxR/rkXm3+c61pnf/0eAFBk+o/cwNS6jgamfHhn8s+sonUQERFRcXhD\n4wDW1vwjfwYnIiIiIiqEtJjGcMCNBlMdLDrzmtZoMjdCI6jhDpbuwVYiIiKitWDzD1EZUyLyCwC0\nai2cliZ4w+NIZpJF23c1XL5haFQatK+z+WM58pSlcoz+EiURDw8+DgECtldvgyiJGPQPK11W3snN\nP851Ts3ZUb0NBo0eR6ZPQJTEfJS2Yp7cqfvWSoUn/+Saf2YZ+0VERLQpeMOrb/6pMzpg0Znh8g1B\nkqRClUZEREREm9xoaAxJMYVuW8ea19CqNGixNGEsPIFkJpXH6oiIiIiUxeYfojKmROSXrN3aClES\nFxsUSkkkFcV4eBLtlU5o1dq8r99W2QJ7hQ2n5s4iVWbRX29OHMFEZAoHGvbiQ84PAgDO+8pzgtHF\niJKI0aAXdUYHjFrDutbSqrXord0JfyKAgSLHWHhCXqgFNZrMjUXd972sukroVFrGfhEREW0S3tAE\nbBVWVOosK36PIAjosXUikAxxWiARERERFYwc+dW9zmnvbZVOiJKIsVzjOxEREdFGwOYfojKlVOSX\nrMPaBgAYKcHoL5d/GBKkvEd+yVSCCr2OHYil4zi/MFCQPQohno7jseGD0Kl1uLvjVrRb26BVaXFh\nYVDp0vJqOjqLeCaBtjzFZe2v7wNQ3OivtJjGeGgCjeZ6aFWaou27HEEQUGuswWx0jif5iYiINrhg\nMgR/IoAWy+qbj7sXo7823lRJIiIiIioNrtxnzfXeD2+zZqfFjwQY/UVEREQbB5t/iMqUUpFfsvbc\nBdJw0F30vS/HlZvQ0mPvKtgefY5dAIATM6cLtke+Pet5CaFUGLc6b4CtwgqtSoMuWzsmIlMIJIJK\nl5c3cuRXvpp/Om1tqNLb0T97umgxdxPhKaSlDFrXGVuWLw5DDZJiCoHkxvl9QkRERO/nDU0AAFrM\nK4/8kvXkohdcRZ6WSERERESbQ0bMYCjgRr3Rsaoplctpq8ze23YH2fxDREREGwebf4jKlJKRXwBg\nq7CiWm/HcMBTctNABnxD0Ko0aM1T88dy5Oivk7PlEf21EPfhee8rsFVY8SHndYtf31rVDQC44Ns4\n03/ki/Z8/fdXCSrsr+tFIpPEydmzeVnzcjyhbANTIX8Pr0atsQYAMBNl9BcREdFG5g1lI31bLKtv\n/nEYa2HVWTDgHyq56wMiIiIiKn+joTEkM0l02TvWvVa13g6z1rR4iJCIiIhoI2DzD9F7iJKodAmX\npXTkl6zd2opIKoqZWOk0BISSYUxEptBhbStoXJIgCOir24l4pjyivx4dehopMY17O26HTq1b/PpW\ne7b55/yCS6nS8s4T9EKj0qDJ3JC3NYsd/TUazD54K5XmH4exFgAwy+YfIiKiDc0bGgewtuYfQRDQ\nbe9EKBnGdHQm36URFY0kSXAHR8vi3gAREdFmIkd+yRMn10MQBLRbnViI+xBIhNa9HhEREVEpYPMP\n0RJvTBzBn7725zgzd07pUi5J6cgvWYe1DQAwHPAoVsN7DfpHAAA99s6C79WXm7p0bPpUwfdaD3dw\nFEemT6DF0oR99b3v+l6juR5mrQnnF1wb4oR2MpPCeHgSLeZGaPLY/FVncqDV0oJzCwNFuSHgCY1B\nq9Ki3ugo+F4r4TDkJv+UUKMfERER5Z83NA6L1gxbhXVN7++xZT+DDzD6i8rY0el+/M3R7+I5z8tK\nl0JERERLuHzZ5p8uW37u+zL6i4iIiDYaNv8Q5cTScfxq6AlEUlE8eObfcWGhdGOQ5MivPoUiv2Qd\n1lYAwEjArWgdS8kPGrrzdBF4Ka2WFlTp7Tg9dxapTKrg+62FJEl42PU4AOCjXXe/r1lMJaiwtaob\ngWQQUxvghPZYeByiJC5evOfT/vo+SJBwbPpE3tdeKplJYjIyjRZLE9QqdUH3WikHY7+IVuzodD8O\nul9ARswoXQoR0apEUlHMx31osTRBEIQ1rdFtZ/MPlb8juc/7z4y+iEgqqnA1REREBGQn4Q8FRlBn\nrIW1wpKXNdn8Q0RERBsNm3+Icl70vopIKopdtdsBScI/nv7XkppoI1sa+dWpYOQXADSa6qFT60rq\n12nAPwSdSovWyuaC7yUIAvocOxHPJHCuRKO/+mfPYCjgxq6aKxcfxrzXlg0U/SXndBciLmtP3S6o\nBFXBo7+8oQmIkliU38MrZdaaoFfrOfmH6DKSmSR+ev4XeHT4aTzQ/yBCjwtROwAAIABJREFUybDS\nJRERrdh6Ir9ktYZq2CqscPmHN8RUSdp8oqkozi+4oBJUiKXjeNbzktIlEREREQBveByJTBJdeYj8\nkrVWtkCAAHeAzT9ERES0MbD5hwhAOBXB86OvwKw14dPbPoHPbP8k0mIa3z/5I3hDE0qX9y6lEvkF\nAGqVGm2VTkxGphFNxRStBQBCyTCmItPosLblNfLpUuTpS/I0plKSEtP41eATUAkqfLjrzou+bmtV\nF4AN0vyTu1gvxOQfi86MK6q2wBuewER4Ku/ryzyhbAOT01I6zT+CIMBhrMFcbB6iJCpdDlHJOjX3\nNhKZJCp1Frj8w/jm0QdK7nMEEdHF5KP5RxAEdNs6EU5FMBmZzldpREVzcu5tZKQMbmu9EbYKK14a\nex2BRFDpsoiIiDY9OfKrJ4/NPwaNHnUmBzwhL+93ERER0YbA5h8iAM96XkI8k8DtbR+CXlOBXbXb\n8altH0c8ncB3+x/EVKR04pCOz5wEoHzkl2wx+qsExqPK8QI9F5lwUwhOSzOq9VU4NXcWyRKL/npl\n7A3MxRdwfdM1cBhrL/q6Kr0dDmMNXP6hso+p8QS9MGmNqDFUFWT9/fV9AFDQ6T+eAk4vWg+HsQZp\nMQ1fPKB0KUQl68hUNibkq72fx93tt2Ih7sPfHvteSTaIEhG9Vz6af4B3Posz+ovK0Ync39n76/fg\njrYPISWm8JT7eYWrIiIiIpc/2/zTZc9f8w8AtFc6kcgk2bhOREREGwKbf2jT8ycCeHnsddgrbLi2\n8arFr++v78Ovb7kf4VQED/Q/iLnYgoJVZmUjv86WROSXbLH5J+BWthC8cxFYzOYfOforkUni3MKF\nou17OeFkBE+5n4NRY8Ad7Tdf9vVb7T1IZJIl0cS1VqFkGHPxhezIXkEoyB47aq6AXq3HkekTBTsR\nNBocg0GjR62huiDrr1WtoQYAMMvoL6JlhZMRvL1wAS3mRjSY6nBH+834/I7fhCAI+NGZn+Cx4YM8\nSUhEJc0bGodBY0C13r6udeTP4i4/m3+ovMiRXy3mRjiMNbi6YR9qDdV4feIQ5mLzSpdHRES0aWXE\nDIb8bjgMNbBVWPO6dlvu8J27jO+JEhEREcnY/EOb3tPuF5AS07iz/WZo1dp3fe/apgO4v+su+BMB\nfOfEP8GfUHbixTuRXzsVj/yStefilYYDHoUryZ4u1ql1RY9LKsXoryfdzyGWjuOO9pth0hov+3o5\n+utCGUd/yRNz2iyFm5ijU2vR59gBfyKwOG44n6KpGGZic3Bamkvmz7jMYcw2/8xEZxWuhKg0HZ85\nBVESsbe+d/Fru2qvxNf2fBk1hmo87X4e/3T6x4il4wpWSUS0vFg6jpnYHFosTetuoq7W22GvsMHl\nG2bTI5UVOfKrN3d9p1apcXf7rRAlEY8PP6twdURERJvXWHgC8UwcXXmM/JK15w62ugNs/iEiIqLy\nV1pPFomKbC42j9cnDsFhqMFV9XuWfc3NzutxZ9vNmI8v4DsnHkQoGS5yle94J/Jrh2I1vJdRa0S9\nqQ7u4KiikVGBRBDT0Rl0WduhVqmLuneLpQk1+iqcmnu7JKK/piMzeHX8TdQaqnFd09Urek+PvRMC\nBJz3lW/zj1tu/rE6C7qPHP11aOpY3tceDY0BKL3IL2BJ8w8n/xAt68j0CQgQsLdu97u+3miux9f3\nfgVb7d04PXcO3zr2PcxE+eeIiErLWGgCAOBcZ+QXkJ2M2WPvRCQdxUR4at3rERWLHPnVuyRiu69u\nF5rMDTg6fQLj4UmlSiMiItrU5Gnv3XmO/AKABlMddGrd4n1FIiIionLG5h/a1J4ceQ6iJOKujlsv\n2TByZ/st+FDLdZiOzuC7/T9ENBUrYpVZGTGD/tkzJRX5JeuobEUik8SEgtnISkR+yQRBQF/dLiQz\nSbxdAtFfvxx6EqIk4sNdd0Gj0qzoPQaNAW2VLXAHvWU7lUKe/NNawMk/ANBpa4e9wob+2dNIZpJ5\nXXs0mGv+KfL0qpVwyLFfbFogep/52AKGA2502zqWHUFu0hrxu7s+g5taPoipyDS+efQBnJsfUKBS\nIqLlecPjALJN7fnwTvRX/iclEhXCeyO/ZCpBhXs7bocECY8NH1SwQiIios1Lnr7dXYDJPypBhVZL\nMyYj04iX6T1RIiIiIhmbf2jTmghP4fDUcTSZGxZjmy5GEATc33UXrm28CmPhCXz/5I8QTyeKVGnW\ngH8IkVS0pCK/ZB258agjAbdiNQz4hgAU5gTISixGf02fVGR/2YBvEKfn3kaXrR27aq5c1Xu3VnVD\nlES4cr+W5USSJHiCXtQYqmHWmQq6l0pQYX99HxKZJE7Ons3r2p5QroGpBCf/GLVGmLRGTv4hWsaR\n6X4AwL4lkV/vpVap8dHue/CpbR9HKpPE907+CM+PvgJJkopVJhHRRXlD+W3+6bZlm38GyvBzJW1O\n7438WurK6q3osLbh9NzbJRF3TUREtJmIkoihwAhqDNWw620F2aOt0gkJEjy5Q3lERERE5aq0OgiI\niuiJkWcgQcI9HbetqJlGEAR8Ysv92FfXi5HgKH5w+sdIFTHiSR5BXkqRXzK5+UfJG6Eu3xD06gq0\nmPPzwGK1ms2NqDVU4/T8ubxPg1kpURLxkOtxAMBHuu6GIAirev8WezcA4LxvMO+1FdpsbB6RdBRt\nRWqakaO/Dk8dz+u6nuAYLFrzspNDSoHDUIO52IKiEX9EpUaSJByZPgGNoMbu2sv/HX2gYS9+v++L\nqNSZ8fDg4/j3c/+3qJ8niIiW4w2No0KtQ62hOi/rVRvsqNZXweUfhiiJeVmTqJCWi/ySCYKA+zrv\nAAA8OvQUG3eJiIiKaCw8gVg6XpCpP7I2qxMA4A6OFmwPIiIiomJg8w9tSp6gF/2zZ9Be2Yrt1dtW\n/D6VoMKntn0cu2quxIBvED8885OiPASXI78qdZaSi/wCAIexFiaNUbHmH38igJnYHLps7ZeMbysk\nQRDQ69iJZCaJs/PKRH8dmjqOsfAE9tf3rWlyTLvVCZ1ahwsLrgJUV1jyxXlbpbMo+9WbHGi1tODc\nwgACiVBe1gwmQ/Al/GitbF5141ax1BprIEoi5uM+pUshKhlj4UlMRaaxvWYbjFrDit7TbnXi6/u+\nirZKJw5NHcPfHf9H+BOBAldKRLS8ZCaJqcgMms1NeZ0w2mPvRCwdw3h4Mm9rEhXCxSK/luqyteOK\n6i1w+Ydx3ld+10tERETlarCAkV8y+TDhCJt/iIiIqMyx+Yc2pceGDwIA7u28fdUP2dUqNX5r+yex\nraoHZ+bP4cdv/1fBT7PKkV+7a3eUXOQXkG18abe2Yj6+gEAiWPT934n86iz63kv1OXYBAI7PFD/6\nK5FJ4rGhp6BVaXFvx+1rWkOj0qDb1oGp6Ax8cX+eKywsT7D4cVn76/sgQcKx6RN5WU/+OThLMPJL\n5jDUAgBmGf1FtOjIdHYC2L66i0d+LcdWYcXv934BV9XvgSfkxV8f+Q5GGCVCRAoYC09CggRnniK/\nZPIDGkZ/Uam7VOTXUvJ11qNDT3P6D5U9SZJwaPIY/sfrf4mfnHxY6XKIiC5qwJ9r/rEXrvnHVmGF\nvcIGd3CUf8cTERFRWSu9LgKiAnP5hnBuYQBb7d3oWWOziFalwed3fBqd1jYcmzmJn55/qKANQKUc\n+SWTo7+UeHDpyj1Q6LEp2/zTbG6Aw1CDM3PFj/56zvMSAskQPuS8bl3511urstFfF8os+ssd9EIl\nqNBibizannvqdkElqPIW/TWayxVvtTTnZb1CcBizUSAzUTb/EAHZuMVj0ydh0OhxZfXWVb9fq9bi\nU9s+jo9234NQMoz/c/wf8ebEkQJUSkR0cd7QOACgJc/NP/K1Fpt/qNRdKvJrqRZLE/ocOzEaGkP/\n7JlilEZUELPReXy3/4f4t3M/gz8RwEHXy4in40qXRUT0PqIkYsg/gmp9Far09oLu1VbZglAyjIUy\nOxBJREREtBSbf2hTkSQJj+am/tzTedu61tKpdfjirt+C09KENyeP4CHXYwU5GVDqkV8yuflHieiv\nAf8wDBo9mi3Fa/xYjiAI6HPsRFJM4cz8+aLt608E8Nzoy6jUWXCL84Z1rbXVnm3+OV9G0V9pMY2x\n0DiazQ3QqrVF29eiM+OKqi3whicwEZ5a93qeUK75p4Qn/9TmYhDY/EOUNegfgT8RQG/tjjX//0cQ\nBNzU8kF8efdnoVPr8JPzP8cvBh4tSqwoERFQuOYfu96GWkM1Bv0jBZ+USrRWK4n8WurujtugElR4\nbPgg/66mspMRMzjofgF/efjbOO9z4YrqLfhg09VIZJI4PnNa6fKIiN5nPDyFaDpW0MgvWZvVCQBw\nBzmRl4iIiMoXm39oUzk7fx7DATd21VyJtkrnutczaAz40u7PotFUj5fGXsfjucaifCr1yC9Za2UL\nVIKq6M0/vrgfc7F5dNnaS+LXp69Ojv46VbQ9Hxs6iKSYwj0dt0GvqVjXWg2mOlTqLDjvc5XNmNvx\n8CTSUgatefgzvVr76/sAYN3TfyRJgifoRZXeDovOnI/SCsJhyD4QYewXUdaRqWzs37761UV+LWdr\nVTe+vveraDDV4cWx1/Ddkz9COBVZ97pERJfjDY1Dq9Kizlib97W7bZ2IZ+KLDUZEpWalkV+yOmMt\nDtTvxXR0Jm8TQImKYSTgwf935O/x6PDT0Gv0+MyVv4Hf3fkZ3Np6AwQIeGvyqNIlEhG9z2ARIr9k\n8rMCd9Bb8L2IiIiICkX5J+VERSJKIh4bPggBAu7uWN/Un6XMWhO+vPtzqDVU42nPC3jG/WLe1gaW\nRn6t7GakUnRqHZrNDfCGxpDKpIq270CJRH7JGk31qDPW4szcOSSKEP3lDY3j0NQxNJkbcKBh77rX\nEwQBW+zdCCXDmIisf5pNMcgX5W0KTMzZUXMF9Go9jkyfWNeJ9oW4H+FUpKQjvwBAr9GjUmfh5B8i\nACkxjROzp2GrsKIrT6cQa43V+NqeL2FnzZUY8A3ib448kJfJYkREF5MS05iITKHZ3AC1Sp339Rn9\nRaVupZFfS93ZfjM0Kg2eGHkWKTFdqNKI8iKWjuFnF36Jbx/7PiYiU/hA43782VVfw5663RAEAVV6\nO7bXbcFQYITXeURUcly5z5DFmPzjtDRBJagwEhgt+F5EREREhcLmH9o0Tsycxlh4AnvretFors/r\n2tYKC76y+/OwV9jwyPBTeGns9bys++7Ir7a8rFlI7dY2pKUMvOHinewd8OcuAu2l0fwjCAJ6HTuR\nElM4M3euoHtJkoSHXY9DgoSPdN2dt8lHW6u6AAAXyiT6yx3MXpQr0fyjU2vR59gBfyIAl294zet4\nQtkGJmdlaTf/AECtoQYLcR/SfNBBm9zZ+fOIpWPYU7crr5Pn9Bo9PrfjU7ij7WbMxRfwN8e+i/7Z\nM3lbn4hoqcnwFERJzHvkl0w+pe3yr/1zElGhrDbyS2bX23Bd09XwJfx4bfytAlZItHaSJKF/5jT+\n4q1v45XxN1FnrMUf9H0Rv7H112DUGt/12hvargYAHJo6pkSpRETLEiURg/4RVOntqDZUFXw/nVqH\nJnMDvOFx3vMiIiKissXmH9oUMmIGT4w8A5Wgwl3ttxRkj2qDHV/t/RwsOjN+PvAI3szDyORyifyS\ndVhbAaCo0V8u3xCMGgOazA1F2/Ny5ClNhY7+Oj33Ngb8Q9hevRVbq7rztq681jlfeTT/eIJe6NV6\nOAoQVbES+Yj+Gg2OAQBaLcVvYFoth7EGEiTMxRaULoVIUYuRX3V9eV9bJahwd8et+Oz2TwGShAdP\n/xueHHl2XRPGiIiWMxrKfgYpVPOPrcIKh7EGQ/4RZMRMQfYgWqvVRn4tdWvrjahQ6/C0+3nE04kC\nVEe0dr64Hz84/WM8eObfEUlFcHf7rfjT/b+PLlv7sq/f37wberUehyaP8fMmEZWMycg0IuloUab+\nyNoqnUiLaYyHJ4u2JxEREVE+lX43AVEeHJ46junoLK5p2IdaY3XB9nEYa/GV3Z+DSWPEf5z7+bqb\nP45Pl0fkl6zYzT/zsQXMx33otnWUVHNUNvrLgbPz5wp2IzgjZvDLoSegElS4v+uuvK5tq7Ci3ujA\noG+45E+6RFNRTEdn0VrZrNjvgU5bO+wVNpyYPYXkGqPePEF58k9hHrzlk8OQPRU9E51VuBIi5cTS\nMZyZP4d6Ux2aC9h82uvYga/t/TKq9XY8MfIsfnTmJ3zASER55Q1lJ3YWqvkHyMbzxjMJjIaKNx2U\naCXWEvkls+jM+FDLdQinInjR+1q+SyNaE1ES8aL3NfzFoW/h9Nzb6LZ14P/Z/we4o/1maFWai76v\nQqPDnrqd8CX8jGkkopIhT9guZvNPe6UTADASZPQXERERlafSeVpOVCApMY0nRp6FRqXBHe03F3y/\nJnMDvrT7t1Gh1uFfzv50zdFPGTGDk3PlE/kFAPYKG2wVVgwH3JAkqeD7DeTiA0ol8ksmCAL6HDuR\nEtM4O1+Y6K9Xx9/CTHQO1zZehXpTXd7X31rVjaSYwkgRpzithSd3Wr0td3GuBJWgwv76PiQySZya\nPbvq94uSiNHQOOqMtTBoDAWoML/kSISZ2JzClRAp58TMGaTFNPbV9UIQhILu1WRuwNf3fhU9tk70\nz57Bt499D3Ox+YLuSUSbhzc0AY2gRkMBPk/KenKf1V1+PlCm0rHWyK+lbnJeB5PWiOdGX0Y4Fclz\nhUSr4w1N4FtHv4dfuB6FWlDjk1s/ht/r/QLqTI4Vvf9Aw14AwFt5mGJNRJQP8mfHYt73bavMTuR2\nB7xF25OIiIgon9j8Qxve6+OH4Ev4cX3TNbBVWIuyZ2tlC35n529BLajxwzP/vqaTU3LkV6+jPCK/\ngGzTS7u1FaFkGPPxwkcCuXK/rj0l1vwDFDb6K5qK4smRZ6FX63FngWLs5Oiv877BgqyfL/LFeGul\nsnFZcvTXoenVR3/NRucQz8ThLIPILwCozT0cmY2y+Yc2ryPT2civvXW7i7KfWWfCl3d/Ftc3X4OJ\nyBS+eeQBXFgo7f8/E1Hpy4gZjEcm0Wiuh+YSEyHWq8uW/azOaRJUStYT+SUzaPS4rfUmxDNxPOt5\nKX/FEa1CIpPELwefwDePfgeekBf76nrxZwf+GNc07ltVk3p7ZSscxhr0z55GLB0rYMVERJcnSiIG\n/SOwV9hQrbcXbd9aYw0MGgPcwdI+DElERER0MeXRUUC0RolMEk+7n0eFWodbW28s6t7d9g58fsen\nIUoS/uHUv6x6gooc+dVbWx6RX7JiRX9JkoQB3xBMWmNBTyqvVaO5HvWmOpydP494Op7XtZ9yP49I\nOorb226CRWfO69oyOUrt/IKrIOvniyeUHcPbpnDzT73JAaelGecXXAgmQ6t6rzy9qLWyuRCl5V2t\nIRudOMPJI7RJ+RMBuHxD6LC2osZQVbR91So1Pt7zYfzG1o8inknguyd/iJe8rxdl0h4RbUxT0Rmk\nxXRBI78AwFphQb3RgaGAGxkxU9C9iFZqPZFfS13XdDVsFVa8PPY6/IlAPkojWrGz8xfwl4e+jedG\nX4a9woYv7/os/vuV/21N9wkEQcCB+r1IienF+1FEREqZiswgnIqg295R8Gm7S6kEFdoqWzAbm+dU\nPyIiIipLbP6hDe0l72sIpcL4UMt1MOtMRd//iuot+Mz2TyItpvG9k/8Mb2hiRe8rx8gvmdz8U+i4\nqPn4AnwJ/2KTSinqq92BlJhec/Tbcmaic3h57A1U6+24ofkDeVv3vfQaPdoqnfAEvYimSvPUnyRJ\ncAe8sFfYYK2oVLoc7K/vgyiJODrdv6r3eYKlMb1opXRqHWwVVsxEZ5UuhUgRR6f7IUHCvrpeRfb/\nQONV+P2+L8CkNeLnrkfwH+d/gZSYVqQWIipvo6FxACh48w+QndSZzCQXm56JlJSPyC+ZVq3Fne03\nIyWm8ZT7+TxVSHRpwWQI/3L2p/j+yR/BlwjgFucN+MZVf4ht1T3rWnd/fR8ECHhritFfRKQsl38Y\nQPZwYrG1VToBvHO/joiIiKiclOYTc6I8iKZieHb0ZZg0RtzkvE6xOnbXbsentn0c8XQc3+1/EFOR\nmcu+Z8BXfpFfsmZzI7QqTcEn/8ixAcXMfV6t3gJEfz0y9BQyUgb3dd4JrVqbt3WXs7WqGxIkDPhL\nM6JhIe5HKBVWfOqPbG/dbqgEFQ5PrS76yxMcg0pQodncUKDK8s9hqIE/EUAyk1S6FKKiOzp1AipB\nhT7HLsVq6LC24U/2fhVOSxPenDyCvz/+AwQSQcXqIaLy5C1i84/8mZ3RX1QK8hH5tdSB+r1wGGrw\nxsRhzEY5HZMKR5REvD5xCH/+1rdwdLofrZUt+JO9X8WHu+6ETq1b9/p2vQ1bq7oxHPBgegX3roiI\nCsUl3/e1Ff++b7s12/wzEhgt+t5ERERE61VeXQVEq/D86MuIpWO4pfUGGDR6RWvZX9+HT2y5H+FU\nBA/0P4i52MIlXy83i5Rb5BcAaFQaOC0tGA9P5j3uaqkBX/YESI8CF4Er1WiuR4OpDmcXLuTl12LQ\nP4L+2dNor2xFX55uVF/KVns3AOBCiUZ/uYPZi/BSmZhj0ZlxRVUPvKFxTEamV/SejJjBWHgcDaa6\nvNysLRb5hPQso79ok5mKTMMbnsAVVT2KTBRcyq634Q/6fhf76noxEvTgm0cf4MlEIloVbyjbgNxo\nKnwDsnxq28XmHyoB+Yr8kqlVatzdcStEScTjIwfzsibRe01FZvD3J36An55/CJIk4mM99+Fre76E\nZktjXvc50LAXAPDW1LG8rktEtFKSJMHlH4atwlrUqG2ZfJ9Rvu9IREREVE7Y/EMbUjAZwgtjr8Gq\ns+D65muULgcA8MGmA7i/6y74EwE8cOKf4E8Eln2dHPllLcPIL1mHtRUSJLgL9BAyexE4BLPWhAZT\nXUH2yJc+x06kxTROrzP6S5REPOR6DADw0e67i5J33VbZAr26AudLtPlHfsgtj+MtBfvr+wBgxdN/\nJiLTSIlptFpKo4FppWrl5p/onMKVEBXXkVysn1KRX++lU2vxm1f8Ou7vuguBRBB/e/wfcGiSD2qI\n6PJEScRYaAL1Rgd0BZ4mCWSbpBtN9RgKuJFmVCEpKJ+RX0v1Onai2dyIY9MnMR6ezNu6RCkxjSeG\nn8FfHf47DPpHsKt2O75x1R/hhuYPFGRS9M6aK2HQ6HF46jhEScz7+kRElzMVnUE4FUG3raMo9z/f\ny6w1odZQDXfQy/8PEhERUdlh8w9tSM+4X0Qyk8TtbTeX1DSNm53X4462mzEXX8ADJx5EKBl+32vk\nyK/dZRj5JeuwtgIARgoU/TUbm4M/EUC3vVORi8DV6MtT9NfR6X6Mhsawx7EL7blf30JTq9Totndg\nJjaH+ZivKHuuhjs4CgFCUaIqVmpHzZXQq/U4MnViRTcIRkPZBqbWyuZCl5ZXDkP2QckMm39oE5Ek\nCUenTkCn1mFH7ZVKl7NIEATc7LweX9z1GWhVGvzbuZ/hB6d+jIV46f1/m4hKx0x0FkkxVdTPUd32\nDqTEVMEOCBCtRL4jv2QqQYV7O2+HBAmPDj2d17Vp83L5hvBXh/8OT7qfg1lnxud3fBqf3/Fp2PW2\ngu2pU2uxx7EL/kSgZA8CEdHG5spNe5cnRyqhrbIVsXSMh96IiIio7JRnZwHRJSzEfXh1/E1U66tw\nTeM+pct5n7vab8FNLR/EVHQG3+v/IaKp2Lu+X86RXzK5OWW4QM0/rsXIL+UuAleq3lSHRlM93p4/\nj9gao7+SmSQeGXoKGpUG93XekecKL22rvQcAcMFXWjf9MmIGo6FxNJrroddUKF3OIp1ai17HDvgS\nfgz6hy/7ek9wDEDpRJetlHxKeibGmyC0eYwERzEXX8Cumu2oKKHGYtmV1Vvw9b1fQZetHafmzuIv\nDn0bz42+jIyYUbo0IipBo6FxAIDTUrwGZDmul9FfpKR8R34tdUXVFnRa23Fm/hyGA+68r0+bRyQV\nxX+c+zn+z4kfYCY6h+ubr8E3rvoj7KrdXpT9DzRk76W9NXm0KPsRES3l8mc/K3bbFWz+scrRX2xa\nJyIiovLC5h/acJ4aeQ5pKYO72m+BRqVRupz3EQQBH+m6Gx9ovAre8AT+4dQ/I55OAMhFfs2Wd+QX\nkB3r7zDUYCToKch41IHcRWCPvTPvaxdCn2Mn0lIGp+feXtP7X/C+Cn8igBubr0V1kbOut1Z1AUDJ\nnfibjEwjJaZKMi7rqlz016EVRH+NBr3QqjRoNNUXuqy8qjZUQ4DAyT90UdFUDD8593OMhSaULiVv\njkydAADsqy+NyK/lOIy1+P3e38Gntn0cWpUGvxx8An999DsFm8RHROXLm2v+Kebkn67cA5yBFTRI\nExVCoSK/ZIIgLB7WeHToaUiSlPc9aGOTJAlHpk7gL976Ft6YPIImcwP+aM+X8PGeD8Og0RetjrbK\nFtQZHTg5dxbRVLRo+xIRSZIEl38YVp0FtYb8/129Uu2VTgDZQ0BERERE5YTNP7ShTEdn8dbUMdSb\n6kr64ZwgCPj1Lfdjb91uDAc8+MHpHyOVSWUjv9LlHfkla7e2IpaOYyoyk9d1JUnCgG8IFp0ZdUZH\nXtculN7F6K+Tq35vIBHCM54XYdaacFvbjfku7bLqjA5YdZW44BssqZxrd+7iWz6JU0o6be2wV9jQ\nP3MayUzyoq9LZVIYj0yh2dwItUpdxArXT6vSoEpvxywn/9BFvOh9FW9OHsFPLzy0IR58ZcQMjs+c\nhEVrxlZ7l9LlXJIgCDjQsBd/duCPcU3DPoyHJ/HtY9/Hf55/iA9viGiRNzQOAQKazA1F29OsNaHJ\n3ICRgBspMV20fYlkhYr8WqrT1obt1Vvh8g/j3MJAwfahjWcutoDvnfwR/vXt/0Q8k8CHO+/En+z9\nKtqtzqLXIggCrm7Yi7SYxrE13McgIlqr6egsQskwuu2dEARBsTpAz4fgAAAgAElEQVSazA3QqDSL\n9x+JiIiIykV5dxcQvccTw89AlETc035ryTfPqAQVPr3tE9hZcyUGfIP40dmf4Mh0dqpAn2OXwtWt\nX0cu+ivf0wZmorMIJkPosSl7Ebga9SYHmswNODc/gFg6dvk3LPHEyEEkMknc3XErDBpDgSq8OEEQ\nsLWqG+FUBOPhqaLvfzGe3Njdtsri3wi9HJWgwv76PsQzCZy6xLSnsfAEREmEs7J4cRv55DDWIJgM\nrTnOjjauZCaJl8ffAJD9s3qpPwfl4tzCAMKpCPrqdpVNs55Za8Int30Mf9D3RdSbHHht4hD+/K1v\n4fDU8Q3RkEVEaydKIryhCTiMtUWPT+2xdSIlpuHmRDJSQCEjv5a6u+N2AMCjw0+X1AEKKk2iJOJZ\nz0v4X4e+jXMLA9hW1YNvXPWHuKX1BkU/d+6r74UAAW9NHlOsBiLafFy5CZFdNuUivwBAo9KgxdyE\n8fDkJQ/2EREREZWa0u6OIFqFsdAEjs2chNPSVLQc9PVSq9T4zPZPYqu9G6fnzuHQ1DFYdZbFxply\n1mFtAwAM5/nG/sBi7nN5RH7J5OivU7Mrfwg+Hp7EGxNHUG+qwzUN+wtY3aVtreoGAFzwlU70lzvo\nhU6tQ4OpTulSlrU/F/11+BLRX57gGACUZHTZSsjjlzn9h97rzcmjiKSi2OPYBQECHh8+WPYPvuTm\n3H11pTtV8GK6bO34032/h/s670A8k8CP3/4vPND/IKajs0qXRkQKmYstIJ6Jo8XSWPS95c/wjP6i\nYit05NdSLZZG7HHsgjc0jv7ZMwXdi8qbJEn4+cAj+NXQk6hQ6/CbV/w6vrTrt1FjqFa6NNgqrNhW\n3QN3cBRTkWmlyyGiTcLly9737VG4+QcA2q1OiJKI0VxcLhEREVE5YPMPbRiPDR8EANzbcUfZTIQB\nsvE5n9/5m+jMNctshMgvIDvtRq/WYzjozuu6A/JFYJk1/7wT/XVqRa+XJAkPux6HBAkf6bpL0RN/\nW+zZ5p/zC6XR/BNPxzEZmYbT0lSyf1bqTQ44Lc04tzCAYDK07Gs8oez0otYynvwDALNRNv/QOzJi\nBs+PvgKtSoOP9dyH/fV9mIhM4fh0+cYFxNMJnJo9ixpDNdoqy7NZT6PS4NbWG/GNq/4IV1ZvxQXf\nIP73ob/FEyPPIpVJKV0eERWZN/cAo8XSVPS9u23tECAsPtghKpZiRH4tdXdHdhrx48MHkREzRdmT\nys/jI8/glfE30WRuwP+86mvYX99XUvezrm7YBwCc/kNERSFJEgb9w7DozHAYa5UuZ/H6n9FfRERE\nVE5K86kp0SoNB9w4M38O3baOxSkl5aRCrcMXd/0W7u24Hbe13qR0OXmhElRotzoxE51DOBnJy5qS\nJMHlG4ZVZ4HDUNjTmvlWZ6xFs7kR5xYGEE1dPvrr7YULOO9zYVtVD66o2lKECi/OWmFBo6keg/6R\nknhIPBoahwSpJCO/ltpf3wdREnF0un/Z748Gx6BXV5TEDY21kJt/ZqLzCldCpaR/9jTm4ws40LAP\nFp0Zd7bfArWgxuMjz5Ttg69Tc2eRFFPYV7e7pB7GrEWNoQpf3Plb+Oz2T8GkNeHJkWfxvw//Xck0\ndxJRccjNP05L8RuQjVojms0NGAl4kCyBz5W0eRQr8kvmMNbi6oZ9mI7O4tAlpoHS5vX86Ct42v08\nagzV+NKuz8KsMyld0vvsqN4Go8aAw1PHyvazPBGVj5nYHALJEHpsnSVx7d1WmZ3M7w6w+YeIiIjK\nB5t/qOxJkoRHh54GANzTcXtJXByshUFjwG1tN8FaUal0KXkjx5eNBPMT/TUVnUEoFUa3vTQuAler\n17ETGSmDU3NnL/m6jJjBw67HIUDA/V13lcTPdWtVN1JiKu8xbmvhCcoTc0p7Asfeut1QCaplo7/i\n6Timo7NoKeHpRZfD2C96L0mS8OzoyxAg4KaWDwLINpt8oHE/ZmPzeGvqqMIVrk05R34tRxAE9Dp2\n4M8OfA03tlyL2dg8Huh/EP969j8vOqmMiDYWufmn2Vz82C8gG/2VljJw5+kagehyihn5tdSd7TdD\nq9LgSU7ao/d4Y+IIHh58HFZdJb66+3OwVliULmlZWrUWe+t2I5AM4dzCgNLlENEGN+jLxsJ2lUDk\nFwBU6W2w6Mxw5+5DEhEREZWD8nziSLTEBd8gXP5hXFm9FZ22NqXLoSU6clFm+WoYeSf3ubwiv2R9\njh0ALh/99frEYUxFZ3BN4z40mRuKUdplbbF3AQDO+5SfDiGP220v8ck/Fp0ZV1T1wBsax2Rk+l3f\nk6cXlXoD06VU6+1QCSrMRGeVLoVKxIBvCN7QOHbXbn/Xg7Xb2m7KPfh6ruwefIWSYZxfcMFpaUKd\nyaF0OXml1+jxa9334uv7vgKnpRlHpk/gz9/6Fl4dfwuiJCpdHhEViCRJ8IbHUWOohlFrUKQGOb53\ngNFfVCTFjvyS2SqsuK75GvgSfrw68VZR96bSdWLmNH56/hcwaY34Su/nUG2oUrqkSzrQsBcA8NYU\no7+IqLAG/Ln7vvbSaP4RBAFtlU74En74EwGlyyEiIiJaETb/UFl799Sf2xSuht6rtbIFAgQMB9x5\nWU9+QNBtL8/mH4exFi3mRpxfcCGaii77mlg6hidGnkGFWoe72kvn93SXrQNqQV0S0TDuoBeVOgts\nFValS7ms/fV9APC+6T/lMr3oUtQqNWr0VZjh5B/KeXb0JQDALa03vOvr8oMvfyKA1yYOFb+wdTg2\ncxKiJG6YqT/LcVqa8cd7v4yP93wYkiThvy48jL899n2MhSaULq1shJJhxNKXj/QkKgW+hB+RVBQt\nlibFauiytUOAwOYfKppiR34tdavzRujVFTjofgHxdLzo+1NpObcwgH89+1Po1Fp8addvo8FUp3RJ\nl+W0NKPBVIfTs2cRuch9DCKi9ZIkCS7fMCxaM+qMpXPwRj54yOk/REREVC7Y/ENl7dTcWXhCXvQ5\ndip6A5uWZ9Do0WiuhyfoXXc+vCiJcPmHYauwotZQnacKi6/PsQsZKYOTc28v+/2D7hcRTkVwa+uN\nJTX6W6+pQLvVCW9oXNEbfv5EAP5EINtYVgJxaJezo+ZK6NV6HJk68a5JGp7QGIDsjdRy5jDWIJKK\nXrSZjTaPsdAEzi0MoNvWsWxT27sffCUUqHBtjk71Q4CAPXW7lS6loFSCCtc3X4M/O/A17HHswkhw\nFH999Dt42PV4Wf33UkIgEcRfHPoWvvH6X+GF0VfW/XmHqNBGc5FfTrNy104GjQEtlia4g14kM0nF\n6qDNQanIL5lZZ8KHnNchnIrgBe+rRd+fSsdwwIN/OvVjQBDwOzv/e9kcBBEEAQca9iItZXB0ul/p\ncohog5qNzSOQDKLL3lFS9/va5OafwKjClRARERGtjEbpAojWSpREPDZ8EAIE3N1+q9Ll0EV0WNsw\nHp7EWHhiXTe3piIzCKci2FfXV1IXgavV69iJR4afwvGZk7g6Nz5bNh9bwIveV2GvsOGmlusUqvDi\nttp7MOgfwQXfIPoUODULvDMxp63EI79kOrUWvY4deHPyCAb9w+jJxaeNBr0waY2o1tsVrnB9ao01\nwDwwE5tDm7Y8/ptQYTw3+goA4Gbn9ct+36wz4aaWD+JJ93N4aex13N52UzHLW5O52DxGgh5stXfD\nWlGpdDlFYa2oxGe2fxIH5vfiZwO/wvPeV3Bs5iQ+3nMfdtVuV7q8kiNJEn524ZeIpKLQqjR4aPBx\nvDZxGL/WfQ+uqN6idHlEy/Lmmn+UPjjRY+/EaGgMwwEPtlZ1K1oLbWxKRX4tdVPLB/Hy2Bt4fvQV\nXNd0Dcw6k2K1XMpUZAa/cD2Kycg01IIKgqB6148qCFAJaqgEASpBtcw/8vff/drl1hIEAWpBnXvd\nO2s4jLXYXbu9rK/5lzMensT3T/4z0lIGn9v+qcXrwnKxr64Pjww9hbcmj+L65muULoeINiBXLvKr\n21YakV+y1spmCBDgDrL5h4iIiMoDm3+obB2d7sdkZBpXN+xDnal0xoHSu3VYW/Hq+JsYDnjW1fwj\nxwL0lGnkl6zWWA2npQnnF1yIpKIwaY2L33tk6CmkpQzu7bwdOrVWwSqXt7WqC4+PHMSFBZdizT/u\nxeaf8jglCWSjv96cPIJDU8fRY+9CMB7CfNyHK6q2lP1NbYche3p6JjpXNg1ZlH/zMR+OzfSj0VSP\nK6u3XvR1Nzmvw8tjb+C50ZdxXdPVMGoNRaxy9Y5MZU82763fuJFfF3NF9Rb8j/1/iIOeF/Cs5yX8\n0+l/w46aK/Cx7vtQbSjvpsV8Oj5zCifnzqLL1o7Pbf80nhh5Bq+Ov4XvnfwRdtRsw0e67lFkygTR\npZRK80+3rQPPjb6MAd8Qm3+ooJSM/JLpNXrc1nYTHnI9hmdGX8RHuu5WrJblpMU0nvG8iIPuF5CW\nMrBX2CBKEkQxhQREiJKY/Xcpk/sx+zUJUkHq2V/fh9/Y8lFoS/CaeC1monN4oP9BxNIxfHrbJ7Cz\n9kqlS1o1a4UFV1RtwZn5c5gIT6HRXK90SUQrJkoi4ukEYukYDBo9jEvuw1HpcPlGAJRe849eo0eD\nqQ6e0BgyYgZqlVrpkoiIiIguic0/VJYyYgZPDD8DtaDGHW03K10OXUKHtRUAMBxw48aWa9e8zoB/\nYzT/ANkbz6OhcZycPYtrGvcByI4APzZzEk5LM/aWaLyM09IMg0aP8wsuxWqQm39aK8snLqvL1g57\nhQ39M6fxiZ4PY9w3BaC8fg4XU2t8p/mHNq8Xx16FKIm42Xn9JRvaDBo9bmm9Ab8aehLPj76Mezpv\nL2KVqyNJEo5Mn4BWpcHuTTrxRqfW4p6O27Cvrhf/deFhnJ57GxcWXLir41bc2Hztpr/pGU5G8H8H\nfgWtSotPbv0YzDoTPrHlfnyg8Sr8wvUoTs+dw7n5AdzkvA63td4EvaZC6ZKJAGSbf+wVNsUnj3TZ\n2qESVIunvIkKQenIr6U+2HgAL4y+ilfG3sBNLR+ErcKqaD2yIb8bP73wEKYi07DqKvGJLR9e8bQ/\nURIh5ZqBMpIICbkfJQkZKZP7UVxsFlr8510NRe98PS2m8ZT7eRyeOo7p6Cw+v+PTJfPrtFb+RADf\n7X8QoWQYH+u+D1c17FG6pDU70LAXZ+bP4a3Jo/hId2k1sNHGJkkSUmIK0XQM0VQMsXQc0XQ092MM\nsVQs+7109nvyv8fSMUTTccTT8cVmRbPWhP954Gswa0tzAttmJUkSXP4hmLUmNJjqlC7nfdoqWzAR\nmcJkZBrNlkalyyEiIiK6JDb/UFl6Y/II5uILuL75AzyBXuKq9VWw6MwYDnjWvIYoiRj0DcNeYSv7\nmCQA6HPsxCND2eivaxr3QZIkPOx6DADw0e57oBJUCle4PLVKjR5bJ07OncVcbB41huqi7i9KIkaD\nXtQZHTBoSntiyFIqQYV99b14xvMiTs29jYgQAoB1TcIqFQ5DLQBgNsbmn80qmori9YnDsFVYsadu\n12Vff33zNXjB+ypeGHsNN7RcC4vOXIQqV88bHsd0dAa9jp0waPRKl6OoepMDv9f7BRyeOo6HBx/H\nLwefwKHJY/hvWz+CDmub0uUp5ueuRxBORfCRrrvf9UC52dKI3+v9Ao7PnMIvB5/AM54XcWjyGD7c\ndSf21fWW/cQ3Km+BRBDBZAi7apSfOqHX6OG0NMMd9CKeTrBBjgqiFCK/ZFq1Fne234L/OP9zPDny\nHH5j60cVrSeWjuGRoafx6vibECDguqarcW/n7au6zlIJKkAA1FAjXzN6tti78NMLD+Hw1HF888gD\n+MLO3yzb66ZwKoIH+n+I+bgPd7XfghtaPqB0Seuyo2YbTFojDk8fx32dd2z6RnBavYyYgT8RQCgV\nRiwVX9KwIzf1xBYbet799TgyUmZVe1WodTBoDLBXWGEw1cOo1SORTmLAP4SD7hfw0e57CvSzpLWY\njy/Anwhgd+2OkrxearM68cbkEbiDo2z+ISIiopLH5h8qO8lMCk+NPAedSovbWm9Suhy6DEEQ0GFt\nw8nZM/DF/bDrbateYyI8hUg6iu0120ryInC1agzVcFqaccE3iHAqggsLgxgJjmJ37Q502dqVLu+S\ntlZ14+TcWZxfcOHapuI2/0xHZxHPJLCrDG/+XlXfh2c8L+Lw1HHoK7K3xp2W8vt5vJddb4VGpeHk\nn03slfG3kMwkcVf7LdCoLv+xUqfW4Y62D+FnA7/CQc8L+LXue4tQ5eodmToBANhXt/kiv5YjCAKu\natiD7TXb8MjQk3h94jC+fez7+EDjVbiv8453RVhuBqfn3sbR6X60VTqXnWooCAL21O3CjppteNbz\nEp4dfQk/fvu/8MrYm/hYz71l+xCTyl+pRH7Jum0dcAdHMRxw44rqLUqXQxtQKUR+LXVVfR+eG30J\nb04ewc3O6+Aw1ipSx8nZM/jZhV8hkAyi3lSHT279aMk09GrVWnx62yfQZG7ArwafxN8e/wd8cuuv\nYX99n9KlrUo8Hcf3+/8ZU5Fp3Nhy7YaYWK1RabC3rhcvj72OtxcuYEfNFUqXRCVGkiRE0lHMxxYw\nF1vI/hjP/Ribx0LCD1ESV7SWWlDj/2fvvuOrrM//j7/us5KTc05O9t47zEDYICBLUZyIAxx1VWu1\njq/+7LLt92tbu2xtq611VUUcuBUVRUCQnTACCQnZe+95krN+fyTBBZLAObnPOfk8H48+tJ7c9/0O\nCefc4/pcl49Ki07tQ5A2cHBcl0qLVq3FRzX4P63KG61Ki4/6q//vo/JBq/I+ZXGa2Wbh0X1/Zmf1\nHhZFzSdIG+DoPwLhLBW2lQKuN/Jr2PCY+/LOKhZEzpE5jSAIgiAIwvcTxT+C29lZs4eOgU5WxJ6P\n0csgdxxhBBKMseQ05VLaUU6m9+hHWnnSyK9h00OmUNlVzcGGHLZW7kApKbk88SK5Y51RakAyAAVt\nxWN+wVveUQkMttt1N2G6UGIMkeS3FqJVeeHnZfSI9y+FpCBIG0hjbzN2u90jivOEkTNbzXxRtQut\nypv5EbNHvN28iFl8XrmDL6v3sjR64VkVhTqTzW7jYMMRfFRaJoqH0d+gU/uwNu0qZofN4PUT77C7\ndj85TbmsTr5k3BRK9Zr7eK3gHVSSknVpV31vtz6NUsPFCSuYEz6Dd4s/4nDTMf6c/SRzw2dwaeJK\nl+18JXguVyv+SfFPZEvlFxS1l4riH8HhXGnk1zClQsmqhAt4PvcVNpV+xi2T1o3p8dv7O9hY+D45\nTbmoJCUXxy9neez5qEdQwD2WJEliWcwiwnVh/DdvAy8df53a7nouTbzQZbvkfp3ZauY/R1+ioquK\nOWEzuDJplcdcJ80Jz2RH9W721WWL4p9xymw102pqo9n0zQKf5r4WWvraMFlNp9zOoNYTa4giUBuA\nUeOLVqVFq/b+WiHPYBHPcJGPWqF2+N8btULFJQkX8uLx1/iwdDM3T1zr0P0LZ6+4faj4x981i3/C\ndaF4KTWUdVbKHUUQBEEQBOGMXOsKXxDOoM9i4rOK7WhV3iyPWSR3HGGEEoyxAJR2VJAZOvrin6KT\nK0A8q/jnvZKPebf4I8w2M0uizyPYZ2w76ZyNEG0Q/l5+FLYWY7PbxvTma3lXFfDViht3Myssk8qi\nD+gx9zE1yDVvaJyNEG0Q9T0NdJt7xIPscWZ//UG6zN2siD1/VKOxVAoVK+OX80r+Rj4p/5y1aVc5\nMeXoFbaV0DHQxfyIWSPqZjQeJfrF8dOZ97Kt6ks+KtvCS8dfZ29tFnfNvR41OrnjOdW7xZvoGOhk\nVfwFROjDRrRNoDaA2ybfQGFbMW8WfsCeuiwONx3jorhlLIqaL8ZmCGOm0sWKfxKMcSgkBYVtJXJH\nETyQK438+rqM4ElEGyI52JjD8q7ziR6D8SE2u43dtft5r/gTTFYTicY41qatJkwX6vRjn4uJgak8\nlHk3Tx97kS2VX1DbU8/NE69z6RHQVpuVF/JepbC9hKnBk1ibttotCpZGKlofSaQ+nGPN+XQP9KDX\nePZ533hks9voHOg6Reee1pOjmU5Fo1ATqA0gSBtPkHfg0L8HEOgdQKA2AC+lZoy/k1PLDJ3K1qqd\nZDccYWn0QmJ8o+SOJDB4Da5T+RDuop9LCklBrCGaovZS+ix9Lv05JAiCIAiCIJ5oCG5lW9WX9Jh7\nuSThAnzG2YgJdxatj0QlKSntqBj1tja7jaL20qEbBv5OSCePQG0AsYZoKrqq0Kl8WBm3VO5IIyJJ\nEmkByeyty6K6q3ZMb5RUdFSiUqhG/LDV1cwIzeCd4k3Y7DZi3LB70ekMr6Ru7G0WxT/jiM1uY2vl\nTlSSksVR80e9/azQaWyp+IK9ddksi1nsMivyAbIaxMivkVAqlCyPXcz0kClsLHyf3JZ8Hvz0d9w+\n6QYmBaXLHc8p8lsL2VOXRZQ+ghWxi0e9fYp/Ej+deS9f1u7jo9LPeLt4E7tqD7Am+VLSA1McH1gQ\nvqWqqwZfjQGjl6/cUQDwVnmdPB82WUx4j6KQVBDOxNVGfg1TSAouTbiQp3KeZ1PpZn409RanHq++\np4FXC96mpKMcb6U316ZeyfyIWW5TkBKqC+GhzHt4IW8DeS0F/Dn7Ke6YchOhMo1M+z42u40NBW9x\ntDmPVP8kbp5wnccV+EqSxJywTN4u3kRWw+FTjj8VXF+/dYCm3mZahrr3DBf2DP/TYrN8ZxsJCX9v\nP5L9EgjSBhLoPVjcE6QdLO4xqPVu0eFKISm4IvFi/nHkGd4t+ZifZNzuFrk9WUtfK2397UwNnuTS\nn01xxhgK20uo6KwmbagruiAIgiAIgisSxT+C2+g297Ctcid6tY7FUeIGgztRK9VEG6Ko6Kqi3zow\nqhU/1d219Fn6mBo80YkJ5TEzbBoVXVVcFL/crYrZ0vyT2FuXRUFb0ZgV/wxYzdT01BNriHbbThwG\njZ70gBTyWgqI9aDVZSHaoeKfvmYS/eLkDSOMmaPNx2nsa2Ze+Myzeog8OPZiBc/nvsJHZZ+5TMt1\ns9XMkcZc/L38SPSLlzuOWwjUBnDnlB+Q05TLi/mv8+Lx1/h/M+4hxAUfyp0Lk6WfVwveRiEpuD59\nzVk/zFMqBgvmZoRksKnsM3bV7OPJnOeYHDSB1UmXuEUXQME9dQ1009bfzsTANLmjfEOKfyJlnRWU\ndJS7XDbBffWa+1xu5NfXpQekkOyXQG5LASXt5U45hzbbLHxWsZ3PyrdhsVvJCJ7MmpRL8fMyOvxY\nzuaj1nLX1Ft4r/hjtlbt5M/ZT3LrxHUuVThrt9t5u+hD9tcfJM43hh9Ovgm1Ui13LKeYGTadd0s+\nZn9dtij+cUNVXbX84/B/6LX0fec1ncqHCF0ogdpAgoY69gx37wnw9nPbezHflhqQxITAVI63nOB4\na6EY9SyzwuGRX36u3SF7uAt5eWelKP4RBEEQBMGlecZZuzAubKn4ApO1n6sSLsBb5SV3HGGUEoyx\nlHVWUNlZRbL/yMd3DY/8SvGgkV/DFkXNI9Y3injfWLmjjErq0EVuQWsRK2LPH5NjVnXVYLPbiHPz\njjlXJq0iPSyRVP8kuaM4TPDQA5Wm3maZkwhjxW63s6XiCwCWnsMIzozgSUTpIzjYkMMFsUtcoqvX\nsZZ8TFYT50XOcelVh65GkiQyQiZzh07Jk/tf5JljL/Ng5t0edb72QekntJrauCB2iUNGJuk1Oq5N\nvYIFEbN5s+h9jjUfJ7/lBEtiFnJB7BKP+rMTXEN1Vy0AMS4y8mtYin8in1Zso7CtRBT/CA5ztDnP\nJUd+DZMkiUsTV/L4wad4v+QT7p9+p0M7T5S0l/NqwVvU9zbi52Xk6pTL3X4xjUJScGXyKiL14bxa\n8BZP5TzPlUkXc370eS7RtePjsi18Ub2bcF0od029xaM/xw0aPZMC0znanEd1Vy1RYzC6TnAMs9XM\nS8dfo9fSx7zwWYTqgoeKfAIJ0vqPq1FGlydeRH5LIe8Vf0R6QLK49pNRcZv7Ff8IgiAIgiC4MnFm\nK7iF9v4OdlTvxt/LjwURs+WOI5yFeONggctoR38VtpUAgw8GPI1CUpBgjHOJm5WjYdDoidSHU9JR\nzoDVPCbHrBi6uHb34p8wXQhXT1rlUTeWvhr71SRzEmGslHSUU95ZyeSgCYTpQs56PwpJwSUJF2DH\nzqbSTx2Y8Oxl1w+N/AoTI7/OxsK42SyKmk9dTwMbCt7EbrfLHckhitvL2FG9h1CfEIeP6YwyRHDf\ntDu5ZeJaDBoDn1Vs5//2/ZkD9Yc85s9PcA1VXTUADilec6QEYyxKSXnynF8QHOGQi478+roEYyyT\ng9Ip6SjjeOsJh+yzz9LHayfe4a+H/kVDbxMLI+fxy9n/4/aFP183OzyT+6bfiUGj5+3iTbyS/ybm\nU4woGkvbq3bxcfnnBHkHcHfGbejcqKvv2ZoTngnAvvpsmZMIo/F+6SfU9TSwKGoe69KvYlnMIjJC\nJhNtiBhXhT8AkfpwZodlUttTz/76Q3LHGdeK2kvwUWldYjHQ9zF6GQjw9qeso1JcpwmCIAiC4NI8\n5+mj4NE2l2/DbLNwUfwyj22d7OnijYMrJEZT/GO1WSluLyNIG4i/t5+zoglnIS0gGYvNQklH2Zgc\nr7yzCoDYoZU2guswanzRKNQ09onOP+PF55VfALA8ZvE572tiYBoJxlhymvNkX0HXa+4lr6WACF0Y\nkfpwWbO4s9VJq0g0xnGo8Shbq3bKHeecDVjNbMh/EwmJ69PXOOU8VJIkMkMz+NWcB1kZt4xeSy8v\nHX+dvx76F5Wd1Q4/njA+VXa7ZvGPRqkhzjeaqq4a+k4xgkQQRmt45FeUi478+rpLEi5EQuKDks3Y\n7LZz2teRplwe3fc4u2r2EaYL5YHMH3FN6uVoVd4OSus64o2xPDzzJ8QYothXn83fD/2Hjv4uWbLs\nq8vmraIPMGoM3DPtdrccq3Y2JgWmo1fryKo/jEXm4ithZBjiarkAACAASURBVPJbC9letYtQnxAu\nT7xI7jguYVXCCtQKFZtKPx2zhW3CN7X0tdFiaiPJL8EtFsnF+UbTbe6hxdQmdxRBEARBEITTcv2z\nKmHca+5rYXftfkK0QcwOy5Q7jnCW/LyMBHr7U9ZZMeIVEtXdtZisJo8c+eXu0vwHR3+daC0ek+OV\nd1ahU/sQpA0Yk+MJIydJEsE+QTT1tYjVT+NAXU8Dx5rzSTDGkugXd877kySJSxIuBODDEnm7/xxu\nOobFbmVmqOj6cy6UCiW3TroBo8bAe8UfU9BaJHekc/Jx2RYa+5pZHD2fBKNzx3RqlBpWJazgkdkP\nkhE8mdKOCv6U/U825L9F10C3U48teL6qrhp0ah/8vVyvoD7FPxE7dorbx6aoXPBswyO/prtw159h\nkfpwMkOnUt1dy+HGY2e1j/b+Dp459jLPHnuZHnMPq+JX8LOZ95JgjHNsWBfj52Xk/uk/YkZoBmWd\nFfwp+x9UDC0YGSs5TblsKHgLH5WWuzNuJ0gbOKbHl5NSoWRm2DS6zT3ktRTIHUc4gx5zL+uPb0Qh\nKfjBxGvRKDVyR3IJ/t5+nB99Hu39HXxRtUvuOONScfvQyC9/1x75Nezk6K9RdrUXBEEQBEEYS6L4\nR3B5H5VtwWa3cXHCCpQKpdxxhHMQb4ylx9w74g4hnjzyy90l+cWjkpQUtBY6/VhdA920mFqJ9Y12\nuxFp40WINogB6wAdA51yRxGc7PPKHQAsc0DXn2Ep/omk+SdT0FYk69iXrKGRX5mhGbJl8BRGLwO3\nTb4RhaTghbwNtPS558rIis4qPq/cQZB3wMkitbEQqA3g9sk38JOMHxKmC2FP3QH+d9+f2Fb1JVab\ndcxyCJ6j19xHc18L0fpIlzyXSh4q9BejvwRHcIeRX1+3Kv4CFJKCTWWfjuo93ma38WXNXh7d9zg5\nTbkkGuP52az7WRm/DJVC5cTErkOjVPODCddxWeJKOvo7+duhf5PdcGRMjl3QWsQLuRtQKVTcNfVW\nlx9X4wxzwmYAsK/uoMxJhO9jt9t5/cQ7dAx0cnH8CmIMUXJHcikrYhejU/vwacV2ugd65I4z7hQN\nF//4uUfxz3BX+/IxLjYVBEEQBEEYDVH8I7i02u56suoPE6kPd4uVe8L3G159ONLRX0VutgJkPNEo\nNSQY46jqrnX6DZLhFZxxYuSXywoeGqnQ2CtGf3my9v4OsuoPE+oTzOSgdIfu+5LECwD4sHSzLB2k\n2kztFLeXkWiMJ1DrP+bH90QJxljWpFxKj7mX53JfdrtW+habhVfy38SOnXXpV+Elwwrp1IAkfjbz\nPtakXAZIvF30Ib8/8Dfyx6DwVvAs1S468mtYvDEWlaQ8ee4vCGfLnUZ+DQv2CWRexCwae5vZV589\nom3qexp44tDTvH7iXSQJ1qau5r7pdxCmC3FyWtcjSRIrYs/njik3oZSU/DfvVd4v+eScx6h9n7KO\nSv5z7CUA7ph808mHweNNlCGCaH0EuS35okOhC8tqOMyhxqMkGONYEbtY7jguR6vSsjJuGSaric3l\nW+WOM+4UtZWgVWndZux2lD4ShaSQfWS5IAiCIAjC9xHFP4JL+6jsM+zYuSThAreY/St8v+FxGWUd\n5Wf8WqvNSkl7GSE+Qfh5GZ2cTDgbaQFDo7/anDvSZfiiOs432qnHEc5eiHbw4UqTKP7xaF9U7cZq\nt7I0ZqHDP5PjfGOYEjSR0o4KWUYHZDccwY6dmWFi5JcjLYiYw5zwGVR21fDGiXfdajTgp+XbqO2p\nZ0HEbFL8k2TLoVQoWRw1n9/M+X8siJxDQ28TTx55jv8cfYnmvhbZcgnupbLLtYt/NEo18cZYqrtq\n6TX3yh1HcGPuNPLr61bGLUWtUPNx2eeYv6dY1myz8FHpZ/z+wBOUdJQzLXgyj8x+kPmRs8f9/ZLJ\nQRN4aMbdBGsD+axiO88ce4k+i8nhx6ntruffOS9gtpq5eeLak9fE49Xs8BnY7Day6g/JHUU4hZa+\nNt448R5eSg03Tbh23L9PnM55kXMI8g5gZ81emnrF+fVYaTO102xqJckvzm1+NzVKNVH6CKq6ajDb\nLHLHEQRBEARBOCX3OLMSxqWKziqONOUS7xvLpEDHdhgQ5BGhC0Oj1Iyo809lVw0maz8pfmLkl6sa\nvtFZ0Frs1OMMt9ONFcU/LivEJxhgxCP9BPfTZ+njy5p9+GoMzAqd7pRjrEpYgYTEh6WfOnW19qlk\nNRxGKSnd7mGhq5MkiWtTriDGEMW++my+rNknd6QRqemuY3PFNvy8jFyedLHccQDQa3Rcl3olD8+8\nl0RjPEeb83h031/4oGQzJku/3PEEF1c1VPzjyqM+kv0SsGOnqL1M7iiCG3O3kV/D/LyMLI6aT3t/\nBztr9p7ya4rby/jDgSf4uPxzDBo9d0y+idsm34DRy3eM07quMF0oD824hzT/ZI415/OXg085tDNp\nc18LTx55lh5LL+vS15ARMtlh+3ZXM0OnoZSU7K3Ldqsi7/HAZrexPv8NTFYTa5IvI0gbIHckl6VS\nqLg08UKsdisflm6WO8648dXIL/e67xvnG4PFbqWmu1buKIIgCIIgCKckin8El/Vh6acAXJp4IZIk\nyZxGcASlQkmcbwx1PQ30mvu+92uL2ksASPZ3r4vA8STaEImPSktBW5HTbvTZ7XYqOqsI0gaiV+uc\ncgzh3A2PVRCdfzzXrpr9mKwmzo9agFqpdsoxIvXhZIZOpbq7liNNuU45xqnUdtdT013HhMBUdGqf\nMTvueKFWqrl98g3o1TreKvqA0hF0/5OT1WbllfyN2Ow2rku9Eq3KW+5I3xBtiOD+6Xdyy8S16DV6\nPq3YxqP7/yJLxyzBfVR11aJVebv0g7+UoXP+4WsAQRgtdxz59XXLYhfhrfTm04pt3+hY02fp47UT\n7/C3Q/+mobeJhZHz+OXs/2FK8EQZ07oundqHu6bewvnRC6jvaeDP2f+koPXcO9V29Hfyz8PP0jHQ\nxerkS5gbPsMBad2fXqNjclA6tT31VA2NmBRcw9bKnRS1l5IRPIk54vf1jKaFTCHWEM3BxpyTo+cF\n5ypqGy7+SZA5yegMdyUv6xCjvwRBEARBcE2i+EdwSXmNheS3FpLmn3zyRrDgGU6O/jrDfOTCtqHi\nHzdbATKeKCQFKf5JtJraaHLS6JGmvmZ6LX1i5JeL06t1eCu9aRCdfzySxWZhe9UuvJQaFkTOceqx\nLo5fgUJSsKn0M6w2q1OPNSyr4TAAM0MzxuR441GAtz+3TFyHzW7juWPr6ejvlDvSaW2r+pLKrhpm\nhU1nUpBrdp6UJInM0Ax+NechLoxbSudAF//KeYGXj79BjxiZJHyLydJPY28TUfoIl15QEecbg1qh\nOnkNIAij5a4jv4bp1TqWxSyix9zLtqovATjSlMuj+x5nV80+wnWhPJB5F9ekXu5yhamuRqlQclXy\npaxLW0O/dYCncp5ne9Wus16w0mPu5ckjz9FsamVl3FKWRJ/n4MTubbiwZF/dQZmTCMOqumr5sPRT\nfDUGrktd7dKf/65CISm4POkiAN4t/kh0shoDRe0leCu9iTJEyB1lVOKNMQCUn+G+tiAIgiAIglxE\n8Y/gcux2O68ffR+ASxIvkDmN4Ggni3++Z+W/1WalpKOcUJ8QjF6GMUomnI2vRn+d+2rKUxke+RXn\nG+OU/QuOIUkSIT6BNPe1jPm4JsH5shqO0DHQyfyI2fiotU49VohPEHPDZ9DQ28iBoaIcZ7LZbWQ3\nHMFLqWFy0ASnH288Sw1I4vKki+gY6OK53Few2CxyR/qOhp5GNpV9hkGj56rkS+WOc0ZeSg2XJFzA\nT2feS4whkv31B/nt/sfJGcPOWYLrq+6uxY6daEOk3FG+l1qpJt43lpruOrrNPXLHEdyQu478+rrz\noxdgUOvZVrmT/xx9iWePvUyPuYdV8YPv9cPX0sLIzIuYyb3T7kCn8uGtog94teAtzKM8/zBZ+vlX\nzgvU9tSzKGo+F8evcFJa9zUhIBWDWk92/eFR//kKjme2mnnp+GtY7VauT78avUZ0UB6pFP9EJgWm\nU9ReKrpqOll7fwdNfS0k+cWhkNzr8VSwNgidyufk/UpBEARBEARX415nV8K4kNdSwImWUqYGTRQP\n/D1Q/NDPtLSj4rRfU9FVzYB1QHR9cgNp/oPFPyfanF38Izr/uLoQn2AsNgttpg65owgOZLPb+Lxy\nBwpJMWarnFfGLUMlKfm4bIvTHyCUdlTQamojI3gyGqXGqccSYGn0QjJDplLaUc47xZvkjvMNNruN\nVwrewmKzcE3KFW41Ai5SH86DmXdzWcJKes29PHPsZV7I3UDXQLfc0QQXUNU1OIbF1Yt/4KvRX8Xt\nZTInEdyNu4/8Guat8uKCuCWYrP0cbc4jyS+en8+6n5XxS1EpVHLHc0uJfnE8PPMnRBsi2VOXxT8O\nP0PnQNeItjXbLDx77GXKOyuZFTadq5IvER1UTkGpUDIrbDo9ll5ym/PljjPuvV/6CXU9DSyMnMfE\nwFS547idyxJXIiHxbsnHY9aJdjw6OfLLDe/7SpJErDGa5r4Wcb0lCAwu4q7raRAd0wRBEFyIKP4R\nXM7BxhwkJFYliK4/nshH7UOYLpTyzsrTXkgPt/sXxT+uL0gbQKC3PyfaSpzS8aWiswqFpCBK715t\ngMejYO3gg5YmMfrLo+S1FFDf08CM0Az8vf3G5Jj+3n6cFzWXVlMbe2oPOPVYX438mubU4wiDJEli\nXfoaInRh7Kjew34XGg+xs3ovpR3lTAuezLSQyXLHGTWlQsmKuPP52az7iPeN4WBjDr/d/zgHG3LE\nTbhxbrj4J8YNin+GHwCJ0V/CaLn7yK+vWxA5h/OjFrAubQ33TruDUF2I3JHcnr+3Hw9M/9HJAuQ/\nZf3z5Hvj6VhtVl7Me5WCtiImB03g+rQ1btedYix9NforW+Yk41tBaxHbq3YR6hPCFUMjrITRidCH\nMTd8JvU9Deyvd51rFU9T1D5U/OOXIHOSszO8WLlCdP8RxrHmvhY+LNnMI3se47f7H2dDwVuiG7wg\nCIKLEFeugstZFb+C/13yABH6MLmjCE6S4BtLv3WA2p6GU75eNHTD310vAscTSZJIC0imz9JHZVe1\nQ/dttlmo7qohSh+OWql26L4FxxteZd3YK4p/PMnnlTsAWBazaEyPe0HsEjRKDZvLtzJgHXDKMSw2\nC4cbjmLQ6EWx6RjyUmq4ffKNaFXevHbibYd/dpyN5r5W3i/9BJ3Kh6tTL5c7zjkJ04XyQOZdXJm0\nin5rPy/kbeC53PV09I+sy4Hgeaq6atAoNYT4BMsd5YxifaNRK9QnrwUEYaQ8YeTXMLVCxVUplzIv\nYqYoNnEgjVLDzRPXcknChbT1t/P4wX9xsCHnlF9rs9t49cTbHGnKJdkvgVsnrkOpUI5xYvcSoQ8j\nxhDF8dYT4pxDJj3mXtbnb0QhKfjBhGtFV9NzcHHCctQKNZtKP6PfSdei411RewneSi+3Xeg3XPxT\n1lkpcxJBGFtmq5nshiP84/Az/HrvH9lcsY1+6wBB2kD21mXx8vGNomuaIAiCCxB3EgSXE6gNIC04\nSe4YghMlGGMBKOso/85rFpuFko5ywnWhGDT6MU4mnI3UodFfBa2OHf1V212HxW4V4//cxHDnn8a+\nJpmTCI5S1lFBcXsZEwJTidSHj+mxDRo950ctoHOgix3Ve5xyjPzWQnosvcwIyRAPdMZYiE8QP5hw\n3dA4jfV0D/TIlsVut/NawdsMWAe4KuVSfDUG2bI4ikJSsDRmIT+fdT+JxniONOXyu/2Pc6D+kOgC\nNM4MWM3U9zYSpY9wiyICtUJFojGO2p56MUZBGDFPGfklOJ8kSVwYt4Q7Jt+EQpJ4IW8DH5Z++o1V\n6na7nXeLP2JfXTYxhijunPIDsRBlhOaEz8Bmt5HVcEjuKOOO3W7njRPv0t7fwcXxy4nxjZI7klvz\n8zKyNPo8OgY62V71pdxxPE5HfyeNvc0k+MW57XV4nG80AOUdovhHGB9quut4s/B9fr77t/w371VO\ntBWTaIznxvRreGzBL3l4xk+I940hq+EQLx5/TRQACYIgyMz17wAKguBxhot/SjsqvvNaeWcVZptZ\ndGFwI6n+SUhIDi/+GV5BEzt0US24tuGHLU2i84/HGO76szxmsSzHXxazEK1Ky5aKL+iz9Dl8/1n1\nQyO/wsTILzlMCkrnovjltJra+G/eq7LdHNpbl0VBWxGTAtM8bvxbiE8w902/gzUpl2G2W3jp+Os8\nffRF2vs75I4mjJHanjpsdhvRbjDya9jw6K/hcRCCcCaeNPJLGBtTgifyYObdBHkHsLl8K88eW4/J\nYgJgc/k2tlV9SZhPCD+eeiveKm+Z07qPGaEZqCQl++qyRbHxGMtqOMzBxhwSjLGyXbt5mmWxi9Gr\ndWyp+EIUJDvY8Dleip/73vfVqX0I8QmioqtKjDkSPJbJYmJ3zX7+lP1Pfn/gb3xRvRulpGR5zGJ+\nNftBHsj8EbPDM9EoNfiotdydcRuJxngONR7l+dxXMNsscn8LgiAI45Yo/hEEYcyF+ASjU/mcsvjn\nq5Ff7nsRON7oNTqiDBGUdlQ4tCXy8Oxs0fnHPejUPujUPjT2ieIfT9DQ20ROUx4xhijZRjD6qH1Y\nFrOIHksv2yodu+LSZDFxtPk4IdogYgxiZaxcVsYtZXJQOgVtRXxY+umYH7+9v4O3izbhrfTm2tQr\nkSRpzDM4m0JSsDhqPr+Y9QCp/knktuTz6L7H2VN7QDyYGwequmoA3Kr4J8V/8DNHjP4SRsqTRn4J\nYydCH8ZDM+8hxS+Ro815/OXgU2wq/YxNZZ8S4O3P3Rm3odfo5I7pVnRqHyYHT6Sup8ElxrqOFy19\nbbxx4j28lBpumnCt23ZScTValTcr45dhsvbzSfnncsfxKMPFP0ky3WdwlHjfWPosJhp7RfdrwXPY\n7XZKO8pZn7+Rn+3+La+eeJvKzmomBqZx++Qb+d38X3B50kWE6kK+s623ypsfZ9xKin8SOc15PHvs\nZcxWswzfhSAIgiCKfwRBGHOSJBFvjKXF1EpHf+c3XiscugiU62GzcHbS/JOx2q0Ut5c5bJ/lnZVo\nVd6ifb8bCdEG0dzXKtq7eoBtlTuxY2d57GJZCyIWR83HoNazrepLh46GymnKw2wzMyNsmkcWfLgL\nhaTgpgnXEqINYkvlFycf4I6FwXFf72Cymrgy6WL8vf3G7NhyCNIGcE/G7VyXeiVgZ0PBWzx55Dla\n+trkjiY4UWXnYPFPjBsV/8QaotEoNSevCQTh+4iRX8K50Kt13J1xG4ui5lHX08An5Z9j0Oi5J+N2\njz8vcJY5YZkA7KvLljnJ+GCz21if/wYmq4k1yZcRpA2UO5JHWRAxm2BtIF/W7BMFHg5U1FaKl1Lj\nVuenpzI8+qtsaOGiILizroFutlbu5Lf7H+fxg/9iX102BrWOVfEX8Oi8n3HX1FvICJ50xgJTL6WG\nH025mQkBqeS1FPD00RcZcOBCYUEQBGFkRPGPIAiyGB79Vfa17j9mm4WyjnIi9eFilZ2bSQtIBuCE\ng0Z/9Zp7aextJtYQjUISH1XuItgnCJvdRotJPEx2Z50DXeyrP0iQdwAZwZNkzeKt8uKCuCWYrP18\nVrndYfvNahga+eVhY57ckVal5fbJN6JRalifv5G6noYxOW52wxFyW/JJ8U9iXsSsMTmm3CRJYkHk\nHH45+3+YEJBKQVsRvzvwODur94p29R6qqrsGlUJFmM93V2a6KqVCSaIxjvqeBjoHuuSOI7g4MfJL\nOFdKhZKrUy5nXdpVJBrjuHvqbaKQ7BykB6Rg1BjIbjgiVvuPga2VOylqL2Vq8CTmhM+QO47HUSlU\nXJq4Epvdxgclm+WO4xE6B7po6G0kwRjn9l2qhruUl5+iq70guAOb3cbxlhM8d2w9v9j9O94p3kRz\nXwuZIVO5J+N2fjP3YVbGLx11QbRGqeaHU2462eX5XzkvYLL0O+m7EARBEE7FaU9UbTYbv/rVr7jm\nmmu44YYbqKj45onQtm3bWL16Nddccw0bN2783m0qKiq47rrrWLt2Lb/+9a+x2QZvTm/cuJErr7yS\nq6++mu3bv/lAqKSkhMzMTPr7xQeLILii4eKfr4/+Ku+oxGyziK4/bijRGIdaoaKgzTHFPxWdg23C\nY4dW0gjuIUQ7eKO8SYz+cms7qnZjsVlYGrPQJYrvFkTMxs/LyM7qPbT3d5zz/joHuihoLSLWN1o8\n3HEREfowbki/mgHrAM8cfYk+S59Tj9c10M2bRe+jUahZl7Z63HV/8vf2466pt3BD+tUoJCVvFL7L\nPw4/Q1Nvi9zRBAey2CzUdtcTqQt3u4crKUPjf8XoL+FMxMgvwVHmRczigcy7iDJEyB3FrSkVSmaF\nZdJr6eNo83G543i06q5aPiz9FF+NgbWp4+98dqxMC55MnG8Mh5uOfWPxonB2itoGOzsOn+u5s0h9\nOGqFinLR+UdwM62mNj4q28Kv9vyBp3Ke53DTMUJ8glidfAm/m/9Lbpm0jrSA5HO6H6hWqLht0g1k\nBE+mqL2Up3Kec/p9HkEQBOErTnui8/nnnzMwMMAbb7zB//zP//CHP/zh5Gtms5nHHnuMF154gfXr\n1/PGG2/Q3Nx82m0ee+wx7rvvPl599VXsdjtbt26lqamJ9evX8/rrr/P888/z17/+lYGBwRZy3d3d\n/PGPf0Sj0Tjr2xME4RzF+g52dPl68U9h++AN/hR/978IHG/USjWJxnhquuscskp7+OI5ThT/uJXh\nQorGXlH8465Mln521uxFr9a5zOpRtVLNRXHLMNssbC7fds77O9iQgx276PrjYqaHTGFZzCIa+5p5\n6fjrTu1Es7HwPXrMvVyauHLcjkeQJIk54TP45ewHmBw0gaL2Un534K9sq/pSdAHyEHU9DVjtVqLd\n8EF28tC1gBj9JXwfMfJLEFzT7PCh0V/1rj/6y263yx3hrJitZl48/hpWu5Xr09eIztlOJEkSVyRd\nDMC7xR+77e+MqygeOrdL8nf/RZ9KhZJoQxS1PfX0i7FGgouz2CwcajzKU0ee51d7/sDHZVvosfQy\nL3wWD2bezS9mPcCS6PMc+nmiUqi4ZeJaZoRmUNpRwT8PP0evuddh+xcEQRBOz2nFPwcPHuS8884D\nICMjg9zc3JOvlZSUEBMTg9FoRKPRkJmZSVZW1mm3ycvLY9aswXb8CxcuZM+ePRw9epRp06ah0Wgw\nGAzExMRQUFCA3W7nkUce4YEHHkCr1Trr2xME4RxplBqi9BFUdVWfbAdd1FaChESS6Pzjlr4a/VV8\nzvsq76wEIHaoja7gHoJ9ROcfd7e3LoteSx+LouahUbpOEfWc8BkEawPZXbuf5r7Wc9pXVsNhJCSm\nh0x1UDrBUS5NuJBU/ySONefzqQMKvU7lSFMuhxqPkmCMZVHUPKccw534eRm5Y/JN3DzhOjRKNW8X\nfcjfDv2b+p5GuaMJ56iqqwaAGEOUzElGL8YQiZdSIzr/CN9LjPwSBNcUrgsl1jea/JZCh3TtdIYB\nq5kX817nZ7sePdlBzJ18ULqZup4GFkbOZWJgmtxxPF6SXzxTgiZS0lHGMdHR6pwUtpeiUaiJdcPz\n01OJ943BZrdROdS9XBBcTX1PA+8UbeIXu3/H87mvcLz1BHG+0axLu4rH5v+SdelXEW+McVr3OKVC\nyU0TrmV2WCYVXVX84/AzdA/0OOVYguCJ7HY7PeZeqrpqOdqUR1lHpShEFkZE5awdd3d3o9frT/5/\npVKJxWJBpVLR3d2NwWA4+ZpOp6O7u/u029jt9pMfQDqdjq6urtPu48knn2TRokWkpYmLH0FwdQnG\nWCq7qqnqriFaH0lZZyWR+nB0ah+5owlnITUgCUqgoK2ImWFn31HDbrdT0VmFv5cfRi/DmTcQXMbw\n2C/R+cc9WW1WtlbuRKNQs9DFiiKUCiUXx6/gxeOv8XHZFm6ccM1Z7aext4mKzirSA1LE+4sLUiqU\n3DJxHX/I+jsflW0h2hDJpKB0h+2/19zLGyfeRaVQsS5tjUuMtXMFkiQxI2waqQHJvFH4Hocbj/JY\n1hNcHL+cpdEL3W5klDBouPgn2hApc5LRUyqUJPrFc7zlBO39Hfh5GeWONG5ZbVbs2FEpnHbr6Kwd\nFiO/BMFlzQ2fQUVnFQfqD7Ei9ny543xDe38H/zn6EpVdgw/rn899hfzwmVyVchleLrT44XQKWovY\nVvUloT7BJzvSCM53WeJKclvyea/kEyYGponz47PQNdBNfU8Daf7JHvPnF2eMgarBBYzJHtDNSPAM\n/dYBDjUeZU/tAUo7ygHQqX1YEn0ec8NnEqEPG9M8CknB9elrUCmU7K49wN8P/4d7pt2Or0bckxME\nq81K50AXLaY22kzttJraaO0f+qepnTZT23e6y8X7xrI8djGTg9LFfU3htJx2B0ev19PT81UVp81m\nQ6VSnfK1np4eDAbDabdRKBTf+FpfX9/T7uODDz4gLCyMt99+m6amJm655RY2bNjwvVn9/X1QqTzj\npNOTBAeLEwBPl9GXxhfVu2mw1KOTNFhsFqZGpIufvZsKDErFkKOjqL2EoCD9Wa8aaOxpocvczZyo\n6R77u+Cp3xcYMHr70tLf4sHfo+f6svwAbf3tXJi0mPiIsb0ZMBIXBi1ga80ODjQc4pppFxPlGz7q\nfXyRuwOAJUlzxe+ok5zrn2swBh7W3skjW//Cy/mv89jynxJmCHFItn/tf5fOgS7WTrmcyXFixOi3\nBWPgZ5E/Yl/VIZ4/+Drvl3xCbttxfjTzBmL83K+AZLyrO1KHUlIwJS4JtVItd5xRmx41geMtJ2iw\n1pEc7Dqrw8fTZ4fJ0s+j25+gvqeZO2dez8xI1+mY1zPQS35bEXF+UUyMjZc7jiB4BEe+v60wzuft\nog/JbjzM2sxLnNZRYLSKW8r5y8GnaTN1sDhuLhenR2o6cgAAIABJREFULuGp/S+xpy6L8u5K7p17\nK/H+rjt6vHughw1730QpKbhv/q1EBozP8bVyCA42sKR5Pp+XfElu9zGWJZ4ndyS3U1JVBEBG1Njf\n93XW8TJ90nk+F2r7a8fVOaLgeux2OyWtFWwr3c3uymz6LCYApoSmsyRhPjMjp8h+TfiT4B9gOOTD\n5uIveDLnWR45/14CtH6yZvIE4r3HtZks/TT3ttLc00ZzbwvNva009bQO/bdWWvrasdltp9xWp9YS\nZgghyMefYJ9AAn38KWgu5mDtMZ459hKRhjAuSVvOebEzZf/7LbgepxX/TJ8+ne3bt3PRRRdx5MgR\nUlJSTr6WmJhIRUUF7e3t+Pj4kJ2dza233ookSafcZsKECezfv5/Zs2ezc+dO5syZw5QpU3jiiSfo\n7+9nYGCAkpISUlJS2LJly8njLFmyhBdeeOGMWdvaxKxJVxMcbKCpqUvuGIKTBUmhAByrLaSlY7Ad\ndJRXlPjZu7Fkv0QONR4lr6KUUN3ZPaw91JAPQLh3uEf+Lnj6+1uQVyClHeXUNbS55Cpx4dTsdjvv\n5G1GQmJu8ByX/R1dGbOcZ469xPrsd7lt8g2j2tZut7OjdD9qhZoE70SX/R7dmaPe3wwEcG3qlazP\n38gfdvybB2fcfc4rsfNaTvBF+V6iDZHMCZgtfv7fI9E7mZ/PeoC3Cj8gq+EwD3/2GCvjlrEidrHH\nrNL1dFablfL2asJ1YbS3mgCT3JFGLUI9WPBzsDKXVB/X6Orr6edwX2ez23jm2MsUtZYD8OddT7Mw\nci5XJK1C4wI3FvfVZWO1WZkSMGnc/EwEwZmc8f42JWgiBxtzyCrJI94Y69B9n42DDUdYn78Ri83K\nFUkXszR6IZJZ4r6Mu/ig5BO2VX3JL7b8kcsSV7I4eoHLraS22+38N+9VWvvaWRV/Ab7WAPH+N8aW\nhC1mZ/l+Xj/6Iak+6XirvOSO5FYOVuYBg+d4Y/m768zzN7tdhVFjoLCpTPx9FGRjs9t4/cQ77K49\nAAyO9l4cNZ854TMJ0gYAuMw14arolZj7bWyt2skjW/7CvdPuwN9bFACdrfF0feqK7HY73eaeb3Tp\naf1W954e86lrDyQkjF6+xPlGE+Dtj7+XHwHe/gR4D/7T39sPrcr7O9vNC5rLhVH1bK3cyYGGQzyd\ntZ7Xct5nScx5zI+YfcptBM92ugJApz2VW758Obt37+baa6/Fbrfz+9//ng8//JDe3l6uueYafvrT\nn3Lrrbdit9tZvXo1oaGhp9wG4OGHH+aRRx7hr3/9KwkJCVxwwQUolUpuuOEG1q5di91u5/7778fL\nS5x0C4I78ff2w8/LSGlHOd0D3UhIJPmJNqnuLM0/mUONR8lvKzrr4p/yzkoAYg2uu+JOOL0QnyBK\nOspo7msl7Cx/B4SxV9BaRE13HZkhU0/eHHBFU4ImEOsbzeGmY1R2VRNjGHk3iMquahr7mskMmYq3\nuBhyeXOGxkXsrNnLhvw3uXni2rNeNd5nMfFawduD7abT1ogClhHQq3X8YOJ1ZIZO5bWCd9hU9ilH\nmo5xffoatxwjNd409DZhtlnc+mcVpY/AW+lNYVuJ3FHGpXeKN3Gs+Tip/klckXQxLx9/g501eyls\nL+WWiWuJ1I+++54jiZFfguD65oTP4GBjDvvqsmUt/rHZbXxctoVPyrfirfTitik3fGOsrFqhYnXy\nJaQFpLD++Bu8XbyJ/NYibphwtUuNJMlqOMzBxhwSjLGsiF0sd5xxyehlYFn0Qj4u/5xtVTu5KH65\n3JHcSlFbKWqFmlhf1+noeK4kSSLON4ac5jzaTO2iiEEYc3a7nXeKNrG79gCR+nAuS1xJekCKyxWw\nDpMkiSuSLkatULG5Yht/O/RvfjLtDpe+DykIw9pM7Wyv3kVNVx2t/YNjusw2yym/Vq1QE+DtR4wh\n6luFPYP/7udlPOt7kxH6MG6YcDWrElawvWoXu2r38W7xR2wu38p5kXNZHLUAo5frnMMK8nBa8Y9C\noeD//u//vvHfEhO/aq+/ZMkSlixZcsZtAOLj43nllVe+89+vvvpqrr766tNm2LZt22hjC4IwxhKM\nsRxqPEr3QA/Rhgh81Fq5IwnnIC0gGYATrcUsjpp/Vvuo6KxCQiLGg24IjCch2iAAmvqaRfGPG9lS\n+QUAy2IXyRvkDCRJ4tKEC/nnkWf5sPRTfjz11hFvm1V/GICZYdOcFU9wsNXJl1DdXcvBxhxifaNZ\nGrPwrPbzfskntPW3szJuKVGGCAen9GyTgyaQODued4o3sbcuiz9l/5MVsedzYdxS1KK7m8uq6qoB\ncOviH6VCSZJfPLkt+eJhyhjbUb2H7VW7CPMJ4bZJN+Cj1vLQjHt4r+QjdlTv4U/Z/+SKpItZFDlP\nllE+veY+8luLiNJHEOITNObHFwRhZNICkvHzMnKwMYfVyZfK0jWs3zrAy8ff4EjTMQK9A7hzyg+I\n0J96vPHEwFR+Pvt+Xj7+BsdbT/D7A3/jxvRrmBCYOsapv6vV1MbGwvfwUmq4acK1opBdRktjFvJl\nzT62VO5gQeQclyoQc2XdAz3U9tST6p/kcR2i44yDxT/lnVXifFUYcx+VbWF79S7CdKH8JOOH6DU6\nuSOdkSRJXJJ4ISqFik1ln/HEoaf5ybQfivN6wWW1mdr5tGI7e2oPYLVbgcEFc+G6UPyHi3pOFvgM\ndu3Rq3VOv1b29/bjyuRVXBi3hJ01+/iiahefVWxnW+VOZodnsjRmEaE+wU7NILgu5W9+85vfyB1C\nbr29A3JHEL5Fp/MSP5dxoqO/k+OtJwCYETqN9MCUM2whuDIftZYD9Yeo62lgWczCUa80sNqsvFn0\nAWG6EM6PXuCklPLy9Pe3zoFuDjUeJdoQSYIxTu44wghUdlXzfsknpPonsSL2fLnjnFGgdwBF7aWc\naCsm1T+JAG//M25js9tYX7ARtaTi2tQrXHYVlLtz9PubQlIwITCV7IYjHG0+TpJfHIGjXBFW2FbC\nxsL3CNeFctPE61CKn/2oqZVqpgRPJME3lsK2EnJb8slpyiXGNwo/L6Pc8YRT2FeXTXlnJSvjlrr1\nQ4jOgS7yWwuJNkTK3mkGPP8cDiC3OZ+Xj7+BXq3j3ul3YvTyBQaLsSYGphFjiOR4ywmODHXgSwtI\nPuexjKN1sDGHI025LI6aT5Jf/JgeWxA8lTPe3yRJotvcw4m2YiJ0oUSM8ft4m6mdJ488S2F7Ccl+\nCdyTcfsZzyO9lF7MCM1Aq/Imtzmf/fUHMVlMJPsnynYOOTyGsaG3iWtTryQ1IEmWHMIglUKFRqnh\naHMeA1bzN7pICad3vOUEhxqPMjd8Jsn+Y9vx3dnnb1a7jf31Bwnw9ic9QNzTFsbO1sqdfFi6mUDv\nAO6bfge+btbpI9k/AbVCxZGmXI40HmViYLpbFC+5kvFwfSqnNlM7H5R8wvr8jZR3VhKoDWB18iX8\nYOJ1XBi3lAWRc8gMncqEwFTijbGE6UIxevnipdSM6SIZtVJNkl88C6Pm4e/tR21PAyfaitlZvZea\n7noCtf7i3p0H0+lOPRFL3P0WBEFWCV9r/5zin/g9Xym4i7SAZExWExVd1aPetranAbPNTJyvGPnl\nroZXajT1NsucRBipzyt2ALA8ZrG8QUZIkiQuTbwQgA9LN2O328+4zYm2YroGupkWOsXjVhp6Oj8v\nI7dNugGA53M30GZqH/G2A9YBNhS8hYTE9elrRKeac5QemMIvZj/AeZFzqetp4C/ZT/Fu8UdYbVa5\nownfUtlVg4TkEgUz52L44ZAY/TU2qrtqeSFvAyqFkjun/OCU7fcnB03g57PuJ80/mdyWAn5/4G/k\ntxaOaU4x8ksQ3MecsEwA9tUfHNPjlnVU8Mfsf1DVXcv8iFncnXHbiB8oKiQFS2MW8uCMHxPiE8S2\nqi95/OBTNPQ2OTn1qW2r+pKi9lKmBk1kbvgMWTII3zQ/YhYhPkHsrt1PQ0+j3HHcQlF7KcCYF/6M\nhRhDFBISZR2VckcRxpHdNft5p3gTRo0vP5l2u9s+2F8Rez6rky+hY6CLJw49TW13vdyRBIE2Uztv\nnHiP3+z9Iztr9uLnZeT69Kv51ewHmRM+Y8wXv4yURqnmvMg5/HrOQ9w66XqiDREcaTrGn7Of5IlD\nT5PXcmJE99AFzyCKfwRBkFWUPgK1Qo2ERKJYuekR0vwHR38VnMWDgPLOwYvlWFH847aCtYEANPa1\nyJxEGInmvlYONR4lUh9+cmyfO0gwxjEpMI3i9jIKWovO+PUnR36FipFf7ijRL46rki+l29zDM8de\nxmw1j2i7D0s/pbmvhSUx5xHnG+PklOODVuXNtalXcO+0HxLg7c/nlTt4Kud5es19ckcThtjsNqq7\nawjThaBx0ZtSIxWlj0Cr0lIkin+crr2/g38f/S/91gFunHAt8V9boPFtRi9ffpxxK1ckXUyPuZcn\njzzHO8WbsNgsTs8pRn4JgnsJ1YUQ7xtLQWvRqAq4z8WB+kM8cfg/dA/0cFXypVyXuvqsiv9jDFE8\nPONe5oTPoKqrhj9k/Z29tVlj+tCkpruOD0s2Y9DouS5ttSyjFoXvUiqUXJZ4ETa7jfdLN8sdxy0U\ntZeiVqg88l6ft8qLCH0YVV3VYlGEMCayG47w2ol30Kl9uGfa7QQN3Yd1V0uiz+OalCvoMnfzxOGn\nT46wFoSx1t7fwcbC4aKfPYNFP2lr+NWch5gbPsNtxq4qJAXTQ6bw/2b8hJ9k/JD0gBSK2kv5V87z\nPJb1BAfqD4nPq3FAFP8IgiArpULJBbFLWB67GK3KW+44ggOk+iciIVHQWjzqbSs6qwDEQ1o3plFq\n8PMyis4/bmJb1U7s2FkWs8jtbiavShjs/vPBGbr/DFjN5DTlEuDt/41uc4J7WRg5l9lhmVR2VfNG\n4XtnfPBS1lHB9qpdBGsDWRW/YoxSjh8p/kn8fNb9TA5K50RbMX899C9a+trkjiUw2Hmv3zpAtCFS\n7ijnTCEpSPZLoNnUSqtJ/H45i8nSz9M5/6W9v4PLElcyfQQddRSSgmUxi3gw88eEaIPYWrmTvxx8\nyukdEI4252G1W0eUURAE1zA3fAZ27OyvP+TU49jsNt4v+YSXjr+OWqHirqm3cH70gnO6xvFWeXFD\n+tXcMnEtChS8UvAm/817dUyKns1WMy/mvYbFbuX6tDUYNHqnH1MYualBE0kwxpLTlEtpR7nccVxa\nj7mX2u564n1jPbYTa5xvNAM2M7U9DXJHETzcsebjvHT8dbyUXtw99TbCdaFyR3KIhVFzWZe2hl5z\nH38//MzJxcGCMBYGi37e59d7/8iO6j0YvYysGy76iZjpNkU/3yZJEqkBSdydcRs/nXkfM0IzqO2u\n56Xjr/ObfX/ii6rd9FvF2DhPJYp/BEGQ3cr4pVyWuFLuGIKD+Kh9iDFEUdZZgcliGtW25Z2VaJQa\nj7l4Ga9CtEG09bczIE4gXVr3QA97arPw9/IjM2Sq3HFGLdoQwbSQKVR2VZPTnHfarzvWfByTtZ8Z\noRkoJHHq664kSeLa1CuJNkSyty6LXbX7T/u1ZpuFV/LfxI6ddWlr3L77iavyVnnxw8k3sThq/uAY\nsINPniziFeQzvFLSE4p/4KuxwGL0l3PY7DZePP4qVd21zAufOeoRoDG+UTw8817mhs882RljjxM7\nY4iRX4LgfqaHTkGtULG/Lttp7w0mi4lnj63ns4rtBGsDeTDzbiYEpjps/5mhGfx81n3E+8ZysDGH\nx7KecHrBxwelm6ntqee8yLlMCkp36rGE0ZMkiSuSLgbg3eKPxBiN71HcXoodu0eO/BoW5zu4yKi8\ns0LmJIInK2wr5rncV1BKSn409WZifKPkjuRQ8yJmcuOEazBZTPzz8LOisFJwum8W/ezGqPFlXdoa\nfj3nIea5cdHPqUQbIrh54lp+M/dhFkXNo2ugmzeL3ueRPb/no9LP6B7okTui4GDiCYggCILgcGkB\nydjsNorby0a8jclior6nkVhDlHhA7+aCh8YwNInRXy5tZ80ezDYzS2MWuu0Fzar4FUhIbCr9FJvd\ndsqvyWoQI788hUap5vZJN6JT+/Bm4fuUdZz65urm8q3U9zayMHKuR99kdgUKScGalMu4KvlSuga6\neeLQ0+Q0nb4YT3C+yu6h4h+9ZxT/JPsN/h0uaiuVOYlneqd4E8ea80n1T+La1CvPqkOGt8qL69PX\ncMvEdSgVSjYUvMnzeRvoNfc6NKsY+SUI7kmr0jI1eBKNfc2Unubc7Vy09LXx+MF/cbQ5jxT/JB6a\ncQ9huhCHHydQG8D90+9kZdxS2kzt/O3Q03xS9vlpr0HORUFrEduqviTEJ4grhwpMBNeTYIwjI3gS\npR0V37sYZbwrah88hxs+p/NEcUPjzMo7xEIIwTnKOip5+uiL2O12fjj5RpL84uWO5BSzwqZz88S1\nDNjM/PPIc2L8s+AUHf2dvPmNoh8D69Ku8siin28L0gZwdcrlPDrvZ6yMWwZ2+Lj8c3655/dsLHyf\nlr5WuSMKDiKergqCIAgOlxaQBAzetBqpyq4a7Ng9cgb4eDP8QEaM/nJdA9YBdlTvwUelZW74TLnj\nnLUwXQizwzKp62kgu+HId17vMfdyvOUEkfpwIvRhMiQUHC1Q688tE9dhs9t49th6Ovq7vvF6VVct\nn1Vsx9/LT3QVHEPnRy/gh5NvBODZYy+zvWqXzInGr6quWgCiDBEyJ3GMCH0YOrUPhe3ixq+j7aje\nw/aqXYTpQrlt0g3nfJMzM3QqP5t5PwnGOA43HuX3B54Y1UKAMxEjvwTBfQ1fb+yry3bofkvay/lT\n9j+o7alnYeRc7p56Kzq1j0OP8XVKhZJVCRdw77Q78NUY2FT2GX8//B/aTO0OO0avuZf1+RtRSAp+\nMOE60cHSxV2auBKFpOD9ko+x2qxyx3FJRW2lqBQq4nxj5I7iNGG6ELyVXpSJUUWCE9R01/GvnOcZ\nsJq5eeJah3a2c0WZoVO5bdL1WG1Wnsp5YVTPFgTh+3T0d/JW4Qf8eu8f+KJ6N74aA2vTVvOrOQ8x\nL2KWRxf9fJtBo2dVwgoenf9zrkq+FL1ax47q3fxm35/4b96rVA/dVxLclyj+EQRBEBwu3hiHWqGm\noG3kJ+jD83xF8Y/7C9EOFv809oniH1e1ry6bbnMPCyPn4q3ykjvOObkofhlKSclHpZ9954brocaj\nWO1W0fXHw6QFJHNZ4ko6Bjp5PveVkz93q83KhvyN2Ow21qVdhbfKW+ak48uU4IncP/1HGDR63ir6\ngI2F7ztlNbxwena7naquGkJ8gtB6yO+/QlKQ7JdAq6mNZrEKzWFym/N5s/B9DGo9P5pyMz5qrUP2\nG6j1575pd3BR/HLa+zt44tDTbDrF5/PZECO/BMF9pfgn4u/lx6HGHIeNht5bl83fD/+HXksf16Rc\nzjWpV4zZQ5tk/wR+Put+MoInUdxexu8P/I0jjcccsu/XT7xLe38HF8UtF/dG3ECoTzALImbT2NvM\n7toDcseRhdlqpr6nkbyWAnZW7+Gd4k08e2w9f8j6Ow/t/DXV3bXE+8agVqrljuo0CklBrG80Db2N\n9Jr75I4jeJDG3ib+eeRZei19XJ++hmkhk+WONCamBk/ih5NvxI6dfx/9L7nN+XJHEtxYR38nbxUN\nFv1sr96FQWNgbepqfj3nIeZHzEalUMkdUTZeSg3nRy/gf+c+zE0TriXMJ4TshiM8lvUETx55jsK2\nYjHa1E2N399qQRAEwWnUChVJfvHktxbS0d+J0cv3jNtUdA62x4334NVA48Vw559G0fnHJdnsNrZW\n7kSlULEoer7ccc5ZoDaA+RGz2Vmzh711WSyInHPytaz6w0hIzAjNkDGh4AzLYhb9//buO76t+t7/\n+FvLlmx5yHvvmeEsO4skQICyy54ts6VldNCW3rb3tr0d3BY6fu0ttJRRoKVsCCNQoEAIIXs6sZ14\nJY733ntJvz/smOQmQIDYspTX8/Hww4qtY32UyN8cnfM+n48qu6q1q7lAq8pf0xUZF+ntqvdV3VOn\nxdG5yg7NcHeJJ6WEwDjdteAbemDPo3q/ZoPaBtp044xrPT5k6ClaB9rVP9KvGSHe9fpPD05VfnOh\nytr3K8wW4u5yPF5Nd50eLXpSZqNJX8+58YT/nZqMJp2ffJayHOl6fO/TeuPgOyppL9ONM65R6Gd8\nLEZ+AZ7NaDBqUdR8vVm5RvnNhVoYNf8z/yyny6mXy/+ld6vXyc9s01dmfVlZIeknsNrj42/x01dn\nXacNdVv0QtlqPVz4hE6JWaTL0y/8zN16tjXs0o6m3UoOTNQXEk87sQVj0pybfKa2NOzQvyre1sKo\neV53AcKoc1Qdg51qHWhTS3+7Wgfa1NrfNvG5c6j7mNtZjBaFWh1KDkrUmQmnTnHVUy8pMEEl7eWq\n7K5Wtpfti8M92gba9addD6t7qEdXZFykxdG57i5pSs0Ky9atOTfqwT1/10MF/9BXZn1Jc8Jnubss\nr+ByuTQ4OqSB0QENjAyqf2TgGLcHxm6PDGpg9OjbTpdTUf6RirfHKC4gRnH2GEX6hU+r7jmdg916\np2qtPqjdpGHniBy+wTo36Qwtil5wUgd+jsVkNGlh1HzlRc7T3rYSvV25VvvaSrWvrVSJAfE6M/FU\nzQ2fJaOBfjKeglc4AGBSZIWka19bqYrbyrQoesEn3v9gV7UCfQIU7Bs0BdVhMoXaQmWQgfDPNJXf\nXKiWgTYti1mkQJ8Ad5dzQpyTtFKb6rfpjYPvalHUAllMFrX2t2t/Z4XSg1PksAa7u0ScYAaDQV/O\nvkL1fU1aW7NBNrNNb1e+pyCfAF2WdoG7yzuphdoc+t6C2/VIwT9V0LJPf9z1V92Wc9NxBYHx+VR3\n10qS4gNi3VzJiZXhSJUklXbs15IYzx1VOR10DHbqgT2PaXB0SF+Z9WUlB01e6D41OEk/yrtTz5Ss\n0o6m3frV1j/qmqxLP1Mgl5FfgOdbFJ2rNyvXaHP99s8c/ukfGdDjRU+psLVYkX7hujXnRkX4hZ/g\nSo+fwWDQstjFSg1O1mNFT2lD3Rbt76jQTTOv/dTjN9sG2vVs6UvyNfnohhlXT6uTZ/h4gT4BOivh\nNL1W8W+9U7VOF6R8wd0lfSoul0tdQ93j4Z42tfa3q22gTS0D7Wrtb1P7YMcxu3kaDUY5fIOV4UhT\nmNWhUFuIQq0hE58DfewyGAxueEbucWif6mBnFeEffG5dQ926L/9htQ926MKUc3RanOdfuPdZZIdk\n6PY5N+uBPY/pkcJ/6qaZ1/J+YNzAyKD2t7Wprq1VA6ODHxHWGdDA6OAxb7v06bu5GA1G2UxWWc1W\nmQxGlbaXq7S9fOL7FqNZMfbo8UBQrOLsMYq1R8tniju/HSv0c07SSi2OziX08wkMBoNmhmZpZmiW\nKjqr9E7VWu1uLtLfCv+pOHuMvp/7Df4OPQT/SgCASZHlGLv6rqS9/BPDPx2DneoY7FRO2MyT6uCA\nt7IYzQqxOtTM2K9px+Vy6e3K92SQQWckrHB3OSdMkG+gTo1bqneq3tcHtZu0MmGFdjTmSxIjv7yY\n1WzV12Zfr99su09vHHxHknRV5qXys/i5uTLYzDbdPudmPVOyShvrt+m32+/XbXNuUqw92t2lebWq\n7hpJ3hf+ifaPlN3ir9L2/XK5XOwrfkYDI4P66+7H1DHYqYtTz5uSA+d+FptumnmtskMz9Vzpy3qs\n6CntbS3RlRkXfarOCIz8AjxfhF+YUoOSVNq+X6397Qq1OT7V9i39rXpgz+Nq6G1UdkiGbp75pRM2\nsvDzivaP1PcXfEMv7/+X1tZs0G933K9LUs/XqXFLj+v/LKfLqX/sfVb9IwP6UtblCvcLnYKqcSKt\nTFihdbWb9G7V+1oeu3jahd77R/rV3N+q1sM697QMfBj0GXaOHHO7IJ8AJQXGHxHqCbM5FGoNUbBv\nECG1wySNdzE/2FXl5kpOXk6XU91DvbJb/Dz6tdk33Kf78x9RU1+Lzko4TWcnnu7uktwqw5Gqb8z5\nqv6y+296tPBJjcwY+VwdBD3Z0OiQCluLtbNxtwpbizXsHD6u7QwyyGq2ymrylcM3SFb/SFnNvhNB\nnrHbNlnNvrKarbKN39dmHv++aexrFqP5iP2a/pEB1fbUq7q7VjXddaruqVV1d+3EdIdDjx3pHzHR\nISjeHqu4gBj5T8Jxu66hbr1duVYf1G7WsHNYDt9gnZ20UksI/XwmyUEJumX29Wrsa9a7VevUMdgp\ngzgW4yl4xQMAJkWMPUoBFruK20o/8UTNwfGdQmbae48IvzDtayvVwMiA17W99mRlHftV1V2rueGz\n3HqV7GQ4K/E0ra/drLcq39PSmIXa1rhLZoPppJmJfrKK9AvXjTOv1oN7/q7cyLmaEz7T3SVhnMlo\n0rVZlyvMFqpXD7yp/7fjL/rqrOsYyTaJvLXzj8FgUHpwinY1F6ikvVyZjjQCQJ+S0+XU43ufUnVP\nnZZGL5zS8RsGg0FLonOVGpSox4qe0paGHTrQeVA3zbz2uPb9GfkFeI/F0bna33lQWxt26NzkM497\nu7L2/Xq48An1Dvfp9LhluiTt/Gl3YtdisuiKjIuUFZKuf+57Xs+XvaJ9baX6cvYVCvCxf+y2a6o/\nUFnHAc0Jm6kl0XS480S+Jh+dn3yWni5Zpdcr3ta1WZe5uyQNO0e0p7lIm+q3qbit7JhdHvzMNkX5\nR46HexwKOyzkE2J1THm3Bk8W4GNXqNWhiq4qwuqTaMQ5otaBdrX0t6q5v1Ut4x/N/W1q7W/VsHNE\noVaHrsy4WLPCst1d7qc2MDKov+x+VLU99VoWu1gXpZ7La0ljHUW/Oe8W3Z//N/1j77MacY5q6UnS\nEXZ4dFhFbSXa2bhbBS17NTQe+In0C9e82JkyjljGwzrjIZ6JsI7vRHDH1+QzKa8jm9mqtOBkpQUn\nf1ivc0QNvY2q7q5TTU+tqrvrVNtTp4beRm15s/4EAAAgAElEQVRr3DVxP4dvsOIDYscDQTGKD4hV\nsG/QZ6qza6hb71S+r3W1mw4L/ZyuxdF5shD6+dwi/cKnxX4NPh1e+QCASWE0GJUZkqbtjflq6GtS\ntH/kR973UCI8ifCP1wi3hWmfStXc3+p1JyE92dtV70uSzkw4zb2FTAK7xV8rE1boXxVv66niF1XX\n26A5YTPpAnMSmB02Q/9zyn994okVTD2DwaCzk1Yq1BaiJ/Y9p7/seVRXZ16iU2IWubs0r+NyuVTd\nXatQq2NSrqJzt7kRs7WruUD35T+seHuMlsUuVm7kXALGx2lV2WsqaNmnLEe6rs68xC0nESL8wvW9\nBXfotQP/1ttVa/W7HX/WhSln68yEU2U0GD9yO0Z+Ad5jfkSOni99RZvrt+ucpDOOay3aULtFz5S+\nJEm6NvMynRI7vfchZofN0H8u/I7+sfdZFbbu06+3/kHXz7haWSHpx7x/bU+9Vu9/UwE+dl2TdRkn\neT3Ykug8raler411W7UyfpmiPuYY2GSq7anXxrqt2tawS70jfZLGutIkBsYd1cHHZp4e3bO8RVJg\ngnY07VZLfxsdvD6HgZEBNfe3HRbs+TDk0zbQccwgm81sVZR/pAJ9ArSvrVQP7HlMc8Jn6Yr0L3rM\nGPjh0WE9VPB3VXRVKS9ynq7KuJj/Ew6TFJigb827RffnP6Ini5/XqGtEy2OXuLusSTHsHFFxW6l2\njAd+BkYHJUnhtlAtiJij+ZFzFOMfpYiIQDU3d7u52iNZjGbFB8SOnwsYC2g5XU619LeOB4LqJjoF\n7Wkp0p6Woolt/S1+ijusQ1B8QIwi/MI/8r1i91CP3q5aq3U1Y6GfYN+g8fFehH4AfgMAAJMm05Gu\n7Y35Km4r+9jwz8HOKhlkUGJg3BRWh8l06Mrspr5mwj/TRG1Pvfa2ligtOHliHr23WRm/XO/XbNCO\npt2SpNwoRn6dLKZba30cKTdyrhy+wXqw4HE9VfyiWvrbdGHK2R97wh+fTsdgp3qGe4+46s6b5EbO\nlb/FT+trN2tPy149XbJKq8pfU17UfC2PWay4gBh3lzhtra3ZoPdq1ivKP1Jfnf1lt3bLMBvNujjt\nPGWFpOsfe5/RK/vf0L62Mt0w4yoF+wYdcxtGfgHew2q2am7EbG1t2KnyjgqlO1I+8r6jzlG9VP66\n3qtZL3+Ln26ZdZ3SHalTWO1nF+QbqDvmfkXvVq3Tqwfe1P35j+jMhFN1QcoXjhg7MTw6rMeLntaI\na1RfzvrkDkGY3kxGky5OPVcPFvxdL+9/Q7fm3Dhlj9033K/tjfnaVL9VVeOdIAMsdp2RsEJLovM+\n9ngcTpykoLHwz8GuKsI/H8PlcqlnuFfN/S1q7vuwc8+hgE/3cM8xtwvyCVBKUKLCbKEKH/8I8wtV\nmC1U/ma/iaBMXU+DnilZpd3NhdrXVqrzk8/S6XHLpl3HuMONOkf1t6InVdJerpywmbou+0reKx9D\nQkCcvj3v67pv18N6puQljThHdXr8MneXdUKMOEdU3FamnU17tKelSP0jA5KkUKtDy2OXaH5kjuLt\nsR4ZCDMajIrwC1eEX7gWRM6Z+HrnYNdYEKinbiIYVNJerpL28on7WIwWxdqjj+gQFOgToLU1G7Su\nZqOGxkM/Zyeu1JIYQj/AIfwmAAAmTVZImiSpuK3sI3fGnS6nqrprFOkXzlVHXuTD8E+rmyvBIe9M\ndP2ZulEfU81mtuoLiafrpfLXZTVZNTvU89o8A94qNThJdy24Qw/sfkz/rnxPrf1tui77SlkYJ3BC\nfDjyy3uD1NkhGcoOyVDHYKc21W3ThrqtWl+7WetrNyspMEHLYhdrQUSOfEw+7i512ihs2acXSl9V\ngMWu23Numjb72lkh6frRwu/oyeLnVdCyT7/a+gd9KeuKo0Y3MvIL8D6Lo3K1tWGnNjds/8jwT99w\nvx4telL72koV5R+p23JuVJjNs06kGw1GnZV4mjIcqXq06Cm9XbVWJe3lumnmtRPr2asH3lRdb4OW\nxS72yPE0ONrssBlKDUpWQctelXdUTGoo2+lyqrzjgDbWbVN+c4GGnSMyyKBZodlaGpOnWaHZ0zrs\n4I2SAscusqroqlLeSX4hktPlVNtAxzHGc419HhwdOmobo8GoEKtDcQExCrOFKswWMh7yCVOYLeS4\n9/Fj7FG6c/6t2ly/Qy/vf10vlb+uLfU7dE3WpUoJSjrBz/Tzc7qc+se+Z1XQsleZjjTdPPNafnc/\nRqw9WnfO/7r+tOshvVD2qkacIzor8TR3l/WZjDpHVdq+Xzuadmt3c6H6RvoljY3EWhq9UPMjc5QY\nEO+RgZ/jEeQbqCDfwCP2gfpH+lXTXf9hh6CeOlV11+hgV9VR2wf7BumSxNO1JGYhoR/g/+A3AgAw\naUKsDkX4hamsY79GnaPHfPPS0NukgdFBJTLyy6uE28YOaDb3t7i5EkhS+0CHtjfmK8o/UjNDs9xd\nzqRaEbtUu5sLlR2SQagAmGYi/ML1vdw79NCev2tH0261D3bo67NvlN3H392lebwPwz/e320v2DdI\n5yafqbOTVqqotVjrazerqLVEB7uq9GLZai2Kmq9lsYtP+qvcq7vr9LeiJ2U2mnTrnBsVagtxd0lH\nCPCx6+uzb9QHtZu0qvw1PVTwd62IXaJL0i6Qz/j/34z8ArxPuiNFIVaHdjbt0RXpF8lq9j3i+019\nzfrrnsfV2NesmaFZumnmtbJ58IjHxMB4/Sjv23qu9BVtadihe7b9UVdlXKJg3yCtqf5AEX5hujTt\nAneXiRPEYDDokrTz9bsd9+ul8td114I7TvhJ2/aBDm2u36HN9dvUMtAmSYqwhWlJdJ4WRs//yE56\nmHzx9hiZDKZjnqQ+GdT1NGh7Y752txSpua9Fo67Ro+7jY7RMdO4JG/8It4Uq3C9UDt/gExZ6MRqM\nWhqTp5zwGXql/F/aWL9Nv9/xFy2NXqiL0s6V3TI93n+6XC49W/qytjfmKzkwUV+bfQPHsY5DlH+k\n7px/q/5310N6ef+/tKu5QLH+UYr2j1S0f5Si7ZEK8gmclqEZp8upsvYD2tG0W/nNBeodHhvPGOQT\nqNPjFmh+5BwlBcaftJ2fbGab0h0pRwTEh50jqu9tUE33WIeglv5WzQrL1lJCP8BH4jcDADCpshwZ\nWle7URVdVce86qmyq1rSh1fIwDuEWh0yGoxq6iP8Mx2sqf5ATpdTZyac6vVvIH1MFn1vwR3uLgPA\nR7Bb/PXNubfon8XPa3tjvn63437dPudmRfiFu7s0j1Y1Ef45ecZfGQ1GzQ6bodlhM9Ta366N9Vu1\nqW6r1tZs0NqaDUoNStby2MWaGzH7pDso2DHYqb/ueUxDo0P66qzrpu1+tsFg0Iq4pUoLTtFjRU9p\nXe0mlXYc0M0zr1WsPZqRX4AXMhqMWhS1QG8cfEf5zQVaHJ078b3itjL9rfCf6hvp1xkJK3Rx6nle\n8d7Farbq+hlXKTskQ8+UrNI/9j0ri9Eso8GoG2dcI1861nmV5KAEzYvI0a6mPdrVXHBCAqzDzhEV\ntOzVprpt2tdWKpdc8jFatChqgZbGLFRqUNK0PMl9srGYLIqzx6imu07Do8MnRYijpb9NOxrztb0x\nX3W9DZLGAj7xAbETnXs+DPmEKdDHPqWvVbvFX1/KvkKLo/P0TMkqbazfqj0tRbo49Twtjs516++N\ny+XSy/v/pfW1mxVrj9btc24+KhCLjxbhF67vzL9Njxc9rcru6onzC4fYzLbxMNDYR8x4KCjAMrWv\nQWks8LO/o0I7m/ZoV1PBxGi7AB+7VsQu1YLIOUoJSvSKfZ7JYDGalRAQpwQv7nIMnGgn1xEwAMCU\nywpJ07rajSpuKztm+OfQFTFJdP7xKiajSWHWEDX1N7u7lJNe33CfNtRtUZBPoPIi57q7HACQxWTR\nDTOuVpg1RG9WrtHvtv9ZX8u5YVJHI3i76u5aBfsGKdAnwN2luEWozaELU87WeUlnqqBlrz6o3azi\n9jLt76yQf9krWhydq2Uxi06KkNnAyKD+uvsxdQx26uLU8zQvYra7S/pEMfYofT/3m3p5/+t6v2aj\nfrP9Pp2ffBYjvwAvtTh6LPyzuX77RPhnXc1GPV/2qgwy6MvZV2rJYaEgb5EXNU/JQQl6tOgpVXZV\n64LkL9AB2Ut9MeUc7W4u1Kv731BO2AyZP2MIubanXpvqt2lrw86J7hDJgQlaEp2n+ZFzPLorlrdK\nCkpQZXe1anrqlByU6O5yJkXXULd2Nu7R9sZ8VXRVSpJMBpNmh81QXuRczQqbMe1CjanBSfph3rf1\nXs16vV7xtv5Z/Lw21W/X1ZmXKMYe5Zaa3qpco3eq3lekX7i+OfcW+Vmmx3heTxJmC9FduXdoxDmi\npr4W1fc2qL63UfW9jarrbVBFZ6UOdB48Yht/i99Eh6CYiXBQ1AnvRux0OVXRWTXW4adpjzqHuiWN\nBdIOjatOC04h8ANgUhD+AQBMqgxHqgwyqKS9TBfoC0d9v7KrWmajWbH2aDdUh8kU7hemptZi9Q33\nyc/i5+5yTlof1G7W4OiQzk068zMfdASAE81oMOrC1HMUagvV0yUv6r5dD+nL2VcqL2qeu0vzOJ2D\n3eoc6tLssGx3l+J2JqNJcyNma27EbDX1tWhj3VZtqt+md6vW6d2qdcp0pGlZ7GLNCZt5wsYKTCdO\nl1OPFT2l6p46nRKzUGcmnOruko6bj8miKzMuVnZIhp7Y95xe2f+GJDHyC/BCYbZQpQenqKzjgJr6\nmvVe9Xqtq90ku8VfX5t9g1KDk9xd4qQJs4Xqe/NvV21vveLt3j+q82QV4Rem5bFL9H7NBq2v26LT\n4k457m37R/q1vTFfm+q2q7J7rJOF3eKvM+JXaHF0rtuCCjg+SYHxel/Swa5qrwr/9A33a3dzobY3\n5qukvVwuuWSQQRmONOVFztXc8FnT/rifyWjSmQmnakHEHD1f9qp2Nxfq19v+qDPiV+jc5DOnNLC0\ntnqDVh94Sw7fYH1z7i0K8LFP2WN7I7PRrBh71FHr4/DosBr7micCQYdCQfs7Dqq8o+KI+wZY7GNB\nIHvUYd2CIj/V69rlculgV7V2Nu3WzqY96hjslCT5m/20NHqhFkTOUXpwile+DwUwvXAGCAAwqWxm\nm5IC43Wwq1r9I/2ymT+8kmFodEi1vQ1KDIhnx9cLRfiFqahVaupvUZJleo6b8HbDo8NaW7NBVpNV\ny2IXubscADjK0pg8hViD9XDBE3p879NqHWjT2YkrGV3wKdT0jI/84iTiESL8wnRx2nk6P+UL2t1c\nqPW1m1XSXq6S9nIF+Ni1NHqhTolZqFBbiLtLPWFeLFutwtZ9ynKk66qMSzzy92h22Az958Lv6Im9\nz6myu1q5dC0EvNKi6FyVdRzQ77b/Wb0jfYq1R+vrs29UqM3h7tImncloYnTFSeDcpDO0pX673qh4\nR4uiFnxslx6Xy6WyjgPaVL9Nu5oKNOwclkEGzQrN0pKYhZoVmsWFPB7i0KjVis5KnR6/zM3VfD5D\no8MqbN2n7Q27VNRarBHXqKSx55gbOVfzI3IU5Bvo5io/PYc1WF+bfb0KWvbqudJX9HbVWm1vzNeV\nGRcpJ3zmpD/+pvrter7sFQX6BOhb874mhzV40h/zZGUxWRQXEKO4/zMae2h0SA19TarvORQKGusY\nVNqxX6Ud+4+4b5BPgKLHR4Yd6hIU7R85saa7XC5VdddoZ9Me7Wzao7aBdkmSzWzV4qhczY+coyxH\nGuc9AEwp9hoBAJMuKyRdFV1VKms/cMQbqeruOjldTiUF0eraG0XYxkY0NPW1TBwAwdTa2rhTXUPd\nOivhtCOCdwAwnWSFpOt7C27XX3Y/qtUH3lJzf6uuzbyMA2THqbp7PPwTQPjnWCxGs3Ij5yo3cq4a\nehu1vm6LttTv0FuVa/TvyveUHZqh5TGLNTM0y6Nfc2urN2htzQZF+0fqq7O/7NHPJdg3SN+cd4tG\nnaMe/TwAfLR54bP1XOnL6h3pU07YTN0w42pZzb7uLgs4YQJ87Dor8XStPvCm3qlcqwtTzznqPh2D\nndpcv0Ob6reppb9VkhRuC9WS6Dwtil6gYN+gqS4bn1O4LVT+Fj8d7Kp2dymfyahzVMXtZdrWkK89\nLYUaHB2SJEX5Ryovcq4WRMxVuF+om6s8MWaHzVCmI01vHHxX71S9rwcL/q7ZYTN0RfpFkxZE3dVU\noCf3PS8/s03fmPtVRtu6iY/JRwkBcUcFcQdGBtXY16S6Q4Gg8XBQcXuZitvLjrivwzdYUf4Rau5v\nnVi/rSZfLYyar/kROcoKyZCF0CYAN2H1AQBMukxHut44+K6K28uOCP8c7KqSJCUFEP7xRuF+H4Z/\nMPWcLqfeqXpfJoNJp8Uff5txAHCHGHuUvp/7Tf11z2PaXL9d7QMd+uqs6+RnIbj4SQ6FfxIC6SLw\nSaL8I3V5+hf1xZRztatpjz6o3ay9rSXa21qiYN8gLY0Z6wbkaSfbClr26oWyVxXgY9dtOTd5TeCX\n4A/gvaxmX90w42p1DXZpWexiGQ1Gd5cEnHAr45dpXc1GvVv9gZbHLVGwb5BGnCMqaNmnTfXbtLe1\nRC65ZDFatChqgZZE5yktONkjO/dhjMFgUFJggopai9U91OMR45ycLqf2dxzU9qZ87Wrao97hPklS\niNWhU+NOUW7kXMX4R3nl69LH5KOLUs/Vwqj5erbkJRW07FVJW5nOSz5LK+OXn9B90b2tJXqs6Cn5\nmCy6Y+5XFGuPPmE/GyeG1eyrxMB4JQYeeZ6if2RADYePDusZ6xS0r61UPiafiU5YM0IyZTFZ3FQ9\nAHyI8A8AYNIlByXIx+Sj4rbyI75eOX4lTFIQXWG80aHOP839hH+mWl1Pg9bWbFBTX4sWR+d63ElM\nACenIN8A3Tn/Vj1e9LT2tBTp9zv/ottzbj4pRoB8HtXdtQqw2BXk43lt993Fx2TRougFWhS9QLU9\n9Vpfu1lbG3bqXxVv682D72pWaLaWxS5Wdkj6tD8hXd1dq0eLnpLZaNatOTd61RgzAN5tbvgsd5cA\nTCofk48uSDlbTxY/r+dLX1WINVhbG3aqZ7hX0tj4pCXRuVoQOfdjx4LBsySPh38OdlVpdtgMd5dz\nTC6XSzU9ddrWuEs7GnerY7BTkhRgsevUuKXKjZyn5MAErwz8HEu0f6S+Pe/r2tqwU6vKX9PL+/+l\nLQ07dHXmpUoLTv7cP7+8o0IPFfxDRoNBt+bcRHd0D2MzW5UclKjkoMQjvt433C+L0UzgB8C0Q/gH\nADDpzEaz0oNTVNRarPaBjol5xge7qmS3+CvUykkKb+SwBstsNNP5Z4r0jwxoR2O+NtZvmwjWBfkE\n6uzElW6uDACOn6/JR7fMvk6ryl/Te9Xr9dsd9+m2nJuOuvoOY3qGe9U60K4ZIZknzcH5Ey3WHq2r\nMi/RRannaUdTvtbXbtaeliLtaSlSqNWhU2IWaUlMnsIV4O5Sj9I+0KEHdj+m4dFhfWXWlzmRAADA\nNLM4eoHWVK9TfnOBJMlu8dfK+OVaEp2nGHuUm6vDZDi0P3awc/qFfxr7mrW9MV87GvPV2NcsSbKa\nrFoclavcqLnKCE49aTsvGgwGLYpeoFlh2Xpl/xvaULdFf9j5gBZH5+qS1PNl9/H/TD+3qqtGD+x+\nTKOuUX199g3KcKSe4MrhLnQpBjBdEf4BAEyJrJB0FbUWq7i9XEuic9U91KPWgXbNDM3iZJWXMhqM\nCrOFqrm/RS6Xi3/nSeByuVTeUaFN9du0s2mPhp3DMsigmaFZWhqdp1lh2TIzYxqAhzEajLo8/YsK\ns4XqhdJX9Yedf9VNM6/VnMNGh2JMTXedJCk+INbNlXg+q9lXp8Qs0ikxi1TZVa31tVu0vXGXXj3w\npl6r+Leyw9OUYk9WpiNNCQFxbj8xMjAyqL/ueVydQ126JO18zYuY7dZ6AADA0YwGo67LvlLv12zU\n7LAZms17dK936KKFiq4qN1cypn2gQzuadmtHY76qxscFW4xmzYvIUW7kXM1kVNER/C1+ujbrMi2J\nztXTJau0uX67Cpr36qK0c7UkOu9TdQWt723U/bsf0eDooG6aeY1mhWVPYuUAAIxhTxMAMCWyHOmS\npOK2Ui2JztXB8TfBXMnv3SJsYWrobVTPcK9HzDr3FB2Dndpav1Ob6repaXysWpgtVEui87Qoav5E\ndy0A8GSnxZ2iUKtDjxY+qYcL/qFL0y/Q6XHLCJMepnr8AD7hnxMrMTBeiYHxujT9fG1r2KVN9du1\nt6lMRU2lWq23ZDVZle5IUZYjXZkhaYryi5jS16XT5dRjRU+qpqdOp8Qs0hnxK6bssQEAwKeTGBiv\n62dc5e4yMEX8LDZF+kXoQGelHi96WiaDSSajSWajaey24dBts0xGo8wGk0xGs0wGo0xG8/ifD7/f\nYbcPff2wbcxG84ePYTDJaDCqd6RPu5oKtKMxX+UdFXLJJaPBqBmhmcqNmKuc8JmMmvsEyUGJ+kHu\nt/R+7Ua9duAtPVX8ojbXb9fVmZcq1h79idu39Lfqvl0Pq3e4T9dmXaYFkXOnoGoAAAj/AACmSLR/\npAJ9AlTSVi6XyzUxlojxBN4t3C9UktTU10L453MadY6qsHWfNtZt0962EjldTlmMZuVFztfSmDyl\nBSd/qiuQAMATzA6boe8suE1/3f2YXixbrZb+Vl2e/kXWu3GEfyaXzWzTirilWhG3VNZAgzaW71ZJ\nW5lK2stV0LJXBS17JUlBPgHKGA8CZTnSJj2E+0LZahW2Fis7JENXZVxMIA4AAGAayQmbober1mpb\n4y53l6LUoGTlRs7VvIjZHJf7lExGk1bGL9e88Nl6sWy1djUX6J5t/6vT45bpvOSzZDX7HnO7jsFO\n/WnXw+oc6tJlaRfolJhFU1w5AOBkRvgHADAlDAaDMh3p2ta4U3W9DTo4Hv5JDIxzc2WYTJG2cElS\nU3+LUoOT3FuMh2robdLG+q3aWr9T3cM9kqSEgDgtjclTbuRc2czMmAbg3RIC4nRX7jf0wO7H9H7N\nRrX2t+ummdd+5MHWk0l1d638zDaFWh3uLsXrBfjaNT8iR/MjciRJrf3tKmkvV0l7mUrayrWtcae2\nNe6UJEX4hSnTka4sR5oyHKnys/idsDreq16v92s2KNo/Ul+Z9SW3jx8DAADAkS5KPVdnJKzQiHNE\no65RjThHNeoa1ahzVCPjn8e+PqJRl/PD24e+fth9jt5mVKOuEY06nRpxHdrm8NujMmqsy8+CyDkK\n4X3C5+awBuurs69TUWuxnit5We9Wr9OOpt26IuMizQmbeUQQv2eoV/ftelitA206L+lMrUygQycA\nYGoR/gEATJmskDRta9ypfW2lOthVrXBbqOwWf3eXhUkU7hcmSWrua3FzJZ5lYGRAO5v2aFP9Nh3o\nrJQk+Zv9dHrcMi2JyTuuFsMA4E1CrA59d8Ht+lvhP1XYuk9/3PmAbpx5jaL8I91dmtv0jwyoqb9F\nmY40Or+4QajNoaW2PC2NyZPL5VJ9b6OKx4NAZR379UHtJn1Qu0kGGRQfEKtMR5qyQtKVEpQkH5Pl\nMz1mQctevVi2WgE+dt2WczMBYAAAgGnIYDDQZccLzQzN0n8t+p7eqlyjtyvX6uGCf2hWaJauyLhY\nYbYQ9Y/06/7dj6ihr0kr45frvOSz3F0yAOAkRPgHADBlskLSJUkb6raof6RfM0Mz3VwRJlvEePin\nqd894R+Xy6X2wQ65XJLDGjStx8S4XC4d6KzUpvpt2tG0W0OjQzLIoOyQDC2JzlNO+ExZjOy6ATh5\n2cxW3ZZzk54tfUkb6rbq7i3/T3PDZ+nspDMUHxDj7vKmXE13nSRGfk0HBoNBMfYoxdijtDJ+uUad\no6rsrlZJW7mK28tU0Vmlqu4avV21VmajWSmBicoMSVemI00JAbHH1b2nurtWjxY9JbPRrNtyblKo\njau4AQAAgKnkY7LowpSztTBynp4pfVmFrcUq2fJ7nZN0hva2Fqu6u1ZLo/N0adoFXKABAHALziAB\nAKZMsG+Qovwi1NDXJElKCkxwc0WYbEE+gfIxWtTU1zzpj9U33K+63gbV9dSrtrdBdT0Nqu9tUP/I\ngCTJbDAp1BaqcFuowv1CFW4LG7ttC1OINdhtYzM6B7u1tWGHNtVvV+P470ao1aHFCadqcXQuLZoB\n4DAmo0nXZF6mmaHZevPgu9rVXKBdzQWaFZqtc5JWKjko0d0lTpnq7hpJhH+mI5PRpJSgJKUEJenc\n5DM1ODqk8o6KiRFhpR37VdqxX6s1FmpLD04d7wyUpki/iKNOFLQPdOiB3Y9peHRYX519nRID493z\nxAAAAAAo0j9C35p7i7Y17tKqste0+sCbkqT5ETm6Jusygj8AALch/AMAmFJZIemHhX84ceHtDAaD\nwv3C1NzfKpfLdULe/I44R9TY16zannrV9TSMB34a1D7YceRjy6AIv3BlhWTIZDCqua9VTf0tYwGb\n1iN/ptFgVKjVMRYI8gtV2KGQkC1MobaQE95xZ9Q5qr1tJdpYt02FrfvkdDllNpqVGzlXS6LzlOFI\nndZdigDAnQwGg+aEz1RO2AztayvVmwffVWHrPhW27lOmI03nJJ2h9OAUrz/gWkXnH4/ha/LRzNDM\nia6XPUO9Ku3Yr+K2MpW0l2tPS5H2tBRJGgtOZ4akKdMx9mEzW/XXPY+rc6hLl6Sdr7nhs9z5VAAA\nAABo7H3pwqj5mhWarTcOvqNh54guT7+Q43kAALci/AMAmFJZIelaW7NBJoNJcfaTb0THySjCFqba\nnnp1DnUp2DfouLdzuVxqG+hQXe+RIZ+GviY5Xc4j7hvkE6DskAzF+I+N3Ii1RyvKL0IWk+Won9s7\n3Kfm/hY197WOfe5vVXNfq1r6W7W3rURqO/L+BhnksAaPh4FCFe73YcegMFuIfEw+x/2cGvuatalu\nm7Y07FDXULckKd4eoyUxC5UbOVf+Fv6bJWAAABElSURBVL/j/lkAcLIzGAyaEZqpGaGZKms/oDcP\nvqvi9rEwRUpQos5JOkMzQjK9NgRU3VMrX5OPwm2h7i4Fn5Ldx1/zI3I0PyJHktTa36aS9nIVt5Wp\ntH2/tjbs1NaGnZIkm9mm/pF+LYtZpDPiV7izbAAAAAD/h5/FpsvSL3R3GQAASCL8AwCYYunBKbIY\nzYqzxx4zmAHvE+4XJklq7mv5yPDPJ43sOsTH5KOEgLgjQj4x/lGy+/gfdz3+Fj/5WxKOOXauf2RA\nLf2t44Gg8WDQeFCopL1cJe3lR20T7Bv0YTDIFqawiZFiIbKarRocHdLOpj3aVLdN+zsrJI2dyFsR\nu1RLY/Lo2AAAJ0C6I0XpjhQd7KrSmwfXqKBlr/6y+1HFB8TqnKQzlBM2w6uuwBwcHVJjb5NSgpK8\n6nmdrEJtIVpqW6ilMQvlcrlU19ugkvGuQGUdBzQrNFtXZlzstUE2AAAAAAAAfH6EfwAAU8pqturO\n+bfK33z8YQ14tgjbWPinqa9FyUGJn3pkV6x/lGLs0Yq1RynE6pjUk5w2s1XxAbHHDOQMjg4dIxg0\ndru8o0JlHQeO2ibAYteQc0iDo0OSpExHmpZG5yknfJZ8CL8BwAmXFJigW3NuVE13nd6qXKNdTQV6\nuOAfivaP1NmJKzU/Ikcmo8ndZX5utT31csmlhEACpN7GYDAo1h6tWHu0ViasOGFjUwEAAAAAAODd\nCP8AAKbcsTquwHsd6vzz8v5/6ZnSlz52ZFesPVox9qiPHNnlTr4mn4mTcf/X8OiwWgfaDgsEfThS\nzFe+Whk5V4uj8xRmC3FD5QBw8okLiNFXZn1ZDb1N+nfle9rWuEuP731ar1f8W19IXKmFUfNkNnru\n2+Hq7lpJUryd8I+3I/gDAAAAAACA4+G5RzsBAIBHiLVHy27x15BzeGJk16GQT4w9SnaL53eBspgs\nivKPVJR/pLtLAQAcJso/QtfPuErnJZ+ltyvf0+b67Xqy+Hn9q+JtnZV4mpZG5027sOnxqOqukSRG\nRwIAAAAAAACQRPgHAABMMpvZql+d8mMZDIZJHdkFAMBHCbOF6Jqsy3RO0hl6t2qd1tdt0XOlL+vN\ng+/qjIQVWhazWFazr7vLPG7V3bWyGC2K9At3dykAAAAAAAAApgHCPwAAYNKZjCZ3lwAAgBzWYF2e\n8UWdnbRSa6o/0Ps1G/RS+ev6d+V7Whm/XCtil8rPYnN3mR9reHRY9b2NSgyI4/9XAAAAAAAAAJII\n/wAAAAAATjIBPnZdlHquzkw4VWtrNmht9XqtPvCW3q58X6fFLdXp8ctl95meYynrehvkdDkZ+QUA\nAAAAAABgAuEfAAAAAMBJyd/ip/OTz9IZ8cv1Qe1mvVu1Tm9WrtGa6g+0LHaxzkw4VUG+ge4u8wjV\n3bWSRPgHAAAAAAAAwATCPwAAAACAk5rVbNVZiafp1Lil2lC3Ve9Uva811R9oXe0mLY3O05kJpynU\n5nB3mZIOD//EubkSAAAAAAAAANMF4R8AAAAAACT5mHx0evwyLYtdrK31O/RW5XtaV7tJ6+u2aGHU\nfJ2deLoi/MLdWmN1d53MBpOi/SPcWgcAAAAAAACA6YPwDwAAAAAAh7EYzToldpEWR+dqe2O+3qp8\nT5vrt2tL/Q4tiJyjnLCZCrEGy2ENVqBPgIwG45TUNeocVW1vvWLsUTIbeTsPAAAAAAAAYAxHCwEA\nAAAAOAaT0aRF0QuUFzVP+c2FevPgu9remK/tjfkT9zEajHL4BslhDZbD1yGHNWgsGOQ7Fg4KsQbL\nZradkHrqexs14hxRfEDsCfl5AAAAAAAAALwD4R8AAAAAAD6G0WDU/IgczQufrdL2/arrbVD7YIfa\nB8Y+2gY6tL/joFyqOOb2VpNVIdZgBVuDFOIbLIfVMR4QCpLD6lCwb+BxdfKp7q6VJMI/AAAAAAAA\nAI5A+AcAAAAAgONgMBiUGZKmzJC0o7434hxR52CX2gY6JoJBbYcFhNoHO1TX23DsnyuDAn0CxroH\nWYPHA0JH3rZb/FXdQ/gHAAAAAAAAwNEI/wAAAAAA8DmZjWaF2kIUagv5yPv0j/SrfaBT7YNj3YIO\ndQ3qGP9zVXeNDnZVHXNbi9Esl8a6EMX4R0/SswAAAAAAAADgiQj/AAAAAAAwBWxmm2x2m2LsUcf8\nvtPlVNdQ92EBoXZ1DHSOdxBqV9tAh7JDMuRjskxx5QAAAAAAAACmM8I/AAAAAABMA0aDUcG+QQr2\nDVKyEtxdDgAAAAAAAAAPYXR3AQAAAAAAAAAAAAAAAAA+G8I/AAAAAAAAAAAAAAAAgIci/AMAAAAA\nAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAA\ngIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAA\nAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAA\nAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMA\nAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAA\nAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KIPL\n5XK5uwgAAAAAAAAAAAAAAAAAnx6dfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAA\nAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAA\nAAAA8FBmdxcAHM7pdOpnP/uZSkpK5OPjo7vvvluJiYnuLgsAPpfdu3frd7/7nZ544glVVlbqhz/8\noQwGg9LT0/Xf//3fMhrJ4gLwLMPDw/rP//xP1dbWamhoSLfddpvS0tJY3wB4vNHRUf34xz9WRUWF\nDAaDfv7zn8vX15f1DYDXaG1t1aWXXqpHH31UZrOZ9Q2A17jkkktkt9slSXFxcbr11ltZ4wB4hQcf\nfFBr1qzR8PCwrrnmGi1cuJD1DcAxsRJgWnnnnXc0NDSkZ599Vt/73vd0zz33uLskAPhcHn74Yf34\nxz/W4OCgJOnXv/617rzzTj311FNyuVx699133VwhAHx6r776qoKDg/XUU0/pkUce0S9/+UvWNwBe\n4b333pMkPfPMM7rzzjv1hz/8gfUNgNcYHh7WT3/6U1mtVkm8PwXgPQYHB+VyufTEE0/oiSee0K9/\n/WvWOABeYcuWLdq1a5eefvppPfHEE2poaGB9A/CRCP9gWtmxY4eWL18uSZo7d64KCwvdXBEAfD4J\nCQm67777Jv5cVFSkhQsXSpJWrFihjRs3uqs0APjMzjnnHH3729+WJLlcLplMJtY3AF7hzDPP1C9/\n+UtJUl1dnQIDA1nfAHiNe++9V1dffbUiIiIk8f4UgPcoLi5Wf3+/br75Zl1//fXKz89njQPgFdav\nX6+MjAzdcccduvXWW3XaaaexvgH4SIR/MK309PRMtOaUJJPJpJGRETdWBACfz9lnny2z+cMpmy6X\nSwaDQZLk7++v7u5ud5UGAJ+Zv7+/7Ha7enp69K1vfUt33nkn6xsAr2E2m/WDH/xAv/zlL3XhhRey\nvgHwCqtWrVJISMjERXcS708BeA+r1aqvfOUr+tvf/qaf//znuuuuu1jjAHiF9vZ2FRYW6n//939Z\n3wB8IsI/mFbsdrt6e3sn/ux0Oo84aQ4Anu7w2bu9vb0KDAx0YzUA8NnV19fr+uuv10UXXaQLL7yQ\n9Q2AV7n33nv11ltv6Sc/+cnE+FaJ9Q2A53rxxRe1ceNGXXfdddq3b59+8IMfqK2tbeL7rG8APFly\ncrK++MUvymAwKDk5WcHBwWptbZ34PmscAE8VHBysZcuWycfHRykpKfL19T0i7MP6BuBwhH8wrcyf\nP1/r1q2TJOXn5ysjI8PNFQHAiTVjxgxt2bJFkrRu3Trl5ua6uSIA+PRaWlp088036/vf/74uv/xy\nSaxvALzDyy+/rAcffFCSZLPZZDAYNGvWLNY3AB7vySef1D//+U898cQTys7O1r333qsVK1awvgHw\nCi+88ILuueceSVJjY6N6enp0yimnsMYB8HgLFizQBx98IJfLpcbGRvX392vJkiWsbwCOyeByuVzu\nLgI4xOl06mc/+5lKS0vlcrn0q1/9Sqmpqe4uCwA+l5qaGn33u9/Vc889p4qKCv3kJz/R8PCwUlJS\ndPfdd8tkMrm7RAD4VO6++2698cYbSklJmfjaf/3Xf+nuu+9mfQPg0fr6+vSjH/1ILS0tGhkZ0S23\n3KLU1FT23wB4leuuu04/+9nPZDQaWd8AeIWhoSH96Ec/Ul1dnQwGg+666y45HA7WOABe4Te/+Y22\nbNkil8ul73znO4qLi2N9A3BMhH8AAAAAAAAAAAAAAAAAD8XYLwAAAAAAAAAAAAAAAMBDEf4BAAAA\nAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAAAMBDEf4BAAAAAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAA\nAMBDEf4BAAAAAADAlFu1apV++MMfursMAAAAAAAAj0f4BwAAAAAAAAAAAAAAAPBQZncXAAAAAAAA\ngOnroYce0htvvKHR0VEtW7ZM11xzjW6//XbFx8ersrJSMTEx+u1vf6vg4GC99957+uMf/yin06n4\n+Hj94he/UFhYmDZu3Kh77rlHLpdLMTEx+v3vfy9Jqqys1HXXXae6ujotWbJEd999t5ufLQAAAAAA\ngOeh8w8AAAAAAACOad26dSosLNQLL7ygl19+WY2NjVq9erVKS0t1ww036PXXX1dqaqruv/9+tba2\n6qc//an+/Oc/a/Xq1Zo/f75+8YtfaGhoSHfddZfuvfderV69WpmZmXrppZckSfX19brvvvv0xhtv\naN26dSorK3PzMwYAAAAAAPA8dP4BAAAAAADAMW3atEl79uzRpZdeKkkaGBiQy+VSUlKSFi1aJEm6\n+OKLddddd+mUU05RTk6O4uLiJElXXXWVHnroIZWUlCgyMlLZ2dmSpO9+97uSpFWrVik3N1fBwcGS\npISEBLW3t0/1UwQAAAAAAPB4hH8AAAAAAABwTKOjo7rhhht00003SZK6urrU0NCg73znOxP3cblc\nMplMcjqdR2zrcrk0MjIii8VyxNe7u7vV29srSTKbPzw0ZTAY5HK5JuupAAAAAAAAeC3GfgEAAAAA\nAOCYFi9erFdeeUW9vb0aGRnRHXfcocLCQlVUVGjfvn2SpBdffFErVqzQnDlztHv3btXU1EiSnn32\nWS1atEjJyclqa2tTeXm5JOmRRx7R008/7bbnBAAAAAAA4G3o/AMAAAAAAIBjWrlypYqLi3XllVdq\ndHRUy5cvV15enoKCgvSnP/1JVVVVyszM1N133y0/Pz/94he/0De+8Q0NDw8rJiZG//M//yNfX1/9\n9re/1X/8x39oeHhYCQkJ+s1vfqO33nrL3U8PAAAAAADAKxhc9FMGAAAAAADAcaqpqdH111+vNWvW\nuLsUAAAAAAAAiLFfAAAAAAAAAAAAAAAAgMei8w8AAAAAAAAAAAAAAADgoej8AwAAAAAAAAAAAAAA\nAHgowj8AAAAAAAAAAAAAAACAhyL8AwAAAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAhyL8AwAA\nAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAh/r/siyjDnpideMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss']) # get epoch length from any of the columns\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k]) # this is for train\n", + " plt.plot(history.history['val_' + k]) # this is for test\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0035122722055874436" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visually compare the delta between the prediction and actual (scaled values)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8leX9//HXmdl7QiaEvUEBRYaKiii4wIraClWL9Wtb\nbdVf1W9rreKotv3W1tVWK25ciAU3iuw9AgESCIHsvXdyzrl/f4REMZBFQkLyfj4efUhy7vu6Pydc\nxuad6/pcJsMwDEREREREREREpE8xd3cBIiIiIiIiIiJy5ikUEhERERERERHpgxQKiYiIiIiIiIj0\nQQqFRERERERERET6IIVCIiIiIiIiIiJ9kEIhEREREREREZE+SKGQiIiItElGRgbDhw/n6quvbvrf\nVVddxQcffHDaY99xxx0sX74cgKuvvpqysrJTXlteXs4tt9zS7md8/vnn/OQnP2nz9Vu3bmXOnDnt\nfk5P9/777/PWW291+P6MjAzGjx/fiRWJiIhId7F2dwEiIiJy9nB3d+fjjz9u+jg3N5c5c+YwatQo\nhg0b1inP+P74J1NaWsq+ffs65Vl90c6dOxk8eHB3lyEiIiI9gEIhERER6bCwsDBiYmI4duwYBw4c\n4IMPPqC6uhpvb2/eeOMN3n//fd555x1cLhf+/v78/ve/Jy4ujtzcXB544AHy8vLo378/hYWFTWMO\nHTqUzZs3ExgYyD//+U8++ugjrFYrMTExPPXUUzz44IPU1NRw9dVXs3z5co4dO8bjjz9OSUkJTqeT\nn/zkJ8yfPx+AZ599lpUrV+Lv709MTMwp38cHH3zAq6++itlsJiAggD/96U8nvF5eXs4f//hHEhMT\nMZlMTJs2jd/85jdYrVb+/ve/89VXX2Gz2QgICODJJ58kNDSUI0eOnLKuRhs2bOBPf/oTK1euBKCs\nrIyZM2eyevVqPvnkE5YtW4bNZsPNzY1HH32UQYMGnXB/QUEBDz/8MIWFheTn5xMREcHf/vY3goKC\nOHr0KA8//DBFRUWYzWbuvPNObDYb33zzDRs3bsTd3Z2ioiKKi4t5+OGHAfjHP/7R9PGePXt45pln\nqKurIz8/nylTpvDEE090fLKIiIhIj6NQSERERDps9+7dpKWlMXbsWDZv3kxycjLffPMN3t7ebNu2\njRUrVvDWW2/h4eHBhg0b+OUvf8mnn37Ko48+ytixY7nnnntITU3lmmuuaTb2119/zfLly3nvvffw\n8/PjySef5M033+TJJ59k7ty5fPzxxzgcDn71q1/x9NNPM3LkSMrLy7nhhhsYNGgQBQUFfPnll6xY\nsQJ3d3fuuuuuk76HxMRE/vznP/PRRx/Rr18/li5dyosvvsiVV17ZdM2SJUvw9/dn5cqV1NfXc+ed\nd/Kf//yHuXPn8tprr7F582bsdjv/+c9/2Lt3LxdeeOEp6xo3blzTuBdccAGVlZXs27eP0aNHs2rV\nKmbMmIG3tzdPPPEE33zzDaGhoaxYsYKdO3c2C4U++eQTxo0bx+LFizEMg8WLF/Pxxx9z66238pvf\n/Ib58+dz8803k52dzU9+8hNWrFjBxRdfzODBg7n55pv5xz/+ccq/29dff51f/epXTJ48mcrKSmbO\nnElCQgL+/v7tnSYiIiLSQykUEhERkTZrXKED4HQ6CQgI4JlnnqFfv35Awyofb29vAL799ltSU1NZ\nsGBB0/2lpaWUlJSwadMmfvvb3wIQExPD5MmTmz1r8+bNXH755fj5+QHw4IMPAg09bRodO3aMtLQ0\nHnrooRNqPHDgAEeOHOHSSy9tqmfevHm88cYbJ33O1KlTm97DokWLgIaeQo3WrVvHO++8g8lkwm63\ns2DBAl577TVuv/12hg0bxrXXXsv06dOZPn06559/PsnJyaes6/uhkMlkYv78+Xz00UeMHj2a5cuX\nc//992OxWLj88stZsGABF154IRdccAFz585tVvvChQvZsWMHr776KseOHePw4cOMHTuWkpISEhMT\nuf766wHo168fq1evbnZ/S5566inWrVvHSy+9REpKCjU1NVRVVSkUEhER6UUUComIiEib/bCn0A95\neno2/dnlcnH11Vdz//33N32cl5eHn58fJpMJwzCarrVam/9fEovFgslkavq4rKysWQNqp9OJr6/v\nCTUVFBTg4+PDM888c8IzLBbLSWv+4XNqamrIzMw84RqXy9XsY4fDgdls5s0332Tfvn1s3ryZJ554\ngsmTJ3P99defsq4fmjdvHtdccw3XX3895eXlTQHZn//8Zw4dOsSmTZv497//zQcffMCLL754wr3P\nPPMMe/fuZd68eUyePBmHw4FhGE1fz++/r5SUFPr373/C/T/8e6ivr2/6880338ywYcOYNm0as2fP\nJj4+/oRrRURE5Oyn08dERESkS1xwwQV88skn5OXlAfDOO++wcOFCAKZNm8a7774LQFZW1gmrchpN\nmTKFr776ioqKCqCh383SpUuxWq04nU4Mw2DAgAG4ubk1hS/Z2dnMmTOHhIQEpk2bxueff05ZWRku\nl+uUYdbkyZPZvHlzU53Lli3jmWeeOeGaqVOn8tZbb2EYBnV1dbz33ntMmTKFxMRE5syZQ1xcHHfc\ncQeLFi0iKSmpxbp+KCwsjLFjx/Lwww839RwqKipixowZ+Pv7s2jRIu655x6SkpKa3bthwwYWLlzI\nNddcQ1BQEJs2bcLpdOLt7c3IkSNZsWJF0/NvvPFGysvLsVgsOBwOAAICAti/fz+GYVBVVcWGDRuA\nhhVdCQkJ3HfffVx22WXk5uaSlpbWLBwTERGRs5tWComIiEiXmDZtGj/72c+49dZbMZlMeHt789xz\nz2EymfjDH/7Agw8+yOzZswkPDz/pyWUzZswgOTmZG2+8EYBBgwbx2GOP4eHhwYgRI5g9ezbvvPMO\nL7zwAo8//jgvv/wyDoeDu+++m3POOQeApKQk5s2bh6+vL8OGDaO4uLjZc4YOHcr999/P7bffDkBI\nSAhPPPEEx44da7rmd7/7HUuWLGHu3LnU19czbdo0fv7zn2O325k9ezbz5s3D09MTd3d3fve732G3\n21us64euv/567r777qaVQIGBgdx5550sWrQId3d3LBYLS5YsaXbfXXfdxdNPP80LL7yAxWJhwoQJ\npKWlAfCXv/yFP/7xj7zxxhuYTCYef/xxQkJCmD59Oo899hgAN910E+vXr+eyyy4jLCyM8ePHYxgG\nfn5+LF68mGuvvRZ/f38CAgKYMGECqampREVFtXUKiIiISA9nMrQOWERERERERESkz9H2MRERERER\nERGRPkihkIiIiIiIiIhIH6RQSERERERERESkD1IoJCIiIiIiIiLSBykUEhERERERERHpg3rMkfQO\nh5Pi4qruLkN6oYAAT80t6XSaV9JVNLekq2huSVfR3JKuorklXaWvza2QEJ9TvtZjVgpZrZbuLkF6\nKc0t6QqaV9JVNLekq2huSVfR3JKuorklXUVz6zs9JhQSEREREREREZEzR6GQiIiIiIiIiEgfpFBI\nRERERERERKQPUigkIiIiIiIiItIHKRQSEREREREREemDFAqJiIiIiIiIiPRBCoVERERERERERPog\nhUJd7A9/eJBdu3awZcsmPv54+Smv+/jj5TgcjjaNuWLFB7zyyj87q0QRERERERER6YOs3V1AX3He\neVNafP2NN17l8suvxGrVX4mIiIiIiIiIdD0lEC349NOVrF//LVVVVZSUlPDTn97OK6/8k6ioGGw2\nK/ff/7889dSjlJaWAnDPPfcTFzeIDz98j1WrVhAUFExxcXHTWKmpx7jzzl+ydOnLrF+/FqfTyTXX\nzMNqtVBUVMgjjzzEk0/+hZdeeo74+N24XC5uuOFmLr74EuLj9/Dss3/Gx8cXi8XCyJGjuvNLIyIi\nIiIiIiJnubMmFHrvm2S2J+Z16pgTh4Xyo4sHtXhNdXU1//d/z1NSUszPfrYQl8vFokW3MWTIMF54\n4e+cc84krr12PunpaTzxxB95/PGnef/9Zbz++jLMZjO33fbjE8Y7dCiRrVs38a9/LcXlcvHSS8/x\ni1/cw9Klr/DII0+wefNGsrMzefHFV6itreWOO37KxImT+ctfnmTJkqeJjo7hz39+slO/DiIiIiIi\nIiLS95w1oVB3GTduAmazmcDAIHx8fElNPUp0dCwAKSnJ7Nq1g6+//hKA8vIyMjMzGDBgIHa7HYDh\nw0eeMF5aWirDh4/EYrFgsVj45S9/fcLrKSnJJCUl8otfLAbA4XCQk5NFUVER0dExAIwePZaMjPSu\nfNsiIiIiIiIi0sudNaHQjy4e1Oqqnq6QlJQIQFFRIZWVlQQEBGIymQCIiYnlsstGcNlll1NcXMTK\nlSuIjIzm6NEUamtrsFptHDqUxGWXzW4aLyYmlhUrPsTlcuFyubjvvl/x9NN/w2QyYxgGMTGxjB9/\nLr/97f/icrlYuvRlIiIiCQkJ4dixo8TGDuDgwQP4+Pic8a+FiIiIiIiIiPQeZ00o1F2Kigq5++47\nqaio4N57f3vC1q1bbrmVp556jP/+dzlVVZXceutiAgIC+PGPF/Lzn9+Kv38AHh4eJ4w3ePBQJk8+\nnzvvvA2Xy8W1187Hbrczduw47rvvV/zjH/9k9+6d/M//3E51dRXTp1+Ep6cX99//EEuW/AEvLy88\nPT0VComIiIiIiIjIaTEZhmF0dxGN8vPLu7uEE3y/ObScvUJCfHrc3JKzn+aVdBXNLekqmlvSVTS3\npKtobklX6WtzKyTk1ItKzGewDhERERERERER6SG0fawFV1wxt7tLEBERERERERHpElopJCIiIiIi\nIiLSBykUEhERERERERHpgxQKiYiIiIiIiIj0QQqFRERERERERET6IIVCneDIkWT27NnV7vsef/wR\ntmzZ1AUViYiIiIiIiIi0TKFQJ/j22685diylu8sQERERERERkT5kU9Y2Ht/6VyrqKjt0v46kb0Fl\nZQVPPbWEiopyCgryue66HzFkyDD+/ve/4HK5CAkJ5de/vp/PPluF1WpjyJBhPPzwg7z11ge4ubnx\n4ov/ICYmllmzruCZZ54gLy+XwsICLrhgOosX/093vz0REREREREROUsZhsHqtHXkVuWxLXcXF0dN\na/cYrYZCLpeLRx55hKSkJOx2O0uWLCEmJqbZdb///e/x8/Pjvvvuo66ujgcffJD09HS8vb15+OGH\niY2NbXdx37c8eRW78/ad1hg/ND50NNcNmnPK1zMyMrjkksuYMeNiCgry+cUvFuPu7sEjjzxObOwA\nVq1aQVFREbNnzyEoKIgRI0addJy8vFxGjhzNAw/8ntraWq677gqFQiIiIiIiIiLSYVmVOeRW5QGw\nNXvnSUOhiup6QloYo9VQaPXq1dTV1fHuu++yZ88ennrqKV588cUTrlm2bBmHDh1i4sSJALz33nt4\nenry3nvvkZKSwmOPPcYrr7zSjrfWMwQGBvLee2+zdu0aPD29cDgcFBUVEhs7AIA5c64BYMOGtSe9\n3zAMAHx9fTl4cD+7du3Ay8uLurr6M/MGRERERERERKRX2pkbD4CXzZOMiiwyK7KJ8O7X9HpmQSVL\nXt/BB0+eejFMq6HQzp07mTatIW0aN24cCQkJJ7y+a9cu4uPjueGGG0hJaeirk5yczPTp0wEYOHAg\nR44caedba+66QXNaXNXTFZYte5NRo8Zw7bXz2bVrB5s3byA4OJj09DSioqJ5882lREXFYDabcbka\nAiC73U5hYQH9+vUnOfkQsbED+PTTVXh7+/D//t//kpGRzn//+1FTYCQiIiIiIiIi0h6GYbAzLx67\nxc78wVfx2oFlbMnewbzBcwGod7j413/3U1vnbHGcVkOhiooKvL29mz62WCw4HA6sVit5eXk8//zz\nPPfcc3z22WdN1wwfPpw1a9ZwySWXEB8fT25uLk6nE4vF0uKzQkJ8WivnjLriilksWbKEdeu+xsfH\nB7vdxpIlj/GnPz2O2WwmJCSEu+66g02bNvH0008zduwI7rhjMQ888GsiIiIIDg7Ex8edKVMmcu+9\n93LPPT/HbrcTExODYVTj7m7Dz8+jx73v3khfY+kKmlfSVTS3pKtobklX0dySrqK5JV3lbJ9bKUVp\nFFQXckH0uVw2YgofJq9kZ348PzvvBixmCy9/nEB6XgWzzmve/uf7Wg2FvL29qaz8rou1y+XCam24\n7fPPP6e4uJjFixeTn59PTU0NAwcOZN68eRw5coSbbrqJCRMmMHLkyFYDIYD8/PJWrzmT4uJG8uqr\n7zT7/LPP/rPpz6WltYwceQ6vvfZu0z0zZsxqds8rr7zV7HP33vu/QM97371NSIiPvsbS6TSvpKto\nbklX0dySrqK5JV1Fc0u6Sm+YW18nbwZgpN8ISopqmBAylnWZm1iXtBOjLJSP1x0hPNCTa6bEtjhO\nq6HQhAkTWLNmDVdccQV79uxhyJAhTa/dcsst3HLLLQAsX76clJQUrrvuOnbv3s3555/PQw89xL59\n+8jKyjqNtyoiIiIiIiIiItCwdWxXXjzuFndGBA4F4Lx+57AucxMbMraTuH4gFrOJO64aiZu95QU6\nrYZCl156KRs3bmTBggUYhsETTzzBypUrqaqq4oYbbjjpPTExMTz77LO89NJL+Pj48Pjjj3fgbYqI\niIiIiIiIyPcdK0unsKaYSeETsFlsAET7RBLuGUpC4QGqasL40YzhxIS3vkWu1VDIbDbz6KOPnvC5\nuLi4Ztddd911TX8ODAxk6dKlrT5cRERERERERETabldew6ljE0LHNH3OZDIR5BpEjimPqMGlXDYp\nqk1jmbukQhERERERERER6VQuw8WuvL14WD0YHvhde5+MvAr2bHMHAzz65WI2mdo0nkIhERERERER\nEZGzwNHSNEpqSxkbMhKruWHzV129k3+u3I+jxk6ERyzplenkVua1aTyFQiIiIiIiIiIiZ4GdTVvH\nxjZ97v01R8jMr+Si8RFcOvB8ALbm7GrTeAqFRERERERERER6OJfhYk/eXrxsngwLGARAfHIBX+/K\noH+wFz+6eBBjQ0bibnFjW84uXIar1TEVComIiIiIiIiI9HBHSo5SWlfOuJBRWMwWKqrrefWzRKwW\nE4vnjsDNZsFusTMhdAzFtSUcKj7S6pgKhUREREREREREerideXuB77aOvfllEmWVdVw7bSDRYd8d\nPz+537kAbM3Z2eqYCoVERERERERERHowp8vJ7ry9eNu8GOw/kG0Hc9l2MI+4CF9mTYo+4do4v1iC\n3QPZk7ePGkdNi+MqFBIRERERERER6cEOl6RQUV/J+NAxVFQ5eOOLJOxWM7dfOQKz+cTj500mE5P6\nnUOdq57d+QktjqtQSERERERERESkB9vVeOpYyBiWfpZIZY2D6y8aRFig50mvnxx+DgBbs3e0OK5C\nIRERERERERGRHsrpcrInLwFfuw856e7EHylkeEwAF02IOOU9wR6BDPIfwOGSlBbHVigkIiIiIiIi\nItJDJRYnU+moYrjfCN79Jhl3u4WfXjEMs8nU4n2Tw89tdWyFQiIiIiIiIiIiPVTj1rHUJB+qa53c\nOHMwwX4erd43IXQ0fnafFq9RKCQiIiIiIiIi0gMVVBcRn78fD5M3R5MtjIkLYuqYfm26193qzmNT\nHmrxGmtnFCkiIiIiIiIiIp3DZbhYk76BVSlfUOeqx5U1BC93G4tmD8PUyrax77OYLS2+rlBIRERE\nRERERKSHyCjP4u3ED0ktT8fb5oVXwTlkZfix6Kqh+Hu7deqzFAqJiIiIiIiIiHSzOmc9nx1bzeq0\ntbgMFxPDJhBZN5G3N6Zy7tAQJo8I6/RnKhQSEREREREREelGh4uP8Hbih+RVFxDoHsCNQ69jgHcc\nD/5rC3abmQUzB3fJcxUKiYiIiIiIiIh0k2/TN/L+4Y8xYeKiqKnMGTALd6sbH649QlllHddMHUCg\nr3uXPFuhkIiIiIiIiIhIN3AZLr5M/QYPqzt3jb2dAX7RABSUVPPFtnQCfNyYNTm6y56vI+lFRERE\nRERERLrBoeIjlNaVMyF0bFMgBPD+t0dwOF3MvzAON1vLJ4idDoVCIiIiIiIiIiLdYHvubgAmho1v\n+tyh9BK2J+YxsL9vlzSX/j6FQiIiIiIiIiIiZ1i9s549eQkEuPkT5x8LgMsweOfrwwDcOHMwZpOp\nS2tQKCQiIiIiIiIicoYlFCZS46zh3LBxmE0N8czmhBxSc8o5b0QYcRF+XV6DQiERERERERERkTOs\naetYeMPWsZo6Bx+sPYLdamb+hXFnpAaFQiIiIiIiIiIiZ1BVfRX7Cw7SzyuM/l7hAHy6JY3Sijou\nnxzdZUfQ/5BCIRERERERERGRM2h3/j4chpOJYeMxmUwUltbwxbY0/L3tzJ4cc8bqUCgkIiIiIiIi\nInIG7cjZA8C5x08d+2DtEeodx4+gt3fdEfQ/pFBIREREREREROQMKakt5XBJCnF+sQR5BJCcUcrW\nA7kM6OfDeSPDz2gtCoVERERERERERM6QHbl7MDA4N2w8hmHw7pqGI+gXnIEj6H9IoZCIiIiIiIiI\nyBmyI2c3ZpOZCaFjiE8u5EhmGROGhDA40v+M16JQSERERERERETkDMipzCW9IosRgUPxtHmyfN0R\nTCa4dvrAbqlHoZCIiIiIiIiIyBmwPWc3ABPDx7P1QC4Z+ZVMGRlORLBXt9SjUEhEREREREREpIsZ\nhsH23D3YLXaGBwxjxfoULGYTV08d0G01KRQSEREREREREeliR8vSKKwpYmzwKLbtLyS/pIYLx0UQ\n7O/RbTUpFBIRERERERER6WKNW8fGBY/hvxuPYreZmXNBbLfWpFBIRERERERERKQLOV1OduXF423z\nIjPFg9KKOi49Nwo/L3u31qVQSERERERERESkCyUWH6aivpKxQaP5fGs6Xu5WZk+O7u6yFAqJiIiI\niIiIiHSlxq1jtfnhVNY4mH1eDJ7utm6uSqGQiIiIiIiIiEiXqXHUEl+wn0C3ALbtqMPPy87McyK7\nuyxAoZCIiIiIiIiISJf5b8pn1Dnr8KoeQG29i7kXxOJms3R3WYBCIRERERERERGRLpFQcJC1GZsI\ndQ8lZU8wwX7uTB/bv7vLaqJQSERERERERESkk5XXVfDmwfexmiwElpyHw2Hm2mkDsVp6ThTTcyoR\nEREREREREekFDMPgzYPvUV5fwUX9LmHPvjoiQryYPCKsu0s7gUIhEREREREREZFOtD5zMwmFiQwL\nGEx5WgSGAXOnxGI2m7q7tBMoFBIRERERERER6SQ5lbksT16Fl9WT+XHXsWlfLoG+bpwzNKS7S2tG\noZCIiIiIiIiISCeodzl4df871Lsc3DR8PvEHK6mtdzJzQiQWc8+LYHpeRSIiIiIiIiIiZ6FVKV+Q\nUZHFlH6TGBM0km92ZWC3mpnWg04c+z6FQiIiIiIiIiIipympKJmv09YR4hHEvMFz2X24gILSGqaM\nCsfbw9bd5Z2UQiERERERERERkdNQWV/F6wffxWQy8dORN+FudeOrHekAzDw3qpurOzWFQiIiIiIi\nIiIip+HDwyspqS3lygGXEuMbRVpuOYfSSxg5IJCIYK/uLu+UFAqJiIiIiIiIiHRQcU0J23N3098r\nnMtiLgJoWiV06bmR3VlaqxQKiYiIiIiIiIh00LrMzbgMFxdFTcNsMlNaWcfWA7mEBXoyamBQd5fX\nIoVCIiIiIiIiIiIdUOesY2PmVrxtXkwMGwfA2t2ZOJwGl5wTidlk6uYKW6ZQSERERERERESkA7bn\n7KbSUcUF/Sdjs9iod7hYszsTDzcrF4wO7+7yWqVQSEREREREziq1zjrqnHXdXYaI9HGGYfBtxkbM\nJjPTI88HYHtiLqWVdUwb0w93u7WbK2xdz69QRERERET6PJfhIrkkhU1ZO9iTv5cgjyB+N+k3mHr4\n1gwR6b0OFR8hqzKHc0LH4u/mh2EYfLUjA5MJZp7TsxtMN1IoJCIiIiIiPVZxTQlbsneyJXs7BTVF\nAFhMFnIqc0kvzyTa9+z4wUtEep81GRsAuChqKgDJmaWk5pQzYUgIIf4e3VlamykUEhERERGRHsUw\nDPbkJ7ApaxsHiw5hYGA325gcfg5T+k+ivK6ClxPeIL5gv0IhEekW+VWFJBQcJMY3igF+MQB8tf3s\nOIb++xQKiYiIiIhIj7IrL57/7H8bgAG+0ZzffyITQsfiYXUHGnoK2cxW9ubvZ+7AWd1Zqoj0UWsz\nN2JgcFFkwyqhwtIadh0qICrUmyFR/t1cXdspFBIRERERkR7lWFnDb9vvGL2QMSEjm73uZrEzLHAw\n+woOkldVQKhn8JkuUUT6sBpHDZuzduBn92F86GgAvtmVgcswuPTcqLOq15lOHxMRERERkR4lsyIb\ngCEBcae8ZkzwKAD2Fuw/IzWJiDTakr2TGmcN0yKmYDVbcThdrN+bjbeHjckjQru7vHZRKCQiIiIi\nIj2GYRhkVmQT7B6I+/HtYiczOng4JkzszVcoJCJnjstwsTZjI1azlakRkwHYc7iAiup6powKx2a1\ndHOF7aNQSEREREREeoyyunIq6iuJ8O7X4nU+dm8G+sWQUppKeV1Fm8cvqC4iueTo6ZYpIn3UgcIk\n8qoLODdsHD52bwA27GtY3Th1TMvft3oihUIiIiIiItJjNG4day0UAhgTMhIDg30FB9s0tstw8dye\nf/N/u17k06NfYRjGadUqIn3PmvTjx9AfbzBdXF7LvpRCBvTzJTLEuztL6xCFQiIiIiIi0mO0KxQK\nbmhCvbcgoU1jx+fvJ7+6EBMmPjn6FcuSluMyXB0vVkT6lOzKXBKLDzPYfyCRPv2BhlVChgHTxp59\nq4RAoZCIiIiIiPQgjaFQ/zaEQqGewfT3Cudg0WFqHLUtXmsYBl+lfYsJE3ePX0ykd382ZG3l5X1v\nUOes75TaRaR3+zZjIwAXRjWsEnIZBhv2ZmG3mpk0LKw7S+swhUIiIiIiItJjZFZkY7fYCfYIbNP1\nY0JG4nA5SCw61OJ1ySVHSS1LZ0zwCAYHxHHPhJ8zNGAQ8QX7+ceef1NZX9UZ5YtIL1VeV8G27J0E\nuQcwJngln73ZAAAgAElEQVQEAIfSSsgvqeHcYaF4ulu7ucKOUSgkIiIiIiI9Qr3LQU5VHhFe4ZhN\nbftRZezxLWTxrRxNvzrtWwAuiZkBgIfVnf8Zeyvnho0jpfQYf935AkU1xR0vXkR6reKaEv62+5/U\nueq5KGpa0/en9XsbVjZOOwsbTDdSKCQiIiIiIj1CbmUeLsPVpn5CjaJ8IvB38yOh4CBOl/Ok12RX\n5pJQmMhAv1gG+sU2fd5qtrJwxAIujppGTlUef9n5AlkVOaf7NkSkF8mqyOHPO58npzKXi6KmMiNy\nCgBVNQ52JuURGuDBkCj/bq6y4xQKiYiIiIhIj9CeJtONTCYTY4JHUuWoPuVR86vT1gJwSfSMZq+Z\nTWbmDZ7LtYOupKS2lL/ueoGjpWkdqF5EepvkkqP8ddeLlNSWcu2gK5k3aG7TKqGtB3Opc7iYNqYf\nJpOpmyvtOIVCIiIiIiLSI7SnyfT3jQ1pPIWs+RayktpStufsJswzhNHBw085xiXRM1g4YgE1jlpe\nSXiTqvrqdtUgIr3LnvwE/rHn39Q6a1k4YgGXRM84IfzZsDcLkwmmjDp7t46BQiEREREREekhvlsp\nFN6u+wb7D8TD6k58/n4MwzjhtW/TN+I0nMyMnt5qn6JJ4RO4PHYmxbUlvHvoo/YVLyK9xvrMzby8\n7w3MJjN3jvkpk8InnPB6Rl4FR7PLGT0wiAAft26qsnMoFBIRERERkR4hsyKbIPcAPKwe7brPYrYw\nKmg4xbUlZFRkNX2+2lHD+swt+Ni9mRQ2oYURvjM7diYDfKPZkbuHbTm72lWHiJzdDMNgVcoXLEv6\nCC+bJ/eMv4MRQUObXdcbGkw3UigkIiIiIiLdrqyunPL6CiK8+3fo/jHHt5DF53+3hWxj1lZqnDVc\nFDkVm8XWpnEsZgsLR9yIm8XOu0krKKwu6lA9InL2+fjIZ3x27GuC3QO595y7iPGNanZNvcPF5v05\n+HjaGDsouBuq7FzW7i5ARERERERa9m36Ro6VpXPLiB+1+aj2s01mece2jjUaETgEq8nC3oL9zBl4\nGQ6XgzXpG7Bb7EyLOK/pOpfLoKCshpLyWkoqaimpqDv+z1pKymupqHYwckAAVw64kuVHP+K1A8u4\nZ8LPe+3XXUQaOF1O1mVuwt/Nj3vPvQtfu89Jr4tPLqCiup5Zk6KwWs7+7wsKhUREREREerAt2Tt4\n//DHAMyOvZgwr9BurqhrZFY2hkIdWynkbnVnaOBg9hcmUlBdSHLJUUpqS7koaiqeNk8cThebEnJY\ntekYBaU1pxzHZjWTkV+BdSeEjY/lSOkxvkxdw+WxMztUl4icHTIqsqh11nFu2PhTBkIA6/Y2bFGd\nOqZj36t6GoVCIiIiIiI9VFJRMm8lftD0cXp5Zu8NhTrYZPr7xgaPZH9hIvH5+9mcvR2zycz0flNZ\nszuTTzcfo7CsFqvFxMRhoYT4e+Dvbcff2w1/Hzf8ve34eTU0jN2UkM2nW1LJ3D0Q99HZrDzyJUHm\nKCZGD+mMtyoiPdDhkhSgoXH9qRSV1bA/pYi4/r5EBHudqdK6lEIhEREREZEeKLsyl38nvI4ZE1cM\nmMWqo1+QVpHJuYzv7tK6RGZFNnazjWCPoA6PMSp4BKak5Xxx7BsqHVVE2Ybyp9cOUlxei81q5pJz\nI5k9OabV04JmjItg6ph+bE/MY8XuesrC1/OfhLfZvOMqrpoyiNhw3w7XKCI9U/LxUGiQ/4BTXrNx\nXzYGMLUXNJhu1Goo5HK5eOSRR0hKSsJut7NkyRJiYmKaXff73/8ePz8/7rvvPurr63nggQfIzMzE\nbDbz2GOPERcX1yVvQERERESktymtLeeF+P9Q7ahh0YgbGRU8nFVHvyC9PKv1m89CDpeDnMo8onwi\nTqt3j5+bDwN8o0kpSwXg8K4gbPUNvT8unxSNn3fbj462mM2cNyKcScPn8K8dNewr387+sg3ELy1h\n9nkxXDNtQK/oJyIi4DJcJJccI8g9kAB3/1NcY7B+bzZ2m5lJw8POcIVdp9XvYqtXr6auro53332X\ne++9l6eeeqrZNcuWLePQoUNNH69duxaHw8GyZcu46667+Nvf/ta5VYuIiIiI9FK1zjpe2vsqRTXF\nzB04i4nh4/GwuhPqEUx6eSaGYXR3iZ0utyofp+E8ra1jjXyd0QAYZcFcPmYUT985hRsuHtyuQOj7\nzCYTt51zLZHe/bGGZuAfWcSnW1J5/PWdZBdWnna9ItL9sitzqXZUt7h1LCmthILSGiYOC8XDrfds\numo1FNq5cyfTpk0DYNy4cSQkJJzw+q5du4iPj+eGG25o+tyAAQNwOp24XC4qKiqwWnvPF0xERERE\npKu4DBev7n+btPIMzu83kVkxFze9FuUTQbWjmqKa4m6ssGt810/o9Bq3GobBsf1+OIvCuXPyj7j+\nokH4etlPuz6b2cpPR96IzWzFHJ3AlNEhpOaW88dXt7Nmd+8M6kT6ksPFrW8dW3+8wfS0XtJgulGr\naU1FRQXe3t5NH1ssFhwOB1arlby8PJ5//nmee+45Pvvss6ZrPD09yczMZPbs2RQXF/PSSy+1qZiQ\nkFN3+BY5HZpb0hU0r6SraG5JV9Hcaps6Zz02sxWTyXTGn/3qrvfYV3CA0WHD+OXUhVjNlqbXhoUP\nZGdePKXmIoaFNG/n0J1Od24VZRYAMDJy4GmNtTMxl+w8BxdGzuHiMaNPq6YfCgnxYWbhVD5P/pbr\n5oQxfXwsz72/hze+SCIpvZRf/mgc/q30KpL20/etBg6X84TvB3L6vj+30g+lAzA5bjQh3s3nXEV1\nPbuS8ukf7MWU8ZHd8t+HrtJqKOTt7U1l5XfLIl0uV9PKn88//5zi4mIWL15Mfn4+NTU1DBw4kKSk\nJKZOncq9995LdnY2CxcuZOXKlbi5tfxNMj+//DTfjkhzISE+mlvS6TSvpKtobklX0dxqm8Siwzy3\n52VsZiuBHoEEuQcQ5B5IkMfxf7oH0M8rDJvF1unPXpO+gc8Or6G/VzgLh95IcWHVCa8HmoMB2J+R\nzEC3QZ3+/I7qjLmVnJ8GgGe932mN9e6XSQDMGNOvS+Z7qK2hj8jetMNcGHUBj/x0Iq98cpBtB3K4\n6+mvufXK4YyJC+705/ZV+r7VsHrws6Or+SJ1DRf0n8R1g+diM2snzun6/twyDIP9uYfwd/PDVOVG\nfnXzObdmVwZ1DhfnjwyjoKDiTJd72loKV1udTRMmTGDNmjVcccUV7NmzhyFDvjuG8ZZbbuGWW24B\nYPny5aSkpHDdddfx/PPPY7M1/IfSz88Ph8OB0+k83fchIiIiItKljpWlY2DgY/ehtLaMnMrcZtfE\n+Ebx/879Zac+Nz4/gQ8Pr8TP7sOdY3+Kh9Wj2TWRPg1bFtIqMjv12T1BZkU2ge4BeNqav++2Ssst\n52BqMcNjAogJ75rVJdG+kQ3PKs8AINDXnXsXjOOr7el8uPYIf3t/LzdfOoSZ50R2yfOlb6moq2Tp\ngXc4WHQIEybWZW4mtSyD20b9mCCPgO4ur9fIrcqnvL6Cc8PGnXIF0Lq92ZhNJi4Y3XtOHWvUaih0\n6aWXsnHjRhYsWIBhGDzxxBOsXLmSqqqqE/oIfd+iRYt46KGHuOmmm6ivr+fXv/41np6enV68iIiI\niEhnKqsrA+Bno28hyqc/VfXVFNYUU1RTRGFNMWvTN5JWlkGdsx57J60WOlaWxqv738FmsfHzsT8l\n0P3kP+x527wIcPMnvayhh01v2b5QXldBWV05o4OHn9Y4X2xrWG00a1J0Z5R1UmGeIdgtdtLLvwvm\nzCYTsyZFMzwmgKff3s1/Nx5l2ph+2G3a6iMdd7Q0lZcT3qSktpRRQcNYMPQ6VqZ8wdacnfxp+7Ms\nHLmAkUHDurvMXuG7o+hP3mQ6Lbec1Jxyxg0Kxr+DDet7slZDIbPZzKOPPnrC5052vPx1113X9Gcv\nLy+effbZTihPREREROTMKa1t2Dbg59aw0sTT5oGnzYOo46t0civz2JC1lbyq/KaVO6ejoLqIl+KX\n4nA5+PmYRUT7tLzCJNongviC/ZTWleHv5nfaz+8JOqPJdFFZDdsO5tE/2IvRAwM7q7RmzCYzUd79\nSSlNpc5Zh93yXRPr6DAfLhwfwadbUtlyIJfpY3tXM1o5MwzD4NuMjSxPXoVhGFw18HIujbkQs8nM\nT4b/iDi/WN47/DEvxP+Hy2NncuWASzGbTn1+lGEYZOZX4u1p65WBRmc4fDwUGnyKJtMb9jZ8j5o6\npvetEoI2hEIiIiIiIn1FWV05Jkx427xO+nq4V0NPmZzK3NMOharqq3gh/j+U11dww5BrGNWGlTJR\nx0Oh9PLMXhMKZVQ0nOgT4d3xH7hW78jA6TKYNTGqy1dQRftEcqT0GBkVWQz0iz3htZnnRPLFtjS+\n2JbG1DH9MPeS1VxyZtQ4angr8QN25e3Fx+bNT0fexNDA7/qHmUwmLoiYTJRvBC/ve5PPj33NsdI0\nFo28ER+7d7PxyqvqeP3zJHYeygcgxN+dwZH+DIr0Y3CkP/2CPPv8HDUMg+SSo3jbvAjzDG32er3D\nxeb9Ofh62hgTF9QNFXY9hUIiIiIiIseV1Zbha/c+5W/e+zWGQlV5p/WcepeDf+17ndyqPGZGT2d6\n5JQ23RflEwFAenkmo4NHnFYNPUVWRQ4AEV7hHbq/utbB2vhMfL3snDeyY2O0R+PfQVpZZrNQKMDH\njUnDw9i8P4eElEI1nZY2y6rI4eWEN8itymegXyy3jbr5lMFvtE8kD0z8Fa8ffJd9BQd5avuz3Dbq\n5hPmY3xyAa9+lkhZZR1xEb54udtIzihlU0IOmxIa/p3zcrcSF+HH6IFBzBjXH6vl1CuOeqvCmiJK\naksZFzL6pIHy7sP5VNY4uHxSdK/9+igUEhERERGh4TfGZXXlhHk1/21xo/Djr2VXdjwUMgyDtw5+\nwOGSFMaFjOaauCvafO93oVBWh5/f02RUZGEz2wjx7FiAsi4+i+paJ7Mnx2Czdv0PbT9sNv1DsyZF\nsXl/Dl9sS1coJG1SVlfO33f/i/L6Ci6OmsY1cVdgaeX4eU+bJ4tHL2R16lr+m/I5z+95hT+e/wBW\n3Fj2dTLr4rOwWkxcf1EcsyZGYzabcBkG2QWVHM4o5XBGKcmZJew9UsjeI4Vs2JvNbXOGExnSfMVR\nb3a45CgAg06xdWx9L986BgqFREREREQAqHHWUueqx9d+6pOr/Oy+uFvcT3oqWVt9cvQrtufuYoBv\nNAtHLGixH0iz57v54mv3OaHR8dnM6XKSU5lHpHf/dn0dGjmcLr7akY7dZubC8RFdUGFzJ2s2/X3R\nYT4MjwngYGoxabnlRId1zUlo0jsYhsGbB9+nvL6Ca+Ku4NKYC9t8r9lk5rLYi7CYLSxPXsWHB77i\nwJZQ8ktqiAzx5mdzRxAV6v29601EhHgTEeLd9O9LcXkty9ceYWNCDn98dTtXTR3AFedFYzH3zlUx\nP5Tc1E+oeZPpwtIaDhwtIi7Cl/7BJ99S3Bv0jb9pEREREZFWlNU2nDzm10IoZDKZCPcKJa+6AKfL\n2e5nbM7ewWfHVhPsHsgdYxZ16ASzKJ8IimtLqKirbPe9PU1uVT5Ow9nhfkI7kvIoKqtl2uj+eHt0\nzmlwrWlsNp1dmUuds+6k18yaFAXAF9vSz0hNcvZan7mZ/YWJDAsYzMzo6R0a4/zwSdhwZ2veNgrK\ny5l9XjS/X3juCYHQqQT4uHHbnBHcPX8M3p42PlqXwpLXd5KRX9GhWs42ycUpeFg96O/dfOvpxn3Z\nGMC0Mb27abxCIRERERERGrZwAC2uFIKGLWQuw0V+dUG7xk8sOszbiR/gZfXkf8bddtLGsG3RtIWs\n4uxfLXQ6TaYNw+CLremYTHDpxJZPbets0T6RGBhkHD857YdGDQyiX5An2w7mUlxee0Zrk7NHdmUu\ny5NX4WX15CcjftSh1XL1Dif/eP8AVenRmKwOLry0nusvHNTurZRjBwWz5PbJTBkVTmpOOY8u3c6q\nTcdwulztrulsUVxTQkFNEXF+sc2+9i7DYMO+bNxsFiYOO/WW4t5AoZCIiIiICFDaGAq5+bZ4XVOz\n6Xb2Ffr4yKcALB6zkDDPkA5U2OD7zabPdk1NpjsQCiWmlZCaW86EISGEBnh2dmkt+q7Z9Mn7CplN\nJi6bGIXTZfD1zpNfI31bvcvB0v3vUO9ycNPw+R06TdDlMvjXfw+QlF7CCO/xeFo92Fe2gxpHTYdq\n8nK3cfucEfxq/hi8PGwsX5fC46/vJLeoqkPj9XTJx/sJDQ5ovnUsMbWYgtIaJg4LxcOtd3fdUSgk\nIiIiIkLbto8BhHu2v9l0vbOejIpsYnwiT9nQtK2ivHtPKPTdSqH2nxr2xbY0AC6fFN2pNbVFa82m\nAaaMCsfH08a3uzOpqXOcqdLkLLEq5QsyKrKY0m8i40JGtft+wzB4a/Uhdh7KZ1i0P3ddPZ6Lo6ZR\n6ahifeaW06pt3PdWDR3LKecv7+6horr+tMbsiRr7CZ3se/KG4w2mp43tvQ2mGykUEhEREREByuoa\nemj4urW2fazxWPq2N5vOqszBZbiawoTTEejuj5fVs8eHQlkVOaxOW9ti76OsimwC3PzxtLVvpU9m\nQSV7jxQyKNKPuIj2r7A4Xa01mwawWS1cPCGSqloHG/flnMHqpKdLKkrm67R1hHgEMW/wVR0a45PN\nqazZlUlkiDe/uG4MNquZGZEX4G5x5+u0dafsd9VWjauG5k6JpaC0hhc+2ofD2bu2kiWXHMVusTcF\n7Y0qa+rZkZRPeKAng7rh+8uZplBIRERERAQorWtYKeRrb3n7WKC7PzazrV3bx1KPbzOK8jn9UMhk\nMhHlE0F+dSHVjurTHq+z5VXl8+r+t3li2//xUfInPLb1z+zI2Y1hGCdcV15XQWldeYe2jn15fJXQ\nrIlnfpUQtK3ZNMBF4yOwWsx8uT0Nl8s45XXSd1TWV/H6wXcxmUwsGnkj7la3do+xYW82y9elEOTr\nxq9/NBZP94btTZ42Dy6MnEJ5fQUbsrZ2Sr1XTxvAhCEhJKaV8M7XhztlzJ6gtKaMnKo84vxisZgt\nJ7y2ZX8uDqeLaWP6YTKZuqnCM0ehkIiIiIgIUFbbtkbTZpOZcM8QcqvycBlt+815+vFtRtE+nXNs\nemNPm4zyrFavzSjPYnXa2g6dltYehdVFvHnwfR7b+hd25O6hv3c4l0ZfSK2zjlcPvMOLe1+lqKa4\n6frM402a2xsKlVfVsXl/LqH+HowfHNyp76E9Wms2DeDrZWfKqHDyS2rYfbh9jcml9zEMg3cSP6Sk\ntpQrYi8l1rf9oebeIwUs/SwRL3crv/7ROAJ8TgyVLoqaht1iZ3XqWuqdp7/ly2wycfuc4USGeLNm\nVyZrdvfsFYptdTA/GTj11jGzycSUUe3f1no2UigkIiIiIkLD6WMeVvc2HRMf7hVGvctxQsjRkrTy\nTGxmW1M/otMV6dNwRHJrW8gMw+DNg+/xUfInrDr6Zac8+4eKqkpYlvQRf9zyDJuztxPqEcxto37M\nAxPv5ppBV/C/k37D0IBB7C9MZMnWv/BtxkZchousDoZC6/dm43C6uPicSMzm7vstfmvNphs1HU+/\nPa3La5KebUvOTnbn7yPOL5ZZsRe1+/6UrDJeWJGAxWLi7vlj6R/s1ewab7sX0yPOp7SujM3ZOzqj\nbNztVn41bzTeHjbe/uoQialt+77Xkx3Ib1j1NMj/xCbTabnlpOaWMyYuCD/v9q/iOhspFBIRERER\noWH7WGtbxxqFezU2m269r1C9s56syhwivfs126bQUU2BRCsrhZKKk0k/3sz5y9Q1xOcndMrzG32S\n8iW//OT3rM/cTIC7PwtHLOB/J/+GCaFjmo54DvEM4pfjfsaPh12PxWTh/UMf89edL5JQmAi0LxRy\nuQzW7MrAbjMzdXT3/ha/Lc2mAfoFeTEmLojkjFKOZJWeidKkByqoLuL9Qytwt7izcMSCdh8/n1NU\nxd/ej6fe4eLnV49kUOSpe91cHDUdm9nKl6lrcLg6p8l5sL8Hd13b0BD7hRUJ5Jf0vK2r7XEwPxmr\n2UqMb9QJn1/fhxpMN1IoJCIiIiJ9nsPloLK+qtWTxxqFt+NY+sYm053RT6hRiEcQbhY76RUtrxRa\nnbYWgJuHXY/NbOP1A++RV5XfKTUcKEzi02Or8XXz4eZh83l48n1MCp9w0h92TSYT5/efyO8m38eE\n0DEcLUslqTgZm9lKiEdQm5+5J7mAwrJapowMx9O99RVdXaktzaYbzZrY8IPnl9vSu7osOQ2GYfD5\nsa/ZV3Cg08f+/NjX1DrruH7IVQR5BLbr3qKyGv56/ASwn8wayvjBIS1e7+fmwwX9J1NcW8K2nF2n\nU/YJhkYH8OPLhlBRXc/fP9xLde3ZeapeVX0VaSWZDPCNxmb+7rj5gtJq1sdn4edtZ/TAtn9fOtsp\nFBIRERGRPq+8jSePNWrcBtaWUKixyXRnnDzWyGwyE+kdQW5l3ikbHWeUZ3Gw6BCD/Qcypf9Ebho2\njxpnDf/e9wa1p3kykctw8VHyJ5gw8dtpdzKl/6Q2rYLyc/PhtlE/5o7RCwlyD2BU0PB2rZ76emfD\n1/Liczrva9lRbW02DTAsJoDoUG92JOVRVFZzhiqU9kooPMjKlC94J3F5p/bgKqktZXvOLkI9g5kU\nPqFd9x7NLuOx13ZQUFrDVRfEcuG4tvUluyR6BlaThS9S13Tqe5kxLoKZEyLJzK/k5VUHcBlnXwP1\nI6XHMDCabR17Z/Vh6hwu5s+Iw2rpO1FJ33mnIiIiIiKn8N3JY20LhUI8grCYLGS34Vj6zm4y3Sja\nJwIDo6lh8w+tTlsHNPxwCDApfALTI6aQVZnD24kfNDsNrD02Z28nqzKHyeHnEBsQ1foNPzAmZCSP\nTnmQ20b9uM33ZBVUcjC1mGHR/kSGeLf7mV2hLc2moWGl1IzxERgG7Ehs+6l1cua4DBcrU74AGr4f\nHChK6rSxv03fiMNwcknUjHZtG9uZlMef3tpFWWUdC2YO5uqpzZsin0qAuz/n9TuXgupCdubFN3u9\ntLaM7Tm7eevg+7x36OM2N80HuGHmIIbHBLD7cAEfrj1y1p2sd7gkBTixyfTeIwXsPlzAkEi/PtNg\nupFCIRERERHp8xpPHvNza1tPIYvZQqhnMLmVea2GK53dZLpRY1+hk21fKqopZmfeHvp5hTEiaGjT\n5+cNnsMA32h25O5hbeamDj23xlHLqpQvsZttzI2b1bHij2vPcc9f72oI12b2gFVCjb7r7dRyXyGA\nc4aEYDLB9iSFQj3R7rx9ZFZkE+PTEHJuytreKePWOGrYkLUFH7t3m1cJGYbBZ1tSef6jBEwmE7+c\nN4bLJka1+3j0y2Iuwmwy8/mxbyivq2BP3j7eTVrBY1v+zEMbl7D0wDtsyt7O2oyNHCtreyN0q8XM\nndeMItTfg8+2pHHfCxt5/9tksgoq21Vfd0kuPorFZGagXwwAdfVO3vrqEGaTiR/PGtonjqH/PoVC\nIiIiItLnlda17Tj67wv3DKXGWUtJ7ambB3dFk+lGLYVCa9I34DJczIw+cWWC1WzltlE/xsfmzYeH\nV5JSeqzdz12dtpayunJmRs/A3+3UzW47U1WNg037cgjwcWNcNx5D/0NNzaZbOYEMGo6nHxYdwJHM\nMm0h62GcLiefHP0Ss8nMopE3EuUTQULhQUpry0577I1Z26h21HBh5FRsbTjZ0OF0sfSzRN7/9ggB\nPm48+OMJHZ7zQR6BTAqfQG5VHg9seJR/J7zBusxNFNWWMCJwKNfEXcH8wVcBsDO3+Wqilnh72Ljv\nxnFcOD6C2noXn21J43cvb2XJ6ztYsyuDypr6DtXc1WocNaRXZBIXGIvdYgfg0y2p5JfUcOnEyB6z\nCvFMsrZ+iYiIiIhI71ZW277tY3C82XT+PnKq8ghw9z/pNV3RZLpRmGcINrO1WShUVV/Fxqyt+Nl9\nmRg2rtl9Ae7+3DrqJv6++9+8vO9NHph0d5vfd0ltKavT1uJr92nalnYmbEzIprbeyZXnx2Ax95zf\na7en2TTAxGGhHEwtZkdiHpdNiu7i6qSttuXuJrcqnwv6TyLUM5gp/Sby7qEVbM3eyWUdODq+kdPl\n5Jv09dgtdqZHnNfq9ZU19Ty/fB+JaSXEhPnwq/ljCPA5vWPRZ8fO5GhpKn52X4YEDGJIQBwxvpFY\njzdYdrqcfPb/2bvv8LbP897/b0ySIMG9N8UtkqL2smVbsi0vObblOLYTx5l2mibtr02TtOlxezJ6\nmvYkHacnaeP8kjiJk3oksR3vJdmWZO3FvfcGSYAEB4j5PX9QpCRLJAEQHCLv13Xluhzi+33wQAZp\n4eZzf+6WdzlnKuf+3Lt9am+LjQjh0dvyeWhPDucbBzhS0UNVi5nmbivPHGhkQ24sxVnRpMaHkRwT\nSpA+sIVxf9SaG/AoHgrjcgAwWcZ5/Xg7kWF6Pnad9+15K4kUhYQQQgghxKpndfjWPgYXx9L3jpko\njM676jXtC5QnBJMtbClhyXSMdOH0uKan6BzuOo7d7eCOzFumP/h9VF5UDvdk38FLTa/zi8rf8mfr\nH/PqJNMrTW/h9Dh5YM3HCNbO78OqtzyKwsGzXWg1Km5Yn7woz+mtqbDp5uE2HG7H9MmDmWzMi+Pp\nt+s4JUWheanvGOJUjYm0hDAyE42kxIX6XSx0eVy80fIOWpWGOzJvAWBzwgZeaHyVoz0nuTXjJr/b\niU73nWfIPszutOsx6AyzXts9MMaPXqig1zzOhtxYHr+7KCBFlNiQGP5++zdmfFyj1lAaV8zRnpM0\nDbWSG7Vmxms/6kTPGY73nOYLJY+wtTCBrYUJWEbsHK/q5UhFD6dqTZy6kKGlAuIiQ0iJCyUlLozU\nuFAyk8KJjwyZ70v0mmm8n/+u/QNqlZrtaRtRXAq/facBl9vDQzfnEhK0Ossjq/NVCyGEEEIIcQl/\n2uQE9V0AACAASURBVMeSLoyl7xmbOWy6fQEmj10qzZhCq7WdnrFe0o2pOD0u3u/8kGBNMNenbJv1\n3lvSb6TV2s75/kp+W/t7Hs7fP2t7S8dINyd6z5AcmsiOpC2Bfikzqm4102ceZ2dxIuGG2YsuSyHd\nmErTcCudoz3TGSUzmWohq2mzMDg8QUxE8CLtcuWwO908+XIVlhH79Nf0WjXpiUayEsPJSjaSdaHY\n4E0x52j3SQYnLOxOvX76xJ9BF8KG+HWc7D1L41AzuVHZPu9TURTebf8AtUrN7tRdVzw+anNS22ah\nus1CTauZPosNgNu3pfPxm7JRL2KuzcaEdRztOclZU5nXRSG3x83LzW8yZB/mhYZXeXTtgwBEGYO4\nY3sGt29Lp71vlJZeK139Y3T1j9LZP8a5hslA5yl3bEvnvhvWLPi0rxHHKD8u+wVjrnE+VfBxsqMz\nePNIMxXNg6zNjGJLQWAz364lUhQSQgghhBCrntU+glalwaD1/rfW8SGxqFDNOpZ+MmRaG/CQ6Slp\nxsmTMx0jXaQbUznVexarY4Rb0m8kZI7XolKpeKTwEwzazJzoPUPPWC9fKP40sSHRV1yrKAovNr6K\ngsL+nH0+tZjM14HTyy9g+lKXhk3PVRSCS1rI6kzcJqeFfPb2yXYsI3ZuWp9MeqKR1h4rzd0jNHdZ\naey8mO91/bokPndHwayFIYfbwZutB9CrdVe0ie1M2srJ3rN82H3Kq6KQoigMDk8wYnOiKNA82kj3\nWC8FxiLMgyoGlSFsdhd1HUPUtFpo7xthKqI+WK+hNDuGnSVJS1KcyIvMJkwXyjlTBR/P/ZhXpwYr\nB2sZsg+jQsWJ3jNsSlhP0SWh9iqVioxEIxmJFwvtiqJgHXfS2T9Kl2mUg+e6eONEO3UdQ3zpY0XE\nLdCpIYfbyZPlv2LANshtGXvYmbyVCbuLZw7Uo1Gr+NSteasuXPpSUhQSQgghhBCrntUxglFv9OmD\ngU6jIzYkmt4ZxtJPhUxnGFMDHjI95WLYdDcexcO77R+gUWnYnXa9V/eHaIP52qav8Hz9SxzrOcU/\nn/o/fGbtQxTHFl52XdVgLXWWRgqj8yiMuXqr3EIwDdkobxpkTXI4WUnet/YtJl/CpgE25k+2kJ2u\nlaKQr4ZG7bx+vJ1wg44HdudMtvusn/wesDvdtPeN0NJt5UhFL0fKe0iOCeX2bTP/GR/qOsawY4S9\nGbuvOCWYE5lFfEgs5/vLGXd+7Ir2r+ExBy09Vlp7rLT0jNDSY2XUdjFcWV9wEk04nD8Wwbnxs5fd\nq1GryEuLpDAzirWZ0WQmGhf8pMxsNGoN6+NLONJ1nIahZgqic+e853DXMQAeXfsgT9c8zzO1f+CJ\nbV8jWDvz6TeVSkVEqJ6I0GiKMqPZVZrMb96u41hVH99+6iSfub2ArYUJAXtdAB7Fw69rnqPF2sbm\nhPXsW7MXgOfercdstXPXjgySYkID+pzXGikKCSGEEEKIVU1RFKyOkekCiy8SQxOoGKhmxDGKUX/5\n1JqFDJmekhSaiFqlpmOki8qBGvrG+9meuNmnqWB6jY5HCh9gTUQmz9e/yH+VP8VtGXvYt2YvapUa\nt8fNi42voULF/px9C/Zarub9s10owM0bl+cpIfA9bDrcIC1kM1EUhabhVo52n6RyoIZPb9hPiXHd\n9OMvHGrG7nTz4M05V+S/BOk05KZGkpsayZbCBL77q1P87v1GUuNDKc6KueK5bK4J3m57jxBtMLde\nJTRdpVKxM3krLzW9zqm+89yYupOugTFePtJCc/cwg1b7ZdfHRgRTmBFFlDGIMdUAZzETRQrr15Uw\nVWvWadSsSQ4nNzVyWYQuX2pTfClHuo5z1lQ+Z1Gof3yQGnM9ayIyL0w36+fN1gP8selNHsy/1+vn\nDAnS8tjdRazNjObpt+v4yR+rqG618PAtuQTpAvPn83LTm5wzlZMdkcUjhZ9ArVLTPTDGi+83EhMe\nzL6dmQF5nmuZFIWEEEIIIcSqNuYcx624ifAhT2hKoiGeCqrpHeu7oii0kCHTU3RqLcmhiXSN9vB2\n2/sA3Jx+g19r7UzeQpoxhZ9VPs1bbQdpsbbzuaKHKeuvpHfcxHXJW0kOSwzg7mdnd7o5XN5NuEHH\n5mWc96FWqUkNS6bFy7BpgC2Fq6OFzOlxoVGp52w3HLZbOdFzhmM9pzDZLubNHGw+SknpZFGovW+E\nD8t7SI0L5YZ1sweORxmD+Or+Ev75t2d58o9V/N1nNhMfdflJn/c6DjPmHGdf1m0zhkBvTdzEy81v\ncrT7JFm6En747HlGbU6MBh3rsmPISpo8wZaZZLws7+rnlSfABI+sv5OCaN/ziJZCTmQW4Xoj5/sr\neDDv3llPNx7pPg7ArgsT1W7PvJnzpgoOdR1lU0IpOZG+TfG6riSJNcnh/OSPVRwq66axa5g/uado\n3uPhD3cd553294k3xPL4ukfRqbUoisJv3q7D7VH4ZACLT9cyKQoJIYQQQohVbWrymDHI96LQVNh0\n77jpityRhQ6ZnpJmTKFztJsWaxvFMQXzKtykGZP5681/zm9qnqdsoIp/OvnvuBUPeo2eu7JuC+Cu\n53aiuo+xCRf7dmai0y6fMfRXk2FMpdnLsGmYnEL2m7fqObWCW8h6x0x8/9S/AxATHEV0cBQxIdHE\nBkcTExJNTHAUQ/Zhjnafotpch0fxoFNr2ZKwgR1JW3i15S0azC2MO8cJ0Ybw3MFGFODBPbmo1XO3\neWYnR/Dp2/J56vVa/u8fKvjbT2+aPl005hznQPthwnSh7E67bsY1IoKMlMQUUjZQxQ9eep9xWyif\nvaOAXeuSZmw1HbANcs5UQWpYMvlROb7/wS0RtUrNhvgSPug8Sp2lkbWX5ANdyul2cqznFGG6UDbE\nTxbsdGotnyp8gH8985/8tuZ3fGvrX6KfJbT+apJiQnni0U08/14TB8508r1fneYzt+ezszjJr9dT\nNVjH8/UvEaYL5U/XfYEw3WSL2IEzndS2D7G5MIH1ubF+rb3SSFFICCGEEEKsasMOK4B/J4UujKXv\nuUrY9EKHTE9JCL5YBNqd6t8poUsZdCE8VvIo77Z/wMvNb+JRPOzL2kuEH0UzfymKwoEznahVKnZv\nWLiTVoHia9h0uEFPQUYk1a0WBoZtxEYs3ljuxVJrbsDlcRETHM2oc4y+8f4Zr003prAjaSubE9Zj\n0E3+WTQPt9I83EatpRHVcBI1bRbWZcdQlHVlEPpMdq1Lpr1vlANnOvn5azX86X3FqFUq3ml7nwn3\nBPuz9s2agQOQayihjCoc4a18dsf97JrjlNLBjsMoKNyafuM1F168Mb6UDzqPcsZUNmNR6Fx/BWPO\ncW5Nvwmd+mI5YU1EBjelXcd7HUd4o/Vd7sm+w+fn12k1fOrWPNZmRPGL12v42as1uNwKN5TO/mf+\nUZ0j3fy88mnUKjVfWvdZ4gyT7YOna008824D4aF6vrx/HSq32+c9rkRSFBJCCCGEEKua1T55UihC\n73uQcYIhDoDej4ylnwqZTl/AkGkAl9vDiTMTEA2e0Qh+/UI/D98cRcmaKzNUfKFSqbg14ybWRGRS\nY67n5qtkriykI+U9dJhG2VwQT5QxaFGf2x9Tp8E6rN7lCgFsLoinutXC6dr+WcOQr1VT7ZNfLv0c\nSaEJ2FwTmCcsDNjMmCcsDNrMqNVqtiZsJNV45Yf+tTH5vNryNlUDtVQfHkOtUvHAbt9P3jy4J4eu\n/lHO1vfz6oet3Lgllvc7PyRCH86ulB2z3tvWO8IfXrWiFAQRktjHtqLZT5aMOsY42n2K6OCo6VM0\n15I1ERlEBkVQ1l/Fw/kutOorywWHu46hQsX1KduueOzuNbdT3l/Nu+0fsCG+hHQ/89Q25MXxzcgQ\nfvDMOX71Ri0qYJeXhSFFUfhF1W+xux18ofiR6SJtTZuFn75SRZBew18+UEp8tIH+/hG/9rfSLO9z\nmEIIIYQQQiywqfaxcD9OwgRrg4kKirxiLP1UyLS/H4q89cyBBpob1cSOlbI+aA99Zhv/9nwZ//67\nMnrN4/NePzsyk31r9vrcCuIvm93Fz16t5qk3agnSa7hr+9ynbpaDqbDpqUKINzbmxaFWqThdd+Up\ns5WgfaQTvUY/XTgN0QaTEpZEaVwRu9Ou5+N5H2N/zr6rFoRg8vSVUR9KWV8tfZZxbtyQTEqs71Oi\ntBo1X763mJjwYF460sJz5W/j9Di5I+vmWd/Xbb0j/PDZc9gmPBRHrsepODhnqpj1uQ51HcXpcbIn\nbdeCFoMXylQLmc1lo9bccMXjXaM9NA+3URidR2zIlYXnII2eTxbcj0fx8Jua3+H2+H8SJy0+jG88\nvIHQEB2/fKOWw2XdXt3Xbxugb7yf9XElbIy/mEf1oxfKURT4s/0lZCQu3qnHa4EUhYQQQgghxKo2\n1T720ZHU3koMjWfYYcXmsk1/bTFCpg+c6eS9s12kxhn5m70P8qXbdvDtz22lID2S8qZB/u5nJ3j+\nYCPjE64F20MgtfRY+c4vT3G0spesJCPf/tyWa+bD21TYdM9YHw63w6t7plrImrutDAzb5r7hGmJ3\nO+gdM5EWljxnyPRM1Co1hbH52JRRQsInuOd638KLL2U06Pmz+0vQa1WcH6hAp9axPXHzjNe39lr5\nwTPnGJ9w8fm7CvlE6W4APuw+edXrh+zDPFf3Im+2HsSgDWFH0ha/97rUNsWXAnDGVHbFY4cujKGf\nCpi+moLoXHYmbaFrtId32t+f116uKAyVz10YqrM0Tu8DoH9oslA+YXfz2N1rKcz0vv1wtZD2MSGE\nEEIIsapNt48F+d4+BpNh0zXmenrHTGRdaFVov9BGtFAh05Utg5PZGAYdf/7xkukA3akPUWfq+nnu\nYCNvnmznaGUP+2/M5vqSJK8CehebR1F460Q7Lxxqxu1RuGNbOvfdsAat5tr6/bWvYdMAWwLUQmaZ\nGEKn0U2H6S61rtFuFJR5n5QbM0UCsHad67LpXv5ITzBy3954Xh4Yxz2UzFOv1xMWosNo0GM06DBe\n+Ge7082Tf6zC5nDxxX1r2VE8mdlVEJVLraWBvjETCReyxKyOEd5ue4/DXcdxeVzEhsTwUN59BGuX\nf8vjTDLD04kKiqS8vwqn24nuwmmqCdcEp3rPEhUUSXFs4axr3Jezj6rBWt5oeZf1ccUkXgjk90da\nfBhff2g9P3z2PL98vXaydW3dzOHTdZYmAPKjsrGOO/jX584zPObg4Vty2Vro/z5WMikKCSGEEEKI\nVc3qGEGFCqPOv/HHU0HSPZcWhUY6FyxkuntgjP96qQq1WsVX7193RUixSqVic0E867JjeOtkO68d\nb+OXb9Ty9qkO9t+whg25scsmAHdo1M7PXq2mutVCRJieL+5bS9E1+pt8X8OmYbKF7OkLU8j8LQqN\nOsf4Xyf/jQxjKn+24TG/1gi0qaJo2jxOyvWaxzl3RkFfCu7QwLTYKeG9MAAT/bEcH+yb8TqVismC\nUNHFEPedyVuotTRwrOc0t2TcyLttH/BB54c4PE6igiK5M+sWtiVuuibbxi6lUqnYmLCOA+2HqDbX\nURpXDMDJ3nPY3Q5uTd895+kvgy6EB/P389OKX/Fi42t8ufTz89pTeoKRrz+0nh88c46nXq9BpZoc\nY/9RHsVDvaWRqKBIjJpIfvjsefosNu7cnsGtm9PmtYeVTIpCQgghhBBiVRt2WAnVGfz+MDf1W/Cp\nsOmFDJketTn5j9+XY7O7eOzuteSkRMx4rV6n4e7rsriuJIk/HmnhSEUPP3qhguzkcD5+Uzb56VEB\n3ZuvyhoH+PlrNYzanJRmx/C5uwrnfRpkKWVcOBXWMtzGTakzjzm/lNGgpzAjkqpWCwNDNmIjfZ9C\n9l7HEWwuG+0jnSiKsiwKftPtk/M4Kfe79xpx24OI0sbRNNyCw+1Ar5nf+6O8vxq1Ss0PPnUvbqeW\nEZuD0XEnI+NORsYdjNicjNmcrM+NY1325Zk56+KKCdUaONx1nMNdx5hw24nQh3Nf5j52Jm+5aijz\ntWpTfCkH2g9x1lROaVwxiqJwuOsYapWanclbvVqjNK6IrPB0qgbrGLCZiQ2ZX7E3PcHINx7ewA+e\nOccvXqvBoyhsX5uIVqOafs93j/Yy5hynKKGA/3qpipaeEa4rSeT+G9fM67lXupXzzhVCCCGEEMIP\nVvsoMSH+F0imxtL3jk+eZrgYMh3YPCGX28OPX6jANGRj386My04xzCY6PJjP3VnIbVvTefFQM2fq\n+/nn/z5H8ZpoPn5jNukJi5vb4/Z4eOlwC68da0OrUfOpW/PYszFlWRQz5iPBEE9kUAQ1g/W4PW6v\nC4KbC+KparVwus73FrJxp433Oz6c/GeXjVHnGEa9fyfeAumjIdO+aumxcq5hgLVZ0WQnreXdjg9o\nGGqhaIYx6d6wTAzRNtJBQVQukYbJP6OYiNnH0V9Kp9ayLWkTBzsOY9SFcdeavVyfvH3RQtgXU7ox\nldjgaMoHqnG4HXSMdNM91suG+HVE+BDIf33Kdlqs7XzYfcKvEfVX7CvByNcf2sAPnz3HU6/X8tTr\ntahVKoL0GoL1GohrhliorFAz2GpmXXYMn7m94Jr/2bLQrq1GXSGEEEIIIQLI4XYw4Z7wO2QaIFRn\nwKgPmz4pdDFkOnB5Qoqi8PRbddR1DLEpP457d/n+m+/k2FC+sr+EJx7dTEF6JJXNZr791CmefLmK\n8qZB+izjuD2egO35aobHHPzLs+d57Vgb8ZEhPPHoJm7elLoiPrSpVCqKYwoYc43TYm33+r6pKWSn\nan1vkfqg8ygT7glCdQYA+sb7fV4j0AIRMn3w7OT30IO35LP2QiGoxlw3r31VDFQDsC6uyO817l5z\nG4+VPMp3dv4Ne9J2rciCEEy1kJXicDuoHKzl8IWA6RtmCZi+mo3xpRi0IRztPonTE5jA+4xEI9/8\n5Ea2FsZTlBXNmuRwYsKD0WpU2PWTP4MHu8Ioyoziy/cUX3PZZEtBTgoJIYQQQohVa/hCyPR8ikIA\nSYYEGoaasbsdAQ+Z9igKfzzcwuHyHjISjHzxrrWo51FEWZMczjce3kBVq5nfv9/Eieo+TlRPfpjS\nqFXERASTEGUgISqE+KgQUuLCyE+LnHdIdUPnEP/1UiVDow425MbyhbsKMQSvrA/VJbFrOdJ9gsqB\nGnIivZuW5W8L2YRrgvc6DhOqNXBH5i38vuFlTOP9Xj/vQplvyPTYhJOTNSbiI0NYnxdHb78OvVpH\nzWA95Pq/r7L+KgDWxa71ew29Rs/6Cxk7K93G+NLJEO3OYzQPt5JgiCc3MtunNfQaHduTNnOw4zBl\npgo2J24IyN7S4sP4k3su//fg9rj5xuHXiQyK44mv3TGvn5GrjRSFhBBCCCHEqmV1BKYolBgaT/1Q\nE33jpoCGTA+POfjZq9VUtZiJDg/iz+4vIUg//5wilUpFcVYMazOjqWwepLV3hD6zDdPQOH1mGxXN\ng1Rccn1sRDB7NqayqzSJUB8LOYqi8M6pDn73fhMeReGBm7K5fVv6ijgd9FF5UTno1DoqBqq5N+dO\nr+/bUpjgcwvZ4a7jjLnG2Ze1dzrQeTmcFJpvyPSHFb04XR5u3JCMWq1Cp9aSF5VN5WAt5gkL0cG+\nt3qOO23UDzWRbkwhKjjSr32tNqlhScQbYqkfmpzmtStlu1/fs7tStnOw4zCHuo4HrCh0NW0jndjd\nDvKicqQg5CMpCgkhhBBCiFVr2GEF/B9HP2UqbLrzQvZGIEKma1rN/PSVaobHHKzLjuHzCxDErFap\nWJcdy7rs2Mu+Pj7hpM9io88yTm2bheNVfTz/XiMvHW5mR3EiN29MJTV+7uwam93FU6/XcLqun/BQ\nPX/ysSIKMpY24Hoh6TU6CqJzqBiooX98kDhDzNw3MTWFrI7D5d3s3Zo254dah9vBgfZDBGuCuTH1\nOjzKZNvfsigKzSNkWlEU3j/XhVaj5vpLpksVRudTOVhLzWA916Vs83ndqsFaPIqHdbGr45RPIKhU\nKjbFl/JG6wF0ah3bEjf5tU68IY6CqFxqLQ10j/aSHOZdFpqv6syNAORH5SzI+iuZFIWEEEIIIcSq\nZQ1U+9iFsOkzfWXzDpl2ezy8fKSVV4+2olar+MTuHK8KBYFkCNaRlaQjKymc7WsT+fhNORwp7+Hg\n2U4+ON/NB+e7KUiP5OZNqaxXq+notTI24WLM5mRswsX4hJMxm4tzDf30WWzkpUbwJ/cWExkWtGiv\nYamUxKylYqCGisFq9hh2eXVPWIiOrYUJHKvqpbJ58Ioi3Ud92H2SEecot2fswaCbbDcL1RowLZOi\nkL8h07VtFnrN4+woSsB4SQF0bUweNEC12b+iUNnAZOtY6TzyhFajzQnreavtPbYlbZp+n/ljV8p2\nai0NHO46zoP59wZwhxfVWRpQoSI3SiaN+UqKQkIIIYQQYtUKVPtYgmHypFCdZfK31Wl+5qlYRuw8\n+XIV9R1DxEYE86V7ishOnnns/GIJC9Fx+7Z09m5Jo6xpgANnOqlutVDbPgQvVs567+1b09l/45pV\nE/haHFsIdVAxUMOeNO+KQgC3bU3jWFUvb53smLUo5PS4eKftffQaPbsvWT/eEEfbSIdPk88CbSpk\nek1Ehl8h0++dm2w9u2nD5UXVuJBYYoKjqbM0+Pz6nB4X1YO1xIbEkHThRJ/wTmJoAv9z+zeICJrf\nz6CS2LVE6MM52XuGe7LvIFgb2OKww+2kZbiN1LAkwnShAV17NZCikBBCCCGEWLUuto/NrygUrg/D\noA1h3GUD8OukUHnTAD97tYZRm5NN+XF87o6CZRfErFar2JAbx4bcOLoHxjhU1o1LAa0KDMFaQoN1\nhAZrCQ3RYQjWEhUWRHS492O/V4KIoHDSjak0DjVjc9kI0Xp3wiI9wUhhRhQ1bRba+0ZIT7j6e/J4\nzymGHVZuSb+RMP3FD8AJhjharG0M2AZJCJ1/npU/5hMyPTRq51zDAKlxoeSkXF6EUKlUFMbkcaTr\nOK3WDrIjM71et97SiN3t4PrYohWZY7XQYkO8a4GcjUat4brkrbze+i6n+85xvY9TzObSPNyKS3GT\nJ61jfpGikBBCCCGEWLUuto/NL1NIpVKRGBpP83AbOrXWpxMJXQNjvPBBE+caBtBq1DyyN4/dG1KW\n/QfY5NhQHro5l7g4I/39I0u9nWWlOLaQ9pFOqgfr2ZRQ6vV9t21No6bNwlsnO3js7iunZLk9bt5u\nex+dWsuetBsue2yqXatvvH/JikLzCZk+VNaN26PM+N5fGz1ZFKox1/lUFJqeOiatY0vqupRtvNl2\nkMNdx7kueVtAf75NndDMj5aikD9WxxlOIYQQQgghrsLqGEGv0QeknSHxQgtZSliyV+0tg8MT/OK1\nGv7+5yc41zBATkoETzy6iT0bU5d9QUjMriS2EJhsIfNF8ZoYkmIMnKzpwzJiv+Lxk71nMU9YuC55\n2xWn2+JDLxaFloq/IdNuj4cPzncTpNewvejqQcSTU6XUVA/We72uR/FQPlBFmC6UNREZPu1JBFZk\nUAQlsWvpHO2m1doe0LXrLI2oVWqyI7ICuu5qIUUhIYQQQgixag07rETMM09oylTY9FytYyPjDp49\n0MC3fnqcIxU9JMeE8mf3l/CtRzbO2DIkri1pYSlEBkVQPViL2+P2+j61SsVtW9NxexTePdNx2WNu\nj5u32g6iVWm4Jf3GK+6dOim0lGHTHSNdfoVMlzcNYhmxs6MokZCgqzezhGiDWRORQftIJ6OOMa/W\nbbV2MOIYpSR2rV8ZRyKwdl1oGzvcdTxga9pcNtqtnWSGpwc8q2i1kO8MIYQQQgixKnkUD6OOsXm3\njk0piM4jRBtMadzVx15POFy88mELf/PkMd4+1UFEqJ4v3FXIdz6/lQ25cXI6aAVRqVQUxxQw5hqn\nxcdTETuKEgg36PjgXDcTDtf018+Yyui3DbI9aTNRwZFX3BcbEoNapV6yk0J2t4OesT7SwpJ9LsBM\nBUzv3jB7QbUwOh8FhVpLg1frlvfL1LHlJD8qh7iQGM6Yyhh1elfYm0uDpRkFhfyo7ICstxpJUUgI\nIYQQQqxKI45RFBTC5xkyPSU5LJEf3vBdCqJzr3yucQf/6+kzvHi4BY1azcM35/KPj2/nupIk1Gop\nBq1EJbGTmUCVXrSQuT1uflPzO35a/iv+2PIa2aVmJkK6efVcBRMuOx7Fw1utB1Gr1OzN2H3VNXRq\nLTHBUUtWFPI3ZNo0ZKOq2UxOSgRp8WGzXrs2Jg+AGi9byMoGKtGrdeRHXfk9KRafWqXm+pTtuDwu\njvecDsia9ZYmYLLgJPwjQdNCCCGEEGJVmp48FqD2sZmMTzj51+fK6Oof44bSZB7ckzNji4xYOfKi\nctCpdVQMVHNvzp2zXvtu+wcc6zl12deC8uC9sbO8dwhCtCHYXDa2J24mJiR6xnUSDHFUDtYy5hwn\nVGcIyOvwlr8h0x+c60Jh7lNCAKlhyYTpQqkx16Eoyqyn63rHTJjGB1gfV4xes7ym+K1m25M280rz\nWxzpOs6etF3zbuurszSiU+vIlMwov8lJISGEEEIIsSpNTR6LCFD72NXY7C7+7fky2vpGuKE0mc/c\nni8FoVVCr9FREJ1D77iJ/vHBGa/rHTPxeuu7hOuNfHv7X/ONzV/l80WfItW1GZcpjZSgTIz6UGKC\no7g98+ZZnzPesHRh0/6ETDtdHg6X9xAWomNzwdw5RGqVmsLoPIYdI3SP9c567VTr2LpYaR1bTsJ0\noWyKL6XfNjg9Ncxf1gvvg+yITHRq+bnqLykKCSGEEEKIVcnqmCwKGQPUPvZRdqeb//uHcpq6rewo\nSuDR2/IlN2iVKYmZbCGrGKy+6uMexcNva3+Hy+Piwfz7iDPEkBmezqaEUj676S6crUUozVv5n9u/\nyXd3fos4Q8ysz5ewhEUhf0KmT9eZGLU5ub4kCZ127ol9AIXRky1k1YN1s15XNlCFWqWm+MIkiH2f\n6gAAIABJREFUOLF8BCpwerp1TEbRz4sUhYQQQgghxKo0PH1SKPBFIafLw49fqKC2fYhN+XF8/q5C\nyQ5ahYpiC4CZR9Mf6jxG83AbG+LXsf4jAeVJMaGUZsfQ1GWlsWvYq+dbqglkDj9Dpt+/EDB944Zk\nr+8pvJArVG2eOVdoyD5Mq7WdnMg1i95GJ+aWGZ5OalgyFQPV8xpPX2eePGkkeULzI0UhIYQQQgix\nKk2dFAoPcFHI5fbwkz9WUtliZl12DF/6WBEatfy1ezWKDIog3ZhC41AzNpftsscGbWb+2PwGoVoD\nn8i756r337Y1HYC3Tnr3wTneEA9ceVJIURRft+6TTj9CpjtNozR0DlOUFU1ClPeFm3C9kbSwZBqH\nmvll1TMc7T7FoM182TUVA5Mns0qldWxZUqlU3Jl1K4qi8H/O/ZSqOU59zaTe0kiINtjnHCtxOWm8\nE0IIIYQQq5J1Kmg6KHCZQh6Pws9ereZcwwCFGVF85b5itBopCK1mxbFraR/ponqwnk0JpcBkkeaZ\nuhdwuB08VHjfjIXJ/PRIMhKMnK3vxzRkIz4yZNbnCteHEawJvqwodKism2cPNKDXqok0BhFtDCbS\nGERUmJ4oYzBRxiDWJIfPK+vKn5Dp9857N4b+am5Ov5HfN7zMqb5znOo7B0BMcDT5UdnkRmVzpq8M\nuDgBTiw/pXFFPFbyaZ6q+m9+Uv4UjxQ8wLakTV7fP2gzMzBhZl1s0bzDqlc7KQoJIYQQQohVadg+\nglqlDlh7iUdR+OUbtZysMZGTGsGf37/O65wUsXKVxBbyess7VAzUTBeFjveeocZcz9rofLYmbpzx\nXpVKxW1b0/jpK9W8e6qDT96aN+tzqVQqEkLj6BrpxqN4qGw286s3awnWawgJ0tJrHqe9b/SK+xKj\nDXzn81v8fr/6GjJtd7o5XtVLZJie0pzZc5KuZkviBjYnrKdnrI96SxP1lkbqh5o52nOKoxemuKWF\nJRMTEuXz2mLxlMYV89X1j/GT8l/y65rnsDpGuCX9Rq+y1+pkFH3ASFFICCGEEEKsSlbHCEZdWMB+\ny1zWMMCRih4yE438xcdLCdJLQUhAWlgKEfpwqgdrcXvcjDrH+UPDKwRp9DxcsH/OD8CbC+L53ftN\nHC7v4fZt6USHB896fYIhjjZrB+UdHTz5UitajZqvfWI92SkRKIrCuN2FZcTO0Igd84idssYBzjUM\n8M7pTu7c7t9Yb19Dpk/XmrDZ3dy8Kc3v1kqVSkVyWCLJYYnclHYdHsVD50g39UNNtAy3sSNpi1/r\nisWVE5nF1zZ+mR+X/ZyXml5n2G5lf+6+OX8u11kaAMiLyl6Mba5ocs5KCCGEEEKsOoqiYHVYiQjg\n5LHqNgsAD92ciyFYfvcqJqlUKopjCxlzjdNibef5+hexuWzcm30n0cFzn2TRatTcuT0Du9PN9359\nmpYe66zXTxVmnjp4GofTzeN3ryU7JWJ6L6HBOlLjwiheE8MNpcl84a5CwkJ0vHq0leExh8+vz5+Q\n6UNl3QDsWpfk8/PNRK1Skx6eyi3pN/JYyaMydewakhyWyNc3fYWk0ATe6zzCU1X/jdPjmvF6RVGo\ntzRh1IeRFJqwiDtdmaQoJIQQQgghVh2bawKnx0W4PnB5QvUdQ+i0arKSAremWBlKLhQofl//R873\nV5IdkcX1F8Zye2PPxhQe2pODddTBP//2LKdrTTNeG6mNBsDGEA/uyWFTfvysaxuCddy3K4sJh5sX\nDzV7vacpvoZMdw+MTQZMZ0YRN0dGklg9ooIj+drGL5MdkclZUzn/ef7n9I33M2gzX/G/hqEmrI4R\n8qNyvGo1E7OTX2EIIYQQQohVJ9CTx8YmnHSaRslPj0Snld+7isvlR+WiU+voGO1Gq9byqcKP+9S2\nqFKp2Ls1nfhoA0++XMV/vlTJfTesYd+OjMs+FLvcHg4eG4IYSE1VceuWNK/Wv2F9MgfPdnG4vJs9\nG1NIT/D++8LXkOnD5RdOCZV6P4ZerA4GnYGvrn+MX1Y/Q1l/Jd89/oNZr5fWscCQopAQQgghhFh1\nLk4eC0xRqKFjGAXIS4sMyHpiZdFrdBRE51AxUMNdWbd6nb3zUetzYvnbRzbxH78v48VDzfQOjvHZ\nOwrRadUoisKv36yjsdlFSDQYoxxen6LQqNU8eHMO//pcGc8dbOTrD633+l5fQqZdbg8fVvQSFqJj\nQ65/fwZiZdNrdHyx+BEOtB+iZ6xvxuuCtcFsil+/iDtbuaQoJIQQQgghVh2rfeqkUGBaveo7hgDI\nl6KQmME92XeSE7mG3anXz2udtPgwnvjMFn70h3KOVfXRPzTBV/eX8P75rgtB55E4g6Mw2frnXuwS\nxVkxrMuOobxpkPONA14XbXwJmT7XMMCozcneLWlyok7MSK1Sc2vGTUu9jVVDvhOFEEIIIcSyY3c7\nMI0PLNj6w1PtYwE6KVTXMYRGrWLNhUBfIT4qKTSBW9JvRKOe/1S6iFA93/zkBratTaCxa5i//8VJ\nXjrcQmxEMP/fA6UkhMZhdYxgc034tO6De3JQq1Q8d7ARl9sz5/W+hkxPBUzfIK1jQiwbUhQSQggh\nhBDLhsPt5ED7If7+6Pf57vEfTLemBNrwVPtYADKFJhwu2npHyEwyEqSTMfRicei0Gh6/ey33Xp+F\ndcyBIUjLXzxQSkSonkTDZLi0ady300JJMaHs3piCyWLjwJm5v/c6R3u8DpkeGLJR3WImJzWC5NhQ\nn/YlhFg40j4mhBBCCCGWnNPj4mj3Sd5qPcCwYwStWouCwoddJ0gv8G6qkS+s9lEgMO1jTV1WPIoi\neUJi0alUKj52fRaFmVEYDXoSow0AxF9o5eodM5ER7l3Y9JR7rs/ieFUvL3/Yys7iRIwG/YzXtlsn\nC0fehEwfLu9BAW5YJ6eEhFhO5KSQEEIIIYRYMm6Pmw+7T/CdY/+b5+tfwuaaYG/Gbv5h598SGRTB\n6b4y7G5HwJ93Kmg6XB8277XqJE9ILLHc1MjpghAwne/j60khgLAQHR+7Lgub3cVLR1pmvdbbkGmP\nR+FIRQ8hQRq2FMT7vCchxMKRk0JCCCGEEGJJnDNV8FLT6wzYBtGptexJ28XejN0YLxRqdiRt5o3W\nA5wzlbM9aXNAn3vYMYJBG4JOo5v3WvUdQ6iAnBQpConlISF0sijU50dRCGD3xhQOnuvig3Pd7NmQ\nQkrclcVTp8dFnaWRIC9CpiuaB7GM2LlpQwpBemmxFGI5kZNCQgghhBBi0ZnG+/l55W+wTAxxQ8pO\nvr3jr7k/9+7pghDAjqQtqFBxtPtkwJ9/xD5CeND8W8ecLjfN3VbSEsIwBMvvW8XyEKEPJ0ij97so\npNWoeXBPDh5F4bmDjVe95kjXcYbsw1yfsn3OkOmLAdNJfu1HCLFwpCgkhBBCCCEWXeVgLQoKn8i7\nhwfz7yUy6MqpXTEh0eRH5dA03ErvmClgz+30uBhzjRMegJDp5m4rLreH/LSoAOxMiMBQqVTEG+Lo\ntw3gUeaeInY1pdkxrM2MorLFzInqvsses7sdvNV6kGBNEHvTd8+6ztConbLGQdITwshMnH8hVggR\nWFIUEkIIIYQQi656sA6A4tjCWa/bmbwVgKM9gTstZLVPjqMPxOSx+gt5QhIyLZabBEMcTo8Ly8SQ\nX/erVCo+eUseQXoNP3+tmrp2y/Rj73ccYcQ5yu60XYTpZ58k9mFFDx5FkTH0QixTUhQSQgghhBB+\nURSFo90nGbIP+3Sf3e2gwdJEaljyVU8IXWpdXBGhOgMnes7g8rjms91pVsdkUSgQJ4WmikK5abO/\nDiEW21TOj78tZADJsaF8dX8JigL/8YcKOk2jjDttvNP+AQZtCDen75r1fkVROFzWg16rZvvaBL/3\nIYRYOFIUEkIIIYQQfukY6eK3tb/n9w2v+HRfvaURl+KmKKZgzmt1ai1bEzcy6hyjcqDG361eZnry\nWND8ikIut4fGLivJsaGEzzK2W4ilEIiiEEBRZjRf2FeIze7iX58/zysNB7C5bNyacRMh2pBZ761t\nH8I0ZGNzQTyG4PmHugshAk+KQkIIIYQQwi/9tkEAKgdqmHDZvb6vcrAWwKuiEMDOpMkWsg+9bCEb\nsJl5reWdGU8wDU+3j80v36S9bxS70y2tY2JZijdMjn6fb1EIYPvaRB7ak8PQxCiHuo8SpgvjxtTr\n5rzv8HTAtLSOCbFcSVFICCGEEEL4xTwxmTHi9DipHPTuFI+iKFQN1BKiDSEzPM2re5LDEskKT6dm\nsH7OfJQJ1wT/VfYLXm95h+8d/xcOdx2/Img3UO1jF/OEpHVMLD/xhlggMEUhgL1b08nd2A9qFxpT\nLnhmHi2vKAp17RZO1/WTGG0gN1W+R4RYrqQoJIQQQggh/GK+pEBztq/Mq3t6xvqw2IdYG52HRj3z\nh8qP2pG8BQWFYz2nZrxGURR+U/t7esdNFEbnoVLBs3Uv8O9nn6TvkullU+1jEfNsH5sqCsnkMbEc\nBWn0RAVFYgpQUcgyMUSvugadJ5Texjh+8lIlbs/lBdexCSfvnO7giZ+d4J//+xwut4e9W9JQqVQB\n2YMQIvCkKCSEEEIIIfxinjADEBUUSZW5DptrYs57qnxsHZuyKb4UvUbPsZ7TM47Yfq/jMOdM5WRH\nZPLldZ/jiW1/RWlcMU3DLfzjqX/nzdYDuDyuS04K+d8+5lEU6juGiI8MIcoY5Pc6QiykBEMcQ/Zh\nn9o7ZzL1/fPxgtspyoylrGmQX71Zh6IoNHUP8/PXqvmrH33IM+82YLLY2FoYzzcf3sCN66V1TIjl\nTLvUGxBCCCGEENcm88QQwZogdiZv4bWWd6gYqGZr4sZZ75kqCq2NyffpuYK1wWyOL+VozynqLI0U\nRudd9niDpZkXm14nXG/kC8WPoFFriAyK4PGSRzlvquD5+pd4pfktzvSVMeG2o1VrCdEG+/aCL9Fp\nGmXc7mJjXpzfawix0OINcdRaGjDZ+kk3pvq9zoBtkKM9p4g3xLIjeTOb7lX438+c40h5DzWtZgat\nk0WnuMhgblyfwvUlSYSHSvi6ENcCOSkkhBBCCCF8pigK5gkL0cFRbIwvBeDMHC1kNtcETcOtZBjT\nMOrDfH7OncmTgdNHuy8PnB62W/lF1W8B+ELxI0QEXX4CaH18CU9s+zrXJW+je6wX84SFCL1xXi0t\nF/OEJGRaLF9TE8hMY/NrIXut5R08ioe7svaiUWsICdLylw+UEh8VgmXEwaa8OL72YCnf/9IO7tye\nIQUhIa4hclJICCGEEEL4zOayMeG2Ex0cRWJoPClhSdSY6xl3jmPQGa56T525AY/iocjHU0JTMsPT\nSQxNoKy/ilHHGGH6UNweNz+r/A1Wxwj35+wjJzLrqvcadCF8suB+tiSs5/n6P5IVke7XHqZMF4XS\npSgklq+E0PmPpe8Z6+NU7zlSwpLYGL9u+uvhoXq+/bktuNwKYSEybl6Ia5WcFBJCCCGEED4bvBAy\nHR08GbK8Mb4Ut+KmbKB6xnum84RifcsTmqJSqbguaQtuxc3J3jMAvNj0Gs3DrWyMX8futF1zrpEb\nlc3/2PY1Plnwcb/2AJOnpOo7hogyBhEX4X8LmhALbeqk0HyKQq82v42Cwr6svahVl398DNZrpSAk\nxDVOikJCCCGEEMJnUyHT0cGTJ2U2XWghm2kKmaIoVA3WEqYLnVe2ydbETWhUGj7sOcXpvvO813GE\nREM8nyp4YNEmHPWax7GOO8lLi5SpSmJZiwyKQKfW+V0U6hzp5nx/BRnhaZTErg3w7oQQy8Gc7WMe\nj4dvf/vb1NXVodfr+Yd/+AcyMjKuuO7v/u7viIiI4Otf/zovvPACL774IgB2u52amho+/PBDwsP9\nn/AghBBCCCGWD/NHTgrFGWJIN6ZQa2lg1DlGmC70sus7R3sYdoywNXHjFacNfBGmD6U0roizpnJ+\nXf0cQRo9j5U8SrB28SaAXRxFL61jYnlTq9TEG2IxjffjUTw+f++dMU0Wefdm7JYCqBAr1Jw/Fd59\n910cDgfPPfccf/VXf8U//dM/XXHNs88+S319/fT/379/P08//TRPP/00RUVFPPHEE1IQEkIIIYRY\nQcwTFgBiQqKmv7YxvhSP4qGsv/KK6/0dRX81O5MmA6fdiptPFz5IYmj8vNf0hYRMi2tJgiEOh8fJ\nsN3q871Vg7Vo1dorpv0JIVaOOYtCZ86cYdeuyf7s9evXU1l5+X/kz549S1lZGQ8++OAV91ZUVNDY\n2HjVx4QQQgghxLVrqig0dVIImA6hPdtXfsX1VYO1qFAF5MNlfnQOmxPWc2/2nWyIL5n3er6q7xgi\nLERHUszVA7WFWE6mcoV6x0w+3TdkH6ZrtIfcyDUEaWSamBAr1ZztY6Ojo4SFXRwZqtFocLlcaLVa\nTCYTP/7xj/nRj37EG2+8ccW9Tz75JF/5yle83kxcnNHra4Xwhby3xEKQ95VYKPLeEgslkO8tq8uK\nTqNjTXLSdFtJHEZy6zKpszSiNypEBE+eFB+1j9FibSMvdg2ZyQkBef5vxn8pIOv4qs88zqDVzo6S\nJOLj5ST8FPm5tXyVOgt4o/UArbYWbojb5PV95U2TrWPbMkqX9N+vvLfEQpH31qQ5i0JhYWGMjY1N\n/3+Px4NWO3nbm2++icVi4fHHH6e/v5+JiQnWrFnD/v37sVqttLS0sH37dq83098/4sdLEGJ2cXFG\neW+JgJP3lVgo8t4SCyXQ7y3T6CBRQREMDIxe9vV10cU0mFt5t+Y4N6TuAOB033kURSEvPPeaf38f\nq+gBIDM+7Jp/LYEiP7eWt0RNCsGaYI62n+X2lL1eZwOdaJssCmUEZS7Zv195b4mFstreW7MVwOZs\nH9u4cSOHDh0C4Pz58+TlXTzy++ijj/LCCy/w9NNP8/jjj7Nv3z72798PwKlTp9ixY8d89y6EEEII\nIZYZu9vBqHOM6KCoKx7bMNVCZro4hSyQeUJLTfKExLVGp9ZSEluIecJC+0inV/e4PC5qzQ3EhcQQ\nf6H9TAixMs1ZFLr11lvR6/U89NBDfP/73+db3/oWr7zyCs8999ys97W0tJCa6v+4USGEEEIIsTxd\nLWR6SlRwJGsiMmkcamHYbsWjeKgerCNCbyQ1LGmxtxpwde1DhARpSIsPm/tiIZaJ9Reyt85fJQT+\napqHW5lw21dEIVcIMbs528fUajXf/e53L/tadnb2FddNnRCa8sUvfnGeWxNCCCGEEMvR1UKmL7Up\nvpTm4VbOmSrIikhn1DnGjqQt1/xIa9OQDdOQjQ25sajV1/ZrEavL2ug89God500VfGzN7XN+L1au\noNN9QojZzXlSSAghhBBCiEvNVRTaEF+CChVnTGUr6sNlVfMgAMVrYpZ4J0L4Rq/RUxRTgMk2QPdY\n75zXVw3WoVPryI1cswi7E0IsJSkKCSGEEEIIn5gnJnN1ZioKRQSFkxOZRfNwKyd7zqBWqSmIzlnM\nLS6IyhYzAMVZ0Uu8EyF8N91CZqqY9bpBm5nesT7yo3LQaXSLsTUhxBKSopAQQgghhPDJxZNCM4ct\nb4wvBWBgwkx2RCYh2pBF2dtCcbk91LRZSIgKIS7y2n4tYnUqjilAq9Zyrn/2olDVYB2wMk73CSHm\nJkUhIYQQQgjhk0GbBbVKTYQ+fMZrplrIYGV8uGzqGmbC4aY4S1rHxLUpWBtMYXQePWN99I2ZZrzu\n4rTA/MXamhBiCUlRSAghhBBC+MQ8YSEqKAKNWjPjNUZ9GPlRky1jK6EoNNU6ViStY+IatiFusoXs\n3AxTyJxuJ3WWRhJDE4gJkfe6EKuBFIWEEEIIIYTXXB4XVsfIjHlCl/pkwf08XvIZksMSF2FnC6uy\nxYxGraIgY+aWOSGWu5LYQtQqNednaCFrGGrG6XHKKSEhVhEpCgkhhBBCCK9ZJoZRULwqCsWERFMa\nV7QIu1pY1nEH7b0j5KZGEKzXLvV2hPCbQWegICqXjpEuBmzmKx6fah0rXgGn+4QQ3pGikBBCCCGE\n8Jo3IdMrTXWLGQVpHRMrw/r4YoCrnhaqGqwlWBPEmojMRd6VEGKpSFFICCGEEEJ47WJRaO6TQgvF\n6XLz4qFmDpV141GUBX++i6PoJWRaXPvWxRahQnXFaHrTeD/9tkHyo3PRquVEnBCrhXy3CyGEEEII\nrw0ucVFocHiCH71YQVvvCABHK3v57B0FJEYbFuT5FEWhqsVMuEFHWkLYgjyHEIvJqA8jN3IN9UNN\nWCaGiLpw6u/iKHrJExJiNZGTQkIIIYQQwmtLeVKops3Cd355irbeEXYWJ7IhN5b6jiH+/ucnee1Y\nKy63J+DP2WEaZXjMQVFWNGqVKuDrC7EU1sdPTiEr66+a/trFUfSSJyTEaiJFISGEEEII4bWpolDU\nImYKKYrCWyfb+Zdnz2Ozu/j03jy+cFchX91fwp/eW4whWMsfPmjmH359evoEUaBUSeuYWIFK4y60\nkF3IFbK7HTRYmkgJSyIyKGKJdyeEWEzSPiaEEEIIIbxmnhgiQm9Et0iZI3aHm6feqOFkjYmIUD1/\nel8xuakXC1KbC+IpyIji+YONHKno4Xu/Os1t29K457os9DrNvJ9/Kk9IQqbFShIZFEFWRAaNQy1Y\nHSO0WTtwKW45JSTEKiRFISGEEEII4RWP4sFiHyLDmLooz2eyjPOjFyrp7B8lJyWCL99bTJQx6Irr\nwkJ0fP6uQratTeBXb9byxvF2ztb189X9JaTE+Z8DZHe4aegcIj0hjPBQ/XxeihDLzoa4YpqHWynr\nr6JztBuQ1jEhViNpHxNCCCGEEF4ZtlvxKJ5FyRNq6hrme786TWf/KLs3pPDNT264akHoUkVZ0Xzv\nC9u4dXMafRYb3//NWeraLX7vobbdgsutSOuYWJFK4yZzhc6bKqgaqCVEG0JWePoS70oIsdikKCSE\nEEIIIbyymJPHnj3YwNiEi8/dUcCnb8tHq/Hur61Beg0P35LLF/cVYne6+ZfnznOq1uTXHi6OopfW\nMbHyxIREkWFMo9bSgMU+xNroPDTq+bdcCiGuLVIUEkIIIYQQXlmsyWMtPVaauqysy45hV2myX2vs\nLE7iLx4oRaNR85OXKnnndIfPa1S2mAnSa8hJleBdsTKtjy+e/mdpHRNidZKikBBCCCGE8Ip5YgiA\n6AWePDZVwLll8/yyi4qyovmbT24kPFTPM+828Px7jXgUxat7B4Zs9JnHKUyP8vqUkhDXmvUXWsgA\n1sbkL+FOhBBLRf4LJ4QQQgghvLIYJ4WGRu2cqjGRFGOgKHP+bVsZiUb+x6c3kRht4M0T7fz/r1Tj\ndHnmvE+mjonVIN4Qy7rYIjbFl2LU+x/KLoS4dsn0MSGEEEII4ZXFKAq9d7YLt0fhls1pqFSqgKwZ\nGxnC3356E//x+3JOVPdhHXPwlftKMATP/Ffh6TyhNVIUEivbl9Z9Zqm3IIRYQnJSSAghhBBCeMU8\nYSFUZyBYO/sUMH85XW7eP9+FIUjLzqLEgK4dFqLj6w+tZ0NuLDVtFr73q1M0dg1f9VqX20NNm5m4\nyGASogwB3YcQQgixnEhRSAghhBBCzElRFMwTQwt6SuhkjYmRcSc3rE8mSB/4KUh6nYav3FfC7dvS\nMVlsfP83Z3j+YCMOp/uy65q7rdjsbhlFL4QQYsWTopAQQgghhJjTqHMMp8e5YEUhRVF453QHKhXs\n2ZiyIM8BoFar+MTuHP76UxuJiwjhzZPtfOeXp2jqvnhqSEbRCyGEWC2kKCSEEEIIIeZ0MU9oYSaP\nNXQO0943ysa8OGIjQhbkOS6VlxbJdz6/lVs2pdIzOM4/Pn2G373fiNPlpqplEI1aRUHGwp2KEkII\nIZYDCZoWQgghhBBzGlzgkOmpMfS3bk5bkPWvJkiv4ZO35rEpP45fvF7DG8fbOd8wQO/gOLlpkYQE\nyV+VhRBCrGxyUkgIIYQQQsxp6qRQzAIUhQaGbZyt7yc9IYzc1IiArz+X/PQovvP5rezZmELP4DgK\n0jomhBBidZBffwghhBBCiDkt5Dj6g2e7UJTJU0KBGkPvq2C9lkf25rMpP54T1b3csD55SfYhhBBC\nLCYpCgkhhBBCiDktVFHI7nBz6Hw34QYdWwsTArq2PwozoiiULCEhhBCrhLSPCSGEEEKIOZknhgjS\n6DFoAxsCfbSql3G7i5s2pKDTyl9NhRBCiMUk/+UVQgghhBBzMk9YiA6OCmh7l6IovHu6A41axe4N\nCzeGXgghhBBXJ0UhIYQQQggxK5vLhs01EfDWsapWMz2D42wtjCciLCigawshhBBiblIUEkIIIYQQ\nszJPDAGBnzz27ulOAG5ZxDH0QgghhLhIikJCCCGEEGJWgzYzENiQ6aFRO+VNg2SnhJOVFB6wdYUQ\nQgjhPSkKCSGEEEKIWU2dFIoOjgzYmo2dwwBsyI0L2JpCCCGE8I0UhYQQQgghxKwWYhx9Y9dkUSgn\nJSJgawohhBDCN1IUEkIIIYQQs1qoopBGrSIz0RiwNYUQQgjhGykKCSGEEEKIWZknhtCqtRj1YQFZ\nz+F009Y7QnqCEb1OE5A1hRBCCOE7KQoJIYQQQohZDU6YiQ6KRK0KzF8dW3tHcHsUaR0TQgghlpgU\nhYQQQgghxIwcbgejzrGAto41TeUJpUpRSAghhFhKUhQSQgghhBAzWpDJYxeKQtnJMopeCCGEWEpS\nFBJCCCGEEDMKdMi0oig0dg0THR5EdHhwQNYUQgghhH+kKCSEEEIIIWYU6KJQ/5CNkXGn5AkJIf4f\ne3ceXedZ2Pv+9+55b01bs2TZli1Z8jw7cwIkEAIhARKSJgGOy9DS0pZz7j3lwO26hzaHwwn09NLb\nsw4UuG0phYYECklIIHEhA5A4ieN5tmVNtjWPW9Kep/f+ocExnvd+JW1J389aWpre/bzPtvey5Z+f\n5/cAyAGEQgAAALikc9vHrAmFpraOEQoBADDrCIUAAABwSYPRIUlWhkKjksRKIQAAcgDQPA3MAAAg\nAElEQVShEAAAAC5pIDIku2GX321NKXRzx4hcDpuWVORbMh4AAMgcoRAAAAAuyjRNdYd6VOkrl91m\nz3q8SCypzv6gllcXymHnx1AAAGYbfxsDAADgooaiAcVScVXnVVoyXmvXqExJKxazdQwAgFxAKAQA\nAICL6g71SJKq86osGY+SaQAAcguhEAAAAC6qO9QrSarOt2al0FQotMiafiIAAJAdQiEAAABc1GQo\ntMiC7WNp01Rr14gqS3wq8LmyHg8AAGSPUAgAAAAX1RXqkdPmUJm3NPuxBkKKxFJaUcMqIQAAcgWh\nEAAAAC6QNtPqCfWp0lchm5H9j4yTW8dW0CcEAEDOIBQCAADABQYjw0qkE5aVTLd0EAoBAJBrCIUA\nAABwga6Jk8es6BOSxlcKed0OVZflWTIeAADIHqEQAAAALmDlyWOj4bh6hyOqrymUzTCyHg8AAFiD\nUAgAAAAX6J5YKWTF9rEW+oQAAMhJhEIAAAC4QHeoVy6bUyUef9ZjTZZM1xMKAQCQUwiFAAAAcJ5U\nOqXeUJ+q86osOXmspXNUhiHVVXMcPQAAuYRQCAAAAOfpjwwqaaZUbUHJdDKVVlv3qBaX58vrdlgw\nOwAAYBVCIQAAAJzHypLps31BJZJp+oQAAMhBhEIAAAA4T5eFJdPNHZRMAwCQqwiFAAAAcJ7JlUKL\nLNg+NlUyvZhQCACAXEMoBAAAgPN0h3rlsXvkd2cf5DR3jqgwz6XyIo8FMwMAAFYiFAIAAMCUZDqp\nvnC/qvMqZRhGVmMNjUY1PBbTipqirMcCAADWIxQCAADAlL7wgNJmWossKJme2jpWw1H0AADkIkIh\nAAAATLG0ZLqTkmkAAHIZoRAAAACmTB1Hb0HJdEdfUJK0tLIg67EAAID1CIUAAAAw5VwolP1KoZ6h\nsEoLPXI77VmPBQAArEcoBAAAgCndwR7lOXwqdOVnNU4kllQgGFdVqc+imQEAAKsRCgEAAECSFE8l\n1B8ZVJUFJ4/1DIUlSdUlhEIAAOQqQiEAAABIknrDfTJlalG+NVvHJLFSCACAHEYoBAAAAEnWlkx3\nD7JSCACAXEcoBAAAAEnnQqFFFoRC51YK5WU9FgAAmB6EQgAAAJAkdQV7JFl08thgSG6XXf58V9Zj\nAQCA6UEoBAAAAEnjK4UKnPnKd2W3uiedNtU7HFFViS/rwmoAADB9CIUAAACgaDKmweiQqi0omR4c\njSqRTNMnBABAjiMUAgAAgHrDfZKsKZnm5DEAAOYGx5UuSKfTevTRR3Xy5Em5XC595StfUW1t7QXX\nfelLX1JRUZE+//nPS5K+853v6OWXX1YikdAjjzyiBx980PrZAwAAwBJdFpZMT548VsVKIQAActoV\nVwq9+OKLisfj+tGPfqQ///M/19e+9rULrnnyySfV1NQ09fmuXbu0f/9+PfHEE/rBD36gnp4ea2cN\nAAAAS3VbWTI9sVKompPHAADIaVdcKbR3717ddtttkqRNmzbpyJEj531/3759OnjwoB566CG1trZK\nkl577TU1NjbqT//0TxUMBvWFL3xhGqYOAAAAq0weR2/J9rHBkAxJlcXerMcCAADT54qhUDAYVH5+\n/tTndrtdyWRSDodDfX19+uY3v6lvfOMbeuGFF6auGR4eVldXl7797W+ro6NDn/3sZ7Vjxw5OnwAA\nAMhRXaEe+d1F8jmzD3K6h8IqLfLI5bRbMDMAADBdrhgK5efnKxQKTX2eTqflcIw/bMeOHRoeHtZn\nPvMZ9ff3KxqNqq6uTn6/X3V1dXK5XKqrq5Pb7dbQ0JBKS0sve6/y8oIsnw5wcby2MB14XWG68NrC\ndLnUayscjygQG9HGqtVZv/7C0YRGgnFtWVnBa3kB4fca04XXFqYLr61xVwyFtmzZoldeeUV33323\nDhw4oMbGxqnvbd++Xdu3b5ckPfXUU2ptbdX999+vV155Rd///vf1yU9+Un19fYpEIvL7/VecTH//\nWBZPBbi48vICXluwHK8rTBdeW5gul3tttY6cliSVOsuyfv21dY9KkkoKXLyWFwj+3MJ04bWF6bLQ\nXluXC8CuGArdeeed2rlzpx5++GGZpqnHHntMzz33nMLhsB566KGLPub222/X7t279cADD8g0Tf3l\nX/6l7HaWDwMAAOQiK0umuwfHV5hXc/IYAAA574qhkM1m05e//OXzvlZfX3/Bdffff/95n1MuDQAA\nMDdYWjI9cfJYFSePAQCQ8654JD0AAADmt67Q5EqhiqzH6h6cCIVYKQQAQM4jFAIAAFjgukO9KvEU\ny+PwZD1Wz1BYHpdd/nyXBTMDAADTiVAIAABgAQsmQhqNj1mydSydNtU7FFFViU+GYVgwOwAAMJ0I\nhQAAABawnlCfJGv6hAZGo0qm0qouZesYAABzAaEQAADAAjYUHZYklXlLsh6rZ+LkMfqEAACYGwiF\nAAAAFrBAbESS5HcXZT1Wz0TJdDUnjwEAMCcQCgEAACxg50Ihf9ZjdQ9x8hgAAHMJoRAAAMACFoiN\nSpL87sKsx+oZDMuQVFnizXosAAAw/QiFAAAAFrBAdEQOw658Z/ZbvrqHwiot8sjpsFswMwAAMN0I\nhQAAABawQCwgv7so6yPkw9GERkNx+oQAAJhDCIUAAADmgK5gj7pDvZaOmUqnNBoPyu/JvmSaPiEA\nAOYeQiEAAIAcl0qn9L/2f0ffPPBPMk3TsnFH42MyZVp88hihEAAAcwWhEAAAQI5rCrQomAhpOBZQ\nX2TAsnGHrTyOnpVCAADMOYRCAAAAOe5A3+Gpj08Nt1g2bsDKUIiVQgAAzDmEQgAAADksbaZ1sP+o\nnDanJKlpGkKhYgtCoe6hsLxuuwrzXFmPBQAAZgahEAAAQA5rCbRpLBHU9VVbVOgq0KlAq2W9QoHo\neChUlGUolEqn1TccVlVJXtanmAEAgJlDKAQAAJDD9vcfkSRtrlivBn+dRuNj6gv3WzL21EqhLE8f\nGxiJKpky6RMCAGCOIRQCAADIUeNbx47I5/Cq0V+vhuJ6SePF01YYjo3IZthU6CrIahz6hAAAmJsI\nhQAAAHLU6dGzCsRGtKFsrew2uxonQqFTw62WjD8SG1Ghq0A2I7sfCbsHOXkMAIC5iFAIAAAgR+3v\nHz91bFPFOklShbdMRa4CNQVasu4VSptpBWKjlh5Hz0ohAADmFkIhAACAHGSapg70HZbH7taqkkZJ\nkmEYaiiu11g8qN5wX1bjBxMhpcyURcfRh2QYUkUxoRAAAHMJoRAAAEAOOhvs1GB0WOvKVstpc0x9\nvdE/0SuU5RayyZPHrDiOvmcorPIir5wOfrQEAGAu4W9uAACAHHSgb+LUsfL15329obhOUvZl05Mn\njxW5C7MaJxRNaDScUBVbxwAAmHMIhQAAAHKMaZo60H9YLptTa0pXnve9cm+Z/O4inRrOrldo6jj6\nLFcK9VAyDQDAnEUoBAAAkGO6Q73qDfdrTekqueyu875nGIYa/HUKJkLqDvVmfI/hiVDI7/FnN9fJ\nUIiVQgAAzDmEQgAAADlm8tSxzeXrLvr9yS1kpwKZ9wpNrhTKtmh66uQxVgoBADDnEAoBAADkmAN9\nh+WwObS2bPVFv9/oXyFJahrOvFcoEBuVlH2nUPdgSJJUVZqX1TgAAGDmEQoBAADkkL5wv7pCPVpd\n0iCvw3PRa8q8JfK7i9QcaFXaTGd0n0AsoHxn3nknm2WiZygsn9uhQp8zq3EAAMDMIxQCAADIIZOn\njm36nVPH3s4wDDUW1yuYCKkn1HfN9zBNU4HoSNYl06l0Wn3DEVWV+mQYRlZjAQCAmUcoBAAAkEP2\n9x+WzbBpQ9may17X4K+XlNkWskgyong6Ib8nu1CobziiVNrk5DEAAOYoQiEAAIAcMRgZ0pmxDq0s\nXiGf8/JBS+NU2fS1h0Ln+oSyC4WOtg1JklbUZDcOAACYHYRCAAAAOeJA/+TWsYufOvZ2pZ4SFbv9\nOjV87b1Ck8fRZ7t97EDzgCRp44qyrMYBAACzg1AIAAAgRxzoPyxDhjZeRSg02SsUSobVHeq9pvsE\nYgFJ2R1HH44mdfJMQLVVBSoucGc8DgAAmD2EQgAAADkgEBtR68hprfAvV4Er/6oe01CcWa/Q5Pax\nbEKhI22DSqVNbWaVEAAAcxahEAAAQA44PHBMkrSp4tKnjv2uRv9Er9C1hkLR8e1j2YRCbB0DAGDu\nIxQCAADIAaeGWyVJa0oar/oxpd4SlXiKdSpwbb1CgdhkKFR4bZOckEqndbhlUMUFbi2tvLpVTQAA\nIPcQCgEAAMwy0zR1KtCqQleByr3XtvKm0V+vcDKizmDPVT8mEBuR1+GRx+G51qlKkpo7RhSKJrVp\nRZkMw8hoDAAAMPsIhQAAAGZZf2RAo/ExNfjrrjlkabiKo+kTybQiseTU54HYSFbH0U9uHdvUwNYx\nAADmMkIhAACAWdYcaJMkrfAvv+bHNvgvXza992Sf/su3Xtd/+vqvlUylFUvFFU5GsjqO/sCpAbmd\ndq1a6s94DAAAMPscsz0BAACAhe5UYLxPaMVEcfS1KPUWq9RTouZAm9JmWjZj/P/8RkJxPf6rJu05\n0SdJGg3FdbhlUIsWjz8u05Lp7sGQeocj2tpYLqfDntEYAAAgN7BSCAAAYJY1B9qU5/SpKq8io8c3\nFNcpkoyoM9gt0zT1xtEe/dd/eFN7TvRpRU2R/vhDayVJrx7qzvrkMbaOAQAwf7BSCAAAYBYNRoY1\nFB3WxrK1U6t8rlWjv15vdu/RwZ4mPXVgQAdbBuVy2vTIexr07i2LZbMZ+uWeDh1qGdSGbRFJmZ88\nduDUgAxJ6+tLM3o8AADIHawUAgAAmEXNk1vHiq9969ik+qJlkqQXDu/XwZZBra4t1pc/fYPu3LZE\nNtt4cfV7rluqtGnq8NlOSZmtFBoLx9XcOaL6xUUq9Lkyni8AAMgNhEIAAACzKJuS6UlnOlIy426Z\neUPaflejPv/wJlX4vedd884ti+WwG2obGO8YKvZce0n0oZZBmaa0aQVbxwAAmA8IhQAAAGZRc6BV\nHrtHi/MXZTzGoZZBpcaKZTjjWr3SfdFj7QvzXNrcUK5wOigps5VCByf7hAiFAACYFwiFAAAAZslI\nbFR9kQHV+5dl3CckScfah+WIjAc1LRMrjy7m1g3VMlxRGaZdPof3ktddTCKZ1uG2IVX4vaou9WU8\nVwAAkDsIhQAAAGbJVJ9QFlvH+gIRDYxEtaywVpLUEmi/5LVrl5XI5o7JjLsVT6av6T4nzw4rFk9p\nU0PZRVciAQCAuYdQCAAAYJZM9gk1+DMvmT7ePiRJ2rx4ubwOj5pHLr1SKK2U5IgpFfNo38n+a7rP\ngVPjW8c2snUMAIB5g1AIAABgljQH2uSyObWkoCbjMY6fHpYkrV1eqrqiZRqIDGokNnrRaye/bsY9\neu1w91XfwzRNHWgekM/tUMPia+8iAgAAuYlQCAAAYBYE4yF1hXq0vKhWDpsjozHSpqnjp4flz3ep\nqsQ3dTR9y0j7Ra8PTIRCxZ4iHT89rP5A5Kruc7YvqKHRmDbUl8ph58dHAADmC/5WBwAAmAUtI9lv\nHevsD2ksnNDq2hIZhqH6iW6iS5VNB2IBSVJjVZUkaedVrhY60MzWMQAA5iNCIQAAgFlwyoKS6ck+\noTXLiiVJtQWL5TDslwyFhmMjkqQNS2rkdtm183CP0qZ5xfscbB6Q3WZofV1JxnMFAAC5h1AIAABg\nFjQH2uQw7KotXJrxGMcm+oRW146HQk67U7WFS9QR7FYkGb3g+sBEKFSeV6zrV1VocDSqExNjXMrw\nWExt3WNqXOKXz+PMeK4AACD3EAoBAADMsEgyoo6xLtUWLpXLnlnQkkyldfJsQJUlPpUUeqa+Xu9f\nLlOm2kZOX/CYyU4hv7tIt26oliS9dujyW8gOtYxvHdvE1jEAAOYdQiEAAIAZ1hJolylTDVlsHWvr\nHlUsnpraOjbpcmXTgeiIbIZNBa58ragpUmWJT3ub+hWOJi64Np5I6Ve7z+rp345vc9vYQCgEAMB8\nQygEAAAww5onOn9WZFEyfbx9fNvXmtrzQ6G6omUyZFy0VygQG1GRq1A2wybDMHTbhmolkmntOt43\ndU08kdIvd5/VF7/9hp546ZRiybQevL1eFX5vxnMFAAC5KbPzTwEAAJCx5kCrbIZNy4tqMx7j2Olh\nGZJWLj0/FPI5vVqUX6X20TNKppNTx92n02mNxEdVW7Bk6tqb1lbpp79p0WuHunTzuir9Zn+nXth1\nRiOhuNwuuz5wU63ee90SFfhcGc8TAADkLkIhAACAGRRLxXV6rENLCmrkcbgzGyOeUkvniJZWFSjf\ne2EnUX3RMnUGu3V2rHMqeBqJjSltpuX3FE1dV1zg1vq6Uh1qGdQXvvW6xsKJqTDoruuXXnRsAAAw\nf7B9DAAAYAa1jZxW2kyrIYutY6c6AkqlzQu2jk2qn+gqan7bFrLB8Ph2s2J30XnXvnPjIklSIpnW\nPTfX6m8+e7M+8s56AiEAABYAVgoBAADMoObAeHHziixKpqeOol92iVDobWXTd058bSgSkDR+8tjb\nbWoo0xc/ulk15fkEQQAALDCEQgAAADOoOdAmQ4bqi7IIhdqH5LAbaljsv+j3iz1+lXqK1RpoV9pM\ny2bY3hYKFZ53rWEYF/QSAQCAhYHtYwAAADMkkUqobfSMavKr5XNmdppXMJLQ2d6gVtQUye20X/K6\nuqLlCiXD6g33Szq3fczvvniQBAAAFh5CIQAAgBlyeqxDyXQyq61jJ04Py5S0+hJ9QpNW+JdJOtcr\nNHiJ7WMAAGDhIhQCAACYIef6hDIvmT7XJ1Ry2esmy6ZbAu2SpKHwsAwZKnIXZHxvAAAwvxAKAQAA\nzJBTw9mXTB9vH5LHZdfy6suHO1W+CuU5fWoZGV8pNBQJKN+VJ4eNSkkAADCOUAgAAGAGJNNJtY6e\nVpWvQgWu/IzGGBqNqnc4olVLi2W3Xf7HOMMwVFe0TEPRYQ1HAxqMBC44jh4AACxshEIAAAAzoHWk\nXfFUXCtLGjIe41j7xNaxK/QJTZpckXRw4KgSqQQl0wAA4DyEQgAAADPg2GCTJGlNSWPGYxw/PSRJ\nWr3s6kKh+qJlkqS9vQclXXgcPQAAWNgIhQAAAGbA8aEmOQy7GorrM3q8aZo61j6swjyXasryruox\nSwpq5LQ51TrSLomTxwAAwPkIhQAAAKbZSGxMHcEu1fuXy213ZTRG12BYI6G4VtcWyzCMq3qMw+bQ\nssIlU58TCgEAgLcjFAIAAJhmJ4bGt46tzmbrWPvE1rGr7BOa9PaTzoo9hEIAAOAcQiEAAIBpdmzo\npCRpTenKjMc4fnq8ZHrNVfYJTaovOhcKFbFSCAAAvA2hEADMsHA0oUQyNdvTADBD0mZaJ4ZOqchV\nqEV5VRmOYarpbEDlfo/KirzX9NjlRUtlaHy7GdvHAADA2zlmewIAsFB0D4b01G9atbepX5LkddtV\n4HWpIM+pQp9LBT6XCnxONSwu0ob6slmeLQCrdIx1KZgI6caqbVfdBfS7egbDCkWTGf3Z4HF41FBc\nr7HEaMZ9RgAAYH4iFAKAaTY0GtWzO9v06qFumaZUW1mgPK9Do6GExiJxDXRFlTbN8x5zx5YaPfzu\nBjnsLOgE5rrJrWOrSzPvE2rpGpEk1ddkdqT8Z9ZvV0mpT5GRdMZzAAAA8w+hEABMk2AkoeffPK2X\n9nYokUyrutSnj7yzXpsbys5bLZA2TYWjSY2F4xoajenJl0/p5X2dOtMb1Gc/vE7FBe5ZfBYAsnVs\nsEmGDK0qach4jJbOUUlS/aLMtn95HR7lu/IU0VjGcwAAAPMPoRAAWCyWSOnFPWf1wptnFI4lVVzg\n1odvW65b1lXLZrtw64jNMJTvdSrf61R1aZ7+63/Ypu/tOKFdx3r13763W5/90FqtXHptxbIAckMk\nGVXb6GktLVysfGdexuO0dI3I7bRrcUXmYwAAAPwuQiEAsFDvcFh/9+OD6h2OKM/j0O/dvkJ3bKmR\ny2m/6jHcLrs+c+8a1VUX6kcvN+tvnjigh+5YofdsW5xxHwmA2dE03Ky0mdaaLI6iD0eT6uoPaeVS\nv+w2tpQCAADrXDEUSqfTevTRR3Xy5Em5XC595StfUW1t7QXXfelLX1JRUZE+//nPS5Luu+8+5efn\nS5IWL16sr371qxZPHQByS0vXiP7Xvx1SMJLQe7Yt1odvXS6fx5nRWIZh6M7rlmhpZb6+9bOjeuKl\nU2rrHtXvv2+V3K6rD5gAzK5jg9kfRd/WPSpTUl2GW8cAAAAu5Yqh0Isvvqh4PK4f/ehHOnDggL72\nta/pW9/61nnXPPnkk2pqatJ1110nSYrFYjJNUz/4wQ+mZ9YAkGP2n+rXd352VIlUWtvvWql3ba6x\nZNyVS4v1V5+4Tn//zGG9eaxXHf1B/eG9a7WkIt+S8QFMH9M0dXyoSV6HR7UFSzIeJ9uSaQAAgEu5\n4hrkvXv36rbbbpMkbdq0SUeOHDnv+/v27dPBgwf10EMPTX3txIkTikQi+tSnPqXt27frwIEDFk8b\nAHLHK/s79Y2nDkuG9LmPbLAsEJpUXODWFz+6RXdsqVFHf0iP/vNb+pcdJzQSilt6HwDW6osMaDA6\nrJXFDbLbMl/hl23JNAAAwKVccaVQMBic2gYmSXa7XclkUg6HQ319ffrmN7+pb3zjG3rhhRemrvF4\nPPr0pz+tBx98UO3t7frDP/xD7dixQw4HFUYA5rZ4KqHXOt/QkYPH5DI8Gh60qbU9KV9FgT7+zk1a\ntXR6VvA47DZ9/L0rtXFFmZ586ZR+c6BLu4716p6bl+nObYvldLClDMg1xwebJCmrPqG0aaq1a0QV\nfq8K81xWTQ0AAEDSVYRC+fn5CoVCU5+n0+mpcGfHjh0aHh7WZz7zGfX39ysajaqurk733HOPamtr\nZRiGli9fLr/fr/7+flVXV1/2XuXlBVk+HeDieG0hW4lUQi+3vq6njr+g4cjIed9z1UppSd9v3y21\nSwWuPN227Ab9/qYHLC+GvqO8QO/ctlQ73jytx3ec0E9+3aJXD3XrE/es0S0bFlFEPU/wZ9b80Hy8\nRZJ0a8MWleVl9nt6tndMoWhS162psuR1wWsL04XXFqYLry1MF15b464YCm3ZskWvvPKK7r77bh04\ncECNjef+t2v79u3avn27JOmpp55Sa2ur7r//fv3whz9UU1OTHn30UfX29ioYDKq8vPyKk+nvH8vi\nqQAXV15ewGsLGUulU9rVs1fPt72o4VhALptTd9S8U2eOVupw64AW19h0161lCqdHNRgd1mBkSB3B\nLj3f9LKqnFXaWrlpWuZ1fWOZ1i29Qc/ubNdLezv019/fo4bFRXrkPQ1aVkXvyFzGn1nzQyKd1NHe\nk6ryVcgMO9Ufzuz3dM+RbklSTakv69cFry1MF15bmC68tjBdFtpr63IB2BVDoTvvvFM7d+7Uww8/\nLNM09dhjj+m5555TOBw+r0fo7R544AH9xV/8hR555BEZhqHHHnuMrWMA5pS0mdbunv16vv1FDUQG\n5bQ5dMeS23RL5a36h6eb1dY9qk0rFumPPrRW7t85br4vPKDH3vpb/bjpZ1pZ3KB8V960zNHncerh\ndzfo9s01+vErzdp/akCP/WCf/uLjW7S8mmAImE0tgTbF0wmtLs1865h0rmR6RQ19QgAAwHpXTGps\nNpu+/OUvn/e1+vr6C667//77pz52uVz6+te/bsH0AGDm9Yb69E9HH1dnsFt2w6531Nysu5bdLlvS\nq//nyQPq6A/q3dct0SO3r5DNduF2rQpfme6pu0tPN/9CPzn1rD6x9pFpnW9liU+f+8gG7T3Zr79/\n+rC++fRh/eUnrlOhj/4RYLYcH5rsE8r8KHpJaukckcth0+KK6QmXAQDAwnbF08cAYCHZ13dI/3PP\n/1ZnsFs3VG3VX934BT208sMy4x597fF96ugP6vYtNfqPv7f5ooHQpNsX36ragiXa3btfRwaOz8jc\nt64s133vqNPQaEzf+dlRpdLpGbkvgAsdGzwpp82hFf66jMeIxJLq7A9pWXWh7DZ+ZAMAANbjJwwA\n0Hh30E9OPat/OvKvSsvUJ9d+VNvXPKRSb7EGAhF97fG96hkK633XL9XH72y8bCAkSXabXR9b/YBs\nhk1PnHxKkWR0Rp7H3TfVanNDmY6fHtZPf9M6I/cEcL5AbERdoR6t8NfJZXdmPE5r96hMSfU1bAcF\nAADTg1AIwIIXiI3o7/Z/W6+cfU1Vvgp9YdvntG2iILpnKKyvPr5P/YGoPnjLMj14e/1Vn/BVk1+t\nu2rvUCA2op+1vDCdT2GKzTD0B/esUWWJTzt2ndHuE30zcl8A5xwfOiVJWp3FUfSS1No50Se0iD4h\nAAAwPQiFACxoJ4ZO6atv/Z1aR05ra8VG/Zdtn1N1XqUkqaM/qK89vk/DYzE9+K56ffi2ums+8v2u\nZXeoOq9Sr3a+oVPDM7Nyx+t26M/uXy+3y67v/uK4OvuDM3JfAOOOD56UJK0pzbJPqGtUklRHyTQA\nAJgmhEIAFqS0mdaO9pf0jQP/qEgyqgcbP6RPrv2oPA63JOl0z5j+5w/3azQU18fubNT7b6zN6D5O\nm0MfW/WgDBn64YmfKJ5KWPk0LqmmLE+fvnu1YomUvvHUYYWjyRm5L7DQpc20Tgydkt9dpCpfRcbj\nmKapls4RlRV5VJRHaTwAAJgehEIAFqQXT/9Gz7X+u/zuIv2fW/5Y71p8iwzDkGmaeu1Qt772+D6F\nIgl98v2r9O6ti7O61/Kipbp9ya3qiwzo+bZfWfQMrmzbqgq9/4al6h2O6B9/fkxp05yxewML1Zmx\nDoWSYa0pabzmlYVv1zMUViia5Ch6AAAwrQiFACw48VRcL539rXwOr7543X/U8qLxVUDhaELfefao\nvvv8cdls0mc/vE63bVxkyT3vqbtLZZ4SvXjmNzo9etaSMa/G/e+s0+raYh1oHoEwM24AACAASURB\nVNAvXm+fsfsCC9WJoWZJ0uost461TmwdqycUAgAA04hQCMCC82b3XgUTIb2j5iYVuPIlSU1nA/qr\n776lt473aUVNkf7bJ6/XtlWZb/34XW67Sx9d9YBMmXr8xE+USqcsG/ty7Dab/uhDa1Va6NYzr7bp\naNvQjNwXWKgmQ9+6osy2nE5qmSiZ5uQxAAAwnQiFACwoaTOtl87+Vg6bQ+9ccotS6bSeebVVf/3D\nfRoai+mDtyzTFz+2WWV+r+X3XlmyQjdXX6/OYLd+efrXlo9/KYU+l/7kvvWSIT358im2kQHT6MxY\nh4pcBfK7s1vh09w5KpfDpsXl+RbNDAAA4EKEQgAWlAP9RzQQGdQNVVsVDzv014/v17M721VS4NYX\nP7pFH76tTnbb9P3ReN+KD6jIVagd7S+qO9Q7bff5XcurC3Xjmip19oe072T/jN0XWEhG42MKxEa0\npCC7HrJILKnOgaCWVRXIYedHNQAAMH0csz0BALBSNJ7UaCiu0VBCI6G4wrGEorGUIrGkwvGE9qV3\nSIZ05ki5/uqFtxSJpXTdqgr9/vtWyudxTvv8fE6vHl55n75z+F/0+PGf6D9v/axsxtX9o880TbWM\ntKu2YLGc9muf6723LNObx3r07M52bVlZLlsWJbgALnRmtEOStLSgJqtx2rpHZZr0CQEAgOlHKARg\nzkinTQ2ORtU7HFbfcES9QxENjEQ0Go5rNBTXSCiueCJ9ycfbCobkXj2g1FClmpqT8rkd+tTdq3XL\n+qqsTgm6VhvK12prxUbt7Tuo33S8rtuX3HpVj/t52y+1o/0lva/2Dt1b/75rvm9ViU83rKnUm0d7\ntb9pQFtXll/zGAAu7exYpyRpaWF2K4VaKJkGAAAzhFAIQE5Jp00NjUbVOxx5W/gTVu9wRP2BiFLp\nC/tw7DZDBT6nqkp8KsxzqcjnUmHe+Fuexymv2y6v26EX+n6i1qD0J7d8UCs/WCeX0zajYdDbPdj4\nIZ0YPqVnW17Q+rI1KvOWXPb617t2a0f7S5KkN3v26gN1773qFUZvd+/Ny7TraK+e29mmLY1ls/b8\ngfnozEQotCTLlUJTJdOLKJkGAADTi1AIwLQwTVOxREqhSFKhaELReErxZErxRFrxREqxxMTHyZTG\nwonx8Gc4rP5ARMnUhcFPnsehpZUFqizxqsLvVWWJT5XFPpX5Pcr3Oq+4Faor2KPW1mbVFy3ThuqG\n6XraV63Ala8HGj6ofzn2pJ448VP92aY/uGRAc3yoSU+c/KnyHD7VFi7RsaGTOjncrNUljdd83+rS\nPF2/plK7jvXqwKkBbW5ktRBgFStKpk3TVGvXqMqKPCrKd1s4OwAAgAsRCgG4JqZpKhRNqj8Q0cBI\nVAOBiPpHogqMxRSKJhSKJhWMJBSKJC66qudy8jwOLakoUGWxVxXF48FPRbFXlcU+5Xuz6/t56cxv\nJUnvWfrOrMax0nWVm7Wn94CODp7Qm917dNOi6y64pjPYrX88/K+yydBnNvy+JOnY0Ent6t6bUSgk\nja8WeutYr362s02bGlgtBFhhsmR6XenqrMbpHY4oGElo7fLLrx4EAACwAqEQgAtE48mJwCeq/pGI\nBgJRDYxE1D/xPhpPXfRxhiHleZzK8zhUXuRRnnf84zyPU26XXW6nXS6nXS6nTW7H+Mdup01ej8OS\n4OdSArER7e7dr0pfhdaVZfcPNisZhqFHVt6vr+z6un7a/HOtKV2pIve57SKB2Ii+dfCfFU1F9cm1\nH9UK/3KZpqkyb6kO9B9RJBmV1+G55vsuKsvTdasr9NbxPh1sHtSmhjIrnxawIFlVMs3WMQAAMJMI\nhYB5YnIFTyiSUDiWVDSWVCQ+fupWZOLjaDypZNJUMp1WMplWMmUqlR5/n0ylNRZOaGAkorFw4qL3\ncLvsKi/yqKzIqzK/R+Vve19c6JbX7cjJE61eOfuaUmZK71n6jox6eKZTscevD6+4W0+efFo/bnpG\nf7h+uyQpmozp24e+p+FYQB+qe7+2VW6SNB4k3Vi1VT9v+6X29x3WzRdZXXQ17r15mXYf79PPdrZp\n44pSVgsBWaJkGgAAzEWEQsAcEYunNDQW1dBoTEOjUQ2ORjU0FtPwxPuh0ZhiiYuv4LlaDruh0kKP\nllYWjIc/fq/Kijwqn3if73XOufAgkozotc5dKnQV6LqqLbM9nYu6ZdEN2tN7QAf6j2hf3yFtLFur\nfz76uM6OdeqWRdfrztp3nXf99VVb9PO2X2pXz56MQ6Ga8nxtW1Wh3Sf6dKhlUBtXsFoIyIaVJdNO\nh01LKvKtmBYAAMBlEQoB0yCdNieKlM8VKseSKcXjKcWSaSWSaZmmqbRpyjTHV/mk05r6WjCSmAp/\nxgOfqELR5CXvl+91qrLYq5JCjwp8TnndDvncDnncDnld4ydved0OuV12Oe02ORw2OeyGHLaJ9w6b\nHDabnE5bTq70ycZrnbsUTUV1V+3tctpy8488m2HTx1Y9oMfe+n/145PP6OjgCR0ZPKHVJY16qPG+\nC4K4Um+JGvx1OhVo1UBk6Ionl13Kvbcs0+4TfXp2Z5s21LNaCMiGFSXTkVhSHf1BragpksOeW6sa\nAQDA/JSb/0ICclQyldZoKK5AMK6RYEyBYGz849DE+2BcgWBMo+G4zGvrWL4kt8uukgK3llcXqqTQ\nrZICj4oL3Sop9Ki00KPiArfcTrs1N5tnkumkXjn7mtx2l26tuXG2p3NZFb5yfWD5e/VMy/N6s3uP\nFuVV6dPrPi677eK/tzdUb9OpQKt29ezVB5bfmdE9F5fna9vKcu052a/DrUPaUF+azVMAFiyrSqbb\nu0dlmmwdAwAAM4dQCPNG2jQVjiY1Fo5rLJwYfx9JyO1xamQkqkQqrVTqXH9OKmUqZZoyDMkmQ4Yx\n3tcy/n58zGAkMRH0jAc/l+rameRy2OTPd2tFTZF8bsdEkfJEsfLbSpZdDrts591v/L1t4n2ex6nS\nQo9KJnp6WMGRmd29BzQSH9UdS26Tz+md7elc0R1LbtORweMajgb0Jxs/ddkS6c3l6/Tjk09rV/de\nvX/ZuzPuSvrgLcu152S/nt3ZpvV1JbzWgAxYVTLd2j3RJ0TJNAAAmCE5Ewo98t1HZTMM2W2TbzbZ\n7OMfO2yG7HbbxLYXQw67TXabTfzbJXeZpqlUeuItZU4cTW5OfG/imrd/ovMDEpshSecCmtREkJNM\nTZYkn1+QPPm9aeGUbCWSs8KmkqmtVzY5HbaprVhOu23idWlIb3tdmpKiE29XdO6XSApNvHVb+1QW\nmjNjHbIZNt2x5LbZnspVsdvs+k+b/0imaV5yhdAkj8OjTRXr9VbPPrUE2tVQXJfRPRdX5GtrY7n2\nNvXraNuQ1tWxWgi4VlaVTLdOlEzXLWKlEAAAmBk5Ewql8nqVknTBOgxTUmriDZhkm3h72yt4ujdQ\nJSfepky+LuPTfGNk5R01N6vY45/taVw1m2E7L1i8nBuqtuqtnn3a1bM341BIGu8W2tvUr5/tbNPa\n5awWAq6VFSXTpmmqtWtUxQVuFRe4rZoaAADAZeVMKPT9j/ydBgaC4wW98aTC0aTC8fFjtYORpMYi\nCY0GYxqNJDQajGs0EtdoMK6xSFyplCmbzRh/MybeJlYcTa4+mvr87W+GoVTaVGKiDHiyGDieTM/2\nL8cl2QxDDruRk3OcLDf2uR3yehzKm3jv8zjkcTlktxnnVgPJOG/7lGlKqfTktq70+MfpySPTTeW5\nHcr3uVTgcyrf61CBz6UCr0t5Xqecjstvmykry9fAQHCGfhWQSwxJLrtrtqcxbRqL61Xs9mt/3yH9\nXuOHMn6uSysLtLmhTPtPDejY6WGtXZZZcTWwUFlRMj08FtNIKK4tjeUWzgwAAODyciYU8jjcctvj\nkl3yOt3y583eXNKmqXgipWg8pVAkoWAkoWAkqVB08uPxt2QqLZfDJqfdLqdjYhvRxFYip8M2/r23\nv9ltcjrGrzUMTW19muy6SSQnPk+mFUukFI4lFTnvLaVILKlEKi2P0y6Pyy63a/y9x+WQ+3e+5nY6\nJr438TWnXU6nXebEiVfptHneCVhp01Qimf6dk7ImTs5KpJRKmfK67fJ5nPJ5HMrzOMY/ngiCbLbc\nXF0w9doC5hmbYdP1VVv076df1oH+I7q+akvGY917yzLtPzWg53a2EwoB18CqkunJrWPLqwusmBYA\nAMBVyZlQKJfYDEMe1/jqFn8+S7gB5K4bJkKhXd17swqFllUVakN9qQ61DOrkmWGtXFps4SyB+cuq\nkum2bvqEAADAzMvsuBoAQE6ozKvQ8sJanRxu1nA0kNVY9968TJL03Ovt2U8MWCCsKplu6x6VIWlZ\nFSuFAADAzCEUAoA57obqrTJlanfP/qzGqa8p0pplxTrWPqyWzhGLZgfMb1aUTKfTptp6xlRdliev\nm0XcAABg5hAKAcAct7Vioxw2h97s2SvTNLMai9VCwLWxomS6azCkWDyluupCC2cGAABwZYRCADDH\n+ZxebShbo95wn06Pnc1qrJVLi9W4uEiHWgZ1umfMohkC89NkyfSSguy2jk2VTC8iFAIAADOLUAgA\n5oEbqrZKknZ17816rHtvWS6J1ULAlVheMs1KIQAAMMMIhQBgHlhd0qhCV4H29B5QIp3Maqw1y4pV\nt6hQ+5r61dEXtGiGwPxjWcl016icDptqyvOsmBYAAMBVIxQCgHnAbrPrusrNCicjOjJwPKuxDMPQ\nPRPdQj9/oz3ruQHzlRUl07FESh39IdVWFshh58cyAAAws/jpAwDmiRuqJ7aQ9ezJeqyN9aVaWpmv\n3cf71D0Yyno8YD6yomT6dM+Y0qap5WwdAwAAs4BQCADmiZr8ai3JX6Sjgyc1Gs+uJNowDN178zKZ\nkn7++mlrJgjMI1aVTE/1CVEyDQAAZgGhEADMIzdUb1PaTGtPz/6sx9rcWK6asjztOtar9v4BpdIp\nC2YIzA9WlUxz8hgAAJhNhEIAMI9sq9wkm2HTmz3Zn0JmMwx94OZape1Rff3Q3+pHTU9bMENgfrCs\nZLp7VPlep8qLPFZMCwAA4JoQCgHAPFLgyte60tXqDHarY6wr6/GuX1Wp4sUBpY2k3uzeq7H41Z1G\nFowktK+pXz98sUlf/t5ufftnR3SmN7stbUAusaJkejQU18BIVHWLCmUYhlVTAwAAuGqO2Z4AAMBa\nN1Rv1aGBo9rVs1eLCxZlNZbNZqh08Yg641LKTOm/P/e0ltk3q7LYqwq/V5UlPlUUe+V02NR0NqCT\nZwI6cXpYZ/uCMifHMAy194zpreN92lBfqg/cVKuGxf7snygwi6womW6d6BOiZBoAAMwWQiEAmGfW\nla5SntOn3T379eH6u2W32TMeK55KqD95Vm4zXzEzoqCvWXsOLpJ06VUNDrtNK5f6tWppsVYu9atu\nUaFOngno52+c1qGWQR1qGVTjEr/uualWa5eXsEICc85kyfS60tVZjdPWRSgEAABmF6EQAMwzDptD\n2yo36Tcdr+vY0EmtL1uT8VhNw82KpxN6T+3NCiXCeqN7t/7oYxXym4vVOxxR33BEfcNhRWJJ1dcU\nadXSYtXXFMrpOD+IWldXqnV1pWo6G9Dzb46HQ397NqDaygLde8sybWksz/ZpAzPGqpJpTh4DAACz\njVAIAOahG6q26jcdr2tX996sQqHDg8clSevL1shpc+iN7t3aP7xHf7xhvVYuLb7m8RqX+NW4xK/T\nPWN6/s3T2nOiT9946rA+95H12txAMIS5wYqSadM01dY9qgq/V/lep1VTAwAAuCYUTQPAPLS0YLGq\n8ip1eOCYQolwRmOYpqkjA8flc3i1vHCpaguXaGnBYh0ZOKGh6HBW86utKtBnP7xO//f2bTIk/fz1\ndpmmecXHAbnAipLpvuGIQtEkR9EDAIBZRSgEAPOQYRi6sWqrkmZKe3sPZjRGR7BLgdiI1paumuol\nuq3mJpkytbNzlyXzrFtUqC2N5WrrHtOx09kFTcBMsbJkuo4+IQAAMIsIhQBgnrquarMMGdrVszej\nxx8ZmNw6dq5Md1vlRnkdXu3sfkvJdNKSed59U60k6fk3TlsyHjCdxuJBBWIjWa0SkqTWyZJpVgoB\nAIBZRCgEAPOU312kVSUNah89o95Q3zU//vDAcdkMm1aXrJz6msvu0o1VWzUWD+pg/1FL5rm8ulBr\nlhXr+OnhqX8oA7mqK9gjSarJX5TVOG3do7LbDNVW5lsxLQAAgIwQCgHAPHZj9TZJ0pvXuFpoJDaq\n02NntaJouXxO73nfu63mRknSq51vWDNJSR+4aZkk6RdvtFs25kIUiSWVpptpWnWGuiVJi/KrMh4j\nmUrrTO+YFlfkX3BSHwAAwEzi9DEAmMc2lK2V1+HRWz37dG/dXbIZV/d/AUcGL9w6Nqkyr0KNxSvU\nNNysnlCvqvIqs57nqqV+1S0q1P5TA+rsD6qmnNUT1+rZnW165tU2GYaU73Uq3+tUgdepAp9L+b7x\nzzfUl6phsX+2pzqnnVspVJ3xGGf7gkqmTPqEAADArGOlEADMYy67U1sqNigQG9HJ4earftyRgROS\npHWXOM7+3GqhN7OfpMaLsT9w40S30JtnLBlzIenoC+q5ne0q8Dm1oqZI+V6nxsIJneoY0d6mfv3m\nQJd+8cZpffVf9+kHvzypaNyaPqiFqCvYI4dhV4W3LOMxJrdJ1tEnBAAAZhkrhQBgnruhapt2dr2l\nXd17tbqk8YrXJ1IJnRhqUqWvQhW+i//Dd2PZWhW5CrSrZ68+WP9+ue2urOe5saFMNWV52nWsV/fd\ntlxlfu+VHwSl06a+t+OEUmlTn/7Aam2oLzvve6FoQmPhhPoDEf3br1v0yr5OHW4Z1CfvXq3VtcWz\nOPO5J22m1RXqUWVexdSJfJlomzh5bDkrhQAAwCxjpRAAzHN1RbUq95bqQP8RRZLRK15/crhZ8XRC\n68pWXfIau82umxddr0gyqj29+y2Zp80wdPeNtUqbpna8xWqhq/Xyvg61do3qhjWV5wVCkmSzGSrw\nubSoLE8bV5Tprz6xTXffWKvB0aj+5on9rBq6RgORQSXSiay2jknjK4W8bruqSn0WzQwAACAzhEIA\nMM8ZhqEbqrYqkU5ob++BK15/eLJPqPTiW8cm3bLoBhky9GrnmzItKje+fk2Fyoo8evVQt0ZCcUvG\nnM+GRqP66W9bledx6JF3N1zxeqfDrgfeVa//un2bFpXl6ZV9nfrLf3pLx08Pz8Bs577JPqFFeZmX\nTIejCfUMhbWsqlA2w7BqagAAABkhFAKABeCG6q1y2hx6puV59YcHL3mdaZo6MnBcPodXdUW1lx2z\n2OPX+rI1OjvWqdNjZy2Zp91m0/tvWKpEMq1f7bZmzPnKNE394N9PKhZP6aE7GlSYd/Vb+JZXF150\n1VAimZ7GGc99ncHJk8cyXynU1j0miT4hAACQGwiFAGABKPEU6+GV9yuSjOofjnxf8dTFV+F0BLsV\niI1obemqq+pMeUfNTZKkVzusKZyWpFs3VKswz6VX9ncoHE1YNu58s/tEnw62DGp1bbFuWX/tK1cu\ntmroX3950rJVX/NRV2jy5LHMVwq10icEAAByCKEQACwQN1Zv062LblBnsFtPnnz6ov/4PzJwTJK0\n7iJH0V/MypIVKvOWam/fAYUTYUvm6XTY9d7rligSS+nlfZ2WjDnfBCMJ/fBXTXI6bNr+vpUystiG\ntLy6UF/6/W2qrSrQq4e6+TW/jK5gj/IcPhW5Mg902jh5DAAA5BBCIQBYQB5o/JBqC5ZoV89evdZ1\n4eqewwPHZTNsWlOy8qrGsxk23VS9TYl0UkcHT1o2z9s318jrduhXe84qlkhZNu588eNXmjUaTuhD\nty5XZXH2ZcVup12fu3+9Cn1OPfHiKTqGLiKWiqs/MqhF+VUZh3Cmaaq1e1TFBW75890WzxAAAODa\nEQoBwALitDn0B+s/rjynT//W9KzaRs6d8jUSG9XpsbNaUbRcPufVHwe/rnR8VdHRwROWzdPrdujd\nW2s0Fk7otUPdlo07Hxw/PazXDnVrSUW+3nvdEsvGLSn06E/uWy/DkL71zBH1ByKWjT0f9IR6ZcrM\nqk+oLxDRaCiu+poiC2cGAACQOUIhAFhgSjzF+uTajyptpvWPR36gsXhQknRk8tSxq9w6Nqkmv1pF\nrkIdGzqptGldUfF7ti2Ry2HTi3s76LmZEE+k9C87TsgwpE+8f5Ucdmv/Gm9c4tfH3tuoYCSh//3T\nwxxX/zadEyeP1WRx8ljT2YAkaeUSvyVzAgAAyBahEAAsQKtLGnVP3V0KxEb0z0d/qLSZ1pGB8ZU+\nV9snNMkwDK0tXaVQIqzTo9adGFboc2lDfal6h8LqGghZNu5c9tzr7eobjujObUumraj4XZtqdPvm\nGnX0B/XdXxwnkJvQZcHJY5OhUCOhEAAAyBGEQgCwQL239l1aX7ZaJ4eb9XTzL3RiqEmVvnJV+Mqv\neay1ZaskydJeIUna0jg+l71N/ZaOO9ckU2n95Nctev6N0yor8ui+2+qm9X6PvKdBjUv82nOyXz9/\n4/S03muu6Jw4eaw6rzLjMZrOBuRzO1RTnmfVtAAAALJCKAQAC5TNsGn76odV5i3Vy2dfVTyduOZV\nQpNWFq+Q3bBb2iskSRvqy2S3Gdp3cuGGQj1DYT32g716/s3TKvN79Kf3rZfbZZ/WezrsNv3Jh9ep\ntNCtp3/bqv2nFu6vvzReEN0V7FaZp0QeR2YF0UOjUfUHompc4pcti9PiAAAArEQoBAALmM/p1WfW\nb5fT5pQkrS9dk9E4XodH9f7lOjPWodH4mHXz8zi0ZlmJzvQFF1zxsWma+u3BLj36z2+pvWdMt6yr\n0qOfvF61VQUzcv/CPJf+7P4Ncjls+ofnjqlzAW/hG40HFUyEVJPN1rEOto4BAIDcQygEAAtcTX61\n/mDdx3XHkttU71+W8ThrS8ePsT9m8RayrSvHt5DtW0BbyIKRhP7+mSP63gsnZLfZ9McfWqtP37NG\nXrdjRudRW1WgT31gtaLxlL71zBElU9YVic8lXaHJPqFsSqZHJBEKAQCA3EIoBADQurLV+kjDvbIZ\nmf+1sK50slfI2i1km1aUyTAWTq/QoeZ+/dV339Lek/1qXFykL3/qel2/OvMem2xdv7pS79i4SF0D\nIb2yv3PW5jGbOi0omT51NiCX06allflWTQsAACBrM/tfjgCAeavSV6FST7GODzUplU7JbrOm96Yw\nz6XGxX41nQ0oEIzJn59Zp0uua+se1Ut7O/TG0R4ZMnT/O+p09421stlmv3/m/nfWafeJPv3s1Tbd\nuKZSBT7XbE9pRnVleRz9WDiuzoGQ1iwrlsPO/8cBAIDcwU8mAABLTB5NH0lG1TZ6xtKxt6wslylp\n/6kBS8edbclUWm8e7dH/+P4e/fd/2aPXj/RocUW+/uI/bNE9Ny/LiUBIkgp9Ln3o1uUKx5J65tW2\na3psJBlVKBGeppnNjK5Qj5w2h8p9ZRk9/lQHW8cAAEBuIhQCAFhm7TRtIds6cTT9vpN9lo47W4bH\nYnrm1VZ9/u9f1//33DG1do1qQ32p/vPvbdQ3Pn+H6hcVzfYUL3DHlhpVl/r06wOdOtsXvOrHffPA\nP+nLb/6NhqOBaZzd9EmlU+oO9aoqrzLj7ZVNZ8ef+0pCIQAAkGMIhQAAlmksrpfD5rA8FCop9Gh5\ndYFOnAkoGElYOvZMSqbS+u4vjusL33pdz+5sVyKZ1nuvW6Kv/tGN+j8e3Kh1daU5szrodznsNj38\n7gaZpvTEi00yTfOKj4ml4mofPaNgIqR/OPIDJdLJGZiptfojg0qmk6rJy7xP6OTZgBx2Q8urCy2c\nGQAAQPYIhQAAlnHZXWr016sz2G35ypAtjeVKpU0dbJ67W8he2d+p1w53q6LYq+13rdTf/uktevjd\nDaoo9s321K7K+rpSbawv1Ykzgas6De7sWKdMmXLZXTo9elY/PfXcDMzSWl2h8T6hTE8ei8SSOtM7\npuXVhXI5renZAgAAsAqhEADAUpNbyKw/mr5C0tw9mj4SS+rnr7fL47Lr//rYFr1rc43crrkXEjz0\n7gbZbYZ+9HKz4onUZa89M9YhSXqw4YOqya/Wq51vaFf33pmYpmXOnTyWWSjU0jki06RPCAAA5CZC\nIQCApdaUrpRkfa9QVYlPNWV5OtI2pGj8/2/vzuOrLO/8/7/us2U92fd9IxAIiIAsCrh0qNraaq0t\nDBZr25n+2vqdLuP067d1dJyZ6tRf58d0frXaUTvTFms37bS1arV2cKOKghAIEEL2kH1PTtaz3N8/\nDgmyhGwnOYG8n3+Zc+77uq8D14PEd67r87n4jiH9cV89fQNublibdVF370qJC2fLmkzae4Z46d36\nC15b2+t/vyAml78q3kGYLZSfHX+W+r7GuZhqQIx1HptmO/rjqickIiIi85hCIRERCaik8ASSwhMo\n6zoR8BoyqwoTcXt8lFZ1BnTc2dY3MMJL79ThDLez5YrMYE9nxm66MoeocDvPv1VDV9/wuNfV9Z0k\nzBZKYph/TdxRtBW3z8OTh3/CwEXSkazB1USkPYIoh3Na95fXd2MYkJ8+/4qHi4iIiCgUEhGRgFsW\nt4Rh7wiV3VNrXz6R1Yv9Xcj2X2RHyF54u5bBYS83bcghLMQW7OnMWHiojVuvzmfE7eOZVyvOe82A\ne5DWgXaynBkYhr949orEZdyQfR3tQ538+Ogv8Jm+uZz2lA15hugY6pz2LqERt5fqpl6ykp2XxN+7\niIiIXHoUComISMDNVmv6zKRIEqJDKalox+2Z34HCqM7eIf60v4H4qBCuuTw92NMJmI3LU8lOdvLW\nkRYqGnrOeb++rwGA7Kgzd0Z9OO+DLIldRGnHMV6q2T0nc52upv4WYPr1hKqbevF4TR0dExERkXlL\noZCIiARcQUwuDoudIwEuNm0YBqsXJzI04uVY7cVxhOx3e6rxeH3cvDEP/JQNjgAAIABJREFUu+3S\n+bZrsRhs37II8Leo953Vor62z19PKMuZceZ9hoXPLNtObEgMz1e/HPCC5IE0VmR6mu3oR+sJqci0\niIiIzFeXzk+nIiIyb9itdhbHFdAy0Er7YEdAx15d6O9Ctv/4/D9C1tTRzxuHmkiND+fK4untNpnP\nFmXEsG5pMtVNfew53HTGe3W9/s5j2VEZ59wX6Yjgr5fvwGpY+NGRn9ExOD8DvtF29OnT3Cl04lQo\ntChD9YRERERkflIoJCIis+L0EbLA7gTJS48iOsLBgRPteH3z+wjZf79RjWnCrZvzsViMYE9nVnzi\nmnwcdgvPvFpJ/5B77PXavpNE2iOIDTn/LpnsqEw+UXgz/Z4BHjv0Xwy4B+dqypPW6GrGwCA1InnK\n93q8PioaeklPiLiou82JiIjIpU2hkIiIzIqlcbNTV8hiGFxemIhr0M2J+nNr2cwXNc297CtrJTc1\nilWFCcGezqyJiwrlI1fm0Dfg5jev+wuL94246BzqIjsqc6zI9PlsTF/PtRkbaepv4YnSXXgC3K1u\nJkzTpMHVRGJYPA7r1EOduhYXw26vjo6JiIjIvDZhKOTz+bj//vvZunUrO3bsoLa29rzX3Xffffzr\nv/7rGa91dHRw9dVXU1lZGZjZiojIRSM+LJbUiGTKuyoY8bonvmEKVhfO/y5kz75WBcBtV+ddMBi5\nFFy/NovkuHD+58BJ6lr6qOvzHx07u57Q+dy66CZWJCyjvKuCn5X9GvOs2kTB0jPSy4BnkLRpdh4r\nHz06lqmjYyIiIjJ/TRgKvfLKK4yMjPCLX/yCu+++m29/+9vnXPPzn/+c8vLyM15zu93cf//9hIaG\nBm62IiJyUVkWvwS3z8OJ7sD+cmBxVgzhITbeK287p8DxfHCstosj1Z0sy4mlKCcuIGP6TB/PV/+R\n8q7594sWm9XC7VsWYZrw1B/Lqe31F5k+Xz2hs1kMC3cu+0uynBm83byPP9T8z2xPd1IaXP56QtPt\nPDYaChVmaKeQiIiIzF8ThkL79+9n06ZNAKxcuZLS0tIz3n/vvfcoKSlh69atZ7z+8MMPs23bNpKS\nkgI4XRERuZjMVmt6m9XCykUJdPUN81Zpc0DHninTNHn2NX9wc+vV+QEbt7a3nheq/8hzVS8FbMxA\nKs6NZ3VhIhUnezjY4P/8Wc7MCe7yC7E6+MKKzxAXGsvvq1/ineb3AP+fpccbnLpRjac6j6VHTD0U\n8pkmJ052kxgTSlyUfjkmIiIi85dtogtcLheRkZFjX1utVjweDzabjdbWVr7//e/zyCOP8OKLL45d\n8+tf/5q4uDg2bdrE448/PjszFxGReS8/OgeHxU5Fd3XAx77m8nTeOdbKD58/xnvlbXzqg4uJdYYE\n/DlTdeBEO1WNvaxZnEhualTAxi1pOwJAXW89bq8bu9UesLEDZdsHFnG4qp2G/gaiI6KJDnFO+t7o\nECdfuuyz/H/7v89Tx35Fd6fBG38eobG9n/joUNISIkiJCyc1PpzU+AhS4sOJmsUCzqd3Ck39+Fhj\nWz/9Qx5WLrp0a0mJiIjIpWHCUCgyMpL+/v6xr30+Hzab/7Y//OEPdHV18fnPf562tjaGhobIy8vj\n2WefxTAM3nrrLY4dO8Y999zDY489RmJi4gWflZg4+R8eRaZCa0tmg9bV5OTFZXG8owpnrINQW+BC\nm8REJ99Li+aRX5Vw4EQ7x+u7ufPDS7l+fU7QOn2ZpskLP9mPxYDP3rx82mvkfPcdfde/28pjeumx\ndlCUuGhGc50NiYlOPnJdOi90D+PwpE358ycmOvn00B38x8En+c3JX+HuX09hViYtXQMcquzgUGXH\nGdc7wx1svCyNW67JJy0hcpxRp6d1uJUQq4OirGwsxtT6crxz3F/ras3SlHn378R8m49cOrS2ZLZo\nbcls0drymzAUWrVqFbt37+ZDH/oQBw8epLCwcOy9O+64gzvuuAPw7w6qqqri1ltv5dZbbx27ZseO\nHTzwwAMTBkIAbW190/kMIheUmOjU2pKA07qavLSwNMrMSg5UH6cgJjegY4cY8LVPrOCNkkZ+ubuS\nR589xB/31vLpG5aQlhAR0GdNxtGaTqoae7hiSRKhlul9Xzvf2mrub6Whr5kwWyiDniH21RwlgenV\nupltKWnD0A1NdXYOHGkiI2lyYY1r0M3v3qxm94EGiF2GI/8wiatK+eK6a4lyOHENumnuHKCpo5/m\njgGaOgaoae7lxbdq+MNbNaxenMiN67MDsjvL6/NysqeJDGcaHe39E99wlv3HWgBIjQmdV/9O6N8t\nmS1aWzJbtLZktiy0tXWhAGzCUGjLli3s2bOHbdu2YZomDz30EM899xwDAwPn1BESERE5W06Uv65M\nTW9dwEMh8Leov3plOpcVJPDTP5az/3gbD/zXO9y0IYcPbcjGZp3aLo+Z+MPeOgBuWJcV0HEPtfuP\njl2ffR2/qXyByp7AH8cLlMb+BgC8riieevk499y+6oLd1zxeH68dbOQ3b1TRP+QhKSaMrVffQKMt\nmRdqXmHn/ke5PGkFi2MLyEvJpiD9dDcvr8/H/uNtvPh2HfuOt7HveBtLsmK4YV02y/Pipt31rWWg\nDa/pnVY9IdM0Ka/vJibSQWJM2LSeLyIiIjJXJgyFLBYL//RP/3TGa/n55xbOfP/uoPfbtWvXNKcm\nIiKXguwof0Ay2pFqtsREhnDXx5ZzoLyNXS8f5zdvVvNOWSt33rCEgozZbwte3+qitLqTxZkxAa0l\nBHCo7QgWw8KGtCv4c+M7VHXX4jN9Uz7WNBdqT7WjL07J5VB5D28fbWHDsjPDFdM0qW91UVLZwVul\nzTR3DhAWYuWT1xbwgdUZ2G0WVppb6PcM8kbDW7xcu5uXa3djM6zkRmdTGJtPYWwBOVGZrC1K5ool\nSZTVdvHi3jpKqzspq+smPTGCD2/IZl1R8pTDodEi09OpJ9TaNUhP/whri5KmHUqJiIiIzJUJQyER\nEZGZiA+NJdIeMeuh0KjLCxNZnBXLs69VsvtAA//y1H6uXZXOx6/OJyxk9r7tvfyOf5fQ9QHeJdQz\n3Et1bx2LYvKItEeQF5PD2037aHQ1k+FMC+izZso0Tep6T5IQGsft1xVzrGovv/yfClYWJGC1GJTV\ndVFS0UFJZTudvcOAf6fXNSvTuGVTHlERpwtHG4bBJwtv5qN511PRXU15dyXlXZVUdFdzoruK56v/\niMPqYFvhx1iXupqinDiKcuKoa+njpXfq2Hu0lcd/d5Sy2i4+9cHFU9ox1tDvLzKdPo129MdHW9Fn\nqhW9iIiIzH8KhUREZFYZhkF2VCZHOsroG3HhdAS2IPD5hIfa2HH9YtYtTebHfyjjf95r4MCJdj71\nwUIuXzRxjbsL6R7u4fsHf8hH829gecJSALr6hnn7aAup8eGsyI8PxEcYc7j9KACXJRYDUBCdy9tN\n+6joqZ53oVDHUCf9ngGWxC0iMSaMD63P5rdvVvOtn+yjo2eIEY+/vXxEqI31S5NZURBPcW48kWHj\nd1ILtYVSnFBEcUIRAP3uAU50V1HeVcE7zQd4uuwZkiMSyTm1Iy0r2clff2QZN2/K49H/PszrJU00\ndw7ypY8VT7pbWVVPDQYGGZHpU/4zePdUPaGlOXFTvldERERkrs2/feciInLJyT5VV2iudgsB/Gfp\nT9nT+wIPfGYtH70qh97+Eb737GEe/U0pPa7haY/7TtN7NPY382bD22OvvbKvHq/P5Pq1WVgCfGSo\n5FQ9oRWnAqj8mBwAqrprJj2Gz/Tx3fd+wCMHn6R1oC2g83u/2l7/0bGsqAwAblyXRVJsGE0dAyTE\nhHHjuiz+z+2r+O6XN/L5jy5j/dKUCwZC5xNhD2dlYjGfLLyFzxXfjtf08eThp+gbcZ1xXVJMGN+4\nfTVrFidSXt/Nt368j5OtrnFGPW3E66amp44MZxrh9qnVBGrrHuRITReLMqJJiQuf0r0iIiIiwaBQ\nSEREZt3pYtNzEwrV9tazv7WE/S0lmIaHWzbl8cBnriA/PYp9Za3c+8ReXi9pxDTNKY99oO0QAOVd\nlbh9HgaHPbx6sIGoCAcbliUH9HMMeoYo76wgIzKN+DD/zpPEsAScjkgquqsnPf/K7hpOdFdxrLOc\nh975N16u3Y3X5w3oXAFq+/x/v9lOfyjksFu579Nr+H+/uIFv/dU6PnFtAYWZMVgtgfnxoyiukJvy\nrqdruJv/OvI0PtN3xvshDitfuKWYmzfm0t4zxINP7efAiQuHYtU9tXhML4ti8qY8nzcONQKw+bL5\ntYNLREREZDwKhUREZNZlO+d2p9Du+jcBMDFpcJ2qD5MYyTc+tZpPfbAQn2nyoxfLeObVyimN2zHY\nSV2fv7vWiM9NZXc1b5Q0MjjsPVUg2RrQz3G04zge0zu2Swj8x/Hyo3PpGemlY6hrUuMcbDsMwHWZ\nmwi1hvLbyhf5zr7vUXeqKHSg1PWexMAg03n62FVEqJ2E6NnrwvXB7GtYnrCU410VPFf10jnvWwyD\nmzfm8qVbijF9Jo88e5jn36oZN1A70e1fE4Wx5zbVuBCvz8cbh5oIC7GxZknSlD+HiIiISDAoFBIR\nkVkX6YggITSO2t76ae3OmYqe4V7eaz2Egf8YV/2pEAf8AcF1qzL41l+tIzkunBf31rHncNOkxz7Y\nVgqcru9zpP04L++rx2G3cO3lU68/M5HRVvQrTj1vVEFMLgCV3RO3pveZPg62lRJuC+OW/A9x3/q/\nY33qGupdjXxn3yP8puIFRrwjM56rz/RR39dAcngiobbQGY83WRbDwh1FW0kIi+fl2t2UtB0573Vr\nliTxjU+tJsYZwrOvVfHE74/i9py7W6q8qwoDY+zPeLIOVXTQ4xphw7JkQuyBDQdFREREZotCIRER\nmRPZUZn0ewZoH+yc1ee80fA2XtPLpvT1wJmh0Ki4qFC+ctsKwkNs/PgPZVQ09Exq7INthzEw+HjB\nR7BZbBxoPkpn7zCblqdNuTbORDw+D0c6yogLjSXjrNbo+dE5AFT2TBwK1faepHu4h+UJS7FarETY\nw9lR9En+ZuVfExsSwx/rXuXBd/6N450VM5pv60A7Q97hsXpCcyncHsbnl9+B3WLnJ0d/MW7dpOwU\nJ/d/eg35aVG8faSFHz5/7Iz3R7wj1PTWkelMJ8w2td1Nr5Xo6JiIiIhcfBQKiYjInMgZKzZdN2vP\ncPs8vNnwNmG2MD6afwN2i41617mhEEBKXDhfvKUYnw8eefYQHT1DFxy7e7iHqp5aCmJyiQ+LpSA6\nly5PO4ZjiC1rMwP+WU50VzHoGeKyhGUYZxWvTo9MJcTqoGISxaZHj45dnrT8jNeXxC3i3nV/ywcy\nN9Mx2Mn/f/BxXq7ZPe2dXKNHA0ePCs619MhUti/5OEPeIZ44vIvhcXY/RUeG8L+3X05+WhTvHGvl\nQPnpAKmqpxav6WVR7NTqCXX2DnG4qoPcVCdZyc4ZfQ4RERGRuaRQSERE5kT2qZbhNX2zV1dof8tB\n+twurkpbS5gtjLTIVBpdzXh8nvNevyw3jm0fKKB3wM33nj3E8Mj4xZdHj46tPBWuxBv+HTF5i0dI\nigl8zZxDbaNHx5ad857VYiU3KpuWgdZzum69n2maHGg9TIjVwZLYRee8H2J1cOuim/j6mv9FbEgM\nv616kV+d+N05BZsnY7Q+UTB2Co1am7KKzelX0tjfzNNlz4wbcNltVj7zoSJsVoNdLx9nYMgNwImu\nU/WEYqZWT+jNQ02YpnYJiYiIyMVHoZCIiMyJTGcaFsMya8WmTdPk1fo3MTDYnH6l/5mRaXhNL039\nLePe94HVGVy9Mo26VhdPPn8U3zhBwsFW/46blafq+9RV+oMgZ1J3ID8G4K/Pc6j9KBG28LGjYmcb\nrXlT1VMz7jgnXY10DHVSHF+E3Tr+8bbsqEzuXv0l0iJSeO3kHv7zyNO4ve4pzbm29yQWw0JGZHCD\nkY8vuoncqCz2tRzktYY/j3tdWkIEH7kql27XCL/c7T86V97tryeUP4V6Qj6fyRuHGgmxW1lbFNju\ncyIiIiKzTaGQiIjMCYfVQWpEMvV9DbPSDr2yp4Z6VyOXJRYTHxYLMNYF63x1hUYZhsHtWwpZnBnD\n/uNt/O7Nc+v09I24qOiuJjcqm5iQaE62uSg/4cXqDePkUM20dtZcSH1fA93DPRQnFGG1nL9ocX5M\nDuBvNz+esSDrrKNj5xMbGsPXVn2RgphcDrQe4vslP2TQMzip+Xp9Xk66GkiNSMZxgfBpLtgsNj5X\n/Cki7RH8+sTv6RnuHffaG9dlkZEYyeslTZRUNVPbW0+WM4OwKRTKPlLTSUfvMOuWJhEWYgvERxAR\nERGZMwqFRERkzuREZeL2eWjsbw742KNt6K/N3Dj22ulQqPGC99qsFr70sWISokP53Z4a3jl25s6i\nQ21HMDHH6vK89E4dYJAfVUC/eyDgrd0vdHRsVE5UFhbDQsUFik0faCvFbrGzLH7JpJ4bbg/jf132\nV6xMXM6J7ip27n+M7uGJi3A39bfg9nmCVk/obLGhMXw4dwte08u7LQfGvc5mtfDZDy/BMOAnb/oL\nlE+1Ff3rB/1r6+qVge8+JyIiIjLbFAqJiMicyT5VbLomwEfIOga7KGkrJTMy7YzjVmkRKVgMywV3\nCo1yhjv4ym0rCHFY+c/nj1Fa3UHFyR72lbXySuW7AJSXhrLzlwd5+0gLKXHhXJXjD4mOdZQH9POU\ntB/BbrFRFFc47jUOq4MsZwb1fQ3nLarc1N9Cy0ArS+MXE2J1TPrZdqudzxXfPlab51/3fZ/mCxy/\ng/lRT+hsq5NXYjOs7G3af8Hi2TkpUdywNos+iz+onEqR6R7XMAcr2slMiiQnRQWmRURE5OKjUEhE\nROZMzqli03UBDoXeaHgLE5OrMzee0anLbrWTGpHMSVfjpI54pSdG8v98dBluj4+dvyjhoaf28+hz\nB2gZqcfXH8W7h1yUVnXisFu5dXMeRXGFGBgc7QxcKNTU10pTfwtL4gonDHPyY3LwmT5qes7t6HZ2\nDaSpsBgWPll4Mx/Ju4Gu4W527n+MY53l44YrY53H5lEoFGEPpzhhKY39zeN2oBt188ZcQmO7MU0D\ny0DcpJ/x5uEmvD6TzZelndMhTkRERORioMPvIiIyZ1LCk3BY7AHdKTTsHWFP414i7RGsSbrsnPcz\nnek0uJpoGWgjNWLiQsArCxL44i3FlFS0ExXhoCekigNDJldmXs6Wq9YTHekg1HH622dOVCY1vXUM\nuAcJt8+8C9m7DSUAXJYw/tGxUfnRufyJ16nsqWZxXMEZ7x1oO4zNsLI8oWha8zAMgxtyriM6JIqn\ny57hkYNPkhKexIa0K1ibsooox+mdMXV9J7EZVtIiUqb1rNmyPnU1B9sO83bTfrKc4wdWPsODGdaN\n6Yripy9V8w93JmC3Xfj3Zj7T5I2SJhw2CxuWqcC0iIiIXJy0U0hEROaM1WIl05lBU38LQ57hgIz5\nTvN7DHgG2ZS+/rwdtiZTbPpsa5Yk8bmblvKJawvwRPrv21K4luS48DMCIYCiuEJ8po/jXRUz+BSn\nvdtQgoFB8STCnNGjcmcXm24b6KDB1cSSuEWE2WYWVG1IXcPfrvoiq5Muo32wg/+ueJ579zzI44d+\nzOH2owx7R2hwNZPuTMNmmV+/a1oat5hIewT7Wg7g8XnGva6qpwYfPjLCsmls7+f5t2omHPt4bRet\n3YOsWZJEeGhwi2uLiIiITJdCIRERmVM5UZmYmFMKacZjmiavntyD1bCyKX3Dea/JmkYoNGrIM8Sx\nzhOkRaSQHJ543muWxi8G4Fjn8SmPf7a+ERfl7VXkRefgdEROeH2kI4KU8CSqemvP6Oh2sG306NjE\nXccmIzc6m88W385DG+/jE4tuJjUimZL2I/zg0I+4d8+DeE0v2RfYiRMsVouVK1Iup989wJGOsnGv\nO9FdBcCHl68iLiqE59+qpb7VdcGxXyvxF5jefFla4CYsIiIiMscUComIyJwaLTZd2zfzI2RlXSdo\n7m9hVdIKokOizntNemQaBsa0QqHSjjI8Ps8FW7pnR2USbgvjaMf4NXcm63D7UUxMLrtA17Gz5cfk\nMuId4aTrdIe1A62HsRgWlicundF8zhZhD+eazKv45tqvcc8VX2Zz+gbA/5kXTbFr11xZl7IGgL1N\n+8e9pryrEothYUlCPndcvxivz+TJ3x+lpKKdweFzdxj1DYzwXnkbqfHhLMqInrW5i4iIiMy2+bXP\nW0RELnk5AexA9up52tCfLcTqICk8kfo+f7FpizH534eMFmu+/AI7biyGhcVxizjQeoiWgVZSJlG3\naDyl7ccAWJ4w+TCnICaXPY17qeypITsqk86hLmr76lkSu4hIe8S05zKRLGcGWYsz+FjBTTT3t4wd\n05tvMp1ppEemUtpRhmukn0jHmX8mQ54h6vpOku3MINQWwor8EK5ansKew838+zOHsBgG2SlOlmTH\nUJQVS0FGNG+VNuPxqsC0iIiIXPwUComIyJyKC40l0h4x1rFquloH2ijtKCM3Knts99F4Mp1ptAy0\n0j7YSVJ4wqTGH/GOcKSjjKTwhAkLVC+NW8yB1kMc7Syfdijk9Xk53lVJcmTipOcI768rVM11mZs4\n2FYKwMqkqXcdmw6H1T6vWtGfz7qU1fy64vfsaznINZlXnfFeZU8tPtN3xk6nz9xYxPplKZTVdlFW\n10VNUx/VTb28+HYdVouBzWrBZjW4snh+FdYWERERmSodHxMRkTllGAY5p3a09I70TXuc0fBjU/r6\nCa+dTrHpox3HGfG5WZm4fMLdIEVxiwA41jH91vS1fScZ8g6xPHnJlO6LC40lJiSayu4aTNPkYOth\nDAxWJMxNKHQxuCLlciyGhb3N+85570RXJQCFMadDIYvFYFlOHB+/Op97d6zhe1/dxN9+8jJuXJ9F\nVrKTEY+XK4tTcYY75uwziIiIiMwG7RQSEZE5lx2VSWlHGbW99VM6KvV+ozuNCidRy+b9xaZXJ5/b\ntv58DrRNfHRsVGxoDKkRyZzormLE68Zxni5oEynr9AdKK6YYChmGQX50DvtbS6jorqaqp5a86Byi\nQ5wT37xARDmcLI0rpLSjjEZXM2mRp3f4lHf76wnlxeSMe3+ow0ZxXjzFefEAuD0+bFYdGxMREZGL\nn3YKiYjInMuOygKY0RGymt56ohxOYkImLvSbEekPhd5fjPlC3D4Ppe1lxIfGTrpWTlFcIW6fm8ru\n6kldf7ayzhP+VvTJi6d8b0FMLgD/XfE8JiaXX6Aw9kK1LvVUwenm0wWnBz1D1Pc1kBOVSYh18rt+\n7DaLagmJiIjIJUGhkIiIzLnsUzVopltsunu4h+7hHrKjMif1P+fh9jASQuOo72uYVIew450nGPIO\nTero2KjR1vRHp9GafsgzRHVvHVlRGecUQp6M/FOh0GhHt5WJOjp2tuXxRYTbwni3+T28Pi/gr8Pk\nM30sipmfndNEREREZptCIRERmXOR9ggSQuOo7a2fVhv32t6TwOlOZpOR6UzH5e6ne7hnwmsPnOo6\ndqFW9GcriM7FbrFzrHPqdYVOdFfhM30UxS6a8r0AqRHJhNlCAciJyiI2NGZa41zK7FY7q5NX0jPS\nR1lXBeD/c4fJHUEUERERuRQpFBIRkaDIjspkwDNI22DHlO8dPXY2Udex9xs9BlY3QbFp10g/+1tL\niAuNnVLoZLfaWRSTR1N/C11D3ZO+D/xHxwCWxE0vFLIYFvJOdSHTLqHxrUtZDcDeJn/B6fKuSqyG\nlbzo7GBOS0RERCRoFAqJiEhQjAYu06krNBYKOSffCj1jkh3IXm/4M26fm2szN2IxpvZtcvQI2VR3\nC5V1nsBhsZMzg3BiXcoqEsPiuSLl8mmPcanLicokOTyRkvYjdA51jdUTckyhnpCIiIjIpUShkIiI\nBMV0i037TB+1fSdJCk8g3B4+6fsynWnAhUOhEa+b107+mXBbGFemrp3SvMBfbBrg6BRCoa6hbpoH\nWimIzcNumX5T0NXJK3lgwz2TKry9UBmGwbqU1Xh8Hn5Z/ltMTBbp6JiIiIgsYAqFREQkKDKdaVgM\ny5SLTbcNdjDoGSTbOfmjXcBYp7ILhUJvN+3D5e5nU/oGQm0hUxofIDk8kdiQGMo6T4wVM57IaH2b\n6dYTkqlZm7IKA4PD7UcBWBSTF+QZiYiIiASPQiEREQkKh9VBWkQK9a6GSQcoML16QqMynWn0jPTS\nM9x3zns+08ef6l/HZli5OuOqKY8N/p0oK5OKGfQMcqDt8KTuKTu1q2jJqV1GMrtiQ2NYHFsAgE31\nhERERGSBUygkIiJBkx2VicfnocHVNOl7RncWTaUI9KjMSH9doZOuc3cLHWwrpX2wg3Wpq4kOcU55\n7FGb06/EwODV+jcnvNY0TY53VhDtcJIakTztZ8rUrEv1F5zOjspSPSERERFZ0BQKiYhI0BTE5AJT\nq8FT21uPxbCQEZk25edljlNs2jRNXql7DQODD2RunvK475cUnsCy+CVU99ZR01t3wWsb+5vpc7tY\nHLcIwzBm9FyZvJWJy1mddBl/kTWzv2sRERGRi51CIRERCZql8YsxMChtPzap6z0+Dyf7GsiITMVu\ntU/5eeOFQhXd1dT21rMiYSnJEUlTHvds12ZuBGD3BLuFRruULVE9oTnlsNr5bPHtrEhcFuypiIiI\niASVQiEREQmaSHsEedE51PTW0TfimvD6BlcTHtM71rlsqmJCoom0R5wTCr1S9yoAf5F99bTGPdvi\n2AJSIpJ5r/UQ3cM9415X1nnCf31cQUCeKyIiIiIyFQqFREQkqJYnFGFiUtpRNuG1MykyDf5C0JnO\ndDqGuhhwDwDQ1N9CaUcZedHZ5EXnTGvc8z3nmoyr8Jk+3mx4+7zXuL1uKrqrSY1IVht5EREREQkK\nhUIiIhJUyxOKACZ1hGwmRaZHnT5C1gjAK3WvAfAXWddMe8zzWZcC7JftAAALtUlEQVSyinBbGG80\nvI3b6z7n/aqeWtw+N0vidHRMRERERIJDoZCIiARVcngSCWHxHOs8jtvnueC1tb31hFpDSA5PnPbz\nxkIhVwPdwz2823yA5PDEsXAqUBxWB1elrcPl7mdfa8k575d1+Y+OqZ6QiIiIiASLQiEREQkqwzBY\nnlDEsHeEiq6qca8b9AzSMtBGljMDizH9b1+jbenr+xp4tX4PXtPLBzI3z2jM8WzO2IDFsPBq/ZuY\npnnGe2WdJ7AaVgpi8gL+XBERERGRyVAoJCIiQbc8fikAhzuOjntNXW8DJua06wmNSgiLI8wWSmV3\nDW80vI3TEcnalFUzGnM8caGxXJawjJOuRiq6q8ded7n7qe9rIDc6i1BbyKw8W0RERERkIgqFREQk\n6PJjcgi1hlLafuycHTWjagNQTwj8O5MyItPoGu5myDvENRkbp9XefrKuOdWe/tWTp9vTl3dVYmKy\nJLZw1p4rIiIiIjIRhUIiIhJ0NouNpfGFdAx10dTfct5ravpm1nns/UbrCjmsDjanr5/xeBeSH51D\nZmQaJW1H6BjsAqCssxxARaZFREREJKgUComIyLywPOHUEbL28x8hq+2tJ9rhDEj79tHdRlelrSXc\nHj7j8S7EMAyuydyIicnrDX/GNE3KOk8QZgsjOypjVp8tIiIiInIhCoVERGReWBq/GAODw+dpTd89\n3EP3cA/ZUVkYhjHjZ61MXM4dRVv5aN4NMx5rMlYnr8Rpj2RP4zs09jfTMdTF4tj8WSluLSIiIiIy\nWfppVERE5oVIewR50dnU9NbRN+I6473a3pNAYI6OAVgtVtalrsZhdQRkvInYLTY2pq9n0DPIU8d+\nBejomIiIiIgEn0IhERGZN5YnLMXE5EhH2RmvB6rIdDBtSt+A1bBS1+cPuBbHKhQSERERkeBSKCQi\nIvPG8oQigHOOkI2GQlnOi7cGT3SIk1VJlwEQHxpLYlh8kGckIiIiIgudQiEREZk3ksOTSAiL51jn\ncdw+DwA+00dtXz1J4QmE28OCPMOZuS5zIwYGxQlLA1IbSURERERkJhQKiYjIvGEYBsvjixj2jlDR\nXQVA20A7g54hsp1ZQZ7dzGVFZfD36/6WW/JvDPZUREREREQUComIyPxSfNYRsppLoJ7Q+6VEJM9Z\ngWsRERERkQtRKCQiIvNKQUwuodZQStuPYpomtX3+UChQncdERERERMRPoZCIiMwrNouNpfGFdAx1\n0dTfQk1vPVbDSkZkarCnJiIiIiJySVEoJCIi805xvP8I2cG2wzT0NZIemYrdag/yrERERERELi0K\nhUREZN5ZlrAEA4NX6/fgMb2XTD0hEREREZH5RKGQiIjMO5H2CPKis+n3DACqJyQiIiIiMhsUComI\nyLy0PGHp2H9rp5CIiIiISOApFBIRkXlptDV9qDWEpPDEIM9GREREROTSYwv2BERERM4nJTyJ5QlL\nSQiNw2LodxgiIiIiIoGmUEhEROYlwzD4woo7gz0NEREREZFLln71KiIiIiIiIiKyACkUEhERERER\nERFZgBQKiYiIiIiIiIgsQAqFREREREREREQWIIVCIiIiIiIiIiILkEIhEREREREREZEFSKGQiIiI\niIiIiMgCpFBIRERERERERGQBUigkIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVE\nRERERERERBYghUIiIiIiIiIiIguQQiERERERERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFS\nKCQiIiIiIiIisgApFBIRERERERERWYAUComIiIiIiIiILEAKhUREREREREREFiCFQiIiIiIiIiIi\nC5BCIRERERERERGRBUihkIiIiIiIiIjIAmSYpmkGexIiIiIiIiIiIjK3tFNIRERERERERGQBUigk\nIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVERERERERERBYghUIiIiIiIiIiIgtQ\nUEMhn8/H/fffz9atW9mxYwe1tbXBnI5c5NxuN1//+tfZvn07t912G3/605+ora3lL//yL9m+fTv/\n8A//gM/nC/Y05SLW0dHB1VdfTWVlpdaWBMx//Md/sHXrVm699VZ+9atfaW1JQLjdbu6++262bdvG\n9u3b9e+WBERJSQk7duwAGHc9/fKXv+TWW2/lk5/8JLt37w7mdOUi8f51dezYMbZv386OHTv43Oc+\nR3t7O6B1JdPz/rU16rnnnmPr1q1jX2ttBTkUeuWVVxgZGeEXv/gFd999N9/+9reDOR25yP3ud78j\nJiaGp59+mieffJJ//ud/5l/+5V/46le/ytNPP41pmvzpT38K9jTlIuV2u7n//vsJDQ0F0NqSgNi7\ndy8HDhzgZz/7Gbt27aK5uVlrSwLitddew+Px8POf/5y77rqL7373u1pbMiNPPPEEf//3f8/w8DBw\n/u+DbW1t7Nq1i5///Of88Ic/ZOfOnYyMjAR55jKfnb2uHnzwQe677z527drFli1beOKJJ7SuZFrO\nXlsAR48e5ZlnnsE0TQCtrVOCGgrt37+fTZs2AbBy5UpKS0uDOR25yN1www185StfAcA0TaxWK0eO\nHGHt2rUAbN68mT//+c/BnKJcxB5++GG2bdtGUlISgNaWBMSbb75JYWEhd911F1/4whe45pprtLYk\nIHJzc/F6vfh8PlwuFzabTWtLZiQrK4vvfe97Y1+fbz0dOnSIyy+/HIfDgdPpJCsri7KysmBNWS4C\nZ6+rnTt3UlRUBIDX6yUkJETrSqbl7LXV1dXFzp07+eY3vzn2mtaWX1BDIZfLRWRk5NjXVqsVj8cT\nxBnJxSwiIoLIyEhcLhdf/vKX+epXv4ppmhiGMfZ+X19fkGcpF6Nf//rXxMXFjYXYgNaWBERXVxel\npaX8+7//O//4j//I3/3d32ltSUCEh4fT0NDAjTfeyH333ceOHTu0tmRGrr/+emw229jX51tPLpcL\np9M5dk1ERAQul2vO5yoXj7PX1egv39577z2eeuop7rzzTq0rmZb3ry2v18u9997LN77xDSIiIsau\n0drys018yeyJjIykv79/7Gufz3fGPwoiU9XU1MRdd93F9u3b+chHPsJ3vvOdsff6+/uJiooK4uzk\nYvXss89iGAZvvfUWx44d45577qGzs3Psfa0tma6YmBjy8vJwOBzk5eUREhJCc3Pz2PtaWzJdP/rR\nj9i4cSN33303TU1NfPrTn8btdo+9r7UlM2WxnP7d8uh6Ovtn+/7+/jP+h0tkMl544QUee+wxHn/8\nceLi4rSuZMaOHDlCbW0tDzzwAMPDw1RUVPDggw+yfv16rS2CvFNo1apVvP766wAcPHiQwsLCYE5H\nLnLt7e189rOf5etf/zq33XYbAEuXLmXv3r0AvP7666xZsyaYU5SL1E9/+lOeeuopdu3aRVFREQ8/\n/DCbN2/W2pIZW716NW+88QamadLS0sLg4CAbNmzQ2pIZi4qKGvvBNjo6Go/Ho++JElDnW08rVqxg\n//79DA8P09fXR2VlpX6+lyn57W9/O/YzV2ZmJoDWlczYihUreP7559m1axc7d+6koKCAe++9V2vr\nlKBuy9myZQt79uxh27ZtmKbJQw89FMzpyEXuBz/4Ab29vTz66KM8+uijANx7771861vfYufOneTl\n5XH99dcHeZZyqbjnnnu47777tLZkRq699lreffddbrvtNkzT5P777ycjI0NrS2bszjvv5Jvf/Cbb\nt2/H7Xbzta99jeLiYq0tCZjzfR+0Wq3s2LGD7du3Y5omX/va1wgJCQn2VOUi4fV6efDBB0lNTeVv\n/uZvALjiiiv48pe/rHUlsyIxMVFrCzDM0dLbIiIiIiIiIiKyYAT1+JiIiIiIiIiIiASHQiERERER\nERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFSKCQiIiIiIiIisgApFBIRERERERERWYAUComI\niIiIiIiILEAKhUREREREREREFqD/CyM3fMbHfs4CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAJaCAYAAADpktlZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcU/W9//H3yTpLMivDLojCiKAoLrhQVOq1aKt1qVKl\nxbq0VWtrwUeraG3xikWrrddK1Xp7/d326m0pD5d77XLvraVFWxeKG5sOKLKvs08ySzJJvr8/ZhJA\nYBjmZCbJyev5FzNJTj45k8y8+X6/5/O1jDFGAAAA6DNXpgsAAADIdQQqAAAAmwhUAAAANhGoAAAA\nbCJQAQAA2ESgAgAAsIlABcfYtm2bjj/+eF166aW69NJLdckll+iKK67Qf/3Xf6Xu89Of/nS/rw/m\nZz/7mf785z8f9LZ9H3/cccepoaHhiGpctWqVfvCDH0iSVq9erdtuu+2IHt8X8Xhct9xyi2bMmKFn\nn322x/vedNNNeuGFFyRJl156qVpaWg54/AsvvKDzzjtPN954Y7/Xnq1CoZCuvfZaW8eYN2+enn76\n6T4/vjfv5Ww1efJkbdu2rVefgX0/M0fivvvu06JFi/paInDEPJkuAEingoIC/fd//3fq6+3bt+u6\n665TYWGhZsyYoW9/+9uHPcby5cs1duzYg97Wm8f35KOPPtLu3bslSSeeeKIee+wxW8frjd27d+vv\nf/+73nvvPbnd7l4/Lnked+zYsd/jr732Ws2dO1eXXnppf5Wc9Zqbm7V69eqM1mD3vZgNevMZ2Pcz\nA2QzAhUcbcSIEbrtttv09NNPa8aMGZo3b57GjRunG2+8UY899phefvlleb1elZeX64EHHtDLL7+s\nNWvW6KGHHpLb7dbSpUvV1NSkrVu36rzzzlN9fX3q8ZL06KOPavXq1UokEpozZ46mT5+uF154Qf/3\nf/+np556SpJSX99777167LHHFAqFdNddd+myyy7TggUL9Pvf/16hUEj//M//rJqaGlmWpWnTpun2\n22+Xx+PRiSeeqK9//et67bXXtGfPHl177bW67rrrDnitb731lh566CG1t7fL6/Vqzpw5OuWUU/TV\nr35VsVhMV1xxhRYtWqRRo0alHrN7927NmzdPe/bs0fDhw1VfX5+67bjjjtOyZcv2e/zIkSO1evVq\nbdu2TY2NjZo1a5Z+/OMfa8WKFYrH45owYYLuueceBQIBffrTn9akSZO0bt063X777Zo0aZLuu+8+\n7dy5U52dnfrc5z6nm2++Wdu2bdN1112nc889VytXrlRzc7Pmzp2rz372s4rFYnr44Ye1bNkyud1u\nTZ48WfPnz5fP59OTTz6pP/3pT0okEhoxYoTmz5+vIUOG6E9/+pOefPJJWZYlt9utO+64Q6effrqW\nLl2qxYsX6xe/+MUB5+65557Tb3/7W3V2dqq5uVlf+9rXNGvWLEnSU089pRdffFEej0ejR4/Wgw8+\nqLvuuksdHR269NJL9cILL2jChAl64403VFFRkTp3b7zxhsrKyrRw4UKtXLlSra2tMsbo/vvv16mn\nnnrI9+y8efPk9/u1evVq1dXV6aKLLlJFRYX++te/qra2Vvfff7/OOuus/d7Lh3qPHOq9+NRTT+mt\nt97Sgw8+qEQiIalrdHLGjBn71bJ8+XI99NBDGjJkiLZu3aqCggI9+OCDOvbYYzVv3rz9Phvf/va3\nD/leeOutt7RgwQJZlqUTTzwx9ZzLly9PfQZaW1t1//3365133pHb7dY//dM/6ZprrtnvM/PAAw/o\nL3/5i5588kl1dnaqoKBAd955pyZPnqxwOKzvfe97qqmp0eDBg+V2u3s8z0DaGcAhtm7dak4++eQD\nvr9+/Xpz0kknGWOMufPOO82//du/mR07dphTTjnFRCIRY4wxTz/9tHn55ZeNMcZ8+ctfNv/zP/+T\nuv9XvvKV1LGSjzfGmOrqavPUU08ZY4xZt26dmTJliqmvrzfPP/+8+frXv556zL5f7/vvN99803zu\nc58zxhhzxx13mAULFphEImEikYi54YYbUseurq42zzzzjDHGmNWrV5sTTjjBdHR07PcaGxoazFln\nnWXee++91GueMmWK2bJlyyHPizHGfOMb3zD/8i//YowxZtOmTebkk082zz//fOp56+vrD3j8vudn\n0aJF5sEHHzSJRMIYY8xPfvITM3/+fGOMMdOnTzc/+9nPUo+bPXu2Wbp0qTHGmI6ODjN79mzzhz/8\nwWzdutVUV1ebv/zlL8YYY/73f//XnHfeecYYY371q1+ZL33pS6a9vd3E43Hz7W9/27z44ovmxRdf\nNHPmzDGdnZ3GGGMWL15svvrVrxpjjDn//PPNu+++a4wx5m9/+5tZtGjRQV97UjgcNjNnzjQNDQ3G\nGGPefffd1Ov985//bD7zmc+YpqYmY4wxCxcuNE888cQB5yR5rj759TvvvGO+9a1vmXg8bowx5qmn\nnjI33XSTMWb/99K+7rzzTnPVVVeZaDRq9uzZY6qrq81//Md/GGOM+eUvf2muv/76Ax5/qPdIT+/F\na6+91vz+9783xhjzwQcfmHvvvfeAWt58800zfvx4s2LFCmOMMb/+9a/N5Zdfnnr+fT8bh3ovRCIR\nc/bZZ5vXX3/dGGPM7373O1NdXW22bt2632dg4cKFZu7cuSYWi5lIJGK+9KUvmTfffHO/mjdu3Ggu\nvvji1M9q/fr1ZurUqaa1tdX88Ic/NHfccYdJJBKmvr7enHPOOeaxxx474DUB/YURKjieZVkqKCjY\n73tDhgzR+PHjdfnll+ucc87ROeeco7POOuugj+/pf7nXXHONJKm6ulrHHnus3n333T7V+Oqrr+o3\nv/mNLMuSz+fT1VdfrV/96lf6+te/Lkk6//zzJUkTJ05UNBpVW1ub/H5/6vGrVq3SqFGjdNJJJ0mS\nxo0bp1NOOUX/+Mc/dMYZZxzyeV9//XXdeeedkqTRo0f3eN+DWbZsmUKhkF5//XVJUmdnpyorK1O3\nn3baaZKktrY2rVixQs3NzfrpT3+a+l5NTY0mTZokr9erc889V5I0YcIENTU1peq79NJLUz+/Rx99\nVFLXdNfq1av1hS98QZKUSCTU3t4uSfrc5z6nb37zmzr33HM1depUfe1rX+vxNRQXF+vnP/+5Xnnl\nFW3atEk1NTVqa2uTJL3xxhu68MILVVpaKkm66667JHWt1+uNyZMnq7S0VIsXL9bWrVu1fPlyFRcX\nH/Zx06dPl9frVVVVlYqKijRt2jRJ0qhRo1Ln5pMO9h7pyUUXXaT77rtPf/nLX3T22Wfr9ttvP+j9\nxo8fn/o5fuELX9B9992nxsZGSft/Ng71Xli/fr08Hk/q83XxxRcfdE3U66+/rrvuuktut1tutzu1\n3i+5pk9SagRu3xFay7K0ZcsWvfHGG7r77rtlWZYqKip0wQUX9Pj6gXQjUMHxVq9ererq6v2+53K5\n9Oyzz2r16tV64403tHDhQp1xxhm65557Dnh8UVHRIY/tcu29rsMYI4/HI8uyZPbZIrOzs/OwNSan\nQPb9OhaLpb5OhifLslLP1dPjk/fZ9xgH88laPZ4j+5WQSCR09913p8JQa2urIpFI6vbkuUskEjLG\naPHixSosLJQkNTQ0yO/3q7GxUV6vN3Uuk6/xYPXU1dUpkUgokUjoq1/9ampaLhqNqrm5WZI0d+5c\nXXnllfr73/+uF154Qf/6r/+qF154Yb+f1b527dqlL37xi5o5c6ZOPfVUXXjhhfrrX/8qSXK73fvV\n09LSopaWlh7PSTQaTf172bJl+uEPf6jrr79e559/vo455hi99NJLPT5eknw+335f9+bncrD3SE/v\nxauvvlrTp0/Xa6+9pr/97W/62c9+ppdeeknBYHC/435y3Z0xJvW9fT8bh3ov7Ny584D368FeT/Kz\nk7Rz584D/iOUSCR01llnpYJ18n6DBw9O1XaouoH+xlV+cLSNGzfqiSee0A033LDf92tqanTxxRfr\n2GOP1U033aTrrrtO69atk9T1i/hwQSTpxRdflCStXbtWmzdv1kknnaSKigp9+OGHikQiisViqT/O\nPR37U5/6lP7zP/9TxhhFo1EtWbJEZ599dq9f50knnaSNGzdq1apVkqQPP/xQK1as0JQpU3p83LRp\n0/Tb3/5WUtfi8+XLl/f6OfetOxqNKpFI6Pvf/74eeeSRA+4XCAR08skn69///d8ldQWTa665RkuX\nLu3x+GeddZZ+//vfp45/77336g9/+IM+9alP6bnnnlM4HJbUdcXbHXfcoVgspk9/+tNqa2vTNddc\no/nz52vDhg09/jzXrFmjiooKfeMb39C0adNSP694PK6zzz5bL7/8cup5Fi1apF/+8pfyeDyKx+Op\nP+AVFRWpReovv/xy6tivvfaapk+frlmzZunEE0/Un//8Z8Xj8d6eXtt6ei9effXV+uCDD3TFFVdo\nwYIFamlpSYXSfdXU1KimpkaS9Nvf/lannHKKSkpKDrjfod4L1dXVMsbolVdekSQtXbr0oM9z1lln\n6cUXX1QikVA0GtVtt92mFStW7PeZOfPMM/Xaa69pw4YNkqRXXnlFn//85xWJRDRt2jQ999xzSiQS\nam5uPux7C0g3RqjgKMmFwlLX6JHf79ftt9+u8847b7/7jR8/XhdddJG+8IUvqKioSAUFBanRqenT\np+tHP/pRr0aWtm7dqssuu0yWZemRRx5RWVmZpk6dqtNPP10XXXSRqqqqdMYZZ6TC2uTJk/Xoo4/q\n1ltv3e+y+3vuuUf333+/LrnkEnV2dmratGm6+eabe/26Kyoq9NOf/lQLFixQR0eHLMvSAw88oDFj\nxvQ4PTV//nzddddduuiiizR06FCNHz++188pSd/4xjf0ox/9SJdffrni8biOP/54zZs376D3/fGP\nf6wFCxbokksuUTQa1cUXX6zPf/7zPdZ39dVXa/v27briiitkjNGUKVM0e/ZsuVwu7d69WzNnzpRl\nWRo2bJgefPBBeTwe3X333frOd76TGvFYuHChfD7fIRelT506Vc8995wuvPBCFRYWatKkSaqoqNDm\nzZt17rnn6qOPPkpN7Y4dO1YLFixQYWGhJkyYoIsuuki/+c1vdM899+i+++5TSUmJzj77bFVVVaXq\n/853vqNLLrlEbrdbp512Wmoh/UDo6b34ne98RwsXLtSjjz4ql8ulb37zmxo5cuQBxxg0aJAeffRR\nbd++XRUVFXrooYcO+lyHei94vV49/vjjuvfee/XII4/o+OOP329aOOmb3/ymfvjDH+rSSy9VPB7X\nZz/7WX3mM5/Rli1bUp+Zxx9/XPfdd59uv/321Ijwk08+qaKiIn3rW9/S/PnzU4v4PzkqDfQ3y3xy\nLBYAAO1/FR6AnjHlBwAAYBMjVAAAADYxQgUAAGATgQoAAMAmAhUAAIBNGW2bUFsbyuTTZ1x5eZEa\nG3vuZoze43ymF+czvTif6cX5TC/OZ+9UVQUPeRsjVBnk8dDJN504n+nF+Uwvzmd6cT7Ti/NpH4EK\nAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAA\ngE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACb\nCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgkyfTBQDIrGXvbT/o94OBAoXCHb0+znknj0hX\nSQCQcxihAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIA\nALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABg\nk6enGzs7O3X33Xdr+/btikajuuWWWzRs2DDddNNNOvrooyVJ11xzjT772c9qyZIlWrx4sTwej265\n5RZNnz59IOoHAADIuB4D1UsvvaSysjI9/PDDampq0mWXXaZbb71V119/vW644YbU/Wpra/XMM8/o\n+eefVyQS0axZszR16lT5fL5+fwEAAACZ1mOguvDCCzVjxgxJkjFGbrdba9as0caNG7V06VKNHj1a\nd999t1atWqXJkyfL5/PJ5/Np1KhRqqmp0aRJkwbkRQAAAGRSj4GquLhYkhQOh3Xbbbdpzpw5ikaj\nuuqqq3TCCSfoySef1OOPP67x48crGAzu97hwOHzYJy8vL5LH47b5EnJbVVXw8HdCr3E+j1wwUNCn\n2z6Jc394nKP04nymF+fTnh4DlSTt3LlTt956q2bNmqVLLrlELS0tKikpkSRdcMEFWrBggU477TS1\ntramHtPa2rpfwDqUxsY2G6XnvqqqoGprQ5kuwzE4n30TCncc9PvBQMEhbzsYzn3PeH+mF+czvTif\nvdNT6OzxKr+6ujrdcMMN+u53v6srr7xSknTjjTdq1apVkqQ33nhDEydO1KRJk/T2228rEokoFApp\nw4YNqq6uTuNLAAAAyF49jlD9/Oc/V0tLi5544gk98cQTkqR58+Zp4cKF8nq9GjRokBYsWKBAIKDZ\ns2dr1qxZMsZo7ty58vv9A/ICAAAAMs0yxphMPXm+Dy8yxJpenM++Wfbe9oN+/0in/M47eUS6SnIk\n3p/pxflML85n7/R5yg8AAACHR6ACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGo\nAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEA\nANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACw\niUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOB\nCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUA\nAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAA\nmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYR\nqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlAB\nAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAA\nsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGCT\np6cbOzs7dffdd2v79u2KRqO65ZZbNHbsWM2bN0+WZWncuHGaP3++XC6XlixZosWLF8vj8eiWW27R\n9OnTB+o1AAAAZFSPgeqll15SWVmZHn74YTU1Nemyyy7T+PHjNWfOHJ1xxhn6wQ9+oKVLl+rkk0/W\nM888o+eff16RSESzZs3S1KlT5fP5Bup1AAAAZEyPgerCCy/UjBkzJEnGGLndbq1du1ZTpkyRJJ1z\nzjl67bXX5HK5NHnyZPl8Pvl8Po0aNUo1NTWaNGlS/78CAACADOsxUBUXF0uSwuGwbrvtNs2ZM0c/\n+tGPZFlW6vZQKKRwOKxgMLjf48Lh8GGfvLy8SB6P2079Oa+qKnj4O6HXOJ9HLhgo6NNtn8S5PzzO\nUXpxPtOL82lPj4FKknbu3Klbb71Vs2bN0iWXXKKHH344dVtra6tKSkoUCATU2tq63/f3DViH0tjY\n1seynaGqKqja2lCmy3AMzmffhMIdB/1+MFBwyNsOhnPfM96f6cX5TC/OZ+/0FDp7vMqvrq5ON9xw\ng7773e/qyiuvlCRNmDBBy5cvlyS9+uqrOu200zRp0iS9/fbbikQiCoVC2rBhg6qrq9P4EgAAALJX\njyNUP//5z9XS0qInnnhCTzzxhCTpe9/7nu6//3498sgjOuaYYzRjxgy53W7Nnj1bs2bNkjFGc+fO\nld/vH5AXAAAAkGmWMcZk6snzfXiRIdb04nz2zbL3th/0+0c65XfeySPSVZIj8f5ML85nenE+e6fP\nU34AAAA4PAIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYC\nFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAE4KGOMEsZkugwAyAkEKgAHSCSM/vDaRr34yseKxROZ\nLgcAsh6BCsABVtTs0eZdIbV2xLRldyjT5QBA1iNQAdhPzeZGrdvSpLKAX5K0fmtzhisCgOxHoAKQ\nsqOuVStq9qjA59bnzzlGwyqLtKexXU3hSKZLA4CsRqACIElqDkf0yns7ZMnS9MkjFCzyqfqoMknS\nh4xSAUCPCFQAJElv1dSqM5bQ2ScOUVV5oSRp5OCACnxubdjRzOJ0AOgBgQqAjDHa09SukiKvjhle\nmvq+22Vp7IhSRTsTLE4HgB4QqACopbVTnbGEBpUVHnDbuKO6AhaL0wHg0AhUAFTX3C5JqiwpOOC2\nYJGPxekAcBgEKgCqb+6QJA0qOzBQSWJxOgAcBoEKgOqaO2RZUkXQf9Db912cznY0AHAgAhWQ5+IJ\no4aWiMqDfrndB/+V4HZZGj6oWNHOhMJtnQNcIQBkPwIVkOeaQhEljNGg0oNP9yWVdY9eNYZYRwUA\nn0SgAvJcckH6oNIDr/DbV3n3VjQsTAeAAxGogDxX170gvfIwI1TlQZ8kRqgA4GAIVECeq2/ukMdt\nqTTg6/F+hX6PfF6XmghUAHAAAhWQx9ojMTWFo6osKZDLsnq8r2VZKg/4FWrrZBsaAPgEAhWQxzbv\n6tpO5nDTfUllQb+MpOZwtB+rAoDcQ6AC8tjGXS2SdNAtZw4muTCddVQAsD8CFZDHNu7oDlRHMEIl\ncaUfAHwSgQrIYxt3hlTgc6u4wNOr+5dxpR8AHBSBCshTza1R1bd0qLK0QNZhFqQn+Txd4YtABQD7\nI1ABeWrjziOb7ksqD/rVEY2rIxrrj7IAICcRqIA8tamPgYotaADgQAQqIE9tOsKWCUmpLWhCtE4A\ngCQCFZCndje2K1DoVYGvdwvSk1IjVFzpBwApBCogDyWMUX1zu6rKjmx0SpJKi31yWWILGgDYB4EK\nyENNoYhicaOqXjb03JfLZamk2KemcETGmH6oDgByD4EKyEO1Te2SpEGlRx6opK4r/WJxo3B7ZzrL\nAoCcRaAC8lBdc4ck9WnKT+JKPwD4JAIVkIeSI1R9mfKT9r3Sj0AFABKBCshLtU1dI1S93RT5k/Ze\n6UfrBACQCFRAXqptbpfLslTRHYyOVHGBR16PixEqAOhGoALyUG1TuypK/PK4+/YrwLIslQX8ammN\nKp7gSj8AIFABeSbaGVdzONrn9VNJwSKvjKS2Dq70AwACFZBn7F7hlxQo9EoSrRMAQAQqIO/Y7UGV\nlApUbQQqACBQAXlm7whVmgIVI1QAQKAC8o3dHlRJgSICFQAkEaiAPJOa8rO5hqrI75FlEagAQCJQ\nAXmntqlDfp9bwe4pu75yuSwVF3gJVAAgAhWQV4wxqm1uV1VpoSzLsn28QKFX7ZG44vFEGqoDgNxF\noALySKi9U5Fo3HbLhKS9C9NjaTkeAOQqAhWQR+qa0nOFX1Kg0COJdVQAQKAC8ki6rvBL4ko/AOhC\noALyyN6mnumZ8iumFxUASCJQAXmlrjnNI1TdgaqVQAUgzxGogDxS272GKl0jVEV+j1z0ogIAAhWQ\nT2qb2lUa8MnndafleJZlqbiQXlQAQKAC8kQsnlBDSyRt031JgUKvOqJxRaLxtB4XAHIJgQrIEw2h\niBLGqKo0/YFKkupaOtJ6XADIJQQqIE/sbZmQnvVTSalA1X18AMhHBCogT9SluQdVUipQNTNCBSB/\nEaiAPFGb5i7pScnmnsmWDACQjwhUQJ5IBp50tUxIYoQKAAhUQN6ob+6Q22WpLOBP63ELfG65XVZq\nn0AAyEcEKiBPNIYjKgv45HJZaT2uZVkKFHqZ8gOQ1whUQB5IJIyaQlGVBdM7OpUUKPSqtSOm9kis\nX44PANmOQAXkgZa2qBLGqDyY3vVTScWsowKQ5whUQB5oDEUkSeVpXj+VFCj0SKIXFYD8RaAC8kAq\nUPXXlF+RTxIjVADyF4EKyAP9Hqi6R6hqWZgOIE8RqIA80P+BqmsNVT0jVADyFIEKyAP9Haj8Xrf8\nXjdTfgDyFoEKyAONoa6gk+6mnkmWZWlQWYHqmttljOmX5wCAbEagAvJAYziqYJFXXk//feQrSwrU\nHomrPRLvt+cAgGxFoAIczhijxlBHv7VMSKronk5sCDHtByD/EKgAh2uPxBTtTPTb+qmk8pKupqHJ\n9VoAkE8IVIDDNfTzgvSk1AhVCyNUAPIPgQpwuKYBD1SMUAHIPwQqwOGSI1T9tTFyUgVTfgDyGIEK\ncLjkCFVFP22MnFTGonQAeYxABThcY3hgRqj8XrcChV5GqADkJQIV4HCpLun93DZB6lpH1dASobkn\ngLxDoAIcrjEUkd/nVqHf3e/PVR70K9IZV1sk1u/PBQDZhEAFOFxjKKLygF+WZfX7c6UWpnOlH4A8\nQ6ACHKwzFle4vbPfWyYklbMwHUCe6lWgWrlypWbPni1Jev/99zVt2jTNnj1bs2fP1h//+EdJ0pIl\nS3TFFVdo5syZ+utf/9p/FQPotcYB6kGVVFGSDFSMUAHIL57D3eEXv/iFXnrpJRUWFkqS1q5dq+uv\nv1433HBD6j61tbV65pln9PzzzysSiWjWrFmaOnWqfD5f/1UO4LAGPFB1t2aguSeAfHPYEapRo0Zp\n0aJFqa/XrFmjZcuW6Utf+pLuvvtuhcNhrVq1SpMnT5bP51MwGNSoUaNUU1PTr4UDOLyBDlTl3SNU\njWw/AyDPHHaEasaMGdq2bVvq60mTJumqq67SCSecoCeffFKPP/64xo8fr2AwmLpPcXGxwuHwYZ+8\nvLxIHk9adbg1AAAgAElEQVT/X3mUzaqqgoe/E3qN87m/TrNLknT0iLJDnptg4NANP3u67ZOqqoIq\nLSuSJIUjMX4WB8E5SS/OZ3pxPu05bKD6pAsuuEAlJSWpfy9YsECnnXaaWltbU/dpbW3dL2AdSmNj\n25E+vaNUVQVVWxvKdBmOwfk80NadLZIkl0kc8tyEwgcfTQoGCg5528Ekjx8o9GpXfRs/i0/g/Zle\nnM/04nz2Tk+h84iv8rvxxhu1atUqSdIbb7yhiRMnatKkSXr77bcViUQUCoW0YcMGVVdX971iAGmR\n7JI+EE09kypK/Gps6aC5J4C8csQjVPfee68WLFggr9erQYMGacGCBQoEApo9e7ZmzZolY4zmzp0r\nv3/gfoEDOLimUERul6Vg8cBdIFIRLNCW3WG1dsQUKPQO2PMCQCb1KlCNHDlSS5YskSRNnDhRixcv\nPuA+M2fO1MyZM9NbHQBbGkIRlQV8cg1AU8+k5ML0hpYOAhWAvEFjT8ChEgmj5nBU5cHeLyxPh4ru\nKwrZJBlAPiFQAQ7V3BpVwhiVDVDLhKTk9jM09wSQTwhUgEM1dS9IrxjoQBXcO+UHAPmCQAU4VLJb\nedkAXuEnSeXJDZIZoQKQRwhUgEOlRqhKBjhQBRihApB/CFSAQzWEugLNQI9QeT0ulRR5GaECkFcI\nVIBDNYUys4ZK6pr2awhFaO4JIG8QqACHSo4QlQ7wCJXUFeI6YwmF2zsH/LkBIBMIVIBDNYWjChR6\n5fUM/Me8IsjCdAD5hUAFOFRTODLg66eS9nZLJ1AByA8EKsCB2iMxdUTjKgsO3B5++0r1ogpxpR+A\n/ECgAhyouTUqaeCv8EuqoBcVgDxDoAIcKHmFX8am/OiWDiDPEKgAB0o29SwPZGbKrzzolyVGqADk\nDwIV4EBN4cxO+XncLpUU+1iUDiBveDJdAIC+Wfbe9kPetvrjeknShp3Nam6LDlRJ+ykP+rWttlXG\nGFmWlZEaAGCgMEIFOFB7JCZJKvJn7v9MFSUFisUTCtHcE0AeIFABDtTWHagKfJkLVMmF6Y1M+wHI\nAwQqwIHaIzEV+t1yuTI31VZRQi8qAPmDQAU4jDFGbR0xFWZwuk/au/0MC9MB5AMCFeAwnbGE4gmT\n0fVT0j69qBihApAHCFSAwyTXT2V8hKp7yo9eVADyAYEKcJi2ju4r/AoyG6jKAl3NPZnyA5APCFSA\nw7RnyQiVx+1SScCnRqb8AOQBAhXgMNnQgyqpIligxlBECWMyXQoA9CsCFeAwqTVUGZ7yk6SKoF+x\nuFGojeaeAJyNQAU4THtH9oxQlacWpjPtB8DZCFSAw7RFYrIsqcDnznQp9KICkDcIVIDDtEfiKvR7\nsmJD4lS39BZGqAA4G4EKcJBkl/RsmO6T9o5Q0YsKgNMRqAAHiXQmlDAm4y0TkvZ2SydQAXA2AhXg\nIKmWCVlwhZ8klQV9siypkSk/AA5HoAIcJNklPVtGqNwul8oCfkaoADgegQpwkGxq6plUHvTT3BOA\n4xGoAAfJlo2R91UR9CueMAq1RjNdCgD0GwIV4CDZtoZKksqTvaiY9gPgYAQqwEGybQ2VtG8vKgIV\nAOciUAEO0h6JyWVZ8nuz56NdUZIcoeJKPwDOlT2/dQHY1haJqaggO7qkJyV7UTUyQgXAwQhUgEMY\nY9QeianQn/k9/PZVkWruyQgVAOciUAEO0RGNy5jsapkgSWUBv1yWxaJ0AI5GoAIcItUyIYuu8JMk\nl8tSacDHlB8ARyNQAQ7R3pF9TT2TKkr8agpHlEjQ3BOAMxGoAIfIxqaeSeXBAsUTRs009wTgUAQq\nwCGysalnUnJheiPrqAA4FIEKcIhsbOqZlOpF1cKVfgCciUAFOEQ2boyctLd1AiNUAJyJQAU4RGtH\nTB63Ja8n+z7W5SXJKT9GqAA4U/b95gXQJ+2RmIr82dUlPakiuUEyrRMAOBSBCnCAeCKhjmhcRQXe\nTJdyUKXFPrldFovSATgWgQpwgOSC9Gy8wk/qau5ZFvCx/QwAxyJQAQ7QlsUtE5LKSwrUFIoqnkhk\nuhQASDsCFeAAbVncJT2psqRACWPUFKK5JwDnIVABDpDtU35SV6CSpHp6UQFwIAIV4AB7A1V2LkqX\npMru1gkEKgBORKACHKAti5t6JlWWdo9QNROoADgPgQpwgLaOTlmWVOB3Z7qUQ2LKD4CTEagAB2jr\niKnQ75ErC5t6JlUQqAA4GIEKyHHGGLV1d0nPZoV+j4oLPEz5AXAkAhWQ4zqicRkjFWfxFX5JlSUF\nqm/pkDEm06UAQFoRqIAclwtX+CVVlhYo2plQuL0z06UAQFoRqIAcl7zCrzBHRqgk1lEBcB4CFZDj\nWju6RnuKs3wNlbTPwvRmNkkG4CwEKiDHtedAl/SkQaWMUAFwJgIVkONyYduZJJp7AnAqAhWQ41pz\noEt6EmuoADgVgQrIce0dMfm9brnd2f9xDhZ55fW4CFQAHCf7fwMD6FFrR2dOTPdJkmVZqigpYMoP\ngOMQqIAcFo3FFYubnAlUkjSoxK9we6ci0XimSwGAtCFQATkstSA9B9ZPJVVypR8AByJQATksl67w\nS0ouTG8gUAFwEAIVkMNyMVAlm3vWEagAOAiBCshhbamWCdm/j1/SIHpRAXAgAhWQw9q6t53JpREq\nelEBcCICFZDDklN+xTkUqMqCflmW1MAIFQAHIVABOawtEpPHbcnryZ2PssftUlnAzwgVAEfJnd/C\nAA7Q1hFTod8jy7IyXcoRqSwtUGMoqngikelSACAtCFRAjoonEuqIxlVckDsL0pMGlRQoYYwaQ5FM\nlwIAaUGgAnJUe0dXp/FcWpCelGzu2dBCoALgDAQqIEe1Rbqu8CvMoS7pScleVLROAOAUBCogR7Xm\n4BV+SZU09wTgMAQqIEe152CX9KRKmnsCcBgCFZCjWnM4UA1iPz8ADkOgAnJULm47k+T3uRUo9NKL\nCoBjEKiAHNXa3inLkgr87kyX0icVJX7VN3fIGJPpUgDANgIVkKNaOzpVXOCVK8eaeiZVlRUqGkuo\npTWa6VIAwDYCFZCDOmNxtUfiChTm3nRf0uCyQknSnqb2DFcCAPYRqIAcVN/dELO4MPcWpCdVlXcH\nqkYCFYDcR6ACclCy3UAuj1BVdY9Q1TJCBcABCFRADkpeHZfLgYopPwBOQqACclBdc1cIycWNkZMq\nSvxyuyzVMuUHwAF6tQBj5cqV+vGPf6xnnnlGmzdv1rx582RZlsaNG6f58+fL5XJpyZIlWrx4sTwe\nj2655RZNnz69v2sH8lY2Tvkte2/7ET+mqMCj7XWtqceed/KIdJcFAAPisCNUv/jFL3TPPfcoEula\nBPvAAw9ozpw5+vWvfy1jjJYuXara2lo988wzWrx4sZ5++mk98sgjika5FBroL3XNHbKUm13S9xUs\n8qojGldnLJHpUgDAlsMGqlGjRmnRokWpr9euXaspU6ZIks455xy9/vrrWrVqlSZPniyfz6dgMKhR\no0appqam/6oG8lx9S4eKCjxyuXKzB1VSsMgnSQq18R8wALntsIFqxowZ8nj2/i/YGCOru5FgcXGx\nQqGQwuGwgsFg6j7FxcUKh8P9UC6AWDyhxlBExVk03ddXwe7XEGrrzHAlAGDPEc8XuFx7M1hra6tK\nSkoUCATU2tq63/f3DViHUl5eJI8nN7fNSJeqqsOfJ/RePpzPXfWtMkYqCxYoGCjo1+fq7+NXVRZL\nqlU0bhQMFDj+5+f01zfQOJ/pxfm054gD1YQJE7R8+XKdccYZevXVV3XmmWdq0qRJevTRRxWJRBSN\nRrVhwwZVV1cf9liNjW19KtopqqqCqq0NZboMx8iX87l+c6Mkye91KRTuv82Fg4GCfj2+JHm6Zyzr\nm9oUCnc4+ueXL+/PgcL5TC/OZ+/0FDqPOFDdeeed+v73v69HHnlExxxzjGbMmCG3263Zs2dr1qxZ\nMsZo7ty58vv9tooGcHCpK/xyfEG6tPcqRab8AOS6Xv1GHjlypJYsWSJJGjNmjJ599tkD7jNz5kzN\nnDkzvdUBOECqB5UD1lB5PS4V+t0EKgA5j8aeQI5xQpf0fQUKfWrt6FQiYTJdCgD0GYEKyDHJKb9c\n3hh5X8Eir4yRwu2MUgHIXQQqIMfUNXeoNOCT2+WMj2+wiHVUAHKfM34jA3kikTBqDEU0qLR/2xkM\npFRzz3aaewLIXQQqIIc0hSOKJ4wqS5wUqLpGqMKMUAHIYQQqIIfUda+fGlRamOFK0ocpPwBOQKAC\nckhyQXqlg6b8/F63vG4X+/kByGkEKiCHJHtQOWkNlWVZChR5FW7vlDG0TgCQmwhUQA5J9qBy0hoq\nqWvaLxY3amlllApAbiJQATmkzoFTftLedVR7mtozXAkA9A2BCsgh9c0dChZ55fe6M11KWgULu1on\n7GkkUAHITQQqIEckjFF9S4ej1k8lBbpHqGoZoQKQowhUQI5oaY0qFndWD6okpvwA5DoCFZAjnLp+\nSpKKC7yyLKmWKT8AOYpABeSIegc29UxyuSwFCr2MUAHIWQQqIEcke1A5ccpPkkqKfAq1daqtg47p\nAHIPgQrIEfUtEUnOauq5r9JA15V+O+rbMlwJABw5AhWQI+q6p8OcuIZKkkqLuwLVzrrWDFcCAEeO\nQAXkiF0NbSot9qnQ78l0Kf2ipHuEaicjVAByEIEKyAHRzrjqmzs0tKIo06X0m9JivyRpRz0jVABy\nD4EKyAG7G9tlJA2rdG6gKvC5FSzyahcjVAByEIEKyAG7GrpChpNHqCRpWGWxapvb1RmLZ7oUADgi\nBCogB+zsngYb6uARKkkaXlkkY6RdDfSjApBbCFRADkiNUFUWZ7iS/jWs+/XtZB0VgBxDoAJywK76\nNnncLg1yaFPPpGGDukbgdtA6AUCOIVABWc4Yo50NbRpSXiiXy8p0Of1qeGqEioXpAHILgQrIck3h\nqCLRuOPXT0lSedAvv9fNlB+AnEOgArJcvlzhJ0mWZWloZZF2NbQrkTCZLgcAeo1ABWS5fApUUteV\nfrF4IrUZNADkAgIVkOWS01/DHH6FX1LydbJJMoBcQqACsly+jVDROgFALiJQAVluV32bSop9Kipw\n5qbInzS8u3XCzjpGqADkDgIVkMWSmyIPy5PRKUmqKiuU22UxQgUgpxCogCy2p3tT5HxomZDkcbs0\nuLxQO+rbZAxX+gHIDQQqIIvl2/qppOGVxWqPxNTcGs10KQDQKwQqIIvtvcIvvwJVckRuJ1vQAMgR\nBCogi+XzCJUk7WxgYTqA3ECgArLYroY2edyWBpUWZrqUATWMK/0A5BgCFZCljDHa1dCmweVFjt8U\n+ZOGVSSbezLlByA3EKiALNXcGlV7JJ5XLROS/D63Kkv8tE4AkDMIVECW2tW99Uo+tUzY14iqgJrC\nUYXbOzNdCgAcFoEKyFL5uiA96ajBAUnS5t2hDFcCAIeXH3tZIO8te297Wo5z3skj0nKc3tiZ5yNU\no4cEJUlbd4c18eiKDFcDAD1jhArIUjvqwpKUl2uoJGnUkK4Rqi2MUAHIAQQqIAsZY7RpV0iDywtV\nVODNdDkZMaisUAU+N1N+AHICgQrIQnua2tXaEdMxw0oyXUrGuCxLowYHtKuhTZHOeKbLAYAeEaiA\nLLRxR4sk6eg8DlSSNGpIUMZI22rDmS4FAHpEoAKy0Mc7uwJVPo9QSV2BSpK27CZQAchuBCogC23c\n2dI15dW9MDtfsTAdQK4gUAFZJhZPaPOusEYOLpbP6850ORk1fFCx3C6LQAUg6xGogCyzvbZVsXgi\n76f7JMnjdmlEVbG21bYqnkhkuhwAOCQCFZBlkuunxhCoJHWto+qMJVJb8QBANiJQAVlmYzJQDSdQ\nSXs7prMwHUA2I1ABWWbjzhb5vW4NryzOdClZgT39AOQCAhWQRdojMe2obdXRQ4NyuaxMl5MVjhoc\nkCWu9AOQ3QhUQBbZsjskI6b79lXo92hweaG27gnLGJPpcgDgoAhUQBahoefBjRoSVGtHTPUtHZku\nBQAOikAFZJG9W84EM1xJdtnb4JOF6QCyE4EKyCIbd7aopMirypKCTJeSVfZuQcM6KgDZiUAFZInm\n1qjqWyIaM6xElsWC9H2xpx+AbEegArIE/acOrbTYp9KAj9YJALIWgQrIEsn1UyxIP7gxQ0vUGIqo\nMRTJdCkAcAACFZAl1m1plCXpaALVQY0dWSpJ+mh7c4YrAYADEaiALNAUjujDbc0aN7JUgUJvpsvJ\nSmNHdAWqD7c1ZbgSADgQgQrIAu+sr5WRdOr4wZkuJWsdPTQot8vSR9sYoQKQfQhUQBZ4q2aPJOnU\n6qoMV5K9fF63jh4a1JbdYUWi8UyXAwD7IVABGdbSGtW6rU0aO6JUFfSf6tHYkaVKGJO6IhIAsgWB\nCsiwd9bXyhjptOMYnTqcsSPKJEkfsjAdQJYhUAEZ9ta67um+41g/dTipK/1YRwUgyxCogAwKtUVV\ns7lJY4aVqLKU6b7DKS32aXBZoTZsb1bCmEyXAwApBCogg979sE4JY3TaeKb7emvsyFK1RWLaUdea\n6VIAIIVABWRQ8uq+05ju6zWm/QBkI0+mCwCyUUtrVKs/rldDS0SVJQWqKi/UkPJCGWPStnFxuL1T\nH2xu1OihQVWVFablmPlg3Ii9HdPPmzwiw9UAQBcCFbCPUFtUqzbU6+MdLTJGsiypMRRJbXfy91U7\ndf1nj9fxo8ttP9d7H9YpnjBc3XeEhg0qVpHfwwgVgKxCoAK6fbCpUW+t2yNjpNKATycdW6lRQ4Jq\nCke0p6ldexratWV3WD/+zbu66MzRumzaGHncfZs1jycSWvr2NklM9x0pl2Xp2BGlWv1xvZpboyot\n9mW6JAAgUAGStLuhTW/V7FGB363Txg/W6KFBubqn9ipKClRRUqDxo8p11OCA/vWltfrjm5v1/qYG\n3fT5iRpSUXTEz/enf2zV5t0hnTVxaJ8en+/GjuwKVB9ta6LdBICswKJ05L2OaEyvrtwpWdK5Jw/X\nmGElqTD1SccOL9W910/R1BOGatOukO795Qq9u772iJ5vZ32rXvzbRpUU+3TNP41Lx0vIO+NSGyUz\n7QcgOxCokNeMMXpt1S61R2I6edwgDS4//GhRod+jGy+eoK9fMkHGGC16YbV+9/ommV70RUoYo3//\nnxrF4gl9+YJqBQq96XgZeWfM8JKujZLpmA4gSxCokNfWbmrU9rpWDR9UpBPGVBzRY8+cOFR3f/lU\nVZb49eKrH+upl9Yq0tnzpr1/eXubPtrWrNOOq9Jp45mq6iu/161RQ4LavCuk9kgs0+UAAIEK+au2\nqV3vrq9Vod+tqScO61M7hFFDgvr+V07X2JGl+scHe/TD/3hL731Ud9DRqj1N7XrulQ0qLvDoS585\nLh0vIa9NHFOueMKoZktjpksBABalIz8ZY7Tig64r+qZNGq5Cf98/CiXFPn336sn6zZ/Xa9l7O/TY\nc6s0siqgz501WsePLtfKDXV6e12t3t/UoFjc6CszxnNlWhqcMKZSv399s9ZsbNDkcbSeAJBZBCrk\npd0N7apr7tBRgwMaWmn/Kjuvx6VrLxyvT586Un98c7OWv79bT720dr/7HDU4oE9NGqYzJw6x/XyQ\njhleogKfW2s+rs90KQBAoEJ+WrOxQZJ0wjFHtm7qcEZWBfT1SybqsmnH6P+Wb9HO+ladeEylTjmu\nSkN6seAdvedxuzTh6Aq9s75WuxvbOL8AMopAhbzT0NKhHXWtGlJe2G9bvgwuK9TsGayT6m8njOkK\nVGs+btCQUwlUADKHRenIO2u7R6cmpnl0CgMveWVm8mcKAJlCoEJeCbd1atOukMoCPo0YVJzpcmDT\noLJCDa0o0gebGxWLJzJdDoA8RqBCXlm7qUHGdK2d6kubBGSfE8ZUKNIZp2s6gIwiUCFvdERj+mhb\ns4oLPDp6aEmmy0GaJC8sWLORq/0AZA6BCnlj3ZYmxRNGE8ZUyOVidMopjjuqXB63pbUfs44KQOYQ\nqJAXjDHasL1FHrelsd0b68IZ/D63qo8q05Y9YTWHI5kuB0CeIlAhL9Q2tSvc3qlRQ4LyenjbO80J\nYyol7e0vBgADrc99qC6//HIFAgFJ0siRI3XzzTdr3rx5sixL48aN0/z58+Vy8YcL2eHjHSFJXd21\n4TwnjKnQkr92tU+YeuKwTJcDIA/1KVBFIhEZY/TMM8+kvnfzzTdrzpw5OuOMM/SDH/xAS5cu1QUX\nXJC2QoG+isUT2rwrpAKfW0MraP7oRCOqilUW8GnNxgbFEwm5+c8cgAHWp0BVU1Oj9vZ23XDDDYrF\nYrr99tu1du1aTZkyRZJ0zjnn6LXXXiNQISus2digSGdcx48uZzF6llv23vY+P3ZweZHWb23Skr9+\npGvOr05jVQBweH0KVAUFBbrxxht11VVXadOmTfra174mY0yqr09xcbFCoVBaCwX66s21uyRJY5ju\nc7Sjhwa1fmuTNu/idw+AgdenQDVmzBiNHj1almVpzJgxKisr09q1a1O3t7a2qqTk8H+8ysuL5PG4\n+1KCY1RVBTNdgqN88ny2dXTqvY/qVRbw6+jhpbabeWbTzysYKHDEc6RLcbFfhat2asvusCoqiuV2\nZ9+0Xza9f5yA85lenE97+hSonnvuOa1fv1733nuvdu/erXA4rKlTp2r58uU644wz9Oqrr+rMM888\n7HEaG9v68vSOUVUVVG0t/5tOl4Odz9dW71S0M67jR5cp3Gr/kvps+nmFwh39evxgoKDfnyPdRg0J\naN2WJv3tna2aeHR27dXI5z29OJ/pxfnsnZ5CZ5/+C3fllVcqFArpmmuu0dy5c7Vw4UJ973vf06JF\ni/TFL35RnZ2dmjFjRp8LBtLlzfd3S5LGDGO6Lx8cPbTrl92KD/ZkuBIA+aZPI1Q+n08/+clPDvj+\ns88+a7sgIF2awxG9v6lBxwwvUUmxL9PlYABUlReq0O/WO+tr9eXPVMuThdN+AJyJ3zZwrOUf7JEx\n0pkThmS6FAwQl2Vp1JCgwu2dqtnSmOlyAOQRAhUc6611e2RZ0unHE6jyCdN+ADKBQAVHammNasO2\nZo0dUapSpvvyyuDyQpUGfHpnfa1i8USmywGQJwhUcKSVH9XJSJo8rirTpWCAWZal048brNaOmD7Y\nzLQfgIFBoIIjvfthnSRp8rhBGa4EmXD68YMlMe0HYOAQqOA4kc643t/UoGGVRRrC3n156dgRpSoP\n+vX2+lpFOuOZLgdAHuhT2wQgm72/sUHRWCKrp/vs7FmHw3t15Q6NrCrW6o8b9Oyf1unYEaV9Os55\nJ49Ic2UAnIoRKjgO032QpLEju0LU+q1NGa4EQD4gUMFREgmjlRvqVFrsYzPkPBcs8mn4oCLVNnWo\nMWR/2yEA6AmBCo7y0fZmhdo6ddLYQXLZ3AgZua/6qDJJ0oeMUgHoZwQqOMq7H9ZKkk6pZroP0siq\ngAr9bm3Y0UJPKgD9ikAFxzDG6N0P6+T3unX86PJMl4Ms4HJZGjuiVJ2xhDbvCmW6HAAORqCCY2zd\nHdKexnadcEyFvB53pstBlhjXPe3H4nQA/YlABcdYvnaXJK7uw/4ChV6NGFTM4nQA/YpABcdY8f5u\nWZY06VgCFfY37ihaKADoXwQqOEKoLaqazQ0aO6JUgUJvpstBlulanO7RxztaFKVzOoB+QKCCI6z5\nuEHGSJOOrcx0KchCLpel40eXqTOW0LotjFIBSD8CFRxh5Yau7ugnMd2HQ6geVSavx6UPNjfSQgFA\n2hGokPPiiYTWfNygqvJCjagqznQ5yFI+j1vjR5WpIxrXR9uaM10OAIdhc2RkvcNtJLy7oU1tkZiO\nGVGqV1buyGgtyG7HH12u9zc1au3GBlUfVSaXi276ANKDESrkvG21rZKk0cPYuw89K/B5NO6oUrV2\nxLRxZ0umywHgIAQq5LzttWG5XZZGVAUyXQpywMSjK2RZ0uqPG5QwJtPlAHAIAhVyWritU03hqIZW\nFsnr4e2Mwysu9OrY4aVqaY1q6+5wpssB4BD8BUJO21bb9QdxJIvRcQQmjqmQJK3+uF6GUSoAaUCg\nQk7b3r1+iuk+HInSgE9jhgXV0BLRxztYSwXAPgIVclZnLKGdDW0qC/jojo4jNrm6Sm6XpXfX16kz\nRl8qAPYQqJCzdjW0KZEwGsnoFPogUOjVhKPL1RaJae3GhkyXAyDHEaiQs7Z3r58aMZj1U+ibE46p\nVKHfrbUbG9Ta0ZnpcgDkMAIVcpIxRlv3tMrvdauqtDDT5SBHeT0uTR5XpXjC6N31dZkuB0AOI1Ah\nJzW0RNQeiWlEVTHdrmHLsSNKVFHi18c7WlTb1J7pcgDkKAIVctLWPV3TfUcNZv0U7LEsS6ePHyxJ\nWvHBHpp9AugTAhVy0tY9YbksS8MHsX4K9g2pKNLRw4Kqa+7Qmo9ZoA7gyBGokHPC7Z1qDEXojo60\nOuP4ISrye7TyozrVMfUH4Ajx1wg5Z1tquo/RKaSP3+fWpyYNkzHS31btpDcVgCNCoELO2bvdDOun\nkF5DK4s0cUy5Qm2dWlGzJ9PlAMghBCrklGgsrl31baoo8auY7ujoByePG6SKEr8+2tast9cRqgD0\nDoEKOWVnXZsShtEp9B+3y6VPTRomt8vS//vjB9q8K5TpkgDkAAIVcgrtEjAQygJ+nX3iUHVE4vrJ\nb9/T9rrWTJcEIMsRqJAzEgmjbbVhFfk9qijxZ7ocONyYYSX6ykXjFW7v1I8Xv6s9jW2ZLglAFiNQ\nIWfUNrUr2pnQyMEBWRbd0dH/zjlpuK4+f5yaw1E9/Jv31NDSkemSAGQpAhVyBtN9yITPnH6ULps2\nRvUtHXrwP9/Rhh3NmS4JQBYiUCEnGGO0eVdIXo9LQyvZDBkD65Kzj+4KVc0deuCZd/S71zcpkWCL\nGgB7EaiQE+qaOtTaEdOowQG5XbxtMbAsy9Lnp47Rd6+ZrNKATy+++rEe+s27qm9mChBAF/4yISds\n3DUqgnQAABjcSURBVNUiSTp6WDDDlSCfjR9drn++YYpOra7S+q1Nuutf39Qv/6dGO+u5ChDId55M\nFwAcTqJ7us/ndWlYJdvNILMChV594/IT9PqaXfrda5v06sodenXlDp10bKWmnzJSx48uk9fjznSZ\nAAYYgQpZb09ju9ojcY0dWSqXi6v7kHmWZWnqicN01sShevfDOv3fP7Zo5YZ6rdxQL5/XpQmjKzTp\n2EpNHFOhQaUFXJUK5AECFbLepp1dnaqPHsp0H7KLy2Xp1OOqdOpxVdqwvVkravZo1YZ6vfdRnd77\nqE6SVBbwaeyIUp103BANLfNr9JCgPG5WWwBOQ6BCVosnEtqyO6QCn1tDK4oyXQ5wSMeOKNWxI0p1\n9fnjtKexTas21Gvd1iZ9tK1Zb62r1VvraiVJXo9LY4YGdezIUo39/+3deXCT550H8O8r6dV92pJ8\nyzYGAjYQ7gABmhQIaeolWwilJcv+sU0m6W7T6THTdDqlzQyZlP2jx7QwzbRNurM7mSG0TZspzULI\nEgIUYgMJh20MxCc+JZ86ret99w/ZCk4wJbZsyfb3M6PB9vu+0vP+eGz99JzD15j16jSXnogmigkV\nZbT61gEMReKYX2Rldx9NG06bHptX6rF5ZRFkWUbP4BDc3jA+qO9GQ9sgbrYP4kbbx+tZ5WTpMbfA\njLkFFswttCIvWw8FuwmJphUmVJTRquu6AXB2H01fgiDAYdWhfJ4TFS4rACAUjqGx04uGtkF81D6I\nho5B/P1qF/5+tQsAoNeoUFZgQWmeCYUOIwocBjhtOi4ZQpTBmFBRxorFJXxwwwOdRgmnjYt50syh\n06hQUZKFipIsAIl9Kjt6AviofTD5uNrYi6uNvclrVEoBedkGFDgMKLAbUOAwotBuQJZFy9YsogzA\nhIoyVl1zHwJDMSwotvINg2Y0hUJAodOIQqcRDy0rAAB4AxG0un1o9wQSjx4/2nsCyS2YRmjUykSC\nZTdgboEFy+Y7YNSJ6bgNolmNCRVlrHO1w919ueY0l4Ro6pkNaiwqzcai0uzkzyRZRs9ACO2eANp6\nAmj3JJKsli4fGju8OH2lE/997DoWFNuwaoETK+5zwKBlckU0FZhQUUbyBiK4UO9GXrYeDqs23cUh\nyggKQYDTpofTpsey+Y7kz2NxCV29QVxt7MX5ejdqm/pQ29SHQ/93E4+udmHLqiLoNPxzTzSZ+BtG\nGen0lQ7EJRkPLyvgoohE/4BKqUh2GX5hTTHcAyFU13Xj+IVb+MuZJrxzsQ2Va4vx8PICruJONEk4\nZYQyjiTJOPlhB9SiAusW5aW7OETTjtOqQ+W6Eux/Zi2+tKEUcUnCoRMfYe8r1Wjs8Ka7eEQzEhMq\nyjhXGnvR6x3CmvJc6LVsRCUaL51GhX96sBT/+ew6bFlZBE9/CC/9z0X89WwzJElOd/GIZhS+W1HG\nefeDdgDA55cXpLkkNNudvNSesucyGbXw+YdS9nyfVZ5dj82rCvH3K13486lGnL3aiQeX5I17RuBD\nS/n7SXQ7tlBRRnEPhFDT2IuyAjNcOVzMkyiV8rINqHywBK4cI7r7Q/jb2RZ09wXTXSyiGYEJFWWU\n9z5shwzg4WX89Es0GbRqJT63NB8PlOcgEovj+PlbuNk2kO5iEU17TKgoY0RjcZy+0gmjTsSqBc50\nF4doxhIEAfe5rNiysggqlQLnarpxod4NSea4KqLxYkJFGeN8vRv+UBQbluRxajfRFMjN1uOxNcWw\nGNSoa+7Hux+0IxKLp7tYRNMSEyrKCLG4hL+ebYFCEPA5dvcRTRmzQY0vrHEh365HuyeAo++3wheM\npLtYRNMOEyrKCKcvd6C7L4iNS/PhtHIjZKKppBaV+PzyQiwotmLAH8Fb51o5WJ3oM2JCRWkXCsfw\n5pkmaNRKPL6+NN3FIZqVFAoBqxfmYM1tg9Vv3BqAzHFVRPeECRWl3f9WtcIbjOILD7hgMajTXRyi\nWW3+bYPV36/txunLnYhEOa6K6B9hQkVp1e8L4+3qVliMamxd5Up3cYgIicHqletK4LBq0dzlw5Gz\nLfD0h9JdLKKMxoSK0uovpxsRiUn40oY50Kg5s48oUxh1IraudmFJWTb8oSiOVrfiw5s9iMakdBeN\nKCMxoaK0afP4ceZqJwrsBqxfzE2QiTKNQiFg6Tw7HlldBJ1GhasNvfjzqUZcb+1HLM7Eiuh2TKgo\nLcKROH53pA6yDOx8uAwKhZDuIhHRGHKz9Hh8fSmWlGUjFpdQVefG3t9V4cyVToTCsXQXjygjcHNk\n+pRUbQg71uapsizjlbeuobXbj43352HxnOyUvB4RTR5RpcDSeXbc57LiSkMvbtwawKtvXcN/Ha1H\nocOA0jwz8u0GiKqp+Zx++2bT3KiZMgETKppyfz3bjAv1bswrtOBfHrkPgsDWKaLpQqdR4YHyHJSX\n2NDU4UVTpw+t3X60dvshADAb1cg2a5Ft1sJqUsOoE2HQimyFphmPCRVNqYvXPfjL6SZkmzX4jy8t\nhkrJXmei6cikV2PJXDsWl2VjwB9GU6cP7v4Q+rxDGPRH0NjhTZ4rCIBBK8KoG37oE/9aDGpYjWoo\n+XeAZgAmVDRlmjq9+N2ROqhFBZ7bsQRmrjlFNO0JggCbSQubSQsAkGQZvkAEvd4wvIEI/KEofMEo\n/KEouu6w+rogAGa9GjaTBnaLFjlZetjMGijYck3TDBMqmnSSJONYdSveONWIuCTj3/95EVw5pnQX\ni4gmgUIQYDFqYDFqPnUsFpcQCEWTSdZgIII+bxgDvjAGAxE0d/kAJMZrOW065GcbUOg0wKTnhy/K\nfEyoaFJ5BkJ45UgdbrQNwmxQ498eW4AlZfZ0F4uI0kClVNwx2ZJlGf5QFJ6BELr6QujuC6LdE0C7\nJ4Dz9YDVqEahwwhXjhHZFi3HXVJGYkJFKSdJMtwDIbx+4iZOXupAOBLHivsc+Net9/GTJhF9iiAI\nMOnVMOnVmJNvAQAEhqJo9wTQ5vajszeImqY+1DT1wagTUZJnQsUcO9RKMLmijMGEigAkPiH6QlH0\nDAyh3eNHOCohHI0jFpMgKAQohERTvkIhDP/78R+yaExCNCYhEpPgC0TQ0RNAZHg1Zb1GhacqF2Jt\nRS7/8BHRPTNoRcwvsmJ+kRWxuITO3iCaO7245fajprEPNY19sBjUKMkz4b4iK/KyDekuMs1yTKhm\noXAkjla3D02dPtzq9qGrL4iuviACQ6lZoM+gVaE034zH1hRjgcsKUcUtZYho/FRKBYqcRhQ5jYjF\npUTLlSeA5k4vLn/Ui8sf9cLlNGJ1eQ5WL3DCbtWlu8g0CzGhmuGiMQltHj+aOxPrxTR3edHeE4As\nf3yOUiHAYdVhXqEVTpsOnoEQNKISarUSolKALCdm7kiSDEnG8L+J74HEAFK1qISoUkCnVsFsECEI\nAhfsJKKUUykVKM41YdFcB/oGgrjl9sMXiKCmqQ9/PNmAP55sQFm+GasX5mDVQiesdxgcTzQZmFDN\nIIOBCNrcftxy+9Hm8aPN7UdHbwCx+MfZk1pUYG6BBSW5ZpTmmVCca4LDqhu1HlSqVkonIppMokqB\nOflmPLS0AP5QFB/c8KD6WjeutfSjocOLQyduorwkC+sqcrFsvh1aNd/yaPKwdk1DkWgcnb3BRNI0\nnDjdcvvhDUZHnadWJZrJS3LNKMkzoTTPjLxsPZQKLqJHRDOLUSdi4/352Hh/PgYDEVyod+NcbRdq\nm/pQ29QHjajE8vl2rF2Ui/LiLK7cTiknyPLtnT9Ty+PxpeulM4LDYUrG4E6tQiNTift9YfT7Emu1\n9Psj8AUi+OR/mlEnwmrSwGbSIGv4X6NenFWL492+txdNHOOZWoxnat1rPL2BxKrtjR1e+EOJD506\njRKleWbMyTcjy6xNnptJewJOdU/B3eKZSXFJN4dj7DUU2UKVQSRJRq93CO7+UPIRjsZHnSOqFHDY\ndLAaNbCZ1IkkyqiBWuTAbyKiTzIb1Fg6z47752bDMzCExo5BNHf5UNfcj7rmfmSZNSjLt6A0n4sN\n08QwoUozXzCCq429OHWpY9RyA0Bitlye3YQskyaZOOm1Ki4/QET0GQmCAKdNB6dNh1ULnWj3BNDQ\n7kWbx4/z9W5cvO5GQ7sXDy7Ow+I5WRwaQZ8ZE6o0GIrE8MENDy5cv4rLNz3J7juDVoWSPBNysvRw\nWnUw6MS0lpOIaCZSKhRw5ZjgyjEhFI6hqcOLj9oHcfG6Bxeve2AxqLF2US7WVuSi0GHgh1i6J0yo\npogkyahv7cfZmi5cvO5JduWV5ZuxbL4D4WgcVqOav7hERFNIp1GhvDQLC0tsKM0z48yVTlTVdeNo\nVSuOVrUiL1uPVQucWL0wB/l2Lh5KY+Og9EnW3hPA2ZpOvF/bjX5fGABgt2ixblEuvrixDOJw+LlU\nwcRx0G9qMZ6pxXim1mTEc2TwdTQm4fJHPai61o0rDb2IDg/FcNp0WFhsw8JiGxa4bDAbxreVliTL\nGPRH4BkIjXp4AxH4QzH4Q1F4AxFIw+8PI5+zVUpFYo1AMbH2n0ZUQj28DqBaHDk2/LVKCYVCGF5z\nUIYMIBaXEY3FEztbRKXhXS7iiaEmgoBAKJr4PiohGpcgDL+mw6qDRlTCatLAadUhZ7jrNCdLP2rJ\nndmAg9KnmDcQQdW1bpyt6ULL8O7pOo0KG+/Px7pFuZhXaIEgCHDYjbMiqSQimk5ElQIrFzixcoET\noXAMlxt6cKHeg2stfXjvUgfeu9QBAMg2a5GTlUgscmx6GHUqqJQKKBUClAoFhqIx+IJR+INR+EJR\n9HmHhpOnIcTi0h1fWy0qYNSJiVnaCgG4PSGKSRiKxOENRjCZTSGCkIgBZCAWl9AzeOfEVa1SoDTP\njLmFFpQVWDCv0AKDdvYOVWFClSIjv3TVdW5cbexFXJKhEATcX5aNdYvzsHRuNrdgISKaZnQaFdaU\n52JNeS7ikoSWLj+utfShvqUfbT2B5GzBe2XUiShyGuCw6pIPu0ULu1UHm1GdfJ+4W6+FLMuIxWWE\no3FEookWpZGvwzEJkUgckVgcw5tZYGQgiUqpgFpUQFQpIKoSrVuiSgG1SgGrRYdoJAZRlUgIbx9+\nsn5xHiLROHq9Ybj7g3D3h9DVF0RTpw83bg3g+q2BxOsIQEmuCeUlWSgvtmFuoWVWve8xoZqA4FAM\nNU29OH/NjSuNHzcLF+easK4iFw+U54y7SZiIiDKLUpFYmX1OvhlfXFsCIDHJyN0fQnd/CKFwDPG4\nhFhcRkySoBGVMOnVMOlEmPQibCYt9NqJv+0KggBRJSRakVI0eeluXagqpQIqpQJ6rYgip3HUseBQ\nDE2dXtxsG0D98Ar1TZ0+/O1cC0SVAvMLLVhYkoXyEhtcTtOMXlA1pQmVJEl44YUXcP36dajVarz4\n4osoLi5O5UukVSwuoaXLh9qmPtQ09aGxw5vs487L1if2jlrg5MBFIqJZQqtWJWcMzkZ6rQoVpVmo\nKM0CNiQSzBu3BpItd7XDDyAxk31hsS2ZYDmtuhk1ESulCdU777yDSCSC119/HZcuXcL+/fvx61//\nOpUvMSVkWYYvGIV7IITOngCau31o7vThltuf7PcWBGBOvhkVJVlYucCJAjun1hIR0eymVauwpMyO\nJWV2AIk9Zq+19KGuuR/Xmvtw4boHF657ACS6P105RricJhTlGJGXrYfdooNhmq63mNKE6uLFi9iw\nYQMAYOnSpaipqUnl049LZ28AgaFYcjZDNCYhEhuZ3SAhEo3DF4zCG4wkHv4I3AMhDEVGr1CuVAgo\ndBpRmmdGebENC0tss3rwHRER0T9iMaiTY9BkWYZ7IJRIrlr60dLlveMYNJ1GBYdFC4tRA5M+0V1q\n1InQqlXD478UEEfGgykT48E0aiUKHIa0breW0oTK7/fDaPy4f1WpVCIWi0GlSs9QrYvXPTj456uf\n6RqNqITDqoXDqkOOTQ+nTYfiXBMKHcZEfzURERF9ZoIgIMeWmBH58LLEEhXBoRhuuRM9QO7+EHoG\nEzMhu/qDaHX7P9PzP/FQGR5bk75hRinNdIxGIwKBQPJ7SZLumkzdbT2HVHjUYcKj6+dM6mtM1EgM\ndm5ZkOaSEBFRpphN7wnFRbZ0FyElUtrksnz5cpw6dQoAcOnSJcyfPz+VT09ERESUkVK6UvrILL8b\nN25AlmW89NJLKCsrS9XTExEREWWktG49Q0RERDQTcJQ1ERER0QQxoSIiIiKaICZURERERBPEhGoS\nDA0N4bnnnsPu3bvx9NNPo6+v71PnHD58GNu3b8eXv/xlvPvuu6OOHT9+HN/97neT31+6dAk7d+7E\nV77yFRw4cGDSy59pxhvPsa47fvw4Nm/ejD179mDPnj2orq6e0vtJF0mS8KMf/Qi7du3Cnj170NLS\nMur4iRMnsGPHDuzatQuHDx++6zUtLS346le/it27d+PHP/4xJEma8vtJt1TGs66uDhs2bEjWybfe\nemvK7yfdxhPPEZcvX8aePXuS37N+pjaerJ/3SKaUe/XVV+Vf/vKXsizL8pEjR+R9+/aNOu52u+XK\nyko5HA7LXq83+bUsy/K+ffvkrVu3yt/61reS52/btk1uaWmRJUmSn3rqKbm2tnbqbiYDjDeeY133\ns5/9TD569OjU3kQGOHbsmPz888/LsizLH374ofzss88mj0UiEXnz5s3ywMCAHA6H5e3bt8sej2fM\na5555hn5/fffl2VZlvfu3Su//fbbU3w36ZfKeB4+fFh+5ZVXpv4mMsh44inLsvyb3/xGrqyslHfu\n3Jk8n/UztfFk/bw3bKGaBLdvwbNx40acO3du1PErV65g2bJlUKvVMJlMcLlcqK+vB5BYy+uFF15I\nnuv3+xGJROByuSAIAtavX4+zZ89O2b1kgvHGc6zramtr8ac//Qm7d+/G/v37EYvFpvaG0uRuW0M1\nNDTA5XLBYrFArVZjxYoVOH/+/JjX1NbWYvXq1QASsZ1tdRJIbTxrampw8uRJPPnkk/jBD34Av/+z\nrRA9E4wnngDgcrnwq1/9atRzsX6mNp6sn/eGCdUE/eEPf0BlZeWoh8/ng8mUWAHdYDDA5/ONusbv\n9yePj5wzUkEfe+yxUZtCfnI7nzs930ySynje/vPbr3vwwQexd+9evPbaawgGgzh06NAU3V16jbU1\n1MixsWJ4p2tkWU7W05leJ8eSynguWbIE3/ve9/Daa6+hqKgIBw8enLobyRDjiScAbN269VM7crB+\npjaerJ/3Jj2b7M0gO3fuxM6dO0f97Bvf+EZyC55AIACz2Tzq+Ce36AkEAqMq9z8695PPN5OkMp63\n//z263bs2JH8etOmTTh27Nik3U8mudvWUPcSw9uvUSgUo86dyXVyLKmM55YtW5Ix3LJlC/bt2zdF\nd5E5xhPPsbB+pjaerJ/3hi1Uk2D58uV47733AACnTp3CihUrRh1fsmQJLl68iHA4DJ/Ph4aGhjG3\n6TEajRBFEa2trZBlGWfOnMHKlSsn/R4yyXjjeafrZFnGtm3b0NXVBQA4d+4cKioqpvaG0uRuW0OV\nlZWhpaUFAwMDiEQiuHDhApYtWzbmNeXl5aiqqgKQiO1sq5NAauP5ta99DVeuXAEwu+rk7cYTz7Gw\nfqY2nqyf94YrpU+CUCiE559/Hh6PB6Io4qc//SkcDgd+//vfw+VyYdOmTTh8+DBef/11yLKMZ555\nBlu3bk1eX1VVhUOHDuHnP/85gMQvw0svvYR4PI7169fj29/+drpuLS3GG8+xrjtz5gx+8YtfQKvV\noqysDD/84Q8himK6b3PS3WlrqLq6OgSDQezatQsnTpzAwYMHIcsyduzYgSeffHLM7aSampqwd+9e\nRKNRzJkzBy+++CKUSmW6b3FKpTKetbW12LdvH0RRhN1ux759+0Z118wG44nniLa2NnznO99JzlZj\n/UxtPFk/7w0TKiIiIqIJYpcfERER0QQxoSIiIiKaICZURERERBPEhIqIiIhogphQEREREU0QEyoi\nmhG+//3v4+WXX8bTTz8NAOjo6MCjjz6K7du3w+fzYfv27Xj88cfR1NSU5pIS0UzEhIqIZgyn04nf\n/va3AIDq6mpUVFTgjTfeQH19PdRqNd58802UlpamuZRENBNxHSoimpZkWcb+/ftx8uRJOJ1OxONx\nPPHEEzhw4AAOHjyIr3/96wgGg9i0aRMuXLiAnp4ePPDAA3j55ZfTXXQimoG4lx8RTUvHjh1DXV0d\njhw5Ap/Ph23btiWPLVy4EN/85jdRXV2Nn/zkJ6iqqsKBAweYTBHRpGGXHxFNS9XV1XjkkUcgiiKy\nsrKwcePGdBeJiGYxJlRENC0JggBJkpLfq1RscCei9GFCRUTT0tq1a3H06FFEIhEMDg7i9OnT6S4S\nEc1i/EhHRNPS5s2bcfXqVVRWVsJut6OsrCzdRSKiWYyz/IiIiIgmiF1+RERERBPEhIqIiIhogphQ\nEREREU0QEyoiIiKiCWJCRURERDRBTKiIiIiIJogJFREREdEEMaEiIiIimqD/ByGdJ8mPqkEAAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.47740581385e-05\n", + "MAE : 0.00256412901334\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean 0.000289\n", + "std 0.003846\n", + "min -0.009856\n", + "25% -0.001409\n", + "50% 0.000065\n", + "75% 0.001438\n", + "max 0.015438\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX) # predict on testset\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.title(\"Predicted close vs actual\")\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences: actual minus predicted')\n", + "plt.show()\n", + "# if predicted minus actual is positive, this is \n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compare the unscaled values and see if the prediction falls within the Low and High\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJuCAYAAAAe1Z9iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjXX/x/H3WWY3M8xi30sUkZL1lpsUWcKUQrc2qbuS\nSinUHTeitCmKqO6KklsmUf2ikiyRNSNrxjDGzJh9P+fMWa7fHzJ304wZmjMz5PV8PDyYc32vz/d7\nXXPO4zHHec/nazIMwxAAAAAAAAAAAAAAAAAArzJX9wIAAAAAAAAAAAAAAACAvyKCOQAAAAAAAAAA\nAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKCOQAAAAAAAAAAAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKC\nOQAAAAAAAAAAAAAAAEAlIJgDAAAAAMBFICEhQZdffrkGDRpU9Ofmm2/Wp59+WuHaDzzwgKKjoyVJ\ngwYNUk5OzhnH5ubm6s477yz6urzxVS0jI0Nt27bVc889d1bj/3g9f8aECRP07rvvlnosLy9Po0aN\nkt1uL3NcddqzZ4969epV4vGEhAS1b9++1HOWLFmiBQsWlFn3p59+0oABA7yyxj87z/l4z5955hn9\n+OOPf/r8F154QT/99JMXVwQAAAAAAMpire4FAAAAAACAquHv76/PP/+86OuTJ09qwIABatOmjVq1\nauWVOX5fvzTZ2dnas2fPWY+vasuXL9f111+vL7/8UuPGjVPNmjXLHP/H6/G2l19+WUOHDpW/v3+l\nzVEdhg8fXt1LuGA9//zzFTr/4Ycf1ogRI7Rs2bK/3PMKAAAAAIDzER1zAAAAAAC4SNWpU0dNmjTR\n0aNHFR0drREjRmjIkCEaOXKkJGnZsmWKiorS4MGDdffddys2NlbSqUDPPffco/79+2v06NFKTU0t\nqtmyZUtlZGRIkt5++2317dtXAwYM0MMPP6zc3FxNnDhRdrtdgwYNktvtLjb+zTffVL9+/TRw4ECN\nHTu2qO7IkSP1yiuv6I477lCvXr00fvx4eTyeYtcSFxenTp06qbCwUJLkdrt13XXX6fDhw1qzZo2G\nDBmiqKgoDR06VNu2bSv1fng8Hi1dulRDhgxRhw4dtHTp0mLHz/V6fn8/PB6Ppk+frqFDh6pfv366\n6aabtGPHjjK/P0lJSVq3bp169+5d4tj27dt12223aeDAgYqKitL69evldrvVuXNnHTt2TJK0YMEC\n9ezZs+ice+65Rz/88EOxOgUFBXrqqad02223qU+fPoqKitKRI0fKve8ff/yx+vTpo1tuuUUff/zx\nGa/B7Xbrueee05AhQ3T99ddr9erVkqQ5c+Zo6tSpkqSYmBhFRUVp4MCBevjhhzVkyJCiji4FBQV6\n/PHHNWjQIPXt21fbt28vMUdZ93b79u269dZbFRUVpaioqKL5/6igoEBjx47VoEGDNHLkSMXFxZUY\nc6bvrSStXbtWQ4cO1eDBgzVs2DDt2rWrxPkJCQnq0aOH7r33XvXp00cpKSnauXNn0esuKipK33//\nfdF9mzlzpm644QZFRUVpypQpRa/LkSNH6uuvv5Ykffvttxo8eLAGDhyo4cOHKyYmpuj+TpgwQaNG\njVLfvn01YsQInTx5UpIUHBys9u3bl3h+AwAAAACAykEwBwAAAACAi9SuXbsUHx+vdu3aSZIOHz6s\nRYsWadGiRdq6datWrFihjz76SCtWrNB9992nRx55RJI0depUtWvXTl9++aWeffbZUkMM3333naKj\no7V06VJ98cUXatiwoRYvXqyZM2cWde6xWCxF45cvX64NGzbo008/1apVq9SiRQtNmDCh6Hh8fLwW\nLVqklStXasuWLdq6dWux+Zo1a6YWLVpo7dq1kqSNGzeqQYMGuvTSSzVr1ixNnjxZ0dHRevTRR8+4\njc+GDRtks9nUtWtXDR48WB999JGcTuefup4/2r17t1JSUrR06VJ99dVXGjJkiBYuXFjm9+e7775T\n586dZbUWb3icmZmpsWPH6plnntGqVav04osvavz48UpMTFTPnj21YcOGoutxOp2Ki4tTbm6u9u/f\nry5duhSrtX79eoWEhOi///2vVq9erTZt2uijjz4q877v379fc+fO1eLFi7V8+XL5+Pic8RocDoe6\ndeumzz77TBMmTNBLL71U7LjL5dIjjzyiRx99VKtWrdLIkSO1f//+ouPJycm6++679fnnn2vYsGGa\nM2fOOd3bOXPm6J577lF0dLRmzJihLVu2lLrOpKSkonkGDBigp5566ozX9EdHjx7Va6+9pgULFmjF\nihWaNm2aHnnkERUUFJQYm5ycrIceekirV6+Wn5+fJk6cqFmzZumzzz7TvHnzNGXKFCUmJmrZsmXa\nu3evvvjiC33yySc6fvx4iVqxsbGaPHmy5syZo1WrVmns2LF66KGHlJeXJ+lUKOn111/X119/rZCQ\nkGJBnF69eumbb74562sEAAAAAAB/HltZAQAAAABwkTjd2UU61ZGjVq1aeumll1SvXj1JpzqA1KhR\nQ5K0bt06HTt2TMOGDSs6Pzs7W1lZWfrxxx/19NNPS5KaNGmiTp06lZhr8+bN6tu3r0JDQyVJEydO\nlHSqa0hp1q9fr6ioKAUGBkqS7rzzTs2fP7+oA07Pnj1lNptVo0YNNWnSRNnZ2SVqDB06VJ999pn6\n9u2r6OhoDR06VJLUv39/jRkzRj169FC3bt00evToUtewZMkSDRw4UFarVddff70mT56sr7/+WgMH\nDjzn6/mj9u3bKzQ0tChk8dNPPykoKKjMc44cOaLGjRuXeDwmJkaNGzcuClS1aNFCV199tbZu3aob\nbrhBn3zyiQYPHqyUlBQNGDBAP/74o0JDQ9W9e3f5+voWq9W3b181atRIixYt0rFjx7R161a1b9++\n6Hhp933fvn3q1q2bIiMjJUm33367Nm7cWOo1+Pj4qE+fPpKkVq1aKT09vdjxQ4cOSZJ69OghSerc\nubNatGhRdLxRo0ZF19mqVSstX768xBxl3dubbrpJU6dO1dq1a9W1a1eNGzeu1HW2bNlSV199tSRp\nyJAhmjJlinJzc0sd+0ebNm1SSkqK7r777qLHTCaT4uPjS2wRZ7VaddVVV0mSfv75Z6Wmpurhhx8u\ndt7Bgwf1ww8/aNCgQfLz85N06h4vWrSoWK0tW7aoc+fOatSokSSpS5cuCgsL0y+//CJJ6tixY9Hr\n+Yorrij2mmnUqFGpgToAAAAAAOB9BHMAAAAAALhInO7scianQzHSqe2BBg0apPHjxxd9nZKSotDQ\nUJlMJhmGUTT2jx1dJMlischkMhV9nZOTo5ycnDPO/ft6p+dzuVzF1n7aH+c/rW/fvpo5c6ZiY2O1\nbds2vfDCC5Kkxx9/XLfeeqs2btyo6OhoLViwQNHR0TKb/9dI+MSJE/rhhx+0d+9erVmzRtKpbi4f\nfPCBBg4ceM7XI6koVCSdCjo9//zzuueee3T99derefPmWrlyZZnnm83mElt2nb43f2QYhlwul7p1\n66Znn31WP/zwgzp16qSuXbtqyZIlCggIUL9+/Uqc9/HHH+u///2v7rjjDg0cOFA1a9YsFjYq7b7/\n8f6X1Sno9910fn//fn/uH7+Xv6/3x/NL+76XdW+HDRumnj17atOmTdqwYYPmzp2rlStXKjg4uFiN\n3z8XTs9V2vP6tN9/bz0ej7p06aLZs2cXPZaUlKTatWuXOM/X17eortvt1iWXXKJly5YVHT958qTC\nwsIUHR1d5vqkkq+Z04+dft2U9ZrxeDyl1gQAAAAAAN7HO3AAAAAAAFBCt27d9OWXXyolJUXSqW4y\nd911lySpe/fuRdviJCYmlro1VNeuXfXNN98UbaszZ84cvf/++7JarXK73SVCBX/7298UHR1dtP3P\nokWLdO2115bo8FIWPz8/9e/fXxMmTNCNN96ogIAAuVwu9erVSwUFBRo+fLgmT56s2NjYYqEfSVq6\ndKmuueYabdiwQWvXrtXatWsVHR2tffv2aceOHWd9PWFhYdqzZ48kFdsqaNOmTerZs6dGjBihK6+8\nUt9++63cbneZ19O0adNStzBq166d4uLiFBMTI0n69ddftW3bNnXs2FF+fn669tprNXfuXHXr1k0d\nO3bUzz//rO3bt6t79+4lam3cuFFDhgzR0KFD1axZM61du7bcdXXt2lWbNm1ScnKyJOmzzz4rc3xZ\nLrnkEvn6+mr9+vWSTnUDOnToUKkhnjMp694OGzZM+/fvV1RUlKZNm6acnJxSuy0dPHiwaAut08+F\ngICAYmPO9L3t3LmzNm3apNjYWEnSDz/8oJtvvlkOh6PMdV911VU6duyYtm3bJknav3+/+vTpo5SU\nFPXo0UMrV65UYWGhXC5Xqff49LynnyObN29WUlJSUYehshw/flzNmzcvdxwAAAAAAKg4OuYAAAAA\nAIASunfvrtGjR+vee++VyWRSjRo1NHfuXJlMJk2ePFkTJ07UTTfdpLp165bYrkc6tTXR4cOHNXz4\ncEnSpZdeqmnTpikgIEBXXHGFbrrpJi1ZsqRo/K233qqkpCQNHTpUHo9HTZo00csvv3zO6x46dKgW\nL16sKVOmSDrVzWfSpEl68sknZbVaZTKZNGPGjGKBn8LCQn366aeaMWNGsVpNmzZV//799cEHH+iN\nN944q+t59tlnNXXqVIWEhKhr165F2z0NGzZMTz75ZFH3nQ4dOmjNmjWldr85rXfv3nrnnXfkdruL\ndZEJCwvT66+/rmnTpslut8tkMmnmzJlq1qyZJOmGG27QmjVr1LlzZ/n7+6tVq1YKDQ0t2hbp9+69\n914999xzio6OlsViUevWrYu2lzqTli1bavz48brrrrsUFBSktm3bljm+LFarVXPmzNHkyZP16quv\nqmnTpoqIiJC/v79sNttZ1Sjr3j755JOaMWOGZs+eLbPZrDFjxqhhw4YlajRv3lxz587V8ePHFR4e\nXtRt6ffO9L1t0aKFpk6dqnHjxskwDFmtVs2bN69YB6rShIWF6Y033tCsWbPkcDhkGIZmzZqlBg0a\nKCoqSnFxcRo8eLACAwPVsGHDEkGhSy+9VJMnT9aYMWPkdrvl7++v+fPnl+gGVJoNGzaob9++5Y4D\nAAAAAAAVZzJK63sLAAAAAACAavevf/1LXbp0KXUbqr+KF198UaNGjVJERISSkpI0aNAgffvttwoJ\nCanupVWbjRs3Kj09XYMGDZIkTZ8+XX5+fkVby1VEbm6uhg8fruXLl5ca1gIAAAAAAN5FMAcAAAAA\nAOA8lZOTo7Fjx2r+/Pny9/ev7uVUisWLF+uTTz6R1WqVYRh6+OGHdeONN1b3sqrVyZMnNWHCBKWn\np8vtdqtVq1aaMmXKWXXDKc/MmTPVo0cPde3a1QsrBQAAAAAA5SGYAwAAAAAAAAAAAAAAAFQCc3Uv\nAAAAAAAAAAAAAAAAAPgrIpgDAAAAAAAAAAAAAAAAVAJrdS+gLC6XW5mZBdW9DAAAAAAXgVq1Ann/\nAQAAAAAAAAA4Z5GRwWc8dl53zLFaLdW9BAAAAAAXCd5/AAAAAAAAAAC87bwO5gAAAAAAAAAAAAAA\nAAAXKoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMA\nAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAA\nAAAAQCUgmAMAAAAAAAAAAAAAAIBq9dVXqzRv3pxKq79z53ZNnjyxxOOvv/6KkpOTiz127NhRjRlz\nv1fmtXqlCgAAAAAAAAAAAAAAAHCBefTRJyq1PsEcAAAAAAAAAAAAAACAi1jQlGflt2qFV2s6Bg5W\n/pTpZz7usGvGjH8rOTlZTqdTPXteX3RsyZLF+u67NbJYLGrXrr0eemisYmJ+1ty5s2W1WuXv76/p\n01+Ur6+fXnpphhISjsvj8Wj06Ad19dUdzjjn8ePHNW7cGGVnZ2vIkFs0YMBgjRlzv8aPn6SgoBqa\nOvVZGYahsLBwr90HgjkAAAAAAAAAAAAAAACoUitWLFfduvX173/P1PHj8dq8eaPy8vIUG3tYa9d+\no/nz35PFYtEzzzylTZs26Oefd6pXr9667bYR2rhxvXJycrV58/8pNLSmJk58TtnZWXr44fu1ePF/\nzzin2+3Siy++Jo/HrbvuGqFu3XoUHfvww3fVu3cf3XzzEH333Rp99tmnXrlOgjkAAAAAAAAAAAAA\nAAAXsfwp08vsblMZ4uOPqXPnrpKkRo0aa8+eYKWnp+vYsaNq3fpKWa2nIi3t2l2luLhYjRx5jz78\n8D09+uiDioysrSuuaKPY2MOKidmlfft+kXQqeJOVlaWaNWuWOucVV1wpHx8fST5q1qyZkpMTi44d\nPx6vgQOHSJKuvLKd14I5Zq9UAQAAAAAAAAAAAAAAAM5SkybNtH//PknSiRMJevvtN397vKn27ftF\nLpdLhmHo5593qVGjJlqz5iv16zdAc+a8rWbNmmvlymg1adJUvXv30dy5C/TKK2+oZ8/eCgkJOeOc\nv/56UC6XSzabTUePxqlBg4ZFx5o2ba69e2MkqWhd3kDHHAAAAAAAAAAAAAAAAFSpQYOiNHPmVI0Z\nc7/cbrduv/0OZWdn6ZJLLlWvXr314IOjZBiG2rZtp+uu+7v27durF16YroCAAJlMJj311DOKiIjU\niy9O15gx9ys/P09DhgyV2XzmHjW+vr568smxysvL07333q+QkNCiY3fdNUpTpz6rb79do/r1G3jt\nOk2GYRheq1YJUlNzq3sJAAAAAC4CkZHBvP8AAAAAAAAAAJyzyMjgMx6jYw4AAAAAAAAAAAAAAAD+\nEv7zn4XasWNbiccnTZrs1U44Z4uOOQAAAAAgOuYAAAAAAAAAAP6csjrmnHljLQAAAAAAAAAAAAAA\nAAB/GsEcAAAAAAAAAAAAAAAAoBIQzAEAAAAAAAAAAAAAAAAqAcEcAAAAAAAAAAAAAAAAoBIQzAEA\nAAAAAAAAAAAAAMAFafLkidq5c7u2bPlRn38efcZxn38eLZfLdVY1V6z4VO+++7ZX1mf1ShUAAAAA\nAAAAAAAAAACgAmwOl/bGZcjHapa/r0X+vlb5+Vrk72uRn49Ffr4WmU2mUs/t3LlrmbUXLfqP+vbt\nL6u1aqMyBHMAAAAAAAAAAAAAAAAuYlOm+GnVKu9GSAYOdGnKFEeZY776apU2bFingoICZWVl6bob\nh+rLFYsVUbu+LBarBg1/SJ99NEcF+bmSpAG3jlaTppfopw1facuG1aoVFq68nGzlFhRqxecrlJgY\nr4ceHKv3339HGzb8ILfbrcGDb5HValFGRrqmTJmkmTNf0fz5c7V79y55PB7dfvsd6tWrt3bv/lmv\nv/6ygoNDZLFY1Lp1G6/cB4I5AAAAAAAAAAAAAAAAqBY2m02vvfamduw9pimTHpJhePT3vrerfqPm\nWr3iAzVv2U6dut+ktJRERS9+QyPum6C1q1fokUlvyGQ26a0Xxyk2MUdZGTnKTCvQpq27tGXLj1qw\n4H15PB7Nnz9XY8Y8pvfff1dTpszQ5s2blJR0QvPmvSuHw6EHHrhH117bSa+8MlPTp89S48ZN9PLL\nM712fQRzAAAAAAAAAAAAAAAALmJTpjjK7W5TWa666mql5TiU7/ZVQGANpZ48rog6DSRJJxOP6cih\nGO3ZsVGSZCvIVUZakmrXaySrj48kqWGTFkW1XB6PdsQcUFjd5srMK1REaIAeeeTxYvMdOXJYBw8e\n0Jgx9586x+VScnKiMjIy1LhxE0nSlVe2U0LCca9cn9krVQAAAAAAAAAAAAAAAIBztH//fh2Kz1Je\nTpYc9gIF1QiVyWSSJEXUaaCuPW/WfY89r2GjxqvdtX9XeGR9pSQdl7PQIY/HraSEuGL1Ius2VPzR\nXxUTm6Yd+5M15pEHVVhYKJPJLMMw1KRJU7Vv30Fz5y7QG2/MV69evdWgQUNFRkbq6NG439a0z2vX\nR8ccAAAAAAAAAAAAAAAAVDnDMHQi6aQWzH5Gdlu+Bt7+T638ZF7R8b/3GarPPp6rbZvWyGEvUK9+\nwxQUHKrrbrxFC159WoE1QuXj61esZr2GzdXi8qu18NUJMgyPOna/Sb8m5qlNm3Z68smxmjPnbe3a\ntUMPPXSfbLYCXXddTwUGBmn8+EmaPn2ygoKCFBgYqODgYK9co8kwDMMrlSpJampudS8BAAAAwEUg\nMjKY9x8AAAAAAAAAUIX+s3ipDsXGqs+guyp9LrPJpPrhQWpSt4Z8rBav1o6MPHOIh445AAAAAAAA\nAAAAAAAAqFKpWTZl5jmqbD6PYSghLU/JGQVqXKeGGkbWkNlsqvR56ZgDAAAAAKJjDgAAAAAAAABU\nFZvDpR0HU+XyeKptDf4+FjWtF6I6tQJkMlUsoFNWxxxzhSoDAAAAAAAAAAAAAAAAZ8ljGNp3NLNa\nQzmSZHe6dSA+UzsOpiojx15p8xDMAQAAAAAAAAAAAAAAQJU4ciJHubbC6l5GkTy7UzFH0nXgWGal\n1CeYAwAAAAAAAAAAAAAAgEqXlmVTQlpedS+jVMmZBTp8ItvrdQnmAAAAAAAAAAAAAAAAoFLZHC4d\nPJ5V3csoVaPvv1Tvh6KUs3Wn4k/merX2WQVzdu/erZEjR5Z6zGazadiwYYqNjS3znH379ql79+4a\nOXKkRo4cqa+++qoCywYAAAAAAAAAAAAAAMCFwGMY2n8sU063p7qXUkJw/BF1ePVZ1Tq8X93+/YiO\n/5qgpPR8r9W3ljdg4cKFWrlypQICAkoc27NnjyZPnqyTJ0+We87evXt1zz336N577/XCsgEAAAAA\nAAAAAAAAAHAhOJKYo5yCwupeRgnmwkJ1euFJWR12nWzfRXV2bVbHWRP045S58rGYFVGzZFbmjxyO\ncuYor0Djxo01Z86cUo8VFhbqzTffVPPmzcs955dfftG6det0xx13aNKkScrLOz/3DAMAAAAAAAAA\nAAAAAIB3pGXblJB6fmZE2rz/umod3q+4PlFaP2Ohkq/uqvpbvlerJW9r37FMZeWVnbrZudOs3r0D\nyxxTbsecPn36KCEhodRj11xzzVmf07ZtWw0dOlRt2rTRvHnz9Oabb+rpp58ub3pFRgaXOwYAAAAA\nvIH3HwAAAAAAAADgPTaHSzFHMxVcw7+6l1JC+LaNavnpe8pv1FSHx09VcGCQ9k6fo9B7Bqr1h3Nk\nb3e1joX0VJ3aIQoJ8i12rs0mTZ4svfKK5Clnd65ygznecsMNNygkJKTo39OmTTur81JTcytzWQAA\nAAAg6VQoh/cfAAAAAAAAAOAdHsPQz7+mnZdbWPlmZ6rNv8fJY7Fq81OzlOWxSHl2yRqoTf96XT0f\nH6ErJz+qb99crnX5Dl3VIkIBfqciNlu3mvXYY/46fNiiJk08mj3bLunMXXPK3crKW0aNGqWYmBhJ\n0ubNm9W6deuqmhoAAAAAAAAAAAAAAABVKC4x57wM5cgw1OHVfykgI1W/3DVWmS2vLHY487I22jXm\nX/LLzVbXqWPlzM9XTGy6snPceu45Pw0cGKjYWLPuv79Q69blq1s3d5nTnXPHnFWrVqmgoEC33377\nOZ03ZcoUTZs2TT4+PoqIiDjrjjkAAAAAAAAAAAAAAAC4cKRn23U8Na+6l1Gq5l/+Vw02f6eUdh11\ncOi9pY6Ju2mowg7EqPn/faqr507Tohte0QN3BCrxhK+aNz/VJadz57IDOaeZDMMwvHkB3kYreQAA\nAABVga2sAAAAAAAAAKDi0rJtOhifJafbU91LKSE4Pla9H75VHl8/rZm/QrbIumccay50qONjo/Xy\n4Ts0R2Mlk3TLsBzNet6kGjVMxcZGRgafsc45d8wBAAAAAAAAAAAAAAAAfs/p8ujwiWydzCyo7qWU\nylxYqE4zx8vqsOvHp14sM5QjSXv219KYnHVKVqBa6YAefOyE6t3UQEdT/dU6KEwmk6nM808jmAMA\nAAAAAAAAAAAAAIA/LT3brkPHs+Rwnd32TtWhzfuzVSt2v470vUUnut94xnF2m0mL36mtNatqyWQ2\nNLzHbr27vouMRaH6pstypSlMh45nqWXjWmc1r9lbFwAAAAAAAAAAAAAAAICLh8vt0YFjmdoTl35e\nh3Jq79iklp/+R7kNmujnByeecdyeXYF64v5mWrOqlho2cej52cc05Bk/Hb77nwpMS1bnGU/I5HYp\nKaNARxJzzmpuOuYAAAAAAAAAAAAAAADgnFwIXXIkyTc7Ux1fmiiPxaqfJr4sd0BQiTG2ArMWLYzU\nt1/WktlsKGp4mm65I10+voYk6cDt9ynsQIwabP5Obd5/XXtGPaH4lFz5Ws1qWLtGmfMTzAEAAAAA\nAAAAAAAAAMBZcbk9OpyQreTMgupeSvkMQx1efVYBGamKGTVOmZe1KTHkwC8BmjurnlKSfdW4mV0P\nPZGk5pc5ig8ym7X1qZnqPWaoWi19Rxktr9SJv92ow4nZ8vExKzIy+IxLYCsrAAAAAAAAAAAAAAAA\nlCs9265tB1IujFCOpOZf/lcNNq9VSrtOOjh0VLFjLqf08buRmvxEY6Wm+GjI8DS9MPdoyVDO6fFB\nwfrxuTfk8gvQtS9PUnD8EUnSwfisMtdAMAcAAAAAAAAAAAAAAABn5HJ7dDA+U3vi0uVwnt9bV50W\nHB+rdm+/oMLgUG196gXJ/L+IzPGjvpo0tqlWLA1X7bpOTX0lXsPvSZPVp+yaOc0u0/Zx0+RTkK+u\nU8fKWpAvj2GUeQ7BHAAAAAAAAAAAAAAAAJQqI+dUl5ykjAujS44kmQsL1WnmeFkddm1/fKpskXUl\nSR6P9NVntTTh4aY6GuuvXjdlada8o2rZ2nbWtY/37K9DQ+5USHysOrz6rFROMMdaoSsBAAAAAAAA\nAAAAAADAX47L7VHsiewLKpBzWpv3Z6tW7H4duelWnfjbjZKk9FSr3nq5nvbsClJIqEuPPZ6oa7vm\n/an6MaOfVK1f96rR+q+V0aqtdOOLZxxrMoxyojvVLDU1t7qXAAAAAOAiEBkZzPsPAAAAAAAAANCp\nUM72Aylj8w+7AAAgAElEQVSyXyDbVv1e7R2b1GPifcpt2FTfvLlc7oBAbfo+WO/Mqav8PIuu7pSn\nf45LUs1aFbs2v4xU3fDQLfLLypDZ7TrjODrmAAAAAAAAAAAAAAAAoEhiWv4FGcrxzc5Ux5cmymP1\n0ZYJLyvbVUPvzayjjd+Hys/Po/sfTdL1/bJlMlV8LkdYpDb/a7b+/uRdZY4jmAMAAAAAAAAAAAAA\nAABJkscwdCItv7qXce4MQx1efVYBGamKue8Jbci/Vm89UE/paT5qcblNjzyVqLoNnF6dMr311dr1\n8DO6powxBHMAAAAAAAAAAAAAAAAgSUrNsslxAXXLsebnqu62DWq0/ms12LxWx9pep0npE/XlO+Ey\nmw3ddmeqhgxPl8VSOfMfGTCMYA4AAAAAAAAAAAAAAADKl5CSV91LKFdgUoLqb/le9bd8r8iYbTK7\nXZKkjXX6646MpYqPCVL9hg6NeTpJl7a0V+taCeYAAAAAAAAAAAAAAABAWXkO5dq8u92TV3g8Cju4\nR/V+C+PUjDtUdCjjsjY60amn5jtGaUF0W7lcJvW5OVP/uC9Ffv5GNS76FII5AAAAAAAAAAAAAAAA\nUELq+dMtx2K3qfauLaq/Za3qb1kn/8w0SZLbx1eJnXooqVNPJXfpKWvDxlr4Rm0tXxaoiAiPHp2Q\nrJZts6t59f9DMAcAAAAAAAAAAAAAAOAiZ3O4lJ5dvds+WWz5arzuK9Xf/L3q7PxRlkKHJMkeGqa4\nPlFK7NJLGR26qWadMIWH+qup018P3B+oTZusatPGrQ8/tKl+/SD9muBUUkZBtV7LaQRzAAAAAAAA\nAAAAAAAALnIJqXmqzo2fTM5C9ZgwSuH7d0uSsptcqsQuvZTY+e+yt71a4WFBqhPirxZBvjKZTDp4\n0Kx//CNAx46Z1a+fU2++aVdQkCSZ1LJxLdUI9FXsiWx5jOrdzopgDgAAAAAAAAAAAAAAwEXM5fYo\nOb16O8xc+d5rCt+/Wwl/u1F77ntC1hYtFB7qrxah/grwKx5v+e47i+6/P0C5uSY9/rhDTz9dKLO5\neL0GEUEKDvDR3qMZcjjdVXglxRHMAQAAAAAAAAAAAAAAuIglpuXLXY2dZept/l4tl7+vnEbNlTX7\nLbWrHyEfq7nEOMOQ3n7bR1Om+MnHR5o3z6ZbbnGdsW5IkK+uuSxS+45mKivfUZmXcEYEcwAAAAAA\nAAAAAAAAAC5SHsPQibT8aps/ICVRHV+eKLevnxLfWKg6jWuXOq6wUJowwU+LF/uqdm2PPvjApmuu\n8ZRb39fHoraXhuvIiRwlpOV5e/nlIpgDAAAAAAAAAAAAAABwkUrNslXbVk8ml1Ndnh8n39xsHZz0\ngsK7XVvquPR0k+6911+bN1t15ZVuLVpkU/36Z9/hx2wy6dKGoQoO8tGh+Kwq7Q5Usu8PAAAAAAAA\nAAAAAAAALgoJKVXfRea0Nv+ZrfD9u3Wi90CFjHmg1DEHDpjVp0+gNm+2asAAp1auLDinUM7v1akV\nqPaXRcrf11KRZZ8TgjkAAAAAAAAAAAAAAAAXoaw8h3JtzmqZu+5P69Rq2XvKbdhUhbPfkNVaMizz\nzTcW9esXqPh4s8aNc+idd+wKCqrYvDUCfHTNZbUVFuxXsUJniWAOAAAAAAAAAAAAAADARSghtXq6\n5QSkJKnjrAly+/jqxOsLVaN2eLHjhiG99ZaP/vGPALlc0oIFNk2YUCizl1IuPlazrmweriZ1gr1T\nsAzWSp8BAAAAAAAAAAAAAAAA5xWbw6X0bHuVz2tyOdV5xhPyy83WwaefV3j3TsWOOxzSU0/5a8kS\nH9Wp49GHH9rUvr3H++swmdSsXoiCA3x0ID5LLo/355DomAMAAAAAAAAAAAAAAHDRSUjNk1EN87b5\n4A1F7NulEz37KeTRh4odS0sz6dZbA7RkiY/atXNrzZqCSgnl/F5EzQBdfVmEAnwrp7cNwRwAAAAA\nAAAAAAAAAICLiMvtUXJ6QZXPW3frerVa+o7y6jeR4403ZbVaio7FxZnUr1+gfvrJqptvdurzzwtU\nr17VRIcC/X3UrH5IpdQmmAMAAAAAAAAAAAAAAHARSUzLl9uo2n45AanJ6vjSBLl9fJTw+gIF1wkv\nOhYTY1b//oE6etSsxx5zaOFCuwIDq3R5igj1l5+PpfyB54hgDgAAAAAAAAAAAAAAwEXCYxg6kZZf\npXOa3C51mvmk/LIzdfixfym8R5eiYz/8YNGgQYFKTzdp5ky7Jk0qlMlUpcuTJJlNJtUPD/J+Xa9X\nBAAAAAAAAAAAAAAAwHkpNcsmh9NdpXO2/nCuIn/ZocQefRX82CNFjy9fbtWIEQFyOqV33rFr1Chn\nla7rj+qFB8rs5VQQwRwAAAAAAAAAAAAAAICLREJKXpXOV2f7Rl2+5G3l1Wskxxtvyee37aLmzfPR\ngw8GyN9fWrrUpoEDXVW6rtL4+lgUGerv1ZpWr1YDAAAAAAAAAAAAAADAeSkrz6FcW9V1pfFPT1HH\nF5+W28dHx2cvVES9CHk80tSpfnrrLV/VqePRJ5/Y1Lq1p8rWVJ76kTV0MsvmtXoEcwAAAAAAAAAA\nAAAAAC4CCalV1y3H5Hap08wn5Z+doUPjJiuiZ1cVFkqPPuqv5ct9dOmlbi1dalOjRkaVrelshAb5\nKjjAx2sBJrayAgAAAAAAAAAAAAAA+IuzOVxKz7ZX2XxXLHpTtWO2Kan7jarxxGPKy5P+8Y8ALV/u\no2uuceuLLwrOu1DOafUjgrxWi2AOAAAAAAAAAAAAAADAX1xCap6qKgZTe+ePunzJ28qv21C2ufOU\nlWVVVFSg1q2z6oYbXPr00wKFhVXRYv6EOrUC5WPxTqSGYA4AAAAAAAAAAAAAAMBfmMvtUXJ6QZXM\n5Z+eok4vPCXDYlX8a28rzV5b/fsH6uefLRo+3Kn337cpyHsNaSqF2WxS3fBA79TyShUAAAAAAAAA\nAAAAAACclxLT8uU2Kr9fTs1De3XdhHvln5Wuw49MVGJkD/XvH6ijR816/HGHZs+2y8en0pfhFfXD\ng2TyQh2rF2oAAAAAAAAAAAAAAADgPOQxDJ1Iy6/UOUzOQl3x0Ty1+mShzB63jkTdqZ0dn9R9gwJV\nUCDNnGnXqFHOSl2DtwX4WRUe4q+0HHuF6hDMAQAAAAAAAAAAAAAA+ItKzbLJ4XRXWv2av+7VtS9P\nUs24Q8qvXU87n3he23xv1YQ7a8hkkt55x66BA12VNn9lqh8RRDAHAAAAAAAAAAAAAAAApUtIyauU\nuiZnoa74eL5aLVkgs8et2H63KWb0eG3Z1kKzZgQrONjQhx/a1K1b5YWCKltYiL8C/awqcPz5YBHB\nHAAAAAAAAAAAAAAAgL+grDyHcm3e30Kq5uF9p7rkHDmogsh62jZumlKu6aZdmyI0a0aoatf2aOlS\nm1q39nh97qpWPyJIh09k/+nzCeYAAAAAAAAAAAAAAACch/JsTiWm5ctqMctqMcny299Ws1lW6+//\nbZLFbC5xfkKqd7vlmJyFunzJ27p8yQKZ3S4duWmodt//lFxBNbR3Z6hmTQ9XzZqGli2z6fLLL/xQ\njiTVDQtUXFKO3B7jT51PMAcAAAAAAAAAAFzwPIYht9sjl9uQ0+2R223I5fb89ufUv4se83jUtG6I\nagT4VPeyAQAAynT4RLay8hxnNdZsMsliNhUL8WSf5blnIzR2vzq+NEk1jxxQQWQ9bX98mk526CZJ\n+nVvoF6YXFe+vtLixQV/mVCOJFktZtWpFajE9Pw/d76X1wMAAAAAAAAAAFBpHE630rPtysixq8Dh\nKgrbuI1z+w3m7LxCtb0kXMGBvpW0UgAAgIrJyLGfdShHOhVU9vwWUvYmk7NQl3+yUJd/PP+3Ljm3\n/tYlJ1iSdOyIn154rqHcbun9923q2PGvE8o5rUFkEMEcAAAAAAAAAADw15Rncyo92660bLtybYVe\nqel0e7T7cLraXhKukCDCOQAA4PxiGIaOJOZU9zIUGntAHV+aeKpLTkRdbR83TSc7/K3o+MkkH73w\nbGPl5pr11ls2XX+9uxpXW3mC/H1Us4bfOQWlTiOYAwAAAAAAAAAAzisew1BWrkPpOXalZ9tld1bO\nBzwuj0e7Y9PUtnm4Qmv4VcocAAAAf0ZyRoHy7M5qm9/kcuryJQv+1yWn7y3a/cDTRV1yJCkrw6KZ\nkxorPc2i55+369ZbXdW23qrQICKIYA4AAAAAAAAAALgwOV0eZeTYlZZjV2aOQy5P1WyB4PYYiolN\nV5vm4aoVTDgHAABUP7fHo6PJudU2v8VuU/dJoxX5y45TXXIen6qT13YvNqYg36yZzzRW4gkfjRvn\n0OjR1RciqioRof7y97Gcc2icYA4AAAAAAAAAAKgWTpdbyRk2pWfblZ3vkFFN63Abhn45kq7WzcIU\nFuJfTasAAAA4JSElX45K6hhYHpPLqS7TH1PkLzuU8LcbtO2J54t1yZGkQodJs55rqLhYP915Z6Ge\nfto7W42e70wmk+qFByku+dy2GDNX0noAAAAAAAAAAADKdCghW7GJ2cqqxlDOaW7D0C9xGUrPtlfz\nSgAAwMXM6XLreEpe9Uzu8ajDq8+q3tb1SurQXVsmvlwilON2S7Nn1Ne+PYEaONCpF190yGSqnuVW\nh/oRgTKf4wUTzAEAAAAAAAAAAFUut6BQqVm26l5GMR7D0N6jGUo7z9YFAAAuHkeTc6tsS89iDENt\nF76kpt+uVHqrttr8r9kyfHz/OEQLZtfV9s3B6t7dpbfesstiqfqlVicfq0WRNQPO6RyCOQAAAAAA\nAAAAoMrFJZ3bFgBVxWMY2ncsUymZBdW9FAAAcJEpsLuUlF49P4O0XPauWi5/XzmNL9HG6fPlDggs\nMeajdyP1/eqaatfOrQ8+sMnPrxoWeh5oEBF0TuOtlbQOAAAAAAAAAACAUmXmOpSR66jyeX2zMlTz\nyAGFHv1VaVe0V2artqWO8xiG9h/LlGFIdcJKfigFAABQGeKScuQxqn6Dz6ZfL1fbd15RQWQ9rZ+x\nUIUhtUqMWbksTCv/G65LLnFryRKbatSo8mWeN0KCfBUc4KtcW+FZjSeYAwAAAAAAAAA4LzmcbjkK\n3QoJ8i1/MC4old0tx+RyKvh4nGoeOajQuIOn/j5yQAEZaUVjHMGhWv3OF3LUiii1hiHpQHymPIah\neuHn9lvRAAAA5yo7v1Cp2VW/nWa9zWvVYfZzcoTU1PqZ78hWu16JMevWhGrxwtqqU9etZctsioio\n+vDQ+aZBZJAOxBPMAQAAAAAAAABcwA4dz1JOfqGuahGhIH+f6l4OvCQty6acgrP7EONsFHXBOXLo\n1N9xhxQSf1gWp7PYuPza9ZTYuaeyml0mn4J8tfh8sdrPna4t/5p9xtqGpIPHs+Qxzn3LAgAAgHNx\nJDG7yueMiNmmLs+Pk9vXXxumv63cxs1LjNm+uYbmv1pXoaEefbrMroYNCeVIUu2aAYo9kS2n21Pu\nWII5AAAAAAAAAHABcns8crkMuTweudyGXC5P0b/d7t8ec3t++2PIYxi6snmYLGZzdS/9rCSl5ys9\nxy5JiolNV/sWEfL35b+0L3SGYSguObfihdxuXfvKJNXZ+WOxLjiS5PLzV3bzVspq3lLZzVqe+rt5\nSzlrhPxvkMejWof3qdGG1Tq+frVOXNenzOl+TciS4THUsHbl79lgGIYKnR7ZC12y/9Y1yl7olr3Q\npeBAXzWpGyyzyVTp6wAAAFUnLcum7HzvBZfPRmjsAXWb/LBMHo82TXmz1C0+98UE6LXp9eXra2jJ\nEptatiw/hHKxMJtNqhcepPiU8n+25V0MAAAAAAAAAFwgYhOzlZxeILfnVNDmXCWlF6hhZOUHCyrK\n5nDp8In//caww+kuCuf4WC3VuDJU1MlMm/LtzvIHlqPOzh/V9NuVstcML+qCk31JK2U1a6m8+o0l\nSznPE7NZ256Yrhv/OURXz52m1HYdVRhaq8xTDidmy2MYalwnuEJr9xhGsbCNw+mW3eGW3Xnq60Kn\n54yv74xch7JyHbq8aS2CagAA/EV4DENHKnmbzz8KSjqu7s+Mlm9+rrZMfFknO3QrMeZorJ9efK6h\nDMOk994rUIcOhHL+qH5EoI6n5Kq8d2b81AYAAAAAAAAAF4Ck9HwdT8mrUI2ElDzVjwg677ttHIzP\nkttT/L+3CxwuxcRmqN2l4bJaLoyuPyjOYxg66qUPnZqtjpYkbZw2T5ktr/xTNfIaNtMvd41Vu4Uv\n6ap5M7V1wqxyzzmSlCOPYahBRNDvulL9rzuV2/1bFyvXb4+doYtVRTaAyC4o1PYDqbqscU3VrhlQ\ngUoAAOB8kJReoAKHq8rm88tM03UT71NARpp2PThJx3v2LzEmM92imc82lN1m1uw38tW7N9tXlcbf\n16rwUH+lZdvLHEcwBwAAAAAAAADOc9l5Dv2akF3+wHLYnW6lZNpUNyzQC6uqHAkpecrKd5R6LNdW\nqH1HM9Smefh5Hy5CSYlp+bI73RWu45udqQY/fqfspi2UeVmbCtU6FHWXGq5frSZrV+l4j5uU1KVn\nueccTc7VUW9sx1UBLo9H+45mKCs8SJc0CLlgtqgDAADFudweHUuuum451vxcdZ90v2okxmvfiH/q\n8JCRJcY4C016eWpDZab7aNxTeRp+O6GcsjSIqFFuMIef1AAAAAAAAADgPGYvdGnv0Yw/tXVVaeJP\nVm+goCwFdme5bfwzch06cCxThpfuB6rGqQ+dvPPca7z2C5ldTsX1iZIqGtCyWLT9iely+/jomtcn\nyyevcj8Ys9htsuZ77zWYmJ6vnYfSlGer+PZgAACg6h1PyVOhq2q2iDIXOtRtyhjVit2v2H63ae9d\nY0uMMQxp4Zw6+nV/gPrfbNfTT/Azd3lqBfspyN+nzDEEcwAAAAAAAADgPOX2ePTLkQyv/md9gcOl\ntCyb1+p5i8cwtP9Y5lkFkFKybDp8ouIdhFB1ElLz5HR74XlsGGq2erk8FquOXX9zxetJymnaQvvu\neEgBGalq9/aLXqlZmoDUZN34wCDdfNvfdO1LE1Xz0F6v1M23O7XzUKpOpOV7pR4AAKgaDqdbCRXc\nqvasud3qNPNJ1d69VQl/u0E7H3mu1IDz15/X0rrVNdXmSpfemuOscAb6YlE/IqjM4wRzAAAAAAAA\nAOA8dSA+S3l273fCiK+qDwDOQfzJXOWeQ9ePE2n5XuvAgsrldLl13EvPuZqH96nmkYNK7NJThTXD\nvFJTkg7eNkqZl16uZqujVWf7Rq/VPc0/PUU9nrpbNZKOqzA4VE2/WaEbxtyqno8NV6Pvv5TJWVih\n+h7D0K8JWdoblyFnFf3WPQAAqJijSTlyV0UXSMPQNW/8Ww03fauUdp3004SXJIulxLBfdgXqg7dr\nKzLSo8WL7AoIqPyl/VXUqVX2zSKYAwAAAAAAAADnoaPJOUqtpM42OQWFysx1VErtPyOnoFDxJ889\nuBGXnEOXkAvAsZN5cnu886FTs9XRkqSjNw7xSr3TDKuPtj3xvDwWqzq89pys+d4Lr/lmZei6Cfcq\n+MQx7b99tL74eJ3WP79ASR2vU/j+3eo880n1H3m9rlj0pvwyUis0V2q2TTsOpig77/x5fQMAgJLy\n7U4lZxRUyVyt339dzf9vmTIvvVybpsyVx9evxJiUJB+99nwDWczSe+/ZVb8+W1idC6ul7OiNZcqU\nKVOqZil/TkFBxVLiAAAAAHA2goL8eP8BAADOG6lZNv2aULlbNTldbtUJC6zUOc6Gx2MoJjb9T2/X\nlZljV6C/j4L8fby8MniDvdClA/FZ8sZHO+ZChzq+NFGFNYK165HnJLN3f/fYERYps9ul+lu+l29+\njpI6/b3CNX1ystRjwijVjDukQ0Pu1J7R4yWzWfkNmii+10Ad6zVAhsWisIO/qN72jWqxYrFC4mNl\nC4+ULaJuqVtMlMflMXQyo0AmmRQa5CsTe1AAAHDeORifpQKHq1LnMDvsavXJArX+6C3l1m+sH2a9\nL2dIzRLj7DaTXnimiZKTfPTSSw7161e56/qrCgoqGXg6jY45AAAAAAAAAHAeybM5deBYZqXPk5Hr\nUO55EEw+kpRToQ8lDEkHjmWeVx2A8D/HknPl8dIWDfV//E6+eTk6dsNgGRarV2r+0b4R/1R20xa6\n5Iulity1pUK1rPm5uu6Z+1Urdr9iB9yu3f+cUCJok9+giXb/c4K++Ph77Rg7WbkNGqvx91/q+sdG\n6PoxQ9VkzQqZC8/9uW3oVEep3YfT5Sh0V+g6AACAd2XmOpSeY6+0+oEnT+jKd17WgBF/V5sP58gW\nFqH1M9+Vo1ZEibGGR/pgbmPFHvbVvfcWauRI72+jC8lkGFWxadmfl5rKHsEAAAAAKl9kZDDvPwAA\nQLUrdLq181Cq7M6q+SA9smaAWjcNq5K5SpOV59DPh9O8UstiNumqSyMUHOjrlXqouAK7U9sOpHil\nW44kdZ94n+ru2KT/e/cr5TVq5qWqJdU6uEfXPzpM+bXra83bn8sdcO6dpSy2fF03cbQi9u1S3I1D\ntH3c9LPr8GMYivz5J7X4fLH+n737DnOqTPs4/k2bJJPpvQADDAwdBBVBVMCGqODay1qwru6urLhi\nV1zLur7WtbtWlCI2pIiISBFQREDpMJTpvSQz6e2c948RpAzDTJIZUO/PdXEBSc5znmSSk0ye37nv\nrNVL0SgK3vhE9px7GbvPvwJ3akab52LQaenVJYGUeHObtxVCCCFE5K3bUYPdHeGAfAufIXaNvwpP\nctohm+g0GpbNz+al/8Zw8skBPv7YjUGKUIYsNTX2sNdJMEcIIYQQQgghkGCOEEIIIY4+RVXZsKuW\nBmfHVbHRAEP7pGM2tk/1kZYEggprd1TjiWA1D4NOy+CeqUSbOv7+iENtLqijtiEyZ4Obq8s575oz\nqes7mKXPT4/ImC0Z8Paz9J71FvkXXsOG2+5v07Y6j5tTHrqVtA1rKB59Hj/c/RTodG2eQ3RlGbnz\nZ9Lty08w2htQtDpKRo5lw633NHvG+5H075pESoKEc4QQQoijqcrqYlsEq2Pq3C5yvplLjznTiS/a\nBUB9z37suuBqSkaNRYlqvr2S0aCjYmc6t94SR+fOCl995SIl5ZiOjhzzJJgjhBBCCCGEEEcgwRwh\nhBBCHG07iq1U1Ls6fL+ZSdH06pLY4fttr/tritIxuGcqRkPbgxAichqdPtbvrInYeH2mvUr/91/i\nxzsfp/CciyM27uFofV7OuvVCYssKWfrcNOr6DWn1diOm/I2MdasoPeVsVj/wbNhtt7ReD12WzKfn\nnGkk7NmBNy6B9X9/iNKRYw9pjdWSeEsUg3umhjUXIYQQQoROUVXWbKuKSDDdUl5Mj7kz6PrVZ0Q5\n7Sg6PaWnjWHnBX+mvs9xLX5GiDUbMPhTuWBcLKoK8+a5GDBACXtOf3QSzBFCCCGEEEKII5BgjhBC\nCCGOptIaB7vKGo7KvrUaDSf1Te/QIEtdg4dNBXXtNn6MycCgHikY9K1oHSTaxc+7arE5vJEZTFEY\nO2EMJls98z78lkC0JTLjHkHylp8YfeefcWTnsOi12ShGU4u31/h9nPzYHWStXkr5SaP47uH/ohoi\n2FpNUegxZzoD3nkOvddD6Slns/72h/EmJrd6iOPzUqXdmxBCCHGUlFQ72F0exmd+VSV93Xf0mDON\nzDXL0agqnsQUdp93GXvOu7zZdlUHS4k3kRGXxLljYygs1PLWW27Gjw+EPiexT0vBHPmtRAghhBBC\nCCGEEEIIIY6i+kYPu49SKAeaztwtrXZ02P78gSD5JbZ23YfD42dzQR1BRc78PRrqGz2RC+UAqRt/\nJKaylJKR53RYKAegrt9gdv7pGmJLC+n3/kst3lYTDDDsyclkrV5K5ZCT+f6hFyIbygHQatl14TUs\nev1zavofT6eVixhzyzg6fbuw1UOU1TgjOychhPgd8fqCbNpTR31jZNowCrG/QFChuCq0kwL1Lie5\nc6Yz5sbzOO3+m8j6YRn1vQbwwz3/x/xp37D12ttbFcrpnBpDr05J3HZrNIWFWiZN8koop4NIo10h\nhBBCCCGEEEIIIYQ4SlyeANuKrBztsubldU66pMd2SIWZ/NIGvIHwy/cfSWODk6JdPrrnZbf7vsSB\nCioiW4my21efNo075qKIjtsam6+/g6wfltHr0/coPXUM1t4DD71RMMiJ/3cfnVYuonrgiXz3yMso\nUcaI7D/gB49bi8ejxePWYjQpqFk5LHvmfXp+/gH9332B4Y9PouS0r1j/94fwJSS1OF61zU33rDii\npNWbEOIYFwgq6LQaNG1o2ReOynoXu0obCCgKPn+QpLiWq6QJ0Va7yxrwB9seGte5XZx965+wVJYS\nNBgoOvMCdl7wZ6y9BrR6DK1GQ4/seLJSLDz8sJHly/WMGRPgnnt8bZ6PCI0Ec4QQQgghhBBCCCGE\nEOIoCAQVNhfUhfQFfaQFFZXyWic5GYcvvx4JVVYXNTZ3u+6DYJCui+fQb+qLaINBypetITYzpX33\nKfaptrmxuyO3yKN32um0YhH27Bzq+g2J2LitFTSZWTvpMUZNvo4Tn72fxa98hhK1XyUcReGEFx4m\nZ+l8avsex8rHXiNoMh8yjqpCdaWB7ZvNVFca9oVt3K6mwI33l+CN2930d9P1GgL+Q8NyCUkB8vq6\n6dV3EsfddQGXf3YHnb9dSOqGNayfOIWyU88+7P1RVJWKOle7v9aFECJU6i/HqYKKRowGHd0y40iO\nb7+QjNffVMmvbr8qOXa3n2qbm7SEQ4/nQoSivtFDRb0rpG17zJ2OpbIUz2VX4nj4MaLT0hioqgSC\nKoGg8ssflWBQIaCoBAIKAeXXy/xBhaxkC0lxJmbN0vP661Hk5QV59VU3Wumv1GEkmCOEEEIIIYQQ\nQgghhBAdTFVVthZacXmPndLxpTUOOqVZ0LXTN/Ref5Bdpe3YsktVyfhxBQPfeob4wp37Lna9OxXL\nvSetEw8AACAASURBVHei1XbMGfd/ZIqqUljRGNExuyxdgM7npfDsi6CDqiYcrGbQUHaNu5Ie82bS\nZ8ZrbJnwj6YrVJXBLz9Gt68+oz6vPyue+B9Bc1OrrWAQinYb2b4lmu1bzOzYbMZab2hxPwaDgsms\nYDKrJCb7MZlVTKa9lymYzQqNDTp2bDWzZmUsa1bG8gFp3KP/jn7pxZxR8xmnPLaU7sNXU3rn7fji\nE5vdT3mtk87pMWiP0uMphBCHY3f52FnaQKOrKeDpDypsKqgjIcZIblYcsdGRbRG4f5WcgxVWNJIS\nb5JjpQhbIKiE3MZV73TQ66O3UeLjcTzxFGp8AgAajQaDXtOmapfr12u56y4T8fEq77/vJlYyuh1K\ngjlCCCGEEEIIIYQQQgjRwfaUN1Jv9xz5hh3IH1SorHORnRrTLuPvKLa2W3WghPwtDHzrGdJ/Xo2q\n0VAw5iJ2jb+KM/5xJZ1nT2P7dTfRPTu+XfYtflVV74p42KzrV5+harUUnnVBRMdtq003/pPMNcvp\n/eGblJ1yFrbcPgx64yl6zP8QW/defPXQ22zLT2f7ZjPbN0eTv82M1/PrYllikp/hIxvp1ddN565e\nzNG/BG72C97oW7lio6pQV6NnxxYzO7aayd9qZtPuHDYod/Icd8L30O3yAvL6eek8KoG8vm66dPWi\n/aV7lTcQpMbqJj0puh0eKSGEaLtAUKGgopHyWmez7T1tDi/r8mtISzDTLTMOszG8Je7mquQczOUN\nUFnnIivFEta+hNhT3ojHH1ob156zp2K0N+C8/+F9oZxQVFVpmDDBjN8PU6e66d79aDfS/eORYI4Q\nQgghhBBCCCGEEEJ0oPpGDyU1jqM9jWaVVDvITLFE/Ozwslon9XZvRMcEiK4opf97/yVn6XwAKoae\nxsYb/0ljtzwASk85iy7LFuD+ZimNl5xLXITPtBe/UhSVwkp7RMeMK9xJ8o6NVAw9DU9KekTHbqtA\ntIW1dzzKyPtu4sRnHmBT/3PZONfBf2PfYZHmUvZcZ0FRfn3ddMrx0rufi9793fTu5yY1w49GA3qt\nFo2GsEJqGg2kpAVISbMzYnTTY+5xa9i1w0z+ZiOlS+vZUpLOV5uSYFPTNuboIL36uhl2qp0TR9gp\nrXFKMEcIcUyoqnexu7wBX+DIx8Vqm5vaBg9ZKRZy0mPbVC1k//3tKmto1XG4qMpOepK53aoJit8/\nm8NLeZ0zpG0NjTZ6ffIewaRkXDfdGvIcvF6YMMFMZaWWKVM8nH56aCEhER4J5gghhBBCCCGEEEII\nIUQHqrG5j/YUDsvjj3wlDZvDy56yyLawMjTa6DPzDXrMnY7O78faoy8bbp5MzeBhB9xu9/lX0GXZ\nArrP/5AtQ09mSK9UaUnRDLc3QEWdC40GTFE6TFF6TFE6jAZdq1uAldU68YZ4NvjhdF00G4CCMRdH\ndNxQVR8/go1n/pk7F0/gmz1nNl1oB51bpWdvN71+CeH06uciNq75Bd+umbEEgkrEQ0wms0r/41z0\nP84FV2uwFK4m8T9vsnVPEiuiTmep+Vx+XpvIz2tjePPFDPoPdnL5pXDxn1QSm+94JYQQ7crp8bOz\npAGbs23BXUVVKa1xUFnnokt6DJ1SY1r1XuX1B9lZYqO2hSo5zW1TVuOkS7r0/BFtF1QUdhSH1sIK\noNen72FwOXDcfR/EhFbRUlXh7rtNrFun4+KL/fz1r/6Q5yPCI8EcIYQQQgghhBBCCCGE6EDWdqgc\nE0nF1Y6IBXNKqh0UVDSiqJEpl6/1eenx+TT6fPg/ohyNONOz2XTDJEpGjoVmzmavHXACDTk96LTy\na36uqKAo3kS3zLiIzOX3wOUJUFxlp9rmPuzPyKjXYYzSNQV19oZ2DL9eptdpCQQViqsiGzTRBPzk\nfD0Hb3wi5cNGNXub5DgT0UY91VY33kD7n/3t9Wi4svxVthLHMMOP5F2YRO5JenLzPEQZj/wcjzEZ\nyEqxEAwqFFc5Iva6aI6za3ecrzzOCZ++x4SpN6Cr87H81Nt4M28K338bx4a1MWxYCw8/oHLaaUEu\nuMDP2LEBEkLvkiGEEK0SVJrCiWU1zrCOgwFFYc8v7a+6ZsaRnmhGc5jwbZXVxa7S1lXJOVhJtYOs\nFAt6nVTNEW1TUGHH7QutxWeUrZ6esz8gkJaOe8KNIc/h7bcNzJxpYNCgIM8950Hy6UePBHOEEEII\nIYQQQgghhBCig7g8fjwRrioSaU6Pn9oGNynx5pDH2HuGcHWkqgMpCjnfzKX/ey8SXVOBLzaen/9y\nD7vHXYUS1UJ7Ko2G3eOuYMjLj9Nt4afkJ91KaoKZGLMhMvP6jXJ6/BRXNgVyjrQk6g0E8QaCNLqa\nv96g06LTasJqzdSczB+WY2qoJ//Ca1ENh/6M9VoteZ0TMBp0dM+Kw2r3UlXvorbBQ7AdAi9+n4Zn\nH81m69YYhp9s5R/3GtGa/EDrzzzPzY5Hq9Gg1etITzRTUX+YBzVSdDryL7uRimGjOOk/kxm54jU0\nY4/ngstHUFVhYPW3cWxck8iSJXqWLNFz112/hnTOOUdCOkKIyKuxudld1hDRz0Ief5DtxVZKqx10\nz4ojKc607zqfP0h+qY3ahtZXyTmYP6hQUu2QYK9okwanj7IwWtf2/ugt9B4X9imPQnRogfkVK3Q8\n9JCR1FSFqVPdmEP/aC8iQKOq7RjJjoCamsim7IUQQgghhBCiOampsfL7hxBCCCHaXVmNg50htnXS\n+nwMf/wOjNY6/JYY/DFxTX9bYvf98cXs/XcMfktc079jYvGbLaDTtXpf8dFRDM5LDWmebm+ALQX1\nODyRKZWftm4Vg958hoQ92wkaoth54TVsv/xm/LHxrdpe73Qw7sqReOPiWTD1a2JjTAzO+2O2tLK7\nfBRXOahpOHbbqe014uG/krV6KV+9MYfGbnmHXN+zUwLZKZZDLg8EFWobPFTWu2hweI8YPGqNYBCe\nfzybNatiGTzUweQppejbmO1KTTDTr2vSvv87PX5+3F4dgdm1TmL+Zs78+6WUDxvNqkdf3Xd5l7RY\nNN545s0zMGeOnk2bmo4TBoPKqFFBxo1rqqQT37qXmxBCNMvtDbCztIF6e+gBmdbQu5zkrV1Kt1WL\n8BtNbBsxltIhI5oNeLaFTqNhaN90jIbWf5YSf1yKorJ2RzUub2jVckx11Zx73dkoySnY1vwMRmOb\nxygq0nD22RYcDvjsMzcnnXRsnxjwe5Gaevi2d1IxRwghhBBCCCGEEEIIITpIOG2sknZsJGv1UlSN\nBk0I51v6o2PYdsUt7Lji5iPetsHlw+bwkhDTtoWAugYP24qsBJTwq6fE797GwLeeJWPdKlSNhsIz\nL2DzhIm407LaNE7AEkPRGePI/WIWmWu+pWL4aEqqHORkHP6L89+bRqePoio7dY3tuyAaKaa6ajLW\nfEt9z37NhnLiLVHNhnIA9DotGUnRZCRF4/UFqbK6qLK6cYYYFFMUeOXpTNasiqX/cU7++VBZm0M5\nOo2G3KwDKy1YTAaSYo3Ud1BrO2tef+p6DyTzh2VEV5TiyuwEQEWdk2H9Ypg4UWXiRB979mj2hXS+\n/rrpj8Ggcs45AZ57ziMBHSFEmyiKSnG1vV3b92mCAdJ+Wk3O13PI/m4xeu+v73XDFs7DG5dA8ejz\nKDpjPNZeAwill09QVSmqtJPXWUqJiSMrrLSHHMoB6DPzDXQ+L67J94YUynE44NprzVitGp591iOh\nnGOEBHOEEEIIIYQQQgghhBCiAyiqis3hC3n7xPzNAPxw79OUjTgTg9OOwWHH4LQT5bBjcNkxOBox\nOB1N1zn3u85pJzF/C70+eYf8SyagtiJZUFzlaFMwp7CykcLK8CsQmqvL6f/ei+R8MxeNqlJ/0qms\nnTCJhtw+IY+5+/wryP1iFrnzZ1IxfDRFVXZSEkxYTL/vllY2h5eiSjtWR8eEPyIl55u5aJUghWMu\nOuQ6rUbT6oVRY5SOLumxdEmPxe7yUVXvptrmwhdoXXBMVeGtF9NZuSSevL4u7v5XKVHGti8sd0mP\nxRR16HJMp9SYDgvmAOwa/2dO+r97yJ0/k003TwaaWrRUW91kJjcFnbp3V/nHP3z84x9NIZ25cw3M\nnq1n3jwDFRVaPvrIRUxMh01ZCPEb5vT42VZojVgFvYPF795Ozjdz6bJkHub6WgDsWV0oOnM8xWeM\nx+BoJGfxHLosXUDPOdPpOWc69k5dKTzzAorPGIcrPbtN+6usd9E5LQazUZbXjwVFlXY6pVnQabVH\neyoHaHT5KKkO/fNwdFUZ3Rd8jK9zDp7Lr2rz9ooCEyea2LZNx/XX+7jmmvZ5/Ym2kyOHEEIIIYQQ\nQgghhBBCdAC70xdWJZnE/C0A1Of1R4ky4o0y4k1MafX2x73yBD3nTCPtp9VUnXjqEW9fb/fgcPuJ\nMbccXgkEFbYXWakNsxqLwd5A7w//R8/Pp6Hz+/D17Y9rymPYh59GY5gtfxpye1Pb9zgy1q7cVy1k\nR7GNwT1T0PwOW1rVN3ooqrLT4Aw9CHbUqCpdF35G0BBF8ejzDrm6c1pMSIGq2OgoYqOj6J4dh7XR\nS6XVRY3t8C29VBWmvp7G4gWJdOvh4b7HSzGZ2x7KMUXp6JzWfJIlKc5EjMnQbovWBys97RwGvfEU\n3Rd+ytZr/k7QZAagrMa5L5izv+7dVe64w8fEiT7+9jcTn35q4LrrzEyf7sZk6pApCyF+o8prnewu\nayAY4So5prpquiyZT87iOSQU5APgi41n1/lXUHTmeOr7HHdARRxbz35svHky6eu/I2fxXLK/+4YB\n7/2XAe/9l5oBJ1B45gWUnjaGgOXIVfQUVaWwopE++7UlPFhdnYaaGg1ZWQqxsSEV5xGtEFQUiqvt\nBBWV7gdVpDuaFFUlv9gWVhvNPjNeRxvw47nnfjC0/fPO889HMX++geHDAzz++G8rmP17J8EcIYQQ\nQgghhBBCCCGE6ADhVi1J2rkZnyUWZ1aXkLYvGXUuPedMo8uyBa0K5gAUV9np28IClNPjZ0tBfVjl\n+rU+H7lzZ9B35utE2RvwZmTheOBhfJdcDjod0UB6YjSVVlfI+4CmqjkpW38md8EsNt34z1/OaHbQ\nJf2329IqEFQIBlUCikIgqOL1BSitcdLo+g0Gcn6RvPVn4koLKB59Hv7YA/smRRv15IT589JqNCTH\nm0iON7G7vIGSakezt/vo/RQWzE6iU46XB54swRITWqguNyserfbwK7PZqRZ2lNhCGrutlKgo9px7\nKX1nvkHnZQsoPOdiABweP1a7l8TY5itkabXw4osenE5YuNDALbeYePttTyjrhUKI37lAUGFHia3F\n4GNb6dwuslctJmfxHNJ/Xo1GUVD0BkpHnEnRGeOpHDoSJSrqsNuregOVQ0dSOXQkeqedTisWkfPN\nXNI2rCF101qGvPI45cNHU3jmBVQdP6LFqoLVNjedDwotV1Vp+OILPfPn6/nuOx2K0nTMt1hUsrMV\nMjNVsrJUMjMVsrNVsrL2XqYQHy/hnVDUNXoJKiqlNQ7SEs1HDJF3lKJKe1hhW0tZEV2/mo2new+8\nF1/W5u2//FLPU08Z6dRJkffpY5AEc4QQQgghhBBCCCGEEKIDWBtDD+bonXZiSwupGjws5BWcuj6D\ncKVmkr1qMev+8a8WF7H2qrG5cXsDzbZtqLa52VFsJaiEeF6wotB52QIGvPsClqoy/JZYqic/hObv\nfwez+YCb5mTEUm1zo4Rx5n3paedw3Ov/odvCT9lyze0oUVEUVtpJiTcTbTo2vir3+oPY7F78AWVf\n2Caw37+DwV8uCyoEFTWsx+NY1fWrTwEoaKaNVV7nhBZDLm3VPTMOlydA3UHVnj6flcSn01NIz/Lx\n4H9KiIsPhjR+YoyR1ARzi7dJT4ymoKKx1e21wrXnvMvpPestesyZ3tQq7JfjSVmt47DBHGg6af9/\n//Nw9dUaFi40cPvt8OqrHo6xDiJCiKOoweljW2E9Hn9ox8yDpWxaS7cvP6bTysXoPU3h3Nq+x1F0\nxnhKR56DLy6xzWMGLLEUnnMxhedcTHRV2S/Vd+bSeflCOi9fiCc+ieLTz2P3+Vfi6NztkO1VoKCi\nkRRzCl98oWfePD2rV+tQ1aZj6QknBOnTJ0hlpZbycg3l5Vry8w//vhUdvX9QR6VnT4UxYwLk5SkS\n2GlB9S9hbUVVyS85NiogOtz+w4Z9W6vv9FfRKkE89z4AOl2btt2+Xctf/2rCbFaZOtVNSsrv7zPi\nb12rftvYsGEDzzzzDB988MEh17ndbq6//nqeeOIJcnNzj7jNvHnzmDZtGrNmzQpz6kIIIYQQQggh\nhBBCCPHbEAgq2N2hn0GbuHMrANa8/qFPQqulZORYen3yDhlrV1B+8hlH3EQFSqod5HVO+PUyVWVP\neSMlNaEvPqT+tJpBbz5N4q6tBA0Giq64EcMD92NIT2329majnoykaMrrnCHvU4kyUjDmInp//A6d\nVnxF8RnjUFSVHSVWjutx9BZ0HG4/dQ0eahvcYT1Hfg90bhedl3+JMy2T6uOGHXBdZlI0CTGHD46E\nQqPR0CcnkfX5NfuqPi2cm8CMt9NITvXz8FPFJCWHVg1Kq9HQs1P8kW+n1ZCVYqGw0h7SftrKnZZJ\n+cln0GnlIpK3/kxdv8EA1DV4DhvC28tkgqlT3Vx2WTSffWYgJkbl6ae9sngsxB+cqqoUVzkoqrJH\nJDBqcDQy6PX/0G3RbAAcGZ0oOnMCxWeMw5HdNezx93KlZ7P9yr+w/YpbSMzfTM7iuXRZ9gV5sz+g\n+5efsuLx16gdOHTf7Wur9axeEcsPK2LZsTUaAI1G5aSTgowbF+C88wJkZR16/10uqKxsCumUl2uo\nqNBSVtb0d9P/Neza9WsI4/HHjeTmKowd6+fccwMMGaJICHI/gaBC/X5h90aXj7JaJ51Sm28b2REU\nVWVHsTWs539s8W5yvpmHO68v/vEXtmlbqxWuvdaM06nhzTfdDBjQMWFf0TZHDOa8+eabzJ07F7P5\n0FT3pk2bmDJlClVVVa3aZuvWrXzyySeov8MUvxBCCCGEEEIIIYQQQhyOze4N68v6xPzNANT3DCOY\nAxSPOpden7xD52ULWhXMAaisd5GTEYvRoMMfCLK10BpyW664gnwGvvUMmT+uaJrP6edju+sBMo7v\ne8RgTE56LJX1rrAexz3nXU7vj98hd/6HFJ8xDmg6w78jF3QUVcVm91Lb4KG+0ROxygK/B51WLMLg\ndpF/8fXsvwoZpdfSPevIIZdQ6HVaBnRPZn1+DV9/Gcs7L2cQnxjgoaeKSU0PvUVbVoqFaFPrekhk\np1gornJ0WAWkXRf8mU4rF9Fj7vR9wRwVKKt10iO75cfZYoEZM1xceGE0778fRUwMTJki4Rwh/qi8\n/iDbiqzYwmzXuVfGmm85/oWHia6twjdgEOX3/ou1KXmo7XmQ0Wiw9hqAtdcANvzlbros+YITXniY\nUx/4Cx9PfJ8F1pGsXhHLrh1N694arcqgIW6uvEzDeecFSE9v+dgdHQ3du6t0737493uPByoqNKxb\np2PBAj1Lluh5+WUjL79sJCND4ZxzApx7boARI4J/+PZENc1UUCyoaCQl3oQp6uhUQCypcoQdru73\nwctoVBXP/Q/QliRWIAC33GKmsFDLHXd4ueCC0D+7iPZ1xGdnly5deOmll7j77rsPuc7n8/HKK68c\ncl1z21itVp577jnuv/9+HnrooVZPMDX1t9vfVwghhBBCCPHbIr9/CCGEEKK91Dh8xMaYQt4+rWAb\nAP7Bx4c1TnDwEJydupK1eikJOoWgObpV27kCKrFxUWzJryGAps1zMFZX0PPN58le8AkaVaVuyHAK\n7nyQ3PGn0yW29WPZfQpFlY1t2vcB8vKoGTaS1NXLyawswNGjDwC1dh+9uptaHaRoK38gSI3VTbXV\nRa3NTSDYtKBkMBowGP/gK2z76bG4qTpC7YVXHPAcG9QzlcwUS7vue9HXFl5/zkBsXJAnX6yiW64O\naFsbib2iDDpO6J+FQd/6hbVergClYbbAaC3Pyadi75ZHp2+/Yvekh/GmpAHg9CkkJlnQ61qed2oq\nLFkCp50Gr74aRWZmFA8+2BEzF0IcS6qtLvKLrARD+FxwML2jkd4vPkGn+R+h6A0EHvkXUfffR1eD\nAV2VnS176iI06yMxsW34n/lgy5l8t1DL+qeHAKDVqQw+0c0po52cfJqLhCSFIb3TSEuMXKi3c2cY\nOhRuuw3cbli8GGbPhrlztbz3XhTvvRdFQgKcfz5ceCGMGdMUlvyjKaxxNvt8q7H7GdK77e3NwuVw\n+ah31Yf1GojdubWpldrAwSRee2Wb2tbedRcsX970vHj2WSNabWSrC4rIOWIwZ8yYMZSWljZ73fHH\nH9+qbYLBIA888AD33XcfRmPbngw1NR1TvlEIIYQQQgjxx5aaGiu/fwghhBCi3RSUWPe1yglF7NaN\neOMSqI5JBocnrLkUnTqGvjPfIGbJV5SOHNuqbTbne9kEIVX06DH7Awa+/Sw6n5eGrj3ZeNNdBM86\nm15dEgl4/NR4Wn+GcaxRi8vpJRhGZZEdYy9rCuZ8NJX1Ex/Zd/mqn0o5rkdKyOMezOUJUNfooa7B\nQ4PTi9SRb1lMWSFJP6+h6rhhVMem7HueJ8eZ0KtKu35W/+orHbfdYsZsVrn/3yWkpHuwh5GR6dU5\nAZu1bW3XYqK02MN8bbdF/rgrOf7Ff5H6yQdsu/pv+y7fvKOK7FZWj/rwQw3jx0fz0ENaNBoPt9zy\nx27FJsQfhaKq7ClrpLQ2MmHC9LUrOeG5h4iuraShRx88r/0P7aBBYPMAHkxaSImJoiCcYG4rWOt0\nfDo9hW++TCAY7IxOqzCGr7hE8wlZ/zwJ55mn7Lut3QHrNldwQu+0dpvPsGFNf554An74oamSzoIF\neqZN0zJtGphMKqNGNVXSOfvsAElJ7TaVY4bXH6SozNbsZyq7w4NJB6kJh3YBai+qqvLTzloaXb6w\nxhnw+rMAOO99EHsbXlcffaTn2WfN9OwZ5IUXXNR1VH5NHFZLJ312SEe6LVu2UFRUxCOPPMKdd97J\nrl27eOKJJzpi10IIIYQQQgghhBBCCHFUeXyBsEI5hkYbMRUlWPP6t+kM2sMpGXUuAJ2XLWj1NkFV\nDSmUY6qtYtAbT+E3W/jxzsf55vXPibtoPP26JR+xKkdzjAYdWWFWTqkYOhJXaiZdvpmH3vnr4ofN\n4aW8tm1hiv2pqkqDw8vu8gbWbKtizfYqdpc3YJNQTqt0XfQ5AIVjLtp3mU6joWen9mlhtdfy5Tpu\nusmMwQAzZ3o4ZVh4yyZx0VFkJrf9OWoxGUiK7biz3IvOGIc/Oobc+bPQBH4N1JS14TWQlaXy8ccu\n0tMVHnzQxIwZR6eFiBCi47g8AX7Kr4lIKEfvdHD88w9x2v03Y7LWsn3CRBq/XtYUyjlITkZsu7Wc\ndNi1TH87ldsn5LJofiJpGX5uvbOCNz/exb3/V8WEqBmc8+xtdPp24YHbefxUWV3tMqf96fUwYkSQ\nJ57wsn69k6+/djJpkpecHIWFCw1MnGimX78YLr/czIYNHbL0f9TU2NwtfqbaVdpAIKh02HxKa5xh\nh3ISd2wi+/slNB53IsoZZ7Z6u59+0vLPf5qIi1N5/303cXFhTUN0gA55dQ4cOJAvvviCDz74gOee\ne44ePXrwwAMPdMSuhRBCCCGEEEIIIYQQ4qiy2r1hbZ+4cwsA9T37EW+JQhtmOKexWx4NOT3IXPPt\nAcGU9pD7xSy0SpDN1/+D2j9dwZC+GWEHa7qkx6DThvEY6HTsOfdSDG4XOd/MPeCq3eUNeHytD1EF\nggo1Njfbi6x8t7mSn3bVUlLtCCuI9YcUDNJ10Wx8llhKTzlr38VdM+MwRbVf2OOHH3Rcd50ZVYWp\nU90MGxakZ+cE4i1RIY/ZIzv0IFF7LTo3J2i2UDDmQsz1NWSvWrzvcpc3QH1j6yv3dOum8vHHbpKS\nFO6808ScORLOESJS3N4ANTY3BRWNbC6oY31+DTU291GbT2W9i3X51djd4VfHSlu3ijG3jKf7l59g\n696bb1/7hOjHHsFkOXy1kx7Z8aRHsBqK16Ph8w+TuP26XObMSsYSE+SWOyp49s09nH5OAzGxCjWD\nhvLtk28SNBoZ9u9/0nnJ/APGKKywhxRcDpVGA4MGKdx3n48VK1x8/72Dhx7yctxxCkuX6jn77Ggm\nTTJSXR1+kPtYVG1t+fnvDQTZU96+lZX2cnkCFFSEv6/+U18EwHv/w60O4FdVabjuOjN+P/zvf25y\ncyUC/lvQ5mDOvHnzmDVrVnvMRQghhBBCCCGEEEIIIX53wg3mJOU3BXOsef1JTTCTHG8Ke04lo85F\n5/eR9f03YY91OFqfj+5ffIQvJg7/JZczOC8Fi8kQ9rgGvS7sAMOesZeg6PTkzv8Q9ltQCyoq+SW2\nFrf1+oKU1TrZuLuO7zZXsqWwnkqrC38HnqF91CkKcQX55M6dzrAnJjF2whhOnvI3un75CUZrbZuH\ny1i3CnNdNSWjz0UxNj2/Y80GOqWGF+JqyYYNWq66yozPB2+95WbUqCAAWo2G/t2SMBl0bR4zIzGa\nuDBCPUlxJmIi8Bpprd3jrgSgx5zpB1xeWtO2wF7v3gqzZrmJjobbbjOxeHHbHzsh/sgCQYUGp4+y\nWif5JTZ+yq9hxcZyfthWxZbCeoqq7NQ2eGh0+dhSWM9P+TU0OMOr0tHW+W0rrGd7sZWgEl4AQO90\nMOSFKYy87yZM9TVsufpvfPvax3Q751TMxiMH+3rlJJIUG97noIAfvpqbwO0TcpnxThoaDVx9czUv\nvbeHM89tQH/QNOr6DeHbJ9/Gb7Zw0lN30/Wrz/Zd5/YFqAij2l64cnNVbr/dx5dfuvj0Uxe9eytM\nnx7FsGEWXn7ZgDe8j6DHFLc30KrqNOV1Thoc7XvHVVVlR4k17FBW8uZ1ZKxdiW3oCBg1slXbcU0Y\nIQAAIABJREFUeL1w/fVmKiu1PPigl9NPD4Y1B9FxNKragTG+ELRn31ghhBBCCCGE2Cs1NVZ+/xBC\nCCFEu1i1qSKs0MbwRyfSaeXXzJ++lL4jBqAoKj/tanv4YX8xZYWMvX4sFUNPY+Xjb4Q11uF0XjKf\nYf+ZTOEVN2J58fmIjh0IKqzeUkVACf1xHfbEJDovX8iS56ZR1//4A67r1TnhgHZEdpePukYPdQ2e\nVlUK0AQDqLrfT+UQTTBAwu7tpGxcS+qmtaRsXovR3rDven90DAZXU5hD1Wio7z2Q8mGnUz58NI05\nPY54Bviwx+6g84qvWPzSR1h7DUADDMlLJTY69JBLS3bt0nD++dFYrRreeMPDn/50aIUjh9vPT/k1\nBFu5hKLXahnaJ42oEAI9+6uoc7LjCOGwSDr1/pvJWLuSRa/NpiG3977Lh/ZOI7qNIaHVq3VcfnlT\nBaKZM92MGCGLhUIczOsLYnf5cHj8ONx+nO4A7jZUattfSryJ7pnxRJva5/3G7Q1QXueksi4y4dO0\n9d9xwnMPYqmuwNYtjx8nP4mzV38G9Ughxtz6401QUdiwq67NLYQUBVYtjeOj91OoqojCaFI476J6\nxl9aT7TlyPcvYecWTrv3Roz2BtZNfIQ9518OgFGvY2jfNHTao99GKhCADz4w8NRTUdTXa+nWTeHR\nRz2cfXYwEt1Qj6qiSjsFla2rUGMxGTi+V2rYVSYPp7TGwa6yhiPfsCWqysjJ15G28UcqZi9EP+Lk\n1mzCnXcamT49iosu8vPaa57f/M/19yY1Nfaw1/1+fjMQQgghhBBCCCGEEEKIY4zd5Qt7MSsxfzOe\nxBR8aRnEmA1oNBpizYawWkk4srti7dGX9HXfEdVoxReXGNYcm9Nj7nRUjQb/DTdFfGy9TkvntJhW\nL9A0Z/f5V9J5+UJy5314SDBnd1kjOp0Wm91LXaMHr7+VAQNFYchLj9J10Wx2XHYj2664ZV8FmN8S\njd9HUv4WUjf+SMqmtaRsXY/B9WtFAGd6NhUnjaJm4InUDDgBZ1YXYsqLyPx+GVmrl5CyeT3J2zYw\n4N3ncWR2pnzYaMqHn05t/yGo+gMXX6MarGR/v4SGrj2x5vUHmlo6tVcop6pKwxVXRFNfr+XZZ5sP\n5QDEmA30yUlkc2F9q8bNyYgNO5QDkJ4YTUFFI75Ax1Rg2jX+KjLWrqTH3Bmsm/TovstLa5zkdU5o\n01jDhgV5910311xj5uqrzXz6qYshQ/5AlaSEaEEgqFBYaaesxkGkKibUNniob/SSkRRN1wgdg6Cp\n0l9ZrYO6Bk9E5qp3ORn45tPkfjELRatj659vY+tVt6IzmhiUm9ymUA6ATqtlQPdkft5Vi9Nz5M9C\nqgrrf7Dw4XupFO0xodOrnHNBPRddVUdCYusDhLae/Vj+9FROu+cGjn/xEbQBP7v+dDXeQJDSaic5\nGYdfkO8oej1cf72fCy/088wzRt5+28A110QzalSAxx7z0qvXb/eYXN2GNm5Oj5+SKke7/ExcngAF\nEWiXlfbzatI2/kjdyaNbFcoBeOcdA9OnRzFwYJDnn5dQzm+NVMwRQgghhBBCCKRijhBCCCHaR3GV\nnT0VoX95b7TWMf7yUyg/aSRbn3+XQT1SAKiqd7Gt2BrW3PI+eptBbz3D2kmPUjD20rDGOlhC/hbO\n+vslVJ00EubObZczlgNBhR+2VoUefFJVxtw8jpjyYuZPX4o3MTm8Cakqg19+jB7zZqJqNGhUFUdG\nJ376+4NUDm1de4KjRlVJ2byOtJ9/IHXjjyRt34De69l3dWOnbtQOOIGaASdQM/AE3GlZLQ5naLSR\n+eMKslYvIePHFftCPb6YOCpPPJXyYaOpPPFU/DFx9Jj9PoNfe5Kf/3IPOy+egClKx4m926fygN0O\nF1wQzebNOiZP9jJ58pGrLbTmDP1oo54TeqdF7HleWNlIYWUH/W4SDDL2+nMwWWuZP2MZ/th4AHQa\nDcP7Z6DXtf3nMH++nptuMhEXB59/7qJv36OzEBwIKiHNX4hIq7a62F3WiDfQflWkdFoNXdJi6ZRm\nCen4GVQUKuvdlNc6WxV2aa3Un1Zz4nMPYKkqp6FrT9bc9SS2vH7otBoG5aaE1f7P6wvy084aPC2E\nZ7dtMjPjnVR2bIlGo1E59YxGLru2lrSM0O9jbNEuRt5zPeb6WjbcPJn8S29Ar9VyUt90DPrQjzlu\nb1NQtDUtvVprxw4tDz9sZOlSPTqdyvXX+5k82Uti5PPY7crh9rN2R3WbttFqNJzQKy2iFaVqbW52\nlNjCryClqoyedBUpW3+mZN5iTCcNPeImK1fquPRSM4mJKl9/7SI7+5iOePxhtVQxR/fII4880nFT\naTtXG8uQCSGEEEIIIUQoLBaj/P4hhBBCiIgrrLTj8YW+EJe6aS05S+ZTPPp8dKNHkRBjBCDapKey\nzkVQCf1LeXdKOnmz30fndVN01p9CHqc5/d/7L4m7t1F+/6NE9+sT0bH30mqbQhBWhze0ATQaNIpC\n1g/L8MYlHFI1p01UlYH/+z/yPp+GrXsvlrz4IapOR8baVXT9Zh4Ju7dT2/c4Apajfzb9wTR+Hye8\nMIXBr/6btI1rsFSV0dilOyUjzyH/0hv46a8PsOOKW6gYPpqG7r1adR8Uo4mG7r0oPe0cdlw8gZoB\nJ+CPicVSVUbqlvV0WrmIvE/eI3XTj2SuWYHe42bN5P8QNJnpm5OEpY0tlFrD54NrrzXz4496rrnG\nxyOP+Fp1pnlCjBGnJ4DLc/hWM31yEtvc9qklFpOeshpnxKpqtEirRRsIkLXmWzwJydT3PQ4AFTDo\ndcSHsGiel6fQubPC7NkGvvhCz9ixgQ5fBHZ6/KzPryEx1hSxKiJCtJXL42droZWSGkdY79fQ1FIw\nacdG3Emp0EzwRlXB5vBSVedGp9Xsq7B3JG5vgKIqO9uLbNQ2uPFHsFpXl2/mMeJft6N3udh2xS2s\nufdp3GmZ6DQaBuYmE//LZ5pQ6XVakuKMVFvdKAfVodiz08jrz2cy89006moMnDDczp0PlnHW+Q1Y\nYsK7j76EJMqHjSZ71WI6r1yEotNT/ctniKTY1lfJc3n81Ng8lFY72F3WQFGVnbJaJ41OPwa9NiIB\nnZQUlUsuCTB4cJD16/V8842e6dOjiI5WGThQae6pdEwqrXHS4Gzbd3Yq4HQHyEiODnv/iqKys7SB\n3RWNhzzXQpHx47f0mfUWVSPPxjBp0hFvv2iRjptvNhMMwowZnqMWeBVHZrEc/rgmFXOEEEIIIYQQ\nAqmYI4QQQojICyoKqzZVhvUFfp9pr9L//ZdY+eirpF51CUlxvy74RKKqxug7riR5+0bmzVyONzEl\nrLH2imq0cv5Vo3Enp2Fb8zNGY+RDFnsFFYU1W6tDrkKgd9oZd8VIvAlJLHjvK9CFtoDf790X6Dvz\nDRq75LLs6an7qu/EFeQz5KVHSd28joDRzNarbyP/outQDe3TpqmtDI02Tn7sH6RtWEN9z35s+/Nt\n1PQ/Hn9c21oYtZqqEr9nB1nfLyFr9VKS8jcDUHrKWXz/8IukJ5jp0zUp4rtVFPjb30x8+qmBMWMC\nvPuuG30b1juDisLPO2ubbR+XEm+if7cwqy01Y0exlYp6V8THbY6h0ca4q0bhTk7jy3cX7lv0N0Xp\nOKlPeqsW95vz9tsG7rvPRHa2wsKFLtLTO2Y5yh8Isj6/FrcvgDlKz/G9UqVyjuhQQUWhuMpBSbUj\nIov4Oo+bYU9MIuuH5ew+73LWT5zCkZKF0UY93bPiSIk3N3t9faOH0hon9XZPs9eHK/vbrxj2738S\nMEez4ok3qO87GGiqYjKgezKJseGFcvbX6PKxYVctLhd8tzyOxV8ksHN70/3uN8jJlTfUkNcn8vfT\nUlHCyLsnYKkqZ+ufb2P7dRMZ2jcDY1TznyUcbj82h5cGp48Gh/eILQujjXqyUixkJEVH5Bjm88Fb\nbxl49lkjdruG3r2DPP64l9NOa79KTpGyektli5WRWtKrcwKZyZaQ9+30+NlWaMURqUpSqsqZf7uE\nhN3bKJy/lJgThxz2psEgPP10FM89Z8RkUnnxxcO34BTHBqmYI4QQQgghhBBHIBVzhBBCCBFpNruX\nSmt4C+t5n75HXGkBG2+5m2552fuqxEDTgk1ZbXhVNfRuN5k/foszIxtrr4FhzXWv3DkzyPxxBSU3\nTsQy+rSIjHk4Wo0GjQbq7aFVzVGijFiqykj/eTX1vQfg6NS1zWP0mf4a/aa9ij2rC8ufnoo3KXXf\ndd7EZArPvhBnRidSN64h+/sldFr5NY1dcnFldAppzpESU1bIqHuuJ2nnFkpHnMmqf71KY/deKMbW\nn+3fZhoN3qQUageeSMG5l7Hn3Muw5vVn1wV/RhsTQ//uyejaIUDx2GNRTJ0axfHHB/ngAzfGNq4H\nazWafVUZ9q96odVo6N8tOazWJYdjNuopr3VGfNzmKEYT0ZWlv7wOBuLI7gpAIKgSazaEXA1oyBAF\nnQ6+/NJAfr6Wiy8OtKpKUTgUVWVzQT2OX0JUgaCC0xMgPTH8iglCtEZtg5vNBfXUNXoiUvXK0Gjj\n1Af+QvrPqwkaDCRv34g3IfGI79n+oEK1zY3N7iPapMcYpSMQVCivc7K92EpprRO3r30W+DO/X8rw\nJyYRNBpZ8eTb+ypxNR0zkw4IGUfCnl0Gpr2bwNOPp/L98jisdXoGD3Vy498quey6OlJS2+d++mPj\nKRtxJlmrl5L93TdovB7KB55ESoIZRVWxu/xU29yUVNnZWdpAaY2DersXlyew771E77QTW1JA0o6N\nZKxbRXRVGY1dezaNH1Sot3spq3Xi9QUxG3UY9KFXANPp4MQTFa66yo/dDkuX6vnooyg2bdIyaFDw\nmG1v1eDwUhrG+2Gj00dGUnRIny/Ka51sLaiPaBu6rFWLyZv9PpVnnI9p4t8PezurFW64wcyMGVF0\n6aLw0UduRo489kNUf3RSMUcIIYQQQgghjkAq5gghhBAi0naXNVBS4whrjPOvHImq0fDt7FUc3yvt\nkOu3FVmpCiP8Y6qr5vyrRlHbbwjLnpsWzlSbBIOcO2EMRlsdxas3EZudHv6YR6AoKmu2VYV8JnXC\nrq2c9deLKT9pJKsee71N2+Z9/A6D3nwaZ3o2S5/9AHda5mFva7A30P/dF8j9YhYaVaXo9HFsuGXy\nAUGejpKy8UdO/tftGO0NbL/sRjbdcGezrVE6UrhntB/Om28aeOABE7m5CvPnu0hODn1JpMHZVJVh\nbwWMnPRYumXGRWqqh9i4u67dqlkcbO/roOLEU1n5xP9+vdxi5LieoVfTUhS44gozy5bpefJJDzfe\nGKGKA4eRX2KjvO7QBdxuGXHkZBx7reTE74fbG2B3WQO1jZF7zZprKjn1/puJL9pF8ejz2Hzt7Zx+\nx1VE2Rv49sm3qBk8rNVjJcQYsbt8YbfUOpL0tSsZMeWvqFo9K/79P2oHnAA0hXL65iSSktB8BZ+2\ncrth3jw9779vYM2aphJoqalBTjvLyuljbaSmd1xVEVNtFaPunkBsaSE7L7yW4slTaHD5CQYVjLZ6\noqvLia4qx1JVRnR1OZaq8n2XRTkP/R5q1cMvUn7KWc3uKzHGSHaqheQ4U8jVzPbatEnLgw8a+f77\npscvK0uhb1+FPn2Cv/yt0KOHQtRRLvJ3uON6W6QlmOnbhop8gaDCjhIbNTZ3WPs9RDDI2bf+ibiS\nPexasIKEIQOavdnGjVpuuMFMcbGWM84I8Oqr7mM2OCUO1FLFHAnmCCGEEEIIIQQSzBFCCCFE5K3d\nXh1W2XtTXTXjrhxJ2fAzKHrlXXp2OrS9kN3lY11+TTjTZOTk60jbsIb505a0GCxpjczvl3LKlL9S\nPO5yzG+/GdZYbVFe6yS/1Bby9qdPvJykHZtYMPVrXBnZrdomd850hrzyOK6UDJY++wGuzNZVwEnc\nsYkhLz1KUv5m/NExbJ7wD3aPuwJV14beSmHI+fpzTnj+YVBV1k2cQuHYSzpkvy1JiDFyXI/ItFLb\n37x5em66yURqqsoXX7jIyQl/OaSizsmOEhsmg44T+6Sha8dAU32jh4176tpt/IONnvRnUrasZ8G7\nC3Fm5+y7/IReacSYQ29JV1mpYdSoaFwuDYsXu8jLa7l9S6jKap3sPMxxQAMM6J4c8UodIjT+QJAG\nhw+b04eiqMRbooiPicIU1THHwUhSVJWSKgfFVXaCEVxyjS3ew6n334SluoL8C69hw1/uBa2W5C3r\nGTV5An5zNN+89BHOrC4R22e4Ujes4dQHbgFVZeXjr1M9eDjQ9Prr0zWJtAiEcnbu1PL++wZmzTJg\ns2nQaFRGjQpy7bV+zj47QLXNwc6yhrD301bG+hpG3nM98UW7qe/ZD73bRXRNBXpv80Etf7QFV1oW\nzvQsXGlZuNKz8MXGM/iVJwgYTSx6Yw6elMOHm01ROrKSLWQmW8Kq2qaqTe+VM2YY2LpVS2XlgWMZ\nDCo9eij7gjr9+gXp00chM1Nt9wpo0PT6+n5zJf5g+O8bA1v5HtDg9LGtsD7kwHdLOi/9gmFP3kXJ\nORdinPpes+GqmTP13H23CZ8P7rrLxz//6Tva2WnRBi0Fc35773BCCCGEEEIIIYQQQghxjPP5g2GF\ncgAS87cAYM3rR7yl+dOVY6OjiLdE0eAMvSVnychzSduwhs7fLiT/kutDHgegx9zpAHhuuJnInBPf\nOhnJ0ZRUO0Juy7H7/CtJ3r6R7gs+YvMNk454+24LPmLIK4/jTkph+f+90+pQDoC11wC++e+HdF/w\nEQPefYHBrz5B10Wfsf72h6nvc1xI828VRaHf1BfpO/MNfDFxfPfQf9tUbaG9aDUa8poJnYXr++91\n/PWvJqKjYeZMd0RCOQCZyRacngBxlqh2DeUAJMWZiDEZwj6WtNau8VeRsmU9PebNZMOt9+67vKzG\nQa8uoZ+qn5Gh8swzXm64wcxtt5n48ktXxCsw2BxedrewGK/SVGFsSF4qZqMsjXU0rz9Ig8OLzeGj\nwenDedBzem81DFOUjgSLkfiYKOItRqJNx/bPymr3srPUhssb2eosids3cuqDf8HYaGPT9ZPYfsXN\n7E1B1PUbwrqJUzjxuQcZMeWvLHnhQwKWmIjuPxTJW9ZzykO3oVEUVj3y8gGhnN5dEsMK5Xi9MH9+\nU3WcvdVdUlIUJk70cfXVfrp2/fX4np0agy+gUFTVsSdeeZNSWfb0+5z60K0k7diENy6hqW3lL8Gb\n/QM4zvRs/DFxNJds0QQCHP/Sowx9+l6+ffLtw1az8/iC7KlopKjSTlqimezUmJAClBoNjB8fYPz4\npudwfT1s26Zj2zYt27Zp2bp1778PbKGVkKDSp09TSKdXL4W0NJXkZJWUFIXkZJWEhGbvXpvZ7N6I\nhHIA8kttnNj78IFaVVUprnJQVGXfVxkvkuIKd9L/vf+i6PQ477wH00EPkNcL999v5IMPooiPV3n3\nXTdnnimtq35PpGKOEEIIIYQQQiAVc4QQQggRWVVWF9uKrGGN0ff9l+g37VW+feJ/dL/uUoxRumZv\nV21zs7WwPuT9RDVYGXf5qdh69uWblz4KeZyYkgLG3ngutQNOIPD14nYPLRysst7F9uLQHnOt18P5\nV41C1er4YvpSlBZSAzlff86Jz9yPLy6Bpc+8jz2nR6hTxmitY+Bbz9D1688B2DP2UjbdOAlfXGT7\nFWi9HoY+cx+dly/EkdWFlY++hr1L94juI1S5WfF0TovsovK2bVrGjYvG5YIZM9yMGhXZhS1VVcNu\nIdJaeyv0dASN38d515yBzutl/oxlBM3RQFN4ani/dAz65o9BrXXHHUZmzIhi4kQvDz4YepjwYG5v\ngPX5Na1avI0xGRicl9Lhx6c/Grc3QIPTR4PDS4PTF3JwxajXNYV0YozEW6LCqty0vx9/1DJ3roGk\nJJWMDIX0dJW0NJX09KZwwZGeHl5/kN1lDVRHus0NkL52FSc/OhGdz8O6fzxCwdhLm73doNf+Td7s\nDyg/aRSrHnkZdOG9PsORuH0jI++9AZ3Xy/cPvUD5yWcATT+/vM4JJMe3vVKVwwEFBVo+/dTArFl6\n6uqafiinnhrguuv8nHNOoMWAXyTaH4VEVdF5PQRNIQaRVJWTH/k72d8vYcNNd5F/2Y2t3tRk0DUl\nodooc9mX5Cz4hKpJ92EePpS46AMfWEWBoiIN27bp2LpVuy+0s2ePFkVpfod6vUpS0t6wTtPfe//s\n/X9Kikp6ukK3boevvhNuy9aDdU6NITc7/pDLvf4g24qs2BzeiO1rL1NdNf3ef4luX32GRlHYdfmN\nxL74HNr97nRpqYYbbzTz0086+vcP8s477gMCZ+K3QyrmCCGEEEIIIYQQQgghRAeyNob/xX5S/mYA\n3H0HHjaUA5ASb8Jk0IVcct8Xn0j1kOFkrF2Jpbw45LYYPebNBKD+6htIPAqL3umJZoqr7CEtACtG\nE4VjLqLXJ++SveprSkaf1+ztOi1bwInPPoA/Jo7l/3knrFAOgDcxmR8nP0nBmIsY8tKjdP/yYzqt\nXEThmeMpOuMCbD37hn3KudFay4gpfyN5+0Zq+h/Pd1Newhcf2eBPqBJjjBEP5ZSVabjySjONjRpe\neSXyoRzg/9m77+ioqrWP498zfSaTTCa9QxJI6F2lqUhR4drAfu0FOzbsDUXRK3a9FtRXvdgbKIKi\nUqSLgvQWIEB6TybT63n/GIoIIcnMJCDuz1pZE5hz9tlh2iH7d56n3UI5AMlmA7vKG/H42qb905/J\nag2FYy6m+0evk7VgNrv+dREQbCVSUGKhe8e4sMZ/6ik3y5ereO01DcOH+xk8OPzHxucPsGlXXYsr\nKthcXrYXW+jS4dh4DRwrai0uthbVo1Iq9n5Jf7lVoNz3vUJCpdr7dwoJtUqBxxvAYt9bEcfmjlgL\nGLfPT1WDc38ARq1UYDJq9lfVMerVrX49fvKJinvv1eH1Nh0o2BfSSU4O7L098OdYs5c6Tw26qMhW\nyYFgm5sTn3sQWZJY/ugrlA0Z2eS262+4j5g9O0lb+Qs9P3iZDddNjPh8WsK0cwunPDQelcvJrw8+\nvz+Uk2I2kJtuarLNks0GxcUKiosliosVFBUFvy8pCd7uC+IAxMcHuPVWD1dc4SEnp2VhhbzMWHLS\nYkL+uYqrbKFV3ZGk0EM5e/dfddeTxG1bT88PXqGq70AaOndv0a6hvO4S1/xKvycnovD7iL/iV9Zf\ndzebLr6WeJOe+Bgd5mgtCoVEdrZMdraPMWMO7Ot0QkGBgu3bFdTUSNTWBr9qaiRqahTU1kqUlirY\nsuXIr9Hs7ABjx3oZN853UKtDfyBAjSWy4beSahtJZj3Rfwof7Xv/i1Rlnn1Udhv5X/4feV9/gMrt\nwtIhlw3XTcQw9lxMf3rfWrxYyY036qitVXDRRV6mTnVhMER0KsIxQlTMEQRBEARBEARBQFTMEQRB\nEAQhslZsrMDtC2NhUpY5++KT8Wu1rP5uOV2bWRAvqrRSWN4Y8uE6/DSTE59/iA3X3MnWS29s9f4q\nh52z/j0Mn05P9aqN6I3t2cjqgKp6B5tDrFRkLN3N6GtGU92jP7+8+NEh96ctm8egJ+/Er9Oz6Nn3\nqM/vGe50DyL5vHSe+SFdPn8HbWOwQkpjVi67R55L0fCzcCaltnrMmF0FDH3sZqIqy9gz4mxW3fXU\nEasBtSe1UsGALklo1ZGr8mCxwNlnG9i6Vcmjj7qZMCFyVVmOpj0VVnZVhP76bg1dbRX/unwEjVk5\n/PzWNwcFwzKTjOSmHVppoDVWrQpWM0pNlVm40I4pvOHYuKuWGour1ft1zoglPSEqvIMfR1Zvq8Lq\nbJ+WaZGUaNLTtaP5oMoTTfH74ckntbzxhgazWeb5511ERclUVkpUVCiorJT2fh343uM5/LgKhczp\nZ9dz0ZU1GKMjs5jfaeaH9H3zabwGI0snv05NrxOb3UdttTDi9ouJLt3DyvunUjTi7IjMBUCWwW5V\nUFerwtKgwu+TkOVgWzj2rizrK8vo8d7LKB0OCsZeSXXvk1ApFKTGG4g2aIPby1BVJe0P3uwL49TV\nHT6wo9XKZGYGyMyUycgIMHSonzFjfGi1EfvRWqy02sb2I7TIa0tJq5dx6oPXY83oyM+vf72/glkk\nRe/ZwfA7/43K7WLjVRPI+/p/6BpqKT/xFH6f+DRuczxKScIcoyU+RkeCSRdS5TSPB+rq9gV2DgR4\namslduxQMG+eCqcz+Frr3t3P2LE+xo71oo12hFURsinRejX98hKRgcKyRkqqbREdX/J5yfn+C7p9\n+AY6Sx3OuEQ2XTWB3aePRaXRcFK3ZFRKBbIMr72m4emnNSiVMGWKm6uu8kakBZhw9BypYo4I5giC\nIAiCIAiCICCCOYIgCIIgRI7d5eX3rVVhjaGvKuesy4dTMvR0at7+X7MLyF5fgF83VeAP8de9alsj\nZ188FGvm3sX4Vsr57lP6vzaZwvF3ET3liZDmECmrtlZhc4W2wHzyg9eTsnoZP077lsbsvP1/n/Lb\nIoY8PoGASs3iZ96ltnvfSE33EJLXQ8qqpXSYN4u0Xxeg9HqRJYnqXieye9S5lA49HZ+h+UBB8qql\nDHrqTtQOOxuvnMCWy24Ou/pOJPXoGEdCbOQCXC4XXHyxnhUrVIwf7+Gpp9zH0o8bFq/Pz4pNlQTa\naTnnpCl3k7XoBxY+P52aXiccdF8kAi1Tp2p4/nkt55/v5c03Wx+q2WdXeWNoFS0Itufq0ymBmKhj\nI6h2NFU3ONnUBovfbU1ltyL5/cRlpdKlg/mIlXNsNrjlFh1z56rp1MnPRx85m628IsvQ0ACVlQoq\nKiTKymHtZieVlRJrfjNSUaYh2uTj0muqGX6GBUWoGUNZpvsHr9Dt02k44xJYMuUdLLldWrx7dFEh\nw++4BKXHzcIXPqS+S68jbh8IgNWipL5ORUOdivo6FfW1e2/3ft9Qp6KhTonXG/nqdzrn2UhNAAAg\nAElEQVTdwcGbrKx9fw7+XWJi863E2lNVvYOtRQ3t9v77Z72mPUv+1x9QOPpCVt81OaJja+uqGXHH\nJURVlu0PdWnrqjlx6gOk/LEcZ1wCv90/laq+g/bvIwExBg3xJh3xJh1Rusi0lrPZ4McfVcycqWbh\nQuX+albde7k46eQGBp5iJdYc2ep3GYlGLDZ3ZAOJskz60p/p+d6LRJfuwas3sO2i6ykYdxV+vYHE\nWD2d0kxoNUoaG2HCBB0//KAmNTXAe+856d+/7SvjCW1PBHMEQRAEQRAEQRCaIYI5giAIgiBESkm1\njR1hXmGdtvRnhky+nfXX3k30pIcx6ptf/NhWVE95nSPkYw6edBvpK+Yz953vWteiSZY5/YaziS4t\nonDJH5hyO4Q8h0ioaXCyMcRF5rRl8xjyxAR2nH0payY8BkDSmhUMfeQmZIWCJVOmtaiKQaSorRYy\nFv9Ih/mzSNy4GgCfVkfZ4BHsHnkuVf0GIStVh+yX892n9H19CrJSye/3PN1ka66jJS0+irzM2IiN\nFwjA+PE6vvtOzdlne3n7bRfKyBXiOSaE+/pujfiNqxl+9+UUn3Imvz7y0kH3SUDPnHjiYnQhj+/z\nBSsbrV6t5K23nIwb1/qWQOFUx9pHq1bSPy8RTQSrNv3dyLLMqm3V2EMMM7aLQABjeRGmnduI3bUN\nU+E2Ygu3ElVZhtdg5Me3Z2HKz22yPVlpqcTll+vZtEnJKaf4ePddJ7GtfPvxBwKs31GLxRGswuX1\nSHz/jZmvP47H5VSS3cnFtbdWkt+9dW13JL+Pfq8G2xha07JY8sy72FMzWzc5IPn3JZz86E24YuOZ\n9/pXuOKT9t/n88LShSYWzDVRXaGmoV6F3990iEmplIk1+4iN92GO82GO9xFr9qFW711OlkBrbSB3\n9mdoHFZKB4+gsVd/Es3BoIYkHciA7vs+MVE+KHjzdwtN1jW62LS7Dn+gfZfUFR4Pw++4BPPOLSx7\n7FXKho6KyLhKp4Nh915FXMHGYHD38lsO3BkIkPfV+/R8/2WkgJ+tF49n05W3IasOPQ/Va1TEm3Sk\nxhsiFtKpr4fZs9XMmKFi+XIlsiwhKWR69nEw5LRGThpqxRB17AVY4jeupvc7zxG/ZR0BpYrCf13E\n5stuwW2OR69R0TnDtP9zc+tWBddco2fnTgVDh/qYNs1FYuIxHdcQWkEEcwRBEARBEARBEJohgjmC\nIAiCIETKhsJaahtDrwIB0OP9l+n66TSWPvs+eVePO2IlgH1sTi+rtoVeqSdz4RwGPnMPmy6/hc1X\nTmjxfolrVzLsvqspHXEWmk8/Cfn4kRRqWxbJ72PMFaNQO6zM/mQRsTu3cPJD45ECfpY98SaVA4a0\nwWxbJqq8mKz5s+gwbxbRZUUAuMwJFJ32L3aPOhdLThcIBOj99lTyZk7HZYpj2RP/pa5b21X3CYVB\nq6J/fiLKCJVEkGV45BEt77yjYdAgH59/7kQXembkmBWJSlwtJsuMunkcMbu3M+ej+bgSkg+6W6mQ\n6Ns5sUWBwaYUFkoMHx6FSgW//GInI6PlS1VWh4e122tCrhD2Z7FGLb1z41v0Hns8qqx3sCXMgJOh\nvATT7u14jdF4o6Lx7L316aNobekTld2GaXcBsTu3BgM4u7Zh2rUdlevgUJorNh5Hchpx2zZQdOpo\nVj784mEDf3/8oeDKK/VUVSm4+moPU6a4UbfyaRuQZTbtqjvs53pdrYqP301kyfxgT7aTR1i47Ppq\n4uKbD5spPG4GPj2R9OXzqe/UlSVT3sZtTmjd5P6k81cf0OftZ6nL78nC56fjCOhZMDeW776Ko7Za\njUIhE5/owxzvJTbOHwzd7A3emON8xO79c7TJf8SHTV9VxmkTrySqspR14+/FMv5WOmXEolYdQ2Vu\n2kCj3cOGwlq8/vYNhUQX7WTkrRfg12j5+a1vcCamhDeg38/gyXeQvmI+u04fy6qJUw5bTc+8dT0D\nn7kHY3kxtV178+sDz+NIzTjskGqlgv75ieg0hwaFQ1Vea2fFWhu/Lo5m2cIYtm8NVthTqQP0PcHO\n0OGN9D/JhkZ7dGMO0UWF9HzvRdKXzwegZOjpbLj2TmwZ2SgkiQ7J0WQmGVEogq3gZsxQMXGiDodD\n4rbb3Dz0kAdV5P7ZhGOACOYIgiAIgiAIgiA0QwRzBEEQhH86r8+PPyBH9Jfq/0QBWWbZhvKwr6re\n11Jp0Y9r6NY3t8X7rdtRQ73NHdIxlU4751w0FEdiKj/+35wWtz0aNPl2Mpb+TMGH32I+47SQjh1p\ntRYXG3bVhrRv14/eoMf019h25iXkLJqF0uNh+aRXKR94bPxsyDJxW9fR4edvyVz0A1prsDqTpWNn\n3DGxJK3/HUuHXJZOfqvJRbSjRSFJ9MsLL9DxV//9r5rJk3V06eJn1ixHqyth/J2s31lLnTW80F9L\nZf/wJQNeeozNl93MpqtuP+R+rVpJv86JaDWhV5v5+GM1d92lY/BgH19/7WxRlSO3188fBdW4vZFr\na5KZaCQ33RSx8f4uZFnm961VONytr1i0j+TzMubK0zHUVBw6viThNRj3B3aCoZ0YvFFGvFF7b40x\nqBx2YguDQRxjRclBYwSUKhqzcrDk5NOQnY8lpwsNufnBAEsgwPA7LyV+63oWPv8/anqdSEaikU57\nH8tvvlFx++06PB546ik3113nDalSy5Y99VTWH7la1dZNet5/PZldO3To9H7Ov6yWMefVo9Yc/lxA\nZbcyZNKtJK3/nareJ7Hs8f/iizK2fnJ/JssMeOFhTD/9wlPZr/Fu7cVYG1VotQFGjGngrPPrSEgK\n/bEG0NVWMWziFUSXFbHlmjvgwYci2pLwWOdweVm/sxZXBN9/WiJn9mf0f/UJqnqfxKL//B/hlITr\n/eYz5M2cTmXfgSx5ahqyuul2fiq7jf6vPk7Wwjl4DUZW3TWZklNHH3Zbo05N37yEiIVu/3o+W1mu\nZtkvMSxbGE3x7mD6Vqf3M2K0hbMvqCMuIbzndmtp66rp/tHrZH//FYqAn5ru/Vg3/p79Yei4aB2d\nM0zotcH/Vy1frmTKFC2//64kKkrm1VddnH12+85ZaB8imCMIgiAIgiAIgtAMEcwRBEEQ/smqGpxs\nL24gPkbXZCsIoWUabG7W7qgJbxBZ5pwLBuGNNrF17go6pDT9C96/qrE42bgrtDZOAAOn3EXmorn8\n9OYMLLldm91eX1XGv64chSWnC87Fy1Cpjp2WMGsKqve3HWmNwmUuvn7Cyx/0ZSAr6XqqguxxqeTm\nuVAcOz8eAJLXQ+pvi+kw71vSVi5C4fNS0W8wKx59GV9Uy5837SU3zURmUpiLz3vJMnzxhYoJE/Sk\npQX4/nsHaWnH9HJH2OoaXawvDC1w1lpKl5Oz/j2MgErNnI8WENAcunhr1Knp0zkBlTK0hVhZhquv\n1vHDD2oee8zFbbcducpVICCzdkcNjSG8rpvTrWMcSf+ggAEEK1JsK24Ia4yMRT8waMrdVAwYSl3n\n7mjsVtR2K2rb3tu9XxqbFbXDdsSx3CYzDTn5NOR0CQZxcvKxZuYe9rm3j3nbBkZOuIiG7DzmvfE1\nslJFZmI0Mz9NYOpULUajzDvvOBkxIrQgxc5SC8XVR573PgE/LJhr4tP3E7E2qkhN93D1zZX0PdF+\n0HbaumpOeegGYgu3UjL0dFY+MJWARhvS/P6srkbFnC9MzP82CodsIEbj4PSLHJx5bj0xpvCDJNr6\nWobdcyUxxYXsueY21FOeRH0Mfea3F7fHz/rC2vZt/ybLDH58Aukr5rP+urvZdvH4kIbpNPND+r75\nNJYOuSx86RO8xpgWHbvDz9/Q77UnUbmdFI6+gLU3PYhfbzhk00STnu7ZcSHN7c/cXj+/bqqgqU/0\nol0alv0Sw+KfTdTWqFGqZE4dZeHci2pJTW/jx0WW6fLZ23T99G1ULgfWjI6sv24iZYNHgCShUyvp\nlG7aH1hbt07B009rWbgwGNAZPdrLpElucnKO7/OVfzIRzBEEQRAEQRAEQWiGCOYIgiAI/0Ren5/t\nJRaqGpxAsJrFiV2TRNWcMOwqb2RPZXjnFIbyEv511SiKTh2N673pmKNbvmAnyzK/banC6QntKtz0\npT8xePIdbL34ejZcN7HZ7fe13Nr+2HPE3nZjSMdsK/VWN+t2tjwkVVWu5qP/S+TXxcGFqu5sZIvU\njYAcDB1ERfvp2cdO7wF2eve3h115INLUjQ3EFWykqs9JyKrIVaSJlLhoLb1yQ2/Tss/OnRIzZ6r5\n9lsV27YpMZlkZs1y0LVr+7YXOVr2VFipsThDatXWWr3enkr+V+/z6wPPUTz8rMNuExetpUdOPIoQ\nW0HV1kqceqqB+nqJuXMd9OzZ9OO4dU89Fc1ULgmVUiHRPy8Rg+7Ye+20hYAs89uWSlye8AIbw+6+\nnMSNq/nhve+xZWQfeWO/H7XT/qfQTiNqu42ASo0lJx9XXGKLK7X92YAXHib7xxn8cdsjbDnjct58\nMYVlC01kZQX48ENnyO8NRZVWCssbW72fzargi+kJ/PSdmUBAot9JNq6+qZKUdC+GylJOve8ajOXF\n7DzrYv649dGwqp8AlJWomfVFPIvmmfD7JOLMbu71PMMt9hdZ/8SzlA8Kv9qbprGeU++9mthdBdRe\nezOBZ/4T0mN1vPD6AmwsrA0p/BsqjaWe0288F62lngWvfEp9Xo9W7Z+6YgFDHr8NlzmeBa98hiM5\nvVX7G4t3MfDpiZh3bqExM4dfH34RS07+Idt1TImmY0oLAj9HUFJtY0eppdntfF5YssDEN5/HUV6i\nRVLIDDrZynmX1NIxN7Tqkc3Z1/bVFRvPpitvY9eZ5yOr1CgkiYxEIx1SjCgVCgoKFDz7rIbvvgt+\nppx8so+HH3bTr98/41zln0wEcwRBEARBEARBEJohgjmCIAjCP011g5PtJQ14fAf/gjgjwUinjGO/\npYfL46PW4kKpVJASd+hVu0fLHwXVYVdzyFg8l0FP3cX6G+4lafLDrW4LUFJlY0dZ8wsah6Nwuzjn\n4qF4omP5fvrPR1x4U3jcnHXZaRAIUL5qE1Hm8BZi2kJVvQOrw4vd5cXm9B7yfAdw2BXM/CyeOTPM\n+LwKOndxctX1pfROKaZan87GtVGsX21g3Woj1ZUHFu3TMtz06h8M6XTv7UCnP6Z/1X5UqZUKBnRJ\nQqsObQG6qEjim2+CYZwNG4JjaLUyI0f6uPNOD717//MWutwePzWNLmotLhpsbgJtsNQTVVbE6GvO\npLZrbxa+/GmT26XGGcjPCr3a2oIFSi65xEBenp+ff3agP0zhmuIqGztDfF9rKYNWRb+8xJArAP2d\nlNbY2V4SXrUc086tnH7zWCoGDGXJ0+9EaGatp62vYfQ1oymXUhmVtpqC7dHkd3fw2uuN9OkWFdKY\nkagmVLRLy/tvJLFpXRQqdYCzxtbx4sZxZG9eEmwRd+WEsMIthdu1fPNZPCuXRiPLEqnpHs69qJaT\nRzSSuGcjp919ObJCwYJXPqOxY+fWH0CWiS7eRcKGVXT67hNiC7dhv/p6HM++8I8O5ezjDwTYvLue\n2sb2aS8IkPTHck594Dqs6R34+Y2v8etb9vw2F2xk2MQrAfjlhemtDvXso/B46Pl/z5M380P8ag3r\nbryPnWf/+5DnQ7gVyFp7Lh3ww2/Lopn5WTy7dgTbXPU90cbYS2vp0t0Z8jz+SuHxcMb1/8JQU8nc\n/5uDPTUTgFijlrwMEwadmuJiieef1/L556pgMK+fn4cecnPKKe3b/kw4ekQwRxAEQRAEQRAEoRki\nmCMIgiD8U/y1Ss5fKSWJgd2Tj8n2BI0OD7WW4EK0bW8LAa1KyUndk0Ou1hBJPn+AZRvKmyy931I9\n332eLl/8H7+9+jHZl5wd0jxWbKrAHwhtJidMvZ+O82Yx/5XPqOvau8ntsuZ9y0lTH2D3v28g6uXn\nQzpWe/N4/dicwZBOo93HzK90TH83DkuDivhEL5ddX8WQYdbDrjnKMpSXqlm/Ooq1q4xsWmfA7Qou\n4CtVMl26O+jVLxjU6djJTSvzVMe1HtlxJJhat0hXUSExa5aKmTPVrF4dfD9SqWROO83Peed5OfNM\nH9HHXreuo8LnD1BvdQffHxtdeP2RCyoNefQm0lYu4uf/fkVDXvcmt8tJjSErOfQH5KGHtLz7robr\nr/fw9NMHVzqoa3SxobA27PfWlohUK5ZjWSAgs3JLJW5veAvF/V96jJwfvmTp5DcoHxisyqKQJJQK\nCZVSgUopodx7q1Yq9n8fvE+BShG8v7jKSp01vOoW8js/cu+X51FEB04ZaeHGOytQa2Q6pZvISGxd\n+7yaBiebdtdF5Pkmy/DrkmimT0uitlpNGqXc3elTXLedj1YHWm0AjVZGs/dWrZaPmHmRZdi0zsC3\nn8exbnXw58ru5GLsJbWcOMR6ULvFfW3GbKmZzH/tczwxzYTn/H5Mu7eTuP53EjesImHDKnSWA60x\nnVdcg+25lxAfbgcEZJmCooY2q+R1OL3efo78r96j8MzzWX33U81ub6gsZcTtl6BtqGXZ4/+lfNDw\nsOeQ+utCTnjhYbSWekoHjWDVxCcPen4pJYm+eYkY9a2vQOZ0+1i5pTKkeckyrFsVxcxP49myMRja\n79rTwdhLa+nd3x52nqzzjP/R563/UDD2Stbd/CBalZKc9BiSzQaqqiReeUXD//6nxuOR6NLFzwMP\neBg92idybP8wIpgjCIIgCIIgCILQDBHMEQRBEP4JahqcFBymSs5fdUiOJjv16Fc/CQTk4GLz3qoQ\nbt/hFxG7d4wjMYwrcyOleu9iXrhOue8aktf+ym+LN5PdJSOkMXaUWCipsYW0b8pvizj5kZv2Lzw0\nZfiEi4kr2MD2eSsx9+wS0rGOlkWLlDz2mJYtW5QYDDI33+Lk4sut+GXv/uBOc+EGnxcKtuhZuyqK\n9aujKNx+4DkYbfLRraeD7n0c9OjtID3L849dmEmLjyIvM7ZF29bUSMyereKbb1SsWKFEliUUCpmh\nQ/2MHetjzBgv5tALs/wjyLJMo92zv5qOwx1ey7Xk35dwysM3sOuMcayaOOWI24ZTJcHphNNPN7Bt\nm5LPPnMwfHjw/d7h8vJHQQ2+QPtVRepmLaXzy09hv/dBfAMHtdtx20tL28Qcidpq4ax/D8NlTmDx\np/Pp1TkJlUpqdYU3CFbAW7W1OuTHeNUKI6/+JxWXU8lTPMwJr/fH0rnb/vvzMmJJS2hZZRGLzc26\nnbURr0Cl2FPO2ptW8Jz/btzomtxOkuT9QR2tVj44uKORsTYq2b0zuH/33nbGXlJLz36OJj9fun/w\nCt0+eYuq3iex+Jl3DmpzKPm8mLdvJmHDqmAQZ9MfaGwHWnc5EpKp7X0C2tOGoRp2Kv68Q9sWCUE7\nSy0UV4d2ztVaktfDiDsuwbxjC8sffYXSk09vclu1rZHT7roM054drLnlYXacd3nE5qGrreKk/9xH\n0rqVOBJSWPTse9gyD7Sz06mV9MtLRNPKSnl7Kqzsqmh9C7m/2rpRz8zP4lnz25EDbC2ltjUy+qrT\nkQIB5v7vRxJzMumYGo3dpuCNNzRMm6bB4ZDIygpw331uzj/fF26XOuFvSgRzBEEQBEEQBEEQmiGC\nOYIgCMLxzOsLsKOkgcomquT8lVqpYGD35JAW2MLl9fmp2Vv1ob7Rjb8Fv740G7X07pTQDrM7soLi\nBspq7eENEghw7vkDcZkTKF7wa8iL3A6Xj9+2hnbFseT1cM4lp+DXaJn98cLDXh1v3rqekbdfTMXg\n4UgzZx4TFYtaYscOiccf1/HTTyokSebSS708+KCH5ORDn2e7KxrZXdHy88PGBiXr1xhYvzqK9X9E\nUVdzYAHUFOujW28H3XsHgzqpGcdOUEcCks0G0hOjKK22R/TK/yidmn55CUd8L7FY4PvvVXzzjZrF\ni5X4/cF/mIEDfZx7ro+zz/aRlHRML2Mc0xwu3/5wo8Xubn0VkECAM68djaG6gu+n/4wrPqnJTRWS\nRO/ceExGbUhz3bBBwZlnGjCbZeb+1IhbtlFe62jXUE7s9k2c8sB1aK0W3P86h8b3P2q3Y7cHfyDA\nys2VzQZ0m9P5qw/o8/azrLv+HpT33kOyObyWkmU1dgpa2VpLlmHO12Y+fCcJtUbm4QsW8tjHI6np\n3o+FL350UHudLlnmZtte2pxe1m5vgxCYLHPyg9eT8sdyvhn/Bp97L8DhUOBxK3C7JDweCbdLgdcj\n4XYrcLsUeDzSwfe7FciB4M9zwmAr511cS+euLWihFAgw6Mk7yFg2jx1nXULxsDEkblhF4vrfid+8\nFpX7wHmhLS2L6p4D9n6dAB060DM3Ab1WFdl/j+NUUaWVwvLwAyUtEV1UyMhbzyeg0fLTmzNxJqUe\nso3k9XDyIzeSvOZXCsZewbqbH4r8RPx+un46jR7TX8OWmsmClz/FbY7ff7cpSkPvTgmtOkf8fWsV\n9r1VMSNh1w4t33wez6+L97Z8y3Bz3sV1nDzcgqoVBX32VbNcf/1EvHfcTUJ0NO++q+G11zRYLBJJ\nSQHuvtvD5Zd70WgiNn3hb0gEcwRBEARBEARBEJohgjmCIAjC8aqmwcn2EkuT1Waa0inNREZS69o/\nhMrh8lFjcVJrcdHo8ITUPuLELskYdEd38Wjl5kqcnvCqUxhLdzP6mtHsGX42yg+no23llcZ/tqGw\nltrGFizcHUb/lx4l54evWPj8dGp6nXDI/SdMfYCO876l4K1PMI87K+Q5tpf6enj+eS3vv6/G55MY\nPNjHk0+66dmz6QXYQEDm961VIT2msgyVZWo2rjOwaZ2BTeuiaKg78Pw0x3kPCuokp3mPSlAnLlpL\nTprpoHYTFpub7SWW/e3iQqWQJPo10crC44H581V8+aWKn35S4fEEf/h+/fyce66Xc87xkZ5+TC9d\n/C1tK6qnvK71wavsOV8w4JVJFJ96Jr8+/NIRt1UrFfTLSwx5Mf+5FySee9bICYOt3DOptF1fF+at\n6znlofGo7VZ8UdGo/F5qNhdCVMuqrfwdRCQ8EAgw+poz0ddWMe/LJfQdmI8UgQdq7Y4aGmwta2kl\nyzB9WhJzZsRhjvdy/xMl5OS5GTT5djKW/szK+6dSNOJAK0gJ6NLB3GSAyOn2sXZ7TavPlVqi4w9f\nccJLj1J+4iksffItQnlSyzL4fSDLCtSa1gWHlE47w+/8N7G7Cg76e0uHXGr2hnCqew7AlZC8/75Y\no5buHeNQq0TbqtaoqHNQUNwQ8YpLh7Pvfbmq94ks+s97HFSeRZYZ8OIjZP84g9JBI1j+2CscrnyL\nUiGRaNKTHGfA5fGxrbh14bh9uk1/je4fvUFtl1788tz/CGgPVIVKjTOQn9WyUnc2p5dV26pCmkNz\nykrUfPt5PIvnm/D7JOISvGRkeVCpZZRK+aBblUpGpQq2z1SqZPTuRrrM+h8KvZqiy68hPjaO99/X\nUFWlIDZW5rbbPFx3ned4+qgQwnCkYI6IOQqCIAiCIAiCIAiCIAjCcai1VXL+qrjaRlpiVJtXQvF4\n/fxREHoLi33Kau10SjdFaFat53T7wg7lAJgLNgFg7dqT5DBCOQDpCVEhB3OKh40h54evyPzl+0OC\nOZqGOjIXfY81oyNR/zojrDm2Na8XPvhAzXPPaWlokOjYMcCkSS7GjPE1uzaqUEh0zjCxvrC21ceV\nJEhJ95KSbmHkGAuyDOUlmv1Bnc3rDCxbaGLZwuBzNj7hQFCnSw8HsWY/ekOgzUIJRp2anLQY4mIO\nbaliMmrpl59IabWd3RWN+AOhLTDmpMYcFMqRZVizRsEXX6j55hsVdXXBBd8uXfyMG+fjvPO8dOwo\nwjhtKTnOEFIwZ9foC+j480wyF81lz4hzKB94WpPbev0BNhTW0rdzAmpVy97DfP4AlXUOSmvs9B/m\no/vcTH5fHs2CuSZGjA6v5VJLxW9aw8kPj0flcvLbvf8hpriQrp9OQ7NgHp6zz22XObQ1nz9AcVX4\n7XZSVi3BWF7MrjPGkZqXGZFQDkB+Ziyrtla1qFLe9zPNzJkRR0YHN488U0xcQvDzd90N95P622J6\nvfMcZYOG4zMEV8plYFtRAwpJOqT1pcfrZ/3O2jYJ5eirK+gz7Vm8BiOr73gipFAOBHeL0ivp0zmB\nqnoneyqtLQ5/+PVRLHviDfq8+Qz2lDSqe55ATY/+eGLjDrt9apyBzpmxf5tKeMeSlDgDaqWCLXvq\n27zS164xF5KyagkZy+aR/+V7bLtk/P77un7yFtk/zqAuvycrH5h6UChHAszRWpLjDCSYdPsr2smy\nhrIaO1Zn60O5m6+4DWN5MR3mf8dJz97Pikde2l9tsbzOQZRO3aKwf1V9aP9naYm0DC83T6zgwitq\nmP11HPN/iGX9Hy1N0sQDj4MdmBb8G4NB5q673NxyiwfT0fvvh/A3IyrmCIIgCIIgCIIgICrmCIIg\nCMeXGouT7cWtr5LzV/mZsaTGt+3ln1t214UcHvqzo9l+C0Jrw3E4vaY9S/7XH7D2na9IP/f0sMf7\nbUslDnfrA0OS38dZlw4DWWb2Z4uQlQeu8ezy6dv0fP8ldkychOn+iWHPsS3YbMH2SC+/rGHHDiUx\nMTJ33+3muuu8aFvZZWfT7jqqI/Ac/TNZhtKivUGdtQY2rzdgbTz4OlqFQiYq2o8x2o/RGCDKGPw+\nKjoQvN37Z+Of/hxj8hMT629y7VenVpKdGkNyMy1d9nF7/Owos7T654+L1tIrN9herrhY4quv1Hzx\nhZqdO4Ovz4SEAOef7+Oii7z06NF2ASThUL9uqsDlbf1nQ8yuAkbdcj6uuETmvvsdfv2RPxtMURp6\n5yagUDT94DpcPspq7FTUHdyuqqZKxT03ZuP3SUx9axep6ZFra3I4Cet/4+RHbkbhcbPywecoOXU0\nsQWbGHXbBbjGXYj1rf9r0+O3lz0VVnZVhN9qZ+jDN5D6+xIWT5tJ/nnDIxrgKL6AIjEAACAASURB\nVKm2saP0yGGs35YZeWFyOrFmH1Ne3UNC0sGfcd2m/5fuH73O1ouvZ8N1B39GKSSJ7h3jiDcFQ4k+\nf4B1O2pCCiM0S5YZ+uhNpP62mFV3TWbX6AtDHkohSfTpnECMIdgjx+n2saPUEnL4tik5qTFkJTdd\n7UFoGZ8/QGW9k7Iae0TbMv2VprGe0288D21DHQte/oT6/J5kzf+Ok569D3tyGvNf/Ry3OfhZbNSp\nSY4zkGTWN1mNsd7qZt3OmpDmovB4OPmh60la/zvbLriW9Tfcu/8+CeiZE3/YMPCfhfr5FIpAAPw+\nCb8ffF4Jn1/C55Xw7731+ST8PtDt3kOf5ydRn5LLpolTyEyKxe+HE0/0izabwmGJVlaCIAiCIAiC\nIAjNEMEcQRAE4XgRaquSwzFoVZzQJSliV8P/VTgLAIfTHkGipkQqvDFs4hUkbPqDjSsLSOmQFPZ4\npTV2tocYGOr73yfpNOsTFj3zLlX9hwDBwM6YK09HY7VQvHIjxtSEsOcYKW43LFyoZMYMNT/+qMLp\nlFAqZa680su993pISAjtV+Fuj5/ftlaGXDmmJQIBKNmjZeNaA4XbddisSmxWBXarEptNic2qxO9r\n2evQFOsjJ89FTmcXuXkucvJcJCUGyEo2kpFoPGJQoil1jS52lFpaFPJSKxXkpyfx01wtX3yhZvny\nYOBIp5MZPdrHhRd6GTbMj0rU8z8qCssaKaoK7f893d9/mW6fTqNg7JWsu/nBZrdPitXTreOhVTlq\nLS5Ka+zUWZsOFSxbGM0rz6TTKd/J5Jf2tNnzJemP5QyZdCsKv58VD79I2ZCRwTtkmTFXjUJvt1K7\neSetTvQdY7y+ACs3V4ZdxSOqdA+jrx1Nbdc+lHw5h/TEyLe8XLO9Govdc9j7dmzT8fg9WUgSPPHC\nHnI6H9r6Sulycsb1/0JfV8OP78zClt7xoPsVkkSP7DhijVrWF9a2uH1Wa2XN+5aTpj5AZd9BLP7P\n/4VcLQegaxNtuGoanOwotYQdZlBKEl06mA+pJiSEr97qprTGRq3FFVKr1uYkrVnBKQ9chy0ti7U3\nP8jgJybg1+hY8PIneHLzSTIHW1Udrq3k4WzcVUuNJbTAl9pqYfgdlxJTsovVEx6j8OxL99+nUgTb\nHDbVdtZic7NmR+T+TxARsswpD1xH8poVLHrmXTIvPY/oveE4QWiKaGUlCIIgCIIgCIIgCIIgCP8A\nPn8gYqEcAIfbR43F1SYLNQFZDjkw0pSyGsdRCebIskyDNQILe34/sTs205iZgzHJHP54QEqcnt3l\njXj9rV+MLRo2hk6zPiHrl+/3B3NSVyzEUF1O0XmXHROhHL8fVqxQMmOGiu++U2OxBBc+c3MDjBvn\n4YILvGRnh7cUptUo6ZgSw86ytmupo1BAVrabrOzDP49kGdwuCZtViX1vUMduVewP7dhtCmxWJfW1\nKnbv1LHmNyNrfjuwYJ6UFKBPnwC9evnp08dP794BkpNb/u8SF6NjgFFLcZWNokrrYVvN+P2wbnUU\n61cksmC+Fpcr+FgMHhysjHPWWT5iYlr5DyNEXJJZH3IwZ8tlN5O5eC6dv/2IouFnUZ/f84jbVzU4\n0ZU1kpMWg88foKI22K6qJW3/hpxmZfVKC0sXmJj2Uio3Tywn0gXRUn5bzOAnJgCwbNKrVJw07MCd\nkkTJkFHkf/0BmiW/4Bl5bLfta05JtS0irXVyZ3+GJMvsGXsFGW30eZufaWb1tkNbWlVVqHn20Qy8\nXon7Hi85bCgHwK/Ts+7GBxj85B30fus/LHvyrYPuD8gym3bVEW3Q0GBvm1COtq6avm8+g09nYNVd\nT4YVyslKij5sKAcgIVaPOUbLngobJdW2Fre3OmiuKiXdc+L2V+MRIsscrcUcrcXp9lFWa6ei1hHS\nOVlTqvoOYtsF19Dly/c4+ZGbCChVbJ06jezTTsIcrW11uD43zURdozuk55I32sTSKdMYfvsl9Hv9\nKRzJaVSceCoAvkCAjbtq6ZeXiEp56Jt5ZRu2sQpV8uplJK9ZQcWAoShGjhKhHCFsIpgjCIIgCIIg\nCIIgCIIgCMcJWxu0YiiqtLVJMKekyhZSi6UjsTo9NDo87b64ZHV6I7LIEl26G7XTQUN+zxZf2dwc\npUJBSpyB4mpbq/et7dYXR0IK6cvm8ceESQQ0GjrN+gQA13XjOVrX1csyrFun4Ouv1Xz7rYqKiuAC\nT0pKgH//28v553vp2TOy7ZHSE6OorHNga8OWFEciSaDTy+j0vkPathxOY4OSuvIYqkpi2LRRxbp1\nSn76ScVPPx1YEkhJCdCnj59evYK33bsHUCqDlYdcLgmX68D3B/7OjNVmorjSRUOjH69HwuOWaGxU\n8vvyaCz1wfE7dfJz4YU+zj/fS1bWMV20/x/HqFdj1KlDei4HNFpW3/EEw+67mgEvPca8/36BrDry\ne1VRlRWHy0u91X3YQNeRjL+9ksoyDYt+NqHTB7j21sqIva5TVyxg0FN3gqRg2eOvUzlgyCHblA7d\nG8yZPetvHczx+vyUhPAZ8FdKp4PsH2fgMieguGBcSNW3WsKgU9Ex9eAwpN2m4JlHMrA0qLj2tgr6\nD7QfcYzSoaOo7DOQtJWLSFn5y8GhK8Avy20WykGW6ffaZDRWC3/c9giOlPSQh0qI0ZGdeuTWUkqF\ngpy0GFLi9BSUWFpVAcioU9MjJw6dRiwXtzW9VkVumomOKdFU1TsprbZH5JxCKUkU3XIvGRt+w7h1\nI40vvkrqhWeFNc/0hKiQzhsB7KmZLJv8BsPuvYpBT93Nwhc/pKFTNyAY+N+8u56eOXEHBYYCshzx\nlqFh8/vp9e7zyJLEpuvvIT9NJIuF8Il3WkEQBEEQBEEQBEEQBEE4TrRFMMfq9FBvdWOOjlwbD5fH\nx56KtmkhWV5jJyarfYM59Y2RWdwzF2wEwNWzN4e/Nj406YlRlFTbWt9CQaGg+NQzyf/6A5JXL8OW\nnkXy2l+p7nMSphP6RnCGLbNjh8SMGWpmzFBTWBgM48TGylxxhYdx43wMHOhHqWybYyskic4ZpmOv\nzcJhxBq19M+L2Xtlt2/vF1RVSaxfr2DdOiXr1gVv585VM3duKEc5tFJGjMnPtde6uegiH337RjYY\nJURWklmPrTy0z4vqPiex64xxZP84g84zplNw0XXN7lPTGFpbFL0hwINPFfPEfVn8OMuM3uDn39eG\n/xpMX/wjA5+5h4BKzdIn36S6z0mH3a62ax+ccQlofpgDz7/C37X/WlGlLSKt+LIWzkZja2TrFbeS\nmhobgZk1LSMxiuoGJ40ODz4vPP9EOqVFWv41ro4zz2lBtT1JYu0tDzHqprH0efMZfuo7mICmfc4N\nMhbPJWPZPKp7DmDnWZc2v0MTonRqunQwt7jiiUGnpk+nBCrrHRSWNuL2Hbm9VXyMjq4dzIetXiK0\nHaVCQWp8FKnxUTTY3JTW2Km1uFpUoUanVmLUq4na+2XUqdFrlUiShGvOXLyFO/H1Dv/8rENKNBV1\noVf2qevam5UPTGXQk3cy9JGbmP/q5ziTUoP3WV0UljWSm27av32D1R3RKkKR0GH+LGILt7F71HmY\nBp+AVt1GJ5jCP8rf8yxCEARBEARBEARBEARBEIRD2NsgmANQVGmNaDBnR6ml1ZUTWqqq3kluuqld\nF5rqW3F1+pHEFWwCINCnX0TG20enUZFg0lNtaf3VyMXDxpD/9QdkLvoBrzF41X79FddhbqNKCX+1\nZ4/EnDkqZsxQs359cFFEr5cZO9bLuHFeTjvNTzuttWIyakkxG6ioj1y7uEjrmmUmOe7wsa6kJJmR\nI/2MHHlgsbayMhjWWbtWydatChQK0GpBp5PR6UCr3Xd78N/p9cFbtUamweHA6rJz9sgY4kyRqfQk\ntK1ks4Fd5Y2tD+vttX78PaT++gvdP/wvpSefjj01M6Lz+zNjTICHnylm0t0d+OazBPT6AGMvrQt5\nvMwFszlx6gP4dTqWPDWN2h79m95YoaB08Eg6zf4M9YpleE8+NeTjHi1ur5+ymiNXl2kRWabTrE8I\nKFW4r7oWZaT7iv2FJEnkZ8Wyams1015OYdO6KE4cYuWK8VUtHqOxY2d2nPtv8mZ+SOcZ/2PbJePb\ncMZBmoY6+v73KXxaHb/f/RSh9l9TKxX0yI4L6Vwm2WwgPkbH7nIrpTWHD+VmJBjJTY9pdZsjIbJi\njVpijVrcHj9ltXbKaux4/QGUkoRBp8aoVwUDOHu/jvR8kKNjIhLKAVApFXRMjQmr5Wzp0NNZN/4+\n+rz9LEMfvYmFL36MLyrYYrO42kaUXk3K3vOVqmOsjZXC7aLHB6/g12jZfv1d9Exq/za5wvFJBHME\nQRAEQRAEQRAEQRAE4Thhc0a2NdQ+9TZ3xFpE1Vpc1FhCq57QEn5ZpqLOQUaisc2OcdDxAgEa7Z6I\njGUu2EhAoUTdv09Exvuz9MSokII59Xk9sKVmkr58PrIEjoQU9OefF/H57VNSIrF0qZJly1QsX66k\nuDi4CKVSyYwa5WPcOC9nnOHD2D4P7yFy02OobXQdc1d2A2SnxDQZymlKcrLMqFF+Ro06cmWFI9Ph\n82tE1YW/Ea1GicmobVXLmz/zxJhZe/ODDPzPvfR79QmWPP0ObVkiKdbs59Fni3js7g58+n4SekOA\nM89t/YJxh5++4YQXHsJrMLLk6Xeo69q72X1KTz6dTrM/Qztn1t8ymFNUaY1IEDZh42piC7dRcupo\nkrrnRmBmzYvSqZn3bSqLfo4hN9/JhPvLULSyaMXmK24ja8Ecun3yFntGnoMrIbltJrtX3zemoLPU\nsfaG+7GndwhpDIUk0a1jHHpt6Eu4KqWCThkmkuP0bC+x0OgInqdIQKd0E+ntdI4ktIxWoyQ7NYYO\nydG4PP79VXCOprR4A2U1duxhtNvafv5VGMuL6PTdpwx66k6WPvnm/vaHBcUN6LUqovXqkM5P21Ln\nmR9iqKlky8XjSe2T3+ZBROGfQzyTBEEQBEEQBEEQBEEQBOE4IMsyjjB+ed6c4kpb2GP4AwG2l4Z+\n9W1LRaQ6QAtZbJ4WtR9ojuT3EbtzC40dO2OMi4nAzA4Wa9Ri1IVQzUSSKB42BpXLgdrpoOLCy9EZ\ndBGbV3m5xJdfqrjzTi0nnBBFv35Gbr9dz+efq7HZJMaM8fLccy42bLDz8cdOzj//6IVyANSq4OLZ\nsSYxVk+HlOijdnwRyvn7STbrw9q/+LR/UTFgKCmrl5G1YHaEZtW0hCQfjz5bhMns473XU/jlp9a9\nDrO//4ITXngIjzGGRc++36JQDkB1zwG4o02oZ8+CwLEXyDsSl8dHeW1kKnx1mvUxAI1XX99ur/cv\nv1Qx7fUYklO93D+5BK2u9Z+1XmMMG669C5XLQa93X2iDWR6QtmweWb98T23X3mwfe0XI4+SmxUSs\nSmG0QUO/vETyM2PRaZT0zIkXoZxjmEIhYdCpjnooB4JVq3LTwjzf2dtSruykU0lZvYx+r02GvefM\nAVlm8646ymrsEWm1Fymahjq6fvY27phYyq65lWRzJJvLCv904mxZEARBEARBEARBEARBEI4DTrev\nzdpDAdRYnGEHf4oqbbg84VTmaBmH20e9NTLtpZpTF6HjRBcVonK7sHXr1WZX5mYkhbYYV3zqaAD8\najXy1deGNYfKSokZM1RMnKhl4MAoevc2cuutej75REN9vcSZZ3p58kkXCxbY2bLFxgcfuLjqKi/x\n8cfOok1qvCEi1aMiJVqvpktW7NGehvA3kxirRxHO4q8ksXrCJHxaHX3eegZNY33kJteE1HQvj/6n\nGGO0nzdfTOXXJS0Lo+XO+pgBL0/CExPLoqkf0JDXvcXHlFVqygaPQFVViWrV76FO/ajYU2GNSHBU\nV1NJ+tJ5NOTkE3v6aRGYWfOWL1dy5506YmJkpk+3ExcXeihq9xnjqMvrQYcF3xG/cXUEZ3mAurGB\nfq89gV+t4feJU0DZytI+e6XFR7VJcCY1PoqB3VKIi4lcsFY4/sXF6IiLDu85IytV/PrQC9R36krO\nD1+R//m7++9z+/zsKLOEO82I6vbJW6gdNjZfdgsd8jOO9nSE44wI5giCIAiCIAiCIAiCIAjCccDm\nbLtqOQAyUFwVetUch8sX1v6tVVbbPlVzGiIUzIkr2AiAp1fk21jtkxJnYFD3FHrlxJOTGkNyrB6j\nTt3s4rwlO4/C0Rey/Zo7iMlu3SKFLMOCBUruvVfL4MEGevY0ctNNej78UENVlcSoUT4ef9zFvHl2\ntm2zMX26ixtv9NKjR4BjtXOAJEl0zjBx9K9nB41KQffsONFmQWg1lVJBfJiL9I7UDDZdOQGtpZ5e\nbz8XoZkdTOF2gf9AoDMr281DTxej1QZ45Zk01v4edcT9O3/1Af3++xQucwK/PPc/LLldWj2H0iEj\nAVDP/rbV+x4tTrePyvrItIfJ+f4LFH4fdZddi1odenulltq+XcFVVwUrOr3/vpO+vZVkhhgsBUCh\nYM2tDwPQ9/UpBz2fIqXPtGfR19Ww6YrbsGaF1uorNkpLpwxThGcmCOHplB4TXogT8OujWPrkWzgS\nUuj13otkLpwTodlFVlTpHnK/+xRbaibWy6/GFHXshLCF40Pbf4IKgiAIgiAIgiAIgiAIgtDmbE5f\nmx+jst5Jx5QYtJrWXwm+vaQhIlfut1StxYXb60erDu2q9ZZwe/3YItQ+zLw3mEP//hEZrylatRKt\nWnnQVfMBWcbh8mFzerE7vdj2fnn9eysUSBKr75pMp/SWLxjKMvz4o5IXXtCybl3wMTAYZIYP9zFk\niJ+hQ3307BlA9Tf9DXW0QUNaQhSl7dg27a8UkkT37Hh0mr/pP6Jw1CWb9VRbwgtvbB93JVkLZpP9\n00z2jDiH6r4DIzI3hdtF72nPkjvncyRZxqs34I2KwWuM5rSoaPI6DuWybVN54dFk3hn2Kr1zKvBE\nxeCNMuI1Bm+TVy+nx/TXcMYn8cvUD7BlZoc0l8p+Q/AaolB/9y3OJ6bAMdBmpjm7I1QtR/J6yJ3z\nBR5jDNorL4vAzI6sulri0kv1WCwSr77q5OSTgyGaDinR1FpcIX/m1nXtw+5R59Hx52/I+eFLCs+6\nJGJzTvltMR1//oa6zt0puPCakMbQaZR0zzaHHYAQhEgz6NSkxhvCPt9xxSexZMo0ht/1b054/iEc\niSnU9mjbc97W6vn+yyj8PjZedzfZHRKO9nSE45A4YxcEQRAEQRAEQRAEQRCE44A9QgGRIwnIMsXV\ntlYFNACq6h3U29qntdQ+AVmmotZBh5SWtToJRaSq5QCYCzYRUKnR9u0dsTFbSiFJGPVqjHr1QX/v\n9vr3B3XsLh8pcYZmxwoE4PvvVbz4ooaNG5VIksw553i5/nov/fv7UaubHeJvIzs1hpoGF25f27dn\nO5zOGSZxNbcQljiTDrVScSCEFwJZqWL1XZMZcfvF9H9lEj9N+5aANrxKPDG7tzPw6YmYdm/HmpaF\nMzEFtc2K2m5FX1tFTNFOzg/8gYECzuVbbl1wA/MXjOAEVh0ylj0plUVTP8CelhXyfAIaDeUnDSNr\n4RxUG9fj69n+79Ot4XB5qap3RGSsjKU/o6uvofSy8WhMMREZsylOJ1x5pZ6iIgUTJ7q55JIDgWOF\nJJGXFcuagmpCjRutv+5u0pf9TI/3X6b4lDPxxoTfAlBlt9L/5UkEVGpWTZyCrGz9sqtSIdEjOx61\nqu2CxIIQjo4p0VTWOfEFQv+sAGjMzmPFI68w9JEbGTLpVha8+hm29I6RmWSY4rasI3PxXGrzeyGd\nf4EIPQttQjyrBEEQBEEQBEEQBEEQBOE40NatrPYpr7XTITkataplrXN8/gA7SxvbeFaHV1ZrJyvZ\niNRGV6DXRSiYI3k9xBZupTEnH42x+fBLezlcdZ2mBAIwe7aKF17QsGVLMJAzbpyXO+/00KVLeAs5\nxyqVUkFOegxb9tS3+7EzEo2kxh+5hY8gNEchSSTG6sNu/Vef14Pt511B3oz/0e2Tt9h4zZ2hDSTL\nZH//JX3eegaV28WOsy9l3Q33HRr0kWVUTgdqu5X7Fq3jmXf6M1K3hDcv/ZQuhl2o7VbUtkYkGbaf\ndxnOpLSwfj6AkiGjyFo4B+mbmXCMB3N2VVhDDq/8VadvP0aWJBQ33RihEQ8vEIBbb9WxerWSCy/0\nct99nkO2iTFoyEyKpqjKGtIx3HGJbL78Vnq/PZUe019jzW2Phjtter3zPIaaCjZdcRuWnPyQxuia\nZT4kGCsIxxK1SkmHlGh2llnCHqtywBD+uGMSA156jKEP38iCVz7DYzJHYJZhkGV6vRNsx7jlpvvJ\nbcNQv/DPJhrPCoIgCIIgCIIgCIIgCMLfnNcXwO1tn6od/oBMWSvK2e8utx61iiJur59ai6vNxo9U\nxRzTnh0ovR6cPY7txd7D8fth5kwVp55q4Prr9WzbpuCCC7wsXergrbdcx20oZ59ks4FYo7ZdjxkX\nrSU3rW0rVwj/HMlmfUTG2XjVBOxJqeR/8X/E7Cpo9f5qq4WBT93FgFcmEdBoWTbpNdZMeOzw1Xck\nCZ8hCmdiCr0viOamiZU0OnXc+s0VLO1/FVsvvZEN4+9l/Q33RiSUA1Bxwsn4NVo0s7+LyHhtxeb0\nUt0QXnuyfWK3byJh8xrqBw9DlZ8XkTGbMnmyltmz1Qwe7OPFF11NdgvrmBKNQRt6zYHt515GY0Y2\nubM/w7Rza8jjACStWUHu91/QkJPPlkvGhzRGdkoMCbGReQ0KQltKT4wK67X3Z7tGX8iWS24guqyI\nIZNuRdNQF5FxQ5W2YgGJG1dTOmg4MWcOR6UU8QmhbYhnliAIgiAIgiAIgiAIgiD8zbVXtZx9Sqpt\n+FtQzt7m9FJaY2uHGTUt3EoQTbE5vRELHJkLNgLg79M3IuO1B58PvvpKxSmnGLjxRj07dii45BIv\ny5fbeeMNF507H9+BnD/LyzChaKOqTH9l0Kro1jGuzapACf88JqMWnTr8Fjp+fRR/3D4Jhd/HgJce\nDab2Wih+0x+MunksmUt+pLrnAH56cyZlQ0a2eP9hp1u45pZKGupUPHl/FjVVkW8W4dcbqBgwFMOu\n7Ujbwgt0tKXdFZGrUNdp1icA+G68KWJjHs7776t54w0NnTr5+eADJ9ojZB0VCon8LDOhvgPKag1r\nb3kYKRBgwMuPkblwDvGb1qCrqQyW7WkhpdPOgBcfJaBQ8vvdU5DVrW8rmBSrb9N2m4IQSQpJIic1\ncqHgjVffQdGwMSRsXsNZl53GCc89SGzBpoiN31KS30fPd/+fvfsOk6o+2zj+PWd62d5ggaV36SAo\nRGNXLCGa2I29d14LRmOLvSaWGAtq1Nh7jUbRWAFBqdJ732UXdnfKTn//WEWRBXZ3zja4P9e115o5\nZ57zGyBzZubc8zz3kjRtLLng6nqNbRVpLI2yEhERERERERERaeOCzRzMiSWSrCsP0bHAv8P9Fq3a\nbNk4jcaqqI4QjsTxWPQt35+sszDwk/PjhQhzxHDLajaVeBxee83O/fe7WLrUxG5PcdJJUS65JErX\nri39t90yvG4HHQv8jR6vUl9202SPrnn6JrdYrjDHa8m/3/V77svKfQ+j5H8f0P29F1ly1Ek7vkMi\nQd8XH6Pfsw9jkGLuKRfxw4nnga3hQaHDxm0iHDZ58akCbrumhEeeLCMrO8H6TaFGPpptrR5zMB2+\n/oTk669jXPPnOvdZscJg4kQn4TD4/ZCRkcLv/+mH7f63s+G5jm1UBqNstKhLnLNqEyWfvke4Y2eM\ngw+xpGZdPv7YxjXXuMjPT/L882Gys3d+nyyfkw4FflaXNS74u2H4aFaPOZiOX37EqNuv2HJ7wuEg\nXNCeYGExoaJiQoXFBIuKCRV1IFhYTLigiJS9duTUgCfvx7dhDfOOP4fNvfo3eA0ZHge9S+rxYEVa\nkfxsD9l+F5sDFnSMNE2mXnk75X0H0+Ptf9Plv2/S5b9vsrHfYBb/7mRWjzmoUYG3hur6wWtkrl7G\nksOPo93eQxV8liZlpFKpVv1uqaysad/MiIiIiIiIABQUZOj9h4iItFnzV2yy9OJjfbgdNvbsV7Td\nTiHryoMsWLW5Wde0PZ0K/HTvkGVZvRXrq1lmYVeCAy84hswVi6lYvg4cDsvqWikWq+2Qc//9LpYv\nN3E4Uhx/fIxLLonSuXOr/oi5WSSSSb6dV0pNE42UM4AB3fLIzaxjrI9ImoI1Mb6dX2pJLVdFGYee\ndQRGMsGHj79LuKBdnfu5N25g5J1XUThzKqH8dky55m42Dqh/ONEAPC47Po8Dv9uBz2PH73Fwz11e\nHnjARb9+CV59LcC81etJWHQZzBGo4qhjxxDs1ouaL7/ZaltFBdx/v4unnnIQjTb8wq7TmSIjI0VG\nBhx/fIzLLotiNiCDl0yl+G5BGYEaa4K6vV6eyKAn7qHi+ltIXHSJJTV/bf58k8MO85JIwOuvhxg+\nvP4daxLJJNPmlxGOxht1bCMeo+i7r/GtX413w1p8pWtrf29Yi3vTxjrvkzJNwrmFhArbk//D91SV\ndOe//3iNpLNh4wxddhtDexXgcqbfqUqkuQXCMaYvKLU2eJ9MUjT9K3q+9Rztp34OQDi3gKWHH8eS\nw48lkltg5dG2sIeCHHb6odjDIaa8/hm9hvdpkuPI7qWgYPud0BTMERERERERQcEcERFp26YvKKW6\nmbvmAPQpyamz5XssnmDqvFJiidYxzshhM9mrfztMM/1vwa7cUM3SddaFcsxohN+PG0F17/5EP/3c\nsrpWisXg8MO9zJhhw+lMceKJtYGcjh1b9UfLzW7j5jBzllc0Se0exVl0LNxxhyqRdEybX2pZqKPr\nB68w/P7rWbP3AXx940PbbG//zaeMuPfPuKo2s2bvA/h2/C3EMrffPcRumvg8dnxuB35P7Y/PY8dW\nR3IllYIJE1w89ZSTYcMSXHPTepJO697njfnzObSf9gXrvv4ee4/uhMPwWJt+JwAAIABJREFU+ONO\nHnjASVWVQUlJkgkTIuyxR5JAAAIB48efrf+7unrr24NBg+pqWL/epLra4IgjYjz4YA0+X/3WZWlg\nNJFg7GmH4K6sYNOs+aSyc6yp+wvl5QaHHuplxQqTxx4LM25cwwM2mwMRZiyuO0STDjMawftTUGdL\nYGdN7e+ydXjK1pOyO1jz4ltEhjS8053LYeJ2aqCJtF0LVm5iXUXTfCHAv2Y53d9+nq4fvoEjFCBp\nd7Bqn0NZ/LuTqOg7yNJj9XvmIfo/9zA//Oki/LfebHl3Tdk97SiYo39hIiIiIiIiIiIibVgylSJY\n07hvjKdr5YbqOoM5S9dWtZpQDtSO3irdHK5zrQ2xuixgaSgHIGvZQsx4jMiAwbTW5vkvveRgxgwb\nBx8c5667aiguViCnLvnZHvIy3ZRXWTNK5iftc70K5UiTK8r1ElhbaUmtZYccQ+eP36bD159Q/OV/\nWTvmIKA28DDwiXvp+eazJBxOpl98PUuPOB7q6LxmGgbtcr10LPDhdde/k5hhwO23RwgEDF55xcGx\nRxUzeESQA8duZsiegcZMydrKmjEH0n7aF0RefYNXu0zgjjtcrF1rkp2d4uabazj99BiuhjVQ2Up5\nucEZZ7h5910HK1eaPPNMeKfPuaGaOCs2WBc+aj/1c3wb1lB1wilNEsqJRuHMM92sWGEyfnykUaEc\ngGy/iyE9C9hYGaa8soZQxJrXQkmni0DHrgQ6dgXAZhoUZHkoyvWS8jsJJhIQieD2+VAPM9kddWmf\nSenmMImk9a8HAx26MPP8PzPntEvp8t+36PH283Se9A6dJ71DRe8BLPrdSaze5zCSac7/c5eX0vvV\np6jJySdw7kUUKJQjzcB244033tjSi9iRUCja0ksQEREREZHdgM/n0vsPERFpk0KROGs2Blvk2LFE\nEr/bsdVF08pglEVrrLm4a6VoLEn7vHq2HqjDuvIgi1Zb/7iKv5lE8dT/EfjTGRiDB1teP12RCJx1\nlodoFF55JUz79grl7Eim18n68pBlIx6yvE76dc3F2M7IOBGruJ021pQFrClmGJT3HUzXD16hcNa3\nLD3sD/jWr2GfP59Dh28mUdm5O5/fPpH1I3+7TSjHZhh0yPfTr0suRbleHPaGJ2kMAw49NE6nTkk2\nbDD5bpqbrz7L5LMPswgFbRS1j+L1NS48Gsprx7LX1nH6d1fxzLvtiEbh/POjPPFEmDFjktjTvLbr\n9cIxx8TZsMHg448dvPGGnVGjEjt87p27vKLRI53qMuQft+Jft4rgA4+QKiyyrC783NHo3XcdHH54\njLvuitSVy6o3t9NGboabDgV+CrO9uJ12UkmIpDlW0AByM9x0aZ9B75JsCnO8eFz22udi04Q0QwEi\nbZndZmIAmwKRJjtGyuFkU+8BLDnyBDbuMRRHMEDhzKl0/Opjur3/Co5gNdUduxL3Ni64PPCxu8if\nN4M5511N8ZEHWtJVUwRqP1/eHo2yEhERERERQaOsRESk7dqwKcS8FZta7PiZXidDexUAkEqlmL6g\nzLJxKFYb1quADG/DL6atrwixYOUmy8IWvzT83mvp+uHrbPz0G1L9+zfBEdLz5JMOJkxwc+65Uf76\n16a7ALMrsWqkjNthY2ivApyONFt8iNTTjMUb2Wzhhda+zz3MHs88RNmA4eQsnIs9EmbJ2GOZed4E\nEm7PVvvaDIPifB+dCv2W/5v/7KsoTzxp8sUnmYRDNgwzxZBGdNFZusjFv58oZPb3PgySHD22kmtv\ncTTJWL9UCh591MGNN7pwOuHvf6/h97/fNnyzrjzIglWbLTuuf9UyDjtzLOERowi895FldX8ycaKD\na65x079/gnffDdV7VFdDxeJJKqpq2FhVQ0VVTb07e/jdDopyvRTmeHDpuVdku5LJFFPnbaAmzRCc\nw2bWOxTjXbeKLm89T8l7r+AM1L7OStoal4Y0E3GqOnVj6buf0aH99kcpijTUjkZZKZgjIiIiIiKC\ngjkiItJ2LVlbyapSi7ocNNKg7vnkZLhYXRpgsUWjUJpC+1wvvUsaNpaj9MfgU1N9iHrQeePIWLuS\niqVrSLvVgsXCYRg50kdVlcG33wYpKGjVHyW3GslUilmLy6kORxs95sFmGAzumd+oIJlIY1kd8jCj\nUQ664GgyVy4h6stg+uU3s3qfQ7fax26adCjw0bHA16juOPWRTKb4Zu56qgMpvv5fJp+8n82i+bXB\noNz8GPsfWsn+h24mv7DurjOl6x28+HQ+X07KAmCvTgt5ZNUf8V/1BzKvuKxJ1vyTjz+2cc45HgIB\ng//7vwhXXhnFNGu3xeIJps4rtXR05OB/3EbPN5+l6vGnifzuaMvqAvzvfzaOP95DTk6KDz8M0alT\n85xTkqkUm6sjlFfVUF5Zs02QwGW3UZjroSjHi99T/7FpIru70k0hfmjglwM8TjvZfidZfhdZPiee\nxoyQCoVwv/Yyrjdfh5owiWSSRCJFMpkikaz9vbNnl5TNxqKzx9P9uMMx1ZVQLKRgjoiIiIiIyE4o\nmCMiIm3VrCXlVFTXtOgacjNc9C7JYeq8DY0OIjQHm2Gw1x7tsNvMeu2/cXOYH1ZsItlEH6HaasKM\nGzeCwMChRD76pEmOkY5HH3Xwl7+4ufjiCH/5i0Z+NkYsnqQmGicSTVATS1ATTfz8v6OJ7V5Q79cl\nl8JsT53bRJpKPJHk6znrLX3Oy1y2kG7vv8zCY04n1K7DltsdNpOOBX46FPjq/ZycjiVrKln1i1Fd\ny5e4+Pj97J+76BgpBo8IctDhP3fRCVSZvP5CPv95O5t4zKRrjxpOOquUkZ2WcsRJ+1E6ZBTJD/6D\nzWza9c+fb3LyyR5WrjQ58sgYDz5Yg9cL85ZXsGFz2LLj2ENBjjjxtxh+H5u+/wEc1oVUli41OOQQ\nH6EQvP56mJEj0+uykY5AOFYb0InGKcj2kJPh0rhAkUb6fmEZlTsYC+9zO8jyObeEcZqjE1UqlSIc\niROoiRMMxwiEYwTDsW1CeQO75ZGb6W7y9cjuZUfBnNb1FQwRERERERERERFpkGC45cdGVVRHmLus\notlDOd4Na/CtX0PZwBFQj4tqiVSK9RUhOhb4d7pvRVVNk4ZyALKWzsdMJogPGtxkx2isYBD+/ncn\nfn+KCy9UKKexHHYTh91Jhrfu7Ylkkppogkg0QfjH3y6nTaEcaRF2m0lelpsyC8MeVV17MePC67b8\nb6e9NpBTnN88gZyfFOf7tgrmdOke4ayLN3DyWaV883kmH7+fzfdT/Xw/1U9OXoyhewaZ/EUGwYCN\ngqIYx5+2ntH7VWGaEKYd5X0Gkj/zW+YvW0NB905NuvY+fZJ8+GGI00938847DlauNHng4c1sCFn3\n9wRQ8snbOEIBghddYmkop7ISTj7ZQ2WlwQMPtGwoB8DvcagzjohFunfI4rtFZQAY1P7/K8vvItvn\nJMvvbLJOaDtiGAZetwOv2wG/eD0ViycJ1tQGdRKJlEI50uwUzBEREREREREREWmjYvEEkXjLXuD6\nSdUOvi1riVQK/5rlFMyeRv7saRTM+hZf6ToAfjjpfOaeekm9yqwr33kwZ1N1hDnLKpo0lAOQu3Au\nAMbwYU16nMZ48kknGzeajB8fITe3pVez67KZJj63ic+ti8TSOhTleCwN5vzE5bDRqdBP+zxvk3eY\nqYvHZSc3w0VFdWSr292eFPsdUsl+h1SyfImLTz7I5vOPM/nkg2x8GQn+dM4GDj5qM07n1ueD1WMO\nJm/+LJJvvwOXX9Dk68/LS/Hqq2GuusrF8887+f3vsrjypmq697KoY14qRY+3/03K4SB8yunW1AQS\nCTj3XA+LF9s4//woxx9f97gwEWmbMn1OenfKxuWwkelzNmvgsqEcdpNsv4tsv6ullyK7KQVzRERE\nRERERERE2qhAeBe+wJVMkrliMQWzv90SxvFUbNyyOZKZzerRB5KzeB79/v0IlV16snrfw3ZaNlgT\nY1N1hJyMuj+UrwxEmLO0vMlDOQA5C+cAkBo6vMmP1RCBADz8sIOsrBTnn69uOSK7k9xMNw6bud0x\naw1lAN2Lsygu8GG28Lig4jzfNsGcX+rSPcKZF23gpDNLWTTfQ9ceNfgz6v5zWDPmIAY9cQ95n7xP\n6Pxz8Lqb/nKb0wn33x8hv12IB+/P4vrxJVx45Tr23jf9kcwFM6eStWIJNUf/gVRRkQWrrXXTTS4m\nTbJzwAFxrr9++3/2ItJ2tc/ztfQSRNoEBXNERERERERERETaqEArGGNlFSMRJ2vJgtogzqxp5M+Z\nhqu6csv2cG4BK387lrIBw9k4YDhVJd3BNMlcvoj9LzuBEff8mUBxCZt79t/psdaWB+sM5lQFo8xa\nWk6iGUI5ADmL5hD3+kh079Esx6uvxx5zUlFhMmFChKysll6NiDQn0zAoyPawtjxoSa0+nXNazWi2\nvCw3boeNmtiOO825PSkGDAntcJ9gcQmbu/Wh8Ptv+H7Fejr37mjlUrcrEI7ym0PL8OZU8/fbi/nb\nrR1YvWIjfzxlY30mOtYtlaLnG88AED7jXMvW+vzzdv75Tyc9eyZ49NEwtuafaCMiItJqKJgjIiIi\nIiIiIiLSRgV3gWBO5rKFDJx4L/lzpuMI/XwhOFjUgXUjf0vZwBGUDRhOsLiEuq46VnXpyZSr72b0\njRcy+oaL+Pihl4nkFuzwmOWVNURiCVyOn68SVoeizFpSTiLZPKEcWzhI5sqlBIePghYY67I9lZXw\nyCNOcnOTnHOOuuWI7I6KctIP5piGQb8uOeRntY5QDoBhGLTP87FsfZUl9VaPOZA9npmP8Z8PSPU6\nC6OJOwKlUikWrqokBQwdGeSWv63gzus78upz+axZ5eSC/1uHy93Ac1gyyeBHbqfDN5OIDRlKfMSe\nlqx18mQbV17pJjs7xbPPhsnMtKSsiIhIm9V63vGJiIiIiIiIiIhIg7T1jjlGLMqo28bTfurnhHML\nWXrYH5ly1Z28+9wnvP/sx3x71R0sP/QYgh061xnK+cm6vfZj9umX4924nr1vvgQzuuNASTKVYn35\nz90QAuEYs5aUE09aM7qlPnIWz8NIpUgMGdpsx6yPRx5xUllpcOGFMfz+ll6NiLSELL8Lt7Px7U1M\nw2CPrrmtKpTzk3Z5XstGaq0ZczAARf/7DxVVTT+maU1ZkOrwz+e3Tl2i3PbACvrsEeKb/2Vy4xUl\nlJfV//v4RizKyDuupOdbzxHr3Zeqp5/f4bm2vlatMjjjDDfJJEycGKZbt+YJvIqIiLRmCuaIiIiI\niIiIiIi0QclUilAk3tLLSEuvN54ha8USlhxxHB8++T7TL7+ZlQceRbiwuMG1Fhx3Fiv2O4L8H2Yw\n9IEbYSfjqNaVB0mlUoRqYsxaspFYovlCOQA5C+cAYAwb1qzH3ZHycoPHHnOSn5/kjDPULUdkd1aU\n423U/WyGwYBueeRmui1ekTVcDht5WdasrapzD6o7dqHdt19QurbckprbUxONs2zdtp1+MrMT/OWO\nVfz2kM0sWejhsjO68cJT+QQDO778ZwsHGXP9BZR89j7RESOpfPsDku0bfu79tUAATjnFw8aNJrfe\nGuE3v9nx2DAREZHdhYI5IiIiIiIiIiIibVCoJk5yJ+GT1sxTupZ+z/6DmqxcZp9+efoFDYNp4/9K\nRe8BdP3oDXq+/q8d7l4TS7C6LMjMxeVE480bygHIWTgXgNigIc1+7O15+GEHgYDBpZdG8flaejUi\n0pKKchre7cZmGgzonkdOhqsJVmSd4jyLnuAMg9VjDsYeqcHxyX+JxZsuhLJodSWJ7ZzzHc4U549f\nz3mXr8PrS/DGC/lcdGp33nwpl0jNth1wnJsr+O1Vp9Nu+lfUHHQIla+8RSonN+01JpNw4YVufvjB\nxqmnRjnjjLbd1U9ERMRKCuaIiIiIiIiIiIi0QUGLx1j1fe5hDjpvHM7KTZbW3Z7Bj9yOPRJm1tlX\nEsvIsqRm0uXmqxseJJxbwKDH76Zo2pc73H/J2koiTXghdUdyF80hnpFJsmu3Fjn+r5WWGjz5pJN2\n7ZKceqoupors7rxuBxkeR733t5smA7vnk+1v3aEcgJwMF15X/Uc+7cjqH8dZFX/5XzZsCltS89dK\nN4Uor6rZ4T6GAfsfVskDTy/l5LNKAXh+YiEXn9adD9/OJv7j07p3wxr2G38yuQtmEzr2BKqffh68\njeuO9Gt33eXkgw8cjB4d57bbmn60l4iISFuiYI6IiIiIiIiIiEgbFLAymJNK0e2D18heuoDh9/1l\np2Og0tVuymd0/OpjyvYYxoqDfmdp7Zr8Ir668SGSNjujbh2Pf9UyS+v/xBGoqm0P0Aj2YDUZq5cT\nHTi49mpqK/Dgg05CIYPLL4/ibp0TaESkmRXWc5yVw2YysEceWT5nE6/IOsX51nTN2dyzH8GiYoon\nf0rpOuuDrfFEksVrKuu9v8ud4qhjK3j4mSUcfeJGwiGTiQ+147IzuzH1hTD7XHYKmauXUX3BJQQf\n/Cc46h++2pE33rBz330uOndOMnFi2KqyIiIiuwwFc0RERERERERERNqgYI11wRzf2pV4y9YB0OGb\nT+j23kuW1f41M1LDkIdvJWna+O7i65skmLKpz0CmXf5XnMFqxtxwAY7q+l/U3BlXRRl73nEV444e\nyZEn7Muw+66j/TeTsNXUv1NCzqIfAEgNGWrZutKxbp3B00876NQpyUknqVuOiNQqzPGws2doh81k\nYPc8Mr1tJ5QD0C7Xi82K849hsGb0QThCAbyTv6Q6FE2/5i8sWVPZqHGLXl+S40/byIP/WsJh4yrY\nVGbjnqeGsFf5Rzx/7IuEb7jFkvNvMglff23j0kvd+P0pnnsuTG76U7FERER2OQrmiIiIiIiIiIiI\ntEFWdswpnDEFgHknnEs0I4tBj95JxsolltX/pT4vPY5//WoWHf0nqrr2apJjAKw88CjmH3smGauX\nM+r2KzAS8bTqGYk4Pd58jsPOGEvnSe9QVdIdkkm6/ec1xtxwIb/7w16Mvv4Cun7wCq6Ksh3Wylk4\nB4B4Kwnm/O1vTiIRg/Hjozjb1rV1EWlCLodth6OpnHaTQT3yyWhjoRwAu82kMMdjSa3VYw4CoMOX\nH7GuPGRJTYDNgQjrKtKrl52T4JphLzPP1o/TeIp5Rj9Oevk4xo718sUXtgbVisVgzhyTF1+0c+21\nLo46ykOPHn7GjfMSicCjj4bp3btxneRERER2ddYM0RQREREREREREZFmE4klGvUN+u0pnFkbzFl+\n4O/Y1LMfe998KaNuu4JPHniJpIVJDf+a5fR56XFC+UX8cPKFW27P8DiotnI0149mn345mSsWUzzl\nfwx8/B5mnjehUXVy581g6IM3k7N4HlF/JtMvvp6lY4+t3bZgFsXffErx5EkUT/6U4smfAlDeeyBr\n99qPtXvtT1WXnlt1Jshd9GMwZ9CQNB9h+latMnjuOQdduiQ59lh1yxGRrRXletkUiGxzu8tuY1CP\nPLzutjuzqDjfl3bwBaC83xDCufl0+GYSs8ur6dEhC9NMrxtNMpli4arNaa+t83/fZPi915FyOLjr\nX17O6h7mjjucvPuug2OO8bLPPnGuvTbCkCFbv6YIBmHuXJPZs23MmVP7e/58k2j058dlmil69Eiy\nxx5Jxo2LcdBBibTXKyIisqtSMEdERERERERERKSNCVoZYkmlKJwxhXBeIYGOXQh06srSw/5Atw9e\nZY+n7mfWuVdbdpwhD92CLRZjxnnXEPf6AOiY76d7h0yWrq1iVVnAmmP9xGZjyoR7OODS4+n1+r+o\n7NKT5YceU++7O6s2MWDi/XT74BUAlh80jllnXUEkJ2/LPhX9hlDRbwhzzhyPb+3K2nDON5+SP3sa\neQtmMeDpvxMsKmbtqP1Zu9d+lA0YTs7CucRzckl2KrH28TbC/fc7icUMrriiBkfbvb4uIk0kP8uN\nzTBIpFJbbnM5bAzqno/X3bYvMWV4nWR4nFSH0xw/ZZqs3fsAur/7ElkzvqWscx5FOd60Sq7YUE0o\nkl6nt16vPMmgx+8mmpFFxTMvYhs9ml4kefLJGmbMiHLbbS4++8zO55/bGTs2xrBhyR9DOCZLlpik\nUj+HcFyuFP36JRkwIMEee9T+7ts3ic+X1hJFRER2G0Yq9YtXU61QWVl1Sy9BRERERER2AwUFGXr/\nISIibcbKDdUsXVdlSa3M5Ys45JyjWHHAkUy9+i4AbOEQB114DBmrl/P5bU+wYfjotI/T8fP/sNct\nl7N++Bi+uPUxMAxyM1wM6JaH8WM3mXXlQRatriRp8UeWvjUrOPCS47CHQ3x299OU99/JCKlkki4f\nvs7AiffiqtpMZecefHfx9WwcOKLex3RUV9Ju2pcUfzOJdt9+gTNY+zoj5vXjCAWo+e0BVL/8RjoP\nK23LlhnsvbePbt2SfP55CFvDppqIyG7ih+UVlG4OA+B21oZyPK62Hcr5yfqKEPNXbkq7TuF3X7Pv\nhDNZfNSJLPi/myjI9uB22nA77bgcNtxOW7276IRqYkxbUNb4c2EqxYAn7qHPK08Szi9i0wuv4xg0\noM5dv/rKxi23uJg+/ecTQEZGigEDEgwYkGSPPWp/9+yZVHhTRERkJwoKMra7bdd45SQiIiIiIiIi\nIrIbsbJjTuGM2jFWpYNGbrkt4fEyecI9HHDZCYy4ZwIf/fMtotm5jT6GPRRk8CO3k3A4+e7C68Aw\n8Lrs9O2cuyWUA9A+z4fbaWfusgriSetGdQU7dOab6+7nN9eczd43XcLHD71MuLC4zn2zlsxn6IM3\nkf/DDOJuLzPPuYpF404mZW/YFclYRhar9jucVfsdjhGPkT97eu24q28+xREKEN93PyseWlruvddF\nImFw5ZVRhXJEZLsKczyUbg7jcdoZ1CMPt3PXubRUkO1myRqTWCK9c07ZwBFEM7Lo8NXHfH/Btayo\no9uNy27D5awN6bh+DO24HT/fZreZACxYtbnRoRwjHmP4/dfT5b9vUt2pK5teehNPj67b3X/06ATv\nvx/iiy9sVFYaDBiQoHPn1C+nL4qIiIgFdp1XTyIiIiIiIiIiIruJYE164y1+qXDGZABKB4/a6vbN\nvfoz+7RLGfTEPYy47zq+uulhGnulrt+zD+EpL2XuyRcS7NAZu2myR9dcHHZzm31zMlwM7ZXP7KUV\nhKPWPc7SIXsx87wJDPnHrYy+4SI+ve85Ep6fR43YgwH6P/MAPd/6N0YyyarfHMLM8yYQLmi309qm\nYeCwmdhsBnabid1mYLOZP99mmtg7H0J03GGsNgx8lRtxd6w7GNRcFi0yefVVO337JjjqKOv+nEVk\n15Ob6SbL56Rfl1xcjl0rxWczTYpyvaxOc5Riyu5gzV770/WjN8idP5OKfkO22ScSTxCJJ6gK1V3D\nYTNx2M1Gj7Cy1YQZdet4iqd8RkXvAVS98Cq+ju13ej/DgH32STTqmCIiIlI/CuaIiIiIiIiIiIi0\nIclUqtEX7baRSFAwexqBdh0JteuwzeaFfziddtO/pHjyp3R790WWHnlCgw+RtXQBPd94lkBxCfOP\nOwsD6NclB697+x1ovG4HQ3vlM2dpBZWhaIOPuT2Lf3cSWcsW0u2DVxhx77VMvvY+ADp99j6DHr0T\nT0UZ1cUlfH/RX9gwfMwOa3UvzqIox4PdbmI2NLCU3amxD8Ey99zjJJk0uOqqKOa2+SgRkS1Mw2Bw\nj/ytOpztSorzfGkHcwDWjDmIrh+9QccvP64zmLMzsUSy0Z17jESc31x7DgWzp7Fh2GiC//o3GYWN\n73QnIiIi1lIwR0REREREREREpA0J1cQbPeLi17KXzsdZXcnq0QfWvYNpMvXKOzj43N8x+NE7KRs4\ngurOPep/gGSSoQ/chJlM8P0F15J0uelenEVupnund3XYbQzqkc+ClZvYsDlc/2PuiGHw3UXXkbFq\nKZ0+/w81OflkrlxM0feTSThdzPnTxSw49kySTtcOy7gdNjoU+BoeyGkl5s0zefNNOwMHJhg7Vt1y\nRGTndtVQDoDXbSfH72JTIJJWnQ1D9ybm8dLhy4+YdfYVje4y1xg93vo3BbOnsXbvAwg++QzZuRnN\ndmwRERHZOX0XQkREREREREREpA0JhGOW1SqcMQWAskEjt7tPTX4R08bfgi0aYdTtV2JG69/Bpst/\n3yT/h+9ZPeZg1u+5D+1yvHQq9Nf7/qZp0LdLLl3aWXeBMeVw8vX1DxAsKqbnW89R9P1k1u25Dx8+\n/g7zTr5gp6EcgE5FGW02lANw111OUimDq6+ONOd1YxGRVqs435d2jaTTxbqRv8W/fjVZS+dbsKr6\ncW/cQP9/PUAkI4vQ3x9WKEdERKQVUjBHRERERERERESkDbE2mDMZgNLB2w/mAKwdfSBLxh5L9tL5\nDHjyvnrVdlZtYuDjdxN3e5lx3gQyvU56dcpu1Dq7tMukb+ccy8Iw0excvrz5EdbsfQBf3fAgX/71\nnwTb12+8lNtho32e15J1tITZs03ee8/BsGEJDjww0dLLERFpFfKy3LgctrTrrBlzEABd//Na2rXq\na9Cjd+IIh1h7+Z/J6lzcbMcVERGR+lMwR0REREREREREpA2xKphjxGMUzJ5OVadu1OQV7nT/mede\nTVXHrvR6/V8UTftqp/vv8eTfcFVtZu4pF5Ls0JH+XXMxzcYHa4pyvAzqnofDZs1HmlVde/H1jQ+x\ndvSBDRo30ta75dx5Z21HIHXLERH5mWkYloQu1478LdXFJfR4+3ny5ky3YGU7Vjj9K0r+9wEVfQfh\nOe/sJj+eiIiINI6COSIiIiIiIiIiIm1I0KJgTs7COdhrQjvtlvOThMfLlD/fQ9LuYMQ9E3Burtju\nvrnzZtDtg1eo7NyDpUf/iT265lrSiSDL72JorwK8LnvatRrD1ca75UyfbvLRR3ZGjYqz777qliMi\n8kvt83xpBy+TLjffXnkHGAZ73n0NtnDQotVty4xGGfrQX0mZJuXvH4/WAAAgAElEQVS33oPN3jLn\nRhEREdk5BXNERERERERERETaiEgsQSyRtKRW4YwpAJQOHlXv+2zu0Y/Zp1+Gp2IjI+69FlKpbfYx\nEnGGPngzRirFd5fcQK9uBWR4nZasGcDjsjO0VwHZfpdlNeurZBfpljNhQlTdckREfsXlsJGX6U67\nTnn/Icz/45n4161i0GN3W7CyuvV+ZSIZa1aw4uhTyB5Tv5CtiIiItAwFc0RERERERERERNoIq7rl\nwM/BnLKBIxp0v4XHnMaGIXtRPOUzur/zwjbbu7/zIjmL57H8oHH4DtyPwhzrO8zYbSYDu+fRPrf5\nute4HLZmPZ7VJk2y8dlndn7zmzh7761uOSIidSnO91lS54dTLmJzt950f+8l2k393JKav+Rbt4q+\nLzxKODef5HXXW15fRERErKVgjoiIiIiIiIiISBsRsCiYY0Yj5M/9js3d+hDNymngnU2mXnUHkcxs\nBj12F5nLF23Z5C4vZY+n/07Un8nqy6+la/tMS9Zb5zIMg94lOXQq8DfZMX6ppNCPabbNNjPRKFx3\nnQvTTHHzzZGWXo6ISKuVk+GyZFxi0ulk6pV3kLQ7GH7fdTiqNluwuh+lUgx5+BZs0QjLLvsLGcUF\n1tUWERGRJqFgjoiIiIiIiIiISBthVTAnb95MbLEopYMbN/qiJq+QaeNrLwqOvONKzGht2GPg4/fg\nCAVYeO4VdB/S05K17kzX4kwyPI4mPYbLYaN9njVdFFrCxIkOFi+2ceqpMfr3t2YUmojIrqrYouf7\nyu59mHvKRXgqyhj68C2W1AQo/voT2k/9nNLBo/CfdrJldUVERKTpKJgjIiIiIiIiIiLSRgRr4pbU\nKZwxGaDRwRyAtXsfwJLDjyN76QIGTLyXghlT6DzpHTb1HkDmxedjtzXPR4+mYdCncw6m0XTdbNpy\nt5wNGwzuvttFTk6Kq69WtxwRkZ0pyvVis+icsuDYMyjvO4iST9+j4/8+SLueLRxiyD9uI2l3sPaG\n2/G4mzaYKiIiItZQMEdERERERERERKQNSCZThGqs6ZhTOGMKSdNG2YARadWZee7VVHXqRq83nmXk\nHVeQMgyq7rwfj9dlyTrry+d2NNnYrLbeLee221wEAgYTJkTIzW3p1YiItH4Ou0lhjseSWimbnalX\n3UHc5WHoAzfhLi9Nq16/5x/BW7aOxcedSdGoIZasUURERJqegjkiIiIiIiIiIiJtQLAmRsqCOrZw\nkNz5s9jUsz9xnz+tWgm3hynX3E3S7sBTsZGNJ5yGd+89LVhlw3Us8JHtsz4Q1KkNd8v57juTF15w\n0K9fgj/9yZpQl4jI7qBTod+yTmyBDl2Ydfb/4aquZPj9f4FU487mGSsW0+vVpwkWFVMz/spm60wn\nIiIi6dNZW0REREREREREpA0IhK0JVuTP+Q4zEU9rjNUvbe7Rj2/H30LFvgdh3HSTJTUbwzAMepdk\nY7MwROOy2yhuo91ykkm49lo3ALfdFsFma+EFiYi0IV63w9Ln/yVHnMD6oXvTfurndP3Pqw0vkEox\n9MGbMRNx5l92A+065lu2NhEREWl6CuaIiIiIiIiIiIi0AcFw3JI6hTOnAKQVzDEAv9tBx3w//bvk\n0umyc0i88hqprGxL1thYHpedHh2yLKvXqajtdst5+WU706fbGDcuxt57J1p6OSIibU7ndhk4rOpK\nY5pM+79bifoyGPTPO/CuW92gu5d88g6Fs75lzV774//j7zEs6uYjIiIizUPBHBERERERERERkTYg\nUGNNx5zCGVNI2h2U9x9a7/uYhkGm10mnQj8DuuYxekB7hvcppEfHLAqyPTjsracdS/s8H3mZ7rTr\ntOVuOdXV8Ne/uvB4UtxwQ6SllyMi0iY57CadizIsqxcuaMf3F16LIxxiz7snQKJ+oUlHoIpBj91F\n3OVmxZU3kWvBOU5ERESal4I5IiIiIiIiIiIibUDQglFWjupKchb/QHnfQSTcnu3uZxoG2T4XnYsy\nGNQ9n9ED2jG0VwHdi7PIy3Jjt6qDQBPp1Sl7h10OUilYusjFO6/m8sMsT53XRttyt5x773VRVmZy\nySVROnRItfRyRETarOICH16X3bJ6Kw84itVjDqJgznR6vfFMve7T/18P4N5czvyTzqfD8H6WrUVE\nRESaj3WvJkRERERERERERKRJ1ETjxBLJtOsUzJ6GkUxSOqjuMVYlhRnkZbrI8DrbbCgFwOWw0bNT\nNj8sr9jq9spNNr6YlMlnH2WxctnPHQf8GQmGjgwwfFSAQcODZGcabbZbzuLFBo8/7qCkJMkFF0Rb\nejkiIm2aaRh0K85kzrKKne9cH4bB9EtuJH/Od+zx1N9YP3wMVV16bnf37IVz6fHOC1R17Erg3Iso\ncjusWYeIiIg0KwVzREREREREREREWrlgOG5JncIZUwAoHbxtMMflsNGtONOS47QGhdkeNmZ7WFsW\n5rupfj77KIvvp/pJJAxsthR7jq5m2KgAixe4mfaNn88/zuLzj7OwO5LsOTLK746EQw+N07592+k4\nk0rBdde5icUMbrqpBs/2myKJiEg95Wd5yPG72BSwZjRgNDuX6ZfdxOgbL2LPuybwyQMvkrLXEbhJ\nJBj24E0YySSzLr2Bbp3yLDm+iIiIND8Fc0RERERERERERFq5gAVjrAAKZk4h7nJT0WfQNtvyMt11\n3KPtmjPH5PkX2vHyyzaqKms/Bu3ao4Z9D6pkzH5VZGbXzq/a75BKzrp4A8sWuZg2OYPp32Tw9Zdu\nvv4Srr4aBg1KcMghcQ49NE7//kmMVtxI6L//tTFpkp3f/CbO2LHWhLlERAS6d8hi+oJSrIpqrt37\nAJYd/Hu6fvQGfZ//Jz/86eJt9un2wavkLpjNyv0Oxzf2YBz21j1GUkRERLavXmfxmTNncsopp9S5\nLRwOc/zxx7NkyZId3mfx4sWccMIJHH/88UyYMIF4XG8MRURERERERERE6iNQk34wx7WpnOxlC9nY\nfyhJp3Ob7btCMKe83OCxxxzsv7+X/ff38cTjLmymydjfV3DXI8u48x/LGfv7TVtCOT8xDOjWK8Kx\nf9rIa29VMH16gNtvr2GffeLMnWty110u9t/fx7BhPq65xsVnn9mItrIpUZFIbbccmy3FrbdGWnWA\nSESkrfF7HLTL9Vpac8b51xAsbE/f5x8lZ8Hsrba5NpUz4Kn7iXl9LLz4zxTnt83xiiIiIlJrp8Gc\nxx9/nOuuu45IZNsWfbNnz+akk05i1apVO73Pfffdx/jx43nxxRcB+PTTT9Ndu4iIiIiIiIiIyG4h\naEHHnIJZUwEoG7TtGCubYZCdsW1Ypy2IxeDDD22cdpqbgQN9XHedm/nzTQ49NMbTT4eZPTvIn68L\n0qX7zkeQuOw22ud76dQpxZlnxnj11TDz5wd47LEwRx8do6rKYOJEJ8ce66VvXz9XXuli3rzW0cHg\n0UedLF9ucuaZMfr0Sbb0ckREdjld22diM61LPcZ9GXx7xe2YyQR73jUBM1KzZduAiffirK5kzqmX\n0nFAT0ylLUVERNq0nb5rLCkp4cEHH6xzWzQa5eGHH6Zbt247vc+DDz7IiBEjiEajlJWV4ff701i2\niIiIiIiIiIjI7iGRTBKOpN99unDGFABKB28bzMnOqO0s09ZMmmRj8GAfp5zi5f33HfTsmeSvf61h\n5swgzzxTw9ixcZxO6Facicdp32m9ToX+bf4cMjNh3Lg4//xnDfPmBXjttRDnnBMlIyPFv/7lZN99\nffz+9x7eecdOSzUJX7/e4L77nOTlJbnyyp0HkEREpOGcDhudizIsrVk2eCSLxp1C5qqlDHjyfgDy\nZ0+j60dvsKl7XypOOI28rLbf0U5ERGR3t9N3o4cccgirV6+uc9uwYcPqfR+bzcaaNWs4/fTT8fv9\n9OnTp14LLCiw9kWOiIiIiIjI9uj9h4iItEabqyP4/elflGs3eypxr5/4kGFk2Lf+WLBnl7w2dx78\n+ms4/XRIpeCSS+C002DwYBuGYatz/9FeF1N/WE8qVXc9l9PGwD5F2Gw7DigdfXTtTzwO77wDDz0E\nkybZ+eorOx07wnnnwdlnQ2Fhmg+wAcaPh1AI/vY3gx492tbfo4hIW5Kb5ycQtSYw+5Nll1xD++++\notcbz1C574H0efhWABZMuJU9h3Umw9s2O9qJiIjIz3b+NRELdejQgY8++ohXXnmFO+64gzvvvHOn\n9ykrq26GlYmIiIiIyO6uoCBD7z9ERKRVWlcepDpQs/Mdd8BTth7fymWsHflbqmriwNYXFI14ok2d\nB+fNMznqKC/RKDz7bJgDD0wAsHHjju+X5bGzqjRQ57ai4iwqKoINWseYMbU/CxaYPPWUg5decnDd\ndQY335ziyCPjnHlmlGHDkjTlBJIpU2w895yXgQMTHHlkiLKypjuWiIhAfoaTH8rrPpc0jsHkK25n\n/8tOZOiVZ2KLxVh62B9JDB1OTTBCTVCd0ERERNqCHX3Zpdn605533nksX74cAJ/Ph9kGW+OKiIiI\niIiIiIg0t0A4lnaNgpnbH2OV4XHgctbdZaY1WrXK4LjjPFRWGvz97zVbQjn10bVdJn63Y5vbXXYb\n7fO9jV5T795J7rgjwqxZAW6/vYbOnZO89pqDsWN9HHywlxdftBMON7r8diUScO21LgBuvTWCre38\nNYqItFmF2R6yfNZ2sdnUZyDzTzgHWyxGJDObeWf9H13aqQOaiIjIrqLBHXPeeecdQqEQxx13XIPu\nd8455zBhwgQcDgcej4dbbrmloYcWERERERERERHZ7VgRzCmcsf1gTm5m+mOymsvGjQbHHutl/XqT\nm26q4dhjGzZKxDQN+nTO4buFZSR/MdOqY6EfmwVfJMzIgDPPjHHGGTG++MLGxIkOPvzQziWXeLjx\nxiQnnhjjtNNilJRsZ55WAz3/vINZs2z84Q8xRo6sf0BJRETS071DFt8ttLZF2Q8nnoeRTLJ+2N60\n69UJp0NpSxERkV2FkUptb6py69CWWuiKiIiIiEjbpVFWIiLSWn05ax3xZLLxBVIpxp5yAPZwiLdf\n+Rp+FUAZ2quATK+13/xvCoEAHH20lxkzbFx8cYS//CXa6For1lezbH0VAE67ych+RZYEc+qyerXB\nv/7l4LnnHJSXmxhGikMOifPHP8bZf/84Pl/j6lZWwqhRPsJhg8mTg7Rr16o/5hUR2eXMW7GJDZtC\nltd1O23s2acI02zCOYgiIiJiuVYxykpEREREREREREQaJhyJpxfKAXzrV+MrXUfZoJHbhHJcdlub\nCOVEInDqqR5mzLBx4olRrruu8aEcgJIi/5bH3akwo8lCOQAdO6a49too338f5MEHwwwenOQ//3Fw\n5pke+vb186c/uXnxRTubNjWs7t13uygvNxk/PqpQjohIC+jWPhObYX14pltxlkI5IiIiuxgFc0RE\nRERERERERFqpoCVjrCYD2xtj5Uq7flNLJODCC9188YWdQw+Ncc89EdK9DmoYBn1KcnA7bRTne61Z\n6E643XDccXE+/DDEJ58EGT8+QufOtSGdSy7x0K+fn2OO8fDkkw7Wr9/xA5w/32TiRAdduiQ599z0\nQkoiItI4LqeNTkV+S2u2z/VSmO2xtKaIiIi0PHtLL0BERERERERERETqFqyJp12jcMYUAEoHj9pm\nW16mO+36TSmVgj//2cXbbzsYNSrOo4/WYLfoE02v287QngVN2i1newYMSDJgQJQJE6IsXmzw/vsO\n3n/fzhdf1P5MmADDhiUYOzbO4YfH6Nbt5444qRRce62LRMLgllvCuFp/tkpEZJfVqdDPuvIQkVgi\nrTpel52eHbPJydCTuoiIyK7ISKVSrbrPaVlZdUsvQUREREREdgMFBRl6/yEiIq3O3GUVlFWGG18g\nleLI4/chZcC7L3zOL1vNmIbB6AHtWiSYUl933+3k7rtd9OuX4K23QmRltfSKmtbatQYffGDn/fft\nfP21jUSi9u+rb98Ehx0W5/DD46xYYXLGGR723z/OCy+E0+4eJCIi6dlQEWLeygbOI/yRzTDo3C6D\njoV+TD2hi4iItGkFBRnb3aZgjoiIiIiICArmiIhI6zTlhw2Eo43vmpOxYjGHnn0kK/Y7gqnX3L3V\nttwMNwO756W7xCbz5JMOJkxwU1KS5L33QhQVteqPMS1XUQEffWTnvfccfPaZjUik9oKtaaYwTfj8\n8yA9euxefyYiIq3V9AVlVIcbNlowP8tNjw5ZuJ0abiEiIrIr2FEwR2d7ERERERERERGRViiRTKYV\nygEonPnTGKuR22zLy2q9Y6zeesvONde4yM9P8vLLu18oByA3F44/Ps7xx8cJBGDSpNpOOp99ZuPs\ns2MK5YiItCI9OmTy/eKN9drX7bTRs0N2qz4Pi4iIiLUUzBEREREREREREWmFguH0QjkAhTN+CuaM\n2mZbXqYr7fpN4X//s3HBBW58PnjppTDduimA4vfDUUfFOeqo9P9NiIiI9bL8LgqyPZRt3v74SdMw\n6FTop6TI36rHSIqIiIj1FMwRERERERERERFphQLhWHoFkkkKZ04lWNSBUPuOW23yux2tcnTG99+b\nnHqqB8OAZ58NM2BAsqWXJCIiUi/d2mdSXllDMrVtoDQ3w0WPDtl43a3v3CsiIiJNT68ARERERERE\nREREWqF0gznZS+fjrK5kzd4HbLOtNY7PWLzY4MQTPdTUwBNP1DB6dKKllyQiIlJvHpedjgV+VpZW\nb7nN5bDRvUMWhdmeFlyZiIiItDQFc0RERERERERERFqhYJrBnIIZUwEoHTRym215ma0rmLNuncGx\nx3opLze5994ajjhCI5tERKTtKSnys74iSDyRokO+j87tMrDbNLZKRERkd6dgjoiIiIiIiIiISCsU\nqEkvmFM4czIApYO3DuY47SaZPmdata20eTMcd5yH1atNrrkmwimnpDnCS0REpIXYbSa9O+Xgctrw\nexwtvRwRERFpJRTMERERERERERERaWXCkTiJZKrR9zfiMQpmfUtVx67U5Bdtta21dcu56SYX8+fb\nOPvsKJddFm3p5YiIiKSlNY6LFBERkZal/nkiIiIiIiIiIiKtTLpjrHIWzcURDlE2eM9ttrWmYM6a\nNQYvv+ygR48EN98cwTBaekUiIiIiIiIi1lIwR0REREREREREpJVJe4zVjCkAlA4etdXtpmGQneFK\nq7aVHnnESSxmcMklUWy2ll6NiIiIiIiIiPUUzBEREREREREREWllAml2zNkSzBm4dcecbL8Tu611\nfCS4caPBs8866NgxyTHHxFt6OSIiIiIiIiJNonW8CxcREREREREREZEt0gnmmNEo+XO/Y3O33kSz\nc7fa1prGWD32mINw2ODCC6M4HC29GhEREREREZGmYW/pBYiIiIiIiIiIiOzukskU1aEomwNRKoMR\naqKJRtfKnT8DWzRC6aCR22zLy2odwZyqKpg40Ul+fpITT0yvO5CIiIiIiIhIa6ZgjoiIiIiIiIiI\nSDNLJJNUBWNsDkSoDESpCkVJplKW1N4yxmrw1sEcv9uB29k6Pg586ikn1dUGl14axeNp6dWIiIiI\niIiINJ3W8U5cRERERERERERkFxZPJKkMRNkcrA3iBMIxy4I4v1Y4Ywop02TjgOFb3Z7bSsZYhULw\n6KMOMjNTnH56tKWXIyIiIiIiItKkFMwRERERERERERGxWCqVoryyZstoqkA4RtPEcLZmC4fImz+L\nTT37E/NnbrWttYyxev55Bxs3mowfHyEjo6VXIyIiIiIiItK0FMwRERERERERERGxWCAcY87yimY/\nbv7c7zHjsW3GWDlsJpleR7Ov59eiUXj4YSdeb4qzz4619HJEREREREREmpzZ0gsQERERERERERHZ\n1VSHWiZ0UjhzMgClg0ZtdXtephvDMFpiSVt57TU7a9aYnHJKjLy85ughJCIiIiIiItKyFMwRERER\nERERERGxWHUo2iLHbfftlyTtDjb2H7LV7a1hjFUiAQ884MLhSHH++S3z5yMiIiIiIiLS3BTMERER\nERERERERsVgg3PwdczKXLyJ76XzWDx9DwuPdcrtpGORkuJp9Pb/23nt2liwxOe64GMXF6pYjIiIi\nIiIiuwcFc0RERERERERERCyUTKUI1sSb/bglk94FYMUBR251e7bfid3Wsh8DplJw//1OTDPFRRep\nW46IiIiIiIjsPhTMERERERERERERsVAgHCOZauaOMMkkJZ++S8zrY+2o/bbalJvZ8mOsPvnExty5\nNsaNi9Otm7rliIiIiIiIyO5DwRwRERERERERERELBULNP8Yqf+53+DasZfWYg0m6tg7i5LVwMKe2\nW07tKK2LL1a3HBEREREREdm9KJgjIiIiIiIiIiJioepQ84dPfhpjtXL/I7a63ed24HHZm309vzR5\nso1vv7VxyCFx+vdPtuhaRERERERERJqbgjkiIiIiIiIiIiIWCoSbt2OOEYvS6fP/EM4toHTQyK22\ntXS3HIC//c0JwKWXRlp4JSIiIiIiIiLNT8EcERERERERERERiySTKYI18WY9Zvtvv8BZXcnK/Q4H\nm22rbXmZrmZdy6/NnGny6ad2xoyJM3y4uuWIiIiIiIjI7kfBHBEREREREREREYsEamIkU6lmPWbJ\nJ+8AsPKAI7e63WEzyfQ5m3Utv/b3v//ULef/2bvvMKnqs//jnzN1e1+WulRBOkoHC2IUCyomKtZo\nNBoxah6fGI3tieZJniQaTeyJXcHYor8oiB1BsYBI36VJXWDZwtbp5ZzfH6sossDulN1F3q/rmmuW\nOed8v/dgrjA785n7bvvxXgAAAAAAdAQEcwAAAAAAAIAEafS17Rgrh7dRXT//UA3FfVXXd+Bex/Ky\nUmQYRpvW813r19v05psOHX10VMcdF223OgAAAAAAaE8EcwAAAAAAAIAE8fjatjNM94/flT0c0tYT\nz5C+F8LJz05p01q+74EHXLIsQ7/6Vej7pQEAAAAAcNggmAMAAAAAAAAkSFt3zCmeN0eStO2EqXs9\nbjMM5WW627SW79q2zdCrrzp05JFRTZkSabc6AAAAAABobwRzAAAAAAAAgAQwTUu+YNuFUFKqK9Rp\nxSJVDRkpX+duex3LSnfJYW+/t/4eftilaNTQ9deHZOMdSAAAAADAYYxfiwEAAAAAAIAE8ATCMi2r\nzfYr/vBNGZalbZPP2OdYQVb7jbGqqDD0r385VVxsato0uuUAAAAAAA5vBHMAAAAAAACABGjrMVY9\nP5gt0+FU2XFT9jmWn91+wZx//tOpYNDQddeF5HC0WxkAAAAAAHQIBHMAAAAAAACABPD4Qm22V9bm\n9crZtFblo49TOCtnr2NpbodS3e2TiKmrk55+2qWiIlPTp7dtUAkAAAAAgI6IYA4AAAAAAACQAG3Z\nMad43hxJ0rYTp+5zrD275Tz5pEter6Frrgkppf3KAAAAAACgwyCYAwAAAAAAAMTJNC35gpG22kzF\nH85ROC1DO8dO2udwflb7JGI8Humxx1zKzbV0ySV0ywEAAAAAQCKYAwAAAAAAAMTN4w/LtKw22atg\n9ZdKryzX9mNPluneO4STmepSToa7Ter4vlmznKqtNXTllSFlZLRLCQAAAAAAdDgEcwAAAAAAAIA4\nNfrbrkNMzw9mS5K2Tj5jn2NHdM9uszq+KxiUHnnEpfR0S1dcEWqXGgAAAAAA6IgI5gAAAAAAAABx\n8vjaJoxiC4XU/eN35M/vpKpho/c61jk3TVnprjap4/teftmpXbtsuuyysHJz26UEAAAAAAA6JII5\nAAAAAAAAQJwafW3TMafz4gVyeRq07YSpkt2+53GHzaY+XbPapIbmvPCCUzabpauvplsOAAAAAADf\nRTAHAAAAAAAAiINpWvIFI22yV895cyRJW0+cuvfjnTPlctqbuyTpdu40tGSJXRMmRFVUZLVLDQAA\nAAAAdFQEcwAAAAAAAIA4ePxhmVbyAylOT4O6LPpQ9T37qb7PkXseT3M71K0wPen778/cuQ5J0tSp\nbRNOAgAAAADgUEIwBwAAAAAAAIhDo79txlh1+/hd2cNhbZt8hmQYex7v1y1btu/8ua3NmeOQYVg6\n/XSCOQAAAAAAfB/BHAAAAAAAACAOHl+oTfbpOW+2JGnb5NP3PFaQnaK8rJQ22b85lZWGPvvMrtGj\nGWMFAAAAAEBzCOYAAAAAAAAAcWj0Jb9jTmpluQpXfqGqISPlK+omSbIZhvp2zU763gfy1lsOWZah\nM86gWw4AAAAAAM0hmAMAAAAAAADEyDQt+YLJD6UUz39ThmVp64ln7nmsR6cMpbodSd/7QObMadqf\nMVYAAAAAADSPYA4AAAAAAAAQI48/LNNK/gin4nlzZDqc2n7syZKkFKddxUUZSd/3QGpqpIUL7Trq\nqKi6d2eMFQAAAAAAzSGYAwAAAAAAAMSo0RdK+h5Zm9crZ9M6lY85TuGsHElSn27Zstva9629d95x\nKBo1NHUq3XIAAAAAANgfgjkAAAAAAABAjDz+cNL36DlvtiTtGWOVk+FWp5zUpO97MHPmOCVJU6cm\n/+8AAAAAAIBDFcEcAAAAAAAAIEaNviSHUkxTxfPeVCg9U+Vjj5chqV+37OTu2QINDdKCBXYNHhxV\n796MsQIAAAAAYH8I5gAAAAAAAAAxiJqmvIHkBnMKVi9RWlW5th97skyXW90KMpSR6kzqni3x7rsO\nhUKMsQIAAAAA4GAI5gAAAAAAAAAx8PojSnavmJ4fNI2x2jb5DDntNvXqkpnkHVtmzhyHJOmMMwjm\nAAAAAABwIARzAAAAAAAAgBg0+kJJXd8WCqr7R+/IV9BZVcNGq3eXLDns7f92nscjzZvnUP/+UfXv\nb7Z3OQAAAAAAdGjt/5s8AAAAAAAAcAhq9CV3jFWXxQvk8jZq2wmnKTPdrS75aUndr6XmzXMoEGCM\nFQAAAAAALUEwBwAAAAAAAIiBx5/cYE7xN2OsTjxT/brnyNPyBdUAACAASURBVDCMpO7XUt+MsSKY\nAwAAAADAwRHMAQAAAAAAAFopapryBpIXzHE21qvL4gWq73WEUkYepex0V9L2ag2/X3rvPYd69TI1\neDBjrAAAAAAAOBiCOQAAAAAAAEArefwRWUlcv/vH78geDqvsR2eqT9esJO7UOvPnO+T1Gpo6NawO\n0sAHAAAAAIAOjWAOAAAAAAAA0EqNvlBS1y+eN0eSZJ43XW6nPal7tcY3Y6zOOIMxVgAAAAAAtATB\nHAAAAAAAAKCVPL7kjbFKrdypTiu/0O4RY1Q0fEDS9mmtUEh65x2Hunc3NWIEY6wAAAAAAGgJgjkA\nAAAAAABAK3n8yQvmFH/4piQpfM502TrQvKiPP7arocHQ6adHGGMFAAAAAEALEcwBAAAAAAAAWiFq\nmvIGkhfM6TH/LZlOlxznnZO0PWLxzRir009njBUAAAAAAC1FMAcAAAAAAABoBY8/IitJazs9Dcrd\nuEah0WNl5eQmaZfWi0Skt95yqKjI1Jgx0fYuBwAAAACAQwbBHAAAAAAAAKAVGn2hpK2dX7pckhQd\nOzZpe8Tis8/sqqmx6bTTIrLxjiIAAAAAAC3maO8CAAAAAAAAgESxLEuhsKlAOKpAKKJIxFS3woyE\n7uHxJW+MVX7pMklSZMy4pO0Ri9mzm95GnDqVMVYAAAAAALQGwRwAAAAAAAAcMkzLUjAUVSAUVfDr\n8E0wFJU/FFXw68dMa+9BUy6nXYU5qQmrodGfzGBOU8ec8MjRSdujtUxTmjvXofx8U+PHM8YKAAAA\nAIDWIJgDAAAAAACADm1HtVeVtT4FQlGFwlFZB79kL5vLG5SfnSKbYcRdS9Q05QskJ5hjRCPKX7tS\nof5HysrJTcoesVi82K7KSpsuvjgkB+8mAgAAAADQKkyEBgAAAAAAQIdVWefXhu11qveGFIwhlCNJ\nvmBE5dXehNTj8YVjqqElsjetkyPgU3TM2CTtEJs5cxhjBQAAAABArAjmAAAAAAAAoEOq94a0dmtt\nzNfb/T6N/dON6j5/rrZWNCoSNeOuKZljrApKlkmSwmPGJW2P1rIs6c03HcrOtnTMMYyxAgAAAACg\ntQjmAAAAAAAAoMPxByNavWm3TCv2/jRDn7pPxR++qZEP/l5WXZ3KKj1x19XoS14wJ7+0KZgT6UAd\nc5Yts2nHDpumTInI5WrvagAAAAAAOPQQzAEAAAAAAECHEo6YWrVpt8JxdLjptPRTHfH684o6XXI1\n1qv/K09pe6VHwXB8XV88Se6YE8nLV7R336Tt0VqzZzslSVOnJu95AwAAAADwQ0YwBwAAAAAAAB2G\naVpavXm3fMFIzGs4PQ0a/dfbZNodWvCXp+TPK1T/156TY3eltpQ3xLxu1DTlCyQnoJJaWa60qnKF\nR4+VDCMpe7SWZUlz5jiUnm5p0iTGWAEAAAAAEAuCOQAAAAAAAOgw1m2rVb03FNcaIx75o9Kqd6n0\noqu1e8hIlV78SzmCfg361z+0q8YXc9cbjy+s2AdrHdg3Y6yiY8cnaYfWW73apq1bbTr55IhSUtq7\nGgAAAAAADk0EcwAAAAAAANAhbC5vUEWdP641ui18V73ef0M1/Ydo7flXNa17yo/V2LVYfea+orTy\nMm2OsWtOYzLHWJUul6SmjjkdxJw5DknS1Kmxdy8CAAAAAOBwRzAHAAAAAAAA7a58t1dbKxrjWsNd\nW62R99+pqMutxTf9WZbDKUmyHE6VXHq9bJGwBj/3oHY3BFTbGGz1+o2+5AVz8kuWynS6FBk+Iml7\ntNacOQ6lplqaPJlgDgAAAAAAsSKYAwAAAAAAgHZV2xjUhu318S1iWRr59zvlrq/VqstvUGNx370O\nlx1/qmr7DlTxvDnK3rROm3a2fr9GX3wjtvbH7vcpZ+NaBYcOV0eZGbVunU0bNtg1eXJE6entXQ0A\nAAAAAIcugjkAAAAAAABoNx5/WCWba2RaVlzr9HzvP+r22QeqHD5GG6Zdsu8JNptWXX6DDMvSkKf/\nrkZ/WBW1vhavH4ma8geT0zkmb90q2cyozLHjkrJ+LGbPZowVAAAAAACJQDAHAAAAAAAA7SIYjmr1\npt2KmGZc66RV7NBRj/yfwmnp+uLG/5Nszb/lVTHqGFUOG62ui+Yrf/WX2lzeINNsWSDI6w8rvujQ\n/uWXLpMkRcZ0nGDOnDkOuVyWTj6ZYA4AAAAAAPEgmAMAAAAAAIA2FzVNrd60W4FwNL6FTFOj/3qb\nnD6Pls+4Vb6ibvs/1zC06vIbJEnDnrxPgWBEO6q9Ldqm0ReOr84DKChZKkkKjx6btD1aY9MmQ6Wl\ndk2aFFVmZntXAwAAAADAoY1gDgAAAAAAANqUZVlas6VWjf74wy79Xn9enVYs0s5xJ2jLyWcf9Pya\nQUdpx/jJKihZqs6LF2hbRaPCkYN37ElErc0yTeWvWaFgcS9ZnTolZ49WmjPHKUmaOjV5YSQAAAAA\nAA4XBHMAAAAAAADQpr7aUa/qhkDc62Ru26RhT96rYHaultzwe8kwWnTd6st+JcswNPTpvyscjmhb\nReNBr2n0heItt1lZ2zbK5WnoMN1ypKYxVg6HpSlTGGMFAAAAAEC8WhTMWbFihS655JJmj/n9fp1/\n/vnauHHjAa9Zs2aNLrzwQl1yySW64oorVF1dHUfZAAAAAAAAOBRtr/S0eHzUgRjRiEbfc4vsoaC+\nvP5OBXMLWnxtQ+/+2nrimcrZtE495s/VjmqvAqH9h1AiUVP+YHJCKvmlyyRJ1rjxSVm/tcrKDC1f\nbtcxx0SVm9ve1QAAAAAAcOg7aDDn8ccf1+23365gMLjPsVWrVumiiy5SWVnZQa/54x//qDvuuEMz\nZ87USSedpMcffzwB5QMAAAAAAOBQUV3n18ad9QlZ68gXH1f+upXaeuIZ2nHsya2+vuSn18l0ODXk\n2QdkhYLavLNhv+d6/WFZ8RR7AAUlTcGc8JhxSdqhdd580yFJmjqVbjkAAAAAACTCQYM5xcXFevDB\nB5s9FgqF9PDDD6tPnz4Hvea+++7TwIEDJUnRaFRutzvWmgEAAAAAAHCIafSFtGZrbUICLjkbSjRo\n1iPyFRRp2S9vj2kNX+du2jj1fGWUl6nPW/9WRZ1/v+OqGn3heMo9oPzSZYpkZik64Mik7dEas2c7\nZbNZOvVUgjkAAAAAACSC42AnTJkyRdu3b2/22MiRI1t8TadOnSRJS5cu1axZs/T888+3qMDCwswW\nnQcAAAAA8eL3DwBInk2ry5WWHv8XtWzBoMb99VbZohGV3H6PUjp3UkqMa5X9/Hr1fudVDf7Xo9p9\n9vmq9obVp2f+PuftrAsoMyPWXfbPVVOtzB1bFTzxJBUWZSd8/dbauVP64gvp+OOlQYMy2rscAAAA\nAAB+EA4azEmkuXPn6tFHH9Vjjz2mvLy8Fl1TVdWY5KoAAAAAoCmUw+8fAJActY1BbStPzAirYY/d\no8zN6/XVGRdoy6DRkicQ+2KuDK37yWUaPOsRdZ71uNZe8Atlu+3Ky9o7hLO9vF6+YOI7yHRdskiS\nFDx6tBo6wL9Bzz3nlJSiU04JqKoqeV2CAAAAAAD4oTnQlz4POsoqUV5//XXNmjVLM2fOVI8ePdpq\nWwAAAAAAALSzLbsaErJOwaol6v/q02rsWqyVP78xIWuu/8nPFMzK0YCXn5SzoU6bdjbIsr4duBWJ\nmvInIZQjSfklSyVJ5rjxSVm/NYJB6amnnDIMS6edxhgrAAAAAAASpdXBnNmzZ+ull15q1TXRaFR/\n/OMf5fV6dd111+mSSy7RAw880NqtAQAAAAAAcIipbQyq3huKex2Hz6vR99wiGYYW3/RnRVPTElCd\nFEnP0JrzfyGXt1FHvvyEPIGwdtX49hz3+MOyDnB9PApKl8uy2xU+qvlx8W3p7393acMGuy6/PKwu\nXZL1jAEAAAAAOPwY1ne/AtQB0UoeAAAAQFtglBUAJMfyDdWq8wbjXufov/9Ofee+rDXnX6XVl9+Q\ngMq+ZQsFdeplp8jdUKu5z7wjq0tXjRnYSXabTdsrPfpqZ2LGcO29Z0jTzh6t4BED5J3/ScLXb421\na2068cQ0FRZaWrjQq4yMdi0HAAAAAIBDTocYZQUAAAAAAIDDS21jMCGhnM6LF6jv3JdV12eASi/+\nZQIq25vpcqvkp9fKHgpq0KxHFAxHtb3SK0lq9MXf7ac5OV+VyB4OKTx6bFLWb6loVLrhhhSFw4bu\nvjtAKAcAAAAAgAQjmAMAAAAAAICk2Lor/k5kTk+DRt13h0yHU4tv+otMlysBle1r60lnqaFHH/V+\n+1VlbN+sskqPwpGoGv3hpOxXULJMkmSNH5+U9VvqmWec+vJLu6ZNC+vkk6PtWgsAAAAAAD9EBHMA\nAAAAAACQcInqltP/1WeUWlOl0guvVn2fAQmorHmW3aHVP/uVbGZUQ559QBHT1MYdDfIFI0nZL7+0\nKZgTHTMuKeu3xI4dhv7wB7dyciz94Q/x/7cCAAAAAAD7IpgDAAAAAACAhEtEtxxXfa2OeO1ZBXLy\ntf4nl8Vf1EHsmHiSagYMVY8FbytnQ4l21fqSs5FlqaBkmYJFXWR275GcPQ5egm6+OUVer6G77gqo\nUyerXeoAAAAAAOCHjmAOAAAAAAAAEqrOk5huOQNeeVJOv09rLrhK0dS0BFR2EIahVZffIEka+vTf\nk7ZNenmZUup2K3D06KTtcTCvv+7Qu+86dOyxEZ1/fnK6AgEAAAAAAMnR3gUAAAAAAADgh2VLArrl\nuGuq1O/15+UrKNKm06cnoKqWqTxqvCqOGq/OSxaqcPkiVY0Y2+JrIxGpdGWalnyWqS8/T1fvI4K6\n4bYdstv3Pq+gZKkkKTpufCJLb7HaWunWW91KSbF0zz0BGUa7lAEAAAAAwGGBYA4AAAAAAAASps4T\nVJ0n/m45A198XI5gQCt+cbNMlzsBlbXcqstvUNF1n2noU/dp3v0v6kDJFb/PpuVL0vXFpxlatjhD\nXk9TCsdms1RV4dILTxXq4iur9romv3S5JMkY3z7BnDvvTFF1tU133BFUnz6MsAIAAAAAIJkI5gAA\nAAAAACBhEtEtJ7WyXH3efFHeom7aPOXHCaiqdWoHDFXZsVPU4+N31PXTD7Rz4o/2Ol5XY9eSzzL0\nxWeZWrUsTZFw07T4/MKwjj2xXqMneNSrb0B3/FdPvfFKvnr1C+iYE779eykoWapoSqoig4e26fOS\npI8+suuFF5waMiSqGTNCbb4/AAAAAACHG4I5AAAAAAAASIiEdct54Z+yh8MqvfgaWU5XAiprvdWX\n/UrdPnlfQ565XzvHT9bOHSla/GmGvvg0U1+tTZFlNXXR6dknoNETPBo9oVG9+gb3aq5z0107dMt1\nPfWP+7qoW4+QevcLyulpUNbWr+QZNU5yOtv0Ofl80o03pshms/S3vwXk4J1BAAAAAACSjl+/AQAA\nAAAAkBCJ6JaTVr5dvd9+VY3demrrj85MQFWx8fTorQ/GztAHn3XTCxd11rbdeZIkw2Zp0DCfRo33\naPR4jzp1Ce93ja49Qrru5nLd/bvuuufO7vrzQ1t0xIYVMixLodHj2uqp7PHXv7q0ZYtN11wT0vDh\nZpvvDwAAAADA4YhgDgAAAAAAAOJWn6BuOYOef0S2aEQll1wry95+b11Vljt18ZK/KyS7Umv8GjOh\nQaMmeHT0WK+ysqMtXmfUeI/O+2mVXn6uUH/7Y1c9P2iFJMmYMD5ZpTdr1SqbHn3UpeJiUzfdFP9/\nJwAAAAAA0DK29i4AAAAAAAAAh77NCeiWk1G2Wb3ef131Pfup7PhTE1BV7P71dKFCYbtuOeJpVVv5\n+tuJz2jSyQ2tCuV848cX7taYiY0qWZGuh987VpJkjhmb6JL3KxKRbrghRdGoob/+NaC0tDbbGgAA\nAACAwx7BHAAAAAAAAMQlUd1yBs96WIZpquTS6yS7PQGVxeartSn6dH6W+vb3a+JvuyjVFtSgWQ9L\nZmzjn2w26Ze/KVf34oAer56uxwt/IysnN8FV798//+nUypV2TZ8e1qRJrQ8WAQAAAACA2BHMAQAA\nAAAAQFy2JKBbTtbm9eoxf65q+w3UjoknJaCq2FiWNPOxTpKkS66qlK9HL22dPFU5m9er2yfvx7xu\napqp//3ZfOWoVtft/oOWL2+bt+W2bDF0991uFRSYuuuuQJvsCQAAAAAAvkUwBwAAAAAAADGr9wRV\nm4huOTMfkmFZWn3p9ZJhJKCy2HzxaYbWrE7TqPGNGjTML0lac+HVsmw2DXr+kZi75kjSsOpP9IIu\nUMhy6rLLUlVZmdznaVnSjTemyO839Ic/BJWXl9TtAAAAAABAMwjmAAAAAAAAIGaJ6JaTs75E3Re+\np91HDtOuMccnoKrYRCLS8090ks1m6eKfV+153NO9t7adcLpyNq1Tt09j75pTULpMp+gd3X51uXbu\ntOmKK1IUCiWi8ua99JJDH33k0IknRnT22ZHkbQQAAAAAAPaLYA4AAAAAAABikqhuOUOee0CStPqy\nX7Vrt5z35+aofIdLPzq9Tl177J2YKb1wRlPXnFmxd83JL1mqUE6+rv1dhs48M6xFixy64w53Ikrf\nR1WVod/9LkVpaZbuvjvQnn+tAAAAAAAc1gjmAAAAAAAAICZbK+LvlpNXukxdFn+kymGjVXnU+ARU\nFRuf16ZXZhYoNS2qcy+u3ue4p0dvbZvU1DWn66cftHr91KpdSq8sl2fEKBk2Q/ffH9DAgVE9/bRL\ns2Y5E/EU9nLHHW7V1hq67bagevSwEr4+AAAAAABoGYI5AAAAAAAAaLV6b0g1jQnolvNsU7eckkuv\nb9duOf95MV+N9Q5Nm75b2bnRZs9Zc+HVsmw2DY6ha05+6TJJUnj0GElSerr07LN+5eZa+u1v3fri\ni8S9Tff++3a99ppTI0dGdfnl4YStCwAAAAAAWo9gDgAAAAAAAFpt666GuNcoXLFYRcs+166RE1U9\ndFQCqopNdaVDb/6/XOUXhHX6j2v3e15jcZ+vu+asVdfP5rVqj2+COcbECXse69XL0mOP+RWJSJdf\nnqpdu+IPJnk80m9+kyKHw9K99wZkt8e9JAAAAAAAiAPBHAAAAAAAALRKQrrlWJYGf90tZ/Wl1yeg\nqti9+EyhwiGbzv9ZlVzuA499WnPh1bIMQ4NmPSJZLR8RVVCyTFGnU8bRI/d6/Pjjo/qf/wmqosKm\nn/0sVcEY/lojEWnFCpsee8ypCy9M1Y4dNl13XUiDBrWuqw8AAAAAAEg8R3sXAAAAAAAAgENLIrrl\nFH35iQpXf6md405Q7ZHDElBVbDZtcOuj97PVq29Ax5548Of1Tdecnh/OUddPP9DOiT866DV2v085\nX61R4+DhUkrKPsdnzAhr5cqm8VO33OLWvfcGDzjVy+eTli61a9Eiuz7/3K4lS+zyer+9YPToqG64\nIXTQugAAAAAAQPIRzAEAAAAAAECLNSSoW86QPd1yrktAVTGXoZmPdZIkXXJVpWwt7C295qKrVTz/\nTQ2a9Yh2TjhRB0zRSMpbv1o2M6rA0aObbV9tGNJ99wW0YYNNs2a5NGyYqcsuC+85XlMjLVrk0KJF\nTWGcFStsikS+3fOII6IaO/bbW8+e1sFKAgAAAAAAbYRgDgAAAAAAAFpsSwK65XT5/EPlrVulsmOn\nqL7vwARUFZtli9NVsiJdR43xaOhRvhZf11jcV2WTTlPxh2+q62fzmsI5B5BfukySZI6fsN+58mlp\n0jPP+HXyyWm69Va3vF5p0yabFi2ya/16+57z7HZLw4ebGjMmqnHjohozJqqCgpaP1AIAAAAAAG2L\nYA4AAAAAAABaJCHdckxTQ559UJZhqOSn1yamsBhEo9LMxzvJsFm6+OeVrb6+9KIZ6jF/rgbNelg7\nx08+YNecgpKlkiTHxAkHXLNHD0tPPBHQOeek6q67mkZepaVZOu64iMaObQriHH10VOnprS4XAAAA\nAAC0E4I5AAAAAAAAaJGtFY1xr9F94bvK2bRWWyefocae/RJQVWw+fDtbO7a5deKpderRK9Tq6xuL\n+6rs+FNVPH+uunz+ocrHT27+RNNU/poV8nYrloqKDrruxIlRzZrl18aNNo0ZE9XgwaaczlaXBwAA\nAAAAOogWTs4GAAAAAADA4czjD2t3QyC+RaJRDX7uIZk2u0ovuSYxhcXA77PppecK5U4xdd5Pq2Je\np/SiGbIMQ4NnPiRZzY+TyizbJFdjvbwjRrV43RNPjOqqq8IaMYJQDgAAAAAAhzqCOQAAAAAAADio\nsgR0yyn+8E1lbduoLSdPk6dbr/iLitEbr+Spvtahs87brdz8aMzrNPbsp7LjTlHuV2vU5fP5zZ5T\nULpMkhQePS7mfQAAAAAAwKGLYA4AAAAAAAAOyB+MqLLOH9caRiSswbMelulwas1FMxJUWevVVDs0\n+995ys0La+pPauJeb81BuubklzQFc4wJE+LeCwAAAAAAHHoI5gAAAAAAAOCAyio9an5QU8v1fO91\nZezcpk2nniNfUbcWX2czDBVkpSjFaY+zgiYvPVugUNCm6ZdWKyU13mclNfQ64uuuOaXNds0pKF2m\ncHqGnMOGxL0XAAAAAAA49DjauwAAAAAAAAB0XKFwVBU1vrjWsIVCGvT8I4o6XVpzwS9adE1OultF\neakqzEmVw9703bI6T1AVNT5V1QUUMc1W17F1k1vz381Wj14BTTq5vtXX78+ai2aox0dva9Csh1U+\nbpJkGJIkV12NMrdv0e6xx0k2vh8HAAAAAMDhiGAOAAAAAAAA9mtHtVfRZkY0tUa/12cpvbJc6398\nqQIFRfs9L83tUFFumoryUpXi2vdtq5wMt3Iy3OrX3dTu+oAqav2qbQzKbGF9s54olGUZuuTKKtkS\n04BHUlPXnO3HTVGPBW+ry6L5Kh93giQpf81ySZJ/1Bi5E7cdAAAAAAA4hBDMAQAAAAAAQLMiUVM7\nqrxxrZGyu1KDZj2sYGa2Si+8ep/jTrtNnXJTVZSbpqx0V4vWtNts6pSbpk65aQqFo6qs86uixqdG\nf3i/1yxfkq4VSzI07Givho+K7zk1p/TCGeqx4G0NmvmwysdOkgxDBSVLJUnW2HEJ3w8AAAAAABwa\nCOYAAAAAAACgWTurvTGNjPquoU/eJ6ffpy+v/53CWTmSJJthKD87RUW5qcrLSpHt69FPsXA57epe\nmKHuhRnyBsKqqPGrotanYDi65xwzKs16vFCGYeniKysVx3b71dC7v8qOO0U9PnpbnRcv0K6xk5Rf\nulyWzSbHuLGJ3xAAAAAAABwSCOYAAAAAAABgH6Zpxd0tJ690mXq9/7pq+w7UplPPVXa6S0W5aeqU\nmyqH3ZagSr+VnuJUn65O9e6SqTpPSBU1PlXV+/XhO1natjlFk06uU6++wYTv+43Si2aox0dva/DM\nh1V51ATlrVulhr5HypGTnbQ9AQAAAABAx0YwBwAAAAAAAPvYVeNTMBI9+In7Y5o66uE/SpKW/fI2\n9emeq+KizARVd2CGYSg3063cTLe6NmbrqmfT5XKbmn5pdVL3bejdX2XHTlGPj9/RwBf+IXs4JM+I\nUWrZgC4AAAAAAPBDlPivJgEAAAAHYFpWe5cAAAAOwrIslVV64lqj9zuvKm9DibaeMFU1Q0aqKDct\nQdW1zuOPpWh3tUPTL2pQfmEk6fuVXnyNJGngv/4hSQqPGZf0PQEAAAAAQMdFxxwAAAAkTTAcldcf\nlscfbroPROQPRmS3GcrJcCs7w6WcDLfSUxwyDKO9ywUAAF+rqvPLH4o9xOL0NGjoU39TJCVNK6+8\nUTkZbrld9gRW2DK7dxt68EGXCgpM3XmbTbvq07WjOr7xXAfT0Lu/th9zsrovfFeSZBs/Pqn7AQAA\nAACAjo1gDgAAAOJmWpZ8gci3AZyvb+GoKUmyLGlHmUsly9O1ZlWaAgGbXG5Tbrclt9tUSmpE2Vk2\nZWfalJdtV062TenpUmqqpdTUb+/T0y117WopJaWdnzAAAD9w2yri65YzaOZDctfXauXl/61AQZF6\n57VPt5wnnnDK5zN0661BZWYayszMkcth1+ZdDUndt/Tia9R94bvyFxTJ3a93UvcCAAAAAAAdG8Ec\nAAAAHJBlWYpELUWipqJm030kYsoXjMjrD8sbiMgXjOw1osqypF07nSpZnqnVK9JVujJNdTWJeemZ\nmWlp2rSwzjsvojFjoqLRDgAAiVXTEJAnEI75+qzN69Xv9X+psWuxNvz4UtkNQwU5bZ+q9XikJ590\nKS/P1EUXfft8enbOlNNh04btdUrWgM36PgP0xX//QY6iTupuY5I8AAAAAACHM4I5AAAAhyHTtLS7\nISB/MLJX2Cby9c/Rr4M44a/DOAdjWVLlLqdKlqdp9Yo0la5MU021c8/xnLyIJp5Qr8HDfRoy3Kec\nvIiCAVvTLWgoGLQpFDT2fSzwzTGbrKhDkZBDS79I1cyZLs2c6VLv3qamTw/rvPPC6t49WR+tAQBw\neImrW45lacSjf5LNjGr5jFtkulwqykmVvR3CKc8/71RdnaGbbgopPX3vY10L0uV02LRma+1e4eJE\n2nLKT9SjMCMpawMAAAAAgEMHwRwAAIDDSJ0nqIoan6rqAoqYZlxrVVc6tHp5mkpWpKtkRZqqK78N\n4mRlRzT++AYNHubT4OE+de0R2qezTUpqVFK01fv+d2aqdm8v1IsvOjV3rkN//rNbf/mLS8ccE9X0\n6WGdfnpknw/fAABAy9R7Q6rzBmO+vtvC91S0/HOVjzlOu8ZOkiR1bocxVqGQ9OijLqWlWbr88lCz\n5xTmpMpht6lkc03cr4v2JzPdlZR1AQAAAADAoYNgDgAAwA+cLxBRRa1PFbU+BUKtD8J8l6fRpvnv\nZOuDt3K0o8y95/GMzKjGHNOoIcO9Gjzcp+499w3iJEp1o1/9BtXr0Ucz1NgovfGGUy+95NDHHzfd\nbr7Z0plnRjR9eljjxkXF9AgAAFqurKIx5mvtAb+GsKtRCwAAIABJREFU//PPMh1OLZ9xiyTJ7bQr\nJ6PtwymvvebQzp02/eIXIeXl7f+83Ey3hvfL16pNuxWKJD6ck5XmPPhJAAAAAADgB82wrCT1602Q\nqqrY3xACAAA4XIUjUVXW+lVR61eDr/lvibfGlo1uvf1GrhbOy1IoaJPTZWr4yKYQzuDhPhX3DrZp\nAMZmGBreN1/ZGd+GgzZtMvTyy0698opTZWVNxRQXmzrvvKZRV716deiXvegACgsz+f0DwGHNGwjr\ni7WVMV8/6LmHNHjWw1o7/edadcWvJUk9OmWob9fsRJXYIqYpHXtsmjZvtumLL7zq1u3grwH8wYhW\nbtwtfyiSkBpSXQ51zktTz86ZCVkPAAAAAAB0bIWF+38PgGAOAADAD4RpWtrdEFBFjU81jUGZcb7M\ni4Slzz/O0jtv5GhdadMIiqIuIZ00tU4nTKlTZlZyRj60lNth19EDCuV22vd63DSlTz+166WXnJo9\n2yGfr6l1z/jxEZ19dkSTJkUI6aBZBHMAHO7WbK1VRa0vpmvTdu3QKT8/XaGMLL391FuKpDXNlRx9\nZCelp7Rt15i33nLo0ktTdf75YT3wQKDF1wXDUa3auFueQDimfZ12mwpzUlWUm7pXeBgAAAAAAPzw\nEcwBAAD4Aav3BFVR61dVnV/haPxhmd1VDr33Zo4+eCtH9bUOGYalEaO8mnJWrUaM8nao0VDZ6S4N\n71cg237mZnk80pw5Dr30klOffPLtFNeePU0dd1xEkyZFdcwxEeXmtlXF6MgI5gA4nAVCES1eUxlz\nsHf8769X94XvadHNd2vbiWdIkjJTnRo5oFMiyzwoy5JOOy1NX35p18KFXvXv37rXRpGoqdWbalTn\nDbbofJthKC/LraLcNOVnpchmS9IsTwAAAAAA0KERzAEAAEiylRt3KxI1leKyy+2yK8XlUIrzm5/t\ncthjT7NETVOBUFTBUFT+r++DoYgCoaj8oYhCkZZ/4JRWsUMFq5aocNUS5a9ZIUkKZWQplJahj0LH\n6JldZ+qDipGKWnZluf06fUSJzjhmozoVS+H0TIUyMhXOyJLp6jjfAu9emKF+3Q4+ImPbNkPvv+/Q\nggV2LVzoUGNj0wdnhmFpxAhTxx8f0fHHRzVqVFTujvP00IYI5gA4nH21vV7bqz0xXdtp6ac6/rdX\nqHrQUfrwb89LXwdm+3XNVvdOGYks86A+/dSuadPSdMopYT33XMu75XyXaVoq3Vqj6vr9X5+V5lJR\nbqo65abK6bDv9zwAAAAAAHB4IJgDAACQROW7vVpXVnfAc5x2m9xOu1LcdqU4Hd8J8NjlctgVijQF\nbgLhqAKhqAKhSNOfQ9HYu+BYljJ2blXhyi/2hHHSK3buORxOTVO9PU8ves/SI9Y1WqNBkqQRWqZr\n9ZAu0AtKk7/ZpaNOl7ZNnqrlM27dM6qiPQ3qmatOuWktPj8SkZYvt2nBgqagzpIldkUiTR8ipqVZ\nGjcuuieoM3Cgqf005MEPDMEcAIercCSqz0sqFI3hLSIjEtbJV5+tzLJNev+hV1R3xGBJTZ1kxg0q\nksvZtqGV889P1bx5Ds2d69WoUbF3ErQsS+vL6lRe8+1orxSXXUW5aSrKTVNaiuMAVwMAAAAAgMMN\nwRwAAIAkiURNLV5T0aquNUljmsra+pUKVy1R4aqmME5qTfWew8GsHFUPGamqYaO1vGiSXlw6Sgve\nz1HAb5fDYWrimEqddcwGDSvaJre3QU6vR85v7j1N9y5vg5yeRmWUlylj5zY1duupz2+9d8+HcO3F\nbhg6qn+hMlKdMV3v8TR9w37BAoc++siudeu+/RCxsNDUccdFNXVqRKedFiGk8wNGMAfA4WpzeYO2\nVsT2/39HvPasRvzjz9p4+nQt/dWdex7Pz0rR0D75CaqwZVavtmny5HRNmBDRf/7TfLi4tTaXNygU\njqooL005GbTUAwAAAAAAzSOYAwAAkCRf7ajX9qrYxj7EzbKUs3GNClcsVuGqJSpY/aXcDd927vHn\nFahq6GhVDx2lqmGj1VDcV+vXpumNf+fri08yZFmG8gvCOmlqnSafWqec3GiLtzbCIQ155n4d+cpT\nMh1Orfz5r7Xh7J+qPVMraW6Hju5fGNfYsG+UlxtasODboE5VVdOaEydG9Kc/BXXkkR0giIWEI5gD\n4HAUiZpaVFoRU4c+d+1unfqzU2TZ7XrrqbcUys7dc6y13ewS4eqrU/Taa069+KJPkye3/HUNAAAA\nAABAvAjmAAAAJIEvENaSdVUy2/jlVFr5dvX84A31/OANZe7Yuudxb1FXVQ0draqvgzjersWSYciM\nSks+z9DsV/K0rrTpA7J+AwI698J6DRtTK3scEyaKlnyiMXffrJS63Sofc5wW3/gnhXLy4n2KMSvI\nTtGQ3on9dr5lNX0D/557XHr7baccDktXXhnWb34TVEZGQrdCOyOYA+BwVFbp0cad9TFdO+re29T7\nnde09NrbtfHMi/Y87rDZNGFIZ9lsbRfY3bLF0Lhx6Ro40NS8eT463AEAAAAAgDZFMAcAACAJVm6s\nVk1jsE32cnoa1P2jt9Xz/TdUuPpLSVLEnaKd4yerfMzxqh46Ur6ibk3n2m1KcTlkmA598E6mXno+\nU9u2OiRJP/pRWNdeG9b48VEZhrS+rE47d3vjqs1dW60xd/9Wnb/8RP68Qi26+W5VHTUuvicch96d\ns9Sz8/5fAMfj3XftuvXWFG3bZlPnzqbuuiuoadMYb/VDQTAHwOHGtCwtKqlQMNL67jK5a1fqR9dP\nV13v/nr/kVdl2R17jnXJS9OA4twDXJ14N93k1jPPuPSPf/j14x9H2nRvAAAAAAAAgjkAAAAJVl3n\n1+otNUndw4iE1fmLher5wRvq+tk82cMhWYahqmFjtO2ks1R30mnK6JSvVLdDKS67Ulx2uV121dbY\n9fTTTj31lFO7d9vkclk699ywrr46rAED9h5TYVqWVm+qUU1jIL5iTVP9//20hj79dxlmVGunX6mS\nn14ry+GMb90YGJKG9slXXlZKUtb3+6WHHnLpgQdcCgYNHXNM03ir7//d4tBDMAfA4aZ8t1fryuoO\nfuL3maYm/9cFyl+7Uh/+9VlVDxuz1+ER/QqUk+FOUJUHV1lpaNSodHXqZOnzz71yOA5+DQAAAAAA\nQCIdKJjDWxUAAACtZJqWvopx5MNBWZZy169Wz/ffUI/5c5VS3xT+aSjuq4pTz5b37HOVdkQfdU93\nqqfNttelmzYZevRRl156yalAwFBOjqX/+q+grrgirKKi5rPYNsPQoF65Wr6hWp5AOPa6bTatP+8K\nVQ0brXF/ulEDX3xMnVYs0ue33Ctf526xrxsDS9KarbUaOaBQKa7Ev9xNTZV+85uQzj03rNtvT9G7\n7zp0wgl2XXVVWDfeyHgrAMChwbIslVV6Yrq25/uvK3/tSm07/tR9QjkpTnubhnIk6Yknml77/PKX\nQUI5AAAAAACgw6FjDgAAQCtt3dWozbsaErpmauVO9fxgtnq+/4ayyjZJkkK5+ao9dZpC0y+Qa8wo\n2ey2Zq9dvNimRx5x6a23HLIsQ8XFpq6+OqTzzw+3OCQSDEW1dEOVguHWj7L4PofXo5EP3KniD99U\nKD1TX97we20/7pS4122tzFSXjjqiQDZbcudMvfOOXbfd9u14q9//PqizzmK81aGIjjkADieVdX6V\nxtD9z+Ft1KmXnyaHz6O3n5wrf6cuex3vWZSp3l2yElXmQTU2SkcdlSGXy9KXX3qVmtpmWwMAAAAA\nAOxBxxwAAIAECYQi2laRuA/u03ds1cj771TR8s8lSabLLc/pZyl8wUWKnHCibE6nmhvIVF1taM4c\nh156yakvv7RLkkaMiOqXvwzp9NMjrf62uNtl19A++Vq2oUpRM77cdiQ9Q4t+e492jZyoox/8X43/\nww3adOqnWj7jFkVT2u7TskZ/SBu212lAcW5S95kyJarjjvPqwQddevBBl666KlUzZzaNt+rfn/FW\nAICOqSzG1zODnn9UKbXVWn3p9fuEciSpKDct3tJa5bnnnGpoMHTrrSFCOQAAAAAAoEOiYw4AAEAr\nlGypUVWdPyFrpe3aoRN+fYnSqsoVGj9RwfMuUPCMs2RlZTd7fm2tNHeuU//5j0MLF9oVjTa1ZDn5\n5IiuuSak8eOjcXdpqWkIaPXmGpkJeomYUbZZ4/7v18rduEYNxX312W33qaF3/4Ss3VIDeuSoS356\nm+y1ebOh229P0XvvOeRwWPrFL8L69a8Zb3WooGMOgMNFTUNAKzftbvV1Gds3a8qVZ8pX2FnvPDFH\npmvvkVVZaS4d3b8wUWUeVDAojRqVLq/X0LJlHmU3/xIKAAAAAAAg6Q7UMaf5eQgAAADYR21jMGGh\nnNSqXTr+psuUVlUuz+13qf71txS46Kf7hHIaG6WXX3boootSNWRIhm64IUULFjg0fLipu+4KaNky\nj2bN8mvChPhDOZKUl5Wift0S96mWp0dvzbv/BW2Ydomytm3Uj649V33f+JfUhtnwDdvr1eALtcle\nvXtbev55v2bO9KlrV0sPP+zSxInpmj2bRpUAgI5jW6Unpuv6v/asbNGIVv381/uEciSpKLdtW9a8\n8opTFRU2XXppmFAOAAAAAADosOiYAwAA0AKmZWnpuip5AuG413LXVOmEG3+qzO1b5L3xt/LddOte\nx71e6b33HPrPfxz64AOHgsGmxM2QIVFNmxbRmWeG1atXcl/CbdxZr7IYP7Tbny6ffajR994qd0Od\ntk/8kZbc8L8KZ+UkdI/9SXHaNXJAoZwOe5vsJ0l+v/TAAy499JBLwaCh//mfgK69Nv7//SB56JgD\n4HDQ4A1p6YaqVl/n9DRo6gWTFMzO0dxn35Pse/+bajMMjR9c1Gb/1kaj0sSJ6dq+3dCSJV517tyh\n394CAAAAAAA/cAfqmMNXdwEAAFpgZ7U3IaEcV12Njr/5Z8rcvkW+626Q7ze3SJICAemDD5rCOO+9\n55DP1xTGGTAgqrPOimjatLD69Wu7D5z6ds1WIBRNWIcgSSoff4Le/cd/NPYvN6n7J+8rb32JFv32\nblUPHZWwPfYnEI6qdEuthvXNl5GI1kItkJoq3XxzSGefHdF556Xq979Pkddr6KabQgnpbgQAQCy2\nVcYWQOz53n/kCPpVesaMfUI5kpSX5W7TAOzcuQ5t2mTTxReHCOUAAAAAAIAOjY45AAAABxGORLWo\ntFIR05TUNIUpEjYUDBgKBGwKBmwKBg1FwobCYZvC4W9+3vve9ATV4/V/y15TJ89RE+QZP1mhkKHq\nakPvv++Qx9OU1ujTx9S0aWGddVZEAwea7fa8TdPSiq+qVZ/oMVDRqAa++JgGz3xIklRy8TVac8HV\nzX7Il0gOr0edc1PUb1DPpO7TnG3bDP3kJ2nautWmGTNCuvPOIOGcDoiOOQB+6HyBsBavrWz9haap\nU644TWmV5Zrzr/kKZefuc8rgXnkqzGmbUVaWJU2ZkqYVK2z69FOv+vbt0G9tAQAAAACAwwAdcwAA\nACSFw1JdnaH6+qb7b2719YZqaw01NBjyeiWfz5DP9829odr6qDyeXnsFcUwz1lTFr5vuln19+1qP\nHqYuu6ypu8qQIWaHCG3YbIaG9MnT0vXV8ociiVvYbteai2aocsRYjf3TjRry3EMqWva5Fv32HvkL\nOydun2+28/vU/7VnNeDlJxROz9LaF+eqx7B+Cd/nQIqLLb3xhk/nnJOqRx91yeeT/vKXoGy2Ni0D\nAHCY21YR25jKoqWfKnPHVm0++exmQzlOu0352SnxltdiH39s1/Lldp1xRphQDgAAAAAA6PDomAMA\nAA4ppik1NEi1tU2BmuYCNt8P3nxz83pbn3ax2y253KZSUky5Uyy5U8ymm7vp5+8+7nRZcjotOZxf\n3zssOZ2mXApo2KuPqWD7Wum4CYpeO0PuFJtcLksul5SWZql3b6tDhHGa4wtEtGxDlcLRxHfvcTbW\na9Tf7lD3he8pmJmtJb/+o3ZOODEhaxvRiHq9+/80+NkHlVpTpUhKmhwBn6qGjtL2515V9277frCY\nbFVVhs47L1UlJXade25Y998fkIOofIdBxxwAP2SBUESL11TKjOFtoIl3zFDXRfP13kP/Vl3/wfsc\n75qfrv49chJRZoucc06qPvrIoXff9WrEiPbrLggAAAAAAPCNA3XMIZgDAABiZllSMCgFAlIwaMjv\nlwIBY8+fIxHtuYXDUjhsKBpt+rnpMUPhsL7zWNOfAwF9L2jzbbimoUGyrJYnWDIzLeXkfHvLzraU\nm9t0n5OjvR7PzraUnt4UlGm6SSVbqtTgj32Ukz3g1zF3XK1OKxbLP+0n8jz6RNJHNiVDvSeoFRt3\nx/Rh3kFZlvq8+bJG/ONPsoeC2nDWRVp55W9kutwxr9dl0XwNffJeZW/dqIg7VevPuUzrzrlco++9\nVd0Xvqd1P7lM4f/7s4py0xL7XFqgrk664II0ffll0zf9H300IJerzctAMwjmAPgh+2p7vbZXt75j\nTnp5mU69bIpqjhymefe/2Ow5Rx1RqOz0tvnHbMUKm046KV3HHhvRq6/622RPAAAAAACAg2GUFQAA\nkNQUgGlslOrrm8Y2fXOrr9d3fjb2nOP1NoVsAgFDwaDk9+/950CgdSGZWKWlNYVmunY1NWjQN+Ea\nfR2uaf6Wnd10PJ5uJP+fvfuOj6LO/zj+mu0lvUDovQmCiHqWU89ez3p2zysqigXrz/M8e7tTz9M7\n7HqevXdsZ8EueiBIkSaEXtLbZvvO/P5YAoQkkGyyIcD7+XjMY2dnvvOdb5LdTbLz3s93XWWwXaEc\nWzTKvrdcmgzlHP1rAg8+tl2GcgCyM9wM65vD/OVVHd+5YVB87GmUjxzL3ndexZC3n6dwznS+u+5e\n6voOalNXuQvnMPrxe+g2exqWzUbxUafw0zmXEM7vBsC0q+4ka/kShr3+FN8PH03lH84mL6vzpt4A\nyMmBV18NctZZXiZPdhIKGfz73yG83k4dhoiI7ERi8QRrK+pTOnbQ5JcwLIvFx53V7H6vy9FpoRyA\nSZOS55o4MfW/0UREREREREREOpMq5oiIiGxHwmEaBWc2DdPU1m4ermkauAkEUgvReDwWHk9rbpPr\nbnfy1uEAhwOcTtZP69T4/sZ11k/9lFz3eJLVbBqCN+4UC6e0RzxhMm1+KZF4IqXjjViUfW+7nJ7f\nfUbokMMJPP0CO0JZlOXr6li6rjZt/dvDIcY8eheD3nuZuNvLzIuuY9mRJ7O1eb78a1cy6sn76PvF\nBwCs2fsgZp97JXX9Bjdpm7liCYdceiqGBZ9NepmBh+5DVideUGwQDMIf/uDls88c7L9/nKefDpGR\n0enDkE2oYo6I7KiWratl2bq2v77ZwyGOPesgTLuD956bgtnM3zL9izLpX5TVEcPcquJig3328TN6\ntMlHHwW77DSgIiIiIiIiIrLzUcUcERGRNorHIRCAurpkmKWuDgIBg3DYIBpNTt8UjW5cj8WM9duS\nUzhFo6xfNrZJJJLTOCUSYJpsWE8kjM3ub7o/eUwwmBxLJNK2qw+GYZGVlQy49Otnkp1tkZW1cVtm\nprV+G+u3W43aZGQkQzE740WP5SV1qYdyEnF+8bdrkqGcXx5I4D/P7RChHIB+RZmEo3HWVgbT0n/C\n42XGZTdTMnYf9rj/Rva87wa6z/iWHy6/hbi/6R+1rtoqRjz/CIMnv4gtHqNy2K7MOv9qykfv1eI5\n6voOYtpVd7Lv7Zez9y2X8kW31xg1dgB+jzMtX1NLfD545pkQ48d7+OADJ6ed5uOFF4JkZ3fqMERE\nZAeXME1Wl6VWLafPZ+/hqqth3pkXNhvKATp1WsgHH3RhWQaXXhrdKf8+FREREREREZHtkyrmiIjI\nDsOyIBRqCNOwPlDTsGwM2TQEbhq2N7TbNIATDHbOO/2GYWG3s2Gx2RrWrU3Wwetlk8CMtT5U03Tb\n5gEbvz/Zp7RNMBxj+sIyzFT+TEok2OueP9NvymRCe+1D4JU3kwmMHYhpWcwtrqCyLpLW8/hKVvOL\nv/4fBfNmEijqzfd//juVI8YAYIuEGfLWswx/6XFc9XUEevRhzh+vYNUBR7Y6STb6sXsY9tqTrN73\nEH64/SHGDi3E4+r83HosBpde6uGNN5yMHp3g5ZdD5Od36T/Rd1iqmCMiO6JVpQEWr6lp+4GWxaEX\nnUz20kW8/+wnhAqLmjTJ9rsYO6SwA0a5dSUlBuPG+enVy+Lbb+u319lBRURERERERGQHpYo5IiKS\nMstKTp9UX29QX9/4Nhg0iMeTF5VjMYjHjfW3rN++cX/D/URi433LaryYptFkW3OLaSbP3zSAk6ww\nkwqfz8LvT4ZdevQwycy0yMiwyMiAzExr/f3kFEsuF7jd4HIlq8k4neB2J7c3bGtYT94m9zscNArb\n2O07ZyWa7cHi1bWphXJMk3H/vCkZyhm7B/UvvbbDhXIAbIbByAF5rCkPsqo0kHJloa0Jdu/F5/c+\nwy7PPsiIFx/loCvPZu7vJhLOK2TUU//EV76OSFYOMyf8meJjTm/xk/wtmXPuFeT+PJde335KxXOP\nMvt3Exg7pACno3Ov9Dmd8OCDYXw+i+eec3HiiV5efTVE9+4K54iISPuYlsXKskBKx+bPm0nukvms\n3P+IZkM50LnVch591Ek0anDJJRGFckRERERERERku6KKOSIiO5CGKY8ah2iaBmpaWt94bONjTLNr\npkfs9mSQprkQTUOQJiOj4f7GfX5/03YORVVlvfKaEHOXVrb9QMti7AO3MXjyi4RGjqb+rXexsnM6\nfoBdjGlarK2oZ2VpgHAsPQEdgO6zvucXd/8Jd1kJAAmXm0UnnsPC084jlpGVcr/uqgoOvfhkvJVl\nfHnn44T2+xVjBufjsHd+qSnLghtucPPYYy4GDDB5/fUgvXt36T/VdziqmCMiO5q1FfUsXFmd0rG/\nuPMq+n7+Pp/9/elmp4i0GQb7jirqlN+ZtbWw224Z+P0W06fX43an/ZQiIiIiIiIiIm2y3VbM+e8r\nNVSW1OJxmckKBC4Lj9vC5TSTty4Lj8vC7TZxOlR1QETaLpGAYNhGKGwQWn8bDNsIhWwEQw3bbAQ3\n2d+wrX6T/Q3bI1GDhAlmInmbWH9rmslKMQnTwDTX3yZo1AZr/YuYYWEYydc0AzauN2zfZBvr1zd+\nHe1/U9zvS+D3mfi9JoU9zQ3rfl9y8Xk33vd6LFxOC4fDwrl+cTjA6bCw29dvc9Jov92e3O+wWxi2\nhq8zOW3Txq81ua3R/U2+DzYb+L3J87f7tb9+/SJCMmSyekkF3mi8zccOfePpZChn6C7Uv/72ThHK\nAbDZDHoVZtCjwE9JZZDlJXWEox0X0PE47fQs8NNj1PHUHXsg1g3XErE5+eq4PxLq1qPd/Udy85l6\nw/0cdNU57P3Xq/n4wdeY5zAYNTAfWyf/cWkYcNttEXw+i/vvd3PccT5eey3IwIEK54iISNtZlsXK\n0tSq5XgqSun91UfU9B9C+a57NtsmP9vTaUHWZ55xEggYXH55VKEcEREREREREdnudOmKOW29FuIh\nhIcwbiJ4COMjSAYB/NS3eskggI8gBhYmtg2LhdHofirbW9PWTgInMVxEcRJrtN7ctk3XPYTxEsJL\nCBdRumpOycQggZ04DiwM7CQ2LF11zKlIYCOGkyguorjW/7ScwPrAwWaLDbPZ7ZvudxDHSQwH8Q79\nXsWxE8bTZIngbnZ7W9oksG/4KoAtfIWNl4bvU8Njw4bZ6LGy+f3Nt8VwEsTX4lKPnyA+onTcu7oG\nJm4iTcbV3NLS+Nvy/dn0vg2TDALtXryEsNFlfy2IdHmhgUOon/whVmHhth7KNmNaFqVVIVaU1BGM\ntD3g1CDH76ZXoZ+CbA9GM38UzimuoKI23J6hNjJw8ouMm3QrlUNH8dk/nqOgWw679M/rsP7b6v77\nXdx5p5vu3U1eey3EsGHmNhvLzkQVc0RkR1JWHeKnZSlUAQR2efZBRj77AD9MvIniY09vts2oAXkU\nZHvbM8RWicVgzz39VFcbzJoVIDs77acUEREREREREWmz7bZizmP7P0tptY1owknYdBJOOImYTiLr\nb8MJJ1HTQTjhIrLh1knEdBBK+CmL57Es4SaU2Pk+TmVg4rVH8dqjeOyxDetee6TZ7TbDJG7aiVt2\nEpaNuGVbf99GwrJvWI9vtp6wbMn264/d2nEJKxlAaokNE7th4rAlkrdG8nbzxWFL4DBM3LYYLlsc\ntz22YX3j/Xhymz2Gy0g0amM3TOKWnZhpJ2o6Nixxq/H9mOlo1CbWcLu+XWxDWzvxTY6Lmo4tfp0d\nwW4kcBoJnLY4TltyPfl9SSTv2+KNtsVMx/rnkavRcydsOklY9rSOtStwGnF8jgheewSfPUquoxav\nvRzf+vs+RyS57kg+R3zrnyvJ7cnnjn99m823N6y7bbHtpHKXE8hdvzQW7fSxiHRtFslPm1tWMnBi\nWcmqOhu2YWGZyX1kZ+P4y3U7dSgHktNaFOX56J7rpaw6xIqSAIFwrFXH2g2DbrleehVmkOF1brHt\nwJ5ZVNaGOyxKWHzs6eQvmE3/j99i7IN38MMVt+JaVcPg3tvm6t/ll0fx+Syuv97DCSd4eeWVELvu\nqnCOiIi03oqS1KrlGLEoA997iZgvg+WH/LrZNk67jbwsT3uG12rvvONgzRob558fVShHRERERERE\nRLZLXTqYc/6Xv+2AT6xGSSSihEJQX28QDEIwmLxN3m+6LRRKHmmzsWFqlU1vG2+3muxrbbvN+zYM\nMM3kp8GSi7HJOsTjBtEoxOMQjRrE4xv3RaPJfeEwhEIG4TCEw07CYSehkEFNCErCBuFgst/2sNmS\nU9U4HMmxOxzgcCenp3E4wG4HnyM5dU3Dto1tTRwOc8N2SE7BY5rJ23g8Oa2PaTrWr2+6JKcCiicg\nHN/4fYiGIRLpnDSEYVi43cmxu1zJKXpcLvDYzJpQAAAgAElEQVRudt/hMHG5zE3uW7hcye8NgGUl\nl03Xkxd7G9/ftJ1pbvyZJxLJn2M8bicWs6/fntwfj0MoxsZt6x8zLhd4PBYuP7jdkO1Jfi1ut4Xb\nHcfjaVjf9DZ5TMO2ZJvk17pp+8br1vo2yW12e+NpiJLfx60vDd+bTR8fDeumufHx0LCv8a2Bw2Hh\n84HPlxyrc8P1Xef6xd+hj43Y+kVEdk4NUUzFJjYyDINuuT665foorw6xvKSOulDzr5Qel51eBRkU\n5flwOloXbPV7nBTl+VhbGeyoAfPDxJvILl7IwA9epWL4aJYd9RucDhv9ilpOuafT+PExfD646io3\nJ5/s45VXguy2mx5lIiKydVV1EepCqcXue33zCd7Kchad+FsS3ub/b+qe6+uUKR8tCx5+2IXNZnH+\n+foYgYiIiIiIiIhsn7p0MKej2O2QkQEZGQ2fqd65p2lJJCAUgnC4IcADlmVgt1sbgjUbb5tus3XO\nFPJtYlkNAaWGxSAS2RhYikaT4Z2G9UQiGdRoWBpCNZuvb37fvuMXlulSDGNjgKupLT2Pd+7nuIhI\nV1OQ46Ugx0tlbZjl6+qoCSYvrOVmJKerys9qfrqqrenfI4vSqhCJDpqZ1XR7mHrjPzn0klPY/YHb\nqBk0nKWMwumw0bOgYwOdrXX22TFcLouJEz2cfLKPl14KsueeCueIiMiWrShJ/UNOg995AYAlvz6j\nxTbd8tI/hRXA1Kl2Zs+2c+yxMfr31/95IiIiIiIiIrJ92imCOdJY06ASbO9BBsNIVmhxuRq2KIQl\nIiLS1eRlecjL8lBVF8HttOHzbHm6qq1xO+307pbB8nZcfNxcfY8+fP+nu/nlDReyz60T+eTB1/kZ\ncDpsFOZ0zkXIzZ16ahyXK8yECR5OPdXHCy+E2GefxDYZi4iIdH11wShVgUhKx2YvmU/h3B9Yt8cv\nCfQe0Gwbn9tBls/V7L6O9vDDyfNMmKBqOSIiIiIiIiKy/eqCtU9EREREZEeWm+ludyinQZ9uGbha\nOf1Va63b6wB++u3F+EvX8ou/Xo2VSDB/eRWl1aEOPU9rhCJxFq6oYuQe5dxxdyWRCJx2mpd33o9T\nWRumtj5KMBwnGktgmgoki4gIrCgJpHxsQ7Wcxced2WKbojxfyv23xZIlBv/9r4M99kioWpyIiIiI\niIiIbNdUMUdEREREtlsOu41+RVn8vKq6Q/udf+YE8hbOoef3XzDymUn89IfLmbeskrrCDAb2zEpp\n6q22qqwNM395FbFE8mLkwF3ruerGIPfe1osJ47P5v5tWs9ue9Y2OsRkGDruBw27DYbfRLcdL724Z\naR+riIh0DcFwnPKa1IKkztpq+k55l0BRb9bueUCzbeyG0WnTOz7yiKrliIiIiIiIiMiOQRVzRERE\nRGS71iPfh8/dwXlzm43/XXMXgR592OXFR+n57acArCwLMHtJBbF4eqeSWlFSx5ziig2hnAbj9q7n\nT7esAuDum3sxfWrj0I1pWUTjJsFInNpglOK1tdQGdUFTRGRnsbK0LuUJnQd89CaOSJglvz4jOQd2\nM4ryfTjs6X8rqaLC4OWXnfTta3L00fG0n09EREREREREJJ0UzBERERGR7ZrNMBjYI6vD+41lZvPt\njf8i7vaw193XkrFqKQBVgQg/LCyjLg2Bl3jC5KellRSvrW3xwuqYPYL8+bZV2G1w7629+O6rzBb7\nMy2LBcurNM2ViMhOIBJNUFKV4rSLpsmgyS+ScLlZesRJzTYxgN6FnVOF7emnnYTDBuPHR1vKCImI\niIiIiIiIbDcUzBERERGR7V5Bjpdsv6vD+60ZNJwfLrsFZzDAvrdMxB4KAhCOJZj5cznrKoMddq5g\nOMaMRWWUtWIKklFjg1x350qcLpP77+jJ11NaDiYFI3GK19Z22DhFRKRrWlUWwLRSC2IWTf+KjLUr\nWX7wscSycpptk5/twdvRFeqaEQ7Dv//tJCvL4swzY2k/n4iIiIiIiIhIuimYIyIiIiI7hIE9s9PS\n74pDj+Pn488ie/li9rjvBlh/0dO0LBasqGLRyuqUL4Q2KK8OMWNROcFI66frGLFriOv/thKP12TS\nXT34/KOWwzmrygJU1UXaNUYREem6YnGTNRX1KR8/+O3nAVhy3JkttunTSdVy3nzTQVmZjXPOiZLR\nOacUEREREREREUkrBXNEREREZIeQ7XdRmO1NS9+zxl9D+S5j6fv5+wx+69lG+9ZU1DPr53IisUSb\n+7Usi6Vra5m7rJK4abb5+KEjwtx41wp8GSYP39uDT95vOZy0cGUV8UTbzyEiIl3fmvJ6EilOW+hf\nvZwe076ifOTuVA/epdk2mV4X2Rnu9gyxVSwLHnnEhcNhcd55qpYjIiIiIiIiIjsGBXNEREREZIcx\noEcWNsPo8H4tp4upN9xPOLeAMY/dQ8Gc6Y321wSjzFhYRk2g9VVpYnGTOcWVLC+pa9fYBg6NcNPd\nK8jISvDY/T348O3mpyAJRxMsWV3TrnOJiEjXkzBNVpUFUj5+8OQXAVi8hWo5vbv5U+6/LT77zM78\n+XaOPz5Oz57tq0YnIiIiIiIiItJVtCqYM2vWLH772982uy8UCnH66aezZMmSVh1z55138uKLL6Yw\nVBERERGRLfN5HPTI96Wl73B+N6b+5V6wLPa+4wo8FaWN9kfiCWYtqWjVxdFAKMaMRWVU1oU7ZGz9\nB0W4+Z4VZOfGefLBIia/loctGiFv3swNU28BrK0MUlHTMecUEZGuYW1FkFiKFdHsoSD9//sGobwC\nVv3ysGbbuJ12CnPSU5Fuc4884gJgwoRop5xPRERERERERKQzbDWY8/jjj3P99dcTiTT99O+cOXM4\n66yzWLly5VaPqays5LzzzmPKlCkdMGwRERERkeb1L8rEYUtPYcjy0Xsx+/yr8VaWs8/tV2DEGl84\nNC2LxatrmL+8ikQLU1OVVAWZuaiMUDTeoWPr0z/KLX9fQW5+jGcf68a0i6ZzyOVnMvzFRxu1W7iy\nili87dNutVY8DhUVxqZ5IBERSRPTslhVmnq1nL5T3sVVX0fx0adhOV3NtulV4E9LNbrNzZtn4/PP\nHey3X5zRozX1ooiIiIiIiIjsOBxba9C3b18mTZrENddc02RfNBrlwQcfbLKvuWPq6+u59NJL+fLL\nL9s0wMLCzDa1FxEREREZnYCfV1anpe9151zA2sU/0ePTd9njqftYcMVNTdoEYyZLSuoZO7QQn8cJ\ngGlaLFxexaqKED6/Oy1jGzYC/v5wCX8Zn81dK87FpIJfPzUZm3c64SMPJCPLxO22KK2LstvQbimd\no74eVqxILsuXJ5dN11evhkQCuneHfffduOy+O3g8HfwFp4H+/xCR7cnqsgBOtxOn29n2gy2LYe++\ngGl3UHrKb8nMaPoi7bAbjB5ehNOR/pnQn346eXvttQ69FouIiIiIiIjIDmWrwZwjjjiCVatWNbtv\n3LhxrT6mT58+9OnTp83BnLKyuja1FxERERHxOw2ikRiRWHoqw0ydeDOHLJ5P/1efYt2gkaw8+Ngm\nbeoCYcrKA4zol0uG18m8ZVVU1zetQtnRcp11fM7xHMWr3MM13MM18DDJBXA6TfyZJnm5cfLzDHJy\nLLKzrQ23ubnJW48H1q41WL3axsqVBqtW2Vi92qCiovmLs4ZhUVRksfvuyb7mzLHx5ps23nwzud/l\nshg92mSPPRLsuWeCvfZK0L171yqrU1iYqf8/RGS7MmtBKfXhWErHFsyeRuaShaw48CjKvdkQaDrV\nYe+CDKqr6ts7zK0qKTF4/nk/gweb7LlnkLKytJ9SRERERERERKRDbemDRlsN5oiIiIiIbG/sNhv9\nizJZmKaqOQmvn29vnMShl57CHvfdQG3/IdQMHNakXSxhMqe4AofdRizROdNy7PrkfQyunsGTpzzB\nU/mXkVi4jozPp1JpL2DJ8AOpiWVQH7BTXm5j+TIbiUTrpifxeCx69bIYNSpOnz4mvXpZ9O5t0rt3\n8rZnTwvnJgUbLAtWrzaYNs2+YZk508b06XYeeSTZpm/fxkGdESNMHPoPRUSkVcqrQymHcgAGv/MC\nAIuPP6vZ/QbQq9Cfcv9t8eSTTqJRgwsuiJGm2ShFRERERERERLYZve0tIiIiIjukojwfq8vqCbTj\nouWWBPoM4H//9zf2u+VS9r11Ip888CqxjKwm7SzotFBO3ryZDHr3JWr7DqLid6dzjKsKcNNvXBV7\n/X0CgYo+TLn/RSK5+QDkZrgZ2L2A6mqD6mqDmpqNt6EQdO9ubQjhFBRYGK3L8ABgGKwP7cQ58cQ4\nkJwGa9Yse6OwzhtvOHnjjWSix+ezGDcuwY03RhgzpnO+ZyIi26tVZalXsvGUl9Dr64+pHjicipG7\nN9smP9uD153+t42CQXjqKRd5eSannJKe39kiIiIiIiIiIttSm99hmTx5MsFgkNNOOy0d4xERERER\n6RCGYTCwZxaziyvSdo41+x3K/NPHM+Klx9jr7mv55uYH2FYf9TdiUfa4/yYMy2L65bdgulwb9i0/\n/ET861Yx8rmH2O/mi/n87qcw3R6qAhFqc+rp08dPnz7pn1bK74d9902w777JKcYsC5YsSVbVmT49\nGdT56isHJ59s59VXg4wdq3COiEhzQpF4u6ZHHPTey9jMBIuPP5OWUpd9CjNS7r8tXn7ZSVWVwZVX\nRvH5OuWUIiIiIiIiIiKdyrAsK/3vwLdDWVndth6CiIiIiGzHZi0upyqQ+sXLrUokOOC68+k+cypz\nfzeR+WdNSN+5tmD4i4+y63/uZ8kxpzHjspubNrAs9rznWvp/8g6rfnk4U6+/D2w27IbBHsO7dUpV\nhNZ44w0HF13kISODTg/nFBZm6v8PEdkuLF1by/KS1F6vbNEox5x9MLZ4jHdf+JyEx9ukTabXxbhh\nhe0c5daZJuy7r59VqwxmzKinW7cu/RaViIiIiIiIiEiLCgszW9ynmbtFREREZIc2sGfT6aU6lN3O\nd9fdS323Hox8ZhLdp3+d3vM1I2P1MnZ57iFCeQXMOffK5hsZBj9cfhulo/ek99cfMfqJewFIWBYL\nllfRVfL6J50U56GHwgQCcMopPmbO1L8sIiKbsiyLdZXBlI/v9c3HeKorWHrkyc2GcgB6d/On3H9b\nfPSRneJiG7/5TUyhHBERERERERHZYeldbhERERHZoWX6XHTPaf7CY0eJZucy9YZ/Yjoc/OKvV+Nb\ntzqt52vEshh3/83YY1FmXnQ9sYyWg0imy8W3N02its9Ahr32JIPeeQGAmmCUlaWBzhrxVimcIyLS\nsqq6CJFYIuXj+//3DQCKjz6l2f1up53CNP/ebPDww8lpFy+8MNYp5xMRERERERER2Rb0DreIiIiI\n7PAG9MzCZhhpPUfVsF2ZeckNuOtq2PfWidgi4bSer0G/j9+i26zvWbP3Qaze//Ctto9lZvPV7Y8S\nzsln7EN3UPT95wAsW1dHINR1LowqnCMi0ry17aiW4y1dS/eZUykfuTuB3gOabdOrwJ/235kAP/5o\nY+pUBwcdFGf48M6btlBEREREREREpLM5tvUARERERETSzeNy0KvAz8qy9FaFWXrUKeTNn8XAD19n\n9wduY/qVt0MaL266qyoY8+hdxLw+ZlxyQ6vPFezRm69vfYhf/d/v2OeOq/jsH89SPXgXFiyvYvdh\nhZ1yQbY1TjopDoS56CIPp5zi49VXg4wdq4u30rnef9/BAw+4sCzweCy83sa3Pl/j+x4P+HzJW6/X\nIiMDdtstgb9zZgaSHVwsnqCiJvXgZ79P38GwLJYddnyz++02g54FnfNgfeSRZLWcCROinXI+ERER\nEREREZFtRcEcEREREdkp9CvKJBxLUFkbJmFaaTvPzEtuIGfJAgb89w0qho9h6TGnpu1cYx69C3dd\nDTMnXEeoW482HVs1fDTf/+lu9r3tMn55/YV8+q+XCXTrwfJ1dQzo0fJ0WJ1N4RzZViIRuPVWN48/\n7sJms3A4IBpNLbTm8Vj86ldxjj46zuGHx8nL6+DByk6jpCqEaaX4O8yy6P/xWyRcblYeeFSzTXrk\n+XHY01+hbNUqg7ffdjBiRIIDD0x9Wi4RERERERERke2BgjkiIiIislNw2G2M7J+HaVlU10WoqA1T\nURMmHOvYC4Kmy83UG//JoRf/hrEP3U71oOFUDR/doecA6D79a/pNmUzlsF1ZfNyZKfWx5peHMWv8\nNez26F3sf/0FTLnveVaUQH6Whyy/q4NHnDqFc6SzFRcbjB/vZfZsO0OHJnj88TAjRpgkEhAKQThs\nbLgNhyEYTN42t62szMYnn9j58EMnH37oxG632HffBEcfHeeoo+L07Jm+oKDseNZVpD6NVd78H8lc\ntYzlBx1L3J/ZZL8B9CrsnGo5TzzhIpEwmDAhms7CciIiIiIiIiIiXYJhWal+1KpzlJXVbeshiIiI\niMgOLBCKUVETprwmTF2o46bT6PbDNxxw3fmE8rvzyYOvEcnN77C+7aEgR4w/Dm/ZOj558DVqBg1P\nvTPLYreH7mDI28+zbvd9+fr2R/D6vYwbVojdlv6qCW3xxhsOLrrIQ0YGaQnnFBZm6v8P4e23HVxx\nhYdAwOCMM2LceWe4Q6ahWrLE4L33nHzwgYMffrBv2D52bDKkc/TRcYYMUeBMWlYXjPLDorKUj9/9\n/psY9P4rfHnnE5TssV+T/QXZHkYN6LjfVS2pq4PddsvA67X44Yd63O60n1JEREREREREJO0KC5t+\nEKpB13qnXURERESkk2V4nfQrymTcsEL2GVnE0N455Gd5sLXzI/yl4/Zj7u8vw1e+jn1uuwx3ZeoX\nUze3y3MP4i9ZzaJT/tC+UA6AYfDjhX9mzd4HUTTjW3b/1y0EwzGWret6AZWTTorz0ENhAgE45RQf\nM2fq3xnpOKEQXH21m/PP92Ka8MADIf75z44J5QAMGmQxcWKUDz4IMmtWgL/9LcwBB8SZM8fGHXe4\n2W8/P/vt5+OOO1zMnGmja3+ERraFdZWpV8uxRcL0+eIDggXdKRm7d7Nt+hRmpNx/W7zwgpO6OoNz\nz40plCMiIiIiIiIiOwVVzBERERERaUbCNKmqXT/lVW2YaDyFShamyT63X0Hvrz8i5stg7u8vY8mv\nT8eypz6jbM7ieRxyyakEu/fko0ffJuHxptzXpuyheg666hxyF89jzh+uYNGZF/CLEd1xu+xbP7iT\npatyjirm7LwWLzY47zwv8+bZ2WWX5NRVnVW9proaPvrIwXvvOfj8cwehUDIU2LOnydFHxznvvCgD\nB3bpf9ulE5imxdSf1hFLpPa47PPZe+z916uZf/p45v7xiib7M70uxg0rbO8wtyoeh1/8wk95ucHM\nmQHy8tJ+ShERERERERGRTqGKOSIiIiIibWS32SjI8TKsby77jCyif1HLf1S3yGZj6l/+wQ8Tb8Ky\n2Rj70B0ccump5M3/MbVBJRKMu+9GbGaCHybe1GGhHICE18/Xtz1MsLAHu/7nPnpNeZdl62o7rP+O\npMo50pFeecXBoYf6mTfPzjnnJCvadOaUUjk5cOqpcZ5+Osz8+QH+858Qp5wSo77e4IknXOy/v59b\nb3URCHTakKQLKq8JpRzKAej/8VsALDvshGb39+7WQaWhtuK99xysXGnj9NNjCuWIiIiIiIiIyE5D\n72CLiIiIiGyFYRj0L8piYI+sth9st1N87Ol8+O/3WXbYCeQuns8hl53BuPtuxFVb1aauhrz9HHk/\n/8SyQ4+jdNx+bR/LVoTzu/HV7Y8Q82Ww59//TOR/0wmG4x1+no6gcI60V309TJzo4ZJLvNhs8Nhj\nIf7+9wjejsu7tZnPB8ccE+fBB8PMmxfg8cdDFBVZPPCAm7339vPyyw7MzssMSRfSnmmsPOUldJ/x\nLRUjxhDoM6Dpfqedwpz0P/AtCx5+2IVhWFxwQTTt5xMRERERERER6Sr07rWIiIiISCv17Z7J4J7Z\nKR0byc1n2v/9lc/ufZaa/kMY+MGrHPnHo+n/wWu05kq7r2Q1o576F5GsHGaN/1NKY2iN2gFD+e66\ne7HHYoz9580sXd228FBnUjhHUrVggY0jj/Tx0ktORo9O8Mkn9ZxwQtcKoTmdcPzxcb7+up5rrolQ\nV2dw6aVejjlGj/WdTTgap6oukvLx/T59B8M0WXbYic3u71ngx2YYKfffWt99Z2fGDDtHHBHX9Gwi\nIiIiIiIislPRu3kiIiIiIm3Qu1sGQ3rnpHx8+a578PFDrzNr/DXYo1H2vO8GDrryLLKXLGj5IMti\n7AO34QgHmTX+T0Rztj7/hwE47an9ub9urwNYcdAx5C2cQ+aLz1IX7LqVDTYP58yZo39xpGWWBc8/\n7+SII3wsXGjn/POjvPdesEuHBLxeuPrqKN98U8/xx8f44Qc7Rxzh57LLPJSWpj9MIdteSWWIlB+h\nlkX/j94i4XSx8ldHNdlttxn0LOicaazuvtsFwMSJXfd3ioiIiIiIiIhIOuhdaxERERGRNupV4GdY\nnxxSvSRuOZws+s0f+PDf77Fy/yMomPcjh118MmMevhNHfaBJ+95ffkjP77+gZLe9WX7Y8VvsO9Pr\nZHDPbPYeWcTgXqlV9wGYNf4aYj4/u/7nPlb9VJxyP52hIZxTVwfjx3sJpj7ji+zAAgG46CIPV1zh\nweWCp54KcccdEdzubT2y1und2+Lxx8O89VaQXXZJ8OKLTvbZx89DDzmJdqGcQ10wSn04tq2HsUNZ\nW1mf8rF5C2aTtbKY1fseQiyj6XSMPfL8OFIMcbbFV1/Z+eYbB4ceGmePPTQfm4iIiIiIiIjsXOw3\n33zzzdt6EFsS7MKfzhURERGRnVemz4XH5aCiJpxyH3F/BqsOPJKKEbuRP+9Hek77iv4fv0Uovxu1\n/YeAYeCsq2H/GyZgmAm+uv1RYllNq/W4nXZ6FvgZ2juH/kVZZPldOOw2fG4Ha8rrMa2211qI+/zE\n3V56f/MJZnk59YcdjdftSPlrTbcRI0xqaw0+/thBKGRw8MGJNvfh97v1/8cOKBCAyZMdTJjg5Ztv\nHIwbl+DVV4PbbTigTx+Ls8+O0a2bxbffOvjwQyfvvONgwACTAQM6v/KPaVpU1UVYWRpg0apqVpYF\nWFNez+qyeuqCMaLxBIYBLocNoxOmS9rRVNVFWF2eejBn+IuPkrdoLrPGX0N9r36N9hnAiH65OB3p\nDeZYFlx8sYfVq2088kiIoqKuW6FKRERERERERCRVfn/LnwA0LCuFd+k7UVlZ3bYegoiIiIhIi0qr\ngixYUZ1S+GVTtmiEYa88wYgXH8Mei1Ky297MvOQGhr7+FAM/eJU5f7iCBWeM39DebjMozPbSPc9H\nToarxQveS9bUsLK0aRWe1jAScQ655FRyl8zn+wdfYuApR6fUT2cJheDgg/0UFxu8/XaIvfduWzin\nsDBT/3/sIOrr4ZNPHLz1loNPP3UQDiefHxddFOUvf4ngdG7jAXaQykq46y43Tz/txDQNjjgizi23\nhNM+NVcsnqCiNkJ5TYiquggJc+vnc9hsZGe4yPa7yMlwk+FzYlNQZ6vmL6ukpDqU0rG2aIRfn34A\nCbeHd5+bAnZ7o/0F2R5GDcjviGFu0ZQpdk4/3ceRR8Z45pnUw6wiIiIiIiIiIl1ZYWFmi/sUzBER\nERERaaey6hDzl1e1O5wD4F+zgrEP3UGP/32J6XBii8eo6T+Ejx96HRxOcjPddM/1UZDjwW7bepWD\nUCTO9/NLUh5P3vwfOeSyM6jpP4Q1731GQWHTqVC6kunTbRx7rI8+fSw++6yejIzWH6tgzvYtFIJP\nP3Xw9tsOPv7YQTCYDH0MGZLg+OPjnHhinCFDts8qOVvz0082/vIXN99+68DlsrjwwiiXXx5t0+N/\na4LhGOU1YSpqw9TWR2nvq53dMMhaH9LJznCR5XNhsymos6l4wmTq3HUkUvzd0vuLD9jnjitZcOq5\nzDnv6ib7xw4uIDsjvXO5WRYcdZSPGTPsTJlSz6hRO+ZzUEREREREREREwRwRERERkTSrqAnz07LK\nDgnnYFn0/OYTxj78VzyVZXz/wIu499+Pbrle3E771o/fzOwlFVTWpV6lYNx9NzLwg1eZf9G15N/0\n5y4/Hc1tt7mYNMnNH/4Q5a67Iq0+TsGc7U8kAp99Zuett5z8978O6uuTj80BA0xOOCHG8cfHGTHC\npIs/ZDuEZcE77zi4+WY3q1fbKCoyuffeMIcd1vZp3ZL9WdTUR6lYH8YJRuIdPOLGbIZBls/F0D7Z\n+Dw7SEmjdlpTXs+iVdUpH//L6y+gx/++5MPHJ1PXb3CjfZleF+OGFbZ3iFv10Ud2zj7bx69/HePf\n/1a1HBERERERERHZcSmYIyIiIiLSCSprw/y0tDLl6gabcjvsdPdCD8J4B/VvV1/lNSHmLq1M+XhX\nbRVH/vFobLEoi9//ioKRQ9o1nnSLROCww3wsWGDntdeCHHDA1oMJpVVBBvTNo74dASbpHNEofPll\nMozzwQcO6uqSqZu+fU2OPz7GCSfEGTVq5wjjNCcYhAcecDFpkotoFK67LsrEidE2fT/KqkMsWllN\nLNH51U08Lju7DynElUIIcUczY1EZtcFoSsd6Kko59qyDqBwyiimTXm6yf3jfXIryfO0d4hZZFhx6\nqI+5c2188UWQ4cNVLUdEREREREREdlxbCuZsvfa9iIiIiIi0Sl6Wh1ED87GnmAiwGwbdc7yMHpjP\n3iO7M3BQUbtDOQD5WR487bjIHc3KZfZ5V+MMBcm++XpMs0tn+3G7YdKkMHa7xeWXe6jbSta/Phxj\nwYpqvv9pHYFQrHMGKa1mmrB4scFrrzm4/HI3o0ZlcOaZPl55xUl2tsVFF0X573/rmTatnhtuiLLr\nrjtvKAfA54Nrrony3ntBeva0uOMONxde6CEYbN3x0Vhim4VyAMLRBHOXVpIwd+4QR304lnIoB6Dv\np5MxTJNlh5/QZJ/dMCjI9rRneK3y/jMWm98AACAASURBVPsO5syxc+KJcYVyRERERERERGSnpoo5\nIiIiIiIdrCYQYXZxBYlWBFgMICfDTfc8HwXZHhz29GTnl6+rY+m62tQ7ME0OuvJsCubNZPGjL5B9\n4rEdN7g0uesuF/fe6+ass6Lcd1/zU1qZpsWMRWUEwjEyMzyEglFGDcwjJ8PdyaMVSIZwli0z+PFH\nO7Nm2Zk1y8bs2XYCgY1Jm6Iik+OPj3PccTHGjTOx6eMmLSotNfjDH7xMm2Zn9OgETz8dolevLb8u\n/bSskrLqUCeNsGWF2V526Z/b5afOS5clq2tYWRZI7WDL4vDxx5GxZjmTX/ySWFZOo92FOV5G9s/r\ngFG2zDThoIN8LFxo4+uv6xk8uEu/9SQiIiIiIiIi0m6aykpEREREpJPV1keZvaSCeAtVH/weJ91z\nvXTP9eF2pX/KlmgswXfzSjDb8ed/9pIFHHbxydT36EPd19/j8Kd3GpT2ikbhyCN9zJ1r54UXghx6\naNMprRavqmFVefLid2aGh7pAGJthsEu/XApyvJ095J2KZSVDOMkAzsYQTm3txiCGYVgMGWIyZozJ\nmDEJdt89we67K4zTFpEIXHutm+efd1FYaPKf/4TYa6/mX5fKqkP8tCz1ae9IJPjljRMwnS5mjb+G\n+p59U+8L6FOYwaBe2e3qY3tkWhbf/bSOaDy1KjO5i+Zy6CWnsPKAI/nu+vua7B/VPy/tr29vv+3g\n/PO9nHpqjAce0BSBIiIiIiIiIrLj21Iwx9GJ4xARERER2Wlk+V2MGZzP7CUVG6aEcTlsdMv10T3X\nS6bP1anjcTntFGR7KG1HJYyaQcP5+fizGfrmM9Tccw/cfFMHjrDjuVzwwANhDjvMx5VXevjyy3py\nNikcUVkb3hDK2ZRpWfy0rJKhfXLoke/vxBHv+JYsMXjhBSc//mhn9mw7NTWNQziDBpkcdlgyhLPb\nbiajRiXIyNiGA94BuN3wj39EGDnS5IYb3Jx0ko+77w5z5pnxRu1i8QQ/r6pu17l6Tp1Cj2lfAVA0\n7SsWnD6eBaedh+lKrQLVyrIAHreDXgU71/OwsiaccigHoP9HbwI0O42Vw2YjLyu901glEnDPPS7s\ndosrr2y+WpmIiIiIiIiIyM5EFXNERERERNIoEIqxsjRAtxwvuVlubNtwWpbqQIQfF5e3qw9HfYAj\nzz0aV10N5V98h23w4A4aXfrcf7+LO+9085vfxHjooWTlhmgswfSFpY0ufjdUzNnUgKIs+hW1/EkH\nab1vv7VzzjneDRVxBg402W23BKNHJ0M4u+6aIFPf6rT64gs755/vpbra4IILotx0UwTH+o/rzF9W\nSUk7p7A68Opz6DZ7GrPPu4ohbzyDt7KMQM++zLj4ekr23D+lPg1g1IB88rPTGybpSuYUV1BRm1qV\nGVs0yrFnHIDpdPLe859h2Rt/HqtHno9hfXM7Ypgteu01Bxdd5N3iNIIiIiIiIiIiIjuaLVXMUQFw\nEREREZE0yvA6GdEvl/xszzYN5QDkZLjxe5zt6iPuz+DHC6/FHoviuvrK5HxEXdwll0QZOzbBa685\nef/95EXqhSurW1WRYum6Whavqkn3EHd477zj4NRTvQSD8Pe/h1m8uI7vvqvnkUfCXHRRjH33VSin\nMxx4YIIPP6xn2LAEjz7q4owzvFRVQUVNuN2hnOwl8+k2exrrdt+Xhaeex4f/fp9FJ56Db91qDvjL\nePa59TK8pWvb3K8FzFtWSV0w2q7xbS8isQSVKYZyAHp8/znuuhpWHHxck1AOQLfc9E5BGI/D3//u\nxum0uOKKneNnJiIiIiIiIiKyNQrmiIiIiIjsRHrkt/+i7KoDj6Jk7D7kfvs5xttvtX9QaeZwwKRJ\nYdxui6uvdjN3UX2bqlGsKg8wf1kl5nYQQuqKnnjCyfnne3A64YUXQpxzToysrG09qp3XwIEW778f\n5PDD43zxhYMjj/Tx6df17e53yFvPAfDzib8FkiG+WRP+zCcPvkb5LmPp/fVHHHnesQx99UmMeKxN\nfScsi7nFlYSj8a033s6VVAZpzyvNhmmsDju+yT63w05ORnqnUXztNQfFxTbOPDNG3756zRQRERER\nERERAQVzRERERER2KkV5PuztrdxjGMy49AYSTieZ118LgUDHDC6Nhg41ufbaCOXlNq7/S9vDSSXV\nIeYWV5Awt15lR5IsC26/3cV113koKLB4++0gv/pVYlsPS4DMTHj66RCXXRZh6VI7/3dxH2Z870+5\nP1d1JX2nvEtdz76s2/OARvtqBg3ns388x7QrbyfhcjHm8Xs4bMJJFMye1qZzROIJ5hZXEk/s2M/B\ndZXBlI91V5VTNO0rKoeMpHbA0Cb7C3O8GGms3BaLJavluFwWl1+uajkiIiIiIiIiIg0UzBERERER\n2Yk47Da65Xrb3U+g9wAWnnIu7tK1uO76aweMLP3Gj4+yy64hvv0ii2+/aPu8SZV1EWYtriAWV7hk\na2IxuPRSD//6l5uBA03eey/I6NE7dqBie2O3w4RLa5n459XE4wZ33dibt17OS2l2uoHvv4I9FmXx\n8WeDrZm3GWw2lh15Mh8++T5Ljj6VrBVLOOjqc9jz7mtxV5W3+jyBcIx5O3D1qppAhGAk9apAfT99\nF5uZYNnhJza7vyNe+7fkpZecrFhh45xzYvTqtWP+jEREREREREREUqFgjoiIiIjITqZnQeqVMTY1\n/4wLCBT1JvOJh7EvmN8hfabT8pJaLrhyDS63yb8ndae6yt7mPmqDUWb+XL5TTKmTqkAAzj7byyuv\nONl99wTvvhukf39dpO9q4gmTRSur+eVBddz6jxXk5sd54d/dmPS3HkQjra+qYsRjDJ78IjGfv8VA\nSINoVi4zLr+FKfe/SNXgEfT/5G2O/OPRDHrnBUi0LvBWWRfh55XVrR7f9qQ91XKwLAZ89Aamw8nK\ng45ustvrcpDlT980VpEI/OMfLjwei8suU7UcEREREREREZFNKZgjIiIiIrKTyfS5yPK1/wKt6fbw\n40XXYUvE8V59OSmV2ugklbVhVpUH6NErxlnnllFX6+Cx+4tSGnIwEmfmz+XUh2MdP9A2CEXirK2o\n36Zj2FxpqcGJJ/r47DMHhx4a5/XXgxQUdNzjonhNLbX1289F/4RpsnRtLdFY16uyVLymlvD6cQ0a\nGuZvDyxj6C5Bvv4sm5uu6ktFmaNV/fT+6iO8FaUsPeIk4v6MVh1TOWIMn0x6lRmXXA/A7g/cxiET\nTyN34ZxWHb+2MsiKkrpWtd1eJEyT0upQysfnLJ5H9rKfWbP3QUSzcpvsT3e1nOefd7J6tY3f/z5G\n9+5d93eBiIiIiIiIiMi2YL/55ptv3taD2JJgcPt501VEREREZHthGAblNeF29xPoPYCcJQvI++5L\nEv0HkBi5aweMrmNFYwlmF1eQMJMXiwcNDTN/jpdZ0zMo6hml38AIAG6Xg2grK+EkTIuyqhDZGW48\nrrZX3ukIy9fVsXRdLbX1MXIy3Djs2/ZzF8XFBied5GPhQjtnnhnl4YfDeDwd139JVZAla2pYWxmk\noiaCzWbgczswjNZXd+lMkViCOcWVlFaHKK0Oke134d5Gj5XNVdVFWLy6ptE2j9di/4NrqSx3MPN/\nmXz9WRZDhoco7L7l58Qe992At6KU/11zF7GsnNYPwmajatholh1+Ap6qcnpM/5oBH76Gt7yEqqEj\nifu2XNmrKhDB53bg9zpbf84urLQqRFk7gjnDX36C/AWzmX3uVQT6DGiyf2ifHFyO9Dz+QiE47zwv\npglPPBHG3zFF2UREREREREREtit+v7vFfaqYIyIiIiKyE+qW48XZQUGOHyf8mbjbi++mv2BUV3VI\nnx1p4cpqonFzw32bDSZctQ6PN8GTD3ansrx1lUE2F0uYzF5cTkUHBJzafO64uaFaTmVdmGkLSts3\nDU47/fijjWOP9bFsmY0rr4xw330RHKl9W5tlmhZL19RuuF8XirJgRRVTf1rH0rW1RKJdqyJNIBRj\n5qIyatd/0CQSS/Dj4nLWlG/7CkcJMzmFVXOcLosJV63j9xNKqKuxc+s1fXn/zdwWK0vlzZ9F/oLZ\nrN3rQOp79UtpPJG8Qv73p7v5/J6nqe07kIEfvMpRvz+SXZ6ZhCO45e/XghXV1AQiKZ23q2lP9Ssj\nFqXvlMmEc/JZt+cvm+zP8Djxe9IXYHr2WSfr1tk499wohYWqliMiIiIiIiIisjlVzBERERER2QkZ\nhkEsbm4IDrRHLCMLy26jxzefYgQCRA87ogNG2DFWlQVY3UwYwp9hkpmV4Luvsli13MUvD67F7W59\nxZwGFlBeE6Yo39epFWtWlQao3CSQYFoW5TVh6oKdXz1nyhQ7Z5zho67O4K67IlxySYyOLmKzqqye\nspqm1URMy6KmPsqa8noC4Rhuhw2PqwMTQSmorA0zp7iSaMJstN0CKmrDRKIJ8jI926zST/HqWirr\nWg6TGQYMGRFml9FBZnyfwfdfZ1G6zsmYcfVNwla7PnEvOcsWMePSG6jv0add4woW9aL4mFMJFhRR\nMG8mPf/3BQP++wZxr4/qgcPA1rTaiwVU1IQpyPbidGy/nzsKhuMUr63desMW9Jw6hQEfvcmSY06j\nZK8DmuzvXZhBdkbLn9hqj2AQzj3Xi2HA44+H8fnSchoRERERERERkS5PFXNERERERKSJngUdN9/I\nopN+R23fQXie+jeOH2d0WL/tEQjFKF7T8sXuQ46uYcweAX6cnsGUD7NTPo9pWawsDaR8fJvPZ1qs\nLm/+fBW1YabN77zqOS+95ODss5NT2Dz5ZJjf/z7W4eeIxU1WlNRtsY1pWZRVh5i5uJzpC0pZW1FP\nwmwcjCGU+jRBrbW6LMCc4grim597E2srg/y4uHybVPmpqY+2+NjZ3C6jQ/ztwWUMHhbiy0+yueGK\nfpSu21h1xVNRSp8vP6Sm32BKx+7TIeOz7A6WHnMq7z/1IXPPuQRHKMi4f93C4eOPp+c3n9Bc6Z5Y\nwmROcQWxeNeqmtQW7X2+9v/4bQCWH3ZCs/u75Xrb1f+WPPmkk7IyGxdcECU/X9VyRERERERERESa\no2COiIiIiMhOyut2kJfZMVUULKeLGZfcgGFZZFxzBSS27UVy07RYsLwKs6U5eEhWBrnwinX4/Ame\nebQbq5anXmllbXk9kVjnfM0lVcFGU3NtLm6aLFhRxZziirSNybLgn/90MXGil4wMePXVEEcf3bZq\nQ621oqSOWKLlr3dzgXCMhSur+e6nEpasqSEcjeN9aBIFg3vjmPZ9WsZoWRaLV9Xw8+oaWhNNqA1G\n+WFRKVV1nTcNk2laLFxR1arxNcgvjHPLvSs4+Khqli3xcO3F/Zn9Q7IkyqDJL2JLxPn5hN/S0SWS\nEl4/88++mPef+pDFx55OxpoV7HfLpRx05dnkzZvZpH0oGmducSX14RjxNjxWugLLsiipSj2Y466q\noMf/vqBq8AhqBg5rsj/b70pbFalAAB54wEVWlsWFF6rasYiIiIiIiIhISzSVlYiIiIjITsxuMyit\n7phKIsGi3mSsXkHe1C9I9OtPYtToDuk3FYtX11BR2/J0PQ18fpOcvARTv8hi8utZ/PCdn+oqB16f\nSU5uotV5g4awQ16WJ/VBt9L85VWtCqqEInFKKoO4nXYyvM6ttm+tRAKuu87Nv/7lplcvkzfeCDFm\nTHrCEKFInAUrqtsUJmlgWha19VHqpv3IsGsvxhaLYV+5kshpZ3ToGOMJk3nLqtocrkiYySo/NptB\ntt/VoWNqTvHa2lY9JzZnt8Me+wTIzY8xbWoGX3ySjcsW45y3L8FyuZh29Z1Yjo57fG0q4fWz7he/\nYtUBR+ItL6FoxrcM/PB1spf+TPXgEUSzcjBNWLbEzccfZPDW2wZffBNj6vQYc+ZFWbwsytqyGHX1\ncSziYFjYDLDbus5nlCprI6ypaDrdXmsN/OBVekz7kgWnjadyxJgm+/t2yyArTY+vhx5y8dFHTi67\nLMrBB2+/FYtERERERERERDrClqayMixrCx8h7QLKyrZcslxERERERFJnWRbfzSvpsMoq3tI1HH3O\n4SSGDaP686kdXkmjNSpqwsxZWtHq9pYFn3+UzdQvcpgz00MikRxzfmGMcb8IsMc+AUaOCeJ0bflf\nJ7th8ItduuNy2ts1/i0prw4xd1llm48ryPIwpE8O7naOLZGAiy/28MYbTkaMSPDSSyF69Ejfv5Tz\nl1VS0p7gWCLBwZefSf7C2dR374W/ZDU/P/sWmYf9qkPCGeH1lVoC4fZN4dUtx8uwvjlpC4zUBqPM\nXFSWUsBpU4vme/jHbb2oLHfyG17l2hM/p3jCpR0yxtbIn/sDYx6/h9D8cv5rHMmbPf/I13V7UFPb\nuuCJx5sgM8skMytBTo5Jdo5JXp5FXh4M7G+w794GQ4ea2NP3FG4knjD5aWklVYHUKycdOuEkspf9\nzOQXvyCak9don80w2Gdkd5yOjv+Camthjz0yAPjhhwCZmR1+ChERERERERGR7UphYctvkKSnnrGI\niIiIiGwXDMOgZ76fpetqO6S/ULeerPp/9u47PKoybQP4feZMn8lMJjOTMumVJPRelK6CivopuwoW\ndC1rw7arghV73V27a28rdlQUGyrSpBN6CyUkkN6TKZn+/RFBAimTmROw3L/r4sLlvO9z3pTJtTPz\n5H7GTELK4q+hWLoY3rHjJakbKo/Xj50l9d3aIwjA+EmNOHuqG5WVHmxcq8O6VXpsWKvHwgUmLFxg\ngkodQP8hDgwZYcegYXYYoo9tZPIHgyipsiMr0SjVh3OMA9X2sPbVNLWgcWcVshKNiIvRhlUjEABu\nuaW1KWfYMB/mznXB2HMfKpqdnsiacgDkfPYOzLs2o2T8mdhz9kWYcMuFMPzncaxIyEO8WYtEiw4a\nVXhPi5ucHmzbVwe3L/KmtqoGF5wtPvROjwn7PB0JBIMoDDN16Gg5eS147PkivHlZEz5p+StWrzkd\nt55diYTEyBqTuuJyyrBtkxabC07HFvtfUApVa0xVKWBDGcZmHkDGObGwpgqwN4tobvr1j71JRHPz\nL383iWhuFHGwRIl9u9tvgtLrgxg40I8hQ/wYNMiPQYMCsFqlbT4LBIMor3WiuKKp07F0XTHu3QHT\n3h0oHTXxmKYcAIjWK3ukKQcAXn5ZiYYGAXfd5WZTDhERERERERFRF5iYQ0RERET0J+f2+rF6eyUC\nEj01MO3cjFNuvAAtE05F8wfzJKkZqs17a1HX3P1xPQAQpVej2f7rXr8f2LVNg3Uro7BupR4VZa2p\nHIIQRE6eC4NHtKbpJKZ4DgcD9WRqTqPDgw27qyOuYzGqkZ3UvfScYBCYPVuFN99UYuBAPz75xNnj\nb8Zv3FODhgiSRPQHi3DaNefCq9Hhu9cWwGM0YfTsKxBfsAKL/vMuavsMBgCYDWokWnTdGkNW0+DC\njuJ6+CV+Oi2XyZCXaoLZKN1ItKLyJhRXSve82rJ5LU6+9XJcbfsYb5b9HzRaP26cXYbBI8Ifx3Q0\nvx/YW6jG5vU6bCnQoXCH5nCSlUodQO/+TvTr34Qz7Z/gzAX3Q9NUB1eMFXunTIM9MRXOWBsccTa0\nxFiBDlKIPG6hTfNOWakSe3aqsXuHBqUH2sYOp6YGMHhwa7PO4MF+9O4dgDLM6VDVDS4UlTfB6faF\nV+AI/f/7KHI+ewc/3/c8ykZNPOZ6booJ8WE24nWmoQEYPFgPpTKItWsd0OslvwURERERERER0e9O\nZ4k5bMwhIiIiIiJs21+H6gjTSY407h8Xw7p1PeqWrYG/V65kdTtTWuPA7oMNYe8/ujHnSMEgUHZA\nifWr9Fi/So+d2zUIBlobBeISPK1NOiPsyO3rRHqCHpk9kJqztagWNY3hNR0dTSHKMDDbAq1a0eXa\nYBB44AEVXnhBifx8Pz77zAmTSZJjdKi748iOEQhg3K0zYN26Hivv+g8Ojj0dAGDeVoAJt1yEyoEj\nsfTxN9ps0arksFl0iI/RQi52PFKqpLIZ+8qlSZjqSFp8FNLiDRHXsbu8KCislqzpDgBGPnAjkpZ/\nj0X/eRefVYzHy0/Hw+uR4S8X1+AvF9d01AfTIY9HQFWFAhWlSjTWaLBpoxJbNmjhsLc2jgmyIDKz\nW9BvkAP9BjuQk+eC/IhvW7nDjl4fv46ceW9B7m77+PArFHBZE+CItcEZZzvcsOOMS4Qj1gaXNQ5B\n+bGPAXuzDPt3a1FZYkThDg02bBDR0PDrWD6VKoh+/VqbdQYP9mP4cD/i4zv/HDc6PNhX2ohGp6d7\nn6AOCD4vpkwfBwBY8P7iYz4OURAwsk98p9/L4Xr0USWeekqFOXNacP31PZuWRERERERERET0e8HG\nHCIiIiIi6lR9sxub9tZIVi9x+UKMeuAm2C+6FK6nnpOsbkc8Xj/W7KiCLxD+WJjOGnOO1tQoto68\nWqnHpvU6uJytTQRanR8Dhzow/a8iTjs1gOjosI/ThrPFh7U7KyUZR3SI1ahB7/Rjx98c7cknlXjy\nSRWysvyYP98l+VifowWDQazbVQ1HS/hv+GfOn4tBLzyEgyefipX3PIPDkUbAr6k5T81Fbe9Bx+wV\nZQLiY1rHXB3ZuBQIBrH7QAPK65xhn6s7zAY18lJNYTdWBIJBbCisRrNLusYJbUUpzrjsNDRk9MIP\nL8wDBAFFe1T41/2JqK5UYtBwO26YVQadvu3j0N0ioLJcgYoy5S9/FKgsU6K8VInaajmCQaHN+th4\nT2sjziAn+gxwQG/o+nGtqq9BzK4t0FaWQVdZBm1VWet/V5VBXd/+z7agTAZXTCyccTbU5vbDzul/\nh8fQtutMrRSRFm+Ao16HdetErF/f+mf7dtnhFB9BCGLcOD8uvtiLSZN8bdJ0nC0+7CtvlKyp7hDb\nih9x0n0zUXjuJdh07Z3HXLdGa9A7revHd3fV1AgYOlQHrbY1LUcrfSAPEREREREREdHvEhtziIiI\niIioS2t2VEoyXgUA4Pfj9L9Nhqa+GvUbdiBosUhTtwM7iutRWR9Zw0R3GnOO5PUI2L5Zg/WrW0de\n1VS1NnOIYhAjR/px2mk+nHaaDxkZ4T/1KjzQgLJa6UYFZSz4EOq6aqgfvA8GnarDdS+8oMD996uR\nkhLAl186kZDQ808fy2sd2HUg/OQjbflBTLr6HPgVCnz36pdwx1jbXD+UmlMxaBSWPfZ6p7ViolSw\nWXQw6pTYtr8+otFa4VDJRSgV4TXm+ANB6R7Pv+j3ypPo9ckbWHProyg+7f8O/3tzkwzPPJKIzQU6\nJCR6MO60BlRWKFFZ1pqEU1vTfjJTjMWLeJsX2VlA33wR6ekB9O7jQ5WzAi1ev2TnlrlboK0q/6Vh\np/Rww86hJh5NbSWEQABuQzQ2X/FP7J903jEjsKI0CmTYjDBFtT5eHA5g82YR69aJ+OYbOdata23O\ns1gCOP98Hy64oAWivhEVdU5JE4sAAMEgJtw0Deadm7Hwpc/RmNHrmCV90mJgidZIeluvF5g+XYOl\nS+V4+OEWXHUV03KIiIiIiIiIiA5hYw4REREREXXpYLUde0obJauX9dn/MPC/j6Dhn3fAO+sOyeoe\nrcHuxsY9kaf9hNOYo7A3YfDTc1Ax5GTsnzwVwSBQUqRCwSo9dmwyYeMG+eG1OTmtTTqTJvkxZIgf\nohjaPTxeP1Ztr5Tszf3YDSsxdtblAIBNj70M2+XT2133xhsKzJ6ths0WwPz5TqSm9vxTR38ggDXb\nq+D2hdmUEQxizKzLEbdxFVbf/jhKTjm73WVjZl2OuA0rseip91Dbe2CXZWWCENbn37B/N4Y8dQ8a\n07JRNmICqgaOgF8tbbPE8SK6nJhy0XgE5Ap89e4iBI6MhQEQ8APvv2XF/A/Nh/9NEIIwW32It3l+\n+eNt/TvRg7gEL7QaIC/VdEwDSUWdEztL6o/LxwUAgteD7Plzkf+/56FwOVGTPwAFN8xBY+axY/hi\notTIsBmg17RtNtq5U4a5cxX46GM56utam3ry+jgx8YwGDD+5GSq1dI8f288/4KT7b8CB0ZOw6p6n\nj7kul8kwqk88ZDKhnd3hmz1bhTfeUGLSJB/eessV8s8wIiIiIiIiIqI/AzbmEBERERFRl3z+AFZu\nrYBfoqcIcqcDZ140HlCp0LhxO6BWS1L3SIFgEOsjHHt0SHcbc2TuFoy540pYt66HR2/AgvcWt2m6\nSLbqoZdH4/vv5Vi4UMSSJXK4XK1vlJvNAUyc6MekST5MmOCDTtfxfYrKm1BcKc3zIrmjGZP+fg7U\ntVWAIMBpjUf5jysQbW07c+uDD+S48UYNLJYAvvjCiays4/O0sbiiGUUVTWHvT//6Iwx5eg7Kho/F\nzw/8t80IqyOZt67HhH9cjIrBJ2HZo6+Ffb/OCF4PTrnhAkTv23n433wqNSoHjULZiPEoHzEOblPP\nJklJKWPBBxj87P3YdvF12D7jhg7X7d6hRkO9HAmJHsQmeKFUtv+9o5KL6JMRgyit8phrUowzC4em\nugL9X34cyUu/RVAmw+5zLsK2GTfCp9O3WScAiDNpkZ5ggEopHj5zRZ0Tu4vtWL5Ugx+/icaWDa0P\nbK3Oj9ETmzDx9AakZUaYuuT3Y9LV50B/cD++e/VL2JPTj1mSEKNFrxRTO5vD9+abCsyapUZenh9f\nfeWEXt/1HiIiIiIiIiKiP5POGnPE++67777jd5Tuczo9J/oIRERERER/CjKZgBaPD3aXNG+GBxRK\nKJsbELf+ZzhtycCAAZLUPdKBKjuqGlyS1FIp5fB4Qhv9I/h9GPXgzYgvWIEWYwxUzQ2w21LQkJV3\neI3D5UV2qhYDBwRx7rk+XH21B0OG+KHTBVFUJMOaNXJ88YUC772ngMkURH5+4OjpOfAHAthRXC9Z\nWs7gZ+6Ddcs6bL/4ejRk5cO2ZglqPYBm4vjDaz7/XI6ZM9WIjgY+/dSFXr2OT1OOx+vH9uI6hPuh\naqrKcdJ9MxFQqLD84Vfg03X8UN//sgAAIABJREFURNgVa4Nl63rEF6xExeCT4LImhHnqjvV55zkk\nL/sORZPOQ8EN98BtjIG6oRbWrQVIXPUTcua9hfh1y6BqqIMnygC3MabDRqITLhjEsCfvgMJhx5pZ\nT8Cn7biTzGz1ITHZA0N0x6lQerUCA7Is0KrbH3ElCAJUcplkj+1Q+XR6HBwzGbV5A2HevgG2tcuQ\n9v3ncJlj0ZSW3ebrY2/xorzGAX8gCJ8/gO3F9SivcyIoBJCc5sHYU5sw5pRGaDQBHChWYetGHb7/\nyoT1q3QIBgUkJHqg6KBpqTOpP8xHxjefoGjyVBRPOq/dNRkJBmhU8navhWPpUhHXXquG2RzEp5+6\nYLV2vYeIiIiIiIiI6M9Gp1N1eI2JOUREREREdFiz04P1hdWS1dNUleOMGafCmZ4F14o1kjYetHh8\nWLujSrKEn5ATc4JBDPn3XUhf+BkqBo1CwQ334vQrzkB9Vj5+fP7jNkuTrXpkJhqPKREIAJs2yfDl\nl3K88YYSTqeAvn39ePhhN0aM+HWMU2m1HbslGi92aPxNXXZvLHrmfYhuNyZfcToUDjv2ffczTPnZ\n+PZbEZdfroFGA8yb58SAAQFJ7h2KwgMNKKt1hLc5GMTJd1+NhLXLsPaWB7H/9L90ucWyZR3G//MS\nVAw5GcseeTW8+3YgZsdGTLjlIjitCVj48vw2jSy60mLYVv0E26qfYNmyHrJA69fbHp+EspHjUTZi\nAmr6DkZQ3n7TyokQt+5njLnzShRPOAtrZj8RUS2zQY28VBPkoqzLtQWF1Wg6Qb+sI/O40euj15H3\nwSsQPW5UDhiBDTPvQXNKRrdr+f3AhjV6LPrWiILVegQCAlSqAEaObcKpZzYgOy+0pC6Zx43Jl58O\ndX0tvnnrO7is8cesUclFjOgdB0Gin7X79gmYPFkHpxOYN8+F4cPDHDNHRERERERERPQHx8QcIiIi\nIiIKiUohorbRDY9PmjdffbooGEr2wrphFRr6DYGYlSlJXQDYWVIPR0toCTehCDUxp+/r/0b2F++h\nrldfLH/oZbjNVkTv3o64TatRPnwcWsyxh9c6XF7YLFqIR0XhCAKQkBDE2LF+nH++FzU1AhYvluP9\n9xXYtUuGAQP8MBiC2F5cD58/8sYjVX0tRt91NYSAH8sefQ1ukwUBpRJuYwySl34Hd/FBLLWcj7/9\nTQuFAvjgAxeGDDl+TTnOFh8KDzYg3I809Yf5yP34DVQOHIlN18wOqQHMGWeDZct6xBesQMWQk9tt\ncgiH2OLCmDuvgrK5ET/f9xzsSW1HDXkN0ajLH4Di087FnrMvRGN6LwTkckQXFSJ2yzqk/TAfWZ+/\ni+iiXZD5vHDEJyGoOLFNOgNffBhRpcVY94+H0GKJC7tOklWP3JToYx4PHdGo5Kioc4Z9v0gERTlq\n+g1FyfgzoS8rRvz6n5Hx9ccQPW7U5vXvVuOUTAbYkj04aXwzJpzeCL3Bj4pSJbZt0mHRt9FobhLR\ne4Czw4ShQ7Lmz0XKkm+x+7xLUTpmUrtrEmJ0MBulGRvY0ACcd54O5eUyPPVUCyZPZlMOERERERER\nEVFHOkvMYWMOERERERG1IQhAbVNoCQ6hcFoTkPHNJ3CXVwLTL5SkZm1jC/ZXSJuuGUpjTs7Hb6DP\n/55HU1I6ljz+BrxRrWk4Hr0BqYu+hOD3o2zUxMPrDzWaxER1/EZ5VBRw5pk+jB/vw86dIhYvluPt\ntxWobfAjLrkREQenBIMY/vjtiNmzHZuvuhXlIyccvtSYnoP49T9j11oBU7+4AhBkePddF0466fi+\nAV94oAGOlvBGqKlrq3DyvdchKBOx7JFX4Y0yhLzXEZeI9IWfQVNThZKJZ4V1/6P1f/lxJKxdhsKp\nl6HozAs6XRtQqdGY0QulYyZh19TLUN1vKLw6A3RVZbBuLUDS8oXIXPABVI31sNtSDn+/HU/6g0UY\n+OIjqMkfgB0XXxdWDZkgICspGmnxUd1KclEr5WhyeODynLiGEG+UESXjp6AhMxfWrethW70YKYu+\nhD0hBfbk9K4LHEWjDSCvrwuTz6lHbh8n9u1Wo2C1HutX6dG7nxMGY/sfq9xhx6iHbkZQlGPlPU/B\nr9K0uy4r0QiVsosOnxD4fMCMGRps3Cji+us9mDlTmhGHRERERERERER/VGzMISIiIiKikGnVcpTX\nOBGQaERUiyUOsRtWwVqwEpXjz4DKFlkyiT8QwJaiWkmSZI7UVWNO6sLPMfj5B+C0xGHJk2+1SQ5x\nJCQj9ccvYd6xCXvPmo6A6tdGHIez/dSco9lsQVx4oRcZGQGsXStiyWIVfloYjSiDHynp7rCngKX+\nMB95H76Kqn5DUXDjnLZpMoKAVeJIXL7idnj9Il5/w4WJpxzfaceNDg/2loU5risYxLDHZ8O0byc2\nXjMbVYNP6tZ2Z1wirJvXIX7DClQMGR1xak5swQoMeuEhNKVkYtXdTyEoykPfLIpwJCSjYtgY7D53\nBkpPPhXuKCOi9+1CfMEKZM1/F6bd2+A2RMORkCzpWLjO5P/vRZh3bcamq25DU1p2t/fLZTL0To9B\nnEkb1v21ajnKa09Mas5hgoDmlAzsO+OvQDCI+HU/I3XRlzDt3o7avAHw6kNvBjuiJOISvBh3WiOa\nG0VsWBOFxd8ZER3jQ1rmsY/33A9eQcLapdh+0bWoHDK63Zoapbzd0XnhuOsuFT7/XIHTTvPhqada\nEGLIERERERERERHRnxYbc4iIiIiIKGQyQYDXH0CTQ7r/L+7RRSFlyTdobnJCfvZZ3UrNOFpxRbOk\niT6HdNaYk7DqJwx/9DZ49QYseeJN2JPS2i4QBMi8HtjWLkVLjAV1eQMOXwolNeeIMsjPD+Ds8+yo\nbXZi60YtVi0zoGC1DkmpHlhiuze6S1NVhpPvvQ4BhQLLHnntmMSV/XtVuOfR/nB5lPgA03BSfgnk\nI4Z36x6R2rG/Dm5veIkoyYu/Rv77L6Oq31BsuP7usJpVHPE2pC/8HJrayohScxT2Joy54yqI7hYs\ne+hluGITwq4FQYDbZEH1wBHYc87FaE7OgKamEnEbVyPtxy+QvPhrAEBzSiYCCmX49+mC3NGMYU/M\ngjs6BgU33QfIupfEolaI6J9tgbGTFyW6olKIcLb4JB1bF66gQoGqQSNxcPRpMJTs/WW81UcIyuWo\nzR8Y1vefXA4MHuFAUqobBWv0WLnUgLKDSvQb5IBC2frTQ9lQhxGP/ANevQGr73gSwQ6+5okWHUxR\n4X+uD3nrLQWeeEKFvDw/3n/fBbU0k7GIiIiIiIiIiP7Q2JhDRERERETdEqVRoqJWutSc5sQ0pC76\nEjFb1uPgOdOgjQkv1cHZ4sPOknr0RKZLR4055q3rW0cliSKWPvIqGrJ7t7u/OSkd2Z//D/qyEuw9\n+8I2b9KHmppzSHFVIzJymzDmlEY01ovYtF6Pn76LRmmJEpm9XNDpA10XCQQw6sGbYDiwDwUz70X1\nwBFtLh8sUeKB21PgsIu46fo9mLl9FvRrVsA17WIIel1I54xUdYMLB6rtYe1VNtRh9L3XAgCWPfwK\nvEZTWHVaU3PWIr5gZUSpOYOfngPr1vXYfvF1ODDhzLBqtCcoimjM6IWi0/+K8mFjIfO6YdlWgMRV\ni5H1xVyoa6thtyXDYwjv4+9M5oIPkLjqJ+y84CrU9B/Wrb0GrRL9syzQqLqRGtQBnVqB8lpnjzzu\nw+GJjkHxqf+H5qQ0xG5ei8QVP8JtNKE+t1/YNZNTPRg1rhl7dqmxca0eK5ZEITvXBbPVhz5vPo3Y\nLeuw+Yp/orbP4A5r5CRHQymPbIzVsmUirrlGDbM5iE8/dcFqjagcEREREREREdGfBhtziIiIiIio\nW0SZAEEQUN/slqbgLw0pttWLURdUQDVxfFipOTuK6+B090xyRnuNOYaiQoy940qIHg9WzHkO1QNG\ndLAb8Ks1iDpYhLhNq1HddwicCUmHrwUBCBBCSrNwtHixp7R1tJNWF8Dw0Xb0H2xHSZEKm9br8f1X\n0fB6BGT1ckGu6LhO1vy5yPryfZQNH4dNl98Gl0uEvVmGhno5DuxX4Yk5SWisV+CqGysx7mwX/Co1\nklb8AGdVLYQpU7o8Z6QCwSC276+D1x9Ck1E7hvz7Lph3bcHmK/+JiuHjIjqLMy4Rad+Hn5pjW/49\n+r35NOqye2PtbY92O1kmVC2WOJSddCr2nfFXeHVRiC4qRNyGlciePxfmHZvg0Rtgt6VIM+bK78fw\nJ2ZB9LixevaT8Ks1IW+1RmvQN90MuVya+UcKuQxurx/NLq8k9SQhCGhKz8GBcWcgZdECJK74EVUD\nR0aUlKTTBzDmlEYEAkDBaj0WL4yG1t2IGZ9fhxZrPNbe+gggtv+9pVcrkBbf/ZFaR9q3T8D552vh\n8wHvvdeC3r3De2wSEREREREREf0ZddaYIwSDEv0KbA+prm4+0UcgIiIiIvpTCgSCWLOjEi1hjhk6\nmtzpwJkXjUdAocSuRWthS7J0a39VvRPbi+slOUt7ovRqNNt/HZGlrSjFhJunQ1NXjdW3P46SU87u\nsoZ52wZMuOVCHBg9CavuebrNNVEmYER+HBRdJFrsLK5HRb3zmH8PBIDliwyY+7oV9bUKmMxejBjd\nDK9HQEuLDC0uGdwtMrS0yOBp8kEorYVd0KNJYYLH0/49Z1xdiSlTWz+ngs+LU689D4aSvaj+ehGE\nwR0nc0ihtNqO3b80IHWXbfn3OOmBG1GTPwA//fvdDpsVumPsrTMQu3ktfnj2w24ln6jqa3Ha38+G\nwmnH9//9FM0pmRGfJVSCz4vEn39A1vy5sG5dDwCw21Kw56zp2D/pPHj14TdqJKxchJPnXI99k6di\n/T8eCn1fjBa9UqRP73F7/VizvRL+HngJw6hVQiYTUG8PrxHRumkNxsy6HO7oGHz/4jy4YyKPmdm6\nQYvnHk9AfZ0Cp2Ihbr5uNxz/N7HD9RkJBqTERYV9v8ZG4PTTtdizR8Szz7owbdqJHx1GRERERERE\nRPR7YrV2/NoME3OIiIiIiKhdgiBAoZChprGl68UhCCiUUDY3IL5gBcoN8dCNHAJZiMkePn8AW/fV\nwR/oud8rODIxR1Vfi3G3XwpdVRk2XjMbRWdeEFINlzUeiSt+hHXLOhSd/hf4tL+OhAoGu07NcXv9\nKDzQ0O7IHkEAUjPcOPXMBohyYMsGHXZt02Lfbg1KitQoO6hCVYUSjQ0igs1uKIIeqMwqmGwy2JI8\nSE7zID2rBdl5LuT2cWLK1DpMPP2IxhiZiKbkDKR//zkCW7bCd8ml0iSvtMPnD2BbUV1Yo9IUTQ0Y\nc/c1EPw+LH/4FXhMZknO9GtqThVKJoSYmhMMYvjjtyNmz3ZsvupWlI+c0OayWimid5oZcSYNdGoF\nlHIZAAF+f1CasUwyEU1p2dg/6TyUjpoIwe+DZdsG2NYsQdbnc2Hdug7GokKo62sRFAR4ogwhp/kM\nev4B6CsOYu2tj8JtCq2JzqRXIS8tJqw0rK7IRRl8gQCaHNK+RhClUaBflgUGnRLltY6wajjjE1sT\np37+HjG7tqB44lkRpybFJnhxZq+NcC4sxHeYjK92D0JKuhvxtvZTg3qlREMuhpdQ5PMBl12mQUGB\nHNdd58HMmb+hZCIiIiIiIiIiot8JJuYQEREREVHY1u+qkmyEjKaqHGfMOBVNqZnY8/kipCaEluix\np7QRB6vtkpyhI4cSc+ROB8bedilidm/Djml/x9bLb+lWnYwFH2Lws/dh64yZ2HHx9W2udZWas7es\nEQeqQvs4G+tFVFcpoNYEoFYHDv/d5+OX0PetZ1A8fgrW3PFkt84OACMevBnJy75DzdP/RfDCi7q9\nPxRF5U0orgzvud7QJ2Yj7Yf52Hz5P7Br2lWSnutwas5zH6G+V98u16d+/zmGPXkHqvoNxZIn3jo8\nsg0AYqJUyEuNgaKdcU6BQBCOFi8cLT7YXV7YXV44XN6wx3odSdlUj/Rv5yH9m08QVVrc5ppfoUBT\nahYa03uhIaMXGjJy0ZjRCx5j24QbQ1EhJl19Dqr6D8OSJ98O6b56tQIDsi1hN4eEwusLYPX2SvgC\n0oxY0qsV6J9lOfw12lVSj/K6Y9OqQhIMYsRDtyB52XcoPO9SbLpmdsTnG3XfTNhW/IibJi/Hiz+M\ngt8n4Ky/1GL636rbjLEzapUYmBN+Ss+dd6rw2mtKnHaaD2+/7ZIigIqIiIiIiIiI6E+ns8QcNuYQ\nEREREVGn6pvd2LS3RrJ6wx+9FSk/fYXlj7+JjEvObbdx4Uh2lxfrd1VJkzDSiSi9Go66Jpx8z9WI\n27CqdYTPLQ92OzVGdDlw1vSx8Gr1+Pp/PyAoyttcT4mNQobt2IYknz+AVdsiazqI3rMdE2+4AO7o\nGHz3yhfwRhm7XUNbWYpJV06BXx+F5rUbEdSHPx6nPZGMJIpfvRij77kWddm9sejZD4753EbKunE1\nxt1+GcqGj8XPD77U6VpNVRkm/f0cIBjAwpe/gDM+8fC1lNgopCdEdTs5xu3xtzbptHgPN+w43eGP\nFFI0N8JYtAvR+wph3LcT0ft2wbh/N0RP25FNLnMsGjJ6ofGXZh3bykVIWfw1fp7zHMpOOqXL+6jk\nIgbmWKBWSvv1aE9xRTOKKpoirqNVyTEgywKl4tculEjHZcmdDky88QIYSvZi5Z3/xsFxZ4R9vpgd\nGzHxpumoyR+In56ai3171HjmkUSUlyqRmePCTXeUIT6xtWEyO9GIRKs+rPu8/bYCt92mRm6uH199\n5USUtA93IiIiIiIiIqI/DY6yIiIiIiKisGlUcjQ5vHB5wm8QOJIzNgEZ33wMRWMdSiachRiDutP1\n24rq0OL1S3LvzqhEAQMfuAW21UtQOmoi1t7+WFjjaIIKJTTVFYjbuAr1mXloTslsc93u8sJm1kKU\ntW1IKq1xoLYp/LFhMo8bo++6Gpr6Gqy852k0peeEVcerN0AI+GFbtRgetxeB8RPDPlN79hxsDCuB\nSe5oxui7robo8WDZwy/DHRN+QkhHnHGJiN20GvEFK1E+bCxaLHHtLwwEMOrBm2A4sA8FN9yL6oEj\nALQmIuWnxiDJqg9rnJNclEGrlsOoV8EarUGiVQ9TlBqBQBAut7/bzWkBlRrOuETU5fZD+cgJKDrj\nfOy44CocGH8mqvsMhj0xDV6dHur6OsTs2Q7LtgIkLV8I4/7dsMcnYcPMe9qkALVHFAT0yzJDp1Z0\nuk4qUVoFKmtdEY210yjlGJBtgUrR9vEtF2UIBINoDHNcVkChRNWAEUj9/nMkrvwJZSMnwB0dxqi1\nYBDDHp8FXWUZVs9+Es64RJjMfow7rRF1NXJsXKvH4u+NMEb7YTQG0D/HAHkXDY7tWbZMxDXXqGEy\nBfHppy7Exnb/qERERERERERE1IqjrIiIiIiIKCJSp9aM+8fFsG5dj4WvLUD+5JOgUrbfAFNe68Cu\nAw0S3bUTwSCGv/QwUj6bi6p+Q7HskVcRUHb8RKorh0YBVQwahWWPvX7M9aNTcwLBIFZvr4Q7ggak\nvq8+idyP38CeKdOw4cY5YdcBAJm7BZOvnAJNbRUalq6CPys7onpA6xiiXQfqUdMYXvPRwOcfRNYX\n72HbJTOx/ZLru94QJuuGVRg3628oGz4OPz/433bXZH3+Lga++HDrmgdeBAQBWpUcfdJjoO2hBhW3\n14+yGgfKax3w+KQZ5XQkZVM9jPsKYSzaBUPxXhwcOxlVA0d2ukcA0CfdDLOx8+Y6qZXWOLD7YHg/\nF9RKEQOyOk738flbx2VFMlYscdlCjHrwJjQnpuKH5z+GT9e9GJq4dcsx5s6rUD5sDJY/9PIx15f+\nYMBrz8WhxdX6c1MUg7DZgkhKCiApKYjk5Na/ExMDSE4OIDExCI2mbY19+wRMnqyDwwHMm+fCiBE9\n3/xIRERERERERPRH1lliTs/nTBMRERER0e+eXqNAfIwW5XVOSeoVnncprFvXI2ve29g/oC96pZiO\nWeP1BbCvLPKRNaHI/98LSPlsLhoycvHz/S9E1JQDAE3pOajuMxjxBSugL90Pe2Jam+ulNXYkx+qg\nkLe+sV5d74qoKce8dT16ffIm7LYUbL7qtkiODqA1aWXj1bNw0gM3QnXH7XB+9Gm3R3odqdHuxo7i\n+rCTj6KK9yBjwYdoTkzFjmlXhX2OUFQPGI7qPoNhW70YpsKtqM/p0+a6/mAR+r7+b7gN0Vh3ywOA\nIMBiVCM3xQS52P3UklCpFCLSEwxIjY9CdYMLpdUONEmYMOsxmFo/9gHDQ96TlWg87k05AJBg1uJg\nlb3bKV4qhYj+mZ2P3JKLMqTFR2F3aWPY5ysdfRp2nn8Fcj96HcOeuAMr5jzbZfLQYYEA+r7xFABg\ny99uaXfJmFOakJPvwqJvjWhp0qOmSoGDBwWsWiUiGGz/cWqxBJCc3Nqsk5QUxPffy9HQIOCZZ9iU\nQ0RERERERETU03ruVUMiIiIiIvpDSYs3QIygOeNIZSMnwJ6QjNQf5qO+qBTOlmPfYN9X1hhRakWo\nogu3ofe7L8BpS8HSR17pdrpFR/aeNR0AkPHVR8dc8weCOFjtOPy/D1TZw76P6HJg2JN3AIKANbc9\nCr9GG3atI5WddAoqB46EbsmPUC78NqwawWAQ+yuasHFPTUTjyPq//ARkAT82/X0Wggpl2HVCIgiH\nE3ny332x7SW/D8OemA25uwUFN86BJ8aK9HgD+qSbe7Qp50gyQUCcSYtBOVYMyrEizqSFTKLHZXck\nWfVItOqP+32B1s9BWkL3HqcqeWtTjkbV9e8nJVh00IawrjNb/3YzqvoPR+LKH5H74Wsh70ta9h1M\ne7ajePwUNGbmdrgu3ubFxVfU4o3X3fj6ayc2b3bgwAE71qyx49NPnXj2WRduu82N6dO9GD3ah6go\nYNs2GRYsUOCll5TYu1eGa6/1YPp0aUYUEhERERERERFRx9iYQ0REREREIVEpRSTFSvRGvChi97kz\nIHo9SP/yfRRVtE3GaXJ4JEvn6UrOvLcAANtuexDuGKtkdUtPOhUt0Wakf/cpZO5jxzcdrLbD6wug\nrqkF9hZv2Pfp/8qT0JcfwK6/Xo7a3oMiOXJbgoAN19+FgCiH5s7bgZbujaBye/zYtKcW+yuaIxqB\nFr9mKRLWLUPlwBEoHzEugkqhqxowojU1Z9VPiC7cdvjfe334Gsw7N6N4/BRUjj8DfTPMSI2XppEr\nHAatEnmpJozIj0N6vAEqRfsj4aRmMaqRecQothMhzqSFPsSxYQpRhn5ZZmjVoTXbyAQB6QmRfXxB\nUY5Vd/4bTks8+rz9DGLX/9zlHsHnRZ+3nkFAlGPbpTd0ud5sVLdpCFMqgbS0IE4+2Y9p03y47TYP\nnnmmBfPmubB6tQMlJXZs2WLH11878OWXTsyZ447oYyQiIiIiIiIiotCwMYeIiIiIiEKWHKuHQqJk\nkKJJ58Kji0LWF++htqoBzb+M5QkGg9h9sEGSe3RFU12B5KXfojEtG7XDRktaO6BUomjyVCibG5G8\n5NjEmdbUHHtEaTnxa5Yi86sP0ZCeg22XdP1Gfnc1p2RizzkXQXmgGNqXng95X02DC+t2VaHBEdkb\n/4LPi/6vPIGgTIZNV8+OaJxW924sYPvF1wEA8ue2puYY9+5A73dfhMsci8Jb78egHCtiDMd/jFN7\nlAoRqfFRGJ4fh/y0GBh1PZcqdKgZSDgBKT1HC6V5RiHK0D/LAl2ITTyHWKM1MGoj+zy6TWasvOdp\nBEQRIx69FdrK0k7Xp333GaJKi7HvjL/CYUvpdK1aISKlm42SMhkQFxfEkCEBDB/uD3m6FhERERER\nERERRYYvwxARERERUcjkogxpEiWE+DU67Dvjr1A31CLlp69QVN6amlNa40CzK/wEme7I+mIuZH4f\nCqde1iNNH/vOOB9BQUDmgvfbvX6wyo56e3jNK4qmBgz5z90IyBVYc/vjCCh7phlj2yXXoyXaDM1T\nT0JW1nljQSDQ2lS1dX+dJGPIMr7+CIaSvSiaNBWNGb0irtcdVQNHoqb3ICSuXISY7Rsw/PFZkPm8\n2HPvk+g7ODOkkUjHm0wQEButwcBsKwbnWGGN1kDK72q1UkSf9BiIv5GODrNR3WkTklwmQ99MM/Sa\n7jXlHJKRaAz3aIfV5fXHxmvvgqqpASMfvBkyT/uPd7HFhd7vvgCfSo0dF17Tac2EGC2G5MYiKsLG\nISIiIiIiIiIiOj5+G6+mERERERHR70aCRQetRE0Je865GAGZiOxP30ZdUwsq653YX94sSe2uiC4H\nMr76CC3RZpSMP7NH7uGMT0T5sDEw79yM6N3bjrnuD4Y55CkQwJCn50BTV41tl8xEY2ZuhCftmE8X\nhS1X/AMylwva++/pcJ2zxYuCwmqU1jgkua+iuRG933keXq0OWy+7UZKa3SII2HbJ9QCAMXdeBeP+\n3ai+YAbip5/7m2lM6UyUVoneaTEYmhuLOJM24gYdhShDvwwzlMdpXFaoMjpIzREFAX0zYmCIoHnF\nqFPCYow8FWnfmeejaNJ5iCncioEvPNTumqwv5kJTW4Xd585Aizm23TUqhYh+GWb0SjG1GWFFRERE\nRERERES/bXwlh4iIiIiIukUmCCGNkAmFKzYBB8dORnRRIWI3rMSO4nr4ApEnrYQibeHnUNqbsOfs\n6QgoVT12n71nTQcAZC74QJqCwSAGP3MfkpYvRHWfwdh1/uXS1O3E/lP/D7W9+kHz2SdQrPz5mOvl\ntQ6s31UNe4t0SUd5770EVVMDdky/Gm6TRbK63VE1cCRq8gdC4XTAm5IGPPrYCTlHJLRqBfJSTRiW\nF4eEGC1kYSRDyQQB+Wkx0HZzHNTxYNSrYD5qpJgoCOiTYYZRH/njOiPBGNbnrA1BQMHMe1CflY+M\nbz5B+jcft7msaG5E7gevwhNlxK7zr2i3REKMFkNzY38z49OIiIiIiIiIiCh0bMwhIiIiIqJus0Zr\nYJRojErh1MsAADnz3pIZ8fQoAAAgAElEQVSkXkj8fuR89g78CiX2Tpneo7eqGHwyHHGJSFn0FeSO\nCNOAgkEMePERZHzzMeoz8/Dz/S8gKB6HkUoyGTZcfxcAQHfHrYDPBwDw+QPYvr8Ouw40hJ/+0w59\n6X5kz58LR1widp87Q7K63SYIKP7H3fDm5sH+0muAXn/izhIhjUqOXikmDMuLRaJF161mk17J0TBF\n9VzzWqTSEwyHE4FkgoDe6TGSnVerliM+RhtxnYBKjRX3Pgt3lBEDn38Qpl1bDl/r9fEbUNqbsPOC\nK+HVt216VClE9E1nSg4RERERERER0e8ZX9UhIiIiIqKwZNikSc2pz+mD6j6DkbB2GaKK90hSsyu2\nVT9BX1aC4lPOgSc6JuIxP50SRew98wLI3S6kfT8//DrBIPq+9i9kz38XjalZWPrY6/BGGaU7Zxfq\nc/uhaNJ5UGzfBvU7b6LJ4cG6XVWoanBJfq9+r/wLMp8Xm6+6tUfTjDqjEGXISzUh5exT0bB0NXxD\nhp2Qc0hNrZQjOykaw/PjkGzVQ+yiQSctPgpxEjSm9CS9RoHYaM0vyT4myVNl0uKjIMoi/ynhjE/E\n6jv+BZnPh5EP3gRlYz3UtVXI/uwduMyx2HP2RW3Wx5taU3LMEozTIiIiIiIiIiKiE4eNOURERERE\nFBajXgWLRG8YF553KQAg59N3JKnXlZxP3/7lvq1pLJmJRiTHRfXY/fZPOg8BuaJ1nFWYyTL5/3se\nuR+/geakNCx54k14jCaJT9m1LZffAq9WD83DD2Dvj6vR4vFLfg/rxtVIXPkjqvsMxsHRkySvHwqL\nUY2hubGIM/22G1IioVKIyEw0YkTvOKTEtt94Em/SIi1emga8npaWYEBuqgkWo0by2kqFiJRYaX4+\nVA45Gdtm3ABdVTlGPPJP5L/7IuTuFmy7+Hr41a1nV8lbU3JyU5mSQ0RERERERET0R8BXeIiIiIiI\nKGwZCcZujcTpSNnICbAnJCP1h/lQNtRJcLKOmQq3wrplHcqHjEZzahZUchE2sw69M8xIsvTMqCK3\nyYwDoyfBULIX1s1ru70/9/1X0PvdF2FPSMbiJ96C22TpgVN2zW2yoGDm3ZA3N+LkO66Epqpc2hv4\n/Rjw0mMAgE3XzAYk+N7qjkMpOX3SzVAqxON67xNFIReRYTNgRH480uKjoPilESRar0JOSvQJPl3o\nNCo5YqOlb8o5JClWB5Vcmu+JHdOvRtmI8YjbsBKZX32IZlsK9k86F8AvKTl5TMkhIiIiIiIiIvoj\nYWMOERERERGFTauWI16KMTeiiN3nzoDo9SD3w1cjr9eJ7Hm/pOVMbU3pSY7TQ/ZLWkhWkhHJ1p5p\nztl71jQAQOaC97u1L3veW+j75lNwxCZgyRNvosUS1xPHC1nJKedg85X/hLa6HGPuvArKpnrJaqcv\n/BTR+3Zi/ynnoD6nj2R1Q2ExqDHkD56S0xmFXIa0eAOG58chK9GIPukxkjTd/VGIMhnSEiRK1ZLJ\nsOb2x2C3pQAAtl52E5RqNVNyiIiIiIiIiIj+oPhqDxERERERRSQtvv0xON217/S/wG5LQc5n7yB6\n9zYJTnYsTVU5kpd+i8a0bFQNGnU4LedImYlGpPbAWKva3oPQmJaNxOU/QFVXHdKezC/ew4CXH4fL\nHIslj78JZ1zi4WuiTDicbnK87frrFdj1l7/BULIXJ999DUSXM+KacqcDfd56Fj6VBlsuv0WCU4ZG\nIcqQl2JCnwwzVH+SlJzOyEUZkqx6Noe0Iz5GC71aIUktr96AxU++jRX3PAPv/03FkFym5BARERER\nERER/VHxlTYiIiIiIoqIUiEiJTbyRpaASo31N86BEAhgyFP3QvD7JDhdW1lfzIXM70Ph1MsAQWiT\nlnOk9AQD0uMN0t5cELDnrOmQ+X3I+OaTLpenfTsPg55/EC3RZix5/E04ElPbXI8zaZGfFoMTkmki\nCNh85a3Yf8o5MO/cjFEP3gTB64moZO4Hr0BdX4OdF1xx3FKBzIdScqRIfaI/PEEQkJ4g4c+FxCSY\nZkxDXloMFHK+PENERERERERE9EfFV36IiIiIiChiSbE6qOSRp41UDRqF/aecA9Oe7cj67F0JTvYr\n0eVAxlcfocVkQcn4KVDJRSSYO27ISI2PQoaUb8IDKJl4NrwaLTK+/hjw+ztcl7xoAYY8dQ/cUUYs\nefwNNKdkHLMmyaqDKUolbaNAd8hkWPePB1E2fCzi1y3H0H/dBQQCYZXSVpQiZ95bcFriUfiXyyU+\n6LHkMhlyU0zoy5Qc6iazUY1ovSqiGgpRhqxEI4bmxcJi1Eh0MiIiIiIiIiIi+q1iYw4REREREUVM\nlMmQliDN+KdNV8+C2xCNPm8/C21FqSQ1ASBt4edQOpqx56xpCCiVSI7VQ5R1/pQoJS4KWTajZGfw\naXUomXgWtNXlSFizpN01iUu/w7AnZsOr1WPpY6+jKT3nmDXRehW0v4zUSYmLguUEjcAJyhVYdddT\nqMkfiNSfFmDAS48BwWC36/R7/V8QvR5sufwW+NU926hgNqgxNC8W8UzJoTBl2sJrhhMFAalxURie\nH4ckqx4y4YTkXRERERERERER0XHGxhwiIiIiIpJEfIwWul+aRSLhMZqw8ZrZkLtdGPTc/WE1ehzD\n70fOZ+/Ar1Bi75TprWk5ltAaM5Ji9chOio78DL/YO2U6ACDzyw+OuZaw8ieMePRW+FUqLHvkFTRk\n927/TBZdm/+dm2KCViWX7Izd4VdrsPzB/6IxLRvZn/8PuR+80q395m0FSF7yLep69UXJhCk9dEqm\n5JB0orRKxEWH3kAmAEiI0WJYXhzSEwyQi3wphoiIiIiIiIjoz+TEvHJLRERERER/OIIgICPBgC1F\ntRHXKpl4NtK+n4+EtcuQtOQbHBx3RkT1bKt+gr6sBPtO/ys80THICiEt50iJFh1kAlB4oAGRtgk1\nZvRCTe9BSFi3DLqyEjhsKQCAuHXLMfKhmxCQK7D8oZdRlzeg3f1qhQjzUQk5clGG3ukxKNhVDb8U\njUzd5I0yYukjr2LCLRei75tPw200oeiM87veGAi0puwA2HjNHUAnXxNrtAbp8YbOlnRKLsrYEEGS\nSUswoLqxBYEuHm8xUWpk2AzQayJvWiQiIiIiIiIiot8nvipJRERERESSMRvViNarIi8kCFh/033w\nK1UY+OIjUDQ3RlQuZ95bAIDC82Z0Ky3nSAlmHXJTTJBi+MzeKdMAABlffQgAsG5ag5PumwlAwM8P\nvICavkM63Guz6CC0MwJHp1agV6pJgtOFp8USh6WPvga30YTBz96PxOULu9yTsmgBYnZtQcnY01Hb\ne2C7axSiDPlpMeidFgOtWg61Mrw/bMohKWlUciQelVx1pCiNAv0zLeiXaWZTDhERERERERHRnxxf\nmSQiIiIiIkll2AyS1HHYUrDtkuuhbqhFv9f+FXYdU+FWWLeuR/nQ0WhOzUJSN9NyjhQXo0VeWgxk\n7TTGdMfB0ZPgNpqQ/t2niN2wEiffcy2EQAAr5jyHqoEjO9wnEwQkmDtuKoqN1iDJqo/obJGwJ6Vj\n2cOvwKdSY/ijt8K6cXWHa0WXE33f+A/8CiW2XPnPdtdYozUYlheL2G6MDSI6XlLioqA4quFLrRSR\nl2rC4F6xMEVJ0KRIRERERERERES/e2zMISIiIiIiSRm0SsRJ1EhROPUyNGT0QsY3n8CyeU1YNbLn\nvd1a67xLoZTLYAsjLedIsdEa5KeaImrOCSiVKJo8FaqmBoy540rIPG6svOs/qBg2pst7K+Rip2sy\nbAZE605cQ0B9Th+smPMchCBw0n3XI3rP9nbX9frkTWhrKlE49TI44xLbXDsyJaerj5foRFHIZUiJ\ni2r9b1GGTJsRw/LiEGeK7GcMERERERERERH9sbAxh4iIiIiIJJeWYIg4VQYAgnIF1t38AIKCgMFP\n3weZx92t/ZqqciQv/RaNadmoGjQKybFRYaflHMkSrUHvCJNz9p5xAYK/7F89+wmUnXRKl3ts1o5H\n5xwiEwTkp5mgOoENLVWDRmH1rMchdzkx+s6/Q1da3Oa6uqYSvT56HS0mC3ZO+3uba0zJod+TRIsO\n6fEGDM+PQ3KsXpKfe0RERERERERE9MfCxhwiIiIiIpKcRiVHoqXrJpJQ1Of2w55zLobhYBFyP3il\nW3uzvpgLmd+HwqmXQakQI07LOZLZqEaf9BiIYb4R70xIwsq7nsLSR1/DwXFndLneoFXCoFWGVFup\nEJGfHvnIrUgcHHs6CmbeA3VDLcbceRXUtVWHr/V94ynI3S5suewm+LSt3ycKUYb8VBNTcuh3RSYT\nkBofBbnIl1eIiIiIiIiIiKh9fOWIiIiIiIh6REpcFBQSvVm99bKb4LTEI++DVxFVvCekPaLLgYyv\nPkKLyYKS8VMkS8s5UoxBjT4ZZoTb/lI6ZhKqBo4MaW13G52MOiUybYZwjiWZfWdNx7ZLZkJffgCj\n77oaCnsTTIVbkfbDfNRn5mH/aecCAKxGDYbmxiKWI4CIiIiIiIiIiIjoD4aNOURERERE1CMUchmS\nY/WS1PJpdSi44V7IfF4MeXoOEAh0uSf9u8+gdDRjz1nTIdeqJU3LOZIpSoUEszTpQB1RymWwhjHa\nKdGqR9wJbnbZfvF12HPWdETv24mT7r0OA158BACw6epZUCgVyEs1oXd6DJQKpuQQERERERERERHR\nH09IjTmbNm3CJZdc0u41l8uFadOmYe/evZ3uKS4uxvTp03HhhRdizpw5CITwQjoREREREf2+JVn1\nUEvUcFE+cjwOjJ4Ey7YCZHz9ceeL/X5kf/YO/Aol9k6Z1iNpOUfKsBmglPdc/QSzDjJZeLk8OclG\n6NUKiU/UDYKADdfdhQNjJ8O6dT0s2zegdNREBMeOxdDc2BPeOERERERERERERETUk7p85fjVV1/F\n3XffDbfbfcy1LVu24KKLLsKBAwe63PPoo4/i5ptvxnvvvYdgMIgff/xRguMTEREREdFvmUwmID1B\nunFKG6+7Ex5dFPq99i+oa6s6XGdb9RP05QdQfMo5CJotPZaWc4hclCHDZuyR2gIAWwSJPKJMht7p\nMZD3YGNS14cQsea2x1Ex5GR4dVFwzHkQfdLNTMkhIiIiIiIiIiKiP7wuX5lNSUnBc8891+41j8eD\nF154ARkZGV3u2bZtG4YNGwYAGDNmDFasWBHumYmIiIiI6HckLkaLKI00iS0t5lhsueKfUDjth0ci\ntSdn3lsAgMLzZiA5Vt+jaTmHxMdoEa1TSV7XYtRApYysgUWjkiMv1STRicITVCqx57/vorpgG0wD\n+5zQsxAREREREREREREdL/KuFkyaNAkHDx5s99rgwYND3hMMBiEIrdHrOp0Ozc3NIR3Qao0KaR0R\nEREREf12DVXKsXZ7pSS1qs+/BPWLFyB52Xeo2rAM1aNPbXPdsH0TrFvXo3rkOCgH9MOAvHiIYmiN\nOZE+/xipU+HnzeUIBoMR1TlS316xMBs1EdexWqMgquTYe7BRglN1T6xJi5xUE/QSNWgRERERERER\nERER/V502ZgjFdkRv6HqcDhgMIQWZ19dHVoDDxERERER/bYpBKCuuUWSWmtm3otTr5uKvCfvRUmv\nQfBpfx31lD/3VQDA9rMvhlEtR12dI6SaVmuUJM8/jBoRB6rsEdcBAJ1agYDHJ9nzIqNKlPTr0BWD\nVokMmwHRehVc9ha47MfnvkRERERERERERETHU2e/9Nnzee6/yM/Px+rVqwEAS5cuxZAhQ47XrYmI\niIiI6Dcgw2aAIFGtprRs7LzgSmhrKtDnrWcO/7umqhxJS75FY1o26oeejESrrpMqPSMtPgpqRWSj\npw6xWaQ9vyAIyEs1QR3haKyuaJRy5KfFYFCOFdF66cd7EREREREREREREf1edLsx58svv8SHH37Y\n7RvNmjULzz33HC644AJ4vV5MmjSp2zWIiIiIiOj3S69RID5GK1m9HdOvRnNSGrLmvwvTzs0AgKwv\n5kIW8KNw6mVIjouCKDtuv4twmCiTITPRGHEduUyGOFPkI6yOppDL0DstBiqJmofa1BZlyEo0Ymhe\nLGKjpT87ERERERERERER0e+NEAwGgyf6EJ3hKCsiIiIioj8Ot8ePNTsq4ZfoaYhl8xqMv/VSNGT0\nwuIn38YZM05FQKnCwvd+wrCByd1qzJFqlNUhW/bVorYp/NFNSRY9spIib/DpjMvtQ4PdjUa7B40O\nD1weX1h1REFAolWPlDg95OLxb4YiIiIiIiIiIiIiOpE6G2UlP47nICIiIiKiPzmVUkRSrB7FldI0\nwNT0G4Z9k6ci49t5GHv736B0NGPr1MuQmBRzQtJyjpSVaER9sxuBMJuQbBbp0oU6olHJoVHJkWBu\nHZnl9vjR4Ght1Gmwu+F0d96oIwCIM2mRnmCAqofHYxERERERERERERH9HrExh4iIiIiIjqvkWD3K\nahzw+gOS1Nt85a2wrVoM094d8CuUKDnnQgy06P6/vXuPsbI6/wX+3XsPM1yGYUAYhDrUA1irvZlK\n4LRNLVJEGyV6UltBS2O1NSWNFVMrjIrYCKJV26hNWi+1JnhrWi+IUUygVaBaevHYU2mN5xRFqv1Z\nEUEZggN79vmjcRoQRX9lz2Xz+fy33/ddk2eF5GXtle9ez3752/+JAQ11+eDIwXnuv15/32OHDW7I\nwP79qlDVu2uoL2Vk/cCMHPqvUNDOXeVs2dbRFdRp37Ezb8WMhg3un7Gjm9I4oPvrBAAAAADoKwRz\nAACAblVXKubQgwfn/764db/8vZ1NzXlqdlv+5+IL8vy0/5WRHxrTa9optbY05uXXtu/z5Jk9je4F\nwaIk6VdXyojmARnRPCBJsqvcma3bOlIsFjJ0cEMPVwcAAAAA0PsJ5gAAAN1u1PBBeXFT+/sOrLyT\njceemPaDD8n28R/OhF4SakmSYrGQ8R8Ykv+z/tX3PKZ/fSkHNfWvYlX/fXWlYg4a0jtrAwAAAADo\njXrHz0gBAIADSrFQyKGjmvbr39x8xCcyesyIXnNazluGNfXvOnHmvRh90KAUCoUqVgQAAAAAQHfp\nXTvWAADAAaOleUCGDKzfb3+vX6nYa1pA7Wn8B4akVNx32KZUKGTUQb1zDgAAAAAAvH+COQAAQI8Z\nO3r/nJozfEj/fHzcQb3utJy3NPQr5dCD9z3XlqED0q+ud84BAAAAAID3r66nCwAAAA5cQxobMnxI\n/2zauuN9jy0kGd48IB8cOTiNA/rt/+L2sw+MGJSXN2/Pth073/GZ3nriDwAAAAAA/z2COQAAQI8a\nO2pINr/+Zjorlff0fLFQyIjmAfngyMYM7N/7AzlvKRYKOeyQIfnf/2/TXu8PGVifwfuxtRcAAAAA\nAD1PMAcAAOhRA/vX5eBhA/PSq+3v+lyxUMjIoQMyZuTgDGjom19lhjQ2ZNSwgfnH5u1vuzd6hNNy\nAAAAAABqTd/czQYAAGrKoQcPzsuvbU+58+2n5hQLhYw6aGBaWxrTv77vf4UZO7opm7buyM5yZ9e1\nhrpSRjQP6MGqAAAAAACohmJPFwAAAFDfr5QxLYN3u1YqFNI6ojGTjhyZww5prolQTpL0qyvlf4xq\n2u3awQcNTLFQ6KGKAAAAAAColtrY2QYAAPq8Q1oG5aVN7Sl3VjJ6+KC0tgxKv7pST5dVFaMOGpj/\n2rw9r2/vSLFQyOjh2lgBAAAAANQiwRwAAKBXKBWL+cjYYRlQX5d+dbV9uGehUMhhhwzJk8++koOG\n9E9Dv9oMIAEAAAAAHOgEcwAAgF6jaWB9T5fQbQYPrM/o4YMyonlAT5cCAAAAAECVCOYAAAD0kLGj\nm1Iq1vbpQAAAAAAABzI7wAAAAD1EKAcAAAAAoLbZBQYAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQ\nzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAA\ngCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAA\nAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCooVCqVSk8XAQAAAAAAAAAAtcaJOQAAAAAAAAAAUAWCOQAAAAAA\nAAAAUAWCOQAAAAAAAAAAUAWCOb3cn/70p8yaNStJ8te//jWnn356Zs2albPPPjubNm3a7dnOzs5c\neumlOe200zJr1qxs2LAhSbJhw4bMnDkzp59+ehYsWJDOzs5unwdArdrzPf3lL385M2fOTFtb29ve\nt97TAADwL3tbG7/66quZPXt2zjjjjMyYMSMvvPDCPsck1tMA1WR/GqB3sz8N0DcI5vRiN998cy65\n5JK8+eabSZJFixZl/vz5WbJkSY477rjcfPPNuz2/YsWKdHR05Oc//3m+853v5Morr0ySLF68OHPm\nzMmdd96ZSqWSlStXdvtcAGrRnu/pH/3oR/nWt76Vu+66Kx0dHXn00Ud3e957GgAA/mVva+Orr746\n06dPzx133JE5c+Zk/fr1+xyTWE8DVIv9aYDezf40QN8hmNOLjRkzJjfccEPX5x/84Ac54ogjkiTl\ncjkNDQ1JkgsvvDAvvfRS/vjHP+azn/1skuSoo47K008/nSRZt25dJk6cmCQ55phj8vjjj3fnNABq\n1p7v6SOOOCJbtmxJpVJJe3t76urqknhPAwDAnva2Nn7yySfz8ssv58wzz8yyZcu61sjW0wA9w/40\nQO9mfxqg7xDM6cWOP/74rv80k6SlpSVJ8uSTT+b222/PmWeemST5/ve/n9GjR2fbtm1pbGzser5U\nKmXXrl2pVCopFApJkkGDBuWNN97ovkkA1LA939OHHnpoFi1alC984Qt59dVXM2nSpCTe0wAAsKe9\nrY03bNiQpqam3HbbbRk1alTXSQzW0wA9w/40QO9mfxqg7xDM6WMeeuihLFiwIDfddFOGDRu2273G\nxsa0t7d3fe7s7ExdXV2KxX//M7e3t6epqanb6gU4kCxatCh33HFHli9fnlNOOaXrKNC3eE8DdJ+9\n9U3fV890vdYBus/e1sbDhw/PlClTkiRTpkzp+gXvu42xngboXvanAXov+9MAvZdgTh+ydOnS3H77\n7VmyZElaW1vfdv+Tn/xkVq1alSR56qmn8qEPfShJcuSRR2bt2rVJklWrVmXChAndVzTAAWTIkCFd\nvzhoaWnJ66+/vtt972mA7rO3vun76pmu1zpA99nb2vjoo4/OY489liT5/e9/n/Hjx+9zTGI9DdBd\n7E8D9G72pwF6L8GcPqJcLmfRokVpb2/Pueeem1mzZuX6669P8u/ekMcdd1zq6+szY8aMLF68OG1t\nbUmSuXPn5oYbbshpp52WnTt35vjjj+/JqQDUrIULF+b888/PV77yldx55505//zzk3hPA/SEvfVN\nf6ee6XqtA3S/va2N586dm6VLl2bGjBlZvXp1vvnNbyaxngboDexPA/R+9qcBeq9CpVKp9HQRAAAA\n+9PFF1+cadOm5XOf+1ySZPLkydm1a1fWrFmTJHniiSdyzz335JprrnnXMStWrMjkyZPfdRwAAAAA\nALwTJ+YAAAA1Z2990/fVM12vdQAAAAAA9jfBHAAAoObsrW/6vnqm67UOAAAAAMD+ppUVAABQczo7\nO3PZZZfl2WefTaVSyRVXXJFisZj58+dn586dGTt2bBYuXJhSqZQLL7wwc+bMycEHH/y2MePGjctz\nzz2313EAAAAAALAvgjkAAAAAAAAAAFAFWlkBAAAAAAAAAEAVCOYAAAAAAAAAAEAVCOYAAAB9Xrlc\nTltbW2bMmJGZM2fm2Wef7bp3xRVX5K677trruHnz5mXChAnp6OjourZu3bocfvjhWbt2bdXrBgAA\nAACgtgnmAAAAfd6vf/3rJMndd9+dOXPm5Ic//GE2b96cr3/96/nVr371rmNHjBiRVatWdX1etmxZ\nWltbq1ovAAAAAAAHBsEcAACgz5s6dWouv/zyJMlLL72UpqamtLe359xzz83JJ5/8rmNPPPHEPPjg\ng0mSzs7OrFu3Lh/72MeSJNu2bct5552Xs846KyeddFLuvPPOvPHGG5k6dWrK5XKS5Oqrr85DDz1U\nxdkBAAAAANBXCeYAAAA1oa6uLnPnzs3ll1+e6dOnp7W1NZ/4xCf2Oe7jH/941q9fn+3bt+e3v/1t\nJk2a1HVvw4YNOfHEE3Prrbfmpz/9aW677bYMHjw4Rx99dNasWZNyuZxVq1Zl6tSp1ZwaAAAAAAB9\nlGAOAABQM6666qo88sgjmT9/frZv3/62+8uXL8+sWbMya9asPP30013XP//5z2flypVZtmzZbifs\nDB8+PCtWrMgFF1yQH//4x9m1a1eS5Etf+lLuvfferFq1Kp/+9KdTX19f/ckBAAAAANDnCOYAAAB9\n3v33358bb7wxSTJgwIAUCoUUi2//unPCCSdkyZIlWbJkST760Y92XT/ppJNy//3355VXXklra2vX\n9VtvvTVHHXVUrrnmmpxwwgmpVCpJkgkTJmTjxo355S9/mVNPPbXKswMAAAAAoK+q6+kCAAAA/lPT\npk1LW1tbzjjjjOzatSsXXXRR+vfv/57Hjxs3Lq+99lq++MUv7nb92GOPzcKFC/PQQw9l8ODBKZVK\n6ejoSH19faZPn57ly5fnsMMO29/TAQAAAACgRhQqb/3kEwAAgPfslltuSXNzsxNzAAAAAAB4R07M\nAQAAeJ/mzZuXf/7zn/nJT37S06UAAAAAANCLOTEHAAAAAAAAAACqoNjTBQAAAAAAAAAAQC3SygoA\nAKhZO3fuzEUXXeoahOsAAAUqSURBVJQXX3wxHR0dmT17dsaPH5958+alUCjksMMOy4IFC1Is/us3\nC5s3b87MmTPzwAMPpKGhIeVyOYsXL87TTz+djo6OnHvuuTn22GN7eFYAAAAAAPQVgjkAAEDNeuCB\nB9Lc3Jyrr746W7ZsySmnnJIPf/jDmTNnTiZNmpRLL700K1euzHHHHZfVq1fn2muvzSuvvNI1funS\npdm1a1fuvvvuvPzyy3n44Yd7cDYAAAAAAPQ1WlkBAAA164QTTsh5552XJKlUKimVSlm3bl0mTpyY\nJDnmmGPy+OOPJ0mKxWJ+9rOfpbm5uWv8mjVrMnLkyJxzzjm55JJLMmXKlO6fBAAAAAAAfZZgDgAA\nULMGDRqUxsbGbNu2Ld/+9rczZ86cVCqVFAqFrvtvvPFGkuQzn/lMhg4dutv41157LS+88EJuvPHG\nfOMb30hbW1u3zwEAAAAAgL5LMAcAAKhp//jHP/LVr341J598cqZPn55i8d9fg9rb29PU1PSOY5ub\nmzN58uQUCoVMnDgxzz//fDdUDAAAAABArRDMAQAAatamTZty1lln5bvf/W5OPfXUJMmRRx6ZtWvX\nJklWrVqVCRMmvOP4o48+Oo899liS5JlnnsmoUaOqXzQAAAAAADWjUKlUKj1dBAAAQDUsXLgwDz/8\ncMaOHdt17eKLL87ChQuzc+fOjB07NgsXLkypVOq6P2XKlDz88MNpaGhIR0dHFixYkL/97W+pVCq5\n7LLL8pGPfKQnpgIAAAAAQB8kmAMAAAAAAAAAAFWglRUAAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4A\nAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAABADZo3b17uvffed7zf1taWF198\nsRsrAgAAADjwCOYAAAAAHIDWrl2bSqXS02UAAAAA1LRCxQ4MAAAAQJ9XqVRy5ZVX5tFHH01LS0vK\n5XJOPfXUbNiwIU888US2bt2aoUOH5oYbbsh9992X66+/PmPGjMkdd9yRjRs3ZvHixdmxY0eGDh2a\n733ve2ltbe3pKQEAAAD0eU7MAQAAAKgBjzzySP7yl7/kwQcfzHXXXZcXXngh5XI569evz913351H\nHnkkY8aMybJly3LOOeekpaUlN910UwYNGpRLLrkk1157be6777587Wtfy/z583t6OgAAAAA1oa6n\nCwAAAADgP/e73/0u06ZNS79+/TJs2LAcc8wxKZVKmTt3bn7xi1/kueeey1NPPZUxY8bsNu7555/P\nxo0bM3v27K5r27Zt6+7yAQAAAGqSYA4AAABADSgUCuns7Oz6XFdXly1btuTss8/OmWeemeOPPz7F\nYjF7djXv7OzMIYcckqVLlyZJyuVyNm3a1K21AwAAANQqrawAAAAAasCnPvWpLF++PB0dHdm6dWtW\nr16dQqGQiRMnZubMmRk/fnx+85vfpFwuJ0lKpVLK5XLGjh2brVu35g9/+EOS5J577skFF1zQk1MB\nAAAAqBlOzAEAAACoAVOnTs2f//znnHTSSRk+fHjGjRuXHTt25Jlnnsn06dPTr1+/HH744fn73/+e\nJJk8eXLOOeec3HLLLbnuuuuyaNGivPnmm2lsbMxVV13Vw7MBAAAAqA2Fyp7nFwMAAAAAAAAAAP8x\nrawAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAA\nAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAK/j9FTXzeTL/yawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJaCAYAAAAcbFLpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VNW9///33HKdyT1yFQUlomgUUBARFG9UqxVtyynx\nUO8X6lHBnwqlICpFi1aK0KK9eGwPVpGK7Wlrzzm1VESBWuVXBWxBRS4CEXLPTJKZSTLr+0eYASQk\nJMyePUlez8ejj0czs/fM2msm8c1aa3+WwxhjBAAAgLhy2t0AAACA7oiQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhaSzu7du3X66afr2muv1bXXXqtrrrlG119/vX73u9/FjnnmmWcO+7k1\nP/7xj/WXv/yl1ecOPf+0005TZWVlh9q4ceNGPfzww5KkTZs26d577+3Q+Z3R3NysqVOnasKECXrx\nxRfbPPbOO+/Ua6+9Jkm69tprVVtbe8T5r732mi6++GLdeuutlrfdKq+99pruvPPODp/X1nejK/jN\nb36jX//6150+f/fu3Ro2bFgcW3S4YcOGaffu3Za9/qEee+wxLVmyRJJ0++2369NPP23z+FtuuSX2\n+34sxwPHw213A4DWpKWl6b//+79jP+/Zs0c33XST0tPTNWHCBN13333tvsa7776rU089tdXnjuX8\ntnz66afat2+fJOmss87S4sWLj+v1jsW+ffv0zjvv6IMPPpDL5Trm86L9uHfv3sPO//a3v63p06fr\n2muvtarJSaut70ZXsGHDBg0ePNjuZiSdn//85+0es3bt2g4dDxwPQha6hH79+unee+/V888/rwkT\nJmjmzJkaPHiwbr31Vi1evFhvvPGGPB6PcnNz9cQTT+iNN97Q5s2b9eSTT8rlcmnVqlWqrq7W559/\nrosvvlgVFRWx8yVp0aJF2rRpkyKRiKZNm6bx48frtdde0//93//ppz/9qSTFfn7kkUe0ePFi+f1+\nffe739XEiRM1b948/fGPf5Tf79ejjz6qLVu2yOFwaOzYsbr//vvldrt11lln6Y477tDatWu1f/9+\nffvb39ZNN910xLW+//77evLJJ9XQ0CCPx6Np06Zp+PDhuu2229TU1KTrr79eS5Ys0YABA2Ln7Nu3\nTzNnztT+/fvVt29fVVRUxJ477bTTtHr16sPO79+/vzZt2qTdu3erqqpKJSUl+uEPf6j33ntPzc3N\nOuOMMzR79mx5vV5dcsklKi4u1tatW3X//feruLhYjz32mEpLS9XY2KivfvWruuuuu7R7927ddNNN\nuuiii/Thhx+qpqZG06dP11VXXaWmpiY99dRTWr16tVwul4YNG6a5c+cqJSVFzz77rP785z8rEomo\nX79+mjt3rnr16qU///nPevbZZ+VwOORyufTQQw/pvPPOO6K/ysrKdOutt2r//v3q16+f5s2bp8LC\nQvn9fs2fP18ff/yxGhsbNXr0aD300EN65ZVXYt+NTz/9VL/5zW/01ltvSZJuvfVW5efn68knn1Q4\nHNbYsWP1xhtvqKysTPPnz1d1dbWam5s1ZcoUfeMb35Ak/fWvf9Wzzz6rxsZGpaWlacaMGRo2bJiW\nLFmiPXv2qKysTHv27FFeXp5+9KMfqVevXoe1v7y8XA8//LAqKipUVlamfv36adGiRcrPz9f27dv1\n8MMPq7KyUk6nU1OnTpXH49Ff//pXrV27VmlpaaqsrFRVVVVsZHXJkiWxnz/44AM99dRTCofDKisr\n0wUXXKDHH3+8zd+15557Tn/5y18UCoXU0NCgGTNm6PLLL2/zet5//33NmzdPDodDZ511liKRSKuv\nfckll+iyyy7T+++/L7/fr5tvvlklJSV69913NX/+fGVkZKi+vl6vvvqq3nnnnVb7NRAI6Hvf+562\nbNmiE044QS6XSyNGjIi9/jPPPKOzzjpLr776ql544QU5nU7l5uZqwYIFsX8M3XjjjfrZz36mG264\nIXb8K6+8omXLlsnpdKqgoEBz5szRwIEDNXPmTHm9Xm3dulVffPGFBg0apIULFyozM7PNfgQkSQZI\nMp9//rk555xzjnj8448/NmeffbYxxpgZM2aYX/ziF2bv3r1m+PDhJhQKGWOMef75580bb7xhjDHm\n3//9383//M//xI6/8cYbY68VPd8YY4qKisxPf/pTY4wxW7duNSNHjjQVFRVm5cqV5o477oidc+jP\nh/7/v/3tb+arX/2qMcaYhx56yMybN89EIhETCoXMLbfcEnvtoqIis2zZMmOMMZs2bTJnnnmmCQaD\nh11jZWWlGT16tPnggw9i1zxy5Eiza9euo/aLMcZ85zvfMT/60Y+MMcbs2LHDnHPOOWblypWx962o\nqDji/EP7Z8mSJeYHP/iBiUQixhhjnn76aTN37lxjjDHjx483P/7xj2PnTZkyxaxatcoYY0wwGDRT\npkwxr7/+uvn8889NUVGR+etf/2qMMeZ///d/zcUXX2yMMeZXv/qVueGGG0xDQ4Npbm429913n/nt\nb39rfvvb35pp06aZxsZGY4wxy5cvN7fddpsxxphLL73U/OMf/zDGGPP222+bJUuWHHHdK1euNOec\nc47ZsWNHrN333XefMcaYmTNnmv/6r/8yxhjT1NRkHnjgAfOzn/3siGu/5JJLzNatW01DQ4MZP368\nGTdunDHGmNWrV5vbbrvNNDY2mquuusps3rzZGGNMbW2tufLKK80//vEPs337dnP11VebysrK2Oc1\nZswYU1dXZxYvXmwuvfRS4/f7jTHG3HnnneaZZ5454hp++ctfxr4jkUjE3Hbbbeb55583xhgzceJE\n8+KLLxpjjNm7d2/s9Q79/i5evNg8+uijsdc79Ofp06ebv/3tb8YYYwKBgBk1apTZtGnTUb9Lu3fv\nNlOmTDENDQ3GGGP++Mc/mquvvjr2uq1dTygUMhdccIFZt26dMcaYP/zhD6aoqMh8/vnnR7z++PHj\nzZw5c0wkEjGlpaVm1KhRZsuWLeZvf/ubGTJkiNm9e7cxxrTZr/PnzzcPPfSQiUQipqKiwowbN84s\nXrw49vobN240//rXv8yoUaPM3r17jTHGvPDCC2bOnDnGmIO/D4cev27dOnPZZZfFHl+5cqW58sor\nTSQSMTNmzDD/9m//ZkKhkAmHw2bixInm1VdfPeLagNYwkoUuw+FwKC0t7bDHevXqpSFDhui6667T\nuHHjNG7cOI0ePbrV86P/2m3N5MmTJUlFRUU65ZRT9I9//KNTbVyzZo1efvllORwOpaSk6Fvf+pZ+\n9atf6Y477pAkXXrppZKkoUOHKhwOq76+XqmpqbHzN27cqAEDBujss8+WJA0ePFjDhw/X3//+d40a\nNeqo77tu3TrNmDFDknTSSSe1eWxrVq9eLb/fr3Xr1kmSGhsblZ+fH3v+3HPPlSTV19frvffeU01N\njZ555pnYY1u2bFFxcbE8Ho8uuugiSdIZZ5yh6urqWPuuvfba2Oe3aNEiSS3Ttps2bdLXv/51SVIk\nElFDQ4Mk6atf/ar+4z/+QxdddJHGjBmj22+/vdW2X3DBBTrppJMkSd/4xjdiI0yrV6/Wpk2b9Oqr\nr0qSgsFgq+dffvnlWrNmjYqKijRq1Cht3bpVn3zyiVatWqUrrrhCO3bs0K5duzRr1qzYOcFgUP/8\n5z9ljNH+/fsPG5F0OBzatWuXJGnkyJHyer2x/qipqTni/W+88Ua9//77euGFF7Rjxw598sknOvvs\ns1VdXa0tW7bom9/8piSpT58+HV5H9oMf/EBr1qzRc889p88++0zBYFD19fXKyclp9fh+/fppwYIF\n+sMf/qCdO3fqww8/VF1dXez51q7n448/ltvtjv3eXX311bFRtdaUlJTI4XCod+/eGjt2rNauXauh\nQ4eqT58+6tevnyTFRntb69f169dr1qxZcjgcysvL0+WXX37Ee6xfv14XXnih+vTpI0mtjhgf6u23\n39ZVV12lvLw8SdL111+v+fPnx9aVjR07VikpKZJa/ka09jkCrSFkocvYtGmTioqKDnvM6XTqxRdf\n1KZNm7R+/Xo9/vjjGjVqlGbPnn3E+RkZGUd9bafz4D0gxhi53W45HA6ZQ7b2bGxsbLeNX54miUQi\nampqiv0cDVQOhyP2Xm2dHz3m0NdozZfb6nZ37Fc7Eolo1qxZsYBUV1enUCgUez7ad5FIRMYYLV++\nXOnp6ZKkyspKpaamqqqqSh6PJ9aX0WtsrT3l5eWKRCKKRCK67bbbVFJSIkkKh8Ox/4BNnz5d3/jG\nN/TOO+/otdde089+9jO99tprh31Wkg5bnxb97KJtfeaZZ3TKKadIkmpraw9rU9Tll1+uRYsWaf/+\n/RozZozy8/P1zjvvaM2aNZo2bZrKysqUlZV12BrB8vJy+Xw+rVixQqNHj46FRkkqLS3VCSecoDfe\neOOwfxR8+TOKeuqpp7Rx40Z9/etf16hRo9TU1HTYdRza5s8++0x9+/Y97Py2vqc33HCDhgwZorFj\nx+rKK6/Uhx9+2Goboj766CN95zvf0U033aQxY8bovPPO06OPPhp7vrXrae262vr+HfpcJBKJfZ6H\n/n5GIpGj9qt0+O9Na+sTXS7XYf0WDAa1Z8+e2Hfhy1rrk0N/747lcwRaw92F6BK2b9+upUuX6pZb\nbjns8S1btujqq6/WKaecojvvvFM33XSTtm7dKqnlD2174STqt7/9raSW/8js3LlTZ599tvLy8vTJ\nJ58oFAqpqalJb775Zuz4o732hRdeqF//+tcyxigcDmvFihW64IILjvk6zz77bG3fvl0bN26UJH3y\nySd67733NHLkyDbPGzt2rF555RVJLQvc33333WN+z0PbHQ6HFYlENGfOHC1cuPCI47xer8455xy9\n8MILklqCy+TJk7Vq1ao2X3/06NH64x//GHv9Rx55RK+//rouvPBCvfrqqwoEApJa7vp86KGH1NTU\npEsuuUT19fWaPHmy5s6dq23btrXa5++++6727t0rSXr55Zc1bty42DX98pe/jH0WU6dOjd2Veejn\nN2zYMO3atUurV6/WBRdcoDFjxuhXv/qVTj75ZOXl5WngwIFKTU2NhazS0lJdffXV2rx5s84//3yt\nXbtW27ZtkyS99dZb+trXvnZYQG3PO++8oxtvvFETJ05Ufn6+1q1bp+bmZnm9Xg0dOjR2F2xpaakm\nT54sv99/WPtzc3P10UcfyRij+vp6vfPOO5Kkmpoabd68WQ888ICuuOIK7du3T7t27TrqeilJeu+9\n93TmmWfq5ptv1siRI7Vq1So1Nze32f6ioiIZY2Lr2latWtXmSE/0evbu3au1a9fGPq9DtdWvY8eO\n1auvvqpIJKKamppWv3ujRo3S+vXrtX//fknS8uXL9dRTT0lq/Xf3wgsv1J/+9KfYXYcrV65UTk5O\nbIQU6CxGspCUgsFg7K43p9Op1NRU3X///br44osPO27IkCG68sor9fWvf10ZGRlKS0uLjWKNHz9e\nCxYsOKYRqM8//1wTJ06Uw+HQwoULlZOTE/uX/JVXXqnCwsLYVJLU8h/mRYsW6e6779a3v/3t2OvM\nnj1b3//+93XNNdeosbFRY8eO1V133XXM152Xl6dnnnlG8+bNUzAYlMPh0BNPPKGBAwe2eUv83Llz\n9d3vfldXXnmlevfurSFDhhzze0rSd77zHS1YsEDXXXedmpubdfrpp2vmzJmtHvvDH/5Q8+bN0zXX\nXKNwOKyrr75aX/va19ps37e+9S3t2bNH119/vYwxGjlypKZMmSKn06l9+/Zp0qRJcjgc6tOnj37w\ngx/I7XZr1qxZeuCBB2Kjio8//nhsyuZQRUVFmjVrlsrLyzVo0CA99thjkqTvfe97mj9/fuyzuOCC\nC3TbbbdJOvy7cd111+miiy7Spk2blJeXpxEjRqimpkZXXHGFJCklJUVLly7V/Pnz9Ytf/EJNTU26\n7777YtPPjz32mO6///7Y6NOzzz7b5qjpl91999168skntXTpUrlcLg0fPjw23fj000/r0Ucf1bJl\ny+RwODR//nwVFhZq3LhxmjdvnqSW6be3335bV1xxhXr16qVhw4bJGKPs7Gzdcccduu6665STk6Pc\n3FwNHz5cO3fu1IknnthqW66++mr9+c9/1lVXXSWPx6PRo0erpqYmFoJb4/F49JOf/ESPPPKIFi5c\nqNNPP/2wqeYv2717t66//noFg0HNnj1bgwYNUllZ2WHHDB48+Kj9es8992ju3Lm68sorlZeXd8To\nttRys8eDDz4Y+7wLCwtjC/4vv/xylZSUaOnSpbHjx4wZo5tuukk33nijIpGI8vLy9NOf/vSIUVOg\noxyGcU8AQAIcevcf0BMQ0wEAACzASBYAAIAFGMkCAACwACELAADAAoQsAAAACyRlCYeyMr/dTTgm\nubkZqqqqt7sZPQ79bh/63j70vT3od/t0pb4vLPS1+jgjWcfB7T6y0jCsR7/bh763D31vD/rdPt2h\n7wlZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAW\nIGQBAABYoN29C5ubmzV79mxt375dDodDjz76qFJTUzVz5kw5HA4NHjxYc+fOldPp1IoVK7R8+XK5\n3W5NnTpV48ePVzAY1IMPPqiKigplZmZqwYIFysvLS8S1AQAA2Kbdkaw333xTkrR8+XJNmzZNP/rR\nj/TEE09o2rRpeumll2SM0apVq1RWVqZly5Zp+fLlev7557Vw4UKFw2G9/PLLKioq0ksvvaSJEydq\n6dKlll8UAACA3dodybrssst08cUXS5L27t2rrKwsrVu3TiNHjpQkjRs3TmvXrpXT6dSwYcOUkpKi\nlJQUDRgwQFu2bNGGDRt02223xY4lZAEAgJ7gmNZkud1uzZgxQ/PmzdM111wjY4wcDockKTMzU36/\nX4FAQD6fL3ZOZmamAoHAYY9HjwUAAOju2h3JilqwYIEeeOABTZo0SaFQKPZ4XV2dsrKy5PV6VVdX\nd9jjPp/vsMejx7YnNzdDbrerI9dhm8JCX/sHIe7od/vQ9/ah7+1Bv9unq/d9uyHrd7/7nfbt26c7\n77xT6enpcjgcOvPMM/Xuu+9q1KhRWrNmjc4//3wVFxdr0aJFCoVCCofD2rZtm4qKijR8+HC99dZb\nKi4u1po1azRixIh2G1VVVR+Xi7NaYaFPZWWMzCUa/W4f+t4+9L096Hf7dKW+P1oYdBhjTFsn1tfX\n67vf/a7Ky8vV1NSk22+/XaeccormzJmjxsZGDRo0SN///vflcrm0YsUKvfLKKzLG6M4779SECRPU\n0NCgGTNmqKysTB6PR08//bQKCwvbbGxX6tSu0tbuhH63D31vH/reHvS7fbpS33c6ZNmhK3VqV2lr\nd0K/24e+tw99bw/63T5dqe+PFrIoRgoAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACA\nBY654jsAIH5Wf7CnQ8f7vGnyB4JHPH7xOf3i1SQAccZIFgAAgAUIWQAAABYgZAEAAFiAkAUAAGAB\nQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUI\nWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBk\nAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAF\nAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYA\nAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAA\nWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABg\nAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAXcbT3Z2NioWbNmac+ePQqHw5o6dar69Omj\nO++8UyeffLIkafLkybrqqqu0YsUKLV++XG63W1OnTtX48eMVDAb14IMPqqKiQpmZmVqwYIHy8vIS\ncV0AAAC2ajNk/f73v1dOTo6eeuopVVdXa+LEibr77rt1880365ZbbokdV1ZWpmXLlmnlypUKhUIq\nKSnRmDFj9PLLL6uoqEj33HOPXn/9dS1dulSzZ8+2/KIAAADs1uZ04Ve+8hXdd999kiRjjFwulzZv\n3qzVq1frhhtu0KxZsxQIBLRx40YNGzZMKSkp8vl8GjBggLZs2aINGzZo7NixkqRx48Zp/fr11l8R\nAABAEmhzJCszM1OSFAgEdO+992ratGkKh8P65je/qTPPPFPPPvusfvKTn2jIkCHy+XyHnRcIBBQI\nBGKPZ2Zmyu/3W3gpAAAAyaPNkCVJpaWluvvuu1VSUqJrrrlGtbW1ysrKkiRdfvnlmjdvns4991zV\n1dXFzqmrq5PP55PX6409XldXFzuvPbm5GXK7XZ25noQrLPS1fxDijn63D30fHz5vWlzO4fOwHn1s\nn67e922GrPLyct1yyy16+OGHNXr0aEnSrbfeqjlz5qi4uFjr16/X0KFDVVxcrEWLFikUCikcDmvb\ntm0qKirS8OHD9dZbb6m4uFhr1qzRiBEjjqlRVVX1x39lCVBY6FNZGaNziUa/24e+jx9/INih433e\ntFbP4fOwFt95+3Slvj9aGGwzZD333HOqra3V0qVLtXTpUknSzJkz9fjjj8vj8aigoEDz5s2T1+vV\nlClTVFJSImOMpk+frtTUVE2ePFkzZszQ5MmT5fF49PTTT8f/ygAAAJKQwxhj7G7El3Wl5NpV2tqd\n0O/2oe/jZ/UHezp0/NFGsi4+p1+8moRW8J23T1fq+6ONZFGMFAAAwAKELAAAAAsQsgAAACxAyAIA\nALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAA\nwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAA\nCxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAs\nQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAA\nIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKE\nLAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAEhiDaEm\nGWPsbgaATiBkAUCSKq9p0KtvbtO7/9xH0AK6IEIWACSprTurZSR9/HmNPvyk3O7mAOggQhYAJKFQ\nY7N2fOFXZppb6akurdu4V7v3B+xuFoAOIGQBQBLavrdWzRGj0wbkaPzwfnI6HXr7w1JV+UN2Nw3A\nMSJkAUCSMcbo48+r5XRIp/TLVkF2ui49b4AamyP664bdagg12d1EAMeAkAUASaa8JqjqQFgn9vIp\nPdUtSRp8Yo6KT8lXXbBJW3ZW2dxCAMeCkAUASebjz6slSYP7Zx/2+Bkn50qSymqCCW8TgI4jZAFA\nEgk3NmtHqV/edI/65Gcc9lyKx6WszBRV1AQp6QB0AYQsAEgin5W2LHgffGK2HA7HEc8XZKepsSmi\n2rqwDa0D0BGELABIEsYYffJ5jRwO6dR+2a0ek5+dJqll3RaA5EbIAoAkUeUPqcof0okneGML3r+s\ngJAFdBmELABIEhW1LcGpX0HmUY/J86XK6ZAqCFlA0iNkAUCSqPa3rLPK8aUe9RiXy6lcX6oqa0Nq\njrD4HUhmhCwASBLRau453qOHLEnKz05XxBiqvwNJjpAFAEmiOhCSN90jj7vtP80H12U1JKJZADqJ\nkAUASaAh1KRguLnNqcKoaMhiXRaQ3AhZAJAEolN/ud6Udo/N8qbI7XJwhyGQ5AhZAJAEqgMH1mMd\nw0iW0+FQfnaaagJhNosGkhghCwCSQGwk6xhClnRwynDnF37L2gTg+BCyACAJVAfCcjocyspof7pQ\nkgqy0yVJ20trrWwWgONAyAIAmxljVBMIKdubIqfzyP0KWxPdXuczQhaQtAhZAGAzf32jmprNMU8V\nSlJmmltpKS7tIGQBSav1zbEOaGxs1KxZs7Rnzx6Fw2FNnTpVp556qmbOnCmHw6HBgwdr7ty5cjqd\nWrFihZYvXy63262pU6dq/PjxCgaDevDBB1VRUaHMzEwtWLBAeXl5ibo2AOgSYovej+HOwiiHw6GC\n7DTtLqs7MAp27AENQGK0OZL1+9//Xjk5OXrppZf0i1/8QvPmzdMTTzyhadOm6aWXXpIxRqtWrVJZ\nWZmWLVum5cuX6/nnn9fChQsVDof18ssvq6ioSC+99JImTpyopUuXJuq6AKDL6Oii96jolOH2Uha/\nA8mozZD1la98Rffdd5+kljUDLpdLH330kUaOHClJGjdunNatW6eNGzdq2LBhSklJkc/n04ABA7Rl\nyxZt2LBBY8eOjR27fv16iy8HALqeav+xl284VOwOw32ELCAZtRmyMjMz5fV6FQgEdO+992ratGky\nxsjhcMSe9/v9CgQC8vl8h50XCAQOezx6LADgcFWBsDxupzJS21zBcYSszJbpxbJqttcBklG7v9Gl\npaW6++67VVJSomuuuUZPPfVU7Lm6ujplZWXJ6/Wqrq7usMd9Pt9hj0ePPRa5uRlyu10dvRZbFBb6\n2j8IcUe/24e+jw+ft2UUqqk5In9dWL3zM5XlSz+mc6IyMlLldEjVdWE+FwvRt/bp6n3fZsgqLy/X\nLbfcooeMB80RAAAgAElEQVQfflijR4+WJJ1xxhl69913NWrUKK1Zs0bnn3++iouLtWjRIoVCIYXD\nYW3btk1FRUUaPny43nrrLRUXF2vNmjUaMWLEMTWqqqr++K8sAQoLfSorY3Qu0eh3+9D38eMPtGyJ\nU1ETlJHky/DEHmuNz5vW6vN5WWnaWxbgc7EI33n7dKW+P1oYbDNkPffcc6qtrdXSpUtji9a/973v\n6fvf/74WLlyoQYMGacKECXK5XJoyZYpKSkpkjNH06dOVmpqqyZMna8aMGZo8ebI8Ho+efvrp+F8Z\nAHRh0TsLc33HfmfhoQqy07RlV7Uam5rl6SIzAEBP4TDGGLsb8WVdKbl2lbZ2J/S7fej7+Fn9wR5J\n0vtb9uufO6o0YdSJ6pWbcdTjjzaStX1vrd7eWKr5t49Sn/xMy9rbU/Gdt09X6vujjWRRjBQAbBQr\n39DJOleFOS3ruFj8DiQfQhYA2Kg6EFJGmlspns5N9RXktCyGL6s++nouAPYgZAGATYLhZjWEmjtc\nhPRQjGQByYuQBQA2qYltp0PIArojQhYA2CTQ0CippXxDZ/nSPUr1uFRew3QhkGwIWQBgk2jI8qZ3\nPmQ5HA4V5qSprLpBSXizONCjEbIAwCbxCFlSy5RhMNysumBTPJoFIE4IWQBgk2jIykzv2J6FX1aQ\nzbosIBkRsgDAJoH6RmWkuuVyHt+f4sJYGQdCFpBMCFkAYINIxKg+1KTM45wqlLjDEEhWhCwAsEFd\nsFHGHN+dhVEFsZDFHYZAMiFkAYAN6hpaFqnHYySrIJvpQiAZEbIAwAb+ON1ZKEmpHpeyvSkqryFk\nAcmEkAUANqiLhazju7MwqjA7XRU1ITVHInF5PQDHj5AFADaIV42sqMKcNEWMUWVtKC6vB+D4EbIA\nwAaBhkY5JGWmxStktSx+L2ddFpA0CFkAYINAfaMy0txyOh1xeb1YQVL2MASSBiELABKssSmi+lBT\n3KYKJQqSAsmIkAUACVbpbxltim/IoiApkGwIWQCQYOUHioZ641CINCrHlyq3y0FBUiCJELIAIMGi\n9aziOZLldDiUn51OrSwgiRCyACDBymviP10otazL8tc3qiHUFNfXBdA5hCwASLBoyIrHljqHKjxw\nh2E5dxgCSYGQBQAJVl7dIIdDykiLT7X3KGplAcmFkAUACVZeE1RmmkdOR3xqZEVFyzjsJ2QBSYGQ\nBQAJFG5sVk1dOK53FkblZbWELLbWAZIDIQsAEqii1ppF75KU50uVJFUFCFlAMiBkAUACRetYWRGy\nfJkpcjkdqvYTsoBkQMgCgASqsKBGVpTT4VCON0VVfu4uBJIBIQsAEqgsViMrvncWRuX4UlUdCCti\njCWvD+DYEbIAIIEOFiJNseT1c72pao4Y+evClrw+gGNHyAKABCqvbpDb5VR6qsuS18/1tdxhyOJ3\nwH6ELABIoPKaoPKz0+SIc42sqNzoHYaUcQBsR8gCgAQJhpsUaGhUQXaaZe+RSxkHIGkQsgAgQaLr\nsQoTEbIo4wDYjpAFAAlSeaAQabQyuxUIWUDyIGQBQIJEt7vJy0q17D1yvIQsIFkQsgAgQSoPBJ88\nn3UjWR63U950DyELSAKELABIkKoD04W5Fo5kSS17GFb5QzIUJAVsRcgCgAQ5OJJlbcjK8aUq1Nis\nhlCzpe8DoG2ELABIkEp/SL4MjzxuawqRRuVRxgFICoQsAEgAY4yqaoOxu/+slBO7w5CNogE7EbIA\nIAHqgk0KN0UsXfQeRRkHIDkQsgAgASoTtOhdOhiyqglZgK0IWQCQAFUJWvQuSbnUygKSAiELABIg\ndmehhdXeo3IPTEkSsgB7EbIAIAFiW+okYCQrPdWlVI+LkAXYjJAFAAkQDTy5CRjJcjgcyvWlUsIB\nsBkhCwASILbw3Wv9SJbUsvjdX9+oxqZIQt4PwJEIWQCQAFX+kLIyPPK4E/NnN3aHIaNZgG0IWQBg\nMWOMKv2hhEwVRlErC7AfIQsALBZoaJm2S8Si96gcyjgAtiNkAYDFDtbIStxIVh4jWYDtCFkAYLHK\n2uidhQkcySJkAbYjZAGAxaIbNSdyujA2ksXCd8A2hCwAsFgiq71H+TJT5HI6YgEPQOIRsgDAYrEa\nWQkcyXI6HMrxprBJNGAjQhYAWCxW7T2BIUtqWZdVHQgrYkxC3xdAC0IWAFissjakrMwUuV2J/ZOb\n601Vc8TIXxdO6PsCaEHIAgALRQuRJnLRe1TugZIRlUwZArYgZAGAhfwNjWpqjiR00XtUbGsdQhZg\nC0IWAFioqtae9ViHvidlHAB7ELIAwEKV0RpZCSxEGsX+hYC9CFkAYKFKG0eycrwpkqRqRrIAWxCy\nAMBCduxbGJV9YJPo6gB3FwJ2IGQBgIXsnC5M9biUkepmJAuwCSELACxUWRuSQ1KON/EhSzpQkJQ1\nWYAtCFkAYKEqf1BZ3sQXIo3K8aaoLtikxqZmW94f6MkIWQBgkYgxqrKpEGlUDuuyANsQsgDAIoH6\nRjU1G1sWvUcdDFlMGQKJ5ra7AQDQXUUXvedauOh99Qd72ny+rKZBkrR28xfaU17X6jEXn9Mv7u0C\nwEgWAFgmWiPLzpGsjNSWf0s3BJtsawPQUxGyAMAisRpZNpRviIqGrPoQIQtINEIWAFiksvbAdKGN\nC9/T0w6MZBGygIQjZAGAReys9h6VnuqSJNUzXQgkHCELACxSWRuUwyFlH9hD0A4up1OpHhcjWYAN\nCFkAYJFKf0jZmfYVIo3KSHOzJguwASELACwQK0SaZd9UYVR6qluNTRE1NkXsbgrQoxCyAMAC/rqw\nmiPG1kXvUbEyDoxmAQlFyAIAC1QmwaL3qOgdhkwZAol1TCHrww8/1JQpUyRJ//znPzV27FhNmTJF\nU6ZM0Z/+9CdJ0ooVK3T99ddr0qRJevPNNyVJwWBQ99xzj0pKSnT77bersrLSossAgOQSK0RqY42s\nqIwDdxhSkBRIrHa31fn5z3+u3//+90pPT5ckffTRR7r55pt1yy23xI4pKyvTsmXLtHLlSoVCIZWU\nlGjMmDF6+eWXVVRUpHvuuUevv/66li5dqtmzZ1t3NQCQJGJb6iTBdGE6BUkBW7Q7kjVgwAAtWbIk\n9vPmzZu1evVq3XDDDZo1a5YCgYA2btyoYcOGKSUlRT6fTwMGDNCWLVu0YcMGjR07VpI0btw4rV+/\n3rorAYAkcrDau/3ThazJAuzRbsiaMGGC3O6DA17FxcV66KGH9Otf/1onnniifvKTnygQCMjn88WO\nyczMVCAQOOzxzMxM+f1+Cy4BAJJPtNp7XjKMZEXXZDFdCCRUu9OFX3b55ZcrKysr9v/nzZunc889\nV3V1B3d3r6urk8/nk9frjT1eV1cXO689ubkZcrtdHW2aLQoLfe0fhLij3+1D3x+bQLBJTod06sn5\ncrVSJ8vn7fgIV2fOkaSMjJagF26KtPoafKZto3/s09X7vsMh69Zbb9WcOXNUXFys9evXa+jQoSou\nLtaiRYsUCoUUDoe1bds2FRUVafjw4XrrrbdUXFysNWvWaMSIEcf0HlVV9R2+EDsUFvpUVsboXKLR\n7/ah74/dvop6ZXtTVVlZ1+rz/kCwQ6/n86Z1+JxDpaW45K8Pt/oafKZHx3fePl2p748WBjscsh55\n5BHNmzdPHo9HBQUFmjdvnrxer6ZMmaKSkhIZYzR9+nSlpqZq8uTJmjFjhiZPniyPx6Onn376uC8E\nAJJdJGJUHQjp5N7J86/wjDS3auvCMsbI4XDY3RygRzimkNW/f3+tWLFCkjR06FAtX778iGMmTZqk\nSZMmHfZYenq6Fi9eHIdmAkDXUVt/oBBpEix6j0pPdauyNqTGpohSPF1jOQbQ1VGMFADiLFYjKwkW\nvUdlUMYBSDhCFgDEWZU/ee4sjEqnjAOQcIQsAIizg9Xek2e6MIMyDkDCEbIAIM6Sqdp7FAVJgcQj\nZAFAnCVTtfcottYBEo+QBQBxVlkbktPhUHZmit1NiYlOF7JJNJA4hCwAiLMqf1A5vhQ5nclTjyo1\nxSWHg5EsIJEIWQAQR5GIUZU/nFTrsSTJ6XAoPcWthlCz3U0BegxCFgDEUU1dWBFjlOdLnvVYUelp\nbtWHmmSMsbspQI9AyAKAOIreWZiXlVwjWVLLHYaRiFG4MWJ3U4AegZAFAHFUdaBGVm4yjmRxhyGQ\nUIQsAIijSn/ybakTFbvDkJAFJAQhCwDiqLL2QCHSJJwujI1kUcYBSAhCFgDEUawQaRJOF7JJNJBY\nhCwAiKNKf1AuZ3IVIo1i/0IgsQhZABBHlbUh5XiTqxBpFCNZQGIRsgAgTpojEdUEwspNoj0LD5Xi\nccrldKg+2Gh3U4AegZAFAHFSE4gWIk2+Re+S5HA4lJHmZroQSBBCFgDESWUSL3qPykh1KxhuVnOE\nqu+A1QhZABAnFTUt5Rvys5M4ZFErC0gYQhYAxEm0RlYybqkTlZHmkcQdhkAiELIAIE7KD4Ss/CRd\n+C4dcochi98ByxGyACBOotOFBV1gupAyDoD1CFkAECcVtUGlp7piU3LJiIKkQOIQsgAgTiprg8pL\n4qlCiZAFJBIhCwDioD7YqIZQc1Kvx5Kk9BS3HGK6EEgEQhYAxEF5FyjfIElOp0NpqRQkBRKBkAUA\ncVBx4M7CgiQfyZIUq/puDAVJASsRsgAgDiprD1R77wIhKzPNrYgxCjU2290UoFsjZAFAHHSFau9R\n6aksfgcSgZAFAHHQFQqRRnGHIZAYhCwAiIOKmqBcToeyvSl2N6VdmYQsICEIWQAQBy01slLldDjs\nbkq7MlJbiqXWUcYBsBQhCwCOU2NTs2rqwl1iqlA6dLqQ/QsBKxGyAOA4Re8s7AqL3iXWZAGJQsgC\ngOPUlRa9S5Lb5VSK20nVd8BihCwAOE6VNV0rZEkHC5ICsA4hCwCOU7Tae1eZLpRaQlZjU0SNTRG7\nmwJ0W4QsADhOXakQaVT0DkNGswDrELIA4DhFR7LyfF0oZEUXv4e4wxCwCiELAI5TRW1Q2d4Uedxd\n508qdxgC1us6fxEAIAlFjFFlbahLLXqXCFlAIhCyAOA41ATCao6YrheyoptEU8YBsAwhCwCOQ1dc\n9C4xkgUkAiELAI5DRRcrRBqV6nHJ6XQQsgALEbIA4Dh01ZDlcDiUkerm7kLAQoQsADgOXXW6UGqZ\nMmwINaupmYKkgBUIWQBwHLrqSJZ0cF1WbV3Y5pYA3RMhCwCOQ0VtUOmp7lhg6UqidxhW+UM2twTo\nnghZANBJxhhV1ASVn5Vqd1M6JRoMCVmANQhZANBJ9aEmBcPNXXKqUJIy01r2LyRkAdYgZAFAJ3Xl\nRe/SwZGs6LoyAPFFyAKATiqrbpAkFWSn29ySzvGmt4xkEbIAaxCyAKCT9h8IWSfkds2QlZbiksvp\nUHkNIQuwAiELADqprOpAyMrpmiHL4XAoM90Tm/YEEF+ELADopOhIVmEXDVmSlJnmVqChUaFws91N\nAbodQhYAdNL+qgZlZ6YoNcVld1M6Lbouq5x1WUDcEbIAoBOamiOqrA2psIuux4qKLX6vabC5JUD3\n0/VKFAOAjVZ/sEeS5K8PK2KMIhETe6wryoyFLEaygHhjJAsAOsFf3yhJ8mV4bG7J8fGmt/xbmzsM\ngfgjZAFAJ/jrWzZV7uohK5NaWYBlCFkA0Amxkaz0FJtbcnzSU93UygIsQsgCgE6IhixvFx/Jcjoc\nystKZU0WYAFCFgB0gr8+LLfLobQuXL4hqiA7XTV1YTU2USsLiCdCFgB0kDFGgYZG+TJS5HA47G7O\nccvPatnguqI2ZHNLgO6FkAUAHRQMN6up2XT5Re9RBdkHQhZThkBcEbIAoIO6y52FUfkHQlY5BUmB\nuCJkAUAHdZc7C6MOThcykgXEEyELADqou9xZGFUQG8kiZAHxRMgCgA4KNHSPau9ROb5UORysyQLi\njZAFAB3krw/L4ZAy07pHyHK7nMrzpTKSBcQZIQsAOshf3yhvukdOZ9cv3xCVn5Wm6kBITc0Ru5sC\ndBuELADogMamiILhZnnTu8coVlR+drqMkSr91MoC4oWQBQAdcLB8Q/e4szAqn1pZQNwRsgCgA2Ll\nG7rJoveoAmplAXFHyAKADvB3szsLoxjJAuKPkAUAHRDoptOFBVmELCDeCFkA0AGxQqTdbOF7HlXf\ngbgjZAFAB/jrG5WW4pLH3b3+fHrcTmV7U6iVBcRR9/orAQAWamqOqC7Y2O3WY0UVZKepyh9SJGLs\nbgrQLRxTyPrwww81ZcoUSdLOnTs1efJklZSUaO7cuYpEWgrXrVixQtdff70mTZqkN998U5IUDAZ1\nzz33qKSkRLfffrsqKystugwAsF5lbVDGdL/1WFH5WWlqjhhVB6iVBcRDuyHr5z//uWbPnq1QqOWX\n7oknntC0adP00ksvyRijVatWqaysTMuWLdPy5cv1/PPPa+HChQqHw3r55ZdVVFSkl156SRMnTtTS\npUstvyAAsMoXlS3lDbK67UhWuiQ2igbipd2QNWDAAC1ZsiT280cffaSRI0dKksaNG6d169Zp48aN\nGjZsmFJSUuTz+TRgwABt2bJFGzZs0NixY2PHrl+/3qLLAADrlVbUSZKyvak2t8QalHEA4qvdkDVh\nwgS53e7Yz8YYORwt+3VlZmbK7/crEAjI5/PFjsnMzFQgEDjs8eixANBVxUJWZvecLowWJC2rpiAp\nEA/u9g85nNN5MJfV1dUpKytLXq9XdXV1hz3u8/kOezx67LHIzc2Q2+3qaNNsUVjoa/8gxB39bp+e\n3PdlNSE5HFLfE3xyuRJ/35DPm2bJ60Y/0zMO/H2vqmvs0Z/zl9EX9unqfd/hkHXGGWfo3Xff1ahR\no7RmzRqdf/75Ki4u1qJFixQKhRQOh7Vt2zYVFRVp+PDheuutt1RcXKw1a9ZoxIgRx/QeVVX1Hb4Q\nOxQW+lRWxuhcotHv9unJfW+M0a4vauVN96i+IZzw9/d50+QPWDONF/1MHREjt8upHaU1PfZz/rKe\n/J23W1fq+6OFwQ6HrBkzZmjOnDlauHChBg0apAkTJsjlcmnKlCkqKSmRMUbTp09XamqqJk+erBkz\nZmjy5MnyeDx6+umnj/tCAMAO/vpG1QWb1P8Er91NsYzT6VCvvHR9UVl/2NIQAJ1zTCGrf//+WrFi\nhSRp4MCBevHFF484ZtKkSZo0adJhj6Wnp2vx4sVxaCYA2Ku7r8eK6p2XoT1ldaoOhJXr654L/IFE\noRgpAByDvRUtyxhyvN07ZPXJz5AkfVFR186RANpDyAKAY1Ba3nNGsiTpi8qusTYWSGaELAA4BqUH\nQkdWNx/J6p2XKeng9QLoPEIWAByD0oo65fpSldJFyst0Vmwkq4KQBRwvQhYAtCMYblJlbSgWQLqz\njDS3sjNTmC4E4oCQBQDtKD0wqtM3P9PmliRG77wMVdQEFW5strspQJdGyAKAdkTLN/Qp6P4jWZLU\nOz9DRtL+KrbXAY4HIQsA2hEdyerTQ0ay+hyYFmXxO3B8CFkA0I69B8o39M3vOSNZErWygONFyAKA\ndpRW1Csj1a2sbl4jK4paWUB8ELIAoA1NzRHtr2pQn4KMHrOXX0F2utwuR2yaFEDnELIAoA37qxoU\nMabHrMeSDmwUnZsR2ygaQOcQsgCgDbE7C3vIeqyo3nkZCoabVVMXtrspQJdFyAKANuztYXcWRh1c\n/M6UIdBZhCwAaEN0JKun3FkY1ZsyDsBxI2QBQBtKy+vldjlVkJ1ud1MSipEs4PgRsgDgKCLGqLSy\nTr3zMuR09ow7C6P6UMYBOG6ELAA4israoMKNEfXtIdvpHCojzaOsDI++qKQgKdBZhCwAOIrdZQfW\nYxX0rEXvUb3zM1VeHVRjExtFA51ByAKAo9i1zy9JGtDLZ3NL7NE7r2Wj6H1sFA10itvuBgBAstq1\nLyBJGnCC1+aW2CO2vU5FvfoXJq4PVn+wJy6vc/E5/eLyOkBnMZIFAEexa59f3nSPcn2pdjfFFtG1\naHvKWZcFdAYhCwBaUR9sVHlNUCf18vaYPQu/7KQD06Q7SmttbgnQNRGyAKAVsanCHroeS5KyvanK\nz0rV9tJa9jAEOoGQBQCt6OmL3qMG9slSbX2jKmqDdjcF6HIIWQDQip2xkayeueg9amDfLEnS9lK/\nzS0Buh5CFgC0Ytd+v1I8TvXK7XmFSA81sHc0ZLEuC+goQhYAfEljU7NKy+t14gneHredzped1Nsn\nh6TtewlZQEcRsgDgS3aX1SliTI9fjyVJ6alu9S3I1I4v/IpEWPwOdAQhCwC+JLro/SRClqSWxe+h\nxmbtraBeFtARhCwA+JJo+YYTe2il9y+LLX5nyhDoEEIWAHzJrn1+OR0O9S/smRtDf9mgPix+BzqD\nkAUAh4hEjD4vC6hvQYY8bpfdzUkK/Qoz5XY59RkhC+gQQhYAHGJfVb3CjREWvR/C7XLqpF5e7d5f\np3Bjs93NAboMQhYAHGInld5bNbBPliLGaNf+gN1NAboMQhYAHCK2ZyGL3g/D4neg4whZAHCIg3sW\nErIOxeJ3oOMIWQBwgDFGu/YFVJCdpow0j93NSSon5KYrI9XN4negAwhZAHBAlT+kQEMjRUhb4XA4\nNLBvlvZXNSjQ0Gh3c4AugZAFAAd8dmC90Um9CVmtGXhgynAHo1nAMSFkAcABn+6pkSQN7p9tc0uS\n06ADi9+37Kq2uSVA10DIAoADPtldI5fToZMPjNjgcKeflKsUj1Mbtu6XMWwWDbSHkAUAkkKNzdq1\nz68BvXxK9VDpvTWpHpeKB+VrX1WD9pSxWTTQHkIWAKhlnVFzxDBV2I5zh5wgSXp/636bWwIkP0IW\nAKhlqlCSTu1HyGpL8Sn58ridem8LIQtoDyELAMSi92OVluLWWYPyVVpRrz3lTBkCbSFkAejxIsZo\n254aFeakKdubandzkt65pxVKkjYwmgW0iZAFoMcrrahXXbBJp/bLsbspXcLZpxbI7XKwLgtoByEL\nQI/36e6Wuk9MFR6b9FS3zhyYr91ldSqtYMoQOBpCFoAe71MWvXfYiOiU4dYym1sCJC+33Q0AALt9\nsqdG6alu9S3MtLspXcawwQVyOVumDK++4OS4vW5Tc0Rl1Q3aX9Xyv5q6sE48wauhA3OVlsJ/stC1\n8I0F0KPV1IW1v6pBZw7Kk9PhsLs5XUZGmkdDB+Zp47YK7a+q1wm5Gcf1esYYrf7HHv1m9TYFw82x\nx51Ohz7aXqmtu6o0ZECuziBsoQvhmwqgR9sWLd3AVGGHjTitUBu3VegvG3ar5LKiTr+Ovz6sF/60\nRR98Wq7MNLeKTszWCbkZOiE3XWkpLn3yeY02b6/Q5u2V2rKrShcP66e+BYw6IvmxJgtAjxZbj9Wf\nOws7atTpvdQrN12r3t8dC6sd9c8dlXr4P/+uDz4t1+kn5eqxW0fp/KG9NahvlrzpHrldTp1+cq6u\nGzdI5w05QZGI9PaHpaoPNsb5aoD4I2QB6NE+2VMtp8OhQWwK3WEpHpduvup0GUn/+ad/qbGpud1z\noowx+uO6HXp6+QcK1Dfq6xcN0v/3b+co19d6nbJo2Dp3SKFCjc1a82GpIhE2qUZyI2QB6LEam5q1\n8wu/BvTyKjWFTaE7o+jEHF06vL9KK+r1+7U7jumccGOzfvr7j/Tams+Um5Wq7/77CH119MlyOttf\nE3fagByd1Mur/VUN+nBbxXG2HrAWIQtAj7VtT62amo1OpT7Wcfn6xYOUn5Wm//nbLu38wt/msVX+\nkJ749f+vv/9rv07tl605N56nQX2PfRTR4XBo9Jm95U33aNO2Cu1lax8kMUIWgB5r8/ZKSdKZA/Ns\nbknXlpbi1k1XDVHEGP3nn/6lpubIEcc0NUf09od79dgv39POL/y68Kw+enDyMGVnpnT4/VI8Lo07\np4+cDumdjaVqCDXF4zKAuOPuQgA91ubtFXK7HDrtxFy7m9LlDT05T2OL++jtjaV64CdrNbyoUMNP\nK9QpfbO1dlOp/vfvu1RZG5LL6dC3LjlVl593ohzHUTKjIDtdw4sK9f7WMm3cVqFRZ/SK49UA8UHI\nAtAj1dSFtWtfQKeflMt6rDj51qWD5XE79d6W/Vr9wV6t/mBv7LkUj1NXnHeiJowccNTF7R015KRc\n/WtnlT7dXaOzT82nfhaSDt9IAD3SR9tbFk2fOYipwnhJT3Xr3684TSWXFemT3dXasLVMn+6p0ZmD\n8nXZuf2VldHxqcG2OJ0OnXFynt7bsl9bdlbrnMEFcX194HgRsgD0SNH1WGcNzLe5Jd2P0+nQaQNy\nddoA66dhT+2frY3bKrRlV5WGDsyTx81SYyQPvo0AepyIMdr8WaVyvCnqx36FXZrH7dRpA3IUbozE\nCssCyYKQBaDH2bXPr0BDo4YOzDuuxddIDkNOypHL6dBHOyopUIqkQsgC0ONs/ixauoGpwu4gLcWt\nwf2zVR9s0vbSWrubA8QQsgD0OJs/q5BD0lDqY3UbZ5ycJ4dD+mh7pYxhNAvJgZAFoEdpCDVp295a\nndynZQNidA/eDI9O7u1TdSCsPVSBR5IgZAHoUf61s0rNEUOV927o9JNbPtNte5gyRHIgZAHoUTZ/\n1lIf66xBrMfqbvKzUpWVmaLd+wMKNzXb3RyAkAWg5zDGaPP2SqWnujWwr8/u5iDOHA6HBvXxqTli\ntOuLgN3NAQhZAHqOLyrrVV4T1Bkn58rl5M9fdzSwb5YkcZchkgIV3wH0GL9ZvU2SlJbi0uoP9tjc\nGljBl5Giguw0fVFRr+pASDne+OyTCHQG/5QD0GPsKK2V0+HQiSd47W4KLDSob5aMpL//c5/dTUEP\nR8gC0CPsLa9TdSCsvoWZSvG47G4OLHRSb58cDmk9IQs2I2QB6BHe37JfknRybxa8d3fpqW71LcjU\nzi/8Kq2gZhbsQ8gC0CO8t2W/nE6H+p/AhtA9wcA+LQvg13/EaBbsQ8gC0O3tKQtoT3md+hVkKsXN\nVE6MsRcAACAASURBVGFPcOIJXqV6XHr3n1+wzQ5sQ8gC0O29x1Rhj+NxOzWsqEBl1UFt20s5B9iD\nkAWgWzPG6L0t++VxO9Wfuwp7lFGn95J0cD0ekGiELADd2p7yOpVW1Kt4UL48bv7k9SRnnJyrVI9L\nH3xSzpQhbNHpYqTXXXedvN6WfxX2799fd911l2bOnCmHw6HBgwdr7ty5cjqdWrFihZYvXy63262p\nU6dq/PjxcWs8ALTnvX+1jGKcd/oJqg812dwaJJLH7dKZg/K0YWuZ9pbXqV8hI5lIrE6FrFAoJGOM\nli1bFnvsrrvu0rRp0zRq1Cg9/PDDWrVqlc455xwtW7ZMK1euVCgUUklJicaMGaOUlJS4XQAAHE10\nqjDF7VTxKfn6G3WTepxhgwu0Yev/a+/Og+Oq7nyBf2/vq7pb6ta+S95tecGxDV7GjD045DF4xhs4\nCc4LSwHvkaT4IwWkhoR6AYdUPfJSARLmhUleajKpsEwyIbwKkLwANghkvMi2ZGuxLGtfWkurV/V2\nz/ujbWENlrFltW4v30+VynZ336vfPX19+9v3nnuOGyfaRxiyaN7N6tx5S0sLQqEQ7r33Xhw4cACN\njY1obm7GunXrAABbtmxBfX09Tp06hdWrV0On08FqtaK8vBwtLS1zugFERDPpHvJjcCyIupo8GHSc\nRSwb1dU4oZIknGgfUboUykKzOuoYDAbcd9992Lt3Ly5cuIAHHngAQghIkgQAMJvN8Pl88Pv9sFo/\nvZvHbDbD7+fM6ER0fWY7z+DHzYMAgByzjnMVXsVctc3WVSVzsp65ZDFqsbDMhpZuD8Z9YTisnMuQ\n5s+sQlZVVRUqKiogSRKqqqpgt9vR3Nw89XwgEEBOTg4sFgsCgcC0xy8PXTNxOEzQpMlYNi4XbwlX\nAttdOUq0vdViuO5lIrE4Ogd8sBi1WFSVB9XFL4HpbDbtMJ/mat+Yq+28VM/m1aVo6fagY8iP26ud\ns14Pzb90b/tZhazXX38dbW1teOqppzA0NAS/34+NGzeioaEB69evx6FDh7BhwwbU1dXhxz/+McLh\nMCKRCDo6OrBw4cLPXf/4eHA2Zc07l8sKt9undBlZh+2uHKXa3uefvO5l2no8iMZkLK10IBAIJ6Gq\n+WW1GGbVDvNprvaNudrOS/UsKEp8UB8+3ou1tXnXtQ4eb5STTm0/UxicVcjas2cPnnjiCezfvx+S\nJOHgwYNwOBx48skn8aMf/QjV1dXYsWMH1Go17rnnHnz5y1+GEAKPPvoo9HqeqiWi5Gvv8UACsKDU\npnQppDCn3YhSlwVnu8YQCsdg1LN/Hs2PWe1pOp0Ozz333Gce//Wvf/2Zx/bt24d9+/bN5tcQEc3K\n6MQkRr1hlOZbYDJolS6HUsDqBU78sd6P5s4xrF2cr3Q5lCU4Mh8RZZy2Hg8AYGEZz2JRwuqFib5Y\nJ9rdCldC2YQhi4gySjQmo3PAC7NBg2KnWelyKEVUFFjhsOpxqmMUsbisdDmUJRiyiCijdPZ7EYsL\nLCi1ZcQdhTQ3JEnCqgVOBCZjaO+dULocyhIMWUSUMYQQaOv1QJKA2lK70uVQilldm7hkePIcByal\n+cGQRUQZw+2ZxJg3jFKXBSYD7yCj6RaV26HXqnGyY1TpUihLMGQRUcZoOp/48Fxa6VC4EkpFWo0a\nSysdGBoLYihNxmOk9MaQRUQZYdw3iV53AC67EfkOo9LlUIqqq0kMRnrqHM9mUfIxZBFRRjh9fgwA\nsKImd2oeVaL/rK7mYr+sDvbLouRjpwUiSnveQARdAz44rHqUcNgGxaTaJNwz1ZObo0dL1zj+fLQH\nWs3VzzXs/bvFySiNsgTPZBFR2mvuHIMAsLyaZ7Ho85W4LJAFMDAaULoUynAMWUSU1oKTUXT0eWE1\naVFReOVJWokuV+pKnO3sdTNkUXIxZBFRWjtzYRyyEFhelcvBR+ma5NkMMOjU6HP7IYRQuhzKYAxZ\nRJS2JiMxtPV4YNJrUF2So3Q5lCZUkoRipxmhcBxj3rDS5VAGY8giorTV2D6KWFxgWXUu1Coezuja\nfXrJ0K9wJZTJeFQiorQ07gujvceDHLMOi8o4hQ5dn2KnGZLEflmUXAxZRJR2hBA42jIMAWDtYhdU\nKvbFouuj06qR7zBidGISoXBM6XIoQzFkEVHa6XMHMDAaRFGeieNi0ayVuiwAEvsTUTIwZBFRWpFl\ngaOtbkgAvrA4n+Ni0axdClnsl0XJwpBFRGmltdsDbyCCheV22K16pcuhNGaz6JBj0qJ/JIB4XFa6\nHMpADFlElDZC4RhOdoxAq1FhZW2e0uVQBijNtyAWFxgYCypdCmUghiwiSgtCCNQ3DSISlbGq1gmD\njlOv0o0ry794yXCYlwxp7jFkEVFaaO3xoM8dQFGeCYsrOGQDzQ2X3QidVoWe4QBHf6c5x5BFRCnP\n4w/jWIsbOq0KG1cUsbM7zRmVSkKpy4JQOMbR32nOMWQRUUqLxmQcPjmAuCxwy/JCmAy8TEhz69Il\nwx5eMqQ5xpBFRCnt94fPY9wXRm2pDeUFVqXLoQxU7DRDJUkMWTTnGLKIKGV91DSItxq6YTVp8YXF\n+UqXQxlKq1GhMM+IcV8Y/lBU6XIogzBkEVFKOtbqxr/837Mw6TX4m1XF0Gp4uKLk4cCklAw8ahFR\nymnqHMU/v9EErUaFR/etRG6OQemSKMOVcigHSgKGLCJKKW09Hrzw76cBSPjm7hWoKbEpXRJlAYtR\nC4dVj8HRICKxuNLlUIZgyCKilNFwZgj/67WTiMsC//0fl2NJZa7SJVEWKcu3QBZAPyeMpjnCkEVE\niguFY3j5zTP45zeaAQE8tHMZVtY6lS6Lskx5QeKSYdegT+FKKFNwwBkiUtT5fi/+9xvNGPaEUFlo\nxYN3LkNBrknpsigLOax65Ji06HUHEI3JvNmCbhhDFhHNOyEE2nsn8PaRbjS2jwAAvrShAv+wuQoa\nNT/YSBmSJKGyKAenOkbRO+xHVXGO0iVRmmPIIqJ5E5yM4VTHCP58tBedA14AQFVRDvZsrcGSCofC\n1REBlYVWnOoYxYVBH0MW3TCGLCJKGlkIDIwEcPr8GE51jKC9dwJxWUACsHqBEzvWlWNBqY1zEVLK\nsFv1sFt06HMHEInyLkO6MQxZRDRnorE4Ogd8ONc3gfYeD871TSAwGZt6vqrIihXVediwrBCF7HdF\nKaqy0IrGc6OcZoduGEMWEc2aNxBBR98E2vsm0N7rQdegD7G4mHreaTOgriYPSytzsbw6DzazTsFq\nia5NZVEOGs8lLhkS3QiGLCK6JrG4jHM9HhxtHkBH3wTO9U1gZGJy6nmVJKG8wILaUhsWlNpRW2KD\nw6pXsGKi2ckx6+Cw6tE/EoAvGFG6HEpjDFlE9Bn+UBSDo0EMjAbQPxpAZ78XFwZ9iMTkqdeYDRrU\n1eShujgHC0psqCrOgUHHQwplhsoiK060hfHR6QGsruaguDQ7PCISZTFvMILuQR/6RwIYGAtiYDSI\nwdEAvMHotNdJElDitGB5rRMluUZUF+egMNfEDuuUsSoLrTjRNoLDjX0MWTRrDFlEWWRoLIjjbW6c\n65tA15APY97wtOclAE67AXVFOSjKM6Eoz4zCXBPK8i0w6jVwuaxwu9lPhTKf1aRDns2AU+dG4A1G\nkGNif0K6fgxZRBlueDyII2eH8UnL8LS7pXJMWqyozkNFoRWlLvPFQGWEVqNWsFqi1FFVaMXoxCSO\nnBnC9rVlSpdDaYghiyhDuT0h/MfhTnzcPAgBQK2SUFeThy8szsfSylzYLTpe7iO6iqriHDSeG8G7\nJ/qw7aZS/n+h68aQRZRhPP4w/lh/AYca+xGXBUpdFuxYV4bVC5wwGbRKl0eUNox6DTbWleD9E71o\n7fZgMWcloOvEkEWUIYQQqG8axK//3IZwJI58hxH/sLkK65YUQMVv4ESzcvstlXj/RC/ePdHHkEXX\njSGLKAMEJqP417dbceTsMIx6Ne7ZsQib64o42TLRDVpalYtSlxnH29zw+MOwWzj2G107hiyiFPFe\nY9+slhsaC+LwqQEEJ2Nw2Q3YVFcESQI+OD0wxxUCVosBPv/k57+QKENIkoRb15TiX99uxeGT/fj7\njVVKl0RphF9zidKUEAJnu8bxzpEehCZjWFmbhx3rymHlreZEc2rD0gLodWq819iPuCx//gJEFzFk\nEaUhWRZoODOET84OQ69T47b1ZVhZ64RKxb5XRHPNqNfgluWFGPeFcfLcqNLlUBphyCJKM+FIHH85\n2ou2ngk4rHp86eYKFDhMSpdFlNFuXV0CAHj3xOwu61N2Yp8sojQy4Y/gr8d74QtGUZZvwaa6Img1\n/K5ElGylLgsWltrQ3DmGwbEgCnP5xYY+H4/ORGmifySAP33cBV8wiuVVudi6upgBi2ge/e1NpQCA\nNz7sVLgSShc8QhOlgZbucfy/Y72IxQU2rijEmkUujj5NNM/WLs5HeYEFHzcPoWuQc3jS52PIIkph\ncVlGw5khHDkzDL1WjdvWlaKmxKZ0WURZSSVJ2HdrLQDg1XfPQQihcEWU6tgniyhFeQMRHDrZjzFv\nGHaLDn+7phQWE6fFIVLS0spcLK/ORdP5MZw+P4q6GqfSJVEK45ksohQjhMC53gm8WX8BY94wakts\nuH1DBQMWUYrYt7UWkgS89m4Hx82iq2LIIkohgVAUh04OoL5pEJIkYfPKItyyopAd3IlSSGm+BRtX\nFKFvJIAPTw8qXQ6lMB65iVJAYDKKY63D+P3hTnQN+uC0GXDHLRWoKspRujQiuoJ/3FwNnUaF3x8+\nj3AkrnQ5lKLYJ4tIQeO+MOqbBvBWQzcCkzGYDBqsqnWiuiQHKt49SJSyHFY9bltXhjfru/Drd1px\n739Zwjt+6TMYsiirzXZS5hsxGYmhe9CPzgEvhsZDAACdRoU1C51YXOGARs0TzETp4I6bK9F0fgwf\nNg2iLN+C29aVz/jauTrWbF1VMifrofnBkEWUJPG4DH8oCl8oinFvGKPeSYx5w/CHolOvyXcYUVVk\nRWVRDvRatYLVEtH10mnV+MbuOvyP//MJXnn3HIqdZiyvzlO6LEohDFlENyASjWPcH4YvEIU/lPjx\nBSPwh6IIhT/bT0OvVaPYaUJRnhmVhVaYjbxjkCidOax6PLJ7BX74byfw0h+a8U9fW8spd2gKQxbR\nNYrFZYx4JjE0HsSoN4xx7yQCk7HPvE6SALNBi8JcPSxGLSwmLewWHXJzDDAbNOy3QZRhaopt+K+3\nL8LLb57FT14/hce/sgY5Zp3SZVEKYMgimoEQAqPeMHqH/RgcC2LEMwn5shGeDTo1ivJMcFj1sJl1\nsJi0sBi1MBu0UKkYpIiyyS3Li9DrDuCthm58918a8LXbF2P1ApfSZZHCGLKILhOXBQZGA+gZ8qPX\n7Z+65CcByM3RoyDXhIJcE5w2A4x6/vchok/t2VoDu1mH198/j+f//TQ21RVh/7YFPFZkMb7zlPVk\nITA0FkTngA/dQz5EookRnPVaNWqKc1Cab0FRngk6dkwnoqtQSRJuW1eOZVW5+Pkfz+CDUwNo6RrH\n5pXFiMXjsFv07C6QZRiyKCvJF6euaTgzhK5BHyYvDiZo1GuwpMKGikILnHYjx6oioutW4rLgn762\nFn/4oBNvNXTj94fOAwBMBg1KnGYY9RrotCpoNWpoNSoIISDLArIAhCwgi4s/soBAYogXnVYNvVaN\n7iEfXHYjz46lCb5LlDWEELgw6MORs0M4cnYY474wgMQZq4VldlQVWZHvMPKbJhHdMI1ahd1/U4Md\n68rR1DmKdz7pQb87gPbeiRta71+O9gIAbBYdinITdyqXF1hQWZiDEpeZ4+ylGIYsynh9bj8azg7h\nyJlhDHsSg38a9RpsWlEEg16NwlwTO6oTUVJYjFpsWFqIyUgcsizg8YcRjsYRjcmIRGXE4jIkKXGp\nUaWSIF38U3XxMUhANCojHI0jEo0jN8eAobEgBseCaOn2oKXbM/W7NGoJpS4LKotyUFloRWWhFcVO\nBi8lMWRRRvIGI2hoHkJ90yC6hnwAEmesNiwtwBeW5GN5VR60GpUiI74TUXZSqSTk5hhuaB2Xj/ge\nicYxMBpE15APFwa8uDDoQ6/bjwuDvqnXaNQqlOVbpkJXRaEVRXlmTjo/TxiyKGNEYzJOnhtBfdMg\nTp8fRVwWUKskrKp1YsOyAqysdXJUdSLKGDqtGhUXg9OWlcUAEuP59bkDuDCYCF0XBhM39HQOeKeW\nU0kSCnKNKHVZUOIyo8RpQWm+GS6bkWf155gkxGUD/6QIt9v3+S9KAS6XNam1ptpZllSZM8vlsuK1\nP7cASPSzGpmYREefFxcGvVN3Bubm6FFTbENlkZUdROeQ1WKAzz+pdBlZiW2vjExo97gsw+OLYHRi\nEmO+SYz7wvD4I4jG5GmvU6sk2C162K062C16OKx62C16mAxXPoYm+zMh2Z+xc8nlsl7xcX76UFoK\nhKI43+9FR78X3kAEAGDUq7G00oGaEhscVr3CFRIRpQa1SoU8mwF5tk8vVQohEJyMYdwfhudi6Br3\nhTHuT8yzejmLUQuX3YB8hwkFDiNsFh1vELpGDFmUNiYjMRxrdeNo2ymcbB8BkPjmVVloRU2JDUV5\n7MBORHQtJEmC2aiF2ahFqcsy9bgsC/iCkanQNeadhNszic4BHzoHEmeVTAYNSl1m2M16LKl0sBvG\nVTBkUUqLyzJauz2obxrEsVY3wtHEeFb5DiNqinNQUWjlIKFERHNEpZJgs+hhs+hRUZi4BCaEgDcQ\nwfB4CANjQfSPBNDWM4G2nlPQalRYWZOH9UsLUFeTB62Gx+PLMWRRypFlgfZeD460DONYyzC8wSgA\nwGkzYMfyMtyxpRYfnOhRuEoiouwgSZ8GrwVldsiywMhECGqVCsfb3Djamvgx6NRYs9CFjcsLsajC\nwcGcwZCVEiYjMQyMBjE8HsLweOJPXyiKobEgYnGBmJzonKhRqaBRS1CrVdBqVJeNAvzpaMA6rQo6\njRpqtQQJEi7t43FZIBqTEz9xGZFoHOFIHOHoxZ/I5X/KiMsyLr8lQq2W8FZDN8yGxCTIdosOLrsR\n+Q4jXPbEj9mgmdV1eiEEhj0hnO0aR0vXOM52jcN3MVhZTVpsXV2C9UvysaDMDpUkweU033CbExHR\n7KhUEvIdJmxdVYJdW6rRM+xHw5khHDmbGDanvmkQeTkGbFxRiFtWFCHfblS6ZMUwZClgzDuJ1h4P\nzvVNoKNvAj3Dfsx0j6daJU0NJBeLRxGXk3czqCQlxpIy6NTQqDUAEgPhAUA8LiMciWN0YnLGGox6\nNVy2ROByWPWwmLSwmnSwGrXQqFWIy3IiNMZlePxhDI2FMDSeGFTvUqgCAIdVjy0ri/CFJQVYXG6H\nWsXxXIiIUpEkSSgvsKK8wIrdW2vQ3uPBh02D+KRlGG98eAFvfHgBC8vs2LSiCGsXu2DQZVfsyK6t\nVUg4EkdrzziaOsfQ3DmGgdHg1HMatQq1JTaUF1hR4DBOu3vjo+bBz5wZEkJMBZVLIwBHpkYDlhGJ\nxadGEQaAS3FIJUlTZ7+0GhV0WhX0F89+6XWJP7Ua1VXPRG1dVQIhBMLROMZ9Ybg9IQyPh+D2TMLt\nCcE9EcLgeBDdw/5rbhtJAlw2IxaW2bG0woHFFQ4U5pp45woRUZpRSRIWlTuwqNyBL29fgGOtbnx4\negAt3R609Xjwb39uw02LXFi/tABLKhxZMRI9Q1YSCCHQM+xHc+cYmjrH0N7rQSyeiDt6rRora/Kw\npMKB2lI7ygssM+5oVwoakiRBq0kEJiXGf5IkCQadBkV5GhTlffaynRAC3mAUHl8YvlAEvmAUvmAU\nsiygVkvQqBKXO60mLQpzTXDZjVnxH42IKJsYdBpsXFGEjSuKMOIJ4cOmQXx4emDqcqLZoMFNi1xY\nuzgfi8ocGTsCfdI/pWVZxlNPPYXW1lbodDo8/fTTqKioSPavnVeyLNDr9qP1Ylpv7fHAH/r08ld5\ngQXLq/KwrCoXtSW2jN2ZgIsdJM062Mw6pUshIqIU4LQbsXNTFf5+YyU6+ibwydlhfNI6jEMnB3Do\n5AB0WhUWlTmwvCoXS6tyE8PxZMjVjKSHrL/85S+IRCJ45ZVX0NjYiGeffRY/+9nPkv1rk0IWAhP+\nCEYmQugbCcDtDaOtaww9w/6pkcaBRJ+im5cVYnl1LpZW5jJwEBFR1lNJEhaU2rGg1I67ty1Ae68H\nJ9pH0NQ5htPnR3H6/CiARP/eigIrllY7kW/To8BhQr7DmJazdyS94mPHjmHz5s0AgFWrVqGpqSnZ\nv/JzRWNx9I0EEIkm7rSbuusuFp/6eygcS1zqCkXhC0Yu9kGanOrrdIlaJaEoz4zKIisWldmxsMwO\np83APkVEREQzUKk+7b8FJG4Ia+4cQ0v3OC4M+tDa7UFLt2faMlaTFk6bETazDlaTFjlmHcwGLfRa\nFTSX+htr1FP9jzUaFRwW/Q1Pyn0jkh6y/H4/LJZPR5NVq9WIxWLQaJRLpD/7j2Y0nhu5rmXMBg1K\nXObEcAU2AwpyTVi5uAAmNTj4GhER0Q3IzTFg88pibL440XUoHMPEZByn2obhHg9hyBOEezyE7iHf\ndd1lL0nA//xvGxWbai3pScdisSAQCEz9W5blzw1YM020OFe+//DGpK5/ruz9u8VKl5Cy2DZERJlv\nRa1T6RJuSNJ7YK9ZswaHDh0CADQ2NmLhwoXJ/pVEREREipOEmGkYzLlx6e7CtrY2CCFw8OBB1NTU\nJPNXEhERESku6SGLiIiIKBtl7oBNRERERApiyCIiIiJKAoYsIiIioiRIv+FTk2RychLf/va3MTo6\nCrPZjB/+8IfIzc2d9ppXX30Vv/3tb6HRaPDwww/j1ltvvepy8Xgcjz76KPbs2YMtW7YAAB5++GGM\nj49Dq9VCr9fj5ZdfnvdtTTXz1fYvvPAC3nvvPWg0GnznO99BXV3dvG9rKpnrdm9sbMQzzzwDtVqN\nTZs24ZFHHgHAff6Sz5ti7K9//StefPFFaDQa7N69G/v27Ztxma6uLjz++OOQJAkLFizA9773PahU\nqiu+XzQ/bf/000/j+PHjMJsTc7r+9Kc/hdWa3OGI0sFctv0lBw8eRFVVFfbv3w/gyseplCFICCHE\nL37xC/GTn/xECCHEm2++Kb7//e9Pe354eFjccccdIhwOC6/XO/X3mZbr6uoSd911l9i6dat4//33\np9Zz++23C1mW52mr0sN8tH1TU5O45557hCzLoq+vT+zatWsetzA1zXW733nnnaKrq0vIsizuv/9+\n0dzcLITgPn/J22+/LR577DEhhBAnTpwQDz300NRzkUhEbN++XXg8HhEOh8WuXbuE2+2ecZkHH3xQ\nfPzxx0IIIZ588knxzjvvzPh+UfLbXggh7r77bjE6Ojqfm5UW5rLtR0dHxX333Se2bdsmfvOb3wgh\nZj5OpQpeLrzo8ul/tmzZgo8++mja86dOncLq1auh0+lgtVpRXl6OlpaWGZcLBoN45plnsH79+ql1\njIyMwOv14qGHHsL+/fvx7rvvztPWpbb5aPtjx45h06ZNkCQJxcXFiMfjGBsbm6ctTE1z2e5+vx+R\nSATl5eWQJAmbNm1CfX099/nLXG2KsY6ODpSXl8Nms0Gn0+Gmm27CJ598MuMyzc3NWLduHYDEe1Bf\nXz/j+0XJb3tZltHV1YXvfve7uPvuu/H666/P8xamrrls+0AggG984xvYuXPn1DpSfb/PysuFr732\nGn71q19NeywvL2/q1K7ZbIbP55v2vN/vn3bq12w2w+/3T3v88uUWL/7siOTRaBT33nsvDhw4gImJ\nCezfvx91dXXIy8ub0+1LZUq1vd/vh91un7YOn8/3mctjmSrZ7f6fp88ym83o6enhPn+Zq00xdrW2\nvtIyQoip+VEvfw+utA5KftsHg0F89atfxde//nXE43EcOHAAy5cvv+KxKNvMZduXlZWhrKxsaoDz\nS+tP5f0+K0PW3r17sXfv3mmPPfLII1PT/wQCAeTk5Ex7/j9PDxQIBGC1Wqc9fqXlLud0OnH33XdD\no9EgLy8PS5YsQWdnZ1Z94CjV9jOtI1sku92v9NqcnBzu85e52hRj19LWly+jUqmmvXam9yCb9vGr\nSXbbG41GHDhwAEajEQCwYcMGtLS0MGRhbtv+Wtafavs9LxdetGbNGrz//vsAgEOHDuGmm26a9nxd\nXR2OHTuGcDgMn8+Hjo4OLFy48HOXu1x9fT2+9a1vAUjsCO3t7aiurk7SFqWP+Wj7NWvW4IMPPoAs\ny+jv74csy1lzFmsmc9nuFosFWq0W3d3dEELggw8+wNq1a7nPX+ZqU4zV1NSgq6sLHo8HkUgER48e\nxerVq2dcZunSpWhoaACQeA/Wrl074/tFyW/7CxcuYP/+/YjH44hGozh+/DiWLVs2z1uZmuay7a8k\n1fd7jvh+USgUwmOPPQa32w2tVovnnnsOLpcLv/zlL1FeXo5t27bh1VdfxSuvvAIhBB588EHs2LFj\nxuUuefzxx/GlL31p6g63Z555BidPnoRKpcL999+P7du3K7XJKWO+2v7555/HoUOHIMsynnjiCaxd\nu1apTU4Jc93ujY2NOHjwIOLxODZt2oRHH30UAPf5S640xdiZM2cQDAZx1113Td1lJYTA7t278ZWv\nfGXGack6Ozvx5JNPIhqNorq6Gk8//TTUavUV3y+an7Z/+eWX8ac//QlarRY7d+6cuvMt281l21/y\n/PPPw+l0Tru7MFX3e4YsIiIioiTg5UIiIiKiJGDIIiIiIkoChiwiIiKiJGDIIiIiIkoChiwiIiKi\nJGDIIqKM9vjjj+Oll17CAw88AADo7+/HF7/4RezatQs+nw+7du3Czp070dnZqXClRJRpGLKIKOPl\n5+fj5z//OQDgyJEjWLZsGX73u9+hpaUFOp0Of/jDH1BVVaVwlUSUaThOFhFlFCEEnn32Wbz3Mm4q\n4wAAAR9JREFU3nvIz89HPB7Hnj178MILL+DFF1/Eww8/jGAwiG3btuHo0aMYGRnB+vXr8dJLLyld\nOhFlmKycu5CIMtfbb7+NM2fO4M0334TP58Odd9459dySJUvwzW9+E0eOHMEPfvADNDQ04IUXXmDA\nIqKk4OVCIsooR44cwW233QatVovc3NypaZWIiOYbQxYRZRRJkiDL8tS/NRqesCciZTBkEVFGufnm\nm/HWW28hEolgYmIChw8fVrokIspS/IpHRBll+/btOH36NO644w44nU7U1NQoXRIRZSneXUhERESU\nBLxcSERERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlE\nRERESfD/AXZaow4oj9opAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAGkCAYAAABw5S9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVPX+B/D3mY0Z9n0RRQXcchc1TU3DzHZNKy0jS8tr\ndatbv3tLLa8tamU3b2W22ap1S0tTUTMrzS3NLXFHBZFFZN8ZmO38/kAIcIABZubM8n49Dw8MZ5nP\noPCez/d8zzmCKIoiiIiIyG5kUhdARETkbhi+REREdsbwJSIisjOGLxERkZ0xfImIiOyM4UtERGRn\nCqkLsIW8vDKL1w0I8ERRUaUNq5GeO7xGgK/TlbjDawRa9zpDQnxsXA3Zk9t3vgqFXOoSbM4dXiPg\n+q+zqKwaaZdLIchc/9fW1f8ta7nL66SruWTnS+RKDEYTfjqQjo1706A3mODrpULfroGYNDoGAT4e\nUpdHRG3g+m+hiZxYSYUOL39+EGt3pkKlkKFP10CIooi9Jy7j7e+SUKUzSF0iEbUBO18iByWKIj7d\nfApZ+RXo2zUQNwyKhFqlgJ+fBmt+TkZSSgE+3ngKf5/UFzKZIHW5RNQK7HyJHNT2I1k4kVqILuE+\nuPnaKKhVNe+VBUHAjYM7oXOYN46ez8cPu1MlrpSIWovhS+SAsvLKsWbHeWg85Lh1WGcIQsPOVi4T\nMGFkV/h7q/Dj/ovIKXT9mcFEroThS+RgRFHEV9vOQm8w4eahUfDWKM2up1YpMLp/B5hEsPslcjIM\nXyIHc/piEZIzihHdwRfdOvo3u273Tv4IC9TgwOlcXLxs+fntRCQthi+RAxFFsa6LHdk3osX1BUHA\n6P4dAABrd6XYtDYish6GL5EDOZ5aiJSsUnTr6IfwQE+LtukS7ouoMG+cSC3EucxiG1dIRNbA8CVy\nEKIoYv2VrndEn5a73vpq1//5YIbV6yIi62P4EjmIU2lFSLtchh6d/BEaoGnVth1DvBDqr8GRs3ko\nKKmyUYVEZC0MXyIHsfVAOgBgaK+wVm8rCALieoTAJALb/8y0dmlEZGUMXyIHkJFbjpMXCtEp1BsR\nQZYd622sV+cAeHoosPPoJVTrjVaukIisieFL5AC2Xel6h/QMbfM+FHIZ+scGobLKgP0nL1urNCKy\nAYYvkcSKyqqx/1QOAn09ENPBt137GhAbApkA/Ho4E6IoWqlCIrI2hi+RxLYfyYTRJGJwj9CrLiPZ\nWj6eSnTr6I/MvAqkZJVaqUIisjaGL5GEqnQG7DiSBU8PBXp3CbTKPgfEBgMAdnDiFZHDYvgSSWjP\nsWxUVhswsFswlArr/DpGhXkj0NcDB8/koqxSZ5V9EpF1MXyJJGIyidh2MAMKuYCB3YKttl9BEDAg\nJhgGo4i9xznxisgRMXyJJHLkbB7yS6rQu2sgPNXm71zUVr27BkIhF/Dbn1kwceIVkcNh+BJJQBTF\nuotqDO7R9tOLmqLxUKBXVAByi7U4kVpo9f0TUfswfIkkcCa9GKmXShEb6YcgX7VNnmNg9xAAwC+H\neb1nIkfD8CWSwKbf0wAAw3u3/lKSlgoP9ETHEC+cSC1EdkGFzZ6HiFqP4UtkZ+czS3D6YhG6hPsg\nIsjLps8Vd6X7/fUwTzsiciQMXyI727QvDQAwvHe4zZ+rW0d/+Hgqsfd4NiqrDDZ/PiKyDMOXyI7S\nLpfiWEoBOoZ4o1Oot82fTyYTMKhbCKr1Juw+dsnmz0dElmH4EtmJKIr4/rcUAMCIPrbvemv1iwmC\nSiHD1j/SoTfwbkdEjoDhS2QnJy4U4lRaEbqG+6BzuI/dnlfjocDAbsEoqdBh51F2v0SOgOFLZAcm\nk4g1288DAEYPiLT78w/pGQqlXIYt+y+y+yVyAAxfIjvYeyIbWfkV6NM1EKEBGrs/v6daiYHdglFc\nrsPuY9l2f34iaojhS2RjFVV6rNuZCoVcwKh+EZLVMaRXTfe7+feLqNax+yWSEsOXyMZWbz+Pkgod\nrusdDh9PlWR1eKmViOsRgqLyamz8/YJkdRARw5fIpk6lFWLPsWyEBmgwpJftrmZlqeG9w+HnpcJP\nBzKQmVcudTlEbovhS2Qj1Tojvtx6BoIA3Dw0CnKZIHVJUCpkuHFwR5hMIlb+lMw7HhFJhOFLZAOi\nWBNuecVVGNIjFOGBnlKXVCemgx96dPLH+cwS/HyQN10gkgLDl8gGdiZdwr6TlxER5ImREk6yakr8\noI7wUiuwZsd5HD2fL3U5RG6H4UtkZWmXS/G/n89CrZLjzhFdoZA73q+Zj6cSk66Phlwm4KMNJ5Ce\nUyZ1SURuxfH+KhA5sdxiLd757hgMRhG3D+8CPy/pZje3JCLIC7cN64xqvQn/+fYoTlwokLokIreh\nkLoAIldRXF6Nt779EyUVOsQPikR0B1+pS2pRj6gAjNcZ8fPhTPx3dRJuu64zbh3WGWpV838aKqsM\nyMgtQ2ZeBcq1emirDZDLBAT7qRESoEG3jv7wUMrt9CqInA/Dl8gKSip0WLr6KPKKq3Bdn3AM7hEq\ndUkW6x8bjNAAT2zcewGbfr+Inw9mYEjPMPSIqrkdoVIuQ2FZNQpKqpCRV470nDLkFVc1u08PpQz9\nYoJxff8OuKZLAARB+pneRI6E4UvUTpcLK7F09VHkl1RhUPcQu96xyFoigjwx/eYeOJSchxMXCrHn\neDb2HDd/GUqNhxydw3wQFqBBaIAGXmolVEo5jCYTSip0yCvW4lxGCQ6eycXBM7noGeWPyWNiENPB\nz86vishxMXyJ2uFsRjHeW3cM5VoDrusTjhF9wp22y1OrFBjZNwIj+oQjM68CRWXVqKzWw2AU4aNR\nwtdLhSBfNXw8lU2+xo4hNZ9H9++Ay4WV2HviMs6kF2PRysO4cXBH3D06BioORxMxfInawiSK2LLv\nItbvToUIYPyQTugfGyx1WVYhCAI6hXqjU6h3u/YREeSFu0fHID23DNsOZuCXQ5k4eaEQf7uzN6LC\n7HdLRSJHxNnORK2UW1SJt749inW7UuGlVmJqfDeXCV5biAr1wfTxPRHXPQTZBZVYtOow9p28LHVZ\nRJJi50tkIb3BiK1/pCPx9zQYjCJiIn1xy7Wd4enBX6OWKBUyjI3riM7hPti8Lw0rEk8hLbsM98bH\nQC5jD0Duh381iFpgMJqw93g2Nu5NQ1FZNbw1SsQPikSPTv5Oe3xXKrGRfki4qQd+2H0BPx/KQEZu\nGWZP7ANfCe/2RCQFhi9REyqr9NiVlI3tRzKRX1IFhVzA0F6hGH5NODxUnDTUVoG+ajxwU3ds2X8R\nZ9KL8crnB/H3yX3RJdzxz4smshaO9xDVYzCakHQ+Hx8nnsSzy/dizY7zKCnXYVC3YMy6ozfGDIhk\n8FqBh1KOiSO7YlS/CBSVVWPxqsPY28SpTdaSnX0J118/FA89dD8eeuh+TJ8+FTNmPIAff9xUt84n\nn3zY4LE5n3++Art3/2Z2Wf3tR44cjOLi4lbVePr0Sbz55uK6x88880TdPh599FGcP3++Vftri3Xr\n1mHMmDGYOXOmzZ/LHrZu3YqEhIR27eOdd97B+vXrrVRRDXa+5LZEUURxuQ5ZeeW4mFOG5PRinM0s\nhk5vAgD4e6sw/Jpg9IsJgobHda1OEAQM7x2O0AANNv1+EZ9uPo20y2WYEh9rs+f08PDAF1/8r+7x\n5cvZePrpx6DRaDBmzFg88sjsFvdx+PBBdOnS1ewyS7ZvzoULqcjLy617fPDgH3Vfr1ixol37ttT6\n9evxzDPPYMKECXZ5Pmfw9NNPW32f/ItCTksURegNJlTpjajWGVFhEJGdU4pqnRFVOgMqqw3QVtV8\nrqz/uUqP4godisqqoTeYGuwzyFeNLtE+6BUVgIggTx7TtYOYDn5IGN8d63dfwK+HM5GRW44XZ15r\nl+cOD4/AzJmz8b//rcKYMWOxaNFL6No1Bvffn4BPP/0Iu3btgEKhhJ+fH+bNewk7d25HcvJpvP/+\nu5DJ5NizZydKS0uQlZWF664biaKiwrrtAeDjj5fjzJlTMJlEPProYxgxYhS2bEnEb7/9iiVL3gaA\nusf/939z8MknH6KiohyLF79cV+NTT/0Nb775DqZMmYB33nkHffv2xerVq7Fq1SrIZDIEBwdj/vz5\n6Nq1K+bMmQNvb28kJyfj8uXLiI6OxtKlS+Hl5dXgdZeVleHll1/GmTNnIAgCRo0ahWeffRZLlizB\n8ePHkZmZiaKiIjz00EMNttu+fTs++OAD6PV6qNVqPP/88xg4cCCWLVuGo0ePIjc3Fz169EDnzp0b\nPH7ttdfw+uuvY9++fZDL5ejXrx/mzp0Lb29vxMfHo1+/fkhOTsazzz6LcePG1T1ffn4+/v3vf6Og\noAB5eXmIjIzE22+/jaCgIMTHx+Ouu+7Cvn37kJ2djVtuuQXPPfccgJpONTExEf7+/ujcubPZf/s/\n/vgDS5YsQVhYGDIyMqBWq/H6668jJiYGc+bMQXFxMTIyMjBmzBgUFBSgW7dumDlzJpKSkrBw4UJo\ntVoolUo899xzGD58OFJSUrBo0SIUFxfDaDQiISEBd999d5P/9xi+5FC01QZk5pUjr1iL/OIqlFTq\nrgRmTWhWVBlQpTPUBKzeiLbeC95TrUCgrwf8PFUI9tcgxF+DyGAveGuU1n1BZJFAHzWmjeuOH/9I\nx9mMYjzz35146Oae6N010ObPHRvbDampDYdzc3IuY82a/yEx8WeoVCp8881XOHXqBCZPvhc7dvyC\nyZPvxejRN2DPnp2oqqrGV1+tAQAsWvRSg/106BCJ5557Aamp5/H3v/8NX3/9fZN1hIWF45FHZuO3\n337FvHkLANQE87vvfgR/f/+69fbt24dPPvkEq1evRmBgINatW4cnnngCmzdvBgCcOHECK1euhCAI\nuPfee7F161ZMnjy5wXMtXLgQ/v7+SExMhF6vx2OPPYbPPvsM8+bNw+nTpzFt2jTcfPPNDbZJS0vD\nf//7X6xcuRIBAQE4d+4cHn74YWzbtg0AkJWVhU2bNkGhUGDZsmUNHr/77rvIzc3Fhg0bIJfL8cIL\nL2DJkiV45ZVXAADdunXD22+/fdXPZPPmzRgwYABmzZoFURQxa9YsbNiwATNmzAAAVFZW4n//+x9y\ncnIwbtw43HfffUhOTsa2bduwfv16qNVqPPHEE03+zE+dOoW5c+di8ODB+Oabb/Cvf/0L69atAwBU\nVVXV/UznzJkDANDr9XjiiSewcOFCjBkzBidOnMDcuXOxdu1aPPXUU1iyZAl69+6NsrIyTJkyBbGx\nsRgwYIDZ52b4kmQqqvRIv1yGtJwyXLxc85FTpG1yfZlQcxUmlVIGH08VAhUyqBQyKJVyqBQyeHt5\nQDSaoFLKoJTL4KGSQ62Sw0Mpr/n6ymeVQg6ZjB2to/FQyjFhRBf8cSoHu49n463VRzG4RwjujY9F\nsJ/GZs8rCALUanWD74WEhCI2tjtmzHgAw4Zdh2HDrsPgwUPNbt+vX/8m9z1xYk3nEx0diy5duuLk\nyWPtrnf37t249dZbERhY88Zk0qRJWLRoETIzMwEAo0aNgkpVM3u8e/fuKCkpuWofu3btwjfffANB\nEKBSqTB16lR8+eWXmDVrVpPPu3fvXuTm5jbohgVBQHp6OgBgwIABUCj+ipT6j3ft2oVnnnkGSmXN\nm9uEhIQGoTh48GCzzzl9+nQcOnQIn3/+OdLS0nDu3Dn07//Xz3vs2LEAgLCwMAQFBaGkpAT79u3D\nuHHj4O1dc5GYyZMnY9WqVWb337Nnz7rnnjx5Ml555RUUFRUBAOLi4q5a/+zZs5DJZBgzZgwAoE+f\nPkhMTMT58+eRnp6OefPm1a1bVVWFU6dOMXxJOpVVBmQXVuByQSUuFdR8ruluG16c30MpR1SoN0ID\nNAj0VcPPSwVvjbImQFVyKOWyZoeB/f09UVxcaeuXQzYkCAKG9Q5Hvx6h+GHHeRxKzsORc/m4tlco\nbhoShagwb6sfCjhz5hSioxseZ5bJZHjvvY9x5swpHDp0AMuWLcXAgYPxj3/886rtNRrPJvctq3cO\nsyiKkMsVEAQBYr0hG71e36p6RTPDPaIowmAwAECDNxKNn6uWyWS66nHt9k0xmUwYPnx4gw41Ozsb\noaGh+Pnnn+Hp2fDnUP+xueer/7obb1vrzTffxLFjxzB58mRce+21MBgMDV6Ph4dH3de1r7Xxa5bL\nm54g2XhZzb+RvMma5HL5Vf//zp49C1EU4evriw0bNtR9Pz8/Hz4+TV/JjeFLzRJFETq9CWWVOpRp\n9Sir1Nd8XalHRZUe1TojdAYjdHoTdAYTdHojdHojqg0mVFbpUVqhR7XeeNV+NR5ydAn3QViAJ8IC\nNQgP9ISfl4rHWAkA0CHYG/ff2A2n0oqw/3QO9p2s+QgN0GBAbDC6d/JHZIgXQvw07RrFSE+/iC++\n+ARPP90wVM+dO4uXX34RH3/8BXr16o3AwKC6WcxyuaLFoKr144+JmDx5CpKTzyAzMwO9e/fByZPH\nkZqagurqahgMGuzdu7tufblc3mDfjR8DwMiRI/HSSy9h+vTpCAwMxNq1a5s9tmnOyJEj8fXXX2Pe\nvHnQ6/VYs2YNrrvuuma3GTZsGN59912kpKQgJiYGO3fuxD//+U/s3LmzxecbNWoUvv32WwwdOhRy\nuRxff/01RowY0eJ2e/bswZNPPokbb7wROTk5+P3331ucCDZq1CgsXrwYM2fOhLe3d4NAbOzMmTM4\nc+YMevbsidWrV2PQoEHw9W36lLfo6GgIgoC9e/dixIgROHnyJB555BHs3LkTHh4e2LBhAyZMmIDs\n7GzcddddWL58udkOGmD4uh2TKKJCq0d5/SCt93Xd9ytqvl9eqYfeaGp5x40o5ALUKkVd9xrg64Eg\nXzUCr3z29FAwaKlZgiCgd9dAXNMlABeyS3EspQAXLtdcJ3rbwQwAgEwmwFujhJdaUXc4QS4XoJAJ\nNV/LZJDLBMhlArTl+aiqqsKdkyZd2VYGuUKJQSPvRoEYiZ8PZSCnqBIq73IMUAZj4NBReOjhB+Dp\nqYFarcYz//gXAGDEiFFYvvwdiwL40qUsPPzw/RAEAS+/vBi+vn4YMmQYBgwYhGnT7kZ4eBj69h2I\nlJRzAIA+ffrh44/fx9y5/8Rrr/0H119/Ax5/fCZef/2tun2OGDECDz30EKZPnw6TyYTAwEB89NFH\nDbrslrz44otYuHAh7rjjDuj1eowaNQqzZzc/U7tbt2545ZVX8Oyzz0IURSgUCnzwwQdNdq31PfbY\nY3jjjTcwceJEGAwG9OvXD/Pnz29xuyeeeAJLlizB+++/D7lcjkGDBtUNczdl9OjRSE5OxuTJk+Hr\n64uePXvWDSU3FhwcjLfffhtZWVkIDAzEkiVLmt23SqXCsmXLsHjxYixZsgRKpRLLli2DSqXC+++/\nj0WLFuGTTz6BwWDA008/3WTwAoAgmhuTcHJ5eWUWrxsS4tPk+iZRRFW1EZXVelRWGaCtNsBgEmE0\nmmAwijCaRBhNJggQIAg1fywE4K+vBdRb9tdyk1izrclU01n+9Vi88gfjyh+NK39E5DIBcnnt4yt/\nTOQ13zeaRFTpjKiqNtR81hlrAlSrR/mVDrXKYEJhiRbllXqUV+ktmqSkVMig8VDA88qHxkNe81it\nqPu+xkMBlUIGhaLmGKtCLoNSUVOfFMHqLsPO7vA6m3qNBqMJmbnlyCnSIq9Ei+Kyamiv/L83Gk01\nv0ei2OaJeM2RyQRoVHKoVX/9PtR9qORQX/naW6OsuwuUj6cSPp4qeKnNv9ls7u+PuXXJev744w+8\n+uqr2LSp+fO6bcUlO9+k8/morDbAdOUXseYz6h7rDSZU6WpOTxHkMhSXalGtM6Jab4T2SthWXAlb\nV3hrIgBQe8ihUSkQGexV9wfDs16INg5VpYLXXyHHo5DL0CXCF10imr8altjo995Y+9jU8M2uSRRh\nNIp1h0qqdbWHTWoOpVTra/4u1BxO+etxudb84ZSmyGUCvD2V8NGo4OtVE8geSjn8/dQwGYzwUP41\nEVAmEyATAJlQ+7UApUKGWxi+LsUlO987/q/pMf6WKBUyaFQ172rVV97R1oaVh1IOhby265RBIRMg\nyARAFCECEEVc+VzzRe3XNQ+vfE8EBNmVXyyhZvvaX7TaiQI1HXXNH4fa7vqvr8UGX8tlQs1s3rqZ\nvDJ4qhXwUivhpan5HBnhhxIX75QAIDDQG4WF5VKXYXPu8Dqd4TWaRBF6/V/nmVfpakafKqsMKK/S\nXzm8Y0BFVc1hngpt7alylod2fYlv8aIXrsQlO99Hb78G1QZjXcDJZUKDwFMpZfBQ1gwfRYT7oqKs\nqu6UFFc8BSUkxAcerveyrhIS7AWF2Prj087GHV6nK79GvcGIssqaztnTW42c3LIr3bWp3khdw06d\n8yNcj0uG7/A+4RavGxLijTy4XPNPRA5KqZAj0LfmdJaQEB/4efBa4e7IJYedS8qrpS6BiMiqdFod\nTlwowNLVSXjgpu6IH9RR6pLswlUnmnFWDRGRk6i9FnntzT/IeTF8iYicRM3JiuQKGL5ERM6C2esy\nGL5ERE5G5CRRp8fwJSJyEnWNL7PX6TF8iYicRO3pvsxe58fwJSJyGjXp64JniLodhi8RkZPgha5c\nB8OXiIjIzlzy8pJE5PiOH0/C0jffgFyhwLXDhuPRWY+ZXW/H9l/x6y/bsHDxGwCA2bNm1C1LS7uA\n22+fgL8/9Q/J6qyqqsKC+XNRWFgILy8vLHh5IQICAuuWf/7ZCpw/dw6LXqu5V+y7b7+Fo0f/hNFo\nxF13TcbESXdbXEtt48tRZ+fHzpeIJPH64oV4ddEbWPHplzh54jiSz5y+ap233nwd77/3ToNjnB9+\n/Bk+/PgzzP/3KwgNDcOMR2ZJWufa79cgJrYbVnz6JW697Q589snHdct+37sbe/fsrnt86OABZGRk\n4LMvvsKKT7/Eyi8/R2lpqeXFcMKVy2DnS+TANm3cgN9+247KygoUFxfjkUf/hvix43Dk8CF8sHwZ\nZHIZOnbshLnz5qOquhqLXn0J5WVlyMvPxd33TMXd90zB7FkzEBAQiNLSEjz3/Dy8+soCyOVymEwm\nLFz0BsLCw/H20v8g6egRAMD4m2/F1PsfwMsLXoRKpcKlS5dQkJ+Hf7/0Knr2ugZ33jYenbt0Rdfo\naDz7f8/V1frM03+HVvvXrSu7do3G83NfNPu6ysvLodfp0LFTJwDAsGHX4cCB/ejRs1eD9fr1H4DR\nY+Lxw7rvr9rH0rfewN+f+gc8PT0B1HTEH378WYN1Zs+agc5duuJi2gWIoohFr72J4ODguuVrVn+D\n7b/+3GCbl15ehPCICIvrTDr6JxKmPwQAuO66kfj0SvhmZKRj3drvMetvj2PD+nUAgL79+qN7j54A\nAEEQYDQZoVBY/me47gpXbH2dHsOXyMFVVWnx3vsfo6ioCA8/eD+uv34MFi18GSs+/QKBgUH48P33\nsClxA3r2ugY3jb8ZN8TfiLy8XMx+dAbuvmcKAOCm8bfghvix+G7Nt7imdx889dQz+PPPIygvL8PZ\nXcm4dCkLn335NYwGAx6dOR2DhwwFAIRHRGDuC//G+nXf44cf1mJur2uQk3MZK79eDX9//wZ1/ved\n9yx+TRUV5fDy8qp77OnlhayszKvWG3fTzTh86OBV3z937iwqKiowdOiwuu81Dt5a/fr1x9x58/H9\nmm/xxWef4J/Pzalbdu+U+3DvlPvaVWdFRTm8vX3qlleUl6GyshJLXl+Ml15ZhLQLqXXrenh4wMPD\nAwa9Hi8veAF33XV33ZsHS9Te8tRoYvg6O4YvkYMbOGgwZDIZgoKC4OPri7z8PBTk52HenH8BAKqr\nqjB02HBcN3IUvvnmK+zY/iu8vLxgMBjq9tG5SxcAwJ0T7sLKLz/DU08+Bm9vHzz+xFNIS0vFgIGD\nIAgCFEol+vTthwtXAqPHlS4tLDwcSUlHAQD+/v5XBS/Qcudbv8tc8PJCVFb+tW5lRQV8vC2/e82P\nWzZh4sTJFq1b+0aiX/8B2LnztwbLWup8vby8W6zTy8sblRUVdcu9fXzwx/7fUVCQjxfm/gtlZWXI\nz8vFl59/iukPz0RpaSnmPPcs4uKG4KEZj1j8mgFAIWf4ugqGL5GDO3P6FACgoKAAFRXlCA0NQ2ho\nGP7z1jvw9vHBrp07oNF44uuvVqJv3/64+54pOHTwQINjjTKhZnrHrp07MGDAIDw66zH8tHULVn75\nGW6IvxGbEtfj/mkJMOj1OHYsCbfdficAmL2JuyAzP1Wkpc63cZepUCqRmZGByI4dsX//73jk0dkW\n/0wOHfgDD06f0fKKAM6cPo2wsJo3D9ExMc3W1Ji3t3eLdfbvPwB79+5G7z598fvvezBgwCDcEH8j\nboi/EQBw+NBBrFv7HaY/PBNVVVV4YvYjmPbAdNx8620Wv95a8is/e6OR4evsGL5EDq6gIB+Pz34E\n5eXleH7OC5DL5Xj2n8/jmaf/DpNogpeXF156ZREEQcB/3nwNP2/bCh8fH8jlcuh0ugb76tWrN15e\n8CI++/RjmEwmPPPsv9Cz1zU4cvggZjz0AAx6PcaOG4+eva6x+euaM+9F/PvFOTCaTLh22HD06dsP\nAPDk43/D0nfeg1KpbHLbgoKCq7pvc8d8AWBT4gb87+uV0Gg0eOmVxVavc/Ld9+KlBS/i0RnToVAq\n8OqiN5rc17q13yErKwvr16/F+vVrAQDzF7yCyEjL7s0rvzLsbDDxloLOThBd8FIpJeXVUpdAZBWb\nNm5AWtoFm55K4yqW/ucNPPvP5xt8b/asGZgzdz66dO0qUVXWo9PqkJVXjvmfHsANgyKRcFMPqUuy\ni5AQyw9HOBOeakRELmHaA9OlLsHm5PLaYWd2vs6Ow85EDuz2OydIXYLTCAsPv+p7Tc2Adla1w848\n5uv82PkSETkJxZXO18DZzk6P4UtE5CT+6nw57OzsbBq+SUlJSEhIMLtMq9Vi6tSpSElJaXabgoIC\nPPbYY5g2bRqmTp2K9PR0W5ZMROSwas/zNXDY2enZ7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L\n27z55psXWPqqAAAgAElEQVS44447cOutt2L//v1ITU1FVFSUrcomInJYKqUcAKAzGCWuhNrLZp1v\nVFQUli1bZnaZTqfD8uXLER0d3eI2R44cQU5ODh566CEkJiZi6NChtiqZiMihKeQyyGUCqnUMX2dn\ns853/PjxyMy8+lqtABAXF2fxNllZWfD19cUXX3yB9957DytWrMDTTz9t9XqJiBxZQIAnFAo51Co5\nDCbRZc9/dRcOf6qRv78/4uPjAQDx8fH473//K3FFRET2V1RUc41ppUKGCq0eeXllEldkH676JsPh\nZzvHxcVh586dAICDBw8iNjZW4oqIiKSjUshRreews7OzW/gmJiZi9erVrd7u+eefx4YNGzB16lTs\n3r0bs2dbfvF1IiJXo1LKUMVjvk6P13YmInICOm3NTTIWrjyE1Eul+OS5G+ru7+vKOOxMRESS06hq\nTjeqrDa0sCY5MoYvEZET8VLX3GqxrFLXwprkyBi+REROxEtTG756iSuh9mD4EhE5ES91zRmi5VqG\nrzNj+BIROZG/Ol8OOzszhi8RkRPxvtL5ctjZuTF8iYiciKeax3xdAcOXiMiJeF8Zdi7lsLNTY/gS\nETkRXy8VBAEoKK2SuhRqB4YvEZETkcsE+GiUKChh+Dozhi8RkZPx9VKhuLwaBqNJ6lKojRi+RERO\nxtdLBVEEisp4HXtnxfAlInIyfl4eAIDcYq3ElVBbMXyJiJxMkG9N+GbnV0hcCbUVw5eIyMkE+6kB\nAJcKKiWuhNqK4UtE5GQCfNQQBOASO1+nxfAlInIySoUMfl4eDF8nxvAlInJCIf5qlGv1KOTFNpwS\nw5eIyAlFBHkCAFIvlUpcCbUFw5eIyAl1CPICwPB1VgxfIiInFB7oCUEAUi6VSF0KtQHDl4jICamU\ncoT4aZB2uYyXmXRCDF8iIicVGeIFvcHEoWcnxPAlInJSXcJ9AQDHUwskroRai+FLROSkOod5Qy4T\nGL5OiOFLROSkVEo5OoZ4Iz2nHMXlvMORM2H4EhE5segOHHp2RgxfIiInFnMlfA+eyZW4EmoNhi8R\nkRML9FUjIsgTJy8UcujZiSikLoDInaVlmz9FpEuEr50rIWfWp2sgsgsqsf9kDm6+NkrqcsgC7HyJ\nJJCWXdpk8NZf3tw6RLV6RgVAJhOw90Q2RFGUuhyyAMOXyM5aG6gMYGqJxkOB2A6+yMqrQHpOudTl\nkAVsGr5JSUlISEgwu0yr1WLq1KlISUlpdptTp05h1KhRSEhIQEJCArZs2WLLkolsqq1Byi6YWtI3\nOggA8OuRTIkrIUvY7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L25w8eRIPP/wwZsyYYatSiWzO\nWsGZll3K48FkVnQHXwT4eGD/ycuYPDoGfl4qqUuiZtis842KisKyZcvMLtPpdFi+fDmio6Nb3ObE\niRP47bffMG3aNMybNw/l5RxSIffGDpjMEQQBcd1DYDCK+OVQhtTlUAts1vmOHz8emZnmhz/i4uIs\n3qZfv36455570KdPH3zwwQdYvnw5nn/+eavXS2QrtghLdsDuJyDAEwqFHCa5HAbBfN80cmBH7D+V\ng+1HsjDt1mvg48nu11E5/KlG48aNg6+vb93Xr776qsQVEVnOll0qA9i9FBVVAgAKi7UoLqlqcr3B\nPULw29FL+N+PpzDp+hh7lWczISE+UpdgEw4/23nmzJk4duwYAGDfvn3o3bu3xBURETmuAd2C4aVW\nYNuBDBSV8aIbjspu4ZuYmIjVq1e3eruXXnoJixcvRkJCAo4cOYLHH3/cBtURWZ89js3y+C81plLI\nMbJfBHQGE9bvTpW6HGqCILrgGdklvMQaSczeocjhZ9en0+oAAPnFWuQ3M+wMACaTiC+2nkFBSRVe\nnD4YXZ34/weHnYnIYbEDpvpkMgFj4zpCBLDyp2SYTC7XYzk9hi+RlUkVhAxgqq9zmA96dwnAxctl\nvPCGA2L4ErkQBjDVN2ZgJDQecqz9LQU5V2ZLk2Ng+BJZUVvCLzWr9KoPe9dArslLrcSNcZ2gM5jw\n6ebTHH52IAxfIitpbeg1F7TtDWEGMNXq1TkAPTr543xmCTbvS5O6HLqC4UtkZ60J1vaEMAOYat00\npBN8PJVYv+cCzmYUS10OgeFLZBWWBl1bg7Q9AcwQJo2HAndc1wUA8NHGkyit0ElbEDF8ieylvcdy\nOQxN7dExxBuj+kagqKwaH244AaPJJHVJbo3hS9RO9gw2BjC1x7XXhKFbRz+cSS/GdztSWt6AbIbh\nS2QH7e16rbUvDkO7N0EQcOuwzgj09cC2gxnYeTRL6pLcFsOXqB0sCTJrBq+19skAdl8eSjkmXx8D\njYcCq35KxonUAqlLcksMX6I2kip4rYVdsPsK8PHApOujIQgC3l9/Auk5ZVKX5HYYvkROylrBzhB2\nT5HBXrh9eGdU6Yx457tjvP2gnfGuRkRt4Ehdb3Skde9YY+4OSZa8Xt5ZybZac1ej1jhwOge/Hb2E\nTqHemDNtEDQeCqvt2xpc9a5GDF+iVrJV8Nbuty0hZu0Abg+GsG3YKnxFUcTPhzJx9Hw+enTyxzP3\n9odKKbfa/tvLVcOXw85EEqod8q0f6M4+DOzMtbsjQRBwY1xH9Ojkj+SMYnyw/gQMRp4DbGsMX6JW\nsFbXa0nAtiaEHW1iFwPYuchkAm4b3hldwn2QlFKAzzafhsn1BkUdCsOXyELWCpTW7ocBTPagkMsw\ncVRXRAZ7Yf+pHHz981m44FFJh8HwJbKAtQKwrYHkrEHmrHW7K5VCjsmjoxHir8aOI1lYtytV6pJc\nFsOXyE7sEUSO1v2S81GrFLh3TCwCvD2wed9FbP0jXeqSXBLDl6gF1uh6rRG8HH4me/HSKHFvfCx8\nNEqs2XEeu5IuSV2Sy2H4EjXD0QLP0eoh1+XnpcK9N8RC46HAlz+eweHkXKlLcikMX6ImSDXByhXx\nZ+CcgvzUuGdMDJQKGT7aeBLJ6UVSl+QyGL5EZrQmLOzdZbL7JXsKD/TExJFdYRKBd9ceQ2ZuudQl\nuQSGL1Ej1uzSbNXxOWMAs/t1Xl0ifHHrtVHQVhuxdM1R5JdopS7J6TF8ieppbUDYepIVkaO4pksg\n4gdGorhch6Wrk1BWqZO6JKfG8CWC81/SsTmO1P2ScxvcMxRDe4XicmEllq07Dr2Bl6FsK4YvubX2\nhK41ut7613ZubS2OfFyaXNfo/h3QM8of5zNL8NW2ZF4Fq40c695RRDbmSN1tU7WkZZe67J2BXPm1\nuQtBEHDLtZ1RVFaN3cey0SnUGzcO7iR1WU6HnS+5vLZ0lS1pb9dryU0VLMHul6SgVMhw16hoeKoV\nWL39PC440JtaZ8HwJZdlq+O47Q0xWwQrkb35eqlw27DOMJpEfLjhBCqrDFKX5FRsGr5JSUlISEgw\nu0yr1WLq1KlISUmxaJvExERMmTLFJnWS63HU4JK6Lna/ZE1dI3xxba8w5BVX4dvt56Qux6nYLHxX\nrFiBF198EdXV1VctO378OKZNm4aMjAyLtjl16hS+//57Htgni9gy4Gx11yJ77c8RuOJrcmcj+0Ug\n1F+DPceycTqtUOpynIbNwjcqKgrLli0zu0yn02H58uWIjo5ucZuioiIsXboU8+bNs1Wp5EIc+Q+7\n1BfcILIFuUzA+KFREATgy5+SefqRhWw223n8+PHIzMw0uywuLs6ibYxGI1544QXMnTsXHh4eNqmT\nXIetQ8jeXa+tpGaVIjqSM46dTUCAJxQKOUxyOQyCY03X8ff3xLDsUuw7no0/Uwpw28joljdycw59\nqtHJkydx8eJFvPTSS6iursb58+exaNEivPDCC1KXRg7G0YPP0etri9o3Iwxy+ygqqgQAFBZrUVxS\nJXE1VxsUG4RDp3LwzbZk9I8OhIdSbpX9hoT4WGU/jsax3j410q9fP2zevBmrVq3C0qVLERsby+Al\ncgD1RwE4iYsAwEutRFyPEJRU6LDvxGWpy3F4dgvfxMRErF692l5PR27EHl2lqww5WwPDlpoysFsw\nBAHYfSxb6lIcniC64BTikvKrZ1iT63KG8G1PjZZcEaq1V41qz1CxuZ9Fa/fHq1y1nk5bcyOD/GIt\n8h1w2LnW97+lIDW7FK8+ci0ig73avT8OOxO5KXZ6f+HPglrSM8ofAHDqAk87ag7Dl5yaOw33OjKG\nMtXqGOoNADiXWSxxJY6N4UvUDGuECt8gkDvx81LBU61A2uUyqUtxaAxfonZiuPJ0I/qLIAjw1ihR\nWqmTuhSHxvAlp8XQq2HPyUsMWbKEp4cCOr0J1Xqj1KU4LIYvUROsdRyzPeHIWcHkjGrPoZEJgrSF\nODCGLxG1SuPul90wNabVGeChlEGpYMQ0hT8ZIjdjjbCMjvRl6JJZoiiirFIPH0+V1KU4NIYvOSWp\nb6JgD7a4uIa1tSWApa6ZbKu4XAdttQHRHfjv3ByGLxERWU1mXjkAIKaDn8SVODaGL5EdtLbbs1XX\ny6FisrUz6UUAgD7RgRJX4tgYvkR2YmlYOsNwM5E55Vo90i6XoWuELyKC2n9dZ1fG8CVqp9YEYUvr\n2jJU2fWSrf15Lg+iCIzoGy51KQ6P4UtkZ+YCtkuEr1U748YcJXjZsbsubbUBh8/mwddLhZF9I6Qu\nx+EppC6AyB0xhMjV/HE6Bzq9CZNGRUGllEtdjsNj50tkBfYKU2fuesl15ZdocehMLoJ81Rg9MFLq\ncpwCw5fISTh78LLbd02iKOLnQ5kwicC0cd3hwa7XIgxfIiuxZbg4e/CS6zqcnIeM3HIM7BaMAd2C\npS7HaTB8iVwQg5fsIa9Yi51Jl+DjqcSDN/eUuhynwglXRFbUJcLX6pe+bE3X66ihyyFn16PTG7Hx\n9zQYTSIevrUX/Lx4LefWYOdLZGXWDBpXCF5yPaIo4scD6SgoqcKNcR0xIJbDza3F8CUyo71BZo0A\ndpXgZdfreg6eyUVyejFiO/rh3vhYqctxSgxfIhtpzYUzzG1rKQYv2dO5zGL8dvQS/LxUeHxiHyjk\njJG24E+NqAnWCrXWXn7SVYKXXM/lwkps+v0iVAoZnr6nH/y9PaQuyWlxwhWRHdQGalOTsVrbITpD\n6LLrdS2lFTqs3ZkCg9GEv0/qiy7h/PdtD4YvOSVbzCo2JzrSF6lZ1nseawQSg5fsrVpnxPc7U1BR\nZcB9Y7thYPcQqUtyehx2JmqBI4WdI9XSFAavazGaRGzYewH5JVUYG9cR44Z0krokl8DOl8gC1u6A\n21qDrTQVmK0dXWDwupaaS0dmIO1yGQbEBuO+sd2kLsllNBu+CQkJEAShyeUrV660ekFEjqo2/KQI\nYVsFr6X3F7YkhBm8rufA6VwcSylAVJg3Zt15DWSypvOAWqfZ8H3yyScBAGvWrIFarcbEiROhUCiw\nadMmVFdX26VAoqbY67hvY/YOYamCt7l16//cGbqu6Ux6EXYmXUKgjweevrs/1CoOlFpTsz/NoUOH\nAgDeeOMNrF27tu77AwYMwKRJk2xbGZGDs0cI2yJ47X0BEHI+WfkV2LzvItQqOf5xT38E+PCUImuz\naMJVdXU1Lly4UPc4OTkZBoOhxe2SkpKQkJBgdplWq8XUqVORkpLS7Dbnz5/Hfffdh6lTp2LOnDkW\nPS+RPUVH+tokJB01eMm1FZdXY92uVIiiiMcn9kHHUG+pS3JJFo0jzJkzBwkJCQgLC4PJZEJhYSHe\neuutZrdZsWIFNm7cCI1Gc9Wy48ePY8GCBcjJyWlxm6VLl+LZZ5/FkCFDMGfOHOzYsQPjxo2zpGxy\nA1INPZtTPyzb2w1bO3gZumQJnd6IH3anQlttwIPje6BPdJDUJbksi8J35MiR2L59O86ePQtBENCj\nRw8oFM1vGhUVhWXLluG55567aplOp8Py5cuvWmZum2XLlkEul0On0yEvLw/e3nwXRo6vrUPSDF2S\niiiK2PJHOvKKqxA/KBJjBkZKXZJLsyh8S0pK8OabbyI9PR3vvPMO5s+fjzlz5sDPz6/JbcaPH4/M\nzEyzy+Li4izeRi6XIysrCw8//DC8vb3RsyfvGUkNOVL321jjMG0qjBm61JKAAE8oFHKY5HIYBOtf\nomH7oQyczShG35hgPDl1EK/ZbGMWhe/8+fMxYsQIHDt2DF5eXggNDcW//vUvfPzxx7auDwAQGRmJ\nbdu24bvvvsPrr7+ON954wy7PS87DkQO4PltfJIOh67qKiioBAIXFWhSXVFl13+cyi/HLwXQE+arx\nyG09UVRYYdX9t0dIiI/UJdiERW9tMjMzMWXKFMhkMqhUKjzzzDO4fPmyrWsDAMyePRtpaWkAAC8v\nL8hkfDdG5rlz8LTnDkrk3gpKq7B5X83NEp6c3Bc+niqpS3ILFnW+crkcZWVldRfcSEtLa3UIJiYm\norKyElOmTGnVdrNmzcKcOXOgVCqh0WiwcOHCVm1P5MoYuNQeBqMJiXvToDOYMHtCb0SFuWaX6YgE\nURTFllbatWsXli5diuzsbMTFxeHo0aNYvHgxxowZY4cSW6+knBcAcXfOMATdXgxe96LT6gAA+cVa\n5Ftp2PnXw5k4fDYPowd0wPSbHXM+jasOO1sUvgBQWFiIY8eOwWg0on///vD19YVK5ZjDEwxfAlw7\ngBm87sfa4XvxchlW7ziPiCBP/PuhIfBQytu9T1tw1fC1aOx4ypQpCAwMxJgxYzB27FgEBgZi8uTJ\ntq6NqF1c9TioK74msi+dwYifDqZDEIBH77jGYYPXlTV7zPfBBx/EgQMHAAA9e/asO+Yrl8sRHx9v\n++qIrKA1NwdwdAxesoa9xy+juFyHW66NQpdw/p+SQrPhW3vXooULF+LFF1+0S0FEtuLsIczgJWso\nKqvG4bN5CPZTY8LIrlKX47YsGna+55578MwzzwAAUlJSMG3aNKSmptq0MCJbccbhaGerlxzXzqRL\nMJlE3D0mBioON0vGovCdP38+Jk6cCACIiYnB448/jhdeeMGmhRHZmrOEsDPUSM4hp6gSZzOKEdPB\nF0N6hkpdjluzKHy1Wi1Gjx5d93jEiBHQarU2K4rInhw5hB21LnJOB07nAgDuHNm1bg4PScOii2wE\nBgbim2++wZ133gkA2LJlC4KCeLcLci3N3TC+qXVa0p7jywxesqbSCh3OpBehY4gX+nQNlLoct2dR\n+L722mt4+eWXsWTJEiiVSgwZMgSLFi2ydW1EkrLFTectDWMGL1nbqbRCiCIwNq4ju14HYFH4dujQ\nAR999JGtayFyeQxVkoIoijh1sQgKucBjvQ6i2fD929/+ho8++gjx8fFm3yn9+uuvNiuMiIiso6RC\nh/ySKgzsFgxPtVLqcggthO+rr74KAFi1apVdiiEiIuvLyC0HAPTqHCBxJVSr2fD9/fffm904MjLS\nqsUQEZH1ZeXX3J+3eyd/iSuhWs2G7x9//AEASE9Px8WLFzF69GjI5XLs2bMHsbGxdef+EhGR4yoq\nq4YAoEOwl9Sl0BXNhu9rr70GAEhISMDGjRsRGFgzPb2kpARPPPGE7asjIqJ2K6vUwddbBYW8dfdh\nJ9uxaLZzbm4u/P3/Gq7QaDTIy8uzWVFE1PJpSZw5TZbSVhsQ4u8pdRlUj0XhO2bMGDz88MO46aab\nYDKZsHXrVtxyyy22ro3IbVlyPnDtOgxhapEgALDo1u1kJxaF79y5c/HTTz/hwIEDEAQBM2bMwNix\nY21dG5Fbau1VsRjC1BKZABhNDF9HYlH4AkBwcDBiY2MxadIkHDt2zJY1Ebmt9lyOkiFMTfHWKFFY\nWgVRFHl1Kwdh0dH3L7/8Em+//Ta++OILaLVa/Pvf/8ann35q69qIqA2c9X7FZDsBPmpU600oqdBJ\nXQpdYVH4/vDDD/j000+h0Wjg7++P77//HmvXrrV1bURuxZqhyQCm+oL91ACA1Ev8f+EoLApfmUwG\nlUpV99jDwwNyOW/CTOTIGMBUq2u4DwDgRGqBxJVQLYvCd+jQoXjjjTeg1Wrxyy+/4LHHHsOwYcNs\nXRuR27BVUDKACQAigrygVsmRdL4ARpNJ6nIIFobvc889h86dO6NHjx5Yv349Ro8ejeeff97WtRGR\nFTCASSYT0DMqAEXl1Th6jt2vIxBEUWxx/vmMGTPw2Wef2aMeqygpr5a6BCKL2SscOQvauem0NZOl\n8ou1yC+pavX2+SVafLblDHpG+eO5+wdZuzybCQnxkboEm7Co862qqkJ2dratayGiFqRmldZ9tBY7\nYPcW7KdBl3AfnEkvxskLhVKX4/YsOs+3sLAQ8fHxCAoKgoeHR933eT9fovaxJBCbCtr634+OtKyr\nTcsuZQfsxq7v3wFpl5Oxevs5vPTwUMhkPOdXKhaF7wcffICdO3di//79kMvlGD16NIYPH27r2ojc\nnqUdbu16loYwuafwQE/06RqIExcK8cuhDNw0NErqktyWRcPOH374IY4ePYp7770Xd911F3bv3o2V\nK1faujYil9ZS19uWoWVLtuHws3sb3b8DPD0U+H5nCrLyyqUux21ZNOHq5ptvxtatW+sem0wm3H77\n7diyZYtNi2srTrgiZ9BcCLYleOuzpAPm8LNzae+Eq/rOZRbjh90X0CnUGy8kxEGldNzrNrj1hKuI\niAhcvHix7nF+fj7CwsJsVhSRO2tv8Nbuo6X9sAN2X906+qN/TBAycsvx2ZbTsKAHIyuzKHwNBgMm\nTJiARx55BLNnz8Ztt92GnJwcPPjgg3jwwQeb3C4pKQkJCQlml2m1WkydOhUpKSnNbnP69Gncf//9\nSEhIwMyZM5Gfn29JyUQOrangay4w07JLzX4QtcXYuI6IDPbCgdO52PR7mtTluB2LJlw9+eSTDR7P\nmDGjxW1WrFiBjRs3QqPRXLXs+PHjWLBgAXJyclrcZtGiRZg/fz569eqFb7/9FitWrMDcuXMtKZvI\nJbQUsM3dzSg1q7TZIWjOfnZfCrkME0d2xaptyfhh9wX4e3tgVP8OUpflNiy+vGRzH+ZERUVh2bJl\nZpfpdDosX74c0dHRLW6zdOlS9OrVCwBgNBobnOpE5ErMdb2t6Wzb0k239jnItXhplLh7TAzUKjm+\n2HoGB07ntLwRWYXF9/NtrfHjxyMzM9Pssri4OIu3CQ0NBQAcOXIEX331Fb7++mvrFkpkZ+bCrr3B\nW3+btnTA5PgCAjyhUMhhksthECzqmyzi7++JmXd64JONJ7Ai8RQC/D1xXT92wLZms/C1pi1btuCD\nDz7Axx9/jMDAQKnLIbK55oK3uWHm2uWtHUrm8LPjKyqqBAAUFmtR3M7Zzo15KWWYfH00vvstBW+s\nPIgZt/XCdX0irPocbeXWs52ltGHDBnz11VdYtWoVOnXqJHU5RDZnLnjNTbBqbtKVpd11S9uQ++gY\n4o0pN8RCpZTjk02nsf2I+ZFLsg67hW9iYiJWr17dqm2MRiMWLVqEiooKPPnkk0hISMC7775rowqJ\npGGNUGQAkzV0CPbC1PhYeKoV+GrbWazZcR4mE09DsgWLLrLhbHiRDXJULQVi4+VtCcPGw8eNH7d0\n7Lctw88t1ckh7faz5kU2WlJUVo21O1NQWFaNgd2C8egd10CtkuYoJYedicjqWjqv15yM7AJkZLf9\nnqzW7n7b2pmT4wrw8cADN3VHVJg3/jyXj9e/OoLCUtsGvrth50tkR41DqKmut/F6LYVtp4igBo/b\n2/2a26Yxa3TlZDl7dr61jCYRPx/KwLGUAvh5q/DU5H7oaud/Q3a+RCQJS7rcxutY46YNlsy4bi12\nwM5FLhMwfkgn3DAwEiXlOrz+9REcOpMrdVkugZ0vkZ20pett7fBycx1wW7rf+ttaMzjZAbeeFJ1v\nfeezSpD4exr0BhNuHdYZk66Ptsv9gNn5EpFdmQvewtzMqz5a2qZWc+HfEmt3rOyAnU9spB8eGNcd\n/t4qbNl/EUvXHEVppU7qspwWw5fIgTQVSuaCtv6y+uoHsCOHnCPXRuaF+Gvw4PgeiIn0xam0Irzy\n+UFc4L9jmzB8iSRmLoTqB2hToVufJeuYY43bF5J7UasUmDQqGiP7RqCwrBqvfXUYu5IuSV2W02H4\nEknA0ms5mwvV0rw0lOalNbtuU92vo3WbjlYPWUYQBFzXJxx3j46BQi7DFz+ewRc/nobeYJK6NKfB\n8CWyg9aETG1wNg7exqFb+7j+95oKYCJbiO7giwfH90BogAa7krLxxtdHUFTGCa+WYPgSScjSUDbX\n6TbFXLfcXPcr9dAzu1/n5u/tgWk3dkfvLgFIzS7Fy18cwNmMYqnLcngMXyIHUBtA5rpeS4K3NeFM\nZG1KhQy3DuuM+EGRKKvUY8k3f2LHn1lwwTNZrYbhS2Rnrek0G4dq/aFmc8tq1Ya3sww9s/t1foIg\nYHCPUNx7Qyw8lHKs+ikZX249w+PATWD4EjmBpiZZmTsO3BRHHnom19E5zOeq48DFvPDRVRi+RDbW\nVFfX1PWba7tWaw0ls/sle/PzUmHajd1xzZXjwAtXHkJWXrnUZTkUhi+RxFoKndYe8639uq3n/hJZ\ng1Ihw23DOmNUvwgUllZj8VeHcTqtUOqyHAbDl8gBNRW4pXmpDT4s2aa+5oKeQ89kbYIgYHjvcNw+\nvDN0ehPeWpOEg7wxAwCGL5FDMXdu719fp6Ixc9+zlCMO8zpiTdR+13QJxD03xEAhF/DhhhPYezxb\n6pIkx/AlsqO2dpfNhWz9ZbVh3Xjo2VmO+5Lrigr1wZQrM6E/3XwaO49mSV2SpBi+RA7AXDjy3F1y\nNRFBXpga3w2eHgqs3JqMA6dzpC5JMgxfIgdz9fm7LQ8tt2f4uT5HOO7LoWfXFhqgwT1jYqBUyrAi\n8RROuekkLIYvkQ21dJpRW4KmqXN+iZxFWKAn7hoVDQB4b91x5BRVSlyR/TF8iZxIcxfUqO1+Gx/3\nbcwenWVqVulVH0T1dQ7zwc1Do1ClM+KD9SegNxilLsmuGL5EDsL87QOvnkzVcPnV32tqv+aOK9si\niAwUglMAABdbSURBVJsKWgYwNda7ayD6xQQhPacca7anSF2OXTF8iRxQa4aVrT0E3Z6QbGlbBjA1\nNnZQRwT5qrH9SCYuXi6Tuhy7YfgSOQFXOsZrSQBz0pX7UCpkGDsoEiKAb3895zZ3QmL4EpFVsKul\ntuoS4YuYSF8kZxTj1MUiqcuxC4YvEbUbg5faa1ivMADA3mPucfUrhi+RC7HW+b62xrCmxjoEeyHA\nxwOHz+ZBW22QuhybY/gS2YkzBU5ranWm10WOSxAEdO/oD73BhAtucMyf4UtERA4hxF8NAMjKr5C4\nEttj+BIRkUMI9K0J39wircSV2B7Dl8hGpDhdxjck2q7PZ8tzgnm6kfuSywSpS7A5m4ZvUlISEhIS\nzC7TarWYOnUqUlJSLNpm8eLF+Oabb2xSJxERSU9vMAEAVErX7wtt9gpXrFiBF198EdXV1VctO378\nOKZNm4aMjIwWtyksLMQjjzyC7du326pUIiJyAIWlVQCAAB+1xJXYns3CNyoqCsuWLTO7TKfTYfny\n5YiOjm5xm4qKCjz55JOYMGGCrUolcni+IV3atMyWOMuZrC0jrxwA0L2Tv8SV2J7CVjseP348MjOv\nvlA8AMTFxVm8TadOndCpUyfs2rXL6jUSOSrfkC4ozUuDb0i005y7S7YVEOAJhUIOk1wOg+B6w7J6\ngwkXc8rh56VC/55hEATXPu5rs/AlIuuqDeTG3/vra/OTrQJDOwIAOkUE2ao0soOiK/e8LSzWorik\nSuJqrO94agEqtHrccm0U8vPL674fEuIjYVW243pvn4icVG1INqdh2HZpdh2phqOJWstkEnHwTC5k\nAhA/qOXfA1dgt843MTERlZWVmDJlir2eksglMVTJ1Rw9n4/8kiqM6BOOID/Xn2wFAILogvdvKim/\neoY1kb01Pk+1/gSl2mW1n2tvdF974/va4eW/Pjd/3Lf+kHPjzrfxsHOXCN8G2zZ+XCs60vz3G7+W\n9mjuOYCma3NHOq0OAJBfrEW+Cw07l1Xq8emWU1DIZFg8axh8vVQNlnPYmYhcDsONpGQyidi8Lw06\nvQl3j4m5KnhdGcOXSEK14dfSZCjfkOgmJ1RZ0vU6I74xcH27j11Cem45BnYLxugBHaQux64YvkR2\nUn+ItalgqQ3LpiZNNQzaaLPBaw5nOpOjOZVWiD9O5yIsQIOZt13j8qcWNcZTjYhswJbXJbb39ZuJ\nrC31Uim27L8ItUqOJyb1hafa/aKInS+Rg7NkdrMlpyABlg/ltjQRqqXl1ngOck1Z+RXYsOcC5HIZ\n/nFPf3QM8Za6JEkwfIkcTOOh58ZfN9bUspYursFjqmRvGbnl+G7HeRhNJjw2oY9bXEayKQxfIok1\nN+mqcQA397jx+kSOJO1yKb7/LQVGk4jZE/pgQLdgqUuSlPsNtBM5uZaubAW0b5Yzh4PJ2s6kF2Hz\nvosQBOCJSX0xINa9gxdg50skGXPDvrXdb/3wbO0xX3P7a+r52qM9Ic2Adw+iKOKPUznYuDcNSoUM\nT9/dn8F7BcOXyEFZGsCNl1nS9bblqlb2xOPRzs9oEvHTwQzsTLqEAB8PzH0gDr27BkpdlsPgsDOR\nHUVH+pq9NGOXCN8WT0+ypAOuH7y27HprNfV6WtqGXFu1zogNey8g7XIZosK88fTd/RHg4yF1WQ6F\nnS+Rg6kfmra4QhW7SrKlkgodvv7lLNIul2FAbDDmTBvE4DWD4UskofpB2NJVr5oTGNqx3V1vWzvS\n1mzHrte1ZeaV46ttycgvqcLYuI74+6S+UKs4wGoOw5fIATU+7ahxuDZeJjVLQpXB67pEUcSf5/Lw\n7a/noK024P4bu2HauO6QydzrkpGtwbckRA6k/rHfThFBdbcarGVJ0DbX9dpyolXtPswdA27N/jks\n7lwMRhN+PpSJ46kF8NYo8fjEPujZOUDqshwew5fIBpqbQNV4klJz65oL4Oa05QYK1u5I2eG6j7JK\nHdbvuYDsgkp0DvPGE5P6IthPI3VZToHhS+RgGoexJQFsLnQt7XqJ2iIzrxwb9lxARZUBw3uHYfrN\nPaFSyqUuy2kwfIkcQOPANRfAAMyGsCXB2xRH61L5BsHxiaKIo+cL8OuRTEAUMXVsN4wb3NHtbgnY\nXgxfIgm05fxYoO335WWokTUYjCb8cjgTx1IK4K1R4LGJfdGLx3fbhOFL5CDMdb9A6+8NbM9JVuQ+\nyrV6rN+diksFlegU6o0nJ/VFsD+P77YVTzUikoi58DMXlJZ2rV0ifJ26w3Xm2l1ddkElVv2UjEsF\nlRh2TRjmJcQxeNuJnS+RjVhyycjW7AtougtuKrjY9VJ7nb5YhB//uAijUcQ9Y2Jw87VRPL5rBQxf\nIgmZO/bbXGi3pjt0puBl1+t4RFHEnuPZ2HcyB2qVHI/f1Zt3JLIihi+RA2pv18wwo/bQ6Y3YvP8i\nzmWWIMRfjacm90NkiLfUZbkUHvMlklhTnWhbA7S57dj1UkvKKmtujHAuswQ9o/wxf/oQBq8NsPMl\nsiFLO9jmbjUIWDbjuaUQc8TgJceSX6LFd7+loKxSjxsGReK+sd2gkLNHswWGL5GD+P/27jUmqnNf\nA/gDcxFkwAsXW09AxSO7qOXowIFe0NYNlrYxsjdqAS2mFxt1H3sxTY/UVG2ioE3aL0UaE00bv5hq\nm+60eNLa3VZBxUJFoYCluikdRa0Ccplhhhlm1ns+KKNU7s6sNWt8fomJzMu7+P9ZMA/vmjVrDfXe\n3zuD9c9BPJKVo68GL1e9vqO5xYIvyn5Dj8OFFYtm4ulknljlTQxfIi/z5FnPfdsbDQYvDedCcwdK\nyn+HJIA1S+Lx2NwHlS7J7zF8iXzIUHcGupftEQ3m7IVWfFd1CXptIF77+8OYGzu2q6jR6PBgPpEM\nlFit+nLwctXrG8rr/sC/Tl+CIViH/11pZPDKiOFLJBM5A5jBS0MRQuD4z1dxovYqIiYEYXNeImZw\nv8jKq+FbU1ODvLy8AcdsNhtycnLQ2Ng45ByTyYTc3FysXLkS27ZtgyRJ3iyZyKvGEsCjDdKxBm/f\n5Sn//M9T1H75S3/RF7yn6v9A5MRg5K8yYsqk8UqXdd/x2mu+e/fuxVdffYXg4Luv/1lbW4tt27bh\n2rVrw87ZuXMn3njjDaSkpGDr1q34/vvvsXjxYm+VTeST7gzUgV4PvpeV7nCB+OfxsZw8xtD1Hafq\nr+HHc9cwZVIw3sqdj8lhQUqXdF/y2so3JiYGRUVFA445HA4UFxcjNjZ22Dn19fVITk4GACxcuBDl\n5eXeKZhIJvcaRH2r4Tv/yVnLSFbH3lo9072pOt/iPtTM4FWW11a+GRkZaG5uHnAsMTFxxHOEEO73\nmoWEhMBsNnu2UCIFjPV2gd6owde2RQObNGk8tFoNJI0GzoDRr5tqLrTg+6pmTDSMQ8E/HsfUCF61\nSkk+/1ajwMDbP2Td3d0IC+MvOfkPT78HeKRfk9Snvd0KALjRYUNHZ8+o5ja3WPD5D/9GkF6Djc/9\nF3RCoKVFHQuZyMhQpUvwCp8/23n27NmoqKgAAJSVlSEpKUnhiog8S84wZPDef9rNdvzz+G8QQuB/\n/v4woqO44vUFsoVvSUkJDh48OOp5mzZtQlFREbKzs9Hb24uMjAwvVEekLDleG2Xw3n8cThf+efw3\n2Owu5GX8BXNmTFa6JLolQAghlC7C0zotdqVLILonSl6OknyTw+YAALR22NA6gsPOQggcPmXCL6Z2\n/NX4H3j+qb94u0Sv4GFnIpKNpwKTwXv/qmlswy+mdsRODUNO2iyly6E/8fkTrojuV0PdyWg0c+n+\nc8Pcg6NnLmN8kBb/+Ntc3hbQBzF8iVRguCBm2FIfSRL4v1Mm9LokvLwknu/l9VEMXyKVYdDSUKrO\nt+BqmxUps6cgOX6K0uXQIHgsgojIT5itDpysvYqQIC1WpvN1Xl/G8CUi8hNHz16GwylhxaL/ROh4\nvdLl0BAYvkREfuCPG1Y0XOzA9AdCkZrwoNLl0DAYvkREfqC0+goAYMWTMxF463r45LsYvkREKne5\nxQLTNTPmTJ+E+Om8ipUaMHyJiFSu4pfrAIAlj01XthAaMYYvEZGK3ejqwb8vd2Lm1DDERU9Uuhwa\nIYYvEZGK1TS2AQAW/3e0+97n5PsYvkREKuV0SahraoMhWIf5syKVLodGgeFLRKRSTVe7YLO78Njc\nB6DT8ulcTbi3iIhUquFiBwAgZTYvI6k2DF8iIhVyuiQ0Xu5ExIQgTH/AP+95688YvkREKnS5pRsO\np4T5syJ5opUKMXyJiFSo6datJR+O5UU11IjhS0SkQpdaLNAEBvC9vSrF8CUiUhmnS8L1dhuiowzQ\n6zRKl0NjwPAlIlKZlg4bXJLAjKlhSpdCY8TwJSJSmattVgBA7IMMX7Vi+BIRqYw7fLnyVS2GLxGR\nyrR22qDTBmLK5PFKl0JjxPAlIlIRIQQ6LHZETQxGIN/fq1oMXyIiFbH2OGHvlRA5MVjpUugeMHyJ\niFSkrasHABA1ieGrZgxfIiIVae28Gb5c+aobw5eISEW6uh0AgPCwIIUroXvB8CUiUhFLTy8AICxE\nr3AldC8YvkREKmKx3Qrf8TqFK6F74dXwrampQV5e3oBjNpsNOTk5aGxsBABIkoStW7ciOzsbeXl5\nMJlMAID6+nosX74cK1euxPbt2yFJkjdLJiLyaX3hGzqeK18181r47t27F++88w7sdvtdY7W1tVi1\nahUuXbrkfuy7776Dw+HAwYMH8eabb2LXrl0AgC1btmDz5s04cOAADAYDSkpKvFUyEZHP67Y5odcF\nYpyeN1RQM6+Fb0xMDIqKigYcczgcKC4uRmxsrPuxqqoqLFiwAAAwb9481NXVAQCuXbsGo9EIADAa\njaiqqvJWyUREPs9mdyIkiIec1U7rrQ1nZGSgubl5wLHExMS7HrNYLDAYDO6PNRoNnE4noqOjUVlZ\nieTkZBw9ehQ2m81bJRMR+axJk8ZDq9XA4ZIwKXQcIiNDlS6J7oHXwne0DAYDuru73R9LkgStVovC\nwkIUFBSguLgYSUlJ0Ov5OgcR3X/a22/eTKHH7oR2QhBaWswKVyQPf/0jw2fOdjYajSgrKwMAVFdX\nIy4uDgBQWlqK999/H/v370dHRwcef/xxJcskIlKM0yXB6RII0vvMuonGSLY9WFJSAqvViuzs7AHH\nFy9ejJMnTyInJwdCCBQWFgIApk2bhhdeeAHBwcFISUnBE088IVfJREQ+pcfhAgAE8WQr1QsQQgil\ni/C0TsvdZ1gTEamZw+ZAu9mON4tPIjk+Cusy5ypdkix42JmIiBTlunWdA00gn7rVjnuQiEglXK6b\nByq1Gt7HV+0YvkREKuGUboavRsOnbrXjHiQiUgmXq++wM1e+asfwJSJSCVffypfhq3oMXyIilbj9\nmi+futWOe5CISCVun+3Mla/aMXyJiFTi9glXDF+1Y/gSEamEuBW+Oh52Vj2/vMIVERGRL+OfT0RE\nRDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJTKt0AZ7U09ODt956C21tbQgJCcF7772H\nyZMn9/ucQ4cO4dNPP4VWq8X69euxaNGiIee5XC5s3LgRy5cvx8KFCwEA69evR3t7O3Q6HcaNG4d9\n+/b5ZZ+7d+/GsWPHoNVqsXnzZiQkJKi2x+rqahQUFECj0SA1NRUbNmwAoNy+lCQJ7777Ln799Vfo\n9Xrs2LED06ZNc4//8MMPKC4uhlarxbJly/Dcc88NOsdkMiE/Px8BAQGYNWsWtm3bhsDAwAG/P3KS\no8cdO3bgzJkzCAkJAQB89NFHCA2V9+brnuyzT2FhIWbMmIHc3FwAA/+sk8oJP/Lxxx+LDz/8UAgh\nxOHDh8X27dv7jV+/fl0sWbJE2O120dXV5f7/YPNMJpPIzs4WTz75pCgtLXVv55lnnhGSJMnU1d3k\n6LOurk7k5eUJSZLE5cuXRVZWlowder7HpUuXCpPJJCRJEmvWrBH19fVCCOX25ZEjR8SmTZuEEEKc\nPXtWrFu3zj3mcDhEenq66OjoEHa7XWRlZYmWlpZB56xdu1b8+OOPQgghtmzZIr799ttBvz/+1KMQ\nQuTk5Ii2tjY527qLJ/tsa2sTL7/8skhLSxMHDhwQQgz+s07q5leHnauqqrBgwQIAwMKFC3Hq1Kl+\n4z///DPmz58PvV6P0NBQxMTEoKGhYdB5VqsVBQUFSElJcW+jtbUVXV1dWLduHXJzc3H06FGZurtN\njj6rqqqQmpqKgIAATJ06FS6XCzdu3JCpQ8/2aLFY4HA4EBMTg4CAAKSmpqK8vFzRfXlnnfPmzUNd\nXZ17rLGxETExMZgwYQL0ej0SExPx008/DTqnvr4eycnJ7p7Ly8sH/f7Iyds9SpIEk8mErVu3Iicn\nB59//rms/fXxZJ/d3d149dVXkZmZ6d6GL+xL8jzVHnb+7LPPsH///n6PhYeHuw85hYSEwGw29xu3\nWCz9DkmFhITAYrH0e/zOeQ899NBdX7e3txcvvfQSVq9ejc7OTuTm5iIhIQHh4eEe7a+PUn1aLBZM\nnDix3zbMZvNdh349wds9WiwWGAyGfp976dIl2ffln+u/syaNRgOn0wmtVjtkbwPNEUIgICDgrp4H\n2oacvN2j1WrF888/jxdffBEulwurV6/G3LlzB/x59iZP9hkdHY3o6GiUlZX1277S+5I8T7Xhu2LF\nCqxYsaLfYxs2bEB3dzeAm39BhoWF9Rs3GAzu8b7PCQ0N7ff4QPPuFBERgZycHGi1WoSHhyM+Ph5N\nTU1ee8JWqs/BtuEN3u5xoM8NCwuTfV8OVb8kSdBqtSPu7c45gYGB/T53sJ7lfi3U2z0GBwdj9erV\nCA4OBgA88sgjaGhokD18PdnnSLavxL4kz/Orw85GoxGlpaUAgLKyMiQmJvYbT0hIQFVVFex2O8xm\nMxobGxEXFzfsvDuVl5fj9ddfB3Dzl+DChQuIjY31UkcDk6NPo9GIEydOQJIkXLlyBZIkeWXVO9TX\n91SPBoMBOp0OFy9ehBACJ06cQFJSkqL70mg0ulc31dXViIuLc4/NnDkTJpMJHR0dcDgcOH36NObP\nnz/onNmzZ6OiosLdc1JS0qDfHzl5u8fff/8dubm5cLlc6O3txZkzZzBnzhxZewQ82+dAfGFfkuf5\n1Y0VbDYbNm3ahJaWFuh0OnzwwQeIjIzEJ598gpiYGKSlpeHQoUM4ePAghBBYu3YtMjIyBp3XJz8/\nH88++6z7LOCCggLU1NQgMDAQa9asQXp6ul/2WVRUhLKyMkiShLfffhtJSUmq7bG6uhqFhYVwuVxI\nTU3Fxo0bASi3L/vOdj1//jyEECgsLMS5c+dgtVqRnZ3tPkNWCIFly5Zh1apVA86ZOXMmmpqasGXL\nFvT29iI2NhY7duyARqMZ8PsjJzl63LdvH77++mvodDpkZma6zw5Wa599ioqKEBER0e9sZyX3JXme\nX4UvERGRGvjVYWciIiI1YPgSERHJjOFLREQkM4YvERGRzBi+REREMmP4Eo1Sfn4+9uzZg1deeQUA\ncOXKFTz99NPIysqC2WxGVlYWMjMz0dTUpHClROSrGL5EYxAVFYW9e/cCACorKzFnzhx88cUXaGho\ngF6vx5dffokZM2YoXCUR+Sq+z5doGEII7Nq1C8eOHUNUVBRcLheWL1+O3bt3o7i4GOvXr4fVakVa\nWhpOnz6N1tZWpKSkYM+ePUqXTkQ+SrXXdiaSy5EjR3Du3DkcPnwYZrMZS5cudY/Fx8fjtddeQ2Vl\nJXbu3ImKigrs3r2bwUtEQ+JhZ6JhVFZW4qmnnoJOp8PkyZPdl98kIhorhi/RMAICAiBJkvvjwe4+\nQ0Q0UgxfomE8+uij+Oabb+BwONDZ2Ynjx48rXRIRqRz/hCcaRnp6Ompra7FkyRJERET0u/sMEdFY\n8GxnIiIimfGwMxERkcwYvkRERDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJjOFLREQk\ns/8HkrAgsxv62WMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.16343369599e-07\n", + "MAE : 0.000227541731508\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean -0.000026\n", + "std 0.000341\n", + "min -0.001370\n", + "25% -0.000128\n", + "50% -0.000006\n", + "75% 0.000125\n", + "max 0.000875\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close_bid'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "predictions['diff'].describe()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "so it looks i improved on the previous results, by using lookback of 1 tick, 100 iterations, and my additional features. However, can i predict fast enough to make trading decisions?\n", + "\n", + "Sim results:\n", + "\n", + "- it got a lot worse when i changed lookback to 20 ticks" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb b/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb new file mode 100644 index 0000000..ad1113a --- /dev/null +++ b/capstone_project/.ipynb_checkpoints/main_fx_spot_prediction_notebook-checkpoint.ipynb @@ -0,0 +1,3605 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "# Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "To run on EC2:\n", + "- Enter the repo directory: cd aind2-cnn\n", + "- Activate the new environment: source activate aind2\n", + "- Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "- Find this line in output and copy url to browser: \n", + "- Copy/paste this URL into your browser when you connect for the first time to login with a token: http://0.0.0.0:8888/?token=3156e...\n", + "- change the 0.0.0.0 with EC2 IP.\n", + "- you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime, os\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "from collections import OrderedDict\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "initval = True" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"\n", + "\n", + "if initval:\n", + " rerunSQL = False\n", + " log = False\n", + " useKaggle = False\n", + " runLSTMBinary = False\n", + " simname = \"500_epochs\"\n", + " sim_desc = \"\"\"\n", + " kaggle params but with 500 epochs to account for more features\n", + " \"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if log:\n", + " #log = {\"simname\": [\"mine_initial\", simname], \"sim_desc\": [\"kaggle params\", sim_desc]}\n", + " #df_log = pd.DataFrame(log)\n", + " if os.path.isfile(\"sim_log.xlsx\"):\n", + " df_log = pd.read_excel(\"sim_log.xlsx\")\n", + " df_log.loc[len(df_log)]= [simname, sim_desc] \n", + " df_log.to_excel(\"sim_log.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffled
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-07
MAE0.0002857810.0003408460.0005363070.0002029050.000594482
count102102103103102
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372
std0.0004009530.000444650.0008268490.0002555660.000478296
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495
75%0.0002399680.000177890.000316920.0001162290.000830978
max0.0007556680.001287820.003273720.00053370.00159335
mse train all feature:004.3917e-074.45245e-075.16241e-07
mse test all feature:006.79626e-076.55241e-084.82937e-07
mae train all feature:000.0004235650.0004267730.000505385
mae test all feature:000.0005363070.0002029050.000594482
mean avg bo spread:003.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.882353
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.655556
if same sign, how often is actual better than predicted in both directions:000.97826110.366667
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.0666667
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.333333
if not same sign, how often is actual worse than -0.1 percent return in both directions000.10526300
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_log = pd.read_excel(\"sim_log.xlsx\")\n", + "display(pd.read_excel(\"log_results.xlsx\").T)\n", + "#display(df_log)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "if rerunSQL:\n", + " str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + " df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "if rerunSQL:\n", + " str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + " #print(str_query)\n", + " df = getQueryDataframe(str_query, [min_date, max_date])\n", + " df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.set_index('datestamp', inplace=True)\n", + " df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.to_csv(\"data/eurusd_features.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create features" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "df = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df.set_index('datestamp', inplace=True)\n", + "df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if useKaggle:\n", + " # load kaggle reference dataset for comparison\n", + " df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + " #df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + " # Rename bid OHLC columns\n", + " df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + " df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + " df_kaggle.set_index('date', inplace=True)\n", + " df_kaggle = df_kaggle.astype(float)\n", + "\n", + " simname = \"bm_kaggle\"\n", + "\n", + " df = df_kaggle\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + " \n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Explore dataset - show some graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJKCAYAAABgNMM7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vH7TEvvBJBeFFAUVFwLiCiysijoAnZFrHzt\nZe1lLSwL4i5WcFV+wi5SRFdUUGygoIKyYqOI9JJQQgjpbdr5/ZEwyZBJn2RS3q/r2otTnvOcz4xe\nJy7nzucxTNM0BQAAAAAAAAAAAAAAAKDOLKEuAAAAAAAAAAAAAAAAAGjuCOEAAAAAAAAAAAAAAAAA\n9UQIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4AAAAA\nAAAAAAAAAABQT4RwAAAAAAAAAnA6ndq+fXuF46mpqerdu7d69+6tJ598MgSV1Uww6ly0aJFvjo8/\n/jjIFUr5+flKSUkJ+rwAAAAAAAChQAgHAAAAAADgKKtXr9bFF1+spUuXhrqUFmvp0qUaMWKEfvjh\nh1CXAgAAAAAAEBS2UBcAAAAAAADQlOzfv1833HBDqMto0dauXav77rsv1GUAAAAAAAAEFSEcAAAA\nAACAcjweT5XnO3XqpM2bNzdSNaE1ZswYjRkzJujzVvcdAwAAAAAANEcsRwUAAAAAAAAAAAAAAADU\nEyEcAAAAAAAAAAAAAAAAoJ4M0zTNUBcBAAAAAABQXmFhoRYsWKBly5Zpx44dysvLU3x8vE488USN\nGjVKI0aMkMVS8XeL1qxZo+uuu06S9MEHH6hnz56aP3++li5dqp07d8rpdKpjx44699xzdeONN6pN\nmzZ+1/fu3bvSmubMmaMzzjhDqampOv/88yVJV1xxhSZOnOgbs2jRIj366KOSpB9++EHLly/X66+/\nrtTUVF/9L730ksLCwnzX7N+/X2+99Za+/fZb7d27Vy6XS8nJyTrttNN05ZVX6pRTTqnTd3h0nc88\n84w+/PBDLVq0SJs3b1ZhYaHatWunwYMHa/z48eratWuFOcp/nueff14XXXSR3/mioiK98847+uKL\nL7Rlyxbl5+crOjpanTt31qBBg3T11Verbdu2AWsKZPny5erUqZPfsa1bt2revHlas2aNDhw4INM0\n1bZtW/3hD3/QVVddpRNPPDHgXK+88oqmT5+umJgY/fDDD5o1a5bmzZungwcPKikpSWeccYays7O1\nYsUKSdKyZcvUuXPnSmubOXOm/vnPf0qSlixZol69elU6FgAAAAAAtE62UBcAAAAAAABQ3rp163Tn\nnXcqLS3N73h6erq++uorffXVV3rrrbf08ssv+wU8jpaRkaGHHnpIW7Zs8Tu+fft2bd++Xe+++65m\nz55daYijvt5++21NmzbNr/78/Hy/AM67776rv/3tbyouLva7NjU1Vampqfrggw90xRVX6K9//avs\ndnuda8nPz9cNN9yg7777zu/4nj17NG/ePL3//vt6+eWXNXjw4BrPuX//ft14443asWOH3/HMzExl\nZmZq3bp1mj17tqZNm6Zhw4bVumbTNDVt2jS9+eab8nq9fud2796t3bt367333tM111yjRx99VDZb\n5X/NNW3aNM2cOdO3f+DAAVmtVo0ePdoXwlmyZIluv/32SudYvHixJKlv374EcAAAAAAAQECEcAAA\nAAAAQJOxdetWjR8/XgUFBYqKitLVV1+ts846SzExMdq7d68++ugjLVu2TD///LNuuukmLVy4UJGR\nkQHneuSRR5Senq7Bgwfr0ksvVYcOHZSamqpZs2Zp/fr1ysnJ0cMPP6yPPvpIhmFIKumec/DgQU2Y\nMEFSSQeZq666SpLUpUuXWn2WF154Qcccc4zuvfdede7cWb/++qu6d+/uO79o0SI98cQTkqROnTrp\n2muv1UknnSSr1apt27Zp3rx52rRpkxYuXCiXy6UpU6bU+vs84qOPPpJU0uln3Lhx6tmzp9LS0rRg\nwQKtWbNGBQUFevjhh/X5558rOjq6RnM+8sgj2rFjh6xWq8aPH69BgwYpLi5Ohw8f1sqVK7Vw4UIV\nFRXpwQcf1Geffaa2bduqbdu2+uCDD7RhwwbfZ7/rrrt83XHKh6omT56sOXPmSJISEhJ0/fXXa8CA\nAbJYLFq3bp1mzZqlgwcPau7cucrPz9ezzz4bsM78/HzNnDlTxx13nO688061adNG33//vc455xz1\n6dNH8fHxysrKqjKEs2nTJl+Ya/To0TX6fgAAAAAAQOtDCAcAAAAAADQZDz74oAoKCtS+fXu99dZb\nfsGXfv36acSIEZo3b54mTpyoLVu26NVXX9UDDzwQcK709HTdeuutuu+++/zmGDZsmC677DL9/vvv\n2rZtm9atW6f+/ftLko4//njFxMT4xicnJ+v444+v02cxDENvvvmmevbsKUkaMGCA71xaWppvGauz\nzjpLr776ql+Y6JRTTtHo0aN9IaFFixZpxIgROuecc+pUiyRdcMEFmjZtmhwOh+/Yn/70J02YMEFf\nf/21MjIy9M0332jEiBHVzrV37159//33kkpCNLfddpvf+SFDhqhnz56aOHGiCgoK9NFHH+nGG2+U\nw+HQ8ccfr5ycHN/YDh06VPiOf/zxR18Ap3v37pozZ45fQGfAgAEaPXq0brzxRm3cuFHvv/++hg4d\nqgsuuKBCrV6vVzExMZozZ44SExMlSaeddprv/MiRIzV37lzt2LFDGzZsCNgZ6cMPP5Qk2e32Ckty\nAQAAAAAAHFFx8XQAAAAAAIAQWLVqlTZt2iRJevjhhyvtPHPNNdfo9NNPlyQtWLBALpcr4Ljk5GTd\nddddFY47HA6/bia///57fUsP6PTTT/cFcI42f/58FRYWymazaerUqQG7+dhsNj399NO+UNCRUEpd\nOBwOTZw40S+AI5UEhY50+pFKOhHVxKFDh3zbXbt2DTjm0ksv1WWXXaZ77rlH/fr1q1W9b775pm/7\nueeeC7jsWHx8vF588UVZrVZJ8ltu6mjDhw/3BXCONmbMGN/2kiVLKpz3eDy+TkJDhgypdB4AAAAA\nAABCOAAAAAAAoElYsWKFb3vQoEFVjh0yZIgkKS8vT+vXrw845swzz5TNFrgJcPmAT35+fi0rrZkj\n3XUCOfJZe/bsqXbt2lU6LiYmRqeeeqokae3atZUGjqrTr18/JSQkBDxXPkSTnZ1do/m6dOni+26f\nffZZLVu2rEJtYWFhmjRpkm6//Xa/zjPVcbvdvi47ffv2rTLA06VLF5199tmSpPXr1yszMzPguJNP\nPrnSOfr27atevXpJkj7++GN5PB6/86tXr1Z6eroklqICAAAAAABVYzkqAAAAAADQJBzpgiPJ1+mm\nJlJSUnxBlfI6duxY6TXlO8+43e4a36s2jjnmmIDH3W63tmzZIknavHmzevfuXaP5CgsLlZGRofbt\n29e6lqquCQsL86utJhISEnTZZZdpwYIFSktL0x133KGoqCidccYZGjhwoAYNGqQePXrUuk5J2rdv\nny8YVVWQ6Yj+/ftr5cqVMk1TW7duDfjvTnXf2dixYzVlyhSlp6fr+++/9wuBHVmKKiEhwRf+AgAA\nAAAACIROOAAAAAAAoEmorItJdXJycgIej4qKqvQawzDqdK/aiI6ODng8JydHXq+3TnPWtFPN0ar6\nLsozTbPGcz7++OMaP368ryNOfn6+vvzyS02aNEkjRozQH//4R73wwgs6fPhwrWrNysrybSclJVU7\nvk2bNr7tyr6fyv5ZHDFq1Cjf5yi/JFV+fr6WLVsmSRo5cqTsdnu19QAAAAAAgNaLTjgAAAAAAKBJ\nONKFJSEhQbNnz67xdVUt5xRKlQV9ynebGTx4sO6///4az1l+6ahQs9vteuyxx3TLLbfos88+01df\nfaW1a9eqqKhIkrRnzx699tprmj9/vt58880ql5UqrzZBIEl+y0dV9p1XF7pKSkrSkCFDtHz5cn3+\n+ed6+umnFR4eri+++EKFhYWSWIoKAAAAAABUjxAOAAAAAABoEuLj4yVJBQUF6t27tyyWltnA98jn\nlCSv16vjjz8+hNXUX3Jysq699lpde+21cjqd+umnn7Rq1Sp9/PHH2rt3r3JycvTggw/qk08+qdE/\n07i4ON92RkZGtePLjyn/3dbWmDFjtHz5cuXn5+vrr7/WBRdcoKVLl0qSevXqpb59+9Z5bgAAAAAA\n0Dq0zL/NAgAAAAAAzc5xxx0nSSouLtamTZuqHPv1119r1qxZ+uyzz2q93FGoORwOX0ebjRs3+nXG\nCWTBggWaN2+eVqxYUe3YxuL1epWSkqLvvvvO77jD4dCZZ56p+++/X59++qlOPvlkSdKuXbu0c+fO\nGs3duXNnRUZGSpJ+/fXXasf/8ssvvu3u3bvX9CNUMGTIECUmJkqSL4xz5PPRBQcAAAAAANQEIRwA\nAAAAANAknH322b7t+fPnVzrO4/HomWee0dSpU3X33Xf7lgsKlsbowHPks2ZlZenjjz+udNzu3bs1\nceJETZw4UX/7299kszWNpsZ//etfNWzYMF1//fVKSUkJOOZIIOeI4uJi33ZV37HVavVdt3HjRm3Y\nsKHSsbt37/YFZfr06aOkpKRafY7y7Ha7Ro0aJUlasWKFVq5cKafTKavV6jsOAAAAAABQFUI4AAAA\nAACgSRg2bJg6d+4sSXrvvfe0ePHigOOmTJmi1NRUSdL555+vjh07BrUOh8Ph2y4oKAjq3Edcd911\nslqtkqTJkydr8+bNFcYUFhbqwQcflNfrlSSNGzeuQWqpi/POO8+3PWXKFJmmWWFMYWGhli9fLkmK\niory61JT3Xd8ww03+LYfeughHTp0qMKY7Oxs3XffffJ4PJKkG2+8sQ6fxN+YMWMklYSjXnrpJUkl\ngank5OR6zw0AAAAAAFq+pvHrUwAAAAAAoNWz2WyaOnWqxo8fL5fLpYceekhfffWVLrroIiUnJ2vv\n3r1auHChvv/+e0lSXFycHnvssaDXkZCQILvdLpfLpY8++kgDBw5UbGysunbtqvj4+KDco1u3brrv\nvvv0z3/+U1lZWbr88st19dVX65xzzpHD4dCWLVv073//W7t27ZIk9evXT9dcc01Q7h0MQ4cO1Ukn\nnaT169dr+fLlGjt2rK666ip169ZNpmlqx44dmjt3rrZu3SpJuummmxQREeG7vnyo5e2331avXr1k\ns9l0/PHHKyIiQqeffrrGjRunt956S9u3b9fFF1+s8ePHa8CAATIMQ+vXr9fs2bN14MABSdLIkSN1\nySWX1Ptz9enTRyeccIJ+++0333f/5z//ud7zAgAAAACA1oEQDgAAAAAAaDIGDBigN954Q/fdd5+y\nsrK0dOlSLV26tMK49u3ba8aMGerUqVPQa7BarRo6dKg+++wzHTx4UDfffLOkko41Y8eODdp9brnl\nFhmGoRdeeEFFRUWaNWuWZs2aVWHcaaedpunTp8tutwft3vVlsVg0ffp03XTTTdq2bZs2btyoJ554\nosI4wzB01VVX6fbbb/c73qFDB/Xt21cbN27U1q1bfV1+/vOf//iWonrsscdkt9s1e/ZsZWRk6Pnn\nnw84//XXX6/7778/aJ9tzJgx+u233ySVBL2GDRsWtLkBAAAAAEDLRggHAAAAAAA0KQMHDtTy5cu1\nYMECrVixQtu3b1dubq4iIyN17LHH6vzzz9eVV16p6OjoBqth8uTJSkpK0vLly3X48GHFxsYqMzMz\n6Pe5+eabNXz4cM2bN0+rV6/Wvn37VFhYqPj4ePXt21cXX3yxLrzwQlksTW9F8fbt2+v999/Xe++9\npy+++EJbtmxRVlaW7Ha72rZtqzPOOENjx45V//79A17/2muv6bnnntPq1auVk5Oj+Ph4v2WnLBaL\nHn74YV1yySWaP3++1qxZo7S0NFksFnXo0EFnnHGGLrvsMvXp0yeon2vEiBGaNGmSb7v80lkAAAAA\nAABVMcxAi3YDAAAAAAAArdDKlSs1YcIESdLChQt18sknh7giAAAAAADQXDS9X6MCAAAAAAAAQmTR\nokWSpGOPPZYADgAAAAAAqBVCOAAAAAAAAICk1atXa9myZZKkq666KsTVAAAAAACA5sYW6gIAAAAA\nAACAUJk0aZLy8/OVm5urlStXyu12q3379ho7dmyoSwMAAAAAAM0MIRwAAAAAAAC0WhkZGVq6dKlv\n3263a/LkyYqIiAhhVQAAAAAAoDlqMiGc9PTcUJcAoAVISIhUZmZBqMsAgAbH8w5Aa8HzDkBD69Pn\nJK1atUrFxcXq1auPbr75VvXq1a/R/66K5x2A1oRnHoDWgucdgNaitT3vkpNjKj3XZEI4ABAMNps1\n1CUAQKPgeQegteB5B6ChjRlzmcaMuSzUZfC8A9Cq8MwD0FrwvAPQWvC8K2MJdQEAAAAAAAAAAAAA\nAABAc0cIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4A\nAAAAAAAAAAAAAABQT4RwAAAAAAAAAAAAAAAAgHoihAMAAAAAAAAAAAAAAADUEyEcAAAAAAAAAAAA\nAAAAoJ4I4QAAAAAAAAAAAAAAAKDRLF26RP/61ysNNv9PP63VU089WuH4Sy9N04EDB/yO7d69S3fe\nOSEo97UFZRYAAAAAAAAAAAAAAACgCbvnnvsbdH5COAAAAAAAAAAAAAAAAK1A1NNPKGzJB8Gd9IrL\npYeerHJIcXGRJk9+RgcOHJDL5dJ5553vO7dgwVwtX/65rFar+vc/RbfffrfWrftF06e/KJvNpvDw\ncE2aNFUOR5j+8Y/JSk1Nkdfr1S233KZTTz2t0numpKToL3+5U9nZ2Ro9eqxGjvyz7rxzgh588DFF\nRUVr4sQnZJqmEhOTgvZVEMIBAAAAAAAAAAAAAABAg/ngg/fUvn0HPfPMFKWk7NF3332rvLw8bd++\nTV9++YVee22WrFarHn/8Ia1a9Y1++eUnDR06TJdffrW+/fZr5eTk6rvvPlFcXLweffRJZWdn6Y47\nJmju3HcqvafH49bUqS/I6/Vo/PirNWjQEN+5OXPe1LBhw3XxxaO1fPnnev/9/wblcxLCAQAAAAAA\nAAAAAAAAaAXyn56k/KcnBXXO5OQYKT23yjF79uzWmWcOlCR17txF69fHKCMjQ7t371LfvifJZiuJ\nr/Tvf7J27tyuceNu0Jw5s3TPPbcpObmtTjjhRG3fvk3r1v2s337bIKkkZJOVlaX4+PiA9zzhhJNk\nt9sl2dW9e3cdOLDPdy4lZY9GjRotSTrppP5BC+FYgjILAAAAAAAAAAAAAAAAEEDXrt21adNvkqS9\ne1P1+uszSo9302+/bZDb7ZZpmvrll5/VuXNXff75Ul144Ui98srr6t69hxYvXqSuXbtp2LDhmj79\nDU2b9rLOO2+YYmNjK73n1q2b5Xa7VVhYqF27dqpjx06+c9269dDGjeskyVdXMNAJBwAAAAAAAAAA\nAAAAAA3mkkvGaMqUibrzzgnyeDy64oprlJ2dpZ49j9XQocN02203yTRN9evXX+ecc65++22jnn12\nkiIiImQYhh566HG1aZOsqVMn6c47Jyg/P0+jR18mi6Xy3jMOh0MPPHC38vLydOONExQbG+c7N378\nTZo48QktW/a5OnToGLTPaZimaQZttnpIr6Y1EQDURHJyDM8TAK0CzzsArQXPOwCtBc87AK0JzzwA\nrQXPOwCtRWt73iUnx1R6jk44AAAAAAAAAAAAAAAAaHZmz56pH3/8ocLxxx57KqgdbmqKEA4AAAAA\nAAAAAAAAAACanRtuuEU33HBLqMvwqXxxLAAAAAAAAAAAAAAAAAA1QggHAAAAAAAAAAAAAAAAqCdC\nOAAAAAAAAAAAAAAAAEA9EcIBAAAAAAAAAAAA0Cy4Pd5QlwAAQKUI4QAAAAAAAAAAAABo8kzTJIQD\nAGjSCOEAAAAAAAAAAAAAaPJMU3J7zFCXAQBApQjhAAAAAAAAAAAAAGjyvKYpr5cQDgCg6SKEAwAA\nAAAAAAAAAKBZ8BDCAQA0YTUK4fz6668aN25cwHOFhYW68sortX37dt+x119/XVdccYXGjBmjd999\nNziVAgAAAAAAAAAAAGi1LFu3yL7l91CXAQBApWzVDZg5c6YWL16siIiICufWr1+vp556Smlpab5j\na9as0c8//6wFCxaosLBQs2bNCm7FAAAAAAAAAAAAAFqdduecLklK358pWa0hrgYAgIqq7YTTpUsX\nvfLKKwHPOZ1OzZgxQz169PAd+/bbb9WrVy/dcccduvXWW3XuuecGrVgAAAAAAAAAAAAArZt1985Q\nlwAAQEDVdsIZPny4UlNTA54bMGBAhWOZmZnat2+fXnvtNaWmpuq2227Tp59+KsMwqrxPQkKkbDYS\nqwDqLzk5JtQlAECj4HkHoLXgeQegteB5B6A14ZkHoD7istJlTT4l1GXUCM87AK0Fz7sS1YZwais+\nPl49evSQw+FQjx49FBYWpsOHDyspKanK6zIzC4JdCoBWKDk5RunpuaEuAwAaHM87AK0FzzsArQXP\nOwCtCc88AHWVXPqn9U/DlX4wJ6S11ATPOwCtRWt73lUVOKp2OaraGjBggL755huZpqm0tDQVFhYq\nPj4+2LcBAAAAAAAAAAAA0FqYZqgrAACgWrXuhLNkyRIVFBToiiuuCHj+vPPO0w8//KBLL71Upmnq\nySeflNXKMlMAAAAAAAAAAAAA6saSssf/gNcrWYLebwAAgHoxTLNpxEZbU2siAA2ntbU6A9B68bwD\n0FrwvAPQWvC8A9Ca8MwDUBfW9euUeP7Zvv1Dm3fJTEgMYUXV43kHoLVobc+7Rl2OCgAAAAAAAAAA\nAACCyXC7/PYtBw+GqBIAACpHCAcAAAAAAAAAAABA0+Y8KoSzb2+ICgEAoHKEcAAAAAAAAAAAAAA0\naUc64Xi6dJUkmXv2hLIcAAACIoQDAAAAAAAAAAAAoGlzlYZwuveQJNk/+ySU1QAAEBAhHAAAAAAA\nAAAAAABN2pFOOO7jekmSopd9GspyAAAIiBAOAAAAAAAAAAAAgKbNWRLC8bbvEOJCAACoHCEcAAAA\nAAAAAAAAAE1baSccMyqy7JjTGaJiAAAIjBAOAAAAAAAAAAAAgCbNcJWEcGSzq3jEyJJj+XkhrAgA\ngIoI4QAAAAAAAAAAAABo2kpDOKbDITMqSpJk5BHCAQA0LYRwAAAAAAAAAAAAADRpZZ1wbAp7/7+S\npMgX/xnCigAAqIgQDgAAAAAAAAAAAICm7UgIx26X4fFIksLffTuEBQEAUBEhHAAAAAAAAAAAAABN\nmuPTjyVJpsUiT+cukiTXGWeFsiQAACoghAMAAAAAAAAAAACgSQtb8aUkyf7Lz8p77nlJkvN0QjgA\ngKaFEA4AAAAAAAAAAACA5sHrlTcqRpIU/Y/JkmmGuCAAAMoQwgEAAAAAAAAAAADQLBTeeocUHubb\nN7IyQ1gNAAD+bKEuAAAAAAAAAAAAAAAqVa7bjbf9MTLtDt++UVAgMyExFFUBAFABnXAAAAAAAAAA\nAAAANF1Op9+umZTk2zby8hq7GgAAKkUIBwAAAAAAAAAAAECTZeSXBG2KLhpV4Zx91TeNXQ4AAJUi\nhAMAAAAAAAAAAACgyTLy80s2IiIrnIt55P5GrgYAgMoRwgEAAAAAAAAAAADQZBnFxZIkMyIixJUA\nAFA1QjgAAAAAAAAAAAAAmq6iIkmSGRbmO5T92puSpOI/XRSSkgAACIQQDgAAAAAAAAAAAIAmyygu\nCeEovKwTjufEfpIkb9t2oSgJAICACOEAAAAAAAAAAAAAaLKMAJ1wTIej5JyzOCQ1AQAQCCEcAAAA\nAAAAAAAAAE2OkZUp+8zXZOTlSZLM8PCyk6UhHDmdIagMAIDAbKEuAAAAAAAAAAAAAADKM9LTFTdm\npOybN8kbF1dysFwIx3SUdMUxCOEAAJoQOuEAAAAAAAAAAAAAaFIShp8r++ZNkiRLdrYkyQwr1wkn\n7EgnnGIVpuyV3O7GLhEAgArohAMAAAAAAAAAAACgSYi+6TqZiUmypqZUOFd+OSrTXhLCsa1fpy4D\njlfBteOV//wrjVYnAACB0AkHAAAAAAAAAAAAQEh4vaYkyeP1ysjKVMSSDxT5nzcDDw4LK9t2lIRw\nrPv3SZIi5/6nQesEAKAmCOEAAAAAAAAAAAAACAmP1yu53bJNfVaWTb+VHe/UucJYMzKqbMdikWm3\nN0aJAADUGCEcAAAAAAAAAAAAACHh8ZoKn/sftXnhWSVeMsJ33JqaInf7Y1R4zXUl46Jj5Bo4yO9a\n0xEmAACaEkI4AAAAAAAAAAAAAELC4zVlFBYGPGd4vcp7Ybp27cnQwa0pMmNi/c6bERF1uqfb463T\ndQAAVIcQDgAAAAAAAAAAAICQ8HhNmVFRAc9ZD6ZJkmxWi2zWiq81zeho/wOVhHkC3RMAgIZACAcA\nAAAAAAAAAABA43M6Ff32XFm3b/M7nP/AIzItFhVcO16SZLcFfqVpxsT47VsOZ9Totl5COACABmIL\ndQEAAAAAAAAAAAAAWp+IN99Q9FOPVTjuOfY4pW3cIWtCvCTJYhgBrz96eSrL4Qx5O3aq9r50wgEA\nNBQ64QAAAAAAAAAAAABodNad2wMeN+12WZMSJUvVrzKPXsbKyKhZJxxjx3bFXTlG1u1ba1YoAAA1\nRAgHAAAAAAAAAAAAQKMzHY6Ax50XjqrR9faf1vrt12Q5KiMjQ93OO12OL5cp5p47anQfAABqihAO\nAAAAAAAAAAAAgMZns/vt5o8arbSUdMlqrdHl3uS2fvtGdnb1t/z157IdZ3GN7gMAQE0RwgEAAAAA\nAAAAAADQ+Oz+IZyC6a/JEhZW48udQ//ot2/kVB/CqW6JKwAA6oOfMgAAAAAAAAAAAAAanWmz+R8I\nD6/V9QX3PeC3b/32m8rvZZolG+VDOIZRq/sBAFAdQjgAAAAAAAAAAAAAGp/D4dvcs2FnrUMxZmSU\n337Eyi8l05ScTkU9cK/f0lMeb2kIh+ANAKABEcIBAAAAAAAAAAAA0OhMW9lyVBHJibWfoLSTjiep\nje9Q7JWW3buEAAAgAElEQVRjFTnjJUXOmaX4UcN9x90eryTJknHId8z+80+1vycAAFUghAMAAAAA\nAAAAAACg8TnKQjh16lBjGEpZt037/7de2TdMkCSFfbVMUVP+VnK6qMg39EgnnJhbb6p7vQAAVIMQ\nDgAAAAAAAAAAAIBGV74TTl052iXLGhkh59R/yiy3vFV5ln17FfvUYzKys2R4vRXOew6kScXF9a4F\nAABCOAAAAAAAAAAAAAAanddirfccFsOQzVryytNwOv3OFY0eK6mk+03i7NcV8dI0Fdx6p98Y+zcr\n1b7fcYp+9IF61wIAACEcAAAAAAAAAAAAAI2u2F2xK01QWW2SJNuG9ZKkqOkvKeL1GX5D4seOkiRF\nzP1Pw9YCAGgVCOEAAAAAAAAAAAAAaFwulxL/8XdJ0qHpMxvmHh63JMmSl+s7ZJhmw9wLAAARwgEA\nAAAAAAAAAADQyCLe+JdsWYclSRabLShzFl90sSQpe/Y8SZLhctduAper5M/SoI5l5w4lDjhRtv+t\nCUp9AICWLzg/0QAAAAAAAAAAAACgBixrf1D0M0/49q12qzxBmDdn9lzJ5ZJRkC9JMt1uGVmZNb4+\n9prLFLbiS0lS9jOTFbbuF1lT9ij29lt0eO26IFQIAGjp6IQDAAAAAAAAAAAAoNEkXXi+/wEjiK8s\n7XaZ1pI+BF6nUzF331ZhiGkYAS89EsCRpLinHpPl4EFJknXPLsldy646AIBWiU44AAAAAAAAAAAA\nABqH11vxmNUa3HtEREiSIr/8IuBpMzZWRnZ2tdM4vlnh27Zu2SzPCX2DUh4AoOWiEw4AAAAAAAAA\nAACARmHk5lQ8aAnyK8tqQj3e6Bi//ZwXplc7pZEToG4AAI5CCAcAAAAAAAAAAABAozCysioetARe\nHqrBxMb5NjNf+peKr7lOh/67RJJUPPKSgJcYLmejlAYAaN5YjgoAAAAAAAAAAABAo4j+y10VjpkR\nkQ16z4IzByny+1VlBzxu36b7qmtKajhniNIPlnW7sezepfihZ8ta2rnHcBY3aI0AgJaBTjgAAAAA\nAAAAAAAAGoTXNOVye337Yd+srDDGjIoK+n0LL7/Kt13wl4f8zhl5edVe7+3aTYe3pSjvmcklB5yu\noNYHAGiZCOEAAAAAAAAAAAAAaBCFu1PkOZxZ5RgzOibo981/8NGy+c89z++ckZNz9PDADENyl3TN\nibljQtBqAwC0XIRwAAAAAAAAAAAAAARdxBuvqtvpJ6rzid2rHOeNiw/6vc2u3ZT5zgfK+GVThXOu\n886v8TzWPbslSZa83PrXZJoyTbPe8wAAmi5COAAAAAAAAAAAAACCLvqJR8p2XCXLOZkWi4pPP1Ou\nE/r6TplJSQ1yf/e5Q+Xt0NHv2IHX/q38R/9a4zmKLrsyaPWYpf8DALRctlAXAAAAAAAAAAAAAKBl\ns6bslqdLNxler+RwKGvFd7Ju2SxnWrqsVmvj1TFmjDzFxZIk18mnVjve3f9kSZJzyHnVjKyBIwkc\no/5TAQCaJkI4AAAAAAAAAAAAABqUdcN6GdnZJTthYZIkT6/eMnse1yj3z/pgqcxDh3z337VxlyIT\nYqvPw9hKX6e63fWuwSSFAwAtHiEcAAAAAAAAAAAAAEHnTW4rS/pBSVLczePLTjjCfJs2q6VRanEN\nPNtv3xoXK8NWg1elltL6PJ5612CakkH+BgBatMb5qQYAAAAAAAAAAACg1fB4vfJGRckTE1vhnDc+\nPgQV+Qt31LBXgWHItNmCEsKRSoI4AICWixAOAAAAAAAAAADNnNvjDXUJAOBT7PKoaNUa2XbtlBkT\no9zHn/I7byYkhqiyOrJag7IcFQCg5WM5KgAAAAAAAAAAmjGv15TL7W20JV0A4AiP16v8Qrfycwvk\n2bZDxtYtsm3bou6L5ysqbZ8kybZvr4ruuV9Fd9yj5A4l4RtvQkIoy64102oLSgiHLjgA0PIRwgEA\nAAAAAAAAoBnzeL3yeHmzC6DhmKapwmKPCg8ekvf332Vs2SL7tq2K2LVNySk71X3fHlk8gUMqzlMG\nlGzYyl5LGt5m1r3LZg3SclQ8qwGgpSOEAwAAAAAAAABAM+Y1JQ/LUQEolVfoUnSEvc7Xu5wuFW3f\nJe+m32XZukW20rBN25Qdijh8qMJ4Z1SMMnv1VV7nHnIde5yMPn0U3vtYdRx+jiSp4NG/ls19yqmy\n//yTnEOH1bm+UDCtNhmVhIxqNQ8ZHABo8QjhAAAAAAAAAADQnJmiEw4An4zsIkVH2OU1TVkMo9Jx\nnrw8uTdtlvf3zTK2bPZ1tklI3SVbcZHfWNMwlN+uo/afNli5nbsrt3MP5XTpLu+xvRXVpYMSYsMV\nHx2mSEvF+3m7dPFtZy1drkO79qlNz87B+8CNwIyIlGX//pIUTRXfabXzBLEmAEDTRAgHAAAAAAAA\nANCkmKYpox4vOVubxAnXqe0vPyv7l99CXQqAEAufN0fH/PqbjPvvk+Wtt+To1VPuU0+Te+s2X2cb\n+/atCt+1XZEH9la43h0WURayKf0zt3MP5XbsKm9YuBw2ixKiw5QQG67jYsIUZrdWWotzyHmybNgg\nT8dygRurVfZ2bRviozcoT48eCvv2a8ntlux17zIkiSQOALRwhHAAAAAAAAAAAE2Ky+2Vo4oXu/AX\nuXRJyUZBgRQZGdpiAIRUzH13KkaS/v1qleMKk9oq7eQzldupmy9ok9OluwrbtJcsFt84i2EoNsqh\nbjFhSowNr9UyV9kL3pOKi6WwML/jdpulkiuaLjM8QpJkFBfJrEcIx2Q9KgBo8QjhAAAAAAAAAACa\nFFf6ITmS4iu8uEXVLIcz5CWEAyCATVf9X1lnm07d5Y6KrnRsZJhNiTHhSogJU3yMQ1ZLHUMzNlvJ\n/45itzW/kKVx5OdRsVOq/KsDAIAQDgAAAAAAAACg6TDyctXt5ONUNOoS5b75VqjLaV5crlBXAKCJ\n2nDDvZWes1stio8JU2JMmBJiwhTuaNjXh82yE05pCMdwFtdrNSka4QBAy9f8fsoBAAAAAAAAAFos\nS2qqJCl8yYchriS0ip0eebzeWl1jEMIBEMDOC0b77VsMQ3FRDnVvH6tTj0vWwBPbq2+3RB2TFNXg\nAZzmKuzjxZIk29r/hbiS1sf2688Ke/Qhye0OdSkAUCP8JAUAAAAAAAAANB28ZJMkRT/9uBybNir/\n/SU1v8jpbLiCADRbP97ztCIcNiWUdruJjwmTzcrv6deGabPLKC5W3E3XKf1gTt3noRNOrSX8cYgk\nKXvwOXJeODLE1QBA9QjhAAAAAAAAAACaDMNDCMf+zUrF/79XJUn5pikZRo2uM1yEcIDWzPa/NRWO\nZSz6WKf366yIMF4J1kfRNeMU+ca/JEluj7ceISZTRU6PIsP551FbRk52qEsAgBoh5goAAAAAAAAA\naDrohKOo5yaX7VTX3aZ8WwUny1EBrVnCyD9WOOY9ezABnGAwyr1Sfe+/MjIP12mayPlvyfIDS1rV\nCd3eADQThHAAAAAAAAAAoA5M05SXdSWCz+0JdQUh501q49s2iouqHlwutEQnHABoGEXXjvdtH3Pn\nzYq9+fpaz2Hk5ij5kXt13FUsqVQXsQ/cQ1AXQLNACAcAAAAAAAAA6sDtMeVyeUNdRovDclSSNy6u\nbKeouOrBxeXO0yUAaNU8bZIlSc7zzi/5c/C5IaymZfH07qPc62707Tu+WVH7SQrLQpVGXm4QqmoF\njgo72375KUSFAEDN0X8OAAAAAAAAAOrA/snHcnbpJvU/KdSltCz8lru8nbv4to2iQlXVb8koF8Ix\nXCxHBbRm3qQ2sh5KV/bcd+Q9fFiWpKRQl9SiWCxH9TYwTckwany94S57RhsZGTKjY4JVWosVtuhd\nv30jl/ASgKaPTjgAAAAAAAAAUFtFRUq+6Rp1/OOgUFfS7LiqW26KEI7MsHDfdvmQTSCGs3wnnGq6\n5gBo2ZxOOZPbSXa7LO3aSTZ+Fz+Y3KUdho6wbt1Sq+vNcs9zb2ZmUGpq6cI+eM9vP+7qS0NUCQDU\nHCEcAAAAAAAAAKglw8WyP3VhHDyosL89IyMnu/IxLEclecsFlYqKKh8nKXz+W77t6KefaKiKADQH\nRUUywsJCXUWLZYaH++1HvvCPGl8btnC+2pxxsm/feyhDHi9LWlbH/t1qv33D45FjyYdSQYGSenZU\n/LBzZF/1TYiqA4DACOEAAAAAAAAAQG05WfanLmIeuFtJ/3pRUX9/pvJB1XXKaYG8Xv8FpwxP2Xdg\nFFcdwoma+nfftjVlT3ALA9CsWDMPS4RwGo7D4b9fiyUAIydP9NuP/fvTSt+xLxhVtWiW0tBuwcDB\nvmNxN41Tcrf2suTmyr7uF8WPvkjJbWMlQk0AmghCOAAAAAAAAABQSwbL/tSJNSVFkhS+cH6lY4yi\nwsYqJ6S8Zlnwxnl08Kh8CCcvr7FKAtCM2X79WZaiQtm3bw11KS2Wke//PDZjY2t0nSXtgGz7/QM3\nERvX6aSBJyji5eeDVl9Llj/vnWrHRN92s2Sa1Y4DgIZGCAcAAAAAAAAAain8P2+GuoRmyVr6ctgo\nKKh0jH3Vt41VTkh5PKUvCl0utfnzCIW/9e/yJ32b9jXfVTmP6+RTGqA6AM2N48tloS6hxfMmtfHb\n9/Q4tkbXxf75okrPRU96uh4VtXyeuHi5OnSSoqJUNObSKsdGvP/fan9mAkBjIIQDAAAAAAAAALUU\ntviDUJfQPBlGtUMi5sxqhEJCz1O6bIbttw2KWLtGMfff7TtnlgvhmOHhVU9ktfnvu91BqxFA82Fa\nraEuocVzD/iD8ocN9+0b7hosR2WaVXYn8iQmBaO0Fstwu2QmJEiS8p57Qdn3P6KcV2cq/94HlL4/\nU9lz3vYbb9nPEl8AQo8QDgAAAAAAAADUknnUb8OjhpzO2o0P0rIS1q1bFPbmG0GZK1i8XlPm4QxF\n/fXRCuc85Zaniv77M5VPUlgo+48/SJIKRv1ZkmTZszu4hQJoHliGp1EUzH9X++YuKtmpSeixqKjK\n06bdHoSqgs+Tnx/qEiRJRnGxFBEhSTJj4+R8+DEVX3qFCh57UrJa5fzThcpYt7lsfMahUJUKAD6E\ncAAAAAAAAACgltx9Twx1Cc2Sc+gw37ansLD6C1w16DJQA4mDTlPsow/I9vOPQZkvGLymFP3kY3J8\nv9r/hMejuBkv+h0ycrIDzmE5sL9sTGk3Bfv/vg9uoQCaBaNcBy00rPDo0g5lNemE80wVQUpJltyc\nIFQUXPYvl6l992MUPm9OaAtxu2W43VI1HeG87Y+RWRrUseTlNUZlAFAlQjgAAAAAAAAAUEtG5uGy\nHV581pj7pH6+bdvixf7nPN4AFwR3aSUjKyuo89WW01X670pRkTqf2luR7yyoMMax7PMKxyz79vmu\ns6SmyP6PqbJu3ypLerokqWDoH+UacJokyahJuAlAi2M6wkJdQqthHOle43TJrK4D0dSpvs3DH33h\nd8p51iBZCgqa3DKC4fPfkiRFzHgppHUYu3aVbNRgqbWsdz4suSY7W2a5II6XDlEAQoAQDgAAAAAA\nAADUkiWjXAintksstWJGuWWW2tx1i2/b8fknsv9rhiTJdDjKjQ9OJ5wjwmc17pJUxS6P0jILtCUl\nS//blKbVGw/I7fHKujdFtsqWzCiuuHRJ5MP3y3Jgv6KfeERJp/ZV/D/+rsSzBihy+guSJG/3HjKT\nSjrhNLVltwA0LFfpc9XTpYskqeiyK0NZTutQ+nMqavqLCn/kQVl27azRZZ7Tz/DbN+PiJUlGXm5w\n66sH29r/KXzx+yU7R4VfAoZlG1CbgadKkhwrv6p2rBkdLUmKnPGS2vboICMrU/bvVsl8550GrREA\nArGFugAAAAAAAAAACKXwJx6VJe2ACmbOrvE1xuGMsm1nsW8ZhCbB7VZhRrYi2iWFupKKKvlt/7hr\nr5AkpU/4PxnlQ02u4HYHCP/sEzXkq84ip1vZeU5l5RUrK8+pQmdZ/YbbpcQtG+SOLlZYVd2TIiMr\nHAr/7ltZ7rxVjq/9X0SGfbpUkuQ9qZ/MqJIXkI4tv8tIS5PZrl0QPhGApq7Y5ZXdZi1ZtkeS6/Qz\nQ1xRy2fa7L7t2NlvyPP5Uh3++bcK46wbN8iMjpaRl6esD0qe1we27FHUxReq+E8jFb13lyTJyMmR\nGZ/QKLVXJ+HCsmUjZS17jWzk5cr2+RfSJZfUqDNNYzOjovz2I6c9p8jXS8K96ZdfLhlGKMoC0EoR\nwgEAAAAAAADQqsW8UfKSpsYhHK9X9g3ryvadwe3WUl+Rjzyg5DmzlPHzb/J27FThvNvjlc0aoibp\nR3e2KSyUygWYLEd1hzHcLgV9IQnTDNrLuMJit7LzncrKLVZWfrGKnP7hmqj9KWr34yq1X/ut2v6y\nRvaCPDk7dJJnyLmBJ3S7ZVrKXm7mDvuTYpZ9KkkVAjjluYYOk+Vgmm/fkp0lDyEcoMVzLH5fiV98\nIefLM8pCjjZe/TU4u91v17o3tcIQy9oflHjh+ZKk4l7HyzXwbEmSERunjQs+UbvESEU980jJsdym\n0wmnPLNc2Cbm7tsV9tGHys1/WUXjrq/1XA393x5HgqhHWMqHpbOzmkzICUDrwHJUAAAAAAAAAFAL\nRy9pZDiLQ1RJYFFzZkmS7Gu+C3jevWu3nFk5kiSPt3GXljCO6oTjWPaZVK4G+4ov/c5bf98U/Boy\nD1c/qBKFxW7tz8jXpt2Z+n7jAa3ZlKbf92TqQGaBipwe2Qrydcx3X+qU6X/Tn64frgvHX6ABLz+j\njquXqzg+UZLk2JeqiAVzfXPm3n2/b9uxYrkMV1lQqeiGm6utyZ3cVt627fy7ALBEGtAqxN08XnEL\n58qyN1VGfr4k/+AEGoY3sWKnOSMnW5b9+2RJ2SPl5yupNIAjSUZUWYczw5DC7FbZrRaZkSXP7djr\nr5b9268bvvBqGLk5/gdsVhmbN0uFhQr76ENJkvn773Wa++iQam0U3Px/1Y45shyVj6XsFXjU5Il1\nvjcA1EWNQji//vqrxo0bF/BcYWGhrrzySm3fvt3veEZGhoYMGVLhOAAAAAAAAAA0Z5EvPe9/oCkF\nHsyyvjH25V9UOG3k5arzWf3V5sLzpcJCJR/XRRH/nOo7b92wXhGPP1zpslH15vZ/CRd303UKW/y+\nbz/2ntv9zsc8eG/Qg0IRb/yrxmMLilzadyhfm3Yd1neloZvNKVlKyyxQkcsjeb2K37JRfRa8oSEP\nXKdLLj1LZz91h45dPF/hWRnae9b5+vGuJ7X035/pk39/pl8mPOw3f9bL/1LRE0/59i0pKbKs/rZs\nv2fPamvMXrpMslj8lkcxXE3o30kADc/pVMzDf5EkGcVNKxjaEplt2lQ4FnvN5Urq30dJA05Ucvdj\n/E+W605kGIYiwmyyWg2ZpcsP2nbvUvyYkfJOmSLP3Hnyfv2NlLKn4X4WB+L1ynJUwMb+809qM/gP\nSu5a1lktduartf7vHsue3Ur6y+0y0tPrVFrhXfdVPyg8XM4zB5btLpxfdo6lqAA0smp70s2cOVOL\nFy9WRIA1jdevX6+nnnpKaWlpfsddLpeefPJJhYeHB69SAAAAAAAAAGhIHo9Ugw4C1rQDfvuWzMMy\nPloi73Xj5Y2NkxHClz1h777t2454923lzTiqa8/hki4wYds2K2rSU7Lm5ij6ub+r8IGScEji0EGS\nJLN3HxVdd0PwC/RUfKFo5OVVOtx0ueR0eRURVo+m7qb/glZRzz8n59nnyH32ORWG5he5lJXnVFZe\nsXLynCp2V/zN/fCMg2r302q1W7tK7X5arfDsku/UNAxlHtdXBwYMUtppZyvj+P5+wRhJ2jp6nLoY\nBUp8/RVJklG6PEbexMmKfvIxedu0UVzpi3Sp5EXv3lkLlPziVNk3bfTrknOEt0PHkj+7dC072MSW\nSAPQsAxP2bPKm5gYwkpaL0cl3eckyfHDGr/96Ai7bFaLzIhIv+PtXpjit29aLCpq007Fx3SUq0Mn\nuTt2krdTZ6lTZxldu8ravYsssXFBqT9y2lRF/WNK9QMlhb/7toquua7Gc8fce4cc336tIptVua+8\nVrOLSgO4xWcOlPeYDtWPNwxlL/5URnq62vQ9KsBKMA1AI6s2hNOlSxe98soreuihhyqcczqdmjFj\nRoVzU6dO1ZVXXqk33nijwjUAAAAAAAAA0CQ5nVKAX0asdPjgc+X4ZoWin3pc9jXfqXDr7zr83Ety\nhNkb9beuPV6vnC6vDEOKOJzhf9I0/WqxHCgLENk2rC8b5/X6Ld0Q88A91YZw3B6vbNZahmMC/Fa/\nUVhQ6XDTNOV0eRQRVu1fZdfqngljRip9f6bynF5l5RUruzR44/JU7LpjcRarzYYf1e7HVWr/4yrF\n79jsO1eYmKydF4xW2oBBSjt1oJxxCVXXYrWq8PGnpNIQjkqXMjOjY0ruleO/FIgZHiHn+Rcoe+RF\nkkr+WcfffZvC31mgrP8ulpmbI9lLgz6GocP3PqTEF5+Tded2uU4/I6SBMACNyOWSp1t3WXftlHPk\nJaGuptVyd+osW2pKteMc9pKfnUc64RzxzaTXFHlwvyLT9pX8mb5fUWn7FLf+Jxm/rg04lzM6VkXt\nO6q4fQe5jukoT6cu8nbqJHXpIkvXLrJ17CCbveqfoV7TVMRrM2r4KVUh3Hq0o//7wMjKKv0zs8a3\nCPtwUcmf36+ueV0KsCyV6A4FoPFV+/9chg8frtTU1IDnBgwYUOHYokWLlJiYqMGDB9cqhJOQECmb\njXUqAdRfcnJMqEsAgEbB8w5Aa8HzDkBrwfMuRD7/3LeZnLlf6tK/2ku8cfHyduwox5l/kL5ZIfum\njZKkiLfnqePb82SOGiVj8eI6l+T1mnK6/z979x3mNpW1AfyVZLl7aiaVJJBQkpDQwtI7LL0mhITe\n69JhKUvobUNZYOlLh4WPvvQOgQChhNCS0Elv06u7JX1/yJYtd8/Y45nM+3uePCNdXUl3JjO2rHt0\njoJQWEUorJiWg2FFb4ttCytQVH0ybEiNEyOt0UkvQQA0DXU2DaisiB/83NONReuo9YDog/t1994O\nXHedaRx1g9wZg4mC996PyG9/wHXX7fl/Y62t0KKTasHLZ8J28w0AAPcVl2bcRV69CmMmbwLxySeA\nDTZA4MuvYT+5wAw9SYEtMYHzL8Cv58VLQdkdVtgBQNPgWvYnBn01B4O+/hQ1334JKRgAAChWK5r+\nshOatt0FTdvujK4xmxg/I1v0Xy7DRsSzVFTaJaDOA9RVAQA8gc74+G65DXUjauEJRmBPDEJ69mng\n2adRleb/RlnyGwCg4twzYRU12I+cDq2qCoLYg0xCJcLXvPLQNI3BWesKv99YrHFZEK6phbBmNeoG\nV2TZiUrJ8ucfgNOpZ9YDgBdeAKZNA447Lv1r3tBaY7H1+0UYM3wUQmEF4YiKjrCC5rCKYFhBOBCE\nuHo15NUrYa9fDcfaVfrX+tWwr10F56plqPjj57RjUi0yAkOGITRsBCLD14MychQwKpZJZ33YG9bA\nddD+BX2fHpcVniyv4f7WDlhkEbLbpTfY9GBRmyTk99qvqsDpJxmrBb1fqK6UJrugws73HKJewes7\nXQ8eH0jvpZdegiAI+OKLL/Dzzz/j0ksvxf3334+6urqs+7W2Zn7agYgoX3V1HjQ2dubuSETUz/H1\njogGCr7eEdFAwde78qnbZx9jOTLjSLTO+SpLbwDBIOra2xCcuBmCCuACoAUCSJzSFl5/HY3LGyCE\nQ0AoDCEUhBIIIuwLQPEHEAkEofgDUAN6uxIMQvUHoQYC0IIhqKEQxEgYYjgMKRxdjq7bI2E4w/Ht\nxtdwCJIaAb7Vo2rCEzeDvOAHtH3yBcLb72iMrbahEUY4xnPPxQd9/fVoPP08JN7F9Z94KrpuvSP1\nZxCJoO7ss2AD0HzqGVCHDM3jJw1UTjkU1oAezNIw9WiMjAbhJFNtdojRoBdAL/eFgw4CANgBNP8l\nz9IUUUJ9AwYB8B5wCFxvvmq0D/rgLXSerAcAyZ3tGPLdF3q2m28+h7NxjdGvffRY1E/eCWu33glN\nEydDsSdkS/Kan66XBAGyLMJqkWCNfpUtIqwWEbIswWYR0dzcZfycO1o6EWzshDWkoRKAb+lKxPIi\neN1V6GzshKKqkPIMoqlathyxR13tZ58F5YbroYXCCJx3Ifxnnp33z6zU+JpXPuGIApkPRK8TaiZP\nNP7e239djMpv9Uwp/NvqHcmznqHtd0R7exCOmdfCfe1MBPb4Kzp33Qc1EQUtLV4gzf+LNSIgVkwq\nMnwkrND0LDmyCDgSp3DdwPq1ULWJCEdUhCMqAhEVHRE9YCccVqC1tEJatQKWVasgr1kJ6xo9YCeW\nVafqm8zlsgrVtWIN/Fl+z+oG699VyxfzoYzdCFUQIAMI+QJoz/H7GVFUuP99O2LT+P6jjkVXgb/T\nyf83wS4fOvh3QVRyA+36LlvAUdGDcJ5++mlj+dhjj8U111yTMwCHiIiIiIiIiIiIqNzyCSYRGxsA\nANrgwYBsBQAIoVBKv7rRQ4o7uAIpG20MecEPEFpaEAwrsMn6VG3wsKlwPPV42n08Z51qWnc88Uja\nIBx5XjxQSaxfm3cQjvWzOfFj2GR03P0AKs45w9QnPG4COp55Ac6774DjsYfTHygQSN+egbhsCQBA\nGz4c7U89B+eF50JurEfTplthwpN3Y+j8z1Hz6wIIql6KKuSpxIpd98XayTuhfvKOCA8ZDqssQraI\nqIkG1dhkc3CN1aJvz7c8V+dNt8Dzj0sQ2n0vvcGiZwlwPPyA0cciCAgBeQfgAID3uptQdfC+xrq0\nVg8mcl/9jz4VhEPlE4qoDMJZFygKpBXLjVX3ReeVcTAEAKG99wMA+M88GwF3BbC/XkZQyvq+UFhW\nKlEQYJMl4z3dZHglMHF9U5OmaQgqKroiKsJeP7RVqyCsWAFp5XJYVq3CkOefgLWlKeVQ/mkz4Hjh\n2TEArScAACAASURBVMzjaDaXvhSXLgEEAepo8/lrtp+MxoYOyPOjpbTSlHxMJHS0w3X9NXC8/47R\n5r32xqz75IPlqIiotxUchPP666/D5/Nh+vTppRgPERERERERERERUVkIa9ZA1TREIiqs6Sa4YA7C\n0ayZiw/Vb70TVNkKVZb1fxYrVIsMTZaNds0S3WasJ/Q31q3QrDJUi5ywjxWa1Wosx46xxxG7Qm5r\nAaAH4QCAZeGPiAwbDdtWm+nfY1LAUHDCRNh+WggAsL/2v9SfSX09tCHmgKKqQ/aLb89Q6ikX0SYj\nOP0oIBqE01jfDvXPxRDHbACIIoL7HpA5CCdP3kAYLrsM64fvAwCU8RMQ2mc/RJ55AbV/3QUj5+iT\nfJokoXOzyejccVf4dtkDyuZbQrbLGGoRMcoiQRSLX7oncMoZCJx8erzcVzQoQoiVMAEgRMIFHzey\n0SaZNwaDgC2fglm0LguFVbjs5R4F9ZS4do1pXapfW6aRDFzK0GGQ1q5By+y5sH7wLvynn6VvEEUo\nxx0PMY+yb2rd4JKOURAEyBZJD7yzy0BtBbDZeGN7+5X/QOiOuzDitng5yq5zL0Tg/IuyBuEITY2m\n0na12+ilPBsbOkxl0pKJq1ZkHa/j/nvgeuIRU5tWUZmhdwHq63t+DCKiAuQVhLPeeuvh+eefBwAc\nFE37meipp55Ku1+mdiIiIiIiIiIiIqK+Rv7tF2DePISGrQfryNRyR0J7G+wP6ZlKtMFDIQQzZ2QR\n33oL+ecvKY5YAA4ARMZNAAC4bp8F1+2zsHZtm55RJWwO7AiccDIsd/0LUsLEWOft/4bnonMBALaH\nH0TgiqsynlPwebs1ViGa+aX1nY/0QB5BgLjh2HgHS+Zb10I4d3CK0NQE6e13gWOOgvuOW/XGQXrG\ndnXCpghMPQKay43Q7nsivNPO0CqrYAVg7dZ3000JE7Ra9OeRKLLV1oUfU878c5M/eBeRCROhNDZB\n3Gabwo9N/Z7jwXvhefJxdM7+HLD26m87FZm0bGna9rYTT+/dgQxgrR/PhffXP+HcdCL8m040bcsn\nAAcAIttuh4Z/XAd5z91LMcTcZBnSxRdCfeBfELu6EBk8BP6Z1+TcTVi7Bp2dflRUOFO2ua+dmXE/\ny+I/07aHwgqssgTX7bPSnKzwQNjQrrvD+slsAIAmCJCWLyv4GEREPVH0clRERERERERERERE/YG4\nZnVK25AD94LidKLlp8WA02l60tvzt9Nge0/PnqLW1cGy8Me0x2355MvSDToLzWqFEAqh+Z3ZEJMD\nVX77Axi3cUoAi1BVha4bZ6HyhKNMx4kJCtnL1riuvwaazY7wrgVOIEaDbDIGmmQJwhEb6qFsnCXj\nC4BBE8YAANpGDjPatFgWGFlG5/09y7JTdEnf75KX3oU7ms2oEOmCeWIqTj8ZYkgvydG4tg0ooMwV\nrRvcV14OAPD9+guUSZuVeTTUbYqCqkP3T2kOjxyNlqtvhKcMQxqItJpaKJv38KctCPCf8TcI9syv\n3aUmiSLEri59xZ47TZZmt8P+6ScYu+FQNC5ZAyG2LwD4fLB+8L55h0gk6/GExkaM2HRs2m3hDQt/\nHwQA71XXwbrnzgAAZcxYWP78A53NbfDUVnXreEREheJVNhEREREREREREQ1IzliGlCSSzwdpzSrI\nX86F4/ijAa+e7SX2VDUAqIMHQ3O6Uvb177UPlPETSjPgHFo//gId9z8MdavJUMaPN22rPe4IfSEp\nCEetrEJo/wPRPHuu0aZVVxvLg+6cBaG9LeM5Lb/+jKpph6DimOmwz7w8/8HmyMKhSZmDcNzRLD35\nELwJmXrymFwsm6QgHPkv3ciCAwBy5oncWAAOAAgd7d07PpWdqmpQVLVHx0hXeo76D0vCe1EiqbUZ\nFonTfr3JYet5rgN7EY5RLJYcGWM6jjwOQiCeBVD+ai4GTdrIWBdbmqEOqjXtY33jVdO60NBgWpe/\nnItM2j77OueY09Gc8Qw9WjQL3gabrt+tYxERdQffjYmIiIiIiIiIiGhA0rJlW1m7FpUzpsDzzhtw\n3XwdoGkQgvEgBq1uMCClZokRrOV7ml3ZcCMEp+rBNlpFpWmbvHSxvhAOmfeJZltRN52IxiVr0P7k\nswj9dV9ENoxPqg3aaFTOc9veexue/9wL4f778htsriwslswZeExP3edg+XmRsaz15fI7SUEVtu5m\nRcjyO51IbGnu3vGpqMIRpeB9IoqKcKRnQTjOu27v0f5UXtUzpqRtF7u6YJEKL91D3VeMoKd8S1f1\nBi1hLO0PP4GOE041bW+/9U7TetWMqeb1vXeD/O18U1vlaSea1u0vP29aFzs7TOv+v2wH1WaHUjuo\n2xnbNEc8CEcZMhQAIKgq4PN163hERIViEA4RERERERERERENSEqVnvGl7ebbUrZVHXYAhOhkjfzl\nXIhLFpu2q4OHAEkTZ5osw3fJFSUabeHaH/2vuUHTIHZ2mprU9UbGV1wuhPbdHxAEdN7zYNpjapqW\n9ZyDrr4MyNEnL2mCSVSPXvYjsvEmWctbSAsXGMuuW24ylpWRo3s+rlIJhXL3yUeGyVzfQYeZuzUz\nCKfchOZmDNl0LCpnTIH76CNSslRltHgxsGRJaQdHfVfS74mW9DcvMRMOdUPgED2wK7THXkZb6ODD\nEJxlvj6yyRI67v1PxuNITY3Gcsf1N6ft477qH8ay0NQEz/l/M20XamrQvKIBLT8vTt41b5rDYSwn\nBp2KDfXdPiYRUSH4bkxEREREREREREQDj6rCc9s/9cVJm8F77oUZuwqdnVD9fvPuaZ7Qbv51KZQJ\nmxZ/rN0UOvBgdDzwiLFuf+JRoD1ehqht7wMy7hvZKrUckvX1V1GbkBUntN0OUOXU7DLW995JPWCB\ngTlpy1FFs8XYPv8UdcNrYHv1ZYhLU4MRKo+cmtIW3HATaIMHFzSG3iSEixSEA8B3+PSUNu+Dj6Dx\n+dfgO0sv5SW2tBTtfNQ94ttvQmptgfWjD+B4/x1UHHNEXvuN2HkyRu48uUfnTg7coP5DXL3KWA4c\nfBi818UDDX2nnNGnsqpQ/9F1y7/QeexJ8F51vXmDIKDp16Xo2Hp7tD37EgRBQHDaDKz4OHeZKC0h\nox4AhEeMTOnjui01UCe8z36FDT7duaPlQtXqGlg/m2O0Wxb+CPH33yB/9AGkn3/q8XmIiDJhEA4R\nERERERERERENPIFAfNntgW/mNVi+ogUtc75K6WpZshh1u++Q1GhJzYRjd6DPSQgUsv/fUxDa2hAZ\nvT5+X7gMHY88lXVXzW43rVecchykjngQT3D6UWhYugaNq5qx6tufEanTg1wqj50O6c/fzQfLkrkm\nrTSZcESv1zyeU09A7Tabp/RLDGjxx8pzDR9e2PnLaO2KxtydslC32DK10WIBdtsNkXHjAQBic1OP\nzkE9V33xuaZ12+wPgWyl1hQFka9yT3znhYEa/ZaQkM3Me+MsKGPGGuvhnXYpx5BoHaBV1yBw+51Q\nxk9Iu63h+dcQ3uOvRpt9wjjUL1mDpsWr0PnP29F13kWmfZTKKj1YOYGQeE0RK8GYkNmp4+4HENp5\nNwRmHN3zb8hmw9rP5qP5q+/QNfMao7nypGNRu+PWqJoxBTW7bgdp0ULA6zUFtxERFQODcIiIiIj6\noFwp3omIiIiIqGeEYDwIR6vWy1I5bBYo48aj7dW3Edoyc6aJlc+9Hj1IfCJbk6S0gSPlpiUE4Qhd\nXRDb26BWVsFa4YHdKmXdt3X25wCA4H4H6g1JQTmBI4+BJMuALMO63gh0/TNetkL+6kvzwYLBwgZu\nyT62ROLyZfEVr9eU5cXx0vMAAMFmK+z8vSy0+17onHIE2l59G1IPx6pZM++vDhkKALC98GyPzkE9\npGkQYpPQCbIFR3lOPwnDDtor4/aCSPn/fVHfIvj1Mom+cy6AOmQoQnvtg6ZZd2LtnQ8itF/m7GZE\nPeG0yyltossFze1B4KRT4b/8StM2QQCUpMw3WlWVsWx7/RUIDQ2wvfKy0RY84ki0v/Ra0a6lpI03\nAqqqoVVWZexTs/sOqNtgGGq3GA9x9kdFOS8REcAgHCIiIqI+KaKk3owjIiIiIqLiEULxbClqTa1p\nW3j7HdH+7mw0NnSk7Nf07CvATjsBAAJHH2e0J2eN6SvCu+xmLFt+/w1iwA+tpgZWWYSQIxuGGs1s\noykRtHQEoCUHhySV4xISSlNJv/8GKEp8W6iwIBzNkjrhl0nt1pPguuhcQFHgvuKS9J2sqWWz+hRZ\nRvvdDyK8/Y49PlTK/1MCZZNxAADr559CnvNxj89F3RRKX35MbG8zli0LfoD9kQeNjBH21/5n7lxo\ndqkE/hNO7va+VF5CtDSi5ohmXhME+I46DpgxnRmOqGRkS47p5KTrAbGtDVpdnanNf9KpxrLrkgsx\naOKGEDsTrrNK9fubcC2STe30QwsunUlElAmDcIiIiIj6oHCEQThERERERCUVLUcVmDINKCDziLb7\n7rDJehYJdchQhIfpZY40W98MwtGqqtFxgTkwRR0zFhYp961hTdS/T/t772CTDQfnnCATEibTnPfe\nBde18SfjE4Oemv/7Qu6BF/gkvPOpx2F79WVYfv3FaAtvEC/TolnzD+opl5yTnPnKEnCkeTzGctXh\nBxfnfFSwjEFpPr+x6Dn3LHgu/zvkLz5PfwyfN217PrJlhqC+LR6E4zTaLJIAkQE4VGa+ww6HUqVn\nFgwcPj1le/Dw6eh48FEAgNTaYtoW2WR8ycYVPPAQKDW18F58GQA9c6F/tz3Td84QIElEVCgG4RAR\nERH1MZbv5mPw1AMgrlld7qEQEREREa2zYkEhmtuTtV/7488Yy13X3JgSiCJEn/5W+2gmHADQNt3U\nvO6pyG/HpJI1YmursRzYZfeU7qE9/2padz5wT3wlGvTkPeIohPcy98vn3PkQm5sgz59nrGvrxUth\nWN97t+Dj9bZiTaInlqNqWrwKTX+ujG9zukx9bdFyXdTLguknehODcyyLFgAAxBXL0/f1+bp/fmZ7\n6LdiwVeaMx6EI0m5M5sRlVrnA4+g6ZelaPjye3TeeW9qB0FA8MBD0u7b+skXJRuXNngwWn5ZAt8l\n/0BDfTsaVreg6/n/oe35V4w+yqj19SEWmLWPiCgTBuEQERER9TEVpxwPx7wv4bxtVrmHQkRERES0\nzlKbmgCYM4OkkxhYEjjuhNQOsRIMfTQTDgCEkia9tHxLM4mZbx8rW2+d0qbV1GLNnHnmtjY9cEfs\naNcbKishZTlu/AT5lY8IDR1uLLuumWnaJsTOCUD0duV1vHWCLf7/q7k95qArSUJk+AhjteLMU3pz\nZBQldHWa1mMBFbEJ4MoZU4xtYmcHFDU1W64wkH6nyZBSjgrFC+Aj6glRECCKAoQxYzJnZJPNWel8\n51ygZ8fJ57qgCAQhnjUqvNseWPnS2+j49/2IbL6F3iHAIBwiKg4G4RARERH1IYk31oRgoIwjISIi\nIiJat9mjGUAim4zL3tFmw5ola9G4ti191pzoxJHWhzPhJE9uCUllIDLKko0msRRKIsu4Tcyn/vY7\n/Zwt0XPW1OR16sRsLukoo9dH46pmeO++32gTwmFzJ7nvl6AqBc2S/ftunb8QHcee2EujoXTs//eU\nsdx17U3wXnKFvhLNkGP96ANju+25/4N8yd9TjtGdTDhaLFiDmXD6nIiSZ1lyv/7/npgJh6g/aXrt\nXYQ2HofW9z+B98prETzs8LKNxbrTDgjOONoITmYmHCIqFgbhEBEREfUhiqJBi90oDvKDHxERERFR\nIcLhSN593U8+CgAI7bVPzr4WlzPjU9rSyhUAACGS/7nLzf7yC/l1zFYSKiELQ7LGNa3wH3cSAGDQ\njEMBAEK0HFVyOaRMtLo6NNzzMFrmfJV+u90OyDK0ocMyHkMZNTqvc61rBK83ewdJQvD2u6BWV0PJ\nUY6NSiP2dxCaMBH+088CJP31xfHQ/Sl95R+/R+2TD6UexNuNclRGEE6eAR/UK9Qff4TS2Awg9/uY\n2NYGANDc7pKPi6hYWt+KBxZq222P9s++RmTzLcs4Il2sjJtmiwb+8l4sERUJg3CIiIiI+hBF1aC5\n9Jtx0rIlZR4NEREREVH/4XjgHgwfUQOxfm3uzglZILTa2h6dV4iWTZJ//7VHxym19seeNpYDM47J\nb6csJU40e+YgHEhS6gRxLEjJkiWwJ0no0KlQxo1Hx7/jgQnBfQ/Qv+5/IABAGTkq4/6+cy80ltW6\nwXmft78T/PkFZ6g1tZC6OqF2J5iDekQI6Rlv2q++UQ/wi078Wud+BgSyZ8XtvEDPiiP4ulGOKvo3\nLeSbdYVKTmhvw5C9dsKwXbZG3eAKDB9RE3+9TMM160YAgLL+mN4aIlG3KaPXBwBEJv+lvAPJxciE\nEyrzQIhoXcEgHCIiIqI+RFE1hEfoN5FzPr1IREREREQG91X/AADIH3+Uu3N0kkW1O7IGmqxLQgcc\nBP9ofdLWe8XVPT+gxZJ9u2qe5BcieqmoXKWSEsmyfvs6svU2RlvgmOPQ+vq78MXK9zidaHnxNf2U\nSQFVmt2O4H56sI5aXZ33efu7yOStAQAdRx6btZ/lzz8AAEM2GArLd/NLPi6KE6JBNxanXsYucOIp\nxra6UfGAsdarbjDtF9xrbwiDBunH6EkmHJVBOL1Jy1L+S2htBQBIba1Gm+vaK03BohFFRYc3BHHF\ncqNNHaCZvqh/aflsHlYuWtLnr7VimXBYjoqIioVBOERERER9SNU/r4PznTf0Fd4UIyIiIiIqXLYS\nSlGCV88gEdxjr1KPpk9pnvM1li9pAOT8A2G6Swj4jWVt4YKETDg5gncSiLEyEQmlwDRPBSLbbm/6\nf1Z22Q0tX8xHy1ffo+PWO+MHkKR4vwzlxNZFytiNsOiLn9A2686s/cKbbWEsV+27R6mHRQnkT2br\nC9GJX81TkbafNm6caT286+5GKSvB14MHd6IZvKh3qFmCcJBmm/PBe2GZ97WxXnHB2ai+4u8Qmxrj\nnQp4LSUqG5sNtrqeZRzsFVaWoyKi4ho4nzyIiIiI+oHq+++KrzAIh4iIiIiocHk8bS22tugLFekn\nvtdVNocVDpe9KMfScv2c1fjEcsWZp0B+5y19v+5MHCcE3MSeVk+mjN0IWkUlgsefFG+0WOKfq4QB\ndiu8thaynD0gre2N94xlIVuQABWd/MN3+kLC35H3nAtMfVrfnQ2sN9LU5j/tLKOEdXey5wqxYDiV\nQTi9Kdufl5Dh/0Lo6jSWXc/+FzXPPAbXZXopMt/pZxV1fEQDnRYtR6UFg4hEy/WpKt8Xiaj7Btgn\nDyIiIqL+Q1NUfuAjIiIiIipUHhkexGXLAADq6PVLPJiBy3/G34xl+68/w/Ha//SV7gThJGbCsTty\ndo8FCKlDhsaDcAZQJhwAkAQBFinH92wvTkAWdZ9mjQeV+a681lhu/v5nRLacDGWTcWi95kbU33o3\nGr77CRAEaE4nAEDwdaMcVQwf+ulVmqZlLkkVyfGeFQgYi9bvvgEAhLfdoVhDIyLAyErmvuISOK+4\nFLWjh0L44P0yD4qI+jPmqyMiIiIqM1XVIIppniLVNCiqClHMnU6fiIiIiIh0Qh6lBGLlqNSqqlIP\np99b+/WPCIgyxMGD4fn5R1QdtA+EUChj+ZwYZcON0HHbXai4+DzzhjzKhaVI3MeePhNOopbvfkJ7\nQys8Fgt8514A2ztvouuq6wo/bz8mSbkzQlH5qBWVEDvaoYyfYGpvbOgwdxQERM46B6FQBHarPp2j\nudz6pujrWN4SgkAElqPqVaoGaADS/VUKnR1pWmFkSTIytyVQxm5YvMERETRZz4Rj/fknWH/+CQAw\n+JjDU1+TiYjyxCAcIiIiojJTNQ1imlsxmtWKiKJB5hUbEREREVHe8pmYFrr0PrHJbMpMXW8kEFHh\nsMuIbDkZrR98CvWZp6Htd0DOfZUttkxpk7+ci+CUaYUNIrEcVR7/Z+rwERCqBwMAIltvMyAn0aR0\nD3qkERkzFpbFf5Z4NJRMrauDGi1/kg/ZkpANqruZcBIDbxRmwulNGbPgALC99kq2HVG7+biUZmXc\n+GIMi4iiYq+rRETFMrBycBIRERH1QbGbMclPP4ntbVDb28sxJCIiIiKifkvwevPoEwvCcRXtvFp3\nMrz0A6IoQBTiAR3KuPFo+fuVeWW00Wyp5Y7EpqaCx6BJ8ScT1DwDp9wOueDzrEsSgzayUWtqSzwS\nSisUglZAEI6UWJIt9jfgy/1aZ5IYhKMyE05v0rTMgTjKqFEZd0oOKm2bea0eVCgw0xVRMWnV1eUe\nQp+gZgkYJKLCMAiHiIiIqMxipdgrD9rX1G5pasT6Ezcw3ygjIiIiIqLsQrnLUUmrVwMobiYcze0p\n2rH6EkkUU8rn5ptlRbOllo4KHHVMwWPQahMCRYoYOLUus8r5BYVpiUE4nHzrNVowBMj5B+GY9o1l\nbOgqsBxVJBJfVpkJpzdl/dMS0k/TeS69EEJbm7He8tk8hM+9oMgjIyIAUKsyBOEMsNdKXyCSuxMR\n5YVBOERERERlFnvKQP5pYfoOfn8vjoaIiIiIqH8TQmEAgOX7b2GZ/UHaPs577tQX7KmZWrorlEd5\npv4qOauKJOUXhKMOHYbAuAmIjIxneghvtXXhAxAErHrhDTTe+wgzQORJzPPn1HXLv+L7LF9WquEQ\nAFWNR2IIgQA0uXvZmoxyVN7CylEJSiRhmQ/79CZV09IG4kQUFUI4lHYfadlSCK2txrrmWTcDPYn6\nAq2mJm270NXZyyMpH6GlGZ7zzoJQX1/uoRCtExiEQ0RERFRmipr9aUMhmPtJXiIiIhpYxB++g7Iw\nQwAv0UAXCkLoaEf13ruhevoUAFnS64fDPT5d+2NPo3Pn3dE561+5O/dTyQEd+QZ4wG5H/XufwXvD\nrHhbASV4EkW23R7K1Knd2pcyU4ePQOfpZwMAxJbmMo9m3RYM64EvypIlsHS0ITJ2w24dx8jg5S0w\nE05i4A2DcHpVOKKmLUflC0aAcDw4Krjjzljy/e/6PhMmwnXrzcY2ddjw0g+UaIBSBw8xr8deZ/2B\nMoyme8S1a+A+7USIy5Z2a3/Pxedj0CvPYdCkjYo7MKIBikE4RERERGUWjqiQ536WcbsQYCYcIiIi\nMqv9664YuscO5R4GUZ8khMLwnHNmfL21BYFvf0jbN7zTLj0+X+iAg1D/5AuAw9HjY/UXljwz4QCA\n024xlXPQLN3L/iFJIiSRt7NLQfTok41CoeWNKG+W+fMwfNKGsN9wDWzPPwsAUCdu1r2DWa3QJAnw\negvbL5IQeDPASqyUWzCsIKIkBeGEwxg27UA4HnkQALDykf9D+0uvw1Y3CKrFAtXhgO2dN/Wuk7uR\nQYyI8qYOHWYsN338BUL77AsAENT+E7DonHUjHK+8BPcZJ+e3g6JAfuQhCG16xi3Lwh+NTa6Lzy/F\nEIkGFH5qISIiIsoi4xOzRRSOKHA89EDG7UKhN9aIiIiIAAj19fCcdWq3n4Yk6jcUBeJDD8bXwyHY\n3n7DWK04ahpG77cLpAXxyYXIiPUQWm8kIElFGYLVMrBus4piYSWhTA8WdLMET3JJLCoeza2XuWEQ\nTum4r5kJS1sLPP/+F6pvj2Y3cbu7dzBBgOZyQSvwXkFiOSr0o4nlcoooalHuCykNjQgHzFmOpT9+\nh3Pel5BWrwIAWD0uCKIIWZagWa0I+4MIHHEkAKDzjnt7PAYiyo/gcgFi9PqwP2UNi75W2ebPy6u7\n9Z23UHX5Rag6KBpw1NlhbHM++Wjxx0c0wPCTCxEREVEW4scfQ1yzuqTnCCsakKXklPvi80p6fiIi\nIurfgqH0N4fd11wB+4vPwXMRryVo3ea4727UXvH3eEPStbU1Ohlh/fgjo03weqE5uzkBnsZACxAp\nNCONEEgo59DNwKe8S2BRwTSnEwAg+H1lHsk6LE3ATOzn3l3OX3+C7YVn89+B5agKpmkaAr4elgj3\nerHFLpMw4tB9zMe2203rFofNWJZ8Prh/+hHy7A8BAOqIET0bAxHlTautjV+r9KPXSq2yylj2nHkK\nhIaGrP3F1hYAgOXXnwHwIVCiYhtYnw6JiIiICiDWr0Xd9ENQs+0WJT1PJKJCyZIK2vrlXABIWz+c\niIiIKBBOf3NYbG4CAAhdHWm3E/V30p+/w33x+ZC/mmtqlz/7NG3/xCd89SCcnk2AJ7JIvM2aFYM7\n+rRYMIApWIqKSk4o8xGjuVzdPp7Yob+eVfztNKOUSE6RhEw4/WhiuZyGjRmG0RsMhuX7b/Pqny5r\nTuw9yr4o6XcguW80I1UiqVGfRNfSbCOi4uq64mq0TjsamtsDzWIBkJRBrI/TquJBOPaXnkftFuOy\n9hebGk3rakIQj2p3pL5GEVFB+OmQiIiIKAMhelOr1Dciw4oKNZL7BlgowprtRERElERVoSgqpHlf\nQ1z8p3lbbLLN0r3SL0R9nevKy+F48lHY3nvH1G6pX5O2v+CLPuEbDkMMh7pfCoYKptUOAgBExo0v\n80goHSMgjcFS3aJEujdJq9YNLsr5nbfenFc/czkqTq7mI3Y/yPbic7n7NjTAOfUQSH/8bmqvmjHV\n1MdYTvq90bK9JzETGFHJ+c+7CM233KWvGOWo+s+92OTg8uTXGHNnDa6brouvd3UhvMOOAAC1shJi\nwA9x5YpSDJNowGAQDhEREVEGsaceSkpVMemIveGe81HWbuLqVRC+/7704yEiIqL+ZdFC2D77BDUH\n7IXa7bY0bRJCIQCAZrWWY2REJWf74L2s2zWLBV03zkJ4zIYAALG9HQAgxQLWamtLOj6KCx58GJpv\nvBXtL7xa7qFQOg4HAEDw+cs8kP7H+s5bGDq8BpbP02fgyiayxZa5O+XB+dAD+XVMnEzuR9kd+gSr\nLWcX183XwfPZx6g46ZiMfWxvvIqK44+C9f13zJmJAGie9Nlu/MefXNhYiajbnLboveBYhsN+2tiA\nAQAAIABJREFUkDUsEIq+lhQQMCQ0mrPgVB34VwgBvfReaI+99D4sT0XUIwzCISIiIspAUEv/QUtc\ntRLu33/O2a92i/EYccDuQJayVURERDRAJFwP1O25E9Y/YVr6fpGw/rU3AouJ+iDvVdfBf+qZaH/n\nQ70hWrJFrF8LAFA2yZ6mn4pIkhA66VSoQ4aWeySUhmaPBuEEGIRTqFgWGvs9d2XtFxk5ylj2HzoV\na1Y2Q6uuKenYUgeRWI6K9xYKoSaUecnE8ot+b0dojZYHi0TgmHaYqY/jP/fB9vYbqDz6CMhz44Fb\nzS+8Cq0mfWBorFwcEZWebNGnzY0HM/tBEI74zTfQli2Nf/ZLlBxIoyiQFi1Meb+Xf1pktKnR7IWC\nt6sUwyUaMBiEQ0RERJRJKM2HlyJzX3l5YTtEn2gnIiKiASzPm8Fa9KltoaG+lKMh6rM0mz5xqVVU\nAgDs774NBAIQOjuj7RVlG9tAZJF4K7qv0mKZcPx+aBrLFBUkmm3O8eF7kOd+lrJZ+uN31A2ugGXF\ncqPN8cpLsFjLUCoyMQiHD/gURHPlLl8oz5+nL0Tv21i+mw/3Jx+a+lgSSod6/nEJAKDr2BOh7rq7\nqZ/vrHONZXFt+hKLRFQ6QlD/O7Z++H6ZR5JDKIQRh+6NwX/ZDNbXXgEAdFxzo7FZSiop5bx9Fmp2\n3wGOR/6Teiy/H5ogGAGiQkdH6cZNNADwkw8RERFRBkK6JwiKzPbW6wX1T3xSIcIn14iIiAamSOYS\nEraXXzCWtehTjNLixSUfElGfJIrmrwDcMy+D9L5exkrt7SwURH2U5nDqCwE/IoqGcISfNfOl2eJl\niqoO3R8Im+8jVB66f8o+vjPO7vF51epqYzm0cX5ZvRKz/Qr9ILtDXyIEAnn3lVpbAABi9GsuYk3q\ne1F4ux3iK3IZAraIBjjb2/r9WvcNV5d5JNkJbW3GsvXH7wEA2tgN4Tv1DACA7bmnTf3t/31C7/ve\n2ynHklathGZ3ILLpJABAxdmnmz5bElFhGIRDRERElIEa7HtZZ4Rg0FjmjVEiIqKBSVAyB+G4rr4i\n3i+aQlwM+GFP97QjUX+WRxYHIVp+KpHtzVfhfkafgFDGjS/6sIj6JYeeNUrw+RBRVPiCmd9nKElS\ngIRl4Y/GsrhmNaQ02ejCf9m2x6dtfWc21t52DyIj1oPo8+beAYDl++/iK71QfrvfS3ifKbRUm9DV\nCc/Zp2fcrkUzKAEJZW+S9o8JHHFkQecmop6LZVPs66TFf6S0hfbYC+rQ4QAA1z13oW5wBeQvPodt\n5uWQopm1hOhDHcEDD4Ea/V6lFcuh2e2IbLY5AEBsbEDFGSf3xrdBtE5iEA4RERFRBloJgnDyDZzR\nBCH9Bn/8xo/2889AAU9jERER0ToiSyYcqX4tXGedCucdt8L68UdGu+fyi3thYES9R8hj0jm8487x\n5eikt9jcbLSp0TJVRAOdWlGlL7S1IaKoCIUZoJEPRVVTPpNXHbKfsVy7uTlDjRYN2FGHDu3xudUN\nxiAy42jAbgcCwdw7APD8/fz4CjPh5JZwveWadSOEhobMfZPKuIn1ayEmZKhI1PnP26GsNzLekCYI\nRx02PH5opyvPARNRsWj21CActczlGh0P3ouq3XaA0B5/bak+eN/UjrKM4GFTTU1Vh+yHiv/ca6xL\ny5YCAMJbbIXW/z4X7yiK0KqqijpuooGKQThEREREGYjRDyRFE4nA9ffzYYnVCc+i7fX30PjNQqxe\n2WLcqAMSMuHMnYvRe+9ovolGREREA0Mk+8SZ88Xn4Lr5+tQN/sKe4ibqywRv+iCcwKHxSYfI1tsY\nyx3/eSylr+bxFH9gRP2QVlMDTZIgNtRDW7ESrrcLK5s8UFVOORjWr74wtRlli5ImaxtXNKLlmwVo\nvOdhRIqQCQcAbFYJsNkhBLvxcE4e2cQGOqHVnE3NfeWlmTsnBTXVbD85Y1etpgZaZTwIVEtTbiq8\nw07x7XyvIup1yoYbmRt8PtgvuQhCfWp2s97ivvJyyD8thO2lFwBVhZAQWB6z9sW3AADq0GF5HVNz\nOaEmlL+TmpugudxJncobfETUXzEIh4iIiCgDIc/63fmyfvQ+Kp9+HNX77Zm137LXPkRkm22BUaNg\nkSVocjxNsfzeO/rC23rtXvtzzxR1jERERNT3ZStHlU3tpI2LPBKi8omVW0umuVzomHU7uq642tzu\ndKb2dXNikwgAIIqIDKqD0NCA9Q/YFaPPOwXSooW9PoyIokJV+8lkn6bBMXdO2k3ug/aFuHKFse69\n4GLAZoM6bDjUw6cVdxh2G6TOjsJ3ZCacnNwzzUE3YlNT5s5ZshQmU6uqoTkS3pOk1Ew4SMiOrGzE\n6zei3tZ5z4MAgMjIUQCAymOOQOUTD2PQpI2y7VY6XfHrXs9lF6Hqr7vAc8HfUroJO+2oL6TJsJWO\n5qkAbDZ03nFPwkHM2dkd112FusEVcF52UeHjJhrA8vsrJCIiIhqIivy0eGIwTUxwr71h++A9Y71+\n4R9QPdXGuiAIiGyzLWLlJDzXX6XXe/fpN9lUpgglIiIaeAqY6EkkdrQXeSBE5SN0pQ/CgSgieOKp\nKc2apyK1rzX1+pxowLLIsC5faqyKHe3o7TCNcESFRRIgilIvn7kwwvJlkBb/YawrngrUz1uA4eNG\nAwAcX82FY/JEAIA6qA6+y640+opihtLT3SR/Ox8A4PznDfBdNjP/HRVmwsnF8vMi07pms2XuXMC1\nmVZVZQ4MtaT/fW948HGEwipseU6mE1HxaJVViFRWQ40GzEl//pFjj26cQ9MQiqgIR/QykGFFRSic\nbl1B5aqlqEvYV17wI7Dgx5RjJr7HdNz9ABz3/RudDzyKml23AwB0XnAJ7G+8Avn33wAAkYmbAQCU\nYebMOeFNJ0FetAAA4L73LgCA69GHEJpyhP7gKBHlxHdvIiIiogyqb7nBWBY62qFV6OmCVU2DKHTj\nxpnDkdKUnFZYrKyE02q+ROu4/xHU7DgZYouemcd1+yxgxgx9/zSBPURERLSOyzDR45t6BKyffwrL\n2jUIjZsA6y8/AQBCO+wE69zPAACWb742legh6q8ylaOSli5Nv4PFAs1uj5eKISITedUK03rWgINS\n0DRUXnUZQltOhjp9Rvc+c/eSQVtPMq1rdjvkmuq0fQNTDk/JKlAKrn/dUlgQDstR5SaZg2O0qtT/\nY2H+N/q9nhEj8j6s5nRBc7ri65bUclQAoB16GJRg9wKviajnEq8bA0cdq9+PzUFREwJpIko0oCa+\nnhh0E1FU5Jv77a9nz8jZJ5JUgio4/SgEpx8FAGhsiGdMC1w+E9W7bg/Lz4uMslvJr28dTz8P+fNP\nUfG300ztjsceQieDcIjywiAcIiIionR8PtOqWF8PJRqEEworECDo9dcLEQ6nNAnhpBsqspxys1Gr\nrUVor31gf/7/4m0LFkAA+PQuERHRAJSpHFXg3Avhvf9hAID1rTdgPUG/6dr+wquoG1ELALD8+AOD\ncGjdEM2E4730CnhHjUHVc/+Fdc5sCJ2ZMz41/bIU0orl0Gw2CGmuzYkoQW8Hafh8qHzsP8BjgO/x\nh+F/4mmoQ4b27hjyoGqpU6aazQ4A6Pjb+ai4907ztsrSZq/tnPUveC69MGufiKLCIolQRqwHadVK\nAIC85A/YL7kIwauuSSnNZ3viESjjJzLbQVLQs/3F59B530PGuvzZHFRNORAA0PytOWtOMqV2EKRm\nvZyVstHGQGJGpAyZbkRBgNOePkCHiEpPs9sh+vX7w7EM5QBgO/RARJxuhJxuhJ1uBB0uhOwuBOxO\nBB0uhF0eRJxuhJ0uhF1ufdnhSgnsK4S9rSXjtsChU9D4t4uAESNgz/N4rZ98YVqPbDkZq2feAPu+\n+wAA1OEjEDz4MIRefA6BAw5GxcXnAQDExsZujZ9oIGIQDhEREVEa4to1pnUhEC9NFY6o6PSFMXyQ\nK3m37MIh06qqadCiN/9XvfoelE4vHKKYdlf/6WeZgnCERfoNHk3mDRkiIqIBJ5K+QIiWkHVPrUtI\nWC7LaP/vc6g8ZjqEpEBjov5K+vEHAIBaVQ1h2jR0Tt4KzhOOgf+OezPv5HRC2WRcL42QqH8TQqHc\nnYp5voQAU+e384C774D3htxZB0pJWrgAjvv+ja5b7gDcbgBAOJQaCCs16ZOS2vbbA/feicDh02F/\n8TkAgNDeVtIxBk44Ga4rLkVk8y0y9lH/XAxUeqCJIsJDh0PydkLs6IDn8YcgDq6D7+LLjL7i6lWo\n+PsFAMyZEwaiXAFU7ovONZalpUuy9q3/39sYfMg+8N7+b0AQYH/l5fhG3tch6pMEpwNCqx78Is+f\nZ7RXzJ3TreOFHc5ocI7+LxIN0gk73fFgneRtLg8idmfW43bdfDvstbVQ1Xzz6qQhCOg68XTInoQs\neDYb2p/7HwAg8MXnsL/0PCLjJ3T/HEQDDINwiIiIiNIQuzrNDbG09ZqGwaceC1fdMODOO1N3zEII\nmm9iVpxyPOzvvgUAsEyaCIszc1BPZNLmads1T0VBYyAiIqJ1QIZyVFplZbzLX7ZF5023ILzTrvq2\n6HWG4DOX8AmGlMKz+xH1AZ5ZeulYed5XCJx8GtQxY7H6nU9Q4WSmSKKiCAZ793xJ723O/9xf9iCc\nqikHQGxrgzJpc/jPPBsAEGpuTekXKzMd2ns/tH74KSLjJsSDcIIlDmYSBKhuN4QOPQuYfO/dEEaN\nQuigQ4wuI3bayrSLWhUPLhE6zIE2YjRTjtG3u+W41wHB/Q+C/M3XGbdbliw2lmMZcQAgOHw92Fbr\nP8fW199Fx3obQKwbhNU//gGHLc2UnJ8B0kR9kt2RtozpR3c8g84RoyH7uiD7umDxdUH2Rv/5umDx\neVO3Rb9afF2wdrbDVb8KUqjn77ONyxsAu57/RhR79lotW9I/GAoA/rPOgf2l5wE1/cMgRJSKQThE\nRERE6SjmDxWum65D+//ehNDSAvf7b8MNoLHQIJykGyuO118xlkWbzZyOOE9aD1KZEhERUf+UqRyV\nVlFpWg+cckZ8WzRLjuCPZ/eDz4fqE49B+KxzEN519+IPlKiHrG++jopTj0fLZ/Ogjhmbtk9w2nRj\n2WHlrU6i7uq87S54ouUmAEAI924mHCi9XP4qD2JbNItNws8i8u33Kf1MQbDRB2g67n8YFWeegsCx\nx5d2kNDf/4WODiAQQNW1V+htNhuafltuTM6a+gsJE61J9xScd9xqLFfuuTNaL78G2GvPkoy7z4uW\nHus8/2K47r8HmjUhY02Gcm2hXXbHsseex8Zj9YyEyvgJkJ0eKKqKxFimzn/eDs9lFwEApGXLSjN+\nIuoRob0NYigI+1OPm9qDVdUIVdUgVFXTo+PLSgTOkA+OgA/2oA+2gBe2gA9Wfxesfi+s3k5YfF5Y\nvF3wPP6Qad+mP1cW/cFMm5z5HrPmij3QwaBBonzxkykRERFROtGn8DRBgKBpsH7+KQBzWSqEQoBV\nf9JW0zQIOZ4OE1euiK8kBflkqgGeqGXOV6icMQXS6lVGmxAtZ0VEREQDSIZMOMkTaYlimXCQkAnH\n9s6bcM3+AJj9wYAvOUF9U8VZp0CIROB4/BH4zj4ftjdfQ+D4kyAuWwoAUFxuhPbc2+if7QleIsou\neOgUUxAOSp3BJUmmANNeFQpB/vYbiLM/gtCWUEZKin5e7+rCxicdbt5l+Hrw3vNgyqGCU49A49Qj\nSjnauMoKCH80wHPmyUaTEAyibvQQNC5dm9o/4XpB+v5b0ybbB+8Zy9YFP2DwcdPQtLql+GPuD6IZ\nHyLbbI/wJ7NhXbQAAOALhFH9yvNpdwnudwCqPTYE9tkfWLoUWkUlZABqSIOGeKmYwEmnwr/tDnBf\nfD78p59V8m+FiApnWfwnAMCTUHrut1vuR9eI9VP6CtCvQ2WLFP0qQpb0r9bYeuI2i5hXlrFI9J+6\nx56wPfUYuu68D4LPW5LM6NmuozWrXqZK6O0seUT9GINwiIiIiNJQwtEgHJcbQkJpKiEYT0PqPvdM\niC3N8F18OQKT/wKLlOHDUzgMy+dzICakeU68oadZLEAeH7yUceOhbDLOFIQDJZJXABARERGtQ5KC\ncHxHH4+Go09C5sKWgOZ06l+74kE4msyyPdS3GZmbVAUV55wO6+wPIYRDcNytZ6SUvF1lHB3RuiU5\nm1qvZ8LJFGBaSpoG6ZefIc7+CNLsD+H8+gtIaUoDaXZ98lFOClgBgKWffodqj63kQ81Gq6iE5PdB\nevP1lG32Z582rXsvvgyu2/5prNs+/xTw+QCnE0jzkI9Qjv+XPsAXCMMZzXYjWCTAbocQCkFob8Po\njUYZ/cKbbwFp8WKIndH7PTb9d6HzqWfR7g3B+KsSAAHm+zbCppti7UtvwsMyikR9Unjb7SF/9YWx\nrro9kKZNwyaBsBFgkxhcU0qhffdHaN/9AQAa6kp6rnRiQTgI9fK1AVE/xiAcIiIiojQi0af+NJcL\niAbh2O79N8SEp/McL78AAJC//gre31fCkuHhc+c9d8J18/WmNmnZkvhKAQE0mtV8c8ayZDHw5JPA\nMcdkffqdiIiI1h2xTHj+o49DQ+1w2C+7BEowexmPWCYczZsQhONylm6QREUlQPpTfxrZPfMyo1V1\n8HeYqJjaXnsHVQfvq6/09kRbcrbYEhFXr4I4ezaE2R/C+fkcWJsbjW0dI8egfqsd4GlcjaFzPzLa\nPZf/HYGTT4eQkE0OAIJ77wu3ow9MsdjMQUCazW48QBQreRQT3nlXICEIBwDEtauhjtkQ1g/fT3/8\nSCSv7L3rCseD96L6tlkIzThabxBFCNGyXhUnm8uLKRtuDFhkiPPn6V0b6o1tspR7Ut5u5X0cor4q\nvOVkUxBO6+zPUeGyosI1AAPnbPr3bH/tf+jUHi/oXjbRQMUcrURERERpBFfrN05iT40DQMW1M+G+\n4ZqUvqLPC0XRUtpj7I8/ktJmiZa3ApCxlng6XbP+ZVoXgkEM/vs5qN1wZN7HICIiov4t5NOzg6gj\nR6Hp1HMgWiyZM/JFaQ4HAMD91muwvvY/AID006LSDpSoSJz/uQ/KyNTr3fo5X5dhNETrrvB2O6D1\n3ocAALboe0UhlAI+26bsGzJnYYkMGdrtYyUSOtohvfE6xAvPh2ubrVC7xXhUX3AWql57CYqmYdme\nB+GHy2/BvLe+wooP5sJx392oGjE49UCaBgTimXG7rrgaHQ8+BjnT0zi9yPLtN8ZyaMed0bS8Hisf\nfTZtX83tTmmr3W4rWL79BkJbKwDAe9lM03b35X8v4mj7PveVl8PS3gb5i8/1BkmCZtevo9TqagCA\nJssITtwMvvMuQtd1Nxn7KqNGG8uyJX5tJkT/JesLvz9ElF5g+lGmdXXkqAw9131GJhwA4to1ZRwJ\nUf8xcMKXiYiIiAow+oLTAOSfejnbzUZpzeqUNs/1V8dXtMwBPMnU4SPQ8dDjcP7fUxAWLYJUr9d3\nF5mKn4iIaMBwPfMUAP1maOwJ6pwp0BOy6VWcfTqaDj4Mnuuuim/3+4FooA5RX5QYHA8AkY02gWX0\nwJ0MISoVMVp6yfbBewXvGwwpsNsEiN14Ql5JyrxjlPcpVCgE4esvoX34EWyffgL3ou8hRrPsROxO\nrNl2V7T9ZScEd9kN1s0nocpjw/CkQAi1sjLlsNJvv0JICMIJ7XsA4MpWCLL3BI47Cc5/6w/stD/7\nMiAICO2+Z9q+yoj1EJ44CfLCBaZ2+xOPwvF//wUARDYZb9rmeOIRdN16RwlG3k+IIsTmJgCA/dWX\nAQDtz7yI8K67G10a17QiNPtjWPfcw2izJGXCYeIIov5FGT/B3CAO4LwWCZ8lLQt/RGjY8DIOhqh/\nGMCvGEREREQZJNxYi2y8SV67VN12U+5OmRQQhAMAwUOmwPLhB3qpLCIiIhpYIhG43nhFX7ZZjQme\n5ImeFLIcX05T8sN95eXFGiFRcSQFw9vef9e03jXr9t4cDdHAkfC0e1ObP//9VBXDd94a7qu6936i\nhMx/86LPBwSDuXfUNGgLFkC94w5YphyK6o1GYdCUA1F377/gXvg9WjbZDH+ceA4WPfoi/pj/G/DK\nqxh01aUYsdu2qKt2ps1E4vvHVSltQlcnxIYGAIB/m+2hbDKuW99nKQT32ie+Ei1NZbFIiIwZm9JX\nq66B4A+ktMsJ2XTU2kFo+fAz03Zx+bIijbb/EKKBYJooQVyx3LQt5X6MJMGy5x6mSBvBtAykz4VD\nRH1WQtBN28lnlnEgfYAUf6+sPPqIrPeyg6HeKS9J1NcxCIeIiIgoiePRh4zl8C67p+3TtOhPtO6y\nl7Fec8+/0vbLh1BgEI5hANVkJyIioqhwvFyHJlshifqEjpDr8erE7aoKV2JWPgCWBd8XbYhExWB/\n8rGM29RBgxDeaZdeHA3RwKElPO2uvP8+PEdNg+2Wm3PuJ/i8kJctgevB+7p1XjXx/S36Wbdms03S\nBo4qy5Yj/OhjwPHHoWL8WAzec0cMuflqVH/2EXx1w7Ds8OPw212P4c/5vyHy0WxUzroRgw/cG7V1\nFbmDVgFobg/aH37C1Ca2tsB93ZUAgM7jT+nW91gqke22R/vjz6Bpwe9Gm0US0frR52j88Tf4zj4/\n3lkQIAT04Cr/EfFSK5Zff4kfb5ttoUzaDJGxGxpt7pmXlfA76EMS7s9YlizWF0QBQthcLk2tSy1Z\nlisDFDPhEPVfwSnTyj2EsotsOslYtr38gmmbFgxCvnUWhPp6DB87DLZ77urt4RH1OQzCISIiIkoi\nLV0cX8lQn1urq0Prk8/Cd1oZn4SwyLn7EBER0TpFCMfLdWg2G6Q8JhNTjqEocN5tLishtrT0eGxE\nRSVnvtb1n9C3JsCJ1ikJQTgT/3YM7B+8i4rbbk4bDJNI60GWDzUSwdDjjgAAtEw/1igLLbW2QFq6\nGEpLCwIvvgTlnHPg2HoLDP3LRAy/7DzUvf0KNAhYs8+hWHLDnVg890f4v/4WzvvuQfWRU1E1og5S\nN8uHhA4+DK0ffgrvxXrwSeVR8QnY7rz3llpo/wOhDRlirFskAXA6gaFD4b3oUtQffzpW//AbAEDw\n+/ROztQylE2L/jSyP3TNij9sJHS0l3D0fUggNUuQ0NmJyGabm9rU4SMKPDAjcIj6M3HwoHIPoeyE\ntlZj2fpSPAgn3OmF/M+bUHXrjRg0aSOIwQAqokGrRAMZH58mIiIiShLeams4Hn8EAKBJFvhOPQPO\nhx4wtvv2OwgA4LLL5qefNC310SZNgyaKEFS16OPUkicmVHVg1ycmIiIaCMLxch1aRWXOp67z1Vcm\n11RNg2fmpdDCCny3mMsNacEgBJstw560rtHcbgBA17U3oeWoE+Bsb4ZWOwiOp5+A//iTyzw6onWX\nJqWfMrB8Mw9Cw1qEDzo07XYB3czwCkB+7RVYW5oAAGJVlWlbzfaTTZ+pww4nmnbcA/6ddoW2x56w\nbT4RFlGEu9tnzywyaXPIn3yc0i4KQPE/4ReXKUOey4Wua26E26nfQ4hsuDGsX38JZeRoNC5ejYoT\njoJtzscA9AeOYpT1N+jNIfcJgs+X0ia2t6HjwUdRs/l4iD6v3pglUDTtcQVmwiHqj+rnLUD4y69h\nG71+uYdSdl3X3YzKk48FANg/eBeB999FeMedMXzssDKPjKhv4iwNERERURLNlXD7zmKB98ZbsPin\n5Wha+Afql9XD+8TTAABRFKAOjj9phkgEKcLhjAE4/qOP69lAk8pRWb6b37PjERERUZ8nRBLKdVRV\nQZKKM6MT3m5H/WtEhVKC4OF8dXUF4XzoAbgefwhi/Vqj3frGaxg8sg7Wd98u29iod3kuOAcAIDY2\nwFHphjZqNOBywX/aWQCDsYhKJvF9JlH1QXuj6uTjIDQ0pN+xB+8dNWecZCxrU6ag+ZsFpu3tE7fC\nmjMvxKoX3kDr78uh/e8V2C+6AI4tN4NY4gdRhFjQRYJYKcj+xO2UjcDdtsefwZpTzoH/xFMAtxsd\nL76Gptmfo37OPPNOCVmRNK/XVKppXWX95KOUtsiEidAqq9Cy4NceHVtgNhyifkccPRqWaVPLPYw+\nIXTQIWh/5CloDj2LWtXR02D5vWevi0TrMmbCISIiIkoiqPE021r0ppNnUBU0pEYwa4MS0pEGgylP\nQ9lefyXl+G0zr4UwYj0om20Ox9NPdnuciRNTACA2Nnb7WERERNRPhOOTo+FttivaRKAQ8AMA1qxo\nxJL2CJx2GR6HDLdThsdphdth6XZJj7zO39kB+z9vRN1D9xtt8mdzEJyqlydxPnAPAMDx4L0I7bNf\nycZBfUds4tvyw3dlHgnRAJPu4ZIEYkM9lMGDUzcklKuSP/4I4d32yO98SWWuNJsd6qjRqF9aD+sz\nT0E55DBodXXlm8hQU8twaf0wpUli5jytthaNF/0Dw9yueNumk1LvdySUwLb98B3qhlSicWWTKThn\nXeO6ZmZKm7LJOACA5tR/XsqgupQ+eel/vzZEBJT0M1B/EzroELRsOhG1220JzW4HgqHcOxENUHzl\nICIiIkqWeBMwx1O2mhy/+SQEgynbK848JaUtfNY5CE2dlvPmZi7SyhWmdbG5qUfHIyIion4gpN/o\nbD/8SECWexyEo6y/AVSbHdbZH8JzxkmYvO1GqJv/ObyBMNa2+vDHqnZ893sjPl+wFt/80oBfl7di\nVZMXHb4Q1CI+Ee+66Tq4EwJwAED67RdjOVaG0/rZnKKdk/oHhen/iXqVqeRyGq5bbsqwY/w9oeqI\n9CWr0rG98lJSg/4ZW3Q6EDnlNFN5pHIIHnSYsRzaeTcAgLLxuDKNpjgEADZZytkvlu0gke3lF0ow\not4h1Nej4sipkH7LnLlBHbFe5gNIEpq//xmtX3/fvfN3ay8ior5FHTMWqseD8JgNIQQD6fs4XWnb\niQYSBuEQERERJUsIjtGs2YNwwjvsZCxn+uCRIlpGSh2m18wN7b5ngQPMoKEeqrrup4fv284DAAAg\nAElEQVQmIiIayITodYolOkkp9PBp/NY33ocYvYaxv/wiAGD0h6+n9FM1DV2BMNa0+PD7yjZ8+1sj\nPvtxDeb/2oDfVrRhTbMXnT0IzBE6O1PanP++I76S8ASqNgDKYRAQ3moyAMB7aWpWAiIqHWXTieg8\nMHMQje2dN9NvSCpHJXR15pXJynXTdab1xAdd+gJlwqbouPxqtL71Adqffh6rP5wLZdz4cg+rRwRB\ngMWSx9SQK3USVezsKMGISk9oaIDn6Gmwffg+POecnrFf8NApAADvBRen3a4OHwHN7Sn8/ELPr9mI\niPoKze2BtHYNPGkePgWgZ8khGuAYhENERESULOHmYbr67yZWK/xHHasvB7IH4fiPPxmBXXY31rWq\najT8tgzt//dSlr3y57n5eij19UU5FhEREfVNgt+nf3W7C9639cNPTeua1QotXUkR5BfkomoaOv1h\nrG724tcVbZgfDcz59rdGIzCnyx/OK2hGraxMaRMUBZYFPwAAIhM2Ndq9y1blNT7q34TWVkTcnrJn\nwSAaiFrvvB/tBx6Wu2OipCCcyhlT8f/s3Xd4HNXVBvD3zmwvqparLBs3bGObgKnGQAjNlNCrCT0Q\nykcLJRB6D5BgQq+BQIBATK8JAQIYML2Zaty7JVll++6U74/Zna2SVtJKu1q9v+fxo5k7d2bvytJq\nyrnnVO+5K+RF33S6W/jwo9IbushG2++EQOS886Fssx3gcEBMnVrsERWEpaflVaKxrvuUoNoZk2D/\n2shgI0KhtG2Of/wd1jv+aqzEjGBnZfovCvr6DMAhonKiu92QNzVD3pj7PnSuTGpEg03RSqkSERER\nlSqRUo5KXrO66x3iNwlFJAJN16Hres56wf5b5mW1iarqHo8ztvVMWD//DOFDj4DjmaeN8X7yMXDA\nAT0+JhEREZU24fcDAPQeBOEo07dMW/f9+a8dvUq3j52g6Trag1G0B6NAs9EmCwGP0wqvywavywqv\nywqn3ZL2QEqvrjGXgwcdCle8PEn17jujccWGtDE17LYtNi1b1+Mx0sAgmpsRHTU6LQsSEfUPu9cF\n331/Q9T6d2gbNmDY9Ilp2xVVg0VO/m7GFA12PT0Ix/rxQgCAvHwZ1GnTO36x+O946ORToYbC0IYO\nK9C76Bup73sgs8g9/FuvDMwgHJEaJBaLIaaosFpkBDY0o+73ZwEAfG4XPNdcDgDQXS40P/wEtAIF\nzzAEh4jKSVfXorqDQThEDMIhIiIiypQShBM6/qQuu+t2I8WmiIRhv+Fa6OEwlGtv6LPhJbQ/8gRC\nl14Bx3V/MoNwVE1nqkMiIqIylijb1JNSCFnHSjnnSVW19Ads96eLoNrtUG0OqDYbVLvDWLbboVnt\nxja7A6rNbvxLLNsdUFO2a1Y7VKsVbcEo2oJR8zVkScDrNIJyPC4r6qPJcqDB626CHInA/trLRt9V\nKyFSMg7KgYCRcYHBGeVL1yEF/JC83Q82I6Lek4SA3Soby0OHov3EU6HvvAs8f7wQqsUK/f33IY8c\nDnWCEZyzqS2IERmZcEyW3I8gtP++CTkYgwgaGd7Chx8FZettCv9mKKeeBhOJaLTrTiVO+P3QXnsd\neoUHYw//tdnuvfj8ZCerFepuu0NHYcpJMBMOEZWTQlyLEpU7BuEQERERZVKSD4H0PDLVmHVuwxFU\n/fXPAIDGjCCc4FnnFW58cdrwEVh59S2YWFuVbNPyKx9BREREA1OiHJXucvX+YPEgnOApp8H1wL1m\nc9XSH1G19MfeHz9OF8IM4EkP2nFAiwf4VH26INl/yBCETj3dDMJB40YgnF46QjQ2Qh9W2tkSqBci\nEQhV5Q1+olIgBII33gxZkqDecwdsn3yEkYftBwDYsKEN9rffxLSjDoHv5uzMrwBgWfgBfL/YFs5v\nv4a2225mAKW05x6oAeA77mQAgO4swN81ypsk5RcU4rvtLuA//4b31RcBGBmAE1lkBoyMspjyhvWo\nP/noTncRbW0QQjCDDRFRDrrbnbbeftnVqLjuSvj+9Be4/nJT1ucu0WDEIBwiIiKiTFrKrPB8ZivZ\nbAAA5/13Z22KzpoN2wcLEPjjFYUaXZqGoekPJrTYwEwNTURERHmKRACkBAH3QiKQJ3D9zcDKlXD9\n+1WoDWPQ8vrb0ENBRHwBhNv8iLT7EW0PIOoPQg0EIEcikKIRyNEI5EgYcjQMORqNL8fbYhHIEWNZ\nikWT/SIRWMIh2Ntb4/3SZ9S3vPIGIEmIzZqN0DHHwfn4o9C+/gZ6MD0IR1q5AiqDcMqWWXYt4wY/\nERVHotyynlEqSn3933DPuxEA4L0o98QT9923w3337QCA8G57wPfUs2nbvY8+ZBy7EMGlVHDhucci\nstd+ySCclk2IRJSBE4Sj61BXrir2KIiIyoqIX5MmRM4+D0t/eya8Lhtc825hEA4RGIRDRERElKWj\n0gwdSZSjcrz8QvaxAgFoTicg980NKps1PTGyrnRv7ERERDSwmGWZ7PZeHaft6OMQPfAQcz127PHA\nv19F4NIroQ8ZYrxE/F8qVdMQCCkIhGMIhBUEQjEEwjFElQ7KkHRF0yDFohj+1ceYLvugbLu90S4E\nYjvvCufjj2LIlRcjsMectN1q9tsDjWuaAau1Z69LJU0EjCAcMAiHqKTotvTP3JHHH9Gt/R1v/xfh\nDxbAc84Z2cd28fe9VFkdNnPZ+dgj2OyxR9D004q8MgcXW8UJxyQz63VDdL9fd92JiGiQsv3vLXO5\n5bU3AaSUORTCKB1MNMixeDYRERFRJtW4UFhz9c359XfkeAgWj/gXfh+0PryZmKgrHvj9hQCAMeed\nCmn5sj57PSIiIiouEY1nwrH3LBNO+90PoPGCyxCed0daAEt0r32w8edViBx8WKf7y5KECrcNI2rd\nmDCqEltOGIJZ00Zgp2nDseX4IZgwqhIjalyodNkg51PqQpKg2R3YsMOuiJx8atomdbNx5rL1x++z\ndnXNu6Xr49OAZGbCYTkqopISOfDQXu0faxiLqoP2hWXF8qxtzHxVuqQc2fesn3xUhJHkL1GqOzUA\nJzprdlqf8BFHw3/NDVCHj0Bk733SD5BPVmQiokFKq6pKLg8bDgCwWuIhB5LETDhEYCYcIiIiomyK\nAgCQGkbn1V235QjCiUQAhwPw+6G5PYUcXU7aqORYvRefj7Z/PttJbyIiIhqwwvHU37mCgPMQOexI\ntAejqMgRICMqKns8LKtFRrVXRrU3fVzhqJLMnBMysucEIwq0jBuzUo6HXcpWMxFtGAvbyuWwrVoB\nAIhttTWsX3wOAJAX/5RzLJaFH8Ky+EfExoyFNn0G9OqaHr8vKg4RCBgLnr4/jyai/One3gXGWVcu\n73gjy1GVLosFjfPuRt15KRmMtNJ+wGq76QZI9aPS2vw3z0PFycfC8uMPAADfrXcANhtCp/0fbG/+\nB/Z/v1aMoRIRDTgt732M2umT0Hbkb6DVG/ekUzPhCJ2ZcIgYhENERESUQWhGSSeb3Yp8Lhl0my2r\nTUTC0BUFcuNGKFvMKPAIc4zBkjytS6Txtnz5OWLrN0DsPYezuIiIiMqEiBjlqHqaCQcAbJb+S4zs\nsFngsFlQW5kcr6brCEUUMygnEI5BUXI/zIvusx9s991lrrff/whqtzXOrbSGMTn3qT5g7+T+O85G\n2wuvFuKtUD8Sfh8AQGcQDlFJSWQoi42qR/vzr5qfxx1RJk+B5Qcjk5lWNxRS48ac/Va9/i56/leN\n+kPg0CNRedstsK2IZ94t5SwHioLqeTdlt8sSWp95GUOmTUB0x52AlHs50V/ujvbD58K1cAECB/Qu\n4xMRUbnThg3HshXNcNjk7EADZsIhAsAgHCIiIqJsqhGEI1vzC8JRtts+uzEcgRxogtA0KFOnFnZ8\nuUjJh2nasGGwvfQ8Kk8+DgDw6V8eRuSXu8PjtMLjssLjsELKpzwEERERlZ5wPAgnVya+PNmscqFG\n0yOSEHA7rHA7rF32FdXV5nLw9LOgjRmb3BYMQNd1szxnLrYPF/RqrFQciUw4LE9DVFq0+tFYO/9V\naGPHwt5QD12WIeLXz5l0m80MwAGQFoCjDRkCqakJABDZfkfYt9qybwdOvWa3yskAHACIxYo3mC50\nFOylNowFrFY0bmzP3ijLCN15DyJCQNN09F+4MhHRwORyWHJmM4UQ5r11osGM5xJEREREmRIXCpb8\n4pXV8RMR2G7HtDYRCUO0tRnLKXVy+0xqJhyLFY7nk+Wotjn/RDj/dj9aX3oN3334LRZ8vRaf/rAR\nP6xowepGP9r8ESgq04QSERENBHo8CKen5aiA3KWfSpVWmTyP0oYOAwCseulNAIC0di1iGxuLMi7q\nWyLgBwBont6VviGiwhM7zYJttFHmJ3TibzvsF9tuB7TfdT8AYNObC6DVDQUAtF9zA5q/Wwrsuadx\nvFis02BKKg1mmZE4EY0UaSRds73139wbrJ0H/ybOjzhpiYioax1fUwpmwiECM+EQERERZVMV46uc\n/yxxMXo08PGH5roeDkP+6UdjpXZIIUeXW8pYdV2DlhH4s/Vd15nLUbcXvoZxaG8Yj/bR47A+vqw3\njIHH4zAy5jit8LqssFqKO1OeiIiIMoR7X45qIBHBoLmcyIqi19cDAOyvvYxRr70M383zED7hZACA\ntGZ1/w+SCi4RhMNMOESlJzUYQ2pMBkK2Xn8zqi69CKFjjkNb/ThYfnsS9MoqNB5+FADAd9udUJ57\nHtqJpxg7xEsBiUjpBnNQutZ/PoOqo+KlmqLR4g6mE47HHi72EIiIBi+JQThEAINwiIiIiLKIeFYY\nXepGEE5KLXEAUANBSG2tAABl/ITCDa4Dupw8rdM0HaKmNrluseLjC25Axcol8X9LUf3Tt6j9/qv0\nMdvs8NVvhvaGcWhvGIcVDeMRGTcRmDAB7iqPEZjjtMFuY2AOERFR0ZhBOD3PhDOg6MlsfbrDCDyS\nvOnZUbwXnWcG4cjLl4EGPuGPB+F4PEUeCRF1RmptMZdjc4/F2tHjYP3lLghqEryu9Gvk6J5z4J+9\nOzz2eDaSI48EXnkFkYMP688hUy+oU6eZyyKRma8UMbMSEVHR6EIAGjOuEzEIh4iIiChTohyV3I3K\nnRmlq9RACIjEZ4Y5+mGmekomHOtXXyLiNB5YBGbtgndPvwL+YaPSugslBs/aVfCuXIKKVUtRscII\n0PGuWoaqpT+k9dUkGYGRo9E+ejzaG8Zhw9gJUCdNgpg8Ba66angcVrgcGaeVqoqgPwRXJR+cEBER\nFZLrxeeMhf44vygBoVNOh+e6qwAA8soVAACL25nVz/L5p1C23gaipSVrm+3F5xA94OC+HCYVmAgG\njAWnq7gDIaLOKUYW2cj4iYDbDeucvQAAbi33DHiPM6Uc0LHHYsWwcXBtMbnPh0mFoXkrzGURChVx\nJJ3TA8G09RXz7ofzwP3A0Bwion4gSQAT4RAxCIeIiIgoixmE042MLxlBOFooBD0xU93W9zPVU2cg\nOj5ZiMRjufDtd2Hr0Q3wh2LwBaLwBWNoD0YRBOBrGAdfwzisTRu4BlfjOnhXLk3LnONduQSjVr+J\nUR++mfa6wboRaG8Yh7Yx4xEdPxHapMmQpk3FmCvOR90br6NxxQbAmf2gjIiIiHpGigyyTDgp5xFq\nwxgAgJzjHK3yN0eg+bulkFavyj7EY48wCGeAEfEH+KnZHomo9Ih4SSJt+Ii0dknKL9zBseV0o2wF\nDQyuZGCk56pLETrjrCIOJp387SLU7DYL0VmzYfvhO7M9tvlkqAcfApGRmYmIiPqIEBA6M+EQ8UqW\niIiIKJNqzObrzk1/3WpNbwiHoYXi6Zn74SGZVl2Ts133eiEJgQqXDRUpN50UVTMCcgJR+EJR+AIx\nRBQVkCQEh41CcNgobNh255QD6bC3boJ3lRGUk8ycsxTDP3sf+Oz9nK8vbVgPbexmBX2vREREBOj2\nwZEJBwA2XXQZxEcfQTlybod9pKYmyIu+gfeKSwAALa+/heo5vwIAKJM275dxUgElUtjz4TxRaVNi\nxtfM6+E85RusQyVCCPgvu8rMUIdwuGQy89XsNgsAYPtgQVp78OLL4Xb07OeTiIh6QAhAZyocIgbh\nEBERUV40XYc0SOpqix5kwlEnpafQ9rz2IirnPwkA0G19P+MqOmffnO26x5uz3SJLqPbaUe1NBghF\noirag8lsOb5gFGoijbgQiFTXIlJdi6YZ26UfK+CHd9VSIzhn5c+oWLkUIxe+DcDI0KOBQThERETd\noes6RK7zrtSbmYMlEw4A3/+dB/UMHd6U74kuBETGzd2aX+1kLqvjxqP9vr+h4ncnQRuWnqGBBgAz\nCKcb5WGJqN9po0YDX3wOfQQ/ZwcLbdhwc1n4fNBLJAgnl8b1rYAkgX9JiIj6kSQxCCdOUTVYZP4V\nGqwYhENERER50XXdiGQfDNT4Tf9uBOGEjzkOUdkKR+N6uG+4BlXxABygf8pRdfh/040ZiXabjDqb\nE3VVRtkHXdcRjCjJjDnBKAJhBVrGhZTi9qBl8gy0TJ5htk1+8n5Mf3gepOam7r8XIiKiQU7VdFjk\nHH/bY7HkcnfKZg5wQgg47Rnv124HwmFEd90NtnfeztpHd3ugDakz9o+X8KIBJBGEM1iuP4gGqMBl\nVyJYUQ316muKPRTqJ1pdnbks+dqgpqwXi2hszL2BgZxERP1PiOS5/CAmrVwB8fGnwGGHFnsoVCQ8\nCyEiIhpEMoMnumNQBbBHI8ZXazfilWUZ0aPmQh05KntbP81UX3fPI2nrSm3vboYJIeB2WDG8xoVJ\no6swc/OhmD19BLaeWIcJoyoxrMoJpy339yhSUWUsLFqE0I+LezUOIiKiwcbMRJcpGu3fgZQIiyyy\nZxBKRlCOMnkK/Gf9Pnsnq9Us2SUiEbNZ1TSovClc+hIXH3yASlTS1HET0HjtLdArq4o9FOonsd32\ngOb2AABEIFDk0Rhsz803lxOlwmObTynWcIiIBjfBTDgAUL3nLhh+xomwfPYJWnyRrnegssMrWSIi\nokFE6+iBziBl+fB9iPfezWoX7W0AAK2iezcSLbIEPX4zKpXeT0E44X1/Dd8OswEAytBh2PDJNwV/\nDUkSqHDbUF/nwZSxNdh+6jDsNG0EZoyrxWbDK1Bb4YDNIkGNP/SqvP4qNOw8s+DjICIiKmeaphtZ\nCDOImBGEE5yzf38PqajkHCm8w4ceDgBQZm6L0OVXIXTwYdk7OuLnYCmZcNz/dzocd93eJ+OkAtJZ\njopooLBa+Hs6qAiB8AknAwDsTz+J2vGjIJYtKdpw5MU/oeKyPwAA/Oecj/BRxxjL11xftDEREQ1q\nQkDo/TPpQTQ3I/LBwn55re6SWloAGH8r/QEG4QxGPEMmIiIaRDqcVZ2HXA+CBrrqA/fBkEOzH2KJ\n1lYAgF5Z2f2D5sqe009BOLIk4F24AACgTJsBm8fVL69rtUioqXBgzHAvpo+rxaxpIzB+XEYWnjL8\n+SEiIuorUUWDoub42xk1ylEJW/7lJsuBlKMkkf+GW9D08huIHHgIACBwzY1QPV6E9tkfm97+AACy\nMuGIxkZ45z+Jqmuv6KeRU4/FsxXpgrcuiUpdVrlAKnu63QYAcN13NySfD/Z5txZnIMEganbaxlxV\nZ24L/3U3YeUrb0PZbY/ijImIaJDTJQl6P00E9lx+MeoP2gvyosJPRO0N2+uvmsuuhx/E1jPq00tL\n06DAK1kiIqJBpDeZcAZTDIVobYXqcgPW7j/gUqZvmdWm22yFGFaXZCn5gCq215x+ec2OWJ3O9IZw\nOHdHIiIiyjJ87sEYObLKzM6XIPnajYWKiiKMqsTY7dC32x6IB+jow4bhp88Xw/fwP6BuMc1oSwRC\nx4Nwgus2FmWo1H0iUTIsRwAWEZUWmRmrBp94kGtCdO16rFjvw8aWIHzBKBS1fzIgOFLKUAHxey9O\nJyxb/aJfXp+IiHIQwgyo72uO+U8BAOQVy/vl9fIhrVuLyuOOymqv3mOXIoyGiolnyERERINIrzLh\nFHAcpU5qb4NW0YMsOAC0ESPRPmvXtDbd2k9BOHLKQ4oeBBAVUmJmXEKp1IonIiIqeYEAPB++BwCw\n/+ufaZukjRsAANrQof0+rIGg0mOHSH0Y7EhkwjGCgYO+YHLbYIowH4g0lqMiIipZ0Wjaau27b2Dl\n8g34bkULPvupEQu+WYcPFq3DF4sb8ePKFqzc4MPG1hD8oRjUAj6YldatTVtXJ08BAFgtzM5ERFQ0\nug45GIDw+4x1vx/eU09My1ZTjhn3E2q3nJyz3fL9tznbY4ral8OhIuKVLBER0SDSu0w45XtynEm0\ntUHz9nyGeXRkfXqDq3/KQqXNQCz2rOGMwKPEhVe7L1SM0RAREQ0YiUAbAICcLHMpzf8XLF98DgDQ\n6hiEk0vmQ7dEJhwRCgPRKCrnP2luc959R7+Ojbopce3BIBwiopJj+Ta77Id73aq09aiioS0QxbpN\nQSxd147vlm/Cpz9uxHtfr8OHi9bjy8VNZoBOUzxAp7v3rEQo/f6CNnJU998MEREVlHXR1wAA17w/\nAwA8V14Kx/PPoOZXOwEAlJiCaETp8fE1Xc/KuCaUGOSlP8Nx/TWAWppBLdGdd83Z7g/1/HtBpc3S\ndRciIiIqF1ovAmnKOgZH15NBK7oOKeAHvJ4eH06yJk+xtMrKfn14oNXUQtrUDK12SL+9Zu6BpF8M\nOR+4F/bXX0HdqpVo+nYJ9Lq6Ig2MiIiotKVlj4tntrM9/igqz/s/s1kbOqy/hzUwJTIDKgrc114B\n1+MPmpvsL7+A0JlnF2lg1CWNQThERKXKf82NsL/+alqbHIt20DtbRFERUVS05kiY67DKcNotKf9k\nuOwWOOwWSBmTjURrKwAgeMxxiFbVdP+NEBFRwfluvQPe358F5713IrL3vnA+9rC5Tfr0Yww7eH9I\nkTA0twctH34GbfgIeE44Blp9PYLX3dTl8ZvbwrCsX4taT8oE0FAIVb/aGVIwAH2LLRA56NC+eGvd\nEpu+JZTttofzofsBALo7+1mD/MP3cL6/EDjx+JzXPaqmseznAMYgHCIiokGkN5lwyk5qVJGqApb4\naVE4DKGqgNfb40NbU0sx9fOJcsur/4U6/xmIvffp19fNpGyZXoPd9cA95rLtrTcQOXJufw+JiIho\nQBCpD7FiMYimprQAHADQmQknL7oUz4yjKrA/90zaNnXCRACAomqwKDE4/vYAIsceD93T83NAKgxV\n0wA9UY6qyNkdiYgoizZmbFab1I0gnM6EYyrCMRUt/kiyUddhDQXhifjhDfvhDvvhCvpQF3+wG7z4\ncih1dWARKiKi4lMmGeWYRCyG6v33TNtWu+8e5rIU8MPx5D8QPO9COF99CQC6DMKxvfQ8pp58XFa7\nCIchBY3ITudNN0D928PQXC7oLhfgdEN3OSHcbuhuN4T5zwXh8RjtLhd0lxu602l8dbmMzPa9uK8f\nvOBiROfsC/92s1D3uxOAcHZ2+IoT5qJm6RK0brE5YjvMytoeUzTINgbhDFQMwiEiIhpE1EQQjqLA\nfvGF0PbZF7Hd9+x8p7iyK0eVmpoyEjGDcDxXXwYAsH7ycY8PLduSp1iBP1zW4+P0hDZuPNrOOAdV\nRY6S16uqO9yWNsOfiIiI0kWSD7Gk1hazpGMqbSiDcPKSCLJWVcRmbgv5tZfNTY6nnoBYvw4brrkZ\nFa+/CPeN18L26cdof+jRIg2WElRVT2ZVLHaJVSIiypbjs1mKdh2EI0WjsPrbYPO1weZvh629Dbb4\nutXfbrT72mHztcLmb4fV1272ldSOy3XotbXMFEBEVCKUbbfLu6/7xmsRPO/CvPtX5gjAAQARDJrL\n1iWLUb1kcd7H7IzqcEBzOKE7XfGgHjfgckF3ugC3C4gH9CQCeMJTpxv71Q1FdJ/9jIMcdDD0004E\nQtlBOJalSwAAnj+cD8v33yJwyeVp3w/pyy8gRo2APqq+IO+H+heDcIiIiAYJ74nHwNHuR3D+87B/\n9CEqHn0IePQhNG5sz2v/ckuiY/14obksohHobjcAwPm3BwDAjJ7vETl5ihU56JCeH6eHLHJp33wS\n0UjXnYiIiAap1Ew47huuQXDLmVl9NGbCyY8cnxOvKJCWLc3abH/nbTTsui20qioAgOXzT9PLlFKv\n9DR9uqLqZtZKXZT2eS0R0WAV2e8A2F950VyvX/Af1H7/pRFc42sz/6UG11gi2Q8gO6LJFkS9lYh6\nK+Ef1YCYp8JY9xhtmtWK6Q/fZnS28DEXEVHJ6OBaKnzI4XA8+6++ecm2lrT1ZXsfgq9PuQByOARL\nOAQ5HIYlHIwvG22WcBByJBxvC8bb4tsjqf3i25uaYAmvgiUS7nAc7sR4lJTAUSGgO5wQGUE40vp1\n5rLl+2+N/W+8Fmp1NSIn/BZQVYzaf3cAyPv5DZUWnp0QERENEo5XXoIDgE/VIULBLvuXO/cN1yRX\norHCHlxOJkHWHc7CHjsPFrk0Hhxteut9hH/4CSPPODF9Q6G/30RE1OdYi7z/ZAar1h15YNq6OroB\nureiP4c0cMV/ZuV1a81Zhjm7tbYa/dashvOO2xA6+7x+GV5ZCwah33MvxO9O6XaJL0XTIBKZcPi5\nQ0RUktof/gfUDRvh/vcr8F5wDia89GTOfoq3EkpFJcJ1E6BUVEGtrITirYJSWQmlosrYXlkFtSK+\nXmGsa05Xl0GxS2bPQvWU8X3x9oiIqEDChx4B/zU3wvnQfX32GlJLehCOMnkqRO0QhGJqB3v0gqZB\njoTSg3bCIWx7yyWoWL0MABA885z0fRwOMxOOpuuQhIBobMx5+IqLfo/G35wAEfAXfuzUrxiEQ0RE\nNMhomg6EkhHbQxqGYtPHXwH/+Q+0Y4/r8CZHOZSj0jQdkmS8P2XS5mY2HBGNQAeAWDI4RM1R4zxf\neuosLLu9x8fpqVLJhKNOmw5p6hZQr7gIclPywkINdTxjgIiISlMoosLbtNpIg9zpdSMAACAASURB\nVMyH4n2rk2DV4G9PQ+D6m/pxMAOcENAtlk4DcDJ5rrsS2ogRiBx+VB8OrPx5Lr8YzsceQdDfgsCV\n1+a9n/bFl3D+8GOyHBU/b4iISpY8bCjChx4B3eEArFZolVXQq6vNr3pFZdokpQQJgC3+r1dGzUEf\nPF4lIqJeCv3meDj/8XcAgP+WedA9XkT33R/uW2/O7pw47wd6npW0eVPaau2RB2PHCcMRU1T4Qwr8\noRj8wSj8YQXBcAy9esohSVCdbqhON1Knz7w973EcePgsAEDod2ek7aK7XEYmHEWB9b57oc2dCxHu\nODuc2LQJ3jN+m2wIhQBn/0/0TRWJqrDbsv+mU8cYhENERDTIqKqWlglHhMOo2n9vyCuXw6fGED7x\ntzn3G+gxOMLvQ+zLb2CfbZwMK7/YGohfDOhh45RZpETN+/5ye89fLPVhQY4bTn2tVIJwAECWJGz6\n9mfUDas02xiEQ0Q0sIiWTRhxxCFwfPU5gr87E4Frbyz2kMpaZ2UbA9feyFJJ3SXLQGo68Ayx8ROh\nRKJwrl5htlWceSoaGYTTK3K8/Jf1gwV572N//hlUnGpkUAztsbfRyJ93IqLS5nYjcsTRxR4FERGV\nEP+f/wrd60Vs+1lmVkxlxi9yd06ZFOv5w+/hv3le7n45Hk5EttwK9q++gPOl5wAAWnU1/Mf9FuqE\niQAAq0VGtVdGtTc5SVbTdPjDMQRCMfiCxld/KAa1lw8/opXVCE2dDqm6KmtSru5wwLrkZ9SNrDHG\n/dH7CJ1yGgAgeM75iO2wI9SR9ajZdQcAgGP+U7C/+z9zfxEMQi9yEE57MIo6W3HHMNCUzhMaIiIi\n6hf2hQsggunlqOSVywEAlm8XdbjfQM+EU/GbI1F/yBxYvvgMABAJJgNBLLffBv377yC1JoNwtBEj\ne/5iRQi8KWlCYNObC9B+9wMAgIp/PlrkARERUXe4r7kCjq8+BwA4H36gyKMZBKLRnM3Bc87nOUYP\niEjHQU0A0H7TX9C88Eu0XvDHtHbLV1/05bDKnlY7xFhobs57n0QADgBYFn1jLDATDhERERHRwCJJ\nCFx9A6L77p9zs1pRieiv9gAAiLY2s935yEMdHtL+zNPmcvDMc7B6/qtou/3etD7tDz6KyKWXdzE0\ngQqXDSNq3Zg0ugpbTarD7BkjsN3kYZg6tgYNQ72o8Tpgt3T/2nvli2+i/dmXc71o2qr8808QEePZ\nhOatQHT3vaBOnmJu91x1aVp/oXScLbc/SBvWw/uPh9OzFlGXeCVLREQ0yAw/8kBIm3LfDBe+tpzt\nzvvuQs31V/TlsPqcLT4LNxFoVPWX5Cz+qqcew9BddzDTQCpDhkKdOKnnL2ZhssFM6vQZiO28KwDA\nsqkZCAQgOvg5JCKi0iKvXZOykrwRNdADdEuViAfhBP/vXLTP+TVCk7cw1s/5fTGHVTZWvftp2ro+\nbTrsNhmRC/6A9etbzZKk1XvuOvBTQRZTzPg5tq5c3qPvo3X9WmOBQThERERERGVBq6oCAAQOPMRc\nllrSS0llTkqRli2F7d670iZJBK68FvZdZkMaMiStb+Lec3cJIeByWDC0yolxIyswY3wtdpw2HLO2\nGI4Z42oxbkQFhlY54bJb0FmeTlkSOTN5Whb/lLauTtwcwu8HAOhuV2IQ8N16R+4DdzBRp794fn8W\nRl9zMZx3dzA+yolXskRERINBRpSyvmFDzm7C50vuknKz3HP5Jah56J6+GVs/E6EgpNWrYGlrzd4Y\nL5MUPebYXr2GzlnqOWlDh5nLdZuNwJDJm0H+/rsijoiIiLpLl5J/4xSVAQp9In6DTZk+A+G//wMr\nX34by1Y0m2m8qXe0sZuZyz+/sRB6TS0AY0akLEmI7Lm3ud1zEQOfekprSQb3O/54EUQ3MuKk0gVv\nXRIRERERlYPw3OMAAMo220H3VgLIDsKx/fc/aeuVxx2Fyisugeu+u7OOp3v79hrZZpVRU+FAwzAv\npo6twXZThmH2jBHYamIdJtZXYWStG16nDXI88EaS8iulK61bA+/vTgIAaMOT2fgj++TOHJRasqsY\npOYmAIDtzf900ZNS5XUl+9VXX+HYY3M/jAqFQjjqqKOwZMkSAEAsFsOFF16IuXPn4rDDDsObb75Z\nuNESERFRz2RGS3cQhJNKVcs0vWAoBMuP3+fcJMdn3OoZdVu7TWYmnJxyzASwfv5pjo5ERFSy5NQg\nnDI9Vygy+8svAAB0mx1CCHhdNnic1iKPqnxIkkB01mwAgHfKhKzt1o8/Mpedf+84HTp1IhSC68P3\nzFXvQ/eh8oS5ne4irVyRe0OO80ciIiIiIhp4ApdfjeZX34Ry5NFmAI3j9lvT+lSeMBe2e+8CdB2R\nb76F5ccf0ra3/zUlGMfhQHj7WQAA303px+krsiSh0m3DqCFGOauZmxvlrLadPBROe37PBKxffgER\nnwCt19SY7Xptbc7+jvlP9X7gvaBXVQMARDBQ1HEMNF0G4TzwwAO47LLLEMlRQ/ubb77BMcccg1Wr\nVpltL774IqqqqvDEE0/gwQcfxLXXXlvYERMREVG3iVhGGsfGjTn76R6P8UBNUaAoxoM1XVH6fHz9\nyfL1V5A/zR344XjofgCAbnf07kVkztjtiP/s9BnluttdpJEQEVGPpPyNiykMwukLtvfeiS8YgTdW\nC88rCqXtyfmwyBLa/vUCGpevh2SzZfXx3ZsMvFFSsuZQ/uzPP5PVZv3oQwCAtGE9EMi+eVtxxim5\nD8ZyVERERERE5UGWoW2zLYQkQVq9EgDg+G92dpXKKy5B3bBK1O++Y9Y2dcLEtPX2F19D48Z2hE/8\nbd+MOQ9CCLgdVlh68ExAy8h4G5u+JQCg9dF/mm2ORx/u3QB7SY9fN4tocTPyDDRd/jQ0NDTgjjty\n1/iKRqO46667MG7cOLNtzpw5OOeccwAY9eFllmMgIiIqvkh6EI7rk4U5uzmefxb+Fh/qRtag5rQT\ngXAYQ0fW5Ow70Oguo76q48Xn4PnLn8z21SuazGXbwg+Mvs7eBeHoFmbC6YiI/z8k6BnrRERU4hI3\nXfx+iOXLijuWMqdbmP2mEJQxY83l6A47GTdGrVagg3MQdcJENG5sh+b1QnMxWLgnRCiUu725GVWz\nZsJ73NGQVq2E65YbAVU1trW35dxHr6jos3ESEREREVFxhE/oWdCMNnxE2roYAJkzW155A20XXILG\nbxZnbdM9nrT11hdeQ+uzLyM2Z99kn8rKPh9jp6xGEI6eWW2BOtXlE6K9994bq1evzrlt5syZWW3u\n+Gxmv9+Ps88+G+eee25eA6mudsFiYcAOEfVeXV3f1oEkGpCi7Xl3HX3ikQAAz6svwh7zp20b0L9f\nLhcQDKa3ffgh6huy0zx6h1TB25v3WpF8qNOX37MB+f9RV522Wul1AAPxfRBRvxqQn3dlJZnxRowc\nYfx/7L8H6j7+GFizBhg5spN9qaeq6ir5N7IA1D33BB58AKHrbkTd2OF576dXV8Pib0ddnReKqvVo\nVmNPlMXnnTP37cYhU4zMQvJ7/4PjoH2AVavgnjoJOOEEwOXM6q+5PagblTslOxGVh7L4zCMiygM/\n74gyHLgP1F9sBfnLL7rue8klgKIAPh9qt5o68ErW7ruH8Q+AvtlmEMuSE5pqx45Iv+6v8wKb7Wcs\n33YbcO65sBx5RHE/Q7zGsw7r4h9zjiOmqLCmxHhUVrlgszLmo0+maa9btw5nnnkm5s6di1//+td5\n7dPSEuy6ExFRF+rqvGhs9BV7GEQlR1rbjFy3rzdsaIP47lvU7bEzRHwWquOjD8zt6+54EA0p/Qfy\n71eNw4nMU79myQmt0Ye6jPb2qI5IL96rs9WPRAx7X33PBurnnUMRSD1Vb2tsRXQAvg8i6j8D9fOu\nnFRvaDRvHkQrq9He6DMCcAC0LvwcsZ15Q7mQEuclLVFA4c9+ryl/vAatY6ah8oTfwN+N72eVpwLW\n7xah5Za/wvXQ/QjusSciV/ZtyfVy+bxzbWhGlzmE4qXtI08/g/D/3odt86lwfv55eh+LXBbfDyLK\nrVw+84iIusLPO6Lc6lICcNY8/RIcm09E7ZaTzTZ1VD3CU6YhfPQJyQw4Tf7MwwwolcNHwpYShNMY\nBtDB54Nl0jRUAwi2+hEo4meIV9GRqBvQ8vpbUGZua26T1q1F6KNPYT/oAABA7bmnQ12+Eo3Pv1KE\nkfa/zoKjCh6E09TUhJNOOglXXHEFdtwxu1YbERER9T8Ry67XGZu5DSQhgC2moWnlxpyzTBtuu6E/\nhtenNE2HJIncJaLs9pz76M7smbjdoqi927+cqUraqmAaSyKikid8yYx6IhxO39aWu4QM9Z6yVXb2\nYeoBpxP+Aw/FEFv3ynslUn5XX2RkeLb/+B3WXXZ1v2XEGdBCxkQ7dcxYyCuWd9rV/trLsANQtpie\nvVHi95qIiIiIaDBQd9wJmt2C6KzZsH2wAJF99ofv9ruhV1YVe2gFpXszgjYcjtwdAejx8sgiGOjL\nIXVNSd7PT9wDktathevG6+D85z8AAC0Nb0HZcitITzwOJwC/ogC5nscMIt2+mn3ppZfw1FNPdbj9\n3nvvRXt7O+6++24ce+yxOPbYYxHOuElHRERE/UtatzarTR07LrlitUJz9DLwpERpug5N02FZvixr\nm24zgnC0qoyT+Q6Cc/KmZAc9kUEEQ+nrba1QNa2D3kREVAqUyVOTK+GMz/GM9UyarvfFkMqa5nYj\nOGXawEuxXaKEQFpq7HxZvvs2q621tcg3PweIxPmeMmlzAEBkzn5oefF1ROsb0PzVD7n32dSc1Sa1\ntPTdIImIiIiIqGQkJju0Pf4vNH/6Ddr//kTZBeAAgG3Bu+kNnVz36y6jDJQIFrmaUEoQDux2yN8u\nQu2Wk80AHACw338PnPfcaa5La1b35whLUl4hSPX19Xj66acBIGd5qccee8xcvuyyy3DZZZcVaHhE\nRERUCFJTY3ajlp6tpe2FV1F52AGQfOWVHtX6/nvQ29pzb7TbAAD+G/+MitN/azYnosx7KlfmITKI\nUPpFg1ixAqqqI99J5ZqmQwhA8MEkEVG/USZMhP2N1wEAIpSRCaeLSTdi0SKoDifkiRP6bHxlR9Mh\nZNZPLxQBAZul+xlVpLbWrDbbRx8C++5ViGGVtcRN4sAlV8A3YybEb34DbVQ92j5fBHQQfJ04R9z0\n77dRs/du/TZWIiIiIiIqDrV+NOTVRplaixy/1+t2Q3P37t58KetOQI35jKJYQTiKAsstN0FOmdws\nwiHU7LZfVlfXs/+C9s5b5rpl8Y+IjhnbH6MsWczrSkRENBjkKPkjAukzeZWtZqJ5yZrOjzMAZ7MP\nOezXqDv5GHM9PHM7czmRCSfxNUEbNrx3L8ognA6Fj5wLAPBfdT0AwLrgXahaN36uNm5AxZzdYV34\nQV8Mj4iIctBT/q5JkYwgnC7SIg/dfScM32nrPhlX2dJ1CJbhKRhJEnA7up8GO3zE0Vlt4084DNKy\npYUYVllLBNToVVVQLrwI2qj65MYOfrYTac314SOg1dT0+RiJiIiIiKi4Aldeay4PlgmX0VmzAQCB\nSy5H0/fZmftT6fFgJOv77/XfdaiqQn7rv4CmwfbWG6iedxOsX39pbhYZE7jD+x9oLkvNyeym0oYN\nfT/WEse7OkRERIOAyBGEEz7ymBw9k9p22T27cYCXDWr9y+3Y8NzryQabLf1rnDa8d0E4QjWyDOlW\na6+OU460sZthw4Y2hE40Mg/ZF30NvRs/V66H7ofji09RedgBfTVEIiLKFE89rFssWeWnMm/AUAFo\nGktRFZjL0f1zMnXkqJztliWL4bz9VniPOBhQVQi/Lz09dwY9I4hdWrcW0orl3R7PQCJCxueE7nJB\nzhF0EzjjLLQfeFj6PvHvk26zo+XNBfDP2qXD0lVERERERDTw6WWc8aYj7Y88jpb7H0Hw3Aug19Z2\n3tnlgi4E5OYm1G7/i34Zn/PO21Bz1CFw3XIjhN+ftV1e8rO57Lv1Dvj+9hgCc4/LPlAXWZMHAwbh\nEBERlTtNg+fCc7Oao/vnDmJoefM9tN8yD02PPoXo2HFZxxrIJJcLFlmg+Zuf0PjOR+YDLj0jCEf3\neHv3QomMAZbuz7oeDCQhAIfDXNdDoU56p/P+9c8A4oFloRDknxcXfHxERJQukQlH93oh+f2w3HVH\ncmN7W5FGVb4E9A6zhVD/CZ57Qc52y5NPwHPdVXD8701Y33kbQ8aNMkq6PvGPnP0VNf38ueKEuajd\ndgbQjfOfgcbMhON05dwevOp6BO59EBsXLcneaLdBG1WPtY89A23EyL4cJhERERERFVFH1wvlTK+q\nhnLQIflNvBEi7d6AEsmeaF1Ilm++guf6qwEA9ldfzjnpyn2Tkd0+8PsLEf7N8QCA0KVXJjvcfz8A\nINyWHcAz2PCuDhERUZmzvfWGObM0TQcnesr0LRE5/mR4nFa0vfQ6Nt3yV0R32c3YOADKUamahmA4\n92xk3WaDzSob5aamTElukOX0jr2dfR4zToh1CzPhdCj1e9ze3mE3rZOfuarDDkDNrJksC0FE1MdE\nIstH/O9a9dWXmtvc99xZjCGVN2bCKQ0uF1Z+vyKr2f3Sc+Zy1VGHAABsHyxA7blnQF6SHRwcU9LP\nZaxffA4AkDaWcXruRIBRStB1JossQQytQ9NDj6e1J8rEWi28ZUlEREREVM70Tq4XyJDIuA8Alr8/\n3KevVb37zuayvHwpvDkmdifoNcksPvqQIQgecxza77wPGDsWAFD3p6uAZ57p9N5+ueMVLRERUZnz\nnnFKVpueGXSSgyQEMGw41ONPBKT4g6BSz4QTDqNyzu7A44/l3t5BUIy0bm1Bh6GOnwgAiO00u6DH\nLVdDzzi5w22xWMc/c9ZPPgIAyGvXFHxMRESUlMiEIzVuzN0hEIBa6ucIA4nOTDilwlpVCf/l1+Td\nX7S2pjcoCuTPPgVSbpwm1G47A5UH7mOUsyozIhiE5nTlFUxmcTvTG+LlXO1W/g4QEREREZUzdfwE\n4yszYOal7rIL++/FEpn+OxA++jfJFSEQmHcnIkccnTYRo+70ExFemj2xZbDgFS0REVGZk1IeBqj1\no42vkyZ38yDxU4YSj1y2fvQhnF9+hjGXnNNBh9zloaJ7zSnoOMLHnYi1f7kbvjvvK+hxy03gkssB\nAK5PF+bcHomqiCrZD60y6a6uU5cO5qh7IqJe6+Lmi7RxAwKhHFnoUj97GaSTP2bCKRkWWULorHPR\n+sxLefUXbW0Q7W2Qv/8OorkZrttvRf3Be8F5/z1Gh4zfJduH72PIuFGwfPZJoYdeVCIUhOZ0dt0R\nAOx2czE2eoz5s2+1dD1pgIiIiIiIBi69qhqb3lmIljfeLfZQBo4+usctmprS15XclQYAQJkwEbq3\nIvfG7bZLW5XffrPXYxuoGIRDRERU5tSxm5nLyhbT4gudP0zLpCeCcEr8AZpekXLyF4lkb7facu9X\nXVPYgVgs8B90OPSKysIet8wEz0uJ3s84sbc/+y/U11dj3NghyZIGHckjs1M4oiAS6zqgh4iIcoh/\nRms1uf9euu78K2pO/g20aEZ98tTsH119lpNJMBNOydE9ng63+Q8/2lyuOuoQDJkwGjW77oDKow6G\n+0/XAQBs77wFALB++H7OY1i+/KKAoy0BwSB0Z9dB0gCAlM8NKRbtpCMREREREZUbdcpU6EOHFnsY\nA4ZobOyT4zpSSo1HZ3WR3b+zQKCUSRYAUP/H84AyzP6aD97VISIiKnORlCwvutttLHQSyZxTfEaq\n0Es7CCf1fUlrVmdvt+YuRwUA0UmbF3QoksQZ7PkI77s/AEC0t6W1V5yWLFHlvv4qY6GjILAuMjQA\ngOtv90MqtwdcRET9RMSMv68tb3+AlnseytrufOxhVL/1OizxMoGmlCAcEQ736RjzoQRDJR9QbN7M\nYiackqK7s4NwAhdcjKY/zUPgjnugjKrP2m796ktzWWw0SrnpdkdWPwAQuQLkFQXOy/8Iyzdf9XDU\nxSNCIeh5ZsIRavL83XfbnZ30JCIiIiIiGtzkVX1T3inqMK7fdIsF2rBhZrs6bLi5HDzwEGOhi/sq\n/iuvS1vXfl5SoFEOLAzCISIiKnMidRa6xZrdlo8BUo5KpARjWBb/lLVdGzosqy0hvN+BBR0LY3Dy\no1dWATDKN3REaopH+HcUbNNFySppw3rUXXUJRu73K1i+/rLTvkRElEP8IbnmrYBy6OFQNp8CAPDd\ncHN6v3BGFrqU4FgRDPTpEPMxYuwwVP1qp2IPo3OJcy1mwikpZiB7ith2O0A94SRIkoTYnH073d+6\n6Gvj68L0TDih/Q4AAIhA9u+H/cXn4LnvTlTvvnNPh92v3KeeBM8JxwCaBhEMAnmUCwWA6C67mcvK\nNtt10pOIiIiIiGhwik00JhDLq1cV/NiisRE1t1wPAGh7Yj60YSPMbeqkyeayJBv3KUQXQTihM8/G\nxncWJo+RUepqsOBdHSIionIXSz4A0y2WeFv3ylFBDIxyVGnp7Bs3Zm1OjeLOlDh51Av00EtmFE5e\nEiW7pPaOg3ASfeQcgVVA+gzqnPuvTmZFss9/urtDJCIa9Dxvv2EsxM8jWt54B+t+WonY9rPS+mUG\n2qR+Phc9E048uMX63bfFHUdX4ucjgucRJSVXEI5eVWVmPswVRJOL5/qrAQDq6AY0rmtB+PSzjP2D\nQbOP2NQMedE3kFatNNssH39knr9LG9bD9rcHSio43rrgXbienw/nqy/Bc+6ZkELBvL8nsNmw7KNF\naHnjHZZyJSIiIiIiShHZfU8AQPSQwwAA0qrCB+G47rzNXNY9Hmh1yfJgypa/MJcTwTlqjkywmcSU\nqfBf9ydjpaW1QCMdWBiEQ0REVO4iKQ+9EplweliOqtSDcEQ0ZQZ+JJz1cEJ3ZT9AMXmMMgPaiJGF\nGQvLSORF93oBAMLXcW1Y0WacqEsbN+Tu0ElQmeXjjzBkn18lGzopSUZERDmk/i1NfIY6HLBUVUEb\nMyatq/zTj+n7ppWjCvXVCPPT3XOfYkmcazETTknRvRUAgPC2O5htWjybn7Gh659vy0fJmYCt818E\nZDkZ3PPzz+a22q2mouZXO5kBOwBQvf+e8J52EixffYHa6ZNQefH5sL7zdk/fTsHZ/veWuez85+MA\nAOuSxXnv7xxTD2XLrQo9LCIiIiIiogHN98Aj2PDWB4jsbWRf9VxzecFfQxuezHyjV1ZBr6011yP7\n7GcuB/5wKfyn/R/a738kr+PqTiM76sgzTyrMQAcY3tUhIiIqc3oo+VAgeMZZiA0bgfa77u/eQQZI\nOSpEk8EYIhzJHq8sd7hr+ORT0Xr0cWh7+vmCDEXiDPb8JB7opmQxyiQ1NQHRKKqOMurOJtJvmjrJ\nhFO9/55p61pdXc/GSUQ0WKV+PmcEhmRmrZA2ZmShSy0XGCxuEI4jHhiQSivF85r4mASDcEqLLGPZ\nD6vR/K8XzSa9KhmEE/zDpQhvMQMbX3sbTf/+X85DVP96L3NZ22yccYx4ySbXqy8a//fvvQcRyv27\n4njpBVTvuau5bnnoAbQHovAFo/CHYgiGYwhFFISjCiJRFdGYipiiQVE1qJpWmJ93vx/Wf7+Wdo4t\nmpvhuv3WXh1W5s87ERERERFRFt3jhTRtGtRx4wt6XEVNTrZOzWqs1o+GOnx4st/W22DjSWdg/XOv\nAS4XQtfcAH3oUORDtGxKrpTi/Zc+Zin2AIiIiKhvWT/5GADQ/Pm30OpHY9kHX6Paa+/eQRI3xrXk\nyZL1icegr1gJ5ZJLCzXUXkvNhCMi4e5l7vF4sOnGW+F12QoyFomZcPKim9mZkgFU0soVaX1s770D\n27vJ2d7a5CnA4mS2he5kdsq7NAIREQHIyDLX1d+2TZvSVuVlS5Mra1ajmDwXnmsui8ZGwG6D7Zqr\nIQ46CLHZuxRxZBkS5y48jyg5Nq8bspz8f0kNQlPHT8TaV96C12WDDiB8yGFwPDu/y2MmMuwAgPPe\nu4Ar/5j/eD5YgK+/XJY4EgBAJG5spt7gTAR2xftIQkDoAIQxM08IQCD+TwgI6EYf6Ma6AIRu9Jvx\nxzNQtehzRGbNRvvzr0JsakbNdlvmHF9s5jZ5vxciIiIiIiLqhMuFSMNmsAQ6ziafj5iiwvnff8Py\n3LNQb7gJem2tmaG+7aFHAacTsZ1/idAhRyB6yKGALCN6zfXQoaPj6c25RXfbA7juKmNFUQZdhnoG\n4RAREZUx4WuHdd0aAIA2xMgAYpG7/1BHjz8I0lPKSlSdeyYAoPEPl5ROyYTU2frh9CCcwKyuH7A5\n7YU7NSqVb0nJs8VPvmPJQBp51cqsbqnZFZTJU2B/KSVjUazjIBxldAMsqcfztfd8rEREg1Gk40xl\nAOC75Ta4r78KUmsr0Nycti01G1n1aSehadfd0tIa9ye9ogKi1ShvKK9aAc/ll8D6yUfAow+i+bNF\n0EY3FGVcWeIBEzpPJEqOzZpxyzEjw2JqILfuqUA+9CFDzGVPjgCc4CmnI6poqHr4PrOt/a77UXHm\nqbD52nDwwdvm9TqFZv9gARCJwHXrzZBSzq1an3kJVYf+2hjnPQ8VZWxERERERETlSK+qgtiwrhcH\n0CHdNg/VN19jrD/3NBpXbICIX9OpU7Yw2q1W+O990NzNapHSMufkS50+A9Htd4Ttow+BSIRBOERE\nRFQ+hN+fXLEZDwaslh481EkE4SgxZIbwCL8vqxxFsYhYLH05/iArPHY8mu7/O1xd7G+RC/fAi5lw\n8pOaCcf67v8Q22EWRHNTVr/Eg1MA0Cszft46KUeVWdJBXrqkF6MlIhp8RCTc6fbw8SchfPxJqB0z\nHHJLc6d9LQveQezAQwo5vLzFttsB9v+8DgCoOOEYSBs3JMf1w3eIlkoQDjPhlLy2fzyFUFNrp7MA\npXgQfC7td9zb5WvodjtiEzdH4MprEZMs0PbfHzXx4JbI4UehrbUVoVde8ih53QAAIABJREFUT+6Q\n9vMistp00XE/PbVN5NjXPJ7xZdRbrwAA6kanl/hse+QJxGbNTu6XUq6LiIiIiIiIekf3eiFFwrCd\nfiqit90B2LtX7UD+6UfUJQJw4qwfLzSDcHSvN+d+kiQg6T27R6HXGhNPRDQCHZ4eHWOgYhAOERFR\nGROpZSHiM6p7EmgiLzdS3cs//ghtVH3atp8XLYd1/Dh4XTZ4XdaCBrJ0l/f8s5Mrqmo+yIqNboCt\ntrpfxyL48Cw/8Qh4xz/+Dts7byN0zHFwPv6ouVmrqYG0aRM8V6WUPcuoIZsafJVG0yA1NyG87Q7w\nvfIfDBlRDamxseBvgYiorEUiXfeB8Xktt2zqtE/laSejqUhBOKkp6uT16TPHRHvpZElLlAxiSr3S\nFd1rn2TZpw6kZvDL2n/3vdLXZ/wCtq+/TGtbs3Q9LLKALEmwAlB33hWt81+EssV0Y59TToN8ymk9\newO9FPzjhXA9mMzME2sYi9YPPjUD/pXNxsGybCn0SgbhEBERERERFYrz/XcBAJXP/BOBMQ0IXnxZ\n7o5+P+DJDngRoWBWm+vySyDFjAzImrfjjK49feaj243rRBGLofOr6PLDuzpERERlzHPlpVltPTlh\niu6+Z3pDyoMH39qNWLquHV8tacKCb9bh4+834IcVLVjT6Ed7IApNK9LplZYMwrFYLUUNDqKO6fEg\nHOuH7wNAWgBO25PzEbj0qqx9lImbp69HcgfhiGDAeEhWYVxA6C4XkJEZh4iIOifipR4jGZ+9mbTq\nGlhaWzo/lqoa5SKLQHTyuplZ04qKmXAGhK4yHsZmd1wGNbUEFQBseu6VtPXWp583A3DSjrnLL4tW\nzi1V6Kzz0tZjc/YxA3AAoPW/76Jp8Ur+DBMREREREfUR960352y3vf4q6saNhP3Zf0HPmLiaeu9D\nq6kx+v/wHSxLfjYanc7CD9QWz9ZTpHtBxcSnUURERGWsoxSC3T5O/ARM2rjeaEiZFb/rH07Cr84+\nEtv96SJMfewu1L72PCIfLsTyH1bi88WNWPDNOnz240b8tKoV65oD8Idi0LuYPVwIQlUhdONBlmTp\nrGAAFZXFSMyYeMibKvaLmdCqsjMYqVO3wKb3P4Xv5nkAAPsLz2RlxwFSyrFVGL8HutPV4YPWntS1\nJSIaDBLlqMK77NZpP72qCnIwAHSUnSyurmEoPBefD9vLL0J0kTmnoHJk9Gm//R4AgP25Z/pvHF1J\n/D0TvF0zkAUuuTzvvrLXi9CvD0LbeRcBuo7YL3+VFYBTSrThI4zA5rjY9rPStuveCmbBISIiIiIi\nKrCW//yvyz6um28AAFScdjK8B+2XvjHlvrjuyBFw0wcTKbQhRhljkZGReKDLZ+I5y1ERERGVsejs\nnWF/5UW0zruzV8cRigIAqD77dDQedQyEz2duU2tqUb34O9T+8HXWfpGKKvhHNsA/agz8I8fAN2oM\nNo4ag9CoMbAPG4KKeAkrr8sGp73ApyUp5ahY0qGExTPh5KLX1gJ2W3a7kKBNnARLvHSD++3/Qn3h\nWUQOOjStX+LnVPfEM+E4HBDh3EE4qqaDsVpERDlE4kGSDkfn/azxz+tYLOuzfcN5l2DYvBvNdeff\nHoDzbw9AFwKRKdMQ3XkX6LvsitgOs6B3kv64NxLBRAmBiy+DvGolAMD23v/65DV7hJlwyoMt+/wF\nANbfOA+5Tjf8Dz2ao7VECYGm5euBdWvhfPkFRPfdv9gjIiIiIiIiKnvqhInmcviwI7vs7/xkIQLf\nfoPo5lvAapFgeepJc1vgymtR8buT+mScqdQxYwEA3vPOMsoYlwFp3Vq0Wt2oWbMU2KPjLLgMwiEi\nIipjImrMRhe1Q7ro2YV4EI55XF87ACA091j4b7sLfkWBWLUS6uKfof70E8TPS2BZvhSOlcvyCtBp\nHzUGG+vHQhs/HvKkiXANr4PXZYPd2ouoCFVLPsgCH2SVKt2SOwin7ZEnAADq+Alp7b4//xX6sGHG\niiV5Kisv/inrGMKfCMIxauDqDiekeGCOputmKQlF1aCqGtCbnzciojIlokYGGclu77yjzfg8F6qS\nXee7sjJt9Z0/PYTa77/C0C8/Qu13X8Dx3TfAfXdBk2X4p85AcIedEdt5F4gdd4S9sjBZ/UQ4ArWi\nAnJ7/Bzm+JMBScB9y43QSylYN5EJp5TGRD2y9rPvYAkF4fj2a1jvuQv+F16FZrXnDMIZkEaMROiU\n04s9CiIiIiIiokEhNXuNY/5TUMeMRfi4E6GNGGm2i4xs8UN22wlrbn8QdWf/1mzzn3sBIgcfho3D\nRsL9n1fgvvsOM1im0LS6oQAA68/Z9+4HIstnn6B6n91hForupOIDg3CIiIjKWcyYva7bOs420hPe\n444yFhIPiCwW6JuNg7TZOEh77WX2CwPY5A8jvHQZtB9/ApYugXXZUrjWrIB3zYrOA3RGjUGwfgyU\nseOhjx8PefNJsE+ZBDler1T8vBhDZs1E8HdnInDtjVnHgKowE85A0EEmnOhecwAA6viJ0OwOSJEw\nfDfegvBxJ5p9UgN4NFXNOob92fkAAGntGqPB5YQIhxGOxBAJhFFZEy9T9f77UDefCjhqs44h/D5Y\n592K2NnnsLQCEQ1KZgYZRxdBOInP5FzlqCoq0PbQY6g8+VgAwMatdsTGrWfh+2NOhxQJo/a7LzH0\ny4UY+tVHqPn2a1R88wXwwO1QrVZsmrIV2radheCOs6HN3AZOrwtuhxV2WzdDGSJh6HYHQscfDuu/\nX4VeWQlYLFArKqGOHNW9Y/WlREpjZsIZ8Cz1oyCEQGTSJDTtfQC8ThsKe0ZOREREREREg4bFAmV0\nAyzxrL7uv9wEx9NPYtNni8wuonFj1m6jUgJwAECbOMnoO2sWgrNmIbbLblC3mNY3Y5bLZhoKAMD+\n3Py8+zIIh4iIqIyJaLyEhDV3Svy86Vpyed1a2H76EQBgyZF9JJPL44BrxhRgxhSzLRRRsDL0/+zd\nd5hcddnG8fuc6TPbk91NIyEJvcbQFRBsCAiKCsSCIqCoYEEExAIiL4gNVOyKgqgUEV8RXrECSm+G\n3lIhfZNNtk0/57x/TN+Z3Z3dnd2Z2f1+rotrzvmd9iSZnR3m3PP8EurrDctavVbGyhXyr1ujhvVr\n1bDh1VRA5+XnNOOFp4rOF29ulbdne+78P/1hKoRj2wX7GZal7FfxCeHULMdT/Ha097SPFHS56Xp1\ns4x4XMbgLgx5+yQTlmzHkffZp9VywjEKn3aG9NprkiRr0aLUtfwBmZGwdtopFbbpvudBmZs3qX3Z\nu9X39ncofMNvs91xMhq+eKH8N/9WuvY76trSW5E/MwDUE3PNakmS0zlr2P1cLzyXelyxQsmDC0ON\n0RPfLbMxb77xvNda2+dX1+sOVdfrDtVzktzhAc189gl1LH9EHcsf1sxnHlP7049K131XSV9AW/dZ\nqi1LDtG21x2m5D77KdDgV8jvUdDvHjacY8Tjcnw+9X/rGulb1+Q2+HzZbj81If0tqprqzoMxMfKe\n517mvAQAAAAAjNP2+x9T+4LO7Hpmmm1JCl7zLbm2bFbsgIPke+KxIc+R31FHkhJvekvlC01L7r5H\nwXpfOK7G4DjvVVWRuX37yDulEcIBAKCO5U+pU1KmE864Qzi5tnrue/6VXe6/4htjOl3A51bA51ZH\nS0CaP0N641JFYkn1RRJ6LZxQfySu/r6IPBvXp4M5a9WQ7p7T+NrqghBORvDqbxYOWJaMZOrb+A43\nPmrXoOmoNt73iNx77lkwZhqGVGIalPwAT+u139FGudR6bep5EPrpD7Lboss+mFrw+wuO9/7jrzJi\nqRuvjXffqW2xpEL+VD2R3gEFGoNyP10cBAOA6cQYGJAk2Z2dw+7nXrVSkhT62iXqufOvkiTH41F0\nnyXyBH2SYajrtS4ZibgO8wUVjiY1EE1oIJJILyeVtG0lgyFtOvhIbTo4Na+2p3eH2p95PBvKmfXE\nA5r1xAOSpHioUVv3PVBblhyitUsOVc/Ou8rtdivkd2dDOUG/WyGXI3PzJiUXLiqq2/F6pVi8Yn9f\n45YJFdMJZ0rxeAhVAQAAAADGKRAoGjI3bpA9e45CX79ckmS9/nDtuOhLajnlXaXPESw+x0SxFy5S\ncu48udevU9OpJ6np1VfV+9ATk3b9MbFtNZ70Dqm5SX2/vrlgk+vp5dnl/ksuV8MwpyGEAwBAHbMs\nW+YwARMjnp4SYpzTURlWrstM62c/KUmKz5qj5H5LxnXefAXBnLToXrPVF95f/elwTl84Lqe3Vyed\ndFDhwY6j0DevLByzLSkSSS37J++NJUZp0HRU7sWLyz/WWxjMmX3tN0vuZu+8UJLkBIIF487MdjWc\nd252venSL8r6xrek/n7N32WOIieeJGN7d25/xyn4VjsATAdGMplacJX38YGdCZHYtoxEQvL55Hal\nAwg+nxyfTz5JPo9LrY2Fr+OxuJUK5kSTCqcfB8xWbXjDW7ThDalvZvm2b1XH8kfU/tSj6lj+sOY8\nfI/mPHxP6vjmVm3Z/xBt2f9gbVlyqDbO21kyDPm3bta8eFz2boXfwJIk9/p1qYWBASkUGtXfzUQw\nMm38TH7fTCXDhuYBAAAAACiTEwjIyNz3kDRj/8LPOsKf+uywMwPYDU0TVlsp1j77yr1+nXz3/HNS\nrztqtq3gh96v0N/+LzsUfuF5WXvuJc9998humyH3Ky8rdsBB6v71rXK3zyCEAwDAVJW0HJWYzSen\nUp1wBk31JEl9Z59bYsfK8nvd8nvdas8L5sTiHdpw658155QTsmPev9xVfLBly4hGJUnOoA4oqCHx\nQd0HvOU/Vx1vcXecwRK775ntJuA0DHpbPOiGWNuvfqquq74p98pXJEmBO/5YsH3H+q1qnddedn0A\nMCVkQjju8j4+8D/+iPq7t2WDj0bAV3aA0ed1yed1qW3Q50GRWDLXOac1qB1zZmvDm94hy3EU2LJB\nHctTgZyO5Y9op3/frZ3+fXfquBkd2rLkEPXN3VmSZLe0Dnlt98pXKhouHjM64QAAAAAAgCF03/ew\nEq+t16z3HFdyu9PSKjmOokceLf+/7yne3tg40SUWXq9hcq83Vu6nlxcEcCTJe/99ch68X40Xfz47\nljzyjXK3zxh8ePH5Kl4hAACYNJbtDLvdyAQcRhFsKKlECMczb45i4zvrmPi8LumoNxaMNZ/+/qL9\nDMuS+6UXJEnmtm2TUhtGz+jtzS5brW2jO9hXxvM6L4A1OITjeuH54v0HBmT8+98lT7Xb0sXacdsd\nShx51GiqlG07MuloAKBeWakQjlNmJxxJClz3M0U++vHUim/8QdhMt7wZzXmv6Y6jaNzSwM5tGthv\nD716yvv0QiQhY/Uqzfzvw6lQzlOPasE//5w7ZpgPmgbPiV41mSlADaYvAgAAAAAAheydF8q180JF\nPnymAjdcV3onw1DfbX9S//InNfNtR2ngs59X6LvfllSFEE5o0BdjLUtyDT27Q7VkvtCdr+FLFxWN\nWQvL6+TPpzoAANSxkUI4mS4jjmd801GVCuFYCxeN75wTpO+b16QWLEu+36fm7PQ8/GAVK8JwrL33\nzi53PfHsqI4t64ZwXgBtcOre3Li+aHezr1ctl39lyNMFfvWL8gtMS1jFPz+S5Fq1Qu6vfEnu/9b4\nPLgApjUjaaUWhpn+UpIGPndB4UAsHQT2jdy1bCwMw1DA59bMloAWzGrUnju36cA9O7X02EPVfv65\n6v/59Xr2vqf06E1/03OfuUSbTjhF0WUfKDpP/I1HpxYSiQmpc9TohAMAAAAAAEbQ/61r9Op/nlTP\nL27IjvVc9+uCfZwlS7Xpvy8ofHHu8+7JD+EMmvq7Vj5/GSS+clVZ+xHCAQBgivPe9WctXtQu14sv\nDLmPHatUJxyraGjcU1yNU88NNxWNbf/z3xR7z8mpFSupxCGvlyT1X3bFZJaGUbAW7aJVf/y7Nj7y\ntFyDp4sagRGNFI1F3vdB2a256UacvJu/g/8Hw3/H/xYdb27aOPxFh5lPdyjJIUI4bYcuVetPr1Xr\nMUeP+pwAMFmczIcjI0xHlTzokNwx/oCMeLpf3gSFcIZiGIaCfo/aWwJaMLtJC998qDq+9Hm5rvuF\nrD32LNo/uWcqDBoPp36n2M4IAeeJlgnhjOH3DQAAAAAAmD7MRQsVP/EkRU56r8KnvF/xE95VtI9r\n7tyCL/o4jU1F+0wke9bsgnUjWYMhnP5+dZz3SUlSYv/Xaf1LrxZsjr731OyytcuuZZ2ST3UAAKhT\njZ87V4bjKHD9MJ05sp1wxheYMSLFrfg03u464xQ/9nh1rd1cMOa0tckx09/Utyz5f5dKftudsya7\nPIxCcr8lci/cefTHve4AbX/3MvV98tPZsf7v/UgDX7w0uz5wydeyy54H7x/xnI3nnp1d7r73IfW/\n930F250x3ExOJkuHcPJ1//g6rd3Upy07IuoLx4cM7gDApEuWNx2V4817fXS5ZMRSIRynAtNRTah0\nUDk+kHqvkyjjNXtCZUJAhHAAAAAAAMAwvO7UZwf9P/2lBn7wk2H3TRxwYGphkqeCsmfOHFRI7YVw\ngtdenV2OnPsZeVtbFDvyqOxY39XXauvKdeq+72E5M2aUdU4+1QEAoF5l0svDfWM7numEM77AjBEJ\nF6xHDjtc1uJdxnXOiggEFHv78dlVe9as3JtIy5J75YrsMmqX3zvGN/4ulzZ/4/tKvOvdheN5yf7k\nkqXZZWvnhSVPk985x/3Ky5Kk/uPfKWuvvRX50U8L9nUixd13hmP09mjOKe+Q519/Lxg3M8/NtN0v\nPU+rN/Xq+TXdeuLlLt3/zEY9+OxG/feVLr24djsBHQDVk/kdOkInnILAr21L2RBOdTvnjSQzZef8\nU46XEonqh3DSnXAcpqMCAAAAAADDMEbx2cGOu/6hVS9vmMBqSst8SSsrkZz0GkZiz90puxx7Z+pe\nQ+LNb5MkJRfvIvn9chqbZO25V9nnHP5TNAAAUNdCf71L0vg74VjzF2SXt33yPMW+fKk8NXJzKPLJ\nT8l3912Knrws1UoxnaT23fsvWTPb5drapcQbme6nlvk8Y0/f+7wuyR8oGEsc9gZZwaAin7uwYDx8\nzmcUuP66onNYu+wm87FHCsbMOXNKX3D9+mHrcRxHztq18r/4vKxYTJ6tXQo+/oiCy96jri292f1m\nHLa06NgjL/qIBjrnKtw5VwOdc7KPPTM6i76h4HWbCvjcCnjdqUe/WwGvSwGfW24XOXsAFZTuhDNS\nCEe+whCOMTCQWg6GSu9fK/Km7DQ3b1KiuaOKxYhOOAAAAAAAoPJMUw3Nk/8ZTeLAgwvWjURcVZ4I\nvFj6C1G9P8ndO4ic8VFp00bFzvzYmE5JCAcAgKkqv0OOd3whnPCnP6fQ1d+UJFkLdpbHXTs3hhKH\nvl7bnn4pN+VUXljBtbVLyaaWgs4oqD2mOfZ/H6/blLVwkeK77Kb4yam5Wa1dd9PKR19Qa3tLwb5O\nQ+NQBRQN5U9htuP3f5Ln5z+R/8nH5Xv2afXHYtIQ01JZlq3ZB+83fNGZG9P51/P61Pnfh0vubrvc\nCrfPUrhzTiqk0zFHA7NSj72dc7W5vVOOO9ftKhPQCfrc8nsJ6AAYHyMzteUI7YoLA7+O3M8/m1pq\naJio0ioiv+7AT3+kXW78lbbf/5jseTsNc9TEMZx0Jx7euwAAAAAAgAoaTeecSrH22FMrH3lOc37w\nbQVu/JWMnh5p7rxJr2M4Rl+fJMlpzLt/4PMpctkVYz4nIRwAAOrVSNNR5U/B5BnfdFQKBnOn8ntV\naw0D7VmzcyuDAhV2Q41/Ax/j4nGbkuFT9/2PypX3b+9qCBXdwHRmzNC2y78p16KFavnAydnx2Anv\nlOeRhwr2tWflQjiJNx6t2JFHyfXJj8r/h1tldm0Z8uZs20nHjViz/0+3Z5e3/+PfUjSm5MGHSOGw\n9Nqrir68SvGVq2SvWSPfxvUKbl6v0OYN6njq0ZLnc0xTkRmd6e456aBO+nFL51xF2mfLTgfxBgd0\ndrnuuwo+cJ96/vSX8b9OAJiSjHAqOOiERgjT5IUTDdtWw4XnpZa3b5+w2ioib8rO4E9/KEny3/I7\nhc+/aNSnsmy74HfRmGTe1hmEJgEAAAAAQP1rWriT7I5U52Gze5usEfafbMZAOoQz1Jd4x4AQDgAA\n9SobwhliezIvKlPBhLPZ1FSxc02GEW8aoq5l0vuDb3p6huj4Yp/9cdnRaMFY5KyPa9tBh6vl979T\n8y9+JKn4eWMahuyZM1PL3duyIZykZRd0l/ENCvOUYm7ITWmV3G9JbkMwKO2+h/y77yF/eigcTei1\n3pi29UbVt71P/i0bFNy8QaHN6wc9btDM5/8r49kniq7nGIaibe25Ka460o+z5qrle9+SJIWu/JoG\nLr18xNoBTD9Gf+aDiOF/nzr5Qb50G996UGrKTnPdawp+7tOKfPVyOU3NZZ3HtfIVuf7xT1kfO3t8\n77tsOuEAAAAAAICpJRNwyXzZq2ZEIgpdnfqM3CaEAwAApFF0wqkga+eFE3LeCROiE850NOyUaX5/\n4bppyt5jT8WvvEpKh3Cs+QuKDnPaZkiSjG3bsmPRuKWGQPpaeT+L3ad+SO6gX02/+lnxeUYxNUvQ\n71HQ79G8jgZZdpu2981Sd+/e2tgbVTRR+DNuJBMKdG1WaPP6wpDOlg0KbVqvthef0cznl5e+zg+/\npx1f+qo87uGnmwEw/Rj9/XJMs6ArXilOMO/3bd7roRPwl9i7hpSYsjPw219LkowZMzTwpUuHPtZx\nlFz7mtw7z1frm4+QEQ5rx/77KXHo68deT+bvbhxTNQIAAAAAANQSx5/qoGx2dVW5kkKuDeuyy5Wc\nUp0QDgAAU5RhTcykUU4gMCHnnTAVfOOE+uEeohNOhjVjplzbtmbXQ/7U2+K+r31drjWrZe27X9Ex\ndjqEY+YdF4kl1RBId3+IxVLnWHqwold/V42/+3V2PyeQunltO052Ofzxc0f1Z3KZpmY2BzSzOfUz\nOBBNqDvdJad3IC7b7VF49jyFZ89Tqf+VMayk/Nu2KLQpFcyZ+8A/NO+Bf2S3m7f/QTr5ZDWf8HbF\nDz5UkUsuG1V9AKYms79fdqhhxM4sTnt7djn0jbw5s2t8WiVnmKn4jO7uYY8N/OhaNVz2ZfX85hYZ\n4bAkydy4YXwF0QkHAAAAAABMMe6XX5IkNZ53rqInLyv5pahqMLpyn/UzHRUAAJBjFHfCsW1HZuab\n08mJCeHI55uY804QpqNCKVv/9YA69989u56Z1ir68XOGPCYbwulOdcIxN2/SXvvupvguu6nnwcdl\nDKRaaZqdHfJ43AXTsdiNjZLjqL8/ppZ7/ilJShx40Lj+DCG/RyG/Rzt1NChp2drRlwrkdPfFFEsU\nd8JyXG5FOuYo0jFHkrTuyLdr3jty02HNOvcsde+zt7yPPiTvow8RwgEgKTUdlV1OoHWI0Ejk9LMq\nXFFluZ8u3SFMkjRCoDl47dWSJO/f/5Ydy/wuiMSSCvjG8JFLthNObYeXAAAAAAAAyuVauya7bG7Z\nLHveTpNbgOMo+N1vK7r/UtlvenOulq7NuV0aCeEAAID0zS7LtpVI2jIMKRxNqimUThBbqQBA7OBD\nK3pZx1tfIRymo0Ip5uzZWv3AU2psLv/54cxIT0eVDuH4/vB7SZJ3xcup8fR8tq70m3UjEc8ea3d0\nqvWIg9WybZs8mU46rsq9FXe7TM1sCWhmS6pLTn8koe7eqLp7Y+oNx2WXmLbO9vr0xPV36IDTT8yO\ntR11WMVqAjA1GAMD2RDiaFnNLXI6OytcUWVFT/uIgj/7ccltRolAcyJpyWWaqdBzLPU6b/ty394y\ntm+XcfPNcj3zrLzz5yh5/Amj+2ApHeB06IQDAAAAAACmiNjxJ8r7r1RX9vgll+qZL3xj0B6OzFhU\nrmgk+58ZjcgdjcgVjcoVCcsVSz2asfRYNJx9NKPDj3n6eiVJIUlbn1uZ7ehsbt6UK6GCX0AnhAMA\nQJ1zPfSgPDfeIO+WjQq88KISv7pBMozsdFTO3LkVuU7P9b+Tff/9BdNN1AM64WBI8+bJCQw9Dclg\njt8vSTKiqWmn7PyfrURC4W07NEOSkw5+JQ7JC7REo3Knwzq5ExYHYyqlIeBRQ8Cj+Z2NSlq2uvti\n2p4O5cSSeV1yDjhgwmoAMDUYVlKOu7yPDvo+eLoaf3N9bsAu7spVa6zd99D6dd2aO6+teGOJEE50\n/Sa1XnmpQps3ynBSgRn/LTdltzdcfokK3nl85Qvaumq9rEBI5ghTJUqiEw4AAAAAAJhyoh/8sBrP\n/7Qkafadt6lh+eMyE/FsyMYdi1TsWo5pyvIHZAWCsnwBJZqaFZ6/SM3PpbohN31omXr+kupWb27Z\nIknaccfdFZ0anBAOAAB1LrDqFQUu+kx2fWtXl5yODslK3/iqULeN+HHv0MCbjlG99ZVxyplCA9OS\n2zXKN9WedGAnmUg9JhLZTU1nfFDtf/2LJMkJpn5Kkvu/Tusff06zjn+zjGjx/0QY/X2jL3oM3C5T\nHS0BdaS75PSF4+rujam7Nyr3EDeErdYSN6MBTE+OU/aHEH2fvbAghGPkTctXy7zeId4rWYUhInPN\nai06eP+i3Vw9O+S4XDKs0qGjmYtSoc3ey7+u+LIPyGluGbKWTLCnkh/8AAAAAAAAVJVhqGtLrwI/\n/aEC37hCgYE+OYGA7JkzlQwElQgE5ARDcgIBOcGgnGBQSo8pmHkMSoGgFMrsl3rMbM+MyeMp+bnK\njnv/pZZT3iXvE4+lPvNxubKdcOyOjor+cQnhAABQr4a4OWPEY3Kk3Le3Xa6KXTLkL79rSDX1/Ppm\nNX9omaRcVxJgsKECKENx3KnnvxNPhW+cvBCOLx3AkSRz44bssnf+TrIbGmX27Cg6n5lugTnZGoNe\nNQa9WjBr6DlujVh0EisCUNMcR0aZgRBz7uzCMIo9cR2/Ki12+Bs+hq43AAAgAElEQVTlu/++wsFk\n7nXesm3NeMuRQx7vBEMyRnhdb/rKxUrcerN2/PM/Q++U6YRj0AkHAAAAAABMLZGzz1Hk7HOqcu3E\nG4/OLrtWr5L/pt8ocNNvJElWx6yKXotPdQAAqFdDhXAGBlIL6Rtg5U4hMZXE335cdpnpqDAUlznG\nTjjp8E3zZz5Zcjejt6dwIOCX2b2taD+7pXV0158gPb/8jZLNLer9/o8Vfu8yJZYeICMSmdDpsgDU\nkVF0wnG5XLIbcgE/ow6mo8ro/e2t2vae9xWMOYmkPPf+S+allyj84KMyB7++53OXF3r2PPPU8DvY\ndMIBAAAAAACoOMNQ9JTUZz9trz9AwWuvyW2r8IwKhHAAAKhTjoYK4fSnHjPfQjcr1wmnHjnBYLVL\nQI0qt7NDRibQ5sTjsoaZYsXI65AjSY4/UHJKlthJ7x3V9SdK/B0nquvFNYot+4AGfvQzOc0tMhxH\nitINB4BGFcKRJDs//DrE9Ew1KRDQju9cq+TsObmhv/1FLae8SzN+/F0tevfbhj/eLP3xSu9V31H/\nRweFNocLOWZ+XwxxPgAAAAAAAIxN/A1HTMp1+FQHAIC6VfoGjhEOpxYy01GV+c3sqYoQDiomrxNO\nrDc85G6Rsz5esO74/UX7hE95v1RDXaryp+Zygqkp3LKvJQCmN9sZVSDEacyb6m6YwGIt8rjM4sDM\nIMnZc7Th2VVF40Zv8VRU3dfdqNgZH1XkiqsKxtv22VVOd3fpC2QCOoRwAAAAAAAAKsppb5+U6/Cp\nDgAAdcq9aWPJ8aLpqFzTPYQTqnYJmCIcdyqE4yQSarn4c0Xbwx8+Q12vdSl+zLGFG0qEcNRaG1NR\nlZIJrhnhgSpXAqAmjLYTTsF0VPUVwvF6TDmHHz7sPu6NG+SZ2VY0PrgLmiRZJ7yz5DlcXVsUPPvM\ngjEnE76x049MRwUAAAAAAFBRTt7nVnYwpB233aHu+x+r+HUI4QAAMMXkpqNKd8Jx1U63jaoIBqpd\nAaYKbyqE03jXn9T8h5uLNjvtHZLPV3ycv/g5WNAposY4gXQIJxKpciUAasIoQzhOhefQnkwu01Ry\nyVI5JbrQRE77iCTJmtkumaa6H3xiXNdquO+fcj/+qBzHkfeOP8r1/e+mNqTDOKVqAAAAAAAAwNgl\nDjlMfRdcrB033KTuZ15S4sijZO22e8Wvw6c6AABMMYM74dTSlDfV4Hi81S4BU4TT3DLsdmv+gtLH\nleqEU8MdquiEA6DAKEM4pYKH9ea1F9aq/83HZNcjZ35MA1/4svoPO0K9N90mSbJnzRr2HLHDjyxY\n33H7nUX7GBs3yrzxBjWf9WHNuOJSaWBAhpPuHkQjHAAAAAAAgMoyDEUvuFiJY4+X09g0YZeZ3nfl\nAACYgszVK+X09EjJdAinhm/2T4ppHkJCBY3QlSBx6OtLjjuBEjeka3iakVwIJ1zlSgDUAkOORpMI\nca9dPXHFTBJfc5OcJUukf/5VkjRw8VfkNDVr4I93yjRTfxeOr0TAMs3xetVz2x0Ff2uJw49U19rN\ncr/0gnx/uFXBn/5ILWeeVnCcEY9lO+HI4DtTAAAAAAAA9YhPdQAAmGJCP/ieZizdW4adCuE47ukd\nwnHcnmqXgCkk/JGPFo2tf2aVVj21UvbOC0sfZNsTXFVlZUI40e29Va4EQE1wHMksP4TjefH5CSxm\ncpimISM9NZ8kOcFQdjyrRMjXntmeWnC5ZZQKbgYCSi5ZKru9o/SF44nc74waDmsCAAAAAABgaIRw\nAACoU84wHW5cfb1qOfHtqRVzmodwGhqqXQKmECMRLxrzds6Ud2bb0MdEo5JSnRFygzV8czXdhWHW\nR5bJ9fxzVS4GQNVlOrOMQeRDZ1SwkEnm9+WWS3XVK/E6ntxzL0mSM0LnNHPL5pLjRiKe+/se4RwA\nAAAAAACoTXyqAwDAVDdNp2Pa/pd/atvnvygrfUMMqIRMoCYj0zXG4x76bbURi0mS7Nahgzq1xLVu\nXXa56aMfrmIlAGqC48gZY6C3/9vfrXAxk2gs4SNPuvuezzvsbvFj3zHEhrhkpacTJYQDAAAAAABQ\nl/hUBwCAOmVkbtKMYLiOOVNZ8oCDZF/4hdruOIL6Ey/shNPzm1slSeYwzzMjPCBJcmbMzA2Oo7PE\nRBu44OLscnKffatYCYCaYNsypuHvUmP79lEfE3/zWyVJkRJTF+ZLvOEI9Z/3+aJx73/ukyIRSZLj\nD4z6+gAAAAAAAKg+QjgAANSj0dzAd03PTjjARIh+sLAzTOKQw0Y8Jn74G1PHLnt/dszo7a1sYRXk\ndHRo4z8fSC03tVS5GgDVZjiOnFFkcGLHnzhxxUyi8GfOl2MY2n7V1UPu0/XMK4rk/V6InPVxrb/r\nHoUv/OLIF8gPZqb5f3uDQpd+SVKu0xoAAAAAAADqCyEcAADqUboLTnLnhdp07c8lSfEDDspujnzo\njNy+7unZCQeYCImj3lQ4kJl6ZBiRsz+pFTffpcjZ52THYie+q9KlVZS7sVFSrosPgGluFJ1w+q/6\n9gQWMokCAb326jZFP3zG0Pt0dsppaMytG4bcBy4t6+/L8eSmrIoenAp0OqEGeVavTC0H6IQDAAAA\nAABQj/hqPAAA9ci2JUnWgp2VOOk9Wr/X3vLPaFXrW46UubVLyT32yO5qzZ1XrSoBSJLHI9dhh0qG\noVdXblI8nlDzjOZqVzUs0+9LLSQT1S0EQHVlOu+NIoRjd85Szw03Kbn7HiPvXOPcLlOmOfyf3YjH\nJElWS6uk4acnzBc99f2y7rlHzqc+LWPNavkffUhm97bsdicUGmPVAAAAAAAAqCZCOAAA1CE7kUwt\nmKa8Hpe0996yTUPb//FvWQ8/LPfuu2f3ddpmVKlKABlBX+ptt+HzylNG95xqc9ypGo2kVeVKAFTV\nGEI4khQ/9vgJKGbyedxlNA+Ox1OPPt/oTh4MqutHv1RLg0++9eskSUYkkttu0LgYAAAAAACgHvGp\nDgAAdci20iEcl0umYWS/pW3PmSvrnSdJAX92X6YzACorfO5nJUnbLr607GMyP6OGDLnMOngLnpnG\nLpmsbh0AqmuMIZzpxIilOuGMOoQjKeRPBTQdV+o119i+PbfRJgQJAAAAAABQj+rgDgAAABgsHktP\nEVPiZr7bZcpx5ZrdOX5COEAlDXzlMq17eoUi53x21Mcahkac2qQmuNOvIUxHBUxvhHBGlNxnP0lS\n/I1Hj/pYTzrwaESjkiSzZ0d2m2ERwgEAAAAAAKhHTEcFAEAdshLpGzOmq+R2e/6C7LITCk1GScD0\nYRjydrbLGduhpbJzNScT5DN7eqpcCYCqyoRw6uGFq0oiZ50ta9FixY88asznMDduLBpLHHzoOKoC\nAAAAAABAtRDCAQCgDiWH6YQjSTIM9V3zA5nPPl0QyAFQGYZhaCx9IQyjTqaj8nhSD48+LKN7m5y2\nGVUuCEBV2HbqkU44Q/N4FD/m2PGdw1340cy2m26XPXfe+M4JAAAAAACAqiCEAwBAPXrttdSjq3Qn\nHEmKfuBDk1QMgHK56mEqKqngtcW1YoWSB0/NEE6sb0C+xpCUTBbdBAcgpqOaLIN+N9jz51epEAAA\nAAAAAIxXHXwNFwAA5HO98Lx2e+/bJElOMFjlagCMhlEvN7Lz63TGMvFW7fPf8EvNWzxb7R1Nap/T\nJt9tt1S7JKDmNH7uU5Ik9ysvV7mSKS6RLFg1fL4qFQIAAAAAAIDxIoQDAECdcS9/Mruc3GXXKlYC\nYDowYtFql1B5iYQaL/hswVDoqiuqVAxQu/zpcJpr/boqVzK1JY44snDA569OIQAAAAAAABg3QjgA\nANSb/A4VdMIBMMGM/v5ql1BxrpdeLB6sl6nCAEw5ySVL1X362dl1p6WlitUAAAAAAABgPAjhAABQ\nx5xgqNolAJiidlz5LUmS0d9X5Uoqz47Fi8Ycl6sKlQDlM1etVOD710i2Xe1SMAHCV1yl6CGvV3Sf\n/SWmowIAAAAAAKhb7moXAAAARimvE45DJxwAE8To6JAkmVu3VrmSyrP6Ut194oe9Qd6HHkgNejxV\nrAgYWetxb5bZ3S1r190UP/b4apeDCvN5XOq94y8yDLpyAQAAAAAA1DM64QAAUGcC11+XXXYChHAA\nTAxrr30kSe4Xn69yJZXnevq/kqTkvvtlxwg1otaZ3d2px21TLxiHFAI4AAAAAAAA9Y8QDgAAdcbz\nxGO5lWSyeoUAmNKsOXMlScamjaM6znGciSinYozubZr5P5dIkqyFi7PjTlNztUoCRseyql0BAAAA\nAAAAgCEQwgEAoI4Z8Vi1SwAwVQUCkiQjNrrXmcTdf5VqeAorz2OPZpddmzYqdujrJUlOY1O1SgJG\nx7arXQEAAAAAAACAIRDCAQCgjsWOfUe1SwAwVRmGHJdLSozccctOd79xP/OU5n74FLW+420TXd2o\nWenggrl+XW4wPKC+X9+UWk4kqlAVUB738idzK4RwAAAAAAAAgJrlrnYBAABgbAY+eHq2UwUATAiP\nR7JGDuE4d9wh+bwy0/u6V62Y6MpGLZG05fKaMsLh7Fj40+fLcXtSK0lCOKhdoa9+ObfiEMIBAAAA\nAAAAahUhHAAA6kzs7cfJd/f/KXLxV6pdCoApznG5R+wQ4/niRWr/xY8lSVZ7R8VriCUs+TyuUR2T\ntGy5XYVNP+MJW36vZIQHJEk7br9TTmenlJ5uy6ATDmqM4zgyDEOSZG7tyo4bcZ6rAAAAAAAAQK1i\nOioAAOpNetoX+X3VrQPA1Od2ScmhO+EYW7aoJR3AkSRX15bKXt9x1PT5T8t99/+VfYi5cYNCH/2I\njC2pWqxIRNq8Wcaf/yQ5joyBVAjHCYVSB3jSnXDKmHYLtcWa4tMyxRJWdtnx5n7nZ4JkAAAAAAAA\nAGoPnXAAAKg36Rvijjm6zhAAMFqO2zNsCMe1eeOEXt9cvUpNN90o3XSjurb0lnVM4yfOkvfB+xVp\nDKn/ez/SrAWdkqR2Sdv3WCzvX1OBHieYDuGYphzTZDqqOhSNWwr5p+73SmJxS35v+n/Zfd7suBGJ\nVKkiAAAAAAAAACOZup9YAgAwRRmZG+JusrQAJpYRj8u9Yd2Q292PPjyxBZT5OmdnOoRJMjelgkFG\nJKzEr64v2M/ctEnuVSsl5XXCkVLdcOLx8dWKSRdPTO1OONGEJSf93K52Jxxr1uxJvyYAAAAAAABQ\njwjhAABQbzLTbxDCATDBzL5emeGwNETnjeAPvy9JGvj4ubIbm4Y8TyI5xrDEMF14shxHA+s25dZ9\nqbCCa8MGzbno0wW7Gtu7c4f5/Lllj0dGgk449SZpTd0QjvnqWjX97gYlk+kpqTLTpklSODz5BRnG\n5F8TAAAAAAAAqEOEcAAAqDeZm9Imv8YBTJLeXtnhSLYrR0biDUdIkuInnyq7vb3wmLwATSxhjemy\nRhkhHN8fbtWiA3aX89vfSsp1DDFXryra1+zLTWnlzJiRW3Z7mI6qDtm2M/JOdar1TYdr/mUXyXXf\nvZIk28j9zjfGEcKxnTH+nRHCAQAAAAAAAMrC3TsAAOqMYVlyXC5uiAGYcE4gIEkKXfFVde7cKWf5\ncklSdFOXolu7pfQNfbupWU6oofDgWCy7OOaOJSNNEWVZavrkRyVJ7eefI0nyPPVfSZK5tatod6Ov\nT3YgqPj+rysMMno8UqKMrjuoKWMOlNQBs7dHkuRs3yFJMrZty24z1q4Z83mjsTE+z3nPAQAAAAAA\nAJSFEA4AAPUmmUyFcABgghnpaaiCN6e6zPju+KNczz6jnfZbrI7j3iT/rTdJkhx/QH3X/qTw2Fg0\nu5yMjRCmGer6ed1povHi8IBr5YrcvrYtRXPXNEoENIze3lRdeVNRSUqHcBJyP/m4mt5zoowd28dU\nLyaXNYU74WTMOueM1EI0omRziyTJt/zJMZ8v9sxzI4fbSiGEAwAAAAAAAJSFEA4AAPXGtiSXu9pV\nAJiGWn74XbW96Q2SJN+avOmeAn5Ze+0tu7EpN5buLGNs3ao995yr5nceK98fbh3V9Tz/vje73HHI\n/tLgaXh27ChYbT3qMDnDhAWCP742Fdbx+wrGHbdbRjKh5lNOku8/96rh4gtGVSeqw7adoinS6l2p\nKbbMzZvkW/GyXOGB3OAY/tze66/TbscfqcD1vxh9YYRwAAAAAAAAgLIQwgEAoN7QCQfAJOm5/ndl\n7ec0NUuSBi67IjuW6WLjeSrVtcP70ANq+sRZBd1qpOGnqmr4n69ml33rX5Pn0Ydz69+7Wr6f/7hg\nf/eqlSU74BTVmx8WkiSvV4rGslMA+UcZFsLkMzdv0oKLP634pi3VLqVizB/9QMaPf1g0PmPf3SRJ\nRiLXGUqWNerz+25LPa+9f/j96IsjhAMAAAAAAACUhRAOAAD1xrIkQjgAJkH8rceMuE/fN67OLkc/\n+GH1v+fU1EomMGAXhmyMaETGtm3yXvR5matWKvH8C3LKnP7JtWZ19pxNV3xVoT/dXtZxgzmNjQXr\ndken3Nu35bb7fIMPQY1puPBzmnnnHzTr6EPHNr1SlfVHEoMG+jXjq19Ux2VflLF+3ZDHxQ88OLWQ\nSAy5z1D8jz6UWkgWT+02MkI4AAAAAAAAQDkI4QAAUG+SluRmOioAk8DjUXTXPYqGEwccpNjb3i5J\nir37vQXbjIA/9ZgN4RR2pjHCYc3cc6Gaf/Uzhb5+uea/+TB17LagrHKMntT0U0Zfb8F477U/Gfa4\nHbf+b8G6ue61gnV73k4F64mlB5ZVD6rHSWdC3N3b1PCVL1S3mFHy/f5mLVwwQ8aWXBcf39/vzi67\nfz90JyanrU1SrtNUufJ/Zoz+/lEdK0kyCeEAAAAAAAAA5SCEAwBAnTGspByTTjgAJofhL+4Kk9xn\nP/X+5lZt3tQjp7mlYJvp9aYWMiGcQdPmNJz/6exyfvDAc989I9Zi7kiHcHp6CsZj7z11yGO67/6X\nEke9ScmFi7Jjdnt7wT5256zCgwz+N6nWWYt2yS57/3JXFSsZvaZzPiZJajn1JEmS98471HT2Gdnt\nLVd+deiD3Z7UYyQ69D6lhCPZxcEhtnI4TEcFAAAAAAAAlIVPlwEAqDeWJbkJ4QCYJCWmZrI7OiRJ\nZonuGI4nFcJxYjHZtiNz08bC0/3z79llIxzOLrvvu7foXIlDDpMk9RxyeGr/Hdtlrlkt6/Y/Zvfp\nWrOpaIo+a6f5uZXGptS5jjw6O9R/1XcKax70Z/Q++J+iWlBbnEzYS5Jr0HOsXrife0bNb3+TGi77\nctnH+P7vz5Kk0Le/Pqprmf254I17a5fMDevLOs5uT/2sRz5+7qiuBwAAAAAAAExXhHAAAKg3ySTT\nUQGYNK4d24vG7JntJfZM86Q6dVgrViph2Wr8wvllXafhB9co9K7jpUiuY4eSCdker3b85JepWl5+\nSTMO3l8dV14iSRo4/yIpGCw6l7Vg5+yyEwpJkvq/dqW23HCLujZ0y2ltKzygxGuq0dtTNIYa4oy8\nSz3wPvm4XGvXlNwWOXlZwXrs7cfljvvb3YN3H5b/xhsK1geH44YSO+ZYSVLijUeN6noAAAAAAADA\ndEUIBwCAemPZRV0fAGCiuFe8UjTmtLYOub/jTYVwOs45U9bAwKiuFXzwP3L/3525gXToMNgxQ5Lk\nfeyRwgPyOtgMnHV2drkghNPQkFoIBGQce2zpwE1/f3ExieSoasdkK5HCyQ9w1amBz39Bkbe+XVuf\nXyU7v6OTJGvX3ZXYd39JUuKwN4zqvPbs2QXr5tau8g50pkjaCQAAAAAAAJgkhHAAAKgzhpWUXHTC\nAVA9jj8w9Ea3J7u4YLd52eXIh87ILkff9e5smGAwK2HlVpKWHLc7211nsMQBB+Uuu2lT7hx77Z2r\nNdQwdK3Z66QCN7bPP/K+qAn50ZDEAQfKc++/1L6gU76bflO1msplzZg55LbYCe9S/29vlTNzpsKf\nOq9gW/iz56v/mmslSXZrq8zXXpXrxRfKuqaTDp/F3vI2SZJrzepR1eyoeOo5AAAAAAAAAMUI4QAA\nUG8sSw6dcABMsu5vf199510gSUocfMiQ+zlDBGYKutO0zZDnmady5773odx+eZ03jERi+On3bDu3\nb2+vJCn2ugNkt3fk9inn9dJKhXCcvM46sqwhdkatsRYsVOD66yRJ/h98T3aNd2+x23LTofUf/VZt\nu+V/1XPjLdr+l3/K2nOv3I7pqdQynMambGcn18svacYB+6jtyEPKmlrKiMYkSdaee6ePf7m8Ymv8\n7xIAAAAAAACoNYRwAACoM4aVlNyEcABMLiMUUvTir6hrS6+cthlD7+jxlhy229uzy9H3n1a4bV6u\nY07nZ3LTSslKZkM44c+cnx3u/Z9vqPeDpytx+JG5+vpTIRyjuVlOIDjyHyhfen/Dkwv8GBbTUdU0\nOxcOcT/3jIxoaiqqfrn1wNMbtXzFVq3e2Kvu3qiSlj3UWaojHYiRpPj5F8g++k2KH3OsknmdnYbi\nBFPBHN+/782OeR56YMTjMn8/yV13kyQFfv3LghDbyCegEw4AAAAAAABQDkI4AADUm6Q1fGcIAKgg\nu7EptTB33vA7ZnhKvz4l99lPA0e9Rf0fPkvJ/ZbI8eemfnIaGgt3znTfSCaz0+gMpLvwSFLs9DMV\nu/r7BV1ukrvvKUlKLD1Qco3uf3Ni7zhRiY5Z6rv2J3kFE8KpaXmditwvvSijq0uSZHu8shxHO/pj\nWru5T0+v2qYHntmox1/copdf26HN28OKxqv7b2vEotllp3NWWcdY6f2cYHHAzP3QgyNfs3ubJMnu\n6MyONb/3xJEvTCccAAAAAAAAYFTK+nT6qaee0mmnnVZyWyQS0bJly7Ry5UpJkm3buuSSS3Tqqafq\ntNNO09q1aytXLQAASN14NOmEA2BybP/7fdp65XeUPOTQsvZ3hnh9svbZVwO3/EGRb10tSeq5/re5\njaapvm9cnVuPpkMK+dNRBYPavKlHmzf3SN7ibjsDl39dvd/5vsLnXSDHHF0IJ7lkqbY/85Libzkm\nb5AQTi0b3KnI3LFdkjTz+f9q19tvUOfjDyjQtUlyHDmS+qMJbdg2oBfWbtfDz2/Ww89t0vNrurW+\nq1994bicSQybGLGYHNPU+p/eKDtvmrZSuh94XD0f/Ii6n3hWkkp2eQpe/wuZq1cNex7Xpk2SJGvR\n4uyY9/5/j1xr5u+FTjgAAAAAAABAWUb8Gv3Pf/5z3XHHHQoEAkXbnnnmGV166aXavHlzduwf//iH\n4vG4brnlFi1fvlxXXXWVfvzjH1e2agAApjEjb3oWAJho9qLFUt6N+5G4Nm4YcpuRdyPfnrtT4ca8\nYI0RDssJBOQkk5LXlx03zaGDAE5Ts2KnnZ5abm4pu97BtUVOO12BG6+XkddpBTUoWfjvk98hZslP\nrsouJ4Ih9c5frN4Fu6QfF6t3/i4Kd8xWNGFpy47UNE0u01BzyKvmkE9NIa+aQh65RhnmKpcRjyu5\n7/7yvGvkTjTWrrsp9q1r5M50d/J4Su7XcOkX1fvrm4c+UTpU5mQ6W2UvYBV0lBq6aEI4AAAAAAAA\nQDlGvIM3f/58XXvttbrwwguLtsXjcf3whz8s2PbEE0/oiCOOkCQtWbJEzz77bAXLBQAAZd8wA4Aq\niL73VBl33anAypeH3c/adTf1fObzcpYeIEky+nqz24xIWOpxybNlsxKLdx11DcmlB2rD+V+W+9hj\nNOroQOb1lRBOTXPswn8f90svSpJe/P71ivf0yfPyS2pYu0JNa1eodcULmvHi0wX7J30B9c5flA3l\npB4Xa/WseZLLJdMwFPK7U6GcBq+aQ175PBX43es4MmJROT5fQShtOO4hplfrv/R/1HDZlyVJrleG\n/3lTpnOQ16Mtv/iNOs76oCSp6fT3q/fGW4atFwAAAAAAAED5RgzhHHPMMVq3bl3JbQcccEDRWH9/\nvxoaGrLrLpdLyWRS7hG+sd/aGpTbzQ1FAOPX3t5Y7RKAieM4km3LE/DxXAfPAdSm9oO17sHHNa+z\nsONGyefrd7+VW/bl/l9gRrNf+viZkiTPylfG9Fzf+IUvqK01MGSAYUiNqY4qbU0+iZ+xmjH4OZB0\nlw6w7PGBE6S2NknSQCSh3oG4Nu7oV/zFl+U897wCK19Ww5oValjziprXvqK2V54rON7yejWwYLH6\nd95V/TvvooGFu6p75121bt58+UMBtTb51NroV2ujTw3B4mnR5DjDd41JJCTblrcxNO7X8IZ9dpe+\n/nXp4otlLlgw/PlcqZpmdrYo/qFlUjqE4/vrX4Y/zp/qvDNjZiM/D8Ak4f0dgOmE1zwA0wWvdwCm\nC17vUio+l0VDQ4MGBgay67ZtjxjAkaTt28OVLgXANNTe3qiurr5qlwFMnGRS7ZLitqEenuvTGq93\nqGX9vdGC9chpp6t/hOercfIHNfOiiyRJ3Zt3qO3vf89uG8tzvbc3KtO2ZI5yGp1Q3FZQ0vauHiX5\nGasJpV7vAgNRNUiKLD1IgScfy453hW3Jyu3rljSjOSgdskQ6ZInC0YS6IwmtDSfU3xeVvXqVQmtW\nqGntSjW9mnlcpaZXXii4nu32qG/uguy0VusWLFZ44a4yd9tVbXZM+x+1f66GjduH7Fhn9PdppqSY\n6VbvGJ9f7enH3g1dip15jtquuFLWho3Dvi9oDkflldS1PSL5bLnv+rtaj39rqt5hjmuMxOWXtG1b\nv+wQPw/AROP9HYDphNc8ANMFr3cApovp9no3XOCo4iGcpUuX6p577tFxxx2n5cuXa7fddqv0JQAA\nmL6S6ekkRtvZAQAmkcede43a/OoWmX7/iMc4DY3q/dAZavr1L3OvdePgcpmjDuCkD0w9VqAGTKD0\nv8+OC7+swLJ35sa9JbrT5An6PQr6PepslaRmObt3KBI7UH3hhDaGE3o5Eld/f0y+zRvyQjkr1bR2\nhZpeXanmtSsKzmebLpmDpsYy16/TjAP3lSR1beiW8r+UEp2iZgsAACAASURBVIunHn0j/0wMZeC8\nzyt0zbcVe/fJqRo6OmV2bRn+INtOPaaf38mDDpHd1iY7ECzvomP5WQIAAAAAAACmoVGHcP785z8r\nHA7r1FNPLbn9rW99qx544AEtW7ZMjuPoyiuvHHeRAAAgzUrd6HPK6DIHANUS9LtlhxpkDvSXFcDJ\ncHlSU99UIgDjdo0xNJB5fbWs4fdDVRnp4IvT3p4d6/3YOaMOixiGkQvmpGaxkuM4Csc61RfeR/3h\nhDaH4+qPJGTZtgJbNw/qmrNSM597suCcmQCOJPl/c4Oip5+Zu14s1SXKGSEsNJzwxZcofPEl2XWn\no0OeVStSQRtziJBuNsSb69Bjt7TKtWb18FNoOc6Y6wQAAAAAAACmo7Lu4M2bN0+33nqrJOmEE04o\n2n7jjTdml03T1Ne+9rUKlQcAAPIZVvFNNACoNW6Xqe5nXlIyHNVoXq2MdAgn+1o3zhrGwnG70jUQ\nwqlVtuNIydS/j6uxQRsfe1ZGS7Nczc0VOb9hGAr5PQr5PVJeMGcgmlR/pE19ey7W5vDRWhVJyHIc\nyXF08jF7lTyXa/26gnVzw/rU+UKhitQqSU5juvVtOCw1NJTcx7AsOaZZELZxr1opSfLf8MuCoFDh\nydMhHDrhAAAAAAAAAGXha/QAANST7DfZ+RUOoLY5DY1yNQw9L25JtdAJJ/P6ynRUNcn18ksy77oz\n++9j+rwyZ8+Z8OsahqGGgEcNAY9mtaWmcLIdR+FoUn3huLZf/g21fuWiEc9jbtokSbIW7VKx2jKB\nHmNgQE46hBOJJRXw5b1XsJKF02LlabzwPLmf+q8in/psrq6BAZn9fbJsQjgAAAAAAADAaIzt66EA\nAKA6LFuS5NAJB8AUlOkSYvzj7+M+l2uoaXlGPDD9+koIpya1HX6QZnz9MgXv+pMkyahiKNVMB3Nm\nzwgpefYn1HPjLdltAxd/JbUQixUes2WzpAp3wgmlgjfGQL8kqeWYozR/pzaZmzbmdrIsOWbhewcn\nGMwuB377awWu/W52fcZB+2nGvrvJStIRCgAAAAAAABgNQjjAODmZFu0AMAmyU7S4CeEAmHr8f0hN\ngdvynauqVoOT7hZSiSmxMHGy04XV0O/D+DHHauP6bnVt6VXsmOMkSUa8MITT+IXzJUmu116t2HWN\naFSS5Hn0Ycmy5Pnvk5Ik77/+kdvJsrNTrWVs/+u9Betmb29qSitJ5tauwjrphAMAAAAAAACUhRAO\nME52OoQTiXGjBsAkyNx0ZDoqAFOQNWdutUvIvb5adACpOfF48ViNdYZze9LPH6839ZhIlNzP3Lih\nYtfMhNeaPv0JuZ5/Ljte8POUTEiDOuFYiwunxPL9+X/VvvOsgu49of8+VrE6AQAAAAAAgOmAEA4w\nTrYtKR5X4uUV1S4FwHSQuZlXYzcdAaASen/1m2qXkO2s4iQIWNcao6eneLBGfx866RCOk+5SU2Ss\n06WNoO3Nh+dqSD/akYiMcLhg+ilJkrt0oLfxgs8WD9IJBwAAAAAAACgLIRxgnGzHUfCH39PiNx8s\n7z//Vu1yAExxRroLgOP3V7kSAKi85OsOqHYJ2emorHjpDiaoHiNWHGhxAsESe1af09goSTI3lO54\nE132gYpda8cf7yo57rrt9wpedbk6F3TKvXaN7FBD8bG336no3vsWjHn/9peK1QYAAAAAAABMN4Rw\ngHGybUeBH3xPkuT5z7+rXE1t8f/mBvkvu6TaZQBTSyQsSXJ8hHAATE39X72iYL3n1zdPbgHpKXva\nPnHG5F4XIxocwuk74uja7YTT2iaruUVm15aC8fjBh0qSEm84omLXGupcTbf+VqGrv5WrqaGx+NjD\nj9Smm+8oGHOSJaZioxMOAAAAAAAAUBZCOMA42Y4jw2K6glIaP/cpNf7wu9UuA5hSstNa0AkHwBRl\nd3RklyMfPlPxtx83uQWkO+EYtj2518XIorHC9RoN4GQFAtLg6ajCYVmhhoqHWmJvO7aMekq/d3A1\nhgrXe0tM+0UIBwAAAAAAACgLIRxgnGzbya04ztA7AkAlRFI38xyfr8qFAMDEiJ303uyy43FP+vUd\nj2fSrznd2WW+hzbihSGc4OOPTEQ5FWMk4vK+uia7btuOFInI8Qcqfq3+73xv5J283pLDbp9X0SOP\nVviU91e4KgAAAAAAAGD6IYSDspX74fi04jhyP/ygFI9n11EC3yQHKsa17lVJkt3SUuVKAGCC5HU3\ncW3YMOmXN6wSU/FgQtm2I/e9/5J7+ZPD7ud++qmCdVd/30SWNW7mtm2pxw3rJUmJpC0jEpETqHwI\nx+6clV0e+PwXSu80VAjHZarvtj9p4Ac/GfL8juiEAwAAAAAAAJSDEA7KFotzQ2Iw3+2/1/xlJ8pI\nMh3VsBKJaleASeYQSJsw5rZuSZK9YOfqFgIAk8Bz/78n/6L57+syQWtMKMdx1HrKu9T6tqOG3a/x\ngs9KkhL77j8JVVWO0dsrx3GUSCRl9vXKCVY+hFN4vRLTSUmSp3QIBwAAAAAAAEDlEMJB+VavklHj\n3zadbO4nHy8cIHhQGiGlace5+255bvhVtcuYkvx33C5JcrxMRwVg6hs8/dCkSObCw4GfD90ZBJVj\n5U3v6tx8cxUrmSAul5yuLrkfeUiuvl5ZCxdPyGW2PfWitj31omSU/t98Z4hOOGUx6IQDAAAAAAAA\nlIMQDspi9Pdp/pEHqvXwg6tdSo0jhJORP32Z2bWlipWgGjo/fKpaLvgMAawJ4H0mPRXHeG6kAUC9\nqMKUlkZeBz/X2tWTfv3pyE7mOm52fPpj8t3yu+EPcLuG314jImd8NLWQTKrt3e/QTstOTK2HQhNy\nPXv2HNmz5yh84cXa+rFPFe/g8Yx8jvaOCagMAAAAAAAAmD4I4aAsRm+vJMm1YX2VK6kxdL4pLRpV\nZ2dzdjX4g+9VsRhMNmPz5uwyAayJ45RxIw0A6l343M9O/kXjedNoumo37OE4jmx7arwXdWKF0341\nferjw+4fPXnZRJZTMY7bLUmKhaPyvPxidtyY4N/hTmOTEpddrr4LLi4cLyPA2/3AYxo4/SxJUuyY\nY3Mb6IQDAAAAAAAAlIUQDsrDh64lGYNCOI5lDbHn9OJ+8fmCdSMaqVIlqAYjkbuR5vv9LVWsZIqj\nEw6AaSB84Rcn/ZqxU9+XXXZqOISTtOyCzoP1LHj7rQXr8Te9peR+VucsxRcslALByShr/NypsI19\nzz0Fw5MRpHW7TEXPu0Bbz/xkbtAz8nsHp6VV4W9erS2be5R83QETWCEAAAAAAAAwNRHCQXmmyAf8\nlRa47mcF64kdfVWqpLb4/vf2wgGTl5ppJS+E47/991UsZGpzyriRBgD1atsjy7Xtrr9X5T2E3Tkr\nu2zU6rSKjqOZRx2mxi9dWO1Kxs3z0APquPi8wsHwQOmdLUtGurtMXUjXOvebl5Ucn4zrh7/6P9lV\nx1t++McwjMIvYvClDAAAAAAAAKAs3BlHeWr1BkSNabntd9UuoSYEf/T9gvXkvvtVqRJUQzwSyy4n\n99q7ipVMbU4gUO0SAGDC2AsXyT7okKpdP3ziSZIka9HiqtUwrFhM3pdfVMMvfzbyvjUucO01RWPe\nhx+SbdmplWhUMgy1HLifDMtKdSeqk0CIsb275Lj3r3+ZtBp8nlw3J2O0XTsJ4QAAAAAAAACjRggH\n5SGEUz7brnYF1VXiw33HVUffWMb4OI7aPvKB7KrR21vFYqY2e95O1S4BAKas+LveXe0ShmVu2Vzt\nEionL9wRX7xrdjm6ao1kWfI89IAkyfPqGjnJhFTDU4QNFrjx+pLjro0bJq0G08z9/boff2zSrgsA\nAAAAAABMV4RwUJZRf2tyGjP6p/eUVGbXlqIxIxYrsSemIt/Nv5Vv9crcQInnA8YvvmDh5E1lAQDT\nkOFNT/mXqM0getMnzqp2CZWTF8IZ+Pq3FD3lfZKkBW9YotBXviAjnpvm0tXXV1chnOjJy6pdQgEn\nGBzd/gWdcCpcDAAAAAAAADBFEcJBeRKJaldQN1wvvFDtEqrK/ejDxYNxQjjThWv9uoJ194pXqlTJ\n1OWYpuyOzmqXAQBTmuP2SJKMRHyEPavD89gj1S6hcvKCHobfX7Ae/MVPFbr0i4X7m2ZhOKSGhc/5\nTOnxz5w/yZWkOO0dozugTv6eAQAAAAAAgFpCCAdlMaza/BZwLQr8/MfVLqGqPM88XTRmRKNVqATV\n4AQKv2Ht6ustmqIsaU3zKdvGw3Fk2LYMF7++AWBCZTvhEESfcPlBj3BY1qLFBZvdq1YW7p6sn38T\na9fdNHDYEQVjG59dqYEvXjKpdXTf86Biu+6uyJkfG/tJCOQAAAAAAAAAZan5u3iRGOGPmpB3A4Ib\n6MPz3/HHapdQVeZrayVJvdf+JDvGdFTTh9HXWzy2Y0fBOq8h42Cn/+7qaCoOAKhHmU44hHAmQy7c\nYe80X+FPfGr43WPx+gmEeDzaftsdSuy3RJIUe8vb5O5on/T6rb33Ue8Djynx+sNHeWSd/D0DAAAA\nAAAANaSmQzjm+nXy3HlHtcuAJCMczi7bv/yl5DhVrKZy7Ar+OeJLD6zYueqZ//bbJEn2rNm5wRid\ncKaN3v9n777j26jPP4B/bmh6ryxiZwEhgQAh7Bn2HoEyCoVCgTIKlLIplKaUTdmUvSmj8GOHssLe\nYQYIIUD29rZla97d9/fHaZ2GLdmSJSWf9+sFuvve905PZEmWdc89j5mE03v6WdA23AgA4L71X5BX\nrQQA6IYBw1g33j8KIlJViEk4RET5ZY+0oyq+JBx1XWpFBQBy7E9SfaONAacTnmv/ZZli7LprdFkq\nsTanDpsCyRf+WyqhYmDRi08WKpXEJyIiIiIiIiIiogIr6iScml23x8gzToQy/8dCh7Lekzye6PIG\nl50Hx/PPFjCaHBECjisuh332G7k5XH19To6zrhCVldFlyV9aJ0to4MoeMCsg+f9wKtRffwEAuO/9\nN+q2nAQAUD/9GPa33yxYfCWPlXCIiIaGLVIJJwhoGiqOmoGyq2YWMqIoZcni6LJeVV3ASHIkRXKH\n/+Q/ovfcC6Lr8vvvw3/Y4WnnF7vgHnuZt7tOL2wgg1GCjzsREREREREREVEhFHUSjhxuayK3tRY4\nktwJaQYCgeK7orY/UneXZV39/rsCRZI78prVqL73DlQde+SAj6FN2hQAsGrW24DMk+LQzPZxocmb\nQdt4k+iw3NpSqIhoKMVVljIahqHn6ustmwNLV6B+xoEYedJvhzqy4uP3Q8SdRM1YpBKOVNS/vomI\nSp6w2c2Fnh4oC36C87234b795tj7cAEJhyO6XIyVerIl0iSWBg47wrKurFoFADBGjsp7TLnWe/k/\n0PnSa/Aff2KhQ8kOE2+IiIiIiIiIiIiyVhpn8dahL//q9tsdoxvrclZ9ZahI4YSoCH306AJFkkOR\nihKDIQxoNbWQpk2D96xzzSF3iZWZH4RgyHoiKpKsZYwZC5SVoWXuAgCA47VZSc8hWgf5zbZj3s2n\nAmVlCBx4iGXz6G0mFyKqolR92P4Ytu0WsH3yUVb7SQbbURERDQmbCgBwP/k4lOXLosPK0gEkUOZK\nKATbZ59A6u2NDkmhYOHiyRE93PbWcJdZxydZPzfIqyNJOCNRchwOhHbYydJ6qySwHRURERERERER\nEVHWSuJbQCMXyRLFQAg4vvsGAOB84vECB5MdOa4dFQBI4YonpUwEc3DSQtcBWYGqyNAnme12gjvv\nOvjjlgjnHbdA/frL6LrUFU7CqTZbI0huV3SbvGSJZV9NX0de1xQl+X0AAL1hOADAGLUBWlZ3wPe7\n3ydPXlfe1wfI9vVXAIDqww5I3ujzQXrrzZTVFuSlSwEAjrdez2t8RETru2glHADq/HnR5YVf/YzF\nq7vR4QlAH+LfZWWXXYTqQ/ZD+czLo2NSKGSpRFeKpLY2AMDy735N2CCh44130frupwAA3ymnAwD8\nvzuRCSFERERERERERERUtEoiCSdU+KrvOSF1dkSXHa++XMBIsid1J1QxCWlAIICys063JGGUEsPn\ny8FBDEA2TwII1QZg3UhQyoTr37ej7rorUbPfHuaAEKg84RhzsbLKvHU4o/Pl7i4YQpjJaLfdDPXD\nD4Y8Zsov0WNemS+Xx1WDUhSEttsheXIgMERRlZ7yv/8V9cf9Bs5HHrRu6OmB48nHAAB605gCREZE\ntB6x2aKL8tIl0WV/RyeWrvVg7sJWfPz9Gny1oAW/ruxCa6cPIS2Pf7SsWgl3+PeC3NEOIUkIbr+j\nua3EW1LJ7e3Q6hvgrEiuJqlNnQaxqdn+1Xfamfj1ywUI7Tp9iCNcj7ESDhERERERERERUdbUQgeQ\nCeWLzyGm71boMAZN+eWXnBxHCAFpiL8ElRIr4egaHK+8CPczT8L9zJNoaS69VkOGPwdJAIYByOG2\nMGr45RRaP5Jwyv9xuWVd6vHAtuAnAIAIV8KBwxHb3tEBf0BD+dqVqLx6JgCU5POG0vD70TDNPEkm\nJ7Rk0ydukjRd8vsgXK6kcQJs779r3s75FP6T/xgdbxg/Krrs+/3JQx4XEdH6JL4SjuvJWAXL4V9/\nikBVLTyN46G5y+DxBeHxBbGixdzudqioKrOjqtyBqjI7XI7c/LnVsOUky7pRXQNRXm6uBIOA3Z5i\nr9KgdLZDHzYCcn9/38gybMMazGUmhAwNPs5ERERERERERERZK4kknPobr0L74TOgT9io0KEMiuTz\nDvoYvoCGz+evhSxJkCRAliQosgRZliBL8beILUfGw+uKHN5XDu8rSZBkCYquw9bZBltrM2ytLbC1\nNkNtaYbS2gzbe28DANbeejeGn3uGecVtqVd8SazuMxC6DijhglKRJByttK9GHqj4RK1o1ae4L+7l\nNatQffFfIO2QoioKlTx59arYitNp2aZtOgWhseNhW7IoOqYsWQytpnaowist4eQ15wvPwXPvwwhp\nOmyqYpkiXM5UexIRUa7YUv+ZtPHzj2Lj5x8FAHjrR6C7aTw8TRPQ3TTeXG6cgNXVtVjdbn7ud9gU\nMyknnJhT5lRzkkwvqmsAp5nMKvl8sYScEiOvWglbVyeMDD8/O+3m70N9o40BAKGtt81bbJSACTlE\nREREREREREQZKYkkHACQly0r/SSchC+XbTdej9CFF2d+AMNA1cXnYcTkHbBm210BAegQfbfrEgK2\nXg+c7a1wdrTC2d4CtSOybK5Hlh1d7ZCESHso/+gxkEduYK5oIUAuiW5maZU9+/SgjyEJARF5HCQJ\nQlGgF6gSjhACuiGiyVZDyu+3tixL8TxyPf4o1PnzgKceG8LAaMgosSQR4UyocGOzoXPOt6g46zQ4\nn3kKgFkZiZIp99wN9af5lrGuniDqqxMe08THmIiIciq+Ek7Ezzfdh57Fy1GxfBEqly1CxfJFGPH1\nJxjx9SeWeYGKqlhiTuMEeJrGY2XTBPwybCRUVUVVuT2amFPhtkOWs//cZtTWwqipAQDInR3QGxoG\n9g8tsPLLzL+F5N7ejOZHHitt6jQsf+41uKZunrfYCEDcU1OASThERERERERERESZKJkkHN1InxxS\nMjRrtkz1jVej5U9nAwmtW9JR536DqicfwS54BM/NmgtHp5k842pviSXZdMQth2+VYN9tl0Lucvhr\n6+FpHAd/bT38NQ3w19TDX1sPX21DeKweYzcbj9FLzXZDyrJl0CdO6vO4xa7i2SdjK0IM6OpOoWmW\n8v9CVSGCwVyEl/4+hYAvoMPrD6HXr8VuAxpG1LrROKw8Z60P0kqogiS3NFuScLxnn5e0i7xmVdIY\nlT7DEAhpBlxxSXnpqrSI+PZkfn90OaQZsKmlndSXFT0hczIUAmw2yCuWo/YKa2Km4+knMO7G6+G/\n+TbLOFt5ERHlWYr2TsYhh6G9pQdLvSFohgEAUHt7okk5lcsXomLZIlQuW4i6+d+ift7Xlv01hwue\nxrHRxJzmpglYNGYCpA0noLK6AtXldlSW2aEq1t+JyrwfkmKRDB0iXFFOamsDSvRaBb2xCQAQ3Ghi\n1vsGttoGzrLSbcNVElj9hoiIiIiIiIiIKGslk4QT7PGWTrDppGjfJLe1wnA3ZbR7fOWIIw7aos+5\nhqLCX1OPrnEbmwk14aSa2G0DfLUNCNTUQc+wooLDaYdktwEAnM89A23qVhntVxICgaQWOhkxDGtF\nIEUFMryStz9CCPiDOnp9yck2RpqKRZXvvoGmC06F98BD0Pvwf3ISRyqS1/pvlFua4b7hmljscVdj\nG5WVkLu7IaV6XMLJB1S6avadDhHS0PPoE7HBtO8psRM5kt8XXfYGNFSp689JNPd1V1nW5ZZmyM1r\nod56S9LcynPOAAAo/7wCek0tlI52ACmqDRERUW4pStJQXZUTdVXm50WvPwSPNwSPtxyehlosn7SF\n5fOZHAyifOUSVC5fhIplC80knfB/Nb9aK54ZsoKeUU3wNI1HV9MEBCZsBEzaBPbJk1ExvBajd98x\nKRbbN19Dm7IlAKDmkH3R0pyDNqsFIKqrAQCdM6/Ous4K00OGGBNyiIiIiIiIiIiIMlLUeS1GdTXk\nzk5z2efvZ3YJ0M0kHP+MI+B84TkAgNHcAjRmloRTfczh0eWeHXZBsK4BgboGBGrNyjXe6jp4q+vR\nW1UHr6sCuW6KJMuSpTS/4+UXc3wPQ8f5+COWdcnnhRhoEk7cSRrZ2wv3wp/hW7IYxthxGR0immzj\nD8Hr12JJN30k26Ri7+rAlAtOBQC4X30ZuUkFSsNvra4kt7fB8cG7AIDOCy+zJCatfeNDjNxhC0gp\nKgTJ7W0who9IeReGEEPfVouyZp/7DQDAE5dkmMlryfbBewgcfiR0w0DP8tWov+Uq6H+7AsboxrzF\nWhBeL+zvzEbwwIOjJ6/KbrvJMkVevhw1B+/T52Fs382FHq54AKSvNkRERDkiSfDuugfcH7yTcrPb\naYPbacPw8FuzIQR6fZHEnCA8Xhs89o3RPW5j6466jrLmVXGJOQtjlXRWLAY+edsy3Vtv/ZwU3G13\n2N9/F8Hd9wSMvnrSlojw5wfZbkfWdU/5MTH/+FmciIiIiIiIiIgoa0WdhCNcbiCchFN7z23o3XN3\nS4WNUiOFv2QO7bQrjMYxcN9+M6ouOQ9db72f1XFaf/gVYtgwAOYPUAVQBqAuYZ4QAppuIKRFbg3z\nNm5Z0yLrcXPC5fUTyZIEY0TsRIBtzmdZxV1MKs4/x7Iu+XwQNdkfRwoEYNiSK3g4n30a3gsvTRr3\nBbRYsk24uo3Xr0HPItkmneFff2IdSKzSk0NSICEpLi4pxzjoYMsmpbyPdmv+9Ml1gaBuaavFpJzi\n5lvdHF1WFi7sf4dwaypjbTO23HUKAMAvQvDc90g+wiuYikvOh/PpJ+C55gb4TzkdPb4QEn+LVf3h\nd0n7+U46Ba6HH7CMRargAOij2hAREeXKmseeQfUDd6H2qivQ8ca7fc6VJQkVbjsq3HaYn8xhJpp6\n4xJzfCF4A0DvyEb0jmzEmu2mxw4gBBwdrQmJOWaiTjzfyafBe9a50LbYEnJbK1z/eTTH/+ohFv77\nSHE4sr6AgJ8Lh0D8Y8zHm4iIiIiIiIiIKCNFnYSDuGQQ14/fAzdeg54bktt1lIxIpQhVhbx8KYBY\nFYm+CCEgSRJCW06F8tNP0QSc/kiSBJuqwJblTzld8o7LoUCU1SGw7/5wvPFadgctcv6ObthHbZDx\nfI83iAqXDXKPB0ZlZdL2shuvxYrfnwFfVw/83T0IdPci6PECQT+UQAByMAAlFEBlIICaYHg94b/E\nseT1IJSAH0ooACUYhLOj1RKD5O2FKK8Y9GOTihSwVsIpuyKWcKRPmmzZJpelT8JJPE50n2VLUXfa\nKQjcdif0jSeagwK84rkAIu8//Wk8fL/YSgZX5otwe7KGuAowcmtruuklS/3icwCA7bNPoY2bgKqr\nrk6aI7c0W9a9J5yE3n9el5SEE0+Ek5iIiCh/ZFlC4E/nYOUZZ8NuS25P1R9FllFV7kBVeew9O6QZ\n4Uo5IXh85m0gpAOShEBtA1pqG9Cy5XaW4xy5zyQAgLbxRAT33T+aDCF6egbxrysOUihkLmT7BwsA\nmZ8LhxaTcIiIiIiIiIiIiDJS3Ek4CSfolZ8XFCiQ3IhUwhGKAmP4yIz30w0BVZEgBQIDa5mUpf6S\nd3ovvcKShKNXD6CETJEJtbRC1TTIamYviV6PD/YfvoNkGDAqUie6TNwsszZjA6HbbDBsDuh2B3SH\nA6HyChhOJ9yrV0TnSD09eUvCiVSwMSoqIXu6oa5YDgAI7JXcUkf0UbEjqaJOmPuu2+H66nM4jz0S\n7V9+B0MIsxIOs3CGnPzkE1A2nwJtyhY5Pa7e7QE0DbZlS6Jj6ZKySpmoqgIAOF9+Ac6XX8hon95/\n3Zb+eKqK3r33h7bF1JzER0RE6SmyBFWRgezzb9KyqTJqK52orYx9pg+EdHh6zUo5kQSdkB67GKF7\n3MaoXPwzfCeebEmEMGoT62CWHhF3kUK2MkkSpsERrIRDRERERERERESUtaJOwpGCQQibLXqFpCgr\nK3BEgxT3JbP3wkvgvudO6MOG97ubrguoCgCfryiqH+gTNrSsC3cf7YZKxNijDkRw6jR09dNqAADs\ns17GlLj2MSJFJRwAaNlsGoIV1dDtdhjhZBk9LnHGsIfXHeaYYQ9vs6deh9MJe3kZHOVuON12uB0q\nnHYVLocCh02BpOtwj6qN3r+Ux6ujI8kzoqoK8HTHxvUUFVD6OqmSrh2VZh5H8pr/hlDIyFdnLeqD\n1NmB+r+cCQBoae7uZ3aM/9jj0xwwdvLG+cVnCHR0WLeX4A+5v0pBRgbv8fG6b7+7z+2+k05B58xr\n4VBzeEaYiIhSsqlD83vJYVPgqHahvjqWuOwLaOgOJ+T8dPcTmPjOiwieeIp1R7cbgU2nwDHve0DX\nAaX0fjeIQNC8VW1Z78uckCEQ/yCX4Oc0IiIiIiIirenVOwAAIABJREFUIiKiQijyJJwAjKpqKG1m\nixJRVl7giAbH/s5sAICw2yEqKmE4nNBG9tMCKRSCaO8A6mogr1kDbczY/Afan4REICkukcIwDMgl\n+gWt/ZuvMppXdkNCOxktdeudTy+/BYHahqxisClyNLGm3KHC5VDhsitwOlQ4+muDkJDsIvV4rNuF\nyNnZikjFEpFQBUjqzjxRI/44SUT46m/JfC55vEGUuWwD6VRAWQoEdTjs5nNNSpck1YeOP54Fbdo2\nqTfGPf9sba1Qv//Wuj1YepVwNF3ApqZ/XaWrRuU9ZAawwWi4774jOrZqZQdsca/zjrc/hNTejuoj\nD43t6HTBPkQnhYmI1ndKAT/TusKfA4fXANigCsGtLk49ccQIYN73kLo6IUqtMo6mofyR+81lW/ZJ\nODKzcIYWH28iIiIiIiIiIqKMFO+ZPMOApGnRVh4A4HzxuQIGNEheLxz/e8VcjrSUUlXzqtU+1G05\nCY2bbwjll58h+30wxk/Ic6CZ6frr3wGYJcolvw9SVyeqD9wbw0dUQ2ppKXB0+ZV4pa4cThJLpLlS\nVwiyqzKq3HaMqHFj3IhKTBpTg602asBOm43ETlNGYtrEBkweW4txIysxotaNqnJH/wk4YStnfwz/\nvgeYccYnxPT0oGF4Fcr+dmlGx+mP4fMBAPTx1qpI2SZtKIsXpd4ghHkjSXA89wwaLjwbeppkJ8od\nqbkZtUcdAvXrL82B8M85rfDPyXKMLCqW2eZ8Zj1cZVWamcVLNwwYKR6HCKOnN+V47+13Q28aYxlT\nE5JrtClbILTb7gjuslt0TDgcbL9BRERRjrffAgBU/OXsAkeSPfftN0eXxUCScGT+Psw/tqMiIiIi\nIiIiIiLKVvEm4YQrZBgleFI2FUkLRZeFM1xqXpYhGX0nFsgtzQCAinPOMAeKpCVX8Nzz0dLcjdDW\n20Hy+1F54nGwffE5AMD22ccFji7PEtrAxFf9aF24Ar7jT0LbNjujor4GI2vdGD+yEpPH1mLricOw\n85SR2HGzkZi6cQM2GVODMSMqMLzGjcoye05aHtimbAZt510AALW/OQTy6lVmyIt+BQC47/33oO8D\nADxtZoJPaLvtEdhq6+i4UZX69RrcceeU4xXnn5P6DoxIJRwJlWecgvqXnoG8ZPHAA6aMuO+/G+5P\nPkTV0YcDAKS4JByptRX6gp+tO6RIIlRE5slSekcXACC42+4AAGPEyGxDLjjDEDCMFEk4vb2wX3c1\n3K/PsgwHDjwEq39dAbjdgN0eHddHjkqbXOM75fTY/gcdmnIOERGt3xyvzep/UpEpu+6q6LJI8xmy\nL8wJGWJ8wImIiIiIiIiIiDJStEk4IlxRQwwfDv/2OxU4mhyIJBUAEJFKOIpsGe+LsmihuW+a6iqF\nItwuSIYB+8cfRsekfqr7lDq9aaxlvffiy6LLoqISPTfdBuPV/2HLjRowsakGTcMrMKzahXKXDaqS\n35ecJEnQNpkcXXc89yx0w4Cwx1qIiT6qdgAwq1DNm9fnlLJXXjAXgkH0PPgYtLHjIFwu9Fx9Q8r5\n2uRNM/sHhElLlpixxl0VLa1endUxKHsi/PyUus3kGDl8CwD1k8djxC5bQ5n/Y2wHTUs6hm35sozv\nr/Lh+wAAeqTCVwm+d4ieHmgrzWS3QCgWf8VFf0HVzdcnzVd/+A5qZaW5b9zzW7jTv7cH9z8Qqxev\nwfJlrdCzfC0REdH6oa/fI6VgINXwWBluCEishENERERERERERJStok3C8fd4AQDC4UTLY8/ENpTg\nSVoAQFwrHeEOV7OR5Iz/PXKPJ7yvK+ehDYaorU0eLNWfUYZEQ4N1YADl8/NJb2yKrdhUVB59BNSf\nYokTwVDfiV9lV81E/e47wHXnbWnn1L/xsnlf4ybA2GA0OubMRevStdA33SzlfFHfkHI8HecnZlJX\nSIpVHXJ98E5Wx6ABCFfpksKJWvZZLyVNsb/5WnRZXpOcGBU44sis79aorg4vlN57R+NOU9G49WTY\n/jcLfn+s4pn6w3epdwjF5sRXwumvlZta5obTae9zDhERrX+6HvoPACC46+4FjmSQVDXrXWQmheQf\nk3CIiIiIiIiIiIiyVpxJOIYB9emnzGW7HUpZXOJJMFiYmAZJ0mMVI4yGYQAAoSgZV8KJEGXlOY1r\nsERNchKOvOCnaDux/hj9VWXJE23ChgAA79l/yXrfYm+LFJ8k5L7perjffxuVfzwpOua67SbohgE9\n7rmnfvMV5LVrzH3uvBUAUH7l31Iev/zcP0WX9UmTU85J5D3tT/1PCpM83bFYly+JLjfckz4piHIj\nWqUrzH3f3cmTbLFEELmt1bLp128XIrjXvtnfb2U4CUfP7v2wGCgd7QCA6hOPxYSNR0L+5isAgBpf\nMSiO1BWrLhRfCaf38pn5C5KIiNZZwb3N37uSt7fAkQyc5/CjCx0CZYJJOERERERERERERBkpyiQc\n55OPY9SNVwIAhMMBRYlVw5CCmSV3FJ24ti2ivt5ckGWIhKoxWj8noQNHHZPz0AZDOJxJY+W3/gtV\nJxwD9esvIb//bp/7t3T68hVan6RgENqoDaxVYzLd1+vNQ0S5I8orostyZ2fS9robr8KIEdWo2WU7\nQAg47rsHNfvujuo9d8no+K4nH48uGxWVmQVVVgb/LtMtQ3qkIlQCZfGifg+nZ5m8RpkRzv4rbcnt\nbbEVzfr+JVdn30oCAES4PZOUor1VUUtICpV0HTUzDoK8YrllPDRlC4jwiSvP/Q/H5sftHzjiqDwG\nSkRE6yyHA4bDCYSTPENa6VWVk0v177v1ARNviIiIiIiIiIiIslaUSTiSxxNbsdshyxJEpG1HMJR6\np2IXTrbpOvxoQA4/7IqS1LopGIpbT9GeRB83IW8hDkiaVkz2d99GzX57oO7IQ9Pv+s5sNB15QNIJ\n65wTAlK4nZdhhCvvaBqEzW5pB5Px4QJxJ853yixxZUhJEvzTtu13muOXBag+YC9UXn4RAEBpXouG\nYRkm1QAwXG6I4cMznu955gUs+XoBltz/FJrnzIW2ySQIVYVIqIYktzT3f99GYSooreuEw9HvHKmt\nFbZ/3wF58aJoha/ALrthzVsfQVX6+ZWS7jxOIPxeV2Kt7FK145K9vbB9/qllzBg+HKtXtmPNmk5L\npSDL7zoiIqIBEm43JJ8PQgj4AqX1uxRgEk5RYxIOERERERERERFR1ooyCUdUxCp5RNqTBA6ZAaD0\nK+HYnLGkD2X1KjiWLwV6Y+XjQ1qswof97beSj1NkX4QKVc1gUuqEiepjDkfld1+jbqtNcxyVleum\n61E/fgM4H7wP9Rs1Qvl5gVnBwm7LLP54ug7H118AAJa+8RE8jz6Zh4gHz3fxpRnNs331Rdpt+shR\nfe675q0Ps4oJigJlWAMCu+8Jo2kMUF4BSdPgPPUkGP7Y61pqaUl/jPBzSWcSTl5IGSTBuJ54DNX/\nuAx1220ZTZrRdtwZmLIZVGVg70/a1GnmglFiJw7TVO6pPOMUy3po+51gUxUosvVXrtTTk7fQiIho\n/SHcbsDrhTZnDqqvuzLrdreFFto7+1aWRERERERERERERMWqKJNw4k9suh57CABilXACpZmEEzm5\nLanJlWPU+fPM2y/noP6iPwOhcLUfR/ZVWoZcJpVkUlT0Ub+fm4dgksmrVqL8hmsAABWXXgDF0w33\nTddBCgUhVBuUX3/J6nhSR0dsefJkiMqBtd/JN236noM/iK/vVmG2cWOzPqRdVWBTZciSBH3iRABA\n5cvPY3hTA+RVKwEAFeefk/4A4VZg3d4QjDTJXTQI2baDCs8XqgpFlvuvhJNC13EnQZsUTsQrsUo4\nUj+vkdbPv0XXU/8H31l/Trndf9RvoY3fEF2PPpWP8IiIaD0hd3TAtmIZRh28N+ruvR22zz4BgD4/\nK/XXAncoCFmGUVuHwAknFToUSqfILgAhIiIiIiIiIiIqBUWahJOi5VQ42UMKlWg7qsjJ7RQnqUX4\nS/CaA/ZC9f89Ga2AY5Rn3hqoUERcUpF/l91SzklV7cH179vzFpPlfh64N2lM7uiAFAwCdofZEiwb\ncUk4DnuW+5YYpbOj76o0aVqR9UWWJThsCiRJgqiwPr+VRQsBvz/6Gu989qWk/SPPpUBQR2htC/TW\ntqxjoPSkQFzCXNyJu54tpqHl8+TEuUg7Ksjma0HK8ESNCL/u/JOnwH/TrdHXYSaVeIqJ5PP2uV00\nNiG45z6xFoSJ24cNQ8dnXyO4/4H5CI+IiNYTsrfXsh75/dTjS/93U3z1zYIIhSAZBkKbTWGiRzHj\nz4aIiIiIiIiIiChrRZmEI4Vi1RjaP/4SQKwSTqm3o0rV/sh2y7+sA5FEHdWa5OH51215CW0w4k9C\nq62tqef0eDIayzXnow/B9unHyffd2wsEAhAOe1ZJXcbbb6N+p2nRdbnIv5Ru+24BVsz53jLWftHl\nWPLhN/DceKtlvPWXZQhtuVXSMeo3nQAA8AVir0khywhutc2A41LV8PM7IYlH8nlRecoJ0XVts82x\n4ufl+OWbX+E79ngAgNxrPm/GXHIWRm++IUZMHjfgOCiZsmRxdNn58AMITTWfEy0vvg6MS36sJU/4\ndZxhW7fI+59RV4/VX/yA5udfhSxLsWS4kkvC6bsSTqaPCxERUU4JAQgBafZsSC0tEP/7H5y33Iiq\nnbaB1NkB9f57UHn+OWlbxg4FyR/+Hep2FywGIiIiIiIiIiIionwozjOE4cSIhXc/jsqNNjbH7A7z\ntlTbUUWq+6RoR1XxzpsItMUqeginy1wwrF+Mh7baOm/xDZRtzmfR5UhbrURyjweJ19pGT97ni66j\n4sJzU28TApIQgN0OvWlMRodzPvYwKi5I3VKmWBkjRsKRMKYfdzwcw4bDWPBddKzrzvsgqqrR+eZ7\naBiWXH1J+fUX1J91Ovx33A19w40gGQaEPfsqOBHR5KWEEz+S1wvHm69H10VdHVTDQGVVZex1o+mA\n14u6Wc8P+P6pD95YUp3tk48gHE4AgNNpPv6e625CxSXnw6ithdzeDttss2pXYsJg2sP/+QJI8+fD\nP/OfUMc0AZFWGCWahON45MGkMd8fToXrofvhPbOPtmpERER5Zn/7TYw/5Zik8fIjZ8A592sAQMv5\nFwDjxg91aCavmYQjXK7C3D9lpsgvOiAiIiIiIiIiIipGxVkJJ5yw4nA7o2Oi1NtRBc24hSMxLcLk\nvugvsZVwcoJkWE9Ii5qa/MQ2CD3Xxqr4dP73hZRzktpR6TrsKSrU5JLU2Zl2m+3LOeaC3QH/scfD\nN34jS2ypJCbgeI9MPqlREioqoCoyJC1W2UbfbErStNCYWNWTmj13hvvrL+C+8ZpogtxAWlElMRJS\ns3p6oE3YEADgP/w3AABFls2knbjEHbk9oQVVMDj4WAiA9f1V0nUz4UpRoIarc/lPOgUrf1yC4B57\nAwBczz4FABByZkk4YvhwND/1ArQtpgJA9LiQJAhZLqkkHNuH78P1youWsa4ZR6Hnn9dhzfwl6L3i\nygJFRkRE672QBvf116TcFEnAAYCG7bYEAEiebohXXhnSyjiRaprRiw+oODEJh4iIiIiIiIiIKGtF\nmYSj+c1qN66yuISVcBJOyVbCibTRSpO84I47meu67WZzIeGEdDF+Sa1vPBGLHn4Wq667DaHd90w9\nye+3rLpPPSlv8YjwyYP6Sf23KRIOB6CqaP3gc/i33cEcTJHQYXtndtKYVFY2uEALJVLyP+4ki77x\nxKRpXY8+GV2OtNyRV66MJeGkqOiUtYQkHN3TCz18NXbPDbdY50a+/xcCytIl1k3e3sHHsh4T8Sfc\n9FhyFgwD0HUzOSZCkmCvr4Wy6FfrQbJou+R2pnnuKEpJJeHIa9ckjQXuuR+w2aDU1QJyUf56JSKi\ndVBomrVNqOT3wTb3m4z3rzjrdAw7+Tg4n3w816GlZX/CvC9lxYohu08iIiIiIiIiIiKioVCUZwmr\nbr0RACDV1kXHRKRdiVE6J2ktQmZyR7pKOPEcH75nLiQkKWSybyH4dtwF0u9/n35CXJKE1NmBslkv\npp87SIGQDnnRQsuY/+hjU08OJ3Y57SqkSrMNkxSfhBBWfczhSWORxJSSE0kMiE+8iEug6L77AfiO\nOQ5ik0nwH3GUZVdpzRrUTtvMXMlBJRxRXmFd72iH1NkJIcsQFQltseIq4Ujd3ZZNMk/eDEpIi73P\nSKHY819ua4Xtqy8gp6g+1jvzautAFkk46QhZAbTk118pkXi1OBERFUDXsy+i+f3Po+vK4kUZ76v8\n8D0cr80CAFT85ayk7fa334R6792DDzKO1NmBitvMapraVtNyemzKMX62ISIiIiIiIiIiylrxJeHE\nnYQ1xoyJjSvmSV6phColxJMC4QorNntmO+h6clUIpzP13AKTJQmynP4L2uqTfhddrjre2sYpMGEj\nGPbcJRcFNQNSQvJScLfd0fny6wjV1kHEJ4/EJzVFkggyfX6V+hfSadoNBI44Cj233w3IMnquvdGy\nzbZ8KZRwKyhRWZlq96z4TjwZPUcfC8/1ZuWn2luuh/3LOebPL/HxjUvCSUxOK7v+qkHHsj5zPHgf\n1DmfQ3r9NThmvRQdl7rSt3QLbb8jhCtWmcuobxh8IKVWCWf16kKHQEREBMBMbJYmTYquu+66I+U8\no64uaax2j536PHbVb3+Dmr9dnNNEWXek6ieAwMGH5uy4lHui1P/mISIiIiIiIiIiKoCiS8KR2tsB\nAL7tdrRWw4hUwtFK5yStRaQSjj2WhNP681I0//XKlNNrN9sI6o/zrIM5qDaRD4oiQ87wC1rb559a\n1kVdPeRgICmxAjCr2mTD+eC9GLPtppBbW6zH2e9AhLbfEcu/+gmBw46I3bcjLqkp8tgmPL/kuNZH\nvSecFK1GVEpfSItIC6p4KR7vpP2qa6CF20Ml0puaBhsWUF4O3x33ILTTLv3PtSThWH9GoU2nDD6W\n9ZTU0Y76Ky5GzUF7o/6Eoy3b1AU/9b1vXDUofczYwQejyKWVhNPdBQDovORvBY6EiIjIKvI7Kt6i\n2Z+hbd5CrHrpDfh/c3SKvZKTdETc50V5jTX51EiT0N0fZcFPcP/7tth9FGG7XSIiIiIiIiIiIqLB\nKLoknNCqNQAAsckk6wYlHGoJnaT1BcwrRg0hIAUC5mBc9RVRXQPf6WchuNvuSfsqba0on3kZACCw\n1z5YMeeH/Ac8QIqSOiElOH2PtPsEDjoUnbfdBZSFE0Qij0/8nGB2P+uKSy+E2rwWtndmR8fWzrwO\nKC83t5c5oMQlFghXLAlHqJEkL+tVvuWXXxxd9t5wC4za5CuIi137Z9+g66HH0frT4thgpidO3GWp\nx3N4wkRvGmNZ9579l6Q5Ir4dVfiEkLbhRgCA8ptvyFkspUrPIKkqpWByq6lM+Y85Lnb/EzcZ8HGi\nVLWk3t/hN5OQtOl7wHf8Seh84dUCB0REROu77sR2kXFcm24CyDJsO+wAUVaeco7c1gb4/eaKpkFr\naYtuK7voPMvcju5ARok4znv+jYpD9ofU4wEA2N94zTqhhBLb10v8+RAREREREREREWWtuJJwfD6M\n3GdnAICor7dsEtF2VLkrhZ5vvoAGr1+DphmA1wsA1nZIAJx2BV2PPoXgjjunPY7U2wt59Oi8xjoY\nbkfqCj3xVX8itLHjAADdDz6G0G9/BymczCH5fZZ5yqJfUXfpeZBSXMnbn0jC04o/XQhx+umWbbbv\nvo2txFfCSXh+SZ5uoLfX2mZHlmPJKyX0hbQxYiSCBx0KEZdAFDzwYAQ2mYzu+x/pc18RqUCVOO7I\nYWs0pxNGXHsrqb0teU6KdlTBfQ+IblZ++Tl38ZQg98y/wXHX7X3Osb33DpSf5lvGJG3gSTie625C\n818uxbJPv8vJ60HISkm9v7vvvQsAIJeXo+em2zKr6ERERJRH+rbbWdZ7z7sIAOD94xlQldiffcKW\nvrpmzT67Qf3iczSMqsWoKROi49LqVdFl93X/xITtJ0OaPTtpf8fzz8J52imQfvwR/q+/RcUVl8L5\n2cdwPvIQAEBuWRudG9hrH+jhpGoiIiIiIiIiIiKidUXRJOH4O7ogx325qydVwgknA5RQpYRASEd3\ntxfuO29F5YXnmoNxlXAAQJYlwO2GPqHvL6BtatH8qJLEf6nfHykYRKhxTPSkfaQajZRQCafi1JNQ\n/fRjcN/yr6zjkYLmsSobqqDI1ti6734guizifxbhdlRG0GwbVj9hNBrGjYTU2wMAaL3/sYQ7KZ0k\nnFRERSWaZ3+EwKGH9znPkrQUv3+KBKvBaPnqB3i22BoA4L3or8kTwo+3hFgSjh7XKssx66WcxlNS\nNA2V99yBypmX9zmn+qjDULvrdpA6zJZ/0scfRdv/9WXJi2+l3uB2Q7/oYjjGjUm9PVuKAugDrOhD\nREREEC5rC1Lv+Rej5Ydf0fuPa6wTVetFAZZNP81HzYF7Jx87FEvcLbv5RtjaWjHsuCMgL15kmVd5\n+smoeOEZ1E/fHo377Rodl1uaAcSSWAHAe8ElJf+ZmoiIiIiIiIiIiChR0WR2jNh5a8gdsRPCgQMP\nsU4IJ0mURBJOby+01nZseMgemLLZaNRc+4/opkhFnyR9XJEqhRNDSk6qEvWBABCXwBGtqBIpfR8m\nd3Wat2vXZH+/4cdLStFKSR8zNnbfzvh2VObjX/GH4y3Vd5wvPm/GscEG5rxwxRZRZ63UVIqc9vTP\nuf6ovyzIYSSAXFWNzlffREtzN4yRo5InxFfCibwHxCVYGTW1OY2nlEhtKSoHJc7x9kaX6yeOhf21\nV1E/4wBUnnVa0tyV85ZY1o1w9apUVEU2EwlzQVFK4/0dsLy3xb+nEBERFZJwJbQLtdmAYcNiFzOE\npfys1Q/nzz9BamlJGpfXxirb9PV73H33HcmDctH8KUrpMEmKiIiIiIiIiIgoa0XzzaetZS0cs14G\nAPT8/apY0k2YKKFKOPUbjsbIyWPh/mV+0rZIZZVEiW2qLEooCUfEf1Eb/8W6rkP+9htIwYC1iko4\nEUbqjSUJAIBwm1fySuE2XtmQwgk9kWPEs1RYiq+EE06Ocv7wHdzXXZV80PBJje67H0T7YUeh99wL\nso5rXRLcbY+cH7PPpCAp/FwyjGglHMgyPDfcYm7u7s55PKUiUvmpzzk91vedigv+DABQ58+zjHtu\nvBX2BmtCk1yW/DrKixJKwlHeegMA4N1jn6TqZkRERIUiKqsymuc76ZSsjus/5jgAgPum61Bx1AzL\nNknEqthJvn4+tyck6DORtQQwCYeIiIiIiIiIiChrRZOEAwBKuLqGtulmyRvDCR3qj/OStxUZqY8T\nyZEKL0n6KAsf2nX6ICMqjMDhR0aX3Sf/HnX77AbZ47GctNYbzVY2ytIlln1jSTjW5JxMOF59xTyG\nKzl5QJRXxJYdsUo4UGNXCLsfuDdpP6Ox0Yx3yuZovvFOoLw867hKUev3vyBYW4/ev14RHVt4830I\n7nfA0AYSXwknfAJHyDK0zaYAgKWK1vpGCsUl6Wla6jkJSW6RlhDxQlO3gv/3fwAAdL7wanRccQ5R\nkomipI2/2NT+7ihzoaH0K2IREdG6Q1RlloQDpxOhadtkdkyHA8Hd9wQAuB+6H8733rZsV+d8Flvx\nWStb+n73e7R89UN0vezvl0WXl/26GmI9rmRIRERERERERERE667iSsJZvAhAmhLp4eoX7nvuHMqQ\nci64066pN8RV/lm6YDm6/xBrE9N76d/yHVbOBGYcEV02qqoQ2Hd/AEDZ/16Ojovq6tichgYAyUkU\nItxKakCVcCKJO/EVd/oh1PRVWPTyCsuVxVXlmR+31Inhw/HrZ/PgPfcCdD3+X3TPOAr2ww8b+qti\n45JwpLhKOKLWPHkjdXYk7RLSjKSxdVIwFF10Pv1EyinpKnBZxFWuCu20C9rf/ggd/3kWqqr0sVPu\nCJcLUsDf/8QiIjld/U8iIiIaKnGVNSPVa9LpfPUty7pIqOzmn74n2j/+Em1fzUPg4MPSHkcsWQo9\n/NlM/dFMuBHuMnTMegs9198MNDbBCLdzjfwd13XIEXBVJreNpSLESjhERERERERERERZK64knHA1\nFGPYsKRtUqD/livFzrvXftDDlTsSBXfcObpsr6yAPn16bGMWySSF5rn1rtiKJAO25NhFTU1sucpM\nyKn4y1kQzzyDkGZWEYpUwlG/nwvlrjuTytdnQvL7+t4ef8JfSZ+Eo/R4LOuqUlQvm7yrqTBPygT3\n3R++u++H0+3sZ488iK+EE6k0Jcswqs3nkrR6ddIu/mBpVFUZLMeLz0WXbR9/mHJOzT7TMziS9SSL\nPmVzaPvsO2TPd+F2Qx5A0t1Qk1Ysjy6HdtixgJEQEREla2nuxqpvfoLnptv7nijL6Dnp1OiqkVCV\nxj73a+gbbQwxbBigqvCeeU7Kw1Q88Qg0zfycHqlqqo8dB23b7aJJQXJC21Cbs3T+tlnvMQmHiIiI\niIiIiIgoa0WVTSAFzbYqYl2tLjA8ObkoIrTdDgAAo6YGqiKXboUFZ1yChhCQVyxLmqL+ND82JXxl\nLAAMO+sU+PwahBCxdlQ+H2pn/hXqt19nH4uRuhKKPmoD83Z0U1xQ6ZNw1nfxSRiyXKAv4uOTcOIr\n4VRVQzgcUH76MWkXTc8+catU+IMa8O03kFpaUHbzDdHx+CpTUaFYpRwhp3/LF67CvucIdxnkYCCW\nZFWMhED9VptGVwMzflPAYIiIiFKzbTDKUhUnHd/1N8G/824wXG7o4ydYtmkTJ1nWQ1tNs67Xxloy\nll9wjlmtMNxWsvfCS633c9Ip1vULLun/H0HFIe5zJBEREREREREREWWmqJJwolJ8aWw5uTyAqijF\nQEoo827hduOXVz9A+yfhZBNlaFrA5JNk6FAWLUoaV+fHEiYSS99PGN8AzP8Rtk8+tozL7W1Z33/g\ngINTjne++D80//0aBA84KBaHLTkJRx8zFgDAQdJGAAAgAElEQVTQ849rsr5vyrFUSTiKAigK9MYm\n2FatBPxxlY00DbXXXwnl5wVDH2ueuG++AbY/nw0IAWP1GjTssxtq9tjJMkffoNGyrukG5NaW6Lox\nOra95+9XWeb6/nhmHqLOXKQqVny8xUb4E9pl8epwIiIqcZ7nX0HLopUQ5eWW8e5HrC0ugwcdalkP\n7bxLdLn66cchL1sKuc38vG7U1Vvm9vz9KmhjxwMAOp55EcbYcTmLn/LL8fr/Ch0CERERERERERFR\nySnOJJwUCSiBAw+JLkudHUMZTc7YZ73c5/bqbbaEqKszV9aFJJze3mhLqOAee0XHPdf+K7oc35oq\nwvHc/0FpXms9VnNz9gGkSXoyxo6DOPNPlhPokt/a7qztqx/QMestdN12F3yn/yn7+6bciibhABBm\nEk6kqov66y8AgKpjDo9Od7zyIurvuwPV++0xpGHmU9l1V6H6qUdRfukFGLPNZACAsnYNtHHjo3Mk\nb69lH39Qh7x2TXTdc+Ot0eXAoTPQOn8xup76P6yZuwDB/Q7I87+gb3o4QUhetbKgcaRif/kFyMuX\nrVPPJyIioghZUQA59reHNnIURG1dwiQZIv6zc7X1M7zc1QmprRUAYn/PRLjd6JjzLVav6oA2nb9L\nS4rGSjhERERERERERETZKs4knFTVBTIoqV7sEhNL+tRH25hiF6luI1QbAocdAQDwH3lMdLu29TbR\nZX38hkn7GxUVSWNyNo9dBuSE55jU02ONobEJYvhwBH/7O1a7KAZxlXCkSLsiyfoasX/yEaQej7nJ\n6wUAyOH1dYnrofst6+riWLUpyeeLjc/5HBvsNBW2Tz8BAHgu/wdCu++JtutvQee9D8MY3QhRV4fg\nnvtAGTlyaILvi91u3oZbWRQLZcFPqDrl96ibthns8+cVOhwiIqL8iLsAQF29KuWU1mWxpHhRWYmO\nl9+IrsurVsVVwqlL2hcAVLX0LzJY76wDF4YQERERERERERENtdLM9ND0QkeQd0Iu3S88O2Z/iO6z\nz0Nw3/3RM/NqdDz+XwQOPzK6XZSV97E3UHPNzKSx8qv/keswLSIVe4zqaiz6+ue83hdlT6RqR5Ui\nUU1eZZ40EpGEjvVMfCWcmoP2hn3FMpT//a8AADFiBADAOOlkhGYcUZD4+hJpCRdNsioS6vdzU44H\nd5k+tIEQERHlkcgk2cLhQO+FlwIAAocdDm37HaKbKv58BtSvvjCPVZ1c6ZJKVAn/TUpERERERERE\nRFQoJZWE4z3UPHEs6cVVKSFTPZfPzHyyXLrVV/SJmyDwt5mAqkLU10Pbd39LNZlI25mI0OZbJh1D\nm7Rp8oEjyRcpyCtXWNZXP/pMdkEHzHZURsMwOEc0ZLcv5Z8UuRGAIcyVFCeLnHffYW5aumSIAisu\nkQpAqRgjiqDaTV8UMwkHoSJqe+D3o/LMU1Nu8p3BNnVERLQOUTL7s9B7/sVYs2AptPDn9+5LrwAA\n6MNHxKp+lnBFT7ISqlroEIiIiIiIiIiIiEpO0XxDqmVwgliyh1tSFVm7kkyFdtkt88nrYOnvtq9+\nwOIX3gKcTst451vvo3vrHayTdQ16bR3WLlkLvWkMAMD2+adpj60sWxpd7r7gUoi998kqtkglHOF0\nwcZS+cUnnMQlDAP21181x8KJap3PvhSd5n7iMWDlSpTdcE1s3z6St4qdIcIJR+H3vNCWU6FN3CRp\nnu+gQ82F3t6kbdFjDR+R8/hyKnKSR9MgIv/uApO7OlOOt8y8DsG99h3iaIiIiPIo04onsgylJlbp\nRt9zLwCA7af5+YiKCkybOg0A0HNo8VVRJCIiIiIiIiIiKlZFk4QT2nu//ifFnaQtFUZdXXRZ2B2Z\n77gOXkFqNDYBW22VvEGSgB1iSTiG3WGeiFcUyG4X5PBVtWVXXpH+4OHqGd6TT0PgokthU7N7/CSf\n31xISBCiYmEm3GiaAftnnwAA9NFN5u0mk6xTZ8+2rFb8+cz8h5cnPT7zea0sXgQAMIYNR8eHc9A+\n6030zLwavomTsXD+cvTcfhcAwDnrpbTHMkYUdxKOCFfCUZYsRtWBe0P5pfBt4dzXXRVd7jn0N/Ae\nfBg8hx8F3wknFTAqIiKiPBhgxRPhclvWgzvslItoqEj4TjsTC+/5D9puvL3QoRAREREREREREZWM\nosn0CBx0SP+Twl8OSyWUhNP11HOxFbs94/1Eplejlhi3I/UX/EqkyhHMdmPqooVAuBiG54ZbAADB\nvfqobhN+Tgw00UAKmEk4gkk4xSlcCcfo7o4O6ZMmm2PDR8Bwl8XmnniiZVfnf5/Me3j5IDU3o+ao\nw6B+Pxe1O20NIHaiS992e/jOPBvdH3wKd3UFEHcCTJn3A/QU1X9EZdXQBD5Q4ff3iovPg+PLOag8\n/ugCBwS4nngsutx774PwPPAo/Pc8AIeb7xNERLRu0UeOii4Ht9ku8/022tiyHtxjr5zFREVAVeHf\nY2/A6Sp0JERERERERERERCWjaJJw4MigSkykRVMJJeFoW8Yqv4gsknDWxUo4ACCHWwglscUn4egA\nALW1GQBgjG4EACg/fJf2uJJmVgyBMrCreL1/NKul+E4r3aop67RwEk75Yw+l3Bzcd/+hjGZIVFxy\nPmrnfITy886JDSYkicmSBFWRLe3ranffEaEly5IPKKV57RUJx6svW9bl1tYCRZJMSBJkWYIcfgzT\nvo8RERGVKO8558G79fZYePl16HrptQEfR1RV5zAqKgYOVS72j5FERERERERERERFpWgyPURcEka/\nc8JJOPLyZajeZzrUr7+E+o+ZUD//DADgvu6fcBRj9YtsknCEyF8cRUj0UQJfhBO0nK++AsD8uTcM\nq0TlicfFJoXCiVm2gSXhBA8+FAsXrEJwn3UvmWOdEE5KK3tvdsrNks/b7yGMEntNOSKtpUSsqo3U\n2ZF2fnDqtOhy4/abW7a1v/1RboPLA3nNaut6dxeM5csLFI2VVGLPHSIioqyVl6P5+Vfh+92JWbem\n8p58WnRZVDMJZ11jYxIOERERERERERFRVgaWsZAHkqe7/0nhKieSrgGhEOqmbQYAqNlvD3P7v29G\ny6p2lN18IwCg5ehj8xJrn8Ina7UNRqPj5detm+wZVPsJkww9p2EVu9B2O6bfmFAlqWaf6ebw/14x\nH29JAnQzCaevZJ7+OMtZZr1o9ffNv5Q+nzAUrqQUDOlw2ovmLS8lwxCQZcmSbGP7bm502XvWX9Lu\n2/XCq2gYm9yOrfvOe6FP2TzFHsUltPU2UJZbK/gMn7YpVv31KnSceCpkyaz8E6lIY94CkmXMnCMN\n5EyRrkNqb4fc2gK5rdXS0stoGDbYfx4REVHRczlUSMj+d6j3sivgfvBeAIBR7O0vKWs2VYbBfGQi\nIiIiIiIiIqKMFc0Z6dB2O8I3dWuETjsj/aRIgoWmwfnogymnSF1deYguC+ETt/q48UBjk3Wbvf9q\nP1H6+pWEo223PVo+/hINO22dtE3foDG67Lr9ZshtcW1qgkHA4YDr8UcAAHJ7+4BjsNuU/idRYfST\nVOE9/yIYa9bA9c2XSdtsK5ZD8nRDU13QDQNKEbd66/YGUV3ugO2D95K29V5yObTttk+/s9udNNRz\n5TUIHPXbHEaYPz033ALnC88ljY+89m/4ePoRWR1LliRIhgGH1wNXVzucXe1wdLXD2dkOR1cH7J1t\ncHS0wd7ZDntHG+wdbVC7OtJWvOl89qUB/ZuIiIhKiSxJcDuz//NQuMtiy6yEsw6SIIFZOERERERE\nRERERJkqmiQclJVhzYtvoNyVPlElWuVE0yF3dqacY/tqTj6iy1wkeUZJTujIphLO+paEAwDYaOOU\nw6KuDr499obrnbdQftVMyzbJ74NwOGB//10AgP2N1+C98NI8B0pDLiEJp3ffAyzr2uZbouXlNzHy\n8P1h++LzpN1tH30IfbtdoSluKFl0hRtq3b1mEo4oL0/eOID3BGPEyBxENTREVTWCTWNhX7bEMq65\nwslFQkD19sDZ2QZHZwccnW1wdLXD0RlJrmkPj4W3dXZAzqCiWKCiCr7qOgQaxyNQVQt/dS02nPV0\ndLv3rHOhT940l/9UIiKidUtcgrM2cVIBA6F8YCsqIiIiIiIiIiKi7BRPEg4Au9pPhYpwYovk90FU\npS51LsVVQpF6PBDlFTmLr18/zoMcvvpTSpGEA1sWlXC09TAJJ0HHm+9Fl6XK1D9Hye9HsCz2WOmT\nJuc7LCqEhG//ey6bicR3C5dDRfe9D6Fuq+SECbmtFRtusgH8U7eG54138hjo4ISWLoehDIPk8ydt\ns7//btYJZoGDD8tVaEMiVSUaJRjEgcdOh6OrHUoo1O8xQuUVCFXXonuDMQjV1iFUUwettg5aTR20\nunpotfXQ6+qg1zVAr66BbLdDCre2kmWzldWS43+HsUcfBICtqIiIiLJSVtb/HCop5sdwZuIQERER\nERERERFlqqiScGz9JOHYvjSr3FSeeSp8J/8x5Rzni7F2Jsq8eX23b8klrxcN03eIVusRcVeE+o47\nAbaPPrRcJdoffVMzkcB7xtm5jbOE6E1jYiu21OVLHPf8G+p330O4yyB5e9Fz1XVDFB0NJZGQhCNv\nsknKecboRmh/vQzqNVdbxtUfvgMAOL/5Ep78hDhotndmY/tjDgcAdN9jttvzHXcCXE88BgAwho/I\n/qCpkgGLmBQKJg/a7bC7ndAbN4dW3wCjvh6ivgFGfQOMujoY9Q0QDQ0w6uph1NUDDmvFMVv4v6zi\nmDolumzU12f/DyEiIiJaR0iSBLAdFRERERERERERUcaKKglH6qfWtTrvewCA3NIMqbkZAND1+H9R\ndfzR0Tn2d2bHjuftzUOUqdmeNduXSJpmDsSd/O655c6sjycqKrHgl7WorXLlJL5SoY8cBWX1KnNF\njT091R++Tzm//N+3RZdDtXUQVdV5jY8KJIs6+Gq4BZFQVXhuuROVZ5+er6hyyvHma7EVnw8AENpu\nB6gffQjb0sXwXHNjv8fwH3QInLNeBgD0HjwjL3HmU/T9M6zriWcQ3Hu/IY9DuGNX8RvDhg/5/RMR\nEZWa9g/nQNeNQodBeSDF/Z+IiIiIiIiIiIj6l3lpliIgXO7osvuh+wAA2sRNENhzn5TzpUBgSOKy\nv/4/VF94rnVQHnwFCimLyjnriq7nX0Fg4mS0n3MBRGWs5Zg6f150uWP2BwhutnnSvlrj2KEIkQoi\n9sW/6O91EXnd2+2xZAp/cnunYiPiWi0pn31qLrhc6PxiLprXdkEM7z8ZpPdvV8JwOOE590J47n84\nX6HmjaSZj0H3b36L1gVLCpKAAwCwxypv6ePGFyYGIiKiEqJP3ASYzLaw6yJJkrLJhyciIiIiIiIi\nIlrvFVUlnP4IpzN5rLoa3U/9H/Q33sSI439j3RgcmiScqhOOSR7MQRsYWV7/vu3UJ2yE1W99CLsq\np20ho22+JYz6hqRxwbYx6674b/77e20FzZZGwm6HKDMT9+zvvJ2vyHLG6OqOLpf99wkAgHCY73n9\nVQmLHmPceCz9eSXKXTaUViOqsFC4Ek5lJURNbWFjCROVlYUOgYiIiKigMv0sSkRERERERERERCVW\nCQdqclpGpP2QUhU7Uao3NgEApAJWvxC5SMJZT7/rdDtU2FTr49f10H8s65LTkbxjmTt5jNYN8V/8\n91cJJ9LSyGYHwtWzlDWrYtuFyHFwgyQE5LfeQPnLzydvcqR4nvfD5SjJ9BsAsUo4aqrXd4HEV2Aj\nIiIiIiIiIiIiIiIiIupLaSXhJJx8D245LXpyXt5gVHQ8cMgMAIBYtmzoYkukDP6hXV+vOEz17w5t\nv6N1QEku4iTKyvMVEhVa3HOi3zZzl1wC/+Qp6Hr4CQh3igQKw8hxcIOjfPIR6o47MuU2ee2a7I9X\nwm3sRCTRMhQsbCDx4lpTERERERERERERERERERH1paTO1gZ33tWy3nvdjdFlo7EJPaefBe8RRyG0\n1TQAQNUNVwOhUH6D8nohwgkCRm1c+xRp8A+tvJ4m4aQi6uux+uGn0Pb5t+a6LUUntZrqIY6Khkw2\nr4WxY7H6tfegbbsd9DFjkzbLH7yfu7gGSVq1ErUzDky7PbTDTkMYTeH5zvozACC45z4FjiQO34eJ\niIiIiIiIiIiIiIiIKEMllYTTe9nfLevaVltb1n1XXoPeux8A7LFWJpLPm9eYJI8HkhDwH3gwPDfe\nGtuQi3ZUJfXTyT99n/1gjBtvrqSqhLPB6CGOiIZMli2k3E7z+SGqa5K21R19WKxlVYHVbznJsi4k\nCe3Pz4quGymSiNZl3vMuwo9vf4nQHnsVOhS0zf0J7R9/WegwiIiIiIiIiIiIiIiIiKiEpCgnUsSc\nzszmBfyxZZ8fqKzKTzwApGC4NY67DIhrfSNykISzvrajSseuxmUlqclPXX3EyCGMhoaUrmc1vb8q\nUlJXF0Rd3WAiGjR5zeqkMe95F0HfcecCRFMkJAlSY2OhowAAGCNH9T+JiIiIiIiIiIiIiIiIiChO\nydZa8e+zX9ptUiAQW85zJRzXg/cBAITNBuGKJeHkpBIOk3As4pOSvOeeH10ObTLZvE1oV0brDsnI\nLgmn3+N1d+X0eANRt/nEpDHJ7wdkGe2vzkbrS68XIKrCq692FToEIiIiIiIiIiIiIiIiIqIBKa1K\nOPGcmZ2olfz+/icNgvuu2wEAti/nwH/iybENci4q4Qz6EOssfcJGaF2wBNq770GZMQM9vhDK3fZC\nh0X5YhjRxa4HHh304WRPN4z+pw0J37HHQ+7qguPVl6FP2BAAoG+zbYGjIiIiIiIiIiIiIiIiIiKi\nbGVUCWfu3Lk4/vjjk8bfeecdHHHEETj66KPxzDPPAABCoRDOP/98HHPMMTj22GOxcOHC3EYc4XCk\n3RQ48JDocr4r4USoPy+AcJfFBpTBFxmSZWbh9EXU1AKHHQZIEtwuW6HDoXyKa0cVPGRGVruGtppm\n7jdhI3jPPAcAIHV35y62QZL8fnTfeS+673sY/uNOKHQ4REREREREREREREREREQ0QP1mitx///24\n/PLLEYhr8QSYyTbXXnstHnroITz++OP473//i9bWVrz//vvQNA1PP/00/vSnP+HWW2/NS+B6Y2P6\njW43es+7CAAg+Xx5uf9UhCuuOo+cgyQclsLplxJ+nPlYreP0gbejChxxlHl7xlkwRowAAEgd7ZBX\nrshJaIOm60BZGQKHHcHyV0REREREREREREREREREJazfTJGmpibccccdSeMLFy5EU1MTqqqqYLfb\nMW3aNHzxxRcYN24cdF2HYRjo6emBquan45UxbESf24XbbS7485uEI5xOAEDnsy9ZKuEIZfDtqIgo\nTJjNo8QAktt8p5yOJe9/Cf/xJ8IYOQoAUHXyCaibOhnKl1/kNMyB0MeNL3QIRERERERERERERERE\nRESUA/1myOy7775YsSK5YkRPT8//t3fn0VHV9//HX3eW7CEL2VkjS2QH/QFiBDGlWixQtiJ1Vywq\nVVtFRFy+pR61li/8vl8UBKz+oLYKqNEqhUIBBalEZRNZo+xhkQYIWQhJJjP390dgDBAgySRMJvf5\nOIeTe+/c3Pu+c05eZ+7cN5+PIiMjvevh4eEqKipSWFiYDh06pIEDByovL0+zZ8+uViExMWFyOKrf\nuBKZGKvI+MiL7xAXLUmKdkq61H61UFJarpDgM29dly7ybNmq6JFDpEqj7oRFhCqsjs8LWNaZvzfD\nbld8Nf6uzt8nNLKrIkKdUp//c872E5mf6EB8WzkddgU5bHI67Qp22uV02Cp+Om0KclRet8teF9PE\n3XOPdzH8lRcVfonp9QDgUqqTiQDQGJB3AKyCvANgJWQeAKsg7wBYBXlXodbD1EREROjUqVPe9VOn\nTikyMlLz5s3TDTfcoPHjx+vIkSO65557tGjRIgVf5iFzXl5xtc4bf+ZnvtumstzCi+4X4rYpUlLB\nD8dVeon9auOHE8VKiq0YaSemuESGw6Hc3ELJNL31FZe6daqOzwtYVXjhaYWpYoSpY5f5u4qPj6z4\ne6ykzOXW6SK71CRBcYYhwzQlSSkfL5Bz3x65wiPlCouQKyxCpWHhKgqLkCs8QuVnfp59rTwsQkZI\nsJyOH5tznHZbxc8z/7zbz/xz2M8dvce+Z5di337bu55bUCaprE7eJwDWUlXeAUBjRN4BsAryDoCV\nkHkArIK8A2AVVsu7SzUc1boJp02bNtq/f79OnjypsLAwrV+/XmPGjNHu3bvldDolSVFRUSovL5fb\n7a7taS4uNPSSL5tnXjdO1+10VI7Nm+Tcvkf61YiKDeUumY6K65VRaYQMpqMC6s7ZDLHV7u/K4TjT\nCBMSIjMsTMaZBsKwY0fVauWimpXidJ5pzomUKyzc25xT0agTrvLwCBWHRcoVXvGaOzxSZmSkFNlE\nimqi9FEZ3mOdvuveWl0PAAAAAAAAAAAAAKDhqXETzqJFi1RcXKzbbrtNTz/9tMaMGSPTNDVixAgl\nJibq3nvv1TPPPKPbb79dLpdLjz/+uMLCwuq8cDP00sc8+7pRUrdNODE/vVExknLPNuG4XFKQ88Lz\nnzf6BQAfeCqacMxaNrfZKjXIld5wo0KXLZEkrf7XZqmgQCoskFFYIFthoeynCuUsLpKz+JQcxUVy\nniqqWD9VVLFe6bWIk8flLD51sdNeVnnnrrX+XQAAAAAAAAAAAABAw1KtJpzmzZvrvffekyQNHjzY\nuz0jI0MZGRnn7BseHq7p06fXYYlVMy87Ek6IJClsyss6PXZcnZ/f/l223O3TKppwnBc24cigCQeo\nK2U3D1TYG7N0euzDPh/LVu7yLnfsnnrB6+Vuz5l/plzlHrndHpWcWS93e7zbXGfWy8tcMguLZCuq\naOBxnGnSqWjcKZTj1Jnl4oomnqj9u9R0x2ZJUukvb/P5egAAAAAAAAAAAAAADUOtp6Pyt8uOhBPR\nRJJkKyiol/PH3tBTuXuPyHC55AkOuXAHpqMC6oyrX39t+fcWJbVr6fOxiv5nhhw3patw2qtVvu6w\n2+So5UhWlRt4yt0elZd75HJ7VOo2depMA89h01RayxhfLgEAAAAAAAAAAAAA0AAFbhNOzKUfYnta\ntKj3GkIy36sYCSci4sIXacIB6pTZNE6qNK1UbXmSknVix546qOhCvjTwAAAAAAAAAAAAAAACW8A1\n4RQ9N1n66mt5kpIvuZ8nOaXiZ1BwvdXi2LZF9uPH5E5IuPDFOmgWAPAjg78pAAAAAAAAAAAAAEAD\nFnBNOKcfe0KlZW4FV+OBvKtjJ9lycuqtltC5b0qSHJXOYdpsMjweqbS03s4LWBE9OAAAAAAAAAAA\nAACAhiwg500JDqreVE9mSKiMkpJ6rkayFRX+uBJcMfLOlTgvYCU2unAAAAAAAAAAAAAAAA1YQDbh\nVFtYmGyuMsntvmKnNB1OSZJRShMOUJciQp3+LgEAAAAAAAAAAAAAgItq1E04ZkiIJMk4dqxez+OO\ni/9xuV07SZInPqFezwlYTWhwwM2eBwAAAAAAAAAAAACwkEbdhOPYvk2S1OTRB+v82J7IJt7lk/9a\n5V0umPuOcsc+quLf/LbOzwkAAAAAAAAAAAAAAICGqVE34XhatJQkBa369NL7mWaNj5234nMVPfcH\n5ebkytO8xY/HSk5R8XOTpeDgGh8TAAAAAAAAAAAAAAAAgalRN+EUzPl/kqSy9L6X3M/j9qjM5a7W\nMd0tWqosIUme1Kt0+rHHq2y2CQtx1rxYAAAAAAAAAAAAAAAABKxG3YTjSWkmd1i4dPLkJfeLT79W\nzZrFKHTG9Msf1DSlIJpsAAAAAAAAAAAAAAAA8KNG3YQjSZ7YWAVt2yKVl190H8fePZKkiBeev+g+\nZS63PB5T8nhk2Ox1XicAAAAAAAAAAAAAAAACl8PfBdS7sHBJknHypMy4uFofJuTPs6VWLWWWu2UG\nBdVVdQAAAAAAAAAAAAAAAGgEGn0TjrtrNzm/2ynb8WNy+9CE03TypDqsCgAAAAAAAAAAAAAAAI1J\no5+Oyvn1V5KkJnePrtXvm6YpmWZdlgQAAAAAAAAAAAAAAIBGptGPhGM/sE+S5Ni754LXbD8cUcRD\nY7zrptN5wT6utV8qYvfOeqsPAAAAAAAAAAAAAAAAga/RN+GU9b1RQWtWS5JcZeVyBp25ZNNUk9tH\nyrl1i3dfw+WS3G7Jbq9YLypUs2G3XPGaAQAAAAAAAAAAAAAAEFga/XRUBX+e510Oe2mydzk4871z\nGnDOMvLyVJ57TJJk37atvssDAAAAAAAAAAAAAABAI9Dom3DM2Kbe5ehZr3qXw2a+WtXuatqlnZI7\nXSVJMkpOX/B6wbN/0MFvd9VxlQAAAAAAAAAAAAAAAAhkjb4J5wKmKUlybLtwFBxJMtzuioXSUhkF\nBRe87r7xRqlp0wu2AwAAAAAAAAAAAAAAwLos14RjnMyTq9R1+f0KC2UrvLAJxxMVLafdcm8bAAAA\nAAAAAAAAAAAALsFy3STRwwYppcXlR7Kx79kt25HDF2z3JCTKZjPqozQAAAAAAAAAAAAAAAAEKEs0\n4Zx6+jnvsmP7Vu9y8S0/V/Gjj3vXyzIGeJdtx4/JvnfPOccp7dlbCg+vx0oBAAAAAAAAAAAAAAAQ\niCzRhHP63jFVbnfdNlolQ0d41/MXfKjyxCRJkqe0VEZx8Tn7F87/oP6KBAAAAAAAAAAAAAAAQMCy\nRBOOGdtUp4b98oLt7rbt5W7TVpJU8ovhkqTTTz0jSfKUlEqlJeceJyKynisFAAAAAAAAAAAAAABA\nIHL4u4Arpk2bCzaZwcFSWJhyc3KloKCKbU6nJMnYtFHBy5dJko798k6pVSvJZomeJQAAAAAAAAAA\nAAAAANSQZZpwyntcc8E2T+vUioXg4B83nmnGiZ07x7vp6ItTFRkWpNB6rRAAAAAAAAAAAAAAAACB\nyjJDu5hBweeuh4RIhnHBfo71X1+wzWGI1LYAAByPSURBVOmwK8hpmbcKAAAAAAAAAAAAAAAANWSd\nzpIzI9xIUsFrs3X8mx1V7ua+uuMF22w2Q3amogIAAAAAAAAAAAAAAMBFWKazxKzUhONulSoztmmV\n+5WMvuOCbXbbhSPmAAAAAAAAAAAAAAAAAGdZqAnnx+mobKcKL75jUJBKul/rXS38v6+JHhwAAAAA\nAAAAAAAAAABcimWacBT8YxNO5Yacqhx9+z3vcskdd8tGFw4AAAAAAAAAAAAAAAAuweHvAq6UytNR\nuW7od8l9jagoFQ74mcpu6CcZBtNRAQAAAAAAAAAAAAAA4JIs04SjSk04Mi7dVOMMcujYW+8o2GmX\nU5Jxmf0BAAAAAAAAAAAAAABgbZZpwrncFFSVOew2hQUb3mmoGAkHAAAAAAAAAAAAAAAAl2LzdwFX\nTHDQ5fepxFap8YaRcAAAAAAAAAAAAAAAAHAplmnCqclIOAAAAAAAAAAAAAAAAEBNWGY6KgUH6/gr\n/yOzQwd/VwIAAAAAAAAAAAAAAIBGxjpNOJLK7rlPNpthneF/AAAAAAAAAAAAAAAAcEVYqgnHYaf9\nBgAAAAAAAAAAAAAAAHWPrhQAAAAAAAAAAAAAAADARzThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAAB8RBMOAAAAAAAAAAAAAAAA4COa\ncAAAAAAAAAAAAAAAAAAf0YQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAAAAAA\nAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj2jCAQAAAAAAAAAAAAAAAHxE\nEw4AAAAAAAAAAAAAAADgI5pwAAAAAAAAAAAAAAAAAB/RhAMAAAAAAAAAAAAAAAD4iCYcAAAAAAAA\nAAAAAAAAwEc04QAAAAAAAAAAAAAAAAA+ogkHAAAAAAAAAAAAAAAA8BFNOAAAAAAAAAAAAAAAAICP\naMIBAAAAAAAAAAAAAAAAfGSYpmn6uwgAAAAAAAAAAAAAAAAgkDESDgAAAAAAAAAAAAAAAOAjmnAA\nAAAAAAAAAAAAAAAAH9GEAwAAAAAAAAAAAAAAAPiIJhwAAAAAAAAAAAAAAADARzThAAAAAAAAAAAA\nAAAAAD6iCQcAAAAAAAAAAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAMBFud1u\nf5cQEGjCARBw1q5dq927d/u7DACod+QdgMbONE1J0hdffKG8vDw/VwMA9e+tt95SZmamv8sAgHpH\n3gGwiqVLl+qbb77xdxkAUO9mzpypSZMmSfrxOz1UjSYcAAHj22+/1ejRo5WZmakJEyZo48aN/i4J\nAOoFeQfAKgzD0P79+zVx4kRt2LBBLpfL3yUBQL3IysrS/fffrxMnTqhv377+LgcA6g15B8Aqdu/e\nreHDh2vdunVatmyZ8vPz/V0SANSLlStX6tFHH9VXX30ll8sl0zRlGIa/y2rQaMIBEDA++eQTDRs2\nTNOmTdOQIUP0zjvv+LskAKgXn3zyiYYPH07eAbCEXbt2KS4uTt9++62OHj3q73IAoF789a9/1eDB\ngzV+/HitWbNG//73v/1dEgDUi7fffltDhgwh7wA0ellZWbrrrrv0/PPPKyYmRvv37/d3SQBQ5zZs\n2KAlS5bo/vvv19ixY5WcnCzDMOTxePxdWoNmnzx58mR/FwEAVSkuLtZf/vIXFRYWKjQ0VHl5eUpJ\nSVHr1q21a9cuSVLv3r0liY5LAAHLNE25XC5t2rRJERERCg4O1s6dO5WamqpWrVqRdwAaleLiYq1c\nuVKSFBsbK0nauXOnunXrpiNHjqiwsFAFBQVKSkqS3W73Z6kA4JPi4mLNmzdPRUVFat26tUJDQ/Wn\nP/1J69atU3x8vObOnSu32622bdvK6XT6u1wAqJXK97Ph4eEKCQmRx+PR//7v/+rrr78m7wA0Kmfv\nZz0ej5o2barNmzdr/fr1WrRokVq0aKHXX39dhmGoffv23M8CCGhn72ddLpeSk5P1y1/+UsnJycrP\nz9fatWt144038rnuMmjCAdAgbdiwQb/73e8UGRmpnJwc7d27VyNHjlRaWpokacGCBerevbvat2/P\nA2kAAc0wDK1fv17Tpk1Tt27dlJiYqC5duuiqq66SRN4BaDw2bdqkhx56SDabTUuXLlVoaKhSU1O1\ndu1aXXPNNdq/f7/mzJmjiIgI9evXz9/lAkCtnb2fbdKkiQ4cOKCtW7fq1ltv1Z49ezR69GgNGjRI\naWlpWrBggX72s58pKCjI3yUDQK1Uvp/t0qWLkpKS1K5dO23btk233347eQeg0ajqftY0TeXk5Kh3\n796666671KZNG/3tb3/ToEGDeDgNIGBVfj67d+9e5eTkqGvXrnI4HPrmm2904sQJZWRkyOPx8Lzi\nEhz+LgAAqvLFF1/o0UcfVUZGhj777DN9+eWXioqKkiSdPn1a+fn5ysjI0JdffqnDhw9r2LBhhD2A\ngFRWVqbMzEzl5eUpKytLSUlJio+Pl0TeAWhcduzYoUceeUS33nqrVqxYoc2bN6uoqEiFhYWaOHGi\n0tLS9NOf/lTNmzdXYWGhIiMj/V0yANTK+fezWVlZioiI0COPPKLExERJUo8ePRQcHKyjR48qIiLC\nzxUDQO1Uvp/96quvlJKSovj4eD3++OPe+1ryDkBjUPl+9l//+pe+//572Ww2xcbGau/evZKkXr16\nKTg4WPv379fVV1/t54oBoHaqej4bHBwsSerTp49mzJihH374QUlJSTJNk2cVF0ETDoAGyTAMhYSE\nSJJCQkK0a9cueTwe2Ww2ff755zpy5Ij++7//W3v27NHYsWMJeQAB4WIfSocOHaq7775b7777rrKz\nsxUbGyu73a7Vq1eTdwAajZycHG3evFm33nqr+vTpo4KCAh05ckQul0vPPvusrr32WmVnZ+vvf/+7\nXC6Xv8sFgFo7/3529+7d8ng8io+P17x581RQUKCTJ08qPDxcKSkpfq4WAHxT1f1sQkKC5s6dq8LC\nQuXl5ZF3AAJe5fvZ9PR0FRUV6fDhw+revbtWrlyp//qv/9KpU6cUGhqqZs2a+btcAKixs88uLvZ8\n1jRNNWnSRBkZGfr444/14IMP8qziEmz+LgCAtZ2dO/osj8cjSXr00Ud1/fXXS5JWrVql/v37y2ar\niKzTp0/r8OHDuvrqqzV37lz16dPnyhcOADXkdruVn5/vXT/7wTUoKEhpaWnq3Lmz2rdvr6ysLB06\ndEhSxdyrhw4dIu8ABBSPx6OSkpJz1iVp7Nix2rt3r7Zv367w8HC1atVKubm5uvPOO3XttddKktLS\n0jRx4kTFxsb6pXYAqInz887tdku6+P2sYRhKT0+X3W5Xp06dNHXqVIWGhvqldgCoCbfbrdzcXEk/\nfra72P3sf/7zHzkcDl133XWy2Wzq3LkzeQcgYLhcLmVlZamoqEhSRdZJF97Ptm7dWrm5uerZs6cm\nTJigzp07q3fv3nrttdcY1RVAQDg/78662P2s3W6XJHXt2lVdu3a94vUGGvvkyZMn+7sIANZjmqZO\nnjypKVOmKCEhQQkJCd7XKndOFhcXa82aNRozZoyWL1+uFStWqH379ho/fry6d+/uj9IBoMY++OAD\nTZ061Tv1Sps2beRwOLx5FxYWJklKTU3VihUrZJqmOnTooLCwMD344IPq0aOHP8sHgGpbsGCBZs6c\nqS1btig1NVVRUVHerAsNDVVZWZkWLFigIUOGKCUlRe+++65uuOEGNWnSxM+VA0DNVJV3Z//jyFnn\n38/+85//1C233KK+ffuqS5cufqocAGrm9OnTmjJlir788kvddNNNMgzDO1q1dOH9rNvtVqtWrdSi\nRQtdd9115B2AgPH+++9rypQpioiI0DXXXCO73e4dGeL8+9nk5GTNnz9f6enpatasmTp16qROnTr5\n+xIAoFqqyjvp4s9nV6xYoUWLFqljx47q0KGDWrRo4a/SAwYj4QC4os52jhuGoYMHD+qf//yn1q1b\n5x0dwjAMbdy4UU888YQOHjyoXbt2ae3atXryySe9X1j27t1b4eHh/rwMALiss3m3Y8cOrVy5Ui+8\n8IJ+8pOfaNu2bTp+/LgkefMuJydHpmkqKipKvXr10smTJ+VyudS6dWtFRET48zIA4LLO5t3333+v\nTz/9VJMmTZJpmlq4cKF3nw0bNmj8+PEaOHCgTp06palTp+quu+5SUlKSoqOj/VU6ANRIdfLuYvez\nS5cu1eDBg73DegNAQ3Y27yTJbrfr4MGDOnjwoD799FNJks1mu+j9bH5+vhwOhyQxRQGABs80TZmm\nqdWrV+u9997Tyy+/rFGjRnm/u7PZbFq/fn2V97PJycmKiYnx8xUAQPVcLu8Mw9D69esv+nx28ODB\nioqK8vNVBA6HvwsAYB15eXkKCgryNtBs2LBBP//5z7Vnzx5lZ2erV69eWr9+vRYsWKD+/furefPm\n2rdvn/Ly8nTnnXcqPT3dz1cAANVTOe/WrFmjVq1aqWXLlrLZbHrzzTcVHR2tjRs3av78+crIyDin\nc3zo0KF+rBwAaqZy3q1du1Zt27ZVq1atdP3112v+/PnKzc3Vjh07tGLFCl1//fWKjY3VjBkzdODA\nAXXv3l0DBgzw9yUAQLXUJO/69evH/SyAgHX+93dHjhxRVFSUhg4dqiVLlqhbt27avn27li5dqptu\nuon7WQABKy8vT06nUxEREYqMjFTPnj01f/58bd26VTExMWrXrp1SU1P19ddfKz09nftZAAGrJnnH\n/WzdMMzKbe0AUE/mzZunxYsX65prrlF8fLweeOABfffdd2rfvr1mzZql0tJS3XPPPQoLC1NwcLC/\nywWAWjubd927d1dqaqpuv/12HT9+XE2bNtWuXbs0a9YsTZs2TSUlJfxPaAABrXLetW7dWnfccYd3\nytGnnnpKUVFRio6OVmxsrMaNG+fvcgGg1sg7AFZR+fu7uLg4/frXv9bhw4f1xRdf6MYbb9TDDz+s\niIgIPfXUU+rYsSMj3QAIWGfzrkePHmrWrJnuuecePfzww2rbtq3Gjx+v7OxsffbZZ7LZbBo7dqy/\nywWAWiPv/IORcADUu3379mnNmjWaNWuWXC6XnnnmGcXExGjEiBGSpGHDhmn69OnauHGj+vbtK0ly\nu93eOQgBIFBUlXcOh0OjRo2SaZpasmSJd37onTt3qmXLloqNjfVz1QBQc1Xlnd1u1+jRoxUTE6MZ\nM2YoODhY8+fP905n4HK55HQ6/Vw5ANQMeQfAKs7Pu2effVZJSUmKi4tTZmamPvvsMyUmJsowDDVr\n1kyGYai8vNw79RQABIrz827ixIlKSUnRhAkTVFxcLElKS0vTqlWrlJycLInPdwACE3nnPzZ/FwCg\n8Tt+/Ljat2+vkJAQJScn65FHHtHs2bNVXl4uSUpKSlLXrl21YsUKHTt2TJJowAEQkKrKuz//+c8q\nLy+XYRj6z3/+o+joaE2aNEmZmZnyeDz+LhkAaqWqvHvrrbdUXl6unJwc7dq1SwcPHtTq1au9o35x\nAw8gEJF3AKzi/LwbN26cZsyYobKyMnXs2FEPPfSQXn31VV111VVasmSJJNGAAyAgnZ93jz32mKZO\nnapWrVrJ6XQqKytLP/zwg7799luFhoZK4vMdgMBE3vmPffLkyZP9XQSAxuPsg2bDMOTxeGQYhoqL\ni7Vs2TJ169ZN0dHRSklJ0bZt23T06FF169ZNUkWnZXx8vNq3b+/nKwCA6qlJ3h0/flxJSUmaMGGC\nXC6XBgwYoIceekhhYWH+vgwAuKya5F1xcbGCgoL0t7/9Te+//75GjBihoUOH+vsSAKBayDsAVlGd\nvGvWrJmys7NVUlKiJ598UomJiZIqvsPr3bu3n68AAKqnunm3detWFRcXy263a/78+frggw80bNgw\nDRw40N+XAADVQt41LDThAKgzs2fP1uLFiyVJqamp3pBv2rSptm/frr1796pdu3YKDQ1VQUGBwsPD\nlZaWJo/HI4fD4R3qDAAauprmXWhoqK655hqFhobq2WefVYcOHfx8BQBQPTXJu/z8fDmdTvXv3199\n+/bVqFGjdPXVV/v5CgCgesg7AFZRk7zLy8tTTEyM0tLSVF5eLrvdzn8mARAwavr5zuFwaMCAAbrl\nlls0cuRIPt8BCBjkXcPDdFQAfFZWVqYXX3xR+fn5uu+++1RWViapYkopwzC0detWtW7dWocOHdL8\n+fO1ePFiLViwQE2aNJEk2WxEEYDAUJu8mz9/viIjIyVJY8aMYbhuAAGhNnm3cOFC7+e7kJAQPuMB\nCAjkHQCr8PX7O+5lAQQKXz/f2Ww2Pt8BCAjkXcPFJ2cAPrPb7d7pVd5991253W7t379fv/71r/Xy\nyy9rx44dmjJlinr37q1Nmzbp008/1RNPPKE+ffr4u3QAqJHa5N348ePJOwABh893AKyCvANgFeQd\nAKsg7wBYBXnXcBmmaZr+LgJA4FmwYIEMw9Btt92mw4cPa/bs2UpJSVFCQoL69eunxx9/XD179tSd\nd96p2NhYf5cLALVG3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CA+MLAaiVdevWac6cOTp9+rRSUlIU\nHh6u5cuXq127doqLi9Pvf/97rVq1yjukmdvt9nPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvIu\nMNCEA6BacnNzvcvff/+9IiIilJqaqqlTp0qSRo8erfj4eGVnZ8vtduvQoUO67rrrvPNF2+12v9QN\nADVF3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CE9NRAbikH374Qa+99pqOHz+ujIwMpaenq0mTJsrN\nzVViYqKGDBmiOXPmqG3btlqxYoWysrK0b98+nT59WuPGjdMNN9zg70sAgGoh7wBYBXkHwCrIOwBW\nQd4BsAryDoBVkHeBjSYcAJf0+uuvy+Vyafjw4fr444+Vl5enJ554QuHh4ZKkGTNmaMeOHZo5c6ZM\n05RhGNq8ebO6devm58oBoGbIOwBWQd4BsAryDoBVkHcArIK8A2AV5F1gs0+ePHmyv4sA0LBkZmbq\nL3/5i7Kzs3Xw4EHdfffdatGihRITE7Vz504dOHBA3bt3lyT16tVLr7zyilq2bKk2bdpIkpKSkvxZ\nPgBUG3kHwCrIOwBWQd4BsAryDoBVkHcArIK8azxowgFwjqlTp2rLli26//77tWzZMi1evFhBQUFK\nT09XaGio7Ha7tm3bpi5duigkJESS1KFDBzVv3lyxsbF+rh4Aqo+8A2AV5B0AqyDvAFgFeQfAKsg7\nAFZB3jUuDn8XAKBhKSws1G233aZOnTrpjjvuUEJCgv7xj39o0KBB6tChg5o2barS0lKFhYV5hzfr\n06ePv8sGgBoj7wBYBXkHwCrIOwBWQd4BsAryDoBVkHeNi83fBQBoODwej26++WZ17dpVkrRkyRL1\n69dP48aN00svvaS9e/dq7dq1OnnypDwejwzD8HPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvKu\n8TFM0zT9XQSAhqeoqEj33nuvZs2apfj4eM2aNUv5+fk6duyYJk6cqPj4eH+XCAB1grwDYBXkHQCr\nIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSkePHtX111+vwsJCvfjii2rXrp3Gjx8vp9Pp79IAoE6RdwCs\ngrwDYBXkHQCrIO8AWAV5B8AqyLvGgSYcAFVat26d3njjDW3btk2/+MUvNGTIEH+XBAD1grwDYBXk\nHQCrIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSpmZmcrNzdX999+voKAgf5cDAPWGvANgFeQdAKsg7wBY\nBXkHwCrIOwBWQd41DjThAKiSaZoyDMPfZQBAvSPvAFgFeQfAKsg7AFZB3gGwCvIOgFWQd40DTTgA\nAAAAAAAAAAAAAACAj2z+LgAAAAAAAAAAAAAAAAAIdDThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAPCzp59+Wh9++OFFX580aZIOHTpU4+Pm5OTo\nmWee8aU0AAAAAAAAVBNNOAAAAAAAAA3cV199JdM0a/x7hw8fVk5OTj1UBAAAAAAAgPMZZm2+wQEA\nAAAAAECtmaapV155RatWrVJCQoLcbrdGjhyp/fv3KysrS/n5+YqJidFrr72mjz76SK+++qpatmyp\nd955Rzk5OfrjH/+okpISxcTE6A9/+INatGihuXPn6qOPPpLNZlPXrl31wgsvaPDgwTp48KCGDh2q\nZ599VpMnT9b333+vY8eOKTU1VTNmzNCxY8f0m9/8Ri1atNB3332nzp07q1evXvroo4+Un5+vmTNn\nqk2bNsrIyFBGRobWr18vSXr55ZfVsWNHP7+TAAAAAAAADQcj4QAAAAAAAFxhy5Yt0/bt2/WPf/xD\n06dP14EDB+R2u7Vnzx4tWLBAy5YtU8uWLbVo0SKNHTtWCQkJeuONNxQeHq7nnntO06ZN00cffaT7\n7rtPzz//vMrLyzVnzhxlZmbqww8/lGEYOnr0qJ577jl17txZv//977Vp0yY5nU4tXLhQy5cvV2lp\nqVavXi1Jys7O1rhx47R06VJt2bJFhw4d0sKFCzVo0CAtXLjQW3d0dLT+/ve/67HHHtPEiRP99fYB\nAAAAAAA0SA5/FwAAAAAAAGA1X3/9tW6++WY5nU7FxsaqX79+stvtmjhxot5//33t3btX33zzjVq2\nbHnO7+3bt085OTl6+OGHvduKiorkcDjUo0cPjRw5Uj/5yU90xx13KDExUfv27fPu17NnT0VHR+ud\nd97Rnj17tG/fPhUXF0uS4uLivKPaJCUlqU+fPpKklJQUHTx40HuMUaNGSZIyMjL09NNP68SJE4qN\nja2X9wgAAAAAACDQ0IQDAAAAAABwhRmGIY/H4113OBw6efKkxowZo3vvvVe33HKLbDabzp9F3OPx\nqHnz5vr4448lSW63W8eOHZMkvf766/rmm2/0+eef64EHHtDUqVPP+d2VK1fq1Vdf1d13363hw4cr\nLy/Pe/ygoKBz9rXb7VXW7XD8+FWSx+O56H4AAAAAAABWxHRUAAAAAAAAV1ifPn20dOlSlZWVKT8/\nX2vWrJFhGOrVq5d+9atfqW3btvriiy/kdrslVTTFuN1uXXXVVcrPz9f69eslSZmZmXryySd14sQJ\nDRw4UO3bt9dvf/tbpaenKzs7W3a7XeXl5ZKkrKwsDRw4UCNGjFBcXJzWrVvnPX51LV68WJK0fPly\ntWnTRlFRUXX4rgAAAAAAAAQ2RsIBAAAAAAC4wgYMGKAtW7Zo0KBBiouLU5s2bVRSUqKdO3dq8ODB\ncjqdSktL804F1b9/f40dO1Zvvvmmpk+frpdeekmlpaWKiIjQn/70J8XGxmr06NEaOXKkQkNDlZyc\nrGHDhsnlcqmwsFATJkzQAw88oCeffFJLly5VUFCQunfvfs5UU9WxceNGffDBBwoNDdUrr7xSH28N\nAAAAAABAwDLM88c1BgAAAAAAAM6TkZGht99+W82bN/d3KQAAAAAAAA0S01EBAAAAAAAAAAAAAAAA\nPmIkHAAAAAAAAAAAAAAAAMBHjIQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAA\nAAAAAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj/4/LMZTXjsASL8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7Jj0hPaEEQq/SRJCiqFRxVURhkaUpoivq\nYt/VRVkLYP8hFlR0RV1BUWysKIoFQfALCEiTToCQQHoyaZNM//2RzZiQnkxIAu/Xde2VM+ec5/N8\nzhAhO9w8j8HlcrkEAAAAAAAAAAAAAAAAwKOMDd0AAAAAAAAAAAAAAAAAcC4imAMAAAAAAAAAAAAA\nAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMAAAAAAAAAAAAAAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMA\nAAAAAAAAAAAAAADUA++GbgAAAAAAAAC1M2LECJ06dUoDBw7UsmXL6mWOvXv36vXXX9eePXuUnZ2t\n8PBwDR48WPfee69GjhwpSZo0aZLmzZtXL/NXx8GDB9W9e/daj3e5XPrxxx/13//+V3v37lVGRoa8\nvb0VExOjIUOGaPr06WrXrl2VNVavXq3PPvtMBw4ckNlsVvPmzdW/f39Nnz5dffr0qbKPzMxMvffe\ne1q3bp0SEhLk5eWlNm3a6Morr9S0adMUFhZW62cEAAAAAAANg2AOAAAAAAAAyrVv3z5NnTpVFovF\nfS41NVXe3o3jI6X4+HjNnz9fFoul1sGknJwc3X///dq0aVOp81arVUePHtXRo0f10Ucfac6cOZo6\ndWq5NQoLC3Xvvfdq/fr1pc6fOnVKp06d0ldffaX77rtPs2bNqrCPvXv3atasWcrIyCh1/tChQzp0\n6JA++eQTvf766+rZs2etnhMAAAAAADSMxvEpCgAAAAAAABqdt99+2x3KmTJliq6++moZDAZFREQ0\ncGdFbr31ViUkJGjgwIG1Gu9yuXT33Xdry5YtkqRevXpp6tSp6tSpkwoLC7V582a9//77ys/P17x5\n89SsWTONGzeuTJ25c+e6QzlDhgzRtGnTFBUVpX379unNN99USkqKXnzxRbVo0ULXX399mfGpqam6\n/fbblZmZKR8fH82YMUNXXHGFHA6HvvvuO61YsULJycm644479MUXXygqKqpWzwsAAAAAAM4+gjkA\nAAAAAAAo19GjRyVJLVq00GOPPSaDwVDq+qFDhxqiLTen01mn8WvWrHGHcq666iotXLiw1GpAgwYN\n0rXXXqspU6YoOztbTz/9tEaOHKlmzZq579myZYtWr17trvHSSy+536cLL7xQY8aM0aRJk5SYmKjn\nn39eo0ePVlBQUKk+Fi5cqMzMTEnS4sWLNWzYMPe1wYMHa8CAAXrggQeUmpqqxYsX64knnqjTcwMA\nAAAAgLPH2NANAAAAAAAAoHEym82SpNatW5cJ5ZwLPvvsM0mSv7+/nnjiiXK36OrcubPuvPNOSZLJ\nZNKGDRtKXX/vvfckSX5+fnrkkUfKvE9RUVF69NFHJUkZGRlatWpVqetpaWn66quvJEnDhw8vFcop\ndvXVV2v06NGSpE8//VTZ2dk1fFIAAAAAANBQCOYAAAAAAACgXC6XS5LKDaw0dS6XS7/99psk6aKL\nLlJ4eHiF915yySXu44MHD7qPzWazNm3aJKloC6sWLVqUO37EiBGKjIyUJH377belrv3000+y2+2S\nVO42V8X+/Oc/S5JsNpt+/PHHCu8DAAAAAACNy7n3qQoAAAAAAKgX06dP16+//lqjMeVtdZSRkaEV\nK1Zow4YNOnHihAoKChQREaE+ffpo7NixuvLKK6tcneXIkSP64IMPtHXrViUnJ8vlcql58+a6+OKL\nNXnyZPXq1avcca+++qoWL16ssLAwbd26VYmJiXrnnXe0YcMGpaamKiwsTP369dNf//pX9e7dW5KU\nn5+vd999V2vXrlVCQoKMRqN69OihqVOn6uqrr660z127dunjjz/Wtm3blJqaKm9vb7Vu3VpDhw7V\n9OnTFRMTU+n4tLQ0LVu2TOvXr1dCQoJ8fX3Vu3dvzZgxQ0OHDq10bG1t3bpVN910U6lzv/76q7p1\n6yZJGjhwoJYtW6bExESNHDlSkjRp0iTNmzfPff/nn3+uOXPmSJK2bdumH3/8UW+++aYSExMVFham\nXr166eWXX5afn58kafPmzfr000+1c+dOpaamysfHR9HR0erfv7+uv/56DRo0qFQ/Z34vluxv9uzZ\nuvvuu6t8TqvVqrvuukspKSnq2LFjpfcWB5QkyWKxuI/37t0rm83mfl8qM2DAAK1du1Y7d+6U1WqV\nr6+vJLnDQVXV6N+/vwwGg1wul7Zs2aLx48dXOh8AAAAAAGgcCOYAAAAAAIB64eXlVebcmjVr9Nhj\njyk3N7fU+ZSUFH3//ff6/vvvdfHFF+uVV15RREREmfEul0sLFy7U0qVL5XQ6S12Lj49XfHy8Pvvs\nM02dOlVz5sypdKWXjRs36r777lNeXp77XGpqqtauXauffvpJS5YsUWxsrG677TbFx8eXGrt9+3Zt\n375dR48e1T333FOmtt1u14IFC7RixYpS5y0Wiw4fPqzDhw9r+fLlmjt3riZNmlRuf7/88ovuvvtu\n5efnu8+ZzWZt3LhRGzdu1B133FHhszUmH330kRYuXOh+nZaWpvz8fHcoZ968efrggw9KjbHZbO5f\nz88//1zXXXednnnmGY+u3OPn56fbb7+9WveWDAGVDFPFxcW5j9u1a1dpjdjYWEl/PFuXLl1K1QgJ\nCSn3e75Ys2bNFBERoYyMjFLzAgAAAACAxo1gDgAAAAAAqJYFCxbIbDZXeN3lcumxxx7T3r17JUkP\nPfRQqevfffedHnzwQTmdTvn4+GjixIkaMWKEQkJCdOzYMX344Yfas2ePtm3bpptuukkff/yxgoKC\nStV4+umn9f7770uSwsPDNWPGDPXv319Go1F79uzRO++8o9TUVC1fvlz5+fl69tlny+3VbDbr3nvv\nld1u12233abLLrtMFotFX3zxhb755htZrVY9+eSTMhgMSkxM1JQpUzRq1CgFBATol19+0Ztvvimb\nzaY33nhDN9xwgzt0UWzu3Ln64osvJBWtdHLjjTeqQ4cOslgs2rlzp5YtW6a0tDQ99thj8vX11Q03\n3FBq/P79+zVr1izZbDb5+PhoypQpGjFihHx8fPTrr79q6dKlWrJkiYxGz+9S3qtXL61atUqS9Ne/\n/lVpaWnq2bOnnnrqKUlSYGBgjeotWrRIrVq10n333afY2Fjt3r1bHTp0kCStWrXKHcoZOHCg/vKX\nvyg2NlYWi0UHDx7UO++8o9OnT+vLL79Unz59NH36dEl/fC+W119UVJRH3odiFotF//nPf9yvL7vs\nMvdxSkqK+7iq1Y9atWpValxxMKe4RsnrFWnZsqUyMjJKzQsAAAAAABo3gjkAAAAAAKBaqloRZNGi\nRe5Qzvjx4zVjxgz3tby8PP3rX/+S0+lUQECA3n77bQ0YMMB9vW/fvho3bpz+9a9/6dNPP9WRI0e0\naNEizZ07133Pjh073KGcDh066P3331fz5s3d1/v3768bbrhBM2fO1L59+/TFF19oxIgRuvLKK8v0\narVaZbPZ9O6772rIkCHu81dccYVOnTqlPXv2uFfJWbRoUaktqy666CKFh4dr/vz5cjqdWrdunW6+\n+Wb39R9++MEdypk1a5YeeOCBUnMPHDhQEydO1PTp03X06FHNmzdPw4YNU3h4uPueefPmyWazyWg0\n6o033igVBunfv7/GjBmjKVOmKCsrq7JfkloJCgpSjx49JMm93VLJczVlMBi0dOlSderUSVJR/8U+\n++wzSVLnzp21dOlS93ySdPHFF2v06NG67rrrlJ2drZUrV7qDOcXfi57oryrPPfecEhMTJUmXX365\n+zkkKTs72318ZojsTAEBAe7jnJycMjWqGi/9EYo6c8UpAAAAAADQeHn+n1UBAAAAAIDzzqpVq7Rk\nyRJJUr9+/fTkk0+Wuv7pp5/KZDJJku6+++5SoZxiRqNRjz/+uNq3by9JWrlypXuMJC1dutR9/Pzz\nz5cK5RQLCwvTSy+95N5G69///neFPY8ePbpUKKdYySDPwIEDS4Vyio0cOdJ9fPLkyVLX3n77bUlS\nly5ddP/995c7d0REhB5//HFJRav3fPLJJ+5rhw8f1s6dOyVJEyZMKBXKKdaxY0f94x//qPDZGpOB\nAweWCrOUlJ6eLqlotZmSoZxiLVu21D333KPbbrtN06ZNk8vlqtdez/Tee++5V/QJDAzUnDlzSl23\nWq3u4+KtuSri7+9f7rji46rGl7yn5HgAAAAAANC4EcwBAAAAAAB1sm3bNvfKNjExMXrttdfKhCw2\nbdokSfLy8tLEiRMrrOXr6+u+brFY9Ouvv0qS7Ha7tmzZIknq2bOn+vTpU2GNtm3baujQoZKkvXv3\nVriqTHmhHElq0aKF+3jw4MHl3hMZGek+Lrm9V3Z2tnbt2uUeazAYKuyzf//+7lVSip9NkjZs2OA+\nvvbaayscf80115QKezRWffv2rfBax44dJUkbN27UokWLlJGRUeaeadOm6R//+IcmTZpU6fvpacuW\nLXNvhWYwGLRgwQJ3v8WKA2DF91RXyXuLa9R2PAAAAAAAaNwI5gAAAAAAgFqLj4/X7NmzZbPZFBAQ\noNdff71UaKXYkSNHJBVtQRUSElJpzQsvvNB9fPjwYUnS6dOnlZ+fL6nyoEex4ntcLpd77jO1bt26\n3PMlQ0Xlrcpz5j0lV3E5cOCA+/WyZcvUrVu3Cv93wQUXuJ8pISHBXePYsWPu48q2Z/L391fXrl0r\nvN5YtGrVqsJrM2fOlLe3t1wul5YsWaKhQ4dqwoQJWrhwoTZv3txgK8MsXrxYCxYscP9a/vOf/9Q1\n11xT5r7iraWkoiBZZQoLC93HJVfHKa5R1fiS91RndR0AAAAAANA4EMwBAAAAAAC1kp2drVmzZslk\nMslgMOjZZ5+tMEhSvCVVRERElXVLBnuKx5Xc0qq84M+ZoqKiSvVZnuLVaipTckWU6qhodZ6q5OTk\nuI+LV40xGo0KDQ2tdFx13ouG1qxZswqv9e/fX4sXL1bLli0lSU6nU7///rveeustzZgxQ4MGDdL9\n99+v7du3n5VebTab5syZo1dffVVS0co0jzzyiGbMmFHu/SW/h0qunFSegoIC93HJX9fiGiWvV6R4\njqq+LwAAAAAAQOPh3dANAAAAAACApsdms+mee+7R8ePHJUmzZ8/WVVddVeH9JVeVqYrT6XQfG43G\nGo+XJIfD4T6uaNsfb2/PfyxSct4777xTY8aMqda44ueUSvfrcrkq3bbIx8enFl2eXVVtuzR8+HAN\nHTpUGzdu1A8//KBNmzYpJSVFUlEQZc2aNVqzZo1mzZqlBx54oN76zM3N1ezZs93binl7e2v+/Pka\nP358hWNiYmLcx8nJyerevXuF9yYlJbmPS67EFBMTo9OnT5e6XpHk5OQy4wEAAAAAQONGMAcAAAAA\nANTYE0884Q4wjBkzRn/7298qvT80NFSpqanKzMyssnZ6enqpcSW/Sn+sKFOZkveEhYVVeb+nlOzT\n39+/0q2oKhIdHS2pKKCUlZVV6SpDJVcSasp8fHw0YsQIjRgxQpIUFxenzZs364cfftCWLVvkcrn0\n5ptv6vLLL9eAAQM8Pn96erpmzpypQ4cOSSraXuqll17SFVdcUem4Ll26uI9PnjxZ6b3F25X5+Pio\nXbt27vOdO3fW9u3blZWVpdzcXAUHB5c7Pi8vz/3fT6dOnap+KAAAAAAA0CiwlRUAAAAAAKiRt99+\nW59++qkkqUePHnruueeqXBWlW7dukqTjx4+X2rapPLt373Yfd+zYUZIUGxurwMDAMtcrsmvXLvdx\nhw4dqrzfU7p27VpuD+WxWq1avHixPvnkE+3cudN9vnPnzu7jvXv3Vjje6XTq8OHDdei24ZlMJv32\n229KTU0tdb5Tp06aNm2a3nvvPT3yyCPu8z/99JPHe8jKytLNN9/sDuVERkbq/fffrzKUIxV9XwcE\nBEhSldttFV+/8MILS63WdOGFF7qPd+zYUeH4HTt2uFeOqo9wEgAAAAAAqB8EcwAAAAAAQLX98MMP\nWrhwoSQpKipKb7zxhjuYUJmhQ4dKKtrqqTjUUx6r1arPPvtMUtFWQoMGDZIkeXl5afDgwZKkffv2\n6ffff6+wRnx8vDZv3ixJ6t69uyIjI6vxZJ7RokUL9yoqmzZtcq+SUp4vv/xSr776qubOnauVK1e6\nz1955ZXu4+L3ojzr169v0ivmbN++XYMGDdLkyZO1YsWKCu8rGZCxWCylrlUVCKuK0+nUPffco6NH\nj0qSWrdurRUrVqh3797VGu/v76/LL79ckvTzzz9XuJrTunXr3NdGjRpV6trIkSPdW5J9/vnnFc5V\n/N+Nj4+Phg0bVq3+AAAAAABAwyOYAwAAAAAAqmXfvn36+9//LqfTKX9/f73++utq1apVtcZOmDBB\nISEhkqRXX3211AoxxZxOp+bNm6cTJ05Ikq6//vpS2zjdcsst7uOHHnqo1JZXxbKzs3X//ffL4XBI\nkmbOnFnt5/OU4j5tNpseeOCBclcIOn78uF544QVJReGS6dOnu6/FxMRozJgxkqS1a9eWG9ZISUnR\nggUL6qP9s6ZPnz7u0NQHH3yg+Pj4cu9bvXq1+/jMwIyvr68kKT8/v1Y9vPPOO/r1118lFW159v77\n75faZqo6pk2bJkkqKCjQ3LlzZbfbS11PT0/XU089Jaloq7Px48eXuh4SEqKxY8dKkr777jutWbOm\nzBxr1qzR999/L0kaO3bsWQ2bAQAAAACAuvGu+hYAAAAAAHC+S0lJ0R133KGCggJJ0qOPPqqoqCjF\nxcXJZrO5t9g5U6tWrRQWFqbg4GAtWLBA99xzj8xms6ZPn65JkyZp+PDhCg4O1vHjx/Xhhx+6t6lq\n3759qS2MJGngwIGaPn26li1bpri4OF133XW6+eab1b9/fxkMBu3du1fvvvuukpOTJUnXXnutxo0b\nV4/vSvnGjx+v7777TuvXr9eePXs0duxYzZgxQ3369JHVatWOHTv0n//8xx3Yufnmm3XBBReUqjF3\n7lxt3bpVJpNJjzzyiLZu3aprr71WwcHB2rVrl95++22lpaUpMDBQZrO53D5effVVLV68WJI0e/Zs\n3X333fX74DXk6+uru+66S/Pnz1d2drYmTpyoadOmqW/fvgoNDVVqaqrWrl2rr7/+WlLRtmZXX311\nqRrR0dE6duyYDh06pE8++UTdu3dXaGio2rZtW+X8eXl5euutt9yvZ8yYodzcXB04cKDScaGhoYqJ\niXG/HjhwoK677jp9+eWXWrdunaZOnaoZM2aoVatWOnDggN544w2lpKRIKgqUFQfUSvr73/+udevW\nyWQy6cEHH9Rvv/2m0aNHS5K+//57ffDBB3K5XIqMjNT9999f5bMBAAAAAIDGg2AOAAAAAACo0i+/\n/KLU1FT363/961/VGvfMM8+4VwgZM2aMXnzxRc2dO1dms1nLly/X8uXLy4y59NJL9fzzzysoKKjM\ntUceeUQ+Pj569913lZGRoRdffLHMPQaDQTNmzNCDDz5Y3cfzKIPBoJdfflmPPvqovvrqKyUnJ+vZ\nZ58t996pU6fq4YcfLnO+efPm+uCDD3T77bfr1KlTWrVqlVatWlXqnkmTJiklJUXr16+vj8c4K6ZO\nnaoTJ05o2bJlys7O1muvvVbufZ07d9Zbb73l3vKp2JVXXqmtW7fKbrdr7ty5kopWWnruueeqnPvb\nb79Vdna2+/VLL72kl156qcpxN9xwQ5lfzwULFshkMunnn3/Wrl27dN9995W6bjAYNHv2bP35z38u\nt2ZkZKTefvtt3X777crMzNSyZcu0bNmyMve89dZbat68eZU9AgAAAACAxoNgDgAAAAAAOGuuueYa\nDRo0SMuXL9fPP/+shIQEWSwWtWzZUj169ND48eN1+eWXy2AwlDveaDTq4Ycf1rhx4/Thhx9q69at\nSklJkdFoVExMjAYNGqSJEyeqe/fuZ/nJSvP399fChQv1l7/8RZ999pl27NihtLQ0ORwORUdHa8CA\nAZo0aZL69+9fYY3OnTtr9erVWrlypb7++mvFx8fL6XSqS5cumjx5ssaNG6dZs2adxafyPIPBoLlz\n5+qqq67SJ598ol27diklJUV2u13h4eHq3r27rrzySt1www3y9i77MdbUqVNltVr1ySef6NSpU/L1\n9a1wBaEz7d+/32PP4efnp3//+99avXq1vvjiC+3fv195eXkKCwtT//79ddNNN1X6ay0VbdP1zTff\n6N1339W6deuUmJgoh8Oh2NhYjRgxQrfcckuprd0AAAAAAEDTYHBVtNY0AAAAAAAAmrSsrCwNHjxY\nDz/8sGbOnNnQ7QAAAAAAAJx3jA3dAAAAAAAAAOrHkSNHJEmxsbEN3AkAAAAAAMD5iWAOAAAAAADA\nOSg3N1cvvviiwsLCdNlllzV0OwAAAAAAAOclgjkAAAAAAADnoC+//FLHjx/XK6+8In9//4ZuBwAA\nAAAA4LxkcLlcroZuAgAAAAAAAJ7ldDqVk5OjsLCwhm4FAAAAAADgvNWogzl2u0NZWeaGbgMA6lV4\neCC/1wEAAAAAgCaFzzMAAAAA4A/R0cEVXmvUW1l5e3s1dAsAUO/4vQ4AAAAAADQ1fJ4BAAAAANXT\nqIM5AAAAAAAAAAAAAAAAQFNFMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAA\nAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA\ngHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA0KDWrFmtN954td7q//bbdj3++Jwy519+\neaGSk5NLnYuPP6HZs2/3yLzeHqkCAAAAAAAAAAAAAAAANDH33vtgvdYnmAMAAAAAAAAAAAAAAHAe\nC3pirvxWr/JoTcvY65X/xIKKr1sK9fTTTyo5OVk2m03Dh490X1uxYrl+/PE7eXl5qW/ffrrrrnu0\nZ88uLV78kry9veXv768FC56Tr6+fXnjhaSUmJsjpdOqvf71TF100oMI5ExIS9MADs5Wdna0bbpig\na6+9XrNn365//OMRBQU107x5c+VyuRQREemx94FgDgAAAAAAAAAAAAAAAM6qVas+U8uWMXryyWeU\nkHBSmzdvUl5enuLijmrduu+1ZMk78vLy0qOPPqRfftmoXbt+04gRo3TjjVO0adPPysnJ1ebN3yg0\nNExz5jym7GyT/va327V8+coK53Q47HruuUVyOh26+eYpuvTSK9zX3n9/qUaNGqPrrrtBP/74nb74\n4lOPPCfBHAAAAAAAAAAAAAAAgPNY/hMLKl3dpj6cPBmvwYMvkSTFxrbV3r3BysjIUHz8CfXs2Vve\n3kWRlr59L9Tx43GaPv0Wvf/+O7r33jsVHd1cF1zQS3FxR7Vnz07t3/+7pKLgjclkUlhYWLlzXnBB\nb/n4+EjyUYcOHZScfNp9LSHhpMaOvUGS1Lt3X48Fc4zVuWn37t2aPn16mfPr1q3ThAkTNGnSJK1c\nWZQ4slqtevDBB3XjjTdq5syZOnHihCRp//79uuyyyzR9+nRNnz5da9as8cgDAAAAAAAAAAAAAAAA\noGlp166DDhzYL0k6dSpRb7752v/Ot9f+/b/LbrfL5XJp166dio1tp+++W6Orr75Wr776pjp06Kgv\nv/xc7dq116hRY7R48VtauPAVDR8+SiEhIRXOeeTIIdntdhUUFOjEieNq3bqN+1r79h21b98eSXL3\n5QlVrpjz73//W19++aUCAgJKnbfZbHrmmWf06aefKiAgQJMnT9aIESP07bffKjAwUCtXrtSxY8c0\nf/58LV26VPv27dMtt9yimTNneqx5AAAAAAAAAAAAAAAAND3jxo3XM8/M0+zZt8vhcGjSpKnKzjap\nU6fOGjFilO6881a5XC716dNXl18+TPv379Ozzy5QQECADAaDHnroUUVFReu55xZo9uzblZ+fpxtu\nmCijseI1anx9ffX3v9+jvLw8zZx5u0JCQt3Xbr75Vs2bN1c//PCdYmJae+w5DS6Xy1XZDWvXrlW3\nbt300EMPuVfFkaSDBw/qhRde0NKlSyVJTz/9tPr166etW7fq0ksv1ejRoyVJw4YN0/r16/X444/r\n+PHjcjgcateunR555BE1a9asygbT0nLr8nwA0OhFRwfzex0AAAAAAGhS+DwDAAAAAP4QHR1c4bUq\nV8wZM2aMEhMTy5zPy8tTcPAfhYOCgpSXl6cePXrop59+0qhRo7R7926lpKTI4XCoT58+mjhxonr1\n6qU33nhDr732mh5++OE6NQ8A5wp+rwMAAAAAAE0Nn2cAAAAAaIwWL16srVu3ljn/9NNPKzY29qz3\nU2UwpyLNmjVTfn6++3V+fr6Cg4M1atQoxcXFacqUKbrooovUs2dPeXl5afTo0e59vEaPHq358+dX\nax7+1QWAcx3/wgwAAAAAADQ1fJ4BAAAAoLGaNOlmTZp0c7nX6uv/x1T2Dxcq3lirCp06dVJ8fLxM\nJpOsVqu2b9+ufv36ae/evRoyZIhWrFihq666yp02uvXWW7Vnzx5J0ubNm9WzZ8/aTg0AAAAAAAAA\nAAAAAAA0ejVeMWf16tUym82aNGmS/vnPf+rWW2+Vy+XShAkT1KJFC/n4+Ojll1/WkiVLFBwcrKee\nekqS9MQTT2j+/Pny8fFRVFRUtVfMAQAAAAAAAAAAAAAAAJoig8vlcjV0E5VhOVQA5zqWfgYAAAAA\nAE0Nn2cAAAAAwB/qZSsrAAAAAAAAAAAAAAAAABUjmAMAAAAAAAAAAAAAAADUA++GbgAAANSey+XS\nriPp8vf1UkgzP4U181WQv09DtwUAAAAAAAAAAABABHMAAGjSMrILlW22KtsspZgKJEk+XkaFNvNV\nWJCfQpv5qlmAjwwGQwN3CgAAAAAAAAAAAJx/COYAANCEJabllzlncziVnl2o9OxCSZK3sSioExrk\nq6hQfwW9CcuRAAAgAElEQVSyog4AAAAAAAAAAABwVhgbugEAAFA7eQU2mfItVd5ndzqVkVOoY0k5\n2n00Q3aH8yx0BwAAAAAAAAAAAIBgDgAATVRial6Nx1jsDp1Iyq2HbgAAAAAAAAAAAACciWAOAABN\nkNXmUKqpoFZjT6XnKa/A5uGOAAAAAAAAAAAAAJyJYA4AAE1QUoZZTperVmNdko4kmDzbEAAAAAAA\nAAAAAIAyCOYAANDEOF0unU7Pr1ONbLNVSRl1qwEAAAAAAAAAAACgcgRzAABoYtKyCmSxO+pc59jp\nHNk8UAcAAAAAAAAAAABA+QjmAADQxCSm5f3xwuWS0VJYqzo2h1PHTud4qCsAAAAAAAAAAAAAZyKY\nAwBAE5KdZ1Fugc39utvHb2vcny9RYPKpWtVLyjQrJ9/qqfYAAAAAAAAAAAAAlEAwBwCAJiQxPf+P\nFy6XOn39sbwtBWqz6bta1zycYJLL5fJAdwAAAAAAAAAAAABKIpgDAEATUWi1K91U4H4dcXCPglKK\nVsqJ2byu1nXzCm06VTLwAwAAAAAAAAAAAMAjCOYAANBEnErPV8l1bWI3fCNJsgUEKnLfTvnmZNW6\n9omkXFlsjjp2CAAAAAAAAAAAAKAkgjkAADQBDqdTyRnmP044nWrz87eyNgvRoYkzZXQ61PLXjbWu\nb3c6dexUtgc6BQAAAAAAAAAAAFCMYA4AAE1AcmaBbA6n+3XUvt8UmJ6iU5eOUuJlYyRJMVt+qtMc\nKaYCZeVa6lQDAAAAAAAAAAAAwB8I5gAA0AScSssr9bp4G6uEK65WbttOyotpq5bbN8potdZpniOJ\nJjldrqpvBAAAAAAAAAAAAFAlgjkAADRymTmFMlvs7tcGh11tfl4rS2i4UvsNkgwGnR48XD7mfEXv\n2VanucwWuxJT86q+EQAAAAAAAAAAAECVCOYAANDIJabll3odvWeb/E0ZShx6pVxe3pKk00NGSJJi\ntqyr83zxybkqtNqrvhEAAAAAAAAAAABApQjmAADQiJkLbcrMLSx1Lnb9/7axGna1+1x6z36yBocq\nZvNPUh23onK4XDp6KrtONQAAAAAAAAAAAAAQzAEAoFE7c7Ucg92m1pu+U0FElNJ69Xefd3n7KGnA\nZQpMS1LosYN1njc9u1AZ2YVV3wgAAAAAAAAAAACgQgRzAABopOwOp1IyzaXOtfhts/xys5V42VWS\nl1epa6eHDJekolVzPOBIokl2h9MjtQAAAAAAAAAAAIDzEcEcAAAaqaQMsxxnbEsVu6F4G6s/lbk/\n+eLL5PTyVswWzwRzCm0OHUoweaRWY5RrtspZx22/AAAAAAAAAAAAgMoQzAEAoBFyuVw6lZZX6pzR\nalXM//0oc3QrZfS4sMwYe1Cw0vpcrIjDv8s/PcUjfaSZCnQ6Pb/qG5uY7DyLdh1N17HTOQ3dCgAA\nAAAAAAAAAM5hBHMAAGiE0rMLVWhzlDrXYscm+ebnKuGKqyRj+X+Enx4yQpIUs2W9x3qJO5WtvAKb\nx+o1tOx8q/Ycy5DD6VJiWp4ysgsbuiUAAAAAAAAAAACcowjmAADQCCWesVqOJLVdv0aSlHBF2W2s\nip0ePFySFLNlncd6cbhcOhCfJYfT6bGaDSUn36o9celyOP/YwurgySxZrI5KRgEAAAAAAAAAAAC1\nQzAHAIBGJr/Qpux8a6lzXoUFitn8k/JaxSqra68Kx5pbtpapQ1c137lFXgWe24Iqv9Cmo4nZHqvX\nEIpCORmlQjmSZHM4dSA+Sy6Xq4KRAAAAAAAAAAAAQO0QzAEAoJFJyjCXOdfy15/lXWguWi3HYKh0\n/OnBw+Vls6rFjv/zbF+ZZqWaCjxa82zJMReFcuwVrPpjyrfoZErZVYoAAAAAAAAAAACAuiCYAwBA\nI+J0uZSSWTaYE7vhG0mVb2NV7PSQEZKkmK3rPdqbJB0+aVKBxe7xuvUpx2zVnqMVh3KKnUjOUXae\n5Sx1BQAAAAAAAAAAgPMBwRwAABqRdFOBbI7SARJvc75itq5XTpsOyu7YrcoaWV17qSAiSq22rJcc\nDo/2Z3cWbfvkbCLbPuWardpbyUo5Jbkk7Y/Pks1e9b0AAAAAAAAAAABAdRDMAQCgEUkuZ7WcVlt+\nkpfVooRhVW9jJUkyGpU0aLj8szMVeXCPx3vMMVt1PCnH43U9Lfd/21edGXSqjMXm0KGTWfXYFQAA\nAAAAAAAAAM4nBHMAAGgkCix2ZeaW3UqpJttYFTs9ZLgkKWbLOs80d4aE1Dxl5hTWS21PyCuw1TiU\nUyw9p1CJaXn10BUAAAAAAAAAAADONwRzAABoJMpbLccnL0ettm2UqUNX5bbrXO1aKf2GyO7nr5jN\nP3myxVIOnsyS1ebZrbI8Ia/Apt1H02sVyil27HSO8gpsHuwKAAAAAAAAAAAA5yOCOQAANAIul6vc\nYE7M//0oo91Wo9VyJMnp56+Uiy5RyMk4NTt1wkNdlma1O3WwkW37lF9Y91COJDldLu0/kSl7HesA\nAAAAAAAAAADg/EYwBwCARiAzxyJLOavPxK6v+TZWxU4PLtrOqtXm9XXqrTKZuRadTMmtt/o14XS5\ndOBEVp1DOcXMFruOJmZ7pBYAAAAAAAAAAADOTwRzAABoBJIy88uc883OUoudm5XZpafyW7erec3B\nw+QyGBSztf62s5KkE8m5ysm31usc1ZGQnKvAX9Yr7Mg+Ga0Wj9RMzjIrpZyVjAAAAAAAAAAAAIDq\n8G7oBgAAON9ZbQ5l5pQNkrTe9L2MDnutVsuRJEt4lDK791HU3h3yyTHJFhJW11bL5XS5tD8+U/26\nRMvPx6te5qiKudAmr7ff0hWvzivqyctbubEdZOrUXaZOPYq+duwua2h4jWsfTjQpONBXgf782AQA\nAAAAAAAAAICa4W+YAABoYMmZZjldrjLnYzcUbWOVeMVVta59evAIRR7YrVbbNurkyLG1rlOVQqtD\nu46kq0+nSAX4nd0fL1wul05sP6BLli6UtVmITg67WmHHDins2CGFnjiidj+udt9rjmr5v5BON5k6\n9VDSoCvk9POvtL7D6dKB+Ez16xoto8FQ348DAAAAAAAAAACAcwjBHAAAGlhyOVsl+WWlq/meX5XR\no6/MLVrXuvbpwcPU+91Fitmyrl6DOZJUYLUXhXM6RyrI36de5yrpdFqeOr/wmHzM+dp2/3yd+NOf\niy44nWqWdFJhcQcVGndQYccOKizuoGK2rlfM1vWSpKSLL9Omp96qco7cAptOJOWqY0xIPT4JAAAA\nAAAAAAAAzjUEcwAAaECmPIvMFnuZ8202rpXB6dTJYVfXqX5O+y7Ka9lGLbdtlMFmlcvHt071qmKx\nF62c07tjpEKC6ncuSSq02lW48hO13rxOqX0H6sRVE/64aDQqr3V75bVur8TL/1h1yNeUqbBjB9Xz\n/cVqtW2jIvftVEbPflXOlZCaq8hQf4WehecCAAAAAAAAAADAucHY0A0AAHA+S8oou1qOJMWu/0Yu\ng6FUoKRWDAadHjJcPuZ8Re/ZVrda1WRzOLU7Ll1ZuZZ6n+vYvpPqu3iBHD6+2nHfk1I1tpqyhkUo\n9aJLtOe2ByVJPT54o1pzuSQdjM+Sw+msS8sAAAAAAAAAAAA4jxDMAQCggdgdTqWbCsqcD0hLVvTv\nO5Teq78KI5vXeZ7Tg0dIkmK2/FTnWtXlcLq091hGuc/nKSlZZsW+9JQCMtO1f9pdymvdvkbjM3r1\nV2rfQWq1faPCD+6p1pgCq11xp3Jq0S0AAAAAAAAAAADORwRzAABoIClZBXK4XGXOt/n5W0lSwhV/\n8sg86b37yxoUrJjN66Ry5qsvTpdL++OzlJJZ/qpAdWGzO5T19ffq+M0nMnXoqkMTZ9aqzv5pd0mS\nLvhwSbXHnM7IV2ZOYa3mAwAAAAAAAAAAwPmFYA4AAA0kOSO/3PNt130ll9GoxMuu9Mg8Lm8fJQ+8\nXEGpSQo9ftgjNavL6XLpwMksnUrL82jduLgUXfjiv+QyGLTjvnlyefvUqk5an4uV1qu/Yrb8pLCj\n+6s97lCCSXYHW1oBAAAAAAAAAACgcgRzAABoALlmq3ILbGXOhx/aq4gj+3R60DBZwqOqVcvXu+o/\nzk8PHi5JRavmNIAjp7IVn5zrkVoZ2YWKfH2RghNP6Oi4acrs0bf2xQwG7Z96pySpxwdvVHuYxebQ\nkQRT7ecFAAAAAAAAAADAeYFgDgAADSApo/ztnTp/+aEkKW7s5GrV8TIYNLBHC3VpEyYfr4r/WE8e\nMFROL2/FbPmp5s16yPHkHMWdyq5TDbvDqeSft6r7yqXKb95Kv8+4t859pV50iTJ69FWbX35Q6LFD\n1R6XYipQqqmgzvOf6wosduWarSqw2GW1OeR0nr3t1AAAAAAAAAAAABqad0M3AADA+cbhdCo1q2yg\nwzcnS7Hr1yg3pq1SLrqkWrWiQv3l7WVU66ggNQ/z17HTOUrKLBv6sQWHKq33ALXYtUWtN34nl9Eo\nL0uhvC0F8rJY5FXiq7elUF6WQhmtVplbxCira09ldu2tguiWksFQp2dPSMuT3eFU19gwGWpR63hi\nlnq/8KiMDrt+u+dx2QOD6tSPJPeqOZfNvUM9VizRlkcXVXvokQSTQoN85efjVfc+zkFWm0M7j6TJ\nai+97ZfRYJCX0SBvL6O8vQzyMhZ99ffzVufWoQ3ULQAAAAAAAAAAgOcRzAEA4CxLMxXK7nSWOd9+\n7RfyslkVd+1kyVi9Re1aRAS6j328vdStbbhaRQbpSKKpzFZZp4cMV4tdW3TJ/NqtMlMYHqXMrj2V\n1bW3Mrv1UlaXXrKER9a4TlKmWaY8q1pEBKhFeKAC/Kr340h2nkUB776tyIN7dHLY1UoeeEWN5y4p\ntnkzJaWbZXc6lXzx5crs0lNtfl6r4GlHlduuc7Vq2BxOHU4wqXfHmr8P54ODJ01lQjmS5HS55HS4\nZHOUvdY6Kqja3xMAAAAAAAAAAACNHX/rAQDAWZaUkV/2pNOpTl99JIevn05ceX216vh5eyk82K/M\n+ZAgX13UNVpJGWYdT8pxhx+O/2mivGxWGRwOOfz8ZfcLkMPPTw6/ADn8/P93zt997PT2UXDicYUf\n3qeIw3sVceh3xWzdoJitG9xz5TdvpayuvZTZtbdOXzJSuW07Vqv3AqtdJ5JzdSI5V2FBfmoZGehe\n/ac8TqdL8TsO6PJ3F8kaHKpdd86p1jzlMRoM6hobppYRgfLz9tLR09lFq+ZMu0tDH/+benz4pn6d\n80K162XkFCopI1+tIj2wes85JDE1T5m5hTUel5pVoHYtg+uhIwAAAAAAAAAAgLOPYA4AAGeRudCu\n7HxrmfMtdvyiZkkJOj5mvGwhYdWq1TwioMLtoAwGg2KighQd5q/jSblKysiXwz9Ah268rUb9FjRv\npdQS22r5ZaUr/PDvijj0u8KPFH1ts+l7tdn0vXouf03bHnxKCcOvqdEcpnyLTPkWeRkMig4LUIuI\nwDKBo/jkHPX4f4/Jp8CsbQ8+JUt4VI3mKOZlNKhn+whFhPhLkmKig3Q6I19mi11Jg4fL1LG72m5Y\no/3T71Jemw7Vrnv0VLbCmvmx0sv/5BXYdCwpp1Zj00wEcwAAAAAAAAAAwLmjevtkAAAAj0jKLGe1\nHEmdV6+QJB0dO6XatVqW2MaqIj7eXuoaG6Z+XaMVHOBb7doVsYRHKXnQMO2/abZ+mb9Eqz/eqK+W\n/6htDz4lp7ePBj/zd/V69yWpnK26quJwuZScZdbuuHRt2Zes40k5KrDYlVdgk/PTTxWzdb1SLhys\nE1feUKve/by91K9LtDuUIxWtntMpJrTohcGg/VPvlMHpVI8Vb9Wsd6dLh06aatXXucbhdGr/iUw5\nXa5ajc8rtMlcaKv6RgAAAAAAAAAAgCaAYA4AAGeJ0+VSSqa5zPnA5FNqtXW9Mrr1kalrz2rVCg7w\nUZC/T7XnDgn01UVdo9QtNkx+3l7VHlclg0EFzWN0Ysx4/fjKR8qNaaseK97UJU/eLW9z+SGk6ii0\nORSfkqutB1K077c4XfjaU3L4+mnHvU9IFawSVJlm/j7q1zVKzQLKvmeRof6KCC4K65y6dJSy23VW\n2x9XK+j0yRrNYcq3KCE1r8a9nWuOJmbLbLHXqUaqqcBD3QAAAAAAAAAAADQsgjkAAJwlGdmFstrL\nriTT8euPZXC5FDd2crVrtajGajlnMhgMahUZpIEXNFeHliHyNnr2x4Dctp304ysfK6XfELXevE4j\n7v2LgpIS6lz3gjefk39WuvZN+5vyW7er8fiwZn66sEuU/H0r3maqc+sQGQ0GyWjU/ql3yuh0qPtH\nNVs1R5KOJ+Uo/zxe7SXVVKCkcsJnNa6TRTAHAAAAAAAAAACcGwjmAABwliRllA0sGK1Wdfz2U1mC\nQ5VwxVXVqmM0GNQiPKDWfXgZjWrXMliDLmiuNlHNigIpHmILCdPGp9/SkXHTFBp/VCPvvlHRu3+t\nVS3fnCx1X/GWOn77mUwdu+vwn2fUuEaL8ED16RQpb6/Kf+QJ9PdRTGSQJCnxsjHKadNB7b//rwJT\nTtVoPqfLpYPxWbXexqkpK7TaddhD23mZ/7eFGQAAAAAAAAAAQFNHMAcAgLPAYnMoK7ewzPk2G9fK\nLztLx6+aIKeff7VqRQT7yccD21H5eHupc5tQXdy9uVqE1T7ocyaXl7d2/e1Rbb/vSfmY83X5P29V\nx9UrqjnYpYgDu3Tx8//UtZOHqfe7i2QLCNT2B+bL5V39rbskqV2LYPVoF17t4FG7lsHy8TJKXl46\nMOUOGR12df/43zWaU5JyC2w6mphd43FNmcvl0oH4LNmdZVeEqq00trMCAAAAAAAAAADnAII5AACc\nBenZhSpvDZVOq1fIZTDo2DWTql2rNttYVSbAz1s92keof9doRQT7eazu8atv1Ibn3pG1WYj6vzpP\nF73yhAz28ldB8SrIV4evV2rUXRM08t7Jav/Df2Vu3kq7Zj2sr5f9qKyuvao9r0FS1zZh6tAqpEb9\n+ngb1f5/YxKGX63cmLZqv/ZzBaQl16iOJJ3OyNfJlNwaj2uq4lNylZ1v9WhNgjkAAAAAAAAAAOBc\nQDAHAICzICO77Go5oXEHFLV/p5IHDFV+TNtq1fHxMioytHor69RUcKCv+nSKUp+OkQoOqNnqNBVJ\n7z1APy5eKVPHbur01ce6fM5t8s3O+mPO+KO68LUFGjt5mAa8/LhCjx9W4tDR2vDsUn27dI2OTJgh\nW0hYtefzMhjUq0OkYqKCatVvTGSgmvn7yOXlrYOTZ8nLZlO3lUtrVetYUo6SM8tuX3auyc6zKD7Z\n8yEks8WuXLNnwz4AAAAAAAAAAABnm3dDNwAAwLnO4XTKlGcpc77zl0XbO8WNnVztWtFhAdXemqm2\nIkL8FRHir1RTgfILbHI6XXI4XUVfXUVfi//ncLrkdBV9tdgc5dYzt2itdYs+0MAX5qjNpu81avZE\nHZx0m9r+9LWi926XJBVENtfh8Tfr2NUTVRjVolZ9Gw0G9eoYqfA6rPpjMBjUqXWodselK37kWF2w\n/HV1XLNSB//yVxVGNq9xvcMJJvl6GxURUj9hqoZmdzh1ID6r3NWgPCHNVKjgQN96qg4AAAAAAAAA\nAFD/DC6Xq77+LsUj0tLOn20gAJyfoqOD+b3uHJduKtDvJzJLnfPJy9G1k4fJEhahNe+tlby8qlXr\noi7RCglqnEGFxLQ8HT2VXfENTqcuWP66ei5/zX0qpd9gxV07WaeHDJfLu26r9HRpHarW0c3qVKPY\n78czlJ5dqA5rVmrAS4/r8PibtfuOf9aqlpfRoAs7R52TAZN9JzLrdcspf18vDb6gZb3VBwAAAFB7\nfJ4BAAAAAH+Ijg6u8Bor5gAAUM8ycspuY9Xu+//K21Kg/ddOqnYoJ9DPu9GGciSpTXQzeRkNOpxg\nKn8FFaNR+2+arawuPRV5cLdOjBqnvNgOHpk7JjLIY6EcSeoUE6rMHItOjL5eF3ywRB2//lgHJ/1V\nlvDIGtdyOF3aeyxD/bpEK8Dv3PnRKykjv15DOZJUaHUox2xVyDkYagIAAAAAAAAAAOeHc+dvhwAA\naIRcLlfZYI7LpU6rV8jh46PjYyZUu1aL8EAPd+d5rSKD5GU06OBJk5wVLMqXNGS4koYM99icYUF+\n6twm1GP1JCnAz1uto4OUkOrSwUm36aLF89VjxZvadeccqRZbiVntzv+Fc6Lk4129IFaj5XTKtmev\n0o+mKqwaCy86vX2U075Lrd43SUrLKiCYAwAAAAAAAAAAmiyCOQAA1KMcs01Wu7PUuea7tigk8bji\nR46VNSyiWnUMklpEBNRDh57XPDxQRqNB+09kVRjO8RR/Xy/17BAuYy1DH5Vp1yJYKZlmHb9qgrp/\n9Ja6rFqmyP07dWDKHTo9eLhkNNaontli195jmerbOVJeNRzbWBSmZSp05jRFb92kmBqM2zXrYR2Z\nMKNWc6aZCtSptWeDVwAAAAAAAAAAAGcLwRwAAOpRRnbZbaw6rV4hSTp63ZRq1wlt5id/36bzx3ZU\naIB6dzTq92MZctRTOMfLaFCvDpH1tgKNt5dRHVqF6FCCUxuef1e93ntFbTau1aVPzJapQ1cdmDxL\niZeNqfZWZJKUY7Zq/4ks9eoQIUM9hInqQ6HVrjRToXIOxqnf32cq5MQRpVw4WNkdu1VrfPvvV+mC\n5a8rftQ4WUPDaz6/zaHsfKtCG/E2bgAAAAAAAAAAABVpOn/DBwBAE3TmNlYBacmK+b91yurcQ5nd\n+1a7TsuIxr+N1ZnCg/3Up1Ok9h7LlN3prHpADfVoG65mAT4er1tSy4hAnU7PV26bDtoyd5GCT8ap\nx4o31fanrzXk6QeV02axDk6+XSdHXCuXV/V+rMrIKdThBJO6ta15SOVsKQ7jpJkKlGO2KvTYIQ2d\nO0uB6Sk6et0U7bzzkWoHkgqat1LfJc/qguWva9ffHq1VP2lZBQRzAAAAAAAAAABAk9Q091EAAKAJ\nKLDYlV9oK3WuwzefyOh0KG7sZKmaK6Z4GQyKDvOvjxbrXWgzP/XtHCkfL8/+yNGhZYiiwup/ay+D\nwaDOJbZRym3bSb8+/Ly+WbpGx66aoGZJCRr4whxddcuf1GHNShmt1mrVTco060RyTn21XSsWq0OJ\nqXnaeThNW/anKO50tnLMVjXf8YuGPzBVgekp2n37Q9r5t7k1WiUo4N67lRfTVp2++kjNEo/Xqrc0\nU4Fc9bwtGgAAAAAAAADg/7N33/F11uX/x99n75O9Z9M9obR0gAwZsgS/iD+WgqCIqDi+XxXFicpQ\ncQOCgMhQEBQHe+9VCnSvtGmbdKTZ4+x5//7ogNKRc9KkzXg9H48+Qs+5r899pZak9n5zXQAGA8Ec\nAAAGyYen5ZiSCdU98ZDiHp+ajj8j43OKcl2ymIfvt2yf267DxxfKMUArp4pzXaop9Q3IWZnI8TpU\n/KEQUKiiRu/+37V64p6nte6sC+XqaNXs3/1Yp11yisb9568yx/ZcYfZhG7cF1NwRGqy2s9LaHdFb\nK7dp3dYe9YTfDxfVPPNvHfODK2ROxPXm936t+k9dmnGgTNr+ezevwKfWb/9Q5lRSM+78db/6iyW3\nr7MCAAAAAAAAAAAYbobvUz4AAIa4jp7dwxkVbzwvV2e7Nn7sbKVcma+mKhmGa6w+zOO06fDxhXLa\nDiyc43PZNLE6d4C6ylxduV85bvsek38ixeVadOUP9cS9z2rNOZfIHujRzD9ep1M/f7ocXe19nlu/\nqXuP3ycHW2dvVKsbu7TbPBrD0OS/3qI5v/qekm6PXvn5Xdp8/OlZnWuSVLsjQOW54P+pc/osVbzx\nvAqXvt2vPtu6I/2qAwAAAAAAAAAAOJQI5gAAMAiSqfQeEz7GPnK/JKnh4+dnfI7TZlGu1z6gvR0q\nLodVh48vlMtu7Ve9w2rRtDEFh2R6kNNu1cwJRTp6epmOnlaqmeOLNKk6TzUlPhXluGStqNCKK76r\nx+97Tg0fP0+e1uaMpsMYklY3dSmeSA3+J7EXPcGYVmzoVPoDa6JMyYRm/faHmnbvzQqVlOuF3/5N\n7dNnZ312ca5LHqdNkmQ2mxW85jpJ0mG33yil01mfxzorAAAAAAAAAAAwHPXvyRgAANivzt7obmEH\n/8a1Kl66UC0z5ytYNSbjc4rz3DJlsTpoqHPat4dz1m/pUSCSUCSWVCZRC7PJpKlj8uWwD8w6rANh\ns1qUY7Uox7NnYCoaL1b4sN+pt365ap/9j9af9il1TJu13/MSqbTqN3VrWl3BYLW8V4FwXMvWdyr1\ngd+n1nBI86/9hkrfeU1d46bo1WtvUyy/KOuzTdIe68ZcxxyllpPPVMmzj6r6xcfVdOKZWZ0ZT6bV\nHYwrz+fIuh8AAAAAAAAAAIBDhYk5AAAMgg+vJxr72N8lSevOvCCrc0rzXQPW01DhsFk0uTZfcyaX\n6CMzynTE+CJNqMxVeYFHOW67LHsJIk2oypV/L0GYocZptyo/z6Pojb+RJB1x889kSiX7rGvvjaq5\nIzTY7e0Sjia0tKFDyQ9MrnF2tOr4b16k0ndeU/OcY/Xir+/tVyhHkkry3HLvmJbzQamf/kwpm03T\n7/qtzLHsV3ixzgoAAAAAAAAAAAw3BHMAABhgacNQZyC26+fWUFA1z/1X4cJSNc//aMbn+N32vYYb\nRhKL2Sy/x67yQo8mVOVq5oQifWRGmeZMKtGU2nxVF/s0tjxHpfnuQ91qVkzz56v9f85T7vo1GvvI\nAxnVrNvSo0is7xDPgYrEklrS0KFE6v1Qjn9DvU74+vnKa1ilhtPP1es/uUUpl6df55tNpj2m5exk\nG1un1k9/Xu62Zo3/931Zn93WHdltEhUAAAAAAAAAAMBQRzAHAIAB1huK7xZ6GPPUP2ULh9Rw5gUy\nLJlvkSwZZmGUgWIymeR2WlWc61JduV9Vxd5D3VK/pK+9TgmvX9Pu+YMcnW19Xp9KG1qzqXtQe4ol\nUiz3z9kAACAASURBVFra0KFYIiVJsvd06fBbrtXJXz5HntZmLbv0G3rv69dk9fv0w0ryXHI59l1v\nufpqxf25mvz3P8nR1ZHV2YlUWt0fCL0BAAAAAAAAAAAMdQRzAAAYYLutsUqlNP4/f1XS4VTDGedm\nfIbZZFJx7shbYzWamIqL1fXt78sWDmrGnb/KqKY7GNPm1uCg9JNIprWsoUOReFLmeFwT/nGXTrvk\nFI3/798ULinXaz/5o1Zf8EVpL6vEMrW/aTk7mfLy1Pn1q2QLhzTlvpuzvgfrrAAAAAAAAAAAwHBC\nMAcAgAHW0ft+MKfijefladmixpM/oYQ/N+MzCvxO2ax8mx7uTJdfrsDEqap97hEVLl2YUc365l6F\no4kB7SOZSmvZ+g4FI3FVvvKUTrnsDB12x42S2azFV3xXT93xaFZr1valNN8tp73vaTuWK76oUPUY\n1T3xD/maGrK6R3tPlHVWAAAAAAAAAABg2OCJHwAAAygcTSgcS+76+YSH75Yk1Z/92azOKcljWs6I\nYLEocuNvJUkzb7lWplSyjwIpbRha1dg1YOGTdNrQ8g2dsr67UB/9309r/rX/K3fbNtWffbGe+MtT\nWvvJz8qw2Q/4PmaTSTUl+5+Ws4vNptCPfipzOqUZd2Q2TWinRCqtrl7WWQEAAAAAAAAAgOGBYA4A\nAAOo/QNrrPJWL1XhykXaOvc4BavGZHyGy25Vfo5zMNrDIWCaN08d51yg3A31GvvI/RnVBCIJNbUE\nDvjeacPQ+jeWauL3rtSJXz9fhSsXafPRJ+npOx/Vki9dndUUp76UF3jksFsyvt505lnqmTVP5Qte\nUtGit7K6V7brrLqDMfWG41nVAAAAAAAAAAAADASCOQAADKAPrrGa8K97JElrP5ndtJyaUp/MJtOA\n9oVDK/3TaxX35WjaPTfJ2dGaUU1TS/DAwiS9PYpd9V3NOe9EVb/0hDrHT9WLv7pXb/74JgUravt/\n7l5YTCZVlXizKzKZFL/u55Kkw27/pZROZ1za3hNVOr3/iULBSELrt/bqrRXbtHhdu5asa1d3kEk7\nAAAAAAAAAADg4CKYAwDAAEkkU+oNbQ9SuFqbVfnK0+qum6jWw+dlfIbbYWWN1UhUVKSe7/xAtnBQ\nM+7MbHVT2jC0urGrzwDK3kSffk6+ubNUfc+tiuXka8FVP9fzNz2k9hlHZn1WJsoLPXLYMp+Ws8sR\nR6jrzHOU17BKNc89knFZMp1WZyC6x+vReFJNLQG9s7pV76xpVVNrQNFESpKUShta1tBBOAcAAAAA\nAAAAABxUBHMAABggnb0x7YxQjHvkbzKnU1p79sVSFtNvakp9MjEtZ2T6/GUKTp6umucfVeHShRmV\nhGNJrW/uzfgWwd6wQt/6jiovPkf27k6tuOhKPXXXE2o66ROSeXD+2GcxmVRVnOW0nA9I//RnStkd\nmnb372SJZr6iqq1r+7WJZFpb20NatLZNb61s0frmXgWjib3WpIzt4ZyuAOEcAAAAAAAAAABwcBDM\nAQBggLTvWGNliYRU9/hDiuYVqumjH8+43uO0qTiXaTkjlsWiyK9+J8Nk0hE3/0ym5N7DIx+2uS3Y\nZ5AkEktq/RtL5D/zFNXee6tCJRV68Td/1cqLvqKUc3B/T1UUeWXvz7ScHdIVler9wpflbm/RhIfv\nzriuvTeq5es79OaKbarf3K2eUGZrv1KGoeXrCecAAAAAAAAAAICDg2AOAAADIG0Y6twRzKl95j+y\nhwJad+b5StvtGZ/BtJxR4Mgj1fmpC5Wzca3G/fdvGZetaepSMpXe4/VEMqV1W3q09U/3aOanT1fB\nqiVq+ugZevbWf6lz8mED2fleWcwmVRV7Dvic1De/pXh+oSY9eKccnW2Z1aQNtfdGlTayX/W1M5yz\n899ZAAAAAAAAAACAwUIwBwCAAdAdiCmVNqR0WuP/fa9SNrvWn3F+xvVepuWMGsZPr1Xcn6up990s\nZ0drRjXRREoNW3p2/TyVTqupJaB33t2oku/9r+Zd+78yJ5N6+1vXa8F3b1TS4xus9ndTWeSVzdr/\naTk7GV6fQt++WtZoWNPu+cMAdLa74vfe0JT7bpHS74ebUoah5Rs6CecAAAAAAAAAAIBBRTAHAIAB\n0LHj4X7Zgpfk29qkxhPPVCyvIOP62tKDE6TAoWcUFKj36h/JFg5pxu03ZlzX3BlWe3dEzR0hvb2q\nVR2vva3jv3yO6p78p7rGTtazf3xYjR87WzpIU5esZrOqir0Ddl7ys5cqMm6ixjz1sHLXrRywc22B\nHs27/puaet/NKlvw8m7vpQnnAAAAAAAAAACAQUYwBwCAAdDRs/3B/oSH75Ykrf3kZzOu9blsKmRa\nzqhiXHKpglMPU82Lj6loydsZ1y3f2Kk1TV2q/Oe9OvFr58m/ab3qz75IL/z+7wpWjRnEjvdUVeyV\n1TKAf5S0WhW9/hcyGYYOv/UGqR8rqvZm6r03ydHbLUma9ODte5y7M5yz899hAAAAAAAAAACAgUQw\nBwCAAxSMJBRNpJS7bqWKly7UtllHq7d2fMb1taX+QewOQ5LFouivfivDZNLMm3+qkndeV8Hyd5Vb\nv0K+pga5W7bI0dUhSyQkpVK7yuy9XTrqmit1xC3XKun26LWf/lFLvvQ9pe32g9q+zWJWRZFnwM9N\nHn+CAieeqqJl76ji1WcO+Dz/hnqNe/QBBSpq1HzkMSpcuViFyxbucV3aMLRiI+EcAAAAAAAAAAAw\n8KyHugEAAIa7nQ/zx//rHklSfRbTcvxuuwpynIPSF4Y2Y9ZsdZ37GeU/eJ+O/d5l+702ZbMp5XDJ\nnEjIGouo9bC5WvDdXypaUHyQut3ObDLJbjOrqmiAp+V8QOK665V++Xkddscv1Tz3OKUd/fz3wzA0\n85ZrZUqntfhL31Pc51fZwlc1+YHb9eqMOXtcvjOcM6U2T4U5TLACAAAAAAAAAAADg2AOAAAHqKM3\nKmdHq6pfelK91WPVMvsjGdfWlvoGsTMMdakbf61VYyYr1bxNlnhMlmhk+8dYRNZoVJZ4VJbY+z/M\nqZQaTzxLq8/9vGSxDGgvZpNJdqtZDrtFDptl10enzSK7fcdH28Dec29SdeMUvOwK+W+7SRMevlur\nL7yiX+dUvvKUipcu1NZ5H9W2OcdKkloPm6vSd19Xbv0KdU+YukdN2jC0cmOXptSI9XIAAAAAAAAA\nAGBAEMwBgFGuKxBTLJFSab77ULcyLMUSKfWG45r2yP0yJxOqP/tiyWTKqDbHY1e+n2k5o5rTKe+V\nV+jdNW1KpNIH5ZZmk0luh1Uep1Uel01up1Uep01Ou0WmDH/vDrb4t7+jxEMPaPIDt2vjx85WtLAk\nq3pLJKzD/vRLpWw2Lf7id3a9vur8L6h4yQJNevAOvfXD3+21Nm0YWtnYpakmE9OsAAAAAAAAAADA\nASOYAwCjWOO2gDZu65Wx4+eEc7LX2RuVJRpR3WN/V8yfq8aTzsq4trbUP4idYbhw2q2aUJWrFRs7\nB/RckySP0yaP0yr3Bz66HEMngLMvhs+v0Pd+pNxvfU3T7/qNFl71i6zqJ/39drnbt2nVBV9UqKJm\n1+utRxylzvFTVfnaM/I1rVegum6v9TvXWk0bk094DgAAAAAAAAAAHBDzoW4AAHDwJZIpLW3o0IYP\nhHLWNHWppSt8SPsajjp6oqp57hE5Aj1q+Pj5Sjsye4if63Uoz+cY5O4wXBTlulRe4BnQM8dV5Gj2\npGJNrs1XTalPhbkuuZ3WIR/K2Snx6YsUmTJdtc89ovxVSzKu82xt0sR/3qVwYYlWnf+F3d80mbT6\n/MtlMgxN/Mef93tO2jC0YkOnugKx/rQPAAAAAAAAAAAgiWAOAIw6vaG43l3Tps5AdLfXDUlrmrrV\n1h05NI0NQ+m0oa6eiMb/+16lrTY1nHlBxrVjSn2D2BmGo7EVfrkdAzPMsLzAo4oi74CcdchYLIr9\n/EZJ0uG3Xi+lM1v1ddiffiFLIqGlX/i2Uq49w05bjj5JvVV1qnnuEblam/d7VsowtHx9h3qChHMA\nAAAAAAAAAED/EMwBgFFkc1tQi9e1K5pI7fX9tGFoVWOX2nsI52SiozeqooWvyr9pvZqOP13RguKM\n6vK8DuV4mZaD3VnMZk2pzZf5ACfa5PscGleZM0BdHVqJeUcpeMYnVLB6qapfeKzP60sWvqqKN19Q\n2/TZ2nT86Xu/yGzW6vMukzmV1ISH/9LnmSnD0NL1HeoNxbNtHwAAAAAAAAAAgGAOAIwGyVRaKzZ2\nat2WHqUNY7/Xpg1DKzd2qbM3ut/r+hKJJbWhuVdGH/cbruKJlNZt7tGEh++WJNWf89mMa8eU+Qep\nKwx3XpdNdeX9//3hdlgHJNwzlMR+cq1SDodm/PnXskRC+7zOlIhr5q3XyzCbtejL35f282vQ9NEz\nFC4qU90T/5C9u7PPHlJpQ0sbOhQIE84BAAAAAAAAAADZIZgDACNcMJLQe/VtWa2oShuGlm/oVFcg\n+/UtqXRaG5p7tXB1qxpbAtq4LZD1GUOdYRha3dQlx9pVKln0ploPm6uesZMzqs33OeX32Ae5Qwxn\nlUVeFfidWdfZLGZNryuQ1TKy/niXrq5R6IqvytXRqkkP3rnP68b/56/ybd6oho+fr56xk/Z7pmGz\na82nLpU1FtX4/9yXUR/JdFpLGzoUjCSy6h8AAAAAAAAAAIxuI+vJDQBgNy2dYS2qb1M4lsy6Nm0Y\nWr6+Q93BzMM5LZ1hvb1yeyBn52SexpbAAU/fGWqaWoLqDMQ04V/3SJLqP5n5tJzaMt9gtYURZFJ1\nrhxWS8bXm00mTanNl8thHcSuDp3Y1/9P8eJSTfznX+Ru2bLH+86OVk356y2K+XO1/OKvZnTmhtM+\npVhOnsY9cr+soWBGNYlUWkvWtSsUJZwDAAAAAAAAAAAyk1EwZ8mSJbrooov2eP2FF17QOeeco/PO\nO08PPfSQJCkej+ub3/ymzj33XH3uc5/Txo0bJUmNjY264IILdOGFF+rHP/6x0un0wH0WAIDdpA1D\n9Zu6taqpS6kDWCWVMgwtW9+hntD+17f0huNaVN+mVU1diiVTe7y/qrFL0Xj24aChqCsQ08ZtvXJ0\ntav6hccUqKhR89zjMqot9DvldzMtB32zWS2aVJOX8fXjKnKU53MMYkeHmNeryI9+Iks8phl3/mqP\nt6f/+TeyRcJafsk3lPDnZnRkyulS/dkXyx7sVd3jD2bcSiKV1tJ1HQpHR8bXNAAAAAAAAAAAMLj6\nDObccccd+sEPfqBYbPeJCYlEQjfccIPuuusu3XfffXrwwQfV3t6uhx56SG63Ww899JB+8IMf6Gc/\n+5kk6YYbbtA3vvEN3X///TIMQ88///zgfEYAAHUHYtraERqQs1JpQ8saOtQb3jOcE0uktLqxS+/V\nt6lnL+/vlEiltXJj164pOsPVzs/XkDTp73fIkoir/pxLJHNmA+hqy/yD2h9GljyfQ1XF3j6vqyz0\nqrzQcxA6OrTinzpPkcNmqerlp1S4dOGu1wtWLFLtc/9V17jJWn/ap7I6s+GsC5VwezThX3fLHM98\nOlgsmdKShnZF+jGNDAAAAAAAAAAAjC597juorq7WTTfdpKuuumq31xsaGlRdXa2cnBxJ0qxZs7Rw\n4UKtW7dOxx57rCSprq5ODQ0NkqQVK1Zozpw5kqRjjz1Wr7/+uk4++eQ+GywqYuUHgJFvoL/WtQbi\n8nmdA3rmxtaQZk/2KsfrUCptqLG5V+u39CiZMjK6lyGpI5TQlDEFA9rXwWIYhhauapHdaZOvrUNj\nH/+7IqUVaj/nQvlsfU/BKc5za0x1/kHoFCNJQYFXxopm9QT3HnwrzHVp1qRimUymg9zZIfKnW6R5\n83TE7b/Qm3/+ryRp1m3XS5LWfOun8uVkGVDyOrXp7M+o7m9/0qSXH9Omsz+dVfn61pDmTi0dsSvE\nAAAAgL7wd7cAAAAA0Lc+nyKccsop2rx58x6vB4NB+Xzv/x8vj8ejYDCoyZMn68UXX9RJJ52kJUuW\nqKWlRalUSoZh7Hpo5PF4FAgEMmqwrS2z6wBguCoq8g3417qGpk7FEnuulDpQL77dqNoyvza3BhXp\nx2qqFeuiMpIpFee6Bry3wbahuVeNLdv/dxp3x+9lice1/NNfVm8sLcWifdaPLfXyPQ39UpHnUnNr\nQKn07hOnPE6bKvKcam8PHqLODoG6KXKdfa5y/v2QCv91v2QYylmzXI0nnqlNddOkYN//Ln7Y8jM/\nrZqH/qKa+27TqhM+IcOSecgmEJRee3eTDh9fmPV9AQAAgOFuMP4+AwAAAACGq/39hwuZ7d7YC6/X\nq1Do/TUpoVBIPp9P55xzjrxery688EI9++yzmjp1qiwWi8wfWPMRCoXk97POAwAGQyAcl9HeLnfL\nFmmAV0clUmmt3dzdr1DOTmuauhSOJgawq8HX2RtV045Qjrt5s+qeeliBiho1nnRWRvV+t125Xsdg\ntogRzOWwakJl7m6v2SxmTRuTL6ul33+UG7Zi1/xUKadL0/7ye03/y++UcLm19LJv9f+8/CJtOOWT\n8m7brKqXnsy6vjsUY6UVAAAAAAAAAADYp34/zRk7dqwaGxvV3d2teDyud955RzNnztSyZcs0f/58\nPfDAAzr11FNVVVUlSZoyZYoWLFggSXrllVc0e/bsgfkMAAC7ae8I6uQvfVJnXHSSzjz3I/rI9y/X\nlHtvUtmbL8rR2Zb1eeZ4TP4N9ap47RlNeuB2Tb3793J2tPa7v1Ta0MqNXUql0/0+42CKJVJa3dSl\nnRGnKfffKnMyoRUXXZnxZI3KYu/gNYhRoSTfrZIdk6bMJpOmjckfteuT0mXlCn/t/+Ts7pCjp0ur\nPv0lRQuKD+jMNf/v80qbLZr04B1SP742tXZFDuj+AAAAAAAAAABg5Mr6ic6jjz6qcDis8847T9/9\n7nf1+c9/XoZh6JxzzlFJSYlsNpt+//vf67bbbpPP59N1110nSfrOd76jH/7wh/rNb36juro6nXLK\nKQP+yQAAJOOVV+Vu36ZAebXMqaTKFr6qsoWv7no/XFiqrglT1TlxurrGT1PnhKlKeHxyt22Tb/MG\n+TZvlHfLRvk2b5Rv8wa5W5tl+tDknfH/+auWXfoNNXz8fMliybrHYDSh+k09mlyTd8Cf72AyDEOr\nNnYpntz+oN67eYNqnv2vemrGadNxp2V0hstuVVGOczDbxCgxvipXveGEqku8yhnlE5iiX/ma7A8+\noKjMqj/74gM+L1xWqU3Hn66aFx5V2YKX1Tz/o1nVt3SFVVO67xGVAAAAAAAAAABg9DIZxgDvORlg\n7CkGMNIN5E72SCyp2JVf1fj//k0v//zPaj3iKDm6OpS3doXy6pcpv377R1dn+251KZtNlsSe66Ui\nBcUKVNYqUFGrYGWtApW1crc2a9rdv5c92KvO8VP13tevUdeEaf3qd2JVrsoKPP2qPRg2NPeqseX9\n/23m3PBt1bz4mN744e+15ZiPZXTGuIocVRYxMQcDI55IyW7LPgw3IoVCCkQS6pVNoUhCwUhCoUhC\nqX7+0da/oV6nfPET6ph8mF743QOSyZRV/RHji+T32Pt1bwAAAGA4Gsi/zwAAAACA4a6oaN//Ae/o\n3IEAACNUR3dEE19/XnFfjtpmHClJiuUVaNucY7VtzrHbLzIMOTtalb9mmfLqlyu/frnswV4Fymt2\nhW8ClbUKVtQq6d57aGbzMadoxh2/VO1zj+jEr56rdWddqOWXfF1JT3YTI9Zu7pHXZZPPPfQeZnf2\nRncL5fg31Kv6pcfVNW6ythx9UkZn2CxmlRW4B6tFjEKEcj7A45HPI33wq45hGIrEkgpGEgpGkrvC\nOrFkqs/jesdM0Jb5J6jizRdUtHSh2g6bk1U7LV1hgjkAAAAAAAAAAGAPBHMAYASJL3hb7vZt2njS\nWTKstr1fZDIpWliirYUl2pphwOTDYnkFWnjVL7TxY5/UEX/4icb/92+qfPVpLfnid7Xp+NMznjSR\nNgyt3NilWROLZLWY+9VLX5KptLa0heRyWuV12uR29v2tLxZPaVVj126vTb3vZpkMQ8s/+zXJnFmv\n5YUeWTK8FsCBM5lMcjttcjttKv7Aprx4IqVQNKlwLKnIzo+xpKLxpD44X2f1+V9QxZsvaNLfb886\nmNPaFdHYihyZs5y0AwAAAAAAAAAARjaCOQAwQiSSaeU896QkactR/QvcZKvt8Ll69rb/aMI/79KU\n+2/TvBu+pdqn/6X3vvojhSpqMjojEk9qdVOXpo0pGPD+Esm0lja0KxB5f02XxWyS12mTx2WTd8cP\nj8u6K0CTNgytbOxUIpXeVZO7doUqX3tWHZMP07Y5x2V0b7PJpPLCobumCxhN7DaL7DaL8nyO3V5P\n75iwsyusk3+UOmfOVem7ryt33Up1j5uS8T0SqbQ6e6IqzHUNdPsAAAAAAAAAAGAY4z/jB4ARoqM3\nqvLXn1PS4VTL7I9kVWs7gGk1abtdqy+8Qk/f/oiaZx+j0vfe0CmXn6XJf71F5ng8ozPae6La1Brs\ndw97k0imtGTd7qEcSUqlDfWE49raEVL95m69t7ZNry1t1turWrRyY6dWbuxUT2j3vqfee5MkbZ+W\nk+E0jJI8lxysHQKGNLPJJI/TpsJcl6pLfJpYnSfLt74pSap77MGsz2vpigx0iwAAAAAAAAAAYJgj\nmAMAI0RkyXL5N61Xy6yjlXJmPrHB7bBq7pQSVRV5D2gFS6i8Wq9d9ye9+YPfKu7P1bR7b9bHrviE\nipa8nVF9w9Yerd/aq7Rh9H1xH2KJlBav61Awmuj7YkmGpHAsqdbuiNp7oru9l79ykcoXvKzWGUeq\ndeb8jHuoKvZm0zKAISJ+wslKlVeq+sXHZA2Hsqrt6I0q+YFpWwAAAAAAAAAAAARzAGAESKcNuZ9+\nXJK05ejs1liVF3hktZg1tiJHsycWKdfr6LtoX0wmbT72VD115+OqP/siebc26fhvf1ZH/OEaWUN9\nT8Rpag1oybp2xeKpfrcQi2+flBPKMJTTl2n3/EGStCKLaTkFfqfcTtuA3B/AQWaxKPqZi2WLhFX1\n4uNZlaYNQ61MzQEAAAAAAAAAAB9AMAcARoCuQEzlrz+ntNmirXOPz7jObDKpJN+96+dup02HjyvU\nlNr8A1rDlPR4teRL39Pzv3tAPTXjNPaxB3XK5WepZOGrfdb2hOJ6Z02rOj40uSYT0XhSi9e1KxxL\n9qftPRQteVsli97StllHq3367IzrKouYlgMMZ9FPXyzDbFbdEw9lXdvSFR6EjgAAAAAAAAAAwHBF\nMAcARoDe+vXKX7NMbYcdqYQ/N+O6ohynbNY9vxUU57o0Z3Kxqot9B7TeqmvSDD13y8Na8Zkvy9nZ\npmO/f7mOvPFq2Xq791uXSKW1bEOHGrb2ZLzaKhJLavHadkXiAxPKkWFo6o5pOcs/+7WMy3wuu/J8\nBzB1CMAhly4rV/zkU5W/doVy61dkVdsTiisyQOFAAAAAAAAAAAAw/BHMAYBhzjAMOZ/q3xqrskLP\nPt+zmM2qK/dr9sQi5WcRNLFZzMrzOlRV5NXY8hyZnA6tvPireu7mf6hz/FTVPvsfnfqFM1X+2rN9\nnrWpNagla9sV7SNsE44mtHhtu6KJPVdg+TfUq/aph2WJZDfFouTd11W0/F1tmX+CuibNyLiuqnjf\nv6YAho/oxZdIkuqe/EfWtayzAgAAAAAAAAAAO5kMI8NRBIdIW1vgULcAAIOqqMh3QF/rekJx+c7+\nuEoWv6VH739J0cKSjOrcDqvmTM7sWklq646oYUvPbuEXt8Mqj8smr9Mmr2v7D4d99xVYwUhCy9Z3\nKJZIyZRKasI//6Kp994sSyKuTceeqkVf+b5ieYX7vbfNYtak6jwV5Dj3eC8UTWjJunbFk+nd3zAM\n1T32dx1+289lScQVy8lT/Scv0bqzLlTS08eqKcPQiV89V/n1y/XMrf9Wz9hJ+79+B6fNorlTSmQ6\ngClDAIaIVEp5s6bJ6OrSYw+8oqQ789Cdy27V3CmZf30FAAAAhqMD/fsMAAAAABhJiop8+3yPiTkA\nMMz1NDaraOlCdUyakXEoR5LKCrKb7FKU69KRk4s1uTpPM8cX6SPTyzRncomm1uarptSnghznHqEc\nSfK6bDpifJG8TpsMi1VrzvuCnrntP2qfMlNVrzylUy77uKqff1TaT05012qrLbuvtgpGtk/K+XAo\nxxoKaN71/6dZN/1USZdba//nIplSKU3/y291xkUnasq9N+13nVbZWy8qv365Nh17asahHEmqLPIS\nygFGCotFsc98VrZIWFUvPZ5VaSSeVG8oPkiNAQAAAAAAAACA4YRgDgAMc5ann5A5ncpqjZXZZFJp\nviv7e5nNKsl3K8djl9WS+bcQh92iw8cXqsC/feJNsGqMXvz1fVr0pe/JEo9r7i+u0tE/+pLc27bs\n95xNbcHtK6viSfWG41qyrl2J1O6hnNy1K3TyVz6lqpefUtu0WXr21n9r8Ze/p8fve17LLv1fGRaL\npv71jzrjohM1/c+/lqOrY/ebpNOads8fZJjNWnHxlRl/jlazWaUF7oyvBzD0RS+8SIbZrLonsl9n\nta0zu/V5AAAAAAAAAABgZCKYAwDDWDiaUNFLT0tSVsGcohynbNY9p9sMJqvFrGlj8lVRuGNSj8Wi\ndWdfpKdvf0QtM+epfMHLOu3SU3XkL78j/4b6fZ7TG47r3TVtWrquY/dQjmFo7CN/0wnfuEDerU1a\ndf7levnGuxUpKpUkJT1erb7gcj1+73Na/MXvKOnyaNKDd+r0i0/SYbfeIGd7iySp8tWnlbt+jRpP\n+LgC1WMz/vzKCz1ZhZUADH3p8gpFT/yY8uuXK3ftiqxq27oju034AgAAAAAAAAAAo5PJMIb2EwP2\nFAMY6Q5kJ/vmDS2accw0Bcsq9cwdj2Vcd/i4QuV6Hf2650DY3BZUw5Ye7foGZBiqfuExTfr7YS9p\nogAAIABJREFU7cppXCdJ2jr3eK0+/wvqmHpEn+dZQwHN/s0PVfXq04rl5GnBVb9Qy5HH7LfGHI9p\nzFMPa9KDd8rd1qyUzaaNp3xSRYvflndrk5768+MKVdRk9PmYTSbNnVIih+3ghp0ADD77M08q5zPn\nqeGM8/Te16/JqnZabb4Kc7OfTgYAAAAMBwfy9xkAAAAAMNIUFfn2+Z71IPYBABhgpmefkSUe05aj\nMp+W43ZYD2koR5Iqi7xy2i1atbFLKcOQTCY1nXimmj56hsoWvKxJD96h8gUvqXzBS2qfeoRWn3eZ\nmuccJ5n3nEiTV79c8677P3mbN6lt+my9dfWvFC0s6bOHtN2hhrMu1PrTPqWa5x7R5L/frrGPPShJ\nWn/apzIO5UhSca6LUA4wQsVP/JgSpeWqfuFRLbn820q5PBnXtnRFCOYAAAAAAAAAADDKWa655ppr\nDnUT+xMOxw91CwAwqDweR7++1sUTKTl+c6NyN9Rr8RVXK1pQnFFddYlPOR571vcbaG6nTfl+hzp7\nYkqld8zOMZkUrBqjjaeeo5aZ8+Xo7lDJordU/eLjqnztWSVcbvVWj5XMFskwNO6/f9P86/5P9kC3\nVl14hd751nVKev3ZNWKxqHv8FDWcdYECFbVKur1aduk3snr4Prk2T/aDvBoMwEFiNkuBXrleeVGh\nskp1j5+acWk0nlJ5oUcWs2kQGwQAAAAOjf7+fQYAAAAAjEQez74HI7DKCgAOsf6Oft7W3KWJR01T\nwuPVE/c9L5n6fvBrNpk0f2qJbEMoRBKNJ7V8faeC0cRe3/dvqNekh+5U1YtPyJxOKVRcpvpzLlHR\nsndU+dqziubka8F3f6nWWUcf5M63y/c5NWNswSG5N4CDw7xls/JnTVPX+Kl6/qaHsqqdUJmr8sLM\ng34AAADAcMEqKwAAAAB43/5WWe25EwQAMCykXnpJ9lBAW486KaNQjiQV5TiHVChHkpx2qw4fX6h8\nn3Ov7/eOmaC3v/NLPXn301r7ic/I0dOlmbfeoMrXnlXrYXP07G3/PmShHEmqKvYesnsDODjSFZUK\nHXeS8tcsU+66lVnVtnSFB6krAAAAAAAAAAAwHBDMAYBhKJVOy//sk5KkLUeflHFdacHQnNpgtZg1\nvS5fVUX7DrmESyu0+Cvf1+P3Pa/lF39VS77wbb3887syXuE1GPxuu/J8+x5LB2DkSH7u85Kkuiey\nm5jTE4orEksORksAAAAAAAAAAGAYIJgDAMNQV3dEZW88r5g/V+3Tjsioxu2wDukQiclk0tiKHE2u\nyZNlPxOA4rn5WvWZL6v+/31Oshya6T9mk0k1JT4dNo4VVsBokTjxZMVKylT9wmOyREJZ1TI1BwAA\nAAAAAACA0YtgDgAMQ7HX35Srs01b558gw2LNqKZsiE7L+bCSPLcOH18op21ordzaKd/n1OyJxRpT\n5pfFzLdRYNSwWhW+4CLZwiFVvfRkVqUtnZFBagoAAAAAAAAAAAx1PFEEgGHGMAx5nn5ckrTlqMzW\nWJlNJpXmuwazrQHlc9s1a2KRcr1DZ8KP027RtNp8zRhbILczszAUgJEl/dlLZJjNqnviH1nVReJJ\n9YTig9QVAAAAAAAAAAAYygjmAMAw0xOMqfS1Z5V0utUy66iMagpznLJZh+YEmn2xWS2aMbZAlYXe\nQ9rHzrVVR04qVmHu8Ak3ARh46YpK9R5zggrWLFVOw6qsals6WWcFAAAAAAAAAMBoRDAHAIaZ0HtL\n5NvapOYjj1HantlEmeGyxurDzCaTxlXmaFJ1nswm00G/f4HfqSMnsbYKwPsSl3xOklT3+ENZ1bV1\nR5Q2jMFoCQAAAAAAAAAADGE8ZQSAYcb15GOSpC1HZ7bGyu2wKs83dFZC9UdpvluHjy+Uw3Zwpv64\n7FZNH1Og6XUFcjlYWwXgfcYppypaVKqaFx6VJZL5FJxEKq3OnuggdgYAAAAAAAAAAIYigjkAMIwE\nIwkVv/KM0labmucel1FNab57kLs6OPxuu2ZNKFKOxz5o9zCbTKot3b62qiDHOWj3ATCMWa3qPfdC\n2cIhVb38ZFal27pYZwUAAAAAAAAAwGhDMAcAhpHAinrlrVullsPnKenx9Xm92WRSWcHICOZIkt1m\n0WHjClU+CKu5/G67Zk0sUm2pX2bzwV+bBWAYufRSGWZz1uusugIxGayzAgAAAAAAAABgVCGYAwDD\niO2J7NZYFeY4ZbMenPVPB4vZZNKEqlwdNrZQOe4Dn55jMZk0tjxHM8cXyuO0DUCHAEY6U3WNOo86\nXgVrliqnYVXGdam0oVA0OYidAQAAAAAAAACAoYZgDgAME7F4SoUvPSXDZNLWo07IqKZsECbLDBV5\nPodmTijStDH58vYzUJPrcWjWxGJVFXtlMjElB0DmohddKkmqe+IfWdUFwvHBaAcAAAAAAAAAAAxR\nBHMAoA+b24JatLZNm1qDisQO3qQDwzAUjCS0pT2kVY1dWrFwtQpXvKeOKTMVyyvss97tsCrP5zgI\nnR5ahTkuzZ5UrCk1eXI7rBnVWMwmja/I0eHjC+V2ZlYDAB9k+/jpihQWq+b5R2WJhDOuC4QTg9gV\nAAAAAAAAAAAYangaCQD7kDYMrdvco60dIUlSTyiuhq098jptKsx1qjDHJa9r4FYfJZJp9Ybi6g3H\n1ROKKxCOK5U2dr0/5pVnZTKMjNdYlea7B6y34aA4z63CXJdaOsNq3BZQNJHa63X5PocmVOXKaedb\nIID+M9ls6vjkBaq8/feqfPVpNX7s7IzqekNMzAEAAAAAAAAAYDThqSQA7EUyldaKDZ3qCsb2eC8Y\nTSi4LaGN2wJy2a0qzHGqMNelHI+9z3PThqF4IqV4Mq14IqVYIq1tvTE1belWuI9pPBWvPydJGQVz\nLCaTygpGVzBHkswmk8oKPCrJc2tre0iNLQElUmlJktVs1tgK/4he7wXgIDvvfOn236vk3TcyDuaE\nY0ml0mlZzAyuBAAAAAAAAABgNCCYAwAfEokltWx9R59BGUmKxJPa1BbUpragHFaLCnKc8nvsiidS\nSuwM3yTTu/55Z0jkg3xeZ5/3Klz2jooXvanuuokKlVXt91qX3aqpY/Jls1r67H+kMptNqiz2qrTA\nrS1tIYWiCY2tyJHDNnp/TQAMPMe0KYr7c1WwanHGNWnDUDCcUI535K8aBAAAAAAAAAAABHMAYDfd\nwZhWbOjca4CmL7FkSls7QrtWXw0EV+tWzbjjV6p++UlJ0rpPfHq/1xfluDSxOldWC5MYJMlqMaum\n1Heo2wAwUplMihw+WzmvPCdHZ5ti+UUZlQUI5gAAAAAAAAAAMGoQzAGAHZo7Qlq7uUdpwzjUrcgS\njWjiP+7SxIfulDUWVefE6Vr0pavVOWXmXq83m0waU+ZXVbH3IHcKAKNbcu5c6ZXnVLBysbZ+5OSM\nanrD8UHuCgAAAAAAAAAADBUEcwCMeoZhaP3WXm1qCx7qViTDUOUrT2nGHTfK09qsSH6h3vvqj9V4\n0lmSee9TcBxWi6bU5jF9AQAOAdO8eZKkwiyCOYFwYjBbAgAAAAAAAAAAQwjBHACjWjKV1urGLrX3\nRg/4LHM8JmdXu8zxuEJllTKstqzqc9et1OF/vF5Fy99VymbT6vMu06oLrlDS7dlnTZ7Xock1ebLb\nLAfaPgCgH1IzZyltsahg5aKMayLxpBLJlGxWvnYDAAAAAAAAADDSEcwBMGpF40ktX9+pYHT/kwss\n0Yi8WzbK2dkuZ9eOH3v5Z3uwd1dN2mJVoLJGvTXj1VszTj212z8GK6plWHb/0mvr6tARt/xSdU/+\nQybD0Jb5J2rJ5d9WqKJmv33VlPhUW+qTyWTq/y8CAODAeL0Kj5usvLUrZI7HlbbbMyrrDSVUkEMw\nBwAAAAAAAACAkY5gDoBRKRhJaFlDh2LJ1F7ft0QjKn37FVW98pTKFrwka2zfE3ViOXmKFJaoa/xU\nRfMLlbZY5W9qkL+pQTmNDbtdm7LZFKgco96aceqtGSfDZNKkf94lWzCgnpqxWnzF1WqddfR+e7dZ\nzJpck6d8vzP7TxwAMOCis46Ud81y5TasVOfkwzOqCUTiKsjh6zgAAAAAAAAAACMdwRwAo048kdLy\n9XuGcsyxqEoXvqqqV55S+VsvyRoNS5ICFTVqOeIoRQqKFc0rVDS/UNG8IkXzCxXLzd/3yirDkKut\nWTkb18nfuP1HTuM6+RsblLuhftdlCZ9fi778fTWcef4e03Q+zO+2a0ptnpx2vnwDwFCRnjtPuv8v\nKli5OONgTm9o/9PaAAAAAAAAAADAyMCTXQCjSjptaMWGTkUT20M55nhMpe+8psqXn1L5Wy/IFtke\nxgmWV2vTcadp07GnqqduotSfdVEmkyLF5YoUl2vbnGM/2ITcrc3yN66Vq7NNPSefoU6ru8/jKgu9\nqqvwy8zqKgAYUkzz50mSClYu1tpzMqsJhOOD2BEAAAAAAAAAABgqCOYAGFXWbOpWTziuwqVva8xT\nD6vijRdkCwclScHSSjWcdaE2HXeausdO7l8YJxNms8KlFQqXVkiSfF6nFNz3qiyr2ayJ1bkqynUN\nTj8AgANTU6tYQZEKVy6SDCOj7x+JVFqRWFIuB38cBwAAAAAAAABgJONJAIBRo6kloJausCpfflLz\nrv+mTIahUEm5Gs44V5uPO01d46cOXhinn3yu7aureHALAEOYyaTgjFkqePEpudqaFSkuz6gsEI7z\n9R0AAAAAAAAAgBGOJwEARoX27ojWN/eqeNGbmvuL7yjpcuuNH9+k1sPnDbkwzk6VRV7VlbO6CgCG\ng/jsOdKLT6lwxSJtyjCY0xtOqDhvkBsDAAAAAAAAAACHlPlQNwAAgy0YSWhVY5dy167QUT/5qgyT\n9PqPb1brzPkDFsoxSSrwOzV9TIHmTy1VbalPDqulX2fZLGZNq83XuIocQjkAMFzMmydJKli1JOOS\nQCg+WN0AAAAAAAAAAIAhgok5wCjS1h2R32OXw9a/wMhwFEuktHx9h5xbGnXM978oaySst77/G7XN\nnDcg59ssZpUVeFRW4N5tHUltqV/VJT61dUe0pS2k3nBmD1/97u2rq5x2vjwDwHBimT1LaatNBSsX\nZVwTjCSUNgxCmAAAAAAAAAAAjGA8+QVGifbuiFZs7JTFZFJ5oUfVJV7Z+jnRZbhIpw2t2NApo7VF\nx159mZzdHXrvyh9q87GnHvDZOR67ygs9Ksp17fOBqtlkUkmeWyV5bvWG4trSFlRbT1Rpw9jr9VVF\nXo1hdRUADEsml0u9E6Yqd81yWaIRpZyuPmtShqFQJCGf234QOgQAAAAAAAAAAIcCwRxgFAhFE1rV\n1CVp+0PATW1BNXeEVVnsUWWRV1bLyNxqt6apS+G2Th3//cvlbd6kFZ/5shrOurDf51nM24M25YUe\neV22rGr9Hrv8nnzVJVLa2h5Sc0dI8WRakmSzmjVtTL4Kc/p+iAsAGLoiM2crd+Vi5dUvV/uMIzOq\nCYQJ5gAAAAAAAAAAMJKNzKfxAHZJJNNavr5TqfTuU1qS6bQ2bgtowcoWbWoNKp3e+xSX4apxW0Bt\nrT06+porlbdulRpOP1crL7qyX2e57FaNr8zV/KmlmlCVm3Uo54McNovGlPk1b2qpJlXnqSTXpaNm\nlBPKAYARIDFnriSpYNXijGsCGa46BAAAAAAAAAAAwxMTc4ARzDAMrWrsVCSe3Oc1iVRaDVt7tLkt\nqJoSn0oL3MN+lVJrd0QbtnRp3i+uUvGSBdp89El676s/krL8vBw2y6D9mphNJpXmu1Wa75bLYVVw\nQE8HABwK5vnzJUkFK7MJ5iQGqx0AAAAAAAAAADAEEMwBRrD1W3vVGYhldG0skVL95m5tag2qtsyn\n4lyXTMMwoNMbjmvNxk7NvPV6Vb36tNqmz9aCq38lWSwZn2GzmFVd4lNFoUdm8/D7NQAAHBqO2mqF\ni8tVuHKRZBgZBUJD0YSSqfSIXSsJAAAAAAAAAMBoRzAHGKFaOsPa1Jb9HJZIPKlVjV1qagmqwO+U\n32NTjscumzXzYMtACEcT6gzE1BuKy2wyyWIxyWoxy2I2yWIxy2oxyWre/tGy43XDMLRifacm/O1W\njXvkfnXXTdTrP7lFabsjo3tazWZVFntUWeTlASkAoF96px+h0ucfk2drk0IVNX1eb2j71Jw8X2bf\nqwAAAAAAAAAAwPAypIM52zpC2tISkMdpk9tplcsxpNsFhozecFxrNnUf0BmhaEKh6PvrNdwOq/xu\nu3weu3I8dnmc1gGdqJNMpdUdiKkzEFNnIKpoPNWvc8Y88ZCm3fMHhUoq9Op1tyvh9fdZYzGZVF7o\nUXWJ96AHkAAAI0t01pHS84+pcOWijII5khQIxwnmAAAAAAAAAAAwQg3ppEt3MKb1zb27fm4xmeR2\n2uRxWuVxbf/odlrltA/pTwM4qOKJlFZs6FTaMHZ73dneogkP360tR5+kjmmzsj43HEsqHEtqW1dY\nkmQxm+R32+XfEdRx2q07ptqYZDFnNm0mEI6rKxBTZ29MveH4Hj1nq/z15zTrDz9RLCdPr9xwh6IF\nxfu93mwyqTTfrZpSnxw2AjkAgAOXnjNXklSwarEaT/6fjGoC4UTfFwEAAAAAAAAAgGFpWCVaUoah\nQCSuQCQudb3/usVsktdpU47XoXy/Q36PXeYBnOQBDBdpw9CKjZ2KJXafNuNrXKdjv3e53G3Nmvjw\n3dr8kY9p6WXfVKi8ut/3SqUNdQVj6grG9njPbDLtWDm1c92Uecc/b187lUob6gpEFU+m9zzYMOTf\nuFZlC15W+VsvqmD1EpnSe7luH5JOt1699k8KVo7Z5zU2i1lFuS5VFXuZxAUAGFC2WTOVdDhVsHJx\nxjWBcHwQOwIAAAAAAAAAAIfSiHginUob6gnH1ROOq6k1IKvZrFyfXfk+p/L9DibqYNRYu6lbPaHd\nH+4VrHhPH/nRl2UP9GjNpy5V4Yr3VPnaMyp/60Wt/cSnterCK5Tw5QxoH2nDUDplaHs+qO+VVOZ4\nXEVLF6pswYsqf+sleVq2SJIMs1ldYycr6XJndl+bXasuuFxdE6fveQ+TSXk+h0ry3SrMcRLeAwAM\nCqfHpe4J01Sw/F1ZQ0ElPd4+a6KJlGKJFNPbAAAAAAAAAAAYgUZkYiWZTqu9J6r2nqgkye2w7grp\n5HjtGa/ZAYaTLe0hNXeGd3ut/PXnNO+Gb8mUSuntb9+wfaWGYajy5Sc148+/0cSH71btM//Wys98\nRQ1nni/Dajto/Tq6OlT29ssqW/CSSt59XbbI9t4Tbq82HXeqts79qLYdeYziOXkHdB+v06aSfLeK\n81w88AQAHBTBw2ercNk7yl+zVK1HHJVRTSAclyPHNcidAQAAAAAAAACAg21EBnM+LBxLKhwLanN7\nUGaTSbleu3I821de+T02gjoY9rqDMTVs6dnttbrHHtQRN/9UKbtTr//4JrUcecz2N0wmbT7+dG09\n6kSN/899mnz/nzTz1us17tH7tfSyb2nr/BOkAZ4mY4mE5G9sUE7jOvkb16lw+bvKX7NMJsOQJAXK\nq7XhtI9q69zj1T591gEHhGwWs0ry3CrJd8nntg/EpwAAQMbis+dI992mgpWLsgjmJFRIMAcAAAAA\nAAAAgBFnVARzPihtGOoMxNQZiEnavt7G47TuCOnY5Xfb5XKMul8WDGPReFIrNnQqvSPkIsPQlPtu\n1tS//lHRnHy9du1te13tlLY7tObcy7ThY5/U1PtuVt3jD+noa65U62FztOTyq9Q9fmrWvViiEfma\n1iunca38G9fuCuJ4Wrbufm+zRW3TZ6t57vHaOu+jClbWHnAYyGYxK9frUHGeSwWsqgIAHEpz50iS\nClYuybik90OrKAEAAAAAAAAAwMhgMoydT/OHntWNnVpW33rQ7+uwWuTz2OR325XjscvnsfOQHwck\nmUrLMCSbdWCnM/1/9u47Tq663OP450zdqbuzfVM2vYckm1ASQKqggCiKgCIKgoiI5dIEQZGOinrx\nIgJ2RVQUVECvXrqUNNJJ75tsrzM7vZ77x0IgpOxsSbKbfN+vV16bPef8fr9nNpnds+c853naQwm2\nNISIJTMAGNkMs//nDsb+60kiVSN59d6fEx0+Kq+5fDu2MOPn9zNs0X8wDYPaD36MlpnHYk0msCUT\nWN//J5XAluj+aE0mcLc04mmq21UF5x2JQCmhUePpevtPaMwEQqMnkPH4+vXarYZBoddBkddJwOfE\n67JjDNH3aVmZj9bW8KEOQ0REBkgynaXwmJk4Q508/dRCyKM6o81i4cQZVQchOhERERGRgaHrGSIi\nIiIiIu8qK9v3/W+VhtmLZCZLMpSlLZQAwGGzUFXioarETYFDXzLpvfU7OukMJxle6mVkuQe7zdqv\n+UKRJFsbuwi95+l6ayLO3HuuY9iiV+gcP5XX7nmUZKA07znD1eN4465HKF82n5k/+z6jn/87o5//\ne97jU4ES2mYcQ2jU+HcTcUaPJ+UP9Oq17YvFMPC57bsScfxKmBMRkUHKabcSnFbDyOefxrdzK+FR\n43sck8nliCXSuAv6185RREREREREREREREQGl8Miy8QWi+Kv3Ywlncx7TLysimjliLza56QyOWqb\nw+xoDlPsL2B4qYeAzzlkq3PIwVXXEtmV5LWjJUx9a4SqUg8jy7047b1L0AnHUmxr7NrViu0djlAn\nJ952NSXrVtI0+3gW3PY/ZNyePsXbfvQJbP7Q84xf8RqWrhAUFGC63JguF2aBC9zdH9/53HS5oKAA\nrNbudlrRFNlwkmRXglQ83acYoLs1lcdlx+fqTsYp9DqwWQe24pCIiMiBEqs5Bp5/mtK1y/NKzAEI\nx5SYIyIiIiIiIiIiIiJyuBlaiTmmiau1iaIt6ynaun7XR2/Djj5NlygqoX3qLNqnzqJtag2dE6aR\ncxbse3mgvStBe1eCAoeVYW9X0elv9RM5fHXFUmxt7NptW9Y0qWuN0NAWpbLYTXWFt8dKTLFEmm2N\nYVpD8T32uZvq+cAtV+Kv20btaefy5vV3Y9odfYq3IuBm7DA/TruV9PBzez3eYhgUep0Uep2MqfKT\nzmTpCCfp6ErSGU6QyuT2Oq7AYcXrsnf/KbDjddtVnUpERIa0zDHHAlCydgXbzrogrzFdsRQVxe4D\nGZaIiIiIiIiIiIiIiBxkg/rOt2PzBqpfeLU7AWfLeoq2rMMZDu12TNJfRHPNXEKjJ5L2ePc6jwHY\nbRbsNgsOqxW7FWxbNuNa9ibD57/I8PkvApCz2giOn0Lb1Fm0T5lF+9Qa4uVVe50zkcqytbGL7U1h\nygoLGFbqodDrHNDXL0NbJptj3fbO7ioye5EzTRraozR1xKgIuKiu8OFy7v6WjCcz1DaFae6M8c4s\nRjqFt3Envrrt+Oq2MeGvv8PV0cr6Cy7nrSuuB0vvq8r43Q7GDy/E7+lbQs++2G1WKgJuKgLdNxnD\nsRQdXUkSqQyedxJxXHZVwhERkcOObcZRpF1uStauyHtMONb3SnMiIiIiIiIiIiIiIjI4Gaa5j6yB\nweB9raLCw6oJjptCcNxkguMmExo7mXhpxa7jLIaBy2nDXWDDU2DDXWDHW2CjwGnDso+2U7kdO0i9\nPh9j0SLcy9+kaPM6LJl3b4rESivYcfq5vHX5dT22vfIW2Bk3vJCATwk6Amu2d9Aa3LPCzb4YQHmR\ni+pKHzYDmt7aROytdXjqtu1KwvHV1+JpqsPIvVt5xjQMVn7xG2w6/7Jex+i0WRkzzE+lns4/pMrK\nfLS2hg91GCIiMoDSmSzWc86iYvlC/v7kAtL+oh7HWAyDE2dU7fO8VURERERkMNH1DBERERERkXeV\nlfn2uW9QV8xJXncD7b5SUlOmk5o0FdPnxTAMXAa4DYPhBhiGgWF038hwOqy9vpFhqa6m4OJquPhT\nZEyTbe0hEouWYlm8EN+qpZStXsrkJ35B57gp1J1y9n7niiTSrN7WTs2EMrwue39eugxx9W3RXiXl\nQHertMwbb2D/8y+pWL6AEYk9xyeKSmibWkN4xGgiI0YTHj6a4LgpxCqH92oti2EwosxLdYVX1WpE\nREQOALvNSuf0OVQsX0jJ+pU0HXtyj2Nypkkklh7wCnYiIiIiIiIiIiIiInLoDOrEHOcP78feGsYO\neA7CeoZh4C8twn/O6XDO6cSTGTavXs/kj57CrEe+S9MxJ5HZR7usd2RzJqu3tTNnYhl2m/UgRC2D\nTSSeZkt9qOcD35HLUbX4P0x+4heUrlkGQFf1OEJjJhAeMYbw8NG7EnHSXn+/4ystLGDcsMI92maJ\niIjIwErMOQYeg5I1y/NKzIHuto9KzBEREREREREREREROXzozvx+uJw2XHOm03DFVxj5yI+Y9thP\nWPmlm3scl0hlWbO9kxnjStSK4AiTyeZYu72DXB4d4oxMmpGv/C+Tn/gFhbWbAWg47mTWX3Ql7dPn\nDGhcNouFsqICKovdFHrVak1ERORgyB19DAAl61bmPaYrlqZ3dfBERERERERERERERGQwU2JOHszr\nbyDyzJOM//vv2X7GeYTGTe5xTDCSZHNdiIkjiw5ChDJYbNoZJJbM7PcYazzGmH8/xcSnfo2npZGc\nxUrt6eey/sIv0DVm4oDFYjEMSvwFVARcFPsLsFiUJCYiInIwuavKCY0aR8n6VRjZDKa151PvcCx1\nECITEREREREREREREZGDRYk5eXAVetl0wx3UXPd5Zj94Jy//6PdgsfQ4rqE9isdlZ3jpwWjEJYda\nY3uU5mB8n/sdXZ2Mf/oPjH/69zi7gmScBWz62CVsPP8yYpUD82y8ARR6nVQEXJQVubBZe/5/KiIi\nIgeGz22nfcosCmu3ULhtI8HxU3scE0tmyGRz+hkuIiIiIiIiIiIiInKYUGJOnhwfOZu6v57JiNef\nY/Tzf2f7hz6R17gt9SHcThsBn9oHHc6iiTSb60J73WdJJpj22E8Y//QfsCXjpHyFrLnSNWdgAAAg\nAElEQVTky2z+6GdIFRUPyPo+l53ygJvyIhdOh3VA5hQREZH+sVkthGfMgX8/RcnaFXkl5gCEY2md\nO4qIiIiIiIiIiIiIHCb0KG6eSgsLWPuVW8kUuJnx8/txdHXmNS5nmqzd3kG8h/ZGMnRlcznWbu8k\na5p77AtsXM0ZXz6fyX/+JSlfISu+dDP/+P2LrP3cVwckKafAbmXOxDLmTCpnZLlXSTkiIiKDTGrO\nsQCUrF2R95iuaO/aWeVMk46uBKl0tlfjRERERERERERERETkwFPFnDxZDIOiKeNY89lrmPnz+5n+\nqwdY9l935DU2nc2xelsHNRNK1ZbgMLS5LkQ0kd5tm5HNMPmPjzL18UewZDNs/Phneevy68g5CwZs\nXbfTxoxxJRQ49DYWEREZrKxTJpPyFVKyLv/EnHAs/8ScrmiKDTuDu85FXA4bfo8Dv8dBoceBp8CG\nYRi9jltERERERERERERERAaG7uj3QlWJm8Uf/yyjn/sbY//1F7Z/6BN0TJmZ19hoIs262k6mjynW\nzZHDSHNnjMaO2G7bvHXbOPZ7N1OyYRWx0krevPFeWmrmDei63gI7M8aV4LCrQo6IiMhg5vM6aZ88\ng6o3X8PZ2UYyUNrjmHAs3eMx2VyO7Y1h6lojjPvb7xj93N959bu/JF4YIJ7K0NzZfX5itRj43N1J\nOn53d8KO3aZEcRERERERERERERGRg0VX5XuhwGEjUOxj2VdvwzBNZj94B2TzbxnQ3pVgW2P4AEYo\nB1M8mWHjzuC7G0yTcc88zhlXf4KSDauoPf1cnvvZ0wOelFPocTBrQqmSckRERIYAr8tO+9QaIP92\nVslMlkRq321Qg5EkSze0srM1QumKRcx69HsEtqxj/NO/3+PYbM4kGElS2xzmrW3tvLG6kcXrmtm4\nM0hrME46k+vbCxMRERERERERERERkbwoMaeXqkrctM04hu0f/BiBzesY948/9Wr8jpYwze+rsCJD\nU0NblGzOBKCgrZkP3HIls39yN1mHk/nfeoDFN32ftNc/oGsW+wqYMa5ELdFERESGCJvVQnTWMQCU\nrF2e97i9Vc3JZHNs3BlkxeY2YskMzs42jvvuDZiGhZTHx4SnH8caj/Y4dyyZoaE9yprtHcxf3cjS\nDS1saQjR0ZUgm1OijoiIiIiIiIiIiIjIQNLd/V4q8RdQYLey6sobSHn9TP/Nj3F2tPZqjg07g3RF\nUwcoQjlYWkNxAEa+/E8+dNXHqFz6Bo3HfIDnfvYM9Sd9aMDXKytyMX1sMVaL3rYiIiJDSWb2HEyL\nhdI8K+YAdMV2P1fs6EqwZH0LDe1vJ95ksxx33424Otp46/Jr2Xj+ZTjCIcb+7196FZsJhONpdrZE\nWLW1nTfeamLFpjZqm8KEoilyptmr+UREREREREREREREZHe6w99LhmFQVeIhGShl9WVfxxENM/Pn\n9/dqjpxpsmZbB8lU/m2wZHDpiqXItrVz3L3XM/e+G7CkUiz92u28fvejJErKB3y9qmI3U0cFsBjG\ngM8tIiIiB5a7tIjgmEkENq7GSOeXnP1OxZxMNsf62k5WbW0nkX733HHq4w9TsWIhDXNPZeMnP8/m\nj15MpsDNxKd+gyXV9wTwnGkSjCbZ1tTF8k2tLFjdRCS+Z/UeERERERERERERERHJjxJz+qCyxI3F\nMNhyzkV0TJjGqBefpXTV4l7NkcxkeWtrO5ms2gUMRR21DZzx5U9Q/cr/0jZ1Fs898je2fuQiOACJ\nMyPLvUyqDmAoKUdERGRI8rsdtE+ZiTWdIrB5XV5jwrEUrcE4b65roalz9zao5cvmM/XxnxKtGMbi\nG+4FwyDtL2LLORfibmum+qVnByz2dDbHqi1txBKZAZtTRERERERERERERORIosScPnDarRT7nWC1\nsuxr38E0DGY/eGfeT0C/I5JIs3prB7mcWgQMNY5nn8HT0siWj1zEKz98jOjwUQdknbFVfsYNKzwg\nc4uIiMjB4XXZ6Zg2G4CSdfm1s8rmTNZs7yCZ2b3CYkF7C8d99xuYVhsLb/kRaX/Rrn2bPnEpOZud\nSX/+JWQHrjJjKpNj5ZY24kkl54iIiIiIiIiIiIiI9JYSc/poWIkHgM5JR7H1nAsprN3CxL/9rtfz\nBKNJ1m7vIGcqOWeoCMdSlL32AgAbPnk5ptXW4xi308b0McWMH1bIiFIvJf4CPAV2rPupgjNhRBHV\nFb4Bi1tEREQODYvFID5rDgCjn/s7rpbGPs1jZDMcd98NFATbWfWF6+mYMnO3/fGySmpPPxd/3TaG\nL3ix33G/VzKdZdWWdpJptWIVEREREREREREREekNJeb0UbG/AJejOyHjrc9fS6KwmKmP/bRPN1ra\nuhJs3BEc6BDlAGlvaKdi2XxCoycQHVad15iyIhelhS5GlHsZP6KQo8aWcMzkcj4wcxjHT6ukZkIZ\nU0YFGFPpp6rYzdRRAYaXeg7wKxEREZGDxTp+HLWnfoSires580vnMeLVf/d6jqm/+wnlq96k7oQP\nsunjn9vrMesv/AKmYTD5iV/AACd+x1MZVm5uI51Rco6IiIiIiIiIiIiISL6UmNMPVSVuANK+QlZd\neSO2ZJxZj9zXp7maOmNsrg8NZHhygBgvPI81naJ+3ml5jynxF+xzn8NupdDjoCLgZlSlj0nVAcoD\n7oEIVURERAYJn8fJ4pu/z5Kv34ElnWLe3ddy9A9uwRaL5jW+YsnrTPnTz4hUjmDJ9ffAPqruRUaO\nof6EMyje8BblKxYO5EsAIJbMsHJzO+lMbsDnFhERERERERERERE5HCkxpx+qStxY3r4pUnvGx2id\nPocRrz9P1YKX+zRfXWuE2qbwQIa4X6FoilVb2nl9VSNvbW2nriVCJJ4+aOsPRZF4mtJXnweg4fjT\n8xrjsFnwexwHMiwREREZ5HxuOxgG2865kBceeorO8VMZ89zfOOPqj1O8bsV+x7pamzjue98gZ7Ox\n4FsPkPb693v8+ou+AMDkP/18wOJ/r0gizVtb28lklZwjIiIiIiIiIiIiItITJeb0g91mpbTw7Uoo\nhsHSr99OzmZn9oN3YIv2LcFmW1MXDW35PTndV53hJCs2t7F8Uysd4QSZXI72rgSbG0Is2dDC/NWN\nrN3eQWN7lHgyc0BjGWpa28JULXqFeEk5nROm5TVmf9VyRERE5Mjgcdl3JXSHq8fy4o//yLqLrsTT\nVMep117ClN8/hJHd87zLyGY47r4bcIY6WXnVTQQn9nz+0TnpKJpr5lKxfAGBjasH/LUAdMVSrN7a\nQTan5BwRERERERERERERkf1RYk4/DSv17Pp7eNR41n36Ktxtzcz45Q/7POemuiAtwfhAhLebjq4E\nyze2snJLG8FIcp/HpTI5WoJxNuwMsmhdMwvXNrFhRyctnTHSmeyAxzWUZF9/HWc4RMO8U8GS39tH\niTkiIiJiMQw8BfZdn5t2B6uvuI7/fP83JIrLmP67n3DK9Z/D3Vi327jpv/kxZauXsvOkD7Pl3Ivz\nXm/9RVcCMOmJXwzMC9iLYDTJmm0d5EzzgK0hIiIiIiIiIiIiIjLUKTGnn4q8TtxO267P133qSkKj\nxjPuH09QuurNPs1pAutrO+noSgxIjG3BOEs3tLBqazuhWKrX4xOpLI0dMdbWdrJwbTO1TeEj8uno\nSDxNyX+621jVH//BvMZYDIOA33kgwxIREZEhwue277GtdeaxPPfo39l50ocpXbucM68+j+oXngHT\npHLRK0x+4heEh1Wz5Nq74O2KO/loqZlHx4RpjHj9Obx12wbyZeymI5xk7XYl54iIiIiIiIiIiIiI\n7IsScwbAe6vmmHYHS667C9MwOPqB27Ck9l2ZZn9ypsmabR10RXufSANgmiYtnTGWrG9h9fYOwvH0\n3g5i9P/9lWm/fgCy+VXCyeZMtjV1sXhdC00dsT7FNlS1dsYYNv9F0m4PrTOOzWtMwOfEmmdlHRER\nETm87S0xByDtK2ThrT9i8Q33gWly3PdvYu7d13Ls928ma3ew4NsPkPF4e7eYYbD+U1/EME0m/fmX\nAxD9vrWFEmyo7cRUco6IiIiIiIiIiIiIyB6UMTAAKgJurO95grljyiw2nfdZfHXbmfr7n/Z53qxp\n8tbWdqKJvSTVvE8uZxKJp2nujLGtsYs317ewtraTyD7GFrS3cOK3ruKYH97K1D8+yrTHftKr2JLp\nLOt3dLJ0Q8t+22IdThLLVuJtqqPpmA+QczjyGqM2ViIiIvKOQs9+zh8Mg9ozz+P5h/9G+5SZjHzt\n/3CGQ6y4+hZC46b0ab36408nPGI0o194hoK25t5PkM1SufhV7OFQj4c2B+Ns3BnsQ5QiIiIiIiIi\nIiIiIoc36+233377oQ5if2J9aL10sFktBvFkZrckmLbpc6h++Z9UvvkaDfNOJVlc1qe5c6ZJeyhB\nWVEBNquFnGkSTWQIRpK0BOM0tEXZ3tTFloYQDe1R2kIJQtEU6ey+W02NePXfnPitqyjatpGm2ceD\naTJ8wUt0TJpBZPioXsWXyuRo6ogRiafxuhzYbYdnrlcknsb2m19RvnIR6z59FV1jJuY1buKIImzW\nw/NrIgPH43EOie91IiLSP3ablXgiQzSR2ecxaV8h2888j7TbS+vM49j0ic/1qoXVbiwWMo4CRsx/\nAQyD5jkn5D3U2dnGCXd8jal/eBhnqIOG40/vcUwknsZmteDfXwKSiIiIiBw2dD1DRERERETkXR6P\nc5/7DHOQ15xvbQ0f6hDy0hVNsWxT627bKpa8wUm3fIHO8VN58cEnMK22Ps/vtFuxWgwSqSy5Pv6T\n2SNd1Pzkbka99CwZZwGrrryBLedeTNHmtZz2XxeTKXDx/MN/JV4+rE/zWwyDYSUeRlX6DrsEne1N\nXYz75Icp2rKeZ/7yBmmvv8cxPpedOZPKD0J0MtSVlfmGzPc6ERHpn2Qqy+J1zWQP0im4JZXi7EvP\nwBaL8M/HXiTtL+pxTNmKRRz33RtwdbQBECut4J+Pv5xXgpDFMKiZUIrPreQcERERkcOdrmeIiIiI\niIi8q6zMt899h1f2xCHk9zjwFth329Z89AlsP+M8ApvXMuGp3/Zr/mQ6SyyZ6XNSTvnyBZz5xY8x\n6qVn6Zh0FM//9K9s+ehnwDAITpjGiqtvwRkOMe+uazHSfXvSJWea1LVFWLyumbqWSJ9jHYzCG7dR\nvHE1rTOOzispB6CkUG2sREREZHdOh5Xqin2fnA+0nMPBxvMvwx6PMf7ZP+7/4GyWqY89xMk3X44z\nFGTFF29i58kfxt3WjG/ntvzWM03Wbu8ks5/qjSIiIiIiIiIiIiIiRxIl5gygqlLPHttWXHUTiaIS\npv/uQTz1tQc9JksywcyH7+Xkmy6noKOVNZ/9Ci/99+NERo7Z7bit51xI7ennUrJhFTN/dn+/1kxn\nc2xuCLF8YyvZ3NC/KRNLpCl65TkA6o//YN7jSvxKzBEREZE9jSz34nL0vZJib209+0JSvkIm/P0x\nrIn4Xo9xdrRy0je/wLTHfkKstIKXf/QYmz55Gc018wAoX7Eg7/XiqQwbdwYHJHYRERERERERERER\nkaFOiTkDqCLgwmrZvcR/2l/E8mtuxZpKcvQD34G+VJHJZqlc9ApVC17Gv20j1ngsr2GBjas548vn\nM/Fvj9E1ciwv/c+fWPvZazBt9j0PNgyWfu12QqPGM+Hp3zPilf/tfZzvE46n2VwX6vc8h1prMMGw\nBS8B0DDv1LzGOO1WtXAQERGRvbJYDMYNy68C30DIuD1s/ujFOEOdjPn3U3vsL1++gDOv/gQVKxZS\nP+80nv/pX+mYMguA5prjAahYln9iDkBLME5DW7T/wYuIiIiIiIiIiIiIDHEH71HdI4DNamFEmZfa\n5t17K9ed9GHqX/oHwxe8xJh/P8m2sy7Ie86S1Uup+em9BDav3W17oqiEaOVwolUjiVaOIFI5gmjl\nCKJVI0kUlzHpz79g6uMPY8lm2HTeZ1l1xXXknPuv4JJ1uVnw7R/zwa9cwNH//W2C46bsUVmntxo7\nYvg9DqpK9qwmNFR01rUwe+ViOsdPIV4+LK8xqpYjIiIi+1Na5CLgddIZSR6U9TZ97BImPvlrJj75\nK7Z85KLuRO1slqmP/5Spjz+MabWx4ks3s+njnwPj3UTzWFX3eWbZysWQzYLVmveam+tD3e1eXXtJ\nChcREREREREREREROUIoMWeAja70EYwkCUVT7240DJZ99TbKVy5mxs/up/HYk0mUlO93HldLIzN+\n+UOqX/4nALWnnUtozAQ8TfV4GnfiaaojsGktJetX7XOOWGklb95wD+1zTsButWC1GlgtFmxWA6vV\nwGaxYLNaiMTTBKPdN4XC1WNZcu2dzL3vBo6/82u8+D9PkHW5+/U12VwXwucemjdlYok03tdfwpJJ\n0zDv9LzHlRYqMUdERET2b/yIQpZuaCXXl4qKvZQqKmbbhz/JhKd/z8hX/peWmnkc990bKV+5mGjF\ncBbc+iM6J8/Y69iWmnmM/ddfCGxas89j9iZnmqzd3sGcSWVYLSrUKSIiIiIiIiIiIiJHprwSc1au\nXMkPfvADHnvssd22v/TSSzz00EPYbDbOP/98LrzwQtLpNDfffDP19fVYLBbuuusuxo0bx9q1a7nq\nqqsYPXo0AJ/+9Kc5++yzB/wFHWqGYTB1VDFLNrSQzuZ2bU+UVrDqCzcw539uZ/aDdzL/Ow/u9jTy\nO6yJOBOf/BWTn/gFtmSCjklHsfzqb9IxtWbPxbJZXO3NeJrq8DbW4Wmqw9NYR1F7I5bp04jcegeT\nSwJY9rLO+9W3Rtja0EXWNNl56jmUrlnG+Gf+wOwH7+TNG+/ba6z5ypoma7Z135SxWYfWTZnWYILh\nb7exqj/+tLzGWA2DIq/zQIYlIiIihwFPgZ1hJR7q2iIHZb2Nn7yMcc/+kem/fRDro9+nINRB/fGn\n8+b195D2Fe5zXHPNXMb+6y9ULF/Yq8QcgFgyw6adISaPCvQ3fBERERERERERERGRIanHxJyf//zn\nPPPMM7hcrt22p9Np7rvvPp588klcLhef/vSnOe2001ixYgWZTIY//elPvPHGGzzwwAM8+OCDrFmz\nhs9//vNcfvnlB+zFDBZOh5XJ1QHe2ta+2/atZ19A9cv/YPj8Fxn+2nPUn/Shd3eaJiNe/Tczfn4/\nnpZGEoFSln31Nmo/+DHY1xPGVivx8mHEy4fRNuNYAArdDmaOL8ViMXpVDml4mZdifwEbdgQJRpOs\n/OJNFG94i9EvPE3bUXN61X5rb+KpDBt2BJk2prhf8xxsba0hZix+lWjFMEJjJ+c1JuB3YrH0PZFJ\nREREjhyjq3w0d8Z2S+g+UGIVw9lx2jmMfuEZcjY7y6++hc3nXdJjAnbLrLkAlC9fwPpPf7HX6zZ1\nxijyOaks7l8VRhERERERERERERGRoajH8iXV1dU8+OCDe2zfsmUL1dXVFBYW4nA4mDNnDm+++SZj\nxowhm82Sy+WIRCLYbN3pIatXr+aVV17hM5/5DLfccguRyMF5MvhQKSksYGSZd/eNFgtLrr2TrMPJ\n7Ifuxt4VBKBwyzpOueFzzLvnOgo621h/0Rf416/+Re2ZH993Us5euBw2po8t7nNSiMtpY9aEUsYP\nK8RwOlnwrf8m5Suk5id3U7R5bZ/mfK/WUJy6lqHz7x5LZHAtno8jGu5uY5Vn1aASv9pYiYiISH5s\nVgtjqvwHbb3Vn7+WrWddwEv//TibP/7ZvM5vUkXFBMdOpnTNMizJRJ/W3bQzSCyR7tNYERERERER\nEREREZGhrMeiKh/60Ieoq6vbY3skEsHn8+363OPxEIlEcLvd1NfXc9ZZZ9HZ2ckjjzwCwIwZM7jg\ngguYPn06Dz/8MA899BA33XRTjwGWlfl6PGawKinxYq5pIhRJvrtx8hQ2X/FfTHr4exz3yL1kPF5G\nPPMnDNOk+cQPsuFrtxIbMRrXvqfdK7vNwtzpVXhc9n7HXVbmY+LYUt7a4uet237EnBuv4IS7r2X+\nr58l4+vfjaOWcIrR1XYCvsGfvLK1PsToJf8BoPO0D+Pz9hyzYcCkcWU47dYDHZ4cZoby9zoREemf\n0lIvkXSOcDR1wNYwjO6Wq5bCMWz5zv1kcya9+cnTedyJFG1dT/XW1bQfc2KfYqjrSDB3ehHWIdba\nVERERET2TdczREREREREetabbke78Xq9RKPRXZ9Ho1F8Ph+/+c1vOPHEE7n++utpbGzk0ksv5dln\nn+WMM87A7+9O6jjjjDO466678lqntTXc1xAHheGBAppawmRy77YneOujl1D+/DNUvfAsAF3V41jx\npW/SfPQJ3QdEevckssUwmDmuhFgkQayXY/dnbLmHurPOYv2yq5j8x0eZcsd1zP/Og3lXjtmX15bu\n5OhJZdhtgzt5ZePWVk569QVSXj87xh+FmcfX1u920BWMHYTo5HBSVuYb8t/rRESkfyp8Dhqau/o0\ntqzQxZgqHxaL0Z1883YSzq5knPedu5mmSVc0RXtXkvauBNE8KtnUTTuGMfwC7/xX2T7l6D7FGY4k\nWLAiw6TqQJ/Gi4iIiMjgousZIiIiIiIi79rfgwt9flx13Lhx1NbWEgwGSaVSLFmyhJqaGvx+/65K\nOoWFhWQyGbLZLFdccQWrVq0CYMGCBUybNq2vSw8pLqeNydVFu20zrTYW3/hdWqfPYfnVt/DcI397\nNymnDyZVF1HodfY31D0YhsHIci+ue+6kffZchs9/kYlP/abf8ybTWdbVdmKaZv+DPEDiyQzWt1bi\nbm2k8diTMW35VSIqLRz8lYBERERk8Cn0Oikv6l3NRJvFwpTqANPGFOMusFPgsOG0W7HbrNisFqwW\nyx5JOdB9jlfodTJ2mJ9jJpdz3JQKxg8vpNjn3OvxAK1HzSFns1OxfEGfXt87GjtiNHcqiVlERERE\nREREREREjhy9rpjz7LPPEovFuOiii7j55pu54oorME2T888/n4qKCi677DJuueUWLr74YtLpNNde\ney1ut5vbb7+du+66C7vdTmlpad4Vcw4HpUUuhpd6qG97t8JQ15iJvPKj3/d77jGVfioC7n7Psz9u\nrwvzt78jddoHOOoXPyRT4GbrORf2q3JORzhJbXOY0ZX9a411oLQG4wxb8BIA9cefnve4Yr8Sc0RE\nRKRvxg7z0x5KkM0jebnI62RydREFjj4XwNzF5bQxoszLiDIvmWyOznCS9lCC9q4E6Wx31cesy0P7\n5BmUrlmGPRwi7Svs83obdwbxuRy4C/ofu4iIiIiIiIiIiIjIYGeYg7lsCUO/ldU7cjmT5ZtaCcd7\nbhWQr6pi90FtBWBbvAj/JRdiDXay45SzWfr1O8h4vH2ezwCOGlsyKJNZlm5oYe6l5+DbuZVn/rKA\njNvT45gCh5W5UysPQnRyuFHpZxERecf2pi62N+37Z4LFMBhb5WdEed/PwfJlmiZtoQRrtncAMOX3\nDzH9dz9h/m0/pv7EM/s1t89lp2ZCGRZL/1qkioiIiMiho+sZIiIiIiIi7zograykdywWg6mji7FZ\nBuZLHvA6mTCyqOcDB1Dm2OMIvvwGiTnHUv3K//LBa86naPPaPs9nAutqO0mmsgMX5ACIJzNkt26j\naOsGWmbNzSspB6DU37v2EyIiIiLvN7LcS4Hdutd9PpedOZPKDkpSDnS3vCorcuF6uypPS808AMqX\nL+z33OF4ms5wst/ziIiIiIiIiIiIiIgMdkrMOYhcThsTR/a97P87PAV2po0pxtKPVlJ9lRs+gvAz\n/yL85a/ha9jBaV//FGOf/SP0sfBSOptj7fYOcoOocFNrMM6whd1trBrm5d/GqqRw8FX+ERERkaHF\narEwdvju54sGMKrCR83EMjwF9oMeU0Vxd/Jxx6SjSLvcVCxfMCDzBiNKzBERERERERERERGRw5/t\nUAdwpCkPuAlGUjS0R/s03mGzcNTYYmzWQ5hTZbeTuP1u0sefiPeaq5jz4J2Ur1zMkmvvJOPZd3mm\nfQnFUmypD1FZ7CabM8lkc2SzJpmcSTabI5N9Z1vu7f0m44b78bkdB+DFQVsoQc38dxJzTs1rjM1i\nodB7YOIRERGRI0t5kYsGr5NgJInbaWNydQC/59CdZ5QXudneFMa02WmdcQzDFv0HV0sj8fKqfs2r\nijkiIiIiIiIiIiIiciRQYs4hMH54IV3RFJFEulfjrIbB9LElFDgGxz9b9swPE3rlDRyXXcrIV/9N\nYNMaFtz63wQnTuv1XPVtUerb8k9W2tLQxazxpb1epyeJVIZ4Uwulby2hffIMEiXleY0L+J2HpIKR\niIiIHJ7GDy+koS3KuOF+rAPUCrWv3AU2/G4HXbEULTXzGLboP5SvWEjtmR/v17yRRJp0JovdtvfW\nXSIiIiIiIiIiIiIihwO1sjoELBaDqaMDWHuRyGEAU0YF8B+gKjF9NnwEqX/9H/WXX4O3cSenXftp\nxj39eI+trezhEOVL32DyHx9l3h1f5axLz2TK4w/nvWwwkqSjK9Hf6PfQGkxQtfg/WHLZXrWxKlUb\nKxERERlAXpediSOLDnlSzjvKA93trJpr5gEMWDurzkhqQOYRERERERERERERERmsBkfplSOQu8DO\nzPGlJFIZDMPAMMBiGLv+bsC7fzcMrBYDl3OQ/nPZbDi+ex+bjjuB6m9cw+yH7qZ85SKWXHc3aa8f\nazxKYNNaijeuJrBxNcUbV+Nt2LHbFKZhMOUPj7Dtw+fnXaVma0MXAZ8TY4Aq1aQzWXY0hzn67TZW\n9cefltc4Ayj2KTFHREREDl/lRS62NnTRNXoCiaISypcv6E7E7ud5WDCcpLzINUBRioiIiIiIiIiI\niIgMPoM00+PI4Pc48HsGWQWcfij6+EfYNmUKJddcyYjXn6d4w2rSbjf+HVsx3lNBJ+UrpGn28XRO\nOoqOidPpnDidysWvcvSPv8PEp37Dqi9+I6/1Iok0TR0xqko8AxL/lvousvE4lWKtSZQAACAASURB\nVEteJzysmnD1uLzGFXqc2G2D42l2ERERkQPBYbdS5HXSEU7QUjOX6pf/iW/HFsKjxvdr3mAkOUAR\nioiIiIiIiIiIiIgMTkrMkQFVMnkcnU8+S/uddzLpj49ijxTQNn0OHe9JwolWjdzj6eraM85j6uM/\nZdw/nmD9RVeSKgzktd72pjDlAVe/2zx0hpM0dcaoXLEQWyJGw/Gn5/0EeInaWImIiMgRoCLgoiOc\noHlWd2JOxbIF/U7MiSUzJNNZnHbrAEUpIiIiIiIiIiIiIjK4KDFHBlwg4CF8z1388+IvErfYwdrz\njZacw8GGCy6n5uH7mPC337Hmsq/ntVYynaW+NUp1ha/P8eZMk011QQCGvd3GqmFefm2sAEr8SswR\nERGRw19pUQHWnQYts+cBUL5iIZs//tl+zxsMJ6kodvd7HhERERERERERERGRwUiJOXJA+NwO5swe\nQyqdw8TENLsTYEwTzL18zOZMNp99IVP+8Cjjn36cDRdcTsaTX7LNjuYIVSVu7La+PWm9szlCLJmB\nXI5hC18iWRigbWpNXmPdThvuAr2NRERE5PBntVgoLSyg2RxOZFg15SsXY2QzmNb+nQt1KjFHRERE\nRERERERERA5j/ev/I7IfNqsFd4ENT4Edr8uO3+2g0OOgyOsk4HNS7C+gpLCA0iIXFcVuKkaUsvH8\ny3BEw4x/5g95r5PJ5ahtivQpxlgiQ21zGICSdStwdbTRMPfUvKr8gKrliIiIyJGlPNCdQNNcMw97\nLEJg4+p+zxmMJPs9h4iIiIiIiIiIiIjIYKXEHBk0RlV42f6xi0l5/Uz862+xxmN5j21ojxJPZnq9\n5qa6IDnTxNXaxHHfvRGAHaecnff4kkIl5oiIiMiRI+B3YrdaaKmZC0DFsgX9njORzvbpPE5ERERE\nREREREREZChQYo4MGnablaoxlWw67xKcoU7G/usveY/NmSbbGrt6tV5zR4zOSBJHsIOTbr4CT3MD\nqy/9Gi1zTsgvXquFQo+jV2uKiIiIDGUWw6A84KJl5nGYhkH5ioUDMq+q5oiIiIiIiIiIiIjI4UqJ\nOTKojCjzsv0TnyNT4GbSX36FJZXKe2xLME5XLL/j05kcWxpC2KJhTrrlSvw7t7Lhk59n3cVfynu9\nkeVeDMPI+3gRERGRw0FFwE2qMEBw3GRK1i7Hmoj3e87OsBJzREREREREREREROTwpMQcGVRsVgvD\nJlaz+dxP4WpvYfRzf+vV+K0N+VXN2doQIhuJcuK3ryaweS1bz/okq668EfJMtBlb5ae6wter2ERE\nREQOB36PA5fDRnPNPKzpNKWrl/V7TlXMEREREREREREREZHDlRJzZNAZVuphx6euIGt3MPmJn2Nk\n0nmPDUaStIcS+z0mFEnS1Bxk3p1fp2z1Unae/GGWfu32vJNyJowoUlKOiIiIHNHKAy5aauZ1/335\n/H7Pl8rkiMTzP+cTERERERERERERERkqlJgjg47FYlA5dSxbz74AT3M91S//s1fjtzZ2YZrmXvfl\nTJONtR0c972bqFryGo3HfIBF3/geWK09zmsAk6sDDC/19CoeERERkcNNRcBN27TZZO12KpYvHJA5\nVTVHRERERERERERERA5HSsyRQamy2M2Oz3yRnNXG5D/+DLLZvMdGE2maOmJ73VfXHGby925h5Kv/\npvWoo1nw7R9j2h09zmkxDKaMLqay2J13HCIiIiKHK3eBDXdxEe1TZlG0ZR2Ors5+z6nEHBERERER\nERERERE5HCkxRwYlwzComjWZ7Wd8DH/dNka88Xyvxm9vCpPN5XbbFk+k8d9xK2P//RQdE6bx+p0P\nky1w9TiXxTCYNrqY8qKejxURERE5UlQUd7ezMkyTshWL+z1fMJzaZ9VDERGRI008maElGCeezBzq\nUERERERERESkn5SYI4NWWZGLuku/jGmxMOUPj0IvbtQk01nqWqK7bcvceTcTnvotXdXjeO3en5Px\neHucx2oxOGpsCSWFBb2OX0RERORwVl7koqVmLgAVyxf0e75MLkc4nu73PCIiIkNNMp2lLRRnW2MX\nq7a088ZbjSxa18za7R0s3dBKS+feqwKLiIiIiIiIyNBgO9QBiOxP5bEz2HnyWVS//E+qFr1C49xT\n8x67syXCsFI3dpuVzI9/zNhf/DfRiuH857u/JFUY6HG8zWLhqHElFHp6bnUlIiIicqRx2K0w52jS\nbg/lA5CYAxAMJ/G7de4lIiKHr0w2R1c0RTiWJhxPEY6mSWb23b47k8uxtraTznCS8SMKsVr0jJ2I\niIiIiIjIUKPf5mVQC/ic1F/+FQCm/OGRXlXNyeRy1DZFsD/+O6ru+Tbx4lL+871fkSit6HGs3Wph\n5ngl5YiIiIjsT3mZn9YZx+Jr2IG7ub7f8wUjyQGISkREZPDJ5nLsaA6zaG0zq7a2s62pi7ZQYr9J\nOe/V2BFj6YZWIqouJyIiIiIiIjLkKDFHBr3yDxxD/fGnU7J+FeUrFuY9zhaN4H3oAQqv/xpJXyGv\n3vdLosOqexzntFmZNaEUn57WFhEREdmvksICWmfPA6B8ef7nafsSiqTI9SIRW0T6JpnKYuq9BoBl\ny2Yy0RiZbI50JksynSWRyhBPZogl0kTiacKxFF3RFKFIklxOXzfpnZxpUt8WZfHaFrY2dpHO5vo8\nVyyZYdnGVupaIwMYoYiIiIiIiIgcaGplJYOe3+1gxxe/zvD5LzLlD4/SUjNvv8e7WhqY8LfHGPuv\nv2CPRUl5fLx2z8/oGjOxx7UK7FZmji/F5dRbQ0RERKQnNquF1AdOgZ/eS8XyBWz/8Pn9mi9rmoSj\nKQq9zoEJUET2kM7kWLKhBdPsrlBa7HcS8DkpcBxZvwMlUhlSv/kd4771X7RPmckr9/+OnKPnhzO8\nBXamji7GXXBkfb2k90zTpLkzzvamLhKp7DsbqXzzVYxslvYps0gVFfd63pxpsrk+RDCcZFJ1EXab\ndYAjFzk8ZVMprN+6FWPnTjZ+5wfk3J4exxR5nVQUuw9CdCIiIiIicrjTlSQZEkpPO4Gmo0+kcsnr\nlKxZTvu0mj2OCWxczcQnf82IV/8PSy5LvLiU9RddyZZzLiLtL+pxDQOYNqZYSTkiIiIiveCbM5N4\ncWl3xRzTBMPo13ydkaQSc0QOoG3vqdjRGorTGooD4CmwU+zrTtIp8jqxWPr3Xh6sOroSNLRFKfjH\n35l77/UAlKxbycxH7mP5177T4/hIIs3SjS1MHFlERUA3a2XvWoNxtjeFiSbebTtlSaWY88BtjH7h\n6V3bwsOqaZ9aQ/vUWbRPmUVo9ASw5pdo09aVILyhlcnVAQI+/dwU2ZdwLEVTYyejbryGytefAyDb\n0cHrdz1CzrH/905TRwyrxaC0yHUwQhURERERkcOYYQ7y+tWtreFDHYIMEo1P/x8zrryAxmNP4vW7\nH+3emMtRtegVJj35a8reWgJAcMxENp7/eXaecnZeTzy+Y1iJh4kje07gERloZWU+fa8TEZEhK2ea\npC6+hJEvPsv/Pfp0XlUK96fQ46BmQtkARSci79UVTbF8Uys9XQSwGgaF3u5qOsW+giFfHSadydLY\nHqOxPUY8laFy0SuccPtXyTqdvH7nT6n56b0Ubd3A4hvupfbMj+c9b1Wxm/EjCrFa1CVcunV0JdjW\nGCYcT+223RHs4IQ7vkrpmmW0T5pB43EnUbJ2JSXrV+KIdO06Lu320DHpqO5knSmzaJ8yk7SvcL9r\nGkB1hY/RlT6MfibHivTWYL2ekcnmaO6M09QeJdYR4vg7vkrlsvm0zDyWtNvL8AUvUT/vdBbc9gCm\ndf8/46yGwczxpfg9ankvIiIiIiL7V1bm2+e+oX11TY4ogbNOp/Woo6la/Cola5ZRuG0jE//6W3x1\n2wFoOvpENpx/GS2zj+/1k9p2q4UxVf4DELWIiIjI4c1iGCROPAVefJaK5Qv6nZgTjqXJ5nK60S0y\nwEzTZFNdsMekHOhuK9cRTtARTgAhHDYLfrcDv6f7j89tHxLv0VA0RUNblNZgnNzbzySVL1/A8Xd+\nnZzNxut3PULbUUcz/7b/4YNfuYA5P76d0JiJBCdMy2v+xo4Y4ViaqaMDuAvsB/KlyCAXiae720tF\nknvs82/fxAm3fRlvUx07Tj6LN2+4l5yzoHtnLodv51ZK1q6gdO1yStatpGL5QiqWL9w1vn7eaSy8\n9Uf7rOxhArXNYYLhJFNGB464tnQi7xWKJGlsj9EajJM1TezhECd9+0uUrl1Bw9xTWXDrj8AwOPHb\nX2L4ghc5+oe38uYN98F+fqZlTZO3trYze2KZqmyLiIiIiEifqWKODCmtTz7D1C9fsuvzrN3OjtPO\nZeMnLu3XTaCJI4oYVtpzb2mRA2GwPmEmIiKSr+imbYw+YSYNx53MG3c90u/5ZowtodhfMACRicg7\n6lsjbKoPdX/Sz7ZzFsPAU2Cn0OPA77Hj9zgGTTJANJGmM5ykqT1G5D1thABK1izjpJu/gJHL8Pqd\nD9My54Rd+yoX/4cTv301sfIqXnjoSVL+QN5rWg2DCSOLqCxWa6sjUTqTY8n6FpKZ7B77Kt58jXn3\nXIc9FmHNJdew9rPX9Pjes4dDlKxbScm6FVQufpXiTWvyruxht1qYOrpYra3koBkM1zOS6SwtnXEa\n26PEkpld250drZx0y5UUbd1A7Wnn8uYN92DaupMorfEoJ998BSXrVrL5oxez/Jpv9fjedDtt1Ewo\nxW7Lr92ciIiIiIgcefZXMcd6++23337wQum9WCzV80FyxHBMGEf85VexxSJsPP8yFn3zB+w8/VyS\ngZI+z+lz2Zk4skgln+WQ8Xic+l4nIiJDmqMkgPmnJyjcupENn/w8WPt3w8Jpt+mmosgASqWzrNnW\nSc40Gf2vJznlhs9hi8domzYHsw/vVxNIZbJ0xVK0hhLUtUZpbIvRFU2RSGXI5kwsFgOb9cBW1TFN\nk0g8TWtnnB0tYTbVhdjZGqEjnCSVye12bNHGNZz8zS9gTSVZcNuPaT725N32R4aPBmD4/Bcp2ryO\nHad+ZL8VFHaLA2gLJUgkswT8Tiz63fKIsr62k673ta7CNBn/9OMcd//NYJosvul7bDnvkrwS4nLO\nAiLDR9E66zhqzziPknUrqHrzNVytTTTMO22/c+RMk5bOGJa329GJHGiH6npGOJaisT3KlvoQWxq6\n6AwnSWff/b7vbqrnlBsvpXDHVjZ/9GKW/ted8J7ENtPuoO7EM6h881WGLXoFI5uhtWbuftdMZ3N0\nRVJUBNy6higiIiIiInvl8ez7d3El5siQYrVaqD39XBaddQmtNfPIuvpf5Wb6mJJB83SnHJmUmCMi\nIoeD5Np1+Fe8ScusucQqR/RrrlwOVTMUGUAb60KE4ynKli9k3r3XY0slKVu9lOHzX6R90gwSJeX9\nXiObM4klM3RGkjR3xqlrjdDQFqUznCSSSJPO5DCM7ooefb2hmTNNumJpWjpj1DZH2FwXor4tSkc4\nSSyZ2dWu6v382zZy8k2fxx6LsPjm71P/gQ/t9bjWo44msGktVUtew5LL0tLDTdr3iyTStIeSFHkd\nOFRR4YjQ1BFjR8vu1UKMTJqah+5m2uMPkywq4bV7f0bzMSf1aX7TaqX+hDOoWL6AYYv/gy0RozmP\n9t2dkSSReJpifwEWixII5MA5WNczsrkcHV0JdrZE2LSzOwkzGEntkYQJ4NuxhVNuvBRvcwNrP30V\nq774jb0mWuacBdSf8EGGzX+REQteIuN00T5t9n7jSKazxBIZyooKlJwjIiIiIiJ7UGKOHFa8bgct\noQSZbP+7sFUVuxle5h2AqET6Tok5IiJyODByOTxPP0WiuJSW2cf3a650JsuIMq9uJooMgGAkyZaG\nEN767Zz8zS9gyXS3cUq7vQxb/Cpj/v0URi5L29Safle7er9sziSeytIVTdEWStDQFqWuJUJbKEE4\nliIS72471RlO0tGVoKMrSVsoQVsoTlswQWswTmtLEO/dt+O/7Zu0L1/LFqufZquHeGrfiTjv5a3f\nzik3XkZBqJMl19/Djg9+bN8HGwZNx57EiNeeY/iClwiOnUy4emyvXnM6k6O5PYY72EZhQy25ispe\njZehI57MsHpbO+/9b2iPdHHCd75C9av/Jjh2Eq/c/xvCoyf0a52c3dGdPLDwZYYvfJmsw0n79Dk9\njoslM7SFEgR8TrXekQPmQF7PSKayNHfGqW0Ks2lniObOOJF4mmxu39/7AxtXc/I3Po+rs52VX/wG\n6z9z9X4T2bIuDw3zTmPEa88x8vXniBeXE5w4bb9xxZIZsllTbVdFRERERGQP+0vMMUwzjytZh9Ch\n7lMsg1MskWH5ptbdytT2ls1i4dgp5TjsukAlh9Zg6MkuIiLSb9EoxROr6aoezwsP/7Xf000fXUxp\nkWsAAhM5cuVMk6UbWkm1tnH61z+Fr247i2+4l9ozPw5A+bL5HP2jb+FpaSQ4djKLb7yP0LjJhzjq\nd3nrtjH33hsIbF6LabFg5Lp//2ubNputZ32Sug98iKzLvc/x7uZ6Tr3us7hbG1l2zbfY8rHP5LVu\n4dYNnPb1T2Farbzw4F+IjByTd8zWeIxJT/6aSX/+JbZknPoPnceGr3+bbFEAq8XAYjGwGm9/fPtz\ni2HgsFsI+Jyq5jpEmKbJik1thN6TkOCpr+XEb1+Nv24bDXNPZdHN95NxD1z1N1dLI6dd+xncrY0s\n+a872Hb2hXmNs1oMJlUHKNfPVDkABvp6RjKdpbUzTnNnnPD7W8T1oHTVYk687cvYEvH/Z+++w+Oo\nrj6Of2d7r+rVtuTejSs2zRgCwZQECKEkQAqEkoQkQEhoIZQk9BBCIAECeektFIMpwQUMtsHg3pss\nW71rtX135v1DxthYlnZl2Zbl83kePStp5965K6200sxvzmHJL2+j7NRzUh7rLN/C8b/5AebWJhbf\ncA/bTzityzGleW4KsuRiPyGEEEIIIcTXMjOd+7xPKuaIw5LRoMPjNFPbFKa70bIBeS68Trm6RRx6\nUjFHCCFEn2AykZw7D8+qL9k88/udnixPaTqDXq5EFmI/ba9to66+lal/uBrfhlWsO/dHbPjej3fd\nH8wtZOu3zsbc2kTu5+3VcwAaho0B3aG9gKH4g9eZduvV2Gsr2fqt7zL/z0/QNGgExmAbmSs+p+DT\nDyl98zlstZWEfZl7teOyNNRy/HWXYK+pYMWPf83Gsy9Jed9RbwbBnAKK575N9rJFbJtxJqrR1Pkg\nVaX4g9eZetvPyVs0l5jLQyC/mKzPF5D7zms0+HKoySkmFEnQFokTCMdpDcVoCcZobovS0BphR12Q\n+uYI0XgSva49rCOtUnqn8po2qptCuz7OWPEZx93wY+z11aw/50cs+dXtqOZ9XyXXHQm7k+oJx1A4\nfzaFH79HS1EpgeLSLsdpGtQ1h0kmNbxOszynRI/qieMZiaRKbXOYzRUtbKpooTEQJZZIpjVH7qK5\nTLv1anSJBIt+dx/bZ5yR1viY20vtuCkUznuHwvnv0jRwGG0F/Tod0xSIYrcYsVuMae1LCCGEEEII\n0XdJKyvRJ5mNepxWI3XNEdLN5jgsRgYXeeSAlOgVJJgjhBCir0hWVmP/ZD7NAwbTMmD/qm6oqkZe\nRs9VGhDiSBOJJVhT1sToR+6kaP5sKiefwJJf3Q463R7bqSYTVVOm0zBkNFnLFpG/cA45n31Ew7Ax\nRL3+lPalJOI4d5SRuXIJ+khkr5BMOgyhIOPvv4nhzzxC0mTi82v/xLoLfoZqttBaXEr5jDMoO+ks\nEjY7rvLNZC9bTMk7L5G3cA6oKoGCfhhCQY6//hKcO8pYc+EVrL3wyrTX0dp/EMa2VvIWz8NRsY0d\nx35rn+1QMpcu4ujbf0np2y+iqEnWnfcTFt14P5vPOJ+E1UbO5x9TPPdtXGWbqBs1vtPgYiyh0hKM\nUdUYoqohSDCcQKP9/9902/upmkY8oaLX67reWKSsNRRjfXnzruMQ/We/zJS7rkUfj7HkmttY//2f\n7vVz1lNibi+1YyZRNGcWhR+/S8PQ0QRzC1Ned0swht9lRn+A1ieOPN09nqFqGg0tEbZWB9iwvZm6\nljCR2NdhHFtNBfbqHVhrq7DXVGKv3o6jYhvO7Vtxlm/GvW0j7i3r8WxaS+7ieRz10G1oej2f3PZ3\nqqZM79ZjifgyqR95FEVzZlE0/13qh48jlJPf6ZiGlggepxmLSapxCyGEEEIIIaSVlejjappCrN3W\nlNaYsaUZuB09e/WaEN0lrayEEEL0FbpVK/BPn8a26afz2Q137/d8Rw/PkbajQnTT6q2NuP7vccY9\nfAfN/Qcx94HnumyrY2xrZfSjf6b/+/8laTSy+gc/Z8O5l6Lp29srKckE9srtuLdtxFW2Cde2Tbi3\nbcK5owxdIr5rnsaBw9k88/tsP+E0kpbU2+d4N6xi8l2/wVFZTsPgUSz+/b2dhg6UZILsJQsY8M4r\n5C6eh05NkjBbiLm82OqqWH/2Jay47Pp9Bmq6oiTiHHf9pWSu+oLlP7l2j2pDAI7tWxn9r3vIWzQX\ngLIZZ7DqkmsIZ+Xutd2E+28iY/WXRJ1ull3xe8pPPD2tdekUBY/DhN9lweu0oKERi6vEEsn223iS\nWKL9Np5QicaTu1o/e+xmSgvcOKxS1WF/JVWVL9bXEYomUJIJRj/6Fwa+8QxRp5uFtzxE3eiJB2Ud\nmUsXccxNl6Hpjcy7+980DRmV8lizUc/wfj5c9i6qQAmRgnSPZzS3RalpDFHfEtmrPb2ptYnCue/Q\n7/3/4tu4Oq11xOxOFtzxKA3Dx6U1riPZSxYw7ZYrSRqNzL/7KZoGj+x0e6Nex9iBmdgs0opQCCGE\nEEKII11nrawkmCP6hB11bWyqaElp22yPlaH9fAd4RUKkToI5Qggh+gxNwzWsFC2R5K0XP97vigHD\nir1kefevJZYQR6LG1gjVL7/JMTdeTszl4cO/vUgou/Or/neXu2guRz14C9bGehoHj6QtrwjXtk04\nt29FH9+zMkLcaqO1qJTWfqUECvvjX72MvMVzUVSVmMNF2UlnsuW07xMoGrDvHaoqg157mpFPPoAu\nEWfdeT9h1cW/QDOkHiSxNNRS/MEbDHj3FRyV5Ww+7Ty+/MWt6PU6jAYdxt1uDYbd3tfraAvHaWiN\nEIom9prX3FjHSVedg6Wpnvl/eoK6sZMxtTQx7Jm/UzLrRXTJBLWjJrD8st/SPGh4p4+x5K3nGfXE\n/RgiIaomHssXv/jDXiGefVEScbwb15CxcgnezWtpGjic8uO/TSQjO7XxQK7fTv9cJ0aDBB67a315\nE1WNIYytzUy581dkL11ES3Epn/zxkZQr1+T6bKiqRl1LBHU/DsnlLfiAo++4hpjdydwHniVQVJLy\nWJ2i0C/HSa7fjtEg1XNE96V6PEPVNJZvrKflG9V1lEScnM8X0O+D/5K3aB66RBxVp6fmqKNpy++H\najCg6g1oBgOqXo+mN7Z/zmBA0399X+3oSV1Wt0lH/sfvM+XOXxG3O1lzwc/Y8u3vdVrtzGoyMG5Q\nxl6/XzVNI6lqqOrOW639fVUDh9Ug1auEEEIIIYToYySYI44IWypbKa/t/Pmi1ylMHJqNWa68Fr2I\nBHOEEEL0Jfqf/hjfGy/zwd9foXlgJyepU5DrszG4yNtDKxPiyKCqGmveW8jUK89FH4sw/+6naRg+\nNu15jK3NjH3kLornvAVAwmyltbiE1uJSWorbgzitxaWEsvL2qvxira1iwDsv0f/dV7A21gNQO3oS\nm04/n8qjp+8RuDE31TPxnt+Rs2QBEW8Gi6//M7VHTe3WY3dYjGS4TGQ1V6MvLcVo1KNLoypNKJKg\noTVCQ2uE1mBsV2jCv3opx193MXG7g41nXsSgV5/CFAwQyCtixU+vo/LoE1OufmOrrmD8AzeTvXQh\ncZud5T+9nq3fPnev8bpYFN+65WSuWELmyiX41yzDEA3vsY2mKNSOnkT59JlUTDuJuMPV5f4NOh39\ncpzkZdrT+toIqG8Js2prI87yzUy95UqcleVUTJnOZ7+9u8tqVF8ZkOuiKLv9IF0klqCiLkhVQ4iE\nqnYxsmP93n2VCfffRCgjm7kPPJtWAA/aAzqZbgs5fjtep1QVFulL9XjG1qpWttV8vZ17y3r6vf9f\niubMwtLcAEBLcSllJ3+H8ukz02qJ6LKZUBQIhOL7FXb7pqL/vclRD92GIRIi4vax4exL2Hz6+STs\njg63Nxl06HW6PUM4naxHr1PIdFvJ8lrxOs0o8jtZCCGEEEKIw54Ec8QR46ur1/alJM9NYVbH/0AL\ncahIMEcIIURfonvxBfw/v4yVl/6Kdedftl9zWU0GJg1LrRoEQDyhUt8SJtef2glSIfqi7eu2Mej7\np+GoLGfx9X+mfMaZ3Z7LbjEyIlZLS1xhk97D3vVkOqck4uR/+iElb71A1vLFAIR9mWw99Ry2fPt7\nuLZtZuI9N2Bpqqdq/DF8ft2fiHr9ae3DbTOR4bGS4bZgNfdcG5FEUqWxNUJDS4TGQJSi/z7DuIdv\nByDmdLP6oivZPPP7aMZutAPSNPq9+yqj/3k3pmCA2tGTWHrl77E21JGx8nMyVy7Bt34F+vjX7cFa\nikupGzme+pHjaS4ZSubyxRTPmUXG6i8BSBpNVE06jvLpM6maeByqqfOQhc1soDTfjc9lSX/9R6BY\nPMnn62rxfzqHyX+6FmMoyNrzL2fVxb9IqTqcTlEYUuTpsApcIqlS1RCioq6NSDyZ9toGvfQEox+/\nl0BBP+be90zaP0NfsZoM5PptZPtscjGTSFkqxzOa26Is31SPsbmRormz6PfB63g3rQUg6nRTPv10\nyk46i+aBw9Jq8edxmCnOdu4KlSWSKk2BKI2tEZoC0W79PH1FryjYLEYMzY3kvfAkpa8/gykYIOZ0\ns/GsH7DxrIuIO93dnv+bzAY9mR4rWT4rLpu0mRNCCCGEEOJwJcEcccTQmdQ19QAAIABJREFUNI3V\nWxupb43sdZ/NbGD8kCy5KlD0OhLMEUII0Zco9fX4h5dQN3I88+/9z37PN3lYNhZT5yfbE0mVirog\n22vbSKgqeX47gwo9+71vIQ434UAIy3fPIGv5Z6z9/mWs+tGvuj1Xnt9OSb5rV5uNeCLJ1qoAVQ1B\nunMQwVm+mZJZL1L8weuYggE0nQ5FVVENRlb86Nds/O4PUw44eBwm/O72MM7BCBBomkZLWxTz/feQ\naG1j9VkXE+mBE7KW+hqOeug28hbN3XN/Oh3NA4ZQN3I8daMmUD/iKGLujquH2aorKJo7i6I5b+He\nthmAmN3JjmNOpnz66dSNmtDp19XvslCa70471KTbugVdYwOJceNRgWRSJZFsrxKRSKokkurO9zWS\nyfZqMB6n+bA94bxycz0ZT/ydkU/cj2o08flv7mT7CaelNNao1zG8vw+Po/OwlKpp1DeH2V4bJBCO\ndbrtN418/F6GvPQETaVD+eiux4l5ut++W6co+Fxmcn12fC6p4iE619XxjHhC5Yv1tWR88BaT7r6h\nvVWV3kDVxGMpO+ksqiYdl3bA0edsD+S4u/iZCkXiNLZGaQxEaG6L7bN6jcmgw2E1Yrcacex8s5kN\nKIqCqmqsLW+iqaKW0jeeZdBrT2NubSZus7Pp9AvYcPYl+/Xz1hGb2UCW10qWx4bN0nOBUyGEEEII\nIcSBJ8EccURJqiorNjXs1bd6dEmGlGYWvZIEc4QQQvQ11uOnYVu/hjdeXZRye499GVLkJce3d4UB\naG/ZU1kfZFtNgHhyzzYghZkOSvJ77kpmIXo9TSN22eXkv/ECFUefyKe3PJRS0OWbjHodgwo9ZHqs\nHd4fjMTZUtlKQwcXQ6RCHw5ROO8dSt5+EX00wufX/YmmQSM6HfNVUCDTbcXvtmDQp/+4epKmaYSj\nCdrCcdrC7bfBcJxoohvVGTSNwnnvUDRnFq39SqkbOYH64WNJ2Pd9IGdf87i3rKdozlsUzX0HW301\nAKGMbCqmnUzlpOOoGzWhwxPgOkUhP9NOcbZzj6+tqmpE48n2t1iSZHUNzrdfxz/7ddyrlgKw49hT\nWHLNbSm10QKwGPVk7Pw+ehymwyL0UVnRgPu6X9Lvf28Sysjm0z883OVz9isWo55RJX5sFmPXG++m\npS3K9ro2GloiqQXhNI2jHryVAbNfJpBXxMd3/pNgfnFa++yI2agnx2cjx2fr0YpUou/o6njG6rJG\nEos/44RfX4RqNLH6h1dTfsLMblV2ynBZKMpxdivgl1RVWtpiNLZGiSWSuwI4dqsxpYDn5ooWtte1\noQ8HKXn7JQa//CSWpnoSZgtbTjuP9ef+KK32W6lyWk1k+6wUZEr1byGEEEIIIQ4HEswRR5x4QmXZ\npnqCkfbS35luK8P79+wVLEL0FAnmCCGE6Gv0f7gF3yMPsuC2v1M1Zfp+zZXttTG0eM9KEaqmUdMY\nYlt1oNM2BcXZTvrnpnayWIjDXfKvfyXnzptpKhnK3Pv/j6Q1/VCc225iaLG3yypVAI2tEbZUttIW\niXe5bXcZ9TryMuzk+e2YTb2/tU4sntwZ1mkP6gTCcULRdBuA9QBVJW/tl/Sf9zZZc2djaG0BIG6z\nU33UNKomHU/VxGP3qvJgMuhw2U1EY+1hnFhCRR8Okv/JhxTNmUX2l5+iU5NoOh01YyZjiITJWLOU\nYHYei2+4l4bhY9NaplGvI8NtIcNtxes0o9P1vpBOdNt2bD84H9+6FTQMGcWnt/4t5ZPvTquREQP8\n+1XVKRRJsLmyJbUgnKYx4qm/MvT5x4i6vSz44yM0Dh3T7X1/k8NixOsy43NacDtMUo1YAJ0fz6hu\nDFG2dD0zrjoHS3MDH9/+KDUTjklrfgXI8FgpznbisKYXcOtpO+ra2FzRggboohH6v/sqQ158HFt9\nNUmjibKTzqJlwGDiNgdxe/tbwubY+bGTuM3evfaHwKgBfmk9KIQQQgghxGFAgjniiBSNJVm6sY54\nQmXC0KyUDi4LcShIMEcIIURfY/h0Ad6zvs2m089n6c9v2a+5zEY9U4bn7Pq4pilEWVWAcCy1k90D\ncl0UZadZeUKIw4iaTBJ9/N8U3notUbeP//3tJcJZuWnNoQBF2U765TjTqmCiaVr7ideqQPeqxeyD\n02okL8NOttfWK8Ma6YgnkrQG47SGYrQEYwSCMZI9fBhGpyg4rEZcdhMuuwm3zfR1kCkWw7joU5R3\n3sb03mysFeUAaIpCw9DRVE06gcrJx9PabyDs/N4riTjZX3xC8ZxZ5H06B0M0DEDjoBGUT5/J9uNO\nJeLPQkkmGPrsowx77h9oKKz+4dWsO++noE8/iKLXKfhcFjLdFnyuQ18VCUD35RLsF52Ppb6Gshln\n8MU1f0Q1pVaF1+e0MKyft8ceR1VDkE0VLSTVrp87/d9+iXF/+yOawcCi391L5dQZPbKG3ekVBY/T\njM9pxueySDWdI9i+jmeEowm+XFHOsb/+Ab71K1l22W/ZeM4lKc+rAFleG8XZjrQrTh1I9c1h1m5r\n2vV7XInH6PfB6wx54V84qnd0OT5pNLWHdOwOVv/garZPn5nSfjM9Vob3kwsOhRBCCCGE6O0kmCOO\nWKFInKZAlHwp+Sp6MQnmCCGE6HPicbyDigm7fbz71Hv7NZWloZapaz+m9pwL2dqc7FZ1joH5bvl7\nUPQ5mqoSfu0NvPfehWvLehJmC/PvforGoaPTmsds1DO02IvH0f22v4mkyvbaNnbUtnU7dKJTFPxu\nCwUZdtz7sZbeTtM02sJxWoMxWoMxWkIxIrHUQk16RUGnU9DrdwZxbCbcdhNOmym1AJOmEVu1hugb\nb+Kc+wEZq79EUdvbAAaz86iadHx7a62P3sXc0gRAW14R26bPpPyEmbQV9u9w2owVnzHpz9djq6+h\ndvQkFv/2L0QyslN6TB3RKQoumwmv04zHYcJp75nqLKqmEY0l0TTQ0NC09s9pWvv35atb46aNuF59\nHu9//oUuFmPFT65lwzmX7goudSXXZ2NgoafHK8qEownWlTfREox1uW3OZ/OZcsev0UfDLLvi92w6\n66Ju79dWXUG/91+jauJxNA0Z1eE2VpMB385qOh6nCX032uiJw1NHxzNUTWPZhjqG3HINxXNnsfXk\n77DkN3em/DOk1ymMHODfr9elA6k1GGPlloY92qgqyQSZKz7H1NKEMdSGMdiGMdSGIdSGMRTEGAxg\nDLZh2Pm+o7KcYG4B7z45O6Wvi05RmDwsG9N+VOASQgghhBBCHHgSzBFCiF5MgjlCCCH6IvP538P1\n4bu88/T7BHMLuz3P0bdeRf7COeyYdhILb3oQunmyb3Chh1x/+q19hOiNQrPfx/WX2/GuWY6m07Ht\nxDNYfdFVhHIL0ponw2VhcJEHo6FnTvRFY0ma26JE40kiO9shfdUWafcTmLsz6nXk+u3kZdiO2Cqn\nX7XAUhQFvW5n+EanoFN2e7+HKweFowmqNu5Aef89chbNJefzjzEF2/8niXj8bD/uVMqnz6RxyKiU\nThqbWpsYf9/N5C/8kKjLw+fX3kXV5BN6ZK16nYLHYcbjMON1mlNqZxNPqLvain3VWiwUTaDu4xCY\nMdBC4bx36PfB6/jXrQAg6vLw2fV/pnricSmvtX+Oi+KcA1elTdM0tte2UVYd2Odj+Ypnw2qOufln\nWJrqWX/Opaz4ybVpvYbaaioY+txj9Hv/v+iSCTRFYdOZF7Hqkl+SsO379VSnKBRnOynMdki7qyNA\nR8cztla1YnnofkY9cT/1w8Yw/+6nUU2ptXAy6nWMLPHjsnWv5dPBEo4mWLG5IeUKjt806a7fUDTv\nHf73t5doGjwypTFSBVIIIYQQQojeT4I5QgjRi0kwRwghRF9kfOKfeH53LV/8/Ba2nH5+t+Zw7NjK\nKT8+DWXnvyzrzvsJK3/8m27NpQBDi71keW3dGi9EbxD66BPsf7qdjC8+BWDHtJNZdfHPCRSXpjWP\nTlEYkOei4CBWkkqqKtGY2h7W2RnYMRl1faJd1eEsGkuyvbaN6ppmPKu/REmq1I8aj6bvRkhK0yh5\n63lGP/YX9PEYG8/6ASt+cm3KJ+RTZdTr8DjNeHcGdYC9QjiReNdViJRkguwvPqHfB6+T9+kc9PEY\nmk5H9VFTKTv5O1ROmZ5y6yqdojC40EO27+C8xrSF46zb1tRlFTlb1Q6OuelyXNu3sP24U/jsuj93\n+ZistZUMff6f9H/vNXSJOK0F/dly2vcY8PZLuHZsJZSZy5c/v7nL4JXTamRIsRd7L2pDJHreN49n\nNLdFqf2/lzn6D1cR9mfzv4dfIurLTGkuk0HHqJKMlMJ3vUE8kWTllkZaQ11Xsfqm3EVzmXbLlWz4\nzg9YfsXvUxpjMxuYOLT71ciEEEIIIYQQB54Ec4QQoheTYI4QQoi+SFe2Ff/E0VRMOZFPb3u4W3OM\nfeg2Sme9wBe/uJVBrz6Fs2Ibn//mTsq+9d3urUlRGNbPS4bb2q3xQhwq4S+WYbnrdrI+/gCA6vHT\nWHXJL2kaNCLtuVw2E4MKPYfNiU9xcMTiSbbXtdEciKIoCooCiqKg23m762OAnZ9PqBqtbTGiiT1D\nMO4t65l8129wlW+mqWQoi35/3z7bYB0KrrKNFH/wOsUfvom1sR6AluISyk76DuUnnk7En5XWfB6H\nmQF5roNe4UNVNbZWtbKjro3ODuwZW5uZ+oeryVz1BXUjjuKTPzxM3OXZaztrXTVDnn+MAe++ii4R\nJ5BXxJqLrqL8hNNAr0cXizL0+ccY8uLj6BJxth93Ckuv+H2noQudotAvx0lhlgNFquccFqKxJAaD\nknI7st2PZySSKutmf8K0q85FUVXm3v8MzQOHpzSP2ahndEkGNsvhVTktqaqs3dZEfUsk5TE6RcFE\nkpPPnoqm0zPr+XkphyFHl2TsCiQKIYQQQggheh8J5gghRC8mwRwhhBB9lXP8KPT1dbzxykI0Q3oh\nAFNrE6ddOJ2ox8fsp97DXr2D6b/4PsZQkI/+9Dh1YyZ1a006RWFEfx8+l6Vb44U4mCJr12O86w6y\n338TRdOoHz6OlZf+kvpRE9OeS69T6J/rIj/DLifIRY8KRxM0t0VpaYvRHIwSiSXRh0OMefTPDJj9\nMgmzlaVX/p7yE8/o8eo5nVGSCay11Tiqt2Ov3oG9agfZX36Kb8MqAGJON+UnnEbZSWe1h9zS/Llw\n2Uz0z3Ud8pPkzW1R1pU3EYntu0qQLhZl4j03UDj/XVoLB/Dxnf8klJMPgKW+hqEv/JP+s19GH4/T\nllfEmguuoPzEmR2GBVxlGznqwVvIWLOMmMPFip9ey9ZTzun06+eymRhS5MEm1XN6hURSJRRJEI4m\nCO18C+/8OKlpu1oM5mfaMRs7b3W4+/GM9cs2M+biM3BUbWfhjfez47hTU1qP1WRgVIkfq/nwCuV8\nRdM0NlW0UFEf3OPzZoMeq8WAzWzAav761mLWgwbBy65gwJvP8dFd/6Jm/LSU9pXlsTKsn+9APAwh\nhBBCCCFED5BgjhBC9GISzBFCCNFXma79Fe7/PMHce/9D/agJaY0d8vxjjPz3gyy7/LdsPPsSADJW\nfMZxN/yEhNXGh399nraC7lVg0CsKo0r8uB1yxbHonRob27D+8RYKXnwKXTJBU8lQVl36S6onHJt2\neADA77IwsMCNxXR4nvQUh5dILEFLMEZzIIp11huMvOdGTMEAqt5Aa3EJzQMG0zxgKM0lQ2gpGUzM\n5e3WfpRkAnNzI7baqvbgTfUO7FXbsVdX4KjajrWuGp26Z1hF1empnnAMZSedRdXkE7oVFHJYjPTL\ncZLh6T3V1xJJlc0VLVQ1hva9kaoy6vH7GPzKk0S8GXz+mzvJWbKAAW+/iD4eoy2ngLUXXsG2GWd0\nXb1DVSmZ9QIjn7wfYyhI7agJfPHL2zqtjKRT2sOBBZkSDjxYIrEEwXCCYCT+dQgnkiCeVFMar1MU\nMj1WCrMc+6yy9tXxjOqaFrIvOoes5YtZc+EVrL74Fyntw2Y2MLo0o8sA0OGgtqn958+6M4Bj0Hde\ndaj67Q8Zeel3KJtxBp9f/5eU9qFTFKYMz8ZoOPy/XkIIIYQQQvRFEswRQoheTII5Qggh+irTe7Nx\n/+A81p5/OasuvSblcbpYjG//8EQMkTCznp1Hwu7YdV/x+68z8d7fEcgrYs5DL3T7hK5epzC6NOOg\ntx4Rh0ZrMEZtUxiP04TXaU65RUdX2sJxAqEYDqsR534+l5KqSnVjmOpt1Yy+5Rfkfv4xgbwiVl16\nDTuO+RZ0Y81mg56SAjdZvShAII48yS1bMf3trxhXLMO6cS2GSHiP+0OZue1hnZIhNJcMpaX/QJRk\nEktjPZbmBiyNdVia6ts/bqrf9b65pRFlH4e0wr5MgrmFBHPyacstJJjT/n5rcSkxd/deN6wmA/1y\nnWR5rL02WNLcFqWsOkBzW3Sf25S88SxjH7lz19cumJ3HmguuYNtJZ6Zd3c5aV83Yh+8gf+GHJI0m\n1l7wM9Z978doxn3/PnTbTQwp8h621VF6o0isPXATjCQIReIEI+1hnKTac4d8vQ4zhVmOvSoOZmY6\nKd/RRPyqqyl58zl2TJ3Bwpv/mtJrlsNiZHSp/4gNmYTCMfyTxmBpbuTNFz8mabWlNK4kz01hlqPr\nDYUQQgghhBAHnQRzhBCiF5NgjhBCiD6rrQ3/oGKa+w/iw7+/kvKw4g9eZ+I9v2P92Zew4vLf7nX/\niH8/yNDnH6Nu5Hg++tMT3W6NYjbomTQsG52ud55gFftP0zTKa9rYVhNA3fmvr05RcNlN+JxmfC7L\nPqsAdOSrlj1NgSjNbVFiia+rDpiNevwuC36XBY/TlHL4JxxNUFEfpLohhLGmkmk3/wzPlvVUjT+G\nRTfev0cwLR25Phsl+e4ur9gX4qBKJlG2bCHx5VJYvhzj6pXYNqzB2lCb8hRxm52IN6P9zZdJOCO7\nPXyTW0Awp4Bgdj6quefaFZqNeoqzneT4beh6aSDnm1qCMbZVB2gMRDq8P+/TDxn0yr/ZduIZlJ18\n1j6DNDazgbwMOzk+G0lV2xn+iO+6DYYTJFSV/AXvM/bhO7A21tFSXMpn1/2Z5kHD97k+vaLQP89F\nQaaEC1KlahrhnS2nQtH2tlPtQZz278G+2Cu2UTLrBVB0NA4eQdOgEQRzCrpVfQ3AbjFSkGkn22tD\np1Pw+x2s/e2dDL/3ZpoHDGbOA8+StNq7nMdlMzGqxH/Ev0YFrvs9A55+mEW/u5ftJ5yW0hib2cDE\nodkHeGVCCCGEEEKI7pBgjhBC9GISzBFCCNGX2U4/BdtnC3nzxQXEPL6uB2gaJ13xXVxlG5n99HuE\nsvP33kZVmXznryn8+D3KTjqLz6+9q9snmAYXesj1d30CSRx+wtEE68qbaAnGOt3ObNDjdZrxucx4\nnRaMhq9PEsbiSZraojQHojS1RYnEkp3M9DW9ouBxmncFdcymvasBNAWiVNS10dAaQQM8G1cz7ZYr\nsTbUsnnmeSy96qau28l0wGY2MKjQg0datYnDSKyyiviXy1CWr0C/fi1RnYGIL2O3AE4GEW8mUa+f\npKV7FaB0ikKG24KqaaiqhqpCUtVQNY2kqqLt9rGqaRj1OoqyneRn2A/bAGcgFGNbTYD6lo4DOh3R\nKQp+t4U8vx2vs+vfI9F4kmA4TqSukax77yD31WeIOVzMefA5AkUlnY712M0M7eftE22M9pdh+VLM\nr75M24xTaBo9gXAsSTiabG8/FY0TjSVJ5wCuc9smhj7/T4rmvY3yjeBO1OWhadAIGgcOp2nwSBoH\njyTiz0prvSaDjvwMB1mrl1Bw0dnEHC4+fPiljv9u+waPw8yI/r4jPpQD0LxkOQO/fQyVk47jk9sf\nTXnc2NIMackqhBBCCCFELyTBHCGE6MUkmCOEEKIvMz94H667bmPRDfewffrMLrfPWrqQ4377I8qP\nO5XFN96/z+30kTDHX3cxvvUrWXnpNaw7//Jurc9uMTJhSHono0TqVFVjS2UrTruRTLf1oJ3crmkM\nsXFHy64qAta6arwbVhHKziOYU0Dc4epwnAI4bSbsFgOBUJy2SLxH1uO0GvHtDOkEwnEq64MEd5s7\nd9FcJt91LfpomOU/vZ6NZ1+cdthMpygUZjkoznYetiECIaC90tXabU3UNoe73jhFCjC0ny/ltm67\nV9jqC9rCccprAtQ1h/cZ7rAY9eT67eT4bfsVlDG/9Dyuqy+nLaeAOX99gajX3+n2NrOB0aUZR244\nR9NQ/v4wvrv+gC7R/roQKOjHllPOYdtJZxL1ZqQ1nXvzWoY+9xgFC95H0TSa+w9i7fmXE/Fl4Fu/\nCu+GVfg2rMJRtX2PcWF/Fo2DdlbUyc5P6TVISSYY8697MATbmP+XJ6kfOb7LMX6XheH9fPI6tZOq\naZinHY1r8zreeuGj1ELsQLbXxtDi7rXlE0IIIYQQQhw4EswRQoheTII5Qggh+jLDyuV4TzyGshln\n8vn1f+5y+2k3XU7uZx/xv4depGnIqE63NTfWceIvzsNeW8XCmx5gx7GndGuNowb48bl6ru2JaJdU\nVVZtaaSpLQqAUa8j22sjx29Lq31UOhJJlY3bm6nZ7YS+sbWZGVefi6N6x67PxZxugtn57e1vcvIJ\n5ha2t8DJySeUld/t9mjdUfr6M4x59E8kjSYW//ZuKqedlPYcPqeFknwXdsuB+boKcbCpmsaassa0\nKr10RqqjtQtFEpTXBKhtDqNqGgrgdVrIy7Dhd1lQeiiIZLn7Lpz3/pmGIaOYd8/TXbYWs5oMjCnN\n6LC6WF8VT6jUl1WS9dtfkvPxB0TcPlZd8ksyVy6h4OP30MdjqHoDlVOms+XUc6gZdzTo9/318a5b\nwbDnHiVv0VwAGgeNYM2FV1A16XjooLWiqbUJ74Y1eDesxLehPbBjq6/p1mNZ8qs/svXUczvdRqco\nZHutDCz09JnAW08J/eU+iu+7jS+vvonNZ1yY0hidojBleM4eVf6EEEIIIYQQh54Ec4QQoheTYI4Q\nQog+TVXxDCslAcx6/qNOr8B2lm/mlJ/MpH74OOY+8GxK07u3rOeEX12ALplk3j1P0zh0dNpL9DnN\njCpJ74p00blEUmXl5gZaQh23kXLZTOT6bWR6rD3WyqKlLcrabU1E4ru1m0ommXbzFeQu+ZhtJ8wk\n5nJjr96Bo2oH9uod6GPRvebRFIWox4/ayQnQPbbX6agfOZ7tx55KzVFTUw/1JJOMeewvDHz9/4h4\nM1jwx0doGjwytbE7Oa0mBuS5Umo3I8ThRlU1Vm1toDGw989pOkrz3BRkOXpoVX1DOJqgviVChtuC\n1Zx+y7wuaRrmK36K67WX2DHtZBbe9ECH4ZDdWU0GRpf6sZgOwHp6kaZAlOqGIInFnzHpjmuw11RS\nO3oii2+4Z1c7KWNrM8VzZtF/9st4tm4AIJiVS9m3zmbrt75LOCt313wZK5cw9Nl/kPPlpwDUDx/H\nmguvoOaoqWlXXrM01OLdsApLU33KY9QBpWwbMq7D+8wGPT5Xe1tHr8uMvovnwJEqWr6D/IkjaBgy\nirkPPp/yuNJ8NwWZ8rtNCCGEEEKI3kSCOUII0YtJMEcIIURfZ738xzj++zLv/+O/tJQM2ed24x68\nlZJ3XuLTW/5KxbSTU54/57P5TLvlSqJuHx8+9AKh7Py01zh+cNYBq+JypIknkqzY3EAg3HUbKL1O\nIctjJddvx2XvXpUaVdMoqwqwvTawV4uW4U8/xLBn/0HVhGNY8Md/7FltQNOwNNZhr67AXrUde/WO\nXW/WhlqUFP9VNoSCWJobAIjbHFQcfSLbjzuFmnFHoxk7fkz6cJDJf7qOvEVzaSkuZcEdj6b1vLWa\nDPTPc6XclkeIw1VSVVmxuYGWYMchv64UZzvpn9tx6zpxgMVimM86HdeShaw/50esuOy6Lof01XBO\nLJ6kujFEdWOIUCTOwNeeZtTj96GoSdZceCVrLryi42o4moZ3/UoGzH6FwnlvYwyH0BSF6vHTqJwy\nnaK5b5O5cgkANWMns/aCK6gbNSGtQI5ep2DU6zAadr7pdagaRGIJwtHkrpaQ++J0WAi0fV3Zalfr\nRrcFl+3gVZ873OlOOxX/55/wzlPvEcwrSmmMw2JkvLRjFUIIIYQQoleRYI4QQvRiEswRQgjR15lf\nfgHXVZex4ie/Yf33ftLhNqbmRmZeNJ2wP4vZT87utF1DR0pff4axj9xJc/9BzL3/WRL29K4gzvXZ\nGFzkTWuM2Fs03h7KCUa6DuV8k8NiJMdnw2o2oNcrGPQ69DoFg15Br9d12PoiFEmwdlsTgfDeJ+1z\nF85l2q1X0pZTwP8efpm4y9Otx9QlTcO7YRWF82dTOP9dbHVVAMQcLiqmzmD7sadQO3YymqE9+GVp\nqGXazT/Du2kt1eOOZuHND5Kw7/uf9t2ZDDqKs53kZtilFYg4YiSS7eGc1n1U4NqXggwHpQXuA7Qq\nkQqtqRHbSdNxlG/hi1/cypaZ3+9yjMWkZ3RJxoGp5HMQxeJJmgJR6lrCNLZGUTUNY2szE+67kfyF\nc4h4M1h8w93Ujp2S0nz6cJDCebMZMPtl/OtW7Pp81cRjWXPBz2gcNnbX5ww6HRaTHpNRj8Wkx2zU\n7wreGHYP4Rg6fm3dXTyhtod0Ykki0QSRWJJI7KvbJC6nBT0afpcFv8tyRLUj60nxJ58i74ZfsOqH\nP2ftRVemPG7cwMxuB5uFEEIIIYQQPU+COUII0YtJMEcIIURfp9TVkTG8hJoxk/no7n93uM3QZx5h\nxH/+xtIrb2TTWRd1az9jH76d0jefY+Wl17Du/MvTGqtTFCYPy8ZklBNK3RWJJVi+qYFwLHFA5tcr\nym6BHR0GvUJrMEayg39pHRVlzLjqXJRkgjkPPt9ppaYepWn41i2ncP67FHz0Hrb6agBiTjc7ps6g\nbtRERj75ALb6araceg5f/vyWXYGdzugVhYIsB4VZjh5r/SXE4SS7q7deAAAgAElEQVSeUFm+qZ62\nFEN/ErbsPWIbNuGfOQNzazML/vgPqice2+UYi1HP6NLDK5yjahqtwRiNrVGaApG9qsb51i5j8p2/\nxl5bRc2YySy+4W6ivsxu7ctTtoHi5YsITp5KcvRYTEYd5p0hHJNRf9BeJzRNIyPDSUND20HZX1+m\ntbbgH1ZKMCuP9554O+WqR/K7TgghhBBCiN5FgjlCCNGLSTBHCCHEkcB5/FSMG9fxxiuLSFpte9yn\ni0U57aIT0cVjzHpuLkmrvVv7MLY2c+b3plI/bCzz7n8m7fHS8qT7QpEEKzbXE4knD/VS0IeDnPjL\n83GXbWTx9X+hfMYZh2Yhqop/7XIKPppN4UfvYW2o3XXXip/8hvXn/rjLE286RSHHZ6NfjlNCY+KI\nF4snWbapnlC08/BfptvKsH5eFKkq1Wu0fPgR/S8+G1WvZ+79z6YUljyQ4ZykqhKOJglFE4QjCSKx\nBDqdgtmox2zSYzG2B1zMJn2nFWUisQSNrVEaAxGaA7GO2z6pKoNefYqRTz6AoqmsvuhK1p7/s7Qr\nAxr1ul0tonxOc68JacrxjJ6ju+hC/O+/xf8efpmmQSNSGqNXFKaMyOk1zwchhBBCCCGOdJ0Fcw6f\nS0+EEEIIIYQQh63kiTOwrFlJ5orPqJ50/B73Fc2ZhaW5gXXf+3G3QzkAcZeHxsEj8a9ZhiEYSLk9\n0Fcq64MUZzvR6eRkbjrawnFWbm4gmjj0oRw0jfH334y7bCMbz7zogIdybGYDNrOB+tbI3nfqdDQM\nH0vD8LEsv/wG/GuWkv/ph9SNHE/VlOldzu2ymRhS5MVmkX/bhQAwGdtbHC3dVEck1vHvG5/TzFAJ\n5fQ67hOPZd1tDzD8d1cy7eaf8eFDLxLJyO50TGRnEGtMN8M5mqYRiSUJRxOEoglCkQThaPtbOiFS\ns2HPllBmk55oPElja6TLkJi5qYHx999E3uJ5hH0ZLL7hXurGTEp533aLcWeLKDMuu0me132cev75\n8P5bFH34VsrBnKSmUdMUJj+j+38/CyGEEEIIIQ4OOcInhBBCCCGEOODi02fA3x4gZ8knewZzNI1B\nrz6Fqjew6czutbDaXevRx+Nfu5zspQupmHZyemtMqlQ3hsiTkxspC4RirNjcQDzZQZWAQ2Dga09T\nNH829cPHsfyy63p0br1OwWUz4bKbdt0aDe1XqDe0RFhX3rTvr4NOR8OIo2gYcVRK+8rz2yktcHda\nqUGII5HZ1B7OWbapnug3whVuu4nh/X3yc9NLeS++gDVlZQx77G6m3XwF8+77PxK2zl9vozvDOaNL\nMroMKSZVldZgnJZglOa2GIF9tDr8JmtdNf1nv0LU46Ny8vGEs/L2XEMiSTSRJBDu+jEC6CNh8hbO\noWjOLHKWLECXTFA97mg+++1fiHozOh2rUxQ8DlN7ZRyX5bBq5SV6wEknE3d5KJz/Disuuw5Nn9r3\nv7ohKMEcIYQQQgghDgPyH54QQgghhBDigItPmETSZifniwV7fD77i09xb9vEthNmEs7M2a99ZHus\nOM48DZ74K9lLPkk7mAOwo65NgjkpammLsnJLY8etOw6BzOWfMepf9xL2ZbDwpgfQjKb9ms9qMrSH\ncOwm3HYTdothn9UK/G4LRw3OZPXWJgLhWLf3qVcUBhZ6yPHZut5YiCOU1WxgdImfZZvqiSXaf/84\nrUZGDvCj10k7l97KaNBhuO5aNu/YRsnbLzL5rl/zyW1/7zJ8EI0nWb6pntGlfmwW467PJ5IqrcEY\nzW0xWtqiBMJx1BSCOF8xNTcy5MV/Ufrmc+jj7b+3xz18O80DBlM56XiqJh9P4+BRkMJzSkkmyFq6\niKI5b5H/yf8whkMANJUMZeupZ7N55vmdzmMx6snPdJDrt0lLoiOZyUTbaWfiff5pspYupmb81JSG\nBcJxAqEYTtv+/d0jhBBCCCGEOLAkmCOEEEIIIYQ48EwmYlOPwfnBu9iqKwjl5AMw6LWnANhw9iX7\nNb3FpGdgoQcKxhN3utsDQJoGaVZOCEUTNLRE8Lst+7Wevq6xNcLqrY1dVyNQVTJWLcHc2oySSKBL\nJlGSCXSJOLpEov39ZLL9vkQcRVVpGDaWmnFTUjoZ+hVrXTWT7/w1KAoLb/4rEX9Wtx6XTlHI8dko\nznZiNunTGmsxGRg7KINNO1qobAimvW+LSc+I/n4cVmPXGwtxhLNZjIwqyWD5pnqMBh2jSvwSaDgM\neF0Wttz2F2w1leR+9hFjHrmLpVff3OVrdTSRZPmmBgbkuQiE47S0RWkLx0k9hvM1QzDAoFefYtCr\nT2EMhwhm57H2gp+hi8fJXTyPrGWLGbZlPcOef4yIx0/VpOOomnQcNeOm7lnhR9Pwrl9J8ZxZFM6f\njaWpHoBgdj4bz/oB5dNnEigu7XQtTquRgiwHmR6rVHoS7S64AJ5/mqI5b6UczAGoagj1qmBOXXMY\nnaLI39NCCCGEEELsRoI5QgghhBBCiIMiMX0GfPAuOUsWsGXmebi2biBnyQJqR02gedDwbs+rUxSG\nFft2npTVEZhyDL73Z+HcvpVA0YC059te1yYnEjqgaRoNLREqG4I0BqKpDGDcQ7dR8s5Lae8rmJ3H\n1m+dTdm3vttlJSVdLMaUO67B0tzAl1fdRMPwcWnvDyDTY6V/jqvLdimdrkVRGFTowe0wsaG8OaU2\nKgA+p4Whxd5drbGEEF1zWI2MKvFjNOgwGtIL0olDp1+hlxV3/A3rledR+tbzqAYjdaMnEsrMIZSZ\nS8zt7TCoE00kWVve1O396iNhSt58jiEv/gtzoIWIN4OVP/o1W089F9XUHmjYfMYF6MNBsr9cSO7i\neeQtnk//916j/3uvkTQaqRs1kapJx2NqbaZozls4K8vb1+b2sun08ymffjoNw8Z0GTTKcFkoyHLg\ncZi7/XhE35SYOJloXiH5n3zAl5FbSVqsKY2raQpRku/qFVXDGloirN3WhKpp+JwWSvNde1S7EkII\nIYQQ4kglwRwhhBBCCCHEQRE74UQAsr9oD+YM/O9/gP2vllOc7cRl//oq4eSJJ8H7s8j+YkG3gjnN\nO6/El8ol7aLxJNUNIaoagkTiyZTHDfu/hyl55yWaBwxh67e+g6Y3oOoNaIb2W9Xw9fvazo91iQT5\nn3xA0dx3GPGfvzH8mb9TNeEYtp5yDlWTjkMz7P09GfPoXfjXLmfbiaez+YwL0n58HruZAXmuPZ5D\n+yvba8NpNbJqayOhaKLTbYuznfTLce6zTZYQYt96U4UIkRqdojBoWBEL73iM43/+PQb99z8M2vn3\nAEDSaCKcmUMoM4dwRjahzNyd7+cQysolmFNAwu5IeX9KPEb/d19l2LP/wNpYR8zhYsWPfs2mMy8k\nad27bWDSaqdy6gwqp87gC1XFu2EVeYvnkbtoHjlffELOF58AkDBb2XbCTMqnn0bNUVM7fH3anV5R\nyPbZKMi0S0hB7JuiED37XFx/u5+8hXPYfsJpKQ1Lqhq1TWFy/Ye2HWtzW5Q1ZY272so1BiIsWR8l\nL8NOvxynVDYTQgghhBBHNEXT0mjAfAjU1QUO9RKEEOKAysx0yu86IYQQRwz3+FEo9fW8+/gsvn3x\nSYQyc3n3ydlptS3ancdhZnSJf49Qg66yAv+YoVRNOIYFd/6zW/PmeG0MKfZ2a2xf0RSIUtkQpKEl\nsusES6pK3nyOcQ/fTltOAXMefI6oLzOt8YZQkML579D/nVfwr18BQNiXQdlJ32HrKWcTzC8GoN97\nrzHhvhtpHjCEOQ8+l/KV5QAOi5H+ua4DWh0pqapsKG+mpjm8130GnY6hxV6pziSEOCJVNQTZunIL\n2UsXYq2vwVZXjbWuqv22vhprY/0+x0ZdHoI5BQRzCwjmFNCWU0gwJ59gbiGhrNz2kEwySdHcWQz/\nz8M4qneQsNjY8J0fsOHcHxF3uNJer16nUBBtpt+KhehdDgInnEzUZCWWUInFk8TiKrHEnrcJVcVk\n0JGf4SAvw9YnKzvJ8Yyep1+/Dt8xE6mcdDyf3P6PlMe5bCbGDUrv762e1BqKsXxTPUm1478ZjXod\n/XNd5PptEkYWQgghhBB9Vmamc5/3STBHCCEOMTmQJYQQ4khiv/5X2J56gpqxU8heupAvr765W1VO\noP0A//jBWZhNe5/osk0Zj3lHOW+8ugjVlH6rCJ2iMGlYNmZj3zuJ1plEUqW6MURlfbDLSi/7kv/R\ne0y581dE3T7mPPDsrhBNd7m3rKf/7Fco/vBNTG2tANSOnkTl5OMZ+eQDJM0W/vf3VwjmFqY0n8Wo\npzjHSY7v4J0YqqgPsrmiZVfAyWExMry/D6tZitgKIY5cq7c2Uteyd3AR2ivdWOtrsdVXY62rxlZX\nha22Cnv1DuxVO7DXVKCPx/Yap+l0hDJzAAV7TQVJo5HNM7/Puu9fRtSbkfYaXTYTuX4bmR5r2tU+\nVFUDpf1vir5KjmccGM4TpmJat5a3Xviovb1bisYPzjokFR+DkTjLNtYTT6pdbuuwGCktcEsrNyGE\nEEII0SdJMEcIIXoxOZAlhBDiSGKa/Tbui88HIOp08/YzczpsJZGKEf18ZHg6rpCiv+F6fE8+yvw/\nPU7tUVO7NX9RlpMBeelfVX84UjWNjdubqW0Kk9yPfxEzly3mmBt/imowMu/e/9A8cHiPrVEXjZD/\nyf8YMPtlspZ/BoCmKCy4/VGqJx7b5XiDTkdRtoOCTAc63cE/SdoairFmayNuu4lBRR703awSJYQQ\nfUU8obK1qpVILEk0niQaS5JQuz6xD4CqYmmsw169A0fVdtx1lThrKrBX78BaUY6hpZn6b5/Fhh9e\nRYM7i1gixXlpD/5me23k+G3S1rILcjzjwLA+8jccf7gx7QB7foadgQWeA7iyvYWjCZZtrCeaSL3d\nKUCmx0pJnguLSULKQgghhBCi75BgjhBC9GJyIEsIIcSRRAm04h/cDyWRYO35l7Pq0mu6NU+e386g\nwn2feNDP/RDfed9h/dmXsOLy33ZrH0a9jsnDs4+IAEV5TYAtVa37NYdn0xqOv/aH6GMxPr7zMWrH\nTumh1e3NUVFG8f/eJJBfTPmMMzvcxmLS47Aa298sRjxOc9rVDnpaUlWPiOeTEEJ0VyKp7grpROPJ\nPd5PJDUsJj0WkwGruf3WYtJjNun3rkqjabDb56LxJMFwnLbd3sLRBLsfFPU4zO3VcdzWQxLgPBzJ\n8YwDQ1ddhW/0EBqGjmHug8+lPM6g0zFlxMH72zUaT7J0Yx2RWHqhnK/oFYWCLAfF2U75mRNCCCGE\nEH1CZ8EciaQLIYQQQgghDhrN6SJ69DEYF33Kpm62sLJbjJTkd17JJjllKkmzhZwlC7odzIknVaob\nw+Rn2Ls1/nARjSXZVr1/J9XsleUcc+PlGMIhFv3+vgMaygFoy+/H6ot/AbS3CLFbDNgtRhw2464w\nzqEO4XREQjlCCNE5g16HQa/DbtnPSjXfCOqYjXrMRj0+l2XX55KqSjCcIBiJ47absVnkMKnoHdSc\nXGJTjyVjwXzsVdtTbteZUFVWbG5gcKH3gD+f44kkKzY37BXK0UfCjP37HdSNmsC2k87qdI6kprGt\nJkBzW5QR/f0YDfJ3khBCCCGE6Lvkr10hhBBCCCHEQdX26BOsf+0D1OyctMfqFIWhxd6uAw4WC8GJ\nR+PetglrXXU3VwoVdW3dHnu42FTZghqPoYtGujXe3FTPsb//KZamepZd8Xt2HHdqD69wbzazgQG5\nLsYPzmLaqFyOGpzFkGIvBZkOPI5DXxlHCCFE76fX6XDZTeT67RLKEb1O9NzzACiaMyutcS3BGEvW\n11JeE+BAFcpPJFVWbG4kGInveYeqMvHuG+j/3msc9eCt2GoqUpqvJRhj6cY6wtHEAVitEEIIIYQQ\nvYMcrRRCCCGEEEIcVFpGBpkTxzBpWDal+W7MRn3KY0vyXDisqV1FnzxxBgDZSxZ0a50AoWiC+pZw\nt8f3dk2BKHVNIY658TLO+u4kJt35a7I//xiSqbUkMATbOObGy3BUlrPm/MvZdNZFB2ytekUh22tj\nTGkGE4dmU5TtxGE17t2+RAghhBDiMBc77XRUs6U9mJNmwEbVNLZUtfLlhnrawvGuB6Qzt6qxaksj\ngXBsr/tGPPVXCha8TygzF308xsjH70t53lA0wdKNdQRCe88rhBBCCCFEXyDBHCGEEEIIIcQhodfp\nKMh0MGlYNoMKPFhMnQd0MlwW8jMdKc+vnXQyADlffLJf69xRG9yv8b2Vqmlsqmghd9E8spcuQtPp\nKJo/m2NvvIyZF57AyMfvxblt0z7H62Ixjv7jz/FuWsuWU89h9SW/PCDrdFiMDMx3M2VEDkOLvXgc\n5gOyHyGEEEKI3kJzuYl961Rc27fg2bSmW3MEwjG+3FBHWXUrag9Uz1E1jdVljTQHo3vd1++91xj6\nwj8J5BfzwSOv0jh4JEXzZ+NfvTTl+WMJlWUb62lo6V4VRyGEEEIIIXozCeYIIYQQQgghDimdopCX\nYWfi0GyGFHmxmfduJ2E26Blc5Elr3mTpQKK5BWQvXYiS7H5p/OZgtE9evVtRF/x/9u47Su66+v/4\na3rf3rMpm56QkAAJRYr0JgKCSJEuICKKihR/FmIFRaRKEaSIUhUQvtIUKdISIAXS+ya72Wzf2en1\n8/sjJJRkN7Mzsy15Ps7h7Ml8Pu/7vsMfe2bfcz/3KhSKavoDN8swm/WfO57UK7c+ptUnnCFLPKbJ\nT/xZx178ZR3xna9p3LOPyNbd9cnidFr73niNKhe8q8YDjtD8714n5bFzjcVsUk2pR3tPLNesyRUa\nUe5lPBUAANitxE79miRp9CvPZR0jbRhavzmg+Sta1Z3D51nDMLS8vlPt3dsXzZQvmqd9bp2juK9Q\nb/7yLsULi7Xw0h9Jkmbefb2UTme8T8owtHhduza17ZqF8QAAANh9WebMmTNnsJPoTXgXPAAHgE/z\neBz8rgMAQJLJZJLXZVNNmUcep1WRWErxZFomSXvUlcqT4QirTwVUetkyeebPU9PsgxUpr846t3TK\nUHmRK+v1Q00skdLS9Z2qfeU5jfvX41p/9Fe0/rjTFCmv0ub9DtWqr5wrf91EWWMRlS/+QDVzX9eE\np/+iwrUrlHI4NP7ZR1T30tNqnbaP3vr5HTJs9rzk5XHaNLa6QJNHF6u8yNWnMWcAAGBgcZ7Rv1Kj\nx8j1wH0qWvahNu1/mGLFpVnHiifT2tweViptqMjjkGknBdWGYSgSS6ozEFNzZ0T1zQF1BLbvlONt\nWKcv/ugimZMJvfnLu9Q1cZokKVJRLd/Gdar64C0Fa0bJP3Zyn/Jt744qnZaKfXRKBAAAwPDh8fT8\n+dVkGHnoY9mPWlsDg50CAPSr8nIfv+sAAOhBW1dE0URKtX0YYfVptv/7p4ouPEdLzv62lp57edZ5\nmE0mfWFa1S7TtWVZfadaWrp03IXHy9nRohceeFGRipod3utsb9GoV57TmH8/o8JPjbbyj5mgV296\nWAlfYc75mCTVVnhVV10gcx477wAAgP7DeUb/sz/7tAovOk/B6pH6z+1PKFHQtw6SO+J2WDVpZJEK\nbZIcDqXSaYUiSQUiCYUiCQU//pnaydcG9u5OHX7FmfI11uu9K3+t9cec8tl9mht17De+pLivUC/c\n/4JSLnefc60sdmvSqCI+HwIAAGBYKC/39XiNjjkAMMh4wgwAgJ65nTYVeLLvxmJUVcv1x9tkiUe1\n7rivZh9HUpHXIdcOxmwNN/5gTKs3+TXu/x7T6Ff/pdUnna2GQ4/v8f6k26P2PfbWmi+fqab9D1Xa\nalO8oEjv/ORmxXN4cnsrp92i6XWlqi717PTpbQAAMHRwntH/UpOmSMmEvP9+UcWrlmrD4V+SzLkV\niieSKZXf+EuNuuTralu2RvOLxqohbKijO6pAJKFYIqWdPclrSsR10M8uU8nqpVp2+sVaedqF2+/j\nLZA5FlXNvDeUttrUOmPfPucaiibkD8VVVuiU2cznRAAAAAxtvXXM2TUe9wQAAACAHTAKChWeOUsl\nKz6Srbsrp1j+0PD/4skwDK1q8MsSCWnqI3cr4XJr2ZnfzGyxyaTOidO0+qpfSM89p9F7TZLTntuo\nqeoSt2ZNqlChlzEFAAAAOxK+5ieKHXOcKhe8o+n33ZRbMMPQtAdv1eQn/izDZNbo5x7XsRccqwlP\nPSRTMpFxjFm3XKeKD99Tw0FHa/EF3+vx1uVnXKxISZkmPflnuVqaskq5KxjTwlVtisVTWa0HAAAA\nhgIKcwAAAADs0lKHHylTOq3KBe/kFGdXKMzZ1BZSMJrQhKcflrOzTStPvUDxopKM15tNJk0eXSyL\n2azqUo/2nVKpSSOL5LT1rUDHbjVrWl2JJo0q3mXGgwEAAPQLs1mBO+9VYvxETfrHgxr972eyDjXl\nb3dqyqP3KDBitJ5/6GUtuOzHksmkmXffoKO/ebIq3/vfTmNMfuxejfn3M+qYNF3zrr6h1w4+KZdH\nH134A1ljUU2//+as8w5GE5q/qlXhaIbFQwAAAMAQwwkoAAAAgF1a6qijJElV77+ZU5xAOC7D2Flj\n/6ErkUxp/eaA7N2dmvzEnxUrLNbKU8/vU4wxVT55nLZt/zabTFsKdKZWamJtZgU6ZYVOzZ5cobJC\nV1/fAgAAwG7J8BUo8PCjSvkKtM8t16l4xUd9jjHp8Xs17S93KFhVq9d/96AiFdVaffLZeuGBF7X6\nhDPka1yvQ358iQ786bfkbVy/wxgj3nhJ0x+4WeHyar015w6lnDv/PFd/5EnqHD9Vo//7nEqWLepz\n3lvFEiktXtehZCqddQwAAABgsFCYAwAAAGCXltxzphLFJVsKc3IorEmlDQUjw/cp3bWbupVIpTXp\n8ftkCwe17IxLlPR4M15f6LZrZMWO7zebTKop21KgM6G2SI4dFOhYzWZNHlWsaXWlsllzG4EFAACw\nu0mNm6DAvQ/InEzowDmXy9nekvHaCf94UHv++Q8KVVRvKcopr9p2LV5YrAXfvU7/vvMptczYVzVz\nX9MxF5+o6ffeKGsouO2+4uUfar/fXaOEy603f3mXoqUVmW1uNmvht34kSZp59/U5fR4Px5JatTG3\n8bQAAADAYLDMmTNnzmAn0ZtwePi3iweA3ng8Dn7XAQDQn0wmadFCeRa+r4aDj1asuDTrUB6nTQUe\nex6TGxjdobhWNfrlbGvW/r+9WtGSCs27+gYZFmtG6y0mk6aPK5N9Jx1xTCaTCtx2jSjzyG41KxRN\nKpU2VORxaM/xpSryOvLxdgAAwBDAecbAS9eNk+F0yfPi/6l02UJtOPxEGZbeP5+Ne/YR7XXXbxQp\nrdBrv/+LwtUjd3hfrLhM9UedLP/YiSpdulA1895Q3UtPKe4rVNxbqEOvuVC2SEhv/+xWtU+f1ae8\nw5U1Kli/WlUfvKXAyDp1103s0/pPC0WTslst8rmH32dyAAAA7No8np7PPumYAwAAAGCXZxx1tKTc\nx1l1h4bfl0+GYWhVg1+SNPWvd8oSj2nJuZcrbc+8SKaupkBuZ2ZFPJJkNps0otyr/aZUanpdqWaM\nL5XTnvl6AAAA7Fjk8isU+cpXVbZ0ofa64xe9dqCpe+FJ7X3HLxUtLtNrv3tQoZpRvQc3mdR40NF6\n8b7/00fnXyFrJKzZf/iJjv3G8XJ2tmnhN6/V5v0OzSrvDy/6oVI2m/a87yZZopGsYmy1utE/rDtZ\nAgAAYPdDYQ4AAACAXV780CMk7Z6FOZs7wgpE4vI2rFPdi/9Q98ixqj/yxIzXF3kdqi3PfOTVp5nN\nJpUWOmUymbJaDwAAgM8xmRS8+Q7Fpu2psS/+Q+Oee2SHt43+9zPa55brFCss1uu/vV/BkXUZb5F2\nOLX8rEv1wgMvqP7wL8uSiGvVSWdr9clnZ512uLpWK085X+7WJk38+wNZx5GktGFo6foOJVPpnOIA\nAAAAA4XCHAAAAAC7PKOyUtHJe6hs8fuyRMJZx4kmUorGk3nMrH8lkmmt3dQtSZr20G0yp1NafMEV\nmY+wMps0aWRRf6YIAACAvnK7FfzLo0qWlGrmXTeofNG8z1yufe15zb7px0p4C/T6Dfere8yErLaJ\nllVq3rW/0zN/f0cLL/t/W0bE5mD5GZcoWlymyY/fJ2d7S06xwrGkVmzsyikGAAAAMFAozAEAAACw\nW0geeZQsiYTKP3ovpzjDqWvOuqZuJVJpFa1aopGvv6iOSdPVeOBRGa8fP6JQLgcjqAAAAIaadO1I\nBR/4qyTpgF99T+7NjZKkEW++rP1uuFpJp1tvXH+f/OMm57xXoqBop0U5DqtF5YUuja0uUJFnxyNT\nkx6vFp//XVljEU2//+ac82rtiqixLZRzHAAAAKC/UZgDAAAAYLeQPPxISVLV+2/lFMc/TApzWroi\namrf8kXF9AdukSR9dOH3M37SucTnVHWpp9/yAwAAQG4SBxyo4G9+J4e/UwfOuVy1rz2v/X/zQ6Uc\nDr1x/b3qnDitX/Y1m0zyueyqLfNq6uhi7T+1UgdMq9IedSUaVenTzAllmjqmRE6bZbu1644+RV1j\nJ2vMv59R8crFOeeyptGvQHh4fD4HAADA7ovCHAAAAAC7hcS++yvlcqvy/TdzijPUO+YkU2ktq+/U\n0vUdMiSVL5qnqvffVPNeB6hlrwMyimE1mxlhBQAAMAzELrhIga+fp6K1y3XAb65U2mLVm7+6Rx1T\nZuZtD5vFrLICp8ZWF2jm+DIdOL1K+0wq1/jaQlUUu+W0b99hsaLIpdlTKjSmyifLpwvDLRYtvPRa\nSdLMu66XDCOn3NKGoaXrO5VMpXOKAwAAAPQnCnMAAAAA7B7sdsUOPEQFDeu2tfrPRjCSGLIH/52B\nmN5f3qLmzvCWFwxD0+//g6SPu+VkaEJtoRz27Z9wBgAAwNAT/e1NCs0+QEmHU2/+4k61TZ+Vc0yz\nyaSyQqemjSnRAdOqNG1sqUZV+lTkdchizuxrBYvZrDFVBf1+PKcAACAASURBVJo9pUIVRa5tr7fO\n3E8NBx6psiXzVfu/l3LONRJPasWGrpzjAAAAAP2FwhwAAAAAu43UEVvHWWXfNceQFAgn8pRRfqTT\nhlY3+rVoTZuiidS212ve+a9Kly1Sw0FHq3PS9IxilRU6VVni7q9UAQAAkG92u8LPPq+NcxfLe9zR\nKvI6ZM5wfOnn+Vw2jR9RqAP2qNS0ulKVFbmyjrWV027V1DEl2mt8mXwumyTpw4t+qLTVppl3/lq+\n+tU5xZekVn9EDa3BnOMAAAAA/YHCHAAAAAC7jfhhR0iSKj/YdcZZBcJxfbCydfsvIlIpTXvgFhlm\nsxaff0VGsWwWsybWMsIKAABg2LFY5K2p0Ogq37ZxU3uOLdWoCp98Lrt6K62xW80aWe7VrEkV2mdS\nhWrLvbJZ8989sdDr0N4TyzVpZJESo+u06JKr5epo02E/OFslyxbmHH/tpu4h9TkdAAAA2Gr74a8A\nAAAAsItKjx2n+KgxqlzwjkzJhAyrLas4/lBMki+/yfWRYRja0BxUfXNAacPY7vro/z6nwvrVWnfM\nKQqMGptRzAkji2S3McIKAABguLOYzSopcKqkwClJSiTT8gdj6gzG1BmIKRpPqbTAqaoSt4oLsu+w\n01cmk0nVpR6VF7lUf/Glet/l1j43/1RfvPpCvX3dbWqedVDWsdOGoaX1HdpnYoVsVp5JBgAAwNBB\nYQ4AAACA3Ury8CPlfvA+lS5bpLbps7KK0R1KyDAMmQboC4zPC0eTWrlqsxIbNqi0rVmu1ia5WzfL\n1bp5y8+2Zvka1ills2vJOd/OKGZFkUsVRa5+zhwAAACDwWY1q6zIpbKPP++lDWPAinF2xGoxa9yI\nQnVedonmFhVr9i++p4N++i3Nu/oGbTzsS1nHjcZTWrGxU9PqSvOYLQAAAJAbCnMAAAAA7FYShx8p\nPXifKt9/M+vCnGQ6rVA0Ka8ru4472TD5u+T52f+TsXChfE2bNLqro+f8nG6FK2q04rQLFamo2Wns\nEp9DExhhBQAAsNsYzKKcTyv2OeQ8/wzNKyzSrGsv0f7X/1AOf6dWn3x21jHb/FHVbw5odNXgdrgE\nAAAAtqIwBwAAAMBuJXHQwUpbbap6/00tueB7Wcfxh+IDV5hjGPJe/X05n/6HUnaHwuVV8o+ZqEh5\nlcJllYqUVytcUaVwebUiZZVKeAukDL5ssZhNGldTqJoyzwC8CQAAAGB7LodVY047XguKH9ee3z1P\ne935azn8HVpy7ncy+ky7I+s2dyuZSmvciMI8ZwsAAAD0HYU5AAAAAHYrhten+Oz9VPLOm3J0titW\nnF2b++5gTCMGqKDF8cSjcj79D7VNnanXbnpYhiX3P+WKvA5NGlkkl4M/CwEAADC4rBazxhx9kJY/\n/E+Nv/gMTf3bXXJ0dWj+5T+VLJasYm5sDSqeTGvSqKIh0yEIAAAAuyfzYCcAAAAAAAMtecSRkqTK\n+W9nHcMfjucrnV6Z162V99orlXB7NPeaG3MuyrGYTJowolAzx5dRlAMAAIAhw2QyacS+09Xw5L/U\nNXayxv3rce3/mytljmf/ubu5M6zFa9uVTKXzmCkAAADQNxTmAAAAANjtxA/bUphT9d7/so4RjacU\nS6TyldKOJRLyXXaxzKGQ5l/+M4Wra3MKV+ixa9bkCo0o9+YpQQAAACC/SieOUeczz6ttz9ka+b+X\ndNBPvilrOJR1vI5ATItWtyne35/dAQAAgB5kVJizaNEinXPOOdu9/t///lennnqqTj/9dD3xxBOS\npEQioSuvvFJnnHGGzjrrLK1Zs0aSVF9frzPPPFNnnXWWrrvuOqXTVKgDAAAAGBypadOVqKlVzbuv\n5vQErj/Uv11z3Df9VvYP3lP9YSdow5EnZh3HYjJpfA1dcgAAADA8eKvKFH36WTUffKQqF76rL151\nnhyd7VnHC0QSWrCqTZFYMo9ZAgAAAJnZaWHOvffeq5/85CeKxWKfeT2RSOj666/X/fffr4cffliP\nP/642tra9PrrryuZTOqxxx7Tt7/9bd1yyy2SpOuvv17f+9739Mgjj8gwDL3yyiv9844AAAAAYGdM\nJiVOPFm2cFCV89/KOkx3PxbmWN99R+5bfq9QZY3mf/dnWccpdNu1z6QK1VZ4ZTKZ8pghAAAA0H8c\nPo/06OPafOLXVLJqiQ698pycOudE4knNX9mq7gEaSQsAAABstdPCnFGjRun222/f7vU1a9Zo1KhR\nKiwslN1u1z777KP33ntPdXV1SqVSSqfTCgaDslq3PI25ZMkS7bvvvpKkQw45RG+//Xae3woAAAAA\nZC524smSpNo3Xsw6hj/YP4f6Jn+XvN+6SJI099oblfT4+hzDbDJpbHWBZk4ok9tJlxwAAAAMP2a7\nTZZ771XL6eepoGGdxj33SE7xEqm0Fq1qU0d3NE8ZAgAAADu309PZY445Rg0NDdu9HgwG5fN9cjjs\n8XgUDAbldrvV2Nio4447Tp2dnbr77rslSYZhbHs60+PxKBAIZJRgeXnfD6ABYLjhdx0AAIPg2MOV\nGlGrEe+8qhV2kwy7o88hTCaTSko8slgymhKcGcNQ+ruXyNy4Uasv/K7i+31B2XxSGFnp0x5jS/OX\nFwAAwOdwnoEBc8+tSj3/tCb/40E1n/UNpVzunMKtbw3LW+DSiHJvnhIEAAAAepb1Y5Ner1eh0Cdt\nI0OhkHw+nx588EEddNBBuvLKK9XU1KTzzjtPzz33nMxm82fuLSgoyGif1tbMCngAYLgqL/fxuw4A\ngEHiPuEkee75ozxv/FdN+x+WVYw19R0q9vW9qKcnjicfU8Fjj6l9ygwtPO1iGcG+P81rkuQbWchn\nDAAA0G84z8DAMstywSUque33qnj8Ia386gU5R3x7YYPGVhdoVCUFZgAAAMhdbw8uZP1Y57hx41Rf\nX6+uri7F43G9//772muvvVRQULCtk05hYaGSyaRSqZSmTp2quXPnSpLeeOMNzZo1K9utAQAAACAv\n4tvGWb2UdYzuUP7GWZnXr5Pn6h8o4fZo7rU3yrBk9yxFWaFLLgfjqwAAALDrSH/7ciXcHk168n6Z\nY/kZRbW2qVurG/15iQUAAAD0pM+FOc8995wef/xx2Ww2XXvttfrGN76hM844Q6eeeqoqKyt1/vnn\na8mSJTrrrLN03nnn6fvf/77cbreuueYa3X777Tr99NOVSCR0zDHH9Mf7AQAAAICMJfeZrUT1CNW8\n81+Z49kV2HSH81SYk0zK/c2LZAkFNf/ynypUPTLrUCMraMkPAACAXYtRXKK2My+Qs7NNY59/Mm9x\nG1qDau4M5y0eAAAA8HkmwzCMwU6iN7RDBbCro/UzAACDy/3Ta+W5507975d3afN+h/Z5vc1i1oHT\nq3POw3HDr1Xwh99qw2Ff0txrb5RMpqziFHkcmjmhLOd8AAAAesN5BgZDrKlZVfvNUMLj1fMPvay0\nPT8jZS1mk2ZNqqDrJAAAALLWL6OsAAAAAGBXED/xK5KkkVmOs0qk0gpFEznlYJ37jny33KhQZY3m\nf+dnWRflSHTLAQAAwK7LUV2pjad8Xa72FtW9+I+8xU2lDS1d36H00H6OGQAAAMMUhTkAAAAAdmvJ\nfWYrXlWjmnf+K1Miu7FU/mD246xM3X65L/mGJGnuNb9TwluQdSy3w6rSQmfW6wEAAIChLnzpd5R0\nODX58fuy/vy+I4FIQms3dectHgAAALAVhTkAAAAAdm9ms+JfPkn2YLcqF7yTVYjuUPZfCNi+f4Uc\nTQ1aduY31T5tn6zjSHTLAQAAwK6vZMIorfvS6XK3NmnMv5/Ja+yG1qDa/dG8xgQAAAAozAEAAACw\n20ucdIokqTbLcVb+LAtzzH9/UoXPPaX2KTO09OzLsoqxlcNqUWWJO6cYAAAAwFBntZjVeuFlStns\nmvLon2RK5jZW9vOWb+hULJHKa0wAAADs3ijMAQAAALDbS86arXhltUa8/UpW7fAj8aTifT287+qU\n96fXKmV3aO7Vv5VhsfZ5308bUe6R2WTKKQYAAAAwHBRPGqO1x58mT3OjRv33//IaO5FKa1l9pwzD\nyGtcAAAA7L4ozAEAAAAAs1mxEwZ2nFX6pz+To71VS7/+LYVGjM5qz60sZpNqyjw5xQAAAACGi5IC\np9aecbHSVpumPHK3TKlkXuN3BWPa0BzMa0wAAADsvijMAQAAAABJyZMHbpxV+K25qnjiL+oeOVYr\nvnpBVvt9WnWpR1YLf94BAABg92A2meSbNFbrjjlFvk0bNPLV5/O+x/rN3fIHY3mPCwAAgN0PJ7cA\nAAAAICk5e9+cxlll2jEnEYur8Jrvy2QYmv/d62TY7H3e69PMJpNqy+mWAwAAgN1LZbFby0+/WGmL\nVVMeuVtK9XG07E4YkpbVdyqRTOc1LgAAAHY/FOYAAAAAgLRlnNWXvvzxOKt3+7w8EEkonTZ2ft8t\nd6ho5WKtP/JEtc7YN5tMP6O80Cmn3ZpzHAAAAGA4KfDYpdGjVX/kiSpoWKfa/2XX+bI30URKKzZ2\n5j0uAAAAdi8U5gAAAADAx5Jf+aokZXWonzYMBcK9d83ZvHi1xt51o+LeAn148dVZ5fh5Iyt9eYkD\nAAAADDeVxW4tO/ObSpstmvq3u6R0/rvbtPmjamwN5j0uAAAAdh8U5gAAAADAx5Kz91W8omrLOKtk\nos/r/b2MswqE4yr6xU9kC4f00YU/UKy4NJdUJUklPoe8LlvOcQAAAIDhqKLYpVDNKG04/AQV1q/W\niLf+0y/7rNnUrWCk738fAAAAABKFOQAAAADwCbNZkS+dKHvAr4osxll191CYk0yl1fLksxr52vNq\nnzJDa48/LddMJUkjK+iWAwAAgN2Xy2FVoceuZWd+U4bZvKVrjrHz8bJ9lTYMLV3foVQ/dOQBAADA\nro/CHAAAAAD4lPRXTpUkjXzjxT6v7aljzurVm7XHzXNkmM364LvXSebc/xTzuWwq9jlyjgMAAAAM\nZ1UlbgVH1mnjF49T0drlqn731X7ZJxxLatVGv4x+KPwBAADAro3CHAAAAAD4lOS++yleXpnVOKtE\nKq1w9LNrNneEVXLP7fJt2qBVJ58j/7gpecmztsKblzgAAADAcFZe5JLZZNrSNcdk0tS/3tkvXXMk\naXNnWG8v3qzF69rV2Brc7rM/AAAAsCMU5gAAAADAp5nNCh+f/TirT3fNCUeTanpngSY//ieFyyq1\n5Nzv5CVFp82i8iJXXmIBAAAAw5nVYlZpoVPdYyao4eBjVLJqiaree6Pf9kuk0mrzR7Wq0a95y1v0\nzpLNWlbfqc0dYcXiqX7bFwAAAMMXhTkAAAAA8HmnZj/Oqvvjwpx02tDSde2acdsvZEkktPDSHynp\n9uQlvdpyr8wmU15iAQAAAMNdZfGWovVlZ10qSf3WNccW8MsSCX/mtVgipebOsJZv6NQ7Szdr3rJm\nrdzYpdauiNJpxl4BAACAwhwAAAAA2E5i3/0VL6tQTRbjrLZ2zFmzya/iF/+pygXvqGn2wWo8+Oi8\n5GY1m1VV6s5LLAAAAGBXUFLglM1iln/sJDV+4QiVLv9Qe/3xV7L7O/MS3xoKaPp9v9eXzzhYX7z6\nAimd7vHecCypTe0hLVnfofrmQF72BwAAwPBGYQ4AAAAAfJ7ZrNBxX5Yj4FfFwrl9WhqOJdXUHlLL\n+ibNuOcGpewOLbj8p1KeOtzUlHlktfCnHAAAALCV2WRSxcddcz686EoFq2o1/tlHdPx5R2vyo/fI\nEo1kFdeUSmrcs4/o+POP0eQn/ixTKq3SFR9q5OsvZLR+Y0tQkVgyq70BAACw6+A0FwAAAAB2wPh4\nnFVtFuOsVm7s0rQHb5Wro01Lz7pUoeqRecnJbDJpRHl+xmEBAAAAu5LK4i1dJYO1dXrpvn9pwbd+\npLTVqukP3KLjzj9Gdc8/IVMqwyIZw1DV3Nd09CUnae87filzPKaPLvi+Xr7nGaWtNk178FaZEvGd\nhkkbhtZu6s7lbQEAAGAXQGEOAAAAAOxAar8DFCur0Ii3/tPncVZFKxdr3HOPqru2Tiu/emFe8nHZ\nrZpQWyiHzZKXeAAAAMCupMBjl9thlSSl7Xat/sq5ev6hl7X0zG/KFgpo1i3X6ehLTlLNW/+RDKPH\nOIVrluuQay/UwT/9lnyN67Xm+K/phQdf0vIzL1Fg9Hit+dLp8jZt1NgXnswor1Z/RJ2BWF7eIwAA\nAIYnCnMAAAAAYEcsFoWOPeHjcVbzMl+XSmnvW+fIZBia/93rlLbbs07BJKmswKk9x5Zqv6mVqi6l\nWw4AAADQk61dc7ZKenxacsH39MKDL2ntcafJ17heB/78OzrsB2erdMn8z9zrbG/RrJt+rKMuO0WV\nC97V5lkH6eW7ntb87/1cseKybfctO+tSJVxuTf3rXbJEQhnltabRL6OXYiAAAADs2ixz5syZM9hJ\n9CYc3nk7SAAYzjweB7/rAAAYokxej9yPP6KU3a6mAw7v9V5zPK6KBe9oj4f/qOoP3lL9EV/Wqq9e\nkNW+dqtZteVeTR5drJoyr1wfP/kLAAAwVHCegaHIabeooXX7Ypmk26OmAw7TxkOOlautWVXz31bd\nS0+paPVyBWpHq+6Fv+uA31yp0hUfqnv0eM27+gYtPfdyxYpLt4uVcrllTiRUM+91pewOte05e6d5\nxZNp2a1mFXiyL9oHAADA0ObxOHq8ZjKGeJl2a2tgsFMAgH5VXu7jdx0AAENVKqWCaROlRELPPfaG\nDKvtM5cdnW2qnveGqt99VVUfvC1rNCxJClXW6JXbHv/Mk7WZKPI4VFPmVlmRS2aTKW9vAwAAIN84\nz8BQtXBVm7pCvY+OKl0yX3ve+3uVLV2w7bVoUakWn/ddrT/2FBmW3gvjreGQjjvvaFkSMT3/4MuK\nF5XsNC+bxax9p1TIZmU0LQAAwK6ovNzX4zUeuwQAAACAnlgsCh5zgkofeUDli+apZe8vqHDtClXP\nfU01776qkhUfyfTxsw6BmlFq2v8wbdr/MLVN23u7Ip6eWM1mVZa4VFPmkceZ2RoAAAAAO1ZZ4tpp\nYU77Hnvr1Zv/ppp3/qux/3pcXeOnavnXLlLS481oj6Tbo2VnXaq97vqNpjx6jxZ960c7XZNIpbWu\nKaCJI4sy2gMAAAC7DjrmAMAg4wkzAACGNvP/3lDpqSfIP3qcrJGwPC1NkqS02aK2aXurab9DtWn/\nwxQcWdfn2F6nTdPHlcph46lZAAAwvHCegaEqmUrr7cWbld7BVx9mk0lOu0Uuh1Vuh1Uuh3Xb+KuO\nQLRP+5jjcR37jePl7GjRi/e/oHDliJ2uMUnaZ1KFvC4K8gEAAHY1vXXMoTAHAAYZB1kAAAxxqZR8\nM6bK2dKkuLdAm2cfrE37H6bN+xyoREH2T7sWuO2aPrZUNqs5j8kCAAAMDM4zMJSt3NilcCy5rfhm\nWxGOw9LjyNiWrojWNPgVS6Yy3mfUf57Vfr+7RuuPPEnvXX1DRmuKvA7NHN+3kbcAAAAY+ijMAYAh\njIMsAACGvrYPFqtp2Vp1TN4z4xFVvSn2OjRtbIksZopyAADA8MR5BnZFyVRa65sCamwLKqMvTtJp\nHXXZKSpct1Iv3/2MuusmZrTP1DElqihy5ZQrAAAAhpbeCnM4BQYAAACAnSjYc4q6ps/KS1FOeaFL\n08eVUpQDAAAADDFWi1njawu198Ry+Vz2nS8wm/XRhd+XyTA0/f6bM95nbaNfqXQ6qxw7uqN6b3mL\nwtFEVusBAAAw8DgJBgAAAICdsNssmj2lQuWFuT3VWlXs1tQxxT22zwcAAAAw+Hxuu/aeWKYJtUWy\n7qSgfvPsQ9Q6fZZq5r6m0sUfZBQ/mkipoSXUp5zShqE1jX59uLZdoWhCH65pVzSe7FMMAAAADA4K\ncwAAAAAgA067VXvUlWjPsaVyO6x9Xl9b7tXk0cUyUZQDAAAADHkmk0kjyjyaPaVClb2NnTKZ9OFF\nV0qS9rzvJsnIaAiWNjQHMi6sicSSWrCyTRtbg9teiyZS+nBNuxLJVEYxAAAAMHgozAEAAACAPigp\ncGrW5AqNrS6QJcMim7qqAo0fUdjPmQEAAADIN4fNoiljSjRjXFmPBfodU2aq8QtHqGzpAlW/+2pG\ncVOGobWbund6X3NHWO+vaFEgEt/uWjiW1IdrOpRMZTcWCwAAAAODwhwAAAAA6COzyaRRlb4t4616\ne3pW0vgRhRpd5RugzAAAAAD0h2KfQ7MmVchpt+zw+kcXfl+G2azp998spTLrYtPSFVFXMLbDa8lU\nWsvqO7VsQ6dS6Z678AQicS1Z16F0L/cAAABgcFGYAwAAAABZctqt2qOHp2fNJpOmjCpWbbl3kLID\nAAAAkE9ms0ljqgp2eC0wapzWH3WyCutXa/Qrz2Ycc3WDX8bnxl8FwnF9sKJVzZ3hjGJ0BmNaVt+5\nXRwAAAAMDRTmAAAAAECOin2OT8ZbmU0ym0yaOrpYlSXuwU4NAAAAQB5VFrt6HGm15JzLlbLZNe2h\n22WO77gTzucFowk1tX9SgLOxJagFq9oUiSf7lFerP6KVG7v6tAYAAAADg8IcAAAAAMiDreOt9p1c\nqRnjy1S2kxFXAAAAAIYfk8mkMdU77poTqajW6pPOlru1SeOefTTjmOuauhWOJvXhmnat2eRXOsvO\nN00dYa3d1J3VWgAAAPQfCnMAAAAAII8cdosKPfbBTgMAAABAP6kocsnrtO3w2rIzLlbc49OUR++W\nNRTIKF4ildZ7y5vVEYjmnNuGloA2NGe2LwAAAAYGhTkAAAAAAAAAAAB9UNdD15xEQZGWn36xHAG/\nJj3x54zjZdcjZ8fWNnWrqT2Ux4gAAADIBYU5AAAAAAAAAAAAfVBa6FSBe8edMleffLYipRWa+NRD\n8tWvHuDMtli5sUttXZF+i98djqvdn3uHHwAAgN0BhTkAAAAAAAAAAAB91FPXnJTTpfnf/omssaj2\n/82VMscGvoDFkLS0vlOdgVjeY7d1RbRoVZvWNXXnPTYAAMCuiMIcAAAAAAAAAACAPir2OVTkdezw\n2qaDjtLqE85Q0bqVmvGn3w1wZlukDUOL17ZrU1v+xlptbAlqyfoOpQxDwWiiX7vyAAAA7CoozAEA\nAAAAAAAAAMjC2B665kjSom9eo666iRr/3KMa8ebLA5jVJ1KGoZUNXfpobbtiiVTWcQzD0MqNXVqz\nyS/jU6/XNwdzTxIAAGAXR2EOAAAAAAAAAABAFgo8dpUWOHd4Le1w6t0f/0FJh1Oz/vBTuZsbBzi7\nT7R3R/X+8ha1ZtHhJplK66O1HdrUvn3nnUAkro7ugR/VBQAAMJxQmAMAAAAAAAAAAJClul665gRG\njdOCy34se7Bb+11/lUyp5ABm9lmJVFpL1ndoWX2nkql0Rmui8aQWrmpTR6Dn4pv65kC+UgQAANgl\nUZgDAAAAAAAAAACQJa/LpvIiV4/X1x97qjYcerzKli7Q1L/cMYCZ7VhzZ1jvL29RZyDW632BcFwL\nVrYpGE30ep8/FJc/2HssAACA3RmFOQAAAAAAAAAAADmoq/LJ1NNFk0kfXDFHwapaTXnsTypf8O5A\nprZD0URKi9a0aXWjX+m0sd31Nn9EC1e1KZZMZRSPrjkAAAA9ozAHAAAAAAAAAAAgB26nTZXF7h6v\nJz0+vfv/bpJhtmi/314lR2f7AGbXs4bWoD5Y2apAOP6Z15as61DK2L5gpycdgZi6PxUDAAAAn6Aw\nBwAAAAAAAAAAIEejq3wym3rsm6POyXvqowu/L1dHm2b//kdSOj2A2fUsFE1owao21W8OaHWDX6sb\n/cq8JOcTG+iaAwAAsEMU5gAAAAAAAAAAAOTI5bCqqqTnrjmStPLU87V51kGqfu9/mvjUQwOU2c6l\nDUPrNneroS2YdYw2f1TBSCKPWQEAAOwaKMwBAAAAAAAAAADIg9FVPll66Zojs1nzrrpBkZIyTb//\nZhWv+Gjgkvt8KrGoSpYu0PinH9bs312jYy46QQf84gqZktkX19A1BwAAYHsmw+jDkNBB0NrKhzgA\nu7bych+/6wAAAAAAwLDCeQbQszWNfm1s7b3zTMX8t3XIjy5SqKpW/77zKSU93n7NyZSIq3DdKpWs\nXKzilR+pZOUSFaxfJXM6te2etMUqcyqpNcd/TfOvmCP1VmDU0z6SZk+ulNtpzV/yAAAAw0B5ua/H\na3wyAgAAAAAAAAAAyJNRlV5tag8ple75ueiWvb+g5adfrCmP/Un73DZHc6+9MatCmB0xx6IqXL9K\nRWuWqWj1MpWsWqLCtctlSXzSCSfpcKpj8p7qmDRNnROmqWPSdEVLK3Toledo3PNPqHv0eK3+yjl9\n3tuQtLEloEmjivPyXgAAAHYFFOYAAAAAAAAAAADkic1qUW25V/U7Geu05NzLVf7hPI169V9q3vsL\nWn/MKX3ey9HZrqI1y1W0dtmWn2uWy9ewTqZ0ets9aatNXXUT1TlpmjomTFPnpOnqHj1OhmX7r4je\n+vkfdeR3vqaZ99ygQO0YNc8+uM85NXdGNLrKJ6edr6AAAAAkRlkBwKCj9TMAAAAAABhuOM8AepdM\npbV0fafSaUOGDBmGZBhbfqaNT/7tbGrQoRefJEskrFhRiVIOp1IOp5IOl1IOx7Z/pxxOpexOJZ1O\nyWSWb+NaFa1ZLldH62f2Tbg96ho7WV3jJqtr7GT5x02Wf8xEpe32jHMvWbZIh/7wXKVtdr1y66MK\njB7f5/c/osyjCbVFfV4HAAAwXPU2yorCHAAYZBxkAQAAAACA4YbzDCB/bK++Iuevfq5ER6cssags\nsaissags8Viv68Ll1VsKcLb9N0WhyhGS2ZxzTiNf/Zf2v/6HClaP1Cu3Pa54Yd9GU5lNJu03tVIO\nmyXnXAAAAIYDCnMAYAjjIAsAAAAAAAw3nGcA+bdmk18bW4KfvJBOyxKPfVysE5ElFpM1FpE5kVBg\nxGglCvq3I80eD92mqX+7S63TZ+n1G/4sw5Z51x1JKfiMGQAAIABJREFUGlnu1bgRhf2UHQAAwNDS\nW2EOAz4BAAAAAAAAAAAGWV11gboCMQUiiS0vmM1KOV1KOV2S+taxJh+WnHO5fBvWauT/XtI+t/1c\n7//gV5LJlPH6Te0hjar0ymalaw4AANi95d7PEAAAAAAAAAAAADkxm0yaMrpElj4Uv/Qrs1nvXXW9\nOibsobqXntKEfzzUp+WptKGG1lA/JQcAADB8UJgDAAAAAAAAAAAwBLidVo2vHTrjn1JOl976+R8V\nKa3QjHt/p+p3X+3T+sbWkJKpdD9lBwAAMDxQmAMAAAAAAAAAADBEVJd6VF7oykussdUFmjK6WDWl\nHnmctqxiRMsq9dbP/6iU3aH9rv+hCtatzHhtMp3Wpja65gAAgN0bhTkAAAAAAAAAAABDyMSRRXLY\nLFmvN0maPKpYoyp9qix2a+LIIs2eXKEDp1VpjzElqi3zyueyKdOhWZ0Tp+m9q66XLRLWQT+7TI7O\n9oxz2dgSVCpN1xwAALD7ssyZM2fOYCfRm3A4PtgpAEC/8ngc/K4DAAAAAADDCucZQP+ymE3yumxq\n7gz3ea3ZZNIeY0pUUezeQVyzPE6bSgqcqinzqLbcq0KPQw67RTKkeCLVY9zu0eNlmMyqffs/Kl22\nUBsO/7IMy86Lh9KGoWgspXgipWgipWQyLcOQzOYtuQIAAOwKPB5Hj9dMhmEYA5hLn7W2BgY7BQDo\nV+XlPn7XAQAAAACAYYXzDGBgrNnk18aWYMb3W0wmTRtbqmJfz18M9SaRTKm1K6qWroj8wZi2+wLJ\nMLTf9T/UqNee14ZDj9eCy3+ieEFxVnttzddus8huNctus8hmNctpt6jI65DPbZOJwh0AADBMlJf7\nerxGYQ4ADDIOsgAAAAAAwHDDeQYwMNKGoQUrWxWIJHZ6r81i1vSxpSrw2POydzyRUqs/qtbOiPyh\nT4p0zLGoDr3qPJUu/1Apu0P1R3xZq086W/6xk/Ky71Z2q1mlBU6VFDhV7HPIajHnNT4AAEA+UZgD\nAEMYB1kAAAAAAGC44TwDGDjhaEIfrGhVqpevcxxWi6aPK5XXZeuXHGKJlNq6Imrpiqg7FJc5EtLY\n55/U+H/+Td7NDZKklhn7atVJZ2vTAYdLGYy46guzyaQir12lBU6VFjrltFvzGh8AACBXFOYAwBDG\nQRYAAAAAABhuOM8ABtamtpBWNnTt8JrTbtGMcWVyOQamWCWWSKm1K6KG1qCikbiq572hCc88rMoF\n70iSQpU1Wn3i17Xu2FOV8BX2Sw5ep00lBU6VFTrz1iEIAAAgFxTmAMAQxkEWAAAAAAAYbjjPAAbe\n4nXtavNHP/Oax2nTnuNK5bDlt0NNJmKJlBatblM4lpQkFaxfpfHP/k2j//2srLGIkg6n6o88SatP\n+rq6x0zotzxmTarot05BAAAAmaIwBwCGMA6yAAAAAADAcMN5BjDwEsmU3l/eqlgyJUnyuezac1yJ\nbNaBL8rZ6vPFOZJkC/hV99JTGv/Pv8nT3ChJattjb0WLy5S2WpW2WmVYrEpbrDKsH/+0WLddS9sc\nWn/0yYqWVmSUQ2mBU9PHlvbL+wMAAMgUhTkAMIRxkAUAAAAAAIYbzjOAwdEZiGnRmjYVeR2aVlci\nq8U82CntsDhHkpRKqWbuaxr/zF9VufDdPsVsmn2w3vz1nzK+f+8J5Yy0AgAAg4rCHAAYwjjIAgAA\nAAAAww3nGcDgaekMq6zQJbPZNNipbBNPpLRoTbtC0cQOr1vDIZnjMZlTSZmTCZlSKZmTSZk+/e9U\nUuZkUlMfvkMVH76nN379JzXPPjij/Yu8Ds0cX5bPtyR/KC6P0zokip8AAMDQR2EOAAxhHGQBAAAA\nAIDhhvMMAJ+XSKa0aHW7gj0U52SqcO0KHXXZKQrU1unle56RYbFmtG7GuDIV+xw57b1VVzCmhavb\nZJLkcdpU5HWowGtXkccuu23wRocBAIChq7fCHMp8AQAAAAAAAAAAkBOb1aIZ40vlddpyiuMfO0lr\njztNBRvWaOy/Hs943bqm7pz23SqdNrRyY5ckyZAUjCbU0BbU0vUdenvJZs1b1qyVG7vU3BlWLJ7K\ny54AAGDXRmEOAAAAAAAAAAAAcpav4pwl535HCbdXezx0u2wBf0ZrusNxtfujOe0rSRtaAgrHkj1e\nD8eS2tQe0rL6Tr2zdLPeXbpZazd1a4gPqAAAAIOIwhwAAAAAAAAAAADkxZbinDL5XNkX58SKS7X0\nrEvlCPg19a93Zrwu16454WhCG5qDfVoTjae0oSWwrcsOAADA51GYAwAAAAAAAAAAgLyxWc3ac1xu\nxTmrTz5HweqRGv/sI/I2rMtoTTCaUEtXJOs9V270K51l55umjrBWbOjMem8AALDrojAHAAAAAAAA\nAAAAeWWzmj/unGPPan3abteii6+SOZXUjD/dmPG69U3ZjZVqag+pKxTr87rPxOgI0zkHAABsh8Ic\nAAAAAAAAAAAA5J3VYtaM8aUqdGdXnLPpwCPVsuds1bz7qio+eCujNeFYUs2dfeuaE0+ktHZTbmOw\nttrUHqI4BwAAfAaFOQAAAAAAAAAAAOgXVotZMyeUadLIItksffxaymTSokuvlWEyaeY9v5Uplcxo\n2frN3X0aSbWm0a9EKt233HpBcQ4AAPg0CnMAAAAAAAAAAADQb0wmk6pLPdpvaqVqy70ym0wZr+0a\nP1XrjjlFhetXqe6Fv2e0JhpPqak9nNG9Hd1RNXd9tsOO3d+p8oVzpSxGYm21qT2kVQ0U5wAAAApz\nAAAAAAAAAAAAMACsFrPGjyjUrEnlKvE5M163+PwrlHC5Ne2h22QNBTJas2FzQKl0711wUum0Vn6u\neKZ4+Yc6+tKTdejV52vaA7fkVJzT2BbS6gZ/1usBAMCugcIcAAAAAAAAAAAADBi306Y9x5Vqel2p\n3A7rTu+PlZRr+RnflMPfqal/uzujPWLJlDa19d41Z/3mgKLx1LZ/j3npKR125dlydrYpUlKuKY/9\nSXs8eGtOxTkNbUGtbqQ4BwCA3RmFOQAAAAAAAAAAABhwpYVOzZpcoXE1hbKae//KauWp5ylUWaMJ\nzzwsT2N9RvE3NAeUTO24a04wklBja0iSZEomNPOPv9Lsm36slNOt//3qT/rPHU8qUDNKUx+9R1Mf\nvqNvb+xzGlqDWkNxDgAAuy0KcwAAAAAAAAAAADAozCaTRlZ4te+UClWXuGXq4b603aEPL75K5mRC\nM+69MaPYiVR6W/HNpxmGoZUbu5Q2DDk62/XFay7UhH/+Tf4xE/Sf259Q86wDFS2r1Os3PqRg9Ujt\n8dc7NfXhP+bwLqWNrUGt2URxDgAAuyMKcwAAAAAAAAAAADCo7DaLJo0q1t4Ty1VZ5JLZtH2JTsPB\nx6h12j4a8fYrKl84N6O4G1uCSiQ/2zWnsS2k7nBcRSuX6MjLT1P5R++r4aCj9cqtjypUM2rbfZHy\nKr1244MKVtVqj4fv0JS/3pnTe9zYsmWsVU9dfAAAQP+IJVLqDMTU0BpUR3d0wPc3GUYOgzEHQGtr\nYLBTAIB+VV7u43cdAAAAAAAYVjjPANDfYomUNrWF1NQeUvxThTXFKxfryMtPU9fYyfr3H/8uWSw7\njTWqwqexNQVb4sZTmre8WSNefkazbrlO5kRci8+/QsvPuETaQTGQJLmbG3XoD8+Tp7lRH51/hZaf\ndWlO781iNqmiyKXqUo8KPPacYgEAgE8kkikFI0mFowmFokmFo0mFogklPlcU63PZNbrSq7IiV972\nLi/39XjNMmfOnDl526kfhMPxwU4BAPqVx+Pgdx0AAAAAABhWOM8A0N+sFrOKfQ6NKPfK7bAqFk8r\nnkwpWlohz+ZGVX3wpiIVVeqasMdOYwXDCVWVumW1mLVibavG3fprzfjzTUo63XrnZ7dq/bGn9liU\nI0kJb4Eav3CERrz9H9W+9R+lbA61T9sn6/dmGFIwklBTR1htXVGlDUMuh1UWc885QApFE7Jbd16I\nBQDYfcSXLJPz0ouUeuLv2tDk11IVqimYVEcgpkAkoWgipfQOetXEkym1dEXU1hWV1WKS22mVqZfP\nApnweBw9XqNjDgAMMp4wAwAAAAAAww3nGQAGgz8UV2NrUME19Trm/GOVdLn1wgMvKunx7nRtbZlX\npfGACi+9UJUL31X3qHF6a87tCtbWZby/u6lBh151rjwtTfrwoiu14msX5fJ2PsNsMqm80KmqUo+K\nfT1/sTfUBSMJeV22fon7wYoWjSjzqq7GJ4vZnPc9AADDQzKVVktnRMbTT2uPX18lWzi07VrKZlfT\nvoeo4ZBjtWn/Q5VyeTKK6XZYNarSp4riHY/TzERvHXMozAGAQcZBFgAAAAAAGG44zwAwmGKJlPSb\n36j2jzfKP3qcImVVSjmcSjmcSn78c8t/LqUcDiUdLslq1eTH7pW7uVGNBxyheVffkFFBz+d5mjbq\n0CvPlbttsxZdfJVWnnZh3t+fy25VdalblSVuOWzDo0NMuz+qDS0B+UNx7TWhXIV5HtG1bH2Hmrsi\nkrb8/5k8qkiF3uFbwAQA6BvDMNQZiKm5I6y2jpCmPHirpjz2JyUdLr3/g1+qa9xk1b7xoka+/oIK\n69dIkpIOp5r2/aIavnismmYfopTLvdN9XHarRlV6VVni7nOBDoU5ADCEcZAFAAAAAACGG84zAAy6\nSERFJxwl6+KPZOrDV11LzrlcS7/+Lf1/9u47PKoybQP4fc70nplk0ishIaEjRRAFe19dBdfVVSyL\nuoqr7oqiiIK66q69oWtZ3XV1XfvaPntDQOm9hBDSezKZ3mfO90cggqTMJAGSeP+uKxeTOed9zzuJ\nTOQ9d54H3VRckYkCLEY1Wh3+Tttf6OqqcPz8OdC2NGLj1QtQOvvyzieKRqFpaYShtgL6mgoYasqh\nbapH7fRTUHXyOT2uVRQEpCVqkZtqhEI+8CrERCUJzW0+VDe54faHOp5PNKoxZlhiv13HHwxj9Y6m\nA74XAoBMqx55aUaIbAFGRDRkef0hNNh8aGzzIhCKQOlow9EPzEfq+pVwp2djxeKn4MwrPGCMsaK0\nPaTz7Scw1pQDAMIqDeqnzkT1jDPQeNQxPYZz1QoZMpP1SEvUxlyljcEcIqIBjBtZRERERERERDTY\ncD+DiAYMSUJLkx1luxsh+byQB3yQBQKQBXyQ+f2QBf2QB/yQBfxwZebBVjyu2+lMWiWKcszQqOQI\nhCKoaXKjrtWDSPTA22m62kqcMH8ONK1N2HTVLWgZPRH62goYan760NdWQh7wdXqdilN+jfXX3xnT\nb+8rZCJyUw1IT9JB6GV7jf4UiUZR3+pFTZMb/lCk03MmjUjut5ZWu2sdqGl2d3pMq5KjKNsMYz9X\n6CEiGugkSUIk2v4RjUqISvs93ve81P4YANISY2vpNBB4/aH26jhtPji9wY7nzbu2Yto9N0DXVI+6\no4/H6gV/Q0hv7HoiSYKxohRZ332CrO8+gaG2suNQwGSGOzULntQMeFIz4UnL3PtnFrzWVEjyn36G\nqeQyqJV7P1RyqJUyaPb+qVLIOn42M5hDRDSAcSOLiIiIiIiIiAYb7mcQ0UDjC4SxvaINLl+w55M7\nIQDISTUgJ8VwUPglHImittmD2hY3guFox/P62gocf/McaGzNB80XVmngysyFOzMHrsw8uDJy4crM\nRUSlxuRHF8FSsgXO7Hz8sOgxOHMLYlqjXq1AfoYJZsORaeEUCkdR1+JBTbMboUi023OTEzQYmWvp\n8zXDkSh+2NZwUDBqfwKAzGQ98lJZPYeIfhl8gTA27W7pMhzZmbxUI3JSuw6OHEmBYARt7gDaXAHY\n3YH2lpU/k/vJ2zjq6XshhkPYdun12HHxH7qtfncQSYJpTwlyl3+GxLLtUNVWQ9NQA1kodPCpogiv\nNRWe1CzYCkdh+yXXIaLpPNgkCgJUChk0KhlOmprX5eUZzCEiOsK4kUVEREREREREgw33M4hoIIpK\nEvbUOlHT0nl1la5olHIU5Zhh6qHqSjQqod7WXinGFwwDAPQ15Rjx5j8Q1ujgymoP4Lgzc+FLSgG6\nqG4jhIIY++IjKHzvFYRVamyYtwgVp53f5fk/l2RSIz/dBI1KHtfr7C1/MIyaZg/qWzyIxHhbUQAw\nuSgFWnXf1ljV6MKeemdM5+rUCozIToBRy+o5RDR0+QJh1Lz9MXLfeAlbL7sBjvyimMeOyUtEokl9\nCFcXm1A4Cvt+QRxvINzluWIwiAlL/4Jhn7yFoMGEH297CI2Tj+vVdc16FYpzzFAqZAAAKRJBqLoG\nkbJySHv2QKysgLyqEsraKmjrqqFpbQIA2PMKsXLJ0/CkZXU7/wWndP29YDCHiOgI40YWERERERER\nEQ023M8gooGsxe7Dzio7wtHuq7oAQKpZi+GZJshlsf/WvSRJaLL7UN3ohtt/8G/axyp9xZeY/Mgd\nULqdqDj5HKz/411d/kb+z4mCgEyrHtkp+rjWHiunJ4jWNg/0/3wR2W//CxuuuwMNU2bENUeaRYsR\n2eZeryEqSVi1rRGBcOwVIURBQFayHjmpBogDoO0XEVF/8gfDaHvkSYx+8i8QI2F4UjLwxdK3ETIm\nxDReLoo4qjAJWnX/tBqMRSgcgTcQgS8QhscXgt0dgNsXQiwhFU1TPY6590ZYSragLb8YK+96Et60\nzLjXIADITTUiO0Ufc0vISDQKv90F9eI7kfrGPxE0mPDDwkfQNHF6l2MYzCEiGsC4kUVERERERERE\ngw33M4hooPMFwthR2Qant/PWVnJRRGF2ApITNH26js3pR22LB25vKK4AyT7ahlpMve/PSCzZDGfW\nsPbWVnmFMY9XyWXISzci1aKN+9r7i0SjaHMG0Or0w+YMQL1rOyY+dhcSSzYDABy5Bfj8ufdjruoD\ntIdkphQnQ63sXdWc+lYPSqrtvRqrVcmRnWJAslnDgA4RDQl+jw+RG29C7gevI2Ayo37yccj98gPU\nT5mB5fc8G3NbJ61KjqMKrf0a6oxGJXgDYXgDYfj8Yfj2PQ6Ee2x92BkhEoZ14ypM/estUDnaUHHK\nr7HuhsWIquKv9qOSy1Cca0aCvvdtID3PvYisexZAjESw+fc3Y9fsKzr9echgDhHRAMaNLCIiIiIi\nIiIabLifQUSDQVSSsKfOiZrmA1tbJehVKMpO6HVgpCvhSPSAm5E+f7jjRmUk2vXtOCEUxJiXHsOI\nd/6JiFKFDfPuQPnps+MKwRi1SqQlaiGTiZCLAuQyETKZALm4989ObsD6g2G0OgNodfhhdwcQlSSI\nAT9GvvYsRrz1EsRIGFUnnAWZ34+MH77C9/c+i4ajj4/ra5KZpMfwTFNcY/ZZvaOx2/YmsdAo5chO\n0SPFomVAh4j6zOsPodnuhygKMBtU0GsOT+WZUEMTlHN+h6SNq2AfNgIr7l4KrzUNxy76A9LWfo+t\nc/6IHZdcF/N8FoMaY4ZZYq4e05VWhx+ltXb4g90HU5V2Gyy7tsJYVQaF2wmF1wO51w2FxwWF1w2F\n1wOFx7X3OQ/kAR8AICpXYMO1t2PP2b+N62fiPhaDCkXZP7Wu6gvHN8uRcd3l0LQ2oeqEs7D2T/ci\noj4w3MtgDhHRAMaNLCIiIiIiIiIabLifQUSDSYvDh5IqOyJRCbmpBmQlx97Kor8EQnvbePjDaLJ5\n4eikkk/aD19jysMLoXQ5UHnC2Vh/4xKEtbG1tuqJAEAmipDLBMhkIiRJOij0Yt3wIyY+sRiGuip4\nUtKx/o+L0TBlBkx7SnDqH36N5tET8e2jr8Z1XZkgYOqoFCjk8d0UbXX4saW8Na4x3VErZMhM1iM9\nUQdRZECHiGK3L4zTZPfB87P2hQqZiASDCma9CmaDChpV/wY+ASCyeQsMl14IXX0Nao49BatveaCj\n7aHS2YaT582Gtqke39/3PBonHRvzvFnJeuSn9y44CQBVjS6U1zsPakkl97hg3rUNll1bYCnZCnPp\nVuga67qdK6xSI6zVI6TVIaQzIKTVI2hMwK5Zl8FWPD7ute1rXZWTaoh7bHfsuythmTsHids3tLfW\nWvwUvKkZHccZzCEiGsC4kUVEREREREREgw33M4hosPEHwwiFozBolUd6KQAAhyeImiY3Why+A25q\nahtrMfX+m5G4YxNcmbn4YdHjcAwbcUjXonS2YewLDyPvs3chiSJ2nTcH2+Zc33HjFwCOveNqpK35\nHl89/h/YRk6Ia/7sZAOGpRvjGrOxtAV2TyCuMbFQyfcGdJK0kMXY9oWIfnm8/jCa7T40231w/yyM\n0x21QgazQYUEgwoJehVUfazUInz0IRLmXQ25z4Ntl8zD9kuuO6hllXnXVpzwp4sRVmvx5TPvwJuS\n0cVsByvOMSPFHF8rxGhUQklVGxrtPgjhECwlW2Ap2QJzyVZYSrfCUFNxwPl+kwVtI0bDVjga9mFF\nCBoTENLpEdIaENbpENLoICkO/tksCgKivYiyqBQyFOf0rXVVdxw2F8T5N2PYR/9FwJiAH+54DM0T\npgJgMIeIaEDjRhYRERERERERDTbczyAi6h++QBi1zR7U2zwd7a6EcAhjXnocI95+CQGTGV8+/VZc\nN1pjJknI+vb/MP6Z+6F22NA2vBhrb7oX9sJRB52atHk1Tph/GWqnnYSVdz8d12Xkooipo1I6bafV\nGacniPWlzXFdI14KmYhMqx4ZVl3M6yKioc0XaA/jNLXFF8bpjk6tQKJRjWSzJr62V5IE5aMPwfjg\nfYgoVVhzywOomXF6l6fnffwmJj2xGLYRY/DNI68iqowthCoTBIwvSIo5tBoIRbB1jw0uXxD66nIc\nc88NMFXu7jge0uphKxy9N4gzBm2Fo+BNTo+7DZVKLsP4giTIZSLcvhA8vhDcez+8gXCXgR2LQY3i\nnIS4q7TFy+0LwfnEUox58l4gGsXmq29B6XlzcMGpxV2OiSmYs2nTJjz88MP497//fcDzX3/9NZYu\nXQq5XI5Zs2bhN7/5Dd5991289957AIBAIIAdO3ZgxYoVqKmpwTXXXIPc3FwAwEUXXYQzzzyzxxfF\nf9wR0VDHjSwiIiIiIiIiGmy4n0FE1L/CkSjqWjyobfEgEIoAAIZ9+DomPnUP2oYX45tHX0NErem3\n62kbanHUU3cjbc33CKvU2Hbp9SiddRkkWRdtWCQJJ974WyTu3IxPX/wIruz8uK6XF0dLkW3lNjQ7\nfAc8p6uvhmXHJtTMPL3rNfaCXBSRs7e9GRH9MgVCEZRU2WFz+Q/pdfRqBZLNGiSbNVAru3kf83qh\nu/E6aN9/F15rGlbc/TTsw0d2P7kkYdIjdyDv8/dQdtaFWH/jkpjXpVbIMHGEtccwi9MTxLZyGwLh\nCDK/+wSTHl0Ehc+LyhN/hYbJx8E2YjTc6TkHVfSJl1wUMb4gqcsgU1SS4PGF4PGH4fa2h3U8/hCy\nkvXITunf1lXd8QXCqPngC0y4cx40thZUnHwOcr94v8vzewzmvPDCC/jggw+g0Wjw5ptvdjwfCoVw\n5pln4u2334ZGo8FFF12E5557DklJSR3n3H333SgqKsKFF16It956Cy6XC1deeWVcL4j/uCOioY4b\nWUREREREREQ02HA/g4jo0IhKEprbfKhucsPtC2Li43dh2Cdvo/LEX2H1gr/FXXWgMxnLPsOUh26H\nPOBDw1HHYP2NS+BJy+pxXPryLzD9nhtQfup5WDv//riuqZC1V83pqX2ULxDG6h2NB7T30leX44Sb\nL4Xa3gpbwSisvfm+fm/vNXZYIixGdb/OSUQDX6vDj907qpH/+vNQeFwIafV72yzpEd7v8QGtl7R6\nSPI4qt90IkGnQrJZA2uCBgr5T++LYl0tDHMugnLzRrSMnICVi59EwJzUzUw/kfl9OPGmi5GwZydW\nz38Alaf+Oq71jB2eCLGLnzGNbV6UVNkhBQMY9/xDKHj/VYQ0Wqz9072oOb7nYiyxEgUBY4Ylwmw4\nNG2o+lswFMGu1dsx9vZrkbhzM9BN9KbHSGl2djaeeuop3HrrrQc8X1ZWhuzsbJhMJgDAxIkTsWbN\nGpxxxhkAgC1btmD37t1YvHgxAGDr1q0oLy/HV199hZycHCxcuBB6PdOnRERERERERERERERERED7\nTckUixYpFi3aXAFsvWExTOW7kPP1h2grHIXS8y/r0/zpy7/A1PtvRkStxqpb/4qqk86JOexTd8xJ\ncGbmIefrj7Dtshvgs6bGfN1QJIr6Vi8yrd3fG6xuch8QytHW12DmgiugtreiadwUJG9ajZPnzcaO\ni67GjouugaSIrf1KT3bV2DG5KLnH4BARDQ1RScKeOidqG+yYfs9NSFv7fVzjW0ZOwPZL5qFx4jG9\nCkzaPQHYPQHsrnXAYlAhOUGN9FXfwHjLnyBrakT5aedj/R8Xd9uSShSEA1o6RdQarLzrCZw8bzYm\nPrkE9vwiOPKLYl7P7hoHCrMSDnhekiTsqXeiuskNTVMdpv3lT0jcuRmOnOH44c4n4MoeFvdr74oA\noDjHPGhCOQCgVMhQNHUUNvz9DQz76yJ099XoMZhz2mmnoaam5qDn3W43DIafSgHpdDq43e6Oz597\n7jnMmzev4/OxY8figgsuwOjRo/Hss89i6dKlWLBgQY8vxmo9fOWGiIiOFL7XEREREREREdFgw/0M\nIqJDy2o1QG9UY/PfnsO0K8/B2BceQnDUWNgmTuvdfCu+woT7b0ZUpcK6x/4F+5iJiPedvHLOHzDm\n/gUY9eGrKLlhUVxjHb4wxiXqIYqd38QOhiLw7rHBoG+vXKNqbsDRt18JbUsjdl5/OyouvhpJK7/B\nqAfvwKhXn0H2yq+wZeHf4Bw5Ls5X0Tm7L4KiXFO/zEVEA5fHF8Km0mY4vSFMee4BpK39Hk3TTsCu\n626F3ONu/3C7IPe4IPfue7z3eY8LKlsLkrasw4yFc9E2ZiJ2z70JrZOm9yqgI4RDSPz4HWS/+jwM\n5bsgiSJ23HgnKn9zBXRdzKdRyZGfaUJakh5ykmawAAAgAElEQVT1LW6U1TjgC4TbDxYWYsviRzHx\n1qsw/S834YeXPkDYYIxpLa5ABP4okLW3HVQoHMXm3c2we8PI27oKY5fcBKXTjrpTz8W2BfcDGm3c\nP0O6MzLPguzU2NY60CQnG7E59Zluz+l1E0a9Xg+Px9Pxucfj6QjqOJ1OlJeXY+rUqR3HTznlFBiN\nxo7H9957b0zXYTlUIhrqWPqZiIiIiIiIiAYb7mcQER0eCgBiWhpWLnocx8+/DOMWzcOXT78Fb0pG\nXPOkrF2B8YuvRVQmw/f3/h0teaMAtz/u9ew65nQMT3wEme+/jk0XXIWQIfYgiwvA1l2NSEvUdXq8\nosEJu9MHAFC1teKY+XOgravGtkuvx/Zz5gBuP1xjp6H6uQ8w9sWHkf/xG5h29fkomXU5ts35I6Kq\nvrWi2lrqhwISjLr+qcJDRANPg82L0ho7IlEJhW/+A9n/+w/a8oux/LaHENF0/t7UmYTd2zHy388g\n44evMPnGS9E8eiK2zfkjmscfHdN4mc+LvE/fQeE7L0PXVI+oKEPFyeeg5ILfw5lXCHgCB41RK2TI\nSTUgxaKFKAC2VjdUAlCUaUSjzYvKRhf8wQhc44+F9qJrUPz6cyhe8iesXPwUEGM1sNVb6hDwJkKp\nkGHLnlZ4vQGMfO0ZjHztWUTlcqy7YQn2nPUbICL06mdIV3JSDNDIhEH974sMc/c/g2RLlixZ0tMk\nTqcTn332GS644IKO50wmE5555hn86le/giiKePLJJzF37lzo9XosX74cADBjxoyO8y+55BIUFRUh\nJSUFH3/8MTQaDaZPn97jC/B6gz2eQ0Q0mOl0Kr7XEREREREREdGgwv0MIqLDJ0GvQoU8AR6DCVnL\nPoN1y1pUnHwuJHlsv39v3bgKx951LQBgxT3PoHn81B5GdE2SyQBJQvqq7xDS6tAyZlJc473+MDKS\ndBB+VgkiEo1iR0UbopIEhdOOmbddCVPlbpTMvhJbr7jxgEoUUaUS9VOPR/OYybBuWYv0Vd8ha9mn\nsOcXwZuS3uvXBgAubwipidqD1ke/TOFItMsKTzS4hCNRlFS1obLRBUkCMpZ9hsmP3wVvUgq+e+if\nCJnMcc3nt1hRfcKZqDv6BGham5C64QfkfvE/WDethic1o8vwpNLRhhFv/gNT/zofmSu+gBgOo+xX\nF2HVwodRedr5CJgTDxqjVsgwLN2EETlmGLXKg96fBEGAQatEepIOKoUMHl8IdaMmIWn7eqSt+R5R\nhQotYybG9LokADanH/WtXkjNzZh+9x+R9/l78KZkYNn9L6J+2gm9qgzUnfREHYZnDP5qZYIgQKfr\nug1X3MGcDz/8EBs3bsTYsWORkZGBRYsW4e2338asWbMwbVp76byvv/4aCQkJGD9+fMcco0aNwn33\n3Yf3338fDocDCxYsgLKbnmj78B93RDTUcSOLiIiIiIiIiAYb7mcQER0+MlGAViVHiXUYNC0NSF+9\nDNrmetQdc3KPN0gTt67DcXdcA0GKYOXip9E46dg+r8eRW4D8j/4Ly66t2H3u72IOCAHtN8d1ajl0\nGsUBz9e3etHs8EHucWPGwqtg2b0du391ETZde3uXr9Gbmony02dBFgwgbc0y5H32LlSONrSMnoSo\nondVb4LhKERBQIK+65urNPT5AmHsqGxDaY0D/mAYWpUCCnlsFUdo4HF6g9hc1gq7p/3/XS07NuLY\nJdcjolRh2d9ehiczt9dz+xOTUX3i2aifMhOa1kakrv8BeZ//D9bNa+FJy+wIC2qa6jD6X09hyoO3\nIXXDSkSUKpT85vdYtfAR1B53KkL6g1s4qfYGcopyzDDqDg7k/FxHQMeqg1KpQNnoaUj/6iNk/Pg1\nWkYdBU9aVkyvKRKVYN66HjNvuxLmPTtRd/Tx+P7+F+BNj218PKwmDYqyE4ZMGLK7YI4gSZJ0GNcS\nt8FcroiIKBYs/UxEREREREREgw33M4iIDr+SqjY0Nthx/PxLkbhzMzZcuxC7z7u0y/MtOzZixu1z\nIQsEsPKuJ1A/7cR+W8volx5D8X+fx/rr70TZORfHNVavVmBSUXLH55IkYfWOJgSdLhy38CpYt65D\nxSm/xpqb74u5/Ypl+wZMfvROGKvK4ElJx9qb7kHTxJ47d3RGFARMGmGFVq3o+WQaUqKShOpGN6oa\nXYjsdwtdAJBk0iArRQ+jlq3OBpOqRhcqGlyI7v1+6uqrceINv4XS5cDye59F4+Tj4p5TIRMhl4nw\nBcMHHbPs2ISR/16KtLXfAwAaJ0yDL9GK7G/+D2IkDG9SKnbNvhx7zpjdZesslUKG7GQ90hJ1farY\nFJUkOL7+HsMvPQ9BnQGbr74FkAAxEoIQDkMMhyFEIhAjob2PwxAjEShdduR98g4EKYotV9yEkgt+\nH/N7cTwSdCqMzU8cUlWprFZDl8cYzCEiOsK4kUVEREREREREgw33M4iIDr9wJIp1Jc2Q6mpxyrzZ\nUDrasOxvL6F53JSDzk3YtQ0zF1wBuc+LHxc+gtoZp/XrWlRtLTjrkpPgS0zGpy9/AkkWe9UcABid\nZ0GSSQMAaLL7sHNXA6Yvvg6p61agesbpWHX7Q3HPKQYDKH7tWRS98SLEaAQ/LHoMNTNOj2uOfUxa\nJcYXJA2ZKg7UszZXAKU1dngDB4ct9pegVyE7WQ+LUX2YVkadkSQJ4UgUofDej72PwxFp73MRePxh\nOPer8Khw2nHiTRfDWFOOdTcswZ6zL4z7unJRxPiCJOg1CvgCYdjdAdhdAbS5AwiGox3nWbZvwKhX\nnkbq+pUAAEdOPkoumIuqE86E1ElFL7VSBr1GAbNe1edAzs+pXnwexoXz4xrjNyfhx4WPdPrzpT/o\n1QqML0iCXDa0KlExmENENIBxI4uIiIiIiIiIBhvuZxARHRkOdwAbd7fAsnUdjr/lcgT1Rny59C34\nktM7zjGV7cTxt14OhduJVQseRPWJZ/f6egKA0XmJqG52w+4OHHDsqCeWIP/jN/Dj7Q+j+oSz4prX\nqFXiqEIrAGDD9jqMun0eMn74CnVHH4+Vdz3R6Y3rWJl3bcXxN1+KiFqDT1/4CMEES6/mKcgwIcOq\n7/U6aHAIhSPYXetEY5s3rnEGjQJZKQZYTWoGuPogEIyg2eFDNCohEpUO+DMqSQc9H4nuDeREoj1P\nvh8xGMRxC+ciefMa7LzgSmy56pa41yoTBIzNT4Spi1Z3bl+oI6hjdwcRjkZhLtkCudfTHnARRYiC\nAJ1aDr1GAZ1GAf3ej0MaUJEkKL/+At7SctQ6gojIZJBkckTlCkTl8vbHMhmkvZ9HZXK4svMR1nZe\n0Wd/mUl65KUb4PaG4PKG4PIG4fKFug24qZUyTCiwQqWQ9eerHBAYzCEiGsC4kUVEREREREREgw33\nM4iIjpyyWgeqm93I/+A/OOrpe2ErGIVvHn0VUZUaxopSHH/LZVA52rB6/v2oPPW8Pl0r06rH8AwT\nolEJO6ra0Gz3dRzT1VbijN+fCXveCHz5zDtAnOGEcflJEKIRqK66Etnf/h8aJ0zF8nv/jqiy85ve\n8Sh4558Y/9zfUD3zdPx4x2O9mkMmCphclAy1Mr7KPTR41LV4UF7vjDvksT+NUo6sZD1SLVoIAjqC\nI+HI3iBJJIpwJLr3+fZj0agEs0EFs0H1iw71ONwBbKuwHVBp5pCQJEx+6DbkfvkBqo87DT/e8Wjc\nrZlEQcDoPEvMlZIkSYLLG0KbK4BwJNoRxNGq5RCP4Pe81eHHtgpbR2uvvshNNSA31djpsXAkekBQ\nx+UJwh+KQCkXMaHACo1qaL6vdhfMkS1ZsmTJ4VtK/Lz7lZciIhqKdDoV3+uIiIiIiIiIaFDhfgYR\n0ZGToFeh1eFH47CR0DbXI331MmibG+DMzsfxt14Otd2GtTfejYozZvfpOlqVHCNzzRAFAYIgIDlB\ng3BY6mgNEzImwFi5GykbfkTryAnwpGfHNX8wEELGXfOR+fn/0DLqqPZQjlrTpzXvYxsxBikbViJt\n7XI48grhys6Pew5JArz+CFIs2n5ZEw0cbl8I28ptqGv1dBpQEIMBmHdthaGmHJ7k9G5DHOFIFK1O\nP6qb3KhocKGqyY2aZg/qWj1osHnR2OZDs8OPVqcfba4AHJ4gnN4gGtt8aLB5EQpHoVKIUMiHXvWQ\n7tS2eLCjsg3h6KGvITLy30tR+L9X0Vo8DiuWPA1JoYh7jqIcM6wJsb8/CYIAlVKGBL0KFqMaeo0C\nSoXsiAextGo5DFoFWux+9OUrPzzDhOyUrkMooihAo5LDpFchOUGDzGQ9MpJ0SLVoh2woB2j/N1JX\nWDGHiOgI42+YEREREREREdFgw/0MIqIjy+UNYkNpCxDw4/ib5yCxZDNCGi0UPi/WX78IZef8rk/z\nCwDGF1hh0h3cUqqq0YU99U4AQELpNpwybzYax0/Fsgdfjnl+VVsLxr7wEHK//AC2glH47sGXEdZ1\nfZM3VqIgQAAgAdBVluGUa89DSGfAZy9+iKDR3Ks5i3PMSDEznHO4eP1huP0hJMcRgohVVJJQXudE\nbctPgRwhHIKpohTmXVthKdkK866tMFWUQoy0t+JxZg3DjouuRvUJZ0GSHbpAgVGrRIpFixSz5tC2\nNTrCopKE0mo76m3xtQ7rrZwv/ocpD90Od2omvn7ivwiYE+OeY3iGCZlDrK2d3R3Alj2tiMQZjBIA\njMg2I5WBxU6xlRUR0QDGjSwiIiIiIiIiGmy4n0FEdORVNrhQ3uCEprkBJ8+bDbW9FRuvXoDS2Zf3\nee4sqx75GaYujzfavCiptiMqSZix4EqkbPgBXz71JtpGjOl2XoXLgRFvv4yCd1+BPOCDfVgRvnvw\npR5DM2qFDKOHJUIua6/eI6C9IoUg7A3jCDigEoUvEMb6Xc3Ie/0FjHvxYVSe+Cusvu3BuL4GHWuW\niZhSnPyLq2hyuEQlCQ53EDZne1UZb6A9EFOQmYCMJF2/XmtXpQ2ujVtg2bV1bxBnCxLKdkIW+qkK\nYESpQtvwYrQVjIbc70XOlx9AjIThTsvCzgvnouKUX0NSHBxY6y+iICDRpEaaRTvkWl0FQhFsK7d1\nVN061KybVmPG7XMR1mjx9WP/gSt7WNxzdNeuabBzeILYUtaKcDS2VmKiIGBkjhlJhyA0N1QwmENE\nNIBxI4uIiIiIiIiIBhvuZxARHXmSJGFDaQuc3iB0dVXQ11WjcdL0Ps+rVckxaUQyRLH7QIDN6ce2\nChsS167AzNt+j5pjT8UPdz3R6bkynxcF/3sVI976B5RuJ3wWK7b/7lqUnz6rx5CDTBAwviAJBm18\nYQiHO4BNu5pw/I0XIbFkM5bfvRT1006Ma459UhI0KM619GrsUOYPhiGXiXFXeAmFo7C5/Gh1+GFz\nBjoNBoiCgHH5iTDpu24NE4/aJhdSLv8t0tZ+3/FcVCaHI68AtsIxaBsxGrbC0XDmDIck/6nVkaap\nDkVv/gN5n7wNWSgIb1Iqdl44F+Wnz0JUpY5vEZEIjFVlSCjbgcaJ0xEwJ3V7ukouQ7JFg9xUA2Td\ntNMaDByeILaX2xAIR+IbKElQOu3QNdRAV18Ntd0GIRyGGAlBDIchRMIQIxEI4fbPxUh47/EwMlZ8\nCbnfh+/++iJaxk6Je80ZSToUZCbEPW4wcXrbwzmhSPfhHJkoYHReIsyG/vn7OFQxmENENIBxI4uI\niIiIiIiIBhvuZxARDQxefxjrSpoQ6afbfQKACQVWGDtpYdUZpzeIrWUtmHHN+Ugo24FP//Ex3Jl5\nHcfFYBDDPn4Dxa8/B7W9FQGDCTsvvApl51yMiDq2qgvF2Wak9LJtSlObF9XL1uCU685H0JCAz174\nECFD15WAujMmLxGJpjiDGEOY/5XXIHvrv2geMxnNU46Dv6AYSoUMSoUMCrkI1d4/lQoRSrkMoijA\n5mwP4jg8AcTyX6xSLuKoQivUyr61kGpzBeD4+4uY/NDtaC0ai8qTzkFb4WjY84sQVcYWNFC3NqHw\n7ZeR/9EbkAd88FmSsGv2lSg76zeIaDqv7KNwO2HZuRmJ2zcgcftGJO7cBIXXAwBoLR6Hbx59Nab2\nWGa9CmOGJfYYlhuo6ls9KK1xdLQP+zkx4IeusRa6+mroGmqhr69uD+Ls/dj3NYtXVCbHmpvvQ9XJ\n58Q99pcUxnN5g9jcTThHIRMxZlhizD8XfskYzCEiGsC4kUVEREREREREgw33M4iIBo6aZjd21zr6\nZa6sZD3y0+MLrvgCYTS/+G9MvPtG7DnjAqz70z0QImHkfPE+Rr66FLqmeoQ0WuyadQV2zboMYV3X\nNy5/LtOqx/BuWmrFoqrRBeWjD2HMy4+j4pRfY80tD/RqHrVChklFyXFXhxmKnN4gkqdPhKG2suM5\nX2IyGiYdi4ZJx6JxwjSEjP1TacSgUWB8QVKvK8b4AmFsWV+Gky47HXKfF5/+42P4ktN6vR6l3YbC\nd/+F4R+8BoXXg4AxAbvOvwxl51wMta2lPYSzYyMSt2+AsWoPhP1uxTsz89A6agI0zQ1IXb8SWy+7\nATt+d21M17UY1BidZzki4ZyoJKHR5oVcJkKvUUCjii0oFZUk7K5xoK51v2CNJEHXUIOkLWth3bwG\n1i1roa+v7nR8WK2FOy0TntSfPnyJyYgqFJBkckRlMkhyBaJyOaIyORQqJTR6NbR6LbR6NRRJFrTI\ndGiy++Jqn2UxqDF6mAXiEGoj1hO3L4TNZS0Ihg8M56jkMozJT4Reo+hiJO2PwRwiogGMG1lERERE\nRERENNhwP4OIaGDZtLsFbe5An+aItYVVZ4L+IBKmHQV1Uz02XLcII955GYaaCkQUSuw+93fY+Zu5\nCCbEV30iQa/C2PzEfrk5vmtPE0Zecg7Mu7fj+788h4YpM3o1T3qiDoVZQ7u1TU8CoQhKvl6Dky49\nFQ0Tp6PypHOQunY5Utcth8rRBgCQRBGtRWPROLE9qGMrHA3IZL2+Zm+rl4QjUWwobcHwx+5G4Xv/\nxpYr/oSdF13d63XsT+G0o+D911Dw3itQup2QBOGAEE5YrUVr0Vi0Fo9D68jxsBWPQ9Bobh/rcuDU\na34NdVsLvn7idbQVjo7pmklGNUbmHd7ASIvDh7JaJ3zBcMdzclGETiOHXqOAXqOATqOAXq044L0j\nEIpge4UNDncAhuo9sG5eC+uWNUjashbalsaO84I6A+zDR7YHcNKyOgI47rQsBE1moIvXqpCJMGiV\nMGgVMGqV0GsVUCm6/m/MHwyj2e5HU5sPLl/XIR2TVomxwxMHfeuw3vD6Q9i0u7Wj3ZhaKcO4/KSY\ng1jEYA4R0YDGjSwiIiIiIiIiGmy4n0FENLD4g2GsK2nushVJT+JtYdUZ5UsvwnTbnwG0t5ApP30W\ndlz8B/isqXHPpVbIMHGEFQp578Mc+4tKEio+X47JV/wa/gQLPnvhw7gq9+zPYlAjL80Ag/aX19Yl\nKknYVNoC62svYsKzD2Dtn+5B+RkX7D0YhXn3dqSsXY7UtcuRuH0jxGj7Df6AwYT6o4/Hxj/c1utK\nOsPSjMhOif17JkkStpXbENy0Gadcez48qRn4/PkPEVX27/dN7nEj/6PXkbH8S7gzc9BaPB4toybA\nmVvQZZsqg0YBzcplmLngSjizhuHLpW/H3NrNatKgONd8yMM5Hn8IZbUO2FyxBf5EQYBGJYdeLYe5\noQr4/HOYN65C0pZ1UDtsHef5ExLRPGYSWsZMQvOYSXDkFvQY2hIFAQaNAkadEgadEkatok/tzXyB\nMJrtPjTbfXD5Qh3P69UKjBueBIX8lxfK2ccXCGPT7hbIZCLG5id2G3aigzGYQ0Q0gHEji4iIiIiI\niIgGG+5nEBENPMFQBGV1TjS2eeMe25sWVgfx+2G8/GK4tCasmXUV3Bk5vZpGFARMKEjq9+BLOBKF\n+47FKHjpCew5YzbW/enePs1nTdAgL9UArfqX0+KlpKoN9TYvjrt9LlLXrcCH//kW/qSUTs9VuJ1I\n3vBjezWdtcuhba5H3dEzseLuZ4BeVCMRAIwZlgiLUR3T+XvqnKhqdGLmLZchefOaPlVK6i8KmYj8\nDBNSLVrsqXPCfPdCFL73CkrPvQQb590R8zwpCRoU5ZghHIJwTjgSRUW9C3WtHkR7ESPI+eJ/mPTI\noo5QljcpFc1jJ3eEcVxZeV1WwdlHpZDBqFPCpFXCqGuvhnOogkj7Qjp2dxAjshMYREF70FMmCv0W\njPwlYTCHiGgA40YWEREREREREQ023M8gIhq42lwBlNbY4Q2Eez4ZgE6twMRCa69aWHW3hp2VbR0t\nUeJRnG1GikXbb2vZn9/jg/HkmTCV7cSy+19E46TpfZpPAJBq0SIn1dCnCh6DQW2zG6W1Dsh8Hpw7\nexqc2cPx5bPvxjY4EsFxi65B6roVfWonJRdFHFVohVbd/de6sc2LHZVtyPrmY0x9YD5qp52IlXcv\n7dU1+0uSSY2CzAODHzt31mHspWfBVFkW93+PqWYtinLM/bY+SZJQ1+pFRb2z15W3hv/vVUx45j4E\nDSZsmjsfTROmwZuS3mMQx6hVtn/o+14Nh+hI6i6Y88utw0REREREREREREREREQ0xJgNKkwqSkZe\nqrHHKhMCgBHZCf0ayvlpDVYkxljdZJ/MJP0hC+UAgFqngeuJZxCVyTHx8Tsh93r6NJ8EoN7mxeod\nTdhd40AwFH8QaTCwuwMoq3MCAJI3roIsFIqv+oxMhlULHoQ3KRWj//UErBtX9Wod4WgUW8tbEe4m\nOOL0BlFSZYfc68G45x9ERKHEpj/c1qvr9QeFTMTIXAtG5x3cFqiwMA3bFz+GqFyByY8shMJpj3ne\nhjYvSqra+mWNba4A1pU0o7TG3rtQjiSh+NWlmPDMffBZrPjm4VdQccZseFMzug3liIKAkbkWHFVo\nxfBME5ITNAzl0JDFYA4RERERERERERERERHRECIKAnJSDZhclAyLoetwTFayAcZ+bhm1j0Iuw5hh\niRieYYqpDU2CXoVhGcZDspb9qaZMgu2aP0LXVI+xLz7UL3NGJQk1LW6s2t6IPXXOboMjg40/GMa2\ncltHW6O0Vd8BAOqnzIxrnmCCBT8sehSSIGLqA/Ohbm3q1Xq8gTB2VLahs6YwgVAE2/a0r7X4P89C\n09qEnRdeBU9aVq+u1VcpCRpMKU5GcoKm0+OiKCDn9ONQcsUN0LQ2YeJTdwNxNLupt3lRWhN7mGd/\n8k0boL71ZuxZth6bylrg9od6NQ+iUYz7+18x+pWn4U7NxDePvgpnXmGPwxQyEePyE7v82hANNQzm\nEBEREREREREREREREQ1BGpUcY/MTMTLXApX8wGodOrUCualdt93oL5lWPSYUJEGr6roShlohw6hc\nc0wBnv4g3b4QvuEjkP/RG7Bu+LHf5o1IEqqaXPhxWyMqG1wdYZbBKhKNYuse209VVCQJaauXIWAw\nobVobNzz2UZOwOar5kPd1oKp998MIRJbu7Wfa3X6UdFwYEvNaFTC1j02BMIRGKr2oPDdV+BJycDO\nC+f26hp9oZLLMDrPguJcCxQ/+3v3cwq5DNqFt6F11ARkffcpsr75OK5r1bZ4UFbriPl8pzeI+rXb\noLvgPBj++QImXXQqil9dCjEYjOu6ACBEwpj06CIUvvcKHDn5+Oax1+BJz+5xnFopw4SCJJj0qriv\nSTRYsRYUERERERERERERERER0RCWnKCBxaBCRb0LtS1uCIJwSFpYdcWgVWLiCCtKqx1oaPMecEwU\nBIzM6znA0K9UKviX/h3qM07CpMfuxI8LH4Hc74PC44LC64bC44bc6+54rPDu/dzjRtWJZ2PP2b/t\ndvpwNIryBifUStkhbc11qJVU2Q+opGKsKIW2pQGVJ5wNyHr3/So9bw6Stq5H5vLPMfqfT2DL72/u\n1TyVjS7oNIqOiislVW1w+YKAJGH8M/dBDIew8Q+3IaqKr51aX6VZtMjPMEEui70+hlangmvp8zCe\nMRNHPXUPWkZPhC85Lebx1c3tf6eHpR9ccSoYiqDNFYDN6YfNFYDkdOLEmy6F0m5D2dkXIn3l1xj9\nytPI+fojrP/jXWiaMC2ma4rBII7+63xkLv8CthFj8P19zyFoNPc4zqBRYPSwg9t6EQ11DOYQERER\nERERERERERERDXFymYjhmSakWDRweUOHrIVVV2SiiKIcM8xGFUqrHQhH26uwFGYlHPa1AEB4wkR4\nr7sB+qcfx8k3XBjzuIQ9Jag8+VxE1D234Klr9QzaYE5VowtNdt8Bz+1rY9UwZUbvJxYErLn5LzDt\n2YmiN15Ey8gJqJ92Yq+mKqlsg1Ylh83pR+PetWas+AKp61eiYdKxqDvmpN6vM05qpQwjsswwG3pX\nBUY3cgSa7vgLMhb9GZMfXohlf/0HIMYe7qlqckEUgewUA5yeIGzOANpcfrh8+7WoikRw7AM3w1S5\nG6XnXoKN8+7A5t/Px+h/PYnhH7yGmQuuROWJv8Kma25FwJzU5bVkPg+OufsGpK5fiaZxR2PF3UsR\n1up6XGOiUY2RuWbI4nhdREOFIHXWgG8AaW529XwSEdEgZrUa+F5HRERERERERIMK9zOIiKgvfIEw\ntle0wahToCAz4cgtxO+H+pEH0VTXCr9ah5BWh5DOgJBWj7BWj5Bu78fex0X/fQEjX38Oq279K6pO\nPjemS0wpSoZWrTjEL6R/tTr82Freip/fRD7+z5cgadt6fPDWipiqo3THVLYTJ934W0SUKnyx9B14\n0zJ7NY9SLiIUjkICIPP7cNrcs6CxteCz596HOyuvT2vsiSgISDSqkWrRwmxU9b0VmyRBfuEFMH/7\nOTb+4TaUnn9Z3FPIRAGRaOe3/8c+9zeMeOefaJg4Hcv/8ndIsp9qeCSUbsPEJ5bAsmsrgjoDtvz+\nz9hz5m8OCgcpXA4ct+gaJO7YhNppJ+HHOx5BVNlzGCnNokVhVgKEw9SujuhIsFq7bg/JYA4R0RHG\njSwiIiIiIiIiGmy4n0FERH0V3XuLstPb6BkAACAASURBVM9hhn7Q5gpgU1lLj+fp6qtx5mWnomns\nZHz38CsxzZ1l1SM/w9TXJR42Xn8I63e1dFQ02kfhcuCcC6bDVjQG3zz+er9cK/ezdzH5kTvQNnwk\nvn78PzEFPLoz6l9PYuRrz2LnhXN73SIrFgaNEqkWDZLNWijk/Vv9RWhuhvHYKZC5XfjimXfgyhne\nL/PmffIWJj12F5xZw/D1E68jpD+47RUiEeR//AbGvPQYFF43WovGYt2NS+DILwYAqGzNmHH7XCSU\n70LFyedg7c33HRDu6fLaqUbkpHYdWCAaKroL5rBOFBEREREREREREREREREdVqIgDIhQDgCYDSpk\nJul7PM+TloWmcUcjefMa6GorY5q7webtCCENdOFIFFvLbQeFcgAgZd0KiNEI6qfM7LfrVZx2PspP\nOx/m3dsx/u8P9GkuXV0VRrz5D3iTUrD94j/00wp/opLLkJWsx+SiZEwcYUWGVd/voRwAkKxWeB9/\nGrJQEEf/7VYIoWCf57RuWo2jnrwHAYMJy+99tvNQDgDIZCg752J8+o+PUXXCWUjcuRmnzJuNcc8+\nAGP5Lpz450uQUL4Lpef+DmvmP9BjKEcUBBRnmxnKIQKDOURERERERERERERERET0C5eXboBW1XP1\nj/LTZ7Wf//l7Mc0bikTRYvf1aW2HS2WDC95AuNNjaau/AwA0TJnRr9dcf/2dsA8bgfyP3kD2Vx/2\nep7xzz4AWSiITVffiohG1y9rEwUB1gQNxg5LxNRRKchPN0F3GNqShc44C96L58C8ewdGvfpMn+bS\n1VVh2j03AABWLn4SnvTsHsf4E5Ox6vaH8d0DL8KdmonC917BadecC31dFbb/7lpsvO6Og1pc/Zxc\nFDFmWCJSLNo+rZ9oqGAwh4iIiIiIiIiIiIiIiIh+0WSiiKJsM3qq4VNz7CkI6gzI/fw9IBKJae66\nVm/fF3iIuX0h1LZ4Oj8YjSJtzffwWayw721r1F+iKjV+uPNxhLQ6THx8MQyVu+OeI+3Hb5C+6ls0\njZuCmpln9Gk9clFESoIGxTlmHDM6FaNyLbAY1RAOc3Un718eQDgnF0VvvICkLWt7NYfc48Kxd14L\nlcuBdTcsRsvYKXGNb5o4HZ8//wG2XTIPAZMZG69ZgG2X3QB087VQyESYtEqML0iC2dC31mREQwmD\nOURERERERERERERERET0i2fUKZGd0n3bnahKjaoTzoKmtQmp65bHNK/dHYCvi0o0A0Vptb3LlluW\nki1QOdpQP2VGt6GM3nJn5GLNzfdDHvDhmHtuhMzXRUCoE2IwgPF//yuiogwbrrujV+vTquTIsuox\nLj8Jx4xJRXGuBSlmLeSyI3crXdIb4Hr6eQDAzFsux9H3/Rnmki0xjxciYUy7788wVu9ByazLUXHG\n7F6tI6pUYfuc6/HBWytROutyyAQBWpUciUY1MpJ0GJ5uwuhcCyaNSMaxY9IwfUwaJhRaodcc+spC\nRINJz/XYiIiIiIiIiIiIiIiIiIh+AXJSDbA5/XD5Ql2eU3H6LAz/6L/I+/QdNEyZGdO89a1eDEs3\n9tcy+1V9qwcOb7DL46lrlgHoWxsrURC6DP4AQO1xp2LX+Zeh8N1/YdLji7HqtocgRCMQwmGIkQiE\ncAhiJAwxHIYQiUCMhCCEw8j98n3o66qw67w5cOYVxrwWo06JRKMaiUY1tOqBecs8fPRUOF9+Ddq/\n/QXZ332C7O8+QfPoidg1+wrUHX08IJN1OXbccw8ide1y1E+Zgc1z5/dpHSZte2BNr1VApej6mkTU\ntYH5LkNEREREREREREREREREdJiJgoCiHDPWlTR3GSRpKxgF+7ARSP/hGyjtNgQTLD3O22DzIDfN\nAPEwt0TqSSgcwZ46Z7fnpK36DlG5Ao0TjunVNURBwJTiZDjcQVQ3ueH2dx562jz3Zlh2bkL2Nx8j\n+5uPY57fb07CtjnXd3uORilHgl4Js0EFi1F9RKvhxCN4xlkInn4mFMu+heqZp2D95ktYt66DKz0b\npedfhopTz0NErTlgzLCP/ouC//0bjpzh+PH2R7oN8HRHr1YgL82IRJO6P14K0S+aIEndRBMHgOZm\n15FeAhHRIWW1GvheR0RERERERESDCvcziIhoqKtucqOsztHl8eHvvYIJzz6AjVcvQOnsy2Oac1Su\nBdYETc8nHkY7K9vQ0Obt8rjK1oxzfjsDjeOnYtmDL/fqGplJegzPNHV83urwo6rJBYfn4Co9muYG\njH/2fqjsNkTlCkhyOaIyOaJyOSRZ+2NJ3v55+2MFqmeejtZRRx0wj16tgFGnRIJeCZNeNWQqvch2\n7oDs6SdheO9NiKEQAgYTys7+LXaf+zsELFZYN/yIGbfPRchgxJdPvglvWmbc19Cq5MhNNSDZrD0E\nr4Bo6LJau26FyGAOEdERxo0sIiIiIiIiIhpsuJ9BRERDnSRJ2LS7FXZPoNPjSmcbzr5oJtzp2fj8\n+Q+BGCrhWAwqjM1P6u+l9prdHcDG3S3dnpPz+XuY8vDCuAJI+xMFAUePTOk0GONwB1DV5Ear0x/3\nvPsTAOg1CiToVTDp2oM4CvngqIjTa42NiDzzDMyvvQyV046IQoHqmWcgfdV3kPu8+PbBl9E6emJc\nU6oVMuSkGpBi0Q64yk5Eg0F3wRy2siIiIiIiIiIiIiIiIiIi2o8gCBiRnYC1JU2IRA+ucxA0mlE3\n7SRkLfsUlp2bYSse1+OcNlcAvkAYGtWRv0UblSSU1nRdEWiftFXfAQAapszo1XXSE3VdVqsx6VUY\no1fB4w+hqtGNZruvy/Zh+yhkIrRqOXRqBXRqObRqBQxaxaBpTdVvUlIgu/tu2G6+Bd6X/oXkV55D\n7pcfAABWz78/rlCOUi4iO9mA9CQdRJGBHKJD4ci/6xMRERERERERERERERERDTAalRzDM0woqbZ3\nerz89FnIWvYpcj97N6ZgDgA02LzISzP25zJ7pabJDY8/1O05QjiE1HUr4E7LgisrL+5riIKArBR9\nj+fp1AoU55iRl2ZATZMH9a0eCIKwN3gjh06jgE6tgFYtHzItqfqL3KiH8aZ5sF09F2Vvvw+v04Pa\nY0+NbawoIitZj8xkHWTiLyzYRHSYMZhDRERERERERERERERERNSJtEQdWhz+TtstNU6YBq81Ddnf\nfoxN1yxARKPtcb6GVi9yUw0QjmCrIF8gjMqGnltSJm3bAIXXjYpTzo2pVdfPdVctpzNqpRzDM00Y\nlm5k5ZY4abUqaOf8BqFwBDndFx3qIJMJDOQQHSb8m0ZERERERERERERERERE1IXCrAQoOmuVJJOh\n4tRfQ+H1IHP55zHNFQhH0Oo4OORzOO2udSDSQ8soAEhdvbeN1eT421jFWi2n07EM5fSaQi6DUhHb\nB0M5RIcP/7YREREREREREREREREREXVBpZChICuh02Plp54PAMj79J2Y56u3eftlXb3RYvd1Wv2n\nM2mrv0NYpUbTuClxXyfeajlEREMZgzlERERERERERERERERERN1ITtAgOUFz0PPetEw0jp8K65a1\n0NdWxDSXzemHPxju5xX2LByJYnetI6ZztQ21MFWWoWn80Yiq1HFdpy/VcoiIhiIGc4iIiIiIiIiI\niIiIiIiIelCQmQCV/OAqMOWnzwIA5H72XkzzSAAajkDVnMoGF/yhSEznpu1tY1U/ZWbc12G1HCKi\nAzGYQ0RERERERERERERERETUA4VcREGm6aDna6efjKDOgNzP34MQia0STkOrF5Ik9fcSu+T2hVDb\n4on5/NQ1ywAADVNmxHUdVsshIjoYgzlERERERERERERERERERDFIStDA+rOWVlGVGlUnng2NrRkp\na5fHNI8/FIHNGTgUS+xUabUd0RiDQGLAj+SNq+DIGQ5vSkZc12G1HCKigzGYQ0RERERERERERERE\nREQUo4IMExSyA2+zlp/W3s4q79N3Yp6n3hZ7BZu+qG/1wOENxnx+8qbVkAf8qGe1HCKifsFgDhER\nERERERERERERERFRjJQKGYZnHNjSyl4wEvZhRUj/8Vuo2lpjmsfmDCAQihyKJXYIhSPYU+eMa8y+\nNlb1R8+Maxyr5RARdY7BHCIiIiIiIiIiIiIiIiKiOKRYtEg0qn96QhBQftr5ECNh5Hz1QUxzRCUJ\nDa3eQ7TC9vm3VbQhFInGPkiSkLbqO4S0erSOnBDzMFbLISLqGoM5RERERERERERERERERERxKsxM\ngFz86XZr1UlnI6JQIPezdwBJimmOQ9nOane1HYYP34V55+aYxxiqy6FvqEHDxOmQ5IqYx7FaDhFR\n1xjMISIiIiIiIiIi+v/27j1cy7LOF/j3XUeBxeIQRwVEQE1wOySKOW7JoQhtYsbSEc1wa5g78tKw\nTEBBLEFsMvckWlvtqtkhFtekjllJO5kUT0OecDyglhwEDyhyEFBYrLXe/Yd7loOCsBbrBdTP57/3\nfZ/7fn7Py3U91/P++K77BgCAZqquKk+/fWubXtfVdspLf/3pdFj2fDo/8/hOzbGpriGr39jU6rWt\neG1DOv2vK/PJGRfmM+ePzqe+fWa6P3zfDgNDPf90T5LmbWNltRyA9yeYAwAAAAAAANAC+3Zpl441\n1U2vl4w8OUlywNxbdnqOl1t5O6vVb2xK4/U3ZODsH2dDz955Zcgx6fb4ggy7+Kv5zNdPSu8//jaF\nhvptju3xp/lJkleO+O87fT6r5QC8P8EcAAAAAAAAgBY6uHfHlBcKSZKVn/hk3uzaM73v/l3K39q5\nwM3rb2xK3ZaGVqll46YtWTP7X3L4td/N5g6dcu8VN+TeGT/JH677VV741AnpuOTZfHLGhTn+K59L\nv9/8MmWb31mtp2LjhnR94uGsPujQbO7cdafOZ7UcgB0TzAEAAAAAAABooTbVFenb8/9vaVVeniUj\nv5DKt95Mr3t/v1PjG4vFLFq2Jpt3MZyzpb4hK+6YlyOnfzMNldW59/L/nQ379U2SrD1wUBZccnXu\n/Omdef7zo9Nm1coMueY7+dsxn8nHf3FDKje8ke6PPZCyhvq8PHTYTp/TajkAOyaYAwAAAAAAALAL\nenVtl9q2VUmSpSO+kKR521mt2bA5jzz7ala/sWnHB29DY7GYJXc/kiMnfjWF+vo8OPnqrPn4Ye85\nbuO+ffLo+Zflt7PuyqJTz0l53eb8t5/9r/ztl4fn0J/+U5Lk5aGf2qlzWi0HYOcI5gAAAAAAAADs\ngkKhkIP7dExZoZA3e/bKK0OOSdcnH0nnpx/b6Tnq6hvzH4tfz/Mvrktjsdis8y997NkMvuCMVK9f\nl0fGfyevHHXc+x6/uXPXPPmVC/Kb2X/M42dfmPp92qZ2xZJs6tA5aw46dKfOabUcgJ1TKBabeVff\nzV57bf2eLgGgpLp2be9eBwAAAHyg6GcAwLYte2V9lrzyRj725CMZ/s0vZ+Unjs787/202fO0b1OZ\ngX07p011xQ6PfXHxy9n/9BPT6flFefKM87Loy19v9vnK6urS697fZ2OP/fL6oMO3e1x5oZAONdXp\n1L46PTq3TWWFdSAAkrd/I23Pju/kAAAAAAAAAOxQ7+41eW3tW3n90CF5Zcgx6fHI/enyHw9l1WFH\nNmue9W9tycPPvpqDenVM985tt3vc66+9kZ7j/kc6Pb8oz3/ulCw6fVyL6m6sqsoLnx71nvfLCoXU\ntq1Kp/bV6VhTlfbtqlJWKLToHAAfVSKMAAAAAAAAAK2g7L9safXUGeclSQ79P9ckLdjEpKGxmEUv\nrMmiZWtS39D4ns83bNyctuePS/fH/j0vHj08j503JdnF0Ewhb6/W07tbTQ7r97Ec8996ZPCBXbJ/\nj/bpUFMtlAPQAlbMAQAAAAAAAGgl7dtWpVfXmrxwyF/lpaM+lX0X3JNuC/89r37i6BbNt3LNm3lj\nY10G9u2U9m2rkiRb6hvScPHFOWDeHXn9kL/KgklXpVje8v/6LSTp1a0mfbq1tz0VQCtzVwUAAAAA\nAABoRX17tE+bqoo8NebtVXMG/Z+ZLVo15z+9VVefx/68Kstf3ZDGxmLe+MerM+AXN2Z9r76577s/\nTsM+bVo8d3VleQ7r3yX99+0glANQAu6sAAAAAAAAAK2orKyQvj3aZ+1Bg/LiX386XZ5+LN0fvm+X\n5mwsFvP8S+vywo/+OQf/cFre6twl86/4Seo6dGrxnF07tskRB3dLp/bVu1QbANsnmAMAAAAAAADQ\nyrp1apN2+1TmqTPeXjXn0J/v2qo5SfKxpx7L4TMuTP0+bXLftOvzZo/9WjRPeVkhH+/TKYP6drZK\nDkCJucsCAAAAAAAAtLJC4e1Vc9b1OzjLhx2fzs8+kZ7/fneL56te/VqOvvwbKWtoyINTrsnaAQNb\nNE9t26occXC39OjctsW1ALDzBHMAAAAAAAAASqBrxzZp36YyT3/56ykWChnUwlVzCvVbcvS0C9Jm\n9Wv5j7Hfysojjmn+HEn2794+gw/skjbVFc0eD0DLCOYAAAAAAAAAlMgBPWvzRt8D88Jxf5tOzy/K\nfvf/odlz/NUN30/XJx/J8mHH57mTz2r2+H2qyjN4QJcc0LM2ZYVCs8cD0HKCOQAAAAAAAAAl0rl2\nn3RoV/X2qjllZRn082uTxsadHt9n3h058F9nZd3+/fPQt6YlzQzWdO/UNkcc3C0daqqbWzoArUAw\nBwAAAAAAAKCEDuhZmw29D8iyT/9dOiz9c3rNn7tT4zo8/0yG/NOl2dK2XR64dGYa2rRr1nl7danJ\nIft3SkW5/xYG2FPcgQEAAAAAAABKqGNNdTq3r87Tp49LY1l5Bs26LmloeN8xlevX5a+/e34qNm/K\nn759ZTb0PqBZ56yqKEvfnu13pWwAWoFgDgAAAAAAAECJ9e1Zm4379snSkV9I7fLF6fPH327/4MbG\nHPW9i1Lz8vIsOu1/5qVjPtPs8x3Qs9ZKOQB7AXdiAAAAAAAAgBKrbVuVLh32yaIvfS2NFZUZeNN1\nKTTUb/PYgTf9KD3/ND+vDDkmT55xXovO1fNjzdv2CoDSEMwBAAAAAAAA2A369qjNW933y+LjT0r7\nl17I/nf9+j3H9Pz3P2bQTddlY/f9smDS95Py8mafZ0CvDq1RLgCtQDAHAAAAAAAAYDeoaVOZbh3b\n5JnT/mcaKqsy8KYfpVC/penzdi8uy9DvTUhDVXUeuPSHqavt1Oxz9OzcNrVtq1qzbAB2gWAOAAAA\nAAAAwG7St2dtNnfrmcV/OzrtVr6Yvv/3tiRJ+Vtv5q+/e36qNq7PI+dflrUHDmr23BVlZTmgZ21r\nlwzALhDMAQAAAAAAANhN2lRXpHunNnlm9NlpqKrOwNn/O2V1dTniny5NxyXP5S+jTsuyz57Yorn7\n9mifqsrmb30FQOkI5gAAAAAAAADsRvv3aJ+6Lt3zl1Gnpe1rL2fYpLHp88ffZtXAwVn4tYktmrPd\nPpXZt2u7Vq4UgF0lmAMAAAAAAACwG+1TVZF9P9Yuz55yduqr26TrEw9nU6cueXDyP6VYWdWiOQfs\n1yFlhUIrVwrArhLMAQAAAAAAANjN+nSvSX3nLnn6y+OypW1NHrzk6mzq0r1Fc3Xt0Cad2le3coUA\ntIaKPV0AAAAAAAAAwEdNVWV59utak2dHfzXPffF/tHilnPJCIf33q23l6gBoLVbMAQAAAAAAANgD\nenerSUVZWYtDOUnSu3tN9qmyHgPA3kowBwAAAAAAAGAPqKwoS+9uNS0ev09Vefp0a9+KFQHQ2gRz\nAAAAAAAAAPaQ/bq2S2V5y/7btv++HVJWVmjligBoTYI5AAAAAAAAAHtIRXlZhhzcNQf0qE2bZmxJ\n1ammOl07tilhZQC0BpsNAgAAAAAAAOxB+1RVZP8e7bN/j/ZZt2FzXln9Zl5d+1YaGovbPL6sUMiA\nXh12c5UAtIRgDgAAAAAAAMBeokNNdTrUVGdArw5ZtXZTXln9ZtZu2Jz/GtHZt0u7tNunco/VCMDO\nE8wBAAAAAAAA2MuUl5Wle+e26d65bTbV1Wfl6reycs2bqW9oTN8e7fd0eQDsJMEcAAAAAAAAgL3Y\nf93qqm5LQyrKy/Z0SQDsJHdsAAAAAAAAgA+IqsryPV0CAM0gmAMAAAAAAAAAACUgmAMAAAAAAAAA\nACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAA\nAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMA\nAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUg\nmAMAAAAAAAAAACUgmAMAAAAAAAAAACVQsTMHPf7447nqqqsya9asrd7/t3/7t1x33XWpqKjISSed\nlFNOOSW33nprbrvttiTJ5s2bs2jRotx///1Zs2ZNJk6cmEKhkAMPPDBTp05NWZlcEAAAAAAAAAAA\nH047TMbceOONmTx5cjZv3rzV+1u2bMmMGTPy05/+NLNmzcqcOXOyatWqfPGLX8ysWbMya9asDBo0\nKJMnT05tbW1mzJiR8ePH5+abb06xWMy8efNKdlEAAAAAAAAAALCn7XDFnD59+mTmzJm56KKLtnr/\n+eefT58+fdKhQ4ckyZAhQ/LQQw/lhBNOSJI88cQT+ctf/pKpU6cmSZ566qkMHTo0STJs2LDcf//9\nGTFixA4L7Nq1ffOuCOADyL0OAAAA+KDRzwAAANixHQZzRo4cmRUrVrzn/Q0bNqR9+3d+eLVr1y4b\nNmxoen399dfn3HPPbXpdLBZTKBSajl2/fv1OFfjaazt3HMAHVdeu7d3rAAAAgA8U/QwAAIB3vN8f\nLuxwK6vtqampycaNG5teb9y4sSmo88Ybb2TJkiX55Cc/+c6Jysq2Ora2tralpwYAAAAAAAAAgL3e\nDlfM2Z7+/ftn2bJlWbt2bdq2bZuHH344Y8eOTZI89NBDOfroo7c6fuDAgVmwYEGOOuqozJ8/f6vQ\nzvuxHCrwUeBeBwAAAHzQ6GcAAADsWLODOXfccUfefPPNjB49OhMnTszYsWNTLBZz0kknpXv37kmS\nJUuWpFevXluNmzBhQqZMmZKrr746/fr1y8iRI1vnCgAAAAAAAAAAYC9UKBaLxT1dBAAAAAAAAAAA\nfNiU7ekCAAAAAAAAAADgw0gwZyc9/vjjGTNmTJJk0aJFOeWUU3Laaadl0qRJaWxs3OrYxsbGXHrp\npRk9enTGjBmTZcuWJUmWLVuW0047LV/60pcyderU94wDAD5atvXM8Prrr2fcuHE5/fTTc+qpp+aF\nF17Y4ZjEcwZ8lLz7t8mXvvSljBkzJmPHjs2qVau2OtY9A0j0NACA1qenAbSEngbQHB+mfoZgzk64\n8cYbM3ny5GzevDlJcu211+bcc8/NL37xi9TV1eXuu+/e6vi77rordXV1mTNnTr71rW/lyiuvTJLM\nmDEj48ePz80335xisZh58+bt7ksBAPYi23pm+P73v59Ro0Zl9uzZGT9+fBYvXrzDMYnnDPioePdv\nk+nTp2fKlCmZNWtWRowYkRtvvHGr490zAD0NAKAU9DSA5tLTAJrjw9bPEMzZCX369MnMmTObXh9y\nyCFZu3ZtisViNm7cmIqKiiTJRRddlJdeeimPPPJIjj322CTJ4MGD8+STTyZJnnrqqQwdOjRJMmzY\nsDzwwAO7+UoAgL3Jtp4ZHn300axcuTJnnnlm7rjjjqZnB88ZQPLe3yZXX311DjnkkCRJQ0NDqqur\nk7hnAO/Q0wAASkFPA2guPQ2gOT5s/QzBnJ0wcuTIpn/YJOnbt2+mT5+eE044Ia+//nqOOuqoJMk/\n/uM/Zt99982GDRtSU1PTdHx5eXnq6+tTLBZTKBSSJO3atcv69et374UAAHuVbT0zLFu2LLW1tfnn\nf/7n9OzZs+kvRTxnAMl7f5t069YtSfLoo4/mpptuyplnnpnEPQN4h54GAFAKehpAc+lpAM3xYetn\nCOa0wPTp0zN79uzMnTs3J554YtMySP+ppqYmGzdubHrd2NiYioqKlJW983Vv3LgxtbW1u61mYPfY\n1v6FO9q7cG/f8xAonW09M3Tp0iXDhw9PkgwfPrwp1f1+YzxnwEfb7373u0ydOjU33HBDOnfuvNVn\n7hnAu+lpANujpwE0h54G0Br0NICd9UHvZwjmtECHDh2a0lbdunXLG2+8sdXnhx9+eObPn58kWbhw\nYQ466KAkycCBA7NgwYIkyfz583PEEUfsxqqB3WFb+xfuaO/CvX3PQ6B0tvXMMGTIkNxzzz1Jkoce\neigDBgzY4ZjEcwZ8VN1+++256aabMmvWrPTu3fs9n7tnAO+mpwFsj54G0Bx6GsCu0tMAmuOD3s8Q\nzGmBadOm5YILLsiXv/zl3HzzzbnggguSvLN/2YgRI1JVVZVTTz01M2bMyKRJk5IkEyZMyMyZMzN6\n9Ohs2bIlI0eO3JOXAZTAtvYv3N7ehR+UPQ+B0tnWM8OECRNy++2359RTT829996br33ta0k8ZwDv\n1dDQkOnTp2fjxo0577zzMmbMmFxzzTVJ3DOA7dPTALZHTwNoDj0NYFfoaQDN9UHvZxSKxWJxj5wZ\n4EPokksuyWc/+9l86lOfSpIcd9xxqa+vz3333ZckefDBB3PLLbfkqquuet8xd911V4477rj3HQcA\nAADQWvQ0AAAASsOKOQCtaFv7F+5o78K9fc9DAAAA4MNPTwMAAKA0BHMAWtG29i/c0d6Fe/uehwAA\nAMCHn54GAABAadjKCqAVNTY25rLLLstzzz2XYrGYK664ImVlZZkyZUq2bNmSfv36Zdq0aSkvL89F\nF12U8ePHp0ePHu8Z079//yxZsmSb4wAAAABam54GAABAaQjmAAAAAAAAAABACdjKCgAAAAAAAAAA\nSkAwBwAAAAAAAAAASkAwB6AV4CuOHgAACspJREFUNDY25tJLL83o0aMzZsyYLFu2rOmzO+64I6NH\nj37f8StWrMgpp5xS6jIBAAAAmmyrn/H000/n2GOPzZgxYzJmzJj87ne/2+54/QwAAIAdq9jTBQB8\nGNx1112pq6vLnDlzsnDhwlx55ZX58Y9/nKeffjq/+tWvUiwW93SJAAAAAFvZVj9j+PDhOeuss/KV\nr3xlT5cHAADwoSCYA9AKHnnkkRx77LFJksGDB+fJJ5/MmjVrcvXVV+fiiy/OlClTdnquuXPnZvbs\n2amvr0+hUMi1116bP//5z7nxxhtTWVmZFStW5HOf+1zGjRtXqssBAAAAPgK21c/o1q1blixZknnz\n5mX//ffPxRdfnJqamh3OpZ8BAACwbbayAmgFGzZs2KpJVVZWlokTJ2bSpElp165ds+ZaunRpbrjh\nhvziF7/IgAEDct999yVJXnrppcycOTNz5szJT37yk1atHwAAAPjoeXc/o7y8PIMGDcpFF12U2bNn\np3fv3rnuuut2ai79DAAAgG2zYg5AK6ipqcnGjRubXq9duzYrVqzIZZddls2bN+cvf/lLpk+fniFD\nhmT27NlJkgkTJqR3797p0KFDkqRQKCRJPvaxj2XChAlp165dFi9enMGDBydJDjrooFRUVKSioiL7\n7LPPbr5CAAAA4MPm3f2MxsbGHH/88amtrU2SjBgxIpdffnnTajiJfgYAAEBzCeYAtILDDz88f/zj\nH/O5z30uCxcuzJFHHtn0V2ArVqzIN7/5zVxyySVJkuOPPz7J23+V9nd/93eZN29eXn311XTu3Dnr\n16/PNddck7vvvjtJctZZZ6VYLCZ5p9EFAAAA0Bre3c846KCDMnbs2EyZMiWHHXZYHnzwwQwaNCjH\nH3+8fgYAAEALCeYAtIIRI0bk/vvvz6mnnppisZgrrrhih2NqamoyatSo/MM//EMaGxtz6aWXpqam\nJocffnhGjx6dioqK1NbW5tVXX02vXr12w1UAAAAAHyXb6mds2rQpl19+eSorK9OlS5dcfvnlW43R\nzwAAAGieQvE//3QBAAAAAAAAAABoNWV7ugAAAAAAAAAAAPgwEswBAAAAAAAAAIASEMwBAAAAAAAA\nAIASqNjTBQB8GG3ZsiUXX3xxXnzxxdTV1WXcuHEZMGBAJk6cmEKhkAMPPDBTp05NWdnb+cjVq1fn\ntNNOy69//etUV1enoaEhM2bMyJNPPpm6urqcd955+Zu/+Zs9fFUAAAAAAAAANIdgDkAJ/PrXv07H\njh3z/e9/P2vXrs2JJ56Yj3/84xk/fnyOOuqoXHrppZk3b15GjBiRe++9Nz/4wQ/y2muvNY2//fbb\nU19fn1/+8pdZuXJl7rzzzj14NQAAAAAAAAC0hK2sAErg+OOPzze+8Y0kSbFYTHl5eZ566qkMHTo0\nSTJs2LA88MADSZKysrL87Gc/S8eOHZvG33fffenevXvOOeecTJ48OcOHD9/9FwEAAAAAAADALhHM\nASiBdu3apaamJhs2bMj555+f8ePHp1gsplAoNH2+fv36JMkxxxyTTp06bTV+zZo1eeGFF3L99dfn\nq1/9aiZNmrTbrwEAAAAAAACAXSOYA1AiL7/8cs4444z8/d//fUaNGpWysnduuRs3bkxtbe12x3bs\n2DHHHXdcCoVChg4dmqVLl+6GigEAAAAAAABoTYI5ACWwatWqfOUrX8m3v/3tnHzyyUmSgQMHZsGC\nBUmS+fPn54gjjtju+CFDhuSee+5JkjzzzDPp2bNn6YsGAAAAAAAAoFUVisVicU8XAfBhM23atNx5\n553p169f03uXXHJJpk2bli1btqRfv36ZNm1aysvLmz4fPnx47rzzzlRXV6euri5Tp07N888/n2Kx\nmMsuuyyDBg3aE5cCAAAAAAAAQAsJ5gAAAAAAAAAAQAnYygoAAAAAAAAAAEpAMAcAAAAAAAAAAEpA\nMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAABgLzVx4sTceuut2/180qRJ\nefHFF5s97/Lly3PxxRfvSmkAAAAA7ATBHAAAAIAPqAULFqRYLDZ73EsvvZTly5eXoCIAAAAA/qtC\nsSXdGwAAAABaXbFYzJVXXpm777473bp1S0NDQ04++eQsW7YsDz74YNatW5dOnTpl5syZue2223LN\nNdekT58+mT17dpYvX54ZM2Zk06ZN6dSpU77zne+kd+/e+dnPfpbbbrstZWVlOeyww/Ld7343o0aN\nyooVK3LiiSfmkksuyWWXXZY///nPWbVqVQ444IBce+21WbVqVc4999z07t07zz33XA499NAMHTo0\nt912W9atW5frrrsu/fv3z/DhwzN8+PA8/PDDSZIrrrgiAwcO3MPfJAAAAMDewYo5AAAAAHuJ3//+\n93n66afzm9/8Jj/84Q/zwgsvpKGhIYsXL84vf/nL/P73v0+fPn1yxx135Jxzzkm3bt1yww03pF27\ndpk8eXJ+8IMf5LbbbstZZ52VKVOmpL6+Ptdff31uueWW3HrrrSkUClm5cmUmT56cQw89NFOnTs1j\njz2WysrKzJkzJ3/4wx+yefPm3HPPPUmSZ599Nl//+tczd+7cPPHEE3nxxRczZ86cfP7zn8+cOXOa\n6u7YsWP+9V//Neeff34mTJiwp74+AAAAgL1OxZ4uAAAAAIC3/elPf8pnP/vZVFZWpnPnzhk2bFjK\ny8szYcKE/Mu//EuWLFmShQsXpk+fPluNW7p0aZYvX55x48Y1vbdhw4ZUVFTkE5/4RE4++eR8+tOf\nzumnn57u3btn6dKlTccdeeSR6dixY2bPnp3Fixdn6dKlefPNN5MkXbp0aVr9pkePHjn66KOTJPvu\nu29WrFjRNMcpp5ySJBk+fHgmTpyY1atXp3PnziX5jgAAAAA+SARzAAAAAPYShUIhjY2NTa8rKiqy\ndu3ajB07NmeeeWZGjhyZsrKyvHtn8sbGxvTq1Su33357kqShoSGrVq1KkvzoRz/KwoULM3/+/Jx9\n9tm56qqrtho7b968XHPNNTnjjDPyxS9+MWvWrGmav6qqaqtjy8vLt1l3RcU7LabGxsbtHgcAAADw\nUWMrKwAAAIC9xNFHH525c+emrq4u69aty7333ptCoZChQ4fmtNNOy4ABA3L//fenoaEhydtBmYaG\nhvTr1y/r1q3Lww8/nCS55ZZbcuGFF2b16tU54YQTctBBB+Ub3/hGjjnmmDz77LMpLy9PfX19kuTB\nBx/MCSeckJNOOildunTJQw891DT/zvrtb3+bJPnDH/6Q/v37p0OHDq34rQAAAAB8cFkxBwAAAGAv\n8ZnPfCZPPPFEPv/5z6dLly7p379/Nm3alGeeeSajRo1KZWVlDj744KZtpI477ricc845+clPfpIf\n/vCHmT59ejZv3pyampp873vfS+fOnXPqqafm5JNPTps2bdKzZ8984QtfyJYtW7J+/fp8+9vfztln\nn50LL7wwc+fOTVVVVQYPHrzVNlU749FHH82vfvWrtGnTJldeeWUpvhoAAACAD6RC8d1rHwMAAADA\nTho+fHh+/vOfp1evXnu6FAAAAIC9jq2sAAAAAAAAAACgBKyYAwAAAAAAAAAAJWDFHAAAAAAAAAAA\nKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKIH/B9d82iYe\n1IBXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- there are periods where the price doesnt move, probably weekends. Maybe dont consider these for training" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def pltGraph(xname, yname, irow, icol, df, xval=None, yval=None, title=None, norm_axis=None):\n", + " x_axis_col = xname\n", + " y_axis_col = yname\n", + " if xval is None:\n", + " xval = df[x_axis_col]\n", + " if yval is None:\n", + " yval = df[y_axis_col]\n", + " if title is None:\n", + " title = x_axis_col + \" vs \" + y_axis_col\n", + " if norm_axis is None:\n", + " norm_axis = \"x\"\n", + " \n", + " axarr[irow, icol].scatter(xval.values, yval.values, color=\"green\", lw=0, cmap=pylab.cm.cool, alpha=0.8, s=2)\n", + " axarr[irow, icol].set_xlim(xval.values.min(), xval.values.max())\n", + " axarr[irow, icol].set_ylim(yval.values.min(), yval.values.max())\n", + " axarr[irow, icol].set_xlabel(x_axis_col)\n", + " axarr[irow, icol].set_ylabel(yname)\n", + " axarr[irow, icol].set_title(title)\n", + " axarr[irow, icol].grid(False)\n", + " return icol + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAT7CAYAAAAkHuRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WeYVdWhBuBvaAoOiBiDiteGCteOEo0FiUQfURERRBEf\nIrYUvfYkgg3FhsbYUK/lWlFQVEQp9m5AYtRYg4mNCCqCogIKMzBzf3A5lzYwJjIzB9/3Tzhn7732\nWuscM+tZ+ztrlVRWVlYGAAAAAAAAAAAoWvVquwIAAAAAAAAAAMC/RwgIAAAAAAAAAACKnBAQAAAA\nAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAHXOX/7yl+y1\n117ZZpttMmzYsNquTp0ye/bstGnTJhMmTEiS9OnTJ5dccskKr6usrMzw4cMzd+7cKs/p169fTjzx\nxCTJiBEjsvPOO/9bdX388cfzySefJEkmTJiQNm3aZPbs2f9WmQAAAAAsW4PargAAAADAkq699tps\nvPHGue2229K8efPark6dNnjw4DRosOIpnpdeeilnn3129t9//6y22mrLPOfMM89MZWXl91KvKVOm\n5L/+678yatSorLfeemnXrl1eeOGFNGnS5HspHwAAAIDFCQEBAAAAdc7XX3+djh07ZoMNNqjtqtR5\n1Q1JVSfc07Rp03+3OlXer1GjRllnnXW+t/IBAAAAWJztwAAAAIA6pVOnTnnzzTdz7bXXpk2bNkmS\nNm3a5Morr8yuu+6arl27Zv78+fnggw9y9NFHZ7vttsuee+6ZSy+9NGVlZYVyXn/99Rx66KHZbrvt\n0qtXr9xxxx3p1KlTkmVvTTV48OB079698Hp55U+ePDlt2rTJI488ks6dO2ebbbbJYYcdlvfff79w\n/cSJE9O3b9+0a9cuHTt2zA033JAkOffcc9O7d+/F2nz//fenU6dOywzqfPvttznzzDOz4447pkOH\nDnn44YcXO77odmBTp07Nr3/96+y4445p3759TjzxxHz++eeZPHlyfvGLXyRJdthhh4wYMSKDBw/O\nMccck6OPPjo77rhjHnjggcW2A1vo+uuvz84775ydd945F110UebNm5dk2duFLXr9z3/+8yTJAQcc\nkMGDBy/V59OnT8/pp5+eXXbZJTvssENOOumkfPbZZ4Wy2rRpkxEjRqR79+7ZZptt0rVr17z66quF\n4/fcc0/23nvvbL311uncuXNGjhy5VN8BAAAA/JAIAQEAAAB1yn333Ze2bdvmqKOOygsvvFB4f8yY\nMbnjjjtyySWXZN68eTn66KOz8cYb54EHHsill16a559/PhdccEGS5IsvvsjRRx9dCJJ07do1V1xx\nRbXrMHfu3OWWv9C1116bCy64IPfdd19mzJiRP/zhD4X7H3HEEfnxj3+ce++9NwMHDsyNN96Y++67\nL127ds0rr7ySTz/9dLG2denSJSUlJUvV5bzzzsvLL7+cm266Kddcc03uuOOOKut93nnnpby8PMOH\nD8+dd96ZKVOmZNCgQVlvvfUyePDgJMkTTzyR/fbbL0ny/PPPZ6eddsrw4cPTsWPHpcr78ssv88IL\nL+T222/PpZdemtGjR+d//ud/qtWH9957b5JkyJAhOeqooxY7Nm/evPTt2zdTpkzJTTfdlNtvvz1T\np07N8ccfv1gQ6uqrr85JJ52UBx98MKWlpRkwYECS5O233865556b0047LY8++mh+8YtfpF+/fvnw\nww+rVTcAAACAVZEQEAAAAFCntGjRIvXr10+TJk0W2z6qZ8+e2WyzzfKf//mfGT16dBo2bJizzz47\nm266aX7yk5/kvPPOy7333ptZs2Zl7NixWW211XL22WendevW6d27dyH4Uh0rKn+h3/zmN2nfvn3a\ntGmT3r1754033kiSPPzww2nYsGEuuOCCbLbZZunYsWMGDBiQJk2aZIcddsgGG2xQWNFn+vTpefHF\nF9O1a9el6jFr1qyMHj06/fr1yw477JDtttsuAwcOrLLekydPTmlpaTbYYIO0bds2l19+eY488sjU\nr18/a665ZqF/V1999SRJ48aN88tf/jKtW7dOixYtliqvfv36ueyyy9K2bdt07Ngxv/nNbzJ06NBq\n9eHC8po3b5411lhjsWPPP/98Pvzww/zxj3/M1ltvnW222SZXXnll3n777YwbN65wXu/evdOxY8ds\nuummOfroo/POO++krKwsU6ZMSUlJSdZbb720atUqvXv3zs0337zMNgAAAAD8UDSo7QoAAAAAVMd/\n/Md/FP797rvv5qOPPkq7du0K71VWVqaioiIffvhh3n333bRp0yYNGzYsHG/fvn3Gjx9frXutqPzm\nzZsnSTbaaKPC8dLS0sJWWQvv36hRo8LxRUM+Xbt2zdixY3PkkUfm4YcfzhZbbJHNNttsqXq8//77\nKS8vz5Zbbll4b+utt069esv+Xdevf/3rnH766dl5553z05/+NHvttdcyw0ULtWrVapmrDy3UsmXL\nrLvuuoXXW221VaZOnZqvv/66ymuq4913383666+fli1bFt5bd91106pVq/zjH//IbrvtliTZeOON\nC8dLS0uTLFhFqEOHDtl2221zyCGHZNNNN83PfvazHHTQQWnWrNm/VS8AAACAYiYEBAAAABSFhavX\nJAuCINtvv30uvvjipc5r2bJlGjdunIqKisXeXzSQs6zgy8IAT3XKnz59epIsFjJKUtjKqmHDhott\na7Wkrl275rrrrsvkyZMzZsyYKoM6C+u5aFn169dP/fr1l3n+fvvtl5/+9Kd5+umn8/zzz+fCCy/M\nqFGjcvvtty/z/NVWW63KOiZZKmy0sE8bNGiwwj5cnqruW1FRsdjntmT/Jgv6YvXVV8+wYcPy6quv\n5tlnn81TTz2VO++8M9dff30hQAQAAADwQ2M7MAAAAKDotG7dOpMmTcq6666bjTbaKBtttFFmzJiR\nSy+9NOXl5dl8880zceLEzJkzp3DNm2++Wfj3wnDJ7NmzC+9Nnjy52uWvyMYbb5y///3vi517zTXX\n5KSTTioc32abbXL//ffnzTffzP7777/McjbZZJM0bNgwr7/+euG9d955p8o6XHnllZk8eXJ69OiR\nK6+8Mtdcc01efPHFTJ8+fbkr/lRl6tSp+fLLLwuv//rXv6ZVq1Zp0qRJGjZsmG+//XaxgNKifbi8\n+7Vu3Toff/xxpk6dWnjv008/zSeffJLWrVuvsF6vvvpqBg8enB122CGnnHJKRo0ala222iqPPfbY\nd20iAAAAwCpDCAgAAAAoOl27dk29evVy+umn5+9//3teeeWV9O/fP+Xl5WnatGm6dOmSxo0b58wz\nz8x7772X0aNHZ9iwYYXrN99886y++uq54YYb8tFHH+W+++7LM888U+3yq1O/+fPn57zzzsv777+f\nZ599Nrfffns6duxYOOfAAw/MzTffnPbt2y+2LdaiSktL07Nnz1x88cWZMGFC3nrrrZxzzjlVBmze\nf//9DBw4MG+88UYmTZqU0aNHp1WrVmnRokWaNGmSJHnrrbcWCz8tz/z583Paaadl4sSJefzxx3PD\nDTfk2GOPTbJgW7K5c+fmpptuykcffZQbb7wxb7/9duHahff729/+lpkzZy5W7q677po2bdrktNNO\ny5tvvpk33ngjp556ajbeeOPssssuK6xX48aNc8MNN+SOO+7I5MmT88ILL+S9997LtttuW612AQAA\nAKyKhIAAAACAotOkSZPccsst+frrr9OzZ88cd9xx2X777XPZZZclWbD110033ZTPPvss3bp1y623\n3ppDDjmkcH1paWkuuuiiPPPMM9l///3zxBNP5L/+67+qXf6KlJaW5qabbsr777+fAw88MOeee26O\nO+64dO/evXDOfvvtl/Ly8hxwwAHLLat///7p1KlTTjjhhBx99NHp1q3bMrfJSpLzzjsvG220UY45\n5ph07do1H3/8cW644YbUq1cvW2yxRfbcc88cddRRGT58eLXa0bp162y99dY5/PDDc84556Rv377p\n1atXkgWrGfXv3z933HFHunbtmvfeey9HHHFE4dq11lorPXv2zFlnnZWrr756sXJLSkpy3XXXpUWL\nFunTp0+OPPLIrLvuurntttsW27atKm3bts0f/vCHDB8+PPvuu2/OPPPMHHnkkenRo0e12gUAAACw\nKiqpXN4G9QAAAACriDvvvDO33HJLnnrqqdquSpLkH//4Rw4++OD86U9/SmlpaW1XBwAAAIAi16C2\nKwAAAADwQ/L555/npZdeyp133pkuXboIAAEAAADwvbAdGAAAAEAN+uabb3LGGWdkzpw5OeWUU2q7\nOgAAAACsImwHBgAAAAAAAAAARc5KQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAAAAAAQJET\nAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAA\nAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAiJwQEAAAA\nAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISA\nAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAAAAAAAAAA\nipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAA\nAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAA\nAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAi\nJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAA\nAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAA\nAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJ\nAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAA\nABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAA\nAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJA\nAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAA\nRU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAA\nAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAA\nAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECR\nEwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAA\nAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAA\nAAAAAAAARU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSE\ngAAAAAAAAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAA\nAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAA\nAAAAAECREwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEg\nAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCApIkjzzySPr0\n6ZMkueqqqzJy5Mjlnn/NNdfkiSeeWGn1OfbYY/Puu+9+p2t+9atfZcSIEd9bHV5//fWcc84531t5\nAEDdU9fGQCsyYsSI/OpXv6q1+68sAwcOzODBg2u7GgBQ5/Xr1y8333zzMo+1adMmX3zxxUq9/9Sp\nU9OrV6+Veo+6ZPLkyWnXrl1tV+N7t+gYGABWBZ4p1Q0TJkxIly5darsa37ubb745/fr1q+1qQLU1\nqO0KAHXPSSedtMJzJkyYkM0222yl1eGmm25aaWVX17vvvpupU6fWdjUAgBpSF8ZAAAB1WcuWLXP3\n3XfXdjUAABbjmRLA/xMCgh+wq666KqNGjUrz5s2z0UYbFd7v169fNt988xx99NG5+uqr8/jjj6dh\nw4ZZa621cvHFF+fxxx/Pm2++mUsvvTT169fP3nvvXbh2woQJufTSS9OyZct89NFHWX311TNo0KC0\nbt06ZWVlueyyy/LSSy9l/vz52XLLLXPWWWeltLQ0nTp1yrbbbpt33nknp556ai6++OJcddVV2Wab\nbXLPPfdkyJAhqVevXn70ox/l7LPPziabbJKpU6emX79++eyzz7L++uvn888/X2GbR4wYkfvuuy/f\nfvttSktLM2TIkNx7770ZNmxYKioq0rx585x99tlp0qRJrr766sycOTP9+/dPt27dcv7552f06NGF\ndi58PXjw4Pz1r3/NZ599ljZt2mSjjTbKlClTMm3atEyZMiUtWrTIFVdckZYtW37/HyIA8J2tjDFQ\nRUVFLrroorz22muZPXt2Kisrc8EFF2SLLbZIx44d8+ijj2adddZJkhxyyCE5/vjjs80226R///75\n5z//mebNm2edddbJ5ptvnhNOOGG59Z82bVqOPvrofPbZZ2nVqlXOP//8rLPOOvn0009z7rnnZsqU\nKamsrEy3bt1yzDHHLLes9957L2eeeWbKyspSWVmZgw8+OIcffngGDx6cf/zjH5k+fXo+//zztG3b\nNhdeeOEyx23bbrttBg4cmE8++STl5eXZf//98+tf/zpJcv311+eJJ57I3Llz8+233+b000/P3nvv\nnVmzZuXMM8/MxIkT8+Mf/zj169fPjjvu+K9+pACwyqlqLiRJXn311fTq1SvTp0/P5ptvnj/+8Y9p\n0qTJYtffcMMNeeCBB9KgQYNstNFGGTRoUJo2bVrl/fr06ZPWrVvnzTffzIwZM3LggQfmxBNPzOTJ\nk3P44YendevWmTJlSgYNGpSjjjoqr776aubNm5c//OEPeeaZZ1K/fv20a9cuAwYMSKNGjfLf//3f\neeyxx1JRUZFWrVplwIABS82L9OrVK3379k3nzp2TJJdddlkqKyvTt2/fnH766ZkxY0aSpGPHjjn5\n5JOXqvN9992Xe+65J+Xl5fnqq69y7LHHpnfv3lWWe+qpp+bSSy/NU089laZNm2bbbbfNe++9lyFD\nhiz3s6ioqMiZZ56Zt956Kw0aNMhZZ52V7bffPuXl5Rk0aFDGjx+f+vXrZ9ttt03//v1TWlpaZVmz\nZ89O//79M2nSpNSrVy9bbbVVBg4cmJdeeqnK+bR+/frlyy+/zEcffZSf/exnOemkk6qcX3v66adz\nww03pKysLF988UW6detW6LuqxsAAUJs8U6reM6WKiorsueeeueaaa7LNNtskSU455ZT85Cc/yc47\n77zMuZ0lLWuO5uc//3mV5R500EEZMGBAXnvttTRt2rTwo7hBgwYtt8+++eabnHjiiZk0aVKaNWuW\ngQMHZpNNNsnMmTNz3nnnZeLEiSkpKUmHDh1y6qmnpkGDquMK06ZNW+a4cMSIERkzZkwqKioyderU\ntGzZMoMGDUrLli3Tp0+frLnmmnn//fdz2GGHpVu3brnwwgvz97//PeXl5dlll13y+9//Pg0aNKhy\nPFleXp4LLrgg48aNy9prr5211157uWNpqGtsBwY/UE888UQee+yxjBw5MnfffXdmzZq11DmffPJJ\nbr/99tx///0ZMWJEdtttt7z++us5/PDDs/XWW+f3v//9Yg+/Fnr77bdz1FFHZdSoUenevXt+97vf\nJUluvPHG1K9fPyNGjMhDDz2UH//4x7nssssK122++eZ5+OGHFytz/Pjx+Z//+Z/ccccdeeihh9Kl\nS5ccf/zxqayszMCBA7PddttlzJgxOeuss/LBBx9Uq+3vvvtuhgwZkiFDhuTPf/5zRo4cmbvuuisj\nR47MMccckxNOOCHrrbdeTjzxxLRv3z4XX3zxCsucMmVKHnjggUJ7/vKXv+Sqq67KI488kmbNmuWe\ne+6pVt0AgJVrZY2BXnvttXz22We55557Mnbs2Bx00EG56aab0rRp0+y999556KGHkiwI3UybNi0d\nOnTIBRdckM022ywPP/xwrrrqqrzyyivVasMHH3yQc845J6NGjcoWW2yRCy+8MEny29/+NjvvvHNG\njRqVYcOG5aGHHsqYMWOWW9bNN9+cTp06ZcSIEbnxxhvzl7/8JRUVFYU2XX311Xn44YfToEGDXHvt\ntYXrFh23/e53v0uPHj0KE2Pjxo3L2LFjM2XKlIwbNy533nlnRo0alVNOOSVXX311kuTqq6/O6quv\nnkceeSRXXXVVtcdxAPBDsLy5kGTBlly33nprHn300UydOjWPPfbYYtc/+eSTGTFiRO65556MHj06\nG2ywQe68884V3vfjjz/OsGHD8sADD2Ts2LF5+umnkySffvppjjvuuMVCzUkydOjQvPXWW3nwwQcz\nevTozJ49O2PHjs3IkSPz97//Pffee28efPDBdOzYMWedddZS9+vZs2ceeOCBJMn8+fPz0EMPpWfP\nnhk+fHg22GCDPPDAA7nrrrsyadKkzJw5c7FrZ8+enXvvvTc33nhjRo4cmSuuuCJ/+MMfllvuvffe\nm7feeiujR4/O3XffnY8++qhan8ecOXOy2267ZeTIkTnppJNy8sknp6ysLP/93/+dzz77LA8++GAe\nfPDBVFRU5NJLL11uWY8//nhmz56dBx98MPfdd1+SFOpR1XzawjqMGTMmv/vd76qcX6usrMwtt9yS\nQYMGFT7/G2+8MV988UW1xsAAUFs8U1rxM6V69eqlR48ehTHOV199lXHjxuWAAw5Y7tzOovdb1hzN\n8sq97rrrMn/+/Dz88MO57bbb8vbbb1ervz755JP07ds3Dz74YLp06ZLf//73SZILLrggzZs3z6hR\no3L//ffnnXfeyS233LLcspY3LnzllVdyzjnnZOzYsdlqq60K82NJ0qxZs4wdOzZ9+vTJRRddlK22\n2iojRozIyJEjM2PGjNx6663LHU8OHTo0H374YcaMGZNbbrkln3zySbXaDnWFlYDgB2r8+PHZe++9\nC79O6tGjx1K/fGrZsmXatm2bgw46KHvssUf22GOP7LLLLissu23btmnfvn2h3IEDB2bGjBl55pln\nMnPmzIwbNy5JUl5enrXXXrtw3cJrFvX8889nv/32S4sWLZIk3bt3z4UXXpjJkydn3LhxOf3005Mk\nG220UXbeeedqtb1NmzaFdj/zzDOZNGnSYvvZf/XVV/nyyy+rVdZC22+//WJp5Z122qlwjy233DJf\nffXVdyoPAFg5VtYYqF27dllzzTULD5QmTJiQNdZYI8mCB1HnnXdejj766Nx///3p3r176tWrl2ef\nfbYwyfLjH/+48Gv1Fdl1110Lv94++OCDc/DBB+ebb77JK6+8Upg8adq0abp3757nnnsu+++/f5Vl\n7b333jn99NPz+uuvZ5dddslZZ52VevUW/Fakc+fO+dGPflS4z0UXXVQYey0ct33zzTd56aWX8tVX\nX+Wqq64qvDdx4sTst99+ueSSSzJq1KhMmjSpsEpSsuBzOOOMM1JSUpIWLVosM1gOAD9Uy5sLSZK9\n9torjRs3TrLg4dcXX3yx2PXjx49P586ds+aaayZJ+vfvX637HnrooWnYsGEaNmyYzp0754UXXsjm\nm2+eBg0aZPvtt1/q/HHjxuXAAw/M6quvniS58sorkyzYYvWNN95Ijx49kiz45fq333671PX77rtv\nLr300kybNi1vv/12Ntpoo2y88cbp0KFDfvnLX+aTTz7JrrvumtNOO22pX16vscYauf766/Pss8/m\nww8/zMSJE/PNN98st9xLLrkkBx54YFZbbbVCe1e0ClCy4CHSfvvtlyTp0KFDKisr8/777+e5557L\nKaeckoYNGyZZsJrS8ccfv9yydtxxx1xxxRXp06dPdt111xxxxBHZaKON8umnn1Y5n7bwuoWqml8r\nKSnJ9ddfn2eeeSajR4/Oe++9l8rKynz77bfVGgMDQG3xTKl6z5R69OiRgw8+OP369cvo0aOz5557\nFn58VtXczkKtWrWqco6mqnKfffbZ9O/fP/Xq1UtpaWkOOuigvPPOO9Xqrx122CFJctBBB+Xcc8/N\nzJkz89xzz2XYsGEpKSlJo0aN0qtXr9x+++355S9/WWVZyxsX7rbbboWVMg855JAceOCBhesW/W48\n88wzeeONNwoB7Dlz5iRZ/nhy/Pjx6dKlSxo1apRGjRrlgAMOqFbboa4QAoIfqJKSksIvyJKkfv36\nS51Tr1693HnnnXnjjTcyfvz4XHTRRdl5552X+eutRS1ZVmVlZerXr5+KioqcccYZ6dixY5IFv9qa\nO3du4bwll65eeO2y3ps3b95SbVjekoGLWvQ+FRUVOfDAAwvJ8oqKinz22WeFibKFlrxXeXl5lWUm\nKUyALetaAKD2rKwx0DPPPJMLL7wwRx55ZH7+859n0003Laz+0759+8ybNy+vv/564ZfnyYKxy6J1\nWXKCpirJFqEeAAAgAElEQVSL1rmysjINGjRIRUXFUuONioqKzJs3b7ll7bnnnnn00Uczbty4jB8/\nPtdee22hfovep6KiYrH6LRz7LLzv3XffXXgY+cUXX2S11VbLW2+9leOOOy59+/bNbrvtlp/85Cc5\n77zzFqv7stoEAD90y5sLSRaf/1jWnEP9+vVTUlJSeP3111/n66+/zgYbbLDc+y5abmVlZeFvf6NG\njZY557Lke9OnT09FRUUqKipyzDHHpHfv3kmSsrKyZT7IatKkSfbZZ5+MHj06r776anr27Jkk2Xbb\nbfPkk09m/PjxefHFF9OzZ89ce+21hYdJyYLViQ499NAccsgh2XHHHdO5c+fCykVVlbtkfas79lry\nvMrKyjRs2HCpX9hXVFQsNV+0pP/4j//I448/ngkTJuTFF1/MkUcembPOOitrrbVWlfNpC9u06H2W\nNb/2zTff5KCDDspee+2V9u3bp0ePHnniiSdSWVlZrTEwANQWz5Sq90ypVatW2XLLLfPMM89kxIgR\nOeOMM5JUPbez4YYbFq5d3hxNVeX+q/NWS55XUlJSmLtaVHXmraoaFyZLz1st+nrJz+yqq65K69at\nkywYG5eUlCx3PLkkYyeKje3A4AeqQ4cOeeSRR/L111+noqIiDz744FLnTJw4MV26dEnr1q3zq1/9\nKn379i0kXevXr1/lH+eJEydm4sSJSRbsYb/DDjukWbNm2X333XPXXXelrKwsFRUVOfvss3P55Zcv\nt5677757xo4dW/hV2/3331/Yu7xDhw6FJRE//vjjTJgw4Tv3w2677ZYxY8bks88+S5IMGzYsRxxx\nxFJtbNGiRT7++ON8/vnnqayszBNPPPGd7wUA1L6VNQb605/+lD333DO9e/fONttskyeeeCLz588v\nHO/Zs2fOP//8tGnTJuuvv36SBfuYL/wV0owZM/LEE08s9sCuKhMmTMjHH3+cZMHYZY899khpaWm2\n22673HXXXUmSmTNnZuTIkdl1112XW9Zpp52WsWPHZv/998+AAQNSWlpaWOL4ySefzMyZM1NRUZHh\nw4dnzz33XOr60tLSbL/99rn11luTLJhIOeyww/Lkk0/mpZdeytZbb50jjzwyO+20U5588slCn3To\n0CH33XdfKioq8tVXX+XJJ59cYbsB4IdieXMh1bHrrrvm8ccfL2z5NHjw4Nx2220rvO6hhx4q/G1+\n+OGH06lTp+Wev8suu2T06NGFeZ5zzz03Y8aMye6775777ruvcP+rrrqqsA3Ekg455JCMGDEir776\navbZZ58kyWWXXZbrrrsue+21V84888xsttlm+fDDDxe77s0330yLFi1y3HHHpUOHDoUHNgvHGssq\nt2PHjnnooYdSVlaWefPmFVZkXJEvv/yyUP5TTz2V1VZbrTAvdffdd6e8vDwVFRW56667sttuuy23\nrKFDh6Z///7Zfffd87vf/S677757/vGPfySpej5tSVXNr02aNCmzZs3KySefnE6dOuXPf/5z4Zzq\njIEBoLZ4plR9hxxySG666abMmTOnsFLg8uZ2FlreHE1V5Xbs2DH3339/YVXH0aNHV2ve6p133snf\n/va3JAs+zx133DGNGzcufJ6VlZUpKyvL8OHDVzhvtbxx4YsvvpipU6cmSe6+++5lzlslC74Tt912\nW+G+v/nNb3LnnXcudzzZoUOHjBw5MnPnzs3cuXMzduzYFbYb6hIrAcEPVMeOHfPOO++kR48eadas\nWdq2bVtYYnihtm3bZt99902PHj3SpEmTrL766oVfwO+555655JJLUl5enoMOOmix6370ox/lyiuv\nzJQpU9KiRYvCfujHHXdcLrnkkhx00EGZP39+/vM//zP9+vVbbj1322239O3bN0cccUQqKirSokWL\n3HDDDalXr14GDBiQ/v37Z9999826666btm3bfud+6NChQ4499tgcddRRKSkpSWlpaa655pqUlJSk\nXbt2ufLKK3P88cfn2muvTa9evdKjR4+ss846+dnPfvad7wUA1L6VNQbq1atXfvvb3+aAAw5I/fr1\n0759+zz22GOFFXS6deuWyy+/fLHJqv79++ess87KAQcckObNm2f99ddf7JdfVdliiy1yxhlnZPr0\n6dl0000zcODAJAsmRgYOHJgRI0akrKwsBxxwQLp3777cso477riceeaZueeee1K/fv3stdde2Wmn\nnfLnP/85P/rRj3LsscdmxowZ+clPfpJf//rXyyzjsssuy/nnn58DDjggZWVl6dKlS7p27Zrp06fn\nsccey3777ZeGDRtml112yVdffZVZs2blhBNOyIABA7LvvvumRYsW2WKLLVbYbgD4oVjeXEh1dOzY\nMe+++24OO+ywJMlmm22W888/f4XXzZkzJwcffHBmz56d3r17Z5dddilsQbYsvXr1ypQpU9K9e/dU\nVlZmp512Sp8+fVKvXr1MnTo1hxxySEpKSrLeeutl0KBByyxj6623ToMGDbLPPvsUtuk64ogj0q9f\nv8IWDG3atEmXLl2W6qP77rsvnTt3TuPGjbPtttumRYsWmTRpUjbddNNlltu9e/d88MEH6datW5o0\naZINNtigsJLh8qy99tp57LHHcuWVV6Zx48YZPHhwGjRokN/85je55JJL0q1bt8ybNy/bbrttzj77\n7OWW1a1bt/z5z3/Ofvvtl8aNG2f99dfPL37xi0ycOLHK+bQlVTW/1qRJk/zsZz/Lvvvum2bNmmXD\nDTfMZpttlkmTJlVrDAwAtcUzperr1KlTzjvvvBx77LGF96qa21lUly5dqpyjKS0tXWa5v/rVrzJw\n4MAccMABadq0adZee+1qzVttuummueaaa/LRRx9l7bXXLowDzzrrrFxwwQU54IADUl5eng4dOlQ5\n17RQVePC0aNHp2XLlvnd736XadOmZbPNNivMjy3pzDPPzIUXXli476677ppjjjkm8+bNq3I82atX\nr/zzn/9Mly5dvlMYH+qKkkp71ADfowkTJuT888/P6NGja7sqAAB12l133ZUtt9wy7dq1S1lZWXr3\n7p0TTjihsMx1bRo8eHBmzJiRc845p7arAgDUgD59+uTwww9P586da7sqK80LL7yQzz//PAceeGCS\n5IILLshqq61W2M6jNplPA+CHyt/AumvMmDEpLS1Nx44dU1FRkRNOOCG77bZbYcvX2jRixIg8+uij\nueGGG2q7KlAnWQkIWOX07t07s2fPXuaxu+66K6WlpTVcIwCApS38VX5FRUXKy8vTuXPndOzY8Xsd\ny8yaNSuHH374Mo+tscYaGTp06L9UdwCguLz44ou5+OKLl3ls5513ruHa1I7NN988N998c26++ebM\nnz8/bdu2zbnnnpuLLrqoyu1A+vfvn5/+9Kff6T4nn3xyPvjgg2Ueu+KKK7Lpppt+57oDACuPZ0rL\ntvnmm+ecc87J5ZdfnvLy8uy8887p2bPn9z7W0f/w/bMSEAAAAAAAAAAAFLnqbSQNAAAAAAAAAADU\nWUJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyDWo7QrUpGnTZtZ2Fb53a63VJDNmfFPb1Vhl6d+VR9+u\nXPp35dK//7511mla21X4wavuuMj3vebo65qjr2uOvq45+rpmrKx+NjaqfavinBH80EyZOTl9Hzk8\nt3W+K62ablDb1QH+RcZFtc+4CFaeKTMn1+lxyqo6nlpV28Wq718dF1kJqMg1aFC/tquwStO/K4++\nXbn078qlf/kh8X2vOfq65ujrmqOva46+rhn6GaDuatV0Aw92AIA6acrMyYUgypSZk2u7OlVaVcdT\nq2q7oCpCQAAANai8vDynnXZaevXqld69e+e9997LpEmTcthhh6V3794ZMGBAKioqkiTDhw9P9+7d\nc8ghh+Tpp59OksyZMycnnHBCevfunWOPPTZffPFFkuSvf/1revbsmV69euWaa66ptfYBAADUFg92\nAIC6ZmH4J8lKD6J8HwGjVXU8taq2C5ZFCAgAoAY9++yzmTdvXu6+++4cf/zxufLKK3PxxRfn5JNP\nztChQ1NZWZknn3wy06ZNy5AhQ3L33Xfn5ptvzuWXX56ysrIMGzYsW2yxRYYOHZpu3brluuuuS5IM\nGDAgf/zjHzNs2LC89tprefvtt2u5pQAAAAAAP2yLrkKzMoMoL3/60ndaaagur0gE/HuEgAAAatAm\nm2yS+fPnp6KiIrNmzUqDBg3y1ltvZaeddkqS7LHHHhk3blxef/31tGvXLo0aNUrTpk2z4YYbZuLE\niXn55ZfToUOHwrnjx4/PrFmzUlZWlg033DAlJSXZfffdM27cuNpsJgAAAAAAWfmr0EyZOTn9nv9t\nBnW4rHCvhVuQVXV+Xd+aDPjXNajtCgAA/JA0adIkU6ZMyb777psZM2bk+uuvz0svvZSSkpIkyRpr\nrJGZM2dm1qxZadq0aeG6NdZYI7NmzVrs/UXPLS0tXezcjz76aLn1WGutJmnQoH616rzOOk1XfBLf\nC31dc/R1zdHXNUdf1wz9DAAAQF2y6GpDyYKQT+8xPZMkQ/e/d6kQ0pLnA6sWISAAgBp02223Zffd\nd89pp52WTz75JEcccUTKy8sLx2fPnp1mzZqltLQ0s2fPXuz9pk2bLvb+8s5t1qzZcusxY8Y31arv\nOus0zbRpM79LE/kX6euao69rjr6uOfq6ZqysfhYsAgAA4N+xaKCnVdMNMnT/e5d6v6rzV6YpMycL\nG0ENsx0YAEANatasWWElnzXXXDPz5s3LlltumQkTJiRJnnvuubRv3z7bbrttXn755cydOzczZ87M\ne++9ly222CI77LBDnn322cK5O+64Y0pLS9OwYcP885//TGVlZV544YW0b9++1toIAAAAAEDtadV0\ng1oP39h2DGqHlYAAAGpQ3759c8YZZ6R3794pLy/PKaeckq233jpnn312Lr/88my66abZZ599Ur9+\n/fTp0ye9e/dOZWVlTjnllKy22mo57LDDcvrpp+ewww5Lw4YN88c//jFJct555+W3v/1t5s+fn913\n3z3bbbddLbcUAAAAAIDvYlVaOce2Y1A7SiorKytruxI1ZVVcGt2S7yuX/l159O3KpX9XLv3777Pl\nRe2r7ne4Nr7vlZWVKSkpqdF71gX+v6Xm6Ouao69rjr6uGbYDW3X57wcA6gbjotpnXAS1Z+HKOYIz\nQPKvj4tsBwbUqHue+kf+MOzV2q4GAHXUvPkVOeOmCRn1pw9quyoAAAAA34uKioqcc845OfTQQ9On\nT59MmjRpseNPPfVUevTokUMPPTTDhw9f7jWTJk3KYYcdlt69e2fAgAGpqKgolPPFF19kn332ydy5\ncxcr/7333suOO+641PtA3VKdlXNsrQWsiBAQUKP+9uGM/G3SjMz+try2qwJAHTTzm/JM/eKbvDvl\n69quCgAAAMD34oknnkhZWVnuueeenHbaaRk0aFDhWHl5eS6++OLccsstGTJkSO65555Mnz69ymsu\nvvjinHzyyRk6dGgqKyvz5JNPJkmef/75HHXUUZk2bdpi9541a1YuueSSNGrUqOYaDPzLVhQA6vvI\n4YUg0JKBIAEhIBECAmrY3PL5SZLpX35byzUBoC4qm7fg78TCvxcAAAAAxe7ll19Ohw4dkiTbb799\n3nzzzcKx9957LxtuuGHWXHPNNGrUKDvuuGNeeumlKq956623stNOOyVJ9thjj4wbNy5JUq9evdx6\n661p3rx5oezKysqcffbZOfXUU9O4ceMaaSt1j2DIqmPRlYKWFQha9DXwwyUEBNSoOf/3UPezGd/U\nck0AqIvmls1f7H8BAAAAit2sWbNSWlpaeF2/fv3MmzevcKxp06aFY2ussUZmzZpV5TWVlZUpKSkp\nnDtz5swkyW677Za11lprsftec8016dixY9q2bbvS2kbdJhiy6lm4UtCSW4dVZysx4IdBCAioUWX/\nFwKaZiUgAJahbN6CfeznWAkIAAAAWEWUlpZm9uzZhdcVFRVp0KDBMo/Nnj07TZs2rfKaevXqLXZu\ns2bNqrzvQw89lPvvvz99+vTJtGnTctRRR32fzaIIrErBEEGmpS35ua4Kn3Ndsuh3zvePYiIEBNSY\nysrKzPm/lR2mzRACAmBpC8OiZUJAAAAAwCpihx12yHPPPZck+etf/5otttiicKx169aZNGlSvvzy\ny5SVleUvf/lL2rVrV+U1W265ZSZMmJAkee6559K+ffsq7/v4449nyJAhGTJkSNZZZ53ccsstK6uJ\n1GGrQjCkLq5oVJfqwvdv0e9cXfz+wfI0qO0KAD8c8+ZXpLJywb+FgABYlrn/F/6ZYzswAAAAYBWx\n9957509/+lN69eqVysrKXHTRRRk1alS++eabHHrooenXr1+OPvroVFZWpkePHmnZsuUyr0mS008/\nPWeffXYuv/zybLrpptlnn31quXWw8tW1FY0WhkLqUp2KyZSZk+t8vy35nfNZU0yEgIAas+gD3Wlf\nflOLNQGgriorX7Ad2Nyy+YvtcQ8AAABQrOrVq5eBAwcu9l7r1q0L/+7UqVM6deq0wmuSZJNNNsmd\nd95Z5b2eeuqp7/Q+FIvaDGAsGVqpK6GkYgjTLKlYAlTL+syhWNgODKgxcxfZ2uUzKwEBsAwLtwGr\nqKzMvPkVtVwbAACg2NimAQD4PlW1FVRth0KKdYuquhKgWp5i7VtYSAgIqDFzF1kJ6Iuvvs38Cg93\nAVjcooHRueX+TgAAANXngQ0AFJ+6/ne7roZW6mq9quNfqXNNfk+KuW8hEQICatCcRR7sVlQmX84s\nq8XaAFAXlc37/+DPnLJ5tVgTAACg2HhgAwDFpVgCvHVlbFHX+2llqY3vSV35zOFfIQQE1Jiy/1sJ\nqOT/Xn/+9ZzaqwwAddKiq8Yt+m8AAIDq8MAGAIpHsQZ4lwyjrCicUtXx7xJqWTIIUywBqu9DsX5P\noLYIAQE1ZuFKQOs0b5wk+UIICIAllM2zHRgAAPCv+yE8CAOAVUmxBTu+axinquPfNcSzZBCmqmDM\nsspbFcZHxfY9gdokBATUmLn/FwJa/0drJLESEABLK1sk+DPXdmAAAMB38EP6RTwAqy5/x+q26oZx\nqjp/Re+v6N7Le72ssZDxEfzwCAEBNWbhti7rrd0kSfL513NrszoA1EELA6PJ/68gBwAAUB22igCg\n2AlsFIcVhXGqOn/Jz/X7HrMsayz0746PivG7WIx1hu+TEBBQYxZu67JwJSDbgQGwpLLyRbcDEwIC\nAAC+GwEgAIqZQOv3qy6FQWoq4LWs786/EwAqtlDayqxzMfUDP2xCQECNWbitS/PS1bJG44a2AwNg\nKXMX2w5MCAgAAACAHxYBoO9HXQqwTJk5uSgDXur8/+rS9wlWRAgIqDELH+yu1rB+1mne2EpAACxl\nsZWAhIAAAAAAgH9BXQmwLBoeqe26/CvU+f/LrAvfJ6iOWg8Bvfbaa+nTp0+SZNKkSTnssMPSu3fv\nDBgwIBUVCwIDw4cPT/fu3XPIIYfk6aefTpLMmTMnJ5xwQnr37p1jjz02X3zxRa21AaiehQ9zV2tU\nP+us1Tjfzp2fb+aU13KtAKhLyubZDgwAAAAA+PfVZGCjqhViFoZHKH4CQBSLWg0B3XTTTTnrrLMy\nd+7cJMnFF1+ck08+OUOHDk1lZWWefPLJTJs2LUOGDMndd9+dm2++OZdffnnKysoybNiwbLHFFhk6\ndGi6deuW6667rjabAlTDwoe5qzWsl3WaN06SfP713NqsEgB1zKLbgc0RAgIAAAAA6rjqbBVlKymg\nptRqCGjDDTfM4MGDC6/feuut7LTTTkmSPfbYI+PGjcvrr7+edu3apVGjRmnatGk23HDDTJw4MS+/\n/HI6dOhQOHf8+PG10gag+hY+zF2tUYOss1aTJMnntgQDYBG2AwMAAAAAismKtoqqqa2kiilkVEx1\nhWLToDZvvs8++2Ty5P//D7yysjIlJSVJkjXWWCMzZ87MrFmz0rRp08I5a6yxRmb9L3t3Hxxlfe//\n/7W3iSYb1PNDsdJ0kGNOpTMKBGgdgVZ6KG3tt1UCCYmlMtV2yoinWFBwxpKjrQZbYVqx1vYUtQ0N\nSWytR2rHmSOooHhozCm10tJjOZ4oKB68oewGsve/P5Jr2Sx7n7322uw+HzOdJnvdfa4rca8Pe73y\nfvt8o1431s3k3HPPltPpKPBZWG/iRE/mlZA3rm/hREf+/6ILJ+itD05JkgIRrrFZuK7m4voiX48/\n/rh+85vfSJL8fr/+8pe/qKurS/fcc49sNpsuueQStbe3y263q7e3V93d3XI6nVq5cqWuuuoqDQ0N\n6dZbb9V7772nmpoa3XvvvTrvvPO0f/9+3X333XI4HJo7d65WrVpl8Znmxx8My+mwKRSOEgICAAAA\nAAAAMC5kCvgUIwC04unr0oaNjngPl0RLq2zGCiB/loaAEtntpwsTDQ4Oqq6uTrW1tRocHBz1usfj\nGfW6sW4mH3xwsvCDttjEiR4dO5Y5AIX8cH0LyzsYkCSd+PtJTTxnuBLQwFvHucYm4HfXXFzfsavk\nENXixYu1ePFiSdKdd96ppqYm/ehHP9Lq1av18Y9/XBs2bNDOnTs1ffp0dXZ26te//rX8fr/a2tp0\n5ZVXxlqi3nzzzXrqqaf04IMP6o477lB7e7u2bNmiD3/4w/r617+uP//5z5o2bZrFZ5u7QDAiz9lu\nfeD1x9pIAgAAAAAAAABSS1ZtKD70kxi8sTIQVKzKSEClsrQdWKJp06Zp3759kqTdu3dr1qxZuuyy\ny9Tf3y+/3y+v16tDhw6poaFBM2fO1PPPPx9bt7Gx0cqhA8iCPxCW22WX3WbTxHPPkiS993fagQGo\nTH/605/0t7/9TS0tLWNuierz+RQIBFRfXy+bzaa5c+dq7969Vp5eXqLRqALBsOpq3JJOt5EEAAAA\nAAAAgHI31hZZiQGgFU9fF9tnfPAmcZkVCACVDlqzlZ+SqgS0bt06ffvb39bmzZt18cUXa9GiRXI4\nHFq+fLna2toUjUZ1yy23qKqqSq2trVq3bp1aW1vlcrm0adMmq4cPIAN/MKxq13BLvnPrqmW32fT+\nCb/FowIAa/zkJz/RTTfdJGnsLVF9Pp9qa2tHrfvmm2+mPX4ubVKLVbnJHwwrKum8umq98Y5XkWjl\nVY2qtPO1Ete6eLjWxcO1Lg6uMwAAAACg0JK1yBpLtZ5k1XaMr6nEAwOt2cqT5SGgyZMnq7e3V5I0\nZcoUbdu27Yx1mpub1dzcPOq1s846S/fff39RxgigMPzBsKrcww+cHXabzvVU6b0TVAICUHlOnDih\n119/XZ/4xCckjb0larJ1M7VKzbZNajHb3/lOBSVJNklul0O+k4GKar1Hq8Hi4VoXD9e6eLjWxWHW\ndSZYBAAAAACVLTGYU4hwRrrtCHxAIhBWrkqqHRiA8uYPhFXlOl114h8mVOu4z69QOGLhqACg+Pr6\n+nTFFVfEvh9rS9Ta2lq5XC698cYbikajeuGFFzRr1ixLzm0s/IHh9l9VLruqXY7Y9wAAAAAAAABQ\n7hKr9lgVzqA9VGUhAFR+CAEBKJr4SkCS9A91VYpGpeM+WoIBqCyvv/66Jk8+PbFet26dtmzZopaW\nFgWDQS1atEgTJ06MtUS9/vrrR7VEfe2119Ta2qqenh6tWrVKknTnnXdq7dq1WrJkiaZNm6bLL7/c\nqtPLWyA0HPpxuxyqcjs0FCQEBAAAAAAAAKAyWRUAWvH0dQSBgHHM8nZgACpDKBxROBIdVQnovLpq\nSdJ7fx/S/zfhLKuGBgBFd+ONN476vhAtUadPnx5rsTpeBYLDleGqXA5VuRzyngxYPCIAAAAAAAAA\nKE9HvIfPCBoZFYhKSbJxAkiNSkAAimIo1uIlvhLQcAjo/RNUAgIADFeMkyS3yz5cCSgQVjQatXhU\nAAAAAAAAAMpNfKUbq6ve5Hv8sYw7U8WfUqkGRGUiIHeEgAAURWDkwe5xn1/P7T+ip1/6Xx0+5pMk\n9b92TM/tP6Ln9h+xcIQAAKsZ9wq306Fql0PRqBQMRSweFQAAAAAAAIByEh8ssSpkYhwv3+OPddxG\nxZ9kFXbSLSu2UhoLMF4QAgJQFEYlIJfz9NuO0zH8dYgHvAAASf6EdmDDr4WtHBIAAAAAAACAMhMf\nLClmyCRZ8Cff4xdi3Om2LaXQTSmNBRgPCAEBKArjIa4R/JEk50ggKBQmBAQAiKsENNIOTJL8AUJA\nAAAAAAAAAAorPlhSrABQquBPvsc3c9xWtt+i9RcwNoSAABSF8RB3VAjIYZNECAgAMMwfGr5XVLkc\nsRDQEJWAAAAAAAAAABRYsYMmhQr+FINVLdKsPjZQLggBASgK4yGuM1k7sHDUkjEBAEpLIGBUAopr\nB0YlIAAAykokEtGGDRvU0tKi5cuXa2BgYNTyXbt2qampSS0tLert7U27zcDAgFpbW9XW1qb29nZF\nIpFRx7nxxhu1ffv24p0cAAAAgHEhXdCkkOGTxH0lC/7Er5Pp2MUKxhSzRVopHRsoF4SAABRFINYO\nzBZ7zeWgHRgA4DR/aPh+4HbZVW2EgKgEBABAWXnmmWcUCATU09OjNWvWaOPGjbFlwWBQHR0devjh\nh9XZ2amenh69++67Kbfp6OjQ6tWr1dXVpWg0qp07d8b29YMf/EAnTpwo+vkBAAAAKH3JgiZHvIez\nqkKTbRAn232tePo69R/ty7h+sSvkWBnCIQAEjA0hIABFMTRSycEV3w7MORwICoYIAQEATgdG49uB\nUQkIAIDy0t/fr3nz5kmSpk+frldffTW27NChQ6qvr9eECRPkdrvV2Niovr6+lNscOHBAc+bMkSTN\nnz9fe/fulSQ9/fTTstlssW0AAAAAIFFiAGjF09dJUtoqNPFBnExhnGwq2lzkmayN8+7T+j1rMx67\n1Cvk0L4LKB2EgAAUhT9WCej0247dZpPNRiUgAMAw417hdp4OAQ1RCQgAgLLi8/lUW1sb+97hcCgU\nCv3WtfgAACAASURBVMWWeTye2LKamhr5fL6U20SjUdlstti6Xq9X//3f/63f/va3+uY3v1mkMwIA\nAAAw3sUHbNIFgIz1JGVVlSebwE7jpNkZj53L/sYqnzBPsasUAUiPEBCAojAqOcSHgGw2m5wOu0Lh\nqFXDAgCUkEDwdDuwKtqBAQBQlmprazU4OBj7PhKJyOl0Jl02ODgoj8eTchu73T5q3bq6Oj3xxBN6\n5513dP311+s3v/mNHn30Ue3evbsIZwYAAABAGr8VYdIFbOJDLkZYZyxVeRKvkRXVfZL9nPIN82S6\nHmP5nRivv0+AlQgBASiKWCWgkRZgBpfDTiUgAICk0e3Aql20AwMAoBzNnDkzFsrZv3+/GhoaYsum\nTp2qgYEBHT9+XIFAQC+//LJmzJiRcptp06Zp3759kqTdu3dr1qxZuu222/TYY4+ps7NT1157rVas\nWKH58+cX+SwBAABGi0Qi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQa2ur2tra\n1N7erkjk9Ofr77//vhYtWiS/3y9J8nq9+sY3vqEvf/nLamlp0R/+8IcinTEqVblWhEkWchlLAMjM\na5TNflONYSzhpmxaqOWqXH+fALMRAgJQFMZDXJdj9NuO02EjBAQAkBTXDsx1uh0YISAAAMrLwoUL\n5Xa7tWzZMnV0dOj222/Xjh071NPTI5fLpfXr1+uGG27QsmXL1NTUpAsuuCDpNpK0bt06bdmyRS0t\nLQoGg1q0aJHFZwcAAJDcM888o0AgoJ6eHq1Zs0YbN26MLQsGg+ro6NDDDz+szs5O9fT06N133025\nTUdHh1avXq2uri5Fo1Ht3LlTkrRnzx599atf1bFjx2L7fuSRR/SJT3xC27ZtU0dHh+66667injgq\nzlgr5JSyQp1TIa9RYjgm29BMujEU+mc31mBRuf4+AWZyWj0AAJUhVgkoMQTktOukP2TFkAAAJSYQ\nGg6FVrkctAMDAKBM2e32Mx4+TZ06Nfb1ggULtGDBgozbSNKUKVO0bdu2lMe6+eabxzhaAACAwujv\n79e8efMkSdOnT9err74aW3bo0CHV19drwoQJkqTGxkb19fVp//79Sbc5cOCA5syZI0maP3++Xnzx\nRS1cuFB2u12PPPKImpqaYvtesWKF3G63JCkcDquqqsr8k0XZMVpgZWs8BDZyPadCy/bY6cZpBH7i\nQzK5hGbMPv/4sY/lWOPh9wkoNVQCAlAUKUNADrtC4aii0agVwwIAlBB/MCybbbhKnFEJaIgQEAAA\nAAAAGOd8Pp9qa2tj3zscDoVCodgyj8cTW1ZTUyOfz5dym2g0KpvNFlvX6/VKkq688kqde+65o45b\nV1en6upqHTt2TLfeequ+9a1vmXaOKE/l2I7JqnPK9XjJxhn/darAT7rQULGU4+8NMJ4QAgJQFENG\nOzDnmSEgSQpHCAEBQKULBMNyuxyy2WyqdtEODAAAAAAAlIfa2loNDg7Gvo9EInI6nUmXDQ4OyuPx\npNzGbrePWreuri7tsf/6179qxYoVuuWWW2IVhIBslWM7pos8k7Vx3n1FPScjFNN/tC/r9ROv/ViC\nNcUO5ZTj7w0wnhACAlAUgZFKDg6HbdTrrpHvQ+FI0ccEACgt/mAk1gbM7SYEBAAAAAAAysPMmTO1\ne/duSdL+/fvV0NAQWzZ16lQNDAzo+PHjCgQCevnllzVjxoyU20ybNk379u2TJO3evVuzZs1Kedy/\n/e1v+uY3v6lNmzbpk5/8pFmnhzJnZZDDjNDKEe9hrd+z1rR9J2MEj1IdN7HajxHYib/2YwkF5RvK\nGcs1IgAEWIcQEICiGAqE5bDbZLeNDgEZlYCCIUJAAFDpAsGw3CMV42KVgGgHBgAAAAAAxrmFCxfK\n7XZr2bJl6ujo0O23364dO3aop6dHLpdL69ev1w033KBly5apqalJF1xwQdJtJGndunXasmWLWlpa\nFAwGtWjRopTH3bRpkwKBgO6++24tX75cK1euLNYpA2NmVvUas6rUZBpv46TZSY+buF268aULBWWS\nTwAo3fnQ6gsoXU6rBwCgMviD4VjgJ55z5GFvKEw7MACodIFgWOd4qiQNt4+02aQhQkAAAAAAAGCc\ns9vtuuuuu0a9NnXq1NjXCxYs0IIFCzJuI0lTpkzRtm3bUh5r165dsa9//OMf5ztkwHJmtpQya5+Z\nxpsq2JO4nVnBHkmjKgwlVhvKNK74fax4+rq8fz7pjgtg7KgEBKAo/MGwXM4kISCHEQKiEhAAVDp/\nMCK3c7gCkM1mU7XbQTswAAAAAAAAoEKNt6BIvuNNtV2hq+3EV/dJ/DqXcY0loGVWhScApxECAlAU\n/kBYToftjNeN1wgBAUBli0SiCoUjqnKdnp66XQ7agQEAAAAAAADISykETfIdgxlhmfjwjvG1pLyO\nM5bAk1kVngAMIwQEoChStQNzOWgHBgBQLOzjdjlir1W7qAQEAAAAAAAAIHdmVpzJdp9jGYNZYZnE\ntmNWhHIIAAHmIgQEwHShcEShcFTONO3AgiEqAQGoHD/5yU/U0tKixYsX67HHHtPAwIBaW1vV1tam\n9vZ2RSLD74m9vb1avHixmpub9eyzz0qShoaGdPPNN6utrU1f+9rX9P7770uS9u/fr6VLl2rZsmV6\n4IEHLDu3fAVG7gPxIaAqt0NDVAICAAAAAAAAkCOzwi25BHvGOoZct4sfUy7BI0I5QHkhBATAdIGR\nB7jJKgEZwSDagQGoFPv27dMf/vAHbd++XZ2dnTp69Kg6Ojq0evVqdXV1KRqNaufOnTp27Jg6OzvV\n3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+858tPtPc\nGPeKqrjAaJXLoUAgrGiUanEAAAAAAAAAcmNGuCXXYI+xntmtyeLDSWZWQQJQ+pxWDwBA+fMHhwM+\nLoftjGXOkdcIAQGoFC+88IIaGhp00003yefz6bbbblNvb6/mzJkjSZo/f75efPFF2e12zZgxQ263\nW263W/X19Tp48KD6+/t14403xtZ98MEH5fP5FAgEVF9fL0maO3eu9u7dq2nTpqUcx7nnni2n05Fy\nebyJEz1jPOvMToaGgz4T6qpjx/PUVikqqe6cs1XtroxpazGuNYZxrYuHa108XOvi4DoDAAAAQGXL\np0LPiqevM7XtVmI4aeO8+0qmws8R7+G8rlmpjB8YbyrjaQoASw0FQpJSVAJyGJWAqPIAoDJ88MEH\neuutt/TQQw/p8OHDWrlypaLRqGy24VBkTU2NvF6vfD6fPJ7TDxlramrk8/lGvR6/bm1t7ah133zz\nzQzjOJnVeCdO9OjYMW+up5m15/YfkSS9e/yUJOl/3/q7HvuPg5Kk90bGeOStv6uuxm3aGEqF2dca\np3Gti4drXTxc6+Iw6zoTLAIAAACA0lSIMIpZrcmSHUcaHvP6PWu1cd59apw029RjZpJPAKoYoSmg\nnNEODIDpAiOVgJKFgFxGCChEJSAAleGcc87R3Llz5Xa7dfHFF6uqqkpe7+mHiYODg6qrq1Ntba0G\nBwdHve7xeEa9nm7durq64p1UARhh0Ph7hfG1f6RVGAAAAAAAAAAUSyHbahUzzHKRZ7I2zrtP6/es\ntbwlWD4BqGKFpoByRQgIgOlilYCcSSoBOYcrXwRpBwagQjQ2NmrPnj2KRqN65513dOrUKV1xxRXa\nt2+fJGn37t2aNWuWLrvsMvX398vv98vr9erQoUNqaGjQzJkz9fzzz8fWbWxsVG1trVwul9544w1F\no1G98MILmjVrlpWnmTOjLaQzrnWkcd/wBwgBAQAAAAAAANmyOviRq1Idb75hlMTzseL8GifNPmPs\nZowjm33mE+YhAATkjxAQANMZFRxccQ92DafbgRECAlAZrrrqKl166aVasmSJVq5cqQ0bNmjdunXa\nsmWLWlpaFAwGtWjRIk2cOFHLly9XW1ubrr/+et1yyy2qqqpSa2urXnvtNbW2tqqnp0erVq2SJN15\n551au3atlixZomnTpunyyy+3+ExzE4qkrgQ0RCUgAAAAAAAAICuFrF5TDONtvJkkno+V55cYACr0\nOMrtZweUC6fVAwBQ/vxp2oGdDgFFizomALDSbbfddsZr27ZtO+O15uZmNTc3j3rtrLPO0v3333/G\nutOnT1dvb2/hBllkRlvI+HuFER6lEhAAAAAAAACQnfHWSqmUx2uEXHIZX+L5mHl+R7yH8x5XvvvJ\ndp8ArEMlIACmi7UDSxsCohIQAFSyUGT4PuBI1g6MSkAAAAAAAABA1sZbKKNUx5tvyCVxfbMCQIkV\nh3IdV7L95DoGY59UAwJKR8mFgILBoNasWaNly5apra1Nhw4d0sDAgFpbW9XW1qb29nZFRh4S9fb2\navHixWpubtazzz5r8cgBpBIYqQTkciYLAQ0/7DUqQAAAKlN4pCKcK0k7MCoBAQAAAAAAALCC1QGl\nVOGa+IDSWII8uQSd+o/2jRqXcUzaggGlpeRCQM8//7xCoZC6u7t100036Qc/+IE6Ojq0evVqdXV1\nKRqNaufOnTp27Jg6OzvV3d2trVu3avPmzQoEAlYPH0ASpysB2c5YZrPZ5HTYqAQEABXOuA/EVwIy\nAkFDVAICAAAAAAAAUGEyVfspVMuxbANAi5/8QiwIFH9M2oIBpaXkQkBTpkxROBxWJBKRz+eT0+nU\ngQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDgQYtHDyAZ/0gloGTtwIzXgyMVIAAA\nlSk0ch+Iv1fE2oFRCQgAAAAATMdf7wMAUFhjvbfmUu3H7ABO46TZevyLv1XjpNmSRrcCK8bxAWTP\nafUAEp199tk6cuSIPve5z+mDDz7QQw89pL6+Ptlsw38VXlNTI6/XK5/PJ4/HE9uupqZGPp8v7b7P\nPfdsOZ0OU8dvhYkTPZlXQt64vmNnH3mIO8FTLU9tdex142u3y6FIJCpPbTXXu4C4lubi+gKFZVQC\nGhUCGqkK5KcSEAAAAACYyniwyF/xAwCQv/hgTKHurYWq9lMI8QEg5g1A6Sq5ENCjjz6quXPnas2a\nNXr77bd1/fXXKxgMxpYPDg6qrq5OtbW1GhwcHPV6fCgomQ8+OGnauK0ycaJHx455rR5G2eL6Fsbx\nvw9JkgKBkLy+4a89tdWxr+02aSgUltc3xPUuEH53zcX1HTtCVEh0OgR0ZjswKgEBAAAAgLlK4cEi\nAADZSKxAUyrHSwzGmHFvzXYcZl8f5g1AaSu5dmB1dXWxMM+ECRMUCoU0bdo07du3T5K0e/duzZo1\nS5dddpn6+/vl9/vl9Xp16NAhNTQ0WDl0ACkYFRziH+zGczrsCoUixRwSAKDEhEfagTns8ZWARkJA\nVAICAAAAUOLKoZUWD/IAAKUuU0ssK4+XLBgTXxUo2b7zHVOqfRTz+hR63pDtmMthzgWYreRCQCtW\nrNCBAwfU1tam66+/Xrfccos2bNigLVu2qKWlRcFgUIsWLdLEiRO1fPnyUetVVVVZPXwASRgVHOJb\nvMRzOu2KRKVwJFrMYQEASkisEpDzdGDUOdJOcohKQAAAAABKWLEfSAIAUKmKXYEm1+MlWy/ZPCHf\nuUP8dsn2MV4r9GR7PfK5bszPUIlKrh1YTU2NfvjDH57x+rZt2854rbm5Wc3NzcUYFoAxOF0JKHkI\nyGj3YjwABgBUntBIJSAnlYAAAAAAjEGxW4RI4/eBGwAA45EV9/l4uc41UlUIymfuEL/dEe/hpPsY\n63izUeh9Zns9cr1uiS3a4l9n3oZyVnKVgACUn6FAWE6HXXZ7qnZgw68TAgKAyhUKR2S32UbdK1wj\n9wdCQAAAAEDlyeevtq2syMODJAAAyl/iXGMsc45Mc4dU+zYCQCuevi7jMcYyN0q1jVnzrVyqLWV7\n7GShISo4ohIQAgJgukAwrGq3I+Vyo9JDKEQICAAqVSgciYVCDXa7TTbb6baSAAAAACpDvg9nqMgD\nAEB64yn4UIpjTazEY2YLq3TbmFU5J93xja+tnm/lej2TVUpivohyRwgIgOmGAmFVuVK/3cRCQCOt\nYAAAlSccicqR0DbSZrPJ6bBriBAQAAAAUFHG8nCGBzoAACQ3niqglPJYjblGqvlK4pjzmddks00u\nlXNylXj8xJ+HlfOtQoR4mC+i3BECAmA6fzCsKrcz5XKXc/itKEg7MACoWMkqAUmSy2GXPxiyYEQA\nAAAArMTDGQAACms8VUAp1FjNDhElCwAlCy+Nx2Bz/PGzDTwVi9XXBih1hIAAmM4fzFQJaPihb4gQ\nEABUrFA4GqsMF8/psMkf5P4AAAAAAAAAjNV4Ck8UIgBU7GpCuYaXSqHSUb5ttUq5WhNQ6VKX5gCA\nAohEogqGIqpyOVKuQzswAKhs0Wg0ZSUgp9OuwVNUAgIAoJT09fWlXT579uwijQQAznTEe3hcPeAE\nMH4wBwLGF6sqH+USAFrx9HUZx5hpbpPL3Cdx3f6jfVq/Z21e12k8VZYCKg0hIACm8gfDkpRdCChE\npQcAqESRqBSNKmkloOF2YGFFolHZbWeGhAAAQPHdf//9kqTjx4/rjTfe0MyZM2W32/WHP/xBDQ0N\n6u7utniEACpVtg/TACAfzIGA8aeU5wPZhGgyzW2yWX6RZ3KsWk/8uke8h7V+z1ptnHdf3tepVK8v\noXBUOtqBATBVLATkThMCchqVgAgBAUAlCo+8/zuStgMbfi1ISzAAAEpGZ2enOjs7NWnSJD355JN6\n5JFHtHXrVu3YsUM1NTVWDw9ABeMv0gGYiTkQgELLNGfJNLdJt9wICPUf7dOKp6+TpFHrGts2Tiqv\nKmbl2qas3M4H5iIEBMBU/sBwCKg6TQjINdL+JUgICAAqkhECTdUOTJKGRkKlAACgdLz11lv6yEc+\nEvv+Qx/6kN566y0LRwQApfsX6QDKB3MgAMWUTVAo1etGyMcI/ySua8a8yeqwipWhcLPOvVyDTTAP\nISAApjIqAbmzaQcWjhZlTACA0mK8/ydrB2YEg/yBUFHHBAAAMvvYxz6mdevW6bnnntOuXbu0Zs0a\nzZo1y+phAQAAmIo5EIBCMCPQ0X+0b9T3RtuvbAIxhRiPWWGVXPdnVQDIrKAO1S6RK0JAAEw1NFIJ\nqCqbEFCISkAAUIlilYDsSSoBjdwj/LQDAwCg5Hz3u9/VP/3TP6m7u1u9vb2aPn262tvbrR4WAACA\nqZgDAZUnMdgx1qBHusBIvvvuP9qna//96lFBIKMVWKZ9xrcOy3c8Rtio0GGV8VIFx+ygDgEg5MJp\n9QAAlDejElC6dmCnKwHxgBdAZbj22mtVW1srSZo8ebK+8Y1vaP369bLZbLrkkkvU3t4uu92u3t5e\ndXd3y+l0auXKlbrqqqs0NDSkW2+9Ve+9955qamp077336rzzztP+/ft19913y+FwaO7cuVq1apXF\nZ5m9dJWAXEYIKEA7MAAASo3b7dbixYv1uc99TtFoVOFwWH19fbriiiusHhoAAIBp8pkDRSIR/eu/\n/qv++te/yu1267vf/e6olmK7du3Sj370IzmdTjU1Nam5uTnlNgMDA0k/R5Kk999/X62trXryySdV\nVVWV8nMkANkzQihGwCPx+3ykCowc8R5W21NL1XX1Y0mXpTvepJoLNbm2XpNqLoytv37PWm2cd19W\nLcU2zrtP6/esHXWekrI610Jck3RjGy9VcMbDGFEZqAQEwFRGJaBqd+rModM5XPmBEBCASuD3+xWN\nRtXZ2anOzk51dHSoo6NDq1evVldXl6LRqHbu3Kljx46ps7NT3d3d2rp1qzZv3qxAIKDt27eroaFB\nXV1duuaaa/Tggw9Kktrb27Vp0yZt375df/zjH/XnP//Z4jPNXqwSkCNJJSDn8HR1KEg7MAAASs2m\nTZv06U9/Wp/97GfV1tamz3zmM9q8ebPVwwIAADBVPnOgZ555RoFAQD09PVqzZo02btwYWxYMBtXR\n0aGHH35YnZ2d6unp0bvvvptym2SfI0nSnj179NWvflXHjh2L7TvV50gAspcYQsk1lJKqgk0ugZFs\nKgdd5Jmsx774xBnjbpw0O6tjNE6afUbQSdKoc013LlTBAUoHISAAphryDz+0TVcJyKjyEBypBAEA\n5ezgwYM6deqUvvrVr+orX/mK9u/frwMHDmjOnDmSpPnz52vv3r165ZVXNGPGDLndbnk8HtXX1+vg\nwYPq7+/XvHnzYuu+9NJL8vl8CgQCqq+vl81m09y5c7V3714rTzMnp0NAVAICAGA8eeqpp/T888/r\n85//vH7xi1/okUce4S/LARRMqbd8AFC58pkDxX+eM336dL366quxZYcOHVJ9fb0mTJggt9utxsZG\n9fX1pdwm2edIkmS32/XII4/onHPOSXpc43MkALlLDKHkEgDKpZXVRZ7JSasApasclLj/+O9zDc8k\nCzoZoaBM55KpUhBKHz+n8kE7MACmGoprBxY8lbzSD+3AAFSS6upq3XDDDVq6dKn+93//V1/72tcU\njUZlsw1XwampqZHX65XP55PH44ltV1NTI5/PN+r1+HWN9mLG62+++WbacZx77tlyOlMHNONNnOjJ\nvFKePLXVcr1/SpJUc7ZbntrqUctra9ySJHe129RxlIpKOMdSwbUuHq518XCti4PrfNr555+v2tpa\nXXLJJTp48KA+85nP6Pvf/77VwwJQBsxsKYHUMrUZATAsnzlQ4mc3DodDoVBITqcz7WdAybZJ9jmS\nJF155ZVJj5v4ORKAwsl078ynQk78usb+Ux1nrFWKshE/L0u371RjTDevY+5ROph/lxdCQABMZbQD\nq3I75D0VTLqO3W6T3WZTKEQICED5mzJlij7ykY/IZrNpypQpOuecc3TgwIHY8sHBQdXV1am2tlaD\ng4OjXvd4PKNeT7duXV1d2nF88MHJrMY7caJHx46Z9wGR1zck30m/JCkUCsvrGxq1PBQavo+8+57P\n1HGUArOvNU7jWhcP17p4uNbFYdZ1Hq/BotraWj3xxBP62Mc+pm3btun888/XiRMnrB4WgDJgdksJ\nnIkHP0D28pkDJX52E4lE5HQ6ky5L9hlQ/DZ2u33Uuuk+A0r2ORKAwjjiPay2p5YmrdwTL9/7qnFv\n3jjvPn3ruX9JeZxcQkO5HtuYF2SaH6SbR2SqYsTcozQw/y4vtAMDYKqhgNEOLH3m0Om0UQkIQEX4\n1a9+Fevh/s4778jn8+nKK6/Uvn37JEm7d+/WrFmzdNlll6m/v19+v19er1eHDh1SQ0ODZs6cqeef\nfz62bmNjo2pra+VyufTGG28oGo3qhRde0KxZsyw7x1yFQsPtINO1AzMqywEAgNJx99136/3339fH\nP/5xXXTRRdqwYYNWr16ddptIJKINGzaopaVFy5cv18DAwKjlu3btUlNTk1paWtTb25t2m4GBAbW2\ntqqtrU3t7e2KRIb/TfnLX/5STU1NWrJkiX73u9+ZcOYAioEHEKmZ0aqBBz9A9vKZA82cOVO7d++W\nJO3fv18NDQ2xZVOnTtXAwICOHz+uQCCgl19+WTNmzEi5zbRp0874HCndcRM/RwIwPhj35kk1F2a1\nvhGq6T/al3ULsnStvRIrDGUz1lTrZVPFCNbjZ1E+qAQEwFT+kUpA1a70LWecDrtC4WgxhgQAllqy\nZIluv/12tba2ymaz6Z577tG5556rb3/729q8ebMuvvhiLVq0SA6HQ8uXL1dbW5ui0ahuueUWVVVV\nqbW1VevWrVNra6tcLpc2bdokSbrzzju1du1ahcNhzZ07V5dffrnFZ5q90MgDO6fDdsYyIxhk3E8A\nAEDpuOCCC7Rs2TIdPHhQt912m4aGhnT22Wen3eaZZ55RIBBQT0+P9u/fr40bN+rHP/6xJCkYDKqj\no0O/+tWvdNZZZ6m1tVULFizQf/3XfyXdpqOjQ6tXr9bHP/5xbdiwQTt37lRjY6O2b9+u3/zmN/L7\n/br66qv1uc99LtYyAwDGOzP/ap4HP0B28pkDLVy4UC+++KKWLVumaDSqe+65Rzt27NDJkyfV0tKi\n9evX64YbblA0GlVTU5MuuOCCpNtI0rp16874HCmVVJ8jARi7izyTU1bnMcI12dxb01XtMV7PVG3I\nWDebyj3x1YIKOacw9pFLFSLmHoA5CAEBMJXRDqzanT4E5HLY5afKA4AK4Ha7k37gsm3btjNea25u\nVnNz86jXzjrrLN1///1nrDt9+vTYX8uPN0YINFklIKdz+IEd9wgAAErPSy+9pA0bNigcDqu7u1tf\n+tKX9P3vf19z585NuU1/f7/mzZsnaXj+8uqrr8aWHTp0SPX19ZowYYIkqbGxUX19fdq/f3/SbQ4c\nOKA5c+ZIkubPn68XX3xRCxcu1BNPPCGn06kjR46oqqqKABCAssJfzQPWy2cOZLfbddddd416berU\nqbGvFyxYoAULFmTcRhpuNZ/scyTDrl27Yl+n+hwJQGGkCgC1PbVU0unwTqpgTLZBnFxDNamOmW2b\nr3wDQoUMFo21pRlQyWgHBsBUsRBQVYZ2YA6bgiHagQFAJQqPtIN0UAkIAIBxZfPmzerq6lJdXZ3O\nP/98dXZ26nvf+17abXw+n2pra2PfOxwOhUKh2DKPxxNbVlNTI5/Pl3KbaDQaC/jU1NTI6/VKkpxO\np7Zt26aWlhZ98YtfLNj5AkCp4IEYYK185kAAKodRISg+AJSqPZdZ4d5Ux8z2ePmOq1Dnk+6aobj4\nGYxPhIAAmMofGP4wtyqLdmDhSFSRKC3BAKDShCPD7/0Oe5JKQEYIiEpAAACUnEgkookTJ8a+/8d/\n/MeM29TW1mpwcHDUPpxOZ9Jlg4OD8ng8Kbexx80dBgcHVVdXF/v+y1/+svbs2aO+vj7953/+Z34n\nCAAAkEQ+cyAAleUiz+RRVXnSBWPyDcykC2ekO2Z82650QZv49XIJghSqtRiVD61HGGv8IgQEEtJz\nJgAAIABJREFUwFRDgbAcdptczvRvN86R5QEe8gJAxQmHjRDQmZWAXCMhoCEqAQEAUHImTZqkZ599\nVjabTSdOnNCPf/xjfehDH0q7zcyZM7V7925J0v79+9XQ0BBbNnXqVA0MDOj48eMKBAJ6+eWXNWPG\njJTbTJs2Tfv27ZMk7d69W7NmzdL//M//aNWqVYpGo3K5XHK73aPCQgAAAGOVzxwIgHkKHVAwI/Aw\nljBLsvGMJZxhbJNN0MZobdb21NKiB0EIAFmPMNb4xacgAEw1FAyr2p2+CpBEuxcAqGThSJp2YE4q\nAQEAUKruuusu7dixQ2+//bYWLlyov/zlL7rrrrvSbrNw4UK53W4tW7ZMHR0duv3227Vjxw719PTI\n5XJp/fr1uuGGG7Rs2TI1NTXpggsuSLqNJK1bt05btmxRS0uLgsGgFi1apIsvvlgf/ehH1dLSomXL\nlunyyy/XnDlzinE5AABAhchnDgTAHIWuVFJqlU+MEE6ubb1SnUfi6/Hbp2pXFt/aDJWHn/v45LR6\nAADK25A/2xDQ8INfHvICQOU53Q7szBCQw26Tw27j/gAAQAn6xS9+oc2bN+e0jd1uP+Mh2dSpU2Nf\nL1iwQAsWLMi4jSRNmTJF27ZtO+P1VatWadWqVTmNCwAAIFv5zIEAmKOQlUqOeA9bVvnEOHYu0q2f\n7jySvW6Eg5ItK+S1yOc8AeSOSkAATDUUCKnanTlv6KTdCwBUrNMhoORT0yqXg0pxAACUoGeffVbR\naNTqYQAAABQVcyCgtBSi1VZ8hRwrAkDGsZNV48m3Co+xTeI5plo3VTioUEqtyhJQzqgEBMBU/izb\ngblGQkCBYMTsIQEASkw4nLoSkCRVuR2ERAEAKEHnnHOOPvvZz+pjH/uYqqqqYq93dHRYOCoAAABz\nMQcCykNi9RsrKgBJpwM4kkaNJ358+cr2HJOFn9JVB8qHldcYqDSEgACYJhSOKBSOqiqbdmDOkUpA\nwZDZwwIAlJhwJCKbTbKnCAFVux3ynQoWeVQAACCTa6+91uohAACQFdqPoJCYAwHlITGUYvZ9IlXQ\nJv7YiePJFJrJdH9LdY7x2xlhn43z7lPjpNlJty3UfZR7MVActAMDYBqjakN27cCGH/z6A1QCAoBK\nE45EU1YBkiS3yyF/kEpAAACUmmuvvVYf/ehHdfz4cXm9Xl122WU8FAMAlBzaj6DQmAMBubPyPTjd\nseNDKfHrFXq8ye5FR7yH1fbUUrU9tXRUGCh+nVRVe1LtM5lUFX7ij7lx3n1av2et+o/2nbFtqdxH\nC92aDChnhIAAmGYoMFzVp8qVRSWgWDswHvICQKUZDgGlnpZWuxwKBCOKRKJFHBUAAMjk4Ycf1je/\n+U393//9nw4fPqyVK1fq17/+tdXDAgBgFNqPoNCYAwG5sTJEku2x+4/2xcI4idsUYtzxLb/iwzdd\nVz+mrqsfO6MqT6pjxi/P9/6WbLvGSbNjQaDEY5fCfbSQv0OlEmoqJVyL8kM7MACmiVUCqso+BDRE\nCAgAKk44nL4SkNFW0h8M66wqpq8AAJSKnp4ePf7446qtrZUk3XTTTWptbVVTU5PFIwMAYDQCQCgk\n5kBAbqwMkWTbUutbz/2LguHgGdsYgZFCjb/tqaWSFAv+JO4z03iNqj1jbWGWrDpQ46TZlod90inU\n2Eoh1FRKCv07jtJAJSAApjndDixzCMjlHH478gcIAQFApQlHonI40oSARirKUS0OAIDSMmHCBDmd\npwO6Z599tmpqaiwcEQAAgPmYAwG5szJckOnYRkWex774xBnhmkIGRpJV/sl1vEe8h5NW68nXEe9h\n9R/t04qnr1P/0b6U7cesrJxjHL+QCLucRiiqPPGn1ABMYwR6qrNqBzb88NfPA14AqDjhSERVrtTT\nUqMS0FAwrAnFGhQAAMjowx/+sFpaWnT11VfL6XTqP/7jP1RbW6sHHnhAkrRq1SqLRwgAxWO05QBQ\n/pgDAYVTKvfPXEM5+Y57rOeaKbCRy7iOeA/HKhPdPucOfeu5f0kaUMo3JFKony0hFfNxbcsPlYAA\nmGYoEJIkVbsz5w2NdmCEgACg8kQi6duBGWFSqsUBAFBapkyZooULFyoQCOjkyZO68sor1djYaPWw\nUEGs+mtkIJHVfyEPoLiYAwGFMV7vn+nGbfa5pDtmrtczvjLRxLPPz7huujEkG1Mhf7Zmh1TG2+8g\nkElJVgL6yU9+ol27dikYDKq1tVVz5szR+vXrZbPZdMkll6i9vV12u129vb3q7u6W0+nUypUrddVV\nV1k9dABxcmkHFgsB8YAXACpKNBpVOByV3Z46m25UAiIoCgBAaVm1apUCgYDcbrcGBgb0+uuva/78\n+Wnv60ChGA8W+KtglAL+Qh2oLMyBgMIo5funUcUmVTWbZOM2e34aX7nHqNiTeMxcj23sY/2etdr8\nqfszbpvtOZbyzzYR/65AOSq5Gcm+ffv0hz/8Qdu3b1dnZ6eOHj2qjo4OrV69Wl1dXYpGo9q5c6eO\nHTumzs5OdXd3a+vWrdq8ebMCgYDVwwcQxwgBVWURAnJRCQgAKlI0KkUlORypKwFVUQkIAICS9KMf\n/Uh33HGH3nrrLV133XX6+c9/rvb2dquHhQoxnh4soDLwuwhUDuZAQOGU4v3TCIX0H+07o5qNsSwZ\nY35qlqODb8cq91zkmaz+o32j5sSZ2m+lqnZj7KNx0uyMY8imHVn8uuMB/65AOSq5ENALL7yghoYG\n3XTTTfrGN76hT33qUzpw4IDmzJkjSZo/f7727t2rV155RTNmzJDb7ZbH41F9fb0OHjxo8egBxMup\nHZhz+OEvD3gBoLKEI1FJStsOzAiTDnGPAACgpOzcuVPf/e539dvf/lZf/OIX9cgjj+jAgQNWDwsV\nhA/qUUpoIwFUDuZAQHmLD8UkhkOyCYyMtQ1Wsm37j/Zp8ZNf0NHBt2MBoMVPfiEWBMrUfivT8lza\nfaULAI3H9m4S/65A+Sm5dmAffPCB3nrrLT300EM6fPiwVq5cqWg0Kptt+MFQTU2NvF6vfD6fPB5P\nbLuamhr5fL60+z733LPldGauSDLeTJzoybwS8sb1zZ/DNfwWM+l8jyZO9MhTWz1qefz31aGIJClq\ns3HNC4TraC6uL1AY4cjw+3+6EFC1i3ZgAACUokgkIrfbrWeffVarV69WJBLRqVOnrB4WABQdbSSA\nysIcCChfRjUd436e7L5uZhusVHOKxkmz9fgXf6tJNRfqiPdw7Hujek+m42Y7rsTjZ6oulM8xAJiv\n5EJA55xzji6++GK53W5dfPHFqqqq0tGjR2PLBwcHVVdXp9raWg0ODo56PT4UlMwHH5w0bdxWmTjR\no2PHvFYPo2xxfcfm/ZH/5oZO+nXsmFde31Bsmae2etT30ehwJQjvoJ9rXgD87pqL6zt2hKhgCIez\nrwRECAgAgNJyxRVX6Atf+IKqq6s1e/ZsffnLX9aCBQusHhYAFB0PvYDKwhyo/OUSfED5yDfUm/j7\nMpbfnXRzikk1F6rtqaWSpK6rH9OkmgvP2DbTvrM9vpTf9eC/G6A0lFw7sMbGRu3Zs0fRaFTvvPOO\nTp06pSuuuEL79u2TJO3evVuzZs3SZZddpv7+fvn9fnm9Xh06dEgNDQ0Wjx5APKNtS7U7cwUum80m\np8NGOzAAqDCxdmCO1NPSKqMSEPcIAABKyrp16/TTn/5UPT09stvt+va3v61bb71VktTT02Px6ACg\nuHjoBVQO5kDlbTy3NMLY5BPqzfb3JZffp3TVfLqufkxdVz8maextx9JZ8fR1kkTIGRinSi4EdNVV\nV+nSSy/VkiVLtHLlSm3YsEHr1q3Tli1b1NLSomAwqEWLFmnixIlavny52tradP311+uWW25RVVWV\n1cMHEGdopGJDlTu7omMup50qDwBQYWIhoHTtwEbCpEOEgAAAKDkf+tCH5HAM36svvfTS2Ovd3d1W\nDQkAAMB0zIHKF9Xdxp9CBmFy/blf5JmsjfPuS7tdIYNlRquy+Io9yY6XjVTrxf83wH8HwPhUciEg\nSbrtttv061//Wo8//rjmzZunKVOmaNu2berp6VFHR0dsYtXc3Bxbb9GiRRaPGkCioUBIUnaVgCTJ\n6bDHgkMAUM7ee+89ffKTn9ShQ4c0MDCg1tZWtbW1qb29XZFIRJLU29urxYsXq7m5Wc8++6wkaWho\nSDfffLPa2tr0ta99Te+//74kaf/+/Vq6dKmWLVumBx54wLLzykd45HzThYDcLtqBAQAw3hgtnwFg\nvKmUyg+Vcp5AsTEHKg8EH8YPqys3HfEe1vo9a9MefyzBskznlXju6a5HtuvlOqZc98EcBDBfSYaA\nAJSHoUBYNpvkdmb3VuNy2jXk5wEvgPIWDAa1YcMGVVdXS5I6Ojq0evVqdXV1KRqNaufOnTp27Jg6\nOzvV3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+85+t\nPMWchMPZVwIiBAQAwPhhs6W+twNAMeT7UGs8tIAZ6/jGy3kC4xFzIKC4rK7clOz4ye6v+QaA0t2v\nkx071fVI3Fe665YpSBS/LNc5BXMQoDgIAQEwjT8QVrXbkfU/fNxOh/zBsELhiMkjAwDr3HvvvVq2\nbJnOP/98SdKBAwc0Z84cSdL8+fO1d+9evfLKK5oxY4bcbrc8Ho/q6+t18OBB9ff3a968ebF1X3rp\nJfl8PgUCAdXX18tms2nu3Lnau3evZeeXq1g7MEfqaWmVUQmIdmAAAAAAspDvAyarHyRmoxAPz8bD\neQIAkC2r72eJAaB09+lc7t+JrcayCRcd8R4+Y33jtWSBoWRjSzdPSFyW65yCOQhQHE6rBwCgfA0F\nQqp2Z/82U+UafgA8OBTShBq3WcMCAMs8/vjjOu+88zRv3jz99Kc/lTRcJtoIS9bU1Mjr9crn88nj\n8cS2q6mpkc/nG/V6/Lq1tbWj1n3zzTczjuXcc8+W05ldu8aJEz2ZV8qTe+Q+cXa1S57a6qTrXHTh\nBElS1GYzdSyloNzPr5RwrYuHa108XOvi4DoDQOkbywOmUn8oVaiHZ6V+ngCA8hUfVCmH48QfK5sK\nO9nex41WY49+9peSlHFbY/8b592nSTUXxr429pHumIljS7du4rJcr3GpzkGK+fsCmI0QEADT+ANh\nnV3tynp990ilh5NDQUJAAMrSr3/9a9lsNr300kv6y1/+onXr1un999+PLR8cHFRdXZ1qa2s1ODg4\n6nWPxzPq9XTr1tXVZRzLBx+czGrMEyd6dOyYN9tTzJnvZECSFAqF5fUNJV3He+KUJOmEz2/qWKxm\n9rXGaVzr4uFaFw/XujjMus7lGCyKDzQDgBXK+SFOOZ8bMN4xBwLSyzUIk7htttuM5Ti5yhSgySYg\nlEzi+kYYKN368aEfY9t0oaSLPJNTVgqqJMX8fQGKgXZgAEwzNNIOLFtGCGjwVMisIQGApX75y19q\n27Zt6uzs1KWXXqp7771X8+fP1759+yRJu3fv1qxZs3TZZZepv79ffr9fXq9Xhw4dUkNDg2bOnKnn\nn38+tm5jY6Nqa2vlcrn0xhtvKBqN6oUXXtCsWbOsPM2chEdaQDrsqVtHOh12OR02+YO0AwMAoJSc\nOnVK3/ve97R48WJ96Utf0j333KOTJ4eDxr/4xS8sHh0AAIA5mAMB+cs2bJLY+qr/aF9O7TCLGWrJ\nFLRpe2qpjngPF6TSjLGvVBonzR4VRkp1TCP0En9dC3mtxtK21AqVHoJC+SEEBMAU4UhEgVAkpxDQ\n6XZgQbOGBQAlZ926ddqyZYtaWloUDAa1aNEiTZw4UcuXL1dbW5uuv/563XLLLaqqqlJra6tee+01\ntba2qqenR6tWrZIk3XnnnVq7dq2WLFmiadOm6fLLL7f4rLIXjkQlSQ5H6hCQJFW5HISAAAAoMXfd\ndZeGhoZ0zz336N5771UoFFJ7e7vVwwKAcWG8PRwDcBpzIGBssgkAxQd+jLZYG+fdl1NIw6xAR7J7\neKZjHR18O2WIKdWc4Ij3sJY+eU3OcwZjLPEBpMTjGKGX+NBQOrmMIdfAVqkgAIRyQjswAKbwB4Yr\nO1S7s3+biVUCIgQEoAJ0dnbGvt62bdsZy5ubm9Xc3DzqtbPOOkv333//GetOnz5dvb29hR9kEcRC\nQPb02fQqt0P+ACEgAABKyYEDB/Tkk0/Gvt+wYYM+//nPWzgiABgf8m05Uei/0geQH+ZAgLkSq7KU\nUpWWXO/hF3kmq+vqx1KeQ7L9Gff7o4Nv603vgI4Ovh2r7GPsayzjNsYVf33TbScNVyDK5tj5BrYA\nFBaVgACYYigw3NIrt0pARgiIdmAAUClOh4AyVwIaIgQEAEBJiUajOnHiROz7EydOyOHI/t+AAFCp\n8nmYmVgVAYB1mAMB5ku8R5ZKoCTTPTzXKkGJ+4u/30+quVD1dR/RpJoLU+7riPew+o/2pdy3Edwx\njiPpjCpLqc7DGMvRwbdTjj/ZMTfOu0+Nk2afsT8AxUMICIApjAe1uYSA3EY7sFNUAgKAShEJD1eO\ns2cIAVW7HQrQDgwAgJKyYsUKLVmyRBs3blRHR4eWLFmi66+/3uphAcC4kOvDzFKqggBUunzmQJFI\nRBs2bFBLS4uWL1+ugYGBUct37dqlpqYmtbS0xKo9p9pmYGBAra2tamtrU3t7uyKR4c9Went7tXjx\nYjU3N+vZZ5+VJHm9Xt14441qa2vTihUrdOzYsUJfDqBspAuqJLbSSrVOupZfqZbF7y/+fn+RZ7Lu\nX/DjlOM74j2s5h3X6Jp//3zaIFD81/H7TzUm43VJsZZhmz91f2ybZGOJ33b9nrWjlhNkBoqPEBAA\nU/hHHtRW5RQCGl73JJWAAKBixCoBOTJXAgqEIoqMrA8AAKzX1NSkBx54QB/+8If14Q9/WFu2bNGS\nJUusHhYAlC2zAkA8lANyk88c6JlnnlEgEFBPT4/WrFmjjRs3xpYFg0F1dHTo4YcfVmdnp3p6evTu\nu++m3Kajo0OrV69WV1eXotGodu7cqWPHjqmzs1Pd3d3aunWrNm/erEAgoMcff1wNDQ3q6urS5z//\neW3dutXUa4PyV673jHSBmGxDLOkCu4nhm0z7MY79ref+RW1PLVX/0b4zxnCRZ7J6/98TeuJLvzuj\n8k42Uo03MYhkBHuMMSQbS7p9EmQGio8QEABTDPmNdmDOrLc53Q6MSkAAUClOtwNLPy017hF+qgEB\nAFBSDh8+rDfeeENHjx7Ve++9Z/VwAAA5KtZf55frQ2NUrlznQP39/Zo3b54kafr06Xr11Vdjyw4d\nOqT6+npNmDBBbrdbjY2N6uvrS7nNgQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDg\nQTU0NGhwcFCS5PP55HRm/3k9kKicK7okC6okVsQZa4glvvpOqso9iet3Xf2Yuq5+TI2TZqcM7KQK\nAGVTkSjVOSWGeIwWX0ZloHTXIz7ElGx/mcYIYOwIAQEwhdEOzHhom41YOzAqAQFAxTgdAspQCWik\nspxxfwEAANbbtGmTfvazn2ny5Mk6//zz9cMf/lA/+clPrB4WShAf7gOlqxh/nW/1Q2Peg1Bo+cyB\nfD6famtrY987HA6FQqHYMo/HE1tWU1Mjn8+XcptoNCqbzRZb1+v1ptzHueeeqxdffDFWBYiqjRiL\ncqjoku6ekKkiTjb7znS/MwI1iS2zUo0t/tjZXvd01Yvy+RnGt/jKdizZXAur5wdAOSMEBMAUQyOV\nGqqrsg8BuRx22W02KgEBQAUJh7MMAY2ESgNUAgIAoGQ899xz+vnPf67ly5frK1/5in7xi19ox44d\nVg8LJYYP94HSZ/bDXCsfGvMeBDPkMweqra2NVeSRpEgkEqvKk7hscHBQHo8n5Tb2uGrKg4ODqqur\nS7mPBx54QDfeeKN+97vfaevWrbr55pvHfP6obOM9AJTrPSGX8832fpeskk4uFYLShYeyqV6U688w\n3XmlupbZXItyCJUBpYoQEABTGJUaqt3Zh4BsNpvOrnbqJJWAAKBihCMRSZLDQSUgAADGmwkTJox6\n2BQMBkf9tTog8eE+gGFWvQfwHgQz5DMHmjlzpnbv3i1J2r9/vxoaGmLLpk6dqoGBAR0/flyBQEAv\nv/yyZsyYkXKbadOmad++fZKk3bt3a9asWbrsssvU398vv98vr9erQ4cOqaGhQXV1dbEKQf/wD/8w\natxApTHznpCpvVaysSR+n6pCUOJx4oNMydp75VK9KJ1M7byOeA+r7amlaYNAmZh1fyb8i0pH808A\npvAbISBXbm8zNWe5NHiKSkAAUCmybQdmhEr9VAICAMByt99+u6Thv0b/0pe+pAULFsjhcGj37t26\n+OKLLR4dShEP31Gu4ttiWLE9ssM1RqGMZQ60cOFCvfjii1q2bJmi0ajuuece7dixQydPnlRLS4vW\nr1+vG264QdFoVE1NTbrggguSbiNJ69at07e//W1t3rxZF198sRYtWiSHw6Hly5erra1N0WhUt9xy\ni6qqqvTNb35Td9xxh7q6uhQKhfSd73zH9OsElDLjnlDIe7ARxBlrwGhSzYVZ7cNYxziHxG0KcV7Z\nnlMoYs3zvHQ/v0L9PIDxjBAQAFMMBYar+eRSCUiSaqqdevf4qVF9jQEA5et0CCh9gUqjHRghIAAA\nrDdnzpxR/2/42Mc+ZsVwAMASY33AxAMqYPwZyxzIbrfrrrvuGvXa1KlTY18vWLBACxYsyLiNJE2Z\nMkXbtm074/Xm5mY1NzePeu2CCy7Qv/3bv2UcHxCv3EOqhb4HF6LCUPyYslnH7HlEtufktLsKfuxM\nMp07VQABQkAATBJrB1aVawjIpXAkKn8wrGo3b1EAUO7C4ewqAcVCQLQDAwDActdee21W6/zmN78p\nwmgAwBpjfcDEAypg/GEOhEpQCSFVM+7BmfaVKVhljCndNonjNvtnlK7SjtFurOvqx4r+e5LNz69c\nf3eBbKX/k2sAyMFz+4/E/vf62yckSX/823ux17JRUz0c/Dk5FDJtnACA0hGORGSzSfZMIaCRynJD\nhIAAABgXotGo1UMAANON9QETD6hSO+I9bPUQgLwwB8J4Vykh1WKenxGsSnVvi3/dWC/VNkYbMOPr\nxO3NljguM65jNudT7r+fwFgRAgJgimAoIklyOXN7m6mpHi4dOEgICAAqQjgSzVgFSFKsOhztwAAA\nGB9o7wwAyFemh6VAKWMOhHJAwKLwUgWr4u958QGsVGGs+PX7j/YV/Z6Zb0gs2/ExBwAKgxAQAFME\nw8MhIKczt3/0nD1SCWjwVLDgYwIAlJ7hEFDmKWmVa3gdQkAAAAAAUN4qpQoFAKD8GaGWVNLd81K9\n9uhnf6mjg2/rmn//vI4Ovn3G9mYGaDK1NUu1TbbBHuYAQGEQAgJgipBRCciRYyWgs6gEBACVJBzO\nrhJQlYt2YAAAAAAwnuXyUJKHfwCAcpBNqCW+rVc2YZmLPJM1qeZC1Xs+okk1F54RADKrks4R72G1\nPbU0476TtTB79LO/zPo4qa4V1YGA7BECAmCKYDgip8OWc/nTGqMS0BCVgACgEoQjUTkcObQDIwQE\nAMC4EI1GrR4CAKCEWNne44j3MA8OUTTMgQDrldp7frbB1lyq4Fzkmaze//fEGevmU0mnkNcr3f1+\nLPMA2oQBuSEEBMAUwVBEzhyrAEmn24GdpBIQAFSEcCSSVSUgN+3AAAAYV77+9a9bPQQAQAkpRnuP\nZA8GjaoF2VQuAAqBORBKXbm/F44lLFIK12as98lc2nUZIdlcWnV1Xf1YxqpGye73Y50H0CYMyA0h\nIACmCIUjcjlzf4upqTbagVEJCAAqQSSSXTuwWCUgQkAAAJSMT37yk7r00kv18Y9/XHPmzIl93dTU\npClTplg9PABAiTE7AJTsIabxwDLTQ0sgF8yBMF6VWzWVZOeRLCySzfnmem2svobJxtt/tC/rczBC\nspKShmtS7SPbKkX5bpvPfgGciRAQAFMEQ/mGgIx2YFQCAoByF41GFQ5HZbdnvl9UuRySaAcGAEAp\nmT17trZs2aJ9+/bp97//vR566CEtWLBA3/nOd3TnnXdaPTwAQIVJVSGAh4YoNOZAsEIhQiflVE0l\nXWgnMQCUTTAml2tj7LP/aN+o1/KVz7aJ4z3iPaz1e9Zq47z7cvr5Hh18Wxd5Jo8aQ+I1MzPwZHWY\nCihXhIAAFFw0GlUoHM2rHVjNWSOVgE5RCQgAyl04ElVUksORuRJQlZt2YAAAlJrXXntN//zP/xz7\n/pOf/KT++te/atq0afL7/Um3iUQi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQ\na2ur2tra1N7erkgkIkl69NFHtXTpUi1dulQPPPCAGacOACghxsPKTMt50IhCyWcOBIxFId/HyiEA\nJGUf2skl3BMfqMm03sZ592n9nrU64j2cUwWeRLn8bJNVuzNeN86zcdLsrLfd/Kn7tX7P2jPGH3/N\n0o1vrL+P3J8B8xACAlBwoXBUksZUCegk7cAAoOwFQ8MP6rJpB+aw2+V02DVEJSAAAEpGXV2duru7\ndfLkSfl8Pm3fvl0TJkzQoUOHYoGcRM8884wCgYB6enq0Zs0abdy4MbYsGAyqo6NDDz/8sDo7O9XT\n06N333035TYdHR1avXq1urq6FI1GtXPnTr355pt68skn1d3drd7eXr3wwgs6ePBgUa4HAKB44h8Y\nZnrAW06VL1Aa8pkDAWPB+1hy2V6PXK5btsGUxkmz9ehnfylJeVXgiR9bYkWfZGNKVn0ocbypjp8q\npGScQ+Ok2WeM3/g61e9eIQI8/F4D5iEEBKDgjIe6+VQCcjkdcjvt8tEODADKXjCcfQhIkqrdDioB\nAQBQQu677z7t3btX8+bN06c//Wn9/ve/17333qu9e/dqzZo1Sbfp7+/XvHnzJEnTp09WiA4RAAAg\nAElEQVTXq6++Glt26NAh1dfXa8KECXK73WpsbFRfX1/KbQ4cOKA5c+ZIkubPn6+9e/dq0qRJ+tnP\nfiaHwyGbzaZQKKSqqiozLwMAoEji25IkPnjMphIEUCj5zIGAseJ9LDf5hlOyCabEV8zJVIEn22Ma\n+028v8VXu9s47z5967l/ySkI23+0L2VIyQgOGa3EUl2zVK02CxHg4fcaMIfT6gEAKD+hkYe6+VQC\nkqSzq51UAgJQtsLhsO644w69/vrrstlsuvPOO1VVVaX169fLZrPpkksuUXt7u+x2u3p7e9Xd3S2n\n06mVK1fqqquu0tDQkG699Va99957qqmp0b333qvzzjtP+/fv19133y2Hw6G5c+dq1apVVp9qRqEc\nKgFJUpXLIT+VgAAAKBl/+tOftGnTJrlcrlGvL1++POU2Pp9PtbW1se8dDodCoZCcTqd8Pp88Hk9s\nWU1NjXw+X8ptotHo/8/e+8dHUd37/6/N72Sz8QcuJIVGxcpVevnlAp/2q2C+KAVNhQgmQLxUCqKX\nekkxiRC8/LgoNYAkrcErFYHSUiOQhxqwsakCRqJwJe79gCjS9sI1CGZlQSzJ5tcm2c8f4YxnJzOz\nM7OzP/N+Ph48SGbOnPM+Z87MnMz7Ne83TCaTULa5uRnx8fG4/vrr4fF4sGHDBgwfPhw333yzUV0m\nIgilr6EJgpAmnK8b5gRlDkeKHECEEj1rIILo7wTzGSN+ZmjFlwBIXLfWNuTGQur55uuZJ1UX28YE\nQEW2pYJIiRf++PtcjYbncDivfQjCHygSEEEQhsMiAcXriAQEAObkeLjaKBIQQRDRyXvvvQcA2LVr\nF5YsWYJf//rXkqksnE4ndu7ciV27dmHbtm0oLy9HZ2cnXnvtNQwbNgyVlZXIycnBSy+9BABYvXo1\nysrK8Nprr+H48eM4efJkKLupCiEdmMrnRSJFAiIIgiCIsGLfvn245557sGrVKnz88ceqjklNTYXL\n5RJ+7+npQVxcnOQ+l8sFi8Uie0xMTIxX2bS0NABAR0cHiouL4XK5sHr1ar/6SEQmRqQnIIj+Rrhf\nN2IHJTnsiFCiZw1EEMEmnO7nwXjGaImO4w9SdYsj9/iyU2ksxGnBeJHKYMsQVGZXeZXJr8n1Ksun\nDWMCoDL7BpxvPueVFoyeq+G/9iEIfyAREEEQhsPSu8TpjARkToxDW0cXeno8RppFEAQRFtx77714\n9tlnAQBfffUV0tLSJFNZfPLJJxgzZgwSEhJgsViQmZmJU6dOeaXDmDhxIo4cOYKWlhZ0dnYiMzMT\nJpMJd911Fw4fPhyyPqrFrSMSUDtFAiIIgiCIsKGiogJvv/027rjjDrzyyiuYOnUqfvOb3ygec8cd\nd+DQoUMAgGPHjmHYsGHCvltuuQWNjY349ttv0dnZiY8//hhjxoyRPWb48OH46KOPAACHDh3C2LFj\n4fF48Itf/AL/9E//hGeeeQaxsbGB6DoR5lCUEILQTiRcN+FsG9G/0LMGIohgolXcEGgRRKCfMXrS\nRLLjjGxbzbirTTfGhDx8feKoNQ5XU59jAAjpyXZMfRVTh2Zjx9RXAaBPWjApIZOc7VrHSoswKlQY\nPS/DtZ9E/4TSgREEYThdQiQgdU5dMebkeHgAtHZ0ITU53md5giCISCMuLg7Lli3Du+++i4qKCnz4\n4Yd9UlkopcNg2/myfIoMs9mML7/8UtGG665LQVycOqeY1WrxXUgHl69GfUtOjIclNcln+xZzArq6\ne3D99WbV0YMijUCNNdEXGuvgQWMdPGisgwONszepqamw2WxwOBxoamrCsWPHFMtPnjwZH374IWbP\nng2Px4PnnnsOb731FlpbWzFr1iyUlJRgwYIF8Hg8mDlzJgYNGiR5DAAsW7YMK1euRHl5OYYOHYop\nU6Zg//79OHr0KDo7O1FfXw8AKCwsxJgxYwI+FkRoUEqnQBDhSDinnQhXuwgiHNG6BiKIYKJF3OBv\n6iwtNhmB1HNUj5hDb7/Fx4nbVlOfmv3iNF3ids83n0NJfTGWj18h27ZY7CNlGxOuzKt9GOsmbERJ\nfbFkpCMtY8WXZ3WHq9DYyHkZzv0k+h8kAiIIwnBYJKB4nZGAUpJ6b02t7W4SAREEEbWsX78excXF\nyMvLQ0dHh7CdpbJQkw5DqSxLhyHH5cutquy0Wi1wOpu1dE01zostAIDu7m40t7TLl7vaPnuqnPvq\nH8KzIpoI5FgT3tBYBw8a6+BBYx0cAjXOkSos2r59O95++210dHRg2rRp2LJlC9LT0xWPiYmJwTPP\nPOO17ZZbbhF+njRpEiZNmuTzGAC4+eab8cc//tFr2+TJk3HixAmtXSEiFHrZTigRCrGNrzZpzgaW\ncBZYEdGFnjUQQQQbtfdDf6KhBPu+689zVGyr3n4PtgzxiqbDtvE/qxkXu6MBtvRxiu2I6xOn72Ki\nnRHWUYIgyZftPCydWGV2VR/Rkfg4LWOlRxgV6URCREWifxGWn1BfunQJd999N06fPo3GxkbMmTMH\n+fn5WL16NXp6esUFe/bswYwZM5CXl4f33nsvxBYTBMHD0rvE6YzSYE7qFf642rsMs4kgCCJcqK6u\nxssvvwwASE5Ohslkwj//8z/3SWUxcuRI2O12dHR0oLm5GadPn8awYcNwxx134P333xfK2mw2pKam\nIj4+HmfPnoXH48EHH3yAsWPHhqyPahHSgal8XiQm9EYu6nBTSjCCIAiCCAe+/vpr/PSnP8WCBQtg\ntVrx4Ycf4oUXXgi1WUQ/gH2xTC/bI59ApU3QmgYlWG3SnA0coTjnRP+F1kBEtKFXAOTPfVfPcXLP\nUV+2yO3X2++S+mIh/ZfatnjsjgbM2PdT1J6pUdUeq09sL0v5pbYfvtYo/P9y+9W2IyeSimb6Sz+J\nyCDsREButxurVq1CUlJvSojS0lIsWbIElZWV8Hg8OHDgAJxOJ3bu3Ildu3Zh27ZtKC8vR2dnZ4gt\nJwiC0eVnJCDz1egOrna3YTYRBEGECz/5yU9w8uRJPPzww1iwYAGefvpprFq1Cps2bcKsWbPgdrsx\nZcoUWK1WzJ07F/n5+XjkkUfw5JNPIjExEXPmzMHf//53zJkzB7t378a//du/AQDWrFmD4uJiPPTQ\nQxg+fDhGjRoV4p76RhABxahLH5kY3ysCau8kkShBEARBhANnzpzBgQMH8Otf/xr19fV44YUXcPr0\n6VCbRUQ5YscKvWyPXAIp2giF2EZtm772k4hFHySwIoIJrYGIUBBuzwd/IwjpXQPIpYFVssXIZwSL\nwANAtg++2rKlj8PL925HmX2DzzFQ0zcxasVJgy1DUJ5VIdRhxBzTc27DbW4TRDQQdnkU1q9fj9mz\nZ2PLli0AgM8++wzjx48HAEycOBEffvghYmJiMGbMGCQkJCAhIQGZmZk4deoURo4cGUrTCYK4CnPq\n6hYBXU0B1kqRgAiCiEJSUlIkvw4Tp7IAgLy8POTl5XltS05ORkVFRZ+yo0ePxp49e4wzNAiw9JFa\nRUCd7p6A2UQQBEEQhHq++OILvPPOO/jVr36FmTNnYunSpfjlL38ZarOIKIcc/dFDIM9lqNJC+dsm\npQvzDxozIljQGogINuH6fNBrSyDWAP6KcNXCIgHtmPoqdkx9FQ5Xk5eIhp0nX0wdmo0RVnUfcWqN\nwiM1V6TSmPF9AWDIHNN6bsN1bhNEpBNWIqA33ngD119/PSZMmCCIgDweD0ymXseQ2WxGc3MzWlpa\nYLFYhOPMZjNaWlp81n/ddSmIi4sNjPEhxGq1+C5E6IbGVz2W1N4IXjExveKftNQkYZtSeR6r1YL0\nq2Nuioul8fcDGrvAQuNLEP7j7upN66VaBJRAkYAIgiAIIpwYMGAATCYTbr75Zvz1r39FTk4ORWqO\nMIIhlAhEG+QgiEyk5kKgBECR6kwikZt/hEr8RfQ/aA1EBJtofD6Eui96nxn8uWBpvd6Y9ifY0sdJ\nnidf7fCiITX2qLFbLPZhxzHBD5/6i//dyGhJWsqyduk5ThDGEVYioNdffx0mkwlHjhzB559/jmXL\nluGbb74R9rtcLqSlpSE1NRUul8trOy8KkuPy5daA2B1KrFYLnM7mUJsRtdD4aqO5pR0A4Grr/YPH\n7e4StomxpCZJ7nM6m9Hj7nXufu1sofHXCc3dwELj6z8koiIALh1YrDoRUNJVEVCHuztgNhEEQRAE\noZ5bb70Vzz77LObMmYPi4mJcuHABbjeldY4UgiGUiGQxBmEswZwLke4ojVS7Q8355nPIr8lFZXYV\njSERcGgNRIQCvfe2UAkrQino8NW2v+sSdowtfZwgABLvU9MOW7MA6qLwiOsT95M9CwGgMrvKyx41\nAiWtY2HUOWZ9EQuiSBREEPrRl6snQLz66qv44x//iJ07d+L222/H+vXrMXHiRHz00UcAgEOHDmHs\n2LEYOXIk7HY7Ojo60NzcjNOnT2PYsGEhtp4gCAZz6sbF6rvFpCT1pgNztdMfTgRBENGMIAKKUfe8\nYOnAOigdGEEQBEGEBf/xH/+B++67Dz/4wQ+wePFiXLhwAWVlZaE2i1BJMIQSkS7GIIwj2HOB5hxB\nEIGE1kBEpMCEFeebz/WLdtW27e+6hK+bFwDpaYftk4reI25PHDWH9ZPfX5ldJQiAxOPApy3z9xwZ\nfY7FgqjaMzVBnUOhmKsEEUjCSgQkxbJly7Bp0ybMmjULbrcbU6ZMgdVqxdy5c5Gfn49HHnkETz75\nJBITE0NtKkEQV+nq9gAA4uP03WLMyb1BylztlO6FIAgimnF3MxGQciSgumPnUXfsPP636QoA4Pj/\nXBS21R07H3A7CYIgCIKQJjY2FmPHjgUA3HPPPVixYkW//Egrkl8YB0MoQWIMgqHn63KCUAtzfNI9\nhwgGtAYiIoVQCbJDKQRX27Y/AiAlcYp4u692WPSewroCyTrZfl7ow/7nRTP8fvZPahyY/Q5Xk1/n\niG9fL1JjNdgyBOsmbESZfYOiMMpIQilaI4hAEbYioJ07d+KWW27BzTffjD/+8Y/YvXs3SktLERvb\n+wV4Xl4eXn/9dbzxxhuYMmVKiK0lCIKHpWmJ1xkJyMwiAbVRJCCCIIhohkUCivEhAmIwcSkTDxEE\nQRAEQYSaSH9hHKl2E+GNEfNKy7VF87h/IxXhgCAIgviOUN0bQ3lPDlWkS73rFxa9R43d4ueekj1y\n29ZN2IiS+mKfbalB799CSmNlSx+HHVNfVYyyZCQUvZSIRsJWBEQQROTS2t6F5MQ41U5dMSmJcUI9\nBEEQRPQipAOLVfe8YGkmu0gERBAEQRBEmBDJL4wjXcBEhCdGzSu111a4zuNwsydakTr/NPYEQRD+\n0Z/uo3r7Krc+4dcvdkeDYrvzah+G3dEgROVRqpMJhPjj+Lqkov0owUQ2/v4NoxRtSO+x/P5gEol/\nzxGEEiQCIgjCUDweD1rbu2BOitNdR0yMCcmJcXC1UyQggiCIaEYQAcWoW5LGXRULdXWRCIggCIIg\niPAhUl8YR7KAKRqIVgebUfNKyqEVyPbkbNB7nFZhUrTOh0AjPv/hJgoLFzsIgggukXzth9t9NJDo\n7aua8nZHA2bs+6msEIg9v2zp44SoPErpxfgUYHx5OTEs26YkkuWfnWr6Ky4nTk8m1b4v6O8Qgggc\nJAIiCMJQOtzd6PF4kOKHCAgAzElxcFEkIIIgiKiGpfWKVRk5Li6ORQLyBMwmgiAIgiCI/gS9eA8N\n0e5g83desa/i1Y6P1vbUpujQe460CpOifT4EGn6cw0ncSOeVIPonkX7th9N9NNBICUl94ev8sv3p\n5gy8Me1PSDdnyJZl7bKoPGrb46P4SJ0vtg2AlxhIHEFIqn4poQ8fsYgvJzcOWuYQRfIjiMBBIiCC\nIAyFCXdYSi+9mJPiKRIQQRBElPNdJCB1IqD4q+nA3JQOjCAIgiAIImyhF/i+6U8ONq2cbz6Hkvpi\nrJuwUZOIRkv9apyz/p4jLceFYj5E83UaLtcVXecE0T+JhmvfKNsj4VmjNZKcmhRWbH+6OQP5NbnI\n3ZejSuwijt7DIgBJtScW/UjZwR8rjiDEw8pIjQEfsYi3w4hUXuKIRZEmnoskW4n+CYmACIIwlFYm\nAvI3ElByHDrdPYKDmCAIgog+WFqv2Fh1IqCE+FgAQEdnd8BsIgiCIAiC6E8Y/fLa19fERtQfLUSy\nczCQ8M4mNWh1GmlxzgbzHAWyLbmv+qPpegpX6DoniP4JXfvh86wJxfqA31+eVYH42Hgve8QReXix\nD4A+kXeYQEcv7FiWekxsC2+3kuBISYikB7FIKdzEc0pjHi7zmyCUIBEQQRCG0no1ek9KUryPksqw\n41spGhBBEETUojUSUGJ8DGJMJrR1ULpIgiAIgiAIfwnEy2v+Bb7R9atJv0BEB1odQFqdRlrTU0Qy\nctdNqBxt0TKuaulv/SX6HzTHCTmkRB3Bni9q1qLiqDdK+/W0nW7OwPLxK7yENCwij93R4CUK4sUw\nfOQdrf3gt+XX5CK/JleItlNYVyD8LpdKLJiEsm2G3NgpjXk4ipYIQgyJgAiCMBQWCcjsZySg1KvH\ns/RiBEEQRPTB0nrFxqhbkppMJiQnxqKVREAEQRAEQRB+E6iX12rTBOipV64++hq3/8GnjghE3dEy\nn8TXTaDGTA3RNK5q6G/9JXzT09ODVatWYdasWZg7dy4aGxu99h88eBAzZ87ErFmzsGfPHsVjGhsb\nMWfOHOTn52P16tXo6el9v7Jnzx7MmDEDeXl5eO+99wAA3d3dWLt2LWbPno0ZM2YI2/2F5jjhC7EA\nKNjzxddaVI3AXG6/2rRhDlcTHt8/3yvyD4vIU1JfDAB90nSJI+/o7cdgyxCUZ1WgMrtKEBhVZlcJ\nv/NtaEGrGMnXMUaU13us0tj5+juGBEBEuEMiIIIgDMVlUDqw7yIBkaOXIAgiWtEaCQgAkhPj0N7R\nBY/HEyizCIIgCIIg+g2BfnkdKIGR1Hb6Grf/wAtZAiVki5b5xL70Z4Syb9E0rmrob/0lfLN//350\ndnZi9+7dKCoqwrp164R9brcbpaWl2L59O3bu3Indu3fj4sWLsseUlpZiyZIlqKyshMfjwYEDB+B0\nOrFz507s2rUL27ZtQ3l5OTo7O7F37150dXVh165d2Lx5cx/xkV5ojhNaCNV88SXiUBKYy+2XEo5I\nCU8GW4bAlj4Ob0z7E9LNGV77+Eg//M9q+qFWsHK++ZwgNOLLSpXjf9abBktun1YBmD+CMSPTxNK9\njYh0SAREEIShsOgMKYn+iYDMyb3Ht1A6MIIgiKjF3dUDkwmI0SgC6vEAHe6eAFpGEARBEAQRGvrb\n1/RGpyIj+ge8wyZQ592fesPlOlb6uj1U9LfrtL/1l1DGbrdjwoQJAIDRo0fj008/FfadPn0amZmZ\nuOaaa5CQkACbzYaGhgbZYz777DOMHz8eADBx4kQcPnwYn3zyCcaMGYOEhARYLBZkZmbi1KlT+OCD\nDzBo0CA89thjWLFiBSZNmmRYn2iOE+GKFhGI1LHs+SknDlk3YWOfKHtybaabM5BfkytEAxJH/JGy\ng5VRK6jhbeG3+RIX8fWx9GF5b+VoSoPFjhWPixY7lMqztGl6jlV7TKgIlzUjEZ2QCIggCENpbe9C\nYnwsYmP9u72Yr0YCcrWRCIggCCJacXf1aIoCBADJibEAgDZKCUYQBEEQRJTBXrz3l5fB/qaF6C/j\nREij9BV7KAmn9Dj9MUpHOIw7QcjR0tKC1NRU4ffY2Fh0dXUJ+ywWi7DPbDajpaVF9hiPxwOTySSU\nbW5ulq3j8uXLOHv2LF5++WUsXLgQy5cvD3RXCaIPaqPnqNnnq6yWZ7FcBB+xyEd8jDh9l6/nrbvb\njYKDi2B3NPi0jZWRKqs1Pa6vNYBYWF2eVYG4mPg+9YqP4ffl1+QKIid+XLTYIWUX0DsWD+7NRu4+\neWGS3LHhTjitGYnohERABEEYhsfjQWu72+9UYACQZk4AAPzD1el3XQRBEER44u7uQWyMtuVo8tVI\ncyQCIgiCIAiCiGz8ESiocaAQ/YdwEtCFm/BGKn1IOIxTIAineUAQUqSmpsLlcgm/9/T0IC4uTnKf\ny+WCxWKRPSaGe5ficrmQlpYmW8e1116LrKwsmEwmjB8/Hl988UUAe0kQ0oifj0wAwaLj8GgV8agV\nyiiJhcTiJCZmkbJTqn4pwRAvEtp0z2bExcQj3ZyhuE5gba+bsFE2TZhcajBfAiE12NLHoTK7SnWU\nIwAoz6pAZXaVl716UoDJ2fPm9BpUTav2ubaKtOd/uK0ZieiDREAEQRiGu6sHXd0emA0QAQ1ISwIA\nXPpHu991EQRBEOGJu6tbRyQgEgERBEEQBBGdDLYM8XrpHmmIHShq0NpX1gZzjkSbM4AwjlCe+0Bf\nw3quNd6JGckCukizO9LsJQLLHXfcgUOHDgEAjh07hmHDhgn7brnlFjQ2NuLbb79FZ2cnPv74Y4wZ\nM0b2mOHDh+Ojjz4CABw6dAhjx47FyJEjYbfb0dHRgebmZpw+fRrDhg2DzWbD+++/DwA4deoUMjIy\ngtltIgKQulcF4v4lFs2sm7DRK3IMv0+tOIKVVWoL6CtmYemr2LH8PnF0HCk75YQ2TIwqbo8X1yj1\ni7WXbs6QbYe1JSdQkiorF4VJblzE9jhcTbL9Lawr6NO+FkGSkmDofPM52NLHqVrzaxECh8vzmQmm\nCCIQkAiIIAjDcLX3OmSNiAQkiICukAiIIAgiWnF39SA2lkRABEEQBEEQQN+X7uGM1Mt7lgogUC+y\nmYMAAHZMfRW29HGqytOL9ehHLKCL5nNvdzQgd1+O5muNOePkogpEAnIRGxjhJqSM5nlI6GPy5MlI\nSEjA7NmzUVpaiuXLl+Ott97C7t27ER8fj5KSEixYsACzZ8/GzJkzMWjQIMljAGDZsmXYtGkTZs2a\nBbfbjSlTpsBqtWLu3LnIz8/HI488gieffBKJiYnIy8uDx+NBXl4eVq5ciTVr1oR4JIhwQk4goub+\n5e/9TemZpPVe7steXpTC94+JcuQi+yjZqRRhT0+UF/Z8K6wr8BITSZVja2I5IZWSLeL+K0XvOd98\nDosPLMKDe7P7RG1iz125Z6/UNi0pzgL1HA3281mpHV9rm0C0SfQfTB6PxxNqI4KF09kcahMMx2q1\nRGW/wgUaX228+u7fcMB+DqNvvQEjbxmgWNaSmoTmlr4Cn6zRg4Wfn/j1+xiQloRnFvwfw22Ndmju\nBhYaX/+xWi2+CxEBRe0cDuR8X/ybQ4iPi8G0u25WfczFf7Tj7SONuP3G6zDu9oEAvJ8dkQzdW4IH\njXXwoLEOHjTWwSFQ40xro9AT6uuHvQCOBOe8nK3819OBbFurMyXcx7O/E6hzFI3nnontunrcqJi0\nWZUQTimCgPj6jYTxYvcZuftluPUj3OyJFGhdFHpCvS4igovUvcrX/UtpPcgEJXJRYPREglQTCcbo\nNSLfF6BvGq55tQ8LIhxeSCM3HkprfbujQaiH4XA1CdEv080ZXvXz7dgdDT7XBOJ+ifujNC7nm8/B\n4WrS1IZcm2zM1Nal5bwGqqw/qPkbz9faJhBtEpGF3nURRQIiCMIwWjvcAICURP8jAQHA9WlJFAmI\nIAgiinF392hOB5aSGAuAIgERBEEQBBFd6PlaOFTI2eorvYFRbQeyPBFcAvkltpHnPly+pmZf3O95\noFrWeSaX3kNcRpz6I1Ii1shFbADCsx90DyKI/k043Y+U0BOJR+pezKenkrofq7lP6zlGjb1ay/N9\n4aNd8naII+xJCYCkIu7w/eSj/7BUt6xMYV0BimxLhchAtWdqvOpjx/uKBCTVL7l9cuPirwBIKZqn\nryhGaglUWX9Q8zee0tomUG0S/QMSAREEYRitBqYDA3pTgrV1dAv1EgRBENGDx+OBu6sHMTHalqNJ\nCZQOjCAIgiCI6CQUL2r1Oqd8fclKEGrwx0mhlILDSMJNWCIntmNORDlno7gOfl8kOovU9IsgCCKU\nhNPzI1A2SAnC5VJP+no2sTJqU0UFGr4vLOUVAC9hELNZLpWW1POWHZNfkyuIpRyuJgBAujmjjx0j\nrKNQnlWB8qwKlNk3oMi2tE/aMrnonEr9Eo8n65NeEZYSfJuRIOA1GrVz18g5TmshAiAREEEQBuK6\nKtYx+yECqjt2XvjX3tkNAPhLQ6PXdoIgiEjG7XbjqaeeQn5+Ph566CEcOHAAjY2NmDNnDvLz87F6\n9Wr09PQAAPbs2YMZM2YgLy8P7733HgCgvb0dixcvRn5+PhYuXIhvvvkGAHDs2DHk5uZi9uzZePHF\nF0PWP7V093jg8QCxsdoiAcXEmJCUEItWEgERBEEQBEH4Bf+Fsz91iOsL15f44WpXf0fNl/hS25Qi\nDRiJGuejlMMsmIi/sBc7G6WQctxGA9HSD4IgIp9wESYGe30m9QwSi1SVjpWLNmkUWsaB7wsfrYWJ\ndRyuJp/iWznbu3p6s2rwQiNxWSY8KqkvRro5A+smbESZfUOfiET8cWrWRlJCnMK6ArR1tUqWXTdh\nY5/tWueT3Djw42bkHKV1P0GQCIggCAP5LhJQvCH1pSb3iolcbeToJQgieti3bx+uvfZaVFZWYuvW\nrXj22WdRWlqKJUuWoLKyEh6PBwcOHIDT6cTOnTuxa9cubNu2DeXl5ejs7MRrr72GYcOGobKyEjk5\nOXjppZcAAKtXr0ZZWRlee+01HD9+HCdPngxxT5Vxd/UKnbSmAwOA5MQ4tHd0G20SQRAEQRBE2BKo\ndEnrJmzUlEJAbBPvZAiVs0uN7aESKJEDQhqtKSvE5ZUiDahBq/DNlwAoWKm1xE4/3j65L+yJXuha\nJAgiFITDPTmQ6zO191YtNgRyzPSkIxPDnrWV2VV91iFykfqk8Hh6033x9TKYkIdtZ22w9gDIplsr\nqS8W0opJ2SG3jlg+fgWS41L6HMMEQnyUIKm1jz/IRVLSQjA/TKA1BREpkAiIIB5+sAwAACAASURB\nVAjDaG13Iz4uBvFxxtxazFfFRC1tbkPqIwiCCAemTp2KX/7ylwB6U2LFxsbis88+w/jx4wEAEydO\nxOHDh/HJJ59gzJgxSEhIgMViQWZmJk6dOgW73Y4JEyYIZY8cOYKWlhZ0dnYiMzMTJpMJd911Fw4f\nPhyyPqrB3e2PCCgW7u4eQUhEEARBEAQRzQTyRbZeEYXcF8+hEADJjU2oU0mEe2QkI9HSR63jIvd1\nuJpoN1LYHQ14cG+2XxGwxHYEI7UWSx0ilaqDtdvf8FdMFmw7CIIgQkWgBEBa7q1abPC1rtOL1nRk\naqLpKPVLLirPYMsQVE2rloz+w4Q8fNov8Vpb3A8m1mECf1v6OMl+MXvYGojvZ5l9A8qzKoQ1Fx9l\nsDyrQrBV/DeAXGRRPZGC/EkRG6wPE/rT+p6IfPTn7CEIghDR2t7lVyowMebkXhEQSzNGEAQRDZjN\nZgBAS0sLCgoKsGTJEqxfvx4mk0nY39zcjJaWFlgsFq/jWlpavLbzZVNTU73Kfvnll4p2XHddCuLi\nYlXZbLVafBfSyuU2AEBSYhwsqUmaDk0zJ+Kri62IiYuFJTUxMPaFiGjqS7hDYx08aKyDB411cKBx\nJoJNoAUsegRA82ofDosUF3JjI2VjsG016rz5Sp0RarTOB7Xjwtdr5JxLN2dgSGqmkMrDCIKRWotF\nHQhU/ZEAfy1omRPBcAaGw/2QIIj+SajWCVL3ViNskbqvGnmvVZuOzFebvvoqF5WHHaeUHmvdhI0o\nrCvACOsoWZvZNrujQYgoVJ5VgcK6AklxEesHiwJaZFuKMvsGYTuLMGR3NAh2s20l9cVe6zFeaMTX\nKTV2cvZLjaPaclJjEawPE0IV+VQKLddbOP89Ec62RTokAiIIwhA6OrvR2dWDAYlGioBYOjCKBEQQ\nRHTR1NSEJ554Avn5+XjggQfw/PPPC/tcLhfS0tKQmpoKl8vltd1isXhtVyqblpamaMPly33zPEth\ntVrgdDZr6Z4qvv6mt/2eHg+aW9o1HRsX2yuYuviNC7HwBMS+UBCosSb6QmMdPGisgweNdXAI1DiT\nsIjwRTi9GNX78jtQL3j5r5L5beHwgt7fMYoEgYGesdYjFlLbhlgoInVM1bRqQ8czWM6LUMyBcHHM\niK8FrfOuPzgDCYLof4RinSAn2jDKFjlBh68IPlojDSkJSny1yYQySiIosaBIShzDt8cfm27OgLvb\nDYerSbIdvr2S+mIsH79CEAyx4/h682tyBSExAMwbvgBl9g19BEr5NbkAgOXjV3i1y7fPBErlWRWC\nECjdnCEZFRFAH9GQ2H65OaMk/JU6f8F8DofDM1/L9RYOf0/IXXPhYFs0Q+nACIIwhMstHQC+S+Fl\nBMmJcTCZAFc7iYAIgogeLl68iPnz5+Opp57CQw89BAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0d\nHR1obm7G6dOnMWzYMNxxxx14//33hbI2mw2pqamIj4/H2bNn4fF48MEHH2Ds2LEh66MaWCovfenA\nekWibR0UKY4gCIIgCCIU6I0eFIjQ+XJ1R9qLZKl+RIrAIBhRqnx9Hc7+Z2MoNZ58agujiOa0EOHU\nt2B+5a+VQEUYIgiC8EWw1wlKzwWx6MUflCLfqLFJqX3xWkGrHVLpuvh1h93RALujoY/wh6XL2jH1\nVThcTV4pPu2Ohj7pPuNj4/uIa6TsYxF9GCYTUFhXIJn21O5oQE71/Sj5oAhFtqVewpzBlt6Ig5XZ\nVZg6NFtS4AR8J1AqrCsQbJdaWzHBLosSJGWP3PxVSu9l1NpEzfkP52exlms/1H9PqL1vsLKEcZg8\nHo8n1EYEi2j8KpK+9gwsNL7q+fyLb/D8rmMYecsAjL71Bp/lLalJqiI/vPH+GfT0ePDQ/3+LsC1r\n9GC/bO0P0NwNLDS+/tOfv3Zfu3Yt/vznP2Po0KHCtn//93/H2rVr4Xa7MXToUKxduxaxsbHYs2cP\ndu/eDY/Hg8cffxxTpkxBW1sbli1bBqfTifj4eJSVlcFqteLYsWN47rnn0N3djbvuugtPPvmkoh1q\n53Cg5vv/Nl3Bs7//GMNvug5jbxuo6dgvHM04dOwrjLttIG6/6bqoeS7QvSV40FgHDxrr4EFjHRwo\nElD0QtdP4FH66trfaCPhEq3EX+yOBskvpSMRqXMSiPOk9HU474DzFR3IXxvCff7pHYNI6BsjkmxV\ngr6Kp3VROBDp66JouR+EC1qeIf7cw/SeN63pIpnQQEskFb4MHwmI1bNuwkYAQMHBRTh7pRHft9wo\nRB4Up+xi6bZYatL8mly4u91ekQql1jBSdokj7TCxjTg9F6uj9kwNAGDq0GzFPvNtsAhBfDQhh6sJ\n6eYMr/blbBVHTlLzNwEvAJIro8Z2ueP5PlGEmsCj5pxF85j7+0zSuy4iEVCEQy96AwuNr3o+PNGE\nbTWf40c/HIRh37/WZ3m1IqC/fHQWX19uw8M/GSZEi4gWZ28gobkbWGh8/Yde6ISeUIuA/vblt1j3\n6n9jxNDrMWaYVdOxX19uxV8++hL/fPP1uOOfrFHzXKB7S/CgsQ4eNNbBg8Y6OJAIKHrpj9dPsB1k\nUqmuxKkRou2FrxaiaRykhDmAemebXJ1qRGRipxmfBiNQ4xruzmZx+hG9Tk+1bYViLKLp+gHCf04F\nGloXhZ5IXheFOkVWtKFnPPUIT408b/6IRKTWq1IprfhyTOTChD1MIAN4p/tiv0u1wZdliMVGUnXx\nAnLx814quoqU+MWX4Ig/no0Fbxe/T9y2eLzkbJSy35/1iq/5pCQyUqqXCCzROOZG3Nv0rosoHRhB\nEIZwuZmlA4sztF5zcm96sVZKCUYQBBFVCOnAYrUvR1MoHRhBEARBEFFGsEOfGxlKX097/O+BCFEf\nKaHkeTtDHarfSKTSNgDQ3D+p+SLXHl9OKq2GVvTO7XCEPx9q55mefgVyLHzVGa7Xj96xMCKdDkH0\nV4J9P4iE54A/aHlu8MewbWrHRu9582fcfaWhYmWY6EWqjwBgSx8nlGG/O1xNfVJasWN48ZB4H28L\nSzsG9Ip3WKqx/Jpc5O7LEURCfPoxFpGIryd3Xw7ya3LhcDWhPKuijwCIrZ2UUjbxawjWX1bHvNqH\n4XA1CanO+Hr4PjKYyCd3X06f9nhxEKtPCbk55ms+SY25VBkiuETjmIdyjUoiIIIgDIGJgFKS4g2t\nl4mKXG3k6CUIgogmBBHQ1ShvWki+KgJqJREQQRAEQRBRQCicR0a8jFSy+3zzOUWBi9TvRhEpzjg5\nR1O0IHWutQqAtArFWDkAaHW34oTzOAZbhnilr2B1q23bF2LBUySg5jzouUcY7eRQKwLj2w8n/LkX\nRcp9jCDClWDeDwJ17/O1jYcJLQLRNiAdUYb/Xa8QQ64dtXZJicy1rE+l2hdHtwF6RT2++sGXYQIe\nXigjxu5owIx9PxXSc0mxbsJGlNk3wOFqgrvbjcUHFqGwrgDLx69AfGw80s0ZWDdhIwrrCgSRUGFd\nAfLeyvES2JhMQO6ts1FYV4DFBxZJ9jndnKF6PcPER7zwqKS+GA5Xk1e/WR/Z/GTRGYHedGLnWs7i\nhPO4sI+Jidj5O+E87nW8HMEWWNCzOXyIlHMRqjUqiYAIgjAEQQSUGJhIQC6KBEQQBBFVuLv1i4Di\nYmMQHxdDkYAIgiAIgogKQvV1oL/tydnNXvCLI7GIywWqv+EaEURMpNhpBHr6yJxKWoViDlcTHv3L\nPHzlOodH33lEcK4xh5IacYUep2U4iDbUOknVIuf0VXOMv0iJwHyVDzf8ucb70/2BIKIBXymU1CJ1\nv/Z1DxcLLfTiqx29UR39vY8p2cW3yyLZANKiEPH6VOn8KImIlBALoPn0YWJs6ePw8r3bUWbfgPPN\n57zOH+szE+akmzNQNa0aVdOqUZ5VgalDs4VoPrb0cUJ0H1v6OFRmV6Fi0mZ0eXr9aQ5XE1rdbdjw\n8a/w2IhFiI+V/oifjZ0vEVV+TS4K6wq81mhMAMX/z7a/Me1PkuNgSx+HLZN/J/SfHzP2zC+zb8DL\n926XHUc+2qTcPqPXB0bWqzXaIuFNOKy9wx2Tx+PxhNqIYBHJeUzlsFotUdmvcIHGVz1rfteAc84W\n5E++FSaTb4euJTUJzS3tPsudd7pwwH4Oo2+9ASNvGQAAyBo92G97ox2au4GFxtd/KL976FE7hwM1\n3w9/2oStf/ocP/7hINz6/Ws1H1996Aw6u3qQN+kHUfNcoHtL8KCxDh401sGDxjo4BGqcaW0Ueuj6\nMRY+9QFB6IG92NcihGApL842f4HrEgfg8ZG/wN4zb3illgB6HaZKjjl/bA7VnPc1Xnpt03Me1NSp\npi6+HIs6IOfYNdpGIrTQuij0RMO6KNzuyXrufUrbeGrP1GDq0Gz/jObakWtPvD1YY+yrHSZOKc+q\nUHy+2x0NSDdnAIDX+RHXL14n8BFsmPiGP0Zp3SsuJ16LsIg3C9+dh+rpbwvt8udiXu3DKLItxQjr\nqD79FPediYly9t6PVybvQOnRtXB3u7Hqx2swdWi27FiysWGCKvazVH/k+qoGLXNIzfxSul78rVuu\nvBHzXsvahdY58oTyPh9M9K6LKBIQQRCGcLm5HSlJcaoEQFowJ/dGFmppo0hABEEQ0YSQDixW33Mj\nOTEO7Z3d6OnpN3p2giAIgiCIiEFr6ieC8JVCRG1qrlU/XoP1E8qRlmhB1d93CV+q8/WwFBZ6bVNq\nP1QoRWHwx0ESiDQ3WlKtsWP49CJyc4UgCIKh9l4TiAgSUpFx9Nz7tLTHoqn4i6/IdsGK6uirXUA6\nBRoT+EjBniWsPl4AJI5wJLVOqMyu8hIAsYhCdkeDZARMVpdUJEK7owE5e+/Hq5/9AQBQenQtMszf\n87KfjypUZFuKx979OU44j6Orx43CugKvttq6WlFYV4DaMzV4cG82Tl36HN9PvREjrKNQmV2FqmnV\ngkhMLMBh/4tTivERk8SRPfl5LY5i5Astc0jN/JITBkuJtKTKqEFc3oh5r2V9JY6OSXyHkevTaIRE\nQARB+I27qwdXWt0wJ0mHEvQHVqeLREAEQRBRhSACitG3HE2+mn6yrZNSghEEQRAE0b8w6iWl0WHs\no/XlKRF45JwxWp2ndkcDHnv35/jPYxWomLRZSI0hrlOLI0VL26FGTgCk1tElV0bKYagXPaIidky6\nOUOxP5QSgiAIhpp7TSBSyUgJENTao9dOo8WawRYc6FlLilOgDbYMEQQ6cnWJx0mcukvudz7lFNvm\ncDUJ/5fUF2P5+BUoz6qQjHDD6hLX29PTg5L6IjhcTajMrsKb02tkx9yaMhBDUjMxwjoKFZM292kr\nzhSP8qwKjLCOwqCUDGw5sRmrfrymj2CHt008V/mUYuxnAIoCp/yaXDy4Nxs5e+/vk85M6pz5i1oR\nHS/wkhJ5ab1mjL7G+HrVoEfAHkjCxQ6jCMSzQKmtYEIiIIIg/Obblg4AQEpSnOF1x8fFIDE+Fq52\ncvISBEFEE+5uJgLSHwkIANo66PlAEARBEET/waiXlEbUI/d1M0EA2l5y+3KuqHW+2NLH4c3pNaia\nVi0cJ2WX+At6KfivvX21LXZGhhNqx07qGhb3x6jrXK8TjTlhpfoTKAcdQRCRi6/7QSDuG0p1SkUy\n87dOvoxRqBUcGCUmV7uW5Lfb0sfhjWl/8hL6igU4SuJiMVLPFLl1AEtPydJvrZuwEaVH16KwrkB4\nbtodDV4CG3EEGVv6OOx7sBbVOW/3STsm1e+S+mKs+vEaAEBhXUGfdUx8bLxQf3VODZaPX4HSo2sl\nIxXxoibWr9ozNSisK/DqH6uPRUCSgomXWBozOdENv05Smje+9s2rfVh2rSWOVsTKO1xNklGftAqc\neVGRluOMIJzWOKH8my9QbQZrfEMxdiQCIgjCby582wYAMCcbHwmot944uNrc8Hgo5QtBEES0wCIB\nxegVASUxEVC3YTYRBEEQBEGEO0a9pDSiHnEd/nzhTkQXel5yywl2tLR5vvkcbOnj4HA14cG92ZLO\nJvb1vq+6tKR94J2RkRQdS+wwEzs5xcKmQDhJ1I6ROJqCXBm99YcbkWo3ET3IiRHk9kUqelJv6a3T\nHwdwMJ3/wYyipBQpx1d74kh/WvvA6pXbLl4HMDELS0/J2relj0NldhXKsypQUl/sVYYXnojFK7b0\nccK6Ie+tHOTuy+kTcYeJVdZN2Igy+wYAvcKb5eNXePWNtX2++RwcriaUHl0Ld7fbK1IRHymJpdAc\nbBkiRFFsdbcK5flIUOx/sbAn760cr75IiYv4bW9M+xPSzRmy80ZuTvG/r5uwUVKgJnXsYEtvGjUm\naGLbxPNC7VxmkY9y9+WE5AOIQKS9CpQo0Z/6leoK5HgHYnyl2gi2mItEQARB+M1XThcA4NrUhIDU\nb06KR3ePBx1ucvQSBEFEC0I6sFidIqCEWAAUCYggCIIgiPAh0l4C661H7ktbvXVRBKHow4iX3Fqj\nA/COmXRzBm5ItsLZesHrOP7rfV8RFbTazzvAwik6lpJTTexs5PsrFWUhWLZJlRPbZ2T94Uak2k1E\nF+I5yAsZ+uP8lItwIlVObpvWZ4u/Y+zP8cGMosTX4W9EQLl6GeKUVUqRZcQpwfJrclFYV4Ai21LJ\nVKMsKpAtfZyQwpLtyxp8jyAQ4tsHesXJcTHxeGJ0gSDUEc83W/o4FNmWYrBlCByuJjy+fz5qz9QI\nZdLNGYKwh61zqqZVCzaV2TfA4Wryio6TX5MLu6NBiKJYnVMj2C717OfH44TzOM42N6Lu7EGvyDq8\noIsXMJXUFyPdnNEnVRcv1mb7+PER33dYP8WCbjlxT5l9Q5/UduKIXGrn1mBLb8o0PuqS1HFS661w\nuV/y4xloUaLRa5lwioYkh5o+B9v+sBMBud1uPPXUU8jPz8dDDz2EAwcOoLGxEXPmzEF+fj5Wr16N\nnp5ep9GePXswY8YM5OXl4b333gux5QTRfzl/sQUAcG1qYkDqNyf3RntwtZGjlyAIIloQREAx+paj\nlA6MIAiCICKTnp4erFq1CrNmzcLcuXPR2Njotf/gwYOYOXMmZs2ahT179igeI/e+CAC++eYbTJky\nBR0dHUHpV7Q7bXmHFy9yAPx7KRsJL3T9xZ85EcnzychoVb7mCXPMmEy9zjSHqwnOtgt45shqry/x\nxV/vy2F3NPg9n4M9t+Xmij92MAcm30awHTr+Oqki8f4SqXYT0YV4DrJ5yUQC/Wl+KkU4kRJKKW3T\nIgDy536rJFgy4h7OBB6RAC8E5lNS8QIVqXPGM9gyRIj2U2bfICnsYELj2jM1ACCIbF797A944dhG\nQQgkFreU1BfjsRGL8PSHTwlCnfyaXDhcTYLwx+5owMJ358HuaEC6OQMv37sdpUfXAvCO6jPYMgTz\nhi+ALX2ccH5s6eMwb/gCISIOEyi1dbUKacX48rwISWo87I6GXnHNXWXYcmKzZNQgsYCJv2ew+nP3\n5SBn7/2CgJvBxo1P5cXX4XA1SaZgFQuA+HuWeD4oiaClYGVZ1Cdxf/ly4uuOT8XG1+WLQPwNwM95\nPk2aP8j1KxBrGSPrCtT4htvzMexEQPv27cO1116LyspKbN26Fc8++yxKS0uxZMkSVFZWwuPx4MCB\nA3A6ndi5cyd27dqFbdu2oby8HJ2dnaE2nyD6JeedLsTGmJBmDkwkoNSkXnWtq90dkPoJgiCI4OPu\nZiIgfZGAUkgERBAEQRARyf79+9HZ2Yndu3ejqKgI69atE/a53W6UlpZi+/bt2LlzJ3bv3o2LFy/K\nHiP1vggA6uvrMX/+fDidzqD1Kxgv/UIlCOFfaPNf6Uo5teS+plZCb6oGrYRi/Pxx4kk5KfobvDPJ\nl1Ak3ZwBjwcorCsAAKy7q0z4Cl7JGSRGKg2WlnPAf2EeTAGQ0jyTsoM5NOVslKqTpdYIpkNHrVAo\n2ggnBxLRP5G7b8jti3bE6Qil7k1qt6nB33WlOOKKEVHqpAThwUJvm2IxijglFS8u8SVuZ9F+pNbB\nTGg8fegMPL5/Pk44jwsimwHJAzDY/H3MGzG/j1CYRbZ5+Ic/84q+19XjxqL9jwrCHwDItNwotGtN\nGQh393e+MmZL7ZkaFL6/GK9+9gfBttozNXj6w6eE5zfrV3JcCsqzKvqMl5RwhdnNpzq7bcDtAPoK\nhhlKUXIGW4agalo1qqe/japp1X3KpZszvFJ58etAX5EKxX+3SLXvC1/iPiXEgqfK7CqvCE9qIyAG\n6hpj0aH4NGl6EUdqkhIChSNazoNWwq3PYScCmjp1Kn75y18CADweD2JjY/HZZ59h/PjxAICJEyfi\n8OHD+OSTTzBmzBgkJCTAYrEgMzMTp06dCqXpBNEv8Xg8OH/RhfTrU3Q7cn1hTu4VAbW0kQiIIAgi\nWvguEpDOdGBXRUCtHZQqkiAIgiAiCbvdjgkTJgAARo8ejU8//VTYd/r0aWRmZuKaa65BQkICbDYb\nGhoaZI+Rel8EADExMfjd736Ha6+9Nphd8xIsGE0oIw2JnSFyUU6kxBNi/HHeSO3T8jI/FONntDgs\nGsUOvuAdDEr7AWDTPZtRnlWBf333USyrL/RKfcE7g5TmqNi5pFWMFYpUOf44mZWQusYf3z9fl9jP\nH6TsVOOMDuV9kyCI6EAqKgxDSSgltU3rvUjtcb4EoHqj1MkJIUIR7YIXoUvZqDQGvMhHnJKKr0fp\nWSKuU2ptvG7CRuw98wZevnc7rCkDkRyXguXjV6DMvgFbp+zwEuAw+LnFpw/b80B1b4qu6W/D2XoB\nJfXFWPmjNQB6n83O1gte9aybsBEAMHVoNsrv3oT/PFYhRNQpPboWz935PKYOzfbqT2V2lWDD+eZz\nXtF3yrMqUJldBYerSdjGhE7rJmxEujlDiGAkhtUjHtvaMzVe6zkmqhILsJhdLJUXs5FfeygJusXn\nnNnAX8u8CFp8fsVzQU5QJ0bNvULttRPoa8yoiG68wF6uvnBcg8ndA3jCbQ355T++1HVcnMF2+I3Z\nbAYAtLS0oKCgAEuWLMH69ethMpmE/c3NzWhpaYHFYvE6rqWlRbHu665LQVxcbOCMDxFWq8V3IUI3\nNL7KXLjcivbObgwdci0sqUmajlVb3np9r6PY3e2BJTWJzolKaJwCC40vQfhHFxMBxeoTASXExyDG\nZKJIQARBEAQRYbS0tCA1NVX4PTY2Fl1dXYiLi5N91yN3jMfj6fO+CADuvPPOIPWmL+yFYSDCn4cy\nvLgaR5faL3P5F+l6X4IzYQYAxWgmfD18uoJgoibSkZpILYGaW75Qc57kjgP095/Bzl1JfbHsl/nM\nMVhSX4wi21KYTH33s+Nqz9Tg8f3zFeeqr2hBSn1hDrJgnyOj62NzjYe/xvXOCyNgkQjYeZW7JkJ9\n3yQIIvIx6j6i9xnu6zi19YqjE2ltNxzupw5Xk9e9n9lYZFuKMvsGL/v4ZxQrK143smcn66e4XvYM\nzK/JlVxrSq2D+ShB5VkVQqQfKbtOOI97pSzl2+Tte3z/fDxlexrP/tdqnG1uxLq7ylDyQRGsyQPh\ncDVh8YFFaO9uQ3JcMvY8UI2szEl46XiF0H5XjxtbTmxGVuYkoT9dPW6s/NEalB5dK0QDYmuogoOL\n4PH0CqvZtsUHFmHTPZu9xqjIthQL352HTMuN2PNAtbC9sK4A5VkVXuPPzlGRbSkK6wok17d8ulbx\nfFNaB0rBn/PyrArhWDnxl1jQJRXRy5cATrxPPL/4+vn25foT6GvNqPrF15n4/1D87aIGPfMgVJxv\nPodH98/Fx499rPnYsBMBAUBTUxOeeOIJ5Ofn44EHHsDzzz8v7HO5XEhLS0NqaipcLpfXdv5FkRSX\nL7cGzOZQYbVa4HQ2h9qMqIXG1zcnTl8EAAywJKC5pV31cZbUJNXlTZ5eR/HlK+1obmmnc6ICmruB\nhcbXf0hERfgbCchkMiE5MZZEQARBEAQRYYjf5/T09CAuLk5yH3vXI3dMTEyMV9m0tLQg9ECZQL4w\nDIeXkEqwtApySH1JKyfw8eWs4r8UVuvM0uI8CBa+Xo6LxyEUAiAtL+/tjgZBIKJGpKWmfjavlIQ1\nbDtzMm2+dysAeDmTWF1l9g147s7nFcVq4nFnc80XwTxHvINFiyDOH/EdAOH8hsqpIyW08uX41iJY\nCqW4iSCI8MSIe4Le54Oa48TiaiPuY+I1GxMCAcaJkuXSNcmJnaTu/UwcwotpAGnhBb9u5PuglMKN\n1edwNQn7fPWDFyczkRKDtXnCeRyP1OYj03ITfjt5q5eASCxcefne7Sizb0DFpM0Aep/DA5IHoPTo\nWgBAl8eNr10OfC/1O3FRXEy8YMueB6rhcDUJNi4fvwLPHFmNZ46shskEr+hIAODx9NrKBEwOVxPO\nXvkCBQcXCdGImI3V09+WTAfGb7M7GoSoPnKpw/jzyERCJ5zHBZv58ZEbdyWUBGJS+/hzz1Dzd4vU\nNSJnt5T4SU/f/EVrW0rXKOuPGqF2OCFnp9ScCQWDLUPw5qw3dR0bdunALl68iPnz5+Opp57CQw89\nBAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0dHR1obm7G6dOnMWzYsFCaThD9kvPO3hexg29I9VFS\nP0kJsYiJMcHVRo5egiCIaMHdzURA+pejyYlxaO/ojQJAEARBEERkcMcdd+DQoUMAgGPHjnm9y7nl\nllvQ2NiIb7/9Fp2dnfj4448xZswY2WOk3heFA+H+ojMQ+EqZJI4KI/eyVUvodd4hpaZsqF5CK/VF\nrV0sjUGw7WcONrUCIJYOjjnbpEQp/Hj46j+bD3ZHAwrrChTHkjmZimxLYUsfJ+loYv3ZcXKb5vRR\nWuZloBGnZanMrhK+uleyUW9qA3F5h6spZNcTmzNSDjMpfN2bxGXDKfUDQRDhj5b7hd57pq9nJPBd\nCiYjU1LyQgWlZ7dUGh1fSNUrdw/mI7CI7/1MHGJLH+eVzkoq4ot43chHiScYtQAAIABJREFUOZLr\n+2DLECwfvwIFBxcJz5LzzeeE1FR2R4OwnR97Jhoqsi3FY+/+HLn7crzanDo0G7+fWonfTt6Kkvpi\noa0TzuMA4BVBaOrQbOyY+irSzRlC/6cOzUZldhVs6eOw+d6tuD7pBjx753NwuJqw8J15yL11tlAv\ni6DEbCw9uhbZN0/Dpns2CxF8WJ8driZsumczqqZVe43LjdfchF+MKsDj++fjhPM4Wt2tKKwrAAAh\nZRi//mNjzsRbRbalgtiIF1azc876y9ZudWcP4pHafNSeqfE6L2x8pZ7t4nkz2DJEEFMxlK4Pvk72\nc+6+HEForfXvFr48bze/fmOCGXa8uAzfL1/XlZ5rXu26h7dBrjx/jSpFPgpXfN1nQ23796/5vq7j\nwk4E9Nvf/hZXrlzBSy+9hLlz52Lu3LlYsmQJNm3ahFmzZsHtdmPKlCmwWq2YO3cu8vPz8cgjj+DJ\nJ59EYmJiqM0niH7HuasioCFWc8DaMJlMsCTH44qrkxy9BEEQUYK/kYCAXhFQjwdobnUbZRZBEARB\nEAFm8uTJSEhIwOzZs1FaWorly5fjrbfewu7duxEfH4+SkhIsWLAAs2fPxsyZMzFo0CDJYwBg2bJl\nfd4XEeEH//JU7ESSemEfTZGUxH2Xe2nuq478mlzVQgYjYc4bNe1KpYNT4yxReunOHCRyX46zcryT\nqfToWsHJU3umpo/tSlGFpBybvPNRSzSZQCJlT0l9saxzixfhqRWdSTmsgO/EXszBGQr8EQ/6qjcS\nvlj3l1A7soj+hb+iw2DhS0Apt13LvcfovvHRW1gUFbED3qg25CJkiJ87asdEql72zOfhxcBs3SgW\nRbDtJfXFmDd8AQrrCoRnlJRghBcLidvixT2s3WeOrEZnt1tIm5W7LwcP7s1G7ZkaLNr/KFrdrTjh\nPC6cA4erCTl770dOdTZGWEdhy+TfCaIafn0xwjpKWJOwNh/fPx/Lx6/oM94nnMdlx/XUpc/xdVsT\nltUXwdl6Ad2eHlSe2inUy9tVWFeAi61OvHBsIxa+M89rnGrP1CBn7/1YtP9RYVvuvhwU1hVg5Y/W\nICtzEp6783mMsI5CSnwKHhuxCIV1BVh8YBGKbEuFdQgAYd3qcDVh3vAFKD261uscsL6ccB73SoHG\nREIP//Bn+P3USoywjpKcM/y5k1qrMPgIQmyO8FGjpIRbrK3K7CpUTasWBO1y60Z+Tcnbwpcpsi0V\n6uDnPX+98seJt/kS92kRPIvxdb8QC5eUyksJf6TqCWeC9bdpsMbB5OlHHvVoTN1CKWkCC42vb/7j\nd0fRdKkVmwvvxqFPvlJ9nJZ0YABQf/wr/G9TM3Im3Ixpd96sx9R+Bc3dwELj6z+UDiz0qJ3DgZrv\nz+2048xXV/AvU/RHcvzvvzrx6f9+g6dmj8btN11voHWhge4twYPGOnjQWAcPGuvgEKhxprVR6KHr\nxz94R4zSfj6UPnsZLE43IXVsuIbEV1snAOFL4vKsCsW0aVJjyZwTSscFCi1jwsqKz614n1oRCp9S\nAJAXf/CpFliKilOXPsey+kLcmHaT15fuUrbJ2aA2pZn4XIUiVRabN/w84ecem3dqzydfTnwMS/sW\nKqT6oNQvX/en/kSo5qdWaF0UeoxYF2mdb6G8fyql+lGyScs9Ve656Ksetc/NQKxffK3PpNIZabnn\n8s8TJjqJj433eu7aHQ1eqaIACBFe+LZZ1MC2rlZ4PMCzdz6H0qNrsXz8CpQeXSuIeArrCrB8/Aoh\nRRV7Nua9lYOzzY14ZfIO4TgAePa/VsPjgSDkYUIXAJj+5n0YaB4ES0Ka13M2pzobCbHx+MWoAuw4\nuQ1FtqWYOjRb6CdbXzDbgN61Rt3Zg3j4hz/zGlsAyNl7P9bdVYaHf/izPmPyr+8+ipxbZmLzJxVY\nP6Ecy+oLsfUnvxfaqz1TgxHWUUJ96eYMvPm31/GD634gjAEb18dGLML6hl/hzzMPoO7sQWw5sVlI\nH9blcaPJ9RWqp78tjGPurbPx2l93CqnKWCovoFe49PQHS+Fsu4BXJu+ANWWg17lytl7AI7X5KL97\nE3ac3CY5j6T+TuDHJt2c4bUO5D8w4K+t/JrcPung+HU5q6fIthTWlIEA4HPNJP7bhkVcEq9ZmXha\nLJSXq1PqHsRQsoVf66lBvIb2tSY24v4SzL/p9BCsZ5CedvSui8IuEhBBEJFDT48HTZda8b0BZsT4\nEclBDQPSkgAAl66oFw4RBEEQ4Yu7qwfxcf4tRa9P640C2fh1ixEmEQRBEARBEDoQf/Eq9WWj1Nev\n/O9yX4cqbQ9UPwLxpT77opg5reT6w17iS33NqzYij9FoEQDJfSks3qemTXFEA1+Re9i/8qwKFNYV\n4Df/XYaBKYNQMWlzn0gDal66s3PmSwDEvtBWU3+gz19+Ta6QNo3Z5nA1wd3tRmFdgaY0MeIx4wmW\nAEjKTrnr1Nf5jISvz31hhP39JdoRER5ouR8qRZlQM/f9uT6U7FQb+UJrG/y9TGn9oTbCh1EOeoaa\n9GKsT0wswSOV6kv8c+2ZGiGNKNArYo2PjRfSWzJs6eOEVJ9sLcUi6PCpQtn+Z/6/5+BwfYVVh5/G\nlY4rgqCn4OAiLD6wCK3uVoywjhKi17C5t+eBalRPfxvWlIFwd7vx9AdLsfDdeVj5ozWCAIhFk0k3\nZyDdnIEbr7kJz921QUjNxfpRnVODX4wqwNMfPoWswffg8f3zhX6ytUrurbNRZt+Ax0YswvLxK1B3\n9iCWf1AspMBiUY0AwJo8EL/57zJhvjABkLP1As42f4FrEq/B91IH47YBt8OaPEgQstgdDVj4zjwh\n4o4tfRwcriZU/X0XSo+uFYQ0bL0DAI7WJpT+11oUvr8YP8m8DyOsoxAfG4/N927FK5N3wJY+Ds7W\nC2h1t2L9x2vR6m5DYV2BsI1F1HnmyGpcaP0a6+4qwwjrKOFcMbHWCOso/H5qJR7+4c/6pMXi5xcv\n2mERofjUcEyAw+aWUvRM/m8Q1mdb+jhh3fnMkdWYXn0fcvbej9ozNX3WePwc5qP2APCKMiSev2oE\nQLx9Yvi/s6RsYXOKjaHadR6zXa6fvuzSip56grl2C9YaKZhrMRIBEQShG+e3bXB39eB7NwQuFRjj\n+mt6RUDfkAiIIAgiKnB3GyEC6n02nL1AX+4TBEEQBNE/CEcnNv8i05fIQPyyU0oQJFc3Q0p44S9K\nzkejGGwZIpmmQyyQkRKeRILjXuys8cd+5uCSm0diJxH/e7o5A8vHr4DJBMSa4iRTifFOWF91K9nM\nnEZSjitxnUaLzKREMPzc4Z1kLJ2FOO2E1jYCYbfSOZZyIuu5FkJ9/RgxjkbOn3C+jxDRh1IEGV4A\nKycUVTP31a4LlOrwda83Arnnotp7lLh/Rt6jxaIkcXoxOaTWfr4ET0zMUXp0LV6+d7sgIiqpL8by\n8Sv6iCVYmqzaMzVCtJXzzedkn+9Th2ajOudtbL53K9ISeyP0jLCOQlxMPJ4YXYCU+BQ4XE0os2/A\nvOELhGMdriacuvQ5SuqLserHaxBrisO6u8owdWi217nhhR4rf7QGZfYNwr7aMzWYXn0f6s4exI6T\n2/Dcnc+j7vwBPHfn80I/zzefw8J35uGZj1Yia/A9WFZfiAV/+RmW1j+JaxKuw8oPn8YDb07BskOF\nuNJxBUDveuYr13cpq4psS5FuzsDUodkov3sT/vD5dng8gLP1Ai62XcDCd+YJ58MDD545slo4F2yc\nWQQclrZrsGUIsjInwZo0EP/X+TF+Pnwhtnz6n3C4moQoSmX2Dag9U4PH3v05nr3zOVRPfxtbp+xA\neVYFltcvRZPrPAoOLgIArPrxGmRabsJtA273GuPCugJ09bgBQIhWJF4fi6P5AEBXz3eCZl4YdMJ5\nHA/uzUbuvhwAEIRi/N8YYmEZ2863l27OQNW0auzN+TOqp7+NqUOzJdd47GexCJ0XJonxVzwtl8aW\nv7b4a1VJhCdGbi2rBf5e7i9iu4Mt4g7WGilY7ZAIiCAI3ZxzugAAQ6xBEAFZeqM9XLrSEfC2CIIg\niMDj7ur2WwRkSYlHfGwMzlIkIIIgCIIg+gGheBHKt60E/3W03ItqX/Wq/creiJfVPLzzKhgvZOWE\nTvzvctEIwh02D/ydp/yY8F9z8w5EKecx27f0UCHa3O0wKQStlhOZ+Io8Jd4ndlxJOWn5r8WNitYg\ndqADfecO7wDjf+YjPKhtwwjE50qpDSUnsh5CKQAyYhyNEjKFo5CUiAy0zh1fTme5yIC+ysrV52td\nEMo1lBy8IJOJO6TKVGZXweFq8oqa429/pISkYlESL1yQa4tPS8XXKz5fcudwhHWUUH7dhI0os2/o\n88y1pY/Dy/duR+nRtSisK0CRbalgJy+a5o+zpY8TIgOxSC/lWRXYcXKbIDQqsi3F8g+KkbsvB7Vn\najDtzakofH8xpg+dAWvKQDhav8J/HqsQnld2R4MQcc/uaMCL9hdQenQtimxL4XA1we5owDNHVsMD\nD37z32VYN2EjbhtwO+YNX4AtJzbD7mhA3ls5cLiaYElIw6/vfhHzRszH1p/8Htum/AEDkm7A83eX\nCyLma5OuA9Arbn5k+HzEIAanLn2OvLdysPCdeXhwb/Z364CWc+jq6cII6ygsG7cCF1q/xpt/ex22\n9HHYm/NnVE2r9hpnNpYOVxO6etxYfGAR7I4GnHAehznBjM5uN444PsRzdz6PdHMGCusKhLEfYR2F\nQSkZuNR2CenmDJTUF8PZegHOtq9RMm4lKiZthsPVhNKja7Hqx2tQUl8MAMK5qMyuEqI08lFr+N+l\nIvnseaBaiPbI9nX1uDHCOgpvTq8R+gjAqwz7+8TuaPBqj59jLHoQP3fYz+K1SN5bOYLgiEcs8DcC\nZhubc1Jtiu+latdPUgIivZF6fEUN01qXnKAwFITTM0MPJAIiCEI35y/2Ol0HB0EElBAfC0tKPL65\n0g6PxxPw9giCIIjA4u7qQXysf0tRk8mE69IS0XTJhQ53t0GWEQRBEARBhCehehGq1tHk6ytYcZ1q\nv9znj2HoeVktZT8vXAoVzK55tQ+j9kxNxL9sVorepKVvctEgpByl/Ff5ubfOxtetDlxqc0Lu9RET\nfInt9GW7XD94ARDvpBXXKdUnLUg5RaREUVLHiJ1hRbalXk4yMYG43/DiLjXCKKlzw45VGjt/HVBG\nonccpRyVaiM4KdUZbiKI/kZPTw9WrVqFWbNmYe7cuWhsbPTaf/DgQcycOROzZs3Cnj17FI9pbGzE\nnDlzkJ+fj9WrV6OnpwcAsGfPHsyYMQN5eXl47733vOo/ffo0bDYbOjq0fWSrde6oKS8liFVbVgqW\nHkrpfhJqZ7IYNk7itFhiBluG9EkpJOXo19qu3LNM6me5NG2FdQVCSimpNEziZzcT7jAxCC/8EJ9D\nfp04dWi2EOGlzL5BVnArJY5lPzPhDzt+6tBsQTxiTRmIm665GSv/zzPYe+YNpJszUD39bVRNq4bD\n1SQIMVgEnUf/0hvJ51LbRaz88GlMr74Piw8swqofr8G2n/wBKfEpOHXpc0yvvg9LDz2JKx1Xrqbu\n6r1+l49fgdsG3I4H92aj9Oha/M/l/4GjtQmX2i4hOS4FObfMxOWOb3Ch1YG6swfxvP05PHzbI9hx\nchsqJm3GugllSI5LwQnncSytfxI9PT0wmXrFZL8/uR2WhDQ889FK1J6pQbo5Ayecx73W3MvHrxDO\nw5x/mosujxsL35mHR995BFc6ruC3k7eiPKsCLx2vgMPVhMrsKjw2YhHK7BvgcDWho7sdT77/b3jz\nb69jx9RXhfRjvz+5HYsPLELBwUVo7rwCa8pArzUQOxdMlMPPGbl1Hi+mZtGfHK4mOFxNiIuJF86t\nw9XkdbzD1SS0x1LH5e7LESJR8fObT4fGBF9S14LD1SSsLfn6leYiPx+Vfpb6ndkml05YbJ/UNib8\nkvsIgRcQSdngC/7vP3/vsVK26q3PiLVONKybSAREEIRuzl+NBDT4htSgtDcgLQmd7h5c/AelBCMI\nIrI5fvw45s6dC0Dbi5v29nYsXrwY+fn5WLhwIb755hsAwLFjx5Cbm4vZs2fjxRdfDE2nNOLu8j8d\nGNAbKc7jAc45KRoQQRAEQRDRTyicV2odZ0xY4Qv+ZX6RbanwUtuXU1/8ElarAEjO4bVj6qtIN2cE\n7CWvmn4BvWPx2Ls/R+6+nLB+2azGNrEjQa/zlX25z45j54p3HDLHHHPaVP19F75nHoLn7/4Nfjt5\nq6yYSEn8Iv5dbcoWsZNWCX+c6nLXmpQTVPx1NusDc9gp4a/oRK5OJWGUlmOl8MdhEyhnjx4BkJIz\nXa994SiC6G/s378fnZ2d2L17N4qKirBu3Tphn9vtRmlpKbZv346dO3di9+7duHjxouwxpaWlWLJk\nCSorK+HxeHDgwAE4nU7s3LkTu3btwrZt21BeXo7Ozk4AQEtLC9avX4+EhATNdmudO6GYa0zgqEV4\nZHT7asrw5RyuJqybsBFTh2YLabGUEO/3FelDyj72HBA72vlj5SKOyImUmDCjPKtCMp2pOEoTv58X\ngrCoQvxzjok32O9MKFRSX4zaMzVCvx2uJkEoyotj+eff+eZzeObIaswbvkAQoTDxSEl9MVb+aA0e\nHDZTmLvp5gwhfdVjIxYJAiRn6wVsnbIDv777Rfzloffw28lbkWm5CU+MLkCZfQOsKQNRnlWBLSc2\nY2DKIFybeB1S4pMxwjoK1dPfBgA89u7P8fPaf0FTy1d4bMQiVP19F65LvB5ZmZOwfPwKbP6kAtcm\nXIfvpfam6JozbC4q//oHFNmWAgC2nNiMx0Ys6n2We4AbkgciKTYZztYLaHKdR3xMPFb9n2cxwjoK\nP6nKwqPvPILpQ2fgX999FNOr78PCd+fhhPM4as/U4NmPVqHN3Y6k2GT8y23z8E3HJRw5fxjO1gto\nvPIF/vXdR3HCeRwlHxQJachS4y0YmDwIGz7+lSC62ZvzZ/x28lZsumczVv5oDS64vsbiA4twwnnc\n67wAEEQj5VkVWD5+hdc6jxeIMfg1A4sGVFhXIKwReYFzujlDKJP3Vq/oh22rmlYtCGqk5nN+TS4e\n3JuNnL33e0XdYv+X1Bdj0z2bsemezSg4uMhLwMRfQ3KReMTzUS4tovhaZvNeK6wutQIiI9YZ/qBk\nqxFCR61Ew7qJREAEQejmq4suJCXE4vq0xKC0x9ppdDQHpT2CIIhA8Morr2DFihXCl1daXty89tpr\nGDZsGCorK5GTk4OXXnoJALB69WqUlZXhtddew/Hjx3Hy5MlQdlEV7u4exBkhAkpLAgBKCUYQBEEQ\nBBFA1AiApEL3y9XFHDVl9g3CS21fwgwtL2HlxD5yX8sG6iWvGsEJa5f/Ij1cXzZreakuTgugp0/M\nGcDqYl95M8Rfb5fUF+OxEYuwdcoObDmxWTLSDT//tMxZqZ+lEDtpfQnQtDrVxXazMZCax7zIjd/O\nHJ68wEqKQH4BrVYwqKdeqWhOeo8NBfy8FtvCpw7UWzcjnMWG0YrdbseECRMAAKNHj8ann34q7Dt9\n+jQyMzNxzTXXICEhATabDQ0NDbLHfPbZZxg/fjwAYOLEiTh8+DA++eQTjBkzBgkJCbBYLMjMzMSp\nU6fg8XiwcuVKFBYWIjk5WZftekScgUYsDA7V9csLLpXK8OI+u6MBD+7NxuIDi1B7pgalR9f2iWKj\nFl/3PT4FJPufd7Qz2+yOBiGiXe2ZGq82pCLdARBSleW9lYPCugJZG6XsYyLe8qwKlGdVCOVOOI9L\nPp/Z7+nmDCGiz7oJG4VUaSzaDR8Jhk9T63A14cvmRrzwf8uEaHivfvYHlNQXY97wBSg9uhZ5b+UI\n/c3d15t2q7nzCpbVF8LZegFFtqVY+M48LNr/KLIyJwnCpE33bMaOk9sEgZGz9QIqs6sw/4eP4Urn\nP3D/TdMA9K4R0s0Z2DL5d0iNt+CVn+zAwz/8GXJvnY3LHd/gzb+9LvQ3ITYRv528FSecx/G7k6/A\nEp8Ga8pAFNYVoLnzCkrqi+BsvYAb027Gjvv+iKpp1RhhHYXrkwbgYqsT2z/bgjf/9jqc7Rfg7nFj\n+2dbYDIB/3LbPKy7qwwrP3wal9ouwQMPSsb/OzbdsxkjrCMBAFtOvIRn/2s1rMmDYDIBl9ouAVx0\nxSdGF+AvD72HLZN/BwDI2Xs/nK0XUFhXgMUHesVJN17TK4x6fP98Yd5c6bjiNacWH1iEhe/Ow4v2\nF7zWd+x8M6EXDxMJsUhGDJbmjAmNKrOrsOeBamGNyOYnLyTj22ARjzbfuxXfT70R6eYMr3UQH/EG\nADweCPOWF7KJ7WViNgCCUElpzcbq44VCtWdqUFhX0CeKEX9diBGLrtQ8//XcR7WIEH0h177W9ag/\nzwOp9XokQyIggiB00dXdA8c3rRh8gxkmpSTrBjLgml5Hb+PXJAIiCCJyyczMxKZNm4Tftby44V/+\nTJw4EUeOHEFLSws6OzuRmZkJk8mEu+66C4cPHw5J39Ti8XiMiwR0VSB6lp4NBEEQBEEQmvDHAWzE\nl5X8y3Txy1q5r1XVfmnvK82FnE1Go+YlNL+PjUW4oiUqFEsRonRO1bbHUgxIpRrgnSdFtqV4+sOn\nAEBInyAn/JJKKxYIfAnQtNbla7tUGd4hxX8t7yvqRDg41aWcwHlvqY+WpcdxFA6IoySxfjAhnL/3\n4EAKvAh5WlpakJr6XUT92NhYdHV1CfssFouwz2w2o6WlRfYYj8cjvJM3m81obm6WrePFF1/E3Xff\njdtuuy3QXQQQHIGZ1Bz253kjrlsLUtFu/h97Zx4XdbX//+cMM+yLOIIgpmUuaCFeSVvM8uteVFKG\nGV3LzCwqscDcfi7X5bolVlhxM6+Z3WzxukeaW7hlapTGN7M0UwQZGUBlmIFhtt8f4/n0mXFYVNTq\n+3n58AF8lnPO53zO8v6c9+u8X96ukZP7EqK6sWZQDov6ZDNn/yxsDquUd0P7puez1xZRRD7m1zaX\nWu1W0nPTiAqK5t2+S8nMm++WnmekO/mYlJ6b5kaIkCNPf4CkdfdLc668zGKejgqKJnXrSB5el0hu\nwXae3TIcs9Xsij6zaywTu08GXMSIt/LeZMiGJGbsnSY9U0JUN97tu5SBbRLdIsmI54wKipai/ggZ\nrYjASM5ZzjJu5yv0iunDssP/ZmL3yWjUWvSmYkZvS6XaXoW+spgRt4yiRXAMU/ZMIiIwkqYBOpxO\n3OyIqKBo5vZcIBGBnts6gjW/rGLugZkEa0PIOphJ0tpEKfJRRGAkKhXERcRTZCykbXhbekTdw8qj\nnzBn/ywmdJtCqF8oUUHRRARG4oMPfho/DOYSFvbKYsQto2ji15S4iHim3jldiloEYLFbsGGjxHyG\n85bzADhxUllTSYWlgqWHF/OPvZMpMJ5wlT3QFclpwq6x6AJ0RAe1YP49C/nswbWMvW08GpWWdw5l\nMb7bZGZ+M40HVg8gfcdoFuW9wZz9swCIDmpBRGAkye2GovVxSXQ93mEYsbqOUpSr3ILtnDYVsuaX\nVSSvd5HGEm96iFBtGPO//adEjhHklQfXDGDkl09Jx+XQm4rd+rsguwhC2YRdY92u87T5RNvINxzi\n2S3DJfKWOLeoT3atRB1h46pUv0fBkpOSRLQmeR8Qac/tucCtb3k+lyir1W6V/hb3yJ/NW1+vC57R\nty4lIqY31EXA9Ga3Xakddjn26OUSgP5qtpHmehdAgQIFf07oy83YHU5iIoKuWZ5NQy6QgJRIQAoU\nKPgTY8CAARQW/m5MXsrCjfy4/Fr5glBQUBCnTp2qtxzh4YFoND4NKnNEREj9F10CLFY7TicEB/oS\nEux/RWkFBvqi8VFxuszc6OW8HvgrPMOfBUpdXzsodX3toNT1tYFSzwrqgtgp+kdNX9wvFjkvx8Hv\nea9IUzh/LreMnmHzvS0oN7TMte0ivZ4O/uudf2PhUp5BOEfqa2911Y3c8eItf3naA9skSk5K4aTx\nFk1FOEXri4TTUNT3bhvzvcsj/zT0ek8HVkbCOObsn0VEYGSdRCDP57qWbbg2h4/eVEyB8ST5hkNe\n3yu4HMXy6EiXI6HxR4M8QkBjELP+KFGP/q8hODgYk8kk/e1wONBoNF7PmUwmQkJCar1HrVa7XRsa\nGlprGuvXrycqKopVq1ZhMBgYMWIEH310ZVGlasOV2BeXAnmfuNL85bYRNMzW8BwPvRFrvJVZDjH+\nikgl4nxDybaetpj8b/lxQVCKi4j3SqiOCWnJoj7Z0u8xIS3drhXpyucLeR6i/KLu5vZc4D63OMFg\nLpHSEuURUl8Tu08mQBPI4n7vExEYyQ3BrZl653Qy8+ZLEX8yEsZhMBmYuW8qTXybovXRMGf/LOIi\n4tGbisnMm+9WZvFTbyrm+S0jOWMuZs7dC3j7YBYvdnFFhCk1GXDg4F/5i3iv3zLiIuKlZ9H6aEmJ\nHcbcAzNZceRDxvwtg4m7x7K36GtKzQZ0Ac2kssdFxEvzjphvHm8/zCVPGhzDmL9l8OqOl3m5awZR\nQdESwcPphDW/rGLpj4sprHSt447oNIperf6HOftnkdxuKOCypaKCo7HabTy7eTjBviGUVZcCrvvn\nHZhFs4BISqtLeKLDU5y1lAOQdPOjDI8bwWdHV9Ap/Fa2F24hMiCKpn46Qv1CCda6vmnLq8oYt+sV\n5vd8nSl7JuGr9uPVHem8du9CJu15lVcTJrHiyId8cHgpWrWWsbeN55/fzGDp4cW0DL4Bg7kEpxNG\nfDmMYtNpxnQZy7Obh1NYeQqNSiPZgssO/5spt89g5dFPqLJVkRI7jBn7pqBVa5nYbSoD2yRK725U\nXCqZefNAFntAELlEVKrVD30upW21W0ndOpIATSArEleybOBHUt2813+ZRKLxxNSvJ+FwONAF6KT2\nLEg7nrKlnhEYAYkEJ2yOPP0BRm15mpbBraQ+JY9GJWyS2vq3sF17bvCDAAAgAElEQVTlkI8tRcZC\nr9GDaiPOeNqLwv6trQzyvlNXGeV2lshLnBPjhTheVxlry8fb8Wthr/wVbSOFBKRAgYLLQpHB9UER\n0yy4nisbD36+PgQHaDmhN7o5zRUoUKDgz4xLWbiRH6/r2tDQ0HrzPXvW3KDyRUSEYDA0LvnydKmr\nvCH+GoyV1VecXotmQZworkB/5jw+6j9voMurUdcKvEOp62sHpa6vHZS6vja4WvWsEIv+Grjajq8r\nTd/z/roWoT3v84w04ul0Eo4cq92K1kcrLQzXt4jszVnkbUepKHd9i8iei8+1Pfu1gqfD66+2sOwJ\n8R68OR7qcjhcLkEILm6PggAESI42b+nV9S7kedbnEKmtHXum1ZgEmksl5nheP2f/LKps5lpJUuK6\nuhzM3q5vzLbt6ZQXaSdEdeO9fsvcHL7y8nruwJc71C6FPPVHhbfx7XLxZ6+LPyO6du3KV199xf33\n38/Bgwdp3769dO7mm2/m5MmTnDt3jsDAQL799lueeeYZVCqV13s6derEvn37uP3229m5cyd33HEH\nnTt35o033sBisVBTU8Ovv/5K+/bt2bJli5RP7969Wbp06VV7xmvtRPUcly41f2/zdEMIQN7Gwyt5\n5ktNx3Pu8yRFeY7b4pw8aoqcuDB6WypaH60UmaehJAP5TznhaNnAj9Cbil1jdv9lzPxmGlPumC7N\nleK8zWFlxt5pLOqTTVRQNMnrk1jUJ5uEqG5uRNUZe6dx3nqWpzs9y4dH3sdaY2Vi9ylukl/we9QV\nuV1qd9oYd9v/451DWZw4f5zxu9KZ13MhzYOjcDphTs/5RARG8sDqAXz+yJcATOw+mRl7pzGv50Ji\ndR0BeC7uJVYc+RCnCvx8/EluN5RRW57mubiXMNZUkG84xKTd4zhdWYQDB2O6jGV43Aj0pmJUahVv\nfJdJrK4jwqV13nKOGfum0NRPhwYNQb5BxEV0Zs7+WZRXlTNz31SW/riY9/ovQ6PWoFFrSLzpKZYf\nXgqo8EFN2/C2RAe3YMzfMnj7YBbJsY+x7tfV3BTahvXHV/PAzQ9is9vYVriZMN8mvHbvQsZsf4kZ\nd80mIjCStO2ppMankX0oi3zDD5wxF5MQ0Z09+p2UVZUxu8drLM7P5sUuaSzOz2Zi98nM2T+LF7qM\nZumPi8lIGM+c/bOotlXjr/FnTJex5BZtY/bd810SYsC4Ha8w9etJZPddQkJUN8L9w5m4eyx3xtzF\n6/e+xdnqs6w7vpo7Y+6SiFUTdmcQERDJvJ4LpWhDz24ZztpBX0hRqeB30tmiPtmM3pYqRY1a88sq\nZuybgkblikok2r/oDyIykEalZf49r5OZN59lAz9yI8kI5OkPEBUUfVG/EfZFle339XUR4Qtc8mM2\nh5Upd0x3I8V7+x7wtJ/l/Uren1NykpnYfXKDxwtPW1Z8/9Vmr17pN4t8HJKPkZdi/18JkbMx8Fez\njf68XhIFChRcVxSVVgJc00hA4JJ9qayyctZouab5KlCgQMHVgli4Adi5cye33XYbnTt3Ji8vD4vF\ngtFolBZuunbtyo4dO6RrExISCA4ORqvVUlBQgNPpZPfu3dx2223X85HqheFcFQARTS5Pi94TrZqH\nYLU5KC5rGLFJgQIFChQoUKDgaqAxHF91hR+/3PTlTnS5w6gu2Qr5vfKw6J4OeZGmkF5Y+dBat4hA\n9YVUF+H3ve1K9/bcns8upC5EPrXV0fXa2Smvn4Y47vP0B65Bqa4OxHvYdNzl/JA7HlJykknPTfPa\nFry9G3Gdp2RBXdIF4lrxU28qliQpPMtYV5uUX+OZZm3lr00GRqRVn/TC5eJyZAuEg2nNoJx6STFy\np3F9O7kv5/lqu15ebyk5yaTkJLtdKyRf5GXRm4rdJDPk5xb2yvpLEID+ijvU/6+hX79++Pr6MnTo\nUObMmcPEiRPZsGEDn376KVqtlgkTJvDMM88wdOhQBg8eTPPmzb3eAzB+/HgWLVrEY489htVqZcCA\nAURERDBs2DBSUlJ46qmneOWVV/Dz87vmz3mt2mhdc/6lwFMiqyHEysbqiw0dP4W941kOz/s952F5\nOcXcKJcly9MfIG17KuAivqTnppG8PqnOedfzWJ7+gDTXRwVFSzJLD69zyV9FBEZysuIEIzYNI217\nKkXGQknqa8od09H6aCU5q1OVJ6U003PT2HQ8h8y8+bzYJQ2VU0Vy7GP8u/9ybgy9iVhdR9Jz0xje\n6RmJpJGem0ZGwjiigqJZkbiSF7ukYTCX8MHhpS4yRnA04X463j6YJRFrIgIjeXbzcIpMp1jzyyoe\nWD2AcTvT+a3iV974LpPUrSNJXN2PrIOZJN70EDFBLXm5awYrjnxIiDaUNw8uoLDyFON2pnPGpAdU\nNPXTsblgI+CK5NPUr5lUXxq1lpVHPqXc4iLJBGgCebHLy2hVfkzYnUH/Vvex7L7/MOX2GfioNBwp\n+wmr3UZ5VTkf/vQ+Yf5NACdN/XVEBEZSbavmje8ypQhHZy3lfGvYj1btsoHKq8tQo8ZcY+LzXzdw\ntqaMF7eNYm/R15ysOMGnv3xEoG8QSw8vpu8NA9ij30mYbxN0ATre/D6T8qpy3jnkkqKKi4invKqc\n2funY7XbeOdQFqPiUjlrKcNUYyLnt/X0iulDZt58YnUdidV1xOkRzWdxfjaL+71PVFA0bx/MYt6B\nWQzv9AwGcwngkkibe3cm/j4BxOo6YrVbiQiMpFVIa6KCoikyFhIVFC29a0H0Valgyp5JPLwukXnf\nzmLq7TNZOmA5c/bPkkg/ggD08LpEhm/8OyoV9GrV263vCwm5lJxkNh3P4ZH1D5BbsN2rLTEqLpUA\nTaBbfxASdRO7T8bphJnfTCMlJ5k8/QGvGx08+7B8DBLnxTmz1czIzU9d0veCPP26vv8a+s3ijegv\n8pGXX25D1paO/LvU23Fvz+LtmLATL9fObgz7vLFt/MaCQgJSoEDBZeG3Ytfu15iIaxcJCEAXqkiC\nKVCg4K+FS1m4efzxxzl69CiPP/44n376KS+99BIA06dPZ+zYsTz66KN06tSJ+Pj46/xUdaOxSUCt\nm7uiJxScUeYGBQoUKFCgQMH1xZUSgOpzBF0OAchzYVn8bIgDy3OB1lv5PNNIz02TdsvWlkee/gBD\nNiQxYXfGRZE7aitHbc/mmc+1iFJyKZDnW9f7FfIGdS3s/1EXmOF3mannto5we4aYkJYNJmHInSHC\nASh2Y9fVP8RubHmEAUFM88xTvkPZ02HgGU1B7AavT+altvOeDpXGboOCgFRbunU5XupydIu61puK\nJRKOcF7Vlt6l7tiu633K621hryyJ1FNf34HfnfkiH+EU/qtA7hhU8OeDWq1mxowZfPLJJ3z66afc\nfPPNPPjggzz22GOAK0rPqlWrWL16NU888USt9wDcdNNN/Oc//+HTTz9lzpw5+Pi45N6HDBkipTFg\nwICLyrB9+/bLIgZdzTbnjUDZUFzJuCoImvK0LiXvxnA4N2T8FGOZJyFSzFlyqSHPeVgeKUgQVuXH\n03PTcDphUZ9sBrZJdJNM2nQ8h+T1SW4OdrnDXVzzyPoHyDccwmq3ojcVozcVM2f/LHT+EUQFRZMQ\n1Y0l/T/gpiZtmHLHdPINh3hu6wgyEsYxsE0iE7tPlkgaUYEtABi9LZUqm5kZe6cxt+cCYnUdaRV6\nI+Aiicy4azZRQdEYayqYsDsDvamYhb2ypEg1KTnJ6E3FLM7PZny3yfjKSMH+Gn+m3jmd7L5LCNQG\nYjCXMPvu+YzpMpZw/3BOmwrRm4uxO+0k3TyYGXfNRq1So/OLIOe39didNubu/ycqFaTEPklM0A00\n84tkfLf/x/x7XsdHpealLi+zsFcW+YZD6E3FlFeXShGA+re6j6WHF2N32gEY0Po+3jr4OqWWEjQq\nDW8eXMCIL4exOP8dioynGLfzFYrNp6mwnifEN5QX48cAUOOwcKTsJ/TmYgqMJxi38xUM5hKig2IA\nMFqN5OnzsGPHCTTxDye2aUfp3Ox900ntnEap2YCxpgIVKobEDiUqMJoBre9n0u5xFFacotxSirHG\niMFcQr7hEIaqM9icNpw4cDpdzxSsDeG89Sxnq8vJOpjJoDaPMGHXWAzmEnxUasb8LYP03DSe3zIS\nY02F1Aan3jmdiMBI3vguk2e3DKd/q/vINxzi7YNZ2JxWDOYSVCoXkSqrdzZ6U7Fkn5itZo6dPQa4\n5OZeiE8jUBtIdt8lrB30BQ+3Hwy4okI+v2Wk9G0SFRTNnLsXcM5SzgvxaVJZBERbFG1tdo/XGL8r\nnZFfDnfre8nrk5i4e+xFkXlEv8jMm8+iPtl89qBrg8SEXWPd7GP5d4w3W070NdEHAV7umkFdqI0s\nKB8j6hpvvH2z1GaneebrzabzNm55pnMpRMi6NgaItnE5hPSG5l/Xubqe81LRmPOtyukU3fSvj79i\naHQl5PvVhVK/3mGutjImazcxEUH84+nu0vHcg0UNTiMk2P+yJGCKDCa25RXy4F038vA9bS75/v8r\nUNru1YVSv1cORfLi+qOhbfhqtPePtx5ly7enmPzkbRSUXHnaMc2CmPOf7+jf7QaG9mnXCCW8PlDG\nlmsHpa6vHZS6vnZQ6vraQJED++vij9J/rgZZpTHT9ExL/C0WUOf2XCCFvK+PYDC35wIM5hLiIuLr\nDfvuSWLyln9teYr8/ggRNGp7F+L4puM5DGyTWOu9f4TnqK895ekPuMkM1FdueXsQ8gPgWswfvS2V\nRX2y3Y7LSRDyd5+Sk1zrzmR5G5WT2oSMiKd0gRye+V1uvVwqGpKet2eSQ/48l0MglNdTXdJhlwIh\n1dKQcgknm5Co8fauxP2e7U6eBiDJ0vwV8EcZC64mFLvo+sNgMNY6fgo0xrjnbRzzHM8vJZ+GXiuf\ne+TEwYb0LVFGuFhmsCFzZG1jYF33eto53uZOb+OhZ30KaSORlrd0H16XyIy7ZjNqy9NEBUWT3XcJ\ngCTVNGf/LEk2bPimJxje6Rl6terNkA1JOJ2uiCwvxLvkoxb2ypLKIsi94Iqg0qtVb/SmYpLW3Y/d\nbicqOFqS55q4axxzes6X8pqwaywZCeOYs38WFZYKyqoNLO73PnP2z5LSEu9kVFwqugAdcRHxDPxv\nHwK0/jidYHfaOGPSE+oXRrhfUxb1yWbT8Y38K38RNrsNH7UPTf112Ox2ztWU80jbIeSXHSK53VBm\n7JvC6/e+hS5Ax7id6ejNxfRp2Z/thVtcEmU/vQ8qmN/zdV7d8TIqtYowbTillhJGdBrFf44sI7Vz\nGpsLNlJlM1NQcRIHDgDUqKXfAR64cRDfG76jpEpP88Ao+re6j89++RizzcSygR9RVlXG1K8nYbRW\nMKLTKN4//B5OnPjgw+ePbCYqKJrcgu2cOH+CgW3u477VfQEnPiofFtzzJlO/nkSl1UhEQCS9Wvbh\nv8c+weF0oFVrmd/zdWbt+wdl1aX4qHyICmzBM7eOYs7+GahUKsL9dJRZSgn3DSc1fjTh/uGM35VO\njaMGnV8zbE4b52vOMfX2mRIJZ80vq2gb3paIwEie/OJxzlnOolapea//Mubsn4WxpoKMhPH885sZ\nEhEqKsjVFjRqDeAivyzOz8bmsPJCfBqxuo48uGYANqdNql+csGTABwxsk0iRsZCktYkUm4qY13Mh\nbx/MkiTnhKTWpN3jcDoh1C/UrX88sv4B3u27VJKjy9Mf4ME1A1Ch4t8Dlkt2epHRFdHKU5pUkNze\n7bvUzaYX7d/msPLZg2sbZMOK/qo3FUtlN1vN/KvfEjfZPs/+JSTFBFJyki+S+pOPLXVF3fG0Jev6\nFqwrOlBdkN8rH4c9763Lpq+tDA1BQ2z8uuYGUfeNYSfXltfl2kVKJCAFChQ0CLkHi6T/n2w/ht3h\npGmov9vxa4Gmoa6dCieVaA8KFChQ8KeFiAQUGd44kYBuiAxGhRIJSIECBQoUKFDw58fVcOg21BnW\nkPOeC7EiYovYZTp6Wyp6U/FF13lChNrPzJsv/V2X40u+E11+XCz4PrhmAEM2JHnNS5StPlyLyBp1\nkWDy9AfIzJtf6w7XS422cjXQkN2yngQgb9Fq5BEFaouWk56bhs1plaRF5JFr5HUmlzepa2eyt/oT\nkX7ku6Ph953L+YZDDXruhu4ibigamp78mYSjd8iGJLdIXOJ5PNNqSNqi3oTD2Fs5LwVFxsKL6ry+\nNAQByFOqx/Nd1kbwiQlpKUl/XGu5vas1pjTGWHAtxjsFf27UN35eybgnv6e+9nwp+TTkWrk9I+Ye\nz2O1zdXy6+SSWnXlL/9dEIDm9lwgRa0Q45LnvZ7jlXwOFPCMVCfukY+H8qgmRcZCSe5LPi/I51a9\nqZhi02kiAiNZ3O991gzKkaSXSs0G5uyfxcTuk6WIQhkJ41h2+N8AZPXOZlGfbJxOePP7TOk6kU9U\nULQUrWdxfrYkHzb37kzUajU19hpKzHoycsdQZDoFuAg9CVHdmNtzAXER8UzsPhmNWsPifu8TFxHP\nwl5ZUv4i7Qm7Mhi5+SnW/LKKM1XF2Bw2nuo0AqcTAjVBlFWXUlFznpFfDifrYCZPdHgKtVpN0s2P\nUl5dxkM3J2Fz2thZ9BXGmgo+OLyUlsE3EKvryNSvJ+Gv8WdIuxS2FW6mqZ+OL09uJNQ3DKfDSayu\nI6/d+wYtglqi8fHBR6Xhg8P/JunmR3k3/y0mdp/MjLtmM/n26UT4RzKmy1giA5sTrHE5+FWo2Hgy\nB7vTRhPfcClqUKXNiAMHx84eI33H6AvXutz7TpwX6rcFUUHRrPllFRk70njz4AJWHvkULpy3O+38\nY+9kjFZX1J/SKgOfHV2Bw+kgzDeMid2msuDbeQRrQ9D5NyMiIJI5PefTNrwtrUNvYkK3KWh9NDQP\niCIl9klm7pvKvAP/ZEK3KTT106FWqamoOU+QJph5B2ZJknAz9k3hyU2Ps+n4RkqrDQzr+DRrk75g\nYJtERsWlYjCX8Ob3mQT5BhEZ0BwVKjISxqP10WCxV1PjsDB+Vzqj4lKxOqyM35XOkbKfaBlyA0Pa\npbBXv4eIgOa0CIkhLiJeascCugCd1P70pmKsdiszv5mG1W7DUHVGiuRTZHTJjM3u8Rpz9s+SZGyj\ngqJpFhCBLqAZc/bPkuTvAGbsncbD6xKl8SF5fRJz9s/i3b5LiYuId+vfIrqhRv17VCp5OT3HC2Ez\nCek8cJF7nuo0grTtqRdF6Jqwa6wUeRPcbVmbw8robakX2YP1yd2CewTNTcdzLorGI58nvKVRH7FR\nnpf43TNqp/yctznpSghAnvnXdr6uuSE9N+0iKdrLRWN/7ykkIAUKFFwyhJO1VeS1lQIDCPDTEB7i\np8iBKVCgQMGfGIbzVQT4+RDkr2mU9Px9NUQ2DaTgTCX/h4JcKlCgQIECBQoUNAoul+AgyB3CwWMw\nl3Cq8iSjt6W6ObG8LRYLyJ36dTntBBHAkwQidtwWVp6iylZVa/mFRNm1InFcCryRYOqq8+sFUZaG\nRGwSDgnh4JQ7AQVZRe6E9LaIv7BXFgGaQK/5iLaXENWNjIRxpOemoTcV10uc8uZkkDtLRVtckbiS\nid0nS5Iq9S3IeyM6yeujNtR2viFOcW/EvBWJK/nswbWSY1oQYOBiR3BDHOXy9+Pp3LicPuNZ5w1J\nY0XiygZFF6vrWFRQNC2DW9VKZroauNIxpT7C0pUSgK7XeKfgz4O6xk9v5xsKb+3Pc2z2JNc0NJ9L\nJRR5zre1OZHFeOiNOFNb/vJ5UO6kz0gYR1RQNBN2jWV4p2ek+VF+b57+AEnr7ncjEMjLkqc/IEkd\nyu0tT0lRkacgOYixfFGfbFYkrnQjIolnjAqKZu2gL9yI2npTMaPiUimtNjAqLpW4iHiWDfwIvamY\nzLz5kqyrICpMvXO6RCSSS3qm5CTz/JaRUnQfMa88ccuTzOu5kFDfMJoHRRHkG0TL4Bskwss/v57B\n8I1/Z8iGJCbuGkexqYiyqjKGb3qCqKBoKf/R21xlG99tMq1CbuTh9oMZ02UsI24Zxex90zljKsZk\nMzGi0yh0Ac14tN1jaFVaWobcAA5YfewzHE4H205tITKgOTa7nWqrhRqHhdl3z2fT8Y2crizCYrew\n5/QuVKh4scsYzpiLOV9zjmaBERwp+4m3D2Yxs8dsNGoNodow7NhZffQzQn3DAHh283Bm7JuCobqE\nFUeWU2o2UGkzokLlut5pw2w1Y6gu4YMLBCeB85bzqFU+GK0VOC9EDwpQu2ylAa1dUloz9k3BgYPO\nTeOl+9Wo0fk3I1gbQog2lABNIA4cxIZdkAerqeRfP7xFkekUT3UawaA2j1BWVcorX41m1JanSYl1\nyZPpK4ux2CysOvYpYb5NKKsq5e2Db1JuKcPhdJDWJQOro4ZQ3zAiAiNZMyiH1+99i9fvfYvhcSOY\ncvsMPjzyPgZzCXn6A7x9MIv3+i9jxl2zeblrBgvufYN/D1hOrK4jNoeNUrMBp9NJZGBzYnUdye67\nhBbBMSz4dh5mq5nPjq5gVFwqSwYsY8zfMsgt2C71jX/1W8KS/h8QERiJzWkl33CI9Nw0XuySRlbv\nbEJ8Q2gRHCORdQSRWkSwEuNQvuEQZ6vL8df4k9xuKOm5aQzZkITeVEy1vYrTlUWS7Jv4XomLiGfI\nhiSS1t4vEWdEhC7R7kWfzTcckmT45MRAYVtm5s2XbMx8wyFm7ptKhcXodg/8Locqt2UX9soiM2++\nRNCTj61yUqI3yL/ZPMvibcyrC96I6J7fh/XZ8PL7PG2ka2HX1PeMjWljNub3ns8//vGPfzRaan9w\nmM0117sIjY6gIL+/5HP9UaDU7+84cYF0Y7M7+ObHMwQHaIlv1wyVEDO9RPj5aqipsV3WvTVWOyf0\nRu7t0gJ/38ZxIP/VoLTdqwulfq8cQUGXrj+uoHHR0Dbc2O3d6XTy2VfHaN4kkP/p2lKaX64EN0aF\ncvTUOU6eMXJ3XDSB/tr6b/oDQhlbrh2Uur52UOr62kGp62uDq1XPim10/XG9+0+RsZBQv9Drkrex\npoI7ou+ig66j1/OhfqHcorvV63mn00lSW1e4//G7MhibMIFx3SdK6Y7aMoLX7n1dujfUL5Q+rfoB\nrh2qPWJ6Ulx5GqfTyfBNT9CnVb+L6iHUL5TOzeKl3fqhfqFu6XSNuo0WgTFMumOq5HiTpxHqF0r/\n1gPR+TejR8uebml7S68x34O8LHW9Y3Fc/tOzPNezjQjn3aqjKxncfojXcohrOjeL56Xtz5PUdjBJ\nbQfTQdeRPq36SQvaxpoKBrcfwpAOQxncfgjg/oyiHXTQdaR/64HkFmznH3snu7WNImMhL21/nlt0\ntzJlz0TMVjNfntjI2mOr6N96oNt1dS2k1/U+AjSBJLZ5iKigaIw1FV6vF+9EyABEB0YToAkk1C9U\nqo/+rQdirKnweq94Vm/nayubSPeTIysYeNP9Ul7DNz1BUtvBxIS0vKiexnWbyMxvpkl1KNpXXXVz\n9OzPfHlio9RH03PT6NwsHqfTWWsaDWmj8metqxzime6IvouXtj9/0fuX16187CgyFl50LNQvlIE3\n3d9gp0pj9LWG1HFt2HQ8h2EbH+OemF60CI65onI0dtmuFRS76PrDbK6ptx/UNibWd4+39ie/13NO\nSGo7uMF9sq7rvOUtn2897RC5jdC/9UAGtx/iRkZOWptIYpsHLxrXxBg1uP0QyUaKCWkpzVmD2w/h\njui7WJA3j7k9F7jZSADFlaf5+vRunr71Wbfx7OjZnxm1ZQRfntjIwl5ZDLjxPoJ9Qxi+6Qn6tu7P\nYx1S3Iitwr6b+c00btHdSnHlaUZvS2XTiRx6tryX9Nw0aX64I/ouacxPiOom1Uu+4RB//2IIfVv1\nJ6XjMAK1gbySO5r24R2Y+c00SaJLPFN6bhqPtHuUobEugs6oLSNYdXQlPWJ6MuDG+9h+aisTu0/m\n5iZtpbHdWFPBP/ZOZmGvLB66OYmRcc8R16wz7x9ewv03Psi/8/9Fhe08w2Kf5qezP+Ln488hw0FG\nxaVy4vxvvJz7Ijq/ZuT8th6typc3v1/ApNuncuL8b0zfN5k9p3dhw8aj7YbyU9mPnK85z9AOT5B1\nMJPnO49mw29rea7zi5wynuKF+DQebZ/M1oLNlFSfwWw3UWk1knvqK3KLtjG47WOcMRdTWVNJld3M\nzWHtOFT6PXannQCfANYfX8P5mnOcqzrH/5b+wNjbJrC7aCdPdXqGffq9DGr7MNXWan459zMA4X5N\n+cdds/hWvx+z3UywNpgahwWLvRqAxBsfwmQ106FJLKfNRRw9+zPP3ppKXskBNE4tT3R6ks9PrAPg\ne0Mecbou7CzKBcBQZSDENxSLvZqmfjpC/EIwW02cqzmL1VFDmG8YZ8x6HDho5h+Bw+mgym7mUOlB\n9ur34MD194vxL/PB4aWcqSpGpVJjsVVRUVNBjcOKv08AFdbzAFTZzdzS9Fb05mJKqwxsPvEl8RFd\nyMybx/ZTW1l3bA3hfk3JKznA3tNf89nPH1NWZUCND/MO/JMvTnzOhmPr2Kf/hi0nvsTmtOGvCUCj\n1qBRa9hesJUBN95H27B2rPt1NQGaIEJ8Q7g75h4m75nIp798zJcnv+CJDk/Rp1U/SqtKefP7haw5\nuopiUxEH9Aeotlex4fha+rTqx63NOjPh9skA/P2LoSzqk83Ttz5Lj5ieEqHj6NmfmfnNNOb0fI3/\nuaEPE/eMZdxtk9iv30ebsJv5vuQ7fNQ+7D39NRt/y2HyHdO454ZehPqF0iXib+Se+orHYh+nb+v+\nTNg1llt0tzJh11j6tOpHsG8I3aPuYM7+Waw5uopeN/QmPqILU/ZMlGzZFsExkk0MEKAJpEN4R34o\nPcjTtz5LTEhLaUzzNm6J77Rg3xBe2v48d0TfRYvgGMk+FDLOnnaUNztPlKXSWinZ4C2CY9zu8Qa5\nvSuulZdb/o3Rv/VAjp79WRobPMd08U2anpsmXS/KWtu3qtMXf8AAACAASURBVLwcV+M7SswPl2JT\nXU5ZLtcuUiIBKVCg4JJwutSEze7khuYhl00AulK0bu4Kj3is8Px1yV+BAgUKFFw+KsxWaqwOIpo0\njhSYQKvmruh0J89UNmq6ChQoUKBAgQIFVxu17Wr0dt2V5FHb8eT1SW67yT3hGclFfq/nDtFlh/8t\n7SwXkUfEQrrn7nmr3Urq1pE8vC4Rvam4zjDrE3aN9RqyXtSbyLe2naC5Bdt5ZcdLbDqec1H5PdPz\nthv1cuAZAaAuiZDaIO6pK1z/tUBt0ifeEBUU7TUqDvxeJ3LJOM+oDOLeImMha35ZRfqO0Qzv9Ixb\nGmJ3cFRQNCsSV7I2KYeVD62VdkXL87qUOhPXfvTjcklSyzNqESBFTRDtLz03jfKqckZufork9e6y\ndJ6SL/I6rU3uwFuZ5Pct7JWF1kfrdsxbnYs8BrZJdItOIc7VVQ8Tdo1lVFwq6blpjPxyOGar2U1+\nwts9DYkuVFcEEG9lF3JwtcEzekZKTjJ6U/FF9XEpBKDG6muXQ7IpMhaSmTefd/surVXi7Erg+f6V\naEAKGguX0ne8EYC8jS1XIotSWzlqi+BTVxQfb8g3HKLAeILcgu1u0XS8wfPZ9KZiSeLKU0JTjL9T\n7pgulU2MgULuZ2GvLCmaECDJscojUYjyizl59LZURm9Lxea04nSCwVwCIEX1SYjqxqi4VMney9Mf\nQG8qZuY30wjWhDJ+ZzrHzh5j1JanMdZUMGOviwAUFxHv9qzGmgqe3zJSKouIrJeemybJgc3ZP+ui\ncXpuzwUYzCWSrOyc/bPISBhHnuEA8+99nam3zyQhKoES8xk0ag0Gcwnjdr3C2B1jCNIEs/THxTic\nDt7+4U1qHFbe/D6TzLx56PyaMan7NJr66din34tarSYldhgrjnxIs4AIcn5bT6nZwIojH5ISO4zZ\n+6Yz9etJ+Kg0hPs1BWBIuxR8cG1E31H4FZUWE2H+oYzoNIqdRbkuKTCc1NhrcDgdqPFhW+Fm7NjZ\ndnILarWaL05swOF0MHHXOL448blUXw7s6AJ0lFlKASizlBKkCZYkvjadyKHGbuFbw34Ayi1l/Oen\nZagcUIOFfMMPqPjdR+eKFORy+6tUKgI0AQRpgrE5bAxqM5izlnLXOdQMaJ2I40I+NY4ayi1lhPvq\nUKMmzLcJOr9mTL19JjeG3Ui5pRQ1ap7qOIIXu7yMj9oHu9NGpc1IE9+mPHDjINT48P7h9+jQpCM2\np40zVcWM25mOscaI3lzM2epylh9eCsAtTeM4aynntsjb+ezoCgK1gTT10xERFImPSsPUO6fjdIK/\nxh+nE2bcNVuySTLz5hHm20QiB03YlcHLXTNo5hdBhH8kbx18nVd2vET6jtH0b3Ufa5NyWJe0kX/1\nW8J7/ZexuN/7TNo9jld2vES+4RBrfllFgfEEm45vBFwRpYZsSCJ5fRJp21Oldj6wTSKrH/qcXq16\nU22vYsLuDF7skka4f1Om3jkdm9PKjL3T3Pq6r4+W0dtSAZd0noj6mW84xPBNT0gSd3rzaVK3jmTG\n3mlU2cxexxHRp2N1HSVJsdq+zfL0B6RvBzGOyKO3iu8uETnIU1pWbivIo/WAS643I2GclJa371j5\nt5SnnebNDhTjmt5ULEVMA+/2cUJUt4u+ScS4WZct3djfUQ2xZb1dey2iFsmhkIAUKFBwSTh1wbna\nuvm1lwIT6NKuGQCbD5xSZF8UKFCg4E8GwzmXTENjk4AEQfRo4blGTVeBAgUKFChQoOBS4LlQ2hDE\nhLR0W0ytLd265KzqK1NdBBRPqS3Pe4VkhVxOSJRb7pwTznqxwJ0Q1U2SoPAsQ0xIS1Y+tJY1g3KY\nc/eCi0Koey6sespleR4XC9vgLhsiFqEX52cTHdTCzVnlTeqkIaSMhkKevmdeDSF+eTr+aiPWXCuI\n56jr/IrElYDLQSAW+oUMgiDviHflTWZLEM7y9AcYsiGJeQdmofOLQBegk+pL/m7kzg2Rb/L6JDYd\nzyHfcMir87g+B8FHPy4nfcdoKiyu6D9COkW05U3Hc3hk/QOSA0U4NUP9QogOimFRn2w3KQZ5+/SW\nd11Obs9+I34KB0hDnB/C6eKtH3rLT0CQ+lwSMCXM7DHbTWrMW5/2JBp5K4tnO66vnwnSmDwvvanY\nbcwSeabnplFhqSBte6pEbJQ7ohpKTrhc0kFjQE7cakh5L5Xk5k2eUSECKfCG2myGS+nfDU2/Ieca\n2k4bQuCpDXInOOBGSvWUAxvYJpEPBq7giVueZG7PBZLsqBhvPUmzwrk9sftkaZ7zlMoUc9rcnguY\ns38WKTnJEnlZToycsGvsRXPcKeNJNztNTq4WNtbUO6ezZlAOi/pkk5k3300mLE9/gPG70hne6Rny\nDYdIWnc/qVtHUmO34q/1w6lysuLIhyzu9z7v9V+GSgUz9k6TxmOAkV8O54xJz2lToSTLlG84xIy9\n06SIegBVNjPPbh5Oem4aH/24nOT1SaRuHcmITcMoMJ6QCEpCTuztg1l8/POHzNg7jXk9FzK47WOc\nt57DV+WHHTvnLK51wNfueYNw33CcOOjdsh/6ymLKLWW8dfANyi1lJN08mAndprDy6CfYnFbe67+M\ne2J6UVptwFBVwjsHF2HDxq1NOxOoDcBX7UdTPx25hdsosxgAF8mpzGLAVGMi57cNmGyV2J12ACpt\nRhw4sDmt0rPu0e9Eq/IFQKVSExveEQeu633wwWw1k1vwlVs7rLD+Xld+Gn/aN4l1O19mKcWKK4+W\nITe4nQvzC5PK87dmCdjsdky2Ss5bz5F1MBPHBQkxJw4+O7pCKsv5mnM4cVJlM1NuKeN8zTnKLKUs\n+v4Nxu9Kx98nACew9PBiFh1ciBofKU8flQ9fF+8mOqgFd0X1ZHvhFtSoCffV4a/x57H2T6BCha/G\nl0m3TyM6qAVHzv5EhH8kj3YYgho1xhojFTUVWGwWVCo4dvYYJVV6BrUZjKHqDON3ZTB+VzpxunjO\nmPWcrS5H66NhxC2jaBXa2vVurOdJiX1SClwQ6htK9g9Z5BZsx2AukWyDiEAX0cgHH46dPcZrebPp\n3bIfWQczyS3YDsDjHYbxYpc0nE6Y+c00qS8mRHUj33AIf58A5t6dSa9WvSXbV6P6nZwt7LIX4tNQ\nqSB160ie3TycPP0Bcgu289zWEWQkjCMmpCUD2ySydtAXZPddwqI+2RelI5dmFd89Is+H1yW6jRPg\nIhuN3uZ6VvmYLAiBelOxZMcK1Ga7iXFJ2PL5hkPA7+RBMX54koLEeCmXNhN1IuTExHlhv4kyZySM\nk6QIvcmBifTkNnB9tpu377Da0FDbq6FzTF32smd+V8MeU+TA/uRQQr5fXSj1+ztO6I04HE72/qjH\nT+tDQmzEFUUCuhI5sPi2zTipN3L45Fk63NCk0R3JfwUobffqQqnfK4cS2vn643rJgf186hzf/WLg\nzluac1N0aKPJgYUG+bL7h2J+LjhH13YRhAb5NkJpry2UseXaQanrawelrq8dlLq+NlDkwP66aIz3\nKhb5btHdepF8TV33GGsqGL8rw00SwhPGmoo6pZjqgmc4d7E4K0KX9289sE4pMB98eHXHy3z2y8fc\n2/J/pDDyIvy6/NmFZIeQSBKSNsG+IRdJjoX6hbpkDbYM5/Nf17P66Eq6RPwNp9NJSk4y0YHRtA1v\nL10r/ylPA34PUS8Ph5+nPyDJUvWI6cnWk1sY0mGoW5k902yoVFJD4Zm2/PfIgEhJouno2Z+9yv7I\ny3M9QtxfKsQ7/fLERrpGJnBXix5k5s13a9stgmPc5BDk7VJIEyREdWPgjffTtkl7vjd8yzfFe3nt\n3tdJiOomyQPkGw4xqO3DdNB1lN5lj5ierD76X1b8tJzVx/7LXS3upm14e6l+5G3fW1vq06ofPVr2\npEVgDCPinmX0tlQ2HF/L57+uZ8WR5ZRUlrDq2EoyEsYzoM39kmTB3zs9RXKHofS6obcU1UE4JYqM\nhW6SaPKyCHmE2ghAnnIJnhJX4jqAm8Pa0jXqNsDV9oVsV57+AI+sf4B7Ynrx2/njPBf/gvS88rzE\ns0QGRDJ+VwZ/7/QUSW0Hc+L8b/xc/jMvdX3ZrX8ZayokmRtvMjje6li8Y7kkRG0ygPJ3Iq+/PP0B\nktbdT+6pr0hs86Bb3p2bxbO14Euyemfz1C0jACSJCSFTJ+QraoOo90uBt/53JX2yIXUj8qjvGs90\nPaX5hITcHw2KXXT9MfDjAZJUk1y6sLY2J+/fnhKHnv1B3naNNRWSLSIn3Mjl/hpqV8ltEdG2L7Uv\nCnurR0xP0nPT3GwluRwYINkoTqeTwe2H0D68A1P2TKRzs3g3ia/+rQcS7BtCUtvBdI26TZICEmOo\nqAPRP1sEx0gypmO+eoEvT2ySJA2NNRXcHNaW57aOILHNQ7QIjsHpdJLz2wZGxj0njfuD1t7HHdF3\nEqAJBOC/v3zC16f3MLj9EDroOnKL7lY3mcgfSg7y36Of8WNZPnuKdpN575ukdU1naOwT9G7Vl8dj\n/879bR7gnht64XQ6iW3akR2FuWw6kcP6X9dyi+5WPvtlBRO6TeH4+V/Zp9+L1W5lz+mdGGuMlFUb\nuCP6Tl7a9hxOJ5RWlTAq7gWm751MkG8QM+6azQ+lh8i8903iIuLpEdOTCbvG0rd1f7YWbOb5zi+x\nqyiX70u+43D5/zKg9f2ctZQToAkg2DeYQE0Q9910P9+V5PHQTQ+zsygXrUbLK13H8a3+ABZHNQfO\n7GNnYS6PdxhGgfEkodow3jjoIiRY7NUEaAKospv55dzPDIt9mh1FX2G2mTDZKgnUBGJ1WAn1C2No\n+7+TX3qIcksplVajJN0V17QzZ6rOSFF8ekTdw6nKk1idVqw2KzanjeMVxwBQo6Z9WAeKzIX8UHrw\nggxYDX4qf5r6N8VsMxHgE4jZbuJU5Um3NqpW+Uh5mGpMnDYXSefubdmbHUVfoUVLkbmQ3jf0laTH\nALRoJSJQiDaUIE0w1fYqQjShdNbFU2mrpMpehY/Kh0CfIIL8ggAuSH658nTixO50+fX81P44sFNh\nPU+VtYqTlb+hQkVTfx12px2tWsu2gi04cWC2mjh2/ihWu5UySynJ7R7ng5/+jclaiVrtQ7A2mLM1\n5TidsL1gCzanjV/KfybEN+RCPzHyY3k+Yb5NaOLflKdvGcm8b2fxeIcn+ezoxzicDgqMJwnSBtOz\nxb0YqkrQqLR8fnwdq4+tRKPyZUzXdJoFRqDzb0Zu0TZOGk/wRIenWHv8v7zQeQw3h99Mzm8byDmx\nnq9ObSWz15u89LeXaR/egVFbnkar8mXC7gzUKjWHDAf57y+fENu0I89uGc6k7lMZ132iZCvdoruV\nBXnzyOyVxQNtHiL31Fe0bdKOSXte5dWESXTQxUq2mtPp5OlNw7i/zQNsLdgsfe95fv+JsfXo2Z/Z\ncmIzm07mMCruBSbuGUvH8E68kjua3FPbsDqsLOqTTVRQtJttlnN8PU/f+iyJbR6SZJaNNRUYaypI\nXp8kSfWKcU48x5Q9E3mkbTLv5r/Dwl5ZdNB1dLND5d+xYswTfdhTijb4wvv85MgK6VnlMsFdo26T\npL3qmjcaYkvL4fnNWts81hDbS4zX8nS9XVfbd6VnWW7R3VqnNDYocmAKFCi4Bjhz1kyN1cENzYOv\nmxSYwIM9bgRgw9cnrms5FChQoEDBpeFqRQLy99Uw/L5Y7A4nSz4/jM3uaNT0FShQoECBAgUK6kNt\nEWtqg3zXt7jP87wcYtenOHep0Ya8pVkfioyFvPFdJnbsjL9tsrRgnLTWPUqFtx2YCVHdeLfvUqKC\noknJSXaTHBM7QxOiurG43/u83DUDq8NKem4aelMxFZYKRm15utZIOfIIH0XGwouuEzvsxQ5YsQte\n7HoVi+Ge0k2e9XW1kKc/IJFjxI5c8QyXWh75DtPrHdFD7PIdFZfKs1uGM/XrSRfJnQBSdBw55P0H\nXO/qze8z0ai0kvSJwMPrEnly0+PSrmqx49hgLnE5BP1CUKMmIjCyTik1z2PCYbw4PxsAq8O10z7p\n5sHUOKwsPbyYhIhuvH0wizz9AVK3jpTamN5ULEVAEu9ElE1OCJJHRZLLnHmWS9zvGanKc0d0Sk4y\nSWsTpf4inL/J65PI0x8gIaobs3u8xqbjG3lqUwrL8pe67c4WaYzelirtvhbPlG84RPqO0bzYJU26\nVvwfsiHJTepMXpdWu9WtjPL6le9Kl0e7qq0e5NeCS8KmiW9TxLKkZ/93Ol273cX1KxJXsrBXVr0R\nmeT1fqXRdRojwk5tu9rrG3cbkq683AoU1AZvkezqanO1RdPz1h+8XVtXmqL/1hfZzbOsl9MX5VHt\nAElqVJzzhMhDSFhV2cxeJVY9+5u4R8hNbjqec1H6i/OziQ5uwaI+rjlJzClxEfGsfuhzt7lVkH3k\nmLJnEklrEwGkSG4CnlKLA9sksnzgx2QkjEfro5UiJ4oIRgZzCRN2jWXT8RxScpKZsmcSKbHDeCHe\n9azHzh5jzaAcHm4/mH/1W4LNYeNf/ZbwQnwaIb4hhPvpyNPnoTcX82i7x1ib9AV3xtzFDSGtye67\nhIjASD57cC0RgZGk5CRzpOwnhnd6hoSobizslcWb32eirywm8aaHOG0qZM3RldidNkbFvUATv3Cm\n3jmdKXsmMSoulf8cWUZZVRnlVWUUGk9RZjEQrA0h1DcMO3beOfQmcbp4Pv75Q8Z0GUtkQHMA/t5x\nOOG+Opr4hpMQlYDT6cCJkxBtCOYLEk0Wm4Vlh5dcIMWABg09ou5BhYofyg/RI+oeAAJ9gth7Zg8A\nPmiwOC04JfJNCA4cHDn/EwAqp4oRtzxHkCYYi7Mai92CDz6E+oYRog11k/vq07I/kQGR0t9tmrSV\nfteipdB4CgArVpw4ublJO+l866DWUgQhcBGf+rUeQBPfcIy2Cr417KfcUiaV2Ww3ccak53zN7xHX\n+7Tsj1pGK7A4qjHZXMohNqwEaoJI65JBWXUp52vO0Tr4Jum5Q33DACivLsPmsLH08GKKTadRq9Q8\nGfs0YX5NaOqno7LGSNMAHSGaUM7WlOFwuu5v6teMpzs9iy5Ah0atYflPS7HarfwrfxFxunjO15wj\nJXYYT3Uawecn1qE3F3POchat2hcnTkqq9Izb9QqD1t7HWwffAGBQm8HkFm1jdo/X+OLEep758kmc\nTtCqtEzoNoWBbRKJCWlJRGAkzQOjWXn0E56Le4lw/6ZSpKCIwEgiAiJZnJ/tFl1HHhlVYHF+Nq8m\nTGL5T0tJWnu/9B2SbzhEYWUB4P69J/6Wj2dv5b3JoLX3MWPfFJ6PG81LCWNY/dDnxEXEs7BXFlm9\nswnUusYD+fi6sFeWJCMWFRTt9i0k8hdyvZ7fJMaaCuZ9Owuz1Szd6xnZRnwjimPi+T0hxsKVD/0+\nJokxW+TtzVbznDc8I4rKy9yQSKveoh/VF9FO1Jm4z1u0TvG7Z/Qf+Tl5fiKKElCnTXy5UEhAChQo\naDAKLkiBtbqOUmACN0WHcutNTTlScE6RflGgQIGCPxGuFgkIXJHienaOpqCkkg17TjR6+goUKFCg\nQIECBfVBLCg2xCnrzVklICcuiBDscoe7pyxFQyB3+nqT9KmNfPKvfktoFXIjD7cfTJHRJfFQYDwh\nhYT3fHb5Yuic/bOk/ESeefoDPLwukTz9AT76cTmTdo9j/K50nE4YFZdKVFA0gdoAFvd7/yLyiKib\nlJxkhmxI4oHVA3h4XaLbQrqcAJQQ1U1aCFapkBxzYjFc66O9KP2rDVE+4dxKiOomOfPki8uei8m1\nvevaHK/XC8sGfuSSR7k7kwBN4EVSb+B6HiGd4lleQShJ3TqS08YiUmKHERUULUl1xYS0JLvvEloG\n34BGrQFckl2j4lLJzJtPSuwwzl+QBjlS9hMTdo2VJBfkzt26nMNWu5UjZT+hUkGFpYK3Dr4OOAnz\nbcLnv62jwHiCvUVfc6LiNwzmEoqMhYzelkqFpYLUrSMBLiI5iXYnjm86nkP6jtFSX/B2nacTRPQx\nubzCisSVrE3KYc2gHLf+8mKXNCbsGstHPy5n3K5XePPgApLbPU72D1lSOYUDRfSFuIh4N9JWXEQ8\nzQOjiNV1JCUnmQdWD2DIBpezqMB4EoO5hLk9F5C2PdWNWCQn6Hg6SLw5dry9B2/vJ09/gGe+fJJy\nSyk2h418wyGGbEgiad39rvrMdcluCKd9Sk6y5MAWhKi65CAul1QjdyaJsfpqSIrVRqa4HFzOsyr4\nvwV526jtd2/3eLat2tqa+NvznBjX5Pd7GztqG8Pl9pQ3B7EnapszhXSXkJmUz83eyI1RQdGsSFzJ\nmkE5F0msCkev3EYU0l5aHy2j4lIlIqdIX9RDdt8lRAVF8/C6RJ7fMpKqC2QU+XjvWWcJUd1Yl7SR\nmT1mc8ZcLEkc6U3F0lgtxke5DRgRGMnE3a7nFgSl9Nw0BrV5hDn7Z5GRMI45+2cxKi6V06ZCZuyb\nwpz9M7E6rczYN4W9RV+TkpPM3qKvKaosZNPxjUzYnUFK7DDKLaV88vNHjOkyls0FGwF4fstIiWT6\nyPoHyC3YTnpuGucsZ3llx0u8suMlPvpxuSQPplKr+O/RT9H5N0MX2IwqaxVz988kud1QyqrKLtim\nP+DESaW1guc7j2b54aWuv2uMJN3sirw0oPX9fHZ0Bb+eO8aqY5/i6+NLmG8TPvppOWdryjhXc5bP\nf91AVFALdP7N0FyQ8+rcNF6S/PJT+6FChb82gD36nTgv2AgnK39Diy8WRzWOC7JcqFwRdFSo8EHD\nK13HoVb97poP0gbzzg9vUmUz46f2p9JqxI4dk7USo7UCfx9/6dofSg9y/40Pem2zVqx8q9/ndqzY\ndFoi7Zw0naRPy/74qVwRRTrruvDZ0RWcqzl7UVo2rOj8IgjwcZFJ/NR+qPHhq8KtEuFMg5Y+LfsD\n4O8TgC9+1DhqeP/H96R0RN30admfML8mDG77GD5qH5r5RzCkXQo++DCwdSIf/vQ+dqcNq8OK/YJE\nmclWiRo1apUavbmYUksJHx55nxfi0/hXvyX0btkPjVrDoDaDWXn0Y3CqmPftLML9w9GotIT6hqFS\nqfDX+NOnZX9aBLVkfs/XWdL/AwK1gahRM7DNfcztuYBerXoz5Y7poILX7l3IvwcsZ93x1eTpD7Dp\neA6jt6Uys8dsRsWl8m7+WyS3GyoRxgFCfEOZ2H0yadtT3cYIYY+M3paKr4+Wid0ns/LoJwDM7ZnJ\noj7ZEoFQ/t0j76cCYhx5LW82E7pNoWXwDWwu2CiNbaK/irFIbvMUGQslGTHR7/MNh9zsP2FHigiS\ngvA3elsq/j4BvNdvGWuTXLJjQzYkXWTDywnscngek3/7ivOedqJ8vJRD3Ce3kcX4LsqcvD7Jq23t\nmU5tdmZdZHHPNMT3lzfST21Ebs/nlZPvPeujMaCQgBQoUNAgOJ1OCs5U4qtV0zz8Ymb59cADd90I\noDh6FShQoOBPBMO5alSALsy/3msbityDRdL/mMgggvw1fL73BP/dcUw6rkCBAgUKFChQcC1wqbvO\nPaMyiIVjsQCabzjEc1tHkJEwTlrMjQqKZmGvLDeHjye8Obs8FyTljiiofdExIaqbtOibkpPM4vxs\nptw+g4FtEvnox+VSfsLpLhaFxW5YsatUXtYw33COlP3EKzteothUTLifjpe7ZjBpz6vkFmxHo3Yt\nSHs63MTi7MJeWUy5Yzpl1Qae7DhCWkgHF9FHOOTEorDeVCztgpc7yeqqw6sBOQFo0p5X3SIiyess\n33BIiuQinADib2+oL0JDY8EbUUP8lJPMioyFvH0wi+R2Q93am3xx3JMYVmQs5OF1iQxaex+L8t5A\no9ISpA1h/rf/ZM0vqxje6RnSd4xm03GXk+K9/svQqLSkbh3J8I1/Z+LusQxq8wgPtx9Mq5AbWXDv\nmyzOz2Z4p2fIzJvvVneCqOG521e8gypbFeN3pWOqMVFuKSfMrwkaNAxuO4SSqjMEa0O4M+Yulg/8\nmLiIePSmYmxOK3anjWLTacmRmZ6bxsJeWQDS+xu9LVWK5PDBwBVk910ikVREH5ITVuS7yvP0B0he\nn8Sgtfe5EYFiQn6PdiWcv71a9WZuzwW88V0mIdpQIvwjubPFXeCER9s9xmljEc9uHi7Vp3AMiUgP\nefoD5BZs56ylHHAR9EqrS6ixWymrKuO9fsskkp/TCcnthjJh11j0pmJpp7m3NultDBLvwZtjXR69\nC0CtVjMs9mn8fQKY+c00ptwxnbl3ZxIXEc+KxJVk9c5mwq6xbiTFuT0XXBSZw3M3d13tvD7IyQrC\nMXWlqI3w05i7xBUCkIKG4nL7RG1/e84Z9d0P3slCDXGyyh3EnlHLBOHac24VaQ9sk8iKxJWsfGit\nNJZ7krAFqTV5fZI0XomocPJ8nts6QiJ1i7FPzIWxuo60DG51UfpiTM43HOJ0ZRF2pw2NSutWh7XV\nWUJUNwa2SWTO3QuYsDuDB9cMYPS2VKx2q0SqEfUKrnnRYC6hZXArIgIjGb0tlWp7FaPiUpn/7T85\nW11ORKArAk2sriPrkzaxfODHTOw+BV+VLyM6jWLl0U+ospl594d3cOLk018+wuFwRXGxO+yUVOkJ\n83NFgzlS9hMFxhO8uuNlNh3fyLt9l7I4P5uFvbJYOuBDIvwjUePD/G9n8+zm4QxqM5h/91+ORq1B\no9ZQZa2izFKKzWljzoEZzN3/T57u9Cwf//IhL3Qew41hNxHmF4YNl2yVHTsf//wfAKpsVYT76ph8\n+3R8VBrMVjMVNec5ZyknzDcMFSo+O7qCGrsFjUorRf35ofz3ecXqsPJ0p2cJ0gQzpF0KYb5NACis\nPIWVGuxOOyHaEDQqDfYLZCC1Sk2obxjh/uFSdBuA89ZzWB1WHDhc5KELkXMqbUYAqi/IjYl8Pzzy\nPioXPYbooBZu793Xx10yaN2x1VJ6ANsLt2BxWlzthw2BbwAAIABJREFU0nAAX1zX3xbRHZ1/M0K1\nrvfjcDqIj+iCyV6JFi0WhwUHdhw4GHnr8wRqArFh5Rv914T7NaXaXkUNFmwOKyabiWBtCGO6jOX1\ne99iSLsUdhZ9xSnjSd4+9AbdIu/gnOUsq45+ih07n59Yh9VppUuzrhitFfSIuoeJ3afguPBPkJ7C\nfMOIDIgiM28eT21MYenhxQRpg9lR+BVOnFgc1fj7BNCrVW9ejB+DucaE3Wmn3FJGbtF2Ssx63j7o\n6sc+Kg0+ah/2Fn0tkdLLqsqE4hlxEfFkJIwjdetIRm5+ihPnjzNp9zjeOZRFE79wVhz5kIW9slj5\n0FrpuywiMJIC40lyC7aTkpPMW3lv8sj6B1iU9wZaHy0vxKcxsE2iKyKPSss7h7IYvvHvpG4didVu\nlaJvwe8RFeWRFcEVsevdvkt5uP1gNjz85f9n77zjoyi3N/7dlk2yKYSQkJAAAQIhQOggRYqCdBFF\nOggCRlBARESjFBWvogIqXsV27SCKSA0EQiAQCDW00AMhkLakl+1tfn8sM25CQK4K3nt/+/jxs2F3\n5p13zrxz5sx7nvc5xMZMZ2bSdGcbDitxneff0ieKPunlFGe8/PROZ9lUMRYX30XExQliXLV26AbW\nDt0gqSIBKOUqiewo+lFAioFcY1Txu1VnvrvJ59fkx5f0WCrF7TURjYCbSN0hmlB+HbqFAY0Hs3bo\nBtY/Ei/FxbcjjLq2UV1F1vWY1d9fXH93VfX9PcLsrUiyIvnrdipFfxRuEpAbbrhxR8grMmA026gf\n7INc/veWAhMTunnFeurW9uL0lRJ+SXYnet1www03/htQWGaktp8apeLuhKEeSgXdY0IRBNh/Sovd\n4S4L5oYbbrjhhhtu3Dv80cm76pOCS3os5Y0Di3j78Jt81vcrBjQeLG0rltYSUZOSimt5KddtxMla\nMcnkuk1Nk56u/RMnPpf3XsHGzF/5Z9qHPL9nBv9IfUMi2sR1ni8prYir6GcmOVfFJmTGk1uZw5MJ\n47ludCbK/D1qgSBgd9jp3eBBXuzwCp+cXFEl2eZaKkMkR4Fzgv7pmBm8c+RN5qU8z9Ttk6ok/sfG\njyBEEyqVJBN/+7MqGndyXasnGcXvxP6Pa/lEFfUfkZAwJ3kWsTHTWZj6Ctcqspi+cypzkmcR13k+\nNsFaJbFYUz9uN+5uReC51XY1bV9dCWFSwjhppbCr+kl64UmuVl7hjUMLpOvumtgUFWjCfMNZdeY7\nSQEAwEfly1dnP6ehbwQ6WwUdgjrzxqEFZJVnoZApnEkanAmAj/qsxGq3UWouZmjjx3j78Bto9flM\nbDGZ5oHRWO1WPj6xgt5hfaqsGF7SYykzk6bfZM9HNw5mZtJ0VAoloZowpreZiRwZHzzwT97r9QEH\ntPuZ3CKWSksFT+2YBDjJPRO3jaXSXIlCpmRazEy+OfsviagXoglFq88nW+dUzlEpfkuciPe1mCDR\n6vOx2q3MTJpOmvYI6YUnGbZhkEQGc1VNcL0urokS8bqJ5VRyddmUmIspNZfw1qE3UMk92Ji5Do3K\nl3xdHlMSniAh00nyExNDk7dP4OH1A3gpZQ5+Kn8KDQV8nr6SJfcvY3b7F5izZyaXSi9JfTDZjSw5\nslhSt3ItZVGd6Oh6H4rEKDFhVH119Myk6ZLKj7gafsn9y1h1/lvGNp+AIDjL3byUMkcqZxGiCWVS\niym8ffhN4jrPl8rYGG0G0gtPMjZ+hERerI6aVNbu1I/XlJj6vX1v9/vtCD//CYpfbvz/we+Rm//d\nsSg+D+DmpOntjl8TbpdkdYWY1BZV5aoTrm9Vesb1U/TRrgRWEWLMIpY0td0ob+rqF8SkevWks9j2\nR31WSv7TlZT5Qod5xAS1oYFvBF/0+4a1QzdIvkyM425X+mZcyyf44qFv8PXw46M+K/moz0qWpb0r\nxWcicUksBykSqm2CFa0un+aB0bx9/1KJECruB8447INjy3in53LSCo+wvPcKVvb9Ei+VJ0qUvNTp\nVf7V/zt+vPA9MmT4e9Ri9fnvies8n94NHmR5r4+o7RXIhyeWknxtN+BM5odoQlEr1chlchQyBRqV\nDytOLKPYWOxUi7HbqLCWMyTiERr4NcRfFUCBUUtSdiKxrZ4lOTeJMVETWJuxhiERjwAwuUUsnz30\nL2TIOVOSTpmlhM9OfYLRZqDSXEFd7xAeazoSg9UAN8pvCQLI5TJJtUZU1JEjx4GDdRk/c92Yz88Z\nqym3lFUpmwWgtxok1RwZMoZHjqLUUsz8/S/f8noBUp9FdAj6TfWpzFKKw+HA38OfOl5BEqlKRPew\nntLfKjyY1maG9O8Q71AGRwytsr1dZkctU3Oi6BjFpiJMNifhqGNQZ1K1KQyJeKRKCTFwloay2C3O\nc7TpMFmd+6hlnjdKqwnorJV8dPJ93jr0Bj9nrMaBs7SaTbCxX7sXpVxFkHcwgeo6hHiHEuQZzCHt\nAXxVvuzX7iXpaqJ03WZ2mE1tdSB6i57Hm47iul4rHR9BdiNmq8fkFrEEeweTXniST9OdY6uudwi1\n1YGEakL5V//v+KjPShbsf4XZ7V+glkcA7x79B3Gd5xPXeT4fHFuGgCCV0VuY+gomm4mXOy0gzLc+\nCpmSMVET8FH5YhOsUnwnxu+FhgKW3L+MpUffodJSwbtH/8HDjR7lq7Of0zWku0T+F+PXZ9rM4rox\nH7PdLN13AMnXdmETbpCAHFbSC09WiUnePvwmY+NHkF54krh9c9FZK7E5nGS3tw+/WYXcKCl+tZgi\nvTsu6bGUtRlr+KzvV3QI6VTjghS4uYShuA0gKQ2JflR8h6xeelXc/oUOTtXXWyn8uB5fLFUYogmV\nSFCu7x2uBKPq+4nfu/r66oo9rqhOABIX3bj2qXpceCsy6p08y6rvf6t/V18c9GegeO211177Uy38\nF8FgsPzdXfjLodGo/yfP6z8Fbvv+hh+TLqI32ugWE4K3Wvmn21N7KLFYbH+6HY2nksy8CowWO41C\n/QCICPH70+3+t8M9du8u3Pb989Bo1L+/kRt3FXc6hv/K8W612fkl+TIN6vrSPcYZnGdpK/+Stl3h\n463CZLGTW6THQ6kgOMDrv+LZ4PYt9w5uW987uG197+C29b3B3bKzOzb6+/HvXNfcyhz81DfHFuL3\nfmo/EjLjeSnlBfo0eKjGbWuCn9pPmvTr27AfO6/tYHnvFTSpFSm14af2I9Q7lMeaPk5UYDRp2iPM\n2DWtynHq+YQRHdCCnvV7S/2alDCOloGtEATBuX39foyMGs3cPc+x5vxqfs1Yy9bMeNoGt6OeT5i0\nT7BXMJEBzaR2tPp8QjShdAntRqfQztT1CmFMi3EMbjyUQkMBTyVO4r6QrrQP6Uiwl3PF+Krz36FE\nRdy+uZQYS0m7fgSZTI6vyo9jhUcQAINdj6fci/ePvUu5uZwIv8YEeAbQP2Igk2OeollAFG8cWOSc\nqE+Zx5enP+XXjF/Yl7eHaa1ncq74HKXmYk4VneDV+xahUWmIz9xEkFcwS4++w1fpX7Dq/Lesz/iV\nrVe20LpOG+k87/T6uNrydtfVdZuM0gs8tmkIPcN6ExUYTcvAViw+uIiWga2kyfNJCePoEtqN/hED\naegbwefpKzFajax48BNGRo2hf8RANCoNGy/9ymtdF7Ngfxyt67Spct3F83C91vV8wqQ+pWmPEJs4\nucp513QervtXbx9gXcZauof1YMauaQyLHE6X0G4s2B+H0WZgy+VN9K7/IKcKTvD24TfpFfYgL3V+\nhQGNB+On9qN1nTb0jxiIzqrj0Y2Dia7dgnJzOVMTJzKv46t8duoTdNZK+jboj1afz5nSdByCg2zd\nVQAyyy6ht+nYlb2TXuEPUM8njHxdHjuvbcdgMXCy6Dh27GSVZvHDhW9IzNrOY5EjOV54lF3ZibzU\n6VW6h/cgITMejUrDzms7iI2ZztK0d2gZ2AqdVceX6Z8yvfVM2gS1o21QOz5P/4RKayUNfBrxzdl/\nobNWklF2Eb1Vh8Gq55D2ACWmEkrMxRjtBnRWHWnXD/NixzhaBbUGnCShTiGdOVFwnMejRjGx5WSi\nAqMBZ0mw8VtH0qfBQzwS+agzGeMTRlJ2ItuvbCMpO5FKSwXtgjowd8/z5OlzGBs9gSkxTxOiCaXS\nUsGjGwez5fImrA4rves/yIRto9lyeRNlpjJOF58EQYaX0gtPhSdF5kKsggWb3Y7eVimV3DhWkMbo\n5uOo5RHAxydWUG4po7a6DiOajeZg/n725+7DZDdytuQM41o8QWO/SL49+xULu76OwaonNW8fCpmC\nsyVnaF2nDTqr7ia/5Kf2Q4GC5/fMoGdYb3RWHV+kr2R083GMbzFRuj9E2/ip/Wgb3I6dVxMZEz2O\nLZc3senyBqICotmbl0xm+WVe7/Ymo5qPITV3P8+2ncWMpKf56cJq4i9vQi6XMzZ6Am2C2jJv7xy0\nunzSCo5SbChmY+avRAVE80Knl6okkWITJ7O89womtnSujq+0VEj3SaWl4o7uefEZ8Hu+4k58ievx\nXe3Yp8FDf1jF59/1eX8X3HHR3w8xLqq0VDAscniNY676OL6T8VVpqWBdxlqGNxt5E/G4pjZuN+Zd\ntxX/TtMeqdEH1fMJw0/tR7BXMO1DOuKn9qNlYCt61u9dpf2azkHc9uWUuZItcitzyCi9wIxd0xjf\nYiIjo0YzvNlIogKjGRAxiOHNRkr7AuTr8ohNnEz3sB7U8wmTCNuDGw+VfKD4rBUJQJNaTGHlqX8y\nLHI4PcN7SaSD8VtH8lKnVxnX4glm7ZrOZ6c+oVf4AwiCcFNM4Kf2w0vpLfWtnk8YfRo8xLnis/x6\n6WeSs3fz04XV7M5O4tX7FtKkViQzdk1jVLOxJOfuol/DATwWNYIWtVtisOqJS5lHni6HvbnJmKxm\ndlzbxtjoCdIzrJ5PGN4KDenFJzldnM5jTR9nYKMhbM/aRoWlHBkyDuUf5JeLa5jQchLRtVuw8+p2\nThWfJK7TfLqH9yA1N4X9ufvQqHyY0+FFjhccw1PpSbhPA/bk7OLJlk9xRHuIzPJLzGg7m34RAzhe\ncJzHm47is/R/0r/BID45uQK7w8G5sjMMjxzFQW0qYT712Z+3l9ntX+RM0Wkcgp1SUwkBnrXpHd6H\nnzNW4+vhi7dSg9FuxMfDhyJDIQabnnOlZyRFndrqQB5uPIx8Qy46a81zmhqlDzaHFYdgx0fli9lh\nIl+fh9FuxOq4/TvHxbILVf6dZ6i66N1bqaHSWoHepqeJf1OOF6ZJvylRSnGTAzuXSi9itDtLyA2K\nGMqRgkNUWCqkPpodJuzYaeYfRZG5SIoLrhu0TG89izmdXmTT5fXMaT+PYwVpWBxmThefwt+jFkq5\nEovDzICGg270WUCj8kEuk2O2mxAQQAC7YCdAXRvDjX6Ak2SmkCmptFYwu/2LpObto8RSjEblg8Vu\nJrP8MjJklJiLUcs9Sbq6Axs2rlVm4aX0psJczvCmo0gvPoG30gdvpYYhTYZyvPAYjzV9nD4NHiLx\n6g5kMtB4aHAIDtoGtafIWMTPF3/kROFxysylLOmxDG+VN28ffhO9TYevyo8nW07lVNFxdGY9Babr\nXC6/xD/uX0JyThIJV+OZ3nomh7QH6NuwHy+nzOW9Xu/T0DeC2cnPclR7BK0hj9e7/oNRUWPoHt6D\nHVcSmN91EaOixkrltl5OmUufBg/RM+wBjl4/zJDGQ4lNnIyHzIPn98xAZ9bRPrgj6y/9wsZL69l6\nZQvtgzsSFRhNv4YDGN5sJAWG60TXbsXp4nTUCjWf9P2c/hED6RDSiT4NHsLHw5efLqxm0+UNbLi0\nDk+lJ6Obj8PHw5d1GWt5pu3MKv4zzDecPg0eAmDGrmks6bEUnVXHkwkT+OXiGtoGtSM2cbL0LiD6\nVPFYYpwk+hhwxsBfpK+kW70eJGXvYEpMLIIgVImtxL/F44f5huOn9qPSUsGGS+tueu8QbecaF7nG\nj+J3rn690lLB2PgRrMtYS7+GA6qcd6Wlghm7pklEyOpti/a+Vdx1u9jQ9Tg1vZ/dCmL/Ack+IQFB\nv7tfTXCTgP7L4Z7ovbtw29eJy7nlbDt0jXp1vGnVKPAvafOvIgH5eKnIL9ajLTZQP9gHL7XyvyLR\ne7fhHrt3F277/nm4J3T+fvwdJKCCUiNJx3Jp3jCAdk2dwevdIAEBBNXy4lJOOdpiA5Hh/jQNr3VX\njvNXwu1b7h3ctr53cNv63sFt63sDNwnofxd3el1vlfByndzL1+UxYdsoXujwEp5Kzzua7BMhTvqJ\nk7w+Hr5MShiHAgWBXoFklF5gbPzj7M1Jpn1wR+Ykz+K9Xu9LE59iUmrB/jhpkrN68kpwwLtp/2DX\ntSRKDMV4e3jzRre32H51G8nZu/CQeRDh34gyYzmLDrxCi9ot8VJ68/D6/nx56lM2Xd7AD2e+ZfW5\nH0gvPsn6jHUMajyEGUlPo7NUsi93L6XGMl478Cqpeak8ET2ZdZd+osJSzpmSdASciYkzJek094+m\nyFyIt0LjJFfYdPQKe5Bvzn3JmnOrSMndQ4h3KEuPvkNWeSb+HgEc0O7D4XCgkCuY2nIa35z9knJL\nGbXUAUxuFctn6Z+wPmMdZeYytmVtQY4CP7Uvz7aZzZWKy8R1ns/ig4uoMFWw+OAiWtdpIyXORBtW\nJ8ZUT8CDc0K5JmKA6zY6q44H6/elZ/3e5FbmEBUYjQIFrx9YSNvgdkQFRlNhquC9o2+x7uIvbLq8\nnlHNxrE3bzdDmwzj5b1z2Zy5gZ/P/4jWkE8Dn0acLznHoMZDGN9iopSIHLl5GAMiBhHmGy5da3Fy\nPaP0AnOSZ2G0Gdh1bSf9Gg6oMtHv2v9KSwVN/COrJEWrE5U6hHQi2CuYupoQfDx86R7Wg0B1HRKy\ntpB0dSerL3yP2WbiWOERAjwCiQ5sQWpuCi/vncv6S7/QNbQbR64fZte1JIY0GUpq3j5i6rRhc+YG\nDDY9Z0rSqeddj1JLKb4qXyw3kmUGmx6AOp7BDGv6GIIgMCb+cZr4NeVC+TlAoE94P/bkORWF9DYD\nh7UHkCHjpU7zGdh4MN+d/prZe54lIXMrfRv055eMnxjRdDTvHnmLQY2HkHBlGwlZW0jO3cWe3N14\nyr0x202cKTlNsbEQo92IwaInQB3IlFZPc+z6UcospQR61uHhRsO4VpmFxW7lXOkZNl3eQKBnHdZl\n/MTR60d4rdubLNgfR6BnHVoHO0vdPZ88E7vDzr7cFHZl7yTUO5Q3DixCLlOwsOvrzGo/h6a1mvHJ\nyRVoDflMjJ7Cw5HDSMzaweKDi5CjYFvWFjwUHnirvGjk14T1l35BEKDEUkS3kPs5U5KO3qantlcg\narkngkNAJpNhdpjRKDV4KrywOxz4qnx5LfVVvFRemGxGPBQepGr3ISCgt+kw2808HfMs7x97j0Pa\nVLJ1V0nNTWVtxo/EdV7IycITzO+yiAX749ietY33er2Pj4dvlfvqtQPzeev+d+lZv7eTrFjbSVYU\nx+msXdNpG9QOQRBIzU1Bo9LwRfpKHmrYHx+VH0nXdrAvby92wY5SpmJP7m5iW09nZNRojl8/xu7c\nJIx2IwBGq4GU3D0kXt1Onj4XBw7uD+3FudLT2AU7p4vSqacJI9ArkMobCdF1GWvpHzFQ8rvDIocz\nLHI4wG0JO5WWCrqEdqsxAVX9Hqv+++3IPK7bVPdDd0K2SNMeqUJ2rIk0+p8Kd1z098NgsEj+f1jk\n8N8dx6JiQr+GA25LmhOTqtUJQNUJqGIbYnK6OqoTbmfsmkawVzDjt45kT85uPnjgnxKxRuzLqjPf\nSUREiRTt0v+aiHfi/mJi2/VcXX2dmLgGJJ/i2r/qz+GowGh6hvWmQ0gn6f6MTZzMTxdWk3h1B/M6\nxbHy1D+lRPyc5FmsOb+aQY2dhJqzJWfoHzGQgY2G0KfBQzSpFVnFhq6fTyZMYGTUaKl/GaUXiN35\nJPM6vsr0ts8Sn7mJnIpsThWdpHntaJ5u8wx9I/oRE9iamKA2ZJRe4OW9c/n23NcYrDoCveogCJCS\nl8yzbWZTz6eeFHdmlF5gauJEvJUaXuu2mMUHF9EmqC1rM9Ywvvkk0goOE9d5AYe1h0jIimdvbjIA\nRpuB00XpRPhFEJv4JHGdFzCp1RReP7AQAQc2h41d2YkEetYh35DHkEaPcKroBPvynH5eb9Nz9Poh\nPBVeHL1+GIdMwNfDBy+lF8cKjlJqKiElbw92wcapopNUmMvQ23XOMlJ2E6eLTwFgtptxCA7sgp3B\njR7hfOlZfNV+GG1OAosMOQq5ghOFaXgqvPBX+2N32LAJNmTI8FJ4YxOsWB0WBATaB3VEb9Ojt+lv\nkGZu/76hUWqwOpzqJ2q5GrtglwhFIlxJRN4KjUT6AWhTp20VEtGYqPEcLzwGQLGpCJ1Fh9nhLAdm\nc1iRIaOhpiGXKy/RMagzJrsJo92IDBlHtAcJ8qrLjqxtnCw8ToWlHJDxeOQojhUcwSZYERCk4wkI\neCo9USvUtAlsT47uGlbBggwZgiBI6jYiPBWeGO0GThQcp9xahkbpg6+H09ZxnRfSJqgd50vOkZC1\nhQnRT3K8MA1PuRdLe3/A0YIjXDdcR61UM6VVLI82Hc5zyc8wqtk4vjz9GVEBzVl36WdMNhPDmjxO\nat4+tmXFk3b9KCabiTe6vcWZ4tN0Ce3Gc8nPEBvzDIlXE5DL5OzKTsRT4Y1DsGOwGfBV+fF8x7mM\nbj6OSP9mvJ/2HgXG6zTxa0rcffO5Up7Jh8eX81KnV5na+mlScvYyqdUUXt47l7UX11BmKmVPTjJD\nmgwlX5cnqS7G7Z9Lnwb9WH/pF/o26Me+3L30ixhATGBbcvTZvNg5jqa1mjG6+ThScvay89oOWtdp\nQ1RgNKm5KUxMGEtqXgp+aj8+7vs5IZpQYhMnS/7VT+1H26B2DGk8lNHNxzE15mnAqTTTr+EAoOoC\nFFcCjkjsiU2cjMVhRo6CyTFPMbzZSLqH9ahCxKmJYCP+P6DRIIY0Hkr/xoPoFf6A5O+qH0v08a7x\njfiscCWJu/ph12dBTbFN9b/7NRxA97AeVd6Zx8aPYHizkQyLHE77kI41xmViX/4d1EQOd30/u5P2\nxP3EPv3RuMhNAvovh3ui9+7CbV8nViVeRFtioGvLEHy8VX9Jm38VCUgmk+GtVnElvwKzxU5EqJ+b\nBIR77N5tuO375+Ge0Pn78XeQgK7kV3Dw7HU6RAUTVd9JyrlbJCClQo5KKedagQ6L1UGPNvV+f6e/\nGW7fcu/gtvW9g9vW9w5uW98buElA/7v4vesqTki6JnvFcjYDGjnJF8FewSw+uIjxLSbSOaQLS4++\nwxfpK4mu3UJS07kTuCa9XNUz4jM3EeQZzL68vfio/BjSZCjbs7bRPrgDkQHNSMiMZ0bSNDZnbgAB\nRkaNlogqOquO8S0mAs5J/02XN2CxW9CofFAr1TT0bUTC1XhGNxvPG4cW8MPZ70jJS8Zb6c3+vBTq\nacJYm/ETDuwYLSaMDgMGux6dRY9NsFFp1nHo+oEbhAE9h7SptK3TnktlGRy5fhCL3Yr1xuS/l8IT\nm+CcDxBk4LDb6RDciYzyC9gFO1cqLt+whAw5cjZf3kAjv8bkGLI5XpiGl8IbBGcJgkPaVMx2E0pU\nmO0m9uXvZXSz8ZwpSee6UessvWAuZsWDKxnW7DFa12mDwaon2Ksuiw8tRHDAlisbic/cTKh3KOXm\ncsZvHU2Huh0lIoKo6CQmJDNKLxCbOJkfzn3LpssbqqwoFVFpqWDEpmF8dupjDuQdoFNIZ2bsmoYC\nBS+nvECppZS92clkll7mwxPLcDickv8KuYKsiivIBDn9Gw0k/spmTFYzlbZyBjYcwpoLP+Cp9GTn\n1e2MuHF90wtP8sPZbxnS5BHq+YRJE+RafT5PJkyQFKWGNB7KxJaTpcltMWnqSmgbsWkYq85/R8/w\n3tKqXoAuod2YmTSdndd2kJZ/lKVpS/jlws/8cvFn4q9sIv7KJmqpAxgVNY4D+fuYFjODU4UnOFl4\njF8u/sSP539AhhytMZ+U7BRe7BTH+oxf6NuwH60CWzN//0vIZTLnqnGg1FKCChVGh7GKXQM967Cs\n94csPrgIwQGbr2xwGS8wtPGjnC85i8VuZkjEUK6WZ2Gw6zleeIzVZ38gKXsH7ep04HJFBscL0ygx\nF7M/bx/l5jIi/Bpzqug45ZYKlChx4GB01DgiazXjWOFRBAQGNXyYUnMZJeZiDmr3Y7AbGdl0LI39\nm7Du0k+Y7CZkyFjY5Q0CPYNYdf47BAFUCg8ebNCHbVe2sDZjDV5ybwI8A2joG8GWKxvxU/sxOGIo\nK0/+EwEH46Mn8fXZL2niH8nKU//koQYDySy/xEFtKj+eW832a/HYHXaSs5MIUAfip/ZlTNQEvj7z\nBXaHHQd2zHYTF8suoECJHTsxtdtSYi6m3FomJRCtDitmhxmDXU9K7h6QyZjdbi4apQ+nik9IdpUj\nx9+jFqeLT/Fwo2EMajSEXdcSmd1+LpfLLtEltBsH8vdJylUTW06WiDTivSMS1ERCnJhUbhvcjgnb\nRrPx0q/kVuawJyeZL9M/Y/X578kqzeKq7gpbM+PZn78XgIERQ7hYdh6j3UCFpRxPuRchPiG8dfh1\nyszOUixymYKlvT5gcOOHqeVRm8PaA4BTXeGBsL4Mbfwop0tO8UvGT8RnbmJ9xjp6hvfCT+XP+8fe\no3tYD4lk55qE0erzydflScTONO0RBEGQyADVfYGYGBO/T8iMr/IsuN3qcdF3iyUcxWS+qCAiJvpc\niRKu7aVpj0iKWy+lvCAln5b0WFqFrPSfCndc9PfDYLDUSFarSakHflP4EVUbbpfovBV5Niowuor6\nQXVVupr2gd9UK3rW70107RYczD/AxJaTq5B6ROLLW93fo3/jQTeRel2Twa6qQK73cHV1iO5hPaTj\ni30U70+xLfH393q9z9SYp6soSoi+RExiv9f9pnloAAAgAElEQVTrfZ5s9RTdw3rQs35vWga2IkQT\nyoxd05jXKY49Ocl0CunM2otriI15hnePvMXmzA2k5OylZ3gv+jbsR4gmlGGRw9FZdfRt2A+Az099\nIsUI4nGjA1rwWfonTGw5md71H+RgfirPtJnF83tmMLjxUARBoMBwnRlJ09h5bQejo8aRmpfCy50X\nMKr5GMZEj6OhbyN+uriaHy98j0Km5MEGfQFIzt6NgIPZHebSJbQbGpWGpGuJFBgLeLfnch6LGsGA\nRoNQylRsz9qKVbAQqK6Dp8qTB+r3ITUvlROFxxjYaAibMzfwRre3mNNxHlEB0TzVehrtgzvw5qHX\niOu8kCdbTeH+sJ6cLT6DUq6kxFwMMhlyQYaXUsPLnV/liPYwGpUvBqsePw8/yixlDIp4mCtlmUxq\nMZUeYb3pEtKNQ9pUwKlcI0PG+ZKz2LHjIVfjrXQq1HgrvdDb9HgqvPBV+zK11TSSsncAzqjVLtil\nWAacKj76GyRmf49atKvToQpppzrsjt/2twt2/FW1JBK0n4cfHjI1lhskHoAnW07ldFE6dsGGXbAz\nMOJh6TwA2gV14HhhGt5KDTPbPs+JwmNSf0BG95AepJeeorl/NKdKTmJxWJDLFGhU3pgcJk4VnsLk\nMEl9GNl0LNuztmJyGBEQkCHDz8Mfm93GiKZjOFl4jApreZVzdJYBs6KWqSWlIQCb3Sr95qP0RWer\nZHLLWC6VZ3CswKnieH+9nlwqy6BNUDuOF6ZhFSw80uRRRkaNYVDjIWy6tIH4KxuJCWzDxdLz7L62\nk3mdXqF5YDRrzq9CEOBMcTovd17AsMjHOHz9IJWWCvpHDCTt+lFScpPRmSuZd18cEb6NScreQbBX\nCFNaxZJVeYVnWs/k2XYziQqMptJSwezdMyg2FzExegobMtcR4h3KrN3TUclVnC5Ol+6nEE0o35/9\nmkJDAROinyRHl01CVjyJV3cwpVUsP11czVv3v8t99bqSeDWBGe1mI0fBy/te4GrFVT7qsxKdVUfs\nzid5uPEjzGg/m2YBUSw+uIg+DR6ifUhHYgJbM7X100yNeVoiBu3L3cvwZiOluCA2cTLbs7ZJCoei\nP0wvPCm937gq8Lj610pLBcObjWR083GMjBot/Sb6aVfiTk1qOeK7rOh3XJXKXMnN1RdeuPpcMRZy\n9bG3Umr7vdimejuuzyxx39sRWO8ErudU3aY1EZjuBGJ/3CSgO8D/4oSoe6L37sJtX8gr0rN6ZwZ1\n/D1p27QOMpnsL2n3ryIBAfh6q8gt1JNfYqBhiC/NGwT8Je3+N8M9du8u3Pb983BP6Pz9+DtIQKev\nlJCeWUzPNqGEB/kAd48EBFDbT012gY68Ij2tmwQS4PufPe7cvuXewW3rewe3re8d3La+N3CTgP53\nUdN1FROxmy9t4JV982hdp400meoh88BT6SklVgRB4PnkmdKK8PYhHRnQaBCB6jp8ffbL3y2VISaT\nxclO19WDrYPbUM87jMPaQ+y4upUlPZYxqdUUQjShBHrW4fk9Mwj2rMtzyc+AAHKZnAfrP4S3youZ\nu6ax6tz3/Ov0ZwSq67Ao9RUSrmzDYrdgESyYHSYqLJWk5CZjF+z4KH3IrLiMxWFBhQdGh5EKSwWJ\nVxOkpITDZQJfXEF9piT9pnPKM+Qi4MCBQyIAAShkSuw3SEBGmwE7drJ1V6skTcTWjXZnkiHPkIuX\nwguV3AODXV8lieDskwMFSqyClSPagwyPHEXPsAdYdf4bZCgk5ZjxW0fzzdkvOVdyFrPNhEIhp8hU\nxIPhD/H24cVsy9yK1pBHYtYOVp//np/Or+bFjnF4Kj0llYHFBxfxWOQIzhSfZnqbGXQP7yGRGkTV\njTDfcNoGt2PXtZ0UGq/Tt0E/ogKa83n6SmJjniGz/DIV5goOavcjIGCyGzHZjZjtJkCg1FLCjqzt\nlJpLMNtNTIh+knUZP4NcxsToKZwpPk3v+g8SmziZ9RfXEegdyH0hXSg3lyMITjvGJk5GwMEHD3wM\nwMspzmScOM5m7JrGpBZT6B7uTGK6rtgN0YQyNn4Ea86v5vuzXzO0yTDWX/qFjsGd+TljNS0CWpKt\nv4qX0pvHIkdwQLsPs83E+ZLzmO0mzpWcRWerRIESna0SBw66hnanxFRMmaWEziFdSc7Zxb7cFJKu\nJmJyGPGUe1VZJS6W3XBFbKtn6N9oIMMih3O++BwpeXuq7He2OJ0Kq5O4dLHsAnac48xsdxJd7IJd\nKqsRoArA5DDho/LFQ6Fid/ZOKi2V0pgFuFR2kczyyzeui7NNuUyG6ca/5cg5XXLqhsKV0+6DI4ay\n6vx3JOcmYXPY0Nkq8VZ5sydnN8+3f5EwTTifnFrBmnOrOFtyGjkKRjQdw4oTy6i0VCAgsDt7Jy92\njGPp0XfoGtKdT9M/QhDAYreglDnLb3gpvBnZbAwf9V1J89rRvLRvDoIAxeYiqb+u92u27qpL4u83\neEhJORm+Hj7suLbtplIkwo17scJSwSFtKntzkgnyDuZgfiomu4ktmZsot5SzOzuJrZlbGN18HOAk\njyVm7eCdI/8g2CuYl/fOJcwnjGk7p9xQt8pDJfMgJWcPCpkShVxJq8DWkj8Rk4iivxAQyCrLqnL/\nH9KmsuXyJgZHDOVSWcaN5KhAVEALXt03jwPa/ciQoVH6YHVYuFJxmaPXD6OUKfHzqMU7PZeyNzeZ\nn86vYVvWZow2IwfzU6UkmoiM0gsM2ziIH8/9QK/6D5Cvy+OxTUPoHNKFZ9rOrLFUhGvZI3HVfj3v\nMEkJSvQZrhCVvb47+zXrM9YR5hPG7N3PsqDLa1IpwTnJs7A5rPQI7yX5perlJwVBYPuVbfSq/wBP\nt3lGStqJ6kyiStCdoKaSS3cb7rjo74cYF1VP0N5KFctVteHPJDpdE6i/11b1bQEiA5pJShiupczq\n+YTRM6w3/RsPkvYXybBdQruxPWvbTfdxpaWCny6spkd4r5vul0pLhRQTioqMadojzNo1HbvDwcio\n0VWULqICo2+pKOG6jdhu6zptJAXHLqHdaFIrkg2X1kmljj5L/wSz3ez0jzLYfmUb267Es+HSOpoF\nRDF+60j25+4jQF2bbN1Vnmz1VBXSYF1NiOSfxBJmEf6NGHwjBhi5eRjfn/0GjYeGhV1e57P0T3ip\nk7N0548XvifpWiLbr27FT+3H+OaTyKrMZGtmPJszNzC7/QtsvPwrXUK78vLeuWy7Eg8y+OjBlRIR\nNL3wJHH75/JSp/nM6xzHo00fJz5zEyk5e7ELNpQyFZ1COrPq3HecLDxBj/BevHV4MduzthHqXY9d\nOTu5VHaJA/n72J+3j8Xd3+KFTi9R1yuE1LwUnmnzHHvzdrM/dx+llhKmtHqaI9pDeCs1mOxGMssu\n4av241LZRXblJNK/4UBOF6djs1tp5h+FxsOHme2eZ0/ubswOM74qXx4I78OZknQ8ZGrMDhN6i57G\n/k04cUNpJ9grmECvOgyPHEmuLofBjR7hWuVVibRjtBkkZTqoOccmIODBb2QZQRCw4STLOBwOHm7y\nKOdLzyLcUD9894HlJGUlklWZCUD/hgPZk7sbcJKS2gW1d5JnHFb256XgrfTBaDNIMUuuLhsBgXJL\nuTPvJ4CPypdKayUy5Ph6+OIp92J01DhOF58iV5dDmaXUOW5V/tgEG1aHlTpewRQYtXzwwD+pMFVK\nBO0gz2BJBai2Z6D0t7+HP2/d/x5hmnBOF51CqVBgcVg4W3yaMnMp/h61GBAxmA2Z6xCAk4XHCfYK\n4cmWT/Ht2a9Ye+EnmgVE8UqXhQR7hbAx81d61OvFscKjnC89R6R/UxKvbqeOVzDPtX+BjZm/0jao\nPTuyEjA5jJwoOO4s8ZW9G4VcgZdCw08XV1NpqeCxyBF8dvpj5nV8he/PfVPlvW971jaW9fqQCP9G\nfH3mS9K0R/H39OeLft9IRBux7N/Oq9sBGWkFh1na6wNmtJtN97AevHV4Me/1ep+e9Xs7Y++IQWj1\n+TyXPJ15HV8lts10OoR0QhAEOod0YVnau3QJ7cbig4uY1GIKEf6N8FP7ERnQjHo+YWSUXuBUwQme\nSpzEuz2XU1cTIpH4u4f1kBYAuBKaJ2wbxVv3v0v7kI5V/K8IVzKj6EvF9wJRybS6QqFrnFD9Xba6\n2tutCJ6ucZPYhqjKeKvnwK2UgG7lZ13JS6KfrV6a7I/EOTWp/9TUhz8KNwnoDvC/OCHqnui9u3Db\nF37efYnsAh2dWwRTy+evewH7K0lAMpkMTw8FWdpKLFY7vdreudT6/yrcY/fuwm3fPw/3hM7fj7+D\nBHT43HUu51Uw8L6GEiHnbpKAZDIZ/hoPLudVkFuko0fr0L+MzHo34PYt9w5uW987uG197+C29b2B\nmwT0vwvX6ypOXo6NH8E3Z/7F2ow1qOQqogKiGdfiCRr6RjBnz0w6BHfiZNEJuoZ2Q0Bgw6V1DGk8\nVEre6Kw6Zu5+mrkdXsZT6cnuq0m8sm/eTWoRadojDNswiPgrm1l3cS0jo0bftBK9e3gPGvg24OEm\nw7ivXlcmb5/AqnPfk3b9KHGdF9A8MJqka4kUGQsps5RxvDCNjZfWo7NU0jygBfU0Yfx44XusDiuF\npoKbJPlFuKqqVCf7/BEoZcqbyBxiQv/fhU2w3bLf8Ft/BQSOF6Zxtug0Hgo1ZZZSDuanMiJqNCHe\nodwX0pW060fpFf4Ap4tPOVVPio7jwIHdYUPj4SSrlxiLscscnCs+y67snczrFMcbBxbRxC+S785/\nhUKmYHPmBup6hTAjaRpfnv4Uk8XMu0ffItQ7lCa1IqmnCeNYwVF2Zyex/tIvyGVyMisuM7jRUFLz\nUxjYcAj5unxsDptkY6VMhRyZVNYIIKcyG52tkloeAezJ3YXepmNM8/EIDtidm0i/BoNYcvhN1lxY\nxdYrThLG8GYj6RHeC3ASgF7oMI8F++P4/uy39K7/IOE+9Xll/4v0DOtdhbxUzydMWv2rkqnYfGUD\n5cZyjhYcJkeXjRw5uYYcEECtUJN2/Qhmh0kiMwHY7TanPbEjQ46AwJUKJ5nmubZzKTIWcqzwKHqb\nXrqmcZ0XcrLoBCa7CblMjhJVlTEITsLHugtrySi5wBdnVkoryEVYHBYUKBFukMKcnwoEBOlThMnh\nJMqYHWZn+Q8cCNXGqsVhqUKoEb8T0SGok0QqEnGx7IJ07cwOM4HqOrSsHcPp4lMkZG3jVNEJanvW\n4fGmo2jk14TU/BQyyy/jpfBGqVBQbikj2Lsufip/9ubtJq3gCCCTSouIyUST3cjxwjTqeoUQFdic\n7VnbaOofdVuFgZrwG6FGwGx3tt1Q05Bya/kt97EJVgJUAeQZ8zDajZLtFKgoNhdSxzOYuJQX+fXS\nWuKvOAk6/zr9BTm6a+zLSSFPn4PepseBg+OFaQgIGOwGzHZTFR90+/7+BrPdxPHCtCrqCIe0qVWu\nt7fSW7qWcuQY7QY0Kh861O1Ip5D7OJh/gGa1osiqvMK4qIkMjnxYehaIpYDqeoVwsfQCgxoPcZbF\n86zLylP/lNQ+qqvyiPdRmG84kQHNuFp2lW1ZW2hdpw0Tto3my/RPaVG7paTkFhnQjEpLBZ+f/JRi\nU5GUcMzT59Iz7AFmd5grleB7stVTUomMuJS5vNx5Pu1DOkp9BmdCenbys9wX0gUvpTfphSd5Pnkm\nod6hTNg2iuiAFngpvW+blHJNarkmyP6q1fK3gjsu+vtRU7x7qxJ1rr+7frreQ/8uqrdVE1xVF2oq\nmVe9lJlreTwxcbykx1I6hHS6qUQZOElCWzPj2Xltx02xm5hAnthyspQQj02cjMlm5pO+n99UHvBO\nzjdNewQfD1/WnF/N5JinqigJNfGP5LGmjztLCUU+SvvgDoxqPobk7F0s7PI6M9rPpmd4L/pHDJQU\nkcJ86rP40ELm3/c6Ef6NqiThm/hH8kzbmdI5i/d334b9JFLQw00eYWrM09TVhPDDuW+Z1GoKu7J3\nEhvzDM+0m8nenGSea/cC7xx9k6W9PqBX/QdYff57Iv2jSLt+mO71enD0+iEWdn2dXdeSmNr6aSm+\n3n0tiWmtZ7Ax81fGt5iIj4cv6y6uZWHX1zmsPcSHD36MRqVhTPPxdKzbmZ71e0vqSwtT49BZdTzf\n/kUa+Eaw89p2UvP20SaoLb0aPMDDTR4hMqApq85+h8lh4skWT9EtrBubMjdgtBmRy+T4q2tRYi7G\nW6HBT+1H34b92JK5EY2HDzn6bDzkHjQLaM5h7QFGNh1LviGXk4XHXWJaGWqFmiMFh5Ajx0fly4cP\nfEwD34Z8cnIFMpmc44VHiQlsI8UJSpT0Cn+QKxWXUcs9sQs2OgZ1xmgzoVFqAOfztfpzTnyWCQic\nLTnNA+F9uVJxmSsVl7ladpWEa1tQyz3xVKhpGRjjogQk0LRWlESs1ag0LOjyOgfy92GxO+9vH6Uv\nFoeZSS2mkqvLRaVQUWlxkrd9lD5UWirQ23UUGguYGD2FjLKLVN4gW5sdZnxUGix2C1NaPS0p93x9\n9gunaicCI5qO5kjBQdRyT6eiksoLD7maWp612JebwiFtKuOjJ1FsKsbmsDG5ZSxXyq/wTs+lrLu0\nFsEBU2OmcVCbyqBGD/Pjxe8Y2HAIe/N2s/3qVpoHRPP9uW/oU78fX535DD9VLV7q9AqfnFxBqakE\njYeGC6XniY2ZzkspczDY9YxsOpYSUzG96j/Azmvb0RryOaRNRSFT4K305mjBId6+fynjWj5Bv4YD\nCPSsw5w9M0nM2oFCLmdk1BinutXVREotJdRS12JI46H4ePii1eezPWsb/SMG0sivCedKz/Juz+XE\nBLUhzDccQRCk+1tUCKyrCSEqMJpgz7p8dfoLErLiaRvUjhm7pvFI5KP0bdhPKsX7XPIz7MhKYEDE\nIKmU6qMbB3NYexhfD19GRo0hNnEya86vZu2FNey8toPhzUZKpONKSwU+Hr4MbjyUnvV71+hP07RH\nmJM8C6vdSs8bBEg/tR+h3qEkZSey69pOWtdpc1PpRrGN6qpq4vuFSEQeFjlc+qyp9FZNJM7qZNTq\nvvhWZNFbKdeJcFXncVWH+6PPrN8jwP4ZIvUfjYvkf2gvN9xw4/8FSipMHDxzndBAb+oH+/zd3bkt\n6gf7EOCrJiu/kuslhr+7O2644YYbbtSAwjLnZHhQLc97dsyQQG8a1PXhcm4FH/5yiqS0HHIKdTiE\nP5bIcsMNN9xwww03/rchJo0AlvdeweZHt7PwvsU4HAJz9sxk0rbxBHoF0sA3AoB8XR6TEybwxNYx\n5OlyOV98DpvDypzkWQAEeQXz4fFlDP11AM/vmUGZubTK8dK0RwjRhBLqU48noiejUqjQ6vOr/D4p\nYRwJmfE8lTiJhamvkF54EkEAmcyZLFiW9g4zk6YzuWUsDsGBHAXgVFIxO8zs1+5lv3YvduyUW2pO\n7P9Rks/vwfYHCT9/BSptFZRZSrELNsZETWD9xXU8v2cGS48u4boxny1ZG53kgxtkBACzYKbcUkax\nuYj7QrrhEOzcF9KV5b1XUGws5krFZbZkbUQl8yA25hmsDitvHFxIvj4Xq8PKhyeWkVeZy5TtT9Br\nTVde3DubYmMRFeYKbIINu8NOvwYD+eTkh1gcVrZkbaTSVlGF7KK36TC7kBkEBMpMzjJH7YI6OFeJ\ny9UUGgrYcHkdQZ7BJOckYcOGh1yNUvZbGfeZSdOZtWs6S3osJSaoDSOajkarz2P81lF8fGIFb3V/\njxBNqDTucytzpL+1+nw2Zv5Kn/B+bMnaCEC5pQyH4Oyrv7oWJSZneSkRzf2dSU8bv1336kSez9M/\n5quzn0v/tgsOfFS+/Ov05wiOG2pTggMrNRMui8wFUn8AZMhQoPytvRvH/u3TXuXzr8TRwsO/u02h\nqYCknB3gcNrCJtgw2gx8dfZzvjr7OQICRcZCBJlDuj/DvMP56uznWB0iwanq/Sl3mdJflvYOo7Y8\nhtaQz37t3r/kvK7qb08kClAFcFV/lSa+kVW+L7OUYnfY+ceh18jX59KjXm8ANmduoMhYiL8qgDJT\nyU3+5m75H1eUW34bp3ZseMg8MNj0PL9nBs/vmUGuPrvK9UzIjOfh9f0ZGz+ChMx40rRH+Obsvxjb\nfAJzkmeRkBnP5+krWdJjKcnXdjE2fgQjNg0jITOeSQnjJN8t+vNVZ77j54zVlJpKACfZb8n9y1h8\ncBGrznzHEwljWHXmO75J/4oicwFeSm++6PcNo5o5n0eBXoEADNswmOk7p6LV55NbmUOhoYBrFVd5\n48Ai0rRHGBs/gpGbhzFi0zA+PrGCOl5BvHFgEQ+v78/U7RMpNZUQ5B3Mix1ekb7Prcy5pd3CfMP5\nZsAqwnzDpb8ByV/cCapvJ/qYNO0RAOnTjf8OiEnd3xsDYjJ4bPwIabs7HTN3gpqeW67tu47dmvYR\nf+8Q0qnK765/v5wyl4/6rGT14LU3JXbF312Pt7z3CrxV3oRoQmts83bfpWmP8NimIaQXnqzSZphv\nOC90mMfTO50qI0t6LGVm0nSm7phIoaGA5b1XsCztXbT6fOYkz2Jm0nTStEd4+/CbrM1Yw/JeHzGu\n5ROE+YazpMdSQjShUnvphScl+4ltz0meJdmnQ0gnwnzDnaUQ9XkAxMZM552jb1JocPopgHCfBgR5\nBzOg8WCW3L+MladW8FKn+XyevhKL3fkcu27IJ73wpGQnmQzWZqxhSY+l0jFUChUxQW1YPXgtAMM2\nDuJ88Tme3jlZ8hMhmlB8PXwJ8gwG4MMTS7FjR2vIZ3LCBEZuHkaIJpQQTSj1/RpQ1zuElLxk3jiw\niLhOCwn3bUBd71B+GPwTC+9bTJAmiJc6vcqHx5eBABOjpxDsVRe5TMGn6R+x4L43aF47Gk+FF7XU\nAYRq6lHHKxhRrRKcT+hKawXP7IxlyZHF2AUHBpuewRFDpdKaQZ7BPNFiMntvqPTYHTa8FN4cL0qj\n1OIkwFgdN8c97YI6SH+L8d/Rgt+eVQarU+FPEJzleE8XnQJAo3Tm8kI19aRtK62VLEx9hXJLOYMj\nhvJc27l0DukCwOoL31FsKkRnrWRgxGAAjDYj7/X6gOW9PsJqt/Fp+kdUmJ1xSsegzlKbDhx8e/Zf\nWB1WSk2lfP7Q13zc9zPe6bGcmR1mU0sdgNlhoshcQLGpiAVdXmdl3y/xVnnh5+HPqgvf0j64Iwab\nng9PLKXEXESxsZi4zvOpsJbRIaQDC+57g81X1vNih1eIv7K5io2MNgMrT61wqi9aK/j4xArGRE1A\nIVMgk8mwCVaaB0bzZb9vCfepT9d63QBYmPoKX/T7hoX3LaaOOhg/tR/eKg1fPPQN41o+Id2D41o+\nwfJeH+Gl8sRqtzFr13TmJM/i3Z7LaejbiOfavcCc5FmM3DyMmUnTies8nycTxvNSyhziOs8nyDtY\neua5vuMlZMYzMWEsj24cTJr2CJ+nr8TqsCIISPfpnORZ0j0ZE9SGDY9s5eeHNwAwNn4EIZpQ1j8S\nz4Zh8ax/JJ4OIZ1YPXgta4duYO3QDSzvvQKtPp/HNg0hITNe8smuPgqqvm/OSZ7F8t4r+KjPSl5O\nmSv5iLcPvwk43487hHSS4gFXHy9eD9F21X2zGBeJ79o1wXW/6qgeP7juU327O3lO1bTvvxPf/F5b\n1fv0Z9r+o5AJwv+fDEhh4d1baf53ISjI93/yvP5T8P/ZvjqjlU83nuZsVimTB0Vjc9wsw/xn4Ovj\nSaXO9Psb/hvI0lay90Qe98eEMnnwf35967uJ/89j917Abd8/j6Ag37+7C//vcadj+M+M9+QTVVfF\nbtp3Bb3Rxui+kfdUkUdntHLgtJb84t9IoiG1vZk+rNV/FMnV7VvuHdy2vndw2/rewW3re4O7ZWd3\nbPT3w/W6uk5UiskWmQwGRQzl01Mf0cCvIQu6vM4Lyc9RaCpAjhwZMnw8fAnyCuajPisBpJJKy3uv\noNBQQLGxmM/Tf0smpWmPMGzjIL546BsW7H+F64Z83r5/KZ+nO/eP6zyfZWnv8kKHeQxoPJiEzHje\nOLAIlULF8t4rCNGEkl54kqk7JhLsXReAHF02MmS/m1RXocKKMzGjRHmDtCFDiQIbNsK8wsg15t62\njf90eCq8MNudCjX+Hv7oLLoqRBC5TI5DqDrX4YEHXipvFHIFeqsOuUyB0W4gQF2bcnMZcpmcSL+m\nnC8/h1ruidnx27yGWq7GU+mFwaaXlH3kyBkU8TDxWZvw8/BHZ61Ejhy1whOdrZKOQZ3viEgiQqP0\nwWAzIOCglkcAOkslr9y3iLcOvy4Rrhbet5hHmw1Hq89n+s6pmGwm3u25nMUHF3Gt8ioP1R/AlqyN\nBKrr4OPhi0quYmHX16VVyuBMTMQEtWH9xXW8cWhBjX3x96hVhVjx76CmMaqQKRAEAfG/fxceeGC5\nBXHoPwUyZIxoOoaUvGQMVgMVlnLpXH2VflTaKu7o/v13oJFr0DtuLgN2txDsVRez3czwyJF8ffYL\nBIS//Jz+LBQoJBWI38PkFrGsuvAtvkp/xkU/wafpH6FR+hDoFYggwLNtZzFnz0yebPEUe3OTJf/c\nIaST5LM/6rOS88XneH7PDJ5rO5dJMZMZGz+CuM7zmbL9Cd7t+T5z9z6Hj8qXcksZvjdKsfQJ70dK\nbjI2wcayXisI9Apkyo4nEASBcN/6CAJ4q7yJjZlO7wYPotXnE6IJrfFz6vZJWB0WSozFhPiEcl2v\nxc/Dn2JzEQvvW0zXsG5VyBC3g/iM/L1yT+J2Y+NHVCFR5FbmoNXn83LKXCa1mMIr+1/k16FbpKRk\nmG84Jo8y6vvXv6P+uHF38HvxrkgUudW/xe+galK3OjHnTpCmPVLj+HQ9pvh3Tf24Xb/F78bGjwC4\naaz+kbZc93c9Z9exX5MdRGK46B8GNB5cow1WnfmOeXufJ8K/kUQIACQi0OrBa6X7H36zv+s5phee\n5O3Db2K0GVDKVJLvEgkA1clRYnsjNrHcZqMAACAASURBVA3DJlhZ/0g86YUneXrnZGJbPcvWrE38\n/PAGtPp8hm4YwKZhCYCTjPxRn5UUGgpYlvaupLxU09gQ411wxiELU1+RjhMT1IYRm4axdugGkq/t\n4oNjy/BWedOvwUB+OPcNKoUKpVzJF/2+IUQTKsXZAAdyU/ns1CfU9qpNbMx0Pjm5gkERQ9lxbRtx\nnefz9uE3MVgNGKx6yi1lBHnVRaVQYnPYiKoVTVLODoZEPMKOa9sI8qrLlFaxlJvL+fDEUpRyFb3q\nPeAk+wJDIh6hfd2OfHbqE0rMRXjKvai0VeCvqoXBpsdT6YXJZqRn2G/7aJQ+WOxmaqkDsDjM/B97\n9x0eRfU1cPy7LZteCKE3QaQJSFE60gVBqrQoiKDYABWQ3pQioFiwYENRXvipiIQqRRDpgihFBaQI\nASQhhCSkb5v3j2XGTUgn2YTkfJ7HR7K7M3vv3Tszd+eePTfOEqeNzY0Y8fXw05bgUsdefkZ/HqzU\nns8fXs6kneP58sRS7IqdHtV6seH8WnyMviTaEnj7wfeJSYnh7cNv4GXywsvozdWkCOeY0QEV/Sth\nUAycjT9DKXMw05u/SrsqHVh2/HO6Vu+mXUP6rO1OaK2h7Li0jYTURDpU6cS3p1cS4BFAv7sH8uVf\nn2PHhlFvorRnaaKTr6HT6Vjb+4ebn+cPvHfkLcp4l9U+p6ikq8w+MJPYlFiupURRyhxMrxp9qR/S\ngCl7X2Feqze0fr64w3/frQas783D1XrSpFwTulZ3BtCcjD7BKz+/xJRmM2lRsaUzY1b1vqw86cyC\n6m3y5q12i3l66zCikq8ysek0Fvw6h/mtF/HJ8SXYHFaebzgmzfc0te+r+q/rjdVh5aPOnxGVdFV7\nb/WYARi7cwxdqnRj8ZFFlDIH83b793j94Jw0/UyngzW9NlLRrxKbz20kOjmadlU63HJ+Ub+HqvV2\nPUbU4zn9sZr+XKSefyISr2R43KU//mYfmImiwKqeYbecT9W6pm8f12v8ij+/YtKecYT12qSVK33Q\nS07O0+p2Gb3mcMShTM+hrvVWgx5ze73JSdly8zpXm89t1D6/3NY/r/eLJBOQEOIWZy7HMeuLg/x1\nPoZ7q5eieb2yhV2kHKla1pcAHw/2/xnB9sOXSE4tvF8cCiGESEtRFBKSrfh6m9y+JJevl4k5TzVj\n/rMteLJbbR6oU4aI60nM/epX9v8Z4dayCCGEEKLoU2+4qb9wNBlMLO6whKktZxDWexOLOywhxLsM\n11OcE8gOFBSdQpwllrjUWKKSrvL01mHsDN+hBessOryQdlU6pLlxWs6nPFX8qjp/2XnzF5yP1RvK\nyu6rtF92j2sygUWHF3I44hBdq3dnVc8wVnZfpf06u2v17qzt/QPr+2xhfZ8tvHjfeG2yvVW5tlqd\nWpVriwHDzfT8YMV68986bNjQoQMULRgoMjlSy+pSGDzwyPDxATVDb5bVSf13+rJ6GbyxKc5AHLPe\nTKIlEZ1Oh5/JmYI9wBTIw1Ufcf7bIxAPnTPFugULcdZYvIzePFb7CZLtSejQE5N6HQcObIqNk3En\nALQAILPefPNvZxah5xu86FJGHVsubGJ6s9d4sdE47IodPw9/Uh0pBJgCORL1W5r6ZCfRlqAtWRVr\nidEy7pTzKY8BA8PrjqTPPf3ov875a+RkawqRSRFM3zuFxR2W8GnnZfwe9Rvg/EW5TgcJ1nie2vpE\nmowlI7c9Se+w7vzv1HJ6VOuVYVniLTcI8AjMUbnV7FQdK3UBnMtoudKho5Q5GIPekKv2cJVRAFBu\n9qXL4DZ5g1IN81QWAFMGfVhBYdXp/93MqJA22CnBlkCIZxk6VOqsPRZgDMj1+6avszsDgABiU2KJ\ns8RqAUDgDMgrSuzYSbE5j9+sPmMfow/bL27DpPPgWupV3j/6Dh56MzGp13m4Wk9W9QyjXZUOBHqU\nYuWpr3jhvjHa+fly/CVe2z+T8PjzjN7+HMFewQSbS7M13Dkhqma6ADgedQy7YteC6sp4Ou/Dbr+0\nFaPehAMHr+x6iVd+HkuwZ2nKepd3Zo7Tm5j8wDQ+OLKYneE76LuuB2v+Xs3o7c9pgQZqVpGryRHo\n0FPJvzLjmkwEwMvkxfC6I5l/cDa91z58yy/rM8tg4vrr/MMRh9JkeXH997DNj6XJanI5/pKWbUDN\ncvDJ8SV83OlzLfAhdGN/Dkccos83fXLyUQo3yCxrQWYZdjJ7XUaZeXJCzZCz+dzGLF+X0wxFGb2/\nmp0mfcaf7Mqa2b5c/63WWc3UNXbnGG1iPz11bDf5gWlpst+4BgBdjr/EJ8eXUNGvEos7LNHeTz2u\n1HPLpN3jtYwb6mSyax27Vu/OW+0WY9KbtGxHTcrdrwUCqcez6zF7POooJoOJ11rO0/bxSpMpLDm2\nmPNx/2jjCDVbnRqENGbHc8B/mYbUz9K1b8xv8yaLDi/U3nPktidRFGdg0+sH57Dm79VcSghnzd+r\nmbRnHDqdM1h+a/gPGPUmJt4/FU+DF/sv79MymozZ8RxPbx3G7F9mEJl8hf41B/HJ8SVcS4rm3SNv\nci0pivohDXmr3WJmt5qHt8mHMt5lGd90Iks6fYbFbtECdbZc2ESARyAWeyqv/TKd94++gxEjpT1L\ncyH+PIEeQQBsPL+Oub/MQsGBw+Eg2Z5EoEcQSdZE7NiJt97ggbIt2HFpG0EewQR4BBLkGUSQZykC\nzIG81+EjAs1B6PQ6AjwC+bzrcvre7Qze6lGtF+91WIJBZyDBFs/G8+tY8edX7P53J6XMwfSo1ovZ\nbV6ntLkMZsN/Swe9f+QdEmzxmPQe9K7Rj2R7Mn4mfwI9g0i2phAef4Egcym8Td58cGQxA9b35rvT\n33Ay+oQWODah6VSWn/yCFFsKU5vPYPXpbwDwNHiz/eI2QrxDMOqMTLl/Br4mP/zNAYR4ldX6YoA5\nAAcO2lZsz+WESwzdNJjX9s9kevNX+erh/1HaM4TY1Bi++OtTAD7u9Dm1g+tQ1f8upjd/lbE7xxCV\ndJWIxCsoCqw9t5r6IQ3ZfG4jk3aPJ9grGJ1ex8qTyynnU575bd5k7bnvmdHiVcJ6b9SCdPw8/Pm0\n8zJGNXmR+a0XseyvpbzVbjGLOyxh2V9LmfzANO04U49ZtQ3e67gEb5M3UUlX0xyfAFFJV2lS7n4m\nPzCNT/74gCfrPk2CNZ7Juydgc1gJ8S6jZcAy6U3aewC8/PMo+qztrh0Lrpn3yvmU1zKOqRm8Dkcc\n0o5n10w96bmef9Tzh7pv9bhWt1vWdQX1QxpivHk+cD02Xc9PGZ0jXX/cMmXvK8xvveiWwCTXdky/\n38xk9ho1C1Fmz6vnE9dMbbmR/tqWkbxk9TkccYhnfhyuZYzMLpNefmUNMsyaNWvWbe/lDpHROqZ3\nOh8fc7GsV1FRUto3xWIj8noS/1y5wb4/Ilj2w0mSU230aXMXQ7vWxqDXcz4if3/tavYwYrHkb5CO\nTqfD18vEhYh4jp6NZvvhS1y/kULpAE/8fTK+gVhclZS+W1ikfW+frO9e+HLah2+nv7teO1Isdv44\nd50yQV5UK5+39W9vx4XIeKJik1GA0oFeBPmZCb+awKGTVzkVHkNsQio1KwW4PUDJlZxb3Efa2n2k\nrd1H2to9CqqdZWxU+E5HnsPf7ByjqDfempd3/pL0jQffppxPeeItN/D18GPUjmfpVLULuy//jEnn\ngY/Rh0RbAn4mfxJtCfx8cScRSVfYcmETO8N/IrTOEHrf3Y+KfpW09wDwN/tzX0gjagXXwd/sTwXf\nitrjFXwr0rFKZxqXa0q94HuZtHs8Hat0vmUfABV8K+Jv9ifecoP7yjaidlAdTsWc4KuH/0dZr3Ls\n+3cPQ+sNp22ldpyJPY3FbkGnwGN1nuD3qMPAf4EDHSt1IcEST6ItAQcOku3J1PC7mxiLcwkbL4MX\nZoMnNm2ZIjDrPbFnsOxXg1INiUyOTPOYCQ8c2LXn1PfVY6C0ZwgWe6pzmQfvsvS7ewDHrx0l0BxE\ngDmQsY0n8nTDZ/nhn014m7wZUe8ZZracTQ3/mmz4Zy3+pkBeb/0Gzcq14N/Ey7zZ9m2q+N7Fvit7\nGFb3Ka6lXOPLbiup4V+Tv67/weGrh3jxvvHUCLg7TTaeEM8yjGzwPKtOf0OCNf6WDCa1A+pwLfUa\nrcq15UriZTyNXlhuLt9lwMCAWoP5MXwrDhwEeARiU6wMu3cEbx6ezw3LDV5pOoVzcWeZ9MA0tlzY\npO3fiFFbliwrPkZfbA4boKDXGbgUf5GhdYez78puIpKu0KFKJ34M38q7HT6gd82+7Lm8i486f0aT\ncvfjZfQm7Mxq9IpzAmlas1kcjTqCj4cPT9V/htMxpxj545O83vpNht07gk3nNnIt5Rp6DBj1RlId\nqfga/XiuwRguJYQTlxrLqIYv88e1Y1gdlpvBV9Y05a0dUIeo1KtaW5h0Hnzbcw0xyTGcijnB6PvG\nMrPlbJ67bzSP1OhNl6pdOXjlIBa7RetXBoz4mny1dgbw0HmgoDDmvnH8ErEvTb/zMnmjKKTJ1uRj\n9MXb4E2qIwVPvVeapeoCPAKcx0W6jDXXU67jZfTWlujwMnhlusRd+uAbdRk0AwZ8TM7PTIcOo97I\nsDpP8fvVw3gavLA6LHSs1IVZLWez8+JPHI3+nR7VenExPpwEe4JWvlR7apr9e+g8blnirLAz7pj1\nZixKKl4G5xIfziA6HXbFnqZcTUMe4N+ky1qbZVS/gqK22+QHZnDk6u9YFAsJ1oRbXteqXFvO3jiD\nUW8kzhJLx0pdSLInEp96g0BzEPsj9tCjek8SrAn834llTGg6lW/+Xknvu/vhb/bH3+xP17se5pEa\nvXi4eg8m7x5PVPJVFrZ9i8blmhJvucGo7c8SmxrLkajfUFAYUDOUSwnhXEl2TqTX8LubqJQoQMGs\n9yTRnoC30RuDXs/W8B/wMfnQvnJHvvrrC07H/s2ge4bw9u8LiU2NIbTOEBqG3MczPw6nYelG/Bi+\nlSDPUnzU+TPuDWnApn82oNfpORfnvPa90PBF7i//gHZ9ORxxiFE7nqVjlc5prjmnY07xeN0ntAm/\nPmu7s+WfH7ivTCNGbhvO6tOr6FK1KxX9KlEv+F5mH5jJGw++ja+HH6Eb+7Pl/A/a3y/vHI3VbmVU\n45eo6FeJLlW70u+eAdQKrsOjDXsT4Jn7IDiRf5KSLNp4KH0/SM/f7K+NUVQZbZvVPjJTwbcidYLq\nsujwwjT7ymz/6cvh6nL8pQzLcDn+EqN2PKsdv/nJ3+yv7f+NB9/moWrdtKwembXr3UH30LZiO8r5\nlOd0zCn6rutB24rtUBRFO1YG1X6MWsF1tAAf1zGi2g61gutoj7vWMd5yA3+zP1cS/mXbha08UW+4\n1maKorD69CpaVWzDyG3D2XB2HW+1W0yCNYEhPwxkQtMpLDn2Ph2rdCbecoMZe6eg1xkI8izFUw2e\noVZwHR6s1J4m5e53jnPLNGLd2TD+768v6VS1C1vPb+Z/J5ez9cJmulZ7WCuLOu6t6FcJRVHoUb0n\nTzV4Bl8PP774Yynbwn/g2fqjWf9PGAvbvsWYxmNpXK4pHjoPvj+ziuPXjpNqT2HT+fWMrP88Hx//\nkBRbKnNbz6d+cENG1B9JreDaPFStGzsv7sCoNxJgDqRtpQcZvf05tl/cRqo9BbvDwYZ/1jKo9mO0\nrtiGNWdWAzCs7lNcTY5ArzNg1Bkp7RXCjBav8VSDZ3i4eg8erNSODWfX8UTdERyPOkqAZwDeJm+S\nLIkEeQbzRL0RHIjYi16nJzzhPMPrjmRArUH8cH4DOvTEpcbyfMMxPFilPWvPfI/VbiXeeoMqvtX4\n4k/n0qHn4s7S6+4+7Pt3DwnWeF68bzy97+nLJ0c/4lrqVU7H/k2toDocijxAdPI1pjV7FS+jF2Fn\nVzOgZihLOn9KbGoMOy5u46l7n2XPvz/jZfQm0Z6Iv4c/doeDua3nU9GnMhv+CbsZBGti24UtHIjY\nR5wljhRbCuW9K/Bb1K+AjjmtXufYtaO82Ggsp2P+ZkbL1zDpTGy+sJEAcwAjGzxH8/It6X1PXyp4\nV6SyX2WORP1ObGoMZqOZgxG/0LhME/Zc3o2/OYAxjcay/MQydl7czrYLzrGsj8mHr0+u4JtTK9l3\neS8v3DeGtWe/5+6Amrz88yjmtV5I/ZCGbD2/hRktXqVxuaZU8K1IveB7mb53MvcE1WLSrvH8GL6V\nt9otpm3ldlyOv8Ss/dO0zFSur//65EpWnljOhnPrmNHiVfrWfJQEawJNyt1Pl6pdaVyuqXZ8jtw2\nnJH1n+Pln0fRtmI72lZuR52gujzbaBR1S9XjUOQvPNtgFG8eXkCnql3YEf4jU5vNREFh1I5neabh\n89QOqsOwe0dQK7hOmvNUvOVGmmNbPS+oATbqMQPOIJsuVbvecj7J7Hw3cttw7Vo8bPNj2vfULlW7\nauXI7HyW2WPqubpvrf5pno+33KBVxTZpzjO3K7vztOv5JK+yuv5ld63JrExqH8lu24z2n9f7RbIc\n2B1OUr4XrOLevleiE/lu51l+P30tzeNeZgNtGlSgXLB3gb13QSwHpmpUM4Q9x/5l5++Xib7hvIlw\n392l6d6iKjUqlowvkMW97xY2ad/bJ0teFD53LwcWFZvMDwfCqVstiKa1y+Rpf/ntRqKFn36/TFyC\n86a+t9lIpRAf/H3NWKx2Uix2HIpCg+rBtGlQngDfjAfcV6IT2XIwHINBz0MPVKFMYN5+6SrnFveR\ntnYfaWv3kbZ2D1kOrPi678PG2o1gSLusBJBmCQUgzXPqUiveJi+mN3cuq7QzfAfALWnlXeVmaYyc\nLEmhllHNPqSWset3HYlMvoJJb6Ksdzk8DV6E1h7C2nPfM6zuCIK9ggnxLsPmcz+w+MgiKvhUYnzT\nibSr0oE1f69m5cnl3LDE4XAoxFvj+LTLMkK8y/DF8aV8d/prHDgw6Iy82fYdYlKcyxW0qNgSgB7f\nd2Fqs1l8eOQ9PE1mxjWZyIRdL7P0oa+YsmcC45pM5J3fFjG71Tyt3SbuHksF34qs6bVR+1W5a/r5\n9EvRXI6/xID1vVncYUmGn9/O8B1aqn/XZTPU5SWGbX6MWoF1OBi5n0RLIlOazWDSnnHY7c7ABQcO\nnqz7NH4e/nx7eiWb+v7Imr9X06JiS3qt6UZ534r0rtGPagHV+PDoYm05jJPRJ/jk+BImPzBNW8Yi\nxZ7Mp12WMXbnGG3SwHX5hTV/r2bv5d2cij1By/JtOBi5n3tLNaBGYE2qBVRj/sG5+Jv9mN78Vc7E\nnGHlyeXMaPEqiw4vpFf1viz4dQ5hvTalSX+f0ZItar9NvzQA3JpxwJVa70m7xzOuyQSm752CSW9y\nZsBKucrwuiNZ9tdn2pJePar14oXGY+gZ1pWlXb6ifkhD7b0ORxyiV1g3qvhV05YdUG0+t5Gntj6B\nxWHFpDeysM3bxKTE8Nov0+lRrRc/X/4Jf48AopIj+azLl8w+MJPnG47hfNx5dl7enibLwuANj5Jg\njUen6KjgV4mXGo8D0JZmalKuCZN3T+BqcgR+Jn/iUmPxNnkTb41nRrPZAMz+ZQZ6nZ43277LnAOz\nuJ4aTctybdgbsYumIQ9wOOoQZb3LsbDtW+wM/4mvTnyOTbFh0pkYUudJ/u/kMsp4l2Ve64WEeJeh\nSbn7tSUT/E0BlPYO0ZZveXrrMBTFmblFXVZOXd5D9d8Sfmn5GHxJtCfgafAkxX7rPTcvgxfJ9uT/\nXn9zuRBwBr3sjdh1M6gx++xB6utvfQ9vku1JlDaXwWgwYNAZGXHvSN4/8g4eBg8G3vMYOy9vp0nI\n/Sw/8QUKCm+0fYd3fluEzWGjVYU2lPepwKd/LCEpB+XIi+F1R9K/9kD6rO3OhKZTmfPLTBw4tHbr\nUa0Xp2JPcC72LG8++C4LDs3leko0FXwr8lrLeQDa5wj/HTNZnacvx1/ieNTRNMv7qEvsRCVdZcqe\nCXzaZZm2bJjajnoM+Jp8SbEnE2QOxt/sl2ZZlIjEK/QOe5j5bRbxwZHFnL9xDh061vXZTJNy92tl\nU5cZSr8k19idY+hfcxALf51LJd8qrOrpPEeqS2m41ktdwtJ1mQ/X/Wa0TFj6pZFcn89qWTEZFxU+\ndbyblyVPVLezbU72lZv9Zzfmyu2+sjrWM9s/oJUBss6GkX4pHzVwyLX8uV1izXU5MjUrT0bLCbmO\nE1zHX+rxrpZdHX8pijNLSmbLEqnX9LW9f0izVKFre7iOQVyX+jkccYgxO57jRmo8JoMRT4PXLWOG\nFX9+Re3gOlq2ovohDTkedZTX9s/E6rBqy+1O2fsKH3f6HID6IQ21cvRZ2x2r3UZkUgSlPEvhYfBg\nfZ8t2jXZrtjxMfoyo8WrRCdHM3nPeCY0ncqXf32Oh8GEUW9iZP3nmLRnHJ92XsbsA84MNyHeZbRr\n+qM1B/LukTd58b7xVAuoxifHlzgDfSzxXE+9ht1hx6g38lmXL9MsNxziVZZBtR5j9Rln5p31fbaw\n7PjnvHvkTe1a1iusG4HmIJ5tMIo+9/Sj87ftuJYaxdsPvkft4Do8EtaVYHNp3njwLUZuexIvgw+l\nvYOx2K281Hgcr+x6mQCPAK6nRhNsDsHX7MOl+Iv4mvxY3OFDgDRlKuNdlsikCBQUbRylZi8FeP3g\nHK4lRbGo3bvUD2moLVt1MvoEY38ezVs3ywXODDqvH5yD1W7V+lD6sWeP7x8iKjmSEK+yfPbQMm07\ndTku9RoHaH1H1TusOx4GE4oCM1q8ql2DM1oWS338eNRRpu+dwr+Jl6jo63z834TLLGjzFo/VG5rm\nOFGXwnIdU7teP9X+7Pr32J1jgP++r6X/jqlun9GSV1ktZ5jZ98300i/rlV/n6YzOR5kttXinyGjJ\nycKS13GRBAHd4eRGb8Eqru2bkGxl3Z5/+On3y9gdCqX8zQT7e+LrZcLHy0SF0j54ehgKtAwFGQSk\ncigKl64m8Oc/14mKdb5XSKAnIYFeNKtTlgqlfagU4ou5gOtaGIpr3y0qpH1vn9zQKXzuDgI69+8N\n9hy7wgN1y1C7SlCe9lcQrDYHp8JjiL6RSkx8KvGJljS/nXUujAE6HTSpVYbG95SmtL8XpfzNWGwO\nNuw7z/4/I1BH1Hqdjpb3lqNT00rcSLJwISKei1cTUBQI8jNTyt+TYH9PypbyomyQFyaj4WY57DgM\nBq5E3qBSiC9Gg6zaW5DkPO4+0tbuI23tHhIEVHxtPr4jw5utqqwmK9Xn1RvA6R/PbpInPyfI1Mmd\n9Ddgj0cdJcS7jDb54npD2tXmcxupH9Lwlpu36o1q15vcoRv7k2xL4sVG46gdXCfDyR/XyXH4L/jD\ndWI5fRukn6zOSTtldlPcdbJNlf4G9eZzG1l0eCHD6o5g8p7xrOmVdskRdaIho/fJaGI9JxPg6uPp\n2zv9dpvPbeSZH4fzfc8NGQbspG9D1wCegpQ+SA5gZ/gO2lXpQP91vbWJMnWyJLNyZfRZqzaf26hN\npKntv+LPrwj2CuaJzaHaJFL64IuMJlrVYDL4b4JoZ/gOlv21VJsIHVn/OT44spgZLV7VJhBDvMvQ\nZ213As1BeBo9WdLpM8bseI54Szw/9NvOmr9XM6rJi7d8jnP3vaZN0O26vBObYmVJp89uaYP0E6rq\nY2N3jtGWpJixbwpLOn3G0E2DsSt2rqdGU9pcBp0ODHoDEUnOuvkZ/Xmt1Txe+fklKvpVpn5wAw5H\nHaJJyP1sOL+Wct7lWdj2LSbsGsvE+6fy5q8LeL3NQqbsmUC/uwey8Z91/HPjHKU9Q7g7oCZ7I3ah\nQ0cZr3LEpcbSs0YfVp3+Gm+jNz4mH2JTY/Az+XM9NRqj3oiv0R+TwUhsagzPNRjDsPrDiUi8wujt\nz6HTgdVhxagzaUEman/df3kffe7pp31OrpPTXap049vTK5nQdArHo46x/K8v8DCa8TR48nb795i8\newIj7h1JkGcQk3aP47HaT7Dj0jZebDSOOQdmEZ16jY6VurD78k7QQZsK7TgVe4L1fbakOV4ORxzi\nZPQJPjiymJjU6yRY4pnfZpEW1KeWTT0H9l3XQzsmcyq7yXrXie/jUUeJTo5mwq6XWdj2bdpV6ZBm\n0jz99q7nVLWv57Rs6vuOazLhlnO/eoy7Hkt91nZnTa+NBT4RJuOiwlccv1fkx5grfZBK+v1ndpxn\nNubJTXnzKxBqfps3KedTnv7ret8SUJPR69KPCdMHZUP2AU391/VOEyiUvj1cx7Djmkyga/XuWjnG\nNZnAjH1T+DfhMp91+fKWQI70QRSugUlRSVe1oM33D7/L/04tJzz+grYUlHq96V9zEPN+efVmXSoz\nu9U8Xj84h3jLDea1Xshr+2ei06EF/HxwZDHh8edZ0OYtgr2Cef3gHCY/ME0LTBm9/Tne67iEp7YM\nIyLpCjqdDofDTvWAu7VxhnpePx51lBn7pgDwWst5PLX1CfxM/tgUG3GWWOeyY94h+Jr8WNUzjJ3h\nO3j551GYdCaWPvQVE3aNxWzwxKQ3MaPFqwzfMhS7YqOKXzXCem9k2fHPWXxkEW89+B6AFsSkBuz3\nXNOVsj7liE+NJ8WRzPzWizgfd553j7xJOe/yeBo9uXTjIgoKQeZgzEYzJoORB8q2YO3Z1ZT3rcCL\njcbxwZHFXEoIJ7TWUFac/JIQ7zJ82mUZo7c7l4PT6eDhaj2Z2nJGmuAQdbyTPkjWNePcM/VH0bV6\nNwB6r32Y8j4VtGvR5nMbeXrbMC0IPqNAN0gbIOR6XUvfp9U+99r+mbzX0Rl0+/TWYUQlXyWs1yat\njJl9l1G/V6jngcyC8dNLP47N6DHXAKP0x1hOglXSBynlt8zOUZB5gPCdIKcBl3mpV063KZFBQA6H\ng1mzZnHq1Ck8PDyYM2cOVatWzfT1xXHgIjd6C1ZxaN+kFCvhkQmER8ZzITKe8MgErkQn4VAUygR6\n0b99DW4kWdy+/Ik7goBUiqIQxczPsQAAIABJREFUGZPMH+ei+fdaUprn9Dodlcr4UKNCANUr+FOh\ntA/lg73x9DC6pWwFpTj03aJM2vf2yQ2d/FdQ46L8CAKKjkthz7ErxCVa6NS0EhVK++Rpf+5gszuw\n2hwYDXqMBh1Wu4N//r3BqfBYYhMyXv4l0NeD+2qWxu5QOHYmmrjEnC0TowOCAzyx2h1aNiIAs8lA\nzcoB1KkahI+niRSLnZRUGw5FITjAk9IBXgQHeOJh1ONwKCgKWGx24hIsxCVauJFkwWTU42024u1p\nJNDHTNlS3piMmQcWKYpCisWOp4ch2zGB+vWhMJdOu11yHncfaWv3kbZ2DwkCKr6iouJv+9fuufk1\ndkHKST3y4xfv2QVG5UZB3QzObsIso1/suiOIJjeKYpmyUtCZH8A5weI6WZSbbTOaKHGdSEz/S+X0\ngTrpf0Gd0Xtdjr/EI2se0rI+ZZRpIadlT1/GneE7+ODIYnQ6tIww+y/vY+Gvc7UANtdf1q/qGaZl\nRkg/4Zo+gOzJzY8TlXRVW2ZsRrPZ9LmnH8ejjjL7wEzOx/1DGe9ymAxGFAU+6vyZVma1jdIHQ6af\n7Eqf8emJzaHaRGX68qiTeGoGDDVQRd2PaztlFFy4M3wHtYPraBl/Vp3+OsvPQp24tTqshPXeeEt5\nXV+Xl2Myp8GM6uSoOqGc1/3ltEyQ/QS+a7nc8Wt+GRcVvtyOd4v6pG5Oy3e7E+jZBSWnv77k9toA\n2Y+7sqtDTo7nzec28vrBObdc69Rt4Nag6qzK4RoYoW7rmm3MNSDE9XVqfQ9HHOLZbU+luVakD/RW\nH++/rjfgzPyiBoeAM4jxk85fALDo8MI0Y7/R25/jhiUOb5M3LzYaxyfHl9C/5iDmH5qtZTCC/65x\nm89tZMa+KRh1Ju391YAqNXDl9dZv8u7vi7gcf4lSnqXxNHryUuNxWkai1w/O0a5J6mcbkXiFYT88\njoKDmJTrBN3MTORp8OKF+8bQrkoHQjf251pSFN4mH2a3msfT24Yxsek0Vp3+mskPTGPE5qEoOoVy\nPuX5tMsynt46jFRbqpZ1cM3fq1n461yCPUP47KFljNnxHINrDWHhr3OZ0HQqa899rwVLt6vSgZ3h\nO3j390VaoI9OB9Obv8rrB+cQk3IdT6MnXkZvJj8wjTMxZ3jj8DxG3vsCHx17j7De/wXNPLVlGNEp\nUXzS+QstyEvN2HQpIZw1vTZm+GOF9w+/myZb3fGoo1rfVLNVJduStDFQRpns0vfHzI6DjAL21der\nmfue3joMdPBp52VpgtUy6tsZUceVmWXISX++cP07ox97pD/mcnpcFtY5uyh9Z86NnIzhcluv3GxT\nIoOAtm7dyo4dO5g/fz5Hjhzh448/ZsmSJZm+vjjeEC1ON3rVrqh1SJeeqa4bnb63KulerP6d5mXa\nYznch8tzwcG+XLuW4PLajMv439//ba3c+lCafQCYPQx4ehgw6G+dlFMUBYvVQbLFRnKqTZsATLHa\n0aFDr3dOviWn2oiJv5m9IMmC1ebAZlew2h1cjUnSMuCojAYdQX6eVC3nS60qgRm+tzu4MwjIVar1\n5iRpQiqxCRauxSUTfSMVhyPtB+XjaaR8aR/8vEz4eXvg6WFwLg1jtZNqsWuTq15mIz5eJgJ8PAjw\n9SDAx4zRkHZSVJ0k1QGeHga8PY1a5gdFUbDYHKRa7VgsdlKtdlKtDgx6HX7eJvx9PPKUDaKgzw0O\nRcFmc/zXv3XO+jmrerO+N5tB+//NF6mtI5PHRY9DUbBaHej1YDToC/Qzkhs6+a+gxkW57e9Wm8P5\n6xiDnu2/XeL42WiOn4tGUaBWlUAeqFPmjjz+FUXhWlwK0XEpJKbYSEqxYrE5qF7Bn2rl/LQ6ORSF\nCxHxXLqagJ+3B6X8zZTy80Sv15GYYiUpxUZCspUbiRbnf0kWDHo9vl4mgvw9sdvtRF5PznEgUU7p\ndTrKlvKiYmkfzKb/MuAlpdqIik3hWlwyKTevb8H+npQOdGYs8vd2Xt88PQxcjkrknys3uBAZj82u\nUCbIizKBXpQJ8sLXy4S3pwlvsxEPk/P8odfpUBRFq3NCshWdDrxuXj89TM4gJptdwW53YDDo8fQw\nYDY5x0fOcZIRs8mAze7QxkM2uwMfTxPens4gp5RUO3GJFuISU7HZFWf5Azzx83bejEmx2ElKsWFz\nOPAwGjCb9FQoH0hk5A2sN4O+AO299XodNruDpBQbiSlWAHw8Tfh4GbVxk6Io2B2Ky7hOh2u31unA\n4VCw2pxjMrV+JoPuZoCZHr3+vw0UxdkOFpsdvU6Hh0mf4RjNcbM945MsWKwOfDyd45CcBG+l30+q\nxbnknYdJn+l4ND+kP4coijNwzZHDr6HZVUvtaznh+t46nfO4SN9udodzfGPQ3/pcUVdcxydFjQQB\nFV/58bkW9QmwoqqwbwbL5yZUeZkkzm5ytyD6V0YTwa7vl1EGh5zsM3Rjf7pU6Ua1gGoEewWnmdxS\nl1hTJ0LTv39eZZYNSy1TTn7Znh3XCbfsAljyM7gxr3ISbJMf5828Tli5o21kXFT4cjMuKuzreHZy\nk8UhN4EtuS1D+oCCrLKKZRRcmj5oIDcBR7mpi/peaiBpZhk8chIwlT4wQr0uuWZUcuUaiJE+EGLA\n+t58+0hYtu/vGlAzZsdzfPtImBZs4hqo45qVqHdYdyIS/2V+m0V8cnwJSdYkdDr4N/4ya/v8kCZY\n6a12i7Uglaikq2mCU1Vq0JPr8qRqZkn1utc7rDveJu80gUB91jqvu4qiUM7XGcRTzqc8a/5ezRuH\n5/F9zw0AWoBxOZ/y2n5G1n+Ox+oN1bImztg3hRcbjWPsz6Op4FOJzx5apl0L1WUg1cAZ1wxMrm2j\nLgOpZt5x/ZzUoOi32i1OE3ysBiv1DuvOR50/S5OVp3/NQVqQkWu/UNsxdGN/kqxJzG41T1tiTM2y\n5LoMZ/rMOOkzVqX/PLLiGhST1fjJNXMekCZILrtgI9d9qMd9Ztn9MtouswCmnGybWZ0LKrNNTtxp\n373yI4j0drcpkUFAr7/+Og0aNKB7d2dEfJs2bdi9e3emry+IG3VbD11k3Z5/yGsj5uW2ctoJBh25\n+QiVNIE1af91SwBNuuCZtI+l3192ATYu+8koUKeEMxmdk0HqR6vg/DX+7R6dZpPBOfno76kt+eXn\nbSoSExqFFQSUEbtDIeZGCtE3UohLsBCbaCEuwUJKqq3A+qnRoMeg12Gx2rN9Dy+zIceTWyq9XndL\nYFN+cCjOJWts9vzbt87lH7oMJlFdg4pc/kwTVKRz2UnavwtGbs+9RV1Gn6sOMJn0lAn0ZurQJmmC\nBvKD3NDJfwU1LsrNZOcf/0Tz7qpj2B0KhpsBDnaHgo+nkRb3livSGYCKAtdrY1KKjciYJBwORRsn\nACSm2Ei8GVDjcDgDGXQ6HXq9zhlc42HA02zE4VCwWO1YrHYSU2zE3gx+VQNeXBkNuptBPEZSLXbi\nk61YrLe+TuUMUNURn2jFas/8dYXNdDNTkj2X10OjQY8tk3p5ehhuBvc4bnuMoNfpMBqdASwWq+OW\noBijQXcze5NOu1amWOwZBs8Y9DoMBjXoOOvro83hDABKz8Ood7aZ8l+wjKIo2t/w33XZ9Zp86/vp\n0myvgJaxSv07v6ltadTrUUgb7KMoCg5Hxu+tA4xGZ9Yvu0PBZlO09tXpwHQzYKsIDJ1zpKDGf+I/\nHiYD04Y3I8gr/7OGytio8EkQXeG6024GC+Eqo0merH6p7e7y5NSKP79i7M+j+bLrygyX5bjT3Un1\nyOkkXn5kAiqKbSLjosKX0bgoJxlmiqqCnMTNbTnUyffjUUczzPaV2QR9+iwl2S09drvlVN/rdvaR\nPjAjo6wr2dVV/Ts3mcjSB7D2XdeDjzt9fkvmlvSBWa5ZeSBtdrv0mZByGsilZie6lBDOJ52/0IKD\n1KU/1b/VAB014EUNRFGXhp3X6o0Ml1lVM+qM3PYkr7d+kyl7X2FeqzeYtGccYb02cTL6BO2qdLgl\n8036umXWrzJbutW1ndRsfbMPzMSoN/FWu8Va1kT1c3QNokm/pJtrMNDIbU9qAUdjd47BarfyXscl\nGY6rbicQLqNt1cAm4JYsWBllr8pLsG5+ZPjMr0Dg/M5sUxwVlXYokUFAU6dOpUuXLjz44IMAtGvX\njh9//BGj8c5exkcIIYQQIrdkXCSEEEIIIYQQheti3EX6fNOHDx7+gGaVmhV2cXJt3cl19Kzds7CL\nIYQoYtRz25qBa6gcULmwi3NHuxh3ESDL9rwYdzHbds7Ja4qSi3EX6b6yOxtDN6Ypd/p6ZNbXcltf\n19f/cumXNNfkvLZd+u3S7zer7f6N/5dmlZpp+1D//8ulX3hh0wusGbgGIMO2mNF2hnZtzqh9LsZd\npPPyzmwbsk17n18u/UIFvwoZvjaruue077nu17VOah0y2o9rXdO3o/q4Wn71fbLaX17rkNX5zPU9\ns9pnYR+j7jj+77RzTEG5k9vhjg4Cev3112nYsCEPP/wwAG3btmXXrl2FXCohhBBCCPeTcZEQQggh\nhBBCCCGEEEIIIUTJpi/sAtyOxo0ba5NbR44c4Z577inkEgkhhBBCFA4ZFwkhhBBCCCGEEEIIIYQQ\nQpRsd3QmIIfDwaxZs/j7779RFIV58+ZRo0aNwi6WEEIIIYTbybhICCGEEEIIIYQQQgghhBCiZLuj\ng4CEEEIIIYQQQgghhBBCCCGEEEIIIYQQd/hyYEIIIYQQQgghhBBCCCGEEEIIIYQQQggJAhJCCCGE\nEEIIIYQQQgghhBBCCCGEEOKOJ0FAQgghhBBCCCGEEEIIIYQQQgghhBBC3OEkCKiISklJYfTo0YSG\nhvL0009z/fr1W17z7bff0rdvXwYMGMBPP/2U5rlt27Yxbtw47e8jR47Qv39/Bg0axPvvv1/g5S/q\n8tq+mW23bds2OnXqxJAhQxgyZAgHDx50a32KAofDwYwZMxg4cCBDhgzhwoULaZ7fsWMH/fr1Y+DA\ngXz77bdZbnPhwgUGDx5MaGgoM2fOxOFwuL0+RU1+tu9ff/1FmzZttP66adMmt9enKMlL26qOHj3K\nkCFDtL+l74qiyh3n6KzGJSWJu66H169f56GHHiI1NdV9lSti3NHWy5Yto3///vTv379Ej6Hd0dYr\nVqygX79+PProoyV2bOKu84fD4eCpp57if//7n/sqV8S4o63nzJlD3759tTF3fHy8eyspioX03zdU\nGfVRq9XKuHHjGDRoEKGhoZw9e9bdxc2V3NTNYrEwbtw4BgwYwPDhwzl//rybS5s7mdUNIDk5mUGD\nBmmfT3bno6IkN/XKyTZFSW7qZrVaeeWVVwgNDeXRRx9l+/bt7ixqruWmbna7ncmTJzNo0CAGDx7M\n33//7c6i5lpe+mR0dDQPPvjgHXuOhIzr1qdPH23MMXnyZHcVM9dyW6+PP/6YgQMH0rdvX1atWuWu\nYpY42V2LwsLCeOSRRwgNDdU+h8yuzSdOnGDAgAEMHjyYyZMnF7uxcX621Z9//smjjz5KaGgos2fP\nLnb319zRVsWlX7nKzRi5pN+7Lci2kr6V9fE7b968NPeUpG/lvK3c2rcUUSR9/vnnyuLFixVFUZQN\nGzYos2fPTvP81atXlR49eiipqanKjRs3tH8riqLMnj1beeihh5SXXnpJe33Pnj2VCxcuKA6HQ3nq\nqaeUP//8032VKYLy2r6ZbffWW28pmzdvdm8lipgtW7YoEydOVBRFUX7//Xfl2Wef1Z6zWCxKp06d\nlNjYWCU1NVXp27evEhUVlek2zzzzjHLgwAFFURRl+vTpytatW91cm6InP9v322+/VZYuXer+ShRR\neWlbRVGUTz75ROnRo4fSv39/7fXSd0VRVdDn6KzGJSWNO66Hu3btUnr16qU0atRISUlJcWf1ipSC\nbuvw8HClT58+is1mUxwOhzJw4EDlxIkTbq5l0VDQbR0dHa10795dsVgsSnx8vNK2bVvF4XC4uZaF\nz13j6UWLFin9+/dXVq5c6a6qFTnuaOtBgwYp0dHR7qyWKGYy+r6hKJn30W3btiljxoxRFEVR9uzZ\no4waNaowip0jua3b8uXLlWnTpimKoihnz55Vhg8fXhjFzpHM6qYoinLs2DGlT58+SsuWLZUzZ84o\nipL1+agoyW29stumKMlt3b777jtlzpw5iqIoSkxMjPLggw+6s7i5ktu6bdu2TZk0aZKiKIpy4MCB\nItsfFSVvfdJisSjPP/+80qVLlzSPFzW5rVtKSorSq1cvdxcz13JbrwMHDijPPPOMYrfblYSEBO2e\nvMh/WV2LoqOjlfbt2ysxMTGK3W5XhgwZoly8eDHTa/Pzzz+v7Ny5U1EURRk7dqyyfft2RVGKz9g4\nP9uqT58+yuHDhxVFcc4vhYWFFav7awXdVopSfPqVKrdj5JJ877Yg20pRpG9l1l7R0dHKiBEjlI4d\nO2r3lKRv5bytFMW9fUsyARVRhw8fpk2bNgC0bduW/fv3p3n+2LFjNGrUCA8PD/z8/KhSpQonT54E\noHHjxsyaNUt7bUJCAhaLhSpVqqDT6WjdujX79u1zW12Kory2b2bb/fnnn6xevZrQ0FDmz5+PzWZz\nb4WKANe2ue+++/jjjz+0586ePUuVKlUICAjAw8ODJk2acOjQoUy3+fPPP3nggQcAZzuX9P4K+du+\nf/zxBzt37uSxxx5jypQpJCQkuL9CRUhe2hagSpUqvPfee2n2JX1XFFUFfY7OalxS0rjjeqjX6/ni\niy8IDAx0Z9WKnIJu63LlyvHZZ59hMBjQ6XTYbDbMZrOba1k0FHRblypVirCwMEwmE9euXcNsNqPT\n6dxcy8LnjvPH5s2b0el02jYlVUG3tcPh4MKFC8yYMYNBgwbx3XffubmGojjI6PsGZN5H77rrLux2\nOw6Hg4SEBIxGYyGUOmdyW7czZ87Qtm1bAKpXr16kM3hkVjdw/rr9gw8+oHr16tpjWZ2PipLc1iu7\nbYqS3Nata9euvPjiiwAoioLBYHBLOfMit3Xr1KkTs2fPBuDff//F39/fLeXMi7z0yQULFjBo0CDK\nlCnjjiLmWW7rdvLkSZKTkxk+fDhDhw7lyJEj7ipqruS2Xnv27OGee+7hhRde4Nlnn6Vdu3ZuKmnJ\nk9W16NKlS9SqVYvAwED0ej3169fn6NGjmV6b69SpQ2xsLIqikJiYiNFoLFZj4/xsq8jISBo3bgw4\n5/QOHz5crO6vFXRbFad+pcrtGLkk37styLaSvpV5eyUmJjJ69Gh69eql7UP6Vs7byt19S4KAioBV\nq1bRo0ePNP/Fx8fj5+cHgI+Pzy3poBISErTn1deoE/kPP/xwmpvmCQkJ+Pr6pnltcUhdllP52b6u\nj7tu16pVK6ZPn86KFStISkri66+/dlPtio70/cxgMGjBUFm1Z0bbKIqi9eGS1l8zk5/t26BBAyZM\nmMCKFSuoXLkyH3zwgfsqUgTlpW0BHnrooVturEvfFUVVQZ+jszpWShp3XA9btWpFUFCQO6pTpBV0\nW5tMJkqVKoWiKCxYsIC6dety1113ual2RYs7+rXRaOT//u//GDhwID179nRHtYqcgm7nv//+mw0b\nNmgTlyVZQbd1UlISjz/+OG+88QafffYZK1euvKNvgonCkdH3Dci8j3p7e3P58mW6devG9OnTi/QS\nTLmtW506dfjpp59QFIUjR44QGRmJ3W53Z5FzLLO6ATRp0oTy5cuneSyr81FRktt6ZbdNUZLbuvn4\n+ODr60tCQgJjxozhpZdeckcx8yQvn5vRaGTixInMnj2bRx55pKCLmGe5rdv3339PqVKl7ohA6NzW\nzdPTkxEjRrB06VJeffVVxo8fXyzOIzExMfzxxx+8++67Wr0URXFHUUucrK5FVatW5cyZM1y7do3k\n5GT2799PUlJSptfmatWqMXfuXLp160Z0dDTNmjUrVmPj/GyrypUrc/DgQQB++uknkpOTi9X9tYJu\nq+LUr1S5HSOX5Hu3BdlW0rcyb6/KlSvTsGHDHO3jTlWQbeXuvlX0v4mVAP3796d///5pHhs1ahSJ\niYmAM1os/S8vfH19tefV17h2vuxeW5R/yZHf8rN9XR933a5fv37avzt27MiWLVsKrD5FVfo2czgc\n2okyJ+3puo1er0/z2pLUXzOTn+3buXNnrU07d+6s/cqrpMpL22ZG+q4oqgr6HJ3bY6U4k+uh+7ij\nrVNTU5kyZQo+Pj7MnDmzoKtUZLmrXz/++OMMGDCAp59+mgMHDtC8efOCrFaRU9DtHBYWRmRkJE88\n8QSXL1/GZDJRsWJF7ZeWJUlBt7WXlxdDhw7Fy8sLgObNm3Py5Elq165d0FUTJUBmfXTZsmW0bt2a\ncePGceXKFZ544gnWr19/R2Wxy6xunTp14uzZs4SGhtK4cWPq1atXpLOv5EZW5yNRdF25coUXXniB\n0NDQIh0ok1cLFixg/PjxDBgwgI0bN+Lt7V3YRbptq1evRqfTsX//fk6cOMHEiRNZsmQJISEhhV20\n23bXXXdRtWpVdDodd911F4GBgURFRWUY5HUnCQwMpHr16nh4eFC9enXMZjPXr18nODi4sItW7GR1\nLQoICGDy5MmMHj2awMBA6tWrR1BQEO3atcvw2jx37lxWrFhBzZo1WbFiBfPnz2fatGnFZmycn201\nb9485s6dywcffEDTpk3x8PAoVvfXCrqtStJ3Lrl3m3PyfT53ctteudlHcZMfbeXuviWZgIqoxo0b\n8/PPPwOwa9cumjRpkub5Bg0acPjwYVJTU4mPj+fs2bPcc889Ge7L19cXk8lEeHg4iqKwZ88emjZt\nWuB1KMry2r4ZbacoCj179iQiIgKA/fv3U69ePfdWqAho3Lgxu3btAuDIkSNp+mONGjW4cOECsbGx\nWCwWfv31Vxo1apTpNnXr1uWXX34BnO1c0vsr5G/7jhgxgmPHjgElt7+6ykvbZkb6riiqCvocnZtx\nSXEn10P3Kei2VhSF559/nlq1avHaa68Vm8nGvCjotj537hyjRo1CURRMJhMeHh5pbsSUFAXdzhMm\nTGDVqlUsX76cPn36MGzYsBIZAAQF39bnz59n8ODB2O12rFYrv/32W4kfc4v8k1kf9ff31262BgQE\nYLPZimy2nMxkVrfjx4/TokUL/ve//9G1a1cqV65c2EXNN1mdj0TRdO3aNYYPH84rr7zCo48+WtjF\nyVdhYWF8/PHHgHOSQqfTFZsx2YoVK/i///s/li9fTp06dViwYEGxCAAC+O6775g/fz7gXDInISGh\nWNStSZMm7N69G0VRiIyMJDk5ucQviV1QsroW2Ww2/vrrL1auXMm7777LuXPnaNy4cabX5oCAAC0j\nQpkyZbhx40axGhvnZ1v9/PPPvPnmm3z55ZfExsbSqlWrYnV/raDbqjj1q+zIvduck+/zuZPb9sqI\n9K2ct5W7+5b8tKSIGjx4MBMnTmTw4MGYTCYWLVoEwBdffEGVKlXo2LEjQ4YMITQ0FEVRePnll7P8\ndZeaMtNut9O6detbUlCVNHlt34y20+l0zJkzh1GjRuHp6UmNGjUYMGBAIdfQ/Tp37szevXsZNGgQ\niqIwb9481q9fT1JSEgMHDmTSpEmMGDECRVHo168fZcuWzXAbgIkTJzJ9+nTeeustqlevzkMPPVTI\ntSt8+dm+s2bNYvbs2ZhMJkqXLl3iMwHlpW0zI31XFFUFfY42GAy5GpcUZ3I9dJ+Cbusff/yRgwcP\nYrFY2L17NwBjx47NMhi0uHLHOaR27doMHDgQnU5HmzZttDXZSxI5f7iPO/p0r169GDBgACaTiV69\nelGzZs1CrrW402XXR4cNG8aUKVMIDQ3FarXy8ssv3zHZO7Krm8lk4t133+Wjjz7Cz8+PuXPnFnaR\nc8y1bhnJ7NxS1GVXrztZdnX76KOPuHHjBh9++CEffvghAJ9++imenp7uLGaeZFe3Ll26MHnyZB57\n7DFsNhtTpky5I+oFJbtPPvroo0yePJnBgwej0+mYN2/eHZFRLLt6tW/fnkOHDvHoo4+iKAozZswo\n0T/MKEjZjY0B+vTpg9ls5sknn6RUqVIAGV6b58yZw8svv4zRaMRkMjF79mwqVapUbMbG+dlWVatW\nZdiwYXh5edGsWTMefPBBgGJzf80dbVVc+lVm5N5tzsn3+dzJa3tlJCQkRPpWDtuqRo0abu1bOkUW\nUhVCCCGEEEIIIYQQQgghhBBCCCGEEOKOVjzyeQohhBBCCCGEEEIIIYQQQgghhBBCCFGCSRCQEEII\nIYQQQgghhBBCCCGEEEIIIYQQdzgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEOIOJ0FAQgghhBBCCCGE\nEEIIIYQQQgghhBBC3OEkCEgIIYQQQgghhBBCCCGEEEIIIYQQQog7nAQBCSHc6vjx40ydOjVX29Sq\nVStf3vvYsWO88cYb+bIvIYQQQoj88v333zNp0qTCLsZtGzJkCL/88kthF0MIIYQQd4hLly7RoUOH\nDJ/Lr3tBmenVq1eB7l8IIYQQIq9kHk0IcbuMhV0AIUTJUr9+ferXr18o733mzBmio6ML5b2FEEII\nIYQQQgghRNGwdu3awi6CEEIIIUSGZB5NCHG7JAhICJFrv/zyC++99x5Go5ErV67QoEED5s6dy6ZN\nm/jyyy9xOBzUq1ePmTNnYjabad68OfXq1ePatWtMmDCBjz76iOXLl/PPP/8wY8YMYmNj8fb2ZurU\nqTRo0IBLly7xyiuvkJSURMOGDbMtz/fff8+aNWuIjY2lffv2DB06lBkzZhAREYFOp2PcuHHce++9\nLF68mKSkJJYsWULZsmU5ePAg8+fPB5y/XB81ahQAb7zxBg6Hg5o1a1KpUiUiIyO5cOECly9fpn//\n/jz33HMF2r5CCCGEKHpsNhuzZs3i9OnTXLt2jbvuuovq1atTtmxZRowYAcCYMWPo0aMHDRo0YPz4\n8cTFxXHPPfdw6NAhdu3drtABAAAgAElEQVTaleX+L1y4wGOPPaaNZ8aNG4dOp2P16tV88cUX6HQ6\n6tWrx/Tp0/Hx8cl0PwsWLGDv3r0YDAY6duzIqFGjeO+99zh//jzh4eHExsYycOBAnnrqqRyNoVq2\nbElkZCRTpkwhPj6eqKgounfvzvjx47FYLEydOpU//viDihUrEhMTk69tLoQQQoji5aOPPmLdunUY\nDAZatWpFaGgoKSkpvPzyy5w+fRp/f38++OADgoKCtG1iY2OZOnUq586dw8PDg0mTJtGiRYtM36ND\nhw506NCBX3/9FYB58+ZRt25dhgwZQkBAAKdPn+add96hd+/enDp1KtP979q1i8WLF2Oz2ahUqRKz\nZ89OUy4hhBBCiKzIPJrMowlRmGQ5MCFEnhw7dowZM2awefNmUlNTWbp0Kd9++y1ff/01a9euJTg4\nmKVLlwIQExPDyJEjWbt2LUbjf7GHr7zyCkOGDGH9+vVMnjyZF198EYvFwuzZs+nbty9r166lcePG\nOSpPZGQka9asYezYscydO5d+/frx/fffs2TJEmbMmIFer2fMmDF06NAh28HH+fPn+fLLL1mwYAEA\np06dYunSpaxatYpPPvmEGzdu5LHVhBBCCHGn+v333zGZTHzzzTds27aN1NRUypUrx8aNGwFISEjg\nt99+o127dsydO5du3bqxfv16unbtSmRkZLb7v3TpEu+99x5r1qzh8OHDbN++nVOnTmk3fdavX4+X\nlxfvv/9+pvu4fPkyu3btYt26dXz99decP3+e1NRUAP7++2+WLVvG999/zzfffMOff/4JZD+GSkhI\nYMOGDfTo0YNvv/2WdevWsXLlSq5fv87y5csB+OGHH5g2bRrh4eG328xCCCGEKKZ+/vlnduzYoU1A\nXbhwgd27d3P9+nWefPJJNmzYQOnSpdm0aVOa7d59912qVKnCDz/8wMKFC3nnnXeyfa/AwEDCwsIY\nM2YMEydO1B6vVasWW7ZsoU6dOlnu//r16yxatIilS5cSFhZG69atefPNN/OvMYQQQghRIsg8mhCi\nsEgmICFEntx///1Ur14dcK6jPnr0aIKCghgwYAAAVquVunXraq9PH4mcmJhIeHg4Xbp0AeC+++4j\nICCAc+fOcfDgQRYtWgRAz549mTZtWrblqVu3rjYw2rdvH+fOnWPx4sWA85f7Fy9ezHHd7rrrLvz8\n/LS/mzVrhoeHB8HBwQQGBhIfH4+/v3+O9yeEEEKIO9/9999PYGAgK1as4Ny5c5w/f56goCAsFgsX\nLlzg999/p3379nh4eLB3715ef/11ADp37pyjcUOHDh0oVaoUAN26dePgwYNERETQvn177VfnAwcO\nZPLkyZnuo2zZspjNZgYNGkT79u156aWXMJvNAPTo0UPLINShQwcOHDhAUFBQjsZQI0aM4MCBAyxd\nupTTp09jtVpJTk7m4MGDDBw4EIBq1arRqFGjvDStEEIIIUqAAwcO0L17dzw9PQHo168fYWFhlClT\nhgYNGgBw991335JZ8NChQ1oATq1atfjmm2+yfS/13lSHDh2YNGkS169fB9DeJ7v9//TTT1y5coWh\nQ4cC4HA4CAgIyEu1hRBCCFGCyTyazKMJUVgkCEgIkScGg0H7t6Io2O12unXrpg00EhMTsdvt2mvU\nmzyu2yiKcstj6jbqczqdDp1Ol215XPfvcDj48ssvCQwMBJzRzaVLl+bEiRPaa3Q6XZr3t1qtmZZV\nnTzLaDshhBBClAzbt29n8eLFDB06lL59+xITE4OiKPTs2ZNNmzbx+++/8/TTTwPOcVJuxwuuv/JS\nFAWj0YjD4UjzGkVRsNlsWe5j1apVHDx4kF27djFo0CAtW4/r2M3hcGh/52QMNX/+fC5evEiPHj3o\n1KkT+/btQ1EUdDpdmjK61kEIIYQQwlX6cQ04J5tcxw8Z3XNJP744e/Ysd911F3p95gnuXbfJbNyT\n1f7tdjuNGzfmo48+AiA1NZXExMRM308IIYQQIiMyjyaEKCyyHJgQIk8OHz5MZGQkDoeDsLAwpkyZ\nwrZt24iOjkZRFGbNmsWXX36Z6fa+vr5UrlyZrVu3AnDkyBGuXbtGzZo1admyJevWrQNg69atWCyW\nXJWtefPmrFy5EoAzZ87Qs2dPkpOTMRgM2sRZUFAQZ8+eRVEULl68yKlTp/LSDEIIIYQoIfbv30+3\nbt3o168fpUuX5tChQ9jtdh555BE2bdrEhQsXaNq0KQAtW7Zk/fr1gHPpi5ykQFZfl5qaysaNG2nZ\nsiUPPPAAO3bsIDY2FoBvv/2WZs2aZbqPv/76i8cff5z777+fiRMnUqNGDf755x8AfvzxRywWC3Fx\ncfz000+0bt36lu0zG0Pt3buXESNG0K1bN65cuaKNAVu0aMGGDRtwOBxcvnyZ3377LXeNKoQQQogS\no3nz5mzcuJGUlBRsNhurV6+mefPm2W7XtGlTbYmws2fP8vTTT2c7yaUu17pt2zZq1KiRZRafjPbf\noEEDjhw5oo2jPvzwQxYuXJijegohhBBCqGQeTQhRWOSnmkKIPClTpgwTJkwgMjKSVq1a8fjjj+Pt\n7c0TTzyBw+GgTp06jBw5Mst9vPHGG8ya9f/s3XtclGX+//H3AIIKQy2FJ0jXY6VlJmqZodvBJDPB\nA4IYabad1bQ0DxmamqfULP1W1mZ+MxU0FY9r5qHM1TWig8VqmboUeAizdAAVlPn90Y/5RgIiM8M9\nN/N6Ph772JiZ+5rrvhnnfnNfn/u6JmrevHmqUaOG5s2bJ39/fyUlJWnUqFFKTk7WjTfe6Fi6oqLG\njx+vpKQk3X///ZKkmTNnKigoSK1bt9b8+fM1a9YsDRs2TCtXrlRUVJQaN26siIiISh8LAABQ/cXG\nxmrkyJHatGmT/P391aZNG2VlZal+/fr6y1/+ojZt2jgGpMaNG6fRo0dr+fLluu666yo0/XGTJk30\n6KOP6vTp0+rRo4ejSOexxx5TYmKiCgsL1apVK7344otlttGyZUu1adNGPXr0UK1atXT99derc+fO\nysjIUEBAgBISEpSbm6vHHntMzZo10969e0tsX1aGeuyxx/Tcc88pODhYV111lW644QZlZWUpISFB\nBw4c0L333quwsDC1aNGisocXAABUc3fccYf27dunPn366Pz584qMjNQdd9yh9957r9zthg0bpvHj\nx6tnz57y8/PTzJkzL1kE9MUXX+iDDz5QrVq1NH369Mtuv06dOpo6daqGDx+uoqIi1a1bVy+//PJl\n7zMAAPBujKMBMIrFznxcAC7Tnj17NH/+fMfyEgAAAPg/7733nm677TY1a9ZMGRkZeuGFF7Rq1SrD\n+jNv3jxJ0tChQw3rAwAAQFW488479d577yk8PNzorgAAAC/GOBoAIzETEABT2LhxoxYsWFDqc2vW\nrKni3gAAAJStUaNGeuaZZ+Tj46OAgABNnjzZpVkmMTGx1CXG4uPj1b9//0r1GQAAwCzKy0IAAADe\ninE0AMWYCQgAAAAAAAAAAAAAAAAwOR+jOwAAAAAAAAAAAAAAAADAORQBAQAAAAAAAAAAAAAAACZH\nERDgocaMGaN33nmn1OeuvfZanTx50q3vf/z4ca9aSz0rK0s333yz0d1wuU2bNikxMdHobgAA4FZ7\n9uxRjx49jO6GRykvS5pZjx49tGfPHqO7AQCA16guOevOO+/UN998c1nb7N27V0lJSZKkb775RsOG\nDSv39dU1fwEAgEszw1hMZbKKzWbTgw8+6Pg5Ojpap0+fLvP1q1at0mOPPVbpPgJwDT+jOwDAM9Wt\nW1fJyclGdwMAAAAAAACocj/88IOOHz8uSbrxxhv12muvGdwjAACAqnXq1KkShdRr1qwxsDcAKooi\nIMBgKSkpWrx4sXx8fHT11VfrhRdeUOPGjSVJX375peLj43XixAk1b95cs2fPVu3atUtsv2DBAq1e\nvVp+fn5q1KiRpk+fLqvVWub7JSYmqmnTpvr222/166+/Kjo6WsOGDVNWVpYGDBigpk2bKjs7W9On\nT9fgwYP15Zdf6vz583r55Zf18ccfy9fXVzfffLMmTJggf39/vfHGG9q8ebOKiooUFhamCRMmqG7d\nuiXeMz4+XoMGDVJUVJQkadasWbLb7Ro0aJBGjx6tX3/9VZLUpUsXDR8+/KI+f/DBB0pJSVFhYaFO\nnTqlRx55RAkJCWW2+8wzz2jmzJnatm2brFarWrdurYMHD2rx4sXl/i6Kior0/PPPKyMjQ35+fho/\nfrzatGmjwsJCTZ8+Xbt375avr69at26tsWPHKigoqMy28vLyNHbsWGVmZsrHx0etWrXSpEmTlJaW\nppkzZ6pu3br66aefVLNmTU2fPl1NmzbVmDFj9Ntvv+mnn37S3/72Nz399NOaNWuW0tLSdOHCBbVs\n2VLjx49XUFCQtm/frgULFqigoEAnT55UTEyM49i9+uqrWrduna688ko1atSo3H0GAKC6yM/P14gR\nI3To0CGdO3dOU6ZMUbt27WSz2fTiiy9q//79slgsioyM1DPPPCM/Pz9de+212r17t0JCQiTJ8fOB\nAwf00ksvqXbt2srPz9cHH3wgf39/SdLOnTs1Y8YMrVu3TpJ0+vRp3XXXXdqyZYs2bNig5ORk1ahR\nQwEBAZo0aZKaNWtWop8nTpxQUlKSfvnlF+Xk5CgsLExz587Vvn37ymw3MzNTEydOVGFhoRo2bKgj\nR45ozJgxuuWWW8o9Junp6frwww+Vm5urTp06afTo0fLz89Pnn3+umTNn6syZM6pRo4aGDx+uzp07\nl9vW5s2b9cYbb8hiscjX11fPPfec2rdvX+FsuXjxYmVlZWnWrFk6c+aMLBaLhg4dqjvuuEP5+fma\nOHGi/vvf/+rUqVMKDAzUrFmz1KRJE/3www8aN26czpw5oyZNmig/P79Snw8AAFB5ZslZ8+bNU3Z2\ntnJycpSdna2QkBC98sorjutUS5cu1f79+1VQUKCHHnpIffv2LXOfjx49qtdee002m01jx45VTEyM\nJk+erPXr1ysvL09TpkzRF198IV9fX919990aMWJEie2nTZum/fv36/XXX9e+ffs0ffp0FRUVSZIe\ne+wxdevWzTW/HAAAYJiyxmIOHz6sSZMmKT8/Xz///LOuu+46zZ07Vx9++KGWLl3quAH/yJEj6tev\nn7Zt2+bIQzabTV26dNGHH36o0NBQSVK/fv301FNPKTAw8JKZYs+ePXrllVd0zTXX6MCBAyooKFBS\nUpJuvfVWSWVfKyrL2LFjdfbsWUVHR2vVqlVq2bKlI+OVNj75R5s2bdKsWbP01ltvyWq1Vmg8EIBr\nsBwYYKDdu3frH//4h9577z2tXbtWPXr00FNPPSW73S7p9yW53n33XX344Yc6fvy4Nm/eXGL7rVu3\natWqVUpJSdH69esVHh6u999//5Lve+TIES1btkyrV6/Wxo0btX37dknSsWPH9OSTT5YIF9LvF0ky\nMjK0Zs0ax8WOjRs3KjU1Vd9//71WrFihNWvWqEuXLho/fvxF7xcbG6vVq1dLki5cuKC1a9cqNjZW\ny5cvV3h4uFavXq0lS5YoMzNTNputxLZ5eXlasWKF3nrrLaWmpuqVV17Ryy+/XG67K1asUEZGhtav\nX6/k5GT99NNPFfp9nD17Vp06dVJqaqqefvppDR8+XAUFBXrjjTf0888/a82aNVqzZo2Kioo0c+bM\nctv66KOPlJeXpzVr1uiDDz6QJEc//vOf/2jw4MFat26devfurVGjRpXow4YNGzRq1Ci99dZb8vX1\n1apVq7R27VrVqVPHUei0cOFCTZ8+3fH7f+utt3Ty5Elt2bJFmzdvVmpqqpKTk5Wbm1uhfQcAwOyO\nHTumQYMGac2aNYqPj9e8efMkSVOmTNGVV16pdevWaeXKlfruu++0cOHCS7Z34MABzZ49W2vXrnVc\niJGkTp06KS8vz3EX1Pr169WlSxcFBQVp6tSp+sc//qGVK1eqX79+Sk9Pv6jdDRs2qE2bNkpJSdHW\nrVtVs2ZNrVmzpsx2AwMDNXToUD399NNat26dEhMTtW/fvgofk0WLFik1NVX79+/X8uXL9euvv2rY\nsGF6/vnntW7dOs2YMUOjRo26ZF6aOXOmJkyYoFWrVunpp58usSRXRbJlQECAxo4dq5kzZ2r16tV6\n4403NHHiRB05ckQ7duxQcHCwli9frg8//FA33HCDlixZIkkaOXKkYmNjtW7dOj344IM6cuRIhfYd\nAAC4jllyliR9/vnnevXVV7Vp0yYFBwcrJSXF8VxAQIBWr16thQsXavbs2Tpw4ECZfaxfv76GDRum\ndu3aadq0aSWee+2113Tu3DnHtbEvvvhCn332mSTJbrfrxRdfVHZ2tt5++20FBgZq3rx5euihh7Rq\n1SpNnTpV//73vy95jAAAgGcrbyxm+fLliomJUUpKijZv3qysrCx9/PHHioqK0o8//qgffvhBkrRi\nxQr16tWrRB6yWq3q2rWr1q5dK0k6ePCgcnJyFBkZWeFMsXfvXg0ePFipqanq27ev5s+f73iutGtF\n5Zk2bZrj2pWvr6/j8UuNT65bt07z58/X4sWL1aRJkwqNBwJwHYqAAAN9+umn6t69u+OuqN69e+v4\n8ePKysqSJN19992qVauWfH191bx5c508ebLE9rt371ZUVJSuuOIKSb9X5D7xxBOXfN+4uDjVqFFD\nwcHBioqK0s6dOyVJfn5+atOmzUWv37Vrl6Kjo1WzZk35+Pho7ty5iomJ0fbt2/X111+rT58+io6O\n1vvvv6/Dhw9ftP29996rr776Sjk5Odq5c6caNWqkv/71r4qMjNTmzZv1yCOPKCUlRc8+++xFsxgF\nBgbqzTff1CeffKK5c+fqzTffdNwBXla7n3zyiaKjoxUQECB/f3/FxcVd8phIUnBwsLp37y5JioyM\nlN1u16FDh7Rjxw7Fx8erRo0a8vHxUWJioj799NNy24qIiNAPP/ygxMREvfXWWxo4cKCjEvy6665T\nu3btJEl9+vTRvn37HNXPERERjjY+/vhjbdu2TTExMYqOjtaWLVt08OBBWSwWvfnmm8rIyND8+fM1\nffp02e12nTlzRrt371bXrl0VFBQkPz8/9enTp0L7DgCA2V1zzTW66aabJP1+ri3OTTt27NADDzwg\ni8Uif39/xcfHa8eOHZdsr379+goLC7vocYvFor59+zoKkVetWqXY2Fj5+voqKipK8fHxmjRpkqxW\na6l3lw8cOFBt27bVu+++q4kTJ+rAgQPKz88vs93vv/9e0u93SEnSrbfequbNm1fomERHR6t27dry\n9/dXz549tWvXLu3du1cNGzZ0HKvmzZurbdu2joGrstx3330aMmSInn/+eZ0+fVqPPPKI47mKZMvi\nzPbUU08pOjpajz76qCwWi7777jtFRUWpV69eWrx4saZMmaLPPvtM+fn5+vXXX/Xdd98pJiZG0u85\nqaL7DgAAXMcsOUuSOnTo4Ji5uWXLljp16pTjufj4eElS3bp1dfvtt2v37t2XcRT+z65du9S3b1/5\n+vrK399f77//vmOGxkWLFik5OVlDhw51DOjde++9mjRpkp599lllZGTomWeeqdT7AgAAz1HeWMyo\nUaMUEhKit99+WxMnTtTPP/+s/Px8+fv7O26Qv3DhglavXl3q+FVsbKxSU1MlSStXrlTv3r3l4+NT\n4UzRoEEDXX/99ZIuzkOlXSuq7P6XNT75zTffaPTo0YqPj1f9+vUlqULjgQBchyIgwEDFM/78+bHz\n589LUokp+CwWy0Wv9/X1lcVicfx8+vRpRwFRef7Yrt1ul4/P718F/v7+pU779+fHTpw4oZ9//llF\nRUX6+9//7pghZ+XKlVq2bNlF29euXVvdunXT+vXrtXLlSsXGxkqSWrdura1btyouLk7Z2dmKjY3V\nF198UWLbY8eOKSYmRtnZ2YqIiCgxPWBZ7f65v8X7dyl/fp3dbleNGjUcUysWKyoqUmFhYbltXXPN\nNfroo4/06KOPKjc3Vw899JA2bdokSSWqpYvfp/ixPy73VlRUpHHjxjmO74oVK/Tqq68qPz9fvXr1\nUkZGhlq2bKnnnntOfn5+stvtF31O/vxeAABUVzVq1HD89x/Ph6Wdx4uz1h8VFBSU+PnPS7D+UZ8+\nffTPf/5T+/btk81mcwz6zJo1S2+++aYaNmyot99+W0OGDLlo25dfflmvvvqq/vKXvyguLk6dOnVy\n9LW0dn19fUvNgBXx59f5+flddDykkvmzLCNGjNCyZct0ww03aNWqVYqLi3O0VZFseeHCBTVt2tSR\na9asWaOUlBTdfvvtWrp0qZ5//nnVrFlT999/v3r06OHINcVt/nEfAABA1TJLzpKkmjVrltpXqeR1\nH7vdXulc4efnV+J63NGjRx03d7Vv317jxo3T2LFjHdeO4uPjtXbtWnXq1Ek7d+5Uz549ufMdAACT\nK28s5plnntHy5csVFhamQYMGqVWrVo7XxsXFacOGDdq+fbuaN2+u8PDwi9pu166dzp8/r71792r9\n+vWOAqOKZory8lBp14oqo7zxSavVqnfeeUfz5s1zPFaR8UAArkMREGCg22+/XRs3bnTcQbVy5cqL\n1g4tz2233aaPPvrIMc3gvHnztGjRoktut3btWhUVFenUqVP65z//qTvvvLPc13fs2FHr169XQUGB\nioqKNHHiRG3YsEG33367PvjgA8f7v/rqq3ruuedKbaNfv35atWqVvvzyS8capbNmzdLrr7+uu+++\nW88//7yaNWum//73vyW2+/bbbxUSEqInn3xSkZGRjuUlLly4UGa7Xbp00dq1a1VQUKDz58877iC7\nlN9++83R/rZt2xQQEKBGjRopMjJSycnJKiwsVFFRkZYsWaJOnTqV29bSpUs1duxY3X777Ro1apRu\nv/12xzTT+/fv1/79+yVJKSkpatu2rYKDgy9q4/bbb9eSJUscx/2FF17QnDlzlJmZqdzcXA0fPlx3\n3nmnPvvsM8drIiMjtWnTJp0+fVpFRUVas2ZNhfYdAIDqqvh8arfbVVBQoOXLl+u2226TJIWEhDiW\nm/joo48q3GbdunV10003KSkpyXEX+smTJ9WlSxddeeWVGjRokIYPH67vvvvuom137typgQMHKiYm\nRldddZV27drlyDWltdu0aVP5+/s77qrfu3evvv/++xIXWsqyYcMGFRQU6Ny5c1q1apU6d+6sm266\nSYcPH9bevXsl/b4cR1pamjp06FBmO+fPn9edd96p/Px89e/fXxMmTNDBgwcdg3wVyZZt2rRRZmam\n0tLSJEn79u1Tt27d9PPPP2vnzp3q1auXYmNj1bhxY23btk0XLlzQlVdeqVatWmnFihWSpIyMDMfM\nSAAAwHielrMupfj60JEjR7Rr1y517Nix3Nf7+vqWWtTUsWNHrV69WkVFRSooKNCwYcMcGeeGG27Q\nAw88IKvV6lh6Iz4+Xvv27VPv3r01efJknT59usQd+QAAwHzKG4vZuXOnnnrqKXXv3l0Wi0Vff/21\n49pPgwYN1KZNG02dOlX9+/cvs/3Y2FhNnjxZ1157rRo0aCDJNZmitGtF5fHz89OFCxcuukGtvPHJ\nv/71r+rYsaMSExM1evRoFRUVVWg8EIDrcBslYKBOnTpp0KBBGjhwoIqKihQSEqIFCxZUeOaaLl26\n6IcffnAEhWbNmmny5MmX3O7s2bPq27ev8vLylJCQoI4dO5Y7g1B8fLyys7PVu3dv2e12dejQQYmJ\nifLx8dHx48fVr18/WSwW1a9fX9OnTy+1jRtuuEF+fn7q1q2bAgICJP2+HMaYMWPUo0cP+fv769pr\nr1WPHj0uOkYffPCBoqKiVKtWLbVu3VohISHKzMxUkyZNSm23d+/eOnz4sGJiYlS7dm2Fh4erVq1a\nlzwuV111lTZv3qy5c+eqVq1amjdvnvz8/PTEE09oxowZiomJ0fnz59W6dWu98MIL5bYVExOjzz77\nTN27d1etWrXUoEEDPfjgg9q/f7+uvvpqzZ07V9nZ2QoJCdHMmTNLbePJJ5/UjBkz1KtXL124cEHX\nX3+9xowZo9q1a+tvf/ub7r33XgUHB6thw4Zq1qyZMjMz1aVLF3333Xfq06ePgoODdd111znuRgMA\nwBuNHz9eU6ZM0f3336/CwkJFRkbq8ccfdzw3adIkBQcH67bbblNoaGiF242NjdXTTz+tN954Q9Lv\nA11PPPGEBg0apJo1a8rX11dTpky5aLunnnpKM2fO1Ouvvy5fX1+1bdtWP/74Y5nt+vn5ad68eZow\nYYLmzJmjv/71r7r66qtL3NVVlvDwcPXv31/5+fnq2rWrevXqJYvFoldffVWTJ0/W2bNnZbFYNG3a\nNDVu3LjMdvz8/DRu3DiNHDnScef71KlTHUtcVCRbhoSE6LXXXtPMmTN17tw52e12zZw5U2FhYRo8\neLCSkpK0atUq+fr6qlWrVo5inzlz5mjs2LFKTk5Ww4YN1aRJk0vuNwAAqBqelrMu5dy5c+rVq5cK\nCws1fvz4cvOPJN18882aO3eunnrqKT344IOOx4cMGaKXXnpJ0dHRunDhgrp376577rlH27ZtkyRH\nVoqJiVGXLl00cuRITZ06VXPnzpWPj4+GDBlS6l3/AADAPMobixkxYoSeeuopXXHFFapVq5bat29f\n4tpPcRFP8dLvpYmJidGcOXM0Z84cx2OuyBSlXSsqT2hoqFq2bKl77723xEogZY1Pbt682fGaxx9/\nXNu2bdM//vGPCo0HAnAdi7209YgAVFuJiYkaMGCAoqKijO6K2+zcuVO//PKLoqOjJUlTpkxRQECA\nRo0aZXDPpD179mjy5Mlav3690V0BAAAmMWPGDD388MO6+uqrdfToUUVHR2vLli2lziRY1bwhWwIA\nAAAAALhCUVGRXnzxRYWFhenRRx81ujsAqilmAgKqmX//+9+aNm1aqc8Vr6Ne3TVv3lzvvPOO3nnn\nHV24cEHXXXedJjIfLk0AACAASURBVE6cqKlTp2rPnj2lbjN27Fjdeuutl/U+w4cP1+HDh0t97pVX\nXuFOdQAA4BLFa8j7+fnJbrdrypQpOnHihBITE0t9fePGjTV37tzLeo9LZchx48Zddr8BAAA82aFD\nhzRixIhSn6tMngIAAChPbm6u7rjjDrVu3VqjR482ujsOCQkJysvLK/W5JUuWKCgoqIp7BMBZzAQE\nAAAAAAAAAAAAAAAAmJyP0R0AAAAAAAAAAAAAAAAA4ByKgAAAAAAAAAAAAAAAAACT8zO6A1UpJ8dm\ndBcAuEC2LUuDNg3QoqglCrOGG90dAJUQGmo1ugtej1wEAJ6FjOvdyEbGIxsBznPXuSzblsW5EfAi\n5CLjkYvg7bJtWUrYEKul960ggwAwVGVzETMBATCdMGs4gyMAAACoVsi4AACzc8e5rLiwKNuW5bI2\nAQAAAKA6s9jtdrvRnagqVC8DAOAZuKvLeOQiAAA8B9nIeGQjwHMxExDgXchFxiMXAeQPAJ6BmYAA\nAAAAAAAAANUKA3AAAKCqkT8AmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAA\nAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJ+RndAQAAAAAAAOCPevXqpaCgIElSeHi4Hn/8cY0ZM0YWi0XN\nmzfXhAkT5OPjo+XLlys5OVl+fn564okndMcdd+js2bMaNWqUfvnlFwUGBmrGjBkKCQkxeI8AAAAq\nh1wEAAAuB0VAAAAAAAAA8Bjnzp2T3W7X4sWLHY89/vjjGj58uG655RYlJSVp69atatOmjRYvXqyV\nK1fq3LlzSkhIUKdOnbRs2TK1aNFCQ4cO1YYNG/T6669r/PjxBu4RAABA5ZCLAADA5WI5MAAAAAAA\nAHiM/fv368yZMxo8eLAefPBBffXVV8rIyFCHDh0kSZ07d9auXbu0d+9e3XzzzfL395fValXDhg21\nf/9+paenKzIy0vHa3bt3G7k7AAAAlUYuAgAAl4uZgAAAAAAAAOAxatasqYcfflixsbH673//q0ce\neUR2u10Wi0WSFBgYKJvNptzcXFmtVsd2gYGBys3NLfF48WsBVI1sW5bCrOFGdwMAqg1yEWAMMg0A\nM2MmIAAAAAAAAHiMxo0bq2fPnrJYLGrcuLGuvPJK/fLLL47n8/LyFBwcrKCgIOXl5ZV43Gq1lni8\n+LUA3C/blqVBmwYo25ZldFcAoNogFwFVj0wDwOwoAgIAAAAAAIDH+OCDDzR9+nRJ0vHjx5Wbm6tO\nnTppz549kqQdO3aoXbt2at26tdLT03Xu3DnZbDYdPHhQLVq0UNu2bfXJJ584XhsREWHYvgDeJMwa\nrkVRS7hrHgBciFwEVD0yDQCzs9jtdrvRnagqOTlMcwgAgCcIDbVe+kVwK3IRAACeg2xUUkFBgcaO\nHasjR47IYrFo5MiR+stf/qIXXnhBhYWFatKkiaZMmSJfX18tX75cKSkpstvteuyxx9StWzedOXNG\no0ePVk5OjmrUqKHZs2crNDS03PckGwEA4BnIRSWRiwAA8F6VzUUUAQEwLdZkBcyLCzrGIxcBgOch\n33ovspHxyEYAAHgGcpHxyEUAAHiGyuYilgMDYEqsyQoAAIDqhHwLAAAAAAAAwFkUAQEwJdZkBQAA\nQHVCvgUAVDUKTwEAAEpHTgJgZhQBATAtBkgAAABQnZBvAQBVhRnoAAAASkdOAmB2Frvdbje6E1WF\ndUwBAPAMrO9uPHIRAACeg2xkPLIRvFG2LYsCVAAeh1xkPHIRQE4C4Bkqm4uYCQiAaVGFDQAAgOqE\nfAsAqEoMbAEAAJSOnATAzCgCAmBKTMcIAACA6oR8CwAAAAAAAMBZLAcGwLSYjhEwL6Z2Nh65CAA8\nD/nWe5GNjEc2AgDAM5CLjEcuAgDAM7AcGACvwwAJAAAAqhPyLQAAAAAAAABnUAQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQE\nAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAA\nAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJ\nua0IqKioSElJSYqLi1NiYqIyMzNLPL9t2zb16dNHcXFxWr58ebnbZGZmqn///kpISNCECRNUVFRU\n4n3+/ve/a9myZe7aFQAAAKeQiwAAAAAAAAAAAOBubisC2rJliwoKCpSSkqJnn31W06dPdzxXWFio\nadOmaeHChVq8eLFSUlJ04sSJMreZNm2ahg8frqVLl8put2vr1q2OtubOnavTp0+7azcAAACcRi4C\nAAAAAAAAAACAu7mtCCg9PV2RkZGSpDZt2ujbb791PHfw4EE1bNhQV1xxhfz9/RUREaG0tLQyt8nI\nyFCHDh0kSZ07d9auXbskSZs2bZLFYnFsAwAA4InIRQAAAAAAAAAAAHA3txUB5ebmKigoyPGzr6+v\nzp8/73jOarU6ngsMDFRubm6Z29jtdlksFsdrbTabvv/+e61fv15PP/20u3YBAADAJchFAAAAAFA5\n2bYso7sAAABMhvwAwJv5uavhoKAg5eXlOX4uKiqSn59fqc/l5eXJarWWuY2Pj0+J1wYHBys1NVXH\njx/XwIEDlZ2drRo1aigsLEydO3d21y4BAABUCrkIAAAAAC5fti1LgzYN0KKoJQqzhhvdHQAAYALk\nBwDezm1FQG3bttX27dvVvXt3ffXVV2rRooXjuaZNmyozM1O//fabateurc8//1wPP/ywLBZLqdu0\nbNlSe/bs0S233KIdO3bo1ltvVffu3R3tzZs3T1dffTUDXQAAwCORiwAAAADg8oVZwxnAAwAAl4X8\nAMDbua0IqGvXrvrXv/6l+Ph42e12TZ06VevWrVN+fr7i4uI0ZswYPfzww7Lb7erTp4/q1q1b6jaS\nNHr0aL3wwguaM2eOmjRpom7durmr2wAAAC5HLgIAAACAymEADwAAXC7yAwBvZrHb7XajO1FVcnJs\nRncBAABICg21Gt0Fr0cuAgDAc5CNjEc2AgDAM5CLjEcuAgDAM1Q2F/m4uB8AAAAAAAAAAAAAAAAA\nqhhFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAPAov/zyi7p06aKDBw8q\nMzNT/fv3V0JCgiZMmKCioiJJ0vLly9W7d2/169dP27dvlySdPXtWQ4cOVUJCgh555BGdPHnSyN0A\nAABwCbIRAACoKIqAAAAAAAAA4DEKCwuVlJSkmjVrSpKmTZum4cOHa+nSpbLb7dq6datycnK0ePFi\nJScn65133tGcOXNUUFCgZcuWqUWLFlq6dKliYmL0+uuvG7w3AJyVbcsyugsAYCiyEVD1yB8AzIwi\nIAAAAAAAAHiMGTNmKD4+XnXq1JEkZWRkqEOHDpKkzp07a9euXdq7d69uvvlm+fv7y2q1qmHDhtq/\nf7/S09MVGRnpeO3u3bsN2w8Azsu2ZWnQpgEMxAHwamQjoGqRPwCYHUVAAAAAAAAA8AirVq1SSEiI\nY7BKkux2uywWiyQpMDBQNptNubm5slqtjtcEBgYqNze3xOPFrwVgXmHWcC2KWqIwa7jRXQEAQ5CN\ngKpH/gBgdn5GdwAAAAAAAACQpJUrV8pisWj37t3at2+fRo8erZMnTzqez8vLU3BwsIKCgpSXl1fi\ncavVWuLx4tcCMDcG4AB4M7IRYAzyBwAzYyYgAAAAAAAAeIQlS5bo/fff1+LFi3X99ddrxowZ6ty5\ns/bs2SNJ2rFjh9q1a6fWrVsrPT1d586dk81m08GDB9WiRQu1bdtWn3zyieO1ERERRu4O4NFY4gIA\nPB/ZCDAGOQmAmVEEBAAAAAAAAI81evRozZs3T3FxcSosLFS3bt0UGhqqxMREJSQkaODAgRoxYoQC\nAgLUv39/HThwQP3791dKSoqGDBlidPcBj5Rty9KgTQMY4AIAEyIbAe5FTgJgdha73W43uhNVJSeH\ntU4BAPAEoaHWS78IbkUuAgDAc5CNjEc2gjfKtmWx1AUAj0MuMh65CCAnAfAMlc1FzAQEAAAAAAAA\nAF6GgS0AAIDSkZMAmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQADghbJtWUZ3AQAAAH9CRgMAmB3nMgAAUB2QaQCYGUVAAOBlsm1ZGrRpACEWAADAg5DRAABmx7kM\nAABUB2QaAGZnsdvtdqM7UVVycmxGdwEAPEK2LUth1nCjuwEvFhpqNboLXo9cBACeh4zmvchGxiMb\nAa7BuQyAs8hFxiMXAWQaAJ6hsrmImYAA4DJUl8pvwisAAAAAAHA1rjcAAIDqgEwDwMwoAgKACmIK\nSAAAALgLWRMAgNJxbgQAAJeL/ADAm1EEBMCUjAhwYdZwLYpaQgU4AAAAXC7MGq7pkbPImgAA/AFF\nsgAA4HKRHwB4O4qAAJiOkQGOQRkAAAC4Q7YtS2M+HclFSgAA/oAbsgAAwOUiPwDwdha73W43uhNV\nJSfHZnQXAPxJti2rUkGsstsB8AyhoVaju+D1yEUA4HnSj6Upol57o7sBA5CNjEc2AgDAM5CLjEcu\nAgDAM1Q2FzETEADDODOjDwVAAAAAqE6YCQgAAAAAAACAs5gJCIChmNEH8E7c1WU8chEAeB6ysfci\nGxmPbAQAgGcgFxmPXAQAgGdgJiAApsQgBwAAAPA7sjEAAAAAAAAAZ1AEBAAAAAAAAADwSCyVCQAA\nqhr5A4CZ+ZX3ZFpaWrkbt2/f3qWdAYCKYqkEAFWNXAQA+CPyKAAA7pdty9KgTQO0KGoJ510AAFAl\nyB8AzM5it9vtZT2ZmJgoSfrtt9/0448/qm3btvLx8dGXX36pFi1aKDk5uco66gqsYwpUDwQwwPzM\nuL47uQgAUIw8ClczYzaqbshGgOfy5sJbb953eC9ykfHIRUD1OAdXh30AvF1lc1G5y4EtXrxYixcv\nVr169bR27Vq9++67euedd7Ru3ToFBgZW6g0BwFlh1nAGXABUOXIRAKAYeRRAdcJSB57P239H3nq+\nLS469vbfPwAYge9emB05AvBu5RYBFTty5IgaNWrk+LlBgwY6cuSI2zoFAJfirReAABiPXAQAkMij\nAKoHBgc8nzt/R2Zp01tRdAwAxiAfOc/sxy7blqWEDbGm3g9yBODdKlQE1KpVK40ePVoff/yxtm3b\npmeffVbt2rVzd98AAAA8DrkIAAAA1QWDA57PXb8jdwxuMWjqevzbBICqRz5yTnUooKku+AwD3suv\nIi+aMmWK3n//fSUnJ0uSbrvtNiUkJLi1YwAAAJ6IXAQAAIDqhMEBz2eW3xGDpgCA6oJzmXcLs4Zr\n6X0r+BwAMC2L3W63V+SFv/32m86cOSO73a4LFy4oKytLHTt2dHf/XConx2Z0FwAAgKTQUKvRXXAK\nuQgAALiS2bNRdUA2gqtk27LcMmuPOwah3NUuADiDXGQ8chGclX4sTRH12hvdDcApZGV4gsrmogot\nBzZ79mzdddddioqKUkJCgu655x7NmTOnUm8IAABgZuQiAAAAAKVxx3JY2bYsxa6NccuSGu4qLAIA\nmBvf5XBGti1LQ7c+wecIpsYytzC7ChUBbdiwQZ988om6d++u9957T++++65CQkLc3TcAXoKTaNXi\neAPOIRcBANwl/Via0V0AADjBHcthHcs7qqzcH3Us76jL2izm6usDDJYAQPXAdzmccSzvqH7KzXRL\ndgGqCsvcwuwqVARUp04dBQUFqXnz5tq/f79uvfVWnThxwt19A+AFuEBUtTjegPPIRQAAd0g/lqbe\na3tQCASgyvH3oWu5eqAgol57rY7e4PIlNdxxfYDBEgCoHvguhzPqBdbXNUGNVC+wvtFdcQoZGXwP\nwswqVAQUFBSk1NRUtWrVSuvWrdNXX32l06dPu7tvALwAF4jK5q6pvjnegHPIRQAAd4io114L7l7o\n8kFeACgPN4qYgzvODe66PsD1Btfi3yYAI/BdDmeEWcO1omeqqT9HZGTAM/BvsPIqVAT00ksv6eTJ\nk7rlllsUFhampKQkDR8+vNxtioqKlJSUpLi4OCUmJiozM7PE89u2bVOfPn0UFxen5cuXl7tNZmam\n+vfvr4SEBE2YMEFFRUWSpCVLlqhPnz7q27evNm7ceNk7D8AzmDkMuos7QybHG3AOuQgA4A7ZtizN\nTp/JBQ4AVYobRczBXbPEueP37o7zmLeeGxmABOCtqsP3ntH7YPT7mx0ZGTAeWdg5FSoCqlu3ruLj\n47V//34999xzSk5O1n333VfuNlu2bFFBQYFSUlL07LPPavr06Y7nCgsLNW3aNC1cuFCLFy9WSkqK\nTpw4UeY206ZN0/Dhw7V06VLZ7XZt3bpVJ0+e1LJly5ScnKxFixZpxowZstvtThwKAPAchEzAc5GL\nAADuQP4DYBS+dzybO5eLdPUFdXdcqPfmi/9kAwDeqDp87xu9D9Xl/Y3+DHD+BYxFFnZOhYqAdu/e\nrejoaD355JM6ceKE7rrrLu3cubPcbdLT0xUZGSlJatOmjb799lvHcwcPHlTDhg11xRVXyN/fXxER\nEUpLSytzm4yMDHXo0EGS1LlzZ+3atUshISFKTU1VjRo1dOLECQUEBMhisVz+EQAAD8WJDfBM5CIA\ngLuQ/wAAfxZRr72mdnrZ5UuCuWOAMMwarumRs1x6PvP2i//eut8AvJcrvvc9oXjEyHOXJ7z/sxHP\nOf07NHsxGADnkYUrr0JFQHPmzNHSpUsVHBysOnXqaPHixZo5c2a52+Tm5iooKMjxs6+vr86fP+94\nzmq1Op4LDAxUbm5umdvY7XbHQFZgYKBsNpskyc/PT++//77i4uLUs2fPCu4yAABA5ZGLAAAAAFSV\n9GNpGvevUS6fCcgdA4TZtiyN+XSkywfsuPgPAN6lOhSPGH3uMvL904+l6bEtg53KLkYXMgGA2VWo\nCKioqEihoaGOn5s1a3bJbYKCgpSXl1eiDT8/v1Kfy8vLk9VqLXMbHx+fEq8NDg52/PzAAw/o008/\nVVpamv79739XZHcAAAAqjVwEAAAAoKpE1GuvBXcvdPlMQJLrBwhdcec/AADOcFXxiNFFRGbmzuwC\nAKiYChUB1atXT9u3b5fFYtHp06f1xhtvqEGDBuVu07ZtW+3YsUOS9NVXX6lFixaO55o2barMzEz9\n9ttvKigo0Oeff66bb765zG1atmypPXv2SJJ27Nihdu3a6dChQxoyZIjsdrtq1Kghf3//EoNiAAAA\n7kAuAgAAAFBVsm1ZmvbZFLcMRrq6TVfc+V8aBmIBAJfDFQVAnjCbkFll27I0afcEp45fti1LCRti\n+R0AQCX5VeRFkyZN0ksvvaSjR4+qa9euuuWWWzRp0qRyt+natav+9a9/KT4+Xna7XVOnTtW6deuU\nn5+vuLg4jRkzRg8//LDsdrv69OmjunXrlrqNJI0ePVovvPCC5syZoyZNmqhbt27y9fXVddddp7i4\nOFksFkVGRqpDhw7OHxEAAIBykIsAAAAq789LnpbmwoULGj9+vA4fPiyLxaIXX3xRAQEBGjNmjCwW\ni5o3b64JEybIx8dHy5cvV3Jysvz8/PTEE0/ojjvu0NmzZzVq1Cj98ssvCgwM1IwZMxQSElJFe2g+\n6cfSuFPbw50vKnR5m8WDa0vvW+GymXvcced/8UAsS4IAqI7IRZ6JpaiccyzvqDJth3Us76hTx7Dw\nguvzz+XItmXxGQBgWha73W6/1IteeeUVjRgxoir641Y5OTajuwAAACSFhlqN7kKlkYsAAICrmTkb\nXcr27dv1+eef68knn1Tfvn118uRJDRs2TAMGDChzmy1btmjr1q2aNm2a9uzZo0WLFslut+uhhx7S\nLbfcoqSkJEVGRqpNmzYaPHiwVq5cqXPnzikhIUErV67UkiVLlJubq6FDh2rDhg368ssvNX78+HL7\n6a3ZKP1YmmLWdFdq9EYKgTxUti1LsWtjtKJnqksHotxRBOSONovbZRAO8B7kopK8MRfxvW9umw5t\n0IOb+uu9qGWKanJfpdpwV/65nPenCBl8F8ETVDYXVWidiO3bt6sCtUIAAADVHrkIAACg4ubPn6/e\nvXtr48aNat26tbZt26aVK1eWu83dd9+tyZMnS5KOHDmi4OBgZWRkOGY67Ny5s3bt2qW9e/fq5ptv\nlr+/v6xWqxo2bKj9+/crPT1dkZGRjtfu3r3bvTtpYvUC66uhtZHqBdY3uisoRw3fGi5vM8warjl/\ne83lAxvuuGufwRd4I5bAqZ7IRZfGUlyewZnjH9XkPr3SZX6lC4CKOZt/nNkHZoMC30UwuwoVAV15\n5ZWKiorSM888o7Fjxzr+BwAA4G3IRQAAAJenadOm+vjjj3XnnXcqMDBQhYWXLhLw8/PT6NGjNXny\nZN1///2y2+2yWCySpMDAQNlsNuXm5spq/b+74gIDA5Wbm1vi8eLXonRh1nAtv9+YO6xRMWHWcJfP\nrCP9PrAx5tORLh/YcEfBEuBtzDTwaIY+ehpyUfkovjCes99B2bYsLfrPO04X4TiTf1zxPcpn0Lvx\nXVR9eGtW8avIi3r16uXufgAA4DSmZ0RVIBcBANyFLIPq6Oqrr9bkyZP17bff6uWXX9b06dPVoEGD\nCm07Y8YMjRw5Uv369dO5c+ccj+fl5Sk4OFhBQUHKy8sr8bjVai3xePFrUTa+d7xTmDVcz0Y859Lf\nv7tmF/JmZAPvZJaBR5bLuXzkoopx9vPkCd+dntCHynL2OyjMGq7pkbOc3n9ntndVHwCYmzdnlQrN\nBNSrVy9dd911+u2332Sz2dS6dWsGwAAAHsVMd0nB3MhFAAB3IMugupo9e7ZuvPFGvffee6pdu7au\nueYazZ49u9xtUlNTtWDBAklSrVq1ZLFYdMMNN2jPnj2SpB07dqhdu3Zq3bq10tPTde7cOdlsNh08\neFAtWrRQ27Zt9cknnzheGxER4d6dBNzIXeeH9GNpeuSjQUo/luayNrNtWXr8o7+7vK/eem7MtmWp\nx6puXrv/3s4MA1VmKVbyJOQi98u2ZSl2bYyh352e8Leds+/tzL/rbFuWhm59wvD9d3bGw+pw/nVl\nzqsMMx9DT/h3DOd5c1apUBHQwoUL9fTTT+vnn39WVlaWnnjiiUuuUwoAQFXy5pM5qha5CADgDmQZ\nVFdr165VTEyMGjVqJEmKiIjQQw89VO4299xzj/7zn/9owIABevjhhzVu3DglJSVp3rx5iouLU2Fh\nobp166bQ0FAlJiYqISFBAwcO1IgRIxQQEKD+/fvrwIED6t+/v1JSUjRkyJCq2FXALdx1J3u9wPqq\nH9hA9QLru6zNb3K+1o+2/+qbnK9d1qa7BmDMMKDz8Y/blJ33kz7+cZvRXQHKRHa9POQi9zuWd1RZ\nuT/qWN5Rw/pg9N92RhcveMrvwJn8ZPQxdIX0Y2nqvbaHYYVAZj+G7pg1E8bw1t+hxW632y/1om7d\numnlypUKCgqSJJ06dUr9+/fXxo0b3d5BV8rJ8ey1TgEA8BahodZLv8hDkYsAAICrmTkbXUpCQoLu\nvfde9evXT6+++qrWrVunZ599VjExMUZ3rQSyETxVti1L/dbFaPn9qS69gO2udjcd2qCoJve5rD3p\n90GsiHrtXdaemZYFeGnXJD1/W5LR3QCqFLnIeGbPRe44F5mN0cuRLcl4TwNaPehUG87sgyvO9UYf\nQ1e8v6sz1OUy+hg6o7iIalXP9YYeQ29n5s+Qq1Q2F1VoJqArrrhCfn5+jp9r166twMDASr0hAACA\nmZGLAAAAKm7hwoX65JNPdPfdd8tms2n9+vUeN9AFeLJjeUf1oy3TLXfTX/rW0Mvn6kHXbFuWnvl4\nmEvvIjd6hoaKSj+Wpre+/R/Dl/IA4DrkIvfLtmVpdvpM084+4irOnuOcOX7px9I0dudIp85fzs4i\n44pzvdEFQK6YRcfo4hVPz1rliajXngIgg5l9Nimj+V36JdI111yjuLg43XffffLz89NHH32koKAg\nzZ8/X5Kq/fSBMB6VfvAkfB4B70YuAgC4i9F36QGulJqa6vjve+65R/v27VPt2rW1fft2SWLAC6ig\niHrtNbrdeLecHywWlzdpGma4rhNRr70W3L2QbABUA+SiquOqQk9vHgNwdhadeoH1FR7U0KklR12x\nHKqZPwN8jj2DK5fNxeUzS+G+p6rQTECNGzdW165dVVBQoPz8fHXq1EkRERHu7hsgiUo/eBY+jwDI\nRQAAdyieapq7/VFd7Nmzx/G/L7/8Up07d9bp06cdjwGomE2HNmjyniRtOrTB5W3nF55xeZuu7meY\nNVxjO4z3yov/2bYsTftsCteggGrAbLnI6O8dT3j/hA2xhvfDKM4W4IRZwzXvrjecOne7YiZAZ7c1\n+2eAsSzncPw8gzf+DeAqFZoJaMiQISooKJC/v78yMzN1+PBhde7cWT4+FaohApxCpR88CZ9HAOQi\nAIA7MNU0qptp06Y5/vs///mPWrZsKZvNpm+//VYdO3Y0sGf4M+4Qdi1XH88bQ29Sg8Bw3Rh6k8va\nlKRvcr7WcEe+RwAAIABJREFUkbwsfZPztcv6u+nQBg3clKD/jVrqsmXB0o+l6bEtgzlHAjA1s+Ui\nZ2aBcZazs9A4u3114UweybZlacynI536HTizfbHzRYWV3tYVn4PCC5V/f2e5ov+MZTmH4wez8504\nceLES73of/7nf7R69Wq1atVK/fv3108//aQvvvhCd955ZxV00XXy8wuM7gIqKTgg2OguAA58HgHn\nBQYGGN2FSiMXAQDcpUFQmNFdgEHMnI0uZfbs2VqzZo2io6N16tQpvfTSS8rOztYtt9xidNdK8NZs\nVDzAcFfDrvyt6wLuOJ62gtNafWCl+l0b79LfUbO/tNCNV7V2WbFOcZsFhYUa3PoRl7XZIChMdWrW\nVbcm3V3WplkEBwTrnkZRDD7B65CLjBdYdIXa1mtnyHsHBwTrroZdK/3dFxwQrFZX3aBrr7reqT6Y\n+fvX2Tziit9BnVp1nPoM2QpOa/l3yZXOP87ug63gtFJ/WKk+LfoZkpGd7f8f20HlcfzgCSqbiyp0\ny/rWrVs1ZcoUrV+/Xj179tS7776rjIyMSr0hAJgZU/8BIBcBANyFrInqaPv27Xr77bclSXXq1NG7\n776rzZs3G9wrFAuzhuvZiOdMO8jladx1x3AN3xouba+Yq2cX2nRog177arZLlwRLP5amsTtHeu1y\nmfzbBKoXs+Six7YMNvR719llpMZ8OtLpv63M/P3rinznzLbFs/g5+xmyWJzaXMfyjlZ62zBruJbe\nt8LQz4GZP4MAjFehIqCioiL5+/tr+/bt6tKli4qKinTmjOvXjAYAT8YaoAAkchEAwD3Imqiuzp8/\nr7Nnzzp+Liw0blp9XMxVgzSltQvXCLOGa2yH8S4fCMq2ZSkm9T6XnnfcsXRZvcD6Cg9qqHqB9V3W\nJgAYxSy5yMxLMLKEj/vyXUVF1GuvBXcvdPozdPqcrdLbph9LU8ya7k4dA2/+DHkKo6+P8DcNzKxC\nRUAdO3ZUjx49VFhYqPbt2+uBBx4w3ZIXAOAs/oAAIJGLAADuQdZEdRUfH6/evXtrxowZmjFjhvr2\n7av+/fsb3S38fxH12rt8oC/9WJp6r+3hlRfN3VHQmX4sTY9+9JDLj+c3OV/rR9t/9U3O1y5tt3aN\nWi5tL8warhU9Uzk/AqgWzJKLjC4Acvac5+3nDHfku8uRbcvS7PSZTuWhj3/cpuNnjurjH7dVavt6\ngfXV0NrI1EXERhfAGM3oG6W8+W8aVA8Wu91ur8gLjxw5orp168rX11f79u3T9df/vp5mSkqK4uLi\n3NpJV8nJqXzVKAAAcJ3QUKvRXXAKuQgAALiS2bPRpezdu1eff/65/Pz81K5dO7Vs2dLoLl2EbORa\n6cfSDB9ANEq2Lculg4/ZtizFro1xeSFMti1L9668S//ss9Vl7WbbstRjVTet7/2hy/vqrQO63rzv\n8F7kIuMZmYuKZ3BJjd7otVnCEzh7/nFFFlyS8Z4GtHqw0tt7wj5UVrYtSwkbYg1fksxoRueg6vA3\njdHHEM6rbC6q0ExAktSgQQP5+vpKkmOgS5KSk5Mr9cYAgKrh7RXjgDuQiwAA7kBuQ3Wyfft2SVJq\naqoOHTqkkJAQBQcH6/vvv1dqaqrBvYO7mf1iuTNcfZE9zBqueXe94fJ2j+Ud1S9nTuhY3lGXtflN\nztfKzvvJpbMLFQ+CeeM50pv3HeTC6oZcVHH1AuurfmADp2Zw8YR/P872wcjtnZ2BJduWpWc+Hub0\nPjhTACQ5l8k8YRaYwgvOLxdo9llsKF5xjtGzKcFYFS4CKksFJxICAI9ihpOeK/rISR6oWuQiAEBl\nFc/0QG5DdfHNN99Ikvbs2VPq/wBUjKsG0v4sJ/9nnbefV07+zy5r85czv5T4fzjPFQOAMB93Xc8j\nZxrH23KRs5+1Wn61nXpvo6+HO1vE6YoiHGfe31OWqt50aINT2zvzGTB6STVJquFbw6ntPaGQyczS\nj6Wp15r7TH38POXfMozh52wDFovFFf0AgEqpzFR2xSHak09+ruojJ3mgapGLAMB7uHpK5WN5R5WV\n+6OO5R0lu6FaGDZsmCSpR48e6tSpU4nnNm/ebESXAPzBjaE3qU6terox9Caju1KuMGu41y+FAe/j\njut5ZrgeWp15Uy5y9rPm7Pd+dbge7gn74OyYhLPn7k2HNmjgpgT9b9RSRTW577K3d8V3npEFQK44\nhhH12mvB3Qu9eoZOZ9QLrK/woIZOzUrmCcz8XSixnJkk/XTqJ11zxTWXvZ3TRUAAYJTKBjlPCNGX\n4so+evJ+AgAAmJE7BlEi6rXX6ugNXKBDtbFx40YVFBTotddecwx8SdL58+e1YMEC3XPPPQb2DjCP\nMGu4xnYY75blwE6eO+HS4tMBrR7UNzl7nV6+48/ccV3DLAMKzs4CAPNyx9KCnn49tDrzplzkis+a\nJ3xOnTlPuKKAw9lt5/ztNaeXw3Lmb1Nnf4dRTe7TnC7zKlUAVPz+3v6dl23L0uz0mbox9CavPg6V\nFWYN14qeqRw7JznzXeopBcxG/t2QbcvS37ck6vNHP7/sbf8fe28fH1V17f9/8sRDJkPAOGGGGSKg\n0kQbYx2DhdbKjaWNjRUQRcWfaG21114RrdhqVbxFf6JefEDsk1pEekXRa1E0NbcqRa1QjHNrTBF8\nIIUwwxwyRB4mM4E8zHz/iMPNyU1wZq91cuZM1vv18rVU2Hv2OWeffdbe+7PXIqcDEwRBMAuKI2eF\nD7cV2igIgiAIgjAUMWpBUQRAQibR1taGLVu2IBKJ6NJdfPDBB7jpppvMbp7QC0kPk974tHpc+/oP\n2FMRhKIt6Ix1sqYDq2uqxcqPHien7zAaapqUwUKiIAncSF8yj6HmF5m9WTv3FVqaZY6UYmbfg1vf\nWaTcfp9Wj1kvf4/ke1C/sYGwH6s++r1lnwFAuwdcfdBs8YRgPmanRqT043Tow2bPG9x2D9Zdsk6p\nLDkSkN1up1YhCIKgjDgwgiCkE+IXCYIgDB3EDxWEYzN37lzMnTsXmzdvxtSpU/v9OytWrMCCBQsG\nuWVCb9LldKUwME6bC2PzXeypCBz5xchGDhz5xaz1WoWuWKfZTRAEYQghftHgoUWCaD60ixTpzm33\n4L6zl1nWN6K232lzwWUbp+x7JDbNzU7rVtdUqxxJCDA3ggmX+MGqfTgdyIR5Ese7SIFjLE2He2/2\nvEElFRiQZCSg9vZ2PPDAA7jwwgsxc+ZM3HvvvYhGowCA1atXK/2wIAiCIAiCFRG/SBAEQRAEIXkG\n2ugCgA0bNgxiSzID7hOIVt/kGip0x7vY69zeug0xdGN76za2Oj/b/5nOcsEdBQkA4nH2KtnhiAIg\nCEYj/TM1rOIXcURxMQunzQUnQcAC0CPpJOowC472j8zNJ7WBY9NciwSVy9Y11eLKunnK0Qmp0T8y\nKS3eUP19LiGW2ffQTDjGIq52UMjNtmZ63qREQEuWLMHhw4dx77334v7770dXVxfuuusuo9smCIJg\neVQ/LmZ/FAVBGBjxiwRBEASjMGKTUxDSmbgVduHTCCMEAemyMCsMTGOoAf623WgMNbDWW1pUhpys\nXJQWlbHVOdU9DdnIxlT3NLY6fVo9Llx/Pvs3Mi8n/Rfz0yEFgiAcCxGq8ZJOfhHluaZDv8gjbthS\nRdJm3wPq98Nt9+C2KXeQvj/UTXOfVo/ZL9cof//LHRU4YdQElDsqlNsQ7Ywql80EzO7HZv8+B2Zf\nA0dqWaunpONISWbV9LxJiYC2bt2KxYsXo7S0FKWlpVi8eDG2bt1qdNsEQRAsjerHxWzHQBCEYyN+\nkSAIgmAERm1yCkI6k5WVZXYTLIURi6hGLczKfJaP1vZWneUiFG1Bd7wLoWgLa50xxFjr9Dor8btv\nr4TXWclWp9vuwUPTH7XEYr4V2igMXdJhcy+TSCe/iCogofYLqh9BvZVUkbTV3w2fVo9rXr9KeW7K\nsWnutLlQNMKhHNHJbfdg3cxa5TZokSC0yB7laESZsMdjdj82O2IpNRoUYP49TLRBFa57YCaZEpVL\nhaREQPF4HIcOHTr634cOHUJOTo5hjRIEQcgEVD8u6eAYCIIwMOIXCYIgCEbgdVbijxe8yrrJKQhC\n5mGFeWIg7MfF62dZetMjnZheUoWxI12YXlLFWm+5owKegvGkE/J9MSIdWCDsx53v/kIiYAlCmmKF\n75KQOtTnSt10poonqEGVrL5pTL2HTpsLJfYTSCnVqBEMtUgQrYdDpJRgFJw2F0pGqd+DdBDDcdVh\nFpnir5n9nTT7/pn9+4D5z4DK7oO7lcolJQK66qqrcNFFF+G+++7D0qVLcdFFF+HKK69U+kFBEISh\nBOXEhBGkwwdXEKyO+EWCIAiCUVAWWQVBEFTgON3ZFy0SxO62XaZt2mQiI3JHGFNvzkjW+k4ac5LO\nctAYakBzeCdrOjSzT5YLgnBsVDe7hMwgXQ7Imv37FNx2D272/oy0N/Fo1W+Uy9c11WJ+3WWoa6pV\nKg/0HJJZN7NW+ZAM1cel3gMqHGI4ah0c8wQrR9GxchqoBGanwjK7D6UL1OufvXa2UtmkREBz5szB\nY489hvHjx2P8+PFYsWIFLrroIqUfFARBEMwhE0JQCkI6IH6RIAiCYATiqwlDkRNPPNHsJggG4LS5\nML6AdnrcynCP41okCC2qno7iWBzubmetz4jUZY78YuRl58GRX8xWp5VOlluhjYLACWWzy+qIX/S/\nUDfd83LymFpiTXxaPX78xtXK6byo38lyRwUmjJpIjjZI9SU7uzuVy1LvATUyJlc0KmodXTHaPeQ+\nbDDYpIMAyGwhlZWjmqUDHEKsdZesUyqblAgIAPx+P5qbm6FpGlpbeXNQC5mBlV9CQRgKDJZyWsYC\nYSggfpEgCILADfW0piCkK+FwGEuXLsWFF16IuXPn4uGHH0Z7e4/wYNmyZSa3TjDihKvb7sELF7w0\nJMczIxaqnTYXXLZx7KKqxlAD/G27WSPslBaVITsrB6VFZWx1ep2VuLXyTtZ0mVaJBGTU5pms2wjp\nDGWzywpYxS+y8jjhtnvw0PRHyWO8qoAmgZn30OusxC3eXyh/O6n7CG67B+tm1pqeFq4rri5gofoK\nWiQIf1uz5SNjdhCEVFTSQURk9ljI8R6Y6e9S55pmR4PigGPeMb5wvFK5pERADz74IJ588kl4PB4U\nFxdj+fLl+N3vfqf0g0JmkglqPEEYCgyGAMjMsUDGIGEwEL9IEARBMAKfVo9rX/8BebFZENKN22+/\nHbm5uVi6dCmWLFmCaDSKO++80+xmCb2w8qIqFe45pFEL1fE4a3UAAJ/m01kONgc2IRbvxubAJrY6\n65pqcfeWxaSUIn2xUiQgbsxetxGEZFDd7LICVvGLzN54pxAI+3HdGz8itd+n1ePC9eeTIumYeQ85\nvp1UX4ajPMWn0iJBBCPqkRSpvgJHOjNKJKFEHZRvPjUaZTqk06Ksr3C9x1QBjxWE68fC7LGEA2o/\nMmvekZQIaOPGjXj66adxxRVXYP78+Vi9ejVeeeUVo9smWIhMUOMJgkDHzLFAFrKEwUL8IkEQBMEI\nnDYXPAUlQzZ9jpC57Nq1C7fccgu+8pWvoLS0FLfffjs+/vhjs5slGIhV5mZWaadR6cAKhxfqbLpS\n7qjA6GHHkVOK9MYq65hGReqywrULQqYiflFyUL7NjaEG7Dz0T1KkO6+zEn+84FXWKHSDSfWkGjxd\nvQbVk2rMbgoJ6jN8aeafTIuGBNDSmXFEEqJeA0eKX2oaKoof5NPqMfvlGlMPWlHnG4GwHz/deEPa\nz1fSHaoodOZL5yn3I46xZPfB3UrlkhIBFRYWIhKJHP3vzs5OFBQUKP2gkLnI5FHIZMxU+1oNs8YC\nWcgSBgvxiwRBEAQjcNs9WDz1l+LLCBnHxIkT8fe///3of2/fvh0TJkwwr0GC4VhlbmZEO62UDuyk\nMSfpLAdjRozRWQ42Nm/A/o5WbGzewFanlTDiPUr3d1MQMhmr+EUc6bRUoUbfcOQXIy87D478YlI7\nqMIH6j2k+hJUAZDZ+xl1TbW4sm4eKZoRVcRlZjozr7MSj894ytRrsPoahdPmwth8l/K7zPEeW2Ve\ndCzMHguocER0ioMWlpUi5guE/Zi9drZS2WOKgG677TbcdtttiMVimDlzJn75y1/innvuwYUXXojR\no0cr/aAgCILV4FDrWuF0YSZgZWdKSH/ELxIEQRCMxKfV48dvXC3pwISMoaqqCueeey7ef/99XH75\n5aipqcEFF1yAOXPmYMeOHWY3TzAYI+ZmRsypudtp1EJ/blYea30A8LsPfqOzHDSGPtRZDkqLypCN\nbJQWlbHVadQ6jaz7CIIwEFbzixa8eZ2pY1pXrFO5rNPmwgn2iSQRD8d+ACX9C8emdTqkQaJC3Xin\nYmYap0DYjwd9D5h6OJ0jZbmZ6cwAID8vn/T7HFF4zIyGRIXjGTyzdTVji0wipl6Uml7Sbfdg3SXr\nlMrmHusPp0yZorMJTj31VKUfEwRBsCLURbxMUPsKgiB+kSAIgmAsVg85Lwh9+cMf/gCgJ2riX//6\nVxw4cAButxsAkJWVZWbTBAuSWIC2wtzaiPbl5fCLgH58+nV4t+5t/Pj069jqbOts01kONgc2IYYY\nNgc2sX0jjYoCNa/2YlM3agRBSF+s5hftbtsFLRI0bTyLE7QfbrsHL1zwkqnRO6gCEADo7FYXQvm0\nesxcdx5env2a8reT8vscVE+qwcPnPEaKaBQI+0kiHIrvmRCCqZbn6EPUa3DaXDh+pENZUBcI+zH3\nlVl4/vtq7yP1HnBE8mnviiqX5cJMv5I6Fj6zdTVueut6AMDlp87nbFrScAipsnOSSqzVL2au9R1T\nBDR79peHF5o9ezbWrVNTIAmCIFgF6odWFoD6h+KIC8JgI36RIAiCYDTcqV4EwUwSG1sLFy7Enj17\ncOKJJyIQCBz981mzZpnVNKEPRszLfFo960LnUD5c47Z7cPHJl7Jf+2f7P9NZDhKnhDkjBxiRtgyw\nzjqNrJsIQmZgNb9ofMEJps5NqOLXxlCDqWMnVQBCJRRtQWe8E6Foi3IdZmvTAmE/fvXBo5heUqUs\nwqGIc912D2ZOutC0g+EcfYjaBi0SRKi9RVkQqEWCaA6rCwqp94BaXosEj/5DeY/rmmrJ6fmsSkL4\nY5YAKAHl+Xmdlbjvmw+S5raUsoGwHz964wq8f+37KZc9pggoGeIUSa4gCIIwZLHSSU5BSBbxiwRB\nEARVxDcSMpWPP/4Yr732Wlqechd6xp6L188in5jvjU+rx6yXv4eXZv6JXQg0FHlm62os2XInxowY\nw7qAPtU9TWc5cNs9gDY0n5UR6RokupAwVNl9cDfGF443uxmGYBW/iNMvSBWq+LWuqRZX1s3D09Vr\nlDfeqf4Rh3iZIoQqd1TAXeBBuaNCuY7cbJoQiypi7RGQ7DQtIhWH/2VmNCqONjhtLjhGFisLAr3O\nSjwxY5XyfMBt9+CqU35omgjK66zE4zOeIs1nOMYjM+HwRTlT+qpCGY98Wj1u/evNKC0qMyWaDyUd\nmHr8oi9Id2dFEARBSE+G8klOIXMRv0gQBEFQRXwjIVM58cQTEQqFzG6GMABaJHg05QcnsViMtb6h\nTGlRGXKzctkX0OuaXtNZDgryCnSWg9b2Vp3lwqfVs9YHgP09AsxPxyIIg00g7MfstV8eidmqWMUv\nos5JKGNsQnzxzNbVSuUd+cXIQQ4c+cXKbTDKP0oWt92D26bcQXoOOVnqMSCowtaEiIoaGTBGOGxJ\nvYeXnzofC09fZHoEEyqUd1GLBLGvPaT8HgTCfjzoe0C5H9Q11eKnby1AXVOtUnmANpZR2w/wCPKo\nGOHzpvLbF64/n9QG6jiSOHCnWo/T5oLLNs6SkbvJIiBBEARBUEU2uQRBEARBEP4X8Y2ETOTw4cOo\nrq7GpZdeivnz5x/9R0gPqCd8B0LE8bzE4tYQVbV1tuksBzsP7tRZDhLRqjg3RTg2OfqDmhJHsC6c\nafWsBOXEuxWwil9E6X/U8bC0qAzZyCaJX3NycpTLAj3+ESUlWiJ6hup99Gn1uPb1HyjfQy0SxN5o\n0DQRE4eIKhRtQRchpRn1Hvq0evzmw0dJ33Wq8IEiXEj8PsXf8TorsfSby0iRfCgHnaon1eChc1aY\nFkHHbffgvrOXkddp7MNGMbUodajjsdvuwUPTHyVFU/rjBa8q9yGO94DrOZoFRRxNTgcmCIIgCL0x\nK1+9Wb8rCIIgCILAhU+rNyW8sCAYyY9//GOzm5BRcM97tEgQLZG9rKkWvM5KPPmdp4fseMb9jDYH\nNiGGGDYHNqX9PXXZxuksB1eVX41VHz2Bq8qvZqsTAMCcydnrrMS93/gP9hR4kgpsaCJpYjMXq/hF\nlP5H3fQFaAJIr7MS/1q+gPT7brvH1JRoTpsLnoISUhqmdTNryRvvqn2AKqICvoigYhuvHEHFaXOh\ncNgY5TaEoi3ojNFESJT0uBzCBarY36fV4xfv3kJKg0SNxLPqo99jekkVKSoVpeyt7ywifYs5onpR\nrsHrrMTvvr2SNBb8dOMNJH+UOhZTfaFA2I8Fb16nPKZrkSACYb9pqQlNTQcWJ4RjEwRBEDILDmVu\nMr9xrN8dqielhPRA/CJBEARBFZ9Wj1kv8UYlEIR0YMqUKf3+I6SOUfOtOLMagiN0/mDB3UYjntFU\n9zRkIxtT3dPY6gSAwuGFOstBMLJHZzloDDXgYMdBNIYa2Or0OivxxHdWsQp2Ehtl3N9xEYAMTYZy\nmthMTwdmFb+IKj6gjK9eZyWemKE+Rj+zdTWWf7BMOZ0YB1QRp9vuwYpzf0MWgKjitntw1Sk/JLWf\nQ0Q1MnekctnGUANa2jVl/8GRX4zcrFxSWjnKOnFCgELxKbVIEKH2FuWITByCPgpuuwc3e39GEvFQ\nInJxfIt9Wj2u+fNVyv4hdW7BMS+jpqalzouo44gWCcLf1qz8HoSiLegkRCUD6PdgfOF4pXJkEdC1\n115LrUIQBEHIEIxepBjI6Un8LgDDRUiCcCzELxIEQRBISPYcQRCOgVHzLW4RkFU2r6kbA/1hVLj5\n3Gz+YO4HjxzUWQ4K8gp0loPW9lad5cAIoRr1pPVgImsm1iDdx1CjyPR0YFaBKj6glqWM0ZefOh+L\nz7obl5+qnmZtMA66ftnv37DhOtLGP8XHqWuqxU/fWoC6plql8gBYUpFRs8tSfFynzYUTRk0kRWOi\nRMbk8KepgjqAJiajQhXQAEBXjCZg4YDSD6lzC7PnZWaPpQA9Mpojvxh52XnKgkAz70FSIqBzzjkH\nZWVlOOusszBlypSj/z5nzhxMnDjR6DYKgiAIFsJIh+JYTovb7jHdqRGGBuIXCYIgCEbgdVYqhwoX\nBGHowD3X2d66DV3xLmxv3cZar1XmZNSTrX3hOLXdl55NqAnsmzATCifoLAf2YaN0loPSojJkIwel\nRWVsdRqxdmCVCFhGiN8EgRvVE+8CH5QxkiP6BmXTOxD244VPnyONc9TvBPUeaJEgmsO7SEIaio9T\nPakGd561BNWTapTK+7R6XLj+fHJ0vA7iNayuflb5GqjRjDj8AqqfQm1DWvgMRCFYbrZ6akEO8YbT\n5kKJXd2P55hbUPsRJT0jVzovKuR1NsKZGY57sPvgbqVySYmAKisrsWLFCmzZsgXvvfcefvvb36Kq\nqgp33303fvnLX/ZbJhaLYfHixbjkkktwxRVXYNeuXbo/37BhA+bMmYNLLrkEzz///DHL7Nq1C5dd\ndhnmzZuHu+66C7FYDACwatUqXHzxxbj44ovx2GOPKd0AQRAEIXOg5EcVhGQRv0gQBEEQBEHIFC4/\ndT7OnzCTdFq+Pygnx60MNW3BQHX+pOIGS8x1jRAWhaItiCNGCsHfH9z306hDSSLWEQTBDDiiuKhC\njYIDAO1dUXI7qOM5RYTDcUCEsnHv0+rxwPv/v7KIhyONlBYJQovsIfVFSiqvRBtUMSo65GC3Idxx\niNQGihCMGsnIbffg2vLrSFF0qH49NbUfxzOkCogemv4o+R6okg5CNKfNBbfdQ06xqAolTWpSIqBP\nP/0U3/72t4/+9znnnIOPP/4Yp5xyCo4cOdJvmTfeeAMdHR1Yu3Ytbr75Ztx3331H/6yzsxNLly7F\nypUr8Yc//AFr167Fvn37BiyzdOlS3HjjjVizZg3i8TjefPNN7N69G+vXr8dzzz2H559/Hn/961+x\nfft2pZsgCIIgWINjqa/TIbSgMDQQv0gQBEEwAq7TkoIgZDbc853HfMvx6s6X8ZhvOVuddU21uLJu\nHrsQyIi5HmWDrD98Wj1+/MbVrGN5XVMtbnrreksIq/7r4+d1lgNHfjFykEPeyBsMjBAAGZGyjrqZ\nIwhC5jP75Rrlbxl1nNEiQTQfUo+Co0WC2NMWIAuZqGMvNZUVBbfdgzU1Lyg/A6fNBU9BCWnTmxrB\n0GlzoWTUCcr1+LR6Uj/2afWY+dJ5yuWNiA452G1oDDUg0OZHY6hBqTx1jYMayYia1o7Dr6c+g0DY\nj59uvIFUnrJnxtGPqe8AR+RWahvivNmzU4KSJjUpEdCoUaPw3HPPIRqNoq2tDc8++ywKCwuxY8eO\no6fP++Lz+XD22WcDAE4//XT84x//OPpnO3bsQElJCQoLCzFs2DB4vV7U19cPWGbr1q2YMmUKAOBb\n3/oWNm3aBKfTiSeffBI5OTnIyspCV1cXhg8frnQTBEEQhPSh9we578f5y9KBSSowYTAQv0gQBEEw\nAq+zEvd+4z8kHZgw5Ons7MQtt9yCefPm4aKLLsKbb745YCTE559/HhdeeCHmzp2Lv/zlLwCAw4cP\nY8GCBZg3bx6uueYafP7552ZeDitGHHyYPXkOikeOxezJc9jqLHdUYPSw41DuqGCr04hrp26Q9YfX\nWYnffXulJcbyopFFOsvBmc4pOstFdnZSS9gpMVQPEFE3kwRBGHzM8I0oAhDqOOO0ueC0jSOJSLpj\n3crzQuWDAAAgAElEQVRlgZ5rmPVSDWmspKQhMvuACEcqLKrfRo2E6LS5cPxIh3I/CkVb0BHrUI5E\nmC6RgCj7JdS0cFS/mBqJp3pSDZ6uXkNqP3WNxux+QP19jvSMF6+fRRoLqIc2qG3QIkHsjQZJwlLq\nWK6aJjWpGdSyZcuwadMmnH322Tj33HPx3nvv4f7778emTZtw880391umra0NBQUFR/87JycHXV1d\nR//Mbrcf/TObzYa2trYBy8TjcWR9IZu12WwIh8PIy8vDcccdh3g8jvvvvx+nnHIKJk6cmPodECyN\nTFgFIbPoPUEYaLJwLIdDBEDCYCB+kSAIggDwz0V8Wj1+8e4tEglIGPKsX78eo0ePxpo1a/Dkk0/i\n7rvv7jcSYigUwh/+8Ac899xz+P3vf4+HHnoIHR0dePbZZzF58mSsWbMGs2bNwq9//WuzL4kNow4+\nZGfxCiw2Nm/A/o5WbGzewFanUQvoRkRuoZxY7o/W9lad5cKn+XSWg//+Z63OcuC0uZCdlUOOKNCb\ndEgtkAwStWdok+79Uxg8zPCNFk/9paljT35evnLZ7a3b0I1ubG/dplxHY6gBzeGdyhFQ3HYPbpty\nh/I9pKbT4th4p8CRRokaCVGLBNES3au8cV/uqMCEUROVRe3pIrqlPAOfVo/737/HtEg+Pq0eP/rz\nlaatkfi0etz615vJkYD+9fUfKd8Dqi/IEUmIUl6LBLG7TT2yG8ehDS0ShL+tWbkNXmclfnbm7crj\nsZmizqRm+Y2NjXjwwQfh8/mwZcsWPPzwwyguLsYVV1yBb33rW/2WKSgoQCQSOfrfsVgMubm5/f5Z\nJBKB3W4fsEzv0x6RSASjRo0CABw5cgSLFi1CJBLBXXfdlcJlC5mApP4RBHXS9b3pvagtkX2EdEX8\nIkEQBMGIuYiVokcIgpFUV1dj4cKFAIB4PI6cnJx+IyF++OGH+NrXvoZhw4bBbrejpKQE27dv10VT\n/Na3voXNmzebdi1GwD0/2ti8AVo0yCrYmV5SBbdtPKaXVLHVmQ4pFZLBCLHS/sP7dZaLcMchneXg\npDGTdZaDRX+5EYe727HoLzey1WkVjNhAHOrConQfQxLIurfQGzN8I0oKHLfdg2vLryNFnqCMUxzf\nTUd+MfKy8pRTUfq0elz7+g9Im74U8St105sqIuK4frNx2z1YMu1eU7+XHN8Aah0DRb1PBo79nSxC\nXj1qimKnzYUSu3pKOoAuKEwXMZkqTpsL4wto95Ca2tHrrMS6mbXKa211TbW4e8ti5X5EFXVSSEoE\ntH79epx77rlYvHgx3n///aQqPuOMM/D2228DAD744ANMnvy/k78TTzwRu3btwoEDB9DR0YH3338f\nX/va1wYsc8opp2DLli0AgLfffhtnnnkm4vE4fvKTn+ArX/kKlixZgpycnOSvWsgIRCAgCGqk+0JC\n73da3m8hHRG/SBAEQTBiLmJE9AhBsCI2mw0FBQVoa2vDDTfcgBtvvLHfSIjHiqaY+P+JvysMzPSS\nKowd6WIV7LjtHiw68+esY6TZofSTxQix0lT3NGQhG1Pd09jqNIpzT5ihsxxc+dUf6CwHVhLCdHZ3\nstZnFUGdEaT7elhvZN1b6I0ZvhHlcEJdUy1++tYC5Q3TQNiP695Qj5xxvXchFp6+CNd7FyqVB3o2\nbW+dcqfyPXDaXCgaoZ6KijpeeZ2VeHzGU8rtp4qIelK6uUgb/+WOCngKxitH4ukRcExQboNPq8c1\nr19FEsNRI7ic/8fvkr5Z1H7ktLngtntIz5HyHfM6K/HEjFXK/bh6Ug0eOmeFcjowt92DR6t+Q7qG\nckcFSuwTSGmSKb4gtR9So5pRUwuanRoR6HmG42we0jOkCoB2H9ytVC4pEdCjjz6KP/3pTzjjjDPw\nxBNPoLq6Go888sgxy8yYMQPDhg3DpZdeiqVLl+K2227DK6+8grVr1yIvLw+33norfvjDH+LSSy/F\nnDlzMHbs2H7LAMDPf/5zrFixApdccgk6Ozvx3e9+F2+88Qbee+89vPPOO7jiiitwxRVX4O9//7vS\nTRCsQX8fKpkICULqyEKCINAQv0gQBEEA+OciVtngFoTBIBgMYv78+Zg5cya+//3v9xsJMZloir2j\nJgoDMzJvBGt91PQN/WEV4YIR8+1QtAVxxBCKtrDVaRTPfLRaZzlw5BcjNytXORpDfxh1qtqI/pmX\nk8da31BeE7LatVulncLgMNi+0ZLNdymPadSN98ZQA3YdokXO+HPza6QxmRr5QYsEEWpXT0VFHa8C\nYT/pGVJFRAAQjysXZcFt95DS2lGjwFB9143NGxCI7CZF6+T47uVm0fwQqoiJclAqEPZj1Ue/J5Wn\nzj/cdg9uPONm0jPoiquLgKg+r0+rJ0WGA6A8lgM8EbM5hES52bnKZQH6ezB77Wylskm3uqCgAF6v\nF5qmIRgM4oMPPjjm38/OzsaSJUt0/+/EE088+u9VVVWoqqr60jIAMHHiRPznf/6n7v/NmDEDjY2N\nyTZfsDgJxaqVJmpC5hII+7+0Hybzd8wkndsmCFZA/CJBEASBm0DYjwVvXkc6JSUImcC+fftw9dVX\nY/HixZg6dSqA/42EeNZZZ+Htt9/G17/+dZx22ml45JFHcOTIEXR0dGDHjh2YPHkyzjjjDLz11ls4\n7bTT8Pbbb8Pr9Zp8RbxwzzW1SBD+8G5okSBrvVlQD93fH1bavG8MNbC205FfjGHZw1hFMADQEt2r\nsxwMzxmhsxyEoi3oinexi6C6YvwRdrjXLqmnr49V71DFStee7muLwuBhhm+0u22Xsm8QCPvxeONv\netKDKpSvnlSDG06/WVlEBADRzqhyWaAn8sPYfCcp8gOVdZ+8qBzNSIsE0RzeSXqGd//tLpQ7KpTK\na5EgtMgekn/ZGGpAoM2v7FclUpKppgGiRoGhHvK5/NT5OqsK1ceniJEDYT/mvjILz39fbY2Deg85\nyt/s/Rnp/iUORxSNLFIa07RIEP5D/HO1ZKGmsqprqsX8usuwuvpZpetPCMFUxyKg5xru/cZ/kCKj\nBSMB0nhKmSO47R6su2RdyuWAJCMBrVy5EhdddBF+8pOfICcnB48//jhWrVql9IOCoIKVFnuE/4vR\nJ/UG8yRgMiEUrRRe2IrIfRXMRvwiQRAEAQB7OGItEjy62C4IQ5nf/va3OHToEH79618fjXB44403\n/p9IiA6HA1dccQXmzZuHK6+8EjfddBOGDx+Oyy67DJ9++ikuu+wyrF27Ftdff73Zl8SGEXPN7a3b\n0BXvwvbWbWx1ljsqUJBnZ984M2JNiHt+WddUiyvr5rFGQfI6K3HdaTeQw8j3Zf/h/TrLwZHuwzrL\nwcbmv+gsF7nZ/BF2uCP6UVORHKteIb2RtUWhN2b4RuML1COgALT0NXVNtXj0gwdJUXj2RoOkeZUW\nCeLzw62kdFiUVFSP+ZZjyZY78ZhvuVJ5gCbI1iJB7Dq0k3T9jvxiUh+iisE4UrJRosBQ09oBdAGQ\nT6vHrJe+R0ppdvHJlyr7NlokiOZD6msc1Cg2gbAfN2y4jhQF59rXf2Cq37S9dRu6oD5X40iBS03r\nN2HUROV5IYd/7dPq8Yt3bzHtOXKIycYXjlcql1QkoL179+L888/H6NGjAQDvvvsu/H4/Fi5Uz6kp\nCMnQ+8SDCICsidFRnAY7SlQygjQRrRmHRAUT0gHxiwRBEIREOGHKiai+OG0uuGzjSAssgpAJ3HHH\nHbjjjjv+z//vGwkRAObOnYu5c+fq/t/IkSPx6KOPGtY+MzFCZLDz4E6d5WBV40qEOw9hVeNK3D5t\nMVu93FExAmE/5tVejDU1L7DVWz2pBk9XryFFL+jLM1tXY/kHyzChcAJ5M6g3Zzqn4F3tbZzpnMJW\n5zfc38L7offwDfe32Oo0ImKRERF2EhtVnP3JCN/Ap9Vj9ss1ypERhMFB0sQKvTHDN1pxrnoEFADI\nIgQEbG1vRRxxtLa3KpXnSGVFxW334N9Ov0H5Hp405iSdTRWvsxL3nf2g8j1w2lw4bkSR8venJx1a\nCyl6SUIM5nV6lSOo7CO0gToO905rR7kHZJ+S8C4+s3U1lmy5E2NGjFHyQZ02F5wmrnH0FiGpPAOq\nkAygR/QsLSpDXlYeSovKlMpT/VOWKDYza0mpDan+NTWlmNPmwujhY5T7QSKlGuf6YbIkFQmoqakJ\nb775Jh5++GG88847WL58OXbs2GF024Qhjpx4yAyMFsSYIbhJ5reS+TvSt1NHBFZCOiB+kSAIgsCR\nl7w/Rubms9YnCEJmQT0N2x/hjkM6y8GEwgk6y0FCsGOFeTSnAAgAppdUoWj48ZheUvXlfzkFdhz4\nVGfTlXNPmKGzHPi0evzwv+eznwjmfI8S5GbxRixy2lzwFJSI6DjNoUagEAQqVH8jHlf/7eklVXDb\nxit/9wJhP+589xek9lMj+dQ11eKnby1Qjmb02f7PdDZVqJEvGkMN2BvV0BhqUCrvdVbipZl/Is2X\nHfnFyMvKUxZPOG0uHDdSXchE9bsd+cXIRrZy+zmiS1KfQ2lRGfKy1QUoAC06pNvuwbXl1ynvBTlt\nLhw/Uj0ilRYJovVwiBRVzOusxJPfeVr5GXidlVg/u840USPHfhx1L4+awjcQ9uMXf/2Z8ru8sXkD\nWtr3YmPzBqXy1JRqFJISAe3cuROrV6/GjBkz8KMf/QgvvPACWlp48zAL1saICYls9mcORj5Dq+bH\nFpGbOlZ83kJmIX6RIAiCEAj7sfS9e1h9OY4wzYIgCKmywHsjbLkFWOC90eymfCmU1CL94bZ7WKO2\nJOCe5zeGGtB6ZJ/yRtxA5OfZdJYDI0RlRqQt2966DZ3xTtY0eI2hBvjbdrM/p07ixkdf3HYPOcKH\nYDxGrYvLOqRgBdx2D1698L9JEViawztJ4zF1rCx3VMBd4FFOgcMRCejeb/wHadM5DoKSC7QUQkDP\nNdw65U7la2gMNSAY2cP+XU6WULQF3ehGKKq2ZlzuqMDxIxzk9LqU5+B1VuKBsx9WfgYbmzdAiwaV\nxRNUMV1PRKq9yiIejqhiHGtHlGdo1HwnFaii+3BHmFR+Y/MG+Nt2K/fDopFFyEIWikYWKbeBKgDa\nfXC3UrmkREBFRUXIysrCxIkT8fHHH2Ps2LHo6OhQ+kFh8DHauTdSzCATUusxmJNJKwtpROSmjhWf\nt5BZiF8kCIIgAPTTSH0JhP1Y8KZ6vnpBEDIfI8SCjaEGRLraTNsgyTSMiFi0sfkvOsuFyzZOZzlo\n62zTWQ4OHjmosxyUFpUhBzmkk+19qZ5Ug9XVz7JGgtIiQeyNBkkn0PtiRESxoY5R99IIAZBV11GF\nwYfqb+Tl0KKYUca96kk1uPOsJaTxmGOstA8bpVyWCjUSkCO/GHnZ6lF4OMabuqZa3L1lsbIAJJFO\nTjWtHDV1aLmjAs58l7KIpzHUgNDhFpKPTvVLfVo9bv3rzcr9aHpJFYpGqEezdOQXIxe5yv0QoInZ\nAmE/HvQ9QP5uUtaOOOYWlPGU+i77tHrMfOk85T5EFZIBPf2weORY5X7I8U2hEAj7UbNG7beTEgGd\nfPLJuPvuu3HWWWdh1apVePzxx9HZybvgKRjDYDj3ImYQEgz2ZNLqfc+q7TYTK4WAFzIX8YsEQRAE\nAMjN5k3PoUWC2N22i3WjTxCEzMKIzXuf5tNZDqaXVKEwbzR7+qqsLNbqEAj7cfH6Wezzy/2HP2et\nr9xxms5yYUQ6sNLjynSWAyOiCwFAbk4ua30AyKf1++J1VmLdzFrTUkAIX46Ra6HcdVp9HVUYXCj+\nBjWFj0+rx+yXa5Q3jX1aPe6vv4ccfaK9K6pclircduQXY1j2MGXxg9dZicsmX6H8/XDaXCge6VSO\nQOK2e3Cz92ek8aZ6Ug0eOmeF8sZ7ImqHavQOn1aPH/5ZPXWoFgniwJH9ps/vqYeXYrGYctnGUANa\nD6tHs3TaXHCP8tCiShECWrntHtx39jLyd7O9q51YXn0s8mn1mPXy95T7MfVdDkVb0BHrUI6Idfmp\n87Hw9EW4/NT5SuWBL97Fw+rvok+rx/3v074p3CmIkyUpEdC///u/47zzzsNJJ52EBQsWoKWlBQ8+\n+KDRbUs7rLjpPFjOvUweBECtv1HfK+l7giAMNuIXCYIgCEaEVHbaXHAQ8tULgjA0iHaqLwL3hxEC\ni43NG3Cw8wDpxGZ/UBfQ+2KE+JLjtGpfqJtYA/HZ/k90loN3A+/obLridVbivm8+yCquMerQErdf\nMNTTj1pFWGOUuGioPndhcKlrqsVNb12vHMHFaXNhbL6LNP51xbqUywI9PkLgkF/ZR6AKt73OSrw8\n6zXl79RjvuVY+dHjeMy3XKm8FgmiJaqRNs2vff0HpI3vnigs9yvfQ0d+MXIJ0Yy2t25DZ0w9dSg1\nlRRXhMFop7r/7LS5cHy+Q/ldrJ5Ug4fPeYx0DSNz85XLAkA8TosEdMMGWrRmarpYLRJEMLKHNF+h\n3AOfVo9rXr+KIMqkHTjxafV4/B+/IotoqOkNqfeQImx12z2onaf2PU1KBJSTk4MzzzwTAHDuuefi\njjvuwOTJk5V+0KpYOVymOPfCYJKqAMiq75UwuCT6SDrkMBUE8YsEQRAEgH+e1ZOvvsX0k4KCIKQv\nWiQILUpbBO7L9JJ/0VkOjBCtUBfQ+8Npc2F8wQmsIovpJVVwjChmjYJkRLQmAHDbx+ssB0Ujj9dZ\nDozoo9T0FgPR2c2fKpRbWDSU04EZJdQyYo1qqEft2X1wt9lNGPJQxILljgp4CsaToqNRov9tb92G\nbnQrizeAnugVXehSjl4B0COwUPyTqe5pyEEOprqnKZUPRVvQGe9Uvn6nzQV73ijSNWxs3gB/226S\nsDonuS3wfqH6s4GwH0vfu8fU721jqAGBiLr/3BhqQDCyR7k8Vcjltntw8cmXkr6F2dnqfUCLBPHP\nA02kuZcjvxg5WTmkqF4U4TpVUEg9rOZ1enU29fKVuMX7C7pwn/BN4biHnoIS0ng4vlBtvqbe+4cY\nVne8h+LETjAejig+yb5X0oeHLn3FYlYdhwVBEARByCyMOOkvkYAEQTgWTpsLzvxxrOPEqzte0VkO\nPtv/mc6mK267B4un/pJ1jqlFgjjYcYBVqPWPfR/qLBdfPf40neUg2hnRWQ5a21t1lgOnzYXCYaPZ\nv7l5ObypQgHg0BHeNGgAfWNaGByG6vpXIOzH7LWzzW7GkOfWdxaR5js5WeopF7VIEP5Du5W/pdNL\nqnD8cJogt9xRgbH5TpKQiZI+mpqy1GlzwWlT9xmpwoWNzRsQOtzCHhUyFbzOStx3trp4wpFfjFzk\nKt8DgBbBs66pFvPrLlOOqAX09OMJoyYq9+NyRwWOH16sXJ4q5Hpm62os2XInntm6Wqm80+bCuAK3\n8nsQiragG90kMeDmwCZ0x7uxObBJqbxPq8cv3r2FJFyn+LtaJIg9bQHl8ZjaB+uaanH3lsWk9wAA\nsigqICJuuwcvXPCSKX6diIBSwKqOt0RbEYyAq18lKwBK1z6cSpvSsf1WoD+xWDrdy3RqiyAIgiAI\ng4MRJ8m1SBB729RDrguCMDTII2wo9YfLNk5nOdj++TadTVc4UlX0R3esm7W+E0ZN0Fkudhz4VGc5\nKM4fq7PpysbmDWhp38u6OclxWr0v1BP8A0HZmLYyRkWXNmpdaKiuN7ntHqy7ZJ3ZzRjyUA7E96Sv\nUd803t66DV3oUo7ko0WCOHDkc9K8SosE8fnhVuU63HYPbptyB+keUlKW9kSZ3Ut6Bt1x9WhKpUVl\nyEYOSovKlMpz4NPqcdtfF9H8PIJuQIsEEWhTF7NxiKDddg9+8+0nlfthY6gBrUdChEhCH+psqkwv\nqULR8ONJgj5KOrFyRwVK7BNIYsDrvQsx9+R5uN67UKm811mJe7/xH8pitkDYj1kv1Sj7FHVNryGG\nGOqaXlMqT+2D1ZNq8HT1GlJKOafNheL8scpiKJ9Wj5kvnUcaS6jrfOu3r1cqJyKgIYDVoxhZmUye\nrHH0q2QHTSP7MOUZpSJOSmchkxXoKwBKl3uZTm0RBEEQBGFw4T5FH4q2oBPqIdcFQRgadMV5x54J\nhRN0loPS48p0lgOjosGMzXexRoPhSEHSl5boXp3l4sTRJ+ssB22dbTrLwX99/LzOcjC9pAqegvGs\naduop9X7o9xRAZdtHGnzqS+SZp0Xo9aFrLTeZEQbVdNeCHyQDybE1Yv2CEiylQUkVBFRglgsplyW\nKjTmiP7ILUpOhVC0BTFiBBUqTpsLo4ePUb6H21u3oSuu3o+o5aeXVOG44UUkX4WaArTcUYHjRziU\n/ZAF3htROKwQC7w3KpXvESHtUxYhUcV4brsHv52hLmABeiLZPP/ps8qRbKiRgBpDDWgO71S+h1eV\nXw173ihcVX61UvlA2E+OLEf1g7VIEKFoC+m7FovTvgcXrj9f+RnWNdVi1tpZSmVFBDREkInd4GOl\nyZoqVAFQKgOfym992b2nPqNUxEkixuMjne5lOrVFEARBEITBxYhT9GaGKBYEIf3RIsGj/3Cxec8m\nneVg9uQ5GJE9ErMnz2Grc//h/TrLBXdkpaKRRTqbzoQ7DuksB0ZElkrMtznn3W67B/d+8wHWOkuL\nypCLXNaoB1okiNb2fexRArkjC1kFI9ZqjVoXMqreoSxWElKDsmHptLlwQuEEUgqeGGLKApLpJVVw\njKClAwOA7Gz17VOnzQVPQQlJxDOMkGKSmsbo8lPn4+pTrsXlp85XbgOV0qIy5BCiCTWGGrA3qil/\n86aXVGHsSJdyP6IKjhtDDfj8SCv5m93ZrX6AoDHUgNDhFuU2aJEg2jvblf0YR34xcqCelo4qxguE\n/bjmz1eRvnE96ZHjymmSvc5K/PGCV5UjAQFAnKDKbAw1INx5iCTEuuqUHyr7MxxRuJ02F8bbTzBN\nEEh9huWOCkwcPVGprIiAhgBGOOG96xQnv39EHHBsUh34Uu1nyUxCOZ5RKmWN7gt9rzWT3810eq/S\nqS2CIAiCIAwORpyiL3dUwJ43ivW0vyAImYXXWYkfl19PWgTuy9Rx03SWgxW+R3A41o4VvkfY6rze\nuxBXn3Ktcij9gTjc3c5anyO/GLlZucqbFYNJueM0neXAiBRjRuDT6nHN61expoJz2lw4Pt/BGlnK\naXNhXIGbtc66plpcWTdP+US6laFuRA02RgiArCKC2n1wN2t9Qur87tsrlf0Nt92D57//knK/oEb/\n0yJBHOjYTxJQUtPHuO0ezCu9gvRudBDEG1Tqmmrx1EdPKH8rqOKNBFlZ6odkqFFsAMA+zK5c1m33\nYM5Jlyj3gXJHBYpHjiWvD1CiiCaEK6oCFgCIQT2CClXMRo36ubF5A/xtu0npY2dPnoPCYaNJhyM4\n/cBUofaBuqZa/PStBSS/M9oZVS4L9LyLi6f+UvldLC0qQ252HknoT5m/u+0erJmzRqmsiIAyHCOc\n+951GlV/pmCVSaVZpCIASrWfJTsJzZRn1PcemXkSJ5PeYUEQBEEQhMFiVeNKHOo8iFWNK81uiiAM\nSawwj3lm62os/2AZa7qhpxqf0FkO7MNG6SwHPq0e/7ltFatoozHUAH/bbvaoKJQNq/4wIm0XAOw8\nuFNnOWjvatdZDgryCnSWA6fNhRLCieD+aAw1QIsG2ftTnJBSpz+qJ9Xg6eo1qJ5Uw1uxBeDYiOqL\nlSLhGBm1iJNA2I/Za2ez1imkzpLNd5H6NaVfTC+pQtHw45UjqISiLeiM0dIsa5EgtDb16IvUFJFa\nJAgtuoc9ElyyOPKLkQt1UTNHetRQtAVd8S7l59gYasC+wyHSdzncEVYu+5hvOZZ/sAyP+ZYrlW8M\nNaClfS+p/VokiEDYr9yPrvcuxMLTFymL8KkRVDg40n1YuWxpURlysmhRHhtDDTjUcVD5OXJEwqFw\n0piTdDZVWttbEUecJOpsDu8kjYVU8b/T5sKovFGmibECYT/+7U//plRWREAZjhHOfe86uetPZuJk\nhUmVwEPiWbvtHtx39rKU+1kyfz9T+lN/76IZkaistPjBxVC6VkEQBEEQejBiIaYn17pdOdf6QIiv\nIgjJYYV5jBEpsUpGTdBZDiYUTtBZDkLRFnTEO0gbeoMGs2jj1R0v6SwXRkTt+erxp+ksB0aIytx2\nDy77Ci1Cw2CgRYLYG+VNAQhgyEYdNEIAZbVI8FZop9vuwbpL1pndjCHPrkP/JI09FJ+KKw0ShVC0\nBV1QF6BML6lC8cixykImp80Fe26haZvOTpsLhcPHKP++ESkyU8WRX4y87DxlIdPG5g3Y2x5UjgIz\ne/IcOEYUs6bHVSFOUBMHwn683PSi8vuceP6q/YAaFWxj8wZoUfVnCAA5RBlFuaMC7gIPyfeipHSj\nQo3qRU0t+ML2tYgjjhe2r1Uqn4DyHqz75EV8fqQV6z55UbkOykEWt92DX33vV0plRQQ0BDDCue9d\np1ECo/4YigKDoUrfiFO3vrNI8lZ/CYn3JnFdZrXBSosfVDKtDwmCIAiCYB4bmzcg3BkmLVD1RXwV\nQUgeK8xjxowYo7Mc5OfZdJYDIyLMcKQj6At1c2ggYnH1tAf9MWbEcTrLhRHPPhjZo7PpCjVCQ384\n8ouRjWzW/uR1VuJnZ97OmgLQSr6BEW00IgJSun87emPEPTWizvGF49nrFFKjM64eSYd6YIKaWrPc\nUYExw4pIm+5UH0GLBHHwyAFlIdXG5g3Yd6RFeW7IIZ6g/L7T5oKzQD0NE0D3/bzOSpw9brryN7S0\nqAzZyCYJmXJzcpXLckBNp9UYasDOQ/9UFuTVNb2ms6lCFZNNL6nCccOLSGK8cXZ6WlZqVMfOmLoI\nyJFfjLws9bEsFG1BDDHlPkRNLXjf9GU41/Md3Dd9mVJ5oOc5umzqz5EaDcmn1WPWS99TFgIFwn5c\n88o1SmVFBCSkHceaOA01gcFQxsiIU/39hpXpO6Ey+7qsfj9Twex7LQiCIAiCObjtHqypeYHVB60P\n6FYAACAASURBVLj81PlYfNbdyiek+kN8FUFIHiu8J6VFZchCFuup6mhnRGfTFSMEUAAQj/GG7eFI\nf9GXSaNP0lkujHj2RqTu+se+D3WWA+rJ9P7Y3roNMcRYn31dUy2WbLmTNX2V2+7Bzd6fpf2YZyWx\nklUw4p4a9Zx2H9zNWp8w+FAiV3idlfj9d1crizc2Nm/A/o5W0uEKp82F4pFO5U1jp80FW16Bcnlq\n9EdqeWr0Di0SRCjaQoomRY2kc/3r/4o3/X/G9a//q1L5zYFNiCGGzYFNSuU3Nm9AMLJHuR9SU7Id\nrYMgqKOKyajRQZ02Fxy2YuX3qDHUgP1HPidFFeuKdSmXTbRhT8Sv3AYtEkSgbbfyu+S0uXB8vkP5\nHlL7UPWkGjx0zgplEXZdUy02+F8n+8LdcfXnWO6ogKdgPC2SJm+26KQREZAJDLXJC/V6+xM4CEOD\n/iJOcb8/lP6UDu/yQJPtTH9P0uHeJ8j0ey1kLun0HgmCIFgRbh8gEPbj8cZfp5W/KwhDCUqI7sEi\ncQKTMyVWcf5YnU1XjIguRE31MVi4bON0lgsjnv30kn/RWQ6KRh6vsxwse+9+neWgtKgMuVm8qU+o\nGy/94dPqcc3rV6X9mCdCZmPWQLnvqRF1BsJ+1Kzhj9gkpI5P8ymX7Yqri4ACYT+WvneP8jswvaQK\nxw8vVo7+AXwhYmnfq7zxTk0fM9U9DdnIxlT3NFPKU6N3OG0ujMgZSY6gkp2Vo1x26rhpOpsqsyfP\nwXHDi5RFSKVFZchBDskvyMlRv36g5zmMtamL2YpGFunsYJdvDDUgGNlDEvHECXl6G0MNCLSpC3g4\n2rA5sAld8S5lMRr1HjptLowapp6aMBD241cfPEryaSj3D+i5B/623aTnmJutHtXL66zEEzNWKQtb\n3XYPnvj+E0plRQQ0yFBDIVoN6mkAn1Yvpz6Eo6TT+5MuJ5KG4qJIutx7QbA66TKeCoIgCD2s++RF\naNEgKc+4IAjqzHpZPUT3YFE9qQYXn3wZazqbD0Mf6CwH1FO/gh4jIuEAQLnjNJ3lILFhTNk47suH\nLX/XWQ4WTfm5znLgtLkwNp+W+qQvoWgLuuK8QjWnzYXjRhSxttMorLLWZVSKLSPm7Fa5p0J64HV6\nlcppkSACYT8pCkxr+z7lslokiP1HWkm/DwBxQg6f670LsfD0Rbjeu1C5juxsmgAkm7D9W+6owJjh\nxylHvljVuBIHOw9gVeNK5TZsbN6Ave1B5Ug6VHGuFgki2hUh9aPsbPVn4HVW4udn3kFKCapFgtgb\n0ZSvodxRgbEjXcr9gBpJiJqWr9xRAZdtHCmCC1WAQr0HB48c1NlUod7DdZ+8iNYj+5TXqbRIEDsP\nNin3Qer944D6TaMKWyUdmDDoJNtZKQKFQNiPW99ZhPvOXiYTFKFfzNy8TifxTe829L4nmby5ny73\nHsjs+ywIgiAIX4Z8B/lInNJUPa0pCAKNEvsJab8p/phvOZ7/dA0e8y1nq7OtI6yzHDSGPtRZDowQ\nFpU7KmDPG0UL7d6Hy0+dj7knz2NN7WhEJBzAmOhKiQ1j1Y3j/nDbx+ssBz2imixWcQ01akR/lDsq\nMGZYEWsf5ThVL/wvVjuoxt1OI67fbfegdh5fCjxBDWe++sZ/KNqCznin8hi77pMX0dK+V3nTeXNg\nE7rRrRw5g4NA2I8/N7+m/G6Eoi3oiqnfQ2q0w43NG/D5EfWUatWTztNZFagpzQCakMvrrMTSby4j\niXCyCDmA6ppqcfeWxeQ0SFlZ6m2gCuqokYCcNheKRhyvPEfTIkG0tu9Tbr8jvxjDsoeRIjJS78Ht\n0xZj7snzcPu0xUrlnTYXRubkK9/Dk8acpLOpsr11G7rQpZwulyOymyO/GHlZ6kIogC4GC3ccIpVX\nRURAg4zb7sGamhfSZvP6y+jrpATC/pSd+1SvNVFvQmSRzEfWKhMtgUbv9ycdJtlGv8c+rT6l6+t9\nT9Lh/lAYqN2J60oXrH6fhaGNlfwRQRDSE/kO8pJYpDZzsVoQhjLPf/+lIekbGSGw2HVop85yQF1A\n749VjSsR7jxEOqXel2e2rsbzn67BM1tXs9XZdOAzneUisRjNuShd7qhAfq6NVbTy1eNP01k+aIv5\n/RGLxVjr29i8Afs71DdhBeMx6pCgEXsIRgl2jLj+8YV83yRBjX2EjXOzI1+MGTFGZ83i0BH172v1\npBosPH0Ra/THVJheUoXCvNHKG+8cKWypz3F76zZ0o1tZfODT6nHLWzcqRwp12lwoHDZaWXxR7qjA\n8SMcJJ/KaXOhOH+saQcdqBEiG0MN0KJBknC5O9atXNbrrMR1p91AEoIlhCeqAhSfVo+Xm15U7ocr\nfI/gUOdBrPA9olS+3FEBT8F45X5IncNpkSAOdRwgieydNhfcdo/ye7C9dRu64upCJmo6Mrfdg4Vn\nqUWVExGQMCB9Jwa9N9+NisLR9zeT+Q3ZfEh/uCeXCZtO0WA4CYT98Gn1mP1yDS5eP+uY96/3n/W+\nJ4l/tyKJd7o/xybdriuT+6GQ+Ui/FQSBylD/DnLPP7Z/vk1nBUEYXKwwlhmxqRUI79ZZDoyIXPP8\n9ud0lgMjogtxnFofLFqie3WWg6V/uwfRrgiW/u0etjqDkT06y8HT/3hKZzkIRVvQjW7W6ELTS6ow\ndqSLdPq5L478YmQhm3QaWtBjhe8HYKxgScg8uuKdyhuepUVlyM3OU07DRI0qV1pUhmxkK/8+B42h\nBgQi6pu+dU21WP7BMnIUGFU2Nm/Awc4DyiLUz/Z/prMqUH0qqvhgc2ATutClfEhnY/MGhA63KN/D\nxlAD9h0OkQQwWiSIlqh6lEKnzQXHSHUREfVdpqayogrBntm6Gss/WEYS99c1vaazKsRj6sJ1jvS/\nI3JGKpdlQT2Y1VEIQcGwec8mnU2V6kk1WF39rLKos66pFte+eq1SWREBDTJWEqz0nRj0FRgMxm8a\nVUYYPIzs85n4zBP3y2lzYd3MWrxwwcCnUfu7t33/bl8hnxVw2z247+xluPWdRQO2OZ3G0Uzsh4Ig\nCIKQLEP1O2iEj+uyjdNZLtLFZxIEgY4R0XCG5QzTWQ5a2/fpLAfnnjBDZ9OV/9n7vs5y0NF9RGe5\nOHH0yTrLwW1fvwPDsobjtq/fwVanEd/HK7/6A53loNxRgbH5TtYoSAAwaridtb66ptcQR4y0GSUY\nTyDsx+yXa9j9OKMO9QpCb5w2F8YMG6MsHHDkFyMXuaSN/xhiyhv/CTrjncplqdGQAFoqKaoI5/JT\n5+PqU65VTm/KIVyf6p6GbGQrp8ve2PwXnU2V2ZPnwDGiGLMnz1Eqz5LOjCNqIaEKaqpT6jMAaAIY\n6tyJQ1BITY3ntLlQOFw9olRpURlys3JJ13C4u125LBWnzQWXzU2KZqVFgghE/Mr9eOq4aTqrAiWq\nW/WkGqybu06prIiABhmzBCuqznjfdib+20jnXuXeDNXNBytgFZFWukxYe98vr7PymAKgL7u3vf/c\nSgJEoCfU4kDXZpU+JQiCIAhC5mKEP3L7tMU41/Md5Vzv/WE1H1AQzMQK7wnHhlJfSkZN0FkOvuE+\nW2c5sEqEnbmll+osB6VFp+osF0akA1v3yYvoiB/Buk9eZKvz3cDbOsvBqzte0VkOqKftByLcEWat\nj3oqfzAxYlxWTacx2DSGGrDr0E5SBIjBQHzNzMUxolg5Chk1AgoAZGWrC2Cml1ThuOFFpChq1Ogd\nl586H4vPultZRFPuqEBBrl1ZWEoV4dQ11WLlR48rRyLiEK6Hoi2IIaYcYY8jAsrw3OHKZdMhLZ3T\n5sI4O01AQUmnRX0GoWgLutBF6AMVcIwoVn6PQtEWxBEnRXlMiBFVRYkc42l2lroUhJrKiiMqGHWu\nsr11G7pi6tHtOMYzqp80tmCsUjkRAZmAGQKgebUXsznj6e7cp2u7hjKqfb73szTyuaZbnz6W8Cdh\nE+39sntr5fRpx2qrla5DEARBEITMhHtT5pmtq/Gm/8+kUNN9saIPKAhmkU5zwoEwIr3FttatOsuB\nEekNjYiwU1pUhixksd5PI8QlRkRWAoDpJf+isxwYseF1muN0nU1X6ppeQ4w5ws7G5g3QokHSxk9f\nyh0VcOa72CMWcWPEWp1Pq8esl75nCSEQNQXKYGGUr7n7IF+KSkGNgx0HlEWN1HRgAEjRSxpDDfj8\nyOek+Vr1pPOQhSzl6B2BsB/PfvwH5TFsVeNKhLsOYVXjSqXyVBz5xcgljEGO/GLkZdHGMGoUGaqA\nnCp+KC0qQw7UI7BwiCcAoCvWpVyWmk6LKp6g3oPGUANCh1uUn6Ejvxg5yCH148TzV+0HpUVlyCX0\nI45IOhSmuqchBznKEb1WNa7E50daSWMh9R76NJ/OpgpVo+HT6lG1Wk3UKiIg4Uvp2zHNWEhO9uUw\nQ8yR7ouEVqHvfez9LI1+rsn26f7aOFj0Ff6ovIOZvvkj76IgCIIgCINFXVMtrqybp3wysj+oi0OC\nINAwYp2De6OZK71FbyYUTtJZDjhCpvfFiHRgmwObEEccmwOb2OosPa5MZzkIhHfrLBdcm0tGY4RY\nyYjnZESEHeoGYn9okSA+P9zKHrGIG6PWn2PxGGt9gDHrUV5nJZ78ztPwOivZ6+aG+xkFwn7MXjub\ntU4hdeJxdRWO0+aC2+ahRR+Jq0cf6YmYGCdFTqT6CFokiObwLuWxlppCiEU4TkjD5LS54LbT+sAC\n742w5RRggfdGpfJUYXK5owKegvEk0Wwc6t8c/xd+n5/g/zWGGhBo85OETJR+5MgvRm6Wemq/g0cO\n6myqlDsqMGHUROIzpKVkS4whqmOJ0+aCw1ZMepc6YuophamRaJ02F8YML1Juf/Wk85CTlas8Fiba\n4CxwKbeBw8dv74oql/U6K/Fo9aNKZUUElGYYMWlw2z1YU/OCkkM+kPhisAVAyQpABluglG4RZIwm\nletMRbjV333s/SxVnmuqi63JCIB6t9GoZ9+7/r7t630PMl3QkypD7V0UBEEQBMFcqifV4KFzVpDy\neveFGnK+P7ijwgpCJmOEAOjC9eezCoGml1RhZHY+Kb1FX0LRvTrLwVONT+gsB42hD3WWg9mT5+C4\n4UWYPXkOW53UzYr++O7EGp3l4k9Nr+gsBz2ilRxW0crz25/TWQ6MiCzlyC/GsOxh7JFbcrJ5l++d\nNheOG6G+GTOYGLH2lZWlnmKoP4zytQJhPx70PTAkfTi33YN1l6wzuxlDHqpgjvKqbQ5sQgwx5U1z\nDp9hqnsaspClHL3C66zEEzNWKQv5qMIBqnCcmoYJAHKz8pTLAj0Clkh3m7KAhSOFD0ELR+7HC7w3\nYnjWCGURVAKKiIWakg2gjSXU1LVuuwfzy65W9ieokZAA+ljSGGpAMLJH+T3Y2LwBwcge1qiSqf7+\nviPq6cy8zkrcPuUukihaiwTRElFP2Us9OKFFgghG9ij/vk+rx4LXFiiVFRFQGmHkJjZl0mR2+Pgv\nE4CYKVAaSuH1U+mfyf7dxN8DevpZX3rf11QFQBeuP5/1ZHZ/IhzuZ5+4Hz6t3nTxXbqQ7Hho9Ls4\nFBddBEEQBEEYmEDYj8cbfyM+giBkENzvs9dZid99eyVrFIcVvkfQHotihe8Rtjrtwwp1loODRw7o\nLAdv7vpvneVAiwRxqOMQa0SUdwNv6ywHL336gs5ykRCBcItBssArsmjvatdZDs4Ye6bOcuB1VuL/\nK72K9Z132lwosU9gfUaNoQZo0SB7WlMrpNhy2lwYPXwMe5+nnO4eCKPWuaziu44vHG92E4Y83egm\nRcEJhP2mRRwrd5ymsypsb92GOOLKm/+BsB+LN/1C+Z0zQlScCtToHwCw73CI1AbqxjtHKqk9EfUo\nOrMnz0FBrl1ZbL7ukxdxJH4Y6z55Uak8YH7Uxxe2r0UMMbywfa1Seeq7/MzW1Viy5U7llOscQrKn\nGn+POOJ4qvH3SuUd+cXIhXo0Jeo1cNwDCnVNtViy5U7yXm+MEJWLGlWsJyXbOGX/02lzwZHvUCor\nIqA0It0EJb0FGqmUMYJjCYDMjv6R6vMaqK3pPglLpX8m+3f7/j2uZ5lYbOU+MdP3erjf1cT98Dor\n02osGGxUoy0ZKQAye5wRBEEQBCHzKRxeqLMcUKLCCsJQg9vnNyKKA8emVl+0yB6d5aBw+Gid5cBj\nP0FnOdjeug1d8U7W9GpGCGvOGvcNneXi3864QWc54Igc0JedB5t0lgMjNlcf8y3Hyo8ex2O+5Wx1\nuu0e/NvpN7B+xx35xchBDmvEIiMinxnBxuYNaGnfy3oaXosEj/6T7hgZtUjITFQjV4SiLeiMdyp/\nC6a6pyEbOcq/v//wfp1Vgbrx3RhqwM5D/1QWkPSkvslSToFjRATFVFjhewQHjuxnFa6nCkc6sFHD\nCpVTSa375EW0dYWVRTwcvspJY07S2VRx5BcjG9nKPoMRc5dU4BgLqNz29TswMicft339DuU6sglR\nIV/d8YrOpgo1pVtpURlysnhT26ZKKNqCrjjv/CRVRubmK5fVIkHsjahF7RURUJqRTouzqYqSjN4o\n76/edBNOfRkD3SOriAxSuc/J/l2VyDq971N/9ywQ9qN6Ug1r3xisZ2NWuq906Xu934V0eb/TpR2C\nIAiCIKjD7esYIa6hLlIOhPgw/KSL7yzwwu3zGzGPKC0qQxayWBdRnbZxOstBR3eHznJw0Vfm6iwH\nOw/u1FkOjNhsiHZGdJaTPNBSdQwGXucUnU1X/OHdOstBXVMtbnrretZI16FoC7rRzboR4nVW4o8X\nvMoaBckIppdU4bjhRawpFb3OSjw+4yn2aw+E/Tj/j99l9zm6Yp2s9RklLNri38Jan6CGaprickcF\nJoyaqCyeAGjpxKjCB+ALwWSWumCyelINFp91t3L66J4oTHHlaEwXl16is6nS42uq+5we+3idVYEq\ngpleUoUROSOVx/x1n7yIgx0HSJF4KHAcEip3VMBtG6/8LlLTylH94tKiMmQjW7kfUseCjc1/0VkV\nGkMNaO+OKgsCqVEhOURIlLR4oWgLuk0W4FCjKVFx2z14aPqjpqzNiQhIOCapij5SSduVCscSyVhp\nUTtxjwb6/1a6FsCYzZQv+63efaHvv/f9c04BkBVEWoDaM0mn6+sv7VpvzGqjpBkTBEE4NjKeCemM\nUb6OFU58C/ykk+8s8GKEz89dZ13Ta4gjrrwp1x9Hug/rLAeJ1DicKXL+6+PndZaDCYUTdJYDI+7n\nuSfM0FlOKKHx+6PcUQFnvou08duX80/8vs5yYET0PfuwUTqbrhiVGoQ7xZYRNIYasP/I56yp0AJh\nP+7+213sfsHG5g0IRHazRi0CgNzs9Bf++bR6VK3mE2oJ6nidXqVybrsH88uuVvaDNgc2oTuuno6M\nY+Oe2gafVo/76+9RjpBGjYaU8BVVfUaqCInjgEui/6n2w6V/uweHu9ux9G/3KJWnXgNVgHK9dyHm\nnjwP13sXKpVPQBHUUaEKuULRFsQQUxaQVE+qwcLTFymL8aaX/IvOqkBNree2e7Di3N8oj6eNoQYc\n7m5X9n22t25DN7qUhWDU6+dITQgABB0T+eBIIOzHTzfeoOwrep2VeOuqt5TKighIMBTVtD59sapI\nZiD6uxdWu7ZjPVMjwsr2Fx2mt6jKyOgxVul//YmikiHdri+d0/9xkmnXIwjC0EXGMyHdMcLXMSLt\nhVGhquXd5CXdfGeBDyPS2HDXaYRo5TTH6TrLwUljvqKzHHzU2qizHDzz0Wqd5WDS6JN0loNXd6zX\nWS42BzahG+obnP2hRYL4/HArq1DWCNHKu4F3dJaD6knnIYuQuqU/uDY+ejPVPQ3ZWdnKG8v9YZX5\nQLmjAiX2CawiNS0SRPOhXezi8NKiMuSCN32GESfRjYiO6XVWYsN8XvGTMLg8s3U1lmy5E89sVfu+\nUsUTHFFoOEQsXfEu5bI94gf1qG1Un5H6DKjp1ADAp/l0NlWmjpums6lCvQZq+s26plq88OmzpGiA\njaEG+Nt2s4pfU4Equqb6gHVNtVj+wTLle0jtgwCwec8mnU0VqoAEAOIECQw1Ei1VQMMxllCFTFeV\nX41hWcNxVfnVym2gRmLc2ybpwIQBGKwJWN8JH3dan0xZZM2UReO+16Eq+OovNdqX/Zbb7tEJXfpG\nWLL6vVWlP1FUMqQaNcnMaDyZ8O4kcNs9uO/sZRlzPYIAGDc+pPti8lBHxrOhjVXeT+7+6XVW4nff\nXsma+oEjbH1frLIpZzVkvMtMZr38PVbRjhFiwcf+5xGd5aCts01nOWho+R+d5eDE0SfrLAdGCHaa\nDnymsxx8w322znIxe/IcHDe8CLMnz2Gtlxsj0mWOzB2psxyEoi2II86a7qAx9KHOcrC9dRticfXU\nHv1hlfUat92D3854krWdTpsLTts49khITpsLnlHjWevl2EjsDyOe+zg7X4pKYfDh2LSl8D9739dZ\nM6BGEjIqaluyOPKLkZulnj6HKoAB6JGAqFCfATX9ZuLeUe4hVUw8vaQKznyXcko1aiQganlqP759\n2mKcP2Embp+2WKk8F9ypPFNhc2AT4oSoYNT32AhBfKos/ds96IgfUY4qBgAd3erPsK6pFrPWzlIq\nKyKgQWawF1+5Fn2TKd+fUONYaX04sMpittWj/gxEbwGQiuDrWMKxgX4r8ffm1V6Mua/MwsXrZx39\n+yp9PZm/b6XNk94RklSeAfffT4Vkx5l0RDUN263vLLJEvxKEZDBqfLDSGDxUkfFs6GKl99OIselB\n3wOs9XKEre+LVTblBCEtoMQI7wcjxILnjK/SWQ6MEK18fdw3dJaDUHSvznIQ7YzoLAdGCIu2f75N\nZ7nQIkG0dYZZI5h4nZV48jtPs/Z7I1LBGcGrO17RWQ440lAMFlbwNYyat+QZlGIrN4u/XjM3EpMl\nEPajZo1a6haBF7PSt1DLnzH2TJ1VgRq9gypgpYofeqJ3ZNOiiRF8Y6oAhgOqGI36DB35xcghCFCe\navw94ojjqcbfK5UHeAR5cUI/CHcc0tlUSURXpERZjBMuoK6pFq/ufJkUjan33qcqh46ElctSxWQ9\nqQl5I0gONqVFZchBjvJ4WHpcmc6mihYJYm80qDznKndUoKSwRKmsiIAGETMWyTkWfY/V7r4n2vr+\njpETQKtsOlilnRRUBV/9RfBJpr+67R7cNuUO/KTiBmRl9QyifaMQcIp7ercrnZ9j77apPoNk/z7X\nu82VMtBMVNsum3JCpmFUnx7q74oRqUmMOPkpkYB4scr30CrvpxF+hlWuHQA2NlsjnYJV+r2Qubw0\n60+swoVA2I+l793D2rd3HdqpsxwYIVqpD/5NZznI/WKTPZdxs729q11nOXDZxulsutMV62atzwiR\nrBGHC5u/eIeaGd8lI0RlRpx+nl5SBceIYuVT/YOJVeYteTnGiIAOd/ONTQkoJ9EHQny4zEU1Chk1\n/Us6UJBXoLODDTXF5PbWbYhDPeobVcRT7qiAyzaOlH7R7GhIl586H4vPuhuXnzpfqXwo2oJYXP0e\nnn/i93XWDDY2b8De9qDymoJ92CidTZVf/c+jOpsqPWmgupXfA44+eMe0uwBkfWFTh/oMXti+VmdT\nZXvrNsQIYwn1HlIFPAlyc3KVy1KjdnudlXh8xlOktYbcbLX2iwhoEDFroZj6ewO124jQ1hztSjes\n0k4qlOvrvSmTTD11TbW45vWr8LO3b0K0sx0L3rwOPq3+6GkeFXHPl5EQAJktVBnot6ltS6Vsss/6\ny+rrG0EqsRBzrGtMRyjveKaPC4LAxVB9V4zwtYz4lhl1ojZdx32jSQd/IxWs8H4ateHDXZ/HPl5n\nOXhm62rc9Nb1eGbrarY6jcBq/V7ITLhTuRjBCaMm6CwHRohWvvrFhs9XCRs/fZlQOElnOSgaebzO\ncvC+9p7OckA9fToQmwObEIN6qpL+MGINzIhNsJIv3qESxnfp3BNm6CwHRqQD0yJB7D+ynzUClBEY\nNW9Z8OZ17CK1NTUvsPuFjaEG+Nt2ozHUwFanFgki2BZgffZGie1r56lHXRC4yMLFpZcolaSmf6FG\nL+mJXJFjauQK6jVQU/BQceQXIwtZytFDtEgQre37SOPN7MlzMDxruHLaUqqQNhD24+mPViqPb+WO\nChSPdCoLoXqeQTYpHZgjvxjZhDpKi8qQTYgoVTi8UGdTxYh0wGaQQ5BiUJ8BNaokdSyjRjVz2lwo\nHD6aNFf3Oivxr+ULlEU4T//jKZ1NlUDYj7v/dpfyWKJFgtgT3qNUVkRAg4wVFsn7o792e52V+OMF\nr7KelEsVq9xPq7TTDPouECUjHHnQ9wDu++aDOGHURCw68+fIyur5GCTqSWWjJ5XIQWYLur5sYk0R\nonBfVzKLAH0jLN36ziL4tPp+y/WuLx03h+QdFwTZwDUCI3wtI8Z8s74j6YIRJ5SHgoD8WBghKBuq\nKesuP3U+Hj7nMeXTiwMh/V7IRIzYxHxo+qOs/brli1RYLYwpsYKRPTrLwcEjB3SWg50Hm3SWg+2t\nW3WWA2rqiP6gnj4dCCPaClhjfmxEFKinGp/Q2XRle+s2dMU7lU90DxZG+AZaJAh/WzO7AMoIQZVR\nETBiWby5L43y4cYX8oniBVXiyuOE2enAQtEWxIipqKgHNBz5xcglpIKa6p6GnCx1IROHCCmGmLII\nyWlzYfTwMaSN+6V/uwdH4kew9G/3KJXff3i/zqZKY6gBu8L/VBZjapEgDnR8rvyNqGt6DXHEUNf0\nmlL5RB0xQh2haAviiCu/S1Rfc0LhBJ1NFbNTwgH0aETUSDw+zaezqfL89ud0NlWoUc3WffIiPj/S\ninWfvKhUHug5HLf8g2XKh+Ou/OoPdDZVtEgQzeFdymOB11mJ5+ao3X8RAaUp3KccjKrDTAGQYE36\n60u9hTjJCEfuO3sZSovKsOLc3+Dxxt8czUvau55UNnqS3WhMRKwxi4Em1on2U+vmJJXUAXFcGwAA\nIABJREFUbr3/vtdZ2W/qtd5py6yyKSwIQw3ZwDUGI3wtI56REd8RK6QYM0qsZNR1W+H7aaXUXdwR\nUY3ajKWGTe6Llfq9Ffq8kD5wf3cCYT9+uvEG1n5YnD9WZzm47et3IAe5uO3rd7DVaQS2PJvOcrDj\nwGc6y4ERqdCMorSoDLnIZf9OcGOEGMKIqFpGRBcyQvg3vaQK9txR7OnAjPjmcvsGHOkY+uLT6vH9\ndd9l9wupJ+f7IxRtQVeskySMEIYWqlHIqGkHqeKNdCAUbUFXvEv5fQtFW9BNSCVlRDrJVNjYvAEt\n7Xv/H3tvHh9Fle7/f7qzkTRhix06JKKGEUGNqBEUlJkMbtEgBv0FFa8YQRj5DqACg8IAXhEFHWAE\nnMuMXhH1wgxwkUUzZkAwyBVGYjvEqGRcIktiN2nClnS23n5/JKet01R3us6SdJN6v17zepzQdfpU\n1anqqvN8zufhKk0tywkxXHifPyymNJhiuzMLoUQI9XlFNLmZeci7dAxyM/OYtt99dBcVtcJ7L+B1\ntBJRQvXAT/upyNKHnvG9mPvA68zGew54hWTTsp/ExCunYFr2k0zbA/z7wHsvyLYMxRu3r2N+/qyu\nq8LT/3iaaVtdBBSBiJxUFdFWYBv6RKoOK+2Nx3ASNMS6d+z2PDgaarAhbzM2j9lGbaMlcUiEPeF8\nb2Hxw51W/o6g1kctiS21Yx/u37SidbJG+Xm1sUJcnnSRgY5O5NKVhQs6YokW55Zo+l2KFnclWcdU\nhgAof/vdQp8NSRJWZDJWRj+jZdxHy5jXiRxEC3YA4FTjKaHtyRAELPnnYnjgZl5lrUbPhF5UFEFy\nfE8qiuCmfjdTUQQX97iEiiIoOfYxFUVhMaXB0j1NeCk80ddRxanDVBTB3uN7qCgCGSUrxg16kIoi\n2PrtFtS5z3GtqA6kuq4KBTvyI/43t7quCosOsJdjUKO48kO4fW4upwY1eBO3amSZhyCl20XMpWnU\nqK6rwviigog/9zpssJYDszttONXE7oDCuzhCxO8mbx+yzEOQHNdD6PWmBd5yktOyn8ST185mTrzz\nOrCIgPccjh14P3rHpzCXI+N1MBnebwQVWeAVP7y4fxE+OLIdL+5fxNwHHnjPAW9ZPbvThtomvrJ2\nvGVtS47twdmWM1yCOgMMzNvyXke8gkSrvRT/U7GOa06L11X1ixOfU1ErvM+f5Y4yVJ5hc8PVRUAR\niMhJVRFtKR04WCdS9ReBCxct5zaUkw2J4TjHbB6zDa/f/haWW19BuaNMtT1SWqq9vpPxHM73Lh25\nLGITkoHOOQTl39SuX7XyW6ITJlraUboaBbt3RXrCSUdHRyx6ErdrEi0iA0CO/b8MoumYRkMfLaY0\npJn6CU2ckuSRyCSSjH4C0XGOomnM66hTVlaGRx55BABw9OhRPPTQQxg/fjyee+45eL1eAMCmTZtw\n3333Ydy4cfj449ZET1NTE6ZPn47x48dj8uTJOHUqPCGOy+MS2v+SY3twotHGNWEbCPnNEfnbwzsx\nrYYMl5Ur+gyiogiq645TUQSZvX5BRREkx/egoijsThtOOO1Cx5MMQUCaqR8VRWBpa8sisM26lnNU\nFMGyg0upGKm0ljk4EvHPxXanDcfr2csxqCFDrAPwOweoUXJsD2qbTgr9XZLF8bPi7ssXEh39bMRa\nfuZA9X544GZOvPOSZb6Gip3BuvK1qHOdw7rytUzb8zpPEAEXq5Cruq4KG79dz/x7zluCSAS8Ahi7\n04Y69znm3wxSyo21pJsIR6yxA++HuVsqs4imZ0JPKmqF18XU7rThnOsM8zngFX+8Vf4mvPDirfI3\nmbYH+EWJR84eoaJWcjPzUHD5Q8xuTrwidxFOQi3eFi4XQ9770fV9b6CiVuxOG47W/cg8js1JqYgz\nxjFtq4uAGOiIJJTIiUpRbbWXmA+Gnry7cGE5t8FKWamJUYJ9p91pQ25mHmZlz8GUXY/Bai+ltrM7\nbWEJdrQmBtRKVUXKuFY7F4GTb4H7S8RSga5JIhMmWseI8rvD/f5IOQcsRHPfdaKfaBl/ehI3OogG\n+38ZWO2luG/H6E53CgyXaDim0URibJLQ9kTYfavBOlkQiq4+5qPlNzSaeeONNzB//nw0NzcDAJYs\nWYKnnnoKGzZsgM/nw+7du+FwOPDuu+/ib3/7G958802sWLECLS0t+Otf/4qBAwdiw4YNyM/Px3/9\n13+F9Z1xMWKvlYevmoAnr52Nh6+aILRd0Wyq+BsVRSDDsejouSNUFEF8TDwVRfBlzb+oKALeBEww\nHA01cPkivzSQjP3vFtuNiiL43P4ZFUUgo8SYLAwG9lXmHYXFlIZe8X2EiqMfvmoCJl45Rfi9vntc\ndyqKIKf/KPRJSBFaCi49OQMrclYJL6c5duNYYe1dKHTGs1FnMShlMGIN7OUqeZPmItrg/e3iFS8s\nO/gyFbWy9dstsDfYmF1seEsQiWB4+ggYYGAW4VTUHobb6+ISwyljZxFjjGHedlr2k7g14w5mRyhe\nIfvmio3w+DzYXLGRaXteF5q5N81HPOK5yiZnJF9MRa3w3ktes67Epu824DXrSqbtecXOMhw9tZKb\neRcVtcJbotXRUAMXRzlWiykNA/oMYNpWmgjI6/Vi4cKFeOCBB/DII4/g6NGj1L/v2bMH999/Px54\n4AFs2rQp5DbBVM0AcOrUKdx5553+hx/ZXMiClsB9CizDozUxr7atzoWFSKcppcAmGNV1VRj3fr6/\npEGWeQj6JqXB0VDjvy5JMg4ILVgjiQuW8axVuCQSnlJq5HPK/146ctl5tSjDcUYKF5ZSZV1FZBjN\nfdfRTiQ+F0XT+NOfIcQi+rx35ftZtmUo3hvzAXNd5wuBrnjeATkJDxnJHgCIFSwCijbxm2i68j2v\nI+nfvz9Wr17t//9ff/01hg0bBgD45S9/if379+PLL7/Eddddh/j4eCQnJ6N///6oqKiA1WrFyJEj\n/Z89cOBAWN8p+pq22kvxX1+uFHqttHiaqSgC3pWNanx/+lsqiqCi9msqiuDfpyqoKIKURDMVRcCb\nCAxGlnkILu1xmdBSJenJGdiQt1notSRr/0UTH5NARRHIKAfGW9JAjWzLUDyRNT3in4nLHWWoabSj\n3FEmrM3iyiKs/eZ1FFcWCWsTkOMAVu4ow6nmWqH7X11XJbycZnpyBhb+cqGw9i4UOuPZiLWUE+99\nxmJKw0WJZmbB3g9nvqMiC7wLNHiTxrzOFbOHPUNFrYwdeD/iEMfsIMMrvgD4nXR4S0HxljTjLaMk\nQjxRcmwP7A3szqSvWVdid9VOZgEJr0si72/h7qO7qKiVdeVr0YIWZkcvgH8c8G7f2c/Rg/oMpqJW\nRLiKESEfq6Cvs0WN6ckZWHfvOqZtpYmAPvroI7S0tGDjxo2YNWsWli792bbU5XJhyZIlWLt2Ld59\n911s3LgRJ0+eDLqNmqoZAPbt24eJEyfC4XDI2o3z6AhBS2dMJgZOZCpFDgSle4hWtAgAohWe/kfz\nvosqWxdOW+nJGdh0zzYsvWU5si1DYXfaEB8ThyUHF/vdbJTJuFACIJ7EhRbhkkjaSzgE9qO9yTfi\nBBTKPUgE4V7/LMkUImSKRoGALpDsWkTic5E+/romMpLXXf1+FunJDpl0ZTGEjISHDGSIlWSJ36JF\nVNTV73kdxZ133onY2Fj///f5fH6XCZPJhLq6OtTX1yM5Odn/GZPJhPr6eurv5LPhMH33VKHXdEXt\nYbg4Vg+rcbb5DBUjlV/0HkhFEaR1T6eiCGKNsVSMVEQk0tRIT87Amtv+W/j9THR7WeYh6JOQIlSs\nJKMUHElWi3SZkeHUJUNYtP7rd7Dy0DKs//odYW3KwgdfZ3chLGSUl+MtL9RRWO2lGPe/4zq7GxFH\nZzwbscJbPqbcUQZ7g41ZsMb7/QB/KUrepDG3+wZn0nv2x0/BBRdmf/wU0/a8AhqAv1w2r4iG9/mr\n3PElFbUiohzqoJTBiEEMs6vW8PQRMMLILMSSVdI2XHjLkYmAtxwW77VkTkpFDGJgTkpl2p63PGlV\n27N2FeMzd27mXTDAwOziA/AfQ96SbrmZefjjr15jLslWXVeFye9PZtpWmghIqS6+9tpr8dVXX/n/\n7YcffkD//v3Rs2dPxMfHIzs7G6WlpUG3UVM1A4DRaMRbb72FXr16ydoNVWQLgDpjIj1wIpMk1tUE\nAoHiIBGE2m8tx6KzJuF5zlug6CLSEwkyCbcU2LxPf4fiyiJM3z0VC256HhvyNlOTLNmWoaiuqwra\nnlrignWcdeTkP0vCIdRnQ7XX0XXcw9m3YPeH9sq+RTJ68qjrEInPRTLGX7Rei10JWeLJaLmfdfUx\nKnr/dTFE5CPrWUmGAEiGu5Csa14f8x2P0fjz9JXT6USPHj3QvXt3OJ1O6u/JycnU38lnw+FY3ZEO\nfw/Syi96X0FFEYwdeD96xvdiXumtxm+vn0FFEdjqq6kogl4Jvagogi8d/6KiCHL6j0LfxDShJXwA\neYJW0e2VHNuDU821zKvY1ZBRCu5wm0vVYYFuVTJctXgTGWrwlu4JRjQ8u0eLsAbgT+aqkZ6cgbnD\n5gt/NvL5okOs1Zl0xLMR67jmdeLhva5ElFnmFeLxulfwliPj3X70gDFU7IrwCgeyzNdQUSsiyqE6\nGmrggYer9CtPOTFeMRvvdchbikuEAwyvK5g5KRWxiGUW8fCOAV4nH95zUFz5IXzwMYsBAf7flHpX\nPRW1Ul1XhdfL13A9155rZrsGpImA6uvr0b37zzbmMTExcLvd/n8LpkhW20ZN1QwAN998M3r3ZrPA\nEoGMF5HOnEgP/E41l5Ng4iAlocqKhfputf3WUm6pM1ciizpvnbkPnf1i3Z4DDTk2APDemA8AtE7S\nLtw/D3an7Twnq4Id+SHbCxQAhet+Qz4r2i0nXGTfG8hq8c4Q1ij3LVDEFeza0JOPOtFCJD4X6SWh\nogMZ5ymaxZM8dPUxKsPtrysjo9zJ5/bPqCiCaHFNlOEu1NWv+QuNK6+8Ep991nptfPLJJ7jhhhtw\nzTXXwGq1orm5GXV1dfjhhx8wcOBAXH/99di7d6//s9nZnWPbndN/FNJM/YQKN74//W8qiqDcUYZz\nLWcFl8fhW7mtxqRrnqCiCGSsTk7vnkFFUSTGdRPanixkPG/wJjLVMLetCDcLXBnu9rqoKIIR6SOp\nKALepGQwjILTDNHyOy6rzAZv0qyjsNpL8ZuPJgoVcltMacjskymsvQsV2c9Goy+9F9Oyn2TqG6/j\nGG/5m8oz31ORhZz+v6aiVnjFD78fsRATr5yC349gK43HK17gdS8R4WLIK+Ya3m8EFbXCuw+8zy+i\nhJsGGJi3dTTUwOV1MQtIeI8B7zMLb0m5LPMQpHS7iMuNUoQo0QMP87a84m/e+zHvOeC9lwL8bkTd\n47pTsaMpd5Th6NmjTNtKEwEFqo69Xq/frjAcRbJyGzVVc2cj80UkkiZo1foSqgRSsLJi4QiDAtsj\nSapwJ62JGKCz0OpgotyOJBA6S9DAOp5Due0Efq49yIrLYCsvlQI0AFhycDFSk/oi1hAHiylN9biJ\nLn1A+rEhb7PwpE84hPtCHe55DHbeyTXeWagJrUJdG5F0z9TRCUYkPhfpJaEiH710l1i68r7LIlqS\nM9GCjIRkdV0VHv9HYVScI9HuQvo1f2HxzDPPYPXq1XjggQfgcrlw5513wmw245FHHsH48ePx6KOP\n4umnn0ZCQgIeeughfPfdd3jooYewceNGTJs2LazvSDOlCy3jAwDxxgSh7cm4T5iTUmGEkXl1qRoi\nVi4HsvvoLiqKoLq+iooikFEKze60web8SbhTlQxBKwC4POJEMEBrGQAjjFxlAAK5pMelVBRBrDGO\niiKQIdjhTeyqYTGlIa272HuojN9xGaX1ZJXr4y1jo8aB6v3wwosD1WwlPdTItgzFQwMfEfocl56c\ngXX3rhPW3oWK7GejD45sZy7xx3td8Dqw3J15DxVZ4HXy4b3XVtdVoejH95nf48xJqTDAwPx8N3bg\n/UiO68HsFCmiHBivA0lnl2HiFS84GmrghZfLxSfLPARJsSZmEQvvtSzCSYcHcuxYj2HJsT2obTrJ\n5UbJK0bjdcKpaThBRa3wCrneKn+Tih39/QC/qJN3+/TkDNzR/y6uZ1pWMZ80EdD111+PTz75BABw\n6NAhDBz488vvgAEDcPToUZw5cwYtLS34/PPPcd111wXdRk3V3Nl05QnF6rqqoAIgtbJigccp3GQB\n2VbrS0SkJSLC2d/05Ay/oKazXKDCHc+kn+E64oSz/0TwNXfY/JDuBEScYjGlYUPeZrw/9h/YPGab\nX0ClJC4mLuTkQ2BJLzLxFa5zVUedJ9KfwBIJ7Tkm8ThwATjPXakjCSa0YhXa8XxWR0cUkfhcJOM5\npis+F8lE1vNmVz5PXX3fRSf6uvo7kehnpZTEi6gogpJje1DtPC60hEo0IWts6s+THUNGRgY2bdoE\nALjsssvwP//zP9i4cSOWLFmCmJhWW/px48Zhy5YteO+993DnnXcCABITE7Fq1Sr89a9/xTvvvAOz\n2RzW97V4m4X23+60obq+Sqhwo2db2aqeAstXiUgwBMK7YlSNupazVBTBFW1JpSsYk0tqtLfAiQWL\nKQ2WpH7CRWqAnPtkXIw4EQzBYBA7hc2bEFGjyd1IRRH85dCfqCgCGeISAPD43ELbk4GIpLRamwYY\nhLYJAA0uJxVFIOPe/Jp1JdZ+8zpes64U1mZ1XRUefu9hYe1dSHT0s1FniSd44S2/A/ALOKZlP8nl\nprT12y040WjD1m+3MG3PKxwoObYHda5zzO+RvCIqgP+e9Wn1PipqhVcAMyhlMIyIYS6VKaJ852rr\nq3C667Ha+irT9uWOL6moFd5xwHsv4S0DNShlMGI4y50+fNUEPHntbDx81QSm7XmFVNf3vYGKWuG9\nF/KK+cgiAJ7FAB/88D4VWeBx1HrNuhIrDy1jflbKMg/BZb0uY9pWmgjo9ttvR3x8PB588EEsWbIE\nc+fOxfvvv4+NGzciLi4Ozz77LCZNmoQHH3wQ999/P/r27au6DaCuao4EuuJkd7DyXMpJ8MDjovb/\nw00WaD3Gnemko/zvQIFJe33q7BJT4aLsJwBsyNsc1G0nHAcXAvlMbmaeqvOT8pjYnTb/95PPqZWI\n2pC3OeR+tDeOIwFlf7ItQ/GX29Yi2zI0ZP95rgGlg9fMkhmdWjpCTWgVSvikpZxbJJ1jWVzo+xeN\nROJzkYzrWx974umKz5vRRjSNexnjqauOURlltpTPYqIYlDIYRoORa9JKjWga96KR9Tx5/CybNbWO\nOGzOn4QK5ipqD8Ptc6GiVlyivbrNwrya0cpcDXNSKnzwCXUCkuE0khzfk4qRSounmYqiiBPoLqNE\n9L1Mhui4ovYwPD630Gvp1ktup6IIusUmUlEEKYlmKopAhrik3FGGqvrjQssKRsv8TZZ5CFISzFyl\nQjoKGffm4ekjEGuI5S5Xo6TcUYbK05XC2tNhh7V0yqaKv1FRK+SZhPXZRIT7CK/7xPqv3+FyU5Ih\n2tPCoJTBiOEQsIhwhSTfzdqHR69+jIodTUXtYXjhYX5+ESFY5i19y1uasrOdgHjLQDkaauDxubkW\nS1jtpXit7I/MZTN5hUy89xLeZwfec8DrJATwC5GyzEMQizjmZ73h6SMQY4hhflZKT87AH+/8I9O2\n0kRARqMRixYtwt/+9jds3LgRAwYMwD333IMHHngAADBq1Ci/Ivnhhx8Oug0QXNVM2LNnDxISxFos\n65xPKGFAoPAgVPkv2W434brZiEL5UhpMzBNMzKAUyhDnk85AiztToPBHzbknsL32BFBkTBBHoMDx\nojy+M0tmoNHd4P+38UUFKNiRr/ojGmyflOOVtFtY3Hof0uKIJJvAfi63vuL/XuXfSX/IuAv3+go8\ntoHHS8YqQ1ZETf50BceCaJko62p0hecimWNPH89i0Y+nOPR7btcdT+S5VOT+N3uaqCiC4soP4fV5\nmVeAqtHVx72M58nquiqM3ThWWHs67IhcsS4j2SqjfBW5P4i8T5AJTpFJ4SNnf6CiCGQIdmSJlWS4\n68i6n4t+387pPwrppouR03+UsDZfPPCfVBTB6AH5VBRBt9huVBTB96e/pWKkkp6cgVnZc4SOJ3NS\nKmIQI1T0WO4ow8nmGqECKABIbSv7mCqw/OMXJz6noggspjT0TUoTOodoTkpFjCGm/Q/qSIe1FGFS\nnImKWtlcsZGKWuFNmgP8IhbeMqa8IqQfznxHRRZijOzX4S96/4KKLPCOA14xWWc7WvE6uAD8Li68\nrlq8gkBeNyTesqoi3Jg2V2yEx+dhHsfD00fACCPzexXvOOa9lnmFaLzl1IDW8oam2O7M5Q2n7XoC\nLrRg2q4nmLZvFZN5mMVkVnspxv3vOKZtpYmAdC5cLKa0oMIK4PxJhPaEBuQzashKJIqc5FBOAquJ\nZIJ9f6CrEvl8Z0yoa53IJkKdYOKvcNuz2ksp0ZTadoHHd0XOKiTGJgFodQVakbMKLq/rvCRMe30g\nAppA8U8oVyPl/++o8xRYWg+A3wkpsB8ujyton4O1rdzvwHHc0SXPQv091PlkKecWqYgYU11B6KQT\nmcgae1092Swa/XiKpavfc6NpPEVDH2UgY+WdDBckWcg67zLKNG59YKvQNnW0w2PxrYaMFdzp3TOo\nKILfj1iIJ6+djd+PWCiszQPV+6kogknXPEFFEbR4WqgoAuU7vMg2Zbyjy3x+F0l6cgZm3/CM0H6a\n2hLTJsYEtRqfVn9CRRE42lb/OwSWLXN5XVQUgYiEeyBWeyke3/ko88p5NSpqD8PD4cqgxttfvUVF\nUXzpOERFEQzodTkVRWB32uBoPCG0BKKjoQbuKCgv1xVgLQHUPa47FbXCm7gXwfD0ETDAwJx453Wc\nq2s5R8WOxmJKgzmxL7PAT8TvAq8TDq+IiFcAktN/FJJjezCLmEUIqQalDIYB7M7AvGIy3t8dXgEJ\nrwCG9/sBMfcznvdU3muRV8jFey8TsbBm67db4HTXM5dXfO32PyMe8Xjt9j8z90H0XEO46CKgCCRS\nJ6iVJZZCTfYHTiIEExoQ2ivNJPJlj7dcUjAC2wrmjkM+uy53PbItQ0MKXjqacL9T7fwC2tx/yOef\n3TcbK3JWUZNZam5SSnFHtmUoNuRtht1pw73b7oKjoQbxMXGqwqv2+hA4NoP1UyliUzsGgZ+XRXsO\nXGRloFqfQ7Wpds54x2Cgm1Ooz4Vbmi1Un5Sirs64h4r4TpH9j4aknM6FiaxSQ9EisojUZzglXf14\nymgzGo6lLKJlPCkdE0UhIyHbM6EXFUVQ21hLRRGouXdGIjLOu0wu7slmsa4jjou6RX45FxmlgQCg\nMGui0PZEJC0C4bWSV0NGgm3vsd1UjHRkCIBE33uLK4swc+90FFcWCWszI/kSKorgdNMpKorA3OYC\nYxboBnNpz0wqikDGNe9oqEGLt4WrBEcgg1IGI8bAXt5GjdEDxlAxkhHhDKKG1+sV2p7uBBQ5sCa+\n/32qgopa4XXBESHEPlC9Hz74mAXNvE5AOf1/TUWt8LrI2J02nGiwCRX4aYXXEa1g0ANU1AqveGPr\nt1tQ5z7HLDyw2q1UZKGi9jB88DKLXxvdjVTUCq8TEe+iJl4BTCSUFjxQvR8eeJjvRbxuTrxCrkgQ\ndfI+p5Y7yuCCi9n1MTczDwtuXITczDym7S2mNFi6W5i21UVAEUakr6YlYon2Vn6GEmO0J2RQ/n3p\nyGXCJpiVx1ZmoiIcoVOolWGRnkQBggt1tCSBlGIoZVtKxygiAAt2XRgMBnx/+nvEGuOCqtLbc5lR\n2xe1fgKghDVq+xno7sSLmpAmMOGkjOTvan0O9R2i7znhuH8Rgl0vLEnFzkpE6qXKdHTkEw3XRTQl\nm6PleMr8fdIRh4zxFC3nSPSEaEriRVQU06Z4C/NocY7Q0dHKySaH0HIusq4/ZRSBjGeYLPMQ9E1M\nEyqqqnfVU1EE17Ulxq7jKLMQSN6Ae6kogmh7hlG6FIsgyzwEqYkWoeNJhlNXU1uCrIkxUaZGRe3X\nVIxURCQqA8nNzMMff/Uac8JEjYraw/D4xDoBySoXY6uvpqIIZJQYczTUwA23ULEWOU86nQ+rSPaK\nPoOoqBVe4QBxMGJ1MgL4k8a8TkAy7qtaOFC9H26fm1l4IEIcyisekOFMqQXeZw3e60AEvELXAz/t\np6JWeN2YeAUwIhZV8Z7HilOHqaiVwqyJ6Bnfi3nRB6+AOKf/KKR0u4jZEUvGM7tWssxDkJLAvmDI\nai/F0oMvMBue2J022OrY5h91EVCE0dlJ4HAmFLSu/OQpz6PmlsPyXUpRQUcQSugUjjtLNCBiEooc\nD1ISjIhoAFACMCIII99LymE9fMWjeOXzFzEla+p5xzyUACXw72qfCxQ4KceP2gQpuS5ElUZQE9KQ\nHwm1fSV/D+x3e/XTZTljKdtsr301wZzVXsrUp85y0RJ1DAPPISsXwj1GR0c2+nUS2YQjOo+ENmUh\na3xGw7iXkeiU4dpjtZcif/vdQl1LeW3z1ZBRnkMG0XLedS5sfPAJbU/G9VfbeJKKonALLAsEtE5U\nnm05LVQsObzfCCqKQIS9fCAyVrtG0zMM8LNLsShkjKektjJgSQLLgaV1T6eiCO68LI+KImhyN1FR\nBD0TelJRBNV1VVj3zZtCnw1kXPOrrH+koiga3A1U7EqIdGrS4YPVCSgj+WIqaoVXxHP03BEqsmBO\nSoURRpiTUpm2573f5GbeBQMMyM28i2l7XgdFGQ5vWuF1UBmePgJGGJlLuvGKPGWJRDsS3nOQZupH\nRa3wPlcXZk2EKba7cNdTLfAKoUYPuIeKWrE7bXC6nczP0bwC4nJHGWqbTjIvtuF1VQNa7+cGGJjv\n5+WOMtQ2sy8YcjTUwOVzMQumiTsmC7oIKALpTAFQOBOvWhLeRNQRrmWv2ndrEQA4I8xCAAAgAElE\nQVSFI/jozNVT1XVVKNiRj3Hv50d0EiZc4ZZSVMU6cZ+enOEvCWYxpfnHlvK/q+uqMLNkBsYXFcDu\ntMHtdWHyzkK89c0bSI7rgT8dWnWegIeIiYK5TAUrWRdqX8IR0xBnI2VftKAU9ChLlQW6YqkJmJQC\nGnLd/eajie0mp0QJT9TaJOdBy3bhOoDx9FnG/rIQeG5EJMCibZWojk5nEC2lgboyMsoNkeeJSL8/\nyrqPR8vvQ7QkOi2mNJgTU4O6UbJQ9MN2KkYqsgQ7MhbDRPo40ok8RJbOe/PLP1NRBDenj6SiKGKN\nYkUb2ZaheP32t857P+ZBxKr+QGSsLOVNlqgh47lIFjKeiWWMpwaXk4oiIM8EIp8NeEvqqFHb6KBi\npJKenIF7M+8TOpZklBVMiOlGRVHwlt9Qo6bhBBVF8MEP71NRBJsrNgprS4cPm/Mnpu14BSS8if9L\nelxKRRYOVO+HF15mFxneZ4ziyg/hgw/FlR8ybc8rxOJ1IhLhoELGH+s4BAAv2MsVZpmHwNwtldn9\ng3dBgIhnX942eMthiTiHPGz9dguc7nrmkmy8Ah4AmHvTfCTGJGHuTfOZticlMlkFLBW1h+H2uphd\nEHlFlbzXgQgXQ97yjgDfgiHecwgABhiYttNFQDp+wpl4DSyhFAoySVF45SRKiBDKrYdnMjlUWTGl\nmKIzrOvJvtmdNhgMgE/sAkOhaD0PyhJrLMeWjBO70+YXjASKR8gkEhEKbbpnG1665RX0T74U825c\neN4qs3D60l7JumDba5nQ0nosAwU9SpSuWMrPqY3vbMtQLB25DFnmIXhvzAftTpTJSgqGOybU9rW9\n5B9PnyMlCWq1l+K+HaMpIZAIx7LOdpTT0enK6NedOLryvUyWCCZajqkMsZaM336704YTDXahrgRX\nt00uXi2w3Amv/bUaumBHDsfPiktI6rAjUrgho9QUrx28GunJGZg7bL7wEmPLra8Ive9Oz34KplgT\npmc/JaxNGUl2UjqFtYSKGtHyG06QMee25OBioeNJRlkkGe5C3WK7UVEErjbnL5dABzAZjhHrv34H\niz5bgPVfvyOsTd6kuBq8JX+C0TOhFxUjFRmCOpFOajp8PJY1qVO+l9dFJ6f/r6nIwvD0EYgxxDK7\nyPBSmDURiTGJzA4mvKLHwqyJSDQmMX+/CPcOXv70xSoqaqXcUcZVLpj3XVzEOOYtpytCzMWDDAc/\nLYhwIi05tgeNngaUHNvDtD1vKdOc/qPQPTaZuRwXb0k43nvR9Oyn0DO+F9c74LTsJzHu8vGYlv0k\n0/YirgNWEQ/QVhrZxCYg0kVAOhTBygyR/9ayap5MUjx81QS/ECHUBDzLpEa4Ti2BAg+RhJNUUIoz\nNt2zDZvHbIvYyRut50GZpGIt30SOTThircLih1HuKMNy6yt44eaXsO6bN7EiZ5WqqIc44rCUadAi\nIALUx4HWYxlYcizwegvmXKR08gl0TgpnBZrMCcVwBEBqpdjaS/6puTdp6VMkTKBmW4aeJ9IS5VjG\nclx0dLoSumtPdCBDYBAN512mY1Gk77ssZPz2Oxpq4PKy2/mqIcPhg7f+fDC66liSRXVdFcZuHNvZ\n3dCBWOHG9W3in+sFioB4LfXVsNpLw3KQ1UJ6cvulqbVScmwPnG4n8wS6GqTEBmupDTVkiAx0xCMi\nsRaIjLKe1W0Jk2qBzjWnmmqpKAIZbjCDUgYjzhgX8aWhPq3eR0VRnG0+Q0URlNr+ScVIJaf/qKgu\nn3MhIfJdRwu8Ljq8LjZAq6tb99juzO5uvA4sq62votHTiNXWV5m253VT2vrtFjR6G5gdVF4YuQQx\niMULI5cwbQ/w/66+MHIJ4hDP1Qce9w9eFx0RpYUH9RlMRa3wjmPeUsa89wIZrp9a4T2GvG5E68rX\not5dh3Xla5m2jwR4z19xZRE2fbch7IpFgQhxeuUwBil3lKHGyfZ7rIuALlACSwaxtiEqEU0elkIl\n7omrCYtrSmcSblJBKdiI9EnzcF1uxhcVUEkqHhenwO9V/rfSGWjpyGVYbn0FS0cuQ25mHpaOXKbq\ndEMchmZlz+kQ2+xQTlRa21E6H4UjbAu8FtKTW0usrchZ5f/3cL63Mwh23Fye0CvSrPZS6j6i9V4Q\nKddgoACIOIaJSFRGyj1SRydSiZT7gE7Hop/3yIc8x0S6y4yMFXEySlQMShkMAwwRn0CLNmQ4aG59\nYKvQNnXYECnc2FSxgYoikCHsy7YMxV9uWyu01JIMYZEs4gxiS6HJcETp6u92Mp4NiB0/jy1/IDJK\nLf2i90AqiuDi5P5UFMHoAfdQUQTZlqF48453hN6bZJAYm0hFURw5W0lFEfyi9xVUFIEMwWvJsT2d\n5jqhQ8N6HnjFC7zuHyKel9aVr8VZ1xnmxDmvKLhg0ANU1AoR0rEK6ogDEqsT0mrrq/DAzSxiAviP\n4dZvt8CFFmYhE+87P+91IGJ+gNeNiHccPnr1Y1TUSmfPZ/BeRwD/MeR1I8rNvAtGGJkXPcgoyawF\nu9OGI+d+5HLh5r0WRfymeA3sKqDczDzMvWUu07a6CIgB2S/dvO2TyQHigiKyvNaGvM3+i02rWIdM\n/qgl7rX2OVT5qc6YFFGKl7rKpEygUKW9SSleMRk518QxiDhLzSyZoTqxSLbJzcwTtvK7vX3QImJr\nDy1iMTVx3cySGZi+eyoKduSHdPBS+3tHj2G14xYXE6f6w15dV4XiyiKqjBbZf5HlODoDUv7l2X2z\nhbUXCY5HOjoi6Cq/rTo6QPQ4FsmCCLkj/boflDIYsYZYoZNRvFbdalTUHoYPPmbraJ3zkZWMv7in\n7hoSCXxx4vPO7kJIRExEByKjdJcMYZEsVxDR1dpliERllQqVhej7o4xng7fK36SiCGSUrJDRpgyH\nGRlOQNV1VVi4f57Q8y7DEUBWOTCPz0NFEVTVHaWiCMjvpsjfT5GlOXXYMcDI/Js7duD9iDckYOzA\n+5m25y1/KuLeaXP+REWt8IqCiys/pKJWeJ9HeL8/Ob4HFVmQUQZXC50tpBIxP8Dresk7Dnh5q/xN\n+OBjfl7jPYfmpFQYYeQSjR+o3k9FrfC60FTUHoYXXo5yYnzumUfPHaGiVkQ8sw9PHwEDDMzXoohz\n4PG5mc9BcWURXvq/l5i21UVAGhE14RcqIS/CfUdZXklrn9TKD5F+lTvKcN+O0SiuLKL62V7ZHjU3\nFmWCWq0kVGDflN9Fvlvtc52xOipQxBRqtZtyX6IVpeOM0sUnmN13sPMS6ASl9t8E5Vgk/2132uDy\nuFRLZig/F6xPgf8/1HkJFLOptSVr/Gl18iHJw81jWkvPBUskqpX4Ey3mCkfQF9gPssov8J5htZdi\nfFEBlhxcTE0oV9dVwe60UcKgaCXYPZCVaJkk1tEJRTStfI6GPupEB135/i0r0Snj+vT6vELbqzzz\nPRVFsPvoLiqKItqfuXjQhdY64RIfE09FEbz91VtUFIGMMS1LWCTaFcTRUAO3T2xpRxki0WgRyAJy\nnt3TkzNQeOUkoWOUtzxGRyFDtCED3nIfapQ7ynDk3I8od5QJbFP8anbeMh3B6JtkoaIInC4nFUWQ\nFGeios6Fg48jabzkn4vR4mvGkn8uZtp+7k3zEYc4zL1pPtP2IsRpvO4bvCIcXvEGb9K6Z0JPKmqF\nV0QF8JcD6+xSUMsOvkxFrYgoM8or4iGlkllLJvM6sHT2dXigej+88DILeAD+cfj7EQtxg3kYfj9i\nIdP2vPcCGUJvLYi4DhwNNfDBx/zOx3s/5BWj8Swu0UVAGhExORLqhZi1/cC2lNuH66wTyolH6ary\n3pgPkGUe4p+cb+8Fv7iyyF++KVSppGCCDSIQICKBUA5AnTUhqxQxESePYA4ryn2JRsg+BE78W+2l\nmLyrMKQrT2A7ZMypuUKFOn7kc8/um43Vt66hRC6BbagJ1QL/PZzzonRpCdaWrMlTFlEOEWiF4yhk\nd9ooAU6wfdA6mRdO34m4MPDvgWIY4m60ImcVNuRtRm5mHtUGALw35oOIt4kOB7VyiTo6XZloSbZG\nk1hJR0ck0bDaX8b1WVz5IbzwCl0R1+JppmKkYrWXIn/73cKFQNF0/4z03yQddsYNelBYWz/VV1NR\nBKMHjKGiKGSUYJTxbrzk4GKh9wpzUirijHFCS0IBQIwhRmh70fI8DMjpa3FlEWbunY7iyiJhbcpI\nDNa1nKWiCGSUb3J73VQUgaOtBJpDYCk03sShGjJcF2WRkmimoghMbUIdk0DBjgwR+w9nvhPWlg47\nMYhhFrTOvWk+4g0JzCKeJf9cDBdczCKi1KS+VGSBN3HOC694IzfzLhg4SgDx8ljWJBhgwGNZk5jb\n4L1nk/HLOo5Ljn1MRa3wlsIS8ZvFK17gLXXKW9KMV7zLex2LKPPLuw8v7l+Ezx0H8eL+RUzbZ1uy\nqaiVhjbhcAOjgJi3bCqvExEAWO1WKnY0vGK0h6+agHm3zGPaVhcBMcD7ItveCzGLAIhXVBSOEw8R\n/FhMaRhfVOB3XwklyiF14Gdlz4HFlBbWvqj1TVl2ivwt2DHorEkR8r3tHcPAfQkkEia/2+uD23u+\n+47FlIb+yZeEPM+BZeFmZc/BzJIZAOAXCbVX5s3tdVGfy7YMPc+xStkeESwFXiPk38nn2zsvAPwi\nr0DxmrK/WsZfuA4/agK6QPFUuO0Ftr0iZxVmlszwH6dQ15CWyTyrvTSse93Skcuw3PoK5g6bH5ao\n0GJKO+/4iyyhFSnoYgIdHZqumvDQ0Yl0quuqULAjX/hqf9HXkow2eVfEqZF/+f9HxUjFYkpD74Q+\nYb3fhUu0Pft0ZSekCx3WSX41XG3vriSKQJa7lwyi4ZnIYkpDP1OG0PtZtmUotuX/XfgClWg4ngTR\nfc3NzMPbuRv8i4FEIKPM1g2WG6kYqVzX9wYqikCGwwxv6QY1Kmq/pmIk86XjX1QUwck2p6aTAh2b\njpytpKIIdFehyMADD7NrwtZvt6DF14yt325h2p7XrU2EeIL3fa+zRUStzhde5nPIK34QUZaaV2TI\nK6TKMl9DRa3wiojSTP2oyAKvCIfX7Y1XwJGRfDEVtcIrgpIhSNbKpT0vpaJWePfB7rRRUSuN7kYq\nakWEgKcwayLikYDCrIlM23f2O7jVXoo/7P8D07a6CKiT6MhJba3fFUxgQ0qA2Z02vxuHUvig5o5i\nMaXhvTEfwJyU2u6kLin1E6oUVLBVP0qhRCRMHLdXpiyUAKizJ7/b60N6cgY23XN+iSny9/YEH2Rl\nN1nF1+hu8P+AqAm5lM4+dqcNscY4qk3yGfL/lSXmCBZTmv/vyrYAqH4+1LFRW5nOcj2He64Dv5OI\n6+7bMRp2p43aLxaHKYspDRvyNlNioMBrWUm4AiBSmqu9zxNhFVnRqXSNCrxmgom0lA5cF0pCRpTr\nnI6OTscSTckZ0ci45+j3scjH7rShqv4Y82RARyK6j7wr4joKGSUayh1lONFgF1qeI5qElMpnXZ0L\nj6Iftgtrq1dCLyqK4NZLbqdiVyLUOyEPcYo5BlGIFBURuvpzUZZ5iND2xg68H30SUjB24P3C2kyO\n70HFSOXYuSNUFEFTW2KniTHBo8aB6v3wwcdVgiMQGUItGaXQAOBXF4+iogiMBiMVRcCb3FMj0sv0\n6bTP8PQRiDHECBXxaUGEeIJXAMLrvlGYNRHd45KZk9a8AhRe54q3yt+gIgvXmK+lYkfDW8KHd86A\ndwwB/CIaXhcY3lJSvCKms81nqaiVadlP4taMOzAt+0mm7QH+c8ArKKw4dZiKWrk78x4qaiUl8SIq\naiU38y4YOV3NVltfRQuasdr6KtP2N1iGUVErvIsPKmoPMy8s0kVAFwjhChhC/VsoNyHi1jErew4m\n7yz0u7eE2p5M4lpMaXh232xVNxPl9jNLZvhdXgL/rbquCqPfuxOPFo9XFQIRoUSwcmbhHgdZBBM2\nBPYnEia/gznPqH2OEKrck3JyXOmSRFxo4oxxlBtQYLvEqWdW9hxkW4ZiRc4q1c+oCayUk4RKwdrS\nkcv8ghdA3VUn2D6r9ZGFcM51oNMWEfoQcZ3SBSlUG6H+jRzfbMvQ89yQWEVp2Zah55XmCtWGxZQG\nl+fna5+cr8AScmr9V37nrOw5wsuHhAPr97W3Ha8AqLMFhTo6Ol0HGfcc/T4WHWRbhmLrvUVC3Q5k\nnHsZoo3r21bPXy9wFb2M1UUi6qcHkmUegr5JFuEJ2WgQAAGt4/4vt60V7vJx/CzbxKaOWIam3SSs\nrcTYJCrq8CPjPuH2iXNqAugy5iLblPVcFA3PWjL23+60wemuFyoS5l1trgZv4kSN5PieVBRBc1sp\n02aBJU1llGyTIdSS4YQDAKW2f1JRBEltv0dJAn+Xft3/NiqKIBrc7roKrAIQR0MNPD52JyHexL0I\neBPvvCKakmN7UO+qQ8mxPUzbH20Teh4VKPjUwuxhz1KRBV7xBK+IhldI9dvrZ1BRKyIcUHivJVIq\nmbVkMq+r1+f2z6ioFV5Hr9esK7G7aides65k2h7gf57hfb7kFXLx9n/0gHuoqJWK2sPwwsvlKsb7\n/Md7DniPYU7/UejXnU3UqouAugjhuLuEEiQQ8QYAVNdXoeDyBymhQKBQgQgLCETAEer7N+RtxqZ7\ntqn22+60IS4mFv1MGf7JZjXxjFq5JjWHos4SAgUeZ7X+dPbkt9VeGlJIQSa0SBKF7EOgAKu6rgrj\n3s9H/va7KeGWct+zLUP9rkLBWJe7HnanDZN3FbbWgQ8oQ8bihKUUvNidNr+rTjDxU2C5LWUMV3QW\nyuFKDeXxDLYPyu8g11Dgd7fXP3J81frNI3oK7F+ofrRe3+qrL8l2gW2o/f/l1lfCErBp3Zf22mC5\np1TXiS+foiQSBIU6Ojpdh2gp36QTHYk+Gedehmjj0+p9VBTBFX0GUVEEvJNmatidNpxscESFA5QM\niKOp6AT/2I1jhbWnw45IJwMZ5PQfhZSEi5DTX5wzRFfG7rThp7rqiL+fyXoukiFYIu2KRMb+W0xp\nuLh76JL2WuFdra4Gb+Kmoxh1yR1UFIGMkm3/+LGIiiIgC1rVFrby0LtbHyqKwNHsoKIIyh2HqCgC\nkcIvHT5YBTBvf/UWFbXCW/6Gd3sR8IqIDvy0n4pauTl9JBU7GhFllHgdTHj7wOsG9Vb5m1TUiohx\nzNsG77XMO2/ycs4KKmqF9xzyjkER8Jbm62x4BZGDUgYjBjEYlMLuEsh7HfA+44soD9mjG5uASRcB\ndSCyJ93ba39W9pyQL8zBSmkpHVZyM/Ow4lersb3yPb97CpkwUDqtkJdzq70U497Px+M7H/WXE2uv\nn4GuLkR8lBibhCUjX6GERoFiEKu9FNN3Tw0qFAjX5UYroYQegQQ61fjFVRrakAVxVGrvGLm9Lr8Y\nh+xDYMktANh0zza8cfs6LLe+cp4YiwiJyPfkb8ujJp8CxWT9ky+BOSlVyD4C9Hl4b8wHcDTUUOKn\nQJFTcWURxhcVIH9bHsa9n+/fd2UZusBzF0wgFU4fyXlQomZ/HjjGyfeRzwebKCPblTvKcN+O0XjN\nuhLjiwpQsCM/qABJi+AlXKEW2ddAhyeC0jkqcHwpx6lSCBgOogSBrJORMsunqI1xHR2d84kGMUQ0\nod9zIh9ZDjv52+4WXhaJdbVjMGSINprcTVQUQbSUGKuoPQw33FwrsdToyvfl9OQMLPzlws7uhg7E\nXtMnGuxUFEG5owy1zSeFluPr6hiMBqHtySpbJkuoxLoyOhiyhEWiSU/OwG+vnSH0POX0/zUVRSDD\neVAGn1btpaIIZCS94mPiqSiCrLYyNVmdVK5GCxebLqaiCM40n6GiCEQKv3T4YP2NmD3sGSpqhTdh\nWu74koos2Jw/UVErvA4kvA4qvPAeQxHCWF4HEVKOjrUsHa8Ylbf/IuA9j49e/RgVtcLraFhc+SEV\ntSJCfMELbx94HaF43Zx4BYkizoGPectWeK9lXjGZCEGfz8d2FHQREAMsL7LKSfdQ27NOoKtN6ivF\nFAU78jFl12Mh21cT6ai1+/BVE7B05DI8u292SAcRktxfcNPzuKTHpcgyDwnqKqIUfKgl1J/dNxtz\nh833i0nUEu9Weylm7JmK43VH/f1Sc94hQg9RExLtCT3C+Z7xRQV+UUxnlr4IR0iRnpyBTfdso0Qb\ndqfNf/7IhM/4ogLYnTbkZuapnlOXp1VIZLWXouTYHpxosGFK1lTqc0Qg9ey+2Vg1ao3fwcfutKG6\nripoGa9QLkbks1Z7KcZuz0P+9rtRUXsYv/loIgqvnOQXk5GSEcpyeHOHzYfH5wa535LxZLWX+vdZ\nTfyiFEgF65faebCY0s5zuwlsQykkI31VipkCPx8osMsyD8FLN/8BL3++GFOypiIuJk5V0KXcRnk9\nBdsftWOhBulzoFMYuRaU9xjSn4Id+SjYke8fPyyiF5ErCVnakFE+BQj9W6CjE83IWJ0cDcmJrowM\nwUpXR5q7ktjcKdZ//Q6e3jsN679+R2i7je4Goe1V1R2loghuveR2Korgu9PfUlEEOf1HoU9CilAn\nkmi6L8tI8FvtpXjovYeEtafDTl2LuLITMYYYKopARFkAnZ/JtgzFtnv/Lvy9TLRgR0ZZS6BVVFZV\nfzziRWUynguLK4swc+90yrmal9zMPPzxV68hNzNPWJsyVqArF1OJ4uaMX1FRBDLud7WNJ6koAhnP\nbwAwos29Y4RAFw+7005FEXSL6UZFEYh8vtbhg7UM0+L9z1NRK1+d/JKKWvmyzZnqSw6HquH9RlBR\nK7zC0LED74cptjvGDryfaXteISVvKa6CQQ9QkQVeJ5/NFRupqBXeY8jrgCJCPMF7HnnPAa+jIW9J\nN17xhQgxHm8pKd7tecva8Z5D3nNwoHo/vPDgQDWbCAngL4s3KGUwjDAyuxGRMqc85U5dHjbHSV0E\npJFwxTyBkEl3IpZQ25bnpT5YmSkiYtg8ZlvIhLPVXorHdz6KnPRbg5b5In8Dfi4PphRlkH9XOgOt\ny12P3Mw8bLpnG8odZUhPzvC/YCuPpfJ7gokcAsUkyj4pBUdv3LGO2s9gzjuiJhCUwhk1kRM5D8G+\ni0wib8jbrNpGRxPudysFGM/um+13miL7syJnlV+MEnhMyJhckbMK03dPxTOfzMRvsqbh9fI1/vNJ\nXGqUIhGgdTItf/vduHXTSORvvxvljrJ2S6wp942c/5klMxBriMPSW5ZjUMpgvHTzH7DyX8ux/ut3\nkG0Zipdu/gM1jtblroc5KRWOxhosHP68//vIuV+RsypoMiCwPJ6SYKINNfcb4kBEPqPchowztZJ4\nys+T67O6rsp/P0pJTEGaqR9y+o/y70Mox632jrPaPob6NyKkUt5bZ5bMQOGVk84r/0ZYfesarMhZ\nhZklM84rTxdufzrbtYKML95jqCTYb0E0JNR0Oh7RCXZZBN7/dLoG0gQrXRzRDjvZlqF44/Z1QpOn\ng1IGI9YQy2X1G4jdaUNV3XGhSVln2wSIU2B5DhErVgO5vPdAKoqg3FGGU821wpPGooVaMhGd4M+2\nDMWeCWKvTx02TghMjHp8HiqKoDBrIszdUlGYNVFYm10dkeWgADmCHRllLQEgyzwElyRfhizzEGFt\nyhBKynD1zs3Mw9u5G4QKdqrrqrDumzeFvrd0j+tORRF8WfMvKopgz9GdVBQBb+JPjVhjLBVF8L//\n3kRFUcgo6Zocn0xFEchwAtKJHFhLs/GWOb6kx6VU1ErPhF5UZIFXgLGp4m9U1Mq68rVwuuuxrnwt\n0/a8Qkpy7lnHAEnY8yTueUU4vO4dvCIe3t8HXjcqgF/8wCtG5nVg4RUhDUoZDAOHeIP3+ImA9zr4\n96kKKnY0vPNcIpwheYVUjoYaeOGFo6GGafsBvS6nolbsThuOnT3GtK0uAtIIq4iEfC5UqSXel/rA\nNpWOIOnJGSEnNhwNNfD6vFh5aBmKK4vOE/OQfQgsrQW0DkAywaGcDFVuW+4ow6PF4/Hi/kV4tHi8\nXwi0dOQyyrVHiZqjjtpnxhcV+NtadOA5vPDP585zFAkUMYhOLIVaRbN05DLMLJmBgh3BE5hK8VO4\nbjGdjdvrwvTdU1HuKMOs7DlUya/05IyQoihyLrMtQ/Hba2cABmB75Rb/xH96cgZmZc/BlF2P4TXr\nSv84JiKXZ26Yj1PNtUiMTcKiA8/52ybbkmtUDaVQaeHw5/GnQ6uQv+1uvPL5Szhy7kc8vXcapu16\nAvM+/R2s9lIUVxbhvh2jYXfa/Iku5b6Q/35232xqPwl2p63dsRZKtKG8ho7VHUW5o8yfECdjihyv\nmSUzWleztQm0AkuakWvN7rRhfFEBZpbMwKzsOVh04Dn4fK1/DxTNKcudBR7HYCUGlZN+7YlQgono\n6lrO4U+HVqkmgwxtjgNEfEUEZ0RIFGqylUcUw+LyFU6b7fVHa58Dz4meRNcJhgynDRm/VXanDUfO\n/Cg04SqrTIOM/Re94rurE2nPUx2JDIed6rqq8569RSAyYQ60la/yiS1fVddSR0URTM9+CkkxJkzP\nfkpYmzImfHhXkqlhd9pw7NxRaeVuRCLLkaNfcj+h7emw0S1WnJOBjLKB6ckZGD9oQlQ830fDb66M\nRRMyBDvVdeLLWgKt42lbfpHw8STjGTvYAiEeRAqAgNDzJKzwJjDVmDd8IRVFIMP57O2v3qKiCEQI\nAwIhDnIineQAwJzUl4oiuKLPlVSMVNxed2d3QacN1vIvvPcuXiefqy+6hoos8Jbz+u31M6jY0d/P\n676RkphCRa2IKAfGK2TiFaA8fNUE3GAehoevmsC0Pa9TnHIxeGfBK0bmPQa8IqSK2sPwwcs8FyRC\nkMxblo53/kWGA6QWeF3ReMV4AL+Yy5yUihhDDMxJqUzbF2ZNRCximRfyHKjeD7eP7dlIFwExoFVE\nohQLkBI/yn9T/m+59RVqMpFlYpF8X2BJn2DJcTKZkN79Yiy88QX/S3Bg8ryCj38AACAASURBVD3Q\nlYRgMaXhL7ethcWUhmf3zcaKnFUAQDmOZJmHYMGNi5CbeRfezt0Ac1IqxhcV4Ildj2Ps9rzz+hXo\noJO/LQ/j3s8/z6ZXOUlsMaXBYACUpfFIySc1AY7smx4RJADAipxViIuJo/5dy483qwOVLNKTM7Bq\n1Bq4vC5M3lWIRQeeC7kqK5hAh6ySenboAqy57b+RGJvk/7cs8xBclGjGy6WLUXjlpFYHoG13o7iy\nCMPTRyDWGIe65nNw+1wod5SdN74Dy2ipseTgYowf9AiWjlyOcZePRyxiEWOIwabvNuChgY/4P0Nc\ngarrqjDv/+bg0eLxlAORUiyjFKIUVxZh7Pa8oKukA8U5ymMUKJ5abn0FS29ZjuXWV2B32uDyttq/\nkdJoC/fPw7nmc3hm3yycaz6HyTsLkb+99XgphTYrclb5Hbw25G1GlnkI3L7WtoiIiIyz4soiqtyZ\nUlBntZfiNx9NbNeBpz1RVuBngVbBk6OhBuMHPYI4Y+t1Q659u9MGn+9nJ6pn982GxZTmd4ualT2H\nKocW2DdWAWDg5LCo0n3Bznd7n9HSZx2dYMQZ4oQ6bchy7HE01MAFF7PavqNQCqhFISvRLAPR5726\nrgr3bL1TaLvVdVUhRdmRhIw+5vQfhZ7xvYSWcLI7bag884NQ4cafvlgFH3z40xerhLXJO4GpBq+t\ntholx/agweMU6tjkhZeKIqhpOEFFERRXfggvvCiu/FBYm4Cca0lWgv/2d8WWEdFh47iTPVERSGrb\nJGEq42ShGq9ZV2LloWV4zbpSWJsyiBZHUhkOM+T9PdL3XUe82D5wnkQEMlwCP/jhfSqKoKFtDrlB\noKtfYmwiFUWQHN+TiiKQIdYBAEfbc5ZD4PPWl45/UVEE8THxVBRBs6dZWFs6fLAm/slcE+uc0zXm\na6nYGSTH96CiVsgcFutcFm/inPf3Q4YQUys/nPmOilrhdRCZtusJfO44iGm7nmDanrcE0PwRz1GR\nBV4RS72rnopa+eLE51TUyugB91Cxo+F1IgL4yyPyzr/wlkJtdDdSsaMRURbvc/tBKmrlQPV+eHzs\nJclmf/wU3HBj9sdsC/6Gp49gFtrrIiBG1FxpghGYwFWKOQp25GPc+/kYX1QAu9NGufcQBxKtL49q\npbXIxEZgcpz824a8zfjz7f+N7ZXv+R19bPU/we60Ud9PBAdE5EDEAUsOLvY7npDJULe3VZxRsCMf\nd2zOwYuf/Sfyt92N2sZazCyZgbnD5mNbfpG/TFlgv0gyv9xRBnvDTzjXXIfJuwr9/SECgLnD5vu3\n2XTPNmwes82/39mWodh6bxH1t45AWc6IiBSUjgPFlUWqop5gZcNklDHTSqCoItsyFC/c/BKW3rIc\nq29dc945VI4TpUCHlKAiq9Bz0m/Fy58vhqOhBhvyNgNoXamenpyBN+5YB4upH/50aBUOVO+HDz4s\n3D8PFlMa/jDyjzAajHjyullYdOA5vxMOuTbJ8Qol1jjZ4MCizxZg9idPYeWhZfjttU/h98P+EzGG\nWLz7zVuYvLMQje4Gf5kyoFVk1jfJQtllk7FIIunLogPPIaWb2b9iTymYIf0k12WgmEY5Nsj+PHzV\nBL+QMDE2CQuHP4+ZJTP87kBN7kbYnD/BCw/cXjcu6paKRQee8wuB1FbPlTvKEGuIwws3v4QpWVMx\neVch7tl6J8Zuz8PjOx9F4ZWTYDGlwe114fF/FPoT3BZTGt4b84H/vAcTyJC/hRIhBgq2Fh14Dj3i\ne2JDxbvw+VoTYhOKH/K7Qq2+dY1/rJAyi+QYLre+gqUjlwVtnxxPnvsqcX4SscIv8LckmGCT5Xv0\nUjo67TF32EKhCUy704aj545EhYuDDMGODGSVfpAh2BF9PEuO7UFV/XGhYgi704aq+mMRP0ZliZVK\nju3B2ZYzQo/pger98HDW5g6Ed7WeGjKSXcfrjlExUok1xFJRBLxWxh2FDDEhaVd0gt/utOHHMz8K\na0+HneRYcSVSZDgB8ZZm6Cii5V2EvNuJvJ5lCItkulhGi1hL9P5b7aW4d+tdwsu2BZaW52V69lPo\nGd9LqEugjBJjqW0CmFSBQhilm7UoquqOUjGSGZRyFRVFcEWfwVQUgYwSa6daTglrS4cPViefzRUb\nqdjR8LroAK3ODYkxiczODbziAV73i6PnjlBRK8t+/SoSYxKx7NevMm0vwsnu+r43UFErvE5Cw/uN\noKJWeMviEfcaHkdj3nHE+8xwrG38HWMch7zXUSQ4WvGKub4//S0VtcLrjPb96X9TUSsinHx44XWk\n4mX2sGeoqBVHQw2zY7ouAmKA5SVZKcYhEyF2pw1xMXFYcNPz/nI2xL3H7rRhufWVkImfUC+qytJC\n5HNq5ZmUn8+2DPULEgDg4uRLUFF7GGO356G4ssi/Gp2IlWaWzMDMkhn+cjwzS2hrw9ONZ7Dg03lw\nuuvhaKqBBx48cc10vF6+Bo3uBiw5uNjfLyImIqIBIixaOnIZcjPzsPSW5fjDr1bAktQPFlOaX2xR\neOUkLDm42C+mUu47IdsylMlBQ+vnAl1nXB4XXi9f45/8IeIBsjKo8MpJAICCHfmUa0z+trygQqCO\nmEgLFCaRPivPDxHxTN5ZiDn7nsb03VPPE/so3WeUpaqe3TcbOem34um90zBq40isPLQMLZ4WLNw/\nD+WOMtz93m14eu80vGZdiWzLUPz59v+G2+fC0oMvYOo1M/xOT4NSBvuPw/F69Zf38UUFmL576nkT\ncFZ7KcodZTjbcgYXJaSiT0IfxCAG237YgncOr4XBB/RM6I0YQywmDJ7oF5yUO8pwosGGWGMs5T5E\nyvyRfc0yD8GGvM3YPGYbPrjvH9iQtxnljjLct2M0iiuLML6owO+sQ6474mwzvqgABTtaS32N3Z53\n3rlQljMj9nO1jbXw+XxIjEvEwhtfwOSrp+JUUy0mXT0FTZ5GPPaPRygXLbvT5hfnTfrHBDjd9fjd\n3pl4vXwNnrlhPpLje2DC4ImAD1hufRkAsOCm53GysQZTsqYCgN9tTHmulQIZIsQhTjRKEWKgIIdc\nC/5rx+vCmZbTWDj8eay+dQ1y+o+CuVsq/vrvd/3HudxRhrHb81BybI9fkEPunxZTGnWPDrxmWJ01\nyP6RSd1wkj+h/j2YQCmYYJOFSJ901+lcXvhs4XkOezxYTGmIMcSGLD/KAu9LezBcHpfQ9tKTM7Ai\nZ1XErySvrqs67/dFBKKPZ2vdboNQtyoiDo90UZXdacORs5XCxUrEyp3V0l0N3pVtapBSPCJL8nxZ\n8y8qisAHHxVFMChlMGINsULHPbEMZrUOVoN3FZUaNudPVBSBDDEh8PPzq8j7vaOhBi2eFmHt6bCT\nZhJXlq13tz5UjGRkiECi4V1ExhyLDGERIOd4yppjkjGeRD8XORpq4PKJdRu12kv9peVF0q97utD2\nluYsw60Zd2BpzrL2PxwmJxsdVBRBZq9fUFEETpeTiiLgTY4Fgzf5rIaMYxpvjKeiCGIhTlCkwwdr\n4pxXAMLrfCHCtXVd+Vo0ehqxrnwt0/a8wm3exTE3p4+kolbsThuaPc2duoiKd76hs0uiRQKdvQ/9\ne1xKRa3wXkdZ5iFISbiIWtCvBV5HLoDfFew31/6WilrhnWv5851rqagV3rlIEaLOzmbZwZepqBUe\nAZUuAtKI0mWExU0CAJUonztsPpYcXOwvZ0NevGeWzPALYMj3KlFLYqt9hggJlKV0Aj+rTMoToVC2\nZShW37oGr5ev8TuZEOcPktwj4h9lIqXk2B4UVxZhtfVVnGyuQbOnCXddMhoxhhgkx/bApT0vxZSs\nqdh6bxGmZE31H8OZJTOo5NGGvM1YkbMKFbWH8Zp1Jeb+32ws+HQePD43lfRf982bWJGzCr+9tlUc\nUu4o8+8r66RDuCIv5eeUAhhS3om4lRCnFGV5sN9lz8Pr5WtQ7ijDsbojmLyzsLU01RUTkBSXdN55\nUe6PUuAV2EdSyilwm2D9VxsHSoEK+f/Td0+F2+uC3WnzixTWffMmlo5cjn6mDL8TkFK8YLWX+sf6\nkoOLca75HJYcbC3t9b/fbURqYl/EGmNggBEGGHCu+RxmfvwkfD4fxl0+Htsr3/M7Di0a8RJ88OHt\nb97EsbojKDm2B5N3FsLtdeO/ylbBktQPtY21/uQruU6nZE1FXEwcLKY0//5Z7aW4d9tdmPPJTJgT\n++L3Ny1EUpwJ5qRUPHX9LDx53SykJJrRLS4BzZ4mvPDZQqy2voqx2/Pw5Me/hdvnRqO70e8+RIQ/\nFlMaiiuLMGXXYxi7Pc9/rojgj4j6cjPz/ON7+u6pqK6rap188rROPk3JmorVt67BwuHPw+b8ye++\nRYRu5LzYnTbMLJmBKVlT8adDq2AwGlqPx6HVePHgf8LtdWPt16/D4XTA43NjziczYXfa/IKmU021\ncDTVwAsv3B43TjTaMNxyMzZ/9zdMyZqK7ZXv4dlhC1DTcAJ2pw21jbUwJ6Xi1S+W+12/lKUBA4WO\n5L+JGIjcWwDazaq4sghP752Ge7beifFFBSh3lOGp62eB5NOI09E511m0eFyoqD0Mq70UCz6dh5Ru\nZrxevgazsufghX8+h7u23Oq/x92beR/sThvGFxWojn/iYtTedRJ4zZC+K0WVwbZv714SrFRaKMGm\njo5IkmJMzC9Basz++Ck0ehqYrS2D8dXJL6koCpET1EDbNf/hf0T8SvJyRxmOnPsxaKlKVkTbwrbW\n7fZxrXhSQ2SJKaD1vN+xOUfoea+oPQw33ML3nSS2RSa4mz1NVBRBSuJFVBTB6aZTVBRBt5huVBSF\nAQah7clIzNjbJo/sAgU7MhJdvGUIgkGeX0UKaXnsxXXEUnn2B2Ftybj3yJjIl+UGE+nuMgTR713R\n4oJEiAZ3IRklcs1JqYg1xPoXV4lAhounDBek4soi7K7aKfR3zOvzUlEEgYstRWCKM1FRBBnJl1BR\nFDJKwX3206dUFIGj2UFFEbRAF0ZHCn85tKZTvjep7RpNEnitaoV34QNvCRsRDiQ88JZr/uCHHVRk\nQZlvYGFQymAYYWR+H+R1oeEVw4lYyMXriiyjDLoWeMdRybE9qG0+ybwwSISrtKzFrR1FZzu78Zak\nEwHv/fiSNhHcJYxiOB50EVAIAl8ylC+yRLwydnsesxBoXe56f/KNlLMhyf1GRQ1lZekoAhHkBPZN\nWVJoZskM5F02Br/JmoYlBxfjNetKjN2eh/Vfv0OV8xq7Pc9fciCwJFFWyhDMvuEZFFz+INKTM2Ax\npeGerXfi3q13YfLOQswsmYH1X7+DZ/fNxh3978LTe6dhQvFDWPvN6wCAAT0ux9pvXofH50Gd+xye\n3jsNT++dhiX/XIyn907Di/sX+d2ENo/ZhnJHGfK3tbp7FH74H3h67zQs+mwBxmTeh/wB98Neb8Mz\n+2ai8MpJyM3Mw6zsOaioPYxn/28W6lrqMGnnBEwofui8fWzv3Kqdm/YeLsjnyLkjDiVKlyTyXURI\nMyt7Dp7Y9The/nwxGlwNqG2sRZopHbHGWBRc/iDe+uYNFFz+oL+MWqD7jvIFmIh1yL8XVxbh0eLx\nfiehYBMvSmefwPaJSIQ4U9mdNqzIWYXVt67BqlFr/G41joYaFF45CTn9R6HJ3eQX2VhMaZiVPQcl\nx/ZQ18bcYfPRI6EH7uh/F5ZbX0a18zicLU7UNp2EwWCAF16caq7FyeYa2BtseO+7Tf7VtdV1Vcgy\nD0FSXBLOtJyGDz48d+D3qKo/jiZXMx664hHkD7gfT++dhqkfPY7iyiIU7Mhvcx2ahbnD5vudb8YX\nFcDRUAOv1wtHYw08PjdeLn0Rbq8bJxtPYtbeGZjzydM42ViDGEMspmT9P/RO6IO137yOY+eO4nRz\n6+StwWf0C4GKK4sweVchxm7Pw4JP52HJLcuQGJtEHe8Ze1rPfW4m7bxwvP5oq6BpVyHONp/BpH9M\nwMy90zF5ZyEAYOkty5FtGQq704YmTyMaXI14YtfjuGvLrXhi1+M41XgKSw++iLzLxqCbsbVG+snm\nn63hTjedRrOvCQmGBEzJ+n/+czp5ZyFONddi9KX3wggjxg+agJ7xPfHuN2+hruWcX1gzduD9SE3q\niwPV+zFz73S0eFpgc1Zj+u6p55UGVO6v3Wnzux7NLJmBce/nUy5GJKFdXVcFc1IqLElpmJX9DKZk\nTcWUXY9h6cEXcVGSGVa7Feeaz8GclIpt9/4dT10/CzP3TseEvz+EqvpjmHT1FKzIWQVzUirONJ2B\nvaFV9HP7phws+mwBHil6yF+WkBx3MnlIUCtdFgrlvYHsQ7AJznDvJWrbK8V+4SJjgkznwsbpqcdq\nK5utrxqJsYlUFMWRs5VUFMFq66s403Ja6P5v/XYLTjTasPXbLcLarK6r8gtGRZGbmYeFN77gF5qL\noNxRhp+cVUKFRTJKQk38+yP44Mh2TPz7I8LaXFe+Fo6mGubVgR3Juq/eoKIIbPXVVBTBlu82UlEE\nMpITRoORisLaNYptT0ZS7kjdj1QUwfpv3qGiCJ4pmUlFUbz91VtUFEFnTe7rnE+P+B7C2pLhbCYD\nWW440VBmCtDfn0QjYzxlW4ZSC3lEYDGloV/3DKEupmQRXKS7QJmTUmGEUagAirjZiXS1k+WwI5ov\nTpRSURQi3AcCefTqx6kogp5xPakoApOx84QfOjS/uXYq03a87/OD2krWDWIsXSeifCrZd9ZjwAtv\nOS9eeBfkiUh6844DR0PrAmiRrn9a4BXxzL1pPuIQj7k3zWfuA+9isOHpIxCDGAxPZ1usQxYMsi4c\n5C1lxesmVdt4koos8DpS8cJb0o3XmY13DM69aT4SjAlc18EXJz6nolZ4xXC8gkCeuXHdWzEAkqgm\nExZKlwalqwXQ+sLYNymN2k4L5HvIio51uetRcmwPVv5rOarOHcfUjx7HohEv4TcfTcRfbvs5sUCc\nc+YOm4/ffDTRLwaalT0Hz+6b7e/zqcZTWHmotb+941Pw8ueLYYrtjj8dWoWFw5/H4/8oBNC6gjOt\nez+UO8owZddjMMV2h9FghKOp9cdx03cbALROTCbH90BVfRWS45Lh8wF39L8Lc/Y+jTsvvRtbvt+I\ncZePx6bvNsAII4ZbbsGn9k9wg3kY/nXSClNsd8QZ49DkacL/fvc3AMCqQ8uR3j0DFbWHUVF7GL/b\n+xTccON3nzwNU5wJyXE9UOc65++DEUb0ju+DV79YDgB45pOZgAHoHpeMP/xqBRYdeA7jBz2Ch6+a\ngJTEFEzfPRVH637E3KELMS37Sb9AQSnaUTt/5L9JuaZg55e4sRRc/qB/4sBiSsPcYfNhTkqF3WlD\ntmUoVuSswuSdhX7brieypuPSnpdi3qe/w++y5+Gdw2vRu1tvGGDAG1+tQW3DSaSa+mL1rWv836sc\ne2QlkLIPG/I24+3cDcgyD/FvQ8aCclwTZ5S5w+ZTnyUuPuty18PRUINZ2XMwfXfrQ67BAPy/ITNQ\n13IOhR/+B2oa7fDBh9GX3osTjTastr6KA/ZPcbrpFE42OGA0Gv11wPO35SE+Jg4j++Vg1aHlfrGK\n09Oq3OwZ1wstnhY0ehoQi1h44AWMBvzp0CqkJKZgwafzkJVyDc62nAUAJBqTkHtJHjZ9twEnm2uw\n6LMFiDHEwhTbHU9eNwsL98/DT/XV+P709/D4PLDardhQ8Q56deuFKVlTYU5KRc+EXqhtPomTDSfh\ngRsLblyE1w69ilPNtfh1+m3Y91MJbrQMx5LSRUiO64E0Uz94vT7UNjng9nlwpuUULooxw+1rda96\n4/Z1AIApux5DSmKKv2QW0Ko2PnruCBZ8Og/fn/4eb3/TZp93+38jzdQPOf1HYekty/F6+RrMu3Eh\nAOClzxZh4j8eAXytN/gNFe+ixnkCvbr1hsfnhr3BBnO3VNQ21cILj/86H2a5Cb9M/7X/emn0tIoJ\nm33NeOmz5zHvxufgaKiBz9f6o/svxxfw+DxYfWgFvPDCCCMmXjUFvbv1xnLrK7g38z44Gmvw9jdr\nseDGRRg78H6/apqMFeW4IdfWutz1ftcwUiqQuEhZ7aWYsWcqHrriEbz51euIi4mFo6EGc/Y9jdRE\nCwb2vAIVpw/D7ft5v6Z+9Di23lsER0MNjDCiwdUAj8+DFz5biEt6XAq3142E2AQkxSbhdPMp9ElI\ngRExMMWbcPelYzB5ZyEuTr7E71j10s1/8F/XgaXLlO4+SiGOct+UpCdnYFb2nKD3/3DFhMrrlBBY\nai7YfchqL/WXQCMiRNErBXUuXJIFJrpKbf+koigq636gogg6ezIlXOxOG47U/ei/h4rAai/FkoOL\nMDx9hLBESpZ5CHrF9xHqLHW2+SwVRTBu0IP44Mh2jBv0oLA2ZZQwkoXb66aiCE40nqCiCDzwUFEE\nXnipKIKz7rNUFEG2ZSjeuH2d0CRns6+ZiiKQUQqtxdNMRRGYk/oCp9qiQM42n6GiCFgn1HQim/zL\nC7Dy0DLkX67uTspClnkIMrpfLPQ3VwbR4oajnPsT1VcZbUYbMvZbdDlXAH4nbpFEQ6mCA9X74YUX\nB6r3CzuuvRJ64UTzCfRK6CWkPQCINcZSUQQynodNcSY0tjQKdReSxS96/4KKIugR3wOnXaeFimib\nveKeB3X4YHVAGZ4+AgYYmIUDvGNV6R7y8FUTmNrgdYHh5dGrH8Puqp149OrHmLYfnj4CMYZY5nMw\nesAY7K7aidEDxjBtT+YbeeYdeccB7znk/f7HsiZh03cb8FjWJKbt15WvhQstWFe+Fr8fsZCpjZ4J\nPamoFYspDb269WYWTfOKwXj7z+sqJmLBK6+TK68zoCgBCqsQhXfedOu3W9DsbcbWb7dgWvaTTG2Q\nXHUq49wQr7CUdwzwCFq7vBOQ0jlB6QgBAIVXtt6cC3bko2BHvl98Q0olAUCcMQ4z9kxF/rb2HYGC\nOQsRyh1lmLl3OprcTeiTmIJYQxyyzEPwl9vWwpyU6nfcmPrR43476b/cthaOhhqM3Z6HRQee87un\nAEDeZfcAAOINCTDFJ+HezPtxrvksnO56fPDD+6h2Hke9qw4eePyuNOlJGahtPukXABHijfFY+83r\nbUl5H+pc52BrqMaqQ8vhggsfHNmOqvrjfvGBF158av8EAPC54yA8Pg/Ouc6itvkknO56/wS8Dz7Y\n621+hyAPPEjpdhHijfE423KGmgQ2oNUxpsHdgKr6Y1hufRmppr74j0GFON18CrWNtVh96xpsr3wP\nxZVFWPDpPORdNgYurwuLPluA9V+/g9Hv3YnJOwtxb+Z9eHbfbBRXFmH91+/4HXGU57C4sgj37RiN\nF/cvUl3BRsbDmebTWPTZAuRvay27Nvq9O/H4zkcx4e8PYez2PLy4fxEOVO9HVf1xPL13Go7VHcWq\nQ8ux6MBzeOnmP2Dt16+j6txxvFz6IowGI7xeH3p3S6F+WNZ//Q6m755Kleki53nGnqn+Umq5mXl+\nhxaC0vGHiIdW5KzCcusr/nFIXHzW5a7H1m+34NHi8Xj64+lw+1xYOPx5NLga8bu9T8HutMPlbcFj\nV06GuVsqPjzSKkD7n4p1GG65GSca7PAZfJh6zQy8ccc6AMBPdVWoa6nDO9+shQ8+NHvpchFnW874\nxSpuuAH4MG/oQqy+dQ0WfDoPR+t+xP/P3n0HRlGmDxz/7qYnJKElBClSLJRD0AgISi8JBEho0i6I\nYAFFQEApUo4iIAJKURSV4+BABQkJvQiiCIgYDeYEfnpwlIQEQmjJpm37/bHZIRtCye5sNoHn889L\nQmb2ndkp78w88zxbz8QppRY83T05cGE/AFqNG77ufhjNBnSGTGYcnsr1nBv4ewYw/5c5GMwGFics\nIC3nEoEe5Xn7hzd5fktPruZewQ03DOgxY+Z67nWy9ZZo5O+SvsVD48n6v75Eb9JzJTedLg93o031\ndjSv0hIwYzAbyDPmkWvM5cWdf+et78cS5BvMik7/ZPKPbzP2+zfovimMtX+sZtKP4/Fx8yXXmMPM\nI1NJyjjHhcwkDicfwl3jQWLaMVYkLqfvo/35+NgSDl84RFrOJYxmEwYMzD0yk4H1onmv9SKu513j\nlUavUdkrmBGN38gPdtHilh/PuTdpNzF/rVf2lYJvfJs0ZuYcmcGQnYO4mJXK848O5EbeNcvfKQ/G\nzMw+Mp2x379BDb+azDs6i0GPv4CH1oMNf33FqsSVTDgwlgkHxjIu9G3AtsyXtUyftSTXkJ2DOJl+\nglcajWDUvhHsPL2NF3f+ndPXTjHzyFSSdeepG/AoAHqTnmTdeX6/coymVZ5Rjr8AkXV6szT+Qyb/\n+DYaNLi7uQFQ2TuIwfWHclGXyvXc62TlZ1DLNmRjxsQLDYby8bHFVPSpxLQWMxi7fxQ7T29jwoGx\nrP1jtXJjOjSkqc1NamsmMeu+0XdzlFKisfDNzPjUo7z67VDl2GHdP++lnKA1U1mqLoWecRE2mbms\n2dyswZ2Fz09W1uOUtURb4QG5munSxf3J3rTGRUnPTbdp1eKMh83OeKtUjTfNCjuZfgKDSa9qWaiT\n6SfQm9Wd5/5z+7ial253et2ifHduj02rhvUnv7Jp1ZCl19m0alAj5XNRdCadTasGy9jtZvsgcc8f\nf7mr+F6NMzIIVPWpatOqwRlBVb9fOWbTquG7pG9tWrWcv3HWplXDifQ/VJuXcMyVPPVKd5269pdN\nqxY1g7jhZqbh0p69xBmcEazkrAAoyVikLmeU2UpMO0ZyprrZMZ3BGYEgVfxCbFo1XMm/931FxZKK\nZUmQbzDuqFuyLsg3GDeVy+DdyA98u6FiAJy/h79q8xKusfP0DsyY7S4lZX2R2toWlxoP7h0t/xIa\nEmrTFpej6wBAa1a31HRxWINiHQmOdfQezsHkAzZtSbNu//buB2q8dOZoJp9Nf24kPeey3VnPHQ0G\nc3Q/XNbpEx72e5hlnT6xa3rrS4RqvkxYXP935aRNW1yOBhE5mt3W34BXvwAAIABJREFU0YxeLaq1\ntCQdsXMbBscz+TgaCOVoQGLbmu2pGVDTrmkf6CCggqVsesZF8MbeEUpGiKjYCMZ+/4ZycMsxWgIE\nFrVdwqRmU5RSTxt6xDL1mRmk6i4w4tuXbErOFPVZO09vswniKHhjoFFQYxa1Wcr81ou4lnuV15tY\nPmPm4elK39KyLnH+xjlSs1IYtnswY74byaQDb9OxRhgD60Uz6cfxjNwznJ5xEaw6/jkAeeZcJUDH\ngIEU3QUlWMfqSm46b34/klMZRW+EeaZb07mazCZVHsgVfGhgxkyWXkeW0fJwomDkv6fGCwCdIROj\n2Uh6djq5hlz2nt/DqCbjWHX8C8CSEentH8ZyLuMM/z6xigBPS5To1lObSdadJynzPPOOzuLx8vV5\nadcLvPn9SK7mXCEx7ZhSwig5I4mZh6cz4LFoliQsJLJOLyWwYefpbfmlpsazqO0Stvf6ltFNxjPm\nqXFMPTiZtOyLlPeqwPXca3SsEcbihAXMOlIwUteMh8aTq3np7D27h5TMC/h4+GIwGjGZTWi1lsHZ\ngMejlXJrb34/kkx9Bn0f7c/wPS/Z3KBz13owrcUMAJvybvGpR6nmX51FbZewqO0SmxJG1rJlYAkS\n6hkXQZeNHdh/bh+zj0xHg4b03MvcyLUM0jQay3fj5ebFldx0Vp9YiU6vU97Q1mrcWHX8c8yYMZqN\nLEv4kBHfvsSGk19jwkS/xwbhl59uzkt755OFGTPLEj4kxK8qY54ah7+7ZYCQm59S+HreNWXgYzIb\nyTLo0GBZZ9fyrnI1L530nMvKPuuOB2AJRtOb9WTob2DCZPN2+eKEBWSbLAEkJkzojJl44gmAr5sf\nK4+vYP1f65TANrDsM9dyrmHEyMXsFIbvsaTSNZsholYP9EYDi39bSI86vbihv87Twc3w0HjwQoNh\nVPSuzJyjM8nUZzD14GQu6lJ598g/+Ovan6z/ax11/R+B/H3L292HuT/PpJJPJQI8AvkoYTGXcy8x\n+8h0Ludeyl8Wyz6kRUuToKeK3C9NZqMSHGQw61mSsIgMfcYta9+EZb/eeiYOg8nA6uMraV2tLY0q\nNWZJwkJ83H0J9q1Cena6EpS2/9w+UnUpzGu1gKkHJxMV15UhO/5OaFBTJcDv9LVTjNs/mtSsFNy1\nHoxuMp6ng5qxN2n3LW/6/3rpF/ae3WXz/aw8voLkzCS0GjclK1RaziU+TliKwWwgQ2/ZVp+o2Jhs\nYxZmzBxMPoDerEeLG0G+wRhMeuJT48kz5TH++9G3HKer+Ve3lDD7/g0i6/RS9hmDWc+itktuCbBJ\nzkiySUtu3f+6bwqzCdgreLO2YGBR901h9NgUzku7hnAhM5m+j1oGk0N2DlJuGjYKaqwE9xQso2ad\n19yfZ/NW6GSlb9Z9Hm4eD+4lEKioIFXxYCh4XHNUWQoGuJyfxvWyA+lcC5tyYIJNq4Z3D//DplXD\nsl8/tGnV4IwyPs4oKWAdy1lbNVgf3Kv5AH/f2d02rXiwWIP71XItP1vNNRWz1pQVzghWAucEvd7u\nOlyUPH939R48Opr+vijW8b7aASZqH3vKkrIQrFSWyquVJWp/942CGlOtXHXVM3Wp/XJPkG8w7hoP\nVQNBnJFp1dPN06ZVgzOyCzUOfsqmVZNb/ktwajmZfgKj2aDqCyF1yz9q06pBzUxNwn6jm4y3O+uC\nq8vfOGO7LK6tp7bYtMXlaBkjAI3W/iAgRzNXOJp9BBzP4vJstVY2bXGpEYjlCEeDJ8CSycfXw8/u\nTD7WwAtHAjAc4WhpzJF7hnNWd5aRe4bbNf3+c9/ZtPZwNACkz+PP27TF5WgAjKMl2Rx9aVaNsn4n\nr5ywaUuao4FM1fyrs77verumfaCDgOBmiaXkjCQMZj1pWZdITDtGbNQ2RjUZR9zpGAbWiyZVl8KL\nO//OG3tHMPXgZAymmzdIGgU15rPOq5SsHmv/WE2vzd1sLtJSdSkMaTCMl/cMIXJTF/pujrql3MzA\nbX1ZkbgcgIfKVeOjhCUkph1Db9KjyT9fzzw8HVP+A/66/o9wJTedZN15tp6JY+aRqZhMJtb/tY4L\nGRfu6WanmlH6ask22t4g0+ZvprnmnEJ/l0VaziXOZ5xl/V/riKzTi7H7RzH5x7e5mnOFliGtuJKb\njtlsRoOGvUk3H6Q0DX6G9X+tI+qRPoAlcKNRUGPmPPs+C+PnszT+Q/53/TT7kvYQ4BnIp79/TI/Y\ncCbuH8/gnQMYtnswbat1IC3rkqWEW8IC3j7wJll6He+1WsSkZlMJ9qvCL5csGRYKBmWYMZOXn45/\n65k4jBjJ0N9QAjqy9dlczE7h3SMzyNJnKdPlGfOY+/NMkjLPMamZpf6h9QbgzMPT6bs5ihC/qmyK\n3MbSDst5adcQpfTS2P2jbAIHrGWQwFIWLDNXR2pWCtMOTcKECQ+tJwEegVzJTWfc/tFk5mVixIjO\nkGldCCVQCyxBctbtTYMGXw9fMnN1rDy+AmN+uarr+msEepYnz2x5mPdsSOvbbgNXctMZsLk3b37/\nBhmGG/kfaZm/p+bWi/87BaMZuLmvuhXjTe08LN+RNUuRv9utN4Ot/wfQPKQFo/eNVPbHi9kpnLtx\nlpi/1tMypBXbzmzG282HNSf/ic6QicGkR6fP5Ebeda7kptsEwpzK+K+yTDpDJnqznq2ntpCWc4n0\nXMsDa1NRgT6Y+CXt9lk99AXWhfkOxweP/MApE5ZsRNYgKDNmruddQ6fX8fb3b5KRd4PB2wfw5vcj\n6bapMztP7yDPlMvTQc25mJ3CyuMrlHkaMSqZenJNOSxOWHDbvmabsjiru/XN6oL7jtXl3Es23/+p\nGzcHU3uTdhPoWZ4+j/bjZPoJbuRm8PGxxUp/dp7ewcBtfZXAv+SMJCUY05pRLFWXQqouhbSsS0pw\nnfVvrUGk1vTZoSFNGfj4YLzdfJTsRwUzycWnHlXK8bWu1haD2UAln8qMf3oCAR7lee/obCWYau7P\ns5nUbIpyjhi4rS8jvn3JJiNQqi6FLH0W847OoltMmLIsI759ie6bwgCo4luVtKxLd7xZXPiGcsGf\nHbnJLIFFojRzRkYUZ8zzct5lm1YN1gfNaj5wtgYuqvnW88nrJ2xaNfyWFm/TquFydppNqwZnPDQW\n6nNW4KOHm4eq82sSHGrTCseVpaBXUXzWDLRqUOMt9MKs1/JlYWztjKykZWG5nRGwU1bKq5U1zthG\nvd3U29/B0seouK6q99VNo+4jgXL5L/5Z29I6z2Rdsk2rhjPXT9u0agkNaUps5HZVS+HVq1QfN407\n9SrZ/0C5sMD8EnCBKpaC83LzUm1ewn77k/fafS5zNICkNHA0iKXFQy1t2uLq8HAnm7a4QvyqEuxb\nxe7gD0epsQ38fuk3m7akOboMjpayUiNz39yfZpOhv8Hcn2bbNf2Gk1/btMXlaECgo4FY3ep2t2mL\ny9EgJDWcuX7Gpi0uRwNg1MhI5QhXl2YEx/dFRwOZkjOSeHnLy3ZN+8AGAVmDbqwZfWoF1mZw/aGW\nMk47B7Dpz42s+M9HRNbpxco/VmAwG7iUdZGI2j3QaMjP/pOilFoCSzmbYbsGM/HAON4KnawM0q3Z\nGD5KWMKEp6cQ13MHSzssv6VP1owtc3+ezegnxwGWoB9PNw+mPjODEL+qTGsxg2CfKnhpvYt8KGIN\nsCj8oLwwNyxvEtwpEKC0uFswkwkTKboLvHvkH/R9tL8loKdSYw6m/oA5v3RZ4SARa+YD64WkwaRn\nVeJKViQuJzSoaX7wioHKXkFcz7vGxewU9CY9K4+vQIsb3lofFicsYPDOAfzj0BQ8tB60fqgdaTmX\nmHZoEhMOjMVsBjeNO24aN7w0N28kau+y2+Xml0AzYSSqbm+u5lylml8NPN088XbzwWg2svXUFiUA\nIS3rEjnGbCVQLC3rEifTT5CsO8+Gk1+TZ9QzqdkUUnUpSgABwKrwtSSmHWPm4emU8/LDz70c2vyb\nALmmHG7oLdlW0nMucy3PNs3ZnW54W9d5rUJ1PrVoeTq4Geb8ElWHUn+843qwbN83vzcvrRdPBzVT\ntnF7GO/Q7woeRUeiWredDGPhrDm21v+1jqt5NwcjFb0qEeAViAGDsi3qDJnoTXoy8zPwZOgzuJp7\n57TGmvztpXD2Lu4Q+OQoa7CQn3vRN1qu5l7BiJHONbvg6+GHl9YLo9kS7JWiu6DsX4VvoOeUwMNM\nncH24XumPoPFCQt48/uRpGVfxF1rebCmxY1lxz7kas4VXtr9At03hdF9Uxh9N0dRr1J92lbrwKvf\nDuVk+gk2RW4D4FzGGSUTlzVYxxpgt/aP1az9YzUrj6/gSk46HyUswWxGyeg24tuXeGnXEK7mXGFp\n/IesPL4CN40bXWt1Z97P73Jdf5UK3hWVfmfk3WDWT9OVcmGvNBpBiu4CaVmXbMqvzXp2Dg+Vq4aP\nuw+Tmk1h2qHJnLtxluTMJE6mnyDXmMNLu18gKjbithfuhW8oV/OvrgTI3uvN66IyHlmPUdb/K5jB\nrCzcvBdC3Lvc/MBZa1taWQNuC2egc8R1w3WbVg3OCCgT6rOOHW83hrSHM0qTCCGKR81SNo4+vCmK\ndayu9nFC7QDE+NSjt7wc5yhnlS1zRhm0caFvq/4dOevc8KBemzljGwX196UQv6rU9H9Y1Ye4oSFN\n+azzKlWDS56s8rRNqwZnZDN82L+WTauGKznpNq2anPHw3l2jbnah8c0m2LRqkCCg0sGRc1mQbzAe\nWvszjg1qOJjnHx3IoIaD7ZpeDY4GgLh6+lRdChd1qapmQi4ONbLofNljIxo0fNnDvlJUjmoU1Jgg\n72DVM/zdKzWCH15sNMymLS5Xl1FytJRVkG8wbvlVIuzhaEk6cDwTjqOBVI4GQjnK0QDk67nXbVp7\nOBpY3iioMSG+Ve0+FqhxPLQ3U/4DGwRkvcG6LmIDoSFNmfrMDOJOxzCx6VQ8tZ60qNaSTzuuJO50\nDC2rWtLFmTGzJGERyRlJTD04mbH7R9G5ZhcmNZvCwvj5zHp2DrUCazOv1ULiTscoF9LW7CzTWszg\n/fg5pGVdYuz+UTblYqwBSWlZl9Ab9axIXM7SDsvZ0COWJe2XM/fn2fTdHMW0Q5O5nH2JXFNOkcvl\nXijTye0CTowYlRJKZcXDfg8X+fsnKlp2PCNGlh9bSrLuPL+k/YyXtugLBk888XcPoHq5Gkotyqu5\nV1icsIBzN86y/s8vlb8tmKnEGozhhht55lyeDmoGwHX9NcJqdmVf0h6eDmpGhj4DL60345+eQJ9H\n+2E0G22yGN0tqMlaxsqMmcUJC5h5ZCpPBj3FlZx0dIZMAj0DWf/XOtpW68CofSN4adcLpOpSmfrM\nDPaf28cLOwcCUNkrmJXHV3BBl8Rb348lKrYro/bdLHmXqkvhlT0vkm3IJrJOb3SGTKXMUkGmQoE4\nhbcxK2tgmdWvhd6yN2Fib9JuTJgo5+5f7AC0XFPuLZljqnhVUcp93YvCfSzoqt6+gUhRtGhx17qT\nkXuDQM/ySvYid9xxw41KXpXpUL3zPc3rToFLzqZkfipEgwYzZlYeX8GlrIvkmnLx0ty6v+UYbY9T\naj50vVcNK/xN+bcJk5K9yYQRo9nA08HNCPKpQq4hl9TMFDL1GQzePoDFCQvoXrsnE38cR1rWJeb+\nPJtg3yrMenYOi9ouUTJpgaU2rqWs4FX8PQII8ApgaQfLMXzV8S+IqG0pD5equ0BqliVDkgYtJrOJ\nlcdXcDE7BS83b4wmIy/vHsLLu4eQmpnCtZxrvLx7CFGxXVn820ImPG0511izE40LfZtGQY2V7F8A\n2foc3LXuTG0+E7AE8VX0roSH1kMJBCxKwYv6gpnC7uVtU2uGI+sNeeu5zxokZQ2aAstxxxogdCTp\nSLG+SyGEEMJe1useNa9/nq3W2qZViwQACXH/cPSmd1GSM5JsMv2qwRklxgqWTVZThsrZrJ0RWBSf\nepRX9ryoenCJM4J1HuQyY87YRp0RzFvNvzpTn5mh6jytpcXV/N6dUXon25Rt05ZWbvlBNW4qB9c4\n4/gUGtKU2Ch1swsBeGjVDX7r8/gAVecn7OPIuSzEryqBHhXsDmRb+8dq1v+1jrV/2Fdy3DpecGTc\n4OpSUOF1IhjdZDzhdSLsmj4t6xL6/Mon9nA0eKJepfq44eZQ5rFNf27EjJlNf9oXBORo8EVi2jEu\n56TZnfXa0ewhLaq1xA03h0px7Ty9w6YtLjUCMBzRt14/m7a40rIuYcRo934wq9Vc/D0CmNVqrl3T\ng+szo8Wnxtu0xZWl19m0xZWWdQmj2WD3dxAaEmrT2sPRYLZUXQpXc6/YHVQ5qOFghjZ4xSWBrQ9s\nEJBVNf/qxKceZWH8fMaFvk3Px3oTF7WDEL+qhNeJYFzo2xxJPQyAr7sfZkz0fKQvn3T6nM41u1jK\nQP0wlnGhbxNeJ4L13WMZ1HCw8uDUOmC3zi+mx1bC60SwLmKDzYNk688L4+eztMNyJTipmn91QkOa\nsi5iAxt6xLK84+f8M/zfTGs+iyDvYCp7BRPkbTkR+7r5saXXLqXMkq+bHzX8H8bf42YZo3qBlpPu\nsyGtmdp85m2DIqr5VHPK+tagVQKTfLS+RQZCjG4yntFNLOvFTePOsyGtqeRVmQtZN9ONlXP3Z2iD\nV/DUeNKupuWtuvKeFZjcfBrTms9Ci5Yg32AqelkOrIGegcrFWB55ZBhu0LJqK5b/vgR/D39MmPDS\neqEzZJJpuDXji1/+dw+W8lLDG73BscuWNITuGncSLv+KFi2p2SkEepYn25jFW9+PUUoPFUfBrEWe\n+YEV285s5u/1hmDCxD9avMvoJuPZn7yXJe2X817rRWjzH2isOv4Fi9ospW3N9vSoGwVAWM2uBHj5\nM6/VQtZ3jyXEr6qSDWhFp38S4BVAaEgowT5VCPS4mbrVW+uDFi3BPsFo0ODn7keuKfe2WYCMGJWA\nLICutboBlkAdsATGVPSqxLTms6harip+bvcedWl5YGP70KaCRwUu5l4s8u2Q4j7gsQZ0FZeHpuiL\n3IpelTGYDBgxkZF3Q8leFOBVHq1WiwatTXm64vLUeOHnbl8tXDW0r94JM2Z83HzJNmbxbEhrgvxs\nLwis34FHMYK0nOGG4QbPhrS+bUDktjObyTFkcyXXckFnNBlJz7GU3TmUcoCqfg9ZSoS1tWT2mfuz\nJXXmqvC1yrF5ZOhoPmizjAreFcjQ3yBbn0OIX1VCQ5oypMEwFicsIMugw4hR6Ye3m7eyr3viRaY+\ng7ScSyRnJpFryKWybxBXc67grnVnXquFGEwGNvz1FeNC32b4npfoERvOsF2D6bs5isS0Y4zaN4Jh\nuwZzNSed91otokW1lkz8cRxmk5kJTd9hWosZvLF3BD3jIm65gC98Q6ng28XWc2TBvysY6GMNGJrU\nbArrIjYA8PyWKOW8ty5iA5OaTSE0pKnNOW9eqwW8vv11B75Z8SCxlmMsqiyjEMK1nLF/OmOennja\ntGpwRoYPZ3i1yQibVghxZ0+HNFdtXi2qtUSDxqEb90VxRiCM2oFFoH4Gi8S0YyRnJqlafhQg25B1\n9z8qhhC/qlTxrarq8jsrWOdBLzOmdiAEqB/MG596lFe/Hap6UNmNXHWPI84oFWF9ifJuL1MWR/1K\nDW1aNfh5+Nm0pZ0zsguZTc7LVi5cp3q5mnZvL/vP7eNy7iX2n9tn1/T1KtXHHfszR6hRwsfRYG5H\nsyHtPL2NJQkL2Xl6m13TNwpqTPVyNezOXOFo+RoAN61jwZGOBtHUq1QfD42H3dtReJ0IpjafaXcg\nVpBvMJ5aT7u3AQCt1rFH+OF1uuCmcSO8The7ph/SaCjlPPwZ0mioXdM7GkR0OPmQTVvSqvlX56MO\nnzo0vtt6aotNW9IczSQU7FvFpi2Ltp/eYtMWV2hIUz7rZH8WzZ2nt7Hy+Aq7j+cABpN9ySIeqCCg\nwg8uraVKJh4Yz7jQt5n782yltJf1/6wZfqqXq0F5rwpo0XIo5QBv7B1B7KmN+eWe3JU3KAqWUymK\ndSOxBvdYL7YL/mwN/inI+vPY/aOY+/NsWlRrSWXfINZEfMnuvvsZ3WQ82cYsTqafYErL6QR6lsdo\nNhBVt7flgbJXMCG+Vckx56DFjVM3/mLlHyswYsQNNzRoCfQorzy4n9tmARU8K+GlvVnOx9fdT8mG\nA9CtViSVvYLxcfPFTeOmZDuxTKOhW61I/N0tmXaeDWmNh9YDN7RU9avG0AavYMLIucwzjG4ynh29\n9rI6/EumNZ/FOy2nMaTRUB4t/xj/DFvDpl5b+XfE19QKrM3q8C9ZHf4lG3rEEp92lM/D/kV4nS5U\n8alKOc9yTPpxPC2qtWRV+Fq29NzF3ucPsDr8S77qFsML9S0p7zpU74wbbhxKOUBF70rkGCzZSnJN\nN0tYBHpa6nQObfAK1cvVoIJ3RQI8LL+r7B1k+Uy/EDy1nkxuNp3POq+iRkBNvN18+EeL2WjRElKu\nKpOaTcND44Gbxg0tWp5/dOAtwQj+HgF4ab2V4C2wBEsFeQfzkP9D+LsH8HBALRoFPYGn1rKOP01c\nxrjQtwkNaUrbmu15OLAWjYIasyp8LW1rtmfIzkH0rdePIO9gXn9qFGYzrEhcrmxL81otYOKB8Upw\nw9yfZxPgGcjSDsup4lOV6uVqsKLzSmoGPMzwJ0YCoM0PovJz96NbrUibvnppvRna4BX+7/pJS3CW\n1pPXnxrFtOazqOhXmecfHci2XnvY+/wBRoaOZkn75VQt9xAVvSpRzt0fD40H5b0qUMWnqs2bM4Ge\n5fMDkUKoXq56/udZtq2a5WvRrVYkFXwqKNsYgL97ANXKVae8ZwWGNnglv8/lcNe480KDYco8rNt6\nJa/KpOWkKT9bt1/rz1q0ynbv516OoQ1eYVrzWQDozXplX/DQePD8o5YsTIPqDybLoGNa85m80WQs\nYCkPtibiSzZH7eSdZ6bZ9PlOAt1vrRmbZ84l6x5La90ug9a9uF0w1dFLlgwu1jd9fk49TO9H+tlM\n82KDl3HTuCulxazbf2F1/e2vaXsnWrRMaz6LmS3ncCknlUBPy3ZSMPDRA0/MmC3lzcxGXm8yBrPZ\nEoj3/KMD2dJzF5sitynH3/ScNF5pNMImC5D1/wY1HMyghoOZ1nwWO/vstfn9tOazyMzLQIOGN5qM\nJdinCnrTzfR9Hu6W9ejvEYAZM9dyr/JKo9eoXb4Oyzt+Tr1K9bmUdZFJzabQKKgxGo0l0KyKXwjT\nWsxgYfx8pj4zg4cDavN52L8Y1HCwMjCpHlCDD39dyNyfZ/N6k1Gs6PRPm8GKtURgwRuK1vNickaS\nkiJ95+ltyt8VzPpjPZ4sjJ+vTO+u9VDeJE7VpSg3LAue80JDmrKp3ya1vm5RSvhofGxatTSr2sKm\nVYOz+loWWIMzXR2kKUqeNTDb2qphaKNXbVo1OOMGw2fhq2xaNbSt2Z4g72Da1myv2jydwdG0xUWx\njt/UHMdZr5HuVjq5OOR4J4pLg8but0yLcjj5EGbMqt60Tkw7RlLmedUDYQwmvarzc0bQSnidCEY1\nGWf3g5iipOpSSNFdUL1Uhq+Hr6rzc2awjjPmqXbACjy4ZcuckbEoMe0YF3TqBtQ5WmahKF542bRq\nyM6/l5atYrl6H3dfm1Ytzsgs5YzsQmlZlzBg/xv+RQmv06XMVTC4H23oEWv39te2ZntCfKvafa0U\n4leVav417A5CcnUWHyuN2f7tOMjX8mK2IwEk1ioY9n6+u8bd7s+3lLOs5VDgoaPfY2hIU74IW233\nOTQ+9Sjzf3nX7nFNaEhTPu/8L4fO4SaT44Gwjlxj7z+3j0x9ht0BfY5mcWlRrSXuGnfVX6q4V2oE\nY9erWN+mLWmOZiJyNIuOo9Q4nj8R1MSmLa7kjCQWxs932fVIqi6FpBv2fXbRdX3uU9YAH+sA2noB\nbW2tN0bv9H/7z+1jReJyFrVdQohfVVJ1KcqJrKhB0d0G7LcL9rnd31ozLRRcDrAMjj9OWMzi3xbi\nrvEg2DeY1xqPYkXich7yr8byjp8r/dx/bh8TfxzHZ51WKfOaeXg6rzcZxdsH3gSz5SS/r98BUnUp\nvLBjIFdy0jGY9CxqswSwRNGGhjQlPvUoY/ePUh5Ob/pzIy2qtWT4npeUFGmrEleyP3kvX3RerQwa\nJh4Yz2edV9EoqLGyDNYdqedjvanmX5313W8ONENDmtr8DJZMHGAJ2FrV5d8238fEA+NtbpAM3NaX\nbEMWwT5VOJtxhmC/Kni7+bC083LSsi4x7dBkDCYDvR/pR9zpjSzv+DlpWZdoFNSYH5L3YzDrCfat\nwph649nw11eE+FVlS89dJKYdU/q8KXKb8j3Vq1Q/f7BanQreFZh4YBzzWi9kUMPBSv3NDSe/Zl/S\nHma2nMPcn2czpeV0TqafoJJPJYJ8g5Xlsa7fhfHz+bzzv/KjuGvabK9FrZtq/tXZ3Xc/1fyrs6FH\nrM32VTgAzbpdFdzWwXIB2/Ox3jxS4RFLkFHiSmJPbWT3uR2U96yAzpBJFd8QPuu8ihC/qhy4sJ83\nQsfQt14/QkOaEuJXldUnVrL5dAwvNhpm8/kbesSy/9w+xn7/Bi82eJnDqQeZ1GwKk398m5TMCxgx\nMvrJcaw7uYalHZYr68M6vTVQ4bPOqziZfoJVx79gdJPxbD+zGbMZxrWYwIrE5VQvV4M5z81n5uHp\nvBE6Bn/PABYnLKCSV2Vu5F3ng3ZLCfINZvD2AVzNu8q8Vgu4mnOVmUemMrTBK+w6u4O07IuMeGIU\nQxoNVTJ8ffr7x1zOuQRmSLj8K1X8Qpj0zBS61e1OeJ0Iwut0Ufr58bHFfNhumc2Az1PryZSW09l5\negf/OvEFXlpvNBq4mJWqZIjxcy/HdYNtlHSgZ3laPdSGrWfi0KK97RtRWrRoNBo83L0Y3WQ8SxMW\n0bVWd7ad2UzLkFYcTv3xrm9TmTHj6+ZHllGHn1s5dEZLeTAaW+q1AAAgAElEQVSz2dK/AK8Axjw1\nnnUn11ArsBa1Amoz+slxfPjrQmU7OJx8iJV/rGBow1fY8NdXfNBmGWeunyH21EYy8m5wKuO/uGnc\nMJqNBHoGFlmSDiDAM5DwhyPYcWYrGfobPFGxMb9fuf0NKxMmKnhXYO7PszGbYVqLGbx94E1ee2I0\nixMW8HRQM3RGHa80GqEMgIJ8g/k0cRkvNniZL/9cw4uNhinfWWhIUzZFblMC74o6VidnJBF3Ooae\nj/W2+f3I0NG0qNZSOabsPreD4U+MZO7RmXi7+ZCpz8ANN2a2nMPi3xYy+slxrDr+BUvaLyc0pCnJ\nGUn5gYCWfdNd44GPh6W1Bv9Z992C/QqvE0GQbzBj94+i76P9mfTjeOXYYd2OrUGw1mMmoBxzrMcH\n6w1H63QFjxfWdVPweFvw3FT4hmXB/tUIdM3AUdjy06r3tqKfhx/ZedmqvwHZrW4P9ibtplvdHqrN\n861mk5l5ZCpvNZus2jyfDWnNwdQf7inA815V86lGcnayqhka61dswO9XjlG/YgPV5lnFqwoXcy+q\nGlzihRe55Kp6098TT/LIUzUbjLVEppo3qZ0xT4BXm4xk5pGpvNpkpGrzVCPNemHTn53F4J0DmP7s\nLNXm6QypuhQy9DdI1aWU6gwKqboUruVeVbWfgxq8wMwjUxnU4AVV5gdQw68GZ3VnqeGn3vigoldF\nLuZepKJXRdXmCc45Nvu7+ZNhvDUjrShZagahAfR8rDcrEj++5frAEeF1Ilgd/qWqgTBgCeRXU8Hs\nomqxvhEfGhKq2vKHhjQlNlLd0jjOeHBvnW9ZYH2RRM3AFWvggjPWa1lwOPmQqttoo6DGNvcY1Jnn\nEzatGnLJtWnV8LfKT7A3aTd/q6xePz/osIwuMR34oMMy1eZpVRa2dzUyXRTldtULRMlxdPur4O3Y\nGNyRMnNqlGR1tJRUiF9VagbYHwRzMv0EJkycTD9h1znA0XKvIX5VeTigtt39tz6TcmQ7qlepPu5a\n+zP5WMtfFr5nfq8cze7o6OefTD+BEaPd24CVRmP/vaV6lerjprE/K1ejoMYEeATaPeYIDWnK+60/\ntHv5w+tEMK35LLuvHdQIxrZkh9XaHcjkaGY0R/168RebtrgcDeI5c/2MTWuPtjXbsfL4Cruzwzn6\nQoaj6yDEryq1K9S2a9oHKgio8IPL27W3+7/kjCRLuaW2S4p8oHk7ateCtr5RZX1gC5aD0eZeO21O\nSNX8qyvR1gX7MKjhYCWIx8p6IrIeSAr+XyWfyixo8yFBvsG3HOys5XCs8x8ZOhqA2Kib2TPeaTmN\nIRk3gydut8MU/v3dAqSsPxc1TeHfLWq7hLH7R7G84+eA5SF3we+xYECNNdDDyhpAY/1/a5CS9eei\nTuIF11Ph9V2wta6PIN/gWwKXrPO3rt+Cn1N4AHW7dXOnzFS3m77gv62fXfC7DK/ThTf2jmBpB0tm\nIWuwE6AEIxX83E2R20jVpdyy7VTzr67UQCy4XzUKakxi2jGmHZpMz8d637K+C67jgllFrIEZQxoN\nJVWXwsQD45VgvYLrb0ijoUqgl3U+8alHydDfYHLTaaw6/gWrwtcqgU9vhI5RgssK9uP9NosYtmsw\nk5pPY93JNRjyswJZBxQFv+fNPXfaLH9oSFPionYogVK7z+1Q+pqYdoy3fxiLt7s3o58cx7yf36X/\n44NYffyfeLl7MqHpO6xIXE41vxoM+5sl09HcozOp5F0Zo8nI5ObTlEAy6/cDsP3MZl5/ahQHL/zI\n0Us/KQFAz4a05tUmIxj73Wja1+zI+r/W4ePmi96Yx+tNxrD9zGay9Nn4evjwWuNRXM25Ss/HepOY\ndkxZp49UeIRXvx3Kpx1XEl4nQvkurN/NIxUeYebh6QC3fE/D97zEmKfG8fGxJUx9ZgZTD04m25DF\npGZTWfzbQsxmGPPUOOpVqs/Y/aOo6F2JQK9A/hXxJYlpx/jv1f/yxX9WoNNn4unmiZvWjbefnkwl\nn0pKX6zfmXU/DPQKZP4v77Ki0z9pFNRYOZ5at9fQkKZKIFtBdzvu32kwUHBe1v2qgncFViQu55VG\nI5S+WddPwUCjwoF+hY9JRf274Odagwity1twvoUDiJIzkjCY9DYXKIWXuzjHk8LLLkqf5Z0/V21e\n77T4B29+P5J3WvxDtXlC/nHDr4aq2Tas4xVrq4YpLacTEdOJKS2nqzbPz7uspktMBz7vslq1eUY9\n2offjxwj6tE+qs3TGcEl519L46GPK3L+tTTV5jmx+VRmHpnKxOZTVZvn1OYzmXlkKlObz1RtnhG1\nerD1TBwRtdQLfAPHU2kXxRkPfJyhUVBjagXUVvVhV8EA4dLMGf10xrb0SdhKusR04JOwlarNs2nV\nZ9h6Jo6mVZ9RbZ7gnGPz0EavsjhhgWrzE/ZR4yZ7QdX8q7Oj997bXj/YS81jGTgv28Qbe0c4/PCn\noPA6EfwrfJ3qAVCl/ThuVTD7eGnmjMw1zuKMdWrNgquWZfGLmXnEMnZV69qlmn91lnf8XNVld8Y1\nmwce6NGrmtHP0ZIYt+Plpt6LC87kjON9wXucajmZfgID9pW9EOpx5BipxraWY7Q/Y9fI0NFcz73u\n0HHT+tzC2hZXNf/qLO2w3O510LZmeyp5Vbb7uOroWEyNIB5HhfhVpZa//YFIalA7u2NxOFrODCzr\nsKpfNYfWoZvG/hclViWu5Ib+OqsSV/JOy2nFnj4+9SiTfhx/y/Ps4kz/3i+Wyjr2nqccPb+lZV3C\n7EBpvRC/qlQPsD8zWnxqvNLacx3laLZuR4+laozd1Mgm5MiLdY4GNFbzr87uv++2a1qN2ZrS4QGQ\nlub4m3Wl5aK7JPuh1mcVDF5yxTosuByl5XssqDT26XbU7mtR83P0M+40fVH/Z71RY/2/wsF2hbfd\n5IwkesZFKEFOY/ePsvvipnB/kjOSlHkaTHrWd7cEfViDm+a1WkBa1iVe/XYoMT22AtwxI1nBefaM\ni2Dg44NZeXwF5T0rULXcQ0qQ3LqIDew/t4+Pjy0hz6gnNsq2RuWdlu12N7qsb+wZTHols01Ry16w\ntX5WwX9b/7aovhRcXwUDv24nOSOJvpujlAsZV+x71vVSMBjxTn9rb/+s2/G8VgvuecBaeL07S1CQ\nv1PnL+7uw/0f2T0AL0pyRhLdYsLY2muX6ttPWTlHqn3T3xnzTM5IIvybDjalC0vjPHee3sYLOweq\n/rBvWfxiVYO/kjOS6LKxg6oPeZMzkmj91TP80P8n1bf7nae3qf7wdO0fq1U9loBz+llWjiNlQcFx\nsFrr9N1DM1mcsIDRTcbbdXOwKGv/WM2b34/kgzbLVN1GrQ9kpzWfpdrxJD71KBExnTBON6oyP2Gf\nqu8/5JSgHTW5+r7KvYpPPaocJ8pCMIianPEdlZXv3ZmccR9K7XXqjO0+OSOJzhvaKpm+1ZqnM7Yn\nta9banwcpGQGVevFgPjUo/SICWdzr52q9tUZ14EPus3n1zPsqWGu7sYD7bHFj99SfaCkOHo/oDSc\nNx3NYufoOohPPUpkbBfVg/TulVpZ/Jz5jOheOHq/w9HPd/TeiKPX7oWfo9gzfbv1z/Ld8wdd8vnx\nqUeJiu1KbJT9mT/VGIM68j06ui85ev9iwOY+7E3aTYfqnfmyxzfFnl4NauyH3TeFsaWnfc8sHB3j\nq3Hf3N5naRIEJEqU3HwXZcmdAscKn3ydsW0XFYxR8HPsuclgrV/68u4hShm3wv1XOwikpIJKrJ9z\nLxd5rj4W3evgTY2LVlcv6+1IEJDrNfn4KdVviJTW7U3YctY5qywErDhDWVmfQqhJ7W00PvUo3TaF\nsbXnLlVvUjsjSA1g4v7xzGurXuae+NSjRMV1JWdKjmrzFMXXYOnfykS5obJyjniQH4rL2KBscEZg\nkSMPqm43T2eUQnPGiwZqP3B//LOHuaq/SgWPCvzfy2dVmSeUnWuMB53cM3I979neqpfMLA41gh/K\nwr3fO03vSPCG9frCVd/h/VDK01kvp90rNc6tamwHjuxLagRIO7ovOzLmKS3bsaPr4N1DM+1+2cpZ\nL1cVhxrHc0dftI+KjbCpgFQcahxLJAjoHkgQkBBCTWXxpqZ14KI36l2e0tNZXH2Rd6/utZ9lZXmK\nS27ouF7C6RP35bYlhBCibCorD+XiU4/Sa3M31cvdnM49TvPqzVWbnyg+GRsJIRxVFgLAnJUhQ+1+\nOuOhU2nIDiLujdwzcr2difvK3H3v0sbVWWxc/ezifrin7eprVDXWoau3A1d/viNKSxCQIxwd+zia\nRcdRpeE7UCOo05EgIpAgICGEKFHnr5+n59c92dRvEzUCa7i6O8Vy/vp5gDLXbyGEEEIIcX8qa2Pr\nI0lHJGBHCCFEmXX++vlSf749f/08z618jh+H/qhqX8vCsgshhBCidLgfxg2OLoMr18H56+eJWBfB\ntoHbXPo9lNV1KEFAQgghhBBCCCGEEEIIIYQQQgghhBBClHFaV3dACCGEEEIIIYQQQgghhBBCCCGE\nEEII4RgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJ\nAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJAioFjh07\nRnR09C2/37dvH71796Zfv36sX78eAL1ez7hx4+jfvz8DBw7k1KlTJd3de1ac5crLy2PcuHE8//zz\nDB06lDNnzpRwb4vndssGkJ2dTf/+/ZXvxmQyMW3aNPr160d0dDRnz54tya4WW3GW7V6mKU2Ks2x6\nvZ633nqLgQMH0qdPH/bu3VuSXS2W4iyX0Whk0qRJ9O/fnwEDBvDnn3+WZFeLzZ7tMT09nTZt2pTq\n4yMUf9l69uxJdHQ00dHRTJo0qaS6aZfiLtunn35Kv3796NWrFxs2bCipbj6wytp56UFVlvb5B1HB\n49zZs2cZMGAAAwcOZPr06ZhMJhf3ToDtd3T8+HFatWql7FPbt293ce9EUWNt2ZeEK8i4qOyQsVHp\nJeOiskHGRqWXjIuEKF1kzGE/GRM4Ts7X9pPzqeOKWoeyHRZPUc9gXbUdupfIp4jb+uyzz9i8eTM+\nPj42v9fr9cydO5dvvvkGHx8fBgwYQPv27UlISMBgMPDVV19x8OBBPvzwQ5YuXeqi3t9ecZdr586d\n+Pr6sn79ek6fPs2sWbP44osvXNT7O7vdsgEkJiYyffp0Ll68qPzu22+/JS8vj6+//pqEhATmzZvH\n8uXLS7LL96y4y3a3aUqT4i7b5s2bKV++PO+//z7Xrl0jKiqKDh06lGSX70lxl+u7774D4KuvvuLI\nkSN88MEH99X2qNfrmTZtGt7e3iXVTbsUd9lyc3Mxm82sWbOmJLtpl+Iu25EjR/jtt9/48ssvyc7O\nZuXKlSXZ3QdSWTovPajK0j7/ICp8nJs7dy5jxoyhefPmTJs2jb1799KpUycX9/LBVvg7+uOPP3jx\nxRcZOnSoi3smrIoaa9erV0/2JVHiZFxUNsjYqPSScVHZIGOj0k3GRUKUHjLmsJ+MCRwn52vHyPnU\ncUWtw9dff122w2Io6hms2Wx2yXYomYBcrGbNmkUG8Zw6dYqaNWsSGBiIp6cnoaGhHD16lNq1a2M0\nGjGZTGRmZuLuXjrjuIq7XP/9739p3bo1AHXq1CnVGTxut2xgyWj00UcfUadOHeV38fHxtGrVCoAm\nTZrwn//8p0T6aY/iLtvdpilNirts4eHhjB49GgCz2Yybm1uJ9LO4irtcHTt2ZNasWQBcuHCBgICA\nEumnPezZHt977z369+9PcHBwSXTRbsVdtpMnT5Kdnc3QoUMZPHgwCQkJJdXVYivusv3444889thj\nvP766wwfPpy2bduWUE8fXGXpvPSgKkv7/IOo8HHujz/+oFmzZgC0bt2aQ4cOuaprIl/h7+g///kP\n+/fvZ9CgQUyePJnMzEwX9k5A0WNt2ZeEK8i4qGyQsVHpJeOiskHGRqWbjIuEKD1kzGE/GRM4Ts7X\njpHzqeOKWoeyHRZPUc9gXbUdShCQi4WFhRUZyJOZmYm/v7/ys5+fH5mZmfj6+pKcnEyXLl2YOnVq\nqS3BVNzlql+/Pt999x1ms5mEhAQuXryI0WgsyS7fs9stG0BoaChVq1a1+V1mZiblypVTfnZzc8Ng\nMDi1j/Yq7rLdbZrSpLjL5ufnR7ly5cjMzGTUqFGMGTOmJLpZbPZ8Z+7u7kyYMIFZs2bRvXt3Z3fR\nbsVdtpiYGCpWrKjcxC/Nirts3t7eDBs2jC+++IIZM2Ywfvz4++Y4cvXqVf7zn/+wePFiZdnMZnNJ\ndPWBVZbOSw+qsrTPP4gKH+fMZjMajQawjB8yMjJc1TWRr/B39MQTT/D222+zdu1aatSowUcffeTC\n3gkoeqwt+5JwBRkXlQ0yNiq9ZFxUNsjYqHSTcZEQpYeMOewnYwLHyfnaMXI+dVxR61C2w+Ir/AzW\nVduhBAGVUuXKlUOn0yk/63Q6/P39WbVqFc899xy7du0iLi6OiRMnkpub68KeFs/tlqt3796UK1eO\ngQMHsmfPHho2bFhqM68UV+FlNplMZSJoRkBKSgqDBw8mMjKyVAfL2OO9995j165dTJ06laysLFd3\nRxUbN27k0KFDREdHc+LECSZMmEBaWpqru6WK2rVr06NHDzQaDbVr16Z8+fL3zbKVL1+e5557Dk9P\nT+rUqYOXlxdXrlxxdbfua3JeKv3u533+fqTV3ryk0ul0pTrL3oOqU6dO/O1vf1P+ffz4cRf3SMCt\nY23Zl4QryLiobJCxUdkhx/KyQcZGpY+Mi4QoHWTMoR45jjlOztfFJ+dTxxVeh7Id2qfgM9iCcRwl\nuR1KEFApVbduXc6ePcu1a9fIy8vjl19+4cknnyQgIEDJpBMYGIjBYCi1GXOKcrvlSkxMpEWLFnz5\n5ZeEh4dTo0YNV3dVNU899RQ//PADAAkJCTz22GMu7pG4F5cvX2bo0KG89dZb9OnTx9XdUU1sbCyf\nfvopAD4+Pmg0GpuBUFm2du1a/v3vf7NmzRrq16/Pe++9R1BQkKu7pYpvvvmGefPmAXDx4kUyMzPv\nm2ULDQ3lwIEDmM1mLl68SHZ2NuXLl3d1t+5rcl4q/e7nff5+1KBBA44cOQLADz/8wNNPP+3iHonC\nhg0bxu+//w7A4cOHadiwoYt7JIoaa8u+JFxBxkVlg4yNyg45lpcNMjYqXWRcJETpIWMO9chxzHFy\nvi4eOZ86rqh1KNth8RT1DPZvf/ubS7ZDeb2plNmyZQtZWVn069ePiRMnMmzYMMxmM71796ZKlSoM\nGTKEyZMnM3DgQPR6PW+++Sa+vr6u7vZd3W25PDw8WLx4MZ988gn+/v68++67ru7yPSu4bEXp1KkT\nBw8epH///pjNZubMmVPCPbTf3ZatLLvbsn3yySfcuHGDjz/+mI8//hiAzz77DG9v75LsZrHdbbk6\nd+7MpEmTGDRoEAaDgcmTJ5f6ZbJ6kLfHPn36MGnSJAYMGIBGo2HOnDll5g3luy1bu3btOHr0KH36\n9MFsNjNt2rT7JhNcaVWWz0sPirK8zz+IJkyYwNSpU1m0aBF16tQhLCzM1V0ShfzjH/9g1qxZeHh4\nULlyZaU2t3Cdosba77zzDrNnz5Z9SZQoGReVDTI2KjtkXFQ2yNiodJFxkRClh4w51CNjAsfJ+bp4\n5HzquKLW4cSJE5kzZ45sh/eoqGewdevWdcnxUGM2m80l8klCCCGEEEIIIYQQQgghhBBCCCGEEEII\np7g/asAIIYQQQgghhBBCCCGEEEIIIYQQQgjxAJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQIS\nQgghhBBCCCGEEEIIIYQQQgghhBCijJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQISQgghhBBC\nCCGEEEIIIYQQQgghhBCijJMgICGE0yUlJdG+ffsi/+/xxx936mdHRkY6df5CCCGEEM5w5MgRoqOj\nXd0NIYQQQgiXk3GREEIIIcSdTZw4kZiYGFd3QwhRSkgQkBDivhYXF+fqLgghhBBCCCGEEEIIIYQQ\nQgghhBBOJ0FAQgjVffLJJ3Tt2pXu3bszb948TCYTOTk5vPnmm3Tr1o2BAwdy9epVm2muXbvG66+/\nTpcuXYiMjOTw4cN3/Iz27dsze/ZsoqKiiIqK4vjx4wBER0czcuRIwsLCOHHihJJp6Hbz/+GHH+jT\npw9RUVGMHDnyln4JIYQQQrjKlStXePnllwkLC2P48OHk5eWxceNGunXrRvfu3Zk4cSI6nQ6wza4Y\nExPDxIkTAcuYacyYMYSFhZGenu6S5RBCCCGEcJSMi4QQQgghbjKbzcydO5ewsDCio6M5d+4cAB98\n8AHPP/88YWFh9O/fn7S0NDZs2MC4ceOUaZctW8aKFStc1XUhRAmQICAhhKq+//579u3bR0xMDJs2\nbeLs2bMcOHCAK1eu8OKLL7J161YqV67M9u3bbaZbvHgxNWvWZMeOHcyfP58PP/zwrp9Vvnx5YmNj\nGTVqFBMmTFB+//jjj7Nr1y7q169/x/lfuXKFhQsX8sUXXxAbG8tzzz3HggUL1FsZQgghhBAOuHDh\nAtOmTWPHjh1cvnyZL7/8kk8++YQ1a9awZcsWfHx8WLZs2V3n07p1a3bt2kWlSpVKoNdCCCGEEOqT\ncZEQQgghxE27du3i+PHjbN26lcWLF3Pu3DmMRiOnT5/mq6++YteuXdSsWZMtW7bQtWtXDh8+jE6n\nw2w2s2XLFiIjI129CEIIJ5IgICGEqn766SciIiLw9vbG3d2d3r17c/jwYYKDg3niiScAeOSRR27J\nuHP06FFl0PH444/z9ddf3/Wznn/+ecDyJtfFixe5cuUKgPI5d5v/sWPHSElJYfDgwURGRrJ27VrO\nnj1r/8ILIYQQQqioXr161KhRA61WS926dcnIyKBdu3ZUqFABgH79+vHTTz/ddT6NGzd2dleFEEII\nIZxKxkVCCCGEEDf9/PPPdO7cGQ8PDypWrEjr1q1xc3NjwoQJbNiwgXnz5pGQkEBWVhZ+fn60adOG\n3bt3Ex8fT40aNahSpYqrF0EI4UTuru6AEOL+YjKZbvmdwWDA3f3m4Uaj0WA2m23+puD/A5w6dYra\ntWuj1d4+VrHgNCaTCTc3NwC8vb3v+LfW+RuNRp566ik++eQTAHJzc5XU0UIIIYQQrlZ4/BQQEMCN\nGzeU35nNZgwGg83PGo3G5ncAXl5ezu+sEEIIIYQTybhICCGEEOImjUZj8zzO3d2da9euMWzYMIYM\nGUJYWBharVZ5Fte7d2+WL19O9erV6dWrl6u6LYQoIZIJSAihqmeeeYZt27aRk5ODwWBg48aNPPPM\nM3ed7umnn1ZKhJ06dYqXX34ZjUZzx2m2bdsGwJ49e6hbty6BgYHFmv8TTzxBQkIC//vf/wD4+OOP\nmT9//j0tpxBCCCGEK+zbt49r164BsH79epo3bw5AhQoV+OuvvzCbzezbt8+VXRRCCCGEKBEyLhJC\nCCHEg6pFixbs3LmTvLw8rl+/zoEDB9BoNDRr1owBAwbwyCOPcPDgQYxGI2B5RpaamsqRI0fo2LGj\ni3svhHA2yQQkhFBVu3btOHHiBL1798ZgMNCqVSvatWvH6tWr7zjdqFGjmDJlCj169MDd3Z358+ff\nNQjo119/5ZtvvsHHx4d58+YVe/7BwcHMmTOHMWPGYDKZqFKlCu+//36xl1kIIYQQoiSUK1eOV199\nlejoaPR6PQ0bNmTGjBkAjBs3juHDh1O5cmVCQ0NvKb0qhBBCCHE/kXGREEIIIR5kHTt2JDExkW7d\nulG5cmXq1q1LTk4OJ0+epHv37nh4ePD444+TlJRkM83169fx9PR0Yc+FECVBYy5ck0cIIcqA9u3b\ns3r1aqpXr+7qrgghhBBCCCGEEEIIIYQQQghR6pjNZvR6PUOGDOGdd96hYcOGru6SEMLJJBOQEKLU\nio6OtqnvbtW/f38X9EYIIYQQQgghhBBCCCGEEEKIsiMtLY2IiAj69u0rAUBCPCAkE5AQQgghhBBC\nCCGEEEIIIYQQQgghhBBlnNbVHRBCCCGEEEIIIYQQQgghhBBCCCGEEEI4RoKAhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEKOMkCEiI+8yRI0fo1q2bq7tRYi5evEj//v2LPd2TTz5JUlKSav3YsGEDa9euVW1+\nQgghhHC++2Xc1L59exITE2/5fUkt3969e5k9e7bTP0cIIYQQJSMpKYknn3zyrn+XmJhI+/btS6BH\nJeOdd97h0KFDxZpm5syZLF26VLU+nD9/njfeeEO1+QkhhBDCNe6n8dTSpUuZOXNmsacbOnQoV65c\nAeDll1/mv//9723/9n65RydEaeHu6g4IIYQjqlSpwldffeXqbhAfH8+jjz7q6m4IIYQQQpS4Dh06\n0KFDB1d3QwghhBDCIe+++66ru8CFCxf43//+5+puCCGEEEI47ODBg8q/P/vsMxf2RIgHj2QCEuI+\nlJWVxZtvvklkZCTh4eH88ssvAGRkZDB+/Hi6detG9+7dmT9/PgaDAYDHH39cicgt+PORI0fo0aMH\n/fv3p0ePHuTl5Sl/8+OPP9K9e3fl5xs3btC0aVOuX7/OunXr6NGjB71792bgwIFFRvguXbqUUaNG\nMXDgQMLCwhg9ejSZmZmAJcPP66+/Tq9evejevTuffPIJYImebtOmDUOHDiUsLIzffvtNiabW6/XM\nmjWLrl270r17d9555x1lfr/88guRkZFERUUxdepUTCbTXdfjxIkTGT58OBEREbz//vvk5eUxZ84c\nevbsSY8ePZg4cSKZmZns2bOHffv2sWrVKtauXXtLVHTBn6Ojoxk5ciRdu3ZlzZo1REdHs3DhQgYN\nGkT79u1566237qlvQgghhFBHWRk33WmcA/D111/Tq3+aQBsAACAASURBVFcv2rZtywcffHDL9Dqd\njkmTJhEWFkbXrl1ZtGgRZrP5juumQYMGvPfee/Tq1Yvw8HB2794NQExMDAMHDqRnz55ER0cTExPD\nq6++CkBaWhqvvfYa4eHhdO3aldWrVyvrc+LEicrYbs6cOcr6FEIIIYR9oqKilMw127Zto1GjRuTk\n5AAwZcoU1q5de9t7GXD7ey8FnTp1ivbt27Nnzx4A1q1bR1hYGL1792bdunXK312+fJnXXnuNfv36\n0b59e6Kjo0lPTyc+Pp42bdoo9zqys7Np0aIF6enpyrQmk4k2bdrYZDZ88803WbduHadOnaJ///70\n6tWLnj17FpmFOSkpiXbt2jFhwgQiIyPp0aOHMqYDWL58OT179iQyMpLXXnuNixcvAkXfo9m5cycA\n3377LVFRUXTv3p0BAwbw+++/A5CZmcno0aMJCwsjOjqa06dP3/V7KmqMuG/fPvr27UtUVBT9+/fn\nt99+w2g0MmXKFM6dO8ewYcNuySBQ8OeixmMjRozg9ddfp1u3bvTs2ZM///zzrn0TQgghHnQynrJI\nSkqiY8eOzJo1iz59+tCpUye2b99uswyDBg2iW7duvPXWWzb3pIoyadIkAF544QVSUlJsslh/8803\nRERE0L17dwYPHkxKSorNtL/88gvt2rXj119/RafTMWrUKCIjI+nZsydTpkyRZ2hC3AMJAhLiPpSa\nmsqQIUOIi4ujf//+Slri2bNnU758ebZs2cLGjRv5v//7P1auXHnX+f31118sXLiQzZs34+npqfz+\n2WefRafTKSfurVu30qZNG8qVK8ecOXP4/PPP2bhxI88//zzx8fFFzvvYsWMsWbKEHTt24O7uzkcf\nfQTAW2+9Re/evYmJieGbb77h0KFDyoAjNTWV1157jV27dhEUFKTMa/ny5Vy6dIm4uDji4uIwmUzM\nnz+fvLw8Ro8ezcSJE4mNjaV58+bKIO5ucnJy2LZtG2+99RYrVqzAzc2NmJgYNm/eTHBwMAsWLKBT\np060b9+eIUOGMGjQoLvOMyAggO3btxMdHQ3AuXPnWLNmDZs3b+ann37i559/vqe+CSGEEMJxZWXc\ndLtxjpWXlxcxMTFs2LCBlStX3nIDZcmSJeTm5rJ9+3ZiY2P59ddf7zrmMBqNBAYGEhMTw4cffsjk\nyZOV4Kf//ve/rFmzhjVr1thMM2PGDGrVqsXOnTv5+uuvWb9+PWfPnmXOnDk0bNiQmJgYYmNjuXr1\nKv/85z/vuj6FEEIIcXsdO3bkwIEDABw4cIDAwEB++eUXTCYT+/fvp3Pnzre9lwF3vvcC8OeffzJ8\n+HDeffddOnXqxIkTJ1i2bBn//ve/2bhxIx4eHsrfbtu2jSZNmvD111+zd+9evL29iYuLIzQ0lPLl\nyyv93LZtGy1atKBSpUrKtFqtlt69e7Np0yYArl+/zqFDh+jevTtffPEF7du3JyYmhhUrVijLV9iF\nCxd47rnniIuLY9y4cYwZMwa9Xk9sbCx//vknGzZsIC4ujjZt2jBlyhRlusL3aMDykGv69OksXbqU\nLVu2MGrUKF577TUyMzNZsmQJ3t7e7Ny5k8WLF99z1p6CY8QLFy7wwQcfsGLFCmJjY5k1axZvvPEG\nubm5zJ49m5o1a/LFF1/cdZ6Fx2NHjx5l6tSpbN26laeeeuqe5iGEEEI86GQ8ddP58+d57rnn+Oab\nbxg/fjzvv/++8n/nzp1TxkZms5nly5ffcb3OnTsX/p+9Ow9vqkz7B/7tCjQNeyA1oUjRDsjUKrE6\noCwyItUKbSkUWiyggMsMOOAuIoyMP0AHUUTGURCXSqXsi9WOCgIqDFPjWCsvdaGyJCYSC0KaFpq2\n+f3Rt32NUGS5H5pDvp/rmuuMaXvznJyT5Ml57nPfAN544w3ExMQ0Pl5aWor58+dj6dKl2LRpEwYN\nGuQX69///jcee+wxvPTSS+jduzc++OADeDwebNiwAatXr24cJxGdHpOAiC5CXbp0QWJiIgCgR48e\njYs127dvx+23346QkBBERkZi9OjR2L59+2/Gi4mJgclkOunxkJAQjBgxonFSsXbtWowcORJhYWFI\nTk7G6NGjMXv2bOj1eowYMeKUsZOTk9GxY0eEhoZixIgR+OSTT1BZWYmioiIsXLgQqampyMzMhMPh\nQGlpKQAgPDwcV1111Umxtm/fjtGjRyMiIgKhoaHIycnBxx9/jG+++Qbh4eHo06cPAOC2226DTqc7\ng2cSsFgsjf9/69at2LJlC9LS0pCamooPP/wQe/fuPaM4v3TNNdf4/feNN96I0NBQREdHo2vXrjh6\n9OhZxyQiIqJzo5V5U1PznAYNfdMNBgM6duzodzcYAOzYsQMjRoxAWFgYIiMj8dZbb+G66677zf25\n/fbbG5+b+Ph4FBUVAaivfhQdHX3S7+/YsQOjRo0CAOj1erzzzjvo2rUrtm7divz8fKSmpmL48OH4\n8ssveXc6ERHReRo8eHDj/OSzzz7D+PHj8emnn6K4uBixsbEwGAxNXsv4rWsv1dXVGDt2LHr27Nl4\nPWXnzp24/vrrG2/IavjMB+rv8u7duzdee+01/PWvf8W3336LyspKAMCYMWOwcuVKAPXVC7Oysk7a\nl4yMDLz33nuorq7GO++8gxtvvBF6vR6DBw/G0qVLMXnyZLz//vuYMWMGQkNPvqTdpk2bxqqLAwYM\nQFhYGL7++mt89NFHKC4uRkZGBlJTU/HWW2/5Je78+hoNUL/49Ic//AFdunQBAPTp0wft27fHV199\nhZ07dyItLQ0hISFo3749Bg8efEbH6pdzxE8//RSHDh3C+PHjkZqaigcffBAhISE4cODAGcVq8Ov5\nWK9evWA0GgHUV3Tk9SUiIqLfxvnU/4mIiMCAAQMA1M8lfv75Z7/nqX379ggJCUFGRkZj9aSztXPn\nTtxwww2NiUHjx49v7KThdDpxzz334KabbkKPHj0A1K/Rfffdd8jJycErr7yCcePGoWvXruf0bxMF\nk/DmHgARyftl5nBISEhjq4dfZ/bW1dWdsg3DL1tXAEBUVFST/1ZGRgbS0tIwcuRIuN3uxsWk+fPn\n45tvvsGOHTuwZMkSrF69+pSZwWFhYX7jCQ0NRV1dHXw+H1asWIFWrVoBAA4fPowWLVrgyJEjiIyM\nRHj4yW9fp9o/r9fr9xw0ONXfn8ov972urg7Tp09vnAR5PB6cOHHipL/59b/n9XqbjAkALVu2bPJv\niYiISC2tzJuamuc0+OXcpqm5T0hISON/OxwOtGzZEu3atWtyvMDJc7WG/25qP3/97xw8eBDt2rVD\nXV0dFi5ciO7duwOob4f2y98jIiKis/e73/0OXq8XmzdvRteuXXHjjTdi2rRpCA8Px8033wyg6WsZ\nv3XtBQAWL16Mhx9+GO+//z5uvvnmk+YYv5wn/P3vf8eXX36JjIwMXHfddaipqWn83aFDh2LBggX4\n97//jcrKSiQlJZ20LyaTCVdccQW2bt2KtWvXYvr06QDqb5z617/+hR07dmDnzp1YvHgxVqxYgdjY\nWL+//+VYGvY7LCwMdXV1mDhxIrKzswHUz91+mRxzqjnNqa7L+Hy+xrlgU8/B6fz6+lKfPn3w/PPP\nNz7mcDjQqVMnvzZmvL5ERESkHudT/6fhxjMAJ12z+eU4fT7fGa+x/VpYWJhf7OPHj8Nutzf+7JVX\nXsGf/vQn3HLLLbjyyivRpUsXfPDBB9i1axf+/e9/44477sCMGTOQnJx8Tv8+UbBgJSCiIHLDDTdg\n+fLl8Pl8qK6uxsqVK9G3b18AQPv27RvbUzT0JT0TnTt3RmJiImbOnNl41/rhw4cxYMAAtG3bFuPH\nj8fUqVPx9ddfn/LvN2/eDLfbjbq6OqxcuRI33ngjoqOjcdVVVzW2iDh27BiysrKwefPm046lX79+\nWLFiBbxeL+rq6rB8+XJcf/31iI+Ph8/nw7Zt2xr/zXO5G6rh+auurkZdXR2eeOIJLFiwAED95KTh\nYlC7du2we/du+Hw+VFZW4pNPPjnrf4uIiIiaV6DNm5qa55ypPn36YN26dairq0N1dTXuu+++xqo+\np7N+/XoAwO7du/H999+f8iLTr/+dNWvWAADcbjfGjRuHffv24YYbbsDrr7/e+Hzee++9eOutt854\n/ERERHRqN910E+bPn4/rr78e3bt3R0VFBTZt2oQhQ4YAaPpaxm9de4mMjITFYsGcOXMwa9YsuFwu\n9O3bF59++imcTicANFY4BIBPPvkE48aNQ1paGjp06IAdO3agtrYWANCqVSsMGzYM06dPx+jRo5vc\nl8zMTCxZsgTHjx9vrMz8wAMP4N1330VKSgpmzZqF6Ojok9qeAvVzqoa7+Lds2YKIiAjEx8c3trSo\nqKgAACxcuBAPP/zwaZ/TP/zhD/j0008bW03s3LkTDocDiYmJ6NevH1avXo26ujocPXr0N69VnS5+\nQ3Xpbdu2YdiwYThx4gTCwsIak31at24Nr9eL7777DsDZzTuJiIjozHE+9du2bNmCo0ePora2Fvn5\n+ejfv/9v/s0v180aXHfdddi5cycOHToEAFixYkVj2zGDwYDevXvjkUcewUMPPYSqqirk5eXhscce\nww033ICHHnoIN9xwA7799tuzGjtRMGISEFEQmTFjBg4fPoyhQ4di6NCh6NatG+65557Gn82ePRvp\n6en4n//5n8ZShGdi5MiR2LNnD9LT0wHUL4zde++9GD9+PIYPH45nn30WTz311Cn/tmPHjpg0aRJu\nueUW6PX6xvHMnz8fxcXFGDp0KEaOHInbbrsNw4YNO+047r33XnTs2BFpaWm45ZZbUFNTg8cffxwR\nERFYvHhxY0nGDz74wK9X6pn605/+BJPJhPT0dNx6663w+Xx49NFHAQD9+/dHbm4uXn75ZQwbNgzt\n27fHzTffjLvuugtXX331Wf9bRERE1LwCbd7U1DznTE2ePBkRERFITU1FWloaBgwY0HhH2+l8/vnn\nSE9Px/Tp0/Hcc8+hTZs2p/39mTNnoqysDEOHDkVWVhbuvvtu/P73v8fjjz+OysrKxuczPj4eEydO\nPOPxExER0akNHjwYZWVljcnKffv2hcFgaGyxcLprGWdy7eW6665DSkoKpk+fjt/97nd46KGHMG7c\nOAwfPtyvOvKf//xnPPPMMxg+fDgmT56M3r17+7W3Gj58OA4fPoy0tLQm92XQoEGw2+1+rVH/9Kc/\nYdOmTRg2bBgyMzNx00034dprrz3pb1u0aIENGzZg2LBh+Oc//4nFixcjLCwMI0eOxMCBA5GZmYmU\nlBR8/fXXmDdv3mmf08suuwyzZs3C5MmTcdttt+HZZ5/FP//5T+j1ekyZMgXh4eG45ZZbcM899yA+\nPv60sU7l8ssvx+zZs3H//fdj2LBhWLhwIV566SVERUXh8ssvR1hYGEaMGIHo6Gg89NBDmDRpEjIy\nMlhFkYiISBHOp35b9+7dcffdd2Po0KFo3bo17rrrrt/8m8GDByM7O9uvHXzD/k+cOBHDhg3Dxx9/\njCeffNLv79LT09GtWzfMmzcPaWlpqK2txa233orhw4ejoqICY8eOPauxEwWjEB/rghJRM1m0aBGO\nHDmCmTNnNvdQiIiIiOhXfve732Hnzp1o3759cw+FiIiINMzn82HJkiWw2+0nLfJIsNlsGDp0KP77\n3/+KxyYiIiIKBKrnU0R0cTm3hn1ERBeBsrIyTJs27ZQ/69atm19vdiIiIqKLzdKlS7Fp06ZT/mzC\nhAkXeDRERER0sfrjH/+I9u3b46WXXmruoSgzdepUfP/996f82XPPPYe4uLgLPCIiIiK6mATifIrz\nH6LAxUpAREREREREREREREREREREREQaF9rcAyAiIiIiIiIiIiIiIiIiIiIiovPDJCAiIiKiAFRc\nXIycnJxT/qyqqgqjR4/G3r17Gx97+eWXMWrUKAwfPhyrVq26UMMkIiIiIiIiIiIiIiKiABHe3AMg\nIiIiIn9LlizBxo0b0apVq5N+VlJSglmzZuHHH39sfGzXrl3473//i7fffhtVVVVYtmzZhRwuERER\nERERERERERERBYCgSgJyudzNPQSii4LdbYNJb27uYdBp2N02jC8cg9eTl/NYUUAyGPTNPYSAFhsb\ni0WLFuHhhx8+6WfV1dVYvHix388++eQTxMfH489//jMqKipO+Xe/xnmRLLvbhpEb07Bq2Hq+7xIR\n0Vnj3Kj5cW5ERES8nhYYOC9qfpwXEVFzszqLMHzjbVg77B1YjEnNPRyiZnOu8yK2AyM6R3a3rbmH\ncEakx9nwZVhFXJJj0pt5wYJIw4YMGYLw8FPnalssFsTExPg9duTIEXz11VdYuHAhnnzySTz44IPw\n+XwXYqj0v5weBw6698PpcYjG5ecjERERERHRhcHraURERIHBYkxiAhDReWASENE50EoijIpxqvgy\nrOr5DHa8YBH4eM6TlLZt2+KGG25AZGQk4uLi0KJFCxw+fLi5hxXQpF9/Rl0MYlt3hVEX89u/fIbs\nbhvSN6TwvYKIiIiIiOgC4fU0IiKiwMAEIKJzxyQgonOglUQYrdy9opVxEkli8htJslgs+Pjjj+Hz\n+fDjjz+iqqoKbdu2be5hBSxVn7krh8q2AitxFWP/sX0ocRWLxQTqy+kSEREREREREREREdHFh0lA\nRAFCVSKMirYkKhIXmABEwYbJb3Q2Nm3ahPz8/CZ/fuONN6Jnz54YMWIE7r33XsycORNhYWEXcITa\nYtKbMa/ffPHXn3S85LgUvJGch+S4FLGYVmcR0jbcykQgIiIiIiIiIiIiIqKLUIjP5/M19yAuFJfL\n3dxDaDZ2t00zC81aGGtDIkygL+BbnUVI35CCdakFomXztHCMiCiwGQz65h5C0Av2eZEWPsdVaGgx\nti61QHTfrc4iluglIjoPnBs1v2CeGxEREQUSzouaH+dFREREgeFc50WsBBSApCusaKnljN1tQ3bB\nyIAfq6oKHtL7bdTFoENLA4y6GNG4KhZMA/2YN9DKOImIqGnBXomrVXiUaDxWFyIiIiIiIiIiIiIi\nCgxMAgowKhJ2gn2hSytUHHunx4Hy4y7xlmDStJKoppVxkho87kR0MTDpzchLWSU6LzTqYhCr7yqe\ndExERERERERERERERGdHaTuw4uJizJ8/H7m5uX6Pb9myBYsXL0Z4eDgyMjKQmZmJuro6/PWvf8XX\nX3+NyMhIPPXUU+jatWvj38yZMwfdunVDVlYWAOCpp57C559/Dp1OBwD4xz/+Ab3+9OWQtFLCMNhb\nLWlh/1W1EVGx71ppz6GF4w5oZ5wkK5hbB6nC0s7NTyvzIhX4mpanlfkGEVGg4tyo+QXz3IiIiCiQ\ncF7U/DgvIiIiCgznOi8KFx5HoyVLlmDjxo1o1aqV3+Nerxdz587F6tWr0apVK2RlZWHQoEH4/PPP\nUV1djfz8fHzxxReYN28eXnrpJRw+fBgPP/ww9u3bhwkTJjTG2b17N5YuXYr27dur2oVmE+yLUVrY\nf1XVlbSw78GOxyg4saIa0cWFr2lZdrcNj378oPhzysQiIiIiIiIiIiIiIqKzo6wdWGxsLBYtWnTS\n43v37kVsbCzatGmDyMhIWCwWFBUVwWq1ol+/fgCAq666Cl999RUAwOPxYMqUKUhNTW2MUVdXh/37\n92PmzJkYPXo0Vq9efUZjYisXkqSFhUOrswjDN94Gq7NINK70a4lttkgLtPCaJ7pY8fMhsKlIqlI1\nhyEiIiIiIiIiIiIiupgpSwIaMmQIwsNPLjRUUVHh17ZLp9OhoqICFRUViI6Obnw8LCwMNTU16NKl\nCxITE/1iVFZW4vbbb8ff//53LF26FHl5eSgtLf3NMQVzkgEXUIKTxZiEtcPeEb2LXkXCjklvxvgr\nJmgiySJY30OIiJqL3W1D5qY00fdfJp/Kk/4MtxiT8PJNy8QrAXFOTERERERERFqTnp6OnJwc5OTk\n4LHHHsP+/fuRlZWF7OxszJo1C3V1dQCAlStXYvjw4cjMzMRHH30EADh+/DimTJmC7OxsTJo0CYcP\nH27OXSEiIqILQFkSUFOio6Ph8Xga/9vj8UCv15/0eF1d3SmTiACgVatWGDt2LFq1aoXo6Gj84Q9/\nOKMkoGBt+6C1O6m5ICfLqIsRjafibv/CsgLcv20KCssKxGKqwEVjIqILz+lx4IB7P5weh1hMtgML\nfHa3DXP/85ToZ67W5sREREREREREJ06cgM/nQ25uLnJzczF37lzMnTsXU6dORV5eHnw+HzZv3gyX\ny4Xc3FysWLECr776KhYsWIDq6mq8/fbbiI+PR15eHtLS0vCPf/yjuXeJiIiIFLvgSUDdu3fH/v37\n8fPPP6O6uhqfffYZrr76avTu3Rvbt28HAHzxxReIj49vMsa+ffuQlZWF2tpaeL1efP755+jVq9dv\n/tvButCjohqMKkyykGV32zByo2z1BED+tZQcl4I3kvOQHJciGlcaF42JiC48izEJSwa/Lj6P4Xt5\n8FFVXYiIiIiIiIhIldLSUlRVVeHOO+/E2LFj8cUXX2D37t249tprAQD9+/fHjh078OWXX+Lqq69G\nZGQk9Ho9YmNjUVpaCqvVin79+jX+7s6dO5tzd4iIiOgCOHWpHQU2bdqEyspKjBo1Co8++igmTJgA\nn8+HjIwMdO7cGYMHD8ann36K0aNHw+fzYc6cOU3G6t69O1JTU5GZmYmIiAikpqbi8ssvv1C7okla\nWeww6c2Y128+F+aEOD0O2CoOwOlxBPxzqiIByO62ie93oD+PREQXG7vbhmetzyDBkMj34CBi0puR\nl7JK9Jg3VBeSPpdUzDeIiIiIiIiIAKBly5aYMGECRo4ciX379mHSpEnw+XwICQkBAOh0OrjdblRU\nVECv1zf+nU6nQ0VFhd/jDb9LRKQFvOZGdO6UJgGZzWasXLkSADB06NDGxwcNGoRBgwb5/W5oaChm\nz57dZKwpU6b4/ffEiRMxceJEwdFe3LTyRml32/Doxw+y2ooQizEJc2+YL54EpoXzqaGqFM8lCmRa\neC0RNTdWYQteWjjmnG8QERERERGRSt26dUPXrl0REhKCbt26oW3btti9e3fjzz0eD1q3bo3o6Gh4\nPB6/x/V6vd/jDb9LRBToeM2N6Pxc8HZgFxsttK2yu23ILhipibFyoU+W1VmE6Z8+BKuzSCymVlq2\nsaoUBTqtvJaIzoaq85nv5SRBRXUhzl2JgtPy3W829xCIiIiIKEisXr0a8+bNAwD8+OOPqKiowPXX\nX49du3YBALZv345rrrkGV155JaxWK06cOAG32429e/ciPj4evXv3xrZt2xp/12KxNNu+EBGdKV5z\nIzo/TAI6D1zAVbPYxzd0ORZjEl6+aZloJSCtfPA2VJUK5tcnBTZVryWe83SmpM8VzotIC1TMXwJ9\nTqRaML/mg3nfVZC8caGBimSd5bvfxLRtk8Vj77LtEo1HRERERBeHESNGwO12IysrC9OmTcOcOXPw\n+OOPY9GiRRg1ahS8Xi+GDBkCg8GAnJwcZGdnY9y4cZg2bRpatGiBrKwsfPvtt8jKykJ+fj4mT57c\n3LtERHRGgv2aG9H5CPH5fL7mHsSF4nLJ9zrVSisXq7NISUuo7IKR4ndUkxwtHSMVr6VgjknBSUsl\nMg0G/W//EinV7bk4rEstED1Xlu9+E2N6jRWLR6QFwfw5bnfbMHJjGlYNWx90z4GqebaK721aYHUW\nIX1DCtalFojtf0OyznMDXhT/bJL+vLM6i5C24VYcn3FcLCadPRXXjIiIiOjs8ZpR8+O8iIiIKDCc\n67yIlYDOkxYudrMiCklTUT1CCy3rVFS5aFg8C/R9J23QSqUuCgz7jn2PElexWLzCsgLcv20KCssK\nxGISBbpgr4Dl9Diw71gZnB5Hcw+lWXhrvaLxrM4ipK6/RbwijopqONLnvFEXg85RMTDqYsRijuk1\nVkkCUENsaSEhIeIxiYiIiIiIiLQqWK+3EUlgElAQULUobNKbNVFhRhUVHz7SMVUco2BO2DHpzZjX\nb77o8+n0OGCrOBC0i2ckL1jfk+nsvZn8NpLjUsTiJcel4I3kPNGYRIFOxdxAJenkktLyPajx1aC0\nfI9oXK0kE0aERYjHlE4EUdG6yu62IW19ivj3gaiIKNF4gJpkHRUsxiRsHbe1uYdBREREREREFBCC\n/cY7ovPFJKAgoZWFCa1QVRFGxQeaFo69imQlFclvKqpqWYxJom0PiIjOlIpkHSYAUbCxu224f+t9\nmrgg0dBuSTIRaEyvsZh53d9EEy0KywowtjBLPBFIOp5Jb8aCgS+IzjUtxiSsT31XdF6oohpOiasY\nB9z7RKvJBfsNJgBwnfm65h4CERERERERUUBg1wOi88MkIDpnqpJWtLCIouKub1UfaCqSiqQXPBri\nSlMxRhXHiAlARERE2lVTJ9sSClAzHzbqYhr/J8XutmFD2VrR8RqiOiE8JByGqE5iMQvLCjCuMFs0\nEUhVy2UV80LpajiqKr/xwh4RERERERERNeB1AqJzxyQgOmeqKq1oobybqov+KhKAVFQsUrHvgX7M\nG3DSQUREdGFoZW4QHirbEsrutuGPK/sp2f+auhrReKoSpMNCw0TjJRgSEau/FAmGRLGYwX5HGiu/\nERERERERERERBSYmAQUgrSx4ANqptCJN1Tgl2zMAasapogpSMFeVIiIiopNpZW6gooXRIuvzOHyi\nHIusz4vFBOpbONkrbKItnAD57wMWYxKWDH5dtCKOSW/G366fo4lKlkRERERERERERETng0lAAUYr\nlXBU0srFdBUJQOkbUpQkAklSUQkomKtKkXaoOJd4ftLpFBcXIycn55Q/q6qqwujRo7F3797Gx9LT\n05GTk4OcnBw89thjF2qYREqY9GY8YHlYfG6QuSkt4N975w2cjzuvuAvzBs4XjZtgSETX1rLVcFSw\nu2141vqM6HGyOosw8f1x4vNsyfZixLkWERERPigi1QAAIABJREFUERERERGRBCYBBRitVJjRGi1c\n/DXqYtA5KgZGXUxzD+W0VJ2jKuJJVyyi4KWqtR4T1agpS5YswYwZM3DixImTflZSUoIxY8bg4MGD\njY+dOHECPp8Pubm5yM3Nxdy5cy/kcInE38usziLc/eGdonNYp8eBA+79cHocYjFVJRZJJwAB9XOj\ndakFAT83UjWHCwkJEY1XWFaAsYVZmkgEUjHXkP5+aXfbkL4hhXMtIiIiIiIiIiKi88QkoACkIgFo\n+MbblCQCaeGCqt1tQ3bBSE2MVXhtAoCaY6Ri8UhFu4/7t96nieNOgU9Vaz0ttD+k5hEbG4tFixad\n8mfV1dVYvHgx4uLiGh8rLS1FVVUV7rzzTowdOxZffPHFhRqqZgV7grQkFXMtizEJL9+0TLQllMWY\nhPWp74rGVJFYBKibY2vhM8futuG+LfeKn0/SLcYSDIm4tHU38cpKWkiusTqLkLr+FtGxlriKse/Y\n96Lt6nhTABERERERERERBSMmAQUBFYsogLburPTWesVjSu+30+No/J8UrSRAaelcInlaOe4qFpC4\nKEVNGTJkCMLDw0/5M4vFgpgY/6pxLVu2xIQJE/Dqq6/iySefxIMPPoiampoLMdQLQkWVmbQNtzIR\nSJD0XMvutmHuf54K+M8IFcklKudvWrgpwOlx4MAx+YpNT3w6XbydrXRlJVXJNfuP7RNNrgHkKysl\nx6XgzeS3kRyXIhZTRRtjujCaaom6ZcsWZGRkYNSoUVi5cuVp/2b//v3IyspCdnY2Zs2ahbq6OuXj\nJiIiIiIiIiIKBEwCCkAqKqI8a31GPK6qKhYqLtJGhEWIxlORtGIxJmFdaoF4spaKBChpJr0ZD1ge\nFq+ysmDgC5o4P4MZE8CIZHTr1g3Dhg1DSEgIunXrhrZt28Llcl3wcbxoXSgeU0UVCwCATzacKlpI\n2lBFeg6jojqmqnl2pbdSNB6gJvlNxevTqItBF31X0Ra5Ja5iHHDLJ8JIV4AC1CTXPHHdbNHkGosx\nCfckTBH/3iJdVUnFdwxSr6mWqF6vF3PnzsWyZcuQm5uL/Px8/PTTT03+zdy5czF16lTk5eXB5/Nh\n8+bNF3Q/iIiIiIiIiIiaC5OAAoyKBXGVZdBVJFio2H/pZBBVCVDSF9IB+QQoQE1Fhrs/vFN8UUr6\nzl9VCStaWYxVgS2xiGSsXr0a8+bNAwD8+OOPqKiogMFgOO3fFJYViI7hRetCzN71hHgikIoWMRZj\nEtanybaFAtR8PkpXBbG7bRi5MU18rCrmGzU+2SQgizEJa4e9I3rcVSQZOD0O/FgpWx2ykXDym6oW\nTquGrRd9TpPjUvBGcp5oIoyK16eK5BqrswhPf/aU6DiX734TC7+Yj+W73xSLaXfbkLZevm3ZhH+N\nVZJMKbnvDV79/FXxmFrUVEvUvXv3IjY2Fm3atEFkZCQsFguKioqa/Jvdu3fj2muvBQD0798fO3bs\nUD94IiIiIiIiIqIAwCSgAKNiQdzutmHK5nuVJBqoqC4knbCkqgy8FpIWVCRAqaqCpGJRTvpcUvX6\nDPZKOFp4LRE1t02bNiE/P7/Jn48YMQJutxtZWVmYNm0a5syZ02Q7sQZjC7NEE4Eua3eZ3zbQqUgA\nytwkm1zjqjyE6rpquCoPicV0ehywVRwQTTAx6c3IS1klnggj3SYVgGh1GaA+yeCuD+4QTwRRUR1S\nRfKbihZOgJq5gfQYAfmqPSqSawDA55PN/hrTayyeG/AixvQaKxZTRbWm0vI98Pq8KC3fIxYTqD9O\n07ZNFj1Oy3e/iYmbJorF07KmWqJWVFRAr9c3/rdOp0NFRUWTf+Pz+RpfozqdDm63W+GoiYiIiIiI\niIgCB5OAApD0RW8Viz2AmuQFFQk7Wqo0In2Xqt1tw/1b79PE86liMVYLyV9aOj9JG4I5oexiYzab\nsXLlSgDA0KFDMWrUKL+f5+bmonv37gCAyMhIPPvss3j77beRl5eH3r17n9G/8d2R78TGqyoZIMGQ\niK76buJtYqRfK06PA/uOfi863zJEdUJEaAQMUZ3EYlqMSbg7YbL45650myUViTB2tw3ZBSPFW1eZ\no2PFk4tUVIdUFVdFco0WWIxJWJ8qm1SlIrnGYkzChrT3xI+95BgBNdWaVDyfANChVQe/rYQeHXoi\nDGFi8S5G0dHR8Hg8jf/t8Xj8koJ+LTQ01O93W7durXR8RERERERERESBgklAAUh6UcpiTMLD1zwu\nfuHXpDdj/BUTAr7SSkPcQGd1FiFtw63iiUBVNZWi8bRCS8k1WhgjaSO5hi3r6GzMvO5vmGz5i2hM\nFckAJr0Z69MKxKuwSbfEclUegtfnFa3aY9TFoKu+m2iCiYpKI4VlBRhXmC3eYk5Fwoq3VrbFmIrW\nVaQdKs5R6YQVQF1SmTTpZE8AGBg7SDxmgiER5ugu4uMNDzt9Bb9g1717d+zfvx8///wzqqur8dln\nn+Hqq69u8vevuOIK7Nq1CwCwfft2XHPNNRdqqEREREREREREzYpJQAFGxQJuYVkB/rZrpvjCTGFZ\nAe7fNkU8brAy6mIQo7tEdKHP6XHA4flBtCqBlpIMuCBHUrRy3qtqqRjsLesuVtIJQCppoUqiIaoT\nIkMjRav2qEgwGRg7COboLqIL4wmGRMTqL1WygC8tIixCPCbnG0TnT0WlLhVtGhu0DGslGs9iTMK2\n8dtEY14sGlqiRkRE4NFHH8WECRMwevRoZGRkoHPnzk3+3SOPPIJFixZh1KhR8Hq9GDJkyAUcNRER\nERERERFR8wnx+Xy+5h7EheJyaaMHvN1tE1/ATVufIn4XPVCfCCR513/DYrN0BRfp51SFhgvfeSmr\nRMdqdRaJ3/0rHTOYjztph4r3ZunzXkuvpeORP6NLmy6iMens5O5aIV65Z/nuN5VUsVBxDkrPYQA1\nn7kqqHg+tfKZq5VxEgUbFd+FrM4ipK2/FevTZNu2qfp+vbP8IwzrMUwsHp09rVwzIiIiutgZDE23\n/KQLg/MiIiKiwHCu8yJWAgpAKlph/XPwUiULHtKLZ1qqYqGigseCgS+IHyfpxUi724b7t94nuv8m\nvRkPWB4WP+7SdxNTcFPx3iydrKOVlop2tw3p+emiMensSbdvWr77TUzbNlm0zRSgrjrE3P88paQF\nqxaomBNqJbFGK+MkkqSF+bCK70JGXQy66LuKVloF6qvJ/VjpEK0mV1hWgLT8NLF4REREREREREQU\nvJgEFATsbhse/fhBTVz8VTFWFYviDXd/Si9ITtl8ryaOk7fWKxrP6izC3R/eCauzSDQuUaAL1oV4\nk96MdaPWNfcwgl7X1rLtm8b0GovnBryopBJQpbdSPGZVjXxMIqLzpYVESgDiLaFV3Wgg3VIRqE/4\nXJdaIJr4mWBIRLe23cTiERERERERERFR8GISUABSUWFGusqKKlqpYlHiKsZ+9/cocRWLxXR6HDhY\nsV/0jlIAShJrQkJk41mMSXjIMl30QrqqykpEgU4ryXRsBdb81qXKtwlVkQCkouKC0+OAo+IH8c9c\nIqLzoaqimnQCf2FZgXg1OVVUfReQrvxm0puxdfxW0ZhERERERERERBScmAQUYFTcqWl1FuGuD+7Q\nzMKwFiQYEmGO7iJaQcGoi4Ex6hLRcvVWZxHSN6SIH3ufTzQcCssKMHvXE6ILCVqqrKSFMZI2WJ1F\nGL7xNr7f0xnRSpKkiooLqlrEaGFBnEgLgnVupLKimqQEQyJi9bLV5Ex6M/JSVmnms0kFJkgTERER\nEREREZEEJgEFAaMupvF/0qQv0KsqV6+CPrK1eEzpCjtGXQzM0bHixz4iLEI0XoIhEZe27ia6kOD0\nOGCrOCBe5UHFOT++cIwmznkKfBZjEtYOe0f87nSi5qai4oJ0i5jCsgKMLcxiIlAQUvEZHsznkd1t\nw8iNaQHfvgqQb90FqKmoJj13N+nNWJ8mX00umBOAiIiIiIiIiIiIpDAJKMCougOyVXiUaDxAXcKO\ndLl6FVQcJ6fHAYdHtjWJSW/GzD5Pio7TpDfjsWtniMec3XeOaEyLMQmvDH5NdOFYxTlv0psxr998\nJYseTCwKTkwAoouRivcz6fddFVUCKfCpSObVWkKZdPU5FYncKtpXqWrdJU3V90sm7BARERERERER\nEQUmJgEFIBUXaBcMfEEzF2qP11Y19xDOiPTzaTEmYX3qu6IL+FZnESa9P150ccbqLMLdH94pHlO6\nZZ3dbcOz1mfEF44rvZWi8exuGx79+EFWGNIAPpdEzSPY38+0kggSrEx6M8ZfMUF0XqgyoUz6daSi\nDaWKRG4V7au00roLYMIOERERERERERFRMGESUBBQlWSg4q7SElcxbBUHUeIqFoupJSpatvngE41n\nMSbh5ZuWiS7MqGhbZtKb8XrycvFqTc5K+WpN0uNUGVcrmFRFdPFQWTFNUomrGPYKm+gcRmsVYbRA\numpNYVkBpm2bLH6MwkPDReMB9Z9lQ9cNEf0ssxiTMOf6v4tXXpRO5FbVvkoLCUBEREREREREREQU\nXJgEdJ60sCBs0pvxgOVhJYtnKlppXNq6m/idz9ILPiqoSDIw6mLQtfWlosk1drcNc//zlPjCzKph\n6wO+TYFRF4OOLTuJJ2sF+sK21qh4LWklCYHoYqSyYpqk5LgUvJGch+S4FLGYquZFWpi/AvJVkKzO\nIqStvzXg54VOjwOOCtmkYwDYemALbBUHsfXAFrGYVmcRHvn4ftHnVGWCNBEREREREREREdHFTmkS\nUHFxMXJyck56fMuWLcjIyMCoUaOwcuVKAEBdXR1mzpyJUaNGIScnB/v37/f7mzlz5uDtt99u/O+V\nK1di+PDhyMzMxEcffaRyN5pkd9uQuSkt4BdSVLRvaqCiutBLNy0VvUhvdRYhbYP8go/0wpSKZC2T\n3owXBr0kvugh3RJLK5weB346fkh8UU6FYK5co2LxUCtJCEQXI1WvaRXvkZIJQED9vq9Lla1eYnfb\nkF0wMuDfzwrLCjCuMFt8vlXrqxWNZ4jqhPCQCBiiOonFNOpiYNRdIp50PDB2EAwtO2Fg7CDRuD6f\nbNVJAJqYaxEREREREREREREFImVJQEuWLMGMGTNw4sQJv8e9Xi/mzp2LZcuWITc3F/n5+fjpp5/w\n4Ycforq6Gvn5+XjggQcwb948AMDhw4cxceJEbNnyf3esulwu5ObmYsWKFXj11VexYMECVFdXq9qV\nJjk9Dhxw7w/4i9QqyvQDahaRVC2019XWicZTsTBldRbhrg/uEE1WsrttuG/LvaLPp9PjwA8VNtHz\nXisJK0ZdDLpEd1XStk1asLcDk6alJASiMxXo1VB+SUVFEFVVEqWpaJEqncyros1UeVU5fPChvKpc\nLKar8hBqfbVwVR4SiwkAIaLR6kWGRYjHdHocOOY9Kv7dJSRE9hmwOouQuv6WgE/gB9Qk82ql/Z+K\nz5Dlu9/URExAzf5vLN0oHpOIiIiIiIiIiIKPsiSg2NhYLFq06KTH9+7di9jYWLRp0waRkZGwWCwo\nKiqC1WpFv379AABXXXUVvvrqKwCAx+PBlClTkJqa2hjjyy+/xNVXX43IyEjo9XrExsaitLRU1a40\nyWJMwvrUd8WTa6RZnUWY/ulDmljsU5W4EBIquziRHJeCBQMWid7xb9TFoHNUjGiCidPjwP6j+0QX\ne1yVh1DjqxFdQFN13FVUqlLRtkwVrYxTmqrkGhVJCEzUouakoi2SqrmGirZQkz4YH/D7X1hWgLGF\nWaL77/Q4YHcfFJ0bqGgz1aNDT4QjHD069BSLaYjqhDCEiVbtAeSTYACgutYrHtOoi4EuPFp0rmnU\nxSBWL9t6FpB/TlUk8NvdNqRvSBGdb6h4zQPyiTAqKq0u3/0mpm2bLDpWFTEBNYlqhWUFSMtPE4tH\nRERERERERETBS1kS0JAhQxAeHn7S4xUVFdDr9Y3/rdPpUFFRgYqKCkRHRzc+HhYWhpqaGnTp0gWJ\niYlnFKM5qEgAkl64thiT8PJNy8THatKbkZeyKuAXsI26GMToTKKLE3a3Da//z6vix0rFXd/St6cb\nojohHOHiC2jSd6VrJREEYEsoaSa9GfP6zQ/49yYgeBO1KEAIfz5YnUUYti5ZE4kwAOCrk21hpKr9\nqPSBKi3fgxrUoLR8j1jMI8eP+G0lGHUxMLfuIp9cIpwYbjEmYenNb4jOs50eB+wVsolaALDumzU4\nfKIc675ZIxbTpDdj0R9lW8+quNEiwZCIWP2lSDAk/vYvn6ESVzH2HftetFpXgiERl7buJjpOVYkw\n0m3gxvQai+cGvIgxvcYGdMwG0olqCYZExLWLE41JRERERERE547rNkSkZcqSgJoSHR0Nj8fT+N8e\njwd6vf6kx+vq6k6ZRHS6GBcDFYkLdrcNz1qf0cQHlooWYwAQFRElGk9VkoH0Xd9GXQw6RXUWv+Pb\n1NosGtPqLEL6hhTRhVOtVFlRdc5rifSCuaq2gsF8jIJ53y9mj1wzQ3SRvbR8D7w+r2hyCYDGdlCS\nbaGMuhh0iOoo395Rdk0chqhOiAyJEE287dCqg99WQnp8Bjq3ikF6fIZYTGWEj5HdbcPc/zwl+j5Z\nWr4HNT7ZRC0A6GPqixCEoI+pr1hMu9uGOwpvV3ITgyST3oz1aQWi88LkuBS8mfy2aGVQk96Mdamy\n41SRCGMxJmFD2nvix0lFss7A2EHiMVUkqpn0Znw07iOxeERERERERHTuVN1kTkR0oVzwJKDu3btj\n//79+Pnnn1FdXY3PPvsMV199NXr37o3t27cDAL744gvEx8c3GePKK6+E1WrFiRMn4Ha7sXfv3tP+\nvpaoSC5RlbCi6kPQK5wIo6Jikd1tw/1b7xPdd6fHgR8rHaJ3fTs9DriqDonfSS5846+SVmgAq/Zo\ngdVZhOEbbwv4BLBgnvQH875f7GbvekK0us6YXmNxvbG/+CJuietLv61MzGI4PD+IVvCwGJOwPk12\nUdhiTMK9ifeJV0SRrjRi0pvx9wELRN93nR4HbMfkq+GoUOmtFI03MHYQjFEx4skLDa1cJVu6rvtm\nDZyVDtHqQoCa1oIq5oWSCUANVIxTRSKMdJKaCna3DWnrZVu2NSgse0885n8d/xWPSURERERERGdP\nKzeZExE15YIlAW3atAn5+fmIiIjAo48+igkTJmD06NHIyMhA586dMXjwYERGRmL06NGYO3cuHnvs\nsSZjGQwG5OTkIDs7G+PGjcO0adPQokWLC7UrStndNtzzwUTxSkAqqmKoSi6KUNESSwMsxiS8Mvg1\n0YU+oy4GxqhLRJNrVCQrAfLVmgD5hB0VyRAq2+ppIWnDYkzC2mHvKLnjXzqeVlqMSeMXnuZTXFyM\nnJycU/6sqqoKo0ePxt69e/0eLy8vx4ABA056/FRCESpaYebRrQ/iU+d2PLr1QbGYADAw9ka/rYQE\nQyJ04dGiiTCA/KL48t1vYuEX80Xb+Jj0Zvzl6gdEX9NWZxEmvj9ONHFDRdsyAPAJt8Fzehz4wW0T\nnxdFR8hXOTVEdUIIQkRf95e1u8xvK8HqLMLQdUPEE4Gk22EBapKV/t+O2aLx7G4bMjelic4LVbUY\nk34+S1zF2O+WbdkG1B+jhV/MFz1WhWUFSM1PFYtHRERERERE54fXw4lIy5QmAZnNZqxcuRIAMHTo\nUIwaNQoAMGjQIKxZswZr167FmDFj6gcSGorZs2djxYoVyM/PR/fu3f1iTZkyBVlZWY3/nZmZ2Rhj\nyJAhKnfjgipxFeOAe5/ohUqVlYCkq+GY9GYsGPhCwFfwUDVO6XYSABARKptUZTEm4e6EyeLl71U8\nnyM3yi54mPRmjL9igiYmf1qq3iKdAKSCqmRKFVSMUQvn/MVmyZIlmDFjBk6cOHHSz0pKSjBmzBgc\nPHjQ73Gv14uZM2eiZcuWZ/Rv1KEOq0rzRcYLAGZ9F7+tlARDIjq26CSasLPI+jw8NRVYZH1eLKaK\nRfExvcbizivuEq2uVFhWgPu3TRGtAuWqPITqumrRCjMDYwdBFx4tWsHEVXkINXVe0XG6Kg/BC9mY\nAPDz8Z9F4wH1iVV1qBNNrEowJKJ1ZBvR12dh2Xuo8dWIVlpR8fq0Ootw69qbRBNXVCSXOD0OfPvz\nN6KJamN6jcU1hmtF35usziLcsvaPos/nO3s3+W2lJMfd4rclIiIiIiIiIiIKJBe8HdjFRnqx1RDV\nCWEhYaJ36KpI1lFFxUK7iiQoVQkBNXWyrdAAoMYnG1NFVQJV7dVsFQdEFzxULJyqStYJ5so1Kmil\nGo6Wkr/o9GJjY7Fo0aJT/qy6uhqLFy9GXFyc3+NPP/00Ro8ejU6dznwOIZmwM9nyF/zRfDMmW/4i\nFhOoT5AuP+ESTZCeYpmKlqGtMMUyVSzmmF5j8dyAF8UTdl77nyWinzuGqE4Ig+xcUyuJWip8d+Q7\nv62Edd+swU8nDom32OrRoSfCEIYeHXqKxXy9ZBmOVR/F6yXLxGJajBa/rYR9R/f5bSW8VvIqfPDh\ntZJXxWKqsPjzF/y2EiZ/cA8+c/0Hkz+4Ryzm/P887beVcFv3oX5bKQ3HXPLYW51WsVhERERERERE\nRBTcmAR0HlQttoZAuE8BAG+tfHKJSW/GY9fOEF0UV7HQrqpikYoEi6qaKtF4To8DP1TYRRNhBsYO\ngjm6i+id+QBQ6a0UjaeivVpyXAreSM5DclyKWExVySVaqlyjFVpo2aaVZCX6bUOGDEF4ePgpf2ax\nWBAT49/mce3atWjfvj369et3xv9G+xYdkB6fcV7j/KUXrQux2fY+XrQuFIsJ1CeYxOovFU0wWffN\nGhyvq1KSZCEpwZCI1hGyVVYAICREdq5Z4irGTycOiSZqjewxCqEIxcgeo8RiNiyyB/pi+9ETR/22\nUlyVh1CLWvGqRVrw1U9f+m0l9Lmkr99WwuN9Z6K7/jI83nemWMxlt+bC1MqEZbfmisW8I2GC31ZC\n19aX+m0lrCxd4beV0qN9T7+tBFYVIiIiIiIiIiIiKUwCOg8qFluNuhh01hlh1MX89i+fBeG1HgD1\nJdvv/vBO0ZLtWqEiwaLEVQxbxUHRBTSjLgaXRJtEzyeT3oxN6f8SPe+dHgfs7oOiyUqq2qtJJgCp\nxEpAgY9Ve0jSmjVrsGPHDuTk5GDPnj145JFH4HK5Tvs3FV636PtuH1NfhIWEoY9JbkEcqH8/++fg\npaLvZyqqFlmdRRi2Lll0XrTumzU46v1ZPFmp1lcrGu+Nr17z20pQ0bpKRYWZy9pd5reVkBx3C0IQ\nIp4UoCIJ6tI2l/ptJahI3Ph9xyv9thJKXF/6bSXc+W4O9rq/w53v5ojFnPzBPbBX2UWr9jS8LiVf\nnwNjb/TbSvhz7/sQglD8ufd9YjEBwOY+6LeVEOgVpYiI6MLhNQIiakp5eTkGDBiAvXv3Yv/+/cjK\nykJ2djZmzZqFuro6AMDKlSsxfPhwZGZm4qOPPgIAHD9+HFOmTEF2djYmTZqEw4cPN+duEBER0QXA\nJKDzJL3A7vQ44Ko6JLooBwDhoRGi8YD6Sisv37RMtNKK3W1DdsFI8ao9Cwa+IF6xSDrBwhDVCZGh\nkaLtOQAgQsGxl1Zavgc1qBFdSADUtFeTpuKcb4jLSkCBTVXlMyYWBafly5fjrbfeQm5uLnr27Imn\nn34aBoPhtH/TtkU78aTjUAVTS7vbhtvfHSV6XquoWlRavgden1f0s0xFgsniz19AHepEWwON+/0d\nfttA1TDHkpxrqWgHVlj2HnzwobDsPbGYANCmRRu/rYSBsYPQLrKDaIXI3p2v8dsGkz92Hey3laCi\nJdaR40f8thISDIno3CpGtPKZUReDS3SyN0QAwLyB85F5eTbmDZwvFlOyohQREWkXv9MTUVO8Xi9m\nzpyJli1bAgDmzp2LqVOnIi8vDz6fD5s3b4bL5UJubi5WrFiBV199FQsWLEB1dTXefvttxMfHIy8v\nD2lpafjHP/7RzHtDREREqjEJKMAYdTHoEt1VvHKLdBIMUP/FdOaO6eJfTKVbl6lIhrC7bZiy+V7R\nmBZjEjakvSeaVAUAlV7ZFmMqklZUtRjz+UTDAdDOHVnB3hZKS8dJOl4wH/eL2aZNm5Cfny8a81DV\nj9h6YItozBpfjWg8AFhkfR7lx3/CIuvz4rElvVayxG8rQUWCiYokA0NUJ4QiVDS5Zt/RfX5bCQ2J\nT5IJUCqoqFgEAO1atvPbSihxFeNIdbloJUsV7dAaqipJVldqaFUn2bKuQ6sOflsJKt5HVJxLTo8D\nh6qcojfDOD0OHKqUjQnUzzN3OD4WnW9KHnMiItIufqcnoqY8/fTTGD16NDp1qv/evXv3blx77bUA\ngP79+2PHjh348ssvcfXVVyMyMhJ6vR6xsbEoLS2F1WptbB/fv39/7Ny5s9n2g4jobGhlnYcoEDEJ\n6DxJvwGZ9GasGrZevDLE/VvvEx9riasY+459L3rRH5BvXaaiao/T48BB937xC8rSd6mWuIph98i2\nGAOAnypP32LmbJn0Zsy54RnxixwRYbJVkFTckWXSm5GXsooXeARp6c45FWPkuXTxMJvNWLlyJQBg\n6NChGDXKf6E5NzcX3bt3P+nvmnr8VCTb2LxW8ip88Im3NKnwVvhtJaiosJN2+Qi/rQQVLWdUUNG6\nKznuFoQiVDRpo3vby/22EtLjM9AusgPS4zPEYr78xUt+WykqEqve2bvJbyth78/f+m0l7LTv8NtK\naKjUJFmxSSsJO6u/Xum3lbCqNB8++LCqVC7h1VV5CF6fF67KQ2IxAWDrgS2wVRwUTaQtryoXi0VE\nRNrG7/RE9Gtr165F+/btGxN5AMDn8yHkfxdSdDod3G43KioqoNfrG39Hp9OhoqLC7/GG3yUiCnRa\nWuchCkRMAjoPqt6AVHzZO3bimHjMBEMiDC07iZZsB+Srt6ioBGTUxaBdy/aiSTt2tw0jN6aJjrPh\nYrLkReV136yB6/ghrPtmjVhMq7MIkz5T+4NDAAAgAElEQVQYD6uzSCymSW/GXQn3ireBU3FHlorX\nvKr3Jy1MuLRy55yWJrEqxnjwaGAnNQQLs76LWKwY3SV+WynREdF+WwlWp9VvG6j0ka39thJ6dOiJ\nsJAw9OjQUzRmKEJFY7oqD6EOdaKL9yoSi5weByq8x0QTw1VUawIAh+cHv62E8qqf/LYS/tZvrt82\nUKl4PksP7/HbSti8/wO/rYQZfWf5bSV86frCbytBRVIVoKYdmmQsIiIiIrq4rFmzBjt27EBOTg72\n7NmDRx55BIcPH278ucfjQevWrREdHQ2Px+P3uF6v93u84XeJiAKdVtZ5iAIVk4DOg4oKM4D8Yquq\najAlrmL8dNwlHle6eotJb8YDlodFj1OJqxg/VjpF993pceBghWx1oTG9xmLmdX/DmF5jxWKmx2eg\nQ8uOone8A0Btba1ovMKyAty/bQoKywpE46qYcEgmPzVQ8f6kpaQVFVQkfKr4DJGmogWg3W1Den66\nWDw6d5KVcMYn3IkIRGJ8wp1iMQFgimUq2kS2xRTLVLGYKtotqaguVJ+0EiaatFJavge1vlrRqj0q\nKgGpWLxXkVikotKIinMJAHq07+m3lfD7jlf6bSVMKhzvt5WgohrOHQkTEIpQ3JEwQSymimOkIqlM\nRRUkFclfKpKqgPrvQ7pwnej3oT6mvmKxiIiIiOjisnz5crz11lvIzc1Fz5498fTTT6N///7YtWsX\nAGD79u245pprcOWVV8JqteLEiRNwu93Yu3cv4uPj0bt3b2zbtq3xdy0W2dbTREREFHiYBHQeVFSY\nUbHYCgAhEO6xhfpKQJ1aGUUrAZn0ZiwY+ILooriKKjMJhkRcojOL7rtRF4O2kfLVhVZ9u0L0fHJ6\nHHBXy97xDgAhobLnaIIhEZ2jZM9PFazOIqRtuFU8EUhFG0CtZF6rSlqRToBS1apRC0x6M9aNWtfc\nwyDItvCZ+++n4EU15v77KbGYDSQX7gEgOS4Fzw14EclxKaJxpRl1MegU1Ul0bqCigkWHVh38thJU\nJMIYojohFGEwRHUK6Jiqqpekx2egTWRb0cQFFdWVliS/jghEYEny62IxVZz3KpLKVCSt7Pxhh982\nUKlILFJVoe71kmXw1HjweskysZiS+01EREREF79HHnkEixYtwqhRo+D1ejFkyBAYDAbk5OQgOzsb\n48aNw7Rp09CiRQtkZWXh22+/RVZWFvLz8zF58uTmHj4R0W8K9pvSic5XeHMPQMtULYhXeitF4yUY\nEhGrv1Q8GcLpceBo9RE4PQ6x56AhsUryeTXqYhCr7yq6gAYArVvIls0scRXjUFV9dSHJc0r6fDLq\nYqCPaC3+fNbV1YnGc3ocKD/+k+j5qYpPugfe//LWesVjBvpzqYpWEqBUMOnNyEtZJb7vXdrItaGi\nc9fnErnKA30u6YuV3+aJxgTq389txw6KzzdeKXkJA2MHicU0RHVCZGikaDJIiasYzkqH6NxARUUU\nFe1HVdhp34E61GKnfQcsxiSRmPVVkOorK0nFnGz5C2zug5hs+YtIvAYlrmIcqz4qPtcMD5X9Slni\nKkYNagL+vN964KPGrVRC4R0JE7Dq27dFqwvd1n0oVn6bh9u6DxWLeWmbS/22Eh7vOxMOzw94vO9M\nsZiqfPXTl35bCZ85/yMWi4iIiM6P1VkkNrcnkpabm9v4/996662Tfp6ZmYnMzEy/x1q1aoUXXnhB\n+diIiCQF85oMkQRWAjpP0tVQnB4HnJU/iMY16c2Y2vsB8TdKizEJ61ILRL8UqWiPY9Kb8cKgl8Rj\nSi+KG6I6ISI0QnTx0OlxwOmRPZ/WfbMG5Sd+wrpv1ojFLC3fg1rItiZxVR6Ct062PQcg37qrPknt\nUvGkKkC+tZ5WqEpaURFPxThV0MIY6dxIVobo0aEnwkPC0aODXBsboP4zogY1op8RgHySrMWYhEeT\nnhCdF6moCKOias++o/v8thJU7LuK6kIqnk+rswhvf5MrPudIjkvBggGLRCtgWYxJWHrzG6LnfXJc\nCt5IzhMdp4r3p3kD5yPz8mzMGzhfLKbFmIR3h38o/ny+mfy26PM5ptdYPDfgRdGWw1ZnEdbvXS16\n3qto/QgAt3Uf5reVcI3xWrFYREREdO6sziIM33ib+FyciIiIzh7XJYjOHZOAzoOKLwVGXQy6RMtW\nrSksK8C0bZNRWFYgFlMVFe1xVLXcUZFUJb2IYtTFoF1L2RZj6fEZ6NCio2griYGxg9ChRUcMjB0k\nFhOQb4OnonWXSW/GzD5PBnWCSTCTTiQlOlvSVXtqfbWi8YD6xftQhIou3js9DtjcB0Rfg4VlBZi9\n6wlNzLekNbSCkmwJpSJhRyssxiTMuf7v4ncf2902vP4/r4rPs5+1PiM+z5Zu1WfUxeDS1nHibXd3\nOXeK77t0AjsAJe1xpRM+XZWHUF1XLb7/Ktpiq2gvNz7hTnSO6iwWj4iIiM6NxZiEtcPeYSUgIiIi\nItI0JgGdB4sxCS/ftEy8Es6iP8pWrQHUXPxUkRABADV18i2MVLRFkr7gb3fbMPc/T4nGLXEV48fK\n+hZjUpweBzw1FaILpyWuYhw+US46TlVt8KTbllmdRZj4/jjN3GGkov+qiteSil6x0vG0dHcZ++5e\nnKSrOBSWvQcffCgse08sJtDQwqkOO+1yVYsKy95DLWpFx6qico2KFkaqRITKVp9LMCTCGBUj+jlu\niOqEiBDZqosqWqFZnUWY/ulD4p8PqipuaqE0s4qk6xJXMfa7vxedvxaWFWBsYZZoMqHdbUP6hhTR\nz3Krswip628RPUd/2V5NiqrvA5Mtf8HM6/4m2rLPpDej6K7AnxMSEREFAyYAEREREZHWMQnoPKi4\n89XutuG+LfeKxlRR+r9BTW2NeMxw4UUkQL4tkt1tw8iNaeIL4yqSlXzwicazGJPwyuDXRL8Qq7hA\nb9KbMe6KO8UXpXw+2ecTAEJC5JP07G4bsgtGir8/SSfXqIipYpFTxThVVnqQjid9LlFgkEwAAuqr\nwISHhItWg9GSPqa+CEUo+pjkqiv16NATIQgRrbihIlkJkE+SdXoccFUeEk06NupiYNKblbTglKTq\n7mOtVMdUweoswqQPxosmrSQYEmFo2Uk8US0MYaKJaiWuYuw7JpuspKJqz7yB83HnFXeJtlcz6c1Y\nn1ag5ByVTABq0KVNF/GYREREREREREQUfJgEdB5U3Pnq9Diw/9g+0QUPu9uGhf99Vkmp+jrUiV78\nNenNWDDwBfE7lB+7doaC4/S9eCuf47VVovGS41Lw3IAXRRPAVFQsMunN+OfgpaLHaPnuNzF71xNY\nvvtNsZiuykOoRa3oOW8xJmF96ruauMtIKxUE7G4bHv34QfFzVHqcKio9MGGHmpPFmIRN6f8Sfz/r\nY+qLMISJJte0adHGbyuhtHwP6lCH0vI9YjF32nfAB59oFaT0+Ay0CosSbetZWr4HtagV3/da1Iru\nOwBI5/IOjB0EY1SMeEtTFS2hVFHxmaOiSp50IneJqxg/HXeJJ9dIf79SUa1KFckEoAZaSFIjIiIi\nIiIiIiKSFFRJQFpYFDXqYtChVUfRO5RV3P0J1N+pGh4SLnqnqt1tw5TNspWQrM4i3PXBHaKLCa7K\nQ/D6vKIX6EtcxbBX2ESPk91twyslL4mf+4c8P4rGs7ttmPT+eNFxdmjVwW8rITkuBW8k54lX1VJR\nkcCkNyMvZVXAJ9cA8oszqlqTSMezGJPwkGW6eMKEdEUxFecSXbxUJDQadTGIib5E9L2yj6kvwkPC\nRROLjhw/4reVUJ8AJTvORdbnUVVbiUXW58ViqnBZu8v8thKcHgdsFQfFk7jbtWwvGq+wrADjCrNF\nW0IB6uYG0smnKloOW4xJ2JD2nuh7lIp5oYqYY3qNFW//mByXgjeT31ZSaZaIiIiIiIiIiIjOT1Al\nAWmhjU2JqxgOzw+iiSCGqE6ICI0QTdYB6hflLomWbalQvzhzQLz1Q+vINgHf+iHBkAhTtFm0pQAA\n/FTpEo33eskylJ/4Ca+XLBOLufXAFtgqDmLrgS1iMVUtTkgfH1Wt5QA1yTXSlYBUUTFG6WNUWFaA\nv+2aKb7IK93+EOBd9NS8nB4Hfqpyic4NLMYkTL92VsBXYTPqYhDXNk50DjPFMhUdWnbEFMtUsZg9\nOvREKEIDvm3ZTvsO1PpqRKsLmfRmjLx8tOj7ZIIhEZ1aGcXnHKpU1VSKx5RuLweoSbqW/n4FQEli\njXT7R0DNOImIiIiIiIiIiOj8BVUSkHRlCJPejAcsD4vGVJGwY9TFoH0L2epCDUJCZONZjEl4ZfBr\nootyWw9swaGqH0UTTAxRnRAZEil+4V+6RcW6b9bAdfwQ1n2zRizm431n4i9XPYjH+84UizkwdhA6\ntugk3kpDRcJO+oYU0WQQp8eBA27ZFoANpJNWVFUC0kKVNhWVDlQk/pn0ZtyVcK940o6KY7TLtks8\nJp0dFcdVRUwVcwMVSXgqKteY9GY88Ycnxeevzw1cJBpTRQsjFc9nenwGYnSXiLZCU9F+1Olx4MiJ\ncvG5gd1tw21rh4jPYxwVP4iPNQSyXzJUJF1bnUUYvvE28dZlKlqhaYV0YrTWHDx6sLmHQERERERE\nRBQwtLB2RBSogioJSHpRVEWbKQCAcCJIiasYP1Y5xNuBOT0O2NyyLRXsbhuetT4j+sY+MHYQjFEx\nogkmFmMSlg55Q3RBssRVDLvnoOhx6mPqi1CEirYRAYBL21wqGs/pceDnE4fFz6W09bIJOyWuYuw/\ntk/8tSS90AWoqVSmIvFRxThVkW6zBQD6yNai8QrLCnD/timii2gqjpHVWYRBb8om/dHZy9wkuyCu\nqrKZ3W3D3P88JZ6Ep49oLZqEZ4jqhMhQ2QRhq7MIE98fJzrXtDqLMOFfY0VjJhgSYWjZSfT5TDAk\nwhzdRTxRMvPybE1UN6vzyVfC2XpgC+we2cqLRl0MOrbqJHqzgVEXA0NUZ/Fqo/vd34tXFJtz/d9F\nvw9YnUVIXX+L+PdLySQ1VTFVtcHTSlKV3W1DSh6rKxEREREREREB2lo7IgpEQZUEJM2oi0HnqBjx\ni96ddUbRmCoWpQCgtHwPanw1KC3fIxZTRZIBALRr2V40nt1tw/RPHhb/8FGRDCLdGmj57jcxbdtk\n0Qv/peV7UAPZc6nEVYwDbtmEnQRDIrq2vlR0QdJiTML6tHfFW9KoaN1ldRZh0vvjRRdTVL3mVUwM\npV9LJr0Zj107Q3Tfk+NS8MR1s0VbdKg4lyzGJLyQ/IJYPDo3B47tF10Qd3ocOFghG7NBpVe23dDr\nJctwzHtUtLWlxZiEtO4jRN/PXZWHUF1XLVphp7R8D7w+r/hnruv4IfEkWWkvWhdi4Rfz8aJ1YXMP\n5bRUzLFVcXocOFTpFH8vkY7pqjwEb51X9LVkdRZh+qcPiSeZhAiXWlUxd1cRMzkuBQsGLBKdw6iq\n1qRKdW11cw+BiIiIiIiIKCCY9GbxDj9EwYRJQOcpKiJKNJ7T44Cr8pD4Xaob0t4TTzIY02ssnhvw\nIsb0GisW0+oswqQP5JMMpNvjbD2wBbYK2TupVSzeW4xJeOSaGaLH/sjxI35bCR1adfDbSlCxkGDS\nmzG77xzxSYf0axOoT4K5f+t98skwwnlqVmcR7v7wTtHXvKoqSHkpq8STqqSrcVidRXj6s6fEn0/p\nNnBWZxHuK7xPLB6dG6PuEvnqHcIVQYD6udEPHpuS5CJJ/2/HbKz8Ng//b8dssZgJhkR0atVZNPm0\nR4eeCEMYenToKRbzuyPf+W0llLiKYauQrZCows4fdvhtJZS4vvTbSln99Uq/rQRX5SF4fbLJNa7K\nQ6jx1YjGTI5LwXMDXhSfZ68d9o7oPM5iTMKSwa+LxuzRoSfCQ8JFX/Njeo1F5uXZot8D7W4bFn/x\nguh8Q0W1pgYqEs6lE8CIiIiIiIiItIwJQETnjklA50FFFQejLgZtW7QXX0CTjtdAMmkDULOAWFhW\ngGnbJouXlpdmdRZhzq4nRRfvC8sKMHvXE6L7nh7//9k7+7Aoy/T9nzMMqAwDvjQ4OEiGxWIuak3U\namsRpWKaSqT4srqmW9++pWlppWW2P60lv5mlaG8WmawWmoulFr2IVBvm0rQhKiytrOKMMzKSwjAg\nDMz8/iDcnnVLoPN2Brg/xzHHdTQ5F8/M83Y/93Xe55WCnkG9kByTQsspojBjdVrwWtHLdOECW6TW\nklcE7PZVJkM8dk7kuhaJKKB1FIW4iCKnQRuBXuR7iCgnoNxZPBGlpH00eRup+ewuG065uO4dgBgH\nD2dDtSIysLlOKiKDIkchKupO+X0bynmmBYgNG4R5pgW0nPrgcGhUGqqTZXJMCrSaEOoYZni/EYrI\nYHJsKlRQY3JsKi0nANz1qymKyGD30V2KyCBOPxR9gw1U8ZvVacGL3zxPF26w3ZqsTgse/fxh+nYG\nqAOo+bYc3oxt322lOgHZXTaUVx+j3kPM9gI8+tlD9LG21WlBwjsj6PvJWe+k5pNIJBKJRCKRSCQS\nSfuRbagkEklHRoqAfgEiHCyaiz12arHH6rRg8vuT6DesnLI9mJUzjSowsbtsOFXDLSBW1lUqIoMZ\ng2dhztX3Ule/imiJJYIiRyHONpyhH6Pslb8AXwQjIqfZXoAJf0kSIgRye/jfXwSiRIpMRLgLxemH\nop82klrkLHIU4lQt/x4iwlXqhsgbqPkkbYftsiLCEQT4QRDQI4J6rrSIK5gii9jegxTRX3HUVqAR\nXAHinA9moqSqGHM+mEnLCfDFStmlO+BqrEF26Q5aThEOiQZtBHoLWBQgwmGo7Ow/FZGB3WWDvdZG\nfR4ochTiuPNf1GueiJZY2aU7YK+1UY9RkyEeE6NT6O5CP44sPPBQ85VUFsMNbvtDAEj76mlUuc8i\n7aunaTnzynNhdVpp+To6hYWFmDnzwntKbm4uUlJSkJqaim3bml3NPB4Pli9fjtTUVMycORPHjx8H\nABw5cgQjR47EzJkzMXPmTHzwwQeX9DtIJBKJRCKRSCSSjouIeoBEIpFcSqQI6BcgwsEiKXoc3kra\nSnVEsbtsKHdyV1UCYlpUiChMJUQloldQHyREJdJy5pTtQcaRjVQBVGyfQdCAa9VvtpsVkYEIUZXd\nZcNx57/ox6irsYaab781Hx54sN/Ka/khqjjRXEA7SV9NPem92/2+dZeodmBsNxwRiHBPEMUBywFf\nb4IEXPcOUdhdNjjOnaJez1quucxr75W9rlREBiJcVkTcxwf2vEoRWTR5m6j5enXvpYgMROz37NId\nqKw/TRWCAECkrr8iMphx9SxFZPBm0RuKyEDEuSRCVGVxnlBEBiJaFW4vyVJEBiIcEkW11hMh+jxW\ndYyWq6OzceNGLFu2DPX19Yr33W430tLSkJGRgczMTGRlZeH06dP49NNP0dDQgKysLCxatAjPPvss\nAODw4cO4++67kZmZiczMTNx+++2++DoSiUQikUgkEomkA9JRug1IJBLJT9GlREAi2kExBUAiafJw\niyhA84paR10FdUVtUvQ4PHnDCqoIqshRiDMNldTt/OeZfwLw/hA5GLQRMOr6U1d9z46bg7CgMMyO\nm0PLmRCViPAefamiKhGtXvLKc2FznUReOa/lkIji4YzBs7D8hpVUVylATGs9gH8tESGuETFAtzot\nuO+TP1CFRUWOQlhdXCcWu8uGs/VnqGIJoy4SaxLWUX9Ps70AiZt51xBJ+2G2MBIhPAWahQAer4cq\nCBBx7U2KHofNSW9TxzAiCs0iiuImg0kRGWwvyYIHHqrIYO/xTxSRQZx+KHp360MVX4oYbwDAcOMI\naFSBGG7knfci3DFr3S5F9FeOVx9TRAb/+L5EERkcPfudIjKocdcoIgMRQq35poXopuqO+aaFtJyA\nuHNU0kxUVBTS09MveP/o0aOIiopCWFgYgoKCYDKZUFBQALPZjJEjRwIAhg0bhkOHDgEADh06hLy8\nPMyYMQOPP/44amq4C0QkEolEIpFIJBJJ50YKgCQSSUemS4mAfp8znS4E6ggttkoqi9GEJrrTiD44\nHBqVBvrgcFpOs70AzxaspDqNxOmHIjKkP7U4kxyTgvAefZEck0LLCQAqbtcLFDkKUdVQRRcZVDdU\nUUUGIo4lEQ5QsX0GIYDs1mR1WrC1JJN+LbG7bDjl4rbWE7FCW1SrKfYAvchRiHLnMeq5JMKNw2SI\nR/bEPVSBqtVpwZIvFlP3kckQj9xZPIFeZ+WnWmEAQF1dHaZOnYqjR48CAJqamrB06VJMnToV06ZN\nQ2lp6UXz9+l+GfUa6WyoVkQWLUIlpmDJ6rRg+3fv0K89TAEQ0DzeCA7QUscbuqBQRWSgDw6HGmrq\nfVwEU2KnKiKDvPJcfF9fSRUd7z+Zr4gsTIZ4PHfTC9R7RE7ZHrxJdsd84NoHFZFBhLafIjIYP3CC\nIjJYP+oVdFN3w/pRr9Byhgf3VUQGIq7LIsRf2aU7UO89R3fVEsETI5bj9oHSqQYAxowZA41Gc8H7\nNTU10Ol05/9bq9WipqYGNTU1CAkJOf9+QEAAGhsbMWTIEDz66KPYsmUL+vfvjw0bNlyS7ZdIJBKJ\nRCKRSCQSiUQi8TVdSgTEbrNldVowfc9kagEpr3yfIjJIiEqEITiCWugDmp1Gugf0oDqNOGor0OBp\noIoMAECjvnAS8ZcSGhRGzWd32XCyxkoVbSRFj8PyG1ZSj3uTIR7TfzWL7oKlVnEvRyIcoABADa5S\ny+6y4UTNcXorNABQkVVlcfqh6NsjokO0mmIjSqh2Wbdw+rWZff0U1Qqtn45XiO2M/FQrDAAoKirC\njBkzcOLEv9vF7NvXPG545513sHDhQrzwwgsX/RuV505Tr5GTY1MVkUWfHn0UkUWtu5aaD+CLwzcV\nZaC2yYVNRRm0nEnRYxWRQU7Zh/DAg5yyD2k5J8emQg019XgS4VYl4vi8O26uIrIw2wvwyOcL6WL7\n8B7cNpSO2gqooKLez54YsRwLhi3GEyOW03LG9hkEjYorDm8ZDzLHhfNNC9EzqBfVDUfEcS9CrCTC\n/UtU3i2HN+ODox/Q8nVGQkJC4HL9WyTmcrmg0+kueN/j8UCj0WDUqFH49a9/DQAYNWoUjhw5csm3\nWSKRSCQSiUQikUgkEonEF3QpEZCIwrW7yU3NlxB1iyL6M+nmF+FsrEa6+UVazqTocVgwbDFVtGJ3\n2WCpPkEXWZxrqqPmE4HZXoBVBU9Tiz3rzWuRceQ1rDevpeU0GeLx+ui3qMKiOP1Q9Ol+Gf2895Kv\nmgZtBC7rzm/bZdBGoFe3PtS8dpcNZxu+9/tWUwC/EG/QRiA82ED/PasbzlJ/z5yyPXTXOxFOQFan\nBeO2ch1TOhs/1QoDABoaGrBhwwZER0eff++2227DypUrAQAnT55EaOjFXV56BvXqEKI+Ea5ZdpcN\n1hru2ECEOPyJEcsx5+p7qcKFFqEOU7AzIGyAIrJQkYW3SdFjEYAAqgBKHxyOALJIFAC6qbtR8wHA\nfms+Gr2N2G/lOQzZXTZUnnPQHSIDEED/TcO6cQX8Bm0EjCHcVr4GbQRCgnT0caEXHmq+lpbIzNbI\nFbWnFJHBdYbrFZHFrZePUkQGbOevzsjAgQNx/PhxnD17Fg0NDfj6669xzTXX4Nprr8Xnn38OAPj2\n228RExMDAJg7dy4OHmxufbl//34MHjzYZ9sukUgkEomkbZyoOnHxfySRSCQSiUQi+Um6lAhods4M\nemHY7eGKgES0rsorz4W91kZtUwAAkbr+isggp2wP1n37PLWA7aitQCO4LYyKHIWw1JygOigYtBHQ\n9+hLn/RvIk/6J8ekQKsJobYmsTotWJ7/ONlVKxeV505Tj3tHbQUaPW7qsWR32VBRx23bBTQfoxV1\ndvoxyhYsiRKYsK/3dpcNjrpT9P3kVXmp+eL0Q9E3mOvIYNRFYlPSFrpQS4QLS2fip1phAIDJZEJE\nxIXnoUajwWOPPYaVK1fijjvuuOjfONtwhtoiZfXfVikiCxGOEyWVxWj0NtJbpbJboVmdFnxuzaNe\nz0QIYWYMnoUXbl6PGYNn0XKKaGdrMsRj950fU0XHjtoKNJFbZZoM8bhvyHy66+KVva5URAYihEUA\n381wvXktVhx4kipiB4DTdQ5qvuzSHag8d5p6bU776mlUNVQh7aunaTmHG0dABRWGG3ntwERw9Ox3\nisjizLkzisggJDDk4v+oi7Jr1y5kZWUhMDAQS5Yswdy5czF16lSkpKSgb9++GDVqFIKCgjB16lSk\npaVh6dKlAIA//vGP+NOf/oSZM2fim2++wf333+/jbyKRSCQSiaQ1WJ0WJGcl+3ozJBKJRCKRSDo0\n/B5JP6KwsBCrV69GZmam4v3c3Fxs2LABGo0GKSkpmDJlCjweD/74xz/iH//4B4KCgvD000/j8ssv\nx/Hjx7FkyRKoVCpcddVVeOqpp6BWq/H000/jm2++gVarBQC89NJLiv7w/w12EdPussHmam7fxMzb\nPaAHLRfQ3HImQtuP3nJmnmkBquqrMM+0gJZTxMpffXA4NOpAas44/VAMCL2CWmi3u2w49YMYhHU8\niRCtZJfugKuxBtmlO2j7vshRiGPV/0KRo5D23WcMnoUz585QC5Jx+qEwBHPbYTlqK+Am76MWvOAK\nTH682p+1n0S0mjLqIrHI9ChdtOL1cH/P5qTcdM1iJe4+EkGzQxtXlCtpZtWqVVi8eDGmTJmCPXv2\nIDg4+Gf//Qdlu2jX8huNI7HX8jFuNI6k5Gvhxy2cWE6BCVGJ6N2tD3Vs9GOBMOv8s7ts+Fd1GfWc\nFiGEAUC93wLN+8io7U8fv7IR4Yiy5fBmrP12NQaEDaD+riJctXp176WILDxeroi9qr5KERks3rcQ\nrsYaLN63EG9PeJeS0+I8oYgMhvcbgW3fbcXwfjzBTkllMbzwoqSymHYtufXyUdh97D2qu44oRBz3\ncfohtFydgcjISGzbtg0AFMLmxJ5aHL0AACAASURBVMREJCYq7wtqtRorVqy4IMfgwYPxzjvviN1Q\niUQikUgkdIy6SGSnZvt6MyQSiUTiB1idFr+uc0gk/owwJ6CNGzdi2bJlqK+vV7zvdruRlpaGjIwM\nZGZmIisrC6dPn8ann36KhoYGZGVlYdGiRXj22WcBAGlpaVi4cCG2bt0Kr9eLvXv3AgAOHz6M119/\nHZmZmcjMzLyoAAgA3QkHAL2ACwA1bic9Z5CAlgJWpwUfl39Id1dSqwUcll7ujjLqIrFixJ+oN5+S\nymI0etzUFe/64HAEqYOoAigRq8hFFNCsTgveOpIhwA2G2/IC4Lc7EYXJEI/XRr1JLRxbnRY8nPcg\ndT+Z7QX4n0/nUNvgAYA6gHttMmgjYNRFUp2V9lvz0UR2ZBDR4sigjUDPbj1p+STAzp078eqrrwIA\nevToAZVK1ar7aXRP3rW85PtiRWSRFD0WaqipzjVFjkKcqf+e6pb2Y7ESCxHndEfBqIvE4useo461\nzPYCTMhOot4fWpxQmI4oRY6DisgiISoRfbpdRhVWiXBEEeECJaJl3a8vG6KIDCbHpioigxmDZ+Fy\n7eVUQdne458oIgMRrm8PXPugIrIQcdwzf0uJRCKRSCSSjk7/MF7nAYlEIpF0TER0fJBIuhLCREBR\nUVFIT0+/4P2jR48iKioKYWFhCAoKgslkQkFBAcxmM0aObF45PmzYMBw6dAhAs9jn+uuvBwDcdNNN\nyM/Ph8fjwfHjx7F8+XJMnToV777bupWXD302D1sObyZ9w+Yi5uVhA6gFXBGtu+wuG+y1J+nCBQA4\nc+57aj4RLbEctRVoJLdpECEyEDGZbDLEY9XINVTRhj44HAEqDVVYNNw4AhpoyAW0Qhx3/ota4BVR\njBXRvgkQJ6xasf8p+qCrkdxW0WSIx18m7KYe9yZDPDaO2kR3zghUB1LzNbfnUNPbc7Bbd+WV5+JU\n7Slqzs5OSyuMn2L06NE4cuQIZsyYgblz5+Lxxx9H9+7dL5o3tvcg2jYu/c0yBCIQS3+zjJYTaL6P\ne+Ch3sfj9EPRM6g39dob1i1MERmIaLljthdg4s6xdKHkkrzF1Hw5ZXvw0GfzqS1iSyqL4fZyBdct\nYwLm2EBEy12geWxUWX+aOjYS4YgiQgQlSljF5s2iNxSRwe3bb8Nx13Hcvv02Ws6BPa9SRAZJ0eOw\nOeltmuNbC90C+IthRDhLdQQHJIlEIpFIJBKJRCKRSC4Vojo+SCRdBWEioDFjxkCjubDbWE1NjcK1\nR6vVoqamBjU1NQgJCTn/fkBAABobG+H1eqFSqc7/W6fTidraWvzud7/Dc889h9dffx1bt25FSUlJ\nq7aLubLQqIvEk7/5f9QLkIgVkAZtBLSaEKqwBhAnWDr5Q4s1LlynFZMhHvf++gGqICA5JgW6QB2S\nY1JoOc32Aiz5YhG10FdSWYwmbyO1gGYyxCMjKZMusGAz3DgCAQigFmPtLhvO1H9PP+bnmRbgRsNN\n1HZ9dpcNJ2qO07dVQxbCAKBf76xOC9L+9jRdAEU2KftBJOGliiVECElnDJ6F1+94nZavs/KfrTBS\nU5XOEJmZmRg4cCAAIDg4GGvXrsWWLVuQlZWF227jFXtbS7r5RbjhRrr5RWrevPJ9isjJmYszDZXU\nMYwIp7ycsg/hhRc5ZR/ScjpqK9DgaaBeJ5bkLUbGkdeoQqBmEauXKmaN7TMIaqgR24cnfhOx30WI\no4FmIXegitsiV8Sziy4oVBH9FSHCvx9adjFbd21M2gQ11NiYtImW84kRyzF+wEQ8MWI5LScAuije\nZIjHs799nv6MIWLfSyQSiUQikUgkEolEIvk3ZnsB7v3kbvpCRomko3Gi6kS7PidMBPRThISEwOVy\nnf9vl8sFnU53wfsejwcajUbRysLlciE0NBQ9evTArFmz0KNHD4SEhOA3v/lNq0RAL9y8nrqy0Gwv\nwB8+/j31AqQPDoeG7LKSXboD39dXIrt0By0nIMa5ZntJFrzwYHvJT7sdtJXm39JL/U23HN6Mtd+u\npjpLZZfugNPtpO+nJm8TNZ+IYo/VacEjnz1MFVhU1lUqIgODNgLBgVqqwMSgjcBl3cPpopVn8lfg\nS/vneCZ/BS2nQRuBEI2Ouq1GXSS2jttOFVNanRZMfn8SXbBT18h1wwEAZwO3/WNS9DisuTmdeq8T\ndYyOHjiamk/SdpbfsJIqFHw2YTXmXH0vnk1YTcsJiBEEiLiXiSApeiwCEEBthSbi/ijCuUaEw0xJ\nZTE88FCFzAC/rafJEI8Hhi2kCxeaWzH2ol7P9cHhUENNHWe3HO/M436+aSF6BfXBfNNCWs55pgWY\nctV06nVUhFBtU1EGPPBgU1EGLWdO2R7sPvYe1anL6rRg0s5x9BaxS/7KXRABiLk+JUQlol9IP1o+\niUQiaS+y3YJEAllslEgkEonEDzBoIxAZEkWvS0jahnw+8C1WpwXJWcnt+uwlFwENHDgQx48fx9mz\nZ9HQ0ICvv/4a11xzDa699lp8/vnnAIBvv/0WMTExAICrr74aBw4cAAB8/vnnuO6663Ds2DFMmzYN\nTU1NcLvd+OabbzB48OCL/u3Xil6mHqyO2gq4PW7qSmoAgIpbSBAxQQ384FyjCaU618Tphygig5bV\n88xV9CJaCiTHpMAQHEH9PUsqi9FIdu0RQXbpDpyqs1EFUCL2Ubr5RTjd1VSXC7vLBkfdKbq7zoCw\nAYrIILt0ByrrT9OFamw7R7vLhnLnMepvanfZcNLJdSnLK8/FqTqum5rVacGGb9dR73V2lw0VtXbq\nd7c6LRi3ldvuQ9J22C4jAOgCIKDZcWLBsMVUxwkRwgURGLQRCAnkii9FUPJ9sSIyiO0zCCqoqGII\nEQKLOP1Q9NNGUh1MRIjNgeb7juNcBfW+s9+aDw881HZoLeNW5vjVqIvE8uFcB9ecsj3Y9t1WqhDG\nUVsBL9nRz2QwKaK/IqKVLwCA7LoINDsaLhi2GDMGz6Lm1agvdFKWSLoacoLZt1idFszOmSH3g6RL\nY7YX4M73x0shkEQikUgkPsaoi8T2CTtlOzAfYnVaMH3PZPl84EOMukhkp2a367OtFgHV1NTAZrPh\n5MmT519tYdeuXcjKykJgYCCWLFmCuXPnYurUqUhJSUHfvn0xatQoBAUFYerUqUhLS8PSpUsBAI89\n9hjS09ORmpoKt9uNMWPGYODAgZg4cSKmTJmCmTNnYuLEibjqqqva9s0JJEWPw4PDFlEdFxy1FWgk\nC4tyyvZg+3dvUyeogeZCgrOxmlpIEIEIu/aEqFsUkYFRF4n/u2kN9YYmwq0pTj8UhuAIarFLRCsN\nEftIRE4AaPJw3ZqAluIpt9A53DgCanI7NEDMRC/blQEAVGpuzoSoRIQF9URCVCItp91lw7+qj1IF\nO47aCri9fMFrQ1MDNZ+k7UzITqJPbLJFCy0wHUEAMcKFOP1QRIb0p94fNxVloMp9lurgcazqmCIy\nGD/wDkVkIKIVmoj9DgCBAdzCvYjxGyBGBCXCEUXE988p24OHP5tPfR5qaVXHbFkXpx+Ky7rrqdcR\nEW3gRDiKxemHIiyoJ/W7mwzx2DnpA7qrltlegFcOplPvoUWOQpRXl9Py+Qu/dB5J0rWQAhTfY9RF\nYlPSFllokXRpTIZ4/GXCbvr4QSKRSCQSSduR41Lf0+hx+3oTujz9w9rnvt+qGetXXnkFr732Gnr2\n7Hn+PZVKhb179/7s5yIjI7Ft2zYAwB13/LsokJiYiMREZdFTrVZjxYoL29ZcccUV+POf/3zB+3/4\nwx/whz/8oTWbfx52y5mcsj1Y9+3zMBlMNCFQUvQ43Gi4iSosEjGZDDQXEgIQQF+hrYGGmlOEwCRO\nPxQR2n7U39RsL8A9H8+mTlTPMy2AxXmC6gJld9lwpv572F022vnUUpToCMUJtgCqpLIYTWhCSWUx\ndYJhvzUf3h8Kncy8GnUALRfw74le5kSjiIKPyRCPnRO5OfPKc1HVcBZ55bm0leTbS7LQ5G3C9pIs\n2rbqg8MRAG6bSgBw1nNboUnaDlvcteXwZjz02TwAoLojmO0FuCN7DHYlf0Q7rkWMDQB+i7/ZcXPw\netErmB03h5ZThDhaxD03KXos0r9dQxeAsfmxUxzrPpYck4JXD75EdYcElO3QWOeSCMFOs+hYTRUd\nx+mHIjQojDqGS45JwYbCtdT9VOQohONcBYochbTjyaCNQK/uvamOYiJaKmaX7kBVw1lkl+6gPruw\nx9gteOCh5mOKyfyF9s4jSbouUoDiH8jfXyKBFABJJBKJROInWJ0WOT71MV4BDsuStnGi6kS7hECt\ncgJ699138emnnyI3N/f8qyNO3LDb7cTph0IXGEqdTJ73yX340v455n1yHy1nkaMQp885+NbqAFRq\nbkc5gzYChpAI6iS1iNWvdpcN35+rpB9TbPMSs70Ab5dmUlepGrQR0PcIp+6j7SVZishgxuBZuDVy\nNLUQbXfZUHnuNHW/J0QlQhcYSnWDAZoLU7279aEWpgzaCERojdR9b9RFYpHpUfpATkTrnI4wCSSi\npaKjtgJNaKSKRfLKc3GyRq4E72wkRCWie0B3+vVsvzUfjd5GqnuLPjgcAaoA6tgg3fwiqhrOUltG\n5pXnwtVUQ3VdTI5JgVYTQr0/iBCCGLQR6NP9Mur1PDkmBfru4XRxTaO3kZrPqIvEkuufoN8bRQg3\nhhtHIIDsEvhjsRKLHwtMWNhdNlTXV5Fbhe5TRE7OXFTUnaJeR0S4IA03joBGpaEeSy3iVBEudV4P\ndxZsuHGEECdLX9JZ5pEklxY5wS+RSCQSiUQikUgA6RQqkQDN50FyVnK7PtsqBUdERATCwnirhX1F\n8nvjqGKITUUZqHZXUVs0iGinUFlXCS+81NXZgJjWZXaXDRW1p6iT6QZtBMKDDdQikskQj/vi5tOd\nRh67bhk956u3ZVBz2l02nHLZqftovmkhdIGhmG9aSMv5TP4K7LV8jGfyL3QYay+O2gq4ycd8dukO\nON3V1KIU0LyfatxOulCtrrGWms9sL8Dcj2ZRr82i+pSyWyqKKMaKaPMjwuGD3eJG0n6YhebF+xbi\nXNM5LN7Hu5YDQMn3xYpIyVlZjCZvE1VkIEKEV+Q4qIgMNhVlwNVYQx2/Nhevuc4teeW5cJyroLed\n7dm958X/URvY8M06eODBhm/W0XKKaF0FNIvfgtRBVPGbQRuB/qFR1HF2s9so1xlURNsyEe0yJ8em\nQg01Jsem0nKKGG/MMy3A8htWUh17DNoIDAiNph9LP44sHLUVaCQLpEsqi+FF51pe11nmkSQSieRS\nIwtdEolEIpFIJM0LBJ4duVouFPAxqs61XqnDYdRFIjs1u12fbZUIaMCAAZg+fTrWrFmD9evXn391\nNMKCepGFICZFZNC8Mp3fdkUEcfqhiAzpT3VCMmgj0LMbdz/ZXTZUkEUrWw5vxtpvV1NXleaU7cHK\nA8upBR+r04Inv3ycOoHgqK1Ao5c76W132XCuqY66jwaEDVBEf2WeaQGmXDWdWkRpwUMuJGSX7kBF\n3SmqYKmkshhur5taiAf4fUpzyvbg9znTqeenCHGNCEQIi5JjUtBX25eWT9I+QgPDqOLL1be8CK1G\ni9W38JxwAGB4vxGKyKCjiPCahQAqqiBARDswR20FvPBQxwYi3IUAoNZdR803JXaqIjIQJeA3GeLx\n+ui36M52GlUgNR8ABJDdRhOiEtG7Wx+qU1lzu0yuo5jJEI89d35C3UdJ0eOwOeltartpAPSxq1EX\niQeGPUid3GtxkGM6yYkiISqx042NOss8kkQikVxK5Ip3iUQikUgkkmasTguWfLFYjot8jEbNn/eT\ntI32tAIDWikC6tu3L0aOHImgoKB2/RF/4VSdjdoSSx8cDjXU1IlfR20FmsgCi4SoROg0/HZDANA9\noAc1nwi7ekdtBdzgrtIVUUiI0w9FP20kVVRV5CjEcee/qMd9nH4oenXrTd1OEQ47sX0GQQUVdeVv\nnH4oDMER1O+eU7YH2797m77aX4RT1zzTAowfMFGIYIlNdb2Tmk8fHA41uXWQCBFCUvRYqBGApOix\ntJwiBK8AEKAKoOaTtJ26xlq6W1iE1kjNBzTfc43a/tR7rohWNqLOFTW5PYyI9k0A6G1sRDi3FDkK\nYXWdoI+LLtddQR0bJEQlIjKEe8wDzZMnaX972u8nTwzaCIQG9qQuCihyFOL7+krqvm9ul9lEHWsB\nYtqPsgVAIhDhgJUckwJDcAS9BaAIYZXdZcPZc2dp+fyBzjKPJJFIJJcSoy4Sm5K2yBXvPoY9RyeR\nSCQSiaTtGHWRWGR6VI6LfIhRF4mt47bLfdBBaZUIyGq1Yt68eRe8OhqB6kBqAbekshgeeKgOFi1t\nOZjtObJLd8DZyG83BAB1jdzV1AlRiYjQ9qMWPcx2syIyEFFIAIDgQK6oSkSRM688F9/XV1KFWvrg\ncKigop+fXnip56eIdnVx+qHo001PLR625L2sWzg175bDm7H72HtUBywR5JXn4lSdjS4mZAs0W453\ndluWCG0/auE0KXocFgxbTC105ZXn4mTNSVo+SftQk502AKDRy3XhApofNnbf+VGXfNjYb82HBx66\ni4UmQEPNlxQ9Dm8lbaVeJ2L7DEIgAqliXhEObEZdJFbe+Cfq8WnURWJXsphjnt3Wszkn93kgrzwX\np+v5reDYiHBFBbpuCxAR1xGjLhIfpuwVci6x97tBG4EBPQdQc/qazjKPJLm0dNVroETyY7ric48/\nIcIJWiKRSCQSSdsx2wtw7yd3w2wv8PWmSCQ+5YDlQLs+16rqT2lpKVwuV7v+gD/Rp/tl1MKoCBeH\nOP0QRWQgasW3iNXUAOBubKTmE9EWKk4/FH26X0af/PVyuzchOSYFvbv1oa5+je0zCAEIoBblcso+\nhBde5JR9SMspgpyyD+GBh7qdRY5CnK6voJ9HRY5CVNY76HnZiHDVEnFtFlE43vDNOkVkYHfZUFHH\nbX+YU7YH6759njoBFttnENStG4JIBHJf3Hyq44TdZYOl+gTdXQjoGBPh+uBwBKq4gvPhxhHQQEMd\nw5kM8dg58QO62wjbacRkiMcbSZup25kQlYheQdx7jqgJCRECGLvLhpNOK/UcLXIU4qTLQh1vJEQl\nom+PCLrjpgjBDhur04LpeybTi+AiiuoicopwLBJxT7I6LZi0cxz1NzDqIjH3mrm0fP5AZ5lHklw6\nZBskiUTiD4gQJkskEolEImk7Bm0EIkOiqHV9SdsQNU8laT1mewFueeuWdn22VRU4tVqNW265Bamp\nqZg1a9b5V0fDXstvB6ZRaejtYVRQUYvXBm0EenXrQ79QiiiKZ5fuwOn6Cqpr0bGqY4rIIK88F5Xn\nTtMLNNUNVdR8dpcNrsYa+uS3SsVt+TE7bg56BvXC7Lg5tJwzBs/CgmGLMWMw71oV1i1MERmIcKpq\nwQuuqkyEAEyEq5aIa/OZc2cUkcGU2KmKyEBEaz2Afyy1OOl1BaqqqrBs2TLMmjULZ86cwdKlS1FV\nxb3Wt5e1366mOnuJao0DgO5AJqLVlMkQj/eTc6iiFZMhHrvu/Igu2BHRboiN1WnB8+b/oz5kFjkK\ncbbhe+o9R8SExJbDm/HQZ/OEOO95VWTFOfj3CADQBekE5Ayl5ityFMJawxVAAcDpWgc1nwjBitVp\nQfJ73JwteZmY7QWYmD2WLtIrchSi3HmMuu+3HN6MRz99lJbPH+gs80iSS4dsgySRSPwF5nySpH2c\nqDrh602QSCQSiY8x6iKxfcJO+XzgY9xNfOd/SesxaCMQFRbVrs+2qhfAI4880q7k/gizLZKjtgKN\n5PYwcfqhCA0Ko65S/bGlPlMQIQIRRTkRTkAinEayS3egou4Uskt3YJ5pASWnQRsBQzC3NVBzWyRu\nkdfussHprobdZaPd0M32AmwofBFJ0WNpxc7kmBSs+/saqrOSiONTJCpy+yB9cDgCEECdYBFxbRZx\nbeooiBB8Mq+d/s6TTz6JG2+8EQcPHoRWq0V4eDgeeeQRvPbaa77eNMy5+l7quCBOPxRRugF0p40W\nQQQA2vYmRCUiMqQ/1WkEgJCVKR1BsCMCoy4Ss6+eS33QT4oehydvWEFvN5R+68vU7RThhHMesl5H\nHxxOb7kMAIEBgdR8Rl0k1iSsox9P7FXi2aU74DhXQX0e+LFghfX9ixyFOF7NzWl1WnDbtpvw6ZTP\naTkdtRVwe/niaIAvfkuISoRRZ6Tm9DWdaR5JcumQE/y+x+q0yP3gY+Q+8C1mewHufH88/jJhd5d9\nFvM1VqcFsz5KxcH/PejrTZFIJBKJj5FjIt9D9oSQtBGjLhKfzPykXZ9tVTVXpVL911dH5MpeV9Jy\ntQiKmMKi7NIdqGo4S3XCEdH6ABDjjCFCXCMipwhajk3mMQoAgWpuEaWlyMMs9mwvyUKTtwnbS7Jo\nOXPKPkSjt5Heuutswxnqqt8ix0FF9GcctRVoJLvMiHAOySvfp4hdCZHOUkz8ffuYWCwWpKamQq1W\nIygoCA899BDsdruvNwsAkHHkNWqbN6MuEjsn7aE/nIlwdjPqIrHI9Bh1W2ULCy45ZXvw8Gfzqceo\n2V6AVQVPU11BrE4LHs57kL7fQ7vxnXAAwOPlurAZtBG4XHcFVQBn1EVi6fXL6Ofn/L3/S99PbNFj\nckwK+vaIoArOk6LH4e6r76GKlZKix2HcgAnUnOnmF1FZfxrp5hdpOeP0Q9GrW2/6forTD8Vl3cLp\nebtrulPz+ZrONI8kkXQVpN2/77E6LZj8/iS5D3yIyRAvBUASiUQikfgJckzke7x8A3DJJaJVIqB1\n69adf61Zswb/8z//g40bN4reNjpst4nkmBT06X4ZdZJ2uHGEIjIochTiTAO33Q4gTrTCRoSLhQgh\njD44HBoBK6nPNdVR8+235sMLL/Zb82k54/RDFJGByWBSRH8lIeoWRWQh4rgXgYjtnBybChVUmByb\nSsuZEJWI8B59qWJKEYKdjuIslRQ9FmoV11XKXwkICIDT6Txf9Dp27BjUZEet9jIg9Ap6AZPdJhNo\nFm68dHAtVbghQmDS1VtYsB/Kk6LHYc3N6VSRAQA0eZuo+QCg0cO3xa0Q4FxSUlmMJjShpLKYllOE\nNbPZXoC5ObOo57zdZUO58xi1Ra6IllhGXSRy7tpL/T23HN6MjCOvUdvLPZO/AruPvYdn8lfQcraM\n25jjt7zyXHxfX0m/NxU5ClFZ76A+X9tdNlidVlo+f6CzzCNJLi1ykt/3SLt/32J32WCpKaeOWSRt\nR4TDq6T1GHWR2HiHHDNIJBJJV0eKo/2DRq98PvAlVqcFyVnJ7fpsq6pQmZmZ519vv/023nvvPWg0\nreok5lew3SbsLhuq66uoD2YtriVM9xJRYgAReeP0QxGs0VKLkseqjikigxbHGqZzDQB4PdzV2UWO\nQlhqTlAnqEWIv0S4SokQWIg45kW51ohwwNp9dJciMkiISoQuUEcV15RUFsMLL7XIaXfZUFl32u8n\n4kScSyIoqSymu1H4K/Pnz8fMmTNx8uRJ3H///Zg+fToWLlzo680CAGRP5Lr2tLTtYhaagebjxe1x\nU89pUQITEdeIjvCgK8IFyeq0YPXXq6g5RbQ0BQAN2XUx3fwiqhrOUh1RAHHumOyFBiWVxXCDe84D\nQJOHKwArchTiWPW/6N+fzYzBs3Br5Giqm9rsuDnQakIwO24OLWfL/mbud5GOsOx2YCZDPFKv5gmg\n/IHOMo8kuXRIV0X/gN2SU9I2TIZ4ZE/cI11ofIgIobekbVidFjzwwQO+3oxLRk1NzUX/TVNTE5Yu\nXYqpU6di2rRpKC0txfHjxzFt2jRMnz4dTz31FDw/1BW2bduGO++8E1OmTMG+fc3zzefOncP8+fMx\nffp03HPPPfj++++FfieJRCJhIGJBl6RtNC9Yssh94EOMukhkp2a367PtWorev39/lJWVtesP+hqm\nIMBRWwG3l9saRwSxfQZBAw1i+wzy9aZclLSvnkZtowtpXz1NyxnWLUwRGeiCQhWRgYjV2SLQB4cj\nSB1EdSyyOE8oIoOk6LGKyEBEIUHEqmegeT+x3c/GD7xDERlsKsqA0+3EpqIMWk4RiDg/Z8fNQRC6\ncQto3xcrIgORbRq7AjfddBMyMjKwatUqpKSk4P3330dCQoKvNwsAqPdaQFyxVUReq9OCtX9/njqx\na7YXYOLOsfRWU5N28ieg2fma26s9ShWV5ZXnwuo6QXXw0AeHQ6PSUO+NIlpXPZuwGnOuvhfPJqym\n5QTEjOFyyvZgVs40qquWCAG/iPu4CHG41WnBze8Mp56jz+SvwF7Lx1TXnrzyXLgaa6jnpwghc0da\nDPNM/gq8dfAtWj5/pCPPI0kuDV3dVdEfMOoisSZhndwHki5NkaMQx6uP+b3QuzNj1EViw+0bfL0Z\nwti3bx+ee+45uFwujB07Frfeeiu2bNly0c8AwDvvvIOFCxfihRdeQFpaGhYuXIitW7fC6/Vi7969\ncDgcyMzMxDvvvIM33ngDa9asQUNDA95++23ExMRg69atmDRpEl566aVL8VUlkg6PFIRKujqO2go0\nehv9XgfR2ekf1r9dn2uVCGjp0qWK15QpUxATE9OuP+hrDp0+SMvVUdrtGLQR6NW9N93KVMRE7fB+\nIxSRktM4AmqoqS3WRLSaErlSlYnJEI/XR79FXZUkoiVWS7syZtsyfXA41FBTi2ciVj0DP7gdkN3P\nRFzzRLSvEnEuFTkOKiKDdPOLaEA91elh6W+WIRBBWPqbZbScIl21ugJfffUV7r//fiQkJOCKK65A\namoqvvnmG19vFgBg23dbMe+T+2j5/nnmn4rIQsS1V4SDh6O2Ag2eBup1t8hRiONO7nZanRaM3XEr\nXQA15yNu+yYRmAzxeGPMZuoYxmwvwD2fzKZ/d7Y4GBAzhhNxjxAh4Bfx3CIi55NfLEW1uwpPfrGU\nllPE7yliXJQckwJdYCi1JIutCAAAIABJREFU1bao5ysR+77ZXUlLy+cPdKZ5JImkq2B1WrDki8Wy\n4OVDzPYC3Pn+eL8fV3dmkqLH4ckbVtBdYyWtx+q04J5d9/h6M4Sxfv163Hnnnfjggw8wZMgQ5Obm\nYseOHT/7mdtuuw0rV64EAJw8eRKhoaE4fPgwrr/+egDNC9Dy8/Nx8OBBXHPNNQgKCoJOp0NUVBRK\nSkpgNpsxcuTI8/92//79Yr+kRNIJsDotmL5nshwX+RCDNgJRugGyTacPkeOijk2rREDXX3/9+dcN\nN9yABx54AM8//7zobRPCjcaRtFwiVqmKEJfklefCca6CulITaBbXqMjiGhETtY7aCnjgoRblRBQ6\nRQgs9MHhCFQHUgunVqcFy/Mf9/vBjwjxV0llMTzwUAU7Iq4jQEvRnOsEJIL9J/MVkYE+OBwBKu53\nj9T1V0R/zbmpKANuNFCdlUQUD9nHuz+zatUqrFjR7L4QHR2N1157Dc8884yPt+rf+LvoFhBz7e0o\niBgbZJfugL3WhuzSn59kbAv7rflo9LqpwtsZg2dhwbDF1BZGVqcFK/Y/RR/DNDVx20yZ7QWY8Jck\nevHH6rTgyS+5YzgRzy4iWs+KcMrbe/wTRWRQ11iniAy+tH6hiAxq3DWKyCCvPBdOdzX9mVUEvbr3\nUkQG2aU74Gp00fL5A51pHklyaZDtwHyPdGPyPSZDPF69LUO2A/MhZnsBVhU8LYVYPqbWXevrTRDK\nwIEDkZeXh8TERGi1Wrjd7ot+RqPR4LHHHsPKlStxxx13wOv1QqVSAQC0Wi2cTidqamqg0+nOf0ar\n1aKmpkbxfsu/lUgkEn/HqItE+q0vy7GpDzHbC/Cc+U9yXORjDlgOtOtzrRIBVVRUIDk5GcnJyZg0\naRJuvvlmpKent+sP+hrmRJ0IRIhLRK2AzCn7EF54kFP2IS2niO8vYoVyh8LLTSfCPUGUe4SqfR0P\nfxJRgh0RNBfNuW0vRFxLYnsPUkQGJZXFaPJyv3tVfZUiMhBRQBIh2JH8Murr6xWr3gcOHIjGxkYf\nbpESfxfdAs1tTVVQUduaihDJ6oPDoQG31dSMwbNwa+RoqhBGxLVHRE6zvQAvH1xHfci0u2w4XvUv\nah9rR20FGsG1xS2pLIYbbrrwTYSzlAhEtDRdP+oV3Bo5GutHvULLuWzEU4rIYPzACYrI4Pe/vlsR\nGdwdNxcBqgDcHTeXllOEqErUc6AIJyCm6M1f6EzzSJJLgxSg+Afy9/ctVqcFj3z2sBTD+RqVrzeg\na2N32XDSedLXmyGMyy67DCtXrsShQ4cwcuRIPPvss+jXr1+rPrtq1Sp89NFHePLJJ1FfX3/+fZfL\nhdDQUISEhMDlcine1+l0ivdb/q1EIvl5ZJtU32N1WjB/7//KcZEPMRni8acbn5MCdR9ithfglrfa\n10XnZyvkq1evxtKlS5GRkaGwcX700Ufx0UcftesPdiacDdWKyEBEEUUUItr4iPj+IlYoiyC2zyAE\nqAKoRU4A8Hg91HwiBDsi9ntJZTGa0EgtoIk4lkRcR0SRV75PERmIWO3fURBRQBIhVhKR0+bqvJM5\n/0l0dDSee+45lJaWorS0FC+88AIGDBjQqs8WFhZi5syZ//X/1dXVYerUqTh69CgAwO1245FHHsH0\n6dNx1113Ye/evayv0Gp2H92liCyaRcdequjYoI1AP20k306WPFn8TP4K7LV8jGfyV9ByihB0ihDJ\nOmor4Pa4qeIaR20F3GTBTkdCxBhORLs+ES1NzfYC/NX2GVVUZtBG4HLdFdTryIzBs7D8hpVU4V9S\n9DhsTnqbat1sMsRjd/LH1EmgB659UBEZiHheBbr2+LU1yHkkyS9BFll8T07ZHl9vQpcmu3QHTtVx\nXTslbcNkiMfGUZtkscuHmAzxSB/beYXDzz//POLi4rB582YEBwejf//+F3VL3LlzJ1599VUAQI8e\nPaBSqfDrX/8aBw40OwN8/vnnuO666zBkyBCYzWbU19fD6XTi6NGjiImJwbXXXovPPvvs/L81mfy7\nTiJpRgoffIvVacHDeQ/K/eBD7C4bjldzF/NJ2obZXoAlf10knYB8iEEbgYiQ9s09/qwIaPTo0bj+\n+usRHByssHL+7W9/e37Q0dFgriwU0cpFRFFYlMuKCEQUkUQUJ4SJVsjuJSKKKMkxKQgNDENyTAot\np4iCpCgHLDZx+iGKyKLIcVARGeiCQhWRgQjRwJYjmxWRgQgBmMV5QhEZHD37nSIyEPHda92dq93F\nz/HMM8+gtrYWixYtwmOPPYba2lo8/fTTF/3cxo0bsWzZMsXKrhaKioowY8YMnDjx72Pn/fffR8+e\nPbF161a8/vrr53vFXwymO8L4gXcoIgtRRdyggEBqvpLKYjR6ueLT2XFzEBygxey4ObScIpwxkqLH\nKiIDEeO3ZsgWiR0IEaJOEe36RLTBA4D6pguvp/6G1WlB+t9fpE8yMgXcLTz5xVJqvpZjqCO0fhTx\nfP3WoTdpuXxNZ5xHkki6CjllezArZ5oUAvmQ4cYRCFAF0FssS1qP1WnB4399VBZ9fYjZXoB5H87z\n9WYI4/3338ekSZNw+eWXAwBMJhPuvvvnXTtHjx6NI0eOYMaMGZg7dy4ef/xxLF++HOnp6UhNTYXb\n7caYMWOg1+sxc+ZMTJ8+Hb///e/x0EMPoVu3bpg2bRq+++47TJs2DVlZWZg3r/P+vp0F2SZVIvnB\nfdvbdRfz+QMGbQR6d+/DX0graRNBmqB2fU7zc/9zyJAhGDJkCG677TYEBASgvLwcMTExOHfuHIKD\ng9v1BzsTP7Ysn2daQMkpoigsyl0ots8gqKGmOteIaGUjoj2JCIGFCEQUUfLKc1HtrkJeeS5tlbKw\ntiwqbk4Rv+fuo++fj8xV3yJEiiLOzxYxCFMUEt3zSnzt+Buie/JWZ//YBYm5kp7NwJ5XKSIDUcXY\nrkJYWBieeqrtrWKioqKQnp6ORx999IL/19DQgA0bNij+X1JSEsaMGQMA8Hq9CAgIaNXfYQtrRJAQ\nlYjLuoUjISqRmrehyU3NlxCVCKO2P3U7s0t3oLbJhezSHbSxZosTF9ORq2WMxXbtaSKP30Rcy38s\nqvLn+wPQLNJa++1qqliruV0f93lAxDh7wzfrzseM2zMpOe0uG066LLC7bDTninTzizjTUIl084t4\nNmE1JeeSvMXIOPIaANBy3r79Nnzt+Btu334bPpj8KSWniMUwItpJAsA80wJU1VfRrssA8PaEd/Hb\nt6+j5fMlch5JIum4iJibkbQNR20FmrzcxXyStpFXngtLzQnqvKekbRi0EZ26zf3u3bvR1NSEKVOm\nYO3atdi1axcWLVr0s58JDg7G2rVrL3j/z3/+8wXvTZkyBVOmTFG816NHD6xbt+6XbbjkkiLbpPoe\noy4SW8dtl/vAh8Tph6KfNhJx+qG+3pQuS5GjEDbXSRQ5CuW54EO83vYtav1ZJ6AWDh06hIkTJ+L+\n++/H6dOnkZiYiL/+9a/t+oOdiV/1jlVEBglRtygiAxETqkDzg6kXXuqDqYgVyiKYHJuqiAxEuCCJ\nICEqEaFBYdQip4h2CgDg8TZR84lwFxo/cIIisugorQVFiFYitP0UkcE/vi9RRAYihFoiHFNEOCt1\nBZKTkwEAsbGxGDRo0PlXy39fjDFjxkCj+e9abZPJhIgI5fVSq9UiJCQENTU1ePDBB7Fw4cKL/o0F\nwxZTJzX1weFQQUUvGthdNpyud1CtX+0uG6w1J6g5jbpI3HVVKvWBaLhxBDTQUFcC3x03VxEZxOmH\nQhcYKuChnOvaM9+0EN0DemC+6eLnR2sR4YIkSvgmwmlle0kWvPBge0kWLed800LoAkOp++nWy0cp\nIoOSymK4PW7q7yniWVAEG5M2QQMNNiZt8vWm/Cz7rfnwwov91nxqXqvTgqzSLdRVuevNa1F6ppSW\nzx/oiPNIcqW175H7wLcYtBHo3e0yudLXh8hFOL6noziLd2byynNxynXK15shjIyMDHz22We47bbb\n4HQ6sXv3bkyaNMnXmyXxQ2TBXSIBemh6+HoTujRx+qG4XHeFFGJ1UFolAlqzZg22bt2K0NBQhIeH\n489//jP+7//+T/S2CSE8uC8tlwghSEdq3dVS5GMW+0S0shHxAC2iiCLCZUUE2aU7UN1QRe1PbtRF\nIv3Wl6kD25yyD+GBBzllH9JyijiWOor4C+g47aucDdWKyOCuX01RRAbDjSOghppa3BdxPLVMADMn\ngplFWH8lOzsbQHPf9uLi4vOvkpISFBeLaXVis9kwa9YsTJw4EXfccfGWXOu/fYHaz1dUsfXNojcA\neH+IHES07lpvXou1367GevOFq/Pai8kQjzuvmgKTIZ6WU8QYJt38IpzuaqSbX6TlFEF26Q6ca6qj\njmFaxhnM8YbdZUOV+0yH6Hk+OTYVKqipz0N2lw3nGuuo3z8hKhG6wFCqsErEPffHblUsRAiL8spz\n0YhG5JXn0nKKELC3jLHYLVWyS3fAXmujXkuu7MVzsPQXOuI8kmy54Ftk2wvfU+QoREWdHUWOQl9v\nSpelxb2O7WInaT0i2idLJEDz/NDOnTuRk5OD0aNHw+PxIDg4GPv27cPOnTt9vXkSieQ/sDotmL5n\nshyb+pjAgEBfb0KXxqiLxMob/yRFiT7G3c6OBq0SAXk8Huj1+vP/feWVnW+Cqj382FaeRcvkH3MS\nMDkmBT3UwUiOSaHlBJqLHV54qUWPB659UBH9lYSoRAQHaKmFhHmmBRg/YCLVVl6EC5SIY9TqtOAP\nH82mDqhmx81Bz6BemB03h5ZTRAu8pOixUENNdRAQRY27RhEZiHACErGdovCSXS5EiAmDA7WKKGkb\nDz300CX5O6dPn8acOXPwyCOP4K677mrVZ5rQRL2Hi7g/AMD4gXcoIoOO0tbzmfwV2PbdVjyTv4KW\nMyEqEX26X0Ydw4gQGeiDwxFIbuspQmSQFD0WAaoA6n3cUVsBt8dNbwMhomWdQRuBgWFXUoWijtoK\nuL3c759dugNOdzVVtCHCfW9ybCoCEEAVVYlAxAr52D6DoFEFUsfZIkR6gJj7XVL0OMyLn0fL5w90\nxHmkZ0eulpObPsSoi8Qi06NyH/gY9jOqpG20LKhgL6yQtB4RTp8SCQAcOHDg/Ovvf/87brrpJlRX\nV59/TyKRSCRKjLpI3Bv3v/L5wIeY7QW495O7qQuJJW3D7rLhRHX7jBlaJQIyGAzYt28fVCoVqqur\n8fLLL6NfP16blUuJLiiUlmtK7FRFZCDCCWhTUQbqPLXYVJRBywkANtdJRWTQ0kqA2VIgts8gBCCA\nOqGcbn4RtU0u6or3LYc3Y/ex97DlMK/ljohiV5x+KCJD+lPt3/LKc2F1naCuJra7bKhqOEtdRe6o\nrYAHHnpRTq0KoOYDxBS4Y3sPUkQGIlx7RGyniGJXcwsVL/V6JwIRv6e/Cy+YXHnllVi/fj2++OIL\nFBQUnH+1lV27diEr66ePlVdeeQXV1dV46aWXMHPmTMycORPnzp27aF5m8VqUm2GcfigMwRHU+46I\ndnzJMSkIC+pJF12zKXIUovLcab9f4W3QRqCv1kAVl8T2GYRAcEUGBm0EIkOiqNsZpx8KnYbfXs2o\ni8TuOz+iTp4YdZEYd8UEv5+QmWdagClXTaeK7WcMnoU5V99LbatoMsRj9c1rqe5fSdHjMOfqe5EU\nPY6a84Wb11NzGrQRMIZEUs+lJ0Ysx/gBE/HEiOW0nC2ooKLm23J4M9YXrKfm9DUdcR5pyReL5Upf\nH2K2F2Dux7PkBLOkS1NVX6WIkkuPKBGxpPUkRCWiVzfeXLa/kJaWdv41c+ZMpKWl4fHHH8eECROQ\nlpbm682TSCT/gVEXia3jtvv9fEdnJqdsDx7+bD5yyvb4elO6LAZtxPmXxDeUVBbD7RHoBLRixQrs\n2rULNpsNo0aNQnFxMVas4K1IvpQw3RFEFLtEWJaLWKUKAMP7jVBEBi0iLaZYy1FbgSY0UYUbcfoh\nisggISoRIRoddXW2CCcgAHA3NVLz7T+Zr4gMns7/f/DCi6fz/x8tp4gWDY7aCjSSV7uL4oOyXYrI\nIN/6hSIyEDFptvvoLkX0V0q+L1ZEf83JvHb6O2fPnsWBAwfw2muvYd26dVi3bh3S09Nb9dnIyEhs\n27YNAHDHHXcgNVXpDJGZmYmBAwcCAJYtW4Yvv/wSmZmZ51/du3fnfpmLMNw4Ahp1IL3tit1lQ2Xd\naaqoMzkmBaFBYVTBTpGjEFUNZ6nimkOnDyoig47SetbussFWc5K6302GeCy9YTlVYAEA9U0XF9y1\nhU1FGXA2VtMF/ADoLcZEtMETMd7KKduDbd9tpU4c5ZTtQcaR16g5zfYCLP5sAbUAvuXwZmQceY26\n0MDqtGB5/uN0sUQQ2eY7p2wPdh97jz5hmBQ9DmtuTqeKoFoWrnQmOuI80qakLXKS34e0TG4yW5ZK\nJB0NUXO4ktYjYtGrpG3klefiTD13LtufeP7557F69WoAQF1dHV566aVWzxNJJBJJVyJOPxT9tJH0\nRXKStlHn5s57StpGQlQi+oW0b0FVq0RAmzdvxpo1a/DVV1/hwIEDWLduHcLDedb8lxJmEVOEDbgI\n29eEqEToAkOp4hJAjNOIyWBSRAaVdZWKyOBY1TFFZLCpKAM1jU5qwUfEque88lycqrNRXXsitP0U\nkcF1husVkYEI54i3Dr2piCxEtMQK69ZTERmMMI5URAYiiuZlZ/+piAxEHE8hgSGKyECEE9Cr326g\n5fJ3WgQ56enpeOmll5CZmYnNm3mF2F/CgmGL6Q4WGaM30wUWAODxeqj58spzUd1QRb2XbSt5RxEZ\nXB46QBEZiBi/ihAW5ZR9SG9Zl1O2BysPLKcKAvLKc2Gv5Y6LRGG2F2Bi9liqwESE6+R800L0DOqF\n+aaFtJxmu1kRGYgQK20vyUITmqgugSIWBTz5xVI43dV48oultJwA3/VAhJMc0CyCevGb5+kiKLW6\nVdMzHYbONI8kuTSImGeRtI2OIhbvzIhYJCeRdDSYLtz+yL59+7Bx40YAQHh4ON588018/PHHPt4q\niT8iHSp9i9VpwfQ9k+V+8DGh3XiGEZK2I6IeLGk7PQJ7tOtzrZpl2rdvH7zeztET+u64ubRcIiZ+\nRZBdugNOdzWyS3dQ8yZE3aKI/oqIiW8RYiUROXPK9mD7d29Ti12xfQZBDTW1lUaLQxfTqevo2e8U\nkYGIwumvLxuiiCxECDdEbKsI96/xAycoIgMRAigRx5OI6/I3p75WRAZGovDJ3ykpKcGECRMwZswY\n3HrrrZg6dSrKy8t9vVkAgJcL11HFAFanBY989jD94Xi/NR9NaKIKpEXcy4IDtYrIQITzoAixkojr\n2RMjluNGw03UNj764HBoVBrog3lF6ISoRESG9KeK7ZOixyIAAUiKHkvLCTS7DzZ4G6jugyLa7gJA\nRDtXuPwUIn7TybGpCFAFYHJs6sX/cSsRcR8XcX4+cO2DUEONB659kJYzu3QHKupOUZ9Z7S4bHLUV\ndAesIkchjjv/RXV+c9RWtNve2V/piPNIU3ZNkpP8PkREq2hJ2xDhAiuRdDRELAKTtI3OLkRsbGxU\ntG93uzvXGFDCweq0YHbODDk2lXRpjLpIrElYJ91afUhsn0FQQUWf95O0HrvLhvKz7asntUoE1LNn\nTyQlJeHhhx/G0qVLz786Ihu+WUfLJcJpQwQiJn4BMe1xRKzSFYGI1VH64HAEkAtTlXWV8MJLdUFy\n1FbAC6/ft68KD+6riAxECP9ETXSKmLwTIawSkbPFZcbf3WY6ipBUhLCBLXrzZx5//HE89NBDOHDg\nAP72t79h7ty5WLJkia83CwDoYoDs0h04VWeji45FjGMctRXwwEP9/iKcuFpWQDJXQg7seZUiMhAx\nfltvXosv7Z9T20wZtBHo3f0yah9roy4Si0yPUSckDNoIRIT0o/fbFjF+FdF216iLxNLrl1F/U5Mh\nHk/c8EeqU5nJEI/VN62l5kyKHofNSW9T20zF6YfCqO1PdcMxaCPQuxv3XBpuHAGNSkNtKSlCRAqI\nuebpg8M7XTuwjjiPdLz6GF00Jmk9x6uPKaLk0mO2/00RJZeeWrdLESWXnpoGpyJKLj1bjrzl600Q\nytSpU3HnnXdi1apVWLVqFe666y5MmzbN15sl8TOMukjZqtbHGHWR2Dpuu9wHPsTqtODunN9JMZwP\nKakshhde2bLZhzhqK9DobWzXZ1slAkpOTsZ9992HkSNH4vrrrz//6ojUNdbRcoloYZQck4KwoJ5I\njkmh5RTF8H4jFNFfEdGmQITAwlFbgSZvo9+La/TB4fDCSxUriSjwzjcthC5QR20lMd+0ED0CelBz\ninLUGj/wDkVkcOvloxTRX6lrrFVEBiJckETsexEOHy2DbOZgm9mqzd/xer245ZZ/7+NRo0ahtpZ3\nbP5SmCLRlsIts4ALiBEuiDhXRLj2iBBci3DfE5Hzg7JdisigyFGIijo71b0jp2wPHvpsHtV10e6y\n4WSNlV6IFjEmjtMPhU4TShWYmO0FmPvRLKpTmYhWcGZ7AR77/GHqdoqioamemi+vPBen6yuodtDN\nIr0+VGGRiGMeaHaWUkNNdZZqEdR1JjriPFITuf2opG2cazyniJJLj/aHhR9a4gIQSdv40vq5Ikou\nPSec5YooufQEqgN9vQlCmT17Np577jno9XpERETgueeew/Tp0329WRI/RIpPfI9cIOBbskt3wF7L\nX3AqaT0zBs/CgmGLMWPwLF9vSpclKXoclv62fQuqWi0C+m+vlv/XkThWVUbLNSBsgCIyKHIUoqrh\nLLU40VLgYxb6AKDIcVARGYgoIonop93SVo7ZXk7Efmpud8Jt0ZBT9qEiMhBR4C1yFMLpdlLPpezS\nHahrqqMOOl799mVFZPHWoTcVkcGxqmOKyODavtcpIoPqH1yVqonuSh/9a48iMhAhQmh5MGE+oHTX\ndFdEBl1pYv+6667DSy+9hNOnT+PMmTPYsmULBg4ciJMnT+LkyZO+3jzqPXz131YpIgsRwlsRbnEi\nECG4FuG2IaLQPkQ/TBFZeMFtTSPCyTGn7EN44KGOtQAxY+JNRRlwNlZjU1EGLaejtgJur5sqjI/T\nD0WfbnqqWEnEduaU7cHvc6ZTxUrZpTvgOFdBHb+KcCnLK89FRd0pqrBIVLs6gzYCYUG96G5dnY2O\nOI/U5G2UKxx9yJHKIkWUXHoq604rouTS0+hpVETJpafl/i7v876jswqw9u1rdgLfuXMnysrK0Lt3\nb4SGhqK0tBQ7d+708dZJJJL/xGwvwKT3bu8QC386K8kxKQjv0bdDmGZ0Vsz2Arx0cK08D3xITtke\npP01rV2fbZUI6Of4uR7vhYWFmDlz5gXv5+bmIiUlBampqdi2bRsAwOPxYPny5UhNTcXMmTNx/Phx\nAMDx48cxbdo0TJ8+HU899RQ8nuaVWdu2bcOdd96JKVOmnB9AtYbxAye15ev9LC2TicxJRRFiCBGT\ntAAwOTZVERkMN46AGmpqYWrpb5ZBBRWW/mYZLef2kixFZCBiPzW3O+G2aBAhfhPhHiFCVCWiyHnX\nr6YoIosemh6KyEBE67Kq+ipFZDD/2ocVkcGQ8GsU0V950PSQIjK40ThSERmwV+T7M3v37sW7776L\nKVOmICUlBW+88Qb+/ve/43e/+91/HSN1ZEQ4ZgFihDAiXHtE9EhOiEpE3x4RSIhKpOU0aCMwIDTa\n7ye1J8emQq1SU8eZIsYGIpwcRYjigRbxuooqYhexraLE4afrK6ji8Dj9UIQGhVGFRSIcN0WMX1ta\nVzG3UxRs4R/QLKw601BJFVYxj/eOwM/NI/mSYI2Wes+VtI2z7rOKKLn0VNRVKKLk0iNFQL6nzHlU\nESWXngZPg683QQhFRc0i1wMHDvzXl0Tyn8gWSL7FoI1AhJbfql3SNkKDuHNjkrZRUlkMt8ctF8v4\nkDj9UESFRbXrs79YBKRSqf7r+xs3bsSyZctQX6+0Hne73UhLS0NGRgYyMzORlZWF06dP49NPP0VD\nQwOysrKwaNEiPPvsswCAtLQ0LFy4EFu3boXX68XevXvhcDiQmZmJd955B2+88QbWrFmDhobWDQ7f\nKc78ZV/4RzyW97Ai+iuinIBaTnrmyV9SWQwPPNSc8z65D154Me+T+2g5dUGhishAxH4SUUSJ7TMI\ngapAapFzvzVfERmIcK3Ze/wTRfTXnAAwsOdVishgz9H3FJHBu/94WxEZtPQOZ/YQF7EickrsVEVk\n8OQXSxSRwTenvlZEBkWOb2m5/J3c3NyffN1zzz0+3TZtQAi1vaEIkSggRiSbEJUIXaCOWujbb82H\nF17qvQwAevfoTc1n1EVi+4SdVFvpGYNnYfkNK+nWsBqVhppPxNhA1DhbFBpVADWfiJauIhYF6IPD\noSE7NmWX7kBVw1mqEESE42Zsn0HQqDTUsXtL6yqm+E3E+SnKVUvE2IiZqyPwU/NIvqa20YV084u+\n3owuS4toT4R4T9I63HArouTSU+etU0TJpUdei3xPZ2uR2sKDDz4IABg/fjzS0tIUrx+3kZdIgGYB\n0OycGVII5GPcTVKUK+nanDl3RhElvqG9XTp+sQjop4iKikJ6evoF7x89ehRRUVEICwtDUFAQTCYT\nCgoKYDabMXJks8vAsGHDcOjQIQDA4cOHz/eNv+mmm5Cfn4+DBw/immuuQVBQEHQ6HaKiolBSUtKq\n7Zo6iLfq/paoUYrIQMRKTVEkRCWiR0AwtYAm4oKybMRTisjg6NnvFJFBc+suNXWCPjkmBfru4VS7\nPJMhHslXTobJEE/LOc+0AOMHTMQ80wJaThGuNbdePkoRGYgQggCAyWBSRAb9Qy9XRAZ3/WqaIjIw\nGa5XRAbjB05QRAb64HCooaYWJG/od6MiMggO1Coigzhye5+OSlYWz02uPbiaaqiuGKKcB0UU7zcV\nZcDpdlJbGIm45xqON4dNAAAgAElEQVR1kbg37n/pfeDZ+axOC94r+wt1cspkiMfro9+ijjeSoscq\nIgMRx31yTAp6BATT7Y5LKovRSG51ow8OR6AqkHp+NjtZeqgCE0dtBRrJjk0imB03B/ru4ZgdN4ea\nV60S9thP44kRyzF+wEQ8MWI5LaeI8TAAPHDtg4rIgNkaV/LLYLb/lUgkEolE0nY88Ph6E4TwwQcf\nYOfOnXjyySexc+fO8693330Xzz33nK83T+JnGHWReHbkavr8jaT1FDkKcdJloc6dStpOYECgrzeh\nS9O8UC+AulBP0nba6xIqbDZwzJgx0GguXL1bU1MDnU53/r+1Wi1qampQU1ODkJCQ8+8HBASgsbER\nXq/3/CoxrVYLp9P5kzlaw5fWz9v7lS5g99Gdishg/8l8RWQgSqmXbn4RdU211JVyFucJRWTwZtEb\nisjA7rIpIgNHbQW88NKLEz2796TmeyZ/BbZ9txXP5K+g5dxyeDN2H3sPWw5vpuWscdcoIgMRK5RF\nuDUBwKvfvqyIDGoanIrIoMWdjenSduDkl4rI4Jn9f1REBvut+f+fvXMPi7pM//97OArDiEqDM86I\nhq1BLtE6UqutyeL6lSJTs9RwQbO2rd9qWdrBPHSt2trBzQzbbTuYaVpqpmZstBVRffMQTl9pMsmS\nBGdiZETBYQY5zfz+YMfts50A388c4Hldl9dd6Nw8n/mcn/v9vG944KG6hsRFxikiA3eLSxEZfH36\nCC1XKBMMrTCY1540bToSY/pTW+MAYor3i0YtxVjj/1CLzQAQHsZ1WSmqKMQ9H8xFUQW3IMnOZ9AY\ncXGfVOrklM1pxdI9D1KFRSKcB0U4AYl4xgbaBefhCKcKznVqPTRRvan22O0iWW6rKRHPWyIWbxg0\nRtyRPpd6LunUesRH9aHuo+zkHCy9Yjmyk3NoOYsqCvHmsV3065MIRDjiMlvjSs6PM8RFJBKJRCKR\nSCQ+GhoasH//frhcLkUbsIMHD+Luu+8O9PAkQYbNacUDHy2QTkABRBubCBVUIdEGu7sianGkpHOE\nITidfHsKdlc1rGe6di84bxFQZwtYcXFxcLn+U0h0uVzQaDTf+7nH40FERATCwsIU/7Z3794/mqMj\nxEfzBBEPXblcERmsHfcMrtRdhbXjnqHlFOUu9EjmKlypuwqPZK6i5RQh3Lg57RZFZDDjknxFZKCN\nTUSYilvwAIAzTTzBBiCucMpGxH4X4SAw0jAKKqjoSlrfNYR5LRllGK2IDDL0v1ZEBiLccHz3DuY9\nJFQQsdp9/IW8omEoE+hWGHddtoDqwGZxlKGm8URIrJDZdGgD3rP+iyo+Lakqht1djZKqYlrONG06\nkjSDqcKqoopC5BfdRC20P1CyAFu/2owHShbQclocZTh25hvq8SSiddWMYfm4tF86tRXajSnToIIK\nN6ZMo+X0wbbW33FkO0411VJbYrWLZNuoYi0R70MzhuVjrPF/qPt+06ENWLZ/Cf3a5DhbQ702me2l\nWFm6DGZ7KS2nKGG8CCyOzxSRwaJRS/Hgbx6k5Qt2gkEI/WNEh0cHeggSiUQikUi6IVOnTsXKlSvx\n5JNPKlqBrVixAtdccw0A/GBnDUnPxKAxYtYlt0jxQwAprz0MDzzUxR+SziFqcaSk44hoBy/pHDq1\nHr2je3fps+ctArrttts69e+HDBmCyspK1NXVobm5GQcOHMCvfvUrDB8+HB9+2O7Sc/DgQQwdOhQA\ncMkll2D//v0AgA8//BAjRozApZdeCrPZjKamJjidThw9evTcv/85Dtj3d2q8P8WfP16iiAyKKgrx\nsf1D6kVNlBPQpkMb8LH9Q+oktQgXi6c/fUoRGYj4Th3uGrSRnQ5KqopxopFbkBRROBUxkV5U8ZYi\nBmvOFy0vwAsv1akKABa8P08RGdS4TygiA587G9OlraLua0VkIKLF2HuV7ygigy9PlSsiAxHOGcw2\nfZKus6tiO3VFkTY2EeFk9w5ATGFYhCNKZlIW+kT3pbZJNWiM2DmpkDrpI8K5JjPpt4rIIE2bjr5R\nCVQBlIhtn/3PPHx2qgyz/8lrOVxeexheeOkTTSv2/FkRGYgQ14hwBhXxrPnwnmV4z/ovqjumCFdY\nITlte9DiaaE+G/gE8Uxh/JtHdysii7mmeYgJj8VcE+85GwCS+yZT8wUzPzePVFZWhry8719Xi4uL\nMWXKFEybNg1bt24F0L6AbOnSpZg2bRry8vJQWVkJAKisrMRNN92E3NxcPPTQQ/B4OtZa5GTzyU5u\njUQikUgkEknHGTly5I/+XXExbw5fEtpI8UPgyUzKgjFuIHWeT9J5vAjeBSQ9gTRtOnpHxdOd/yUd\nZ8eR7XC4HV367E+KgFJSUpCamnruT1paGtLT05GamoqMjAwAOKdS/jl2796NLVu2IDIyEg888ABu\nueUWTJ8+HVOmTEH//v0xbtw4REVFYfr06Vi5ciUWLlwIALj//vtRUFCAadOmoaWlBePHj4dWq0Ve\nXh5yc3Mxc+ZM3H333YiO7thqLab7wIxLZipisNLesy+M7jSSEJOgiAx8K56ZK5+H9PmFIjIQMUkt\nongqon2VCETs92rXt4rIID46XhEZiBC+AUBCzAWKyEDEuTRQk6SIDE6fPaWIDMprDykigxH/FhSN\nIAqLROQUIVZiur1Jug7bZUXUyoA5prvorkUAFG6TDEqqilHXdJoqvPXlZSJCyKyNTURUWBT1Gaak\nqhinm2up25+ZlAVdrD7oJ3BECfjHDhqniAxEiGtEiMpCBb16gCIyGDlglCIGKyJExyn9UhWRRUlV\nMRrb3PSFFrfuvpWWL5Cc7zzSc889h8WLF6OpqUnx85aWFqxcuRLr1q3Dxo0bsWXLFpw8eRLvvvsu\nmpubsWXLFsyfPx+PPPIIAGDlypWYN28eNm/eDK/Xi/fee0/cRkskEolEIpEQCGa3RIl/yU7OwUvZ\nm6ktmCWdw6AxYr7pfunGFHBkK6pAsuPIdtQ311EdwCWdY/LQKeiv7t+lz0b81F+Wl7c7CTz00EMY\nPnw4rrvuOqhUKrz99tv46KOPfja50Wg8tzprwoQJ536elZWFrCzl5HtYWBiWLfv+KsoLL7wQL7/8\n8vd+PnXqVEydOvVnx/DfuFtcP/+POsjHto/ORVZhqqTq/XORdYP/rm2dSZdByQmIWZn/3clf1lgH\nxw9WRAa+ldnM71RE8VSEaEUEIr5PEUWU8lOHFZGBCHcdQEzR42jdV4rIQBMVr4gMxgzMwtEvvsaY\ngbwib0rCMHx2qgwpCcNoOUUI1UTso6a2s4rIgCmmCmU62spUFBGqCKpoIzs5BxuyX6FPUNicVpTY\n3sMs52zqi7eK/BIpQni76dAG3P3BHACgtRyaY7oL9U31VFGVSZeBXZPeoj5nzhiWj9NnT1NbLQFA\nXCT3vBvefwTePLYLw/uPoOUU4YQDAPVN9YrIQBPVWxEZiHjHeCRzFSrPHKO2MV40aikO2D+htsjN\nTr4aT5c9SW096zuHmOfS5KFTUHBwNSYPnULLKYLJQ6fgH5/9jT5OEYthfA513YHznUdKSkpCQUEB\n7rvvPsXPjx49iqSkJMTHt783mEwmlJaW4uDBgxg9ur1d8WWXXYbPP/8cAHDo0CFcfnm7MP6qq67C\nxx9/jHHjeCJIiUQikUgkEjaBbhsvCS6k80Zg8bkxJcQkSDFWgNDGJiJCgOu8RBJq9Iro1aXPdWgJ\n9GeffYaJEyeeewgZP348LBZLl35hoGGuqBXhtCFiIl3EJCUgpkAhojghoiiXmZSF+Kh46kpys92s\niAxEiFZEHE8icooQf9U2nlREBiJW5QPApycOKCKD2Ei1IjLw3by6ehP7IT44XqyIDESIqkQcTyL2\nUXR4L0VkoI3tmnI5FNm3bx+mT58OAKioqMDYsWPx6aefAgA2bOC1VewKYSquEw4AIS/FBo0R67M3\nUQVAOrUe2pj+0Kn1tJzZyVcjDOHU4r2IZxifqIrZCg4AVQAEtI9z21ev0sfpbHZS87U7boZT3SFv\nTJmGMIRRHRIBwKQzKSID3/HOPO4v6nuRIjIoqihEsfUdqpX6WvMafGz/EGvNa2g5TboMPHj5Q/Tz\nie1+ZXGU4XTTKaqb3BzTXVh6xXKqQNGgMWL91S/TV26KEr2Gh3UPEZCPrs4jjR8/HhER31+v1tDQ\noBBQq9VqNDQ0oKGhAXFx/3FVDQ8PR2trK7xe77nfrVar4XRyr/8SiUQikUgkEokobE4rcgtvpM+J\nSDpOmjYdhjijFGMFmDa0BXoIPRoRXXEkncPiKENlfWWXPtuh6k9MTAy2b98Ot9uNhoYGbNq0CX36\n9OnSLww0fXv1DfQQ/I6INlMAYNQMVEQGIpxrRORst0Crp1qgiRCtiLD/bz+euO4RvlzBrugd1Huw\nIjLITMpCn6i+9OJMY2ujIjIQcTzVN9UpIoPUf7v1pBJde0QIFK8dcp0iMhCxj264eKoiSjrHo48+\nes7pMDk5Gc8++ywefvjhAI+qnTsuvZNeaDbbS6n5fLALuHZXNeyub2F3VdNy6tR6DIgbQBUWiXiG\nabczvo/+nYrY942tbmq+kqpinGisprdYY7tKmXQZWHzFn+nnpwi+6+bIQhubiEhVJP1ZMzKMm3Ok\nYRTCyQKwoopCLN+/lCpWsjmtmLQzJyQmj9mTSjanFXe8e6uQba9trKXn7G6w55Hi4uLgcv3H2dnl\nckGj0Xzv5x6PBxEREYq2ny6XC7178xZaSSQSiUQikUgkku5PuOonm+lIBFNU8Ra88KKo4q1AD6XH\nIqJ1u6RznM/8U4dEQI8//jjeeecdXHnllRgzZgz27duHxx57rMu/NJAkEt0HfJOJzElFESt0He4a\neOChtpkCQscJyCf8YgrARGx7SkKqIjLwOV8xHbDa25a1Uo8n302ceTMX4wD1W0VkUFJVjLrm0/SC\npAhe+3KrIgYrItxw3v6mUBEZWByfKSIDEcf9kwceV0QGNnKLm2CmqakJQ4cOPff/Q4YMQWtrawBH\n9B/WHFyFTYd4bkRmeymuf+NaIWIQds69tj1oQxv1BcbuqobDXUMVFs0x3YW7LltAdcYw20vxh3dm\nUb9Ts70UE3deTc1pd1Xj2wYb9fsUQXntYbShlSqCESEEAcS4l8wYlo/VY9ZSW02ZdBl4YfwGqghK\nRMs6nVqPC+OHUIV/adp09I/VUVcaWhxlqHR+Q3Xt0cYm0ltKmu2lmLTrGup1xOIoQ+WZY9RtB/7T\nqpF5DwWgEK10B9jzSEOGDEFlZSXq6urQ3NyMAwcO4Fe/+hWGDx+ODz/8EABw8ODBc89dl1xyCfbv\n3w8A+PDDDzFiBK9to0QikUgkEokIhgwZEughSIIEg8aIJzKfoi/gknQcu6sa37qsQT8v1Z3JTr4a\n4Squ67qkc4hw65Z0jpSEVESqIrv02Q7NMhkMBhQUFODVV1/Fxo0bsXr1avTvH5qtPGrcJ2i5Rugu\nV0QGadp0RIf1ok78tvdN5E7SAmIEESJaCogQ14jY9lWfPKqIDERYtWljExGGMOrxJGK/z0qbjdgI\nNWalzablFIEI0QYA/PKCSxWRgYhr3qXayxSRgbvFpYgMHhy5VBEZVJ45pogMnM1nFJHBRX0vVkRO\nzqE//4+6CcnJyXj88cdx5MgRHDlyBKtXr8bgwYMDPSwAEFK4v9f0oBB3oet2ZlMLwyIEwjq1Hn2i\n+1EFAaJad7W28YVovpYrTDweDzVfZlIWtL0Sqe57mUlZuCCamzM7OQdPjCkQ0l5PhI01u+WwzWnF\nko8fDHrnGoPGiG3X7aROyooQE/pWDNGda7zcdADg9XCTZifn4OZL/kA/l0SJ30pmltDyBQOseaTd\nu3djy5YtiIyMxAMPPIBbbrkF06dPx5QpU9C/f3+MGzcOUVFRmD59OlauXImFCxcCAO6//34UFBRg\n2rRpaGlpwfjx49mbKJFIJBKJRNJpnE4nVq5cieuvvx5Tp07F6tWr0djY7uS+atWqAI9OEizYnFY8\n8NGCoH8v7s443DVo8bTQzRUkncPrFTD5IOkwojoNSTqOTq1HbGRslz7bIRGQxWLB+PHjsXDhQjz4\n4IPIzMxEWRl3NZ2/OFx7iJZr51fbFJHBgvfnoclzFgven0fLqVProYnuTS1KAe1FhJjwWGox4UXL\nC4rIYMWePysiA7PdrIgMFlx+vyIyEOGws618CzzwYFv5FlpOEa0kdhzZDneri9qy7R8H/66IDI7W\nfaWILESIQT4/+ZkiMhDRVlCEA9bW8lcVkcHMX96siAxuTJmmiAyuNIxWRAYWx0FarmDn4Ycfhtvt\nxvz583H//ffD7XZjxYoVgR4WAK44FhDnXlJeexgtnhbqPSIlIRXhqgjqd2BxlOFEYzXVccKgMWJ9\n9iaqyKDduaaN+n2adBmYmDyFKgBrdx5so0622F3VqG+uowos7K5q1Lecpua0Oa141vJ3+mSfzWlF\nbuGN1LxFFYXIL7qJet5bHGWocnLdW8z2UkzcwXWrAkB9zgTEuJTNGJaPqb/IpQpWRJyfOrUeg+IH\nU99ZNx3agHVfPEt37AH4Av7uyPnMIxmNRmzd2u4+OmHCBEyb1v5sm5WVhe3bt+P111/HjBkzALQ7\nKC1btgyvvvoqtmzZcm4F/YUXXoiXX34ZW7ZswcqVKxEeHt6h322IMXR2UyUSiUQikUg6zKJFixAR\nEYGVK1di2bJlcLvdWLJkSaCHJQkyRLVyl3QcUeYKko6z17YHHnhkK6oAImIeWdI5CsxPor65a92T\nOiQCevjhh7F69Wq8/vrr2LlzJ9auXYvly5d36RcGmjnDeeKaKwZcqYgMVv32SUSporHqt0/Scu44\nsh2nmmrpk9Qr961AY5sbK/fxipk3p92iiAxEuJfMSpuNSETRXWYiwO0xumjUUlw7eCIWjeK5l4gQ\nGYhARGs5EcdSY2ujIrIQ4lb12ycRpYqiXp8+PXFAERlc3C9FERlMTZmuiAy0sYlQQUV9kRAh/Cs/\ndVgRGcwbcS8tV7ATHx+Phx56CLt378aOHTuwaNEiaDSaDn22rKwMeXl5P/h3jY2NmD59Oo4ePdrh\nz/w3Oa+PoxfEvQKsIUQIdgAgQtWxYmBHSdOmQxerpzutsG2HUxJSERkWSf0+H96zDFu/2oyH9yyj\n5RTRbggA2sjuQqG2MuxU4ylqPhEuM2nadCTGcFtiOdw1aPY2U/fTWvMaLNu/BGvNa2g5Jw+dgpjw\nGEweOoWWc9OhDdj61WaqECY7OQcXx6dQHXYMGiOS4gZTJ7lnDMvH0iuWUwVQQPs1b83BVdRrntle\nit+88BtavmAgVOeRzhAXUUgkEolEIpH8N5WVlbj33ntx8cUXIyUlBYsWLcKXX34Z6GFJggwRrdwl\nncfLN72WdILJQ6dAHR5HnSORSEKN8zFQ6JAIyO12Iz39P5Owl112GZqamrr8SwPJm0ffoOUaOWCU\nIjKwOMrQ7G2irnwV1bNv4a8XIxKRWPjrxbScIhxhTDqTIjJYuW8FWtBMFUA53DVoRSu1OFFUUYg3\nj+2irs72jY85Tl8bCXY7CTaD4wcrIoNBvQcrIgsRblXrLevQ7G3Gess6Wk6fIwzTGaahpUERGXx9\n+mtFZFBU8Ra88FIFOyKOURFYHDw3qWAlJSUFqamp3/vj+/nP8dxzz2Hx4sU/+LxlsVgwY8YMHD9+\nvMOf+SHYrm5p2nSoI+KEtBtia4tMugzsnPRPqnON3VWNuiauI4zZXorJu3Kokz4mXQYeG72auu0i\nnrV0aj0GxBmpriDtq1daqc+ZIkQwBo0RCy9fTF/xV1JVjBON1SipKqblFNEOze6qxqmzJ6nnkoj7\nuAgKzE+isa0RBWae4Np3z2Xeeye/fi3K6w9j8uvX0nLO/mce3rP+C7P/2TEha0ewOa1Y839/pbtq\niWhlvNe2B63gt2oMJKE6j3R18oRAD0EikUgkEkk35sILL8T//d//nfv/8vLyoGkbLwku2O2SJZ2j\nvPYw2rzcOSRJ59hxZDtcbQ10gwtJxxHRdUPSOc7H6KJDIqD4+Hi8++675/7/3XffRZ8+fbr8SwMJ\ns9DuswBnWoGLmKAWUZwAgCUfLUQLWrDko4W0nCIuKCK2X4RjkQhEbLuInCKOexFiiFC64cVHxysi\nAxEtxib94kZFZFDbeFIRGVidxxWRgYh9JKLQV1H3tSIy0ET1puUKVsrLy3H48OHv/fH9/OdISkpC\nQUHBD/5dc3Mznn76aSQnJ3f4Mz8G0y2swPwkXK0N1OI1IEa4IQKTLgPPjnuRKq7RqfXoE92XKoQx\n20tx/4f3UIVF2thERIVF8V17vNyCeGZSFhKiL6AKVlISUhGp4jorme2luOVf+fQVfykJqYggu2rZ\nXdVoaD1DFew43DVo9XKF8XNMd+GuyxZgjukuWk4R3JgyDWEIozpuimi9+sfL7lBEBstHr0RMeCyW\nj15Jy7ly3wrUN9dRF24AYpwXuyOhOo8UFxkX6CH0WOIj4hVRIpFIJJLuRFZWFsaOHYsDBw5gxowZ\nyMnJwXXXXYcpU6Z8z+VZItGp9UhU96fOB0kkoYYogwtJx+nbq68iSvzP+dS4O9R7aNmyZbjvvvuw\naNEieL1eJCUl4bHHHuvyLw0klWeO0XKJKOCKKDSLclmZmjIdbx7bRW2PI2L7RRGpiqTmEyGEEbHv\nUxJSEYYwagFppGGUIjIQIdgR0RbJJ4ZgiyJEtEMTUUQSISwSQY37hCIyEHG9uzFlGtZ98Sy1eDjj\nknwc+OATzLiE20qjp1BfX4/CwkKcPn0aXu9/VvDMmTPnJz83fvx4WK0/7FxgMv2w28pPfebHYAo6\n55rmYcuRzZhr4rVeBdrbuVgcn1HbuZjtpZi06xrsnMhzA7I5rVj5yQqkadNpDi4WRxlOuO2wOMpo\nOR3uGrR4ue2rTLoM/D5lFlUAZXGUwdpwnLrtFkcZTjXVUnOadBl4Y3IRddvLaw+jxdOC8trD1LwA\nhLhq3TdiEXWcadp0XNBLS3UVszmt2PDFi5iVNpu270VMhDjcNfDAQxdAfTeyUIHri25xlKGxrZF6\nfl47ZAK2frUZ1w7hOrtkJ1+Np8uepDoBjTSMQji4bSoDTajOIzEF0hJJqKGCCl546dd4ScdRh6nh\n8rigDlMHeigSScCIRjSaEPzugZ1l48aNAICWlhb87//+L+rq6mAwGAAAKpW87kqU2F3VcDTWwO6q\nprsESzpGqHSv6M58t9sFsx25pOOEkjGC5Pt0yAnowgsvxLZt2/D++++juLgYr7322vdWn4cK7JY7\nbOaa5kEdoaYW0EQ5AYnAN+HGnHjLTMpCfFQ8ddU3AHjZVRQBiNj3e2174IEHe217aDl97WiYbWlE\niGBEtAAUJYKpdn2riAxEiKBECItEtFgb3n+EIjIQIQATcS6JcBc6WvcVLVew86c//Qn79u2Dx+MJ\n9FC+x+oxa6nCGoujDO5WF7WlKdDe2nLdF89SW1vq1HpoYxKDfkVVmjYdvSPjqWKI7OQc3HnZfOrL\n81rzGqz74lmsNa+h5RRBmjYdSZrBYlrWEclMyoK2F7fFlo/wcK7IoKiiEMv3L6WenxZHGU6edVCv\nJQXmJ3G6uZbqVJaZlAWDeiB1P6Vp0zFIcyH9GGULgLKTc/DEmALqdaT9fcVLfW/JTs7BhuxX6JOF\nJl0Gdk9+my7Siwjv0BqtkCEU55G0vRKD/h7RnRmhu0IRJf4nLjxOESX+x+P1KKLE/0T8e810RMfW\nTksE0CuiV6CHIASDwQCDwYDVq1dj165dsFqt+OSTT/DJJ59g//79gR6eJMgw6TJw/4jF/IVBkg6j\njU2ECiq667Wk44gw4pB0jk9PHFBEif/JTMqCJkrTpc/+5NPskiVLsHz5cuTl5f2gGnnDhg1d+qXd\nBREig5KqYrhaXSipKqYV5mYMy8drX26lFvqA9ptgGMKoN8GSqvfPRdZk7Y4j21HfXI8dR7bTJsDL\naw+j9d/9QFkPYpOHTsGjnzyMyUOnUPIBYlrWzTHdhfqmemoxITPpt1j3xbNU8ZdJZ1JEBiJUr3NN\n87Dxi/V05wy9eoAiMkjpl6qIDELF/UvE9T47+Wo8dfCv1FXkIoRFDS0Nishg7KBxePPYLlq+YKa+\nvh4vv/xyoIfxg7AFBtnJOXgpezO92JqmTYcuVk8tytld1ahu+Ja6osqgMeK2tDuoK7R2HNmO+pY6\n6jNMUUUh1hxcBZPORNtXk4dOwVMHn6A+w4hwSDRojHhm3PPUfWS2l2LyrhzsmFhIeya0u6pxpqWe\nvuLPpMugul8BYsQg2ck5WHLFMmrOuaZ52PH1durzlkFjxJvXv03dRyKOUaD9vGd+nzanFeu/eKFd\nCEUa64xh+ThWf4z+zhoqgg6TLgNbb9ga6GFQCOV5JMfZGqoblaRz2P79TmgL8nfD7szF/VJxwPEJ\nLia+80s6hzpSjcbmRqgjpRNQoBikGYyjzq8xSDM40EPpscz65R+w5uCqQA9DGF9++SXeeust6f4j\n+Ul8C24u6nuRdEAJEHtte+CFF3tte6QYK0DIdmCBZ3j/EXjz2C7q4nhJ51hvWQdns7NLn/1JJ6Bp\n09rbidxxxx2YM2fO9/6EIswWKSIQIdp4oGQBPrZ/iAdKFtByAmIcYUQUsEXcKN6rfEcRGRSYn0ST\n9yx1hbIIpazNacWWI5tgc3au5cxPIcKxSEROEcdSgflJtKCZut+B0GmzJeKcF+Eolp18NVRQUQU7\nT3/6FLzw4ulPn6LlFEFt40lFlHSOoUOH4vPPPz/vPLt378aWLTyHJwCYtDOHei0HxBRb7a5q1DWd\nht1VTctZVPEW2tCGooq3iDkLcfcHc6iOKL72MMx2mSKwOMpQ13Sa6twiotWSzWnFncV3UI97nVqP\n/rF6qquUTq2HXj1AiFMVe+LK5rTi6YNPUb9Ts70Ujx5YAbO9lJbToDFi87Vb6YV9dj6b04oHPlpA\n/T6LKgoxs2c06doAACAASURBVCiXem0yaIxYn72JLqh79vOnqfvd5rQit/BG+r3OJ/5jj/Xut++m\n5QskoTyPFBUWJVf6BpCL+g5VRIn/iQ7vpYgS//PrAVcqosT/jBmYpYgS//Ox7cNAD0EoQ4YMgcPh\nCPQwJEGOiAU3ks4hBSiBR8QCQUnnEFELl3SOz092vUPHT4qAfvnLXwIAHn/8cVx++eXf+xOKMIs9\nItrtzEqbjZjwGMxKm03LKcLFAcC5ghSzMCXCveW7fSNZiGgNJEK4MNIwChGqCOo+2nFkO+zuauw4\nsp2WUwQiXHu+61TFQkQ7LECMuEZEOzARQjURD4cOdw288MLhrqHlFHEdmZU2G5qI3tR7yC8vuFQR\nGWQmZaFfr360fMFIVlYWxo4di3379mHq1KnIzMzE2LFjz/3pCEajEVu3trsCTJgw4VxRzcfGjRsx\nZMiQH/3Mz1HlPEYVbYgqtpp0GXh23ItU8cKstNnQ9kqkniui2q+Gh3HbN4lCBe4qxpSEVESoIpGS\nwFuJbndVo+pMJVVQBgAiFnDGRMTykwrA7qrG8Qb+d+r1cNvuihDXiMCgMWK+6T6quCZNm45Bvflt\n8NgCKJMuA69f9yZdqOZucVPzAWLEfxZHGb6p+4aWL5CE8jzSrklvyVW+AWTsoHGKKPE/N1w8VREl\n/kfEPIGkc1SeOaaIEv+T3Kd7F9zPnj2L7OxsTJ8+Hfn5+ef+SCTfRcSCG4kk1JAClMAj3w8Cz/nU\n5X5SBOQjISEBBw4cQHNzc5d/UbDAdMW4dsgERWSw3rIOjW2NWG9ZR8t5c9otUEGFm9NuoeUEcM4B\niOkEJKJ4Hyp9I0WIlURMUItYmZ8Qk6CIwYoIoZYoRbkIkWJcZJwiMhCx/SKOURHnpwghpcVRBmfr\nGaqww+d+xHRBKqkqxqmzp2j5gpGNGzdiw4YNePXVV7Fo0SKkpaVh6NChyM/Px4svvhjo4QGAkNZd\nLW0t1HxA+8THX82PUSc+DBoj/nVjCbWILeJeZtJl0AuS2thERKoiqU4HIkQGOrUeg3tfSHfYuSAm\nkZrzu63lWBg0RmzO2SakHQ3TuQRo/051sVzXIp1aj0Hxg6k5RTjXiMBsL8Uf351Nd0HaMbEw6Lcd\n4DtV2V3VOOGupovUACA2kivUy07Owc5pO6k5A00oziNJAVBgsTg+U0SJ/xHhTi7pHCLmMySd40rD\naEWU+B/mvGMw8sc//hHPPPMM7rnnnpBxS5T4H7urGtaGKiHvMpKOIV1oAo8UoAQeKcQKPEfrvury\nZzskAvr888/x+9//HpdeeilSU1ORkpKC1NTQ7A/NdMUQgYjCfXntYXjhRXktz70jlAiVF+jB8YMV\nkUH7xLed+rCYkpCKcIRTV+a/eXS3IjIQIS7RxiYiTBVGLZz6crFt5/XqAYrIQIQISpRzBhsR5+eL\nlhcUkYEIsZIIwSfz+hGsGAwGGAwGbN68GXv27MGkSZMwZcoU7N+/Hy+//HKghwcAIWMpLMIZw5eX\nSXZyDjZkv0L/XtkFSZ1aj0FkcY0IkYFBY8S263ZSc9pd1ag966A+F+nUegzUDKK37hIlAJq08xq6\nECgqPJKaz6AxYusE7r735Q12RLnhhMK2i8Cky8COiYVCvk8RQr3rUq6j5gs0oTiPJFdaBxYRbraS\nztHeBjuMugBEIgk1RLhgSzoH2y092Pghp8Rgd0uU+B+TLgMrf7NKitQDSH1TvSJK/I8UqAee2Ei1\nIkr8z/k4hHZIBLRv3z6Ul5ejvLwchw8fPhd7OiKUoCMHjFJEBqJcVkSILKzO44rIQERbKBHbnpmU\nhcSY/shM4vWcLq89jFZvC10AFhEeQc0n4rjXxiZCBRVVXFNU8RY8Xg+1reC28i2KyMKnDj0flag/\nEHF+ikDEqlQRx70I57PJQ6cgApGYPHQKLSfzHAp2Pv74YxQUFGDs2LH43e9+h6eeegofffRRoIcl\njEiyGABoFy7c9s7NdOGCCEQIq9gFSRHiGl9eNiLaDbEFAQaNEQVj/x46IgsBrcsiwvjnfch8nwKQ\nk7xcRH2fPfkY7SihOI8koq2ppOOIWHgh6RztbbA91DbYks4RKk7Z3Rmfkz7bUV8ikUg6g9leioX/\nuyAk5sK6KyIMGySdw6QzKaLE/4gwG5B0jvMxOOmQCKi5uRnPPPMM7r//fjQ0NGDt2rUhZensQxPZ\nG7PSZtPyfXrigCIyEPGyl6ZNR3xUPLVFw7m8kX2oedO0lyoiAxEtd0Rgd1Wjvqku6C0eTboM3D9i\nMXVCXYQQpKjiLXjhpYoNRAgsbkyZBhVUuDFlGi0nAIwdNE4RGWQn52DqL3KpRW4RgrqUhFSooKK6\nzfj2D3M/iRAWiRBSLnh/HlrRggXvz6Pl7Em0tbWhtbVV8f/h4eEBHJE4RDkj6NR6GOOS6E4roYDN\nacWNb0wSIgSScLA5rZj73h30fSSiCG3SZeC5cevpIihRrcskEklo013mkSSSnoQIZ1lJ5wgVt+Tu\njG8hZU911JdIJMFBeztzbY+cCwsWbk67BSqopCg0gMiWbIFHCrFCmw6JgJYtWwa3241Dhw4hPDwc\nVVVVWLRokeix0XG2nEFJVTEt35A+v1BEBiIuaust61DfXI/1lnW0nACw48h21LfUYceR7bScIsQg\nIlrZiNhPOrUemsh46oOdCFFZUUUhlu1fgqKKQlpOES3bRNycRFhAimrXJ0IIs9a8Blu/2oy15jW0\nnCIQ8Z36VkIyV0SKsLv3WSYzrZOvHXKdIko6x4QJE5Cfn4+NGzdi48aNmDlzJq699tpADwsAsOnQ\nBnpOUW4wIeW0QkT2gOditpdi0i5uOyy7qxrHnZXUfWRzWjF5V44QYdHKT1ZIUZlEQkCEUO+FT3kt\nYoOBUJxHkqLGwCIdUAKPnOQPPPI8CDyZSVnoG92P6tQu6RwjDaMQju65eEoi6Sh2VzUc7ho5HxRA\nRNVtJB1HxIJnSeeQAvXAcz413g6JgA4dOoR77rkHERERiImJwaOPPhr0Ns4/BrN3oIiXYxFiiOzk\nqxGuCqf39BYhiBCRc6RhFMIQRnUCErGfSqqKcbKphipU08YmIhKR1JZYIi76KQmpCEc4VbCijU1E\npIq77SIsIEX1NRXxkDp56BREqaKpbaHStOnoE9WX6igm4jsVcdyHygSriPMzO/lqhKk69AgS8tx+\n++2444478O2338Jms+H222/H7bffHuhhAQDu/mAOXQgkoihqc1pxT8mdPbI9h0mXgWfHvUhvZ9MT\nv0ugXXCdpBlEFVzr1Hro4wZQc1ocZTh25htYHGW0nBKJhIcIod6mQxtw6+5bafmCgVCcR5ICoMCS\npk2HQT2Q7mIt6ThyHwQebWwiwhFOncuSdI6SqmKcbjpFnZ+VdJ7u6qAskXQUnVqP2Ig46QQUQES4\n+Es6h4jOMZLOsffbPYoo8T8r9vy5y5/tUAVOpVIpbJtPnz4NlUrV5V8aKEQIYVTgfg+iBAEer4ea\nDxBTwBbVAz4Uis2ZSVm4IDqRutJEp9YjPrpv0LsLiUCn1qNvr37Ubb92yARF7Gms3LcCzd4mrNy3\ngpZzx5HtqGs+TXUUm5U2G9peidT2j6GCCIGiw10DDzxUF6Ty2sNC7kvBypgxY3D//ffjgQceQGZm\nZqCHc47VY9ZixrB8Wj6b04rcwhuFCExaPS30nKGAzWnFX82PUb9TUS3GQgGDxoitE3bSi7wxEbHU\nfGnadFwQnUgvwBk0RjyR+ZQscksk54kIod6MYfl4fsLztHzBQHeZR5L4l9jImEAPocfTO5rnVCvp\nPCLevyWdI1TmPbszOrUe2lhtoIcRVLS0tODee+9Fbm4ubrjhBrz33nuorKzETTfdhNzcXDz00EPw\neNrn2bZu3Yrrr78eU6dOxfvvvw8AOHv2LObOnYvc3Fz84Q9/wKlTpwK5OZIOsOPIdpxurqXOmUs6\nR2bSbxVR4n9E1cslHSelX6oiSvzP4lEPdfmzHVJG5Ofn4+abb8bJkyfx8MMPY8qUKZg5c2aXf2mg\nUHm5E05p2nTERWioE/QiRDBFFW/BCy+KKt6i5RRFewujMKrjhMNdg1Zva9C/QNtd1TjVdJJq8SjC\nXShNmw5NZG/qcV9eexhtaKO61pRUFaOm8QR120W0gfMJE9kCRRGTFiMHjFJESk4BTl0GjREbrnkl\n6IucW8tfVcRgJU2bDkOckXrOy8m04IApAPLhbnHTcwKA1yskbdBj0BixPnsT9XrW01uMse8NIoQ1\nFkcZTjbV0J2AerKrliQ0YLYbFpkzOzkHG7JfQXZyDjXvLcNvoeYLNN1lHkniX3rqM1+wYNAYZVu8\nAJOdnIMlVyyj32MkHUcbm4gIsrO4pHNYHGX41slzYe8OvPHGG+jTpw82b96M559/HsuXL8fKlSsx\nb948bN68GV6vF++99x4cDgc2btyIV199FS+88AKeeOIJNDc345VXXsHQoUOxefNmTJo0CX/7298C\nvUmSn0FExwxJ5xBRC5JIQo2dX72miBL/s9fWdRemDomArrnmGowePRqnT5/Gyy+/jNmzZ2PKFF47\nGH/RCq4QZL1lHZytZ7Deso6WMyUhFWFkEcystNlIiL6A7oqRpk1HQvQFdDGIFx6qGETEzTolIRVh\nKm57nKKKt+CBhyrWEtHGZ71lHZwt3OP+9NnTihis+HpSMwUr28q3KCILEe2rQmU1lM1pxR/+NSvo\ni5zD+49QRAYi7iEAfzJeG5tId9KTBB67qxon3NVCxCWR4ZH0nMF+jfDBLsKYdBnYMbGQ3mIsVGDv\ndxHCmjRtOoxxshWHpGdRVFGImUW5VNGOiJw+ZHH25+ku80gS/yLimU/SOaQAKLCY7aV49MAKmO2l\ngR5KjyZMOtcFlDRtOpL7Jgd6GEFFdnY27rrrLgCA1+tFeHg4Dh06hMsvvxwAcNVVV2HPnj347LPP\n8Ktf/QpRUVHQaDRISkpCeXk5zGYzRo8efe7f7t27N2DbIukY8dHxiijxP+WnDiuixP+8X/WOIkr8\nz4LLH1BEif+xOo93+bMdEgEtWbIE5eXlKCgoQEFBAT755BP85S9/6fIvDRR69QDqZLqIG7Eo29eo\niChqPqDdaaW26STVaSVURAZ7bXvg8badlwLvvxHRXs3hrkEb2qjHkwi3KhEtjEQdS6owbmu5G1Om\nKSILEVaJIoRF28q3wAMPVQRVUlUMa8Nx6rVJhFAtVFp3WRxlsLmOUx0pfA51ksDCnlgWJS4RsSJZ\nZOuyUKCn9pS3Oa2YtDMnJPa7JorfikOu7pcEM2nadAxQc50HRbgZ+hAhLDpe3/WJnWCku8wjSfyH\nvE8FB1J8Elh0aj2SNIN67PN6MKBT66GN6S/3QQAxaIx44n+eCPQwggq1Wo24uDg0NDTgzjvvxLx5\n8+D1es+1WlWr1XA6nWhoaIBGo1F8rqGhQfFz37+VBDcjDaOggoq6GFnSOUR0RZB0jpSEYYoo8T/S\nESvwpGkv7fJnO1TNLisrw5NPPomsrCz87ne/w5o1a/Dxxx93+ZcGilONtdTV6SIKuCJOqJKqYlS7\nvqUWxAEgMykL/WP0yEzKouUUsf0i9pMIRxgR2y5CtNHuNMJ1FxKBNjYR4Qin2vc63DVo9bRQBRY+\n5yd2uz4RYi0RwqpHMldh6i9y8UjmKlrOGcPysXrMWmqro4v6XqSIDEQIi9ptqyOox72oNnhhHXsE\nkQhk0q5r6JP8oiZKRRSDRLUuC3ZsTitmFc2gC2FCoWBkcZShynmMKmo0aIy4Le0O6jEqosXYd3OH\nAiKEWqFwjIYSIvZRTEQMPaeI1kIiHIZsTisy12fS8gUD3WUeSeJfQuU+1V0x20tx/RvXyntmADFo\njNg6Yac8FwKI3VWN2rOOHts+ORgw20sxbTt3sWR3oLq6Gvn5+Zg4cSImTJiAsO8sVHW5XOjduzfi\n4uLgcrkUP9doNIqf+/6tJLhp75jhpXbMkHSOvd/uUUSJ//HNO4TCYr7uinTECjznUz/sUAVOr9ej\nsrLy3P+fPHkS/fv37/IvDRR9ovtRi1OZSVnQ9kqkimBECFYyk7KgVw+gjtNHZHgENZ+IQrsIdGo9\n+kYnUI8nEX1eM5OykBB9AXXfO9w18JKdRmYMy8ddly2gijZEOKKIEFXNSpuNvlEJ9HZ9ItDGJiKS\n3Bfd5rTiy7rD9Ac5Edc7NpOHToEmojcmD+W1RXC4a9Dq5ba+FNWDOiKMe/+QdB69egD1PmZzWnHj\nG5OEvJixHRfsrmpUN9h65MSuQWPE+uxN1MKC2V6KSTv5ojI2Iu5jRRWFuOeDuXQxALvF2HdzB3tO\nEU5dsqjJJVTc1CyOMnzrslKFf0C7w1CSZjDVYcjiKMM3dd/Q8gUD3WUeSSLpSZh0GfjH79b12Lax\nEgnQfh48O+5FeR4EEJ1aj8F9Bgd6GEHFyZMnMXv2bNx777244YYbAACXXHIJ9u/fDwD48MMPMWLE\nCFx66aUwm81oamqC0+nE0aNHMXToUAwfPhwffPDBuX9rMvE6EUjE4FuAHewLsSUSkVzcL0URJf4n\nLjJOESX+53zqch0SAbW2tmLixIm49dZbcfvttyMnJwcnTpxAfn4+8vN5RXvR1DTaqROAdlc1zrTU\nUwtImUlZiI+KpxewW1pbqfmAf7eIaeBPqrIRITApqSrGyaYaqrtSdvLVUEGF7OSraTktjjLUNp2k\n7iMRTiNmeyn+/tlT1MKMNjYRKqio4xTh3AIA8b34qy9SElIRoYqgviiYdBl4YfwG6kSIQWPEfNN9\n9DY/174+nlqY0sYmIjKMWzguqSqGs/UM9ToiQqgmwlUKAKDippN0nghVJDWf3VWNb+qP0oU1IhwX\nAAg5BoO9IO5DxMpiDzz0nOzv06TLwPPjX6Lex0S1G6pr4j5rAGJcoEQ5S7GRRU0+LW0tgR7Cz5Kd\nnIOXsjcjOzmHmtegMWLnpELqtTQ7OQc7p+2k5QsGuss8kkTSk7A5rfir+bGgv693Z0Ll2ao7I8+D\nwGPQGLF+4vpADyOoeOaZZ3DmzBn87W9/Q15eHvLy8jBv3jwUFBRg2rRpaGlpwfjx46HVapGXl4fc\n3FzMnDkTd999N6Kjo3HTTTfhq6++wk033YQtW7Zgzpw5gd4kyc8gqnuARBJKVJ45pogS/yP3QeCp\ndn3b5c92aBn+3LlzFf8/e3bwO1b8EAnRWuoEvUmXgftHLKZOJu84sh31zfXYcWQ75pjuouU82VRD\nzenDC66/uiiByT8sa5GdfDVtX1kcnykig3aHHS/VwQMAVOQqp06tR0LMBVT3CIe7Bs2eZuq2l9ce\nhgcelNcepu33yUOn4Kn/e4Lq3GJ3VcPmtMLuqqYWEnRqPQxxA+kuHys/WdFe8CSN1WwvxW3v3Iwd\nEwtp+6mkqhg213GUVBXTxH86tR6DNBdSv8/21nphVKGWiJZtIsapU+thlPbmAedsWyM1317bHrSh\nDXtte+iFdvbzhk6thzamP/0aOatoBt1lRwRFFYX0ojh5F51zltp2Ha8dgm9Cn3kfA4BWD1ds/91W\nvkwRu0FjxMTk6+mty0TkZLdDszmtWL7vIfq+F3Eu2ZzWoL+GAEBDi5OeMzKcK04FwL/W/RsR++hX\n+l/RcwaS7jKPJJH0JEQ4Rko6h9wHgUfug8Bjc1rxh7f/gM/u4M27hzqLFy/G4sWLv/fzl19++Xs/\nmzp1KqZOnar4WUxMDJ566ilh45NIuiN69QBFlPgfh/uEIkr8j9wHged8rkEdcgK6/PLLf/JPqFDb\n5KA6ohRVFGL5/qXUleki2oGJarElQrAjAp1aj7iI3tRCn1EzUBEZZCfnYPYlt1EnqtO06dDGJNKt\n6u1urquW2W5WRAaZSVnoE9WX6qplcZShvrmO7n7FLm77iAzjF1KczWeo+XRqPeKj+tJbNRrjBlL3\nvUFjxJ8uu5M6CSSiZZ0IRI3T3eqm5pN0HmvDcer1bI7pLiy9YjldcJymTYcuVk+9l9ld1ahx26mu\nRQaNEY+MXkWfLGavQBXlrOTxcp2A7K5qHKuvoO8j9oR+SVUx7O5qqqubCEEnAGw6tAHL9i/BpkMb\ngjqnzWnFncV3UI99u6sax+q+oR5PRRWFyC+6id4KLvu1sfTznrl/ADHHvUFjxOacbfRrKN1F7t+I\naIOXs1mMYClQdJd5JIl/kc4bgUcKHwKP3AcSCdDc1hzoIUgkAcU3B8+ei5dIQomUhGGKKPE/2tj+\niigJLTokAuouhCOcKljRxiYiXMXNmZmUhX7RCdTi9denv1ZEFg53DVq9rXT3llZvK8prD9Nyimjd\nNdIwCuEIx0jDKFrOTYc2YN0Xz1In6S2OMtQ0nqAWedvbDHmp7YZMOpMiMiipKkZd82nqfgf4gh0R\n55EPtsuHiBaAFkcZTjRWU3MaNEbsnvw2faX/3R/MoReS2E5dadp0DO59Ib0tDZsdR7bD3mAP9DB6\nPKvHrKU7JDCd0nzYXdWoPXuSWrx3uGvQ4m2hXnttTivmvscVLohoB5CmTae7Y5bXHkYb2qjPb+W1\nh9EK7jNhqOB7twh2oT0AHKs/pogM2gVgXMGOw12DVnCft0S04NxxZDtONFZjx5HttJybDm3A3R/M\nob5jiBBci0CU6NHmtOK3W66kixVONZ6i5pNIQg3ZBkkikQQD8loUHKhUsoe8pGcjYhG6pHMcsH+i\niBL/ExcZp4gS/yOdgALP+bQDEyYC8ng8WLp0KaZNm4a8vDxUVlYq/n7nzp2YMGECcnNzsW3bNgBA\nc3Mz5s+fj6lTp2L27Nk4duwYAODQoUO44YYbkJubi+XLl8PjaV9pvGLFClx//fXn+qA6nT9tSR4W\nxt9cr5crCLA4ynCqqZZaEK9vqldEFtrYRESGRVILFCJWPmcmZUHbK5E6Sa1T66GPG0B1LxG16puN\niNZA7QXJC6gFSRFFKRHuVyLEhIAYwY42NhFhCKNvP/s6AvBXzokYZ3ZyDu68bD5VhGHQGJGfOpu6\n/dnJOVh6xXLqOCcPnYL+aqkeDzR/NT9KF6xM3pVDnyx1uGvQ4uEKdkRcz+2uahx3VtKda0zaDOo5\nbXGU0d0xRTxrpSSkIkIVQX3eEDGhL+L5rajiLUVkIaKd7eD4wYrIQIRILzs5B0+MKaDeyzKTstAn\nmus6KcIV9vTZ04rIwKAxYspF0+gt2ybt5N5Dvj79Nbzw0hfDrNy3AnXNp7Fy3wpazpKqYticNlo+\niSQUkS14JBJJMCCvRcGBCHdziSSUEPFuKOkcvSJ6KaLE/3zmOKiIEv8jnYACz7VDJnT5s8JEQO++\n+y6am5uxZcsWzJ8/H4888si5vzt16hSeeuopbNy4ES+//DJ2794Nq9WKrVu3IjY2Flu3bsXixYux\nfPlyAMCSJUvw4IMPYvPmzYiLi8Pu3bsBtIuDnn/+eWzcuBEbN26ERqP5yTElaQZTRRsiVj2LKDTP\nSpuNPlF9MSttNi0n0C6EGaA2Ur/TNG06jHED6S0/6pvqqEU5u6sa1Q3fUnOKQMQKZYe7Bl54qYWZ\nkqpi1DadpLr2iCpKsV179tr2oM3bhr22PbScPkS4FrHbQunUehjiuNcREejUevSLvoA6zqKKQjx1\n8K/U1eki2rKY7aV43PwXmO2ltJwAoI5UU/NJOo+14Tj1umtxlKHyzDF6y8Ts5BxsyH6F7loUpuI+\nBuvUesRH96FeJx7eswzrvngWD+9ZRsuZpk3HoN6D6c9aZ1rqqc9FOrUe/WP11O/ToDFivuk++oQ+\n29UtPjpeEVnU/HvVTg1x9Y4IEVSaNh19ovpSj1Gb04pVB7jCx5KqYtQ1cV0nfaI3pvhNBGvNa7Dm\n4CqsNa+h5bQ4ylDl5N5D5pjuwl2XLaC3qfRNwJzPRMx/w1y4IJGEMrLoLpFIggF5LQosBo0Rhbli\nWrpKJBKJJHRobmtSRIn/Odt6VhEl/sdsN3f5s8JEQGazGaNHjwYAXHbZZfj888/P/Z3VasXFF1+M\nPn36ICwsDGlpaSgrK8PXX3+Nq666CgCQnJyMo0ePAgBOnDiB4cOHAwCGDx8Os9kMj8eDyspKLF26\nFNOnT8drr732s2Padt1O6kO8iBXKIoQ1dlc13K0uIYKVZg//4tvqaeXnBDfnXtsetIEr3NDGJiJS\nxRWAiXDtAfjikpSEVESAey5lJmUhodcF1NXZadp09ItOoBalJg+dgn7RCUJa6LCLkiJW0QNAhCr4\nV/e0t9azUwtTadp0GOKM1OMpJSEVkWGR1HPJpMvA69e9CZMug5azXUgZ3CLKngK7cM9uMyUKky4D\nuya9RT2uS6qKUdN4gioIENEDXoRjmE6tx8C4QfTn1xq3nfr8araX4tZ/zaSKGkU8G4ha8fen4XdC\nBRX+NPxOal42O45sR13zaWpLrJKqYthcXOGjCF60vKCIDES4wopymmW/Y9icVvyr6i26Q50Iceqi\nUUvx4G8epOWTSCQSiUQiCWUGxssWSIFGtsQLLCIcXSWdw+Y8rogS/6OJildEif+pbXQoosT/nE9d\nQJgIqKGhAXFx/+nTFx4ejtbWdiHGoEGD8PXXX+PkyZNobGzE3r174Xa7kZqaivfffx9erxcHDx7E\niRMn0NbWhoEDB+KTT9r7Lr7//vtobGyE2+3G73//ezz++ON4/vnnsXnzZpSXl//kmNgqfp1aD3Vk\nHN3BIiqcWxDXqfXQRPamj7OkqhjVrm+pk+klVcWwu6upOV+0vACP10OdTBexqlSn1mNQ7wup+0mE\na482NhER4LZQ0an10MVxV/tbHGWoPXuSKtooqSrGqaZa6vFpd1XD1dpAF+mJKEranFY8a/k7/SUw\nknzNEwW7MAXwRY8mXQYWZiylChsA0O8fJl0G3p/5PjVnd6SsrAx5eXk/+HeNjY2YPn36OcH0z7Vh\n/SHYBUwRbaaAdtesmUW5VNcsgH9ci3BEmWuah/jIPphrmkfLKcIxzKAxomDs36nP2iLc9xzuGjR7\nmoPec7v+pgAAIABJREFUzXDGsHysHrMWM4bl03ICvmdNrjOqCEQITES0QhPBzWm3QAUVbk67hZZz\n0ailmH3JbVg0aikt56y02UiM6U91mhXxjgEALW0t1Hw+2KJ4AHh47MP0nBKJRCKRSCQSSVdgt9KW\ndI73Kt9RRIn/MWgGKqJE0hOJi9IoosT/aKJ6d/mzwkRAcXFxcLlc5/7f4/EgIiICABAfH4+FCxdi\n7ty5uOeeezBs2DD07dsXU6ZMQVxcHHJzc/HOO+9g2LBhCA8Px1/+8hf84x//wMyZM5GQkIC+ffsi\nJiYG+fn5iImJQVxcHH7961//rAiIzXrLOtQ312G9ZR01r7ulkZpvx5HtqG06SV1NC7Q7rfSP0VOd\nVlISUqGCiupisfDXi6GOiMPCXy+m5bQ5rSj85g3qg7BBY8TSkX+mFtBEuTKEh4dT89ld1Tjh4q72\nF1FIENGiQafWQxc7QIhIj12UBPiFFIPGiIWXL6aLNEWs+F56xXJqwUeE6LGoohDL9i+hiiVsTquQ\nF/8rjFdQ83U3nnvuOSxevBhNTd933LNYLJgxYwaOH//PSpSfasP6Y7ALmNnJOXgpe7OQvGwXMpvT\nihvfmEQ9rrWxiYgKi6IXsAdoDNR8IsRKNqcV95TcSf8+I1R8QQCbzKQsGOMGUp+HAdAFQD7Y7nsi\njnsR7dB8L8zn8+L83+z9do8isogKj6Lmszmt2Gv/mP7e8tLVm+nPb+w2jRKJRCKRSCRdQQofJBJg\nffYm2RovgIhyCJZ0nEG9ByuixP80tZ1VRIn/OX32lCJK/E+169suf1bYLNvw4cPx4YcfAgAOHjyI\noUOHnvu71tZWfPHFF9i8eTPWrFmDiooKDB8+HBaLBSNHjsQrr7yC7OxsDBzYrrD84IMPsGrVKrz0\n0kuoq6vDlVdeiWPHjuGmm25CW1sbWlpa8Omnn2LYsGE/OSb2A7xJZ1JEBhZHGWyu49RV9HNMd2Hp\nFcuprjU+NGT1317bHnjhpbbZsjjK4GptoH6ndlc1qpzH6C0qbnvnZmqLChGuDCZdBh75zV+pTiMi\nVvvr1HoYew+kimt8xyXz+ASAyDC+E46ooqSrtYGaz2wvxR/fnU097kUU9832Ujx24GHqOGcMy8fS\nK5bTC73sNnAGjRGPjF5Ff/Hfb91PzdfdSEpKQkFBwQ/+XXNzM55++mkkJyef+9lPtWH1JyKcEWxO\nK9Z/8QL1nLa7qnG8oZJ6HzfpMvDo6Ceo90eDxojNOduo55+INjYAXyRq0mXgsatWU7/P2sZaRWRg\n0Bjx3P+sD3oxq49WL38/3XHpndT9NHnoFCREX0BtlZqdfDXCEIbs5KtpOUcOGKWIDEy6DNyeNpfu\n6HemiddSEGg/Pue+dwf1ONWp9RgUz3eqChXHSYlEIpFIJMGBzWlFbuGNUggk6fFIAVBg8c1XsbsH\nSDrOl6fKFVHif6obbIoo8T869QBFlPifD6re6/JnhYmAxo0bh6ioKEyfPh0rV67EwoULsXv3bmzZ\nsuWcI9DkyZORl5eHvLw89OvXD4MGDcJLL72EadOmYc2aNXjggQcAtLcPmzVrFqZPn464uDiMGTMG\nQ4YMwcSJEzF16lTk5eVh4sSJ+MUvfvGTYxKx4pu9QllEcQKAEAEQwC8kTB46BbpYPXXSX9TKfI/H\nQ82nU+sRE66mTnxrYxMRGRZJ3XazvRQLPriLKoYQ5R7BXu1+Ud+LFJGFiOKEQWPE7slvU1/YRLQA\nNOky8Pp1b1KLXXZXNawNVdSXJJ1aj/iovtTz0+a0YttXr9LvS2EIo57zNqcVt79zK11UlbWBK1Dr\nbowfP/7c89J/YzKZoNcrj8WfasMa6hg0RvoKNJ1aj4Fxg6jntNleigc/vpd6fwTETLyxHQJFYLaX\nYuH/LqB+nykJqYhABNXRT4QLkigHNrur+twfFpsObcCag6uo7eXsrmqcaa6n38f1agP1nBfRtk3E\n9ylikYmIBREGjRH/L/1O6jVPhJBSIpFIJBKJRCKe4/XHf/4fSYQihXCB5UrDVYoo8T/O5npFlPgf\nfZxBESX+R7oxBZ6L+l7c5c/+cHWJQFhYGJYtW6b42ZAhQ87995w5czBnzhzF3/fr1w/r16//Xq6s\nrCxkZX2/WHjrrbfi1ltv7fCYfEVh1iSgCPeSzKQsXBCdSHfvsDmt9MlPu6saNqeV+p0aNEY8dtUT\n1LGadBl4IGMJ3bmmDW3Ufb/jyHacbq7FjiPbaaItky4Duya9Rd32vbY9aEMb9tr2CFmdz4QtrknT\npuOC6ERq8dSgMeK2tDuEFCeY5ybQXuw6Vn+M7lzDXu1u0mXg2XEvUvNaHGWoabTD4iijfqds54z2\na5OHem2yOMpQ5TxG3XaTLgPF+dxWdT2dn2rD+mOY7aX082/ToQ1C2hixr5EGjRHbrttJf974x+/W\n0b9TNj6BCVtYxb7n6tR6GOOSqKINnVqP/mo93WmEjSgHNpMuAzsmFlKP0cykLOhiue2BHe4atHhb\nqPcyu6saJ8/WCHk2YpKZlIV+0QnU71NUaz0PvNR8RRWFuOeDuUiISaAuDGDvcx8i7qESiUQikUgC\njxQRBx6b04pb383DgdsOBHooPRoR8wYSSSgxQncFPjtVhhG6KwI9lB5LdHgvRZT4n6N1XymiJLQQ\n5gQUjLCLwiLaKbSvfK2jrqq0Oa249vXxdPW2iAl6s70Ut7ydT131XVRRiOX7l6KoopCWM02bjgFq\nI1UMIsplprz2MDXfHNNdmH3JbVR3qU2HNuDuD+ZQVz0bNEbc+Ivp1BcVi6MMJ5tqqCupfQUP5vEJ\ntJ9Lk3flUM8ls70Ufy97iu5ywcbmtOKv5seo17w0bTqSNIPp7hlieqlyi3Kitv0Ko3yBYvJTbVh/\njEm7rqGezyKu5SIR0b6Jfe0RgQhnJRET5QaNEQVj/07N+V0hCAsR225zWvHARwuEHEsiRAt9e/Wj\n5kvTpmOQ5kLqfUeE+5cILI4ynG46RX3WFLFwxeGuQauH+x6Ypk1H/1gddb+b7aX0e50v73U7sul5\nX/j0BWo+iUQikUgkXUOKHgKLQWPEjmk7Aj2MHs98033yXAggb39TqIgS//OZ46AiSvzPsfqjiijx\nP5ckpCmixP9c3C+ly5/tUSIgEYUZdvsiAICKm66kqhg213FqCx9RiBAWiZhQBoCIMK6R1tenv1ZE\nBiIKsmZ7KTZ9+RK/PYcqktqeY9OhDVi2fwl129tXUnPbq9U21sILL90JSYSDgojzE+Dby4pwUDBo\njHhm3PPUnOst61DbdBLrLetoOdO06Rjcm1s4FbHtks7ja6n6Y/xQG9afw+vlCsZEtMbxwRZKisCg\nMWLWJbcIERexCYWe8iKEMKKEICKcqkQ4AYlAlABs56RCek62+5cIRLTIFdEaWRubiEjyM7HdVY3T\nZ0/Rr0+tbfzWmCKEVZsObcCtuzvuciyRSCQSiUQcwb6woycwMH5goIfQ4/nju7ODfiFod2ZqSq4i\nSvyPb/GumEW8ko4g24EFni9qLYoo8T+VZ451+bM9SgQUCpPpOrUefaMTqMWJzKQs9I3i2soD/2nf\nJKKNExO7qxonG09SJ5TtrmpUu2zUnJOHTkFCrwsweegUWs4Zw/Kx9Irl9IJsW1sbNZ9OrYdOraMe\n96KK0SpuzVxIGw2gvdi1dOSfqdc8Ee0kbE4rcgtvpE6w2JxW3FNyJz0nuxi9aNRSTP1FLhaNWkrL\nadAYkZ86m+5Iwf4+JR3DaDRi69atAIAJEyZg2rRpir/fuHHjuVarvjasr776KrZs2aJowfpjPP8/\nL9FdQZhiTh9FFYWYWZQb9EIgEc5uNqcV2a+NpZ5/ZnspJu68mjqZJ+JaLkJUJeLeCIA+MRpq110R\n71ehklME7EUmItoD69R6GDRGeru+3lHxdAG7h9wmFWgXXRviuK6wM4bl4/kJz9PySSQSiUQi6Rq+\n9smh8iwukYji9evelO1vA8jOr15TRIn/GRyfrIgS/3OsvkIRJf5n3OCrFVHif87n+O9RIiARk+ns\nfBZHGWoa7VQLeIujDKeba6k5AZ97S4SQgh+T8trDaPW20NtikTvuwO6qRkOzk94KblfF69Tj1OGu\nQRvaqJPpdlc1Trjs9JW/bGENACFXTU2Uhp7TbC/FH/41i1qY1Kn16E8Wa4mipa2Fmk9E+xyzvRQ7\nj75Gb8fEdsAC+N+nJDhYuudBurjk2tfH0wURIgSIIshOzsETYwqoBfwdR7bjRGM1dhzZTsvpcNeg\nhdzGBwAaW93UfCJEVWZ7KX01o9leiuvfuDZkVkjKYkbPRMTkfUxELDVfSVUxHGdrqO612thEhCEs\n6O8fPn6Z+MtAD0EikUgkkh6PiPkfiSQUkQKgwBIVHq2IEv9TXntIESX+54IYrSJK/M/+bz9WRIn/\n0akHdPmzPUoExEbEyoA0bToSorXUVYUii2cqL7l3mQBEuOHo1HrER/ehr37Vxw2g5hTRTiJNm44B\nau7KVxGW+janFde+Pp4ugBJROCV35PkP5NPT7qqGo7GGKtYyaIxYePli+uRKZHgkNZ8IHO4aNHua\nqcdTSkIqwhBGF2eqBFzqj9cf5yeVdIpjZ76hCoSLKt5CG1pRVPEWLSfQfn9MjOULENnOQjanFU8f\nfIp63xlpGIUIVQRGGkbRcop41rS7qnH8TBX1/iBCVGXSZeC2X/6JOplp0mXgH79bR80posUWIFc1\nS3iIOEYzk7JgjBtIFfGLWLwAtC+ysTVYqfdQs70UV62/ipZPIpFIJBJJ15ECoMAj54wkEkmgSYi5\nQBEl/se34JC98FDScbSx/RVR4n9qGx1d/myPEgGxC80GjRHzTfdRc1ocZahtctBde+hqAB/kI0gb\nm4iosCh6u6ENh9dRCx4iVqoCwOnG09R8NqcVt79zK73YExsZQ83Xvko3nLrfS6qKYXMdp68mDgU3\nCqC9KHn/iMX0Qic7pwhXBoPGiCcyn6K3xGK3uhFxvXO4a+CFN+iFajanFZO3TOYmlXQJZkvPRaOW\n4q7LFlBb3AH/but5litALKooRH7RTVQhkN1VjSrnMeo4TboM5KfOpl53RTxr7rXtQRvasNe2h5bT\n5rTiyU//Sr3ubjq0AWsOrqK6pdmcVqz8ZAX9WUtUOyz2u4uk58I+jgwaI3ZPfpuaNzs5BxuyX6G3\nWNPGJiIyLJL6DFdeexjNbc20fBKJRCKRSCShipwzkkiAhmanIkr8zwmXXREl/ufU2VOKKPE/X53+\nUhEl/ueivkO7/NkeJQISYf9/679mUnOKc1nhu5cAgMfjoeYz6TLw6Ogn6MWuyjPHqMUuEStVC8xP\nor6lDgXmJ2k5LY4yVDm52w4A7pZGar72VbpcJyAR+wgAVAIsUUS41hRVFGL5/qXUAreInCZdBr3H\ntM1pxQMfLaAXZFs93JZYJl0Gdk16i7rtIpwzAL4TkEFjxI5pO7hJJZ1m9Zi1VJc8AHQBENDuBNQn\nqh/VCUgbm4hwsvgUANo8bdR8a81rsO6LZ7HWvIaWUxubiHAVd9v79uqriAxEPMNkJmVBF6unPxuw\n7w+iECG8DSWkA1LwI0Kgxn4mAsQ8w6UkpCJSFfxOlhKJRCKRSCSikXNGwYF8fwoscVEaRZT4n14R\nvRRR4n8u7peqiBL/E6YKU0RJaNGj9hq70CyqNZCItisiKK89jDa0obz2MC2n2V6K+z66m1qcEFHo\nM2iM+MtvHqNOVM81zUN8VDzmmubRcqZp06GNSaSKyiyOMnzr4trfp2nToYvVU8dp0Bjx3P+spxcT\nVGRXLVEtP0SIQdK06UiM0VH3E8DvMS2qf3tEGL8ww75/2JxWrP/iBfqLenMbv8A9MH4gPaekc7AF\nQICYSSKLoww1jXbqfUfEM4yInCMNoxCOcGo7MAAA2d0rISZBERlkJ+fgzsvm0wv4IiZvhLX1JCNC\neAvwW+sBoAuVbE4rbnxjEv0aJWLbJaEB+zwy6TLw0eyPqDklEolEIpFIQhU5ZxR4ZCvpwOJwn1BE\nif8xagYposT/HK37ShEl/qdfrwRFlPif8+k60KNEQMwV5EB7QXxQ78F0gYWtgSuwENXCKDMpC4kx\n/amrqctrD6PF00ItoAGgd0Mz20sx++08aoHC7qqGq8VFbSPSXjg9QRfssIUgdlc1Tp89Rd12m9OK\nO4vvoL6s6NR6JGkG068lzO32YXNa8azl79Ttt7uqUd98Wsh42YhoUcFuMVZUUYiZRbnUAqIIAZTd\nVY0T7mr6fpf93QMPezJHRNs8QIyoMSUhFRGIQEoCbyVJZlIWLohOpD4X6dR66OMGUO87DncNWsnu\ne2nadAzufSH12aCoohBrDq6it2z7tsFGv541tnIdEgFxqy5FCIDY9zKzvRQTXh9Pf84+3lAZ9G0F\nJT2bK4xXBHoIAcfj8WDp0qWYNm0a8vLyUFlZqfj7nTt3YsKECcjNzcW2bdsAAM3NzZg/fz6mTp2K\n2bNn49ixYwCAL774AqNHj0ZeXh7y8vLwz3/+09+bI5FIJBKJRBKyiFhgKek48dF9FFHif47VH1VE\nif9xt7gVUeJ/BscnK6LE/5xPW8geJQJiq5cNGiP+/rvnqQ9DIoRF7e3AuMUe4N/CjUaucENEm4by\n2sNo9bZShUV7bXvQ6m3FXtseWk4R40zTpsMYN5Au2Klr5u53nVqPpN6DqEVO+/9n797DoyrPvfF/\nMzlAMjMEEhMmzpBgqAimEcoYLXaDvLS8RCNCzIZAaBCx9rCFouJuwSLtBi1si9oAfa0nykGCCVs5\nmZpuENC28KNxuonhVAsphxkzJITTZBJymJnfHzHZXW2tmNzPzCzm+7muXk8hzO2zstasWbOee923\ntw6nr5wSnafVbEPeTfeLvucd7io8sOM+XbTmsFty8MqEX4kvIKqgIrlBusWYqgRN6fZ/dksOtk6u\nEG/Zxv7uoTdp60Tx98pFBT2aXR4nfnFolXhS50BjmvjnzuV22URJt7cO9d5zojFzM/Pw4t1rRJOq\nrGYblt7107C/QWgxpsEYaxLd7yoqJKpKqAPkK+yoaC93wLUfHZC9zrYY02BJkE2oU5H8BuijshKR\nKrt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rLy5GQkIDy8nIsXrwY\ny5YtAwAcOXIEDz30EDZu3IiNGzfi3nvvDdVmERERERF9IZdbL2lGCr5Ln/7uL3EfUAQ7/On9zsPC\na0507ZLjU3r82ohKAloxZqXo4oSKRWGr2YbJmQXiiUUD42VbLQFqniQHgAF9k0TjXbx6UTNKGG29\nCwbh9hwzs2Zhzq3fFm/PEmOIEY1nMaZhkEk2YcdqtqF80jbR495iTENy/A2i81zjKEHJoZVY4ygR\ni2m35ODlb6xV0hJLunKNy+PE8j88E/alYF0ep5KkzwX2H4gfo1azTfQYVVGRAVDTso393UPP2XQW\n+87sEYu378weuJvrRGMCnYkwZ4STOt3eOpy/Wi8aU1mbWINsOUMVbQMd7ip8Z/ecsG/nuq5mLS62\nXsC6mrViMbNTRmBggnyrzMaW86LxgM79NHnbPaL7ScXDBvlDC5BmvBH5QwvEYgJArHBbT6vZhq2T\nK8SrBEpXF3K4qzBl+71KWqxJC/drTNV2HN8R6imEnMPhwJgxYwAAI0eOxOHDh7t/5nQ6ccstt6B/\n//4wGAzIzs5GdXU1Tpw4gbFjxwIAMjMzcfJk55O6hw8fxr59+zBz5kw89dRTaGpqCv4GEREREekU\n24GFVkrCQM1IwRcXHacZKfi67rVJ33Oja3fVd1UzUvA5Pac//x99hohKAlKRsCNdFlFFkoGKyi1A\n54nXarKJnoCtZhu+nf090d/pXPt8TLu5CHPt88ViAkCMIVo0XmVtBX519FXxthd13k/Eq+FsuV82\nYQeQb4lV01CNOu8nok/m5w8tQFKfZNFFKZfHiecdzympXDPvPdl2aADQ7msXjaeC1WwTT/pUscAN\nAO2+DtF4uZl5WJ9bKlrhQxX2dw896Zaew5KHI9YQK9piq4sPPtF4FmMa+scliVcFyTDLVgWxW3Kw\nbfKvRRPxVCQ12i05ePv+d0Tn2dBcDz/8oskliX0SNaMEFS1Nt378FupbzmHrx2+JxewSCATEY0YJ\n9921mm349QO7w76yFCDfflRFdSGLMQ0D+sie71weJ/K354leZ7o8TkzdMUU3Cw3SCdeVtRWYXDZZ\nNKYeNTU1wWQydf85OjoaHR2d18sZGRk4ceIEzp8/j5aWFhw4cADNzc0YPnw49u7di0AggEOHDuHc\nuXPw+Xy47bbb8IMf/ACbNm3CoEGD8Itf/CJUm0VERESkO9L3VumLOXW5VjNS8A3pf7NmpOCra3Jp\nRgo+Q5RBM1Lwxcck9Pi1EbXXVPQxlY43oO8AzShBReWWLua4fqLxKmsr8MT780RvqlbWVmDLnzeL\nxrQY05BmtIr+TlW0BrJbcrDiX54P+/ZNDncV7t+aK5pgkZuZhyV3LhNNhnB76+BtbxJPqlJxbnJ7\n63C26bR4clWU7DqfEi6PE0/s+77oIpKKBe6ahmq4vGfF23fpIQGIwsPltkui5wi7JQf/dtt88c+c\nytp34Qv4UFn7rljMmoZq1Le4Rd9/VrMNv5wg2yYWkK/E5XBX4du7HhJPapSeZ3bKCNxolE02n2uf\njyV3LhNNDLcY0zDILHud3Vlx0iBacbKb8Oe4ilbGeiKdsKKiulBNQzXONcue72oaqnHqyl9EY7q9\ndTjrkb92VZFUpKLyYmNLo1gsPTOZTPB6vd1/9vv9iInprGybmJiIRYsWYd68eXjiiSeQlZWFAQMG\noKCgACaTCUVFRdi1axeysrIQHR2NCRMm4Mtf/jIAYMKECTh69GhItomI6IvSS0IsEV3fpB+opy/m\nlqRbNSMFX0PzOc1Iwdfqa9WMFHxxhjjNSMHnabvS49dGVBKQHjKXZ2bNwot3rxFtCaWqcovVbMPU\nm6fLty4TbqmQnTIC6Wb5xYm4aNmWAhZjGpL6yravcrirsPB3C0QX+lweJ4oqpop+CVDRSsLhrsJz\nHz4ruu0WYxpSElLFE+pUnJtUJf/FCLfSAPRzg0v6d5mSkIpYQ6xo4p8qetlH9MW8OmGdaOLGpiMb\nUHJoJTYd2SAWEwBmZ8/BDX1SMTt7jljM3Mw8vHD3atGkORUJiCpYjGmwmdKVJIdL69dHNtkcgHhl\nSKvZhiWj/0P8szxW+Dqzi4qqPdJJKyquNQGg3S9bzdDlcSL3v74uPk/pClC5mXl46NZHRM93uZl5\n2JC7WTSmxZiGpPhk8YpFU7bJViwC1LQrHJc+HlazVSyeXo0aNQoffPABAODQoUMYOnRo9886Ojpw\n9OhRlJaWoqSkBLW1tRg1ahRqamowevRobN68Gbm5uRg0qLPa5MMPP4yPPvoIAHDgwAFkZWUFf4OI\niL4gFe3NiYh6QrqCMH0xRxtrNCMF36XWS5qRgu+rN35NM1LwNXc0a0YKvuT4G3r82ohKAlJBxZey\n5Phk8ZgqbDqyAUsPPi262Of21uFiq2xLBavZhgdvnSN+0SrdTaGmoRrnWurEq4IE/PJtH6SpaGFk\nMaZ1/0+K21uH+uZz4k8oq6BiUdJqtqE0b4v4Qp/0DS6r2YYXxq0Sn6d0iwqLMQ03Gm1hvxDPm5DX\nryX7nxLdryoSmYHO9/SuafvE39PPO/4zIo9rVUkr0lScy1VwuKvwyH/PFk06VlXJ0WJMQ7p5sC6S\nmaV1tsh1ibdtO9dSJ5q0s8ZRgqUHnxZtDb3pyAasPfqKeIKmdOUaFa18axqqccZzSvz7FQAYDPK3\nUkxxps//R9e5CRMmIC4uDtOnT8fy5cuxaNEi7Ny5E2VlZd0VgfLz81FcXIzi4mIkJSUhIyMD69ev\nR2FhIUpKSrBw4UIAwE9+8hP89Kc/RXFxMf74xz/i3/7t30K5aURE10RVtWgioi/qkV2y33Ppi+nw\nd2hGokhUVff/aUaiSHS5F4mITALqBRVPqaooLa7qadqZWbOw5M5loot9nW22bhRdnFCRrAQAHQHZ\np4lVVAWxGNOQkSi72GM12/Dt7O+J35BQ0Uaipf2qaDyLMQ0Z/eQXz1RwuKvwnd1zwv7LmoobXC6P\nU7xkrdtbB2fTGfEEsITYnvfzDBar2cY+4Ncp6VYuAMQTgLpIH3/7zuyBs+ks9p3ZIxZTRaIkANFr\nQkDd54P0daaqykpKPheFW2w53FVY9LsnxedqNduw+usviR+jKlpiLbpjsfg8/X6/aDwVbZzzhxYg\nqU8y8ocWiMUcljwcsYZYDEseLhZz05ENePz9uaLfr7qSiqSTiwKQfyBCRWtogDf4gc7kqqVLl+LN\nN99EWVkZhgwZgkmTJqGwsBAAMHfuXGzbtg1lZWXIzc0FACQlJWHdunUoKyvDa6+9hoEDBwIAsrKy\n8Oabb2Ljxo148cUXYTIxyYqI9IHfvYkoHCT1la3SSV+M1WTTjBR8faP7akYKvqu+q5qRgs8f8GtG\nCr7e3CtiElCYUdGeAgCutPa8Z9xncXmc2PLnN8Vv/EtX2BmXPh5W4yCMSx8vFtPtrcMnTbJPE6uo\nCmI121A+SbYVXGVtBR5/f654opp0pZF9Z/bgXEud+ALv01+Vr56gohKF3ZKDl7+xVrSKgKqEQmkq\nEovslhxsnVwh+vtUlTAgTUVSFYUH6VYuejIufTwGxqeJXhsAEE8UrKytwKzKGaKfuXZLDv7d/pQu\nPh/afbIJ1w53FaZsv1e8as/kzALR36fFmIaBCbLVDIHO/fS93d8S3U8ujxOTtk4UjelwV+Fbv3lQ\ndD81NNejA7KtZ1Uk17i9dfC2N4meS+yWHOyYUileWUoPTlw8oRnDmdtbB+cVXmsRERERUXiQrtJJ\nX8y5ZrdmpOBram/SjBR8bb42zUjBx6pkoXelref5HRGVBKTiKVUVrXHWHX1ddK41DdX4xOtUctFi\nVjUMAAAgAElEQVQmvTjj9tbB3fyJeDuw5WOeC/uFdkBNVRDpBcnslBEY3O8m0co9KpI2utrqSbbX\nc7irxEuhujxOTNsp22aqK+7zjufCfkFWT62mIvXpF5Yjv36pqMAmXbWmi4pzRHys7JM8KhJMVFTG\nqKytwNKDT4vvK+nPBwC46msRjxkQzjZ/dv9SlP+5FM/uXyoaV8U1YU1DtXgFMBVVtRqa69EWaBNN\n2FFx/Wq35OC5MS+KJ4D175Mkfs1RWfuuaLxx6eORGJcomkh58epFzRjO3N46uDxnxR8IGWgcKBaP\niIiIiKg3UvqmKrlvRKQXpliTZqTg6xvTVzNS8HEfhF5S36QevzaikoBULDRLL4pazTYssP9ANG52\nygjcaLQpuWiLjY4VjWcxpsGSINsOTEXihsWYhhtNsiXgrWYbXhi3SnTfq1iQtJpteOkbr4V9QoCK\nxR6LMQ3p5gzR/e721uH0lVPiyVqqEjek3/Oq2oFJn+9VxdRDZSWA5civV9LHtIqqNYCa95/bW4c6\nr2zSMQB0+GSfihiWPBwGRItWGgGAKOn+VZBP2KlpqIaz6axowoqKFj65mfcgGtHIzbxHLKaKa8Iu\n0vteRdK1iuQ3q9mGyZkF4tfZC3+3QPQ6u6ahGuda6kSP+2f3L0XJoZWiiWpbP34Ll9suY+vHb4nF\nVNFeTUVMADjeeAwd6MDxxmNiMd3eOpzznhOLR0RERETUG+evNrASUAgNMqdrRgq+C60XNCNRJGJb\nvNC7cLXn56CISgLSQyUDh7sK3971kOjNZACIjY4RjQeoa2UTa5BPLJJO3ADk25a5PE58f8/3xBMC\nfD6faDwVrYFUVMOxmm3YOrlC9Pi0mm1YNf4l0ZgqEsq6qEgsUvGeVxFP+nzPajh0Pbql/3DRYzol\nIRUxUTFISUgViwl0Ld4/IH7uvaFvqui593jjMfjgE10Ubmiuhx8+8Yoo/WITRZNkVSTs5GbmYc6t\n3xZvWedt84rGs1ty8M4D/y3eXk1FG0YV79HslBEYGJ8mejypaNe3xlGCkkMrscZRIhYTkC9Jve/M\nXs0ooc77iWaU8MdzH2pGCTOzZuHFu9dgZtYssZgqktRUsRjTYDFZQj0NIiIiIiIAUPZQOV2bxpbz\nmpGCLzU+VTNS8EVHRWtGCr5LrZc0IwVfSy8evI2oJCAVi7fSN+ctxjQMTEgTrzTianKKJwQAUJIN\nrqLSSPmkbaL7X0XbMre3Dqcu/0U0ZkNzPXzCi4dWsw0rxqwU/32qqIYjHU/Volx8jHzLD4e7Cg/s\nuE88oZDkqKr0oIfKQhQeyv9cioX7nhSL19Bcj45Ah+hnDgBsOrIBSw8+jU1HNojFdHvrUN/sFv2c\nOHX5lGaUoKIiytaP38Ll9kuiFTwcbodmlLDpyAasPfqK6H7f+vFbON9aL7rtKqhKPLVbcrAjv1I0\nYcntrcOltgvi11xRwsWqLrde1owSDrj2I4AADrj2i8XMTrlNM0p4KPthGGDAQ9kPi8UcNfB2zShF\nMvEL6Ewm3JC7WTyZcFjycMQYYkWrtLm9dTh7+axYPCIiIiKi3kiIjQ/1FCJaV+WH3lSAoN650nZF\nM1LwXW67rBkp+BJiEzQjBV9vqrpHVBKQNJfHiak7ZKuXAECccBJMQ3M92v3t4otylbUVeLCySLTt\nh8r2B5JUtC0DgCjhFY/czDx8f+QC0RvfLo8TD1V+U/S4V1ENR1UrNBUVZlRU17FbcvD2/e+IVyZQ\n0VZRmp7agamoqqWHfUThwxzXTyxWbmYelty5TMliaxSiRBdbVSQseT69KeARvDmgooqF03NWM0pI\n7JOoGSWo2Pa59vmYdnMR5trni8VUcb0BqGvDKP19wGJMQ0q8bFWtfWf2wN1ch31n9ojFnJ09B8YY\nE2ZnzxGL+aUBX9KMEoYlD0cMYkTPd3ZLDhbf+R+i14Rz7fOx5M5lou8lVW1SpT+TgE8f3Im3iB73\nW46XwQ+/WDwiIiIiot6Q7oJARPRFJfVJ0owUfHGGOM1IwdebVmxMAuoFt7cOzqYz4k++6uUCKztl\nBFLjLaJlIVUtiqu4oSydrGUxpiHNKJsIU1lbgVWHnhdN1Nr68VtwN9eJP0UvXQ2n8/cpn6ilgqqF\nPsnFHkBNFShAvnKNXtqB6SUmwOpCoVJdXY3i4uK/+/s9e/agoKAAhYWFKC8vBwC0tbVhwYIFmDZt\nGubMmYNTp059bvzkPjeILog73FVY/oel4skQxxuPIYCAaJut7JQRuihtraLCTlfil2QCmArZKSOQ\n1CdZdB9V1lag/M+lotdFFmMakvomi19vqKjkV1lbgVmVM0S33+2tQ0Nzvej3oZlZszB/5JOibaH2\nndkDb0eTaGKRikpdnS2hZKvCVtZWYNnBJaL7HYBoAlCXdl+7eEwV1zBubx3Ot8ge9/PsjyExTi6R\nkoiIiIioNzoC8tfmdO1iDDGakYKv2desGSn42vxtmpGCr29MX81IwZfQi7VzJgH1gt2Sg1cm/Ep8\noV26/H1KQiqiEIWUBNnelW5vHS61ypb/t5ptWGD/gfgCtoobym0KYkqXVEtJSEVMVIzovs8fWoDU\n+IHIH1ogFlNVBagOf4doPFVVVvTSsktPlWtUJFaFe4WyLioSgFTsI7a8+OdeffVVLF68GK2trZq/\nb29vx/Lly7F27Vps3LgRZWVlOH/+PMrLy5GQkIDy8nIsXrwYy5Yt+9z/RqpxoOicG5rr0R6Qrzyo\noiIMAPgCsp8R8+yPwRzTD/Psj4nFVFFdaHDiYM0o4feu32pGCfvO7MGF1kbRpA2gdyVU/5GahmrU\neT8RbZHrcFdh0taJ4tcHKQmpiDHEil4XWoxpuEG4EpDDXYVfVP9cdPuHJQ9HrHD7pplZs/Di3WtE\nk5U6WxWeE/1+lZ0yAgP6JIknPUonFQFAU7tHNJ7L48Q9b31dSQvvNJPswwZubx1vbBIRERFR2Pik\nySX+8DuRnvjg04xEkcjb7tWMpC8RlQQkffPP5XHiecdz4nFjDLIVZg649iOAAA649ovGVXHz0+Gu\nwiO7ZosvesQKV+1xe+vgbv5EPAFq0R2LRRfwO9ts2cSfTpdOVlKRXFLTUA1Xk1N0UU5FkprDXYUH\ndtynJBEoUivs6IVeWnep2EcujxN5pfLtOa4n6enpWL169d/9/cmTJ5Geno7ExETExcXBbrejqqoK\nJ06cwNixYwEAmZmZOHny5Of+N6STL09cPKEZw5mKdkNubx2aOjzCi/e3aUYJF69e1IwSvnzDbZox\nXKmoLpSSkAoDDKKJNZW176Ij0IHK2nfFYnaJEq446vbWoaFFNmnlgGs/OgIdot9d7JYc/Ntt88Uf\n3hiXPl40nooWuSoS6lRUlVJxXlZVwRSQf9jAbsnB3gf3isYkIiIiIuopFRVv6dq1+lo1I1Ekam5v\n1owUfH2i+2hGCr6LrT2/hx9RSUDSi62qFsRL87aIxhxtvQsxiMFo611iMbvERMkm1wBAQLgfmtVs\nw9Sbp4sn10i3mnK4q/Ct/35QPBlEOmHH7a1DnVc+AUr6vZSbmYcX7l6N3Ey5RAOHuwrf2T1HdB/Z\nLTl4+/53xBelVLXBi8RkHVX01LqL+z34Jk6ciJiYvy/529TUBLPZ3P1no9GIpqYmDB8+HHv37kUg\nEMChQ4dw7tw5+Hz//EmV2e9+U/R4udx6WTNGmi3HyxBAAFuOl4nF7KpaIlm9RAUV1YVOXT6lGSXs\nO7MHja3nRZMMDrj2ww+/aMKKigpQXaQrIQFAu1+2OubxC8c0o4RNRzag5NBKbDqyQSymy+PEhPJx\n8g+ECH+/mpk1C3Nu/bZoxSIVVFR9G9B3gGaUUtNQDWfTWdGHDQDgcP1h0XhERERERD3lbq4Tv96l\na8eF99Ab2GegZqTg69+nv2ak4KtvqdeMFHy9+RyIqCQgFYutemg5Y7fk4Gd3/1w8yQCQv+lvt+Rg\n+5R3Ree66cgGLD34tOhNfwCI70Ufvs8SJdwLTkWbLbslB9/Nnid+PEm3+3B5nFh39HXRhRlVCTuR\n/FSFXqrhqKKX1l3SrGYbXp30aqinoUsmkwle7/+W3/R6vTCbzSgoKIDJZEJRURF27dqFrKwsREdH\n/9NY51pkqyPkZt6DKEQhN/MesZiqqKiGMy79/2hGCV2JJZIJJioWxcelj4cpxixaFSWxT6JmlKCq\ntZy0FeNW4uu2/4sV41aKxrUY02Du00/0uqOy9l0EEBCtWjQsabhmlKAiqWxdzVqcb63Hupq1YjEB\noM7rEo1XWVuBtUdfEa3ao6K1XG5mHr5mGSuawD8ufTwSY/uLV2xqbGnUjBI2HdmAb+38llg8IiIi\nIrr+VFdXo7i4GABw+vRpzJgxA0VFRfjxj38Mv98PACgvL8cDDzyAadOmYe/ezkqTV69exbx581BU\nVIRHHnkEFy5c+Nz/VkxUjOj1Pn0xzb5mzUjB19jaqBkp+K76rmpGCr44Q5xmpODrTUW4iEoCitRK\nBg53FRb97knxCjOdFWHke8NKJ1jMzJqFJXcuE336VUXFJhXJNS6PE0/s+75oQoCKJ6k3HdmAx9+f\nKxrTarZhxZiVSpLqJKms2CPdXk6FSG4HpoJefp8ujxOP/vrRUE9Dl4YMGYLTp0/j0qVLaGtrw4cf\nfoivfOUrqKmpwejRo7F582bk5uZi0KBBQZ9bQ3M9AgigoVn2yQAVi60qEmFUtJpSYVz6eNhMg0QX\nxdfVrEVTh0c0GUJFNRgVvjTgS5pRQmVtBd5z/rdo0gbQ2Rqp8ep50eQ/FVWgRlvvgiEqWrSK6Y/u\nWoKvWcbiR3ctEYt58tKfNaOEJ/c+Bm+HF0/ufUwspsPt0Ixi/LLVW+fu+i5+7/4Ac3d9VyzmvjN7\ncLn9kvjDBjUNH2lGCZIJakRERER0/Xn11VexePFitLZ2LgYuX74cjz32GEpLSxEIBPDee++hoaEB\nGzduxJtvvonXX38dL7zwAtra2rB582YMHToUpaWlmDJlCv7f//t/n/vf6wh0iN/foWvnh18zUvD5\n4NOMFHxtvjbNSMHX5m/TjBR8/eL69fi1EZUEpIKKagvSyToWYxpspnQl1UakK9eo4PI4sb327bBv\ni6QiuUaFmVmz8OLda0STqmZmzcL8kU+KxlSRAKUnDncVHtk1W/x8okK4J6x0UXEsRWrrLqvZhq2F\nW0M9DV3ZuXMnysrKEBsbi4ULF+Lhhx/G9OnTUVBQgIEDByIjIwPr169HYWEhSkpKsHDhwmuKK7nI\nrmyhWQEVC7j7zuzBhdZG0cXmufb5WHLnMsy1zxeLaTXbsMD+Q+FEZrtmlHDfkEmaUcKJiyc0o4SU\nhFTEGeIi9glJFdWVjjcegz/gw/FGuQSwNY4S/N79AdY4SsRirr13I4YlDsfaezeKxXzwyw9pRgkq\n2ss1NNejA7KLAqNvvEszSnjv9C7NKEVF5bfD5+U+j4iIiKh3IvVeIoW39PR0rF69uvvPR44cwR13\n3AEAGDt2LPbv34+PPvoIX/nKVxAXFwez2Yz09HQcP34cDocDY8aM6f63Bw4cCMk20LUzfLp0a+AS\nbsj0jeqrGSn4rgauakYKvoRPO+IkKOiMQ9cmLCsB+f1+LFmyBIWFhSguLsbp06c1P9+2bRsmTZqE\noqIibNmyBQDQ1taGBQsWYNq0aZgzZw5OnToFoPOC5l//9V9RVFSEZcuW/dPShsGkou2Kw12F/O15\nogv3VrMNW+7fpqQiyop/eV5JZRRJeqmMoSK5RlU1mGHJcu0ZgM7j/uWaNeIJK83t4V8uU0XLtm6y\nD2hHNBXne7207gLU3AAblBj8SjV6Y7PZUF5eDgCYNGkSCgsLAQDjx4/HW2+9hbfffhszZ84EACQl\nJWHdunUoKyvDa6+9hoEDr61f9dxd3xGbr4r2TYCaJIPslNs0o4RhycMRjWjxz0jJCjNAZ5WZJ96f\nJ1plJjczD/NHPinaxkdFUpmKqj12Sw4W5jwtej2sovoV0Jn0Fw3ZCjsqDEsejugo+feStDWOEhy/\nfEw0sSglIRXRUdGiSWVThxUiClGYOqxQLKaKhDoVbRq/njFBM0p55+ROzSjhyzfIfR4RERFRz+np\nXg1FlokTJyImJqb7z4FAoPsBbaPRCI/Hg6amJpjN5u5/YzQa0dTUpPn7rn97LaS/k9K1i0GMZqTg\nawm0aEYKvihEaUYKvssdlzUjBZ/Hd22f2f+IsiSg3bt3o62tDWVlZViwYAFWrFjR/bMLFy5g1apV\n2LhxI9544w3s3LkTTqcT5eXlSEhIQHl5ORYvXoxly5YBAJ5++mk89dRTKC0thclkws6dOz+ztGEw\nqUguUVW1R7plF9CZuPHU7/9dNHFD1RctVdsvTTIBCOic47d3PSQ6V4e7ClO23Ssa02JMQ3LfFNHj\n3u2tg9v7ifi+lz42VVUssltysG3Kr8WT9CKVivO9XhIUeQPs+mYx3igW63LrZc0oRcWiuIrEoobm\nevjgE62MUVlbgQcri0QTdrJTRmBggkW0bVllbQVKDq0UnaeK6kIqkmsqayuw9ODTots+LHk4Yg2x\n4kkwFmMabGbZ7xkqkkEOuPbDF/DhgGu/WEwVLQA7k6miRJOqjjceg0+4CpLFmAarySa630db70KU\n8Lar+H2OSx+PfnGJou0PAaC53asZJbASEBERUXjQy70aIoPhf5f2vF4v+vXrB5PJBK/Xq/l7s9ms\n+fuuf3stJO+Z0BfDdmCh1wd9NCMFX7whXjNS8MUhTjNS8PXmHKQsCeivSwyOHDkShw8f7v6Z0+nE\nLbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDIzMzEyZMnAQDnzp3DqFGjAACjRo2Cw+H4zNKGemc1\n27D66y+JftFwuKsweds94kkrdksOfvq1n4kmGaj4oqWiupLDXYUp22UTYQD5BBNlreCEE2/d3jo0\nXm0QTdixGNOQZrpRdNtVJUO0+9pF43VR0QIwkhNBVNwAUhEzUqup0RcXH52ANRN+KRZPVSUgFQkB\n+87s1YwSVCSYpCSkIoCAaAKU21uH8y2yn7kqfp8qqEj+UpGkZrfk4LkxLypJ5JXu5DvaehcMMIgn\ng8RExYjGVLHvO89JAdFz07Dk4TDAIJoA5vbW4VyzW/Q9f7zxGAIIiCYrqfh9bv34LVxpu4ytH78l\nFhNQU2FIsgUcERER9Q7vf5Ae3HrrrTh48CAA4IMPPsDtt9+O2267DQ6HA62trfB4PDh58iSGDh2K\nUaNG4f333+/+t3b7tT1sw0pAFMla0aoZKfi8fq9mpODrQIdmJH1RlgTU1NQEk8nU/efo6Gh0dHQe\nJBkZGThx4gTOnz+PlpYWHDhwAM3NzRg+fDj27t2LQCCAQ4cO4dy5c/D5fBg0aBD+8Ic/AAD27t2L\nlpaWzyxtGEyq2sNIVwVpaK5Hm79N9Ml0QE0lIBWUJcIIt1pScTypaAVnt+Rg22TZCjN2Sw5emfAr\n8cWumKhY0XiqkiFio2XnCXQeT0UVU8XPT9Ix9UTFdquoLKViH/EG2PVpf9GHovtWRTIAoKbCkDmu\nn2aUoKKVza9qXteMEg649qMj0CG60K6ivVpKQioMMIgm16ioWqOicovDXYUffPC4+DW221sHp+es\neJVEQ5TsV0q7JQe3DsgSvS7MThmB5D43iFbAyh9agPjoeOQPLRCL2dBcDz/8ot/bGprr0e5vF/8u\nKE3FuV5VhbquJC3JZK3slBHI7J8pFo+IiIiIrm8//OEPsXr1ahQWFqK9vR0TJ05ESkoKiouLUVRU\nhAcffBCPP/44+vTpgxkzZuDPf/4zZsyYgbKyMsydO/ea/hunLp9SuxH0meIMcZqRgi8xJlEzUvDd\nEHeDZqTgi0WsZiR9UZYE9LelB/1+f3fP0sTERCxatAjz5s3DE088gaysLAwYMAAFBQUwmUwoKirC\nrl27kJWVhejoaPz0pz/Fyy+/jAcffBDJyckYMGDAZ5Y2DCa9VEfIzczDi3evQW5mnmhcuyUHL39j\nregNel0lwgi3WtLL8QRAPFnH5XHiecdz4okLKpJrpPeP1WxDad4WXex3PVGRXKMi6ZNttiiUVJx3\noqOixWPWeT/RjOFKxWLzsKThmlHCH899qBklqEiAOt54DH74RZNr8ocWIM14o2jShooKM8cbj6E9\n0C667V1xOwIdonEbmuvREegQTTDJf/s+fHShGvlv3ycWc9+ZPWhsPY99Z/aIxVzt+DlafC1Y7fi5\nWMyVf1ihGSW8c3KnZgxXKloAqogJoDuJUjKZ0mq24cWJL4rFIyIiIqLrj81mQ3l5OQDgpptuwhtv\nvIGysjIsX74c0dGd92OmTZuGt956C2+//TYmTpwIAIiPj8eqVauwefNmbNiwASkpKdf03xucOFjJ\ndtDn8wf8mpGCr6WjRTNS8F1qu6QZKfjYmjD0EmITevxaZUlAo0aNwgcffAAAOHToEIYOHdr9s46O\nDhw9ehSlpaUoKSlBbW0tRo0ahZqaGowePRqbN29Gbm4uBg0aBAB4//33sXLlSqxfvx6XLl3C1772\ntc8sbRhsekgIcHmceKXmJSWL4tKJG5GcCKOCy+PEfW9PFN/30k+mq9jvVrMNi+5YrItjSfqJfKBz\n+18Yt0r8d6qHhCVVyYQqjlEVMfWwjyg8rHGUiMdsD8iXBr1vyCTNKKHrRpbkDS1Vi83SRg28XTNK\nGG29C9GIDvv2TVazDY98+Xthf45Use3A/z7FKfk0Z3bKCCT3la2ws/iuHwOI+nSUoSJRTUUFrNst\nd2pGCSrOoSqO0eyUEcgw3yR6LKlKgFKR9OlwV6GgTC5BkYiIiIiotyS/PxHpzYA+AzQjBV8UojQj\nBV872jUjBZ+3veft8JQlAU2YMAFxcXGYPn06li9fjkWLFmHnzp0oKyvrrgiUn5+P4uJiFBcXIykp\nCRkZGVi/fj0KCwtRUlKChQsXAuhsHzZ79mxMnz4dJpMJd99992eWNqR/rKWjWTym1WzDijErlSRC\nSdJLtQ2Xx4mpO6aIznPfmT1wec+KPvXscFfhgR33KWlRIcnhrsJ3ds8J+3Z1qn6fLo8TC3/7ZES2\nhVKVTKiHbQfUzDPcz5/UM0sPPi2aCNTZsiog2roKAF4+9JJmDFcqWk19acCXNKOEAX0HaEYJFmMa\nbohPFW29mpKQitioWNF2YJuObMDSg09j05ENYjGzU0agf9wA0cSF3Mw8zB/5pIIqnvKJavvO7EHj\nVdkKO52VigKiFYu6EtQkE9XUtISSTyxScW5yuB2aUYLVbMODt84RvY5RkQAFqHkvHXDtRwfkE2mJ\niIiIiHrq+AXZ6rR07VoCLZqRgu9C6wXNSMHHJKDQG5Y4XDNS8PWJ7nnuS4zgPDQMBgOWLl2q+bsh\nQ4Z0//+5c+f+Xe/RpKQkrFu37u9ijR8/HuPHj/+7v582bRqmTZsmM+Ew0ZUIItm+yu2tQ533E7i9\ndeIVhr6761vYNqVCPG64V9tQwe2twxnPKdH9NDNrFi5evYiZWbNE4gGdFZB++rWfiVZC6kqEefv+\nd8Ti2i05ovFUUTVPvRz3quhhu7sSFKX3k/Q5VNU8KTw4PWfFYqloXQUAayb8El/d9BWsmfBLsZjD\nkocjGtGii/f5Qwvws6rloq2mVFBRwaOmoRrnWupQ01Atdp6wGNMwoG+SaGKRimowWz9+C5faLmLr\nx29hrn2+SMzK2gqsOvQ87Ba7aCJQSkIq4gxxoolVKqg4RrccL+sepa65fvHHVd3j2ns3isRUVQVK\nmookmK4kvQF9B4h9d0lJSIUB0eLHfG5mHjbkbhZP1CMiIiIiCiemWFOop0AUMqyAEnptaNOMFHx/\nunxcM1Lw9YnuA4/P06PXKqsERD3j9tbB2XRGtCqKxZgGS8KNoosoQOeCzxnPKdQ0VIvFVFW1Ry+V\nMQKBgGg8l8eJ7bVvi87V4a7CU7//d9HKNaoSYaSPeVXCPVGJ1FCRqKWXVmgUHswx/TDP/phYvPyh\nBRgQlyyeBOP21iGAgHjFOINB9jJ4Xc1atPibsa5mrVjMlIRUxCBGdAG7saVRM0pQUWlk35k9qG85\nJ1phRkUVpLn2+bhv8GSxBCCg8/cYQED09wl0Xm98c9hs0esOFS3GcjPzsOTOZaIJFjbzIM0o4dFR\n39eMEnIz83Df4Mmi266iopiK97wKxxuPwQ+faFUpVeba52O0dXSop0FERERE1G3qsMJQTyFixSJW\nM1LwxSFOMxJFogACmpGC70rblR6/lklAYcZuycHWyRXiSQFRCqqlZaeMQLp5sGj7A1WLzdIJOyoW\n2i3GNAw0WkQTV1S0bLNbcvDyN9aKH6PS8fTSBk6VSN9+vVDRsiySW6HRF9Pc4RVNrHF769DUcUU8\nWQcAAn7ZLxoNzfVo97ejobleLGZu5j0wwIDczHvEYgLyyUrj0sfDkpCGcel/X2Wzp0Zb70JMVIxo\nqyUVFVHGpY+HObaf6LZvOrIB75zaLtpiTJU1jhKsPfqKaBvA2dlzYI7th9nZc8RiOtxVeO7DZ0UT\nzvOHFiClb6pokmJDcz2iECV6Hnl2/1K8c2o7nt2/9PP/8TVS0bpLRUJdTcNHmlHCuPTxGBCXLPqe\nBzqrdc2qnIHK2gqxmAv3PYkDrgNi8YiIiIiIequr+ikFH6vQhB6TH0IvGtGakYLv9pQ7NCMFnw++\nHr+WSUBhSDoZwu2twycel/iinNVsE28F1hVXkl4qY7i9dWhorhfdTy6PE0/s+77otrs8TjzveC7s\nk0v0klCmKiart+iDqn1PdC188OGAa79YPBWJNV0M0bKXrLmZeXjx7jXirVwMwpfWFmMa+sX2F69s\nZ4o1i8azW3KwduJG+SR24Z7fWz9+C572K9j68VtiMYclD4cBBtHWcioSLFSpaaiGp/2KaGVQizEN\nAxPSxI/7GxJSROPlZuZhfW6p6HnkR3ctwfyRT+JHdy0Rizk7ew6S+iSLJmqp0PWUseTTxmV6YlEA\nACAASURBVDUN1bjUdkH0+ASAfWf2akYJ8+yPYUCf8H/PExEREVHkkGylTaQ3qfGpmpGCryv5oTdJ\nENQ7Hzb8QTNS8NmMPV/vYxJQhAhEqclWVfG0vzS9VMawGNNgMcq3bZNmNduwwP4D8e2XfNq7ix4S\nylRW7InkZJBwT1IDWK2JQm/JnctEWxipaOEDdCaYbJv8a9EEE5fHiVdqXhJ9/zU018MHn2gS1L4z\ne3C+tV60JRYAxEbLlpNWkSCcm5mH749cIHo8jbbehShEiVYsamiuhx9+0f2uogoSoK+2UK2+q6Lx\nrGYbXhi3SvzaSPp8B0A0AajLQKNFNN7MrFmYP/JJzMyaJRaz6z0k+V5S0VIR6ExUMsAg3h4h1cSb\ny0REREQUPhpbGkI9BaKQOd9yXjNS8MUgRjNS8FnjrZqRgu9qR8/vkTIJKAypSIaQfjId6Jxn/vY8\n8flGcjJEQmyCaDyr2YbSvC2i2+9wV+E7u+eI7neHuwpTtt+r5NiXpKK9Giv2yNNLcg33PYWaZCIA\n0HkuX161VMm5XLrCDAC0+2RLKqtok9r11J3k03cqkiFUnM8qaytQcmilaLudA679CCAgWgFLRUWQ\nlIRURCFKPHFBRcLOaOtdMMAgmli178weuJvrRJPfXB4n5r33PfFrA8nWaqqo+j7w0kerwv7a3WJM\ng7WfTfwhC7slBxUP7BL/bJL+XCIiIiIi6g2reVCop0AUMjGGGM1IwWeMMWpGCr6m9ibNSMHX5m/r\n8WuZBBRmVCTW2C052DZF9gl6oPOmqs2ULnpT1eVxoqhiatgv3qug6gllaXZLDt6+/x3R48liTEOa\ngipI0seRy+PEwt8+KR433Pe53ugpuUYPc6Tr16zKGaIJFscbj6Hd347jjcfEYnYJ94VmQE2b1Pyh\nBUgz3oj8oQViMV0eJ771m9nin2V6qA55ufWyZpSQnXKbZpRwvPEYAgiIv5dUVAI63ngMfvhF56qi\nyozbW4e/XD4pepyucZRg6cGnxROB5u76rmg8QP56o6G5Hm3+NtGqPY0tjZpRSnyM7EMWXaRbX7q9\ndXB5XKIxiYiIiIh6ozfVB6h3uh7qV/FwP12bZn+zZiSKRP6AXzOSvvATJMx0toRKU/K0ojSr2YYt\n928Tv6nc4Y/MJyBVJJioSqqSvukNALEG+dYk0tVg9JRcEum4j4iujWT1ElUc7ipM3nqPeCLQVV+L\naDwAqGmoFo1nNdvw6wd2i57T9p3ZA5f3rGiVFYe7ClO2yVf0i0KUaDy7xa4Zw9V7p3dpRikqKgEl\nxycjClGirctUVJmprH0XPvhQWfuuWEwVSVVzd30X5X8uFU8E2nRkg2i8lIRUREfJttkalz4eKX1T\nMS59vFhMq9mGb2d/T/y6sLK2QjyRFgD8ft5UIyIiIqLw4WmTe4CGvhg//JqRgq9/bH/NSMF3peOK\nZqTgYxJQ6CX04uE2JgH1koqKNSqeVlT1BL30YhcAxAgngwBq9pM0vSSYVNZW4MHKIvGb3tL7XUXr\nrq64FJn0cB4h+qKmDisUizUseTiiEY1hycPFYgKdiaftgXbRBNSahmq4mpyi1zGqFoWlP3eGJQ+H\nAQbx/RRAQDRedsoI3Gi0ibZXS0lIRZwhTjRxoSv5RTIJZtqw6ZpRyoC+AzSjhNzMPLxw92rkZuaJ\nxWxorke7X/Y9/6O7lmD+yCfxo7uWiMXMzczDhtzNotu+ZsIvMe3mIqyZ8EuxmJuObMDj788VTQRq\naK6HL9Ahuo/c3jpcbr0kWq2psrYCT7w/T/y8nJ0yAoP73SR6fgLkz6NERERERL1hjksM9RSIQuZK\n+xXNSMHXN6qvZqTg8/q9mpGCrzctCZkE1AuqKo2U5m0RXfBxuKvwwI77xBOBVCSDqNh+FftJFRUJ\nK9K/z9zMPKzPLRVd8FC131W07qLIpKfzCNEXIdnCx2JMQ5pJvrVjSkIqDDCIJm6kJKQiGtHiMWOE\nK2MAwLP7l4rGa2iuhx9+0cV7izEN/fsMEN/3vkCHaDy7JQev/d/1ohUyOyuiyB5L2SkjYDMNEk8w\nmJk1Cy/evUa0zZbL48QrNS+Jfj6mJKQiBvLvJckEoC6S18NdJBOAgM7Ev5ioGNHEv+yUEcgwyyfB\nRBlkq3/lZubhoVsfEd9PVrMN420TRL+7HHDtR4fwOY+IiIiIqDf4MGzodFVGlq6QTNfOB59mpOBr\nD7RrRgq+GMRoRgq+Dn/P7xUxCagXVFVukY5nt+Tg7fvfEW8JpuLJX0BNIoyKijBMBpClYr/robIS\n6QOPJ7oezbn126LJAG5vHc41uUWrOACfVpyAT7wVpcEgfxlsiJKN+ez+pSg5tFI8EUjavjN7UN9y\nTrTF2L4ze+BurhON6fI4sfwPz4hewx1vPAZfwCeaUAcA0VFqvlxLVizq0tLRLBrPYkxDRuJN4kll\nkSw6Klo0ntVsw7YpFaLXRXZLDrZN/rXod9ZNRzZg7dFXxNuhPbt/KdYefUX03CzZVo6IiIiISMLB\nT34f6ilErK4qoawWSpEsNipWM1LwcR+EXnMv7rsyCaiX9LIgrOImusvjxLqjr4d9MoyKijB6qQri\n8jgxdccU0Xmqagem4nepl/cn6QOPJ7re/Oroq6Ln8obmerRDtoUP0FlxIs14o2jFCYsxDakJA0Wv\njyzGNKQZraIxZ2fPQVKfZMzOniMWMyUhFXFR4d8Sa1z6eNzQJxXj0seLxQQAT5tsGedx6eORGj9Q\ndJ5ubx3czZ+IJ9SpaFnn9tahzis7V6vZhi33b+PnrhC7JQfbpsgm1wBqrouk5zgseThiIFsFCQBy\nM+/RjDIx8zA3Z65YPCIiIiKi3vK2s/0LRa5oRGtGCr6WQItmpODrqljMysWh4w/4e/xaJgFFAJfH\niaKKqeJJFnqpjKFinqq2XTqxxu2tg7PpjOjCTHbKCKSbB4suxuolqYqIKJiqq6tRXFz8d3+/Z88e\nFBQUoLCwEOXl5QCA9vZ2LFiwANOnT0dRURFOnjz5ufGlz+WqWhi5vXVoaK4X/Sxze+vQ0CIbEwAS\nYhNE4wHAQKNFNJ7dkoPt+e+KL7ZLc3vrcKXtkug+qmmohrPpLGoaqsViur11uNR6UXSenQll8q31\nAPlS4nZLDl6dsE4XCSaRLNzf712k21dbjGmwmNLE30tdlb8kK4BtOrIBa6rWiMUjIiIiIuqtPtF9\nQj0FopBhOzAioB3tmpGCj0lAFDJ6uUGvYp4qEoCkK+zYLTnYOrlC9Ma/1WzDLye8Jp5UpaJlm14w\n+YmI/tarr76KxYsXo7W1VfP37e3tWL58OdauXYuNGzeirKwM58+fx/vvv4+Ojg68+eabePTRR/Hz\nn//8c/8b0q1cAMAc1080HtC5yNoR6BBdbFWRuGA121Cat0X881E6JiCfEJCdMgIZ5pvEE8CiDLIJ\nK7mZediQu1m0la3FmIaMfoPFkwziY+QTyrJTRuBGo008kft5x3O8lqFec7irkL89TzQRyO2twzmv\nfJvKmVmz8OLda0Rbas7MmoXXJr0mFo+IiIiIqLdiDGraVNPn64M+mpGIiCKT1dTzdQEmAYUh6Scg\nrWYbXhi3SkmCBW/4y2lsaUQAATS2NIZ6Kv+UqvZqT+z7fkQeT6oqdRGRvqWnp2P16tV/9/cnT55E\neno6EhMTERcXB7vdjqqqKtx0003w+Xzw+/1oampCTMzn36iRvi5QlbAyM2sWlty5THSxVVXigh6S\njlWwmm3iSWWqKsxIJgABndtePkm2dZWq9xIA9Osjm6hnNduwwP4DXRynKvD6TY7FmIbkvimiCXUN\nzfVoD8i3qQQg+pnU5eFRD4vHJCIiIiLqqSvC7bTp2rWiVTMSEYVCfFS8ZqTga/f3vAoTk4DCjMNd\nhQd23CeaCKQiaaMrLls4yVHxRKmK40lV1Z7m9mbReEREejZx4sR/mMjT1NQEs9nc/Wej0YimpiYk\nJCTA5XLhnnvuwdNPP/0P24gFg6qE4+21b4teb+ilpameSP8uVSVqqbhuVXEcSVcuAdQkFzncVXhk\n12zxhxik46ng8jiRvz0vYr8LqWhjfP6qbJvG7JQRGNxPvkoZEREREVEkiDPEhXoKRCEThzjNSMFn\njjZrRgq+ropwrAwXOsOTs3r8WiYBhRm7JQf/bn9KvD2FiqQNLqDJG5c+XjSe3ZKDt+9/R/R4UlG1\nx+2tw7nmOiULXuFO5dP+RHT9MZlM8Hq93X/2er0wm81Yt24d/uVf/gW/+c1vsH37dixcuPDvWonp\nlarrmEj8zNETFdeZeklgV9EWqYv0+8hiTEO6OUO0eovDXYXJ2+4R3/5NRzaIxqtpqMbpK6dQ01At\nGld6nipiqmhjbDGmYZBJ9liymm3YOlm+9SURERERUSRo87eFegpEIdOGNs1IwefxeTQjBV+br00z\nUvCduXKqx69lElCYqaytwLKDS0RvqKqqBAToo0WFXqhamJJuo6GC3ZKDrZMrdDFXFfg+IqJrNWTI\nEJw+fRqXLl1CW1sbPvzwQ3zlK19Bv379uisEJSYmoqOjAz6fL8SzlaEi+VRFpbyuuCQnUhPYLcY0\n2EzposkQqqhoh6bCpiMb8Pj7c0WTYXIz87A+t1S0xZyKeaqImZ0yAunmwaIVdqxmG7bcL38shfux\nSUREREQUrjr8HaGeAhFFsFjEakYKPibDhV5jy/kev5b1m8KMipvJelnw0BuXxyn6O9XLfrKabXhh\n3CrxeUZqAhAR0bXYuXMnmpubUVhYiIULF+Lhhx9GIBBAQUEBBg4ciNmzZ+Opp55CUVER2tvb8fjj\njyMhISHU0w5bKirldSUWScclWeF+nQV0znH111/SxVwBVdWFBosmQQ1LHg4DDBiWPFwspgpdbYEl\n2wOriGk127BtCivsEBERERFdz/rF9Qv1FIhCJgpRCCCAKESFeioRy/BpHRMD65mETAABzUjB95WB\nt8N1ytWj1zIJKAxJPlHZhTdoZXVV7dFD0o50spLL48R3d31LFzf+pbediCiYbDYbysvLAQCTJk3q\n/vvx48dj/Hht+0ij0YiSkpKgzi9YVLVNlK6yYrfk4OVvrGUCEPVaVxVPPVxnqqAqCSo2WvbJscra\nCsyqnIENuZtFH+CQTNZRGVOanr5fkTp+vx8/+clP8Kc//QlxcXF45plnkJGR0f3zbdu24fXXX4fZ\nbEZ+fj6mTp2KtrY2LFq0CGfPnoXJZMKSJUswePBgnD59GgsXLkRUVBRuvvlm/PjHP4bBwJvHRERE\nRNfqStuVUE+BKGSY/BB6rWjVjESR6MTFj3v8Wt4BCTOqWkKpaAUWyVRU7VGx710eJ4oqporGrGmo\nxhnPKdQ0VIvFVEHVe4mIiIJPekHY5XFi6o4p4p+5zzue4+cO9ZpeqkOqoqIFoN2Sg22Tfy2apJed\nMgKD+90k/gCHZNuuLtKtCl0eJ6ZsyxPdR1azDSvGrIzY45467d69G21tbSgrK8OCBQuwYsWK7p9d\nuHABq1atwsaNG/HGG29g586dcDqdKC8vR0JCAsrLy7F48WIsW7YMALB8+XI89thjKC0tRSAQwHvv\nvReqzSIiIiLSpRgDawgQUeh0VWFiNSainmESUJjRS3JJF+kbynoifYNa1YJPh79dNF52ygikmweL\nL3hIH5+RvoBGRESfze2tg7PpDNzeOrGYqhawK2srROORPkT69Yv09Ssg33rWarZh62TZypibjmzA\n4+/PFU0EcrirMGXbvaLf21Q8FNBVAYuJlJHN4XBgzJgxAICRI0fi8OHD3T9zOp245ZZb0L9/fxgM\nBmRnZ6O6uhonTpzA2LFjAQCZmZk4efIkAODIkSO44447AABjx47F/v37g7w1RERERPoWZ4gL9RSI\nQiYOcZqRgo/VmEKPiVihZ4oz9/i1TAKKAKoWpRzuKjyw476ITgSSpmLBJyD8+Wg12/DLCa/pIlEt\n0hfQiIjoH7NbcrB1coVoUoCKBeyudkNMBKJIE2OQbd2livS15sysWXjx7jXy7buE79XkZuZhfW6p\naBs0JvATADQ1NcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMCh\nQ4dw7tw5+Hw+BAIBREV1HvxGoxEejyck20RERESkVxdbL4Z6CkQh04Y2zUgUiZgEFHqZ/b/U49cy\nCSjMqGoJpeKpSrslB2/f/474U7UkqyMg+yS1ihYNvOlPRETBpqIqiPRnmap2Q6y0QeHMarahNG9L\nxF4XSicAqWiFBkA0AaiLin3OB1b0xWQywev1dv/Z7/cjJqazDUViYiIWLVqEefPm4YknnkBWVhYG\nDBiAgoICmEwmFBUVYdeuXcjKykJ0dDQMhv+93eX1etGvX7+gbw8RERGRnsXHxId6CkREFEJ++DUj\nBd9H9f/T49cyCSjMqFhAspptWGD/gZKbqkwACm9ub133/yS1++RbNETqQg8REV0/VLQKlW435PI4\nUVQxlYlAFNZ4XShLL9/ZpM9LDncVpmyXbYXWhedQNUaNGoUPPvgAAHDo0CEMHTq0+2cdHR04evQo\nSktLUVJSgtraWowaNQo1NTUYPXo0Nm/ejNzcXAwaNAgAcOutt+LgwYMAgA8++AC333578DeIiIiI\nSMdidVKhlYiI6Hr1pQFDP/8ffQYmAYUhFW27Htk1m09B6oCKak3S7U4AIDZaH18A9HJzXi/zJCKi\n4FORDKEimZfXmbJUXRuoaC3HdnUkQVWCYkC6NzLUtTImYMKECYiLi8P06dOxfPlyLFq0CDt37kRZ\nWVl3RaD8/HwUFxejuLgYSUlJyMjIwPr161FYWIiSkhIsXLgQAPDDH/4Qq1evRmFhIdrb2zFx4sRQ\nbhoRERGR7vgCvlBPgShkYhGrGSn4ohGtGSn4jAajZqTgS4jt+e8+RnAeFKYsxjSkmzNgMaaFeir0\nT3TdTJauBKWi3YmKFg0uj1O80oGK36c0vcyTiIjoszjcVbh/ay525FfqpuKIJIe7SnS7u5IhpK+3\nKmsrMKtyBjbkbhZr5aQiJsmrrK3Qxf7p8MsmKNotOdg+5V0l34dWjFnJa3cFDAYDli5dqvm7IUOG\ndP//uXPnYu7cuZqfJyUlYd26dX8X66abbsIbb7yhZJ5EREREkWBW1sOhngJRyEQhSjNS8PU19IXX\n70VfQ99QTyVitfhbNCPpCysBRQCr2YbySdsi+ialHp7SVNEKDlCz7SrmKP00rV5+n6rmSURE9Fmk\nK/o1NNejI9CBhuZ60bgqrmFUtBvK356ni0pI2SkjMLjfTchOGRHWMVVRcTyp2O/SMbsStfRQsSlG\nQbsBFYmJLo8TT+z7vi6+YxIRERER9dTeM7tCPQWikGlDm2ak4PMH/JqRgi+AgGak4Gtu9/b4tUwC\nCkO8mShLT+XaVSSsqCirL01VIowekpUANa1eiIg+j14WxEmW1WzDC+NWiX72pCSkIgYxSElIFYvp\n8jiRvz1P9Dh1eZyYtnOKaEyLMQ0DE9JEK25azTYsumOxkuuirZMrROOqiKmCimtih7sKU7bfK3re\nU5FUpipRS8X1sIpqo6qoaKv4+h9fF49JRERERNRTl1svhXoKRCET82kjnRg21KEIlmBI0IwUfEP6\n39zj1zIJqJekb36qSDLQUxKMCnoq1x6p+wjQRyIMq/YQ0fVkyjbZBAuHuwpTtskuiJM8FRUsLMY0\nDO5/k2giTE1DNU5d+QtqGqrFYrq9dfjLpVq4vXViMQEgIVb2i7DDXYXv7J6jm/eS9O8TUHNN3NLR\nLB4zEJB9EkpVUpl0opbL4xT/DAH08X2gi3RFtU1HNuBbO78lGpOIiIiIqDdSEgaGegpEITMwfqBm\npOC70WTVjBR8hiiDZqTgO3z+ox6/Vtle8/v9WLJkCQoLC1FcXIzTp09rfr5t2zZMmjQJRUVF2LJl\nCwCgra0NCxYswLRp0zBnzhycOnUKAHDs2DFMmzYNM2bMwKJFi+D3d5b+euaZZ/DAAw+guLgYxcXF\n8Hg8qjbnH9JLCyOVSTB6SFrRS7l2VceTiidq9bIopYKeFicoMoX7uY7CxxnPKdEECwBgm2x9kK5g\noar1rHTf9eONx9CBDhxvPCYWU8W1lt2Sg5e/sVa8jZGKSkgqquGomKfbW4c67yeiCUt2Sw62T3lX\nfD9JJ5UB8tevNQ3VSj5D9HINo+J9PzNrFl6b9JpYPCIiIiKi3rp49UKop0AUMn1j4jUjUSTqF9dP\nM1LwffmG23r8WmVJQLt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rL\ny5GQkIDy8nIsXrwYy5YtAwCsWbMGjz76KDZv3oy2tjbs27cPAHDkyBG89tpr2LhxIzZu3Aiz2axq\nc/4hPbUwWvjbJ3VRtSiS6eV4crir8MCO+8QTgXgcEfWeqvMy35/Xp/W5pcjNzBOLZ7fkYNvkX4sv\niAM8BvVA+nojNzNP/Bgdlz4eNtMgjEsfLxZTBZfHiecdz4kf925vHc5cOS2aCGMxpiHNeKNo5RoV\n81R1fpKOp5eWWCren3r7bqliHz086mHxmEREREREPTU8OSvUU4hYbEVF9L/nIJ6LQic5/gbNSMF3\n8tKfe/xaZUlADocDY8aMAQCMHDkShw8f7v6Z0+nELbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDI\nzMzEyZMnAQDDhw/HpUuXEAgE4PV6ERMTA7/fj9OnT2PJkiWYPn06/uu//kvVpvxT4X6DFlCbXKKH\n1kh6uZkOqDmepG+k2y05ePv+d0QXPfR0018Pc6TIpeK8rKf3J30xkou3XVQlABVVTBU/BitrK0Tj\nqaJintJtbFTJThkhGs9qtmFn/m/Ez5HSx6eqKp4WYxoGmTNEE3YAID5GtnKNqnmqOD+poIfvLID8\nZ4hevlsSEREREUWK3zr3hXoKEcsca9aMFHzGWKNmpOC7ePWiZqTgM8clakYKvlEDb+/xa5UlATU1\nNcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMChQ4dw7tw5+Hw+\nDB48GM8++yzuueceNDY24s4770RzczO++c1v4mc/+xlee+01lJaW4vjx46o2J6hULLSqupmql5u0\nepmnNFWL99KLMnq56c8qK6QHkZrwSdc36fZVlbUVeLCySDzBRrpKnop56iU5WtVnbrhvN6Cula3V\nbMOW+2Xbtqk4nlTMk/SB+5yIiIiIKHx8+QbZB3Po2iV8+rBNgvBDN3TtbrfcqRkp+NZM+CViEYc1\nE34Z6qlErFuShmlGCr7jF471+LXKkoBMJhO8Xm/3n/1+P2JiOkvXJSYmYtGiRZg3bx6eeOIJZGVl\nYcCAASgoKIDJZEJRURF27dqFrKwsREdH49lnn8WmTZtQWVmJKVOmYMWKFYiPj8esWbMQHx8Pk8mE\nr371q9dFEhArLkQ2FYs9KqqCqKjIoIcqSHqrssLzCEnhohxdb7JTRiCj32DRSjMOdxWmbL9XNBFI\nxTwBfbyn9ZKAqCqpSjrxrYuK36deYhIREREREdG1O3HxT6GeQsRiC57QG5f+fzQjBV9NQzXa0Yaa\nhupQTyVi2cyDNCMF37Ck4T1+rbIkoFGjRuGDDz4AABw6dAhDhw7t/llHRweOHj2K0tJSlJSUoLa2\nFqNGjUJNTQ1Gjx6NzZs3Izc3F4MGdR5UiYmJ3VWFUlNTceXKFZw6dQozZsyAz+dDe3s7/vjHPyIr\nS/99AfWy4NFFL0kGepinnhLAVC1MSdJLBQFV73k9HU9ERJ9Hun2V1WzD1skV8tdbAdlwyuapE3rZ\nbhXz1EvLNiIiIiIiIro+DeqXEeopRKwpN/+rZiSKXFGhngBRSL13elePX6ssCWjChAmIi4vD9OnT\nsXz5cixatAg7d+5EWVlZd0Wg/Px8FBcXo7i4GElJScjIyMD69etRWFiIkpISLFy4EADwzDPP4PHH\nH8c3v/lNlJaW4vHHH8eQIUMwefJkTJs2DcXFxZg8eTJuvvlmVZsTVHpZ8NBLkoFe5mk127BizEpd\nVJnRw8KUnhLqVD1Br5ftJ1nS7YiIQk1VpRXpeHZLDrZN+TXslhzRuDyPhz/p865eWrYREREREV2P\nwv0eMlGw3Js5KdRTiFiXWy9rRgq+3Mw8bMjdjNzMvFBPJWKlJKQiLioWKQmpoZ5KxMofWoDU+IHI\nH1oQ6qlErO+M/F6PXxsVCASEn1mmSHL28lkMSgz/MmB6mOfZy2eRX5aPrYVbReeqYtv18PskikQH\nnQcxfsN47Jm1B3fa2K+YiEg1nneJiIiIiK4fqu7PEulN3LI4/Pah3/J7bgj96L0f4dmvPxvqaRCF\n1EHnQZ6HQujs5bPIK81DRVEFr4tCaMfxHbh/2P1f+HVMAiIiIiIiIiIiIiIiIiIiIiIi0jll7cCI\niIiIiIiIiIiIiIiIiIiIiCg4mARERERERERERERERERERERERKRzTAIiIiIiIiIiIiIiIiIiIiIi\nItI5JgEREREREREREREREREREREREekck4CIiIiIiIiIiIiIiIiIiIiIiHSOSUBERERERERERERE\nRERERERERDoXE+oJBIPf78dPfvIT/OlPf0JcXByeeeYZZGRkhHpa9Dfy8/NhMpkAADabDcuXLw/x\njOivVVdXY+XKldi4cSNOnz6NhQsXIioqCjfffDN+/OMfw2BgTmGo/fU+Onr0KL7zne9g8ODBAIAZ\nM2bg3nvvDe0EI1x7ezueeuopuFwutLW14Xvf+x6+9KUv8b1EQcfrIn3gdVF443VR+ON1UXjjdRGF\nm78+Z1Bw/aPzwde//vVQTyui+Hw+LF68GH/5y18QFRWF//iP/8DQoUNDPa2I1NjYiAceeABr167F\nkCFDQj2diMPvYKH38ssvY8+ePWhvb8eMGTMwderUUE8pIvG6KHR4XRQeeG0UHnhdlQuqzgAAIABJ\nREFUFHq8Ngq93lwbRUQS0O7du9HW1oaysjIcOnQIK1aswEsvvRTqadFfaW1tRSAQ4IVlmHr11Vex\nY8cOxMfHAwCWL1+Oxx57DHfeeSeWLFmC9957DxMmTAjxLCPb3+6jI0eO4KGHHsKcOXNCPDPqsmPH\nDvTv3x8/+9nPcOnSJUyZMgXDhg3je4mCjtdF4Y/XReGN10Xhj9dF4Y/XRRRO/vacQcH1j84HXOwK\nrr179wIA3nzzTRw8eBAvvvgivx+EQHt7O5YsWYK+ffuGeioRid/BQu/gwYP4n//5H2zevBktLS1Y\nu3ZtqKcUkXhdFFq8LgoPvDYKPV4XhR6vjUKvt9dGEfFYncPhwJgxYwAAI0eOxOHDh0M8I/pbx48f\nR0tLC+bMmYNZs2bh0KFDoZ4S/ZX09HSsXr26+89HjhzBHXfcAQAYO3Ys9u/fH6qp0af+dh8dPnwY\n+/btw8yZM/HUU0+hqakphLMjAMjNzcX8+fMBAIFAANHR0XwvUUjwuij88boovPG6KPzxuij88bqI\nwsnfnjMouP7R+YCC6xvf+AaWLVsGAPjkk0/Qr1+/EM8oMv3nf/4npk+fjtTU1FBPJSLxO1jo/e53\nv8PQoUPx6KOP4rvf/S7GjRsX6ilFJF4XhRavi8IDr41Cj9dFocdro9Dr7bVRRCQBNTU1dZerAoDo\n6Gh0/P/s3XlclWX+//H3gSPK5hpZLvgVUnMZU0jRTE0m3BJTURCMbDKd9nEZBRfAHBUro3LcsnFp\nEANScy2dUotGy0EdcnTCemhSkpm7LMXiuX9/9Jszo4lKB7k58Hr+xTn3fV3nc12XHD/A51xXaamJ\nEeFqderU0ZgxY7R8+XK98MIL+uMf/8gaVSH9+vWT1frfjcMMw5DFYpEkeXp6Ki8vz6zQ8P9dvUYd\nO3bUlClTlJKSoubNm2vRokUmRgfp5+8VLy8v5efn6/nnn9f48eP5XoIpyIuqPvKiqo28qOojL6r6\nyItQlVz9noHKda33A1Q+q9WqmJgY/elPf1JoaKjZ4dQ469evV8OGDe0f1kDl42cw850/f16HDh3S\n66+/bl8DwzDMDqvGIS8yF3lR1UFuZB7yoqqB3Mh8juZGNaIIyMvLSwUFBfbHNpuNRKaKadmypQYP\nHiyLxaKWLVuqfv36On36tNlhoQwuLv996ygoKKASugoKCQlRhw4d7F//+9//NjkiSNLJkyf16KOP\n6uGHH1ZoaCjfSzAFeVHVR17kXHgvr/rIi6om8iIA/3H1+wHM8eKLL2r79u2Ki4tTYWGh2eHUKOvW\nrdOePXsUHR2tL774QjExMeT/lYyfwcxXv3593X///XJzc5Ofn59q166tc+fOmR0WUOnIi6oOciNz\nkBdVDeRG5nM0N6oRRUABAQHKyMiQJGVlZal169YmR4SrrV27VvPmzZMknTp1Svn5+fLx8TE5KpSl\nXbt22rt3ryQpIyND9957r8kR4WpjxozRwYMHJUmffvqp2rdvb3JEOHPmjB5//HFNnjxZw4cPl8T3\nEsxBXlT1kRc5F97Lqz7yoqqHvAjAf1zr/QCVa8OGDXrjjTckSe7u7rJYLFcUZuLWS0lJ0erVq5Wc\nnKy2bdvqxRdfJP+vZPwMZr7AwEB98sknMgxDp06d0o8//qj69eubHRZQqciLqgZyI3ORF1UN5Ebm\nczQ3qhEf+w4JCdHu3bs1cuRIGYahuXPnmh0SrjJ8+HBNnTpVkZGRslgsmjt3LrsSVGExMTGKi4tT\nUlKS/Pz81K9fP7NDwlVmzpypP/3pT6pVq5Zuu+02+xm2MM/SpUt16dIlLV68WIsXL5YkTZ8+XbNn\nz+Z7CZWKvKjqIy9yLuRFVR95UdVDXgTgP671fvDmm2+qTp06JkdWc/Tt21dTp07VqFGjVFpaqmnT\npjH/qHH4Gcx8ffr0UWZmpoYPHy7DMBQfHy9XV1ezwwIqFXlR1UBuBJAbVQWO5kYWg4NVAQAAAAAA\nAAAAAAAAAKfG/mUAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAA\nTo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgABUCXv37lV0dLTZYQAAAFQJ5EYA\nAAA3r02bNje8Jzg4WCdOnKiEaAAAAMxDXgSAIiAAAAAAAAAAAAAAAADAyVEEBKDKOHfunMaOHat+\n/frpySefVHFxsdatW6dBgwYpNDRUsbGxKigokHRlJfP69esVGxsr6efq5fHjx6tfv346e/asKeMA\nAACoCORGAACgugoNDdXRo0clSZMmTVJCQoIkKSsrS2PHjtWyZcs0dOhQDR48WC+99JIMw5Akbdiw\nQUOHDtXDDz+sadOmqaio6Ip+Dxw4oH79+iknJ0cXLlzQ2LFjFRoaqvHjx9vvzc/P1/PPP6+IiAj1\n6dNHkydPlmEYmjx5stLS0ux9RUdH6/PPP6+M6QAAADUYeRGAikYREIAq47vvvlN8fLzef/99nTlz\nRm+//baWLl2q5ORkbd68We7u7lq4cOEN++nVq5e2b9+uRo0aVULUAAAAtwa5EQAAqK569+6tTz/9\nVJL05Zdf6sCBA5KkjIwMPfDAAzp06JDWrl2rDRs26NSpU9q0aZO++uorpaenKzU1VRs3blSjRo20\nfPlye59ffPGFpk+friVLlqhFixZasGCB2rVrp82bN2vUqFE6c+aMJOmjjz5S27ZtlZaWpu3btysr\nK0uHDx9WWFiYNm3aJEnKzc3VuXPndM8991TyzAAAgJqGvAhARbOaHQAA/Mfdd9+t5s2bS5L8/f2V\nl5enPn36qEGDBpKkiIgITZ069Yb9kIgAAIDqgNwIAABUVw888IBWrlypbt266a677tKxY8d09uxZ\nZWRkqFWrVjp48KCGDRsmSfrpp5/UpEkT5eXlKScnR+Hh4ZKkkpIStWvXzt7nE088of79+8vPz0+S\n9I9//EOvvPKKJKlLly72vGrQoEE6ePCgVq1apWPHjunChQsqLCxUUFCQ4uLidOLECW3cuFEPP/xw\nZU4JAACoociLAFQ0ioAAVBlW63/fkiwWi+rWratLly7ZnzMMQ6WlpVc8tlgsVzwnSbVr1771wQIA\nANxi5EYAAKC66ty5s6ZMmaI9e/aoa9euatSokbZt26aSkhJ5e3tr9OjR+t3vfidJunTpklxdXbV2\n7VoNGDBAM2bMkCQVFBTo8uXL9j7nz5+vKVOmaMSIEbr77rtlsVjsx2VIkqurqyQpOTlZ27dvV3h4\nuO677z59+eWX9jxqyJAh2rp1q7Zt26a//OUvlTgjAACgpiIvAlDROA4MQJW2c+dOXbhwQZKUnp6u\noKAgSVKDBg301VdfyTAM7dy508wQAQAAKg25EQAAqA5cXV11zz33KDk5WV27dlW3bt20dOlS9e7d\nW926ddPGjRtVUFCg0tJSPfPMM9q+fbuCgoL0wQcf6OzZszIMQzNnztRbb71l77N79+6aNGmSZsyY\nIZvNpu7du2vjxo2SpIMHD+qbb76RJO3evVsREREaPHiwLBaLsrOzZbPZJEnDhg1Tamqq7rjjDjVu\n3LjyJwYAANQ45EUAKho7AQGosry8vPT73/9e0dHRKikpUfv27fXCCy9IkiZNmqQnn3xSt912mwID\nA3X+/HmTowUAALi1yI0AAEB10rt3b2VmZsrf318+Pj46e/asHnjgAQUEBCg7O1vh4eG6fPmyevbs\nqaFDh8pisejZZ5/V6NGjZbPZ1LZtW40bN+6KPocMGaJ169YpOTlZzz//vGJjY/XQQw/Jz8/PfuzF\n6NGjNXPmTK1YsUKenp7q3LmzTpw4IUm68847dccdd2jo0KGVPh8AAKDmIi8CUJEsxv/u/QUAAAAA\nAAAAQA1jGIZ++OEHRUdHa8uWLXJzczM7JAAAAFOQFwHOjePAAAAAAAAAAAA12vbt2/Xwww9r4sSJ\n/KELAADUaORFgHNjJyAAAAAAAAAAAAAAAADAybETEAAAAAAAAAAAAAAAAODkKAICAAAAAAAAAAAA\nAAAAnBxFQAAAAABqjBMnTqhz5843vO9f//qXgoODKyGiqmHv3r0aNGiQ2WFUuOXLlys2NtbsMAAA\nAAAAAACgUlAEBAAAAAAAAAAAAAAAADg5q9kBAAAAAMDVhgwZoilTpui+++7T1q1bFRsbq8zMTNWp\nU0czZsxQ27ZtNWLECM2fP1+ZmZm6fPmy2rVrpxkzZsjLy0unTp3SrFmzdPLkSZWUlOihhx7Sk08+\necVrHD16VGPHjtXUqVMVEhKiNWvW6K233pKXl5dat25tv+/MmTOKj4/X2bNndfr0aTVt2lSvvfaa\njh8/rokTJ2rXrl1ycXHRjz/+qODgYG3ZskWNGjWSJNlsNvXp00cLFy7Ub37zG0nShAkT1KVLFwUF\nBWn69OkqLi6WYRgaPny4Ro0a9Yu5WLp0qT788EMVFRXpxx9/VExMjH7729+W2e/QoUOVkJCgzz//\nXN7e3rrrrrskSfPmzbvunBcWFur5559XTk6O6tatq1mzZqlly5bKy8vTCy+8oOzsbFksFvXs2VMT\nJ06U1Vr2j5OnT59WTEyMzp8/L0nq3bu3xo8fr/Xr12vr1q2y2Ww6deqUGjdurHnz5qlx48aKjo5W\nvXr1dOzYMUVGRmrIkCGaM2eOvvzyS5WUlKh79+6aMmWKrFar1q5dq7S0NJWUlOjixYsaO3asoqKi\nVFJSotmzZ2vPnj1q1KiRGjVqJG9v7xv9cwMAAAAAAACAaoGdgAAAAABUOQ8++KA++eQTSdInn3yi\nevXqad++fbLZbProo4/Ut29fLVu2TK6urlq/fr02bdqk22+/XfPnz5ckTZ48WWFhYVq/fr3Wrl2r\nPXv26L333rP3/+WXX+rJJ5/UnDlzFBISoi+++EILFy7U6tWrtW7dOtWqVct+79atW9WpUyelpaVp\nx44dqlOnjjZu3KjAwEDVr1/fHufWrVvVvXt3ewGQJLm4uCgsLEzvvvuuJOnixYvas2ePQkNDtXz5\ncgUHB2v9+vVatmyZfXz/Kzc3V3v27NHq1au1efNmTZgwQQsWLLhuv4sXL9bly5f1/vvva9WqVfr3\nv/99U3N+8uRJPfbYY9q4caMGDRqkKVOmSJJmz56t+vXra/PmzVq3bp2OHDmiFStWXLev9PR0NWvW\nTO+++65SUlKUk5OjvLw8SdKBAwcUHx+v9957T+3bt9ecOXPs7erWrav33ntP0dHRmjt3rtq3b6/1\n69drw4YNOn/+vFauXKmCggK98847WrZsmTZs2KBXX31VL7/8siRpzZo1On78uLZu3aoVK1bo5MmT\nNzV2AAAAAAAAAKgO2AkIAAAAQJUTEhKiiRMnKiYmRvv27dNjjz2m3bt3y9PTU76+vvLx8dFHH32k\nvLw87dmzR5JUUlKiRo0aqbCwUJmZmbp48aJef/11ST/vcpOdna2OHTuquLhYjz76qLp27aru3btL\nkj799FP16NFDPj4+kqSIiAj9/e9/lySNHj1a+/bt08qVK3X8+HF99dVXuueeeyRJo0aNUnp6unr3\n7q20tDR74cz/CgsL0/DhwxUbG6stW7aoT58+8vb2VkhIiGJiYnTw4EF1795dM2bMkIvLlZ/TaNq0\nqV588UVt3rxZOTk5+vzzz1VQUHDdfj/++GNNnTpVLi4u8vLy0tChQ3XkyJEbznmbNm0UEBAgSRo6\ndKhmzpypvLw8ZWRk6O2335bFYpGbm5tGjhypt956S+PGjSuzr549e2rcuHE6efKk7rvvPk2aNMm+\nI0+PHj3UsmVLSVJ4eLgefvhhe7t7773X/vVHH32kf/3rX1q7dq0k6aeffpIkeXp6aunSpfr44491\n/PhxZWdnq7Cw0L6OgwYNkpubm9zc3BQaGnpTYwcAAAAAAACA6oAiIAAAAABVTps2bVRSUqIdO3ao\nRYsW6tOnjyZMmCCr1aq+fftK+vmorWnTpql3796SpIKCAhUVFclms8kwDKWmpsrd3V2SdO7cOdWu\nXdt+PNWiRYs0ZcoU/e1vf1Pfvn1lsVhkGIb99V1dXe1fv/zyyzp48KDCwsIUFBSk0tJS+72hoaFK\nSkrSZ599psLCQnXp0uUXY2natKnatWunjz76SOvXr9e0adMkSX369NH27du1Z88effrpp1q0aJFS\nU1Pl6+trb3v48GE9/fTTeuyxx9SjRw916dJFL7zwwnX7tVqtV4zl6sKislx9n8VikdVq/cXuRDab\nTaWlpdftq2PHjtqxY4c+/fRTffbZZxoxYoQWLVok6cq5tdlsVzz28PC44trrr78uf39/SdKlS5dk\nsVj0/fffKyIiQuHh4QoMDFT//v21a9eua8bxv30DAAAAAAAAQHXHcWAAAAAAqqQHH3xQ8+fPV48e\nPeTv76/8/Hxt3rxZ/fr1kyTdf//9SklJUXFxsWw2m+Li4pSUlCQvLy916tRJK1eulPRz8UhkZKR2\n7NghSXJzc1NgYKDmzp2rhIQEnT59Wvfdd592796t77//XpLsx2xJ0t///neNHj1aQ4YMUaNGjbRn\nzx5dvnxZkuTu7q7Bgwdr2rRpGjlyZJljCQ8P15tvvqmffvpJgYGBkqRJkybpvffe00MPPaSEhAR5\neXn94viqzMxMdejQQb/73e/UtWtX7dixw/7aZfXbu3dvrVu3TjabTT/++KO2bNkii8Vyw/k+cuSI\nvvjiC0lSWlqaAgMD5e7ubp9nwzBUXFys9PR03Xfffdfta/78+Vq8eLEefPBBTZ8+XXfddZeOHz8u\nSfrss8906tQpSVJqaqr69OlzzT7uv/9+rVq1yv66Tz31lFavXq1Dhw6pYcOGevrpp9WzZ097AdDl\ny5fVs2dPbdiwQUVFRSoqKrriCDgAAAAAAAAAqO4oAgIAAABQJYWEhOjYsWP2gpP77rtPPj4+uvPO\nOyVJTz/9tJo2baqhQ4dq4MCBMgxDsbGxkn4uQvn8888VGhqqESNGaNCgQRo8ePAV/QcFBemhhx7S\ntGnT1KZNG02ePFmjR4/WsGHDVFRUZL/vmWee0UsvvaRhw4bp2WefVUBAgL755hv79WHDhuncuXMa\nMmRImWMJDg5Wbm6uhg8fbn/u6aef1ubNmzV48GCFh4frwQcfVNeuXa9oN2jQIJ0/f14DBw7UsGHD\n5OHhoYsXLyo/P7/Mfn//+9+rdu3aCg0N1e9+9zs1atRIderUueF8+/n5aeHChRo8eLB27typefPm\nSZJmzJihc+fOKTQ0VKGhoWrZsqWefPLJ6/Y1evRoZWdna9CgQQoLC1OzZs00aNAgSVLjxo01efJk\nDRgwQLm5ufYdjK42ffp0FRYW2l+3devWeuKJJ9SjRw81btxY/fv315AhQ3Ty5Ek1bNhQOTk5Gjly\npDp06KBBgwbpkUceUbNmzW44bgAAAAAAAACoLizG/+4TDwAAAAC4aYZh6M0331Rubq79mC6zbd26\nVV5eXurdu7dsNpuee+459ejRQ1FRUWaHpvXr12v79u164403zA4FAAAAAAAAAKodq9kBAAAAAICz\n+u1vf6uGDRtqyZIlZodi16pVK8XHxyspKUklJSUKCgrSiBEjNH78eH399dfXbPPqq6/Kz8+vXK8T\nFRWlgoKCa15LSUmRl5dXuWMHAAAAAAAAAPx67AQEAAAAAAAAAAAAAAAAODkXswMAAAAAAAAAyuvz\nzz9XdHT0L57fuXOnwsLCFBERofT0dBMiAwAAqFzkRQAA4D84DgwAAAAAAABO5c0339SmTZvk7u5+\nxfMlJSVKTEzU2rVr5e7ursjISAUHB+u2224zKVIAAIBbi7wIAAD8rxpVBHT6dJ7ZIdxQgwYeOn++\n0OwwnBbz5zjm0HHMoeOYQ8dV9Tn08fE2O4Qar9PiAK3qn6Km3s3MDgUAgBqP3Kj8fH199ec//1lT\npky54vmjR4/K19dX9erVkyQFBgYqMzNTAwYMuG5/hmHIYrHcsngBAABuFfIiAADwv2pUEZAzsFpd\nzQ7BqTF/jmMOHcccOo45dBxziBuhAAgAADizfv366cSJE794Pj8/X97e/y2q8vT0VH5+/g37s1gs\nTvHhserMx8ebNTAZa2A+1sB8rIH5KI4uP/Ki6of3IvOxBuZjDczHGpjv1+ZFLhUcBwAAAJwABUAA\nAKA68vLyUkFBgf1xQUHBFX/8AgAAqCnIiwAAqJkoAgIAAAAAAEC14O/vr5ycHF24cEHFxcXat2+f\nOnfubHZYAAAAlY68CACAmonjwAAAAAAAAODUNm/erMLCQkVERCg2NlZjxoyRYRgKCwtT48aNzQ4P\nAACg0pAXAQBQs1EEBAAAAAAAAKfTrFkzpaenS5JCQ0PtzwcHBys4ONissAAAACodeREAAPgPjgMD\nAAAAAAAAAAAAAAAAnBxFQAAAAAAAAAAAAAAAAICTowgIAAAAAAAAAAAAAAAAcHJWswMAAKAiPT5v\nZ4X2tyKWM7MBAAAAAAAAAAAAVH3sBAQAQBWzfPkb2rBhrdlhlMtnn+3RnDkzzQ4DAAAAAAAAAAAA\nqLEoAgIAAAAAAAAAAAAAAACcnMPHgdlsNs2cOVNHjhyRm5ubZs+erRYtWtiv79y5U4sWLZLValVY\nWJjCw8PLbJOTk6PY2FhZLBa1atVKCQkJcnFxUXp6ulJTU2W1WvXUU0+pT58+unz5shITE3Xo0CEV\nFxfrueeeU58+fRwdTrlU9JEztwLH2ADArVVQkK9582YrPz9PZ86c1m9/21cffLBNq1e/I4vFoqSk\nFxUY2FU+Pj5KSnpJHh4eatCggdzcamv69Jll9puR8ZF27vxQP/30k8aP/6Pateugv/3tfaWnv61a\ntWqpeXNfTZkyXVbrtf8rT0lJ0TvvrJOLi4vatm2n8eMna86cmTIMQz/8cEo//lioGTNmyc3NTTEx\nE1S3bj11795D3br10GuvvSzDMFSvXj1NnZogd3d3vfzyXP3wwymdPXtGPXr00rhxT+v48a+VmDhL\ndeq4y929jry9696iWQYAAAAAAAAAAABwIw7vBPThhx+quLhYaWlpmjRpkubNm2e/VlJSosTERK1Y\nsULJyclKS0vTmTNnymyTmJio8ePHa82aNTIMQzt27NDp06eVnJys1NRULV++XElJSSouLtbGjRtV\nWlqq1NRULVmyRDk5OY4OBQCAcjtx4oQefLCvXn11kV59dZG2bdsqf/9W+vzzf6q4uFgHDuxXjx49\nNX9+oqZNS9CCBUvVpEmzG/Z7551NtGDBUsXGxmn+/ERdvHhBy5e/oQULlmjJkuXy8vLSxo3rymy/\nfv16TZw4RW+8sVItWrRUaWmpJKlp02ZasGCpHn98nBYvfl2SdO7cWb366iKNGjVaL744WxMnxmjh\nwmXq3r2HUlLe0g8/nFL79r9RUtJCLVv2lv11Fy9+XU888Xu9/vpidejQsQJmEwAAAAAAAAAAAMCv\n5fBOQPv371fPnj0lSZ06ddKhQ4fs144ePSpfX1/Vq1dPkhQYGKjMzExlZWVds83hw4fVtWtXSVKv\nXr20e/duubi4qHPnznJzc5Obm5t8fX2VnZ2tv//972rVqpXGjRsnwzAUFxfn6FAAACi3hg0bKj19\njT7+eJc8PDxVWlqq0NAhev/9LTp79qzuv7+XrFarzpw5Iz8/f0nSPfd01o4df7tuv/fcEyBJ8vPz\n19mzZ/Xdd7lq2dJPHh6e9uuZmZ+V2T4xMVGLF7+hkydfV/v2v7E/HxDQRZLUocM9WrAgSdLPBUe1\natWSJOXkfK1XXvm5OPfy5VI1a+arunXr6osvDuvAgX3y9PRUcXGJJOmbb75R27YdJEm/+U0n5eQc\nL9fcAQAAAAAAAAAAAKg4DhcB5efny8vLy/7Y1dVVpaWlslqtys/Pl7e3t/2ap6en8vPzy2xjGIYs\nFov93ry8vDL7OH/+vL755hu98cYbyszM1NSpU5WSknLdWBs08JDV6urokJ2Kj4/3jW+qZmrimCsa\nc+g45tBxVWUObxTHX/6yUN26dVFUVJQ+++wz/eMfezRgwG/15puLdPHiOSUkJMjHx1tNmtypixdP\n6a677tLx41+qTp1aZfbt6Vlbx49/KR+fETpy5IiaNWuqDh1a69tvc+Tp6SoPDw8dOfIvtW3busw+\n3njjdb344lzVrl1bY8aM0bfffqU6dWopN/eYHnywpw4f3q+7726jhg095eb231j8/Pz06quvqEmT\nJtq/f79Onz6tjIwPdPvtjTR58mTl5ORo06Z3ddttXmrTppW+/fYr9erVSydOHL3umAAAAAAAAAAA\nAADcWg4XAXl5eamgoMD+2GazyWq1XvNaQUGBvL29y2zj4uJyxb1169Yts4/69evrgQcekMViUdeu\nXXX8+PEbxnr+fKEjQ3VKp0/nmR1CpfLx8a5xY65ozKHjmEPHOTKHK2KDKzSWG8URENBNr776kjZu\n3Pz/C1wt+u67c7r//ge0b98/5O7eQKdP5+kPf5isyZNj5O7uoVq1rPLxub3MvgsKinTs2HFFRo5S\nSUmxJk6M1eXLtTR69FhFRY2SxeKiZs2aa/To35fZR5s2bRQePlIeHh7y8fFRkyZ++umnEn344S5t\n2/Y32Ww2TZuWoHPnClRSctnezx/+MEUTJkzS5cuXZbFYFBsbpwYN7lBq6gxlZu5XrVq11KxZc33x\nxTGNG/ecZs9O0NKly1S/fn25udW+6XWjWAgAAAAAAAAAAACoWA4XAQUEBGjXrl0aOHCgsrKy1Lp1\na/s1f39/5eTk6MKFC/Lw8NC+ffs0ZswYWSyWa7Zp166d9u7dq6CgIGVkZKhbt27q2LGjXnvtNRUV\nFam4uFhHjx5V69atFRgYqI8//lj9+vVTdna27rzzTkeHAgBAuQUE3Kvk5PRfPP/oo4/r0Ucftz/+\n978P68UXX1WDBg20bNli+/Fb1zJmzO+v+Xzfvv3Vt2//m4prxIgReuCBX97cMQPcAAAgAElEQVQb\nHh6pbt3uu+K5ZctW2b++++62Wrhw2S/avfXW29d8nSVLlt9UPAAAAAAAAAAAAABuLYeLgEJCQrR7\n926NHDlShmFo7ty52rx5swoLCxUREaHY2FiNGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+en\nfv36ydXVVdHR0YqKipJhGJowYYJq166t8PBwJSQkKDw8XIZh6IUXXnB4MgAAuFUaNmyoiROfkbu7\nh7y8vDR9+kxNmzZZly5dvOI+Ly8vzZuXdFN9fv/995o9O/4Xz3fuHKjY2D9WSNwAAAAAAAAAAAAA\nnIPFMAzD7CAqS0Ufz/P4vJ0V2t+tUNHH4lR1HMPkOObQccyh45hDx1X1OeQ4MPNlHftCTb2bmR0G\nAAAQuVFVUZXz55qgqv8MUxOwBuZjDczHGpiPvKhq4PvAXLwXmY81MB9rYD7WwHy/Ni9yqeA4AAAA\n4AQe2zZKuXknzA4DAAAAAAAAAAAAFYQiIAAAgBpoVf8UdgICAAAAAAAAAACoRigCAgAAqIEoAAIA\nAAAAAAAAAKheKAICAACogTgKDAAAAAAAAAAAoHqhCAgAAKAGemzbKAqBAAAAAAAAAAAAqhGKgAAA\nAGqgVf1TOBIMAAAAAAAAAACgGqEICAAAoAaiAAgAAAAAAAAAAKB6oQgIAAAAAAAAAAAAAAAAcHIU\nAQEAAAAAAAAAAAAAAABOjiIgAAAAAAAAAAAAAAAAwMlRBAQAAAAAAAAAAAAAAAA4OYqAAAAAAAAA\nAAAAAAAAACdHERAAAAAAAAAAAAAAAADg5CgCAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACA\nk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAA\nAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAnRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAA\nAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAAAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAA\nAIBbzGazKT4+XhEREYqOjlZOTs4V13fu3KmwsDBFREQoPT39um1ycnIUGRmpqKgoJSQkyGazXfE6\nTzzxhN5+++3KGxwAAEAlu1FutWnTJg0dOlRhYWFas2aNSVECAADceuRFAADgahQBAQAA3GIffvih\niouLlZaWpkmTJmnevHn2ayUlJUpMTNSKFSuUnJystLQ0nTlzpsw2iYmJGj9+vNasWSPDMLRjxw57\nX6+99pouXbpU6eMDAACoTNfLrSTppZde0sqVK/X2229r5cqVunjxokmRAgAA3FrkRQAA4GoUAQEA\nANxi+/fvV8+ePSVJnTp10qFDh+zXjh49Kl9fX9WrV09ubm4KDAxUZmZmmW0OHz6srl27SpJ69eql\nPXv2SJK2bdsmi8VibwMAAFBdXS+3kqQ2bdooLy9PxcXFMgxDFovFjDABAABuOfIiAABwNavZAQAA\nAFR3+fn58vLysj92dXVVaWmprFar8vPz5e3tbb/m6emp/Pz8Mtv87y9sPD09lZeXpy+//FJbtmzR\nggULtGjRosobGAAAgAmul1tJUqtWrRQWFiZ3d3eFhISobt26N9Wvj4/3jW/CLcUamI81MB9rYD7W\nAM6EvKj6Yg3MxxqYjzUwH2vgnBwuArLZbJo5c6aOHDkiNzc3zZ49Wy1atLBf37lzpxYtWiSr1aqw\nsDCFh4eX2SYnJ0exsbGyWCxq1aqVEhIS5OLiovT0dKWmpspqteqpp55Snz59ZBiGevXqpf/7v/+T\n9HOF86RJkxwdDgAAQIXz8vJSQUGB/bHNZrP/MubqawUFBfL29i6zjYuLyxX31q1bVxs2bNCpU6c0\nevRo5ebmqlatWmratKl69epVCaMDAACoXNfLrbKzs/XRRx9px44d8vDw0OTJk/X+++9rwIABN+z3\n9Om8WxYzbszHx5s1MBlrYD7WwHysgfn4Y2P5kBdVT7wXmY81MB9rYD7WwHy/Ni9yuAjof88bzcrK\n0rx587RkyRJJUklJiRITE7V27Vq5u7srMjJSwcHBOnDgwDXbJCYmavz48QoKClJ8fLx27NihTp06\nKTk5WevWrVNRUZGioqLUo0cPnTx5Uu3bt9fSpUsdHQIAAMAtFRAQoF27dmngwIHKyspS69at7df8\n/f2Vk5OjCxcuyMPDQ/v27dOYMWNksViu2aZdu3bau3evgoKClJGRoW7dumngwIH2/v785z/rtttu\nowAIAABUW9fLrby9vVWnTh3Vrl1brq6uatiwoS5dumRitAAAALcOeREAALiaw0VA1ztv9OjRo/L1\n9VW9evUkSYGBgcrMzFRWVtY12xw+fFhdu3aVJPXq1Uu7d++Wi4uLOnfuLDc3N7m5ucnX11fZ2dk6\nceKETp06pejoaNWpU0dTp06Vn5+fo8MBAACocCEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiFBs\nbKzGjBkjwzAUFhamxo0bX7ONJMXExCguLk5JSUny8/NTv379TB4dAABA5bpRbhUREaGoqCjVqlVL\nvr6+Gjp0qNkhAwAA3BLkRQAA4GoOFwFd77zR/Px8eXv/d4siT09P5efnl9nGMAxZLBb7vXl5eWX2\n4ePjo3HjxmnAgAHat2+fJk+erHXr1l031gYNPGS1ujo6ZKdSE7fOrIljrmjMoeOYQ8cxh45jDqsO\nFxcXzZo164rn/P397V8HBwcrODj4hm0kqWXLllq9enWZr/Xcc885GC0AAEDVdqPcKjIyUpGRkZUd\nFgAAQKUjLwIAAFdzuAjoeueNXn2toKBA3t7eZbZxcXG54t66deuW2cddd90lV9efC3ruvfde/fDD\nD1cUEV3L+fOFjg7X6dS0c/o4m9BxzKHjmEPHMYeOq+pzSIESAAAAAAAAAAAAULFcbnzL9QUEBCgj\nI0OSfnHeqL+/v3JycnThwgUVFxdr37596ty5c5lt2rVrp71790qSMjIydO+996pjx47av3+/ioqK\nlJeXp6NHj6p169ZauHCh3nrrLUlSdna27rzzzusWAAEAAAAAAAAAAAAAAADVlcM7Ad3ovNHY2FiN\nGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+enfv36ydXVVdHR0YqKipJhGJowYYJq166tcePG\nafLkyfr444/l6uqqxMREhycDAAAAAAAAAAAAAAAAcEYWwzAMs4OoLBV9LMrj83ZWaH+3worYYLND\nqFRV/fgbZ8AcOo45dBxz6LiqPoccB2a+qvzvAwCAmobcqGogPzJXVf8ZpiZgDczHGpiPNTAfeVHV\nwPeBuXgvMh9rYD7WwHysgfl+bV7k8HFgAAAAAAAAAAAAAAAAAMxFERAAAAAAAAAAAAAAAADg5CgC\nAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAA\nAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAn\nRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAAAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAA\nAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAAAIAaKDfvhNkhAAAAAAAAAAAAoAJRBAQAAFAD\nPbZtFIVAAAAAAAAAAAAA1QhFQAAAADXQqv4paurdzOwwAAAAAAAAAAAAUEEoAgIAAAAAAAAAAAAA\nAACcHEVAAAAANRDHgQEAAAAAAAAAAFQvFAEBAADUQPN6zuc4MAAAAAAAAAAAgGqEIiAAAIAaKPaT\nP7ITEAAAAAAAAAAAQDVCERAAAEANxE5AAAAAAAAAAAAA1QtFQAAAADUQOwEBAAAAAAAAAABULxQB\nAQAA1ECr+qewExAAAAAAAAAAAEA1QhEQAABADUQBEAAAAAAAAAAAQPVCERAAAAAAAAAAAAAAAADg\n5KxmBwAAAOAMMjMzr3u9S5culRQJAACobr69+K2a12tudhgAAAAAAABwchQBAQAA3IQFCxZIki5c\nuKBvvvlGAQEBcnFx0T//+U+1bt1aqampJkcIAACcUW7eCT3xYbT2jdtndigAAAAAAABwchQBAQAA\n3ITk5GRJ0tixY7Vw4UK1aNFCkpSbm6v4+HgzQwMAAE6sqXczvRvxrtlhAAAAAAAAoBpwcbQDm82m\n+Ph4RUREKDo6Wjk5OVdc37lzp8LCwhQREaH09PTrtsnJyVFkZKSioqKUkJAgm80mSUpPT9ewYcMU\nHh6uXbt2XdH/0aNHFRgYqKKiIkeHAgAAcEPfffedvQBIkpo0aaLvvvvOxIgAAICz4ygwAAAAAAAA\nVASHdwL68MMPVVxcrLS0NGVlZWnevHlasmSJJKmkpESJiYlau3at3N3dFRkZqeDgYB04cOCabRIT\nEzV+/HgFBQUpPj5eO3bsUKdOnZScnKx169apqKhIUVFR6tGjh9zc3JSfn68XX3xRbm5uDk8EAADA\nzWjfvr1iYmI0YMAA2Ww2bdmyRffee6/ZYQEAAAAAAAAAAKCGc3gnoP3796tnz56SpE6dOunQoUP2\na0ePHpWvr6/q1asnNzc3BQYGKjMzs8w2hw8fVteuXSVJvXr10p49e3Tw4EF17txZbm5u8vb2lq+v\nr7Kzs2UYhuLi4jRx4kS5u7s7OgwAAICbMnv2bLVp00apqalKT09Xp06dlJCQYHZYAAAAAAAAAAAA\nqOEc3gkoPz9fXl5e9seurq4qLS2V1WpVfn6+vL297dc8PT2Vn59fZhvDMGSxWOz35uXlldnHwoUL\n1bt3b9199903HWuDBh6yWl0dGa7T8fHxvvFN1UxNHHNFYw4dxxw6jjl0HHN4a7i5uWnYsGEaMGCA\nDMPQ5cuXlZmZqe7du5sdGgAAAAAAAAAAAGowh4uAvLy8VFBQYH9ss9lktVqvea2goEDe3t5ltnFx\ncbni3rp165bZx6ZNm3THHXdo3bp1On36tB5//HGlpKRcN9bz5wsdHa7TOX06z+wQKpWPj3eNG3NF\nYw4dxxw6jjl0XFWfQ2cuUHrllVe0Zs0alZaWqkGDBjp16pQ6dOigd955x+zQAAAAAAAAAAAAUIM5\nfBxYQECAMjIyJElZWVlq3bq1/Zq/v79ycnJ04cIFFRcXa9++fercuXOZbdq1a6e9e/dKkjIyMnTv\nvfeqY8eO2r9/v4qKipSXl6ejR4+qdevW+uCDD5ScnKzk5GT5+PhoxYoVjg4FAADghrZu3aqPP/5Y\nAwcO1F//+letXLlSDRs2NDusctv/fabZIQAAAAAAAAAAAKACObwTUEhIiHbv3q2RI0fKMAzNnTtX\nmzdvVmFhoSIiIhQbG6sxY8bIMAyFhYWpcePG12wjSTExMYqLi1NSUpL8/PzUr18/ubq6Kjo6WlFR\nUTIMQxMmTFDt2rUdHjgAAMCvcfvtt8vLy0utWrVSdna2+vbtq5dfftnssMpt2KZBWj94iwLv6GJ2\nKAAAAOVis9k0c+ZMHTlyRG5ubpo9e7ZatGhhv37w4EHNmzdPhmHIx8dHL7/8Mr9LAgAA1RJ5EQAA\nuJrDRUAuLi6aNWvWFc/5+/vbvw4ODlZwcPAN20hSy5YttXr16l88Hx4ervDw8DJj2LlzZ3nDBgAA\n+FW8vLy0YcMGtW/fXqtXr9btt9+uS5cumR1Wub3x4AoKgAAAgFP68MMPVVxcrLS0NGVlZWnevHla\nsmSJJMkwDMXFxWnBggVq0aKF3nnnHeXm5srPz8/kqAEAACoeeREAALiaw8eBAQAA1CRz5szRuXPn\nFBQUpKZNmyo+Pl7jx4+/bhubzab4+HhFREQoOjpaOTk5V1zfuXOnwsLCFBERofT09Ou2ycnJUWRk\npKKiopSQkCCbzSZJSklJUVhYmIYPH6733nvvhuN4Zf9Lys078WumAAAAwFT79+9Xz549JUmdOnXS\noUOH7Ne+/vpr1a9fX6tWrdIjjzyiCxcu8IcuAABQbZEXAQCAqzm8ExAAAEBN0rhxY40cOVLZ2dma\nMmWKfvrpJ3l4eFy3zfU+lVVSUqLExEStXbtW7u7uioyMVHBwsA4cOHDNNomJiRo/fryCgoIUHx+v\nHTt2KDAwUG+//bbeffddFRUV6aGHHtKAAQNksVjKjGlV/xQ19W5WoXMDAABQGfLz8+Xl5WV/7Orq\nqtLSUlmtVp0/f17//Oc/FR8fL19fXz355JPq0KGDunfvfsN+fXy8b2XYuAmsgflYA/OxBuZjDeBM\nyIuqL9bAfKyB+VgD87EGzokiIAAAgHL49NNPFR8fr8uXLys1NVUPP/ywXn75Zd1///1ltrnep7KO\nHj0qX19f1atXT5IUGBiozMxMZWVlXbPN4cOH1bVrV0lSr169tHv3boWEhGjDhg2yWq3Kzc1V7dq1\nr1sAJIkCIAAA4LS8vLxUUFBgf2yz2WS1/vwrrvr166tFixb2o+p79uypQ4cO3dQfu06fzrs1AeOm\n+Ph4swYmYw3MxxqYjzUwH39sLB/youqJ9yLzsQbmYw3MxxqY79fmRRwHBgAAUA5JSUlas2aN6tat\nq9tvv13Jycl66aWXrtumrE9l/eeat/d/EzlPT0/l5+eX2cYwDHuBj6enp/Lyfk7CrVarVq9erYiI\nCA0ePLjCxgsAAFDVBAQEKCMjQ5KUlZWl1q1b2681b95cBQUF9qNU9+3bp1atWpkSJwAAwK1GXgQA\nAK7GTkAAAADlYLPZ5OPjY39811133bDN9T6VdfW1goICeXt7l9nGxcXlinvr1q1rf/zII48oPDxc\nY8eO1WeffaZu3br9ukECAABUYSEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiNCcOXM0adIkGYah\nzp0764EHHjA7ZAAAgFuCvAgAAFyNIiAAAIByuOOOO7Rr1y5ZLBZdunRJKSkpatKkyXXbBAQEaNeu\nXRo4cOAvPpXl7++vnJwcXbhwQR4eHtq3b5/GjBkji8VyzTbt2rXT3r17FRQUpIyMDHXr1k3Hjh1T\nUlKS/vznP6tWrVpyc3O7olgIAACgOnFxcdGsWbOueO4/x1xIUvfu3bV27drKDgsAAKDSkRcBAICr\nUQQEAABQDrNmzdKcOXN08uRJhYSEKCgo6Be/bLnajT6VFRsbqzFjxsgwDIWFhalx48bXbCNJMTEx\niouLU1JSkvz8/NSvXz+5urrq7rvvVkREhCwWi3r27KmuXbtWxnQAAAAAAAAAAACgiqAICAAAoBz+\n+te/KikpqVxtbvSprODgYAUHB9+wjSS1bNlSq1ev/sXzzz77rJ599tlyxQUAAAAAAAAAAIDqg3Mi\nAAAAymHXrl0yDMPsMAAAAAAAAAAAAIArsBMQAABAOdSvX1/9+/dX+/btVbt2bfvziYmJJkYFAAAA\nAAAAAACAmo4iIAAAgHIYOnSo2SFUiNy8E2rq3czsMAAAAAAAAAAAAFBBOA4MAACgHIYOHaq7775b\nFy5cUF5enjp27OiUhUGPbRul3LwTZocBAAAAAAAAAACACkIREAAAQDmsWLFCf/jDH/TDDz/oxIkT\neuqpp7Ru3Tqzwyq3Vf1T2AkIAAAAAAAAAACgGuE4MAAAgHJIS0vT+vXr5eXlJUl65plnFBkZqbCw\nMJMjKx8KgAAAAAAAAAAAAKoXdgICAAAoh3r16slq/W8dtYeHhzw9PU2MCAAAAAAAAAAAAGAnIAAA\ngHJp3ry5IiIi9NBDD8lqteqDDz6Ql5eXFi5cKEl69tlnTY7w5uz/PlOBd3QxOwwAAAAAAAAAAABU\nEIqAAAAAyqFly5Zq2bKliouLVVxcrB49epgd0q8ybNMgrR+8hUIgAAAAAAAAAACAaoIiIAAAgHJ4\n9tlnVVxcLDc3N+Xk5Ojrr79Wr1695OLiXKesUgAEAAAAAAAAAABQvTjXX6sAAABMtmjRIs2YMUPf\nffedRo0apbfeeksJCQlmh1VuFAABAAAAAAAAAABULxQBAQAAlMOOHTs0e/ZsbdmyRYMHD9bKlSt1\n+PBhs8Mqt9y8E2aHAAAAAAAAAAAAgApEERAAAEA52Gw2ubm5adeuXerdu7dsNpt+/PFHs8Mqt8e2\njaIQCAAAAAAAAAAAoBqhCAgAAKAcunfvrkGDBqmkpERdunTRI488ouDgYLPDKrdV/VPU1LuZ2WEA\nAAAAAAAAAACggljNDgAAAMCZxMTEKDo6Wo0bN5aLi4vi4uLUtm1bSVJaWpoiIiJMjvDmUAAEAAAA\nAAAAAABQvbATEAAAQDk1adJErq6ukmQvAJKk1NRUs0ICAAAAAAAAAABADUcREAAAQAUxDMPsEG5a\nbt4Js0MAAFQR/J8AAAAAAAAAVA8UAQEAAFQQi8Vidgg3LWrrCP7oCwBQbt4JPbZtFP8nmOzbi9+a\nHQIAAAAAAACqAYqAAAAAAACooZp6N9Oq/ilq6t3M7FBqrNy8ExqaNtTsMAAAAAAAAFANUAQEAABQ\nA6156B3+4AsAkCT+PzBZU+9mejfiXbPDAAAAAAAAQDVAERAAAEAF8fb2NjuEm8YffAEAqDqa12tu\ndggAAAAAAACoBqyOdmCz2TRz5kwdOXJEbm5umj17tlq0aGG/vnPnTi1atEjW/8fevcdFWef//38O\nDGjCgOWSmEoJSWZbHvDQ4aMVu3y0k61SoraYZVltJ4tMbRNbK7GDbp/KzpkrZWBppll2y0NLaZ9C\nWjLdNXepKFhRNM2ZIRlgrt8ffprvb1rPg7yZuR73263b2+G63pfP63o38Gaul9fb6VR2drZGjhx5\n0D6VlZWaMmWKHA6HunfvrunTpysqKkqLFi1SUVGRnE6nbrnlFl188cWqq6tTXl6e9u7dq5iYGD3y\nyCPq2LFjqKcDAABwSD/99JOeeuop/e///q+ampo0cOBATZw4Ue3atdOCBQtMxwMAAAAAAAAAAIBN\nhfwkoFWrVsnn86m4uFh5eXmaNWtWYFtDQ4MKCgo0b948FRYWqri4WDt37jxon4KCAk2cOFELFy6U\nZVlavXq1amtrVVhYqKKiIr388suaM2eOfD6fFi1apLPOOkuvvfaahg0bphdffDHUUwEAADisGTNm\naN++fZo5c6YeeeQRNTY2avr06aZjHbWymlLTEQAAAAAAAAAAANCMQn4SUFlZmQYNGiRJ6t27tzZt\n2hTYVlFRoZSUFCUmJkqSMjIyVFpaqvLy8gP22bx5swYMGCBJGjx4sNatW6eoqCj16dNHsbGxio2N\nVUpKirZs2aJx48apqalJkvTvf/9bCQkJoZ4KAADAYW3evFnLli0LvM7Pz9ell15qMNGxGbHsci0Z\n9o4ykvubjgIAAAAAAAAAAIBmEHIRkMfjUXx8fOB1dHS0Ghsb5XQ65fF45HK5Atvi4uLk8XgO2sey\nLDkcjsC+brf7oMf4ud/YsWO1detWvfLKK4fNeuKJ7eR0Rod6ymElKcl1+J0ijB3PublxDUPHNQwd\n1zB0XMPjw7Is7d27N1CAvHfvXkVHh9/8ggIgAAAAAAAAAACAyBJyEVB8fLy8Xm/gtd/vl9PpPOA2\nr9crl8t10D5RUVFB+yYkJBz0GD9bsGCBKioqdNNNN2nVqlWHzLp7d92xn2iYqq11m47QopKSXLY7\n5+bGNQwd1zB0XMPQtfZrGM4FSuPGjdNVV12lzMxMWZaltWvXasKECaZjHbXkuE6mIwAAAAAAAAAA\nAKAZRR1+l0Pr27evSkpKJEnl5eVKT08PbEtLS1NlZaX27Nkjn8+nDRs2qE+fPgft07NnT3366aeS\npJKSEvXr10/nnHOOysrKVF9fL7fbrYqKCqWnp+v555/X0qVLJe1/OlA4/gt8AAAQfrKzs/X000+r\na9eu6tq1q5566ildddVVpmMdtXErr1G1u8p0DAAAAAAAAAAAADSTkJ8ElJWVpXXr1mnUqFGyLEsz\nZ87U8uXLVVdXp5ycHE2ZMkXjx4+XZVnKzs5Wx44dD9hHkiZPnqxp06Zpzpw5Sk1N1ZAhQxQdHa3c\n3FyNGTNGlmXprrvuUps2bZSdna3Jkydr8eLFampqChwDAADgeKuqqtJ3332nmJgY7dq1y3ScYzJ/\n6Gvq7OpiOgYAqNpdxfcjwxgDAAAAAAAAIDI4LMuyTIdoKc29LMr1s9Y06/GOh3lTMk1HaFGtffmb\ncMA1DB3XMHRcw9C19msYzsuBzZ49W2VlZbrkkktkWZZWrFihzMxM3XTTTaajHZXW/P+HXXDTHdj/\nPhi38hoKEw1iDFqHcJ4bRRLmR2a19t9h7IAxMI8xMI8xMI95UevA+8AsvheZxxiYxxiYxxiYd6zz\nopCfBAQAAGAnH374oZYsWaKYmBhJUk5OjrKzs8OuCAhmcdMd2K+zqwvvA8MYAwAAAAAAACByRJkO\nAAAAEE4SExPl9XoDrxsaGhQfH28wEcIRN92B/4f3gXmMAQAAAAAAABAZeBIQAADAEZg6daokye/3\n68orr1RmZqaio6NVUlKi1NRUw+mOXllNqTKS+5uOYWvcdAcAAAAAAAAAAM2JIiAAAIAjMGDAgKD2\nZ2eddZaJOCEbsexyLRn2DoVAAAAAAAAAAAAAEYIiIAAAgCMwfPjwI9rnrbfeaoE0oaMACAAAAAAA\nAAAAILJEmQ4AAAAQKSzLMh3hiFEABAD4WbW7ynQEAAAAAAAAAM2AIiAAAIBm4nA4TEcAAOCoVLur\nNG7lNRQCAQAAAAAAABGAIiAAAAAAAGyqs6uL5g99TZ1dXUxHAQAAAAAAABAiioAAAAAAAAAQNvx+\nv/Lz85WTk6Pc3FxVVlYecL9p06bp8ccfb+F0AAAALYd5EQAA+CWKgAAAAJqJZVmmIxyxlV+vMB0B\nANAKsBwYwtGqVavk8/lUXFysvLw8zZo16z/2KSoq0tatWw2kAwAAaKrZAusAACAASURBVDnMiwAA\nwC9RBAQAANBMJkyYYDrCEbt25RgKgQAALAeGsFRWVqZBgwZJknr37q1NmzYFbf/888/1xRdfKCcn\nx0Q8AACAFsO8CAAA/JLTdAAAAIBwcuGFF2rHjh1KSEiQZVlyu91KSEhQly5d9NBDD5mOd8T+MnSh\nhqZeZjoGAKAVoAAI4cbj8Sg+Pj7wOjo6Wo2NjXI6ndqxY4fmzp2rp59+Wu+9995RHTcpydXcUXGU\nGAPzGAPzGAPzGAOEE+ZFkYsxMI8xMI8xMI8xCE8UAQEAAByF/v37a+jQofrtb38rSfrrX/+qlStX\nKjc3V3/6059UVFT0H338fr8eeOABffXVV4qNjdVDDz2kU089NbB9zZo1mjt3rpxOp7KzszVy5MiD\n9qmsrNSUKVPkcDjUvXt3TZ8+XVFRUZo/f75WrNj/ZJ8LL7xQt9122yHPI6ndyc14VQAAAFpOfHy8\nvF5v4LXf75fTuf8jrpUrV2r37t2aMGGCamtrtW/fPqWmpmrEiBGHPW5trfu4ZcbhJSW5GAPDGAPz\nGAPzGAPzuNl4dJgXRSa+F5nHGJjHGJjHGJh3rPMilgMDAAA4Cv/85z8DBUDS/oKbr776Sj179lR9\nff0B+xxqffaGhgYVFBRo3rx5KiwsVHFxsXbu3HnQPgUFBZo4caIWLlwoy7K0evVqff/991q2bJmK\nioq0aNEiffzxx9qyZcshz2PEsstVVlPaDFcEAACgZfXt21clJSWSpPLycqWnpwe2jR07VkuWLFFh\nYaEmTJigyy+//IhudAEAAIQj5kUAAOCXeBIQAADAUUhISFBRUZGGDRsmv9+v5cuXKzExURUVFfL7\n/Qfsc6j12SsqKpSSkqLExERJUkZGhkpLS1VeXn7APps3b9aAAQMkSYMHD9a6det00UUX6aWXXlJ0\ndLQkqbGxUW3atDnkeSwZ9o4ykvuHcCWA8FftrmIZJAAIQ1lZWVq3bp1GjRoly7I0c+ZMLV++XHV1\ndcrJyTEdDwAAoMUwLwIAAL9EERAAAMBRePzxx/Xwww/rsccek9Pp1Pnnn69HHnlE77//vvLy8g7Y\n51Drs3s8Hrlc/++RjnFxcfJ4PAftY1mWHA5HYF+3262YmBiddNJJsixLjz76qHr27Klu3bod8jwo\nAILdVburNG7lNZo/9DUKgWB7FMQh3ERFRWnGjBlBX0tLS/uP/fiX7gAAINIxLwIAAL9EERAAAMBR\n+PLLLzV79mzFxMQEfT03N/egfQ61Pvsvt3m9XrlcroP2iYqKCto3ISFBklRfX6/77rtPcXFxmj59\n+mHPgxu+sLvOri4UAAGiIK61+P7H79U1savpGAAAAAAAAAhzUYffBQAAAD9btmyZfvOb3yg/P18b\nNmw4oj6HWp89LS1NlZWV2rNnj3w+nzZs2KA+ffoctE/Pnj316aefSpJKSkrUr18/WZalP/zhDzrj\njDM0Y8aMwLJghzJu5TWqdlcd1bkDkYaCB4CCuNag2l2l4cXDTccAAAAAAABABOBJQAAAAEfhySef\nlMfj0apVq/Tiiy/q/vvv19ChQzVx4sSD9jnc+uxTpkzR+PHjZVmWsrOz1bFjxwP2kaTJkydr2rRp\nmjNnjlJTUzVkyBCtWrVKn332mXw+nz766CNJ0t13360+ffocNBM3fAEAP+PngVmdXV30Vs5bpmMA\nAAAAAAAgAlAEBAAAcJTi4+OVkZGhmpoabdu2TeXl5Yfc/3Drs2dmZiozM/OwfSSpW7duevXVV4O+\nlpWVpS+//PKozqHGu42bvgAAtBIsBQYAAAAAAIDmQBEQAACtwPWz1piOcEjzpmQefiebmDdvnt59\n913V19dr2LBheuGFF5ScnGw61lH73duXaumV7yojub/pKABsrtpdRVEibO/Tqk81sMtA0zEAAAAA\nAAAQ5qJMBwAAAAgn27dv1+WXX67x48crKSlJ69at0//8z/+YjnXUOsWdouS4TqZjALC5aneVxq28\nRtXuKtNRAGPKakqVuYCCawAAAAAAAISOJwEBAAAcha+//lp///vf9d1336lfv34qLS1V7969Tcc6\naic425mOAADq7Oqi+UNf40lAsLWM5P56fcTrpmMAAAAAAAAgAvAkIAAAgKPw7bffasGCBcrKytIN\nN9ygN954Qzt27DAd66gtvOwNbroDANAKVLurdP/a+03HAAAAAAAAQASgCAgAAOAodOjQQQ6HQ926\nddNXX32ljh07yufzmY511Gq820xHAACWAwP+T4O/wXQEAAAAAAAARACKgAAAAI5C9+7d9eCDD2rg\nwIGaP3++XnjhBTU0hN+Nu+FvX6aymlLTMQDYHMuBAfvFRMWYjgAAAAAAAIAIQBEQAADAUXjggQd0\nySWX6PTTT9ftt9+uHTt2aPbs2aZjHbUu8SlKjutkOgYAUAAE2+vs6qIVY1aYjgEAAAAAAIAI4DQd\nAAAAIJxER0erX79+kqTf/OY3+s1vfmM40bF5Y9hSbrwbVu2uYgwMYwwAtBZdE7uajgAAAAAAAIAI\nwJOAAAAAgBZW7a7SmBVXq9pdZTqKbTEGAFqT73/83nQEAAAAAAAARICQi4D8fr/y8/OVk5Oj3Nxc\nVVZWBm1fs2aNsrOzlZOTo0WLFh2yT2VlpUaPHq0xY8Zo+vTp8vv9kqRFixZpxIgRGjlypNauXStJ\ncrvduvnmm/X73/9eOTk5+tvf/hbqqQAAANgGxQ8AALQO1e4qXbbwMtMxAAAAAAAAEAFCLgJatWqV\nfD6fiouLlZeXp1mzZgW2NTQ0qKCgQPPmzVNhYaGKi4u1c+fOg/YpKCjQxIkTtXDhQlmWpdWrV6u2\ntlaFhYUqKirSyy+/rDlz5sjn8+mVV17Rueeeq1dffVUFBQWaMWNGqKcCAABgGz811pmOYGudXV00\ndcD9LEVlUGdXFy287A3GAECr0OBvMB0BAAAAAAAAEcAZ6gHKyso0aNAgSVLv3r21adOmwLaKigql\npKQoMTFRkpSRkaHS0lKVl5cfsM/mzZs1YMAASdLgwYO1bt06RUVFqU+fPoqNjVVsbKxSUlK0ZcsW\njRs3TrGxsZKkpqYmtWnTJtRTAQAAsI0a7zbVeLdRAGFIWU2pbvxgnJZe+a4ykvubjmNb/P8P7Fft\nruL9YFhMVIzpCAAAAAAAAIgAIRcBeTwexcfHB15HR0ersbFRTqdTHo9HLpcrsC0uLk4ej+egfSzL\nksPhCOzrdrsPeoyEhARJUm1trSZNmqT77rvvsFlPPLGdnM7oUE85rCQluQ6/U4Sx4zk3N65h6LiG\noeMati6MR+Qp+K/HKT4xKDmukzrFnaLkuE6mowCwuWp3lcatvEbzh75GIZAhnV1dtGLMCtMxAAAA\nAAAAEAFCLgKKj4+X1+sNvPb7/XI6nQfc5vV65XK5DtonKioqaN+EhISDHkOSvvrqK91999269957\nA08QOpTdu+237EVtrdt0hBaVlOSy3Tk3N65h6LiGoeMatj7NPR4UFZl337pJ6tHhTAqBDLIs0wnA\n00+A/QUoFAABAAAAAAAAkSHkIqC+fftq7dq1uvTSS1VeXq709PTAtrS0NFVWVmrPnj1q166dNmzY\noPHjx8vhcBywT8+ePfXpp59q4MCBKikp0bnnnqtzzjlHTzzxhOrr6+Xz+VRRUaH09HT961//0p13\n3qknnnhCPXr0CPU0AAAhuH7WGtMRDmnelEzTEYBWZ+YFj1EAZFCNd5u2eatZks0gnn4CoLWodldp\n7Ps52njLRtNRAAAAAAAAEOZCLgLKysrSunXrNGrUKFmWpZkzZ2r58uWqq6tTTk6OpkyZovHjx8uy\nLGVnZ6tjx44H7CNJkydP1rRp0zRnzhylpqZqyJAhio6OVm5ursaMGSPLsnTXXXepTZs2mj17tnw+\nnx5++GFJ+5869Oyzz4Z6OgAAALYw9eN7eBKQYT8vgwszePoJsB8FcQAAAAAAAEDkCLkIKCoqSjNm\nzAj6WlpaWuDPmZmZyszMPGwfSerWrZteffXV//j6yJEjNXLkyKCvUfADAABw7LrEpyg5rpPpGLaV\nkdxfS698lyIswyh4APa/D2YNepz3g0GdXV20YswK0zEAAAAAAAAQAaJMBwAAAEDLyz/vT9zwNYwC\nIGC/sppS0xFsrdpdpSkf3aNqd5XpKLbWNbGr6QgAAAAAAACIABQBAQAA2NCED67jxjsA48pqSjX8\n7cv4fmQQS+O1Dt//+L3pCAAAAAAAAIgAFAEBAADYUDtnHMuBwfZ48ol5yXGdWJ6wFaAAyKxqd5Uu\nW3iZ6RgAAAAAAACIABQBAQAA2NAP9bv01tbFpmPYGgUoZlW7qzT87csYB8M6u7rojWFLKUIxjPeB\neb4mn+kIAAAAAAAAiAAUAQEAANjU6SeebjqCbVW7qzRu5TXceDfoy9ov9O3eb/Rl7Remo9hejXeb\n6Qi2Vu2u0pgVV/P9yLDY6FjTEQAAAAAAABABnKYDwN6un7XGdITDmjcl03QEAACaXf7ABzU0laVH\nTOns6qL5Q1/j6ScGnZ3US13iu+rspF6mo9haWU2pRiy7XEuGvaOM5P6m4wBGdHZ10YtXvGg6BgAA\nAAAAACIATwICAACwoUc3PKyymlLTMWyNAiDzXLEJpiPYXkZyfz3/23kUABnU2dVFcy56ku9JBlW7\nq3Tru7eajgEAAAAAAIAIQBEQAACADSXGnqjkuE6mY9gaS++Y1dnVRQsve4PCB8Oq3VWaXfYo7weD\nqt1VmvLRPYyBQZ1dXZQ/ON90DAAAAAAAAEQAioAAAABsaPtP2/Rl7RemY9hWtbtKY1ZczU132F5n\nVxfNGvQ4xVgGsTyheWU1pRq9ZLTpGAAAAAAAAIgATtMBAMC062etMR3hkOZNyTQdAUAEat/mRJ2d\n1Mt0DFtraGowHcHWqt1VGrfyGoofDPv5KTSMg1kffrdG15w11nQM28pI7q81Y1v37yQAAAAAAAAI\nDxQBAWGutRewSBSxAEBrtKd+t97auli3ZdxpOoptORymE9hbZ1cX5WXcS+GJYYyDea9tXqC7/nqb\nJFEIZNAprlNMRwAAAAAAAEAEYDkwAAAAG+p4QicNT882HcPWfDwJyKiymlLdtOp6ldWUmo5ia4yD\nedecNVZ39r6HAiCDqt1VGl483HQMAAAAAAAARACKgAAAAGxo/iWv8uQNg2q827S9bptqvNtMR7Gt\njOT+ev6385SR3N90FFvLSO6vJcPeYRwMKqsp1bMbn6QQy6DOri6ae+lc0zEAAAAAAAAQASgCAgAA\nsKEpH92janeV6Ri2lZHcXy9kvULhg0HV7irNLnuU90ErkBzXyXQEW6ut2yGf36fauh2mo9hWtbtK\nNy6/0XQMAAAAAAAARACKgAAAAGwoL+NengRkULW7Sg/+73QKUAzq7OqiWYMe531gWLW7SmNWXM17\nwaCzk3rpVFc3nZ3Uy3QUW2vws0QkAAAAAAAAQkcREAAAgA1N+OA6ln4xqMa7TZU/fstyYAZVu6t0\n94d3UHzSCtQ11JmOYGudXV30XNZLFMQZtvun3aYjAAAAAAAAIAJQBAQAAGBDHdt1YgkewyyHZTqC\n7TU08eQN02q827TNW01BnEHV7irdvvoWCuIMemvrYm33bjcdAwAAAAAAABGAIiAAAAAbiomKMR3B\n9qKYihvXaFEE1Bo4HA7TEWytxrtN3/xYQSGWQbdl3KmLT73YdAwAAAAAAABEAO48AAAA2BD33M3K\nSO6vF/97vjKS+5uOYlv7n0DzbwofDMtI7q8Xs3gvmLTy6/fUpCat/Po901Fs6+H1M7S2cq3pGAAA\nAAAAAIgAFAEBAADYkJMnARlV7a7S7LJHWX7HoIzk/lp65bsUnxjGe8G8oamXKMoRraGpl5iOYlsZ\nyRmmI4Qdv9+v/Px85eTkKDc3V5WVlUHb33nnHV199dUaNWqU8vPz5ff7DSUFAAA4vpgXAQCAX6II\nCAAAwIYmnH2LOru6mI5hW51dXTRr0OOMAWyP94J5tXU75LeaVFu3w3QU20pqd7KcDqfpGGFl1apV\n8vl8Ki4uVl5enmbNmhXYtm/fPj3xxBNasGCBioqK5PF4tHYtT1oCAACRiXkRAAD4JYqAAAAAbOju\nv96ulV+vMB3DtqrdVbp99S08/cSgsppSDX/7MpXVlJqOYmu8F8w7O6mXktt10tlJvUxHsa3auh1q\ntBpNxwgrZWVlGjRokCSpd+/e2rRpU2BbbGysioqKdMIJJ0iSGhsb1aZNGyM5AQAAjjfmRQAA4Jf4\np2YAAAA29JehCzU09TLTMWyrxrtN37m/VY13G09AMSQ5rpM6tuuk5LhOpqPYWo13m6o83/FeMKjG\nu00/7NvFGBiU1O5kxbBM51HxeDyKj48PvI6OjlZjY6OcTqeioqL0q1/9SpJUWFiouro6XXDBBUd0\n3KQk13HJiyPHGJjHGJjHGJjHGCCcMC+KXIyBeYyBeYyBeYxBeKIICAAAADDAsizTEWzP6/OajmB7\nGcn99ULWK8pI7m86iq01+ZtMRwCOSnx8vLze//c93O/3y+l0Br1+7LHH9M033+ipp56Sw+E4ouPW\n1rqbPSuOXFKSizEwjDEwjzEwjzEwj5uNR4d5UWTie5F5jIF5jIF5jIF5xzovYjkwAAAAG7p25RiW\nAzMsKoqpuElvbV2snfU79NbWxaaj2Fq1u0qzyx5lOTCDaut2qElNqq3bYTqKbdXW7VCDv8F0jLDS\nt29flZSUSJLKy8uVnp4etD0/P1/19fV65plnAstfAAAARCLmRQAA4Jd4EhAAAMBx5vf79cADD+ir\nr75SbGysHnroIZ166qmB7WvWrNHcuXPldDqVnZ2tkSNHHrRPZWWlpkyZIofDoe7du2v69OmBYpIf\nfvhBo0eP1rJlyw67xvu0gTNYDsygjOT+uvns23n6iUHD07P1/MZnNDw923QUW+vs6qJZgx5nGSqD\n/rX7X0EtWl5Su5MVGx1rOkZYycrK0rp16zRq1ChZlqWZM2dq+fLlqqur069//Wu9+eab6tevn669\n9lpJ0tixY5WVlWU4NQAAQPNjXgQAAH6JIiAAAIDjbNWqVfL5fCouLlZ5eblmzZqlZ599VpLU0NCg\ngoICvfnmmzrhhBM0evRoZWZm6vPPPz9gn4KCAk2cOFEDBw5Ufn6+Vq9eraysLH300UeaPXu2amtr\njyjTrNIHdV7n8ylCMeS1zQv0P+WP67TE03TNWWNNx7Glzq4ueuzCORSfGFbtrtLtq2/RG8OWMhaG\nnNf5/KAWLS8jub/uOe8e0zHCSlRUlGbMmBH0tbS0tMCft2zZ0tKRAAAAjGBeBAAAfok1CAAAAI6z\nsrIyDRo0SJLUu3dvbdq0KbCtoqJCKSkpSkxMVGxsrDIyMlRaWnrQPps3b9aAAQMkSYMHD9b69esl\n7f/Q55VXXlH79u2PKFODv4GlXwzqcEKHoBYtr6ymVDe8f63KakpNR7G1Gu82Vbq/UY13m+kotrXy\n6/eCWrS81zYv0MyPZ5qOAQAAAAAAgAhAERAAAMBx5vF4FB8fH3gdHR2txsbGwDaXyxXYFhcXJ4/H\nc9A+lmXJ4XAE9nW73ZKkCy64QCeeeOIRZ3I6nEpqd3JI54Vjd3ZSL52W0E1nJ/UyHcW2aut2yGf5\nKIYzrLZuB0WJhg1NvUSS4/9aAAAAAAAAAOEs5CIgv9+v/Px85eTkKDc3V5WVlUHb16xZo+zsbOXk\n5GjRokWH7FNZWanRo0drzJgxmj59uvx+vyRp0aJFGjFihEaOHKm1a9cGHf+DDz5QXl5eqKcBAABw\n3MTHx8vr9QZe+/1+OZ3OA27zer1yuVwH7RMVFRW0b0JCwjFl6uzqouS4TsfUF6Hr7OqisWdez/JH\nsL1dP+0KatHy9hdgWRRiGXRRSqZOTTzVdAwAAAAAAABEgJCLgFatWiWfz6fi4mLl5eVp1qxZgW0N\nDQ0qKCjQvHnzVFhYqOLiYu3cufOgfQoKCjRx4kQtXLhQlmVp9erVqq2tVWFhoYqKivTyyy9rzpw5\n8vl8kqSHHnpIs2fPDhQLAQAAtEZ9+/ZVSUmJJKm8vFzp6emBbWlpaaqsrNSePXvk8/m0YcMG9enT\n56B9evbsqU8//VSSVFJSon79+h1Tph/37Q3llBCi1zYv0IxPp+m1zQtMR7E1hxymI9geS+OZRyGW\neZ1dXfTk0CdNxwAAAAAAAEAECLkIqKysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyV\nlpYetM/mzZs1YMAASdLgwYO1fv16bdy4UX369FFsbKxcLpdSUlK0ZcsWSftvqD3wwAOhngIAAMBx\nlZWVpdjYWI0aNUoFBQWaOnWqli9fruLiYsXExGjKlCkaP368Ro0apezsbHXs2PGAfSRp8uTJeuqp\np5STk6OGhgYNGTLkmDLt9u3S/C/nNedpAmHl7KRe+lXbJJZkM+xfu/8V1AJ2VFZTqqvfuNp0DAAA\nAAAAAEQAZ6gH8Hg8io+PD7yOjo5WY2OjnE6nPB6PXC5XYFtcXJw8Hs9B+1iWJYfDEdjX7XYf9BiS\ndOmllwb+JfyROPHEdnI6o4/5XMNRUpLr8DvhkLiGoeMahobrFzquYei4hqGJiorSjBkzgr6WlpYW\n+HNmZqYyMzMP20eSunXrpldfffWgf9eaNWuOKFN8jEvjzr7+iPZF8/v2x2+DWrS8L2u/UO2+Hfqy\n9guWZTPo9BNPD2rR8np0OFNOOdWjw5mmo9hWbd0ONfgbTMcAAAAAAABABAi5CCg+Pl5erzfw2u/3\ny+l0HnCb1+uVy+U6aJ+oqKigfRMSEg56jGOxe3fdMfULZ7W1btMRwh7XMHRcw9Bw/ULHNQxdc19D\niorM8zS49eF3a3TNWWNNR7GloamX6KnyORqaeonpKLZVVlMWaIemXmY4jX3xJCDzkuM6qUtCVyXH\ndTIdxbbOTuqlk+NONh0DAAAAAAAAESDk5cD69u2rkpISSVJ5ebnS09MD29LS0lRZWak9e/bI5/Np\nw4YN6tOnz0H79OzZM/Bkn5KSEvXr10/nnHOOysrKVF9fL7fbrYqKiqC/AwAAAAhH0VH2ekJla5OR\nnBHUwozh6dk6qU0HDU/PNh3F1n7ct9d0BFv7svYLbfduNx0DAAAAAAAAESDkJwFlZWVp3bp1GjVq\nlCzL0syZM7V8+XLV1dUpJydHU6ZM0fjx42VZlrKzs9WxY8cD9pGkyZMna9q0aZozZ45SU1M1ZMgQ\nRUdHKzc3V2PGjJFlWbrrrrvUpk2bkE8cAADAztrHnqiLUjIPvyOOG7/fbzqCrfEEmtahxrtNbt9e\n1Xi3sSybIfO/nKfdvl2a/+U8/fH8fNNxAAAAAAAAAIQg5CKgqKgozZgxI+hraWlpgT9nZmYqMzPz\nsH0kqVu3bnr11Vf/4+sjR47UyJEjD/j3Dxw4UAMHDjyW6AAAALa1x7eb5cAM+qR6vZrUpE+q1ysj\nub/pOLZ0YtsTg1qYUVu3Qw1Wg2rrdpiOYlunJZ4W1KLlUYwIAAAAAACA5hLycmAAAAAIP1GKUo8O\nZ5qOYVs/1v8Y1AJ2tWhLUVCLlrd73+6gFi3vvM7nK4qPZwAAAAAAANAM+JQJAADAhixZPHnDoKGp\nlwS1aHk9OpypaEc0xXCG/ebUrKAWLe/0E08PamFGTHSM6QgAAAAAAACIABQBAQAA2NCcC5/S0NTL\nTMewrU+q1we1aHm1dTvUZDVRDGdYjw5nyiEHxViwteS4TuoY19F0DAAAAAAAAEQAioAAAABsqOCz\nB1XtrjIdw7bO63y+ohWt8zqfbzoKYNQn1etlyaIgzqCzk3qpfeyJOjupl+kotlXj3abt3u2mYwAA\nAAAAACACUAQEAABgQzt+2q75X84zHcPW/PKbjmBru37aFdTCjB/rfwxq0fLe2rpYe3y79dbWxaaj\n2JplWaYjAAAAAAAAIAJQBAQAAAC0sDe2FMuSpTe2FJuOYlsdTugQ1MKM0xJPC2rR8j7fviGoRctL\njuukLgldTMcAAAAAAABABKAICAAAwKbcvr2mIwDGnJ3US8ntOrEEkmEUY5mX1r57UAszHA6H6QgA\nAAAAAACIABQBAQAA2FCUonR1jxzTMWzLFZsQ1KLl1Xi3qbZuh2q820xHsbUPv1sb1KLl/VwQSmGo\nOTXebfr+x+9NxwAAAAAAAEAEoAgIAADAhuJjXEqO62Q6hm1tqPksqEXLW/n1e2pSk1Z+/Z7pKLZ2\ndtI5QS1aHmPQSvAgIAAAAAAAADQDioAAAABsaG/Dj3qq7AnTMWzrpt63BLVoeRRitQ5f1m4MatHy\nvv3x26AWLS85rpOS45JNxwAAAAAAAEAEoAgIAADApi5Kudh0BNt6/LNZQS1a3lVnjAxqYYanwRPU\nouVREGdejXebqvdWm44BAAAAAACACEAREAAAgE19+N1a0xFsy9fkC2rR8nbv2x3Uwoy6Bm9Qi5bX\n1tk2qEXL+3l5QgAAAAAAACBUFAEBAADYlCs2wXQE23L79ga1aHk/1v8Y1AKAKYltEk1HAAAAAAAA\nQISgCAgAAMCmuOkIO9u0c2NQCzNKt/1vUAvYEcWIAAAAAAAAaC4UAQEAANjUu18vNx3Btmp/qg1q\n0fJOTTgtqIUZzihnUIuW92P9nqAWLW9DzWemIwAAAAAAACBCUAQEAABgUxd0Hmw6gm1FO6KDWrS8\nxVuLg1qYsef/Ck/2UIBizBe1fwtq0fLqm/aZjgAAAAAAAIAIQREQAACATfHkAXPiYuKCWrS8KEdU\nUAszvH5vUIuW16SmoBYtr010W9MRAAAAAAAAECH4xBsAAMCmdrEUlTE7fTuDWrS8uoa6oBZmRP3f\nr6RR/GpqjF/+oBYt7/PtpaYjAAAAAAAAIELwSSsAAIBNVXuqTEcAjPHJF9TCDApQAOkn6yfTEQAA\nAAAAABAhKAICAACwqX1N+0xHAIyxZAW1AAAAAAAAAACEO4qAn64wZAAAFdBJREFUAAAAbKpBDaYj\nAAAAAAAAAAAAoJlQBAQAAAAAAAAAAAAAAACEOYqAAAAAAAAAAAAAAAAAgDBHERAAAAAAAAAAAAAA\nAAAQ5igCAgAAAAAAAAAAAAAAAMIcRUAAAAAAAAAAAAAAAABAmKMICAAAwKbiouJMRwAAAAAAAAAA\nAEAzoQgIAADApi5Lu9J0BAAAAAAAAAAAADQTioAAAABsqsdJZ5qOYFsnOE4IatHyGANgvx6JZwa1\naHnnnNTLdAQAAAAAAABEiJCLgPx+v/Lz85WTk6Pc3FxVVlYGbV+zZo2ys7OVk5OjRYsWHbJPZWWl\nRo8erTFjxmj69Ony+/2SpEWLFmnEiBEaOXKk1q5dK0nat2+fbr/9do0ZM0Y33nijfvjhh1BPBQAA\nAGgRkwbcF9Si5U3odWtQCzMuP+3KoBYtb2SPMUEtWt6qUR+pb8e+pmOElWP5LAoAACASMS8CAAC/\nFHIR0KpVq+Tz+VRcXKy8vDzNmjUrsK2hoUEFBQWaN2+eCgsLVVxcrJ07dx60T0FBgSZOnKiFCxfK\nsiytXr1atbW1KiwsVFFRkV5++WXNmTNHPp9Pr7/+utLT07Vw4UL97ne/0zPPPBPqqQAAANjGr9qc\nrOHp2aZj2Nbw9GzGwLCM5IygFmY8OKhA8U6XHhxUYDqKbd2WcafyBz6o2zLuNB3F1spuLjMdIawc\ny2dRAAAAkYh5EQAA+KWQi4DKyso0aNAgSVLv3r21adOmwLaKigqlpKQoMTFRsbGxysjIUGlp6UH7\nbN68WQMGDJAkDR48WOvXr9fGjRvVp08fxcbGyuVyKSUlRVu2bAk6xuDBg/XJJ5+EeioAAAC2kRSX\nZDqC7TEGZp2d1Eunurrp7CSW4TEtOa6T6Qi2RwEQws2xfBYFAAAQiZgXAQCAX3KGegCPx6P4+PjA\n6+joaDU2NsrpdMrj8cjlcgW2xcXFyePxHLSPZVlyOByBfd1u9yGP8fPXf973cJKSXIfd52gsn80j\n60PFNQwd1zB0XMPQcQ1DxzVES3t/7HvqmtjVdAzbSko6kzEwLCnpTH00/q+MgWH7YuN1Qps26tAh\nXkmJzfv7GoDIdSyfRR2J5v7cCEePMTCPMTCPMTCPMUA4YV4UuRgD8xgD8xgD8xiD8BRyEVB8fLy8\nXm/gtd/vl9PpPOA2r9crl8t10D5RUVFB+yYkJBzRMX7eFwAAAEeGwgfzGAPzGAPzuiZ21cZbNpqO\nASDMHMtnUQAAAJGIeREAAPilkJcD69u3r0pKSiRJ5eXlSk9PD2xLS0tTZWWl9uzZI5/Ppw0bNqhP\nnz4H7dOzZ099+umnkqSSkhL169dP55xzjsrKylRfXy+3262Kigqlp6erb9+++utf/xrYNyMjI9RT\nAQAAAAAAQCt3LJ9FAQAARCLmRQAA4JcclmVZoRzA7/frgQce0NatW2VZlmbOnKm///3vqqurU05O\njtasWaO5c+fKsixlZ2frmmuuOWCftLQ0ffPNN5o2bZoaGhqUmpqqhx56SNHR0Vq0aJGKi4tlWZZu\nuukmDRkyRD/99JMmT56s2tpaxcTEaPbs2UpKSmqu6wIAAAAAAIBW6Fg+iwIAAIhEzIsAAMAvhVwE\nBAAAAAAAAAAAAAAAAMCskJcDAwAAAAAAAAAAAAAAAGAWRUAAAAAAAAAAAAAAAABAmKMICAAAwIa+\n+OIL5ebmmo5hSw0NDZo0aZLGjBmjq666SqtXrzYdyXaampo0depUjRo1SqNHj9bWrVtNR7KtXbt2\n6cILL1RFRYXpKLY0fPhw5ebmKjc3V1OnTjUdx5aef/555eTkaMSIEXrjjTdMx4l4fr9f+fn5ysnJ\nUW5uriorK4O2r1mzRtnZ2crJydGiRYsMpYxshxuDd955R1dffbVGjRql/Px8+f1+Q0kj1+HG4GfT\npk3T448/3sLp7OFwY7Bx40aNGTNGo0eP1h133KH6+npDSSPX4cZg2bJlGj58uLKzs7Vw4UJDKe3h\nYJ9N8DP5+GNeZB7zIvOYF5nHvMg85kWtR3POiygCQsTx+XymI4Stffv2cf1CtGvXLtMRwprf79f2\n7dv5hSZEP/zwgyzLMh0DrdiLL76o+++/n1+aDFm2bJnat2+vhQsX6qWXXtKDDz5oOpLtrF27VpJU\nVFSkiRMn6s9//rPhRPbU0NCg/Px8tW3b1nQUW6qvr5dlWSosLFRhYaEKCgpMR7KdTz/9VH/729/0\n+uuvq7CwUDU1NaYjRbxVq1bJ5/OpuLhYeXl5mjVrVmBbQ0ODCgoKNG/ePBUWFqq4uFg7d+40mDYy\nHWoM9u3bpyeeeEILFixQUVGRPB5P4Gc2ms+hxuBnRUVFFEkfR4caA8uyNG3aNBUUFOj111/XoEGD\nVF1dbTBtZDrc++DRRx/VK6+8otdff12vvPKKfvzxR0NJI9vBPpvgZ3LLYF5kHvMi85gXmce8yDzm\nRa1Dc8+LKAJC2FqzZo0uvvhiZWVl6d133w18/YYbbjCYKrz861//0h/+8AdNnTpV69ev16WXXqpL\nL72UyeRR+Oabb4L+u+WWWwJ/xpG57777JO2vcB0yZIhuu+02XX755SovLzecLHwsXrxYTz/9tDZv\n3qyhQ4fquuuu09ChQ7V+/XrT0dBKpaSk6KmnnjIdw7aGDh2qO++8U9L+X2ajo6MNJ7Kf3/72t4Hi\nq3//+99KSEgwnMieHnnkEY0aNUonn3yy6Si2tGXLFv3000+6/vrrNXbsWOZeBnz88cdKT0/Xrbfe\nqptvvlkXXXSR6UgRr6ysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyVlpaaihqxDjUG\nsbGxKioq0gknnCBJamxsVJs2bYzkjGSHGgNJ+vzzz/XFF18oJyfHRDxbONQYfPPNN2rfvr3mz5+v\n3//+99qzZ49SU1NNRY1Yh3sfnHHGGXK73fL5fLIsSw6Hw0TMiHewzyb4mdwymBeZx7zIPOZF5jEv\nMo95UevQ3PMi5/EICbSE5557TkuXLpXf79edd96p+vp6DR8+nKdfHIXp06frzjvvVHV1te644w69\n//77atOmjW644QZdfPHFpuOFheuuu05t27bVySefLMuy9M033yg/P18Oh0MLFiwwHS8sVFVVSZL+\n/Oc/68UXX9Rpp52m7du3Ky8vT6+++qrhdOFh4cKFKiws1C233KJnn31W3bp10/bt2/WHP/xB559/\nvul4aIWGDBkSeO+h5cXFxUmSPB6P7rjjDk2cONFwIntyOp2aPHmyPvjgAz355JOm49jOkiVLdNJJ\nJ2nQoEF64YUXTMexpbZt22r8+PG6+uqr9e233+rGG2/UypUr5XTyMUFL2b17t/7973/rueeeU1VV\nlW655RatXLmSD9SOI4/Ho/j4+MDr6OhoNTY2yul0yuPxyOVyBbbFxcXJ4/GYiBnRDjUGUVFR+tWv\nfiVJKiwsVF1dnS644AJTUSPWocZgx44dmjt3rp5++mm99957BlNGtkONwe7du/W3v/1N+fn5SklJ\n0c0336xf//rXOu+88wwmjjyHGgNJ6t69u7Kzs3XCCScoKyuLfzRwnBzsswl+JrcM5kXmMS8yj3mR\necyLzGNe1Do097yIT/cMys3NVUNDQ9DXfq6gKyoqMpQqfMTExCgxMVGS9Mwzz+jaa69Vp06d+MD0\nKPj9fg0YMEDS/kfRd+jQQZL44P8oLF68WNOnT9fo0aN1wQUXKDc3V4WFhaZjhaXo6GiddtppkqSO\nHTuyJNhRiImJUbt27RQXF6euXbtK2n8N+X4ItF7btm3TrbfeqjFjxuiKK64wHce2HnnkEd1zzz0a\nOXKkVqxYoXbt2pmOZBuLFy+Ww+HQJ598on/84x+aPHmynn32WSUlJZmOZhvdunXTqaeeKofDoW7d\nuql9+/aqra1Vp06dTEezjfbt2ys1NVWxsbFKTU1VmzZt9MMPPwR+L0Pzi4+Pl9frDbz2+/2B339/\nuc3r9QZ90Ibmcagx+Pn1Y489pm+++UZPPfUUv9McB4cag5UrV2r37t2aMGGCamtrtW/fPqWmpmrE\niBGm4kakQ41B+/btdeqppyotLU2SNGjQIG3atImbXc3sUGOwZcsWffjhh1q9erXatWunSZMm6b33\n3tMll1xiKq7t8DO5ZTAvMo95kXnMi8xjXmQe86LW7Vh/JrMcmEH33HOPvF6vHn30Uc2ePVuzZ8/W\nnDlzNHv2bNPRwkLnzp1VUFCguro6xcfH6+mnn9aMGTP09ddfm44WNrp166Y//vGP8vv9gTUeX3jh\nhUCFOQ6vQ4cOeuKJJ/Thhx/queeeMx0nLHk8Ho0YMULV1dV64403VF9frz/96U865ZRTTEcLG5mZ\nmbrlllvUvXt33XTTTZo/f77Gjx+vc88913Q0AAewc+dOXX/99Zo0aZKuuuoq03FsaenSpXr++ecl\nSSeccIIcDoeiovjVqCW99tprevXVV1VYWKgzzzxTjzzyCAVALezNN98M/A6wfft2eTwexqCFZWRk\n6KOPPpJlWdq+fbt++ukntW/f3nSsiNa3b1+VlJRIksrLy5Wenh7YlpaWpsrKSu3Zs0c+n08bNmxQ\nnz59TEWNWIcaA0nKz89XfX29nnnmmcDyF2hehxqDsWPHasmSJSosLNSECRN0+eWXc6PrODjUGHTt\n2lVer1eVlZWSpA0bNqh79+5GckayQ42By+VS27Zt1aZNG0VHR+ukk07S3r17TUW1JX4mtwzmReYx\nLzKPeZF5zIvMY17Uuh3rz2Qe92FQr169dOWVV+qrr75SVlaW6ThhZ+bMmVq2bFmg+rlTp05asGBB\n4IYODu+hhx7SmjVrgm56dezYUbm5uQZThR+n06k//vGPWrJkCcvRHYMlS5bI5/Npy5Ytatu2rRwO\nh9LT07kxfhQmTJigzz77TB9//LFOOeUU7dq1S7m5ubroootMRwNwAM8995z27t2rZ555Rs8884wk\n6cUXX1Tbtm0NJ7OP//7v/9bUqVN1zTXXqLGxUffddx/XH7Zz1VVXaerUqRo9erQcDodmzpzJE0Fb\n2MUXX6zS0lJdddVVsixL+fn5io6ONh0romVlZWndunUaNWqULMvSzJkztXz5ctXV1SknJ0dTpkzR\n+PHjZVmWsrOz1bFjR9ORI86hxuDXv/613nzzTfXr10/XXnutpP03X/jMrHkd7n2A4+9wY/Dwww8r\nLy9PlmWpT58+/G5/HBxuDHJycjRmzBjFxMQoJSVFw4cPNx3ZFviZ3LKYF5nHvMg85kXmMS8yj3lR\n6xTqz2SHxR1rAAAAAAAAAAAAAAAAIKzxzHsAAAAAAAAAAAAAAAAgzFEEBAAAAAAAAAAAAAAAAIQ5\nioAAhI0zzjjjsPtkZmaqqqqqBdIAAAAAAAAAAAAAANB6UAQEAAAAAAAAAAAAAAAAhDmKgAAcN1dc\ncYUqKiokSXl5eZo+fbokqby8XDfeeKNeeOEFDR8+XMOGDdOjjz4qy7IkSUuXLtXw4cN15ZVX6r77\n7lN9fX3QcT///HMNGTJElZWV2rNnj2688UZdccUVmjhxYmBfj8ejO+64Qzk5Obr44os1adIkWZal\nSZMmqbi4OHCs3NxcffHFFy1xOQAAAAAAAAAAAAAAOG4oAgJw3Fx44YX65JNPJElbt27V559/Lkkq\nKSnRRRddpE2bNunNN9/U0qVLtX37di1btkz//Oc/tWjRIhUVFentt99Whw4d9PLLLweO+Y9//EN/\n/OMf9eyzz+rUU0/Vk08+qZ49e2r58uW65pprtHPnTknShx9+qDPPPFPFxcV6//33VV5ers2bNys7\nO1vLli2TJFVXV+uHH35Qr169WvjKAAAAhIZlUgEAAAAAAAAAv+Q0HQBA5Lrooov0yiuv6Nxzz9Xp\np5+ur7/+Wrt27VJJSYm6d++ujRs3asSIEZKkffv26ZRTTpHb7VZlZaVGjhwpSWpoaFDPnj0Dx7zh\nhhs0dOhQpaamSpI+++wzzZ49W5LUv39/de3aVZJ0+eWXa+PGjZo/f76+/vpr7dmzR3V1dRo4cKCm\nTZumqqoqvf3227ryyitb8pIAAAAAAAAAAAAAAHBcUAQE4Ljp06eP7r33Xq1fv14DBgxQhw4dtHLl\nSjU0NMjlcunaa6/VddddJ0nau3evoqOj9eabb+qSSy7R/fffL0nyer1qamoKHPPxxx/Xvffeq6uv\nvlo9evSQw+EILCMmSdHR0ZKkwsJCvf/++xo5cqTOP/98bd26VZZlyeFw6He/+51WrFihlStX6qWX\nXmrBKwIAAOzqiiuu0BNPPKG0tDTl5eUpPj5ef/rTn1ReXq65c+eqf//+eu+999TU1KT/+q//0qRJ\nk+RwOLR06VL95S9/kd/v11lnnaXp06erTZs2geN+/vnnmjp1ql544QUlJiZq0qRJqqmpUVpaWtAy\nqffdd5+2b9+uHTt2qF+/fnr00Ud17733ql+/fsrJyZG0f5nUe+65h6ckAgAAAAAAAECYYjkwAMdN\ndHS0evXqpcLCQg0YMEDnnnuunnvuOV144YU699xz9fbbb8vr9aqxsVG33nqr3n//fQ0cOFAffPCB\ndu3aJcuy9MADD+gvf/lL4JjnnXee8vLydP/998vv9+u8887T22+/LUnauHGjvvvuO0nSunXrlJOT\no2HDhsnhcGjLli3y+/2SpBEjRqioqEjJycnq2LFjy18YAABgOyyTCgAAAAAAAAA43ngSEIDj6sIL\nL1RpaanS0tKUlJSkXbt26aKLLlLfvn21ZcsWjRw5Uk1NTRo0aJCGDx8uh8Oh2267Tddee638fr/O\nPPNMTZgwIeiYv/vd77R48WIVFhbqjjvu0JQpU3TZZZcpNTU1sBzYtddeqwceeEDz5s1TXFyc+vTp\no6qqKklSp06dlJycrOHDh7f49QAAAPbEMqkAAAAAAAAAgOPNYf3/19EBgAhnWZZ27Nih3NxcvfPO\nO4qNjTUdCQAA2EBTU5OysrI0btw4xcTEqKKiQt26ddOiRYs0cOBAderU6YDLpH7//ff/sUxqQkKC\nzjjjDM2fP1/33nuvXnzxRfXo0UNXXHGFHnvsMfXo0UOSNGTIEL388stau3ZtYJnUHj16KD8/X3fd\ndZcGDhyouXPnyul06p133tFLL73EUxIBAAAAAAAAIIyxHBgAW3n//fd15ZVX6u6776YACAAAtBiW\nSQUAAAAAAAAAHG8sBwbAVoYOHaqhQ4eajgEAAGyIZVIBAAAAAAAAAMcTy4EBAAAAgA2xTCoAAAAA\nAAAARBaWAwMAAAAAG2KZVAAAAAAAAACILDwJCAAAAAAAAAAAAAAAAAhzPAkIAAAAAAAAAAAAAAAA\nCHMUAQEAAAAAAAAAAAAAAABhjiIgAAAAAAAAAAAAAAAAIMxRBAQAAAAAAAAAAAAAAACEOYqAAAAA\nAAAAAAAAAAAAgDBHERAAAAAAAAAAAP9fe3BAAgAAACDo/+t2BCoAAMBcfBY8uc3WLKMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 10204\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(4, 4, figsize=(40,20)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[irow, icol])\n", + "axarr[irow, icol].set_title(\"dist period_return\")\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " icol+=1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[irow, icol])\n", + " axarr[irow, icol].set_title(\"dist avg_bo_spread\")\n", + " icol+=1\n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " qlow, qhigh = 0.01, 0.99\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < df.avg_bo_spread.quantile(qhigh) ) & (df.avg_bo_spread > df.avg_bo_spread.quantile(qlow)),:]\n", + " #df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < 0.0001 ) & (df.avg_bo_spread > -0.0001),:]\n", + " icol = pltGraph(\"period_return\", \"avg_bo_spread\", irow, icol, df_mask)\n", + " \n", + " \n", + " \n", + " irow, icol = 1, 0 # move down one row\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"nb_ticks\", irow, icol, df)\n", + " icol = pltGraph(\"day\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 2, 0\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)),:]\n", + " icol = pltGraph(\"hour\", \"period_return\", irow, icol, df_mask)\n", + " icol = pltGraph(\"hour\", \"ohlc_price\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 3, 0\n", + " res = df.loc[:,[\"weekday\", \"avg_bo_spread\"]].groupby(\"weekday\").std()\n", + " res.plot(kind=\"bar\", ax=axarr[irow, icol])\n", + " #display(res)\n", + " \n", + " icol = pltGraph(\"weekday\", \"avg_bo_spread\", irow, icol+1, df)\n", + " \n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + " plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- it seems the hours with the least number of ticks have the highest bo spread. This is expected, as during low activity traders might set spreads wide to avoid surprises.\n", + "- period return is between two closing bids, 15 minutes apart. It might be a spurious measure.\n", + "- do i have to stick to 15 minute intervals to complete this?\n", + "- weekday 1 seems to have higher stdev of avg bo spread" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Add PCA as a feature and show graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "df_np = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(df_np)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABs4AAAKTCAYAAAC5Jf2HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8z/X///H7zmMbwjRtH0JG5diYhBwicj6Nmc8QSvpE\nxbLJYYUKjU8slVSUnCZznFSUqIl9lo+klA9Rm405xDazjb1/f/i9398d3u+d7PDe3K7/zF6v1/P1\nfL7e+1wun0fv++v5fNoYDAaDAAAAAAAAAAAAgDucbXkPAAAAAAAAAAAAALAGBGcAAAAAAAAAAACA\nCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAA\nAIolMDBQCxYsuO37GAwGRUREKD093eI1ixcv1kMPPaQ2bdroypUrt93nV199pYSEhNu+DwAAAABU\nNjYGg8FQ3oMAAAAAgIrm77//lr29vVxdXW/rPocOHVJgYKB+/PFHubi45Dl/7tw5Pfroo5o7d64e\neeQReXl53VZ/8fHx6tatm7Zv3y5vb+/buhcAAAAAVDb25T0AAAAAAKiIatSoUSL3KehdxqtXr0qS\n2rdvf9uhWWH6AwAAAIA7GUs1AgAAACgzTZo00caNG9W3b1+1atVKTz75pP7880/T+b///lshISHy\n9fWVr6+vgoODlZKSIkm6cOGCpk6dqocffljNmjVT9+7d9dlnn1nsq6DrMzIyFBoaqrZt2+rhhx/W\n8uXL1aNHDx08eLBQ7bMv1RgeHq7nnntO8+fPl6+vr9q0aaO5c+fq5s2bkm7NGnvmmWfk4+OjNm3a\naPLkybp48aLi4uI0atQoSdJDDz2kyMjIHM9w8OBB9e3bV5LUvXt3hYSESJKOHDkif39/NW/eXI8/\n/rhWrFihrKwsU7tt27apX79+atasmR566CFNnDhRFy5ckCQ99thjkqR+/fopPDxckZGRateuXY5+\nQ0JCNHnyZElSZGSkBg0apKCgID300EN69913JUlbtmxRz5491bJlSw0aNEh79+41tbf0vAAAAABg\n7QjOAAAAAJSpsLAwPfvss4qIiJCtra2eeuopZWZmSpImTZqk33//XcuXL9eqVat0/PhxzZkzR5I0\nbdo0Xbp0SatWrVJUVJS6deumV155xRQI5VbQ9fPmzdP333+vZcuW6YMPPtCXX36pv/76q9Dtc9u7\nd69SU1O1YcMGzZw5U2vXrtXXX38tSXr11VeVmZmpiIgIffrpp4qPj9f8+fNVt25dhYeHS5J2796t\n3r1757hn69attXr1aknSxo0bNWPGDF28eFHjxo1Tly5dtGPHDs2YMUNr167VBx98IEn68ccf9fLL\nL2vcuHH64osvtGzZMv3666967733TPeRpNWrV2vs2LGF+pv98ssvqlatmjZv3qwBAwZo//79eu21\n1/T8889r+/btGj58uCZPnqzDhw/n+7wAAAAAYO1YqhEAAABAmRo1apQpIFqwYIG6dOmi6Oho3XPP\nPTp06JC2bt2qpk2bSpLmzp2r6OhoSVKXLl3UtWtX/eMf/5AkTZw4UR9//LFOnz6t2rVr5+knv+ur\nVKmiyMhILVmyRL6+vpKkhQsX5giuitqfs7OzZs2aJUdHRzVo0EAff/yxjh49qh49eiguLk4NGjSQ\nl5eXnJyctHjxYqWmpsrOzk7Vq1eXJNWsWVPOzs457uno6GhaErJmzZpyc3PT0qVL1aJFCz3zzDOS\npPr162vKlCl67bXX9PTTT8vJyUlz587VwIEDJUmenp567LHHdOLECdN9pFtLTZrbU82SZ5991vTc\n06ZN07hx40yfV7169XTs2DGtXLlSrVu3tvi8AAAAAGDtCM4AAAAAlKk2bdqY/l27dm15enrqxIkT\nunbtmhwdHdWkSRPT+RYtWqhFixaSpICAAO3atUurVq3S6dOn9csvv0iSaTnE3PK7/tSpU8rMzFTz\n5s1N1zdq1EjVqlUrVHtz6tatK0dHR9Pvrq6uppl0zzzzjIKDg9WuXTs9/PDD6t69u/r371/4Dy2b\n//3vfzp48KBat25tOpaVlaXr16/r8uXLevDBB+Xi4qJly5bp5MmTOnnypE6cOCEfH59i9SdJVatW\nzREWnjhxQkeOHNHy5ctNxzIzM9WgQQNJJfu8AAAAAFCWCM4AAAAAlCk7O7scv9+8eVN2dnZycHCw\n2CYrK0vjx49XYmKi+vTpo+HDh+u+++7TE088UazrjX0ZDIYS6S/7Pc3p3bu3Hn74YX3zzTemZQ63\nb9+ujz/+2GIbS27cuKHHH39cL7zwQp5zbm5uio6O1oQJE9S7d2+1adNGo0aN0o4dO/Tbb7+ZvZ+N\njY3ZPrLLHghKt/5mU6dOVdeuXXMct7e/9Z+YJfm8AAAAAFCWCM4AAAAAlKljx46ZZp2dP39eiYmJ\natq0qerUqaOMjAydOHFC3t7ekqQffvhB06dP11tvvaUDBw5o9+7dpqUTf/rpJ0nmw69ffvkl3+vr\n1asnJycn/fzzz7r77rslSWfOnNHVq1cL1b6o3nrrLXXr1k1DhgzRkCFD9P3332vs2LG6cOGC2eAq\nP40aNdL+/ftVv35907Hdu3dr165dWrhwoT755BM98cQTWrBggen8smXLTOPO3Z+Dg4PS0tJkMBhM\n5+Li4lSnTp18xxAfH59jDMuWLZODg4OefvrpfJ/X3DKXAAAAAGAtbMt7AAAAAADuLO+9956+/fZb\n/fbbbwoODtZ9990nX19fNWrUSB07dtTMmTN19OhR/fzzz1qwYIHatWsnDw8P2dnZKSoqSvHx8fr+\n++8VHBwsScrIyMjTh7u7e77XV61aVcOGDdOCBQsUExOjX375RSEhIZJuBUsFtS+qU6dOac6cOTp6\n9KjOnDmjHTt2yNPTUzVr1lTVqlUl3QoUC7MP2MiRI3X69GnNmzdPp06d0nfffafQ0FC5ubnJ1tZW\nderU0U8//aRjx47pjz/+0L///W/t27fPNG5jf7/++quSk5PVrFkzpaena8WKFfrrr7/0/vvvm5al\ntGT8+PFav3691q1bpz///FPr1q3TsmXL5OXlVeDzAgAAAIA1IzgDAAAAUKaGDRum119/Xf7+/qpa\ntaref/990/KNb775pjw9PTV69GiNHz9ezZs316xZs3T33Xdrzpw5ioiI0BNPPKF58+YpICBATZo0\n0bFjx/L0UZjrg4KC1KZNG02YMEFjx45Vz549ZWNjIwcHhyL3V5BXX31V9evX1/jx49W/f3+dPXtW\ny5cvl62trby9vdW1a1eNHTtWERERBd7Lw8NDH3zwgX7++WcNGDBAISEh6t+/v6ZPny5Jmjx5surV\nq6d//vOfGjFihH7//XcFBwfrf//7n9LT03XXXXfJz89PM2fO1NKlS3Xvvfdq+vTp+uSTT9S/f3+d\nPHlSo0ePzncMPXr00KxZs7Rq1Sr17t1bq1at0pw5c9S7d+8CnxcAAAAArJmNoTjrjAAAAABAMTRp\n0kTvvfdenr2xysNXX32l9u3by9XVVZJ06dIltW/fXt98843uueeech4dAAAAAKA8sMcZAAAAgDvS\nO++8o127dum5557TjRs3FB4erlatWhGaAQAAAMAdjHUyAAAAANyRwsLCdPnyZQ0ZMkQjRoyQjY2N\n3n777fIeFgAAAACgHLFUIwAAAAAAAAAAACBmnAEAAAAAAAAAAACSCM4AAAAAAAAAAAAASQRnAAAA\nAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAAAAAAAAAAkERwBgAAAAAAAAAA\nAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAAAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMA\nAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAAAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAA\nAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcAAAAAAAAAAACAJIIzAAAAAAAAAAAAQBLB\nGQAAAAAAAAAAACCJ4AwAAAAAAAAAAACQRHAGAAAAAAAAAAAASCI4AwAAAAAAAAAAACQRnAEAAAAA\nAAAAAACSCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAg\nieAMAAAAAAAAAAAAkERwBgAAAAAAAAAAAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAA\nAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMAAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAA\nAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAAAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcA\nAAAAAAAAAACAJIIzANmEhIToww8/NHuuSZMmunTpUqn2f+7cOfn7+5dqHwAAAKUpMjJSEyZMKO9h\nlLg5c+YoPDy8vIcBAACsCHVPyQgPD9ecOXPMnuvWrZuOHj1a6mMYMGCArl69Wur9ABWFfXkPAACM\n7r77bq1fv768hwEAAAAAAADcMbZu3VreQwCsCsEZcAfasGGDVq9eLVtbW9WuXVuzZs1SgwYNJEmH\nDx+Wv7+/Lly4oMaNG2vRokWqWrVqjvbLly/X5s2bZW9vr/r162v+/Plyc3Oz2F9gYKAaNWqkn3/+\nWZcvX9aAAQM0efJkxcXFaeTIkWrUqJHi4+M1f/58jR07VocPH9aNGzf05ptvau/evbKzs1Pr1q0V\nGhoqR0dHvfvuu/ryyy+VlZUlT09PhYaG6u67787Rp7+/v8aMGaNevXpJksLCwmQwGDRmzBgFBwfr\n8uXLkqTOnTvrhRdeyDPmBx54QKNHj9bBgwd17do1TZkyRY8//rjF57ezs9Mrr7yi06dP68qVK3Jx\ncVFYWJgaNmxY/D8UAAAoMVlZWXr99dd15MgRpaamymAwaN68efL29lbnzp31xRdfyN3dXZI0bNgw\n/etf/1Lz5s01ffp0/fnnn6pRo4bc3d3VuHFjTZo0Kd++kpKSNG7cOJ0/f16enp6aO3eu3N3dlZiY\nqFdeeUXx8fEyGAwaOHCgxo8fn++9Tp48qRkzZigjI0MGg0FDhw7VyJEjFR4erhMnTujChQu6ePGi\nmjZtqtdee02urq7q1q2bWrRood9++01TpkxRixYtNGfOHCUkJCgzM1N9+vTRM888I0l67733tHv3\nbqWnpystLU3BwcHq0aOHUlJSNGPGDB0/flx16tSRnZ2dfHx88nymXbt21dtvv63mzZtLkl588UW1\nbdtW7dq1Mzvu7OLi4hQYGChfX18dP35cBoNBs2fPVps2bSzWglevXtXs2bN18eJFJSUlydPTU2+9\n9ZZq1apVpP89AABQmVH3WF/dI0m7d+/W22+/rZs3b8rV1VXTp09XixYtJEmnTp1SYGCgkpKSVLt2\nbS1evFh16tTJ0f6zzz7TypUrZWtrq7vuuksLFixQ3bp1LX6eISEhsrGx0cmTJ3Xp0iV16NBBM2fO\nlIODg5o1a6bHHntMx48fV1hYmIYOHaoDBw6oZs2aFr/327hxo9atW6esrCzVqFFDs2bNUqNGjfL9\nmwIVFUs1AneYAwcO6IMPPtAnn3yibdu2qW/fvvrXv/4lg8Eg6dZyiStXrtQXX3yhc+fO6csvv8zR\nfs+ePYqMjNSGDRu0Y8cOeXl56dNPPy2w37Nnz2rdunXavHmzdu7cqW+++UaSlJiYqGeffTZH0SZJ\na9eu1bFjx7R161bt2LFDqamp2rlzp7Zs2aLff/9dGzdu1NatW9W5c2fNnDkzT39+fn7avHmzJOnm\nzZvatm2b/Pz8FBERIS8vL23evFlr1qzRmTNnlJycnKf9zZs3Vb16dUVGRuqtt97Syy+/rEuXLll8\n/n379qlatWqKiIjQF198oWbNmmnNmjWF/8MAAIBSdeTIEZ0/f14bNmzQzp07NWjQIK1YsUJubm7q\n0aOHtm3bJunWFzZJSUnq1KmT5s2bp/vuu0+ff/65lixZoh9//LFQff3xxx+aPXu2tm/fLm9vb732\n2muSpKCgILVr107bt2/XunXrtG3bNkVFReV7rw8//FDdunVTZGSk3n//ff3nP/9RVlaW6ZmWLl2q\nzz//XPb29lq2bJmpXePGjfX555+rR48eeumllzRkyBBFRkbqs88+U3R0tHbu3Kn4+HhFR0fr008/\n1fbt2/Xiiy9q6dKlkqSlS5fK2dlZu3bt0pIlS/THH3/kGZutra2GDBliqrmuXLmi6Oho9evXL99x\nZ3f27Fl17NhRW7du1dSpU/XCCy8oMzPTYi0YFRWlVq1aacOGDdqzZ4+cnZ15QxoAgFyoe6yv7jl5\n8qRCQ0MVHh6u7du3a/LkyXr22WeVkpIiSfrrr7+0ZMkS7dq1S9WqVdPGjRtztDcGXB988IG2b9+u\nbt266d133y3w73P8+HGtXLlSO3fu1MmTJ7VhwwZJUmZmprp27aovvvjCFARKlr/3O3TokLZs2aI1\na9Zoy5YtGj9+fIGhKlCRMeMMuMPs379fvXv3Vs2aNSVJgwcP1muvvaa4uDhJUvfu3VWlShVJtwqP\n3PuaHThwQL169VL16tUlSdOnTy9Uv8OHD5eDg4McHBzUq1cvfffdd2rcuLHs7e3VqlWrPNdHR0dr\nwIABcnZ2liS99dZbkqTnn39eR48e1ZAhQyTdeuMnLS0tT/snnnhCCxcuVFJSkn755RfVr19f9957\nrzp16qSnn35aCQkJeuSRRzR16lSLs+X++c9/SpKaNm0qb29vxcTEKCYmxuLz/+Mf/9Dq1at15swZ\nHTp0SK1bty7UZwMAAEpf69atVb16da1fv15//fWXDh48KBcXF0m3Xrh59dVXNW7cOG3atEmDBw+W\nra2tvv32W9OXI3Xq1DHNZC/II488ovr160uShg4dqqFDh+ratWv68ccf9dFHH0mS3NzcNHjwYO3b\nt099+vSxeK8ePXooODhYP/30k9q3b6+ZM2fK1vbW+4+9evVS7dq1Tf28/vrrCg4OliS1adNGknTt\n2jXFxMToypUrWrJkienY8ePH1bt3by1YsEDbt2/XmTNnTG+lS7dqvpdfflk2NjaqWbOmevToYXZ8\nQ4YM0dChQxUSEqIdO3aoa9eupi/lLI07u+rVq6tfv36Sbq0EYGdnp99++81iLShJ//nPf7Ry5Uqd\nPn1aJ06cUMuWLQvzZwEA4I5B3WN9dc8PP/yghx9+WP/4xz8kSe3bt1fNmjX1888/S5I6dOhg+q6u\nadOmZr+P69ixo2mG2ZgxY/L9uxgNGjTI9LcfMGCA9uzZY/q+y/i55e7H3PdeCxcu1JkzZ+Tv72+6\n9sqVK/r7779Vo0aNQo0FqEiYcQbcYYwzy3Ifu3HjhiTJ3v7/8nQbG5s819vZ2cnGxsb0+9WrV02h\nW36y39dgMJgKCEdHxxznzF0vSRcuXND58+eVlZWl8ePHa+vWrdq6das2bdqkdevW5WlftWpV9ezZ\nUzt27NCmTZvk5+cnSWrRooX27Nmj4cOHKz4+Xn5+fhbforKzszP9OysrS3Z2dhaff+3atZoxY4ac\nnZ3Vr18/9e3b1+xnDQAAysfevXtNm9c/9thjGjFihOmccWnAn376STt27DC9oGNvb5/j/8/NBT/m\nZK8hDAaD7O3tlZWVlac2yMrKMtVglhjfBH7iiSf066+/ql+/fvrzzz/z9JOVlZVjfMalto39rl+/\n3lQ/bdiwQRMmTNCxY8fk7++vlJQUdejQIc/ySdnHm72v7Dw9PfXAAw9o7969ioyMNNVc+Y3b0mdl\nHK+dnZ3FWvDNN9/UkiVLdNddd2n48OHq0KEDNRcAALlQ91hf3VPS38ddv35dJ0+eNDvO3O2y92fu\nc8uvH+P3XllZWRowYIDpc928ebM2bdpkCtiAyobgDLjDdOzYUTt37jS9ubJp0ybVqFHD9HZQQR55\n5BF99dVXpqnk4eHhWrVqVYHttm3bpqysLF25ckWff/65unXrlu/17du3144dO5SRkaGsrCy98sor\nioqKUseOHfXZZ5+Z+l+yZImmTZtm9h7Dhg1TZGSkDh8+rJ49e0q6tdfZO++8o+7du2vGjBm67777\ndPr0abPtt2zZIkk6duyY/vjjD7Vt29bi83/33XcaNGiQ/Pz81KBBA3399de6efNmgZ8LAAAoG99/\n/726du2qgIAANW/eXLt3787x/9V+fn6aO3eumjRponvuuUfSrRlQn332mSTp8uXL2r17d44vEiw5\nePCgzp49K0lat26dHn30Ubm6uqply5ampZyTk5O1ZcsWPfLII/nea+rUqdq5c6f69Omj0NBQubq6\nKiEhQdKtpXSSk5OVlZWliIgIde3aNU97V1dXtWrVSitXrpR068uPESNGaM+ePYqJiVGzZs305JNP\nytfXV3v27DF9Jp06ddJnn31mqt/27NljcYzDhg3TihUrdP36ddN+IPmNO7tLly5p3759kqSvv/5a\nDg4O8vb2tlgLfvfddxo9erQGDhyoWrVqKTo6mpoLAIBcqHusr+55+OGH9f333+uvv/6SdGtmV0JC\nQqFnzrdr104HDhzQ+fPnJUnr16/Xm2++WWC7zz//XBkZGUpPT9fmzZvNfm7ZWfreq0OHDoqKijL1\nv27dOo0ePbpQYwcqIpZqBO4wHTp00JgxYzR69GhlZWWZNv0s7JtEnTt31v/+9z/T20r33Xef5s6d\nW2C769eva+jQoUpNTVVAQIDat2+f70w1f39/xcfHa/DgwTIYDPL19VVgYKBsbW117tw5DRs2TDY2\nNqpbt67mz59v9h7NmjWTvb29evbsKScnJ0nS6NGjFRISor59+8rR0VFNmjRR3759zbb/8ccfFRER\noaysLP373/9W9erVLT7/8ePHNXv2bEVGRsrOzk4PPvigfv/99wI/FwAAUDb8/f0VFBSkfv36yc7O\nTm3atNGXX35pemN54MCBWrx4sRYvXmxqM336dM2cOVP9+vVTjRo1dM8995iWDsyPt7e3Xn75ZV24\ncEENGzbUnDlzJN16gWfOnDmKjIxURkaG+vXrp8GDB+d7r2effVYzZszQhg0bZGdnp+7du8vX11eH\nDh1S7dq19dRTT+ny5ctq27ataeP73MLCwjR37lz169dPGRkZ6tu3r/r3768LFy7oyy+/VO/eveXg\n4KD27dvrypUrSklJ0aRJkxQaGqonnnhCNWvWlLe3t8UxduvWTa+++qqeeuqpAsedm5OTk7Zu3aqw\nsDA5Oztr2bJlsrOzs1gLenp6auHChXrnnXdkZ2enhx56yOxMNgAA7mTUPdZX99x3330KDQ3Vc889\np5s3b8rZ2Vnvvfeexe1DcmvSpIleeukl00w5d3d3vf766wW2c3Z2VkBAgK5evaqePXuaZhhaYul7\nL1dXVz311FMaO3asbGxs5OrqqrfffrtQ4SpQEdkYWNcCQCkLDAzUyJEjC70+tjVo0qSJDhw4YFpf\nGgAA3HnWrFmjBx54QK1bt1ZGRoYCAgI0adIkde7cubyHpvDwcF2+fFmzZ88u76EUW1xcnPr166fD\nhw+X91AAALjjUfdUPiEhIWrcuLHGjRtX3kMBKhxmnAG4bT/88IPeeOMNs+fatWtXxqMBAAAoGcY3\nbLOyspSZmalevXqpc+fOCggIMG0mn9uaNWvk6upa6D5SUlI0cuRIs+dcXFy0du3aYo0dAACgKKh7\nKp5Tp07pxRdfNHuuQYMGhZoxCMA8ZpwBAAAAAAAAAAAAkgq3qREAAAAAAAAAAABQyRGcAQAAAAAA\noNI4cuSIAgMDzZ5LS0uTv7+/Tp48aTq2fPlyDR8+XIMHD9bGjRvLapgAAMBKVco9zpKSkst7CBVG\nfHKcPN288hwbs2ukVvVak+ccAAAlyd3drbyHABW+dspdI5irIwAAQOmhdirYihUrtG3bNlWpUiXP\nuaNHjyo0NFTnzp0zHTt48KAOHz6sdevWKS0tTR999FGBfRT3e6f45DgFRPlpbZ+N1FAAAJSy26mb\nmHF2BzN++RWfHJfjuKebF6EZAADII3uNYKmOAAAAKE/16tVTeHi42XMZGRlatmyZGjZsaDr23Xff\nydvbW//617/0zDPPqEuXLqU2tsTUhBw/AQCAdSI4u4PlF5ARmgEAAHOMNQIv2gAAAGvUs2dP2dub\nX2DJx8dHdevWzXHs8uXL+vnnn7VkyRK9+uqrCgoKksFgKNExxSfHKTYxRiH7g/R084kK2R+k2MSY\nEu0DAACUHIKzOxxfdgEAgOKijgAAABVdjRo11LFjRzk6Oqphw4ZycnLSpUuXSuz+xuUZp+ydrKk+\n07Tqlw815oFxhGcAAFgxgjMAAAAAAADckXx8fLR//34ZDAadO3dOaWlpqlGjRond39PNS4u7LNXa\nPhvV3L2l5ncK06pfPtRUn2kK2R/EstcAAFgh83PXAQAAAAAAgApu+/btunbtmoYPH272fNeuXRUT\nE6OhQ4fKYDBo9uzZsrOzK7H+45PjFLI/SFN9pmlR7EKt6rXGtNx1c/eWzOAHAMAK2RhKeuFmK5CU\nlFzeQwAAAIXg7u5W3kOAqJ0AAKgoqJ2sQ1Frp12norQodqHmdwqTh8utPdYIzAAAKF23UzexVCMA\nAAAAAABQCuKT43KEZn7bBiogyo8lGgEAsGIEZwAAAAAAAEAp8HTz0vxOYfLxaCtJcrBz0OIuS5lx\nBgCAFSM4AwAAAAAAAEpBfHKcpuydrPjkOHm6eWltn42mEA0AAFgngjMAAAAAAACglCRnXDX9m5lm\nAABYP4IzAAAAAAAAoBQcTTqi+JQ4HU06kucc+5wBAGCdCM4AAAAAAACAEhCfHJcjEGvu3lIf91qr\nXg37mM4bf47ZNTLH7wAAwDoQnAEAAAAAAAC3KT45TgFRfgqI8lN8cpxiE2M0ZtdINXdvaTpvDMs8\n3by0qtcaebp55QnRAABA+bIxGAyGsujo4sWLGjx4sD766CPZ29srJCRENjY2aty4sUJDQ2Vra6uI\niAitX78dkmAMAAAgAElEQVRe9vb2mjhxorp27arr16/rpZde0sWLF+Xi4qIFCxaoZs2a+faVlJRc\nFo8EAABuk7u7W3kPwWpROwEAgNyonaxDfrWTMfxKTE1QyP4gze8UJh+PtjnOm9vnLDYxJsd1AADg\n9txO3VQmM84yMzM1e/ZsOTs7S5LeeOMNvfDCC1q7dq0MBoP27NmjpKQkrV69WuvXr9eHH36oxYsX\nKyMjQ+vWrZO3t7fWrl2rgQMH6p133imLIcMM3nwCAKBsVITaiboAAAAgL2MoFrI/SFN9psnHo22O\nuslcaBafHKeQ/UHUVwAAWIkyCc4WLFggf39/1alTR5J07Ngx+fr6SpIeffRRRUdH66efflLr1q3l\n6OgoNzc31atXT8ePH1dsbKw6depkuvbAgQNlMWTkwrIBAACUHWuvnagLAAAALPN089L8TmFaFLvQ\ntFxjfnVT9mUbAQBA+Sv14CwyMlI1a9Y0fYEjSQaDQTY2NpIkFxcXJScnKyUlRW5u/zd1zsXFRSkp\nKTmOG69F2aOIAwCgbFSE2om6AAAAIH8+Hm21qtcaebjUNdVNsYkxFq+nrgIAwHqUenC2adMmRUdH\nKzAwUL/++quCg4N16dIl0/nU1FRVq1ZNrq6uSk1NzXHczc0tx3HjtSgfFHEAAJS+ilI7URcAAACY\nZ5xddjTpiMbsGqnE1ATFJsZo0NY+2nUqKs91AADAupR6cLZmzRp9+umnWr16te6//34tWLBAjz76\nqA4ePChJ2rdvn9q0aaMWLVooNjZW6enpSk5O1smTJ+Xt7a2HHnpI3377relaHx+f0h4yAABAuaF2\nAgAAqHiMIZhxSetdp6L09FdPaswD4zRpz0RJUg2nu/TGoXmKTYzRmmOfKCDKzxSkxSfH3VaQlrtt\nQfcqTl8EfQCAO0WZ7HGWW3BwsMLDwzV8+HBlZmaqZ8+ecnd3V2BgoAICAjR69Gi9+OKLcnJy0ogR\nI3TixAmNGDFCGzZs0HPPPVceQwYAACg31E4AAADWK/v+r8YlrZu7t5SXaz3VqlJLcSl/6kB8tC5f\nv6Snm0/UxN3j9eK3z+lcaqKe/upJU4gWEOVX7EAr+z5qBe1HW5z9aktij1uCNwBARWFjMBgM5T2I\nkpaUxD5oRsaiDQAAa+Tu7lbwRSh1Ra2dqC8AACgf1E7WwVztZK4+Mh7bdSpKs6NfliTNeeR1XUy7\nqJf2vahazrU1ocWz2noqUvM7hcnDpa7pHsa2ha27cl9nDKkstS1OPWepTWHuZQze2CcXAFBWbqdu\nKpcZZygbJfE2EAAAQHbUFwAAAHmZC4OyH0tIPatuXj301Jdj9NaPi1S7Sm1dTr+oT379SFN9puUJ\nzQKi/BSbGFPoustc//m1LU54ZSk0K8wYjTPxCM0AABUBM84qOd4IBwBYM96atg7MOAMAoGKgdrIO\nRamdjCGYX2N/LfzPa6rhdJdW9vpUHi51dTTpiF76doqqODirin1VLe6yVD4ebbXrVJTeODRPa/ts\nlFS8kMvYd1nUbNSGAABrxIwzWEThAgAAShr1BQAAQMHik+N0NOmIJOku57v0fo+VcnVwM80uu5h2\nUefSEnQj64am+85UyP4g7ToVpQm7x2q670x5unndVt1VVjUbtSEAoLKxL+8BAAAAAAAAAJVJfHKc\nBm3to4SUsxrZdLSmfDtJs9rNyXF+1S8f6t+d31bTWvfLx6Otmru3lKeblyL775CPR9tyHD0AAHc2\nZpwBAAAAAAAAJcxgkO5yrql98Xv15ANPaeOJ9bphyJR0a5bWVJ9p6lKvm6bsnazYxBjTzC0Pl7rF\n7pN9aAEAuH0EZwAAAAAAAKg0jhw5osDAQLPn0tLS5O/vr5MnT5qODRo0SIGBgQoMDNT06dOL3J+l\nsMrRzkFOds66fjNNa377WE83n6gq9lW198+vFZsYowm7x+po0hFl3szUlL2TFZ8cp9jEGI3ZNbJY\nAVh8clyx2wIAgP/DUo0AAAAAAACoFFasWKFt27apSpUqec4dPXpUoaGhOnfunOlYenq6DAaDVq9e\nXaz+jGHVql5rcuz15enmpaXd3pWHS10dTTqi6funqWmt+/V084ma8u0kLe4cruXdP1Jz95ba2H+L\nJCkxNUEh+4M01WeaPN28FJ8cZ3b/MEvHPd288oyjsM9Q2DZFuRYAgIqKGWcAAAAAAACoFOrVq6fw\n8HCz5zIyMrRs2TI1bNjQdOz48eNKS0vT2LFjNWrUKP33v/8tUn+Wwqr45DiF7A/S3j+/1svfTdP5\na4l65qvxunz9sgwyaFHsAs05EKqAKD9Tmyl7J2uqzzQtil1oceZZ9lll5maWFSc0y2+WWvbj5sZU\nmHYAAFQ0BGcAAAAAAACoFHr27Cl7e/MLLPn4+Khu3Zz7hzk7O2vcuHH68MMP9eqrryooKEg3btwo\nUp+WZn8NaDhYIfunKvFaopzsnJWccVUf/vy+6lS5WyseX6WN/bfo6eYTJUl7//xamTcz1dy9pab6\nTJOPR1uzgZwxqJNUIssy5jdLLXdIF7I/SPM7hZmutRS6sWQkAKCiY6lGAAAAAAAA3JEaNGig+vXr\ny8bGRg0aNFCNGjWUlJSUJ2ArqjXHPtH8Q3M18L6h+urMF7qccVG6ISn9ohxsHZR07bySrp3XlG8n\nqbazu5Kun1edKnfraNIRTdg9VpH9d8jHo63pftmXSDQu42hppltRZ51Zuj53qGZuOcrsQZqldtaA\nJSYBAEXBjDMAAAAAAADckT777DPNnz9fknTu3DmlpKTI3d29SPcwzqwy/oxNjFHwvinKMGQo4sRa\n9ajfU062TpIkW9mpqp2LZke/LEma1W6OFnVZoppOtXT5+iW5V61jNjTLPoPL+Lu5cViaAWYcV1Hl\nDsqyi02MUcj+oBJZMrIgtzN7raDPBQCA3AjOAAAAAAAAUClt375dGzZssHh+6NChSk5O1ogRI/Ti\niy/q9ddft7jUoznGUCb7/l8+Hm214NHFcneuI0mKOLFW6Vnp/7+FQVcy/9bpq39o7JejND9mrqbv\nn6bkjKuSza0rsodmUt4ZXJZmdJk7bhzfrlNRGrytb7HCM0vPnXvpxtJyu0s/5ve5EJ4BAMyxMRgM\nhvIeRElLSkou7yEAAIBCcHd3K+8hQNROAABUFNRO1iF37WRcBjD7zzG7Rmp+pzAdiI/Wez+9rXqu\n9fWfpEM52rk719HElpM0yHuIElMTJOUNzUqCcVyxiTElev+yXP6wNPpi+UYAqNxup24iOAMAAOWG\nL3+sA7UTAAAVA7WTdShM7WScyTRwSx+dSf5DktTB41F9n7hPtZ3qyGCTJXsbB13JuKw3OoZp5IOj\nSnXMAADcaW6nbmKpRgAAAAAAAKAEebp5ydPNS1sGRun5VkGSbBRz7gfNbjdXi7suUXL6VVVxcNaE\n5s/p5e9f0q5TUQXek2UFAQAoG4VftBkAAAAAAABAgYzLAHq6eWnGI7N1b/V7VatKLfVq2EexiTFy\nr3q3BjQcoi///Fyvd3hTi2IXyr1qHXm41DW7fKBx+Udze5sBAICSRXAGAAAAAAAAlJDcIVd8cpyW\nHF4kexsHSdLcH0KVmHpWS/+7SHdX9VCXet3UtNb9euar8arqUFVr+2zME455unlVmNCMvcMAABUd\nSzUCAAAAAAAAJSR3yJWYmqCE1LO6fjNNs75/Wc+2nKyGNRppVrs5usu5pqnduWsJmu47U1LeZRlL\nMowqzSUfjaGhNS0rWdZjKUp/hb3Wmj5PALgTEJwBAAAAAAAAJSh7yOXj0VZbBuzU6x0XKiE1Xsv+\nu1RLu72rQd5DtLbPRtM1mwdEqbl7SwVE+Skgys8UlpgLo8wFa4VR2sGWtc2MK+sgryj9FfZaawwj\nAaCyszEYDIbyHkRJS0pKLu8hAACAQnB3dyvvIUDUTgAAVBTUTtahOLWTMfTw2zZQs9u/KveqdRSy\nP0hTfaZpUezCHGGT8drs4VP2GWfZl4I0Ksr+Z3faUopl/bxF6a+w195pfzMAKAm3UzcRnAEAgHLD\nlz/WgdoJAICKgdrJOhS1dtp1KkqLYhdqqs80uVeto8lfT5TBIP2r1WS9f/RdLe6yVD4ebfO0yx2W\n5A7PpP8LzBJTE8zeAwCAO9Xt1E0s1QgAAAAAAACUgtjEGE3YPVYDGg7WhN1jlXTtvDKzMpWZlal3\njixV5s1MScqxLGNsYkye5fly/+7p5mVaFlGSQvYHsZRfCeKzBIA7GzPOAABAueGtaetA7QQAQMVA\n7WQdClM7ZZ8dFpsYYzru4VJXA7f00dwOr6u5e0sdTTqiNw7NkyQt7rJUk/ZMVFzKn9o8IEoeLnUt\nzjjLrz/cnuxLYfKZAkDFxYwzAAAAAAAAwArEJ8cpIMrPFJgdiI/WoK19dCA+Wnv//FrxqXGacyBU\niakJWhS7UIu7LDUt1xjQNFCbB0TJx6NtntAmvxCHgKfkGGfy8ZkCwJ3LvrwHAAAAAAAAAFQmmTcz\nNWXvZD1e7wkt/e8iVXOsrjkHZ8lWtspSlgKaBsrDpa5pqcUxu0ZqQMPBmnNwlv7d+W35eLRlFlk5\n4nMHgDsbSzUCAIByw3JD1oHaCQCAioHayToUVDsZ98c6mnRE478YrYktJys546o++uV92cpW1R3v\nUnXnajIYpC0Do+Tp5mUKydYc+0QjHxyVZ7lAQjQAAIqGpRoBAAAAAACAcmYMvBJTEyRJmYZMffTz\n+1r5ywpVtXdRLefaqu5cTZevX1ZCarwSUxNyhGIjHxwl6f+WC8x+T2MgV5wxAQCAwiM4AwAAAAAA\nAG6TMaCa6jNNk/ZMlCS5Orgp+cZVGWTQtRupSrp+XrWd3HUl42+5OLgq6dp59dvcU7GJMVpz7BPF\nJ8eZ9kaTZArhsu+5lf28pTFk//12Qrf83M49CfMAANaMpRorIabvAwAqCpYbsg7FqZ2oNwAAKHvU\nTtbBXO0UnxyngCg/Zd7MVGZWphJS41XD6S6dTztn8T42slF1xxr6O+Oyajjepb8zLqumUy1du5Gq\nzQOi5OPRVrGJMZqyd7LW9tkoTzcvxSbGaPC2vorsv0M+Hm3zjCH78o7Zj5d03Wapr9JuCwBAYbFU\nI0xK800iAAAAiXoDAAAgN083L63ts1Eb+2/RloFR+uDxj2Vnayd72au2Y22zbVwd3JSSmSxb2Wpp\nt3f0fKsg1XSupTc6hsnDpa4kmX4a+Xi0NYVmuWsx4/KOucOo0ginLPVV2m0BACgLzDirhHgDHABQ\nUfDWtHVgxhkAABUDtZN1KEztFJsYowFbnpCrg5supV9UFbuqcrB10NXMK5JuzTYzyKDqjjX0Svt5\nqlWlluYcCNX1m2myt7WXwSDN7fC6ejXso9jEGNPsMmMNxqwtAADyx4wz5EDBBAAAShv1BgAAwC2W\nZuHf5VRLgfc/qbur1FU1x+q6abgpSarvUl+2NnaSpKsZVzTnQKjGfTlKV9L/1vXMdKWkp+psapzG\nfzlar0XP0VNfjtGuU1GmsCw2MSbPrC1WAgAAoOQQnAEAAAAAAKDSOHLkiAIDA82eS0tLk7+/v06e\nPJnj+MWLF9W5c+c8xwuSewnr+OQ4xSfHadTOETqXlqAl/w1TSuZVnUtLUOqNFEnSmdQzumm4IUky\nyKDLGRd1M+umLly/oAvp53UxPUk96/XWP5uO0ZL/hiku5S+N3RWoxNQETfWZppD9QTmCsuxjKEyA\nlv26/K6/3TCuMoR5leEZSkN+n0tsYkyZ9leRVdbnAioDgjMAAAAAAABUCitWrNDMmTOVnp6e59zR\no0c1cuRI/fXXXzmOZ2Zmavbs2XJ2di5yf9lnfsUmxiggyk+bf9+kpOvnTdek3kjN9x4dPB5V73v7\nyaAsOdk6ySCDdpzeqk9+/Ugudq6SpFpV3CVJbxyap/mdwpSYmpAjsFvVa40kKSDKL98ALT45TgFR\nfgqI8lNsYozZ0C/7dbkDusIytyduYe9l7lx5BAzs62tefp9LbGKMBm/rW6LhWWX9O1TW5wIqC4Iz\nAAAAAAAAVAr16tVTeHi42XMZGRlatmyZGjZsmOP4ggUL5O/vrzp16hSrT+OeY1P2TlZyxlWtPb5a\njnIqdPvvE/dpx+mtkqT0rFuB37DGAXrZN1QZhnTZy15vdl5suj7p2nmF7A/S/E5hkm6FZdkZQzVL\n4cXaPhu1ts9G+Xi0NYV+2QM1S8FVUb7kN7eUZPZZcZbuZSlwK4+AIfcz4Jb8Phcfj7aK7L/DtCdf\nafdXkVXW5wIqC4IzAAAAAAAAVAo9e/aUvb292XM+Pj6qW7dujmORkZGqWbOmOnXqdFv9erp5aXGX\npXK2q6KApoHKUN4Zb/lpWv1+2chGdznW0vOtgvRk83Fa9t8lMmQZ9HK7ULlXraPJX0/UdN+ZWhS7\nUFN9ppnCicybmUpMTTCNwcejreZ3CtOUvZO161SUqQ9jAGUcb+6fxkDNeGxtn42mdua+5C8oyMp+\nbfb2+QUG5s6VZ8BQmD7zm92X3/miKOwSnEW9trgsfS7xyXElGpoV1F9FV1mfC6gMCM4AAAAAAABw\nR9q0aZOio6MVGBioX3/9VcHBwUpKSirWvTxc6srGRmrv+Yhmt5srOxu7Qrc9fuVXGWTQlYzLeven\npfLbNlAX0y/I2aGKPjr2vsZ/MUZ/Xj0jSZrfKUyLYhcqPjlOiakJkqQpeycrNjHGtP+Zh0tdXU2/\nqqe/etI086ywAZQxYDuadCTHLLTcodntzALLbwyWArWCxmzu34W5/nZY+hyMx3Mvh1mSfRS3v5KY\nwVcSsxIBwJoRnAEAAAAAAOCOtGbNGn366adavXq17r//fi1YsEDu7u7Fvp/BcCvEau/5iJxtqxS5\n/cx2ryqk7Syl3kiRJF2/cV3nUhLlYGev4LYz9caheUq6dt60p9mkPRM1u/2reZZelKRqTtX0fo+V\nphlAucOv7LIv1Sj9Xzi3uMvSHLPQjIo6C6wooUpRg5fCLgNZnLEUxNLnYDye+29SUn3kHntR+rvd\nGXyWPj+WHgRQmdgYDAZDeQ+ipCUlJZf3ECqU/AonAABKk7u7W3kPASp+7UQNAQBA2aJ2Kpy4uDhN\nmTJFERER2r59u65du6bhw4ebzgcGBuqVV15Ro0aNcrSzdDy3/Gon4yywpGvnNWrXiCKPvYptVUUO\n3K7jF3/V6Sun5ePhI0lyr1pHU/ZO1uXrl/R3+mVtHhCl4xd/Vch3U+VR9R5tGXhrSUbjfmXGn9mP\njdk1UvM7heVZSs/c9ZIUmxhTosvuFRTcZR9nUQOY7PcuTI1a0DXFqXPLqjYu7md0u33mDu747wAA\n1u526qZSn3F28+ZNTZ8+Xf7+/hoxYoR+//13nTlzRiNGjFBAQIBCQ0OVlZUlSYqIiNDgwYM1bNgw\nffPNN5Kk69eva9KkSQoICNBTTz2lS5culfaQ7yhMowYAwLpUlNqJGgIAAFgrLy8vRURESJL69euX\nIzSTpNWrV5sNxywdL4rE1ARN2TtZklTVzqXI7dOyrilgxzDN/SFUS/4bpinfPK83Ds2TJE33nSk3\nRze90THMFJo903ySbGxu9RsQ5addp6JMS/ZJMtVrnm5emt8pzLSUo1H2ms64/5jxePZrjfcraD+v\n/I5bClqyLy9YnJlsue9dmLYFhWZFrXOzL5VY2sp6Zpe55R8JzQBUdqU+42z37t3as2eP3njjDR08\neFCrVq2SwWDQk08+qXbt2mn27Nnq1KmTWrVqpbFjx2rTpk1KT09XQECANm3apDVr1iglJUWTJk1S\nVFSUDh8+rJkzZ+bbJzPOioa3RAAA5YW3pvOqSLUTNQQAAGWL2sk6WKqd4pPj5LdtoG4YMnX5+mVd\nyfi7yPe2kY2q2FdV2o1rMsigOlXu1nTfWVpyeJHsbRyUdiNNDnb2Skg9q7ucasrJzlmJ185qRY9V\nmnMgVA52Dprue2tJx7V9NkpSgTOFLM0sM14bmxijwdv6ann3j7QodqHZZQPNzWYrzMyo/GbC5ccY\n4pi7/+3Mjso+862oda5xj7nKtFxhcf8+AGANrHrGWffu3TV37lxJ0tmzZ1WtWjUdO3ZMvr6+kqRH\nH31U0dHR+umnn9S6dWs5OjrKzc1N9erV0/HjxxUbG6tOnTqZrj1w4EBpD/mOwFsiAABYJ2uvnagh\nAAAALHOwc9Co+8cqLfNasdobZNC1G6kyyKC+9w5QFfuqCvvPAiWknFVA00A52Nnr3e4faMuAnfp8\nyB5tGRilLQN2qlfDPtrYf4vW9tmo5u4tdSMrU5Lles1Y08Unx2nK3sk5ZkoZ9woztvXxaKvI/jvU\nq2Efi/t5mZvNVpiZUdn35spvnLmPjdk1UpLy3D/37Kii7q2WfeZbUZXEfmbWpqC/DwBUVqUenEmS\nvb29goODNXfuXPXr108Gg0E2NjaSJBcXFyUnJyslJUVubv+XALq4uCglJSXHceO1uD0srQQAgHWz\n1tqJGgIAAMAyTzcvTfedqa2nIvXP+8cUqa2t7Ez/drJxkr3sdSDhe9nYSFXsq2h+p0Vae3y1zqbE\nS7oV0mQPtoz9G4/Z2zrkuL8xDDMuJ5i9pruRlakpeyebrvHbNlABUX45ar6CghNzoVFhA6iCZqPl\nrj2zB3K5+wvZH6T5ncJyzBorbJhVEksgVqbQzKg0non/ngBg7cokOJOkBQsW6IsvvtCsWbOUnp5u\nOp6amqpq1arJ1dVVqampOY67ubnlOG68FrenrNdCBgAARWeNtRM1BAAAgGXxyXFaFLtQU32mafup\nLZIkV/vCLROVpZumf2caMjW48TBdTL+gUfeP1cb+WzTywVEKf+xd1XO7Vx4udU39WQqW1vbZmGO/\nsuwztLKHXJ5uXorotyXH9Q52DlrcZWmemq+gl6jMLd94OwFJfrWnpWPG5yvu7DHq3NLHy3gAKoJS\nD862bNmi5cuXS5KqVKkiGxsbNWvWTAcPHpQk7du3T23atFGLFi0UGxur9PR0JScn6+TJk/L29tZD\nDz2kb7/91nStj49PaQ/5jkAhAACAdbL22okaAgAAwDxjcNPcvaVqV3XX862CNK7ZhEK3H/vA05Kk\nLGWpac37NbvdXD3n83yOmWXhj71r+r2wwZK5GVq5z2c/vrbPRrMzzMp69lbucRblel74sl78bQBU\nBDYGg8FQmh1cu3ZN06dP14ULF3Tjxg099dRTatSokWbNmqXMzEw1bNhQ8+bNk52dnSIiIrRhwwYZ\nDAZNmDBBPXv2VFpamoKDg5WUlCQHBwctWrRI7u7u+fZZ3A3uAQBA2WKD+7yonQAAgCXUTtbBUu1k\n3CfMOOPpaNIRzfr+ZZ1J/qNQ9x37wNP65NePlGUwqK7LParmVM3szLH5ncJMwVZx9uMq7h5eAABU\nJLdTN5V6cFYe+PIHAICKgS9/rAO1EwAAFQO1k3UwVzvFJsZo4NbeMhgM2jrwc0nS4G19NcI7UBtP\nrFdy5lWL93OQoxztHZV+47pqV3VXcNsZev/ou5ruO1O9GvYxLWnn6eal2MQYTdk7WWv7bJQkjdk1\nskh7ixnDN0szfoobqhnblWYoR+AHACiK26mbymyPMwAAAAAAAKAy8vFoqy0DdmrrwM/l49FWPh5t\n9ZLPy1r5ywpTaOZk62y2baYylHojRTd0Q/a29mpa634t7rJUi2IXKjYxRgFRfhq45VaAZtzfTLoV\npM3vFJYnNAuI8jOFbeb2P8semsUnx+W4tjh7TxnbGcdaGntXFXZsFXHfrIo4ZgCo7AjOAAAAAAAA\ngNtkDMykW2HIIO8hqlPFQ9Uda8jF3lUZWRlm27nYu0qShjUO0OsdFypkf5A8XOpqVa818nCpq+m+\nM3XuWoISUxPk6ealxV2WmmZ3hewPshi8WAqbsodmAVF+prCruHtPGdtlD/VKWmHGVtzgrzxVxDEX\nVkk/U2X8jABYL5ZqBAAA5YblhqwDtRMAABUDtZN1KKh22nUqSm8cmqfpvjMV9O0LOp92zuK1fe8d\noGFN/RX07Qu6kvG3PKreo/d6fGDaJ824rGJiakKeY0a5w6TsSxoWtLxh9mUgS0J5L6dY3v0XR0Uc\nc0EKWhK0vO8H4M7AHme58OUPAAAVA1/+WAdqJwAAKgZqJ+uQX+0UmxijQVv7qHYVdznbVVFKZrKu\npF9R2s1rkmzkYueiazdTZdCtr+Psbf4fe+8eH1V17v+/J5PJhRBQQ2hSIrVYrdovxWOEU1tpUyiK\nRiF4jKWhIFW0RCVqQATKpSLKpYA1VLFo1epPqnKUAKaNChqlViXNOVIq8tIjWgxkTAi3MLlOMr8/\n0j3u2dkzs/dcMrfn3Vdfkr33WuvZ13nW+qznWckMG3g2Hd3t3DryNrZ88jybC7e4I8oUtOkYQX99\nM0GIFkItCMajwCgIQniRNc4EQRAEQRAEQRAEQRAEIcLk54xm6+QqHrx8DSUXTKex9UvaulsZbDuD\njOQMHN2nGZQyGCtWBtvOwOVyMf7sCXzZaufJDzd5pGEsqSrG7mjok8pPEQ8U0Uy9ThlISjshOgi1\nyCWimSAI/YkIZwmKOFGCIAiCIIQC8SkEQRAEQRD6ctOr03ng/V/jAqwWKz304HCeBsBisTA49QwA\nuunmtUN/oeziuaQnp3Og+SMA7I4GAHIycpl50c0eqReVtHV2R0Ofdcq8rZllxmeLV/8uXs9LEARB\nCD0inCUg8bzwqCAIgiAI/Yf4FIIgCIIgCH050PwRTpeTbrpx0UO3q5s2ZysXDL4QgJMdJzjW0czJ\nrhMAtHd1UPnpSzS2NnL3W3fw3IfPsGD3PNYXVLCvaa97W5291i2Yzc2fz4Ld89jXtJfNhVvckWrD\nMvP6pG8047PFq38Xr+clCIIghAdZ4yxBkbzAgiAIQjQg63REB8H4TuJTCIIgCEL/Ib5TdOBvjbPy\nmjK+OHWI007jPlZW6hCOdTRzVmoWO2942x1xdqD5I+5+6w7yBp5NZsogbh1ZyqZ9G+nq7uL2i8tY\n9HzZNlIAACAASURBVM49/P4nT7Jyzwr32mgKaj/N27/1iFf/Ll7PSxAEQdBH1jgTTCOOgiAIgiAI\noUB8CkEQBEEQhK9SKJbXlFF83lROO1tITUrzWeaG80qwYQOg1elgkG0wmamZ2B0N3PLaTCZXXsW6\nutXkDTybx694moVjFrNp30aKz5uKzWqjYPg47slfxMjsUbr2eEvZ6C/yKlz+ndJmKNZjC6Sc+K2C\nIAiCUUQ4i3MkBF0QBEEQhHAhfoYgCIIgCMJXYtS+pr20drVysuMkAB097W5hTI/K/3uJLroAaOtu\n42TXCZpamzjQ/BFNrY0sGL2EzJRBPHj5GgCWv7uMls5TrP77Cm4dWcrWj1/i/veXUnPojT7RZkrK\nRsU+ZQ00b6kcvZ1XqFCukZJu0td6bHX2Wp82SNpFQRAEIdyIcBbHiCMhCIIgCEK4ED9DEARBEASh\nl2GZeczNn8/yd5dxxFHPo3sfJt2aDuAWxvTodHX02eZwnmbJOwvJHfh1vnXmt7hi+FUs3D2fsjdK\naXO28fgVT7Pq8nU88kEFa/7+AGUXz2XTvo3AV1Fvyr/tjga3oNfV/ZUdatFMK2Qp+PP1zPqAimCX\nk5HrFu70RLw6ey3Xbb+GOnutVxv0ygVrnyAIgiCoEeEsjjHiSAiCIAiCIASC+BmCIAiCIAi9HG6p\nZ13dGpZedh/bi6pZOGYpbd1tAdd32tnC/zvru/yi+uc8/MFaDju+4OpzJtHU+iXvHv4bm/ZtZOll\n97FpwlPMHHkTzp4u9jXt5YYdRZRUFVNnr6V4exHlNWXMzZ/Pyj0raNfYowhlC3bPY9XYtQDuqDTw\njFjTO19vopo/wWpm9TSPv9XrrgHk54zm5UmvkJ8zGkDX3/TXhq80ld6OFwRBEAQ1IpzFOTKYJQiC\nIAhCuBA/QxAEQRCEREYtMs286GaWv7uMA80f8cf9T5IU5JDbK59vo5tuAIakDmVw6mC66WblnuU0\ntx1l+bvLWLlnBXZHAy4X3P/eMlwuWDhmMTkZudisNtYXVDBxRCELxyymqa0Ru6PBbbciYD098Tm3\nSAW4j1EwE/HlL0ptWGYeq8au9VsuP2e0h43aY0uqij1EPr129NJRBrrmWyIi10OIBPLcCdGExeVy\nuSJtRKhpamqJtAmCIAiCIBggOzsz0iYIiO8kCIIgCLGC+E7G2Lt3L2vXruXZZ5/ts6+trY1f/OIX\nPPDAA5x77rl0d3ezePFiPvvsMywWC/fddx/nn3++z/qbmlrcAs76ggoAJldeRXdPNxaLhcEpZ9Dc\ncdSjjA2bz7SNCgOTM2nvbuO6b93ABWddyIO1yxmSNoSjbU04XU5uOK+Eyk//myeu+CPZA4aSnzOa\nOnstORm57Gvay7q6Nawau5acjFyPaK7i7UVsmVTpsU0rYNXZa1mwe56H6KR3nC98Ha+IVN5ENyPb\nlO12R4OH4BeMbWbPMd7xdZ+E2CQWnnF57oRwEIzfJBFngiAIgiAIgiAIgiAIQlzw+OOPs3jxYjo6\n+q4ftm/fPqZNm8YXX3zh3vbmm28C8Pzzz3PXXXfx0EMPGW6rq7uL8poyAHIzhnFWWhZOl5OTnSe5\n8+J5nscaEM0A2rrbGJCcwZZP/sTJjpNYemDND9ezY8qrLP3P+1n4vcV8Y9A5ZA8YyoLd89xil93R\nwPJ3lzE3fz4Ldnu2PSwzz0M0U7Zpyc8Z3WfQ2uwAtq/jfaX6NrpNYcHueQGts2ZmuxHiMUImVlKy\nx+O1DwexElUZK8+dkDiIcCYIgiAIgiAIgiAIgiDEBcOHD2fDhg26+zo7O3nkkUcYMWKEe9tPfvIT\n7r//fgCOHDnCoEGDDLWjiFGbC7eQnzOayqIqXiuu4aEf/Y5zBn2T/Jx8rFhN29/tcnLaeRqAFz5+\nDpelN1FUU2sjz3z0JPua9lIxbiMAq8audYtdAPWnD5E9YKju4LN2LTFf56XGyHpiZgbkAxkUV+rX\nrr8W6QF2RZCos9dG1I5wEOlr649wiUHRLi4FQrS8L0aIBRuFxEGEM0EQBEEQBEEQBEEQBCEuuPLK\nK0lOTtbdl5+fT25ubp/tycnJ3Hvvvdx///1ce+21htsalpnnHuhV/j3tOzPYMqmS7AFDuePiuwM6\nhx5XNy5ctDnbcAFz3ijlplen8/mpz7jp1Rnc8tpMiiqvZvbrs6iz12J3NJCTkcvWyVXk54z2myrR\nqDhwuKWeG3YUeQhDaqFMSVdZvL3Io85Qig9qcUptezREiSlrtulFv5m5xuGyL54JhxgUK5FZgSCC\nlCCYR4SzBCcefwwEQRAEQQgv4j8IgiAIghBvrF69mldffZUlS5bQ2toaVF12RwNFlVezad+jJkta\nPP463XWabpeTk50nsFqsJFuSyUobwoOXr2HV2HWkWG3MerVXRJuyrZCm1sY+Nar9NrNig93RwKFT\n/2LOrlK3YFZSVUxJVbF7zaT1BRXYrDaP9tTigy+/0YhPqdisl0YyEEItjujZpVwnI9F6WlviWbwJ\nNaEWg2IpMksQhPAjwlkCIz/GgiAIgiCYRfwHQRAEQRDiicrKSn7/+98DkJ6ejsViISkp8OGywy31\n5GTkkpqcRlu3bwEuqc+wnMvjr4G2gdx00a0AdPR0YLOkYLHAPW+Vs2nfRsZ+vYABtnRmf3cOLhfc\n+vovqD5Y5SFaaUUsbcpGXz5dbwrKP3usj7a5cAubC7e4/87JyPX4Wy0+1NlrPQSkQAUiI0KG0cgt\nxb5QEqjQohVqlPsj4k3kkOsuCIKCCGcJjPwYC5FABloFQRBim0j6D/IbIgiCIAiCWXbs2MELL7zg\ndf8VV1zB/v37mTZtGjfffDOLFi0iLS0toLaUSKOtH7/Eqc6Tfo/voafPNhtfRW+d7DzJjoOV5A08\nm4zkDLpcXTS1NtLYZmdk1iie3L+JxtZGfr/vd9z/gwfZNOEpVu5Z4RERphaxFKFKL/2hNz9LSf2o\nlAHP9dJKqor7lFGOL68po6u7C7ujoY9QZtan9CW0BRK5FcqJYNp6hmXmeYiJ/o7V2ivjdIIgCJHH\n4nK5XP4Piy2amloibUJYkB9PIdZRHMFICrbyHglCdJGdnRlpEwRC4zuF+/tq5DdEvvGCIAhCvCO+\nU3Sg5zsdbqnH7mhgzq5SbFYbXx8wjF31r/msx0oy3Th19yWRxIDkDDq627lt1J1s3FvBWelZrPnh\neprbmikYPo4JLxZwZvoZ3DaqjILh49xrnYFn5IziR60au5b8nNHubYqglpORa6ivrvW1FOHMl0hk\ndzSwYPc8d5RXsGuTmfEDzR4fqE1Gxzn8HSu+rCAIQmgJxm8S4SxGCLfgID/OoUGuo38ieY2iQbgT\nBMETGfyJDgL1nZRveii/r4EOcMg3XhAEQUgExHeKDrS+kzryan1BBU2tjdzzVjlftjW4j8lIHsi5\ng87lH8f2+q0/0zaINmcrTpcTq8VK3sDhtDvbyUzJZMP4jSzYPY9VY9dSXlPGwjGLWblnBa1drXzZ\n2sDWyVVucUxro9ZHqrPXUl5TxubCLYB5UUsdPeYNRZjTCm7hnnDVn/WbaU/GjQRBEPqPYPwmSdUY\nI4QzLZKsVRIawnkd4+neRNJBlPSkgiAIoUObTiZUopmvhdR91S/feEEQBEEQIoWSmm99QQUAK/es\nwEUPKZZU9zEO52m/olkyyQyyDeastCxmXHgTFiyclZrFXZfMZVBqJksvu4/8nNE8PfE58nNGs7lw\nCxNHFLK5cAuPTXiClZev9RDN1D6VMtlJva+8pgxnT5d7vxnUqRu9pXqss9dy3fZrsDsaPI5Tj53U\n2Wt9tmGWcI9xqdNbKpi5duKrCoIgxAYScSYAMuMlVITjOsoMekEQ4hmZNR0dBBtxFir8pfsRBEEQ\nhERHfKfowFuqRiXq7IrhV/HwB2sN1ZVpG0Sr00F2+lCuPudanjvwR7IHDAXgv771U176vxdIs6bT\n1dNFitXGi9dW6qYkvGFHEYdO/YvKoj+TnzO6z1iC3tiCnvhjNnoKcJ+3ng9XZ6/tY4/SniKsvTzp\nlT5RcsGMhYRrjEsv5aUgCIIQvUiqRg0inBkjGsSyaLAhFpDrJAhCvCKDP9FBNPlO/n7z+mOtCkEQ\nBEGIVsR3ig68+U7VB6vIHjCU2a/P4l8tn/mtR1njLD1pAIPTBtPcdpSFY5ZS3/IFT+7fxFmpWTic\np3l8wtNkDxjKnF2lbBi/0S1Eqf2eOnstc3aVsmVSZR8RTBG47I4GnwIVYGhNWei7hpqCUT9Ovcaa\nNxEqGn07f76oQrTZLXgnGp+zYInHcxKEQJBUjYJpoiE9YzTYECuEOze30H/I9e5f5HoLQnSiTRNk\nZrDFm+8gfoUgCIIgCJGkzl7LL3feRFNrIx3d7VixYsHis0w3TgDaelo51tZMl6uL333wW57c/zgW\nLLR0nWLV5evcEWgA5TVlPPfhM33SW+fnjGbLpEqP+hXRrKSqmBt2FFFeU9bHV1Knu/aX+lqpS2lb\nK6L588XUoplyrK/IrWgY+Ne7XnrU2WspqSqmeHuRz9TjQvgxc+3jsQ8Rj+ckCJFAIs4SmGiYfRAN\nNiQykgayf5Hr3b/I9Y4NZNZ0dNCfvpN2VrOv1D7eykvEmSAIgpCoiO8UHXjznZT1uiZXXkVXTxcu\nzA25pSalckbqWRxrP8r0C3/B/3fgaVaPXc+9u8vJzRjGYxOeoKm1kVten0luxtfZOrmqT+SXXh8o\nlJFQ6rr0Uj+aSfMY7X5bnb2WBbvn+e1TqlM45mTkAtEh+iUigYwDxMKzaJZ4PCdBCARJ1aghEYQz\n+QAmBv1xn+VZ6l/kevcvcr2jHxn8iQ5C4TsFOlCil+7HbH2CIAiCkCiI7xQd+POdnvvwGdb+fTVH\nHPVu8Sw1KZWOng6/decMyOXWkbex7eDLzM2fD8Cs125kcMoZPHP1n8jPGU31wSpGZo9yR5RpRTK9\n7eEgnv01s+uZxfO1iDXkXgiCoCCpGhMMCblNDPrrPosz0b9E+/WOt+9KtF9vQYgXzP5mqd9NJS2Q\n0fri7TslCIIgCEJ8cbilnqf3/4Gb/9+tWLG6t/sTzS7NHgPAT8+f5hbNRmaPYuWeFZR+t4yj7U2U\n7pxF9cEq1tWtcbel+EzqyUhmfLNgfKt47m8paSuNiGbK8dFMIvnQ0X4vBEGIDUQ4i0GUH28hvvGX\nW1wIPYnkSOohorwgCIFi5jdL+cb4W/9Crz75TgmCIAiCEO0My8xj1di1bDv4MrdffJd7e2pSGgBJ\nmqE4GylkpQ7haEcT2WlDqfpsO5NHXMfKPSvY17QXgPycfGxJNu78j7msq1vjjkRTjw+pfSSjvpn4\nVr6Jl/EYuc+CIAjmkVSNMYqs3RM/SAh5dCDvVC+BPI/x8gzHy3nEGpJuKDoIh++k904dbqmneHsR\nG8ZvNLRehNF6BUEQBCFREN8pOjDiOykixZRthUwe8V9UfLCOgbZMkixJnOo8hYse97GZyYPIGpBF\nW1c7Fgs0tx0lK30IA22ZbBi/kfyc0dTZa93/nbOrFIAtkyoNry/mbb/4VrFBsPdJ7rMgCImIpGpM\nQGIpGqm/ZrTE4swZmfUTPcTSOxVOAhnAjodnOF7OQxCiBe07pfzX7mig/vQhAFaNXRvQNzfRv9OC\nIAiCIMQGSjrqGRfexDmDz2Foeg5Wi5WTnSf4fs7lWLEyKGUwAC3OU4zLm8Dxjma6e7px4cJqSQbg\nQPNHAORk5HK4pZ6cjFwslt427I4Gj/YUtP0aX/0d8a2in1D0V2PlPkufXBCEaEEizoSw0l9RPLEc\nLZRIs34S6VwTiXi5r/FyHrGGzJqODsIZcab9jVYWs4/V321BEARBiCTiO0UHRn2n5z58hrvfugOA\nQSmDOdV50r0v3TqAtu5WAKwWK3kDh9PR3Y7VksyXjgaenPgszW3NlL81h/U/2sCmfRsB2Fy4BegV\nzcprylhfUAHgXovL2/iIErEWSqQP1X+E61pH0z0M5dheNJ2XIAiRQyLOhKilv6J4YjlaKBZtDgSJ\n6IktzNyneHmG4+U8BCHaUP9GH26pdy9mH6u/24IgCIIg9A8nT55k8eLFzJgxg+PHj7Nw4UJOnjzp\nv2AUMe07M3joR7/jzovn4eg87d5+zTmTcfZ0udc7G2DN4MaLbiIzJZN5l96LxWKhua2Zad+ZwR8n\nbqZg+Dg2F25xi2bDMvPIyciltauV2a/PYsq2QqoPVrn3af2swy31LNg9L6T9cenj9y/hEs2i6R6G\namwv2s5LEITYRISzBCMSPxr9NSgmg2/RTTAOUCDPrThIgSNOpiAIwaL9jiiimb/fAvnuCIIgCIKg\nsGTJEkaOHMmJEyfIyMhg6NCh3HPPPZE2yzQXZF3ItoMvkZU+hHTrAADebXiHzJRBZNoGAb2pGh94\n/9d0dnf1FrLAvbvLqT5YRfaAocysnobd0YDd0UBJVbHbZ7Il2XhswhNsmvAU6+rWePhegMffZvvj\nvvwyb36duoz4ddFPNE5CD4Ut0XhegiDEHiKcJRB6g+HiyAj9SaCimVkRJ5TCT7B1xOo7FujaQ4Ig\nJCaHW+o9vnfazmqdvdb9XVZENPWgj1JeRHtBEARBEBTq6+v56U9/SlJSEikpKdx9993Y7fZIm+UT\nxY+ps9cCUH2witKdszjcUk9j25e0dbeSmpRKc8dRjnU00+I8BYAFC5akJO66ZC7r6lbzhyueYfXY\n9azcs4KyN0qZedHNzNlVStkbpXT9W1yzOxqwWW3kZOQyMnsUT098ro8tim9lJm2dP79MvU8rmqnb\nE78uNojXfn+8npcgCP2HCGdRRKAOhdFy2kEscWSEWCCQmUKhimgI9h2JtXdM6eCUVBVTXlMWM3YL\nghBZ6uy1lFQVewhh4DnTubymzKsgr3wrAfeAj3x/BEEQBEGwWq20tLRgsVgA+Pzzz0lKio5hLL0J\nyYpP89yHz1C07Woe+NtyZr12I84eJ2O+dpn7+I6eDve/e1w9QG+qxiFpQ3j3yN+oP/0FNYfe5On9\nf2DhmMW0drXx6N7edcwqxm1ky6RKAI/1zZSINLU/pvSLAfd2fz6W1i/T89289bfV28MV8RPrPmKi\nTswVBEGIRaLD4xACHmBXyimzmfyhdlokdDm+iGcHKpBn1JdoZvRdC/YdiaV3TN1BUnLnx4LdgiBE\nFmW9jPUFFX6/GzkZuR5/ry+o0B1Y0RPhBEEQBEFIPObMmcP06dM5cuQIt912GyUlJdx1112RNgtA\nN7JqWGYeq8au5dG9FXR3d/PoPx6mu6ebk+0necf+NmlJ6Viw6Nbn6D5NY+uXvPjJZixYePajp5h5\n0c00tzVztK2R20aVsWH8Rg9/Sok8G5aZx9z8+br1DsvMw+5oAHoj1Pz1hbXil6/jtGjr9ZbC0Re+\nxD11BoNIEArRK5om5oqvLQiC4BuLy+VyhbOBrq4uFi1axOHDh+ns7KS0tJRvfetbLFiwAIvFwnnn\nnceyZctISkrixRdf5Pnnnyc5OZnS0lJ+/OMf097ezj333ENzczMZGRmsXr2as846y2ebTU0t4Tyl\nsGEmdF5Nnb2WBbvnxcwAvZpAzzlR8Xa9FAcqFp+BSBBLz11/2hpL10WIH7KzMyNtQtQRa76TkW+H\n+pg6ey3lNWV0dXexZVJln7LatTnCYY8gCIIgxCqJ5jsdO3aMf/zjH3R3dzNq1CiGDBkSaZMA+ODg\nRx7R9VqRyO5ooKm1kSXvLKKju53G1kZ66DZcf0byQM5MOxO7o4Eh6dm4XJCWnEabs5Ws9CEsHLOY\npX9bRLLFxtLL7uOW12YyfNA3qBi3kfyc0R52KJFpTa2NjMwepet7edtm1K9SMpcA7slU6jqMjFfo\n1aHeN7N6GqvGrvU4P182htInVGwLdoJpsDaF6pxkDClwzPZ9hL7I9RH6k2D8prBHnG3fvp0zzjiD\nzZs388QTT3D//fezcuVK7rrrLjZv3ozL5WLXrl00NTXx7LPP8vzzz/OHP/yB9evX09nZyZ/+9CfO\nP/98Nm/eTFFREY8++mi4TY4YgX408nNGx+SPXaylsVOI5Owmb9crliKbooFgBmP7k/5+RxLl+Ym1\nb46QeMSa72R0NrEyg3jB7nksHLMYm9Xmtb5gvtOx6FsIgiAIgtCX9957j9tuu42CggK++c1v8tOf\n/pT/+Z//ibRZQN9sPuA5+Sc/ZzQTRxRy/w8eJDkpmevP+6nhulOT0nA4T3Oq4xTdrm5+OOzHNLbZ\nsZ9uoLHtS64YfhUr96xwH589YChnZ34lmtXZa91Cz5xdvWuiVR/8CzdWl7Cvaa9HW3q+kzqzkZls\nLerMJdp6jYxXaOvQ7nt64nMeopkvG735hP581XATbJ87VH32aB5DimY/3khfQ/ojvpHrI8QSYY84\nczgcuFwuBg4cyPHjx7n++uvp7Ozk7bffxmKxsHPnTt555x0uv/xy3nrrLZYvXw7A7bffzi9/+Us2\nbdrErFmzuPjii2lpaWHq1KlUVVX5bDNWI86CJdSzafrjBzTWZhlEelZOrF2veCJS917ueWiJ9Dss\n9CXRZk0bIVZ9J2/vlxJhBr3pGXMyck3NYA7EDnm/BUEQhHglkXynKVOmsHr1as4//3wAPv30U+bP\nn89LL70UYcv6+k56ftDhlnqmbCvk81OfkWpJo8PVbqju8XlXkJ6czj+P/YMxX7uM/236O5+c+BiA\nJJKouu514Ks02EoqRkU0u277Nbw86RX3/n1Ne/nlzpu4J38Rd+Tf2ae9UESc6aEMjIer/2U24sxX\nX9BIP1F8zPATC/11iTgLHrk+Qn8S1RFnGRkZDBw4kNOnT1NWVsZdd92Fy+VyL+6akZFBS0sLp0+f\nJjMz06Pc6dOnPbYrxwp9CaVi76+uUM4KiLUPpXpWTiivg9G6ovl6RWOecbPPsNFc76HGX7tC6Ijm\nmXWCoBCrvpPeb+ThlnrKa8ooPm8q6wsqWLB7nntwRzs7W0FdNlA7BEEQBEGIfTo6OtyiGcC5556L\n0+k0VHbv3r1Mnz5dd19bWxtTp07l008/BXrTZN9zzz2UlJRw/fXXs2vXLtO26vlBdkcD4/Im9J6L\nAdFsfN4VpFvTebN+J698vo1Dp/7Fi59s5j+yL+WcQd8kM3kQPfRwoPkjymvK2Ne0l5pDbzC58ipm\nvTqT6oNV5GTk8vufPEl+zmi3TzQyexQvT3pFVzRTbPe2zYxfpbfGWTj7X/5s9Ba15u18/dkpPmb4\niYX+uhHbotn+aECujxArhF04A2hoaGDGjBlMnjyZa6+9lqSkr5p1OBwMGjSIgQMH4nA4PLZnZmZ6\nbFeOFfqi/LiEsi5fa2klckitXtqBYIiHaxqpc/DVrq/UDGa2qwmXaBap+2+kzVDbFQ3PuThpQiwQ\nS76Tv+9pS+cplr+/hKbWRlaNXcuC3fM8xDElzY72b7PpdQRBEARBiC9GjBjBb37zGz7++GM+/vhj\nHnroIc455xy/5R5//HEWL15MR0dHn3379u1j2rRpfPHFF+5temmyA0E9VvDch88wZVshOw5WkvTv\n//nCgoVd9a/R1t1GDz2Mz7uC5KRkrjlnMi9+spkxX7uMs9KzyBmQywVZF3Kq4xQ3vzqD+W/fTY+r\nhyOOema9diPjXxzL/e8t80jXWFJVTE5GbljTFvpbWiIUbYQCEcaiH7kPgiBEC2EXzo4ePcpNN93E\nPffcw/XXXw/ARRddxPvvvw/A22+/zaWXXsp3v/td6urq6OjooKWlhU8//ZTzzz+fSy65hLfeest9\nbH5+frhNjmlCNQDva8aOv9D1aEMZjAsloZwFEwszavwRyWgsszPGzG4Ppb16ROr+RyI3dzyIxILQ\nH8SS76R+rxWxC2DV2LXuWcY7przKMxP/xMjsUX3WZR2WmecW0+rstR7rV2i/jf31DZFvlCAIgiBE\nBw888ACtra3MnTuXe++9l9bWVlasWOG33PDhw9mwYYPuvs7OTh555BFGjBjh3jZx4kTuvLM3Gsvl\ncmG1WgO2WfFtHvmggl+OvINTnSc5K3UIadZ0n+VceK6i8mb9TgbaMvng6P+QRBIvfrKZdmc7Vkuy\n+5ivZeRw26g7uX3UXQBcMfwqjnU0Y3fY3WmyNxduYX1BBXZHg9uPUv7vaxJqSVWxKZ9IOW8jKeyU\n/+qtrab+r1kiMZFXEARBiF/CLpw99thjnDp1ikcffZTp06czffp07rrrLjZs2MBPf/pTurq6uPLK\nK8nOzmb69OmUlJRw4403cvfdd5OamsrPfvYzPvnkE372s5/xwgsvcMcdd4Tb5JilvwbgfYlm0TYo\nruT3Dpd4Fo11RYpQnEOoo8B8CcBmZsIZJdB3IJj0F4FiNBVFKL8p8SASC0J/EEu+kzrifcHueawa\nu9b9b+V7NSwzj+wBQ93fR60Ylp8z2iMSzVvanVBG13sjGn0ZQRAEQUhUBg8ezLJly9ixYwdbt27l\nV7/6lUeaam9ceeWVJCcn6+7Lz88nNzfXY5temuxg+eL0v6j6bDv3jl6MxQKt3b3ZAFJI8VnOhg2A\nVGsaJztO0OZsIzOlN3vAj/J+zNH2Rg40f8TR9kZau1qp+GAdz330DMkkc8MFUzkrNYvTXS3cOrKU\nYZl52B0NzNlVSnlNmdtPK6kqBtAVuoIRrdT+nx7qjALavqG/rAPe2lT/u7+WHDHSntm6gtkvCIIg\nhAeLy+Vy+T8stgjFAvdCYETjAo919lryc0ZH2gzBC+oFffUWgQ3HMxXOBWfD+Q5EYqFcs+cTivOP\nxu+IED4SaYH7aCYUvpP63VX/9irfrlVj15KfM9p9XJ29lgW753msB+JvEfr++A7KN0gQBEGIZhLB\nd5oyZQpbt27lggsucK/xCrjXfP3oo4/81lFfX095eTkvvvii7v7p06fz61//mnPPPRfoTZN9++23\nu9c584c/30mZvDvr1Zk0ttlJciXR4eogK20IpztP09Hjf80zCxZcuBia/jU6ujvITh9KV08XfUZs\nIQAAIABJREFUj014ggPNH7H276v50tFA3qCzufM/5jLtOzOoPljFkncWUVlUhd3RwOzXZ2FLsrFh\n/Ea3H1ZSVexee3bV2LXkZOT26ZPbHQ2mx1F8+XLe/EF/5dUTsfTq04pvvpYcCbX/GKq+ry/bIjEG\nkKhIH0AQ4pNg/CYRzgQPYv2HIlbsD8bOWDlHI6idQIVoFYSCqSeU96y/7fbnxOulUQtG/JSOQeKR\nCIM/sUAohbM6ey1lb5Ty4rWVfY6xOxpYsHseMy+6maf3/8E9eKKuw983IJ5+BwVBEATBLInkOx04\ncIALLrggoLJmhLOjR48yffp0li5dymWXXWaofl++k+KrVB+sYtZrN2KzpODoPg3AAGuGO/rMHz/I\n+SF/s+9mSFo2JzqP84crngFg+bvLsFjA5YKll91H9oChbhFMLYYVby/iUMvnPHHFH5k4orCPfXX2\nWo+UjurMLIH2yXz5cv4mzerVpUTHKfbp1WfUrmj1H/3ZFs22xwsyDiEI8UswflPYUzUK4SWUIdux\nnp4oVuwPxs5YOUejqNNuKevi9GfbwRKJdcL6y26lLW956vXq0EvFaPb8JZ2jIMQmysBGnb2WObtK\nOXTqX+xr2utekN7uaKCkqpjymjJmXnQzi965h7n5890zjhWMppEVBEEQBCH+ufvuu0NSz44dO3jh\nhRe87tdLk93e7j8iTA91ysHl7y7jzNQsOnrasfz7fzarDSv+11DLSB7I4u8vY/2PNrDoP5eSRBLN\nbc2s3LMCiwUqxm1ky6RKJo4odK8Nq/7vsMw8NozfyPDMcxiZPcqjbsWXys8ZzebCLR6imbJGbaB9\nMn/rkPs7Rnu82j5v9Rm1K1oxch2E8CLjEIIg6CERZzGM2WgQI/tjfSZLrNif6BFnoX72InlN+jvi\nLFSEMuIs0jPkovH6GiFW7Q41iTRrOpoJxHdSfwMAircXsWVSb5RZzaE3mPadGR7pdQ631LvT/iip\nHLXfGXkvBEEQBME3ieQ7zZkzh29/+9uMGjWKtLQ09/bRoyO/FIO/iDPo9Y2WXnYfd785h5MdJ7BZ\nbbR1t7mPs5JMN84+5a2WZLpdTvIGnk1yUjLpyQO4dWQpm/ZtZH1BBYA7vaLSXqCR+tooMG02AL3z\n8tWu+HKCIAhCNBHRiDOXy8UXX3wRbDVCAPiaEWFkYVS9/b6crVggVhy0YOyMlXP0hhKVYPTZM1Jf\nJKPwjNgdbffMaGfG36wrdQfL1/UPt2gWi1GYsWq3EBriwXdSz6aeWT0Nu6MBm7V3MXu7o4FF79xD\n9cEqwPMboCwar17bQi2ayXshCIIgCILCiRMneP/999m0aRMVFRVUVFSwYcOGSJvll2GZeW7fqLmt\nmeaOo6Qmp3mIZoCuaAZgcfWu63as7RhtXe2sL6jggqwL3fvLa8oo3l7E4Zb6Pv6T2o8yIpopZZVs\nI4qvpvXHlH680pdXl1W3bSQji97fyn+VteH8ldU7XyN/G7VL2aZ3LfoT8YsFQRAih+mIs2effZaH\nHnqItravfvCHDRvGzp07Q25coMRixFk4ZuUos7mDbVNy/cYvkZgNpjjc3tItBFpnvDyb4c7T7i/n\nPPSdQWhmlmIk7kOs3v9YtTvUJMKs6Xj1naoPVjFxRKHuN6D6YBXL312GzWpjfUEFORm57nLKmhoL\nds9jbv58jzU3/PkugiAIgpDoJILvpOXEiRNYrVYyM6Pn3P1FnCnRWzkZudQceoPj7cdZ/v5SwPsQ\n3Jm2MznedRyAFEsqna4OAB760e/c0WZK5L6ynqzaB1P39cDYOmVq/00t0nhbuxroc7zR7AF6mQaU\n66T4hb/ceRMvT3qljz+o+I7qc1PKaetT/21k7EGvj6yU7eruwma1hXT8wigyFicIghA8/Rpx9tRT\nT7Ft2zauvvpqXn/9dR544AFGjRrlv6DglXDMsD7cUu+eKeQNoz+88ZbrN1TXuT9m/oSzjUjN7Ffy\nlIfyeYqWZzPYa2nmngR6/7y9z95mECrRJP6+JZGMFImW+2+WWLVbME88+k519lp+ufMmj1nB6md6\nZPYobFYbC8csprymjKLKQm7YUQT0fm+Utc7UdRjxXQRBEARBSBwOHDjApEmTuPLKKxk/fjxTp07l\n0KFDkTbLL+q1vEuqinnw/eWsqr2fH+SM9VlOEc0sWLjiGxNJIonstKFckHUhrV2tNLU2uo9NTuqN\n9NcKVUpfz8g4jlY0U9Yd91ZWqVf7t/pYf30c7bHqtdkmjijk5UmveEy4UmxThDV1m0o5vbXTfGVf\n0v5b73yVcYstkyojIpp5s0sQBEHoP0wLZ1lZWZx99tl8+9vf5uOPP+a6667js88+C4dtCUM4fgxD\nXae3dJDRitkUlYHUH26RwGwboRJQ+oN4dPzUQlOgGO3cGD3WVzt629QLL3vrjARjuyAkKvHoO+Xn\njHYPbHj7rdpcuAWA9QUV2JJsdPV0eewvGD7OY0axfEcEQRAEQVCzaNEi7r77bt5//3327NnDzTff\nzIIFCyJtlmHKa8ooPm8qR9ub6Ozp5B3724bKjTzru7zy+TZ66AGg+uBfaHAc5pbXZ/Lch8+wYPc8\nFo5ZjN3RwMzqaVQfrHJPeNzXtBfoK6jppTBU+3B6Apg2DaO2vLpsnb2Wwy31Hv1hdVl1em91Xer2\n6uy15GTkUlJV3KdfPfOim1lXt8bdjra8glK/0tbCMYvd++rstbqpJtXnq0bpFwfim4ZqrChYv9hM\n2sxERq6FIAh6mBbO0tPTee+99/j2t7/Nm2++SVNTE6dOnQqHbQlFKAaJ9H7kAy1r5PhoXYfEl22h\nGpQL5eCet2topo1goo8iRbQ4cKF0aNU54YOpxxt6zr0vAnketLPsjLSjPT5QovF7IgihIF59p5yM\nXOyOBlaNXdtnYGZm9TS2fvwSN1aX0NTayIbxG0m29M6MVoR6oE8aHhHNBEEQBEFQcLlc/PjHP3b/\nPWHCBFpbWyNokXmmnP9flF08l5SkFDJtg7Bg8XpsiiUVgH8c6xW/rjlnMgAPf7CWn18wk3svXcyj\neyuYmz+flXtWUPZGKTMvuplbXp/JTa9OZ/KI67jl9Zk88LflHuKT3niBtygrBUVkUupRr2em3ne4\npZ7qg1VMenki1269kinbCt1CXklVMdUHq7hhR5E728CcXaW6a55XH6ziuu3XUHPoDZw9XczZVeoW\nyYq3F7Hwr/OYedHNlNeUccOOIo861HYpdawau5bZr8/i5ldncMOOIurstZTXlNHmbNU9fyUDSyj6\npNEyXubLjmixMRqQa2GcQK+RXNvYJVzBHP3JFycDX1/etHC2ePFi3nzzTcaOHcuJEye46qqr+PnP\nfx6wAfFIJFL4BfOhD8RBUKceMFJ/sARim7/1m4IlVKKZr/sWr+k0o8WBC3VbRqOzAqU/xNRIEcpo\n0EQjEc851ohH30kZxCjadjWzX5/lHrBQnse5+fPZ8snzfD0jj5HZvWkpbVabRx16vode+hxBEARB\nEBKTSy+9lEcffZSjR49y/PhxnnvuOc4991yOHDnCkSNHIm2eT9QThWoO76L0u2XYkmyMyDzXa5lO\nVwffPavXb0oiib837qG5/SgAT+7fxAN7fs3nJ3uzFiwcs5jkJBsFw8cxe+QcGhxHePLDTQxOOYOK\nD9ZxvP0Y5TVlVB+s8uhH6qXZ1vpfynpi6wsq2Fy4xd3PhV7/rbymjIVjFrvPb+Hu+ThxMjf/XjZN\neIqVe1YwZ1cpbc5Wlr+7DJer195N+za6bVdzuKWedXVruCd/EU/v/wNLvncfFgvM2VUKwJZJlWyd\nXEVWehabC7fw4rVfpU883FLvFtJyMnJ58Ae/YdE799DU2ojFAhaLhSXfu4/8nNGsL6ggPXlAn/MP\nNXopIyO1pIG38YNYG0MKJ3ItjBHomE2sjU0JX2H03kXzPT7cUs+UF6YEXN7icrm8r0zqhf3793PR\nRRfR0tLCP//5Ty677LKADQgHgSxwHyqUhyWcH129NoIRhRThzGzeZiPnGorrES11hAttCoVEwdd5\n9+c1iefrH6pzq7PXuqNCwnm9jNbt7bhofs/DRTycc6IscB+PvtPhlnr2Ne1l5Z4VLByzmJV7VtDm\nbHVHlm0Yv9G9RoWygLvyLVFm/ap9D/XzDATkmwiCIAhCvJMovhPAuHHjvO6zWCzs2rWrH63xxIzv\n9NyHzzDvrTvpptvvsVaspCSlMjhtMG3ONpKwcu7gc/l70x4AzkzJIiNlAGnWdG6/uIys9CzW1a1h\n8ojruGzY98nJyGVf015GZo9iX9NefrnzJndq7OqDVdzy+kwen/A0E0cUArhFMrX/Bb2ptrWZAZRx\nJ7ujwaNMUWUhd10yl2nfmeE+zu5o8FirTBGRFN8R8PDzFDtWjV3rzmqg9hWrD1ZxY3UJf5y42W27\n0lZJVbGHvUr/VbFDfR7avqT6byP9UTP9YcW3VTLT+Bs7C5cdghAqAn3u5HmNXYIdp4sG2lNOcPbg\nswMqa1o4W7t2Lfv37+fJJ5+ksbGRuXPnMmbMGObMmROQAeEgksIZ9M/Dov1RDYWwFK6PXyiuR7TU\nIZgj3Nc8Gn60g60rGp5LXzZUH6xyd7aUtYwiKdL4+95Fw/Xsb2L9nBNh8CcefSf1c6cMdChpgxaO\nWcz97y2jYlyvcKbMblYL8CVVxSwcs9hj4ENdb6CTegRBEAQh3kkE38kIzz//PFOnTo1Y+0Z9pzp7\nLXN2lVL4zUk8/MHaPvvTrem0dbf12Z5iSaHT1QmA1WKl29XNDeeVsOfLdznScpiz0rM41t4MwILR\nS9h84Fmgd+KSWiiqPljFxBGFbt/qePsxzkw7yx0tphWdvE3K1vbDFJ+tzl7LlG2FbJ1c5VGHXp9N\nLSQpPqK2DcBjIpX6GOVctAQzLmCmfxvI2Jvat/XWfwXPc+6PCeqCIAiJQjB+k2nh7JprrmHbtm1Y\nrVYAnE4nU6ZMYceOHQEbEWoiLZxFArOOQqwPtBqlv84zUa6nGdQz18JxbQJ1FoNxMvVmpwXjsIZL\nBApkFpy39KYzq6cxN3++u4MSDc96NNgghI5EGPyJF99J3fHXi3xXp/8p3TkLlwtSrDYqxm10zyBW\nZv8Wby/CZrX5FMbkXRcEQRCEviSC72SEKVOmsHXr1oi17893UqKrlryziAbHYc5MzeJYWzNddPos\nZyGJcXk/YVf9awBkpw1l0X8uBWDad2a4fS0lsmzJO4tIsdro6umiq9uJzZrM1slVbr9M3SdXIv4V\noczsRCVv0Vp6GUrU23zVYaSdcGK2LW/nFWjbeiJhtF0jQRCEWCYYv8n0GmdOp5P29nb3311dXQE3\nLoQOde5kBW+5RQPJPRqNeUr9oT7PcNpv5nrG6nUMpIwySBoN6315K2f2HTCyoLKZ58DXOQSaI9hX\nOfU2IzYo+9Sz+qLBOY8GGwTBDPHgOykDK0onXS9d9OGWesprypj9+iycPU4AOrt7z3XV2LWU15S5\ny2+ZVMn6ggqfbWrrFwRBEARBUAhg1ZF+Q5kkdMvrM2lztlL63TK+bGvwKZplJGcwPu8K/jjxOdb+\n+LfcdNGtDMs4m0X/uZTf/s86oDfiqrymzCMd42MTnuDFayvZ+JMnsFmTaTh9BLujQbdPnp8z2r1m\nGXy1Dpu3yC8tepNI1UJSnb3WvW3B7nkBj5H46u/5qjOQ9sy0pVzTUPmmap9abYeR/q70iQVBEMKP\naeFs6tSpXHfddaxevZrVq1dz/fXXRzQ8PpHw5yAUby/yGLzSDp4bGSj3VncsCkPKeQJhXaRQ3Y4v\nAhVCIkmgNg/LzPNYyyZcIm2gzqI6YsJoe97eG/XArpE6lc6E+n301lkIVhhUoxWStTb4qi8eiKX3\nTog/4s130voWRZWF7vUwbh1ZSorVRpo1nft/8CDdLqd7YXfoXRNDmSldXlPmFuP06lb+jrXfTkEQ\nBEEQwo/FYom0CV5RJgnde+liGtu+ZPOBZ7BarD7LOJwOdtW/RunOWyh4/vts/fS/+dLRwP3vLeNf\nLZ9x91t3MLN6Gqc6TrH145eYUf0zrnppPOU1ZUBvBNrWyVVUFv3ZbcPc/Pnk54ymzl7rVwzTjiUp\n/pqvc1TW7lL6mOU1Ze5xAL0+qbYvrJ6YpbVBD3+TRP35jGbHtvSODXVGnXjpbwuCIMQjpoWzkpIS\niouLef7553n66aeZMmUKJSUl4bBNUOHvB97uaKD+9CH3zCJtVI2ZgXItRgfwzToh/TEIpszc6Y/c\nz/7Ovb/sCBZ/EVVG61A70ME6p+EgkHPzl2McfDvSerP+fJ1zMMKg3jb1bLZAou78Eezsv3ARrwPv\n8XY+8Uw8+E7KjGSA4u1F3LCjiDp7LXZHA1+2NnDryFL2Ne1lwV/nsuR797FlUiXZA4byZasdp6uL\nnIxc1hdUMGdXKVO2FWJ3NLC5cIvHLGejkb3BIu+OIAiCIAj9wR35d3LTRbeSmpyKxWUhxZLqt4zD\neZqTXSc43nGMHno40XHcva+HHlo6T/HH/U9yRsqZpFrTWDhmMdDrnwEcaP6I67Zfw3MfPsMtr8/k\ngb8tZ8q2Qoq3F/URrhRxTCtgqQUxX+Rk5PrMXqJGiULzlpVGLdj56h97K280G4xRv1I7QVrd5482\nxLcVjNJfz4o8k0K8YFo4W7JkCf/85z9Zt24dGzZsYO/evTz44IPhsE1QofejrSY/ZzRbJ1eRk5Hr\ndjLUUTUQ3MwYM46FEYGtpKq4zyzzUKMdeAsnRqPOYkE00xu0NIs3kcZIuXCmd9RrzxeBRKP5i956\neuJzHjnRgxkU9jcjT6999b/9CUpG61ULpHozEyMtXMWKaG2GSF9TwRzx4jsp75DT1UVnd5d7hvPK\ny9fyyAcVLP3bInIzvs7I7FHYHQ0AWLCw/Pu955qTkcuWSZXuxeP10tLo/ZaGWjSTd0cQBEEQhHCi\n+BvPffgMT+7fRGd3J4NSB9Pp6gAgzZpmqJ4eesiwDcSChaR/D9+d6jrJiY7jnOg8TmuXg5V7VrCv\naS/1pw9Rc+gNFr1zDw/+4DcUDB9HdvpQHtu3gZWXr2XLpEoPoavOXst1269xT4SC3gnZRsePtELS\nsMw81hdU9BHclL6ier1bdRllEpW6r+xrOQNfgp5eKkltJJ1Z1ONrkepT+or+E99WMEp/PSvyTArx\nhMVlMjH0xIkTqa6udv/d09PDNddcw5///OeQGxcoRha4jzWUD87M6mnu2T++nAllUFz9XyNthNoJ\n8FZnIJFvZttVFlntL8dGu/CuEcJxzYMlkjZF4r7Fgi16KPb5+x74Ku/r+2D0/NXH2R0NXm2Jxmc9\n1omXa5oIC9zHk++kTH5R1icrrynD2dMrpKVYbfzs29P51pnf4tbXf8H8S3/F5gPPsmH8RrfI5m/x\n+f749sbLuyMIgiAkJongOxlhxowZPPPMMxFr35/vpPgbz334DI980Os3/XBYAU/u3wSAlWS6cTIk\nZQhHO4+Sbk2no6eDHlePRz1JliR6XD0kkcTglDOxWZOxkMSXbQ3kDTybBy9fw8QRhe61xursteRk\n5LrFsTm7StkyqRKgj4+lHDuzehpz8+e76zHav9TzqdTb1H4dhGb8x1f/1V8fNBAfMNJ+oyJwvjzp\nFQ/RUU2kbRRih/56VuSZFKKJYPwm08LZL37xC37961/zjW98A4DGxkbuvfdennrqqYCNCDXxJpzp\nORv+PkJmB578HR+ogxHM4FewH1qtwxZOG9QihjdnxlsZvXQCifwDY+T8jTz/gYhI4W7HaFmzYrd6\nQWaj9aufvUDPX++4SDy/if7OxDqJMPgTb76Tevbgvqa9ZA8YSk5GLjWH3qD8rTl8bUAO3T3dnOo8\nyeNXPO3eb3c0+PxWeRP05R0XBEEQhK9IBN9J4b333uO3v/0tzz//PAcPHuSWW27hN7/5DZdcckmk\nTQvYd/rJlh9yrP0Y4CIlKYUeVw9dri6SSMKChdTkNFqdjj51nJFyJmeknYHLBXddMpd1dat58PI1\nrKtb4zGm4Kuv582nUqdRzM8ZHdL+XX/4cdE+6TVY9Pr7giAIgjGC8ZtMp2p0Op1MnjyZWbNmMXv2\nbAoLC/nyyy+ZMWMGM2bMCNgQwTvq1EWKE+DPGTAbRu7r+EDDbI3Y4CtFXLChvVrH0WxdRsqpI+e0\nKfiM2KcnmhltMxwEm7IvFO0ZEc38pRc0c799HW9EnPa3aLLZNr3t82afXroKf9dA/ewFev7ejvMV\nYRoOEikNQCKcY7wSj75TSVUx1269klmv3ciNf+ldr61g+DiGpGWTak0jNTmV7AFDASjadnXv+mc+\nvlXqf5v9XRQEQRAEIT5ZvXo1y5cvB2DEiBFs2rSJBx54IMJWmUPdX7Q7GjjRfhwXPbhw0dHTwW2j\n7iTTNgiAQSln0NXTCVjISM4AICt1CDecV0LuwK+z/PsPYrHAIx9UkGZNZ2T2qD5prrXjDN76Z2rf\nKj9ntMe6ZsGOpWjtMUKwbURaNAunrxoO0Ux8a0EQBP+Yjjjbs2ePz/1jxowJyqBQEG8RZxD5GTTh\nSuMY6ig3b+XDEXEWroi6cLbpzx5vEXCBtunrHoSq3kD2B3u8QiDpOY20qd3nrx0jaSmM2hJIlJm/\n40KdniNQW2KZSP8GhJNEmDUdj75Tnb2W0p2zONl+iuOdzSz9z/v51pnf4uZXZ7Dmhw/x6N4KXC7Y\nMH4jpTtnsXVyFdD3G2Dk+5MI77ggCIIgGCURfCeFq6++uk9q68mTJ7Nt27YIWfQVRnynOnstU7YV\nkpORS3ryAG4dWcrdb93hcUxG8kAcztMAZKUN4fZRd/LA+7/uTc2Yeia/+t5SFv51Hpsm9GYqWLln\nBesLKtzpGA+39KbR1qbD1kbyq7PkzNlVis1q81pGjUSMGRt/iGb7tcSavYIgCMHQr6kaY4F4FM7A\nWHh2OFLHhWJQHrzPdArXQHp/OALBCHLhEo2CIdQp+/TWvgL8DpJGgkDTH4T7HNQdnHCnZ9B7Lr29\n/2ZTwULfnPraY8L9LkTT8xYIsW6/NxJp8CeaMes7HW6pp3h7EbdfXMbKPfeTnjyAzp4OGhxH3CLa\nyOxR2B0N7rU1fKWGVeqMx2dcEARBEEJJIvlOd9xxB9/4xjeYPHkyAFVVVXz++ec8/PDDEbbMuO+k\nrCNmdzTQ1NrIjOqfufelW9Np624DcK9htvSy+5j/9t0sHLOUy4Z9n6bWRhb9dT4PXr6GX+68id//\n5ElGZo/y6K9phTN1H1LdD1dQ1quNVPq/SAl0gbRntO8bbX5sqCcbC4IgxCr9mqpRCD1GQqT10rFp\nywcTRu8rPZx2u5l2FCeupKrYUOq5UKA4AP0xe0Y7O8tMuUDtC+c5eavbjEOpFkoVB13Jlw70OSYa\nqLPXUrTtat20i/7ua388Y2bTgKrxZ796v/a59Pau6x3ni2GZeT6f+Tp7relvl9nvkL/jYyFVRbS8\nL4KgvC9OVxcP/+86bEkpdLuctHd1APDgnvu4qXp675pnNWW0Odvc5byluJWUjIIgCIIgaHnggQdo\nbW1l7ty53HvvvbS2trJixYpIm2UKRTQrrynjtp23urdbsLhFM4D05AEc72xmyd8W4nK5ePLDTdzy\n2kxuqp5OY+uXZA8YysuTXmFk9igPf2pYZl6fyLFhmXnuiZfqfrj6+JyM3D62qseWzI7fGO1n+epj\n9gdG+oZqjI7dRFNfzcj5RZO9giAI0YoIZxHG6A+2tx9rdXl/P+j+2tArq1enGdFHccr0UgDcsKNI\nV1ALBu31CKR8sO0arc+o6GC0/Ujj7VlRCz/9JWgGhE7sbbQM5AYTRWp2PTi9d92XTWY7HXo2KMKq\n2fM08iwp9ukdb2bSgV7nURASEWVCzL6mvTh7nLhcYLFAe1cHp7tOMTT9a2SlZWOxWHj4f9dx68hS\njrY1sq9pL4DH+hlqovr3QRAEQRCEiDB48GCWLVvGjh072Lp1K7/61a/IzIydiDtl3KO8poxzB32L\n084WkkjimnMm49J0QJV0jae7WhicdgYdzg5cLsgZmMuC0UvIzxnt7lPPzZ9P6c5ZHhNS1f0VpY9V\nZ6+lvKYM8OwL2R0NXidI19lr+0x+9tVf8iVEeetveuuXhRtffUNfxJp/Kn61IAhCaBDhLMKYFaHA\nc3FZbXlfopkvR0dxHvT26wk83gbAvdmtd3xyko31BRV96g/GafI10O+PYEQSvftoJIomFMJMtIg7\n0PdZ8fY89bet/trLzxlNZdGf+0R1BepwBiPAhhJ/9iszEf2dn6/nS92GtuOl929v5Y2koVX/W/lm\n+UNtn7ZzZmbSgbfI2XggHs9JCB92RwNd3V0seWcRTa2NjD97Au1dHRzvPEZW+hAK8sZTff0u/nDl\nMyRbbGSlZ/UuZv/uMkqqisnJyHXPfNYinXtBEARBEAAuuOACLrzwwj7/V7YbYe/evUyfPl13X1tb\nG1OnTuXTTz81XCYQ7I4GXC64LOcH/OXzVwDooYdXPtdfoy2JJDJtgxh/9hU0tTfS/u+o/Qffv889\nDlRnr2XJO4v4/NRn1Bx6A/iqv1K8vYjqg73rymrHRdTjSXoTF9X9Mu3kZ+04i1ZQU9rT9gm9iWTa\nv832swLtv2j7hrHcD4p0ZhxBEIREQISzKMDMD1qdvZbrtl/TRzwz0oa3WT1qJ8jbLKFAIlf0jlHb\no86prZ7dZCb9mjd8iYTeMCoi+Cqvbqe8psxvfaGaCRTK2UTBOo/ae1l9sMrjfvRnyjwzaRi8CTeB\niGaBCJnhEkB9dQiUmYhGhC1/z7G6w6M+l1CkidDWYfa90TvO36QD7fdKL3I2Hogm4V2IfpTfttsv\nLuOxCU8w+7tzeHL/Jo52NNLtctLc2syLn2zm6X29a284XV2s3LOCjT95gqWX3cfmwi0AlNeUccOO\nInnuBEEQBEHQ5cCBA3z00Ud9/q9s98fjjz/O4sWL6ejo6LNv3759TJs2jS+++MJwmUD8fW0CAAAg\nAElEQVRQor2a25p5cv8muul277N4GYrroYeWrlO8+Mlmzkg5k1NdJ7l4yCU4cXKg+SN3/+3+HzxI\n3sCzeeSDCrcQtb6gAqeri1tem0nx9iL3OuPKZGWlb6aMU+j1f4dl5nmkgNSiHbPRE6L0Isz0xgIC\nzegRbP8lkMwp0UYs2y4IghBLiHAWY+TnjOblSa/oOjlmZpzoDUTbHQ1eo6YAnyKQkYgNpb06e63u\ngL0yu8lM+jVvEU3eImD8CTb+RASzKHnDAxUN/AmRZiJv/OFN5NATUn1tV89UWzV2Levq1ng8O76e\nlVA6gHqz3/qDQMXQQMoZFZi93VOjbQZzLt5EezP3WE/UNhP16qtePbx1+OJNNANJ4yGYp7WrlQV/\nncsvqn/OS//3AgCZtkFkJA/ESRc/yPkhE0dcxb6mvaQnD2B9QQUAt7w+E7ujwT2wk5xk86hXOv6C\nIAiCIGg5efIkmzdv5pFHHuF3v/ud+//+GD58OBs2bNDd19nZySOPPMKIESMMlzGLMrZw68hSHM4W\nBtkGk5GcAUASVlz0eC1rIYnBKWdw40U309PTw6uH/owFCxdk9UbarRq7lokjCnnw8jXYrF/5U/k5\no9k6uYrKoj+zZVKle2wlP2e0u39jdzQA6K5vBr3jP1O2FVK8ve8EJ3U/39sERG99P63QBrgzegCm\nJiiGqv9ipJ5o9U+lDycIgtA/iHAWA2h/rBXHR73PTKQW9P2hVSLZFEdKqXvB7nnMzZ8PYCgyxV97\ndkeDux21uKUWfwKNoNPuNxulEkrnQ4lQUduhjhI0gi8RKdSikLf6tDZ4iwzUu9aAh7OuRi/yUdke\nzDp96mO8pegzUtZoW97wdn7+6jYrmvkTOZU61aKTt3tlFr2OlDadh3qfupzSSTL6ThgRtUMpuvZ3\nRyTSHTLpcAlGGZaZR2VRFbNHzuFYWzOnOk8B0NJ1ilanAxcu9jS+y7UvX8nNr85g4ZjF5OeMpqm1\nkdyMr7sHafJzRvdJ1Wx2nVBBEARBEOKf22+/nffee4+eHu9Ckx5XXnklycnJuvvy8/PJze0rHPkq\nYxalP1EwfBxnpmZxquskDqeDgcmZWP59jLeoMxc9nOw8yaMfPExW+hBu++6dpFhTaGptpKSqmLI3\nSqk+WMW6ujUe/pTSrrIOmvK32h4lDaM3/18R37ZMqvSatUP9X2/nrnct1GW1GT0CmagZCvyJZtEc\n1SV9OEEQhPAjwlmU421wXC1eeMtR7Q/1sXqRbMMyexedXVe3BghMoFFHlihOnNKOkQgkbV3q/xqJ\nktHWqy2jN/gfKtTnNzd/vnvgP1Bx09u+UAl9erm+9Zxcb7PMfNmqRn0NtKka9I5XlzMSDReoKKS1\nRSsMBoKv9zfYurXX3Fu9WtFJXc5X9KXZ81LqNmL35sItrC+oMBzh6e350oqu3r6BRq+xtr7+oD86\nZNHa2RNiB/UzZHc08Ng/NmAhibbOVganDObMlCwsWLBiZeHopeQMzGVYZh4js0dRfbCKWa/diMv1\nVX2K36L+Lmnf32gfrBAEQRAEIfycPHmSiooK5syZwx133OH+fyyg9K0XjPkVNouNrNQhDBkwhDNT\nswA8os5+kPNDbBYb4/Ou4JxB3+Smi25h4X8u5WTHCSo/fYnHJzzNyOxRrC+owOWClXtWeE236Mse\n9X+9oR6rCRXexgmiWfyRqC5BEARBhLMoRx3Krt2miBc5Gbm6UT1m0ZY/3FLvkWYvENFMiSxRD+Kr\n2zEqcHiLdPJHNMwgUq6jErmnFYp8YWYmV6jwJz5pHW5/EVXqqCK9Z8LX+nrqcv6EIsUmpb5A0vbp\npRc0+px4i/bSE2+1dZuNRlTX5ateveumHOsrwsOfTaHoRBhNy6puU7FPbac3gVBBT5zVw8h9Dse3\nItwdsmCeX0GAvs9QTkYuA2wZdLjasVqttDnbmPCNK+mhh266qW/5AqslmY0/eQK7o4GFu3t/++66\nZK7726Od7FNnr2X267NMRSALgiAIghD/nH/++fzzn/+MtBkBc7ilnqf3/4E1P3yIgSmZjMubgMXy\n1f5keiPcDhzfz6CUweyqf43m1mae2v84G/duYNXYdQywDSB7wFBmVk8jJyOXDeM3eqwXH6hdvv4O\ntJ54Q/xQQRCExEaEsxhBTyBQ7/NGMIPAaoHOVzlvf2vD7/UGuo2mZvIW6RQM/TUop8ykV0fugaeA\nZsThDHdEiiJmmbkueoKmelv1wSqu236NxwLDyjMBuPOs+2pTKwIp23yV0YpzShltvVr0ohONXA9v\nz3KdvdZnFJ7ybJhdW89btJo3m31FLephxCZfEWv+bNfez0DLGol6VJ+nLwHJ330Op9Bu9DoE0nYw\nz68ggP4ztPR7y7GQRHt3O2nJ6bz8yYtkWAeShJWn9j9OfcshDjR/xJxdpTS1fcmC0UvYtG+j+91V\nz5A+3FJP6c5Z/KvlM/Y17XW3Ecg3QhAEQRCE+GDcuHGMHz+e9957jxtuuIGCggLGjx/v/r9ZduzY\nwQsvvBAGS32j+FEXZF3I4dP1PLl/E23dbe79TpxYsNDccZSfXziTs1KzGJw2GLBwtL2JrPQst0i2\nauxaAMpryiivKQvYd/e37IJRpA8hCIIgxDsWl0udPCc+aGpqibQJIcfbAJKviK06ey3lNWW6OawV\nJ0dv4VYjA6zayBZlEEwRYLRtKnbaHQ19Is70UjNpB9XiYfBM71ztjgbKa8oA7wviKtdO736ZbdPX\ncXr3zUwb6rbq7LXM2VWKzWpj4ZjFTBxRqGuTkq7LyMC+NtLMV2qKOnstORm5fcpon9tQCqfaa62s\nG6hOgap3rfTOz9tzoH3njFw7fzZ7uy6AT5u8HWu0XaPPpV67oXhGAyGS36JAv9lm6o/UuWVnZ0ak\nXcETI76T8ltxquMURxz1uPB0Ic9MyeKSofnsqn+NnAG53DryNjYfeJYN4zdSXlPG+oIKcjJy+3w7\nDrfUs69pr/u3IhzfaEEQBEGIFxLBdzp8+DAAPT09vP3227z33ns4nU6+973v8eMf/5jhw4dH2ELz\n406/q3uYFe8vAyz00O3efmn2GP7etIfBKWfQ2uXgtlF3UvXZdm6/uIyC4eP69P0UAvGRvPWlA+0L\nhLJcvIz7CIIgCNFFMH6TCGcxiHpGj7eBJWVwq6u7y+vCrt5EKzMiBniKH0AfAeZwSz3F24twurpI\nTx7gN62Atj5/g/PBOF3hds581a92WrUij57gA4Gt2WUmeiyUIlJJVXGfe61nk5F2fT1zRkRhPYHZ\nWwRnKK9Dnb3Wff7qtQjVtnu7377ezVAKQaB//lqhztcaY77uqbf3U9uunm2hGDj3V0+kO2i+RFQj\nx8aDuJAIgz+xgFHfqc5eS+nOWXxx6hDd/x70Scb273+7cOHCQhJJFgtWi5UnrvgjE0cUeny37Y4G\nAJ/iv/r7KQiCIAjCVySS77R69WoOHTrEddddh8vl4uWXXyYvL49FixZF2jRT407qyUc2azJjvnYZ\nuRlf5+EP1pJiSeGKb1zFvuZ/cLjlC5KSktz+k1JWne0jWL8/Gvo/ev3HeOjXCIIgCNGHCGca4lk4\nUxwuwJ3uzptjoY26UcqrnRN/EWBGbVLboTe4e8OOIlwuWHrZfayrW2M6wgj0RcJAnC4jgkAoMCIS\nBRNxF4jgFMg5BDqDDHwLnWbETbORNv4i1BT71O9SKJ8Jf/fV1zMYzP02e5wvQUxPqDPSplbs1Ts/\n7XX3Vl+4o6ki3UEzEglp5trHKok0+BPNmB382VD3W57cvwkLFo/Is8EpZ3Dnf8xl5Z7lDEoZzOLv\n/Zpp35nhLqeOtPY2kSbS76YgCIIgRDOJ5DtNmjSJyspKkpJ6VxlxOp1ce+21/OUvf4mwZebHnZTl\nCw40f0T5W3P448TN7n3K2vJNrY3c/94yXry2EujtTyuTiZR+VCBZYqINiTgTBEEQ+gsRzjTEs3AG\n5qI11GKBNpKreHsR9acPsXVyVcCzus1EqSk2BzoobkZQMDpQHqpZW0ZsNnqtjKQv7I9BxUDbMCK6\n9Fc0nFLOVxQjhDbizKzQF+y5BfKMGWnbSNRYMGXBu7Dq7/qFOjoy0jMufZ1nf4oHkboWiTT4E80Y\nTdWofFNveW0mDY4j4II0azpt3a1kJA+ko6edJ674I/e8Vc6Xbb2RZc9M/BMTRxR6+CbKxB5vPkGk\n301BEARBiFYSyXcqLCxk69atpKSkANDR0cF//dd/8corr0TYMvOTjoq3F2Gz2thcuIWaQ29QMHyc\n7piEeuLw3Pz5/HLnTbw86RVyMnLjRjgTBEEQhP5ChDMN8SacBRppok4Np6wpoh2s0kacBdK2WUHA\nVwSZmXYDQSvg+bPDWx2B2qYnIAbaRjgHFYON+DES1Rdq+7U2+xLwwj0gG+4BYPXgs1oQDEWUlp7t\nSgdN3YZeBF2w+BpA9xfFFsw7Gc2zHfvLlkhG+CTS4E804893Up6RufnzWfq3RdSf+oLMlMHYrMlc\n883JbP+0kpOdx8lIGcifCv+bdw//jTPTzuTh/13H1slVXgeG9NZsjKZ3UBAEQRCijUTynR577DFq\namooLOxNW1hVVUVBQQGzZ8+OsGWBCWcbxm8EoLymjNauVu7/wYMeGXm0fVbwXCdefCRBEARBMEcw\nflNSCO0QwoAyqKQ4TWaOy88Z7R6MAnh64nNuAU05zp9ophyrrlf5t7+okZKq4j7llDoVe3xFnBg5\nZyOo7VXarrPX+rXDW11GbPNl48zqae72vdVjxJ5wR5oF45Qr5YZl5nm9vtoOgTdbjNir2Ky+rtq2\n1TaEu7OhJ/p4O5dAzl85t/yc0R5ikj+x2l87vmy1Oxo82lC+Lco1V1KPBIL6Hup1FtX3Untfzb6T\n2na1Zf29m/2Nt2i9cLRjNHJYSFxWjV3L8neXcbrDgcsCxzuP0dj2JU/u38SxjqNkpAzkRMdxpr5y\nHcvfX8Lx9uNu0Uz9u6ug/ZaphXmtryEIgiAIQuIxe/ZsSktLOXLkCIcPH2b27NlRIZoFgs1q493D\nf2P267MoPm8qRxz1LPrrfFaNXQt49kPUk3xzMnIBEc0EQRAEob+RiLMYwJdApT3OSEo0ZVtJVbHX\n9UW0x2qjPbSzw/XKqaNUlPb8rcvm7Vy8RaCoU1F6q0cvNaORskZtM9q2tnyoo2RCSTREuRiJgNFG\nIkVrpIIvQcvX+ZtJxRFIG8r+4u1FbJlU6d7mLQLLm6ilTS9q5h7o3UP1du176u2bFop3yeh3pb8x\nEsHZHzaEum3lvBJp1nQ048t3Ur8bpTtn8cWpQ7iAHroBsGAhwzaQm7/zSx7+YC3ZaUM53nGMYQPP\n5rEJT3hEvRuJco+GZ14QBEEQohXxnaIDs+NOv6t7mOXvLwFgSOpQjnc0k2RJ4g9XPsOiv84nM2UQ\nC8csJnvAUN2sIpKmURAEQRDMIxFnARBrM5gDiYBQR1iptymOlrOni/KaMp/1aiM89GaHa+tXyiki\nWUlVMXZHg0ed/uzWSxWntlMd8eLPfm3UkfocjKCt36ij6i2CQy8CygzBRNjo1aWHWmT0Vk5vv1mb\n1NdI7zr7GyzVPpvKNrOoIxu0dvz/7H17fFTVufYzSSaYDAGFBicmosXag9gU2xQsVWo+EKFGYLAn\n1BOOGrlpepp4miACh4tcCogkrYk2CkojHjgt+cQkOJrD7URRqaQ5NU1BW7+misEZM0WFZBLIZDLf\nH+O7WHvN2nv2JCEXXA8/fkn2ZV3ftfZa77Pe9+2NdtYrk1H9I4GM0JLlwd+nn26vC02tJ9HgqdfM\nF3xbUPloHJMM0t9G1iLhIOtDAm/VRvlmOTND5gNZvSPJXywL7wqlvyFa4vUXgdDbeffmPKZw8cGP\njSkp02CBBbk3/RxRiIItxoYAAmj1tWBbw9OwWqwoTH8SO6a/CH+gE9mv/SvcXlfY7y6Nb956tT9l\nXkFBQUFBQUGht3CqpQmVjXvxy9uewuqb1+Pyyy6H3XYVRsZ9DafbT+NUaxMyr78Hm45tQO6hHGye\nvDVkf3T2/Nl+rIGCgoKCgsJXD19J4qw/FHY9cTmkpzjiFdt8nXhlNy24+Gfq3LVITkjBnpkVpk8s\nydzc6VkIiRYhPr8PdluSJi+99oikb/TIO1nZIyG/esNtm1krwe6gtxSJRm0d7p6MvJDJoFHeBCOy\nJVLZNAM9matudIbUK5w8RiIXem2pV38in8PVT3TpYdSO/BxAz6XZJ2DbtN9gxpgMDfmVWeVAZpWD\npZtZ5YCj8k42f4jENT8vlM3YpSHLw0EkynnSn8+H2kScS/h+M2qHSMrS1y4bxbHEl0fP5Whfozfz\nVoTI4ENyQgp+8fY67DixDQEE0NJxFl3ogrfTy55p97fjp+MfRmL8KCTGj4Lb68Kn7S4s2p8NIDiu\n9Ehut9cFn9+HvMM5bO6hfBUUFBQUFBQUBjNo/5Q+egrKP/gtVk9aiwXfWozPz32GkXEjUXRbCeZ8\n88coSi+GNdrK3qO9TYOnHp94gz8VFBQUFBQU+gZ9RpzV19fj3nvvBQB89NFH+Jd/+RdkZWVhzZo1\n6OrqAgDs2bMHd999N+bOnYv/+Z//AQCcO3cOubm5yMrKwqJFi/DZZ5/1uCx9rbCTKasjhUyxnOXM\nxNx9Do0lgtvr0ii7eWsNUdkts/AwqoPsd7GMsnalhZ+R8t4oDSMCwQwBFokSXSR/lh1ZoiEfw+Vl\nlF9vKuB7Q3Zlbc0rKo1ik4nkBUGMtyWDHkkUaay57kBP5jZP3orCui0oSi/W1MuoXN2VK9m1cNaJ\nRunyMhquHWUWo6damlBYtyWEzLZYtO+VTC3F1UOvYT72jYhrt9eFu6vuCol7Fq6t+BhINFfZbUnS\nOYHS4+URQLdiF4qIZOz3BsR5RyajZtIYbFCESHgMlLXTqZYm1Llrse3PT2Pu9VlIGnoVyj/4bchz\nUZYoXDv8WsypzEB142tISbga9vgkbL+jDG6vC3MqMzSkGL8eWHZkCUqmlqJ4SqlGYdSXGIzjSEFB\nQUFBQWHgg/YXbq8LnV0+PPJ6PjbXrscVl43A+t+vwdPvFiPLmQm7LQnLJ65kehw6IJiaOB5Ft5Vg\nxpiM/q6KgoKCgoLCVwZ9EuNs+/btqKqqQlxcHPbs2YOHHnoIDzzwAG6++WasXr0akydPxk033YT5\n8+fjpZdewvnz55GVlYWXXnoJu3btQmtrK3Jzc+F0OvHHP/4RK1euNMyvv2OckTJXdk12L9K0Kd6H\n2+tCfk0eU/SfamnCnMoMuFo/QYXjVaTZJ4TEHhLLZ6Y8fJ7AhXhn4Ugr0bpMJGiSE4Kxkcy4TIy0\n3fgy8/mYrW9320fmLo+3KNKLd9bT+vYG9NrsYrxrtn56Y8lMW8r+Noqx0502NxrrPXm2p2WItDwk\nr1nOTHR2+bBnpjbeWXfmrzp3Ley2JPZ8daMThXVbDGP+if0jypHRXCQrY0/at6/HYE/KrTcmBgtU\nnA45BsraiR+bnrZmrHprBVo6zuKz86cRH23DN4Z/A3/6LHj6ef64xUhN/DbWHl2FLzo+x+qb12NS\n8g/YOK5udCI1cbzheqC/LM0G+zhSUFBQUPjqQK2dBgYi0TvRgUK7LQkNnnosOpANW8xQ7MrYA7st\niXnrsNuSNLHoeb2CXoyz/tAdKCgoKCgoDBYM+Bhno0ePRklJCfv7+PHjmDhxIgDghz/8Id5++238\n6U9/wne+8x3ExsYiISEBo0ePxvvvv4+6ujpMnjyZPXv06NG+KLIGkZxA1rNC6S03W2QdAwQtPsSF\nU4zFiu13lLFFlswqRGb5FS5PPjCtkVJJz2JCZkFBp67CtW933K7x5eQt78ykY0Z5bcZaincfp2fd\npWeZxl830z69Ab6Mde5aqcWQmXfN9KtZ0kzm+tFMW55qkcfFM4pfRWWX3TNbDyNZNWMxGWlf82SR\n3vNmZIys1YrSixETZdVc49sykvnLbkti80uduxYPHpyPgrSlhv0m9g/FYOTLKcZb1CujmXlDr7/7\nY/Mpm6MjeVcp+y89DJS1E607lh1ZgtPtp/Fpmwu3j54OAGjzexlpBgAvvLcDP3/9Z/ii43NYYMG2\nhl8j91AOqhudONUStG4FEDKu+e90ljOz22XtCdQ4UlBQUFBQULgYqHPXwlF5Jx6o/le2znkoNRef\nnT+N8vd/hwZPPXIP5eChAwvR4KlnoS4I4Q5JqrjBCgoKCgoKFwd9QpxNnz4dMTEx7O9AIADLl37A\nbDYbWlpa0NraioSECwygzWZDa2ur5jo925eIdCESzrWb2TyN7uXX5EmVxEDQLWJq4nhNuY3ctvGu\nG/n/snKES493sybG5JG5PNMjQPTKKbPmMgKfPynkxXJESjjo3ZPVTXRnqFd/GXhCgMgHs2XprpxR\n7CogSMrunfWKLslkRAzp9XekZePbx0x7821mlCb9ruc6MRKXqjLyrbuKVz0im/peRg6GK69eecTr\n9K6MjNcrazjw84vdloS9s15BauJ4aTmACy4WRfDuZ+kdMxYpZkh+WfuZPVAw0BDp/Kgw8DGQ1k70\n/Sw78Tyy/uk+7PlgN4AL/ly/lxgk9PyBTgyPvRwJ1mEYFWfHP9o9aPW1YNGBbLi9Ljbes5yZmPny\ndDa3GX0P+xKKNFNQUFBQUFC4GNh8ayG+OP85JtlvwaL92ahsfAkJ1mHYcWIbsqvn4WzHGXzc8hFW\nv70C7Z3taPDUhxwOLEovNr2vU1BQUFBQUOg5+izGmSbTqAvZer1eDBs2DEOHDoXX69VcT0hI0Fyn\nZ/sS3VGE6xEGZpTxelY2fNoiIUPvAGDXZQsoWXpkkQYEFVlzKjOQ5cwMUSaHIybotLhoUUL3yHLE\nbN1laROBIHvGjNUcbwklIyL4dIz6PRLCz0huKC+Z0p5PY/PkrRqy1KgsZq1sxOd4CzOeRJGlGU5G\n+f4Sr0c6BmSyrAeeaAQgHSMyeebfF+N/mSlndaMzpBzic7J3ZeCJbODL04kVd2LuPgcAaBTLZssr\nu873jdif4hinOYfSiYRY5MtGFmgyGdbrj90Z5fC0NaOp9SRzX6JHXOttJPWgR6jzY24gbDwjKYM6\ncXppo7/XTjRWjrrfwhVDRgC44On7D55j7PczHV+gxXcW3xqZCgss+Mk35yHJdhVz3ZqckILFqTlo\nav0YNScPa4jqZUeWSMeygoKCgoKCgsJgBO2zx468AQ+m/gw73/sNEqzDMXvMjxEXE4crYkfiqqHJ\n6OoKoAtdmJIyDZ72T7Hgv+9Dg+eCVb+RTiUSXYCCgoKCgoKCefQLcTZu3Di88847AIA33ngD3/ve\n9/Dtb38bdXV1OH/+PFpaWvC3v/0N3/zmN/Hd734Xr7/+Ons2LS3topVLb4HRG6d3IlH+61nZ8M/I\nFP56RA2dVJIRL3x6RenFiIuJZ/60RashnpiQKb8L0paisG4LqhudLC96rs3XJi1XODKDT3vZkSUA\nEPKMGbeCMgsmMa06dy3mVGZoyLNwMiGrhxlQmekEvmgdx6dPVkB6lkB6sqDXDrK6k4WZjNyQpUnu\nQvVkQSSAxHTCWYV112pLNhYoTZk8y96X3dMbNwVpS/Hgwfm6ssefEuSv6Vm72W1JmrrbbUmw265C\n8ZRSds3IFWw4nGppYnJOVlz8uJCR5qKl3rIjS3QtCvl8xLJ116KksG4LNt16Ie6ZKEdUJ54UN9sW\nMkIdgMY1Sn8i0rmlJ2NHYeBjIKyd0uwTsHziSqz+/jqMGDISVsTqPnuoaT86A534df2ToGi6JMsj\n40YixhKDsSNvYN8LIPhdGijjT0FBQUFBQUGhp6B9tqetGb/+05PoDPjwj/PNePLdrWhu/xQWCzD/\nxsX46U25uCJ2JNJH/x88PrkI1w7/OhLjR6EovRhurwturwudXT7DvNReQEFBQUFBoXdhCQQCgfCP\n9RxNTU3Iz8/Hnj178Pe//x2rVq2Cz+fDmDFjsGHDBkRHR2PPnj343e9+h0AggAcffBDTp09He3s7\nHn30UXg8HlitVhQWFiIxMdEwr0iCtBJIQWnkZrGvg8bzCutI3wOCCvbNk7dqgsqKZAKhzl3LnuMJ\nMll9ZeWi5wvSlmLTsQ1o72xD6e3PMSu0xQcewMuznezEuZiWERHApz1jTEZIfYm0IMW67P6yI0tC\nLLNkdciscqB8VkXYNhDRnb6iNu9rhCur0X0igoCgRRdBz6pJVj+9do30uhnQu6SYzR63APNuvK9b\naejlL9ZTJJpkQZz15E9mxSi+f6qlCW6vi5GcsvYKN4fR+8AFgtjtdSG/Jo/1q2wMiPOImCc/9+jN\nHXSPT0fvOrWvOH75tvX5fbBGW1GUXqzbJiLENMU5k2+biwkz80Z3vwODCSrAvT4G2tqpzl2LmXun\nAxagKxBAF/zS54bHXo4W31l0BbqQeNkoFKY/icT4UWxNsPrtFTjV2oQqR7Xh2uOrIP8KCgoKCgqR\nQq2dBgbM6p1o3zIidiTecr+huRdtiYE/0Mn+jomy4tqEryNr7L34r7+8iDZfOzztn2J47OWwxdpQ\nevtzGv2O2+syrVMIt8/v672P0b5Vrf8UFBQUFHoLPVk39Rlx1pfoDnEGQFcpzN8f6B9wUTlOinCZ\nwpmuk/UTH9OKngtXX5404BdvogK+utGJ1MTxuor+LGcm2jvbEGOxwhptDSmznvJcr+zie0Qgmmk/\nM4s5s+/3Nvorff56nbtWYxHQHbIr0kVyuEU+YGwllpyQgl3HdyL/9Vy8MGM3ZozJiKgtjeRC/F2s\nd3f6TBzH/Bhze11M5kUiWkYIGZU7s8qBkqmlyK/Jg8/vQ8nU0pBxQmOcT5vAK7rJvaFIqOoRgrJ2\nkl3n74kbQ5llWzhSki+vrK75NXkAYBjrrTfGYU8PYwyG75FZKOXPwIDR2onkjebRYbHDYEEUvuj4\nPOTZKEThn6+/By998Dv40QV7vB0JsQmIibIi8/p7UP7Bb5kVeoXDGTIH8MR+X7ZgHs8AACAASURB\nVB9YUlBQUFBQGAxQa6eBgXB6J36v8qOXpsLd5gp5Zrj1crT52uBDB6IQheGxVyD3O/+OLX/4BYbG\nDMNl1iE45zuPf5xvxpVxSRgRNwJF6cXIPZSDc/52eNqbUTH7VUNdB+0hZfoUun+x11yyw1F6B0z5\nA5VA38egvZT2WQoKCgoKPVs39YurxoEMI7dYg+HjybtDI8UTxQbSA7kPEBdbZkgz0UUiuZtbPnEl\nS+NUSxMK67YA0MZo4vMhN5ElU0ulCmvRhZ1R2XkXc5GQZnydw5GoPPj8ZC74jN6JBJG6beut9Pnr\n1KZur0vq8pEgutMTISNFxOt6z4tly6xyhLgG5a8T5t14n4Y04+skKyN/XbaYp/tmYqdFCn4ckxtB\ncqHoaWtmMs/LK08S84SWnry4vS40tZ4EABSlF8MabQ1xkXaqJehLn08bQIjrV5l7NYpbJHP9mZwg\nd50paz+CoyIDcyozUN3oDOkXo/amTRn/jt6cEM4tKhBZjDcjGNU1HC72XBBJORQufZC8VTc68ev6\nYlwxZATOdJzB2Y4ziI+2hTzfhS7s+WA3/PADCMDf5UfxlFIsTs3BE3UbsTg1BxUOJyPNaC7NcmZi\n7j4Hcg/lsLlbkWYKCgoKCgoKgxG0tslyZsLtdeE3M/4T1yV8I+S5M74v4EMHgOAa6vOO03jhxA5k\n/dN9OOv7AoEA8B/fX42UoVej7Ef/id0Z5bDbknDO347LouOw+dbCsKRZljMT+TV5mv2XuD+72Gsu\n2f5P7zk+jIBeuJGLhYGyz1JQUFBQGBhQFmcCeHdBorVEf548icSsXrRW4a1EIq1LuOdkLh7dXhcc\nlXdidMI12DOzIqQ9I3EBSddl7ur0LIz4ZyPpv+6UkS8bgbfMMrLQCReLTK9+F9M6xUy+srGhl4YZ\ny7NITrfptT+56eP7gr+uVyeyjuStrXg5AiCVu96eF4zS4y2xssctwIq3HtGQxbyV1PKJKzXuTPX6\ngkAWXHoEIQDmvpS/T+NcdI0oq4eeTMlOGOqhzl2L3EM5+Leb8vD0u8Ua14x8n+tZAYpzQnesIfk2\njISMv1jo75OQvXkyVZ2aHhgwWjvRPPNZ+2d48Ns/xYZ31qALXYbpxVqGYGjsUHg7W7H51kKUnXge\n2eMW4Nf1xZq1gTgvEQbC2ktBQUFBQWEgQq2dBgbMWJzRfrO9sw0fnv27qXSnptyBNz75HyRYh2FI\nzBDYYobC1+XDM9OeC+bb1oxFB7Kx+dZCbGsoZTHqjcoByN3k99YaK1wYCrM6HaNyXwzo7VXV2lNB\nQUHh0oGyOOtF8Iqc6kanrmVJX0K0mBDvySw66DRPmn0CU0iJljH0vlG+4epMLtzoOcqzYvarGsUY\nXza9BZrZxYmsXHRNtK4TF4d6deHv65XRKA3eAoue1bPQCXeiy6h+3YFZ2dVbNIr5hiPNRFmVuePj\n09Jzy2eUNi/HdOqOD5js9rrYdX4M83UiUnn5xJWwWMAsq6i+ouWRKCN8HcKVXQ/i3KI3nqmd5t14\nn4Y0IzkrSi9GUXoxCuu2aCxAxT6iuYCs8ey2JNS5a5FZ5dCMHWprt9cFa7SVpcWXa9mRJSxN0fKL\nb6Nw49qMXObX5KEz4MPYkTfAGm3F8okrsezIEjR46gEE+5uXDdHCjO9Ho9OO4cYK9cPFIs14GTW6\nT2XpT/TFyVSFgYM0+wQsTs3Bp+0uPPnHwrCkGQB0BM7DH/DjodRcbGsoxebJWzF25A042fIRm2/4\n8ciPUbPf7oGAgVw2BQUFBQUFhf4D6UZ2Z5Rj4pWTTL0zdvgNqGk6BF+XD2c7zqDZ+ymyxt4La5QV\ni/Znw1F5J9YdXYPNtxZi7Mgb4PP7kF+TZ7ge4ddW9LeRdxgAmj1lONS5a5lnkEhgxvrsYpNmA32d\nqaCgoKDQv1DEmQSkyCms26JR6AwkJSGvFJbF/Vp2ZAlb7FD5RWVxOJdjYtp6xJ3oHg4AcyN3qiXo\nMi+zysGU2pG2oUzxLXOHRwptmRVLuP4T7+sRe7J8d2eUM4JSLCP/TFF6sSkywah+3ZE/M+/qLRr1\niC0zLinr3LUaV4lGeYR7hgeRlPwzWc5M5B3OQYffhwZPPRwVd8LtdWn6gSe9CtKWsj6bMSYDq76/\nlp3U48e8jHiSkYv0MxJXEjyBx6cbrq940oaXeyo7jX1+syMSoGSxBQA5BxfiZMuHyD2Ugzp3LTsZ\nSeAttbKcmahz12rkQuw/cV6RtQeNCcDYPS49S65c7bYkFKUXIzVxPJujqR5GEMtI7i9lz4Vr/4v1\nDaA+0puX+2NjpzfnE3rSFmqDOvgwduQNSLJdhTaf1/C5uKh4WGABALR2tOCp+l+xmGZ2WxK2Tytj\nlq78eOQPKxHMHDTpSwyEcamgoKCgoKAwuOD2uvBA6oKwz1kRi7+cef9Ld9fAbclT4IcfO45vw+pJ\na5lrxpKppdjWEIxTLYa6oPVVuLUJf2BcfF4WksMIdlsSvhaXiE3HNkjXSpRfuBjSfQ2zug4FBQUF\nha8uFHGmA1Kqi0rq/oC4yBA/5jKlcEHaUg15JiqLRYso/n0xbz5PcfHEK+6NFhkWC9DgqY84Bpis\njrK/+WtG5JgsTzOEnl45jPJ1e124u+oudvKK7w8xXb00w+UdDmbfNVJOiifRRBJWVPQTkZFfk8cs\nwPTei7QcZEUmkpS7M8pRPKUUsV9aR32ps2X3+XTr3LV48OB8VDc62d+LDmQj73AOI53FzQNPcvGQ\nyXy4mIL0HrUHuVnkrbxkzxP5LEuHfifyLPdQDuZUZmDX8Z3sHZ7IJZLQ7XUhLiYez93xAkqmBjdf\nmVXBGEOLU3OYVRmBP9EoyiiVP78mDwVpSzVkmx5JZVYpToQZEJQrspaj2GpkdUdpGm3KzJDo/QEq\nl148x74+vKFHkPfGRlJtSAcfyPJzx/QXsXziali+XD5a+Mn2S4yKS0QAQS/g8dZ4+AOdmHr1NOQe\nyoGjIgObjm1AdaOTHazYPHkrGjz1ePDgfDZ38DCaH/pSjmT5DbRDVQoKCgoKCgoXUF9fj3vvvVd6\nr729Hffccw/+9re/AQC6urqwevVq/OQnP8G9996Ljz76qFfKQCRUdeNriLZEGz7rQwempExDNKJh\ngQXvf/4eYiwxiImKQWL8KADAtoZS2G1JzDsKH2f6VEsT5u5zSGOAyyA7ZArI48iHQ0LsMM1BYSqP\nnt6KR1+u6YwO8dLfA3Vtp/ZOCgoKCn2PS5o4i8TyQ4a++FjqncgJVxY9SzD60JNFBpEAMosqcZFk\ntGAhJb/MUkOWJn+vfFYFiqeUaiz4AH2LN5nlRXcWCXrWEqI1jFHQWZkFjVmk2Sfg2dt3oLBuCwBI\nycxw6Ro9E648kSxAjYjDUy1NmFOZEUK6UtuILin5eFvkrlP2Hp1iC7d4Fesqc1mZnJACuy0JMVFW\npCaOx/ZpZSGbCErXbkti/XKqpYlZQOyZWaHr2hSAVP5Fy6ui9GLpGBFP8JG88WV0e11o72yTutpw\ne11oaj0Z4k6RXMryYybNPgHlsyqw6datWPZmAWa+PJ0RcvTMsiNLUN3oZITTjDEZzFqzZGopLBYw\n12rUbm6vC+WzKkJIKcobAHMZuenYBlMnFKlfZGQ6bfzq3LWYu8/B5Io2idT+PHnP94us3cX7AxFG\nLlllhPrFQm9bvoZLW2Fw4P3T7+GFEzsQbQkuH4kg4/GR94KiqbPLj2hEY+eJHfB2tsJiCX4bNh3b\nAJ/fx+J+bDq2Ac/evoMphczId1/LkV5+So4VFBQUFBQGHrZv346VK1fi/PnzIfcaGhowb948fPzx\nx+zawYMH0dHRgd/97ncoKCjA5s2be6UcafYJ2HjLE3imoQT/MfExDLdejhFDRiIa0ZiacgcAIME6\nDFFfqub+8sV7SBgyDAEEsOBbi3HFkBEovf05pNknYPWktWwvRusPIslorxMTZWVWaIA57x6yNU4k\npBkdXBTfkemH9N7vizWdWf3IQFzbqYOHCgoKCv2DS5I4C0cCic/2Z+wykcQxS6QYpQEEF0hkuUCQ\nLQB4N4vigkVMU3RHKAPvRo+35BIt+IhE4RXzIkmRZp+AgrSlrD6ict0s4WR0OpwWeTILFSI48g7n\n6MZECocZYzJYHxTWbUH2uAW6ZCblyUNvEWlGVswuQHmrIFm71pw8jA/P/p3Fk+IXwPk1eayv+LZ0\ne1148OB8DdHDl8duS8LeWa/AbksK695QtFoyIo3JKmnTsQ2aOonkcGrieE28r03HNmjS4ctK79ht\nSVJ5FTcY4uZAzD+/Jg8+v4+9S5ua/Jo8xFis0pN6afYJeHm2k1l20rsFaUtZO/NuGpMTUjDvxvuw\nfVoZO/1HZaN6FNZtQUHaUthtSZqxarclYc/MCrb5IbePd1fdhQZPve6pPOBC3DOyTKNYc3pkqF4s\nyTp3LdxeF062fIT3T7+HmCirxqIMkMds1Gv3cO5GBsoGJJIx21/fLbPz4GDckCroIzkhJRhb8M0C\nnPefw4xrMgyfj0EMAKDd34bY6FjYhyZhSPQQxFisSIwfhd0Z5Vg9aS3S7BNQlF7M5kFH5Z3YdXyn\nafnuazlScqugoKCgoDA4MHr0aJSUlEjvdXR04Omnn8aYMWPYtbq6OkyePBkAcNNNN+HPf/5zr5Vl\n7MgbEAgEDxu1+bxByzOLBX8+3YCHb1qCNp8XUYjC6pvXY+OtW9B6vgVJtqsAAJ5zzXj/9HvMa4rb\n69Kskfj4zwDYHk62pzWCTN8g+93s+zzEdZ2e55mLjcF8eG8wl11BQUFhMOOSJM6IWDLzYemLD5CR\nFZnMCsyoLGT5JXuHCAbggls23spELy2ezOJJAVm8HSOLB54MAxBiycWnLVqJ8PmR1VJ1o5MtDkWy\nxMhKjG8Xt9cVlpjhlfFiXZZPXImYKKvGMihSUPqbJ29F2YnnQ/qPUN3olCr3ZfJgVm7NyLXb60Jn\nV/Dk/9x92hNrp1qaUHbiefzytqcwY8wFRSmfLt82VFcixmSnzngiygyIfKO+JIiEGllSAdCQoWJb\nibG5KN6XKNviGAOgceNopNgVx4wY7658VkWIDJC1l2gpx1unifnOGJOBvbNeAQBGNPMWazPGZISc\n/uNJwE3HNrAYhNTv1MbJCSmMcAKgsdKTWQnyY7p8VgWzvqN68D/pnYK0pSGWqEQAkiVg2YnnGfHH\nQ+aPnv/J97vM3UgkBxYuBozmLjPP9MV3K1ysOrPvKgx+nGppQmrieAyzDsc/2j048snrhs93ohOx\nllgAQLu/HXeM/hFenu1EydRSLDuyBDUnDzOXucuOLIHb68KmYxuQGDeKWbt2p4wKCgoKCgoKCgAw\nffp0xMTESO+lpaUhKUm7F21tbcXQoUPZ39HR0ejs7OyVsthtSUiyJeOFEzvQhS5ER0UDgQA+bXfB\n5f0EXejC1+ITccVlV+B0+2l0ohOLvpWDSck/wJVxSUgfPYXtZwCw/SHtLemwrkyvwe+/za6VxIOf\nRt55wkHct1xwXek0VRaz+ZjFYCaeBnPZFRQUFAYrLkniTG/RwENU4Mqu6z0fCfQWKXqWEmYsDWTu\n4vi/yTKICCjeykk8OWREBJASXKagFQk13hqIlNM8ecFbM5GCnk+TV7rTe0QKyMgXPSsxEbx1D5XT\nrHl+2YxdjHgws0gxsoIjF3oiWci/W1i3Bc/eviOEUDKjYNcrT7h7ZAH15QE4xERdOLHGE5zzbrwv\n5H3qBz1rOCNijLdy5GVELDeRYUXpxdL0qG9F0lYc//yGQbSCE0kZcaPAp8fPLTLLMnpWNmYoTb5s\n/Ngjl2Vz92ljmZE7Mz4eEJ+2p60ZcyozUN3oZO7PZOD7EwDzjV8+q4K5YKQ2pjYid6Np9gka60kj\nl66Uj+j2UjZnEGlGpKBI/M8Yk6Eh9/n+4duc0jYi+vX6mAi8SDYiPd28mZmHwj3TFxsn0erSbL31\nxoAiNgYnqP9rTh7GmY4vEEAArR0t0vhmhFjLEPgDflw+5ApEIxovvvcbuL0uRvBvayjFI2krMGNM\nBrN8XT5xJbbfUcbmokiIW0XWKigoKCgoKPQEQ4cOhdfrZX93dXXpEm/dQYXDifvHzUcXunDntTMx\nNDYBUZYo7P1gD64YMgI/TP4/yH89F7/630Ksvnk9yj/4LRbtz0ac9TK2N7PbkqRxxPmfMsj2rkYw\nc0gvkrWXuCfjD2SGw0BZ4/V3/goKCgoK/YNLkjgzQygYxdYye91sWWSWEXpWYD1JDwAWp+YwK63d\nGeUoSi9mVk6A3BJGJAX49Og5Pi+epKDnKQitWB7eEi6zyoEGTz1aOs4ivyYPu47vDKmbmB+5putO\n+xMpUzK1VKPQ13NXILOiEcujB6qjLAjvruM7mSWZzKKPsHnyVqQmjo/YfadeeYxio/GkAZEnRKTw\nJ9Zk9TeSX7GNRfAWhbwc8mnypBXJGe8KUkzX7XWxPEVlKw+y+uPJYiIOxVhrIuGjR3TrxQeUEeJ6\n45YsKsllWUAIGWSNtgK4QKDxxPmpliZsOrYBV8YnITVxfIg1G+XBu0MELliD8uWj/0ScUuw0flMj\ns+Dj5V3WDjwpTu3Kywm563R7XRoXjxTfTKwvv/HjY7YRAWfWEpPmL7JsNevGsaebt3BjhC9jf7nj\nkH0DIi2L3ryhNp2DDzReyk48j2UTViEa0bgsJk4a3wwAohGNjsB5+OFHbFQs7h+3ANcO/zqAoBys\nO7oGLR1n8fgfNmDX8Z1YdCAbP3ppKhbuvx8PHViomdP5NYTRN7u/x8tgw2Ass4KCgoKCwsXEd7/7\nXbzxxhsAgHfffRff/OY3eyVdfs+3+/0XMWLISLxw4nmc6fgCXYEudKITX5z/HOUf/BfybirAM9Oe\nw8/SHsbyiSvhaW+Gz9/J9s60Hy6eUtqtNU+kB+Hop2wP3pO1l6hvCFeO/nZRqPYxCgoKCl9dWAIB\nUU07+OHxtIR9hhYePb3eXZCytzuLAFlZ6COeXT0PBWlLkZo4XqPY5n8HwpNBZCHFp09Ke9lpJUdF\nBiwWsMC19D7lXd3oxLqja9AZ8OFUSxN+Ov5hFL9biBdm7Na4AOTrwVua8OXhLVP0rMHoeV6pzrc3\nLX70/u4O+IUU9UNi/Cg4Ku/E5lsLNVZbp1qa0OCpZxY3+TV5rD4EWf9FWh6998R7de5a5NfkhbWu\no/d2Hd+JbQ2lAMAstmRtyOcjEhziM/Szzl3L7vPXAGhkigjbmCirptyyuslc9JGMPXRgIaxRVuay\nMb8mj9WJ2gWQy5o4tiLtJ3EeONXShMwqRwj5RdZoJB8iAUfXxLbk3yWrPf46kVZiH2aPW4AVbz2C\nZ2/fweYSvXkny5kJn9/HymzUJmKfEbKcmZq/3V4XHBV3YvsdZZr89eSL71OjMcw/T/2/7MgSFKQt\n1cxD/POyNHsyJns6z/QVevubZ5TmudgvcPXwq3s1L4XIEW7tROOspO5X2HFiGwAgClHoQpfBWxYA\nAcwftxhH3W+xOXb5xJUAgNTE8ZhTmYHOrguukBJih4XM6TRHiIcCeDe4/YHBNKYJg7HMCgoKCgpa\nJCYm9HcRBgWampqQn5+PPXv2YN++fWhra8NPfvITdv/ee+/FY489huuuuw5dXV147LHH8Ne//hWB\nQAAbN27EddddZ5i+Gb0TcGE/t2h/Ns75zqMLfpzzn8OQ6CH4/PxnsMCCYbHD8dikDdjWUMrWPLQv\nBiBdA/WGHknBHFTbKSgoKAxe9GTd9JUlzsKhtz6MkZAX4dLQI5VkxJiesle8p6cM5/Mg8qCzy4dV\n31+LGWMyNIRCUXox8g7noMPvQ7w1nsU2IqU0/xMAcg4uxMuznWjw1IeQZpQvAA3JIlOYA3JlGfnN\nJhcApBSXKfHDKcO7KwdkxfLs7Tuw+u0VeHm2M0QJSG1HhAWBJyh7mzDTe57Ij5KppSGuMfnniBCk\nuiXGj9IQTUZEGb3L94WMwBSJmDp3LRwVdyKAAJ674wUU1m0JsRoUSTaecL276i6py0+eVFo+cSVS\nE8fD7XUh73BOCLFDeVwMiONbT0EsuizUq4s4/grSlmLTsQ3sOsX+o2dyDi5EXEx8SB/uOr5TY63K\nE6t8P5OLSPGeHtGV5cxk7S1TfFM7OCoyEG+ND2kLcvfGP2uGvJTJWjiiL1ya3cHFIMIHM061NGHh\nwXvxh8V/6O+ifOVhtHbi55iWjrNoav3YdLpDoobA3+XH1+IT8dqPD7F0Ort8KJ4SPICRX5OHxak5\n2NZQiuUTV4YQ2eEODPUnCdQb67y+xkAtl4KCgoKCOSjibGDArN6pzl2L3EM5+PuZv8EPP7s+csjX\ncFPid/E/TYfQBT+iEY2UhNGocDgNv9PqO66goKCgoGAeijgT0BPirDcVMd05ES0jc4hwIMJAtPyS\nEWlifnxZSPFsZE1BeVC+BWlLseqtFYi3xmNxao5GoS4SP7LTUbySWiQGeBDZQtZaMgslM+AtzsxY\nUslgdJpLZtkjPkNtIKsv30e8dZ5IqEWKcDKnt8jm+9yMxQ5f5rn7HAgEIHURKMotT+zQNbFv+T6j\nOpDFYvmsCilxAkBD6hFRJhItfB3EMvIEL8muGcIqnFyZIWh5yzN+fMoIHZGcJBlr87UhNtqK4iml\nrE1F8pJAVmZ2WxIyqxxYPWltCCFJbcPHTSuZWspIUJ4QpTYSSb5wdaX+5dtGtD7jScUGTz3rXwAa\n8p7Gu8ya0UxfDCQrDL3vgNmyDbbNtLI4GxjQWzvx36blE1eioOZheM41m0ozPtqGNn8wXkiMJQY7\npr+IxPhRAIDcQzmwRgcPKdScPIyyE89rvhlmZdjoIE1/YiDNKQoKCgoKlxYUcTYwYNbTUWaVA/92\nUx7yX8/VuLqOxRB04DwAYLj1crT5vdgy+ZdIHz2FPaPWEAoKCgoKCj1DT9ZNl2SMs+6ClBwAek3R\nwZNbvJLfKH+RhNo8eStT7CcnpLBYQckJKew+H7eJfGjz6SYnpGhIN8qD0hTLYLclsXzJ9WO8NR6Z\n19+DFW89goK0pQDA0qI0SMmdX5PH4hbRdYJoycMjzT4BBWlLsehANivfsiNLWNn4chqBiA6eLNCD\nXlp8m4nP8/G4+LhcfHqkwOfry8dRImJjTmUGu747oxy7M8q7RZrxZQZCZU4mX7zCUYwPRfIkpg9c\naN/khBQUTymFNdoa0k5lM3Zp/JfzfUHtenfVXSHvUaw1vg4zxmSgZGrQMmHZkSUs7lhmlYPJWdmM\nXUhNHI+9s16B3ZbE+oXPlxTA/JigMlL9KZ6abGzx4NPSg/iM2AeUbn5Nnsayi5ctamd+fJ9qaWLW\ndG6vC0XpxYi3xuOn4/PYeKF+4mO/AdAEl3Z7XbBYgu7SxLmA2qYovRjlsypQMrWUEVUFaUvZ75Q+\nlZNvM9kcmmafwPIKN8fyZHtmlQObjm3AxluegN2WhGVHlqAovZgRsbuO74Sj8k7M3ecIaSs+Pb5v\n+Bh1/NjpS8jkSlZuPQtiWXoD2Qe/rFyKNBvYoO/Y7oxypCaOx/Ahl8OKWFPvRlmCy8yRQ76GQCCA\nR48UYNbLM+Bpa8bqSWuxO6Mcbq+LrSv4b0YkMjwQZV42bhUUFBQUFBS+WnB7XWhqPQkAiImKwdSU\nO9g9Is2iEIXY6FiMirOjsO5xzKnMQGZVMIa8XlxxBQUFBQUFhYuPrwRxZnZh0ZtKDp6EM5uu3nOk\n/Ja5ZqT7vCK6IG1pCJHGu1ki0ivLmcmU9DyoDJTupmMbAARPmlc27mVxj8iShQggUliTkm35xJUs\nfVL0E6nHkwJ8m51qaUJi/Cgk2a5iyniRCDJDWPBtyruQk+VnpHAjcqe60RnST3y/iJY6PJlG9a1u\ndOLuqruw6/hOds9uS0LK0NHwtDVr5EUsZyQgORBlSbwmkjCUP93LcmZK21kkCNPsE1jcGr5N+Xzp\nWSI56D3RhaJs3ND1/Jo8uL0uRtq4vS5Yo61YPnEllh1ZwtrZ09aMufscjIwS25OspygPINjPPNFL\neRKZBoD1a082Knwf8OOBR2dXsHwU+04kxPnxSe2XZp+A5RNXMktQsd/5tiTCieaDQAAaQp3vA2p3\n4AIJ7fa6NFZo1Da8PISzWqR6ydqnKL1YkyZdK59VgaL0YpSdeB5ur4tZtdE8VXbieWyfVoY9Myt0\nx4CsL8Ty96UC3ixJRteN3gv3/kDAQCf1FPRBYyo5IQUZX58FHzpMvdfaGTyJPSnpFgBAIBBAIBDA\n8iNLsfjAA6g5eZjNZeSekb4ZesoiWdkGqswPxDIpKCgoKCgo9B3S7BOwbdpvMHbkDejs6sShpv3s\nXtSX6rgudOHz859hwbcWo7ntU3R2dWL1pLUAELJvUutpBQUFBQWFvsMl76qxO65yeupeh5S94dxl\ndcedlqxs/DXggns53l0buWTzdflY3CAg6PqMrNn4WGKEmpOH8ev6YhRPKWVEGR8/ipB7KAcft3yE\nCserABDiPo6Pf0aWLrw7PgAstpXFAgQCwOpJa1ksLYqrRsr7zCqHYTyucO0mthlB1h/VjU7TrqN4\nCy5qH77dKC2xHcW21Su3Xp7dVc4RsSfLn+6RHPHEAlkVibHJ+EDGfP2IfOHdL+qNE7ENqWx5h3NA\ns5XFAuyZWRGSFuVF8dqM3EDy4yfLmYmWjrNIiB3GysjHWgPAZJbqoVd2GfEpu0buEsnFYO6hHJRM\nLWXuy4iM5NtUdKVJMibGkJP1M19fvs/5/uWf4essi18muszUawdeFvT6gH9PdDUqky1ZP9Dz4dpe\nBlndZeldDIh5h5Mn/p7ZMnanHS4WZHkod0MDA2bcDVU3OrFg/32IjRqCzi4fzned1302Lioe7V1t\nsMUMRVunFwEEsPrm9dj53g6U3v4cjp56G5tr1+PxyUWYd+N9IfksOpCNq4deo/utNyOvfSHTCgoK\nCgoKfQ21dhoYMOuqMcuZiUn2W7DjxDbNvbjoOLT72zE8djjafG3Y8sNfRuGZtQAAIABJREFUYusf\nHkdcTBzbgwLd3+MoKCgoKCgoqBhnIRAXMJEsLMySXkbvmyHdIiXnjBTR4jUZwUHWK0RcEcQ4VIQs\nZyY+P/cZPm1zI3loCvbN+W8A0Ch4M6scONnyIUYnXMvc6L1/+j2seOsRPHv7DiTGj2Ik2UMHFuKZ\nac9pYiI9dGAh1t+yMSRvQnJCCp6qexKVjXtZ+YGg1VLe4RzERFkjil0m9qkstphIqOgptPXS5+Mz\n8TFhiMyIRMFvRhaN5MiMYp3el5F21Y1OjbUh309GpBFfJhlBQwQo5SsjssTYY2IcPbFeMmJIFn+L\nj+0lI9SIyOItNPmYbLK8+bY2O6ZFMqi60YlF+7NR4Xg1xL2oSFjRtTp3LRwVdyKAACodrwGANEad\nmBffviLJxueTWeVgFn2pieM19Q4nd5QfWWySlSq1kR5JLNab7xtRRqiPZcRvpP0hlmPuPgdioqzd\njjXYHRiR+7Lyi/1qNt1InuurTblS/gwMGCl/aEzN+L9T8Wl70Eo2Ljoe7f42U2l/e8R4/OmzegyP\nHY7LouNR9qP/xEMHFuKjlr/DarHi+ek7Nd9JmqMo1qlsXjNzqETFGFNQUFBQuBSh1k4DA2aJs5kv\nT8ep1iYuvpkFFgABBDAsdjjWTvoFPj/3OZ7/8zbEW+Pw0/F5GDvyhojjvCsoKCgoKCiEQsU4C4NI\nLc16oiw06zIoEtdCfLlOtTRpYpTRff4auVMiN4KkUBatu4CgOzg+pgiVpyi9GFdcNgKrbl6HfXP+\nW3OPUDK1FFcNTcbqSWuZsn/ZkQI8krYCK968EAPp/dPv4dO2C+7oiIBwez/B+t+vQUHa0pD0iRh4\nom4jCtKWsvIT6bFnZkVYhbHo4klUulGbub0uFr9FJAYiseoQ86LyFtZtYS7+eBeGRqBn69y1hnnr\nyREp1cO5tOTlhEd1oxMPHpyP5RNXsjrwLgBF+ZOlCWit7ahP51RmMJeDdlsSc03Iv8/H9ePLRnIi\nU6DyVlLkDpKPt8VDdAFG8mW3JbH0KNYauR6UgcYk9SvJsh54eSJi6VRLEzYd24CkoVfB09bM3ufd\nJYquBIl83H5HGUYnXAsAGreSPERXkHz71rlrWTuI+RBptunYBszdF4wlRy5L+T6mNpAhzT4BG295\nApuObUBmlYP1u0hw8fLq9rqQWXUhTll+TR6WT1wJICiXPKmZWeVg7mf52HdmYlXqldntdSEm6oIL\n0FMtTabcxZmBmbHIl7c3FP7d/SaJ8qDw1QXJQoOnHqfPeb68ajFNmtlihqLhsz9h7PAbcKbjDJrb\n3fC0NaPC4cTDNy1BckIK1h1do4npSDEW9Vy/mpHrSNZZCgoKCgoKCgoXE9GIxl3Xzkb0l/8ujx2B\naETD29GKR17/d2x45zF84m3CndfOwtI3fo6ZFTMwpzLDcK9lBmotr6CgoKCg0H18JYgzs+gtJUsk\nFmRmFjJ8uWRl1Cs3ERU8QXR31V1o8NQD0MY1EpWl759+D0Xpxahs3BtS7jp3LSPeAgFg9dsrkOXM\nhKetGQEEcOb8GTS1fozFqTlwe11Y8dYjWPq9/2AWQOTi7dEJK1E8pVRDLM2pzGBkj92WpIl74va6\nkHsoh+UdjjS7u+ouXYU3tRm1idvrMtWmRiAyhN5JTgjGoSKlPoAQxTTf5qKLODFWnVG+MohkoAgj\n67fCui3MRSYRMkQqZTkzkVl1gUgRY7pRmjJSzm5LwpXxSZrTczFR1pCy8YQvAJaPXlvwJA6RdZQf\nP3Z2Z5TD09aMj1s+Qt7hnJC0RMKFbxu+3jxhRmSQ2+vCgwfna2SOL6+M4CPZ251RjnU/2IhF+7MZ\nWbp58lYml3wMw82TtyL3UA7m7nMgNXE8c+9IpBPF0+Pboyi9WDPfkFw+dGAh5lRmsDzFtpoxJgO7\nM8qxZ2YFlk9ciQcPztfE+5u7zxHSJvw4qHPXouzE84z4IjKd5hH+oALJKwA0tZ6E2+uC2+uCz+/D\nijeXYubL03Ff9b9g5svTGZlWPquClZMfZ3x76fWFXvw+ai86UED91FPyzAwRJc7DRhDnm3DPmkFP\n50CFSxMkC6mJ43HtsDG4xf5DAOadFXg7WzEsdhjeP/Me5o9bjFU3r8OMMRmoOXkYz/ypBA9/pwCA\nNoaHnlWvWC4zZVdQUFBQUFBQ6A+QDgYAoqKi8N0rv4crhozE8CHDcZl1CP7j5scwfMjlGBJzGbrg\nx7DY4WjpOIuuQBe6uvwsFnV3D7OJB7Bl93sLZtJSJJ6CgoKCwmCDIs4E9IWShbcmMrsI0iPZjJRM\npAQuSFsKIEgiEBlCLsh4KyJKZ/aYu5H/ei48bc0at2FEmOUeymFWQrHRVsRYgtYZifGjkGRLxv6T\nr+GXtz2FeTfehzT7BDx7+w5UNu6F2+tirvl2Hd+J9e+shqetGdnjFmDZkSVo8NTD1foJlk9cyRaI\nZMlGlicAGAlghDT7BOyd9YqhmzUitvSe644s6JFQROTwinFS3MsU1GSFRO9Fsljmle7hXFjpKSPp\ntD9vacC7syyfVaGxROOtAkQCUIQ1yso2EMkJKShKL5aWj7f2efDgfGSPW6BpC5G84kkvuy0JjooM\nZFY5NOm6vS4U1m3B9jvKUDylNKR8sn4gUL2JrOBJLCBU5niSkdLh06exQSRiYvwoBBCAp60Zp1qa\nGKlV3ehk1lR8nD/fl2PQbkuCxRJ0p5lmn4DscQuw+MADGjKM3E/ybbfp2AbERlux6datLM6aOBfw\nP2eMycCzt+9AYd0WVh+KRUiEFy9TPImZmjietR0QJCHJUoxkhto0zT4BL892wm5LwrIjS5A19l54\n2pvx42/8BLFRsdh46xbmOpTvJ5JF/kAAf787Fpjh5ohIECkRNRBIq97MX22UBy/4dcbqSWtR5zmG\n+Gib6fcTrAmwWoZg/rjFOPJJDR6v3YBdx3di2ZEC+AN+jB15A8pnBcl52Td0TmWGZh5VUFBQUFBQ\nUBjoIN1JzsGFiLbEYNmEVfjFO4/hH+eb8dn503B5P8ETtZvw2fnT8Ha2AgDOdpzBjhPb0IUuRFmi\n8O/fLdAcBI0UvJcQce/fm94l9NK6WPkpKCgoKCj0FRRx1g/glbNm4yGR4pcn24wWKHP3BQmDzZO3\nMjdpmVUObDq2gVmhkUKeP4FU565FZeNeFN1WwmIS1blrmUu05RNXomRqKfbMDAar3TOzAiVTS7H6\n7RXIPZSDZ6Y9h90Z5Zh3432sPInxoxg5BgA+vw9jR96AottKkBg/CiveegTZ4xYgNXE8rk64hsU0\nIdKI2mx3RjlKppaGjY1E4J8zWqDJ4mf1FsTFqp7ViuhOj0CkSqSL5UhdWImLWp40IRny+X3sGgAm\nvzzJQPIpWl3xsFiA3EM5Gld8IqHBtxsRTGUnnmd1A6Cx9hIty9xeF9xtn8DX5WNtS3kRkZxfk8fK\nSeWm52TWdFQusV3JOgqAJj4ZkYIWCzTEHt8uNDbJwvKqocnYdGwD3F4X4q3x2DbtN5gxJoMRdI7K\nO+H2ulAytRQxlguWeoEAmKuzbQ2l+FpcIisL35eiRdmq769F2YnnUd3oZFZVoizsOr6TzTOpieM1\nZHtnwMfi4ImyDoDFthPbT3RjKs5jVPbscQuCMQ5vLcT+k6/huTteQGrieGw6toH1o0iY0mEBsZ94\nC0zqG9kYkV2TkWbdmTNkacvmb15W9PLhD2AMdKiN8uCFSDrPGJOBB1N/hnNd7abT8HV14h/nm7Hz\nvR34l3+6F3bbVRg78gY89O1cRFui8f7p9+D2uhjhz8PtdeGT1lPoDPh0UteW1WydFC5AtYeCgoKC\ngkLvgg4QLp+4EjEWKywW4IrLroAffgCALcYGCyxo79K6vbbAgihE4YFxixAIBPDkHwsx4/9OZWma\nyVe0LhO9FvEHonrroJ4sfXH9r7xZKCgoKCgMRijiDMbxmi4WRGsOPfAWPwBCThzJrHwaPPU42fIR\nc4lIljIlU0tZzCYiQ8hCg9y7kdI5ffQUZi2Tc3AhALB4R7mHctDgqWdu5jxtzXC1BkkK3gUfWcg4\nKu7E0iM/Z4puAMg7nINtDaUAoCFFymdVsHqRwp2vm8ySxMj9gPiM3n2RuOltOaB2JcshXnEvIy1E\nN2xmF5hmXLwRKE3eDaKM+EqzT0BRejHKZ1UwWZNZ7hAhK4s3xT9bPKUU1ugLpI+RS0l6l9zm8eWm\n+GUiKUUkVMXsV/HMtOc07r98fh9WvbUCiw5k47P2z5Bfk8fkXkMIdfmw7ugaZk1H40QEWUeJFl0E\nuy0JMVFW3ZOCRenFrC2SE1Lw8mwni7VGLghPtTQhzT4BJVNLcfXQa1i6/HslU4NtarclYfnElUiI\nHSbpca3FIwBmpTVjTAb2znoFdluSxu3izJenI//1XGbtRwQ6yUdcTLyGgOLnJQBSF6X0HBGvfNvw\nlq2Oigwsf/PCfAQESXjqx/W/X6NJm7cC5K3iZBaYRKIanYo0gtGcEsncIaYjWqCGswzVi+E30KA2\nyoMX9C3i3a+W/qkYgYB5V43n/EGS7YohI7Dj+DZYLMCi/dl4tuEpPPTtXKx46xF42ppxZXxSyLtp\n9gmodLyGl2c7DS2ozZKzkZC4PR1XA31cAorUVlBQUFBQuBjgPbisnrQWcTHxSB89Bb+87SmMGDIS\nbZ1tCAhur2+x/xBRiMKVNjte+mAPutCFb434Nj5td6GsYUfYA3O8txPZXl22t+jNtbmYvmz9r/YC\nCgoKCgqDDV954kwkXnpTgdAb6fCKYHJjxC9KKB9aSJ1qCbos2z6tTGMJBICRDMAFiw5PWzOWHVmC\n2WPuRmHdFhSkLWUWJEXpxVg9aS0CAaBkailSE8ezWEWJ8aOwd9Yr8LQ1M9d3FY4Lii2KMQYAmycX\nwgILgKCVz+pJa1E8pRRF6cXIr8lDauJ4tqhye12YU5mhie3Et4VefDc93996izYZ3F5Xt+QgnPKd\nXziTopu3+qN4YjxpoZdWOESqoK5udOLBg/MZqckTX/yJNSJAePBtTs8QCcOTWiIJQKQQAE28Or12\nI5lt8NRrLMCIcBHdRJJ1BBBqAVYytRTPTHsO26eVYUTcCEYGE0FG8kLkHsV1yz2Uw9wmiuXkx5nM\n9Slv5cRbdoptQc8DYGQ5P7aJPKO+4MlGIjfdXhfW/34NMq+/x1DJLFpp8fXg+zchdhiKbivB2JE3\nAACs0VYsTs3RlIF/T7TOE8lOGaivqO/ya/JQlF6MCocT26b9BonxoxjRTO5aS6aWsth4IhnIu6Cl\n/hT7RWwPvl34v/mfPPTGWaRKeb6NeEKaL7uR+1CS/cEAtVEevOAtbe22JCybsAoWi8X0+0NjEjAq\n7koEAsE1x8PfKUBC7DBsunUrZoz5EZ69fQcS40chNtoqJbSN3KSK81k4OePHnBF6uh7sL0LqYq8Z\nFBQUFBQUFMyB1vOFdVvYQcP00VNwpc2OB8YtConz/ftP34J9aBLmXp+FM74vkHHtLPzt7P/Dwzct\nQc2pQyhIW4q8wzmGMdzpsCu/vyTwcbTF/VM4mH1OXFdEsr4YTId4BlNZFRQUFBR6hq88cSa6L+st\nBYKe0qQ7H1lSBPNWFGK5KXYYABZTiM+L4ovx1gnkKi173AJs+cMvUJC2lFl0uL0u5B7Kwaq3VsDd\n9gk8bc3IrHJg3dE16Az4kHsoB562Ziz87/uRPW4BZozJ0CzAyL0eAMy78T7mYq29sw3rjq5h75P7\nP3qPTp0TYUFu/GQu5HiIFkP0DK+IloG3/qK8APPxhWTKdiNXhbx7Q+pTIpvEdM3EZJKVJ5JnibSj\n/iOCj3e51+CpD2kPIkyI2KJ3eRKGl0kgVGbFssjGi9vrwt1Vd+Gpuic1cc6or/lFOfVzUXoxlk9c\nGUIwkTwRWbs7oxypiePh8wctJUWXgTzhVT6rAtum/Qabjm3Q7RM9KyZ+XJBs8PLq9ro0aSYnpCB7\n3AI8eHC+Ji4g3ZcRKZR3zsGFaPzib1j/zmpUNzo1z/BtyhPVYt67M8rR4KnHsiNLUJRejLEjb8Cc\nygw0eOpRlF6MshPPa9qf8hfrRWnS+NUrC99O5MIxzT4Bbq8LK95cCkflnZq6uL2uEMJRPDxA5DTf\n3lROghiXTWbpZRSHUm9+MOt+l0+X3I5S/cTTmnrvES6Ggl5tCBVEnGppQmaVA4V/eBxdgS5T70Qj\nBm2dXnjaPTjr+wKbJxdi3o33YXFqDn71v4VwVNyJFW8uRX5NHoqnlEqtj41IKKPvihHCjZlwpHU4\n9Ach1V2yTpFmCgoKCgoKFwe0HuDjSWdefw+Out9CjCUGQNA9413XzoY/4MePv/ET/McPVuPhm5bg\nb2f/H3x+H7JT57O9+UdnPsSi/dnSvRXtB4HQA67k4UYM1SGzYpPpryI9GBgpZHkM1L1Ifx2OUlBQ\nUFDoH3zliLNwCtDuKklkacqULt39yMriofG/E2Hh9rqQX5OnMdHnrb94QoQsdtJHT8GV8UkstlhR\nejFzBbf+lo2omP0qI9RKppZi3Q82whptxen20/AFfHjyj4UhljR17lqsO7qGWekU1m2B2+uCz9+J\n1ZPWojPgYyTcy399CXP3OeCoyMCi/dmgg+y8Ij3n4EJWJ1GZzS9IqQw89OKHUbuQNQ+5o+IRrq9k\np6p4gnLX8Z0hBBhvJUQxoHgykxSARi4MZYiUbCMCRUbaURl4AofPg1yHNnjqNcQGv0Dnrb3omp41\nFoAQ4pP65dnbd6D8g9/ikbQVePrdYjgq72Qx0vi0Se7ya/KYm0Uxv6L04pA2tUZb4fa6GOnT4KmH\no+JORmDQu0S2yU7wie0qgidmePKUytvma2Pv1blrUXbieWy85Qmk2SewduTdo4rEDhCUnXU/2Iiv\nD78Oq25ex/qVn3dI5imN/Jo8+Pw+1Jw8zJ6lWEPZ4xaw/K+MT8L636/RWPnx8kAuHHnLvSxnJtxe\nF9p8bYz448tCBFdRejGrN3Ah9tyi/dlobvsUD6XmYtOxDcg7nIPFqTmM4OY3hMkJKcxSUox7x1tl\n8fMH9StPlvFyIYtDaTSueMsX2T3+XdmBDbIa1HNvKb5ndK2nuBgbQrW5vDTQ6muB199q+nk/OtGF\nLgTQBcd1/4yxI29AdaMTS9/4OfyBTmyeXBi0bP1y3UHQGy88xG+q7J74O59eOPDjvjsKnb4mpJT1\nmIKCgoKCwsAE7cF+8fY6rH9nNVJHjsc5fztiLbGIQjSuu/x6DLdejlc/rEJ1oxP7T76Gxak5KJla\niuSEFDR46rHu6BokxA5Dc9unmnjh4t6fDkCSR5ksZyY2HdvADsuKh6/5g9Wy9Y7Z9UVP9g9iHgOF\nnAp3aCvSdxUUFBQUBh8sgUgCVQwSeDwt0uv0AY7kw38xFJKRmqybtXwCLljekFUGXdt1fCfm3Xif\nNF1S3pMCmxTfPJmQeygHALB60lpmJZVmn4Bdx3ey+ENAcGG2fOJKFpuJ4qzVuWtx9NTbWP/Oaqy6\neR3KP/gtlk9cieVHluITbxOusqXguell8LQ1A4CGzKlz12JOZQa2TfsNUhPHIzkhGBeMf4bqQ4vS\nvbNeYfeWHVkiDYZLafNuoGjxCYApsc3Ki0iSNnjqcX91FlbdvA5zvvnjkDSo3cnqzmIBYqKsEZFl\nsnLw9ZOVjfKmdhJJEEBrjVOQtlTTn4v2Z8PT3ozt08qw6dgGtHScxWXRcSw+Hb3HKyb5dPkFMfVJ\nljMTnV0+FE8pRZp9AnMhSXG35u5zMJehAFgsPXqXyksykF+TxyynCuu2aAhjspKjZ+g9arvMKgdO\ntnyIxycXoezE8yHv0u80BngQSSxb+MuIdEdFBu4fNx//9ZcXEQhcGF8FaUs16dS5a2G3JaHBU8/k\nnmS3zl0LT1sz1h1dw1wpbmsoDakbPzfwfV5z8jB+/vrPsPrm9ahs3IvZY+7G83/ehmFDhjHrL75N\nZcprcb6hfiFXmJSOKI/0bu6hHHzc+hEe/d5KNjcsOpCNR7+3EpWNe1GQthTrjq7BOX87tt9RBuDC\nPMVbiFG70SZQ7AdeVqisYh+RvIqyysuA3viUjTVxXIV7t7snNXsbvVmOcN/TxMSEXslHoWfQWzsR\n6Lv2b4ceRIvvrOl0Y2BFJ3xf/h6DhNjhaPWdRXJCCkpvf47NHZlVDlijrVg+caVm/tMbV3oyJY5n\nvfnXzBpPTCvcvK7Qu3OHgoKCgoIcau00MGBm7UTrhQZPPTYd24DM6+/BCyd24GTLhyFxzobHXo4o\nSxRsVhua2z7FqPgrsfHWLVh0IBvDrMNxtuMMNk8uxNiRN7A9Wu6hHLYPJ/0Nv5ckGK2pwukOZPXS\nO7jUm/uH3l5PRJJmT9Z6l9o6Ua3tFBQUBjt6sm76ShFnQOQfy0gUpJHA7IJET+Ej/s0reuk9Uh4X\npC1lJISobCZiYfaYu7H7/RdhjbYyt4W8gnlOZQYe/k4Byk48z4gU3jUbEW+5h3JgjbaGKJ3n7nPg\nZMtHeCg1FzWnDiF73ALMu/E+VobUxPEsn09aT6HS8VqIBRn/N5E+pHDj24me55/hCRUglMAhxT9P\noPAw6itqB9nCaNfxnYx84e8RwUIWZ2bzEhFOjowWbUTGiLIkEisiuUUED5FptAng21RGSPLpyhb5\nDx1YiHhrPCMsSc7450umlmpkWI/QoXI9eHA+O13HlyP3UA4sFmDPzAtkH7U9Py6of8SNhqzP+XEn\nqztPLAFB2ch/PRcxlhgsn7gaO9/bgbiYeGZ5Qe3Ft31MlJXdp7xyDi7EJ62nMCr+ShSkPYqn3y2G\nxQKs+v5aRlrJxglfvpkvT0dC7DDcMfpHKH63EFfG27Hlh0Uh7+ttkPj5htKvbnRi3dE1IX0mvpvl\nzMTi1Bxs/cPjOH3OwwjyzCoHymdVsHZ4qu5JRrxXNu7VnRdJ9mQkMsk8bSrF/hPJWH4+DRevLdz3\nQnyXzw8IJesuNRi1j1L+DAyEWztlOTPR5mtDU8tJxEYNQXtXW8R5XBE7Ep93nMbDNy3BjDE/Qn5N\nHpZPXInUxPGYu8+Bn47Pw7aGUka2y+ZVMySzSNDrjb3uvC97RiGIS01RpKCgoDBQodZOAwPhiDMg\ndI9RlF6MB6r/Fe42uVccALjr2tkYFX8ldv9lJx5M/Rl++5ddSIhNwL/dlIexI29ge+VNxzbA5/ex\nONj8fkW2/ukJETTYDw91p9w9Wet1592BuLYcrP2toKCgwEMRZwLMLGAAc6SDkaK4ux8PM++LSmDx\nXVGJJLOQ4JWyvBKe3s87nMPIrGcaSpAYNwrb7yiD3ZaEOZUZeHm2k5Vh1sszcNXQFNw/bj6zCOGJ\nBcqf3M3xZJBo6ULWRM/evoNZkFGZM6scQfeNs52s3HdX3cXID6pXdaMTqYnjWV1EAgjQkjd8vUWC\nLLPKgY9bP8LVQ69B+awKlr6e5YqsL8UyyJRu1AYAMLviR3h8chEjD7tjaRLJiXk9paFYdhkRxcui\nSKDoySNfLt5aZ/PkrQCAhw4shLvtE2yfVsYsrDYd24DFqTmYd+N9GvKD0pi7z8GII5Gw1SP6yPqR\nr3tmlQNA0HqNZJdIKRmhqkew6BGP1D48IeLz+5hFIVl2LjuyhFl3xVvjmEWd3ZbELC945XGDp565\nU+VPD5Ky+el3i+Hr8iE22spIszZfG6xRVkZm8+SlKCPkAqTV14KE2AQUTylF3uEc0BeCxoaRjPE/\nHRUZcLd9gorZr7L6ysgu3sokMX4UK191o5PVl/r6s/bPMCJuBFO0R2JpQjLh8/tC2jaSk5d6z0di\njUbPk9zzhxUGy4akNzd2SvkzMBCOOAOAmpOHkf96LoZEX4Zz/vaI85iacgcONe1HytCrsfHWLVjx\n5lL8o92DTbduxdPvBudGOtRA8sVb8gIwRWQb1cPMWO1LxcqlBtUWCgoKChcfau00MGBW7wRo11I/\nfz0XQHg13F3XzobzwypYEIWVNz+G3e+/yA5Irv/9Gqz6/lq2JyJPQOEO8gFa/QwAqS6Ff0dcFw3W\nb3139X99gYFAUKnDYgoKCpcqFHEmwOzJH6MPk+y+mRPIZhHupLPMgoPAW7sAWiW9nvWEjFwgF2+F\ndVuQPW4Bnn63mFl4zK74ESodr8FuS8LLf30JG99Zi0TbKJxu+weuuGwkU17zljwAmEs9iwXo8PuY\nBRERZvT8ruM78fS7xUxhTqQYAGadQ23gaWtmymVSolP9ZcQGXx6+PcS/iVhJTRyvsTgjizYi9vj3\n9PoLgIaEkskOWd09+r2VWPfOKlw77Osovf25kDpFSp6FU/rzEC2leCs8Ut77/D5GkvCyaOSqTyZ3\n/PsFaUuRGD+KpW+xAD8dn8dIsvyaPGRefw+eqNuIjbc8gbITz4e0iUhK8e4WqS78uCCLJVEG+H4X\nNw0yklq0fOPdl/q6fKhwOKVEokhwARdiEAJgZciscjDCjB+zi1NzmLUiEcjkgtTT1sysPqkNKG0i\n5vi4h7zFGU9y8gQl7w6TTx8A8g7nMOs8M/Ipji8+X9lY5MtObkcclXdidMI1zH0nby3GW47yMiGT\nE/EnWbjy8hkp4aXnHi6SDSfvqpUsL/XIup7gYmx0entjp5Q/AwNm3FwDQPrvfoAzHV9ElPbUlDtQ\n56nFmfNfYKg1ASPjRiLGYoWvywfHdT9mlujk+jnc4QwgvOtUvvyRjq1Ixs1AUHQoKCgoKHy1oNZO\nAwORHNimfeWi/dno7PIDCMAPv+F7w2OH40zHGQBAsu1qWCxAIAAs+d6jePSNfFwz/FrsmVmBl//6\nEta9swopQ6/Gvjn/Ld2nkE6I38t+dObvsERZcM2wazWHlgC5zqmv0B9EjRn94MUu01eduLuUoMhG\nBYWBhZ6sm6J6sRyDArxSNdxHwShAqRmlixFkixn+XtmMXUizTwgpAwB2vcFTrwkGS+WjspLS2+f3\nIb8mL0ShvOzIEiTGj0LZjF1IHz0F1mgrgKBSHgHg/dPvwVGRgXVEan+pAAAgAElEQVTvrMKIuJF4\nfHIhrkpIRkJsArM4o/yIeCDF+6rvr0W8NR6LU3Ow7MgSPFX3JO6vzkJ1oxN17lr8uj5oHZN5/T14\n8OB87Dq+E5lVDhbMFgAjHxLjRwEIEgFlM3bBbkvC5slbkZyQwtpCbMssZyaynJnYdXwnaw8ebq8L\n7Z1tWHQgm1nhUDun2Sdg76xXmMI/HJITtMF1gVDZAYIn6LdPK8PP0h7Gzhn/hXU/2Kipk+wdM3nz\nqHPX6gbSPdXShPyaPNZ2VNfdGeXYnVHOfufJJqqX6E6S0pORCvy15IQU5ioUAEt/1ffXouzE8zjV\n0gS7LSlIHnzwW2y85Qk8/W4xU5KKfUvpEmFalF6skeeCtKXsGYtFW1Y+dt26o2s0Yye/Jo8FWeax\nefJWjZzTRgMAOgM+uL2foMFTz8aabOzy/6mNi9KLUVi3BW6vC9Zoa4iFZlF6MbY1lLL6pNkn4Nnb\nd8BuS8JDBxbi/uosPFX3JJYdWYLlE1dq+hIIujxt8NSzduL7guaC6kYn7q66C9WNQevOmCgr/u2m\nPHjamvHgwfmobnRi2ZEl8LQ1IxAItjk/r9BPmVwkJ6Rgd0Y5ZozJYDLE9wPf9skJKbDbktDZ5WN9\nYLcloWL2q9gzswJ2W1LQreWXZJndlsTa0O11IcuZqZF7/hpPjtG9xQceYPMV/x3g+55+F+d9QD62\nedkU24LmEPF7I443UbFvFBCbL58RwqXTXZj5fipcOuD7u8FTj7iYuIjTONS0H2fOf4GMa2fhvP8c\nHv5OAUqmlqK9sw3PNJRg9pi7sezNAri9rhACnOZU/hpdDwfZGDAjt5HIthoPCgoKCgoKCkagtUJq\n4nhsv6MMCUMSwpJmABhpBgTJsg5/Bz71uvCr/y1E0tBkFE8pRYOnHk/UbcT8cYtxWbTxGo10Dmn2\nCSiZWoprL/86nrvjhRDSjN/3ivsUszC7X5G9x+8V+wpG67me7qnMtkVfrSVl5VDr2d7DxdqDKygo\n9A++UsQZfYTr3LWmLL546H1I9AiKcBOlqKTVU+yQAkl8psFTj0UHstHe2aYpHymdeBKnfFaFxiqH\nni9IW4rcQznsb7JU2XRsA0bZrsS2hlL8+3cLsPrm9RgWOxyJ8aPw8mwnymdVIDVxPMtvTmUGU9QT\n+VZYtwXLJ65kMdEqG/ei6LaSC1ZHXT6c6zyH3e+/yMiSky0fYv3v12jIAlrYUflJKS6SHGL77c4o\nR+b19+Dnr/8MNScPhyi782vyUHr7c6iY/aqUFCIiLZwliviOzPKNiAK318VIGABYdCAbcyozGCFh\nJA9mPrriAlcPsphq/PNi+fNr8uD2ukLcGGZWOdiilsona68ZYzJYfD26t+nYBg3JVTI1GNNm7Mgb\n0NR6UlPn7Op5qG50sjapc9ci73AOI9eIINk8eSs2HdvA3ouJsmrK4fP7GGFisYCRbskJKVg+cSWT\nXco7u3qehtAkebDbkrDsyBKU3v4ctt9RhnVH12BOZYZmbNFPsd9E8ttuS2IEEN/nRCStO7qGte+m\nYxvg9rrwzLTnkDw0BbvffxHpyVOx6dgGOCoyWDvYbUm4Mj4Jq95agdxDOShIWwogSHSR+0aSxUfS\nVjACb3FqDpa/uQTrjq5hrlE3T96KdUfXoDPgY4T1siNLsOv4TtxddVcIeSYjTyk+Hck6EbXifFQ8\npRTWaCsb4wRHRQbyX89FS8dZdq/BU4/8mjzkHc6Bz+8DAEbO5dfkob2zTXNYgPqQ2kbmSlZ28EAk\n1sKNUxG8cl82JkmuxDTMbNyMSHIz6fQUemULB7WBGFyg/nJ7Xdh1fCcWHcjGef95WBEbcVoBBPDK\nh5Xwdfmw6dh6VDe+hub2T3HFkBH4xhXfwOiEa1ieIrmuN976cwyI+SgoKCgoKCgoGCG7eh5Ot5/G\nF+c/N/1OrGUIAODDMx+iuf1TwGLB+ls2osIRPPxYWLcFG295Akfdb+mmQYca6XcguB/dM7OCHXQU\nnyc9DA+z6/hI9isDCXrrue6sJ8WDmGbb4mK3ldEeVq1neweKhFRQuLTwlXLVSAr3QAAs5g9grADU\nu8crciJx20X3zLqB5J+l8tC1grSlmjg/FDuMSAqxDqILwjmVGfik9RRzyUhxysiVWc3Jw1j+5hJc\nGZ8Ef6ATl0XHMZdi2dXzkD1uAbY1lMLn92H1pLXMtRu5ZeTdHFJZyEWAp60ZC/ffjyRbMiocTjR4\n6gEgJIYTKdeJIOED4erFdKM8cg/l4KOWv+MqW0qIOz2qK9WlOwsho77n3TaSqzwibYCg67s2Xzvi\nYuI0btr4eshkIFwZjeQu3H09uaQYVGJ78674KE6YeFpNlueplmD8K3LjmV+Tp4kxxrvq5N1xUnvO\n3efAh2f+jqo51Xj/9HtY8dYj2DvrFXaveEppSCw2fuwTZO4oRVdgYrl5sod/tsFTr4mlJrYnoHXT\nSLLHx1eTuSzl3TDmHc7RtNED1f+KT9vceGDcIuz6ywuwx1+F9bdsZOMw73DQlWQgABbnbHFqDrY1\nlGrirNF4AoDM6+/BpOQfaIilzCoHzvnbmdsPfhzycQdl/c23LXDBfz5Zf5H7SbHdKQ7d6klBv/00\nJ1EctnP+dhaP0e11sQMAJVNLWT6iHPHzg2zuF8k+PTe5ojtPM2My3Hzf3XhKPRnvkaA79ZS9o1dX\n5W5oYEBcO/FrjYX77wcAOK77Z+z54P+zd+5xUVfpH39zl+GihuAghGbmnWhFTEWT1VCUTMzFbe0i\nKaGUUoGpuKB5WTBvu2LGRmZ2s9JfCRqJoSzlrTR2ZdnKsjUjlZGJakVAGWB+f0zn+J2vM1zUSuv7\n6dUL53s533M/z3k+53mezZeVvgsumDDJ386OLnRq14kVd6wh89AyYm+5l7zjb9t1DWyvT2mbUg0a\nNGjQ8FuDJjtdG7icGGcAc/7xOHtOvtfs8zonD+oa62jv2p4f6r9nWt8EIoJ+DyD3e2KPbEv3o4a9\n/Y3Yl9mKg92a90Ua9q5djqx2vct39vZFrdm7/RzuEq/3+tWgQYOGtkKLcaaCLQFGTWYI2FNo2lu0\nlDGFlKROW2FvsbKnxFcvtLYUuILIUMYdU5IPgtBaXbKC5cNXMbMwnkZzAzsm7gKQcZVS980hc9gq\ncsqypRu4JQcXUddQxzv3WJ4tLi9iwf4nreKAifqM6zud+ftSuNGz6yWkkFBaG2oqmFkYz98jNwAW\n13KBnkEy1pMyLfEdkW8hGNqqP2X7gMUyL/PQMqt6Ude/vX+3tg1tvVNiOEzi7nicHVxkHLeHC+Pw\ndffD3dldurRUKvhFmW0pnq9UuGnt+y2d3LdHLoh6VhMS9ohfZdw9EbsKLsbjaq6/FxzPZ+GBBSwZ\nmsHD78UxLyyNiT0nARbCxcGBS4goNZEJF0kc8X3lt9RjXMQCTAmdS0LhQwR6Bl1CvDVnkap0EwlY\nbW5EucXGRxCJIqaYmjgU10RcuK3H3iAhOJG//XM1Z2oryIl8UZbbUFNB4u54su/cYFUGMZaUdS2s\nWPW6LpJoE0T6w4VxLB+2mvv6PWjVHq0R7pXtq47/tu2Lt5gV+tgldVZmLGXBvrlU1p5hw+iX5OYw\nJm8cM4Nnk3VkNS9FbZbljN0eQ4PZJMeb0n+/qG+RtjqGor3529Yce7kbmZaIsraO79YQCFdr49WW\ndNRt3dqNtab8uTZgT3YK8Aqk4Hg+6fsX8PiAFJ54f9Zlpe+AI2aaAHjstjmE6kOpqquit08fZhbG\nY6g9zfORm1odW7S5QyDXGsH2S39fgwYNGjT8uqDJTq1DaWkpq1at4pVXXrG6XlRUxPr163F2dmbS\npElMnjyZ+vp6UlNT+eabb/D09GThwoV069at2fTbGuNs+fBV/OmdP/BDfestzl6Oep13/ruDHV9t\nk7HAxX5OGYu7td9X729it8dw8lw52ybk290X2Xtfea+lvcJvjUC73Lxfz2XWoEGDhmsVWoyzVkBp\nbh7gdTHmkK04ZmoXXQKnqk9Kpbb4PX/vnMsyp7a3GAZ4XXSzqDw1JPJ2qvqkVOwLyxfl95UkliiD\nsOwoMRyW7tf0Hv64OrlIP9gBXhZ3dX/752o6uHVk/ZEs6hpqqaqrYnXJCqb0foBvz1eyqWwjU/Jj\nySnLlqRZmbFUujBLCZ1LTlk2el0X1o3KlveEMlyQZsnFSbj+6BpP7+HPtgn5rBuVfUk8pk2fviDd\nxsX1nS4FNXuko4h7JZ6J6h5N6qA0ZuyeZlVftpRqyjpW16u9tmrunYqa0ywcspg1EVmWeh+2Gi9X\nb9IHL2br3ZbYTcXlRUzMiyZ2ewyGmgrpZvFqujVQ51FdZjWm5McSuz1G/q+MOaN0n6WMQba6ZIVN\nl4OiD8JFl1oBXoEypproy2AhgybkjmXyjphLiAYxHk5Vn5TWUWBx/fXSpxutLJS2jM+1anPl2AeL\nK7/E3fFMyY+Vcb6Ky4vkt2bvSZTuDAuO5zMhdywPvxcnNybCXanIn625QqQlrgn3hGCx8hKuJ0Xd\nKv3Nr4nIsnIzmVycREroXEL1YTKuYXJxEqmD0hgSMBSAiKCRLA3PICfyRSt3oMbaSipqTmOsrZTu\nMYN9Q6xcuYoyBPuGcKNnV/4euYF1o7IlcRjsG8LyYatZsP9J6eZWOT8JcspWvxNzpnBVqoz/JoJY\nixhr4p0p+bEsObgIU2MDZrOZhQcWUHA8/8dYa2ZC9aEEeXWzyvvWu3Nlu4i+JeK5CbeuIm3helSQ\nlLbGgK253V47twbKd2yl01bSzJYrV1vufq/GacXWpqNsa8Bu/CltI3h9QbRXsG8Irk4uZHy05LLT\nMtOEAxeDTz5WNIvk92eTuDuepeEZ3OjZFV+dX4uxRe2tafbuNff8z4Ff+vsaNGjQoEHDbxHPP/88\naWlpXLhwweq6yWQiMzOTjRs38sorr/Dmm2/y7bffsmXLFnQ6HVu2bCEtLY2lS5detbwIHc/Rqs/4\nX/0PbXq3uPwfHDpzkIT+j5JTlk1c3+lWhyGVrvNPVZ+8ZG8lvm/L9aJyH9XcYXDxvq0QF63ZK1yO\nLHS9y0+Xu+fR9koaNGjQcG3hN2Nx1lqoLZbsWZDYsxS4WidE7JE7gLSucHfWWVlWGGsrbbpOE+VS\nWogorW/E9djtMZRXn6CLZwBLhmaQvn8BZ2oryBy2ilUfP0194wW+PW8k/fYl0sJn8o4Yyqu/lqfE\np+THMjpoLKH6UHx1ftI1JMDUgimsGbFOWrJV1VWRU2ZxrSaU9EorLmGVJAim5PdnSysTe/Ul6kh9\n6smehYz4DiC/1ZIVkb1vq90XCHeVohzz986R7i1TB6Wx5OAiTp4rJ3PYKnzcfVh4YIFVmypd4bXW\ntWdr+5Oy3Gp3WMJqROkeMHVQmoxPp35e+Y7aqrO5sXGq2uKysaGpgczhK/DV+TFh21g2jHnJpttD\ntUWYIEgFKSSs+nInvCtJOVsbAPG+sEh77ZOXWbD/STLCV9Lbpw+Ju+Ole0OABrOJJUMzms2TPWsf\npXUVIK1ClZsd8VfZJ0Xdnao+yfhtY3BycGZq32msLMkgI3wlPu4+LDm4SFozqsea0n1mfaOJpeEZ\nLDm4SFrjKfu6ukwin0p3jsr5Rf2cqdFk05Wnsi+UGUutylhiOExM7jgaaWJHTIFVXgqO5+Or8yOp\nKJFHQpJY+6/Vsn4ndJ9EXPA0K4tXtXtL0fdEXSvdugqLM3suX+2178+JyxnPymu/5ClFW4c9WjOH\naqemrw20JDu99snL5JRl4+HkwcfGQ5f1DQ8nT3QuOqrOf0sTTbR36cAb49+ysiS31ZdbI2s1NwZ+\n6dO7v/T3NWjQoEHDrwua7NQydu3aRa9evZg7dy5btmyR148ePcrKlSt54YUXAMjIyOB3v/sdH330\nEeHh4URGRgIQERFBcXFxs99oi8XZxLxo3J113Ozdg4IT+TTQ0KbyODk4o9f54+AAz4/eJL0JZR5a\nJvd2E/OiOXH2KxbevpSJPSddVbd/bZHt7b3fFm8BLb2jQYMGDRo0tBaaq0YV2iLA2FKuKImOtsad\n+al9EqsJJUDG+Dl5rpy5A/9M3vG3W3SdJoiDJQcXWbmcE7GEBPEjMLVgCum3LyGn7Fk6trtButkT\n7wjl9di3RmGorcDZwZmNY17BV+dn5WIv2DeEmNxoHByg4txpnh9tIdyULvqU5UwdlEb6/gW4OLow\npfcDl7h1E8/acgfYGsFMqXBXt7fShV9L6cFFN3RKgk6pnBeWdt+f/46O7W4gITiR3j59AEvMs6//\nd0KSRmoSTp1nZXmvxH2cqC8BW77Sy4yl0j3hulHZzbpnELBHyqnr/O5tUZjNZhwdHZkfls7rn79i\nM06aeE9Jrgh3g4IECfYNYfKOGPm+IEmaI89E/p4pWcvTh5fh79kFZwcXGSsLsCIB1cSuMsabvXg8\n6ndEX1C7ThX1rYzBJazwGpoacHZ0JvHWJN4r30ldQy0NTQ2khM6T7joAln64iPLqr8md8K7Mu5Io\nEhaigsRSt7/Id+z2GExNJlwcXXj0tiRJcNtyeSqg7qclhsPM3pMoLUnV/vfLjKX46vwArFx+ztg9\njefu3CjJUIDpBQ/i7dae7y5U0cUjEG83bxKCE2XZMw8t4/vz3/H9he9krDd7rkOVJHdzrhp/7o2a\nPdK/uedtEdhtiT1wNXElZIWm/Lk20JzsJGKk/qnnA7z46fOYuXzRMVx/BwcMe3HAAX+PADaM2XSJ\n2yDlmgwtj4ufQ/76NeOnmB80ZZcGDRo0/HTQZKfW4eTJkyQnJ1sRZx9//DGvvvoqf/vb3wBYu3Yt\nXbp0oampidLSUv7yl79QWlrKn/70J/7zn//g5ORkN/3m3FwrIVzOT+g+ia3HXsfV0Y0LTedbXQ53\nJx2N5gZGB43lnRN5vBz1ujzUWl1/Fi9Xb6lbOHjqACtLMnjuzo1Wupjm8teae/but3a9b44c+yVl\nOE1e0aBBg4ZfPzRXjW3EqepL3fKJ6wFeF93IqS1AWsLVco2lzqs6f4K0AqRLo6135zKl14OsLMkg\nJXSuXbJCmPKbGk0sPLCAb859zbYv3pIEyeqSFfK5hMKHSN+/AIDOOj1DAobi5tSO0UFjmb93jkxL\nuIYrM5ayc9IeFt6+lA6uN5B5aBnG2kpJwAmFu85Fx2O/S0Hv0QVfnR9lxlIm5kUTkxst0ywzlrIm\nIstilVVdzvnGOrYee0O2nRq23AHaq0cB4S4PsGpv8bxwO9ac20Sl5ZbS/YFwxyBOgIGFxEgITuS7\nuipGB41l3t5kjLWVzN87h/TBiwny7iZdbarzoyyPsp9dSZ8T7yvLIggWZfsK94Rq0ky0hTo/oo8K\n0sJWfYk66+p9EytH/A1f9848/fEy0gcvtlmWEsNhYrfHyG8qyablw1ex9MNFGGoqrEiz2O0xTMyL\npuB4vpULC9EWyjxtPfYGvjo/su/cIOPyJRcnkVSUKN1PKvNgqKmg1lRLQuFDlBlL7dav+KucWwBZ\nv8LiTNSriL8mvqn38Gd+WLrFMsO1A++V7yR1UBpmM1TWnOHZ0izi+k5nxu5p+Or82DI+V5JmwhWj\n3sNfuvQw1FTIujPUVEjXm6Jvi3yuG5WNq5MLpiYTOWXZrInIku4vxXhWEq9KCyPlODl5rhxjbeUl\nxODEvGjpclMQWIaaCjIPLZMuYBOCE5mxexoAXbwC8XT1orNOz4Yxm9gcvZWIoJEsH76K1SUriL3l\nXr6rq2LewDRcHF0k6abs48r8ifHVkh9/ZVnUfehyYW8eiSu4jzJjaatJM5E/ZduJulSPa1vluZL8\nNpcfJbRN6PUP0aah+jAywldSYjxM8A23AuCCS3OvXgIXXAHYb/iA2Fv+RNrti3Fxcmb2nkQKjufL\nvipcqgpZprl1TjkPXc0T1b9WNDf/XM1y/xRpatCgQYMGDVcDnp6e1NTUyN81NTV4eXkxadIkPD09\nmTJlCoWFhfTr169Z0swW7K1/eg9/5g1MY9uXW2nv2kGG/mgNRgWOprNHZ+7vHcc7J/JwdHDky++/\nZP7eOQzRh9POyZ1gnxCeeH8WibvjmdhzEs/duZElBxeRVJRotVcoMRy2Cr2gzLd6f6F8T/y1d+hc\n/U5z9WJrv3Alh4CvBL+UvKLJRxo0aNBw/cDpqaeeeuqXzsTVRm1tvd17YnEPDxjO/X2nSoVvdf1Z\n4gruY1RQpFy0vd28KTEcZlbRTEYFReLt5m0zPeV1W89cLoTyP+qmcTJ/fu5+LP1wkcxnP5/+zN87\nhw6uHXn642Wkhi1kSr8HLklHvHvfu7EcOL2PdaOyiQ+egY+bL0s/Wsjbx/6PrV+8QebwlQzQD6SL\nZwB9buhL8ck9FH69i2/rjHR09aHoZCEHKvYxI/hRVhzOYHKve7m5fQ8qa88wtWAKQ7sM4wb3G3jt\n85e5r9dU0g/M561jWwj2uZUeHXvi7ebNrZ1CSD+QioMD7PpqJwcq9jMv7M98WHGQXSd20s6pHYl7\n4gn1C2OQ/nYKvn6Xx383h/hbE/B09ZLt5O3mLcsW02MSAV6Bsl6U7WIhAacxumuUVT3O2D2NjGEr\nGKAfCMCx7z+ni2eAbMfRXaOY1HMyvXz60M+nP71+tA5Torr+LG9+vpnhgSPo5dNH9iVvN2/MZjNv\nHdvKmG5jSSicxhtHN3OwYh9n689Sfu5rakw1TA+ewf19p9LZQ8/kXvdaCYzN9aWr2edKDIepOHea\nXj59GBUUyQD9QPr59CdxdzxvfbGVqJvG4enqZTUOSgyHeajgAXK/fItbO4XIsos2mVU0k8H+Qy8Z\nO8p69XT14o7AEfT3vZXgTrdypPJfzBrw+CXlOVV9kvvfvZfTNSe5q/sEmU/xzXOmc/z9yHo+OFXM\nvb3vw9vNG283bwI8Axh/cwxLDi7iuX+vZ0Tg72X7VtefZVLPyQR4BVJdf5aeHXtxyPARU/tNo8xY\nSvr+VBKCE/mX8Z+M6TaW+/tO5av/Hee1oy9TV1/HK59t4m+/f4Z7e9/HHTdGcGunEDxdvezOEaLP\nAnLc6j38Gew/VI7n6vqzJBROI/aWe4npeY98vo9PX3adeJcXxrzM1H7TGKAfSHT38Yy/eQJjb7qL\nMd3HcUdABKH6MNnvEgqnMTcslc4eeibmRZP337fJHLaSmzv0oINrR/r73kpC4TRMjSb83P148v0n\nuM3vdyQUTsNf588dN0Zwm+/vuOvmuxnTbSyh+jB6dOyJX7vOZP/7Gfr59CehcBpvHdsqx5UYf6Kd\nxRyy5OAidhzPZYDfQHr59MFf58/ekx+wduR69B7+xPSYhKerFwmF02hoMjEi8Pc8UTybDysOkjoo\nnXt6xeLh7EFc/+l8cLKYMd3Gynng/r5TGew/lIxDi6k2VRPXfzqzBjxOz469WF2ygn4+/a3GtHp+\ntwf1s8La5o6ACJmesn1bMwbV64x4R2xCxZwU3f3uS75hL3+A1bo1KijSqh8q50cxR7YFyr7blvpq\nKzw83C7rPQ1XF2rZSdn+1fVneepgGhEBo9j+1TaAH23OWm951kSj/PfR7z/j/ZNFeDh70mhu4PWj\nr5L35Tam9HmA8IDhjOk2lvT9qYzuGiXndDVE/sQ4b+04bO45W32+tWP8Woe98Xyl49cWfoo0NWjQ\noEHDRWiyU+tw9uxZdu3aRWxsrLzWvn17nn32WcaPH4+joyNZWVnEx8fz3//+F19fX+bMmYO3tzfH\njx8nKiqq2fTVspOt9U/onz4yHOCH+u/xcPakprFGnZRd1JjOYaip4JvqcmobajBj5sDpfQzwHcib\nxzbTaG7gn8aPmdY3gbmDFtDLpw/uzjr+74s3MJthcq97qa4/y+QdMbx7PJ8mcxN3BI6Q+w0hHwz2\nH8r9facCltAgYp8/q2gm/Xz629SJVdef5a1jWwkPGC51A0J2s1UvgF1ZROSltfJca/YoLaWh1B/9\nXLgaedegQYMGDW3DlchNvymLM3Gyw9RoIrk4SV4TVkfqky7C6kh9gl95/2qeUFGnY6ip4OS5cgw1\nFdKCSViLCHJIWNzc1+9B1oxYd4krQyEQLB++iqju0eROeJct43MJ1YcR4BXIxJ6T8HPX4+rkSid3\nP2nxBOCr88PUaHERd0M7H7JLs0gNW0gnNz96dOzByXPlFJcXkVD4EL46Pxl/zFfnh6ujK6H6ULp6\n3cRfRzwj3Q8KnD53isd+l8LWu3NZE5FFb58+NJotfr593H1Iv30Jmz59gYigkSTdlsLWY28we4/F\n+kdtiaV2Z6i0EBNtqDzVtXz4KoJ9Q3j77ndkvgqO53PP9rt47ZOX5XNKS5r5e+fYbWez2WKdJE5w\niVNXwvJK7+HP5uitrBuVzbYJ+WyfWMCOibvIi9lJqD6MMmOp7INXy6qltZBuI3LHWrnmBEsbnW+s\nk/1PWc/JxUk4OEBCcKIsu9LaT1gY2RpT4veU/FhmFsYzMS+a1L1zWThksd186lx0PB+5ycqiT3wT\nwFfXWT5bcDyfguP50lpp4ZDFODg4WOVBWLyJNhOWgcXlRTz8Xhzf1X3H+iNZJAQnMn/vHMqMpWQe\nWsaUXg+y8dMcJnS/B72Hv7SiSi5OktZoSigt8gBpuTazMN7KUjHAKxBDTQXV9WdZ8lG6bAthhSQC\nNotyC4i6V1pOlRlLaWgykb5/AWXGUupM58mJfFG6SU1+f7a06Fw4ZDHz96VQXn0CY20lZy+cJaHw\nIQqO55NUlMjsPYnE74qjxHCYU9UnySnLlm27OXqrtKATlpmGmgom74iReQz2DeF8Yx2nqk+SVJTI\na5+8LGOtifcE1kRkkT54MatLVkgXjc+WZvHaJy+T/P5sjLWV0oWust70Hv64O+t4evgaK6u6lNC5\nJBcn2TwlqR5ntsa2st+G6sN4++537LopbWkNUFum2rKCi+oeTUb4Sit3ls3BniWOMj9qa9C2oi0n\nQDUF+a8P6v6zfPgq4oKn4e3SHgAzTZeV7kDfQUzqMRkzZnDrqGoAACAASURBVHzcbiBj2Arau3bA\nWHuGMmOplM/gohWugHJsiDw1tz6r37V32lmZpr0xer2jufH8U4xfbU7QoEGDBg3XEnbs2MGbb76J\ni4sL8+fPZ/r06dx7771MmjSJzp0707VrV1566SX++Mc/snbtWubPn39Z31Gvf0InkBI6DyecON/Q\neheNAJV1Z2ikkZ4degNwV7cJdNL5UlhewORbptDFM5CFty/loGG/3PsEeAWyZXyuDMkBljjX60Zl\nSzf6Qh5SylMCLk4u0suR8NJhS4YQHlX0Hv7yHXvrv1KebE631hp9yJV6GlDKdz+3vPJTeKnSoEGD\nBg0/Ha6LGGdNTU089dRTfP7557i6urJs2TK6du1q93l7vqbVcZiUihF7i7cy3pC9Z66WayBbvp2V\ncbaU31PHeBJ/leSGiBGyfPgqq3hOSpQYDpO4Ox6zGRwcIPvODdKNXez2GL459zUzg2fTrX035u1N\nZn5YOks/WshLUZupqqsiImgk47eNYcfEXQBWsZuUJJyhpoKYvHHkTngXY20lCw8swN1Zx5qILJKL\nk6g11VJRc4r5Yek8/fEygry6kj7YQqTM2D2NjPCVrP3XatyddXbjZokYY8LdoHANKYQvvYc/U/Jj\nqWuoxd1ZR+qgNHx1fkzMiybQM4gpvR9gZUnGJQpypRLaXtuJ+2rlmlCWpw5KkzGXlG1pqKngnu13\n8WToAoYEDOWe7XfZVNC3hCvphyWGwxyt+oycsmxMjSYpYBccz2fJwUUANt00ith6DWaT7DdKl322\nSDNlLLASw2GSihKprq/GUFtBoOeNODk4kxtjIY2UZKitv8oYYxPzojGb4fEBKTzx/iz8Pbowd+AC\nNn36goydJeLwiVhzgoRZPnyVzOOE3LHc0M4HN6d2ODiAu7OOhOBEcsqyqTXVsjQ8g9S9c5kzcB45\nZdlWscjUY8xWPYjvT8yLJnPYKjZ9+gLLh6+SfTN1UBoLDyxg24R8ArwssdeUfbLEcJgJuWPp4hmA\n2QyN5gbaObnLNhNE6Mzg2fy9bB3tXTtQWXdGBoguM5YSv2sqG8a8xJKDi2QsN2NtpfSTL8ZFcnES\nsbfcy5KP0unmfRNLhmZc0odFmWK3x9BgNmE2Q8W5U3Rt340t4y0uL0W5AB5+L44b3H3YOOYVjLWV\n0qVi5qFlmBpNuDi5yDa1WP4tYGl4hpxrhBLd1vgU7SDiugGyTeBiDELAapzZ66/2oB5rrRl7za0l\nSsL/nu138dydG2UMussZ08r8/BKbwcuBFqfjp8HVkJ0ERPy8uL7TSXk/iabLJM0E/Nw7o3fX8+/v\nSvF2aU9tQw2d3H15MepVOW6F+2hB1tuL4decDAeXjjdoW2xQe66JrnRsXS/jU4MGDRo0XHvQZKdr\nA83JTgJiH/D9+e84U3sGMLcpVqwDjjg6OIDZ8qave2faObej0dyAl6u3Vex5uHjAtDl9hi156Er3\nEK3dE9n7JjQfr/lqQ11H6nxqMtq1C619NGjQ0Fb86mOc7d69m/r6et58801SUlJYvnx5m9NQn5xW\nTrTNEWJKpWtLVglXArVFj4Dew9/qhLQgNGbsniZjIylPAcGPVkS50czekyiV8uqyib/JxUmYGhtY\nGp5BQ1MD8bviJNmz9e5cZgbPJuvIapZ+uAg/XWeGBAxlzYh1+Or8mL83heLyIip/PCU+MS9axpTK\nPLSMKfmxlBlLmZIfi7G2kiCvrhyt+oyEwodYMjRD1u3m6K38PXIDfrrO9OjYg9wJ75I+eDGZh5bJ\nmEcRQSMl0aYW+JT1JyzwVpeskFYyycVJ8gT7mogs3J11xN5yr7RIEvG7ZoU+ZqVMF3UZV3DfJafe\nlXWp7E/CckhYQm2O3mpFDBhqKmS+puTHovfwJyN8JU9/bIkHd7mkWVtOxNt6Lqcsm9RBabg4uciy\nRnWPZt2obBwckKfXlEK3sbZSvq+0EFBaWInvqckNsJAfW8bnsnPSHv464hkyhq3gTG2FtMBTx5ZT\nl9PUaCLz0DIMNRU4O7jg6uRCb58++Ht0oaruW3r79GFT1GvSAklYl83ek2h1gk7v4c/sPYkcrfoM\ngBV3rOHvkRtYMjSDNRFZF+vG0YWlHy5izsB5zN+XQq2pluLyIhmLTH3Czt5pslB9GNsm5BMRNFLG\nkzPUVFDXUIuvzk+SZiWGw6wsyeDJ0AXWY9gMD/aZhovjpfGF9B7++Ht04b3ynSwftpqXxm5m4e1L\n2XrsDWJyLdageRN3AvBN9dckFSUCkHloGUlFlnoJ9g0huTiJhOBEJvacxMtRr5N95wZplWfrpOG6\nUdm4O+t4fEAKeRN3ylhzYBlzUd2jCfYNoZO7H1V133K06jNm7J7G6KCxrC5ZQUJworQ+zTy0jIl5\n0cz9IJnT504S/95UVn38NDG50dydG8XsPYmyT4k2LTOWMnlHDLP3JDJ5Rwzxu+IkOSrGpKhr5ThT\nWgTaUq7bsiBUn4RsrTWWvbVEzPnCqi2qe3SL8ZzsQb3h/bVYymi4PFwN2Qms418+ffgvV0yageX0\n9JxB85l8yxQeHzAHRwdH3Jzaoffwl0R75qFlxPWdLmNCijzYmoNsjVWlBbjy2bae9LV3UOdKxlZr\nrN80aNCgQYMGDdc/ArwCSR2UhrG2EjNNbSLNwEKWTe0zHQcHB5poourCtzw+IIUdE3fJPa3yW+Iw\nnjJ+rNBN2LLcV+oxlPfUz7emnK15RqnzUstT9izbrjaEbGurfNfCHupqf/vXJGteC+2jQYOG3xau\nC+KspKSE4cOHA3Dbbbfxn//857LSsaX8sAX1ZNycYvVqQWlJY+vbcNHNmyCThEWVMl9T8mNJ3B3P\n6eqTnG+sk1ZAQoGsNktPHZRG1XkjVXVVVNacobLOQEJwolQ2v3tiOwDfXaiioamBpCKL9c3Rqs+k\n0OeAxe+au7OOnMgXieoezeborayJyGLph4s4e+EsmYeWkT54MTll2XTW+RPsGyKtrQw1FRhrKzlT\nYyD+vakYaytZXbKCNRFZbI7eSlT3aAw1FWyO3ioFQ6EUUwt/YCEPlO4GRF4CvAIlwZF3/G2eu3Mj\nofow9B7+UjGntEApMRwmuTiJuL7TrVy+KdtMvWgLIUwphArCYd2obOJ3xRGTO47i8iJMjRb3kd+f\n/x5/jy5kHlp2CcnZGjTn8kANdZ4vkqcmgn1DpBWWuC/ILbXSv8RwmIcL41g4ZDHbJuRbWSEJUkHU\n4eQdMcRujwG4JH3xzqZPX5Ckka/Oz4oEFWkB8neAVyBb784ldVAaofow1o3KJmukxSru3Xt2s2H0\nS7IuRXuE6sNYE5FFg9kk74l+Xl59gr/9czVdPAPw1fkRvyuOhMKHrMjBhUMW4+xoIef0ui48PiCF\nBfufJCV0rvyOmnBRzxmi/oSFWeahZSwfvgpjbSUV505LIkvU/XN3bmTrsTekK0S9hz9+Hp3ZeuwN\nFg5ZjLuzO+tGZVtteLZNyCd1UBo5ZdkkFycxJGAoqYPSOH3uJIm74wFYXbKC50dvkm5b10RkIWyP\nDTUV1Jpqmb83hck7Ygj2DZH1YK9/hurDSB2Uxry9yRhrKzHUVEhLNKXLkA1jNuHvEUBE0EgywleS\n85/1TOh+Dwv2P0mZsVTmpc50nu8vfMcjIY/x9PA16FzceXxACo44snDIYorLi5iSH/ujxeJZ0vcv\noNZUx7pR2aQPXkzVeSMJwYnSSiUmbxwLDyxgQvd7JGGudi8q+q1y/NsiudriGk4JobBXutpV9wul\nK1JlP1I/ZwutWbeUz/6c0DY2vwyupuy0Keo1fHV+fFtrvGr5+/L7L9l/ei9PH17G/LB0/h65AUNN\nBTN2W2JNmhpNVu5hxaEYeySZeqwKd7K2xsCVKGTsja3W9HN7sp09xY2Gy4NWdxo0aNCg4VpCsG8I\nvjo/wKHFZy+FmaKThSwYtAi9zp+Vw//Kpk9fkB5PxN5cuZ947s6N8iAzcIk+Sfxtbk/zUxEUyn2r\nPfePVxO2Dik1t09q6wGrq42rXe+/NqLpl24fDRo0/PZwXRBn586dw9PTU/52cnKioaHhitJs7rSv\nLYWGPQX41YCazFIvBMoYUwJKN4giDUGELRmaQWdPPe2c3OU9IRQpFbfCnWJO5ItEBI1k/qB0ungE\nklOWLUmj9MGL8XHzJdDzRlbcsYYt43OlFU4XzwB83H3IjXmXqO7RpA5Kk2SegNkM7s7u8t7m6K0s\nDc8gwCtQWljoPfzJPLQMH/dOtHftQLBviCRORD4FwWav/tR1qffwt6pHQYwp7wnXfQFegdIapeB4\nvqxrvYc/pkYT649kSZJLCVttpbR8U0IQDsa6M7R368D6I1kAbCrbyJKP0nmwz7RmfYI3V257J6Zs\n9U91noVyUbj6U9ebeEZ9Sv9o1WdgtsTBU1rciRNuZcZSWYf1jSYZ00p5ikypQJzQ/R7m753D0arP\niMkbJy3zlPGswGLZJhSkZcZSZuyeRsHxfOJ23k/i7nhOVVtcIS45uEhaIon2OFV9kqNVn1FRc9qq\nL+k9/Onq3Y2l4RksGZqBsbaSqvNGMoetkv06ofAh0vcvICE40eLD/UcCTVgItXR6Tl33SqWu3sPf\nishSItg3RBK/wjLNy9WbhOBEgn1DcHZ0sUlmiThhyphgDg4OmM3INlbOIcbaShwcYPYeS1yzv0du\nIDfGEg9R1LOwAmkOZrOZBfvmEpM3jjJjqfR1L+pb7+GPzkUHwH39HiQjfCWzQh+TmztRZ/+r/57I\nG6PI/ncWTx/+C/WNJiKCRpIb866lH7w/m4TgRLJGZtPOyZ1aUw3fnq+UdSbcYIr0lg9bjbODC1uP\nvcFzd26UZLmYC0W/LTEcthrD9iwGr8SNonIuEvlTzu3KZ1tLhNm7b480+zk3T7+2zdr1hKspO4n1\nYcHti+jo6gNcPDTTGjjggAuu8vfkW6aw+egrck3cfPQVkouT0Hv4y3l13ahsqwMzSst6AWW/UssI\nyrXpakItE4prLRFgtsZ0cyScNm4uD1rdadCgQYOGaxGeLl50dte3+T1HB0ce7DONzUdfASAiaKTc\nZwMyPqzyIK3Qu4gDROK6Mg653sNfWvIr10xxmFC9v20LWqOXEN9obRqXA3G4Sn3AqqVvt1Z+bCmP\nl1OGK6n3ltL7teDXVBYNGjRc+3B66qmnnvqlM9ESDh06xA033MAtt9wCwMaNG5k+fbrd52tr61tM\n09vNm1FBkYCFHBsVFIm3m7fVffGMemK2dx0si6MyndZAnZ7yfaHQvSMgAk9XL2YVzWTliL/Sy6eP\n1Ten5Mfir/MnofAhDhkO4ebkxrpR2fTy6UN1/VliekySi++sopk44UTinnjeOb6d4m/+wRtHN/Pe\n1++SdvtTjO4WhYeLB7tO7MRf14WCr/N5qO/DvP75qwz2H0qoPoxbO4XQo/0tPPH+LP7YawoV505z\n37ux9L2hH+7OOibmRVNUvpu0wYvo3+lWsv/9DH7ufpgx88DOP3JHQARdPAPo4hmAt5s3t3YKIf/4\nds7UGujVsQ/hgcNl2ebtTSEldB5juo+TZa6uP8uknpOt2q+6/iwBXoGyXUV9ivL38ukj69nbzVsq\nV/r59Gfph4uI6zudJ96fxR0BEfTy6YO3mzdRN41jcq97mdzrXpvtXV1/VqYl2k1cU+YzwCuQinOn\nef+bYnTOOtaNymZc97vY8J/nuLfn/fyp730kFE5jdNeoVvUfkXdRHnV/VN5XpmdL4Sf6unhnsP9Q\nungGyDIpy+bt5k2J4TAJux8ic9gqqzYB6OIZQJ+OfVldsoKYHpMA2P7fXP58+yIG6AfKNJT52/Fl\nLn/eP5eE4Ed45bNNtHNuR4/2t7Cq5GmWD1+Fp6sXAV6Bsi5Fuz9RPJunh6+mqq6Kt77cwrkL5xjS\nZSjzP5iDgwNEdb2LxR+mcXP7W/Bx9yF2ewxvf7mFmcGz+WOfKZQYDsv+d5vv75j/wRxePfoShw2H\nSLv9Ke7r9yAAPTr2pM8NffnHN3vY9uX/Mdh/CLvLCyn6ZjdT+02T5VH3N6XVkLL+xG/l//18+nNz\nhx6yP/fz6Y/ZbGZKfizhAcMJ1YfRz6c/ofow/HX+PFb8CHd1n8DUftNs9rmb2/dgdckK7u87lZge\nkxigH0hndz3R3cfT2cOyYZu8I4ZtX76Fv86fhwvjWDViLSNu/D3vnyxmXPe7CNWHcez7z1n64SKm\n9Uugl09vHip4gADPAHp07HlJf5xdNBOdiyd/Gbac6cEJ3HFjBLd2spBzyjksPGA4vXz6yH50R0AE\nN3fowRtHN+Pi4EJMz3s4c+4MW469jtlspsZUQ4d2HYi4cSQAtaYa/nmmhLj+0y0WeO5+vHtiB8uH\nraa/760W67zKj5kblooZMxPzovnPt2U8e2cOU/tNY4B+oJxzxTzaxTOAOwIipIJe2V7KMop6busc\nL6D8rnL9Gew/lFlFM63Gq611pqXvtiZfza1fPwVa8z0PD7efJS+/NVxN2elU9Ukm5kWz88Q76Jx1\nXGi8gDMuNNLY6vw0KZ6trD3D0C7DeKh/PP82lrJwyGLuueUP9PLpI9efWUUz5XokUF1/1mqOjCu4\nj5gekwgPGM78vXPkGLocWaw179hbW+3185bWavGuGj/3OP0lcDlt1Br8FupOgwYNGjTZ6dpAa/RO\nYFmbAjwD2Pbl/2Fqat07AmbMfP79Uc43nudMnYHwLsPkfsbVwZW1/1qDqdHEtOCHrdZVoRuBi/qi\nXSd2MrprFAAT86LZfPQV+t7Qj3l7U+jn05+Kc6flvk3sk8W7t3YKsZLJbOkKxHWlrKT8rdyz2ntf\nmUY/n/5W37QHezKFt5s3o7tGSX3M1YQ9mVDcEzKrrfstQV1vVyov/RTylgYNGjRcT7gSuem6sDgb\nMGAAH3zwAQBHjhyhZ8+eLbzROjR32lf5DGAV00Z5XYnWuNJqLi+2EKoPIyN8pbS+smXNJCBc3eXG\n5LP17lxpZSNM9MV3NkW9xn39HuSlqM08P3oTrk4uLA3PICfyRdYfySJ+11SSihJJHZRG3vG3Sb99\nCcWn9shYI6998jLJxUnklGVL6w2ApqYmFh5YQHF5ERXnTpMQnEj6/gWk7ptDRMAo4t+bCsDbd79z\nSZ2E6sNICZ1HZ52e9UeyrOoqJXSulfWIqGcBpTs/8YxwPyCeVZ9EV1p6CAuc+/o9eEmMMaW1lRoi\nbRFnSVgvKi0Zp+THSrd18/fO4e+RG2TbCJeS75XvlPmzZ1Wnhi3LMZEne5aLzVlZKq0RheWdPXd1\nwv2DIJbUEBaDot7WRGTJGGNKiHZ7tjQLHzdfS/y8iCwe7DNNukAULg1FHSsh3EtGBI3ksdvmsOOe\nXT+6wIBHQpLI+c96Evo/yoL9T2KoqWDdqGw6tfPjubJneKZkLRNyx8o+ovfwZ92obJYPW42Lows5\nZdkUHM+3KtPjA1KkhYXO5WK8PVvtb6/Obc0Rp6pPSks6QI6zMmMpDU0mkouTKDiez8zCeAqOW1xZ\nms1m6T5ReYruVLXFPWLmoWXyBKHI4/x9KUzf9SBj3xpFmbEUs9niOtNX5wdmqKqrssTi+/GbSlel\nKz7+Cw+/F8eJs8d5+L24S9oSLNalS8MzpMtR0eeFBYnew1/GIRNuUcV1gHOmapZ8lM5fDixh8+cv\n06mdL+O6jaeJJgZ1HsLsPYmMz41i+q4HeXxACklFicRuj2H9kSxyIl/kvn4PSks+EStN7+FPTuSL\n0sqtOWssW/Oqcs6xd1pR/WxLEGNcuf6ordiUFimtQXNWLrbwcyuUNQX2L4OrKTsZaipwd9bx9PA1\nNJmbaDQ3UM+Fy0rLzbEd3543suXYZpZ8uJAGs4nUvXPlXCegtARXYvnwVczeY3FrK8aN2pq5rRZH\nyvW8OTQnM9rr57bW6tbk59c8bn5qq7Bfc91p0KBBg4brC6eqT/LaJy8zb28KNQ3nWvWOh7Mnrj9a\n6jvgyLhu43F31hHoeaP0GvLaJy8zf18KqYPSpPcY5TfVVu5qF9buzjqWD1tNVPdolg9fZWX5r9wX\nGWoqMDWarEJXKOUmW67t1bKP2ptTc++Ld1pyj28rL7ag1OVcTbmjJa8BwBVZev0aLcU0aNCg4XrE\ndUGcRUZG4urqyr333ktmZiapqalter+lxVYtZKifUbrxai695ha31ioJ1PcLjuezYP+TVibztr4r\nXLIdrfpMXhNpCTeD6rSDfUOkK73MQ8sI9g3h0duS6Nq+G+mDF0shamLPScT1nc6mT18gru90Fux/\nktRBaWyO3kqwbwix22PQe/iz4o6/4uzgwtp/rcZX54ePuw+N5gYyh60i/6vtmLEo+421lTJgrRBy\nSgyHmbc3GWdHZ+oa6mR+lXGglMLX8uGrMNRUMCU/luTiJAD5TIDXRdeLcFH5JggO8Ve48lMSHfZI\nSXtQu41S9wFTo0nGrRIknWgbNRGkjv/VEmwJaS0p923FVFH2TRFHRhAvaoW+aCulWz3l9wVxo4RI\nU5RN5DO5OAlDTQX1jSbOmn5gZmE88bviWH54KRnhK63cfhprK2loMmGoqZBEqIuTC4aaCu56ewzP\nlT2DsbaS5OIkGswWt37P3bmRuOBpkpwJ1YexYcwmciJf5PXPX5Hpxm6PYWJeNDML48kpy2bhkMUk\nBCdKN5AlhsPEbo8hpyyb50dvku4TRfys5OIkGppMl7S/kpwV+Ra/1QSO2Mhs++ItUvfNIa7vdFaX\nrCBrZDZrIrJI37+A8uoTTCt4gKNVn7Fh9EusLlkBWMfwE0gdlMaSg4ukwjlUH8bzkZtIHbSQM7UG\nUvfOpcFsUrTPatYfySJ1UBq5MZYYaXoPfxqaTPi4+7BtQj7Pj95EoNeNPD960yX9SrSHrf4mlNpg\nIdfON9Yxe0+irB8xDl6MepXHbpvDn4cuJCfyRTq068DR7z/jrm4T+PyHz5jS+wFoMtPZQ09vnz44\nO7pYroEkTNUbJkNNhVXsPntzuD3iSelCt7l4Ser53d74E25nlfkUfUW5oVOTrc3BHhmruSrTcKWy\nk4AgwYW71qoL37bJTaMabk5uMkaqE85M6D6Jb89XMkQfzsOFcRQcz5drf1zf6XIuFv3aWFvJN9Vf\nU2YstUmGX46Lm7YoaNpCfinli9bitzB+NWWQBg0aNGj4LeBU9UnGbxvDE+/P4kyNAcdWqt9qGs5R\nTz0OODAy8E42fppDQ1MDz4/eJA9Fzv3gCZqammTohObIK3FN+e81EVnycLLS9b9SHyJkQOE+W7lv\nac61va3fyjy19L7Ihy139iJfyn1aa2JQX+7Bquau2dPNKfVSVwJNTtKgQYOGXx7XBXHm6OjIkiVL\neOONN3jzzTe5+eabW/2uvQWyNcpG8Vt58qalBbc5y7WWlATqtEsMh1ldsoKM8JU24xgpoffwJ67v\ndJLfn834bWPk6R0RZ0go7pVk1ZT8WIrLi9C56EgdlEaZsZQF+5/kkZAkaSGUVJTIqC3DmfdBMimh\nc4kIGklG+Ep50qnMWMrJc+WWWFKfvsCjtyXh7OCCk4MzKcWPceqcpSwLhyymi0cgSz9cROahZZIY\nSQmdK4kvP11nUkLnUXXeSHF5kZWyWghwwkIouTiJ5OIk1kRksTl6K4AVMbO6ZIW0aBLEm7KuRPwn\n8VxbhRLRVoaaCubvnWMzPlmAVyDrRmXj7OhCmbEUgNjtMVZ9R+/hz5qILHnC60r8WSvrC2yTY+I5\nW6fAxG8R202QY0rSTBBMgihSp6/sD0oI8kxY2yjzmRuTT17MTpaGZ+Ds6IzZbKa3Tx/5bWE9VN9o\nknUUqg+T71edNzJ34J+J6h7Nmogs3J11lBlLWXJwEbHbYzha9Zns88nFSQT7hrBlfC55MTsJ9g2h\nwWzC1NiAgwMkBCeSeWgZ649kkRG+ksxDy5i9JxFTk0kqjUU9in6YOiiNLeNzrepTkIOTd8TIPhLX\nd7rdE28BXoGWPH+UTge3jtJ3vej3uTH5JN2WgoOjA/P2JuOr87OqT0EKKQmsE2ePM33Xg1LhnHlo\nGRN7TiLpthQ2jNmEi6MLMwvjKTEcZv2RLE5Uf8WSg4soLi9ixu5plBlLqW80kVD4kMynu7OOqrqq\nSw4SiHoQsdXgIiGmLKdlPDgDFlIrcXc8pkYTZcZSZu9J5NnStZQYDhPVPZqskdmcM1XzXvlOQn3D\neOnTjeDowLR+CYTqw4i95V6ePryM8411JBcn8donLzMxL5rx28Ywe08isbfcS3JxkiT2ldaUsdtj\nrPLfUkw68bu5eaIlaxcxnwsrXVvEtXIjKuqwOSLcVj7tXbsW8GsmAq5FXInspIRQACz9cBFPH/4L\ngCS+LgdnTf+T//72QiXP/nstbo7tePXoJrxd2kuyO3VQmoyFmHloGYCMz+jv2cXqAIet8as+xdxS\n/2tOedOS7Gfr+uWOw2t1/F5t/FLlu9bmoWstPxo0aNCg4erCy9WbhbcvJci7Kx7Oni2/oIAZM3tO\nvgeAv85f7g31Hv50a38TK+74q5WXIeX+xp4llFh3lHKP0CPY0mcoY8+rCSvxTGth78BTc7DlMUct\nK7UmBnVb5avLPZwoyEZtfdegQYOGXweuC+LsSmBrgVQqJ5tTNip/C4FE/UxbFkT1O/YUteLe/L1z\nSAmdS05ZdosuwuIK7iMiaCRJt6Xg5WrxYbx8+CpWl6xgTUSWJC4EUaT38KfWVEvqvjmSLMg8tEy6\n4BP5+OH8D3x3oYommvjy+y+J3R7D3A+eYGJeNDG50Sz9cBFzB/6ZYN8QaZW2blQ2S8Mz+N+FH0i6\nLYWcsmwyDy1jaXgGW8bnkhCcyPojWZQYDrPk4CLqGmo5WvUZ39YZ8XH3IXPYKptWdsLyz1BTIQkz\nIcQBNk8wKSEILkNNBTN2T5PviLZV16mtf6vbSknkKNtCCHeCpJuxexrF5UWcPFduRR4FeAVakaJt\nUfbZy5f6RJcyv80JqErF/da7cy8RnkP1YeREvsjfO2jx3wAAIABJREFUIzewZXwugJXgLBSaOZEv\nsrpkhZWAe6r6JPG74ojJGyct0gw1Fdyz/S5Jsi05uIil4RkEeAVirK2UfT5UH8aaiCxcfySExPNi\nXOZEvkje8bet6jt9/wLOmaox1p1h/t4U6fZRWU+izZwdXHBxcqahqYGcsmxSB6VJq7U1EVksHLIY\ngIUHFvBwYRxxfS/GCDI1mlhycJFsU6VFwpqILJwdXWTgZWWftiV0B/uGsPD2pbwY9apsQ9Hny4yl\nFJ/aw4rhf5V+3mfvSSQmb5zFarLvdJKLk5hZGM+aiCzAEkja09WL9P0LZJ0VlxeRdWQ1xtpKHglJ\nwlB72lLXvR/AEQem9H5AumCN6h5Nbkw+2ybko/fwl+TYpk9fkO5jRTuK/AtrRfE9QdiLPm2srcTd\nWSfrtKLmNI/eZiHqp/R+gAZzA8baSllP352vor6pnhc/fZ5z9dWYm5p4+uNlPFOylqc/Xoavzo/n\nR2+S+coctgpnR2eq66tZ8fFfSAhOxOFHwxhBngnrPWH1pjwVeDlQkuii7dXpifl8+fBVBPuGWBFi\n4nmwHk8tWbkpYe+047W0YfstWNH8mmGRGepwcHDA8cf/XB0u3094e9f2uDm64ezgjLdLe86a/oeX\nizdnTf+juLyIxN3xJBQ+RMHxfHLKsqXlfIBXIIaaCrZNyJeHJ2y5+VGOOfG7NcSXGDctEenqd+2l\nfbnzyuUc5vkp8WsZt9faPHSt5UeDBg0aNFxdCHm+Y7uOZN+5ATendrg5tmtTGg44cLNXD8q+K7XS\nj2SNzCanLFuuIcLTjTgg/donL1+Sli39l1IGUsLW9dYeBr9aUOrHbLmEVD/bmvTa+u22lv+3cgBK\ngwYNGn4rcDCbzZd/bPgahdFYbfee2KQqrQNas6ip37N3rbXpCOsHe3GohIBgS5ixd4JIEBEZ4SvZ\n9OkL0kWc2txemY64r1YaFZcXsf5IFg1mE3Wm88y49RFWlmTwp54P8NrnL7F82GqeLc2iur6a7y98\nh6ezF9X1Z9kw5iWCfUMoLi9i/r4Uno/cJN2oCaub+ftSMJvNbBj9EksOLsLUZELnoiP2lnvZeuwN\nqfjXe/hf0lZlxlKpeFa6C7DVpmrBSm09pSa71BYjov5stRNY3K4JIlKZllCgzyyMR+eiY3P0VlnP\nJYbDslziPXFN+W1BbgJWZVW2o63rlwORVl1DLe7Oumbd0U3Jj8XUaGLhkMWyXdV5V7pUEL+Ly4tI\n3TeHuQP/TI+OPaQbxoLj+WQeWkZ1/VmMdZXMG5jG5qOv4OBgcesn/LULa7GE4ESS35/NS1Gbieoe\nfYlgHrs9hgaziVPVJ2kwN2DGTHuXDqwblW31vEhT9H1DTYW0YDTWVvJwYRzPR25i6YeLMJuhwWwi\n+84NGGsrpeWDeHbJwUW4OLlId4DqOcJWn1PeE3mK3R5DefUJ/D0CyI3Jl+8VHM8nqns0JYbDGGsr\nSd07lw1jNgGWPtb4I9k0LyyNFR//hbkD/0ze8bfp1aEPW45txgknune4mUdCkujt0wdjbSW+Oj+S\ni5P4ru473F3acfrcKRJvTSL/q+0Al/jJLzEcZvaeRNaNysZYW8nqkhVWmxjRl09VX3TVuW5Utuzf\nofowOV5SQueSeWiZ1bgQdRD1f6NYOWINCYUPkRP5IlV1Vczbm0zirUm8V75TWrOJdHx1fjIOXuqg\nNHx1fszeYyHLHglJIiJopLwnxqogAH11flZWxM3NxS2NMVE2ZZ00F7NMPd8q55uW3MVe6Zr1S27i\n7H3f19frF8iNBjWak51KDIeJyRtHp3Z+fHe+irrGWm726sF/q79s83e8XLypNp0FwBFHVo+wrPkR\nQSPZ9sVbbD32hlxnbM3b92y/S8ZKFRbrQm5Qz7HAJTKVGsr1FC5ay7a0vqrlqZ9qbLWU9uXIom35\nztVK/1rBLz0PqnGt5UeDBg3XBzTZ6dpAc7KTwDMla1nyUTp3dZvAOyfyrOSgluDupMPUZMLBDB3d\nb2DXH/5hJXso9QFiv7wmIov73/0jVee/5eWo1+V+qS37ncvVNfxUMoM9ck+DBg0aNGhoDa5EbvrN\nEWdgrbBuy8KufO9KlCXqdNRpNKe8AKyIFfVzr33yMhFBI61cuCmV2s2RhYJAiN8Vx+mak3TxCGTO\nwHn09ulDqD6M1z55mQX7nyQjfCW9ffoAEL8rjj/c8kfWHlmFs6MLK4f/lVUfPy3d52099gZgUUCV\nGUvJPLRMKq0FMSTymlycJMkbYSUn8ioEQbDEbxKKd3U7KImn5OIkTI0mm8FybRGP6meUda1WZgsl\n4vJhqyVJCUhiqbq+mh/qv+P5yE3SraWAKI8gEhfsf9IqCK/y24JkEPWhzN/VIs7gIoGl/o4ar33y\nMmv/tZqT1Sdx+LEsSrJNSUaJ9hCE7pOhC3j981f4+uwJ8mJ2yudEvxgdNJac/6znuTs3yjoL8Aq0\nIij1Hv5MzItm24R8SXYBUuEZkxvN0vAMquqq6O3Th4LjO8k7/hYVNafJnfCu3DSIen/uzo1WfVG0\n4ffnv2Ne2J/JKcsmITiRnLJsqz4p8gwW944RQSNtlr8lqEmTxN3xODu4yD4r2nlNRBZJRYmc+N9X\nmMwmunnfJOtAuJLMjcmXhPXM4Nk8V/YMns7eeLp58NjvUpi/NwUc4PnITSw5uIhHb0ti7b9WM6H7\nJJ4tXUtnDz3uzu5kjcwGrAnRiXnRmM3g6uSC2YwkTtVlVZKQyjEvSEXRhkoltSCLCo7nS8Isff8C\nXBxdWDcqm5mF8fw90kJaCgJR7+FPmbFU9osH3/0T7d06SAITkCSmyE/qoDQrJXxrDlC0ph2Vc476\nEIK6je3N98q+Z2tes9VfWpOv5vJxLUFT/lwbaEl2ssR8LGHtkVU44HBF7hodccTdWYenixfuLu1w\nd9YxOmgsfy9bJw/cGGsrCfYNuWQ8KA+gpITOJdg3RK4z6oD2ygNCymvNKYeaO82sfOdKx1Nb5peW\nCPArJV9aKo9G7mjQoEHDtQVNdro20Bq9U1zBfUQEjOK98p0c/+G/XGg63+r0/dw786deD/DmF6/x\n/YXv5H62ub1CmbGUBwv+xGO3zSGq+1gpH9nSHdlKQ1y7XF3D1ZYZruU9jAYNGjRouD6gEWcqtObk\nj0BLZJKt567mwm1LYdPSiV+l0l4pzJQYDjMhdyxdPAN+dD/nYmVpIRTXtiyohEWJgwPUN5p4fEAK\nAPP3pdDB9QYK/rAHuOgmb8buaTwZuoClHy1kzYh1+Lj7ALD0w0V8ffYE88PSmdhzkiTFhLK8uv4s\nOybuArCyBFFaKSkV7+K30uWSkgxUt41S6aVUmAvl2+WQpXCp8qzEcJiY3HHkxlgLr8Iq6OHCOJYP\nW01E0EhpgSMs6wQBo7TAEQp9ZTmU90UdtYZgbSuU5IwtgVqprBQEWOahJdzQrhObxr4KIIknochU\n51cQSiWGwyTujif7zg0Ass+lD15sZUWkJKiE9ZewUhOKUGWfEGlPyB2Lr3tnqs4byRy2ivv6PWil\nOFUSO8Jl6Dfnvkav6yKtvF775GWefP9xnJycmDcwjbzjb5MSOpeFBxbIfIvTfEerPpPEp9KS0J6V\nor16Ff1BSRiKehPEkSCLRD6Ucf+OVn3Gff0epMRwmKk7p+Dj3omE4ERJcIv6AWT/7NTOj8o6A5jh\nhnadaOfcjscHpODj7kNC4UMEegax9e5cDDUVxOSNk8rspCILUSfISFuWm2Lcx+SNw9+jC9sm5ANI\ni1GB2O0xnDxXLt17KpXgSUWJZI3MJnF3PGYzGGpPM29gGitLMsgIX0nqvjnSKu2J92cxrW8Cs0Mf\nt5oDxL9jt8fg4uRiRfCq+/qVnGRsaX1Q3rdnLQsW4lf0Q3sK89bksaV8XGvQlD/XBuzJTqLfxeRG\nc/rcSUxm0xV9Z6DvIP5pLKGJRtq7dKBDu47E3DyJtUdWodf582LUqyTujufE2a/o6nUTuTGW+UM5\nv+g9/C+xCLdl1Susx5QHH1ozrlpDWLVWbrT1u60k+M9BgF+r80NzuB7zrEGDBg1XA5rsdG2gNXon\nsf88eOoASz5Kx8vFm9qGGhrNjXbfccWNei7ggAPOjs501unJGLYCX51fq/aZwmMJXOr1pLW4ltbY\naykvGjRo0KDh+sOVyE2/+hhnLUGpoFSeMlZCeT/A66fxWWyoqWg2H+K7gIxbtiYiyyofeg9/ungG\nkH3nBhmjKqp7tIzBpfyrVuYkFydhajLxSEiSjCWVU5aNt0t7KusMbPviLSbviCF9/wIyDy0jI3wl\nE3tOYs2Idaw/kkWwbwjBviE8EpKEv0cAr3/+Cne9PYakokSSi5Mw1FSQEJzIt3VGSb6ZGk1kHlpG\nSuhcArwuxuZS1snkHTEkFydJSxVlOU5Vn5R1poxxIuIqgcU6LaHwIWK3x1BiOHxZ7WerTfQe/uTG\nvGsVY03UI8CNnl2l5Z+LkwsLhyyW7iiTi5MoMRyWhKYgzZTlEPcFqWYrz7YIrrZC/Y74toCyXkP1\nYbx99ztM7DmJAK9AvFy9MNZWMntPolROKuPoKfOnFNadHVxI3B3P7D2JnG+so77RhK/Oj01Rr+Gr\n8+Oe7XdRcDyfKfmxLDm4CH+PLpJsEfmdvSdR9onZexIlERLk1Y05A+dZxckL8LLEkRN1fLTqMwB8\n3H3Yencuy4etRueio8xo8Ru//kgWODgwb2AaW4+9wfLhq6iqq+LE2a+I3xXH7D2JNDSZMNZWynhg\noh/YG2NqKNt5/t45PFOylqkFUyguL5JzUsHxfBJ3x1NRc4rZexLlu9sm5FuRZom743ni/Vn85cAS\n4nfFYayrZIg+nJyybOJ3xcn+FqoPQ+/hT+ahZTwfuYkNYzaRGraQLp6BrByxBgcHmPvBE6TunUvm\nsFXS6i1UH0buhHcJ9g0hVB/GlvG5bJuQb0WaCYg5av7eOZYxMuFdtk2wEEFlxlKmFkwhJteyiQvw\nssTSy4l8kWDfEEmaCaK5vtFSx2YzLA3PQK/rwtZjb/Bk6AJ6+/Qh0DMIX50fvX364NvOj9c+fwlD\nTYWsWwHxndRBaVYEsJiHANnfmosl2RxEW9ubX+z1BeXzhpoKztRWWMVKs+UauLX5aUs+NGhQQ4wD\n0e8MNRW4OLrwSMhjV5z2x8ZDNGFRFv3P9AP1TRfI/e9bBHreyItRrxKqDyP7zg0Eet7I0vAM4GLs\nQENNBTG5lliZIm6hmDPV8UoDvCxxRVIHpTF/75xLZAClDKGGvfFnzxpNPW+on1eu8bbSbw7KZ2y9\ndzlzVkvfuR7QkuyuQYMGDRo0XAsQVvH/u/A/nHHmiQFPMrXP9GbfqecCTg5OtHftQGedHicHZ+Bi\n6IuW9ACCNAMuizSDa0suuJbyokGDBg0afltweuqpp576pTNxtVFbW9/iM6eqT+Lt5g2At5s3o4Ii\n7S7I6vvivSuFEHAccWJ96Vpiekwipscku9/wdvPG282bfj790Xv4M6toJqOCIuWz1fVneeuLrYTp\nBzFAPxBvN2+bFnXKtEUewgOG897XO9l/eh8XGuvZcTyXFXes4f6+U9n99XuUfvsvzGZwcIBHQ5LI\nKcvmlU9folfHPuR/tZ3B/kOYuXs6uV++xV9/v44Rgb9nyxebWTXib9xzyx+YvSeRj898ROqgdLL/\n/QwxPSYxude9hAcMZ+mHixgVFEl1/Vmq688yq2gmc8NSublDD7Z9+Za0hIoruI9+Pv3p5dNHniQP\nDxjOnV1HE6oPo59PfzxdvZhVNJOU0Lks/XARM0Ie4a7udzOu+10kFycxumtUmwQvW31DKGvu7zvV\nqi6r68/yxtHNHKjYz9qR6zlnOsf8vXOY3j+B27sMoWfHXszfl4KbUztu9x/MjJBH8HT1ku06KiiS\nXj595N9+Pv1l3SiVd7b6hshTP5/+dPEMaFXZxDsxPSYxqedkPF29uLl9D9L3pzK6axTV9WdJKJzG\nyhF/pdePlktdPAPwdvNm3E3j8XP3Y+2/1tBkbmLtyPV4unpZ5V+NguP5LP1wEamD0viw4iBpgxex\n/9Q+6hvrKT5ZJPMQ3f1u7rgxgtFdo7gjcATxwTOsCO6b2/fg1c9eYlRQJGbM5JQ9y/5T+7gjcARh\n+kE88f4sHv3dY4y88U5u7tCD6vqzxBXcx2D/oYT43sZjxY+QEPwIqfvnMEg/mOx/P8P0/gk89o9H\nOHB6H1N6P8D+0x8Q1386+059wAC/ULL//Qwzgh/l0d/NZlz3uxh7013M/2AOTeYmZg14HG83bwqO\n59PZQy/bs7l6n1U0U1pN9vPpz/rStSQEP8Irn23C1cGVx/8xi9c/fwVPFy/+9vtnmDXgcbZ98RZP\nvD+LoV2G0aNjT05VnyShcBqPhiRxu34Ia4+sor1be0YHjWXrl68zrtt4PqzYz4xbH+Wv/1zJ6K5R\nGGoqeOe/2xlx4++Z/8Ec8r/ajrebN0kDktHr/Cn8ehc1pnMc++ELhgeOkH3JbDYTV3Cf7Ivebt5U\nnDst7yv7UoBXoHxO9BeAHh17EuxzK3/s/SfZP6rrzzJrz0xeP/oKm4++Qo/2PXn7yy109bqJghPv\n8GHFQc7UVDD91hnE3zoDn3adeOrAn9lTvpup/8/euYdFVa79/zMww2E4eEAQxNDcamqRFmppWrwq\nipKKuTHTUvJAUUkF5mkLbsENakKvmFFqhrZz94tXBY1EUV6K1FLZyeZN3du2qYkgI55wBmQG5vfH\n9KzWDMPBwy6r9b2uLmNmzVrPetZzuNd939/v3WcGyYeWUnB2L0mPpXC08hu6tfkDiV8lkBqcbjUG\nT17+J8/teprH/YPxdfPjD216sPqbNEZ2CZW+WzE0lZf6zbntF7Pmnr2ns2ejNUgc38ndn8c7B1u9\n3MrP1dI+1VI7mlo77ga4uTn/0k1QwE+2k5jPYrwNDwjB3cmD7O+2kjQkBaPJyD8uHr1lqcYubl24\narwq/T2m61jOXDtNytCVPH5PMGBZc7af3Mres/ls/VcW/u7+JH21hBFdRnLg/JesGZ4h7ff3ez1A\nVP4MHuzQl6j8GYzsEmplF80vipNsguEBIdLnYs0S65YtbPd3+XHFFYcbrX9ye8ye3Xi/1wMsKJor\nHdfSPtHU97Y2nO21b+Zcv2bc7JqoQIECBb8lKLbT3YHW+J06ufvj49KRFUeW4e7kQf7Z3RzV/b1Z\nO0qFijFdx1JaVcLzfWbz7aVSDlV8zcwHolj45Vwe7xxs1w6prrvWpK9A+FrE979V++DngOi7X7oP\nf+nrK1CgQMGvBbdjN/0uGWfNZQ43lbnaVFbPzWS6yo8VgZ+x20eR9HWCVeZQS+y3BUVzARqxeir0\n5ZjMRmbviaS44jDFFYeZkhtB3qlc6Zy2bYjYES6xhV7qG4PGQUPK0JWkDFklsXxc1C5U6i8w/J4Q\n1CoN75SkExUYTbm+jJRDiZgx893l7zA1mPB164S31odA775sH2+RCPB188NkNlJXbyQ4YJiULS3Y\nLIKlIrK+BWsJfpJXEtnmgj0DYGowMmdftPSZYHsJFpe4jm2W1c1mJ9tjbciz3OWfrxmewcKBi9EZ\nKqWMsAVfxhGeHYa31oft43NJeiyZ2fmRlOpKrJ6L7XXkfSPaLR8bcmaYaNOCormtvj/bzPWIHeEk\nfbUEY721DJdga4k2FFccpkJfzqL9b7Bw4GKyxmVLgU1bSSnxu7xTubywdwaRfWYS2i1MYkMmDFqK\nq9pVqksVmTfVqvadGOtytqe31gc/904kHlwisZrWDM9gQdFcvLU+kmxiwoFF0tiOC5onnSvAowsT\nek7kvREbpXESHDCMDq4+xD+6lKyTH+Oj7Uigd1/SgtMlVmTWyY+Zsy+amIJoTlQdR+NoqcHl72GR\n1RRsKvFcmltLBDNNPOflQ1cxyH/wj07eWOrNJtaHZPJuyAZCu4VRoS/nzeJkYvrFSRmEFfpyquuu\nseDLOLq36072+M9IHJzMjlPb8NS04cNjH9CgMvP+/62juu6aVA/NZLYwPRMGLcXPzZ/EwclU6MtZ\nV5rBysffYseEPNKHZViNJTG+5GPgqR1PWo1B+Vhqaj0N9O5LbGFMo7UocXAyHVws7DFfbSc2H9+I\nn5s/yUNW0qVNV+m4tUfTMavMXNCXk3xoKeevlxEVGE2gd19e7hfD/KJYzlw93ajPBVtSSMauPZrO\n5dpLVt+Fdgv7j7A4bM/TnJO3pYzQ1jqIW2K/KFDQHOyxmkp1JSwcuJjCswV89M9NNNyGyvcZ/Rlc\nHF2kv7ee/H+U6X8g4cAiiisOS+t9wqClqFQWmeOUQ8ukZINPxmZbsXzlNSrtYflQiz0jtzUq9OVW\ntkhzsGWl2a5/rWV4toaNLL9ea+ZrS8w1e8y33xKUoJkCBQoUKLjbUVZ9juCAYawL+QAHHKk3m3B2\nbN6Bp0HD7jOf0c65PVtObKZCX0FEj8kEBwyjs3uAdF6wViayt+cLv5Pw+8gZ983ZBfbeJ+5m3Gz7\nbvV+7Cke/SfQ0nlv5RkqUKBAgYKbx+8ycNaUo6E1ko3y425ms7Q9t5AQ2jlhN2lPrGHq/dOabJvt\n+eVyaPI2LSiay6sPxXGPRxfAUofpcu0lyfEPNJIiE3XQZu+JZH5RLHrTdeZ9Ecv8L2IJzw4jtjCG\nVx+Kw9OpLR8cW0/YveNQO2jo5dWbnPBd7JiQx8qhb7Hi8DIqDReY3mcGMQU/SfeBxeGmVmmoN5uo\n0JfbdS7J71sEEsQ9CueUr5sfVTUXJenHT8ZmS5KUwnFWqiuRHPNy5/2CorlWwZnWGhHy4+QBEdEu\nW+N0zr5oZu2Zzqw904nsM5PggGH4ajtRbzYRUxCNr5sf3lofAn58RuJZNmfE2pMJtXXcCZkqcb7W\nGFqi7+V4qW+MJNEnxqhoQ96pXMKzw5iQE4bOUCkFnmyfnzi/MNCF7GTyY2+Seex9Pvp2s9Sfolaf\nqDclb/+cfdGM7/aUJL0p2izGueZHSVEhQSgPjpXqSii/fp6oQIvEobxWXPqwDKlOoDhnhb6cqlod\n3lof0oLT8XDylCTzjPVGAr37siUsizXDM6irN7Lwy7lEBUZLgY7QbmGkPbGGd0M22B0btrANLs7Z\nF82cfdGoHdR4u3ZE7aCmqqZKmuNBvgN4b8RGCsv2Wf3GxdGV5UNSSS1eic5QSWi3MFKGrCI1eDUd\n3X15+cFX0Tiq0dVUojNUUltfQ+LgZLaEZRHo3ReNg4bEg0uYvSeS6rprrCvN4ETV8UYO3rJqiwyp\neOHydfNj27hPrWoG2Rtj9vrAWG+UnmmFvhyVyvL5xR/b+NrDcZjN8NrDliBh/KNLpTmfNS6blUPf\nYtEjS/B3v4cFA+JZ/U0qT24bxepvUunk7s+GUZusgr0CwtG+JSyLl/vFcMFQIck12guu22v7zb58\n2BsH/8kXmKbWkFuRqFXw+4Z87odnhzE9bwrP5z3L/KJYXgycQyc3f1Sobvn8ZrMZT00bvF18eKXf\n6/i73cO03jOILYyREhBSDi3DbIZ3QzawJSxLmqdiDxT7opjXQb4DrOq+in1ILicsTzIREtmtgXz+\niGC7bZ3V1qC10owtBcNae05bacq7OYB+t7ZLgQIFChQouFUIW2RKbgRVNVVcM16hjaYtTo5OzdpR\nddRhNBtxwBFdrQ6T2Ujy10sp1ZWwZniG9F4mf6e3t+cLmeotYVmS38Teu7u9dtv6OW5V0v7nwM3a\nOLdjE8mTYP9T71etad/NPkMFChQoUHBrUJnNt5E2fJeiNUVam0JTDhCx8ciNEVsJxJbOZ+9Y2/Pa\nfgdI38v/XziO5I4bwdARtYJKdSXMzo+UajWlBaczZ1+0FBiBn4JB4TljaOvUHpUKKg0X6OTuz/qR\nmYClnpSxwcj0PjPIOvkxUYHRZB57Xwpu+br5UaEvJ+/ULvac3YWx3kjCoKWkFq8kss9MFu1/gzeC\nFrH8cBJ+bv5kh+c222ei7lNm6EeU6kpILV5JZuhHFJ4t4PXPX+HVfnMpLNsn1bgSfQGWYKG4vlzb\nW9TAas0zs9f3QptcsFbAEmyxPad4DjpDpdTuUl0JiQeXAEjMKNEvchaMMGRtC/g21V5xnHwMAZKD\nUO5AtL23yLypUva++GxCThjl+vNWtavEtQWjz9RgZEzXcdJzlo8lW+SdyiXl0DIp+Obv0ZmPvt3M\n65+/Qmf3e3BxdGXN8Azp+CDfAdJ1Fg5czMw90zA2GOnicS/vhmyQxpnoW/H8K/TlEttw4cDFJB5c\ngslsxFhvwtPZU5L6FIEwgAk5YXi5eLNhVCaxhTFsCcuiVFdiVUQ5tjCGGpMBtUpD1rhs6beFZwvw\ncvWSnq9gnCV9tYRPxmZL9yrGghgjzT0Hcc/eWh/LuNv1LFfqLrF8SKoUVLf3PAQjM+9ULlH5zzPl\nvml89M9NtHVqz6Xaizg4OLB8SCpgqek2Le8Z/N3u4dOndkv9caLqOAuK4ujg6sOoLqP54Nh64h9J\n5JWgVxuNazH27a1VTd2jnJlZoS8npiBa6ifx7KICo1n9TSrGehOVhgrqzQ2oHRzZMHIT8fsXUW82\n4eLoSsKgpczOj6ShvoGO7ha9/7LqH0AFHbV+bBiVCVjWLI2jpsk5APDRt5sJDhhm937s3VNza7U9\nNDXP5HO9ub5r6pwtvRyJdeDXFCRTCtzfHWjKdiquOMyJquOs/iaVWlMtYJFX/PifH2Go19/0dRxV\njtSbLTXORNH7tk7tuGa8yvz+i1l55C+sC/mAqpoqVn+TyvbxudJvxXo7Oz8SP7dOUg1Fe2guwCRn\nqYv5eLM2Wmu+v9O43evdzHrzc5xHfr6fsx9/btzp/lKgQIECxXa6O9Aav5Owo9aVZnC59hI6QyX1\nP9Z6lcMRR+lzN7UbxnojG0ZtAuC7y9+RcjiRLh73kjUuW3qHsn3Xke83cp/K7doM9t5h7jbc7F57\nt+/Nd6J9d/s9KlCgQMHPhduxm36XjDN7kEuLzLxCAAAgAElEQVSOgX2Hiz0pspaCZrYsM9vvW2K/\nwU+ZzraMI8FskR8b2WcmKYeWMSHHEgBYH5LJlhMfYqw3ojNUonHUSCwLwSIRcncLBv4JtYOaBhqY\n2P1picmjUoHGQcMg/8GYGoysK80gLmgec/ZFE54zhie3jbI41Y6uIqLHZLLGZRPaLYzIPjNZV5rB\neyM2MqHnRPzc/HH6kSVkr48FW2JB0VwpKCfkmfw9OjP1/mkkPJLEnwYnsHzoKimLPO9ULk/teBKd\noZItYVkkDFrKC3tnkHcq1+o+RZaU3ABs7rmJvgdrqbfIvKmU6kp4aseTUsa6nBUW5DtAkgAEC9tp\nzfAMSdJQSAOKjHWRBSYcd62VW5Rn38vHyJawLNKC05scm/KMe7nU1PbxuY2CZiJTTWTyv9Q3hnX/\nt1ZicjWFsupzpBavZOHAxVK7yqotMhWbQ//G+pGZEmMspsAyjj76drMUrPLW+rBy6Fu89cTbUtAs\nYkc44TljiN+/iMg+loLKU3IjpKCTkOwDUKs0bBiVSVpwOrGFMZTqSgjPGUP03lkArAv5QNIDN9Yb\nKTxbQGrxSit2Y1RgNGqVRY6xVFfCpJ3hPLltFLGfz6GqpkpicRZXHGbWnumcuXbaKjhXoS9nQk6Y\nVTag7XMQ2WppwekkHlxCbGEMJ6qOc/lGFS6OrqwrzbA7TwSDUgSyAr37olW78cGx9Wgd3fF09mDl\n42+xfEgq//33VBZ+OZeqmio0DhrUDmpKdSVMyAlj9p5I1pVmsHxoKioVfPTPTUT0eIblh5PIO5XL\nlNwISfJVOJntjavmxpqcffhi/izMZqR+mrMvmqjAaOYXxTKt9wzUDmq8XDvg6OBAO2cvvrv8HeX6\nMqtzrg/JpEube1k/MpOkx5Jp7+qFyWyi4ccXzdjCGFQq7M4BedbkutIMK8mSlu7J3lrdmizA5uQX\n7bFWxb/2nntLWYNNSc/9XIw3Bb89iP0zOGAYGSM2AFBhKGfjsXW3FDQDqDfXo0LFpB5TUKvUtHfu\ngLPameVDUhnkP5iUIatI+moJcz9/lfPXyyg8WyBlawsG8/z+i3FVa+22V/wrZ5nZzluxp4nEjqbm\nV2vmvVxS2bYN9j6/XdxOcOlOBc3uZAZzc7bwbwFKxrcCBQoU/H5RVm1RCZlfFEtEj8msfDyNzh4B\nzOgThaujtR1Tj8U+csSRjBEb2DBqE95aH0K7hTGh50S6eNwrJZ3asuzFteT7jT0Fkda2GaxtBrm/\n4m7Fzbbtbr4XuDPtu9vvUYECBQp+DVACZ/xUr0LUAmtKXks4gVtrdDTnCLClz7fmt3K2iVQ/S1bv\nLHrvLOZ98TojA0ZTVn2O2Xsipd8mDFpKyqFlRPSYzAt7Z0h1qoRsGsCi/W+QPGQlr/aby7ula8g7\nlUuFvpz0YRmsGZ4h1RYRMm9Z47JZPiSVqlodl2sv4+fWiS0nPqRCX25p45dxGIwGAr374u/Rmezw\nXD4Zm20lHyD60zZYFeQ7gMKzBdSYDFJwoLjiMDmntknsMSEzGdotjPdGbJTqosn/lssT2LI8mnJk\n2Pa9cKzLa6qIa8g/s3ceEaQS9yDk6YTcnbh38Vzl55L3S3NBPnEtAcE8bG6cCjlMcZzcwJa337Zu\nmgiEBgcMQ+OosZK6Kqs+ZxWIE7XqxPlF8CTQu69k7Pu6+fHJWMs4yjz2vhSsit47i/lFsaw6skIK\ndmWNy2bqfdNRqWDeF68TUxDNwoGLWThwMQkHFvH6569I8hVZ47KlexFSi+tDMlGrNMQWxkjSiwAm\ns5EFRXGM7/YUc/ZFU1xxmEk7wyXpUp2hktn5kdTVG0kZupKYfnGkFq/g+bxnmZBjqeG3YeQmcsJ3\nSYFVEWzcPj63WVae+FyMj4UDF/NOSTptnNpyte4KET0mNxqzgFTX58ltoyQ22HVjNQ444OToxEt9\nY1j9TSprj6ZT13CDdSEf0MurNzvC88gOzyXQuy8pQ1bh4uhKVGA0Xq5ekuzj3yuP0GBukNro6+ZH\nWnB6s8HY5iDmX8KgpWg1WhIGLWVB0VxKdSX8cP0Ml2sv/zi23kGlgg9C/8rKoW8BsOLIMrxdO7J+\nZCZTej3HC3tnAJb1DCDpqyVU1lwAoFJv+TctOJ1PxmZbrRu2c8nfozNpwelWkiWtvRdbx3xzQSl7\nwTe5o14whMXfYuyIIIH8fK3ZT+zBdq1VHLgKbgUV+nKCfAfwdE/74+xm4YADB8qL8HLtwOT7pqKr\nqWT5ob8wPns0a4+mM7RTMA008GwvS3B/4cDFUrLA8qGryDm1TVqTxNi2Z7vJ9yh5opE8icY2SckW\n8jXY3nwq1ZU0klu2FxS/3bnX3DwX39/J75r6/GaDXC1d2/Z53A7uxrXttxwUVKBAgQIFzcPfw1Kz\n1Ww2s/xwEgkHFqFSwfbvtlJTb2h0vBkzbZ3bUVVTRcKBRYTnjJHer9cMz7BbV1x+Ldv9pjW+Dzla\n8pEoUKBAgQIFvzc4/vnPf/7zL92IOw2Doa7Vx5ZVn+M+r9487h/M4/cEMzwghPu8ejM8IKSRoXG/\n1wNE5c9g68ksRnYJpbrumsRasYfiisPc59Xb7neezp7c7/UAC4rmcr/XA5Z6Hzbn8nT2tLr2KwUv\n4ogjiV8lsGDgYlZ/k8abT7zFfV69Kb9+nk//vYNrdVc5W32GNs5teeu/1hDo3Zfs77Yy1P9x/vfs\nPk5cPs6Koam4adyIKbBIMO45s4vR9z7JsHtG4K31YcXhv3D9RjVfVxzk/dL3+OJcIQVn9zKySyj+\nHp05efmfROXPoGe7+3ik0yB0eh3vf/seDjiiUqko/KGAh32COFr5DUsHL6Ojmy+ezp7Sf+LehgeE\nABan1aN+g3m2z3T8PTrj6exJ3qlcovfNovpGNYM6DcZVreWVgheJC5pH/P6F9Gx3H0/1+CNJXy1h\neEAID/v2t3pm3dv1lPpXfC5/XuL6TTmhxTEHyor4suwLJvacJD0P4aibXxTH8IAQPJ09qa67xpTc\nCEZ2CbV6jmXV54jKn8Ffj29ici/Lffq6+fHhsU0E3zNMGk9+Wj+e2/U0j/sH4+7kwZTcCLaezOIx\n/6FSv5RVn2t07si8qVIbyqrPUV13jaj8GdK4aA6d3P2lZyCuZ9t+cUyFvhx3Jw+2nszipX5z8Pfo\njJPKieRDSWw9mcWDHfoyY/dzvPePd3ii839hNptxd/IgvPtE6Zn6af04UL6fnu3uo3u7nhwoK+L1\nwjn0bHcfq79JY+YDUawrzWD1sLV0b9ODY5f+D2NDHbqaSrq36cnpq9+z/EgS03vPQldbyUt9Y1h1\nZAW7z+zivZCN9PcZSJc2XYktjOEx/6GYzWaez3sOk9nI5F5Tedi3P/18HmL6/TOk8fBKwYv86ZEE\nvio/wN8riynXl/FMr2cZfe+TtHPyoqisEH+3e7hguMDSwctI+moJe07votpYTT31ODk408/7IVKL\nVzKiy0ju8+qNj6uPNC7v8+otPRvb+S3/rLruGtnfbeWpHn8k/8wepveZyf7zRfxQ/QP9fB6ik7u/\ntGaIc64p/m/yf8ijV7vedNB680yvZ7nX8w/sPZPHV+UHqKq5yJRe09j7w24C3O9lXtHrBLh3pZ1L\nO57bNZmvKw5iMBnY8e/t7PhuOy4aFxY9moBGpeF/z+1jQvc/8lSPP+Lu5EFU/gx2n97Fgx360snd\nv9lxZQ/Vddd4vXAOacHp0jrb0c2XnO+28/fKYqb3mUlRWSEaByce6zSEVUdWUGE4z4IB8bz80BwA\nYv73RV4IfIV3//E2Hx3fzIGy/YTdO45vKo/grvHgvZCNGIx6aX2YXxSHj6sPUz+LYPf3eUy6b7I0\nHsuqz/FKwYvS362FfM4BbD2ZxcSek6iuu0Z13TWr+dhcX0TmTSW8+0T+0KY7iQeXkP3dVib2nER4\n94nc59WbkV1CmdhzEoDVuZo6r3xs2PtOrHXNrXu/JNzcmi+QruDngT3bydPZkwc79GXOvmj6+TzE\n6r+nccN0A6O59XaWPZgxc63uGjXGGoorDxP9YAwnLh/H2dGF2KA3WH10FS89+Cr7ftiNzqDj83OF\n7D27m+3fbWVU19GM6DISgP89s49FX87j4xNb2PV9LgsHLuZh3/5Su2MLY9h6MgsnlRNRe59noO+j\nvND3JWkOyG2R1igIhHefaLWv+bj6kHJoGcZ6I5PusyQ62LMj78Tcs3cOsY/Y2gP22t7cd/d7PWC1\nttuzL1qzFtmiuWs3dU/Nnau567Z0rV8Sd1t7FChQ8OuHYjvdHWjJ71RWfY6HffsTfM8wnun1LE92\nG0f3Nj3IObWNB9v35cKPCYBgkWo0Y8ZZ7cxnp3ai1WhZ/V9rcdO4Se9i4n0BsOuLau5doTX77d36\nrqBAgQIFChTcDm7Hbvpd1zgTL9mtyQSVB0wEmvutYLHJC8jbOwZoVGfD9roComaZucHMhlGbrOpH\nTcmNICowmnlfvI6/R2cyRmyQrltccZg5+6Kt6knFFsZw7cY15vafz9qj6QCoVHDtRjWXb1SxYmga\nvbx682L+LN4NscgziXpaU3IjuFx7iaqai2g1blytu8KTXceTe3oHndw6kzJ0JSmHlrFw4GLJodRS\nLSx5vShx39v/tZXlh5MI8OhqVWMqPDuMC4Zy5vX/E4P8B0ttswf5c2vNsy6rttT6clVrWThwMS/s\nncF7IzZKEoARO8KlfpTXrhJ9LL9PcW1Rj2V+/8XknNpGXNA8ovKfZ13IB9J5BeNMXjNNaJeLLHt7\n7be9P1Ev62alFGyZa/IsNvlYFiyeUl0JL+ydwRtBixjkP1gaG6IOlm2dNcGSHN/tKd4sTib5sTeZ\n98XrdHTzxcXRFWODEZXKIrEopDbfCFrE3/75Ic/c9xwrj/yFlCGreKPodXaG5wGWMXy59hIXDBWk\nPbGGdaUZGIwG6s0mHFVqkh5LZtGX83BxdJXGj7wGVOHZAnr9GGiI3PUsrhoXzGZ4N2QDMQXRnL12\nBq3anSt1l4jpF0dk4AwySzfy7j/WMH/AYtYeXY27kwcqFSQOTibl0DLSgtMlqVHRJ/Lr2gbj5XX6\nxLEV+nKi987ifHUZKx5Ps6onKMYDWOq0TblvGsEB/2XVX1dqr6CrrcTbxYfU4NVU1VTxTkk6Y7qO\nI/1oKh1cvLlSexkvbQecHV2oMRmob6innUt7Xu4XQ2rxCgDWj/yp/pto163o5Iv7Err4YpyVVZ9j\n9NbhVBjK6ex+DxO7P03GP9Lp4tmVMV3HkfGPdLxdO2JqMJE5+q/M2h2JSgWOKjWmBhMzH4jizeJk\noh54mdzvdzCll2WceLl44+nsycKBiwn07ivNWds1wh5bs7X3Yyt50praYvZ+NyU3AlODkfRhGVYS\nqQL2xk1zjLOWCkTfrS/BSp2OuwPN1TibkBPGvP5/YuO367h64wrVxluvJSvQxqkNDqjROKpR4cCl\n2ouggh3heegMlXhrfXjm0z9ype4yjipHPhj1V7y1PkTvtUi+nr9+DpPZRNoTa+jl1Zs5+6JRqbBi\ntgNSrdTIPjPJPPZ+o3nSVA2Q5vZF8bftOt4aNDcXb2ae2s77Wzmv2Lebuv+bsZ+aa+ftrj03Y8Pd\nreucAgUKFNxJKLbT3YHm/E62e5fweSwfuoppnz2DrrZSOtbV0ZXa+lrMmHHAAR9tR9QOapKHrCS1\neKVUw17syy3VNFegQIECBQoU/ASlxtktQsjJtcbYEMdU6Mul/2/uBV7UxGouaPbUjicBi7RYU0Ez\nIe0XmTdVkpvLmbDLSmpOIDhgGO+P2sz28blSgEPg3PWz6AyVxBbGEFsYQ0SPyVysrWTt0XQSBi0l\na1w2QzsFc6XuEm5qD3p59cbXzQ+txqK9HVsYIzmR0oLTcVG70EHrzfU6i7H4h7Y96OTWmQ2jMgn0\n7kuNySAdKyT97KGs+pxkDApDsLjiMOHZFi3vnPBdUjBK/Jcdnsu8/n8i8et4SS7PtkadOLfo05ak\ncuRBi3L9eUkCctu4Twn07ivJMf1w/QyzdkcyISdMkoAqrjgsBT/FueQyTaHdwngxcA4rj/yFyD4z\nCe0WRsoQi4yhqDcHNJJe8HXzw9RgJLYwhgp9ud32296fPb3z5mDPMWgr0eDr5ieN5VJdCRE7wkk5\ntIw3ghax/HASMQXRUv/La7aJ+mZl1T/WyPEfTs6pbbw3YiOXay9jNBuZcX8UCYOWkvRYMhoHDVN6\nPUdotzCSH3uTrJMfYzbDIP/BdNT64eXqRVePe9EZKiX5wF0T97EpdAvBAcNIC07HyVEjOVQXfTmP\nSv0FEgYtlcaOCG6M3jqc1z9/hchdzzJj93NcqClnWu8ZZIdb6uJ9Mjab7PDP2PLkJ3TU+vLuP9Yw\neutw0o+m8uKDc2jn0o7rpmqm95lhNbZFDTshwynGjVhnhFSYWHvktffgJ8kwV7WWDaM2MfX+adJx\nc/ZFYzAaiC2MQWeopKPWj6LzhSQeXMIzPZ9jxZFl1JhqWPRIAmoHDQ4qR2btmQ7AmWunCfINIv6R\nRNq6tMXHzRd3jQfT+8ygquYil25U8bh/MPO+eJ1z138gLmg+vm5+GOuN0viw1clv7fgSa5g8yC+c\ntc6OLjjiiLHexJ6zu3i2VyQv9Y3hvdK3iX7QUu/uQk05B8sOoHFUozNU8trDcagd1Gw58SFvBC0i\n59RWautrWHnkL7wQ+AqfPrWbtOB0SbpVLtsph1hXb1bay1b+RL62NLe+2Na7FPNELispXoTFy7AI\nmNo7h22bmtvLxHnvRhkzBXcPmhofQb4DmNf/T6w4soyy62V3JGgGcLXuGpfrqrhYo+PyjSqe6/08\nPq6+6AyVJH21hMhdz3Kl7jIeGk8cccRb68OJquOU68/z2sNxvD9qMwEeXQkOGEaQ7wDWDM9A7WCp\nnSkkTyv05aQcWkZc0Dym3j/NbnBIJDvYfm4rmWq7T8r33ZsNdtnra9vvmpNQlO8jcjugOXlF23OK\n64l9qyX74lYdc3fCoddcG+T3pDgPFShQoECBHCUlJTz33HONPi8oKGDixIk8/fTTfPLJJwAYjUbi\n4uKYPHkyU6ZM4d///vdtXVu+dxVXHOaFvTOIC5pHkO8A9kQUkvBIEg44oMKB5CFv0lHrSzvn9jiq\nHIkKfIkL+gqSvlpCXNA86b1G7P+2ZSgUKFCgQIECBf8ZKIyzZlg8tsg7lSsxkGwZUrcCwTBqLotW\ntEV+rKg7Jf7NDP2IUl2JFOCRfy5nDQkGTOHZAtYeTeflfjH08urNgqK5BPsPZ/XRVTzZdTyfns6h\nq+e9bB+fKzGIInaEkzBoqZQl9WL+LJIeSybhwCIGdhxEzqmt+Go78W7IBnSGSovD3gw5E3YBSO2V\ns2vkbRPfz9kXTY2phvP6c2wK3YK31seKiSHvo4++3UxwwDCp9oq8zwCpL5oKXsqPlzNGxD1D40xz\n8RxsmVWCFQYWVprGUUNacDpBvgN+DASOwdOpDW5ObmSM2CCxr1YcWUaARxerDHnbsXirTJ+WYHvf\n8sw1ce/yYwrPFjDvi9fp5N6ZpMeSCfTuy6Sd4cQ/upSkr5ZgNiMFOW1ZamO3j6Ls+jmJGTB++2jq\nzHV4u/hwzXiVds7tMdXXU3VDR/wjiWSd/FhiDIGFZajVaBkZMJp3S9fg59ZJYgUGeve1YjNV6MuJ\nKYiW6nxtH5/biF0wa3ck9WYT8wf8ibVH0wm7dxyFZfuIC5rHC3tnWAW9xTMAOFh2gM3HN1J+/Twv\nPjiH0G6jAaTnLMaGfF7Ozo8kwKML8Y8uJSr/eTpq/cgOz23EMhTXAgtDIrRbmBWLT/6vmC86QyUJ\nBxZRobcwMLec+JCEQUuJ37+I1x6OY35RLCuGppFavAK1gxpXtVZirOkMlSz6ch4VhgrcHN1o69KO\nerOJGmMNeyd9IY2J230pyzuVa8WODc8O492QDcQWxkj16dQqDWH3jmP10VV0dPVDpQKzGS7WVNLG\nuS37JhVJ/eKt9WHOvmhMZiO1plqqai6ycGACYKmJtj4kU+o7MY6bGvtxQfMI7RZ2S/d1s8yG1rLF\n5E5g22zSps5hjzEj1nxxDTnz7m5jZShZ03cH+r3zsF17qPBsAZnH3ifYfzjvlKzGydEJvUl/R67Z\nzrk9bho3ZtwfxYojy6hvqKeDqzeOKjV19Te4UnuZ90M3S8e/sHcGUQ+8zJ6zu6z2XTlTG5DWiIwR\nG5izLxr4aX+yt882F5CxF1ADGtVNvdWEFdvvmmN5ya8vGM7ytaMle7IlFuvdtja0hNtlwylQoEDB\nrxWK7dQy1q9fz44dO3B1dZWCY2AJkI0ZM4b/+Z//wdXVlWeeeYb33nuPo0ePsnPnTlavXs3+/fv5\n+OOPWbNmTbPXaK3fCaxtc/F3ePYYlg9NxcvVi9l7IqX/99b6EJ49hvUjLUnJ4j2wNX4jBQoUKFCg\nQIE1bsdu+l0HzqCxgSHYQ/LggThO7mhtyTBpzhFjj1nW0rnkckCAFCwSjiJ5kKI5B2veqVxm7ZmO\n2WzGR+vLp0/tlhzxwf7DiQycQeHZAoIDhgE/BZ/m7IuWgkEnqo6zoCiO+QMWs+nYRioM59E6ujPn\nodfIOvkxABE9JvO3f34oBYSE8xwaO3tEvwNSwGPe56+z8JEEVh75iyRpaE/qwFYeTe5EEVKHrXH8\n2wbbBINMOOZaYqrJrz8lN0IKmonvJ+SEYWowUWm4QE74Lg6WHSDn1DYi+8yU+rop51VTTrY7JX8k\nzi3Gkm2gUTyb8dmjMTYYiX8kkS0nPrSSz3xy2yi0GldJcq6s+pwU/BHXkf9dXHGYE1XHWf1NKsM6\nh/DXE5l0cvdnWu8ZZJ38GIPRgFajZUtYlhQIe+a+51hxeBkdXH3YMCqTE1XHWbT/DZIfe5N1pRlW\nc/ajbzezrjRDksETASeA6L2zKL9+nvkDFltdSzyzvFO5Vu0Wv4sttDCgzGa4duMaemM1qCAnfBcn\nqo6zrjQDY70RjaOGqMBopt4/TbpXMYZsg0i2wZuy6nNM2hnO2eozrA/JJOmrJdL/y4P14rlNyY1g\n4cDF0nOI378IgBv1tcwf8Cf++++pODlqMBhrcFW7SjKjs3ZHonFUc/56GW2c2nK17grtXbx4uudU\nVh9dxebQv1nJiNobN62dU1NyI6gxGcgYYQmqz86PZPmQVFKLV7B+ZKb0bE5UHef1z1/h1X5z+eTk\nFioNldSbTbR39pICZ5N2hmM2Q8KgpQDM3DONBrMZlRnau3rh5OiEi6MrCYOWNlozbCFf6292HrXG\nAd3S723XPnsB/uYc7LZtkScJ2EoFF1ccJqYgGrWDxu76+0tDcf7cHTh66nijfWhCThinr31PwiNJ\n/O2fH3Kp5hJVNy7e9rWcVM7UmW/giCM+bh3ZOOpDTlQdZ8Xhv3Cppoq2Lu24cuOyJBstl5deV5rB\nlRuXaevcThrPcUHzSDm0jBqTAbVKg950HScHZ7LDc61sAWheZlvcN7R+T77Z4I29YPnNrLO2+7at\nDduSzdISM/ZuWhtaA8VRqECBgt8jFNupZezevZv77ruPefPmWQXOTpw4wZtvvsn7778PQHJyMg89\n9BA9e/bkrbfeIj09nfz8fPLy8njrrbeavcbN+J3sIe9UriQtX1tfg4ujK2BJ9pEnA4Hl/cc2qRh+\nsgfuRMLjrxmKPaBAgQIFCpqCItV4G7B1jFgYTwZJxks4NQXVXji4W+PItJUPbEqipzUbvGCRVejL\nmbQznNjCGCuH63sjNtp1lsivVVxxmJRDy/DRdmThwAQu1lZSqivB182P5UNXkfv9Dp7cNop1pRbn\nupAH9HXzY83wnwITC7+ci7vGgxWHl/Haw3G8GDiHy3VVpBxKJKLHZBYOtAQk4h+1OLdFkGvhwMVs\nCctqJPkmpPzm7Iumrt5IL6/e+Ht2ZtOxjXg6tSHl0DIrqULB/IsLmgfQqK+FdJE8yNgSRFvkcodp\nwemNpPSERJKt5Jr8POIe807lStJ7GSM2EBc0Hx9tRw6WHSDp6wSC/YeTeez9RpJx8vEj/t/2HpqT\nXrtZOTZ5/y0omttIymlB0Vx83fzICd9F2hNr6N6uOz9Un6FUV0KFvpwKfTlVtTpe6hvDgqK5kkRW\nyqFlVvNHzuwRz+b0te/ZfOIDfLQdyRixgUH+g0kLTufdkA0SMyq2MIa6eiNbTnyIn3snUoautEhL\nHXufN4IWsa40g4UDF1OhL2dKbgQffbuZRfvfYOHAxaQPyyC2MIax20cxblso0XtnoXHQSEGzqMBo\nssNzrQKdKYeWkXcqV2LphGePYfaeSKICo1GrNEzvM4Oaej3P9o6ki2dXTlQdJ/bzOUQFWmrcLRy4\nmEX735DOIQ+IhHYLk+7L36MzcUHzmJ0fKfVThb6cT8ZmS6ypT8Zmkz3+MwK9+0pBYvHbUl0JpgYj\n8fsXEb9/EbPzLSy6GpOBCkM58754ndcejuOlvjF4OntKwabovbMo0//A+G4T2TByE6nBq1kwIJ5L\ntVXknNrKW0+8LQWd7KE5qTHbY8ASfDY1mJi9J5LEg0vo4OJDavEKzl3/gdl7IqnQl/Ni/izWHk3n\n1X5z+ez0Di7qdfhq/ZjRJ4rLNy5ReLYAsLDQjA1GEg8uwVvrQxePe3ml72uggsqaC8y4Pwpjg5Go\n/OftypvK26wzVHKrsJUNa63Emu2xxRWHCc8ZQ0xBtN3f2q4vzbVFPs7kUsFifU0flmF3/VWgQMB2\nTPh7WOqldna/h+7tumM2g4vaFQ+N/cLzrYGTygmAOvMNwHK+Sv0FZu+JZO3RdItt8XgaWo2Wds5e\neLl6saBoLiMDRnNeb5kbET0mc6mmiqjAaHzd/CQJo4UDF6NWaXi5XwxVNRdRqSzXlEsYi/liD2LP\njdgRbrW/yqWXRb/Y7vs3M6fkxzdlL4rjbCGcQuI72/VNbrPYW4eaa6Ntu34tUNYyBQoUKFBgD6NG\njUKtVjf6/Pr163h4/ORAc3Nz4/r16+BSeGwAACAASURBVGi1WsrKyhg9ejTx8fF2JR7vJMR7p3jP\nTx6ykoRBS9E4WmSndYZKXsyfhclspLqumtl7IqV3BuELsPUH2PMZ3Ik9/VbPcbvXbu3vW/N+qkCB\nAgUKFNwKfveMMzmEwwSQmBlCEq0luT9bCDaDcMjLr3EzzCE5000wQKbkRhDRYzJZJz/GWG9kzXBL\ncED8v62ko3ASReZNJbLPTNaVZpAWnE7krmfxcPJA46hh4cDFzP38Na7euML8AYvp3q47UfnPkzJk\nFf/991Q0Dhop8+lE1XFSi1dgrDfhonah1lTLxVod7Z3bc814FW9XH+rN9bip3TE2GLlgKCdlyCoy\nj73fiCEm7hEsMmxJXy3hk7GW68zeE8kFfQUrH3/L6re2LB0hUybPOBfyfPYkzJrrZzmrz57zaEpu\nBKYGI2YzkuxZU8//qR1P8t6IjVIW2dnq0zQ0NHBv224M7RRMse6wdD05GwuwYtTZY841lVXW2vu1\nbas9lqX8e9En4v5rTDUA6GoqWT4kVaqJJ++3phh/ZdXnCM8O41z1WeqpxwEHUp+wBJMWfBmHt6sP\nLo6uEsNRZ6iUxv72f20l6+THbAnLolRXYsUwADCZjahVGolxBJYXiFm7I9HVXGDF0DQA1h5NR2+6\nzqXaKpYPSSXz2PtSPanZeyLR1VSSPf4zfN38KDxbwPyiWNq7eKFSqXBycGb4PSH87V8fkvzYm0y9\nf5qULSju05ZhKe9fucyXYNOlD8tAZ6iUpGBTDi2T6uzJx7cYE6W6El7YO0Ni20UFWjIRvVy9WFg0\njzL9D7R1bkdb57aU688zv/9iiQ26cOBiiiuKefcfa/DW+lCpv4C3tqOU5fjpU7ulfmtq7Wot40zM\nwXHZoZgbzGwM/bDRs4wKjGbeF6/jo/XF09lTkm9MHGyRAx27fRQeTp5WUpxibdUZKkk5tAyD0cBr\nD8cx9f5p0tizTSSQz3FAmp+3KtVoC7kcbksyKgLi5VbOFG4NE6W1kLP+bPeiuwlK1vTdAWE72c71\niB3hGBuMkjyzvk5PVe1FGmi47WsKxqu3iw+bx/zN0o4fZWQv6Cvo2uZenrnvOXJObWN8t6fY+O06\nKg0XaOfshcZRbbVXCPlksbY2xcBvStpUrAmJB5dYyZraMjpvZv2z/dce7LFfbeWcxDnl8sotrS+3\nyh77tTLPFChQoOD3BMV2ah3OnTtHbGxsI8ZZamoq69evByyMs4cffphvvvkGJycn4uLiKC8vZ/r0\n6ezcuRNnZ+cmz38rfif5O5J4p4kpsCQQCxUUgPCcMZjNZqIfjGHP2V0sHLjYLuNMwPbdW/gLgNti\not2qXXC79sStMPr/U3aLwmZToECBgl83FMbZHUTWuGwpECWYWLYsnNbA180PU4OR2MKYRgwCOVrK\njhGsFMGg8PfozMKBi3mzOJmIHpOljCQ5OweQCs8KQ8Pfw1JEPvPY+0T0mMyJquNcqbvEy/0sxlr8\n/kXoaiqZ2ms6yw8nkXBgEW2c2vHff0+lXF+G3nSdUl0JE3LCWHVkBZWGC6hUUG82cenGRfzc/EgN\nXs3yIamYGkxcqqliSq/neDdkA9vH5xIcMMwq8CVnbglGVcqhZZjNNplSZujl1dvKYJIz/wSWD11F\navFKogKjJRaUQGuMLdE/sYUxhGeHSdlb4ndy9kz6sAypr5t6br5ufrw3YiPeWh/8PTqzZngGCwbE\n09nzHsZ0Hcff/vUhkX1mApaaaFH5z0sZ52XV56RacnLmXKmuxKq99gJSItB7s4adwWiQxpcc8gx2\ncf/xjy4lLmg+rmpX5ve3sKtOVB2XjhHtA6iuu9Yo861UV4JWo+WVfq/jgCMqVKw6soIFX8Yxv/9i\nPJw8eblfDFGB0byYP4vZ+RZWUqmuhMSv46muu0aprkRiGCQOTmbN8AyyxmWTMWIDKhV4a32kLDwA\nT2dPFgyIZ/U3qcz74nVq62twU7szv/9i1pVmEBc0j9jCGGIKonFxdGV9SKbU71Pvn8aKoWlU1V6k\nQl9O2fVz/PV4Jm8ELSLz2PuUVZ+TGFpiTId2C5NYi75ufhjrjVbPTQSBFhTNJf7RpcQWxpByaJk0\nZmpMBmbnR/LRt5utgmYi6COODQ4YRkSPycwvimX+F7EkHFjE3P7z6ejqR43RQOLgZOb3X0zOqW2k\nBacTFRhNyqFlZP97Kx1cfYgLmk8nD3+uG69RVXuRC4ZyCs8WMCU3wmp8265TrRlf4oXN180PH1df\nfN39rIKLOae2sXDgYpYf+gsqlYqZD0SxJSwLb60PAAkHLLKT60dmkhacLv0uyHcAacHpvJg/i5RD\ny0gLTic73LLGyFkbk3aGN5qfYj0H2Dbu0zsWNBNzT6wZIuBt77gpuRGU6kqI2BHOhJzG15cHzSJ2\nWN9DS/uQ7bFibRVydvZYLQoUyGFvricMWsoFQzlVNVWW/b22igZuPudKhcrqb0eVIxqVE200luDZ\nB6XvE1MQzaw906k13sDTuQ0v9Y0h+dBSab/U1VTi7dqRBQP/RKXhAgmDlkrrrBjrYt8UTilbNqjY\nJ+X3LFia3lofNI4aaf0HrBid8v5pKou7rNoiuSuuLf/XHuTXgp+CeLbHy9lyTdmNwt67WRacveso\nDiIFChQoUPBbxB/+8AfOnDnDlStXqKur48iRIzz00EN4enpKTLQ2bdpgMpmor6+/o9cWdkTeqVwW\nFM2VbJj0YRlWpQOCfAeQPf4zVgxNY93/rZXqegt7Xu6nEO+8tmoa8vfO29nTb9UuuF174lYY/f8J\nKGw2BQoUKPh9Q2Gc/Qh5RottPQy4tY24tU7mljJYhANVznASjCQ5C0WgQl/OhJwwto/PbcS6eLt4\nNYlfx6N20NBW0462Lm0lJlnkrmd584k0Eg4skmpNLRy4mO8uf8fyQ0nkTNglnedE1XHeKUnnIe/+\n7D9fxKguo/mirBCT2UhZ9Tme6/08H53YhJ97JzJGbGjUn4BV5rS87SLjSqWySLOJGiX2CuLmncpl\ndn6kxA4SjjIhlfjC3hmSZFlLKKs+J7GYInpMZkLPidL5hGPLHivN9hkK53iNyUC5/jzrQzJJPLiE\nH66foa1Te67cuMSLD85hz9ldEktQsKqaYvTkncolKv95to/PlbLgm5Nxai3E2DpbfZoAj64SY7Ep\nebtJO8M5ffV7ANq7dODNJ9KoqqmS6nvJs/Sf3DaKMv0PdPG4l+zwnxiA4TljpGDO+G5P8f7/rWNu\n//msPZou9cWs3dMxq8x01PpSa7zBh2F/w9fNjwk5Ybz6UByZx94nss9MUostQVw/N3+yw3MBCP2f\n4eT9cR/wE2tK1HgyGGvQOKpJHJwMQOLBJZjMRraPz5Vq+8lrmgFEBUbTy6s3Uz6dxOW6KklOUNRO\nE/cFWI1RUTtQ1AjMGpdtt1/lrCMx/sS8E3Xwpt4/zYrRNCEnjIwRG4jc9SxX6i7RwcXHEng68aFV\nLcJeXr0lFoW31ocJOWGkDFnF6m9SAVCrNDzuH8zGY+sY3nkkhef20cHVhzefSLMaj6K99mrgNTWu\n4Kf5ElMQLbE05fXeqmqqiP18DhE9niHn1FZprlTVVKE3VrNgYDzr/y8DN7W7lNAg2CThOWNYPiRV\nYpmJsenv0RmzGcqvl5EzYVcjFpjt+n6nXrLkc8+2xpj8mIgd4dIzEs9dMMLkLJjiisNMyAljXcgH\nVszD5phstuuj/DdiPN6NDnEla/ruQFOMMzFfUw4t44K+gks3qm7p/I6oMdOAs6MzNfU1uGs8MBj1\nODo44uzgwnVTNTP6RPHZ6Z1UGi7QQAPDO49k37k9eGg8qTZeI+GRJLq364631ofx2aMtDqXSjB+T\nP84T4NmF+EeXSuuoSDiQ1xwVa65Yn22Z+fLj7WU6y5mc8jqaTdkl4potzV9bVlxTa+3NJDDcLlpj\nn95t64kCBQoU/B6g2E6tg5xxtnPnTgwGA08//TQFBQWsXbsWs9nMxIkTmTp1Knq9nkWLFqHT6TAa\njUybNo2xY8c2e/5b8TsJ+3z50FXoDJV267aDNTNNXsdYKA3J642LpNJbUUpS0DIUe0eBAgUKft1Q\nGGd3APJMXpH9Az8xjW7nvM2hNZuwxFj6kdEgGC2CeSVnlYlM687uAVL75ZnWOae2kfBIEr5aX9SO\njpjMRuk6V+ousbBoHgajgRVHLMGjxINL2PjtOlBZ5JN83fyILYxh7dF0dAYdn5zcwnn9OTYeW4fO\nUEni4GT8PTpTcC4fD00baoy10vlFLS/BbJIzo8TnOkMlIpT76kNxJD2WTIW+nKd2PNmoZlFZtUUX\n3M+tEzpDpZVhKVhbovZbS89AOLSTvlpiue+v45mQE0beqVzp2qLNgrEib4dthv6WsCy2j88le/xn\nhHYLI2ucpVbVgoF/wlvrQ+73O4gKjJYYgymHljElN8KqJpgcgd596ewegK+bX7NZT4KpcjMZUVnj\nsskJ3yUFJmy10uVjK/7RpfhofWnn0p5LtReZtXs6q79JJS04nYRBS61YSvVmE/5u9/BuyAbpfnzd\n/PBz60TWyY+J7DOTzcc3cqGmghWH/0LCoKUsKJpLVU0VPm4dae/cgRn3R1F1Q8fsPZGApVbc2qPp\njO/2FGuPplOhL6eNU1ucfuzHzNKNXKgpZ/u/tkoBEtGeunqjFDRLPLiERV/O47qxGrVKw/Z/bSX2\n8zmWfwtjiN47i7TgdCJ6TCb28zlM++wZqo1X8XLuQGi30cQ/upSYAos8oghwvJg/y9IGWZAiss/M\nRuNPPB/BPBqfPZrZeyIpPFvA7PxIquuukXBgESsOLyPYfzgLvoyTmGcieFWuP8/BsgNcqCnnxcA5\npAxdSdbJj61qES7a/wY6Q6UVs6qzewBerl64qrUkDk5GpYIvygrxce3IicvHqaeeCzXlxO9f1Gic\niHnYEmtJjE/RF0G+A/hkbLY0PsKzw3i7eDUzd08jtXgF8Y8kcujCQSmj87qxmit1l3B38uAvX/+Z\ncv15rt64gs5QKTH3fN38aOfcnnWlGRRXHKZCX078o0vx97DUZHo3ZANd2nS1CnCLtUPuyLZldN0O\nbOesvYC9v0dnssZlsyUsC183P4J8B1ChL8dYb7TU7ZOtb0G+A1gX8gGpxSutXrCb2i/sZWXKWcdB\nvgNuiY2q4PcHe3tbaLcwS22xWwyaAdRjooEG6hos83hSj2cwY+a5Xs/j62apaRjR62nUDmo6ufsz\nqccU/n3tJA44oDdel84Tlf88J6qO4+3aUapxmR2eS3b4Z7zU18Lera67RuLBJRL7Xqy5ETvCmbMv\nmpiCaMm5JOaFmEP21g0BYbMJ9r/ZbKkbKa8rlnJoGetDMqX5H5k3tdH8lttl8j4XaMpuka+v/+nM\nZ3GtptZ8JQNbgQIFChTc7ejcubMk0zh27FiefvppAIYNG8bWrVvZtm0bU6da9lU3NzdWr17Nli1b\nyMrKajFodqsQ9jkg1W0XtoVgk8n3WNs6xmnB6WgcNVa+lZRDy5oNmt3KXq3s7z/hZhOTm/tc6VcF\nChQo+HVBCZz9CHkASxgdpbqSJovIt+Z8cjkfe7CVEGoOwukCNJIRtN3IhXNW7jQVn2eGfsSEnhNx\nVKmpqr0oBamCfAewPiQTlQqu3LjM/P6L2Xx8I8YGI2oHNQsGxJNavJIKfTlbwrJ4uV8Mfu6dmNRj\nCn9o04NJPaZwzXgVsAQ3ak21XKm7xIUaSzBMyA4IOUSRLSXuY/nQVUTvtcjyvdwvhhv1tcwvimXW\nnukAvDdio11DcEtYFomDk3lh7ww++nazlWM/M/QjKwk9eb/bPieRgW42Q/d23XFycOLVh+II7RZm\n5QC3dX7J+9X2M9Gvciz4Mo56cz3GBiPvlKRL/SJk/ZqSBRXPtCUJJuEctA1+2YPcASckIZqSc5A7\nBOvqb+Dp1IaVj7/FhlGbcFVrAUvwTwQ2SnUlXDBUMLf//EZ1YTJGbCAtOJ1VR1agr9NjbmjggqEC\nsEiMLiiKo9Z4gyt1lxjkP5iYfnF4OHkCluDtmWvfs/xwElN6PYcDDmg1bqQPy6BCX867/1hDW6d2\nbDnxITEF0RjrjVIATTAYwVILreJ6OVW1F3m5Xww5p7YR/0giOae2EdFjMuX685yoOk7WyY+JfyQR\ntaMazHDNeJUX82cRv38RZ66elhhY60I+QKvR/vSci+YyvttTLPxyLoVnC1CpLIEaMedFsMRb60N7\nFy8q9OWkFq9gfUgmOyfsJnFwMu1c2vPZ6R14u/qwrjRDkhYT0h0Tek7EV+tHzqmtLCyaR3XdNcnZ\n6uvmR/Jjb5JyaBm+bn4UVxxmzr5oEgYtJfHgEtKC0wntFkb6sAxe7hfDptFb+GMPy4vkq/3mSgxB\nOYJ8B7QqEC0fn+IclvuzSKmW68tY9vUSzJg5f72MqzeuYjZDZ8978Nb6WJzmbpYgbWePAF7tN5e2\nLm0ldmDh2QJKdSVU1Vwkosdk5uyLJjxnjBTs0xkqCfIdwEt9YxrNSTEGFw5cDMC562ftSireDgSr\nUg7bQDQgOaTn7IuWxodtn4d2C5P2I7lcXFOwtybIHfW3Ijus4PcLeUJRccVhtpz4EIc7YDZ2de8K\nwJGKr+mo9WXP2V1cN1az74d8Zu+JpNJwgRumG2T/+3+oNdXi5+aPj7Yjbz3xNoP8B9NR60dq8Qpc\n1a4Sq0xg4ZdziQq0SO6azEZSDi2T9vy04HSyxlmC+GoHjbQ22s4LW5tBLssot+tSi1eSMGgprmqt\nJBFZoS/H1GCUajnaWw/lASl7NmBLyTH2ZK9vFq35jTxZyF7w7HYlmBTcGn6pNVzZOxQoUKDgzkEk\ntQlVELDYWuOzRzN2+yig6XIT4p1dvB/I3//kkAdqmkuEsYffanLMz5V01JRtdzP+PwUKFChQcHdA\nCZxhvZFN2hlObGEMH327mel5Uyg8W3BLzgl7zg3ba7a2HpVtcKc199NUUE0g6bFkunjcS9JjydJv\nvLU+uDi6smHkJrq3605Z9TnC/zARtUrD5uMbfwxqWAIBC7+cS0SPyZRWlbBmeAZvh7xL2hNrCPTu\ni85QyaXaKjq4evPWE29TVVMlOabkBp0IsoDF0FOrNPhqO+Hl6sWVG5eJfjAGPzd/AIl1IfqyuOKw\nVL8q0Lsv28Z9ytT7p0mOfREQsnXs2NYOEd8H+Q6Q6tuFdgtjw8hNUv0q29om9p6DvUCTfNyIjPP1\nIZm0dW5H0mPJmM1YZbbbBjqbu0Zzx7RWy7ypgJ/t794uXk1k3lRLXaYek7lYqyPs3nGs/iaVQO++\nEjtzS1iWFNwL7RZG2hNr6OXVW+qPKbkRkp571on/x3n9OS7W6lj1xGqe7zObQO++BHr3pZ1Le9q6\ntGV9SCYnqo7zXunbUqAj8eASOrr54u3akQk9J7JgYDzZ4Rb5Sl83P/zcO9HB1Zs1wzNIH5YhBZC3\nhGWRMWKDdI7EwclsDP2QLh730surN8uHruKVoFeJC5rHpmMbmd9/Me+UpGOsN9K9XXeqai7ycr/X\n6OTWmdcejuPdkA108vCXnl+gd1+pz4WzMevkx3i5ePNOSTp19Ubm7IsmtjBGCoAJtqGzowuYodJw\nAW+tD6W6EpK+WsKl2ipe6hvDzgm7Jf17ERAVY9IidWagXF9Gud5Sn2zSznAidoSz+ptUDEYDpboS\nZu+J5IfrZ6iqqeJs9Wl0hkrKqs8xNXeSxKh7++hbdHT1I7TbaLvjRQROWxOUtf2dWOum3j+NBQPi\ncXRwJLRLGA00sProKmpNtYzvNhGdoRJdTSUzH4hi7dF0nBw1RAbO4JOx2bzcLwZjvYnXP3+F1/73\nFYxmI5uObSRh0FLm91/Maw/HUWuqZdbu6SwonEvs53P46NvNUhvEPBQyaoAkfXon4evmR4BHF4kd\navsCJdbnzNCPpFoE8Y8uteucFn1XXHFYCvzdKuQsX+VlTUFzkI+PCn05U3IjmLXbktTSwdX7ts//\n7+rvAPjHpRKq66op15dz0aDjyo3LGOtNLBgQj9kM7V28cNd4MPOBKC7XXgIsErqvPRwn1TcL9O4r\n2VqCbR8cMIw1wzPYPj6XtOB0iekaWxgjBfHFvmVrh8n3RcFEj9gRLtkb8iCYYP2LBBiRENSSALrc\n7hAMZdvgurwN9n7fko3ZHFrrDBN7TXO1fn+JoNndvH79Ug65/zR+qw5UBQoUKPg5YS8pJ/HgEsJz\nxpB3ylJiw0fbEZ2h0m5CnRxyu0W8/8sTdOTrtjwRprXr+G8xOebn2Mua6jdb2++31K8KFChQ8FuH\nUuPsR4gNNGJHOAmDluKt9SF67yy2j8+VjrFX66K1522KHdTac8lr1QjIpQnl55ySG9Eka2hKbgQG\nowGtRsvIgNFSnS3BxjGZjSQOTrYwaqq/R+Og4aUHX+Xd0jVkj/8MsDiuquuuYTaDq9qVrHHZUm0m\nY72R2voa6urr8HRqw8v9Yoj9fA7xjyTyStCrUjvE8aKd8jpi/h6WeioJBywMEvEM5E6kKbkRUk0t\neb2iiB3hkt53U33bVO0Q4fQSTjB7z0fUlmtJCkHObpF/Jq7j6+bHpJ3hfDI22+4xt4s7dS5RE29G\nnyj+ejyTTh7+TOs9g43frqPs+jnSnljD2qPpnLt+1ioIUVZtqTl1tvqMVOdF1HaK6DGZpK8TGOw7\nlP0VX/Bk1/F8ejqHzu73kDxkJVH5zzOv/58Y5D+YCTlhtHFqR+bov0qBo4gek9l0bCOvPRzH65+/\nwubQv+Gt9bGqYWNP512we2rra3BVu5I+zFJPLemrJagdNCwcuJj4/Ys4W30aH1dfPJw8pJpcY7eP\nwlhvosFcz7W6q6wfmUn8/kVSXTV7a4NtEMS21o28jk6prgRvrQ86QyVR+c+TMmQVp6+eZs/ZXRIT\nMS5oHokHlzTSs5+x+zlMZhMAnd3vwVGl5rWH41h1ZAUaRzXXb+i5ZrxC9IMxBPkGMWvPdHy0HZnY\n/WlWH13Fk13Hc7B8P1U3LvJqv7nkfr9DqvsG1owlUWuwubElXkrkWv1izolncPrqKVQqFW5O7ly5\ncRlXR1dq6mvwdvGh3lyPVqPF1GBi5eOWGnq9vHpL9b6qaqp4pySd6rpqogJfYtOxjZyp/h5HlRqz\nuQFQ4ahyoMHcwD2eAWSM2NBo7ZyQE0bi4GRJwvJOI+9UrsR2lfeDvG9EnTZvVx92TtgtjVl740is\nSzdbo8x2DRL1m+62WmdKnY67AzpddaP5K9bcpK8T8HfvzOWay+jrr7dwppuDAw64ql3Rm/QAtHFq\ny9W6K3g5d2Dxo39mXWkGV25cxsnBGSdHDfGPLmV2fiTrQzIb1TKzrUcq6p2mHFpmFeCyZULb/r/4\nW9QfbKquqTjGtg22885e7RL4Seq3o9avEdNX/lt79p78uJu1MVuyEexdu7m1/07aL83Btl23e647\n2eY72baWrvNLrN3N1d1ToEDBzw/Fdro70Fq/k609IH8fiN47C1e1VvJntLamdGuuY2tX3C22/y8F\npQ8UKFCg4PcJpcbZHYB8A008uISYgmgyRmyQsnhuJetGGC6tuaY4vinYZqcI9s5TO54k71Ruqxhx\n/h6dpSzrkQGjST+aSkSPyRI7Z83wDNQqDSmHlpH0WDK+Wj/aOrXjs9M7WD4k1UrOL3nISi7WVpIw\naCmluhKi8p8nKjCal/vFcMFQwZXay7zcL4bggGGSBJ5oX4W+nBf2zmDhwMWSQ0ZeR6y44jDeWh/O\nXy9r1FfyrKqscf+fvTsPqKLqGzj+vcBlBxcEQcwFTVNDLdz3XQwXzFCzMFNzqaRSUzGX3JfUJ6FC\nbbNMWyjFBXd9TdNUIjVb7LHIBWTLlU3Wef/gmelyvZdNBLTf5x8F7sycMzP3nDNzzu+ciAIRbAlp\n8VxOucjZ5DOFngdzL54mHwoiIye9wBSShqITolgZvVyLvDMeNab+azi6y3h79TgJafFYWegLbF9W\nI6DKal9xKflr4r3ScioBjwwDHaRlpdGwWkOcrJ1Z1TWUbnV6MKf9PJZ0WlHgWng61earAfnruvm4\nt8bTqba2/tbLPq+wqmso17KuUkVfld9v/Mactgt4v896fL38mNbqDZb9sJDk9CTW9f4YO72tds6C\n28xiadQC4lIvA1DPuT5XM67iv/UJraPq0KWDjNv3PIO8niywLuCMI1P/N0WXFenZGUzYN5Y5x2aS\nlZtNwMPDtfv++aYvUN2uOqE9wwrcK4kZ8dzIuk5Vm+pczbhKfFqcFn1oah2cSQcmMnH/WC3STKV2\nghnue8nJhdq/LrauLItaxOrTK7iReR1A6zTT6fI7y9TpOPPPgRdDHx4BwJCGw8hVcljxwzL+vp1E\nm5rtuZqZjIOVE2E/hTD/+7lMbB5EUnoiOy9s45WWUzl79SduZd2kqnU1fL36cTs3g9hbl++Ith0R\nGVAgH4VRHwQNowzVzv/QnmG81fVt6jrX57kmYwDIyM3AQpdfHV3LvMqV1DgS0uOZuP8FXvv2Zb6P\nO0Ztxzq42rvxTLORhPQIIzcvl6VRC1jQcTGvtJzKQ04PUdWmGlYWlgS3mcPHvp9hZ2VfYHpV9Rpl\n5+bwwt5RJZqypLh2x0Qyfv/oAmsymopm8XFvzQTvSThZO3Po0kFtbQLjcsNw+pWSdpoZlwMy0lEU\nxTCSSTW40RA+8d3E6GbjyqzTTIcOAAssUVC0TjMLnQXWFtYAXM+8xupT+e0UBytHdDp4sUUQvl5+\nvN97Pd6uLbiVmb+W2aimY7TyyXiKQXWaWDUK1HDtS+MOLuO2lDoVEvwzTbYa/b47Jn9wQUZOOvO/\nn6t11BlHcavn03hNRTWiy3iqX8O0GXZcmVpjsrBOM3PtAOPOQlOMo96CDk40G21cXtFIhtG6ZdFp\nVtZpLq/R+RUV5SdT/QohROkZ1hGG/3d38GDLoEjGeU/UPns3gxSMj2P8t387OQdCCCFKSjrODHg6\n1dam6zPs1DD8e0n3V9RUjKY6DoLFNgAAIABJREFUXArbnyFv1xa87jOTBcfnalMJJaTFa2ttmNtX\nQvoVvvzvRiyx5JNfP2LSgYkEHcx/qRQ+MIJNfuF4u7bAxtKW61nXuZWZwupTKwu8zPF2bYG7fS1c\n7d1YcnIhNezyp6R7+8eV1HKozYw2s1l3Niw/Auz8FwXOg7uDB5sH7tCiPdSf1ZHhT27rD8BW/11s\nGXTnCGw1DcZTE6hT9c3/fm6Jp5NT96NO7WSq00uNEvL18ivwckS9dup0aqY6UQK2+TN4q5/Wqefu\n4KGNKjO3XWmV1b7U+3fvpV0AzGg9m+TbScz8bhrjvCfSrU4P/CP8GLv3OaYfmXzHS0G1cwD+eemi\ndjQ94tKEPnX6kZGbTtb/pkOcfCiI3TGRbDq3AVc7NxYcnwuAnZU9wW1mMePIVLxdWzCj9WwsdBa8\ndyaEVx6bwntnQsjLzSM5PYnBW/2Y8d0U7Cwd+OiXdYxqOqZAXiA/slJvaUVOXn6UVlZeJkujFnD9\n9jVmfjeNj35dR8DDw7W0ezrVZorPdHToCHzkeZxtnHj7x5VA/npaxtN3qudApwMrnZ7QnmHaPaWm\nY2X08jvuz+T0JDb5hfNB3/VY6qyoYeOGoihMOjBROxcvtgjSphlb1S2EJScXMqf9PH5M+oFqNtXZ\nGvMNSemJ6C2tmN5qFtv+t3bbpv5fUcepHi+1DGLvpV242dckpEcYo7xHk6vk4GxThbSsVM5d/Y3M\nnEx0FjrePR1SYLHq4kwBqn4XziafYfKhINKz01lycqHWUajOw7/+1w+Z034eX/z+zwv6SS0ms7Lb\navToeerh4VhgQVpOKq1c29DeswOhPcO0F3fJ6Ukk304iJy+HqxlXWXv2HdrUbE9K5i1mtJ7Np7/l\nrxdgLr16Sys8HGsVuV5bScWl5K97tLjjW2ajM9Tf7Y6JZPXpFbR370jwd1NJz043mR51wIOpB+Ci\nqOXAxl8+LTCIQx4aRVHU+0X9Dvl6+dHes4PW4XW3FPInO+heuyd6Cz1z2i6gf71BWGLJAC9/rLDC\nQmdBamYay6IW4ld/IADTj0zWIsjOJp/h79tJ3M7N4O0fV5KT98/0z4brAk7xmZY/vfQ2f20NMsMy\nW+2MWtp5BQlp8QXWoIA7p64MOjiRUU3H8MK+UZxNPoOVTo+ukNPi6ZS/9pnhmoqG7QZfLz/tPBu3\nBdXvqroOiuHLNDWN6qAc4/rXVDtgd0yk1j4yPpZxnWS4rZWF3mTbqLDOrLLsZClsUFJpmOogLgsP\natlaXp2CQgjxIDMeWKPW44cuHeS1b1+m79fdC9TRZXEcIYQQQtwd6Tgzor7sV9fFKG3DxTDKxfCl\nhPFoY8MXAcV9KFVfYiekxbP8h0XcykwhtGcYwW1mMflQEJMPBZldeNTHvTXv915PNdvqfOS7gQj/\nSK2j8NClgwU6pBZ0XAx5Crl5ucSnXrkjksteb691AG0fvIeQHmHY6+15rulows9/QXCbWVpHnPpC\nWM2zqZ83/vIp87+fy+s+M7U1q4w7oEzlyTCaI6zXB9oxixpRbeq8AgVGo6vbG06tZ2o7U/OGG774\nCu0ZxrreHxdYCwtg6HZ/LVqqLBu5ZbUvdwcPsnOzC0QapWSlMOPIFA5dOoi93p4P+nzCVv9d2vpm\n5tIzqukYZhyZyu6YSAZu8SXk9EqqWFdlQcfFLDm5kPTsdC2qanGn5SgK2vRahuvYhJ//gg/6fMLs\ndvNY/+uHPN04kHpV6+Nq74adlT3TW80iNesWsamXmfbtawze6sfumEgm7BvL2L3PcTvnNvM7LMbZ\nxplXHptCVZtqTGwehJO1E4s7LcfDoRaf/PqRFk0QlxLLM81GsqprKN8nHGV2u3lE+Eey1X8Xvl5+\nLO28QvvOGUaZfjUggvCBEXwfd6zA+lXGkUOeTrUJbjOLF/aNIiEtnuT0JJLSE1B0eVy/fY057efx\n1YAI5rSfx7qzYdpUYOq1AUjNTuF65jV61O7NVv9dhPX6gIbVGlLVphoNqzXEx701c9rnn6/gNrNw\nsnbG3cGDs8lnSExL4Prtayg6hWVRi0i+nURw6zmE9gwr0MFXnI4bw47BVd1CiPDP74hW96O+QF7v\nuxFv1xZYWVgB+VOzffH7Rlzt3ajh4ErEn1/D/17Q/5B8kv6b+wBo94CrvRtWWOFmXxMXOxecravw\n1flNZJNNbMplLtz6iwn7xmrXz1QkiRpRXJbU/L97OqTIzntv1xbUdnyIA5f3sa73xyanaVP/LelI\nfzVCEPJflE/+dhKjmo4pdECFECrj9oj63Tl39Tetw6ss2FjY8vuN35jRejYAOy5sJVfJ5dNfP+Kl\nlq/mr31qaUk12+qsORvKyCajC3Tcebu2IGLQTt7vsx57vT0hPcIKpFn9v69X/jSvapS6osCkAxO1\n6DH/rU8wYEtfgg4WXIdyis80ziaf0QZHqINdLqVcxMXOhTpOdfF2bUH4wAhCeoSZXKdQ5ePeWpvO\n2LCjzjjCvbBOKMPyWC0XpvhMY/KhIG3wVGFRtLtjIhm79zkyctLvOFZRg7cMI++KE2Ff1hFd96rj\nRtbtKj55ESuEEHdHbU+pz4zq+4VHXJrgauvGzcwbBLeZpbU91PrJVLS5EEIIIcqH5ZtvvvlmRSei\nrKWnZ931PhRF4Zvz4XT07MzLByfQs05vnG2ci7Wt+tJySKOhtPPoQGOXJtrvvjkfTp+6vjjbOONs\n40zPOr21h9GS7N/TqTa1HD3R66w5eHkvPev0ZmX0ct7q+h+eazaaxi5NCuzbUMNqjehT15eaDu7a\nftIy03jj6DS8XZrTsFojAG5m3uSLcxupaluVOe3ms/rUKi3tKVm3cLGtQcfanbW81HL0xFpnzfzj\ns8nNy+W7uCMMfyT/hZN6DgH8Gw4pkOdmLo/y180YJhwYw62smxy9coSm1Zvx2qFJNK/RglqOntpn\nTeUpLiUWZxtn4lJiefngBPwbDtE+r768aebyqLYf9fOmpGTd4pvz4QxpNFT7jHpc9ToeizvCa4cm\naecCoJajp5Y/9XhqnlOybjFu32j2XtjNtj8jtH2nZN0ioPFw+nsNqrTrRqRk3WJo4+E0qtaYEc0C\nycrO5mLKX1jp9JxJPs3qHu/SoGpDGrs00c6FqfMbnRDFuP3Ps7jTcrxdWxAZs4MnGwZwLfMqTz78\nFI+7+fCKz2S61O7K84++wOPurWjp9hjPNRvNXzdjeO3QJBpVa4yCwp4Lu7C3dOCTXz9izKPjWHBi\nDm91eZsuD3XDw96DEc0CaebyKIMbPkUnzy5EJ/7At7GHUMjDUmfFjcxrjPEeT996/Vh8cgHt3Tvy\n0S9rsbawoVfd3hyO/ZYrqbFsj4kgI+s2i07Mw7f+E9ha2RL++5dEJZ6go2dn7ZopisKXv29i38W9\nDGk0VLu/nW2c2f5HBDOPvs7wRs/ywc9rtfvCv+GQAufIzsqevRd2069+f6Z++wo3M2+QnZfNss6r\naFurPQAvH5hAnpLHE179efngBBpUacj+S/s4euUwWblZPFFvIBt//wQv54YsOjGPjec+4VbWTSJj\ntlPTzp2wn95haecVdHmoG33q+gIwft8YdOjIVrKoYefK8i6rGNzwKUY0C6SWoyfNXB6lsUsTLZ2F\nfXdUtRw9cbNzo8tD3bRyQf3eqtONtXFvx+PurajnXI/tf2zFxsqGq7eTqWHjxoVbfzGxxST+uhWD\nlYUVGTn5kViDGj6Jo7UTIyIDeK7ZaFzt3Pj9+jkOxx0iKzcbKwsrMnNvE592BQcrJz7ou167Lw2/\nmw2qNGTjr59Sz9lLu05lKT71Cvsv7WVVt5AC586Ys40zdZ3qsencp4zxHq+VL4bllnrezJXl5hiW\nY4+7t6KWvSfPNBtZYL9lne+74eBgU9FJEBRsOznbOOeX2/tG88W5TXx+bgMHL+0nPScNGwtbcpUc\nrLAij7xSH8/F1oX49Cscjf+OHxN/IDPvNgB55HHx1l9k52ZzPfMa89ov4kzyaR5z82FAg0E82ThA\nK8MauzShlqMnfer68tfNGOys7EnJulWg3o9LieW1Q5MY0mgonk61aen2GLsvRBLQeDiNXZrQtHoz\nTiac4O3u7/Jcs9GkZqcyKKIfEec3s+OvbUz1mcGK6GX4NxxCY5cmdK3dnQZVG9K5dlccrZ20dpTb\n/yKlDdsbqriUWBq7NGF3TCTP7AzQyvs9F3YVaG+o595wO7W9oNYtahuwZ53ePO7eij51fRnaeDgd\nPTsz+VAQfer6audA/a6r58DOyo6wXh/gaO2ktd3UY5oqZ6ITogrUWcUtm4z3V5y6o6jPlXWZZS7P\nRSluXoQQ4l6StlPlUNz3Tuq7oDWn32P9rx8woIE/ver2wd3Bg3H7RqPT6fhPt1Bc7d0I3DWMxZ2W\n87h7K20t1CbVm9KwWiOtXi5OW/5+ra/u13QLIYSovO6m3SQRZ2aoUV3qdD+lkZAWr0UKmJvqrDQP\n7OoIpOiEKLbGbGZJpxVaRI5hlFZh+zacjiguJZbw819QyyF/CkaVj3trPuz7KU7WzrjYuWjbxaXE\n4h/hx+RvJ2lROWra1v/6IdNavcGNrOvEp8Zx6NJBbTQV/DP9k/p5dbSVq70bn/p+zvbBe9jqvwtv\n1xZapJPx9EOGDCPrDKfeMfydYTRYUaOgDad+NP69OuXiC3tHaSO2jT+jpsFwHSF1qjV7vX2BaTTV\nc1FZO80Mp917Yd8o3oleTeRf28jOzcFOb6t9zniqJ3ORjobTc+p0sPH3TxjnPZEJ+8Yybt/znE0+\nw4wjU7X9zDgyNf/Ye0eRnJbMC/tGMXbPKPrU6cfq0ytISk+kW50eLO74Fr5efv97yfu8No3X1Yyr\nrP/1Q0J7hhE+MIKwXh9gZ2WPq11NIH9qxJSsW3z06zpy83LJys1kwfG5vPr4FJZ3+Q/VbFwIOb2S\nP2/+oaXj74wkAh4eXiACyNMpfz03df1Aw3vHxc6F/3R9h1Heo7WIRVOj5j2dajO73TzOXf0NK50e\nV3s3PujzCY+4NNGiHfSWem3dtaWdV7Dk5EJ0Oni6cSAJ6fEciz9CUMsphJ//In8toOavYG1hzYzW\ns7VINcN7LSEtniupsdzMvEHgI89jqbNiwfG5uNq7mYyYjU6IKtYUqOoaX+roSMPPq9ONqZETrvZu\neDo9hJ2VHQBbY74hIyeD8PNf0LDKw+gt9Ogt9ExrNVNb5w7y17FbFrWQl1oGMbvdPK5nXsXW0g53\new9srWwL3J/q+TUsH3KVXBacmMPgrX5lPp3YjCNTCW4zq1jfa1d7twLbmotALmk9YTi9o1oulzSy\nWfy7qffyqm4h2vqnDtYOVLGuiqXOEoAcckq1b1uL/O97devq//vZlpvZN7G3dNAi2nJyc7mRdR3y\n4Prt61xJjWP+idlM+/Y1dsdEam2Yjb98CuSv/Thy99M8sbkXwB1R4IbTM7o7eBSYjludKlH9zro7\neOBmXxNPp4dY2mklzzQbWeB74+7gwdDt/kzYN7bAlEoro5drkdXG0edDt/uzOyaSldHLeb/3er4a\nEKGtGWsc2Wf4f1PTRqrHNCwfPJ1q37HOqHEZok5H7e7gYbIsNzUoSW2/Gf6tuGWTYb4KW2/N8P/F\niQAryzK7JGVhcdqQpSGRA0II8eDzdKpNwMPD+Tsziey8bL6PO8akA/nrmgW3mYWVTp+/FIaDh/Zs\nq3J38GDJyYUFlo4wNUuFIcM2RFkpj/qqOPWs1JtCCCHKk05RlLKbd6eSSE5OKdP9qRV4SV44qi81\nTE1hUxbpgfwOiyk+01hyciEAq7qFEHRwIl8NMD9lnrr9iMgAgtvMYmX0cu1lckJavMmXvWojbYrP\ntAKfP5t8pkCjTv2su4MH/hF+vPr4FNb/+mGBF/aG50U9p2oHo/H5VfdlLi/qPkxNoWh83g1/vptr\nEp0QRXJ6ktbBWJL7wfjz9+LeKGtxKbEkpMXTf3MfdOioYe+Kk7UTs9vNw9XeDR/31oWea3N2x0Qy\n59hMwnp9wORDQYzznqhFxKjbqtd/8FY/0rPTebpxIO+eeZuZbeay6sflZOVmsqzzKmYefZ3NA3cA\n+dNvhfYMY9SuZ7mReY33+6zX7tG4lFgGb/VDUSBXySE5I4mlnVby9o8r8W8whDU/hVLNtjrXM6/h\nbl+LVx+fwrzvZ3Mj6zqjm47js3PrmdF6NltjNt9xz6nfKfhnTaDdMZE8t3sEs9vOJ/z8FwX+Ziw6\nIYqBW3zJUXIIajmFtWffYV3vj1kZvZwpPtPw9fK747xGJ0Qx+VAQq7qFcO7qb7z940rs9faM856o\n/b9PnX74evVj8qGgO9bQWdp5Bc/uHMaN29fR6SzQAW727thZ2ZGjZLNlUKRWJqj5y87NLnRKTnXf\nhmk2Pi/q5wCtHJr53TQSUuN5q+vbrD61kkerN2fHha0A/KfrO3Sr04MRkQGs6hZCcnoS0w5P5urt\nv6nrVJ/QnmG8sHcUVhZWzO+wGID53+evCWecVjU9KVm36FOnH5N8Xi2T76DxfWuqPDO3ze6YSO1c\nmSpTS8M4DZW9rHF1daroJAjubDsZ39fJ6UmM2TOSbCUHCyzII7fIfdrobMhUMgv8TocFikGkWv96\ng9h1YQc6Cwuq6KtwK+smwW3msOncBkY8Esimcxu4lHKBic2DqFelHuvOhgEQ8PBwFpyYw6quoTzi\n0oTndz/L9dvXiPDfqZVbqoBt/ugt9QXKwYS0+AJtDPV7M6rpGNadzZ/+esHxuXw1IELbj+EgGkAb\nzKB+f9XphQ3bPGeTzzBmz0jqValPSI8wk+0adZ86Hdq0j8aDttSoXcPy3Pg6maonTLWPArb5F1qW\nG37WuAPM3LTVxtupaS4sHcZt66LKqpK0x0tT7pnbxvC4hvm6W6V5vhBCCJC2U2VR2Hsn4zp06HZ/\nbty+QY6Sg7N1FWJTL/Nyi1fZe2kXKVm3mOIznffOhHAp5SIRg3ZqA11WdQu5Y3CM4THM1SPFfSYp\njvKsrwqrv6XeNK+yP+8JIURFupt2k0ScFcLwwb+klXNxRuOWdrSMYfSEOlLacO0Nw0XvzcnOzdai\n1NQ0mltHR42S8fXyK/DSwPgFr2GUEEC3Oj20FyzGL1EMz6mpKBx1X0WdBzW6y9TfzP1c2gZFXEos\nkw8FseTkwjvmHi9sG8PoMsPfmRplXllZWuSvM+Ood+LFFkEsOD73jrVZVMYv7VSGI+nnfz8XK50e\ndwcPVnULYf2vHxZY5029/glp8fSo3ZukjEQ++HkNOUoOi06+SWp2CnZW9gBsHrgDdwcPZhyZSmjP\nMJLTk7iRdQ1Xe7cCEZSQPyXigo6LsdRZMb3VLLrV6cGCjovZe2kXE5pP4mPfz1jaaSV6Cz3vnQmh\nhp0rr7Scyp6Lu6hqU43BjYZokZ3GjCNKvV1b4OlYm/DzX7CqW4jZTjNAe5HqZufOKO/RbBkUibdr\nC229MFPnWV2LccaRqTzi0gR7vT3BbWax7mwYegs9AQ8PJ+T0SibsG1sg+gjyIwa+jzvG1dt/U9Wm\nGjXsavBh30/Z8eQeXmoZRHzaFS0CUD32Jr/wIl+0qt9Jb9cW2nbBbWYVGWmbnZuDhUV+dRSfdoXH\na7bCWV+FmnYedKvTA0+n2ozzzl9/KPjINBLTE3ix+SuE9sx/CW1raUd2bg4Ljs9lycmFzGk/D52O\nO6iRWIoCH//6/h3rNpaG8chINSKwOC9/oxOimP/9XKITogjY5s+4fc+bjNQrCXOjUYUoLbU89nZt\nwYd9P8XV1hWFPOws7AvdzgILspSCUxjVdaiLQh42Fv9MlXAs/jtq2LlR3aY6zzYZxfIu/9E6zbbG\nbGZO+3ls9d/FKO/RrP/1Q8Z5T2STXziDGw2hlkNt3v5xJZMPBfGx72dap5n6PVLr3vCB/0QFq51m\n/luf0KJO1TyOajqGmUdfp0+dfgBcunWRs8lntDXEdsfkr0UY2jOsQKdZwDZ/Zh+dWSAafeMvnzJ4\nqx/zv59LTQd3ZrebZzbaC/IjsbNys+9YB1ONOjaMAlTLc+Pyx7j+fXJb/ztGm6sRzMVhXG6bWs/V\nmDpAwTAaz9TascZt6+K88CmsPV6a6DXj7c1tY3jcsixXTeWnsrcHhRBCFM1UnaIooNPpuJ55jYZV\nHiZXyWH16RVUt3YhMS2B6Ucm82KLICIG7dS2ycnL1v5v+D5BVVi9aG6mk9Ioz1krivOsKc84Bd2L\niHghhBD5ZI0zM9TKR50/uqznWVb3b2otjOIyXJtCXUuoa+3uuDt4FJrelKxbRPzxjbbeh7oP4/WM\njLdR19kwt0aOuo8ph14hIf0KDas0YvHJBXjYezD9yJQ7tjH3f/Xn4qw9UZ7zXzvbONOnri+NqjVm\nZfRylnZeUegaRuo19m84pMDaJCMiA/ji3CZ86z9BStatAj9Xpvm81fQ/2/Q52nm058ekaGa1m8vq\nU6u4nZNJaM+wQvOvvrTr4tkNRVG0+wYg4o9v6FevP34NB2hrw8w+Glxg/b9mLo8ycf9Yvos7jE6n\nQ0FhSMNhPNkwgCNx35KZe5vdF3fSyq0N9arUx7/hEBytnXjt0CTGeb/I/E6LC9w/KVm3GNJoKAoK\n6356j6Nxh9n513aOxB4mJfsW+y/v4dvL/8fPV8+yuse7PP/oCwxtPJwbmdcJP/8FaTlp2FrY0bLm\nY4yIDNDSanidDY/nbONMf69BDGk0tMAacKY42zjzuFsrDscdoqNnZ+3l6nPNRt+xX0Pq+mGNXZrQ\np65vgfVumrg0ZUfMNp5vNhb/Rk9q994358NpVK0x07+bjLN1FfQW1tzIusbABv4oKKyIXsaSTvlT\nhBivwVic+zMl6xZDt/uz5Y9v8LD3YPz+0bRxb6etnWiYZw97D+Z/P5ekjARmtJ7N2BbjsdbZsPyH\nRdhZOnAz6zoPV21Edl4WL+wbxfIuq3it1VTc7NzZ8me4tq5cl9pd2R6TPx1n33r9cNA7aH8zTnMt\nR08GNBhEh1qd8HZtcdffOVNr+RS19oCzjTNudm446B1Yd/Y9hj/yDKO9X6C/10DtRXxp1iJTjz3F\nZxoNqjbU1qkq6Tqd5U3W6agcDNtOhvegp9M/a1k1rNaIBlUacCopmg1PfEENGzessCIu9bI2zaKD\nlSPZeVnYWzr8LzpNp/3tZvZN9FiTpWRhqbMk4OGn+SHpJBb/e5F0IuEYp5KiiU+7wrEr3zG11QxW\n/LCMJ7z609ilCW52brxy6EX6ew0iNTuVgQ392XNhF7PazaXLQ/l1zfnrv/Pktv74eQ3k2abPaXlS\n12uL+OMb+tbrR886vTkSe5ihjYdreaxXpT7VbWrwVvRiohJO4GxdhR51enIs/igBDw8n+OhUmlRr\nyuyjwez4cxu+9Z8A4Ov/fkGukodOB3v+2oWtpS2Tv51EamYKb7SbS1TiCY7EHqZL7a4F1jWLTohC\nnfihc+2uHLy832TbbMaRqbTz6MCzTZ/T1kMctfsZ2nl0oFfdPgXq4uiEKGo5elLL0ZMunt20MsVw\nLdi3uv5H20b9mzFTvzdcs9Lc59S20pBGQ7XfqWsGq2vOGd5bcSmxhbYtjZlLq3GbvaTrlxW1zb0o\nP01F7N+LdSjNXeP7zYOSDyHKgrSdKgdz751MrWXf0u0x9lzYhY2lDeeu/UoeedhZ2hOT8gcOekdc\n7Fz4+epZnPVVmPR/42nr3p5vLx9i/6X8Z5p2Hh1MPnsX9YxZVipL+VtZ0lGZlHbdViGE+LeQNc7K\nmKmRsGWtuCN3S0pde6OwfarRI4bUkcymtjMcwVLUeXF38MBeb8/STitZdzaMjJx0lpxcWKroh8pa\n8S85uZApPtPumKrPmKlzpUa8qKO9jX+uTAzTr0Y2+nr55afXQm8y6sqQuq6Zj3vrO0Zrq+uUvbxv\nAtEJUXeM1If8e0lvocdR78wbbd5kWedVRPz5NevOvkcVm6ooKDjpnVkWtUibDhAgIyedZT8s1CIv\njaP+3B08qGHvygd9P2HLoEjCB0awrPNK9Do9izst19a6Ua/burNhuNnVpIp1VUJOr2T92Y/MnidT\n57C497FhBJma9oS0+AIdMqaoLx4N/1Xl5OWw4MQcLUpCjYrzdm3B0k4rSctKxU5vywTvSSw5uZDJ\nh4JY2nmFFk1a1Kh+cxQlf+pYXy8/Fnd8S4uaM97PyujlhPYM4/3e6wk//0WBdRv1VlZUt3Uh+Lup\nJKcn4WLrqm0bfv4L7RieTrVJTk8iNvUy567+xuRDQQQdnKj9zdw5A8psZJ7xd7youiM6IYrx+0eT\nnJ7EQ451te3UMqW09Y9aryw5uZCAbf4SfSZKzfgeNCyHlpxcSFivD0hOT2L16RWcSDyGk/U/LzHs\nLO2xwAJrK2sU8sgjj+o2LoxuOg6AbLLQYUENWzc8HGphgQUp2SmMbjqO/3R9h0/6bcLT8SGWdl6J\ni51L/jSN+8f+EzmlwO6YXfhvfYLk9CRylGxt7Y8RkQG4O3iwttdH+Li3JiEtnhGRAZxNPqOt1xbc\nZpa2tqreUl8gSn/U7mdoWK0hno61eb/Petb0/oCV0csJbjOLrTGbWdvro3/qwf9t6+lUm5AeYUT4\nRxLW6wP0lnoecWnCqq6h1KvihYudC1a6/Dre3cFDi8CNTohiUEQ/BmzpS8A2fy0C2zhqTI1iNVzn\nUf2uTz4UxKQDE7VyzDjKzLAj3rANp9bf5kYoG//e8F9THT3G2xuWsYBWtxm3Iw3rZsNyqqTlsvE+\nDdNQ0v2UF1PnrqyfPUxFJd6vKns+iorCFJWHXA9RXozLcncHD6wt9XzSbxMf+W7A0+EhFndajott\nDZytq/B+n/UEt5nFsh8Wkpubi6u9G+EDI7T3NmX93kg8WORZTwgh7g3pODNi/ILhXirL8HlVQlp8\nsadrNJ7ex3jKHEMlWQx+k1843er00BaiVzsiHhQ5ef+8pIOip/cxNZWb4dR1xj9XJqbS5O7gYXIa\nPFMMr7vhvbX30i761xuguLSDAAAgAElEQVTEV+c38dyuEcSnxpGTl3PHsZ9uHMj1rKssOvEmF25e\noLqtC8kZSVhggQ4dVjo9iekJjPOeqHVShfX6gIhBOwu8MIR/7uGzyWeIT7tS4Diu9m7Uda6fP72i\niY5Oe709tpZ2WOgsCTsTQnCbWYVOPVhaapng496a4DaztOmtCrvHDKf9M/z3bPIZqtlWZ1XX0Ds6\nwkZEBuBi50ItJ09GNhnNup/f1aZUNF4byJC676Ie2vSW+R2rcSmx2jqHxudILXN83Fvj7dpCm4pE\nnQ42Pu0K47xfZF3vjwFIzkhk7N7nSEiLZ1W3EMIHRmj3l7drC+o5189/Wd0tBKsiOnbVjqspPtPu\nyfeuqH2qncq+Xn6E9gwz+SBc2nSpHbDqNTA3na0QRSnsHnR38MDXy485bRdggQXVbKsxp+0C6jrV\nZ1X31Xg4eJKencbopuOwxAp7vT3fJxzVOs8s0HE7N4OQ0ysBsNJZcTjuEN3q9CA5PQmA986EMP/7\nuVS3dUFRYMK+sSw4PpcJzSex5qdQXO3c8ju/LPTa+h/p2ekkpMWzMnq5th5YStYtXtg7imd3DmPS\ngYkFBr8Yd+io68Za6qy0vBpOVa2WpYbbbvzlU21qacPfd6vTg9CeYdoAAcOpbuNSYnF38KCWoyeW\nOitylGwS0uKZfCiI6IQo4lJiC3SCuTt4kJOXrf1dvQaruoUUqI8NB6wYXkfjtqZhOW7c4WS8jVrH\n7I6JvKMzraiOHsMpuQurB+CfF4Kl7SBROyML27YyvXA0d+7Kqk5SzwVwTwcClpfKNj1XcacGrewd\nfv82cj1ERTqbfEZ7RvH18uODvutZdzYMK52e5IxEzl39DW/XFrzfez2eTg9pzzLqM25lKgOFEEKI\nfwudos4R8wApbJHW4iiPTrN7eSxTi7CX5NjqQ4X6MqO4i8gbbj8iMoBNfuEkpMVr6zcVV3me/9KI\nS8lfH8Vwsd2i0lzYNans+YWi74mS5CEuJX9x5Nnt5jHt8GQ+9v2M5PQklpxceEcHYnRCFAM298XR\nxokbmdepYl2Vm1k3ALDUWeLhUIvRzcbxss8r2r7VRZTV821qhLx/hB9ren/AjCNTmeIzTZt609Q1\nik6IYtKBieh08ES9gXzzx5e832f9Pe2MUF/4ZudmEz4wQvu9uXNsHHFmGGlknE41PwC3czNwsnZm\nnPdEnmk2UnuRYGrRZfUeMHeeTKXH+P+FfT5gmz96S7320nmQ15OEn/+CnLxsrCz0BLeZhau9G+4O\nHvhH+BHhH3nHvaLmuThlTnHLyeK6m+/xvSgD7odyRSUL3FcOxW07GUf0qB07xtGv6gAe/4gneL/P\nelzt3fBxb8070av56Jd1JKQn8FLzV4j8axtz2s/D27UFCWnxDN7qRw07V6b4TOcRlyYEHZzIiy2C\nePd0CNl52eQqOSgKfNB3PQCTDkwkfGCEtu2WQZF3dJyvP/sRq0+vYE7bBbT37KDV3yrDDqIpPtOY\nc2ymltdtg3drAwqMI5p2x0Qyfv9oLRJNZXhO1LJG3U6NkF7VLYTk9CRc7d2YfCiIVd1CtLrGykJ/\nRxtKPaeTDkwktGeYts3kQ0Fa3Wnqe2/qd2r6DOt1U+W+4efV46nn1nBbU8c03J9xG8JcHWOu3ihu\nPVJYHWWcppK42/K0LMrjkraziltfl1X6KsLdRBfe7XGN76XCzuH9en4fVA/K9ZC2U+VQ3LaTOhhm\ncce3tGcutY0wcf9Ybufc5vrt/DW6F3dazpKTC7VnIukwE0IIIe7O3bSbJOLMhPLsNLsXo96K+zLY\nXD4NRzQlpMUTm3qpWBFsxs4mn8F/6xNFTh1p6H4YCWhq9HRhD8txKcWbBrMyMx7lZji1ZHGjkAwp\nCsw+OhNHfX7hpU59ZXwefdxb85HvBhysHAHoWzd/PRk7S3tylVwycjIIP/9FgWNn52YTdHCi2Rcq\nnk61ifCP1K6h2mlmKkJJvXahPcN4unEga86GkpiWwMT9Y+/ZNVOPGdxmltZpZmoxaMPPG9+HhpFr\n5vIT2jMMOys7gtvMYv2vH2rRBGB6dLp6DxQ1RadhOoz/X9jnwwdGaB2e63038rLPK2zyC+erARHa\n9JI+7q05m3yGiyl/seW/3xTYh497a6b4TGPyoaAij6d+vqyoHbalvScqIupNiLthHEVtXAap9aSP\ne2si/Hfi7dpCi5baGrOZ0c3GkZOXjY+7D+EDI/D18tO2WdJpBZY6K22aVkXJnzI3tGcYrz4+haT0\nRPSW+RFhQQcnamnycW/NlkGR2hSNannm6VSbNzrMYU7bBQxuNEQrY9R8qNQyztu1BVY6PYO8hpCj\n5HDu6m/ad3x3TCQjIgMYERlAdEIUvl5+bB64A2/XFtp+1E6mEZEBWjSauh3AJr9wrZNs3L7ntd/5\nuLcmfGCEVuZ5OtXWOreiE6K0cxubeolzV38DCk79aKo9Ye53aoSc4RTKpjqyVIblvuHUisb3gvG5\nNLwfDH82F+Vm6v/FbScZRjEX9vfCysaiorpLoyzaeSXdR0nq63vRDi2PNq36nbyburc0xwTzU7Gb\nI/Vx5SLXQ1QEH/fWrO31EevOhhV4dnZ38MBKp2d5l1Us7bySpPRE5hybWeCZSO5ZIYQQouJIxFkF\nux9GvZU0MsPwwdJw1HVJtq/s56Q4I5eNR1iD+TWjKnt+jRmOvFdH6BuOti/K7phIZh+dyYKOi4sc\nUaeOsp+wbywR/pGERr/Np79+RB55WOos+bDvp3eM9DccgV+cvID50fbq8dVRgi52Liaj48qSGj1l\nHNFoahS+Gt1ZkpHo6r4MI0PVaILCvut3M2K/OOkq7BoYfpf6ft2dm1k3tCk51c+MiAzQovTK8zul\nRsyV93EfFDJqunIoSduppPWWYXkD/0RrGdcbhpEyQIFILUCrb9SOqoBt/sxpP6/AfnbHRN4RRWwY\n1WpYXpoqUwEGb/XDSqcnJSuF6nbVWdUthKCDE7H637SQQIGoNeNoqqWdV5CcnsT4/aNZ3PEt1p0N\nu6NsUuuWotpXxvWBYf4Mp3EqLD/motDMXUdT5bFx5FxhEWem9mfYZlDTXliZbyri7F62lwqrg4yv\nQWn2XZ4RZ+rni1tfl+V5vZftBFPHgrvrCClu3sszX6JyqOzPZ9J2qhxK2nYybgsZt0/OJp+558+Z\nQgghxL/N3bSbpONMlKl/04NlcacOMp6m6EE7L6XpqBq63Z9Lty7yfp/12sMBFD7dk8o/wo+4tFh0\nCizv8h+eaTbSZJpKGlFU1PU03Gd5PEybenFoamqgknacmTpGcfdzr6dFKs5UR2pag9vMMvnS/V6m\nz5y7vQ7/dvLyp3K4122nkrygLs6UZ6Y6w9SpkIynTjRXbhjvT+3UMZ6W0DA6ylQnlbn/G3c2lTb/\n5jrEDKPYCqs/i9s5Zu6Y5uqf0nQ4GHZCQdHTPBY3vWWhuPfe/aKi0ny/nKuS3lP3S77E3bsfnttu\nW9/goSoPVXQy/vWK03YybAOYq+PVv6s/V9b7TgghhLgfSceZqFQu37wsDXkTHtTzcvnmZfw2+RE5\nIrLY+bt88zJXUq7QtnbbIs+L4d/VYy3svpCajjVpW7utyc8P/nIwW4ZteeDOt6lzVVb3VXGuQ2U5\nr5Xxu1QZ0yTEg+7yzcsABb57J2JPmKwbTsSe4KWdL2llmKkyTf0eV9T3uaTlrKn8G/+9uPVrcY5V\n2nNivG1p0yXlrChrck8JcyrzvaHWFT+M+6GikyKKoD67AiV6VhZCCCFE5SAdZ0IIIYQQQgghhBBC\nCCGEEEIAFhWdACGEEEIIIYQQQgghhBBCCCEqA+k4E0IIIYQQQgghhBBCCCGEEALpOBNCCCGEEEII\nIYQQQgghhBACkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIYQQQggh\nhBBCCCGEEEIIIQDpOCt3Z86cITAw8I7fHzx4kCFDhjBs2DC++uorALKzs5kyZQrDhw9nxIgR/Pnn\nn+Wd3BIpSd6ysrKYMmUKQ4cOZfTo0Vy4cKGcU1ty5vIHkJGRwfDhw7VrlJeXx5w5cxg2bBiBgYFc\nvHixPJNaYiXJW3G2qWxKkr/s7Gxef/11RowYwVNPPcWBAwfKM6mlUpL85ebmEhwczPDhw3n66af5\n73//W55JLbHS3JtXr16la9eulb7MhJLnb/DgwQQGBhIYGEhwcHB5JbNUSpq3tWvXMmzYMJ588knC\nw8PLK5lCFKmoOt1UO8fcNhcvXuTpp59mxIgRzJ07l7y8PG0/165do2/fvmRmZpZf5u5z5XFt1q9f\nT0BAAAEBAbzzzjvlm8H7VHlcl40bNzJkyBCeeuopdu7cWb4ZvI+VV3mWl5fH2LFj+fzzz8svc0KI\nSkPaTpWXtJ0qJ2k7VV7SdvqXU0S5WbdundK/f38lICCgwO+zsrKUXr16KTdu3FAyMzOVJ598UklO\nTlb27dunBAUFKYqiKN99953y8ssvV0Syi6WkeduwYYMya9YsRVEU5c8//1RGjx5dEckuNnP5UxRF\n+emnn5TBgwcrHTp0UP744w9FURRlz549yvTp0xVFUZRTp04pEyZMKNf0lkRJ81bUNpVNSfP39ddf\nKwsXLlQURVGuX7+udO3atTyTW2Ilzd++ffuUGTNmKIqiKMePH3/g7s2srCzlxRdfVPr06VPg95VR\nSfN3+/ZtZdCgQeWdzFIpad6OHz+ujB8/XsnNzVVSU1OVkJCQ8k6yEGYVVqeba+eY22b8+PHK8ePH\nFUVRlNmzZyt79+5VFEVRDh8+rAwaNEh57LHHlNu3b5dn9u5r9/raXLp0SRk8eLCSk5Oj5OXlKcOG\nDVN+++23cs7l/edeX5erV68qfn5+SlZWlpKSkqJ06dJFycvLK+dc3p/KozxTFEVZuXKlEhAQoGza\ntKm8siaEqESk7VR5SdupcpK2U+Ulbad/N4k4K0d16tQhNDT0jt//+eef1KlThypVqmBtbY2Pjw9R\nUVHUr1+f3Nxc8vLySE1NxcrKqgJSXTwlzdsff/xBly5dAPDy8qr0kSHm8gf50XPvvvsuXl5e2u+i\no6Pp3LkzAC1btuTnn38ul3SWRknzVtQ2lU1J8+fr68srr7wCgKIoWFpalks6S6uk+evVqxcLFiwA\n4MqVKzg7O5dLOkujNPfmsmXLGD58OG5ubuWRxLtS0vydO3eOjIwMRo8ezciRIzl9+nR5JbXESpq3\n7777jkaNGvHSSy8xYcIEunXrVk4pFaJohdXp5to55rb55ZdfaNOmDQBdunTh2LFjAFhYWPDxxx9T\ntWrV8szafe9eXxt3d3c++OADLC0t0el05OTkYGNjU865vP/c6+tSvXp1IiIi0Ov1/P3339jY2KDT\n6co5l/en8ijPdu/ejU6n07YRQvz7SNup8pK2U+UkbafKS9pO/27ScVaO+vbta7LzKzU1FScnJ+1n\nBwcHUlNTsbe3Jy4ujn79+jF79uxKPS1eSfPWpEkT/u///g9FUTh9+jSJiYnk5uaWZ5JLxFz+AHx8\nfPDw8Cjwu9TUVBwdHbWfLS0tycnJuadpLK2S5q2obSqbkubPwcEBR0dHUlNTCQoK4tVXXy2PZJZa\naa6flZUV06dPZ8GCBQwYMOBeJ7HUSpq3zZs3U7169fumsVHS/Nna2jJmzBg+/PBD5s2bx9SpUx+Y\ncuX69ev8/PPPrF69WsuboijlkVQhilRYnW6unWNuG0VRtIdUBwcHUlJSAOjYsSPVqlUrj+w8UO71\ntdHr9VSvXh1FUVi2bBlNmzalfv365ZS7+1d5fGesrKz47LPPGDZsGAMHDiyPbD0Q7vW1+e9//8uO\nHTu0QWhCiH8naTtVXtJ2qpyk7VR5Sdvp3006zioBR0dH0tLStJ/T0tJwcnJi/fr1dOrUiT179rB1\n61ZmzJhx383dbC5vQ4YMwdHRkREjRrBv3z6aNWtW6SN7SsI433l5efdNR5OA+Ph4Ro4cyaBBgyp1\nx9LdWLZsGXv27GH27Nmkp6dXdHLKxDfffMOxY8cIDAzkt99+Y/r06SQnJ1d0sspM/fr1GThwIDqd\njvr161O1atUHJn9Vq1alU6dOWFtb4+XlhY2NDdeuXavoZAkBFF6nm2vnmNvGwsKiwGcrc9Tv/aA8\nrk1mZiZTp04lLS2NuXPn3ussPRDK6zvz7LPPcuTIEaKiojh+/Pi9zNID415fm4iICBITE3nuuefY\nsmUL69ev5/Dhw+WQMyFEZSJtp8pL2k6Vk7SdKi9pO/27ScdZJdCgQQMuXrzIjRs3yMrK4ocffuCx\nxx7D2dlZ67muUqUKOTk5lToqyxRzeTt79izt27fn888/x9fXl4ceeqiik1qmHn/8ca2gO336NI0a\nNargFIni+vvvvxk9ejSvv/46Tz31VEUnp8xFRESwdu1aAOzs7NDpdAUq7/vZxo0b+eyzz9iwYQNN\nmjRh2bJluLq6VnSyyszXX3/N0qVLAUhMTCQ1NfWByZ+Pjw9HjhxBURQSExPJyMiQaVdEpVFYnW6u\nnWNum6ZNm3LixAkADh8+TKtWrco5Nw+We31tFEXhxRdfpHHjxsyfP/+BGuR1L93r6xITE8PLL7+M\noijo9Xqsra0fmLbMvXavr820adMIDw9nw4YNDB48mFGjRmnT8wsh/j2k7VR5SdupcpK2U+Ulbad/\nNwmBqUDbt28nPT2dYcOGMWPGDMaMGYOiKAwZMoSaNWsyatQoZs6cyYgRI8jOzua1117D3t6+opNd\nLEXlTa/Xs3r1atasWYOTkxOLFi2q6CSXiGH+TOnduzdHjx5l+PDhKIrC4sWLyzmFpVdU3u53ReVv\nzZo13Lp1i/fee4/33nsPgPfffx9bW9vyTGapFZW/Pn36EBwczDPPPENOTg4zZ858YPJ2vysqf089\n9RTBwcE8/fTT6HQ6Fi9efN9EshaVt+7duxMVFcVTTz2FoijMmTNHHrJEpWGqTi+qnWOuHTB9+nRm\nz57NqlWr8PLyom/fvhWcu/vbvb42+/fv5+TJk2RlZXHkyBEAJk+ezGOPPVaR2a707vV1sbS05JFH\nHmHYsGHaehDqehGicFKeCSHKg5Q1lZe0nSonaTtVXlKe/bvpFFlERAghhBBCCCGEEEIIIYQQQgiZ\nqlEIIYQQQgghhBBCCCGEEEIIkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBAC\nkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIcQ9FBsbS48ePUz+rXHj\nxvf02IMGDbqn+xdCCCGEKA+bN29mxowZFZ2MuxYYGMiJEycqOhlCCCGEeMBJ20kIURak40wI8UDa\nunVrRSdBCCGEEEIIIYQQQgghxH3GqqITIIR4cKxZs4Zt27ZhaWlJx44dGTFiBLdv3+a1117j/Pnz\nODs78+6771KtWjVtmxs3bvDGG28QExODtbU1M2bMoH379maP0aNHD3r06MEPP/wAwOLFi2natCmB\ngYFUqVKF8+fP8/bbb+Pv78/vv/9udv+HDx8mJCSEnJwcateuzYIFCwqkSwghhBCiuHJycnjzzTc5\nf/48f//9N/Xr18fLy4uaNWsyZswYAIKCgujfvz/Nmzdn6tSp3Lx5k0aNGhEVFcXhw4cL3f/Fixd5\n5plnuHHjBt27d2fKlCnodDq++eYbPv74Y3Q6Hc2aNWP27Nk4ODiY3c+yZcs4evQolpaW9OzZk5df\nfpnQ0FAuXLjApUuXuHHjBsOGDWPs2LFs3ryZLVu2aMccOXIkc+bMISEhAZ1Ox5QpU+jQoQOJiYnM\nnDmTlJQUkpOT8fPzY+rUqWRlZfHGG2/w888/4+npyfXr18v0nAshhBDi/iVtJ2k7CVHZScSZEKJM\nfPvttxw8eFBrKFy8eJEjR45w7do1nn/+eXbs2EGNGjXYuXNnge1Wr15NnTp12LVrF8uXL+ftt98u\n8lhVq1YlIiKCoKAgpk+frv2+cePG7NmzhyZNmhS6/2vXrrFy5Uo+/PBDIiIi6NSpEytWrCi7kyGE\nEEKIf5VTp06h1+v58ssv2bdvH5mZmbi7uxMZGQlAamoqP/74I926dWPRokX069eP7du34+vrS2Ji\nYpH7j42NJTQ0lC1bthAdHc2BAwf4/fffWbNmDRs2bGD79u3Y2dnxzjvvmN1HXFwchw8fZtu2bXzx\nxRdcuHCBzMxMAP773/+yfv16Nm/ezJdffskvv/wCQGJiIlu2bGHy5MksWrSIIUOGsHnzZsLCwpgz\nZw6pqans2LGD/v3789VXX7Ft2zY2bdrEtWvX2LBhAwC7du1i1qxZXLp06W5PsxBCCCEeENJ2kraT\nEJWdRJwJIcrE8ePH8fPzw9bWFoAhQ4YQERGBm5sbzZs3B6Bhw4Z3jJiJiorSOq0aN27Ml19+WeSx\nhg4dCuRHn82YMYNr164BaMcpav//93//R3x8PCNHjgQgLy+PKlWqlCbbQgghhBC0bt2aqlWrsnHj\nRmJiYrhw4QLVqlUjKyuLixcvcurUKbp37461tTVHjx5lyZIlAPTu3RtnZ+ci99+jRw+qV68OQL9+\n/Th58iQJCQl0795di5gfNmwYwcHBZvdRs2ZNbGxsGD58ON27d+fVV1/FxsYGgP79+2ujrXv06MHx\n48epVq0aTZs2xcoq/5Hx2LFjxMTEEBISAuSPFL98+TJjxozh+PHjfPjhh5w/f57s7GwyMjI4efIk\nw4YNA6BevXo89thjpTm1QgghhHgASdtJ2k5CVHbScSaEKBN5eXl3/C4nJ0drMADodDoURSnwGcO/\nA/z555/Ur18fCwvzAbGG2+Tl5WFpaQmgddoVtf/c3Fwef/xx1qxZA0BmZiZpaWlmjyeEEEIIUZgD\nBw4QEhLCyJEjefLJJ7l+/TqKojBw4EB27tzJqVOneOGFFwCwtLS8oz1UFMP2jKIoWFlZ3dH2UhSF\nnJycQvcRHh7OyZMnOXz4MMOHD9dGNqttKTDftsrLy+OTTz6hatWqQP6I6ho1arB06VIuX75M//79\n6dWrF8eOHUNRFHQ6XYE0GrfJhBBCCPHvJW0naTsJUdnJVI1CiDLRrl07IiMjuX37Njk5OXzzzTe0\na9euyO1atWqlTd/4559/8sILL6DT6QrdRg3d37dvHw0aNCg0WszU/ps3b87p06f566+/AHjvvfdY\nvnx5sfIphBBCCGHs+++/p1+/fgwZMoQaNWoQFRVFbm4uAwYMYOfOnVy8eJFWrVoB0KFDB7Zv3w7k\nT3V969atIvevfi4zM5PIyEg6dOhAmzZtOHjwIDdu3ADgq6++om3btmb38euvv/Lss8/SunVrpk+f\nToMGDbS20P79+8nKyuLmzZv83//9H506dbpj+3bt2rFp0yYA/vjjDwYOHEhGRgZHjx5lzJgx9OvX\nj/j4eBITE8nLy6N9+/bs2LGDvLw84uLi+PHHH0t2UoUQQgjxwJK2k7SdhKjspOtaCFEmunfvzm+/\n/caQIUPIycmhc+fOdO/enU8//bTQ7YKCgpg1axYDBw7EysqK5cuXF9lx9uOPP/L1119jZ2fH0qVL\nS7x/Nzc3Fi9ezKuvvkpeXh41a9bkrbfeKnGehRBCCCEAAgICmDp1Krt378ba2pqWLVsSGxuLh4cH\n1apVo2XLllr7ZubMmUyfPp2vvvqKRx55pFjTDXl5eTFu3Dhu3bpF//79tZcz48ePJzAwkOzsbJo1\na8a8efPM7qNp06a0bNmS/v37Y2dnR5MmTejSpQu//PILNjY2jBgxgtTUVMaPH0/Dhg356aefCmw/\na9Ys5syZw4ABAwBYvnw5jo6OjB8/nmnTpuHs7IyLiwuPPvoosbGxjBgxgvPnz9OvXz88PT1p1KhR\naU+vEEIIIR4w0naStpMQlZ1OKWmsqxBCVKAePXrw6aefUrt27YpOihBCCCFEiX366ad06NCBhg0b\n8ssvvzB79mw2b95cYekJDQ0FYNKkSRWWBiGEEEIIc6TtJISoCBJxJoSodAIDA02G3g8fPrwCUiOE\nEEIIUXbq1q3L5MmTsbCwwMbGhgULFrBz507Wrl1r8vNbt24t0f4La0c9/fTTpUqzEEIIIURFkbaT\nEKIiSMSZEEIIIYQQQgghhBBCCCGEEIBFRSdACCGEEEIIIYQQQgghhBBCiMpAOs6EEEIIIYQQQggh\nhBBCCCGEQDrOhBBCCCGEEEIIIYQQQgghhACk40wIIYQQQgghhBBCCCGEEEIIQDrOhBBCCCGEEEII\nIYQQQgghhACk40yI+9bmzZsZP358RSejzM2fP5/Q0NCKToZJb7zxBseOHSvRNmWdn8uXLzNp0qQy\n258QQghxv5oxYwYffvhhRSfjrl27do3GjRuXevv4+Hj69+/PwIEDOXXqlNnP3S9tiBdeeIE//vij\nRNuMHz+ezZs339Vxw8PD2bhx413tQwghhHiQFdb2aty4MdeuXSvxPr/++msmTJhQ4HeTJk2id+/e\nDBo0iEGDBrF48eJSpRfgwIEDLFy4sETb/Pbbb/Tq1YvBgwcTGxtr9nM//fQTc+bMKXXahBCVm1VF\nJ0AIIe4XixYtqugkcOXKFf7666+KToYQQgghKokTJ05Qo0YN1q9fX+jn7pc2xPvvv18hx42Ojubh\nhx+ukGMLIYQQ/zY3btxg1apVbNu2jbZt2xb426lTp/jmm2+oWbPmXR+nZ8+e9OzZs0TbHDhwgLZt\n2xb5DuiPP/4gMTHxbpInhKjEpONMiDKWl5fH4sWLOXPmDGlpaSiKwsKFC2nUqBFdu3Zlz549uLq6\nAjB06FBeeuklvL29CQ4O5tKlS1StWhVXV1cefvjhIkcFJycnM2bMGJKSkvD09GTBggW4urqSkJDA\nm2++SVxcHIqi4O/vz9ixYwvd159//skbb7xBVlYWiqLw1FNP8cwzzxAaGsr58+f5+++/uXr1Ko88\n8giLFi3C0dGRHsojUuYAACAASURBVD160Lx5c37//XcmT55M8+bNmT9/PvHx8WRnZ+Pn56eNHFqz\nZg379+8nMzOTjIwMpk+fTu/evUlNTeWNN97g3LlzuLm5YWlpiY+Pzx3ntHv37rzzzjt4e3sD8Npr\nr9G6dWvatm1rMt2GYmNjCQwMpE2bNpw7dw5FUZgzZw6tWrUCICwsjL1795KXl4enpydz586lZs2a\nBAYGUqVKFWJiYnj66afZu3cvzzzzDL6+vuzfv5933nmH3NxcHB0dCQ4Opnnz5sXKj7ETJ06waNEi\n7O3tSU9P5+uvv+a7774jLCyM7OxsbG1tmT59Os2bN2fWrFkkJiYyZswY5s2bx4ABA7TR5bGxsdrP\nmzdv5uuvvyYjIwNHR0cGDx7Mvn37sLCw4OLFi+j1epYtW0ajRo0KTZsQQghxN+51uyg6Opo9e/aQ\nmppKx44dmT59OlZWVvzwww8sX76cjIwM9Ho9r776Kl26dLlj+5CQEPbt24der6datWosWbIENzc3\nmjZtynPPPceJEydIT09n8uTJ9OnT5476dcOGDYSHh/P555+Tl5dH1apVmT17Ng0aNOCvv/5i/vz5\npKenk5SUxCOPPMLbb7+NjY0Ne/fu5T//+Q92dnY8+uijJs/dl19+ycGDB1m7di2Q31YbNWoUhw4d\nwtLSEoDjx4/z9ttvk5KSQmBgIC+//DILFixgx44dQH4bY8GCBWzdurXUbYjC8mjoxIkTLF++nJo1\na3L58mVsbW1ZunQpDRo0ICsrixUrVhAVFUVubi5NmzZl1qxZJtuTS5YsYfXq1Xh7e/Pll1+yYcMG\nLCwsqFGjBrNnz6Z+/fokJiYyY8YMkpKSqFWrFlevXjV5DmfMmMGNGze4fPky3bp145VXXjGZju+/\n/56DBw9y9OhRbG1tuXbtGtevX9dGkYeGhmo/m2oftmzZkh9//JH4+Hh8fHxYtmwZFhYyuYsQQoj7\nk7n6F/I7tYYPH87ff//Nww8/zMqVK7G3ty+w/dq1a9myZQtWVlbUrVuXpUuX4uTkVOAzu3btws3N\njWnTpvHtt99qv798+TJpaWnMnTuXuLg4Hn30UaZPn07VqlULbL9582b27t3L7du3iYuLw8PDg2ee\neYbPPvuMCxcu8PzzzzN69Gg2b97Mnj17WLt2LYGBgUXW2du2bePzzz8nNzeX27dv07FjR2179bh7\n9uzhzTffJCQkhJSUFIKDg/H39zfZBtuxYwehoaGcPn2apKQkGjduzIoVK8y+hzI0fPhwRo0aha+v\nLwArVqxAURRef/31Ap8z1241dy0sLS158803uXDhAjdv3sTBwYEVK1bg5eVVshtFiAectOaFKGNn\nzpwhKen/2bvzuCjr/f//zwEEFdCiUEzTvh41W829RdzSNM09UvBjUWafLLVyySWXUnPpQ1Z61JN2\nynNMU0tTlNJKcylNkcrMjmXW0SBINBcWZZv5/cFvpmEYYIAZZuFxv926Jddcy/u65lpe83693+/r\njNavX6+PPvpIgwYN0sqVKxUaGqqePXsqPj5eUmHlR3p6uiIjIzV37lw1a9ZMH3/8sd544w19/fXX\nDm3r119/1cyZM7V161a1aNHC0hpm4sSJ6tixo7Zu3ar33ntP8fHxSkhIKHVd//znP9W9e3dt2rRJ\nK1as0OHDh2U0Gi37tHjxYn388ccKCAjQ0qVLLcs1b95cH3/8sXr27KlJkyZpyJAhlgqX/fv366OP\nPlJKSor279+vd999V1u3btVzzz2nxYsXSyqssKpZs6a2b9+uN954w25LaD8/Pw0ZMkQffvihJOni\nxYvav3+/+vXrV2q5rf3+++/q1KmTtmzZogkTJujZZ59VXl6eNm/erJ9++knvv/++tmzZoi5dumj6\n9OmW5erUqaOPPvpII0aMsEw7efKkZs2apSVLlmjr1q0aN26cnnrqKWVmZjq0P/acOHFCr776quLj\n4/X777/rtdde04oVK7R582bNmTNHY8eOVU5OjubOnavGjRs7NDTVzz//rNWrV2v16tWSpMTERM2Y\nMUPbtm1TmzZtfGJ4KwCAZ3N1XJSWlqZVq1Zp8+bNOn78uDZs2KDz589r3LhxeuGFF7R161YtXLhQ\nkyZN0m+//VZk2dTUVP3rX//Sxo0btWnTJt1zzz367rvvJEkFBQWqW7euNm3apNdff13Tpk2zDD9k\n/Xw9dOiQNm/erDVr1mjz5s16/PHHLQm+DRs2aODAgVq/fr0++eQTJScna/fu3Tp79qymTZumJUuW\naNOmTWrYsKHdfevbt6+SkpKUnp4uqbCiZvDgwZakmSTdeeedGjdunNq1a2d53tvj7+9f4RiitH20\n9cMPP+ixxx7T1q1bNXjwYEvFzooVK+Tv769NmzYpPj5e9erVU1xcnGU563jS7MCBA3rrrbf073//\nW/Hx8XrggQf09NNPy2Qyafbs2WrVqpUSEhI0ffr0UuOtK1euKCEhQZMmTSqxHD179lT37t0VGxtb\nrAGWPbbx4enTp7V69WrFx8frq6++0qFDh8pcBwAAnqi0568k/fHHH3rnnXe0Y8cO/fHHH/rkk0+K\nLL9z505t2rRJ69ev17Zt29SoUSO9++67xbYTHR2tMWPGqGbNmkWm//nnn7r77rs1e/Zsbd68WbVr\n19a0adPslvXw4cOaP3++duzYoXPnzikhIUH/+te/tHLlSr3++ut264bKemb3799fw4YNU58+ffTq\nq6+WeJwaNGhgicHmz59f4nxmKSkp+vDDDxUXF1dmPZRZVFSUpR6soKBA8fHxioqKKjZfSXFrSd/F\n3r17VadOHW3YsEE7duzQrbfeynDVgB30OAOcrHXr1qpbt67WrVun3377TQcPHlRwcLCkwofeSy+9\npJEjR2rjxo0aPHiw/Pz8tGfPHsvDsF69epbWJGW5++671aRJE0nSgw8+qAcffFDZ2dn6+uuv9fbb\nb0uSQkNDNXjwYO3du1d9+/YtcV09e/bU5MmT9d133+muu+7S9OnTLa1uevfurWuvvdaynXnz5mny\n5MmSZOm1lZ2drcTERF28eFFvvPGGZdrx48fVp08fLVy4UFu3btWpU6csrc6lwqBs2rRpMhgMCgsL\nK1JhYm3IkCF68MEHNWXKFG3btk3dunWzVLqVVG5rdevWVb9+/SRJXbp0kb+/v3788Ud9/vnnOnr0\nqIYMGSKpsGX85cuXLcuZ98/aV199pTvvvFPXX3+9JOmuu+5SWFiYvv/+e4f3x1aDBg0sFWdffvml\nzpw5o9jYWMvnBoNBp0+fdmhdZjfeeKNCQkIsf99yyy2KiIiQVNgi6dNPPy3X+gAAKC9Xx0UDBgyw\ntHLu37+/9uzZo4YNG6px48Zq1aqVpMKkTJs2bXTo0CHLs1uS6tevr5YtW2rQoEHq3LmzOnfurLvu\nusvy+f/8z/9Iklq2bKkWLVooMTFRUtHn6+7du3Xq1CkNGzbMstzFixd14cIFTZo0SV9++aVWrlyp\n//73vzpz5oyys7OVlJSkFi1aqFmzZpKkoUOHatGiRcX2LSQkRL169VJ8fLxiY2MVHx+vtWvXlvMb\nqBhH99G29XfLli0tsdOQIUM0e/ZsnT9/Xrt371ZGRoblXbF5eXm65pprLMvZi7f27dunPn36KCws\nTJI0ePBgvfzyy0pOTtb+/fstsWiTJk2KDfFkzbrnf1nlcJRtebt16yY/Pz+FhISoSZMmunjxYrnX\nCQCAJyjt+StJPXr0UK1atSQVxli27zU7cOCAevfurbp160qSpk6dWq7tt2rVqkhj7TFjxqhTp07K\nzc1VYGBgkXlvu+02NWjQQJLUqFEjderUSX5+frr++ustox3Zctcz+4477lBAQGE1fFn1UGb333+/\nXnnlFaWnp+uHH35QkyZNdMMNN9hdv724NTExscTv4vrrr9fq1at16tQpHTp0SK1bt3bm7gI+gcQZ\n4GS7d+/Wyy+/rEcffVT33nuvmjZtamlN3a5dO+Xn5+u7777Ttm3btG7dOklSQECApfWOJIeHdrFu\ncWwymRQQECCj0VhkXVLhQzg/P7/UdXXr1k07duzQ/v37deDAAS1dutRSPuvtGI3GIuUzV1aZt7tu\n3TpLEPXnn38qKChIx44d01NPPaXY2Fjdc889at++vV566aUiZbe3T9YaNmyom2++Wbt379amTZss\nLY5KKnfjxo1LPFbm8vr7+8toNOrxxx9XTEyMJCk3N7dI4GQ75IBtea2nmY+xI/tjy3o7RqNRd911\nl15//XXLtNTUVNWrV0+HDx+2TDMYDEW2lZeXV+I6JRVpyWW7LAAAruDquMj2OWuOhWxZP6et1/vu\nu+/q6NGjOnDggObNm6eOHTtaWvzaxj/mv22f2QMGDLD0rDIajTpz5ozq1q2r5557TgUFBbr//vvV\ntWtXpaamymQyFXsGmytR7ImKirIMi9isWbMiiT97yooNHJ3P0X20Zft9mEwmS7w1bdo0denSRZKU\nlZWlnJwcu9uzXtbetPz8/HIdQ9t9Ka0cZsRYAIDqqqz6Dutnrr1nnr+/vwwGg+XvS5cu6dKlS2rU\nqJFD2z98+LAuXrxoeS+ZOXayV7dim0grLR4wK+8z21WxVWn1UNbL9OrVS9u2bdM333xjt7eZmb24\ntaTvYu/evdqwYYOGDx+ufv366aqrrrIkRgH8haEaASf78ssv1a1bN8XExOi2227TZ599poKCAsvn\nUVFRmjNnjm688UZdd911kgp7QH3wwQeSpPPnz+uzzz4r8nArycGDB/X7779Lkt577z117txZISEh\natWqlaWbdUZGhjZv3qy777671HVNmDBBH330kfr27atZs2YpJCREqampkgq72mdkZMhoNGrDhg3q\n1q1bseVDQkJ0xx136J133pFU+ECOjo7Wzp07lZiYqFtvvVWPPvqoOnTooJ07d1qOSWRkpD744AMZ\njUZdvHhRO3fuLLGMDz30kFauXKkrV65YWg+XVm5rf/75p/bu3StJ2rVrl2rUqKEWLVqoU6dO+uCD\nD5SZmSlJeuONN/T888+XeqzuvPNOffnll5Yhnw4cOKDU1FS1atWqXPtT1vpPnjwpSdqzZ4/69++v\nnJwc+fv7WwKwOnXqKC8vTz///LMk0YMMAOBxXB0XJSQkKDc3Vzk5Odq0aZM6d+6sVq1a6ddff7UM\nu3jixAklJiaqQ4cORZY9fvy4HnjgAf3tb3/T//7v/yo2NlY//vij5fPNmzdLko4dO6Zff/1V7du3\nL7b9e+65RwkJCTpz5oykwnjskUcekSR98cUXevrpp9WnTx8ZDAYdOXJEBQUFateunX7++WcdP35c\nUuEQjCW54447JElLly4ttbLELCwsTL///rvOnTsnk8mkzz77zPJZRWOI0vbR1vHjxy37tX79erVp\n00Z16tRRp06dtGbNGuXm5spoNGrGjBl2e9lZ69Spkz766CNLS/aNGzfqqquuUpMmTRQZGan169dL\nKhyO++DBg2UeG/M6SyqHv7+/pVLw6quv1rFjx2QymZSdna0vvvjCofUDAODtSnv+OuLuu+/Wp59+\naqljWbJkiVatWuXw9rOysjR37lxduHBBUuFrRXr16uVwo2RnCwsL04kTJ5STk6P8/Hx9/vnnls+s\nY4fSYjBb5amHeuihh7Rp0yZ988036tWrV4nrtBe3lvRdfPHFFxo0aJCioqL0//7f/9OuXbuKxOcA\nCtHjDHCyYcOGaeLEierXr5/8/f3Vrl07yws//fz8NHDgQC1atKhIZcHUqVM1ffp0S0uP6667rtg4\nz/a0aNFC06ZN09mzZ9W0aVPNnj1bUuELQ2fPnq1NmzYpNzdX/fr10+DBg0td11NPPaUXXnhB69ev\nl7+/v3r06KEOHTro0KFDuvbaazVq1CidP39e7du315NPPml3HXFxcZozZ4769eun3NxcPfDAA+rf\nv7/Onj2rTz75RH369FGNGjV011136eLFi8rMzNTYsWM1a9Ys3X///QoLC1OLFi1KLGP37t310ksv\nadSoUWWW21ZQUJC2bNmiuLg41axZU0uXLpW/v7+ioqL0xx9/6KGHHpLBYFCDBg20YMGCUo9Vs2bN\nNGvWLI0ZM0YFBQWqWbOm/vGPfyg0NLRc+1OS5s2ba/bs2Ro/frylJ+Hy5ctVu3ZtNW/eXP7+/nrw\nwQf1/vvva9KkSRo1apTCwsIcHuITAICq4uq4qFGjRoqOjlZ2drZ69uypQYMGyWAw6I033tCcOXN0\n5coVGQwGzZ8/3/JSe7OWLVvq/vvv15AhQ1S7dm3VrFmzyPslvv76a23YsEFGo1Gvvfaa3R5WkZGR\nGjVqlB577DEZDAaFhITo73//uwwGg5577jk9/fTTqlu3rmrVqqX27dvr9OnTCgsLU1xcnCZOnKga\nNWrYTchZi4qK0rJly9SjR48yj3ezZs00bNgwDRkyROHh4eratavls4rGEKXto61rr71Wr7/+ulJS\nUhQWFqZXXnlFUmG8tnDhQg0aNEgFBQW66aabNGXKlFL35Z577lFsbKweeeQRGY1GhYWF6c0335Sf\nn59mzZqlqVOn6v7771dERIRatmxZ5rEpqxydO3fWnDlzJEkxMTHat2+f7rvvPtWvX1+tW7emFxkA\noFoo7fnriC5duujnn39WdHS0pMLYxPx8dXT5ESNGKDo6WkajUTfeeGO5lnc286hJ999/v8LDw9Wx\nY0dLQ6vWrVvr9ddf19NPP62lS5eWGIPZKk891K233qqAgAD16tVLQUFBJa7TXtxa0ndx/PhxzZw5\nU5s2bZK/v79uueUW/fTTTxU/SICPMpj4BQC43Zo1a3TzzTerdevWys3NVUxMjMaOHWsZRsadlixZ\novPnz2vmzJnuLkqFJScnq1+/fvrmm2/cXRQAAFAGT4iLbrzxRh04cMDyfg+U7eDBg5ozZ462bdvm\n7qIAAABUG8StgGvQ4wzwAOZWH0ajUXl5eerdu7e6dOmimJgYZWVl2V1mzZo1lpe2OyIzM1PDhw+3\n+1lwcHCVvWy+unr22Wf166+/2v3stddeU9OmTau4RAAAeKaS4iIAAAAAAKoCPc4AAAAAAAAAAAAA\nSY4NUAsAAAAAAAAAAAD4OBJnAAAAAAAAAAAAgHz0HWfp6RnuLoIkKSUjWbHbh2tV7zVqGNrI3cUB\nAMDjhIeHursIkOfETmbEUAAA2Efs5Bk8LXbyJiXFecR/AABnq0zc5JPvOPOkACYlI5kHPgAAJaDy\nxzN4UuxkRgwFAEBxxE6ewRNjJ29SUpxH/AcAcKbKxE0M1ehiPPABAADKjxgKAADAN5UU5xH/AQA8\nBYkzAAAAAAAAAAAAQCTOAAAAAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAA\nAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAAAAAAAAAAAEkkzgAAAAAAAAAA\nAABJJM4AAAAAAAAAAAAASSTOAAAAAAAA4OXOnTunLl266OTJkzp16pSio6MVExOjWbNmyWg0SpI2\nbNigwYMH66GHHtLnn38uSbpy5YrGjh2rmJgYjRo1Sn/++ac7dwMAAHgAEmcAAAAAAADwWnl5eZo5\nc6Zq1qwpSZo/f76effZZrV27ViaTSTt37lR6erpWr16tdevW6Z///KcWLVqk3Nxcvffee2rRooXW\nrl2rgQMHatmyZW7eG9+UkpHs7iIAAOAwEmcAAAAAAADwWgsXLtSwYcNUr149SdKxY8fUoUMHSVLn\nzp21f/9+fffdd2rdurUCAwMVGhqqxo0b6/jx40pKSlJkZKRl3gMHDrhtP3xVSkayYrcPJ3kGAPAa\nJM4AAAAAAADglTZt2qSwsDBL8kuSTCaTDAaDJCk4OFgZGRnKzMxUaGioZZ7g4GBlZmYWmW6eF87V\nMLSRVvVeo4ahjdxdFAAAHBLg7gIAAAAAAAAAFbFx40YZDAYdOHBA//nPfzR58uQi7ynLyspSnTp1\nFBISoqysrCLTQ0NDi0w3zwvnI2kGAPAm9DgDAAAAAACAV1qzZo3effddrV69WjfddJMWLlyozp07\n6+DBg5KkvXv3ql27drr99tuVlJSknJwcZWRk6OTJk2rRooXatGmjPXv2WOZt27atO3cHAAB4AHqc\nAQAAAAAAwGdMnjxZM2bM0KJFi9S0aVP16tVL/v7+GjFihGJiYmQymfTcc88pKChI0dHRmjx5sqKj\no1WjRg29+uqr7i4+AABwM4PJZDK5uxDOlp7OeNQAAHiD8PDQsmeCyxE7AQDgHYidPEN1jp1SMpIZ\ndhEA4BUqEzcxVCMAAAAAAACAUqVkJCt2+3ClZCS7uygAALgUiTMAAAAAAAAApWoY2kireq+hxxkA\nwOeROAMAAAAAAABQJpJmAIDqgMQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQSZwAAAAAAAAAAAIAk\nEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQXJ86OHDmiESNGFJu+a9cuDRkyREOHDtWGDRtKXebU\nqVOKjo5WTEyMZs2aJaPR6MoiAwAAuA2xEwAAAAAAgHu5LHG2cuVKTZ8+XTk5OUWm5+Xlaf78+Xr7\n7be1evVqrV+/XmfPni1xmfnz5+vZZ5/V2rVrZTKZtHPnTlcVGQAAwG2InQAAAAAAANzPZYmzxo0b\na8mSJcWmnzx5Uo0bN1bdunUVGBiotm3bKjExscRljh07pg4dOkiSOnfurP3797uqyAAAAG5D7AQA\nAAAAAOB+Lkuc9erVSwEBAcWmZ2ZmKjQ01PJ3cHCwMjMzS1zGZDLJYDBY5s3IyHBVkQEAANyG2AkA\nAAAAAMD9XPqOM3tCQkKUlZVl+TsrK6tIZZAtPz+/IvPWqVPHpeUDAADwJMROAAAAAAAAVafKE2d/\n+9vfdOrUKV24cEG5ubk6fPiwWrduXeL8N998sw4ePChJ2rt3r9q1a1dVRQUAAHA7YicAAAAAAICq\nU3w8IBfZunWrsrOzNXToUE2ZMkUjR46UyWTSkCFDVL9+/RKXmzx5smbMmKFFixapadOm6tWrV1UV\nGQAAwG2InQAAAAAAAKqewWQymdxdCGdLT+ddHgAAeIPw8JKHHETVIXYCAMA7EDt5BmInAAA8X2Xi\npiofqhEAAAAAAAAAAADwRCTOAAAAAAAAAAAAAJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgD\nAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAA\nAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAk\nkTgDAAAAAAAAUIaUjGR3FwEAgCpB4gwAAAAAAABAiVIykhW7fTjJMwBAtUDiDAAAAAAAAECJGoY2\n0qrea9QwtJG7iwIAgMuROAMAAAAAAABQKpJmAIDqgsQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQS\nZwAAAAAAAAAAAIAkEmdul5KR7O4iAAAAeAxiIwAAAAAA4E4kztwoJSNZsduHU0EEAAAgYiMAAAAA\nAOB+BpPJZHJ3IZwtPT3D3UVwWEpGshqGNnJ3MQAAcIvw8FB3FwHyrNiJ2AgAgJIRO3kGT4qdPB2x\nHQDAXSoTNwU4sRyoAIIHAACAvxAbAQCA8igoKND06dP166+/ymAw6KWXXlJQUJCmTJkig8Gg5s2b\na9asWfLz89OGDRu0bt06BQQEaPTo0erWrZuuXLmiSZMm6dy5cwoODtbChQsVFhbm7t3yCebRBFb1\nXkOMBwDwKgzVCAAAAAAAAK/0+eefS5LWrVunZ599Vq+99prmz5+vZ599VmvXrpXJZNLOnTuVnp6u\n1atXa926dfrnP/+pRYsWKTc3V++9955atGihtWvXauDAgVq2bJmb98h3NAxtRNIMAOCV6HEGAAAA\nAAAAr9SjRw917dpVkvT777+rTp062r9/vzp06CBJ6ty5s7788kv5+fmpdevWCgwMVGBgoBo3bqzj\nx48rKSlJjz/+uGVeEmfORdIMAOCN6HEGAAAAAAAArxUQEKDJkydrzpw56tevn0wmkwwGgyQpODhY\nGRkZyszMVGjoX+86CQ4OVmZmZpHp5nnhmJSMZHcXAQAAlyBxBgAAAAAAAK+2cOFC7dixQzNmzFBO\nTo5lelZWlurUqaOQkBBlZWUVmR4aGlpkunlelM38/jKSZwAAX0TirAJsgwKCBAAAgIohrgIAAJWx\nefNmvfnmm5KkWrVqyWAw6NZbb9XBgwclSXv37lW7du10++23KykpSTk5OcrIyNDJkyfVokULtWnT\nRnv27LHM27ZtW7ftizfh/WUAAF9G4qycbFvU0MIGAACgYoirAABAZd1333364YcfNHz4cI0cOVLT\npk3TzJkztWTJEg0dOlR5eXnq1auXwsPDNWLECMXExOiRRx7Rc889p6CgIEVHR+vEiROKjo7W+vXr\nNWbMGHfvktcgaQYA8FUGk8lkcnchnC093bXjUadkJBcJDmz/BgAAjgkPDy17Jricq2On0hBXAQDg\nOGInz+DO2AkAADimMnETPc4qwLYyh8odAACAiiGuAgAAAAAAnoTEGQAAAAAAAAAAACASZwAAAAAA\nAAAAAIAkEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQSZwAAAAAAAACcJCUj2d1FAACgUkicAQAA\nAAAAAKi0lIxkxW4fTvIMAODVSJwBAAAAAAAAqLSGoY20qvcaNQxt5O6iAABQYSTOAAAAAAAAADgF\nSTMAgLcjcQYAAAAAAAAAAACIxBkAAAAAAAAAB/DuMgBAdeDSxNmRI0c0YsSIYtN37dqlIUOGaOjQ\nodqwYYMkyWg0aubMmRo6dKhGjBihU6dOSZJ++OEHRUZGasSIERoxYoQ++ugjVxYZAADAbYidAAAA\n4KlSMpIV0BvgcgAAIABJREFUu304yTMAgM8LcNWKV65cqfj4eNWqVavI9Ly8PM2fP18ffPCBatWq\npejoaHXv3l1ff/21cnNztX79en377bdasGCBli9frmPHjunRRx/VY4895qqiAgAAuB2xEwAAADxZ\nw9BGWtV7De8wAwD4PJf1OGvcuLGWLFlSbPrJkyfVuHFj1a1bV4GBgWrbtq0SExOVlJSkyMhISdId\nd9yh77//XpL0/fffa/fu3Ro+fLimTZumzMxMVxUZAADAbYidAAAA4OlImgEAqgOXJc569eqlgIDi\nHdoyMzMVGhpq+Ts4OFiZmZnKzMxUSEiIZbq/v7/y8/N1++236/nnn9eaNWt0/fXXa+nSpa4qMgAA\ngNsQOwEAAAAAALifS99xZk9ISIiysrIsf2dlZSk0NLTYdKPRqICAAPXs2VO33nqrJKlnz5764Ycf\nqrrIjN0MAADcxhtjJ3uIpwAAAAAAgDeo8sTZ3/72N506dUoXLlxQbm6uDh8+rNatW6tNmzbau3ev\nJOnbb79VixYtJEkjR47Ud999J0k6cOCAbrnlliotLy8+BQAA7uRtsZM9xFMAAAAAAMBbFB8PyEW2\nbt2q7OxsDR06VFOmTNHIkSNlMpk0ZMgQ1a9fXz179tSXX36pYcOGyWQyad68eZKkF198UXPmzFGN\nGjV07bXXas6cOVVVZEm8+BQAALiHt8ZO9hBPAQAAVF8pGcnEgQAAr2IwmUwmdxfC2dLTM9xdBAAA\n4IDw8NCyZ4LLETsBAOAdiJ08A7GT48wjD9CICgBQ1SoTN1X5UI0AAAAAAAAAfB8jDwAAvBGJMwAA\nAAAAAADFOOMdtSTNwLuOAXgbEmdOwgMAAADAccROAAAAns08zGJF4raqjPWIKz1bZc4jX8MxALwH\niTMnsH0AOPMmyA0VAAD4mtJiJ2IfAAAAz1DRYRarMlFCUsbzMVxnIc5VwLuQOKsA2xuc9QPAmTdB\nbqgAAMAXOBo7EfsAAAB4lookO6oyUUJSpnKqKu7m++FcBbyNwWQymdxdCGdLT89w2brNFTql3ehS\nMpKddhN05roAAPA04eGh7i4C5FmxE7EPAAAlI3byDK6MneAYYsbKcyROBwBvVpm4yeHEWWZmpjIy\nMmQ9+3XXXVfhDbuSqwMYHs4AADiHL1f+EDv9hdgJAADn8OXYyZuQOHMvb074eFpc7GnlgXPx/boX\nx9/9XJ44+8c//qEVK1boqquu+mtBg0E7d+6s8IZdiQAGAADv4KuVP8ROAADAFXw1dvI2xE7u540V\n0p6e8PPGY4qSefr55us4/p7B5YmzHj16aMOGDQoLC6vwhqqSJwYwPHwAACjOVyt/iJ0cQ3wEAED5\n+Grs5G08sd7JGYjNXK+yx9hV3xGV/L6Ja9q9OP7uV5m4yc+RmRo0aKC6detWeCPVHS+6BwCgeiF2\nKhvxEQAAgOcgNqsalU2aueo7ahjaiKSZD+L7dC+Ov3dzqMfZjBkz9NNPP6ljx44KDAy0TB8zZoxL\nC1dRzmj5U1pGuDzZYvO8ZJgBACjOV1tNV7fYyV6cU1bsY/7BT3wEAIDjfDV28jb0OIO78B15B76n\n8uOYwRVc3uOsfv36ioyMLFLx48uS0hJLbMFRntYd1vNy4QMAUH1Up9jJXtxUVrxk/hwAAACeoyrr\nrujZVjZ7x4j6Rc9H783y8/Vj5qv75esc6nE2depUzZ8/vyrK4xSVafljvlAXRMapbUT7Eucpb48z\nAABQnK+2mq4usVNpcZMjPc6IkQAAKB9fjZ28ja/2OKsqvE+rbBwj78ZvnfIr6Zh5+7HkWnYvl/c4\n++mnn5SVlVXhjXgT85i+1pU/tlnh8pzk9oYtAgAAvq26xE724ibJsR835WmEBAAAAO/gSOxWHd+n\nVd6Ytjoeo9J4228CvrfyKylp5u090biWvZdDiTM/Pz9169ZNQ4cO1cMPP2z5z1dZn8jlHZqxrM+9\n/WIHAABlq06xk71GQmUN0+goYicAAADvUZ7YrTpVIlc0pq1Ox6g0/CbwPY5+l76SdPL28ldXDg3V\neOjQIbvTO3To4PQCOUNFu8wnpSXaHZ7Rdrq9l9lbd7u0/cyat3cvBQDAmXx1uKHqGjuZ4xzzdNu4\np6RhKkqLj4idAAD4i6/GTt6GoRpLRuxmH8elcrzp+NmrN8ZfGLoQVcnlQzUaDAa7//kC880sKS1R\ng+MfUFJaYrHPp+ybaJkvJSNZMQlRikmIKpIdN2fAJZXaCoIbAgAAvs+XYqeSYhrb2Mn8AygpLVFT\n9k1UUlpisZjIXovBslqQEjsBAAB4j9IaQ1VnxLSV4y3Hr6R6Y+vPq7vy9iLjmMFdHOpxNmLECMu/\n8/Pz9eOPP6pdu3ZasWKFSwtXUY62/LHNcG//JUG9m/Yt8rm51XREcAOlZaVaWk9L9CoDAKCyfLXV\ntK/ETmW1BrTucZaSkay0rFRFBDewfH40/UiR2KokxE4AADjGV2Mnb+PrPc6cHZu5s4cJcSZcoawR\nM6SSh7Sv7HXgDee0s8pI7zRUVmXiJocSZ7Z+++03zZ8/X8uWLavwhl2pPAGM+UK2vRDNfy+IjNP4\n3eOUnZetP7JT9eGABLtDEnkqTy8fAKB6qy6VP94cOzkSS5hbVmbnZat2jdpa1HWxxu4creTM08Vi\np7IQuwAAULLqEjt5Ol9OnDmzoto6rnNHjEele9mIvcuvMudVZY+3N5zTjpbR0WPBOYrKqPLEmST1\n7t1b27dvr/CGXamiAYx1Es32/5KK9TiTVO73dFQlb7iZAgCqt+pU+eOLsZOZubfZ+N3jtKjrYkuv\nM3PsZDuvvdaX9hoyAQCAoqpT7OTJfDlxJjnecKqsSnFPiOs8pY7OE1l/R5L3DIfoCdx5XnnDOe0t\n9wf4PpcnzqZOnVrk75MnTyoiIkKLFy+u8IZdqTIBjPm9HOaHhqRiSbGYhChJ0tq+79v93JMufG+4\nmQIAqi9frfypDrGTbbJrQtvndVt4K0n2GxaZl7H9zF6vf2IXAADs89XYqTLy8vI0bdo0paSkKDc3\nV6NHj1azZs00ZcoUGQwGNW/eXLNmzZKfn582bNigdevWKSAgQKNHj1a3bt105coVTZo0SefOnVNw\ncLAWLlyosLCwUrfp64mzsji7R4mruHv73sDcOcCT6jJRdUgAwte5PHH24Ycf/rWAwaCrr75ad999\nt2rUqFHhDbtSZXqcWVf8mBNkUztM123hrYpU8Ei84wwAgMry1cofX4+dbCtL1hz7t6Z8MUEre66y\nJM/KEycROwEA4BhfjZ0qY+PGjTp+/LheeOEFXbhwQQMHDlTLli316KOPqmPHjpo5c6YiIyN1xx13\n6LHHHtPGjRuVk5OjmJgYbdy4UWvWrFFmZqbGjh2rhIQEffPNN5o+fXqp26zuiTPJ8+O3qmrY7unH\nwVG+sh/VAe8P815cZ1WvMnGTnyMznTlzRoMGDdKgQYM0cOBAdenSRUuWLKnwRj2RORk2oe3zejXp\nFUnSoq6LNbXDdI36NFYDN/ctMkRjaSe5bQ80AABQvVSH2Mm6h9iKo8sVXqueZnw5TTEJUUrLSlVS\nWqLDcVB5fjwQWwEAAGu9e/fWM888I0kymUzy9/fXsWPH1KFDB0lS586dtX//fn333Xdq3bq1AgMD\nFRoaqsaNG+v48eNKSkpSZGSkZd4DBw64bV/crTxxlqPxm7tit4ahjaokaRa7fXi59rGqjkd5t+Oq\n41TV37/t9tz526G823Zk/oqccyUpzzXCb7DKc+Z3h6pRauIsLi5OU6dO1dtvv62pU6da/nv++ee1\nY8eOqiqjU9m7gZqHX4yKH6jZB2ZpQWScJGnsztEKr11P19asJ4NBlkqgkk5ye+vmggAAoPrwxdjJ\nzBzPmOMbs4ahjTS1w3TN6/SKateorajmwzR252j1/7C3HtjUq0gcVNnYiNgKAADYCg4OVkhIiDIz\nMzVu3Dg9++yzMplMMhgMls8zMjKUmZmp0NDQIstlZmYWmW6etzoqb5zlzEp+V8V2ru7ZUd7kXFXF\nsp4SM1d1OWy3587jUJHryZH5nZ0QdjRp5gnnk7ks3qoqkvlwrlITZ/fdd586dOig2rVrq0OHDpb/\nOnXqpDfffLOqyug0Jd1A07JStbbv+1py73LV8K+hiOAGOpp+RKcv/Vfp2WcU4BcgqTCRNn73OC2I\njLO0sLZdd1JaomUaFwQAANWLr8VOZtYxlDm+SctKlSStOfZvPfHpo5rx5TQ9cdto/V/SPMW0HCGT\nTEq//IdlPqkwNjLHURVBbAUAAOxJTU3Vww8/rAEDBqhfv37y8/uruisrK0t16tRRSEiIsrKyikwP\nDQ0tMt08b3VU3t4nzqrkt7cuT60ct1eu8sSlVRXLekrMXNXlsN2eve1X1blV3n0vz/xlzePsfXTX\n+VRSBxXrundv4+5rEuVTauLs9ttv16BBgxQfH69evXrppptu0oABA9SjRw/dcMMNVVRE5zFf6NZ/\nT2j7vKbsmyhJighuoEVdF0uSZnw5TUZD4evfDAZpeY+39H7/zVrUdbHaRrRXSkayouIHWi5Wc0XQ\nlH0TPfYBDwAAXMvXYicz6x9LKRnJOpp+RIO29LW82+z5di+ohl8NXVPrGm3qv013NbxbDUOu11v3\n/Uvp2Wck/dXL3zpWqkjMxI8NAABg7ezZs3rsscc0adIkPfjgg5Kkm2++WQcPHpQk7d27V+3atdPt\nt9+upKQk5eTkKCMjQydPnlSLFi3Upk0b7dmzxzJv27Zt3bYv7uaOSn7bdXlS7xZrpZXLFUNcVpan\nxMxVXQ7r88h2+1V9bpV335353jJXJM+qkr39oO4dVc2hd5x9//33GjBggJ566imdPXtW3bt31xdf\nfOHqsrmM+cJLyUjW/ENztSAyTmlZqYpJiNK4XaN1NP2IsvOyZDBJ5y6fU2rW75ZKH/PFmZaVqlMZ\nv+rJTx+3JM/aRrR3ysOeix8AAO/ma7GTJEvSLCYhSrMPzNJVQVdLksJqXqO7Gt6tfFOeRn0aq+2/\nfKyxO0erhl8Nnbt8To9sj9GaY/+29PI3x0qlDX9dFmIlAABg9o9//EOXLl3SsmXLNGLECI0YMULP\nPvuslixZoqFDhyovL0+9evVSeHi4RowYoZiYGD3yyCN67rnnFBQUpOjoaJ04cULR0dFav369xowZ\n4+5d8grOrEi3Xpen9JayVVK5PDXRV52V9J2Udm75ym8SV10/rtzXknpy2tsP27p3R9cHVITBZDKZ\nypopKipKy5Yt06hRo7R582b9/PPPGj9+vOLj46uijOWWnl76eNTmYYbMlT9TO0zXq0mvaELb5zXj\ny2nKNeYoNet3XRtUTy/cOVOvJi1UTf9aWnLvckUEN7BU9gz48H7VC66v0MA6Wtv3fUnFWzLYTiuL\n+ebuiUECAADOFh4eWvZMXsjXYidrSWmJSs8+o5E7HpZRRhWYCvRal7+ra+PuWnX0bb3xbZwahVyv\nCW0nq+U1N2n0Z4/rwwEJSstK1ZR9Ey3vkjX/u21E+3KVlVgJAFCd+Wrs5G3KEzvB95nrGeE+tt9B\neb6Tivy+cOZvEk8/f8qzr+XdF2evm9+KsFWZuMmhHmdGo1Hh4eGWv5s1a1bhDXoC6wtnUdfFmn9o\nrmJvHqnw2vUU6F9DV/JyVMOvhnJNOZq8d7yu5OUo35Sn8bvHWZZrG9FeWwZ9rK2DdliGd7RuzZCU\nlqiYhKgi23Uk4+2pLWsAAIDjfC12MjMPtRheu56eavWMDCaD/OSvuMMLdTT9iD44sV71atXXhLaT\nNWXfBI3bNVqz756nhqGN1DaivRZExhV5Z6x10sw8GoC9bVojVgIAAPBentAbxBuGsfOE42TN08pj\nraRh/RxVkd8XzvpN4owei67+bhzd14rsi72hWiuz7vK+qxEojUOJs4iICH3++ecyGAy6dOmSli9f\nruuuu87VZXMp8/BAx8/9R39e/lNTvpigsTtHq88N/XUh90+1uqa1LuVeVFBAkDLyL+qZ1hMU1XxY\nkQuvbUR7S+tpSZYW1CkZyRq/e5zyCvIs85bn5kFFEAAA3s0XYyfpr/fDjv7scS078oZCg+ro6qCr\nlX75D03aM14pWb/pz8vnJEnhtetpxp0v6dWkV4q8wDnPmKdFXRcrIriBZZp5FICHtg4s9mL4koZZ\nAQAAgOvYxmTOWqe7hzX0hDKUxdPK6GnlseWMJFZFlnXGb5LKlr2qvhtH32dYkX2x98qjyjSedDRp\n5snnNDyDQ0M1njt3Ti+//LL2798vk8mkjh07avr06apXr15VlLHcHBmqMXb7cMXePFJTvpggo9Go\nqR1m6uqaVyvu8EI1qN1Ah9MPSZL85a8xdzynD06sV0rWb5rZcY7GtH3G8p6zKfsmakLb53VbeCvF\nJEQpryDPMqRjWlZqsZbUVPQAAPAXXx1uyNdiJ7OktESN2zVaGbkZOpP9h4wyyk9+mt7xJUnS7IMz\nFBpQR3Vr1lVaZqr+r8vruqbWNZp/aK4WdV2s0Z89rtTM37Ug8lWt+uGfRX78JKUlavzucVrb9/0K\nD7MCAICv89XYqSQmk0nJycm6/vrr3V2UInx9qEbr4c4kOXXos6S0xHIP1e1s3hBfeloZPa089lS0\njN6wb6Wp6vK7cnvmRFbs9uEVGta/vNtyxn54+/ljy9f2pzJxk0OJs9dee03PPfdchTdS1RwJYMwn\nwfZfEjRz/zTlFeQrNet3GVVQZD4/+ale7fp64ranlJzxmz45/bFW3rdK43ePU74xTzPufEnzD83V\n2r7vKy0rVeN2jVaAXw3Le9PMQYYvnXCovnzt5gnA/Xy18sdXY6eYhChl52WrwJSvc9nndNmYLUmK\nqN1ABcYC5RnzdCH3vK4KvFqXci/KT34KD66nQL8g/aPnWxq7c7SevmOcVhxdrqkdpqt3075Fni0V\nHV4FQMUQ2wHex1djJ7PVq1frtdde0+XLly3TGjZsqM8++8yNpSrO1xNnkorFaCU9L1zxLimeTygv\n828V20Z4jizHO7EcV9LxcvSadfRddElpiZqyb6LHfy++dv742v5IVfCOs88//1wO5Nc8mr0unikZ\nybotvJVm3z1P2XnZkorvo1FGpWWnavbBGXr7hxVKzvxN23/5WFM7TJf1ITH3LlvcfbnlvWnmoRvN\nXT+T0hLpAgqvRTdmAHCcL8RO9izqulhz7pknk0mKbvk/lukXcy4q/coZZeZmSpIu5J6XUUblK19n\nsv5QgSlf23/5WDX8a+iaWtcoOy9b8w/NtQydbf1siUmIUkxClLb/kiCp7KGBeC4BFUNsB8ATvfPO\nO9qyZYv69OmjTz/9VC+//LJatWrl7mL5hPLe760rTUtLmpXnWeLIcGue/nzy1HJ5G085jt74/uSK\nHDtnHW97x8vRa9ac3DTPZ17Oelh/s7YR7Z36vbjqfPPG86c0vrY/leVQj7OHH35Yf/zxh2655RYF\nBQVZps+fP9+lhaso25Y/9rKl5os1ryBPF3MuKP3KmTLX62fwV7B/sLILshVRu4Fq+AdIkmbfPU/z\nD81VVPNh2vLLJsXePFIrjhYm0NpGtLcM6zhoS181Cmms9/tv9poTsDq38qnO+14SjgkAZ/PVVtPe\nHjvZsu5tllNwRWnZqQ6v209+Cg2so4u5F/TMHRP1yemPlZF7SfM6vWLpcWY9vPX2XxJ07vI5Tfty\nkubd83/FhnS05q6WiBV5HvIMhSfivAS8j6/GTmZRUVF6//33tWLFCjVr1kzdu3fX4MGDtWnTJncX\nrQhv63Hmyl4ErniWeMJwjvZU9ji667lb3u26upyuOh+rQ1xTkWNXFb2IHDn29noFVsXvOV/sRQXH\nVSZu8n/xxRdfdGTGdu3aqUmTJmrYsKHlv5tuuqnCG3al7OzcIn/XCaqjexv3LDYM0D0NI9U+ooO2\nnPxQucbcYuuxZZJJQf6BulJwRTX9ayqqebR2/fapOl3XWZ+d/kQJ/43XsBb/owWJczS0xXC99f2b\nlu1eF9JQnRt1VZ+mD+jGazzzuKVkJKtOUJ0if8duH657G/dUnaA6xT53Z9mqYnvW++7sdbvrOFaW\nt5YbgOcKDg4qeyYv5c2xk606QXV0+7WttOXkJmXkZijXmOPwugP9AhXkX1MBhhp6496luqbmtYr/\n5UMlph1S36b9LI2L6tWqrzxjrv7no4f045/HNbXDDK364Z9aEBlnN3ZKyUjWmF1PakFknEICQ5WR\ne6lKnlMViRFcGVc4yhx/eHMcAufjXAC8jy/HTpK0bds2NWjQQFdddZV27dql2267TWvXrtXDDz/s\n7qIVUVbs5Gls68WcvW5nMsd47oybSuLocbQXb7krHjRv95ZrbtV1IQ0dnt+V5XTV+ehp54sr2Kvj\nLmu/yzrezvh9YF6+tHXVCaqj+5r0LlKO60IauuzeZL1dV28DnqsycZNDPc5KM2jQIH344YeVWYXT\nldbyx5zdvpyfrbyCfBlVoNSs38u9jeCAYOUU5CjflK9rg+rJYJCCAoI0r9MrGrnjYfn5+WlBp1fV\ntXH3Yr3crDPrntIaoqwxam0/r8pyu6tlgCv2kVYOAFCUr7eatsfbYiep8Pm1+/QuTdzzjAps3gdb\nHg81j9E36YfV54b+2vLLRi3v8ZYighvogU29dO5Kuj4ckGCZNyK4gaTShwYyi0mIkqRS32lQ0nO9\nqnqPuTPmM8cfCyLjvOJdAQCAkvl67PTTTz9p48aNmjx5sp555hkdOHBAY8aMUWxsrLuLVoQrepx5\nSv2QVPH3FVVmXZVdpjzrdMb6S4stS6r3cdd3XN5ePZ50LrqKM89xZ2+zPOurbB2jM+spvanOszqc\n4yjk8neclcbb3t/RMLSRpnaYLklKzUpRVm5WudfhL39l5Wcp35Sv0IA6Op/7p9KvnNF9je9X76Z9\n9Urn17Sy5yqtOLpcUfEDSxxHNSUjWQ9tLfzc3WP7ljSGqflv68+rerxpd42v6ortMVbsX9x9zgOA\nu3hb7JSSkayo+IGa8sUEtQ5vW+H11FCgNpxYq5MXftbSI6/rv5d+1eM7YiVJb/Vapfmd4hQR3EAR\nwQ00dudoDdrSt9QyxW4fLqnw2bq27/tlJs3sxS4VjWkq8hx357PfHH84+10BlUEcAACwp0WLFhow\nYID8/Pw0b948LVmyxOOSZq7gSe/1si1LSWWy967astblyLYl58dN1uVwxrEubR2l1fu4KwYrbwzo\nCbGiK5XnnVzOui5dcY07o47RmfWU5V1XWfcYe/M6g7O/V1/gK/vhbJVOnBkMBmeUw+WsL8Y5X81S\nh/p3ySijLuVdLPe6rFtaZxdkqVZALUnS2z+s0JhPn9TkfeP18/mftajrYtXwr6G0rML3gJgrdszS\nslJ1+tIpHU0/4lBQUtZnlVXWjc06ibYgMq5KH6T2WunYU97jU97gzRl8PQBxhCf9KACAquYtsZO1\nJfcul4wGHU4/VOF15KlwSCOTTDKYCkPQ37NStPv0Lj356eOavG+8Hto6UGlZqbqcf1m/ZxZ+Zv2s\nSEpLVFJaYpEfZea/S3u+2v6Is66UWdV7TYX3ycxZcYmr1iEVjePcsX3bdRIHoLI4fwDfFBcXp7i4\nOEnS5cuXtWzZMi1ZssTNpXI9T2pk60jD6ZSMZE3ZN7HMuqHy7Jcr4wPrclRFssETvkdbnlgmd3H0\nHChtvoo0vHPFNe6shJezONIDVfor8e6KBLwjZSypR2h5+MpvGl/ZD1eodOLMG1ifAGlZqTp16b/a\ncGKtU9ZdYCpQZt5fXfQ3nFirXGOuZh+coePn/qMnbhutKfsmKiUjWdt/KRx+yFyWiOAGahBynW4L\nb2W5YLf/klBiEs28H0lpiRUqqyOVOo5m+c375Mj6nc3eBZ2SkezQzbas9ZQ2X0WPO4rzpB8FnoCH\nEwBPlZJROMz09l8+Vo7pilPWaZLJkkSrG1hXCw69LINBqle7vp5qNU4RwQ1Uwz9AVwddo8n7xmvg\n5r6W5/yAzfdr4JY+lpgqKS1Rg+MfsPxt735qnSQrqZWxvbjCUbYtmO1Nt1ceR9ZbVqzi6sScq35E\nEQd4F0+MU7zlB76nlw/wRLt379bKlSslSfXq1dM777yjTz75xM2lqhqe9Fy0N/qQ7efm3uyOrsuR\n+VwZH1iv11XJBnfd9335eePsfStvr8bShuN0pD7R+t/OHPLRlVy1fuv6VXPi3ZHekK64N9hLmpU3\ntvSV3zS+sh+uUC0SZ9YnQNuI9oq8rqvLthVoCJLf/39Y5x58UZP3jdeApoO1+/QuPbI9RrtP79KC\nyDjL/LUCauto+hFL0ux/P3tME9o+b7dlj7mnl72klTV7CZ7SKm/K213dXuvspLRExSREVUlyybbH\nm7lSb/zucWW2drLet/K0MDEfd5JnzsMNuZC3VPwAqL7yjXm6oe4NCjAEyCDn9pa7kHtBf1xOVfdG\nPZVvzNeUfRO0+/QuXcm/oikdXlCtgNoqMOVb5m8ceoMWdHpV8w/NtbzX7M0eb+vVpFeKND6yboAU\nkxBVpIFNWlZqkee/vbjCXiLM/Jkt8/KSisVt9t4dW9I9317STVKRFt+285v3raLKegZV9EeUI2Ui\nDvAOnhqneMMPfE89doCny8/P15UrfzXWycvLc2NpIKlIjGRvurM4M7HgDq6+75fWkMqTnzeujFXd\ntT5H4hBH61vLk3yTHBsitTKc8RujJLbDx5sT745c966+N1Q0tvTme5Y1X9kPZ6s27zgzVzisOfZv\n7Ux2XWulXFOOjDJKki5cOa+6gVfp5YMv6sUD03V1UJgWJr6scbtGKyq+cCiiJ24brSc+fVQv75+t\n+Yfm6s0ebyu8dj3L+mJvHinprxuldSbetleauVJocPwDSkpLLDFJVNJ024ok23XbTrN+AIzfPU6X\n87M1dudohyqDSvq8tPms57FNHi7qulhr+75famsnezf/kgJA2+XaRrTXgsg4jd89zqkPbEc+d2Xw\n444M4XbrAAAgAElEQVTAylODOXfxhoofAM7lLbGTVDisdEZuhpZ+u1hX1bhKJjm77IXre/uHFTqb\nna5aNWpr9oFZSstO1cz903Qx94JSMpM1/6u5GrtztGJajtDwWx5WVPNheuK20Rq/e5zCa9fThLbP\n69WkVzSh7fNKy0q1NOZJy0pVXkGe0rJSNWXfRA1oOlhT9k0sUgLbuMK6gZB1rGP7g9c8zdxiUlKR\n+7m58sde3GX+3Ho95vfemuczJ/PsNaayXqd5SHBH2T6HHWnhWZ5nd2lldbaq2IYreUO5PTlO8cQy\nWfPkYwd4smHDhmnw4MFauHChFi5cqAcffFDDhg1zd7GqvfJU/DvyfCutUbej5fE0JTWaKouj81Tk\nnWruVtlElTOHSjSrqmPlyPCgZR0fe3F1SUOkVvU1UVY9b0msGy96Gk8sE9yr0omzJ554whnlcLk1\nx/6tqPiBejVpYZVts0AF6hhxlwpUoIu5F/RnzjmlZacq8rquMhikJz99XHGHF6qmfy298W2czl0+\nK0kaHP+A/p70hvp92Evj94zV/RvvtVQAmd/jYU4CmXt6bf8lQTEJUYoIbqB59/yfJFmmmyt1rJez\nrWgwJ9zMlS/WFUTmFtzbf0mwbE8q+rBZ2/d9Le/xVpF3upl7Z5mXMa/TdvvmabYtxW0fDua/bZOA\n5t5m9pT28LH+d2kBoPXQmiWtq7wPjLIqlcyfu7IliTtaJbljm96AhzNQvXh67GT9bBr1SazSslN1\n+tJ/dTb3rEu3W6ACXcg5rwu55yXJ0rvNJJM2nFirkxdPaPbBGRrz6ZOafXCGJu55Rmez0/X4jljN\n+WqWBjQdrDlfzdLYnaN1KeeSRn/2uEZ9EitJighuoNibR+r/kuapa8N7Jf0Vp9j+kDUn3Gx7kkmy\n/Ejd/kuCBm7uq4Gb+2rsztGW0QLM6zDHZdYxkLWYhCg9tHWg5Tl/NP2ITmecUlpWqiWuMCfz7MU+\n5vJM7TC9yHz2WCf+rOOKlIxkRcUPLHEZ63+X99ltPk6ufO5XRazkDI5WhFRmXa5GnFJxHDug/GJi\nYhQVFaV169Zp1apVGjRokGJiYtxdrGrFkeSMvboa27/L8wwsT/LHVfGFM9bn6EgD5ZnHvF5ve6ea\nVHxkh5KUtv+VGSrR3jLOUJ7vzd6/raeV9b1aH7+Shkit7DVhey2u7fu+U3rTObK98i7jqTF/abyx\nzChkMJXS7Llly5ZFXmAfEBAgPz8/5ebmKiQkRImJpQ9bd+TIEcXFxWn16tVFpu/atUtLly5VQECA\nhgwZooceekhGo1EvvviifvzxRwUGBmru3Llq0qSJTp06pSlTpshgMKh58+aaNWuW/PxKz/elp//1\nzrGktESlZ5/RI9tjdE1QuK4UXFZmfkYpS7uen8FffZo8oEN/fKU/L59TvgqHIDLIoI8Gf6btv3ys\nZUfe0HUhjfTIzY/pvR9XK/rGEfrXD28rJfM3bR20Q+nZZzTti+f12C1P6O1jKxTgF6AAQw09fcc4\nTfligiJqX6cr+Vf0Z85Z1Q4I1pX8y1p53yqF166nUZ/EauV9q5SefUbzD83VpZxLGnnrE2p2dTNL\nGecfmqupHaZLkmYfmKWn7xinyXvH6+qa18jPr7CcUmEr5/G7x2lqh+nq3bSvpdX1gKaD9crhl7Wi\n5zuaf2iu8o152tBvsyRp0Ja+Wt7jrcJKrO3DtSAyTqM+iVVoYB0t6rpYEcENLJVSt4W3KtLS2bYV\nt/nf1p+ZmW/e5pbdDUMbKSkt0bJde63CbZW2XfPf5kTi2r7vS1KRdSelJdrtBWe9Xuty2q7b/Lmr\ngiBnrbs863Hl/gAoztOvuSuBF3R93evdXQyn8dbY6dtf/lPsmSRJ/T7speTM3yp4NCrPIINMMqll\n3Zt0/OJ/5Cc/hQVdqxuvbqmDfxyQ0VQgf4O/6gZerXM56WoceoMG/m2IPvpvvLLzList63fFdXlD\n/734X+1O2am24e319g8rFBZ0jbLyM7Wy5yr1btpXkizvSRu542EZDAaNvn2cPjn9sdb2fV+7T+9S\n18bdFZMQpajmw7Tg0ByZDCZdU/Na1QyoKZNJ2jywcPmj6Uf0+CePqF7t+prX6RVLHDX8locl/ZWw\ne/LTx/WPnm9JKhxRwDx9yr6JluN/NP2IXk16xe6oAeYYzBw7xSREaVHXxZa4IyUj2TJPXkHhMFc1\n/GtY5klKS9SgLX314YCEIrGKbVxSUpxlntdeXJRXkKf3+28uFsfYm78y9yfrWCktK9Wh96w4a9uO\nbiMmIarEyofyxk/24sXS5vfkez/gDo5eF55+/YSHh7q7CC41efJk5eTkqH///jIajdqyZYsiIiL0\nwgsvuLtoRVjXO/kK8zO/pOeNuX7DXqxgbzSf0p5bzooBnDVveZ+zjnJ02558z6kMR45rRY99RY6b\nM491VcWSjh6b0spT1mclbcPRdboyprVexvwaHVfdV1zBVfcWV/DE4+cMlYmbSk2cmc2aNUtt2rRR\n//79ZTAYtGPHDu3bt09z584tcZmVK1cqPj5etWrV0oYNGyzT8/Ly1KdPH33wwQeqVauWoqOj9eab\nb+rrr7/Wrl27tGDBAn377bd68803tXz5cj355JN69NFH1bFjR82cOVORkZHq2bNnqeU1BzDmXlRv\n9nhb5y6f04sHputi7gVHj02VCA4IVlZ+luXvexvdp73JnytPeZrZcY6urnm15h2crYu5FxTkX1MZ\neZfUsu5N+vniCUvCLcAQoPq1G2hiu8lacXS5Ludn65nWEzT3qxd1LqewdXjdwLoKqVFHuQU5Sr9y\nRhG1G+hCznn1bzpYG06slSRdHXiNLuT+WVgpVfMaXbhyXmG1rtX5nHMaffs4LT3yuowmo4wy6rUu\nf9fCxJcVGhiqy/mXlX75jFb2LEzMpWef0ROfPqqQgDpa3fe9Yvs84MP71bjODZp510tF5l/R8x3d\nFt5KsduHK/bmkZryxQQ1Dm2ixd2Xa9yu0VrcfXmRIG1C2+eLJNasW4pbVxrtPr1LK44u16Kuiy1d\nmtOzz1iWNc9vm+SyvjGXVBFjDgqtK2vMZTG/s25T/21FPpNULKFXmZtTaUm/qrjhedNDwMzdDwN7\n26/KMjm74hKey9Ovz5SMZD3+2QgdfuKwu4vidN4WO92xrE2xRh9JaYmK3vagpQeYpwk0BCnXlKPH\nbn5C639aq6z8TN0T0Vn70/bp0ZtHKTMvUxtOrFUt/9q6XJCth5rHaE/y5/rjcqoCFKCra4bpqppX\naUO/zVp19G298W2crql5rc5dOau6gVfpYu4F1atVX1M7zNBze8bomTsm6oMT63X2yhmFBtRVUECQ\nagXUsjRa+v/YO/e4qOr8/78GGBDGQQ2hQYhatqtGuJF0MYqfl2RFBeuLW/jVzFrTTXEXzNuilvpV\nQ+G7YS1lZmZf/W7yLdGipTSXsqs0368sae2NVoMYxUs6gHKd3x+zn+NnPvM5Z86ZCwzj5/l49Ehm\nzvnczuec85736/N+f5bcUYj//ssbuNBuxdlLp3HVgKGIDDPi7MWzONN+Gjsy7DbRkwdm4+mU5Vh3\neDXiBsYjNFgvLS4iwtz8lIWSHbFu9EZEhUdJi58GBIdj5d3PYs0Xq9DZ04k9WXbBbvKeCTCGRkoL\neUg02eaxZTAZYmFpbZL+Twt1xLZi3wsE3mIj+jvaTqLFOlYsYp9HZkuN7HFqFjPREJuf2Fyu3rNk\noZenTghXuBLO3ClPrdOf1Av47yr0vkYs/LqyUGsT+bvtBAS+cJaRkYGqqirp756eHkyaNAnvvfde\nH7bKmUATzngLj2nUvmvlBDX6mN68tzwRHvz12e+v7ZKjL8TD/jZGgO98e2rFS1f3szdx59lAvlcK\nUPDX93d/mI/+PH6e4ondpCpV45///GdkZWVJK6gnTJiAuro6xXMSEhKwefNmp8//8Y9/ICEhAYMG\nDUJoaChSUlJQU1MDs9mMtLQ0AMDIkSPx9ddfAwCOHj2K1NRUAMB9992Hzz77THXnTIZYvDxuG9Yf\nXouo8CgYQ/3LwAwLCvuXaKZDpH4QwoMj8GHDB9Dp7Jel2PwcfvPRfDRfOgWjPhLtXZcQFx6Hb89/\n4yCaPZX8a3TburD+8BqUpJdi5i2zse7L1ZJoBgDnO87jZFsTzlyyfzYn6Vd4Mmk+/udvbyIYwZg9\nfA5W3v0sghCEwWFDAAA2nQ0hQSEYFDoYLxz5T8AGhAdHAAA+/+EzWNqa8MhNM/DO1Pex5I5CrPxs\nObL3TkR0RAyeTJoPa9d5zN3/BPIOzsPc/U9g6t5MNLedwjBjHHJvnoHH35+JX34wC+sPr8WW8a9J\nbd2Qtglb6srwyvjt2D25At+e+QYnLhyX9k+LM8ajIGUx5ux/DDn7sh1SPBJjbufRHQDsK7XzP1qA\nC+0XpDRNc/c/gV/un4XJeybYUy3tnYidR3cge+9EabU5cDkkWm5fM/JQIQ4i+phGawOKzUV4edw2\nB2cSCQtn906Rc1a5gpTJniP3uS8goeK9gTf605tjo7b+3mwTW5dcewSBAbk//dXwiTPGY88v9vR1\nM3xCf7OdaDFj6aFF9nfrH/8dwUHBmvrdm3TY2gEAb/7FLpoBwNdn/wwbbNh2bIu0MOhS9yUAwPv/\nfA9nLjXDFBGLjff/DoMHDEZHdyc2m3+H0iPFACDZSZe67OecvXgG/zz/T4ToQvDikd+hs6cD0296\nFAPDDNg6YTtyb56Bc5fOITo8Bs99tRYX2q04134Gy1JXAgDShqXjfMePCAKx7YrwdMpyvPr1FnTZ\nOjH2mvGw2S7vU3bu0lms/nIFdh7dgWJzEdaN3ojf/W8xHq3Kxcz3HkFjSwPOt/+INV+sQlvnRXT1\ndMHS2gRLa5N9IVLSPOl+77J1OoxXfnUeqk8clOyeB/dNAsB/D9Q110o2zvaMnVL7SArKae/YRTmy\n6rPRejlNi8kQKwlF9LuGthcarQ0OkXAEufchSXkpt1F5immUgyNP6T3baJXfG4LF0/dznFE+1Y07\nZWp9lltam7xiXwSiXaDl2va17SjwDmptIn+3na4EYmNjcfz4cenv06dP4+qrr+7DFl0Z0HOfjXIH\nHN+15HjA8R3B3j9yjnitz1NPnr9a7mnegh9/e/bzfs9rObcv0Dr2nuKra+fL8VNqszciM+UWwSnV\nQZ/nbt/lznPn2UDaQe9NLddeX9IbNnxfIOwfPqqEs/DwcLz11ltoa2tDS0sLdu7cicGDByueM2HC\nBISEhDh93tLSAqPxsoBlMBjQ0tKClpYWDBw4UPo8ODgYXV1dsNlsktPJYDDAalW3qoestIyOiEFn\ndyfWH16LdfcWwRA80PXJPiYYdidUe4/d4aMDcKHzPNq72xGqC5UcQcQJBABZP30QEaEG/HDxB+j+\nddmCEYynkn+Nin+8BUtbE05dPIkX/7cUa75cieZLp3BHdOq/yrePnz4oFDroEBU2FK9+vcUeQYZu\ndKMbBxv247ma/wB0wPn2H3Gu4xx0Nh0W3bEE3bZu9KAHM4fPRmdPB6IGDMVjSY8jfuA1uDvuHtQ1\n12JDzRp09XRhw73F+PbMN9jy9YvYcG8x1oxeh92TK/DS+K3Yk1WJ6IgYhOj02HZ0C3psPQjWhaAk\nvRRnLp7Bo1W5yK6wi2ud3Z1Iik6GpbUJyz99GhvSilE+pULa+yMpOhl7siqRe/MMFJuLJOdHimkU\n1o3eiOWfPg2zpQYZiZl4PWMXtk7YjrrmWiw5lA+dDlhyRyFOX2wGACQYr8XNUbcg1jAM6w+vdXgI\n8vY1o7/fnrHT4RhWHCPpnwBnQ5T3UNJqBCk92OTCrNWU6w5knxFfYLbUqDZ+PBkzrWW5A6/+3nxB\n8X7MsEaUP/5AELiPvxs+gZSmkaa/2U70D5GClMV4+qN8nLzYhO6eboQiVG23e42hoUOlf7d22+0l\no96Ilg57X4MQhGCEICpsKCL+tejnfOeP6Lb14Bc3Tsf0ETOx4q5n0d59Ca8dewVDwq7CoNDL16e9\n5xKCdMEwhg7Ci0d+B6N+EHrQg1MXT2LbsS1ouPA9yr99E6u/XIHVX67A7BFzsOHeYmy8vwSxhjg0\nWL/HyYtN2HbMbu8QW2zW8MdR/rc/IDwkHAtHLsLOb19HS6cV+dV5qGuuhTHUCFNELKLCo7A9YyfS\nE8agIrsSJfdvxo6J/42YcBMGDxiMiddNQbetC6faTmLBh/PQ3HYKJsMw/L62FI3WBtQ11yI8JAIr\n734WSw8tgqW1CZ3dnfh9bSmGhF2F9IQxkvOLfQ+YLTWYs/8xe/T/oUWoPnFQWpT05IHZmJM0DyFB\negB2O4m36TmZT7w9yIidtCuz3CGdI8B/H5J5WZJeqhi5RTvy5N6z9L95e0OwsIuDvPVDmR4bX0AE\nuxTTKI/tC612ga/sB2+Xq9WR6mqVtqB/oPZe8HfbKdDp6upCVlYWnnjiCcydOxeZmZk4efIkZs6c\niZkzZ/Z18wIa3m9C+hmnZl8lpfvHnd+9SouF1eLOPa1mgbC3FvZqOZYVM9TsoUb+f6X8zvf24m56\ngZivRF+le8MT0YpdrK+1H2RhpZpzWLtWS13uLm5hy+4N0SyQ7yNh/zijSjjbuHEj9u/fj9GjR+P+\n++/HF198gaKiIrcqHDhwIFpbL6cmbG1thdFodPq8p6dH2heEPjYyMtJlHazwUT6lArsyy3Hm4hm0\ndbcqnNk72GDj/t2DbnTYOhy+m3RdFkJ0Idh+bCt+bD+HMfHjAdgw7YZczB/5G3xw4o9YM3od/vP+\nFxATfjW+PfcNhhniMXv4HJibaxCpH4ShA6IRrAtGZ3cHdEFBGBASjgh9OJ5K/jUi9YMQP/AaLPxZ\nAU61nYIOOmy8/3fY9sAOvJqxA1HhUTjXfhY5NzyCBSm/xjBjHAYEh8NkiMUrD2xHfnUeVn++ClHh\nQ2Gz2aPkln5SgHWjN+LmqFswZ/9jqD5xEEsPLUJz2yksPbQIK+9+FsG6EAQHBWPN6HUwGWLx+9pS\nDA69Cr++vcC+J9q/VkmTVU3TR8yEpbUJU/dmIrsiE7mVOfj2zDdY8+VKzBr+OEyGWOm6Tx8x02El\nVFJ0MvKr87Dys+WADVh9zzrMT1mIPVmVyEjMxO7JFUgxjcKerEonhwy7Uph1AhHIMazTiIX9jPe3\nFiOILoM1iFjkHFjegETnya388AQSRUhWvbsK3da6QaunZbmDmrnhS5TmoVhl0r8IVIMtEOhvthNw\n+f5Pik5GZJgRg0OHwNpxAdC5PteXhEDv9NnpjstR9caQSAwKHQRrpxU/v84eRdWDHjx0wzQMCAmX\nhLVJ12XBhh48f2QTXjA/j9Wfr7Iv4Ll/M3Zm7sbmMWUYEhqFYF0IrgqLgs4G6IND0I1uBOl0uMZ4\nLRaOXAS9To/IsEH44MQfJUHs27PfYOknBSioXoiuni7s/PZ1xIRfjZV3rsGCkfnoQQ+e/igfSz8p\nwLLUQpRPqcCspNmIjojBQL0Ry1ILUWwuwoq77DYSsZ9I1NeWujI0t51CZJgRj9w0A88f2YQzl07j\nubQSbB5bhmJzEX59ewFCgvSoa67FkwdmS/vPEpGofEoFfpWchx/bz0lpGwlkYRJgt53jBybg5qhb\nUJCyGFvqyvDyuG2SfTV9xEzsyiyXoplo2HcHqZu2jQpSFjssImLft7x3FEkH6anTmxfpD7h+53vb\nfvKl3UTXQf/fk3K0LDjy1QpvX5SrZWxYMdfXbRMIrmQWLFiALVu2YM6cOZg9ezZefPFFPPPMM5g/\nfz7mz5/f1827IqCFB6VnnDu/HbW+l9QsOObhreeyXD3eeP67G/0stwjW1Tl9vQiEfX96WoYrvBV1\nTy+O94boK4fSYit3+8GKTFrvWbKAzVWmBuK3o8UzrXVpPc6dsfF0Plxp/jJh36rc4wyw769RX1+P\n7u5u3HjjjdwV0SwNDQ3Iz8932qcjMzMTu3fvRkREBB5++GGUlZXhyJEj+NOf/iTt0/HCCy9g69at\nTvt03HXXXZg4caJivWSfDuDyDWW21GDKngx02bqchKveJEw3AD3oRkhQCC52X5Q+10GHIAQjQh+B\nnBsexvvH/4jHb52DXd++gXOXzuJs+xkMCh2MoeHRyL15BrYd3YKGlu8RPSBG2p+DQJwh43en40Ln\nj4g1xGHN6HUAgOiIGJgMsdLG9R09HYgfeA1mj5iD1V+uwJDQKDw/5gWsP2zfg2VXZjn2/PUtbDSv\nw9tT3pX2IyMbyZNVzas/t++zoQ/SY+XdzyIjMRON1gZkV2QiQh8hOYQKUhZL39U11yIpOhkAMOnt\nCfihtQFxA+Ox7t4irP58lbQKmcZsqXHYp2Pq3kyUjduK/Oo8qb1KKzS0bhxPzpX7sQzw9/7wxkNU\nzoEkd6yrXOJs210JUO70gV3J4q1x0HLdvFWvt8vyNf2prQLvwN73/ZVA3qejP9lOZJ8O8iwxW2rw\nyw9moaHle88GwQ2CEIQe9Eh7kxHGxj+AjxoPostmT1cdHhSBDlsHdDoddD3Ar0YuxG/vWYmdR3dg\nw+H/wPmOc8i9aSb+69vtWDpqBe6OuwdT9mRgUOgQDAwzoLO7C80XT+K5tBJsqStDZ3cnOnvsC3d+\nfXsBFn/8G7w6YQf+fu7veO6rtXhl/HZkJGbiBfPz2HB4DWIMV8NmA0YPS8OyuwqR8T9jceqiBSX3\nb8bNUbcAgGSf5NzwMO6Ouwdz9z+BiuxKaYwXfDhPspuIjZNbmYM5SfOw/dir2JC2CSZDLHL2ZaPL\n1gmbDajIrkRdcy2iI2KkdyNJsUkEpqr6Soeod+DyM4PsEUueH2RhUvzABJRPsduTJA01GZOXxm+F\nyRDr9ENVbh9Y+vlEIH2m90ehj3fl9JHbc0ULSvXI7ZdAn+eqnVrb5qt3d1/aBIHYJ7YdvrL9BQK1\nXAr9MWAj9vsTgbbHmRw8f4g/PPNcvdPV7mXqST1afDbulK/2WE/tk974Xcnac+7Up9ROuYVR3vJJ\nuVuON9rgro3J+gjdvcZq61eypdWUpeZ8d9tGjlUaA395tvkLgeJvAjzzOakSzurq6rBw4UIMHjwY\nPT09OH36NF588UUkJycrnkc7f9555x20tbXhF7/4BQ4ePIgXX3wRNpsNDz30EKZPn46enh4888wz\n+Otf/wqbzYZ169bhpz/9Kb777jusWLECnZ2dSExMxNq1axEcrLzfxpH6b5wualV9JR7/YCa6e3rQ\ng24VQ+MZRn0kum3daOtqRRCCYNRHoqWzBbEDY/HQ9b/AByf+iKSoZMQahuH5I5twVVgU5o/8NZ77\nai1iDcMQotNj89gy5B2cB5sNyL15Bl79egsi9OFYcdezWH94LXJueBg7vtmGEJ3eIdUNcWTkV+dh\nWWohkqKTUX3iILYfe9XB6WC21KC57RSSopMRZ4zHC+bn8d9/eQMhQXqUpJcCgINDhvdv1gnDChy0\nIUEbL8QhA0DauLz6xEFsqStDSXopd7N4ukzWgaJWENIK72UDgCtS8b7zVr1qz/GGQeSNh6O3HrCB\n9KD2Jb01TsKQ8D8C4ZoEqnDW32yn5mar07OEiGfWDitaOqzo7gX7iWZI2FX4sf1H5I3Mx976t7An\nyy4YLTu0GJ09Hfix/Ryiw6/GojuW4MUjpdg8tszBVvn2zDdY/unTeDplOabe+JDUJ8AuaM1Jmodi\n83MwhkaiJL3UKQIra8/PsXXC65KoRRYM5VbmoK2zDWtGr8Pqz1dBH6x3sGWmj7icRoos/iCiFrFv\niB3U1tkGfZDd5iM2EgAH+4L0Z8GH86DTAbsnX15YxNogrn4Yyy1wIaIdAAcby9LahAUfzgMAqZ9q\nxALaLpv2TjZCgi6fy/tRrOR4osvy5QblnpTtTbvHG84VYTv5lkB49wr6L43WBjxxYAa+mvNVXzfl\niqc/CmeePr88dTyrWYjiSdtYnxix3XwtBsktJOoN/MkG0VKHNxdrV9VXothc5Fe2jyvb1lf3Aa8e\nub89Kc8bYh6N3OI6b6MkPrt6tgFXXirDQLF5fS6cPfzww1i2bJnk7Dly5AjWrl2L//mf/3G7Yl/C\nGjC0uHPm4hkUfbUOltYmn0WeDQodjCEDhuD8pQs413EGIboQRA2IxtLU3+J3/1uMk21NWHzHb/H6\nsW1YM3odHqv6d0RHxOC1jP+SyiCreukIq+y9E7Hh3mJJXCKrkkvSS7mrdumXyKNVuVhx52pMvfEh\nxVWSPMeJq5uEXuXMW9XDPlxJ2WQVNSs+qXmB8B7YvnIU8MoH+BvHqlkNrVbgUirH1yte3FnJ5M02\n+qKcQKc3jC7hiBP4gkAVzvqr7cQ+S6rqK7H8k8Xo6umCtcPqsP+qLwjWhSAiOAKhwaEI0gWh+dIp\nrLxzjSR8NVrt0ewvjd8KwNFeooUn8ryqa651iKIHLi/mIRFVtOBG3r+W1ib88oNZMIZGOolFBLWC\nFXsMad+GtE0A4CCmKf1QJCIcu3iJZ39pWXXr6ke11sVJrE3Es1XZ43P2ZTsJc2xZrH3oDVtF7Xme\n2E5a6vfWe/ZKsJ2uhD4KBHKIiDP/oL8JZ2oX0arx/7iKNldyTMv5jTxBzl7ojQgTb0a3aW1Xbwkw\n/gjt533ywGy8PG6bU7aFvoIstAOcs2J54z7oi+vN2ve+iF7TEnHmC5+o3O8Mcj07uzsdglY89ft6\n8zyBMp74nFTtcdbW1uawQnrkyJFob293u9LeJs5oz0EaHRGD7cdexeI7lkOn8/6GHUEIwsKRi/CH\nSW9h4c8KcLG7FSvvXIOZt8zG+Y5zAIA1o9dh/b2bsOObbThu/Q5mixmxA4fh7KUz0orepYcWAbDf\nMOTfJkMsTBHDpNQ/xFFENv5m+0v+32htQEZiJkru34y99W8DcM5xS2/6SuojY6bmhiV7V/A2IKfL\nJ+WSslnHD/2AcFUvr/1a2qwFuk1ywhhdt6uHp5pc3Lw9ytjv3d1QXs34KBm6Sm3XWk9vlkNQ25Vv\nnqMAACAASURBVP7+hq9frr66vwSCQKW/2k7sO3zNF6twstWCkKAQ3GW6x+v1DQodhMjQQQCA6AEx\niNQPQkuXFQNCwrH8zpWINQzDrm/fkI63tDbhZFsTmttOOex5lWIaJeXep59XGYmZKEkvlUQz8h5L\nMY3CrsxylE+pcLBHcitzkLMvG3kH52FAcDhK0kudbA5La5ODbcDaCTw7iPybPi7FNEpqB4lKc/WO\noo+hy2Hr5YlmvHc473OejcMTDuXaytpESqIZQR+sl8aabQvdN579p6afalByInpr/1RX53vrPRvo\n72pPrrNAEAgI0UzgDq7eM8QOknu20j4j3jFs+ewxcnaLkm2hxffAsxdoHw4pi/6/N94lpD/eQm27\neH403jHeflf607t3e8ZOZCRm4uVx26RtYPwB4qvlZdFSst/lYO+RvrCBWPveXZuVtfVp5DJSsLh6\nVimhdK7c7wzye0YfrOd+z6tD7T3sznn9nf7WP1XC2aBBg3DgwAHp7wMHDmDw4ME+a5SvWHpoEWYN\nfxzTR8xEYeqzXiuXbAwfpAvCW39/E7/8YBa21JVh/b2bMGTAELx27BXk3jQTSz8pwBMfPIoXj5Ri\n4c8KcHV4LF6q24x19xZhb/YfJecN/QCiN2CM0EcAkN/HC5B/oE4fMZMr7Cg9/NQ+BJUEL7kHKr36\nB9C+yaar8n2J3INMrSClZoWX0jFxRt9vKC9Xb38XTq6UF5Gv6M/XXiDobQLBdoozxmP35Aq8OmEH\nAKC68SBC4HqfNrUM0g/Gwp8twoWO8whCEMJCwmAIjUBMuAmL7lgiLXbSB+thaW0CYP9BtWX8ayg2\nFznZPKyo5GpREM8mImLa7skVkl1Gl0nev3KLV1gnEO2wya3MkX6osc9TNZtu897DWhYc8cpX824n\n40i339X7lB4HV/YKvRBMjZCn1G5f2Cq9af+ose8FgWGTCgQCQV/g7nNTre/G1QIXpYUwZkuNwzne\nXLhLbBhSh9lS4/V3CSmfxt2FPK58RmqPo203b8BeI2+ipUx2Ydr6w2tVib69Cfs7g2fbqhXNWBHH\nHcHN27hz36j5DUEfq2WuebOvvDEmix3VCIdqf1/xfvMEun3bH32yqlI1fvfdd1i8eDFOnDgBm82G\nhIQEFBUVITExsTfaqBm5kPmq+kr8cv8svDJ+OxZ/nA9LW5NH9cSFx6HpYhOCEISnRv4a1o4L+PD7\n/WhqbZQ2mr/QfgGXui7iwLSPYWm1r5COjojB0kOLUJCyGKs/XyWFetKQlxxwObUQvUcGvc8GuXnJ\nBOzNzap5dbLfu3pYeKt9rtriLXw1plrb7+trG6iIcRMI/ItATdUYKLYTYH9uPlCejuZLp3DbVcn4\n89lat+rQIQg29Eh/DwodhM1jXsLTH+Wjx9aN5XeuxItHSnGp+yIGBIdj5d3PothchFnDH5f2aZWz\nb+gfk+Rv8k51lQKR119eOeQzVyl55N7nbBvl6vQF7tqI9HkErTYm7zhXq6PFe/oyvWXfCgSC/kOg\n2k79jf6WqlENnr6fWRtKjc3QaL28H2xBymKHdHtq/UlyNhbve2+lVmT7x6ad9tb725Vd6upcwL1F\n8bzvPN3PTa581reptiwWpbIB5SAEV3V5eg093UtX63neth+VynPnN4U7vyGUni9yv7364neXK+jn\n0pVo2/dFv32+xxmhra0NPT09GDhwoNsV9gZyBkyjtQHT3slG6ZgyTK+chrPtZ2DUG2Ht1G7wBCEI\nkWGD8GP7OQwKHYzQoFA0XzqF2cPn4MPv9+Ol8VvR3HYKs6tmoBvdeD1jF5Kik50eFK5eTATa+UPv\n4cG+XPpiAio9jHy5ibu/PQC9UfeV+uAUCARXLoHu/OnvthNw+QdnUlQydv9tl8d1TbshF43WBjS0\nfg+dDrC2W3G2/QziBsZj3b1FWP35KnTZOrEnqxJ1zbUoNhcp/kiXE3eIHaXVwaBGYOrNhUHewl3H\ni7f70hf2YX8nUPslEAjcI9Btp/5CIApnBDmHtTvCiiuHOfm+IGUxis1Fmm22DWmbkF+dBwBOvjFP\nHP1q6ualnFTjuPe0Hl/4/9QIilrrU2t7kt8aatJ7s+cArgUxrQIie663BdDewtuBCoD8/asmwop3\nvpa61QRtkP97KpB70l5X5fbmgjjxG8KOz4SzFStWYM2aNZgxYwZ3T7AdO3a4XbEvceX8qWuuxaNV\nudBBh9uj78BXzYdVl23UR+KmwTc7nKMP0iNqwFB093RjUNhgXOg4j8jQQVh597NYdmgxAGDrhO1S\nlJjaVTdqlXV/vgl80T5/XHnrj20SCASC/kCgOX8C0XYC7O+5zebfYduxLQjThaHd5t5+bUEIRuGd\nz2DNlysxdEA0AOB8x494IOHn+MeFv0v7feVX56EkvdRh9bGaxUa8H9Ce/MgPZPr7YiNemcIWEwgE\nVwKBZjv1VwJVOGMdzuRvkq5a6T0r56x25fg2W2pgMsQCcO2o5vnDXEWc+YLesqOUREwtUVq+jiaT\nK1NttgN3hA6l6877XK4MdxeReVNc8baf15tRTa5sbLlFhoDjNj3u2OhaItXoeUxna9OKN6IUeWX2\nth/fn34b9fXva58JZ19//TVuvfVWfPbZZwgJcd7TIjU11e2KfYkaA2bn0R1Y9+VqnL7UjAFB4ehB\nN9p7XDuBFo5chDf/uhPNF09hfvJvkJH4czS3ncKKT5fjpfFb8XnjZ1j95QpED4iBIdSAEJ1eSjXE\nvjCUVlv4enL39aT1FH9svz+2SSAQCPydQHP+BLLt1GhtwNjdaZhxy2MoPVLikHZRjoEhRky78REc\nv/BPfNjwAaIHxKA4/Xn8/dzf8fqxbbC0/YDpNz2K1469gpL7N2P6iJlSXUrOmt74ASvofwhbTCAQ\nXAkEmu3UXwlE4YwVUHh/exKpLudg1xI5pDX1tBbbwN+jglgRQa1wpsbH6G7ftV5vJcyWGknoULLp\n2XKJ8EoLigB/PqmNgqPbItc3d8UVnhhKX1dP/cGsgMSKTu5ca63zlN16iODtOSZ3rKf3PZl/gDYB\nlndtAc+vqbv4w28jX0b/qsXnqRqnTp2KPXv2uF1Jb6PW+ZOzLxu5N8/Alrrf42TbSZcOoCAE4WqD\nCU2tP2DhyEWYlTRb2rdszv7HpM3qsxIfxK5v3wAArLz7WWQkZnIfut58wWjBn1RngUAgEFzZBKrz\nJ1Btp+oTB7H449+g09aJEOjRhU7Fc4aERmHQgEisvmcd8v+0EL+9ayWWflKAWMMwrL5nHaIjYmAy\nxCK7IhMV2ZUuU28QhB0jEAgEgiuVQLWd+hv9RTjzRLxw53x3/FzuRgi5ikbRmkaut+1Ld3xzriJX\neGPpzsIytSKpt9IYAnASBQE4pW9k6zRbapC9dyISjNdi9+QKp7JpMYM3X3j9NFtq8OC+SXh7yrsu\nxTNSjjv9VJNljFeGKzGQ7TNdp1z9WlA7NwizqqY77FkN+GaRo7uCoKdBLTyhUm6++aofWultQU1u\n3vbWM9cTuylIzUFRUVH46quv0NHR4XZF/og+WI/rh1yP0xdPwzmZEqD716eTrstCnOEazBr+BJ5L\nK4Y+SI+99W8huyITUyoysOLT5Vh/7yZkJGZie8ZOzE9ZiPIpFdg8tgzF5iJptTT94ACUbxpfTpo4\nY7xwNgkEAoFA4EMCzXYiKwd/X1uKqw0mGPVGdKMLPzVeL3vOoNBBsHaeR6O1Afl/Wghr13kAgCli\nGFraW7H+8FoAdrtETjQj3xNmVU0HAGHHCAQCgUAgELiAOCZZX5TS8azvSo3gpKY+pe/ijPGKQgH9\nf/o44tsCgJx92Wi0Njgcb2ltUu30BnrfvnTHN8f2n4bY67mVOTBbaqTxIP1Ti9p5Q4+/u/DGP84Y\nj12Z5VLadnY+0sJEimkUKrLek0Qzuq+zqqbDbKmR+kK3l/6MJcU0Ci+P2+ZSNFOat2r6SaN0Xdky\n6PGgP2P7Spe1IW2T1F45kUjNc0LL3CD/FaQsxvJPn0ZBin0rI3JdeGWrfVa52y5eO+XuQbXzmxyX\nYholjTNbttZ54u44+LoOd9ulNL7+/pteVcTZXXfdhR9//NF+gk4Hm80GnU6Hb775xucNdAe1K3/I\njTr57QkYHHYVpvw0G9uObQFg34NDH6RHe88lGEMiERwcjB/bz+E/738BN0fdYq+n7RQef38mrjaY\nMCA4HOVTKmSVf7Vqrj+EUQoEAoFA0FsE6qrpQLSdiKG8569vYfWXKzDpuiy8f+I9hAaFobWrRTou\nCEEYGh6NsxfPYGhENOYk/QrP1azFklGF2Fv/NrISH8SaL1dixZ2rsbf+bZf559WuwBQIBAKB4Eog\nUG2n/kagRpxpiSaRi5wBPNt3ij5HzZ5FZksNpu7NlLJAFaQsxopPl+NkWxP2ZFU6RSyx7eBF6fhT\ndIiWuohgmF+dB+Byqjy56CZP6iLH+TKCSSlKUU3kFkFLijh63vHmm9rINS39VItSlCGvzURMBeRT\nSqo5xtN+0JGsvP3seG1w59kFeDcQRcv89mYEprefKWyZrlKRypXRX7O++DxVY39DjQFDbtSClMV4\nrGoGABuCdEHotnWjBz2IChuKkCA9Tl5swtXhsfix4yyyEh/CC+NfkiZLQcpirPliFVbc9SzWH17r\n8ICpqq9ERmKmpnb350koEAgEAoE7COePf6DW+dNotae6/ueF7zAodBDOtJ/GaNN9+NTyMQB7lNmQ\nAVdh4c8KsO7L1QgLCcMrD2xH3sF50krQOGO8ZCdV1Vc62VCkHjbFhbCNBAKBQCAQtpO/0F+EMy2o\nWaxEHNw8QYZ8z9uHTEmIcFVfnDGe62ynIftcEdGoq6cTK+561sEvpyQQyKVbczVenqRa1ILWulgR\ngbWtXS1c09Jed1Pk+UJEor8DtKUlpMtzNd9YsYq3l5iaujyZD2oEa7nvtJzvCa7ua7l2Ks13V+Kh\nt+9HT4R0f1j0yY6lJ7+v/aE/7uDzVI0dHR146aWXsGTJErS0tOCFF17o16mHGq0NWPDhPGxI24Qz\nF88gKEiHqwZE4VfJCxGkC8bg0CEICdLjUvdFAEDmTyZjyR2FeOe7Paiqt6cS2pC2CcXmIpSOKUNS\ndLKDIl5VX4lHq3JRVV/JrVvus/4SpigQCAQCgUCZQLOdgMv2yuaxZVieuhLnO+wRdZ9aPkZ4cDiG\nhEZh85iXUDZuK4rNz6H50ik0tfwAANg9ucIhTUVGYiYarQ1Yf3gtOrsv75NG0sqwKVXUrnwWCAQC\ngUAgEGiHtr+0pGMj59KwohlJ15ZfnSfrE1NK4wjY0+cp2YQmQyxmVU2HyRCLXZnl2D25wmkxe5zR\nngKQF1VDp1tTuyeaVh+eJynStNrEtN3N2tZE6HHVDq3zQC2+TkdHygf4aRHVzEFX84CML52iz9La\n5HAPuWofnVrRnf6R8+j+KrVV7nz6OLYeT66RmvuaPpZup9x855Xp6npraZ9SW9WMhZpx7m3YsXRX\ne/BUNOvrcXAXVRFnhYWFuOqqq3Dw4EGUl5dj1apVsNls2LhxY2+0UTOuVv6QMO7Fd/wWRV/9B4z6\nSPzYfg5DI6JxqvUkoANgA4J0QZh6fQ721r+FoQNi8Pitc7C3/m0HlRZw3mSRhIWz+3UorbwRgplA\nIBAIrkQCddV0oNlOZIVuV08nOro7odMB5y6dk8QzAIgeEPOv1Izz8OKRUpy9dAZn289gR8Z/S0IZ\nb9UrAGklMdmI22SI1fyjR9hSAoFAILgSCFTbqb9xpUac8Y6jI9B4kQ0b0jYhvzoPF7vasCeLv6+t\nNyOQfBkVoTUSRq6Nfd02te3wVXu94YRXsv+VIp20Xj9XbaUjGUvSSyURV+m3iS8izrSUw97DPF+1\np6kTefUA6qJU1Zap9JkaSKSqmig3d35vqpk7/eH3q6e/t/v697rPUzVOnToVe/bsQXZ2NioqKmCz\n2TB58mS8++67blfsS9QYMFX1lSg2F2HW8MeRnjAG2+u2ofK7fbjQcR5nLp5GVPhQhAaH4pUHtuOx\nqn/H2YtncO2g61A6pswpnJl+4FlamxRzL3vzBhcIBAKBoL8TqM6fQLSdGq0NqGuuxerPV6HL1okQ\nnR5Xh5vwqeVjGEMisXr0Opy7dA5FX/0Htox/DdERMWhuOyWJZuxCI57h7E6qa9I2YUsJBAKB4Eog\nUG2n/kagC2dqj6WFM3ZRFLtAKr86T9UeSp60kU2xJ+eslyvLXfGLlw5Nrl5PUWqj1r2LfC3k+dI+\n95bopPQZoC79Hy3AeNI2b6F1/vGEOIKSqKS2n+T+B/j7qMnNW28IT0qCqBZx0JviPvl3f1r86Q2x\n29356Ck+T9Wo0+kc0gudO3cOOp3O7Ur9gYzETGxI24Ttx15F9YmDKD1SjNybZyA0OBQ66KAPCkWw\nLgQAMGTAVXjuvhLsnlwh3ch0SCz9EDEZYqVQXfo4Qn+4GQQCgUAgEHhGINpOAFBsLsLmsWXYk1WJ\nlXc/i/89XYPZw+fAEGrAkkP5WPflsxgUOgTRETFYemgRoiNiAACW1ibpRwFJEcP7cVpsLnIrjYOw\nrwQCgUAgEAjcx1VaMV5qNOIPYx3hdBo6AkmhqDVag9dGktqb1y6ykJ0W9XIrc2TLoj93lTpPSYyg\n05+x9XozRZlSejnSf7X1+TKVXG+kqXN3Lnk7/R8Zd3fb5m2U5r0cvGxp7Oc80czVNSbzf+mhRShJ\nL5UVzZYeWgSzpcbpXFf3I5uykkXpno4zxsu2iYc3RDO2Lf4omsmNt6ft1JpNxpfPDi2oijirqKhA\neXk5jh8/jp///Oc4cOAAnnrqKfzbv/1bb7RRM1pW/pALkV2RiZfGb8WCD+ehy9aJmbfMxq5v30D5\nlAopiowXbk5/zirkatTj/qYwCwQCgUDgTQJ11XSg2k7s6i/yAyd770TMTVqAsj+XYnDYELz/b3+S\n7KeClMV48sBsvDxum1P0mYjCFwgEAoFAG4FqO/U3roSIM/I3G8XFO5ZXDu34pKPS1LaFZy+aLTXI\nOzgPIUF6lKSXOmV8kouccRVxRvv5eGW5k06O4O0Ub0rt0mpLu2N7qz3HX6LZ1PpmPfld4o3IKG8i\nN+/duXZK46cUKQZcnvuW1iakmEY5PBvijPGoqq/E+sNrsSy1EOsPr3V6RvD6wbZNLiKOd0+zbaQz\notDtVapT6TNX3yu119u4e2/7g0bh7v0id54ndlPwM88884yrgxITE3H27Fl89NFHqK2tRV5eHh5+\n+GG/XTnd1tbh+qB/ERkWiciwSGQmTsbAUCPui78fd5ruwpJP8hEWHIYxCeOQYhqFmPAY3G66Q7oI\nYxPG46aoWzA2YbyDITE2YTwiwyKlssn3SvW7OkYgEAgEgkDFYAjr6yb4hEC1nYiNA9gN05uibkFT\nyw+41vgTLLpzCS52XMKfGg7gnmH34r5r0jE2YTxuN92BW4YMR7G5CCOibnWwn5TKFwgEAoFA4Eyg\n2k79DS1+J5ZGa4Nf2jykTY3WBlg7LmBW1XSMiLpVEqduirpFajt9bGRYpEOfyP9JGXfF3oP3//lH\nPHTjNNX9lvOV2Ww27P7LH/D8mBeRYholtW9swnhYOy5ITmm6LXJ1knaT84ifj/RrVtV0ycen1XdH\nzlFzHjsf2Lp5ZcuNk9Z5pfV4V21TW7aae4BcG3ZsyLwi19xVOdaOC8i+/iGXvlkt7Xd1LN0/MmYj\nom6FzWZTPFbN52rbozRuWq4dO8dIWdaOC5h/cK5TeaS/2dc/hOzrHwIAzNk/G7cNTcb8g3MxIupW\nzD84F8EIxq+rn0JY8AAkR4+E+dRXTs8Its28+5Icx15j0m5yT9PQvn0ATu1l68ytzMFtQ5Ol6+fq\nPpD7Xote4Ala7lOayLBI6fd6X+LOvFfqsyd2k6qIsyVLlqC9vR1TpkxBT08P9u7dC5PJhN/+9rdu\nV+xLtK78abTa9yaj863WNddixafLEaGPwLLUQmmldLG5yEmtdqViCwQCgUAg4BOoq6YD0XbirTyc\nNfxxLDmUj86eTpTcvxnbj72KWcMfx/QRM51WfJH9Zft6BZtAIBAIBP2ZQLWdvEFtbS02bdqEN954\nA8ePH8fSpUuh0+lwww03YNWqVQgKCsLu3bvxhz/8ASEhIZg3bx7+3//7f7h06RKefvppnDlzBgaD\nAc899xyuuuoqxbrcjTjzxop+NmrDm9D+LQBOUSK074u2B7cfe5UbkaamrVoje9joNTq6hc0M5ape\ndo8jre3y9Brw+uNOuZ5GTGnBG31WEwHG239KLkLIF5E97kac8eqU2+NLrn3ejPxhx82TZwd7XUh5\nvOPoPubsy0b5lArpePK7sCBlMQA4ZCdRKkvubzURca6i05Si2nL2ZQMA9MF6VfuhsfX1xW9fXmSe\nmnP8IeLMXXwRcaZKOMvIyEBVVZX0d09PDyZNmoT33nvP7Yp9idZUjbmVOejs7sTmsWXSZo7k85L0\nUqSYRkkbPbJpG+ly+uOkEggEAoGgLwlU50+g2U5KPwCXpRYCgJSGUcmxIhYZCQQCgUDgGYFqO3nK\nK6+8gn379iE8PBy7d+/G3Llz8dhjj+HOO+/EypUrkZaWhpEjR2L27Nl466230N7ejtzcXLz11lvY\nuXMnWlpasGDBAlRWVuL//u//UFhYqFifJ6kaPfEf0TYVzzflDeSc/ACk1Grk86r6Sientxbnq5Jw\nIHcuzxlO/1uLaMKmgvNUxNOK1jLkBDKeMKLlGvjSn6lW1GM/I35YJUEDkN+zTGv6SlfiF+94gish\nxlV7XYlPnqK1b67KArT1g57jJGMb/TuRpHJ0F17d5Nn09pR3YTLEOrSBvna8a8YT0tjj1bTBH4Qo\nrW3ojQUDvY0ndlOQmoNiY2Nx/Phx6e/Tp0/j6quvdrtSfyLOGI9lqYXQB+sdHshxxnhJNCPMqpoO\nkyFWWnnDliMQCAQCgUAABJ7tFGeMdzK2TYZYAEB0RAwyEjNhttQ42FEb0jZhwYfzJMN6e8ZOIZoJ\nBAKBQCDwCQkJCdi8ebP099GjR5GamgoAuO+++/DZZ5/hz3/+M372s58hNDQURqMRCQkJ+Pbbb2E2\nm5GWliYd+/nnn/u0rXIOdbXnEptqQ9omrzrWCSmmUdiVWc6Nglp/eC06uzthaW0CYF849faUdx0i\nRUgbleqgjyX9IN8TRy/v+EZrA5YeWoRGa4PscbQ96spZHGeMdxIU1F4PMgZq+qlUvxrRTKm/AKTx\nJt/TfZdrj6syvYGrayR3XKO1QRJveeeR43mw111LpA0ZE1dzh4hBJPqKPVbuPN7nWo6Va4sr2Lax\nIp8W6HuGboPcPKLnOC2amQyx0nnkdyULWx49P3j9o79ff3gtXh63zen3JzmGXD/2PlCas0rzQe4c\nVkPw1b0mh5rnIHu8Er5+ZvgbqoSzrq4uZGVl4YknnsDcuXORmZmJkydPYubMmZg5c6av2+hTGq0N\nKDYXoSS91MkgoF/G5MYGgPzqPIebSyAQCAQCgYAmEG0n1ogmi4yWHlqEqvpKPLhvEqrqKx2OaWg5\nITkVxCIjgUAgEAgEvmLChAkICQmR/rbZbNLesgaDAVarFS0tLTAaL688NxgMaGlpcficHNtbuOOE\nJGII8Vm5Uyf7N/Fx0XXwbL9lqYXYPLbMoW65hVGsEEI7pum6lx5aBLOlhiv68CDf0cfR57Nt5vXf\nlYjnCtLukvRSh8/l2qF0ndQ6qgFngYb+jicYyc0vuTLlxEp3kbuWvOuk1blPxEK5a8kiJ7qw5dHz\nUO54AA7islx0Ev3ZrKrpMFtquG1y9Zkc7ooYdN/Ivc+2zVW9bHly14+MJe1bNxliZec0fR7vGaJ0\nj7GfJ0UnS+0j9yqpl71+5N5nhX/e85FFaZ6zGkJfiE7e/B2u9V7t76hK1Xj48GHF78kqHn9Ba6pG\nwDk0U+5z+hxAPp+uQCAQCAQC1wRquqFAtp1oaJuorrnWaS9YOpWOQCAQCAQCzwlU28kbNDQ0ID8/\nH7t378Z9992Hjz/+GABw4MABfPbZZxg9ejQOHTqEZ555BgDw1FNPYe7cuXj55ZcxZ84c3HbbbbBa\nrXjkkUfw7rvvKtblSapGFnfTXmk5j/Z18dLKqUkXaLbU4MF9k6TUZ1rTeTVaG5y2P6F9b3QblVK+\nsdmh5D6Xa5Pcvma8sXFVFnDZL0j6xqYmJ1E23tjXTut37PfkGpAtadhx5M0NpTFRMwfZY9Tse8z6\nZOWO4V1LXptIP9SkOGXHS8uYKH3HzgPefefOeLPtVTqPd81zK3MwJ2keln/6NN6e8q7DvoZy4yOX\nXhWA02dsikRX14k9n/XFu3pGyB3PpjOlj+e1kz7ek5SsPH2BEEhagrvvsd7A56kaU1NTFf/rr9Ar\nLOi/iXotB1GgrzSVVSAQCAQCgToC1XaiIXaTpbUJs6qmIzoiRvox6moFskAgEAgEAoEvGT58OL78\n8ksAwMcff4w77rgDt912G8xmM9rb22G1WvGPf/wDN954I26//XZ89NFH0rEpKSk+b583nKdaRDO5\naC7ymRqncIpplORY19I+uq/51XkOqRlp3xvtwKajX+jzO7s7kV+dx40ao9O9sVFtdB0l6aXc/rJj\n4yo6iPYLEtGsIGWxkzBBPlcjMMmhFEHlqlwyro3WBkx7JxvZeyeiqr7SKWKR5+N0FUnkKnqGjbQy\nW2rw5IHZ0ngoRWe5gsxbOoOYXJtIP1JMo1Sl72TPY0VeJdFIrny1dcsd4yqqUq7v5HOSIYSe13FG\nexTplroyvDxum0P6RLnrKtd/OvUhgWQe4WUgYa8/r162b+y5cmNBUIpiVeonezwbWcpDabzoei2t\nTdyx6ks8bUdfRdL1BqqEs0CFvRHkHqRKYZm8B6VAIBAIBAJBoEPbTUQwMxliVe2nIBAIBAKBQOBL\nlixZgs2bN+MXv/gFOjs7MWHCBERHR2PGjBnIzc3Fo48+it/85jcICwvDI488gr/97W94t/yAUwAA\nIABJREFU5JFH8Oabb2L+/Pk+bZucA9xX8HxfgLOgpgYSqUTOc5XejedQJQKXnEjAimP0+eVTKrAr\ns1xauEXaTju26XNYfx4RspTGCrgcXWe21HDbwULEsWJzkZPjf0PaJhSbixTHSqvjWcvxtOiwe3IF\nKrLeQ0ZiJnfsefNAbm6oCSYg/SciHRFfMxIzXYpcPGGFhQiWaoQrV/3hQUckKe27R3/HE4x5IieZ\nt2quAZm3cqlE5cQhUt72jJ3SfoSssEv2LYyOiHFInyg3Hrw2EhGTjZ7Lr87DstRCblpZ+jmi1H66\nD6yfPmdfNneceeWx15HMTSJs7cos5/Y3Z182Fnw4T1HoosVJti3scSTFKy/itbdR82xTQyAHFqlK\n1djf8EbIPBve6Sos0xuh1wKBQCAQXGmIdEP+gTu2E+tkYW0nuRQevDQZAoFAIBAI1CFsJ//AkzTX\nJGWcP0Tma02vRbcfgJS6US69W1V9JZKik50i3JQwW2ocUkESh65cSkTiswPAdX4Tfx4gnxKS1y4i\ndBFfHzmfNyZs2bw+aUkRqAYtKdG1lu3peWrLofvAHkPGjOyJJZfWUM29JPfbRO05ABxSXLJzgp1T\ntB8Z4G/zo7ZNvPnqbt+U5jl9D/PGVms9AJCzLxvlUyqkcWLbTO93RoulbPly7c6vznNIr0hStird\na2wf6XqnvZON3ZPt7SXtyzs4D6Vjyrjpael2VdVX4skDs/H2FHuaX7k2yPWvt7eCupJ+l/s8VeOV\nBpk85OFBlGell5uS8i8QCAQCgUAQSPCi8dkVlEorHgF4vLJNIBAIBAKBwF9RSttFIvb9Aa0+LLr9\nJHpILr1bVX0lHq3KRV1zrar6SPQDGxFGIkKIDcnuI0Z8diXppVIkGvk/AAfxghdBxP6bYDLEOvj6\n5JzwRLRT6p+WFIFqo8h4UTy845Ta5epcb9nrSlFUvKgX8l1BymIsPbRISvXHovZeouePljbTe1zl\nV+c5iHmA/JzilRNnjHeKOlQjmhH/tCeRf3RZbIRWfnWe1De6zA1pm6TIT/ozuWtJX7tZVdMV73tS\nFhGjaPGKvRfl2m0yxDqIZgQ6Awo5lq2bHjeCpbUJJ6zHYWltkr4zGWIREqTn9oFtF4noY58bLHJC\nmqusLd6GrrOvI9/8oW45RMSZDFojyLy1CkMgEAgEgisJsWraP9BqO6mJxldThrCdBAKBQCDQhrCd\n/AMl26kvogd8gVKECy/LAOAcdVVVX4mMxExVdSmVQx9HYJ29097JRkiQHiXppdwIOF5EEx1NAzhH\nBilFpZFzSJQLK+C4imhzNQ5qxp43FmrLUoMnwpsalCLOeFFctLDgSQSZ1ihLItyx84o3hwD+/KUj\nktgoKyW8meFM7p6ytDYhvzoPgGPUZs6+bKy8+1mH1Jpy+5uRc4lAmF+dh87uTul8tk42SpQVjejf\nmuy8Z8+Vi5xScz/RkXVstCtwefwLUhZz+6E0Z3mw84e+tn397ujL+n1Ztyd2kxDOFBAOHYFAIBAI\nfItw/vgH3kjVKBAIBAKBwPcI28k/cGU7ydlJPEd7X9pTatO/8dKbAc4CAb24inyvtl45QY79jOyZ\nRX9HHPU8AUuufjkRgNcnAE7jwaaO5LWVzrSgRgyTGxvSR9bJzhMf2HPYPa20ikbecmbz+ulp+kTA\nvT3L5NrDm5O5lTlo62xDhD7CYdEgm7KRnZt0+0i7Zw1/HOkJY7hzzFXkmbeeE3LPHVq0In2Zd+AJ\nWFqbsCer0mFvQldlkr/rmmvx5IHZeHncNkRHxDjNReDyPnVkj0A6Nafc/cyKlEppS12NXVV9pUO9\nPBFu59EdWPbJImwZ/xqSopOdxkGtmMt7LrCpRvv6N3Zf1u+rukWqRh8hnEECgUAgEAgEfISdJBAI\nBAKBQMBHTvh4cN8kmC01kkOeTX3dm8illgOc08vRKelopy9JIceWQVIl8sqWq5ceM17qMjp9Gi1M\nNFrtaf2WpRaqToFJl89+zqaLIykf6ePp83lpGNk0aK4iXtREj/HSv+3KLHdKRcmeQz5Tut5ax0kr\n7Jh6UjY5R2mOybWBFXiVxoYcvyy1EBH6CMxJmid9V1Vf6ZCykfSFzAUADve3pbUJG9I2YUtdmdM9\nr3RdlPqmpd/0v0m72LSRZK7SfdmTVSmJZuQ+YMsm40QLiuTYjMRMvDxuG1Z/vgpT92ZKzz66TbRo\nVpCyWIp8I3uVsf2kr+OsqunStWD7SfdLaWxIvSQlKH39SFu31JUhakA01nyxCtkVmdy5A7hOvcl7\nLrDPLF/+xuaNkdJzuK/x1rvx+/Pfu32uiDgTCAQCgUDQZ4hV0/6BsJ0EAoFAIOgfCNvJP3DXduov\nEWf093RUBC/NGImyYY9RSlumNpUZHcFGR1kRpzot7mmJONMyLr6OwFBbvlJEHj2XeNFy7DG+Ru6a\nA9pTLBLINSZCYW5lDpalFkppBNVEFbHRenQEGW98ydyeNfxxLPtkEeIHJmDl3c86RFGxUYDs2Fta\nm5C9dyJeGb8d0RExUuQWL6KTHS9ehKWWcaTvUfq5U9dcK0VZqYnUIuIf++wiEY8l6aUO/aLTGpJz\nvz3zDdITxmDaO9mw2QB9sB67Msulcslx5BqzzxAC3W+5/mmZY6Ts6hMHsf3Yqw7CGbuHGmkf+5zp\n6ygxNchFu3krDag328dG9XrStkZrA544MANfzfnKrfOFcBYA9IcbVCAQCAQCHsL54x8Eku0k7CKB\nQCAQBDLCdvIP3E3V6G20ilKe1MFzZLLp1nipD+X2DVMSC+QEDvpvwFEQIg758ikVqtLJ8froyRjJ\nlS1XvlJUjJr28MQE+t/0NeOJL1r6q+V4Vw5vUhaJeOIJEOx4kuve2d2J8ikVAOz7b+mD9U4iKguJ\n9Hx53DYkRSfLls8TvujP6P2vyL/pdIJyInOjtQFT92YiRKeX2svbg4831uwcYcUPJXGXCI1zkuZJ\nghBdBony4o0bK1LSY20yxCJnX7Z0HSytTVjw4TzpewAO6SpzK3NwsasNTa0/4JXx27H+8FosSy1E\nUnSyw3MDkE9dmFuZg66eTuyeXIG65lpJLCX1y+0vqEYsbrQ2IGdfNhpaTjikYpQ7TyktpD8itwhA\n6Tksd35vttWbdV8K/RHXDLrGrXNFqkYGb4UB9hZKIb0CgUAgEAgEvsTf7A9hFwkEAoFAIOhrXNkj\n3rJTePV40xZiy40zxkupAlnRhqRPZJ2cbDo+0j46/SNbB5sSkTjveX/TadJKx5RBH6zn9oE43+n0\na/QxvNR1WsZJKe2m3HXKrczBtHeyNaXuY6FTxFlam7jpD+kUgrRwonaOaD1eLgUjLWKYLTXIqvg5\nsvdOlMadnhtsOsE4YzxK0kslUTTOGI/NY8uwK7OcmyqTJsU0ShLN6PItrU1SvaQuup/0HGy0NiDF\nNEr6N4muAuCw9xcRKNmy9mRVonxKhWz6QdIO0hb2/lIaW7n5lV+dh4tdbXjxSKlDik9SRlJ0sux1\nWvDhPHR2dwKwC1P6YD2WpRZi6aFFqGuuRUPLCWn8TIZYh+9NhlipPnK/lo3bilfGb0dGYiZK0ktR\nbC5y2NuMHMtLXQjYI9pCgvTSnmk7j+5AbmUOcvZlI786z2k8aZGdd3/Rz4U4YzzKp1RgT1YlkqKT\npXN4NFqd05/S//c32LlBX2t6Pqg939fw3h/eqNtd0QwQEWcOeBIG2Jerm8XKaoFAIBD0V8Sqaf/A\nHdtJyW4SdpFAIBAIBL5B2E7+QXOzVdHmUIom8Ub6KaV6vGEL0VEp6w+vBXB5zyE6eongaaQVG1nG\nawsbhQbASVRjIyro6BwaNt0biZhhU8S56gf5jI5G0tJnGnciLehoqAf3TcLbU951SlnHS8dHO9LV\n1OXpnCIp9egUfmZLDZrbTklRYHQ9jdYGSVjZkLZJ2mOLF0nnKvqHNw9IBBWd9pGOYpQ7n6TqoyPf\n5OYFGWO5KE3enC5JL3VIVUiXx5atJtUjiQZjozCVUpvSbSHjTq4bPd/Id+T68PoMAHXNtdIzhL2/\nyLxgI+hIG+nrTr4naTdJvZbWJql+GnI+m2KSTi/Jpnmkr4+rZxqbqtbVM703fqP64n3g7XZrKc9b\n70tP7CYRcUYhtyrCFX29ulk4hwQCgUAgEPQ2SqtJhV0kEAgEAoEgkHFl78jZI678TlrtJ1457q7S\nZ8WdDWmbUGwuQkl6qRTZQ5zMRESY9k62YnlyY0RH0bhqEx3pRtq2K7PcQVwgUSX0eFhamxxSwJFz\n6WtAIkhI9BIvIksuood8Rspw1Wc2+oW0hbSPJ66pJcU0ShLN6PI3pG3iRuSQOnmRfzzUCGtyEIFh\n1vDH8eSB2aiqrwRgj1Ra88UqpzEh/yfzjYwtG4lIvpOL3qLbTs5lo9XoqKg4YzwsrU1cQXND2iYA\n9hSEy1ILpchG3r3GRvIoRWKymAyxXPGY9IlcK/Y5IvccINFg9JgQ0ayts02aG+x4LUstlMSorMQH\nUWwucri/SPQdfX3I93TfcvZlY87+xzAnaZ6TyE3KIWNLz0MiBJN7mL5XMhIzHSLT8qvznKLKyPl1\nzbVYemiRNOfoZwc9v+ioR7oudvzNlhqH5wb9PFQSy3vj97FcHUrtUoO3RTP22arUJnd1Gm8S/Mwz\nzzzTZ7X7iLa2DrfPjQyLdOucsQnjhaNGIBAIBAKNGAxhfd0EAdy3nXh2k7CLBAKBQCDwHcJ28g+C\nuwZosncarQ2S3UTbT/TnxKk4NmG8at8UfT79mTvlsOcMGxiHsQnjcVPULYgMi0SjtQHzD87FiKhb\nMTDUiNnvz8A/z3+HyT/Nhs1mc6pLziZkPyfO6tuGJuOmqFukPpE2jYi6FUsPLcLYhPGwdlyAteMC\n4ozxUn3Wjgt462/leOjGadJnxHH+00E3YHR8mlM76GtB95H+zNLahGED4xAZFokRUbfipqhbpPOt\nHReQff1DUjtI+Up9fuDaDDx04zSX4yF3fXjXObcyBw9cmwFrxwVp7Ojr2NTyA97/5x8dxoY4qbOv\nfwg3Rd3CrZtXn1Lb5OYbmTMb0jZhQuJE3DJkOIrNRRibMB4AsOfvb6EkvVQaW7Zem83mMM50uUpt\nJ+NC5hEbzTf/4FxkX/+QwzWvqq/Ev783De9/90dk/GQirB0XEBkWKQl/2dc/hOzrH8LVBhNGx6Vx\nx5s3LnfF3gObzSbNXXK8pbUJ8w/OlfrwwLUZ3H6S4+OM8dL/1UbtkHkH2IWpYARjk/k5bLz/P/HE\nbU9idFwaBoYaHfpgttRI43Cx8yLWfLkSc5J+hXHXPeB0jcgzgu5LZFik9F/GTybiTtNdeP7/SjA6\nLk16fgwbGOd0Lch1JuXeF5eOFNMo6RrS40JftweuzZCuB4Gcf9816QhGMH7z0XzcF5cOm83mMMbD\nBsYhJjwGa75YhZjwGPymeoHDvKHvmWnvZOPlP/8ew68agdtNd0jPDbo97HUjfSX3OO9YObTcg6Rc\nNc8Rre8Gb0K3kR4jeu7wzpFD7Rh5YjeJiDMvIZxDAoFAIBAIBHaEXSQQCAQCgSDQ0Zpuil1Vz36u\ndXW9UoSB1qg29hxeujI6wsTS2oTSMWW4btBP0Nx2SjaaQinyju4DiYKpqq+U/iZtIvunWVqbpH2N\n6EgFEkVC9lwiKdrWjd6I5Z8+jar6SlVRF/RnltYmPLhvEsyWGim6hN2LS66fShF/rsaDBz1GvLZb\nWpucIpGAy5FeJemlDuNNIt/IeHmaPUIpCwV9DYHL0UJ0pBebWpL0k0TDsdBRcmoi4XjRfHQEIzmu\n2FyELeNfk1Iw0vOSPj63MkeK1FLqu6W1SYr4m/T2BOTss0dnkutD7+9F2uXqXuZFRLqCjHVBymIs\n+8ReJxlzEi1G9y/FNAp7siqxeWwZ9ta/jRV3rsbe+reliCte3aQvdP8JSdHJuNjVJu19Rt9LZDx4\nUV5y84IHWyY5v9HagBePlOLlcdtgMsQ67XHYaG3A+sNrMWv441h/eK20rxvv2bx7cgVeGb/dKfpO\njoKUxVJEJClHzXUjx7sToebqOeIPEVz0XGb3X9SC2jHyNMpPCGe9hC/DMQUCgUAgEAgCBWEzCQQC\ngUAgCCTknJW8dG1anIdKTlAl0UxOxKPFFVqcoqHTm5kMsSgdUybtN8QKEa5ghZWunk7JiZ1fnSc5\nwmdVTZf2llqWWgidzrkvROh6wfw8pu7NRM6+bKQnjMG60RslRzftLKfTLOZW5kiCAKmTTn3IpgWU\nExnpfrGp4zxJ1UZEDyIO0KLRrsxySVikIeIOLZKQskrSS7EstVA2zSFvXrlqtyvxjR5vufPocTZb\napB3cB53XrGCE69tRCzk3WOkDFZMmzX8cWn/NZIikAh+5P9k/Oh0iqzgRaKTsvdOBAAsSy1E88WT\n6LJ1SseTvpK5yRszubF1V/xIik5G/MAEREfEOJQDOAtPKaZRkqAx9caHpONYEZEI3BvSNmH94bXI\nrczBzqM7HO6puuZaNLX+gLrmWqf0iGS/MdJ/+v/k3+TaKM1XXkpS8lxoaDkh9RlwFJoBoKunE1vq\nylCSXuqwFxw79+KM8Q7Crxzk/l9/eK1DGkrAOW2n3GIK3rGeQM8tf1rgSt9D7pyr5lrMqpqO789/\n73YbhXDWC3jyghQIBAKBQCC4UhA2k0AgEAgEgkBEybnnie2jJB7IHc86G1nRqK65Fg0tJ1DXXOtw\nLqmDjhAg/6ajQ2h7Ti5KhOfI3T25AstSC7GlrgzWjgvIr85zEjAAICRIL/2bbsfL47Zhb/3bWH/v\nJpRPqbCfe+xVpz2UWDGlq8cuaLB7ZtGCExsVwUZwqRGWXO2DJAeJhpLbT4kIi6ygtiy1EMXmIodI\ntUZrA/Kr8ySnvpoIOFf2uSvxjR5vdp83FtI/ADhhPc49hog0JBqQ3TMptzIHCz6cJ+1rReqlo4fI\nnCBU1Vci/6MF2Hl0B3L2ZWPq3kwpIo+N2CNRWuRvVogl0Ukb7i1GimkUkqKTMWxgHFbfs85hXHlz\nirfvGW+MtQgNdL83jy3Dgg/nOXxGxpSe+3R9RMixtDZJkWOA/bmRvXcizJYapJhGSXNu2SeL0NZ5\nOcIsOiIGsYZhWH94LRqtDVK/iVhO6iPPIDoqbFbVdOw8ugPLP33aQSxloZ8PdHnNbaewJ6tSEsBJ\nhCM9N3dPrkBJeqm0pxuZQ3kH57kUe3mQekhd7L3AtpF+Rsod6yl0uTyxrr+i5lpsz9iJawZd43Yd\nQjjrBdxdDdCfJ69AIBAIBAKBO/R1+giBQCAQCAQCX8JGunhq+/DEAyXkInhIFEixuQjr71WOhqEd\nsLSoQJzsG9I2OaQ7BODkICaOcHKepbUJ6w+vxbLUQgwIDpeiosjxJeml0vfAZYc+ISMxExvSNmFL\nXRnqmmulfrHOa8AuDpI6bTZ7JA2J3OJdCy2RGsRxzoqaPNGMiAQ8gZEVekjqOV6UFivC1DXXothc\n5HBdSXpG2qmvtj9ykTJKohrbTgBS3UpjGWeMh8kQi1fGb3doIz2/Ors7kV+dB8D5t0NJeikudV/E\nL/fPchDP6HLyq/McxLSMxEy8nrEL00fMRPmUCmwZ/5qU2o+OZKLFLTpiinxGR0Au//Rp6bqG6PSS\ncCQ3RoBzNBTdb7Uiq9y5jdYGNLedQkPLCUkUJN8TkSvOGO8U1Uj6Nnf/E2hq+QGW1iY0WhtgMsQi\nwXitQzReRmIm9mRVoiK7UjonvzoPZeO2Svct3W9WBCdlkfZtSNuE7cdexbrRG6VoQDL2dB/Ze448\nX548MNvpON69nF+dJ0XZkmdNSJDe6XrQ40vuW7m5z5v/7DGsYCl3rDegn7Vq7l+a/qxPeDqeQjjr\nJdwRzcSKa4FAIBAIBFcK9I9hgUAgEAgEAn/GXV8Nz9fjqWjGRhO4sz8VSUFGBJj0hDEOZbLiCR0Z\nQkP2IiOiBkl3aLbUOIloTx6Y7bSXGUEfrEdSdLJDBI7JEIuLXW1Yf3gtAEhRQ7QTuLntlJTysSBl\nsVOaRlL3L/fPwqzhjyPFNAqbx5ZJTnc50UxJHOIJQfQ4udqfqa651mFs2DqJuMnbX4r+jtS58+gO\nPHlgNgpSFkvX1WSIdRCbeJEnSshFoKkVfsk51ScOqjqWpLrjicwpplEon1LhdM3IeQBgDI3EhnuL\nUWwuAgCna8QKeI3WBiRFJ0uiF33estRCpzbnVubgifdnSRFTdGQdiYCkU32WT6mQylGK3Ft6aJFD\nJCAZYzZCjj2P7j8bXVeQsljaH3D94bWSKMgKY2QesW0g/4/QR+CVB7ZLgiJgjxJlx4b02dLaBEvr\nD5JgNmf/Yw4pYMm9Q8QpOsJvwYfzkFuZIwl624+9Kp1HP0vYuUiTFJ0sXQMyNrx7KM4Y7yDqkT6w\n0Wn0+JotNcjZZ0/HKZfWlr1GvGPc3d/LVV1ysPer0v2rVVzzN7zVXp3NZrN5pSQ/ornZ2tdN8Apa\nVrQIBAKBQNAfiY429nUTBPAf20nYPgKBQCAQKCNsJ/9g5O9vd9vhKWfvaLWDiEOTFw3kjQg2OoqG\n3dMrtzIHXT2dkuOcnEP2GrrY1YbwkAjJMZ5iGoWq+kqHqJGq+kokRSc71G1pbZIc90Rwy6/Ok8rJ\nr87DnKR5SE8Yg9zKHHR224WLzWPLkHdwHo5f+Ce2PvA6kqKTHUSKnH3Z0AfrsSuzHAAwdW8mQnR6\nbB5bJpVPi10kbRvpL+D+gngi4LFCJKmL9JONAKOPY6Nl2DLImAHAg/smYd3ojZg+YqZTeaQfvLmj\nZd64M8d2Ht2B/I8W4PWMXchIzFQsgwhYRPQg/5ZrB+lbbmWOw5xj62D7TcrOr85DZ3cnOns6EaGP\nQEl6qXRdpu7NlNL9EarqKzFn/2PYMv41aa6xbafnEBF7Xh63DWu+WMUVnMhxdNpT+p4CnAVAXn8A\nR+E2e+9EJBivxYq7nkV0RIyD8MWKh3S72flHQ8ZZae40Wu17vZG+svcV3f6ClMWSIL4stRDrD6+V\nrgGvfHacePcJ3Ub6b3p8SL+mvZMNmw0on1LB/Z73N+868yB1d3Z3Ouyhxh7jjd/Acu8EufqU3kXs\nvNL6burL3/Rs+z2xm0TEmR8jHEcCgUAgEAiuJITtIxAIBAKBoD/giygBLenYAPkUeu62i1curw6S\nyowWzeiosZL0UuzJqkRJeqmUrrGqvtIh9aPZUoP1h9ciZ182pr2TjUlvT0DOvmwpXSIRPYgIR4tm\nSz8pgKW1CctSC7F5bBn0wXqYDLEoHVOGYQPjuGKcPlgv7VUVZ4xH2bit0AfrwUKEhql7M6UoEU8y\nItDRfLRgRaJlSBpAnijES/XGiypMMY1CQcpiKd3k21PedRLNeOWxohlv/vHmo7uRHNNHzMSKO1dL\nopmrSDwSAUX2HGMj8tgoIgCSaEbS39FiEi86M2dfNvKr81CSXorNY8scRDPAHuUYPzDBaQ+t6IgY\n7MmqRHREjFPqOzoSibSZRKBFR8TghPU46ppruWNNp+1j7ym5yEa5vfdIvRVZ76F0TBnWH16LvIPz\nHNJ10uXVNdcie+9EWFqbHCKzyLUikWFknF3NHcAekUaQE5i2Z+xEUnQydmWWY07SPCfRjO0Xe7+w\ngj6vHSS6jSfaWVqbEBJkF9EBOOyxxovgo+cUia5Tgjwvec8buh10u929x5QiyNj6eNF3bDn0367w\npwg1NeOgFiGcCQQCgUAgEAgEAoFAIBAIBCrxRJziORXVOvrY83mOYHcclkrn8iJJyN5j7HlkTygi\nXhAhhxWPlh5ahGWphSifUoEVdz2L05dOoct2Oe0dETlK0ksRHhKB5rZTAIBzl84h1jAMnzd+Ju1f\nRKJIAPteUsTBX1VfKbWnJL0UJkOsg5BBUrHRUSkpplF4Zfx2hIdEwNLaJHtdXI0x7ZRnozvIvkYk\nNZ1W6DYRAW794bXo6ul0iMziCTNyc0dOhOU59FkxQS1mSw02mtdJaSVJJBVPPCPfk7SMdMQXPbYA\nnPamo1MNkpSi7L5dpO1EUE0xjXKYE3Q72CghEj3W3HbKKa0hYI9a2nBvMVbe/awkhJG5lWIahQ33\nFkuiMT2GrKgH2MUsIu7R10AO3vVJMY2SxDeynx+pj5xD5lB0eIzTGNICHhFT2AgvWmShr1Fdc63T\n+NMCC9l3jxy79JMCXOxq4/aLHM+Om5JQxiuHngcFKYthMsRK193S2iTVTwuMrsbYFfRzhu4PaSub\nntMT4Ukugoz+nk7Lq/TOcSVu0+VrTd/KtsvbeGthi89SNfb09OCZZ57BX/7yF4SGhmLt2rW49tpr\npe8rKirw6quvwmg0YurUqcjJyUFHRweWLVuG77//HgMHDsTKlStx3XXX4dixY3jyySdx3XXXAQAe\neeQRTJw4UbZuf0k3JBAIBAKBQBmRbshOX9pNgLCdBAKBQCDoLwjbyT/wxHbyNI2V0vm877R+5ird\nFyu8NFod0+qR79jPWUGApC8EIKU8I9Bp1kgqwqzEB7Hmy5UYOiAaFzrOY0NaMdITxkjHn7t0FsZQ\nI3ZPrpAi1IhgBgDZFZmwtP2Aiqz3HMQR0s6lhxZJfSYRcnKimdz40ONK0kwC9n2b6PJZMc0d6PR/\nSdHJDn0AnFNsknPk0t/xkJsncqkTlc4h15KuP2dfNgB7qk02PaZSGlKl8aPTX5IUjHQKPlL2hrRN\nDmkJ6e9d1UnPV7bNBSmLMWf/Y4gfmCD1i019SlIT8qLIiDCzLLUQc/Y/hqsjYvHS+K3SfcSm0OOl\n3ATgcO+RY6pPHER6whjpWHqe1zXXSm1ioVOo8uYYAIe0jGSM2PFnz2HTJ1bV26P4lh5aJO3Rx0vX\nSt/X5Frynj/suJN0piZDLCytTZi6NxNRA6KxdYJ977Zp72Tj+IV/YumoFdhoXoe3p7wLAFL9pGxe\nOld27vDSr5LP6dSb9Jiw5XkDuTmipnzy7FW7qENLm129Z7yJX6ZqPHDgADo6OvAHYAraAAAgAElE\nQVTmm2+ioKAAGzZskL47e/YsSktL8cYbb+C//uu/8M4776ChoQG7d+9GREQEdu/ejcLCQqxZswYA\ncPToUTz22GN444038MYbb7h0/ggEAoFAIBD0J4TdJBAIBAKBQHBl4KmTUOl8OZGHjdCQi3pTihgg\nURJs6kI6HSPdBvpzErmQW5mD7IpMrP58leTEJvstAXCIJCLRWiQyYn7KQryesQs7Jv43YgcOw81R\nt0jn5tzwME62WfDITTMc2vbtmW+k9uh0wNABMVL0GukTiUqbNfxxaQyKzUVOkUT0OCkJanSkD4lY\nYaM72P+7Q4ppFF4etw3F5iJJJGGjhNj20RFQdAQQHQHD9pUHnVJQaQzYz1jRjqTHm3fgCacIHrb9\nbNQYr32kj8ThT6Ia6WPpqD9yDokgYtPXke/oOUzmP5l7tFhDUnNuGf8ayqdUSKn82OuSkZjJFc1o\nkqKTsSerEhXZl6Pt2LnHu85xxniHe48cU33iIPI/WoDqEwcB2EWzJw/MRkHKYgDA+sNrsSy1UCqb\n3KtT92YivzpPul/pqDPSlrrmWpywHpfu2VlV06VIrs1jy6ToTfocEhVG/k3uO5MhFgUpi/Hkgdmo\nqq+UxDfAPudL0kux4MN50vjPGv64dM2By1FSbF0FKYuRd3CedK7JEIv1927C6UunsODDeQCA0jFl\n2PrA6yj/2x+wbvRGAJDqpyNZ6blD+kvPHSJqs9FaZH7SqTd5zxNvCkls+ew9qhT1pSYqja7Hk3b5\nKz4TzsxmM9LS0gAAI0eOxNdffy1919DQgJtuugmDBw9GUFAQkpKSUFtbi7///e+47777AACJiYn4\nxz/+AQD4+uuvUV1djenTp2P58uVoaWnxVbMFAoFAIBAIeh1hNwkEAoFAIBAIvI2cU5bnsCSOX15q\nLlowIw50gskQi3WjN2L94bWS+ADYna7rRm9EUnSylBqsJL0U+iA9dLrLUR9dPZ1Sekdy3LLUQuRX\n/3/2zj4uyjLf/x8eRmUAy2hoEB86/rZepsvSL5Ky9MRLxcgpGe2Hp6UtKZGcitldMAQXcEUWjIRd\nx2wKUclWto1XCtgUiXIoNUtjV3aOD7t12JXUmZiwPeIM6gzM74/Z7+V139zDgw+b7bner1cvh5n7\nvu7r8Z676zOf79fIRAvaWE+apIM2NAohwWqc6DoOl9uX/6y+fQcK7itC7RdvI6VBj8y9BqTc8QSy\nPspkgp4q0JdjaOnuNBbikDbv8+Lzkbd/uWTDXZ7XSt6vQ+3rayGS+SNpko6JQCQW8Rvh8tCMctED\n8Akki3bphxx6bqAN76HMN7mQtmG2GcEBl3PQ0eckVJA4QeLNYC5ImkPZcTkoOrhKUg5BggCd40/g\nBABPn5sJvfQ5zQ2ro61fH5MARAIw1Z0EFXpP7moDwOY6iSryHFpK40Pt49ctL6qS+6v62GYU3FeE\njUdMLMfgG3O2IGmSTtJOqltFggkjglTweoG8+Hw4XJ1Y2PAoC7/Iu6zKW8uwdkY5qy8v5mXuNUhy\n1A3keqJ7S9IkHXbMfw8xmlhUJJgk4TK1oVEsxKbdacPKAy8x8YzK4HPc0bVKDxXD6/W5G6l/EybM\nwqbEatTOr2Ouuq6eLnj63Nh4xARjs4HlvyNhmkR1AJJ7Ij93KKed3HFGIqp8XId7bxhuiEN/63Gg\nPGfXM4yiUr2uJdey7tdNODt//jzCwsLY30FBQfB4PACAiRMn4ssvv8Q333yDnp4eHDx4EC6XC3fd\ndRf+8z//E16vF0eOHMHXX3+N3t5e/OhHP0JOTg62b9+O8ePHY+PGjder2sPmnzGRBAKBQCAQ/Gvz\nr/zcJJ6VBAKBQCAQCC7zz3428idw8JATIjsuB1ktRr/5lyhUGm2ckyPntTYTKhJ8//EiQe7+bDy2\n82FWDuWsMs3yOY1y9y2HaZYZefH5LO8XbcTnxecjI8aAjKZnsP3oNonbKC8+H7n7s2Fzngbg27he\ncOfjzOHi8boxPfoBjA0dhxhNLKLDx+Gdx+pQ9XA1Joz2hUPny9OoIzEubAITRJTEFr6vhtPXQznv\nauDFHHkoSF4E4h05vNBTo6vFO4/VDeqA4uEFCX+fKb0ndwJRyDtVkIo5AXlxgY7j85kRdG355j+1\nf82nq/BV90kA8Cv08XOA7ze+LNMsM1RBKmhDo9jndqcNFQkmlB4q7pefKjp8HNKmLGHrwOpoA+AT\n2RbU66Cv00nWFwmF249uw+LGVCaeyeGdcfy5ufuWM+GIHw/KKwhczlk2PfoBfNV9kvW1Rh0paWdA\nwOXraUOjfG0PVKHo4ComtMVoYgFcdoTSeFUf29xPtAV8Od8qE7dK3IaUf5DmJLlRM/caWN9oQ6OY\nG1Q+l/i8dDvmv4cnpz4tEa3kueLoHN4FSP1ZeqiYiWZpU5Ygb/9yFNy/Ghtmm0HJrahvqWy5QEhj\nzaMUppEXUa8Uf45h+mywc4HLa0QpRx9/jYGEtRuVgfrnSrhuwllYWBicTif7u6+vD8HBwQCAm266\nCXl5ecjMzERWVhamTp2KMWPG4PHHH0dYWBhSU1PR1NSEqVOnIigoCImJifjhD38IAEhMTMSxY8eu\nV7WHxbUeDIFAIBAIBP87+Vd9bhLPSgKBQCAQCASX4TckbxR4MSNpks7nCgtSKR5LYcbIHUQb0sGB\nPmGBFzbitNOwLCYTjp5OJnwAQEtHM3OHVCdtx4mu4yg9VCxxjZBbaP0fy3FriAaVVjPWzlzHykma\npMOmxGrU6z+ANjSKhV/jwzw6XJ0SIYA21U2zzBLHEW0gb5htHvKGMi9cDGWzeiA339VC1yehgq8j\ntaex3YKFDY8yVx8dz4tGA4lh/q47nOd8qgPNNwpnZ3faWD6vVvthiXOO6k95rehvujaFzVMaq3ce\nq8OmudX93D0EL+DRGPHhGnnnJJ+LavvRbVjY8CgTn7ShUczBSHVasS8LPR4XWjqakdH0DPLi85E0\nSYedyRa8nlglWV8URvDJqU+j4qENTMxSqi8543gXY3ZcDqqPbe7nBKXPeSFSGxqFqLCxzMnFi23a\n0CgE/8OVyYdb3DDbjNr5PmGV3GkkkJOIpxSKlBc9Sw8Vs3FbtEuP9N2L8feL3yKrxcjGuyLBhBfu\nNkIVpGKhHeXtpbrx9eZzKPLt5ucnzSES+wgKmUhusoQJszAubAJiNLFM0CVBmi+bf83fc4YaAvFq\n8Of4HGg98vOTv2eRCOjvGrwY/33hWoeAvG7C2T333IOPP/4YAHDkyBHceeed7DOPx4Njx46hpqYG\n69evR3t7O+655x5YrVZMnz4dv/vd75CUlITx48cDAJYsWYI//elPAICDBw9i6tSp16vaw+L7Eo9T\nIBAIBALBjc2/6nOTeFYSCAQCgUAguAxtYvvLEXWlXGmoLT4XDz2vkVAgF1L4zVQ+VxZ/PDlxSBip\n/K+NWHFvPtucbWy3IOujTCRPWojo8HFo6WjGzz96EV093zBxDPDlW/J43QgOUKFkRhkTLqiuFHqN\nF+pS7ngCufuWQxsahcrErb66nz+Flo7mfg4dEkVSGvSwOtrYBjLv1KK/eeRii9wBpDQGKQ16ZLUY\nkR2Xc83GXe62AqSuKnkdyS2kDY1iYoo8fCL9OxQxTO5oG8rx5a1lrA7A5XCCcdppiNHE4ja1731/\nQhhfPwCSsHn85j8dY3faWKhCf/1H8zTVkoJlTenw9LlZ2fwc5wWoSquZOa9qdLUsn5jdacPameug\nUUdi4ujbUfRACSqtZtymjmIuLXJJ8eur1X6Y5fP6zR/KJWENlfpcqV/XzlwHbWhUP2GEjqG22J02\nhASrYXW0ScRj6gt53i2ro42J2XanjfUVAEmeLvn1qDwSrFxuF3vvncfqUDX3Tdw8cgwqEkxMnHG4\nOpG7P5utY74cHhoH/nqLdukla4KO4+d4j8fFBPZW+2GkNOhhbDZI+ggAE9ABsPsOAMV1wefS48VD\nf04tvo+v9J6t1CdK7aXyeIGaD8/K55b0x1COuVquh8B4LfcerptwlpiYiBEjRuCJJ55AaWkp8vLy\nsGvXLvz+979nv6BesGABnnrqKTz11FO45ZZbMHHiRLz55pv4j//4D6xfvx65ubkAgF/+8pcoKSnB\nU089hT/84Q94/vnnr1e1h43YCBIIBAKBQHC1/Cs/N4lnJYFAIBAIBILLKOVRuhqUxI6hCiAD5eKR\nlyMXEPjcStHh49DYboG+fh6MzQYmqL0xZwtqv3ibbWYnTdKh4qENqG/fgcZ2C6qPbcZP716O0SNu\nYuHXaHPZPKcKG2abUd5aBsDniNkx/z1JbjTC43Wj7PNfIW3KEgA+4Q0AosPGYf0fyyVh4cjZZnW0\noaP7b1i6Ow1WR5vEDSh3rFBf8H0THe4LGTlQiEO70wZVkAp58fmI0cQOmqNrKMjdVtlxOZJQgyQs\nUR1J4NCoI/uFNJSP8VB+9KbkaBtorvHlxmhi2bGt9sOSHFxqlRqA1AVDY8GH8pSH5JMLnLzwyQt7\nSuIgCTt58flQBaow7/b5THyVO/NOd59iop9GHclEBVpD2tAoZLUYkdVihGmWGUmTdKjR1aJOb2Fi\nCl9Hqos2NIoJcWqVWhLWUN7nSmEpSczmQwfyjjn+/dx9y5ERY8DSprR+oTvl42d32vDcnmeRHZcD\nu9OGBfU6pH+Yhu5L52BsNiBz72XRiYQYJcGoIsHExpbQqCNRo6tl4RitjjYUHVwFTUgkar94W5JD\nTF6v092nYGy+HNLR7rSh49xJJuyRuM73MwCEBKtROH01KhJMcLg64fG6canXzdxt1UnbsfMv7zJh\nncRXGmclUYrWHy/Q0pzyt9Z5QZs/x999XN72geDnFe8apHs83SdqdLXsBw7fJUP9nvouCfB6KWLn\nvw4OR/d3XQWBQCAQCARDQKMJ/66rIIB4dhIIBAKB4PuCeHa6MZA/Oym5QQbjSs4ZTlnXqnza1Ey1\npDAHBm0m58Xno/RQMfLi81HeWobsuByWU4zOTWnQw+N1Y2fy5dxN5NSgkIwerxvmOVVMAKANVdrw\np9xqFCLO0+eG1+vLnxQdPg7bj25DREgEc98Y9qTD6wV+dk82Kq1mpNzxBGq/eBvdl87hmx4HKhO3\nIkYTy0I6lreWMYcN72KiPmxst/RzN9EmPYkm8k11wLfxT20MCACCA1WKoeeorUMdL+q/tClLUH1s\nM7LjclgYPbnjJ63xSayduY71H59rij9uOHOFF80GOp+/vvy69D6JJzSXaI7ZnTbo6+dh7YxyvNZm\nQsH9qyWfy4U/eX43vg4pDXoAl+cLX2+69sr9OTh1/iv8+qFX8eTUpyXnU30pzx/gy2ulNJY0p2g8\naLwWNjyKkgdfYWXTtV1uF9QqtcTdpDQu9LrVfljRYUdrhY6h+vHYnTZoQ6OwoF7H1iO/vt29bkkf\n0fG0xjYeMQEAXrjbiEqrecA68/XiQ7Ua9qTD5jyDuuT32d+qQBW8Xp/bi19LSq6zVvthJtrVzq8D\n4HOO0rl2p61f//B94nK7YHedwc0jbkFAADBm1C2o0dVi51/eRdFnBfjp3cvxiwcK2bUX7dLjncfq\nFO+vdC35nJavNTk09nwIUH785OMq78+hCNvU70p9MZyyrre4dr2/B4Gre266bo4zgUAgEAgEAoFA\nIBAIBAKB4F+ZK/nV/LX+pf21Fs14B4pSqDTKPRSjiUWPx4XSQ8VMvJFv9L9wty+3EL95Lg8T5/UC\n6R+mMReG3Plk2JOOcxfPQRsahRpdLd55rI5t8FP4x66eLkmZNudpbDxiQkaMAWWf/woZMQaEjxiN\n0hnrmPNJGxqFpEk6dh6Jf3yOLQqlR0416pc47TSUPPgKAKkzhnd9kctKFaSCaZbZrzvN3wa23O3G\n99/ametQfWwz0qYsYfnBCLmDjCDHFO8SGmiu+JufcqeZv/PJnSgPvce7wuRYHW2s/6JCx2L9H8tx\n8tzf2OfyXFL8XKF2NbZbWEhPAAgIANycQ5F3DVYkmFDeWoZNc6uxLel3EtGMrse7LMlV5s+xY9iT\njsWNqXi1dT17TxsahZIHX8HKAy+hsd0iubZapZaUJXdv8e4pcjnJ3Wu8Q6vVfpiNs9XRhpQGPRbU\n66Cv0yGrxQirow0hwVIHGNWF8otRPzpcnazM6mObUTh9NQqnr0b1sc1IueMJVl++fnzf0twz7EmH\nvn4eljX5RLK1M8rhcHUiq8WI4AAVno81onZ+nWI+Orkzi/IRkmgG+AQ3yrlGOefoeJorFCLz9cQq\nbEqsRnBgMM5e6EJefD4AoObEW4gMuQ317e9K5j3lfeOh/slqMbI20zhoQ6NY/jh/OQ3tTlu/sJj0\nmh8Tf3njBkLuMOT7Tn5/HYx/hiPtWopm18O9JhxnAoFAIBAIvjPEr6ZvDMSzk0AgEAgE3w/Es9ON\nwfVwnF1Lh9hwHUxyZ4vcfQKgn9OFP5Z3C/ECBjnE8uLzmQOnsd2CpEk6NLZb8NyeZ1Hy4CuICIlA\nRtMzKJ2xDk9OfVpyrcZ2C9I/XAwEAFVz35Q4eYjtR7eh+thmidsDAByuTsRoYpHSoEft/DrYnTaW\nQ4t3t5FARk4h+VhQfUiUoOP19fMwIXwiCu5fLamXvD+By8ICuUCoLH9jxbu1cvctVzyGyqD20XWo\nvqe7T8HqaEPpoeJ+Dhh/wqj8+gPNo4GcjkpuKX+veQei3PFnd9qQudcgcSP5u67daYNhTzrOdJ8G\nAoAJ4bejdn4drI42FH6yUuJ6lJ8r74vGdgs06kgsbHgUb8zZwsJ/Ul4uf+2xO204ePoTvNJawtyI\n5C5SGgul+wA/jvKx598DwOY0OYxovWnUkchqMaLH44LXC6gCVcwpRteXu9V4x6Wx2YDgQBU7ttV+\nGMua0qFWqZFyxxNY81khKh7agI1HTGzukcNSvhboHqFRR8Lh6kTRwVX4qvsk1s4sBwCsPPCSJGSs\n3BEoz7nIf0b3KeoLAMwJyrvBeLE3Oy4HK/fnICggGHV6n5CZaklBRowBufuzsSmxmvUDAEWBl78X\n8K49ACz3ndK65Z2q/hxpSvPC33tDOV7uGh6O6+xGYrDvSOE4EwgEAoFAIBAIBAKBQCAQCG4glDYs\nleDfl2+WX6tfyw/VmcBfm3d18O4T/hjevcBfi/Jn8fDuMnevGzGaWJzuPoXtR7cxN055axkyfvgC\nNh4xQaOOROkMn4OKcqW92roep7tPoby1DFUPv4mquW+i9FAxc8O12g8zR8eTU59mm/+U+8zh6sRz\ne56F3Wljohk5tXL3LWftonxh+vp5SN+9mOXV4qENeHK1kIOlLvl9mGb58rApuUuob+k1uX9ebV2P\nhQ2PSnJ2yeFdWfwxcvcN4HPcAGBOpawWI1rth7Folx7puxczt568/IHmyGDzyN9Gvb9cXDRm9Dk/\n72hcYjSxEidadLgvl9mG2WbWVnqfvybvADLPqWLzhQSVNZ+ugu38GbR0NEvqq+TSA3yi2eLGVDhc\nndgx/z2Wr4zPw0fnUxuoDsZmAxbc+biiMBKjiYWnz82cSnxb5I48+lvuDKK+AsDaTHnutKFROHfx\nHDKanoHD1ekLQZhsweuJvnyBlVYzejwuNhd451GqJQWlh4qRPGkhtKFRzCHJz5uvXTbkxedjwZ2P\n4za1FpMj7mL3iejwcciOy8Fze57t54gjd2pWixGlh4pROH01NOpI/OYP5ai0mvHGnC395hDNL7lL\nU+4WpOuTUEU54/i+58uj0Kmdzq+x5sES1t81ulo8OfVpbEqsRtIkHdbOXIfMvQY2Vvy9j8RLek0O\nSconSPNWKc8ZnxPPH0rfBwN9R/Cfyb9jeAcsORuVXL3D4Vq7uoZ6zcG+I6+HACiEM4FAIBAIBAKB\nQCAQCAQCgeAa4G8T099mKHEtf/l/peVQfSisGV8Obdbzwg1wecOaNmVpU5mcOYDPyZJqSUGl1YyC\n+4pQ374DaVOWwNxmwsnuv+Ipy4/xWpuJiSdjRt6CNZ8VoqWjmYU7jNHEsus9tvNhJNc9guS6R9gm\nPbltLvW6sawpHWs+XcU20Clf1vaj2wCACQ3A5XCKmxKrMSH8dsmGtnwTmkJU0rlx2mnQhkZJwjvy\n4pGc2vl1qEzcivr2Haxug4lX/L9yUYEPyWZ1tAEATnQdB+ATDgvuX42xYdEICQ5h5w9n03swN5pS\nWdVJ26ENjeon9qVaUpC518D6ihdXeVFSCbl4KK8Hhb6jnFGlh4qZQwwATLPMWDEtHysPvMTGhZw/\nrfbD/QTMGE0sJoTfjhhNrESA4cPvUZ3dvW7WV3nx+QgOVElyS5HAQ7zzWJ3E9UN14e8ZvMja0tEs\nEbZ50YbEvPLWMvb56JG+cKTlrWUALq9PwCecUJhGpbk9d8IjWPNZIR7d8TCMzQa0dDSzuRynnYad\nyRbEaGJhdbTh7xe/xYmu45L1kDRJJxGt+HsEXaMiwSeUBwUEY0SQCnnx+ejq6cLChkdZGEt5iEJ/\n0H2KxobCaZLATtA6Od19CqWHipE6+SlMvOl2dk8hKJfh6e5T7D5AY0fjQznW6H5I1wV8ee8IpR8b\n0GtyIfpbi3JRSy50Kf2AgdooX5fy+wQ/165UNLseIREH42qEvqtBhGoUCAQCgUDwnSHCDd0YiGcn\ngUAgEAi+H4hnpxuDgZ6d5IKS0gYovR4sFN9wUAr5NhzXGdA/lBcfEs3ldmFEkApeL5gDiOrOh9aj\nNmlDo1iYPVWQShLirrHdtwGvr9Nh9vhEbD22CdFh47BrwYfs85X7cxA+YjTy4vNR3lomCU2nr5+H\nFffmo+bEW8xVRKEhD57+BDUn3oK7z43XE6tYmLmlu9PQ6fwaXngRGBgoCccmD31HbZGHiSNIPKEN\n8O5L51Ayo0wSjpLKpg14PizalW5a+xtXcpllxBiQt385cu79Bco+/xXGhU1gIQ6pjwD4zbU2nHrJ\nQ3cONp+pjiR0KIVz5JHPQX/1kocupDrwYToDAny5qvLi8xGjiZU4xgBAXz8Pdcnv9wu9J7+2vA18\nXflwkwUHVqJOb5Gsnx6PCyHB6n6h8vg1xIfuBMBCO7rcLhZSkM6hOapURz7MJR8Ck8I50nX4sWrp\naMbKAy/hpbiVGDNqDH7zh3LYXWewdkY5C4NK893ldmHxlGcl4ShJCKVQqXRsXnw+ntvzLDtu0S49\n3H1uBAf4QkduPGLCqfMdeC7mRVj+2gBVkMrv/KR5onSfo9CJ8vCN8j5O/zANXRccqEzcysKyAsCj\nOx6WvN/YbukXfhYA9HU62F1nUJf8viQUJIB+IVOV7ve8w0/ezoFcnPy9Y6AQi/JrKpU/0Hoa6PyB\n6vnPZLjXF6EaBQKBQCAQCAQCgUAgEAgEgu8Q2iQn95M8VJf8NR+KT17OcK/LuwCUXE/DCXEldyVU\nJJigVqnxfKwRqiAVcxRR3Xl3DbkvUhr0yGoxonD6ahbyjUSxpbvTYHW0QRWowr4zLYgM0aJkhs8h\nQ6LTprnVqEgwoeDAStaPFI6uLvl9vBj3UxaiEPCFhDzRdRxrPitE6uSnMCJIxUIW5u5bjpIZZahf\n8AEaFjSiLvl9Fo6Nd0dZHW3MheSPVvth6OvmQV8/D3anDRkxBpw+fwqFn6xkbqHy1jKJs0rulhiu\noCkfK7mLhYSxyRF34TZ1FBbc+Th2Jlvwwt1G1u9Kjjn5tYbqJFFy08jns1KIOl404/+l13anDamW\nFBZyUh72Ucm9I78ezb/n9jzrm2NBKphm+fJ6xWhiJW2keRsVOhYOVye7XqolBVZHG1vPdG3qZ6on\njS31R3ZcDgDgZPdf0dLRLFk/IcFq5spU6i+qC90LosPHIWmSDnnx+VCr1P3OkbsPqU9ozgM+EStt\nyhIkTdKxcskVxV/b7rQx0ewHY36AlQdewuIpzyIqdCwSJsxicxkA8uLzYXedwfToB5gYRg7QpbvT\n4HK7kNViZA7IGE0sC1tpd9rg7nPD6wUKp69G9bHN2DDbjJx7f4HdHR/A43UjLz5f0VVF7VO6zzW2\nWyQuPMrNSE5Caqc2NAqjR45m4tj2o9vYWHddcKB0xjpo1JEs/yJfF7o/jAhSYVNiNRPkATDXoyrI\n5zbkx4UXYWme0pyQi1pK60/p3qEUApI/nsqTu9oGu//I3dL+7gfXUjS72u+6Ky1nqAjhTCAQCAQC\ngUAgEAgEAoFAILhGOFydADBgHhuCNvzkG5b+xBt/G5lKm6vy8IH8hrNSGfKwZ3xIwooEE6qPbUZG\njIFt/tJ5fN2yWoww7EkHAGTEGFB6qJgJDY3tFhQdXAUvvOjq6ULt/DqYZpkRohqFooOroK/TYWlT\nGhMgHK5OdHT/jfUnbQbz11q0S882rSdH3IUJ4bdjwZ2PwzTLjLz4fJZrqLy1DNrQKMRppzHhIXOv\ngQkgJHjxIRR5kYnGI047DZvmVjPHyZNTn8abSTUwz6lix1YnbWfCHI2BvJ8GY6ANYj5sHG3ak8tH\nrVLD7rThRNdxZH2UCX2dTrJ574/hhELzd+xQhEESOuTwIT5rdLVs3OK009h88LepTwLFol0+sVYb\nGiXJTaYNjWLhLOUO0KwWI7xeX3jH7Lgclids6e40lhONQo0CYGuEz1VG6628tQwadSTGhY3Ha20m\npDTomROK2uQPahOFR+RFWLng5m8M7E4b3L2+etmdNrjcLuTtXy7J2+fpc8PqaJOUE6edhpIHX0Ht\nF2+j9FAxMn74Amq/eBvBASq0dDSjvLUMaVOWIDp8HGI0sRgfNhHa0CjmNPumx4HcaQUIHzEarydW\noSLBhNJDxazetN6MzQZ4vcCIIBU06khUJ22Hw9WJV1pLkBFjQHCACqWHivvlyPM37/h+l4tJje0W\nLKjXMSccLx7HaGKx/eg2/PyjF/H3i98iRhOLysStmBxxFxbU61B0cBVKHnyFOdLo3rV0dxou9bqh\nUUeyUJ+8OEdzTe4Ok68/ufBMc2igfIf8PFHKN3ktkIt78h908HW4FgxHrNYQKY0AACAASURBVOeR\nr+ErLWcoiFCNAoFAIBAIvjNEuKEbA/HsJBAIBALB9wPx7HRjMNCzEwkAtOnvD14EkoevUwrzSOcM\nFKZL6RrysFtKZciFncZ2Cws7yJ9ndbSxsGv+2kbh7PLi81FwYCVUgSpsmG2GYU86vF7gZ/dk49sL\n3+Llz4tZeLxUSwoyYgyICIlA0cFVKJy+Gs/teRZvzNmCL7/9Ej8Y8wO2iZ3SoGehHwGw0Hm0QU5i\nZUqDHqfOd2BnsoW9x7eR6plyxxOo/eLtfm4oeZsWNjzKHDZK/ecvTKFc3AGUw7T5Gz9CXh6Vkxef\nz/J5UT+QqygjxoDJEXdJBFy6trzca4E8fKMS249uw8oDL0nmEN9/8vey43LYXKCcVEph8KhtfEhQ\n/jN+7gKQXAe4HFp17cx1WNaUjl6vh4UKLfzEN4/feaxOchwAydzi14rdacPS3WkYFRQiCT9IfUSh\nACkUKYWXpLbK199g0P0kLz4fGnWkJFwj31Z9nQ5fu2xsXfD3BHkdunq6WOjPV1pLWL3oXlB0cBU2\nzDbD4eqUhD2kEK3k/KJrpzTomUuUHHrUB/z5VAY/jnw75fctul9RH/R4XAgOUMHjdaPogRLWl3w/\n9XhccF5yQq0KxeuJVWzdklOOwjTy88rYbEDB/av7hb3kxXW6H/Hv8WE1+Tnn7348lLEe7v3/SqC+\n4ttzJfW9VnWUX1septVfOVfz3CSEM4FAIBAIBN8ZYvPnxkA8OwkEAoFA8P1APDvdGAz27KTkMPIn\nyMg3+fk8OP5C6l3thqV8E1e+GUk5nwD0y2UGQHFDW16+1dGGpbvTsGluNWI0sXh0x8Po7LEDXuC2\nUC2CA4NhnlMFbWgUWjqakbd/OW4eOQZbk34LbWgUrI42FH6yEl+d60AverEt6Xcs95BGHck2TEkw\ny9xrwFfnTzInGO/Yk2+uUpvTpixB7r5s3DzyFjT+v70DtokXhZQ2wfmy5QKdvA/lm+sD9aNcXJXn\nSSKhiDbxAZ9IFKOJZSKap8+N4EAVMmIMqLT6whaSuFaRYBpU7JK32V//kLioVB7vrMyOy2G5xgYT\nB0kYkeej87dmqF+ovxbt0sPrBWrn17G54q+ecgGO0NfPw9oZ5UiYMEuSw4/yaSnl5Wq1H0byzkdQ\n9fCbTMhqbLcgo+kZPBfzIsx/MiFSfVu/PH680OUPXqDj+0Ffp8OIIBWCA1WK4g29Bi7n5+PbCYCt\nHT6fWZ3egpaOZpbrzOHqxNKmNPT19WFs2DioVWpJXjNPnxvuPjd2Jlv6hQ6kcaH8bZ4+N955rL/A\nBoAJ5Hzd5fns0qYskQixJEhWJJgkIqA8tx0J+SP+EcqTXK1rPl2FHk8PAGDT3GqJAEn3PV4M49vE\n51ej8SGxUF7vgX64cL0Y7nXk7ftn19dfneRi72DfR0I4kyE2fwQCgUAg+H4gNn9uDMSzk0AgEAgE\n3w/Es9ONgb9nJ6UNRX+/0Je/r7QZPtRrXC18ma32w0iuewRVc99kYgVtpi9rSmfujIEcda32wzA2\nG9jmOXDZHfXlt1+i9ou3mYhDos507YPYemwTCu4rQn37Dub8sTlPI3daARbc+ThzDZU8+ApzUpGw\nlBFjwMYjJtTOrwNwWaAhRwvltyLxDwDLz9Tp+hr1+g+GJCDx/SUXtuTjIncfDmWMlcK6+fubHC4k\nhLncLvR6PXC4OrF2Zjmqj21GdlwONOrIfm4mEjfJWTPYnBuKy0TJccYLZrTJzbu2slqM/cQGpT4d\nSKDkhQzgsnBmd9rwTONPEBQQjPcWfsiEMwCK9eTL452FVkeborAlF1TkfaGvn4dNidVsHWXuNeC8\nuxvfXjiLm0bejHUP/UYiICq5Q+Vt5vuSFxF5kUbuguLdkrwQktKgR/elbnx7sQujVTfjvOccW69y\nwYhcoZVWM9y9brxwt5GtQRJoqVz6Wy7K8oKcp88N0ywzE8l5hx0v6PECuXwt0XvZcTlsTsvFFBLS\n+PnEX8Ph6kTBgZU4c/4UAgICcNOIm3H2QhcCEIB/u3kScxkuqNehdMY6TI64S+Jy5dspd/i12g9j\nQb1O4u6TzzWlv68HV+oU4+ec/LuKP+a7ENKU6qbE1Tw3iRxnAoFAIBAIBAKBQCAQCAQCwVUw1Lw8\nSu/TRu5QRLNrkctFqY6ENjQK9foPkDRJx3L3AMCJruMs3xifu4sv83T3KSbmeL2Q5P2q0dVCo45k\n+YzI+WSa5fv349MtiBipwZvHtrCN7zq9BS/PrMD06AeQaklB6aFivBS3Ern7s2HYkw6row0VCSbk\nxeej+thmFE5fzdpDotnZnrNs4zw7LgfGZgOS6x6BYU867E4bsuNWICo0WrFvlPqZxoDyRtXoav2K\nZlktRonASMfIN53516mWFDYX6Fi5iEKfk8NMGxqFigQTVIEqBAcGY8yoW/BamwnJkxai9FAxjM0G\naNSRLO8XQY6fwfA3h+UoiVFpjU8CAJszcgGkIsEEVZBKkovKX59SWfw6IHGS1h9w2Z1n2JMOu8uG\nzh47WjqakVz3CPR18yQ58+Tlne725ZCiOgNgawHwCTmUo43awreX74u65PcRo4ll89njdaPs3yuw\ndmY5/n7xWxQcWClpN+CbN6mWFGw/ug2plhSkNOiRakmRtI/WJT8mlOeP5gS1JU47rZ+7zu60ITp8\nHAqnr2aiWbfnf5Bz7y/gcHViYcOjaGy3sPa1dDSjx+NCpdWXNxAAKq1mVm+HqxOePjcrVxsahbz4\nfDYuVB/qq7z4fAQHqphotrgxFduPbmP3P3KvURup33nRjJ9X/JymvqbxTJqkQ158fr88cSTMrfl0\nFS54LmBs2DjkTiuAWhWKoMAgrLxvlcQJd9OIMcjdn41lTek4d/Ec6xtqJ409/zpOOw07ky0sZyKh\n9AMKfi5eLUplDHUNKyH/rpLX92q+k4Z7nlxMvpp2DQXhOBMIBAKBQPCdIX41fWMgnp0EAoFAIPh+\nIJ6dbgzkz06804HfoB7MWaQUxmwo4fuuNm+NPLQdbYjKc6vJxZqzPWdZSEN5/Sm8GgAUTl/NnDSt\n9sMs3xHv+OGdUhUJJizdnQaX24Vu9zmUzfw1c0tlND2DW0M02DS3GgBYaMff/KEcdtcZaNVj0ev1\noGRGGRPIKhJMyNxrwAt3G5G7PxubEquhUUcic6+BiWtFB1fB43Xj9LlTuC1Mi/ARo1GRYOrncFHa\nlOVDxsldSrwQyjupBhoLeW4vGhP59fgQgfKcWQCYoFNwYCUu9l7A2QtdyJ1WgJoTbymGE1S61rVG\nyRkmd6ZRKEZ/fc27yeQONN5hRJ/zji2row0adSQAsDlBIQf58Hl0rjyUIQCWg4vqmtH0DCoTt2LN\np6tgmmWWiDnyseTLSN+9GBNH346C+1dj5f4cBAcGIyRYzcalsd2CooOrcKG3B46eTmxKrPab103e\nx3w/pDToERAAeL3Ahtnmfq4vY7OBub0W7dKj4H7fmqD1kxFjwGttJhbeM2//ctymjsLriVUSZ1VW\ni5F9fmuIhq0hchGmTn5Kkj8QuByikXejbT+6jQlxfM4+/hh52+m+Is936O51S1x3je0WLG1KQ1To\nWBY6kkRtl9uFC54LOHvxG+RNK0R9+w5kx+UA8N0fyL1K/Un9ROPP55K7mjCGdI7SfWWo5fH3an8O\n5yspcyiu6KG6pQcr/1ofTwjHmUAgEAgEAoFAIBAIBAKBQPAdEB0+TlE0410scmcR/yt9ctn42xSX\nX+tq68rnyCI3S6olhTmkePGHNv4rEkwYPTJcUg5fP1WQCoXTVyMg4PIGPIV3/Or8SbR0NGNhw6Nw\nuDqZWKYNjYKnz40TXcdhP2/D2YtdcPe5sfbQr5iTpHTGOnzT44DD1YnMvQYs2qVHpdWMn92Tjbrk\n9/Gze7Jx+vwpVseKBBNOdB3HqfMdAIDxYRMBAMua0nHy3F9R+MlKaNSRqJ1fh6IHShAQGICSGWWo\n0dVCGxrVz+Hir7/5kI8Ulm/RLj3rjxpdrST8IN9XNB9o3vAuFXJR8GXn7lv+j3xsy1nZVE5Wi5E5\nr5Y2paHwk5UICABGBY9CpPo21H7xNjbMNvfLZaV0rWsN397GdgtzIPHtPd19CuWtZciOy+lXl+1H\nt2FBvS+vXaolBVZHGzuHd5uQw4g+o7Vld9qY8JTVYsQLdxvx5NSnJY4t4LKTjULrZe41APD1c158\nPp7b8ywT1GI0sRgXNgFdPV04ec7nwCT3IY1lq/0wq2ONrhYVCSbEaGJRr/8ApllmlB4qRlBAMIoe\nKEFFggl2p803frvTcKG3B9lxK6BVj+0nmvmD+oHuP6ogFQru961Fmh/0n8PViY5zJ5H+YRoAsPpo\n1JHM6ZcwYRYTzRImzMLOZAvq9L5wg9RWAHC5fS60nHt/gU1zq1Gjq0WcdhpS7ngCHq8bL39eDJfb\nBaujDWmNT2LnX97F0qY0dF86J5kfkyPuYv1U3lrGHGL8PLE7bf3WkSrIV8esFiMy9xqQF58Pd58b\nWS1G1qdFB1dh7YxyhASr2bnkFFMFqhAYGAD0Ab/781vIjstBeWsZAODU+Q4m9FN/xmhikTRJh8rE\nrSg6uIr17UAhGIcCja/8njNUNxd/r7Y7bRIxmP+c5uVQHWL+nGb+RLPhOs+G6xa73u4yJYTj7Dvm\nan8pJBAIBALB9xnxq+kbgxvp2Uk8GwkEAoFA4B/x7HR96Ovrwy9/+Uv8+c9/xogRI1BcXIyJEyf6\nPV7+7KTkFAAub5zKczYN5vSRb0Ze7WbhQE4Vqof8tdJmPeUF4nP48E4oJZeau9eNwumrkTRJx1xZ\nKQ165kBb1pQOAOi+dA5nL3bh0duT0fRVI+qS35dchxxAJIytPPAS3pizBTGaWLR0NCNhwiykWlLQ\n43HB7rQh595foL59B9KmLEGl1YwejwuePg8AICQ4BO885nOTLKjXwTynCie6jqP62Ga/eXwIEsm0\n6rFQq9QsfxrlggIuOz7oPXID8S47ACxPklKOLBofytXG55ujjXBy1pFAx7ul+PqQO4jcOEPN5XY1\nkKvH3euGx+uG7fwZbJpbzXJR8X3M52rjx1xfNw+3hkSidGYZCj9ZycpQcqfJBQy70wZ9/TzcOioS\nqqBg9Lgv4O8Xz7I6yOtKY9BqPwyHq1OSe4z6knJxUd6sby+cxajgUbCdP4M6/fuSfF/kNgQuO5bI\nnUYi2aigEF/fOM9gWUwm6v77XQQEAMEBKrj73Hg9sUpxzvhrN/8eYXW0IUYTy/KKBQeqkHLHEyj7\n/Fcsn5lhT3o/5xsALG1Kw/iwiawd+jod7K4zWHFvPmpOvIWAAOD5WJ+rk45r6WhG1keZKLivCD8Y\n8wNo1JFM+M3bvxzhqtEIHREKd68Ho0eOZo41CmnI30uByy7ABfU6jAubgBfuNrI8a4XTVzPRlVxs\nWS1G5lo7d/EcOl12NCxolDgSeecjueYSJswCAJajrLHdwuYqjanL7cKaB0tYf/JORH6t8vnWhnPv\n9jeWQ3Vj8Tnf+DVCjuCAALD73pV8nyiJZrzL8kb9/3jhOPuecrVxQAUCgUAgEAj+lRDPRgKBQCAQ\nCL4L9uzZg0uXLuH3v/89srOzsXbt2iGfq+QUIMgVw+ds4nMV+SuP/2X/tRDN/D1fRYePk+RY4jdZ\neWcJ1Zd3gTS2W5DVYkTalCUwNhv6tZnavWG2WSJUWB1tUAWpYHW0IXOvAQEBgKfPA7VKjUV3pOK/\nz30JrXosqzttclsdbcxpVX1sMzJ++AJKDxUjpUGP19pMrH7mOVWoTNyKF+N+irUz17G8TDuTLdg0\ntxqjgkJwqdeX18vutCE4QIWlu9Pw849eRNqUJazN/vpcGxqF8WET8XpiFTJiDMhoegYpDXomvJDz\niBx25ACR5yMj0WxBvU4SwlI+PtVJ2/vlmwMA9z/aQPnBTnf7cp5ltRhhdbQxd5rdaYOx2cByU5FL\nZigM55lc7qjM3bccFQkm1M6vg3lOFbShPgcVL5bRvNSGRsHd63MK8eJfVNhYlM4sQ3lrGYoeKMH4\n8ImI0cQOuiaiw315trTqsVAFBcPrBQICAI06EqWHivs5/7JajJK8ckub0rBol16yVvV1OixuTMWr\nretRdHAV8uLzMWbULaxegHSd8HnbAgKAb3v+zvre4eqEo6cTL9xthHlOFcaMvAXrj6zDz+7JhnlO\nFQqnr8aIIBXLxQZAMe8brW3qM560xifR0tGMjKZnYHW0IS8+H+88VocaXS0W3Pk4diZb2HwJDlCx\n+dHYbsHixlR8+e2XGB82EYXTV7P7hCpQhZtH3IKXPy+Gx+uGaZYZCRNmQasei8Lpq2F32rDxiAmB\nCMSWo5UoPVQMbWgU1s5chyenPo3KxK24Va3BT/9vNr7p6WS5DiNGaVh7+Nxt1FbKFVY4fTVWHngJ\nKXc8AVWQChp1JFsf5HbLiDEgRhOLigQTggODgQBff9idNqQ1PonGdgsy9xrYWGfEGFB9bDN2/uVd\nLNqlx7KmdLTaD6P0UDEbf21oFDJiDLCdP4303Ythd9qQF5+PooOrJD84yI7LkbgTB3KsyteMv/eG\n48aK007D2pnrmMjO38s2zDYjOFA1rDKVriH/m3fM3oii2dUiHGffMf+qE0sgEAgEgqEgfjV9Y3Aj\nPTuJZyOBQCAQCPwjnp2uD6WlpfjRj34Enc4n8MycORP79u3ze7xSjrPh5GiRh3WUl3Gtn4f85aBp\ntR/GwoZHsWP+e1KnT/085iCRn0ebwgvqdYgYpUFAAPC1047ND2+TuC/4cI/kEluxLwsBAQFYcW8+\nar94Gy63C4unPItK62tw9DjQ6/Xg1w+9CgCotJrhcrtgd57Bimn5WPNZISoe2oBKqxkZMQbmOOvq\n6UKl1czcJi63C2qVmglTlAeJ/gak+dXIMUZuIn+hyOT9Se6OtClLkDBhlsRtp6/T4WuXDaUzfIIB\n39+8A43cd+TI8zduSu9TnjNyw/R4XCh6oAQFB1ZCrVIjI8aAiJAIrPl0FU7+z99Qv+ADAPDrblO6\nhtwxM1B9Bjr2dPcplkuLNvVJbOZzWPF55WjsyO0kd0LKx0hfp0Od3qLo+LQ62pDR9AxKZ6xjY8U7\nm+SuPxon3rUHADv/8i5qTryFr86flOQfo7nDOzAB3zyr0dUyF1bFQxswOeIu5O5bjuRJCyU5tbp6\nujA54i7mVrvQ24PwEaOZe8pfKFd/bldyU527eA596MXZC12oS34fAPrlMaS8Y4BPoNv5l3dR+8Xb\nyIvP7zde1C8AWN+Qmyk40CfArdyfg6CAYLyeWCVxivIOSMOedJjnVAEAE9CDA/vn4ZPPM6or1Y0P\nS2h1tOHpxh9jXNh47FrwIayONhQcWInXE6vYWqXciGtnlGPFviwAwE8mp2HrsU0YrboJPb0uVM19\nk/U51ZfO33jEhMLpq1FwYCVsztOomvumZO2SW2/Np6vg9cJvjkP6gQJ/j5U7k6+UoTqMBxP1BqsD\nL4L/M1ysQ0Gp3sJx9j1GbAwJBAKBQCAQXEY8GwkEAoFAIPhnc/78eYSFhbG/g4KC4PF4hnz+QHlt\n+L/luYj4Y+Q5z5TKulL85aCJ007DjvnvsQ1tcnxsSqzGhtnmfu6rVvthZO41QBsahcrErah62Ofg\nulWtYU4e3gVjdbTB0+fGsqZ05O1fjp9MTsOmxGrUt+9ARowBnj4PSg8V4RuXA7eMvAWqfzgiVh54\nCRkxBryeWIUJoydiwZ2P482kGhZOLWHCLJQ8+AoAIHd/NvLi8xGnnYaKBBPUKjXL55W7bzkKp69G\nRYIJVkcbFtT7NrhpE7/70jmUHiqG3WmThFejdgzk1qOQaNXHNkvG0O60Qa1SozJxaz/RjMLtkRBh\nd9rwwt1GiUuFGMwpSJvrcdppyIvPh+38GSz/6GdQ/SMU34p9WVi6Ow3PxxoxYfTtrM5DRe52lNdH\naV7z60D+TO/1+nLfkVgmXwfUFhJCSEzhyyJnHe8OA3yCSUf332B1tPWrV3T4OMRoYlGZuBWVVjOs\njjaJwEWiCE+cdpov1GPdPFgdbUhp0MPqaEN9+w5smG3GpkRfuEi704aUBj2WNqWhsd3CHD+5+5bD\n4epkrsAnpz7N5i+5NOvbdyAhejbSdy9G+u7F+M0fypkzcMNsM0YFhbDcaANB15T3d5x2Gmp0tSid\nWYazF7qwdkY5tKFRiu7Y8tYyiQuy9ou34e51I0YTy8aLD8dKTjXKqVU7v4652TTqSIwKCoEqUMXu\nK+cunkPmXgPLU5fVYoSnz4OsFiO0oVHYMNvMzvdHY7sFaY1PQqOORPelc8x5CPhCwqY06BGjiUXh\nfWsQEhwCu9OG0kPFGBGkYq63SqsZAQHApsRqRIRE4JZREYhU34Z9Z1oQMVKDnl4XIkJuhUYdyRx4\nJEyTa27DbDOKDq5Cr9cDTchtzJlG+cOKDq7C0qY0uNw9kvrL17HdaZPkUZM7k68G+fcRf226Nw8U\n5WUoUWD4+zyfi+675HpErxGOM4FAIBAIBN8Z4lfTNwbi2UkgEAgEgu8H4tnp+lBaWorY2FjMmzcP\nAPDv//7v+Pjjj/0e7+/ZSe68GU6eG3/5YwbK5TRc/LmnyAFFm+pK+ZTIIUFuG3Jk0MayPD9V5l4D\nvuo+ibUzyxEREoEvv/0SRZ8V4NcPvYrJEXfB2GzApV43er0+gbJkRhk06kjEaafh1db1qG/fwTbG\nKe8QbYi2dDQjd182tKFjcanvIrY8/JbEGQRczmXk26R3w+sFPF43zHOqmOOn7PNfoXTGOpbbjIf6\nnsqS9yG5LJRcHEpjmdKgh8frxs5ki6RuACS5kuRjI7++v7H81SdFWH9kHQrvW4PaL95mDjQSBOV9\no1SGv7Ll7w91XstdZ/Lr+7sW9Q3fL+SOfGPOFokDi85vbLcgRhPbr158/rSlu9Pg6OnE+LCJ2DDb\nDAASJxVfN3Jerrg3Hy9/XgyteizWPFjC5ijlQtOoI7GsKZ25HAFIXICUR4xYtEuP4EAV5k54BJX/\ntRElD76CiJAIaNSRTCwsuH81c1UpuSDlfaw0V+UuUd5BJ5+jlM+LRJDsuBxo1JEStxh/TyBIdKT+\nszrasObTVSi4fzUT/CjX3KbEagBg7aKcZPwYOFydivnraOypr55u/DG2Jf2OzQ3KOUf1PHfxHN5b\n+GE/J+H2o9uYY3XFviz09fXh6SnPYlz4eCy483G0dDRj4xET3H1u2JynERUajRFBKlzqdaNOb2Ht\noXEyzfLNIcOedNidNhb+kncqDrRe5E6t6+E0ptx2lNuMr9O1cpzdSBFjhONMIBAIBAKBQCAQCAQC\ngUAguEbcc889TCg7cuQI7rzzzisqR+68UXLiDAYvliiJZkP5Rb2/z5Xqwbvg6F8l5wPlyeFD1JGg\nRfmFiDjtNGyYbUZU2FiUt76MpU1p+MGYHyAqdCx+84dynOg6juBAFV5PrELJjDKMCgpB0cFV0IZG\nodV+GK+0lrB8Yzv/8i4WNjyK7Ue3Ia3xSVgdbVjxcRZuGnkzFk95Fmd7urCsKR2LdumZM4icEFQ3\n0ywzaufXYWeyzxWUNmUJyj7/FXLu/QWenPo0Ex0oRxXl7iHHEu+yUnJZpFpSJDnh+JxldExAgM91\nxfcR9bOSaEYojTdtiJPLpdV+GC2n96LwvjV4Me6nvnB7yRaJW4nccLyjzl/Z8vflAt5Q5jXfV/y5\n/Hv+rkWiWXlrGTuW3JGUz4oXJFrth5E0Safoksvca4C7140TXccBAGtnlDPRjJxEFDIzpUHP+kYb\nGsXckSvuzYcqUIXCT1Yiue4RbD+6DUt3p+Hpxh/jRNdx1OktTEROtaRAGxqFvPh8BAeo2HvkdjTN\nMiPljidQ+V8bkfHDF5AwYRbLBbZhtpk581LueII5Efk5KIfazM8Veb9S+/T185hrjz5vtR/Gc3ue\nRWO7BcZmA9KmLEHpoWJktRhhd9rg6XNDGxqFGl0t8uLz2RyitU9C+4J6HdJ3L0b73/8baz5dxdx4\nADA+bCI06kgUHVwFT58bGnUkE+CyWoxInrQQhj3pWNqUhrQpS/q1URsahTfmbGHuzhGBI6BRRwIA\ny0dGwn1efD66LjiYs41otR9G7v5spNzxBNb/sRyakNsQPnI0thyrRNFnBai2bkGl1YzUyU9hzYMl\niAqNxpoHS2CaZYZapWbjmNVixIbZZphmmRGnnQZtaBRCgn0O0zjtNOacpHvHQOuFF/sHcoEN10HF\nr1dfrjeVZNzos4EYSKiVH3OjiGbAta+LEM4EAoFAIBAIBAKBQCAQCAT/a0lMTMSIESPwxBNPoLS0\nFHl5edes7KGEXeQFAD4MnXwTcDiCxVA3W/2FAlRypmW1GFFwYCXsThsqEkxMPOI39nmhwzynCuEj\nRjOxbUTgSJw+fwq5+7JZKLTy1jIUTl8NVZAvTCO/Sb796Das+awQP77zKVQf24y1M9dBo45EH/rQ\n1fMNth3fgk1zq1Gnt8A0yxeGrfRQMbLjcpDVYmR1yd23HC0dzawdlVYzbh45BrVfvM3qz4tlp7tP\nIXffchaCje9PXmSkPuq+dA5ZLUYmRCxseBSN7RY2FgDYBvxg/Sz/nPJlyXH3upG514BFu/TIajEi\nOy4HtV+8zYQWXiSTi6N0XbnLjq45lBCNA22s0zXJxcifQ+9RPZXCDAJAjCYW2XE5kvPJ6cVv/suP\nITcfoQpS4YW7jVixLwunzn+F8taXYdiTjmVN6XD3uiXihcfrZoLPol16FqqQQjSa51RhbFg0Nh4x\nISggGFGhY1n4R3Ii9XhcLExgQACYiHb6vC8/V+ZeA9YeXoOMH76AN6yvYudf3mXXj9NOQ+38OlQk\nmFDfvgNvzNnCxGRecJT3t3zclAT8DbPNiAodixNdxyVjrw2NQsmDr0CjjsTJc3/D+j+WIy8+HzW6\nWmhDoxD8j/CpdqcNS5vSYGw2sPVFAiMJtS/PrEBwUDAK7l8NADjZdVlOZwAAIABJREFU/VcAwIbZ\nZmhDo9Dj6cHzsUYWpjSrxYizPWfx8ufF8Hp9omal1cxEYX7+0Vho1JGo138AbWgUuyd5+tysP5Im\n6VCZuLVfiEuHqxNRoWOx7fgWnDl/GsvvXYGIUbfilpERCAoIxtt/3o6zPWex5rNCvPRRFruXAGCi\nHAndDlenZA7X6Gr7Xc+fy5P/nBc6lUJoyo8bCLm4z68Z+mGDfD36K2Oga/B1/t+ACNUoEAgEAoHg\nO0OEG7oxEM9OAoFAIBB8PxDPTjcGwwnVqBSqy1/IRMDnXrraPDcDhdoDpGJeqiUFAJgQNpAwt/3o\nNuTuz8b4sIl44W4jyzkG+Nwu2XE5eG7Ps9gx/z0mcgBgIQ2tjjYUHVyFF+42YnLEXcjdtxxpU5Yg\nYcIsFt6M2k/iyImu40w0ozBo6R+m4WuXDRGjNKh+5LcsHBtdTxsahUW79PB6gcLpq9HV04WsjzJx\nm1qLrUm/BYB+4SX5kJVUdwrBRznR5OHWTnefYqHo1s4oR8KEWSxsIIWck/f3UMeVnw9A/7CZBPUT\nuYoohJxSCMKhhgNVqgudP9D85OeTPJQiD/UPbeQrhbAD+o9Rq/0w9HXzgH/kqaLQjDRmNB4LGx5l\nc5Cuv/3oNkSERAAACj9ZieAAFTbMNvcLL7phthmZew0AwD6nUIfUHrvTxsI0OlydWNqUBq16LDx9\nHqiCgvuFZ2zpaMbPP3oR25J+h66eLqz4OAsv/3sFyltfhqOnE5sSqyUhGfnQinw4T3mISgDM1cW3\nRYlW+2Gkf5iGM85TeDOpBjGaWKRaUnDu4jl0XXBgZ7IFje0fwPLXBgBA7fw61k4K4+hwdTKBKNWS\ngowYgyTMKc3FOO00NLZb8HTjj1F43xrUt+9A8qSFWPNZIcaGjkPpzDIkTdKxEIt58fmsL8lJxs8L\nauuiXXp0dJ9kOeaqk7bD7rSxewTvvCPBmfqRX6NWRxtr04mu47A6/oSaP2/DczEvovpYFSLVkTDN\nMuNE13FUWs3ovnQOuxZ8yMYyd182VkzLR82Jt1g/8fUlR+pA93taL4PdG/h79kDH8OE6yQ3Ijz1/\nnxto7Q723UP1GWoI4u8CeRuv5rlJCGcCgUAgEAi+M8Tmz42BeHYSCAQCgeD7gXh2ujEY6NmJ3/xW\n2jwdTKy4VvlilEQSXiTjN1L5HGLyc+TOo+y4HCZEVTy0AZVWc7+8RyQ26OvmISpsLMxzqvoJAABY\nrqGo0Gj0ej0omVGGvH05qHq4Gmkf/AT/c+lbVCZuZZvpVEZGjAE5H/0cCASiw8YhJFiNjBgDKq2+\nEHw1ulpYHW1YuT8Hjp5O1CW/j8b2D7CxbT1uH/1vqJ3vy/cj72fKh0XC3YJ6n3uFQikq9Ud10nZY\nHW2sTbTxTHmjhjqe/som/H3GjykAZO41sPbJP6e2+Rtjf/Xh3xtsc30wRxqtC17skguCqZYUuHvd\nCAgAy81Ex5CAwwsnJA7y4xGjiZWIqZQjq9JqRo/HBfOcKskaAHzCDOXn4vN38fm9eOH2NnUUSmeW\noejgKhROX401n66C1+sTnXihEfDNWcrt53L3QK0KQcH9q1kuMZpDefH5yGh6BpWJW5m4SO1LadCz\nsSVxKHOvAR6vG8EBKnZdpfFIa3wSyZMWYsyoMXhy6tMAIBGuAGBxYyoK7itC7RdvIyPGgNx92UAA\nsOLefKw9vAYTR9+Odx6rY0Jk7r5srJ1ZjskRdyH9wzR8c8G31gCfYPXYzocRFBCM2eMTcdB+AA6n\nA6NUIxE+YjQT6rPjchCjiYW+ToeO7r9h4ujbmfAon6e8kMcLh6fOd7B1SgJ96aFiNoeej/U5DseG\nReOn/zcbG4+YsGG2Gc80/gR2lw0BCIDu9vlo/JsFHnhQeN8aTI9+AAsbHkXGD1/A+iPr8OuHXsX6\nP5bjTPdp9KEPt6mj8M2FTibiyQX31xOr2Pz2d78f7N4gX+uDfW/QHA4OVLE1Sg5YuZCsdP5wfrRx\nrb6nrjVK/S2EMxli80cgEAgEgu8HYvPnxkA8OwkEAoFA8P1APDvdGAz27CR3Lw0mSA0kQlzJ5qR8\nw1XukJILF0obskouOV5gI3Ei1ZKi6Mg63X0K+jodVIEqiZDDO0jsThuS6x7BTyanYeuxTbh1lAaO\nC514dkoGth7bBOPd2djd8QHbAJ85NgGZcT9jwhQAaNSRONF1HCsPvIQ35myRiGw9Hhe8XuD1xCos\n3Z2GU+e/YnnAeBcG32Z+85iOGapjhNpHm9VvzNnCBJ6BxpEX7JTmhZJTkB8Tai8vjhG8sERjpeRM\n8ifcDXezf6By5aKZ/DhaM+QSkgti/lxpLrcLrydWAQBzLQI+kfa5Pc/ijTlb0NXThUqrGRkxBmw8\nYpLMSbrusqZ0fO2ysVx4/Dyluiyo1+HUua/ggQfBAcGIDhuP1xOr2OdyEZovg+r6s3t84o0qSIWK\nBBOeafwJvr1wlonM5Hwjlxu119hsYMKVfA74E0Wp71o6mpH1UaZEmCIhnHdfkSOLBLWuni5sPGKC\nx+tG0QMlbH0Z9qTjq3NfYfzo8ehxX8DZC98gUq1F6cwyZDQ9g53JFpzoOo6X9v0cnj43fnr3ctT9\n97twXnLiLd3vmMhEPy7gXXxK/ZdqSYGnz41LvW7U6S397mlUHi+uT464C5l7DVAFqZARY8Bv/lAO\nm/M0ACB3WgHWHl4D/f/5f/j49H/i24tnceuoSCz5YQZejPsp63NtaBRaOpqRMGEW9HU6LJ7yLDb/\nVyWqHq4GAEldW+2H8eyHT8HmPINtSb/rJ7gPdY35Wz/+xHi5I1S+xvnzhiK+DccVeyVu2uuNcJwN\ngtj8EQgEAoHg+4HY/LkxEM9OAoFAIBB8PxDPTjcGQ3l2GorDbKAQjkPdWB3o+oB/0cFfKDGl17Qh\nTQIFL37IwxIC/fO6yf/mN7qfafwJxoy6BSl3PIHp0Q9g8QepuGnkTei+1I0PHt/LNtSz/vOn+OZi\nJ3ODZLUY0X3pHEYFhcDd58aaB0uYkAf4RBM+79CCeh2+OteBSTf/HxTcv1oSUpLvM3mYM39ODHn4\nPnk/Dia6yct397r7OYZ4V40qSCVxs2nUkchqMcLd60bh9NUsjB/fXlWgCsGBKraRLh/3gdo43E10\nf22TO2ZIqFGCwiVSe0iQ5VFycq34OAtjw6MREqxm486H+qy0muHudeNCbw9GBYUA8IXwlIfTPN19\nCi0dzcyRJXdpAj5HX+rkp/DmsS1YPOVZ1H7xNvLi81HeWobsuByUt5YhbcoSSehAvu2Fn6wEAJjn\nVDGnGTm9Ftz5uGS98WEZF+3SS0SjgcR4+RjwQvaaB0uYiEIienZcDjKansFNI8Zg9MhwXOp1QxXo\nC2VJOcSejzXitTYTTp77G8aGRaPHfQHfXuzCTyan4bcnqhGpvg2b5lZDGxqFR3c8jKqHq5G7bzni\nNNMwLnw8xowag5cP/wp2l42J11Q/QBr6kZx08jFq6WhG3v7lTNiUt48EUIerk61vAJJQrie6jiMi\nJAJFB1fB6TmPsxe6sOLefEyPfgDA5Tx6vNjs7nVD92/zYf6TCZqQ25izTn6fSGnQ46vuk1j2o0z8\n4oFCv2vhSsQmf2K8vFz5DwLkP+IYKGzjcL5z+HsGcGOHbrya56bAa1gPgUAgEAgEAoFAIBAIBAKB\n4H89tIEYHT7O74Yi/xltWvKCxdVsREaHj2NlkIhAxGmnDSjWkZuHPs/dtxwZMQZ87fKJWLSx3Wo/\nzMKUURnyNlAZrfbDSLWkYEG9Dsl1j6Cx3YKlu9Nw9kIX5k54BPXtO3Ci6zi+vXAWz8caEaYKh91p\nw7KmdJQeKsbzd2cCAMaMGoOsFiMyYgzodH2N1MlP4WuXDV09XQB84fT4cJBUh53JFmxN+i3eeawO\nSZN0KHnwFUWBbFlTOqs/D9+HrfbDWFCvQ0qDHq32w6zP+LZT2YONX3T4ONToavuJZlSe3WlDQIBP\nCKQQeYsbU2HYk468+HwEBAAFB1ayz6PDx8HutMHmPIPnY40sJB5tmPNiDrUbADx97n5149tzJdD8\nI9bOXIfy1jK/ZTpcnfjq/Em89FEW/n7xW59IZUmB3WlDqiUFqZYUdm6NrhY1ulokTJiFiTfdDvOc\nKuTF52NpUxqsjjYYmw1IrnsEr7WZkBefj8LpqxE+YjQ2zDbjhbuNbN5SPQH4wnseeEky/2t0tahI\nMCFzrwGGPek4d+l/UPvF21jzYAkTzUoPFTPRLHnSQqw88BKy43JYHwJgIQk9fR6c7j6FE13HAQAx\nmli8mVQjEZIcrk5WH8LrBUYEqdgx/Drl26A0BoBv/r6eWIXy1jK2FrWhUahO2o6kSTqUzliH/7n0\nLZ6PNUKtUqNw+mrEaaehRleLgvtXo/rYZhTcvxovz6xA0QMlCB8RjtxpBdj+5zehCfGJZnHaabA6\n2tB1wQEASIiejS3HKrHxyHpkfZSJjJjncevISNSceEvSxwDQfekccvdnI23KEgDAV+dPoujgKsm9\npfrYZlQmbpUIP7QGAaA6aTu0oVFImqTDjvnvQRsahdx9y2F32phjL3dfNrp6uqAKUmHLw29h7Yxy\nvHy4GCe6jiOrxYjGdguS6x7Bol162J02ZMQYcKG3B6Yj5bhpxM2oergamxKr++UQiw4fh9r5ddg0\ntxotp/f2m+PR4ePYfBtszJTQhkZhx/z3kDRJJ/lekH+H5O5bLrk2XTd333JsP7oNWS1GnO4+1e/7\nRl7WcLja76obGSGcCQQCgUAgEAgEAoFAIBAIBNeBwVwF8g1Qpc+uBqujDQsbHpVssstdGrzQlR2X\nI9l8pXo9OfVplM7wCR8OVydOne8A4Nus5kUiJXdbqiUFmXsNqEgwoeiBEkSqbwMAfO204+aRY2D+\nkwkJ0bOx8YjP1RMREgHAJ6R87bIhLz4fL8b9FL9+6FVMjrgL7l43IkIiMDYsGgvufBylM9Zhxb4s\n6Ot0LMycXAiyO20oPVQMu9OGxnaLRCAhSBwkkYz6icQn6hNtaBQqE7eidn4dE6Mcrs4r2jyma8id\nH+Tq04ZGwesFSg8Vo9V+GNXHNqPioQ0wz6lC0iQdCu5fjTPnT6Ho4Cq2IQ4AmxKrUX1sM7ShUWzj\nnHch0rEkTAUHqiT1ulab4bzoRXWRt5/+LW8tw7KYTJy9+A26XN/ghbsvh50koYzqb3faWL+985hv\nHGI0sdCERCJGE4uC+1ejau6bMM0yo/RQMXOwUVjP7LgcFtaR+qK8tayfoEq4+9xwuV3o7PkaKXc8\nwdyMFLowRhOL7Lgc1LfvQMmDr7AcayRcp3+4GFZHG7xewOv14qWPfwZ9nQ6LdukRo4lFq/0wUhr0\neGznw1jalIa5Ex7Bc3uelYgyFKaRF0N44UMu1lC7yK0EQJIzbedf3mXH0fpOmDALFQkmicBJwmDh\nJyuRuy8bOR9nweN1Y8yoMdCqx6J0ZhlzV5a3lqEycSsA4P2/NaDwvjX4re73mDj6dowZNQajVCNx\nobcHxmaDpL7hI0Zj7YxyVFp9ISrrkt9n6wu4LADx+c3sThu+On8Sy5rSkWpJgdXRxuY2ucwoR13m\nXgMK7l+NqLCxqLSamZtxcsRd6EMf1n3+Mjx9bmjUkRgbFo3nY40w7ElH7v5sZMetwNjQcbh51M0A\nIOkb6lu6l5CwJf+xwunuU8hqMUrE36FC92kaN/ma5P9WWrNx2mnIjstB3v7l6PG42DlKztOhrncS\nlfnvr39FhHAmEAgEAoFAIBAIBAKBQCAQXGOUftU/GFfr8uGvTRvZb8zZwjZd+TrJN09Pd5/Cmk+l\nLg++vOpjm1moPQqXNlgYwtx9y5EXnw9VkAoOVyeKDq6Co8fnqLn9pn9DXnwB+vr68Lp1A1InP4Xb\nb/o3AEBAgK+M0hm+zfJXW9ej0mpG5l6fA6To4CoEB6hgd9owOeIuAECv18MEknceq5PUg0I7Zu41\noPRQMd6Ys6Wfc+W1NhNztDS2W5irh3fokRBIjjYALNweOYSGOn4DzQ8SJEk0qdHVModQwoRZyGox\notV+GBp1JAIC/j975x4WVbX//xeX4Q5ecHAQvGSmohEmimJaHG9RlGIdrDSVvFBUYIEpeACPYqIk\nnMRTlLcwT9aJX4kaSd6ivJXESaLU0jimICOIpjCgDDC/P+as1Z4RvHQ5x/ru1/P4CDN79l577bXX\n7Ge9+bzfNqQEL0RvqCRiSzgTNoehdfGSbVa2X3nNxeK+ztW71Xys1mwjbwRx/TNDstgYloveUEns\n7mjC88KkoKMci0tHLGf7yW34uPmy7O5Mcg6vlcKvUiizFo2UVVVV9WcoPLmbWTsiSf1sATpXbxKD\nkqTVYuLeOSy56yVpF9nUYpT7XjpiOTmH11qIIpPyI4jdHQ2Ah0M7pveLIvfYO4BZzBNVWQCLDiwg\nPnAurxzKkgKJj7sv1fVVGE3G/1Q62TN/yALsbO14bmA8JpO53dE7Z0oryaXDM9h+cpsco631vfKa\ntjaWhCgqBEsxB8TujjaPk9seZdHnyYzNDWHi1nAKyvJJ3DuHBzfdK8eZwNhsFpTsbTTMG5xETcNZ\nDI0GXvj0eXnPKa+h1sWL2N3RnPjx3wT7DCNQN5hFw5aQsCeeMwY9l4yXEcFRygrCkG4j5TGV+W7K\nsaQcM4G6weSN/5C88Hwp9glhVvR/oG4wmSFZGFuM+GsD2DTevG11fRURW8I5WnOELq6+uGicyRpp\nFu2aWppY8WUGJhMsHZ5BX08/5gyax7sP5knxV7QtUDdYVreJ+aK0uoTwvPtlDqN1leRvUdElrn9b\niDl70/j8VsWun/Nd9X8BVThTUVFRUVFRUVFRUVFRUVFRUVH5lfi5doti4fnnChbKRXNRlbN0xHL8\ntQFyUfdqbdIbKjlZ+4PF/pQ5T0tHLJeL5DpXb4uKrWJ9UatWjzmhb6F18ZIL2ynBC1k9Jgd/bQDv\nPpiHp7MnPdr1ZOnwDDaXvc9jfaaw6MACfrz0IzO2T2Xep3EkFM4xL/J3u4+Vo7Jxd/AgJXghK0dl\nk7BnDjpXb9aMXc/qsTlSzAAsRJnMkCxp1bcxLPeKyhUw2+FpXbwo1hfx5M7pRPabYSHQKG0rlQvg\noT3DyLxnJf7agBtagG6r6sN6AVyIXOKaglnwidllFnS8XDpT01BDwp45rByVzaoxb1gIpWIfyv0p\nRS2liKZsg/V4utFFdXF+4nrE7Iqm3tiAvv40pdUlsqpOtE3n6k1mSBabxufT19NPVhhZZ9FZixei\nXdX1VdhgQ19PP/LGf8i7D+ZRWl1C1I4nZF/5unWzEGhMJnO7hMgiBCNh7ZcZkkXWyGzywvNJCV7I\nxm/fpN74U9WOGF+l1SWU152UlqFCqIOf7Bj7evqhN1QS7DOM1WNy6Ovph8ZOw9GaI1TWncbY3MTK\nUdmcv3Refk7cfxM2hzEpP0LeW9bCpvVYEhVBQtRLO7iY0uoSTl78gZhd0QT7DCNlSCrtndrT+B9h\nLG34cs42VMuxELElnNLqEjR2P1Uj9urQi86uOgCaTEam94+S90KxvojonTOJ2RXNY32mYGv3k+zg\nrw0gL/xDEoNSqG26QErwQgAp7ok2i35rzUZQ5HQpz1OIy+J160w8wZn6SkqrS9AbKonZFc2M7VM5\ncaGMeXvieG5gPFkjswnUDZaZisbmJi43X2LFlxmMez+UuE9iyCldx6T8CAu7Q2UbRHXb/L1zaaGF\n5H3zpfiqPEcl13tPXY/l67W+a672hw7X+nxr1Yz/F4Q2VThTUVFRUVFRUVFRUVFRUVFRUVH5FWjN\n/tD6/at91lqoud7FSetKMqVFGWBRpdNWlYqwSBNVLkqhRm+olIvSysqmgrJ8mfklhDpxnIracvSG\nSiZsDuNAxX6zXdges+XbhM1hUtR4ZkAsk/tPJbLfDNK/eJHaxlouNP5IR8dOeLl2Znf5Dmyx5cMT\nW6iuryIzJIu0g4tlZYzeUEnK/vnE7IqWVV/WC8GiMkgsHovKlbe+eVMKTitHmSvaRJ7Q5P5TpZCi\nzKqav++FKzLPVpVmy8XxGxVLrVFWtynHhbDR1BsqSR66UIouVfVnSNgTL3O10g4uljaAygwo6+MK\nUcvabk4p4CorE38OymowjZ1GZkQJSztl1Z+w9CytLmF83n3Szs86iy5iS7gUu5RibUZxusza0rl6\nozdUSutAYfuXOy5P7gdg5ahsC2FIWEtG75zJDxdPUF1fRVxhLGAWSFeNeYPXxqzBx93Xoiox7eBi\n0oYvZ1VpttyXELom5UegdfFC5+rNpvH56Fy9STu4WGb1rSrNZt7gJC40nqegbBuLPk8m4rZHZYVd\nZkgWzvYuJAYlXVF11Vpft/Wa1sWLp+6IYeWobOIKY5nQ+2HzOLLVEFcYS19PP9k+YYOYsn++tDW0\nsTFX1QE42jvi5dyZ9YfXSfvTmF3RnK6roM5YS+6xd1g9Jgedq7fsp6M1R8g99g46ly5oXbyuEPcK\nyvJJ2DMHuPIeUs6Nrc2pShtSwELY1rl6kzbcLPo/tWMmk/pOwQYb5g9ZgJdLZ5Z/sUyKYYG6weSF\nf8icQfM4f/kcU/2mszb0TWIHxPNa6Uqi/KPbFPdEdZu7gwfpI/6Gg51GVnO2VmnW1vx+IxWryp+t\nheQb5WqiWWvt/KPmmimxMZlEceQfh+rq2v91E1RUVFRUVFSuA63W/X/dBBXUZycVFRUVFZXfC+qz\n083BtZ6d2sqKEQuQ1/rLfqVgcSO5M9bbFuuLiCuMlYu2bS06K/POhECi3F65H/ipQqu6voq0g4tJ\nDEoiZf98skevsbCWiyyYzNIRy4nc9jhnGirROnlRfamKDo4dMRjrWDN2PSn750tRIKM4nfjAuTI3\nqrq+Cn9tAKXVJSTvm89zA+NJ3DuHVWPeIO3gYtmeCZvDqLhYTgfnjlxsvMCqMW9IK76rnWtkvxly\nf/7aAApP7iZx7xxpQ6lEWDZW1JZTWl0i91+sL7LIIxN9d71YL3hPyo+QC/MPbXmA10evI7RnmDy+\nuBZgzmQT9plgruqZlB9BYlASaQcXE+UfzaslWZhMkDsu76rtEvsX7RDXLmHPHAvxUFT9XO+4FGNh\n4tZwaYXX2j0gRNbY3eYsqtTPFsjtrbebuDXc4pysF/T1hkrZR4lBSRbXSuSa1Rvr0dhqWDkq26JK\nSZzj0Zoj9PX0k9sL8ShiSzgaOw1R/tHM3/cCS+56ib6efsQVxsrrJoSnuMJYEoOSpNjUZDKyaXy+\nbCOYq91sbCBrpFlwC9QN5sX9i/jLsBSL8ao3VFr0+7X633quKdYXMWt7JOV1p5g9YA4fnthC1shs\nOXYB+bO45iIvUMwfwnow7uPZuDm60tTSxBmDno5OnbjQeJ604cs5f+k8bx5Zx+w74wnpNpKILeHm\nHDL/GFZ9/QpL7noJgJzDa2XbhBhaXneStOHLmdx/apvn1Nr8JQRrcY2s50DxxwPPDIhl7p7n8XLW\nmYWxS+dZ980qztTrWTv2TQB5r8Xsiqa2sZaahmo8nbVo7Ow5U6fHx8MXZ3sXeSxo+48jJuVHXNOa\nsTVL1Gt9R1hvB7T6841+f7TVJuvXrreNNwu/5LnJ7q9//etff72m3BzU1zf+r5ugoqKioqKich24\nujr+r5uggvrspKKioqKi8ntBfXa6ObjWs5OHo0ebr3s5ezFQN+iqnxULk6O6jbnm4qnyWNbHNZlM\nPNx7otyH2Hdrn/Fw9GBUtzGAeeG1v+ft9PlPdpjJZOKdoxvx6+jHkZrDzNg+lQOn9/Hn3o/wwfdb\n2HVqB8bmJgrLd3NHpwDcHNzxcfdlVLcx9PH0o2e7nnxQtoVFw9Lo26EfByr3kjA4mT6efXmg5zju\n7XEfqZ8tkKJZwp45BGgH8OTO6dza7jZWfJlJQ1MDD946ni+rvuTPfR5hWv/p+Lj7Utt4kfeP5WJn\na4+7gweJQclkf/V3+nveThc3H4u+UvbpqG5j6NHuFj74fguP9H2MJwqmsOl4LmnDl3O79g5qGy/K\n/qptvEjUjunc0SmAqB3T+fjkLkJvuZ/axos8u/spKSYdO/8tz+5+ilHdxrQ5BpQU64uI2jGdsd1D\n8XD0oLbxIu8c3cjOk9u5t8d9jOw6mozidPp73k7CnjmyP8d2D+UunxEsL15GfOBc/LUBzNsTz1Dv\nYXx0YhtPD4iR7ycEJbG/ch8P954o22Q9BgCLvhJjoY+nn+wvD0cP2Q4vZy/m7Ym/5nmKPr+1XS/+\ncWQ9j/adbLFPsY3otwDtAD45Vcgn5YWkBC/EVeN6RX96OHoQ2uN+JvZ5VP5e23hRHuf5whg+OrGN\nzJAsurv3YMWXmdzRKYCvqg4xZdsjBOmG8tBtf+ajE9u41NxA4and3OUzgqgd0+ndoQ/DutzFqYsn\nifskhrHdQxmoG4SDjQPLi5cx1HsYO09uVwiW81hVms1HJ7YR5R/NkoOpfHRiG55OnVhevIwZt0eR\n/dXfyQzJYrAuiI1HNzBEFyzbONArkP2V+3jqjmdZXryM0d3HUll3mjmfzqazs475e+fiYOPA/L1z\n+ejENu7oFCDvydrGi3KMtnZNxTUU/dzFzYfu7j3w9xzAP7/bSGNLI1F3RDPU25xB1sXNh1HdxuDm\n4M5Q72H08fSjV4fejO0eio+7L38vXkHC3nh2ndxJzeWzPHTrRBKGJLH9hwI8HN156o5nWff1avL/\nvYULly6w69R2Hrx1PPf3fICdP+yg3HCKWbdHs6r0VfK+f48Z/Z/Ez7MftY0XAZjY51F6tbuNnMNr\n2xxXbb12R6cA7u1xH3GFsTzceyL7K/bgbO9CbeNFpn80hUvNDWjsNDjZOfNV1SEMzXUcOH2Aj07m\ng8mGZlMT/Tr68/wnz+Js68Lf/vUSJloY3e1eiquLuNx8CRvsyB6zmj91HcVDt/2ZhD1zGOo9zGJ8\nimsg/o3tHoreUEkXN59W77nWzkl53dr6jPV2yp9rGy8S3uu5vOf8AAAgAElEQVRhiz8QUM6F1vts\n7XcxTypfV44167Gl/Kxyu5uFX/LcpFo1qqioqKioqKioqKioqKioqKio/MpYV8IUlOXz5M7pV1jn\nKbe7Vg6Z8jNXs3FsLSvrWp8R1nCt2S02mYzM3D6NFz59Dk/nTiQPXUigbjArR2Vjb6NBY2dPlH80\nMbuimbg13KJCwV8bgJezjldLssj/9xY6OXux9utVhOfdT+zun6wkUz9bQFxhrMxle330OnIOryXi\ntkc5e6mK5H3zeWZArLQrFMdIHrqQDk4dWTkqm8n9p8r2K/tZ2afK8xd2arnj8tg0Pl9WyYTnhUlL\nPKUtY2ZIFho7DXpDpYXdobCSE9U710JUjhmbjRZtzB2XR2ZIFnGFsfhrA+T+rcdDoG4wS0csJ6M4\nHTBbSApbOJH5FB8415y/psjbam0MtDYelFlZyiwncUzrLL7WEP0T2jOMvPEfXlGhI6qF4gpjiQ+c\nKzPwhCWgGAttZf4JK0QxZjOK00kMSpKViIl753Dx8kWid85k0YEFLLnrJdIOLgbM1Uf2tvayb+qN\n9czYPpXpBVNIO5hKF1df/LUBFJTlM3/fC0T2myFtQleVZhMfOJfJ/aeSGZJFZkgWOYfXkhmSRWJQ\nktxeVAOKSr5OTuZKSrFdRnE6Uf7RvHIoi8h+M4jdHc3RmiN4aNqRUbyMakM1iXvNmXqJQUkW2Voi\nN0tpV3k160azSPsEAJWGCk7XVVBaXSL3qezTuMJYi3unoCyf1M9TeNL/WVw0LnR09OQfR3M4WnOE\n85fO8VifKeQee4eVo7LZHL6NdaEb8Hb1QefqzdGaI3Ju2Hh0AxpbDfMGJbHsC7Od6APv38uk/AhK\nq0vIObz2usaVEnHfARibjRSe3M20gkmE54VReHI3JhM42Tlzf49xrDu8iin9nmDt2DfxcPSgo6Mn\nl5obWDYik2cDZ5M8ZBG5x94hMySLpwNieevb9XR09MTZ3oXzjTUUnvyYJ3dOB7C4L0U7lPmOAKXV\nJTy05QFpVXm9lrtK0etqn2ktt9B6zl86YvkVtqbi59aO0dp3T1vbWbdbOSb/KKjCmYqKioqKioqK\nioqKioqKioqKyq+I9WJjRW05GcXpvD563RWZTWI7ZdZUaxZ01lxLXLN+33pR1Fo8Uf4u7P/EQnr2\n6DUkDE4GE9hiR9rBxVTUlqNz9Zbi2YovM2hoasBkQgpbAo2dPU8HxPLMgFjSRqTjonFm9dgcskZm\nS1s9e1uNtECLLJiM1sWL+MC5vP3tBp7yj8HGBilaxBXGMik/goKyfDKK08kMyZL9KgQeZV6cOP9i\nfRETt4bLxfrGZiOl1SVSbAKzpZ7ecFr2ocguStgzB52rt/zZ2jYvJ/Qt2farXbuK2nJp7bdyVLbF\ntfZx97WwDlQKWIBFvpVYuNcbKpm5fRrheWFS5BMibUFZvuwrsaivFBDFgve1BFjxvs7VW1bYXQ/K\n8Wd9HGXGldbFi6UjlhPaM4x3H8xj5ahsKYAp2yIW50urS2hqMVpkU0X2m0FGcbq0Ndw0Pp819+Zg\nb6OhyWSkr6cfxmYjMz+KZN6eOCoulssMs9S7ltDRsRMttFDVcIY5g+bJjLQld73Eii8zmFrwGEdr\njtDUYmTRgQUWmVyiT0J7hsl8PCHmFZTlM/OjaZypN1+nmR9FknZw8X/au4wfLv6bjOJllP34PS98\n+hzVl6o4XXeaC43nmTvoL7xakkXinrk0tRiv6DchdrcmCivRuXqbBeJj7zC223200MLx88evuFYb\nw3KlcCvuFYDuHj0I1AVSZTjDswOeo6WlBU9nTzo4dWTj0Q2cv3TOYty6aFwoPLmb5z95lh8unuDl\nf2VgbDGSNTKbYJ9heLt24bmB8dRcqibKP5q0g4st7E6vF+V9p7HTENJtJOtDN5J61xLm73uBZwaY\n55xAXSCdnb3ZXb4DMAvmyUMX4u3qg6ezJ8X6IjYe3UC9sR6A5V8sQ+vshbO9C5eaG5jeL4oD+n28\nPnqdtOJUjmsxBpR/cCDme5Hndy1BUHmvtTZXK79LrtYXShGtur6K8rqTFkI//JQF11q7Wvv9WoKm\n9Zj8o6AKZyoqKioqKioqKioqKioqKioqKr8irf3lvqi+aWu7QN1g3h/3gaxgakuAUVYWXO390uqS\nKwQx65yaYn0RxfoiKUgUlOUTvvl+Zm2PpPDkbrkYCvDmkXXY2tqSNiJdVupMyo+wEM9cNM48MyCW\nmF3R5uyx/1Ssna6rYM4ns4n7JIbEPXNpbDbirw2QC+WiWkoIMvGBc5m1PZK5n8bx/Y/HebVkBcbm\nJplZtTEsl8SgJFI/W9CqkKOsBlH2S1xhLCaTOfsqed98ThvKmbU9UopKPu6+zL4znrzwDwnUDaa0\nusRif+I6WS9QKyvsrjf7p7q+SlbGWVerWItGov2iqs1aUMMETS1NxOyKplhfRNrBxXLRXimGiEV+\n0W69oVIKMm1VninPdVJ+BLG7o2+oqkT0u7K6Trn/0uoSJmwOk5UxAHGFseSUrpNCsthWnEtGcTrJ\nQxda5G+JSq+EPXMoKMtH5+pNoG6wubrMRgNASvBCPBw9SBicTI/2twDIdjnZO2Fva0/KkFRCuo0k\nYc8c4gPn0tfTj9l3xuPj2pWQbiN5OiCWhqYGUj9bQGS/GcQVxlpUbilz/nJC38JfG4DWpTMv3f0y\na8aux8PRgyj/aF7+Vwb6uko6u+qID5yHva09zwQ8h9bJiy5uXeji5kuwzzAam42cvVTFY32mXHnd\nFf1oXVGkvKY+7r5sGp9PYlASO04VYIMNvTr0umKcif0am41U11fxw8UTJO+bz+w746lpqMHG1gaA\nJpooPPkx5y+fY6DXIM7U68kpXcf4vPuYtT2SKP9o+nr64enUCRMmhuiC0dhqpFBpMkFfTz9Z5Smu\nwfVWZinHlmizOJfQnmGE9gzj9dHrWPFlBnGfxDBz+zSevONpTtdVkLJ/PvXGBpZ/sYxmUxMzCqYy\na3skTSYjGlsNBWXbqDCcIj5wHmkj0qEF/LV3AKB18SJiSzjj8+6T41K0XTkvKKstW7terWH9nWFd\nmSnE76tVjCo/mxP6FloXL4vMRmXbhJh2PX1s/UcIbbX/j4aacaaioqKioqLyP0PN6bg5UJ+dVFRU\nVFRUfh+oz043B9f77KTMH4osmEx4r4evmXMjsmjaypFRvge0mkcjstRm7Ygkv2wr732XS+gt91+x\nTX/P24krjOWjE9tIDEriodv+zN1dQ7jH908M0A5k/r4XCOs5DjcHd6J2TKepxcjfQv6OvzZAZkLt\nrfiUh3tPpI+nH6G33E/fjn6s+DKT+iYDekMlD946nkDdYDo76zh09ktc7N2Y2PsxTtb9wMO9JwJw\nl88I3BzcAXOWzqT8CLZ+n8dpQwX1xgYAvFw702Jq4cDp/QzwuhM3B3ee2jmDUxdP8pjf4xYZXQKR\nfSX6R+QO+XX0Q+vixe5TO3np7r8x7tZw7u4aApgrtaJ3zWRs91AKyrbx/CfP4u95B7069G4188c6\nk+hq11nZ994u3mQUpxMfOJe7u4bIa+Ht4s28PfG0d+jA/L1zGds9VOZZ6Q2VPN5vmsy5KtYXYTKZ\n6OPpxz1d/0Rwl2Hsr9zHvT3u44Pvt/DswOdkG7u4+XBHpwCLbLjwXg/j5uDOu9++w92+97SZz6bM\nNrqjUwA7fthukZnWFsrMpzs6BTDdf5aFGCByoebtiWdOYAJzgxLlZ9eUvs6uU9uZP3gBg72DLPq7\ni5sPXs5eZBSnE97rYWobL/J8YQyzbo9mZsCT2GHH7MKn2X6igIbGBhZ+loSDrSNby/LYf3ovfxmy\ngNdLX+UvQxaQdnAx9U0GDuo/Z+WobEZ3G8s93f4EwK3tepH62QJeK3mFnT98RHun9uhcvJn3aRx1\nxjoc7Zz4uqaUzJAs2a/iukRsDeeNr1cz1DuYIzWH2fz9+3xT8zWzA+O4y2cESw6mUmes5VLzJVb8\n6VW6t+vBAO1Acg6v5eylalKGphJ5+wwAHrh1HAO0A0n9PIW7fUJkZpb1vS/Got5QybO7n6K/5+3y\nmtY2XsTH3ZdeHXrT2VnH7lM7OVR1SF73/p63YzKZqG28yJRtj9JCCxP7PMauH3ZyufkSH3y/mZ0n\nP2LZiEzu7DyQfx7dyFdnD/F430hyj7+Nh0M7yutOYW9nz4LgxbxaksWHZfkA2NvaU1x1EAc7B/ZU\nfMIzAbHsO72HHSc+Yrr/LADyjr/HtP7TZT7X9aDM8IraMZ27fEZYjOFeHXrjYufKoeov+Wvwi9zX\nM4yh3sH8qesodp/agd5wmtl3xrO38hPaObTntTFr6NnuVtKKFmGDDYM7D6GPZ1/e+fYtDp/7mkl9\nphDe+yF83HzYWraZR/tOxs3Bnbzj78n7QTnn/xwhqa3vh7HdQ+U8a50R2Np3AMCx89/y0JYHeKTP\npCty1o6d/5bwzfdzj++frsiCvFru2vVcj+vNePxv8Uuem2xMJpPpV2zLTUF1de3/ugkqKioqKioq\n14FW6/6/boIK6rOTioqKiorK7wX12enm4HqfnZSLp9ezkNpWZdi1ss7ael9URMQVxrZpoVVRW05p\ndYnMfhJVG6KKx18bAJitF8V+ACK2hKOx01hYJIqFU2XOl6goi9gSzr8vltHBoSM1l6tJHrKICb0f\nZsLmMOxtNNjY/GTVKNo8ttt9bDjyBucu1zC9XxQbjrxBZ1cd7g4e5iypvWY7ya0TPrKwTGytf8T/\nfy9eQfoXL+Lr1o1nBsQS0m0kkQWTLSo9Csry0bp4Eb75fjo4dmTbw7tazfxprbLsatdDvFesL5LV\nTBnF6bIyTvRplH80iXvn0NnFm9fGrCGuMJaGpnoqDadlVpjeUMmEzWH4unUjd1weekMlT+2YSepd\nS6hpqOGVQ2YbSJ2rt4Wop7RqEz9Pyo+wuO7X4nrHcmvHa60tekMlCXvmML7nQ+Qee0fmfl1qbmD1\n2BxZrZY7Ls+i8k2MvYraclndmH7333jlUBbPDIjl/KXzLC1KpaOTJ1H+T7O0KBUvl85ynxvDcmW/\nvTZmDTpXbyblR2BsNmJsMeKicSEzJIujNUfo+x+xMq4wltrGi9jZ2JN61xK0Ll5XWK+G54VxsvYE\nWmcvNLYOnL1UhYemHe2d2vPug3lyDMQVxpIYlCTHWicnLzR29jS1NAFgMkF1wxm8XX3IC8+ntLqE\n0J5hFmO6tLoEf22AxXwRsSWclOCFclvr6y3ugwm9zSLVW9+8yarSbMBciTlreyQ61y68NmYNs7ZH\nUmU4Q0JQMhuPbiB3XB6l1SXM/TQOe1t77G3tGd/zYbaf3EbEbY+y7IvFrB6TQ/K++Tw3MJ4VX2Zg\nbG7ictNl/jI0hbmfPk8nFy1n66tlFVxb9+71IM5v4tZw3n0wT54fmOe/cZtCwQa8nHW00IyDrVlE\n+fHyeS40/sjE2yaxv3IPq8fmSJvVEJ9RvPPtW1Q16Mm8ZyXnL53nta/+TlXDGd4MfRt/bYC0AxXH\nac1+V1TC/txzE/u6nnvtat8Bygpm5T04cWs4yUMXyqq4653XrmeevZn4Jc9NqnCmoqKioqKi8j9D\nXfy5OVCfnVRUVFRUVH4fqM9ONwfX8+zU1iJkWwuQQgwwNhvR2GmkkNHWQmZbx2xLHLuamCMWeXWu\n3lJEE9Z+TS1GTCbIHWe5KK20gFOiFOsSg5JIO7iYjWG5Mu9o9oA5vHpoBT3a30Ly0IVE7XiCuYP+\nwoTeD1NaXSKFpMKTu3nlUBYnLpbhau+Gu6M7+rpKXrrnZfp6+hGzK5ofLv6bLm6+5IXny76KD5x7\nhR2mOMfxPR8i9fMUYgfE06NdDxL3zmHT+HwpLinPC8yCjvI9630KrvfaCLFH5JtZL6or+7RYX2Qh\neinbI8aE+F1vqCR650x+uHiCTk5azl6qprOLDjeNuxxLykVt62v3Wy12X22x3VrQKTy5m7hPYtA6\ne3Gh8UdWj8kBzLZ7xfoiKW6JPhNCiVLsnLl9GlrnzlQ3nKGjkyfnLtXQ0tJCJxct9rb2xAfO49WS\nLLJG/iQoFuuLGJ93H5vDtxGoG0xBWT7Hzx8n99g7ZIZkUV1fxZM7p/P+uA+uyLYS2XzCPlR5nWZt\nj2TJ8HRSP1vAY32myP1ZCyzieoTnhWFjA9mj13CgYj9Li1Jp79gBja0DGjt7skevIWZXNCnBC+U9\nUlpdwrSCSXT36CEFqGJ9EeGb76erW3cpNAJyPEUWTDbbS34SQ+Y9K+nr6cdDWx7g9dHrLERyIXhP\n2Gy+l2bfGU9It5EUntzNvD1xmEwmEoNSWFqUig02PHVHDIUVu4jsN4O+nn6Eb74frbMXl4yX0djb\nU9NwloTBybx5ZB0mEzSbmlg9Nue6s/LaGlvivCK2hEtRT4yZ6voqZm2PZHLfaWz74QMqDafROnnh\naO+IyQR3agfy0YkPwQbW3vsmoT3DKCjLZ9aOSFaPyaGmoYYVX2ZQXluOCRMdHTuSEbLCQuxWjmHl\n+BbiuMg9u9453PocrQXPG+2fq92DIgdR2AO3to2yHeI7wrpN4n0x995s4tkveW5SrRpVVFRUVFRU\n/meodkM3B+qzk4qKioqKyu8D9dnp5uB6np2sLfyELZ2wsjp2/luidkxnbPdQCxvBiX0e5eHeE/Fx\n972qRVaxvugKi622bLKuZRs4qtsY+nj6cez8tzz+4UQc7ZyYeceTPNx7IiN876HgRD4jfO+RFoHi\nc8r9VtSWU9t4kScKprDt3/nUNxnY+cMO7GxtGeF7D/f2vB9nWxce6zeZB3uF88TtsxioG4SXc2cW\nfpZEr3a9yf7q7ywdsZw6Yx1RO5/gsT5TOKDfSwvN2JhsaWy5zLHz3zHdfxZezl58d/47Fg5bTGdX\nHT7uvng5e/HkzunSzk7Z1v6et/PSF0uwxY6TtT9QpP8cF40Lvdrdxl2+I2T7J+VH8I8j63nvu1xp\nLdiafVlt40UitoSTd/w9eQ2vRm3jRd47lstAr0D2VnzKtP7T8XD0kDaM4mdxrbu4+VhY8AmLQnEu\nfTz96OLmQ23jRZ7d/RRP3fEMQbpgYgOfZ+cP20m/O5M/93mEe3vch5uDu9xHa3aS4vhKRH/8Ess1\na2tQZT+K9vT3vB03B3d6tLuFD8q2sOzuDGb4R+GqcWXyhxH069ifeqOBt7/dwL6KvdKmc5PCHg+g\nV4fe3OP7J6ICohnqHcwXZ4p4tPfjBOmGcvjc15w2VBDa434O6j9ny/d5hHQdSWXdaQD+eXQjj/ad\nzFdVh5jx0VQ+Lt/JX4IW0MlFS+pnC1gyPJ1b2/diUn4EecffY/fJnUzrb7YGHOgVSNSOJ/Dr2I/n\nC2PkNd51cgeP9p3M5uN5HK75mhUjX5Gin4ejB8X6Ivp4+skMwF7tb+OrsyUM9AokYW88k/tOo6jq\nc1KGLqL4zBcM1gXxj6PrOVT1JYlBSQzUDcLZ3oU+HfxIGJJkMW7u8f0T9/d8ADcHdzm+nt39FEO9\nh/F4v2nc5TuCLi4+rCrNZlr/6YT1HMet7XsBZhHo8X7TpJ3nlu/zmNRnCvP3vUBnZx0LDyTxeN9I\nzjToefrOGO7UBjK6+72kF79IfOA8cg6vxdetK6O73cuByn3oGypx07ihsXHk4/KdZIasZGS3URzU\nfy7vAWtau9+s348smIyXsxdTtj1CkG4on5QXorHR8Pwnz+Js60Lsx0/xZdWXTOo7lTcOr8LV3p3n\nB77A4XPfYKKF6oYzXGyspc5YS0dnT4qrvuCOTgHUGw1sPv4+43tNYEiXYN45upHaxgtgMuFk58LB\nM5+REZJFnbGOZ3c/RXivh6+wl6yoLaePpx/9PW9H5+p9Q/aT1vdPa5a819s/wqqzv+ftcq5Qfq5X\nh97c7RNiIV62ZRXZ3/N2EvbMkecL5krVsd1DAbOt6ZM7p+PXoR/z9sTfVHaNv+S5yfZXbIeKioqK\nioqKioqKioqKioqKiooKln+NL/4KPz7QbC8o7OeUFSw+7r7yn/I1a4r1RTy05QFZ3SW2+zlVDYBs\nQ6BuMJvG5/PamDXyPZ2rN8YWI3GFsfJ44n9RYSPOUW+oRGOn4ZkBsdjb2nO2oYrH+kwhYc8cCsry\nWVqUyoOb7qW6vgq9oZKK2nI8nT3xdu3Cy//KkBaPgbrBvD56HYG6QHxcuzKl7xPUN9fRyVlLSvBC\n9IZKc/7aLeNIO7iYiC3hFOuL8NcGWFRPKBHn0c6xPStHZbNyVDZT/aYT90kMb33zJpEFkwHIDMmS\n1pHKc1OeuzhvjZ2GxKCk6+pzH3dfMkOyyChOl3aUogpNtF+ME3EMZVWboKK2nIQ9c+Q2Ykwl7Iln\naVEquUf/yfnL50jeN5/onTOJ3R3NpPwIiyqzpSOWX2HtpzyWaJfyc8r3WmvXtRD7tD5O9M6ZTMqP\nQG+oxMnOmUUHFqBz9Ubn6k0Hx47M3zuXRQcWsHpMDinBC0nYMwdA2iwqCdQNxsfdl9CeYUT5R7Pi\n0HJWHFrOJeNlOjt709fTzzx+6k8z86NIwvPuByAv3Gx/mXbQLMKmDEnF09mTuMJYWUWjN1SSGZKF\ns70LiUFJ0rpU6+KFztUbrYsXmSFZJAYlMffTOCrqyjlQsR8HOw3GFiPV9VUUlOUTWTCZgrJ8Htry\nAAVl+UzcGs64TaHM2xNHlH80x88fx8Xele0nt+Ht2oW+nn5o7DT4awPIG/8hK0dlk3ZwMQVl+UzK\nj2BVaba8l5TE7IomYks4k/IjAIgPnCsr5AA8nT1paKoHkBaVgIWVn4+7LxvDcunVoRd22NHBqQPN\ntLD+8Foq607zRMHjJOyNx9PZk/fHfWC2Pf1PNdvyL5YRHzgPH9euPNJ7Mk4aR9KGm+9vcQ+0Vckp\n7oO2EHNdaM8w3h/3Af7aAJpMRjYe3UBnFx3BPsPYND6flOCFfHhiC+0dOqKxs6eDUwc0thpWj81h\nzdj1rLk3B1+PrvKaxhXGsujAAjq76kj9bMF/xkY+L939MjrXLlw0/khjsxFAVpNZz9ei/QVl+cQV\nxsp+/bmI/VvbnF6rf0R12NIRy+XcLT6n/KwQc69FoG5wq5VvekMlkQWT5dwb2jPsZ38P3YyoVo0q\nKioqKioq/zNUu6GbA/XZSUVFRUVF5feB+ux0c3Cjz05KW7EJm8NYNeYNmZNztfyxqyHyx673c23Z\nZ4k2bRqfLxdRJ+VHcK7hHB2dO0prwcSgJDKK04kPnCutzIRlmXKhvVhfRMyuaJkxlXvsHRKDkgCY\nsX0qLS0mbG1ssMEGL9fOVDdUMbnPNN76dj3zBiWx7IvFLB2ewSuHsjh58QQdnT0511AjM5aE9WDa\nZ4vZ+u9NLLnrJV45lGWRSWUtnImF4Un5ESQGJeGvDWDi1nAuXq7l3KWzbJlQAFy5iKy0AVSee1e3\n7qwcZc6EulEbNuvcOevsOL2hkvDN9+Pt2gVne5dWx0ZBWT5pBxdb5H4VlOXz3MfPcv7yOWIHxBOo\nC5SWm9X1VXKstJYvJsak0uKyNStOMTaA6x6zyoylBzfdK/PoxHvKY4uxIzLbxufdR0tLC74eXVk0\nbAkZxekyN0p8Nm34ckK6jbyincIaFEBjq8HTqRMdnDrK/tC6eBG9cyaLhi2RFoWl1SUk75tv7pf6\n07jbt0PrqiUxKImoHU+wabzZEjRmVzRNJrOF6WtjzBaKNjbmTLKGpgaqG87gpnGns6tOCmnnLtVg\ngw2rx+bIcxX9Io57ufkS+nqzGGiPPetCN1xhfSeETiHaal28pCAmxtCk/AiaWozSklK8Vm+sl6J4\neN79mDCxOXybxXhUjhEhZD9R8Dhn6vUkD1nEum9WoTfowWRC52bet8gcFNfnQMV+3jyyDnsbDecv\nnaPm8lkAOjl6Udt0gdVjclqdu35uTlZFbTkPvH8vaSPSWXRggcxejCuMpd5YT0NTPQ52Dpwx6PFx\n92X2nfHkHF5LfOBc2X/iXhR2nMJOVfSNctyIPm2rjWK+EOLVryEiXc3itzW73Njd0TIzUnku1laL\ncGX+XVsI+0nrOf9GbWv/26gZZ1aoiz8qKioqKiq/D9TFn5sD9dlJRUVFRUXl94H67HRz8HOfnUSW\nkYvGRS5yW2c1Xe9+bkTAaCtvTbwn8oHAvPD51jdvygykyf2nXrFAOmFzGNmj17S6gFysL+KB98di\ngw22trZonTvjbO9Mk8nI7DvjWfFlBouGLQFA6+LFrO2RVNWbhYaOTp5cam7Ayc6ZlOCFzN87l4d7\nPcKrX61gS3iBPMaBiv0s+jyZ2QPmEOk/Hb2h8or8J72h0kII3BiWKzPUlo5YzsyPIqluOEPC4GQm\n9H5Y5o9ZC2EFZfmkfrZAihARW8JbPc71XreILeE0mcxVK0KIse5DIYpav668lpH9ZvBqSZYcOyKb\naXzPh/lX1RdSWAGI2vEEvm7dWDkq20IcVOaL5RxeK0Wpa51Da+1qDVEZ+frodQBMK5jE+tCNFgKd\nEJCU/ZM7Lo9N371Hrw690Lp4UV1fZSGaiW3ve28U5y+fs8jzEtc7MSiJYn0xed+/x7R+03n72w0k\nD10oBceVo7KJ3PY45y/XoHXujMbOXlYaPh1gFn3Tv3iRtOHLZabeylHmMTBxazj1xgZcNM68+6D5\nvtEbKqmurzJXQN72KBuPbiAleCFaFy8p8PX19JOin/LeEXaNBWXbePWrFUzp+wQh3f7Ualaf2F5k\nEYp5RGCdYafMXYvdHS3zCkurSwCkcCRy2sRxxP7rjfVUGipwtnOhi7sPiUFJ1DTU0Fdh2wpmATk+\ncC4p++fLfnyszxTSv3iRSX2m4u7gwdvfbsDBzoElw9MtRHdxzOvNc7QWi8R8tT50oxS2hIh/tOYI\nz3/yLClDUln3zSriA+cxb08c0XfEsurrV3ghcD7BPsPkOYjjF5TlSxHVwU5D1shs4gpjuXj5Is72\n5vmpNfFPiEutZS3+XK6WlynmttayMsX9rhTSlONFmYVIsHcAACAASURBVFsmfm+r/5Viamt/mCCO\nqczVu1n4Jc9NqlWjioqKioqKioqKioqKioqKiorKb4yPuy+vjVljsdBpb6v5WfvZGJZ73VU/V7Nx\n9HH3lRU+wpJwcv+prA/dyOT+U+U2yv9NJnMVhviMsuLgaM0RmmnGzcGdNWPXM2fQPFKCF1JpOI2n\nsycmk3mxPnHPXKrrq1gyPJ32jh2obbzIMwNiWT02R+6rsu40fz/0N4wtRt4oXUv0zpnE7Ipm3Ter\nsLOxp0e7HlJAFHZ2QsyytrLUGypl1ZjO1RsbG+jo5EnusXcsLP+U/VSsL2Lm9mn8cOGE3MfKUdny\nOGBebL+W1ZmwRxPHMTY3yf0Ji0vltmkHF1v0t3hdvLZ0xHJWlWYjSiEqasvJKE7nKf8YNpe9x6Xm\nBhKDkkg7uNj8b/hynhkQK9uqtH8DZPWN9bm0dl7W1nRXQ1huZhSn468NYH3oRikIKrexZmXxyyz6\nPJnnPn5WilHiugkKT+7G0c6J1WNyLBbr9YZK6o31zNoRycajb9LQVM/6w+tkXwkx8WjNEX5sPEdH\nJ0+MLY3Y22hICV7I0wGxJOyN5+1vNzB30F9YVZotRdmEPXPY9N17JA9diIvGmeShC+Vx4wpjpWi2\n7ptVNJmMLDqwgOr6KjaNzyek20gCdYMpKMsnPO9+wvPCmLA5jLe+edNsi/nBRFYcWs6Uvk9wQL+P\nRQcWWIxfYfOoFLWM/7ENFG1QWsIqK1wjtoRTXV9F1shs2XdpBxeTsn8+kdsep6GpnrSDi6X956T8\nCNIOLibKP5q88HwSBidzqbmBsd3uI/WzBSTsjedozRHiCmNltZsYS5WG06QELyRrZDaby97nSf9n\neevb9aw8lElVwxkuGS+TdnCxhV2oOAfx2tXuJ2urworaclaVZuPj5itFwMKTu6moLSeuMBZPZ098\n3brSwakD1fVVnLhwgsaWRt47/k9G+Y4l9fMUnih4nJhd0dJGt1hfRPK++Zw2lNPU0kTy0IUE6gYT\n5R/N2YYqDE11zNoe2arFqRDNlP35S7kRG17x3ZA7Lk+K5DpXb+xtf7KVFf+EjaPyGNdqQ2v3q7Ch\n1djd+HfZzc5vVnHW0tLCX//6V7799lscHBxYvHgx3bt3l+/n5eWxdu1a3N3dmTBhAhERETQ2NpKY\nmMipU6dwc3MjJSWFHj168MMPP5CQkICNjQ233XYbCxYswNa2bc1P/atpFRUVFRWV3wfqX02b+V8+\nN4H67KSioqKiovJ7QX12ujn4uVaNbVUI/JK/0G/L3uxGKoPEYnR84FxZCdLWZ8U5CEvE1tr/4v5F\nZH+VRcLgZFI/T5GVINX1VUTteIJJfaay7vAq7LFH5+aNvq6SDk4d6eSildZiEbc9SurnKXRy0tLY\ncpkLjRewx56X7nmZFV9mcL7hPF6uXrKCRqAUvcQi71vfvElIt5HSgi3KP5p5e+Lo4uZD9ug1sirD\nutpMVECJyqHWLBRF9dDVbOdENYaNDSQPXSirclqze2xrjFhXg1gfV9g3Rtz2KLnH3iEzJEvazsXs\niqa87uQVdoxXG0PXqlJsa3y0hlI8uFpVS7G+iOidM3G2d+FWj17sOFmAzrULzaYmnO2dLaqlphY8\nhsZWw5bwAosqNDE2C8q2seKQ2WrQx7UrM26PYtkXi9E6e2Fva09TSxNLhqdz/PxxFn2eTMqQVHKP\nvUO9sZ7nBsYDZkFxfM+HyD32DhvDcskpXceKQ8vp7OyNs8ZJXkMxfo7WHGHenjiMLUaShyxi7der\nqG44w7IRmbKiL64wltrGi7LyyWQy8XTAbNlWrZMXGSErLCwHAVm5JyrYlHavAjEehEgbuzuaf/9Y\nhpuDO5eaG1g15g3m753L2YZq5g76C+u+WUVFXTmZ96ykr6efhWVoaXUJs3ZEMm9QEhuPbuBi4wUu\nNP7I6jE5AKQdXCxFSCFIZxSnE9lvhrTOFNabKcELeffoO3xwYjOjfMey/E8vt1lJqZyD2hpfbc11\nAPe9N4oz9XpiB8Tz/479k2ZTEzY2NphMJkwm6OjckYjbHmXt16uoMJyio6Mn7g4eNJuasLc1Vx0C\nXGpuwNjchLPGSWagCTExpNtISqtLWq0KFX0/86NI7G3tZXXxr1mFVVCWb1Ed2Na+xZy2dMRyWbVp\nPb8p55obqfprjRudF/5b3JQVZzt37qSxsZF//vOfxMfHs3TpUvneuXPnyMrKYsOGDfzjH/9g69at\nlJeX8+677+Li4sK7775LUlISqampAKSlpfHcc8+xceNGTCYTu3bt+q2araKioqKioqLyX0d9blJR\nUVFRUVFR+WNiXSGhfL2gLL+NT93Yvov1RVdUYUzKj2BSfsR1VTyI6oPQnmFSNGutzYKNYblSrGjN\nqizSfzrdPXowoffDJA9ZRGjPMHSu3rL66YB+H7MHzGFd6AaWDE9H5+ZNO8f2UoxLDErizSPr8HHz\nJSNkBV3cfJk9YA5bH/qIkG4jqbts4ILxR0Z0CSEl+KeqH9FmUWUB5kXm5z95lgmbzQvNTS1GXv5X\nBl4unaVoJrZXildiQToleCGhPcMI1A0mb/yHbBqfb7HQHFcYe0U/K6+HqABZOSpbVhc627vICjDl\ncUV/KvcvXrNe8E7YM8diHAhbPZEpJyoCA3WDzdaH4/PbtI6zrihs7ZjKY93I2BJEFkwGaHOfFbXl\nzNoeibG5iSj/aE4ZTjK57zReG7MGdwcPng6IlRUtoT3DeDP0bdaOfdOiAkaISEdrjpD3/Xt4OnYC\n4N7u97G57H2e8o/B3cGD8T0fpqKunJqGGt7+dgMpQ1J5NnA2iUFJ6OtPs6zoRRL3zmF8z4dI/+JF\nKRBtP7mN2QPmUPDnXWSPXkOTyUhcYSzF+iLiCmN55VAWy0ZkknnPSib0fhh7W3taMPHKoSxpcZcZ\nkoWzvTN9Pf1YM3Y9Pu6+RPpPJ2VIKhNvm0St8SJaFy9WjsomMShJjpH3x30g7yNft274awMorS4h\nPO9+xuWFMj7vPvSGSor1RURsCSeuMJbkoQvp4NSRC40/MnfQX/DXBuDu4EHa8OVsLnuf+MB5dHPv\nQV9PP4tqPh93c/VWB8eOLCtajKGpDo2tgxTNABqa6kn9bAFpBxczvudDpB1cTGS/GSz/YplFJdap\nuh8oPPkx3188ziBtELvKt0ubSOsxuHTEcmnJeTWulqvlpnHHQ9OOV0tWUGk4jb6+kjMGPWfq9bSY\nmskMySLYZxhpI9LxdevKW2Hv8tqYNTjZOcuqQyFoAywatoTMkCzSDi7m/KVzvPyvDDZ99x6pny2g\ntLqk1Xkydnc0VQY9NjaQGZL1q4tm0womye8OZV8o/xdzRGS/GbIaMj5w7hX3uBBKxVz1c0Uzgfg+\n+qPwmwlnxcXFjBgxAoABAwbw9ddfy/fKy8vp06cP7du3x9bWFn9/f0pKSjh+/Dh33303AD179uT7\n778H4JtvviEoKAiAu+++m/379/9WzVZRUVFRUVFR+a+jPjepqKioqKioqPwxUS5GCksrvaGSB96/\nl2kFkwjPC5MLnT9n32JBvjXx5XorHYQA1JqNn7UVmbBGbA2RaaU3VJI8dCGbvnuPl4qXUKwvkqJG\nX08/jM1GNpe9x/y9c5n7aZzMNNO5elNRW07qZws4XVfBkuFmi78o/2i2n9wmF/ft7eyws7Fjw5E3\nmLUjUi4iizYrhR1/bQA9PG6RIlny0IVobDXY29qjc/WmWF8kt1ee46T8CN765k2e3DldLgRbZ7q1\n1s9iwVppRefj7itFk4zidBKDkmQFUmvWhyJjSbkofzVRS7QjL9ws6vlrA6g31hOzK1pe0+vNYbNu\nR2uvbQzLvSFBwPoeUFJQlk/ElnBWFr9Med0pztRXsuLLDEJ8RrHu8CqO1hwhyj+anMNrLY7prw0g\nozhdXnvR7xG3PUrCnnhOG8p5ZsBsHugxnre+Xc/4ng+x6utX5FjKvGclAD9cPMHGoxvkWFk6PIMO\nTh1JG76cXh164evWTbbV2Gwk/99bAPNYcLZ3kWJvZkgWNjaQUbyMVaVm4eW5gfH0cL/FQogBaGw2\nErMrGjCLqIUnd7O0KJX3v88lbbhZNHpqx0wLS0Pl2BMVlmkHF7N6bA5bwgtYNiITQO43MyQLf22A\nuYrzP0KemH9Cuo2Udp+pdy2RIqzoXzEfuGncWToiAzsbO/SG0xTri5lWMInpBVMwNjeRNdIs7i37\nYjFn66tJO5hKheEUl5obZOabk50z6w6vorz2JF+dPYQd9gBX2BhW1JYTqBssM7euJty3Ztco7t9n\nBsTS0FyPu4MHNv/Z/k++ownrMY7zl85xoGI/4/JCmftpnNyfztWblaOyWTkqm7SDi6mur6KyrpIz\nDZVyuyj/aKrrqyivPUnq5ykc//EYiw4skNdHzBE+7r5kjcymR/tbWDRsyc+6765GaM8wC8tT6z+e\nEPMGwNIRy8k5vJYo/2ii/KPJKE5vtU8jtoRLsfOXiGbi+yhhz5w/jHj2mwlndXV1uLm5yd/t7Oxo\najJ7+Hbv3p3jx49z9uxZGhoaOHDgAPX19fj5+fHxxx9jMpk4dOgQZ86cobm5GZPJhI2Nebi7urpS\nW6vaCamoqKioqKj8cVCfm1RUVFRUVFRU/rgoRZW4wliid87E3taezHtWkhduXvi/2kJxWwixoLUF\nT2uR4kb2LRY9lQKUMqOrLQJ1g3l/3AccqNjPzO3TWPR5Mi8EzgfMGVDCdm7lqGyaWprQ11Vypl7P\n3T4hLDqwQC5+v/tgHmvGrkfr4sXEreHM2xNHbeNF9IZKSqtLqGk4i86lC+l3/42lwzNIO7hYflYp\nZgk2jc+XotyiAwtICV6IvY2G0uoS2S4hfimFoZzDa3l99Dr52Un5EURsCbdY9Lfu56tlAYFZ3BMZ\nadbbiH0W64t4cud0iwoRa5HB+nW9oVK2RW+oxEGRN/Rr5CxZcz3ZbkrasmactT2Sf18s443Dq5ne\nL4r5QQuwt9EQ2vM+Ojt74+nsScLeeCL7zbDoLx93X+ID51oIm0tHmCuplo7IoLOLjhc//ysfnNiM\nsdlIsM8wXh+9jpBuI2U2WOLeOWidO/PMAHN13qT8CF4tySLKP5rlXywz24r2nULUjicorS5h5ahs\nbGzMGWGAtMME89h/OiCWKsMZEoOSKK0uIWFvPCnBCzlac4TwzfdTUJbPUztm0mxqoqGpgUUHFpAY\nlMSq0mxc7d1pajFy/tJ5YndHc7qunIjbHpXirrWIKu5FIaAk7p3DUztmYmODtI8Ec3VoSLeRUlSJ\n2RXNxK3hHKjYT22jubpt6Yjl0sZU9OXGsFxSghcS0m0k9cZ6mmnm/x37J8lDFtHR2RN7W3uq66sA\n0Dp78ePl85xrqCFlSCrxgfN4asdMZnw0lYameh7oMZ5aYy3RAbF09ehK3MezGZ93HxO3/nQvCfFH\niHhXq3wSAo01ekMlq0qz8XLpTEcnT54d8DwAu8q388GJzTTRRNahTIwtRs42VHPGoGdK/mNM2BxG\nXGGsPB8AW1sb2jt2oKbhLLO2R7Ks6EWaaebh2x7hiX6zMGHimQGx0qZTmakoxkLawcW/yb2ndfGS\n87JyvlFW7AmxPLLfDBL2xpOwJ/6KijMlNjatvnxdKM9RtONG54ebFfvfasdubm4YDAb5e0tLC/b2\n5sO1a9eOxMREYmJiaN++Pf3796dDhw6EhITw/fffM2nSJAYOHEj//v2xs7OzyOUwGAx4eHj8Vs1W\nUVFRUVFRUfmvoz43qaioqKioqKj88REVHzG7omnCKLOA4OoLxVfbn6iyag1ldtXVsmuU9oBiEfj9\ncR+QGJQkF+YjtoSjsdNI27q2qhOO1hxh0efJTO8Xxa5TO+jg1IG4wliMzUaq66t4cud0Xh+9DncH\nD6YPieLouSO8dXQ93m5dWBmSLdsrrAdfG7OGozVHeOVQFtE7Z2IygckGZtweJSt7hIChzOlSVqGI\nfKLEoCTK607Kti46sADgiowy66o70XeZIeY2xOyKRmOnabOiry2RSORUKXPklO+LrDMhQFpndwkx\nULRH/CwEpPfHfYDO1Zu4wliyRmbLjDPr7LZfyq9h6QbmRfbVY3MAOH7+OOsPr6PSUIGXS2eq66vo\n6NwRAG/XLrxyKMvifgFz9Y04Z9EnogLT09mT+Xvn0tjciMbWATBXaInKsFcOZbFqzBvUNNSQuHcO\nvm7dSAleSPK++WQUL+NsQxXzBicR7DMMz6+1cvxcvFxL3CcxdHH1pdnUhLuDO+8+aK4Ae/lfGYgy\np0UHFmAymTh+/jhLi1Jpbmnm+Pnj6A2naefYHheNC2AWvjJDspi1PZLzjTWs/XoVcwbN44VPnmNp\nUSrrD6/DRWPO2FLm2yXsmSNf83H3lZln4vpY3/MiX63JZKSh8RKLPk8GYNb2SJzsnAFzrpcY24lB\nSUTteIK5g/5CnbEWW2yZM2geAFUNZ9A6eTFj+1RsTDasuXc9NQ01rPgygw5OHUjYG08nJy983H2Z\n6jedXh168cGJzQTqAunRrgdxn8TQyUlL8tCFMldNtPN6xlVFbbnMwovyj2Zy/6nyXlRmtCXvm4/W\nyYvqS2ZBzNOpExpbDRpbDYmDUyivPWXOWrTzZqrfdDKK0+Vc4uWsQ2NnT+yAODYe3cAzgbHM+XQ2\nm46bj+Pl3Jm+nn5yHCvv12J9EXM/ff43yfqqqC0ndnc0JpOlWC7aYZ2DuKo0m3mDzONYaccpUFYw\n/txcM+V81Fo7fs/8ZhVnAwcO5NNPPwXg0KFD9O7dW77X1NTE4cOH2bhxIytWrKCsrIyBAwdSWlpK\ncHAwb7/9NqGhoXTt2hWAfv368fnnnwPw6aefMmjQoN+q2SoqKioqKioq/3XU5yYVFRUVFRUVlf8b\nBOoGy4onJb80V6a1nBtlzta1FjKVi6/vj/sAgCd3Tpd5RMYWoxSgJm4NbzXjqqK2nFWl2ehcvDmg\n38dzA+OZv+8FovyjWTkqG39tgMxqSgxKYmlRKu8e24iHQzsLWzMfd19z3pThNNX1VeQcXktK8EKc\n7V2Y1m86mEysP7xOVoopRTPrbDGRT9TUYq4yEllfuePyWDkqm9xxeRbVW9bZScq+E/Z8K0dlX7cN\npkD0q782wMLGEX4SQpSvt1WxZm17mBP6lhSQrD8jRDPr4/0a/Br7EwLpogML2Hh0AzY20MHREzAL\nTxG3PUpGcTqLhi2R+WbWBOoGy34orS6RNnEp+82VjolByXg4enC05oj8TNbIbLm/VaXZpA1fTu64\nPPy1ATSbmnC2d2be4CRyj71DzK5o7G3t5dh31jiRec9K5gyah76+kguXL8jqLxsbWDYiE39tALnj\n8kgYnEzusXfo6OSJDTa8/e0G5g1O4sfL55l9Z7wce0JA9HHtiovGnH92S/uerBm7nrzwfBKDkqTN\nnqgyjQ+cS0ZxOsX6IgrK8skoTre4Ltb3vMgOXDRsCTn3/YNOjl54u3Zh9dgccsflkRK8EHcHD1aO\nyiYzJAutixedXbzJPfYOCYOTscWWjOJlrPgyA1+3rmSErMDLWYeXa2eOnz8uRexXDmXh7dqFNffm\nsGjYEpZ9sZhifTFgFkc9nT2xs7HD1cEVrYvXFePpesaV3lBJpeE0Y7vdR9wnMRSU5Vt8Xm+oZNGB\nBejrT/Ngz3BsscXLuTPPBMzGzsae9BF/Y1Xpq2w48gYAhkYD6V+8yPieDxGoG4zeUImLxpm6ywbe\n/nYDTSYjJy6cwGQykX7335h9ZzwXLv9IzK5oiyozMabNY8GGRcOW/Cbikb2tRmYkWs/B1tXNZ+ur\nWfaF2X7y51Q1Xw0xz4rqv4gt4RaVcH8EbEwmk+m32HFLSwt//etf+e677zCZTCxZsoTDhw9TX1/P\nI488wt///nd27tyJo6MjTzzxBKGh/7+9Ow+Iqlz/AP4dFpFNcWFLpaSupkZqaLllSi5wQRGRQAwy\n3FPJwARN8Lov99pNLbe0SNNKEnEBMdRM3JJIzcxKJTVNEEFDFmGGOb8/uOf8ZoaZgUEZBvx+/rky\nM+ec9z3bfTvPeZ7XGwUFBYiKikJpaSns7e2xePFiODs7448//kBcXBzkcjnc3d2xaNEimJub69x2\nXh5LEhERETUEjo729d0Ek1Cf4yaAYyciIqKGgmMn0/AwYycxe0ihlGPHMPWgjSEPG7U9MFXNWlLN\nvqqttOwUKdNmYvqbUslD1W3qaldO8S14uvSU1lEiLwEAJI9Ikdp25PphzMp4B842LrBv0kzKFhH7\nMuXgeKwbtEkKjImf3Sy8gSfs2yJ5REqVjCptfc7KycTJmyew4ofF2OWfAk+XnlKQTcxQUs1Q05yz\nTDPIpZmhVtP9rG0bqu1QncdKc52qf2flZFYJkqm2KysnE1FHIgFAmoPLVKmexznFtzDhm7EQhMog\n1O2SXGwa8hk8HLtK55MuadkpUjajo40ThiUNBQC42LkiostE/DtrCd71nIPd2UlI8N4mlSYsVZTA\nQmYpzUPmn+yDKc9HIvXqHsT1mg9HGycpKyqn+BamH5oiZej8M2kQ8kvuwNHGGTN7xGBWxjtwsnZB\nM6tm0jUjzlm2Mms5Ph6SgF/zLyImIwpu9k8hcXgyjlw/jFbWreDh2BXn887Bw7FrlcxJzfMU+P9r\nZHL6eNwqvolNQz6Dt7uv2n5VPX/SslMw4ZuxgAyI6VEZtHayccbegAMAKsuyiqVUVc8d0fBkbzg0\naYHmVg5Y8+o65JXcxpxjs1CmKMOdB3mIe2kBAjoESr8X2x6w2xel8gfILb0FSzNLONu4wFxmgfWD\nN0llDlWPa02vJXG5tOyUKv0W+3Ly5gks/X4B5JDDDOYwNzODXCnH291mYvXZlQj6x2jsuLQdABDR\neSK++H0rNgz6BEtPL8IQNx+sPrsScS8twMbza5FTUhkc9XvKH1cKL0uZt2L2qOaxmpw+Xurjo6Ya\naNe3/m0XtiAmI0rtOGvuW133veqIfY32nCVlcoplb8Xz1FSCZw8zbqqzwFl94sMfIiKihoEPf0wD\nx05EREQNA8dOpuFhx06qD7/Fv/WVUtS2fGhKEOQVcqlkIAC1B+wP2z7xQfBre0dgx7DkagMX2ton\ntiun+BYmp49HTslfSPZPVSutdz7vHBxtnKSgkfjQWwxqWFvYqJWRjDoSKT209nDsqjXopNmHEcm+\nyCn+C442TtgbcED6jRjUUw1iaa5D9bjoC3yJpcqqC1hqbkP1MzGgutprnRSs0RYEFEtpqpaGG7H7\nn3C1fQK7/FOkfaUZ4DNVN+/f+N/cdfmIzYiGi+0TmPFCNNaeWy3tC0D3g33Vh/je7r5SwKZEXoK7\npQV4yqE93uoaiYRfNqtdH1k5mcgruY34E3NgbVFZDvHNtNcr54sWgDb27aTgrBgMUL0egMrSpLEZ\n0XC0cUJucQ6cbV2wpF9l9lfc8Tn/a9+fMDMzw/KX36/MwHxuKsZ6RODI9cN457tpAAAXG1fkl97B\niv7/xZgu4VK/xPMpp/iW2nWjFki+fwObh26RAkjazltx/+SX5mPj+XXIK86DQ1MHKWAoBj3E/3Wx\ndcWR64elffZm2uvIL72DzUO3VB6nY9GoqKhAaxtHTPR4C4mXvqxyfG7ev4Fdv+/EF79tRX5pPuJ6\nzcfac6sR12u+dJy0XV/VBXBUryFt16zqPaSwrBCj/hGMry99hZk9YqQAZljKaLzXKx7/OjEXhfK/\n8Zl3ZQDN0cYJk9PHAwBmvBCNAW5eCE0JQm+Xvki89CXuywvR1q4dlvRbIc0nphn4O593DlHfvg2H\npg5qGa2PkrbgueY+Ck0JQmFZITYNTdB7L9B2T6oJ8f4pr5CrlXs09P/P6trDjJvqrFQjERERERER\nERERqVOdl0b8W99cZdqW3+6biMThydJDZnEdjyJoplqGUZxLRwwcaJYz1Cen+BbGpo2Bi60rkkek\nINk/Va20HlA575QYGFG13TcRu/xT1AJUsRkzpSyYCeljkVN8Cwne2+Bi64rQlCCp3aolGwHAxtIG\nHw9JkIJm4m9USziK+1XfcRH3u+qDfdXfjE0bg6ycTL0l0TS3ofrZ+wNWw8LMEnklt3XuU835lMTP\nlvVbCWuLynmzxH3VEGTlZCJgty/C00bj3e9mwP/pQCzsuwQbz6/Daq918HTpWWWfa1ItWSlaN2gT\nLM2awMnWBXG95mNMl3C160MsZbfg5DxYyCzR26UvAMDMzAxKQYlW1o6QyYAj1w+rlcQThMr5s/yT\nfTDl4HgMcPNC8ohU7A04gBX9/wtzmQXmHJuFCeljMeOFaCzsuwQyMxlie8ZhgJsXJj43FRvOf4jz\neecwwM0LEZ0nwkJmgeAOYyAX5IjJiEJWTqbaOZxTfAsj9/hJ57t4Dk8/NAVvd4/GE3ZtsfT0IrUA\niGrQQvw7KycLH51djYkeU1CkKMTUbpGYfmiKWrAMqJzz73zeOUR9Nx1jO4+Di63r/7IAZbh89zLm\nHH8XMT3mopW1I+6WFaBF0xZaj6tf0lAs/D4e3R17oKAsH1f/vgq5Uo6lpxchKydTKvOnGgCrjnh/\nCk0JQlp2itp1L/Z1u28iPF16/u96ssDu7J24XZoDAGhqbo2TN08gvywP73w3DSWKYsS9tAAejl2x\n9PQiTD80BRWCAn8V30Ar68qyobNfnIttv32GUnkJnKydEe0Zg5VZKxDtOUtredSIA2G4U3YbRfK6\neTlVzDjTt8/E+4m1ReX8deK9SddvDQ1wZeVkSnPCicFBXWVCGzJmnBEREVG94VvTpoFjJyIiooaB\nYyfTUBdjp7p8S9+Qslma2WKv7R0BCzNLKYNDNcutuqwQMUtGXzlKzWwHcb4mbftBXOf0Q1Nw/f5V\n7B6xX21+M9X1qG5L89+qGWKqy+jqR02Pi2qGUG2Podh/MYuuphmImtmG+ko9mgrV7KC07P3Y/usW\n5D24jdZWTrCzspWy5/RRzbwRzwExu2pC+lg4Xrjk+wAAHqVJREFUWjvBvkkzrSUrxay8pacWYcel\n7WjexAHmMnMUlhcivNObSL26F/fK7mLj4E/h7e6rlvEYf2IOLGSWUtBA7EuJvAQVggIRXSZid3YS\noj1nYfyBN+Bk6wx5hQL3ygvg0KQlrC2bwkJmiQcVpcgtzsHmoVuQlZMFTxdPtcwxXeU5xSzDdnZP\nIr73fKnEoy4fZq3Cgu/jYA5z7Bv5jfS5ank9zW2mZadIZTIDdvtiVo/3pD6JJSyHuPngm+v71dYh\nlpAsq3iAnJJbaGvXDsXyYpTIi6VsQjGTTSw5KJZbBarPfBLvA+Jcb7r6Lh6TiR5T8O53M9C2WeWc\n4IIAFDzIx315IVpbOSH9tSNqyyWc/wQfnfsAbe3bSRmvR64fxsqs5TCXWcDG0gYTPaYg4ZfNVe4L\nYlbiy08MQNCzwQa9yFCTa1Qzu7K634rXV17JbbXs2ppuT18b9N1vTAlLNWrgwx8iIqKGgQ9/TAPH\nTkRERA0Dx06m4VGNnYwR3KhNQE4z0ASol0UT/9ZHs6Sg5vxr+tqqq9yk6kNjANLDe0Pn8arNfHLG\neCis+qBbsyxfdW3TLOunGWTRVfqxPon9nf3iXGl+sqycLOzO3qkWlNJF9RxT3V8ApBKgIs3+iwGO\nuF7zEXEgHApBAQszCyiVFQAAAQLMYIY3Oo/DdM8ZUqBmbOdx2Hh+nXSMVNsnln6ckD4W7eyexNRu\nkXi2VSfkldxGTEY08kvvILZnHHq36SMF4BacnIdSRSkqBAVyS3LgZO2CBJ/PdZ7/mtsDUO11JS7r\ns/NVxPR8D2O6hKuda7quHdV7h2rWKVAZnPR3H4llmQvhattGbe7C1/aOwNW//8DsF+PxyYWNiOgy\nEct/WITJHtPh7e6jdS4sQ6+xtOwUONo4ScEzXUEk8Xf+yT7YNOQzAJUlNB8oHiCvNBcJ3tuk9Sx7\n+T/4Nf8i3vluGsxhgU+9t0plZENTglCqKMG6QZuQV3JbyjjTtt207BRMTH8TLrauNQr+au7rmtxb\na3rMz+edw4KT86TPVAO9tX1RQ/MeU9MSm/WFpRqJiIiIiIiIiIgaCM1ygoDhc8xUt35xnYY+HNUs\nV6hagkuc26k6LrauUtBMLB0olmWrrq26HuSLpd0WnJyHhafmYcrB8SgsK0TUkcgal3rT7F9d/P5h\nKJRyKSCjLZtFtZ+q55D4MDxozwgE7PaVgipiSUJ5hbzKtuqbWFbP290XScP3wcOxK765vh8WMkvE\n955f7X5XLVupur+OXD+MN9JCkZa9XyoDqtn/nOJbuH7/Go5c/xYKQQ4XGxdMff5tPGHXBk42zgj6\nx2hABnzyy0b47HwVUUciEe05CxvPr4O8Qo68kttVjk1sxkx4OHbFx4MTMLVbJGIzojFi9z+RX5qP\nOyV5aNm0FRIvfQkXW1ep34nDk7FpaAIAwM7SHvkP8jD90BS9x1q1/54uPWt0fbexb4tPvT9Hwi+b\n1dbhYuuqs/yqailFzTkEoz1nYfuvWyEIAhb2XaJ2j4jrNR8AsOXiJxAE4IvftmKyx3Rs/PkjqQyp\n5voMDZqFp41GXsltRHvOwsT0N7WWIczKycTE9DeRV3IbbvZPwdHGCUtPLwIAKIUKCBBw+e5lKSA6\n/dAUfHR2NZytXdGuWTspoAZUlmu0kFkCABaemodoz1lYmbVC637zdvfFxsGfSr+vCUPu0zU55mIA\nc8HJeVAIcqx5dZ1aILq25RTFIJl4jjZ2DJwREREREREREREZkaHzmhlC8yH7owr8iOXhXts7Qu9D\nU3H7qg/HdQXENOcEq66tLrausDS3RFyv+RAEwMbSGu8PWG2SmQ61IdYF05aNqG0+J82Sk4nDk7HL\nP0Xa12JwqrrsrfoitkkMfm33TcSaV9dhZdYKnXMyqVI9p8TgYcIvmxHZLRrrz6/B7eJc5JXchkxW\ndbll/VZi26+fwdnaFcEdxmD9T2tQIVQgr+Q2Ei99gQqhAs0sm8PKvCneH7Aa3u6+2O6biPje8zHp\nYATSslPUti0eiznHKgNsHw9JQLJ/Kga4eeGp5u3xqffnanMSisvlldxGTkkO7ssLoRAUmNqtMtin\neV3oCnTU9LiqBlzEfQ2gynklEoOBqteoeB4uPb1ICm6qZvbdvH8DHo5dsScgrXKeOXMLlMhL8c31\n/dgw6BNpH+rLOtX2b1Uejl3xVLP28HDsCg/Hrmhr5ybda1S52LqirZ0bPBy7InF4MoDKuRMX9l0C\nh6YOaGHVEl/8tlUKiD6oKEV87/lIG3UI6wZtkvYXAClr69f8i7h+/xocbZz0Bp48HLtq/Vyf2r7c\noIuFWWUAWpz7UHOZ2twPxLnTLM0tpZcoxHPJFO8vD4uBMyIiIiIiIiIionqgmUXyKKg+ZH+U6/Z0\n6Ylk/1TsGKY/CKPtIb+uTDMx26OmD13Fh7SONk6wsbTBW10jtT4018XUsyTEB9LashG3+yZqfUCt\nGWDRFqBsCA+1xWChp0tPRHvOQmzGTIOPl5gl9V6fePi7ByK/7A7e/S4K2iYqGuDmBVe7JxDScQzW\nnlsFGws7THhuCpRQQkDlAiWKYshk6hlSHo5dsWHQJ1UyjtrYt8X5vHO4UfQnJnpMgbe7r5Q9uGNY\nsvQbTY42Tmhj2xaOTZ3Q1q4dnm3VCQBqdA0ZSrwniPta9bzS9lsx4K0ZcNvumwgPx66wkFlKGZ+q\nwd28kttwsXWFQqmAtUVlcLu6YJJqwF9bhp1qu8QSiGKwWFdAUfzufN45jNzjh/N557AyawXe6hqJ\nYkURSuSl8HDsitkvzkVe6W0sODkPOcW3pD6J67U0rwxCbTy/Dh8PTpACvfpYmtc84+xRU83mfH/A\n6lpdS7p4uvSsss6GcH+pDc5xRkRERPWG83SYBo6diIiIGgaOnUzDoxw71eX8WQ8zj42xiPMBqWZJ\nVUfs19jO4xB7LBpu9k9WG8xTXc6U94ehcz5pm9NM83tT7zOg3k4A0lx3YuDJkP0hzoM3Mf1N2FjY\nYpvvDgDq2WniA/8Ryb74q+gG5EJlKcdWVq2RX5YPQICDVQvM67UQA9y8APx/0Clgty92+adIn2lK\ny06Bt7uvWp/O553DpIMRUmlJbe1dcHIeQp8Nw5aLn8DawqZOsnjE4BYAtfnNajtPlWbgRJxXa9LB\nCCzp+2/EHovGx4MT4OHYVZpTTd/8XJpzKj6K/qvuYzF418a+LdKyU7D09CKpz2nZKdL34vx34hxm\nYruqmxdOc7uP6vg97Lrqav5MU76niDjHGRERERERERERUQNTlw8eazuPjTHpK7WmT4L3NozpEl6j\nDDhRQ9gfhgaJQlOC9M7x1hD6DKi3U/y3i60rxqaNQVp2So0zM8VlPRy7YpLHNDjbugCAWnaMGEgB\ngPWDN2Hz0C140r493u42Ey2atsTb3aJhBjPcK7uLVWdWqmUAns87h6uFf+B83jmd+1QMtqiWb1yZ\ntQIbBn1SJeAi/sbRxglypRzLMhfi5v0bmP3i3Do5ZmImkrYsJH3z4Ok7vzSz4sQ56wa4eaGd3ZNV\nMs2qOx9V5+17FFTPCfG4A1ArG3nz/g2szFoBoHL+uxJ5aZW508QyhTWdU/FRBs2qK49rrLbU9TpN\nDTPOiIiIqN7wrWnTwLETERFRw8Cxk2ng2OnRMuQheUPJoKotQ/unWSqwscnKyUTUkcgaZ/kAkLLC\nrhb+gf++8iHGdAnXOmccAGlfi+X5SuQlmPFCNKK+m47IbtEY6xFRJZi57cIWjOkSblA/9J3j4jFf\n9vJ/pM9q2teHodomfRlnWTmZerPEarqNtOwUrMxaoXc9dV36r7rjAFRmlckr5IjvPb9K5qD4vTHn\n9BLnlkz2TzXKedHYPMy4iYEzE9ZQUh6JiIhqiw9/TMPDjp04ZiEiIjIOjp1MQ2N57tRQNfaxp6H9\na8zBxNqWEMzKycSUg+OlubD0rV/8XgzSTfSYgpiMKOwesb9KoKKu9rUpnNPa2qAa1HuYoE1N1mMq\n57G24J1mkNHY7cvKyWTQrJYYOGuE/vz7TwR8FYBdwbvQrnm7+m4OERERkVYcsxARERER1a8///6z\n0Y7Fa9u32iz3/Y3vMTV1KuL7x2P4s8MfaXsaqkfV35qs53Hbt2TaGDgjIiIiIiIiIiIiIiIiAmBW\n3w0gIiIiIiIiIiIiIiIiMgUMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycERERERER\nEREREREREQFg4IyIiIiIiIiIiIiIiIgIAANnRERERERERERERERERAAYOHvsKJVKxMfHIzg4GGFh\nYbh27Zra94cPH0ZgYCCCg4OxY8cOvctcu3YNo0ePRmhoKObNmwelUimtp6CgAEOHDkVZWZnxOtfA\nGePYJCQkICgoCEFBQfjwww+N28EGzBjHZtu2bQgMDMSoUaOQmppq3A42UMa6nymVSowfPx5ffPGF\n8TpHRCaDYyfTxbGTaeK4yXRx7ETU+J07dw5hYWFVPtd2fcvlckRHRyMkJAShoaG4cuWKsZtrMEP6\nV15ejujoaLz22muIiIjA1atXjdxaw+jqGwCUlpYiJCREOkbV3c9NkSH9q8kypsaQ/snlcrz77rsI\nDQ3FqFGjcOjQIWM21WCG9K2iogKzZ89GSEgIRo8ejd9//92YTa2V2pyb+fn5eOWVV0z+vmlo3wIC\nAhAWFoawsDDMnj3bWM2sNUP7t2HDBgQHB2PkyJFITEysfgMCPVYOHDggxMTECIIgCGfOnBEmT54s\nfVdeXi4MGjRIuHfvnlBWViaMHDlSyMvL07nMpEmThFOnTgmCIAhxcXHCN998IwiCIBw9elTw9/cX\nunfvLjx48MCY3WvQ6vrYXL9+XQgICBAUCoWgVCqF4OBg4eLFi0buZcNU18cmPz9f8PX1FcrLy4X7\n9+8L/fv3F5RKpZF72fAY434mCIKwcuVKISgoSNi+fbuxukZEJoRjJ9PFsZNp4rjJdHHsRNS4bdy4\nUfDz8xOCgoLUPtd1faenpwuRkZGCIAjCsWPHhGnTptVHs2vM0P5t3bpVmDt3riAIgnDlyhUhIiKi\nPppdI7r6JgiC8NNPPwkBAQFCnz59hMuXLwuCoP9+booM7V91y5gaQ/v39ddfC4sWLRIEQRDu3r0r\nvPLKK8ZsrkEM7Vt6eroQGxsrCIIgnDp1qlGem+Xl5cJbb70lDBkyRO1zU2No3x48eCD4+/sbu5m1\nZmj/Tp06JUyaNEmoqKgQioqKhNWrV1e7DWacPWaysrLw8ssvAwC6deuGn3/+WfruypUrcHNzQ/Pm\nzdGkSRN4enoiMzNT5zIXLlzAiy++CADo378/Tpw4AQAwMzPDp59+CgcHB2N2rcGr62Pj4uKCTZs2\nwdzcHDKZDAqFAlZWVkbuZcNU18emZcuWSE5OhqWlJe7cuQMrKyvIZDIj97LhMcb9LC0tDTKZTFqG\niB4/HDuZLo6dTBPHTaaLYyeixs3NzQ1r1qyp8rmu67t9+/aoqKiAUqlEUVERLCws6qHVNWdo/y5f\nvoz+/fsDANzd3U06M0RX34DKzLmPPvoI7u7u0mf67uemyND+VbeMqTG0f97e3nj77bcBAIIgwNzc\n3CjtrA1D+zZo0CAsXLgQAPDXX3+hWbNmRmlnbdXm3Fy+fDlCQkLg5ORkjCbWmqF9+/XXX1FaWoqI\niAiEh4fj7NmzxmpqrRjav2PHjqFDhw6YOnUqJk+ejAEDBlS7DQbOHjNFRUWws7OT/jY3N4dCoZC+\ns7e3l76ztbVFUVGRzmUEQZD+I9XW1hb3798HAPTt2xctWrQwRncalbo+NpaWlmjZsiUEQcDy5cvR\nuXNntG/f3ki9a9iMcd1YWFjg888/R3BwMIYPH26MbjV4dX1cfv/9d+zbt08a0BLR44ljJ9PFsZNp\n4rjJdHHsRNS4DR06VGvwS9f1bWNjg5s3b8LHxwdxcXEmXxLP0P516tQJ3377LQRBwNmzZ5Gbm4uK\nigpjNrnGdPUNADw9PeHq6qr2mb77uSkytH/VLWNqDO2fra0t7OzsUFRUhMjISMyYMcMYzayV2hw7\nCwsLxMTEYOHChRg2bFhdN/GhGNq/pKQktGzZskG8IGRo35o2bYpx48Zh8+bNmD9/PmbOnNmo7it3\n797Fzz//jFWrVkn9EwRB7zYYOHvM2NnZobi4WPpbqVRKJ5nmd8XFxbC3t9e5jJmZmdpvTf0tAlNn\njGNTVlaGmTNnori4GPPmzavrLjUaxrpuXn/9dWRkZCAzMxOnTp2qyy41CnV9XJKTk5Gbm4s33ngD\nu3btQkJCAo4ePWqEnhGRKeHYyXRx7GSaOG4yXRw7ET2edF3fCQkJ6NevHw4cOIDdu3cjNja2Qc61\nqqt/gYGBsLOzQ2hoKNLT09GlSxeTzuwxhL77OTUMt27dQnh4OPz9/U0+uFQby5cvx4EDBxAXF4eS\nkpL6bs4js3PnTpw4cQJhYWG4ePEiYmJikJeXV9/NeiTat2+P4cOHQyaToX379nBwcGg0fQMABwcH\n9OvXD02aNIG7uzusrKxQUFCgdxkGzh4zL7zwgvQfL2fPnkWHDh2k755++mlcu3YN9+7dQ3l5OX74\n4Qd0795d5zKdO3fG999/DwA4evQoevToYeTeNC51fWwEQcBbb72Fjh07YsGCBY1mwGgMdX1ssrOz\nMW3aNAiCAEtLSzRp0kTtYQRpV9fHZdasWUhMTMTWrVsREBCAsWPHSqU+iOjxwbGT6eLYyTRx3GS6\nOHYiejzpur6bNWsmZWo1b94cCoXCZDOy9NHVv/Pnz6N379744osv4O3tjXbt2tV3Ux8ZffdzMn13\n7txBREQE3n33XYwaNaq+m/NIJScnY8OGDQAAa2tryGSyRjVO27ZtGz7//HNs3boVnTp1wvLly+Ho\n6FjfzXokvv76ayxbtgwAkJubi6KiokbTN6AyCy0jIwOCICA3NxelpaXVTpXA1xEeM4MHD8bx48cR\nEhICQRCwZMkS7N27FyUlJQgODkZsbCzGjRsHQRAQGBgIZ2dnrcsAQExMDOLi4vD+++/D3d0dQ4cO\nrefeNWx1fWwOHjyI06dPo7y8HBkZGQCAqKgodO/evT673SDU9bExNzfHs88+i+DgYGlOCHHOCNKN\n9zMiMgbea0wXx06mieMm08X7GdHjpbrre+zYsZgzZw5CQ0Mhl8vxzjvvwMbGpr6bXWPV9c/S0hKr\nVq3C+vXrYW9vj8WLF9d3k2tMtW/a6Lo3NxTV9a+hq65/69evR2FhIdauXYu1a9cCAD7++GM0bdrU\nmM2sler6NmTIEMyePRtjxoyBQqHAnDlzGkS/RI353Kyub6NGjcLs2bMxevRoyGQyLFmypEFlslbX\nv4EDByIzMxOjRo2CIAiIj4+v9sVImVBdMUciIiIiIiIiIiIiIiKix0DjyZUkIiIiIiIiIiIiIiIi\neggMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycEREREREREREREREREQFg4IyIiIiI\niIiIiIiIiIgIAANnRGRkSUlJiI2Nre9mPLSwsDB8//339d0MIiIiauQ4diIiIiLS7saNG/Dy8tL6\nXceOHet02/7+/nW6fiKqXwycERERERERERERERHV0O7du+u7CURUhyzquwFEZHoUCgX+9a9/4dKl\nS7hz5w7at28Pd3d3ODs7Y9y4cQCAyMhI+Pn54fnnn8fMmTPx999/o0OHDsjMzMTRo0f1rv/atWsY\nM2YM7t27h4EDByI6OhoymQw7d+7Ep59+CplMhi5duiAuLg62trY617N8+XIcP34c5ubmePXVVzFt\n2jSsWbMGV69exfXr13Hv3j0EBwdj/PjxSEpKwq5du6RthoeHIz4+Hjk5OZDJZIiOjkafPn2Qm5uL\nOXPm4P79+8jLy4Ovry9mzpyJ8vJyvPfee/j555/Rpk0b3L1795HucyIiImq4OHbi2ImIiIjq3vr1\n67Fnzx6Ym5ujb9++CA0NxYMHD/DOO+/g0qVLaNasGT766CO0aNFCWubevXt47733kJ2djSZNmiA2\nNha9e/fWuQ0vLy94eXnhhx9+AAAsWbIEnTt3RlhYGJo3b45Lly7hgw8+wIgRI/Dbb7/pXP/Ro0ex\nevVqKBQKtG3bFgsXLlRrFxGZNmacEVEVZ86cgaWlJb766iukp6ejrKwMLi4uSElJAQAUFRXhxx9/\nxIABA7B48WL4+Phg79698Pb2Rm5ubrXrv3HjBtasWYNdu3YhKysLhw4dwm+//Yb169dj69at2Lt3\nL6ytrfHhhx/qXMfNmzdx9OhR7NmzB19++SWuXr2KsrIyAMDvv/+OhIQEJCUl4auvvsKFCxcAALm5\nudi1axeioqKwePFiBAYGIikpCevWrUN8fDyKioqwb98++Pn5YceOHdizZw+2b9+OgoICbN26FQCw\nf/9+zJ07F9evX3/Y3UxERESNBMdOHDsRERFR3fruu+9w+PBh6eWea9euISMjAwUFBXjzzTexb98+\ntG7dGqmpqWrLrVq1Cm5ubti/fz9WrFiBDz74oNptOTg4IDk5GZGRkYiJiZE+79ixIw4cOIBOnTrp\nXX9BQQFWrlyJzZs3Izk5Gf369cN//vOfR7cziKjOMeOMiKro2bMnHBwcsG3bNmRnZ+Pq1ato0aIF\nysvLce3aNZw5cwYDBw5EkyZNcPz4cSxduhQAMHjwYDRr1qza9Xt5eaFly5YAAB8fH5w+fRo5OTkY\nOHCg9PZNcHAwZs+erXMdzs7OsLKyQkhICAYOHIgZM2bAysoKAODn5ye9be3l5YVTp06hRYsW6Ny5\nMywsKm97J06cQHZ2NlavXg2g8k3xP//8E+PGjcOpU6ewefNmXLp0CXK5HKWlpTh9+jSCg4MBAE89\n9RS6d+9em11LREREjRDHThw7ERERUd06deoUfH190bRpUwBAYGAgkpOT4eTkhOeffx4A8Mwzz1TJ\ncs/MzJSCVh07dsRXX31V7bZee+01AJXjotjYWBQUFACAtJ3q1v/tt9/i1q1bCA8PBwAolUo0b968\nNt0monrCwBkRVXHo0CGsXr0a4eHhGDlyJO7evQtBEDB8+HCkpqbizJkzmDBhAgDA3NwcgiAYtH7x\nAQwACIIACwsLKJVKtd8IggCFQqF3HYmJiTh9+jSOHj2KkJAQ6c1mc3Nz6XdKpVL6WxxciZ9/9tln\ncHBwAFD5RnXr1q2xbNky/Pnnn/Dz88OgQYNw4sQJCIIAmUym1kbVPhAREdHjjWMnjp2IiIiobmmO\nfYDKF3lUxxgymazKOEtzDHLlyhW0b98eZma6C7GpLqNrbKRv/RUVFXjhhRewfv16AEBZWRmKi4t1\nbo+ITA9LNRJRFSdPnoSPjw8CAwPRunVrZGZmoqKiAsOGDUNqaiquXbuGHj16AAD69OmDvXv3AqhM\nmy8sLKx2/eLvysrKkJKSgj59+uDFF1/E4cOHce/ePQDAjh078NJLL+lcxy+//ILXX38dPXv2RExM\nDJ5++mn88ccfAICDBw+ivLwcf//9N7799lv069evyvK9evXC9u3bAQCXL1/G8OHDUVpaiuPHj2Pc\nuHHw8fHBrVu3kJubC6VSid69e2Pfvn1QKpW4efMmfvzxR8N2KhERETVaHDtx7ERERER1q1evXkhJ\nScGDBw+gUCiwc+dO9OrVq9rlevToIZVvvHLlCiZMmACZTKZ3GbHcdnp6Op5++mm92WLa1v/888/j\n7Nmz0lhr7dq1WLFiRY36SUSmga/9EVEVQUFBmDlzJtLS0tCkSRN069YNN27cgKurK1q0aIFu3bpJ\ng4w5c+YgJiYGO3bswLPPPlujckPu7u6YOHEiCgsL4efnJz2cmTRpEsLCwiCXy9GlSxfMnz9f5zo6\nd+6Mbt26wc/PD9bW1ujUqRP69++PCxcuwMrKCqGhoSgqKsKkSZPwzDPP4KefflJbfu7cuYiPj8ew\nYcMAACtWrICdnR0mTZqEWbNmoVmzZmjVqhWee+453LhxA6Ghobh06RJ8fHzQpk0bdOjQoba7l4iI\niBoZjp04diIiIqK6NXDgQFy8eBGBgYFQKBR4+eWXMXDgQGzZskXvcpGRkZg7dy6GDx8OCwsLrFix\notrA2Y8//oivv/4a1tbWWLZsmcHrd3JywpIlSzBjxgwolUo4Ozvj3//+t8F9JqL6IxMMrRNCRKRi\ny5Yt6NOnD5555hlcuHABcXFxSEpKqrf2rFmzBgAwffr0emsDERERkS4cOxERERGZLi8vL2zZsgVt\n27at76YQUT1ixhkRPZQnn3wSUVFRMDMzg5WVFRYuXIjU1FRs2LBB6+93795t0PrDwsK0ljAKCQnB\n6NGja9VmIiIiovrCsRMRERFR/dI3XiIiAphxRkRERERERERERERERAQAMKvvBhARERERERERERER\nERGZAgbOiIiIiIiIiIiIiIiIiMDAGREREREREREREREREREABs6IiIiIiIiIiIiIiIiIADBwRkRE\nRERERERERERERAQA+D9nDXmK/svmdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, axarr = plt.subplots(2, 3, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"pca against features\")\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"ohlc_price\", irow, icol, df)\n", + " irow+=1\n", + " icol=0\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df, yval=df['period_return'].shift(periods=1).fillna(method=\"bfill\"), title=\"avg bo spread v future period return\")\n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df, xval=df['ohlc_price'].shift(periods=1).fillna(method=\"bfill\"), title=\"ohlc 15 min future v pca\")\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAN8CAYAAABGOcflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FFX/x/H37maTkEI6JBB6iXRCC4ggoohIEbBQQnlQ\n8BFUpEgVEBBBihUeC0VEwJ+CgoCIIk2kg3QILfRQAiSQ3vf3x8pKSDEQyQb9vM7hHHb2zr3fuTNz\nZ+7eOxODxWKxICIiIiIiInKPGe0dgIiIiIiIiPw7qAMqIiIiIiIiBUIdUBERERERESkQ6oCKiIiI\niIhIgVAHVERERERERAqEOqAiIiIiIiJSIBzsHYCIiIiIiMj9Lp2F9g7hL5kItXcIGgEVERERERGR\ngqEOqIiIiIiIiBQITcEVERERERHJp4yMdHuH8JdMhWD4sRCEICIiIiIiIv8G6oCKiIiIiIhIgVAH\nVERERERERAqEngEVERERERHJJ4slzd4h3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJP\nFkvh/zMshYFGQEVERERERKRAqAMqIiIiIiIiBUJTcEVERERERPIpQ2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSTRVNw80QjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmkKbh5\noxFQERERERERKRDqgIqIiIiIiEiBUAdURERERERECoQ6oCIi/1DNmzcnKCjI9q9KlSrUq1eP3r17\nc+TIEXuH948VFBTEsmXL8pTWYrHw/fffc+3aNQC2b99OUFAQly5dupch5ioiIoJnnnmG6tWr89pr\nr2WbZsKECQQHB1O3bl2uXr2a7zITExNZuHBhvvMREbEnS0Zaof9XGKgDKiLyD9anTx82bdrEpk2b\n2LBhA/PmzSMuLo5evXoRFxdn7/D+9Xbv3s2wYcNITEwEIDg4mE2bNlGsWDG7xbRw4UIuXrzIsmXL\nGDNmTJbvT5w4wfz58xk2bBjLli3D19c332V+8cUXzJkzJ9/5iIhI4acOqIjIP5iLiwt+fn74+flR\nvHhxqlWrxrBhw4iKimLbtm32Du9fz2KxZPrs6OiIn58fRqP9Ls8xMTGUK1eOChUq4OPjk+X7Gzdu\nANC4cWMCAwP/ljJvrwcREfnnUgdURORfxmQyAdbODlg7FCNGjCAkJIQGDRrQp08fTp48aUufnJzM\npEmTeOSRR6hevToNGzZkxIgRtlG7JUuW0LJlS8aOHUvdunUZOnQoCQkJjBgxggcffJAaNWrw3HPP\nsXXrVlueiYmJTJs2jebNm1OjRg2effbZTN8PHz6ckSNHMmHCBEJCQggODmbw4MG5jtpevXqVwYMH\n06BBA+rXr0///v2JjIy0ff/tt9/Spk0batasSYsWLViwYIHtu+y2IbtlALt27aJz587UrFmTRx99\nlHfffZfk5ORsY8qt7s6fP09oaCgAjz76KNOnT88yBfde1NOFCxcYOHAgDRs2JDg4mH79+nHu3DkA\nunfvzuLFi9m5cydBQUFs374907pLliyha9euADz22GMMHz4cgGPHjvHCCy9Qq1YtmjZtypgxY4iJ\nibGtd/78efr3709ISAjVqlWjefPmzJ4925bnhx9+SEREhK3M6dOn06JFi0xl37rs/PnzBAUF8emn\nn9KoUSNatWpFSkoKFy9epH///tSpU4cHH3yQgQMHcvnyZVsee/fupXPnztSuXZuQkBCGDBnC9evX\nc6wrEZE7Ykkr/P8KAXVARUT+Rc6dO8e7776Ln58fderUISMjgxdffJHIyEhmz57NV199RYkSJeja\ntSvR0dEATJ48mfXr1zN16lR++uknxowZw8qVK/nmm29s+Z4+fZq4uDi+//57/vvf//LRRx9x4sQJ\n5syZw48//kiVKlV45ZVXSEhIAGDgwIGsWrWKcePG8f3331OrVi169+7Nvn37bHkuX76c9PR0vv76\naz744APWrVvHl19+me12paWl8fzzz3P+/HlmzpzJggULuHr1Kv379wdg7ty5vPXWW/Ts2ZPly5fz\nwgsvMGXKFD7//PMctyG7ZWFhYbzwwgu0aNGCFStWMGHCBNavX8/YsWOzjSu3ugsICODjjz8GYPHi\nxTz//PNZ1v+76ykuLo4uXbpw48YN5syZw/z584mNjaVbt27ExsYyffp02rRpY5sKHBwcnGn9J598\nMlPMb7zxBpcvX6Z79+5UrlyZpUuX2vb9K6+8Yluvb9++pKSk8OWXX/Ljjz/y1FNPMXXqVMLCwnjy\nySfp06cP/v7+2ZaZm5UrV7JgwQKmTZtGWloa3bt3x8nJia+//po5c+aQmppKz549SUlJIT09nb59\n+9KoUSN++OEHZs6cyYEDB5g8eXKeyxMRkfxzsHcAIiJy73z88cfMmjULgNTUVNLS0qhatSozZszA\nzc2NLVu2cODAAXbs2IGbmxsA48aNY9u2bSxatIj//ve/1KpVi9atW1O3bl0AAgMD+eqrrzh27Fim\nsvr160epUqUAOHPmDK6urgQGBuLu7s6wYcNo2bIlJpOJEydOsH79eubMmcNDDz0EwKhRo9i/fz9z\n5szho48+AsDT05NRo0ZhMpkoV64cDz74IHv37s12O7du3crRo0dZs2aNLYYJEyawZMkSkpKSmD17\nNj179uTZZ58FoGzZspw7d47Zs2fTq1evbLfhZifv1mWvv/46Dz/8MC+88AIAZcqUYdy4cXTt2pWB\nAwdmeXYzt7ozmUx4eHgA4O3tjaura6Z170U9LVu2jJiYGN577z08PT0B+PDDD2nevDnLly8nNDQU\nZ2dnzGYzfn5+WdZ3dnbOFLO7uzuzZ88mMDCQYcOG2dK9//77NG3alD179lClShU6dOhA69atKV68\nOAAvv/wyn376KUePHqVKlSq4uLhgMpmyLTM3oaGhVKhQAbB2iBMTE3nnnXdso/zvvfceISEhrF69\nmoceeojo6Gh8fX0pWbIkgYGB/O9//yM1NfWOyhQRkfxRB1RE5B8sNDTUNmXSZDLh6elp62gCHD58\nmPT0dJo0aZJpveTkZMLDwwF46qmn2LRpE1OmTOH06dOcOHGCs2fPZnr+z2AwZPr8wgsv0K9fPxo1\nakRwcDBNmjShXbt2ODk52Tqut4901a1blw0bNtg+ly5d2taRAHB3d880nfJWx44dw9vb29ZRBChf\nvjyvv/46165d4+rVq1nKq1+/PrNnz7a9gfb2bchuWVhYGGfOnMmU183nF8PDw7N0QPNSdzm5F/V0\n/PhxypUrZ+t8grUjWaFChSw/KORVWFgYYWFh2Y5choeHExwcTLdu3fjxxx/Zv38/Z86cISwsjIyM\nDDIyMu6qzJtu3d+HDx8mKiqKevXqZUqTmJhIeHg4bdq0oVevXowfP57p06fTuHFjHnnkEVq2bJmv\nGEREbrIUkimuhZ06oCIi/2AeHh6UKVMmx+/NZjOenp4sWrQoy3cuLi4AvPHGG6xdu5YOHTrw+OOP\nM3DgQMaPH58prdFotD1TClCvXj1+/fVX2xt4Fy5cyCeffMKiRYtwdnbONpaMjAwcHP68LN2a3005\nvazm1vVu5+TklO3y9PT0TOvevg3ZLTObzbRv354+ffpkyS+70bu81F1O7kU95Zan2WzOU1y3M5vN\nNG7cmFGjRmX5ztvbm/j4eEJDQ0lPT6dly5aEhIRQq1YtHnnkkTsqJy0t643drfvWbDZTsWJFZsyY\nkSWdu7s7AMOGDSM0NNR2bI4YMYJFixblOGVZRET+fnoGVETkX6xSpUq2l7CUKVOGMmXKEBgYyAcf\nfMDOnTuJjo7m22+/Zfz48QwbNoz27dtTrlw5zp07l+ubS2fMmMHu3btp0aIF48aNY/Xq1ZjNZjZs\n2EDFihUB658gudXu3btt392pChUqEBUVRUREhG1ZeHg4DRs25Pr16/j7+2cp7/fff8fPz882pTQv\nKlasSHh4uK2uypQpQ1RUFJMnTyY+Pj5T2rzUncFgyLUs+Pvr6dSpU5levBMVFcWpU6dsU1nv1M06\nKVGihK1OjEYjEydO5OLFi2zatImwsDDmz5/PK6+8QsuWLUlISCAjIyPHejCbzVnq88yZM7nGUalS\nJc6fP4+np6ctDh8fHyZNmsSxY8c4e/Ysb775Jn5+foSGhvLJJ58wefJktm/fbhsFFxGRe08dUBGR\nf7FGjRpRu3ZtBgwYwK5duzh16hSjRo1i3bp1VK5cGTc3N9zc3Fi7di1nz57l8OHDDB48mIsXL5KS\nkpJjvhEREYwbN47t27cTERHB8uXLiY2NpVatWpQuXZrWrVszduxYNm3aRHh4OJMmTeLQoUP06NHj\nrrbjwQcfpGrVqgwbNoyDBw9y5MgRRo8eTYUKFQgMDKRv3758+eWXLF68mDNnzrBo0SIWLFjAf/7z\nn1w7gbfr06cP+/fvZ9KkSYSHh7Njxw6GDRtGbGxslhHQvNTdzec+w8LCiI2NzbT+vaindu3a4e3t\nzaBBgzh06BCHDh1i0KBBFC1alNatW99Vnt26dSMmJobhw4dz9OhRDhw4wKBBgzh9+jRly5YlICAA\ngBUrVhAREcHWrVsZMGAAQKZ6uHHjBidPniQ5OZnatWtz7do1vvjiC86fP89XX33Fxo0bc42jbdu2\neHl5MWDAAA4cOMCxY8cYPHgw+/bto1KlSnh5ebFq1SrGjh1LeHg44eHhrFq1itKlS+Pl5XVX2y4i\nkklGauH/VwioAyoi8i9mMBj43//+R8WKFenXrx8dOnTg9OnTzJkzh4oVK2I2m/nggw84dOgQbdq0\noV+/fnh4ePD8889z8ODBHPMdNWoUDRs2ZPDgwbRs2ZIvvviCSZMm0aBBAwDeeustmjRpwpAhQ+jY\nsSP79u1jzpw5d/QG1FsZjUY++eQTvLy86N69Oz179iQgIMD2op7OnTszcOBAPvvsM1q3bs3cuXMZ\nPnw4vXv3vqNygoKC+Oyzz9i9ezft27dnwIAB1K9fP9tpn3mpu4oVK9KyZUsGDhxoi/VWf3c9OTk5\nMWfOHBwdHenWrRs9e/bE3d2dhQsXUrRo0bvK08/Pj7lz53L16lWee+45evfuTUBAAHPnzsXR0ZGa\nNWsydOhQZs2axZNPPsn48eNp164dISEhHDhwAICWLVtSsmRJ2rVrx4YNG2jYsCGvvvoqs2bNonXr\n1mzdutX2RuOcODs7M3fuXJydnenZsyddunQhLS2NefPm4ePjg7u7O7NmzeLcuXM899xzPPPMM6Sk\npDBz5ky7/t1VEZF/G4NFf/1ZREREREQkX2Jjx9g7hL/k7p639xDcS3oJkYiIiIiISD7pLbh5ozkn\nIiIiIiIiUiDUARUREREREZECoQ6oiIiIiIiIFAg9AyoiIiIiIpJfGXoGNC80AioiIiIiIiIFQh1Q\nERERERERKRCagisiIiIiIpJfmoKbJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS+LpuDm\nhUZARUREREREpECoAyoiIiIiIiIFQlNwRURERERE8smgt+DmiUZARUREREREpECoAyoiIiIiIiIF\nQlNwRURERERE8ktTcPNEI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5pSm4eaIRUBERERER\nESkQ6oCKiIiIiIhIgVAHVERERERERAqEngEVERERERHJJ4NFz4DmhUZARUREREREpECoAyoiIiIi\nIiIFQlNwRURERERE8isj3d4R3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJPhgy9BTcv\nNAIqIiIiIiIiBUIdUBERERERESkQmoIrIiIiIiKSX3oLbp5oBFREREREREQKhDqgIiIiIiIiUiA0\nBVdERERERCS/9BbcPNEIqIiIiIiIiBQIdUBFRERERESkQGgKrty1K1di7R0Cfn7udo+jMMRQWOIo\nDDEUljgKQwyFJY7CEgPYv91SXWSOQzEUnjgKQwyFJY7CEENhiaMwxHAzDvnnUAdUREREREQknwz6\nMyx5oim4IiIiIiIiUiDUARUREREREZECoSm4IiIiIiIi+aUpuHmiEVAREREREZF/uYyMDMaMGUOn\nTp3o3r07Z86cyfT98uXL6dChA08//TRfffXVXZejEVAREREREZF/uTVr1pCSksI333zD3r17eeed\nd/jkk09s30+ZMoUffvgBFxcXWrduTevWrfHw8LjjctQBFRERERERyaf7/S24v//+O02aNAGgdu3a\nHDx4MNP3QUFBxMbG4uDggMViwWAw3FU56oCKiIiIiIj8y8XFxeHm5mb7bDKZSEtLw8HB2mWsVKkS\nTz/9NEWKFKFFixYULVr0rsrRM6AiIiIiIiL/cm5ubsTHx9s+Z2Rk2DqfR44cYcOGDaxdu5Z169YR\nFRXFqlWr7qocdUBFRERERETyKyO98P/LRZ06ddi4cSMAe/fupXLlyrbv3N3dcXZ2xsnJCZPJhLe3\nNzExMXdVTZqCKyIiIiIi8i/XokULNm/eTOfOnbFYLEycOJEVK1aQkJBAp06d6NSpE127dsVsNlO6\ndGk6dOhwV+WoAyoiIiIiIvIvZzQaGT9+fKZlFSpUsP2/S5cudOnSJd/lqAMqIiIiIiKST/f7W3AL\nip4BFRERERERkQKhEdB/mMGDB9O2bVuaNWtGeHg4kydPxtfXlzNnzpCRkcGAAQMICQnhp59+YuHC\nhaSlpWEwGJgxYwbHjx9n2rRpmM1mnnvuOdq3b2/vzRERERERkX8QdUD/YZ599ln+7//+j2bNmvHt\nt98SHBxMXFwcEydOJDo6mm7durFy5UpOnz7NzJkzKVKkCGPGjGHTpk0UL16c5ORkFi9ebO/NEBER\nERG5v2gKbp6oA/oPExISwoQJE4iKimLz5s0EBweze/du9u/fD0BaWhpRUVH4+PgwbNgwXF1dOXny\nJLVr1wagXLly9gxfRERERET+wdQB/YcxGAy0a9eOCRMm0LhxYwICAggICOCll14iKSmJTz75BLPZ\nzEcffcSGDRsA6NWrFxaLBbC+/UpEREREROReUAf0H6hjx440a9aMZcuWUapUKUaNGkW3bt2Ii4uj\na9euuLm5UadOHTp16oSDgwNFixYlMjKSwMBAe4cuIiIiIiL/YOqA/gOlp6dTt25d29/tmTJlSpY0\nH374YbbrhoSE3NPYRERERET+ifRnWPJG8y3/YVavXk3v3r3p37+/vUMRERERERHJRCOg/zCPP/44\njz/+uL3DEBERERERyUIdUBERERERkfzSFNw80RRcERERERERKRDqgIqIiIiIiEiB0BRcERERERGR\nfDJkZNg7hPuCRkBFRERERESkQKgDKiIiIiIiIgVCU3BFRERERETyS2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSXpuDmicFisVjsHYSIiIiIiMj9LGVbbXuH8JccG+61dwgaAZW7d+VK\nrL1DwM/PnXQW2jUGE6H81KCzXWMAeGLH1/wS8pxdY2ixfZHdY7gZx9qGz9o1hke3LSbp4CN2jQHA\nufp6Eg8/ZtcYilRdw7I63ewaw1O7FwDw6QP/tWscLx35zO7HhXP19QCFIg57txctti/ih7qhdo0B\noM3vCwvF/vi8ah+7xgDw/OFZhaIu7H0NAet1pDCcI/ZuN8Hadso/h54BFRERERERkQKhEVARERER\nEZF8Mlgy7B3CfUEjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmlP8OSJxoBFRERERERkQKh\nDqiIiIiIiIgUCE3BFRERERERya8MvQU3LzQCKiIiIiIiIgVCHVAREREREREpEJqCK/9qFouFN0Ys\np2IlP55/4cG/LV+/xsFU7tcZo6OZ2BNnOTDhM9LjE+84nXMxHxp+/habQ4eReiMWAO+6VQl6rTtG\nk5GUG3EceX8escfPAuDbOJiKfbtidDQTd+IMh97+NNtyc0xnNBA0oCc+IbUwmEycWbiC80t/AaBo\nlQoEDeyJqYgzGI2cnr+MSz/9liXvh76fQVpc4j2JwaWUP1VH9cXs4U56QhIHx80g4cwFAMp0bUOJ\nto9gSbe+ga5IyeIkRlwGIPCZJyjZ8XGwWEiMuEzYpE9JjY7J+w4FigT6EzS0D46eRTGaHbiwYi1n\nv/oBAJ8H61ChX1eMZuu2hL39Sa55bfw9iY8WxJCSZqFyGTNj+3ni5vLn74ErNiQwf0Wc7XNsgoXI\na+msnlkcB5OBCTOvc/R0KkWcjDzVvAhdn3S7o22xxbErkekLbpCSaqFSGTNjX/HOHMf6eOYvj7V9\njkvIIPJaOj/PLoGDCd7+LJqjp1Ip4mzgqeaudGntnueyiz9UmyqvPofJbObG8bPsHT+btGyOk9zS\nlX32Mcq0b4bJ2cz1sNPsHTeLjNQ027qln2pKwCP12D7gvTzFVPrh6oQM6oDJ0YFrRyPY8MaXpMYn\n5Zj+kUk9iTp+gX2fW49PJw8XmrwZim+VQFITUji6dAsHF6zPc50UmuPCTnG4VShF0ODncXBzgYwM\nDr8zk9gjp+4odrOnO9XffAXnAD9rHpNmcuPAMQAq9+9OsUcbkRZjjT3+j7bjdsUeqs0Dr3TCaHYg\n5sQ59o+fle2xmZd0dacOIPlKNAenzAPAp15VqrzWBaODifTkVA5Nncf1Qydz3abCclwENq1BvYEd\nMTk6EHXsPJtGzcv1/Gjydi+iT0RwcO5q27Ium94jIfK67fOBz3/m5A/b8xxDQdZFdu16ekJi3tIY\njVR+rSfef1zHzn61nIilv+BaNpBq41+zrW8wGnGrWJr9w6fiUqoExVs0tn1n9iwK3Lvrumu5ktS4\nJRaMRtwrlmbfsGm4lA7A/5ZYuv/6DmZXZz6vNyBLufZuNwsdTcHNE42Ayr9WePgVnu85n59WHfpb\n8zV7ulN99EvsGf4+vz07iISISIJe7nLH6Uo82YSQmWNxLuZtW+bgWoTgyYM4On0hm0OHcXjyHGpP\nHIDBbP0tqdqofuwf8S5bnhtAQkQklfp1zbbcnNIFdmiBSyl/tnYdzPZeIyjd+UmKVq0AQM13BhM+\nazHbug9lz8CJBL3WA5dS/rZ8PWoGAeBUzOeexVB9XH/Of7earZ0HET5rEbXeGQyAd/0alGjXnB29\nR7Gt21AAqozqB4B7UHlKh7ZlV59RbA8dTMK5i1R4sXOe9uWtqo5+mcg1m9nRYwg7e79ByfYt8Kpb\nHbNnUaqO6seBEdPY1uk1Ei9cpuLLoTnmE3UjnTEzrvPuEG+WTy9OyeIOfLggc2e4bTMXFr1bjEXv\nFmPhZD98PY0M7+2Bj6eJqV/cwMXZyNIPirFgki+bdyfz666cL/a5xfHm9CimDfVh2f8CCPR34MP5\n1zOlafuIK4ve92fR+/4snFocX08Tw/t4WeP4/DouzkaWfOTP/HeKs2l3Eht3Zr0pyo6jpzvBY/uw\n8/UPWdtxCAkRkVR9tdMdpQtoXo/ynVuwpe8k1j0zHJOTmQqhrQAwF3Wl5she1BjaAwyGPMXk7OXG\nIxN7srr/Z3zd6k1izl2l4eAO2ab1LO9P2y8GUv6JepmWPzjiOVITkvim9ViWdn6H0k2qUbpZjTyV\nX5iOC3vEYXRypM5HozizYDnbewzj5OffUWNc/zuO/4EhvYnee4StnQdx4M3p1Jw4CKOTI2Btow6M\n+oBt3YeyrftQDoz6IMv6jp7u1HrzRX4f8gEbnh5CwvlIHsjh2PyrdBV6tME7OMj22eBgos6kV9g/\nYTYbu4zk+JzvqT2+b67bU1iOC2cvN5q8/R/WDfiE71qPJvbcVeoN6phtWo/y/jzx+WDKPVE30/Ki\nZYuTEpPAso7jbf/upPNZ0HXxV+16bm1/yQ6PUaSUP9tDB7Hz+eGU6tSaolUrEn/6PDt6DLH9u7Zj\nH5d+3sSVDTs4M/972/Ld/d4kI8ka2726rsefirCdC9u6DyVq+z4u/ryJyA07OP3lMttygNTEFH4Z\nOCtLufZuN+X+pQ7ov9jRo0fZuXMnAM2bNyc5OdnOERWs/1u4iw4da/NEq2p/a76+ITW5cTichHOX\nADj33S8EPPHQHaVz8vWi2MP12TXwnUzruJQOIC0ukaidBwHrL/hp8Yl41agMwI2wP/M7v2Q1/k80\nyVKuT0itHNMVe7gBESs2YEnPIC02nku/bCHgiaYYHc2cnL2YqJ0HAEiOjCLlRixOxXwAcPT2oMqQ\nFwDISEq5JzE4+XnhWrYEl37ZAsC1rXsxOTvhHlSO5GvXOTJ5VubRY38/AGKPnmTrM/1Jj0/A6GjG\nyc/bNppscHCg0ms9qT9vMg3mT6XK6JcxuRTJEi/AheVrufTzJgDS4xNIOH8JZ39fvENqEhMWTuIf\n2xKxZDX+LbNu801b9yVTvaKZMiWsPxo819KFH39LxGKxZJt+7vdxeHuYePZxVwAOh6fS5uEimEwG\nzGYDTeo6s2Zr3jp+meLYm0S1So6UKWEG4Nkn3Fi1MSHHOL5YGoO3h5FnWlpHDMLCU2jdzCVTHL9s\nTchT2cUa1SD60Cniz1lHqE8tXktgq6wzEHJLV6r1Q5yYv4rUmHiwWNj39lzOrbTun5ItQki+ep1D\n7/9fnuujVOOqRB44w40zkQAc/vpXKrYNyTZt9dBmHFmyhZM/7cq03K9qaY4v344lw0JGajpnfj1I\nhZZ18lR+oTku7BSHT0gtEiIuc3XLHgCubNzF/jfeB6wdt8oDehIy7x0aLphCtdH9MLlmPU8NJiN+\nD9UhYtkaAOKOnyHh3EV8G9XGYHbAvXJZyoS2peGCKdR8ZzDOxX2y5OHXqAbXD5+0HXNnvl1DyVaN\n7zidT72q+D1YkzPfrbUts6Sls6bVq8QcPQOAS8lipNyIIzeF5bgo0bgaVw+eJuaP8+PI1xuo0Cb7\n86NKl0c4vnQzp376PdPy4sEVsKRn0GruYNovfZPafdtgMObtByIo+Lr4q3Y9t7bf7+EQLv6w3nYd\nu7xmc5ZroWetByj2SEOOTJ6ZpeyK/Xtwbete4N5d1zPFUvsBijVvSNjkrJ1MgHMbD3Lut6w/1tu7\n3ZT7lzqR54WLAAAgAElEQVSg/2KrV6/mxIkT9g7DbkaNaUW79jX/9nydi/uQFHnN9jkp8hpmN5cs\nN0y5pUu+Gs3eYe8Rfyoi0zrxZy9icnHCJ8Qad9Eq5XErH4iTrycAyZf/zC85l3JzSudc3IfkyMzf\nORXzJiMllQsr/pwSU7L9o5iKOHPj4DEwGqg+vj/Hps8HwJKWlm3e+Y3BubgvyVei4ZabjaQrUTgX\n8yb+5Dmi94QB2EaDI9dttaWzpKfj27Q+jZd/imftqlxYad2Wsj3aY0nPYGfPYezoPoSUK1E5jl5e\nXLmBjOQUALwb1sajRhDXtu3FuZgvSZevZorXwc0l2zwALl1Np7ivyfa5uI+JuAQL8YlZb6KiY9L5\ncnkcQ3oVtS2rUcmRH35NJDXNQkJiBmu2JXIl+s6n/Fy+mo6/zx3EsSyWIS94/RlHZSdWbkiwxbF2\nayJX8xhHkeI+JF6+9diPwuzugsNtx0lu6dzKBODkXZSGM4bS7JuJPPBSR1JjrR3g09+t4+jMpaT/\nsb/ywjXAi7hLUbbPcZeicXIvgtnVOUvaTW99zfHlWUduLu8/RaV2IRgdjDi4OFH+8WBc/DzyVH5h\nOS7sFYdL6QBSrl2n6hsvEfLFJOpMH4XBZI2jXM/2WNLT2d5zONu6DSX5anT2o0Ae7mAwkHr9z2nj\nyZFROBXzwcnXi+jfD3Li46/Y1m0oNw4eo9bUoVnycC7uQ9Itx0FSZBRmt6zHZm7pnHw9qfZ6d/aM\n+hjSM2+7JS0dR++iPLZqOlVe60L4lz/kWi+F5bhw8/ci/lK07XP85Wgc3V2yPT+2vf1/hK/YlmW5\nwWQiYuthfn7xQ37sMYWSjatRJbR5nmMo6LrIrl2/9QfKnNp+k0sRnIv5kHT59utY5h88KvbvwcnP\n/i/LtF7XcoH4Na1P+MxvrOveo+v6rSq/2p0Tn36dZWqva7lAAHZ+tDy7KrJ7u1kYGTLSC/2/wkDP\ngN5nlixZwvr160lKSuLKlSv06NGDtWvXcvz4cYYOHUpCQgLz5s3D0dGRsmXLMn78eFasWMGvv/5K\nUlISZ8+epU+fPjRu3JilS5diNpupVs06Ajh27FjOnz8PwIwZM/DwuH8bAHsyGHP4Xee2G5G8psv0\nVXwiu1+fRuW+nQnqH0r0njCu7TqU6bm321luz8+QfbmW9AzI7tfo255nKNvjKUp3epLdAyaSkZxK\npVdCub4njKgdB+5tDDlMpbTcEp/Z051ak6zTcsM/yTz6dXXjTn7buJMSTz1K8Aej2PLMq/g0rovZ\n3QXvBtYOvdHsQEr0jRy3A8D/yYep1L8HB0a+S8q169nHm4scfqwnu8Phu18SeKS+M4HF/2yqB/+n\nKO/Ni6HT61fw8zLSqJYTe4/kvaN1U0YOcZiyi2N1PM0aFKHkLXEM6uXJ+19cp/OgS/h6m2hY25l9\nR/I4iyKHOstynOSSzuBgwi+kOjsGvU96cgp1xr9ElVee5eC0BXmL4TY5nY+WO3ieZ+vkb2k09Bme\nWTKKhCs3OL8ljOLBFfK0bmE5LuwVh9HBhO+DwezqN46YQyfwa1qP4PdH8NtT/fBtXBcHdxd8/jhP\nDWYHUqKynqe57cOki1fYc8uMkjMLVlD++aez5pFTO3N7+53T1G4D1Jn0KofenU/y1evZJkmJimFN\nq1cp+kBZGn4yks0nx2SfF4XnuMi2QO7s/Dj27Z/vDEhJTePgvF+o2q05h+evzWWtW8oqBHWRaXtz\nap8yMrId2b31GPKoURmzh7ttVs2tSnVqzflvfyI9PucZJX/ndd2jRmXMntnHUrrzkwCkxGU/Vdne\n7abcv9QBvQ/Fx8fz+eefs3LlSr744gsWLVrE9u3b+eKLLwgPD2fp0qW4ubkxceJEvvnmG1xcXIiL\ni2POnDmcPn2al156iY4dO9KhQwd8fX2pWdN6UX/66aepV68ew4cPZ/PmzTz55JN23tL7R8UXn6VY\nU+vzLg6uRYg9cc72nZOfNyk34khPynxznnjpKh7VKv5lukwMBtITk9jRd7yt3MCnqtuexXT8YyT0\nZn6pN+LIuC2/pMtX8aheMdt0SZeu4uiTOY+kSOuvmwazA9XHvIxruZLs6D2KpItXAAh8+nEMJhNl\ne7S3br+bKw3nT2Fb96F/awxJlzMvB3C+JT63iqWpPXUokb/uxKtOVep/PgmA+FPnOb/kZ27sOwLA\nhRXreWDoizi4u2IwGTn2/lzbVCdTEWeMjmbcHyhPlZF/Ppu1o8cQa33370GxRxqy59W3iDt+GoDk\ny1fxqFYpy7aYPbJ/uYW/r4kDx1NtnyOvpVPUzYCLc9YL+c+bExn2QuYfguITMhjYvSge7tb0ny+N\npXTAnTflAb4mDh77c79Y4zBSJJs4Vm9OYOgLmes+PiGDAT088HC3jkjMXRJDqVzieOClp/F/2Dqt\nysG1CDG3nCPOxbxyOEeu4VW9Qrbpkq5Ec2n9LttLX87/uJmgPu3zuvkA1Hu1LWWb1wLA0c2Za8f+\nnHHgWtyTpOvxpCXm/QbV0c2ZbdO+I/mG9caxdu+WtimLf6WwHBcFHUfD+VMAMHu4EX86gphD1lk5\nVzbuourIl3ApWRyDycjR97645Tx1wujoSNEHylP1jZdseW3/z3AAHNxdSYuNB8CpmBfJkddwq1ga\n90pluLjq1henWW/MK7/0NMVzaL+dc2y/r+F5Sxt2M51buZK4lPCj6sBu1vJ9PDCYjBidzBx+fyG+\n9atxab11CmLMkdPEHjuDe8VSOdaPPY+L4FfaUbp5bQAcXZ2JOv7n+eFS3JPkG3d2flRo25Coo+eI\n/uM8MxisI8J5VdB14eT754yP7K5lObX9GUnJJF2+mmX9W0chiz/WmEurfs3aqzYa8X+iCYkXI/Fr\n2gC4t9d1AP8WD3Lxx43ZxGKg2CNZp9MWpnZT7l+agnsfqlKlCgDu7u5UqFABg8GAh4cHiYmJVKxY\nETc3641v/fr1OX78OAAPPPAAAAEBAaSkZN8wVK9eHQBfX1+Sku78JQX/ZidmLmZLt+Fs6Tacbc+P\nxrN6RVunsHTHx4jcuCvLOte2789TukwsFuq+P5yiVcoDEBt+loSzF9n07CAAPKpXsuUX2LEFkb/t\nzKbcfTmmu7JxFyXbNsdgMuLg5kLxFg9y5dcdANSaOAiTaxF29B5t63wCrH+kJ+uadmPdw93+CNHC\n/pHv/e0xJEdGkRhxmeItrM8A+oTUwpKRQdyJsxQJLE7dj9/k5OffcewD69smb77MIWLJz1R/a4B1\neh7g3/Ih4k6eJS0mjqhtewl8phUGBwcwGHhgxH+p0K8rsUdOZnpRBEDlQb3wql2Fnb2G2zqft25L\nkT+2pWSHx7mSzTbf1Ki2E/uPpXDmgnXUevHqBJrVzzpdKSYug7OX0qkV5Jhp+eLVCfzva+uLN65d\nT2fJmgRaNcn+udXcNKrt/Ecc1hu6b3+Oo1mDHOK4mEatB5wyx/FzHB//3y1x/BJPqyY5Tz0+8ul3\nbOjyBhu6vMHGnmPxqlER11LFASj79KNc+nV3lnUitx7IMd2FNTso0SIEo5P1GVb/ZnWJPpz720Rv\nt2v6Cr7tMIFvO0xgSafJFK9VHo8yxQCo2rkpp9ftu6P8qnZ+mPr92wFQxMedKs8+xPEfduRp3cJz\nXBRsHDdfdLL9PyMoElAM9wfKAeBZu4r1rdUXIrm2bR+lnn0Cg4MJDAaqjnyJiv26EnPkZKaXqFjS\nM7i6ZQ+BHR4DrD9KuZYLJPr3Q1gyLAQN6mV9Oy7WH87iTlifxTz26Xf81nUkv3Udyeb/vJnpmCvz\nzKNc/vX3LHFf2XYg23TXD5xgbev+tvzOfreWi6u3sf+t2VjSM6g55kW8almf2XcrXxLXsiW4fjC8\n0OyPW+2Zsdz2sqAVXSZRrGZ5iv5xfjzQ6WHOrNubp3xu8qpUkjqvPoXBaMDkZKZK1+acXPUX17xb\nFHRd/FW7nlvbf2XjTgLaPnLLdawxVzb+ub5ncFWidh3MUqZbhdIkX4lme5dBtmvPvbyuA3gFVyVq\nV9YZTG4VSpMWE59leWFqN+X+pRHQ+1BOU38MBgPh4eEkJCTg4uLCjh07KFeuXI7rGAwGMm6ZJpHj\nlCK5IynRMRx461NqvzMQo4MDCRGXOTD2f4D1mc3qb7zIlm7Dc02Xm32jp1N9ZB8MZgeSr15n95B3\nbd8dfusTak4ahMHBgcSIyxwcN8Na7h8jBdu6DyU1OibHdOeXrKZIYHEaLpiK0ezA+aVriN4ThkfN\nIPya1iP+zAUazHrLVt7xGQu5tj3zxSb5yrV7EgPAgVEfUGXEfynfqyMZKansH/k+WCyU7d4ek5MT\npZ9rRennrG9CrTdnIrteGMn1fUc4/cUS6nw8Fkt6BslXo9g/dCoAp+Z+R6VXu9PgyykYjEbijp/m\n+IdfZqlzp2I+BD7zBEmXrhL80Wjb8nPfrOTiyg0cfutjakwcjNHsQOL5yxwaP4MSbR7Jdv/5eJgY\n/7Inr0+LIjUNAv1NvP2qF4dOpDDuk+ssetd6IT97KQ0/LyNmh8zn5Qsd3Xjjw+t0HBCJxQIvPedO\n9YqO2RWVK29PE+Ne9WbI1GukploI9Hdgwmve1jj+F8Wi9603MmcvpuLnZcoax9NFeeODKJ7ufxEL\n8FKnolSv5JRNSVmlRMewZ+xM6k/tj9HsQPz5SHaP/hQAzyrlqD2mNxu6vJFrulOL1+Do4UazhRMw\nGI1cP3KafW9/dcf1cFNSVCwbRs6jxYcvYjI7EHPuCuuGzQXAr3oZHn6rO992mJBrHntmrqL55Od5\nbvkYMBjYNeMHrhw8k6fyC8txYa84UqJusHfoVKoM6Y2piBMZqWnsGz6NjJRUTn7+LZX796DhfOt5\nGnv8NMc+ynqeAhyZMpuqI1+i0VdNsFjg4NgZpMUnknbyHEfenUvwu8PAaCQ5MooDoz+kyfLMfzIp\nJTqGfeM+o+6U1zCYHUg4H8neMdY0HlXKUXN0H37rOjLXdDlJT0xm1+D3qDa4GwYHBzJSU9kz6n+Z\nRqMKy/64XVJULL+Nmkvz91+y/tmZc1fYOGKONcZqZXjorZ4s6zg+1zz2fLyCRqO60H7ZWIwOJk7/\n/Humabl/paDrIrt2/ebsmB09hvxxHcuaBqwvJCpS0p8G86dhNDsQsfQXru85bMvbpZQ/SReyjvK5\nlPIn6VLm5ffqun5rmYm3/Kj85/IAEi9GZnrb/e3s3W4WSvozLHlisOT0+jAplJYsWcLJkyd5/fXX\n2bhxIz/++CPvvPMOYWFhTJs2jfbt2zNv3jyMRiOlS5fm7bffZuXKlbZ1kpOTadWqFevWrWPDhg1M\nmTKFMWPGMHLkSFatWoWTkxPTpk2jfPnydOyY/SvWb7pyJTbX7wuCn5876Sy0awwmQvmpwZ3/WY+/\n2xM7vuaXkOfsGkOL7YvsHsPNONY2fNauMTy6bTFJB7PvhBYk5+rrSTz8mF1jKFJ1DcvqdLNrDE/t\ntj4b+ukD/7VrHC8d+czux4VzdetLuApDHPZuL1psX8QPdXP+s0kFpc3vCwvF/vi8ah+7xgDw/OFZ\nhaIu7H0NAet1pDCcI/ZuN8Hadt4P0taWt3cIf8nh0TubLXRPYrB3AHJnbu0UNm3alKZNra/SrlKl\nCnPmWH+NbNu2bY7rODk5sW7dOgCaNWtGs2bNAGzLAF5//fV7EruIiIiIiPy7qQMqIiIiIiKSX5qC\nmyd6CZGIiIiIiIgUCHVARUREREREpEBoCq6IiIiIiEh+aQpunmgEVERERERERAqEOqAiIiIiIiJS\nIDQFV0REREREJL8y0u0dwX1BI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5ZNBbcPNEI6Ai\nIiIiIiJSIAwWi8Vi7yBERERERETuZ+krA+wdwl8ytb5o7xA0BVfu3pUrsfYOAT8/d35q0NmuMTyx\n42vSWWjXGABMhPJLyHN2jaHF9kVsbNzBrjEANN28lLUNn7VrDI9uW8wPdUPtGgNAm98X2j2ONr8v\ntPtx0XTzUgCWBPewaxwd93xZKPYHUCjiWFW/i11jaLXz/1jX6Bm7xgDQfOu3hWJ/fFPrP3aNAaDT\nvi8KRV0UluNidYNOdo3h8R3f2L3dBGvbeV/QFNw80RRcERERERERKRDqgIqIiIiIiEiBUAdURERE\nRERECoSeARUREREREckvPQOaJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS9Nwc0TjYCK\niIiIiIhIgVAHVERERERERAqEpuCKiIiIiIjkV4bF3hHcFzQCKiIiIiIiIgVCI6Dyj+LXOJjK/Tpj\ndDQTe+IsByZ8Rnp84h2ncy7mQ8PP32Jz6DBSb8QC4F23KkGvdcdoMpJyI44j788j9vjZfMdssVh4\nY8RyKlby4/kXHryLHEpgpDYANScO5NDbn2a7zb6Ng6nYtytGRzNxJ878mc5oIGhAT3xCamEwmTiz\ncAXnl/4CgEspf6qO6ovZw530hCQOjptBwpkLAJTp2oYSbR/Bkp5OSnQMYe/MylSea8Wy1PxoPMlX\nrmF0NBN/4gzHJs0gPSFzbN6N6lL2pW5Z0phcXag84mVcygSCwcDlVes5v3ApAA7ublQc1BuXsqUw\nOjlydt63RP78q7U2nm4FQMjCd0mMuEzYpE9JjY7JUh8V+/egePNGpMbEAZBw9gIHR71/F/UP3g1q\nUvGV7uzoMSTT8mbfTSU9OZW4UxEcnPwFXjUr8cArnTCaHYg5cY7942eRls2+KvZQ7b9MV3fqAJKv\nRHNwyjzrOk2CqT3uJRIvXbOl2dJ7/F3lfbcx3FSq3cP4P1KPnQPfzb6+ctjneUlzt8dFdvwfqkW1\nV5/F6GjmxvFz7B43m7T4pDynC5n6Cq6litvSuZbw4+ruIxz8aBH1J/a1LTcYjXhUKsW2wR9lG8e9\n3Cc+9apS5bUuGB1MpCencmjqvCz52iOG64dOZhuHX+NgKr/cGaOjA7HHz3Jwwsxs48gpndHJTLWh\nz+NRtTwYjdw4eIJDUz4nIzmVYk3qUOPNviRdvppt2QA+D9ahQt9QDGYH4sPPEvb2x1mOzb9K41TM\nh3qzJ7Kj++u264fPQ3WpOvoVki79WfbuvqNJT8h6vN1JXec13d0eFwFNalGz/zMYHR24cew8O8bO\nyfYcySmdY1FX6o7qgWdQadITkzm1bBPH/28NAEXLl6DemP/gUMQZsLD/w8Vc2nKw0NRFvo4Fo5FK\n/Xvi3bA2BpORs1+t4MLS1QB41qlGpf49MZhMpN6I5fgHc4k7cQaAUl3aEtCmOZb0dFKvW69bvo2D\nqdSvi+1+5dCEnK/x2aYzGgga0APfhtZr/OmFKzi/xLoPvOpWI+i17hhMRlL/uK+JO26NxSu4CpVe\nCQWg6ZyR7Bozi4SIK0DhaTvl/qUR0H+R5ORkmjdvbu8w7hmzpzvVR7/EnuHv89uzg0iIiCTo5S53\nnK7Ek00ImTkW52LetmUOrkUInjyIo9MXsjl0GIcnz6H2xAEYzPn7DSc8/ArP95zPT6sO3WUOThhp\nRAa/AZAQEUmlfl2zpDJ7ulNtVD/2j3iXLc8NyJQusEMLXEr5s7XrYLb3GkHpzk9StGoFAKqP68/5\n71aztfMgwmctotY7gwHwrl+DEu2as6P3KLZ1G0rkhh1UG/3HRcNkpGSnttT4YCwORd04/MYUdnV5\nhaQLlyjXt/ttcRWl8huvZpumbJ8uJF+5xu/dX2NP7yGU6PAE7tWCAAga9SrJkdfY3Wsw+18bS4UB\nvXH088EtqDyBXdoDsD10MAnnLlLhxc7Z1pxnjSAOjn6fHT2GsKPHkLvqfBqdHCn/385Uf3sQBtOf\nzalXnWoAbOs7id+6jiRy8z5qj32JWm++yO9DPmDD00NIOB/JA692ypKno6f7X6ar0KMN3sFBmZZ5\n16rMyfkr+a3rSNu/229u85J3fmIwF3WlxojnqTa0BxgM2dZZbvs8L2nu5rjIjqOXO3XG9WHbkOn8\n0mEY8ecjqd4/m7rIJd32ITNY13k06zqPZs/4z0mNS2DvpC+JPXnBtnxd59FEbjvIuVVbubBu113V\n9d3uE4ODiTqTXmH/hNls7DKS43O+p/b4vrdnXShiuJl/jTH/Zc+w9/ntmcEkRkRS+ZWsbXhu6Sr0\n6oDBZGRT1+Fs6jIUo5MjFf7zFACeNStzasEPbA4dYft3K7NnUaq88TIHRkxle+fXSIy4TIV+oXeU\nxr/Vw9T59C2cbjvuPGoEcfarFezsOcT2L7fOZ2HYJ05e7jQY/wKbB89g1VMjiIuIpNZrz95RutpD\nupCWkMxPHUaypttb+DeuQUDTWgDUHdmDU9//xupOY9jx5hwaTemXqR21d13k51go2b4FRUoFsCN0\nILueH06pTq1xr1oRk6sLNSYN4cSM+ezoPpijU2dSbcIgDGYHvOrXoETb5vzeZyQ7e7zOlQ3bAag+\nui/7hr/H5mcHkhhxmcovZ3+NzyldqQ4tcCkVwJYur7PtPyMp88c13sG1CLUnD+LY9AVsDR3K4cmz\nqfXHfY1TMW9qTRlM2JQ5AESs2UXwiJ7Wei4kbWehlZFR+P8VAuqAyj+Gb0hNbhwOJ+HcJQDOffcL\nAU88dEfpnHy9KPZwfXYNfCfTOi6lA0iLSyRqp/XX2fgzF0iLT8SrRuV8xfx/C3fRoWNtnmhV7a7W\nNxAAXAOsv7KfX7Ia/yeaZEnnE1KLG2F/bvOt6Yo93ICIFRuwpGeQFhvPpV+2EPBEU5z8vHAtW4JL\nv2wB4NrWvZicnXAPKkfytescmTzL9itsTFg4zv5+ALhXroBrhTJc/P4nyMgg6fxFAC4s/YlijzfN\nFJdXg9rEhh3PNk34B3M4OeMLABx9vDCYHUiPj8fB3Q3P+rU48/k3AKRcucbeF4eRFhNL3NGT7OzU\nDwCjoxknP2/bCESmejM74Fa5LKVD29Fg/lRqTBqMU3Ff63cODlR6rSf1502mwfypVBn9MiaXItnW\nv3dILUzOToS9/XGm5e4PlAcgKTIKgEvrduLXuCY3wk4Rf+4yAGe+XUPJVo2z5OnXqAbXD5/MMZ1P\nvar4PViTM9+tzVyXNSvhU78aDy2YQKPZo/EOfuCO885vDAEtGpJ09TphH3yVXXVZ48xln+clzd0c\nF9kp3rA61w+dJP6sdRtPLV5HqVaN7iqdwcFE3bdeZP/UhSRejsr0nU9wZUo+Vp89b8/NNo57uU8s\naemsafUqMUetIxouJYuRciOuUMYA4NuwJjcOn7S1U2e/+4UST2SNI7d00XvCOPH5UrBYIMNCzNHT\ntrbJq2ZlfOpX48Ev3yZk5pt43XaOeDeoRUzYCRLPW/ONWPIz/i2b5DmNo68Xvk0bsG/QxCwxe9QI\nwqtuderNnUydT97Cs3aVbOvgpsKwT/wbVSfq4Cni/jj2TyxaT+kns54juaXzrlqW0z9swZJhISMt\nnYu/7afUY/UBMJgMOBZ1BcDs4kxGSmqhqov8HAt+Dzfg4sr1tutq5C+b8W/ZFJdSAaTFJxC96wAA\nCWcukB6fiEf1IFKuXefo1Fm2UdaYI+EAWe5X/LO5r/EJqZVjumLN6nPhh9uu8a2a/HFfk2C7r0n4\n477Gs0ZlijdvyNUte4k9egqAU9+tZ9+0hUDhaTvl/qYO6D9cfHw8ffv2JTQ0lLFjxwKwY8cOevTo\nQffu3enYsSOnTp3im2++YfLkyQCkp6fTtm1bkpOT7Rj5nXMu7kNS5J/TD5Mir2F2c8HkWiTP6ZKv\nRrN32HvEn4rItE782YuYXJzwCakJQNEq5XErH4iTr2e+Yh41phXt2tfMRw4uWEiwfUrOZZuTL1/L\nNp1zcR+SIzN/51TMG+fiviRfibbeyP0h6UoUzsW8iT95jug9YYC1M1fp5VAur9sGQGzYcY5NnIHB\nbMZyy8P4yVeu4eDmmqkz51TMN3PZt6dJzyBozADqzf+QG3sOkXD2AkUCA0i5Gk1g53bU+mQiwXOm\n4la5PBnJKQBY0tMBaLz8UzxrV+XCyvVZas3J15vo3w8S/vFX7Og+hBsHj1NrylAAyvZojyU9g509\nh7Gj+xBSrkRR8eXQLHkAXN24k+MfzrNN470p5vAJAIr4Wzu1pdo1xejgQMr1PztDSZFRmN1ccMju\n+LwUlW06J19Pqr3enT2jPob0zL9iptyI48ziX9jUbRRHZnxDvWkDMo3i/1Xef0cMZ79by/FZS0hP\nzv5GEvKwz/OS5i6Oi9sV8fch4ZYbnsTIKMzuLji4Ot9xurIdHibpynUurP89Szk1Bnbh0Ixvs52e\nBvd+n1jS0nH0Lspjq6ZT5bUuhH/5Q6GMwZb/5Vvb5lziyCHd1e0HSDhrvQl39velbJdWXFprbZtS\nbsRydvFqtvR4g2P/+5o6UwZlyfevjs3c0qRcjebgiKkknD6fZdtSb8Rx/ruf2NVrGOGfLKTGO0Nx\n8vPOki7TNtp5nxTx98587F+OwjHbcyTndNcOnKRsmwcxOJhwKOJE4GN1cfbzAOD3ifOp8nxr2q5+\nj4dnDmXX219iSc86OmOvusjPseBU3JfkW6Z6J0Vew6mYDwlnL2Aq4ox3A+sosHuVCriWL4WTryfx\nJ89xfc9hwHpdrdg31LaurYw83tfcfo2//XxxLubzx32N8y33NRVs9zWupQNIT0ymxoTXAGgw+WUy\nUtOAwtN2yv1NHdB/uK+//prKlSuzcOFCOne2TkU8fvw4U6dOZf78+Tz++OP89NNPtG7dmrVr15Ke\nns5vv/1GSEgITk5Odo7+zhiMORzOt11s8pou01fxiez+f/buOzqKqn3g+Hdbeu9AaEmAEAKhhioI\nSFO6FCmhiVSV3rv0Ik2KgrwKiA0Ey/v+pFpABAJKCB1CIJDeezZld39/LGyy7G4SDCSRcz/ncDS7\nz8x9dubunblz78zO3ID3qL60ObCWam+0J+nSdV2DXHGMT3M0OIhLjH9mjUoNUiPrUKtNTqHUFJm+\noZxzpF8AACAASURBVHCwpdnWhaiylYTt0B/1kpRieaNlPxVz+4PN/PnGSOR2NtQcPQiJXIZlNQ8K\nsnK4MnE+Nxd/iNf7o7Gp56W3jjPd3+b+nm9psnmhwWdRxsRzZfpqsh9q72d9eOBHLD3dsajihnPb\nZri2b07gvvUE7luPa4dArGt7Gs3TlNQQbee8+YdTabd/ORqNhoKcXKMnV0+/Zmq7IYGmq9/j+of7\nyU1MNXj7r1mbif1VO00pJeQOKaF3cWnpX6p1P68cSqUU+/xF1gvdRynjtiga5zOsO7d2/2AQ4xTg\ng5mDDY9+Pmd0Hc8jj9Lsk7zkdE72eI+zo5cSsGR8pcjBuoaHkfWUtj0rOc7Otzatdi8h4ttjJPxx\nGYDLszcR99vj78iV26RevaO/AhPHBv26WYoYI67NW0/i78EApIXeIu3qbV0nxJhKXS/UpfyOqNWE\nfPg1aDR0+2YZbTe9R9y566jzVUjNFLRZN4kLiz/lp67T+XX0apovHImlu2GnvDJsi6KfSaeYumA0\nF7UaVXYOV+espebI/rTYtwGPHh1I+eua3rmEwsGOxlsWUZBTTMfL4LzGxGc3cYzXqNWosnIImbmB\n2qP60vrAOqq+0Z7kS9pcJHIZbh2ac+8T7YyShODrtPrwfW1ZlaTtrLQqenrtv2QKrngI0UvuwYMH\ndOjQAYCAgADkcjnu7u6sXLkSKysr4uLiaNq0KTY2NrRo0YI//viDw4cPM2nSpArOvPTafKGdLiu3\ntiQj7JHudXNXJ/LSMlEp9Udyc2ITsW/gU2KcHokEVY6S4ImFD3Vp982HZD+eelOeJDRCQrXHfymA\nVJ6MM2qnnGaifuqzKOMSsffX/8xP4pSxiZg5O+i9p4xPRhmn/zqAxeP3AGx8atB4/Wzif7/Ina37\nDB49npuYrHcAMndxJj89Qy+33NhEbP3qGo1xDGxMVngEeYkpqHOUJJw8g0uH1sT93y8Auv+69+iI\nzNycBmvmkRZyg+gjR3Xri/7pV3xnj0Nua01BkVFKG58a2PjUIvboab0tqykoQCKTcmfTZySdCwFA\nZmmB1EyBra8X9ecX3if19AOHipJZaa/wxp25jHv7ZtQc+BoyMwUKOxu9bWm8fibhUGRfPYmzqV0N\nq6qu+E0brt1WzvZIZFKk5gpubPqSWgNfI+yzH4t8HAmaAu1o8CtfaqcEPv0deZ45hC7/1OT2KKq4\nfV6amNLWC2VULOmht7CtX4fM2+G6dXX6ejkACmtL0sIKR6os3Bwfbwv9EdPs2CQcG3qbjLOvVxOp\nTEriX7cMPqtn15Y8/O9ZvVkEAHUnvIl7+2bAi90nNzYdwKVFA92FifRbD8i4E4Fzcz+gfOqFqRxs\nfaoDUGf8ANxMbAtTbbMyTj+Pp+OqdGmN35wx3Fj/GTHHtLcQyG2sqDGgC+GfFz3ZferCVGwCdn51\n9Nb7dN0sTczT5DZWVHuzOxF7DxcpWoK6QP8CZmWoF/6T+lG1QxMAFDYWpN0t/I5YujmSm5aJKsfw\nO+Lc0MtonLmHDVc2fUteehYAvqNfJ/NhHPY+1ZBZmBFz+goASVfvkX4vWreeyrAtzJwddet61rqg\njEvEzEV/eWV8kvZcIlvJ5clLdO+1/GqzbhqvtXdNmu78AE1BAbmJKY/z1T8+5xv7Thg5r3kSp4xN\n0putZe7qpB25lUgoyFFyqch5TZtvNpIdGUduQgqpoXd0U3otXBxwqFeTzt+sQG5lUWFtp/DyECOg\nLzlvb29CQrQn0jdu3KCgoIBFixaxatUq1qxZg5ubG5rHX/BBgwZx8OBBkpKS8PU1vH+ssvpz+Fz+\nHD6X82MW4eDvg1V17ZX1Gv1fI/604Y3rSRdCSxWnR6Oh2aa52NXXHhzdO7dEU1DwXJ6C+6w0hKLm\n58f/jgEugC0Anv27EH/mosEySReuYO9fR/eZi8YlnL5EtV6dkMikyG2scO/ShoTfg8mNTyYnKg73\nLton8zq3DECjVpMZ9hBLT3ea7VhC+H++487mvUZ/9yot5AbIpFh4VgGgSr9uJJ0J1otJCQ7BrkFd\nozGundpSc7T2gQUShRzXTm1J/fsqyph4Mm7dw/31jgBEf/d/qJRKrs9bS/T3R6m/rHBanUe3dmSG\nP9TrfAJo1BrqTh+NRRU3AKq92ZXMexHkJiSTfD4EzwE9kMjlIJHgO2883pOGknErXPfAouI6n6Cd\n4gsQvv//ODN0PsmXbvLop9M4NvTRPfmv5oDOxP1uOO0o4fxVo3GpV8M49cb7ugcMPfzuFDHHzxO6\n/FMKsnOoNagLHp2091bZ1auJQwMv4s9pT+6eLHN21JIXlkNpFbfPSxNT2nqhcLTHrmE9Mh7fR/XE\nk4db/DZiGU4NvbGuof2MXgM6EfPb3wb5xp+7WmycSzNfEi7eMPpZXZr5khBs+N6dj78rl32iUalp\ntHgcjgHazryNVzWsa1XVrbMic0i9pt0vdz85pHsg0LnRi3Eo0k7VeNN425x4PtRknEenQOrPHMnF\n91brOp8ABdk51BzYFfeOgQDY1a2FfQNvvfUmB2vbSUtP7Xqr9utK4umLzxzztIJsJZ5vdsP11Zba\nbVC3Nnb1fUg+H6IXVxnqxbUdRzg+eDHHBy/mZNBynBt5Y/O47nsP7Ej0b5cNcog9d81knPfAjvhP\n7geAuZMdXv078PDn82Q+ikdhY4VzgLbTZO3pip1XFVJuRVSabVGWupB4+iJVexY9rrYl8XQwaDQE\nbJyPra+27rl2ao2mQEVmWASWnh403b6UsK17+eP1t7k4YqYuD71jt4nzGlNx8acvUa1XR10uHl3a\nEP/bRdBoaKp3XtMKTUEBmXcjiP8tGIdGdbGsqr1/Oj08irSwSE4NXlihbafw8hAjoC+5IUOGMHv2\nbIYMGYKXlxcKhYIuXbowbNgwLC0tcXFxIT4+HtCOkEZERDBsmPH73Sq7vJR0ri7/mMZrpiGVy8mO\niuPq0u2A9p5N/wXj+HP43GLjinNl0Uf4z38HiUJObmIqf88y/hMT5SsXNeeRon3wgY13Da4t2waA\nna8XfgsmcD5oNvkp6dxYvpNGq6cjkcvJiYrTxUUePo6lpzutvliPVCEn8shJ3f2dVxdupv688XiN\n7o86L5/Q+ZtAo6FWUF9k5ubUGNSDGoO0P3vy9AMkCtIzUOfm4bdiFlKFgpyoWG4v34KNrzd1507m\n71HTyU9N4/aqjwxiAO5t+4w6sybQbP8W0GhIPHOBqG+19+bcmL8Gn+njqNK3GxKJlIeffUvmLe19\nlw/3HqLOrAkE7ltPbmIyobPXA+hGMINHzCIr/BF3Nv6HgA1zkMikKOOTubZIW+79z76jzntBBO5b\nh0QqJfPuA+5u2fdMe+XJ1N62e5chkUhIDrnDtXWfE/tLMM3WTUGikJMdGU/I4p0A2NevTaNF73Bm\n6HzyUtK5suwTo3EmqTVcnL4R/9kjqTv+TTQqNX/P20Z+qn7Hu7h1lzmHUjK1z190vXhabkoGfy3d\nTcv17yGVy8mKjOfSok8AcPCrTdPFY/jlrUXFxgHY1HAnK9r4z3rY1PAgOzqh2O3xIveJKieXSzM2\n0mDGcCRyOer8fC4v3E7rjxdUeA5PZlI8ncfVDz6myZqpSBVysiPjCF2qfcCXXX0vGi58h7PD5hUb\nV3fyW0gkEhoufEe33pQrd7ix7jP+mvkhfjNHUmf8ADQqFSHzt9Ly40W6uPyUdG6u2I7/qplIFdp2\n8sYHH2Hr643vvAlcHDnLZEyx1GpCZ6+j7vQx1B47GI1KxbVFG40+IK0i98nT9SI3OYPgxXtou2Ey\nUoWczMh4LizQ/tyWo18tWiwZw/HBi4uNu7nnf7RcOY7u360AiYTrH39P8nXtg23OTt9K09lDkZor\n0BSouLR8L1mRht+XitoWZakLUUeOYenpTot9HyJVyIn6/oTu/s7rS7bgO28CErmcvKQUQudon79R\nc3hfpBZmeA7sgefAHrocry/fScCaJ8fuWL3zGr8F4zk/fA55Kekm4yK/O45VNXdaH1iHRP7UMX7R\nVvzmj0P6+LwmZNYGADLuRnBz7R4C1mk7wbXf7ETwbO05Q2VpO4V/N4lGI8a3BS21Ws2QIUPYs2cP\nNjY2JcYnJJg+eJYXV1dbjgYa/5mN8tI9+GtUHKjQHABkDONEy0EVmkOXC99yum2/Cs0BoP3ZI5xq\nZfhzAeWp8/mD/LdZxV/M6fnXgQrPo+dfByq8XrQ/q/2t0MNNRlRoHv0v76sU+wOoFHn83MLwZ1bK\nU4+LX/FL6wEVmgNAp3OHKsX++CZgVIXmADD4yueVYltUlnpxPNDwJ07KU9fgbyq83QRt2/lvoPrK\ntqJTKJFsSMWfv4spuAIAjx49ol+/frz++uul6nwKgiAIgiAIgiA8KzEFVwCgevXq/PCD4ZPIBEEQ\nBEEQBEEQnhfRARUEQRAEQRAEQSgrTeX4mZPKTkzBFQRBEARBEARBEMqF6IAKgiAIgiAIgiAI5UJM\nwRUEQRAEQRAEQSgrI7+LLhgSI6CCIAiCIAiCIAhCuRAdUEEQBEEQBEEQBKFciCm4giAIgiAIgiAI\nZSWm4JaKGAEVBEEQBEEQBEEQyoXogAqCIAiCIAiCIAjlQkzBFQRBEARBEARBKCsxBbdUJBqNRmwp\nQRAEQRAEQRCEMlB9blHRKZRINkpZ0SmIEVDhn0tIyKjoFHB1teVEy0EVmkOXC99WeA5P8lBxoEJz\nkDGM9d6TKzQHgFn3tnOq1cAKzaHz+YMVnsOTPH5pPaBCc+h07hDh/dtWaA5eh88CMNtzSoXmsS5y\nS4XXi87nDwJUijwqQw5Xu3Wp0BwAGh47USm2xeY6kyo0B4Cpd3dUim1xPHBwheYA0DX4m0rRfld0\nuwnatlN4eYgOqCAIgiAIgiAIQhlp1BWdwb+DeAiRIAiCIAiCIAiCUC5EB1QQBEEQBEEQBEEoF6ID\nKgiCIAiCIAiCIJQLcQ+oIAiCIAiCIAhCWYmfYSkVMQIqCIIgCIIgCIIglAvRARUEQRAEQRAEQRDK\nhZiCKwiCIAiCIAiCUFbiZ1hKRYyACoIgCIIgCIIgCOVCdEAFQRAEQRAEQRCEciGm4Ar/ei5tm+Az\ncShSMwWZYRFcX/kxqqyc0sdJJdSbOhLnlgFIZDIiDvxE5JETANjV96betJHILC1AKuXB/h+IPXpG\nb30AHU99zuneE59buVbVPfBbOBGFvS2qbCXXlm0jOyIagJpDe1K1V0c0KhV5KencXLObnKi4IiU6\nIKUTag4/03bUaDQsmPcjPnVcGfN2m2datrS8Xm1A+1l9kJnJSbgVxdF5B8jLVBrE+fVpQYt3XgMN\n5CvzOPXBQeKuPtSL6bPjHTLj0ji17NtSl19/0WSy7j3k4Zc//ePP4BTYCJ93gwgeMQsAjx7tqTGk\nl+59uY0V5m5OADi3aYr3pKFIFdp9f3PlTlTZ+nXEZIxUSt0pI3F6XD8efvkjUY/rxxNVenbE9dVA\nQmeu1b3WcPUMbHxqocox3K7ObZriPXEYEoWcrHsPublyh/F8jMVIpdR5fyROrRojkUl5+OVPRB85\nDoBD0wbUeX8kEpmM/LQM7m7+jMywiGfetpbNWuM0bAIShRl5EWEkbF+NJidbL8amfVfs+w4FDWhy\nlSTu2UzevVvPXJYxvp386DGvF3IzGTE3ozk48ytyM3MN4tqMeoVWQW1BA0kRiRya/TVZSZkALL6y\nkvTYVF3s7x//wuUjf+ktH/jFhudeJ1zaNcNv0bso4xJ16/lrwiJU2UpqDO1JlZ6d0KhU5KemV1ge\nxurmi8jhCYsqbgR+vpbLU5aTcSucmkF9ce/SVve+wsHOYN8+zTYwEPfRbyNVKFDev0/kpg9RZ2cb\njfWcMQtlxH0SDx0CQGplhef0GZhXrw4SKSknT5D47Tcmyyrv/eE1/i3cXm0JQPqNsBK3Ra1X/Wk7\nQ9t+J96O4uT8L4y23769A2k29jVAQ35OPr8t/5b4aw+RmSvotHQw7g1rIpFKiL3ygF+WfoMqN/9f\nsS1c2jahzqQhSM0UZIQ95PoK0+caxcWZuznT8j8rODdsNvlpGXrLVu31Ku6vBnJ5xjqjOZSpDS9S\nfvNPVxEcNNOg/Co9O+HaIZDQWWuMlm9MebWb/xpiCm6piBFQ4V+vwcJJhM77kD8HTSU7Kp46k4Ya\nxCgcbE3GefbrglV1D84NncGF0fOo8dbr2Pl5A9BozQzu7T7I+aDZXJ62inpTRmBV3UO3vvDPtZ08\ndX7Bcy3Xf9n7RH53nHNvTefe7m8JWDMDAKcWDanauxPBYxdyfvhs4n8LpsGiibryJPgipRPPem3p\n3r0Exozcz9Gfrz/Tcs/C0smG7uuC+H7ybvZ0+YDUR4m0n9XHIM6xthsd5vbj0Ojt7O21mnPbj9J3\nxzt6MYHjXsOzuXepy7aqVY0m25bg3rn1P85fam6G1/i38F85HYmssOmM/fk0wSNmETxiFhdHzyUv\nKZU7G/YA4LdwElfnbeD84CnkRMfhM3mY3joVDnYmY6r1ew3L6h5cGDadi2PmUn3wG9j5+QAgt7Oh\n3ux3qDdjDBIkeuu096/LXxMX63IqWlb9BZO5Om89F96aQk5UHN6TDPMxFVOtbxcsq1cheNg0Lj3O\nx9bPB5m1FQ1XzyJs236Cg2Zwe/0uGqyYjkTxbHVQaueA27sLiFu/gMj3hlAQF41T0ES9GEXVGjiN\nnEzs8hlEzRhFyqG9eMxe+UzlmGLtZM2gjUPZP+4/rO+wiqSHSfSY19sgrlpDT9qP78iOvpvZ+Noa\nEu8n0G3W6wC4ermRk5bN5m7rdf+KnkRZO1kDvJA6Yd+wHhFf/qjb78EjZqHKVuLYoiFVe3Xm0tgF\nBAfNIv63C7qyyjMP0K+bl99f/sJyAJCaKWiw7D29ehix/3tdTn9PWoJaadh5Kkpmb4/njJk8XP4B\nd8aOIS82Bo8xbxvEmVevQe2167Bv317vdfeRo8hPTOTu+HGEvfcuzm/0xKp+faPllPf+cH01EKfA\nAC4EzeL8kGlILcyL3RaWTjZ0XRPE/97dxb5uy0h/lEjbmX0N4hxru/HKnH4ceXsbB3qvJnjHz/Tc\nPg6AwEndkchkfNFrFV/0XIncQkGLCd0MyqmM20LhYIv/oolcmbuRswOnkRMVR93Jxo/5xcVVeb09\ngbuWYvH4IuUTcjtr6s8dS/2Zo3mqSdf73GVpwwE8enSg6cfLMXd1fqp8G+rNHkfd6WNAYiIBI8qj\n3RReTqID+pI5fPgwGzZsqOg0ylXazXtkP4oFIPLwcTy6v2IQ49wywGScW4dAon76DY1KTUFGFrEn\n/qRK9/ZIzRSEf3qQ5ItXAciNTyYvLQNzN2ecWwaQERaB18h+AOSnZzy3cs1dHbGuVZXYE38CkHQu\nBJmFObb1apOblMqttbt1V1PTb97DwsO1SIkOqDnzzNvwqwOX6Ne/Md17NHjmZUurVrv6xIZGkPog\nAYCQA2fw69PCIE6VV8CxeQfIStCO1MRdjcDaxQ6pQgZA9VZ1qNXej5Cv/ih12Z5vdifmv78Sd+qc\n3usSuZw6U0bSYu9aAvevp/6iycisLI2uw6llADILc26u3GGynJoj+pCXkkbU9ycB7f7Jebzvow4f\nx6Obfh1xatnIZIxrh5bE/PdXXf2IO3lWV3fcO7cmLymFux/t11ufRRU3ZFaW+M4ZR+AXG6i/cFJh\nWYEBpN8MIyfySVnHDPMpJsa1QyAx/yvMJ/7EWTy6tceqehUKsrJJuaT9nmRHRKPKysHev57J7WSM\nVeNAcsNuUhATqd12R49g+0pXvRhNfh4JO9agSkkCIPfeTWQOziAv+2Seuh18eXTlIYn3tfXz/L6z\nNOnXzCAu6mok615ZgTJDidxcjr2HPdkp2hGxms1ro1apGf/tu0w7MYfXpnZDIpXolQG8kDph37Ae\nTs39afH5Wpp9/AEOjbUdnbykVG6t260bAcm4Ga4rqzzzeLpuNlw944XlAFBv5lhi/vcb+WnpGOPz\n/giSzoUYfe8J26bNyL59h7zoKACS/vsTDp06G8Q59+5NyvHjpJ0+rfd6zM4dxOz6BACFsxMShQJV\nVpbRcl7UtjC1PxJ+C+avcQvRFBQgs7LEzNG+2G1Ro1194q5GkBqh/X6Efnka397G2+8TCw6QbaT9\njroYRvCOn0GjQaPWEH8jEruqTgblVMZt4dwygLQbhcfyR9+dwKN7u2eKM3dxxK1DC/6eZji66PFa\na3ITU7m99QuD93Sfu4xtuJmLIy7tA7kyfZXBut06tyE3MYWwj/aZLN+Y8mg3hZeT6IAK/3q5cUmF\n/x+fhMLGCpm1fifCwt3ZZJyFuzO58frvmbs5oc7LJ/qnX3WvV+vbGZmlBWnX7mDh4YJ1rWrcedwB\n0BSonlu5Fu4u5CakgKbwx4yVCclYuDmRFf6IlMs3AZAo5NSZPIy4X87r4jScB4xPDyvOwsU96N23\n0TMv9yxsqziQEZOi+zsjNhVzW0vMbCz04tKjkgn/rXAktuP8Nwk7dRV1vgprN3s6LxrI/6Z9jkZV\n+nkudz7cQ+zR0wav1xrRF41KzcWRcwgOmkVeQrLB1fYnEk9f5O6WveSnZxp9X2FvS40hvbiz6XPd\na0WneuXGJyG3sdLr4Fq4uZiMsXBzRhn3dP3QXrWOOnKC+3sOoc7N08vBzMmO5ItXubXmE4JHzNab\n6mhQ3xKSkNtY6+dTTIy5uwu5RXJVPs4n+2E0MksLnAIDALCt7421V3XMXRyMbidTZM5uFCTG6/4u\nSEpAam2DxNKq8LWEWHL+KryI4DzqfbIu/QEFBc9UljH2VR1Jiy6cApYWk4qlnSXmNoajIeoCNQ26\nNWTBxWXUbuXNpW+1o4pSuZS7Z27z6fCd7HxzK3U7+NJ2dHu9Mop6nnUiPz2DyEPHuDhqDmE7v6TR\n2lmYu2rbjNTLNwBtm/H0iEl55fF03ZTIZC8sh6q9OyGRy4j+4ZTBZwWwru2Ja/sW3NtlejosgMLV\nlfzEBN3f+QkJyKytkVpZ6cVFb99G6qmTxleiVuM5ew51PtlNVmgouZGRRsspqjz2B4BGpcJzQHfa\n/rAThYNtsdvC1sOx1O33g9+u6f5uP38A4b+Eos5X8fCPm6Q+0H7Hbas60WRkR+4e/dugnMq4LSzc\nnVHGl+5cw1RcbmIKV+Z8SNb9KIP1Rx4+Sfinh1Ar8wzeK7rusrTheYkpXJu3nuwHhnUw+shxHvzn\nIKpc0+UbUx7t5r+O5l/wrxIQHdCX0JUrVxgzZgx9+/blm2++4ezZswwcOJDhw4fz7rvvkp6ezoUL\nF5g2bZpumbZttffFzJ07lwkTJvDWW2+RlpZWUR+hzAw6JxLjVV2jUoOxK21q/eVrjeiD9zuDCJm5\nFnVuPi6tG5ObmEpy8NXnX66J6S+aIjkpHGxptnUhqmwlYTu+NBpf2UikxWwLIxSWZvT+6G0carpy\nbN4BpHIpvbaM4ZcVh3Sjo2Xl3LYZru2bE7hvPYH71uPaIRDr2p7/aF1V+75GwplLKGPii40ruh+N\n1oHHMcauAJfU6U6/HsbVuevJS0oFtZrw3dr7YyVyOZja/nr5mI6RGKuXajWq7ByuzllLzZH9abFv\nAx49OpDy1zXU+c/WKTRVP57+LgJIzC1wm7kcRRVPEreX/l6lYss38b1Tq4wfra8fu8qyRgs4sfEo\nb38xAYlEQvCX5/hx8WFUeSqU6Tmc3v0b/j0KL+yYKuN51ImrczeQ8HswAGlXbpF69TZOgYVlKxzs\naLJlkdF7g8sjj6fr5pMRc8lTo9dlzcG2Xm2q9evKrbW7TH7O6oPfIPLQUVRZJVyse8Y2y5TIdWu5\nOfBNZLa2uA0bXvpyyqFeRB46yukuo3QxppgakVKb2BZySzNe3zoWh5qunJx/QO89twbVGfjVdK58\n8Tv3f72m956pcip6W5gckXvq85c27h8pYxv+IpRHuym8nMRDiF5CcrmcPXv2EBUVxTvvvENubi5f\nffUV7u7u7N27l507d/Lqq6+aXL5Vq1aMGjWq3PJ9VlZWZpibF1ZdsyIjLeauTuSnZaJW6t8Ar4xL\nxN7fx2icMjYRM2f9dSjjkwHtiIH/4slY165G3Klz+C+eDICNd3UKcnJptV/7oADLah5oVKrnUq4y\nTv91AIsiOdn41KDx+tnE/36RO1v3gbqSXM4you3UN/DprD2QmNlYkHA7WveerbsDOalZ5OcYXnG1\nreJI/90TSLoXyzfDtlCQm0/VJrWxr+5Mx/lvAmDtaodEKkFuLufYfMNOeOC+9QAknrlE+G7jIx0S\nmZQ7mz7TTcWTWVogNVNg6+tF/fmF9x8WvZfSFPfX2nBn42d6r5m7FF7NN1Y3c+MSsW9Qx2iMMi7R\nYPmiV7aNcQjwRW5nQ+KZS9rP9/jkQKNWo4xNwM7vqbLSM/TyKS5GGZeI2VP5KOOTQCJBla3k8uQl\nuvdafrVZNwWstAoSYjGv46f7W+7sgiojHU2ufodJ5uKOx/y15EdGELP4XTR5z3bFvqiuM3vg18Vf\n+3lsLIi9FaN7z87Dnmwj9dO5lgu2rnY8uKidynrx6/P0Xz0IS3tLfDv7EX0jmtib2noukYAqX6Vb\nNjU6RW9dz6tOyG2sqPZmNyL2HtG9J0GCRqUt28anBo3WzyHht2DufrSfzn/qfx/KI4+n62ZugrY9\ne3Ji/Lxy8OjRAbm1Jc13a+8NNndxosGyKYRt268tWyrFrWNLgkfNoST58fFY+frq/la4uFBgpE6a\nYtOsOcr79ylITkKtVJL626/YtzOctpkfr3/Rqjz2h41PTZBKyLzzAIDoH09Re/Sbenm0mtIT784N\nATCzsSTxduHInY27A8rULApMtN+9P5lI8r1YDg3frPeQobpvNKPT0rf49YNvuP3TJYNlMyrgO2Jq\nW3iPG4hr++YAyK0tyQx7aFCm6uljfmwi9g0Mj/lPx/0TZW3Dn5fybjeFl5MYAX0J+fn5IZFIhNid\n1QAAIABJREFUcHV1JSYmBhsbG9zd3QFo0aIFd+/eNVhGU2S6Z+3atcst138iOzuPlJRsUh7fP2Dv\nXwer6h4AePbvQvyZiwbLJF24YjIu4fQlqvXqhEQmRW5jhXuXNroroAGrpiOztiR47CJub/yc80Gz\nOR80m9/fGI86L4/Q+RsBUOXkEP2z4RTPf1JubnwyOVFxuHfRPonWuWUAGrWazLCHWHq602zHEsL/\n8x13Nu+t1J1PgLOb/8feXqvZ22s1Bwasp2qTWjjU0k43CxjajrCToQbLWNhb8dZXU7l77Ar/nfIZ\nBY9PXqIv3+eTdgt16wv58gy3/ve30c4noHvIhKnOJ0Dy+RA8B/TQjsJIJPjOG4/3pKFk3ArXe1BF\nSeS21lh5epAWelvvdXv/Olg+3vfV+nUl4am6+aR+GItJOH2RKr06FqkfbUk4bVi3i5JZWVB3+hjk\ndtoHedQY/vhhEGo1ycGPy/LUllW1X1cSn1pfcTGJpy9StWcnvXwSTweDRkPAxvnY+mofCuXaqTWa\nAtUzPwU3+0ow5nUbIK+iHYG27dqP7Iv69zNLbWypunwbWed/J37jkjJ1PgGOb/hZ99CLbb03UaNp\nLVxqa+tnq6C2XD92zWAZWzc7hu4YiZWj9oFCTfo1J/Z2DNmp2bjXq0LXGT20F0YsFLQZ9QpXfrqs\nW/bO79qn9T7vOlGQrcTzze64dtQ+xdOmbi3s/HxIOheCpacHTbcv5f6eQ9zdsldvRLk883i6blp5\nafezZTW355rD3c2fc27QFN13NzcxmetLtug6vjbeNchPz0IZk0BJMv76C0vf+phVrQaA0xs9ST93\nroSlCtm3b4/bcO2Ip0ShwKF9BzJDDO87zfhL+8CV8twfNj418Vs4Gam5GQBVenQwyOv8lv9yoPdq\nDvRezdcD1uHRuDYONbXfj0ZDXuHeKcP229zeigEHphF2PISfp/1Hr/Pp070Jry4axOHRHxntfAJE\n/HGj0myLe7sOcn74HM4Pn0PwmIWGx/LThp8h6UJoqeL+ibK24c9Lebeb/zYataTS/6sMxAjoS6jo\nlAhHR0cyMzOJj4/Hzc2N4OBgatWqhbm5OQkJ2gNwVFSU3nRbU1MqKqsby3fSaPV0JHI5OVFxXFu2\nDQA7Xy/8FkzgfNBs8lPSTcZFHj6Opac7rb5Yj1QhJ/LISVIu38S+UT1c2zcnKyKawN3LdeXd3XaA\npAtXdOsDkJqZcWfLvudSLsDVhZupP288XqP7o87LJ3T+JtBoqBXUF5m5OTUG9aDGoB4AqPPyCX57\nQfls7DLITsrk5zlf0GfbWGQKOakPE/i/mdpt5t6wBt1XDWNvr9U0HvYKdlWdqNM1gDpdA3TLfxO0\nFWWq4QM8yuL+Z99R570gAvetQyKVknn3AXe3PNtDGAAsPT3ITUzVjTg9cWP5DhqumoFUIScnMo7r\nH2zTja4Gj5j1uH4YxoD2wRqW1TwI3L8BqUJO1JETunv5TEk6F0Lkwf+j+a7lIJGSda/win1+Sjo3\nV2zHf9VMbVlRcdz44CNsfb3xnTeBiyNnmYwBiDpyDEtPd1rs+1Cbz/eF+VxfsgXfeROQyOXkJaUQ\nOmet0fyKo05LJWHbKtxnrUAiV5AfG0XC1uWYefviOmkuUTNGYdetH3IXd6xbdsC6ZeEJc8yS91Fn\nlm1adlZSJgdnfMnwT0YjU8hIjkji66naB4J4NqrOgPVvsbnbeh4Eh/PL1uNMOPgeapWK9Lh09r79\nKQAnNx6l74oBTD85F5lCRuh/Qwj+8pxeGcALqROhs9dSb8bbeI0dhEal5trCTeSnZWh/qsLcnOqD\nXqf6oNf1PnN55mGqbpbn9wO0P3GljC1+mvwTqrRUoj7cQI1Fi5DIFeTFRBO5fh2WdepSbdp0wiZN\nKHb5mF2fUO39KdT5ZBdoIP3PsyR9f8QgTpWWWu77I/boaSw9PQj8fC1qlYqs8EfFfpac5ExOzN3P\nGx+9g8xM234fm7UXADf/GnRZNYwDvVfTaGh7bKs64dM1AJ8i7fd3I7bSdkYfkECXVYX3IUf/Fc6v\ny77RK6cybou8lHSuL99JwJonx/JYri7dDoBdfS/8Fozn/PA5xcaVVVnb8BehPNpN4eUk0RQd+hL+\n9Q4fPkx4eDgzZ84kNzeXHj16sGLFCrZs2YJEIsHe3p7Vq1djZ2fHe++9R2JiIt7e3ly+fJljx44x\nd+5cXn/9ddq3L/kG8ISEjBJjXjRXV1tOtBxUoTl0ufBthefwJA8VB0oOfIFkDGO99+QKzQFg1r3t\nnGo1sEJz6Hz+YIXn8CSPX1oPqNAcOp07RHj/tiUHvkBeh88CMNtzSoXmsS5yS4XXi87nDwJUijwq\nQw5Xu3Wp0BwAGh47USm2xeY6k0oOfMGm3t1RKbbF8cDBFZoDQNfgbypF+13R7SZo285/g/ztFiUH\nVTDF5NLdRvAiiRHQl0z//v11/29ubs4vv/wCQJs2bQxid+7cafDamjXP54EegiAIgiAIgiAITxMd\nUEEQBEEQBEEQhLJ6MQ8cfumIhxAJgiAIgiAIgiAI5UJ0QAVBEARBEARBEIRyIabgCoIgCIIgCIIg\nlFUl+ZmTyk6MgAqCIAiCIAiCIAjlQnRABUEQBEEQBEEQhHIhpuAKgiAIgiAIgiCUkUZMwS0VMQIq\nCIIgCIIgCIIglAvRARUEQRAEQRAEQRDKhZiCKwiCIAiCIAiCUFZiCm6piBFQQRAEQRAEQRAEoVxI\nNBqNpqKTEARBEARBEARB+DfL+9C6olMokdmMrIpOQUzBFf65hISMik4BV1dbTrQcVKE5dLnwLafb\n9qvQHADanz3Ceu/JFZrDrHvbUXGgQnMAkDGMU60GVmgOnc8f5OwrfSo0B4C2Z37gj3Z9KzSHdn98\nz6HGIys0hwEhewF49FaLCs2j+tcXK7xetD3zA0ClyOO3Nm9WaA6v/vkdxwMHV2gOAF2Dv6kU++N2\nrw4VmgNAvZ9+rxTboqKPIaA9jlSGc5yKbjdB23b+K2jEFNzSEFNwBUEQBEEQBEEQhHIhOqCCIAiC\nIAiCIAhCuRAdUEEQBEEQBEEQBKFciHtABUEQBEEQBEEQykgjfoalVMQIqCAIgiAIgiAIglAuRAdU\nEARBEARBEARBKBdiCq4gCIIgCIIgCEJZqcXYXmmIrSQIgiAIgiAIgiCUC9EBFQRBEARBEARBEMqF\nmIIrCIIgCIIgCIJQVuIpuKUiRkAFQRAEQRAEQRCEciFGQIV/PZe2TfCZOBSpmYLMsAiur/wYVVZO\n6eOkEupNHYlzywAkMhkRB34i8sgJAKyqe+C3cCIKe1tU2UquLdtGdkQ0ADWH9qRqr44ANNy8lLvr\nP0YZFYtT62bUmjAcqZmCrLAI7qzehipbPx9TMTJrK+rOm4xVTU+QSIj7+VciDxwBQG5rg8/0sVjV\nqo7U3IyHew8Rf+z3Um8nr1cb0H5WH2RmchJuRXF03gHyMpUGcX59WtDinddAA/nKPE59cJC4qw/1\nYvrseIfMuDROLfu21OWXhkajYcG8H/Gp48qYt9s813WXlnObpnhPGopUoa0nN1fuNNh/ZeXYuhk1\nx49AqlCQde8BYWs+MiijuJjAn/aRm5Cki43+6nsSTpRcFxxbN6PW+CAkZgqy7z3grpG6WZoY35Vz\nyEtMJnzTbr3Xzau40XjPh1yftpTM2/eKzcXjlQD83xuIzExO2t1HXFq6h4Isw/poMk4qocncEbg2\nqwdA7B+hhG76Wm/ZWn1eoWqnZvw5ZXOJ28aiSVvs35qMRGFG/sO7JH+yAk1Oll6MVbse2PYaDhrQ\n5ClJ+XwD+eE39WKcp69DlZJA6mfrSywTyl4XnvBdMVe7TzbvwrJWdeounq57TyKVYu1di5sLVpN8\n+nylzAHAqU1TvCYMR6qQk3kvgturdhi2nSZipGZm1Jk5Ftv6PkgkUtJv3OHuhk9R5+Xh0NQf78lB\nSORy1Ll53N20h4ybYSb3iUvbJtSZNASpmYKMsIdcX2H6mFJcnLmbMy3/s4Jzw2aTn5YBgGu7pvgv\nmUxOXKIu7uK4JQbrriz7pCjr5q1wHTEOiUJB7oNwYreuRZ2TbTTWY+pcciPuk3LkGwCqzl2Goko1\n3fsK9yrkXLtC1Ir5JZZbUduiNMcCkzFSKXWnjMTp8XnFwy9/JOrxeYVtfW/qThuFzMICiVRKxBff\nE3v0TGEuCjkBH84j+nH8izzHeaJqr464dQgkZOZa3Wve4wfj0UV7HHYcM4eU/ZsgP09vuYpqN4V/\nPzEC+hKIjIxk0KBBxcYMGjSIyMjIcsqofDVYOInQeR/y56CpZEfFU2fSUIMYhYOtyTjPfl2wqu7B\nuaEzuDB6HjXeeh07P28A/Je9T+R3xzn31nTu7f6WgDUzAHBq0ZCqvTsRPHYhAIm/n6fe/HdRONhR\nd8F73FiwjktD3kUZHUvtiUFP5WI6ptY7Q8hNSOKvoClcHjuLqv26Y9tAe4Jdb+F75MYn8ffoGYRO\nWYr31LGYuTqXahtZOtnQfV0Q30/ezZ4uH5D6KJH2s/oYxDnWdqPD3H4cGr2dvb1Wc277UfrueEcv\nJnDca3g29y5Vuc/i3r0Exozcz9Gfrz/3dZeWwsEOv4WTuDpvA+cHTyEnOg6fycOeaxlyBzt85r3P\nrYVr+HvYJJTRsdScMKLUMZbVq1GQkcmVMdN0/0rT+ZQ72FFn/nvcXLiWv4dORhkdR62JhuWWFFNt\naD/sG/kZrF9ipqDeomlI5SVf1zRztKX5srGcn/kRx/rOJSsygYZTDNuw4uJq9myLbS0Pjg9cwInB\ni3BpXo9qXVoAoLCzpsmCkTSeG4REUvJ0KKmtA04TFpO0aQ6x0wdQEB+Fw5B39bdNlZo4DHufhNXv\nEzd3GOmH9+AyfZ1ejG2vIMx9G5dYnm6dZawLT1Qb2g+7gMJ9kvPgkV79SL0YQsKJ3412MipDDqD9\n7vkueJfr89cTPOR9lNFxeE0aXuqYmqPeRCKTcWnEDC6OmI7U3JwaI/ojkcvxWz6d22s/5tLIGUR8\nfoj6i983tUtQONjiv2giV+Zu5OzAaeRExVF3svFjSnFxVV5vT+CupVi4OektZ9+oHg8O/MT54XN0\n/1TZ+hdeKss+KUpmZ4/HlLlErV7E/YlB5MVG4zJqvEGcmWdNPFdswrZdR73Xo9csIWLKWCKmjCVu\n2wbUWZnEfbypxHIrcluUdCwo7nhRrd9rWFb34MKw6VwcM5fqg9/Azs8HgEarZxK++1uCR8wiZNpK\n6rw/EsvqHgDY+delxaercGjkqyvnRZ7jyO2sqT/nHXxnjIYiTWXVnq/i2q4ZF0bNA0CVmoj94Il6\nZVZUu1nZaTSSSv+vMhAdUOFfL+3mPbIfxQIQefg4Ht1fMYhxbhlgMs6tQyBRP/2GRqWmICOL2BN/\nUqV7e8xdHbGuVZXYE38CkHQuBJmFObb1apOblMqttbt1VyEzb93D3MMVx8DGZNy8izIyBoDoI0dx\n69peL5fiYu5t3kP4ts8BMHN2RKKQo8rKQm5rg0OLACL+o72anJeQRMi4ORSkZ5RqG9VqV5/Y0AhS\nHyQAEHLgDH59WhjEqfIKODbvAFkJ6QDEXY3A2sUOqUIGQPVWdajV3o+Qr/4oVbnP4qsDl+jXvzHd\nezR47usuLaeWjUi/eY+cx/Uk6vBxPLoZ1qeycGzRhMxbYbr9H/v9UVy7dCh1jG1DXzQqNf5bVtD4\n8y1UHzUYpCU35Y4tGpN5s3CdMUeO4tql/TPF2Dfxx7FlE2J+OGawfu/p44n7+RfdSE9x3Fv7k3I9\nnMyHcQDcO/gLNXq0fqY4iVSK3NIcmZkCqUKOVC5HnZsPQPWugSgT0wjd+LXBOo2xaNSKvHs3KIh9\nBEDmie+watddL0ZTkEfyrhWoU7Ujz3nhN5E5OINM2+E292uGRUBrMk8eLlWZUPa6AGDfpCEOgU2J\n/f6o0TLsGvnh/Gob7m3YWWlzAHAMDCDjZhg5T9rFw8dw7/pKqWNSQ24Q8fkh0GhArSbzTjgWHi5o\nCgo41/sdMu/cB8Cimjv5xbSbzi0DSLtReKx49N0JPLq3e6Y4cxdH3Dq04O9pawyWc2hUF6fm/rTa\nu5oWu5bi2KS+4baoJPukKKsmLVDevUV+TBQAqT//gF2H1ww/3xt9ST/1Mxl//Gp8RXI5HlPnEb97\nGwWJCSWWW5HboqRjQXHHC9cOLYn576+684q4k2fx6P4KUjMF4XsOknLxKgC5Ccnkp2Vg8fhicvVB\nPbj3ydek37irK+dFneMAeHRuQ25iCne27tdbn62vF/G/X6QgUzvCnR38K1YtO+nFVFS7KbwcRAe0\ngvXv35+kpCTy8/Np2rQp169rR3/69evH3r17GTx4MG+99Rb79u0DICYmhrFjxxIUFMTYsWOJiYnR\nrUulUjFr1ix27doFwKZNm+jfvz+TJk0iJSUFgNjYWCZMmMDo0aPp2bMnJ0+e5P79+wwYMEC3nqlT\npxIaGlpem6DMcuMKpyLmxiehsLFCZm2pF2Ph7mwyzsLdmdx4/ffM3ZywcHchNyFFe0LzmDIhGQs3\nJ7LCH5FyuXAKSe2JQST88ifmbi7660pIQm5jjcyqMJ8SY1Rq6i2eSvP9W0i7fJ3sh9FYelYhLzEF\nz7d6E7BzFU32rMemrhfqXP3pMKbYVnEgIyZF93dGbCrmtpaY2VjoxaVHJRP+W+EIZMf5bxJ26irq\nfBXWbvZ0XjSQ/037HI1KXapyn8XCxT3o3bfRc1/vs7Bwc0FZZGpcbnwSchsrvf1XVmZuLuQVLSMh\n0aCOFBcjkUlJvXSF6zOXcvXd+TgENqHKm2+UWK65uwu58cWXW1yMmbMjXlPGcvuDTaDW3//uPV9D\nKpcR95P+tC5TrNydyI5N1v2dE5eMwtYKubVFqeMe/HiGvPQs3ji+mZ4nt5D5KI6Y0yEAhB/6lZuf\nfI+qlN8PmbM7qqQ43d+qpHikVjZILK0LX0uIQXn5rO5vh6Bp5Px1GlQFSB1dcBg5g6Rti0CtKlWZ\nUPa6YObsRO0pY7mzfCMatfHvZK3Jo3m4+wuT08grQw6Atr3VK8Ow7SwuJiX4CjmPtMdDcw9XPAf1\nJOGXcwBoVCoUjva0/mEX3pNH8OjAD8Xk4YwyvnTHFFNxuYkpXJnzIVn3owzWn5+WyaNDxzg/ch53\nt39FwLoZmD81SlpZ9klRClc3ChLjdX8XJCYgs7ZBammlFxf/yRbSfz1ucj0OXd6gIDmRzPNnTMYU\nVZHboqRjQXHHCws3Z5RxT59XOKPOyyfmp190r1ft8xoySwvSrms7nNcXbyHpz7/18nhR5zgAkUdO\nEL7nkEFbmX79Lq6vNENhbwuAdfvXkTm46MVUVLspvBzEPaAVrFOnTpw5cwYPDw88PT35888/MTc3\np0aNGhw9epQvv/wSgNGjR9OuXTu2bt1KUFAQHTp04Ny5c2zYsIFp06ZRUFDAzJkzad68OcOGDePq\n1atcvHiRQ4cOkZ2dTdeuXQEIDw9n9OjRtGzZkr///puPPvqIzz77DAsLC8LCwnBxcSEyMpJGjSq2\nI1BWBh0kifFrLRqVGqRGpiOo1WBi6l7Rg5jCQds4q3JyePDJATyHGk5rfXoZo+U9FXP7g83cXf8x\nfitnU3P0IFKCQ7Cs5kFBVg5XJs7HopoHATtWkhMZTebtcKPrK0piYoTMVEdSYWlGj3VB2FZx5NDo\n7UjlUnptGcMvKw7pRkdfSqXYN2UlKUUZxcUU7eSp8guI/uYHqgzoSczBn0oquMRyTcUgkVBv2UzC\nt+4hPylF7y3rul549O3O1ckl38tVWIyJz/dUfSwuzm98X3JTMvip03vILMxos2kKdYK6c3e/8VGO\nYpkox9hJkcTcAqeJS5A5u5Ow+n2QyXB+fyWp+zbqrvKXVlnqAhIJdZfO5P7WTw32yRO2/r7I7W1J\nOHG6UufwZF0l5VGaGJt6Xvivnk3Udz+T9OdfutfzU9I412ccNnVrE7B1KVn3H+k6rHppmPqspayb\nT8c97cqcD3X/n3rlNmmhd3AO1D/eVpp9op9UiTmVhmOfgcRu2/AMxVaubVHaY7mxnJ5u32oG9aX6\n4NcJmbqy1BeTTa3rH53jFCPm5zOYuznTbPtiAAqiItAU5OsHVVC7WempxdheaYgOaAXr2rUrH3/8\nMVWqVGHatGns378fjUZDt27dWLt2LaNGjQIgLS2NiIgI7ty5wyeffMKnn36KRqNB/vh+q9u3b2Nj\nY0N2tna6xIMHD/D390cqlWJjY0PdunUBcHV1ZefOnRw6dAiJREJBQQEAAwcO5PDhw1StWpXevXuX\n/4Z4BlZWZpibF1ZdMxcH3f+buzqRn5aJWpmrt4wyLhF7fx+jccrYRMyc9dehjE9GGaf/OoDF4/cA\nbHxq0Hj9bACuz1sLajW5sYnY+tUtXJeLM/npGXr5FBfjGNiYrPAI8hJTUOcoSTh5BpcOrYn7P+0V\n0yf/VUbFkh56C9v6dUx2QNtOfQOfztoTGzMbCxJuR+ves3V3ICc1i/wcw4OebRVH+u+eQNK9WL4Z\ntoWC3HyqNqmNfXVnOs5/EwBrVzskUglycznH5n9ptPx/o9y4ROwb1NH9bao+la2MBGzql1BHiolx\n7fYqWWH3yb4XoX1TIkFTUPLV49y4BGz9inw2E+Uai7GqVR2LKu7Ufm8MAGZODkikUqRmZqhylMit\nLWn0sfbhFWYujtRdMp0H2z8n+exF3br8Jvaj6qtNAJBbW5J+t/CedEs3R/LSMlEp9etjdkwyTv7e\nRuOqdW5OyJr9aApUFGTmEPHTH3i+1uIfdUBViXGY+/jr/pY5uaLKTEOTq39vnszZHZfZGymIekDC\nBxPR5OdiVqchcrdqOARN08Y4OINUikRhRsqulcWWW5a68GSf1Hr3yT5xRCKTIjU3I2ztNgBcOrUj\n4eiverM4KmMO2jISsSvy3TNzNZZH8TFur7Wlzsx3uPvhp8Sf0N4mILO2wrGZP4mngwHIvHOfrLAH\nWHvX1HVAvccNxLV9c0BbNzPDCh+69qQNUD19TIlNxL6B4THl6bii5DZWVB/Qlfuff1/4ogQ0j4/D\nhZ+zcuyTogoS4rCoWzhdWO7sgioj3eA7Uhxzrzogk5FzLaTUy1TktjB3cSz8fyPHguKOF8q4RIPl\nn4xCShRy/BZNxrq2J5feWYAyRn8qstc7g7H19cLnPe2zIV7UOU5x5HbWxB77gwd7v6fLhW/Jjwqn\nIFb/OSIV1W4KLwfRTa9gdevW5dGjR4SGhtKhQweys7M5deoUXl5e+Pj4sG/fPvbv30///v2pV68e\nXl5ezJw5k/3797Ns2TK6d9fOt2/QoAG7du3ixx9/5NatW/j4+BAaGoparSY7O5uwMO0T/7Zs2UKf\nPn1Yv349LVu2RPO40e3evTtnz57lxIkTlb4Dmp2dR0pKNikp2s62vX8drB7fwO/ZvwvxZy4aLJN0\n4YrJuITTl6jWqxMSmRS5jRXuXdqQ8HswufHJ5ETF4f74KXDOLQPQqNVkhj3E0tOdZjuWEP6f77QF\nPL6amBIcgl2Dulh4VgGgSr9uJJ0J1suluBjXTm2pOXowoD1IuXZqS+rfV1HGxJNx6x7ur2sf7KBw\ntMeuYT0ybpl+0ujZzf9jb6/V7O21mgMD1lO1SS0carkCEDC0HWEnDadZW9hb8dZXU7l77Ar/nfIZ\nBY/vqYu+fJ9P2i3UrS/kyzPc+t/fL1XnEwrryZMHQlTr15UEI/WpLFKDQ7BtUE+3/z36dif5j+BS\nx1jVrkGNt4fC4w5glf6vk/hLydPZDNfZjeQzJZWrjcm4fpuLb44lZPQ0QkZPI/aHYyT88gdha7dz\nf+se/hoyWfdeXmIKd5Zt1Ot8AtzYeYSTgxdzcvBifg36AKdG3tjUcAfAa0Anon+7bJBz3LmrJuNS\nb0bg2bUlABK5jKodmpAUWvyTd01Rhp7HzMcfuUd1AGxeexPlJf0REam1HW5LPiEn+FeSti5Ak689\nAcy7e5WYyT2JmzuMuLnDyDz5HdnnTpTqJKosdSHj+m0uDXhb9xCV2B+OknjqD92JNYBd4wak/lX8\n7RSVIQeA5MftouXjMqr27UriU9+94mJcO7bCZ9rbhE5drut8AqBWU2/+ZOwaah/mZlW7OlY1q5Fx\n/Y4u5N6ug7oHAgWPWWh4rDh9ySDfpAuhpYorqiA7h+oDuuHWMRAA27q1sPfzIfHcFb24yrJPisq6\nfBHLen66J9k69OhN5oWzJSylz8o/gOzQv0sOLKIit0VJx4LijhcJpy9SpVfHIucVbUk4rX2v4aoZ\nyK2tuPTOQoPOJ0D47m/IuBVO2Ef7dXm8iHOc4tjV9yZg7UwkMu3zH2z7jCL7rP7FvYpqN4WXgxgB\nrQQCAwOJjIxEKpXSokULwsLC8PX1pXXr1gwZMoS8vDwaNWqEu7s7c+bMYenSpeTm5qJUKlmwYIFu\nPRYWFixZsoQ5c+Zw8OBB2rdvz4ABA3Bzc8PZWXuDe/fu3Vm3bh27du3Cw8NDd2+oubk5LVq0IDk5\nGQcHB6N5VlY3lu+k0erpSORycqLiuLZMe3Cx8/XCb8EEzgfNJj8l3WRc5OHjWHq60+qL9UgVciKP\nnNTd33l14WbqzxuP1+j+qPPyCZ2/CTQaagX1RWZuTo1BPQBo+vlG1Hn5hIybw+1VH+G3YhZShYKc\nqFhuL9+Cja83dedO5u9R08lPTTMaA3Bv22fUmTWBZvu3gEZD4pkLRH37X+3nnL8Gn+njqNK3GxKJ\nlIeffUvmLdM/JVBUdlImP8/5gj7bxiJTyEl9mMD/zdTeV+zesAbdVw1jb6/VNB72CnZVnajTNYA6\nXQN0y38TtBVlapap1b80tPVkBw1XzUCqkJMTGcf1D7aVvOCzlJGaRtjqrfgun4NELkcZHcvdFZux\nqeeD95zJXBkzzWQMwKPPvsZr2nia7N2KRCYj8bezpbr3Mj81jburPqL+itnadUbFcmefGe16AAAg\nAElEQVTFFmzqeeMz911CRk8zGfO85aZkcGnJp7Ra/y5ShZysyHiCF2rvXXf0q0WzJWM4OXhxsXFX\nNhyg8dwguh5ZjUatIf7CdW5//r9/lI86PYXkjz/AedoaJHIFBXGRJG9fisKrPk7jFhI3dxjWXd5E\n5uKBZYuOWLYofMJnwopJqDPT/lG5Za0LJbH0rEpubHyxMZUhB9B+926t3E6DlTORKLR17+YHH2Hr\n6029uRO5NGqmyRiA2hO0T8OtN7fwSZ1pV29x98NPuTZ3LT5TxyCVyVDn53Nj6WZyE4yPAOWlpHN9\n+U4C1jw5VsRydel2AOzqe+G3YDznh88pNs4ktYaQWevxnTkan3GDUKtUXFmwxeDBXZVlnxSlSksl\ndssaqs77AIlcQX5sFDEbV2HuUw+P92YRMWVsietQVPUkPy72mcqtyG1h7Fhg6+tF/fkTCR4xq9jj\nRdTh41hW8yBw/wakCjlRR06QevkG9o3q4fpKc7L+n737jquq/h84/rqLvWQj4kRQBNyomVamlTa1\nzEFiWZkj9565cptWNi3L1Eot+6ZNR8OJ4kJw40AB2Qiyx72/P65cuDJEkWG/9/Px8PGQe9/nfN7n\ncz6fc/ic8zmHyBjafb7AUFbERxtIPhRaRh5V9ztOWZIPnSSxtQ8dN+r/LEr+9Uhu/mp8wbmmjpu1\nnU5bO94yW9spdLq7mIMh/tPmzp3LE088QadOJd9GWZqEhIq9gbUqOTlZs7ND+X+Cpqr1OLSZPZ17\n12gOAF33/8SyJiNrNIdJFz+igI01mgOAikB2d+xbozk8HryF/V1Kfya4OnXe+zP7Hn6hRnN4eN//\n+KHV4BrN4aUT6wC41r/k25+rk8f3ITXeLjrv1b+Epzbk8c9DL9ZoDo8e+JEdAf1qNAeAJw5vqhX7\n49yzj9w5sIp5b/+3VtRFTZ9DQH8eqQ2/49T0cRP0x84HQdZcxzsH1TDzdxLvHFTFZAquAGDIkCGk\npaVVePAphBBCCCGEEHdLpuAKANauXVvTKQghhBBCCCH+42QAKoQQQgghhBCVJc+AVohMwRVCCCGE\nEEIIUS1kACqEEEIIIYQQolrIFFwhhBBCCCGEqCSdTqbgVoTcARVCCCGEEEIIUS1kACqEEEIIIYQQ\nolrIFFwhhBBCCCGEqCyt3NurCKklIYQQQgghhBDVQgagQgghhBBCCCGqhUzBFUIIIYQQQohK0mnl\nLbgVodDpdLqaTkIIIYQQQgghHmQZ091qOoU7slx4vaZTkDug4t4lJNys6RRwcrJmd8e+NZrD48Fb\najyH2pJHbcihMI8CNtZoDioC2dnh5RrNAaDHoc01vk8eD97CjoB+NZrDE4c3AfBru4E1msfTR76t\nFfsDqPH2WVva5qFHn6nRHAA6/PNLrdgfNd0/QN9HakNd/Nu5T43mAPDI/q383n5AjebQM+S7WtMu\nRNXTarXMmTOHc+fOYWJiwoIFC2jQoEGJuFmzZmFra8vEiRPvqRx5BlQIIYQQQgghKkmnU9T6f+XZ\ntWsXubm5bNq0iQkTJrB48eISMd9//z3nz5+vVD3JAFQIIYQQQggh/p87evQoXbp0AaBVq1aEh4cb\nfX/s2DFCQ0Pp169ys5pkACqEEEIIIYQQ/8+lp6djZWVl+FmlUpGfnw9AfHw8H330EbNnz650OfIM\nqBBCCCGEEEL8P2dlZUVGRobhZ61Wi1qtHy7+8ccfpKSkMHToUBISEsjOzqZx48b06XP3z0vLAFQI\nIYQQQgghKkv7YE8ubdOmDX///Te9evXixIkTeHl5Gb4LCgoiKCgIgK1bt3Lp0qV7GnyCDECFEEII\nIYQQ4v+9Hj16sH//fvr3749Op2PhwoVs376dzMzMSj/3WZwMQIUQQgghhBDi/zmlUsm8efOMPmvS\npEmJuHu981lIBqBCCCGEEEIIUUk6bfl/5kToPdgTlYUQQgghhBBCPDBkACqEEEIIIYQQolrIFFzx\nn1Lvpadw7/ME6HRkRcdxZtGn5KWk3dU6zOu54j35TUzsbFBq1MRs383Vb38BwOGhNjQZMRClRkN6\nRCRppy4A0GHjinLL8xwdhEu3TuSlpQOQeTWG8Jkr72kb7QP88Xx7EIeDJhVtd9+nAAj4ZhkZV6I4\nt/xL8m+V1XzWSDIuXuXqt9vvqbzSynTt2ZX6A541fK+2ssDU2f6e11/o9vo98+4nFGRmVXq9d0un\n0zFj2jY8mzox5PWH7nLpuihpBYD/wnGcevdTCjJKboNj59Z4Dh+I0kS/rYY4pQLvsYNx6NAShUpF\n5MbtRP20EwALD1d8Zg5HY2tNQWY24XNXkxkZQ8Og53Ht0dmwblNnBzQ2lmReiwVAZWGOeV1nWq2a\nwb5nhgLl1LVSideYwdjfKv/qt9uIvlW+uYcrPjNGoLG1Jj8zm9PzPiQzMgYAv0UTsPJsSEFWNgAp\nR8O58P46VJYWADz80weYOtYBhYLUsAscn7i0zHppOmIAShMNNyOucmpB8XoJwrGjPq8rG7cTtXUX\nAJaN3PGZNhSVhRnodFz46DuSgkMBqNe7O/X79TSsX2NrTV7qTQCcO7fC++3+KE3U3LxwjZPzPye/\nlJzKilNbmuM/eyhWDeuCQkHUr3u5tE7fzzQ2lrSY9CpWjd0xsbMGHRTk5Bj2x+3turr2h8NDbQxl\ndtuzgX97vlnl7bM4j349qff84xwcOBGAgA3LUWo0ZFy6iqmLI/G7Dhgdq+6lXgqZuTkT8PUSjo+Z\nz82zl2gw6AVcivUTjZ1Nie2269gOjzcHo9BoyLx0hctL3y+xr8qKaTp3GqbuboY4U1cXboaGc37G\nfOw6BdBk2jhy4hMM358eNQX7Lp1wffkFADquX2o4lu59dji5yalG5Vo18cB7whDUVhag1XJ68efc\nPHu5xDaUR2Nnje87b2Pm5qRfx6LPSQ07b/i+2y8fkJuqP3dkRF4n+te9VdJHrBq502rBSMPyCpUS\nG8/6HJ1U8rzo+lQXGr7yrL4PZedwbsVXpJ29dN+222v0IJwf72Q4Z2bc1mYB7Du1pdGwQJQmGjIi\nIjm36KMS7aKsGKWJCZ4T3sS6uScKpYK0UxeIWLEGbW4udm18afz2qyhUSvLTbhLx/ldkRFwpd1uc\nOrfGa2RhXV8lfEHp+6SsOKWphhaTh2Dr0xiUSlLDIzi1dC3anDzs2/rQbOwrKFQq8lJvcua9b0rN\noaqOnXfTLmornU6m4FaE3AEV/xnW3o2pH/gsR96cyaHACWReu06Tof3vej0+s0YSv2s/h4MmEfLG\nDNxf6EGdtr5o7GzwmTmCsGnLCe43hoLsbBq93hfgjuXZ+XkTPmslh4MmcTho0j0NPpWmJjR+qz++\n745HoSrqunXatKDBIP0vMIeDJpF04DjNp76FRUN3Wq9+B5fHO911WXcqM/b3PYZtCXltKrlJNzi/\n/Mt7LgcoUb9ZMXF4jgys1DrvxcWLCQwZvJ4/fj91D0uboqQTWvYCkBkdT9MRA0tEaeysaTFzBCen\nreDAy2ON4ur17oGFhysHB07g0GvTqN+/FzY++hcA+M4dTdSPOzjYfzwX12ym5eIJAFz55meCB00m\neNBkQqeuQGNtwemFn3Hg5bEAtFo5ndYfzERlYX6r/LLr2r13d8w9XDkUOJ6QIVPx6Pc0Nj6eALSY\nM4aorTsIHjCOy19swm/RRMM22fp6cXT4bEO7uPD+ulufNwVAbW7GwYGT2P3wK6SeuoDXyNLrxXfW\ncEKnvsf+vuPIio4zxHn07oGFhxsHBkwk+NXpNChWL80nv0709r8JfmUKp+Z/iv/CsShUSszrOuE5\nvB8hb71jKMPrrRcBMLGzxv+dtzg6eRX/vjiRzOg4mr1dsv+WF+c1vC/Zccns6TeF/UGzaPBid+z8\n9Nvbcs4wsuOTODxyESpTE9RW5hwavhCgRLuurv2hsbPBZ9YIQ4xCqayW9mnIyd+bRoOeN5QBGLbZ\nvK4LVo3r35d6AVCaaGgxdxQKTdF19sj1/zPUx7ER76DNzjYqT21rQ+MpYzk/exEng4aRExOLx9BX\nKxxz4Z1FhL8xmvA3RnN52YcUpGdwZdUnAFj7Nuf6pq2G78PfGI02K4vEHX8R/sZoAA69Oo2cpBuc\nXb62xOBTaWpCmw9mErlhG4eCpnBp7Y/4zR1dYt/dSbNJb5By4iwH+48n7J0P8V84HqWpieH749M/\nZF/gdPYFTufU0q+rrI+kX442lLMvcDqJwWFE/7Gf2L9DjNZtUd8Nr1GvcGzMQoIHTebyV1vxXzKx\nRA6V2W5bf2/CZq4yHEPDZq4yWlZjZ4P3jLc5PWMZIQNGkRUTR6PhgyocU3/wiyhUKo4OHs+RoPGo\nTE2oH9QHlaUFPu9O5tJH6zg6eDznl32Oz/wJRm22tLr2m/0Wx6esZO9LE8iKjsfr7QF3Fdfktd4o\nVEr2DZzKvgGTUZqa0OTV51FbmtNm6TjOfbCR/QOncGrxWlotGlPqumu6XYgHnwxAHwChoaEMGqQ/\nkJ0+fZouXbowaNAgBg0axG+//XbP601ISGDOnDn3Kcuad/PcJQ6+NJqCjEyUJhpMnewNdzoUajVN\nxwym/bolBKxfRvNZIw2/jN8uZttuYv/cB0BBRiaZUbGYuTpi38GftDMXybp1V+nyF1tApwMoUV5x\nCo0aK6+G1A98joD1y/BbNAFTF8e7zsu+Q0tUZqacefdjo8+tmzUmOSTM8HP8P4dwfLgtHn17cv2X\nv4nbfdA4n/tQZnENgp4nNyWV6P/tKjOmIm6v3+itO3B9skul1nkvvtt4hN59WvFUzxZ3vawCNyAJ\n0LeDqK07cH2q5DY4dGhJ6pmLhjuUxeOcHwkgevs/6Aq05N/MIHbnAdye6oqpUx0sG9YlducBAJIO\nnkBlZoq1dyOjdfvMeIvsuCRitv9t+MzGx5OwaSsMP5dX106PdOD6L38byo/btR/Xp7pg6mSPZcO6\nxO3cX1S+ub58MzdnVBbmNJsylIANy2k+cwRqGysAbP289XWjUuG/cCz1XuzBtR934vrUw6XXy+mi\neike5/xoe2J+ua1eena5tW4lGmt9eWpLc7Q5ufoVKpUo1Gqj9q3NzQPAsaM/qacvGcqK/GEXdXsW\n3R0rVF7c6eXfcOb9jQCYOtqhNFGTn56JxsYSxwA/zn++FceO/twIj2B/0EzDnaXb23V17Q/7Dv5k\nXr1eVBf5BdXWPk3sbWk+6XXOf7jBUAZA1rVYXJ/qSnZsgtFFrnutl0LeE9/g+q//kJda+gwYz9FB\nJB08YfSZbfs2pJ+9QE60/g5Y3LbfcOj+6F3HKNRqmkwbR+TqNeQmJAJg1aIZNm1a4vvZKpp/sARr\n/5LHl4aFx9KfSh5LHTq0JDM6jsQDxwFI2HOEkzNW3ipPhdfYwXRYt5iOG5bSYtYIVJYlj+kKlRKn\nh9sQ/bN+/ekXIsm8dh3HTq0Mg57GrzxNl28X0WbpWNyefKjK+khxdVp54/p4AOGL1pZYtzYvn9ML\nPyU36QYAqWcuYupgh0Ktum/bbe3VkAaBz9Jxw1L8F0/AzMXBOL+AVtw8E0FWlL7vxPz0By5PdKlw\nTGroaa6uu/X7glZL+vnLmLo6Ye7hRkFGJjeO6s/fWVejyc/IwsbXu8Q2lFXXV3/cSd2n7rxPisel\nHD9DxNqfbuWjI+3cFcxcnbCo70ZeehZJIfqLrxmRMaXe1azKY6dRnZbTLsSDTwagtdyaNWuYOXMm\nObembp06dYrXXnuN9evXs379enr16nXP63ZycvpPDUABdAUFOHZtT+dtn2LXyoeYX/W/hDcMegFd\ngZaQwVM4PGgSuQnJZd5du/7rP4ZfYO07tsLWz5uk4BOYOTuSHZdoiMuJT9JPhYIS5RVn6mhPytFw\nLn78LYcHTSI1/AItl06+67wS94Rw4f11hmm8hdJOR2Df1tfwc91nHkNpouHy2h+I/WNPifXcjzIL\naWytqT/gWc6v/LrU7+9GWfVb1uC4qsyc3ZPnXvC/x6Ut0FF0Es2JT0JjZVHilyIzFwdy4pJKjTNz\ncSAn3vg7U2d7zFwcyUlIMVz0AMhOSMas2NRny0b1sPHxJPlIuFF5So2avJsZReWXU9dmzg5kx91e\nvgOmzg4lys+JT8bU2QETexuSQ8I4u/gzDgdNpiArG58ZwwF9nwSI3X2Q4+OX0GBAL6ybNSyzXrLj\ny66X4nllxydj5qz/RfHM0rU0evV5um7/mLarZ3JmyZfoCrRkRcVxZcN2Ht5SNOMg4qufATB3sSfr\ntvVprCxQ35bTneJ0BVpazRtB101LSDp6hvTIGCw8XMlJvEHjV3rhPfJlbH2aYNOskeG4cnu7rq79\nYebsSPrFq0Ubp9NVT/tUKvCdN5rzH64nJyHZUAaAZZP6ePTrxal5q1Fq1ChNNJWqF4C6z3VDoVYR\n8/NuSmPZqB5OXdtz8fNNRp+bODsaBowAuQmJqK0sjfZVRWKcevUgNymZlH1FF//y024S99OvhL81\nlmtr1tF0/gxMnIwHOg0GPsO5974uNWeL+m7kJt3AZ8YwOny9iDYfzkShUgHQaPAL6AoKODR4KsGv\nTCYnMaX0O9u21qBQkHej6EJpYZsxdawDwNmPNrF34DRuhEXg+epzVdZHims+NpDzH28udbCTfT2B\nxP3HDT97jxlMwt4j6PIL7tt2pxwNJ+Ljbwl+ZTKp4edpuWyy0fKmzg7kxBdrhwlJJfZ5eTEph0PJ\nuqYfmJq6OOHe7xkS/jpA1tUYVOZm1AnQX4yxbuaJZSMPTBzqlNiGQqUdB0vbJ+XFJR4KI/OqflBo\n5upIwwE9id0dTObV66gtzHDs4AeArU9jrBvXK5FDVR47iyuvXdRqWmXt/1cLyDOgtVz9+vX58MMP\nmTxZf0AMDw/n8uXL7N69mwYNGjB9+nSsrKxKXfbDDz8kMjKSlJQUbty4QWBgIDt27ODy5cssWbIE\nR0dHxo8fz+bNm3n22WcJCAjg3LlzKBQKPv74Y6ytratzU++bxD0h7N0TQt3nH6f1qpkceGkUDp3b\norG2wD5AP7BQatTkpqSWux7XXo/QdHQQYdNX6K++Ksue17/3qdeNyjP6Jex6PKHjFxl+vrpxG42G\nvIiZm/M95XW7GyfOcOnLLfjMGE77rxYT88tf5KXeRJuXX2r8/SizUN0XupOw9wjZ1+PvaXkjZdSv\nTqut/LqrTRnbUHDbNihKPwHoCrSl14NWC4o710/9/r1IDb+ALr+g3Ljy6lpRyne6gtI/L/wu7VQE\nYVOXGT67tGYzXX5bg0Kt5spXP9LkLf20q5yEFKK27sblkfb6wNvqpawyKKNedFotShMN/u+OJXze\nJyTuO4atb1Nar5hM6umLWDVyx+WxAPY8O4JH/1wDQMt3hnFk/HJQlrMPiqtA3InZH6Na9CVtl46j\n6Rt9SDwUhkU9Z/LTs7i69S+sm3jgM/4VMm790leYe1EZ1bM/ynpurqrbZ9MRA7lx/AzJh8Oo08bH\nqIwW74zi1Oz30Wbn3IovOnbeS71YezfCvfcTHB02u9RlATz6PU3UD39QkGF8x0VRgT5WkRjXvi9w\necVqo+8vzF5o+H962GnST53Fpm1rEv8outuZsOcI2dcTKI1SrcLxodYcGTGXtFMROHVtR+uV09j7\n/AgcO7dFbW2Bw61jukKjLjGFF/RTrsvKvbDcjEj9QOnS+l/wGvYS6lIuAN6PPnLh8x8BqOPfFBM7\na6L/OFDqOgxFmJniO3sEpi4OHB+jr8v7td3Hxy02fBa5YTuNh7xY4eXvJsbKuzEtFk4h5sffST5w\nFIDwqYtpNHQgjUcMJjX0NDeOhqHLL/3crS+ooueYO8fZNGtEm2Xjidz8Jwn79IP8oxOW4zWiH96j\nA0k+fpakkFM4d2ljvJIqPHbebbsQDy4ZgNZyTz75JFFRUYaf/f396du3L76+vnzyySd89NFHTJky\npczlzczM+PLLL/n888/5999/+fTTT/nxxx/59ddfGTx4sCEuIyODp59+mlmzZjFhwgT27NnD008/\nXaXbdr8EfKP/RSvjchRRW/8kNfQsADHb/6bZ5KGorS1RqJScX/mVYcqVytwMpYkG62aNaT59uGFd\nhS/Z8RwdhPNjHTk+aj7pF64AkBOXiFuvRwzlZccmkJ+eabgLWry8/GJ3DK0862Pl2fC2u5EKdPn5\nd51XaVQWZtw4flq/VpWKen2eRGlqYpRDcfejzEIu3R/i/Htf3TGuInLiErFt0dTws35Kc7rhF9Pa\nSoE/Ctxv/aQBblD4K3RZ25Adl4itb9HzasXjsmMTMXGwM/ouOz6Z7DjjzwHMbn0HgFKB82MduLT2\nR+zbGk/vy0tNL5qWSvl1nR2XaLgbUvhdTnxSibyKf2fXshlqGysS9x7R14lCgUKhoP3aRYZn/UwL\nl1WAQq0hLzWdgtvrJTYR2xYl66UgO4fs2CRMHY3rJSc+CasmHqjMTEjcdwyA1PALpF+6hp2vJ3Xa\n+JCw5yi5xV4M5vxwKx7euBCNpQVpxe4GmjnZk1tGTna+TUqNc+zoz82Iq+Qk3qAgK4eYPw/g2i2A\nqF/0fT3qlz24dG2DnW8TUk6cx65Fk6L9Uaycqtwfjd/sh9OjASiUKuo+85jxHVBFyVzg/rdPt55d\nyU1JxfnRAFTmZpg62VOvd3cA1NYWtJg3BoVahU6ro95LT6EyNeHSmk33VC+uPR9BbWlOuzXv6j93\ntKfF3DFErF6vb59KJc6PdeDwqyXPmznxCVg1L5r+aOLoQH7aTeN9dYcYC8/GKFQqbp4oeixCZWWJ\ny/O9iNm4BQD31wKxbtkCiyYNMXVzIfor/VTEmF9KzqAxlJuYQsaVaNJORQD6warP9GFYuLugUCk5\n997XxY7ppihNTLBp1hifGcMM6zj06tRbdW5J/q0ZEabOdfT9yFP//K3XWy/h3FU/4FBq1PoXaBXb\nn/erjxRy69GJ6F/3Gl20Bf0LmQAS9h4h+ufdtFoxhYwr0RwdMRdtjn4a/f3abuumDbj++95ipRsP\n3rJjE7D2KdYOHR3Iu61d3CnG6fHONJ04lIj3viB+562yFAoKsrIJHVV0saTdxg/Iiiq6UAXQ9K2X\ncO7aVr8NlubcjLhWVE5Z+yQuCbvb+nDxOLcenfCZMoTTy77i+p8HjPI5PGy+Ybkum5cDxu2iKo+d\nhcpqF+K/o3bchxUV1qNHD3x9fQ3/P336dLnxPj76q83W1tZ4euoPRra2toYpvaXFurm5lfp9bVX4\nUonorX/iO3+sfroN4Prkw6Rfukp+WjrJwSeo91JPFGo1KBQ0m/YWTUYM5ObZS4blCwdcXuNfo06r\n5oS8NtUw+ARIOhSKxtqSsBkrOBw0ifyMLKNnloqXV5xOq8Nr/GuYuTkD4P7iE6RfjCQnIfmu8iqL\nqaM9bT6eY6iLlGOnjZ7/u939KBP0J3OLeq6knjx3x9iKSDoUiq1vU8w9XAFw7/0ECXtr/4sHdJxE\ny++3/v0JOAL6NlivTw/iS9mGwm21uLWtxeMS9hzB/dluKFRK1FYWuPR4iIR/D5MTn0xWdBwuPfRv\n5XXo0BKdVkt6hP4XAasm9clPyyD2z31G6wZK1GN5dZ2wJwS3Zx8rVn5nEvaEkJNwq/zu+vLtC8u/\neBWVhRle44cYnvus/8pzxO06wOGgSYb2YevbFOvmjXB/rhugI37PkVLq5WTJerkVF7/nCO7F8nLt\n8RDx/4SQeS0WtZUFtn5eAJi7u2DZ0J20c1dIO3cZx4dbozI3LSoj5DT7Aqez/7XZ1ClWVv0XHyfu\n36MlckoIDiszrm6PDjQdqr9botSocevRkaQjp8iKSSD1zGXqPdNFv7y/F/atvUk9c6na98elNZtI\nPHCMuJ37CHljuuGlUABKtbpa2ueep98i+BX9C15OL/yUrOhYDr02DYDjo+dzOGgSiXuPkBUdy7Xv\nf+HSmk33XC8XVn3NwZfHGI5jOYnJnHrnfcPFEasm9clLyyj1TmNqyHGsfLwxda8LgMtzvUjZH3xX\nMTatfEk7Hmq0TEFmFi4vPEOdrvq6Sdl7EF1uHuFDxxL91UZUVpYA3Dh5nrIkHjiOuZsz1s30z9Ta\ntWquf9t7TDxJwaF49H0KhVoFCgU+04fhOWIgaWcvGV6sEzxoMroCLYkHjhsG/1ae9bFsVI+Uo6cM\nd56vbf+XfYHTufbTX9w4cwkbrwZV0kcK2bdpRuLhki98K8w58vtfaffpXOL/PkzYzPcNg0/gvm23\n9/jX9G/HBeq9+ATpEZFGuaQcDsWmhRfm9fRvOK7b+wmSbus35cU4PtoJz3FvcHLcvKLBJ4BOh9/y\nGVg10w/SHB/rhC4/v8RbcC989gP7A6exP3AaB1+bjZ1RXXcv9ViaGHyyzDjXbgE0nziYkFGLigaf\nt/Jpt2oKNs0b6+Me74D21mya85/9YHgxUFUeOwuV1S4eBDqtotb/qw3kDugD5vXXX2fWrFn4+/tz\n8OBBWrQo/0UpZU0XqmxsbXQj9CxXvt5Km4/noCvQkpOYzMnJ+ruVl7/6kaajBhHwzVIUSiXpF65w\n4f2Srxc3dXag3ktPkR2bSOsPZhk+v7bpV67/+g+n53+M38IJKDVqsqLiuLhmM16jgwj4ZplReYV3\nEw8HTSLj0jXOv7eWlsunoFApyY5PJnzW+3eVV3kyr8YQ+c3/8J74Oh03vU9q6FnOrSj7jbT3o0zQ\n/7manMQbhmf8KisvJa1E/Z6at/rOC9YqOWgJRon+5RNWTeoTPle/DYVX5YMHTb61rZ/gv2g8CrWa\nrOg4Q1zU1h2Y13Oh44ZlKDVqon7aRcrxMwCEzVxF82lv0fi1Pmhz8zg5faXhCrGFhxtZ1+NLrBvg\nwgffYOfvjcpM/9bH8uo6eusOzN1dCVi/HKVGTfRPOw132MNnraT5tGE0fO1FtLl5hM94D3Q6kg6e\nIGrLb7T7fD4olGRcvMqZRZ8CcG75l7h0fwhtbh4Ba+aTfzMDtYUZYUv1bdSmeXW8N7oAACAASURB\nVGN8ZrxF8CtTyE1J49T8T2i5uLBeYgmb85G+Xn7cgYW7C502LkWhNq6XE5NX0GzCqyhNNOjyCzi9\neA1Z0XFkRcdh7uZEx2+KptiFztXnlZuSRui8z2i7ZAxKjZqMqDhC39G/sdS2eSP8Zr7JvsDp5cad\nXrkRv+mv03XTEnQ6HXH/HOXyd38AcGTie/hOeY36fbrr7z4rFLSaO9ywP4ofI6prf+TfzOD0/I9p\ntXK6vjKUCs7f6vtV3T5vV/jnqopvc+qZi5g6OxDwzbJK1Ut5LDxcyY4t/ZGB/BupXFzyPk3nTkOp\nUZMdc52LC9/D0tuTRpP0b64tK6aQmXtdcm5fv1bL+ZnzaTB6GPVeC0RXUEDE3CXk33pBktmtwezt\nx9Li+yQ3OZUTk5fRfNIbqMxN0eblEzp1OdrcPC6t/QGv0UF0XK8/pt+8cIXzH5R+TD+79At8pg+j\n07dd0OkgfM5q8jOyyL+kv6vWfuVEFEolWfHJHJv8PtaeHlXWRwAs67uSVca0YwCPPk9g5uKI86MB\nOD9adIfs6Mh59227z674itYrpoBSSU58MmGz3qfLtk8My+bdSOXcwtX4LJiEQqMmOzqWs/M/wKpZ\nE7ynjuDoqxPKjAFoNEz/jgXvqUVvoE49eZaI99ZwZs5KvKYM1z8Kk5jCqWlLyqwL0B+3wuZ9SuvF\nY1Fq1GRGxXFyjv4lgTbNG+M38032B04rN85rZH8UCgV+M980rDcl9Dynl35F6KzV+M14E4VGTU5i\nCscmreDR/71fIoeqPHbCnduFePApdDq5v13bRUVFGZ7VPHXqFPPnz0ej0eDo6Mj8+fPLfQbU0dGR\nAQMG8N1335GYmMioUaPYtWsXe/bsYejQoYb1duvWjd9//x1TU1OWL19O48aN6dOnT7l5JSSUfONr\ndXNysmZ3x741msPjwVtqPIfakkdtyKEwjwI21mgOKgLZ2eHlGs0BoMehzTW+Tx4P3sKOgH41msMT\nh/V31X5tV/IlJdXp6SPf1or9AdR4+6wtbfPQo8/UaA4AHf75pVbsj5ruH6DvI7WhLv7tXP7vQNXh\nkf1b+b19yT+zUp16hnxXa9rFgyB1bKM7B9Uw21V39/eDq4LcAX0A1KtXj82bNwPQokULvv/++wot\nN2rUKMP/BwwoOoB1796d7t31U1EK1/vXX38Zvp848e7/xpYQQgghhBD/n+l0D/ZswuoiA9D/gLff\nfpvUVOM3v1lZWfHJJ5+UsYQQQgghhBBCVD8ZgP4HrF79oD0nJ4QQQgghhPj/SN6CK4QQQgghhBCi\nWsgdUCGEEEIIIYSoLK3c26sIqSUhhBBCCCGEENVCBqBCCCGEEEIIIaqFTMEVQgghhBBCiErSaeXP\nsFSE3AEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU6m4FaE3AEVQgghhBBCCFEt\nFDqdTlfTSQghhBBCCCHEgyx5hFdNp3BH9h+fr+kUZAquuHcJCTdrOgWcnKzJDn+sRnMw8/2bX9oG\n1mgOAM8c3cjujn1rNIfHg7ewv8vzNZoDQOe9P7Ozw8s1mkOPQ5spYGON5gCgIrDG81ARyB8B/Ws0\nh6cOfw/A1tZBNZpHn+Pf1Ir9AdSKPGpDP63ptgn69lkb9se2WnAue+7oxlpRFzV9PgX9ObU29JGa\nPm6C/tj5IJC34FaMTMEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU7u7VWE1JIQ\nQgghhBBCiGohA1AhhBBCCCGEENVCBqBCCCGEEEIIIaqFPAMqhBBCCCGEEJUlf4alQuQOqBBCCCGE\nEEKIaiEDUCGEEEIIIYQQ1UKm4AohhBBCCCFEJel0MgW3IuQOqBBCCCGEEEKIaiF3QMV/1p6j2Xyw\nIY3cfB1eDTTMGWGHlUXRNZft/2Syfnu64eebmTrikwrY8bkLapWCBZ/f4NyVPMxNlTzfzZyBvawq\nXLbzw61o9nY/lBo1aRHXODlvDfkZWfcU13bZWHISUghfuk6/TJfWtJo7jKzYJEPMgTfmARCwYTlK\njYb0iEjOvPsJBZnG63J4qA1NRgwsGaNU4jVmMPYdWqJQqbj67Taif9pptKzbM4/h9GgAJycuMXzm\nt2gCVp4NKcjKvmOd1OnUlgZvBaHUaMi4eIWIxR+WyK+8mIDt35CTULTNMd/9j4Sd/5a6PID/wnGc\nevdTCkqpd8fOrfEcPhClib4eDHFKBd5jB+Nwqx4iN24n6lY9WHi44jNzOBpbawoyswmfu5rMyBga\nBj2Pa4/OhnVr7GxQW5rdVqIdSrqhZesd66mQTqdjxrRteDZ1YsjrD1V4ufutqvJw6twarxH9UZpo\nuBlxlbAFn5W6r+4UZ+bsQMe189kfOIW81JsAaGwsaT7xNawauaM0NeHSV/8rNQfXh1vSYlRflCYa\nUi9c49jcL8jPKNmWy4rrsOxtLD1cDHGWdZ1IPHaWg2NX4diuOX7j+qNQq9Bm5xK6dAMppy5Vttr+\nc+2izL5Y0bhy+mwhMzcnOq5bwrHRC0g7q98H7r27U79fLwBaL5tI+ILPDO2nqtqmZSN3Ws4fZfhe\noVRi7Vmf45NX3HP9FaqqduH8cCt8ip2jTpRzLrtTXPtlY8lOSCHs1rnMoZ0PLcYNRKlSkZuaTvjy\n9aRduFrpnO9XXZR5vqxITDnnVOvmTfAa9yoqMzMUSiWRG/5H7B97aTDoBVxuO5dA1fYRm+ZN8B43\nGJW5GSiVXFn/M7F/7AWM+0jHlWM5NvcLcm/of2d6EI+donaRO6C1xNatW1m+fLnRZ+PGjSM3N7fM\nZTp37lzmd7fr1q0bOTk5Rp/t2bOHTZs2lYh9+eWXiYqKqvC6a6Pk1AJmr77Bikn2bPvQBXcXNe9v\nSDOKefZRCzavcGbzCmc2LnHC0U7J1DdscbBTsezrVCzMlPy0ypkNixzZfyyHf4/ceZAFYGJnTct3\nhnJ00ir+eXESmVHxNBvV757imgQ9g31rb6PP7Ft6cWn9r+wdON3wT2WiASBs2nKC+40hKyYOz5GB\nRstp7GzwmTmi1Bj33t0x93DlUOB4QoZMxaPf09j4eAKgtrHCe/KbeE8YggLjqSW2vl4cHT6bw0GT\nOBw0qcw6UdvZ4DltNGdnLuZY4AiyY2JpMCyowjHmHu7k30wndMg4w7/bB5/FlwfIjI6n6YiBJXLR\n2FnTYuYITk5bwYGXxxrF1evdAwsPVw4OnMCh16ZRv38vbHyaAOA7dzRRP+7gYP/xXFyzmZaLJwBw\n5ZufCR40meBBkzkyfA4F2dmcnLHqVmkKFDRDSTfu5nrfxYsJDBm8nj9+P1XhZapCVeWhsbPGd9Yw\njk9dyd6+48mMjsd75IC7jqvbqwsdPp+DmbO90XJ+s4eTHZ/MgUHTCHn7XZpPGFxi3SZ1rGkz902C\nJ33Izt5TyIiKx3d0Kf20nLhDk1bzV/9Z/NV/FsfnrSUvPZMTi75BoVYRsGQkx+at5a9+Mzn7xTba\nLXirstX2n2wXZfXF4u61zwIoTTT4zR2FQlPU/8zcnPAc1p8jQ2cDkHU9Ac+hLxnKqqq2mXE5mgOv\nTDX8Szx0kpg/9xP3T0il6rCq2oWJnTWt3xlKyKRV/PXiJDKi4mlexrnsTnGet53L1FbmtF82ltOr\nvuOf/tM4uWgt7RaPQqmp3H2R+1kXZZ0vC93rOdV/0UQurdnM4aBJnBj3Lk1HD8bcw5XI9f8znEuP\njXgHbbb+d46q7CP+iydwcc0WggdN5vi4hXiPCcLCw7VEH8mMSaD5sD7Ag3nsrE46raLW/6sNZABa\ni61cuRITE5MqW3/Xrl3p16/kQeO/4GBoDr6eGhrU1Z/MXn7Sgt/2ZqHT6UqN/+p/6djbquj7hCUA\npy/m8cwj5qhUCjQaBV3amrHrYMkrjqVx6uTHjdOXyLgWB0DkD7tw71nyYsGd4hza+eD0kD+RP+42\nWq6Of1Mc2rfg4Q0L6PTFLOxbN8Opkx8AWddiAYjeugPXJ7sYLWffwZ+0MxdLjXF6pAPXf/kbXYGW\n/JsZxO3aj+tT+u9cHu9EblIKFz5cb7Q+MzdnVBbmNJsylIANy2k+c0SZdVKnfWvSz0aQHXUdgNj/\n/YFTj0cqHGPt1wxdgRbf9xfQ6uv38Xi1HyiV5S4ftXWHYRuKc+jQktQzF8m8VQ/F45wfCSB6+z+G\neojdeQC3p7pi6lQHy4Z1id15AICkgydQmZli7d3IaN1eoweRdPAESQdPFNY6YIeWvWXWTWm+23iE\n3n1a8VTPFne13P1WVXk4dvAn9XTRPrj2407cnnr4ruJMHevg/Eh7joxbbLSMxsYShwB/Itb8AEBO\nfDIHh8wqsW6Xjr7cOHWJjKv6/nd5y1949Ox0T3EKtYq284dyctlGsuKS0eUX8PuTY0g9FwmAZT0n\nclPTS6z7bv0X20VZfbG4e+mzhZpNep2YX/8l70bRBUiFSolCrUZlaQ6AyswEbW4eULVts7g6rZrh\n2q0DpxZ/UcGaKltVtYvbz1FXfthFvQqcy26PKzyXXSl2LrP0cCU/PZPEEP1AMf3KdfIysqjj37RS\nOd/PuijrfFnoXs6pShMNl77cQkpIGAA5Ccnkpd7EzMnBaN2eo4MM55Gq6iNKEw2XvthCcmEu8cnk\npt7E1NmhlD5iaugjD+KxU9Q+MgW3FgkNDWXIkCEkJyczYMAAPvvsM37//XdiY2OZOnUqarUad3d3\noqOjWb9+Pbm5uUyYMIGYmBjs7Oz44IMP0Gg0Za5/9uzZREdH4+DgwJIlS/jtt9+4dOkSEydOZOXK\nlezduxdXV1dSUlKqcaurRmxiAS6OKsPPLg4q0jN1ZGTpsLIwvvqTklbAN9vS+X6Zk+Ezv6Ym/PJv\nFq2amZCXp2NXcBZqVcWuGpm5OJAdm2z4OTs+GY2VBWpLc6MpSeXFqcxNaTFxEIfeXkKDPt2M1p+b\nmk70b/uI/fsIdVp50X7FeCK3/m0UkxOfhNrKApWFuWHKkJmzI9lxiaXGmDk7kB2XZPSdlWcDAMO0\nIbenHzUqw8TehuSQMM4tW0NuShpe414ts05MnB3JLV52QiJqK0uj/MqLUaiU3DgSypWPv0JpaorP\n0lnkZ2Ryfcv2ssuIT0JjZYHK0tx4WpyLAzm3bWthnJmLAznxt9dDfcxcHMlJSIFiFzCyE5Ixc7bn\n5rnLAFg2qofTI+3Z36doih0koSMJsCyzbkozc3ZPAIKDL9/VcvdbVeVh5uJAdrF6zi5nX5UVl5OY\nwokp75VYt0U9V3KSUmgY+DROnVqhNFFzecMvJeLMXR3IjCvqf1nxyWisLVBbmhlNJatIXMPej5Cd\ncIOYv48a4nT5BZja29Dtu3mY2FlzeMpHd1tNJfwX20VZfbGyfRbA/bluKNQqon/eTaNXextisqLi\niNywjc6b9TMV7Nv4EPz6LENZVdU2i/Me/QrnP9lU6lTKu1VV7cLcxYGsCpzLyotTmZviN3EQB99e\nQsNi57KMq7GoLMxw6uhHQnAYdj6NsW5SDzNHu0rlfD/roqzzZWXOqdrcPK5v/8vwed3nu6MyNyP1\n1AXDZ5aN6uHUtT0HXhyFR79eVdZHtLl5xGwv+t3B/YXH9bmEn0ebk2fURxzbNuPfwfpHfR7EY6eo\nfeQOaC2iVqv58ssvWb16NevWrTN8vnTpUoYNG8b69etp06aN4fPMzEzGjRvHd999R3p6OmfOnCl3\n/QMGDGDDhg24u7uzefNmw+dhYWGEhITwww8/sHTpUjIyMu7/xlWzMm503n7TDIAfd2byWHsz6rkU\nXY+Z8KoNCgX0m5jAuKXJdGppSkVnBikUpQ9UdQXaCsWhgDaLRnFqxXpyEm+U+PropFXE/n0EgJQT\n50k5eQHLBq6ll6ktVqayjLy0WhSlfHd7vrdLOxVB2NRl5CbdAK2WS2v0bUqhLllRpa3/9vzKi4nb\nvpPL769Bl5dPQXoGMZt+xqFrx4qVcft2KEo/7OkKtKXXkVYLZe3TYvnX79+La1v+LPX5KGFMUVpH\nBLi9j1QwzmgZtQoLdxcK0rM49OY7hM74gGbjgkrGVbKfFo/zDHyKs2t+LhGTk5zG70+O5d/B82g7\n902s6pfeT4Wx+9Fnrb0bUa9PD84sXlPia/sO/jg/1oE9zw0HIP7fI/jNHn6rqKprm4Xs/LwwsbPm\n+p/77xhbk+7HuazdolGEl3Iuy8/IImT8ezR97Tke+W4h9Z5+mMSQ02jz8u9L7lXlfp5TGwx6gcZv\nvkzoxMVoc4oet/Lo9zRRP/xBQUZm2Xncj/NaMQ2DnqfJmy9zYuIStDl5JfrI9X+O0Xbum/qi5NhZ\nLp1OWev/1QZyB7QW8fHxQaFQ4OTkRHZ20VWkixcv0rp1awDatm3L9u36uz62trbUq1cPAEdHR7Ky\nyv7FV6PR0KpVKwDatGnD/v378fPTT9u8cuUKvr6+KJVKrKys8PLyqpLtq06ujirCLuQZfo5PKsDG\nSoGFWcmO9+f+LKa8bmv0WUamlnGDbLC11sev/ekm9d3K7i5ew17EpWtbANSW5tyMuGb4zszJntzU\ndAqyjZ/BzYpNws7Xs0ScVSN3LOo64TPuFQBMHWxRqJQoTTWcXvktDft2J+KrbUUrUijITTZ+vtXU\nyZ681HS0xcrMiUvEtkXTUmOy4xIxdaxj9F3xK6alsWvZDLWNFYl7j9xKQ3+y0WlL/gKWE5eAVfOi\ndmXq6EBe2s3b8is7xunJR8mIuEzmxUjDNuvyC6j/+kDqdG4PgNrSgozC78uoA9Bf1bYtVu9G9RCb\niImDndF32fHJZMcZfw76/ZUdf+vqrlKB82MdODR4arl19v+Z59C+OJfRR0zL7COJ2LbwvGNccTmJ\n+hkcUb/qnxHOjIrjRug5XB/XX7Do9v18ADSW5qRGFD3rbuZc59a6jZ+7z4xNoo5fkzLjbL0boFQp\nSTx61hCjtjLHub2P4ar+jbORpJ6/ik3TeuXW0f8HCvxR4G742cTRuL/drz7r1qsrKktzAr5YYPjc\nd95oLny4HvsOLUnYe4S8FP1xU2mixqlzax7asLhK22Yh1x6diP5tT9lXSmuQ97AXcS3WT9MqcS6z\nvnUua1HKuSx0wZfkZ2Zz4K13Dcs99sNSwzTe2uD2c+L9OqcqNGp8Zo3EslE9jrw5g+zrCUWFKpW4\nPtWFrOvxOHUNAKqujxTm4jt7JJaN3Dn8xkxDLk5d2hn3EY0a1y4t6fb9fDl2ivuidgyDBVD21SIv\nLy+OHz8O6Kfp3im+NHl5eYY7pEeOHKFp06KDpqenJydPnkSr1ZKZmUlERMS9pF+rdGplysnzuUTG\n6K+mbtmRyaPtb38zKaSla7kaW0BLb+NnbbfsyOSj7/UH3qQbBWzdlUnPLuZllnf+0x8NLwTa/+o7\n1PHzNLzhrcFLjxP379ESyyQEh5UadyMsgt1Pjzas7+qPu7m+I5iT878gPzOLhi/3wLWbftBl490A\nuxaNufz9HwCYe+ivErr3foKEvcYvtkg6FIqtb9NSYxL2hOD27GMoVErUVha49OhMwp7yX4yhsjDD\na/wQ1Db6twPXf+U5/RelDEBvHD6BdQtvzOq5AeD6wlMk7ztc4RiLRvWp//pAUCpRmpjg1qcXiX/t\n5eqX3xpeSnTyrclGy9fr04P4vSW3obAeLG7VQ/G4hD1HcH+2W7F6eIiEfw+TE59MVnQcLj30b1R0\n6NASnVZLeoT+jY1WTeqTn5Zh/IuEMBLx+RbDy1eCh8zCztfTsA/q9+lO/J4jJZZJOnSyQnHFZcUk\nkHrmEu5P658DNLG3xc6v6MJG4Ysv/gmai71fEyzr6/tf45e6cf2fYyXWF38wrNw4x7bNSAg5bbSM\nrkBLmzlvYN9Sf5y1buyOdUM3UsIull9J/w/oOImW39HyO0CZfbG4e+mz51eu40DfsYYXhOUkJBM+\n+wMS9h7l5rnLOHVug8rcFICs64kkHTlV5W2zkH2b5iSFhN9NtVWbc5/+yL8Dp/PvwOnsffUd7Iud\noxq+9DixpZzL4oPDSo1LCYtg59OjDeuL/HE3MTuCCZ3/Beh0dPhgErbN9c/Ru3UPQJdfcF/egnu/\nlHW+LHSv51S/hRNQW1pw5M2ZJc4ZVk3qk5OQwqEB4w0v9quqPgLQcuF4VJbmHH5jllEut/eRzNhE\nEkLOyLFT3DdyB/QBMHHiRKZPn87atWuxtrZGXcoUxzvRaDSsX7+eyMhI6taty4QJEwx3Ups3b07X\nrl156aWXcHZ2xsHB4Q5rq/0cbFXMG2nHxOXJ5OVDPVcV746qw6mIXOZ+coPNK5wBuBqbj1MdJRq1\n8WD+9T5WzHj/Bn3GxqPTwbCXrfH1rNgLoXJT0gid+xltl45BoVGTGRXPidmfAGDbvBH+s95k78Dp\n5caVSasjZPx7+E4ejNdbL6Ir0HJs2moyruhfvOO3cAJKjZqsqDhOzVuNdbPGNJ8+nMNBk8hLSeP0\n/I9LxID+5Qnm7q4ErF+OUqMm+qed3Dh+urxMSDp4gqgtv9Hu8/mgUJJxsexfHPJupBKx6AOazZ+C\nQq0mOyaWCwtWYeXtSZMpIwkdMq7MGIBrX31P43Fv0XrdByhUKhL/2U/c9p1llgH6E3n4XP322TRr\njM+MYQQPmnyrHj7Bf9F4FGo1WdFxhriorTswr+dCxw3LUGrURP20i5Tj+gs3YTNX0XzaWzR+rQ/a\n3DxOTl9puINh4eFG1vX48vedMMhNSSNs/qe0WjwOpVpNZnQcYXP0z/nYNG+M74yhHHhlarlx5Tk+\neQU+k4fg0ac7CoWSi1/+SItpbxrF5KTc5OicNXRYNgqlWk1GVDxHZn0GgJ1PI9rMHsJf/WeVGwdg\nVd+FjJhEo3UXZOUQPH4VLScF6v+UQG4+IdM/ISv+wX++/n4rqy/ejz5blpjtf2Pu5kSHdfo/KWXf\n1oewefpjb1W3TdD/SaesB+BiVW5KGsfnfka7pWNQavRt/3ixc1mrWW/y761zWVlx5Tk24yNazXwD\nhUZNTuINDk8o/7nZ6lba+bKy51Rbf2+curQjIzKGdp8vMJQV8dEGkg+FYuHhSnZs/G15VE0fsfX3\nxqmrPpeANfMN5V1YvbFEH3Fq25yjsz8H5Nh5J7XlLbO1nUJX1mtBRa2xbds2WrZsSYMGDdiyZQvH\njh1j0aJFNZ0WCQk3azoFnJysyQ5/rEZzMPP9m1/aBt45sIo9c3Qjuzv2rdEcHg/ewv4uz9doDgCd\n9/7Mzg4v12gOPQ5tpoCNNZoDgIrAGs9DRSB/BPSv0RyeOvw9AFtbl3wetDr1Of5NrdgfQK3Iozb0\n05pum6Bvn7Vhf2yrBeey545urBV1UdPnU9CfU2tDH6np4yboj50PgtjBLWs6hTtyXRd656AqJndA\nHwBubm6MGzcOc3NzlEolCxcuLDXu5MmTLFu2rMTnPXv2ZODAkn83SgghhBBCCCGqkwxAHwDt27dn\n69atd4zz9/dn/fr1d4wTQgghhBBCiJogA1AhhBBCCCGEqCSdTp4BrQh5C64QQgghhBBCiGohA1Ah\nhBBCCCGEENVCpuAKIYQQQgghRCXJFNyKkTugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQggh\nhBCVpNPKFNyKkDugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQgghhBCVpNPJvb2KUOh0Ol1N\nJyGEEEIIIYQQD7Koge1qOoU7qvftkZpOQe6AinuXkHCzplPAycmarNPdazQHc59d/NI2sEZzAHjm\n6Eb+6vRSjebQ7eAP7Hv4hRrNAeDhff9jd8e+NZrD48FbKGBjjeYAoCKwxvNQEciOgH41msMThzcB\nsKnlqzWaR7/Qr2vF/gBqRR47O7xcozn0OLS5xtsm6NtnbdgfP7QaXKM5ALx0Yl2tqIuaPoeA/jxS\nG/pITR83QX/sFP8dMgAVQgghhBBCiEqSt+BWjExUFkIIIYQQQghRLWQAKoQQQgghhBCiWsgUXCGE\nEEIIIYSoJJ1OpuBWhNwBFUIIIYQQQghRLWQAKoQQQgghhBCiWsgAVAghhBBCCCFEtZBnQIUQQggh\nhBCikuQZ0IqRO6BCCCGEEEIIIaqFDECFEEIIIYQQQlQLmYIr/rP2HMniww2p5ObpaNpAw5y37bGy\nKLrmsv3vDNZvu2n4OT1TS3xSAX9+URe1Ct79LIVzl/MwN1PwfDdLBjxtXeGynR9uRbO3+6HUqEmL\nuMbJeWvIz8i6p7i2y8aSk5BC+NJ1Rp97PPcIro+1I2TcihLrdXioDU2GB6LQqMm4eJUz735MQWZW\nxWKUSpqOHox9x1YoVEqufrudmJ92AGDXpgVNRw9GoVKRl3qTC6u+Ij0issx6qNOpLQ3fGoTCREPm\nxStcWLS6RB4ViWn27hRyE5O5tHKN0eembs60+nIFp8bNQWNvZ1gPgMrCvPRtHjEQpUZDekQkZ979\nxLDNXmMGY9+hJQqViqvfbiP6p50AmHu44jNjBBpba/Izszk970MyI2MA8Fs0ASvPhhRkZQOQcjSc\nC++vQ2VpAYCSnoaytRwD4sqsq9vpdDpmTNuGZ1Mnhrz+UIWXu9+qKg/Hzq1pOmIAShMNNyOucmrB\npxSU0kfuFGfq7ECHtQs4GDiZvFR9f67TtgVeowNRqtUUZOdydsVXpebg1qUl/qNfQmmiJvV8FIfn\nfEl+RnaF40xsLGk7Mwg77/oUZOVw+ed9XPhuFzaN69Jx0TDD8gqVArumHuwb/2Flq+0/1y4cO7fG\nc/hAlCb6Pnnq3bLbQalxSgXeYwfjcKvvRm7cTtStvlvIzM2JjuuWcGz0AtLOXgLAvXd36vfrBUCr\nZRM5teAzQ/upyrbp9HAbfN8ZSVZcoiEuZOg791x/haqqXbh2aYnvqL6oTNSkXrjGkTL6SJlxSgWt\npwbh1NYbgNh9Jzm58nsAnNo1w29cf5RqFQU5uZxYupGU8EuVzvl+1UWZZMBvtAAAIABJREFU54uK\nxJRzTnF8uC0+s94mu1gbODpsFgWZRfXq8XIv6j7/uD6+CvuI48Nt8Z090iiXkLdmU5CZjf/iCVh7\nNgDgiU3ziA85w4nl3wEP5rGzuui0MgW3IuQOqPhPSk4t4J0Pk1k+2YGfP3Kjnqua99ffMIp59jFL\nNq90ZfNKVzYuc8HRTsXUN+vgYKdi2dobWJgp2fqBK+sXu7DvWDZ7Qkoe8EtjYmdNy3eGcnTSKv55\ncRKZUfE0G9XvnuKaBD2DfWtvo880Npb4TRtCi8lBoCh5oNPY2dB8xkjCpi3jUP8xZEXH0WREYIVj\n3F/ogbmHG4cDx3FkyFQ8+j2NtY8nKksL/BZNImL1eg4PmsC5ZZ/TYsF4FJrSr2Op7WxoOn0UZ2Yu\n4djAkWTHxNFweNBdx7gP7I2tv0+J9StMNHjPGodSrUZlZWm0HgDPkSW32WfmCMKmLSe43xiyYuIM\nMe69u2Pu4cqhwPGE3NpmGx9PAFrMGUPU1h0EDxjH5S824bdoomGdtr5eHB0+m8NBkzgcNIkL76+7\n9XlTALT8bvh3N4PPixcTGDJ4PX/8fqrCy1SFqspDY2eN76zhhE59j/19x5EVHYfXyIF3HefWqysB\nn8/BzNne8JlCraLlu2M4/e7nHAyczKWvtuI39+0S6zatY03AvNfZP2E1vz8/jfToeFqO6XtXca0m\nDSA/M4c/ek9n1yvzce3sh1vXlqRdimFHv9mGf3EHTxH520Gidx+tVL39F9tFi5kjODltBQdeHktm\ndDxNR5TeDsqKq9e7BxYerhwcOIFDr02jfv9e2Pg0MSyrNNHgN3eU0XHKzM0Jz2H9OTJ0NgBZ1xNo\nMrSvoayqapsAtv7eXNm4neBXphj+FR943IuqahcmdaxpN/cNgid+yJ8vTCUjKgG/MS/fVVyDZzpj\n3dCVHX1nsLPfLBzbeePeoz0KtYoOS0dybN5advWbxdk12whYMLTSOd/PuijrfFHoXs8ptn7eRH67\nzXDeOBw0yagN2Pp702DQ84afq7KP2Pl76dvjoMmGf4W52Pk25cgw/cWRHf1mGwafD+KxU9Q+MgCt\npbZu3cry5cvv2/qmTp3Knj17jD5LSEhgzpw5JWKXL1/O1q1b71vZNeHgiWxaNDWhQV393bC+T1nx\n+55MdDpdqfFf/5SGva2Sl560AuDMxVyeftQClUqBRqOgS1szdh7MrFDZTp38uHH6EhnX9AOOyB92\n4d6z813HObTzwekhfyJ/3G20nFuPjmQn3uDMqm9LLd8+oCVpZyLIiooFIHrrn7g+2aXCMU6PBHD9\n17/RFWjJv/l/7N13dBTV28Dx79b03klooQRCILRQRKpUkZ9SBKQKiIAU6YQuoYMFxa6ggIggBBsi\nVXoJKJAQAkKAQAJJNoX0urvvHwtLlt0kGzFF3/s5h6O7+8y9z8zcubMz9+4ki8QDJ/Hs0QHr6l4U\nZmWTej4CgOyYe6izcnAIMLxAfsQpqCmZUTfIjb0PwP3dv+HWrUOZYhyaBeDUuhn3f9xnVH6d6eNI\n2HuYgrQM7Bv5GZQDGK9z6yakR0WTc/fROu8vss6tuf/L43VOOHgSz57tsXBzxqZWNRIOnAQg+fRF\nZFYW2PnVxtLLHZm1FQ3mvE6rb96m4YI3kNvr2o9DY902kdINKb2QUM/kNirOtq3n6duvKT17NSrT\ncv+08srDpXUgaVeiyX64L+7uOoBnz2fLFGfh6oR7xyD+nLbKYBltoZqjvSeQ8ddtAKyruetHn4ry\nbBtAyuVbZN7RHX83dvxOjefblinO2b8Wt385hVajRVOo5v7xcKp3DTJY3rVZfXy6tuT8sk1GZZfV\nf7FdpEU93r+xofvx7NneKMaldWCxce4dWxH38xH9sRt/4BRePR/3IQ1mjeHenqMUPEjXvyeRSZHI\n5chsrACQWVqgyS94XFc5tU3QfeF3bhlAm00rCfr8LZyaNSzjFjNWXu3Co20AqZE39W0/+vvD1Ohl\nfIyUFCeRSpFbWSBTKpAq5EjlcjR5BWgL1ezpPpUH1+4AYOPjTn5a5lPn/E9ui+LOF4/8nXMK6M4P\nzi0DCPp6NS0+DcGx6eM2oHR2wG/ma1z/cIv+vfI8Rhwb++HcshGtN62i5WdL9LlYerkhs7ai4Zyx\nALQKGYPS3gb4d/adQtUjLkD/H3NzczN5AfpfkJCkxtNFpn/t4SIjM1tLVo7xBWhquprNP2Ywa4yT\n/r3G9S3YcySbgkIt2TkaDp3OISlVY1bdlh4u5Man6F/nJqagsLVG/vDLjjlxFq6ONJo5nAsLPga1\nYb13dh3i+hehqPMKiq0/LzFZ/zpPlYzc1gaZtZVZMRYeruQVmY6Tm5iMhbsL2XfuIbOyxLlVIAB2\nDetg41sdC1dHk3lYeLiSl/i4nDxVklEeJcUoXZzwffM1roW8BxrDbeDxQlekchkJP+umESmcHQ3K\nAZDbWhuus7urwTSjvMRkfYyluwu5CckGn1m4u2Dh7kKeKhWK3LjIS0zBwt0FpbM9KeciuLrqM8JG\nzEadk4v//AkAaNVqADQcRMMRJDQAfExuJ1MWLOrF/15qYnZ8eSmvPCw9XMhNNNzeCltr/QWBOXF5\nSalcmvMOWbfijMrXqtUonR3o8Msn1J8yjFtbfjKKsfJ0Jjvh8fGXk5CC0s4auY2l2XHJETep9cIz\nSOQy5FYW+HRtgaWbg8HyTWcMIuLDXSanp5XVf7Fd5CWY1w6KizPqyxKTsXg46uj9vy5I5DLifjS8\niZcTm0DMNz/Rbsc6AJyaN+TW17v1dZVn2yxIy+Tuzn2cGTmX6x9tI3DNDH2+f1d5tQtrD2ey4w3b\nvsLEMVJS3O2fjpOfnkXv/et44eD7ZN5N4P6xi4DuZpGFsz2996+j8bRBXPv616fO+Z/cFsWdLx75\nO+cUgIL0DGJ37uPcq3O48cm3NFk9Cws3Z5BKabTkTW58uIU81ePtWZ7HSH5aBnd37uPsyGBufPwt\ngWtmYuHujNLZgZRzEVxZ9TkAhdl5BC0ZA/w7+86KpNVKqvy/qkBcgFZxGzdupH///gwaNIi1a9ei\nVqvp1q0bhYWFJCYm0rBhQ1JTU8nPz6dv374llvXtt98ycuRIhg0bRkxMDLGxsQwcqJsms2/fPl56\n6SVGjx7NpUuXKmLVypXG9EAnMhMtftf+LDq1ssLb4/EUremjHJFIYPD0eKatTqJNU0uKmWlqRGJi\nWiyA9okLyeLikEDzlZOJfGcLeUkPTMeURGr6sNYWvYgrIcZkXhoN6uwcIuaspubIfgRtfhvPXh1J\n/eMymoJC03lIzMijmBgkEvyWzOTmBxsoSE41+Mimvi+eL/XkxtpPDOJLrUtafIzExGdaten3H32W\nHnmDiOC15Cc/AI2Gm1/swKVdcyRyObe/2vUoEshBy3UkVDe9rv8PFbddn7zZYm6cKfkpaRx7YQJn\nxywkYOEE4xzMaTOlxF185zvQaumxfQnt3ptMwulINAVqfYxLYF0sHO2I+fVMqfkKjz3ZVxbbl6g1\npo9rjQY7v9r49OtG1KovjD52bt0E986tOfY/XbtQHT1PwKI3HlZVvm3z0px3SDxyDoAHl66RFv4X\nLq0q/6aCKSX1f+bG+Y97ibzUDH7uMpk9PaahdLCl3vCe+pi8lHT2dJ/K7yOW0nLJa9jW8PjnVqAc\nPO05BSAi+G1UR8MASLt0lQcR13Bu1YS6bwzhwcUrpISFl57HP3CMAIQHv4PqqHF7TI+8waU5b+vO\nb8DlT3ZTrX0TpHKZ6DuFf4R4CFEVFhMTw9mzZ/nuu++Qy+VMnjyZY8eO0bJlSy5evEhMTAz16tXj\n9OnT2NjY0K6d8TTPopo3b87rr7/O0aNHWbt2LcHBwQAUFBSwatUqQkNDcXR05PXXn/53GJXNy1XG\n5b/y9K8Tk9XY20qxsjTupPefzGb2GMNRvKxsDVNHOOBgpxtF/So0nepexR8u9cf3x6NDCwDkNlZk\n3Lir/8zSzZn8tEzUuXkGy+TEJ+MYUNcozra2N9bV3PCfNgwACxcHJDIpUgsF4Uu/LHXdc+NV2Ps/\nnvJp4eZMQXoGmiL1lxSTm5CE0tXJ4LPcxGSQSFBn53Jh4uMHZrTetk4/jfdJeQkq7IrW4epilEdx\nMda1qmPp5UHtyaMBUDo7IpFKkSqVqHNykdtY0eTT1brPXJ1w6diG/ATDEdCCtMwn6krCodET6/ww\nJjchCYsn1jkvMZnc+CSULoZt49FnjoENkNvbknT8PPDwZKvRotVo8Hm5J4YkgHkj6P9VdV5/GbcO\nLQHdMZJ5447+s0f74sljJDc+CYdGdUuNK0puY4VzUID+S37GtVtkXI/BuYVuSl737SEAKGwtSbse\nq1/Oyt2JvLRM1Dn5BuVlxyfj0tjXZJyFpy2X3ttBfnoWAA1GPa+fbgZQo0crbv980mAE/f87CU2Q\n4K1/rSwyg6LoMVlUbkISDgHG7UCTm2d0jOr6qxS8nu+AzMaKVl8u078fEDKF6+u34Nw6ENXx8xSk\n6qblSpQKXNs1o803q8u3bdpaU31Ad259/UPRDYK2sJibeJXAf0JfqnVqBuiOpfQnjhHdueyJY+R+\nCs4BdUzGeT/XkourtqAtVFOYmUPMzyfw6RrErd1HcQ/y597vut/2PbgaQ9pfd3CoV3Vu1D15Tvgn\nzilyW2u8+/cgZtNu/WcSJGjVajx7diA/NQ3vfj1Q2Nkgkeu+f5TXMSK3tcanfw9uF8kFCWgK1Tg2\nbYDCzgbVcd3+aTjmBSQyGV2/XYzCRvSdwtMTI6BVWFRUFIGBgSgUCiQSCS1btuT69et0796do0eP\ncuLECaZNm8apU6c4dOgQ3bt3L7G8li11X/6aNWvGrVu39O+npKTg4OCAk5MTEomEZs2alet6VYS2\nTS0J/yufmHu6aao792XSqZWlUVx6poY79wsJbGBh8P73+zL5eJvuy0nyAzWhB7Lo1d662Pr++nQX\nx4fM4/iQeZx8dTFOjetiU113J7fmgOdIOGr8A3rVmQiTcQ8ibnCo9xR9eXd2HeL+/jNmXXwCpIRd\nwiGgHlY+ngBU69udpGPnzI5JOnaOai90QSKTIre1xqNbO5KOhYFWS+C787BroPui4dalLdpCdbFP\nwX0QdhG7Rn5Y+ngB4PlSD1KOh5kVkxF5jXP9X+PiqGlcHDWN+B/3oTp8ghurP+LWBxv445WJ+s/y\nk1K5vux9LLzc9eUAqI4brnPy2YfrXF23zt59u+tjVMfO4dWns8E6q46dI0+VQk5cAh5ddU9SdG4d\niFajITP6DjJrS+pPH63/3WeNYf8j8fczoNHgGFj0d11KJNRBS/FPC/7/IPrz7/UPXQkbvQCHgHpY\nP9wXPv26kXjsvNEyyWfDzYorSqvR0GjBeByb6H6Ha+Prg02txxc8jx5ucXD4Ulya1NGPuNR5uTP3\njlwwKi/+9OVi4+q83JmAibqZJxbO9vj268idvY/v2Lu1aEBC2BXzNtD/E1rCizyYC+P9+8RxC4+P\nXVNxqmPn8e5TtL96BtXRMP56bxOnXp6qf7BKniqFy4s+QHX8DzKu3cKtXXNkVrp+P/d+EinnI8u9\nbRZm51B9QA/cO7cCwK5+LRz865J0uurMOrryyW4ODlrEwUGL+H14CM5F2r7vgC4mj5GE0xHFxj2I\nisGne2tA94Cwah2bkRwejVatoeWSMbg01V3A2dfxxq6WFykR0RWxmmYp7nzxyN85pxRm5+LTvydu\nnXXbxLZ+Lez965J8+iInXnidsOGzONF7LBemLiPrVqw+j/I4Rh63R10uj9qj7lkHlvjNGI384e8+\ntRoNd/aeYf9A0XeWRquVVvl/VYEYAa3CGjZsSHh4OIWFhchkMs6dO8dLL71Eu3bt+Oyzz7C0tKRj\nx4588MEHKBQKmjQpeRpPeHg4zZs35/z589Sr9/iunYuLC+np6aSkpODs7ExERASenp7lvXrlytlR\nxpLJzsxam0xBgRYfTznL3nQm8kY+Sz5KYcd7uvW7c78ANycZCrnhVJEx/e2Zvy6F/lPuowXGD7In\noJ6FiZqM5aemc2nJZ7RY8yYShZzs2EQuLtJNF3VoWJsmC8dyfMi8EuOeRkFqOlHLPiJgxUykCjk5\ncQlcCVmPXYM6NJg7nnMjZxUbAxC3ex9WPh4EbX4HqUJO3A8HeHBBdyKIXPw+DeaORyKXk5+cSvic\n1cXn8SCN6yvW03DZbCRyOblx8fy17H1s/epQN3gSF0dNKzamrAozMg3KAbj+wWbsGvjScN4Ewkbo\n1vnK0o9pvGKGbp1jE4gM+VC3zqH7sfL2pNWWt3XrvPvxOl9e+B4N546n1qj+aPILuDz/XdBqST59\nkdjvf6Xl50tBItX9KZuVnwJw7e0NeHR9Bim9ASla/gJMjxT/f5Sfmk7k0k8IXDUdiVxOTlw8EW99\nBIB9Q1/854/jzLA5JcYVR52Tx8VZb+M3fSQSuQxtfgERCz+g5ceLDOLyUjIIW7SBdm9PRKqQkxmb\nyNn5uumaTv61CFo8mv2DFpUYF7VhD62Xv07PXctAIiHy0x9IiXx8c8+upgdZcYYj84KhK0s/ocnK\nR/s3gctLdMekfQNf/OeP58zw2Q+PXdNxsaH7sfLxoM03a5Eq5MTuPkjqhagS67z38+9YebnRepOu\n/3Ju4c/lkI+B8m2baLRcnLWWBjNHUff1gWjUai7Nf9/kQ7KqgrzUDM4v/pI2aychVcjJik0kbIHu\nN4FO/rVosXg0BwctKjHu0ttbaRo8nO67V6LVaEk8G8m1r/egLVRzatr7BM4aglQuQ5NfyNm5n5KT\nmFpSShXK1PninzinhM9ejd+MMfi+NhCtWsPlBe+V2AbK8xi5NGsNfjNHU2fsy2jVGsIXrKMgLYPk\n0xe5u2MvQZ8vBcDWx51zS3R/zkr0ncI/QaIt7rGgQqUKDQ3l5s2buLi48Ouvv6LRaGjRogVz585F\nIpEwdepUqlWrxuzZs5k+fTrOzs4sWLCg2PKCg4PJy8sjOTkZiUTCihUr0Gq1TJ8+nR07dnDkyBHe\nf/99HBwckMvlPP/88/Tr16/EHFWqyj9purnZkXOla6XmYOV/kF9aDC09sJy98MdWDrcdUKk5dDm9\nkxPPvlSpOQA8e+IHDrUxfix8RXruzPeo2VqpOQDIGFrpecgYyv5Wxn+KqCJ1D9sOwPbAVys1j0GX\nvq4S+wOoEnkcaG38Zz0qUrezOyq9bYKufVaF/bGz6chKzQFgwMVNVWJbVPY5BHTnkapwjFR2vwm6\nvvPf4Ga/kn8OVxX4hp6s7BTECGhVVfTib9SoUUafr1u3Tv//7777bqnlrVpl/Dh4gB07dgDQqVMn\nOnXqVMYsBUEQBEEQBEEA0FSRp8xWdeIC9D8kPz+fMWPGGL1fu3ZtQkJCKiEjQRAEQRAEQRCEx8QF\n6H+IUqlky5YtpQcKgiAIgiAIgiBUgqrxKCRBEARBEARBEAThP0+MgAqCIAiCIAiCIDwlrUb8BtQc\nYgRUEARBEARBEARBqBDiAlQQBEEQBEEQBEGoEGIKriAIgiAIgiAIwlPSij/DYhYxAioIgiAIgiAI\ngiBUCHEBKgiCIAiCIAiCIFQIMQVXEARBEARBEAThKYkpuOYRI6CCIAiCIAiCIAhChZBotVptZSch\nCIIgCIIgCILwb3atT8fKTqFUfj8frewUxBRc4e9TqTIqOwXc3Oz4sfmwSs3hxT+/4Vi7vpWaA0CH\nk7u52a9dpebgG3qSnU1HVmoOAAMubmJ/q0GVmkP3sO381mpwpeYA0DPsuyqxLdRsrdQcZAwFYG2d\niZWax6zoj6rE/gCqRB5HnulfqTl0OrWLwr3elZoDgLxXXJXYH6L/1uketp1DbV6u1BwAnjvzPQda\nD6zUHLqd3VHp/Sbo+s5/AzEF1zxiCq4gCIIgCIIgCIJQIcQFqCAIgiAIgiAIglAhxBRcQRAEQRAE\nQRCEp6TRirE9c4itJAiCIAiCIAiCIFQIcQEqCIIgCIIgCIIgVAgxBVcQBEEQBEEQBOEpaTXiKbjm\nECOggiAIgiAIgiAIQoUQF6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFEL8BFQRBEARBEARBeEpa\nrfgNqDnECKggCIIgCIIgCIJQIcQIqPCf4vFsUxpOHohMoSDt+h0uhnxJYVZOmeJqvdyVmi91Qmap\n4EHUbS4u+QJNQaF+2RovdsCrc0vOTn3XZA7ObVtQa/wwpEoFWTdi+Gvlh6izc8yKkdlYU3/uRKxr\n+oBEQsLe34nduhsAuZ0tdae/hnWt6kgtlNzZtJPEfUfLvI2sWrTFeeh4JAol+TE3UH20Em1OtkGM\nbYfuOLw0BLSgzcslacM68qOvlrkuAM/2gQRMfhmZUk7a9bucf2sDhVm55sdJJTQLHoFbCz8A4k+E\nE/7edwbL1nqxPdW6tODUm+v077m2a0a9N15BqlSQceMOkcs+RW2iLRQbJ5XgN3UErm0Ckchk3N76\nM7GhBwGwqe2N/9zXkVlbglbL9Y+2kXzmEgA+fbtSY1AvAJqtncnlZZ9RkJYBgFu7ZtR/Y7C+rohl\nn5nMqbQ4S3cX2mxcysmhc/RlK+xtaDhzFLa1vZFaKLn51Q/c23vc/PUtY5yFuwutNy7j9NDZ+hyc\nWjSi/pShSOVy1Ln5XH3nK9KvRBuVXVZarZb5c3+ibj03Ro955qnLK45vp0Z0mPUiMqUc1dU4fpu7\nlfxM47bq/2IQQWO7ghYKcvM5FPI9CRF3AJgYtorMhDR9bNgXB4n66VyJ9ZbnPnnEqpobbTat4o8p\ny6tEDulRN43Kdn6mOb7jhyFVyMmMjuHaio+N+85SYizcXWj+xUrOj5ihr9+xeQB1Jo9EIpNRkJbB\njfc3knUjxuR2eNLRSBnrflGSXyihfjUNS1/JxdbSMOave1JW7LIgIxdkUlg8MI9G1TVM/cqSO6rH\noyFxKVJa1lHz0VjjNmVKVWgX5dl/u7VsQONpg5HKZajz8rm4Ziupl43bRWVtC5dnmlPnjSFIFQoy\nb8QQtfwTo/ZYbIxUSv03R+LcWnf+uPPtT8TtPgCAU/NG1J08HIlchiYvn7/e/Yr0KzcA8B03GI+u\nz6DOySMt4pp+nepOGIJUqasjcnnx624yTirBb+pIXB7mErP1Z2If5dKiEfUnD0PycB9cK9Jn1xk3\nCM9uuv6265JB/L58F+r8QqN6K6vfFP7dxAhoOVu/fj3btm2r7DTK5NixYwQHB1d2GmWmdLSj2Vtj\nOTfzfQ71m0V2XCL+kweVKc6rS0t8B3fj1ISVHB4QjMxCQZ2huosJhb0NTeaNovHsESAxPcVC4WhP\n/fmTuTJ/DedfmUTuvXhqTxhudkytsa+Qp0rmj+FvcuG1WVTr2xO7RroTt9+CyeQlJvPnqBmEv/kW\ndaa+htLNpUzbSGrviPuk+SSsnU/s5FcoTLiH8/AJhvlVq4HzyInEL51B3IxXSd25Cc/Zpr+clEbp\nZEfLJa9xZuZ69r0UTFasisZvDixTXM0X2mFXy5P9L8/nwKCFuLb0w7tbkC5XexuazR9J0+DhSJ7Y\nJwELJ3Ap+F1OvjyNnLgE6k8cYlSvwtGu2LjqfbthXd2LU6/M5Myr86g5+Hns/esA0HD2GOJ+/p0z\nw+YQufRTmqyYikQmxaqaG3UnDOLcuMUA5NxXUff1AUXqGs+F4Pc4/vJ0suMS8Zv4SjE5FR9X7fn2\ntP78LSzdnQ2Wa7xoArmJKZwaPpdzk5bTcMZILJ6IKWl9yxLn9XwHWj2Rg0QuI3D5m1xZ/jmnh87m\n5lehNF4yyajssoqOVjF65BZ+2xv51GWVxMrZlp5rhvPDxC/Y0C2EB3eT6DDrRaM4p9rudAzuy85R\nH7Gpz0pOf/QbL308Vv9Zbno2m/qs1P8r7UtUee6TR6RKBQFLJiNRmL7nXDVysKfB/ElEzltL2CtT\nyL2XgO8bw8oU49GzI80+WYZFkX5RZmNNoxWziP5wM+dHTOf625/TaOmMYvMoKiUTFmyzYN3oXPbM\nz8bHRcO7P1sYxOTkw9hPLRn9XD67ZuUwvns+c7borlDXjcoldHYOobNzWDI4DzsrLQsG5JVar25d\nK3+flGf/LZHLaL1mIn+GbOTgoIVc/eInWi17vUptC/8FbxAx923ODHqTnHsJ1J049In67IuN8e7b\nFavqnpwdOp1zo4OpPqg39v51kcjlBCybRtTKTwkbPotbX+3Cf/FkXX69O+HargXnRgUTNmIWeUmp\nADRa8Abhc9/h1MCpZMclUu8N0+teXJxP325YV/fk9JAZnB01lxoPz2USuYwmy6ZyZcVnnBk2m1sb\nQwl4S5dLtRc64fZsC86+OheALFUa7Wf0Maq3svrNqkyrlVT5f1WBuAAV/jPc2zYmNfIWWXcTALj1\n/SF8ehmPlpQUV733s9zYspeC9CzQarm0/Cvu7jkBgHe31uQlPSDyveJvKDi1akpG1HVyY+8DcG/3\nb7h372B2TPS6Ddz88GsAlC5OSBRy1FlZyO1scQwKJGbjdgDyVclcfH0OhemGd3BLY920FXk3oii8\nHwtA+m+7sWvf3SBGW5CP6uNVqFOTAciLjkLm6ALysk+Y8GgbQGrkTTLv6LZ19PeHqdGrbZniJFIp\ncisLZEoFUoUcqVyOJq8AgOrdW5GblEb4u98ZlZl2JZrsu/EA3N11AM+ezxrFuLQOLDbOvVMQ9345\nglatoTAji/gDp/Dq1V6Xk0yKws4WALmNFZq8fF2BUikSuRyZtRUAMkslmnxdrq6tmxjV5WUip5Li\nLFydcO8YxPlpqwyWUdjb4NKqCTe+2AlAXmIKp0cvpCAt0+z1NTfuUQ5/PpGDtlDN0d4TyPjrNgDW\n1dyNRhj+jm1bz9O3X1N69mr01GWVpNazDYkPj+HBbRUAF7cex//FIKM4dX4h++ZuJUuVDkBCRAw2\nrvZIFTK8m/uiVWsZtPVNXt0zj7aTeiGRlnyyL8998kiD2aO598sn/TquAAAgAElEQVQRCh6kV9kc\nnFoFkhF1g5xH/WLoPjy6tzc7RunqhGuHVoTPMLxZZl3dC3VWNg/+iAAgOyaOwuwcHAL8TOZR1Kmr\ncgJqaKjppgVgcLsC9vwhR6stGiOjuouWDv5qADoHqHnnVcPRn/xCmLfVkuC+eXg5aTFHVdgn5dl/\nawvV7Ok+lQfXdCNgNj7u5D/RX1X2tkiPiibnYVlxofvx7GHYHp1bNyk2xq1ja+7/8rv+/JFw8CSe\nPdujLSzkRJ9xZD7sJ628PfT9pF2DOqiOhVGYqZuRpDpyFoC0qMfrFBu6H8+ehnno172YOPeOrYj7\n+YlzWc8OaAvVHHthvL7PNszFl8Sj5/S5/LXvEvV7NjOqt7L6TeHfT0zBLSIzM5P58+eTkZFBYmIi\nvXr14pdffuHXX39FIpEQEhJC27Zt8fDwYMmSJdjY2ODi4oKFhQWrVpnu1AAOHjzI3r17yc3NZcGC\nBTRp0oSffvqJTZs2oVQqqVWrFiEhISgUCpPLb926lR9++AGpVErjxo1ZsGABwcHBaLVa7t+/T3Z2\nNqtXr8bCwoIJEybg6OhIhw4d6NChA8uWLQPA0dGRFStWYG1tzaJFi4iPjycxMZEuXbowbdo0oqOj\nmTdvHlZWVlhZWeHg4FAu27g8WXm4kJOQrH+dm5iCws4auY2VwTTckuJsa3phEXmTNh/OxtLNkZQL\n14hcp7u4ub3rMADV+xh3/o9YuLuSl/i47DxVMnJbG2TWVvqpO6XGqDX4LZqKW6e2JB07S/ade9j5\n1SE/KRWfwf/DqU1zpEoFsd/+SM7de2XaRjIXdwqTEvWvC5NVSG1skVhZ66fhFqriKVTF62NcXp1C\n1vkTUGg89aY01h7OZMen6F/nJDza1pYG07hKirv903F8ugXRe/86JDIpCacvc//YRQBu7vwdgJr/\nM/4yklt0Gycmo7C1RmZjZTiV1cOl2DhLDxdyn2gnrnVrAhC1ZiMtP15IzVeeR+nsQPj899GqNeTE\nJnD7m5959vv3AHBu7s+ZMQtN1pVrZk5F4/KSUrk4x3jqt7WPJ3nJqdQa2hu3tk2RKuXc+uYXsu/c\nN4graX3N3S55SalcmvOOUQ4AWrUapbMDbTavQulox6X560zGlcWCRboZCGfO3Hrqskpi5+VIxv1U\n/euM+AdY2FmhtLU0mE6WHpdCetzjttp5Xn9uHIpAU6BGKpdy++RVjq7ajdxCQf8NE8jPzOWPr38v\ntt7y3ifeL3ZBKpcT9+NhfEf1rcI5uJKXkPS4bBN9Z0kx+UmpRM5ba1Ru9p17yKwscWoVSGrYJewa\n1sGmdnWUrk4m8yjq/gMJno6PLxg9HLVk5krIykM/Dfe2SoqrvZaF2yy4dk+KnZWWGX3yDcoJPSPH\n3UFD1ybqUut8vD0qf5+Ud/+tLVRj4WxP1+9CUDracnbOx1VqW+QWbWuJychtrQ3bo7trsTGW7obn\nj7zEZGwfnj8e9ZNBX69B6WhHxALd+SI98jrVX+lN7Pe/UZCeiefzHXXLJpi37sXFWXq4GH7nSEzG\ntm4Ng1xab1qN0tGO8Id9dnrkdWoM7s3d738DoFHfVti42Rttu8rqN4V/PzECWkRMTAy9e/dm48aN\nbNiwgR9//BE/Pz/Onz9Pfn4+Z8+epXPnzixevJhVq1axefNmatSoUWq53t7ebN68meXLl7N48WJS\nU1NZv349mzZtYtu2bdjZ2bF9+/Zilw8NDWXhwoVs374dX19fCh9eCFSvXp3NmzczefJk1q7VnXhV\nKhUbNmxg7NixLFy4kMWLF7NlyxY6dOjAl19+yf3792natCkbNmxg586dfPed7uJqzZo1TJkyha+/\n/ppmzYzvcv0rFHPHTKvWmB0nkctwax3A+TnrOTp0IQp7WxpOevnpc9BoyhRzLWQdp3qPRG5vS81R\nA5HIZVh5e1KYlcOlCfOIWvQOvlNGYevna35u6O5Gm6TRGL0lsbDEfeZSFF4+JH1U/A2Wkuszb5+U\nFOc/7iXyUjP4uctk9vSYhtLBlnrDe/6tfDCzXtQak/tJq9EgVSposnwql0M+4VifNzg37i38547F\nwt0Fl9ZN8OjcimN93gAg8eh5Gi+a8LCuYra9UU7mxRksI5dh7e2BOjOHs2MXc2n+BzSYNgL7BrXN\nX9+/EWdKfkoax16YwNkxCwlYOAHrGl6lLlMVFLfdjfqPhxRWSv63fgyONd3YN3crAOHbT3E45HvU\n+YXkZeRwfsNh6nUPLKXe8tsndn618enXlSsrv6jyORT3swaDvtOcmCdTy84hYs4qao7oR8tN7+DR\nsxMP/ogw+F1/cbTFDFYW3QyFajh+RcbLbQvYMSOHoe0LGP+5JUV/Krf5qJJx3QpKra+oqrBPKqL/\nzktJZ0/3qfw+Yiktl7yGbQ0Ps/Oo0Pb5kLnnclO5FN1u+SlpnPzfOM6PnY//gjewqu5F/G/HSDx0\nmmYfLabl58vIvh1XfB5PrpOkhP7LVJ4aw1yO9xlP2GsLaLRwAtbVvbi/9zgJh8/Q4qNFAKREJ6Ap\nML6BUln9ZlWm0Uqq/L+qQIyAFuHq6sqmTZvYv38/tra2FBYWMnDgQHbv3o1KpaJLly7I5XISExOp\nV68eAC1atODXX38tsdygIN10hHr16qFSqbh79y5169bF1tZW//mJEyeKXX7lypVs3LiRNWvW0LRp\nU7QPz4pt2rQBoFmzZqxYsQIAHx8flEolANHR0SxZsgSAgoICatWqhaOjIxEREZw5cwZbW1vy83V3\nam/fvk2TJk0AaN68OTdvmn4QQFXUaZtuypXcxor0G3f171u6O5Gflok61/A3NznxyTgF1DEZl6tK\nJf738/oR09hfT+I39iWzc8mLT8LOv77+tYWrCwXpGWiK5FBSjFOrpmTdjCE/KRVNTi6qg8dx7diW\nhF91o6+P/psbF096+FXsGtYj85r5+6pQFY9FPX/9a7mLK+qMdLR5hlPGZK4eeM5bTUFsDPcXTUKb\nn/9kUcXyn9CXap10NzHkNlakX4/Vf2al39aG5WXfT8G5yD4pGuf9XEsurtqCtlBNYWYOMT+fwKdr\nENe3/GZQhm1NT7puD9G/tnBxfPz/bs4UmGgLufFJODSqazIuNz4ZC1fDMvISk7GtUx2ZpZKkE38C\nkHb5Opk37+IYUBen5v6ojv1BfqpumpFUKcetXTOe+WYVchsrMoq0Tws352Lap3FOpuKKevRbodg9\nuodSZccm8ODSNX05bb5ZDej2R+aNO0+1XYojt7HCOSiAxCO63+5kXLtFxvUYbOtUL3aZytZuam/q\nPqfr95S2lqiuPZ5RYOfhSM6DLApyjNu+nZcT/b4YT3J0PNuHvk/hwynh/i+1QhUV+7gciQRNofGX\ntjqvv4xbh5ZA+e6Tas93QG5jRasNS/XLNA6ZrP+8ItpFcTn89cE3BnF5CUnYN6qnf610M9F3mhFj\nRCJBnZPLxUmL9W8Fffu+fhpvSbyctITHPP6ylpgmwd5ai3WRn4G6O2ip7aGhSS3dF+4ujdUs+k7C\n3SQJdTy1RMVKUWsgqG7po59VoV1UVP99a/dR3IP8uff7HwA8uBpD2l93cKhXvcpsC4sio+SPynqy\nPToUaY9FY3ITkoyWz0tMRmZjjXPLAFRHwwBdP5l5IwbbujUoSMsgYf8JZBYWuLZvSa2RutFYpavx\nuezJNp+bkIRDgPG6a3LzyI1PQvnE+TA3MQW5jRVOLQNQHX2iz65bg/y0dOL3neD2ph/odnYHyTfi\nSY3RTbOtrH5T+G8RI6BFbNy4kaZNm/L222/Ts2dPtFotbdu2JSoqil27dvHyy7qRME9PT27c0D2x\n7NKlS6WWGx4eDsC1a9eoVq0aPj4+REdHk52tm/IYFhZG7dq1i11+x44dLFmyhG+++YaoqCguXLgA\nQGSk7qEcf/75p/6CWFrkblTt2rVZvXo1W7ZsYdasWXTq1InQ0FDs7Ox45513GD16NLm5uWi1WurU\nqaMv9/Lly2XabpXtyCvzOfLKfI6NfAunxnWxqa67g1qr/3PEH/3TKD7xdESxcfcOhlGtW2ukFrrp\n0J6dWpB6xfwLvNSwi9g3qo+lj27Ux6tvD5KPh5kd49alHTVH6R6IJFHIcevSjgd/RpB7P5GMq9F4\nPN8ZAIWTA/aN/ci4WrYnjGZfCsOifiPkXj4A2HXvS/Y5wyelSm3tqLb0Q7LOHCXx3cVluvgEuPLJ\nbg4OWsTBQYv4fXgIzk3q6O9q+w7owr0jF4yWSTgdUWzcg6gYfLq3BnQjfdU6NiM53Hi9M2Pi9fUC\nOATUw7q6JwA+/bqReOy80TLJZ8OLjUs8dh7vPp2RyKTIba3x7PYMiUfOkX03HrmtNQ6NdTcRrLw9\nsKnlTfq126Rfu4Xrs82QWem+oebcTyL5fCSnhgVzZvRCHAPq6uuq0a9rsTmZE1dUzj0VaVE38e6t\n+y2x0tkBx8b1SXv4NMMzw+ZwZtgcwkYveOrtUhytRkOjBeNxbKL7bZ2Nrw82tbxJi7xR4nKV6eS6\nPfqHXmwdsJZqzWrhWMsNgMAhz3LjYLjRMpYO1gzeNpXr+y7xy5tf6b9EAbjW96LdtBeQSCXILRQ0\nG96Bq3v+MCoj+vPvK2SfXHtvEycHTNPXladKIWLRev3nlZmD6rjhdkl52C9aPewXq73UnaTj58oc\nY0Srpck787FroLtAcuvcFm2h2qyn4D7jpyb8tpSYh0+y3X5SQZcAw5HTZxuqiUuREnlXd+49Hy1F\nItHi46K7UXzuhozW9dTFDd4aqArtoqL6b61aQ8slY3BpqvvuYl/HG7taXqRERFeZbeEQUA+rh2V5\n9+2O6om2lnz2UrExqmPn8Cpy/vDo1g7VsXOg0dBw/gQcHvWTtX2wrulN+uXr2DfwpfHqWdzauJNz\no+aQdStWn4fBOplo849yMRWnOnYe7z5diuTyDKqjYQ/7bMNcdH32dewb1iFw9UwkMhkArSd01z8Y\nqLL6TeG/RYyAFtG5c2eWLVvGr7/+ip2dHTKZjIKCAnr06MGpU6f0020XL17MvHnzsLa2RqFQ4OFh\nPGWkqNjYWEaMGEF+fj4hISE4OzszefJkRowYgVQqpUaNGsycObPY5f38/BgyZAg2NjZ4eHgQGBhI\naGgox44d49ChQ2g0GlauXGm03FtvvcWcOXMoLCxEIpGwfPly6tSpw4wZM7h48SJKpZKaNWuSmJhI\ncHAwc+bMYcOGDTg7O2NhYWEik6otPzWdC299TtDaKUgVcrJiE/lz4acAODasTdNFr3Hklfklxt36\n/iBKB1s6bV2GRCrlwdXbXFr+rdk5FDxI49qK9fgvm4VUoSAnLp5rS9/HtkEd6gdP5M9XpxcbAxD9\n4VfUmzWeFlveB62WpONnidvxCwBX5q2i7vTX8XqpBxKJlDtf7SDzatm+3GvSHqD6cAUes5YhkSso\niI9D9cFSlHUa4PZGMHEzXsW+R1/krh7YtO6ITeuO+mXvL56CJtP0wyqKk5eawfnFX9Jm7ST9tg5b\n8DkATv61aLF4NAcHLSox7tLbW2kaPJzuu1ei1WhJPBvJta/3lFp35NJPCFw1HYlcTk5cPBFvfQSA\nfUNf/OeP48ywOeSnphcbF7trP9beHrTdugaJXE7s7oOkXogC4OLsd2gw41WkSgXaQjVXVn1BTlwC\nOXEJWHm50Wazbsqycwt/IkI+AXTtM2LppzRdNQ2pXE52XIJBTgHzX+fUsOAS40pyYfY7+M8eTfV+\nXZFIpERv2GX0py5KWl9zt0tx1Dl5XJz1Nn7TRyKRy9DmFxCx8APyElNKXK6qyE7OZO+cb3jxw9eQ\nKeQ8uKPi15mbAfBoXIOeK4ayqc9Kmg5tj301Z+p1DzSYJrZ9+Aec+uBXur41iFd/nY9MIeParxcI\n336qxHrLc5+YqyrkUJCaztXlH9Fo+UwkCjm5cfFEhazHrkEd/IIncP7VmcXGlObK4nXUDx6PVK4g\nPzmVy8GrzcrJxU7LsiF5TP3KksJCCdVdNawYmsvlO1IWfWdB6Owc3Oy1rB+Tw9LvLcjJB6Uc1o3O\n5eE9TGKSJFRzLn3q+pOqwj4pz/5bW6jm1LT3CZw1BKlchia/kLNzPyUnMdUoj8raFleWfkzjFTOQ\nKuTkxCYQGfIhdg18aThvAmEjZlGQmm4yBnQPJLLy9qTVlreRKuTE7T7AgwtXAAifs5b6U19FIpej\nKSggctH75KlSyFOl4Ni8Ea23vg0SKapjYbgBV5Z+QpOVj9YpgctLdHXYN/DFf/54zgyf/TAX03Gx\nofux8vGgzTdrkSoMz2WXZq/Fb9pI3cOh8guIWPg+eYkp5CWmkNTMnzZbdT/vSrmZwPmNh422UWX1\nm1VZVXnKbFUn0WqL+5WDUJytW7fSq1cvnJ2dee+991AoFEya9PR/bqAsgoODef755+nQoUPpweVE\npXr6J1w+LTc3O35sPqz0wHL04p/fcKyd6Yc4VKQOJ3dzs1+7Ss3BN/QkO5uOrNQcAAZc3MT+VsZ/\ngqcidQ/bzm+tBldqDgA9w76rEttCzdZKzUGG7s8jrK0zsVLzmBX9UZXYH0CVyOPIM/0rNYdOp3ZR\nuNe7UnMAkPeKqxL7Q/TfOt3DtnOoTRme/1BOnjvzPQdaG//pm4rU7eyOSu83Qdd3/htc7NajslMo\nVdMD+yo7BTEC+ne4uLgwevRorK2tsbOzY9WqVUyaNIm0tDSDOFtbWz755BOzyrx37x5z5swxej8o\nKIgpU6b8I3kLgiAIgiAIgiBUJnEB+jf07NmTnj0Nn8L54YcfPlWZ1apVY8uWLWbHl/RnXwRBEARB\nEARBqFhiCq55xEOIBEEQBEEQBEEQhAohLkAFQRAEQRAEQRCECiEuQAVBEARBEARBEIQKIX4DKgiC\nIAiCIAiC8JQ04jegZhEjoIIgCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQU3AFQRAEQRAEQRCekvgz\nLOYRI6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFkGi1Wm1lJyEIgiAIgiAIgvBvdq5z78pOoVRB\nv++p7BTECKggCIIgCIIgCIJQMcRDiIS/TaXKqOwUcHOz49MG4yo1h/FXPyO02YhKzQGg34XNzPZ5\ns1JzWBP7PncHB1VqDgDVvzvHnpZDKjWH3ue/rTLtYnvgq5Waw6BLX7O2zsRKzWFW9EcAqNlaqXnI\nGMqOwJGVmsPAS5sA2Nm0cvMYcHETB1oPrNQcup3dwdeNXqvUHABejfyySuyPgpONKjUHAEW7yCqx\nLfYGvVKpOQD0OreNo+36VWoOHU+GVnq/Cbq+U/jvEBeggiAIgiAIgiAIT0kjnoJrFjEFVxAEQRAE\nQRAEQagQ4gJUEARBEARBEARBqBBiCq4gCIIgCIIgCMJT0oopuGYRI6CCIAiCIAiCIAhChRAXoIIg\nCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQvwEVBEEQBEEQBEF4SuI3oOYRI6CCIAiCIAiCIAhChRAX\noIIgCIIgCIIgCEKFEFNwhf+0Gh0DaD29LzKlnORrcRyZv5mCrNxi4zuvHEnK9Xtc2ngAAAsHa9ov\nHoprQx8KsvO5tvsUl7/5vdR6PZ8NpNHkl5EqFaRdv8ufS76k0ES9xcW1XjsJm+oe+jibam4k/XmV\nyx/sIGjFBP37EqkUh3rVOTPjg1JzatDFn15z+yBXyrgfdY/vZ24jLzPPKO6ZV9vTZng70EJyTBI7\nZ39HVnImAIsuLSc9/oE+9uinh7mw+49S6wawbNYOh8ETkSiUFNy5Tspny9DmZBnEWD/bC7s+w0AL\n2vxcUr9+m4KbUQYxLtPXoE5V8eCrtWbVC+Deril+kwYjVcrJuH6X8KWfU5iVY3ac3MaKJotex7ZW\nNZBIiN1znJubfgZAYW9Do1mvYuvrjcxCyY2NPxD36wmTeZRXuzg9dR2uLRvSeNpgJHIZmtx8Lq35\nhtTIm0Zle7UPpMmUAUiVctL+iiXsrQ0mcyguTmlvQ4sFI3D0q4E6J49bP57g+raD2PtWo83K8frl\nJTIJjvWqc2L6+lL3j2+nRnSY9SIypRzV1Th+m7uV/EzjnPxfDCJobFfQQkFuPodCvich4g4AE8NW\nkZmQpo8N++IgUT+dK7XustBqtcyf+xN167kxeswz/1i5Xu0DaTzl5Yfb+i7nStgnpuIkUgnN5o7A\nrYUfAPEnwrn07ncAKO1taBY8DPs63sgsFER9+bPJHDzbBxIw+WVkSjlp1+9yvpgcio2TSmgWbJhD\n+Hu6HLw6NCVo6Viy45P15RwZtQIA13bNqDthCFKlgswbMUQu/xS1iWOz2DipBL+pI3FpHYhEJiNm\n68/E7tb1304tGlF/8jAkchnqvHyuvfMV6VeiAWiyagZ2dWsC8L9di7gfdo1zq7cb1evToTHNp/ZH\nppST+lcsJxd+XeI55Nnlo0i9Hkfk1/uNPuu87g2yVQ84u/zbYpc3a1ubG1fGfVKao5c0rNuloaAA\n6leXEDJKiq3V4+mGP57UsHm/Rv86MwcSUuHg2zJsrWDZNxoib2nRaKGxr4QFw6RYKs2brljVtoVb\nu2bUn/joXHGHy8tMn1OKi5PbWNF44ThsalVDIpEQt+cYNzebPjaL49y2BbXHD0WqVJB1I4ZrKz9C\nnZ1jVozMxhq/uROxrukNEgkJe49wd+vuMtVfFuXVd1ZFGjEF1yxiBFT4z7J0sqXzipHsn/IZ3/Va\nTPrdJNrM6Gsy1tHXkz5fT8O3Z0uD95+ZO5CC7Fy2936L3YNXUaN9I2p0alxivUonO5ovGcuZWes5\n0HcOWbGJBEwZVKa4s7M+5PDghRwevJALIRspyMzm4srNZNy8p3//8OCFJJ65zN29p7l3+HyJOdk4\n2zDw3SFseX0jazuuIPlOMr3m/s8ozruxDx3Gdebjl9bxbtdVJN1S0WPW8wC4+bqTk5bNuh5r9f/M\nvfiU2jniPH4Rye/NIX76AAoT43B8ZZJBjNyrJo5Dp6BaOYWE4KGkh27Adfoagxi7PsOxaNDUrDof\nUTra0WTxOP6YvY6j/WeSHZdAg0mDyxRXf8LL5CakcGzQHE6OWEjN/l1xbFwPgMC3xpObmMyJofM4\n+8YKGs0ciaW7s3H55dguJHIZrVZP5M+QjRwetICrX/5Ey2XjjMq2cLKjVcgYTs74kL0vziUzLpHA\nN18uU1zTWa9QmJ3Hb33ncXDYUjzbNcarQyDpN++xf9Ai/b+E05HE/HqauEMltxErZ1t6rhnODxO/\nYEO3EB7cTaLDrBeN4pxqu9MxuC87R33Epj4rOf3Rb7z08Vj9Z7np2Wzqs1L/75+++IyOVjF65BZ+\n2xv5j5Zr4WRHUMhrnJqxnt9eDCYrTkWTNweWKa7mC+2wq+XJ/gHz2T9wIW4t/PDpFgRA0NKx5CSm\ncmDQIo6+voZmc4YZla10sqPlktc4M3M9+14KJitWRWMTOZQUp8/h5fkcGLQQ15Z+eD/MwSWwHn9t\n3svBQYv0/wqzdRcPjRa8Qfjcdzg1cCrZcYnUe2OIUb0KR7ti43z6dsO6uienh8zg7Ki51Bj8PPb+\ndZDIZTRZNpUrKz7jzLDZ3NoYSsBbk/VlOgbU4/z4xQD81D/E5MWnhZMt7ZaN4vepH7P7hQVkxKpo\nMb2/yf3o4OtFj40zqNWjpcnPA0b3xKNFPZOfmVIZ+6QkKelaFm7UsG6ijF9WyvFxg/d2agxiXmwn\nZdcSObuWyPluoQxXB5g3VIqrg4TPf9GgVsOuJTJCQ2Tk5cOXezTF1Fa1t4XS0Y7Gi8ZxYc57HB8w\ng5y4ROpPeqVMcfXGDyQ3MYUTg2dzauQCqvfvpj+nmEPhaI/f/Elcmb+Wc69MJudeArUnDDc7ptbY\nV8hTJXN++FT+fG021fr2wL5RfbPrL4vy6juFfzdxAVrFDR8+nOjoaLNi7927x+HDhwFYvnw59+7d\nMxm3fv16tm3b9o/lWFVVb+dPYkQMaTGJAFz57ih1+7Q2GRswtBNXQ09x8zfDCzk3/xpc/+ksWo0W\nTYGamKOXqdOjeYn1erQJ4EHkTbLuJABw6/vDVO/V9m/FSeQyWix9nfC1W8lJSDH4zKVZfby7BnFh\n+Vcl5gNQv2MD7l66Q9ItFQBnNp+kWd8WRnFxEbGsab+M3Ixc5BZyHDwdyE7NBqBmy9po1BrG7ZjE\ntANz6Dq1BxKpeXf6LJu0IT/6CoXxdwHIPLAL62d7GsRoC/NJ+XwZmge6u9D5N6OQObqATDdRw8K/\nBZaBbck8GGpWnY+4tmlC2pWbZN+NByBm50Gq9WpXprgrb28m6v2tujxcHZEq5RRmZqOwt8G1VWP+\n+lyXU25iCidfXUh+WqZR+eXZLrSFavb2eJO0azEA2Pi4mczBs20AKZdvkfmw7Bs7fqfG88Y5lBTn\n7F+L27+c0h0ThWruHw+netcgw23ZrD4+XVtyftkmo7KfVOvZhsSHx/Dgtq5tXtx6HP8Xg4zi1PmF\n7Ju7lSxVOgAJETHYuNojVcjwbu6LVq1l0NY3eXXPPNpO6mV22zTXtq3n6duvKT17NfpHy/VoG0DK\n5ZtFtvVhk/ukpDiJTIrcygKpUoFMIUeqkKPOL0Bpb4NHm0ZEfvoDADmJqRwctsRk2amRj8uO/v4w\nNUy1zRLiJFJdDjKlAqlCjlQuR5NXAIBLYF3cgvx57tsldNo4D9fmfvoy06Ki9cdcbOh+PHu2N6rX\npXVgsXHuHVsR9/MRtGoNhRlZxB84hVfPDmgL1Rx7YTwZf90GwMrbg4K0DAAsvdyQWVvRcI7uBka7\nZaNQOtgY1ev9TCOSLt8m447uHHLtuyP49jZ9DmnwSmeu7z7J7X3GNwM9W/nh/Wwjru04YnJZUypz\nn5hyKlJLo9oSanrojqtBnaXsOaNFq9WajN+4V4uznYSBnXRfM1vUlzCujxSpVIJMKqFhTQn3zBxw\nrGrb4slzxZ1dB6jWs/RzStG4qHc2cfX9bwDDc4q5nFo1JXcV11kAACAASURBVCPqBjmx9wG4t/s3\nPLq3Nzsmet0Goj/8GgClixMShYLCLPPrL4vy6juFfzcxBfc/5MyZM9y8eZMuXbowf/78yk6n0tl4\nOZEZ//iiLTM+FQs7KxQ2lkZTqE4s1U3F8WnbwOD9hPBb1Ptfa+L/vIFUqcC3ezM0heoS67XydCG7\nyMViTmIKCjtr5DaWBlOGzImr1bcjuaoH3PvdeBSp8bRXiPxwp8lpSE9yqOZE2r3HU2fT7j/Ayt4K\nC1sLo2m4mkINjXo0ZsDawRTmF7L/nb0ASOVSrh+/xp5lP6KwVDJ60+vkZuRyYsPRUuuXuXigTk7Q\nv1YnJyK1tkViZaOfhqtW3Uetuq+PcRw+jZw/joG6EKmTK44jZ6BaORnbrv1Kra8oKw9nchIef9PJ\nTUxBYWuN3MbKYMpUaXFatYamIW/g+Vwr4o+cJzPmHg4NfclLeoDvsOdxeyYQqULBzW/2kHUn3jiP\ncm4X2kI1Fs72dNkWgtLRjrA5H5nIwdmw7IQUlCZzKD4uOeImtV54hqSL15Ep5Ph0bWF0TDSdMYiI\nD3eZ1TbtvBzJuJ+qf50R/wALOyuUtpYG03DT41JIj3ucU+d5/blxKAJNgRqpXMrtk1c5umo3cgsF\n/TdMID8zlz++Ln26vLkWLOoFwJkzt/6xMgGsPZ0Nbi4Vt09Kirv943F8ugXR58A6JDIpCacvc//o\nRZwDfMlNekD94T3xatcEqVLOtc17jXPwcCY73rBsU22zpLjbP+ly6L2/SA7HLgKQn5ZJzC+nuPf7\nH7g0rccz66ZycOACAPKKHHN5ickobK2R2VgZTMO19HApNs7Sw4W8RMPPbOvWAECrVqN0dqD1ptUo\nHe0In78OAKWzAynnIoha8yUdO7SkMDuXZ5e+yuEphseMjZfh+mYlpKK0szZ5Dnk0rbZam4YG71u5\nOdAq+BUOvP4efgM7Gm374lTGPilJfAp4FpnY4eGkm2KblQu2VoaxqRlaNu3TsGOxTP9eu4DH4x33\nkrRs2a9h8UjzxkCq2raw9HAh14xzSmlxWrWGJiET8ezSioSH5xRzWbi7kJeYpH+dp0pGbmuDzNpK\nPw231Bi1hgaL3sStU1uSjp0l+4759ZdFefWdVZV4Cq55xAhoFRIaGsqbb77JuHHj6NWrF6GhulGV\nDz74gBEjRvDaa6+RkpJiclm1Ws3nn3/OL7/8wqFDh/QjpykpKYwdO5bBgwczaNAgbt++rV8mJiaG\nAQMGcPXqVf744w8GDhzIkCFDGDNmDJmZxqMn/zYSqenmrdWYN+0H4PTqnaCFAaEL6Ll+PLGnolAX\nlHwBKpGY7ny0ak2Z4+oO7cnVL340inEOrIvS0Za7e0+Xtgol1qVRm757HbkvgiVN5nPg3d8Y8814\nJBIJYd+e5qdFoajz1eSm53DsiyME9GpiVv0UNxqlMd6WEgtLXKauRO7pQ8pny0Amw2XKch5sflc/\nOlomxbWDJ/aHOXEXF33Mga7jUNrbUu+1fkjlMqx93CnMzOH0mCVcmLce/+nDsG9Q23i9KqBd5KWk\ns7fHVI6ODPk/9u47vqb7f+D4667svSVBSBARktijRWOUVoc9Y/arKFq1VxAUpUW1RatD8atRtEop\nahYRsRKxg5CQvfe49/fH5cp1b9IYGdrP8/HwaHPP+5zP+37O53Pm55xLk3n/w6yGU9mWrSxjDkol\nFz7bDCoVr2+ZR5vl44g7FYGyWJ+w9fHA0MqcqD+C9S7jSSX20yfXz0MKYwPeXjUCq5r2/DldfVc6\nbMtJDgVtoyi/kLyMHEK/O0Sdzj5lKr+yvYh14jXqXfJSMtj12jh2d56AgaUZdQd3QSKXYebqQGFW\nDoeGLiB46tf4TtId4lrS3WKdtllKnNf76hx+9x/HntfVOdQJUI9yODVxleZiSdKFGyRdvIFDK2+9\ny9JXLpJS2oi+nIrVXX5yGsffGkXIe7NoMHs0JtWrkR5xk4tTl5GfpL4od+GrXbi2bYhUIdNeThnX\nTUkkchntlr1PyJLN5CSm/fMMxeethHVSGqX+XYXezea2oype85Pgaq+bW8QdFYMXF9G/g5T2vmU7\nBK1qdVFiu9Bpt/8cFxb4FX91GonCwhSP9/QP79abQhmOb8oSczVoJSfeHIrcwoyaw3QfxxCE8iLu\ngFYxmZmZfPfdd9y5c4dRo0Zhb29P586defPNN9m0aRNr165l+vTpOvPJZDJGjhzJrVu36NChAz/+\n+CMAX3/9Nf7+/vTv359z584RFhYGwO3bt9m+fTvLli3Dzc2NJUuW0LVrV4YMGcKhQ4dIT0/HzMys\nIr/6C9F03Fu4+asPPA3MjEi6HqOZZupoRW5qFoU5+WVenoGZEcHLtpOXph6a4vve66Q/HNJbXP3R\nPajWzg8AhakxaTejNdOMHKzJT8ukKFe73OzYJKwbupcYZ1mvJlKZlMSzV3XKc+3cgru7T0AJw58A\nOk/qilcn9UGeoZkRsVcf3120cLIkOzWLgifqwtbNDnN7C+6cUb+85szmYHos6oOxpTGeHby4f/k+\nsVfUV0klEv7xZPyRosQ4DD0eH3DKbOwpykxDlad9F0Fm64jdlM8pjLlDQtBoVAV5GNRpiNzBBauA\nCeoYK1uQSpEoDEj5ZmGJZb6ySf2SE4WpCemRdzWfG9nbPKxn7Tu/ubGJWHm7642za9mIjJt3yUtM\npSgnj/t/nsTJvznRu48BaP6bHR1HyoXrWDVQL6ei2oXczBiHZl6ag6jUq1GkXb+LRR1XADpvCVLn\nYGZE2o3HORg7WJOXlklRjm4Otg1r640zdDLj4vKt5Ker71x7DntDM+QNoMbrzbnze+lts81Hb+LR\nQX3xwsDMiIRrj6+8mztakaOnbQKYV7Omx7ejSIqMZcvAlRQ+HELn9W5zEq5EP16ORPKPIxUqU4Mx\n3XF+1C7MjMu0TrJik7Ep1i6Kx7l2aMq5xRtQFhahzMzhzq6/ce3UjJi/1MNBb/92HIDMe/Eknr9O\n9c7NAej4sF3ITY1JfyIHvW3zQTI23u5641w6NOXC4g2oCosozMwh6ve/ce3YjDu/HsO9jz9Xv9sN\ngNfo7tg38cSyTnUADOysNMsztLehIC0T5ZN9My4RS28PvXG5sYkY2GovIzc+GbmpMdZNvUk4qn4W\nOOPabTJuRGHmUQMDW0sU5qYkHH84gkAiQaVSqUc5jH2HGq+p9yEKU2NSitWLiYMVeWll34fYNaiJ\nuYsdzaeon0M0trNEIpUiM1Bwco7u8HSv0d1xbq9uFxW5TtRVUPpdm2q2EF7snWbxKWBhCiaGuvPt\nC1EyfaBM5/M/TitZsFHJzIFS3mxZ+slnVauLOu/3wqFtE00+GTfvaaYZlrRPiUvC6ol2q71PuUde\nYgpFOXk82K/ep5RVbmwC5l6Pnxk1tLOlID1Dq++UFmPd3JesW1HkJ6agzMkl/uDf2LdrWebyBeF5\niTugVYynp3oIaLVq1cjPV29cmzZVv9SgcePG3L79dEMYbt++jZ+fn2b+t99Wv3jm2LFj5ObmIpOp\ndxKjRo0iPj6eIUOGsG/fPuTyl/PaROiq3/ml+wJ+6b6AHX2X4OhTG8uaDgB49WvLnUMXn2p5Xv3a\n0Wy8us6Mbc2p3/sVbuwO0Ym7snqH5uUwRwbPw6ahO6Y11G8rrd3LnwdHzunME38qvNQ4uyaeJJy5\nrDcvuyaeJITon/bI/mV7NS8L+vLt5dRo7IZdLXsAWga0IeLPSzrzmDtYMODrIZhYq5+H8uvelNhr\nD8hOzcaxXjU6T1Q/Wyc3UtB66Ktc/P18qTk8khsWjIGHN3In9UGnWcee5IYe04qRmlrgMGctOSGH\nSfpiJqoC9Y40/0Y4Dz7oRty0gcRNG0jmwe1knzpQ6sknwN8DZ/D3wBmcGBaItXcdTKqr7wbW6NmB\nuKO6Q5oTgsNLjHPu1II6I9VXp6UKOdU6tSQpNIKc+wmkXbmNazf1czUGNhZYN6pD2hX1kVpFtQtV\nkZLGc9/Dxkd9sGFe2wVzt2qkhKufH3/0YqCDAfOxbeSO2cNlu/d+jftHdNdh7KlLJca5934N7w/U\nL/MytLGgdo923N37+G6nfRNP4v6hbZ5YsUfzsqBNvZbi7OeGlZu6bfoMeIWbB8N05jGyNKHfzx9x\n48+L7P7wB83JJ4Bd3Wq0mdBN3TYNFfgFtOXqnrK9IKsyRHy9kwN9AznQN5C/AoKeqGt/vesk7lR4\niXEpV6Ko3ln9bKJELsO5vR9JYZFkxSSSfPkObm+/AqjXl63v4wPSRy9cORwQhE2xZdfuVXIOJcWl\nXonCtXgO7dQ5FGTl4N63Iy4d1Pux+4fOUpRfwF8D1C8AsizW51x7dCL+uO7Lo5JOXywxLuFYKC5v\n+aufgzUzwbFTaxKOhqBSKmkwazSWjdTP85nWcsXUzYW0iBvIjI2oN3E4cgv1ds57+Ovc2X8WlVLF\nhS9/Y1fPIHb1DGLPgE+wb+SOeQ31PqRe3/bcPXShlDWrLeHiLbZ1nKJZ3rUtR7m974zek0+Ay6t3\nVso6sapXA2vv2jrLLq51AwkXb6mIilNfWNpyRIm/r+6JWlqWinvx4Ouu/fn+UCWL/0/JNx/L/vHk\nsyrWxY21v3Bi4HRODJzOqWGBWGntKzoSf0z32d/E4LAS45w6tsTjf+rHSaQKOU4dW5J0puwv6UkJ\nuYhFg7oYu1YDwLl7Z5Ke6Dulxdj7t6bmMPXL7SQKOfb+rUk5F17m8oWSKVWSKv+vKng5zzL+xfRd\neQsPD8fR0ZHQ0FDq1Cn5LWlSqRTlE0OD3N3dCQ8Px9PTkzNnznDkyBGMjIwYMmQINWrUYOrUqWzY\nsIFdu3bRvXt3pk6dytq1a9m6dStjx44toaSXQ25yBkdmrKfTypHIFHLS7yVwaKr6hT323jVpNz+A\nX7ovKHUZ57/Zi/+S4fTZFQgSCaFf7ibhUlSp8+SlZHB27re0WDoOqVxOVnQ8obPXAmDlVYvGgcM5\n1G92qXEAZjUcybqfqLcMsxpOZN9PKHNdZCVlsm3i/zFo7TBkChnJUUls/kj9AgTXRtXptbQfK15f\nyp2QWxz6Yj+jto1DWVREelw660esA+Dg5/t4d0EvPj44DZlCRtjuC4T8X9mGACvTU0heE4TthMVI\n5AoK46JJ/mouitr1sRk5i7hpAzHt1BOZnRPGzV7DuNlrmnkTFoxBmfl0w9eKy09J52LQWpos+RCp\nQk5WdBwX56wGwLJ+LRrO+h9/D5xRatzl5ZtoOGMEbbcsQaVSEXfkLLd/3gdA6KTP8Z46jBo9OiKR\nSrixbgdpl3V//qQ820VRTh7BH6/AZ/JA9c+w5BdyZsZqcuJTtHNIziAk8DvaLPsAqUJOZnQ8p2d+\nC4C1lxvN5gxnf9/AUuOufLeHFgtH0mX7ApBIiFjzK8kRjy+Mmdd0JCtGf7vVJzspk71TN/LOl+8h\nU8hJvZvAH5N+AsCxYQ26fDKQ9W8twnfgq1g421Cns4/W8NotAV9w8os/6Di3L0P/mIlMIePaH+cJ\n23KyzDlUJnVdr6P1srGaug6Z+Q2gXidN5wzngGad6I+7sHQTftMC6PLrIlRKFfGnI7j6wx4ATk5Y\nSeMZg3Hv7Y9EIuHy2l9pOnuYdg4pGYTOWUfLpWMftv14QmY9zqHJnOEc7BtYatzFZZvwnRZA552P\nc7j24x5Qqjj50Qp8pwbgNbo7qqIiTk/5ivxU9WMel+evptGij5HI5eTExHFp3pcAWHjWxmvmKIID\nplCQkl5iXPSO/Ri7OtJy41KkCjnROw+Scl79000Xpyyl3oQh6hfO5BcQPnslefHJ5MUnc2/rXpp9\nMx8A8+r2nJzzk866yU3O4O9ZP/DaitFI5XIy7sVzfMb3ANg2qEmboCHs6hn0glqCtspYJ+3W6Y6u\nesTWQsKC4VImfFVEQRFUt5ew6D0pl26rmPNjEdvnqQ8n78aDnRUo5NrHMit+UaJSwZwfH49M8POQ\nMCtA905pVa+L/JR0woPW4Lf4I6QKOdnRcYTN/RoAi/q1aTjrf5wYOL3UuKsrNtJg+ghe2fwpqFTE\nHQ3lzuZ9/1gXjxSkpnHtky/xWjAZiUJObkwsV+d/gZmnO/WmjeHs0IklxgBEfvkjdSePoumGFahU\nKpKOhxCzdU+ZyxeE5yVRlfQKM6HC7dixg1u3bjFp0iTy8vLo2rUrLi4uuLi4EBMTg6mpKUuWLMHS\n0lLv/JcvX2bChAmMHz+ezZs3M3fuXKytrZkxYwZZWerhcp988gm//vordnZ29O/fn8DAQJydnWnV\nqhULFy7E2NgYqVRKUFAQ1atXLzXfhISMF14HT8ve3pw1nro/N1GRRl1dyw6/wZWaA0CP8z8xxfXD\nSs3h0+iV3Oun+wbTilZ98xn2NNV91q0ivRn6f1WmXWzxGVqpOfS9+CNL3T+o1BwmR6pfMFPEpkrN\nQ8ZAtvoMqdQc+lxU34H7xbdy8+h1YT0HWuj+nEZF6nR6Kz82eK9ScwAYGrGuSqyPghOV/6ZSRZuI\nKlEXe5vp/rRKRet65meOtnm6F++9aO1O7Kj07Saot50vg2Nt9P/cX1XS9kT5/eZrWYk7oFVIjx6P\nNzKGhoaan1QpKy8vL/78808A3nzzTc3na9as0YobN+7xb6EFBT2+ert169anKk8QBEEQBEEQBDUV\nVWOIa1UnTkBfMvn5+YwYMULn81q1ammdTAqCIAiCIAiCIFQ14gT0JWNgYMCGDRsqOw1BEARBEARB\nEISnJk5ABUEQBEEQBEEQnpOqirxltqoTP8MiCIIgCIIgCIIgVAhxAioIgiAIgiAIgiBUCHECKgiC\nIAiCIAiCIFQI8QyoIAiCIAiCIAjCc1KKZ0DLRNwBFQRBEARBEARBECqEOAEVBEEQBEEQBEH4j1Mq\nlQQGBtK3b18CAgKIiorSmn7o0CF69uxJ37592bp16zOXI4bgCoIgCIIgCIIgPKeX/WdYDh48SH5+\nPlu2bOHChQssXryY1atXA1BQUMCiRYv45ZdfMDY2pn///vj7+2NnZ/fU5Yg7oIIgCIIgCIIgCP9x\nZ8+e5dVXXwXA19eXS5cuaaZFRkZSo0YNLC0tMTAwoEmTJpw5c+aZypGoVCrVC8lYEARBEARBEATh\nP+qvlr0rO4V/1CF4W4nTZs6cSefOnWnXrh0A7du35+DBg8jlckJDQ9m4cSMrVqwAYOXKlTg7O9O7\n99N/ZzEEV3hmCQkZlZ0C9vbm5F56rVJzMPI+zO4mAys1B4BuZzdV+oavQ/A2Trz6TqXmANDm+G9V\noi6K2FSpOQDIGFjpecgYyP7mfSs1h84hWwDY6jOkUvPoc3F9lVgfQJXI40CLPpWaQ6fTWyu9bYK6\nfVaF9bHTL6BScwDofn5DlaiLI617VmoOAO1Pbmdf836VmkOXkM2Vvt0E9bbzZfCyvwXXzMyMrKws\nzd9KpRK5XK53WlZWFubm5s9UjhiCKwiCIAiCIAiC8B/XuHFjjh07BsCFCxeoW7euZpq7uztRUVGk\npqaSn59PaGgofn5+z1SOuAMqCIIgCIIgCILwH9epUydOnDhBv379UKlUfPLJJ/z+++9kZ2fTt29f\npk2bxogRI1CpVPTs2RNHR8dnKkecgAqCIAiCIAiCIDynl/0tuFKplKCgIK3P3N3dNf/v7++Pv7//\n85fz3EsQBEEQBEEQBEEQhDIQJ6CCIAiCIAiCIAhChRBDcAVBEARBEARBEJ6Tkpd7CG5FEXdABUEQ\nBEEQBEEQhAohTkAFQRAEQRAEQRCECiFOQAVBEARBEARBEIQKIZ4BFQRBEARBEARBeE4v+8+wVBRx\nB1QQBEEQBEEQBEGoEOIOqPCvdexsLl9sTCe/UEXdmgrmjrHCzOTxNZffj2Sz4fdMzd8Z2Srik4rY\n/40jcpmEBd+kcu1OAcaGUt7xN2bAG2ZlLtvhFV88x/ZFqpCTfvMeYUHfUpiV80xxTZZ+RF5CCpc+\nXQ+AbVMv6n/YH6lcRlFeARFL15MacQuA5huXIVUoyLwZxZWFqynK1l6WbevGuI8ZoBsjlVL3wyHY\ntPBBIpNx9/92EbPzAAB2rzTBa/ZYcuMSNcs5O2o2Rdm51BjQjWrd/FEVFVGQmq7z/axbNaHm+4OR\nKhRkRd7h5uJVOjmVJcZzwTTyE5O5teIbjN2qUzfwY800iVSKqbsb937aik2b5kgVCgBkJsYv5Psb\nV3fCa+YYFJbmFGbncjloFdlR9wFouGgiZh5uFOXkApBy9hI3Vq4vVqIVUvxRskOnbv6JSqVi5vRd\neNSxZ/iI1k89/4tSXnnYtfGjzpj+SA0UZNy8S8SCNRTp6SP/FGfoYEuL7xdwauAUCtIytOY1dran\n5frFnB2/UG8O1V71oeH43kgN5KRdv8eZud9RmJVb5jiJVILf9MHYN6kHQOzfYVz8fDMABham+E0b\nhIW7CzJDBVfW/U7U7pPPXF+P/NvahV0bPzxGD0BqoO6TEQtLbgd646QS6n00BNuHfTdq0+9EP+y7\njxhVs6fl+iWcG7+A9KvqbaX7+31x6qTOu/6UEVxb8RPK/AJNWeXVNuUWptSfNBzTWi7IDA249cNO\nHuw9/sz190h5tQvHV3xoMK4PUgMF6TfucW7et3r7SGlxtXp3wK17e2SGClKu3OH8vHUoCwoxr+2M\n36zhyEyMQKUi4outxJ8Kf+6cy6MubFo3pvaoQUgVcjIjo7j2ydc6+5eSYqQGBtSZ9B7m9T2QSKSk\nX77OjWXrUObnY17fHY8PhyMzMgSZlHsbfyXuz2Ol5mLfxo+6Y/pp2l34grV622dJcVJDBV6Th2Pp\n5Q5SCWmXbnJ56fco8wqwqF+b+h8PQWZsiEQq5dZPu/Tm8DJuO4WqRdwB/Y9YtWoVP//8s87nY8eO\n1fns559/ZtWqVRWRVrlJTisi8MtUPptsw65Vjrg4ylm5UfsE6a32Jmz9zIGtnzmwaYk9dlZSpr1n\nia2VjKU/pmFiJGXnCgc2LrLjxLk8jobqblz1MbAyx2fOSM5OXsGRnpPJjo7Hc1zfZ4pzH9wNG796\nmr8lchmNF40lbME6jvWfwY3vfsU3aDQGVuYAhE9fRnDfD8m5H4fHBwO1lqWwssBr1hi9MS7dO2Jc\n3YnTAz/mzPBpVO/7JhZeHgBYNqxH1P/tImTwZM2/ouxcrJs1xPmtDoS+N5OQgMnEHzmtVZ7cygKP\n6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8Sz1zgcQjJ3F8q7NmOcAL+/4N5n5I\n9I79BPefwO11W2i4aJJmmZbedTk7OlBTL49OPiUy9aZVij/Pcp0vMjKB4UM2sG9vxFPP+yKVVx4K\nK3O8Z4/m4rTPOdF7AjkxcdT9YMBTx1V7oy3Nv5mLkYONzrxSAwXe88YhUeivf0Nrc5oFvcfJiavY\n9840smISaPRhn6eKq9mtDeZuTuzvNZP9fWZj36Qerp2aAdBs/v/IiU/hQN9Ajo78FL+pgzB2sH6m\n+nrk39guGswaQ9j0zzjZ5yOyY+KpM0Z/OygpzrV7J0yqO3FqwEROD5tOjX5vYOHlrplXaqCg4RPt\nwLlbe+xfacLpodMByEtMwWNUX01Z5dk2vQPHkBufRHDANELHLsBz4lAM9bTfp1Fe7cLA2pwm80Zy\nevIXHOw+hazoeBqM17MvKyXO2b8p7v068feoxRzsNR2ZkQEeg7oA4DN9KFG/HeNwv1mcm7uO5kvG\naradz6o86kJhZYHnzLFEzFhKSP/x5N6Po/aYQWWOqTm0JxKZjNDBEzkz+GOkhobUGNwDgAYLJ3Nn\n3RZCh04i/OMFuI8firFrtVJyMcd79ijOT1vO8d4fkx0TT70P+j9VnPuw7kjkMk4MnMqJAVOQGRpQ\ne8i7APgt+Zib32zj5KBphH60GM+PAnSW/TJuOyuSUiWp8v+qAnEC+h/35ZdfVnYK5eLUxTy8PRTU\ndFYfdPR53YQ/juegUqn0xv/wayY2ljJ6dzYF4HJkAd3aGSOTSVAoJLzaxIiDp3SvMOpj36ohqZdv\nkXUvDoCoXw7i0rXNU8fZNvXCvnUjorb/pflMVVjEwa7jSL8WBYCJiwP5aZnYt2oIQM69WABiduzH\n6fVXtcqzadGI9CuRemPs27Xgwe7DqIqUFGZkEXfwBE5d1NMsG9bDpqk3zX5cQpM1QVj51gcgPymV\nq59+q7kKnHHlllZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHIC9v2rUkJPqu1\nHOCFfH9DextM3ZyJO3ACgKRTF5AZG2JerxZG1RyQmRjjOXUkzTcuo/6sMcgt1HfJzevVBkDJs93Z\n+HlTKN17+NKla4Nnmv9FKa88bFv4kHY5kuyH6+Le9gM4dXnlqeIM7axxaNeMcxMW6y3Dc8pw7u8+\novfOPIBjK2+SL90i8666/93ceogab7R6qjiJTIrc2BCpgQKZQo5UIacovwADC1McWzYgYs2vAOTE\np3Bw0Dzy07PKXEf6/BvbRdqVx+s3esd+zXanONsWPiXGObRrTszvRzR9N/bASap1aauZ13PyCO7v\nOarVDsw9axN/9AyFmdkAxB0JwdG/xeOyyqltyi1MsW3eiMhvfwEgLz6Z08NnUZCWyfMor3bh0LIh\nKRG3yHrY9m9v+4vqXXXvKJYWV73bK9zYuJeC9CxQqbiw8Afu7lZvTyVSKQoL9T5XbmpE0cM70M+j\nPOrCurkPGVdukvNw/3J/x584dn61zDGpFy4T9eMvoFKBUknm9VsYOdkhNVBw5/ttpISGAZCXkExB\najqGDrYl5mLXopFOu6ump32WFpd8/iqR3+98mI+K9Ot3MK6mzufmuu0knbmkzic+mYLUDJ1lv4zb\nTqHqEUNwK1FBQQHTp08nOjqaoqIihg0bxs8//0ytWrW4ffs2KpWK5cuXY29vz2effUZoaChKpZKh\nQ4fStWtXAgIC8PT05MaNG2RmZrJy5UpcXFxKLO/gv66AwQAAIABJREFUwYPs3buX3NxcZs2aRaNG\njWjTpg0nTpwgNDSUTz75BAsLC2QyGb6+vhVYEy9ebGIRjnYyzd+OtjIys1Vk5agwM9G++pOSXsRP\nuzLZvNRe81nDOgbsPpqDr6cBBQUqDgbnIJeV7aqRkaMtubHJmr9z45NRmJkgNzXWGl5bWpzM2JAG\nkwI4PXYJNXv4ay1fVViEgY0FbTctRGFlzrnpqzBzc9aKyYtPQm5mojUM1cjBTmsYbfEYIwdbcuOS\ntKaZedQEoCA9g9i9x0g4GoKljyc+n07h9KBJZN26p4mXKOS4j9G+42jgYEd+8fISEpGbmWrlVFqM\nzNiYWh++R8TEuTi9/breunb7YBh3v92Igb32coAX8v0NHWzJS0hR76g105IxdLBFIpeRfCaca0u/\nJT8lnboThuI1czRhU5eSfvnmw+hsvXn/k1mBXQEIDr79TPO/KOWVh5GjLbnx2vWtMDNBZmqsNZSs\ntLi8xBQuTv1M7/Jd3vFHKpcT89shag/rrjfGxMmGnLjH/S8nLhkDcxPkpkZaQ8lKi7vz23FcOzXj\nrQMrkMikxJ26xIOjF7Dxrk1uYip1A7pQrU0jpAZyrv20l8youKevrGL+je0iL65s7aCkOCNHW/Li\nn+y7NQBwedsfiVxGzG9/UWvo43aQHnGDGv3e5N429YUt5zfaYmhnrSmrvNqmiasTeUkp1BzYDbtW\nvkgN5ERt3E323Qc6sU+jvNqFuu0//o458ckoSuwj+uPMajpheMmC1l9OxsjeiqTz17m0Qj3U8uLi\n9byydjoeA7tgaGPBmWlfoSpSPlfO5VEXRo525Gntp5J09mWlxaSEXNR8buhkj2ufblxfsgZlfgGx\nux9fYK72TidkxkakX7peSi7a7S63jO2zeFzS6bDHcU521OzXlYhF61DmFxCz67Bmmuu7HdTDo5/w\nMm47hapH3AGtRFu2bMHGxobNmzfzww8/sGLFClJSUmjcuDEbNmyga9eurF27lqNHjxIdHc3PP//M\nTz/9xJo1a0hPV1/NbdSoET/++CNt2rRhz549pZbn4uLCTz/9xMKFC5kzZ47WtHnz5vHZZ5/x448/\n4urqWm7fuaKUcKMTqZ4Wv/1ANq81M8LV8fH1mIlDLZBIoO+kBCZ8mkwrH0NKGMmnQyLRf6L65I61\npDgk0HjROCI+20BeYqrekPzkdA52HceJYXPxmfM+htYW+stUFitTWkJeSiUSPdMe5Rs+bRkJR0MA\nSLt4ldTwa9g0b6SJU1hZ4LdytuY5SM3XKKW8f4pBIqHu3Enc/mIdBUkpekPMvT2RW5qTcOBYmcp6\nlu9f4nKLlKRH3CR82lLyk1JBqeTWt1uxbdMYiVxc1/snJa73J/tIGeOKM69XC9ceHbm86NvScyip\nnyrL1k9VSiVeo94lLyWDXa+NY3fnCRhYmlF3cBckchlmrg4UZuVwaOgCgqd+je+kAVjXdys1J0FN\n5yREov9QRVWk1N+vlcqH7aATVxbrtoMHe48TdyiYJl8FApB15z7KgsKHRZVf25TK5Zi4OFKUmc2Z\n/wUSNnMl9SYMxtyzVonzVKoS92WqMsdJ5TIcWnoTMnUVhwcGorA0xWtsL6QGCpov/oBzc75hX5cP\nOTZiAb6zhmHs+HzDkctFWbYVZYgxq1cbv6/nE7N9L0knz2rF1QjojtuIvoRPWYQyP7/kVPQdxICe\n9vnPcRaetWjxzVzubttPwt/ntMJqDX4bj5G9ODfxU90cxLazVCqVpMr/qwrEkVIlioyMpHVr9TAV\nMzMz3N3dOXHiBC1btgSgcePGHDp0CEdHRyIiIggIUI/FLywsJCYmBgAvL/WzcU5OTiQmJuop5bFm\nzdTj6+vUqUNCQoLWtMTERGrVqqUp9+7duy/oW1YOJzsZ4TceD+eJTyrCwkyCiZHuRvnPEzlMHWGp\n9VlWtpIJARZYmqvjv9+ZQY1qJXeXuqN64ti2CQByU2Mybj6+O2hkb0N+WiZFuXla8+TEJmHl7aET\nZ1bLBRNne7wmqJ8fMbS1RCKTIjVUcHn5JuyaNSD2cCgA6VfvkHE9Cp54bsbQ3oaCtEyUxcrMi0vE\nskEdvTG5cYmaOwCPpj26Q+jS83Wi1u/UTJMgQVVUBICZRw0aLZ1KwpEQbqzaQIeTW4qVl4BZ/bqP\nl2lnS0F6xhM56Y8xcauOUTVH3MYOB8DAxvphHRhwc4l62Lid/ysk7DsMKpXOcoAX8v1zYxMxsLXS\nqdu8+CSsfDyRW5iReFy9LiQSCShVOjthQc19ZG/s2zYF1H0k8+bjbcyjdfFkH8mNTcSygcc/xhXn\n/EZb5KbGNP9uvmaehkHjNNM7bQkCQGFmTNqNaM3nxg7W5KVlUpSjffCXFZuMTUN3vXGuHZpybvEG\nlIVFKDNzuLPrb1w7NSPmL3WbuP2begh25r14Es9fx8a7dhlq6t9NQiMkPB6pY2D3uH/p224B5MYl\nYumt2w6UuXk6fdTQ3obc+GSqvdEWmakxzdct0HzuHTSeG6s2kHLxKrF//s2d9b/S6fRWrHzqIZFJ\nablxSbm2zbxE9d2gmD1HAciJjiPl4jWt5VS2+qN74NSuMQAKU2PSi+/LHKxL3JcV7yPF43ITUrl/\n+Kzmzti9PSfwHNkdCw9XZMaGxB6/AEBKeCTpkTFYF1tOVZEXl4hFsX2Hgb2+fVnpMQ4d21Bn0v+4\n8dk64g/8rYmTKOR4zhqHqZsr50dOJzdW+9gMwGNkbxxKOL4wLPH4Qrd9Fo9z6tQKrykjuLLsBx78\neUIrn0aBozGt7crpEYHkPFDn02BMd5zb+QFi2ym8GOIOaCVyd3cnNFTd2TIzM7l+/Tqurq5cuqQe\nf3/u3Dk8PDyoXbs2LVq0YMOGDaxfv56uXbtSvXr1py4vLEw97OLatWs4O2sP2XR0dCQyMhKA8PDn\nfwtdZWvla0jY9Xyi7quvam/bn037ZrpDSdIzldyNLcKnnoHW59v2Z/PVZvVd5qTUInYczKbrq8Yl\nlnd9zXaOD5jB8QEzODF0DtYNPTCt7ghAzV4diDt6VmeehOBwvXGp4Tf5683xmuXd3f4XD/YHEzZ/\nHaoiJY0CR2Ltoz7ZMqvtgqmbM/d+Ux/QGFd3AsCle2cSjp/RKi/p9EUsvevojUk4doZqb72mfi7D\nzATHTm1IOHaGwuxcXHt2wf419fNRZnXdsPDyIOnUBYxdnWj81Vxuf/eL+uU7T5x4pYZcwLxBPYwe\nvlDB6d0uJP8dUqaYjIhrhPYaoXnRUOxv+0j862/NySeAhW8DUs+G6V0O8EK+f15CMjkxcTh2VF8o\nsmnhg0qpJDPyLjITI+p+PFzz3GeNQW8TfzhYpx4EtchvthE8aCrBg6YSMnwWlt51MHm4Llx7dCL+\nWKjOPEmnw8oUV9y15es50WuCpqy8hGTCAx+/VO1A30AO9A3kr4AgbBu5Y1ZD3f/ce/tz/8h5neXF\nnQovMS7lShTVO6v7hkQuw7m9H0lhkWTFJJJ8+Q5ubz98JtDGAlvfOiRfrtyhs1WBijCU7EXJXgDd\n9ftEv4XHfVdfXMKxUFze8i/Wd1uTcDSE68vXc7L3RwQHTCE4YAp5CclcCvyChONnsajvjs+SSUhk\n6sc0DKzMubl2a7m3zZz7CaRfuYXzm+rn3A1sLLFqWJf0y7dKna8iXVm9g8P9ZnG43yyODJ6n3kc9\nbPu1enXgwZFzOvPEnbpUYlzMwRBcOjZHaqh+O7nza000z4vKzYyx8VGftJm6OmBey5m0q1EV8TWf\nSnLIBSwa1NW8HMj53c4kPtFOS4uxf60lHhNGEPbRfK2TT4AGCyYhNzXm3Psz9J58ApqXAp0cNI3g\n4bOx8vbQtLsaPTqW2D5LinP0b0H9iUMJHf+J1skngN+ij5CZGmudfAJEfL1TbDuFF0rcAa1Effr0\nYfbs2fTv35+8vDzGjh3Ljh072LlzJz/++CPGxsZ8+umnWFlZERISwoABA8jOzqZjx46YmZX9J0Ee\niY6OZvDgweTn5xMUFKQ1LSgoiClTpmBmZoapqSmWlpYlLOXlYGspI+gDKyYtS6agEFydZCwcZ03E\nzXzmrU5l62cOANyNLcTeWopCrj0kYUQPM2auTKXHR/GoVDCqjzneHgb6itKRn5LOxXlrafLph0gU\ncrKj47kQuBoAy/q1aDT7fxwfMKPUuJIU5eQROvFzGkwchEQuR1lQwPlZX5FxQ33FvuEnE5Eq5ORE\nxxER9CXmnrWpP2M0IYMnU5CSzuX5X+vEgPqFPMYuTjTfsAypQk7MzgOknr8MQNiUJdSbOILa7/VB\nVaTk0qzlFKRlqH/OxNCQ6n3eoHqfN3RyLUhN4+aiL/CcPxWJXE7u/VhuLFiBWT0P3Kd+wMXhE0qM\nKQtjV2fyYuP1lgVw44ufXsj3vzR7OfWnj8JtWE+U+QVcmvk5qFQknbpA9LY/aPrNfJBIyYq8y5VF\na8qU+39dfko6EfNX47P4YyRyOTkxsYTP/QoAi/q18Zr5PsGDppYa97zykjMICVxH62Vj1T+bEB1P\nyMxvALD2cqPpnOEc6BtYatyFpZvwmxZAl18XoVKqiD8dwdUf1I9CnJywksYzBuPe2x+JRMLltb+S\nEiEOop50ef5qGi16tH7juDRP3SctPGvjNXMUwQFTHvZd/XHRO/Zj7OpIy41LkSrkRO88SMr5K6WW\nmXw6jEQ/L1puWgpAVtR9on5Wr7fybpsXpiyj/pQRVO/RESRSbn23nfQrkc9cf+UpPyWdc3O/pcXS\n8UjlMrKi4wmdvRYAK69a+AWO4HC/WaXG3dp6EAMLM177v/lIpFJSr94h/PPvKczK5fTHK2k0eRBS\nAwWqwiIuLPiBrOj4yvzKehWkpHN14Vc0WDgJiUJObkwsV4JWYe7pTr1powkdOqnEGIBao9SjmepN\nG61ZZlr4VeL2H8fu1WZkR8XQeM3jn4qKXL2RlNMX9OaSn5JO+Pw1+C6egFQuJzsmTqt9es8cyclB\n00qNqzumHxKJBO+ZIzXLTbl4jQd/nsChbVOyou7TYt28EutDbDtLJy5Bl41EVdJrQYVKERAQwNy5\nc3F3r3rDUJ6UkKD7drSKZm9vTu6l1yo1ByPvw+xuMvCfA8tZt7Ob+Ktl70rNoUPwNk68+k6l5gDQ\n5vhvVaIuithUqTkAyBhY6XnIGMj+5ro/31CROoeoh4dv9RlSqXn0ubi+SqwPoErkcaCF7s83VKRO\np7dWetsEdfusCutjp5/uz25UtO7nN1SJujjSumel5gDQ/uR29jXvV6k5dAnZXOnbTVBvO18Gu6rA\n8eA/efts5R+biDug/zJjx44lLS1N6zMzMzNWry79zpogCIIgCIIgCEJ5EyegVcyGDRuea/5/6+96\nCoIgCIIgCEJVVlXeMlvViZcQCYIgCIIgCIIgCBVCnIAKgiAIgiAIgiAIFUIMwRUEQRAEQRAEQXhO\nSjEEt0zEHVBBEARBEARBEAShQogTUEEQBEEQBEEQBKFCiBNQQRAEQRAEQRAEoUKIZ0AFQRAEQRAE\nQRCekwrxDGhZiDuggiAIgiAIgiAIQoUQJ6CCIAiCIAiCIAhChZCoVCpVZSchCIIgCIIgCILwMvvF\nd0hlp/CPel1YX9kpiDuggiAIgiAIgiAIQsUQLyESnllCQkZlp4C9vTm5l16r1ByMvA+zu8nASs0B\noNvZTfzVsnel5tAheBsnXn2nUnMAaHP8Nw606FOpOXQ6vZUiNlVqDgAyBlZ6HjIGsr9530rNoXPI\nFqDyr073urC+SqwPoErkURX66b7m/So1B4AuIZurxPrY6RdQqTkAdD+/oUrURWVvs0C93TrUqlel\n5uB/6pdK325C1bhrJ7w44gRUEARBEARBEAThOSnFg41lIobgCoIgCIIgCIIgCBVCnIAKgiAIgiAI\ngiAIFUIMwRUEQRAEQRAEQXhOKiSVncJLQdwBFQRBEARBEARBECqEOAEVBEEQBEEQBEEQKoQYgisI\ngiAIgiAIgvCclCoxBLcsxB1QQRAEQRAEQRAEoUKIE1BBEARBEARBEAShQogTUEEQBEEQBEEQBKFC\niGdAhX+tY2dz+WJjOvmFKurWVDB3jBVmJo+vufx+JJsNv2dq/s7IVhGfVMT+bxyRyyQs+CaVa3cK\nMDaU8o6/MQPeMCtz2Q6v+OI5ti9ShZz0m/cIC/qWwqycZ4prsvQj8hJSuPTpegBsm3pR/8P+SOUy\nivIKiFi6ntSIWwA037gMqUJB5s0orixcTVG29rJsWzfGfcwA3RiplLofDsGmhQ8SmYy7/7eLmJ0H\nALB7pQles8eSG5eoWc7ZUbMpys6l4aKJmHm4UZSTq7cerFs1oeb7g5EqFGRF3uHm4lU6OZUlxnPB\nNPITk7m14huM3apTN/BjzTSJVIqpuxtXZi5CVVBAzfcHA9DokwlELFxDkZ56t2vjh8foAUgN1PWg\niZNKqPfREGwf1kPUpt+JflgPJtWd8Jo1GoWlOUXZuVya9yXZUfe1llu9b1dc3+nAqQGTnihRipRO\nqLiLiit66+pJKpWKmdN34VHHnuEjWpdpnvJQXnnYtfGjzpj+SA0UZNy8S8SCktdVaXGGDra0+H4B\npwZOoSAtQ2teY2d7Wq5fzNnxC/Xm4PSqD97jeiMzkJN24x6hc7+jMEu3LZcYJ5XgN20w9k3qARD7\ndxhhyzcDUK2tL83m/4/s2CTNco4M++TpK+oJ/7Z2UWJfLGtcKX3W7pUmeAd+oLXtOvN+IEXZubi/\n3xenTuq8vaYM5+qKDSjzCwCwb+NH3TH9NG0ufMFavTn9U5yRgy0tv5/PiYFTNW1TYWFK/UnDMKvl\ngtTQgFs//Mr9vcefuf4eKa924fiKDw3G9UFqoCD9xj3OzftWbx8pLa5W7w64dW+PzFBBypU7nJ+3\nDmVBIU5t/WgSNFKrjxwfvuC5c36Zt1nOb7XHsX1zzk/8VG8Otq0b4z56IBKFnKzIu1xZ+LX+/Xwp\nMYYOtjRd9wkhAZN0yq/WzR/7ds0Jm7y41Lp4GbedFUWlquwMXg7iDqjwr5ScVkTgl6l8NtmGXasc\ncXGUs3JjulbMW+1N2PqZA1s/c2DTEnvsrKRMe88SWysZS39Mw8RIys4VDmxcZMeJc3kcDdV/kvUk\nAytzfOaM5OzkFRzpOZns6Hg8x/V9pjj3wd2w8aun+Vsil9F40VjCFqzjWP8Z3PjuV3yDRmNgZQ5A\n+PRlBPf9kJz7cXh8MFBrWQorC7xmjdEb49K9I8bVnTg98GPODJ9G9b5vYuHlAYBlw3pE/d8uQgZP\n1vwrylbXhaV3Xc6ODtR8XpzcygKP6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8\nSz1zgYQDR0kPu6xZFkB2TDx1xgzQqXeFlTkNZo0hbPpnnOzzkVaca/dOmFR34tSAiZweNp0a/d7A\nwssdAO9544nevp9T/T4m8tut+CyeqLVcy0b1qBXwjk55ABKaAGW/gBEZmcDwIRvYtzeizPOUh/LK\nQ2Fljvfs0Vyc9jknek8gJyaOuh/oX1elxVV7oy3Nv5mLkYONzrxSAwXe88YhUei/zmpgbU7Tee8R\nPGkVf747jazoBBp+2Oep4mp2a4O5mxP7e8/kQN/Z2DWth0unZgDY+tTh+k97Odg3UPOvMLts25CS\n/BvbRUl9sbhn7bNWjepyZ9PvBAdM0fwrys7FuVt77F9pwumh0wHIS0ylzqi+mrK8Z4/i/LTlHO/9\nMdkx8dT7oL/enEqLc37jVVroaZsNA0eTG5/MyYDpnBm7kPoTh2Cop/0+jfJqFwbW5jSZN5LTk7/g\nYPcpZEXH02C8nn1ZKXHO/k1x79eJv0ct5mCv6ciMDPAY1AUAG5863PjpDw73m6X5V1X7SHlvs+QW\nptSf9h71Jw2jpJ+RVFhZUH/mB4RPX8rpfh+SExOH+xjd/XxpMU5d29F4zXwM7W2fKN+MelNGUvfj\n4SAp/SU6L+O2U6h6xAloFbFjxw6WLVtWbss/ffo0EyZM0Pl84cKF3L+vfRcnMjKSgICAcsulIpy6\nmIe3h4KazuqDzz6vm/DH8RxUJVya+uHXTGwsZfTubArA5cgCurUzRiaToFBIeLWJEQdP6V7p1Me+\nVUNSL98i614cAFG/HMSla5unjrNt6oV960ZEbf9L85mqsIiDXceRfi0KABMXB/LTMrFv1RCAnHux\nAMTs2I/T669qlWfTohHpVyL1xti3a8GD3YdRFSkpzMgi7uAJnLqop1k2rIdNU2+a/biEJmuCsPKt\nD4BRNQdkJsZ4Th1J843LqD9rjFZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHI\nC9v2rYlctlpnWdE79mu+Q3G2LXxIuxJJ9sN6KB7n0K45Mb8f0dRD7IGTVOvSFkN7a0zdnIk9cBKA\npFMXkBkZYl6vFgAGNpbUnzyC66s26pQnoRagQEWM3u+gz8+bQunew5cuXRuUeZ7yUF552LbwIe3y\n43Vwb/sBnLq88lRxhnbWOLRrxrkJ+q/Ue04Zzv3dRyhITdc73bGVNykRt8i8q+5/kdsOUaNrq6eK\nk0ilyI0NkRkokCrkSOVylHnqu2i2Ph7YN/Oiw//No/33M7BrXE9n2U/r39guSuqLxT1LnwWwalgP\nm6YNaLF+MU3XztNsu8w9axN/9AyFmdkAxB0Jwcm/BQB2LRrptLlqetpmaXGP2mboE21TYWGKbfNG\n3Pz2FwDy4pM5NXw2BWmZPI/yahcOLRuSEnGLrIdt//a2v6jeVfeOYmlx1bu9wo2NeylIzwKVigsL\nf+Du7hOA+kTDvrkX7TcF8ep3s7Ctwn2kvLdZTh1bkZeYyrUvdPchj9g09yH9yk1yoh/tw//U3c+X\nEmNgZ41d2+Zc/Fj3bqJDh9bkJaZwc9VP/1gXL+O2U6h6xBDc/7iZM2dWdgrlIjaxCEc7meZvR1sZ\nmdkqsnJUmJloX91LSS/ip12ZbF5qr/msYR0Ddh/NwdfTgIICFQeDc5DLyvZqbSNHW3JjkzV/58Yn\nozAzQW5qrDW8trQ4mbEhDSYFcHrsEmr28NdavqqwCAMbC9puWojCypxz01dh5uasFZMXn4TczASZ\nibFm6I2Rg53WULTiMUYOtuTGJWlNM/OoCUBBegaxe4+RcDQESx9PfD6dwulBkzCwsSD5TDjXln5L\nfko6dScM1crBwMGO/OLlJSQiNzPVyqm0GJmxMbU+fI+IiXNxevt1vXXt9sEw7n67kaLsHN1lxSeh\nMDNBZmqsPSzO0Za8J77rozgjR1vy4p+shxoYOdqRl5CiNbYmNyEZIwcbMm7cwTtoPNdXbUBVWPRE\nhlZIqIeSA0hopvc76DMrsCsAwcG3yzxPeSivPIwcbcmN178OnlxXJcXlJaZwcepnepfv8o4/Urmc\nmN8OUXtYd70xJo42ZBfrfzlxySjMTZCbGmkNJSst7s6u47h2asab+1cgkUmJO3WJB8cuAJCflknU\n7pPcP3wWW986tF7xEQf7zHrKmtL2b2wXJfXF5+2zAPlpGTzYe4yEo2ew8qmHz9IpBA+aTHrEDWr0\ne5N729QXtpzfaIuhnZWmrOJtLreMbTP3ibZ5YernOt/VxNWJvKQU3Aa+iX0rX6QGcm5v3E323QfP\nXH9Qfu3CxMmGnGL1nhNfQh8pJc6sphOGlyxo/eVkjOytSDp/nUsr1EMt81MzuLvnBA8On8XWty4t\nl3/EX32f75jkZd1mRe84CIDzm+30Tn+0bK22npCks08tLSY/MYVL05fqXfb9nfsBcHqjfYnlP/Iy\nbjsrkrKkW9iCFnECWklyc3OZPn069+/fp6CggNdff3yA/f3337Nnzx7kcjlNmzZl8uTJnD17liVL\nliCXyzE2NmblypUYGhoyZ84coqKiUCqVfPTRR7Ro0aLEMqOiohgxYgQpKSn079+f3r17ExAQwNy5\nczE3N2fSpEmoVCrs7e1LXMbLoqQx+FI99/y3H8jmtWZGuDo+7g4Th1rw+fp0+k5KwN5aSisfQy5c\nzS9T2ZIShq+oipRlikMCjReNI+KzDeQlpuoNyU9O52DXcVh4utFy9Qyidx3VX6ayWJnSEvJSKpHo\nmfYo3/Bpj+/Mp128Smr4NWyaN+LBniOET3u8M7v17Vaq9+6KRC5HVViod5lP5lRSDBIJdedO4vYX\n6yhIStEbYu7tidzSnIQDx0pd1pP1jkT/wA9VkVJ/HSmVJQ5JUimV1BkzgNTzV0gOCce6sZfWdCmt\nUHICePLE9L+txPX+ZB8pY1xx5vVq4dqjI2dGzn2mHHT6aSlxXu+/S15KBr/7j0NmZEDr5R9SJ6AL\nNzbs49TEVZrYpAs3SLp4A4dW3qXmJKi9kD4LhE17fLCfevEaaWHXsW3eiPu7j2DoYEuTrwIByLoT\ng7Kg8GFRJQwM02kXZYvTmkcuw8TFkaLMHE7/bw4mro40/2au5m5ZlVPivkxV5jipXIZDS2+CJyyn\nKK+AJvPfx2tsL8KXbeL0pC80sUkXrpN08SYOLatmHynPbVaZldDmtPfzZYh5TmLbKbwI4gS0kmze\nvBkXFxeWL1/OnTt3OHLkCBkZGVy7do29e/eyefNm5HI548aN4/Dhw4SEhNC1a1eGDBnCoUOHSE9P\n58iRI1hbW/PJJ5+QkpLCoEGD2LNnT4llFhQUsHr1apRKJe+88w4dOnTQTFuzZg3dunWjT58+/PHH\nH/z8888VUQ3lxslORviNAs3f8UlFWJhJMDHS3Tj/eSKHqSMstT7LylYyIcACS3N1/Pc7M6hRreTu\nUndUTxzbNgFAbmpMxs17mmlG9jbkp2VSlJunNU9ObBJW3h46cWa1XDBxtsdrwiAADG0tkcikSA0V\nXF6+CbtmDYg9HApA+tU7ZFyPApn29zK0t6EgLRNlsTLz4hKxbFBHb0xuXCKGdtZa0x7dIXXp+TpR\n63dqpkmQoCoqwsrHE7mFGYnH1bk8OqF+tKNcMrTqAAAgAElEQVTLi0vArH7dx8u0s6UgPeOJnPTH\nmLhVx6iaI25jhwNgYGP9sA4MuLnkSwDs/F8hPz4Rn+8+f1jvJmRFRpVaBwC5cYlYFqt3rXqITcTA\n1kprWm58Mrlx2p8/Wl+58clU69qW/JQ0HNo3R2ZshKG9DS03PHqBhAFSHg2rNgWqoR6OG8Z/jfvI\n3ti3bQqo+0jmzbuaaY/WwZN9JDc2EcsGuuvqybjinN9oi9zUmObfzdfM0zBonGZ6xy1BmhzSb0Rr\nPjd2sH7YT7UvNGU/SMbG211vnEuHplxYrL7zXZiZQ9Tvf+PasRl3fj2Gex9/rn63WzOfRCJBVSAu\nREhohAQXzd8Gdtr97UX1WbmZCa49X+dOsW0XElAWFiG3MCX2z7+5s/5XOp3eirWPJxKZlNYbF+ts\nvw1L3H7rtk19ccXlJaovpkXvUV8wzI6OI/XiNa3lVLb6o3vg1K4xAApTY9KL78s0bV93X2bT0F1v\nXG5CKvcPn9XcGbu35wSeI7ujMDOhVp8OXP/+d818Egl6RpFUnoraZpVVbmwCFl5P7MOf2KeWJeZZ\neI3ujnN7P0BsO4UXQzwDWklu3bqFr68vAG5ublhYWGg+9/HxQaFQIJFIaNq0KTdu3GDUqFHEx8cz\nZMgQ9u3bh1wu5/r16xw7doyAgADGjx9PYWEhycnJJZbp6+uLgYEBRkZGuLu7Ex39eANy584dGjVq\nBEDjxo3L8ZtXjFa+hoRdzyfqvvqq9rb92bRvZqQTl56p5G5sET71DLQ+37Y/m682q58dS0otYsfB\nbLq+alxiedfXbOf4gBkcHzCDE0PnYN3QA9PqjgDU7NWBuKNndeZJCA7XG5cafpO/3hyvWd7d7X/x\nYH8wYfPXoSpS0ihwJNY+6pM2s9oumLo5c+839QGNcXUnAFy6dybh+Bmt8pJOX8TSu47emIRjZ6j2\n1mtIZFLkZiY4dmpDwrEzFGbn4tqzC/avqe+sm9V1w8LLQ/0MpIkRdT8ejtxC/XKdGoPeVhf08AQ0\nNeQC5g3qYeRaDQCnd7uQ/HeIVk4lxWREXCO01wjNi4Zif9tH4l9/a04+ASx8GxD17SZNTNj7U7SW\n5dqjE/FP1EHxejB5WA/F4xKOheLyln+xemhNwtEQ8uKTyYmJw/HhWzNtW/igUirJvHmXY2++T/Ag\n9QtOLn+yhpyYWIIDpqirgt9Qshcle1ERjYqr/8mTT4DIb7YRPGgqwYOmEjJ8lu46OBaqM0/S6bAy\nxRV3bfl6TvSaoCkrLyGZ8MDHV9QfvdTicEAQNo3cMauh7n+1e/lz/8h5neXFnQovMS71ShSundV9\nQyKX4dzOj6SwSAqycnDv2xGXDuqDV6t6NbD2rk3syf/mui9ORZimTwAl9sXinqXPFmbnUL3X6zg8\n3HaZ13XD8uG2y6K+Oz5LJiGRqR/TUFiZcWPtNk4Omkbw8NlYeXtoyqrRo2OJbbMsccXl3E8g7cot\nXN5UP6NqYGOJVcO6pF2OfLpKLEdXVu/QvBDoyOB56n3Uw7Zfq1cHHhw5pzNP3KlLJcbFHAzBpWNz\npIYKAJxfa0JKxC0KsnOo3bcjzg/7iGW9mlh7uxNXhfpIRW2zyio55OE+3FW9bOfunUk8duapY57F\n5dU7xbazjFQqSZX/VxWIO6CVxN3dnfDwcDp27Mi9e/f4/PPPeffdd6lduzY//PADhYWFyGQyzpw5\nw7vvvsuuXbvo3r07U6dOZe3atWzdupXatWvj5OTEqFGjyM3NZfXq1VhZWZVY5uXLlyksLCQ/P5/I\nyEhq1Kihlc/58+fx9PQkPDy8IqqgXNlaygj6wIpJy5IpKARXJxkLx1kTcTOfeatT2fqZAwB3Ywux\nt5aikGt3yBE9zJi5MpUeH8WjUsGoPuZ4exjoK0pHfko6F+etpcmnHyJRyMmOjudC4GoALOvXotHs\n/3F8wIxS40pSlJNH6MTPaTBxEBK5HGVBAednfUXGDfWV2YafTESqkJMTHUdE0JeYe9am/ozRhAye\nTEFKOpfnf60TA+oXEhm7ONF8wzKkCjkxOw+Qev4yAGFTllBv4ghqv9cHVZGSS7OWU5CWQdKpC0Rv\n+4Om3/w/e/cd31T1PnD8kzTdg+4W2rLKaillb2WDgjjYIhtEqwLK3nvJElBUpoCACEj9Ck5wIMpo\nAdmrUHYpHbR0zyS/PwKhIU1bhDbF3/N+vfpHb5577pNzb05ycs49mQ0KJWmRNwxyzbmXxOX5H1Nj\n9ngUKhWZt+9wac4yHKpXwX/8e5wcPNJkTFHY+pYj605svscDcPAvz5mZuufnVKMygZNDONxv3P16\n+Jzg+aNQqFRkRMXo426F7sHW14smmxehtFRx69tfSTyu+9mU01OWETDxbSoP6oomO4dTk5bKeuv/\nUnZiMmdnf07tDx+cgzucnvEpAE4BlQmc/DaH+44vMO5JZSWmcHT6WposGobSUkXarVjCp6wGwCWw\nIvWnD+bXXtMKjDu5eAt1JvSjw7fz0Wq0xIad5eKGH0Cj5eAHy6gzvh+B73RBq1YTNu5Tsu892WIz\n/0WmXotP4zV7cuxCqo8ZjP/QHmjVGk5NWUZOUgoJYaeIrxtIky26WwjSrkdzbatu9lB2YjKnZ6+k\nzocjUapUpEfFGFybQZPf4mDfCQXGFeT4uCUEjhuMX9d2KBRKItftJPn8lader09DdmIy/8xYQ+NF\nI1CqLEi7FcvRqasAcA6sRN1pQ/jj9SkFxl3Z/itWTg60/mo2CqWSexeucfqjL0Cj5fDIZdQe34+A\nkG5o1GrCx68ota+R0tBm5SQmc37OpwTNG6N7D4+K4dysT3Cs4U+NiSEcGTDWZMzTJG2neBoUWlPL\ngopilZWVxaRJk4iJiUGtVtOuXTsSExMZM2YM69ev58cff0Sj0VC/fn0mTpzIqVOnmDt3Lra2tiiV\nSmbNmoWXlxdTpkzh9u3bpKam8sYbb9Czp/FS2KBbBffBfaPJyckMGjSIzp076+8BdXFxYezYsWRn\nZ+Pr68utW7fYtGlTgc8hLi6lwMdLgoeHI5lnWps1B5ugP/i+fp/CA4tZ52Nb+K1JD7Pm0PbwDg48\nn/9PkZSk5n99x97G+b8WSkr7sO2o2WLWHAAs6GP2PCzow55Gxj/fUJI6hG8D4Js6A8yaR/cTG0vF\n+QBKRR6l4XX6c6PXzZoDwIvhX5eK8/FtXfOvgN/l+KZSURfmbrNA12793rS7WXNoc+gbs7eboGs7\nnwWbgoaYO4VC9TuzztwpyAiouVhbW7NkSf6roQ0aNIhBgwYZbKtduzbbt283il24MP8fK35U48aN\n+eqrr4y25+1krltn/gtSCCGEEEKIZ5GmlExxLe2kA/ofs2LFCsLCwoy2z5s3Dz8/PzNkJIQQQggh\nhBA60gH9jxk2bBjDhg0zdxpCCCGEEEIIYUQ6oEIIIYQQQgjxhGRhnaKRn2ERQgghhBBCCFEipAMq\nhBBCCCGEEKJESAdUCCGEEEIIIUSJkHtAhRBCCCGEEOIJyc+wFI2MgAohhBBCCCGEKBHSARVCCCGE\nEEIIUSJkCq4QQgghhBBCPCGNuRN4RsgIqBBCCCGEEEKIEqHQarXym6lCCCGEEEII8QTWBg41dwqF\nevPcGnOnIFNwxb8XF5di7hTw8HBkb+OeZs2hfdh2fmrY26w5AHQ8spXfmvQwaw5tD+9gX7NuZs0B\noNXBnaWiLsx9bYLu+jR3Hu3Dtpv9umh1cCdAqaiL0pADlI66ULPFrDlY0IewVp3NmgNA433fl4rz\nYe52E0pH29k+bDt/Nu9q1hwAWh4INfvni45Htpr9fMDDdqu008oquEUiU3CFEEIIIYQQQpQI6YAK\nIYQQQgghhCgRMgVXCCGEEEIIIZ6QRqbgFomMgAohhBBCCCGEKBHSARVCCCGEEEIIUSJkCq4QQggh\nhBBCPCH5bcuikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFUIIIYQQQognJKvgFo2MgAohhBBC\nCCGEKBHSARVCCCGEEEIIUSJkCq74T3Hw96P66MGoHOxAo+Hch6tJuXD1scqwdHYkaPowbMp66MqY\nv5qk0xEAVBvRD8+2TclNTgUg7frtfMvwaF6Xau+9jtJKRcqlG5yZs5rctIwixymtLak5bjBlAiuD\nUknSmcucXfgFmqwcPJ+vR63p75AZE68v5/DQmQA02rwYpaUlqZevc37u56jTDY/p1qwe/u++YRyj\nVFLt/QG4Nq6NwsKCG1/tIurbvQb72pT1pNGGBRx/fzYpF65Qod9reLVvnqfenIyen2uzelQO6YvS\nUkVq5HUuzvvMKCdTMUorK6qOeRPHgCooFEqSz0VwafFaNNnZONcLwv+9fihUKjRZ2Vxauo6U85cN\nyi0NdeHevC5V3nkDpZXuGGfnrkSdz3VgMk6poPoHA3C7n8v1Lbu5ZZSLB002LuCfEXNIvnAFAJ8u\n7SjfqxPaXDUAXu2bU2nAa2bLAyBowXguzvuMnKSUJ7ouHrD2dKPemvkc7T+anKQUAN11MXwACgsL\ncpJSuLz8C9IuXy/ac3wKdeFSvybVhvdFobJAnZXNxSXrST4XCUDwh6NxrFIBgOahn6CytyUnKbVE\nz4f/273wbt9MH+PRsiH+Q3sWS124P1efoGnvGbRTR96ehjo90yAPBQ3RcgzQGB23MFqtlskTd1Gl\nqgeDhzQrfIcicG7SAL+hA1BYWpJ+5RpXFy43ujZNxVSdORFrn7L6OGtvL1JOniFi8myDbUGrl3Fh\n7FTSLhq2WeZqL6qPGYTPq20BeG73Ko6+NYXM6DiD/f5Ne2nr503g5HexLONIbnom52Z9Qvr998zy\nb3SmbOc2aNVqcu4lc+HD1WRExTx8js83IHjO+6gzMkn851yJXZsACkvdR2P3Vk2J33cIANem9akU\n0gellSVpl69zcf6nxm2WiRgLezuqT3wPuwo+oFAQ89M+bm751mBf75fa4N6iMWfGzzd6jo960s8X\nKntbak19G/uK5VAoFET9sJ8rX+422Nf35VZ4tW7AsVGLC6/rp3BOitp2iv+OIo+AhoaGsnjx4sID\n78vKymLHjh2FxqnVakaMGMH+/fv121asWEH37t15/fXXOXXqVIH77927l5iYGOLi4pgxY4bJuDZt\n2pCVlVXk/J82U/U3cuRIsrOzDbbt37+fCRMmPNHx7t27x+7duwsP/A9RWltR7+MpXN+8i7D+47ny\nxU5qzRzx2OXUGPsmiScucOj1UZye/gnB80ahtLYCoExwdU5PWcbhfuM43G8cp6csM9rfytmRWtPe\n5vj4pfzVfTQZUbFUG9b7seL8B3VBYaHk7zcm8HfvcSitrfAf+CoAzsHVuLr5ew70maj/s7CyBOD0\nxMUc7vU+GbdjqPJeH4PjWTo7ETjl3XxjfLq0w9bPm7A+ozgyeAJ+vV7CKbDKw7q1sqTmzOH6N2aA\n65v+R3j/sYT3H8s/705Hk5lpdLwak4dxdtIiwnuPIPN2DJXf7VvkmAoDu6GwsOBo/9Ec6T8KpbU1\n5ft3RaFSETh7FBcXrOTogNFc3/ANAdNGGJRZWuqi5pR3OTVxCQd7fkB6VCxV333D6DqwdHY0Gefb\npT12ft4cemM0YYMmUv71TjgF+hvkUuuRXGzKelAl5HWOvjWNw33H3s8jxKx5AGRGx1HxzV5PfF0A\neL3Ykrqfz8Haw02/zcLejprzxhK54kuO9h/FpcWrqTl7tEFOxXlOFCoLgud8wLl5qzjcdxxXvwgl\naMZwfZnOQVU5GjIdAJWtDUfenFKi56Nc51Z4PFefsIET9dtqzRpRbNeFc3A1rm3ZrW8rD/cbhzo9\nM588MlBQ2+i4hYmMjGPwgE38/NPZx97XFFUZJyqP/4CIafM51T+ErNt38HtrYJFjLk2fz5k3R3Dm\nzRFcXfQJ6tQ0ri37XL+vwsoS/8nG1+QD5mgvHKtXwq/bC/rXaVZ8IrUXT3jkmP+uvaw5431uhe7h\ncO+RXF27jVrzxwDg0rAW5V5uy9E3JxPebyyx+8IImPKuwTGD57yPOiuHa5t2ldi1CVAmqCqN1s01\nev7VJw/j3ORFHOk9nIzbMVR6p1+RYyoO7U1W3F2O9vuAf94cR7kuL+BUsxoAKkcHqo59myoj3wRF\n4fcOPo3PF1VDepIZm8Dfr4/j4IAp+HVrj3Otqrrn4WRPzQlDCBg7AHiYT0F1/aTn5HHazmeB5hn4\nKw2KbQpuXFxcoR3QGzdu0KdPH06fPq3fdvbsWcLDw9mxYwcfffQRM2fOLLCML7/8ktTUVDw8PArs\ngJZWS5cuxcrK6qmXe/HiRX7//fenXm5p5ta4NulRMcQfPA5A3P6jnJq8FACFyoJqHwyg8cYPabJ5\nITWnvouFva1RGQoLJR7P1SPqu18BSL10nfSb0bg3rYPCUoVjtYpU6PMyTTYvJPjD0dh4uRmV4d4k\nmKRzV0i/eQeAGzv3Uu7F5o8Vl3j8PJe/+Ba0WtBoSb54DRtvDwBcgqvh1rAmzb6cS+PV03GpWwP3\nJsEAZNwvKyp0D94vPG9wPNfGwSSfj8w3xqNlY6K//wOtWkNuShoxvx7A+8WH+1cf8ybRP+wjJyk5\n37qvMqI/dw+dMNjm0qg2Kecvk3ErGoDbob/g1eH5IsfcO3GO6xu+uV8HGlIjrmDj7Y42N5dDrwwl\nNUI3sm3j40VOcopBmaWlLpLOR+rP763QPQblPODWuLbJOM+WjYjavU+fy529Byn7Ygv9vjXGDuH2\nD3+Sc+9hLgoLJQqVSnd93/9Ak3X3nnnzAJQ2Vmiyc574urByd8G9RSNOjTb8kGjnVxZ1Wjr3june\nT9KvR5GbnkGZoOoGccV1TrS5avZ3DiEl4hoAtj5e+pFZm7IeWNjZEjB+KACanFyy7z9WUufDsUZl\nYv88Qm5qusFxiuu6cK5VHdcGNWm88UMarJqJc52AfPPQchMF5Y2OW5itW47SpWsdXuxY87H3NaVM\nw3qkXrhEVpRulC5m14+4tWv12DEKlQr/iSO5vmIN2XEPR9kqvv8OcT//Rq6JtsMc7YVLvUC0Gi3Z\n93TXY/rNaOz8ypLXv2kvrT1csa9Yjpi9BwC4e+gEFrbWOFavRPbde1xYuEY/gphy/or+/e2BnOQ0\n4v86Wix1YeraBCjfqxORq742OI5LozqG7dG3P+fTZpmOiVy2jsgVGwCwcnNBYWlJbpru+vdo24zs\n+EQiV2w0en75eRqfL84v2ciF5ZsBsHZ3Rmml0r8evds1JSv+HheXbzEor6C6Lmrc02g7xX/HY3dA\nlyxZwqBBg+jSpQsTJ+q+wTx27Bg9e/bkjTfeYMiQIaSmprJy5UouX77MihUrTJaVnp7O3Llzady4\nsX7bsWPHeO6551AoFJQrVw61Wk1CQkK+++/bt4/z588zfvx4rl69Ss+ePQH4448/6NatG127dmXq\n1KloNA/7+1u3bmXYsGFGo44PqNVqJk+ezJAhQ3j55ZdZunQpOTk5tG/fnvR03Qt03bp1bNiwgevX\nr9O7d2/69evHhAkT6NevX75lPnDixAkGDBhAt27d2LdvH/BwZDYyMpJevXoxcOBAtm7dWmA5oaGh\n9OnTh969e3Po0CF++uknevXqRe/evfWjrCtXruTw4cNs27aNCRMm6EeY846utm7dmiFDhjBv3jwm\nTJjAtGnT9M/77Nmn961ySbErX5bsu/cInBxC4w3zqffJFBQWFgBUGvAaWrWasAETONx3HFnxifl/\ne1fGERQKcu497NBkxSZg7emGtbsLicfOcPmzrzjcdxxJZyKovWicURk2Xm5kxtzV/58Zm4Clgx2q\nRzq8BcXFh50m/YauAbfxdqdi747c+e0wANlJKdzYsYeD/ScT8enX1Fs4Cgd/X4Oys2LvonKww8Lu\n4TFtPN0NphzljbHxNMwlK/Yu1p66znW5V9qgUFlw+7vf8q13+0q+eLRoSOTqbY88P3ey8h4v7i4q\nB3vDnAqISQw/ScZN3Zu5tbcHvj07E/e7bjqUVq3G0qUMTb9bjf97/bm55TuDMktLXWQ9Uo6lg53R\nFx82Xm4m42y83MiKfTQXVwB87ucS9UguGbdiuL55F823L6PFj6sAuHf8nFnzAHCuU5PrG3c+8XWR\nHZ/I2UmLSL92y+B46TduY2Fro/8CwjHAH/tKfli5uxjEFec50arVWLmW4fndK6k2vC/XNu0CwMq1\nDAlHTnPuw9UA5KSmUfP+iE9JnY/ks5fweL6+ro27T5lnJOxp55GdlMLNb34hbMAELn/2FbUXjsHa\n09UoDwWVAOMvAwszZVpHXnkt+LH3K4iVp7tBhzE7Lt7o2ixKjEen9mTfTSDx70MPt73UAYVKRdwP\nv5g8vjnaC6WlipSLV/WvU6calVFaWT5xe2nt6UZWXKLuC0T9Y7r30rQrN/VtksJShf+7fYi937bb\n++u+jIg/dLzY6sLUtQlweupy4g8cNziOtacbWbEFt1mFxqg11Jj2Pg03LSPp+BnSb+i+wIj+3x6u\nr9+OxsRn0kc9jc8XAFq1huBZ7/Hc1wtJOHae1PtTo2+G/srltTtRZ2UblVca2k7x3/FYHdCcnByc\nnJxYv349O3fu5MSJE8TExPDrr7/SsWNHNm/eTO/evUlOTiYkJIQqVaowbNgwk+XVqFEDf39/g22p\nqak4ODjo/7e3tyclJeXRXQFo1aoVAQEBLFiwAEtL3RTE3NxcZs+ezerVqwkNDaV8+fLcuaP7IL9p\n0yaOHj3K8uXLTY46RkdHU6dOHdatW8c333zD119/jaWlJR06dGDPnj0AfP/997z66qssXLiQkJAQ\nNm3aRL169QqtP1tbWzZs2MDq1auZNWuWQcd44cKFjBgxgg0bNlC3bt1Cy3JycmLr1q0EBATwySef\nsGHDBrZu3UpMTAwHDhwgJCSEJk2a0KtXL5NlREdHs3jxYiZNmgRAuXLlWLduHf369WPbtm0m9yut\nlCoL3JvV5db/fiVs4ERu7viZuksnorBU4d68Ph4tGtBk00KabFqIR8uG2FfyNSpDocz/JaHVaMiM\njuP4yA9Jv6HrFF3fvBs7Xy/jYBPTaLRqzWPHOdWoRJM107m+/Rfi/ta9KR4ft5SYfbpvhhNPXuTe\n6QjsypfNv6w81xhKE8fTaFDk85hWrcGxeiV8unTgwgLTjb9fr5e49c3PqNMMR1ZMPr+8ORUhxqF6\nZep+NpuonT9x9+Ax/facxCQOvfoW/7w1keqT3sP2wbf2RTluSdfFI2UZUJi45tSa/PPU6HLx7dqe\n8x+uMXrYtXEwnq0bs/+Vd9jf6W0AXOoHmTUPgPi/jlBjyvCndl08Sp2ewenxH1Khf1cabFyC14ut\nuHfsNJqcXJP76Mt9CnXxQHZCEn+9HEL4m1OoOfUd7PzKknz2MifHLyb77j0AUs5H4t68LgqVxVPN\noaDzEf3TX8T8fpj6n057WJZGaxT3tOri1IQlxP15BIB7Jy+SdCoCt0bB+eSRTGmZFKYownVXlBjv\nHq8Rtenhe6hdVX88X+nItY8+feycivu6sCtfDlsfT/3rNO4vXRv7pO1lftv1ed5n6exE3eVTUWdk\nEvn5Vt00+un3p14++rwp/mvTlII+FzxOzIVZyznw0kBUTg5UGNTD5PEK9BQ/X5ya9im/tX8LSyd7\nqrzZrZDjFlDXRY17Cm3ns0CrVZT6v9LgsRYhUigUJCQkMGrUKOzs7EhPTycnJ4eQkBBWrlzJgAED\n8PLyIjg42OQIY2EcHBxIS0vT/5+Wloajo2MBexhKTEzEyckJNzfdiMXQoQ+H7Q8dOoSFhQUWFham\ndsfZ2ZnTp09z+PBhHBwc9M+jR48ezJgxg8qVK1OpUiVcXFyIjIzUdxbr169f6D2X9evXR6FQ4Obm\nhqOjI/fuPXxBXbt2jeBgXQNYr149rly5UmBZlSpVAnTTmBMSEnjrrbcAXX3duHGDypUr57ufNs+3\nkS4uLri4PBwdCAjQTUPx9vbmn3/+KfD4pUmTTQsBsCzjQNq1KJLP6hZ2iNt/lMBJIdj5eKGwUHLx\now36qZEWttYoraxwqlGZwMkh+rLCBupGh1WO9uSm6K5Da08XsmLv4lClPI5VKxD90195jq57IVd9\nuzueLerr9rW3JeXyTX2EtYcr2UmpqDMN70HOjLmLc1AVk3Fl2zclcPxgzi1aT/QvB3VlO9hRvnt7\nrmz4Lk9JCrITDKd0WXu4kpOUiibPMbNi4ilTs2q+MZkx8VjnGSmy9nAlK/Yu3h1borK3pcEa3XRH\na3dXas58n8srNummRymVeLZuTPjA8UbnJSsmHqc8x7PycCMnOcUop4JiPNs1p+qYoVxaspbYvX8D\nunv9XOoHEb8/HIDUiKukXb6GvX8FMm5GG4yclXRdeL/4PBnRsXi0aKR7Pu7OBeYBkBkTT5lHrgN9\nLnfisXIzLCMzNoGynVpgYW9Lo7Vz9NuDZo3g0iebcG1cm9y0DOp/PMVgP3PkEffXUXISddfm7Z0/\n0XDzUuJ+O/DE10W+FArUGZmcGPbwXqGGXy3HpVFtKg7s/rCsYjonKntbXBoE6T/Yply8Ssql6zhU\nKU/FgV1wrRugXyjEytUZNFq0Gg02nm4lcj4ST17A2s3ZYEQqb5v0VOvCwQ7fbi9wbWOehVYUoMlV\no3Ky584vf3Nt4/9oH7YdLUkoyP9L5pKWFRuHQ8DDKdtW7m7kPnptFhJjV6UyCgsLUk48vLXI/YU2\nWNjZEfjpIgAs3VzxnzyGtMtXsC3vm6eskm8vrD1dyUlK0b9O4/4Mo/wbnZ+4vXw0l7yPAThUKU/w\novHE7Qvn0iebqDykB96dWujL8urQHNQaXBsFY+P19F4jBV2bpmTeicMxMM/zdzdujwqKcWlUh7Qr\n18mOT0STkUnsr3/j0bKJyeM96ml/vnBvEkzK5ZtkxSeizsgies9BvNs0MjqufYWyNN+iWxTJ59U2\npEbeMCivJNpOK7cyWDra678YEf8djw1PdPwAACAASURBVDUCGhYWRnR0NB999BGjRo0iMzMTrVbL\nrl276NKlC5s2baJq1aps374dpVJpMMJXVPXq1ePvv/9Go9Fw+/ZtNBoNrq6uJuMVCoVBp8rNzY3k\n5GR9527OnDn6hYw+++wz/cihKaGhoTg6OrJkyRIGDx6sf44VK1ZEq9Wydu1aevTQfXNVrVo1jh/X\njUqdPHmy0Of24F7XuLg40tPTDTp//v7++rLOnDlTaFnK+9+2+fr6UrZsWb744gs2bdpE3759qVOn\njkH9W1lZERenW9Hu3LlzRmU8YOqb3dLuwSICYQMnYlvWE8caus65c50A0GrJuB3L3cMn8evxom7E\nQaEgcFIIVd59g+QLVwwWItCqNcQfPI5vl3aA7k3SvpIvicfOotVoqT5qkG51XMC3WwdS76+weWnV\nN/oFgQ4NmoZzUFXs/LwBKN+tHbH7jxrlHX/4lMk47zaNCBgzgCPD5+s7nwC56RlU6NEBr9a6Nwun\nahUpU9Ofa1//DOhWHQTw6dKBuL+OGBzvbthJygRVzTcmbv8Ryr7cGoWFEpWDHV7tmxO3/wiXlm3g\nUM/39QvsZMUncHb6cv29OQ7+5clJTjNaMREgIfwETjWrYeurG5ks91oH4h/JqaAYj9ZNqDJyCKc+\nmK3vfAKg0VB90ns41dJ9CLSr5IddBR9SzkboyzRXXWTFJRLWexTh/XWL/5TJc359u7Yn9pE88uaS\nX1zc/qP4vNwmTy7NiPsznIilGznY4wP9dZsVl8CZaR8T99cxUi5eRWVrzZG3pnK43/0p4lqNWfLw\naF4PC1trANxbNyH57KUnvi5M0moJXjIZxxq6WTUerZuizVVzaeEqjg4cow8rrnOi1WioOeUdygTr\nrkv7Sr7YV/Qh6ewlYn49CEolR9/TrWngUjeA+MMnQKMtsfPhFOCPc+0aBosQKSyUxVIXuekZ+HV/\nAc/WuttrHKtVpExgFe4eOoFTgD+1F4zR3x6hpCZarhV8bktI0pHjOARWx9qnHABer3Qi8cDhx4px\nqhNE8nHDzwM3VqzhVL+39QsU5dxNIHLuYiJnLdRvA/O0F/EHjmPr44VDFd3U18pv9SI7PjHfYz5O\ne5kVl0BGVAxe7XSrE7s2ro1WoyE18ga2vt7U+3QGV9d9w6XlG0Gj4cqabRzs8h5/PK+7NUaTnU3C\nP2e58fUPqDOzSuTaNCUx/KRhe9SlA3cfyaegGI82zagwSDcbTWGpwqNNMxL/OU1RPfXPF+2aUGVo\nV0A3Bdu7XRPuHjG+7SrtejQH+ujai/Ahk83SdlrY2uh+2cDJvsj1JZ4NjzUCWqtWLc6ePUufPn1Q\nKBT4+fkRGxtLcHAwU6ZMwdbWFqVSyaxZs3BzcyMnJ4dFixYxduzYIh8jKCiIBg0a0KtXLzQaDdOm\nTSswvm7duowbN47Zs3XLnCuVSqZPn87bb7+NUqkkMDCQWrVq6eOnTJlCjx49aNq0KRUrVjQqr2nT\npowePZoTJ05gZWVFhQoViI2NxcvLi+7du/Pxxx/TpInum6sxY8YwadIkvvjiCxwdHVGpCq7OzMxM\n+vfvT3p6OrNmzTLo8E2YMIHx48ezbt06XF1dsba2LlJ9ubq6MnDgQPr164darcbHx4eOHTuSnJxM\nREQEGzZsoEePHkyaNIndu3fn+5z/K7ITkjgxbhEBY9/EwtYaTU4uJycsRpOdw5UvvqHaiP402bQQ\nhVJJyqVrRHz8Zb7lXFi4lsBJITT96nm0WjgzYwW5aRnkXrnJhSXrqbtkPCiVZMUmcHrqcp7f9blh\nHonJnJ61kroffoDSUkX6rRhOzfgMAKeAytSaMpQDfSYWGFftvddRKBTUmvJwBD/xZATnFq7n2Jgl\nBI4ZQNW3u6NVqzkx6WP90va15o1Gaaki41YMZ2etwLFGZQImvUN4/7HkJCZzbvZnRjGgW1TC1seb\nRpsWo7RUEfXtXoP7Bk2x8/Mm805svo/lJCZzYe6n1Jw7BoWlisyoO5yf9QmONfypPuEdjg4cYzIG\noFKIbtXT6hPe0ZeZdPoCl5as5cyEBVT5YDBKCws0OTmcm7GMrLgE/XFLS12cm/05wfNHoVCpyIiK\n4cxM3TEejLwf7jfufi75x90K3YOtrxdNNi9Caani1re/knj8fIF53N79B7ZlPWi8cQGa7BwAzs5d\nZdY8AJzrBnFhzidPfF0U5Nz0ZVSbEIJSZUn23UTOTFhgHFOM5+TkuEVUHzkApUqFJjuH01OXkxWb\nQFZsAje3/0TD1br3qeSIa9j5eNH0649K7HwkhJ0ivm4gTbYs0m87PWVZ8dXF2IVUHzMY/6E90Ko1\nnJqyjJykFKM8tCSj5UKh57Yk5N5LInLBcqrOnIjSUkXm7Wgi532EffUqVBqr6yiainnAxqccWSba\nxMKYo724ue1HytSsQqP1upEu+8p+HH9v5lNpL89MXUrAxBAqDuqGJjuHM5M/Aq2WCv1eRWltjV/P\nTvj11P1MkyYnh6NDJhnURdDM4TjXrkHyucslcm2aknMviYvzVhA4Z6y+Pbow+2McavhTfcK7HBs4\n2mQMQOSKDVQbG0KDTcvQarXc/SucqO0/PMaV8dDT+HxxYdlmak4cwnNfLwStlpg/j+q/xDZZBwXU\ndUm2nc+C0nFDQemn0OYdPhSPZdeuXdSuXZsKFSqwY8cO/vnnH+bPL/w3nP4r4uLMP23Kw8ORvY17\nmjWH9mHb+amh8TLoJa3jka381uRf3lfylLQ9vIN9zQq5l6QEtDq4s1TUhbmvTdBdn+bOo33YdrNf\nF60O7gQoFXVRGnKA0lEXarYUHliMLOhDWKvOZs0BoPG+70vF+TB3uwmlo+1sH7adP5t3NWsOAC0P\nhJr980XHI1vNfj7gYbtV2i2v9k7hQWb2fsTnhQcVs8caAf03Tp06xaJFi4y2d+zYkTfeMF6FND+/\n/fYbGzZsMNrev39/2rdv/6/yWrFiBWFhYUbb582bh5+fX5HKKFu2LCNHjtSP/M6bN48ZM2YQGRlp\nFLtmzRpsbGweK8enWZYQQgghhBBCmFuxd0CDg4PZtGnTE5XRtm1b2rZt+5Qy0hk2bFiBK/QWRcOG\nDQkNDTXY9jR/i/RZ/F1TIYQQQggh/j8qLavMlnaP/TugQgghhBBCCCHEvyEdUCGEEEIIIYQQJaLY\np+AKIYQQQgghxH+dRpZ2LRIZARVCCCGEEEIIUSKkAyqEEEIIIYQQokRIB1QIIYQQQgghRImQe0CF\nEEIIIYQQ4gnJLaBFIyOgQgghhBBCCCFKhHRAhRBCCCGEEEKUCIVWq5XRYiGEEEIIIYR4Aov83zN3\nCoUaG/mpuVOQe0DFvxcXl2LuFPDwcOT7+n3MmkPnY1v4vWl3s+YA0ObQN5x+ob1Zc6j1y172NOpl\n1hwAOoRvI6xVZ7Pm0Hjf9/zc6HWz5gDwYvjXZj8nHcK3kfuTj1lzUHWMAmBDzTfNmsfAs2tLxfkA\nzH59vhj+dal4narZYtYcACzoUyrOh7nfT0H3nloa6mJfs25mzQGg1cGdpaIuzN1ugq7tFP8dMgVX\nCCGEEEIIIUSJkBFQIYQQQgghhHhCGnMn8IyQEVAhhBBCCCGEECVCOqBCCCGEEEIIIUqETMEVQggh\nhBBCiCek1SrMncIzQUZAhRBCCCGEEEKUCOmACiGEEEIIIYQoETIFVwghhBBCCCGekKyCWzQyAiqE\nEEIIIYQQokRIB1QIIYQQQgghRImQKbhCCCGEEEII8YS0WnNn8GyQDqj4T/F8rg41hvVCaaki+fJN\nTs1aQ25axr+Kq7/oA7LiEjmzcCMAbg0CCXi/N0qVBeqsHM4u2si9s1eMynZrVg//d/qgsFSRFnmD\n83M/Q52e8Vgx1p5uNFg7j/B+Y8hJStHt81x9AqcOI/NOvD7un3emok7PLLReHBs1wmvQEJSWlmRe\nvcqtpUvQpKfnG+s7eiyZ168S/803ACjt7PAdNRprPz9QKEn8dS/x27cVeswH3JvXpeq7vVFaWZJy\n+QZn56xEnc85KSzO2tONxl/M4VCfcfo68XiuHkHT3yMj5mGdHHlrukG5zk0a4Dd0AApLS9KvXOPq\nwuVG58NUTNWZE7H2KfswB28vUk6eIWLybJybNsJ/4kiyYuP0j58bPh5NhvFze8CjeV2qvfu6/jme\nnrMq37ooLM7G040mX8zmQJ/x5CSlYF/Jh9qzh+sfVyiVOFYpz/FxSx67nosa92/Px6P+PGvBsu+t\nyM5VUK2chtm9M3GwMYyJuK1k3k5rUjLBQgnTe2ZR00/DB+ttuBH3cMn7qAQlDfzVfDq08NdEfnxb\n1KLeB92wsFKRGHGLA1M3kJNmuqzn5g4i8VIUZzfsMXqs9bJ3SY+7R9jcrwo9bnGeE5WTPQFjBmNf\nyQcLayuurP823xyK69oEsHSyJ2DMIBwq+aC0tuLK+v9x+6e/jMourtdq3m1Bq5dxYexU0i5ezrce\n/g2tVsvkibuoUtWDwUOaPbVyS/qc5Kc431MtnewJGjcAh0o+WNhYcWndd0T9+HeprYsHXJvVo3JI\nX5SWKlIjr3NxnvF7vKkYpZUVVce8iWNAFRQKJcnnIri0eC2a7OwCj/k060JpbUng2MGUCfQHpYKk\nM5c5t+gLNFk5+n19Xm6FV6uG/DN6UaH5mKvdFM82mYIr/jOsnB2pPf0tjo1dxr5uY0m/FUuN4b3+\nVZx//8641q2u/1+hsqDe/GGcmrOW/b0ncWnd/6gz6x2jsi2dnQiY/B6nJy4i7PX3yYiKwf/dPo8V\n492xJfVWzsbaw81gvzK1qnPjq90cGTBW/1eUzqdFmTL4jh7DjdmziHhzMNl3ovEePMQoztqvPJUW\nLKRMixYG270GDCQnPp5Lb7/F5eHDcHupM3YBAYUeV/dcHQma+g4nJ3zEgR4jyYiKodp7bzx2XNlO\nLWi0egY2nq6GdRJcnWtbdnO473j9X946UZVxovL4D4iYNp9T/UPIun0Hv7cGGpRRUMyl6fM58+YI\nzrw5gquLPkGdmsa1ZZ8D4BgUQPS2UP3jZ94cUWDnU/ccQzg+YSl/9RhFelQs1d/r/dhx5To9T+NH\n6iLtahQH+07Q/8WHneL2LweI2XekVJ2PRyWkwpSt1iwbnMkPk9PxddPw0W5rg5iMbBi60obBbbPZ\nOTaDkA7ZjN+k66EuG5RJ6LgMQsdlMPP1LBxttUzpnmXyeAWxdnGg+ZxB/PHBZ3zbeQopt+KoP6pb\nvrFlKpflhS9GU/GFBvk+HjT4RbzqVy3ScYv7nARNe5fM2Lsc7jeBo8PmUGP0QBNlF8+1CVBr2jtk\nxiZwsN9EjgybS8DoAVg/ElOcr1UAhZUl/pNHo7B8ut+7R0bGMXjAJn7+6exTLdcc5+RRxfmeClB7\nxttkxCTwV5/JHH5nPjXH9jfKs7TUxcNjOFFj8jDOTlpEeO8RZN6OofK7fYscU2FgNxQWFhztP5oj\n/UehtLamfP+uJo9XHHXhP6gLCpUFB/qM58Ab47CwtqLygNd0+znZEzhhCAFjBoKi8N+zNFe7KZ59\nhXZAQ0NDWbx4cZELzMrKYseOHYXGqdVqRowYwf79+/XbVqxYQffu3Xn99dc5depUgfvv3buXmJgY\n4uLimDFjhsm4Nm3akJX17z6QPA2PW3+lQWRkJP369TN3Go/No2kt7p27QtrNGACuf/MrPh2bP3ac\nW4NAPJoFc33nb/pt2lw1v3YcTvLF6wDY+XiSnZRqVLZro9okn79Mxq07AESF/oL3C88XOcbK3QX3\nFo04OWqeUdllalXHpX4QDdYvoN7ns3GuU7ROoGO9+qRfjCD7dhQAd7/fjXObtkZxbq+8QuKePSTl\neU0CRH/+GdGrVwFg6eaKwtISdVpakY7t1rg2SeciSb+pe643d+7F+8XnHivO2t0Fz5YN+Wfkh0b7\nOQdXw7VBEE02zqfh6hm41DWskzIN65F64RJZUbcBiNn1I27tWj12jEKlwn/iSK6vWEN2nG50z6Fm\nDZzq1SZo1TICPl6AY3DNAuvCvXGw0XMsm09dFBT3oC6O5lMXD7jUqYF3m8ac/XCt0WPmPh+POnhB\nRVB5DRU8dHOWXm+eww/HVAZTmA5esMDPTUuLQDUArYPULBlo2KnNzoVJW2yY0CWLsi7/bv6TT7Oa\nxJ+5RsqNWAAufr2Pyi81zje2Ru/WXPr2ANd+OWr0mHej6vg8V5OL2/cV6bjFeU5UTva4NQomco1u\nNkNWbAJhg6cYlV2c16bl/Rwu58nh0OCp5DzSfhbnaxWg4vvvEPfzb+QmJRs9ryexdctRunStw4sd\nC379Py5znJNHFed7qqWTPR6NaxGxJhSAzNgEDgyYRnay8ftqaaiLB1wa1Sbl/GUybkUDcDv0F7w6\nPF/kmHsnznF9wze6eZoaDakRV7Dxdjd5vOKoi4TjF4j84tv7OWhJjriGbVldDt7tmpIVf4+LH28p\nUj7majfFs++pT8GNi4tjx44d9OjRw2TMjRs3GDduHDExMXTv3h2As2fPEh4ezo4dO4iOjmb48OHs\n3LnTZBlffvklM2bMwN/fv8AOqPj/w8bLjcw7Cfr/M2MTsHSwQ2VvazAVqKA4C1trao7pR9iwBVTo\n2sagfG2uGitXJ1psmYulsyP/TPwk3xyyYu/q/8+Ku4vKwR4LO1v9FJ2CYrLjEzkzMf8pLzlJqdz5\n+U/i/wynTHANgheOJ7zfaLLiEvKNf8DSw4Oc+IfTRHPi4rCwt0dpZ2cwDff2pysAcKhT17gQjQbf\nceMp83wLkg8cIOvWrQKP+YCNlxuZeZ9r7F0sHeywsLc1nBZVQFxWfCInxxtPJQVdnUT/tJ/YfUdw\nrl2dOovHcqjPOP3jVp7uBh9Cs+Pijc5HUWI8OrUn+24CiX8f0sflJqcQv+cPEv8+hEOtQKrNmcKZ\nN4eTHffweRRUF5lFrIvMR+rixPiP8i3/geoj+hLx+bZ8p2SZ+3w8KvqeAm/nhx1GL2ctqZkK0rLQ\nT8O9FqfE3UnL1K3WXLytxNFWy+iXDaerhR5W4VlGQ7tgdYF1UxD7sq6k52kX0mISsXK0w9Lexmg6\n2YPpYeWaGHawbT3K0GhCb/a+tZTqPVsW6bjFeU7sfL3JuptIhT6dcW9aB6WViuubvy80h6d5bT7I\noWKfl/C4n8PVzd+TfiPaIK44X6seL3VAoVIR98Mv+PTraZTjk5gyrSMAhw9ffarlmuOc5JtDMb2n\n2vt5kRl/j8p9OuHZrDZKKxVXNv1A2o07pbIuHh7Dnaw8txjk/x5vOiYx/KR+u7W3B749OxOxYKXJ\n4xVHXdwNezjAY+PtToXXO3J2vu4Ly5uhvwLg81LR2i9ztZulmYbCR47FY3RAlyxZwpkzZ7h37x41\natRg/vz5HDt2jAULFqBSqbC1tWX58uWsXLmSy5cvs2LFCoYNG5ZvWenp6cydO5c1a9botx07dozn\nnnsOhUJBuXLlUKvVJCQk4OpqPB1j3759nD9/nvHjx7No0SLGjx/P9u3b+eOPP1ixYgVarZaaNWsy\nc+ZM/T5bt27lwIEDfPTRR1hZWRmVqVarmTZtGnfu3CE2NpY2bdowbNgwOnXqxHfffYednR3r1q3D\nwsKC1q1bM2HCBFQqFT4+PkRFRbFp0yaTdXfixAkGDBhAamoqw4cPp1WrVhw4cIBly5ZhbW2Ns7Mz\n8+bNw8nJKd/99+zZw5o1a1CpVHh6erJ06VI+/fRTrly5wt27d0lOTmbKlCk0aNCA1q1bU7lyZfz9\n/Rk0aBBTp04lKysLa2trZs+eTdmyZfM9l7GxsYwZMwatVouHh4fJ51KaKUxMF9GqNUWKQwH15g/n\n7JJNZMXfyzckOyGZXzsOx6lGRZp8PokDV6YZBijzn1Sg1WgeLyYfeTumSacukHT6Iq6NahP9wx8F\n7mfyeOrH+7WqWwsXcPvj5ZSfOh3PPn2J3fRlofsolCbq+tFzUsS4R+X90H3v5EWSTkXg1ij4Ybmm\nrok8dV2UGO8er3F1yQqDxy9NezhKnXr6HKlnL+BUvy7xP/+ab3kKE+fBuC6KFpcf51rVsHJ2JPqX\nAyZyMO/5eJSpxRryHj5XDX+ds2D9exkEV9Tw+2kLQlbb8Ov0dKzuv4N9+acVM3o+4UyXIlwHBe6u\nsqDl4rcJX/A1GfFJRT9sMZ4TpUqFnY8X6tR0jgydhq2vF41WzzSKK85rU6GyuJ9DBmFDp2Pn60Wj\n1TP0IzP6uGJ6rdpV9cfzlY6cHzHBZI6lkTnOiVFcMb6nKlQq7H09yU3L4OCQmdj5etFs3dR8O6Cl\noS4e7lCEdqIIMQ7VKxM0fxxRO3/i7sFjpo/36OGfYl041ahE3YWjubFjD3F//1PkHAwPZJ52Uzz7\nitQBzcnJwd3dnfXr16PRaHjppZeIiYnh119/pWPHjgwYMIDff/+d5ORkQkJCiIiIMNn5BKhRo4bR\nttTUVJydnfX/29vbk5KSkm8HtFWrVgQEBDBjxgwsLS0ByM3NZfbs2ezYsQM3NzfWrFnDnTu6hmzT\npk2cP3+e5cuXY2FhkW9O0dHR1KlThx49epCVlUWLFi0YOXIkHTp0YM+ePbz22mt8//33fPHFF0yZ\nMoWQkBBatmzJ9u3biYqKKrD+bG1tWb16NQkJCfTo0YPnn3+eqVOnsnXrVry8vNi4cSOff/4548eP\nz3f/77//niFDhvDiiy/yv//9j9RU3RQVGxsbvvzySy5dusTo0aPZtWsX0dHRhIaG4uLiwgcffEC/\nfv1o2bIlhw4dYvHixcycORMnJyejc7lq1So6d+5Mz549+fHHH9m6dWuBz6k0ef4rXUdAZW9LyuWb\n+u02Hq5kJ6WizjT8YJpx5y7OQVWM4hwq+WBXzoPAkbp7NazdyqCwUKK0tuTc0i24N6zJnT90U0eS\nL1wjJeI6jlX8DMrOvBOHU+DDexisPVzJSU5BkyeHosQ8SuVgh0+3F7m+MfThRoUCTW5uofWTExuL\nXZ7XnKW7O7kpyWizirZQi0P9BmRevUpuwl00mZnc2/cHZZ4znvLzgP9bPfBoobvHQ2VvS+rlG/rH\nrD1cycnnnGTeiadMzSqFxuWlcrDDr3sHrm7Is2CEArR56iQrNg6HgIf3HVm5u5H7SF0XFmNXpTIK\nCwtSTpzWx1g42OP1aidub8lzu4ECtGrD81HlrR54tqivr4u816e1yevTuC7yi8uPd/umRP2436hn\n12TzAn0O5jwfjyrrouXU9YcfYGKTFDjZabHLcxuoZxktlbw0BFfUfaBpU0vNtK8V3IxX4O+t5fwt\nJWoNNKzy+KOfdYa9SvnWtQGwtLcl8dLDkX07T2eyktLIzSja4iDuNSvg6ONOo3G6ETZb9zIolEos\nrCw5OH2jQWxJvUay4nUjE1E//AlAxq0YEk9exLttEwCabf5Qn0NxXZtZ8YkA3LqfQ/qtGO6dvGhQ\nDhTfa9X9hTZY2NkR+KnuCzxLN1f8J4/hxsovuHcw3GTe5lBS7YWpc+LdtgnVQrrhZSKHp/meemnd\nd7ocdu/X55BwIgLnIP9SUxf5xsfE41Tz4fu3lYeb0ft3YTGe7ZpTdcxQLi1ZS+ze/Bddyqs46sK7\nfVMCxw3h/OL1Jr+wNMVc7ab4bylSB1ShUJCQkMCoUaOws7MjPT2dnJwcQkJCWLlyJQMGDMDLy4vg\n4GCyH2Mlr7wcHBxIy3NfWVpaGo6OjkXePzExEScnJ9zcdAu3DB06VP/YoUOHsLCwMNn5BHB2dub0\n6dMcPnwYBwcH/fPo0aMHM2bMoHLlylSqVAkXFxciIyOpW1c3TbF+/frs3r27wNzq16+PQqHAzc0N\nR0dHkpKScHBwwMvLC4CGDRvy0Uemp9VNnDiRVatWsXnzZipXrky7du0AaNJE10BWrVqV+HjddA8X\nFxdcXFwAiIiIYNWqVaxduxatVotKpcLa2jrfc3nt2jV69tQ1APXq1XumOqB/vTEJACsXJ1pu+xB7\nPy/SbsZQoXtbYv40/mYx7vBpAkf2MYq7d/oyv700Qh9X7a2uWDk7cmbhRixsrQme9hZZCckknozA\nobIP9hXLce9MpEHZCeEnqTpiALa+3mTcukO5Lh2I33/ksWMelZueiW+3F0i/HkXcvjAcqlXCKaAK\n52evKHA/gJRjx/B+622syvmQfTsK15c6k3zoUKH7PVCmRQucmjfn9sfLUVha4tyiJSn/mP7GNnL1\nDiJX6zpmVi5ONP1qEXZ+3qTfvINv1/bE7je+/+Nu2Cmqvd+v0Li8ctMz8Ov+AmnXbxP7RziO1SpS\nJrAKZ2Y+XHgk6chxKrwzBGufcmRF3cbrlU4kHjhsUE5hMU51gkg+ftJgH3V6Bl6vdSbjZhSJ+w9i\nV6UyDjWqceXDZQZxl1fv4HKeumj+1UL9cyzftZ3Juqjxft9C4/LjWi+Ac4vWG20/3He8Pgdzno9H\nNauuZtH/rLgep6CCh5ZtByxpE2TYYX0uQM3C76w5e1NJTT8NRyOVKBRafN10newjly1oXFVdlPUy\njJxY8R0nVug+CNu4OvLqtzNxLO9Jyo1YqvdqxY3fTxS5rLiTV9jR7uF04zrvvoK1i0O+qzmW1Gsk\n43YcyeevUO6lltzc/jNWrmVwrlVN//jBvhP0ORTXtZlxO46k81fweakFN7b/os/hype7DOKK67V6\nY8Uabqx4ONuqztfriJy7+Kmugvu0lFR7YeqcAESs3EnEyp36HIrrPRXg3vmr+HZ+nmvb9mDl6oRr\ncFUiN35fauoiPwnhJ/AfPgBb37Jk3Iqm3GsdiP/r0fd40zEerZtQZeQQTn0wm5QLkfkdwsjTrguv\nNo0JGD2QoyPmkXzeeCX/wpir3XxWaORnWIqkSB3QsLAwKlSowLJly0hISGDv3r1otVp27dpFly5d\nGD9+PKtWrWL79u107doVTRGH3vOqV68eixYtYsiQIdy5cweNRpPv6OcDCoUCbZ5v+d3c3EhOTube\nvXs4OzszZ84cXnnlFQA+++wzNPLOOAAAIABJREFUJk+ezNatW+nd23i1MNAtFuTo6MisWbO4fv06\n27dvR6vVUrFiRbRaLWvXrtXvW61aNY4fP07Lli05efJkvuXldfq07tvYuLg40tPTcXFxITU1ldjY\nWDw9PQkPD6dixYom99+2bRvDhw/Hzc2NadOmsXfvXkB33+yrr75KRESEvjOrzDPtonLlygwePJh6\n9eoRGRnJkSNH2L9/P9HR0Ubn0t/fn+PHj1OjRg19vs+a7MRkTs5cRf2F76OwVJF+K5YT03QffssE\nVCJ46lD+emNSgXGmqDOyODr6I2qO7otCpUKTk8PxKZ+SGWt4/2VOYjLn53xK0LwxKC1VZETFcG7W\nJzjW8KfGxBCODBhrMqZAGg2nxi2k2qjBVHqzF1q1mjNTP9IvI19g7kn3iFqymPJTp6JQWZIdfZtb\nixZiW7UaPiNHcfndkAL3j169Cp8R71N11WrQQvLBA9z9X/4/5fCo7MRkzs7+nNofjkKhUpERdYfT\nMz4FwCmgMoGT3+Zw3/EFxpmuEy0nxi6ixphBVHmrJxq1mpOTlxvUSe69JCIXLKfqzIkoLVVk3o4m\nct5H2FevQqWxuhUzTcU8YONTjqw7sY8cW0PElNlUGBGC76A+aNVqLs9cUOACJ9mJyZyevZI6H45E\nqVKRHhVjUBdBk9/iYN8JBcYVxs7Pm4zoOJOPm/t8PMrNUcucN7L4YL0NubkK/Nw1zOuTyZkbSqZ9\nbU3ouAw8nLR8MiSD2TusycgGKxUsG5yJtW7yC9fjFZRzffz3nEdlJqTw95T1tF72DkqVipSbsfw1\n6QtdnjUr0HzWAHZ1m/XEx3lUsZ4T4MS4xQSMG4Jf13agUHJl3U4CJw41iCnua/P4uCUEjhuMX9d2\nKBRKItftNPrgW2yv1WeUOc5JzXyui+J6TwU4OmYptcYPpEK3tqBUELHmW5LOGXeISkNdPJCTmMyF\nuZ9Sc+4YFJYqMqPucP7+e3z1Ce9wdOAYkzEAlUJ0o8HVJzxcRT/p9AUuLTFeNC4/T6Muqr37OgqF\ngqDJb+nLTTx5kfP5fHlZGHO1m+LZp9BqC/7J1NDQUE6cOMHZs2exsbFBoVCQmZnJxIkTUalUzJ07\nF1tbW5RKJbNmzcLT05OePXvy3HPPMXbs2AIPPmHCBDp16kSL+z/78Mknn7B//340Gg0TJ06kQYP8\nl2oGWLp0KX/99RezZ89m5syZbN++nT///JPPPvsMpVJJYGAgU6ZMoW3btvz0009kZGTQo0cP1qxZ\nk29n78E0VkdHR6ysrIiOjmbjxo14eXmxe/duPv74Y/bs2YNCoeDGjRtMmjQJCwsLHB0dSUtLY/36\n/F+4oaGh/PDDD+Tk5JCens7o0aNp2rQpBw8eZPny5SgUCsqUKcP8+fNNdrh///13PvvsM+zt7bGz\ns2PevHls3ryZ8PBwlEolGRkZTJs2jaCgIJo3b86BA7rpFDdv3mTGjBlkZWWRmZnJ5MmT8fX1JSQk\nxOhcVqpUibFjx5KdnY2vry+3bt0q8L5WgLi4wjs/xc3Dw5Hv6/cpPLAYdT62hd+bdjdrDgBtDn3D\n6RfamzWHWr/sZU8j42X6S1qH8G2Eteps1hwa7/uenxu9btYcAF4M/9rs56RD+DZyf/Ixaw6qjrpb\nJTbUfNOseQw8u7ZUnA/A7Nfni+Ffl4rXqZqirfhZnCzoUyrOh7nfT0H3nloa6mJfs/x/TqQktTq4\ns1TUhbnbTdC1nc+CmRWHFx5kZtOvFTLoUQIKHQHt2rUrXbua/o2i7du3G2377rvvinTwDz80XA57\n+PDhDB9etBM3cuRIRo4caZBDy5YtadnScAWt33//HQBra2v9yGF+qlatyq5du/J97OWXX+bll1/W\n/3/ixAnmzp1LhQoV2LFjB//8Y/rmbVP116xZM5o1K9oPVrdp04Y2bdoYbe/UqZPRiO6DzieAn58f\n69atM9rP1OrC+cUKIYQQQgghClfwsJ544Kn/DMsDp06dYtEi45+T6NixI2+8Yfwj2/n57bff2LBh\ng9H2/v370779vxvpWbFiBWFhYUbb582bh5+fXz57GCtbtiwjR47Uj/zOmzePGTNmEBlpPJ9/zZo1\n2NjYFFpmdnY2Q4YMMdpeqVIlZs2S6QtCCCGEEEKIZ1+xdUCDg4MLncJZmLZt29K2bdunlJHOsGHD\nClyhtygaNmxIaGiowbYn/S1SKyurx6qvoo4UCyGEEEIIIURpUWwdUCGEEEIIIYT4/0LDv1iS/f8h\nE79UK4QQQgghhBBCPF3SARVCCCGEEEIIUSJkCq4QQgghhBBCPCFZBbdoZARUCCGEEEIIIUSJkA6o\nEEIIIYQQQogSIR1QIYQQQgghhBAlQu4BFUIIIYQQQognpDF3As8IGQEVQgghhBBCCFEiFFqtrNck\nhBBCCCGEEE9icvkR5k6hUHNvfGzuFGQKrvj34uJSzJ0CHh6OZJ5pbdYcbIL+4Pv6fcyaA0DnY1v4\nrUkPs+bQ9vAODjz/qllzAGj+13fsbdzTrDm0D9uOmi1mzQHAgj5mz8OCPuxp1MusOXQI3wbAN3UG\nmDWP7ic2lorzAZSKPErD6/TnRq+bNQeAF8O/LhXn49u6/cyaA0CX45tKRV2Y+/0UdO+ppeE1Yu52\nE3Rt57NAI8N6RSJTcIUQQgghhBBClAjpgAohhBBCCCGEKBEyBVcIIYQQQgghnpDMwC0aGQEVQggh\nhBBCCFEipAMqhBBCCCGEEKJEyBRcIYQQQgghhHhCGq3C3Ck8E2QEVAghhBBCCCFEiZAOqBBCCCGE\nEEKIEiFTcIUQQgghhBDiCWllGdwikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFf9Z+49l8vHm\nZLJztVSrYMmMd51xsHv4ncvufels2p2q/z8lXUvsXTV7VnuhslAwZ/U9Ll7LwdZayattbHmjk0OR\nj+35XB1qDOuF0lJF8uWbnJq1hty0jH8VV3/RB2TFJXJm4UYA3BoEEvB+b5QqC9RZ/8fefcfXdP8P\nHH/dmR3ZicSWCJFF7D3bGB3UJqiqPWsTW2u2tHRZpUonWqV8idokNhErhCBk7z3u/f1xuVz3JqLK\njf4+z8fD4+He876f877nfD6fcz/nfM5JARFLN5IaEQVAgx+WIVUoyLwRzZWPv6YoW7cs+yZ1qT6i\nj36MVEqNsQOwa+iHRCbjzpYdxGzfB4BDswC8Zo4iNy5RW86ZYTMpys6l2tBeOLVqCED65Rt638+2\ncQCVh/ZHqlCQdfM2Nxat1MupNDE1F0wlPzGZqBWrMatSkRqzPtIuk0ilWFSvwpUZC5GZmeHa820A\nGm1agtzSHBMnO468NZz85DSdMi2rV8RzwiDkluagUnF50Woyrt7S+w4lUdhY4T17FKblHTVlLFxN\nWvh17XIp7wJ5AKjJQM3RUpetVquZMW0H7h6ODPqgyXPl9W96WXk4NK2Dx4jeSJUKMm7cIWLBNxQZ\naCPPijNxsqfh+gWc6DuZgrQMnc+auTrSaOMizoz52GAOLs398B7dHZlSTlrkXU7PWUdhVm7p46QS\n6kztj2OAJwCxRy9ycflPAJRv4U/9+R+SHZukLefg+588/4Z6yn+tXjg0rYP78D5IlZo+KeLj4uuB\nwTipBM9xA7B/2HdFb/6Tew/7rkdMyzvSaONizo5ZQPpVTV/p1qUdlXp2BKDO0olcWvCttv44Nq1D\njRG9tHUufMG3BnN6Vpypkz2N1s/nWN8p2rIV1hbUmvg+llXdkJooifrud+7vPvKPt98jL6teODfz\no/boHkiVCtIj73J27hqDbaSkuKrd21KlSytkJgpSrtzm3Ny1qAoKUVhb4DelP1bVXJGZKLm2bgd3\ndx174ZxfxrYo9thZmpgSjq+PmJZ3osGGxZwbO5+Mh3X0EWO1kcp9OuP6VmsAmn8zmbMLNpB1Lx54\nPftOoWwRV0D/H1m9ejUXL140dhqvRHJaEbNWpfLpJDt2rHTGzVnO5z+k68S81cqcXz514pdPndi8\n2BEHGylTB5fD3kbG0g1pmJtK2b7CiR8WOnDsbB6HTut3roYobazwmz2EM5NWcPC9SWTfi6fm6J7/\nKK56/87Y1fHUvpbIZdRdOIqLC9ZyuPd0Itf9jv+84ShtrAAIn7aM0J5jybkfh/vIvjplKWys8Qoe\nYTDGrUs7zCq6ENb3I04NmkrFnp2w9nIHoJyPJ9FbdnCy/yTtv6LsXBxbNcCugR9hQZMI7T0eqamJ\nzvrkNta4TxvD1eBFnO07gtz7sVQe1v+5Y9z6dMHaz0v7Ouf2XS4MGq/9l3rqPAn7DpF8OJSE/x3g\nwqDxAIQNnEZeUipXl63XG3xKTZTU/SKY6B92ENZ/ClHrt+Izd0wxe7R4NScNJuX8VU70+ojw2Svx\n/eQjpCZK7XIVR1GxGxW7n2vwefNmAoMGbGLP7ojnzunf9LLyUNhY4T1zOBemfsax7uPJiYmjxsg+\nzx1XvmMLGqyeg6mTnd5npUoF3nNHI1EYPs+qtLWi3tzBhE5cyf/enUrWvQR8xvZ4rrjKnZtiVcWF\nvd1nsK/nTBzqeeLWvj4A9n4eXP9+NyE9Z2n/FWaXrg8pzn+xXtQOHsHFaZ9yvMc4smPi8RhhuB4U\nF1ehS3vMK7pwos8Ewt6fRqVeHbH2qq79rFSpwOepemBa3hH3Yb04PWQWADkPEnAf0k27Lu+Zwzg3\ndTlHun9Edkw8niN7G8yppDjXjs1paKBu+swaTm58MseDpnFq1MfUmjAAEwP193m8rHqhtLUiYO4Q\nwiZ9QUiXyWTdi6f2GAPHshLiXNvUo3qv9hwdtoiQbtOQmSpx7xcIQMC8IeTEJXOg90yODluE7+Qg\nTJ1sXyjnl7EtSjp2liampOMraOpo7RL6KmO0Ebv6Pri+3YaTg4MBiPn7NPXmDgZez77zVVK9Bv/K\nAjEA/X9kyJAh+Pr6GjuNV+LEhTy83RVUdtV0qD3eNOevIzmoi7k7/LvfM7ErJ6P7GxYAXL5ZQOeW\nZshkEhQKCc0DTAk5oX/G0RDHxj6kXo4i624cANG/heDWoelzx9nX88KxiS/RW/dr31MXFhHSYTTp\n16IBMHdzIj8tE8fGPgDk3I0FIGbbXlzebK6zPruGvqRfuWkwxrFlQx7sPIC6SEVhRhZxIcdwCdQs\nK+fjiV09b+pvWEzAN/Ow8a8FQMLBk5wZEoy6sBCZuRlK23I667OtX4fMqzfIvfcAgNjf9+DYvuVz\nxZSr44NNg7rE/r7H4La29vXCvlUTbi77Wm9Zlf7vkJ+SRsz2EL1l9g39yI6JI/H4Oc13OXyaizOW\nA5pBfo1xA2i4cRGNflhC7ZkjkFmY6ZUhkUlxbFaXmD805WdGRpN99wEOjf21B3IptZDSESnNAXOD\n38GQHzefpktXfwI71C71Z16Gl5WHfUM/0i7fJPthXby7dR8ugc2eK87EwRanlvU5O36RwXXUnDyI\n+zsPUpCabnC5c2NvUiKiyLyjaX83f/2bSh0aP1ecRCpFbmaCTKlAqpAjlctR5RVocvdzx7G+F223\nzKXV+uk41PXUK/t5/RfrRdqVx/v33ra92n7nSfYN/YqNc2rZgJg/D2r7rth9xykf2EL72ZqTPuD+\nrkM69UAikyKRy7XtWmaqRJWv2W8ODX316lx5A3WzpLhHdfP0U3VTYW2BfQNfbqz5DYC8+GRODJpJ\nQVomL+Jl1QunRj6kRESR9bDu3/p1PxU76F9RLCmuYudmRP6wm4L0LFCrOf/xd9zZeQyFtQVODb25\nuno7ALnxKRwKmqOJewEvY1uUdOwsTUxJx1cAz4mDebDrIAVphvsqY7SRvKRUri5eo73SmnL5Nubl\n7YHXs+8Uyh4xBdcIMjMzmTFjBhkZGcTHx9OhQwd27tzJX3/9hUQiYd68eTRu3BhnZ2fmzp2LhYUF\n9vb2mJiYsGiR4R9bK1euJCoqiqSkJNLT0wkODqZevXq0bt2aatWqUb16ddLT0+nYsSMNGjRg2rRp\n3L9/n4KCAmbOnIm3tzezZ88mOjoalUrFuHHjaNiw4SveMv+e2MQinB1k2tfO9jIys9Vk5aixNNf9\nI8Ep6UV8vyOTn5Y6at/z8VCy81AO/jWVFBSoCQnNQS4r3R8XNnW2Jzc2Wfs6Nz4ZhaU5cgsznem1\nJcXJzEyoPTGIsFGLqdy1jU756sIilHbWtNj8MQobK85OW4llFVedmLz4JOSW5sjMzbTThEydHHSm\n0T4ZY+pkT25cks4yS/fKABSkZxC7+zAJh05Szq8mfksmE9ZvInkJyaiLiqjQLZBqQ3uRl5Csk4PS\nyYH8J9eXkIjc0kInp5JiZGZmVB07mIgJc3B5+02D27rKyPe5s+YHvalQoJk+FNp/isHPmVcqT35S\nKl4zhmHlUZmCjCwiV20GoOqAd1EXFRE2YCoA7sN74zGiD1eXrtMpQ1HOCiQSClIfT/vMi0/GxMke\nEwfNWXwV54EMJNRCSktU7DaYz9OCZ3UAIDT0+aYE/9teVh6mzvbkxuvWN4WlOTILM90pjCXE5SWm\ncGHKpwbLd3unDVK5nJg//qba+10Mxpg725H9RPvLiUtGYWWO3MJUZypZSXG3dxyhQvv6dNq7AolM\nStyJSzw4fB6A/LRMonce5/6BM9j7e9BkxThCegQ/55bS9V+sF3lxpasHxcWZOtuTF/9031UJALe3\n2yCRy4j5Yz9VBz6uBzn34oj+YQdNf1kBgF1dL0I/mKld15N1LreUdTP3qbp5fspnet/VvIILeUkp\nVOnbCcfG/kiVcm79sJPsOw+ef8M94WXVC3MXO3Ke2O458cW0kRLiLCu7YHLJmiarJmHqaEPSuetc\nWvET1tXdyE1Mxb1fB5yb+iJVyon8fjeZd2JfKOeXsS1KOna+6PHV9WEdvf/HfqoM7Gpw/cZoI1lR\nd3nyVIDPmO7E7DsFvJ59p1D2iAGoEURHR9OpUyfeeOMN4uLiCAoKwsvLi9OnT+Pn50dYWBjTp0+n\ne/fuLFmyBA8PD5YvX05cXFyJ5ZqamvL9998TGRnJhAkT2LFjBw8ePGDbtm3Y2toydarmB/VPP/2E\nm5sby5cv5/bt2xw8eJArV65ga2vLJ598QkpKCv369WPXrl2vYnO8FMU9Bltq4Jr/1n3ZtK5vSgXn\nx81hwkBrPtuYTs+JCTjaSmnsZ8L5q/mlWrdEYnigqi5SlSoOCdRdOJqITzeRl5hqMCQ/OZ2QDqOx\nrlmFRl9P596OQ4bXqXpindJi8lKpkBhY9ijf8KnLtO+lXbhKavg17Br48mDXQQDu/baHe7/todrQ\nXlhWq/j4a5SwvmfFIJFQY85Ebn2xloKkFIMhVt41kZezImHfYYPLEw6fJvdBgsFlUrkMhyZ1OD1i\nLukRN3BsUY86y6dx5J0RODQNQG5ljn0DzWwBiUKuN4VXk7vhCSRqleqJ9WoGp2quIMEHsABe7Az/\nf0Gx+/3pNlLKuCdZeValQtd2nBoy5x/loNdOS4jzGvoueSkZ/NlmNDJTJU2Wj8UjKJDITXs4MWGl\nNjbpfCRJFyJxauxdYk6CxtP7AEkxba1IZbhfU6ke1oP2nBo6W2+xXUNfnFo35PDbw2m1Zy3xh07j\nM2s4ZycsLbZd69fN0sXpfEYuw9zNmaLMHMI+nI15BWcarJ6jvWpV5hR7LFOXOk4ql+HUyJvQ8csp\nyisgYP5QvEZ1I2bfSSwqOFGQlcPh9+djUdGJFutmkvWCA9CXohTHsn9yfLXyrIpblzc4M2zWc6f0\nstvII4qHt/cUZucRvvLXh6sSfWdJxJ9hKR0xADUCBwcHNm7cyN69e7G0tKSwsJAePXqwfft2EhIS\naNOmDXK5nPj4eDw8PAAICAjgr7/+KrHcRo0aAeDh4UFiouZMnK2tLba2uvdUREVF0aKFZvpFlSpV\nGDhwIHPmzOHMmTPae0QLCwtJTk7Gzu7F7k0xFhcHGeGRBdrX8UlFWFtKMDfV76T/dyyHKR/oTh/N\nylYxPsiaclaa+PXbM6hUvvjmUmPYezi3CABAbmFGxo272mWmjnbkp2VSlJun85mc2CRsvN314iyr\numHu6ojX+H4AmNiXQyKTIjVRcHn5Zhzq1yb2wGkA0q/eJuN6NMh0v5eJox0FaZmonlhnXlwi5Wp7\nGIzJjUvUXrV7tOzRGVy3994keuN27TIJEtRFRZozuFIJmddvA3B/x36qvv/eE+tLwLJWjcdlOthT\nkJ7xVE6GY8yrVMS0vDNVRg0CQGln+3AbKLmxeBUADm2akbDnAJUG9ca2qebekZRjp7izbosmn50H\nKE5eYgpZt2NIj9A8OCnh8Gm8pg/D3M0ZiUzKtc82kHRCczZWZmaCVKnEumY1vGYM05YRNlBzQkdu\nZUFhhmZQaeJkq3N2WV9Zufvi1as+pDuOLeoBmjaSeeOOdtmjuvh0G8mNTaRcbfdnxj3JtWML5BZm\nNFg3X/sZn3mjtcvb/TxPm0N65D3t+2ZOtg/bqe6JpuwHydh5VzcY59a2HucXbUJdWERhZg7Rfx6l\nQrv63P79MNV7tOHqup3az0kkEtQFRc/eUP9xEnyR4KZ9rXSw0f7fUL8FkBuXSDlv/Xqgys0jNzYR\npb1uGbnxyZTv2AKZhRkN1i7Qvu89bwyRKzdh19CPhCOnKUjRTDmUKuU4Nq1Dkx8W6fXfJsX23/p1\n01Dck/ISNSfT7u3SnDDMvhdH6oVrOuUYW63hXXFpWRcAhYUZ6U8ey7R1X/9YZudT3WBcbkIq9w+c\n0V4Zu7vrGDWHdOHmlr0A3NmhOYGYdTeepPPXsX2irZUVJR07SxNT3PHVpUNL5BZm1FujeUiaiYMd\nteeOJeP6LSwqG7eNJBw5g6V7JfyXTgYg9fod2m7WDFRF3yn8G8Q9oEawfv16/P39WbZsGYGBgajV\naho3bsyVK1fYunUr3bt3B8DFxYUbNzQ/kC9cuPDMciMiNDfdX79+HWdnZwCkBs7SVq9enfDwcADu\n3r3LhAkTqFatGp06dWLTpk2sWbOGwMBAbGxs9D77umjsb8LF6/lE3y8E4Ne92bSqb6oXl56p4k5s\nEX6eSp33f92bzZc/aX6cJKUWsS0kmw7N9e8DfOT6N1s50mc6R/pM59jA2dj6uGNRUbMPKndrS9yh\nM3qfSQgNNxiXGn6D/Z3GaMu7s3U/D/aGcnH+WtRFKnxnDcHWTzNos6zmhkUVV+7+oflBY1bRBQC3\nLm+QcOSUzvqSwi5QztvDYEzC4VOUf6s1EpkUuaU5zu2bknD4FIXZuVR4LxDH1prp2JY1qmDt5U7S\nifNYulfGK3ik9qE75Tvo3t+ZevI8VrU9Ma1QHgCXdwNJPnqyVDEZEdc43e0D7YOGYv/YQ+L+o9rB\nJ4C1f21Sz1zkzrot2rg767Ygs9Tcx5t68TrFSTx+DrPyTljVrAqgua9VrSbnfjxJoReo2D0QiVwG\nEgle04fhPqIP6VejCA2arP2nLlKRePwcFbq002wb90pYVK1AypkI1KpHp0A1uUjwAFKB0t1H/F90\nc/WvhPabQmi/KZwcFEw5bw/MH9bFCl3bE3/4tN5nksIuliruSdeWb+RYt/HadeUlJBM+6/EZ9UcP\ntTgQNA873+pYVtK0v2rd2nD/4Dm98uJOhBcbl3olmgpvaNqGRC7DtWUdki7epCArh+o92+HWVjPg\ntvGshK13NWKP//94CFxJ1FzUPpgL0N+/T/Vb8LjvMhSXcPg0bm+1eaLvakLCoZNcX76R493Hadtr\nXkIyl2Z9QcKRM2Rcu4Vj07rIzDQPTst5kEjS6QiO95tK6KCZ2Hi7a9dVqWu7YutmaeKelHM/gbQr\nUbh10pwAVtqVw8anBmmXbz73dnxZrny9jQO9gjnQK5iD/edqjlEP637Vbm15cPCs3mfiTlwqNi4m\n5CRu7RogNVEA4No6gJSIKLLvJ5By+RaV3tLcp2hiZ42dnzspEVF65RtbScfO0sQUd3yNXLGBEz3G\nah/ul5eYTMTsz4mYuUL7HhinjZhVcCbgq9lErd8KwOWvtom+U/hXiSugRtC6dWsWLFjAX3/9hZWV\nFTKZjIKCAt58802OHz9OpUqaqyezZ89m+vTpmJubo1AotIPK4ly5coUBAwaQk5PD/Pnzi43r1asX\n06dPp1+/fhQVFTF9+nQ8PT0JDg6mX79+ZGZm0qdPH4OD19eFfTkZ80baMHFZMgWFUMFFxsejbYm4\nkc/cr1P55VMnAO7EFuJoK0Uh150q8kFXS2Z8nkrXcfGo1TCshxXe7kpDq9KTn5LOhbnfErBkLBKF\nnOx78ZyfpXlITrlaVfGd+SFH+kwvMa44RTl5nJ7wGbUn9EMil6MqKOBc8JdkRGquJvl8MgGpQk7O\nvTgi5q3CqmY1ak0fzsn+kyhISefy/K/0YkDzwAQzNxcabFqGVCEnZvs+Us9dBuDi5MV4TviAaoN7\noC5ScSl4OQVpGcTuOYxZBRcabFiMqqiIrKi7OrkWpKZxY+EX1Jw/BYlcTu79WCIXrMDS053qU0Zy\nYdD4YmNKw6yCK3mx8Qbe1wxm1UW6Z0wfXcEMDZpMfnIa5ycvpdakwcjMTFAVFHJh6jJU+QVErf+N\nGmP602jTEiRSKRmRt7n+xfcGc7i6ZC1e04fReEtz1Gq4NGcVhVk5FD7cFlJaARIgG9VzPAX3vy4/\nJZ2I+V/jt+gjJHI5OTGxhM/5EgDrWtXwmjGU0H5TSox7UXkpGZyevZZGS0chVcjJuhfPyeDVANh6\nVSFg9iBCes4qMe7Css34Tw3ije0LUavUxIdFcG3DLlCpOT5uBf5TgvAa3kVzT/HkL8lPfbGHzfwX\nXZ7/Nb4LH+3fOC7N1fRJT7ZXTd9lOO7etr2YVXCm0Q9LkSrk3NseQsq5KyWu8/6fBzAr70jDjYsB\nsAvwInyepu/NT0knfP43+C8aj1QuJzsmTqdues8YwvF+U0uMK8m5yZ/iNXkQFbu2QyKRcnPdVtKv\nlL1BF2i2xdk5a2i4dAxB1S84AAAgAElEQVRSuYyse/GcnvktADZeVakz6wMO9AouMS7qlxCU1pa0\n3jIfiVRK6tXbhH+2HoCwCZ/jN3UAVbu1QSKRcHX176ReNu79zYYUd+z8N46vpWGMNlIl6F1kJiZU\n6qG5p7bdz/NQ5Rfyd9A80Xc+w//feU7PR6Iu7rGggtFt3ryZDh06YGdnx/Lly1EoFIwaNcpg7MqV\nK3FwcKB3b/3Hxb8sCQkZzw56yRwdrci91NqoOZh6H2BnQN9nB75knc9sZn+j7kbNoW3orxxr/o5R\ncwBoeuQP9jXUfyz8q9Q+7BeK2GzUHABk9DV6HjL6sreB/p9veJXeOPkzAL/5DzBqHt3ObywT+wMo\nE3mUhXa6p0Evo+YAEHjypzKxP7bXCTJqDgBdzm0qE9vC2MdT0BxTy0IbMXa/CZq+83UwznWssVN4\nphX3Pzd2CuIKaFlmb2/PoEGDMDc3x8rKikWLFjFq1CjS0nQfiGJpaYmXl1cxpQiCIAiCIAiCIJQN\nYgBahgUGBhIYGKjz3qpVq4qJFgRBEARBEATBWFRiXmmpvL43+QmCIAiCIAiCIAivFTEAFQRBEARB\nEARBEF4JMQAVBEEQBEEQBEF4QerX4N/zys3NZfTo0fTp04cPP/yQ5ORkg3EqlYrBgwfz448/PrNM\nMQAVBEEQBEEQBEEQ9Pz444/UqFGDLVu28O677/LVV18ZjFuxYgXp6emlKlMMQAVBEARBEARBEAQ9\nZ86coXnz5gC0aNGCEydO6MXs2bMHiUSijXsW8RRcQRAEQRAEQRCEF/S6PwX3119/ZeNG3b+5am9v\nj5WVFQAWFhZkZGToLL9+/To7d+7kiy++4MsvvyzVesQAVBAEQRAEQRAE4f+57t270717d533Ro0a\nRVZWFgBZWVlYW1vrLP/999+Ji4tjwIABxMTEoFAocHNzo0WLFsWuRwxABUEQBEEQBEEQBD1169bl\n0KFD+Pr6cvjwYQICAnSWT548Wfv/lStX4uDgUOLgE8Q9oIIgCIIgCIIgCIIBvXv3JjIykt69e/Pz\nzz8zatQoAL777jv279//j8qUqNXq13y2siAIgiAIgiAIgnGNcB5r7BSe6au4z42dgpiCK/xzCQkZ\nzw56yRwdrVjv9aFRcxh0eQ0/+w00ag4APS9sYIXHCKPmMC7yK6691dKoOQB4/nmIXfX6GDWHTqe3\nsCOgr1FzAHj7zGZ+8x9g1By6nd9YJnIAKDhW26h5KJpGsL1OkFFz6HJuE0CZyGN/o+7PDnyJ2ob+\nys4y0E47n9lcJvZHEZuNmgOAjL5lYlsYu88CTb91qnUno+ZQ/8Auo/eboOk7hf8OMQVXEARBEARB\nEARBeCXEFVBBEARBEARBEIQXpDJ2Aq8JcQVUEARBEARBEARBeCXEAFQQBEEQBEEQBEF4JcQUXEEQ\nBEEQBEEQhBekEn9bpFTEFVBBEARBEARBEAThlRADUEEQBEEQBEEQBOGVEFNwBUEQBEEQBEEQXpCY\ngVs64gqoIAiCIAiCIAiC8EqIAaggCIIgCIIgCILwSogpuIIgCIIgCIIgCC9IPAW3dMQAVPhPq9DC\nh3rjuyJTykm+fo+jwRspyMotNr75x++TciOGS9/t1b7X++hnZMenal+Hr/8fUTvDSlxv+eZ++I7p\nhlQpJ+36PU7OWUehgfUWF6e0tiAguD82npUoysnj1h9HifwxBADraq7UmzUQuZkpoObi578Se/zS\nM7dFlVbeNJ3wDjKlnMRrMYRM/4H8TP2car7dgIDB7QA1BTkFHJz/C/GX7iAzUdBmTk+cfSojkUqI\nvXCbv+f8TFFewTPXDWBRrxGO/YcgUSjIux1F7BeLUeVkG4x1GTeVvOhbpGz/GQDXqXNRlHfTLlc4\nlyfn0gViFkwv1bqdmvrjOaoXUqWcjMi7XJy/msKsnFLHyS3M8J01BMsqriCRcG/XEaI2/ollVTf8\nF4zUfl4ik2LtXokzk5YbzqOZP16jeiJVyEm/cZfz89YYzqMUcfWXjiM3IYXwJRsBsK/nRe3xfZDK\nZOSnZXJp2SbSI+/ole3S3A/v0d2RKeWkRd7ldDF1s9g4qYQ6U/vjGOAJQOzRi1xc/hMAjvVq4jO+\nF1K5jKK8fM4v2UzKpSiD2+JV5/Eshy6oWLFVRUEB1KgoYd77UizNJNrlfxxT8f1elfZ1Zg7EpUDI\nMhmWZrDgBxURt9So1OBTTUJwPymmSomhVelxbuZH7dE9kCoVpEfe5ezcNQa3RUlxVbu3pUqXVshM\nFKRcuc25uWtRFRRiVc2VOsGDkJmbglpNxBe/vPIcXFrUIWDeELJjk5BbmGHmaENOXDIAMnMzirJ1\n67Z9k7pUH9EHqUJB5o1ornz8tSZGKqXG2AHYNfRDIpNxZ8sOYrbvA8CsogteM0agKGdFYXYul+et\nJDv6PgCV+nSmfOc2qIuKKEhN5+qi1eTExGnXJ5HLaLJ2Fg/2hxG16S+cmvlT84n2d7GEdvqsuICl\n48hLSOHSw3aqsLbAe/IALKu6ITNVErnuD2L+OvrK94nC2gK/Kf2xquaKzETJtXU7DObwvNRqNTOm\n7cDdw5FBHzT5V8qEsrEtXrTParR0FJaVnLRxFq6OJJy5xvFxK3CsVxPfCb2RPOy/LyzdTNr1u3pl\nl2tUnwqDByBRKMiJus2tpStQPdV+io2RSqk8ZhhWfj4ApIWd5u4363Q+69ChPbbNGhM5Y94z9oiG\nMftN4fUmpuAK/1mmtpY0/3ggf4/7mq2dZpJxN5F6H3U1GFuumguB6ydQNTBA533rKs7kp2fzR9d5\n2n/PGnya2FrRYN4HHJuwit3vTCMzJh6/sd2fK85/Um8Ks/PY02U6If3m49LUh/It/AAImN6fW78f\nYW/PWZycvY7GS0YgkZXclM3sLHljURC7Rq3m+zfnkn43kaYT39WLs63qRPMpXdj+wSo2v72Qk1/t\npvOXQwBoMCIQiUzGD299wg+dP0ZuqqD+sDdLXO8jMutyuIydSszCmdwaHkR+7H0cBg7Vi1NWqEyF\nBcuxatZa5/37i2YTPXYw0WMHE7dqGaqsTOK+MTzI0yvTxgrf2UM5M3kFh96bSHZMHDVH9XquuBrD\nu5Mbl8zhnlM41n8mld9rh42PB5m3Yjjad7r2X2JoODF7jhF74JTB8uvMHsKpSSv4+71JZN2Lp9bo\nnv8ozr1/Z+zqeGpfyy3NqL90HJdX/MjBXtO4uHA99RaNRqrQPceotLWi3tzBhE5cyf/enUrWvQR8\nxvbQz6GEuMqdm2JVxYW93Wewr+dMHOp54ta+PhK5jIZLRnJ23npCes7k6podNFgwxPA+KSN5PJKc\nrmbmehUrRsrYuVBOBUdY/ptKJ+adplK2zpWzda6cn2bKcCgH0/tKcSgnYfVOFUVFsHWujG3zZOTl\nw9pdqmLWpv8dA+YOIWzSF4R0mUzWvXhqjzFQL0qIc21Tj+q92nN02CJCuk1DZqrEvV8gAH7TBhL9\nx2EO9Arm7Jy1NFg86pXnYOfnQeT3f3Fs+GIU5qbs7zGdfe9MAsB9ZF+ddShsrPEKHkH4tGWE9hxL\nzv04bYxbl3aYVXQhrO9HnBo0lYo9O2Ht5Q5A7TljubdtL6G9x3Nr7c/4LJwIgG19H1zfasvpwTM4\nGTSJ+INh1AoeobPO2hODMK+gGRgobazwmz2EM5NWcPC9SWTfi6dmMe30WXHVn2qnAH5zhpITl8yR\nvjMIHb6Q2pP6Y+pk98r3ScC8IeTEJXOg90yODluE7+QgvbKf182bCQwasIk9uyNeuKwnlYVt8W/0\nWaGTVhHScxYhPWdxZt535Gdkc27h98gtzWj82RjCl/9MSI9gzn28kUZLRur13/Jy1lSdPI4bsz/h\n0oCh5D2IpeKQ90sdY9++DaYVK3Dpg5FEDB6FlZ83ti2bASCzsqTy+JFUGj0MJKUbABqz3xRef2IA\nKvxnuTatTeKl26RHxwNw9aeDVO/c0GBsrd6tidx+jFt7zui871ynOuoiFR2+m8C722fjP7wzEmnJ\nnbNLY2+SL90i847mDPuNXw5QqWPj54qz86rC7Z3HUavUqAqLeHDkIhXb1QdAIpOgtLYAQGFuiir/\n2VcgKzWrRVx4NKnRCQBc3HKYmm/X14sryi9k34zNZCekAxAXHo2FgzVShYyYUzc4+dVuUKtRq9TE\nX76Htav+DydDzOvUJzfyKgUPYgBI3f0H1i3b6cXZdHqX9P27yTh6wHBBcjku46YRv2YVhYkJpVq3\nQyNf0i5HkX03FoDo30Jw7dD0ueIuL/ueK59rrqKZONggVcopzNS9emvr74lL2wZcWrjeYB6OjX1I\nvRxF1l3N/r79WwgVDOTxrDj7el44NvHl9tb92vcsKrpQmJlN4inND7/M2w8oyMrB1tdDp2znxt6k\nRERp69zNX/+mUgf9ullSnEQqRW5mgkypQKqQI5XLUeUVoC4sYtcb40i9prnqalHBify0TIPboqzk\n8cjxCDW1q0qo7Kxp2z1bS9kVqkatNjyXav1uNXZWEnq00hxCA2pIGPqWFKlUgkwqoVZlCfeTSlyl\nllMjH1Iiosh6+B1v/bqfih30rxyVFFexczMif9hNQXoWqNWc//g77uw8pt1Oiof9hdzClCID/cXL\nzsHezwPHBl60+n4OEpkUUwcbbZkubzbXWYddQ1/Sr9wk52E7jNm2Vxvj2LIhD3YeQF2kojAji7iQ\nY7gENsfE0Q6LKq7E7dOsL+nEeWRmJlh5ViU/KZWrS9Zor7JmXInC1MVRZ50KS3Pij57XrOOp9hf9\nWwhupWinT8c9aqfRT7RThbUFjg19uL5mGwC58ckcGzCL/HT9+vky94nC2gKnht5cXb39YR4pHAqa\no1f28/px82m6dPUnsEPtFy7rSWVhW/wbfdYjErmM+vM+5MLSLeTEJWNVyZmCzGziT14GIONh/23v\n567zOev6dcm6FklejObKfvwfu7Br26rUMRKZFKmZKVKFAolCgUQhR5WfD4Bdq+YUJCXrXREtiTH7\nTeH1J6bgCv9Zli62ZMWmaF9nxaWgtDJHYWGqNw039OMfAXBtVEvnfYlMRsyJy5xa+htyUwXtvx5D\nfmYOlzftpzhmLnZkP5xeBpATl4zSyhy5hanOdJ2S4pLCo6jSuQmJ5yORKeRUaBeAqrAIgDOfbKL1\nminU6PcGJnbWnJjyNeqiks8aWrnYkvHg8bbIiE3FxMoMpaWpzjTc9Jhk0mMe59Riejei/r6IqqCI\nO0evPC7P1Y46A1qzf+aWEtf7iMLRicLEeO3rwsQEZBaWSM3Mdabhxn/7OQDmfnUNlmPTvhOFyYlk\nhh4p1XoBzJztyIl7fFTLjU9GYWmO3MJMZ7rcs+LURSr8543ApW0DYg+eJvPh9L5Hao3ry/WvfjE4\nVU9Tvj05sY+3bfF5FB8nMzPBZ2IQJ0YtpkrXNtqYrDuxyMxNcWzkQ0JoODZe1bCqXkHnhz6AubMd\n2bG6dU5hoG6WFHd7xxEqtK9Pp70rkMikxJ24xIPDmh/v6sIiTOysaffTPJQ2loRN+crgtjBGHk2W\njzWYC0BsMrg8cS7F2VYzVSwrFyzNdGNTMtRs/J+KX2bLtO819X58Lvd+oppNe1XMHlC687vmLrr1\nLie+mG1RQpxlZRdMLlnTZNUkTB1tSDp3nUsrNNORLyzaSLNvp+HeNxATO2tOTf2Shp/qbouXnUN+\nagZ3dh3Dqkp5bH3cafTpWPb3nAGA3NJcZxquqZMDuXGJ2nXkxSdpY0yd7Ml9Yv158UlYulfGxMme\nvIQUeOKHb158MiZO9iQeOa19T6KQU31EX+L/PgGARfVKAFxcsA7vqQM163e2J7cU7bSkOJmZCbUn\nBhE2ajGVn2inFhWdyU1MpVrfjjg18UOqlBO1aRdZd2J52svcJ9bV3chNTMW9Xwecm/oiVcqJ/H63\nXg7PK3hWBwBCQ2+9cFlPKgvb4t/os7RTgbu0JCchlfsHNCe8M6JjkZuZ4tzYm7gTl7CtXRXram56\n/bfS0ZH8+McnXvMTEpFbWiA1N9NOwy0pJnFPCHYtm+H36/dIZFLSTp8j7cRJABL+1Hxn+zf1TwwX\nx5j9ZllWzPhbeIoYgL7Gtm3bxtatW1GpVAQGBrJ//35ycnKwtbVl1apV7Ny5k0OHDpGbm8udO3f4\n8MMP6dq1KxcvXmTu3LlYWFhgb2+PiYkJixYtYtOmTezcuROJRELHjh3p37+/sb/ii5Ea7sjUqtJP\n8bj+2+OBTn5BIZc27sOrX5sSB6CSYqavPL3ekuLOf/oT/h/15M2f55KTkErciQjs/T2QKhU0WTKC\nsFlreXD4AvY+1Wn2xViSL5V8wC/uqq2qmIGr3EzJG4v7Y1Xelt8HrdJZ5lS7Ip2/GsqFHw5x68Cz\n7z19mIDBt59nXwDYvtOd2FXLnuszxdaDp797KeLOz/oK2cJ1BCwZj8fgrkSu3qrJy9cDpY0VMXuO\nF5tGsfu7qHT1AgnUWziaS59uIi8xVWdRYVYOpz76jJojuuM1tjdJZ6+SeOoyqoJC3SKKqQd6OZQQ\n5zX0XfJSMvizzWhkpkqaLB+LR1AgkZv2AJCXnM6uN8ZhU7MyLVZP4e+bc/W/ihHyKElxD40wVCV+\nPaSmdR0JFRz1c4u4rWbsqiJ6t5XSyr+UP6SKrRfqUsdJ5TKcGnkTOn45RXkFBMwfiteobkR88QsN\nFo3k7OzVxB45j61PdRp//tErzSF82WbCJn4BgNWgt8hLSiXpwg2cGnk//vyT/UBx+1ylMlgf1EWG\n33+07BGFjTU+n0ygMCubm1//iMzCnNqzRwNQlJv3xFd88XZad+FoIgy0U4lcjkUFJwqzcjj+wVzM\nKzjTZN1MgwPQl7lPYvadxKKCEwVZORx+fz4WFZ1osW6m4e9TFpSBbfFv9FmPePR7k7Pzv9O+LszK\n5fj4z/Ee9R4+43qSePYaCaeulLr/5on2U1KM64A+FKSmcb5rX6QmStznz8S5exfift1u+DPPYNR+\nU3jtiQHoa87a2povv/ySr776ig0bNiCVSvnggw8IDw8HIDMzk3Xr1nH79m2GDRtG165dmT17NkuW\nLMHDw4Ply5cTFxfHjRs3+Ouvv9iyRXNF6/3336dZs2ZUq1bNmF/vudUZ9TaV2vgDoLQwJTkyRrvM\n3NmGvLQsCnPyS11e9bcakXztLinXNeVIJJqrK0/zHtEF15Z1AFBYmpIWeU+7zMzJlry0TIqeWm92\nbBL2PtUMxpm4WHJh+S/kp2cBUPP9jmTeiaOcu+bBFQ8OXwAgKfwm6Tfv65TzSKOxnaneVvOwAaWl\nGYnXHm8LS2cbclMNbwur8ra8/e1wkm/G8lu/FToPGarRKYA2c3pxYN7PXPvztN5ni1OYEIdpjcdX\nl+X2DhRlpKPOK/6BUE8zqeYBMhk5l86XKr7Z5k8AUFiYk37z8cN4TB3tyE/L1PnRCZAbm4iNd3WD\ncQ6NfMm4cYe8xFSKcvK4/7/juLRpoI0t374xMbuO6J369Bz2Hi4tNPcVyy3MSL9x12D5T8qJTcLG\n210vzqqqG+aujtQe30+zPezLaaZUmSi4sGAdhdm5HB/6sfZzrX9bop0e2O7neY9zeKpuanJ4qm4+\nSMbuiW3xZJxb23qcX7QJdWERhZk5RP95lArt6nNr+yGc6ntpz+qnXo0m7fodynlUBMBreBdcW9Ux\nWh6O9XRnNzypvD2EP/GspPgUsLYAcxP9H0t7TqqY1lem9/5fYSoW/KBiRl8pnRqV/COq1vCuuLTU\nXOVXPF0vtN9Rv17Y+VQ3GJf78GrKoyssd3cdo+aQLli7V0BmZkLsEU2bSQm/SfrNGBzrWQPQ+qcF\nLz0HhaU5VXu05fr6P7Wff7IfLUjLRPXEevLiEilX+/HUcRNHO21MblwiJg62Osvy4pPIjU1Eaa97\ntejRMgBL90r4Lp1CwsGTRK7cBCoV9i3rI7cyB6Dd/75EaWsFKjWFOXkkn736+Ds+Zzu1fNhOvQy0\n08h1fwBw78/DAGTfiyP5/HVtv/Oq6sXNLZqH7N3Zockj6248Seev49a+AWVFWdgW/3afBWDjWQmJ\nTErC6cd1DImEwuxcDg1epH3rjW0Lybz7+EFZAPlxCVjUenxPsdLRnsL0DJ32U1KMbfPG3PniW9SF\nhRQVFpL4v/3YtWz6jwegr7rfFP5bxN5+zVWtWhWpVIpCoeCjjz5i+vTpxMbGUlioOXNWs2ZNAMqX\nL0/+w7n+8fHxeHhoDvABAZofx9evX+f+/fsMHDiQgQMHkpqaSnR0tBG+0Ys5t2qH9mFBf/ZeiJNv\nNawrax4uUbNnS6L/Lt3g5RFbDzfqjn4HiVSCzERBrT5tiNqtP/C69NV29vacxd6eswgJmo+9b3Us\nKzkDUL17a+4fPKf3mdgTl4qNq969Nd4juwBgYmdNta4tubM7lMy78SgszbX3hlhUcMS6WnlSrurv\nq9DPd7L57YVsfnshP3Vbgot/VWwqa+598u3dnJv7L+p9xqScOd02j+fG3vPsHr9eZ/DpHliHVjN7\nsO39lc81+ATIOncKM08v7ZNsbTq8TWbYsecqw9zbj+yLZ0sd/+jBQMfen4WttwfmFV0AqPReW+IO\nndGLTwgNLzbOtX1DPIa8B4BUIad8+0YknX78oA27ujVJPKn/4I1r32zlUJ/pHOoznSMDZ2Pn445F\nRc3+rtKtLbEG8ogPDTcYlxJ+g32dxmjLi966n/t7Q7kwfy2o1TT8YhLlalUFoHy7BqgLi7RPwX30\n4IsDQfOwe6LOVevWxmDdjDsRXmxc6pVoKryhuZdaIpfh2rIOSRdvoi5SUW/uB9j7a/oW6+puWFUp\nT3L4TQAuf73dqHmUpEltCRei1ETHaU4g/HxQRRt//R9RaVlq7saDf3Xd9/eeVrFoi4rVH8lK9SPq\nytfbONArmAO9gjnYfy62Pu5YPPyOVbu15cFB/Xoed+JSsXExISdxa9cAqYkCANfWAdp74eSWZtj5\nabaFRQUnrKq6ast8FTkUZOdQrWc7XNvWI+7EJez9PbHz9SDuuKb/STii+8CupLALlPP2wOxhO3Tr\n8oY2JuHwKcq/1RqJTIrc0hzn9k1JOHyKvIRkcmLicG6nud/PrqEfapWKzJt3MKvgQt0v53Br3W9E\nfr5Re7Uofv8JjnfRPME65M2RxPx1jKtf/szBrhM13/Fh+6vcrYT+wkBcavgN9ncaw5E+0znSZzp3\ntu7nwd5QLs5fS879BFKv3KJCZ809rUo7a+x8PUi9fOuV1ovs+wmkXL5Fpbc0eZjYWWP31P2GxlYW\ntsW/3WcBONSrScLJK7ofUqtptmoCtl5VAHBrXx9VYZHeU3DTTp/FspYnJm6aNuz0VkdSjoWWOiY7\n8iZ2rTQPHZLIZNg2aUjm5av8U6+633xdqF6Df2WBuAL6mpNKpVy9epWQkBB+/fVXcnJy6Nq1q/Ym\ncEPThFxcXLhx4wbu7u5cuKC5klatWjXc3d1Zu3YtEomEDRs24OnpqffZ10lucgZHgr+jzfJhmsfk\n303g8DTNDfb2tSvTbP4A/uha8qPGz331J42De/PuH3OQymXc/t8ZnWm5huQlZ3By1jqaLtM8xS7z\nXjxhM9YAYOtVhfqzB7G356wS466s20XDj4cQuHUBSCREfPM7yRGaHynHPvqCupP7IDVRoC4s4vT8\njWTdK/mBPDnJmeybuolOKz9EppSTeieB/03S/FkAJ+9KtP+kL5vfXohvnxZYudrh/oYf7m/4aT+/\ntf8XNJ3wDkig/SePn1p5/0wUB+b+XOK6AYrSUon9fBGu0+YhkSsoiI3hwWefYOLuicvoSUSPHfzM\nMhSuFSiIMzBV7RnyU9K5MO9bAhaPRaqQk3UvjguzvwagXK2q+AR/yNG+00uMu7x8Mz7TP6DFz4tR\nq9XEHTzDrR/3aNdhUcmFnAcl74P8lHTOzf2WekselR/PuVmP8/Cf+SGH+kwvMa4kZ2d8iX/wYCQK\nOXmJqZyc8JleTF5KBqdnr6XR0lHask8GrwY0dTNg9iBCes4qMe7Css34Tw3ije0LNQ+jCovg2oZd\nqAuLOD7+c/wm9UEql6HKLyRs2jfkxKeUiTxarpla7Lazt5awYJCU8V8WUVAEFR0lLBws5dItNbM3\nFLF1ruZQeSceHGxAIdftV1f8pkKthtkbHs+OqOMuIThI/4z/0/JT0jk7Zw0Nl45BKpeRdS+e0zO/\nBcDGqyp1Zn3AgV7BJcZF/RKC0tqS1lvmI5FKSb16m/DP1lOYlUvYR5/jO6kfUqWmvzi/4DsaLR/3\nynJApSZ0/Ar8pgRRa9h75GdmgRparAsGIPKL77GqWY1a04dzsv8kClLSuTz/K3w+mYBUISfnXhwR\n8zS3AcRs24uZmwsNNi1DqpATs30fqec0D265NHM5taYNo8r776HKL+DSjM9AraZy0DtITUyo2KMj\nFXt0BEBVUMDpDwz/Caf8lHQuzP2WgCVjkSjkZN+L5/wT7dR35occedhOi4sryemJy/GZMpDK77UF\nqYTra7aTdln/TxW91H0ChE34HL+pA6jarQ0SiYSrq3+nTvCgZ+ZvDGVhW/wbfRaAZSVnsu4n8rSw\naV9Td9YgpAo5uQmpnBj/uV5MYWoat5aswH3uNCRyBXn3HxC18FPMa7hTddJYIj4cXWwMwJ0v11B5\nzDC8N34DKhXpZy8Q++Nv/3i/GLPfFF5/EnVxj6sSyrxt27YRFRXFyJEjGTp0qPYKp1KppFu3bhQW\nFhIVFcXEiRPJy8ujQ4cO/P3331y8eJEFCxZgbm6OQqHA2dmZBQsWsHbtWkJCQsjPz8fX15eZM2ci\nkxXfESQkZLyqr1osR0cr1nt9aNQcBl1ew89+A42aA0DPCxtY4THi2YEv0bjIr7j2Vkuj5gDg+ech\ndtXrY9QcOp3ewo6Avs8OfMnePrOZ3/wHGDWHbuc3lokcAAqO/btP6HxeiqYRbK/z4n/y4kV0ObcJ\noEzksb+R/p+oerqRdZcAACAASURBVJXahv7KzjLQTjuf2Vwm9kcRz/6buS+bjL5lYlsYu88CTb91\nqnUno+ZQ/8Auo/eboOk7XwcDHYp/4F1ZsSFR/wTHqyaugL7GunZ9/Dctv//++xJjTUxM+PvvvwEI\nDw/nm2++wc7OjuXLl6NQaKakDB48mMGDn30lShAEQRAEQRAEXcU9nEnQJQag/w/Z29szaNAgzM3N\nsbKyYtGiRc/+kCAIgiAIgiAIwgsSA9D/hwIDAwkMDDR2GoIgCIIgCIIg/D8jBqCCIAiCIAiCIAgv\nSMzALZ3/znOPBUEQBEEQBEEQhDJNDEAFQRAEQRAEQRCEV0JMwRUEQRAEQRAEQXhB4im4pSOugAqC\nIAiCIAiCIAivhBiACoIgCIIgCIIgCK+EmIIrCIIgCIIgCILwgtRiCm6piCuggiAIgiAIgiAIwish\nBqCCIAiCIAiCIAjCKyFRq8XFYkEQBEEQBEEQhBfRx3assVN4pi0pnxs7BXEPqPDPJSRkGDsFHB2t\nyL3U2qg5mHofYGdAX6PmAND5zGb2N+pu1Bzahv7KsebvGDUHgKZH/mBfwx5GzaF92C8UsdmoOQDI\n6Gv0PGT0ZW+DnkbN4Y2TPwPwm/8Ao+bR7fzGMrE/gDKRR1lop3sa9DJqDgCBJ38qE/tje50go+YA\n0OXcpjKxLYx9PAXNMbUstBFj95ug6TtfBypjJ/CaEFNwBUEQBEEQBEEQhFdCDEAFQRAEQRAEQRCE\nV0JMwRUEQRAEQRAEQXhBKvFonVIRV0AFQRAEQRAEQRCEV0IMQAVBEARBEARBEIRXQkzBFQRBEARB\nEARBeEFiAm7piCuggiAIgiAIgiAIwishBqCCIAiCIAiCIAjCKyGm4AqCIAiCIAiCILwglZiDWyri\nCqggCIIgCIIgCILwSogBqCAIgiAIgiAIgvBKiCm4wn/W4TO5fPFDOvmFampUVjBnhA2W5o/Pufx5\nMJtNf2ZqX2dkq4lPKmLvamfkMgkLVqdy7XYBZiZS3mljRp+OlqVet1Mzf2qO6olUISf9xl0uzltD\nYVbOP4oLWDqOvIQULi3ZCIB9PS9qje2NVC6jKK+AiKUbSY2IAqDBD8uQKhRk3ojmysdfU5StW5Z9\nk7pUH9FHP0YqpcbYAdg19EMik3Fnyw5itu8DwKFZAF4zR5Ebl6gt58ywmRRl51JtaC+cWjUEIP3y\nDb3vZ9s4gMpD+yNVKMi6eZsbi1bq5VSamJoLppKfmEzUitWYValIjVkfaZdJpFIsqlfhyoyFJB8O\nNbg/XAKbU6XfW6CGotw8rn36HelXowzGFkdhY4X37FGYlncElYrLC1eTFn4dgBpjgnBq25jCdE19\nyoq+/1xlG6JWq5kxbQfuHo4M+qDJC5dX1vJwaFoHjxG9kSoVZNy4Q8SCbygy0EaeFWfiZE/D9Qs4\n0XcyBWkZOp81c3Wk0cZFnBnzscEcXJr74T26OzKlnLTIu5yes47CrNzSx0kl1JnaH8cATwBij17k\n4vKfACjfwp/68z8kOzZJW87B9z95/g31lP9avXBoWgf34X2QKjV9UsTHxdcDg3FSCZ7jBmD/sO+K\n3vwn957ou7xnjdTpu04NnUVRtmYfSxSan0DObRoS93eYNsaxaR1qjOilrXPhC741mNOz4kyd7Gm0\nfj7H+k7R1k2FtQW1Jr6PZVU3pCZKor77nfu7j/zj7ffIy6oXzs38qD26B1KlgvTIu5ydu8ZgGykp\nrmr3tlTp0gqZiYKUK7c5N3ctqoJCFNYW+E3pj1U1V2QmSq6t28HdXcdeOOd/a1sUe7wsTUwJx9RH\nTMs70WDDYs6NnU/Gw+ORjX8t3Ef1Q2qipDAzG3i5beRxLo402riYs2MWkH41iir938GlfVPt8k57\nVyA3N+WPZsOA17PvfFXU4jm4pSKugBpRUFAQN2/e1HkvLCyM8ePH/+vr2rZtG/v37//Xyy2rktOK\nmLUqlU8n2bFjpTNuznI+/yFdJ+atVub88qkTv3zqxObFjjjYSJk6uBz2NjKWbkjD3FTK9hVO/LDQ\ngWNn8zh0Wr9zNURpY4Xf7CGcmbSCg+9NIvtePDVH9/xHcdX7d8aujqf2tUQuo+7CUVxcsJbDvacT\nue53/OcNR2ljBUD4tGWE9hxLzv043Ef21SlLYWONV/AIgzFuXdphVtGFsL4fcWrQVCr27IS1lzsA\n5Xw8id6yg5P9J2n/FWXn4tiqAXYN/AgLmkRo7/FITU101ie3scZ92hiuBi/ibN8R5N6PpfKw/s8d\n49anC9Z+XtrXObfvcmHQeO2/1FPnSdh3qNjBp3ml8tQY3Y+zYz8hNGgyt77bhu/iiQZjS1Jz0mBS\nzl/lRK+PCJ+9Et9PPkJqotRsI19PwoNXEBo0mdCgyYQHr3ju8p9082YCgwZsYs/uiBcq50W9rDwU\nNlZ4zxzOhamfcaz7eHJi4qgxss9zx5Xv2IIGq+dg6mSn91mpUoH33NHaQcbTlLZW1Js7mNCJK/nf\nu1PJupeAz9gezxVXuXNTrKq4sLf7DPb1nIlDPU/c2tcHwN7Pg+vf7yak5yztv8Ls0vUhxfkv1ova\nwSO4OO1TjvcYR3ZMPB4jDNeD4uIqdGmPeUUXTvSZQNj706jUqyPWXtUBsPGtwe3Nf2rbZWjQZO3g\ns5y3Bw3W6Z+Y0NS5YZybupwj3T8iOyYez5G9nzvOtWNzGhqomz6zhpMbn8zxoGmcGvUxtSYMwMRA\n/X0eL6teKG2tCJg7hLBJXxDSZTJZ9+KpPcbAsayEONc29ajeqz1Hhy0ipNs0ZKZK3PsFAhAwbwg5\ncckc6D2To8MW4Ts5CFMn2xfK+d/cFsUdLx/5p8dU0PRPtZ/qn0wc7fBdPIlrS9dyMmgSCQc0J0Ve\nZht5lIvPU7nc/v4PbZsBKMzJI2zKV8Dr2XcKZY8YgP4/0bVrV9q2bWvsNF6ZExfy8HZXUNlV06H2\neNOcv47koFYbPjP13e+Z2JWT0f0NCwAu3yygc0szZDIJCoWE5gGmhJzQP+NoiGNjH1IvR5F1Nw6A\n6N9CcOvQ9Lnj7Ot54djEl+itj08cqAuLCOkwmvRr0QCYuzmRn5aJY2MfAHLuxgIQs20vLm8211mf\nXUNf0q/cNBjj2LIhD3YeQF2kojAji7iQY7gEapaV8/HErp439TcsJuCbedj41wIg4eBJzgwJRl1Y\niMzcDKVtOZ312davQ+bV/2PvvsObKtsHjn+zuhfdQCl0QEtbCsgGBZmKmw1CZYnsvZUNKlNRwAWK\nCDiYivqTqQxZbZFRymoLBbr33kl+fwRCQ5JSLB34Pp/38rpekvs8z32edXJyTk4jKYiJByDh5/04\nde/0WDG2zZtg1/oZEn7eb7CtbQL9cHi+PVGrPzf4PoCquIQrH3xBUWoGAJlXozB1sEMilyGRy2g0\nZShttiyn7baV+M8fh8zSXK8MiUyK07PPEPvLYQByIm6Tdzcex3bNkCjkWDdqQP3Br9J220oCl0/H\nzMXBaD7l8cP2UHr1bsaLPf0rVE5FVVYeDm2aknklirx7Y/Hu7kO4vvjsY8WZOtbCuVMr/pm63GAd\nvrNGEPfbUYozsgy+79IugPTwm+Tc0cy/qJ1/4t6z3WPFSaRS5OamyEwUSBVypHI5qsJiTe5NvXFq\n5UfX7xfz/Dfv4viMj17Zj+u/OC4yrz7o35g9B7XrTmkObZoajXPu1JrYX49q166EQ6eo/WJHAOya\n+GDf0p82W5bT8svF2rULwH3AS0R9+aNeXY5tAvXGXG0DY7OsuPtjM/ShsamwscShdSCRG3cBUJiU\nxukR8ynOzKEiKmtcOLdtQnr4TXLvjf1bO49Qr6f+FcWy4uq98iwR2/6gOCsX1GouvL+ZO7+dRGFj\niXObAK59tReAgqR0jgUt0sRVwJNsC2PHy/v+7TEVwGfG28T/fpTizAfrk3OXtqScPk/29Vua8n7W\nXKWszDkC4DtzJHG/HzO6VgIknLxEwslLwNO5dgo1j7gFt4oUFxczd+5cYmJiUCqVDB8+HIANGzaQ\nkpJCfn4+H330kc42O3fu5IcffkClUtGlSxcmTZpksOw9e/Zw+PBhcnNzSU9PZ/z48bzwwgu88sor\nNGjQAIVCgaenJ46OjgwcOJClS5dy6dIliouLmThxIt26dWPNmjWEhoaiUqkYNmwYPXv2rPQ2qUwJ\nKUpcHGXaf7s4yMjJU5Obr8bKQqITm56l5Lt9Ofy4ykn7WpOGJvx2LJ9mviYUF6s5fCYfuUx3O2PM\nXBwoSEjT/rsgKQ2FlQVyS3Od22vLipOZm+I/I4izE1ZQv3cXnfLVJUpM7G3ouP19FHbW/DN3HVYN\n6ujEFCalIreyQGZhrr1lyMzZUedWtNIxZs4OFCSm6rxn5V0fgOKsbBL+OE7ysWBsm/rSdOUszg6Z\nQWFyGmqlEre+L+I5eiCFyWk6OZg4O1JUur7kFORWljo5lRUjMzfHY/LbhE9fhOtrLxhs6wbjh3Nn\n4za926JKK4hPpiA+Wftvn8lDST4RirpEiefIPqiVSs4OnQOA99hBNBz3JtdWfa1ThsLWGiQSijMe\n3OJZmJSGqbMDpo61SD93mcjPvifvTjz1h7xK01WzjOZTHvMWaObfmTO3KlRORVVWHmYuDhQk6Y43\nhZUFMktz3VsYy4grTEnn4uw1Bsuv+3oXpHI5sb/8iefwXgZjLFzsySs1//IT01BYWyC3NNO5lays\nuOh9J3Dr3oqXD65FIpOSePoy8ccvAFCUmcPt304R99c5HJo1pP3aKRzuP+8xW0rXf3FcFCaWbxwY\nizNzcaAw6eG1yx2Aosxs4v84TvKxEOya+tB01SzODJlJYVIaYfM/MZjPw2OuoJxjs+ChsXlhtu7x\nHMDCzZXC1HQaDH4Zp3bNkJrIubXtN/LuxD9Ok+mprHFh4WpPfql2z08yMkfKiLOq74rpZRvar5+J\nmZMdqedvcHntj9h41aUgJQPvIT1x6RCI1EROxHd/kHMnoUI5P8m2MHa8rOgxtc5rXZDIZcT9coQG\nw3prYyzc66DKLyRg6RQs3Otoy67MOVL3Xi6xvxzBY5j+Wmnp4QZA+Gd7HuT5FK6dQs0jTkCryE8/\n/YS9vT2rV68mJyeH3r17Y2JiQt++fXn99ddZt24d+/fvJzAwEIDU1FQ2btzIvn37MDU1Zc2aNeTm\n5mJpaWmw/Pz8fDZv3kxaWhr9+vWja9eu5OXlMW7cOPz8/Fi3bh0Ahw8fJj09nV27dpGZmcnmzZtR\nKBTExMTwww8/UFhYSP/+/enQoQM2NjZV1j5PmpELnUgNXPPffSiPzq3McHN5MB2mD7Phoy1ZDJiR\njFMtKe2amnLhWlG56pZIDJ+oqpWqcsUhgWc+nEj4mq0UpmQYDClKy+Jwz4nY+Dag7efvErPvmOE6\nVaXqlBrJS6VCYuC9+/mGzVmtfS3z4jUywq5j3zqQ+N+PAhCzaz8xu/bjOXogVp71HuxGGfU9KgaJ\nhEaLZnDr000Up6YbDLEO8EVua03yoeOGy3iI1MyUgAXjMHVx4Pxkze9JHDu0QG5tgUNrzbyTKOQU\npWXqp2No4Nzbl4L4ZM6XutJxe9uveI7oU66c/lcZ7feH50g540qz9vHArXc3Qt5Z9K9y0JunZcT5\njX6DwvRsfu0yEZmZCe0/nkzDoBeJ2Lqf09PXaWNTL0SQejEC53YBZeYkaDzcB0iMzD+lyvC6dm+N\nuTTnwRcUGRevk3npBg6tA4n77ajRuo3Ndf2xWb44nW3kMizquqDMyefsqIVYuLnQ+qtF2qtWNY7R\nY5m63HFSuQzntgGcmfoxysJiWiwdjd+EvsQeCsbSzZni3HyOD1+KZT1nOn49n9wKnoBWtooeU619\nPKjbqwfnxizQe18il+H4bEvOjZlP/t0E3Pr3xKljK8N1PIE5olkruxMyeqHBbQHcB74EQEnOg5Nd\nsXaWTfwZlvIRJ6BVJCoqivbtNbekWFlZ4eXlxcmTJwkI0EwqR0dHUlIefJN29+5dGjZsiJmZGQAz\nZpT9m7VWrVohlUpxdHTExsaGtDTNt04eHh46cbdu3aJZs2YA2NraMmXKFDZu3Eh4eDhBQUEAlJSU\nEBsb+1SfgLo6ygiLKNb+OylViY2VBAsz/UX6wMl8Zo/UvX00N0/F1CAbbK018d/szca9tvHp0mhM\nH1w6tgBAbmlOduRd7XtmTvYUZeagLCjU2SY/IRW7AG+9OCuPuljUccJv6hAATB1skcikSE0VXPl4\nO46t/En4KxSArGvRZN+4DTLd/TJ1sqc4MwdVqToLE1Ow9W9oMKYgMQVTx1o6793/Nrdunxe4vWWv\n9j0JEtRKpebbXKmEnBvRAMTtO4LH8D6l6kvGqnGjB2U6OlCclf1QToZjLBrUw6y2Cw0mjADAxL7W\nvTYwIXLFegAcuzxL8v6/jH7b0HbrSgCST4QS+8sRmq2ZTW50LOfGLdbe6iORSbn+0bekntZ88yoz\nN0VqYoKNryd+743RlnV2mOYKqdzakpJszS1ips61tN8kWzesT7zOg0TKd7X8f4nXO/1w6tgS0MyR\nnMg72vfuj8WH50hBQgq2/t6PjCutzksdkVua0/rrpdptmiyZqH2/209LtDlkRcRoXzd3rnVvnup+\n0ZQXn4Z9gJfBuLpdW3Jh+VbUJUpKcvK5/evfuHVrRfTPx/Hq34VrX/+m3U4ikaAuVj66of7jJAQi\noa723yaOdtr/b2jdAs2VKNsA/XGgKiikICEFEwfdMgqS0pBbWeDW5wWiS61dSEBVot8Hrt3b4TVC\nc/Xn4fXb1Oj6rT82DcWVVpii+TIt5nfNF4Z5MYlkXLyuU051azy2N66dngFAYWlOVuljmXbs6x/L\n7Jt4GYwrSM4g7q9z2itjd38/ie87vYj6/iAAd/ZpvkDMvZtE6oUb1Co116rbw8fEJ3FMde3ZCbml\nOS03vn+vDnv8F08mcv1WCpPTyQy7Tu0XO+H4XEvtiWPp3wg/yTlS+6WOyCzNab1pmfb1gCWTiFi3\nleQT50Aqwbmz5iGDfmN7Uef55oBYO4UnQ/wGtIp4eXkRGqo5acjJyeHGjRu4ubkZjXd3d+fmzZsU\nFWkm9KRJk0hMTDQaHx6u+cF9SkoKOTk5ODhofoMmfehbWk9PT8LCwgDIzs5m5MiReHp60qZNG7Zu\n3cqWLVvo2bMn9erV42nWrpkpl24UcTuuBICdB/N4vpWZXlxWjoo7CUqa+pjovL7zYB4bftT8HiI1\nQ8mew3n0fE7/t4H33fhiNyfefJcTb77LyWELqdXEG8t6LgDU79uVxGPn9LZJPhNmMC4jLJIjL0/S\nlndn9xHiD57h0tJNqJUqAhe8Q62mmpM2K8+6WDaow91fNB9ozOu5AlC3Vw+ST4To1Jd69iK2AQ0N\nxiQfD6H2q52RyKTIrSxw6d6B5OMhlOQV4NbnRZzuHYSsGjXAxs+b1NMXsPKuj9+88doH8dTuqfv7\nzozgC1j7+2DmVhsA1zdeJO3v4HLFZIdfJ7TvSO2DhhJ+2U/Kkb+1J58ANs38yTh3yWif3H+Awu0f\nf6flF4tJ+iuYsHmfaE8+AVLPXKRevxeRyGUgkeD37hi8x71J1rWbOg8uUStVpJw6j1uvbpp28HbH\n0sON9HPhqFVqfKYN1zwdF3Dr04OcyNtG8/pfFfXVTs4Mmc2ZIbMJHjEP24CGWNwbi269u5N0PFRv\nm9Szl8oVV9r1j7dwsu9UbV2FyWmELXjwjfr9h1r8FbQE+0AvrNw188+zbxfijp7XKy/xdJjRuIyr\nt3HroZkbErmMOp2ak3opiuLcfLwGdKNuV80Jt52PO7UCPEk4ZXy8/q9QcwkVf6DiDwD9/n1o3YIH\na5ehuOTjodR9tUuptas9yceCKcnLp17fF7QfoK0bNcD23tr1sIRDpzk1ZA6nhszhzIj52AV4a+ty\n793N6NgsT1xp+XHJZF69Sd2XNb+/M7G3xa5JIzKvRJW5XVW6+vke/ho4j78GzuPoW4s1x6h7Y9+j\nb1fij/6jt03i6ctG42IPB1O3W2ukpgoA6nRuQXr4TfLikkm/cgv3VzW/UzS1t8G+qTfp4Y/3dPLK\nZOx4ed+/OaZGrP2W0/0nax/oV5iSRvjCT0g5EUrysWDsAn2I++0vgt+ayZ1t+wCw8fOqlDly4+Mt\nnOo3RXucK0xO4/KCTzUnn4CVlzsl936Te+XzvWLtFJ4ocQW0ivTv35/58+czaNAgCgsLmTBhAnv2\n7DEab29vz6hRoxgyZAgSiYTOnTvj4uJiND4lJYWhQ4eSnZ3NwoULkclkBuO6du3K6dOnGTRoEEql\nkvHjx9OxY0eCg4N58803ycvLo1u3blhZlf9PjtREDrYyloy3Y8bqNIpLwM1VxvsTaxEeWcTizzPY\nscYZgDsJJTjVkqKQ616xGtnbivc+yaD3lCTUahjT35oAbxNDVekpSs/i4uIvabFyMhKFnLyYJC4s\n0Dwkx7axB4HzR3HizXfLjDNGmV9I6PSP8J8+BIlcjqq4mPPzNpAdobma1OSD6UgVcvJjEglfsh5r\nX08avzuW4LdmUpyexZWln+nFgObhCeZ1XWm9dTVShZzYvYfIOH8FgEuzVuAzfSSeb/dHrVRxed7H\nFGdmk7D/OOZurrT+dgUqpZLcm3d1ci3OyCTyw0/xXTobiVxOQVwCEcvWYuXjjdfs8VwcMdVoTHmY\nu9WhMCHpkXH1evfAzMUR5+db4/x8a+3r58Yv4eY3u2g06S3abl2JRColOyKaG59+Z7Ccays34ffu\nGNp9/xxqNVxetJ6S3HxKbt7l2prNNF8zG6RS7e/LnttXdl/+LytKzyJ86ec0XT4NiVxOfmwCYYs2\nAGDT2BO/90ZzZsjsMuMqqjA9m9CFm2i7agJShZzcmCSC530FQC2/BrRYOILDAxaUGXdx9XaazQmi\nx94PUavUJJ0N5/q3v4NKzakpa2k2Owi/sb00vzOetYGijIo9bOa/6MrSzwn88H7/JnJ5sWZNun8X\nwpmgWffWLsNxMXsOYu7mQtttq5Aq5MTsPUz6+asAXJy5Ep8ZI/Aa1Q+1UsWleWv1/lTPw4rSswhb\n+gXNlk9FKpeTF5uoMzYD3nuHU0PmlBlXlvOz1uA3awT1endDIpES9fVusq7WnJOu0orSs/hn0Uba\nrJqEVC4jNyaJ0PlfAmDn50HzBSP5a+C8MuNu7jiMiY0Vnb9fikQqJeNaNGEffQPA2emf0HTOUDz6\ndkEikXDtq5/JuFK9v28uzdDx8kkcU43JiYjm2sqNBK6YiUQu095tU5lzpCwW9WqTH5+kPam9T6yd\nZTN+E75QmkRt7LGgwlNjz5493Lx585G36T5pycllH8irgpOTNQWXO1drDmYBf/Fbi8GPDqxkr5zb\nzpG2/ao1h65ndnLyuderNQeADid+4VAb/cfCV6XuZ3egZHu15gAgY3C15yFjMAdb6//5hqrUI/gn\nAHY1G1qtefS9sKVG9AdQI/KoCfN0f+uB1ZoDwIvBP9aI/tjbPKhacwDodX5rjWiL6j6eguaYWhPm\nSHWvm6BZO58Gr9lMfHRQNduXte7RQZVMXAF9iixatEjv74YCT/0TawVBEARBEARB+N8gTkCfIosW\nLaruFARBEARBEARBMEDcWFo+4iFEgiAIgiAIgiAIQpUQJ6CCIAiCIAiCIAhClRC34AqCIAiCIAiC\nIFSQeApu+YgroIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpUQt+AKgiAIgiAIgiBUkHgKbvmIK6CC\nIAiCIAiCIAhClRAnoIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpWQqMXNyoIgCIIgCIIgCBXyotX4\n6k7hkfbnbKjuFMRDiIR/Lzk5u7pTwMnJmiNt+1VrDl3P7OTPdn2rNQeALqd3cbD1gGrNoUfwT9Xe\nH6Dpk2MdeldrDp1O7qkxbVHdedSUHAD+aDWoWvPoGfIDR9v3qdYcnj+1G6BGrBc1YZ5Wd3+Apk9q\nwhzZ1WxoteYA0PfClhrRFkq2V2sOADIGI5EoqjUHtbq42tdN0Kydwn+HuAVXEARBEARBEARBqBLi\nCqggCIIgCIIgCEIFqcQvG8tFXAEVBEEQBEEQBEEQqoQ4ARUEQRAEQRAEQRCqhLgFVxAEQRAEQRAE\noYLUiFtwy0NcARUEQRAEQRAEQRCqhDgBFQRBEARBEARBEKqEuAVXEARBEARBEAShglTVncBTQlwB\nFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCVOIpuOUiTkCFp17rbauRKhTk\nRN7m6vufo8zL13nfof0zeI17Uz9GKqXR5KHYt2mKRCbjzvf7iN17CMsGbvgvmazdXiKVYuXtzqU5\nq7CoVweX7h207ynsbB7UMXYwEoWc3Kg7XH3/M8N5GIqRSmk4aSj2bZshkUm58/2vxO09CIDdM/40\nnDQUiUxGcWY2EWs3kxN5G4B6g16l9itdUCuVFGdk6bWLY4fmNBw3CKmJguzIO4Qv+wJlbv5jx5k6\nO9Dmm2WcHjyL4sxsnW3rvPo8Ls+35vz0lY9u7wr0CYB1Yy8aTR2GzMwMiVTK7W0/k7D/xIN+Ushp\numYucffi77Nv1wKPMYORmijIjbzN9Q836OVjLEZqYoL39FFYN/ZGIpWQFR5B5JqNqIqKsHsmAM8J\nw5DIpJRkZRP5yWZyI6PLt5+V1Bb1g94wOD6f9BwBcHy2BX7zJ1CQmKIt59yY+SjzCrT/rtf/Jeq8\n3rVS26LWM/54TwxCIpehKizixkebyboSCYDn6IG4dGuPMr+Q8nDq0JxG4wciNZGTHXGHy8u+osTA\nnDEWJ7c0p8n80Vg2qINEIiH29+Pc/O7XMuu0b/8MnmOGIFXIyYm6zfUP9NcOYzFSExMaznhbMz4l\nUrKu3CBi9SZURUVYN/bCe/IIZGamIJNyd9vPJB44bjSP6lovdPazAnNVZmmBz9zxWNSvCxIJiX8c\n5e72vTrbXPM78wAAIABJREFUur7cBceObbg8+0Oj7aCXUyX1z6NU1ny5z6y2M62/XcH5yUvJvnbT\naB6uzzUlYGI/ZCZyMiPuErroa0pyC8od13bVBKzcnbVxlnWcSD53nVNT1uLU0pfA6YOQyGQUZeZw\ncdV2Mm/cBSpnzSpr3+2aNcZ7whCkpiaU5OQ9sn/KQ61W897cfXg3dGLEyPZPpMx/a/Pmr7l8+TJr\n1nz8xMuujnVTePqJW3CFp5ZEIgEgbO5qzgyYTH5cIt7jB+vEKOxs8Js3zmBM3V7dMK/nytnB0wgZ\nMYd6A17Gxs+b3OgYgt+aqf0vNfgiCQf+JvloMLe3/qx9/Z9xC1EVaA7Ejd8bT9jcVZwdOJn82ES8\nxunnYSym7hvdMa9Xm+DBUwm9l4e1nzcySwuafDiTyPVbCQ6azvVVX+G/bBoShZxarZpQ59UunBv1\nLiFvzSD56NmH6rMmYP5YLs75iJP9ppIfm0ij8W/qteGj4mq/1JHWXy3CzNleZzu5jSWN57xN4xnD\nQaJbprH2rkifAAR+OIObG3cQ/NZMLkx9n4aThmJezxUAm4BGtNr0AXaBvnp1+bw3gSvvrSJk0ETy\n4xLxGBtU7hj3oX2QyGScGzqN0LemITM1wf2t3sgsLfB7fxY3N2zh3NBp3Fj1FX5LpyNR6H6nV9Vt\noTc+733QrYwcbJv4cPv7fTpzpfTJp22gD/WDXq/UtpDI5QQsm8rVD78gOGgmtzbvxm/hRABqv/w8\njh1aEDJ8DsFvzeRRTOysabJgNOdnf8yJvtPJj02i0YRBjxXXcEx/CpLS+HvgLE4NnUe9Pt2xa9LQ\naJ0KOxt835tA+LurCB40iYK4RDzHDSl3TP1hmvEZ+tZ0Qt6ahtTUFPe3egPg//5Mojf9ROiwGYRN\nW4bXpGGYu9U2kkf1rRel97Mic7XBqEEUJqcSGjSFf96eRZ1eL2Dj30hTv7UVDWeOxnvq2yAxkoCR\nnCqrfx5Vb2WtHQBSEwX+iyfqrVcPM6llTcvFb3NmxjoOvDGH3Jhkmkzu/1hxZ2au5/CABRwesIBz\nSzZTlJ3H+Q+/Q25lTruPJhH28U8c7j+P8+9voe3K8Zg52QGVs2YZ23dTJ3sCV8zk+qpNBAfNJPkv\n3ePpvxEVlcyIoVvZ/0d4hcuqCF9fX44cOUj//n0rpfzqWDeF/wZxAvo/qH///sTExLBnzx6OHDkC\nwLRp0+jTpw83btwgKCiIgQMHkpmZWc2Zls3ERAZA/t0EAGL3HMT1hed0YuzbBJJ1NcpgjFOnNsT/\n9hdqpYqS7FwSD5/E9UXd7e2a+uLcuS3XVnylV7/3pLdIPX0BgKyrkeTH3K/jgH4erZsajXHq1Jr4\n3x/kkXToJK4vdMSiXm1KcvNIDw0DIO92HMrcfGwDfChKzeD6qo3ab4WzrkXp1OfQpimZV6LIu7ff\nd3cfwvXFZ/X2oaw4U8daOHdqxT9Tl+tt59qtHYUpGVz/dJvee8baW9sW/6JPpCYKbn69k/QQTVsU\nJqdRnJmNmZMDAPX69yTqyx/JuhKhU1et1s3IvhpJfkw8AHF79+PS47lyx2RevMKdLTtBrQaVipwb\ntzB1dcK8Xm2UuXlknNPkk38nlpLcfGwCfKq9Le7znvSWdrxVxhyxbeKDfcsAWn27ghZfLMGuWWNt\nmSb2tvjMeJuI9VsrtS3UJSX8/epocm5EA2Be10V71c3a14vk48Hlvprh2DaQzCs3tXPhzu5D1Hmx\nw2PFXV2zhWufaOaEqaMdUhN5mfXXat1Ud+ztOWBgfBqPybhwhdvf7io1Pm9i5uqI1ERB9Dc7SQ+9\nBNwbIxlZmDrrjpH7qnO9eLCfFZurUWu/Jmr9twCYONRColBQkqtpe6eu7SlKSSdq/Raj9RvOqXL6\n51HKmgvliXnUsc1nxtvE/36U4kz9O2dKc2kXQHr4TXLuJAIQtfNP3Hu2+1dxErmMVktGcXHV9+Qn\npmHt7kJxTh5JwVcAyI6Opzg3H6/+mjsmqnLfnbu0JeX0ebKv39KU97PuFdN/44ftofTq3YwXe/pX\nuKyKGD9+LJs3b2HHjl2VUn51rJs1nUqtrvH/1QTiBPR/WO/evenaVbPYnzp1it27d2NlZUVubi4/\n/vgjtra21Zxh2aRS3eFbmJSK3MoCmYW59jUzZ0edWwRLx5g5O1CQmKrz3sMf0LwnvcXNL3/Qu/3H\n0sMNp46tiPrqJ+222nKSU5FbWerm4eJgNMbUxZHCUjkW3Msj704cMnMz7Fs3BTS3XVp61sPU0Y7c\nm3fJOK85cEsUcrzH6n5DbObiQEGS7r4prCyQWZqXO64wJZ2Ls9eQeyuWh8XsOczNTbtQFejfSmas\nvbV1/os+URUVE//rn9rX67zeDZm5GZnhmhPO8AWfkHrqH71cTJ0dKEwqVZeBvikrJj34Ivl3NR8s\nTV2cqDvgFZL/PEX+vb6pdb9vfL2x9KiHiUOtam8LeDA+M8Nu6OTzJOdIcVY2MbsOEDJsNpGff0/g\nipmYOtmDVIr/4slErt9KYXJapbYFgFqpxMTelg77vqThhCBub/sFgKzwCByfa4nC1rpcV73MXHTr\nKEhKQ2FlgdzQnCkjTq1UEbhkPM/+uJK0c1fJuR1XRp26c9/w2mE8Rmd8ujrh1v8Vkv88jaqomITf\njmi3qf16d2TmZmRd1h0POvtUTevFfRWdqwAoVfgumEyrrWvJPH+ZvDuato//+SC3N+8o162vuvtb\nOf3zyHrLmAvliSlrvtR5rQsSuYy4Xx6MD2MsXOzJS3gwh/MT01BYWyC3NHvsOI9enchPziDur3MA\nZN9OQG5uhku7AABq+Xtg41kXSzdnnbKrYt8t3Ougyi8kYOkUWm9ZScCyqY9sm0eZt6Anr70RWOFy\nKmrixMls27a90sqvjnVT+G8QvwF9ShQXFzN37lxiYmJQKpUMHz6cunXr8sEHH6BSqXBxcWH16tWY\nmZkZ3P7jjz/mxIkTuLq6kp6eDsC6detwdHTk+vXr5OTkMHbsWEpKSoiOjmbBggUsWbKkKnfxsRn7\nTKlWlforTFLDQWqVComB99TKB9vaNmmEwtaahAN/68XVG/AyMbv2o8w1/i2dbh6Gv+tRq1TaW4l1\nqFQo8/IJm70Cz9Fv4jUhiIwLV0g/dxlVcYk2TGFnQ8AH0/W+LTS0bwAoVf8qrqKeVJ8A1A96g3oD\nXuLClPdRFZb9gVJSRrs/ToyVjyf+H8wmbvcfpJ3SfIC6PGc5Hu+8iee4oWRevELGuTDUJSUGyzJW\nbmW1xf3xqTKSz5PIIWzOau1rmRevkRF2HfvWgVh6uJFx4QppwZewe8bPYNlPMg+AorRMTr42Gmsf\nD5qvW0DIyHdJ2H8cU2d7mm9YiKo8vwE1sqA83Oblibu0YAPhH26i+YqpeL/dh8ivjFx9MFZW6XYp\nR4yVjycBH84idvcfpN4bn/e5B/Wibr+XuTRtqdETsJqwXjypuXptySfcWPUl/u/PpP7wftz++qcK\nJFX5/WNQGXOhPDHG5ou1jwd1e/Xg3JgFj84B4/398JwoT1zDIS/wz9LN2n+X5BZwauonBEzoQ5Mp\nA0j55zrJIVc1V4sNlVWJ+y6Ry3B8tiXnxswn/24Cbv174tSxlcE6hIdUx7op/CeIE9CnxE8//YS9\nvT2rV68mJyeH3r17Y2JiwieffIKXlxc7d+4kKioKf3/92z3CwsIICQlh165d5OXl0aNHD533Fy1a\nxKFDh/j888+JiYlh2rRpNf7kE0D50AJn6mRPcWYOqoIHHzYLE1Ow9W9oMKYgMQVTx1o675W+SunS\nrQMJfxzTPyBKpTh3bkPwsNnal0pf+TJ1sqc4K1snj4KEZGz8GhqMKUhMweShPAqSUkEiQZlXwPnx\nC7Xvtflhrfa2Skuv+gSumk3ysWAi131Hl5M7aLttBQByS3NyIu/o7beyQPeDeEFCCrb+3o+MexwP\nt+mT6hOJQo7f/PFYergROuo9CuKTH5lLQUIy1qXb3dHBYN+UFePUtQMNZ7xD5EebSDp076FHEgnK\n/AIuTnzwYabl9k+1fVOtbVFqfNo11f1N7JPKQW5lQd0+L3B7y4OHvEiQoFYqcX2xI0XpmTh1aoPM\n3ExzVbSS2kJmaYF9ywCSjwUDkH39FjmRt7Hydqc4M5vEg39z+7ufAeh6ZicPazi6L84dWwCaOZMd\neVenjiJDcyYxFbsAb4Nxjm0DyY68S2FKOsr8QuIPnsK1S2u9ekvvs02pfTZx0h+fj4px7taBhjNG\nEbFmE0mHHnxZJlHI8Z03EcsGbpx/Zy4FCfrzpSasFw/KrthcrdW6Gbk3b1OUko4qv4Ckw3/j1Klt\nhXKqzP55VL3G5kJ5YozNF9eenZBbmtNy4/ua1x3ttXcrpJwIBcBvbC/qPN8c0IyLrIgYbTnmzrXu\njXXdLzLy4tOwD/AyGmfn445EJiU59NqDjSQSSvIKOPb2g1u2e+z5kNu/n9Qpuyr2vTA5ncyw69pb\neuP2/YnPtBGADFDyNFm8eCGvvfYqAPv2/crChYufeB3VvW4K/w3iFtynRFRUFK1aab6Rs7KywsvL\ni4iICLy8NIt+v379DJ58AkRHRxMQEIBUKsXKyopGjRpVWd6VqahIc2C4/yCaur16kHwiRCcm9exF\nbAMaGoxJPh5C7Vc7I5FJkVtZ4NK9A8nHH2xv19yPtNDLevVaeblTnJWr86HfNqAh5m6aOur06kHK\ncd080oIvGo1JOR5CnVe66OSRcjwY1GqafvQu1r6aPnbq0g51iZKcyNuYu7nyzIZFRH+zi8hPvoV7\n3w6fGTKbM0NmEzxiHrYBDbG4t99uvbuTdDxUb19Sz14qV9zjMNbeD+r8d33S5IPpyC0tCB01r1wn\nnwDpwRex8W+kffhKnV49SH0on7JiHJ9vh/fUt7k0dcmDk08AtZomq9/D6l7fOHZuh7qkRO8puNXR\nFqXHZ+rZi8CTnyMleQW49XkRp85tNHU2aoCNnzeppy/w9yvvEBykeSjR1Q8/Jz82ofLaQqWi8Xtj\nsQ3U/PbW0sMNi/p1ybocgY2vJ01WzEQikyGRGT7URXy5i5OD53Jy8FxOD1+AXam54N6nm8G5kHLm\nktE4125t8R6leciMVCHHtVtbUkOMP4QkLfiC7th7owcpJx5eO4zHOHVui/fUkVyaslTv5MZ/2Qzk\nlub8M/pdgyefUDPWi/sqOledurSn/vABgObk26lLe9L/CatQTpXZP2Upay6UJ8bYfIlY+y2n+0/W\nPjSsMCWN8IWfaE8+Aa58vlf70KC/gpZgH+iFlbsLAJ59uxB39Lxevomnw8qMc2zpS3LwVd2N1Gqe\nXT+dWn4NNPl3b4WqREn0nmPAk1+zytr35GPB2AX6YFZbc/uv8/Nt7tX0dJ18AixcuJjmzVvSvHnL\nSjn5hOpfN2s69VPwv5pAXAF9Snh5eREaGkr37t3Jycnhxo0buLm5ER0dTYMGDfjqq6/w8PCge/fu\nett6e3uzfft2VCoVBQUFREZGVsMePHnqe1cmm3wwHalCTn5MIuFL1mPt60njd8cS/NZMitOzuLL0\nM70Y0Dy4wLyuK623rkaqkBO795D2d5UAFvVcKYhL0qvXop4rBQm6r19dtoGAD2Zo6ohN5MqSdVj7\neuE7dwwhQzV5GIoBiN17AHM3F1p9t0aTx88P8ghf+Am+c8cgkcspSk3n0mzNFYv6Q95AamaCW7+e\nuPXrqZdjUXoW4Us/p+nyaUjkcvJjEwhbtAEAm8ae+L03mjNDZpcZ928Zau+K9oltoA9Oz7Uk93Yc\nLb9apq0rcsM20u6dZBlSnJHJ9Q/W47dsJhKFnILYBK4t/RQrXy985ozj3LDpRmMAPMZoflvrM2ec\ntszMS9eI/GgjVxd9TKPZY5Eq5BSlpBM+d0WNaIvS47M4XfOgjcqYI5dmrcBn+kg83+6PWqni8ryP\n9f7sRmW3BcCl2atoNGUYErkcVXEx4Qs+oTA5jcLkNOye8afN9tUgefR3rUXpWYQt+YLmy6cgVcjJ\ni0nk0qLPAM2caTJvFCcHzy0z7trabfjPHcmzP64EtZrEY6FE/7jfaJ3F6Vlce38D/u/P0I69q/fW\nDp85YwkdNsNoDIDHGM3TVn3mjNWWmRl2jcSDJ3B8rhV5t2N55ov3te9Ffb6N9LMXDO57da0X2rao\n4FyNWv8tjWaOoeXWtajValJPBBO74/eK5VRJ/ROxZtMj662s+fI4CtOzCV24ibarJiBVyMmNSSJ4\nnuaBfLX8GtBi4QgOD1hQZhyAlbsLuXEpeuWfnfs5zywYgVQhpyA5g9NTP6EwXbOGVOW+50REc23l\nRgJXzEQil1GSnfvYbfW/qjrWTeG/QaJW15DHIQllKioqYv78+dy5c4fCwkKCgoLw8vJi+fLlSKVS\nnJycWLFiBSYmJga3/+yzzzh8+DDOzs7Ex8ezYcMG9u7di6OjI4MGDaJDhw6cPHlSewvujh07HplT\ncrLxD5tVxcnJmiNt+1VrDl3P7OTPdpXziPPH0eX0Lg62HlCtOfQI/qna+wM0fXKsw6P/3EFl6nRy\nT41pi+rOo6bkAPBHK/0/EVCVeob8wNH2fao1h+dP7QaoEetFTZin1d0foOmTmjBHdjUbWq05APS9\nsKVGtIWSynt4T3nJGIxEoqjWHNTq4mpfN0Gzdj4NOlq8U90pPNLxPP2/7FDVxBXQp4SJiQkrVuhf\nYfn+++/Ltf24ceMYN26czmsTJ07U/v+TJzW/u3BzcyvXyacgCIIgCIIgCA+oasgtrjWdOAH9D/np\np5/47bff9F6fNm0azZs3r4aMBEEQBEEQBEEQHhAnoP8hAwYMYMCA6r2lShAEQRAEQRAEwRhxAioI\ngiAIgiAIglBB4hbc8hF/hkUQBEEQBEEQBEGoEuIEVBAEQRAEQRAEQagS4hZcQRAEQRAEQRCEClKL\nW3DLRVwBFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCxFNwy0dcARUEQRAE\nQRAEQRCqhDgBFQRBEARBEARBEKqERK1Wi2vFgiAIgiAIgiAIFdDGYkR1p/BIZ/O+qe4UxG9AhX8v\nOTm7ulPAycmaQ236V2sO3c/u4GDrAdWaA0CP4J/4s13fas2hy+ld1d4foOmTP1oNqtYceob8UGPa\norrzqCk5ABzr0Lta8+h0cg/7Ww+s1hxeDP4RoEasFzVhnlZ3f4CmT2rCHAnp/HK15gDQ6q/fa0Rb\nSCSKas0BQK0uRsn2as1BxuBqXzdBs3Y+DVQSVXWn8FQQt+AKgiAIgiAIgiAIVUKcgAqCIAiCIAiC\nIAhVQtyCKwiCIAiCIAiCUEHiz7CUj7gCKgiCIAiCIAiCIFQJcQIqCIIgCIIgCIIgVAlxC64gCIIg\nCIIgCEIFqRFPwS0PcQVUEARBEARBEARBqBLiBFQQBEEQBEEQBEGoEuIWXEEQBEEQBEEQhAoST8Et\nH3EFVBAEQRAEQRAEQagS4gqo8NRz7NAc77FvIjVRkBN5m/D3v0CZm1/+OKkEnylDcWjTFIlMxu3t\nvxKz9xCWHnVpsmTygwKkUqy93bk4ezUW7rVx7d5B+1bH3z5HYW1BXkwiUhMF2ZF3CF9mPI+G4wbp\nx0kl+Ex5C8e2mjyit/9KzJ7DANRq4Y/P5CAkMinFmTlc+3gLORG3Ne81b0zDCYMBeOazJVxZth7L\nBm54jR2MRCEnN+oOV9//DGWebi4O7Z8pM8bU2YGWmz4gOGgGxZnZOtvWfqULTp1ac2nm8irrj9Lq\nvNoZ506tuTBjhfY1r9EDcO3eHmV+oaa7TBSoiooBcOrQnEbjByI1kZMdcYfLy76ixEBOxuKkpgr8\nZ43A1s8TpFIyL0cSvvIbVIXF2Lfww3fKECQyGcWZ2Vz96DuyI+5UelvYNPbCZ+pQZOZmIJUSvfUX\nEvafAKBur264D3gJdYkSAJfuHfAY+kal5OH4bAsCFoynIDFFW07I6AUo8woIXD4da+/6AHTYsw65\npTnFmTlPPIdaLfxpNHEIErkMZWER19dsJutKlM64uE9iokB9b1yUZt+uBR5jBiM1UZAbeZvrH27Q\nmzPGYmSWFvjMHY9F/bogkZD4x1Hubt+rV4cxTh2a02jcQO2aELbsS4NtYyxOaqrAb+YIbP28QCoh\n83IkV1ZpxqdNY08aTxuKzNwUiVTKze/26ZX7qLWgPDH/dr0wuI8VmKtyS3OazB+NZYM6SCQSYn8/\nzs3vftXZ1u3V53Hp3JJz01Ybz6GS+uO+uq8+j8vzrfhn+irta1WxdprVdqLtlhX8M2kZWdduAlD/\nzVeo82pnABqtfp/bH62jMC4B27atcHt7KBKFgvyb0dxatRbVQ+PCaIxUSv1JY7Bu2gSAzLOh3P3i\na9396NmdWs+2I+K9JeXfx0psiwZvva5zXI+Jicba2hpbWwe9eh/H5s1fc/nyZdas+bhC5fwbarWa\n9+buw7uhEyNGtn/0Bo+pOtdN4ekmroAKTz3/eeO4NHcNp/pPIS82iYbj3tSLUdhZG41z69Udi3qu\nnH5zOmeHz8V94EvY+HmReyuWM0GztP+lnb1I/IG/SToaTPR3v2hfB1AWFaEqUXJxzkec7DeV/NhE\nGo03nEfA/LEG4+r16o5FvdqcGjSDM8Pepf69POSW5jRbMY0b67ZxevAsrqzYRNMPpiBRyDF1tqfp\nyulcXak5sCcdPYPv3LE0fm88YXNXcXbgZPJjE/EaN/ihPGzKjHHt2YlnvliKqZPugVduY4XPrHdo\nNG0ESCRV2h+a+i1pPHsUvtOHQ6nq67zyPE7PtuDssLnaPmk4tj8AJnbWNFkwmvOzP+ZE3+nkxybR\naMIgvZzKivMa3guJTMrfb87h70GzkJqa4DXsdeSW5jyzcirXP93OyTdnE778G5p9OBmpQl7pbRG4\nfDpRG3dyJmgW56d+gM/kt7Co54pZbSe8xwwk9J0FnBky814eYyotD7vARkRv/1VnrijzCjTvBTQk\ndMxCTd+ZmxHy9rwnnoNELiNw2RSufPAlZ4bM4tY3ewhYNFFvXNznMcpQvTb4vDeBK++tImTQRPLj\nEvEYG1TumAajBlGYnEpo0BT+eXsWdXq9gI1/I716DNGsCWM4P+djTvSbRl5sEj7j9cdnWXFew3sh\nkcs4OXg2J9+chczUBM+hbwDQfMU0Ir/ayakhcwidshzfKfr7VZ3rRWlPYq42HNOfgqQ0/h44i1ND\n51GvT3fsmjTU7IeNJf5zRtJ45lB0FpBytnN548rqD4WNJX5zRtJ4xjC9NqnM9QI0X8o1WTwRieLB\ntQf7Vk2o81oXgt+eB0D6iVN4zJqK3NYGj1lTiFz4AZeHjqYwPoF67wzXyaWsGIfuXTCr58blkeMJ\nf3sC1k0DqNXpWQBk1lbUnzoe94ljquU4YqwtHj6u5+bmMmCAfr3l5evry5EjB+nfv++/LqMioqKS\nGTF0K/v/CK+U8qtz3azJVBJVjf+vJhAnoFVkwoQJ5Y7t378/MTExFarv0KFDJCYmVqiMp0Xm1Sjy\n7iYAELPnIK4vPqcX49CmqdE4506tif31KGqlipLsXBIOnaL2ix11trdr5otzl7ZcXbHRYA75dxPI\nuHhdW/7d3YdwffFZw3lciTIY5/x8K+J+eyiPns9h4V6bkpw80kIuA5B3O46S3HzsmjTCpUtbUk5d\nIPv6LQDifj5E6unzZF2NJD9GU0fsngO4vqDbJvatmxqNMXGshWPH1lyc9oFe/s5d21OYkk7kuu8M\ntgNUbn+43qv/xqdbdcqz9vUk6VgIJTl52tdcu7QBwLFtIJlXbmrrurP7EHVe7MDDyopLP3+VyG/2\ngloNKjVZ16Mxc3XCwr02xTn5pIZoDvC52r5pWKltITVRcHPTTtJCwgAoTEqjKDMbU2cHJDIpErkc\nmaW59sNdYWpGpfWJXRMf7Fv602bLclp+uRi7Zo0BzdUFmYU5jWePAkBVXELRvStjTzIHdYmS46+M\nIftGNADmdV20V+AMjQunzu306q3VuhnZVyPJj4kHIG7vflx6PFfumKi1XxO1/lsATBxqIVEoKMnN\nozwc2wTqrQm1DawdZcWlnb9GVOnxeSMa89qOSE0URG7aTeq9taMwKY3iDN2rk2WtBeWJqeh6obOP\nT2CuXl2zhWufbAPA1NEOqYlc2/+u3dpRmJLB9U+2G8+hEvtDJ4dP9XOo7GOZ78yRxP1+jOKMLO1r\nhakZXFuxUXt1Me96BCYuzti0eobc6xEUxsYBkPTL79h3fV4nl7JiJDIpUnMzpAoFEoUCiUKOqqgI\nAPvnn6M4NU3vimh1t8XD/vjjAPv3HzD6/qOMHz+WzZu3sGPHrn9dRkX8sD2UXr2b8WJP/0opvzrX\nTeHpJ05Aq8j69eurtL7vvvuOnJycKq2zuhQmpj74/0mpKKwsNB++SzFzcTAaZ+biQGGS7numzvY6\n2zeaGETkFz/q3QJk6eEGQGZYBAVJ5cvDWJyZiwMFpXIsSErDzNmB3DvxyCzMcGgTCGhuvbTydMPU\n0Q5L99oo8wtpskxzq7D/0mmY1LLR3Z/kVORWlsgsHuSit8+lYopS0rk8dxV50fpfgsTtPUj0NztR\nFhbpvactqxL7I2bvIW5+vUuv/qzwCJyea4HC1lp70mXmaKet6+F2VVhZIDfUN0biUs6GkXdH8yHH\nzNWRBoN6knDkDHl34pFbmOHYRnObma2fJ9aebpg61qrUtlAVFRP361/a1+u+0RWZuRmZl2+QH5PI\n7W376LBjLR3/70sAMs5fqbQ+KcrM5u6uA5wdOofIz76n6coZmDrbY2JvS1pIGFeWfwVAcU4u/vPG\nVUoOaqUSE3tbnvv1CxpNHEL0Vs1tpjrj4h4Th1o8zNTZgcKkB7cQG5ozj4xRqvBdMJlWW9eSef4y\neXfi9Oox5OE1oaCca0fpuNSzl8i7o/mAZ+bqSP2BPUk4chZVUTGx+x6ME7c3uiKzMNMrtzrXC719\nrOBph/EqAAAgAElEQVRcBVArVQQuGc+zP64k7dxVcm5r+uLunsNEbtpdZj6V2R/3c4jatBtVgX4O\nlbl21n2tCxK5jNhfjuiUl3vzLunnr2r/7TZqGOnH/sbEyYmipGTt60XJKcitLJGWGhdlxaTsP4wy\nO4emO7+j2e6tFMTGk3k6GIDkX/8g7rsfUFXTccRYW9x3/7i+YMEio/mVx8SJk9m2zfiXHZVt3oKe\nvPZGYKWVX53rpvD0Eyegj2nPnj2MGzeOoUOH8tprr3HgwAGCg4MZNGgQQ4YMYe7cuRQXF7Nnzx4G\nDx7MoEGDOH36NB06aL6dvXLlijZ25MiRxMVpJtvHH39M7969GTduHOnp6WXm8MorrzBhwgSmTp1K\ndnY2kyZNIigoiKCgIK5fv87Ro0e5evUqs2fP5tatW/Tv31+77f2rq+vWrWPEiBEMHDiQqKgoBgwY\nwOTJk+nduzcLFy6svAasImrlQ7cYSAwPdbVSBVIDtwCpHmxv26QRCjtrEg78rRfmPvAlTXhJieFE\nHspDYqiu+3EG3lOrVChz87kwYzUew96g3faV1Hm5I2mhl1EVlyCRy3Du1JKoL38CID00DNeHrt6W\nLktLaqQ9VJVza8aT7A9D4v84QeKfZ2ixYQGtNi7VbFJ8r0+M3OKln9Oj42x8PWi7cSG3dxwg+e/z\nlOTmc276ajyHv0GH7cup81JHUkPCH9Rdrnor1hYN3nodr1H9uTBjheY3qW0Cce7chuOvjeX4S6MB\nqNUioNLyuDRnDcnHQgDIuHidzEs3cGgdSFZ4JBdnr6YoNQOA7KtROHZojkQue+I5ABSlZXLi1TEE\nvz0P//ljsahXW2dcaDcxMFcl5ZgP5Ym5tuQTTr48DLmNFfWH9zMYX9669deOR8fZ+HrQ5qtF3Nl5\nkOS//9EJ83jrNbzf6cs/01fqbl+etaCq1osnOFcvLdjAke7voLCxxPvtPuVPoYr6o7yexByx9vHA\nrXd3ri43fAcPaG5nBVDmFxCzaYvxY5XOnDAeU2fomxRnZHKh92Au9h+K3Noal369jNZfHlXVFveP\n61lZxq+OCtW7btZkqqfgfzWBeAjRv5Cfn8/mzZtJS0ujX79+SKVSduzYgYODA2vXrmXv3r3I5XJs\nbGz4/PPPdbadN28e77//Po0bN+bw4cMsX76cUaNGERISwq5du8jLy6NHjx5l1p+Xl8e4cePw8/Nj\n1apVtG3bljfffJPo6Gjmzp3LDz/8QOPGjVm0aBEKhcJoOZ6ensybN4+YmBiio6P5+uuvMTc3p1u3\nbiQnJ+Pk5PRE2utJs7AwwdT0wdA1uXelC8DUyZ7izBxUBYU62xQkpmAb4G0wriAhBRMH3TIKktK0\n/3bt3p74/zuuuZ2qFK/R/bUPbqj7ehdyIu/ola98OI+EFGz99fNQFhRSkJCK6UP7UpiUChIJJfkF\nhI598KCG9j99RF5MIoXJ6WRcuqG9BSnu1yM0mjYCUyd73TqysnXapCAhGRu/hmXGlJfHqAE4PttS\n++/K7g9D5DaWJBz4m+gtPwPQ/ewOJDIZHbZ/iNzSnOzIuzrlFRnqm8RU7B7KqXRc7e7t8Js9giur\nNhN/4JQmSCJBmV9A8BjNSW/D0X1xaN0Zi3quld4WEoWcgAXjsfSoS/Db8yiI11yJcHquJSW5+bT4\ndJ7OdpWRh9zKArc+LxC9pdSDIySgKlHiN38c9s0bax8gY2JvByo1apUKM2eHJ5eDpTm1WgZoT4Kz\nr98iO+I2Vt7uFGVmacdF97M7ALS3gunUm5CMden54OhgcM4Yi6nVuhm5N29TlJKOKr+ApMN/49Sp\nrV4993m/0w/nji0Ayj0+8w2sHaXjXLu3w2/WSK6u3kz8gZPaOIlCTuCCsVh6unF25ALy45N1yi3P\nWvAk14uHNRzd97Hboqy56tg2kOzIuxSmpKPMLyT+4Clcu7QuM4eq7I/SLN1r037bgwczVdZ6Uful\njsgszWm9aZn29YAlk4hYt5XkE+ew8nan2SrN7x4jFywDlYqixGQsG/s8yM3JgZKH+rysmFrPtePO\np1+iLilBWVJCyoEj2HfqQOJOww+ZqTN8CLXat6n2tkAqwblzG/6NxYsX8tprrwKwb9+vLFy4+F+V\n87So6nVT+G8RV0D/hVatWiGVSnF0dMTc3JyEhASmTJlCUFAQJ0+eJDY2FgAPDw+9bZOSkmjcuLG2\nnIiICKKjowkICEAqlWJlZUWjRo/+Efb9sm/cuMHu3bsJCgpi/vz5ZGZmlrmdutRJVOn83N3dsbKy\nQiaT4eTkRGFhxT9YVJa8vCLS0/NIT9f8VsA2oKH2A79b7+4knQjR2yb17EWjccnHQ6n7ahckMily\nKwtcurcn+Viwdttazf1ICw3TKzPxz7MUxGk+zAWPmKdf/vFQA3lcMhqXdDyUuq921ubh2r09SUdD\nQK3mmY/nYNPYEwCXrm1Rl5SQE3GbpKPB2AU2wryO5ssC5+fbkBsdg42fN+Zumjrq9OpBynHdNkkL\n1rRHWTHldWvjT4QMnUnIUM0Dbyq7PwyxaexF0xUzkMhkSGSaZS3iyx2cHDyX08MXYFeqLvc+3Qz2\nTcqZS0bjXLu0pvGMoYRM/PDBySeAWk3LtbO1fZMdeZfcOwmc6De90tui6QfTkFmaE/z2fO3JJ2hO\nwOTmpoS8M1/7MA3UqkrJoyQvn3p9X9B+YLNu1ABbP29ST18g8fApkEoJHa/5EFareWNSzlwAlfqJ\n5qBWqfCfNxbbQM0HYUsPNywb1CUzPEJnXNyXdPCEXr3pwRex8W+EuVttQDMfUh/Kr6wYpy7tqT98\nAKA54XPq0p70f/TXjPvuPxTo1JA5nBkxH7sA7wfjrrfh8Zl69pLROJcubWg8fRihkz7QO9lp/uEU\nZJbmBk8+oXxrwZNcLx4W8eUuTg6e++Tmare2eI/qDYBUIce1W1vtb7SNqcr+KC33Try2Xqi89eLG\nx1s41W+K9gE7hclpXF7wKcknzmHu5kKLzxZy85vdmgruXZnKDP0Hq8Y+mNatA4Dzqy+RfvKMTi5l\nxeRFRGH/vOY3sRKZjFrt25Bz5ZrRtojbvI3wURMJHzWx2toCwMrLnZKsXKN5lmXhwsU0b96S5s1b\n/udPPqHq103hv0VcAf0XwsM1B7OUlBQKCwtxd3fns88+w9ramiNHjmBhYUF8fDxSA7ceODs7c+3a\nNXx9fQkJCaFBgwZ4e3uzfft2VCoVBQUFREZGPjKH+2V7enry2muv8eqrr5KamsrOnTsBkEgkqNVq\nTE1NSU1NRalUkpubq/Nwo9L5ScrxhMKa6srSzwn8cBoSuZz82EQuL9b83tbG1xO/98ZwJmgWxelZ\nRuNi9hzE3M2FtttWIVXIidl7WOc3MRb1XA1+cLOoV5v8+CQs6rlSlJ5F+NLPabr8fvkJhC3aoMmj\nsSd+743mzJDZZcbF7D6IRV0X2m1fiUSum0fY/E/xe/cdpAo5hSkZXJip+fMB2RG3ubria5qunAFA\nnTe6EzZnFeZ1nAn4YAZShWZfryxZh7WvF75zxxAydCbF6VlcXbZBL+Zp6A9D0s5eIqW5H223r9Le\n8nPr+/8DoCg9i7AlX9B8+RSkCjl5MYlcWvSZtm+azBvFycFzy4xrNH4gEomEJvNGaetMv3iDKys3\nc3H+epq8NwqJQk5hSjr/zFxT6W1hG+iDU8eW5N6Oo/W9W44BItZvJ+7XvzCv7USbLSu0f4Ym/P0v\nK61PLs5cic+MEXiN6odaqeLSvLUUZ2aTevoCd3f8QauvNPll3YjWjO8fP3ryOcxahc/UoUjlclRF\nxYTN/4TCpDQKk9K04+K+mJ90/yQHQHFGJtc/WI/fsplIFHIKYhO4tvRTrHy98JkzjnPDphuNAYha\n/y2NZo6h5da1qNVqUk8EE7vj9zLH7H1F6VmELf2CZsunIpXLyYtN1Fk7At57h1ND5pQZ12icZnwG\nvPdOqfF5nfgDJ3G+N07abDL8gdjYWlBV64VeW1Rwrl5buw3/uSN59seVoFaTeCyU6B/3P14OldQf\nV1dtLrPu6lg7GwS9gczUFPf+PQHw37gOVXExV8dN49bKtXgvnotE/v/s3XdUFFf7wPHv0pEuRVTA\nAjZUVBTLa9RYozH22ILGnhg7lmAFReyxxBZjErsRNZYYexdbYhfsioKK0kF63f39sS8rSBF/iTOb\n1/s5h3Nk9zL3cWZ2Z+7ce5+rT8aLlzyet5hSVV2oNGkst4eNJjvhVaFlAJ6u+okKY4ZTa+MaUCpJ\nvHaTiG0lT8Yjx76A/Nd1oXhyfm8K/34KleqNcYVCsXbv3s327dsxMjIiKSmJcePGoaOjw6pVq1Cp\nVJiYmLBw4ULOnDnD48ePmThR3TBo2rQp58+f586dO8yZMweVSoWuri5z587F0dGR1atXc/z4cezs\n7Hj58iWrVq3CwcGh0BhatWrFoUOHMDQ0JD4+nmnTppGUlERycjKjRo2idevWLF26lLNnz7Ju3TqW\nLFlCcHAwjo6OREVF8d1337Fnzx5sbGzo27cvz58/Z/z48ezYoR6i1qtXL5YsWVJk/bmio5OKfV8K\ntrZmHGvU6+0F36O2f+3gaMPessYA0O7Sdk42kSfde65WF3+T/XiA+pgc8ii4dIKUOlzepjX7Qu44\ntCUGgDNNu8saR4vzuzncsI+sMbS/FACgFd8X2vA5lft4gPqYaMNn5HLLjrLGAOBx6oBW7AuFougp\nTFJRqbLIQb5ERgC6eMr+vQnq785/A1dT+a/7b3MneYfcIYge0P8PDw8PTcMy10cf5U/T3r17/g/r\n+fPqYTiurq5s3Vrwy2TEiBGMGDGiRPWfPHlS828rKytWr15doIyXlxdeXl4A+PkVXOR59OjRmn87\nODhoGp9Avn8LgiAIgiAIgiD8U0QDVEsFBQWxaNGiAq936NCBL774/y+MLAiCIAiCIAiCIBfRAH1H\nb/Zsvi9ubm5s3rxZkroEQRAEQRAEQfh7VFqyzIm2E1lwBUEQBEEQBEEQBEmIBqggCIIgCIIgCIIg\nCTEEVxAEQRAEQRAE4W9SKsQQ3JIQPaCCIAiCIAiCIAiCJEQDVBAEQRAEQRAEQZCEGIIrCIIgCIIg\nCILwNylFFtwSET2ggiAIgiAIgiAIgiREA1QQBEEQBEEQBEGQhBiCKwiCIAiCIAiC8DepyJE7hH8F\nhUqlUskdhCAIgiAIgiAIwr+Zi1knuUN4q0dJf8gdgugBFf7/oqOT5A4BW1sz1lT/WtYYht/7kd31\nvpQ1BoDu1zfxrcNYWWNY+Px7nvXxkDUGAMeAyxxo8IWsMXS88qvWnBfb6wyUNYbeNzewyHmkrDFM\nClkFQA5bZY1DF0921Bkgawy9bm4E4Le68sbx+Y2NHGvUS9YY2v61gw01h8oaA8DA2z9rxfHIOl9T\n1hgA9Jve1op9ccijr6wxAHS4vI0zTbvLGkOL87tl/94E9Xen8L9DzAEVBEEQBEEQBEEQJCF6QAVB\nEARBEARBEP4msQxLyYgeUEEQBEEQBEEQBEESogEqCIIgCIIgCIIgSEIMwRUEQRAEQRAEQfibxBDc\nkhE9oIIgCIIgCIIgCIIkRANUEARBEARBEARBkIQYgisIgiAIgiAIgvA3qciRO4R/BdEDKgiCIAiC\nIAiCIEhCNEAFQRAEQRAEQRAESYghuIIgCIIgCIIgCH+TyIJbMqIBKvxPc2pRi0bju6FroEfs/XBO\nT9tEVkp6keVbzhtA3MMX3Fx3DABDi1I08/XEpoYDWamZ3N9zgVtbTr21XvuP6lBzdE90DPR59fAZ\n12b9THYh9RZVrtGiUZg4ltGUMylnS8y1e9xavgOPud9oXlfo6GBRxZE/Jyx/a0zVW7nSYUon9Ax0\neXn3BTsnbiMjOaNAuf8MbEbj/k1BBbFhMfz2bQApsckA+NycQ2JEgqbsmTUnub7n6lvrBjCq1xSL\nPiNR6BuQ9fQhcT/6o0pLyVem1EcdMOvUD1SgykwnfsN3ZD2+m6+M9fiF5MRHk7B+UYnqBbBrWpdq\no/qgY6BH0sNnBM1eS3ZKWonL6ZkY4+bzFaYVy4FCwfMDZ3m88Q9MK5Wnrv9Izd8rdHUwd3Hi6qSl\nhcbxvs6Li+OWYdOgBrW9+qDQ00WZnsnNhVuIv/24wLbLNquD25jP0THQ49WD51ya+UuhMRRVzsDc\nhPrTv8SymhM5aRk8+f0cD7cdx7xyORrPG55nXyiwrOLIufErij84QOWPa9J8Uhd0DfSIvhfO4Slb\nyUwuGJNrFw88hrUBFWSlZ3LCbyeRwU8BGHlpPsmRrzRlL/10nLv7Lr+17nehUqmYNmUfLlVsGTzk\nP//Ydss2q0PtMT3/u6+fcbmYY1JYOYWOgnpTvsS2fjUAIs4FcXNJAAAG5ibUm9wPc+fy6Brqc/fn\nPwqNwb5ZHWqN7omugR6vHj7jShExFFlOR0G9yfljCFqqjqFs87p4zB5GakSsZjunB80FwKZpPVy+\n+QIdA32SH4Vxe84acgr5bBZZTkdBtXEDsG5UB4WuLmFb/+D5HvX3t1X9mlQd3Q+Fni45GZncX7ye\nxDshALjNn4CZSwUAOu/y4eWl+1xesL1AvQ7Na+M+rge6BnrEP3jO+Rkbir2GfDRnEPEPw7m94WiB\n91ouG0FqdAJ/zfm1yL8v0b4uabl3PCZvc+amkmW7lGRlQVVHBX6DdDA1Vmje//28kk1HX998J6dB\nZDwc/04XU2Pw36Lk9hMVShXUrqxgej8djAwUhVWl9fvCtmk9qo7MvVY85ZZ/4deUosrpmRhTe8bX\nmFQsh0KhIPxAII83Ff7ZLErpJvWpNNwTHQN9Uh6FcX/eKnJS00pURtekFNWmjKRUhfKgUBB56DTP\ntu55p/rfxfv67hT+vcQQXOF/lpGVKS3nDuDomB8J6OBL4rMYGk/oVmhZy8r2dNrgReX2DfK9/p8p\nvchKTWd7x5ns6TMfp2Y1cfq4drH1GliZ4T5rGH9OWsGxbt6kPI+i1pje71Tur0krOdlnBif7zOC6\n3zqyklO5MW8TSY9faF4/2WcGUX/e4tmhi7w4eaXYmExKm9BryRds/modi1rMJfZpLB2mdC5Qrnxt\nB5p/3ZLVXZexpM18Yp5E88mkTwGwrWxH2qtUln2ySPNT0sanjpklpYf7ELvUm4jxn5MdFY5l31H5\nyuiVrYCl5xii540hcrInibt/wWb8wnxlzDr1x7B63RLVmcvA0gw336+5+u0yzvSYSGp4JNVH9Xmn\nclW/6Ul6ZByBvb05/+UMKvRog2XtKiQ/Ceec51TNT8yfwYQfPk/EqYINn/d5Xij0dGm4YCTX/NZx\nsvd07v28jwb+XxfYtqGVGQ39hnB+wkoOdZlCcngUdcb2fKdydSf1JTs1g8PdpnK832zsm9ambPM6\nJD5+wdHePpqfyIu3CTt4kfATxZ8jxqVNab+wP3tH/sQvbf1IeBZD80ldCpSzqmRHi8nd+G3QKjZ2\nmsfFVYfpunqY5r30xFQ2dpqn+fmnG58hIdEMHrCZw4du/6PbNbQyw8NvKBcmrOBwl8mkhEfjNrbX\nO5Wr8FlTzCrac/TzaRztNQPb+tVwaOsBgMfsYaRFxXOstw9nvlpIPe9+BbZtYGVGg1lD+XPiCo50\nnUzK82hqFxJDceU0MfScxrHeM7BpUI3y/43Buk4VHmw6xPHePpqf7FR146Hm9BEETVnMhV7jSA2P\nosqILwrUq29pVmQ5h25tKeVoz8UvJvDXoCk49fkUc1dnFHq6uPmP487cH/mz37c8WbebWjNHa7Zp\nWasKV4b7ArCvh1+hjU9DK1Oa+g/i1LjV7PlsOknPo6k/vkehx9Giclk+WTeBip80KPT9WoPbU6Z+\nlULfK4wcx6Q4cYkqZqxTsmykLvvn6eFgC0t/y9/T06WpDrtm6bFrlh4BM3SxsYCpnjrYWChYu19J\nTg7smqXLbj9dMjLh5wMl6ynStn1hYGlGbZ+vue69lLOfTyAtPIqqo/q+U7kqw3uRHhXHuT7fcmHA\ndBx7tMWydsnPD31Lc6pNG8WdaYu43Hc0aS8iqfRN/xKXqTisLxnRsVzpP45rQ7+lXLdPMK9ZtcT1\nv4v39d0p/LuJBqjwP8uxqStRwWG8CosC4E7AGVw6NSq0bC3Pj7m3+wKPD+dvyNm6OvFw31+olCqU\nWTmEnbmF8yfuxdZbpnEtEm4/JuVpJABPdp7EsUOT/1c5hZ4u9Wd/RdCiraRFxuV7z7peVcq38eD6\nnPXFxgNQtUV1nt18SsyTaAD+3HSeet3qFygXHvychc38SU9KR89QDwt7C1LjUwGo0KASyhwlX+8Y\nhdcxb9qM+wSFTsmeXhu5NSYz5A7ZEc8ASD62i1Iftc9XRpWdSdxaf5QJ6qfQmY/vomtpDbrqgRqG\nrvUxqtOE5OO7S1RnLpvGbry685jUZxEAhP12nHIdmr5TuTvfbeLu91vVcdhYomOgR3Zyar6/t6pb\nDfvWDbk1b12hcbzP80KVncOhT8by6n4YACYOtmS+Si6wbfsmtYi79YTk/2770Y5TOH1aMIbiypV2\nrUjo/gvqz0R2Di/PBuHYxiP/vqxXFYc2Dbjiv7HQfZFXxY9qEBEURkKo+ty8sfUsrl08CpTLyczm\nyJStpEQnAhAZHIaJjTk6+rqUd6+MKkdF761jGXhgKk1GdSjxuVlS27ZeoVv3urTvUPMf3W6ZJrWI\nu/U4z74+WegxKa6cQlcHPWNDdAz00dXXQ0dfj5zMLAzMTSjTuCa31+wFIC0qnuP9ZhW67fjbr7cd\nsvMkToWdm8WUU+ioY9A10EdHXw8dPT2UGVkAWNdxwdbDlda/zuLjdVOxca+m2earuyGaz9zz3Uex\nb9+sQL3WjeoUWc6uRUPC/ziNKkdJdlIKEccuULZ9c1TZOQR+NpykB6EAGJcvQ9arJACMytqiW8qY\nGt7qBxhN/QdhYGFSoN7y/6lJzK1Qkp6qryH3A05TuWPh15DqfVvycM95Qo8UfBho37Aa5T+qyf0d\npwv928LIeUwKc+G2ipqVFFQoo/5c9W6pw4E/VahUqkLLrzukorSZgl4fq28z61dV8HUnHXR0FOjq\nKKhRQcGLEnY4atu+ePNa8XTXMcq1f/s1JW+5u4s3cu/7LUDR15TiWDWsS9LdR6Q9fwnAiz2HKdOu\nWYnLhCz7hZCVGwAwsLZCoa9PdkrJ638X7+u7U1upUGr9jzYQQ3D/x+3evZvjx4+TkpJCfHw8I0eO\nxMDAgJUrV6JSqahZsyazZs3i6NGjbN26lezsbBQKBStXrqR06dJyh/+3mJS1IjnidaMtOSIeQzNj\n9E2MCgyhOjdbPRTHoUn1fK9HBj2hSudGRFx7hI6BPpXb1UOZXXyKbWN7a1LzNBbTouLQNyuFnolR\nviFDJSlXsVsL0qMTeHGqYC9Sba++3F75W6HDkN5kUc6KVy9eD5199TIBY3NjDE0NCwzDVWYrqflJ\nbT5f1IfszGyOLj4EgI6eDg/P3ueA/+/oGxkweONXpCelc+6XM2+tX9e6DDmxkZrfc2Kj0CllisLY\nRDMMNyf6JTnRLzVlLPt7kXY1EHKy0bGywXLABKLnjca0Tfe31peXcZnSpEW+vtNJj4pD37QUeibG\n+YZMva2cKkdJXb8R2LduSMTpKySHvchXT41xnjxYvaPQYVjw/s8LVXYOhqXNabXNDwNLMy55ryok\nhtL5tx0Zh0GhMRRdLjb4MRU/+w8xNx6iq6+HQ5v6BT4TdSf0JnjlrhKdm2ZlLUl6Ga/5PSkiAUMz\nYwxMjfINw00MjyMx/HVMLaf24NGJYJRZOejo6RB6/h5n5u9Bz1CfHr98Q2ZyOlc3vH24fElN9+kA\nwJ9/PvnHtglQyr50vodLRR2T4sqF/n4Wh7YedDq2DIWuDpEXb/HyzA1K16pMekwCVfu3p2xTN3QM\n9Li/6VDBGMqUJjUi/7YLOzeLKxe6Tx1Dx6N5Ygi8AUDmq2TC9l/gxamrWNetwn+WjeN4r+kAZOT5\nzGVExaJvWgpdE+N8w3CNylgXWc6ojDUZUfnfM3VxAkCVk4NBaQsabVyAgaUZQdOWAWBQ2oK4y8Hc\nXfgzLZo3IDs1nY9mD+TkmPyfGZOy+f+/KZHxGJiVKvQakjustlzjGvleN7a1oOHkvhz7ainVerUo\nsO+LIscxKU5EHNjnuSUoY6UeYpuSDqbG+cvGJ6nYeETJDl9dzWtNa73u73gRo2LzUSW+A0rWB6Jt\n+8KojDXpJbimvK2cKkeJm99I7Fs1JLKQa0pxDO2syYiK0fyeER2LnqkJuqWMNcNw31omR0l1n7HY\nftyEmMC/SH1a8vrfxfv67hT+3UQP6AcgLS2N9evXs27dOvz9/fH19WXt2rXs3r0bJycnIiIiCA0N\nZe3atWzbtg0XFxfOnTsnd9h/m0Kn8NNbpSz505+LC34DFXy+ezrtVwzn+YW75GQV3wBVKArveVHl\nKN+5nItne+799HuBMqXruGBgacqzQxff9l8oti5lTuFPr28fCWaW2zSOLTnMkC3DUSgUXPr1Ivt8\ndpOTmUN6YhqBP52mVge3EtVPUb1RyoL7UmFohPW4eejZOxD3oz/o6mI9Zg4Jm5ZoekffSVHnwRvH\noyTlbvis5librzEwN6XK0NcNYSu3KhhYmhF++EKRYUhxXmTEJXLok3GcGeBH/VnDMHWyL9m2lSWM\nQankxuIAUKn4ZPssmi4dTeTF2yjzfCas67hgaGlG2ME/C93Gm4r8nL55fP5L39iAziuGYFnBliNT\n1L3SQdsvcNJvJzmZ2WQkpXHll5NUaVenRPXL7Z84Jq7Du5IRn8S+lqPZ384LAwtTqn7ZHoWeLqYO\ndmSnpHFyoD9/eq+m7sSCQ1yL6i0ucG4WU871a3UMf7QazYFP1DFU6a8e5XBxwgrNw5LYGw+JvfkQ\nuya1Ct1WYfWiKOYcKSymPPsuM+4VZzsN59LQ6dSc8Q2lHMuSePsRN72/IzNW/VDuxqp9ODSvjZ0B\nLjwAACAASURBVI6+bv7tlPDYFEWhp0uL777m0oIA0mJevf0P8v6tDMekOMrCLxWFfm3uPKOiZT0F\nDrYFY7sdquLL+Tn0ba3Dx3VLdguqbfuiyPOiwHn79nJBPqs40fYr9M1NcBla+PDuQkMowf1NScrc\n8/ue8x0HomduSoVBBadjCML7InpAPwAeHh7o6OhgY2ODiYkJmZmZWFtbAzBsmHoIkrW1Nd7e3piY\nmPD48WPq1n23eXbaosHoTlRspb7xNDA1IvZBuOY9kzKWpCekkJ2WWeLtGZga8ed3u8h4pR6aUnfo\nJyT+d0hvXjW+6U7ZFvUA0Dcx5tWj55r3jOysyHyVTE56/npTI2Kxqu1cZDmLahXQ0dUh5uq9AvU5\ntGvE0/3noYjhTwDtJnbAta36Js/Q1IiIe697F83tLUhNSCHrjX1hXdEGM1tzQi+rk9dcDviT7vN6\nYWxhTPXWrry484KIu+qnpAoFb22M58qJicTQ5fUNp25pW3KSX6HKyN+LoGtdBptvl5AdHkq03zeo\nsjIwqFIbPbvyWPb3UpextAYdHRT6BsSvnVNknR9tVSc50TcpRWLIU83rRral/7uf8/f8pkfEYFnL\nudByNo3dSHr0lIyYBHLSMnhx5AL2rRpqypZt24TwA2cLHA+pzgs9U2PsPFw1N1EJ98J49eAp5lUc\nAGi33U8dg6kRrx6+jsHYzoqMV8nkpBWMwbp25ULLGdqbcnPpDjIT1T3X1Qd9qhnyBuD0SUNC/yj+\n3Gw6riMurdUPLwxMjYi+//rJu1kZS9IKOTcBzMpa0f2n4cSGRLDd83uy/zuEzrVrQ6LvPn+9HYXi\nrSMV5FRzRDfK5Z4XpsYlOiYpEXGUznNe5C3n0LoB1+ZvRpmdgzI5jdB953Bo60H4CfVw0Ce/nwUg\n+VkUMdcf4NhOfe62+e95oWdiTOIbMRR6br6Mo3Qt50LLlW/dgBvzN6PKziE7OY2wP87h0MaD0L2B\nOPdqxb1f9gPg+k03bOtXx6KKIwAGNpaa7RnalibrVTLKNz+bkTFY1HIptFx6RAwG1vm3kR4Vh56J\nMVYNahF9Rj0XOOn+E5IehmHq4oSBtQX6ZiZEn/3vCAKFApVKpR7lMKoLTi3V1xB9E2Pi8+yXUnaW\nZLwq+TXEpmYFzMrb0PBb9TxEYxsLFDo66Broc8G34PB012+6Ue5j9Xkh5TFR74Lih6yXtYbgPDnN\nouLB3ARKGRb8u8OXlEzx1C3w+sG/lPhvUTLNU4eOjYtvfGrbvqjy9efYNa+viSfp0TPNe4ZFXVMi\nY7F847zNf015RkZMPDlpGbw8mv+a8jbpEdGYub6eM2poY01WYlK+z05xZawa1iXlcRiZMfEo09KJ\nOn4O2xaNS1y/IPxdogf0A3D7tnrid0xMDFlZ6hu2hAT1k19/f38uXbrE8uXLWbp0Kf7+/hgaGhY5\nr0PbXVnxB7918+e3bv7s7r2AMnUqY1HBDgDXPs0JPXnznbbn2qcFHmPUyXqMrc2o0fMjHu6/VKDc\n3R92a5LDnP5yFqVrO2PipM5WWvnzVrw8fa3A30RdDC62nE396kRfvlNoXDb1qxN9qfD3ch397pAm\nWdDKzktxcq+ITSVbABr3b8rtI7cK/I2ZnTlfrB5AKSv1fKh63RoQcf8lqQmplKlWlnYT1HPr9Iz0\n+c/AZtz843qxMeRKD/oTA5da6NmrbzpN2/Qg/UpgvjI6JubY+f5I2qVTxC6fhipLfSHNfBjMy5Gf\nETnZk8jJniQf30XqxWPFNj4BTWKg84N8sKpVhVKO6t5Apx6tiTxTcEhz9J/BRZYr17YRVb5SP53W\n0dejbNvGxF55nVChtHt1Yi4VTLAg1XmhylHiPnMopeuobzbMKpfHrGJZ4oPVGT9zEwMd7z8bazdn\nTP+7beeeLXlxuuAxjLh4q8hyzj1bUmukOpmXYWlzKndvwdNDr3s7betXJ/It5+b5ZQc0yYK2fr6I\ncvUqYllRfW7W+eIjHh0PKvA3Rhal6LNtHA+P3GT/2PWaxieATdWyNPX6TH1uGupTr39z7h0oWYIs\nOdxevYdjvX041tuHE/393tjXrQo9JpEXg4ssF383DMd26rmJCj1dyn1cj9igEFLCY4i7E0rFzh8B\n6uNlXff1DWluwpVT/f0onWfblT8vOoaiyiXcDcMhbwwt1DFkpaTh3LsN5Vurk/O8OHmVnMwsTnyh\nTgBkkecz59C9LVFnCyaPiv3rZpHlogOvUL5TK/U8WNNSlGn7H6LPXEKlVFJz+jdYuKnn85lUcsCk\nYnle3X6IrrER1SYMRs9c/T1Xa/AnhB69ikqp4sbK39nXw499Pfw48MVcbN2cMXNSX0Oq9f6Ypydv\nFHNk84u++Zidbb7VbO/+9jM8OXy50MYnwJ0f9shyTCyrOWFVq3KBbef1n5oKbj5WERapvjfYflpJ\nq7oFG2qvUlQ8i4K6zvlfP3pFyfxflawdr/vWxqc27ouHP/7Gec8pnPecwsVBPljmu1a0ISqw4Nzf\nmD+Diixn36YxLsPUo2h09PWwb9OY2MslT9ITf+km5jWrYuxQFoBy3doR+8Znp7gytq3+Q4VB6uR2\nCn09bFv9h/hrwSWuXyiakhyt/9EGogf0AxATE8OAAQNISkrC19cXlUrF119/jY6ODq6urnh4eODu\n7k7v3r3R09PD3NycqKiCvXz/NulxSZyeupG233+Frr4eic+iOemtTthjW6sCLWb357du/sVu4/ra\nQ7RaMJhe+3xAoeDKyv1E3wor9m8y4pO4OvMnGi0ajY6eHinPo7gy40cALF0r4e4zmJN9ZhRbDsDU\nqQwpL2IKrcPUyZ7UF9El3hcpscnsnPAr/X4chK6+LnFhsQSMUydAcHBz5PNFfVj2ySJCLz3m5PKj\nDN85GmVODomRiWwc8jMAx5ccpqv/54w/PhldfV2C9t/g0q8lGwKsTIwnbo0f1l7zUejpkx35nLhV\nM9GvXIPSX00ncrInJm17oGtjj7FHS4w9Wmr+Ntp/BMrkdxu+lldmfCI3/X6k/oKx6OjrkfI8kpu+\nPwBgUaMStacP45zn1GLL3Vm6ldpTh9B8+wJUKhWRp6/yZNthTR0mTvakvSz+eLzP8yInLYM/xy+j\nziRP9TIsmdlcnvoDaVHx+WOIS+KSzy80/W4kOvp6JD+P4q9pPwFg5VoRD9/BHO3tU2y5u78coNGc\nr2i/yx8UCm6v2Uvc7ddze8wqlCElvPDztjCpsckc8t5Cl5VD0dXXI+FpNAcnbgKgTG0n2s/1ZGOn\nedT1bIZ5udJUaVcn3/Da7f2Xc2H5QdrM7M3Ag9PQ1dfl/sHrBG0veji0NlHv65/5z3ejNPv60rS1\ngPqYNPAdzDHNMSm83I1FW6k3uT/t985DpVQR9ddt7q0/AMAFr+9xn/olzj1boVAouPPjXhrMGJQ/\nhvgkrvj+TONFo/577kdxafrrGOr7DuZ4b59iy938bit1J/en3Z7XMdzfcACUKi6MW0Zd7/64ftMN\nVU4Of327iswEdZKsO7N/wG3eeBR6eqSFR3Jr1koAzKtXxnXacP7s/y1Z8YlFlnu++yjGDmVovGUR\nOvp6PN9znPjr6qWbbn67iGpeA9QJZzKzCJ7xPRlRcWRExfFsxyE81s4GwMzRlgu+mwocm/S4JM5N\nX0/LZd+go6dH0rMozk5VJxmzrlmBpn4D2NfD7x86E/KT45i0+HlKkfFYmyvwH6yD16ocsnLA0VbB\nvKE63HqiwndDDrtmqW8nn0aBjSXo6+VvnC77TYlKBb4bXt/81nNRML1/wZ5Sbd8XmfGJBPutod78\ncejo65H6PJKgmasBMK9RmdrTh3Hec0qx5e4t20LNKUP4KGAhqFREnrlCaMDhIut8U1bCK+7PXYmr\n/yQU+nqkh0dwb/ZyTKs7U23yCK4OnFBkGYCQlRuoOmk4DTYvQ6VSEXv2EuE7DpS4fkH4uxSqf2tX\nl1Aiu3fv5vHjx0ycOPEf33Z0dNI/vs13ZWtrxprqBZebkNLwez+yu96XssYA0P36Jr51GCtrDAuf\nf8+zPgUzmErNMeAyBxoUnOsmpY5XftWa82J7nYGyxtD75gYWOY98e8H3aFKIOsFMDltljUMXT3bU\nGSBrDL1uqnvgfqsrbxyf39jIsUYFl9OQUtu/drCh5lBZYwAYePtnrTgeWeflz1Sq3/S2VuyLQx4F\nl1aRWofL2zjT9N0S7/3TWpzfLfv3Jqi/O/8NypmVPNmYXF4kvT155PsmekAFQRAEQRAEQRD+Jm1Z\n5kTbiQbo/7ju3eV9ciYIgiAIgiAIwr9Teno6kyZNIjY2FhMTExYsWFBgqcZ169axf/9+FAoFw4cP\np23btsVuUyQhEgRBEARBEARBEArYtm0bVatW5ddff6Vr166sXr063/uJiYls2rSJgIAA1q1bx9y5\nc9+6TdEAFQRBEARBEARB+JuUqhyt/3lXV69epVmzZgA0b96cixfzJ6A0NjamXLlypKWlkZaW9tZl\nnUAMwRUEQRAEQRAEQfjg7dy5k40b8y8VZW1tjZmZGQAmJiYkJRVMQlq2bFk6duxITk4OX3/99uSg\nogEqCIIgCIIgCILwgevZsyc9e/bM99qoUaNISUkBICUlBXNz83zvBwYGEhUVxYkTJwAYMmQI7u7u\nuLm5FVmPGIIrCIIgCIIgCILwN6lQav3Pu3J3d+fMGfXSLYGBgdSvXz/f+xYWFhgZGWFgYIChoSFm\nZmYkJiYWu03RAyoIgiAIgiAIgiAU0LdvX7y9venbty/6+vosXrwYgPXr1+Pk5ETr1q25cOECvXr1\nQkdHB3d3d5o2bVrsNkUDVBAEQRAEQRAEQSjA2NiY5cuXF3h90KBBmn+PGTOGMWPGlHibogEqCIIg\nCIIgCILwN6l49yyzHyIxB1QQBEEQBEEQBEGQhGiACoIgCIIgCIIgCJJQqFQqldxBCIIgCIIgCIIg\n/JtZm9R/eyGZxaZclTsE0QMqCIIgCIIgCIIgSEM0QAVBEARBEARBEARJiAaoIAiCIAiCIAiCIAmx\nDIsgCIIgCIIgCMLfpEIpdwj/CqIHVBAEQRAEQRAEQZCEaIAKgiAIgiAIgiAIkhBDcAVBEARBEARB\nEP4mlSpH7hD+FUQPqCAIgiAIgiAIgiAJ0QAVJLVv3z65Q9AamZmZcocAQFJSktwhEBwcLHcIgiAI\n/1oJCQlyh0BoaChnzpwhIiIClUolSwzJycncu3eP1NRUSevVhuuoIPybiCG4gqR27NhB586d5Q6D\npKQkzp8/T3p6uua1rl27ShpDjx49aNy4MT179qRq1aqS1p3XV199xbZt22SrH2DdunWEh4fTuXNn\nOnfujLm5uazxyOHFixdFvleuXDnJ4ti7d2+R70n1GZkyZUqR782bN0+SGPJKTU0lMTERPT09tm/f\nTteuXSlfvrwkda9cubLI90aNGiVJDAD9+/dHoVAU+t6mTZskiwPg7t27bN++nYyMDM1rUp4X2rQv\nLl26hJ+fHzk5ObRv355y5crRs2dPSWMA2LJlC8eOHePVq1d07dqVp0+f4uPjI2kMhw8fZs2aNZp9\noVAoGDFihCR1515HfX19mTVrliR1vk1sbGy+z4iU15FcCQkJnDt3juzsbFQqFVFRUXz99deSxyEl\npciCWyKiASpIKjMzk65du1KpUiV0dNQd8IsXL5Y8jpEjR1K+fHlsbGwAiryZeJ9+//13zp49y8qV\nK4mPj6dz5858+umnmJiYSBqHhYUFGzduzHdMPvroI0ljWLp0Ka9evWL//v2MHTuW0qVL06tXLxo1\naiRpHMnJyQQGBubrnZaq0eXl5QWoL9gpKSlUqVKFR48eYWNjw549eySJASAkJASAGzduYGxsTL16\n9QgODiY7O1uyffHpp58CsG3bNurVq4e7uzvBwcGy9ZSPGTOGPn36cPToUVxcXPDx8eGXX36RpO7c\n76jjx4/j4OCg2RcvX76UpP5cuTfVq1atonXr1tSvX5+goCBOnTolaRwAkydPpl+/ftjb20teN2jX\nvvj+++/ZsmULo0ePZvjw4fTt21eWBuiBAwfYunUrAwYMYODAgfTo0UPyGDZs2MCOHTsYMmQII0aM\noEePHpI1QPX09OjRowdhYWHcv38fAJVKhUKhICAgQJIY8po5cyaBgYHY2dnJGseoUaOoXLkyDx48\nwNDQEGNjY8ljELSTaIAKkpo4caLcIQDqC4McPSl56ejo0Lx5cwB+++03Nm/ezK5du/jss8/o16+f\nZHFYWVlx79497t27p3lN6gYoQExMDC9evCA+Ph5nZ2eOHDnCzp07+e677ySLYcSIEdjZ2VG2bFlA\n2gcT27dvB9QPRxYsWICpqSmpqamMHz9eshgAJkyYAMCQIUNYu3at5vXBgwdLFkOzZs0AWL9+PcOG\nDQOgfv36DBo0SLIY8kpPT6d169Zs2rSJhQsXcuHCBcnq7tOnDwBHjx5l5syZAHTu3FnyfVG5cmVA\n/TnNfUDQtm1bNm/eLGkcoG6Uy9HIyqVN+0JHRwdLS0sUCgWGhoaSP8DMldvIyf3ONDAwkDwGXV1d\nDAwMNHFI2djx9fWlVKlSzJw5E19fX8nqLUpQUBDHjx/XPFSWi0qlws/PjylTpjBnzhy++OILWeMR\ntIdogAqSqlq1aoHhGA0bNpSs/tyeLUdHR65fv07NmjU170l9wVy4cCEnTpygYcOGDBs2DDc3N5RK\nJd27d5e0ASp3QxygZ8+eGBkZ0bNnT8aOHas5FkOGDJE0DpVKJWmDtzARERGYmpoCUKpUKaKjo2WJ\nIy4ujsTERMzNzYmPj5dljllqaioXL16kdu3aXL9+Pd9wMillZWWxceNGatasyaNHj0hLS5M8hoSE\nBJ4+fYqTkxOPHz+Wdc7Zzp07cXNz4/r16+jr60tef/ny5Vm7di01atTQNHjkeGgG8u8LJycnFi9e\nTEJCAmvXrpVlmCVAx44d8fT05MWLFwwbNow2bdpIHkP9+vUZP348kZGR+Pj4ULt2bcnqnjJlCjt3\n7kRfX1+y4fnFqVChAhkZGbL3OOrq6pKRkUFaWhoKhYKcnP/9DLEqlRiCWxIKlVwzxYUPUr9+/QoM\nx1izZo1k9bdq1QqFQlEgQYJCoeDEiROSxQHq+bAdO3Ys8MT6+fPnODg4SBZH3hu3hIQEHB0dOXTo\nkGT1gzp5RcWKFSWtszD+/v506tSJGjVqaF6T+sHE0qVLuXr1KrVq1SIoKIhmzZrxzTffSBoDwJEj\nR1iwYAEWFhYkJSUxY8YMWrRoIWkMISEhLFq0iCdPnlClShW8vb1xdHSUNAaAa9eucfz4cYYPH86+\nfftwc3PDzc1N0hiuXLnCrFmziI2Nxd7enpkzZ0oeA0B0dDRr1qwhNDQUFxcXhg8fjpWVlaQxFDZH\nWI4HadqwL7Kzs9m5cycPHjzA2dmZXr16ydL7COrP64MHD6hcuTLVqlWTJYbAwEDNvmjZsqVk9Y4f\nP56LFy+SnJyMhYVFvvfOnTsnWRy5+vTpQ2hoKBUqVACQbQjukSNHCAsLw8rKihUrVlC/fn2WLl0q\neRxSMjd2lTuEt0pMuyN3CKIBKkjL09OTrVu35huOIceXYlBQUL6bt7/++kvy+YahoaEcOXKErKws\nAKKiovDz85M0hjeFh4ezcuVKyW/mTpw4wa+//kpWVhYqlYqEhAT++OMPSWMA9dDG5ORkze9yPJgA\nuHXrluamtnr16pLXnys7O5u4uDisra3R1dWVLY5cUVFR2NnZSV7vgwcPNInClEolP//8M1999ZXk\nccgpIiICe3t7njx5ArwecglQqVIlSWOZP38+kydPlrTOokRFReUb0VOvXj1J67958yY3b97kyy+/\nZMKECQwZMgRXV+lvgN98KKCvr4+9vT2enp4FGmTvy8mTJ7l16xZjxoxhyJAhDBo0SPKe8VmzZmnF\nENyQkBCMjIzyvSZXz2zud8fly5fx8PCQJQYpiQZoyYghuIKk5B6OceXKFUJCQli/fr1mDpVSqWTr\n1q3s379f0lgmTpxI27ZtuXbtGnZ2dpKnjS9M+fLlefz4seT1Llu2DD8/PwICAmjUqJGkc+zyknOZ\noJ07d9KzZ08WL16subF/8OABBw8elHQeqJ+fHz4+PvTu3bvAHFipHxYtW7aMgIAAsrKySE9Pp2LF\nihw4cEDSGACmTZvGkiVLUCgUeHt74+LiIlndY8aMYfny5YXeSEvZs7J+/XqmTJmCj4+P5rzIbYRK\nnfn10aNHmuHhcpo6dSo3btwgLS2N9PR0HB0d2bFjh6Qx+Pn5aXqUxo0bx+TJk9m6daukMQBkZGTg\n6OhIgwYNuHnzJsHBwZQuXRpvb2/JRjmtWLFCcy4uW7aMYcOGSdYAPXXqFC1btqRatWqa+fy5evfu\nLUkMeU2fPl327PYAPj4+VKhQgSFDhnDkyBGOHj3KtGnT5A7rvVLxvz/M+J8gGqCCpDw9PdmwYQNN\nmzalRYsW1K9fX9L6zc3NiY6OJjMzUzO3TqFQMGnSJEnjAPX8vq+//prQ0FDmzZsn2+T88ePHa24o\no6KisLa2ljwGOzs76tWrR0BAAN27d5c06ytoR6MrN6NnboKTwoaKSyE3a+SSJUskr/tNp06dIjAw\nkLlz5zJo0CDZljdYvHgx48ePJz09nalTp9KkSRPJ6l6+fDkgzzC+vHJ7uDZv3kxcXBzh4eFUqFBB\nlkZgSEgIjRo1onTp0prPqxz75969exw4cAAfHx+8vLwYO3as5DHo6+vj5OQEqHMbyJV0Ji4uTvOd\n0axZMwYPHsy4cePw9PSULAY9PT3MzMwAMDMzk3Rf5M6Rj4mJkazO4pQqVYq5c+fmy24vR0P4zp07\nmpFd06dPl/R8ELSbaIAKkvrkk08A9Zd1hw4dNMlWpFK1alWqVq1Kz549KVOmjKR1v0mhUBAdHU1K\nSgqpqamy9YDmZtkEMDQ0pFatWpLHoK+vz+XLl8nOzubs2bPEx8dLWr82NLpyM79++umn7Nixg9DQ\nUKpUqSJ5ts/cZT+USiULFy7UxCHHQxpbW1sMDAxISUmhQoUKmuHqUsnbk+Hu7k5gYCBPnz7l6dOn\nkt/MBQcH4+vrS0xMDOXKlcPPz0+W9YN37drFTz/9hLOzM48fP2b06NGaTLBSkWO5k8JYWVmhUChI\nTU2ldOnSssRQrlw5lixZQt26dQkKCpJliDqol7AKCQnB2dmZkJAQUlJSiI+Pl/S65ubmxoQJEzT7\nQsqhyI0aNeLFixd0795dsjqLkzsUPDY2VuZIID4+HisrKxITEz+IJERCyYg5oIKkLl++zKxZs2Rf\nNHvv3r38+OOPZGZmaoaRST3X7/Llyzx69Ag7Ozt8fHzo3Lkz3t7eksYA6huHVatWERISQsWKFRkx\nYgSWlpaSxhAZGcnjx4+xtbXl+++/p3379nTs2FHSGEA9N/jAgQP5sq3mLn0hFS8vL8qXL0/dunW5\nevUqcXFxLFiwQNIYAPr378/QoUNxd3fn8uXLbN68mfXr10saw/Tp0zU3kxYWFgQGBvL7779LVv/K\nlSuLfG/UqFGSxQHqB0X+/v64uLhw//59Zs2axa+//ippDACff/45W7duxdDQkNTUVAYMGMDOnTsl\njUFbkhAtWbIECwsLYmJiiIiI4Pnz55Lvi4yMDLZt28aTJ09wcXGhd+/esiQhCgoKYubMmURFRVG2\nbFl8fHwICgrCxsZG8+BZCsePH+fx48e4uLjQqlUryerNfSCVu45z1apVefjwIba2tuzevVuyOHK9\nePGiwGtyZEg+ffo0M2fORE9P3d/l6+uredj6v8rMWJ4EXO8iKe2+3CGIHlBBWsuWLdOKRbN/+ukn\n1qxZo1nvUUq5mXhBPYdKX18fQ0NDTp8+LUsDdOrUqXh4eNC5c2cuXbrE5MmTJZuzk/cimZutr7Cb\nS6l4e3szbNgwWeeWxcTEaOZ0tWnTRtIlefLS1dXVZL1t1aoVGzdulDwGPz8/IiIiaN++PXv27GHx\n4sWS1p/byAwLCyM4OJjPPvuM7777Lt+oAakYGhpq5p5Wq1ZNliU/ACwtLTU3k0ZGRrJ8VnJ7XFUq\nFXfu3CEqKkryGEA9fSElJQVDQ0MCAwMlzUocHBxM7dq1uXz5Mi4uLppz49KlS7IsSePm5lagoSXV\nMii58y9zRyxYWFgQHR3N9u3bJRupoC3rOOfy8vJCoVCgVCp5/vw5FSpUkGVOaGZmJkqlEn19fbKy\nsiRdW1suYhmWkhENUEFSCoVCKxbNdnR01DR4pHb48GFUKhWzZs2iT58+uLm5cefOHdkSBsTHx9O/\nf38AatSowZEjRySr28vLC3j91LhKlSo8evQIGxsbyeeBgroRLNcQqtw1ah0cHDRZmu/duyf58jS5\nc+mMjY356aef8PDw0PRkSC01NZXt27cTFRVFy5YtZWt0eXt7a7KutmjRgmnTpknWIM+9sdXT02Pm\nzJma4yH19IXcueJxcXF0796dOnXqcOfOnQKZNqWQtwelefPmDB48WPIYQD1yY9GiRcTFxdG+fXvC\nw8Ml+5zkro9bWFIuORqge/fuZe3atflGj0g1qih3/qVcaybnpS3rOOedPpCYmMiMGTNkiWP16tXs\n2bMHa2trYmJiGD58uGxr9graRTRABUlVqFCBxYsXEx8fL+ui2UZGRgwdOjTfQuZSPanMHR717Nkz\nzRNzV1dXWbLPgnoIV3R0NLa2tkRHR6NUSvf0TtueGn/yySd4eXnh7OyseU2qoZbt27fXJB7666+/\nMDAwIDMzE0NDQ0nqz5V7Q2tpacnjx48156Ucw/qmTp1K8+bNuXz5MjY2NkybNo0tW7ZIHgdA3bp1\nAfDw8JD0M5J7A5s7p+vJkyeYmZnlW6tWCoX1+n722Weaf4eHh0u2zEPehEPR0dGyJX6ZMWMGgwYN\nYvXq1TRo0IDJkydLlgU3dxkgCwsLrViS5qeffuKHH36QZVRRt27dAPVnQ+pREm/66KOPN5a1mAAA\nIABJREFU6Nevn2Yd5zZt2sgaD6gTMj179kyWui0tLTWJDW1sbCR/cCZoL9EAFSQVExODk5MTDRo0\noFSpUsyePVuWOHKHFsrJzMyMZcuW4ebmxvXr17G1tZUljnHjxtG3b19MTU1JTk6W5Zhoy1PjrVu3\n0q5dO1mGFZ48ebLY9wMCAiQZ+vm2uXS+vr6SZaNNSEjg888/Z9++fbi7u0va8MvL3Nyc7du3a+aj\nSjly420PQEaOHMmqVaveexwNGzYs9v0pU6ZIthxL3l4/AwMDWeZ/AqSnp9OkSRN++OEHKleuLPnD\nItCeJWnkHFWUKysri3v37lGpUiXNg2WpH5x5eXlp1nHu2rWrZh3nmzdvUqdOHcniyM3orlKpiIuL\nkzRzd14mJiYMGTIEDw8Pbt++TXp6uibZn1wPmt83FWIIbkmIBqggqW+//ZZdu3Zx7do1SpUqxYsX\nLyQfYgjQqVMntm/fzqNHj6hYsSJ9+/aVPIbvvvuOgIAATp8+jbOzM6NHj5Y8BoDnz59jYGBAWFgY\nVlZWTJ8+XfKETNry1NjS0lLTs6BtDh48KMvcwzc9efJE0vpCQkIA9UMKXV1dSevONX/+fH744QeO\nHTuGi4sLc+fOlSWOwiQmJsodAoCkSwa5u7vnyx2wadMmatasKVn9uQwNDTl79ixKpZIbN27IMkog\nd0kaKysrzXIbcixJI+eoolxPnjzRZDQHZEkuCFCrVq0C2eQXL14s6Xq5CxYs0ExZMDQ0lOXcBPJd\ny+VeeUDQLiILriCLuLg45syZw5EjR/Dw8GDMmDGaIWZSmDp1Kubm5jRo0IBLly6RkJDAwoULJatf\nm3Tv3p0VK1bk64GV42KV+9TYxcUFZ2dnWeb7TZo0CWNjY1xdXTU3UXKsnVaY/v37s3nzZrnD4Msv\nv5TsRurBgwfMmDGDkJAQKleujK+vr6QNjYiICOzt7QttdFeqVEmyOIoj5fGQO479+/dz8uRJ/vrr\nLxo3bgyolwt68OBBoXMh37eIiAgWLFjAgwcPcHZ2ZtKkSTg6OkoehzYobM5+7tBYKeXk5BAXF4e1\ntbVsa6IWRqrv7+joaJKTk/H29mbhwoWoVCqUSiXe3t789ttv771+AUyMnN9eSGYp6SFyhyB6QAVp\nnTlzhj179hASEkKXLl2YOnUq2dnZDBs2jH379kkWR1hYGFu3bgXUT+i0oWdJLlZWVpLN3SrKTz/9\nxLBhw6hVqxb379+nV69esiUhAu1ZTDyvDyF74JvOnj2bL5mG1NavX8+UKVPw8fHRDGcD9bHQhkbf\nh6ZZs2bY2tqSkJCgeTCko6MjW6Nvw4YNmozVcrl27RqzZs0iNjYWOzs75syZI/n8YFCPKgoODiY7\nOxuVSiVLZuJjx44xb948LCwsSE5OZubMmTRt2lTyOAoj1ff3zZs32bhxI0+ePNEkHtLR0RGJfySk\nUom1TktCNEAFSe3bt4++ffvSqFGjfK9LPfw0IyODtLQ0jI2NSUtL+yAXR86dh5GZmcmQIUPy9fpJ\nPXTq4cOHbNu2jdTUVPbu3Sv52pu5ippvJ9U8OyG/M2fOMHDgQNmG3uYuCTRo0KB8awoePHhQlni0\nmRSDqSwsLGjUqBGNGjXi4sWLPH36lDp16ki+bnEubZh/6e/vz+LFi3FxceHBgwf4+PgQEBAgeRyj\nRo0iKyuLqKgocnJysLOzy5ekSgqrVq1i586d+TKuaksDVCpt2rShTZs2nDlzRityXQhCUUQDVJBU\nURnq2rZtK2kcAwYMoGvXrri4uPDo0SPGjBkjaf3aIHcIoTYMJZw/fz4TJ04kLi6OXbt2yTZfpSja\nMM9OW2ZLSBlHfHw8zZo1w8HBAYVCgUKhkPTm+tSpU1y7do0DBw5w48YNQD3k88SJE5q1KOVmYWEh\nS70JCQn5Gn65Q2KlsGTJEiIiIggJCcHAwIC1a9dqHqhJSRvmX5qZmWnWAK1ataosy+KA+rO6fft2\npk2bpskOLDVtzrgq9fd32bJl+eKLL0hMTKRz585UqVKFli1bShqDIBRHNECFD1KpUqWoVKkSKSkp\nlCtXjr1799KxY0e5w5KUHPNz3pSbqQ/UGQzv37/Pl19+CSDLU/yiSDn8NScnhzt37pCenq55zcPD\ng0mTJkkWA6jnBn/00Ue0a9cuX0KNdevWSRbDmjVrJKurMNWrVychIQFDQ0PNgxqFQiHLd8XLly/Z\nv39/vnUWR40axYoVKySN49KlS/j5+ZGTk0P79u0pV64cPXv2ZOTIkZLFcPXqVbZu3Ur//v3p1q2b\nbGsonzp1SpZ687K2tmbatGk0btyY27dvo1QqNcPWpZy/ntvwTUtLw8jISJYpA9qQcTUzM5OQkBBq\n1KjB8ePHadGiBfr6+nTq1EmS+nPNmTOHefPmMX36dD7//HOGDh0qGqASUalEFtySEA1Q4YO0cOFC\nZs+eLXvq+g+dHL0W2m7MmDEkJiZqkkIpFAo8PDw0a8ZKJSAggIsXL7Jz5078/f2pU6cOU6ZMkTQ5\nVGZmJgsXLiQ0NJQqVarg7e0tWd2g7kXo1q0bXbp0KTShiZRL0owdO5YmTZrIss5iXt9//z1btmxh\n9OjRDB8+nL59++bLSCuFnJwcMjIyUCgU5OTkyJZsRhvmX1auXBlQ5zUwNTWlYcOGsixj1bp1a1au\nXEn16tXp1asXpUqVkjyGojKu5n1o875NnDiRFi1aUKNGDZ48ecKhQ4dYvHgxvXr1kiyGXBUqVECh\nUFC6dGlJl44ShJIQDVDhg1SlSpW3rmsnvH+5yY8iIyNZtGgRcXFxtG/fnmrVqsmeGEku8fHx/Prr\nr3KHQVpaGmlpaSiVSjIzM2VJzOTt7c3IkSNxd3fn6tWrTJ48WZZMwEU1cKRcksbExAQvLy/J6iuK\njo4OlpaWKBQKDA0NZbmxHThwIN27dycuLo6ePXvKMtwTtGP+ZXHz1qV05MgRTWK/Fi1ayLK8WlGj\ner788kvJEg1GRkbSo0cPAIYNG0b//v0lqfdNFhYWBAQEkJaWxoEDB8TDdkHriAao8EFq3bo1vXv3\n1jw9BmRbzFxAM2do9erVNGjQgMmTJ7Njxw65w9KQcp5duXLlePnypew9XU2aNKFq1ap4eXkxe/Zs\nWWIwNjbWJNL4+OOPWb9+vSxxaIMqVapw4MCBfOssyjF/28nJicWLF5OQkMDatWspV66c5DFYWlry\n66+/EhYWhoODA6VLl5Y8BtCe+ZeFSUpKkrQ+hULByJEjqVSpkuaBjdTJ7Ioi5fxLhULBkydPqFSp\nEmFhYSiV8gzHnDt3LmvWrMHKyopbt24xZ84cWeL4EKkQQ3BLQjRAhQ/S5s2bGTp0KGZmZnKHIgDp\n6ek0adKEH374gcqVK2NoaChp/YcOHaJDhw6kpqayYsUK7t27R82aNfnmm28wMTGRZJ5dbpr8zMxM\nDh8+jIWFhaahIcfC8qdPn+bcuXPs27ePjRs3UrNmTSZMmCBpDGXLlmX16tWa+W0GBgaaffGhLStw\n9+5d7t69q/ldrqVgZs2axc6dO6lfvz6lSpWS5eHEihUr2Lp1q+TD0t+kLfMvtUFur582knI+6tSp\nUxkzZgyPHj3C0dFRtmkmvr6+RSZ9FARtIBqgwgfJxsZGa7JYCmBoaMjZs2dRKpXcuHFD8iy427Zt\no0OHDsyZMwdHR0emT5/OxYsX8fHxkewiLkcjszg2NjY4OTkRGhpKeHg44eHhksegUCh49uwZz549\n08R04MAB4MNrgG7evJmkpCTCw8NxdHSUbU5XZmYmLVu2pE2bNuzYsYPo6GjJh8trS2+btsy/1Aba\nkNROGzx//lzzGXnw4AEhISH5krhJJTMzk3v37lGpUiVNA1zbsssLHzbRABU+SEZGRrKvfSm8Nnv2\nbBYsWEB8fDzr1q2TbR3QsLAwzVAlZ2dnjh49KnkMuVmAc+nr62Nvb88333yDg4ODZHG0b98eDw8P\n2rVrx6hRo2S5eZk3bx45OTmoVCpu3LiBm5ubVt1ESTm078iRI/zwww+a7LMKhYIRI0ZIVn+uMWPG\n0LdvX44cOYKLiws+Pj788ssvksZQVG9bZmampOfHqFGjSE5OBuD48eO0bNlStmVxhKJJ+TnduHEj\nu3fvxsTEhOTkZAYMGECXLl0kqz9XaGgoI0aMQKFQoFKpUCgUnDhxQvI4PkQiC27JiAao8EES6ci1\ni729PWPGjCEsLIzq1avny2AohdDQUDZs2ICenh537tzB1dWV4OBgsrKyJI0D1ImZ3N3dqV+/Pjdu\n3ODUqVPUrVuXadOmsXHjRsniOHz4MIGBgTx8+JCsrKx8GSalMmfOHJydnXnx4gW3b9/G1taW+fPn\nSx5HfHw8P/74oyYb71dffYWZmZmkS9KsX7+eHTt2MGTIEEaMGEGPHj1kaYCmp6fTqlUrNm7cyMKF\nC7lw4YLkMRTV2zZ06FBJhyV7eXnx8ccfc/36dZRKJceOHWPVqlWS1V+cD7UhnJaWhrGxMVFRUdjZ\n2QFo5ulKQaFQaEYnmJqaSj6dJNcff/xR6OsBAQGSJWQShOKIBqjwQRLDhbTLli1bOHbsGK9evaJb\nt26EhYXh4+MjWf0//vgjt27domLFity/fx9HR0dmz54tS0/sixcvNAmxKleuzB9//EHPnj35/fff\nJY1j6dKlhIWF4e7uzt69e7ly5QqTJ0+WNIbg4GCmTZtG//792bx5MwMGDJC0/lze3t58/PHHdO3a\nlStXruDt7c3q1aslXZJGV1cXAwMDFAoFCoUCY2NjyerOKysrSzMn+NGjR6SlpckSR2Gk7OkCiIqK\nokuXLvz2229s3ryZgQMHSlo/wJQpU/L9njtiwt/fX/JY5LZy5UoyMzMZP348/v7+1KpVi6+++gpf\nX1/JYnB0dGT+/Pk0aNCAK1eu4OTkJFndJXHw4EHRABW0gjyLZwmCIORx4MAB1q9fj5mZGQMGDODm\nzZuS1l+jRg169uzJzJkz6datG2ZmZuzYsQNXV1dJ4wD1Df7Zs2dJTk4mMDCQ7Oxsnj17JvmN/uXL\nl1m+fDkDBw5kxYoVXL16VdL6AZRKJbdu3cLBwYHMzExSUlIkjwHU6wh+8cUXVK9enX79+kmeYRSg\nfv36jB8/nsjISHx8fKhdu7bkMYC6MR4VFcWIESP4888/mTZtmixxFEbKZDOg/qwePXoUFxcX4uLi\nZDk/MzIysLOz49NPP6V8+fJERkaSmZkp+Zq52uDkyZOaqTTLly/n5MmTkscwb948HB0duXDhguZB\npjaR+iGNIBRF9IAKgiC73DkqciVL6N+/f5HDbaVe12/+/PksXLiQuXPnUrVqVebOncuNGzcK9HS8\nb9nZ2SiVSnR0dFAqlZLf3AN06dKFWbNmMXfuXBYtWiR5ZtHcdT6trKw4ePAgHh4eBAUFSToXN9f4\n8eMJDAzE1dUVZ2dn2aYRuLu7k5iYyPbt26lYsaLsmWjlNHToUA4ePKhZn1aOIdFxcXGaTKvNmjVj\n8ODBjBs3Dk9PT8ljkZtCodDMA87KypKlsaWnp6fV+16O7/EPjViGpWREA1QQBNl9+umn9OvXj/Dw\ncIYNGyb5fMOJEycyffp0Vq1aha6urqR158rOzkZPTw97e/sCqfs7deokeTwdO3akb9++1KlTh6Cg\nIFmyRnt6empu5vL2tK1cuZJRo0a99/rzDgMPCAiQ/GFEXrGxsQQGBvLkyRNiY2Nxd3eXZZ7f4sWL\nZR+aXRSpGxzt2rWjXbt2AIwdO1bzuq+vL7NmzZIkhuTkZEJCQnB2diYkJISUlBTi4+NJTU2VpH5t\n0qdPHzp16kTVqlV5/PgxQ4cOlTskQRCKIBqggiDIbu/evTg5OeHp6Ymz8/+1d6/BVVb328evDYQU\nSCRCCAYIhyScLeVYoCKUgKXDlMopEIogiO0goQhBQA4TBIlROrGlBSq0iIGxhENDsSUWG3CgGaJW\nFDZIwSFFA0ZMlETIOdns5wWT2IAg/p96r3Wb72fGGXb2i3XJ7Bny29e614pS165dHV3/e9/7nh58\n8EGdPXtWDzzwgKNr11iyZIlSUlJqTzit4fF4lJmZ6ViOlJSU2vVbt26t119/Xd27d9fly5cdy/BV\n3nrrLUfW2b59uyRp79692rx5syoqKiSZaRHmz5+v0aNHa+LEiTp27JgWL16sTZs2OZ7jX//6V+0g\n/vDDD2vSpEmOZ7gVJw+buZ2a5twJiYmJWrRokfLz8xUeHq7ExERlZGRo9uzZjmWwRWxsrEaMGKEL\nFy4oIiJCLVq0MB3JOmzBhS0YQAEYl56erpycHB06dEjbtm1TaGio1q9f72gG09+W19w3Onv2bKWm\nptY+8+n0Lww1dxtKUqdOnaw8Mdrpv5M//vGPeuGFFxQeHu7oujeaMmWKJKlbt276+9//biTDf2/N\nrtk675TbbUNPTk529LAZW+Tn52vPnj2196FKMvZ8sCkJCQm3/Bw6dY+zLfLy8m75Xps2bbRo0SIH\n09RPfr/PdARXYAAFYNy///1vHT16VG+88YakukNQfZOWlqbNmzerVatWRtZ3wwnRTjeQERER6tCh\ng6Nr3igyMlL79u3ToEGD9N577ykkJKS2aevUqZNjOUaPHm1sa3bNWjt27FCfPn3Ut29fnTx5UidP\nnnQsg22ys7O1bt06xcTEaOLEiYqIiDAdyXGc6vqFBQsWSJKKiopUUlKizp0769y5cwoNDdXevXvr\n9TPbsIvHTx8PwLB+/fopIiJCCxYs0LBhw0zHMWrWrFnasmWL6RhWmz59uqP3Pc6fP1/FxcXq3r17\n7fBbc9qmU6ZNm6aioiJduHBB7dq109133y3p+jDu5N+FJL3//vv6z3/+o8jISHXp0sXRtSXpkUce\nqXMH68yZM7V161bHc9yK05/PyspKHTx4UOnp6aqqqtJLL73k2No2uXjxog4cOFDnxHAnnhW3UXx8\nvJ577jkFBQWptLRUCQkJeuGFF0zHqhcCGpn58vjrqKouMB2BBhSAeW+++aaOHTumrKwsvfjii2rZ\nsuVNB/F829X8/1ZWVmrWrFnq0aOHsWHHdk5/b2rDlyJTpkzRunXr9IMf/EDvv/++JkyYoLFjxzq2\n/n8/G1zj9OnTkpz/fJaWlio7O1vf/e539e6779Y+m2sLpz+fXq9XWVlZ+uyzzzRq1ChH17bJwoUL\ndf/99ys0NNR0FOMuXbqkoKAgSVLTpk1VUGB+4Kg/OAX3TjCAAjDuypUr+uSTT5SXl6eysjK1adPG\ndCTH1WyjdHI7pe18Pp/S0tJ07tw5dezYUVOmTFHjxo21du1aR3PYsC05NTVV6enpatasmYqLi/Xw\nww87OoDWbIsvKChQYGCg7rrrLj3//PN65JFHHMtQIykpSb/61a90/vx5de7cWc8995zjGaTrJ9Bu\n2LBBOTk56tixo+bMmaOQkJA67ew3bfTo0erWrZtiY2OVlJR0y+uk6oPvfOc79bbxvNGQIUP00EMP\n6d5779WJEyccP1ke+CpswQVg3Pjx4zVy5Eg98MAD6ty5s+k4sMSyZcsUHBysAQMG6K233lJRUZHj\nw6ct4uLi6lwD87Of/Ux/+tOfHM8xYcIE/frXv1b79u114cIFPfnkk3r55ZcdWbvmqqLKysqb3nP6\n7mBJmjdvnvr371/7+czOznZ8m+PGjRu1b98+VVdXy+/3KyAgQAcOHHA0g2k1z0KvX79eP/zhD9Wz\nZ8/atr4+f6F36tQpffjhh4qKilK3bt1Mx6k3Ahq1NB3hK1VVf2Y6Ag0oAPPS09NNR4CFPvzww9rh\nZuTIkfX6sJGIiAg9++yz6t+/v95++221b9/eSI6AgIDatSMiIuqcvvpN+7KrimpO4j148KBjOWoU\nFhZq+vTpkqTu3bsbGfxeffVVbd++Xb///e/14x//WKmpqY5nMO2/7+vdvHlz7XPSLVq0cPz5aFtc\nunRJmzdv1rlz59SpUyctXbpU7dq1Mx2rXvD72YJ7JxhAAQBWqqioUFlZmZo0aaLy8nL5fPX3ePvk\n5GTt3LlTR48eVVRUlBYuXGgkR5s2bfT888+rd+/e8nq9CgsLc2ztmis1Dh06JL/fr8LCQqN3PVZU\nVKigoECtWrXSp59+qmvXnP/FMywsTGFhYSopKdHAgQMdv77KBjX39WZkZNR5Tnr8+PGGk5mzYsUK\nTZkypbadX758eb38cgL2YgAFAFhp+vTpevDBB2uvEpg3b57pSMY0atRIU6dONR1DycnJ2rFjhw4f\nPqyoqCjNmTPH8QyHDx/W008/reDgYJWWlmr16tUaOHCg4zkef/xxxcXFKSgoSCUlJXr66acdzxAc\nHKzMzEx5PB6lpaWpqKjI8Qy2MP2ctE0qKio0YsQISdd3j9TXk5FhLwZQAICVfvrTn2ro0KG6ePGi\n2rVrp5CQENOR6r3AwEDNmDHDaIb169dr165datGihQoKChQfH69du3Y5nuO+++7TP/7xDxUVFRlr\nYtesWaPc3FwlJCRo69atWrFihZEcNvB4PGrWrJkkKSgoSIGBgYYTmePz+XT27Fl17dpVZ8+eNR2n\nXvFzCu4dYQAFAFjp5MmTWrlypQoKCtS2bVutWrVKXbt2NR0LhjVr1qx24GvVqpWaNGliJIcNTWxQ\nUJB69OghSXryyScdXds2tjwnbYMVK1Zo2bJlys/PV+vWrY2088DtcAouAMBKcXFxWrNmjaKjo3X2\n7FmtWrXKyMmvsEPNXbnvvvuumjZtqn79+snr9aqiokJ/+MMfHM8TGxurTZs2GW9icV11dbV27typ\nnJwcRUVFadKkSQoICDAdC/VMw4bNTUf4Sj7f56Yj0IACAOwUGBio6OhoSVLXrl35ZbKe+7K7cmue\nc5OkyspKR69jsaWJxXW2PCdt0rx58/Tb3/5WQ4YMuem9rKwsA4mAL0cDCgCwys6dOyVJr732miIi\nIjRgwAB5vV5dvHhRGzZsMJwOtpo+fboj127Y1sQCN8rOztbgwYNNx6iXGjYMNh3hK/l8V01HoAEF\nANiloKBAktSnTx9J1y+aDw4OVvfu3U3GguWc+j7dtiYWuNH69esZQGE1BlAAgFXmzp172/fj4+Np\nQnETj8fjyDrjxo277fuPPvqoI00scCsej0fx8fHq1KmTGjRoIElKSEgwnAr4AgMoAMBVrly5YjoC\ncEs82QTTJkyYYDpC/eXnGpY70cB0AAAAvg6nmi64iy2DH59PmDZmzBhVV1crNzdXbdq00bBhw0xH\nAupgAAUAAK5Xc2IyUN+tXLlSeXl5Onr0qEpKSrRkyRLTkYA62IILAABcY9q0aXVaxoCAAN1zzz16\n7LHHDKb6gi1NLOqv3NxcJSUl6e2331ZMTIw2b95sOlK94RdbcO8EDSgAwFWaN7f/om98c9q1a6cx\nY8boqaee0tixY9W0aVP17t1by5cvNx1NEk0szPP5fLp8+bI8Ho+Ki4trDyICbEEDCgCw0tKlS+u8\nrmm61qxZYygRbJCXl6fk5GRJUmRkpP76178qNjZW+/btczSH7U0s6q8FCxZo8uTJ+vjjjxUXF6dl\ny5aZjgTUwVciAAArVVRUKCwsTKNHj1bbtm31ySefqLKykueZ6rmqqir985//VHFxsY4cOaLq6mpd\nuHBBZWVljuawvYlF/VVYWCifz6cOHTqovLxc166xLdQ511zwn3kMoAAAK12+fFkLFizQ/fffr7lz\n56qqqkrz58/X1atXTUeDQc8++6x27typ2NhY/fnPf9Yzzzyj48eP39SYf9Py8vIUGxuryMhIjR8/\nXsXFxYqNjZXP53M0B3CjjRs3avfu3dq/f7/S0tL0m9/8xnQkoA624AIArFRcXKycnBxFRUUpJydH\nJSUlKiwsVGlpqeloMOj1119XUlJSnWeBIyIiHM9R08T26dNH77zzjrEmFrhRSEiIWrZsKUkKDQ1V\nUFCQ4URAXR4/x7UBACzk9Xr11FNPKT8/X+Hh4UpMTJTX61VoaKhGjRplOh4MefHFF/W3v/1NnTp1\n0qRJkzRw4EAjOXJzc7V27Vrl5OSoS5cueuKJJ3T8+HGFh4erf//+RjIBkhQfH6/y8nINGDBA7733\nngoKCvT9739fkpSQkGA43bdbA09j0xG+0jV/pekIDKAAADtlZmYqJiaGExzxpbxer7Zs2aIzZ87o\nwIEDjq+fmpqqsWPHciozrLN3795bvjdu3DgHk9Q/DKB3hi24AAArZWdna926dYqJidHEiRONbLOE\nfcrLy3XgwAH95S9/kd/v1y9/+UsjOXw+n2bOnGm8iQVuxJAJ29GAAgCsVVlZqYMHDyo9PV1VVVV6\n6aWXTEeCYT/60Y80atQoTZw4UR06dDAdx3gTC8AeNKB3hgYUAGAtr9errKwsffbZZzz3CUlSRkaG\nGjX64teX/Px8hYWFOZ7DliYWgD38ote7EzSgAAArjR49Wt26dVNsbKwGDx6sqqoqBQQEmI4Fw9at\nW6cdO3aoqqpK5eXl6tixo/bv3+94DtuaWADmeTz2/xvl91eZjkADCgCw009+8hPt27dPJ06ckN/v\nV0BAAFscoUOHDunIkSN65plnNHPmTK1atcpIDluaWAD2sGG4cwOOFgQAWOnVV1/V9u3bNXToUCUn\nJysqKsp0JFigVatWaty4sUpKStShQwdVVZn5hW/Dhg0aNGiQ+vXrp549e2rmzJlGcgCA2zCAAgCs\nFBYWprCwMJWUlGjgwIG6evWq6UiwwD333KM9e/aoSZMmSklJ0ZUrV4zkqGlix4wZo4yMDLVu3dpI\nDgBwGwZQAICVgoODlZmZKY/Ho7S0NBUVFZmOBAusXr1agwcP1uLFixUWFqaUlBRJ0kcffeRoDlua\nWABwGw4hAgBYqbi4WLm5uWrZsqW2bt2q4cOHc9cibmn69Onatm2bY+utWLFCvXv3ltfrVfPmzXXk\nyBHt27fPsfUBwK0YQAEAgOtNmzZN27dvd2y9a9eu6eOPP1bz5s21d+9eDR48WNFs40+iAAAH70lE\nQVTR0froo4/Utm1bx3IAgNuwBRcAALiex+NxdL0GDRqobdu2CgoK0rRp0xQdHS1JWrp0qaM5AMBt\nGEABAAD+R9hYBgC3xwAKAABcz5bBz+kmFgDchgEUAAC4xo2nzebm5kqSBg0aZCIOAOBrYgAFAACu\nsXDhwtq2My0tTT//+c8lSfHx8SZj1bKliQUAWzUyHQAAAOBO1dwBevXqVd11113atWuXkRxVVVUK\nCAiofZ2bm6v27dvTxALAV6ABBQAA1qusrFRlZaUmTJigbt26qbq6WmvWrFGTJk2M5LG9iQUAW3EP\nKAAAsF5MTIw8Hk+dLa41B/4cPHjQ8Tw7duzQO++8U9vELl++XM2bN3c8BwC4DQMoAABwDb/fr0uX\nLik8PFxer1e9evVydP3KysraP2/fvl3Z2dnauHGjJKlx48aOZgEAN2IABQAArpGYmKgOHTpo1qxZ\nWrNmjTwej5YvX+7Y+rY1sQDgNgygAADANSZOnKg9e/bUvp46dapefvllx3OYbmIBwK04hAgAALhK\nYWGhJOnKlSvy+XxGMqxcuVIZGRmSpFdeeUVJSUlGcgCA23ANCwAAcI34+HhNmDBBzZs319WrV5WY\nmGgkx+nTp7V69WpJ0ooVKzR16lQjOQDAbRhAAQCAawwfPlxDhw5VYWGhWrZsWfv8pQmFhYW6++67\njTaxAOA2DKAAAMB6q1evVmJioiZPnnzT0JmWluZ4HluaWABwGw4hAgAA1vv0008VGhqqDz74QAEB\nAbU///zzz9WjRw8jmXw+nxVNLAC4CYcQAQAA6/n9fp0/f16LFy9WVVWVKisrVV5e7njzWPPc5+TJ\nkzV16lTNnTtXU6ZMUVxcnKM5AMCtaEABAID1MjMzlZqaqjNnzqh79+7y+/1q0KCB+vTpo/nz5zuW\nw8YmFgDchAEUAAC4xuHDhzVs2LCbfp6ZmamRI0d+4+sXFBSouLhYS5Ys0dq1a+X3+3Xt2jUtWbKk\nzv2kAIAvxyFEAADANb5s+JSkbdu2OTKAnjhxQqmpqTp//rwSExNrm9ghQ4Z842sDwLcBAygAAHA9\npzZ0jRw5UiNHjjTexAKAW3EIEQAAcD2nT6G9XRMLALg1BlAAAID/EY7WAIDbYwAFAACuZ8vgx32g\nAHB7PAMKAABco7CwUMXFxQoODlZISEjtz2fOnGkwFQDgTjGAAgAA63m9Xq1evVrXrl1T06ZNVVJS\nIr/fr8TERPXt21cxMTGmI0qyp4kFAFsxgAIAAOslJyfrd7/7ncLDw2t/lpeXp8cff1y7d+92PA9N\nLAD83zCAAgAA61VXV9cZPiUpPDzc8Wcu3dLEAoCtGEABAID1hg0bphkzZui+++5TcHCwSkpKlJWV\npaFDhzqaw7YmFgDchgEUAABYb+7cuTp9+rSOHTumwsJCBQUF6YknnlDPnj0dzWFLEwsAbsUACgAA\nXKFHjx7q0aOH0Qy2NLEA4FYeP8e1AQAAy2VlZd3yvSFDhjiYRLVNbHFxsYKCgtS3b1/Hm1gAcCsa\nUAAAYL1du3bp1KlTGjhw4E3vOT2A2tDEAoBb0YACAADr+Xw+PfTQQ0pKSlJkZKSxHDY1sQDgRjSg\nAADAeg0bNtTatWtVWlpqNIdNTSwAuBENKAAAcL20tDTFxcV94+vY0sQCgFs1MB0AAADg/1dGRoYj\n69Q0sVVVVY6sBwDfNgygAADA9Zzc0BUREaGuXbt+6XtpaWmO5QAAN2IABQAArufxeExHkORcEwsA\nbsUACgAA8D/C0RoAcHsMoAAAwPVsGfxsaWIBwFYMoAAAwDU2btxY53VKSookadGiRSbiAAC+Ju4B\nBQAA1tu9e7f27NmjnJwcHTlyRNL1K1Gqq6u1cOFC9erVy3DC62xpYgHAVtwDCgAArFdZWan8/Hxt\n2rRJs2fPliQ1aNBALVu2VOPGjR3Ps3HjRs2ZM6f2dUpKihYuXCiv12vNMAwANmIABQAArlFaWqor\nV66oUaNG2rlzp8aOHau2bds6tv5/N7HR0dGSvmhi9+7d61gOAHArBlAAAOAajz76qOLi4vTaa68p\nOjpab775prZs2eLY+rY1sQDgNhxCBAAAXKO8vFwjRozQpUuX9Itf/EI+n8/R9Rs3bqx27dpp6dKl\natiwoQIDA5Wenq6CggJHcwCAWzGAAgAA16iqqlJqaqp69uypc+fOqayszEiOefPm6dSpU1q7dq0C\nAgKUmJhoJAcAuA0DKAAAcI3FixcrPz9fjz32mN544w0tX77cSA7TTSwAuBXXsAAAANfo16+fIiIi\nVFxcrOHDhys/P99IDluaWABwGw4hAgAArrFs2TIdP35cZWVlKisrU/v27bVr1y7Hcxw7dkwHDx7U\n7Nmz9corr6hXr15cvwIAd4AtuAAAwDXOnDmj/fv3a8iQIcrIyFBgYKCRHP369dOMGTNqm1i24ALA\nnWELLgAAcI2QkBB5PB6VlpaqRYsWxnLY0sQCgNvQgAIAANe49957tWXLFoWFhSkhIUHl5eVGctjS\nxAKA29CAAgAA66WkpMjj8cjv96ugoEAej0cffPCBsecubWliAcBtGEABAID1IiMjb/pZly5dDCS5\nzpYmFgDchgEUAABYb9y4caYjSLKviQUAt2EABQAAuEO2NbEA4DbcAwoAAAAAcASn4AIAAAAAHMEA\nCgAAAABwBAMoAAAAAMARDKAAAAAAAEcwgAIAAAAAHPH/AF3rYPUR87AOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEuCAYAAAAncUVSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU9f/B/B3IEyZCoggooKoOFCoq61aV3+uunGvuuq2\nruJEcY+itmq1+m2tVetqq3UPHMVatyK4FQUVqyBDZI/k90eaCDIC1pwb9P16njwtyUnOx5t7b+65\n53POkSmVSiWIiIiIiIgKYSB1AEREREREpP/YcCAiIiIiIq3YcCAiIiIiIq3YcCAiIiIiIq3YcCAi\nIiIiIq3YcCAiIiIiIq3kUgdARERERPS+yMaWYr/HEH10EEnxseFARERERCSIQpFd7PcY6kmOEBsO\nRERERESCKJVZUofwxthwICIiIiISRKksfo+DvmDDgYiIiIhIEAV7HIiIiIiISJuSnKqkJ0MtiIiI\niIhIn7HHgYiIiIhIkJLc48CGAxERERGRIEoFGw5ERERERKQNexyIiIiIiEgbpioREREREZF2ikyp\nI3hjbDgQEREREQnCHgciIiIiItKOg6OJiIiIiEgrNhyIiIiIiEgrpioREREREZE2MvY4EBERERGR\nVmw4EBERERGRVmw4EBERERGRNjKOcSAiIiIiIq0U2VJH8MbYcCAiIiIiEoSDo4mIiIiISLsS3ONg\nIHUARERERESk/9jjQEREREQkig5SlRQKBWbPno3bt2/D2NgY8+bNg6urq+b1PXv2YMOGDTAwMEDX\nrl3Ru3fvN6qHDQciIiIiIkFkOkhVCgoKQkZGBrZv346QkBAsWrQIa9as0by+ZMkS7Nu3D+bm5mjX\nrh3atWsHa2vrYtfDhgMRERERkSg6aDhcunQJjRs3BgDUqVMH165dy/V61apV8fLlS8jlciiVSshk\nsjeqhw0HIiIiIiJBdNHjkJSUBAsLC83fhoaGyMrKglyuutSvUqUKunbtCjMzM7Rq1QpWVlZvVA8H\nRxMRERERiaLILv5DCwsLCyQnJ7+qQqHQNBpu3bqFkydP4tixYzh+/Dji4uJw8ODBNwqdDQciIiIi\nIkFkiuxiP7Tx9vZGcHAwACAkJAQeHh6a1ywtLWFqagoTExMYGhqidOnSSExMfKPYmapERERERCSK\nDlKVWrVqhdOnT6Nnz55QKpVYsGAB9u7di5SUFPTo0QM9evRA7969YWRkhAoVKqBz585vVI9MqVQq\n33LsRERERESUj/SQj4r9HpM6p3UQSfGxx4GIiIiISJQSvHI0Gw5ERERERILIFAqpQ3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItJGpmSqEhERERERacMeByIiIiIi0oqDo4mIiIiISKsS3HAwkDoA\nIiIiIiLSf+xxICIiIiISRMYxDkREREREpFUJTlViw4GIiIiISBQ2HIiIiIiISCs2HIiIiIiISCuO\ncSAiIiIiIm1k7HEgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKtFEqpI3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItKKqUpERERERKSVkj0ORERERESkDXsciIiIiIhIKzYciIiIiIhI\nqxLccDCQOgAiIiIiItJ/7HEgIiIiIhKkBI+NZsOBiIiIiEiYEpyqxIYDEREREZEo7HEgIiIiIiKt\n2HAgIiIiIiKtSm6mEhsORERERESiKBUyqUN4Y2w4EBERERGJwlQlIiIiIiLSij0ORERERESkDVOV\niIiIiIhIOzYciIiIiIhIKyUbDkREREREpAVTlYiIiIiISDuFgdQRvDE2HIiIiIiIRGGPAxERERER\naaPkGAciIiIiItKqBKcqldzIiYiIiIhIGPY4EBEREREJwlmViIiIiIhIOzYciIiIiIhIG10MjlYo\nFJg9ezZu374NY2NjzJs3D66urnnKzZw5E9bW1pg0adIb1cMxDkREREREoigMiv/QIigoCBkZGdi+\nfTsmTpyIRYsW5Smzbds23Llz5z+FzoYDEREREZEgSoWs2A9tLl26hMaNGwMA6tSpg2vXruV6/fLl\ny7h69Sp69Ojxn2Jnw4GIiIiISBClUlbshzZJSUmwsLDQ/G1oaIisrCwAQHR0NFavXg1/f///HDvH\nOBARERERiaKDdRwsLCyQnJz8qgqFAnK56jL/0KFDiI+Px7BhwxATE4O0tDRUrlwZXbp0KXY9bDgQ\nEREREQmii+lYvb29ceLECbRt2xYhISHw8PDQvNa/f3/0798fAPD777/j/v37b9RoANhwICIiIiIS\nRhezKrVq1QqnT59Gz549oVQqsWDBAuzduxcpKSn/eVxDTjKlUql8a59GREREREQFSpxQsdjvsVoW\n8dbjeBPscSAiIiIiEoQrRxMRERERkVa6SFUShQ0HIiIiIiJRdDCrkihsOBARERERCcJUJSIiIiIi\n0oqpSkREREREpFVJ7nEouUlWREREREQkDHsciIiIiIgEUSpL7n17NhyIiIiIiEQpwalKbDgQERER\nEQnCwdFERERERKRVSR4czYYDEREREZEgHONARERERERasceBiIiIiIi04hgHIiIiIiLSig0HIiIi\nIiLSiqlKRERERESkFQdHExERERGRVuxxICIiIiIirTjGgYiIiIiItGLDgYiIiIiItGKqEhERERER\nacUeByIiIiIi0qokz6pUciMnIiIiIiJh2ONARERERCSIgqlKRERERESkDQdHExERERGRVhwcTURE\nREREWrHhQEREREREWrHhQEREREREWilK8HSsbDgQEREREQnCwdFERERERKQVU5WIiIiIiEgrNhwK\nERPzUtdVFMre3hJp15pJGgMAmNY8gX0+fSSNof2lLTjW0FfSGACgxdmdON24o6QxfHTqDxxt0F3S\nGACg1bkdyMYWSWMwRB+9iAEAjtTvIWkcn57fjl/rDJA0hm4hGwFAL74TfYgBgOTHaqtzO3Cofk9J\nY2h9fpvk3weg+k521e0naQydr2zSm22hD+es4426SRoDADQ/86venDtLAi4AR0REREREWrHHgYiI\niIiItGLDgYiIiIiItGKqEhERERERacUeByIiIiIi0ooNByIiIiIi0qokpyqV3DWviYiIiIhIGPY4\nEBEREREJwlQlIiIiIiLSig0HIiIiIiLSqiSPcWDDgYiIiIhIEPY4lFDBl9Lw7eZEZGQp4eFqhNkj\nbWBh/mq8+N6TKdi0N0nz98sUJaJjs3FkXVnIDWWYty4BtyMyYWZigI7NzdC7rUWR63b4uA6qje4B\nAyM5Eu89Quic9chKTn2jcj5Lv0R6TDyuLdkIACjzgSeqj+sFA7khstMzcX3pRiRcv6967UNvuI3s\nDQMjIyTdi8TN+WuQnZL78wosY2AAj3EDULqBF2SGhnj4yx5E7ToKALD72AeeM0cj7dlzzedcGj4T\n2SlpqLVwIizcKyI7NS3Pv8+2kQ9cv+gPAyMjJIdH4N6ilXniKUqZavOmION5HO6vWAezii7w8J+g\neU1mYIBSbhVxc/pCKDMz4fpFfwBA7QXjcX3+WmTns93tPqoL9xG9YWCs2gaacgYyVP1yAMr8uw0i\nt+zF43+3gbmLIzxnjICRtSWyU9JwLWAVUiKf5Ppclx5tUL5jC5zpPem1Gg1ggFZQ4iGUuJknnoIo\nlUpMn7oH7lXsMWjwh0V+39ukqxjsPqqLKiN7wcDYCC/vPcT1eQV/V4WVM3EogwY/zsOZPl8h88XL\nXO81c7JHw42LcGnsfCTevJ9vHI6NvVBzjC8MjeV4cfcRLs7+AVnJefflAssZyFB3Sn/Y+1QFADz9\nKxShy7cBAMo1qYN6c4ci5WnsG2+n/Lxr+0WBx2NRyxVy3Np97IOa/qNynbsufOGP7JQ0uH3RA46t\nVLF7fjUIt1ZsgiIjEwBg/1FdeIzsqdnvwuZ9n29M2sqZOpRBwx/n4nQfP83+aWRVCtUnfQ6LSs4w\nMDHG/Q27/9P2U9PVflH2Yy/UGNMdBsZGSLz7CJcD1ud7jBRWrpJvC1Ts/AkMTYwQfzMCVwL+B0Vm\nFhyb1IXPnGEl5hgRcd5y+uwTlP2kPq5MXJLnc8t86A23EX0gM5IjOfwhbs7/Lv/f+ELKmDiUwQf/\nW4Dz/Sblqbtc++awb1ofoZMXFbodRJ83T36+oNB49E1J7nF4b2dVinuRDf9VCQicXBp7VpaFc1k5\nvtmcmKvMZ5+YY0egA3YEOmDLYnvY2RhgyhBrlLExxNKfXsDc1AC7Vjhg80I7nL6cjj8v5j0o8mNs\nYwmvWcNwafIKnOw6GSmPo1FtTI83KufWvz1K162q+VsmN4T3wtEInfc/BPeahrs/7EadOSM0r3vO\nGImwqV/jbI9xSH3yDO6j+uT6PCMbqwLLOHduCTMXR5zrMwEXBk2BS492sPJ0BwBY16qKyF/24Hz/\nyZpHdopqe1jX9MClEf6a59XkNlZwnzoWt2YswuU+I5H25Clch/fPFU9Ryjj37gwrL0/N36kRj3B1\n0HjNI+FCCGKO/onE0BuazwKAlKhoVBnZO892N7KxRI0ZIxE6NRB/d/8yV7nynVvB3MURZ3pPxLnP\np6JCz7aw8nQDANQMGIvHvx3BmZ4TEL5+B7wWTcz1uda1q6JSv4556gMAGXwAFL3hCQDh4TEYNGAT\nDh28Xqz3vU26isHIxhI1Z47A1SnLcNp3PFKjnsFjVP7fVWHlyrVtgvrrZsPUoXSe9xoYG6FmwBjI\njAq+f2Jsa4kPAobg7KSVONxpCpIfx6DWuO7FKufa/iNYVnTEEd/pONpjJuw+qArnVvUAAGW8quDO\nzwcR1MNf8/iv3sX9oqDjMac3PW5tansgYstenO33leaRnZIGp/afwP5jH5wbOBUAkP48AVWG99DU\nVXPmcFyZshynfCcgJSoaVUf1yjemwso5tW2MBvnsn7X8RyAtOg5/95uKC6Pno/rEAf95G+pqvzC2\ntYRPwDCcm/wtgjp/heTH0agxNp/fs0LKOTX/AG49W+Gv4YsQ1G0qDE2N4d63NQCgtFcV3P35AE70\nnKF5/Fcl9bwltyqF6lOGoPqkz4F8rjuNbKxQffoohE1dinM9xyE16hncRub9jS+sjGObpvBeOxcm\n9mVeq9sCVb8aBo8JgwBZ4Re9Upw3s1KKdv2lL5SQFfuhL97bhsOZq+mo6W4EVyfVRUP3/zPHgVOp\nUCqV+ZbfsDsJpa0N4ftpKQDAjfBMtG9qBkNDGYyMZGjsY4qgM3nvKuTHvlEtJNy4j+RHzwAAkb8G\nwbnNR8UuV+YDT9h/WBuRvx3TPKfMykZQmzFIvB0JADB3dkDGi1e9Jok3w5H66CkAIOr3I3D8v8a5\n6izdoHaBZeybNsA/+05Ama1A1stkPAs6DcfWqtesa1VF6Q9qot5Pi+Gzdg5s6lQHAJiWc4ChuRmq\n+Q1D/c1fo/qMkZq6bOvVRdKte0h7/A8A4OnuQ7Bv1TRXPNrKWNetBZv63ni6+1C+29qqtifKfPIh\nwr9ek+ezHv9+RBN/TmUaeOHFzXCk/LsNcpZzaFofUXtParbB06N/o1zrJjCxt0Wpik54evRvAEDs\nmRAYmprAsmolAIBxaWtUnzwYd1ZuzlOfDJUAGEGJqHz/DQXZuuUiOnepg9ZtahTrfW+TrmIo08AL\nL268+g4e/XYUjq0/LlY5EztbODSth8vj878zVu2rQXiy7yQyExLzfR0Ayjaqifjr95H0UHUMhu88\njgptGhWrnMzAAHIzExgaG8HASA4DuRyKdNVd6zJe7rCv54kWvwTgkx+nwc67ap7PLq53cb8o6HjM\n6U2OWwCwqVUVpT+ogQYbF+GD7wM05y7LapUR/ecFZCWlAACenTwPx+YNAAB2DWrn2e/K5bN/FlZO\nvX9efG3/NLIqhTL1a+Pe+l8BAOnRcTgzaOabbjoNXe0XDg1rIf76fST/u+8/2HkMLm3y3sEvrJxL\n+49xd/NBZCYmA0olQuZvwMN9pwGoLhLt63viky1z0PiHGSijx8eIrs9bji0bIf15Am5/m/d3BABK\n1/dC4s17SH2s/v0+nPc3vpAyxna2sGtSH1cn5L1779DiQ6Q/j8e9lT9r3Q4l8bwpmlIpK/ZDG4VC\nAX9/f/To0QP9+vVDZGRkrtePHz+Orl27okePHtixY8cbx/7epio9fZ6NsnaGmr/LljFEUooSyalK\nWJjn/oLiE7Px854kbFtqr3muVhVj7PszFXWqGSMzU4mgs6mQGxatRWhatgzSnsZp/k6LjoORhTnk\npcxypSEVVs7QzAQ1JvXDudGL4dqlea7PV2Zlw7i0FZpsmQ8jG0tcnrry1Wfk6I5Pj46F3MIchuZm\nmm5KUwe7AsuYOpRB2rPYXK9ZuLsCADITX+LpwWDE/Hke1l7V4LXkK5zrOwnGpa0QdyEMt5euR0Z8\nIjzGD9S839jBDhk564p5DrlFqVzxFFbG0MwMlcYNwfWJs+HY4f/y3dYVR32Oh+s3IzslNe9nRcfC\nyMIchqXMcqcOlC2D9Nf+nepypmXLID369W1QAaZl7ZAeEw/kaHimxcTB1KE0Xt6NQM05Y3Fn5SYo\ns7LzxChDVShwFDLUy/ffUJAZ/m0AAGfPPijW+94mXcVgWrYM0qLz/w5e/64KKpf+PB5X/QLz/Xzn\njs1hIJcj6o/jqPx55wLjMC9bGik5jsHUZ3EwsjSHvJRprm73wspF7DmF8q3qod2RFZAZGuDZmWv4\nJzgEAJDxIgmR+/7GkxOXUKZOFXy44stibKX8vYv7RUHH4389bgEg48VL/HMwGDF/XoCNV1V4Lf0K\nZ/tORuL1u6jQsx0e7VTdlHBq2wQmdjaaunLud2lF3D/TXts/Q/yW5fm3mpd3RHpsPCr2aQf7RnVg\nYCzHg8373njbqelqvzB3LI3UHNs9NbqAY6SQchaujjC5ZoUPV02Gqb0NYq/cwbUVqrSUjISXeLj/\nNP45cQll6nig4XL9PUZ0fd56/HsQAMCpXdN8X8+zn8fE5vlNLaxMxvN4XJu6NN/PfrLrCADAse0n\nhW0CANKcN4O6//eeKJF0kaoUFBSEjIwMbN++HSEhIVi0aBHWrFkDAMjMzMTChQvx66+/wszMDL16\n9ULz5s1hZ2dX7HoKbTj069cPsgK6pH7+WXurU58V0LEAg3z6YH47moJm9UxRvuyrzTVxoBWWbUxE\nj0kxsLc1QCMvE4TcyihS3QVtU2W2okjlIAO8F47B9cBNSH+ekG+RjLhEBLUZA6tqFdFwzTScvl9w\nCoRSkaNegwJiUyggy+c1dcxhU77WPPfi6i0khN1G6fq18c/+kwib8upEdH/9Drj4toFMLs/3816P\np6AykMngMXsSHnz7P2TGxudbxLJmNcitLRFzNLjQz3p9u0OWf0ecMluR//ZRKArsulUqFKgysjcS\nrtxE3Pkw2Hq/SqmSlzJTvR1/A8jboHifFfi9v36MFLFcTpZVK6F8l5a4MGz2G8eR51gtpJznF52Q\nHv8Se5uPgaGpMT5cPg5V+rXG3U2HcGbiq0Z9bMhdxF69C6emdbXGRW/puAUQOuXVRVrC1dt4EXoH\nZerXxpN9J2HiUAY+q1XnzuSIKCgys/6tqoDO+jz7RdHK5XqP3BDmzmWRnZSKc0Nnwbx8WdRfN7vA\n8pIr8PdMWeRyBnJDODSsibPjlyM7PRM+c7+A5+huCPt6C85N+lZTNjbkDmKv3kM5PT1GdHneKpIC\n9rfcv/FFKPMfSXHedGhU863FL4IuBkdfunQJjRureo/q1KmDa9euaV4LDw9HhQoVYG1tDQDw8fHB\nhQsX0KZNm2LXU2jDISAgAACwevVqtGjRAj4+PggNDcWJEyeKXZG+cbQzRNjdTM3f0bHZsLKQwdw0\n70F1+HQq/AZb53ouOUWB8f2sYG2pKv/jrpeoUK7wDpzGv6i6/+SlzPDy3iPN86b2pZHxIgnZaem5\nyqc+jYVNTfc85SwqOcPcyR6e4/sCAEzKWENmaAADEyPcWL4FdvVq4OmJiwCAxFsReHknEpbuLqqy\ndraazzOxL43MF0lQ5Kg3/dlzWNeokm+ZtGfP87xf3SPh3PX/ELlxl+Y1GWRQZmfDxqsa5FYWeH5K\nFY+6MaRUKJD+LAYW1T1efZ5dGWQmvnwtnvzLmFd0gWm5sqg4ehAAwLi07b/bwBj3Fq8CANg1/xgZ\n0c/h9cOyf7e7OZLDX3Xd5ffvB1S9MtY5tnuubfD0OYzL2OR6LS06DmnPcj+v/r7SouNQrk0TZMS/\ngMMn9WFoZgoT+9JouGkJHvyk2l4GUKeflQJQDqq0pVC8jxpuXgxAdYwk3XuoeV79Hbx+jKQ9fQ7r\nGnm/q9fL5eTUtgnkpcxQ/4e5mvfUmjMGd/7t/vcc0RlOn9TVxJF497HmvWYOtv8eq7lvEqT8E4fS\nNd3yLefc4gOELFL1NmUlpSJy718o37IeInYHw617c9z64dXd5AJvFrxnZKgNGZw1fxvb5T7m3tZx\nK7cwR/mu/4eIHOcuyABFVjbkVqXw9PBfiNi4G63O7YCtVzXIDA3w4eZFec7hJgWew/Pun/mVyyn9\nuepGyOP9fwIAUh4/Q8LV23Bs0bDQbSZS9RFd4NjUGwBgVMoMiTl/zzT7ft7fs9K13PItlxaTgCcn\nLmnuRj/afxrVhnWGkYU5KnVvgTs/7tW8T98OEbdhvrBv8gEA3Z63iiLtaQysPF/7/X7tN7UoZd5U\ny+1zAEhz3lRmlqybb7rocUhKSoKFxauxkoaGhsjKyoJcLkdSUhIsLS01r5UqVQpJSUn5fYxWhY5x\nqFy5MipXroznz5+jbdu2KFu2LFq1aoXHjx8X9rYSoVEdE4TeyUDkE9UdpJ1HUvBJPdM85RKTFHj4\nNBteVY1zPb/zSApWb1PlRscmZOP3oBS0aWxWaJ2nek/Dqd7TcHrgLNjWckcpl7IAANduLfDsz0t5\nysecDcu3XELYPRxrN1bzeQ9/O4Z/jpxF6Nz/QZmtQG3/YbD1Ul1sW1R2RqmKTki4Fg4AsK5ZBWYu\njgAA586fIubUhVx1xp67WmCZmOALKPdZM8gMDSC3MEfZVh8hJvgCslLSUL5ra9g3U+X/WnhUhJWn\nuyrP39wUHhMGQW6l2pkr9O2gqkihQML5EFjWqArT8uUAAI6dWiPur/O54imozMvrt3Gx22DNAOin\nfxzC82N/aRoNAGBVpwYi12/RlAn94qtcn1W+SytEv/bvz7kNzP/dBjnLxQRfhPNnzXNsgw8R8+d5\npEfHITXqGcr+OwNLmQZeUCoUSLr3EMHtvsDZvqpBlzcWrEVq1FOc7fcVnh07o9oUOAgFDkKJx1Di\n1nvbaACAs339cLavH84PmpH3Owi+mKd87LnQIpXL6fbyjTjdbbymrvSYOIT5r0TMKdUxeGPNLs2A\nuxP95qB0bTdYVFAdg5W7NceTk1fyfOazM2EFlku4GYnyn6qODZncEE5N6yI2NByZyalw69ESzi1U\nFx02VSvAtmblYm+zd5ESoVDgoObvgo7HnN7kuM1KSYVLt/+Dw7/nLkuPirD+99xlVd0NXosnQWao\nSmk1srHA3e934u++U3B20EzY1HTX1FWhS8sC98+ilMsp9UkMXty8D+d2qjEYxqWtYVPLo9D3iHZz\nze+agcon+weofqf+3fcrdWuBf05ezvOeZ2euFVguKug8nFvWh4GJEQDAqZkP4q/fR2ZKKir3aAmn\nf48R66qusM1xoakPwtftFHLeKoq48//+fpdXfa5T50/xPPhCscu8KSnPm0//Llm/m7oY42BhYYHk\n5GTN3wqFAnK5PN/XkpOTczUkiqPIYxx27tyJ2rVr48qVKzAyMnqjyvRJGWtDzBllg0lfxyEzCyjv\naIj5Y2xx/V4GAtYkYEegAwDg4dMs2NsawEie+0sb3MUC079JQJcvo6FUAsO7W6Kmu3F+VeWREZ+I\nqwHfw2fJOMiM5Eh5HI0Qf1UemnX1Sqg9cyhO9Z5WaLmCZKem4+LEZagxsS9kcjkUmZm4MmM10qJV\neYQ35n6HWgsmwsBIjtTHz3B9zipYVquM6tNG4Hz/yciMT8y3DKAaKG3m7Ij6m76GgZEcUbuOIuHK\nDQBA6FeLUXXiYFQe0h3KbAWuzViOzBcvEXsmBI93HsAH6+YCMgMkh7+6G5OZ8AL3Fn6LanP9IJPL\nkfbkKe7OWwGLqu5w8xuFq4PGF1imKMzKOyH9aXS+9QGAhVsFXAtQ/dusqlWG5/ThONvvq3+3wRrU\nXjgBMrkcqVHPNOUe/34EZuXLouHmpTAwkuPxriDEX1FNnxo2YwWqT/0ClT/vAkVGJkKnLS84J44K\nlRGfiOtz18Brkfo7eIqw2asBAFbVK8Nz+hc429ev0HJvQ3r8S1yc9T80XDoaBkZyJD+OxvkZ6wAA\ntp4V4TNrEIJ6+Bda7urXW1BnSj98umshlAolos9dx+2f9gMKJf7+cgXq+PWD54jOUGZn49xXq9H0\nf1PfWvzvioKOx7dx3F6dvARVJw2C21BfKLMVCJ2xApkvXiLuXCie1/VEwy2qVMvkyH8QsXU/ANX+\nGTZ3LeosGg8DuRwpUc9y7Z81pw/D332nFFquMFe+CoTnV4Pg0qUlZDIDhP/wG2pMHfrWt+vbkBGf\niMuz16PB0rEwkBsi+XE0Ls78HgBg41kJdf0H40TPGYWWu78jCMZWFmj2y1zIDAyQcCsCYct+BBRK\nnB2/Al5+/VB9eFcosrNx3m8VGq+fJuU/uUBSn7cy4xNxc95q1FwwSfX7HfUMN+ashGU1N1SbOhwX\nBkwusMzbJMV5MyPhze6eS0Whg1mSvL29ceLECbRt2xYhISHw8Hh1w8HNzQ2RkZFISEiAubk5Ll68\niMGDB79RPTJlQdMI5RATE4O1a9ciIiIC7u7uGD58OGxtbbW97d/3vtReSIfs7S2Rdq2ZpDEAgGnN\nE9jn00d7QR1qf2kLjjX0lTQGAGhxdidON85/WlJRPjr1B442yDs9nGitzu1ANrZIGoMh+uhFDABw\npH7eaRxF+vT8dvxa579PfflfdAtRrceiD9+JPsQAQPJjtdW5HThUv6ekMbQ+v03y7wNQfSe76vaT\nNIbOVzaXtLEEAAAgAElEQVTpzbbQh3PW8UbdJI0BAJqf+VVvzp0lwcF6eadv1qbNha2Fvq5QKDB7\n9mzcuXMHSqUSCxYswI0bN5CSkoIePXrg+PHjWL16NZRKJbp27Yo+fd7smrTQHoenT5/C0dERSUlJ\n6Nu3L5RKJWQyGRISEorccCAiIiIiIhVdjHEwMDDAnDlzcj3n5vYqta958+Zo3rz5628rtkIbDhs2\nbMDUqVPh7+//alDrv42Hkj6rEhERERGRaLqYVUmUQhsOU6eqcm03bdqEuLg4REVFwdXVFVZWVkKC\nIyIiIiJ6l7y9yW/FK9Lg6N9++w3r16+Hm5sb7t+/jzFjxqBt27a6jo2IiIiI6J3yzvY4qG3duhV/\n/PEHTExMkJKSggEDBrDhQERERET0HilSw8HGxkYzF6ypqSlTlYiIiIiI3oAuBkeLUmjDYcKECZDJ\nZIiLi0OXLl3g5eWFGzduwNQ070JpRERERERUOKUO1nEQpdCGQ8+eeeetbt++veb/o6Ki4Ozs/Paj\nIiIiIiJ6B72zPQ7169cv9M1Tp07ltKxEREREREWk0Lr0sv4q0hiHghRh0WkiIiIiIvrXO5uqpI16\nUTgiIiIiItLunU1VIiIiIiKit6ckJ+zIlP8h36hfv37YtGnT24yHiIiIiOidtbnWoGK/p2/YjzqI\npPgMilM4ISEh198NGzZ8q8EQEREREb3LlEpZsR/6okipSufPn8ecOXOQnZ2N1q1bw8nJCb6+vhg1\napSu4yMiIiIiemeU5DEORepx+Oabb7B582bY2dlh+PDh2Lp1q67jIiIiIiJ65yjf4KEvitTjYGBg\nABsbG8hkMpiYmKBUqVK6jouIiIiI6J1TknscitRwqFChAgIDA5GQkIB169bByclJ13EREREREb1z\nFFIH8B8UKVUpICAATk5O8PHxgbm5OebOnavruIiIiIiI3jkleXB0kRoOGRkZaNasGUaOHIkXL14g\nJiZG13EREREREb1zFEpZsR/6okgNh7Fjx+L69etYunQpjIyM4O/vr+u4iIiIiIjeOSV5cHSRGg5p\naWlo3rw5nj59imHDhiE7O1unQe3Zs0enn1+SZGRkSB0CAODly5eS1h8WFiZp/UREJd3razG9j5KS\nknDr1i2kpKQIr1vq31Git6FIg6MzMzOxceNG1KhRA/fu3UNqaqpOg9qxYwc6dOig0zqK4uXLlzh9\n+jTS0tI0z3Xq1EloDF27dkXDhg3h6+sLDw8PoXXnNGzYMEmn4f3xxx8RFRWFDh06oEOHDrCyspIs\nFik9efKkwNdETVqwe/fuAl8TeXxMnTq1wNcWLlwoLA4ASElJQWJiIuRyObZv345OnTrB2dlZWP2r\nVq0q8LXRo0cLiaFfv36QyfLvTv/555+FxJDTzZs3sX37dqSnp2ueE7Vf6Nu2KGgtJtEiIiIQGRmJ\nqlWromzZsgVuI105dOgQ1q5dq9kOMpkMI0eOFFa/+nd01qxZCAgIEFZvYWJjY3MdI6Inv0lISMBf\nf/2FrKwsKJVKREdH44svvhAagxT0KfWouIrUcPDz80NQUBBGjhyJP/74A9OnT9dpUBkZGejUqRMq\nVaoEAwNVp0hgYKBO68zPqFGj4OzsDDs7OwAQfpIDgD/++AOnTp3CqlWrEB8fjw4dOqBt27bCp8S1\ntrbGxo0bc30nH3/8sbD6ly9fjhcvXmDfvn0YN24cSpcuje7du6NBgwbCYlBLSkpCcHBwrt4gURfM\n48ePB6A62SYnJ6NKlSq4d+8e7OzssGvXLiExhIeHAwBCQkJgZmaGunXrIiwsDFlZWUIbDm3btgUA\nbN26FXXr1oW3tzfCwsIk6Z0aO3YsevbsiSNHjsDd3R3+/v744YcfhNWvPkcFBQWhfPnymm3xzz//\nCItBfSG0evVqtGjRAj4+PggNDcWJEyeExZDTlClT0LdvXzg6OgqvW9+2hXotpjFjxmD48OHo1auX\n8IbD5s2bcfToUbx48QKdOnXCw4cPhac9//TTT9ixYwcGDx6MkSNHomvXrkIbDnK5HF27dkVkZCRu\n374NAFAqlZDJZNi2bZuwONRmz56N4OBgODg4SBbH6NGjUblyZdy5cwcmJiYwMzMTWr9USvKsSkVq\nOHh7eyMxMRHbt29HxYoVUbt2bZ0GNWnSJJ1+flEplUrhdy5fZ2BggCZNmgAAfv31V2zatAm//fYb\n2rdvj759+wqLw9bWFrdu3cKtW7c0z4lsOADA8+fP8eTJE8THx8PNzQ2HDx/Gzp078fXXXwuNY+TI\nkXBwcEC5cuUAiG1Qbt++HYCqUbt48WJYWFggJSUFEyZMEBbDxIkTAQCDBw/GunXrNM8PGjRIWAwA\n0LhxYwDAhg0bMHToUACAj48PPv/8c6FxAKp0zhYtWuDnn3/GkiVL8Pfffwutv2fPngCAI0eOYPbs\n2QCADh06CN0WlStXBqA6TtWNulatWmHTpk3CYsjJzs5OkrvqgP5tC31Yi2n//v3YsmULBgwYgIED\nB6Jr167CYzA0NISxsTFkMhlkMpnwi9RZs2bB3Nwcs2fPxqxZs4TWnZ/Q0FAEBQVpbgZKQalUYs6c\nOZg6dSrmz5+P3r17SxaLSPo0S1JxFanhEBgYiMjISHh7e2P37t24ePEipkyZorOgPDw88nRd1a9f\nX2f1vU59J9nFxQVXrlxBjRo1NK8ZGxsLiwMAlixZgmPHjqF+/foYOnQoateuDYVCgS5dughtOEjd\ngPL19YWpqSl8fX0xbtw4zfcwePBg4bEolUrhjZXXPX36FBYWFgAAc3NzSWY6i4uLQ2JiIqysrBAf\nHy9Z/nRKSgrOnDmDWrVq4cqVK7m63UURnc5ZkISEBDx8+BAVKlTA/fv3Jcup3rlzJ2rXro0rV67A\nyMhIkhicnZ2xbt06VK9eXdO4F32zA9CPbaEPazGp72irvwvRv6WA6sbChAkT8OzZM/j7+6NWrVpC\n6586dSp27twJIyMjoamMBXF1dUV6erqkd/kNDQ2Rnp6O1NRUyGQynY+h1RclucdBplQqtQ7W7tmz\np6b7SqlUonv37ti5c6fOgurbt2+erqu1a9fqrL7XNW/eHDKZDK9vGplMhmPHjgmLA1CN92jXrl2e\nO0SPHz9G+fLlhcWR8wc3ISEBLi4uOHjwoLD6IyIiULFiRWH1FWbevHn47LPPUL16dc1zon8Ely9f\njkuXLqFmzZoIDQ1F48aNMWLECKExHD58GIsXL4a1tTVevnyJmTNnomnTpkJjAFSpU0uXLsWDBw9Q\npUoV+Pn5wcXFRWgMly9fRlBQEIYPH449e/agdu3aOu+Zzc/FixcREBCA2NhYODo6Yvbs2cLjiImJ\nwdq1axEREQF3d3cMHz4ctra2QmMA8h8DI/oGiL5si6ysLOzcuRN37tyBm5sbunfvLvyctWnTJhw8\neBBPnjxBlSpV0LBhQ0lu/AQHB2u2Q7NmzYTWPWHCBJw5cwZJSUmwtrbO9dpff/0lNBZAdW0XEREB\nV1dXAJAkVenw4cOIjIyEra0tVq5cCR8fHyxfvlxoDFJYUaX4KXJf3v1OB5EUX5EaDt26dcOOHTtg\nYGAAhUKBnj17YseOHToLqk+fPtiyZUuurisp8v9CQ0Nz/eieO3dOeE59REQEDh8+jMzMTABAdHQ0\n5syZIzSG10VFRWHVqlVCf4SPHTuGX375BZmZmVAqlUhISMDevXuF1Z9Thw4dkJSUpPlbigYlAFy7\ndk1zQVKtWjXh9QOqC5K4uDiUKVMGhoaGksTwuujoaDg4OAit886dO5rJCxQKBf73v/9h2LBhQmOQ\n2tOnT+Ho6IgHDx4AeHWHGQAqVaokPJ5FixbptGe8qKKjo3P1ntetW1d4DFevXsXVq1fRv39/TJw4\nEYMHD4anp6fwOMLDw3Hnzh1UrlwZVatWFV7/8ePHce3aNYwdOxaDBw/G559/LkkvVEBAgF6kKoWH\nh8PU1DTXc1L0hKjPHRcuXEC9evWE1y+FZe7FbzhMuKcfDYcipSq1bdsWvXr1gpeXF0JDQzU5m7oi\nddfVxYsXER4ejg0bNmhyhBUKBbZs2YJ9+/YJjWXSpElo1aoVLl++DAcHB0mmkHuds7Mz7t+/L7TO\nFStWYM6cOdi2bRsaNGggPIc8JymnC965cyd8fX0RGBiouSi7c+cODhw4IGycw5w5c+Dv748ePXrk\nGd8hRQN/xYoV2LZtGzIzM5GWloaKFSti//79QmOYPn06li1bBplMBj8/P7i7uwutf+zYsfj222/z\nvQgSdSdzw4YNmDp1Kvz9/TX7hbrxIMVMQvfu3dOk0kll2rRpCAkJQWpqKtLS0uDi4qLTm24FmTNn\njuYu7pdffokpU6Zgy5YtQmPI2QMUHBwMIyMjODo6ok+fPnnuvuvKypUrNfviihUrMHToUKENhxMn\nTqBZs2aoWrWqZryaWo8ePYTFoTZjxgxJZ0sEAH9/f7i6umLw4ME4fPgwjhw5ovMJePSBPq3LUFxF\najgMGjQIH3/8Me7fv49u3brpfFrQPn364KeffsJHH32Epk2bwsfHR6f1vc7KygoxMTHIyMjQ5I7L\nZDJMnjxZaByAKn/9iy++QEREBBYuXCjZwKEJEyZoLgaio6NRpkwZofU7ODigbt262LZtG7p06SJs\nBqGc9OGCWT1DjHrwZX4pdbqmnoVk2bJlQustyIkTJxAcHIwFCxbg888/l2Saw8DAQEyYMAFpaWmY\nNm0aGjVqJLT+b7/9FoA06Q5q6gvDTZs2IS4uDlFRUXB1dZXswj08PBwNGjRA6dKlNcer6O1z69Yt\n7N+/H/7+/hg/fjzGjRsntH41IyMjVKhQAYBq7J4Ug2HT09Ph4uKCDz74AFevXkVYWBhKly4NPz8/\nYanIcrkclpaWAABLS0vh20E9Duz58+dC6y2Iubk5FixYkGu2RNENmBs3bmiyKGbMmIE+ffoIrV8q\n7+x0rDnvaqrduHEDAHR6d/P//u//AKgOsjZt2mgGgYri4eEBDw8P+Pr6omzZskLrfp1MJkNMTAyS\nk5ORkpIiWY+DetYWADAxMUHNmjWF1m9kZIQLFy4gKysLp06dQnx8vND6Af24YFbPJNS2bVvs2LED\nERERqFKlitDZY9RTfyoUCixZskQTgxQNawCwt7eHsbExkpOT4erqqknrEyHnXUNvb28EBwfj4cOH\nePjwoSR3EMPCwjBr1iw8f/4cTk5OmDNnjvD1X3777TesX78ebm5uuH//PsaMGaPzXur8SDX1aU62\ntraQyWRISUlB6dKlJYvDyckJy5YtQ506dRAaGio8lQ9QTaagPnc2btwYgwYNwpdffin0QrF27dqY\nOHGiZjuITtdq0KABnjx5gi5dugittyDqtLnY2FhJ44iPj4etrS0SExM5OLoEKLThoL6rGRMTAxMT\nE1hZWWHZsmU6n3bxwoULCAgIkHyxmjNnzuD7779HRkaGpstddC776NGjERQUhI4dO6JVq1aSLYzn\n6emJ1atXIzw8HBUrVoSrqytsbGyE1R8QEID79+9jxIgR+Oabb4QPBAZeXTDHxsZi//79uWbvUU+B\nKcqUKVPg7OyMRo0a4dKlS5g2bRoWL14sNIZp06ZhyJAh8Pb2xoULFzBt2jRs2LBBaAyAqhfm119/\nhZmZGQIDA5GYmCis7pyzWVlaWqJdu3aSzHClNn/+fCxZsgTu7u64ffs2Zs+ejV9++UVoDFu3bsUf\nf/wBExMTpKSkYMCAAZI0HPRhcHSNGjXwww8/wMHBAePHj8+1mKhICxcuxNatW/Hnn3/C3d1d6NoF\naklJSQgPD4ebmxvCw8ORnJyM+Ph4oTfDZs6ciaCgINy/fx9t2rRB8+bNhdUN5F2Hx8PDA3fv3oW9\nvT1+//13obEA0IsGzOjRo9G5c2fI5arLUX0Y+yHCOzsda+fOnQGoVi9evnw5KlSogA8++ABTpkzR\n6fzgK1askHyxGgBYv3491q5dq5mvXyT1zE6AKk/YyMgIJiYmOHnyJPz8/ITHM23aNNSrVw8dOnTA\n+fPnMWXKFCHdyzlXSlbP/FDYisEi+Pn5YejQoZLmTj9//lyTs9yyZUuhU/OqGRoaamZRat68OTZu\n3Cg8BkCVQvb06VO0bt0au3btErpYpHpV5sjISISFhaF9+/b4+uuvc/XQiWRiYqIZX1G1alVJpv+0\nsbHRXASYmppKdpyoGytKpRI3btxAdHS08BgmTJiA5ORkmJiYIDg4WPgMV2FhYahVqxYuXLgAd3d3\nzb5x/vx54YOC/f39MXnyZERHR6NcuXLw9/fHgQMHMHz4cJ3XrR5boO4htLa2RkxMDLZv3y60Z1Af\n1uHJafz48ZDJZFAoFHj8+DFcXV2Fj3nIyMiAQqGAkZERMjMzJVloVwrvbI+Dmuj8SJlMJvliNYDq\n36q+WBXt0KFDUCqVCAgIQM+ePVG7dm3cuHFDsoFM8fHx6NevHwCgevXqOHz4sJB69WGl5Ne5urpK\ndqdGvcZI+fLlNbN+3bp1S+hUteo8cTMzM6xfvx716tVDaGiopkdGtJSUFGzfvh3R0dFo1qyZJBfL\nfn5+mhl8mjZtiunTpwttSKkvSORyOWbPnq35TkSmearHQcXFxaFLly7w8vLCjRs38szaIoo6rQ8A\nmjRpInyBQgB49uwZli5diri4OLRu3RpRUVFCjxP1+ib5TRYguuFQu3btPHfVRa2joB5bIGVvYE76\nsA4PkDvVMjExETNnzhQew3fffYddu3ahTJkyeP78OYYPHy7JTFeiCR6a+FYVqeEgOj/S1dUVgYGB\niI+Pl2yxGkB1t2zIkCG5FhASdWdAPcf2o0ePNHepPD09hc9mpJaeno6YmBjY29sjJiYGCoWY9rK+\n3aEBVGNwxo8fDzc3N81z6jvPuta6dWvNgOhz587B2NgYGRkZMDExEVI/AM1FiI2NDe7fv6/ZJ6VY\n0AlQ9YY1adIEFy5cgJ2dHaZPn47NmzcLj6NOnToAgHr16gk7PtTUFx7qnOUHDx7A0tIy11ojupZf\nL0v79u01/x8VFSV0qsecA6FjYmIkGZA6c+ZMfP755/juu+80vfUiZ1VSTwlsbW0t+dS0u3fvxrp1\n63KleIpK/VVnTzx48EBoj2RBPv74Y/Tt21ezDk/Lli2lDgmWlpZ49OiR8HptbGw0k63Y2dkJH9Mq\nFQVKbs9KkRoOOfMj3dzcdJ4f+fz5c01alLm5OebOnavT+goixWJWr7O0tMSKFSs0K4/a29tLEseX\nX36JXr16wcLCAklJScK/E325QwMAW7ZswaeffipJCsbx48cLfX3btm06T5PRlic+a9YsoTMbJSQk\noFu3btizZw+8vb2FX7QDqpnYtm/frrm5IrqXVFvDddSoUVi9erVOY6hfv36hr0+dOlXotKw577Ib\nGxsLH98AAGlpaWjUqBHWrFmDypUrC23g56QPU9OuX78ea9askST1Vy0zMxO3bt1CpUqVJF3Bevz4\n8Zp1eDp16qRZh+fq1avw8vISFod6hkClUom4uDjhs8EBQKlSpTB48GDUq1cP169fR1pammYQvZQ3\nCHVN8a73OJiYmGDgwIE6DuWVr776Cr/99hsuX74Mc3NzPHnyRJJVgz/77DNs374d9+7dQ8WKFdGr\nVy/hMXz99dfYtm0bTp48CTc3N4wZM0Z4DIBqpWpjY2PNCo8zZswQOlBcn+7Q2NjY6O3iXgcOHJAs\nv15NvQCYSOHh4QBUDUwpFqJbtGgR1qxZg6NHj8Ld3R0LFiwQHkNhRA4YL4joaYO9vb1zjY37+eef\nUaNGDaExmJiY4NSpU1AoFAgJCZGsV049Na2tra0m1Vj01LRSpv6qPXjwINeNT6kW7wSAmjVr5pmd\nMDAwUGjjevHixZrUThMTE0n2z5y/5VLPYinSO5+qJJqbmxu++uorxMXFYf78+Wjfvj3q1auHsWPH\nCl1109/fH1ZWVvjoo49w/vx5zJgxA0uWLBFWP6C6uy5Fbu7rtm3bhvXr10vW4/H6HZqcaUKi2dra\nwt/fH56enpq7VlJMvZkf0Rdn+mDGjBmYNm0awsPDMXbsWKGzcqhXPH3x4kWuNVZevHgh6fSbr9OH\nAYeiYti3bx+OHz+Oc+fO4ezZswBUUwffuXMH/fv3FxKD2ty5c7F48WLEx8fjxx9/FD77mpo+TE0r\nZeqv2t69e5Gdna1Z7V6K9SwKI+r8HRMTg6SkJPj5+WHJkiVQKpVIS0uDn58ffv31VyExqKnTyN43\n73yqkmh//vkndu3ahfDwcHTs2BHTpk1DVlYWhg4dKnTV3sjISM3qmi1btpT8Tq6UbG1tJVmKXm39\n+vUYOnQoatasidu3b6N79+6SDo4G9GcRn5z04QJRtFOnTuVZhVWU11dLVv/wS7VaMqkGRdvb2yMh\nIUHToDcwMICLi4vwWH766SfN7GdSunz5MgICAhAbGwsHBwfMnz9f6PgXQD9Sf48ePYqFCxfC2toa\nSUlJmD17Nj766COpw9IQdf6+evUqNm7ciAcPHmgGRBsYGLwXg5Lpv9PLhsOePXvQq1cvNGjQINfz\notN00tPTkZqaCjMzM6Smpr43C5PkpM41zMjIwODBg3PdZRd5t+ju3bvYunUrUlJSsHv3bsnu3AEF\n55OLyCOnvP78808MHDhQkhQl9dTAn3/+ea454Q8cOCA8Fn0n6m6qtbU1GjRogAYNGuDMmTN4+PAh\nvLy8hK47o6YPYwsAYN68eQgMDIS7uzvu3LkDf39/Yavdq3322WcICwtDVlYWlEqlJNPjrl69Gjt3\n7sw1g48+NRxEadmyJVq2bIk///xTLxp076OSnByglw2HgmY9aNWqldA4BgwYgE6dOsHd3R337t3D\n2LFjhdavDypVqpTrv1JZtGgRJk2ahLi4OPz222+S5QoX5n3MI9eHGOLj49G4cWOUL18eMpkMMplM\n2EXRiRMncPnyZezfvx8hISEAVGkxx44dk2TRs4JYW1sLrzMhISHXxXrDhg2F1r9s2TI8ffoU4eHh\nMDY2xrp164Sv+q4PYwsA1SQb6jUcPDw8JJkid/To0cjMzER0dDSys7Ph4OCQa9YtEfR9Bh/R585y\n5cqhd+/eSExMRIcOHVClShU0a9ZMaAzvq3d+HYf3lbm5OSpVqoTk5GQ4OTlh9+7daNeundRhCSV1\n/qF61gdANSPG7du3NXnKou+YaSMyTSg7Oxs3btzItRJtvXr1MHnyZGExdOnSBR9//DE+/fTTXIP8\nfvzxR2ExABCyEGFBqlWrhoSEBJiYmGga1zKZTLLzxD///IN9+/blmvJy9OjRWLlypbAYzp8/jzlz\n5iA7OxutW7eGk5MTfH19MWrUKGExAMClS5ewZcsW9OvXD507d5ZkDRx9GFsAAGXKlMH06dPRsGFD\nXL9+HQqFQpPeJ2p8Vnx8PLZv347p06drpqkVTV9m8MnIyEB4eDiqV6+OoKAgNG3aFEZGRvjss8+E\nxQCoVppfuHAhZsyYgW7dumHIkCFsOAjyzs+q9L5asmQJ5s6dK3k38/tM9B3CkmLs2LFITEzUDFaX\nyWSoV6+e0JVpt23bhjNnzmDnzp2YN28evLy8MHXqVOELsGVkZGDJkiWIiIhAlSpVhK6sXq5cOXTu\n3BkdO3bMd6Cl6Klpx40bh0aNGkk65eU333yDzZs3Y8yYMRg+fDh69eqVa3YjUbKzs5Geng6ZTIbs\n7GxJBsLqw9gCAKhcuTIA1bg9CwsL1K9fX/iU1upejtTUVJiamkoyHqugGXxyNrRFmDRpEpo2bYrq\n1avjwYMHOHjwIAIDA9G9e3ehcQCqMXsymQylS5eWbLHd91EJbjew4VCYKlWqaJ2bnHRLPSD79RVY\nq1atKulgbanFx8fjl19+kTSG1NRUpKamQqFQICMjQ7LB4n5+fhg1ahS8vb1x6dIlTJkyBZs2bRIa\nQ0EXpaKnpi1VqpRmtXWpGBgYwMbGBjKZDCYmJpJdjAwcOBBdunRBXFwcfH19JbnDrQ9jC4DCx2WJ\n0qJFC6xatQrVqlVD9+7dYW5uLqxutYJ60Pv37y908pNnz56ha9euAIChQ4eiX79+wurOydraGtu2\nbUNqair279/Pm6QCKZQldyITNhwK0aJFC/To0UNztwbQvvgV6YbUK7AWhcg8cicnJ/zzzz+S3llu\n1KgRPDw8MH78eMkWaQQAMzMzzQC/Tz75BBs2bJAsFqlVqVIF+/fvzzXlpejxSRUqVEBgYCASEhKw\nbt06ODk5Ca1fzcbGBr/88gsiIyNRvnx5SabH1YexBYV5+fKlsLoOHz6smaWwadOmkqzNVBDRYwtk\nMhkePHiASpUqITIyUpJFKwFgwYIFWLt2LWxtbXHt2jXMnz9fkjjeR3owHPGNseFQiE2bNmHIkCGw\ntLSUOpT3nj6swHrw4EG0adMGKSkpWLlyJW7duoUaNWpgxIgRKFWqlJA8cvV0eRkZGTh06BCsra01\nF4iiB12ePHkSf/31F/bs2YONGzeiRo0amDhxotAYAFW60HfffafJ3zY2NtZsi/dtesGbN2/i5s2b\nmr+lmBY2ICAAO3fuhI+PD8zNzSVrVK5cuRJbtmwRmr73On0YW6AvZDIZRo0ahUqVKml66PRlZWDR\naVPTpk3D2LFjce/ePbi4uEiWkjtr1qwCJ6Mh3eLg6HeUnZ2dXs2M8j7ThxVYt27dijZt2mD+/Plw\ncXHBjBkzcObMGfj7+ws7+UoxI0tB7OzsUKFCBURERCAqKgpRUVGSxCGTyfDo0SM8evRIE9f+/fsB\nvH8Nh02bNuHly5eIioqCi4uLJGlCGRkZaNasGVq2bIkdO3YgJiZGkrRCfbhQ1YexBfpCnZpDwOPH\njzXHyZ07dxAeHp5nFWkRMjIycOvWLVSqVEnTeNLHGQvfRexxeEeZmppKunYBvaIvK7ACqosAdZeu\nm5sbjhw5IjyG11fANTIygqOjI0aMGIHy5csLiaF169aoV68ePv30U4wePVqyH5yFCxciOzsbSqUS\nITcEn54AAB81SURBVCEhqF27tt78+IlOgTh8+DDWrFmjmdFIJpNh5MiRQmMYO3YsevXqhcOHD8Pd\n3R3+/v744YcfhMYAFHyhmpGRIWz/GD16NJKSkgAAQUFBaNasmSRT4+oDqWfoK4zo43Tjxo34/fff\nUapUKSQlJWHAgAHo2LGj0BgAICIiAiNHjtQsXimTyXDs2DHhcbyPRPU4pKWlYfLkyYiNjUWpUqWw\nePHifNM2FQoFhg0bhhYtWqBXr16FfiYbDoXgtGT6w9HREWPHjkVkZCSqVauWa0YMUSIiIvDTTz9B\nLpfjxo0b8PT0RFhYGDIzM4XH4uzsDG9vb/j4+CAkJAQnTpxAnTp1MH36dGzcuFFIDIcOHUJwcDDu\n3r2LzMzMXDOWiDR//ny4ubnhyZMnuH79Ouzt7bFo0SKhMcTHx+P777/XzOw0bNgwWFpaCp+adsOG\nDdixYwcGDx6MkSNHomvXrsIbDmlpaWjevDk2btyIJUuW4O+//xZav1pBF6pDhgwRlr41fvx4fPLJ\nJ7hy5QoUCgWOHj2qV4tEvo+NGPWirtHR0XBwcAAAzTgUUWQymaY30MLCQpLUWwDYu3dvvs9v27ZN\n6GDx95Go6Vi3bt0KDw8PjBkzBvv378d3332HGTNm5Cm3YsWKIq9FxYZDIfT5Dsn7ZvPmzTh69Che\nvHiBzp07IzIyEv7+/kJj+P7773Ht2jVUrFgRt2/fhouLC+bOnStJ78eTJ080A/UrV66MvXv3wtfX\nF3/88YewGJYvX47IyEh4e3tj9+7duHjxIqZMmSKsfrWwsDBMnz4d/fr1w6ZNmzBgwADhMfj5+eGT\nTz5Bp06dcPHiRfj5+eG7774TPjWtoaEhjI2NNQvhmZmZCa0fUK23oh7zcu/ePaSmpgqPoTAi7y5H\nR0ejY8eO+PXXX7Fp0yYMHDhQWN05qVc4V1P3UM6bN0+SeKSyatUqZGRkYMKECZg3bx5q1qyJYcOG\nYdasWULjcHFxwaJFi/DBBx/g4sWLqFChgtD6tTlw4AAbDjom6ix06dIlDBkyBADQpEkTfPfdd3nK\nHDp0CDKZDI0bNy7SZ4qf2JroDezfvx8bNmyApaUlBgwYgKtXrwqPoXr16vD19cXs2bPRuXNnWFpa\nYseOHfD09BQeS2ZmJk6dOoWkpCQEBwcjKysLjx49EnqRduHCBXz77bcYOHAgVq5ciUuXLgmrOyeF\nQoFr166hfPnyyMjIQHJysvAY0tPT0bt3b1SrVg19+/YVOltNTj4+PpgwYQKePXsGf39/1KpVS3gM\nfn5+iI6OxsiRI3H27FlMnz5deAyFETkQNjMzE0eOHIG7uzvi4uIk2TcB1f7p4OCAtm3bwtnZGc+e\nPUNGRobQNU/0wfHjxzXpxt9++y2OHz8uSRwLFy6Ei4sL/v77b80NKH0iOnXrfaRQFv+hzc6dO9G+\nfftcj5cvX2om+ClVqlSe36Y7d+5g3759GDduXJFjZ48DlQjq/EspB3D169evwLQk0XOzL1q0CEuW\nLMGCBQvg4eGBBQsWICQkJM+dRV3KysqCQqGAgYEBFAqFJAs6AUDHjh0REBCABQsWYOnSpUJnq1Gv\n02Bra4sDBw6gXr16CA0NFTbO5HUTJkxAcHAwPD094ebmJkm6pbe3NxITE7F9+3ZUrFhR0lmNpDZk\nyBAcOHBAs7aI6LQxtbi4OM3MPY0bN8agQYPw5Zdfok+fPpLEIxWZTKYZ45KZmSnZBbJcLtfrbS/V\nufx9ootdz9fXN89im6NHj9bcsEhOTs6zVsfu3bvx7NkzDBgwAFFRUTAyMoKzszOaNGlSYD1sOFCJ\n0LZtW/Tt2xdRUVEYOnSoJPn0kyZNwowZM7B69WoYGhoKrx9QXazL5XI4OjrmmcLvs88+ExpLu3bt\n0KtXL3h5eSE0NFSyGcj69Omj+RHOeXd71apVBS589bbkTJfbtm2bJIt75RQbG4vg4GA8ePAAsbGx\n8Pb2Fp7HHhgYqBcpbAURebH46aef/n979x4VdZmHAfwZdUBuioIYykUE7y2roJEr4oqYrrtuXsCg\n1DStTMy8pOZlx0siaYd2NXXTTQ09Jagr2SatLdqB5Ui1UTq6ru4RLWzRIIWFGe7D7B+emWK9NR7n\nfd+ZeT6dOUfm52/epw7BfOf7XvDYY48BQKtP9ESfKG4wGFBSUoLw8HCUlJTAaDSisrIStbW1wjKo\nIDk5GePHj0fv3r1x6dIl6xQOItFELY6OiopCfn4+IiMjUVBQgOjo6FbXly5dav3zm2++CX9//7sW\nDQALB3IQ77//PkJCQvDUU08hPDwcffr0EZ7h5z//OR5//HFcuHABo0ePFj4+cHMaSEZGhnXHHAuN\nRoO8vDwhGTIyMqxjd+3aFZ988gn69euHGzduCBn/p/r888/tPoblhOqcnBzs3LkTDQ0NAOR9Yrdg\nwQKMGzcOiYmJKC4uxtKlS7Fjxw6hGf7xj39YC6inn34aU6ZMETr+vYheCHs7ok8U1+l0WLJkCcrL\nyxEYGAidTofc3FzMmTNHaA7ZkpKSMGrUKFy5cgXBwcFSDgV0BJyqZH+iFkenpKRg2bJlSElJgVar\ntW4dv2fPHoSEhGDUqFE2vyYLB3IIhw8fRklJCU6cOIG9e/fC398fW7duFZ5D9idUlv/p58yZg8zM\nTOuaBpE/6H98knpYWJiyu4+J/G/y9ttv46233pJ6kreFZSu9vn374q9//avw8X88hc0yxVCku03X\nS09PF74QVgXl5eU4dOiQ9TwLAFLWv8iyaNGiO34fuuIBaGVlZXe81q1bNyxZskRgGtck6reTh4cH\ntmzZcsvzM2fOvOW5F1988Se9JgsHcgj/+te/cPLkSXz66acAWr95dUVZWVnYuXMnunTpInxsR9lt\nTOQb1uDgYISGhgob70569uyJI0eOWE8q9vX1tX66HRYWJiTDuHHjpE5hs4y3f/9+DBo0CFFRUThz\n5gzOnDkjNIdKioqKsHnzZsTHxyMxMRHBwcGyIwnFHYJaW7hwIQCgqqoKRqMRvXr1wsWLF+Hv74+c\nnByXXpdE98bCgRzC1KlTERwcjIULF2LEiBGy40jXqVMnKafx0u21b98es2fPRr9+/aQeFnnp0iV8\n+eWXWL16NYKCgtCpUyfodDpoNBphZxc888wziI2NxaVLl5CYmIjevXsLGdfCsqXgnj178OyzzwK4\nudvU7T5hcxW/+93v0NjYiOPHj2PdunVoamrCO++8IzuWMI888giAmyc2Hzt2rNXuc5ZrriQ7OxsA\nkJqaio0bN8Lb2xu1tbU84FYgUVOV7IGFAzmEzz77DMXFxSgsLMTu3bvh5+d3y+JgV2D5d25sbOSp\n5vcgcqqSKsVsSkoKNm/ejF/84hf497//jcmTJ2PChAlCxv7x2heLc+fOAZDzvVlbW4uioiL87Gc/\nw1dffWVdf6ICGXPI9Xo9CgsLcf36dYwZM0b4+CpYvHgxhg8fDn9/f9lRlHDt2jV4e3sDADw9PVFR\nUSE5ketw5GUkLBzIIVRXV+O7775DWVkZ6urq0K1bN9mRpLBMNxE17cQRmEwmZGVl4eLFi+jRowdS\nUlLg5uaGTZs2CcugyvStzMxMHD58GF5eXjAYDHj66aeFFQ6W6YMVFRVwd3dHhw4d8MYbb+CZZ54R\nMv7/S0tLw+uvv47Lly+jV69e2Lhxo/AMBoMB27ZtQ0lJCXr06IG5c+fC19dX+Ini48aNQ9++fZGU\nlIS0tDQpp92roH379nbfac2RxMbGYurUqXj44Ydx+vRpKbsVuipRuyrZg8bM5fPkACZNmoSEhASM\nHj0avXr1kh2HFLJixQr4+PhgyJAh+Pzzz1FVVSW0aFBJcnJyqy1hn3zySbz33ntCM0yePBm///3v\nERISgitXruCVV17Bu+++K2x8y5bFjY2Nt1wTff7L/PnzMXjwYOv3ZlFREd566y2hGQBg+/btOHLk\nCJqbm2E2m6HVanHs2DHhOWSxrPPZunUrfvnLX2LAgAHW7pirfwhz9uxZfPPNNwgPD0ffvn1lx3EZ\n0/1++oFrFnuvb7ZDEtux40AO4fDhw7IjkKK++eYb6xvThIQEl14IGRwcjNdeew2DBw/GF198gZCQ\nEOEZtFqtddzg4OBWO/mIcLstiy27Ox0/flxolsrKSkyfPh3AzZPnZb1Z/+ijj7Bv3z788Y9/xNix\nY5GZmSklhyw/Pm9l586duHLlCoKCgtC5c2dha39UdO3aNezcuRMXL15EWFgYli9fLu3wSlfjyJ/Y\ns3AgIofW0NCAuro6eHh4oL6+HiaTSXYkadLT05GdnY2TJ08iPDwcixcvFp6hW7dueOONNzBw4EDo\n9XoEBAQIHd+yveaJEydgNptRWVkpbb/+hoYGVFRUoEuXLvj+++/R0iJngkJAQAACAgJgNBoRExMj\nZStrmSznreTm5rZaAzRp0iTJyeRatWoVUlJSrB2xlStXulxRKQsXRxMRSTJ9+nQ8/vjj1i0F58+f\nLzuSNO3atbOeoi1Leno69u/fj/z8fISHh2Pu3LlScuTn5+PVV1+Fj48PamtrsW7dOsTExAjN8NJL\nLyE5ORne3t4wGo149dVXhY5v4ePjg7y8PGg0GmRlZaGqqkpKDtlkrgFSUUNDg/UAsISEBJfaaUs2\nR14kwMKBiBzab3/7W8TFxeHbb79FUFAQfH19ZUdyae7u7pgxY4bsGNi6dSsOHDiAzp07o6KiAqmp\nqThw4IDQDMOGDcPf/vY3VFVVST2leP369SgtLcWiRYuwZ88erFq1SloWmTQaDby8vAAA3t7ecHd3\nl5xILpPJhAsXLqBPnz64cOGC7DguxZEXR7NwICKHdubMGaxevRoVFRXo3r071q5diz59+siORZJ5\neXlZ36x36dIFHh4ewjOo0PUAbr5J7t+/PwDglVdeET6+KlRYA6SSVatWYcWKFSgvL0fXrl2ldcRc\nUYsDtxy4qxIRObTk5GSsX78eERERuHDhAtauXSt8JyFSh+Wsk6+++gqenp6Ijo6GXq9HQ0MD/vSn\nPwnNkpSUhB07dkjtetAPmpubkZ2djZKSEoSHh2PKlCnQarWyY5ELSvK1fUrtwaotdkhiO3YciMih\nubu7IyIiAgDQp08fvhFwcbc768Qyjxu4eXiiqG1ZVeh60A9UWAOkgvnz52PLli2IjY295VphYaGE\nRK6Hi6OJiATLzs4GcPPNwJo1azBkyBDo9XrrSajkmu51GN/s2bPtvgWnpethMpnw/PPPW7seos+R\nILqdLVtufnL9+uuvY+jQoZLTuCazA2/IysKBiBxSRUUFAGDQoEEAbh7y5OPjg379+smMRYoTMTtX\npa4H0Z1s3bqVhYMk7DgQEQk2b968u15PTU3Ftm3bBKUhR2E5FM6eVOh6EN2LRqNBamoqwsLCrAc1\nLlq0SHIq18BdlYiIFFNdXS07AtFtcU8SUsHkyZNlR3BZjvwzoI3sAERE9iDik2VyPCr8wub3Jqlg\n/PjxaG5uRmlpKbp164YRI0bIjuQyWu7joQoWDkRE5DIsO3ARubrVq1ejrKwMJ0+ehNFoxLJly2RH\nIgfAqUpEROR0pk2b1uqTfa1Wi4ceeggvvPCCxFQ3qdD1ICotLUVaWhq++OILxMfHY+fOnbIjuQxH\n/hnAjgMROaWOHTvKjkASBQUFYfz48VizZg0mTJgAT09PDBw4ECtXrpQdjV0PUoLJZMKNGzeg0Whg\nMBisC6TJ/hx5qhI7DkTk0JYvX97qa8sny+vXr5eUiFRQVlaG9PR0AEDPnj3xl7/8BUlJSThy5Iiw\nDCp3PYgWLlyIJ554AlevXkVycjJWrFghO5LLaGHHgYhIjoaGBgQEBGDcuHHo3r07vvvuOzQ2NnK+\nrotramrC3//+dxgMBhQUFKC5uRlXrlxBXV2dsAwqdz2IKisrYTKZEBoaivr6erS0qPS5tnMz38c/\nqmDhQEQO7caNG1i4cCGGDx+OefPmoampCQsWLEBNTY3saCTRa6+9huzsbCQlJeHPf/4zNmzYgFOn\nTt3SobKnsrIyJCUloWfPnpg0aRIMBgOSkpJgMpmEZSC6k+3bt+PgwYM4evQosrKy8Ic//EF2JJfB\nqUpERJIYDAaUlJQgPDwcJSUlMBqNqKysRG1trexoJNEnn3yCtLS0VmtdgoODhWawdD0GDRqEL7/8\nUkrXg+hOfH194efnBwDw9/eHt7e35ESuo0WhDoKtNGZHXtpNRC5Pr9djzZo1KC8vR2BgIHQ6HfR6\nPfz9/TFmzBjZ8UiS3bt348MPP0RYWBimTJmCmJgY4RlKS0uxadMmlJSUoHfv3nj55Zdx6tQpBAYG\nYvDgwcLzEP1Yamoq6uvrMWTIEPzzn/9ERUUFHnnkEQA8QdreRng+b/M9+bU77JDEdiwciMih5eXl\nIT4+njuC0G3p9Xrs2rUL58+fx7Fjx4SOnZmZiQkTJnCHL1JSTk7OHa9NnDhRYBLXE+f5nM33FNSq\nsV0upyoRkUMrKirC5s2bER8fj8TEROHTUUhN9fX1OHbsGN5//32YzWa8+OKLwjOYTCbMnDlTateD\n6E5YHMjDqUpERBI1Njbi+PHjOHz4MJqamvDOO+/IjkSSPfbYYxgzZgwSExMRGhoqNYvMrgcRqecX\nnrNtvudk7dt2SGI7dhyIyOHp9XoUFhbi+vXrXNdAAIDc3Fy0a/fDr7jy8nIEBAQIzaBC14OI1KPS\n9qq2YseBiBzauHHj0LdvXyQlJWHo0KFoamqCVquVHYsk27x5M/bv34+mpibU19ejR48eOHr0qNAM\nKnU9iEgdMZ7P2HzPZ7W77ZDEduw4EJFD+81vfoMjR47g9OnTMJvN0Gq1nA5COHHiBAoKCrBhwwbM\nnDkTa9euFZ5Bha4HEamnRaPSyQy24TYkROTQPvroI+zbtw9xcXFIT09HeHi47EikgC5dusDNzQ1G\noxGhoaFoamoSnmHbtm149NFHER0djQEDBmDmzJnCMxCRelpgtvmhChYOROTQAgICEBAQAKPRiJiY\nGJ4YTQCAhx56CIcOHYKHhwcyMjJQXV0tPIOl6zF+/Hjk5uaia9euwjMQkXpsLxvU6VBwqhIROTQf\nHx/k5eVBo9EgKysLVVVVsiORAtatW4erV69i7NixyMnJQUZGBgDgP//5D7p37y4kgwpdDyJSj0od\nBFtxcTQROTSDwYDS0lL4+flhz549GDlyJPfLpzuaPn069u7dK2SsVatWYeDAgdDr9ejYsSMKCgpw\n5MgRIWMTkboivZ+0+R694T07JLEdCwciInIZ06ZNw759+4SM1dLSgqtXr6Jjx47IycnB0KFDERER\nIbTrQUTqceTCgWsciIjIZWg0GmFjtWnTBt27d4e3tzemTZuGiIgIAMDy5cuFZSAi9bTcxz+q4BoH\nIiIigdjoJ3JtKhUCtmLhQERELkOFN+0iux5EpB6VdkmyFacqERGR0/n/HYxKS0sBAI8++qiMOERE\nVi2aFpsfqmDhQERETmfx4sXW7kJWVhaeffZZAEBqaqrMWADU6HoQkTxc40BERKSQoUOHYunSpaip\nqUGHDh1w4MAB4Rmampqg1WqtX5eWliIkJIRdDyIXZ4ZJdoT7xo4DERE5jcbGRjQ2NmLy5Mno27cv\nmpubsX79enh4eAjPonLXg4jkYceBiIhIAWPHjoVGo2k1HehXv/oVAOD48eNCs6jQ9SAi9ahUCNiK\nB8AREZHTMZvNuHbtGgIDA6HX6xEZGSls7MbGRuuf9+3bh6KiImzfvh0A4ObmJiwHEakp1Ocxm+/5\npuZjOySxHQsHIiJyOjqdDqGhoZg1axbWr18PjUaDlStXChk7Pj7+lq6HZQtW0V0PIlJPsE+Czfdc\nqcmzQxLbsXAgIiKnk5iYiEOHDlm/fuqpp/Duu+8KzSCz60FE6gryibf5nm9rTth8T319PZYsWYLr\n16/Dy8sLGzduROfOnVv9nd27d+PDDz+ERqPBnDlzMHr06Lu+JhdHExGRU6qsrAQAVFdXw2QSv4vJ\n6tWrkZubCwD44IMPkJaWJjwDEamnBSabH/dj//796N27N9577z1MmDDBOmXSorq6Gnv37kVWVhZ2\n796NDRs23PM1WTgQEZHTSU1NxeTJkzFx4kRMmjQJc+fOFZ7h3LlzmDVrFgBg1apVOHfunPAMRKQe\nM1psftyP4uJiDB8+HAAQFxeHoqKiVtc9PDzQrVs31NXVoa6u7iedas9dlYiIyOmMHDkScXFxqKys\nhJ+f30/6hWgPlZWV6NSpk7SuBxGpp8X84H8WHDx4EJmZma2e8/Pzg4+PDwDAy8sLNTU1t9wXGBiI\nX//61zCZTHj++efvOQ4LByIichrr1q2DTqfDE088cUuxkJWVJTSLpevRsWNH1NTUQKfTCR2fiNR0\nvx2Eu0lKSkJSUlKr5+bNmwej0QgAMBqN6NChQ6vrBQUFKC8vt27aMGvWLERFRd11PRYLByIichqW\nKUkbN25sdWrzf//7X+FZVOl6EJFaRJ0cHRUVhfz8fERGRqKgoADR0dGtrnfs2BHt27eHm5sbNBoN\nfHx8UF1dfdfXZOFAREROw2w24/Lly1i2bBk2bdoEs9mMlpYW6HS6Vrss2ZNKXQ8icl0pKSlYtmwZ\nUlJSoNVqkZGRAQDYs2cPQkJCMGrUKJw8eRJTpkxBmzZtEBUVhWHDht31NbkdKxEROY28vDxkZmbi\n/Pnz6NevH8xmM9q0aYNBgwZhwYIFQjJ8//338Pf3x9dff31L16N///5CMhCRuvy8ou/9l/7PdWOx\nHZLYjoUDERE5nfz8fIwYMeKW5/Py8pCQYPvhS7aoqKiAwWC4peuxbNkyYV0PIlJXZ69BNt9zw/iV\nHZLYjlOViIjI6dyuaACAvXv32r1wOH36NDIzM3H58mXodDpr1yM2Ntau4xKRYzDbYVclUVg4EBGR\nyxDRZE9ISEBCQoLUrgcRqavFDrsqicID4IiIyGWI3Nnobl0PInJdZnOLzQ9VsONAREQkEJcWErk2\nUdux2gMLByIichkqvGnneQ5Erk2lDoKtWDgQEZHTqayshMFggI+PD3x9fa3Pz5w5U2IqIiL7nBwt\nCgsHIiJyGnq9HuvWrUNLSws8PT1hNBphNpuh0+kQFRWF+Ph42RGV6HoQkTzcVYmIiEgB6enpePPN\nNxEYGGh9rqysDC+99BIOHjwoNAu7HkR0O5yqREREpIDm5uZWRQMABAYGCl1X4AhdDyKSh1OViIiI\nFDBixAjMmDEDw4YNg4+PD4xGIwoLCxEXFycsg0pdDyJSDzsORERECpg3bx7OnTuH4uJiVFZWwtvb\nGy+//DIGDBggLIMKXQ8iUhc7DkRERIro378/+vfvL218FboeRKQuR14crTFzewciInIShYWFd7wW\nGxsrLIel62EwGODt7Y2oqCihXQ8iUpe2nZ/N9zQ1X7dDEtux40BERE7jwIEDOHv2LGJiYm65JrJw\nkN31ICJ1OfIaB3YciIjIaZhMJkydOhVpaWno2bOnlAyqdD2ISE3t2nay+Z5mU6UdktiOHQciInIa\nbdu2xaZNm1BbWystgypdDyJSkyMvjmbHgYiIXEZWVhaSk5PtOoYKXQ8iUlfbtj4232My1dghie3a\nyA5AREQkSm5urt3HsHQ9mpqa7D4WETkgc4vtD0WwcCAiIpchqskeHByMPn363PZaVlaWkAxEpCYz\nWmx+qIKFAxERuQwVDmET0fUgIpW13MdDDVwcTUREJBCXFhK5OAf+GcDCgYiIXIYKb9pV6HoQkTwt\n5kbZEe4bpyoREZHT2b59e6uvMzIyAABLliyREYeIyCmw40BERE7j4MGDOHToEEpKSlBQUADg5vao\nzc3NWLx4MSIjIyUnVKPrQUR0P3iOAxEROY3GxkaUl5djx44dmDNnDgCgTZs28PPzg5ubm9As27dv\nx9y5c61fZ2RkYPHixdDr9UoUMEREtmLhQERETqe2thbV1dVo164dsrOzMWHCBHTv3l3I2D/uekRE\nRAD4oeuRk5MjJAMRkT2wcCAiIqcze/ZsJCcn4+OPP0ZERAQ+++wz7Nq1S8jYKnU9iIgeJC6OJiIi\np1NfX49Ro0bh2rVreO6552AymYSN7ebmhqCgICxfvhxt27aFu7s7Dh8+jIqKCmEZiIjsgYUDERE5\nnaamJmRmZmLAgAG4ePEi6urqhGeYP38+zp49i02bNkGr1UKn0wnPQET0ILFwICIip7N06VKUl5fj\nhRdewKeffoqVK1cKzyCz60FEZA/cjpWIiJxOdHQ0goODYTAYMHLkSJSXlwvPoELXg4joQeLiaCIi\ncjorVqzAqVOnUFdXh7q6OoSEhODAgQNCMxQXF+P48eOYM2cOPvjgA0RGRnIbViJyaJyqRERETuf8\n+fM4evQoYmNjkZubC3d3d+EZoqOjMWPGDGvXg1OViMjRcaoSERE5HV9fX2g0GtTW1qJz585SMqjQ\n9SAiepDYcSAiIqfz8MMPY9euXQgICMCiRYtQX18vPIMKXQ8iogeJHQciInIaGRkZ0Gg0MJvNqKio\ngEajwddffy1lbYEKXQ8iogeJhQMRETmNnj173vJc7969JSRRo+tBRPQgsXAgIiKnMXHiRNkRlOp6\nEBE9SCwciIiIHiCVuh5ERA8Sz3EgIiIiIqJ74q5KRERERER0TywciIiIiIjonlg4EBERERHRPbFw\nICIiIiKie2LhQERERERE9/Q/QpkTAwOFubsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Start running datascience methods" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def check_shape(*argv):\n", + " for el in argv:\n", + " print(el.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "this creates training examples and actuals for the model\n", + "if nb_lookback_rows is above 1, X will have examples each of which is a 20 row dataframe\n", + "so the regression model needs to be able to use all those rows to train on\n", + "\"\"\"\n", + "\n", + "def create_training_set(df, nb_lookback_rows=1):\n", + " \n", + " dataX, dataY = [], [] # for training\n", + " \n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the dataset by 20 faculty\n", + " for iRow in range(len(df)-nb_lookback_rows-1): \n", + " \n", + " df_lookback_rows = df[iRow:(iRow+nb_lookback_rows)] # from example 1 to 21\n", + " dataX.append(df_lookback_rows)\n", + " next_row = df[iRow + nb_lookback_rows] #get example 1+20, so the next point that is to be forecasted\n", + " dataY.append(next_row) \n", + " \n", + " return np.array(dataX), np.array(dataY) # convert to numpy arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Use Random Forest for feature importance:\n", + "Check which feature is most important, based on predicting the next closing price using just one example as training\n", + "Do this for each example, and check which features are the best on average\n", + "Looking back more than 1 example for each example requires a decision how to use the features. Do recent examples features get more weight?\n", + "\n", + "- scale all features to range 0-1 for faster convergence\n", + "- use random forest to find best decision tree to explain closing price" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "df_np = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "df_scaled = scaler.fit_transform(df_np) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_training_set(df_scaled, nb_lookback_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,idx_close_bid]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n" + ] + } + ], + "source": [ + "check_shape(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
close_bidavg_priceohlc_pricehigh_bidlow_bidopen_bidlast_10_tick_avg_bo_spreadlast_10_tick_avg_bid_returnrangeavg_bo_spreadnb_tickspcaoc_diffperiod_returndayhourweekday15_minmonth
00.9355660.026430.0197240.014650.0025170.0005040.0000920.0000880.0000630.0000580.0000540.0000520.000040.0000390.0000380.0000380.000020.0000180.000008
\n", + "
" + ], + "text/plain": [ + " close_bid avg_price ohlc_price high_bid low_bid open_bid \\\n", + "0 0.935566 0.02643 0.019724 0.01465 0.002517 0.000504 \n", + "\n", + " last_10_tick_avg_bo_spread last_10_tick_avg_bid_return range \\\n", + "0 0.000092 0.000088 0.000063 \n", + "\n", + " avg_bo_spread nb_ticks pca oc_diff period_return day \\\n", + "0 0.000058 0.000054 0.000052 0.00004 0.000039 0.000038 \n", + "\n", + " hour weekday 15_min month \n", + "0 0.000038 0.00002 0.000018 0.000008 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "feature_dict = OrderedDict()\n", + "for f in range(X.shape[1]-1):\n", + " #print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + " feature_dict[column_list[indices[f]]] = importances[indices[f]]\n", + "display(pd.DataFrame([feature_dict]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Try linear regression\n", + "- sklearn requires numpy arrays as input\n", + "- check how close we can get with linear regression\n", + "- resources: http://bigdata-madesimple.com/how-to-run-linear-regression-in-python-scikit-learn/\n", + "- problem: my features are note independent of each other, eg ohlc price, open bid, close bid etc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJLCAYAAACv2/w2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYlGX+x/HPcFJOaSoGC6FB2pE0WWrVTNYy8ZRHRHE1\n0rLM0kozO3j45TGzg6FZuVusrlaaaCBFlmlrZi6xyVJpmpY1E4N4SIeDDsj8/nBnVuQgKgMDvF//\n5Dz3/Tzzzfu69pr9dN/fx2Cz2WwCAAAAAAAALpFbXRcAAAAAAACAhoGgCQAAAAAAADWCoAkAAAAA\nAAA1gqAJAAAAAAAANYKgCQAAAAAAADWCoAkAAAAAAAA1gqAJaKCmTZumv/3tbxWOXXPNNTp69KhT\nvz83N1fDhw936ndcqtr4ezhbcnKyHnjggQrHnnnmGX355ZflrmdnZ6tHjx7OLg0AAAAAaoRHXRcA\noGG64oor9O6779Z1GfXG3Llz67oEAAAAALhkBE1APffee+9p5cqVcnNzU6tWrTR9+nRdddVVkqRv\nvvlGw4cP1+HDh9WuXTu9+OKL8vHxKXP/G2+8ofXr18vDw0Nt2rTRggUL5O/vX+n3jRo1SuHh4fr2\n22917NgxDRgwQBMnTpTRaNTIkSMVHh4uk8mkBQsWaMyYMfrmm29UUlKiF154QVu3bpW7u7tuvvlm\nzZw5U15eXlq2bJk2bdqk0tJSBQcHa+bMmbriiivKfOfw4cOVkJCgmJgYSdKiRYtks9mUkJCgJ598\nUseOHZMkde/eXY8++mi5mrOysjRnzhwVFRXJ09NTU6dOVefOncvMWbp0qdLS0uTu7q6rrrpK06dP\nV0BAgDZt2qRly5bJYDDI3d1dU6dOVVRUlCwWi+bOnau9e/equLhYnTt31tSpU+XhUfX/rObl5Wns\n2LE6dOiQgoODNXv2bAUEBGjUqFEaOXKkYmJitHr1av3973+Xn5+f2rdvX+XzAAAAAMCVcHQOqMd2\n7Nihv/71r1qxYoVSUlLUr18/TZgwQTabTdKZ42tvv/22Pv74Y+Xm5mrTpk1l7t+8ebOSk5P13nvv\naePGjQoJCdE//vGP837vb7/9pnfeeUfr16/Xhx9+qC1btkiSzGazHnroIX388ccKCAhwzF+9erW+\n++47ffDBB9q4caMKCgr04YcfasOGDdq7d6/Wrl2rDz74QN27d9ezzz5b7vtiY2O1fv16SdLp06eV\nkpKi2NhYrVmzRiEhIVq/fr1WrVqlgwcPymKxlLm3uLhYEyZM0IQJE7Rx40bNnj1b8+bNU2lpqWPO\nunXrtG3bNr3//vtKTU1Vu3btNG3aNEnSwoULNXPmTCUnJ2vSpEnauXOnJGnevHm64YYblJycrA0b\nNujYsWN6++23z/t399NPP2nGjBlKTU1V+/bty+1k2r17t5YsWaJ//OMfWrdunTw9Pc/7TAAAAABw\nFexoAuqxbdu2qU+fPmrRooUkafDgwZo7d66MRqMk6c4775S3t7ckqV27duX6Ee3YsUMxMTFq1qyZ\nJOmpp56q1vfGxcXJ09NTnp6eiomJ0RdffKF27drJw8NDHTt2LDf/yy+/1IABA9S0aVNJ0iuvvCJJ\nmjRpkrKzszVkyBBJUmlpqYqKisrd37t3by1cuFB5eXn6/vvv1aZNG7Vt21bdunXTuHHjlJOToy5d\numjy5MnldmPt3btXbm5uio6OliTdeOONSk1NLTPnn//8pwYPHuzY7TV69Gi9/vrrslqt6tu3rx5+\n+GF1795dXbt21f333y9J2rp1q7Kzs/X+++9Lkk6ePFmtv7suXbqoTZs2kqShQ4dq6NChZcZ37Nih\nrl27OoK6uLg4ffHFF9V6NgAAAADUNYImoB6z71w691pJSYkklTnGZTAYys13d3eXwWBwfD5x4oRO\nnDihkJCQKr/37OfabDa5uZ3ZHOnl5VXh0bFzrx0+fFilpaUqLS3Vfffdp/j4eEmS1WrV8ePHy93v\n4+OjXr16aePGjfrmm28UGxsrSbrpppu0efNm7dixQ1999ZViY2O1dOlSderUqdJ/R+lM+BQWFlbm\n3+FspaWljr/Dxx57TEOHDtUXX3yh5ORkvfnmm0pOTlZpaakWL16s8PBwx9/dud9TEXd39zLfe+7f\nzbnrdPZ8AAAAAHB1HJ0D6rHbbrtNH374oWOn0rp169S8eXPHjpnz6dKliz755BPl5+dLkhITE5WU\nlHTe+1JSUlRaWqrjx4/ro48+Ou9b0Tp37qyNGzfKarWqtLRUs2bNUlpamm677Ta9//77ju9fvHix\npk6dWuEzhg0bpuTkZH3zzTfq1auXpDO9ml577TXdeeedeuaZZ3T11Vfr559/LnNfWFiYDAaDtm/f\nLkn67rvvdM8995Q5OnfbbbcpOTlZhYWFkqSVK1cqKipKbm5u6tGjhwoLCzVixAjNnDlT+/fvV0lJ\niW677TYlJSXJZrPJarVq/Pjx1Tp2uHPnTv3222+SpHfeeUe33357mfEuXbpo+/btMpvNkuQ4MggA\nAAAA9QE7moB6rGvXrkpISHAEJy1atNAbb7zh2GF0Pt27d9ePP/6oESNGSJKuvvpqzZ49+7z3nTx5\nUkOHDlVBQYHi4+PVuXNnx3G9igwfPlwmk0mDBw+WzWbTLbfcolGjRsnNzU25ubkaNmyYDAaDgoKC\ntGDBggqfceONN8rDw0O9evVSkyZNJEn33HOPpk2bpn79+snLy0vXXHON+vXrV+Y+Ly8vJSYmat68\neVq4cKE8PT2VmJgoLy8vx5yhQ4cqJydHsbGxKi0tVZs2bbRo0SJ5eHjo6aef1pQpU+Th4SGDwaB5\n8+bJy8tLzzzzjObOnav+/furuLhYXbp00X333Xfev7v27dvr6aef1uHDhxUWFqbnnnuuzPg111yj\nJ554Qvfcc498fX110003nfeZAAAAAOAqDLaKzt4AQCXOfjsaAAAAAABnY0cTgDK++uorzZ8/v8Kx\nW2+9tZarqX/i4+NVUFBQ4diqVavk5+dXyxUBAAAAQO1hRxMAAAAAAABqhFObgWdlZWnUqFEVjhUV\nFWn48OHav3+/49obb7yhuLg4DR48WGvXrnVmaQAAAI1OZb/NPvvsMw0ZMkRxcXFas2ZNHVQGAAAa\nCqcdnVu+fLlSUlLk7e1dbiw7O1szZ85Ubm6u49rOnTv1zTff6J133lFRUZHeeustZ5UGAADQ6FT2\n26y4uFjz58/X+++/L29vb40YMUI9evRQq1at6qhSAABQnzktaAoNDVViYmKFryq3Wq1aunRpmbEv\nvvhC7du314QJE5Sfn1/pK87PlZdnqbGaAQCAa8g0Z2jatilKilmlli39dGWzK+u6pHqvst9m+/fv\nV2hoqJo1ayZJioyMVEZGhnr37l3l82w2mwwGg9PqBQAA9ZPTgqZevXpV+rrzyMjIcteOHTum3377\nTa+//rqMRqPGjx+v9PR0fsAAANCImCxnfjtM2zZFC7otkiQNem+Qvh73dV2W1SBU9tssPz9f/v7+\njs++vr7Kz88/7/MMBgP/wc/FBAT4syYuhjVxTayL62FNXFNAgP/5J1XAqT2aLkTz5s112223ycvL\nS2FhYWrSpImOHj1a12UBAAAnsAdKZ39OP5Cm+LRYSVJSzCpFBkYp2D9E6+PW10WJjYafn1+Zt2UW\nFBSUCZ4AAAAuhMsETZGRkdq2bZtsNptyc3NVVFSk5s2b13VZAACghpksRiWkj3SETZnmDA36oK/u\n/yRBhcWFkqRg/xDHfI7NOVd4eLgOHjyo33//XVarVV9//bVuvvnmui4LAADUU047Oneu1NRUFRYW\nKi4ursLxP//5z8rIyNDQoUNls9k0Y8YMubu711Z5AACglgT7hygpZpWkM6HT41snysPgqeU9kxQR\n0KFMyATnOfu32bRp0zR27FjZbDYNGTJEV1xxRV2XBwAA6imDzWaz1XURl4JznAAA1A/2HUzB/iFl\nmn3bVRYwXWx/ADgfv8NcCz1OXA9r4ppYF9fDmrimi/0NVms7mgAAQONishgd4ZHJYtSw1IHycPPU\nS9GvOpp9s3sJAACgYXGZHk0AAKDhOLcPk7kgxxEyRQZGOZp9AwAAoGEhaAIAADXm7ONxSTGrFOwf\nIpPFqGnbpjhCJvs4AAAAGh6CJgAAUCPO3sV09rE5e+jEDiYAAICGj6AJAABcNPsOJqns2+TOPjZn\nHwMAAEDDR9AEAAAuSvqBNEeglGnOkHQmUDr72BwAAAAaF4ImAABwwdIPpGncJ/dqcuRUmQtyNDil\nnyNsktjBBAAA0Fh51HUBAADA9Z3d5NtkMWr69qd1hU+QIgI6KNg/RMl3b6QHEwAAAAiaAABA1TLN\nGXp860RJ0uq+a2UuyFFuYY7e7Pm2Y+cSIRMAAAAkgiYAAHCWs98WZ/88bdsUvRT9qgJ9gxw9mNYP\nSCNcAgAAQDn0aAIAAJLOhEoVvS0uKWaVIgOjygRQhEwAAACoCEETAACNmMliLBMsTY6cWq6RN429\nAQAAUF0cnQMAoJHKNGdo4mfjVVhcpLE3jtPfvn1TR07mlTkWd+5ROgAAAKAq7GgCAKARSj+Qpvs3\nJeiX47/IVPCrnts5XYeKzJp/26IyIdO5R+kAAACAqrCjCQCARsIeGCVmvqIV37+lEpU4xlp7X6FF\n3V9RTFhfxzV7fyZ2NAEAAKC6CJoAAGgE7MfkzPlmWUpOyCCDJnWcon/sSdKzt85SdGiPCgMlQiYA\nAABcCIImAADqsap6KNl3MGXnZWn+v+boSNERWUpOSJICvFsrIWKMEiLGECYBAACgxhA0AQBQT9l7\nKCXFrJL0v91HJotR6/eu09p97+rYyaM6UnRYo667V6t/WKEZt87W5U0vr3QHEwAAAHApCJoAAKin\n7D2UJGlY6kCt6b9BknTn2tt15ORhDWsXr+R9a1SiEq3c/bYW3v6yRt4wui5LBgAAQANH0AQAQD0W\n7B+iTHOGDp74WeaCHO0wfakjJw+rmVdzZR/J0lsxKyVJAT6tHW+TAwAAAJzFqUFTVlaWFi1apJUr\nV5YbKyoq0r333qu5c+cqPDxckjRo0CD5+flJkkJCQjR//nxnlgcAgEs7X/8le8i0w/SlWvtcoT1H\nduv5r+doUscpSogY45jLETkAAADUFqcFTcuXL1dKSoq8vb3LjWVnZ2vmzJnKzc11XDt16pRsNluF\noRQAAI3N2f2Xzg2KTBaj+q/vpSFXx+m1rMUqthXLTW5a9PXzCvBurU2/fOQImip7BgAAAOAMbs56\ncGhoqBITEyscs1qtWrp0qcLCwhzX9uzZo6KiIo0ZM0ajR4/Wrl27nFUaAAAuz95/6eyAKP1AmlZ9\nt0KJma/ImP+rFu9apIc6TFKgT5D+4BcsH09vLb8rSav7rlWwf0iFzwAAAACcyWk7mnr16iWj0Vjh\nWGRkZLlrTZs21dixYxUbG6uff/5Z999/v9LT0+XhQRspAEDjZD8aJ0k7TF/quZ3Ty4xf7tVSCRFj\nqjwmR8gEAACA2uQyKc5VV12lNm3ayGAw6KqrrlLz5s2Vl5enoKCgui4NAIBaZ7IYlZT9lpbselmn\ndbrMWHOvyzXx5se1dt+7kgiTAAAA4DpcJmh6//33tXfvXs2aNUu5ubnKz89XQEBAXZcFAECtMlmM\nMhfkqH9yjEpUXGasa+Dt2n9inxbe/pJiwvpqUPshhEwAAABwKbUWNKWmpqqwsFBxcXEVjg8dOlRP\nPfWURowYIYPBoHnz5nFsDgDQaNgDptEfjtBx6+/lQqZh7eK1pOfryjRnaNq2KYoI6EDIBAAAAJdj\nsNlstrou4lLk5VnqugQAAC6ayXKmn2Gf5DtVaC3U8eLfy4z3aztA3x79j7w9fBxNvk0WY6MKmQIC\n/Ou6BFSC32GuJSDAnzVxMayJa2JdXA9r4pou9jcYW4YAAKgD9oCpX3Ivjb1xnHIKfpPbf18G2zXw\ndm03/1Mzbp2thyMnOebaw6XGFDIBAACgfiFoAgCglpksRsWnxSqiZQeZCn7V5oOfSJJ8Pf005oZx\nSogYI3NBjiIDoyQRLAEAAKD+cKvrAgAAaExMFqOy87J04tQJrd33jgwy6NBJs4a1i1eI/5WKCeut\n+LRYBfry1lUAAADUP+xoAgCgFkzbOkWHCnP1Td6/deRknt7s+bYkKcCntQJ9gxy9lwAAAID6jKAJ\nAAAnyTRnaM+R3drx25das2+14/rL3ZcoJqxvufn2I3L2pt8AAABAfUPQBABADTNZjNr6y2ea8vkk\nndZphfhdqWHt4iVJ90aMdfReqgwhEwAAAOorgiYAAGpQ+oE0Pf3FVB0qzFWpSiVJY24Yp0HthxAg\nAQAAoMEjaAIA4BKkH0jTkaIjig7toa2/fKZpX0yWrdSm529/Sde2vE57juxWdGgPJaSPVFLMKsIm\nAAAANGgETQAAXASTxaj1e9fpuZ3TJUktm7ZSfrFFC257Ude2vM5xPM7+T0ImAAAANAYETQAAVIPJ\nYlSwf4gyzRnKKzyk6duflrngNzX3ulxuBjdd3qSFXo5OrLDJt0TfJQAAADQOBE0AAJzDHiqd/Tk2\nZaA6tf6jNux/X6WlpQrwba0no57VgozZCvINVuIdy87b5BsAAABo6AiaAAA4i8lidPRTskvKfksH\njv+oH4/vlbe7j1r4NNORosO6+vKrFerflpAJAAAA+C+CJgAA9L9dTMH+IVrQbZG2/vKZlu56VSes\nx3WoKFduBnfJJhWdLtS49g8pJqy3IgOjFBHQgWNxAAAAwH8RNAEAGj2Txaj4tFiNixiva1tep/s3\nJciY/6su92opSWrVpLWaejaRu8FDA8OHaKtpsxIixkii9xLqh9LSUs2aNUs//PCDvLy8NGfOHLVp\n08YxnpKSorfffltubm4aMmSI4uPj67BaAABQnxE0AQAaLZPF6PhzboFZj33+sCSD/D39JUm/W4/K\nJpsmdZxSJlhKsIwhYEK98umnn8pqteq9997Trl27tGDBAi1btswxvnDhQm3cuFE+Pj7q27ev+vbt\nq2bNmtVhxQAAoL5yq+sCAACoC+kH0hSfFquea6I1/6s5OnrqyH9HbLIUn9DlTVrope6JCvQJUtpP\nKZL+t3uJkAn1TWZmprp16yZJ6tixo7799tsy49dcc40sFousVqtsNpsMBkNdlAkAABoAdjQBABqd\n9ANpuu/jexR1xZ+0++h3WrNvdZlxd7mrWZNmig7toWtbXqfHt06so0qBmpGfny8/Pz/HZ3d3d5WU\nlMjD48xPwXbt2mnIkCHy9vZWz549ddlll1XruQEB/k6pFxePNXE9rIlrYl1cD2vScBA0AQAaBZPF\nqOy8LB0pOqJ5O5+T1WbVdvM/HeNucpNN0kvdX9W1La9ToG+Qozn46r5r2cWEes3Pz08FBQWOz6Wl\npY6Qac+ePdq6das2b94sHx8fPfHEE/roo4/Uu3fv8z43L8/itJpx4QIC/FkTF8OauCbWxfWwJq7p\nYsM/giYAQINmD5ju33SvTpWerHCOp7x0dYt2ein6VUUGRtVyhYDzderUSVu2bFGfPn20a9cutW/f\n3jHm7++vpk2bqkmTJnJ3d1eLFi104sSJOqwWAADUZwRNAIAGxWQxKtg/RJnmDOUVHtKY9NEqUXGF\nc/8YcIvMRTlafleSYwdTRc9LSB+ppJhV7GpCvdWzZ09t375dw4cPl81m07x585SamqrCwkLFxcUp\nLi5O8fHx8vT0VGhoqAYNGlTXJQMAgHrKYLPZbM56eFZWlhYtWqSVK1eWGysqKtK9996ruXPnKjw8\n3HH9yJEjGjx4sN56660y1yvD9joAgF2mOUMPfnKfrm7WTpuNmyqd17JJKw0IH6wF0YscwVRVqjMH\nzkPPBtfF7zDXwtET18OauCbWxfWwJq7J5Y7OLV++XCkpKfL29i43lp2drZkzZyo3N7fM9eLiYs2Y\nMUNNmzZ1VlkAgAYq/UCaJm+dpLyTh3TQ8lOFcwxy099jVinAp7WmbZtS7QCJkAkAAACoHjdnPTg0\nNFSJiYkVjlmtVi1dulRhYWFlrj///PMaPny4Wrdu7ayyAAANTPqBNI1IGarR6SOUd/JQhXMMctOM\nW2fr36O+VUxYX0UGRnEUDgAAAHACpwVNvXr1crzN5FyRkZEKCgoqcy05OVktWrRQt27dnFUSAKCe\nyzRnOP68JHOxI2Cq6pjcpI5TdG2L6zSo/ZAywRIhEwAAAFDzXKYZ+Lp162QwGLRjxw7t3r1bTz75\npJYtW6aAgIC6Lg0A4ETVPb6Wac7QgA29NS1quvYc3a01+1ZXOtcgg2yyacz14/RMlxlKiBhDsAQA\nAADUAqftaLpQq1at0j/+8Q+tXLlS1113nZ5//nlCJgBo4OxvdDNZjFXOkaQ9R3bLWmrVczunVxoy\nGWRQoE+Q/h6zWm0vu0qPRD4qid1LAAAAQG2ptR1NZ79CFwAA6UwAVFWvJJPFqEEf9NWAsCFavGtR\nlc8yyKBQ/7Z6vedfFRkYpYiADgRMAAAAQC0z2Gw2W10XcSl4BSIANBz2Y3Qmi1HZeVk6UnREj33+\n8Hnvm3HrbHUO7qJA3yDCpQboYl+tC+fjd5hr4fXgroc1cU2si+thTVzTxf4Gc5keTQCAxs1kMSo2\nZaDirx2lZVmJlb5Bzu7l7kskSde2vE6RgVG1USIAAACA8yBoAgC4hPV712n/8X16buf0KufdEXKX\ntuf8k4AJAAAAcEEETQCAOmE/Jpd+IE1bf9mit75/s9K5bnJXwvVjFXttnCIDo5RpziBkAgAAAFwQ\nQRMAoFaZLEaZC3L0yObxir921Hl3MM24dbYGtR9SpvcSIRMAAADgmgiaAAC1JtOcofs3JehI0WEV\nnS6qNGQa1i5eQb5/0OvZieoc3IUG3wAAAEA9QdAEAKhxZ789Ltg/RJnmDAX6BikudbBOFB+v9L5w\n/6tlcHPTN3lfK/uIp5b3TGL3EgAAAFCPEDQBAGqMyWKUJCWkj9SCbos0bdsUTY6cqnvT/6IbWtxY\nYcjU1M1bTTy8NKvzXEWH9igzxk4mAAAAoH5xq+sCAAANQ6Y5QwnpI2UuyNGCboskSdHBd2jNnnd1\nWqf1n6NZ59xhUBv/q7R+4EZtjduh6NAeSkgfKelMwETIBAAAANQ/7GgCAFwyk8Xo2L30+NaJyi0w\n69ipo7LJVm5uE0MT3RbcXVNueVITPxuvQN8gR6iUFLOKgAkAAACox9jRBAC4IPbjcWcL9g/R5Mip\nigjooD/4BOvoqSPlQqY7Qu7Sy92XKOzyqzXllicV6BskDzfPcs8BAAAAUH+xowkAUG0mi1EJ6SOV\nFLNK5oIcRQZGadV3K3Ts5DHN/9dzMtjcZNWpcvcZZNCPx/cpOrSHrm15naZtm6KkmFVa3Xct4RIA\nAADQgBA0AQCqLdg/REkxq5Sdl6UxH4/WrVd01nbzPyucO6njFElSTFhvPfjJfXq9518dvZc4IgcA\nAAA0TARNAIDzMlmMCvYPUaY5Q29n/02p+zeoxFZcLmTy8/DX7K7z1dK7pSICOighfaQSIsZow8C0\nMsESIRMAAADQMBE0AQAc7IHSudeGpQ7UzQF/1Jp9qyu91yCDXrvzTQX4tFZkYJQkmnsDAAAAjQ3N\nwAEAkv7Xfyn9QJokKdOcofQDaZr/1Rzt+31vpSFT18DbNeb6cfJ089SRoiManNJPmeYMSexcAgAA\nABobdjQBACT9781xD3w6RiPaj9Jb379Z5fym7t56IGKCnukyQ5IUe22cIgOjdG3L6xw7mgAAAAA0\nLgRNAACHiIAO6tQq6rwhk7e7j5IHpJYJlOx/JmQCAAAAGi+CJgBoZCrrwzR0w93ab9kvyVbl/WOu\nH6dHIh/lWBwAAACAcgiaAKARsfdhsjfpNlmMSsp+S4t3Lar0Hm+Dt1r4tNL8bgslSTFhfWurXAAA\nAAD1DEETADQy9pDp4U8e1Np978hWxQ4mP09/FZdaNb/bQgImAAAAAOfl1LfOZWVladSoURWOFRUV\nafjw4dq/f78k6fTp03rqqac0fPhwjRgxQnv37nVmaQDQaJgsRsc/B33QV+v3rtP1fw3Tmn2rKw2Z\n3OSuFTHvaNvwndow4ENCJgAAAADV4rSgafny5Xr22Wd16tSpcmPZ2dkaOXKkfv31V8e1LVu2SJLe\nffddPfroo3r55ZedVRoANBrpB9KUkD5SJotRU7Y8qp9P/KTndk7XYevhcnOvbXadJnWcoibuTfRi\n98WKCeurYP8QmnsDAAAAqDanHZ0LDQ1VYmKipk6dWm7MarVq6dKlZcbuvPNORUdHS5J+++03XXbZ\nZc4qDQAahUxzhu7bdI8Ghg/VzSuvr3Luy92XKDq0h4L9QxQT1ptwCQAAAMBFcVrQ1KtXLxmNxgrH\nIiMjKy7Gw0NPPvmkPvnkE7366qvOKg0AGjSTxaitv3ymN3YtlbXUqjX7Vlc4b8ats7Xn6G499adn\nJcnRJJyQCQAAAMDFcrlm4M8//7ymTJmiYcOGKS0tTT4+PnVdEgC4DJPFqGD/kAqvS9L6vev0/L/m\n6pTtZJXPmXHrbD0cOanMNXuTcAAAAAC4WC4TNG3YsEG5ubl64IEH5O3tLYPBIDc3p/YqB4B6xWQx\nOnYd2QOhTHOGJOm+jxN09OQRFZ0urPR+D4OnJnSYpA3712lQ+yHlxgmZAAAAAFyqWguaUlNTVVhY\nqLi4uArH77rrLj311FMaOXKkSkpK9PTTT6tp06a1VR4AuLxg/xBHyGSyGGUuyFG/9XfJw+ChU6Xl\nX7xg5+3mo+SBqZKkyMAoJUSMIVQCAAAA4BQGm81W8but64m8PEtdlwAAtSr9QJqmfP6oQv3a6Ou8\nf1U4x0MeKlGJhrWL11N/epZgCfVaQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BuNsGgDU\nE5nmDI35cJRGp4/QoaLcSkOmgKatlTr4Y7Vr3p6QCQAAAECtcpkeTQCAitnfIvfY5w9XOc/Xw1et\nvFvr9Z5/VWRglNb030DIBAAAAKBWETQBgIuo6I1ySzIXa/7O2SqWtcJ7vAxe+st1CYoIuEnRoT0k\n/a+pNyGvEcaxAAAgAElEQVQTAAAAgNpG0AQALsD+RrmE68cqOrSH5n81R/859I32HN9d6T392g7Q\nhE4TFRkYVYuVAgAAAEDlCJoAwAUE+4doQNhgPf75I7Kp8nc0GGRQbLsR6hfeXxEBHZSQPtLxJjoA\nAAAAqGsETQBQR+xH5UwWo8wFOVqatbjKkKllk1Z6+c+Jignr67hGyAQAAADAlRA0AUAtM1mMkqT4\ntFiNixiv2V/N1IlTx1WiknJzL/Nspv/rMlfXtrxOgb5B5UIlQiYAAAAAroSgCQBqkcliVHxarJ66\n5VkdLsyr8E1ybnJXkHegxt70oAa1H0KYBOCSlZaWatasWfrhhx/k5eWlOXPmqE2bNo7x//znP1qw\nYIFsNpsCAgL0wgsvqEmTJnVYMQAAqK8ImgCghlT01rizr6UfSNOPx35UboFZj3z2oI5bj5d7xh0h\nd2nRn18hXAJQoz799FNZrVa999572rVrlxYsWKBly5ZJkmw2m6ZPn65XX31Vbdq00dq1a2UymRQW\nFlbHVQMAgPqIoAkAaoD9rXFn90w6+9r0bU9p488fVHjvTS06KLfokLqH/FlLer5em2UDaCQyMzPV\nrVs3SVLHjh317bffOsZ++uknNW/eXElJSdq3b5+6d+9e7ZApIMDfKfXi4rEmroc1cU2si+thTRoO\ngiYAqAHB/iGOkMm+i8lckHPekGlSxylKiBjjeAYAOEN+fr78/Pwcn93d3VVSUiIPDw8dO3ZM33zz\njWbMmKHQ0FA9+OCDuvHGG9W5c+fzPjcvz+LMsnGBAgL8WRMXw5q4JtbF9bAmruliwz+3Gq4DABot\ne8gUnxarJZmL1X99L92fnlBhyDSp4xS93H2JNv3ykeLTYuugWgCNiZ+fnwoKChyfS0tL5eFx5r83\nNm/eXG3atFF4eLg8PT3VrVu3MjueAAAALgQ7mgCghqQfSNPWX7bowO/79dzO6ZKkr/P+5Ri/ttl1\nuvry9prQaaIiA6MkSdGhPSSxmwmAc3Xq1ElbtmxRnz59tGvXLrVv394xduWVV6qgoEAHDx5UmzZt\n9PXXX2vo0KF1WC0AAKjPCJoA4BKZLEYlZr6it75/s9xYE0MTPdjhETVr0kwPR04qN15V83AAqCk9\ne/bU9u3bNXz4cNlsNs2bN0+pqakqLCxUXFyc5s6dq8mTJ8tms+nmm29WdHR0XZcMAADqKYPNZrNV\nNtijRw8ZDIZKb968ebNTiroQnOMEUJvODoIyzRlKP/CRlu5arBIVl5vr73GZ1ty93rF7qTrPPreh\nOACag7oyfoe5FnqcuB7WxDWxLq6HNXFNF/sbrModTStXrpTNZtPSpUt15ZVXavDgwXJ3d1dqaqqM\nRuNFfSEA1Df2cMnef+mu0N7a8ssn+s/RrArne8hTBoPU0qelAn2Dqv09ZzcUBwAAAID6qMqgKTg4\nWJL0ww8/aP78+Y7rY8aM0eDBg51bGQC4APsuo4Trx+rYyWP68eg+7T76XaXz+7UdoNnd5stckKNA\n36ALDo0ImQAAAADUZ9Xu0fTVV1/pT3/6kyTp888/l7u7u9OKAgBXcqVvqB77/OEq53i7+Whet4Ua\necNoSQRGAAAAABqnagVNc+bM0ZNPPqm8vDzZbDYFBwdr4cKFzq4NAGrFuQ24M80ZCvQNUmLmK/rH\n90myylrpvcPaxeveiLEXtXsJAAAAABqaagVN119/vVJTU3Xs2DEZDAY1b97c2XUBQK04twF3pjlD\nAzf00anSU1Xe1zXwdj3bZWa1G30DAAAAQGNQZdA0ffp0zZ49W6NGjarw7XMrVqyo8uFZWVlatGiR\nVq5cWW6sqKhI9957r+bOnavw8HAVFxfr6aeflslkktVq1fjx43XHHXdc4L8OAFyYYP8QLei2SJK0\n6rsVWvLvVyoNmTzkoQkdH1WzJs30wYHkC2r0DQAAAACNQZVBU1xcnCTpkUceueAHL1++XCkpKfL2\n9i43lp2drZkzZyo3N9dxLSUlRc2bN9cLL7yg33//XQMHDiRoAlDjMs0ZigyMksliVHbembfGPf3F\nVB0qOCSrrfJdTCF+V6qpu7diwnpr2rYpWtBtEUflAAAAAOAcVQZNN954oyTplltu0Z49e5SRkSEP\nDw/deuutCgsLq/LBoaGhSkxM1NSpU8uNWa1WLV26tMxYTEyMevXqJUmy2Ww0GwdQ4zLNGRqc0k9v\n3PmWnv5iqoz5v1brvhm3ztag9kMkndkBZT9mBwAAAAAoq1o9mlasWKFVq1bpz3/+s2w2m5KSkvTg\ngw9q0KBBld7Tq1cvGY3GCsciIyPLXfP19ZUk5efna+LEiXr00UerUxoAnJe92Xegb5DmdX1BPx77\nUTn5v1U6/4omV8jT00vL70rSniO7HW+SsyNkAgAAAICKVStoWrt2rdatWyc/Pz9J0kMPPaS//OUv\nVQZNFyMnJ0cTJkxQfHy8+vfvX6PPBtBwnfvWuLOvb/3lM72ZvUwvRb+q+z5OkKng/LuYkvqudrxF\njmbfAAAAAFB9btWZ5O3tLU9PzzKfvby8arSQw4cPa8yYMXriiSc0dOjQGn02gIbL/tY4k6XsDspM\nc4YGfdBXj33+sA4X5mnRv56vNGTydvfRpI5T1Payq7Qi5h1FBkaxawkAAAAALkKVO5qWLFkiSWre\nvLlGjBihPn36yMPDQ+np6Wrbtu0FfVFqaqoKCwsdDcbP9frrr+vEiRN67bXX9Nprr0k601C8adOm\nF/Q9ABqXinommSxGPb51osIva6efT/ykvJOHtNm4qcL7h7WLV/aRLCVEjFFMWG92MAEAAADAJTDY\nbDZbZYP2oKkyDz/8cI0XdKHy8ix1XQIAF5JpztAO05d6buf0Csc95KESndaMW5/TOz+s1Ks9linQ\nN0iSlJA+kkbfgAsKCPCv6xJQCX6HuZaAAH/WxMWwJq6JdXE9rIlrutjfYFXuaKpOkPTAAw/ojTfe\nuKgvB4CLdXZfJpPFKHNBjt7O/pvW7Ftd6T1uBje91WulAnxaKzIwSp2Du2jatimOcImQCQAAAAAu\nTbWagVclNze3JuoAgGozWYyKT4vV6r5rlZ2XpUc2j9fx4t+rvGfM9eP0T9NWRQR0cIRJkYFRZcIl\nQiYAAAAAuDSXHDQZDIaaqANAI1LZW+Kqy1yQo+LTxZq+7Slt/PmDSud5yFOpg9MlnQmVKvpewiUA\nAAAAqDmXHDQBwIWwvyXuQo+p2UOi9ANpjh1MPx7fW+n8l7svUXRojzLfQagEAAAAAM5F0ASgVl1M\nLyT7UTlPeeg/R7MqnXdTiw6acss0Rw8mAAAAAEDtuuSgqYqX1gFAhaobMtnfIHd508u1++h3lc67\nqUUHPR/90gWHS5d6hA8AAAAAUNYFBU3Hjx9Xs2bNylwbOHBgjRYEoHEzWYySpPV71+m5ndOrnBvu\nf7Vmdp1dpsH3hXzPxRzhAwAAAABUzq06k3bv3q2YmBgNGDBAubm56tmzp7777szugoSEBGfWB6AR\nyTRnKD4tVl1W/7HSkMnL4KU7Qu7Sy92XaMeofysioIMS0kc6AqrqupgjfAAAAACAqlUraJozZ46W\nLl2q5s2b64orrtCsWbM0c+ZMZ9cGoIGzh0Mmi1Fzv3xOQz8YoL1H96jodGGF84e1i9fOv+zSO3e/\nr5E3jJZ0aYERIRMAAAAA1KxqBU1FRUUKDw93fO7atausVqvTigLQsJksRmWaM5SQPlLpB9J088rr\ntXjXIhWcztdpnS4z11Ne8pCHAn2ClH2k4kbgBEYAAAAA4Bqq1aOpefPm2rNnjwwGgyQpJSWlXK8m\nAKgOk8Wo2JSBKijJV2nJaY1OH1Hp3Je7L1F0aA+ZC3IU6BskiVAJAAAAAFxZtYKmWbNm6cknn9S+\nffsUGRmptm3b6oUXXnB2bQAaGPtRuV9OHJTVdqrCOeH+V+vhTo+qpXdLxYT1lUS4BAAAAAD1RbWC\nptDQUL3zzjsqLCxUaWmpJMnPz8+phQGo/0wWo4L9Q5R+IE2S9MTnjyv/1IlKQiaDJnWcrISIMYpP\ni5Wki3qbHAAAAACg7lQraNqyZYu+/vprPfTQQ4qNjdXRo0c1ceJEjRw50tn1AainMs0ZmrZtiiID\novTW929WMdOgZl6XKbHH644dTC9Fv6pA3yBCJgAAAACoZ6rVDHzJkiUaPHiwPvzwQ91000367LPP\ntG7dOmfXBqCesR+NyzRn6PGtE9WqSUClIZNBBg1rF6+PBn+qAO8rNP9fc2SyGGWyGDVt25TaLBsA\nAAAAUEOqtaNJksLDw/XSSy/p7rvvlq+vr4qLi51ZF4B6wH40LtOcoUDfIMWnxWpcxHg9nzFXuYVm\n7T76Xbl7DDKotXegXuj+kmMH09q7N0j6Xy+mpJhV7GYCAAAAgHqoWkFTq1atNHv2bGVnZ+uFF17Q\nggUL9Ic//MHZtQFwYSaLUQnpI5Vw/Vg99cUUTf3jMzrw+4967POHy829I+Qu7Tm2W2NvHKfOwV3K\nHYs7N1QiZAIAAACA+qlaQdOLL76oTz/9VPfcc498fHx05ZVX6uGHy/+fSQD1j31X0sXMmRw5VZO3\nTpKnwUvP7Zxe4b1uclO/8Lu1KPQVAiQAAAAAaOCq1aPJ19dXBQUFWrRokR566CGVlJTIx8fH2bUB\ncDL7riR7b6XqzMk0Zyj9QJqi3+2i0ekjlHfykCwlJ8rdZ5BBwb5X6tlb/09Pb39C5oIcp/17AAAA\nAABcQ7V2NC1cuFAHDx7UkCFDZLPZlJycLKPRqGeeecbZ9QFwomD/kGr1Q0qKWSVJSj+QpjEfj1KJ\nraTCeV6GJmrWpJnGd3hEq/esVOIdyxQZGKXOwV0UGRhV4/UDAAAAAFxLtYKm7du3a8OGDXJzO7MB\nKjo6Wv379z/vfVlZWVq0aJFWrlxZbqyoqEj33nuv5s6dq/Dw8GrdA6DmVRQymSxGmQtyFOgb5OjD\ntOjr5/VbgVE22Sp8zqSOU5QQMcbxzEHthzieTcgEAAAAAI1DtYKm06dPq6SkRF5eXo7P7u7uVd6z\nfPlypaSkyNvbu9xYdna2Zs6cqdzc3GrfA6B2mCxGDfqgr3Lyf9Pyu5KUcP1YTfl8kk7rdIXzh7WL\n178Pfa2EiDFVNvgGAAAAADR81erR1L9/f40ePVorV67UypUrdc8996hv375V3hMaGqrExMQKx6xW\nq5YuXaqwsLBq3wPAuTLNGZIkc0GOPAye8vP016NbHtbjn0+sNGQK9r1ST/3pWa29ewPBEgAAAACg\nejuaHnzwQV133XX66quvZLPZ9OCDDyo6OrrKe3r16iWjseIGw5GRkRd8DwDnyTRnaHBKP83r+oJm\nfzVTl3tdriOnDpeb5yEPDW43TNt/26Ypf3xS0aE9CJgAAAAAAA5VBk0ZGRmOP/v4+KhHjx5lxqKi\n6LsCNASRgVHqf9UgTf58kkp1WkdPHVErr1Y6bP1f2OTt7qPkAamKDIySyWIkYAIAAAAAlFNl0PTq\nq686/nzkyBG1bNlSRUVFOnTokNq2basVK1Y4vUAAzmEPizLNGVr0r+e12bipzPjvJcclSTNunS1J\nZZp7EzIBAAAAACpSZdBkf/PbihUrlJycrJUrV8poNOr+++9Xnz59LuiLUlNTVVhYqLi4uIuvFkCN\nyDRn6JHN49Wp9R+1Zt/qcuNuctOEmyZp2X9eVefgLrw1DgAAAABQLQabzVbxu8rP0q9fP61du9bx\nNriioiINGzZMqampTi/wfPLyLHVdAlBvmCxGmQtyNPGz8dr/+48qVWm5Of3aDtCEThMVGRilTHMG\nIROAOhcQ4F/XJaAS/A5zLQEB/qyJi2FNXBPr4npYE9d0sb/BqtUMvLi4WJ6eno7PZ/8ZgGuzH5Ez\nWYwa9EFfeXv46KEOE/Vi5vPKyf9N0SF3qF/43Y75I28Y7fgzIRMANAylpaWaNWuWfvjhB3l5eWnO\nnDlq06ZNuXnTp09Xs2bNNGXKlDqoEgAANATVCpruvPNO3XPPPerdu7ckadOmTbrjjjucWhiAS2ey\nGDUsdaDW9N+g7Lws/WYxadot0/Vm9jItvytJkhToG6SE9JFKillF7yUAaKA+/fRTWa1Wvffee9q1\na5cWLFigZcuWlZnz7rvvau/evbzsBQAAXJJqBU1PPPGE0tPTlZGRIQ8PD40ePVp33nmns2sDcAlM\nFqOy87L0i+WgsvOy9NyOmbIZbFqx+y15GDwV6BvkCJYImQCgYcvMzFS3bt0kSR07dtS3335bZvzf\n//63srKyFBcXpwMHDlT7uRxrdD2siethTVwT6+J6WJOGo1pBkyTFxMQoJibGmbUA9Zr9iFpdf/+S\nzMU6fuq4NuxfJy93Ty3vmaSYsL6KCOggc0GOJJUJmSTeIgcADV1+fr78/Pwcn93d3VVSUiIPDw8d\nOnRIS5cu1ZIlS/TRRx9d0HPpp+Fa6HHielgT18S6uB7WxDU5tUcTgKqZLMY6O35mb/D9+NaJCr/s\nam38+QNJkrvBXYE+f1BEQIcyIZi9TgBA4+Hn56eCggLH59LSUnl4nPkZmJ6ermPHjmncuHHKy8vT\nyZMnFRYWpsGDB9dVuQAAoB4jaAJqQLB/iFNDpop2S5ksRklSbMpAldiKVWAt0O6j30mS3OSmVk1b\ny8fTW+aCHE3bNsVRH8fkAKDx6dSpk7Zs2aI+ffpo165dat++vWNs9OjRGj36zIsgkpOTdeDAAUIm\nAABw0QiagBrizJDp3N1SmeYMPb51osZFjFdRSZEkyd3NXZ5unnoqaoY6B3dRoG+Qo66z7yVkAoDG\np2fPntq+fbuGDx8um82mefPmKTU1VYWFhYqLi6vr8gAAQANisNlstrou4lJwjhMNmX0nk333UrB/\niCNk+vn4TzptK5Gt1KZWvgHy9fDTjM7/p5iwvnVcNQDULJqDui5+h7kWepy4HtbENbEuroc1cU0X\n+xvMrYbrAFBD7DuZ0g+kSZLi02KVac7QI5vH6w8+wSo6Xai7QnvrbzEr1LzJ5Uq8YxkhEwAAAACg\nTnF0DnAhZ/diCvYPUcL1YzV202gNCo/V0aKj2nNkt37NPyhJGtYuXkt6vi5JigjowJE4AAAAAECd\nI2gCXIR9B9PkyKmSpACf1nruqxkqLi3Wmn2rJUkvZj6v5T2TFODTWpGBUY57CZkAAAAAAK6AoAmo\nY2fvYooMiNK96X/RaZ2Wn6e/8ov/d055zPXj9Ejko5JUrjk4AAAAAACugB5NQB3KNGcoNmWgVn23\nQre9E6W3vn9Tp3Vakhwh0x0hd8nLzUux18Yp2D+k3FvkAAAAAABwFexoAuqAyWLU1l8+07Pbp6mg\nJF+Pff6wJMkgg2yyydfDT6dKTmpCx0f1TJcZyjRncFQOAAAAAODyCJqAWmQPmJ7ZPlWFJYXlxm2y\nqV/bAdp/4kc9dcuzjrfInR0yAQAAAADgqgiagFqSfiBN932cIKvtVKVzWjZtpdnd5kti1xIAAAAA\noP4haAKcxGQxylyQo7zCQ3pj1zJtN/+z0rkzbp2tzsFdFOgbVCZgOrtROAAAAAAAro6gCXACk8Wo\nO9Z009FTR6qcZw+YKjoaZ7IYebscAAAAAKBeIWgCLsK5O41MFqOkM8fdTBajpmx5tNKQycvgpRJb\niV7s/qpG3jC60u/g7XIAAAAAgPrGzZkPz8rK0qhRoyocKyoq0vDhw7V//35JUmlpqWbMmKG4uDiN\nGjVKBw8edGZpwEWz7zSyh0smi1GxKQM16IO+mvvlc4pa2UGbjZvK3edl8FKgT5D+2uvvCmt2taJD\ne5z3uwiZAAAAAAD1idOCpuXLl+vZZ5/VqVPlGx9nZ2dr5MiR+vXXXx3XPv30U1mtVr333nuaPHmy\nFixY4KzSgEsS7B+iBd0WSfrfW+ROni7Szyd+0uJdi1Si4nL32AOmy5u2UERAB629ewMhEgAAAACg\nwXHa0bnQ0FAlJiZq6tSp5casVquWLl1aZiwzM1PdunWTJHXs2FHffvuts0oDLonJYtTjWyeqqKRQ\nJ06d0NFTR+Qhz3Lzugberme7zNSeI7sVHdpDwf4higjoQMAEAAAAAGiwnBY09erVS0ajscKxyMjI\nctfy8/Pl5+fn+Ozu7q6SkhJ5eNBGCq4ntt1wLf73izpe/LskqUTF8jJ4qdRWKn+vZprR+f8c4dLZ\njb4JmQAAAAAADZnLpDh+fn4qKChwfC4tLSVkgksxWYwyF+RoaMoAFZTklxsP8gvW7K7zFBHQQZJ4\nYxwAAAAAoNFxmSSnU6dO2rJli/r06aNdu3apffv2dV0SIOlMwJSdl6XHt0zSsVNHdFqnJUnh/lfr\noOVnPX3rTHUO7qJA36AyoRIhEwAAAACgsam1oCk1NVWFhYWKi4urcLxnz57avn27hg8fLpvNpnnz\n5tVWaYCDyWJUsH+IMs0ZkqQdpi/1t2/fVE6BSaUqdczz8fDR+wNTZC7IKRcw2REyAQAAAAAaG4PN\nZrPVdRGXIi/PUtclwEXZQ6MLmR+fFqvYdsM1Z+cslf5355Kb3Bwh07XNrlNR6Um93vOvigyMksli\n5IgcADhZQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BnOr4ToAl2APgEyWihvS29l3LqUf\nSJO5IEe/HD+oOTtnOkImSWri3lQvd1+il7svkcHdzREySWd2LREyAQAAAABwhsv0aAJqUmUB0Nm7\nnDLNGRqwobcGhg/Vmn2r5SFPlahYkuRp8FSxrVju8lCIf4iiQ3tIkt7MXqZA36By3wUAAAAAANjR\nhAasopApIX2k0g+kyWQxKq/wkIpLS7Rm32pJcoRMkvRQh0m63KulNg7+WGv6b1Cwf4iC/UO0uu9a\ngiUAAAAAACrBjiY0WPZjc8H+IY4/J1w/Vvd9fI/8vS5TYUmhbGc1+Jakfm0H6Ju8fyshYowSIsaU\nC5UImQAAAAAAqBxBExoce6g0LHWgPNw8NS5ivF7LelU2m5RXdEhWm1VHTh0+6w6D3A1uerjDY3qm\ny4wLbiIOAAAAAADO4OgcGhT7m+PMBTnycPNU58CumrrtMR0r+l3NvZrruPV3x1xvd295GjwV7Bui\nRbcv1lbTZkImAAAAAAAuATua0GB1Duyqt75/U5J0+NQhHc47JEnyMjTR+A6P6PXsRC28/WVFh/ZQ\n8H8bfhMyAQAAAABw8Qia0CDYj8uZC3I0LmK8Bn/QX0WnCx3jXgYveXv66IT1uAJ8WmvTLx9pec8k\nxYT1dcwhZAIAAAAA4NIQNKFeswdMsSkDlVd0SCesx2WTrcwcD3mq2FasaTdP1js/rNSrPZYp0DeI\nYAkAAAAAgBpG0IR6K9OcoYmfjVeftnfrlxM/y2qzlpvj7e6j1j5X6NFOkzXyhtEa1H4IARMAAAAA\nAE5CM3DUK/YdTJnmDMVvHKZ9v+/V4l2LyoRMzTyaySCD+rUdoGC/EHm5eyo6tIckjscBAAAAAOBM\n7GhCvWGyGDVwQ19FtLxJm35Ol1WnHGPucpcM0mnbabX2u0KzOsxV0vd/U+IdHJMDAAAAAKC2EDTB\npWWaMyRJO0xfas/R3Tpo+UkHLT+VmXNHyF36IudzLbjtRV3b8jpHsMRb5AAAAAAAqF0ETah1Joux\n0gAo05yhyMAoZZozlFd4SGM/Hq1iW3G5eR7y0Gmd1sSOk/VMlxmO+85GyAQAAAAAQO0iaEKtMlmM\nSkgfqaSYVeWCoPQDaXrg0zHqf9Ugrf9xrdwNHpWETJ5KHZyuvMJDejFzoWLMvcuFTAAAAAAAoPYR\nNKFWBfuHVBgymSxGzf/XHHVqFaU1+1ZLUrmQyU1u+nPInfol/2cF+gYpMjBKAT6tNW3blAqfCQAA\nAAAAahdBE5yiquNxZ1/PNGc4+i/tP7ZPu23fVXiPv+dlusyrmabc8qQe3zrRcT0yMIqQCQAAAAAA\nF+FW1wWg4bEfjzNZjFXOW5K5WL2T79BzO6drzb7Vstqs5eZ4yFNt/K/S0jve0GVNLlOgb5BW911b\nJlgiZAIAAAAAwDWwowk1rqLjcfYdTiaLUev3rtOeo7sdR+Qq0sStiZ6MelaD2g9xPDMioAOhEgAA\nAAAALoygCU5hD5WC/UOUac7Q41sn6qlbntXY9NEqVvkG33ZuclNSzKoKQyVCJgAAAAAAXJtTj85l\nZWVp1KhR5a5/9tlnGjJkiOLi4rRmzRpJktVq1eTJkzVs2DCNGTNGP//8szNLg5OZLEbFpgz8//bu\nP07Lus4X/2uYARyYETLROum4QuKxrEWws3mMMpK0pU1xskEUMt312z52j/2gEi0nd03EH53VyB9l\nmkdOCkhmgCtuiKbLVgskJKcfFhodSI0SkplRhmHu7x8eJkkBgYt7bmaez8ejx6Prvu4f78u3M9d7\nXn6u687CJ+/L3y/62zy5YXU+unDiDkOmflX9c95bLsjySaty6tBxQiUAAADYD+2zFU233HJL5s2b\nl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgsXLgwAwYMyJw5c/Lkk0/m8ssvz6233rqvyqNA\nL78sbltA9Pj6lfn1H5/MBd/7WF7c+uIOX1tdVZ3P/7fLMn54o3AJAAAA9nP7bEVTQ0NDZsyY8YrH\nV69enYaGhgwaNCj9+vXLqFGjsnTp0vzqV7/Ku9/97iTJ0KFDs3r16n1VGgXaduPvhU/el4n3nZnl\nzyzNt/7PHfnbB85NRzp2GDIN7v+6NP/V5Vkw/t/yj6M+IWQCgH2os7Mzzc3NaWpqyqRJk7JmzZrt\n9i9YsCBnnnlmJkyYkObm5nR2dnZTpQDA/m6frWg65ZRTsnbtK791rKWlJfX19V3bAwcOTEtLS445\n5pg89NBDOfnkk7Ny5co8++yz2bp1a6qrq/dVieyhl69cSpIpoz6XK//zS3nuhedy+nf+OptLm3f4\n2iMGHpF7z7g/iXsuAUC5LFq0KO3t7Zk9e3ZWrFiR6dOn56abbkqSvPjii7nuuusyf/781NbW5tOf\n/p3ukEwAACAASURBVHQeeuihvO997+vmqgGA/VHZbwZeV1eX1tbWru3W1tbU19fn5JNPzurVqzNx\n4sSMHDkyb33rW4VMFWjbCqbbT/1WkuRvvnNKOjo7UtramWc3P7vD173vsPdn1R8ez71n3C9gAoAy\nW758eUaPHp0kGTFiRFatWtW1r1+/fpk1a1bX7Q46OjrSv3//bqkTANj/lT1oGjZsWNasWZONGzdm\nwIABWbZsWc4///w8/vjjOeGEE3LJJZfk8ccfz29/+9tyl8Zr8Kb6wzJl1OfyTOvTufvns7O25f/u\n8jXnveWC3PXEzHzt5NtecS8nAGDfa2lpSV1dXdd2dXV1Ojo6UlNTkz59+uTggw9OksycOTNtbW05\n8cQTX9P7DhlSv+snUVZ6Unn0pDLpS+XRk56jbEHT/Pnz09bWlqampkydOjXnn39+SqVSGhsbc+ih\nh6Zv3765/vrrc/PNN6e+vj5XXHFFuUpjF9Zt+tMlkI+vX5nzHpiUjlLHTl9z3lsuyH1Pzc/U//b5\nnNQwJmf+16aMesM7tlsRJWwCgPL48xXlnZ2dqamp2W77mmuuyVNPPZUZM2akqqrqNb3v+vWbCq+V\nPTdkSL2eVBg9qUz6Unn0pDLtafhXVSqVSgXXUlb+ZSzWn3+D3LpNazPxvjOz4cXnUtOnJs+0PJ2O\n7Dhk6tunb259/x05dei4roDqz4MlK5oA2B3+C+fee+CBB/LQQw9l+vTpWbFiRb761a/mG9/4Rtf+\nL3zhC+nXr1++8IUvpE+f1/5dMeawyuIPtcqjJ5VJXyqPnlQmQRN7bdtqo+mjr82nH74wd467Ow//\nZnEeX/+T3PbTr+/wdbVVtXmh9ELeNPDwXDn66q6QSbAEQBEETXuvs7Mzl112WZ544omUSqVMmzYt\nP/3pT9PW1pZjjz02jY2NOf7447tWMk2ePDljx47d5fuawyqLP9Qqj55UJn2pPHpSmQRNFGLbKqSP\nzD897Vs2Z03rmp0+v77mwBx24OG54G1/n5MaxnStgnJ5HABFETRVLnNYZfGHWuXRk8qkL5VHTyrT\nns5gZb8ZOJVj+TNLM+oN70iy/aqjzzz0yfxy4xM7fW1VqvI/3zMjJzWMSZLtAqU31R8mZAIAAIBe\nSNDUC63btDbPtD6dM+Z9MF87+ba8bchf5sx5p2fkIcdn7i9npTOdr/q6YfVvzj+O/GReX/v6DBlw\nSFdI9WqETAAAAND7CJp6mZdf1vbZUZfkn3/wxQzuNzi/+uMT+dUfd7yKaXD/12Xu6fMESAAAAMAO\nCZp6oemjr83Dv1mcL/3oiztcvbRNVapy4Ygp+bff3F+m6gAAAID9laCpF1m3aW3OnHd6fvPHNWnP\n5h0+rzrVObDf4Gza8sdc8+7rcvZbJ+fct51nNRMAAACwU4KmHm7bt8g90/p0Fj55/04vj+tX1T9v\nrPsvuXnsN5IkFy7++1e92TcAAADAqxE09WDLn1mav33g3Pxx88a0dOz4qyKrU5PP/9UXM354Y5I/\nhUpz/uZeARMAAADwmgmaepjlzyzNGwa+Md954tu5YcX1+cPm3+/0+c1/dfkrAqZt9mXItG7TWiEW\nAAAA9DCCph5k4ZP35fyFk9Ovpn9aO1p2+tx/ec9X8/ra1+fUoeO2+ya6coQ/5f48AAAAoDwETT3A\nwifvyx9e+EO+vPyqbMmWbOnY8qrPq051BvQdmBve97WcOnRc1+Nvqj+srKFPuT8PAAAAKA9B035q\n26VnX11+ff75R5fu8HkDagbm5pO/kSEDDkmSvGHgG1814Cl36CNkAgAAgJ5H0LQfWrdpbc6cd3pG\nHnJ85vzyzh0+b3C/12VQ/8G58j+/lDvH3S3cAQAAAPYpQdN+YuGT92XIgEPyhoFvzOPrV+ZXf3wi\nv/rjE6/63Oa/ujxvft2bu56fWEEEAAAA7HuCpgq27fK4b/2fO/Kp7/9jkqS2ujYvbn3xFc+tSlUa\n6v8inxw5Jbf/9NZMH31tpj76GfdCAgAAAMpG0FShtn0z2/TR1+bz/35R1+MvbH3hFc/94F+clstH\nX5nkpZVLJzWMccNtAAAAoOwETRVm2yqmJJky6nP5x+/9f2nb2vqK59VWD8hnj784rzvgdTn7rZO3\n27ft9UImAAAAoJwETRVk+TNL8/eL/janDW3Mbau+npaOTSmltN1zqqtq8tFjzssPnlmSE9703zP1\n0c90rWB6LV4eZAEAAAAUSdDUzbYFP+s2rc3HFp6TZ9qezvUrru3af2j/Q/Ps5mfz9oP+Mn/c8nwu\nP3FaTh06rut1u3N53LbL8VxSBwAAAOwLffblm69cuTKTJk16xeOLFy9OY2NjmpqaMmfOnCTJli1b\nMmXKlEyYMCETJ07M6tWr92Vp3WLdprXb/f9twc+6TWvz+PqV2bD5udSk73avmfrOS3PHqXdl0YRH\nc+/p9+XUoeOS7Nnlce7bBAAAAOxL+yxouuWWW/KFL3whmzdv3u7xLVu25Morr8xtt92WmTNnZvbs\n2fn973+f73//++no6MisWbPyD//wD7nuuuv2VWnd4uWh0rpNa3PmvNPzTOvTmTLqc/nOE9/Ol5df\nnbOP/mi2piNJMrj/69L8V5fnpIYx+fLyqwu75E3IBAAAAOwr++zSuYaGhsyYMSOf+9zntnt89erV\naWhoyKBBg5Iko0aNytKlSzN8+PBs3bo1nZ2daWlpSU1Nz7qqb9tqomdan876tt9lzfNP5WMLz8nv\nX1ifjlJHPjHiM3l43YP5n++ZkdfXvj5X/ueXMn54o1VIAAAAwH5jn6U5p5xyStauXfuKx1taWlJf\nX9+1PXDgwLS0tGTAgAFZt25dPvCBD2TDhg25+eab91VpZfPyVUjrNq3Nw79ZnIse/XRqa2qTJDV9\nanJw7ZBUVVXl3Ledl3Pfdl7X89825C99exwAAACwX9mn92h6NXV1dWltbe3abm1tTX19fW6//fa8\n613vygMPPJDvfve7mTp16isuu6tEL7/v0p8/fu7Cs7P8maVZt2ltxs45KZ/+/v9Ie2d7/tj+x4x/\n85m55f2353UHHJTbTpmZN9Uftl2gJFwCAAAA9jdlD5qGDRuWNWvWZOPGjWlvb8+yZcty3HHH5cAD\nD+xa6TRo0KB0dHRk69at5S5vt7z8vkvbtl/u3Lecn08/fGEuffTi/H7z71JKKdVV1fnIURPzi40/\nyxsGvjF3jrs7o97wju4oHwAAAKBQZbsR0vz589PW1pampqZMnTo1559/fkqlUhobG3PooYfm3HPP\nzSWXXJKJEydmy5Yt+dSnPpUBAwaUq7w98vL7J63btDYT7zszd467O0ky/rvj8nTrb1NXU5+fPfd/\n8pGjJuaNA/9L7ntqXj72tvPzhoFvtGoJAAAA6FGqSqVSqbuL2Bvr12/q7hKSvLSa6W++c0puef/t\nSZL/8eDfp/mEf8qQAYfk7/7t3Mwf/0DeVH9Ylj+zNFMf/YwbfAPAazRkSP2un0S3qJQ5jJcMGVKv\nJxVGTyqTvlQePalMezqD9ayvdusmy59Zmm8+fmvWtvzfTLrvrAw+YHCqqv50Q+9tIVOSjHrDO4RM\nAAAAQI8kaNoL275J7jPf/0S25qX7ST2/ZWM+/87mnNQwZoffGidkAgAAAHoiQdMeWrdpbT4y//T8\n5vk1Obj2kGzt3Jr/+d7rkyRfXn51TmoY080VAgAAAJSXoOlVrNu09lVXHS1/ZmmSly5/e1P9YfnK\nmJuSJG8Y+MYkf1qptO2SOQAAAIDepE93F1Bp1m1am3MXnt0VKi1/ZmnWbVqbhU/el9O+84Gc/t2/\n7nps6qOf6fr2uJcHS0ImAAAAoDeyounPvKn+sEwffW2mPvqZnDb0jEz/z8tzyMBDU11Vk/9S/6b8\n83+fllFveEeSuKk3AAAAwMtY0fQyC5+87/+tXro/o4a8I1f+5z9na2lrOjo70rdP39x08jdy6tBx\nXc8XMgEAAAD8iRVNeSlgWv7M8nxlxZfTr0//bO58MUlSXVWdIQMOSV3f+sx4301dK5kAAAAAeKVe\nHTSt27Q233ni2/nnH12aJDmgT21e7HwhB/YblE8e95mc8Kb//oobfQMAAADw6npN0LTtm+TWbVqb\nJHl8/cr83b+dmy2dW7qe82LnCznvLRfkzP/aZPUSAAAAwG7q8UHTtmDp3IVnZ8qoz6X5Py5JR2dH\n1rWsTSmlruf1qeqT//GXn86//eb+/OCZJblz3N1WMQEAAADshh59M/B1m9bm3IVnJ0mmj742//yD\nL2bdprXZsrUjBx8wJEnyiRGfyR2n3pWhB745577tvNw57m4hEwAAAMAe6NFBU5JMGfW5PL5+Zda3\n/S7NJ/xTDh34htT3q88lf9Wcfn365dShH8ipQ8fl7g/dmzfVH9b1PwAAAAB2T4+8dG7b5XLjvzsu\n61rWdt2H6bC6w1NdVdP1DXL/9fXHdN2LSbgEAAAAsHd63IqmhU/el4n3nZnH169MqZRcPfpf8i/v\n+Wr+4sAjM+1dV2dA3wFd3yTnht8AAAAAxakqlUqlXT+tcq148mddq5GWP7M0p3/3rzOk9pBUV9Xk\nt61rc0T9kbn7Q/cmSde3zlm9BAD7jyFD6ru7BHZg/fpN3V0CLzNkSL2eVBg9qUz6Unn0pDLt6Qy2\n369oOnfh2V2Xyo16wzty72n/mvnjH8jNY7+RI+qPzIz33bTdfZeETABAb9PZ2Znm5uY0NTVl0qRJ\nWbNmzXb7Fy9enMbGxjQ1NWXOnDndVCUA0BPs9/douv3Ub223/fJ7Lm27wTcAQG+2aNGitLe3Z/bs\n2VmxYkWmT5+em266KUmyZcuWXHnllZk7d25qa2tz1llnZcyYMTn44IO7uWoAYH+03wdNr399XcbP\nHp/vNH0nhw86fLt9Q4Yc001VAQBUjuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQoSTJq1Kgs\nXbo0H/jAB3b5vi5rrDx6Unn0pDLpS+XRk55jvw+aDh90eJZdsKy7ywAAqFgtLS2pq6vr2q6urk5H\nR0dqamrS0tKS+vo/DfcDBw5MS0tLd5QJAPQA+/09mgAA2Lm6urq0trZ2bXd2dqampuZV97W2tm4X\nPAEA7A5BEwBADzdy5Mg88sgjSZIVK1Zk+PDhXfuGDRuWNWvWZOPGjWlvb8+yZcty3HHHdVepAMB+\nrqpUKpW6uwgAAPadzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ5/d3SUDAPspQRMAAAAAhXDpHAAAAACFEDQBAAAAUAhB0z60cuXKTJo06RWPL168OI2NjWlqasqc\nOXOSJFu2bMmUKVMyYcKETJw4MatXry53uXtsd46zvb09U6ZMyUc+8pGcd955+fWvf13mavfMjo4x\nSV544YVMmDChq2ednZ1pbm5OU1NTJk2alDVr1pSz1D22O8f4Wl5TiXbnGLds2ZLPfvazmThxYj78\n4Q/nwQcfLGepe2V3jnPr1q25+OKLM2HChJx11ll54oknylnqHtuTf1//8Ic/5D3vec9+8/t1d49x\n/PjxmTRpUiZNmpSLL764XGXuld09xq997WtpamrKGWeckbvvvrtcZfZquzqnvdq5nn1rVz1ZsGBB\nzjzzzEyYMCHNzc3p7Ozspkp7l9c6/1166aW59tpry1xd77SrnvzkJz/JxIkTc9ZZZ+XCCy/M5s2b\nu6nS3mVXfZk3b17Gjx+fxsbG3Hnnnd1UZe+0O3/X70pN0cXxkltuuSXz5s1LbW3tdo9v2bIlV155\nZebOnZva2tqcddZZGTNmTFasWJGOjo7MmjUrS5YsyXXXXZcZM2Z0U/Wv3e4e58KFCzNgwIDMmTMn\nTz75ZC6//PLceuut3VT9a7OjY0ySxx9/PF/84hfz7LPPdj22aNGitLe3Z/bs2VmxYkWmT5+em266\nqZwl77bdPcZdvaYS7e4xzps3L4MHD84111yTjRs35vTTT8/73ve+cpa8R3b3OB966KEkyaxZs/Kj\nH/0o//Iv/9Ij/33dsmVLmpubc8ABB5SrzL2yu8e4efPmlEqlzJw5s5xl7pXdPcYf/ehHeeyxx3LX\nXXflhRdeyG233VbOcnutnZ3TdnSuP/jgg7u56p5tZz158cUXc91112X+/Pmpra3Npz/96Tz00EP7\nxflrf/da5r9Zs2bliSeeyDve8Y5uqrJ32VlPSqVSLr300nzlK1/JEUcckbvvvjvr1q3L0KFDu7nq\nnm9XPytXX311FixYkAEDBmTcuHEZN25cBg0a1I0V9w67+3f9rs71VjTtIw0NDa8aFK1evToNDQ0Z\nNGhQ+vXrl1GjRmXp0qU58sgjs3Xr1nR2dqalpSU1NftHBri7x/mrX/0q7373u5MkQ4cO3S9WFuzo\nGJOXVmjdcMMN252Uli9fntGjRydJRowYkVWrVpWlzr2xu8e4q9dUot09xlNPPTWf+MQnkrw0jFRX\nV5elzr21u8d58skn5/LLL0+S/Pa3v82BBx5Yljr3xp78+3rVVVdlwoQJOeSQQ8pR4l7b3WP8+c9/\nnhdeeCHnnXdeJk+enBUrVpSr1D22u8f47//+7xk+fHj+4R/+IR//+Mdz0kknlanS3m1n57QdnevZ\nt3bWk379+mXWrFldfyh0dHSkf//+3VJnb7Or+e/HP/5xVq5cmaampu4or1faWU+eeuqpDB48OLff\nfnvOOeecbNy4UchUJrv6WTn66KOzadOmtLe3p1QqpaqqqjvK7HV29+/6XRE07SOnnHLKq4ZFLS0t\nqa+v79oeOHBgWlpaMmDAgKxbty4f+MAHcumll+43lyPt7nEec8wxeeihh1IqlbJixYo8++yz2bp1\nazlL3m07OsYkGTVqVN74xjdu91hLS0vq6uq6tqurq9PR0bFPa9xbu3uMu3pNJdrdYxw4cGDq6urS\n0tKSCy+8MJ/85CfLUeZe25Ne1tTU5KKLLsrll1+ev/mbv9nXJe613T3Ge+65JwcddFDXULM/2N1j\nPOCAA3L++efn1ltvzT/90z/lM5/5TI/7vbNhw4asWrUq119/fdcx+uLcfW9n57QdnevZt3bWkz59\n+nT9V+aZM2emra0tJ554YrfU2dvsrC+/+93vcsMNN6S5ubm7yuuVdtaTDRs25LHHHss555yTb37z\nm/nhD3+YH/zgB91Vaq+yq7+VjjrqqDQ2NmbcuHE56aST9ov/CNoT7O7f9bsiaCqzurq6tLa2dm23\ntramvr4+t99+e971rnflgQceyHe/+91MnTp1v75OeEfH2djYmLq6ukycODHf+9738ta3vnW/WSny\nWv35sXd2du5XgQx/8vTTT2fy5Mk57bTT9osAZm9cddVVeeCBB3LppZemra2tu8sp1Le//e38x3/8\nRyZNmpSf/exnueiii7J+/fruLqtQRx55ZD70oQ+lqqoqRx55ZAYPHtzjjnHw4MF517velX79+mXo\n0KHp379/nnvuue4uq8fb2TltR+d69q1dzRmdnZ256qqrsmTJksyYMcNqgDLZWV8WLlyYDRs25IIL\nLsjXv/71LFiwIPfcc093ldpr7KwngwcPzhFHHJFhw4alb9++GT169H5xFUJPsLO+/PznP8/DDz+c\nBx98MIsXL85zzz2X+++/v7tKJXt+rhc0ldmwYcOyZs2abNy4Me3t7Vm2bFmOO+64HHjggV0NGzRo\nUDo6Oip+pc/O7Og4H3/88Zxwwgm56667cuqpp+bwww/v7lILN3LkyDzyyCNJkhUrVmT48OHdXBF7\n4ve//33OO++8fPazn82HP/zh7i5nn7n33nvzta99LUlSW1ubqqqq9OnTs04N3/rWt/K///f/zsyZ\nM3PMMcfkqquuypAhQ7q7rELNnTs306dPT5I8++yzaWlp6XHHOGrUqDz66KMplUp59tln88ILL2Tw\n4MHdXVaPt7Nz2o7O9exbu5ozmpubs3nz5tx44437zX0Ue4Kd9WXy5Mm55557MnPmzFxwwQX54Ac/\nmDPOOKO7Su01dtaTww8/PK2trV03ol62bFmOOuqobqmzt9lZX+rr63PAAQekf//+qa6uzkEHHZTn\nn3++u0ole36ut8yiTObPn5+2trY0NTVl6tSpOf/881MqldLY2JhDDz005557bi655JJMnDgxW7Zs\nyac+9akMGDCgu8vebbs6zr59++b666/PzTffnPr6+lxxxRXdXfJue/kxvpqxY8dmyZIlmTBhQkql\nUqZNm1bmCvfero6xJ9jVMd588815/vnnc+ONN+bGG29M8tJN8vaXm0lvs6vjfP/735+LL744Z599\ndjo6OnLJJZf0uGPsCXZ1jB/+8Idz8cUX56yzzkpVVVWmTZu2362k3NUxvve9783SpUvz4Q9/OKVS\nKc3NzT1uRWwlerVz2q7O9exbO+vJsccem7lz5+b444/PRz/60SQvhRxjx47t5qp7vl39rFB+u+rJ\nFVdckSlTpqRUKuW4445z778y2VVfmpqaMnHixPTt2zcNDQ0ZP358d5fcK+3tub6q5AYHAAAAABSg\nZ10fAQAAAEC3ETQBAAAAUAhBEwAAAACFEDQBAAAAUAhBEwAAAACFEDQB+9zatWszZsyYV9139NFH\n79PPPu200/bp+wMAAPAngiagR/vud7/b3SUAAAD0GjXdXQDQ89x8882ZN29eqqurc+KJJ2bixIl5\n8cUX86lPfSq//OUvc+CBB+aGG27I6173uq7XbNy4MZ///Ofz5JNPpl+/fpk6dWpOOOGEHX7GmDFj\nMmbMmCxbtixJMm3atLzlLW/JpEmTMmjQoPzyl7/Mddddl9NPPz2/+MUvdvj+jzzySL7yla+ko6Mj\nhx12WC6//PLt6gIAAOC1s6IJKNT3v//9LF68OPfcc0++853vZM2aNXn00Ufz3HPP5WMf+1gWLFiQ\ngw8+OP/6r/+63euuv/76NDQ05P7778/VV1+d6667bpefNXjw4Nx777258MILc9FFF3U9fvTRR+eB\nBx7IMcccs9P3f+655/LlL385t956a+699968613vyrXXXlvcPwwAAIBeRtAEFOqHP/xhxo0blwMO\nOCA1NTVpbGzMD37wgxxyyCF5+9vfniR585vfnA0bNmz3uqVLl3bdT+noo4/O7Nmzd/lZH/nIR5K8\ntLrp2WefzXPPPZckXZ+zq/dfuXJlnn766UyePDmnnXZavvWtb2XNmjV7fvAAAAC9nEvngEJ1dna+\n4rGOjo7U1Pzp101VVVVKpdJ2z3n5/iRZvXp1jjzyyPTps+M8/OWv6ezsTHV1dZLkgAMO2Olzt73/\n1q1bM3LkyNx8881Jks2bN6e1tXWHnwcAAMDOWdEEFOqd73xn7rvvvrz44ovp6OjIt7/97bzzne/c\n5euOP/74rsvpVq9enb/7u79LVVXVTl9z3333JUm+973vZdiwYRk0aNBuvf/b3/72rFixIk899VSS\n5MYbb8zVV1/9mo4TAACAV7KiCSjUe9/73vzsZz9LY2NjOjo6Mnr06Lz3ve/NHXfcsdPXXXjhhfnC\nF76QD33oQ6mpqcnVV1+9y6Dpxz/+cebOnZva2tpMnz59t9//kEMOybRp0/LJT34ynZ2dOfTQQ3PN\nNdfs9jEDAADwkqrSn1+/ArAfGDNmTO64444cdthh3V0KAAAA/48VTUDFmjRpUp5//vlXPD5hwoRu\nqAYAAIBdsaIJAAAAgEK4GTgAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAheiWoGnlypWZNGnSKx5fvHhxGhsb09TUlDlz5nRDZQAAPZcZDADY12rK/YG3\n3HJL5s2bl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgcfPDB5S4RAKDHMYMBAOVQ9hVNDQ0N\nmTFjxiseX716dRoaGjJo0KD069cvo0aNytKlS8tdHgBAj2QGAwDKoexB0ymnnJKamlcupGppaUl9\nfX3X9sCBA9PS0rLL9yuVSoXWBwDQE5nBAIByKPulcztSV1eX1tbWru3W1tbthp4dqaqqyvr1m/Zl\naeymIUPq9aQC6Uvl0ZPKpC+VZ8iQXc8D7DkzWM/h91fl0ZPKpC+VR08q057OYBXzrXPDhg3LmjVr\nsnHjxrS3t2fZsmU57rjjurssAIAezQwGABSp21c0zZ8/P21tbWlqasrUqVNz/vnnp1QqpbGxMYce\nemh3lwcA0COZwQCAfaGq1AMusLfErrJY9liZ9KXy6Ell0pfK49K5yuVnpbL4/VV59KQy6Uvl0ZPK\ntN9fOgcAAADA/k3QBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQ\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAA\nFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0A\nAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAh\nBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAA\nAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhyho0dXZ2prm5OU1NTZk0aVLWrFmz3f55\n8+Zl/PjxaWxszJ133lnO0gAAeiwzGABQLjXl/LBFixalvb09s2fPzooVKzJ9+vTcdNNNXfuvvvrq\nLFiwIAMGDMi4ceMybty4DBo0qJwlAgD0OGYwAKBcyho0LV++PKNHj06SjBgxIqtWrdpu/9FHyvcu\nawAAEt1JREFUH51NmzalpqYmpVIpVVVVr+l9hwypL7xW9o6eVCZ9qTx6Upn0hZ7GDNZ76Enl0ZPK\npC+VR096jrIGTS0tLamrq+varq6uTkdHR2pqXirjqKOOSmNjY2prazN27NgceOCBr+l916/ftE/q\nZc8MGVKvJxVIXyqPnlQmfak8Bs+9ZwbrHfz+qjx6Upn0pfLoSWXa0xmsrPdoqqurS2tra9d2Z2dn\n14Dz85//PA8//HAefPDBLF68OM8991zuv//+cpYHANAjmcEAgHIpa9A0cuTIPPLII0mSFStWZPjw\n4V376uvrc8ABB6R///6prq7OQQcdlOeff76c5QEA9EhmMACgXMp66dzYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamNDU1ZeLEienbt28aGhoyfvz4cpYHANAjmcEAgHKpKpVKpe4uYm+5lrOyuL62\nMulL5dGTyqQvlcc9miqXn5XK4vdX5dGTyqQvlUdPKtN+cY8mAAAAAHouQRMAAAAAhRA0AQAAAFAI\nQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAA\nhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMA\nAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFCI\nmnJ+WGdnZy677LL84he/SL9+/fKlL30pRxxxRNf+n/zkJ5k+fXpKpVKGDBmSa665Jv379y9niQAA\nPY4ZDAAol7KuaFq0aFHa29sze/bsTJkyJdOnT+/aVyqVcumll+bKK6/MXXfdldGjR2fdunXlLA8A\noEcygwEA5VLWFU3Lly/P6NGjkyQjRozIqlWruvY99dRTGTx4cG6//fb88pe/zHve854MHTq0nOUB\nAPRIZjAAoFzKGjS1tLSkrq6ua7u6ujodHR2pqanJhg0b8thjj6W5uTkNDQ35+Mc/nmOPPTYnnHDC\nLt93yJD6fVk2e0BPKpO+VB49qUz6Qk9jBus99KTy6Ell0pfKoyc9R1mDprq6urS2tnZtd3Z2pqbm\npRIGDx6cI444IsOGDUuSjB49OqtWrXpNQ8769Zv2TcHskSFD6vWkAulL5dGTyqQvlcfguffMYL2D\n31+VR08qk75UHj2pTHs6g5X1Hk0jR47MI488kiRZsWJFhg8f3rXv8MMPT2tra9asWZMkWbZsWY46\n6qhylgcA0COZwQCAcinriqaxY8dmyZIlmTBhQkqlUqZNm5b58+enra0tTU1NueKKKzJlypSUSqUc\nd9xxOemkk8pZHgBAj2QGAwDKpapUKpW6u4i9ZYldZbHssTLpS+XRk8qkL5XHpXOVy89KZfH7q/Lo\nSWXSl8qjJ5Vpv7h0DgAAAICeS9AEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEE\nTQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAA\nQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAE\nAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAU\nQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAA\nAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUoqxBU2dnZ5qbm9PU1JRJkyZlzZo1r/q8\nSy+9NNdee205SwMA6LHMYABAuZQ1aFq0aFHa29sze/bsTJkyJdOnT3/Fc2bNmpUnnniinGUBAPRo\nZjAAoFzKGjQtX748o0ePTpKMGDEiq1at2m7/j3/846xcuTJNTU3lLAsAoEczgwEA5VJTzg9raWlJ\nXV1d13Z1dXU6OjpSU1OT3/3ud7nhhhvy1a9+Nffff/9uve+QIfVFl8pe0pPKpC+VR08qk77Q05jB\neg89qTx6Upn0pfLoSc9R1qCprq4ura2tXdudnZ2pqXmphIULF2bDhg254IILsn79+rz44osZOnRo\nzjjjjF2+7/r1m/ZZzey+IUPq9aQC6Uvl0ZPKpC+Vx+C598xgvYPfX5VHTyqTvlQePalMezqDlTVo\nGjlyZB566KH89V//dVasWJHhw4d37Zs8eXImT56cJLnnnnvy5JNPvqYBBwCAnTODAQDlUtagaezY\nsVmyZEkmTJiQUqmUadOmZf78+Wlra3NPAACAfcQMBgCUS1WpVCp1dxF7yxK7ymLZY2XSl8qjJ5VJ\nXyqPS+cql5+VyuL3V+XRk8qkL5VHTyrTns5gZf3WOQAAAAB6LkETAAAAAIUQNAEAAABQCEETAAAA\nAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEET\nAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQ\nCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEA\nAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQ\nNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAA\nAIWoKeeHdXZ25rLLLssvfvGL9OvXL1/60pdyxBFHdO1fsGBB/tf/+l+prq7O8OHDc9lll6VPH1kY\nAMDeMIMBAOVS1gli0aJFaW9vz+zZszNlypRMnz69a9+LL76Y6667LnfccUdmzZqVlpaWPPTQQ+Us\nDwCgRzKDAQDlUtYVTcuXL8/o0aOTJCNGjMiqVau69vXr1y+zZs1KbW1tkqSjoyP9+/d/Te87ZEh9\n8cWyV/SkMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlDVoamlpSV1dXdd2dXV1Ojo6UlNTkz59\n+uTggw9OksycOTNtbW058cQTX9P7rl+/aZ/Uy54ZMqReTyqQvlQePalM+lJ5DJ57zwzWO/j9VXn0\npDLpS+XRk8q0pzNYWYOmurq6tLa2dm13dnampqZmu+1rrrkmTz31VGbMmJGqqqpylgcA0COZwQCA\ncinrPZpGjhyZRx55JEmyYsWKDB8+fLv9zc3N2bx5c2688cau5dsAAOwdMxgAUC5lXdE0duzYLFmy\nJBMmTEipVMq0adMyf/78tLW15dhjj83cuXNz/PHH56Mf/WiSZPLkyRk7dmw5SwQA6HHMYABAuVSV\nSqVSdxext1zLWVlcX1uZ9KXy6Ell0pfK4x5NlcvPSmXx+6vy6Ell0pfKoyeVaU9nsLJeOgcAAABA\nzyVoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYA\nAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQ\ngiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAA\nAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFo\nAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAA\nCiFoAgAAAKAQgiYAAAAAClHWoKmzszPNzc1pamrKpEmTsmbNmu32L168OI2NjWlqasqcOXPKWRoA\nQI9lBgMAyqWsQdOiRYvS3t6e2bNnZ8qUKZk+fXrXvi1btuTKK6/MbbfdlpkzZ2b27Nn5/e9/X87y\nAAB6JDMYAFAuZQ2ali9fntGjRydJRowYkVWrVnXtW716dRoaGjJo0KD069cvo0aNytKlS8tZHgBA\nj2QGAwDKpaacH9bS0pK6urqu7erq6nR0dKSmpiYtLS2pr6/v2jdw4MC0tLS8pvcdMqR+10+irPSk\nMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlHVFU11dXVpbW7u2Ozs7U1NT86r7Wltbtxt6AADY\nM2YwAKBcyho0jRw5Mo888kiSZMWKFRk+fHjXvmHDhmXNmjXZuHFj2tvbs2zZshx33HHlLA8AoEcy\ngwEA5VJVKpVK5fqwzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ59drtIAAHosMxgAUC5lDZoAAAAA6LnKeukcAAAAAD2XoAkAAACAQgiaAAAAACjEfhE0dXZ2prm5\nOU1NTZk0aVLWrFmz3f7FixensbExTU1NmTNnTjdV2fvsqi8LFizImWeemQkTJqS5uTmdnZ3dVGnv\nsauebHPppZfm2muvLXN1vdeu+vKTn/wkEydOzFlnnZULL7wwmzdv7qZKe49d9WTevHkZP358Ghsb\nc+edd3ZTlb3TypUrM2nSpFc87lzfPcxglcf8VZnMYJXH/FWZzGCVq9AZrLQfeOCBB0oXXXRRqVQq\nlR577LHSxz/+8a597e3tpZNPPrm0cePG0ubNm0tnnHFGaf369d1Vaq+ys7688MILpfe9732ltra2\nUqlUKn3qU58qLVq0qFvq7E121pNt7rrrrtJHPvKR0jXXXFPu8nqtnfWls7Oz9KEPfaj061//ulQq\nlUpz5swprV69ulvq7E129bNy4oknljZs2FDavHlz1zmGfe/rX/966YMf/GDpzDPP3O5x5/ruYwar\nPOavymQGqzzmr8pkBqtMRc9g+8WKpuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQo/fr1y6hR\no7J06dLuKrVX2Vlf+vXrl1mzZqW2tjZJ0tHRkf79+3dLnb3JznqSJD/+8Y+zcuXKNDU1dUd5vdbO\n+vLUU09l8ODBuf3223POOedk48aNGTp0aHeV2mvs6mfl6KOPzqZNm9Le3p5SqZSqqqruKLPXaWho\nyIwZM17xuHN99zGDVR7zV2Uyg1Ue81dlMoNVpqJnsP0iaGppaUldXV3XdnV1dTo6Orr21dfXd+0b\nOHBgWlpayl5jb7SzvvTp0ycHH3xwkmTmzJlpa2vLiSee2C119iY768nvfve73HDDDWlubu6u8nqt\nnfVlw4YNeeyxx3LOOefkm9/8Zn74wx/mBz/4QXeV2mvsrCdJctRRR6WxsTHjxo3LSSedlAMPPLA7\nyux1TjnllNTU1Lzicef67mMGqzzmr8pkBqs85q/KZAarTEXPYPtF0FRXV5fW1tau7c7Ozq5/CH++\nr7W1dbt/EOw7O+vLtu2rrroqS5YsyYwZM6TRZbCznixcuDAbNmzIBRdckK9//etZsGBB7rnnnu4q\ntVfZWV8GDx6cI444IsOGDUvfvn0zevToV/yXHYq3s578/Oc/z8MPP5wHH3wwixcvznPPPZf777+/\nu0olzvXdyQxWecxflckMVnnMX5XJDLZ/2dNz/X4RNI0cOTKPPPJIkmTFihUZPnx4175hw4ZlzZo1\n2bhxY9rb27Ns2bIcd9xx3VVqr7KzviRJc3NzNm/enBtvvLFrCTf71s56Mnny5Nxzzz2ZOXNmLrjg\ngnzwgx/MGWec0V2l9io768vhhx+e1tbWrhshLlu2LEcddVS31Nmb7Kwn9fX1OeCAA9K/f/9UV1fn\noIMOyvPPP99dpRLn+u5kBqs85q/KZAarPOavymQG27/s6bn+lWujKtDYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamTJ06Neeff35KpVIaGxtz6KGHdnfJvcLO+nLsscdm7ty5Of744/PRj340yUsn\n2bFjx3Zz1T3brn5W6B676ssVV1yRKVOmpFQq5bjjjstJJ53U3SX3eLvqSVNTUyZOnJi+ffumoaEh\n48eP7+6SeyXn+u5nBqs85q/KZAarPOavymQG2z/s7bm+qlQqlcpQJwAAAAA93H5x6RwAAAAAlU/Q\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFOL/B/kpfyDRnEyXAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot all against close_bid\n", + "fig, axarr = plt.subplots(2, 2, figsize=(20,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "icol = pltGraph(\"ohlc_price\", \"close_bid\", irow, icol, df)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- we may have to address feature correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n", + "(10202,)\n", + "(10099, 20)\n", + "(103, 20)\n", + "(10099,)\n", + "(103,)\n" + ] + } + ], + "source": [ + "from sklearn import linear_model\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score\n", + "\n", + "# df only\n", + "X = df.drop(\"close_bid\", axis=1)\n", + "y = df.close_bid.shift().values\n", + "cols = X.columns\n", + "\n", + "\n", + "#convert to numpy first\n", + "df_np = df.copy().values.astype('float32')\n", + "X, y = create_training_set(df_np, 1)\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # find index of columns in dataframe\n", + "y = y[:,idx_close_bid] # select column to predict\n", + "cols = df.columns # i have all here, because close_bid is included as features\n", + "\n", + "\n", + "# create train and test\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, shuffle=False)\n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAFlCAYAAADs50HhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9clGW+//E3DAgqkKDotzXthEWbGvk73VLXjHDbXFNp\nQdjppJ4e57G2/ujsQfwJGJVutp6SUFe2PXu2tLTWXDEfrqumtmGmpoi4alGhmEuaqPwemJnvH66T\nxoCgDODF6/mXc18z93zg6u491zUX1+3ldDqdAgAAxvJu7gIAAIBnEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHugmfXt21cFBQXKycnRtGnT6nzuoUOHlJSU1OD3eO6555SWlna9JTbYyZMnNXXq\n1Bs6h9Vq1ebNmz32/BtVUFCgvn37um176623tHLlSrdtl/sbaEo+zV0AgEvuvfdeLV26tM7nfP75\n5yosLGyiiq7f119/rS+//LK5y2g2EyZMaO4SgKsQ9kA97dmzRy+99JK6dOmikydPyt/fX4sWLVKP\nHj00a9YsnT9/XidPntSPf/xjTZ8+XS+//LL27t0ru92unj17at68eQoICNC+ffuUmpoqLy8v3Xvv\nvXI4HK7zp6amauPGjSotLdXzzz+vTz/9VBaLRQ8//LAmTJigpUuXqri4WLNnz9bChQu1fft2LV++\nXFVVVfL391diYqL69u2rkpISzZ07V0ePHlXnzp1lsVjUv3//q34eh8OhESNG6LXXXtO9994rSXr2\n2Wc1cOBAxcXFXfXcFStWaOvWraqsrFR5ebkSExMVGRmp6upqLV68WDt27JDFYlHfvn2VnJysefPm\nqbCwUJMnT9aCBQs0evRoHThwQNKlEfHlx2VlZUpJSdFXX32lCxcuqH379nr55ZcVFhZWaz+cOXNG\nycnJ+uKLL+Tt7a3Y2Fg9+eSTVz1n69ateu2112S32xUQEKDZs2crIiJCeXl5mjt3rmw2m5xOp6Kj\noxUfHy9JWr58ubZs2SKHw6GuXbsqOTlZXbp0qfO/CYfDoblz5yo3N1c+Pj6aN2+e+vTpo7S0NBUV\nFSkpKanW/gaaEtP4QAMcOXJEkyZNUmZmpsaNG6eEhARXW0VFhd5//30lJCRo5cqVslgsWrdunTZs\n2KDOnTvr5Zdfls1m0/Tp0zVr1iytX79e999/vyoqKmq8z9KlS1VZWalNmzZp/fr1+vTTT3XixAlN\nmzZNAwYM0MKFC/XVV1/pf/7nf7Ry5UqtX79eqampmjp1qsrKyrR06VL5+/tr8+bNevXVV92Osr29\nvTV+/Hi99957kqQLFy4oKytLo0ePvup5p06dUlZWlt58801lZmbq2Wefdc1ArF69Wrm5ufrLX/7i\n+pCyadMmPf/88+revbtef/31On+fu3btUlBQkNauXau//vWv6t27t1atWlXnaxYsWKB/+7d/0+bN\nm7VmzRqtXbtW+fn5rva8vDwlJycrLS1NmZmZmjZtmqZMmaKSkhK9/vrreuihh7Ru3TqtXLlS+/bt\nk8Ph0Pr163X8+HG98847+stf/qLhw4dr3rx5ddYhXerzBx54QOvXr9f06dM1Y8YM2Ww2V3t9+xvw\nNEb2QAP88Ic/1IABAyRJ48eP13PPPaeioiJJumrkvGPHDhUXFysrK0uSVFVVpY4dO+r48ePy8fHR\nkCFDJEmPPfaY2+/gs7KyNHv2bFksFlksFr355puSpHXr1rme89FHH+mbb77RU0895Trm5eWlEydO\naPfu3ZozZ468vLwUEhKiyMhItz/P+PHjFR0drVmzZmnjxo0aMWKEAgMDr3pO165d9Zvf/EaZmZnK\nz89Xdna2SktLXXWOGTNG/v7+kqRXXnlF0qVZivoYNWqUunXrpjfeeEP5+fn65JNPav0e/MrfzeUP\nWYGBgdq4ceNV7R9//LEGDx6sbt26SZKGDBmikJAQHT58WJGRkUpMTNShQ4c0ZMgQzZs3T97e3vrg\ngw+Uk5Oj8ePHS7o0Yi8vL79m/UFBQXr00UclSUOHDpXT6dQXX3zhaq9vfwOeRtgDDWCxWK567HQ6\nXcfatWvnOu5wODRnzhwNHz5cklRaWqrKykqdPn1a378dhY9PzcvQx8dHXl5ersenT592BeqV7zFk\nyBBXwF5+XufOnV211Vb3ZV27dlXPnj21Y8cOrVu3TnPmzKnxnNzcXE2ZMkVPPfWUHnjgAQ0cOFAL\nFixwW/vZs2drTFN7eXldVUtVVZXr36tXr9batWsVHx+v0aNHq0OHDtdcvPb9383JkycVHBzseuzu\ndh9Op1PV1dUaMWKE/vrXvyorK0u7d+9Wenq63n77bTkcDv3Hf/yH6+sLm82mCxcu1FmHdGl25Pvv\n4+vrW+vPfrl+oKkxjQ80wNGjR3X06FFJ0po1a9SvXz8FBQXVeN6DDz6oVatWyWazyeFwaP78+Vqy\nZInCw8PldDq1c+dOSdK2bdvchsqQIUP03nvvyeFwyGazadq0adq7d68sFouqq6slSYMHD9ZHH32k\nvLw8SdLOnTv1s5/9TJWVlRo6dKjeffddORwOXbhwQdu2bav1Z/r5z3+ujIwMVVRU1PheX5L27t2r\n3r17a+LEiRo0aJC2bdsmu93uqnPjxo2unzMlJUXvv/++LBaLK9SDgoJUVVWlzz//XJL0t7/9zXXu\nv//97xo7dqyeeOIJ3XHHHdq+fbvr3LUZMmSI/vznP0uSiouL9e///u/66quvXO2Xfy8nT56UJO3e\nvVunT5/Wfffdp1//+tfatGmTfvrTnyo5OVkBAQE6ffq0HnzwQb377rsqKSmRJL366quaOXNmnXVI\n0vnz5/XBBx9IkrZv3y4/Pz/dfvvtrvb69jfgaXzEBBqgU6dOeuWVV3Tq1CmFhITopZdecvu8KVOm\n6De/+Y3Gjh0ru92ue+65R7NmzZKvr6/S09OVkpKiJUuW6J577lHHjh1rvP5Xv/qVXnjhBY0ZM0Z2\nu12PPvqoHnnkEZ04cUKvvPKKnnnmGaWnp+u5557Tf/3Xf8npdMrHx0fLly9Xu3btNHXqVCUnJ+sn\nP/mJQkJCFB4eXuvP9NBDD2nBggV6+umn3bY/9thj2rJlix599FH5+vpqyJAhunDhgkpKShQbG6tT\np05p3LhxcjqdGjRokKxWq0pLS2WxWBQdHa133nlHCQkJevrppxUSEqJRo0a5zj1p0iQlJSVp3bp1\nslgs6tWrl44fP15nHyQlJSklJUWjR4+W0+nUf/7nf6p3796u9jvvvFPJycn61a9+JbvdLn9/f61Y\nsUKBgYGaMmWK5s6dqzVr1rgWPg4aNEgDBw5UYWGhfv7zn8vLy0u33nqrFi1aVGcdktSxY0dt2bJF\nr7zyitq2bau0tLSrRu717W/A07y4xS1QP1eulgeAmwkjewCoxYsvvljrYsPZs2dr8ODBTVwRcH0Y\n2QMAYDgW6AEAYDjCHgAAwxH2AAAYzsgFemfOFDd3CTeV4OB2Kioqa+4yWj36oWWgH1oG+qHhQkMD\na21jZA/5+LjfXQ1Ni35oGeiHloF+aFyEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACG\nI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8v\nV2xsrPLy8iRJVVVVSkhIUFxcnKKjo7Vt2zZJ0pEjRzR06FBZrVZZrVZt2rTJkyUDAGAcH0+dOCMj\nQxs2bFDbtm1rtOXk5Cg5OVmFhYWuYxs2bFCHDh20ePFinT9/Xo8//rhGjhyp3NxcTZw4UZMmTfJU\nqQAAGM1jI/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyTp8OHD2rFjh+Lj4zVn\nzhyVlJR4qmQAAIzksZF9VFSUCgoK3Lb179+/xrH27dtLkkpKSjRt2jTNmDFDkhQREaEnnnhCvXv3\n1vLly5Wenq7ExMQ63zs4uJ18fCw3+BO0LqGhgc1dAkQ/tBT0Q8tAPzQej4X99Th9+rSeeeYZxcXF\nafTo0ZKkyMhIBQUFuf6dmpp6zfMUFZV5tE7ThIYG6syZ4uYuo9WjH1oG+qFloB8arq4PRy1mNf7Z\ns2c1adIkJSQkKDo62nV88uTJOnTokCRp9+7d6tWrV3OVCADATanJRvaZmZkqKytTTEyM2/YVK1bo\n4sWLWrZsmZYtWybp0iK/lJQUpaamytfXV506darXyB4AAHzHy+l0Opu7iMbG1E/DMF3WMtAPLQP9\n0DLQDw13U0zjAwAAzyDsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj\n7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAA\nDEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcB4N++zs\nbFmtVrdt5eXlio2NVV5eniSpqqpKCQkJiouLU3R0tLZt2yZJys/P14QJExQXF6fk5GQ5HA5PlgwA\ngHE8FvYZGRmaN2+eKisra7Tl5OQoPj5eJ0+edB3bsGGDOnTooNWrV+v3v/+9UlNTJUkLFy7UjBkz\ntHr1ajmdTteHAAAAUD8eC/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyQpNzdX\ngwYNkiQNGzZMWVlZnioZAAAj+XjqxFFRUSooKHDb1r9//xrH2rdvL0kqKSnRtGnTNGPGDEmXgt/L\ny8v1nOLi4mu+d3BwO/n4WK639FYpNDSwuUuA6IeWgn5oGeiHxuOxsL8ep0+f1jPPPKO4uDiNHj1a\nkuTt/d3kQ2lpqYKCgq55nqKiMo/VaKLQ0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbjnz17VpMm\nTVJCQoKio6Ndx3v27Kk9e/ZIknbt2qUBAwY0V4kAANyUmizsMzMztWbNmlrbV6xYoYsXL2rZsmWy\nWq2yWq2qqKhQYmKi0tLSFBMTo6qqKkVFRTVVyQAAGMHL6XQ6m7uIxsbUT8MwXdYy0A8tA/3QMtAP\nDXdTTOMDAADPIOwBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAw/k0dwEA0Fwqq+w6c75ccjoVGtxO\nfr6W5i4J8AiPjuyzs7NltVrdtpWXlys2NlZ5eXl1vubIkSMaOnSorFarrFarNm3a5MmSAbQCZZVV\nWrHhsKa/uktJr3+ipD/s1bNpH+rNvx2T3e5o7vKARuexkX1GRoY2bNigtm3b1mjLyclRcnKyCgsL\nr/ma3NxcTZw4UZMmTfJUqQBagcoqu/75bak27zmhvce+keN7mV5hc2j7/lPy9bFoRJ8f6JYAP0b6\nMIbHRvbdu3dXWlqa2zabzab09HSFhYVd8zWHDx/Wjh07FB8frzlz5qikpMRTJQMwkN3h0Jt/O6Zn\n0z7Ugj/u055/1Az6K/11zwnN+t3HmvO7LK3eelz2up4M3CQ8FvZRUVHy8XE/cdC/f3/deuut9XpN\nRESEZs6cqVWrVqlbt25KT0/3SL0AzPT2ts+0ff8pVdgaFtpFJVXauq9Ab237zEOVAU2nxS/Qi4yM\nVFBQkOvfqamp13xNcHA7+fgw/dYQoaGBzV0CRD80tgsllfrw0OkbOsfuw//UL6P7yL9Ni//fpXG4\nHhpPi/+vd/LkyZo/f74iIiK0e/du9erV65qvKSoqa4LKzBEaGqgzZ4qbu4xWj35oHJVVdp27WKGt\n+wv06bFvZKu6sWn48kq7/vHZN7qtM8HTlLgeGq6uD0dNFvaZmZkqKytTTExMg16XkpKi1NRU+fr6\nqlOnTvUa2QMwW2WVXRdKKq9aRFdWWa23/nZcR08U6duLlY37hl5ejXs+oIl5OZ1OZ3MX0dj4NNgw\nfIJuGeiHa7M7HFqz/XMdOH5G5y5WKiTIT/fd1Ulekj7KOd3g7+Xrw8/XW69MG8rK/CbG9dBwLWJk\nDwB1cTda/7412z/X1n0FrsffXqzU9v2nPFpX/7s7E/S46RH2AJqVu9F63/BQxTx0pyze3q4PAW39\nfPTpsW9u+P1uae+rfuGhsjsc2pX9zzqf69/GorjI8Bt+T6C5EfYAmpW70frWfQVyOJ3y9vJyfQgI\nbOeji2XVN/ReP+r9/2SNult+vhbZHQ59ebpEJ7+pfe+OByNuVTs//jeJmx//FQNoNpVVdh04fsZt\n29+zv5at+rslRTca9P5tvBUXGe6akrd4eyvpqQFa/bfjOvDZWZ0vscnbS3I4pZBAP/W7+9LsAmAC\nwh5As7lQUqlztaycvzLoG4OtyqGSMttVI3WLt7esUT/Uzx/67quCtu39ZbdV8T09jMItbgE0m1sC\n/BQS5Nck7xUc6K9bAty/l5+vRZ2D2ymwXRvd2qk9QQ/jEPYAmo2fr0V9w0Ob5L36hncixNFq1TmN\nb7Va5VXHZhJ/+tOfGr0gAK1HZZVdI/p21YXSSu39h/vv7m9UxyB/9Q3vxPfvaNXqDPupU6c2VR0A\nDOPu7+YvHwto56v1H36pT499o3PFNo/VkBDbR2Fdb2FEj1avzrAfNGiQ699HjhxRWVmZnE6n7Ha7\nCgoKrmoHAKnuXe4OfnZW5y5Wyq+NRRU2u0frCAn0I+iBf6nXavzExEQdOHBAFy5cUFhYmI4ePap+\n/fopOjra0/UBuMnUZ5c7Twe9JPW7O5SgB/6lXgv09u7dq/fff19RUVFKTU3V2rVrZbN5buoNwM2p\nrr+bbyoWb+mh/l35jh64Qr1G9p07d5avr6969OihY8eO6ac//alKS0s9XRuAm0xdfzfvCV1C/FVd\nLZ27WKGg9m30w9uDZY0KVzs/3yarAbgZ1Cvsu3Tpot/97ncaMmSIFi9eLEkqK+Oe8UBr5m4B3uW/\nm2/0W8zWYtr4+xQS5H/NG+gArV29wv6FF17Qzp07FRERoUceeUQbN25USkqKh0sD0BLVdeOay383\nf+V39p7SMchPIUH+rg1xANSuXmF/8eJF9e3bV19//bVGjhypkSNHerouAC1UbTeukaS4h8Nd35Uf\nOH5WRcUVCg701313dfzXavxvVVRcoVva+6mopH6j/26dA9zerKZvOAvwgPqqV9j/4he/kJeXl5xO\np6qrq3X27Fndc889+vOf/+zp+gC0IHUtwDtw/KzGD+8hP1+L4h4O1/jhPWpMr0f/+Ls96J/74946\np/v921j0YMStiv5xmN7d8cVVHx7YJAdomHqF/fbt2696fOjQIa1atcojBQFouepagFdUXKELJZWu\nKXV30+tXHqttut/P11v97+6suMi7XAvtavvwAKB+ruuudxEREZozZ05j1wKgiblbZFeXuhbg1XWj\nGXdqTvf76YfdgzUhMtztPeT5bh64fvUK+9dee+2qx59//rk6duzokYIAeF5di+ws3t9tv/H9DwN1\nLcBr6I1mLN7ejNiBJnJdI/uBAwfqsccea+xaADSRay2yq+vDgLsFeDfyHTojdsDz6hX2Xbt21dix\nY686tmrVKsXHx3ukKACeU59Fdn/emVfnhwFG5MDNpc6w/+Mf/6iSkhK9/fbbOnXqu72t7Xa7MjMz\nCXvgJlTXIrtvL1bon+dKa/0w8OmxMxp23w8U2qEtI3LgJlLn3vi333672+Nt2rTRokWLPFIQAM+6\nvMiuNpv3nKz1w8C54kolv/6J5mV8rNVbj8vucHiqTACNqM6R/YgRIzRixAj95Cc/UWVlpXr27Kni\n4mIdPnxYAwYMaKoaATSCKxfbRdzZSR98esrt8z47eb7OLW+dqjmtD6Blq9d39u+9956OHDmiP/zh\nDyovL9eyZcu0b98+TZ061dP1AbhB7hbbhXfrUOvzi4or1feuTvXa3/7KjXQAtFz1usXtjh07lJGR\nIenSHfD+93//V1u2bPFoYQAax+WV999erHSNynfnFsq/jfuA9vKSDnx2Vv5tLLU+57LLG+kAaNnq\nFfbV1dWqqKhwPa6qqvJYQQCuX2WVXd8Ulamyyu563ND7yzucl6bqK2x2VdjsGtyzszrW8h1/QzfS\nAdA86jWNHxsbq3Hjxumhhx6S0+nUhx9+yEp8oAWp7e/iR/TtWutiu0qbXQ/0/n86euK8zl2skJfX\npaD/vs8KLiqiR0d9cODrGm0N3UgHQPOoV9hPmDBBVVVVstlsCgoKUnR0tM6cadhoAYDn1LZJjt3u\nqHWxXUiQv34Rdbck6YtTF/Ty2wfdnruouEIPD+gmi8Wbm9EAN6l6hf3UqVNVXl6uEydOaMCAAdq7\nd6/69Onj6doAfI+7vezrmqo/lHeu1pX3V47Kw7reUuee9yFB/mykA9zE6hX2X375pbZs2aIXXnhB\n48eP18yZMzV9+nRP1wbgX+ravvZad6J7uP9tsnh71Tkqr++e92ykA9yc6hX2HTt2lJeXl+644w4d\nO3ZMjz/+uGw2m6drA/Avde1lP354j0YZlTf2nvcAWo56hf1dd92l1NRUTZgwQf/93/+tb775hhX5\nQBOorLLrTFHZNfeyb4xROXehA8xVr7BPSUnRgQMHdOedd2rq1KnavXu3fvvb33q6NqBVqqyy69zF\nCm3dd1KH8r6tc3ObcxcrdOZ8eaOOypmqB8zj5XQ63fyxzc3tzJni5i7hphIaGsjvrAUICWmv19Ye\n0IHjZ+q1e91lfr5eeiDiB5ow8i5V252Mym8Q10PLQD80XGhoYK1t13U/ewCN7w+ZuW6n4q+lssqp\n7ftPydvLS3EPhzMqB1BDvXbQA+BZxWU2fZRdc9Oahvj02BnXznkAcCVG9kAzuvwndfuOfqPzJTf2\nFy5FxZW6UFLJyB5ADYQ90Iy+/yd1NyI40I996gG45dFp/OzsbFmtVrdt5eXlio2NVV5eXp2vyc/P\n14QJExQXF6fk5GQ5HA5Plgw0meu5SU1d7ruLfeoBuOexsM/IyNC8efNUWVlzVXFOTo7i4+N18uTJ\na75m4cKFmjFjhlavXi2n06lt27Z5qmSgSdW18931eLj/bY12LgBm8VjYd+/eXWlpaW7bbDab0tPT\nFRYWds3X5ObmatCgQZKkYcOGKSsryzMFA03slgA/hdRy69iG6hh0aac8AHDHY9/ZR0VFqaDA/XeR\n/fv3r/drnE6nvLy8JEnt27dXcfG1/+4yOLidfHyYzmyIuv4+E57zwH1dteHDLxrhPD/QbT/o0AgV\nQeJ6aCnoh8bT4hfoeXt/N/lQWlqqoKCga76mqKjMkyUZh80rms/oId1VVm5z7Xwnub+nfG3821j0\nYMStGj2kO33YSLgeWgb6oeFu6k11evbsqT179uj+++/Xrl27NHjw4OYuCWg0V+5Hb2njq7c2H9EH\nB9z/vb1/m3/d0tZmV3Cgn354e7DiIu9SOz/fpiwZwE2oycI+MzNTZWVliomJadDrEhMTNX/+fC1Z\nskRhYWGKioryUIVA8/HztSi0U3vFRYbLYvG+ao/7iB4henhAN9d38myHC6Ch2BsfTJe1EFf2Q2WV\nnVBvJlwPLQP90HA39TQ+0Bpx5zkAjYm98QEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6w\nBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHAeDfvs7GxZrVa3beXl5YqNjVVeXp4kyeFwKCkpSTExMbJarcrPz5ckHTlyREOHDpXVapXV\natWmTZs8WTIAAMbx8dSJMzIytGHDBrVt27ZGW05OjpKTk1VYWOg6tnXrVtlsNq1Zs0YHDx7UokWL\ntHz5cuXm5mrixImaNGmSp0oFAMBoHhvZd+/eXWlpaW7bbDab0tPTFRYW5jq2f/9+DR06VJLUp08f\nHT58WJJ0+PBh7dixQ/Hx8ZozZ45KSko8VTIAAEby2Mg+KipKBQUFbtv69+9f41hJSYkCAgJcjy0W\ni6qrqxUREaEnnnhCvXv31vLly5Wenq7ExMQ63zs4uJ18fCw39gO0MqGhgc1dAkQ/tBT0Q8tAPzQe\nj4V9QwUEBKi0tNT12OFwyMfHR5GRkQoKCpIkRUZGKjU19ZrnKioq81idJgoNDdSZM8XNXUarRz+0\nDPRDy0A/NFxdH45azGr8fv36adeuXZKkgwcPKjw8XJI0efJkHTp0SJK0e/du9erVq9lqBADgZtRk\nI/vMzEyVlZUpJibGbXtkZKQ++ugjxcbGyul06sUXX5QkpaSkKDU1Vb6+vurUqVO9RvYAAOA7Xk6n\n09ncRTQ2pn4ahumyloF+aBnoh5aBfmi4m2IaHwAAeAZhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAA\nGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAM\nR9gDAGAsuyFhAAAJjUlEQVQ4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfY\nAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8vV2xsrPLy8iRJDodDSUlJiomJ\nkdVqVX5+viQpPz9fEyZMUFxcnJKTk+VwODxZMgAAxvFY2GdkZGjevHmqrKys0ZaTk6P4+HidPHnS\ndWzr1q2y2Wxas2aNfv3rX2vRokWSpIULF2rGjBlavXq1nE6ntm3b5qmSAQAwksfCvnv37kpLS3Pb\nZrPZlJ6errCwMNex/fv3a+jQoZKkPn366PDhw5Kk3NxcDRo0SJI0bNgwZWVleapkAACM5OOpE0dF\nRamgoMBtW//+/WscKykpUUBAgOuxxWJRdXW1nE6nvLy8JEnt27dXcXHxNd87OLidfHws11l56xQa\nGtjcJUD0Q0tBP7QM9EPj8VjYN1RAQIBKS0tdjx0Oh3x8fOTt/d3kQ2lpqYKCgq55rqKiMo/UaKrQ\n0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbj9+vXT7t27ZIkHTx4UOHh4ZKknj17as+ePZKkXbt2\nacCAAc1WIwAAN6MmC/vMzEytWbOm1vbIyEi1adNGsbGxWrhwoWbPni1JSkxMVFpammJiYlRVVaWo\nqKimKhkAACN4OZ1OZ3MX0diY+mkYpstaBvqhZaAfWgb6oeFuiml8AADgGYQ9AACGI+wBADAcYQ8A\ngOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjC\nHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDA\ncF5Op9PZ3EUAAADPYWQPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhL2hsrOzZbVa3baV\nl5crNjZWeXl5kiSHw6GkpCTFxMTIarUqPz9fknTkyBENHTpUVqtVVqtVmzZtarL6TdGQfqjtNfn5\n+ZowYYLi4uKUnJwsh8Ph0ZpN1Bj9wPVw4xrSD1VVVUpISFBcXJyio6O1bds2SVwP18unuQtA48vI\nyNCGDRvUtm3bGm05OTlKTk5WYWGh69jWrVtls9m0Zs0aHTx4UIsWLdLy5cuVm5uriRMnatKkSU1Z\nvjEa2g+1vWbhwoWaMWOG7r//fiUlJWnbtm2KjIz0eP2maKx+4Hq4MQ3thw0bNqhDhw5avHixzp8/\nr8cff1wjR47kerhOjOwN1L17d6Wlpblts9lsSk9PV1hYmOvY/v37NXToUElSnz59dPjwYUnS4cOH\ntWPHDsXHx2vOnDkqKSnxfPEGaWg/1Paa3NxcDRo0SJI0bNgwZWVleaZgQzVWP3A93JiG9sOoUaM0\nffp0SZLT6ZTFYpHE9XC9CHsDRUVFycfH/aRN//79deutt151rKSkRAEBAa7HFotF1dXVioiI0MyZ\nM7Vq1Sp169ZN6enpHq3bNA3th9pe43Q65eXlJUlq3769iouLG79YgzVWP3A93JiG9kP79u0VEBCg\nkpISTZs2TTNmzJDE9XC9CHsoICBApaWlrscOh0M+Pj6KjIxU7969JUmRkZE6cuRIc5XYqnl7f3eZ\nlpaWKigoqBmrab24Hpre6dOn9eSTT2rMmDEaPXq0JK6H60XYQ/369dOuXbskSQcPHlR4eLgkafLk\nyTp06JAkaffu3erVq1ez1dia9ezZU3v27JEk7dq1SwMGDGjmilonroemdfbsWU2aNEkJCQmKjo52\nHed6uD4s0GsFMjMzVVZWppiYGLftkZGR+uijjxQbGyun06kXX3xRkpSSkqLU1FT5+vqqU6dOSk1N\nbcqyjXOtfqhNYmKi5s+fryVLligsLExRUVEeqrB1uN5+4HpoXNfqhxUrVujixYtatmyZli1bJunS\nIj+uh+vDXe8AADAc0/gAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAN2zWrFlat26dCgsL9fTT\nT9f53NpuhFKbPXv2NPg1AK5G2ANoNF26dFFGRkadz/nkk0+aqBoAl7GpDtBK7dmzR2lpafLx8dHp\n06cVERGhX/7yl5oyZYqCg4Pl5+en119/XS+99JI++eQT2e12jRs3Tk899ZScTqcWLVqkHTt2qHPn\nzrLb7Ro0aJAKCgr05JNPavv27Tp16pRmz56tc+fOyd/fX88//7zeffddSdITTzyhd955R7t27dLS\npUtVXV2t2267TampqQoODtbf//53LVy4UH5+frrjjjua+TcF3PwIe6AVO3TokNavX6877rhD06dP\n186dO/Xll1/q97//vW677Ta99dZbkqT33ntPNptNkydPVu/evXX27FkdOXJEGzduVHFxsX72s5/V\nOPeCBQsUFRWl+Ph47dy5U8uXL9err76qN954Q++8847OnTun3/72t/rTn/6kW265RW+//bZefvll\nJScna9asWfq///s/9ejRQ3Pnzm3qXwtgHMIeaMUGDhzouq3omDFjtHbtWnXs2FG33XabpEt7wP/j\nH//Qxx9/LEkqKyvTsWPHlJeXp0ceeUS+vr4KCQnRsGHDapx77969WrJkiSRp+PDhGj58+FXt2dnZ\nrhudSJduwHTLLbfo2LFj6ty5s3r06CFJGjt2rF599VXP/AKAVoKwB1qxy/cIl767Z7i/v7/rmN1u\nV0JCgh555BFJ0rlz59SuXTstXrxYDofD9Tx3ty698pjT6VReXp7uvPPOq87dr18/rVixQpJUWVmp\n0tJSff3111ed+8oaAVwfFugBrdj+/ftVWFgoh8Oh9evX1xihDx48WGvXrlVVVZVKS0sVFxen7Oxs\nDRkyRJs3b5bNZtOFCxf04Ycf1jj3gAED9P7770uSsrKyNH/+fEmXwru6ulr33XefDh48qC+//FKS\ntGzZMr300ku6++679e233+ro0aOS5DoHgOvHyB5oxTp37qyZM2eqsLBQDzzwgH70ox9p5cqVrvbY\n2Fjl5+dr7Nixqq6u1rhx43T//fdLknJycvTYY4+pU6dOrin3KyUlJWnevHlavXq12rZtq+eff16S\nNHLkSI0ZM0br1q3Tiy++qBkzZsjhcKhLly5avHixfH19tWTJEiUkJMjHx0c9e/Zsml8GYDDuege0\nUnv27NFrr72mN954o7lLAeBhTOMDAGA4RvYAABiOkT0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4\nwh4AAMP9fzJ0kNjjsjViAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oc_difflow_bidlast_10_tick_avg_bo_spreadavg_pricelast_10_tick_avg_bid_returnnb_ticksweekdayyearday15_minhourmonthavg_bo_spreadpcahigh_bidrangeperiod_returnohlc_priceopen_bidclose_bid
linear regression coefficients-0.203845-0.01149-0.002238-0.002219-0.001859-0.001265-0.0000020.09.480864e-070.0000020.0000070.0000170.0006030.0012650.0070990.0186370.1838530.2001270.3005940.504454
lasso regression coefficients-0.0000000.00000-0.0000000.000000-0.000000-0.0000030.0000000.0-0.000000e+00-0.000000-0.0000000.000000-0.000000-0.0000000.000000-0.0000000.0000000.0000000.0000000.000000
\n", + "
" + ], + "text/plain": [ + " oc_diff low_bid last_10_tick_avg_bo_spread \\\n", + "linear regression coefficients -0.203845 -0.01149 -0.002238 \n", + "lasso regression coefficients -0.000000 0.00000 -0.000000 \n", + "\n", + " avg_price last_10_tick_avg_bid_return \\\n", + "linear regression coefficients -0.002219 -0.001859 \n", + "lasso regression coefficients 0.000000 -0.000000 \n", + "\n", + " nb_ticks weekday year day \\\n", + "linear regression coefficients -0.001265 -0.000002 0.0 9.480864e-07 \n", + "lasso regression coefficients -0.000003 0.000000 0.0 -0.000000e+00 \n", + "\n", + " 15_min hour month avg_bo_spread \\\n", + "linear regression coefficients 0.000002 0.000007 0.000017 0.000603 \n", + "lasso regression coefficients -0.000000 -0.000000 0.000000 -0.000000 \n", + "\n", + " pca high_bid range period_return \\\n", + "linear regression coefficients 0.001265 0.007099 0.018637 0.183853 \n", + "lasso regression coefficients -0.000000 0.000000 -0.000000 0.000000 \n", + "\n", + " ohlc_price open_bid close_bid \n", + "linear regression coefficients 0.200127 0.300594 0.504454 \n", + "lasso regression coefficients 0.000000 0.000000 0.000000 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reg_lasso = linear_model.Lasso(alpha = 0.1) # Lasso takes care of regularisation\n", + "reg_linear = linear_model.LinearRegression()\n", + "\n", + "reg_linear.fit(X_train, y_train)\n", + "reg_lasso.fit(X_train, y_train)\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg_linear.coef_), list(reg_lasso.coef_)]\n", + " , index=[\"linear regression coefficients\", \"lasso regression coefficients\"])\n", + "\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg_linear.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='linear regression coefficients', axis=1)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- what mae is acceptible as a result? If i invest based on my prediction, and it goes the other way i lose money. \n", + "- Therefore, check the directional error, not MAE. Compare close with next close. If my prediction - actual next close has the same sign and value of that measure, count as accurate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check regression errors" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def check_error_metrics(df, y_train, y_test, X_train_pred, X_test_pred, y_prev):\n", + "\n", + " #compute direction of next step\n", + "# if len(X_test.shape) >2:\n", + "# y_prev = X_test[:,0,idx_close_bid]\n", + "# else:\n", + "# y_prev = X_test[:,idx_close_bid]\n", + " err_list = []\n", + " \n", + " pred_directions = X_test_pred - y_prev\n", + " act_directions = y_test - y_prev\n", + " pred_returns = X_test_pred / y_prev-1\n", + " act_returns = y_test / y_prev -1\n", + "\n", + " \n", + "\n", + " sign_error = np.sign(pred_directions) != np.sign(act_directions)\n", + " actual_minus_pred = act_directions - pred_directions\n", + " abs_actual_minus_prod = abs(act_directions) - abs(pred_directions)\n", + " return_vals = act_returns - pred_returns\n", + "\n", + " # how often do you make a negative 1 percent return when a positive return was predicted\n", + "\n", + " err_list= [\n", + " [\"mse train all feature: \", mean_squared_error(y_train, X_train_pred)]\n", + " ,[\"mse test all feature: \", mean_squared_error(y_test, X_test_pred)]\n", + " ,[\"mae train all feature: \", mean_absolute_error(y_train, X_train_pred)]\n", + " ,[\"mae test all feature: \", mean_absolute_error(y_test, X_test_pred)]\n", + " ,[\"mean avg bo spread: \", df.avg_bo_spread.mean()]\n", + " \n", + "\n", + " ,[\"how often sign of price change is same: \", (sign_error==False).sum() / len(sign_error)]\n", + "\n", + " # if correct sign, how often larger than actual value, smaller than actual value\n", + " # generally good profit\n", + " ,[\"if same sign, how often is actual better than 0.1 percent in both directions: \"\n", + " , (abs(act_directions[~sign_error]) > 0.001).sum() / len(act_directions[~sign_error])]\n", + "\n", + " # positive surprise\n", + " ,[\"if same sign, how often is actual better than predicted in both directions: \"\n", + " , (abs_actual_minus_prod[~sign_error] > 0).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + " # positive suprise of least 10 bp\n", + " ,[\"if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: \", \n", + " (abs_actual_minus_prod[~sign_error] > 0.001).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions\",\n", + " (abs(return_vals[sign_error]) > 0.001).sum() / len(return_vals[sign_error])]\n", + " \n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return in both directions\",\n", + " (abs(act_returns[sign_error]) > 0.001).sum() / len(act_returns[sign_error])]\n", + " ] \n", + " # show histogram of returns if sign error\n", + " plt.hist(act_returns[sign_error], bins=20)\n", + " plt.title(\"returns if pred and act sign mismatches\")\n", + " plt.show()\n", + " \n", + " df_err = pd.DataFrame(err_list)\n", + " \n", + " for el in err_list:\n", + " print(el)\n", + " \n", + " \n", + " return df_err\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFXCAYAAADj40TtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHkFJREFUeJzt3XtYlHX+//HXMCDGQTwsVlvppV4iqWuiaXl5aFM3NTEi\nIzyhrGmWZJfaKq6r4CnTNjfTWt1aW/eizbNZuVtpYpqJZh5a1yx3TfGQl7KGCoKc5vP7w5/zlRUQ\nB/igw/Pxl8Pc9z2f+83Ik3vEwWGMMQIAANb4VPcCAACoaYgvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8YU1x48f15gxY6w/7qZNmzRr1ixJ0sGDB9WzZ09FR0frxIkTVf7Yo0aN0tq1a6vk2EuWLNGk\nSZMq5Viff/65Xn/99RvaJyoqShcuXKiUxy+v3/3ud9q+fXuVPkZ5nqcnTpxQREREla4D3s23uheA\nmuPHH3/UkSNHrD9ujx491KNHD0mXQ/zAAw/opZdesr6Om9n+/ft1/vz5G9rngw8+qKLVlM7G5626\nnqeoWYgvKmTnzp166aWXFBAQoJycHK1evVrbtm3TokWLVFBQoNq1aysxMVFt2rTRlClTdPr0aT39\n9NOaPn26+vXrp71790q6fCVx5fbatWu1evVq5ebmKigoSNHR0dq4caN8fHyUnp4uPz8/zZ07V2Fh\nYdqwYYMWLVokh8Mhp9OpiRMnqkOHDsXWuHbtWn366afq27evli1bpqKiIl26dEnz5s0rtl3Lli01\nbNgw7dy5Uzk5ORo/frweeeSRa9aTkpKiVatWadmyZXK5XKpbt66mTp2qZs2a6fTp05o0aZLOnDmj\nn//85zp79myJczty5IhmzJihnJwcnTlzRuHh4Zo/f778/f31i1/8Qs8884y+/PJLnTlzRkOHDlV8\nfLwKCgo0a9Ysbd++XQ0aNFCDBg0UHBx8zbFzcnI0bdo0HT16VOfPn1dgYKBeffVVNW3aVBkZGUpO\nTtYPP/wgHx8fDRgwQPfdd5+WL1+uoqIiBQcHa9y4ccWOt2DBAm3cuFF+fn6qV6+eXn75ZTVs2FAt\nWrRQWlqaQkJC9Morryg1NVXBwcFq06aNDh8+rJSUFMXFxalt27bas2ePTp06pfbt22vu3Lny8Sn+\noltcXJxatWqlHTt26OzZsxo6dKjOnj2rr776Srm5uZo/f75atGihuLg4DR48WD179tTMmTO1Z88e\n+fn56e6779bLL7+szMxMDRs2TA8++KD27dunwsJCTZw4UStWrNAPP/yg1q1b6w9/+IN8fHy0ePFi\nffbZZ8rLy1Nubq4SExPVvXv3Ys/TJUuWaPPmzZo/f75cLpcCAgI0ffp0BQUFqaioSElJSdq/f78u\nXLigiRMnqlevXpKkRYsWacOGDXK5XLrrrruUnJys22+/vVzPV9QQBqiAHTt2mPDwcHPixAljjDFH\njhwxkZGR5qeffjLGGHPo0CHTuXNnc/HiRbNjxw7Tt29fY4wxx48fN23btnUf5+rba9asMR06dDBZ\nWVnu2+3btzenTp0yxhgzY8YMM3HiRGOMMT169DB79+41xhjzxRdfmIULF16zxjVr1phnnnnGGGPM\nggULzPTp00s8l7CwMLNo0SJjjDEHDx407du3N2fPnr1mPTt37jSDBg0yOTk57sft06ePMcaY0aNH\nm9dee80YY8zRo0dN27ZtzZo1a655rDlz5ph169YZY4zJz883kZGR5pNPPnGvIyUlxRhjzP79+03r\n1q3NpUuXzNKlS83QoUNNXl6euXjxoomOjjaJiYnXHPvjjz82M2fOdN+eOnWqmTFjhjHGmISEBDN3\n7lxjjDEXLlwwffv2NUePHi11Lj/++KNp166dycvLM8YYs2TJErNx40b3Os+ePWuWLVtmBg8ebC5d\numTy8vLM8OHDzZAhQ4wxxgwZMsS88MILpqioyGRlZZkuXbqYtLS0ax5nyJAh5vnnnzfGGLNv3z4T\nFhZmNm3aZIwx5qWXXjJTpkxxb/fxxx+bXbt2md69exuXy2WMMeaVV14xu3fvNsePHzdhYWHms88+\nM8YYk5SUZB5++GGTlZVlLl26ZDp37mx2795tTpw4YeLi4kxubq4xxpj169ebyMhIY4wp9jzNyMgw\n7du3N99++60xxphPP/3UPP300+7HufI527Bhg+nRo4cxxpj333/fjB071hQUFBhjjFm+fLkZMWKE\nMaZ8z1fUDFz5osLuvPNO3XXXXZLkvlqLj4933+9wOHTs2LEbOmaLFi0UFBTkvt2qVSvdcccdki5f\noW7cuFGS1LdvXz3//PN66KGH1LlzZ40cObJC5zJkyBBJUnh4uMLCwrRr165r1vP5558rPT1dAwYM\ncO93/vx5nTt3Ttu3b1diYqIkqXHjxnrggQdKfJwJEyboyy+/1Ntvv62jR4/qzJkzysnJcd9/5WXy\nVq1aKT8/Xzk5OUpLS1NkZKRq1aqlWrVqqV+/fvr++++vOXbv3r11zz33KCUlRenp6frqq6/c/z65\nfft2TZgwQZIUHBys9evXlzmP22+/XeHh4YqOjla3bt3UrVs3derUqdg2W7ZsUVRUlPz9/SVJsbGx\nSklJcd//8MMPy8fHR0FBQWrcuHGpL2//6le/kiTdc889kqSuXbtKkho1aqSvvvqq2LZhYWFyOp2K\niYlRly5d1KtXL7Vp00YnTpyQn5+funfv7t43IiLC/blr2LChzp8/r3bt2mnu3Ln66KOPlJ6erm++\n+UYXL168Zk179uxR8+bNde+990qSHnnkET3yyCPux7lypRseHu5+lWPz5s3av3+/+vfvL0lyuVzK\nzc2VVPnPV9y6iC8qLCAgwP1nl8ulTp06af78+e6PnTp1Sg0bNtTXX3/t/pjD4ZC56m3FCwoKSj2m\nJNWuXbvEfceNG6cnn3xS27Zt09q1a/XWW29p7dq117ysWV5Op7PYuVy5/b/nGBUV5Y6Yy+XSmTNn\nFBIScs15+fqW/Fds/PjxKioqUp8+ffTLX/5Sp06dKrbflZA5HA5JKnZfSWu92nvvvaeVK1dq8ODB\n6tevn+rWrev+4TJfX1/3MaXLP1xUr169Uufh4+Ojd999V/v371daWppmz56tBx54QFOmTCn1HP93\n9qV97v5XrVq1it328/MrdV116tTRBx98oD179mjHjh0aO3ashg4dqp49e8rPz6/YOZZ0nAMHDmj0\n6NGKj49X586d1aFDB02fPv2a7ZxOZ7FjGWP0/fffKygoqNhxr97G5XJpxIgRGjRokCQpPz/f/Q1H\nZT9fceviM45K9eCDD+rLL7/U4cOHJV2+KnrssceUl5cnp9PpjmydOnVUUFCg//znP5LkvpK9EYWF\nherevbtycnI0cOBAJScn6/DhwyosLPR4/evWrZN0+YvzkSNHSvz3uM6dO+vvf/+7zpw5I0latmyZ\nhg0bJuny1dqKFSskXf7BnZ07d5b4ONu2bVNCQoIeffRRORwOffPNNyoqKipzbV27dtW6deuUl5en\nvLw8/eMf/yj12NHR0YqJiVGTJk2UmprqPnanTp20Zs0aSVJWVpaGDRumo0ePyul0lji37777TpGR\nkWrWrJlGjRql+Pj4a662H3roIX344YfKz89XYWGh3n///TLPozJs3rxZ8fHxioiI0JgxY/T444/r\nu+++K/f+u3btUuvWrfXrX/9aHTt21KZNm9wzuvp5et999+nw4cP697//LenyD+xd+aarNF26dNHq\n1auVnZ0tSXr99dc1ceLEKnm+4tbFlS8qVfPmzTVjxgyNHz9exhj5+vpq0aJFCggIUPPmzeV0OvXk\nk09q1apVmjBhgkaOHKn69eurd+/eN/xYvr6+mjx5sn7zm9+4r+hmz559zRXUjdizZ49Wrlwpl8ul\n1157TSEhIdds07VrV40cOVLDhw+Xw+FQUFCQ3njjDTkcDiUnJ+u3v/2t+vTpozvuuEPh4eElPs64\nceOUkJCgkJAQ3XbbberQocN1X5ofMGCAjh07psjISNWtW1eNGzcucbvhw4crKSlJa9euldPpVKtW\nrXTo0CFJUlJSkqZNm6Z+/frJGKNRo0apdevWKigo0JgxY+Tn56epU6e6jxUeHq4+ffqof//+CggI\nUO3atYtd9UrSE088oSNHjujxxx9XQECA7r77bt12221lnktFdevWTVu3blVkZKQCAgIUEhKimTNn\nlnv/yMhIbdiwQY8++qj8/PzUqVMnnT9/XtnZ2dc8T1999VUlJiaqqKhIQUFBeu2118o8dkxMjE6f\nPq2nnnpKDodDd955p+bMmVMlz1fcuhymtNeAgBrmyk/v1q9fv7qXckvZtm2bzp49q6ioKEnSrFmz\n5O/vf90rRKAm42VnABXSvHlzrVu3To899pj69u2rzMxMPfvss9W9LOCmxpUvAACWceULAIBlxBcA\nAMuILwAAlln5r0YZGVk2HsaKevUClJmZc/0NUSpmWHHMsGKYX8Uxw+sLDb32vdev4Mr3Bvn6lvyu\nQig/ZlhxzLBimF/FMcOKIb4AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwj\nvgAAWFau+H7zzTeKi4uTJKWnp2vgwIEaNGiQkpOT5XK5qnSBAAB4m+vG9+2339aUKVOUl5cnSXr5\n5Zc1duxYvffeezLGaNOmTVW+SAAAvMl149uoUSMtXLjQffvAgQPq2LGjJKlbt27avn171a0OAAAv\ndN3fatSrVy+dOHHCfdsYI4fDIUkKDAxUVtb1f2NRvXoBXvUm3GX9pgqUj7fMsN+LH1Tq8T6aF1Xu\nbb1lhtWF+VUcM/TcDf9KQR+f/7tYvnjxourUqXPdfbzp106FhgZ71a9IrA7MsHTlnQszrBjmV3HM\n8Poq9VcKtmzZUjt37pQkbd26Vffff7/nKwMAoAa64fgmJiZq4cKFio2NVUFBgXr16lUV6wIAwGuV\n62Xnu+++WytXrpQkNWnSRO+++26VLgoAAG/Gm2wAAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAA\nLCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGCZryc7FRQU\naNKkSTp58qR8fHw0c+ZMNWvWrLLXBgCAV/LoynfLli0qLCzU8uXLlZCQoPnz51f2ugAA8FoexbdJ\nkyYqKiqSy+VSdna2fH09uoAGAKBG8qiaAQEBOnnypPr06aPMzEwtXry4zO3r1QuQr6/TowXejEJD\ng6t7Cbc8ZliyG5kLM6wY5ldxzNBzHsV36dKl6tKli1588UWdOnVKw4YN00cffSR/f/8St8/MzKnQ\nIm8moaHBysjIqu5l3NKYYenKOxdmWDHMr+KY4fWV9c2JR/GtU6eO/Pz8JEkhISEqLCxUUVGRZ6sD\nAKCG8Si+8fHxmjx5sgYNGqSCggKNGzdOAQEBlb02AAC8kkfxDQwM1Ouvv17ZawEAoEbgTTYAALCM\n+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8A\nAJYRXwAALCO+AABYRnwBALDM19Md//SnPyk1NVUFBQUaOHCgYmJiKnNdAAB4LY/iu3PnTu3du1fL\nli1Tbm6u3nnnncpeFwAAXsuj+G7btk1hYWFKSEhQdna2Jk6cWNnrAgDAa3kU38zMTP34449avHix\nTpw4oeeee06ffPKJHA5HidvXqxcgX19nhRZ6MwkNDa7uJdzymGHJbmQuzLBimF/FMUPPeRTfunXr\nqmnTpqpVq5aaNm0qf39//fTTT2rQoEGJ22dm5lRokTeT0NBgZWRkVfcybmnMsHTlnQszrBjmV3HM\n8PrK+ubEo592bt++vb744gsZY3T69Gnl5uaqbt26Hi8QAICaxKMr34cffli7du3Sk08+KWOMkpKS\n5HR6z8vKAABUJY//qxE/ZAUAgGd4kw0AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy3yrewHwHsPnpFbq8d6Z1L1Sj3crqOwZSjVzjsDNjitf\nAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcA\nAMuILwAAlhFfAAAsq1B8z549q4ceekiHDx+urPUAAOD1PI5vQUGBkpKSVLt27cpcDwAAXs/j+M6d\nO1cDBgxQw4YNK3M9AAB4PV9Pdlq7dq3q16+vrl276q233rru9vXqBcjX1+nJQ92UQkODq3sJlaLf\nix9U9xLKNHxOaqUf86N5UZV+zJudtzxfKxtzqThm6DmP4rtmzRo5HA6lpaXp4MGDSkxM1KJFixQa\nGlri9pmZORVa5M0kNDRYGRlZ1b0MeKgmfu5q4jlfD3+PK44ZXl9Z35x4FN+//e1v7j/HxcVp2rRp\npYYXAAAUx381AgDAMo+ufK+WkpJSGesAAKDG4MoXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIA\nYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAA\ny4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLf6l4Aym/4nNTqXsItjxkCuBlw5QsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGW+nuxUUFCgyZMn6+TJk8rPz9dzzz2nHj16VPbaAADwSh7F98MPP1TdunX1+9//XufO\nndPjjz9OfAEAKCeP4tu7d2/16tVLkmSMkdPprNRFAQDgzTyKb2BgoCQpOztbL7zwgsaOHVvm9vXq\nBcjXt3ID3e/FDyr1eB/Niyr3tqGhwdfdprLXB3iqPM/Xmsib5lIVX2/K8zXRm2Zom0fxlaRTp04p\nISFBgwYNUr9+/crcNjMzx9OHsSYjI6tc24WGBpd7W+BmwPP1Wvw9vr7rzYcZXl9Z35x4FN///ve/\nGj58uJKSktSpUyePFwYAQE3k0X81Wrx4sS5cuKA//vGPiouLU1xcnC5dulTZawMAwCt5dOU7ZcoU\nTZkypbLXAgBAjcCbbAAAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABY5lvdC7hZDJ+TWt1LAKrEzf7cfmdS9+pewnXd7DOsiaric2LzuciVLwAA\nlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCw\njPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBl\nxBcAAMuILwAAlvl6spPL5dK0adP0/fffq1atWpo1a5YaN25c2WsDAMAreXTl+9lnnyk/P18rVqzQ\niy++qDlz5lT2ugAA8FoexXf37t3q2rWrJKlt27b617/+VamLAgDAm3n0snN2draCgoLct51OpwoL\nC+XrW/LhQkODPVtdGT6aF1XpxwRQc9zI1yW+3pSsKr62l9et/jnx6Mo3KChIFy9edN92uVylhhcA\nABTnUXzbtWunrVu3SpL27dunsLCwSl0UAADezGGMMTe605Wfdj506JCMMZo9e7aaNWtWFesDAMDr\neBRfAADgOd5kAwAAy4gvAACW1ej4Xrp0SWPGjNGgQYM0cuRI/fTTT9dss3LlSj3xxBN66qmntHnz\n5jL327dvn2JiYjRgwAC98cYbxY6Tm5urqKgo9w+qeQtbM5w7d65iY2PVv39/rVy50s7JVTGXy6Wk\npCTFxsYqLi5O6enpxe5PTU1V//79FRsb6z7n0vZJT0/XwIEDNWjQICUnJ8vlckkqefbewsb8li5d\nqpiYGMXExFzzd9ob2JjhlX1GjBihZcuW2Tu5m52pwd555x2zYMECY4wx69evNzNnzix2/5kzZ0xk\nZKTJy8szFy5ccP+5tP0ee+wxk56eblwulxkxYoQ5cOCA+1iTJk0yUVFRZsuWLZbOzg4bM0xLSzOj\nR482xhiTl5dnevbsac6dO2fxLKvGp59+ahITE40xxuzdu9c8++yz7vvy8/Pd55mXl2eeeOIJk5GR\nUeo+o0aNMjt27DDGGDN16lSzYcOGUmfvLap6fseOHTPR0dGmsLDQuFwuExsbaw4ePGj5LKtWVc/w\ninnz5pmYmBjz3nvv2Tq1m16NvvK9+p26unXrprS0tGL3//Of/1RERIRq1aql4OBgNWrUSN99912J\n+2VnZys/P1+NGjWSw+FQly5dtH37dknSkiVLFBERofDwcLsnaIGNGUZERGj27NnuYxYVFXnF/ysv\n653iDh8+rEaNGikkJES1atVS+/bttWvXrlL3OXDggDp27Cjp8jy3b99e6uy9RVXP74477tCf//xn\nOZ1OORwOFRYWyt/f3/JZVq2qnqEkffLJJ3I4HO59cNmt/xWsnFatWqW//vWvxT7WoEEDBQdffoeW\nwMBAZWVlFbs/Ozvbff+VbbKzs4t9/Mp+//uuX4GBgTp+/LjS0tKUnp6uGTNmaM+ePVV1elZU1wz9\n/f3l7++vgoICTZo0SbGxsQoMDKyq07SmrHeKK2tuJe1jjJHD4XBve2WeJR3DW1T1/Pz8/FS/fn0Z\nY/TKK6+oZcuWatKkib0TtKCqZ3jo0CGtX79eCxYs0JtvvmnvxG4BNSa+V/7d5mrPP/+8+526Ll68\nqDp16hS7/3/fyevixYsKDg4u9vEr+5W0bZ06dbR69WqdPHlScXFx+uGHH3TgwAGFhobq3nvvrapT\nrTLVNUNJOn/+vF544QV17NhRo0aNqpLzs62sd4orz9yu3sfHx6fYtqXN8+ovpre6qp6fJOXl5Wny\n5MkKDAxUcnJyVZ+SdVU9w3Xr1un06dMaNmyYTp48KT8/P911113q1q2bhbO7udXol53btWunLVu2\nSJK2bt2q9u3bF7u/TZs22r17t/Ly8pSVlaXDhw8rLCysxP2CgoLk5+enY8eOyRijbdu26f7779e8\nefO0fPlypaSkqGvXrpowYcItGd7S2JjhpUuXFB8fr/79+yshIcH6OVaVst4prlmzZkpPT9e5c+eU\nn5+vr7/+WhEREaXu07JlS+3cuVPS5Xnef//9pc7eW1T1/IwxGj16tFq0aKEZM2bI6XRaPsOqV9Uz\nnDhxolatWqWUlBRFR0crPj6e8P5/NfpNNnJzc5WYmKiMjAz5+flp3rx5Cg0N1V/+8hc1atRIPXr0\n0MqVK7VixQoZYzRq1Cj16tWr1P327dun2bNnq6ioSF26dNG4ceOKPd6kSZP06KOPetWTz8YMly5d\nqjfeeKPYNy2zZ8/WPffcU41nXnElvVPct99+q5ycHMXGxio1NVVvvvmmjDHq37+/Bg8eXOq7yx05\nckRTp05VQUGBmjZtqlmzZsnpdJY4e29R1fNLTU3V+PHj1bZtW/djjh8/XhEREdV41pXLxnPwioUL\nF+pnP/uZBg4cWI1nfPOo0fEFAKA61OiXnQEAqA7EFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwLL/B36M6wikk3reAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['mse train all feature: ', 4.4521161e-07]\n", + "['mse test all feature: ', 6.5240918e-08]\n", + "['mae train all feature: ', 0.00042638468]\n", + "['mae test all feature: ', 0.00020227849]\n", + "['mean avg bo spread: ', 3.9868658581951545e-05]\n", + "['how often sign of price change is same: ', 0.55339805825242716]\n", + "['if same sign, how often is actual better than 0.1 percent in both directions: ', 0.0]\n", + "['if same sign, how often is actual better than predicted in both directions: ', 0.98245614035087714]\n", + "['if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: ', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return in both directions', 0.0]\n" + ] + } + ], + "source": [ + "df_err = check_error_metrics(df, y_train, y_test, reg_linear.predict(X_train), reg_linear.predict(X_test), X_test[:,idx_close_bid])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# log results\n", + "log=True\n", + "\n", + "if log:\n", + " \n", + " simname= \"linear regression\"\n", + " sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = pd.Series(reg_linear.predict(X_test) - y_test).describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffledlinear regression
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...1 row lookback
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-076.52409e-08
MAE0.0002857810.0003408460.0005363070.0002029050.0005944820.000202278
count102102103103102103
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372-2.31451e-05
std0.0004009530.000444650.0008268490.0002555660.0004782960.000255616
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515-0.000772119
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821-0.000199616
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495-1.14441e-05
75%0.0002399680.000177890.000316920.0001162290.0008309780.000123918
max0.0007556680.001287820.003273720.00053370.001593350.000535846
mse train all feature:004.3917e-074.45245e-075.16241e-074.45212e-07
mse test all feature:006.79626e-076.55241e-084.82937e-076.52409e-08
mae train all feature:000.0004235650.0004267730.0005053850.000426385
mae test all feature:000.0005363070.0002029050.0005944820.000202278
mean avg bo spread:003.98687e-053.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.8823530.553398
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.6555560
if same sign, how often is actual better than predicted in both directions:000.97826110.3666670.982456
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.06666670
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.3333330
if not same sign, how often is actual worse than -0.1 percent return in both directions000.105263000
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \\\n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 5 \n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.52409e-08 \n", + "MAE 0.000202278 \n", + "count 103 \n", + "mean -2.31451e-05 \n", + "std 0.000255616 \n", + "min -0.000772119 \n", + "25% -0.000199616 \n", + "50% -1.14441e-05 \n", + "75% 0.000123918 \n", + "max 0.000535846 \n", + "mse train all feature: 4.45212e-07 \n", + "mse test all feature: 6.52409e-08 \n", + "mae train all feature: 0.000426385 \n", + "mae test all feature: 0.000202278 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.553398 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0.982456 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot residuals" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9slded5/HPee61MRgbOw2E1ECAFLolIUsg051xN9WW\nKOoozUgzYlIIVbRqo5l2dtSZaKsqUdQfkZIm2a40qoSizE5G/WOroqRpZ0dpaJVRQrJocdoNpMSA\ndwIDGGxDwYB//8C+vmf/ODzX917f3/fa9z6P3y8JCfv63vv8Ouc5z/me8z3GWmsFAAAAAAAAAAAA\nBJxX7Q0AAAAAAAAAAAAAKoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCIVrKm+LxuJ555hl9/PHHqq+v13PPPac77rgj8frBgwf1\n0ksvKRqNateuXfryl7+s6elpPf300+rr69PU1JT+6q/+Sg888IDOnz+vp556SsYYbdq0Sd///vfl\nebnjcf39I6VsNoAF0tq6TAMD49XeDAAoCnUXgKCi/gIQRNRdAIKK+guoDStXNmV9raQZX2+//bam\npqb02muv6Vvf+pZefPHFxGvT09N64YUX9OMf/1g/+clP9Nprr+nq1at644031NLSov379+sf//Ef\n9eyzz0qSXnjhBT3xxBPav3+/rLV65513StkkADUkGo1UexMAoGjUXQCCivoLQBBRdwEIKuovoPaV\nFPg6evSo7r//fknStm3bdOLEicRrZ86c0bp167RixQrV19drx44d+uCDD/THf/zH+tu//VtJkrVW\nkYirIE6ePKnPfvazkqTPf/7z6ujoKGuHAAAAAAAAAAAAsDiVlOpwdHRUy5cvT/wciUQUi8UUjUY1\nOjqqpqbZKWaNjY0aHR1VY2Nj4r1/8zd/oyeeeEKSC4IZYxJ/OzKSP41ha+syIutAjcs11RQAahV1\nF4Cgov4CEETUXQCCivoLqG0lBb6WL1+usbGxxM/xeFzRaDTja2NjY4lA2KVLl/TXf/3X2rt3r/7k\nT/5EklLW8xobG1Nzc3Pe7yeHKlDbVq5sYi0+AIFD3QUgqKi/AAQRdReAoKL+AmpDxdf42r59uw4d\nOiRJOnbsmDZv3px47c4779T58+c1ODioqakpHTlyRPfee6+uXr2qr33ta/r2t7+tP//zP0/8/ZYt\nW/Tb3/5WknTo0CHdd999pWwSAAAAAAAAAAAAFjljrbXFvikej+uZZ57RqVOnZK3V888/r66uLo2P\nj2v37t06ePCgXnrpJVlrtWvXLn3lK1/Rc889p1//+tfauHFj4nNeeeUVXbp0Sd/97nc1PT2tjRs3\n6rnnnkus/5UNEXWgtjHyBUAQUXcBCCrqLwBBRN0FIKiov4DakGvGV0mBr2qjYgFqGw0AAEFE3QUg\nqKi/AAQRdReAoKL+AmpDxVMdAgAAAAAAAAAAALWGwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAA\nAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAA\nQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcA\nAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAA\nAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKB\nwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAA\nAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAA\nAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAX\nAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAA\nAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABC\ngcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAA\nAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAA\nAABCgcAXAAAAAAAAAAAAQqGkwFc8Htf3vvc97d69W4899pjOnz+f8vrBgwe1a9cu7d69Wz/72c9S\nXvvoo4/02GOPJX7u6urS/fffr8cee0yPPfaYfvWrX5WySQAAAAAAAAAAAFjkoqW86e2339bU1JRe\ne+01HTt2TC+++KJefvllSdL09LReeOEF/fznP9fSpUv16KOPaufOnbr11lv1yiuv6I033tDSpUsT\nn3Xy5El99atf1de+9rXK7BEAAAAAAAAAAAAWpZJmfB09elT333+/JGnbtm06ceJE4rUzZ85o3bp1\nWrFiherr67Vjxw598MEHkqR169Zp3759KZ914sQJvffee/rKV76ip59+WqOjo6XuCwAAAAAAAAAA\nABaxkmZ8jY6Oavny5YmfI5GIYrGYotGoRkdH1dTUlHitsbExEcz64he/qN7e3pTPuueee/TII4/o\n7rvv1ssvv6yXXnpJTz75ZM7vb21dpmg0UsqmA1ggK1c25f8jAKgx1F0Agor6C0AQUXcBCCrqL6C2\nlRT4Wr58ucbGxhI/x+NxRaPRjK+NjY2lBMLSPfjgg2pubk78/9lnn837/QMD46VsNoAFsnJlk/r7\nR6q9GQBQFOouAEFF/QUgiKi7AAQV9RdQG3IFoEtKdbh9+3YdOnRIknTs2DFt3rw58dqdd96p8+fP\na3BwUFNTUzpy5IjuvfferJ/1+OOPq7OzU5L0/vvv66677iplkwAAAAAAAAAAALDIlTTj68EHH9Th\nw4e1Z88eWWv1/PPP65e//KXGx8e1e/duPfXUU3r88cdlrdWuXbt02223Zf2sZ555Rs8++6zq6up0\n6623FjTjCwAAAAAAAAAAAEhnrLW22htRLKaSArWNKd8Agoi6C0BQUX8BCCLqLgBBRf0F1IaKpzoE\nAAAAAAAAAAAAag2BLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACE\nAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAA\nAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAA\nAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKB\nLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEQrTaGwAAAMKlr8+ooyOiwUGjlhar9vYZtbXZam8WAAAA\nAAAAFgECXwAAoGL6+oz274/KWiNJGhgw6u422rs3RvALAAAAAAAA845UhwAAoGI6OiKJoJfPWjcD\nDAAAAAAAAJhvBL4AAEDFDA6aon4PAAAAAAAAVBKBLwAAUDEtLZnTGWb7PQAAAAAAAFBJBL4AAEDF\ntLfPyJjUIJcxVu3tM1XaIgAAAAAAACwm0WpvAAAACI+2Nqu9e2Pq6IhocNCopcUFvdramPEFAAAA\nAACA+UfgCwAAVFRbm9Ujj8SqvRkAAAAAAABYhEh1CAAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAF\nAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAA\nAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQ\nIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAA\nAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAA\nAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDw\nBQAAAAAAAAAAgFAoKfAVj8f1ve99T7t379Zjjz2m8+fPp7x+8OBB7dq1S7t379bPfvazlNc++ugj\nPfbYY4mfz58/r0cffVR79+7V97//fcXj8VI2CQAAAAAAAAAAAItcSYGvt99+W1NTU3rttdf0rW99\nSy+++GLitenpab3wwgv68Y9/rJ/85Cd67bXXdPXqVUnSK6+8ou985zu6ceNG4u9feOEFPfHEE9q/\nf7+stXrnnXfK3CUAAAAAAAAAAAAsRiUFvo4ePar7779fkrRt2zadOHEi8dqZM2e0bt06rVixQvX1\n9dqxY4c++OADSdK6deu0b9++lM86efKkPvvZz0qSPv/5z6ujo6OkHQEAAAAAAAAAAMDiFi3lTaOj\no1q+fHni50gkolgspmg0qtHRUTU1NSVea2xs1OjoqCTpi1/8onp7e1M+y1orY0zib0dGRvJ+f2vr\nMkWjkVI2HcACWbmyKf8fAUCNoe4CEFTUXwCCiLoLQFBRfwG1raTA1/LlyzU2Npb4OR6PKxqNZnxt\nbGwsJRCWzvO8lL9tbm7O+/0DA+OlbDaABbJyZZP6+/MHsQGgllB3AQgq6i8AQUTdBSCoqL+A2pAr\nAF1SqsPt27fr0KFDkqRjx45p8+bNidfuvPNOnT9/XoODg5qamtKRI0d07733Zv2sLVu26Le//a0k\n6dChQ7rvvvtK2SQAAAAAAAAAAAAsciXN+HrwwQd1+PBh7dmzR9ZaPf/88/rlL3+p8fFx7d69W089\n9ZQef/xxWWu1a9cu3XbbbVk/68knn9R3v/td/d3f/Z02btyoL37xiyXvDAAAAAAAAAAAABYvY621\n1d6IYjGVFKhtTPkGEETUXQCCivoLQBBRdwEIKuovoDZUPNUhAAAAAAAAAAAAUGsIfAEAAAAAAAAA\nACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8\nAQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAA\nAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAg\nFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEA\nAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUotXeAABAePX1\nGXV0RDQ4aNTSYtXePqO2NlvtzQIAAAAAAAAQUgS+AADzoq/PaP/+qKw1kqSBAaPubqO9e2MEvwAA\nAAAAAADMC1IdAgDmRUdHJBH08lnrZoABAAAAAAAAwHwg8AUAmBeDg6ao3wMAAAAAAABAuQh8AQDm\nRUtL5nSG2X4PAAAAAAAAAOUi8AUAmBft7TMyJjXIZYxVe/tMlbYIAAAAAAAAQNhFq70BAIBwamuz\n2rs3po6OiAYHjVpaXNCrrY0ZXwAAAAAAAADmB4EvAMC8aWuzeuSRWLU3AwAAAAAAAMAiQapDAAAA\nAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEv\nAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIRCtNobAAAAAAAAytfXZ9TREdHgoFFLi1V7+4za2my1NwsAAABYUAS+AAAAAAAIuL4+o/37\no7LWSJIGBoy6u4327o0R/AIAAMCiQqpDAAAAAAACrqMjkgh6+ax1M8AAAACAxYTAFwAAAAAAATc4\naIr6PQAAABBWBL4AAAAAAAi4lpbM6Qyz/R4AAAAIKwJfAAAAAAAEXHv7jIxJDXIZY9XePlOlLQIA\nAACqI1rtDQAAAAAAAOVpa7Pauzemjo6IBgeNWlpc0KutjRlfAAAAWFwIfAEAAAAAEAJtbVaPPBKr\n9mYAAAAAVUWqQwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIRCtJQ3xeNxPfPMM/r4449VX1+v5557TnfccUfi9YMHD+qll15SNBrVrl279OUvfznre7q6uvT1\nr39d69evlyQ9+uijeuihhyqycwAAAAi2vj6jjo6IBgeNWlqs2ttn1NZmq71ZAAAAAACgRpUU+Hr7\n7bc1NTWl1157TceOHdOLL76ol19+WZI0PT2tF154QT//+c+1dOlSPfroo9q5c6c+/PDDjO85efKk\nvvrVr+prX/taRXcMAAAAwdbXZ7R/f1TWGknSwIBRd7fR3r0xgl9ACQgkAwAAAFgMSkp1ePToUd1/\n//2SpG3btunEiROJ186cOaN169ZpxYoVqq+v144dO/TBBx9kfc+JEyf03nvv6Stf+YqefvppjY6O\nlrtPAAAACIGOjkgi6OWz1nXcAyiOH0g+d87TwIDRuXOe9u+Pqq/P5H8zAAAAAARISTO+RkdHtXz5\n8sTPkUhEsVhM0WhUo6OjampqSrzW2Nio0dHRrO+555579Mgjj+juu+/Wyy+/rJdeeklPPvlkzu9v\nbV2maJQOD6CWrVzZlP+PAKDGUHfVllhMamzM/PuVKxd+e4Balq/+eustadmyub8/cULatm2eNgoA\n8qDtBSCoqL+A2lZS4Gv58uUaGxtL/ByPxxWNRjO+NjY2pqampqzvefDBB9Xc3CxJevDBB/Xss8/m\n/f6BgfFSNhvAAlm5skn9/SPV3gwAKAp1V+2JRqMaG5uboGDVqrj6+2NV2CKgNhVSf124UKexsbmz\nuy5csOrvn56vTQOArGh7AQgq6i+gNuQKQJeU6nD79u06dOiQJOnYsWPavHlz4rU777xT58+f1+Dg\noKampnTkyBHde++9Wd/z+OOPq7OzU5L0/vvv66677iplkwAAABAy7e0zMiZ1/SFj3LpEAIrT0pJ5\nLa9svwcAAACAoCppxteDDz6ow4cPa8+ePbLW6vnnn9cvf/lLjY+Pa/fu3Xrqqaf0+OOPy1qrXbt2\n6bbbbsv4Hkl65pln9Oyzz6qurk633nprQTO+AAAAEH5tbVZ798bU0RHR4KBRS4sLerW10VEPFKu9\nfUbd3SZl3TwCyQAAAADCyFhrA9dzwFRSoLYx5RtAEFF3AQiqQuuvvj5DIBlAzaDtBSCoqL+A2pAr\n1WFJM74AAAAAAMHS1mb1yCOsjwcAAAAg3Ah8AQAAAACARYvZkAAAAOFC4AsAAFQcHUgAACAI+vqM\n9u+PJta/Gxgw6u422rs3RtsFAAAgoLxqbwAAAAgXvwPp3DlPAwNG58552r8/qr4+U+1NAwAASNHR\nEUkEvXzWugE8AAAACCYCXwAAoKLoQAIAAEExOJh5YE623wMAAKD2keoQAIAKILXfLDqQAABAULS0\nWA0MzG2jtLQsznYcAABAGBD4AgCgTKwNkYoOJAAAEBTt7TPq7jYps9WNcYOYFhsGcgEAgLAg1SEA\nAGUitV+q9vYZGZPaSbJYO5AAAEBta2uz2rs3pg0b4mpttdqwIb4oBy+xRisAAAgTZnwBAFAmUvul\n8juQGDEMAACCoK3N6pFHYtXejKrKNZBrsR8bAAAQPAS+AAAoE6n95qIDCQAAIDgYyAUAAMKEVIcA\nAJSJ1H4AAAAIsmwDthbzQC4AABBcBL4AACgTa0MAAAAgyBjIBQAAwoRUhwAAVACp/QAAABBUrNEK\nAADChMAXAAAAAADAIsdALgAAEBYEvgAgoPr6DCMygYCgvAILj3IHAAAAAIsTgS8ACKC+PqP9+6Oy\n1kiSBgaMursN60rlQAcoqoXyCiw8yh0AAAAALF4EvgAggDo6IonOPJ+1LrBDepK56ABFNVFegfmX\nPrhhYECUOwAAAABYpAh8AUAADQ6aon6/2BF4QDVRXoH5lWlww4cfGm3aJDU1pQ5uoNwBQH5kSgAA\nAEFH4AsAAsiNZp/bedfSUpkH0rA97BJ4QDXNd3kFFrtMgxsaGqSeHqMtW1LLGeUOwGJWSBufTAkA\nACAMCHwBQAC1t8+ou9ukdPQZ4x5eyxXGh91cgYewBflQe+azvALIPIhhzRqrf/u31N9T7gAsZoW2\n8cmUgLDgOQ8AFjev2hsAACheW5vV3r0xbdgQV2ur1YYN8YoFpnI97AZVe/uMjEk9NsZYbdw4o/37\nozp3ztPAgNG5c57274+qr4+ZYKic+SyvADLP4mpulr7wBcodAPgKbeOTKQFh4Ad6ec4DgMWLGV8A\nEFBtbXZeRl2G8WHXDzykj/hjRCsWynyVVwDZZ1U+/HB1RnYzwhy1imuz+qp5Dgpt45OiGWHAcx4A\ngMAXgEDiwX3+hPVhN1PgIYxBvoVGWQRQbdkGN1Qr6BWEdMHU3YtPUK7NMKv2OSi0jU+KZoQBz3kA\nAAJfAAKn2g+NYbeYHnaDHuSrdsclZRFAsmrWSbUyq7JWR5gnnxtrrXp6jJqaqLsXk1q9NheTap+D\nQtv4tTSYAChEpvZH0J/zAADlI/AFIHCq/dA4n6odyJAKf9ithW0tV5CDfLUQdApzWayWMJQrLE61\nUCfVglocYZ5+brq6IhoYkLZujau52f0NdXf41eK1GQSVvC9X+xwUE9CqlcEEQD7Z2h87d8YC+5wH\nAKgMAl8AAqfaD43zpZY6DfM97CZv68iI0eHDRr/4RVRf+EKsamuqlCLII1prIegU1rJYLbVUBwDF\nqoU6qRbU4gjz9HMzOen+39trtGXL7HZRd4dbLV6bta7S9+VCz8F8DoIhoLVwGMy0MLK1P86ejQT2\nOQ8AUBkEvgAETlgf3IPUaehv68iI0fHjnuzNQ//++xEND892CAThgS+5AyAI2+urhaBTWMtitQSp\nDgDS1UKdVAtqcSZx+jloaLCamDA3A2Cz9fV81t3+/bW72+jKFU+rVsW1fn1t32fLUYvtiVq8Nmtd\npe/LhZyDWhsEU4vXchDU2nkMs1ztDwK9ALC4EfgCEDhhfXAPUqehv009PSYR9JLcKHK/Q6C9fSZQ\nD3xBe0CthaBTWMtitQSpDgDS1UKdVI5Kde7W4kzi9HOzdq3V4KBRQ8PsNs1n3e3fX4eHvcRgmVOn\njIaG4jV9ny1VrbYnqnltzkfwZCECMpW+LxdyDmppEEyuFHJnz9ZOHVeLauk8hl3Q2x8AgPlD4AtA\n4NRip1IlBKnR7m+rny7J53eiDQ6awD3wBW1704NOw8MubZUxRq+/Hl2QMhHWslgtQaoDsDgU07Ec\n5EB4pQMVtTbCPP3cNDVZbd06ozVr4vK8+a+7/ftr6mAZo95eo+Zm1ex9tlDp5eT6ddVse6Ia1+Z8\nBALL/cxC67ZK3JczfVeuc1BLg2AytY2Hhz3t21evNWusenvds8CBAxF985tT2rGD9oqvnPPILLvi\nBLn9AQCYXwS+AARSrXUqVUKQGu3+tvrpkhyrNWvcQ1lLi63Ig/tCPvjVUkdDIZKDTt3dRr29ntau\ndZ1r584t3OjyMJbFaglSHRBGpdY3Ye2gKrZjOciB8KANfChWtc+Nfx9NHyzjp1qs1ftsITKVkw8/\n9PSpT8XV3Jz6t0Hez3LMR/kq5zOLqdvKvS+XEqCrpUEwma7Znh6jgQHd3Eb3+sSE0b599frBD6YC\nUecvhFLPY63OGC1UNdpE1b7HAQBqV+SZZ555ptobUazx8alqbwKwqPT1Gb31VlQdHRGdPeuppcXO\neZhP1ti4JFTltNj9L1Vzs7R+vdXoqNHQkNTf76mx0WpkxMzbd5bK39bJSTfLqKnJatMmt43GWD30\n0Iz6+03GB+bbb7e666543u/wH/wGBjxNTrrPOnHC0/r1hR2LYs/b2bNeWdtbDc3N0l13xXXxoqe6\nOqMlS5JfNRodNTW77aWaz/JY7boruQ4wxl17Dz2U/8F9oeqoMCu1vim3nqplb73l9itV7nrFr5N2\n7IjrrrvmdvzXqo6OyJygjCQZI+3YEYw6NF/9lX5uRkbmt95IrpdOnfI0MyONj6fOFG9qslq5srbv\ns/lkKicDA0bDw9LKlal/G+T9LMd8lK9yPrOYuq3U+3Ip3+VrabE6ccKTH1Ry++W+d6HqVL/8vv9+\nRBcvuval38bs6fE0NCTV16cef2Pc80Cx13i1217zpdTzWMo1Uyuq2SYKavsDwRbW+gsImsbGJVlf\nY8YXgJyCNOqskBFmxY5CW+j9b2tz29TZGVV/v9TTE9HJk1adnUbf+EZtHfO2Nqu//MuYvvSlmYzH\ntNxRsgs1mtcX5Nk2QZutVqr5LI+uk0e6cKGuqiNFi51BF6Q6ulZkug+UWt+EeaZQpvpjZMTo3XfD\nN6K6lmZYpJuvtZHms95I//yGBun4cU8bNrjZXS7doZslHpT7bDaZysnatVanT6f+Lqj7WYnrbz7K\nVzmfWWxzE7v6AAAgAElEQVSbqZyZ7aW0z6o9eyW5/H7iE9LFi54GBqy2bnXBhIaGuJYvT13jV3Lp\nztP3K6wzogtR6nkMcps+zG0iAEAwEfgCkFNQGrCFdOKU0tGTvP/+GkqTk56uXPH0xBPFpfMo9OHv\nzTcj6uyMKDl9yMCA0ZtvWn3967GiP2++ZesQKPfBvZwHv1Ku22p3NJRjoTttq3XtzVd95NcNy5ZJ\nY2OmJoNH2Y55UOroWpHtPpBNvvqm3A6qWqnHM0mvV0ZGjI4f99TSEtfAQG2Wk1LV6sCHcgJUua6t\nbPXGgQMRtbaq7Osx/fPdmmLS5KT0uc/FdOWKp1Wr4lq/vrau+VJkuv82NVnt3BmvyLGspkoFSOej\nfLlBYkY9PW62/uiotHy5VUuL2+5c27eQbaZSvssvu93dJlFWpEhV2lqu7MZvpjc0+vf/fkYPPDCj\nffvqU/bLGBfwTd6v5OtneFg6fNjTL34R0c6dM/rSlyq3L7V8Hy0laFrLAzHyCULQrpavFwBA5RH4\nAhZQEBtaQWjASoV1iJfSQezv5/CwG63sB6N6etzDXDGLaBfaeZAc9Jpl9P77Ed1yi9umeNyqt9dT\nU5Pyfl4xKn2NljNKdiFH8/pybW8tl99snUobN87o9dejFdnm5I6YkyfdemJNTXbOtZftOGX6vaSi\njul81Ue1HjzKVX/UQh2dr2zUUtnJdq77+41Wrpy7Tfnqm3LqqVqfrZder/T0GFk7u5ajVFvlpBy1\nOvCh1Lop37WVbTbfhx9GtH27zfieYmT6/KYmq3XrrP7iL6aL+qxal+3+W8mO/Wqp1L1x/sqX0cSE\n0cWLnqJRqa7OqqdH2r+/+Bn+IyPS9evSK69UdtZ3sUE/v+wOD3s6ftyTtdKpU0ZDQ/EFuz+kl9+m\nJqstW6xaW2fbyN/85pT27avX5KSnhgartWutmpvjKfvlXz/pz1AdHUZDQ5WbrV/L99FS1OpAjELU\netAujNfLfKildjsAlIs1voAFEtR1QEpZ9yg51/FCrT1TSK7/UtYD8Pf/zBk308vnr0tRaL71YvK1\nHzgQ1chI6nbeuCH197v1IiYnjX73O08XLkTU0qKkdZ3Ky/8+39dosddCOWscVHq9roUqv5mOUSHr\nsGRag2L79hkdPFiZbU7e/64uTwMDnq5cMUnXn7v2WlpsxuPU0GD1xhvRxPuOHvX0T/8U1TvvRDQ9\n7R7uC9m++VqHza8b6uujmp6e7ViolfV9ctUfDQ2ZO5kXai2ZfGWj1u592e4Dy5dbGSMVW98UW08l\nl/EDB6KamandtfnS65Xr143uuGPuectXTirdDpivdkUtrg9STLslue2Vr82RqS49c8YFD1LXpSrt\neiynrg7amoXlrgFViGodk0quzVXp8vXWW1GNjxsNDkrRqFFjoxSJSFNTyts+Tz9nDQ1Ww8OStcWv\n8VhK+yzX9eGX3TNnPE1M+MfeaHo6935V8hoppPx+8pPSH/xBXE1NVqtWWd1xR3zOfvnXT/ozlDFG\nt99uE/uSaY0cf39+9auI/vmf6/TRR54uXpy7X5VeD6sW6p+FqFPmSy2sT5dLputlZMTT//k/EZ0/\n7wXinjPfaq3dXutY4wuoDazxBdSAWp9RkE05o84WclRVISPMShmF5u9/6gObS+chFT6rophZGdu2\nzejiRS8ld/7wsEl8p+SCX9a6Efhbtsz+vpxZHpmu0aEhox/9qF6rVsXLSk1UyrXQ1ma1c2dMr75a\nr6tXpVtvlfbsmS7oeys9WnIhym+mY9TZ6UmyamrKf9zSZ6u9/nq06G0uJJ2e3wmWfv0NDpqsx+nV\nV+u1cqVNGfXb3+9/XjyxbkS+7ZuvUbC1PkI1V/3x0EOxqo4Mzlc2au3el+1c+/VasSNci5nJkF7G\ne3qMJieNtm51nYe+Uuvx+Rihm1yvvP56VOfOpXcw5k/ZlbzP58+7dHp33RXXihVW1kqel392aDkp\ni4Os1LopX5sjU106OSl96lNzP7eU67HUujqo57ec2e35VPOY1PK90b8u0wNz/s/FzPD3Z8Yns9bo\nzTdnMy2UUxcVc33k3q/MszWzbcvOnTGdPVv8bOxCy2++/fKvn/R98QON773nvnvdOunuu82cY1vI\nrLd8dV0x98Vaqn8yHdsgzMKp1dnTvvTrxU/h3NBgtXJlaSmcg3BeilFr7XYAKBeBL2CB1EI6qlKU\n04BdyIZTIQ9ppXTE+Pt/5Yqnnh6TSOfhd1IW+vCfqfNgeFjq7/fmpFX50pdm1NPjqafHjbRqaHCL\nv2/aNDtysaHBamJi7sNkOZ0R6dfi8LB09GhEQ0NGsVhE0ai0YoWnHTtmin4oKOVa6OszOngwqpUr\nbWIE+sGDUa1enf97K/3gtRDlN9Mx6ulxga/k4GahZajYbS40nZ5/7UmpHTMtLZk7ZCTp6lU3Urm3\n18gfBRqLuU4cyej0aaOlS93nnT9vsp6r+Xqg9uuGZLWUViZf5+OKFVbHjnkyRrrnnhk9/HB5x6SY\nh/h819ngoElaH9HVZ2vWZL9Wiv3+YuW6D5TaeV3o+9LLuF+W0gcw5KvHk4+PtS54NDxsdOSICyob\n445zR4enf/fv4nMCS6Uq5R6avk6mH/g+csToxg23/Vu3xlM6ag8ezN6B++67EY2PS2vWzI48ruUO\nmXKv5VIDSPnqjEx16YoVcQ0NFRfYzKbUujpIHW4L1dlZzWMy3ynXyjmG/jWe3CaRXL3qv16oTPej\n4WHpww+j2r7dtb3TO8Tn67yUsl/ZBq7t21efuLdkSkudK8hTibaWf/0k74sxUmur1fHjnlpb3fdO\nTUmdndE5x9al1/U/zai316i5WSnH2Fqrrq5Ion3hP6O1tOTfx0KOY63UP7UUlMtnPgcClCv93uhf\nY375koo750E6L4UKap8VAGRDqkNggcxXiq6FUGx6En/KdyVTpBSyjfnSQvh/09Nj9K//6mloyGjd\nurg2b849dd/f/2vXXOe9n5aqmNQN6akfhoelEyc8tbVJ8bhS0gi0tVl9+tNxLV0qffKTVvfcE9ea\nNXFJrgP5zBmXdqC/36i52eqTn7RFb08m6dfoiRMuneL4uEtLEosZjY2512+/fTbdSq60IMmpSvr7\nXUqv5LReua6FctNR5Lpui01lshDlN1N56enxFIu570lWSBkqdJv9Y/E//2edLl5MP0dz0+ktWSJd\nueICWC7lp01ce/39JsuDkUtD5PbHD5pJnidFo9KlS0bRqLvGIhHp8mWTNaXGfKQj8+uGWKxeU1Ox\nBU8rk+96zJY6Zvv2Gb3xRlSTk55aWqSWFpfmyZ9BV+q2FJPiJN91duSIp8OHI5qcdOd+ctLoyhWj\nT30qrvvuy5yuaT5TrFQzhVB6GffLkp/2Scpfjycfn/5+T4cPR3X6tKcLF4zOnYvo+nWXrm50VOrq\nimh42Ki1VSUdx/Trcu1aF6TKd+yS3/eb30TkeW5fk9NdXbvmJdKk+im8JKP/+3+jWrYsdTsuXfL0\n059Gdf68246pKU/XrrlyMXs/zlwnVjNtVSWu5WKu1+R0O4Wkm0qvS2+/vbIpqkqpqxey3ViOhUwF\nNV/HpNg0fUNDbrBWY6NLwVyJlKXlHMOWFhcguXx5dqBYXZ30mc9YNTRkvm6z7XPm1J+uXZK69uNs\nCr35Oi9+2W1oMDfbWpJktWlT9v3KtC1+fZvafpzd/nwpAivR1vKvn4kJJdYl3rTJ6vJl6cYNT5s2\nuTq8vj6qqamZOcfWbwMntu5mHegfYzdAzj0TJLcvWlqs/uzPXOCumDSI2c7p0JB08aJX1fSHlU7p\nuFil3xvdNWYT16Kv0HIcxvMS5D6raiDVIVAbSHWIRauWpp4HeaHaUhWSIqWS56jQEWZDQ65T3f3f\ny7sItv/Z5Yx+TH9/f7+nrVttSnqr5BFm6fvS12f0939vdPx4RH5j3T10uaBDKekH06Vfo7//vZuR\nU1+f+nfu964jNddIN0mJ16x16SMuX5bq660GB93slM98ZkZ9fSbjdheTjkLSvKYyKab8lnpNZyov\nbgTi3PcWMpK5kG1OPhbXr3saHJROnZJWrXKjZf2ZOQ89FFNnp0mZhSi5B6Dkay/bd+7ZM31zFodV\nf/9sR0ZTk9XwsFEk4nf6uzSi1Rhh29ZmtW2b1N8/vWDfKUlHjxr98If1N8uV0erVcXV2Gn3jG7PX\nY7b6Zz5GJxf7mfmuM2Nc4Dw5dasx5uZ6WuV/fymqNRo5vYw3N7sg5Y0bRq2ttqD6Ivn4zI6GdzMl\nPc/9fmjI/U4yifpamnscS00pmOvYpb9vbMyN0t+6NZ7SoZh8PfgpvKTZ2aG+kRGj3/42olhMamy0\nmp52gfHbbvPU2zs7GzZTnVjtkdjZruVc6dMyKfV6bW626ux0acK2bZvRl76U/3vS65mNG4tP/1mO\nWk6tl2whZ4ZU4pikl/WNG2cyzqzMlqbP1fNuBr61RufOlV+WOjoiGh72Eilf/dk6xR1D1xaJROI3\nB2ZZNTXNaO/ezAH5bPVBttSfmzZlb5vO17WaXA6bmwtLM55pW2bbapm3v9BZHfnuE+mvSXPb41//\nekwPPzxbl1y75mnt2tQUv8nfnW/WWzxu9frr0cQM4A0b4hocTJ5VHldbW/aZ5dl+n3wcR0bcjLPB\nQaOxMekP/9Btb6XvI4U+MzALpzLS73Nr18a1ZMncQGah5bi726iry5sz4zDI52Ux9lkBCDcCXwit\nQjs8Fio4Vus5r+dDvoZTNTqlyumsKLezNPn9r7xSl/GBOVtDua3NNaZ7etzDeHLjev36ynTipl+j\nTU1WS5e6FFqTk1IsJt24IU1MGP3Lv3has8bq1Kl6NTQoYwDP/7/kghmXLxtdvOhpfNzN9HEz3Tz9\nl/9Sr//4H2cf6iV3no4d8zQ2ZhL7mS0dxZtvulkN/nd1dXn6h3+o0yc+EdfatdKePVPasWP2PW++\nGdHJk56S0641N+e+Bgotv+Vc05nKy9q1cfnpAH2FPnwUss3J5cFaqytX3CjIy5fjN4OVVmvX+sfE\nJP4tXeq2LX2/cn9nTEeO1CsW0820me49ExNWt93mHjKT04gG+aGxUEePGv3X/9qgixe9xKyYkRHX\n0bJmjdXXvz57PWaqf8rpCMl27yv2M/NdZ8a4oEd656bJEvkKcueOf0y7u03GzspMZXzFCqu9e12w\ntaMjol/9Klpw51dyIGlmxtWrUnIa0bmS1z3JVVeVeq9Mf9/atW6gQ2/vbCemMdLq1bOBsOQ6/dZb\nUz+vp8coFlMiON7cbDU56YJ7K1a4/cxWJ1Y7bVUp6dMKka/dmnxu77jDH+RTWPlJrmeq0UYLSoeb\nf27T07hmq9fKUe4xyXQeDxyIaO3azG23TGWjmLJU6HNVd7dJrN8kubbl4KBRc3O8oM/xt2ly0mjV\nKn/bjLq6IpKKrw/S72MtLa6Nmiw5Rbm1ViMjs2uwSsVfq9n2sdjnjUzXiLvXzv1bv0O/0MGJhQxu\n81/Lty7tI4/E1NdndOpUvU6fdtkE1qyxamxM/W5/f9z9wx/g4drrIyNWIyNeYhbWlSvuHrFhw4w2\nbYrLGKOPPorolVeMTp3y5jyjpO9jpuOYvLbYlSuuvXr8uJdYj7NS95Fi6tigDAoIglz3Oam4tcxP\nnvQS58Wvw7ZujWvDhnhNDcAuxmLsswIQbgS+EFqFPKRV6qG+r891vnd2RnKOrK3lnNfzIV/DqRqd\nUvPRqVpKw7bQB5jkzz52zLsZGEhNM1Buh3C27Y/Hrf7pn6KanpYGB6XpaZeGrq7O6Pr1iOrq4hoc\ndEGZrVvdNp06ZXT5sqe6urjWrLFas8YFVE6fdiMnBwZcwGv5cqm+Xhod9fSv/+qpoWFG1sZTHppb\nW616e40GB72k2QLuwTdZZ2ck0bl36ZLR//7fblbc6Kg0MSE9++wSffe7N7Rjh8v3/+670cQI0oEB\no48/djOccq0tJc2OevaPVUdHJGcgyVdMYDVTefE/d7Yz3aZ8d67rL1+dM/facT/PzPgdyq6TuqMj\noqYmacuW1Gsv035l+86zZyPascNq06ZYSkfh+vXShg2lzWpLF6SHzL4+t/5Gf7+neNwoHpdiMauG\nBjdD5he/iOqWW5RzMfpiOnWS3xeP20TaISn13ldK50qu68x9Xuo6dbk+L6idO357IrnD7NQpo6Gh\neM51UzZunNGbb0b07rtRNTS4QNHAgC2o8yt5NHxrq9XoqKuPo1H3nljMavXqzMc9X11V6r0y/fWm\nJpce8do1Nyr/5EklOmOPHDEaGjIyxlNXl9XatXHt2TOVMhNlctLtj3+tLlni6uvJSaNPfMJqw4Z4\n1hkIv/udp098Ym75yLQPmdZNK3dttEzXsgsApv7d0JDRj35Ur82b4ynfl202RbZ2qz9TrlIzzcq5\nn5VaF+e6D77+ejSl3Jw9W726vqXFtRn8Nesk1+l58qSyzmIvVKZjV04nZKaZVYOD7rXkenlkxOjd\ndzN/R7Yg7oEDbt09f33J++4rfCbZlSuzQS+fCzR4Kc9nIyNGhw+7e+KOHTE1N7uyeeyYp6tXpeSB\nQZI0Oekl2kjJxyx9HU+fn70g+f44MODKZVeXSawn6Kco37rVL9eunXn1qhscduut0p490zlnQ2UL\nUOc7VvlkKjcPPJB6LqTUDv1CAqq56gD//8lyrUvb3j57r7PWHbeJCU9dXdKnPy2tX6/Ed+ea9TYw\n4L7n6FHXBpqZkRoapAsX3PUwPGy0bJnV+Lgrp6dPe9q6dfY+kCuo4X/vj35UL8lqbMwoHndp5o1R\nynqclRiMU0wdG5RBAeVa6HZ8OUGejo6I1qxxbTa/HrJW6umR/vRPZwK99tdi67MCEG4EvhBahXTa\nVCLw4lLQRdXZOZuC7uJFl2/+G9+YDkTjZj7lajhVY2S/3xGVPkr3j/4odc2jQhrAfX1u1OzBg5HE\nqMVCG7bFpqGTpPFxd235Iw6T9ymTQvYj14P3fffN6J//Oaq6OrduQjzu/jU1uRk6LnAlNTZKnZ1G\nly659IOeZ9TU5NYDu3BBNz/X040bsw/JsZjbDmtdJ8Ply56keMpDc3Oz6yg9ccLTb37jZqBt2DB3\nnYHkjpMTJ2bLoR+8sdbo1VfrtWPHDXV0uHM1MCBdu+Y6NjzPKBazam2Na//+aNZzV0gnRa5rupDz\nka28ZEsztHNnrOBOpkySO2aNMbrtNquhIamuzqq11c3MGRpyHUzXr3spMw1z7W+2YyC59G6u42C2\nE0JSQQ/zpaZmy3Uskj9z3Trp7rvL67TMx/++d9+N6Nw512njcx0sVg0Nnm7csDp3zlNnp0nMkLLW\nzXz0R1MvWWJvjkLO3amT3on4/vuehoeNNmxwaxwmj2DOVTeV0iFRbGdNUDt3/PbEbPpBSXJBzOZm\nZeyI9dONHTkSSax/d+qU1X/4DzO6/fbMgeXk4zM7Gt5q+/a4/t//c53Xq1ZZLVniyu7mzbPnJ/k4\n5rv/lhqATH+fu9dKy5a5tV527pzS2bMukN/c7OoDN0vG1QmrV0s7d8b06qv1unpVmppyKVX92aiS\nC36tXj2jp5+eytmRXOg9M718uMClC9iVUo/4ZaOQ9GnDw24mwdKlbi0h//uy1e0rVtis7dZt29zP\nuWaabdpkEwGQAwci+uY3Z2dEJ89YPHvWU1eXkeRp9erZeiLb5ycfh3yB3FJSp/nnZ3hYevttT6dP\n12n5cumWW9z57Oxc2DZ3e/uMDhyYbW9IfqrezOW2UKWmGM31eQcORNTVFUnMtJ6YkC5edOsL+m3g\n+np7s/1kdeqUW5Mz+frIVK6PHPE0POwl1sDq7XXrLW3eXNhMslWr4jp1ygWQZlmtWhVP1Kez5VGa\nmjL6X/+rTitXurI5NmZ07pyn5ctdINyfTb52rRts0N2dehy7ukxilpufxm5y0qi1Na4LF+rU1OSX\nx0hipvLatS7Ycdddcd24kZqifHjYrYXT2jo7KOjgwahWr848Gyq9Hqn04L/M7cfZujQ9MFdIh3+x\nz2mzs5BTy2F3t1FnZ1Tvvx/RtWsu88PYmBvUsGSJ0cWLSqSgl1LrgfXrrfbuna3r//t/r9Px426m\nVzTqMlGMjrrr6Pp1dy+55Rb33DEw4J4bJieN1q3LnU44+TsvXHA/G2M0NmYViXianJSWLJnd70oM\nxinm+C6GWTjVSk9capDHzVB1KauT+xTuuiuus2erO+McADCLwBdqSjmjfNLfG4/Pjr5JltxQLTXw\nkj7i/sKF1Ac3N9rHC13jptBAyltvSRcu1OU9h5Uc2V/otdPePqPOztS1siYnjXp7XWeMlDl1x5o1\n8ZTR3/7fnTwZ0cSE0cSENDDgHsaT0+blSmNSaBo6P0g3OGh05YqbReB3VBnj1jP49reXJD3YTmn1\n6vwP3cnfkcxvmA8MuE7J8XEX5FqxwioWc6PV6+vdZzQ2SpOTVj09Ec3M6ObMFTcLYXra6ve/d4Gl\nZctm03B5nkvFNTPj74ObUTYyYlIemoeHpXPnPDU2ullHdXVuptPtt8fV0OA6S12qwhl1dbkFqfv6\npKkpPxhmbm6vS9koubLd2mr1u995GhoymplxndQTE36KLU9vvhlJSTFXyLHyy3lLi9WFC7Mjq+3N\nHvBly6wOH65PjBwu9mEu23e/+mp92sLrxc0eSO6YtdaNAp+ZcR1Ha9a4WQ8nT7oT565x13kUjUp1\nda6zp9DR7ZnK+/CwW+B81aq4+vuNVq2Kq7nZLVyenvJtPlKzpX/m1JTU2RktuYO2kPckr6k2PW0S\nAWVXLiTJyPOsVq+OJzrhenrcse7qcuXS1TOufN59d/5OnfROxOFhVzZ6elyAzZ+x6Y/2d+fABdsK\nmWmS6/wX21kT1M4dv90wOGjU3++ObzRqE0Gd48eNDhyo1+SkCyC3tlr9j//hBhacP29UV+dm1MZi\nbk2rBx6YKajza+3aGVnrRrnfuGE1OWm1bNns7Itss2Ly3X8zBW1GRqTr112q3mznJfl9flDHGLeO\nxrlzXlKarEiifpT8juiIvvMd18m9dq30mc9YjYy4z0hfw+Wb33QLiSfPAhoYSA2g+yOxk0fpZwqi\nJtcdyeum9fa69+WrR2bX6XN15erVs4GYXOnThoel3/zG07VrnjzPamLCU2urmymdqW631g1CSO4g\n9iVfK9lmmlnrjuXEhPvumZmInnxyif7bf7uRaDMMDRl98IGn/n6XarihQRoZiWh4OK777nMBxFyD\nbVy7yEu0i/y0T01Ns8HfYlKnuQCpTbmeLl3yNDTkaWzMzXJ03xPRgQNx/eVfLkybu63NdW6ePJma\nwjXb2i6F3i+uX5+9hpODM1eueHriiamC6sHkAObJk57OnnX1USzmAq+trbNpqycmrIaG3N9Eo1aR\niNHkpKfr161u3LDat69eP/jB1Jz6oLfXpYPzUxY7bk3BpUvnzvDNdEzWr7caGkrtMF6zxqXv9v8+\neSDB0JCfxtV9/9q1Vl1d7m88zyTuo5GI0XvvuTZpf7+rV5ubXQDEBdo8nTvnKRqVmpvjsla6dCly\ns/Pa7Yd7jjPasiWuLVvctra0xFPKVW+ve/abnJzdp1yzodLrkWxrA3V3m5R6Ldf9L1974+BBN2DK\nnw3qB+YKzQqQa7CgCy6l7mO2dWnPnvV08aJb28uvx6117fiZGTfgyp+VKkm//nVUY2OeGhvtnMC2\nP1NwctJdx5I0M2M1NuaeVZYsUdKsWvfs9LnPxfUXf5F9/dbkttnwsHTyZFQTE+4ZJxIxGh93gzfc\nOnKVW+O32OfgsM/CqUYmmHL45y99QF9yHZYuCGm7ASBsCHyhZpQzyifTe0dGpOQ849LchmopgZf0\n7+rpMeru9nTLLbPBAMkFU8LUuCnk/Ph/4z8c5DuHlVi3IPnhvpCgQltbtrWyNOdhdXhYOn3aU3e3\np6amuP7wD2dHf/ujrpPXWEnuKOvuNvqHf4hmnA22c2cspTPyoYcyH5/BQfcAdvRoRENDruPCzfiQ\n7rvPqrnZqrdXevrpBk1NuVlZS5dKJ04s0c6dsYIeHvxrNLmDpaHB6ve/tzp6NKKJiYiiURc48jty\nY0nPHq2trtPp8mWbSEkVjfrpqfyOXBc0aWqyN9cJcx0U1rqAlnswlV59NaJ43D20Xr3qHngloxs3\nXKfuypVSU5PRmTMRLVvmZoO1tkpHj0blrz01Pm40Pe0eqOvrpatXXWrG0VGrH/4wqu5uTydOeImA\nlx90MMY9kNfXW737rtHDD89NSfPeexFdu5a8LljqMZSkjRtn9NOfRm9eG9KlS26mW0uLledJly5Z\n/cEfuKBFIUGZfCm7rl5VokPDv2aLmT2wd69b1+LNNyO6ccN1UN9yi9XkpKfjx60aGqw2b3bpKi9d\nsrp0ybs5SldqbLQ6d87NeP3TP43lTTuVXt6T0wYNDRn197vytmSJEiPGkwPPnZ2RlDXf3DXr6fnn\nPf2n/zSTM41RNtkesg8ccGlrs81akDJ30OY6zpL0ox/Vq6fHBT6sddeQn5LT81w6Uc+T1qxxMyx6\nelI71vz6xq9nJBf8am3N3amT3okYidhER6ifku/GDZPUsWdkjE2pQ19/PVpyh0SxnTUL0blTiXQ6\nyfegd9+N6OpVT1evunpv6VIpGjW6csXNhj1+3AXxJSXK9OSkEsFPN1PWJurMnh6je+4prPPLv/cm\npwwdHjZavVrasSPzcfQHgfT0eIlOSD+96euvRxPp1Q4ciOjYsYjGx911aq2X8z6bHJh7772IWltd\nIN2vu/xrxr+/zQ7qMGpqcte4Cw4pMVNr61b3+899Lj4nEDs0ZBIdspcuSdu3W91++2zZ8Gdttbba\nxCy79POeXEf4ZWxqys0mmZx09V9Xl8naufzDH9br9OnZR6qREVenrV3rAjFzz5VL8Xj8uAt6jYwY\nNTYa9fS4YMPAgNXSpTalbvfv0X190vi425+Bgdl7dnv77HdkqmvPnXP3xqkpt2/RqP+ap3376vVH\nfybePdMAACAASURBVDQja92xvH7d3ByI4uqnZcvctezPfMnWRvPr0+R20WwAwSZSBGerc0+fjiTq\nR7+et9bdA+64wyYCDW52h7t3S/4sWenYsYik/PXG0aMmbRZM6jqghVq/3sra+Jzf55pRKOW+X3z4\noadPfcqtU5S8/lVnp9F//s9LdOutbt2mBx6Y0shI5kDa3/99nU6d8vTxx56mpoymptwMUH+2yuXL\nrn20alVcra0uIB2JuADEkiX+mlZG165JExOefvCDen3hCzMpbddly9zMUn8mlh+UmpqyunxZklID\nOi0t8TnBHP86dW0pt6MjIy6A/dFHrq2RXDZjMaNIJJ4om4OD7vocHTWqrzeqq7Oqq9PNwKi9GaRw\n9zK/PbZkiVU87srBkiXS9LSn69fdTLFTp9w17wYu6GYZng1mpj8zZlqjUMrd5vCDWt3dRm+9FVFd\nnWt3+msDbdjg6it/UIB/rWzdGtM779QXNMDNP0/vvZfaZpKKDyLkGix4333TBa9Le/26UX+/G3B2\n48ZsMNMfMDc0JB08GFF9fUQrVtib2R+Mrl1zAzoGB41++tO4NmxwaeQuXlTK2r7+IJPGRptI9Zt8\nnuJxmzOYmFwv9faam+0xF2xtaHDXx9hYXOPjVv39JmXmnO/oUZe+OjmIm2+mayVnuAcp1bcvfZtL\nacdXehuKOW65zp8bQFqZwb1hFcRrFkAwEfhCzShnlE+m9zY1ucZFa6vNekMtpcGZ/l0NDVae5zo5\nkjspGhqyj4r1pd/wq71mQa4GSCHnp9hzWOjI/kzb9fvf6+YDhqdr14wiEZs04yr39xpj5qxVJLmG\n9eCgEh1cbsFk98+t26LEjC5/1LW/xor/4H/1akQTE+7Bb+lSM2c2mOQejPxO62wBxI6OiI4dc2vF\nDA25zo8bN9wD4pIl0vCwe7A8dKhOQ0MuB30s5h76r12LaGxMevjheN6F1/0ZSkeOeIngmmQ1Oupm\nabl1h1wngDHu4S+auHO4B7t/+zejT386nuhA/f/svWuQXld5Jvqstfd36Xu3Wmqp5W5JLSwDxhZg\nATKmuNmQSQR1hhkOGZIfM3OKSoVKcA41OVOTk4RAhlsqVKZyipA4YaiZOScwJIbAGMvEgG8CyZaR\nZLkl69KtW9/v3V9/99ve6/x49rv3/m7drYstCb63ymW7++tv39Ze613v8z7Pk8kAADeasRg9iyIR\nbh67u/m5XM54hRY+q2KRoBUA5HJk/BSLLJjk88rvKs7lyDSybWB2VmNpySASoRn68jIByYUFAmoC\n0OXzPIfvfz+K/fsdLC6y6CHyjXJdLKaxQPJbvxVDuczP3HVXGdPTFubmLBSLlApaWXH9sRZ+zy9d\nsnDPPexgPn9eI5vluczMcKPvOAR3BgYM9u1z0dNTfzO3UckustSCkMJguBDTiBkWfkfoJeUilTIh\nAJSfk+N1dxtMTUlHNTw5NbJe1xrT4feXgLGB1iyC3Hsv/198Uubn+X4mkwR2CwW+h4ODDpRSfnGo\nr48SmOUyu8vFD05kjKrHeKMIF99lnLW2Kpw4QcC6EWtB7l84VlcVPvOZmD/+t21zsWePQWcnu5iT\nSRaOczl4cwbH3ubNBvPzfJ9d18XrXmfw9rezUJXPswgpz1PmG/G7E0BFa4OREd2wgCsFOynUdXYC\nCwvGf5fn5jS6utwK/7zqOfRW6l69Xj+m65XTCcvcGsNC6eIiDc4ti2B9Ps9mGMtiMbunx/jFvuVl\nFu9Z9GNHebHI97yjA17zADYsL1lv7RXmZ19fpT9K5d8LsMr3rLPTxeoqpVSPHFFYWdEYGSFg19bm\nwhiFU6fqr7P1zjORUHULP+KjI8XUhQWeA+dqrpNhwKSjw2DHDlMB7j76qO2DR2GPpR//GLjzTgJk\n0qDw5jc7vjTdV74SrWlG6eoKCrXxOBkwc3NkXl64AKyuEpCPRskK/e53LTz4IL1cjxyxMDtrVV2h\nwuqq8YGY6nsjUo4tLcpfg7JZ3k82iShEowZ33umgsxMVcm+bNrmYm9MYHqbEWi7HNTqXs/CBD1CK\n68gRC6kUpegSCSCb1XBdjjthzHR2GrS3y1jTGB4Gdu7kPVleZnFaIp+H52FifBC/XhFZ5oKw9xz/\nnv/d3V2/Cz6V4pwLBPPj3JwwT9m4smkTUNloFLDIA09K/v9a78zx4wqf/3zMf1+Wl4E//mM2C3EN\navSu1AJmDz1U9CRo195DrMXYjsdR0XRkTLCOy3yRSgFTU3wPs1nmuk891YL3vtdBf39lg8t//a9R\nHD1KwKNY5BzDhiOD3l4X0Sjnmr4++v8RkOR9yGR4zFgseC6RCLC8rHH5cmUR/9FHbRw8SOB8cpI5\nqNZcU86e5fOLx4GWFoUzZww2bSIQX91EEt4DJBIGIyMWTp3iXLq4GJxDLMb8KRYjUNXSwuaXTEbD\ntg0iEePlfS5aW8lqtiy+X45DZlu5rLx8kWMnlSKo6zguYjHOdZGI8d+RYlGkhF3fSzC8Z4zHmZ8O\nDtbPOarnPgGvBUi3LIW5OWDrVr7vxrAZaP/+Wqni730v7u8xl5fpXUuwu3bel3xsaSnImcK549Uw\nEtdqFrx0yaq7h5udRdV7UsLjj8eQzzMfNgYe2wsecApPglyhpwcYHeVzAnjMsTGOpZGRKPr62BTB\nJgzmj5EI90X8TlPFQuTnJic1VlfhP5e1ZMpXVriGc/ywYa9UArq7FfbsMdiyxdQw58SzdWVFFBKU\nv+9bj+l6IxjuN0si8Hqi3jmH5UjDsV5D8lr3r9q/Tyn4agYiN90IPF7vmUgdQxqE6HXI+sLtKtv9\nWsXtOGab0Yxm3L7RBL6accvE9RTVGn1GKYWPfaxxF3w94KVeN/BaeucDA2RChDc4SrEDfy1JoOoF\nf2xM4ZvftH39+Nc6AVgvAdnI87mWZ7heZ3+98xoeZrFdisIEbIC+vkomRKPN3cgIpegEnJTiXKlE\n7ydhWGSzlASS7n2yXYD773f9AsvgoMHcHDf5ABCLEdjp6HArCkfCBgPgnXeQ+FYXDx95JIKJCcqB\ncJPMoo7rBoWQ730vio98pIzlZYJhpRK/p1AQvXuNf/5nmkenUixK2LbB2BhgjI0rV5ig79zpYHgY\nnscWIyiYUDJUa+UV/diF/t73lpHLBcWhHTuAiQkLySRBI9fldWoNbN3KYtnKika5zMJhT4/rF9wz\nGZ572OfIGBa64nGCiYODQcGYzwUeCML/dxyFzZs1+voMdu3iJnd5Wb4L0JqFjHye71V3N/29ALKw\nKLXCjTSBCY6njg7+e3jYQlcXu6NZnFXYulVjctLUdL+L3vvAgMHPfw6/s7Vclu50eL4ULEps3752\n57xEI8muj3+8VLFpk8JCuBCTTAIvv6ywaVNjjy75d0eH8Twt+F3pNItDxlC2slxmJ2x7u/GLY7Oz\nCv39qu6YfuABxx/PQfe3i09+sgTA9je6YV82PisWjuWaLl+m1JkURo8csRGN8lilUiCFxvsT3Mf1\nNpnh4juPT2nBwUHHL7Lm87yH8/Mara3A5s0KmzahgoGXTALPPWfh0qXgPZqYUJifd/Gud7kYG7Ow\nc6epKAjz/Flk7+2ltGE+z/s5MkIfoHBhLZVS/hhViuczNcWC/Pbt7Fb//Odj+MxnCjXgl2zA5fjx\nOLBlC8EBpQiaC5gRjvXk0+TnjeLV6Oa8EX5MBw9aeOUVq0piamPePHJ88eVaWhLGAX8vEq6lEuee\nbNagVKL8nYypdBqgpCUAcFwDnNvKZYPeXoK5s7OUpgqzmqp9mYDatS4sMSgeOqOjGsmk69+fI0cs\ndHSIhKYwS3ic7m6DQ4ciKBaBaJTr4ZUrFnbsIFgyOakwMECw+exZym+GvefqAUphVvHgoIstWxwP\nNAjky4BwY0Ul0EHgvZIFu7SkUCyyoJnPk+nvusynLlzQeOEFztu//dulNaWJjaG0pzF810ZGxIeS\nDRmFAufwH/3I9n0mjxwhawuA32jB5hSufcZQHuvv/s7GE09YSKfpm9TTY9DTo7CywqYMehMpf8wU\nCmSu9PYanD6t/UaKoECsPKkwztO9vXwmExMW/t2/A7Zvj2L7duDcOY25OcoBUr5L+WsQIP6WnAOW\nlsisyGSYAxFIYlgWvMaVoLkrzLRLJBT+9m9t7N3r4MoVystx3uIaDsBruqnfBT8zo3DokOUzcLq6\nODfOzXEN2LLFoK2NUqGy5rS3GxQKAUBjWcwz9u511s1lv/3taMXaWihwLv3BDyLo6TF135U77jB1\nAbPR0Rg++clCXeYVEMx/3/0u2aDt7aYCkOU6G7C6pCGiUOC9k7WHICzzETZi8TxPn7bQ31/23nk2\noFy+rPwcLp9HVY6jsHWr6/nqwVtLLVy4IAAZ/zabZRNVJMLnQaCGOenzz1t45zsddHYaRKMuJict\nH2DjP8yBikVe1NISwa/FRbJnzp7V2LXLxZ49ASDAOQx48kkbxmgsLHAsplKyBnPdsm2DYpHHyWYV\n4nG+F1QXMJ70tvLnENflOyUNXADfIQFAolHe69ZW5tilEjwmJO8vrx0YGaH06hNP2BXNO+98p4vJ\nSa4dEuGco7roPTLCf584oTEzw33Fli08bleX8WW5q9dhNvnQB1fCGIVDh2y85z2VTXxcJ7jHkPU+\n3EQAbJyRKGOf85z8jfHZaImEqss+DssrplIKf/EXcWSzxp+LJFyX871lwR8/pRLzdT43frZcZv4j\nAJTrcixHo/TmpSIF0N/vQikyhEdGKLsJGAwNVXoBy/2rlimXeSmTIRAnexbvycJ1XT+3rtf4mc9r\n/511HDK/R0cVdu5szHSV77hehvvtJhEI1D/ngQFTk8eLxPJXvhKpaUwA1pbgrpawDPv3rawYHDxo\nVSh4AMFculaDanWsripfgnh1VeNb37pxoObtEleb79+OY7YZzWjG7RtN4KsZt0xcj9/TjSjIHTjA\nRfaRR+yKIu3wsMInPxkkO9XH6uwE3v52F0tLxit2ALt2OUilFFZXWQTdiKkxCxvK83K5NkmK64n1\nEpCN3OMb4dkVlo6an9dYWODPJTGlJ4aF2VnKLXV1wZPfY1Lb3c2NTjIJLCzoCuARAB55JILxcRbS\npZDU20vwiybJ3Fwlk9wAy8YZkIIcmV/velcZSlGaqbPTYHWVXYE7dtAAO5fjsxRQKhKBN9bgFVeC\nSCaBZ58NinmXLvHclpYE2AGkeKgUpbEyGRY2ZcMobCLppNRa4+xZ5RewRFLw3DmF5WXLT9AnJxXG\nxsiyohwIPBlCbty6u8ULgtJ2v/mbpRr/K5FuesMbgExGI5kM3oN3vIOb5NFRglG5nMLQEDuMz51T\nVeAgQ47f2cku3vC4YnFM+UVGgNdIaVPpYidTqFhksUM2ya4LzxPHRT5Pf4dYzGBxkUUbssj4fWGp\nFGNYpMxm2YVKhicwNIQaVhOLsdwEZbMByytccAxLA9FMvvb9TiRUjfzk7t0s+ohkl2wqtm0L+/2w\neCKAzPQ0cPQoZcrSaRakwt2/8m7KPU6l6O+ytESATmuOkd7ewDutXBaAVcCvSoZZ+BoOHrRw6pRV\nUdgTL5aeHoOxMbJLWNRiga1UYoe3+F0BLIx4d8/zpwqAo85OFqkSCcpwibb+ep2f3d18jlJ8lxCm\nYDzOeyJ+TbkcC1WzswodHZSi2r/fRX8/u8KvXNEVBfxSiQBWPg+0t7OYwvscgAGrqxpbtrCbnLJq\nHKfnz2vMziq8+90lr9BCgCeV4ljXmvMjO+Fr2X3bthUr5tFy2cX58xYSCZ7Hrl2B5KZSLrq6DMR3\nKBzhuftqu1erCw6HD+sKpsy1bv6v14+JhTnLByDDHfEb8VY5csRCMqn955XJcJ6XIjMBL865rst3\nvVAAEgnXe08CoDcSMejqYvMMr4lriuuy8Pbnfx71AA7LB/ktC/j939f4i7/I++BX+P0dGeE8z/fI\nYNs2Ap2FgsILL1jo7dV+8UhCAKZCgZJ4q6vanzOl8Kc1C/Dt7TyWSGL29BgcOWJXeM+JDKlSBtks\nPBnCwFPnzjsNTpywfFmvRILFX77LwPy8FNC5lnd1sSmpmgU7Oqr9eyLPwXGM57UV+Dd+4QtxvPvd\nbo008eioRksL54D773d8X7vWVgJF+bxGNsv3rVDgPZieZsGV8pCcH7q6CADIuVHel6yOS5ciXn6h\nsLxskEoZDA8TdCQ4QCCbgCnPmUCbwhvewAYapYz/DBMJAm5kllIaM5FQHmgBzM9bOHYMPrtbxp88\nQ2GYyXNPJOj5VCrRb4heO8FdYt7Dtbivz8Xjj1s4dkzj7Fmyysplnv/lyxa2bzeYnw/kxvr7WZR+\n4AEH+/Y5/pwkXf1zc8Bzz9nIZglicY0OxgHnYoM9ewhsLS1xLR4aooy5NKns2OHirrtcfPjDzrq5\n7OJi5XwgfodTU7wfliWglMLdd3MN6+kB/vt/t7GyotHZGTR95HIKf/d3MfzarzkVeaZI2b3yikZ3\nt8GlSwFzv7vbYHaWfml8NoFMIAFYoKuLkoHT09qXiuY8atDaarw8hM9G8oQrV7S3fsp7EDxvywqY\n2vm8wXveU8axYzbyeY5fx+E4iESUn28WCsab+7jmrq4C8/Mcx4cPc75cXWWzF9nyymevypon810q\nZVAs8v13HGB52cIrr2gcO+b49/f4cfFGJYM5DL7Kd5fL/PuWFo5r5tbGUzzgHFAocA62LIIo8rtw\nSJ4r4zseZx6RSgFKUVoZEEaS8d47HcrJgPe/v4wPf9gB0LhZMlz0dl2DQqHSTzSVolzk5s3Afffx\nmAsLtTmxgH7VIe91OCRfBIKGKTYPKd9f8qGH6jMSKe+uvPnT4NgxjXiccutK8VwjETYG9PUxfzxx\nIoaVFT6PN73J8Y4BX4762DE26DgOrznY08DfM5fLBu3tbAxwHO3dK4SaSaR5TPmy0PT4Yp795je7\nfkNXdzc920ZHKf07OGgwOqrx858bv9FHgLuzZ5lYVksOtrcDy8tsKIjFOP5tm4B1mIlU3fhpjMHC\nQsBALpd53123vl9n9Xc0iqkpqgYMDzOXfstbOJ+GGUk3QyLweqPeuXV2oiKPNyaQNRd2d7gxQWwH\nwhGe76slLKvZ5Pm8xuSkW+FJKO942KturbzyRoGat7Ps37WwtzbyTtzO96QZzWjGrRVN4KsZt0xc\nDyX8av5WEsh63i3GsCARls1ZWVF4/HHjb6hl097TA69jNzBalyLUo4/auHyZ3xHIaOkKc+rqBT9g\nF1T+/FqS1mtJFNZLQDZyj+Uz4bhazy7pJD51SqNY1BgbY0H82DGDrVtdZLOUiEqnlSf/Aq+rnBuj\neJyFsmPHaLo9OspO629+00Z3t8HcnEY0CmzaxG51FpWA/n54koksDBijUSzyvNiVz6JDuay8jQ18\neYPlZcqjDA4abN8OnDihMD0dFMC0VshkmGAvLBjcdRcT+Y4O43fm9/QA4+Mahw5ZXhEr6HYMhwBb\nxrBIdeedLpaWtL+JDxeswoWDQE+fnd2bN7uYmyOrTdgH1cHuShZ5cjmyx154wcLqKtDdHUhFPPCA\ng+3by/j7v2/xZBdZTFhZ0UinHbS1UZbmjjsAKaAND9solXTF+VYemwXMu+9m4Wx0VKGlhWyx2VkL\n6TTvKwuVxjsGi7aFAjvtg2tigYTFLYVf/VUXi4v0oVha4nG0ZvFH7mOpFIBpwc8C74tk0kVrK8cr\n/QjIdujtBU6e1H7XsXSn1nuOpRIlM48fVzWSGiL/VwkYKbzrXSXP/yZgVEnH7dSUgjGW5yvH73rx\nRXp3bd5s/Pmqr8/4Xi27dzt+ke7MGc5309PKN/BuayP7rlCgDJbjGE8CRnzXXGzbRpZYdXR3Gzzz\njFXzjI2hF8snPlHEN79po1gUSVF5X1gsk4JruQwPoGGx7ckn2VVbKBivAMaiaT7PjkvZZNaTkq31\nUwk8NUTqUGuCWgMDLs6f5/POZvksCX4pKEWmyZNPKtx7r4OLFzl+tK5kL5ZKNHR/y1scrKxorKwY\nDA25HmMjYFoJm4dFr8Bf4mc/i+DAgRLOnLEwP28wPR2A2aUS/76lhQUrggQKi4sKCwtR9PQAly+z\nWDc2Zns+PWSSUA6UoItS3Og//7z2GSkDA/xdeO7eqDStRLiYFpajE6bMtbKZ6/kxBf/dmO0bPi/K\nWAY/E5+zlhaNsLfK8DDB5PBcFzBxg87u6ndcwAUZ121t9Cz5lV9x/Hs3P0+23vy8yHEZRKNcw3p7\nCVpfvmwhleKcJmwiyuJp/Of/HMVf/zXzid27HXznOxZGRixvrHJdKxQUZmcpp7m4qDzPEnphdXeT\nxaMUPchSKRZio1EXxaL2QaRyOZC4TafJ0CHbRgq4lJEqlRSmpjTuu8/B/HwwdyWTXNu0Jms4FuP3\nLC4qjI9TUrelxfj+U/IeJpMsno+OKuzb5+Ib34gimw2aYAYGDI4dY1Faaz5PNqoor/kD3vmx6Pqz\nn2ns2eNgYUF7jAKDbFYkfQ3On+f1bNnC+7+0RDBAnq80MWQyChcuKGzbZhCPa/T0OFhZsbzf86Id\nh0w5gJKJ2Sw8Bo3y5MKUX5SPRHjupRKPH42yOLy0pHD0qIUPfKCEAwcMDh60kUjAAyqYH7iuwoUL\n0ijFfyxL+6Cr/FueBX/P/ybYBj+X3bIFaG0VZoXxwBLjM75iMc4n09Ms5i4vB36afP+A8XGe//Iy\n57HlZYV9+xwkEsD3vx/xmTGRiMFjj1lYXOQ1s+lBpC7Z4d/TY9DZ6VYwUXfudHHgQNnPxS9fJjDZ\n1gZfprUe+3F0VOHHP7bxzDMWJiYIanKNMUinA5lJYVQtLHBtEQnG++5jY4CwoGMx4zMM43E2lAwO\nGgwPa28O0n6ulE6HwRcBuTRGRw127XLw7LOcG8tl+M0yvb3cjywvB1J93lPz1w16lwI//znnkWwW\nvj8gYCrGrcg2k7Hv4N57AWO47pCtz/FUKLCBT2uOhVjMIBplMV/ehY4O1y8cFwrKY8fwZSsUOKYo\nVc3msXIZPjAmzTO5HCWFR0e5zr30EjzpV2m+UjV5g/jCcuxyrlSKUoXptPGAPoVYjOCf5AScB4Jm\nE3k/AR67VCKge++94iHnVkihHz9OOcUjR0QOlnPY889Tvvg3f7NxYTucm/3lX0Z9j6tolCxF5uME\nfk6cICj18Y8XcfhwZQOmZfF5SxOObVPOb88e12eqylhfXOS8eeYMWblDQy5efNFCJCLsZtTI9CUS\nCtPTwOHDFhIJ7QNLo6OqAoRcWOB3RCLA/LwLYyz/2ZRK/HutmY/v2eNiepr7Xs5FzLPDz9V1CZBb\nlsKuXfzM9HTQMOg4zE/kHML5lYC6pRLX6HQaXmMH2Y47dwZejwJIpVIE5GQPt2cPG46qJQfHxhRi\nsQD8FN/Ori42M8hzeec7g3ESNAlVzj+2TYbhwoKu8S+s/Lv6QRUQu6I2cemSxve+Z+Ntb+PfHj7M\nOXnbNu4vw+Dcrewn1ahZNpzHSyNSWBkiAK6Yt4qvpORuSpH13ci/M/zfoqoQBrn4fOvbIdSLq/15\nvRoNsDZzbSPfcTMBoWthb63XLN2UQmxGM5pxI8P63Oc+97mbfRJXG9ls8WafQjNehejsZLKTTgsQ\nYXDgwMYW8o3+rSyiJ05YSKW072vR3c3N+qFDFrSuXoRZSJybU552NxPyF1+0YFnsDBscZBfwrl3G\nk8ChhJIU/PJ5FlqyWW5ydu1i4bFSU5zJVkeHqfDi6e+nnFr4Gp580saRI5TV6u6upOjLNY6Nabzy\nisapUxYOHbIwOOhi+/bG9/DSJV03SZPjN7rHAPzzWVhQuO8+B/F4FMVi+aqeoXzPyorGxYsKyaSF\nuTl297GTm7JGAIvzsgmmvJ/yN/WbNxucPctryeU0xsZoHj8zw4SJnewshhUKLFq4LguDlNELiiLS\ngc3CAzf90SjHSiKhsGOHgx/+MIKlJRb9SiWFc+c0CgWRL+L4KZcNikUm1tu2sViRyXDcEXzT6O9n\n0URkY6oTyOqwbW4a77wzKNyEgTLZuIZDurwdBx5woP2u9UaRzyvvfsFn/zz/PN8h22ah4Xvfs/A/\n/kcUyaTlFcL4TNJpYHSUm+U9e4BEgkWz48ctj+lVWzCWsCwWVLNZFh83bWIBhoUu7TO5XFd5ne3G\nk3gU0KA+aJhOB2B0KiXyMcovGlZ/vhEw57oKS0sak5McW3Nzwbso/ihybfVYbeFjPP20jRdf1Hjl\nFctjI/Lz4+MBWMBnwUJYS4vyOvUVTp+m11wqxfc+n9dob+cYPnuWxvZaw/eT0ppA4cCAwb/+15RJ\nlHktFgNefFF7hWQCjbbNTl7Loo/bW9/q+KBMS4vBv/yXLPoQ6K0ExQ8ccPCzn1ne+1QZXV3iwyAM\nS75bW7bw2Stl0NdHkIYd2SxYaA288oqFlhYFxyHbI5mkz1dvr8G///dldHYG8+DKivbv1cGDNmKx\nQB4LgA94DQ4aDzCw4Dj06Bsa4rPMZHgMpZTHAuVc3tICf+zInMTxWHmtbW1S/FB+cXJoiMdrb+e1\nJxIsEheLlFNNpwWsBcbHFc6fJwAiY99xAqaTdLeT/aC8YjolXbUmUCEgM4vxwX1ubaXMF+UeNZaX\nle839fGPl/D611e+ANKNu2+f668LjULWwYsXRXpJxoZCfz/XkvDaBqy/vgGVa1XYt4xrJz8TXjer\nv/PKFeUDTuExu7SkcM89rj8+RBZncVGjowP++xaNGpw+bWF+XiOdrpw7+I4J6xY+q7S1lfJsu3YB\nQ0MuHEd5xWTO/5y7lT+n5nLwWCIsLBeLlXOl1mz+2LSJxb3HHrMxPa19OVLH4bMF4DMhcjntj81U\nymB62sLCgsbiIv2DpOHCtgnOCPPScWR88T2kxySLi21tnKfSafFpBC5e1J4MLfOdbFZ7Umi8xmSS\nQFtLi8bMDK89k6G32fw8JYu3bTN4y1tc9PWxeDoxoXH6tIUrVyyMjGi0tjKfmZmht5oUQcMg8f2z\n0gAAIABJREFUZPiZAAEjWtZ4AZ/ZKKGRTBIkXljQWFjQPrAjPjQSlGPlOzoxwXeToInyWSiWFcyd\nwtZhMZ/rYi5HUEUk27RGKF9gjkH5LkrE7d1bwj/9UwRTU/SNdF3eX/HIFLagzEdAJeBVHZZlQsV3\nzrHCSqfPE9+R9nbeg1iMDROuS8lngm+6Zv2WeyDzkMjnjY4yD9u8mUz2F16wkcmIXLXyn41l8WHF\nYmRxvf71Lubn2e2/sgIMDLh4//tdnxEwOUn5Ra2BM2c0nnjC8iQcCcKcPq3wwgs2JiZYNC4UmIMk\nEsrLMZTX/EJWpIA+AJlfuRznhdlZgjRLS3zvVldl3mHR1bIInF++zLHK/J5z9eoq72FbG9fNfB6+\nDKFtA4uL2gPI+CxbW/kspqe1p0BQXUwMvIdcl0X5TIZrZns7rzuT4XE4NuD7mApjmYV8voejozqU\nLyl/PNk2/PePa5f2pDi5Ls7M8L5ks1yHq5ntXV0cY5QjDcCsoAlLis4Be0vWs7VCVA/KZfhAuTTj\nRCL0ghOlAscxofOqn4fJcxEGcFsbGaOjoxovv8x/K8U5L5fjvcvlmHNv3cpzqbfWHD9O79xnnrHw\n3/6bjZ//nPNdNit5gKgRAHfcAX8vOTFBsPzCBTZQjo1ZKBTgN8XIe5ZMAm99axmxGNl+Fy8qvPyy\nhVJJe9KlGhcvMj8FFN7+dsdTDaAM7NNPWzh82MbLL/M8f/pTNvEVChyvMs9IriH/CNgt3sbyeZnf\nJf+fn9eezLqMW1VnThJvOO7F4nE2Bcmx5W+1FtCrsplPKT6vSIRSnPSlVZieJiO7t5cylDMzCsvL\nzEEIqHHe6e012L6d+7x0WuH++zm3vOUtLpaWFPr7mUv09bERhfsa7ctMj47yvi8tad8mwbYD1qRS\nlGIcHmb+lUjw2UndIR5nnly9hw/nKy+/rD1Z5iCHWl7m/q1c5jwhY5cSofzuWCzIw9fK025mdHdT\nzrd673DffQ4OH+Y9eOEFC1rDUy4If471l5MnOe7Sab47y8satq18udxo1Ph7MKmzAPBrLfE43+Ww\nRzvXGlOxVwBq6zES69VPwnH8uMKXvxzFqVMWZmY4p4yOaoyPV+bJ3lU2zJOr9zeyF7xZz1ry/epQ\nCti3r/5Gv9HzlzErNaGqb6x7T17LqLdP2bYt2qxPN6MZt0C0tcUa/q7J+GrGLRXr+T1Vx7XqCYcX\n5zDlvVAIikXVxwGC7rtcjklSd7fxOwPryQKOjmq/u9i26W0T9r4JM6gGBgwSCVPhzVPNltpI98uR\nI1Zdw/evfjWKhx8uNjRr3Qijq56We73zefhhIB5fZ/eK2ucnbDH6+wSfkw2TeHC5rvK7kKX7z3UN\nWlpcTE5qXLqk/OJUeBNCBhMLDj093EQVCiyaAywKjI+rhhtl8fHI58mK+dM/jSGbJRBHdhiLJyxe\nGt8nK/g5mV8iEbK0xPE2OEhvotXV2iLbWqE1PQOWlytZJkDt//M+Bv8tG4FGwFP4b2SzSWklJqHF\nIvD00wpAGc8/b3sdw5V/y+KXhakpg3/+Z3YPJxLa3zjTYLje9RrPs4xF00QCOH+eXZvidxbu/KMU\nUCA1VmyQe0rH/oULyvM1WhtcXC/K5aDwOjQETE4SUEqn+bv2duNJEQGNwMVymcbxwk64dEnj6FHK\nNb7udcbzRoE/7yhV3x9O/hvgho6G9dpjkwTG8/G4Qnu7g5kZhf/wH2JIpykVQt+uQB6rrS04R+mY\nzufZ2S6bmKEh158PRG5RpPX6+gyOHLGwc6fjy4sAgcTjpk3AM89Y6O3l9+3Z43oSO4Es0fw8N63s\n/uMgef55y5PD4f0VT7lkEnj44WJDKVmAwOvkJM3Wpet2YMDg9GkWKQkMcfzs3m3Q1eViYIDvrFLB\n3CN+epkMZacAskSmpmqBXBmPc3MaXV3sWqYPGAv309MsWon3RT4fdMVnMmQUZLMsrnIcVX6/MTyn\nVIrn7rq8L9PTypPbNT5ownsF7zkaXLyoMDSk/OcTjRp0dbFwEo9rXzKx2q9mo+utrIPVm2GRYZJC\nQVje9pVXtG9sHl7f5JmKZBQ7t8myEDkcYXyE161G5und3Xy3xANk2zYyPCYnpRnAYGZGeZ3GLKp3\ndpKd19XlYHmZY8+yApBLTNNjMd7zWEz577VIqU5MECiamdGeJJeqYOGUSgrLy4HniVKVY0qevxQB\nf/ADG88/b+HyZQsLCyLHyrUsk2FxVd4nrTmv0iOR/l+FgkG5rEPgEN8lPiPjeQMZ73OU9JOmhUKB\nuZMAF7z3fD/m5/kMWdDmOZAlyXcnm2W+1dLCeS2XY+G/q4vMRcmrzpxhofHKFfEQ4tz97LM22trK\n0JqSW4DxgGMgvG7LnC9MAWnkyOWCdU2aAoCgeYRyXAGTqjrIjoEnx6WwsMDvoESr8uXW+H7KvRGp\nNj7TSKTSC8ayTAXjuFwmG8IY4GtfiyMalTxI+QyKRuvKWuu6MMYLBYOdO10kk2RQz81x3BGgML5H\nHdcPF52dxsuX4AEZjb+fY4nXNjPDezQ3Z5BMctwT+FGhz/N8APqKDg6SjXzpUsByyOcVJic5z95x\nh/Fz3dFRAk6WRWB+ZcXgqacIMJTLgDFBwTuV4n3v7uZx8nkWSLVmoTiT4dqnFFkaV65oTwVA+cVl\nCfEkikQMxsfJ+KY8Fo9BNlEgBZnLGa+BiPNCKqXxwgvaX0+EKeU4QcG10T3m+ySNFsZnuc/MhNlS\nPF8B4B2Ha69t0/uO4EKtDKA8E7LMg2ctkn/STCPNV8IIFYah45ARRCCPfxOehyQoZ2eQTuu6DK9G\nIe+0XJ+8p8L8TCbJUoxG2RiQycBXIqjzbSiVKNGdzZI5OzxMFuHKivLkJwMwUVhlmQwZr6dOaV9x\n4vhx7rNkjpme5nMnO57ArVIia0oFiZYWrjuFApskz5yR+x1cE6CQyVj+PByNAps3u+jqAiYmbPT0\nGJw8aWFpie8VJduDec22gV27yNYEyHAqFLjOrKyw8Dw7S9llmRPX2xewkW/tqLcHWev7rlwBYjG+\nq1ornxFHsI3PCggAOLk2gH6Gtk1QXWvly9OeOqXR3+9AKfoNC6syHmfjVaGgfO+6Q4e4zoh3VJjd\nPjTkoqMDOH7cxuio8sHWVErhu9+N4NQpg+5uC3feyXy3q0vBGNeTCOU15fPGk6ylokA+jwobBaB+\nvnLihPbnleDeclzMzmqfHROPcz2VveXeve5rxgK6VvZRI5/1sDJDJsPmqdVV+J6abW2Ufp+YUJ53\nKvyGVYBz99vexvVRVEGMUb70p1LKr7V0drp4+OFyRW3koYcqzwEI8sp617pR1aGpKc4RAuZQVYh5\n5eXL2rcgCEc9QO1W9Ma6FquL9VQkNsqkey3Zb43qXr298ID3ZjSjGbdqNIGvZty2cT16wuLdIkWH\nRAIYGAD27GHBUDZg0tlIho5o+7PTsafH1BT0wrKAw8P0fJGiT6EQdPMoZfCxj5mqxNrgX/2rUkNg\nCthYspNIqIpCc3ButWatw8PUsteax3vwwfKax6+ORufz3HPAv/gX9f/m+HF60ExMsFP13nvZsS4F\nycFBPh+RiGIhy/gbwKCoYvzNt0h4TUzY6OjgMxUDbOm+liKBdMvmctxAZjIszp08qSDGylL8ly7y\n4Nq40UmnDaJR5bGFAsDBdQO5GTHFZtEIfnGA3dNMyiVJnJggo3BpKfDiWC9EkmdqyvI30xstHAD1\nvQHWj+BZuy43GgcP2n5xoF64LvyOUNdtXKirdxyyIgKQq1HHrnShbiS0VldVZFkvpLv9zBmD0VHL\nZ9EUCgrRqPK66U2D8+P9IFswvKGnDNbly+xGffvb6cclUjjhSKUUnnnG8lkFIqGSSrEYSEaKsJCU\n531nYfNm+EDr3ByLALEYC/ci00i5TR6nrY1AQdjjoqvL9ZoCOBcMD9P4vr0dGB+nz0yhwA0/CwAs\nCPX0GM9Tip25Q0OuL+sGBMXhfJ73MpWSIrzxfMeCeTwW47u/Y4frS80CtRujVIpdtiI7l8vxnevs\nZGHMGAJGmzYBW7aQybRpE/CHf1jE7/9+FJEIZauE/cnzVH6Bk/4bHKvhsWUMizcs9CuvIEdJ3Rdf\n5P1vb+d8Mj/PtUHYjADHQiolAEstEE8vKdcHT2Ix+qe4LouPgPb8guCBvSzUTkywgH3ihIWZGcpO\nAeyQtW0ylEZHFf7oj6Ies4tydh0d2LBflxQD4nE+a/Fmk3E0NORWrOOU2iTQLR50xtBjZ3U1XFQg\nWNXdbdDTozA46HjgU+26VW+N6umh7x2bV4L3Iho1PoC+sKCxshJI4ebz9PygRKTrg+1SgKM/kUJL\ni4uhIYP5+cBzSmtUFOKkeByARfDlYaU4LMzBAFSrvLelkvEL8+PjLA4JiMaOdpGWMt5YdWHbXEOl\nGUTYQgLOEfQI1sp43EW5zPeuVAJ27GAelEoFbBIp1hsDYPtROPv/CugaB1Z3oHjqUyiPvcNvMJAm\nBYDv9/IyJa4iEa7JjiNMeGAh+iLmd/81kjsnUG7bAZX6FGKL+z0gg3PUiRMamzbRQ3JuLpgX6gW9\n1sh24X0Iy8LVrp3hwvraEczdIh0oz6q68BsU7IN7IWNTnoecl7CTe3vhs3PYdBP+vqtr3Aj8vaSA\nrHDliuWvDQBZ1rZN0MC2meO2t3OdO3UqKCjbtmnYYFIdwubRmuAXYCreHWGBSB5DWU2D48fppdfa\nyiYFSnjBz3evXOH7JM1l5TKbT4SZFJZhBIQRy/mvrU3k/CgzJ+xz/pwAJEGfQIa3XoTlTCnXKQAJ\nC66WpfyifbHIcS4SvgBCoLA8Ux5zfh5+o0S94HNU/n1LpRqzmmTNEvnBQoGfr74/9WJxUePOO8l2\noXx0MI7lHQn8NwPWYqlkfElyMrTq3j2f8Xd9EeTfmQwBykjE+E1o6+WdVFgwGB8HrlyxfKlIYT47\njvLnVIBzPZvoyDD5X/9Led7DNmyb33X5svZZt+m0sM+CfYU0fRUK8NjZwZ6tVGIOEI/DazwI7qtl\nsUElmdTo6KBX7pkzZKcmk8G9CIfjUA51aoogjxSiXZfrFFntlb5nNyMch2MzaBaovBZKmwdronib\nRiLKb0oC4LP6s1myDc+cIfheKhns3+9iZQWYmyNQmE5rPx+JRNiEtn+/49cSwiDC178eQT7PMSYN\nV7JeTk8TYM/lgLvuIkgmkojlMhUreG5stLz7bkpUVhfrH3+c3nfSZDswwHG8uFjZjGZZBPFWVzmv\niS9hfz+b3np6rq6J+HrieuXoqhtqH32Udgci/53L8T0rFGTNY5NEZydzxHvu4Zry059qn73c1xfI\nPa6usrnv5Ek2+LzrXTzWlSsWlpcV9u51sW0bsG9f5f0KeydvRI5wIzLgZEVpD6gLml5GRxU2b+Zn\nAnuMWjlNievxi3u14lrtStZqeN8ImPZayCGGgbWREY1YrJJZt17dqxnNaMatEU3gqxm3ZYhe+sRE\nkBx2dm5cT7i722B4WPmduem0wtNPA7/7u3mcOxfByAglzFZWuImJRAhKLCwQ8ALYWeY4wJEjLC63\nt1MvXLpRBwZcdHS4vnQEOzgp2QIY/O3f2n6h7sCByo72RknTRpKd7u5aQA7g5os6/ExCUikWDYTt\ndi160o3OZ3m57o9x/LjCH/9xDKurgV/A/LzB/fc7KBaZsExOAvfcQ6kxek0ERWCtTaiTVTaEQeeu\n1gHgFS46SWFFCnxA0H1bLEq3e7A5li7NRsFuaTmPoGghoRTZINVFcAGIpqY0Hnss8EBJp4F8Xl9V\nh6R3JO98rvbvblxsBHCq7tDdaIS7lm9UXP09XjvC1yYeBAQ/jceu0V5hrTYiEeOxLoLvkn9bFosi\nq6sERimnSm+Qy5c1tm1zsX07Cyzd3XxBZmZYQOnqMlhaUl7HcnA8YT2I55wUc7Sm+XwspmBZLrq7\nuVmMRIQlxnllcLCM0VEL8TglNldXNR55JACkn37a8nzseDzLMujpAZaWWOiUYuTCgsIPf6iwfTtl\nbS5csNHaSmAomVR+xzuLFwapFN+V5WXXL95aFufteDwArNbanExMEORaXWXxeGWF9ycWc0OSJgo7\ndwZdxDK/bdrETvquLoPVVeOxcAKz+c5Osk0IbJuKsU5gk/8WYIGsSX5eKRZnolHjF8Ori0/CeK03\n9rQ2nhxg4LcibKBCIfBLCxfmLYvdsy0t9H2bmYHv6WbbLLYLM88YhVdekftBkPLSpaBIt5Zfl3Rz\nfvObFs6csfzvzucVTp0CPvIRpwKYyueVXxBYWeGxBgYMrlyxajphOzqUV9yprKg2YhGHY2VFeazb\nwKNT/L4SCbI3slnl/4z+Q/DkSxWeeML2ATF5DsZwHNg2gepUyuDoUQvZLJl3gPIAI/53NUgCAKUt\nRwEPODKrO6COfQqY3N9gfueYWF013jlyfAnLRD4TzCmWBz4ExwzLToXZtzJHtrTwHtu28tYo/jzw\nlwquH9uPAr/+MaB70j/D3O4fA8u7gC0jQCQHlFqAyXcAz/4pML0fIlccZq9oDWR7jmL17o8DXd53\nbQVwx3PA9x+FPbcfpRLX2IUFhfe8p4zjx7XPal17fucDkzmxet2+1gjP21ezFtd+PgDBpDieTMKb\nE2ubmYBGjOn6EZYcC9ak6u8MJFbpeynMRvpIsThN8Np1GzV01A/xRwsXxsJ5FkEfg9ZWFxMTllfQ\nZWG3pYXr3cSExtmz/HsyZyvXuFQqYBXWAzO1DuY/ARWM0R4TAx7rLLhPtq3WBPh4zvw32aPh38k7\nEjTvUNqSneHh97/6XMtl5fmkhRt/ao8t/14vVwreC3r+bSQcB15DjaxN1ZJTwedqwfnGYGFl3PhC\nbdBsFXjpNX5HgrxEfHXlmRGMD0DqSIRre7FIlmCpJP64wE9+YvvNeQTbRA6Q74+A//K+SjMc5UWD\n8Rqw+OCzu9hkwOPIWFSKe6WWFvhSnWuF43AOp3wnAQI2BNYysm9mrDV/uy58/zZKTgf+bmRj8joK\nBd5HyalGRiykUnxuhw8r3HWXg7k5zkUiNUpGtsHqKqUlu7s1jh/X+OhHHb9w/9JLGsPDYZl1ycEU\nFhf5nra0aOzbV8LQEJuKslkeI5kMvOHEG3BkhLmV5CBHjihcvhzkQ8IG2r3beGME/jXyuQsIq3xf\nwje+kQPltfT1ul72kfiuDw/TJ3NpSZryKAFLedmgUUFrMiW1VujvD+S2h4bI5gKC6yeIpHH33cbP\nIVMp1mDk/1dXNb71rdocth4g8+ij9prX+sADjp9/Hjxo1TRkiToBPeYkH6G8/b59Ra8u05jlLCG1\nrKARkWPogQduDtsLuHoP4I3ERsC0V5v9Vg2sTUxo5HKmwnsUaFz3akYzmnHrRBP4asZtF7IIcfGp\npIp3dq5NgTbGIJWiBFh3dyBNRb8ZhR//OIqPf7yIiYkobNtFVxcTi5UV7QMny8uBsXVXl/jwsBt8\n1y6DRx6xMThoPJNdg2TSoK0tOKd8nonW88/DB5zChtiSxBw8aOHhh4sVLIaNGIFKIbNYpOwLN/Pw\nZFDY8Tc4aHxj6suXtWe2zq7agwct9PRgzS6nsTGeH0NVGPUCLBTXe26f+UwMFy5YFX4WxSLws59Z\n2LOHf9/ezmP39DiYn7d9fW7ZEMZixi8OS3FG/JTCBb1whDe9ti3dcoE0XnV34ca6HoOiRG3RQrr3\naztNCcppzM6SkbF+sa4Zt1PI2CmXlc8kql+wlOffWEorHqevWSJhcOkSgRrKHSpMTnJT1dFh8IY3\nsOguHhCJBHypLSmIsLBt/C7xVEpVFLpZRGdRsKuLG0thSnZ1Gezd6yKft7BnD0GkCxc0RA6OEl8B\n4C4F8rY2dvgTJOJcKu+b+GV0dblwXc5bADe18m5ms5X+EoWC9nxzeB2RSNDFnky6eOSRCDo6+D3x\nOKWD7rmH60I+z7njnntcvPKK5XvBRaPK80tg8Wt8HNizR2HPHrLSvvUtG5s2EdBIpymBxAIVn590\n3K+u8pm3tgrDt7aoGS4+cowEjId6XkLhv20UlH/VSCYDOaswKzYe5/0RkJXHIHMik2FRIZsNCprl\nMgu4mYzBwAAABM/VGN7TcOdxIqHwyisWvvQljfe9z6nZ6N5xB73SfuVXyhVdrAMDBseOsdixtCTg\nk/EkAIUlwPGzbVv9CbneWl9P1lCkEyXyeYXubtdnPwMsUtHXitKSYb9E6eoGhDGh0dICD4CBP/47\nOw0+8hEWvRIJhTvuKOEHP7B9pne1B1zFOvPmbwAHfg+I5fwfmZ3PAf/4KDC9v+71Ayy+imRYLBa6\nH9sJornd40BiB3DpfcDuZ+F6bCwc/RT0LL83LB0VsILIjJSinVIEjdvbawE7AATsQqAXAKBjnv9I\nRArAXT8C+l8C/udjwHQA6sm/XRfAez8bgF4S3ZMoPfBZlL71zwB4fum0xsGDEWQyLBJvRH4rHDez\nYWS9KJWMB2DWBxskrv0a1r5X4YYOKfyHgQwC5Y3As8bnWT1uqtc/11VYXrb8745G+b5cuKCxvEzW\nYU+Pwcsv0/smk1GepF5Y5rgxk0mAO2meEMCBxzUeY4eM/Xx+Y8Di+s+g9v7k82QlNco1bybzJhyi\nhgCsfZ23yvlWR5hptV5Uzh+1zSauq9DaanwpR9eFv75mMsrzQpUGN+P7XlUywIM1Qxr4SqX6N1YU\nKyrPIfAoyuXgN6dsNMSLjcDkrQN4bTTYzAOQNSqAV+0cKY0qpRLljIVRPDurMD1toaPD+PtAznXB\n/TCG0rU/+xkbNP/+76mqsbKi/ecZBr4A7unKZc7ZJ07YeOihAuJxC62tzH8nJ4PG2f5+g0OHpLGW\neSxVTjRaWlQVaMX6xoEDZLULOAQQ9Jqe5h7etrkHYN7h1lgk1AMjbpQ83NWyj8LS1uK5mkgov15x\n8WLQTJfNBk1ZAJvcWlqYm2cywNmzzPG2bRPlmEDGMJVSeOEFhfZ2KnJInUKaj8P530aBkrWuNZx/\nSmOxMaxNSWNxZ2ftminKNmfOWGhpgcf0DGoyYZazhKgK8Rj8GZlxqgYku9bYyPio95l69/BGSmFW\n/608k2oQUJjt13ptEtXAGvcqfKfDY6he3asZzWjGrRVN4KsZt2SstSjJIiSLD8AE94UXNNrbmRQn\nEsCuXbVa0eFko1BgwhmN8nuXligR9YUvxLF5MwEN265lTZRK3AD19rq+5IsknTMzYm7Nz7KDXaFU\ncn2GQGen8ru+ZHMvIJ7IPAA0ov/qV6P44hcDj5W1ul/CSdd99xkcPUpN+Z4eFysr7Exsb6fXTCJB\nf425ORaDBUCcmGAxescO+MXJ4WEa9y4v855HIganT1ugGTg9bubmtO//IDr4yaRdkWALWCkdlSJB\n6DjSWc9rpHwFGXb07mDXFiUjKG/4+te7uHhR+ebu4QjLxlQHNyvG77av1xV8oyKfVw3Pg7G+iXcz\nbu9Ya2yF2Yn1wnHoR6I1MDYmm93AHFz+n54WFiYm+C7Oz7NQzc8EoBeAmkJHNdsgl2Mn6coKx2Y0\nyo1mKqXwk58oX4ZPZNqEhdDTw/kik1Ge5Bu/D2DxR2vjyyQBYYCaUkj9/exoJagUdFmHPyv3JCjG\nUuIsGqW8y+wsGS35PDA2pj0vFTYq3HOPgTGcBy9dsr1OfgJFuRxZeYUCZWgcBzh71sLlywZDQwot\nLWRjLSwo//wAzvkdHewAv3yZ8165rOp0vjeOasbHtc1Fyi9KF4vGYxpybYtEpEuWX9zWJh2vxpMe\n1XDdgAkIBECcyK0MDHANAbhG5HLK/56AFcb7Pjxs4eBBC296k+uvv5cuWXjiCY5fMrODOf2ZZ2zE\n48H3jo/DA0cDmbV8Hti6tf6VV3c11+v8HBgwHqs5+Fk87vp+YMHPDBYXORbi8UDKSgpcvE/GXzOE\nBSbhukBfn4uHHnI8uWBe3+Ki8t6BoDgv0nh+bD8KHPg/K0AvXuAkAaXvNQa+wk0bHE8G2P5iJftq\nJ4B7vg1Yoclm53Nw//FRYPodCOdFUiywLHiFOem0VyhvPYrld3wNxYgHph39VADKbTnd8BxromMB\n+M3/Dbj4K5XfIfdi97P1/273M/y9B5gVCgpTU1L0vP2KuGu/77f69dRnoF1tNJ4r+d0yj2tNBlRf\nn4tIxODJJy3MzmpPpi4An6s98WrD+FKS4rUm72YgRce1jMyh677EhrExttzNHgfr3c9bN27keUvj\nUCTiorWVgBYBd/jee+LlBtRnbofPK5ApBho/4/We/au3f7l1Q/xK2Si6Xrgu976838pn4LguGasi\nf1rvWRWLCsPDtj8/iDQuGy6rGZcGmYzxvEOBb387ioEBg7k5StVSapcKJwRE4fvKKmXQ0aE84JUq\nCeHnms8jJCfNYsTXvx7B+DgbcLZvF+sGsp7f+c7gjxvJwD34YLmiNsIGXAJGSlU2va4FEExNUV2h\nWn2HkuoaX/96xN9zr64S6Lp8WSGX0z4LT7zVCwWDLVuY01NRp5Ztu7REJYrFReN5mQafX1118eCD\nZXR3M3c9csRCKsVmtUKBTVQi2W3bBj09lFifnSUQNjSkNuxbKyFgS1ubwchIFPE4PHBN1As0fvpT\n5akXsIlQKYOtW0V9gtff10cPPgFi77nHQbFIn3hjDE6coKS9UsCmTQ4mJiycPMnGD/qiGezZ46Kj\n48YwnTYiH7hRicEbLYVZHd3dBuPj1SAg/YLrgYD1zids+yEMZ2HqVatGiK9wuIanlMF737vupTSj\nGc24ydEEvppxy8V6i2QiwW6aXI4MJkAYBgoTE0ygZmYU9u93cPCgVdPt3dHB4i6BJiYmksjGYi4i\nEe0VaVnsrN6cUrqKBeC2NnqhAPyuc+c0YjEWA9/6Vgdzc8qXv2CXPLWp83n4kok8f8qP0G8EFT8P\nJzGNul9mZ4EvfjGGuTmN1lYmTQ895GBkROHcOR572zbeu7k5ha1baT4PBFJgxSI7WGxoaVnUAAAg\nAElEQVTb9YGwmRkmrLmc9hO+K1eYeJZKLLC3tBivG5z3KR4HHnsMACL4q7+K4EMfKnl+V4GXCCCg\nV1BInJ9ncmrb1DJncqn8Z0OQiBsWdt2vb64OBKbbYTbYa9Xp+Mu3KW3GRmMj0o/0q7B82RwJy4LP\ndqJUnngRVgJeEhsZh1LYKRSUz1jMZvlPJEKZI2FayeclVlaM5wMDT2qPBaBUiqxH8ewTqb/Av4p/\nk05zA2lMcF1h8KvBGaOjg8XOlRXlyRuKBGHATsjlgB07HJw7Z3kADT/Dbn7jyXkF0nNAMA9xPifT\nIB6nl4RIc7kuQbV8XhoReLJhgO+1DpGN49zKc6a0F2V8RNpXmAwik1MtNyZFuXKZckp79xI0W1kx\naGkJPru6Ch/IyuWAp56iP8qlS+xsnp2NYNcurnfz8wpnzgBDQy727DGYnKRM5eAg/ZlWV8m843xv\nfJ+fTZuMPzbX8w6o143b2QkfiFvLuLynx8XIiMbiokImo3wvqXAELDDl+U34dw22zaLX979vI5VS\neO45FuaD99zAf9+3B5KGKLYAW4eBWIOB0zVR/+d1olhkEagu+8qqQtg9UE19//8NgcwsJsVifC8F\nsFOK8oOlD/860BkC0+79n0CuE5i6H+ioOt560b4AvPmbQJjVtv0o8L//BmA30JazS8D7/hT41hOh\nH95sYKAZr3bImiFr3ZUrNjIZXVEUpeTg2l6nwmIslxViMeUzk8N5pBS0Ke/46l1TM26f0Bp+kb2z\n0/hAhjRB5nJXD7IJWHK1LNVmSFw9u1fyO/Fidl3l7ysbRXivGG5UDCRMyfinNDfVFt78ZheLi8Ab\n38jGWplnxJ/XcTSWlkxIKpnSh7EY97b33utWydfVgjHGGL/QXyyKnDIZQiLd9+CDZc9Pu9YS4tvf\njiIWMz4L3xgq4UxMAHff7VYo0XR0NAYI+N3Mg5mDMydMJhX273cxNqZw/LiNuTkCxWwEhmcnoEL+\nxzxOMmn85tcK/9BQiDRpocA6QEsL/6GXF0HCP/qjKNraqFyQz2tkMnzOIg2dyTBfVSrIf0dGDB55\nJIJPfpIPuh7gJ83HyaTGyAgbnQGgv9/F4iK9JbdvdzE9rT25eI6VXM7GyIjBQw+V8OCDDo4cUejq\nUlhaoucsZdcNAEq7/+hHNjZtYg6cSrExmowig+Vl28/R2SRsUC4bz0NXobeXA/16ZAY3Ih8Y/kyY\nbTU/r/HpTxdrmtXX+q7riQcecHxZSYlikTWsL30pWqNEUX0+YduPwUHUMPWqVSM6Ovg7qeMReHTw\n3HPA+Hjkhkg8NqMZzXh1wvrc5z73uZt9Elcb2ewGHZWbcVvGk0/aWFmp7uRiUfdNb3Lx1FMaP/xh\nxNO/hweCsVuqtVUkDQjwWBaTwi1bKhegS5eo4y3dXpVSLuyYZydSbUedbII2bWLBltIJCtPTGrkc\ni6rCZLIs4ydonZ30NxGplT17SLmfmNBYWuImPCwhBXCB7esD9u0LdlVSyNu3z8Wb3uRidFTh85+P\nYWpKI5tlV+z581y4bZuJ5pYtgeGv41BeJRqlXEA8zvtIg2OFlhbKvAQ/IxCYyzFJy+XoaUbDZz6X\nTCa4xkSCCR916SmJNjOj0dXFpF7k2MRHy3V5P9vbecx8XmN+nslxLqdRKgXgo0gsJRIbl+moltK5\nWkP4taO5aW3Gqxmq7niV+UqkkhIJzoFi/HwtYYzILpHZFUgM8l2rBuqErSQyUSJNRyDb+MXK/v6g\n61Y8TwRcIXOGm1zxKRC/vUomXP1rknlafF3Ee0EYNWIKPz7O75YNszDW5H5Jx69lsXgRi5Hlls9z\n/chmg27cQkF+LkWRWjbxzQ7KucI3PL/jDnYhLy0JYMPnJMyH6ucCcH2IRtnY0dVF5lQk4iIapZyK\nUpR9EpBkclIjmeRasLKisbSkoZTyJGA0UinO47kcmXMiq3n5ssbYGH9PyUUWpdlQQu/Mvj6D3/md\nEtJpjo/+fkr/VG8sL13SdcGvoSFuRBcWlP+u3HefAxZCgDNnKJu2usrfry2NxfFazZZUiuzIqSmN\n06d5/Vy3qsaHeGHtOgx0jwO9F4F4uvHhXAVM3A+kBtY4p+A8XBfA/v+H371e5HuAk/9H1d8rn+kW\nZkSX3/9/AzsOVx3OANE80HsBiOau7RWIJwE7DyTv4H3pWee8Y0ngyP91DQf6ZYlbZx56NSKT0R77\n/+qvk00ALtrbmc/WY1uH5Uh9BuUv+D1txtohDXuSTzgO5eHDMszXEjd2L/KLEK/d/SDb83pZq/zb\n1lbu7eNxg95e5l1btnA/f+oUi+yxGBUURKqSDWainBCW7uc+enDQYNcuF319Lj76UcdvUJ2aUnjy\nSRtPP21hfDzwD5P5sLeXTWinT2v80z9FMD2tPfa6wvw8gaaJCYWXXyZTa2GBOdP0tPb3/93dwLFj\nGs8+a+PllzXOn2eNYnmZ+drKCpvOTpywMDam0ddn0NbG/CuTIcsmn9cYH6fqzOysheVl5kPSeCbK\nL4FKAnM++u8C2Wz9vU+958gaC/OWqSlKb589G1xPPg+/1hONAt3dLrJZ5pvyM4D1kTNnNH7wAwuP\nPWajUGCzWyKhcPq0RjxuMDzM+/7887wnbKJTXkM2Zcfn55WvjJHNKr9mVC6zhvJv/20JMzOs18zN\n8blkMqKYwyYwY7gGZTIEU0slAoeSR4syBpvZeByqE/E8ZmYIni0tMV8Oe1FtJI4csep6/ykV1KPk\nM6mUwrFjGtPTvCfz86zzvP71PO5Gvut6orMTGB0lg1Ap+HUveL66ExMaTzwR3ItTpyrP5+JF1u6U\ngufty78tleDXziYnWUeTiMcNfuu3Snjf+xx0dxs89piNVMrG1JSLY8esiuNd7b1vRjOacX3R1hZr\n+LtrYny5rovPfe5zOH/+PKLRKL7whS9g586d/u+ffvppfO1rX4Nt2/joRz+KX//1X2/4N2NjY/iD\nP/gDKKWwZ88efPazn4XW69PXm/GLG+tpKB8/bvkML6DSJyWXo6wWpYoU0mluWs+c0X731OCg8RIi\nFjfDnXqy4WWhs9YQmZIr7MyyLPqRSMcfP2u8LiTl+WpRxmtoyHgJmPK6oUhrl++3LNcHyGL++8oO\nrbB/V70OpG9/O+p3+q+sBDJhx49biMeB1lYXHR383nic/7S0MLEulQxOnKCMIe8pu9NmZphQp9NM\nvETGTBJ2ud8Bc4PJwtgYO8YF0OLzoQfD5KTC3r0G6bSLuTkmb+3tLrZscaGU9gqq1FSnfE1lcVG+\nL5BYa0Yzri024ttxO4QxnKduzPsQvNdS2N/oPWLXKYE4yzIe6MLNHqXepNvW+McRiRelCISUy6bi\nuWhNoCnstVQdAnCRlVI9l/Pf9LQQyRTlS7nJccJdvKUSZXIp/UdgiB4h8Hy7bj2Qq14Ia4rG9caT\n0jGIRCgjyI5b3gD6glUCmQG4wzVieprNFu3tGv39BgMDDiYnybCzbeX5bCqPPcdzKBQIfjoOP2NZ\nInGo0N/PtVEpjUuXlFcQCZ5ZOh0wDXM54P3vd9aVOwEaSwHv3u1UsMjHxzW+8x22+U5MaKysaGjN\n46413rxvrPtT1wXOnbMQjRqk07VMcT/qsbHWik1XCAit4/UlYYyih9dGYnWwwS8CBqPfKd+5DiB1\nPa9E18TG78svwLxdGU1gZaMhxdJrDaXo4cVmq7XZNsLoqGaaNuOXK4QxLflCNqtr9ibN+OUNehC6\niMVYD5iaAi5etPB7v5dDLmdXyd2zUWh1tTbPEMlVqtEYjI4CDz7ohiQOK9VwRJJ5cpJ5q2276Otj\njnrqFMEUx6GkXzIptgEKR49a6O7m70WqrasrUFCZmzNYWtKeXLjy5MiBuTkW+9vaDKJR/p2AB5OT\nBAosCx5rn6BPJgMsLNC3Spr1qq8ZCN6t6Wm5L1dXA6SMJI974YKFyUl4fms8r64uMqkAhc5OF297\nm4tTpzRGR7m/iMe5Z5meJkiVy2nE4wqHDmm85z1lbN8OTE9r/Kf/FMPmzQqLiwTEwo0T9PiTBmru\ny6SUGVYGaGsDjh2jh6V49CUSst8IlCck9xYAh9epqvYtwRgSv/NUivvBiQk2fD//vIVkcuOyghLr\n+cmHPzMyQgAvkCdWGB628PjjBr/92+UNfdf1xq5dxmtSMV69r1KKHYB/L6hSEZyPjON43Ph+vMHP\nTV3ViHoMstVVVMgtXuu9b0YzmvHqxTUBXz/5yU9QLBbxD//wDzh58iT+7M/+DH/zN38DACiVSvjy\nl7+M73znO2hpacFv/MZv4MEHH8SJEyfq/s2Xv/xlfPrTn8b+/fvxJ3/yJ3jqqafwwQ9+8IZeZDNu\njxBg56WXyDASDw6h4g8OGhhjQSmNLVsMkkku8JGI+IIE3ZrpNMGpSIQSemHZxJERhVyOJrf1gpR4\noLoYIQms47CTK5kUI2Pjd+dQO9yFZXERBHj8vj7KZNx5p4vOTnga11xE02mar1Knm91WIkvQ1RX4\ndz3yCD2yBMAbHlb4yEfKePllhcVFGueK9Iv4FUjyNT/PxFdAtXjcxUMPFfGVr8QwN2ehXGbhkRJn\nxk9Sk0mRmVJeQq7876/2piEAGeh1h/HrbJYdOYDB3r2kj+fzwPvfX0YyqZBMAiMj7M4RWYjG0SxC\nNOP64helaEGfgxv3PlzPfeHGjfNbKkVgQxhYjY5jTKVknDHwjN4FhGt8bfx9cP22vTEAMFzErJWy\nC66F/698OcnbqfNfWFzFIjfWuRwBSNtWvn+V+JV1dbnIZNgEwsIEN7AiBdzSopDPs4vxrrsA2QgO\nDtIjcnYWvo8VfTCM55VGWV87lGW2tXFty2Y1enpcLCwIoFivKBKMjQsXarX6GzWC1JMCrpZkOXZM\nY26O0p2lkvIbYK5n/EsHbiKxTlG0awNMrOrYgNdXRRz9FCUEw0CSY1XKHSYG+LmGUTXWNwqmXUus\nDm78vsy85dU7j5sSt8ec8osQwZxEdkEms96c3gQ4ftmDMmgcBLEYGwCvh+XVjF+skD336CgbabgX\nVvjLv2zFhz9cwK5dDs6c0bAsMlPEM7xe850xZI4tLWls3gyMjgJAsGaH8xhjjCetx30+QPlExzHo\n6VFewxFBrXyee2yAed/yMvM7aQabn5d6CdlG2az2WWgSlIdk4+uFCwZ79wY+6+JlPjkZMLmkXuK6\nym9iavTOBMe5vrXQdRUcJ5D8EwnDpSX4HpC2DU9m23h+WwQbR0e15zvONSEe5/mcPq3R0WFw9Chl\nvNvagu+3beOp3/DYYX9xNuKxCdu2mfd2dlL2/Qc/sGHbrMsI2w2o9HsmCGaqgNO1wxjj1aQklze+\nFPvVygqu5Sdf/Zm5OSo1eGfhMZwIfgHlDX3X9Ub4GAJkra7S2kRC7gXva9DQwnHMmuPkpPHrXCJN\nChBYa3T/pFl/bKxyjF/rvW9GM5rx6oUy5urTty9/+cvYu3cvPvShDwEA3v3ud+OnP/0pAODcuXP4\nyle+gm984xsAgC996Ut461vfipMnT9b9m3e/+904dOgQlFL4yU9+gsOHD+Ozn/3smsdfWEhd7Sk3\noyr27bvnZp9CRRQKgccLUJlwycJPqjj/OzxqKT1R+3lhZ0WjJkSrF2mu6ztf8QGo9/aIhF/ARKj0\nw4lEjJ/shNkGEi0txj9GLMakKZWCJ2VWKd0n/lXVSWp12HZwXkpRQrFYxA0p+NULuWZJ7rUOzsEY\nJhQtLfxZJsPnks/XGtk2oxnNaEYzri+kKUR8ASrZXUFXe6N1RAoIkQjXU4DSKyIPXL1+BN4V4UJA\nsAaJvK106q61/sjftLcbfxNbLocbVIIQUE+6p8Prp1wXpXMr78FrWsRsXQQidU5+vSjHgMy2jX/e\nKgCxFKDKgLGBUhyI5IP/L3QATmM5iJqIpIHWpas/741EvguwC5Q8XCuMBjJ9V3fezWhGM5rRjGa8\nxmFZ3M+LHHilpUJtBL5NwX7ZtoPmoWJRfLJNjVRruO4hLH6pPwSS5LUsq+rjN/pd9eeiUfheuvSD\nRd16xq0Ucn8ln5X7Uu95hPPWaDRQlwgDluF7G75n4fsodagwazT8N/XkdsPfczW5abjOJKoblFlk\nzSkMAm0kpCmtOp+u/szSUuDHJmNOzqG312z4u6435BgEnGr3MuF70dJS6RMv4zhcl5PPAmzaa3S+\nUsOiUlH9413tvW9GM8Jx/Pjpm30Kt1Vs2dL4hbumaSedTqNdDHkAWJaFcrkM27aRTqfREXrD29ra\nkE6nG/6NMZTjkc+mUuuDWj09rbDtpuvw9QRlpG6NcByRGKr8eRjckQVcQJ5wsiAFvUqZrEA2QMZX\noVD5vdcaG0kOKZVVmQTIzyMRdiJl63jZWxZg26rG6yvsWSNBdgSLfRtJnqJRMrHicXYTZTKVoNyN\nKv5VJz9A4IsWJPXK19VubQWSyVs/aW5GM5rRjNsxwsWOeoWPcEGkXsgGnpvbgPUb7uytZgCHCwyy\n2ZV1IQy0bTRKJeWvH2KOHj5/ekLCl9o1hmtsRwdzCJGsFP+q6pzhNYtCB2DlAX2V3a7mKtN1JwYU\nEIBfkfzVg13hiF4DWLfRiK+u/xnXBrKbm6BXM647ZC/RjGY0oxmvVtA3Vvn5jnjDrhfh3KZUUn6j\nEBCwtOrNX5Ificy41A3CeVogZ14bV5sLGUMAw7KYe9VrgrrVQnI+yROz2cbsO8kRw6CXfIfcU2nI\nrgeyyPcICCVNxgIU3sh7Vc0MqwRQaV1xtS4y0Wjgf7bWZ9ra6tezYrGg1riR77rekGO0trLZLZDY\nZ4TvRfX5OA4BLMcJGsQti4pSrJk1Pq4cT/ZI9Y7XdPBpxvXEWkBOM64urgn4am9vRybUbuu6LmwP\nCq/+XSaTQUdHR8O/Cft5ZTIZdG7ABXBlpc4M24yrip///NTNPgU/Hn3Uxne/a/v0YonVVYVt21zc\nd1+QUczMKBw+rLFpE6UGEwnS7wcHXR9AcRzqOH/sY2Vs2kQvLQA4eFBjdtbytZg3EtI9ZQw7r6JR\nFtJyOYNkUldQ2xkGW7bQU6urS7Swmax2dhLk3bTJxSc+QZnByms2uPdeFzt30jQzHL/zOzG89JJG\noRC8L7LQDg66SCapT10sBr+XImNbm8HWrS4+/elSBd36d383hpdesny/rXAipjVp4JKohZM+vrIu\nXFdXAI0EKA1+9VeLaG2N4/TpEubnFVpbDbZupZ7zwABp8D09vMapKYXHH7fwne/YOH1aw3FuRHZw\n+0iSNeOXJW7XMXnrnrdIpzTqnr32oK777RdyzmrNZgZjjMeEViiX15aHlIJNNOrirrvoX3ngAHd2\nx49rHD1KiRNpSAGU193o4t57Hdx1l4uJCY3ubsr6ikzvBz9YxKOPxpBKaZw719gPKxYDWlsNensN\n7rrLwYc+5CCRUDh5UqOnx3iymgqnTmnMzXHt7++nPMy997ro6DAYGnKxe7eDz38+BmMoCbywQKnd\n9naD5eXAm+BVj+1HKVnYfxTovQRYG6y+Jwbo8ZUNSR3Kd3WNU4bw6KcqPcC2H6U3WLfk3QUg0QP8\n47c35BVWcYwtp4GtE8DN6jfLtQP/34+B1AbP+5c6btf567UJpag4IB3azWjG2tE4B2oCqDc6fnHm\nLs4zLj7+cQc7dri4774yHn44jnRaI5kMPE1ZFKctQ2cn99BbtlASLx4PfIZ6euiTdOGCgjHaK9Jz\nXAoTv7fXYHDQ8f3EczmD6WkNrRV27XKxuqpw7pxGNttoPFOJJZttLPEaiRhs3uzijW/k8f7wD4u4\n4w6DRx+18eMfW/jRj2w4jgop39BXvVx2sbyskcspzztMjvnavEOWxXyyr8/F7t2sK125ovDyyxZS\nKTYCZ7PBeUUi9DMbGnI9SUkDywpyxXKZefG/+TdlAAaPPx5BLkc7B4mhIRdve1sZXV3AyZMWLlxQ\n6OkBtm+ndOLMjPYkx6vPNmAlFYt8zmspDGlNicPubsBxOJba2w3273e9fNi8qj5TtOKIVFhxDA66\n+OQnSzfN22pqSuHgQQtPP02ve6k91bsXV/PZtY733HPteOyx4jV/RzOa0SiaSndXFzec8XXffffh\nmWeewYEDB3Dy5EncReMHAMDrXvc6jI2NIZFIoLW1FceOHcMnPvEJKKXq/s3dd9+No0ePYv/+/Th0\n6BDuv//+azmlZtzGkUgEWtHhEEm8ZDLw+VpcVOjvd9HTA3R3sxvDtplMSaIIGLS0GHz4wyzQBdrC\n1ybrJybXxiiUStQCTqWCzo4wjb211WDPHoM3vclgYoJ63oUCtZxXV2k2urQEfPWrUQAGmQzQ3l4J\nCtUz/HzLWxwcP86qU0DnZtKzvKyxdavx7o/xfWkAJsOtrZRbEK8w8T9hN5qLUsnyu5cCQ+/qLv/g\nWuNxJlbijyCgmG0b7N7toFDQ2LuXiddTT2k/ATdGYWWF4N7QkMHx4wp//udRXL6skU7fyHaYZjGj\nGbda3F5jMmDjXPt5v9psGts2DQGTX8bQOpiPgbXkB+k9QLBq/fvnuuyMbGkBPvCBEnbt4poKGESj\n9OsKzoFeEbt2ufgv/4UFkXpeXEeOWBgaMjh8GFirqGjbBrGYQTzuIpcLmlgyGfpJ3Huvi8lJBfG0\nFCkSY4CJCYW77ybgdumShXvu4WcLBYWFBe3lDexIvRrm2TWHD0RNrv9ZAHAUsHQnMPOONUCt0Hft\n/hEws4/MrNUdQMtS7bGuxivsas/31YyJBzYO1jWjGetEo8JvM5pRG7VjJfD8rP/7ZjTDGIOODoNT\npzQ6Ohx88YsxLC+zWbS93XgMMAWlXGzbZvCe95Rx5Qr34lIPuHDBQqHAJmAZZ9GowsoK9/aFgqpQ\nw8nleOzBQWBiApiZ0YhEFPbvd9Dfb3DmjMb0NPz9eDiE3SSSb/VyokiENY73v9/B9u0EdiTHu3wZ\nOH+e3q2rq9pnncVibJiKxxV27wYKBRfnzyu4rvbu06v5FIIQVYPZWYVsVmFmRiMaFe8yAFCIxVhX\nMcagpcXFr/0ar/PIEYWZGeav4i0fjxs89FAZ//E/skn5wQed/5+9dw2O4zzPRJ+ve64YDGYGIO4A\nAZAEeBPvFCmRSiRRiuQV5RPJyrFlKbHlSiQ7dnzis7V2ks16400q2a3EldqU95xKzo9UspWoXCWn\nknIkZZVay5dd0ZZD0pIoSjJJgRcAJIjrYAaXuXV/58fTb3fPYAYESEqinHmrVDbJmZ7ur7/Le3me\n58Uf/3HI6R1P0PbQkI0jRyy8/HIA/f0ai4vA7KyB8+cVbrvNwuXLqsz/9MdMDQ1kC4VC7CNPsDZ7\nuVXKlQcCQHMzC3UHD9qIxbTj6/IdSf/b98q6uzU+97li1Z671axWf97V2mq+392t8cwzJRw9aq34\n2bExhWefDeD0aRNLS+x9J3mqpqbV9+fq7tb4zd8E7r67cEPPVre61e29tesqfP3CL/wCXnnlFTz+\n+OPQWuOP/uiP8I//+I9YXFzEJz7xCfz2b/82fvVXfxVaazz22GNob2+v+h0A+K3f+i189atfxZ/+\n6Z9iw4YNePDBB2/qA9bt1jdx8mZny5F1HR0WUikbp06Z7t9nMgqBgEJPj42mJo233mIxJR7ndajt\nq9HcDLz4YgDJpMaRIyUMD5vYsEFhetpwaem1kl2e8+Hp+7IfCZOFmQxcp01M+ojl8xpjY7zPgQEb\nAJlhgHIKVrbbCDYS0Whs5P360SHVGn4ePWrhO9+xMDxMdBIR+0xisgAF93DNZGyEw8opUilEozb+\n3b+jzuOzzwZch3fdOjreiYSNTIbOWjhMhlg2KxR95eogm6ZGQwOb5cbjGpcuefKELS0a7e1s3trb\ny78bGVG+xrrabRY7Oqrw6KMWvvGNEEZGTORybH77viQf61a3utW0QEC7vZekJ0F1k6bLtT/zXga0\n0oB6LY2fr9fInLWdItGtm+QKBJSbAJFeXf53IOAM2WcF7FDrPXlyH9zbd+yw8MQTlovu1Vpjbk7j\nrbc8kEQ4zGTPPfd4CMfu7uVNoS9cUHjzTRPz88oBTZRL8ti2RjBItGpvL6/jw1eht1cjnTZcQAzv\nV5pq0+TvhW3W1MSE0OioQjxOMMbSEuf8agqAN2wH/9vqikg2gGwH8PIfAK//qo/Z9RWP2VXtWvFJ\nIP4/vD8Xa+jKJEauzRZby/2+Hxa6Ru+vutVtlXarS3HV7YO15Wzp6oyvaFTDMJQroS+SaHW7lUzD\ne383/4yXYlE1xlIkotHdDeRyGidOUFmFCgXMBTQ2slChNXDggI0779R48sk8Xn7Zi9EJ/FVlfk0k\nohGPK0QiQKGgHeYYY/d43MbQEOPzbds0cjkD6TTw5psmrlzR0JpMsoYGr2e4SPHJs0grBhaAxLfT\njqSdxl13ldDV5eUqyPYJ4I03TESjlGZUir/T1GRjcZGFpqtXlXOf5X77e9FfvNY1czmRnDSQzdL3\ny+Xo/3nqBvz+unXA+LiJdFo7YC6y4VIphUjERm+vxs6d3g91dABDQxrRKNl8kQjn3PHjpvs+Jc+l\nNVlvfX0aly97sofivxeLnjSiqDPYNhWDpGfc0hLzP5GIxubNlqsuNDtL1YNt28gSXE3RBrjxYlQ1\nP7/W7/jzULOzChcuqDUxq9by/Wvd17FjfD/My4lqFBmVd9xhI51e276x2nGoW93q9sHYdRW+DMPA\n7//+75f93caNG93/f+TIERw5cuSa3wGAgYEB/M3f/M313Ebdfkbs0CELFy546G0pCn3xiwWcOGFi\ndtZD4UQiZDj96Ec8lMSRSCaBbdtsR/ZIobmZsgCzswpvvKHQ26uxbZuNmZkSzpwxoRQPOcpklR9s\n7EWiEQholEoK4bBGc7NGoaAwN8e5LAk6aXpKBKlGNEpHM5fjfe7bV0I6TUe3qUkjkaAzChDNs2OH\njZER3ueuXVZNZ6O7W+MrXyngt34rDKVMx2Hj/UciRBKRVq+hlI2lJQNTU3TeHovFgHYAACAASURB\nVH+8gH37JFnpPWs8Tsd8fh7YuFFjfl6jsVEjmdRIpWwMDxs4fVrYYHSG29s1tm618eabJlpbNYJB\nSsYEgywwMhHO38jlFEIhyhwuLpIxEIlobN9u48QJE+fPm5icJALf34T3w25r7V1Tt7qt1ljMBopF\nFtotq3pS5nrlQ5qaKAfCZr1eccmyytdmMKictc89srYMB69RiVC8XhNN/UiEMiPZrEI0imVs4Ztp\nWmuEwx7wQZ53hW/ggyiQWRZBDrbtSbHIf/7eXrLPWpbXX7XSKJViO/I7Gk8+WXQZ1M89F8CLL5pu\nf4dNmyxMTCiUSjy3777bQipV+/nHxhSOHzcwNqYwP+/NLemDYJpkkvX1aTz4oIX+fu1jbdPicSIy\np6eBhgbbOf+0wwjzkkaSnDl2zMSlSwZOnTIckAfPI9MkGjmffx/eV+LS6j5nAEiMA/f+J/753v9U\nXoDq+z6w2HLt6wRr6DkXIsuZXH3fp5Siv/i12vt9P2yu94O+g7rdAiZFcu5d3Gffl6J13f7VmN9X\nqSUZrDXPDDlTBYhTt1vFNAxDY/16C6apMDZmur5QNf9s7bGndthM9D1lzgDMG0QiBIN2dtqYnQXG\nxw3Mz1O2rljk70txIxYDWlrIZr9wQblA3QsX2CagVILrs0QiQCJBnyebJauIiXrG/5s322hs9J5N\na42JCcMBRbGIls+z4NPSYjuAUwEO2SgUGI8Hg/SPCBJmPuDTny6iqYkMeX9h5LnnAhgZod8VDgOt\nrRzIxUUCXwGq+uTzLPawt7i+qRKHoRDfYaHAMZUWFPJOpT+T+LwC5gKAixcVUimNYpG5HPZlYjGM\n4CiF+Xm+15ERw8ll8N8eecQL9I8dMxGPMw/ltzfeMN0C15tvGpieJquooQFobrYRiRiIRuXTysnD\nkBnmN1HVYdGTykEAsGGDjfZ25rsAD/AFVFcPqmY3Woxai0mhyW9ar55ZdaPfrzQpbGmtMTnpxQ+Z\njIFTp4De3noRq251+1my6yp81a1utWy1qJHKz4mz19dX/r2TJxW2baNzd+qUgVhMYX5euYfShg1E\nFgEivwTcdpvtIqT4PRMjI3RIdu4EACbqFhfpjKXTPDj9ElHS9NIwyMgKBplsy2ToQDY1MTmYyQAM\nvm0Eg8pJprHwFYspnD9vYGDARjptYMcOG2fPegc2kVurR+bs28dE4OnTcGQNpc+NdllkIyPAoUMa\nzzyTX/b9asiVZJJOur+PGsAk4oMPFvAf/2PElZIMhfj8V68qtLbaDhXc+05/PwBonD/vJR6JKmOB\nzBldABovv2y6jqZlec1j/RYIeP17lFouzXCrGmUi6oFw3W6+RaNEXobDZKtI4Fi5dtYeULK4UywS\nidrczH2sUJAg0usB6KFcyRadmfHk4irvgyhEBnJLS7zmwoJexphdrcXjGqYpvQw0pqYUlpYUJieB\n+XntSoMEAkxIiLyJN0ba1xvMW5/+IFyagrsj46AzAX0NFpzYB7fueY7JOGgHMarKxkAKTLX62xgG\n0N5uobeX59IXv0jghD84pmytwsQEEzEbN3JfT6U0Ojv1igH3s8+aGB42neKqdw+2TQS9UsIC59+T\nAW2654pYPK6xcydlXOS+GhsFPMPvHT1KP+LQIQsvvGA6z6+d3+W8ZLD7Ptjc+rV9PjkK3P2H1eUK\n7VW67qUQEPAVwNI9AIzaEoivwmOCNY2s7X6vZZYCcgmgFAXyjWSehVfB5Mo3kJFWt59pE8R9JWtG\nig9MlmqnL45CczMwM7PaPbludbu2mSaLC/k855VhEOSTq7JN+eMRFg/qPv+tYoYBtLUplEoGAgGq\nE4TDlINbWCCwS96XVxTx/m5l04jFbChlIJlk/C09sQIBMrGkN1QyqfHjHwdgWfSjFxfpSzO2pa+2\ne7eFeJwbmNaUZSYYmPJ409PKAceyuLVzJ5lb7E3K/XHnTgsPP0yAT6WfxOtqTE4q53k1Nm3SmJsD\nBgcBrW1cuGBAawNzc14rBWGGdXfb2LfPxpe/XD0/Ib1bK21xkT5mNMp/CwS4rgRsxXVGv+96YntR\nppAidTBIsJ7WyumZptz8QSCg3eIk+6FRpQdgX6xgkC00mLOgtGSpRIaX1uwjOzlpYGGBrLWlJY7N\nP/xDAB0d/JHvfc/E9DSLUqLgw7EHLl8GfvCDAEolFv5sm0o9yaSN1lYbpRLn365dGv39Fq5cMfHi\ni/wtUXDQmoo68TjQ2cnfDwYJRvYrJkk+rJZ6UDW72cWklawWg2q1zKob/X6lJZNe0dC/9lkAfX9U\nRepWt7q9f1YvfNXtptlqUSNrQZfYNnWpz59n8rGpiQwiScaeOkXmlzgZJ08qtLRIEEJZI8ALXOJx\njcOHgWTSwssvm/jRjwIIBOi0+gPuYlE5vVDozObzlDGMRpk0a2lhwS2bNZy+IgqhED/T0EAUlzTQ\nvvNOC6OjdFgiESZklYIr4QSsHpnT36+hNbOYmQxw/LiBiQnDuS7/GxlRGBtTy8ay/ICn9fayF5nf\nslmN2Vngr/86jEBAYWCASU06xSx83X8/Haq33vIYekrxHUoBsrdX4+pVhcuXmYymTCWvHYnI+HjO\nqd/8iWjT1K72+PXZexuQihwmCwLa7ZNWD4LrtlYjW7D63AmHNVIpgKhSr+i+WlsuL6KdPkoMBAcG\nGPQFgyxU796tcfGiwvS0wvi4glLU7U8khPnEPTOVspHJGO5+KUlIKZCZJgPeVIprfmFBIZ2uvvZX\nQt4GgyyobNxouXIu2SyTAm1tCjMz3HvDYZ4Vw8Ms1DMQhoPE1ejqAqanFbJZ7RZepDm0FIoqjX0O\nmaioNeYfNGPVNIkiZXLFhmEA8bjI4SindwMTH7EY2b3z8wZCIe2+y0BAY88eC3fdZaO/vxy4cuyY\niUzGwMiIQjqtMDnJBM7oKNDQwL29vd3GW28pKKXw3HOBqnr6zz/P5ueNjcDcnPYVv3iOxGIaLS08\nPyT4Fla4PziXwL67m82jBUiza5eNDRsoCyxyx4cOWdi+3cbp03yPExM2olHK7gpCuJbdtPf66m+Q\nWbUW+cDoTPW/zyVZxLrWtc7fAyy2ssg018t7eOAr1T/beno5E8wyAdOXPMlHgenNQCQNNF9Y/XMA\nwNVdwP930vtz16vAJ38RiE/U/k4hBLz4Z/X+Xv8KLBjkGZHNkk1jWdyPkknuaTybyPDSGpiaUg4r\nuZrJ39d9sLqtzkxTuwlyYRYmEuLnKMcH0C7op7rV/f5bwQh8YksCy2LPo4UFhUxGlFrod9BfJZjM\nMLBiz9hQSCMWo3+eSil0dVmYnWXfcUC5DDBhAs7NASMjpjN3PIYXCzX0Vfv6tNuXVCydVnjhBROn\nT7MNQD6vXWWa6WnmNhIJjV//9eKyGL/ST1JKoa2NijC5HH00Ks8o7N9vI5cD3n5bIRajX59IaFy8\naMAw6DMPDLAY9PjjBM9UApY3bLBw5oyBK1cUikXmZ8Jh3ktDAwtf0p5CcjQsTmm3lYJp8reqFZfF\nKhVhRMFAlHdMU7tFLa35nrQmi6tQIBPNNLVbSAoGvWv39rKf17ZtvPjJkybCYY39+5lXeust9oIl\nmBmQs2VpSWFkxMDzz5sYHTVw5oyJuTnlMMM01q2zoRTVh06eJJOIsqjcS0xT4eJF5quammzccYeN\nXbsEyKVw990l/K//ZWJhgePT1UXVoYYGjU2bLGzaRAZZby9zS6KYtH37ct/9WraaYtKNSiGKVctD\nyd+/H9+vNFkzSrGIKMXf3l4bQ0O1VTHqVre6fTjN/NrXvva1D/om1mqLizUkXOr2gdpLLwWW0bNJ\n3eZhvNrPjY0pvPQS5ZReecXEzIyBTMZAsUiauTTwLBSYsO3v9w682Vk6WkK3HxkxUCrRGUmn6ajM\nztJBu3jRwNSU6TaHFcYC5bQ0AgEPDUYqOpFElgV0dlIikHrWcHSX6QBrTXmo1lZqQP/O7xSxebON\n+XkWgLJZYHBQuygvpTQeesgqY0/VsmRS4803PVmBmRlKCrS1EW0/OKjR1LR8zCu/K0antgiRNAuH\ntZvEfu01A7kcUU6NjXDQRkTdplLA//7fAVy9yp5jpRLfzX33Wdixw0apFAJQxMwMKftKGU4gqTAx\nYUApjZkZA7mcX6pG2Bh07gMBBhJKaTeZfT1mmisnrK9tK39XKX/xS5B/xk2TcajbB2Pvt78rPfSC\nQQnI/Ul+2y2or1tHJOLEBPcbowphxTSZNHS+DUAkXOW5uL4EZd/YCDQ3c42nUmTSzM4qbN1KRujs\nrHIYXixaM0lARtfgoI3ZWQOWpcrmvDSAD4VstLRQmo4MGz4bUZflrB8/ul+eLRQSMAGLMv/23xZw\n+TKfXaRV1q+38eu/XkQiwYA0HCayV9hfwmiLxTypRIITPF3/xkb+bqlkVJUq9ebDrRkIhcO2e14F\nAkw8bN1qY8sWMpzZp9Hr5xAOUy4yEuH4HTpk48tfzmPLFoBFKCYF5Fx68UUTx4+brqwkG4UbiEaJ\nXI1ENEZHDWzaRCZVOq3w5psG+vu9a7z0UgA//rGBQsFw93evtxcD+A0bbOzdy7n77rsGzp1TDivZ\ngpxTnZ08M6WxemUy5uWX6WOQBW3g7//edBDPwKZNGgMD/B5lgrTzvivfq3YLhaZZPreFNcix5tkv\nhV757rLrZXuAS4eA+AgLUcYq0LjZTiCaXv73w/dBfefrMMM56MUUMNcOxKbKi1TpHuCF/xf4ly8C\nrz0FvPMx3sPAy0DHqeXXLEaAVIW8oaGBmX7g6k7g4l3AC/8P8L0/AHKNwIb/CQTWgEYZvo/34D5b\nD3Dx54BADsilgInNwEIrYBaAfAy4eBj4h78Gzn109b9xi5ph2A44iD5WKARfwXWtbJFrffbW3J9W\nssZG2+mJwvUYjZJ53NLCs2ZhwWMUGwaTyFyP5c8q4KNYjMnpQqH65+pWt0qLRCj1nEgwQZ1K0UdY\nWPCAGV7CXLk9eYDV+QaUQ1z5M34zDHvVn/3ZsRt/XgK5lFtwohQ/CxfFonJjdoB7STBIn1opVGUu\n0eibh0Ia69ZxTzl8mGCpyUnltj0gQxCueoLsafk8/VwpqEajbF/Q1KRdfyaTAd59l2Cc73zHxNWr\nBiYnFS5fpj8aCsEB4jJm37x5eaK/qYn5EOmdWiqxjxTvhfM5ECBorKeH/83MKMfPgbvv8vc0Dh+2\n8fGPF3D1qokXXzTxzW8GkMsxtr10SeFb3woikaCvNzNjuAoMhQKwfj3bPExNGSgUvLGJRPj7UoQS\nwJPEPNXiLiluERCrHDaO/53zrGhu1mhrI3Cvo8OGbYufK0AqAYixOKYUlYA+/WkvB1IqscgkPuvI\niIGZGeYfyouUCvG4xvi4wqVLbAmRzXIOSQuHaJTv48wZA4bBIhyZZ56CRiTCObm4yPjrIx+hvHco\nJGAPYP16vqstW2y3lcIdd9h45JGiK/PY36/x1FMlfOQjBHmtJp8kNjxsVC1+RSIaw8PGsndfzbdf\nrVXLQ11vDux6vl9psmbefttEPq/Q3q6xdy+Lh+Ew12ZlLq2WxWLhen66bnW7BSwWC9f8tzrjq243\nzVZLQV7pc342GNlEjCzYx0VQeCzA5HIGIpHyA6mnR+PcufLCztwcnRZBFC0tscfIlStEw2utyhKC\ngYAkSDXm5+kIRiJ0IuNxjWeeyeG110L4l39R6OjQTuILuHiRCQnbJlJQKQ8p5W94eSPImUp0e0uL\nwtCQ7RbRVhrjyu/6f3vfPt7bc88FMDcHZ8zJAAGIXmtt9a7z6quGGySUSgq5nMaWLXCp8bt3A5OT\nRbz2WhidnWSMiQUCCuPjBjo6OL7i8AqSVxw5CR5CIY7n4qKugbRkMU5rzpVyxokgdrzi2lqDKylm\n1TJhivCzXkEhFNJOYW9NP1e3W8CECWVZZAPVRoJqBx2pnTlcfX4ZBoM2KfL40YtsBM3G1KUSJepM\nk/tdqcT7aGykc06Wl3Z7+0kRQnpflUqcd2SG8c/ptHZl5ERepKFBPus1VZY1zqbUcJGDfX0M4M6c\ngYO0Y2JIKRajduzg5H/nHYIKBCEngWkkYqBY1OjpKQHQOHMm4Aa8ZCHBQUAy0CDoAL49jYnhzk4b\nsRgwPGy60rjV97ESnnsugKWloIPUpB7+wgIlSuJxhQMHLLzzjoGrVylJGw7bSCaB6WkW5tjboNr7\nvvbeIfuOXz735pjso9Ij0vuXYFC7Ek35PAuCLS0aQ0MaIyMKfX2UwTUMsids20A+r7FhA2UN//AP\neU6txMSemDDKnieXI1K4uRl44AEyvSIR5TbXBpbLpaTTPDOzWW+dKMX52NlpI5Xi/JmfZ78urYFU\nSrv9L/ys8LExhb/4iwC++92AW6SbndV44QXTlZphz0/DSTBwbGZnOWfXraPsJs9stUxiDfCaiweD\nXqKmoUE7TdwpBSq9ziQxz7UGlxVZNgcuHwSe/R9kOx38b2RZRdJAKQgkRoHwkvfZdA/w/d9d3uNr\nrgeh134D9pUDML/932G3/Rj6l/5PIOiTN85Hge/+nsuUKutVU415lu6hDGE1y6wH/up73p+7XuU9\n+e+1GAYu7wF0iD3EOl8rZ3Kle6rLFV4+APz9f/dJGV9/4vODZlwuN+3IWmk0NhKpXSxqWBbPE9nb\n/XKsqzEWzby9/2bf8/udbFeKLIlkksCIxUXKeMdiZKzOzvKZKYtVXVKXBX/+ZTTKOICJbl5PxrjS\nF5M5IwUMYRAA7+dcuj52mjArbHu5PGTd1m65nCefJlL3pRIZKcJcl/khc6N83S4vwgICpuT53NDA\nsy+fL2cvV1ogQLnphQXGqCsxkeoGVwJV3pUUxgV8ZZr0iQoF2d+4H2sNp3c3C1u1+k4Fg2S1R6ME\nUT74YAE7dwKjo6YLkvUXRSRP0d2t8frrplPsEIAMwWWpFCdRJKLdVg6iKjA9TcCuFHpKJfrag4Nk\nJg0Pm27MXmmVuYZnnw0gEjHKYgVRm0kmWcib8RHL43H63kNDNr70pUJZPmZ2lj3MyS6CI3lNgNX0\ntHJ8Io1wWOP0aRNtbSzsWRaZaz09GsGgjURCY3ycBTqtlQOuo38o743MSulrzPXAnrDaaZ+g3PfV\n2Kjxb/6NhdFRATbTb9y/38apUwZSKbgtM86eZTzT0ADs3u3JYct4VioSRSLaBQf6QXqiIDE1xfxR\nOAy0tWmMjrKgWihwnOJxAroWF1mYI4tP5i3/V3oETkwYZe8wnVaOhKFnnZ3lrTFqzYNqViv3VE1R\nIZul/5xOL3/3bPth4L/+1xCGhuw15bFWykOtxm70+7Wu6Z/rYmuRi6xb3er24bA646tuN81qoUYq\nERMrfY6MLB7+wtYyTTpoDQ1wdY07OymZ19PDZGk2q/Duu5T9S6Wor80A2Mbly+UHeqHApN38vAHT\npFSfbWuHJcHEc0sLETetrXQ4OzuZmDt6tITPfMbGAw9YiMXINmhvp5MWiTCwbmmxsWePjS98gb1R\nKk2Syvv22WtG5lR+f3GRvcquNea1fjubJbvu2DETw8OGI1PI60WjZMVJoBCPs6H43r0WpqcNl4EV\nCtGhCwTo+O3bZ7vIlxdeCCCbLb+/YJB91dra4F67UJAgRTnIOSZVw2HtFq/m56sHfw0N1OkOBCQB\nwiCESSWPOUJbewAZi2kn2VL+3UBAO2wy0Q2Xohf/VxrtClOQwXL133+/2UVk1AD/+hClqzcpQEnw\nCXgBGeCxqoJBCWA4l/2JNH6HjZRTKRbrhSEibCth56xfT+m+hQXlJoHZ80i5iEYyRllgmJvjvxmG\nrBNhb2n09jKABYgobG/X+NjHii7asKmJa1V6XRHhqRCP2xgc5J46MECnXxCt6TRcCZFCgcHxXXex\ngBAMAhcumE7ByGO/hEK8v8FBMnQzGYW5OcMdJ5Hfi8U0urpsbNyo0drKvgJdXQwYk0lPkrGvjwnf\nCxcMPPSQhXvuqY5uPHbMxJUrniSf1gaCQen/pbFli0ZXF9dAqQRs2mTjgQdKeOSRIr73vZDTA6Lc\nRE5lZVS3jDnnDxOSN77GhFUsTDwyYeH0IeEcLBSYpAsEFADDSSpot3BPaUHAsgxX7rClhSzhQgFl\nZ6/vl1328OuvG7h0yTsfZmakUTkLk7OzRLlOTRnIZlkAi0SYENi3j2fR8LCBYlE596HcnhfJpMaB\nA5bjFyiMjRkOul6789F/L5KcOHnSRDZLEMbEBPf9t982cemScmV5JVkRDAJbt1IuxrKI8u7stHHu\nHOdjZfJYkmVa83O2zWRKUxOTZiwuMrFumvQb4nEgGLTdIrfX9L7Csj1kP534LPDqb5KVNXw/EMwB\nSymyq/7562Q7XTrksaIu3YXgd7+OyPRB57zT0Ef+PezeV8qvHygBhSaXYUX2J+eBmu/xrplPwhj9\nOYS//3XYyQvQbVWYYBfvKmdq3f87QH/F75kWcPFu4JvfBk79cjmTS57l8kGX7dTTo7Fhg41wmD5a\nMKgQDConIVx+6fIxrAUs4Dyj9J1y3p//u+9PQYdofxvNzV7hOxzmfp7N8jMDA14/WIIlyvvwXcsM\nQ5KJQPVnWv1zmibvWUBflIFa/b2sPK6UBieApDaS3zC4llIpYN06nlu2TcACzzp/z0ZvfnjsYJ6L\nDQ1AWxvPjYceYjIwEGBi0s/yEAuHtbOPcv9qbASkTw+gXQDWey9rxz2byfuVryeMwUhEznH6pgIa\nW/MvV/25W12u7726v3KfTKTNKHHIOKC1lcVrgv6W3wN9BG//kZ6SyaTXU6ipSbvn5vICLuWcQyGq\nXFgWfMyYcr/Svesa6+rDaWu/cdMkyKelxXbaCChX2cCyRLqS12WcST8hGJT+0nwP8bj0/lKuOoJc\nPxRijNnZyeL8/v02PvWpEopF+h3pNP2MpSUW6LXW2LzZRnMzpfIsSzn9wuEyvNrbWcjavt3GxYvM\nRQwOapw5Y7rAiGJRubGFbVPpRnw/8alWMmGzLC0Bo6MG4nFPbUZYMv39Fn7wA7Ns7JXS+MIXCnjj\nDXNZPkbGkfLZHG9h1XG90B+icoJCY6NGLqddUNC+fTa2bNG4/XYbbW3eOguFKEEu789TJqBf1d9v\nu2C93l6Njg76r8Ui/YlNm7gvUgnDY0GlUjZuu8122Ve/9mslfOpTJRw9amHfvuWxQyVrrrfXdiXa\nyf7k9VtaNLZutRzgL/+OfczoyzQ1adx2G99RQwNw8aJCMinFbM69eBwOMAaODCcZeMePG/jJT0yc\nOWPAtpULchBbCwtJTHxmUULws7a6u3XZM3d2kjUnYOLKdx+JsFC7uMhze60MsJuZA7ue79e6ZuUY\niKrEaq3O+Kpb3W4NW4nxVS981e2m2WopyCt97tQp03UiZmc96YFgUGHrViZPEwmNPXtsfOQjJVy5\nYiCbNXDqFBFNpZJ2pQ8/9rES7r2XjVuzWTpC8bh2ixGRiHb6U3lMr0BA4957LezYQUcnFKKj1t+v\n0dZm47HHvGeR52CBjPJJO3ZY+NrXinjssRK6ut7DwV7FWF7LGajmCL31loFIhI5WPA40N9vIZol6\n2r6dznA6Tdkow1CIxz35BKUU9u5lIlocgLExhXPnzLLfDQQoZxWN0rmdnSXrAqDzTAeaCL7ubgaC\nc3Nw2X9+Mwz+/tCQhVxOIZWSgFO5vcEAtQypWWlsnO5JbxkGiw3r1tEBLBS8XkGS1I9EmKBnIoKF\njcZG20HoKQfd5y+M1U5QyPyrlXCqHch6hb21JD4Mwysw2vb7p2PNRNfq7lVQkmsNhgMB2/eur++5\nmEjTTqNg7hkSNMv7NwzOzWKR846Ickl6sFAvshrNzSzamKbtNHv2ZE4jEYXeXn5eCl/SU0IC5WhU\nY/167kkCBkgkWDCW/kSNjZQXaW6Go2nPtZFM2vjP/zmPJ5+0kMkwSJO5HokQHTs/z72PwSRRm0tL\nwF/9VQjnz3NPaG5mkHnXXTY6O4EtWxh4ZrMKP/0p91jT5PWU4t6pFO+1p0dj40YbxaLHrunsFDS+\nBM58nmBQoatL42tfKyAeB65epXQhZVzlDVWXcxUbHuae9s47DMDFolHg4EEWMSipZ+NLXyrivvss\nTE0ZmJgwMTYWwPw8550kvTheNgIBVYb6XD73vIS79Di4VjITkHlWPckqSZr2dhtPPlnCnXcWcPq0\niXyeSQHpgQMYbrGT12EipqfHRi6nsG4dUc2c35yz+/bZThKEZ201qR9Jsly+TOZUschkxdQUEAwa\njvQl2drptHITRVKMGhy03CRNMqlx9qyBlhayqBYXFaJRjTvvtNHVBWc9EYHc2Vn5zr17Eblkf0Ce\nz/O92zZcWZqREcOVuxR5Hzmrf+VXirh40cDYGMEjhQJQuV9EIhrbtmk8+WQJzc02JiYMF4UcizGx\nv3u37cpqsjeEBdvm3Jb9gNtr7b3MMIDAUjeC5z6G8NufhnX6Y9CZHn53vgd4+2Mw3ngKxk8fRbjQ\nDaUo0ZRIAIV9f4Ziw6XlF82nYLzxlG+/gpcUnO9Gw8WPIfrOU4heeBRJoxuhXDfy3S9BhzPefWV7\noP7n12HM93h79h1/BiSr/F4uRUlFwCvs+SQWGxo0urstbNhgI5Nh0TSZJPtOaxYoWDD03oOci4C3\ntmRf9xc+AgFPMlNkm+TfWlrY46WtjXN3ZfbE9TDCvQRdLMZiaDxOaW1h4goyPZnUTqKW/lWxqBAM\nkp3kST5X3o/8jgB61DUYI6sD17CXI+e4sIWFuVz7fNbueifiHVX3w0CA/lBzsxSGZZz812bhiX1n\nPHk5QHwl7lOA7DmVPf48+Syy63iePvZYEU88YWF8HHj99YDb31CeS87TSEQ784YMhdZWD7gkMYH4\nfbXG4mYVYGRtrlRwpOSqzGGuhaYmvi8pXlYDaNW+nsdwkiS/rKNg0CvevLeS3WTLSO/klcwve3yz\nGVBcv/yvsdErfq5bx2KHsHqvXlVYWjKqrlUBv61bZ7t9fsNhG42NymEG+B/GVQAAIABJREFU0xfJ\nZg33PfnXpGkSaLl+vY2ODvpiLNryPJc9Tfxisow4B2VvFBCV1iz6cI18OKpgfAe8V1mnQGUP5cpv\n2WhutvGZzxTR0ECfp1SCy8ABpHiknPEvB0UIUEt8BL9/J+eOaTIOjMU8nySZpB+STGqcP+8VvwhE\nolRefz9Bt4GAwvw83LMglWJMefhwCW1tVGK4ckWho4PnxpkzHuC3VNKuGk0qZWP3bm6enZ2MPfyg\n1WSyetGhqYmFujvvtBCNwpVvk6R+VxcwOGjhyhUDWmv09moXtHvsWPV8jFJe/oTqOxz3mRk4RS+4\ncXCxCESjbJcQDBLk9vjjRezdS1/QNJmL4DXI5CKITyGR4F4cjdpOgZ8xd2Mjz6x4nEWjeJxnyego\nlX0WFtiH/cABG48+auHee233fR07Zq5qzKSwsm+fjR07qE5z5Qqv39Ji4/77S/jMZywsLQFnz3o5\nGBmLvj4PXBePA9u3W2hsVE5Bif482XU8IxMJ5l3eecfE2bOGczayj1cy6c3n65X1u1aLkcpi0k9+\nUvvds+cm370oAV0rJvswmIxBRwdB+KdOrTxPKq1e+Kpb3W4Nqxe+6va+2GoREyt9zs8GC4e9PjaS\ntGprs/H5zxdxxx1MlEUiGn/3dwFMTCgXZbVuHeA/hC9fJtq/s5OH9Pi4gVKJiO8tW5hMDgbpUP3e\n7+XQ08PfHhy0MDhoI5Wq/iw3AyHyfo15NavmCInzKM5MPE42xFe/6hXzhodZZJR3IxaP23jqqRKa\nmjwHgA4EkfcXL1IrWyng4x/PIxplwp+JfgbziQTQ3S0IPr6j9nYmJQqFauw29nTZv59yEW1tdIDn\n5hhMA16xqTKIl+CHSWqNu++23ISS9FJqb6fOvqDaAC8BFYkAH/1oCffdZ2FoiGyCxUVgbs5wpQ6E\n/UM2mNzHcvlDssT4XzTqyT0KSrB2IsoLFFdrwp4R9LQkQ0WayTCYGFpLckGSUKapnb5N3r2JBYMa\nzc3a1TqvZaEQCxTxuHalwuS+rlU0M00Wa7u7OQdWKjowibo8eSWBdnOzja1bWajKZg1Xo59BmY2B\nASK0m5qY9CyVBB2sXFZqKsXnbWrS2LxZ49OfLmDjRpGBY5Klq4vjzQSuxuQkgygp3jExpZ0G0UTn\nSW8sYUEqpV1G0s//fAmFgsLMDJ9l584SFhcNnDxJBGE47EmhWhaDxHicAb1SBqanuQ9cumSUsWna\n21nAGhigzMaZM1z/775ruLr+ra0ekrZU8pLS7K3ARsJkdBGpPjfHPktSqMtmFWZmFDo6bNx3n4U7\n7uD+HY97gZ9/ztVCvSaTGmfO8Fr5PO8zFNI4eNBCZyfPkqefLrqsVz8AYGoqgEzGdgrZDLyTSRY4\nTFM7Dcarz6tgULsyt9JMm+/Q+7ysP5HaaWvT2LBBO0lIjaYm292volHOnfXrGbwnEhoLCyYKBeUg\ni0XGS8M0DTeBJ0wz02TwPzmpXGaXYXAeSdEL4FyNRKpL5Aq6VIpWra0slBoGC2stLfLugMVFA52d\nHvONjC0b+/fzPcl5VSwqtLUxSTc0xAIqAKdnG9HVorFf7V4kIeMPyGdnmWhJJvmcsRgcWRnlyAR5\n1+vs1LjjDgJa8nngzTdNJzHu7afhMPerTZv4znt7mdDyChxkqe3bp13fYv9+/vnjHy8inVauXGk4\nTMCOv7gmxTApmqxbp519wnL3uEhEu/uRSAI1NXHfisU0jh4tYir+PcwE31z23oyRu2Ce/RgaGji+\nIscUiXAP4brwpJwDi90YCB5Ecl0OyXASvfowkj/+Y4QmKJcojdlr9girZIbBOxdCIY1t20oYGtJY\nXDQRj/M5CgWFc+cMzM8TKS2JR69/mifjyYQ057mgx7nXegdCNKrddSNjxV6CGuk093BKKy+/fcDr\ngUdZMgE6eMViT87KYxLIeZlIwDnDRf7ZcBgbnnwsmW28PsACcigEl+XrFfacd2hwDvK++b788pnV\nk8G1i6vyPphM1O65wzFWjpRg9cJXMKjR0GDjjjssBAJM6sn+JuxGYbunUgRqSG+dhgaFhgZeRxjB\nkQh9LBbe+XfJpPfeW1ttt58IQVjcd6SAJT0CpZdlWxulXTs7gWPHDJw4YWJmxnQT3yJD3djIdVYq\nEczR3Q1s2MBCw4EDFuJxJvUaGujzSdGs2lxhoag6m221JkXRWjJr3ueUM3Y8f0TesaPDxuCgjXXr\nCEKRIsu1fjMS0b7zg38vvpbIhy0vVi6/jhQfV/ZTq31Xu3tsJKIcFkTtoq2MdypFxlStZ6z2LsJh\n7bLd/UVxj1mi3fVNmUOe/Z2dCgcO2Egk4IArjbJrcL9gst40bWzZYuMXf5GMFgDo6qIfVihQIaNQ\n8M5mggX9/SE9ZkksRnaIbbMXsoyL14vaK6rzHhRSKdstlMg+H49znYdClIcTMM4HY6spFHt+rxS/\nwmHGRFJMAeRM4Ry94w4bBw5onDxpYHqaAB9hAxUK2gHBqLIeUVKIB3iddeu0U/ySflPakbjjvt7f\nr7Ftm+34wswfbN9uo7ubfv1bb5nI5Qw3Xt69m/Hr3BzjAwGIdndr9PVp7NplIRzmGZHLKVy+rHDp\nEgsc+TwwM8OeUFIsCoXIkO7q4pzZu9fCt79dnb1TK0G/Ekumqwt44AELjzxi4YEHLBe0e618jPiV\ni4v0tTIZ7uFkrClH9YRnQ3s7/Y5t2zgP7riD8/0HPwggFDLQ3s5Cc2MjczG2zXM8keA7a2lhz3Se\n45RX7OkRMLPGT39qOuBY5eRvbDz6aLk0di3G07WKGtmswptvmtiwAbjtNo2NG7k37thhu3LiolrT\n1GQjEAB27tRlxaonnrDw2GMl/NIvWXjwQQtLSwobNxJgSCAJXN8BjgJBTw/9xnxeoadH31COyV/E\n9FutOGqldy9FSr9PvdK1Pkx2I/OkXviqW91uDasXvur2vtlqKci1PudnMIXDHgJ8+3Ymmv2H/tiY\nwre/HcDEhOkkN5Sr+euXA6hkRc3OErUzOEhHq7XVRjDI/9/VxeTsPfcQpb5//8rP8l5Qrtdq13sP\n1Rwh0akeGPCa7lY6WpIAFaRWJsOi4zPPFLB3Lz8nDgCTWzb+6Z+CLkosFgPOnDFx9ChRetPTTMRu\n3267aD2AAe727RY+//kiolGirbJZj/EiTAgpWv3yLxfR2QkMDGhs3VpCPM6ky/w8ky5LS+UBvCTl\nQyGiOvfssTE7C3R0MDErPYckQciCg3aDXUkeRyLsCxQOs3eZaVK2IB6n086gRyOZtF3WEFAuCScB\n38CAhUTC6+FERK/XoP1m9J0Q6ScmDCXZpp3gkPcqjI3VGJGy/I4wKiWJLL8VCGjcdx+ZlFNTyklc\neGMh7yIYZKI/meQ8keSmJMYk8F/JpD+f9AVcbbANSCKB73loSGPrVkpPLC56BeJYjKzSVIo9oTo6\n+J5DIUr5iayTYVDurb1d49AhFsEmJgw89piFT32qhAcesHD5soF83is8jY7yt6S4yt5XHoNoYQHY\ntInz4/Jlw0WYskjJtTE5aSCfBw4cIHLt1CkT586ZiET4bGfOGBgY4ESammKxZOdOkWcDpqcNVz5p\nfp6Jm0yGkoGtrWQniPb75KSBmRm+940bbczPM7ErRYhgkMEr+y8AXV1k4wlLdmmJ6zMSIeqRCVHt\n9NtS6O9ncL0aCV2/SYHl7FkTSil0dtrYvdt2Cyz+7/oBANmswoULpsOgYvJ2wwburffea6OtzcbJ\nk2ZNdDqlBrlHMoGj3ESiP5HT1cXguavLdtDEnO9HjpTwiU9Y6Ojgvba3a6xfb2P7dgZdZ84YSCSA\nCxcYlAYCnkScMO0aGjzkfk+PjaNHLbcJNqUyPbkbwEOQ9vauzB72gyzOnTPQ2Ai32bZSLMS1tjIR\nqxTcOS3MMv+78Z9XUkD1/+ZHP1rEhQu170WCcn9Anslw7EViRpKlhQJldeRcrHymw4dtjI9TynNh\nAc77g1OoAPbutZHLwUXdtrbCLXSlUsCv/EoJhw9T/vjwYT5TVxewZ4/tyGhqtw8Piztw9zO+P6Cl\nRaGvz8bjj5fwJ39SxMMPW5ieZl+FaJTnYyTCPbalxcaBAza+9rU8nnzSRne8E98d/Q5y2mNqIdOD\n8Pf/BK3hTtx1l+X6Q+EwpZmbmlh4yOW4127axPNva3cXvvaJo/i/730S93X9H7jwRi+Ghw3k83wX\ntg1grhvY9BIQ8X5PZXsQ/+HXYc12l+3VIt31yU8WsGWLxvHjAUxNsSBoWXAYgsqV6Zyb4xwVlpQU\nseJx6V0nZwrnOxPO3BtDIY2+Ppljksgk86G3l4xd9okS4EH5Gpb1QV9Qu/uvsLU5htqd72RMSxHb\nRkMDz9CWFp47nI/8TxDspqnR22u7wBB5zqkpzmF/Mj4YJJrdNCnLLWdUeWGs2i7kJYcliexnT4TD\ncBk2sRhBOOGwgaUlr99qZQFGGBSbNtn49rfzeOABAhh6eynrmEzaKBa5/gcHLXR1sajW0sJk+/y8\ncpN7whqNx5kIjUbJWO3rs33rnWdvTw/9heZmmQfsYxiLabegrBRcUNzWrZQCe/ddA+PjpiMtRV+E\ncmW8n3CYwCj2AYQjHehJbTc1EegwMKAduVRvbACuo6YmjYYG5QB0tAt2iERsp4jChLUAQQiy8YBU\nwtKhP6Pd919LEUDevcyRhgZKQ27aZCMYBPJ5ysiKxLcfKMS55wFopOhpWUzy+6WcZU5xnLxzTIBR\n/nuiQoPXG0lUEa4FThK2WlMTCwudnRwXyvMu/474ZVLkWVysXfgiaMwDcYVCLKzFYh47nr4QnHjE\ndpnSsRiL7M3NGm1tHKPWVmBkhPK7AqDxA1nEx2luJoBF+qTu2mWjtRU4d45xixSU5fm0JhPGL1Pd\n3Mx9YGGBv3X5Mv8sygz+orQAakQu1bZZwKHUHBlHwh7bvp3+hsS+tQqMN9sEzMU1sPJvevMMkD7J\npsl3EA6jTGZO4iatudd2dQGzswZKJQOZDNlFkYjHKNeakt+NjdoFU5Bdyvfd3q7dYk0opHDbbVz7\n4tdv3mzj/HlPVaarizGwyMRduWKgt5d9sQiO4TMtLrIw1NtL/7i3lyDOuTnDVXh4910D6bSBiQnu\nM0NDBHFaFmPRtjYbLS3MRUgOxC9B6BvBm864WSkfs2WL9vmVGtksC5FS1F1Y8KT+5SyTQonkZl55\nJeADJbPYPD1NNYI9eywEgxozMyyEbd3KHE0yCVeues8eFrdmZ5UTy3ixVDyOsvG4FuNpJVvpu3fc\nYWPzZp5jXV0ae/fa+KVfKrrg1WuBps+do2rC4CCL3B7Alt+lHLQH1LveHNNqW5GIrfTuAwE+a+W9\nXI8E461mNzJP6oWvutXt1rB64atuHxqrZDD192s89VQJH/nI8l4uckDRmZcDXTkBuHcIV9NsZtCr\n3Kay+Tyd2MXFtWkVf5itliMkjI5ahTQmzcqRWtu3a8zNKXfc/A7AX/xF2JFE8GQRmag08KUvFbF7\nt42rVxXiceU6V0pp/PzPW3jsMcuVO/znfw5gfl65xYBQiMmSri4mJ++/33YTqocP23j4YaLXjh9X\nZZJYYkrBCWw1tmyxEQ4r9PUxUdnbq52gXjnN6D35LKLyGHAOD5NFEwqxr1w2SyexoQEu0i8e55zb\nuRNOQKNcybfKJFYmY6C1lbIXzc1M1nV2Ut+8WISjYe9PNpQXjshqWxlZKY2229vh9hAAPERtLMZ7\nYe+7alfwEiAi+dXfz4QqwCBI2FHBIIO39nYyfMbHuebIBjLKnp+Ics6/ZFKju5vJfxZWPTbVSoUv\nScCEQnw+PzK48lkkGUn0PpMFsZhIVjKRVCoxwSbrJJlkIWRpSSGXY2DM5CcT7zLuDQ3alRrs6fHk\nV/0OtBQApqe5X4XDHJ+FBeUm4qT/SCjEObpli410mui/s2dZ+Jqf9xIikQivz2Ktdu6TTnyhwHtJ\nJIgy3rOHqMr1622MjhrI5bhGpqe5L0QiNq5cMWBZhiNPyCLYzIxy5BqZTJqd5f0wKGWSYXxcAeAz\nitRjJMI18/nPF929OJNR2LTJdhlEsRivE40yGJ6fVzh0yLouOddq41vtuwIAyGaV02DcQDZLWUPp\niZBIEGX7xhsBjI0ZTjK1fC6xvw8TFZs325ib4/NKfxmRW+Wa4DrZudPCM88UHUQnE7LpNJMhMm/8\n905gB/D220SfiwUC2gUExGLcnzs7bfzRH+Vx//2ejGA2y8Tu3ByTQH4wSTX2MJ/Zk4bp7SXCmhJt\n3NtaW4lELZWI1t22zWNAiazOtQqUly4pnDnDedffb2PvXkrg1WIyS1AeDlPuaWxMOZK5bGLe1QUn\nMU8WR39/bSAHwGJvWxsTLFJAk/OlpcXGwoLC+fMGZmc9SSxgdc9WLLJwNTHB4g4LwdrtbxcM8nka\nG4GhIdvtO3HxIgtE8Tjf5e23s+D1wAMWvvKVoovK3tTehUM9BzCbzWNphn3AOl//Y+xouR133sni\n6qc/XcTSksLMDBODmQwlG/ftI/q4r4/36h+bl14KYGZGYXRU+lMxadgR60J78U7YKo8wkmhbOoyD\n6f+C4NWDTsHGdooMNvbutfDJT5bw5JMW/vqvQxgfN52eggpTU3AKtspl75RKUrzkn9nrhkny1lYN\nkSFeWhLQinJYPDxzRcK0o4OJL8vi2RsMGohGgVSKyU0CbDzmNhkRXJ8NDWRqtLRo3Habhbk5rq94\nXLtyxfE4MDDAHiUEfAC7dpElyn5U/Jw/2RuJaPT08P21t3vgFjkPBcQgBTgyEbh/+eVa/SaFJAGY\nmKaCH0wSDvN9BIMagYCNWIyIdOkrBnjMY7I2DXev8pv4W7fdZuORR7h3yn6SShFk8dRTRWzZorF+\nPf2xX/u1ksNsYz9KYaPE42Sw7tnDpPbAgMbTT+fR1ka1AUlcip85NGQhm+U+0NLCPpDZrOHOCdPk\nfN2xQztqD5Q4zWaVAyjQTm8Yvu+BARayGxuZeE4kOB9GRgxcvcpzRhQNenpYfCMqn7/T2EgfUAAd\n3d3sLcZkvXL7vFiWMOsEvKIcVqAHhhApXSl6+cedhSvbJ0novS+RwdIaGBsznOIinMQ+fVHZC2Mx\nsl4ojUrAk1L87OCg7YB6PDlw8SUjEe7BDQ1M4EvhSPwpKdY0NcEB33g9byuLV1Ivk0IIGWfKGVvl\nskkXF3mtREK7DEGRoI/F6Bf4WVMecEw+y/sVMJDWnLeRCJPqQ0MWNm60sWuXjZ4eJqz377fcQmJz\ns8QoZPh8+tNFAExOT0wodw4Jc5SsHM7hjg7bLZY+9JCFoSHKqh0/bqJUMtx36y9Gk/HFOdLertHR\nweI89w6+83we7p5VqWAg4yygpaYm+ojt7UzE33efhd/4jRJGRxXeecfEwoLhnjsy91T5JSusdizh\nL5JW+x7ZpNoBouplUqV+80vYeu+SMVhjo0Y8LgBLKeDy30UpYMcOAhCnpwn8iUTIzlpcNJBKcd1Z\nFs/rzk4b27bZTs9d5Z5H0ajHwN2/30JPD0FHTz9dwFtvEQzl35v8vnytWLqvz14moawU9yR/iwYZ\ng3Saz7J7t4Vduyxs3qzdvdSfA1kre+d67Vr5mK4u+tiHD9M/KRbZSyyZJChqft5AsSiMOQ9sVcnc\nF5MCi2VRSn3nThttbWTxis9F8JHIVVNh5uRJssilgOb5+t543MiYXeu7lWAuGZfVgKbFlw6HUZbL\n8ssI3oyC0lrbYlzr3fvlHa91rQ+T3cg8qRe+6la3W8NWKnwFav5L3er2AVl3Nwsv1zJxNHt72U9B\ngoBcTkEpG4cOeRnyymuOjSkcO2bie98zkUoxOSJOmdb8t9Xcw4fZDh2ycOFCZd8EXTZutWx42HQk\nC7zPVo6bjPG//AsR3U1N5bT4qSn+b3e3xhNPlHDsmIl0WmHXLr47f3Kyu1vj3ntLuHIlCEAYV0ws\nRCK6atAh3zt82MLrr5P5URmQh0IaDz5YwiOPFPGXfxnCyAiLDj09dNQzGfYWCwSAuTkmoC5fJvq8\nqYkJLiYUFdraCti508J3vxvAwoLHGAOILjx1ykBLi41AwMbCgolczgs6iRTm/796lckVgAFvNqtx\n4IDGbbeV8M//bGJ62nQLPCLTItJcgkwWdli1BBaT8RyIjg6NiQkNaere3MzCiiTeBC1cLHpBNhOU\ngmJm8ujcOWD9eqJkx8fhJgCbmlgku3rVgGGwN9TFiwqFAiNmDynMsdiyxXJkqjS++MUCTpwwMTdn\nYG6OQercnHYCVT6j3yi5w+CqpcVGezuf4Z13lIsQrCw0SvKGfUJEWorvtFgEzp4l/bClhUGJZWmM\njRlO8ZLBxPQ0EaZLSwz2u7qA229nYLC0tDyx4J+rlXN/aIjSnZcvs9+eaUpixXad7u5uSrSNjlqO\npj0Dd0mGCZtgfNxAZ6f3wOLMNzWxX8DTTxfx3HMBvPBCeWNrkY6anS2/8UCAiU7KUXnX7e0lInrb\nNq7Jbds0LlzQTg+x8gWndfle/NxzAZw/b2B8nAVUMfleOq2WjVEyqZftD36TfUc+e+RICcPDtb+b\nTBIJPTIixUOyXksl7bBigEceKeGb3+T+0NtrO32ovEQMZYXIdjhyhL3Url41kM8zATU3B1duKxzW\nmJ7WOHSohM99zsKxY+ayhJB/TMWUIgshnTbQ2EgkrFhjI5nLhqHdIuTjj7NPg4zJs88G3N9pbeXf\nV9tn/fu3/zuzswoXLig88USp6tnR2+tnbHj3vJrzJJNR6OuTd27g2Wf5O7XOYJkTzz9v4uTJAHp6\nmDA6f97A+fMGGhuZbFBK4+jRa0vDyPN0dSkcOWK5vSL27bOQyRhYt46M46UlhdlZJoQTiWs/m388\n+/s13njDxKlTHoo2n2fivrWVTJUf/pD+yKFDFgxD3n/5vVeedWNjCsefvxO57/4cdka4984mef89\nPRYefliev4gzZygXHAxSTrS9Xfv+vdwuXGAh2LIMt/dSqcT526tux+75v8S//78Y5D/7bACldf41\nbGPHDttJinM9RiLcQ5iQJIJfKeUyjGdny8+sQIDnCaVGbXfMJBlr2wQ2hMNMGts21/HQkCTYKH+1\naZPG6CgT7KEQpe2EgSd7uIBibJvFqWIRuP12MpQ/+9kCjh838cYbJs6cUQ6DhICMUkkYgkxQaq1x\n7FgAlqXQ0CAJX55Lg4Ma+/fb+OxnS+7aymQ4X5UiM42FKpHFsvHVr+bx8Y9H3WS5sGl4LpNFMDrK\n/d+2yeahZBw/K0nnlhbKgL/zjuFIdSmnB6V2ZBqVw6DSbqHezxQLh8kgkeTbSnuDfy7Jurr9du5n\nuRyT0l/8orc3eVbC0aPWsn2e88vba956y0Brqze/3npLuQA4Oe8iERYiyBLkfp7JsAh4330laM21\nFg7TD5mcJJAjEGAvl1gMAFj03baNa2RyUmFyEmVo8HyeRSFhXEcilLqWAq5t83eV4rkrxU3T9MYZ\ngFP00mXS1kyQe58VZpbfnyC7hUAW3jPfczCo0NZWwsQEC76trRZyOeDKFfqyiQRceTIBkkUiHvts\n3TrtsEwsnD5toK/PxmuvGVhcNBwZOP6+1vQ5e3ttzM1xHkjRz/O3+FyGoR1JRGGFcN2bpsbFiwai\nUY3mZgJG5ueVu/aV4jyOx8msKZVYpLAs7TBFpUjItTs+bqBYNCCFYCkwHz5so7OTvlTluTI2pvDC\nCyZee82EUsDOnd6+uW8fP7u4CJw9y/fc2KhdGdtolJLohw5ZOHqU8/XYMRMXLiicOSM9/LQ7f2UN\ni+QoYGNgwJOebGoCJie1w5jXTvHcduaJ9/LFl5U4IBLh3iHrKpOh//riiwo//KHpsI21W5yVsW9s\nJOPUXwRTiv1A5+c9SfRKCwRE6lS7c4e958jYF2ZfMqmwtKSd3kvLJTGlMLm46Emm8vrKKXiymJ7J\neKoAMo6ArFUWCnbssDEyQqZcVxewYYOF8+cJsKOEMvewI0dK+Id/CDggLl57fl6ht9fCXXdZSCbL\nfcWTJ220ti6PMeUsrhVLP/ywNx/8e9qxYyZeeKF8XCMRFjj6+6+d/xCftdrff1DW3a3x2c+W8PDD\n3h6+dauFkRGCWsX8PmEyqXHxonLjGIJDNO65x6qIEVZ+1tWMx42M2Xs53v654+WyOA4Ax2vDBgvP\nPRdYVfxTy9YaR8l3qs3F67nWh8VuxbVVt7rV7eZZvfBVtw+tyQHld3hzOToPlQF4pcmBnk6rqodc\nrULKrWCVid3rdThW47zU+q1a4yN/PzICNzEibJhczuvBBcBF58q9VHOw/L8v/QyEwUKjg7iSU5JK\nsTAhBRYPJUkmxyOPFPHyyyxWLS2VJzdHR5no7+315tfJkwaCQa/5McCA7R//MYgnn7SwaRN79Fy4\nQPYCJezYOHhwkAm5xUXg3XdZVIlG4UgxehI2gkZMJJhMlKIsgybloAhZuGtpoWRMLqdw9qzhSglV\nFr2kkbtSykVJl0oad9/NZMP58wpzc4YbiPb22kinPUkVsrT4fhcXy2VXcjkmvpqbi+jrA0ZGTKfZ\nschT8n5ERtIfvLIApZFKUTNfEg8dHcDRoxZGRgyMjBjI5VjEamzUjkyW1+RcKWl0TImZ7dsZWGUy\nBubnyWgqFuH0j9EwDEEnK1fCCiA7KpvlmPp7OS0uEiFKBhTvPRhUGB9nwLq05PUq2brVQjzO5OjS\nklpW/Kmcq9WKDZ2dDMi5NxGZLSaB8aFDFp59NoDnnzcdRgatsVESud49AOVFKLmHQ4cs/O3fBjA5\nqZxknXZ6QjCpJglDSW5lMuyRePKkcuYIn3v7dgbssk8cPWrjlVeCy1hRu3eXFwok6PPfJ1m5uuw+\nVwuGWG1Ctto9lCNPmaSW4snLLwcwMmI40pksjHd12RgZYS+G7dvZZyWRYLLj+edNJBIac3NANqsR\niTARl0ppNzk7MmJifNzC975nYnraC/rJFF0+pv4kcDKpkc9rpxjKy54kAAAgAElEQVTPdzM0RAaZ\nf5xOnFD45jdDeP11Mkx37LDd378WwKNaQc7/nWpnh3xvLWfTtX6nlnV3s0i9d6+3NhobuU/Pzirs\n2mWt+mysBb44dszE+fMAUO5j5PMKR44Uaz5rtXNT5tmOHcDCguncL1lFV6/yutEocP68gTfeIPNy\nZqZ8XgDl+4fM99OnDefs4hm8YweBPM3NcO9peNh0kqL+8fDGufKeh4dZoBM2IcBkZCxmY+9eGwMD\ntnvtJ55gkp3AkeX3m07TLxsZoXSc9Jlhfyg4UmOUS1JK+nNpBwFuuyCIl182HbALxyuXsx1ZUf7u\nffdZGBjg2cukP8/eVMoDR4VCXFv5PJnUb75pIpNhwvbgQfY3yWSApSUD6bSN4WETDz9s4bOfLeG5\n5wL41rcCZWjnUolym+k0i2Gzs3AYyvz3vj4b+/ZZLoIa4JzPZIj4X1gg0IIAE+6/S0vcg4aHTaRS\nlMosFFDGGmloAB5+2MKJEwbOnjXQ0KAxOSnFLyauUyn2gTtyxMKJEyZOnybzJBwmw725maAXstqk\nrxn3fLFQiMwH6Ykn9y9rlgl2A+PjCt//vomPfrTkFg3862r9+mvvCbX2ef/ajMXK51dPj8bsrC7b\nv70ivHLXbEeH5RbcxsYU/umfTOfcI1uKjCiOuwCHeE0yV+i70jeUdx8OUy60t5eJfRbQWAxhPzKO\nqdbSQ0o77GLO8UJBuzJ2folJFiHI9kmluBaWlhTSabjrBmBhQZj2AJlmr75qoq+P4IbWVu2c+1Q9\n8NY+xy+XI9hpZka5TPlEglJuDz1UwjPPePtCoQCMjpK1t7TE4lQ4zLmxb5/GiRMKU1NUPZBxZZ8e\n7dwb75vFLz5bPs8YjpKlLHBcvsw5Rek+G6bJgmIqBezYUcKPfmRgcpKypwALb4WCjLNy3iGlbgsF\nvrNIhGdCV5ddFazQ3a3xzDMlANXPm0OHLLzxBuXUrl6F0zeOvk9vL5zxNfHnf84xjscJXMrlGHvI\nmhIlBPr89FcTCY3bb9cYGaG/Eonw3VkWv6M1i0dzc14xUf6TArcA2tJp5a7dU6cok9vayv3j6lWO\nIYFrfCeWxbGLRm23F55pihwo50M6LcoQ3nhI3JFOA6GQjVRKuUX0pSVgbs50ZSxDIe3IlJbw7rsB\nVzpeiqKJBKV2z5wxHHYbxysUEoUCYO9eC1orvPMO40jbVg6b0nYLBADc9zE1xc/NzpLhKUyahgZv\nL4nHlRvjpVJUOLjzTu7zlXatZPi1YunKPe3QIQt/93eV6Tfua6vJPdwIaHUtdj3+dC2QcbVx2bCB\n8Ydcn3ucxqOPFtf0rDfrM7XsvRzvyrnT22u5zHYqjFh4+eW1vYOVfutmAbpv5rVuxG5WPkzs/Vpb\ndatb3T4Yq0sd1u1Da5UaxK2tTEY+/XRx1QdfLYmCcFjj/HnDlXhKJm8N6cMbabxZzVbqD7bSb12r\n7853vhPG+DgdhYYGsnwAIkFjMToSX/hCwZVrWs2z5vMMGpeW4MhsaVeGbCWK/fCwgZ/8xHCTS9JE\nNhikRM0775h47bUAlpaYwJqf53+Tkwz2BgdFdoBJ69OniTr1s9eE2bNrF5H7XV0MwGIxYONG9onq\n69OuhFNHB1GuhqFcqRii6dkjZPt2G4uL/P35eaCtjd+jbKKF+++3MDTESHTrVjZSnphQmJ6mpI/0\n+/E3iWafBOX2+OjvJ6KYjZNZjOP3+H7iceDgQcrBPPwwE7ccf4X5ecAvHclCFuUJAwFgYsJEoUCJ\nIylosP+Xcvs/yX2JHE1jI5PL09MK586Z+MEPTGzfbuGee2wsLZFZduWK9/7CYeXKtlBai8+1ezdR\nzw89ZKFQYN+DVEo7SRQ4PW60Mx84psJus22iku+91y6T4IlEmPhaXKT8YUODF4Dz2ZhE5ZxQTsIJ\nmJigdGYtmb1q61HkJUQ335NWKf++fPbtt01cvaqc/j9eL7C+PsruTEyQWeHp63vXyGYVvvMd05U+\no3QlZUpKJSAWY4+yvXtttLRQYs+2ldsDbmKCheHNm+0yedT+fmn4zN/mWrXxxBOlsmeXZ1haokSK\nSAuyiLh26Yzr0Wf3xtHA4iKQSplobS1hYoLJwosXDSQSykXIA0w0tbZqHDzIMR4ctJHJGIjFiGB9\n5x0DU1OGIw/FcZA5JAXzfB544w0TxSKLw9548j1Vk5z1j9eVK9676e9ngtM/XidOKPzBH4QxPc17\nWVgwcPEiJdykp8lK8h1rlXeR+1trv8mbKUFTTQZntVbt3v3Xl2t3djJhSenD5WdjNlv93NyxgyyV\nQoGSbQCL9EzKkfUzOMiCzKlTnBf5vCe7lkwuf8cy3yulfAsF3utqpX46OvSye377bcOZt8rprwII\nG6Svzy67D09WVFWVFZ2cJNNsbo7PlMsBgHLZAUoxKWtZRHvHYlwn8TiZvx0d7EfIvY3fn5pSWLcO\nGBrimmhr03jySfYFef75AC5fVrh82XAl7AYGbLfvxpEjJXzyk0XE4xzb1layKdetgyt/TZksXfZu\ne3s1XnrJxMyM6RtBnr+AQnu7MMiEYURQSrHIAkw0auP0aQPf/S6LUJYFV5JLpMO0ppRsSwsTxuPj\nlOIMBpXbbywQ0Lj99hK2bxdZO0q8xeMaiYSJ1tYi9uwRmU8CaX78YxPDw6bLUiVrnf5AYyPQ3Gwj\nHGYhrK2N/kM0yjP94EG7zM+SuZTJACdOmLh0ief90pLC+DifdfNmveY9YWxM4aWXAsv8bv81Fhc9\nn0LWpfQE7enh+nz0UQv793OttbVRsvWpp0rYvJlxQTZLhs/Vq6bD7uaYJBIstgwOahQKLALt2cO5\nns3ydz05bo43pbkoIZfJEGDA3nTaYWyT6dvZCbcwIIwwAaeYpieLKfNA5N+iUeCeeyxEo7bLtE8k\nbHR1MekfCnnjR1a61zOH46PQ1sZ9RnqrSX/jiQkWZuJx7fQkY6Fg2zbvrJaxn5w00N0NbNignV5I\n0k8Vzp5IdnRXl3aKMhrRqHJ7vEmcJqy1aJTPt7DAMQsEgJYW+j6BAL/3cz9nYWaG31VKOeucBXfK\nV8JRV+AabmqCyxZrbeW8JtCJigSf//zy2LDWnPNbUxPnwg9/aLjS2/m8doAALIRNTHB/W1xUTl8w\nw71H6V0sCgOplMbWrVxXd95pufNY+lWSuWXj8mWFdeu8Pq4i2amUdueLMMiKRfpM6TT9ZNtWSKU4\nD7JZj7nV3s55JHLN0ah2emJRKjGR8PqcNTbSd8vlGJ8YBpmsHR3cC4tFvrP167XbS2xsTMEwKIEv\n/ZpFiUAKxCKBODjIPmQHD/K+5+cNGAaLat3dLA7u2MEelbEY+/ExhmHBNR7nOGSzyikkK5w6JbKF\n9KlmZ4HBQfpIe/awgC/7V2XPzoaG6j7HamTi1rLPNTWxP7Aw7fwSiquRtasmS11NwvlG7Ub6Hfnv\ntda4vPJKAIBye1/LOIRCcK+/mmddy2cqZbWHhq6dO3mvx9s/RpW95V955cbfwc+q3ex8GHBj77ou\ndVi3ut0aVpc6rNvPpN0MunU1dEc2S/3tuTn++UYQNjfbrhcdf7N/61qoGL8MV2enxt13Wzh1ikWD\noSFdJsO1lt/v7AS2brWQSmHV7/zQIQvf+pbp9D7ykIuhEJMlb79tukGlZcFp+s5Ak+jfcmtuBsbH\nGXBJ8aNQ0GhuZrLLL9uwfbsnKXf+vOe8NjXBZRRIIYfIeGBggGMliMjbbiPTQBgg/ucVRsfUFNDV\nxcTehQsmgkE4SHK4SQr2imIw2dWlXVZZQwPQ02Pj7NkA2tr4ObHZWYXDhy08/TQReKkU58Dly6ZP\nl5/BdzTKfhMf+YiFTEbYMF6hqrmZSYDWVo3xcSaWWLQS9pnC8eOGg+Rlge0b3wjhi18suFJoU1Ps\nbUU5PyJryagho+ngQRtNTZ5UZjVJG5Gh+du/DboJF8Dr4yLBvvSrIlOHPQMoA8j7k6KXbfP5lCKC\ndHaWCYeBAfZDWUlmr5pVMsBW2t+6uzX+w38o4M//POiw4shos20WW199lVKB27eXlsm3AFxjg4Ma\nuVy5TN3sLPC7v5t3kYbZrMKPfmQ6RWcm58Nhvv+REeBzn7OWPcPnPlebEVP52UqJlOtF7l2LiVrL\nurs1vvSlAp59NoBiMYhXX2WSQwq6p04xcV4pqZtI2DhyhIxR9iBS+OEP2axckMbpNJNxkQjKiuXz\n80AkYmBw0H9dyr5s374cme6fC83NGl/+cn7FufXNb4bc/dMvgXnqlIHOTk9qppa9X5Ift4oETbW1\nVuv6ExOGm1gWk7MRYA+1cvkeuGd05doeGyOrp7dXQ2uNH/3IQCbDIs+ePZaLVs/nFZ54ojxxK/Pa\nz5gEvALtaqV+qp21ySST9NEoARkLC2TbDA5WZ9Sv5I+Jv6AUk/KmSblg+Q2lFNrbKRPa319+tgMe\nezybZTFLa409eyyk0wpnzwJHjtiuzNg3vhHC1asEAwBM2BYKGj/9qcKTT5bKpC9Fxsx/No+OMvns\nZ8j6faz9+20AltPHkEXDoSGN0VF+tqkJDrOb5/bwsMK2bWRavvJKAErRr8hk6A+xxxYTwpQKo3Sj\nsKIPHACAEqamCN6JRjW2bi3h53+eZ1EqBfzyL3tyrrFYEG+/zeK21mRyf+tbJubmlOPnCJNZY2GB\nwKHeXu5/AFzJt8VFnukbNtjL/A6ZS6OjTPaLSf/WkRFjzT7pWuUT/fM1kdDL1gawnGkh9sILJvJ5\nA8GgRjConEIAk9H79nHstm+3y35bfrepyZMgVYrjd+wYi2LePgtHYlKhocF2ew4BLMpIAaSz00I+\nr3DpkpzdngSzUvRJenpspzcRpVeV8tYZpVO9M4nSm9plTIsZhsI991hl81xYrFRisDExwaJS5bsW\n8+8f/gK6rJOmJmD/fn7/wgUbf//3JubnAbJGPRWCcFg7ignKvV+ywTSuXPH6fLEPM1xWDvu/2tiw\nwcLx45zrb70lzHMyrkdH2YsrkxEZdDhsMRv33LP8mU6coI/pl1mrFesdP05J6P5+YHISKBapQjAz\nwxiHvU0NdHYS1CB7sgDhIhEb58+bSCSAO+6wXHCPXx4xkdCYmDDc90AWGOUpCwWNYtFwJDG108+X\neyelMikhnslwfEsl9ngDPFZkNEoA1MSEgXXr6OOyQMRxGhiwoZRygXwDA5YjHUw/LxTiXtrSwvgh\nEuFcFtZ1JsO9u1gk+1EYX2KHD7MflN+U0s6cIZChULBcBm9vr8aOHZ48IMdHIxq1cemS4bC9NEZH\neQ40N7MPoVLKty6W+1Rr9RveC2m3hx+23L5l/rFYLbPk/WDcXK8/LXat+CWd/v/Zu/sgu8rzMODP\n2V1pBasVK4RkYJGC/KHEJggjUYLFhwN47Ia4GWJXNqih4+mMa1JDE9ch7qRxII3d2O3g8Yxbx67H\nZTx0hAJ1MkkNHcYNLh4sxk5kY/ER2zGgINbGyGIX7QqtpN09/ePVuR/7eff73qPfb4YZdO/d3XPP\nx3ve8z7v+zzpWas2pfdkv7+R79ro/pgqrfZsnsuW0nyPQZkt1nhYs6xmAxaewBctbb43qMk6tP39\nEzsVzVL3ayk7QdP9rZkeBM4+Oz0oFdKD++ik+fUL4zvJBw5M/vezLIudO09O+t5kenvz+P3fPxH/\n+T+vjJdeSqlI0qzqFDBJRcuzSgqOrq70ML95c5pRm2rtVH/ftm0j8Xd/1xYvv9x+apVMfqp4fJr9\nXMzAPXYsi6efTt9rssGaN71pLN7znhPxN3+TAlfnnBNx/fXp30eO5HUpo84/f2Lu976+rDLgvn59\nmsV8+HCauT062hbnnjt26gE9q8xCL1JMpZRtKcXIJZekgffxg6cRaYCj9mEwpXxpiyxLQa3CihXV\nYuRr1qQBmtdei8rvO3myqGeQBvVGRsZOpU1M+214OA2aHTlSP6A8PNwWe/asrLy2ZUseR47kpwbb\n8jjzzLHYtCmPzZvTQ/tUgza150KxD/M8j7/8yxUxOppVasadPJnSKH73u+2R5yk4t3JlOg4vvpgG\n2EZGiloE+amaHWlWf56nVUtdXXnd9VAMrs5Fow98RZDpwIEUPMyyLM48MwV6i9mNv/ZrI5M+eNYO\nLtUGbLdvz+Pcc0fiwQfb47vfbY8TJ/JTgdGUGmvDhjT4cdFFY5Pu79m2zQvxsDGfQEjRpn3xixFn\nnFEdeClSEPX3Z5Om1B3/8FUMYPb3pwHvCy6IeOSRrDIgmuSVdmZ8qt4iHc/4lLOzTTlT1FCMiFOp\nUCMiqqslZhpkWaqUH8uZgqY2EP70022V9rbYv9ddNzLp79+wIZ/wwB2RrqeBgajU8Spe+9GPIn78\n46yyzUUauOJ8f/75tspKoxQQSZMpnn++7VTawpRqdarB6GJgM93H0t986KH2uPDCNOP91399dNp9\n9dBDEx8FLrggjx//OKsMnhafn02ao9rXa9MhbtqU2vDOziy6u9PAdAo0TGy7H3iget4Xdfgi0uze\nYsBs7dr0Nx54oCOGh6uTliLSAPuKFSlwUHyu1vj9kmrExoTgwYEDWTzwQEccOJDqJl1zTbUubETE\nOeekny+OY5Fqr7s7/c6f/jRtdxGkKFJInjiR0g4W9dFWrYpKHbGItBrgHe/I48ILU6BvbCylbyz6\nZ+PbgocfXlVZ0Tk4mFZfPfNM26mVXNV2oKMjrRzZvn207phOl/Jt/D4bHq5daZjug8U+nG2ftNFB\nrIUYhH7iifbKCs4jR4rVTimI9Qu/kE/6O6f6uxFpdc/AQHtNO1uksxuLl15KwZJi4sTwcMR1143G\nT39a1CZL/adUV6m6Cn50NK1Wv/DCPHp6Un9psmDyxRdH5d5x1llpolTteRkRlZ8bf/2vWTMWt97a\n2IS+2p+v9hXzulRztX3U555ri+9/Pz9VByud12nlU35q0kx+qq5XHj/8YUesXFms4E/1tF7/+uqK\njyIIGVENgr/5zfmp2lFFXb90zf7sZ/mpVWLFdqXA2GQTST73uZWV1RS1Kc4ne9bbv79aC7WoRTU2\nlp0K7qW/ldK0pv+vrT29dm0a3N+y5WRs3JhPOJYRkwdp+/sj/uIv2io16FavTivF29vTBLaUBSOt\nvFqxoprh4ayzUn+6vz9NFiz6eMePp2eEVAs3HZPiXFm1Kq1czbI8jh6NShrriLH49rfbK3WIi3T1\nRftYPOcV7V7x/FME1FKt3bF44xsnP8dqU3f/1V+tjKGh+vvNZJPYHnigI1avrv6+4j6QAtPpeEzX\np5pLv2GhB8NboU7SfPrTjfRZl7qe0lJOHF4oak5NTVAQmC2pDjntjV+K/93vzj310mKbKjVjI+kR\nFvpvTZfC4IILOuM73xmJ6VJDFPr6stizpyO++MUVlULEx46lwZpVq+pTCtb+/dk4//yIHTvSzNkt\nW1KQ4g1vyKO/P/29115LqX/yvLoq49JL03fasCGlziqWvb///SNx/HhKU9HZmdJWXXrpaLz0Ulsc\nP57qFbzySnaq8Hh62L/22rFJl89v25bHO985GjfeOBrvfOdovPGNEf/4j22xdm3UpYxK+6/+/KtN\nQzE4mJ1aUZdqYJ19dh4dHXm8850jsXlzmjW5Zk0eBw60R56n33/yZKrFcOONJyu1zYpUK4Xu7rH4\nwAdSyptikPjYsYiXXkoDW0VR7a6uNJB38cVjle1Os3nTwN/rXpcetLMsi82b83jzm0dj5crqe2vW\n5KcG9aIyaJf+floRsH59+ndnZwoQrliRBoVuvnk0Pvzhkbj55pG48sqpU4xMls5m69Y8XnklKqme\nVq1KA5Fbt6Yg4ehompl/xRWp3tgFF4zF6tVphv/PfpbqIYyOpgfYFLxLM11/4RfSoNB8Uy40qjZg\n/MILxaBvqpfw8stphn9KmRbxs59lddtUXOPjU75s3ly9xp97LtWKGBkp6oCl410M5hSfnWo/L2WK\n2EZS0kxnzZqIl17qjK6uk7F+fRrgKVIQpVRLYxNS6o5PIdffXwyep9UtnZ1Rqfd11lnVtDYnT0Zs\n3BiVv1Gk0SvS8dSaS8qZb32r41SdujQIVhSgX7t2LK69dnTG9B1LlU5nPn9nPj9bmyblmWfao7+/\nrS7VZBG4uOGG0Qm/f3Bw6lS/P/pRexw+nI5V9RpM95l162JCu1Ccs88+2xbDw6mO3OhoSnnb3l5N\nWzjZfa/42c7OtN1HjkS88EJqR9O9J6WNPXgwi8suS6kWJ9tXk93rOzsjfumXRuP88/MFOf616RDP\nOy+lyEop4/K45prRuPLK0di/v31C21F7fRXpwyKisk3F/2/fngasf/rTLH72s7a6mjTps2OxYcPE\nPtz4c2hkJE3sqQ0eDA5m8eMfp3t7W1tK3fzyy23R0xOV9LH/7J+djAMHqscxIs0uX7s2Hcef/zyr\nTP5YsSKLX/qlsfjZz1J7unJlqsc2OppWSbS355XUtBH1aU+ff74tXntt/LlXbQv+9m8748iR0Uqf\n4NixLH7+85RuNdULqn6vs8/O4w/+oPHU4OP32d//fXu8/HLaJ2efXd3e7u48tm4dm1U/bTYpT9es\nSd+jSLl96FA2q3vNQw91xJEj1XtZd3f6nZs35/Hxj5+Ysh8xVXrXX/zFtMrn+PG0GnfDhmpAdsuW\n1K8YGMji6qtH4/bbR2Lr1jz2708phrMsi3POSasgV6xIq/NHR1Mg9HWvK1YPRrznPSNxxRXV7SqO\nwUsvpUHlM86oTrIpVs2n/Ve9bufTns8mDXNESot8+HDq461YkVYAFamji0lS118/GuvWZdHbO1ap\n17p2barpdNZZ1dSVxXaOvw/296dnhaKNLPqH6VxIgcyrrhqdNKD+8MMd8eSTHeMmpKQ+3GTtxIMP\ndsTgYBEcr9a9bW8vUp2meoSvf30KZKcUnGml1kUXpZTIv/mbo3HttY2nAj733DwefTSlXS1WoZ53\nXkotmAJgWaWvnWXp3HnTm9LvL+79RRu5alUeH/zgyRgaSjXmalPjRqQ26YYbUu3OInV2RJzK3JD6\nJSdOpD59RLovbdw4FjfddDIiUnrn9vaU4nRwMAXChofTPnrrW0fjAx9I7eNUfbMUnOuMl18+OeP5\nOVVb8eqrKfV2RLVPtXp1Cqa+8kpWua/M91oozLe/O5fU0EtpPv3pRvqs8+2vz9Z80movl6XeR61k\nKcfDGiHVITQHqQ5pGQtdqHIumnmGzVIW3pzP39q4MRqazVYMPj79dPup4EvET39aTcHx4osRV1xR\n/3A91+9aO2OvSD2Y53klZ//Y2Fh0dBT546t/c/xKq4iItWuzeOc76ztWL7+cBmIOHy5S+6Xv8Mgj\n7ZX0So3MKmv0/Kvt8FVnwqcH4GKW/oUXRrz+9Sdjz56V8fTTxez60Vi1Kj1Er12bx549K2PDhrTi\npzorOb1/++0norc3nzB77+1vzyPPR+PIkbY4eTKlMNy2bSQ+9KGTlfR4xSqELCtm5OZ1aXpWr67u\nvzQzvZpGMH2Pak2AWkVqjOlWD9aabubhrbdWz9Ef/aitsgLnvPMiilm8F14YlRWGRft0/vlj8fLL\nbadSGLXFoUPpbxUrRiKWZibh+O928GBbPP98WnF55Eg1iDkykp1aiVS/TY1c48V5VjuDOaII7lRn\nUs9lVdJCW4hZtONXq9bOll67duJqgPHXa3HeF4PcESkNaW06sp6eNAhWW7Q6Yur2bS4zG2+66UT8\nyZ90Vn5/Z2dKafXxjx+fMc1sYTZpN+djPrOp5/qztbN/q4MhKS1SMYO8WN08fqVtf3/Ed7+bAhnF\nNV8cuwMHsviHf0iBrtprsJihPv4aLM7ZT35yZQwPp1o0R46M1c2cn+q8GH++p1XLed3gTkpHWk09\nN9m+mqodePe7F7b/NX57L7mk2n5M1XbUXl+1q5JrUxEW98aenrRK80c/yusGdtvb08qU6VJZ1Z7n\nX/hCRzzzTFvlPnjsWDUAUbtC9vDhiK1bq6l1zz23ehzzPLUBhw9np2rdVO9vxQD29deP1qSaa6tL\n4TVVn2emtqBov2r7BKtXx6kJEWkVRlH/7YYb5t42F+lhv/CFFfHkk+2VvzXVCpvxxrcneV5//y9M\ndszG32teeKEtHnywvVJfcqa2aevW0UpKy6o8tm6de9+ydqXc+NTWRfDh7LOrKxO7u6NuNeWWLVkc\nPjwaL7yQUnoWKTS7u/Np+xK1qbsi0t8866yxaGub2E4vRIaMRu8HF16Yx6uvpuvk0KG0Mj7L0mSh\nY8dSyscLLsijrS2lBH7jG0cqKxSPHGmLjo6xCefnwEBWl048z/MYHq5v7xpdxdZoloPCW986eirN\naprAMjycVl319IydWtFWrUdY7Jfx6a6LNPGNXnO9vXlcdtlYnHFGtU9erLR66aXqhJrh4SxGR6tt\nXLGKfHg4JvRZenryuhXChVWrqu1YbRvd1VXNPLF6dTUzQFdXdfXv9u0jMTCQVsUPDmaVGsyjo0UN\nsTzOPXf6Z8K+viyeeqqxFPbj+1zFeZNleTzzTBYbN6a/n4L/WfzyL49VVu3X9knncy00Q393sc2n\nP91In3WpV70189jOVFphZeByWcrxMKAcBL5oGs3SkWzmm+lSdoLm+7caebAoBh+LB9fh4YhDh9pi\ncLA6W6/Iz97IgEajUsq+tCrr+PFUWL6rK73X05Nm6UZMfdwn60CvXZvHa6+lh+Faq1ZFfO1r7XH2\n2Y091DV6/s1UcyEipf44cCClQ1y3Lotjx9LD7pvelAZcnnwyBXvWr08Pi6mW2MR9PVmKiNWrs+js\nHItzzkl/83Wvm/hwu3HjyKl6FZOn6Sl+Z3d3Hr/yK6Pxk59kkWVtlQf8NWvG4sYbRxoOEExmpvQW\nxTn6pS+tmPShaPyD2mTndCM/O1+TDTSN/26rVuXR3p7O69qZzB0d1dRZs33wLM6z8Sn5ilR/050j\ny5FGZL4DGm9/e8T+/fWp7KaqIRMx8XpdsyYNrE6W0mh82hrpZwkAACAASURBVMtzz22sfZ3LA/v2\n7Xl8/OPHKzUAzzknGqqtOJlmuTcvpNrroHYANLWl1UBKrdr98KY3pfbyxz/O4tprRypBogsvzE/V\nOMxOrfLJ46yz6n/XZDUsrr12NJ5/Pn2mdnB3/HU2Xu35/qUvrYiDB9snfGam1HPj24GxsRQYeeih\njmknrcylbzDZ9VmbzrAwWT3RavC9mmKt9l5QfPZXfiXi299ur9QQuvzy0TjrrNn04bKa/+LUSpXq\nd1uzJqXXWru2/rsUx/H73091Abu60gz3tFJ2LIaHU52dYvB6skH6mfbrTG1B0X4VK6FGRlIQbsOG\ntIo5y+JUTblqXbS5KtLsPvjgWDzxRHtkWWr7Lrts+nqNk7Ung4Pp/doV31Pd52vvNcXKtjyPePrp\n9F1napve/e4U+CrqYhZ1ot797oXp48806DvZ+93dacLVpZdGw32JvXvTqrHinlz0m84+uzpZZ7HM\ndJ+t1kSL+OEP04qFFStSRoL29lS76vHH06SwImBSrW2bsjDs3t1RdxzHxvJ48slqysFUhzPVYJ1s\nUsp0iiB57WSeiHQvmOyc+/VfH42DB9tOnTPp2o3IK3XNJktbuBD3zQsvzCPPJ65e+PVfH41nnmmP\ns85KffeUOrbaLta2LbVtSp6nCWjj01sXk9wiJp8kmH5nVOrbbd48Nmm7dPBgdmqSTURRH7e7e2J/\nu1axn848M+Lo0YkBqvFq7wnV8yZltogonmNSQPSXf7l+JdWrr2bx2c+ujC1bxub1/Nws/d3FNtf+\ndKN91oVOITmdZh7bmc5S7qOFsFQT2AUFgdkS+KJpNEtHstlvpkvZCVqsv1V0jB56KB3zYrbvkSMR\nEVmMjFQHHt/ylon1reart7eo35NHZ+dYHD2aZjCmguR5bNo0/UPRZB3ojRvHTj1Y1s8i7unJ4xvf\n6KgUgJ7poa7R86+Rmgsvv1ytmVV8Jq0ASNuY59VAWVpJNfkKt/GDLgcPplQoZ51VLWwdMfXD7b59\nWezZszIeeqi9MgA//jv+i39RLfI9/ns3GiCYTKOrZeYzG3CxZxJONoCyf38x4FUNFG7cmMdLL2Xx\nyitp1WER/DrrrOp5MdsHz9rzrFhtN1mtn7LkW290tWphPveLRtvXuT6wb9+ex/btx2f8/TNplnvz\nQqq9ZmsHQIv2cLL9W7sfaouyFys5IqrH6i1vqV6r49vlydqFon5i7WD8m940Frfe2ngqup6efNJV\nDKtWTb3aqVCcizMN1vb1ZfG1r7XHN77REatWpX3X3z9zsGE6s6knunHjaOR5TLmipfhssSp3w4bZ\nTZrZu7d9wmqcZ55pq1sJWJjqOD74YBqcX7kypatLNRHjVCrTkUlr/BRm0x4Xas/VjRsjrrtuJB5+\nuD1GRqr1K1NfZCzWrYu49trRBevTjl/t1Mhg/2TtSXd3FmedNdbQBKGpVrsXQeuZ2qYUsFu8Pv5M\n/YE8z+OZZ9rrglXd3dVrtNG+xIED9cGiY8eyU3U7lz9tV+21ePJk+6l0u/mp1Y/Jz39erX978GD1\nexTt5fjjWEyiqg9UZXHppSPxwQ/O7j40WY20VavG6gJA479PUUt1fI239CwzcZLAQtw3p7red+0a\njYjRuoDWZO3i+OuxCBpu3DgWv/ALCzcRr1r3r/75p7jvTdcPnO1+qj23vvGN9ujpGatbJVs8M/b0\njNVdS0UdsjPOyGL9+nxeE3jK0t9dLM0YZGr2sZ0yWOpJcq0WFASWl8AXTaOZOpKtcjNthtSQs1Xb\nMcrz1DE6cSot8uhoOtYdHdVUdxGLcw7UpgSstXZtyoU/nak60F/7Wh6PP14d0LjggjxefLFa26Mw\n/qFusuM40/lXuw1ZlsfTT09MkbRhQ3XlSm16k+rDaf2AbMTk+7oYyClSihSpvDZuHJvxZ/fty+pS\nrr3ySsSf/ElnfPzjxyf9jlM96I5/vdFzf6q0KF1dKeXQVKvQIhp/UFvsh7zxAwPFLNehoTy6uqoD\nXhdfPBb/5J+Mxc9/HnHsWMTzz2dx7rmp7kNtOrbZaPRhsRXTiExltu3/Yt8vlvuBvZnuzQtlfEA3\nrWaMaVcXzzZ9z1Tt8tTXYB7VlUW1/9/4d9q/Pzt1HWan/l40lHquMN0g5I4do6dSE7dVUhMX7U53\nd8w5EDpT2zGb62su12LtveR732uLdeuirsbXxo15/MM/1P/MdOknL7poLJ5+Ot1n164di8suS4GN\n1LeYXzvRSFvw3HPt8ba35fHkk3lNkCDVgfoP/2Hygf2F0sgg9lTXUVtb1tBKpUZWu8/UNi1mmz1d\nf6CvL/U/+vvT69V792jlfGqkL9HXl8Xjj7fHT36SapWtWZNqXOV5mvDUDIp9/OCD7bF/f7VNSvI4\n55y8cj7/p/+UVlIV/eaivaw9jlmW1a06L4KGWTb7+1DtdbRpU2P31PHnzEyDvAtx35zpep/pHP7a\n19rj7/6uPV56Kf3NIoVmo6sCG+17FJ97+eU0IWv8cZyuHziX/VQciyLF4mQ/O/6+UqQ3rW0n5jqB\np0z93cWw3H3W6barFcZ2WlUZJ8kB5SHwRdPQkZydVk0/VdsxKoIxK1emh5GTJ9OsvI0bxyr1DSIW\n5xyY7/k2WQf63e8ePVUzrPp7h4er9UFqFQ918zmOtdswVSq855+vpmAr0puceWZK7djZObEY83Sr\nEYrZxXmevlequTD9w+2ePSsn7Qjv2bNyzqtRZrPPaldSDAxk8fLLaUb0ZZfl8fzzbXU/N5+VO4v5\nkDfZirs8T7VbitWSxUq+iy4anTTFzXy2qZGHxWac4Vkmy/nAXsZ7c29vHtddN1KXCvL226dPBTmX\n9D2NXoNppVFWSSWVTD1gMNXvvfXWkfja1/LYvz/VXXrrW0crNSYb2Z7pBiHHpyaOiEq785a3TD3Q\nO5PlbDvG30teey3iJz9pOxXMq66Gvu66sVi7trF0xVOlJ1uo62WmtmBgoD417cBAFkNDEWecEbOu\nMzRbjQxiz7c9aWS1+3K2TdP1B1J9r2xCqrkLLqimjpupL1Gcs2NjKZVlquEZsWFDylqwYcPyr/iq\n9ba3jcZLL6XaXSn9aErF97a3peu7tzePX/3V0bq6aIXa45jOm7yhlZeNmO89daZB3oW6b851O/v6\nsvg//6cjXnihusxucDCPV1/NG14VONX9YqrXf/d3T4xbYTZzW75Y2RbG31dSvczqhMrCXO5b+rsz\nE2Q6/ZRxkhxQHgJfNA0dydlp1Zk1tR2g2mBMlqUUPS++2NZQnYf5WozzbbIBj56eiIGBqR/oF+o4\nTvaQMVn9oYsuGotdu9LnGn1A7e1NAzO19Z1STYGskgJqqp/9+c8n396DB1P9gLkEZWa/z9Jgcn9/\nNSXMZD83nwe1xXzIG/9wXww89/RUVxWOLzi+2Ns0XrPO8GT+Wu3e3Eiwqa8vi0ceSfUP169Prz3y\nSEece+7UEw7msh8avQZnM2AwU+D/Qx+qpp6bzc9FTD+QWGzL+HSKte3RXCxn2zH+XlJMximCeRHp\nGNcGD2ey3NdLbV3G9H1SvbFVq7IJkz0W629P9nphvvtnfqsql8ZU131xDdXWS4pIq91m+tlCcc72\n9ORx7FjEkSOpftvISLXm1FJppK2t1lTLp6yp1sg5sdzX1XgztdnLvb1797bH0aPjnz2yePXVvKFV\ngVPdL667rr7u7vj7yGzb8mI/1W1llsfrXz864zPCdPt4YprclAq4djVvxPT3ranOb/3d5tOKGXDK\npoyT5IDyaL/rrrvuWu6NmK3XXjux3JvAIlizJs2UHRpKQZDzzsvjhht0XKayd2/7uHzqSZZFbN++\nvDM+u7o6p7xOn3uure6BsbMzYv36iMsvH4t/+S9H4hd/cWxJzoHFOt+K4NL27WNx0UVjce65eTz1\nVCruXciy9LfWrFnc4zjdd5zt9//e91Ltk/POy+P88/M455yIEyfSdl5++dikP9vXl8Vf/mVH/OQn\n7TE8HLFiRRbt7RHHj0cMDUWsW5cGTQcGsnjqqba48MKJK9AmM5t99vDDHfHaa22xfn3E0FBbdHZG\ndHRkcfJkVAa8m+GamU5PT/051N+fVVYSrlmTvkeqHzMWV1yxfN9j/LnfyLFsNtO1XaerVro3F4N1\n/f1t07YtDz+cPhORUoc++2xbHDzYHn//922xbt1YfOtbHbF3b3s891xb9PSkn13M/TD+vlg477yU\nOq9W7bZXZTE0lE347Gx/bnxbE1G9Xx06lPZnZ2fEyy9XU5d1d6dVJsU9bS6Wq+0Yfy/p7Ez7YHQ0\nYvPmfE7HeDmvl66uzlix4njlGD77bKoDmWXpftHZGdHIuTJX050/xTFdiP1TnC9XXpnS+5482fxt\nU8TsrvOpFOfsqlURr7ySRVdXRHd3qrm6eXP9ddjXl8XDD09syxZCo23tmjURv/iLeZxxRsT55+ex\ndetY/OZv1h+jRs6JZrsPzXQsl3t79+5tjwMH2uLVVyPGX4+XXz4aV145/fk21f3iO9/piDPPHP/p\napsy27a82E8jIyvjxImROO+8PLZtG41HHmns3JpuH4/flh/9qD7l5vi2qdZM53cZ+rtl0WhbxOJq\n5P5fVp4doTl0dXVO+Z4VXzQVS+Mb16oza2aaBbnUq1TG5+yf6yqk6f7GdDMDF/s4Trc/Z7Ovi+08\nciTqUvRcccXk9ciKB5FNm8biwIG2Sjqe170uzVD+lV+p/36zWeU2m31WOzBRu1IhDXYuXirNhTT+\nHNqxYyQOHsyiu7s5Zj4vlulmcJrdubRa5d7c6GrQol0o6uUVq0D/4R9STcKLL04zw8fPZl+s/TCb\n1QFzTScz2xpl46+tYhvXrKlN1Za2fTYrouZisa73ye4la9ZEXHLJzHU2p7Oc10vtMfz7v2+PtWtT\nLaTalQ6LlXpoNjWBFmr/tErbFLEwq4BqV/TV1rzauLF+xfdip0Ofzcr7Ro7RQn1mqTRyLJc7RXFP\nTx7DwymFfJFmcuPGxlYFTtVG/PznabJVUS+3eBbIsrmfU729ebz1rRGHDqW6Yw880LGg51bxudms\n0mrVrCqnI8eqOVgJCTQzgS9oUcudRmOumrVjtBiDBOMH6264YfIaVK1wHFOtrCyefLI9itlcw8NZ\nvPhiyvc//nsVDyLnnx9xzTUj8dRTbXHsWBZnnJHHZZeN1gVtCo0OxjWyz4p9/8QTbXH0aBoU2rgx\npevK86gUuG7GfT2ZyYK0zXYNLaTprseIaMn6hiy+RoNCY2N5PPNMWzz/fFucOJGCHatWpZWoXV1Z\nHDwYlVR3SzGAMpv74lwnS8ylRtl023jJJWNL0u4s5r35wIEsnnkmq0uVNziYR39/xJe+tGLaVJnN\n3P7WHsOZaict5t+m3kL0fyfr/0Tk8cY31vdjFmswuDj3H3oo1RGsvXYi6tvaZr9O5qNZn2UKRX3b\ngYH26OwstimPLVvGGurzTnW/OOeciRNGjh3L4umn2yZ9FpiLxaoVNJu2Sb2i1uFYNQ/3f6BZCXxB\ni2r2h67pNGPHaKEHCRodrGuV49jbmwJHBw9GDA/HqToNeXR3x6T7qPaB4/zzI84/P6VVWbs2zUJ9\n/vm5r3KbaZ/V7vu1a1MNrIGBtrj44rFTM6RTipILL2zOfd2IRq6hVhx0Krb5//2/9krAslipUFyP\nxf/XMruTiMaCO319Wbz4YlsMDLTFsWNtMTIScehQHuvXj0VXV/rM+FSqSzGA0uh9ca6TJRZiksVy\n3LsX+968cWPEwYNFmq48BgerKcwmu28v9kqahdQqE2tOJ/O9hor+z4MPtsd3v9seq1bl8cY35vHq\nq22xe3f1PFyMweDacz/Ps+jvz6K/P608K4JfRVu7lNdJo3UdF7o/1IzPMoXe3jxuvfVkPPjgWDzx\nRHtkWcTWraPx7nc39r2najtuuulkfO5zK+tq5UakeoIL1QdrhowmzbANNMaxAmAmAl/Qwpr5oavV\nLPQgwUKngWkGWZbFW94ysS7AZPtougeRxR6Ard33a9ZEJS3X4cMR1147Grfe2vwBoKk0OnjTSoOz\nhdptPnw4i2PHUq7+iy8eqwS/prseze6kkbZl795Ur/Dii8fi6NEsXn01pYDq6Ul1aPr7s8qK0EIz\nDaDMdbJEq0yyGG+x783d3Xm85S1RSf+VauJU1d63+/qy+OxnV8bBg+kcKVa7NGvgvVWPOdPr7c1j\n7dqIbdumThm9GIPBtddOdQV9Fi++mMVb3pLXtbVLlX6skb5OK/aHFkJvbx7/+l+PRMTs9/d0bcdF\nF43F009HJc1h0Q4uVB+sGQL2zbANNMaxAmAmAl8AsfAzxsqYemE2+2i6B5HFHowbv4/XrElpy9au\nbY0A42T6+rJ48MH2eOSR9li1KqUXmm7wphVz3tduc1GPLc/Taowi7VxxrpndyWQaaVuK9qG7O9Uo\nLFI2ZVkWF1wwFgMDaTVroRkHUOY6WaJVJlnUaoZ788BAVhk8P3iwLY4dS+m9ale7NOu9vRWPOTOb\n6TxejMHg2r9ZW2MsyyI2b65PfbpUfeBG+jqt2B9qBlO1HRdemEee51HUyS0sZG3i5Q7YN8M20BjH\nCoCZCHxxWmjFlF8srYUaJCjOte99ry1ee21i/YOFejBcjnN6NvtopgeRxRyMK1vai2LA9emn2+PY\nsSyOHYuaAdfJB29aMfBau20psJdHRFZJO1d7rpndyVRmaltq24fawduurjwuuWQsfvM3T8Zzz82+\nbdXPWBwLPYA/0/1hqveKwfMiKH9qSyqrXVr1/kJrmuk8XozB4PF/M62WzGPz5rEJbe5s+mHzaTtr\n+w1HjkS8+GLqM/zjP2aV39NM/aEy3CeWYoVNMwTsm2EbaIxjBcB0BL4ovdM1xQWzsxCDBLXn2rp1\nET/5SVvdjPCFejBcrnN6tvtouR5Eypb2ohhwra87VB1wnW2qyWZVu821KSrPPHPibHKzO5mr8e1D\nd3dK3VTbfm7fPrt2Sz9j8Sz0AP5M94ep3nvoofTIVE3xlt4fHs4iy8Za9v5Ca2qkn7PQfbDZ9K0a\n/ex8286i33DkSMSTT7ZFRPo9R49G7N7dEbt2LU7ax7koy33CChsAoJW033XXXXct90bM1muvnVju\nTaCFPPxwR/T3t417NYuhoVTMvEz6+rJ4+OGO2Lu3PZ57ri16eupXGy2Vrq7OlrxO16yJuOiisdi+\nfexUofvZ/XztudbZGdHTE3HiRBajoxGXXjoWN9ww9YPhbI7dQp/Ts/nb891HS2HNmpSKZWgopeA5\n77x82n3f7PbubY/h4VRIvjb4VXy3887LJxz3np48nnqqOgiUPp/2QzMes4iJ29zZGbFhQx4f/vDJ\nuOKK+nNtsc7DVm27aNxitA+nUz9jOSzk9T7d8Z/uveeea4uBgazm3p7SY27cmMcHP3iyKe4v2q/T\nx3L0c2bzNxv97HzbzqLf8OyzbTE8nH5PlkW86U15rFwZMTSUVn41Q3+oTPeJhe6DLVTb1SzPwcDp\nQ98LmkNXV+eU71nxRek1U4qLxdRqMwlbMd3HTNs8/pwq0sDMVFtqtsduIc/pVjtvGlWmtBfFbOXx\nKw1WrcrnnGqyGbXiNtOaFrp9OF36GWUx3fGf6r3aFSzFvT3L8pa/V9K6lqOfM5u/2chn59t2Fv2G\nT35yZQwPp37Rxo15dHdXa401S9/CfWJxlfV5BgCYH4EvSq9ZUlwstlYq3tyKDyeNbPNcz7XZHrtG\n/k6jgcVWOm/KZDaB32LAtbs7KvWIhocj3va20Xj3u5sv1eR8NOM2t2KQnqV1uvQzTmfNMngOS2Gp\n7nsL0Xb29uZx7bWj8fzzE3+mtubZcvct3CcWl+cZAGAyAl+UXtnq/UyllWYStuLDyUzb3NeXRX9/\nxHe/m8WqVREXXJA3XNdrtsdupnN6NoHFVjpvymK2gd/xA65btxpwXSqtGKRn6Z0u/YzTXTMMnsNi\nW8r73kK1na3QBrfCNrYyzzMAwGTU+KL0ylbvZypF/YnxJqv/s9hmynVc1CwaL8sitm9vzjz3023z\nuefmsXt3RwwPt8Xq1VkcOZLFyy9n8Uu/NBrvfe/M59psj91M5/Rs6gg003lzuphLnYdWqK1WBuPb\nrjLV5GDxnC79DJqbOhMshKW87y1U29kKbXArbONyWYi2y/PM0lNTDfS9oFmo8cVp73SYpdtKMwlb\nMd3HdNtcuxqsqP0REXH22dHQA+1cjt105/RsZj220nlTFmaltg7Hanm0YnrJ06GfAcupFduFxbYY\n+2Sp73sL1Xa2QhvcCtvYqjzPLC0ZEQBoFQJfUBKtVH+iFR9Optvmhx6avCmdbXHuhTp2swksttJ5\nUxatGPg9XTlWS28pBlMMoLPQnFOLyyDrRIu1T9z3aEWeZ5ZWK5YtAOD0JPAFJdIqMwlb8eFkum1e\nqOLcC3XsZhtYbJXzZrks9IBmKwZ+F1MzDxg7VktvsQdTDKCz0JxTi88g60SLtU/c92hVnmeWjowI\nALQKgS9gWbTiw8lU29xsgwStGFhsVosxoOn4VDX7gPFSHqtmDgAupcUeTDGAzkJzTi0+g6wTLdY+\n0UcBZmJlKACtQuALYJ6acZCgFQOLzWixBjQdn6QVBoyX4lg1ewBwKS32YIoBdBaac2rxGWSdaDH3\niT4KMJ1mm/QJAFMR+AJYAAYJysmA5uKyf5NWCAAulcUeTDGAzkJzTi0+g6wT2SfAcmnGSZ8AMBmB\nL5gn6amYinOj9RnQXFz2byIAWLXYgykGi1lozqnFZ5B1IvsEWE7znfTpORmApSDwBfMgPRVTcW6U\ngwHNxWX/JgKA9RZzBa3BYhaac2ppLEa70OoDr7INAK3IczIAS0XgC+ZBeiqm4twoBwOai8v+TQQA\nl5bBYhaac6r1GHgFWB6ekwFYKgJfMA/SUzEV50Z5GNBcXPavACDAUjPwCrA8PCcDsFQEvmAepKdi\nKs4NYDYEAAGWjoFXgOXhORmApdK23BsArWzHjtHIsvoOmvRURDg3AACa1VQDrAZeARaX52QAlooV\nXzAP0lMxFefGRK1eRB4AKAe1FQGWh+dkAJZKlud5y91dDh0aXO5NAKaxfn2365Q644vIR6QBJkXk\naSbaLqBVab9mz4QcWH7aLqBVab+gOaxf3z3le1Z8AbDoFJEHAJqJ2ooAAFBeanwBsOgUkQcAAAAA\nloIVXwAsup6ePPr7Jwa5FJEHOL1ILwe0Mm0YAEBrEPgCYNEpIg/A+HqP/f1ZHDiQqfcItARtGABA\n65DqEIBF19ubx65dI7F581isXZvH5s1jBgkATjPT1XsEaHbaMACA1mHFFwBLQhF5gNObeo+L5+DB\niP/9vzukX4NFpA0DAGgdAl8AAMCiU+9xcfT1ZfFXfxUxNJSSeUi/BotDGwYA0DqkOgQAABbdjh2j\nkWX1A8TqPc5fSr9W/5r0a7DwtGEAAK3Dii8AAGDRFfUe9+5tl5JvAUm/BktDGwYA0DrmFPgaHh6O\nO+64Iw4fPhxdXV3x6U9/Os4+++y6z9x///2xZ8+e6OjoiN/+7d+Oa6+9dsqf+/rXvx6f/vSn47zz\nzouIiNtvvz0uv/zy+X87AGgCfX2ZQRKAUO9xMfT05PHyy5O/DiwsbRgAQGuYU6rD++67L7Zs2RK7\nd++OG2+8MT7/+c/XvX/o0KG49957Y8+ePfHlL385PvOZz8SJEyem/Lmnnnoq7rjjjrj33nvj3nvv\nFfQCoDT6+rLYvbsjnn++Lfr7s3j++bbYvbsj+vrMxAdg/lL6tfrXpF8DAABOZ3MKfO3bty+uvvrq\niIi45ppr4vHHH697f//+/XHppZfGypUro7u7OzZt2hQ/+MEPpvy5p59+Or761a/Grl274lOf+lSM\njJhBBUA5pNor9SOSaq8AsFB6e/P4V/8qYvPmsVi7No/Nm8di164RK4sBAIDT1oypDh944IH4yle+\nUvfaunXroru7OyIiurq6YnBwsO79oaGhyvvFZ4aGhuper/25K6+8Mt7xjnfEBRdcEHfeeWfs2bMn\nfuu3fmvKbVq79szo6DBgCM1s/frumT8Ep4GRkYiurslfX79+6beH6Wm7gFb1b/7NGcu9CQCzpu8F\ntCrtFzS3GQNfO3fujJ07d9a9dtttt8XRo0cjIuLo0aOxZs2auvdXr15deb/4THd3d93rtT/33ve+\nt/L/119/fTz88MPTblN//2szbTawjNav745DhwZn/iCcBjo6OuLo0YkLrDdsGItDh6xwbibaLqBV\nab+AVqTtAlqV9guaw3QB6DmlOty2bVs8+uijERHxzW9+M7Zv3173/tatW2Pfvn1x/PjxGBwcjGef\nfTa2bNky6c/leR6/8Ru/ES+99FJERDz++ONx0UUXzWWzAKDppNor9emm1F4BAAAAgMWR5Xk+6+Tv\nx44di4997GNx6NChWLFiRdx9992xfv36uOeee2LTpk1x/fXXx/333x9//ud/Hnmex4c+9KF417ve\nNeXPPfbYY/HZz342Vq1aFW94wxviD//wD2PFihVT/n0RdWhuZr5Avb6+VNNrYCCLnp4U9FJ7pflo\nu4BWpf0CWpG2C2hV2i9oDtOt+JpT4Gu5aViguekAAK1I2wW0Ku0X0Iq0XUCr0n5Bc1jwVIcAAAAA\nAADQbAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAA\nAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBS6FjuDQA4HfX1ZbF3b3sMDGTR05PHjh2j0dubL/dmAacpbRIAAABQ\nFgJfAEusry+L3bs7Is+ziIjo78/iwIEsdu0aMdAMa14z6wAAFcRJREFULDltEgAAAFAmUh0CLLG9\ne9srA8yFPE+rLQCWmjYJAAAAKBOBL4AlNjCQzep1gMWkTQIAAADKROALYIn19EyeOmyq1wEWkzYJ\nAAAAKBOBL4AltmPHaGRZ/YByluWxY8foMm0RcDrTJgEAAABl0rHcGwBwuuntzWPXrpHYu7c9Bgay\n6OlJA8y9vVZXAEtPmwQAAACUicAXwDLo7c1j586R5d4MgIjQJgEAAADlIdUhAAAAAAAApSDwBQAA\nAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApdCx3BsAAADNpq8vi71722NgIIuenjx2\n7BiN3t58uTcLAAAAmIHAFwAA1Ojry2L37o7I8ywiIvr7szhwIItdu0YEvwAAAKDJSXUIAAA19u5t\nrwS9CnmeVoABAAAAzU3gCwAAagwMZLN6HQAAAGgeAl8AAFCjp2fydIZTvQ4AAAA0D4EvAACosWPH\naGRZfZAry/LYsWN0mbYIAAAAaFTHcm8AAAA0k97ePHbtGom9e9tjYCCLnp4U9OrtteILAAAAmp3A\nFwAAjNPbm8fOnSPLvRkAAADALEl1CAAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAA\npSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAA\nAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAA\nAAAApTCnwNfw8HDcfvvtsWvXrvjgBz8Yr7zyyoTP3H///fGe97wn3ve+98U3vvGNuve+/vWvx0c/\n+tHKv5944onYuXNn3HTTTfFf/+t/ncsmAQAAAAAAcJqbU+Drvvvuiy1btsTu3bvjxhtvjM9//vN1\n7x86dCjuvffe2LNnT3z5y1+Oz3zmM3HixImIiPjEJz4Rd999d4yNjVU+f+edd8bdd98d9913X3z/\n+9+PZ555Zh5fCQAAAAAAgNPRnAJf+/bti6uvvjoiIq655pp4/PHH697fv39/XHrppbFy5cro7u6O\nTZs2xQ9+8IOIiNi2bVvcddddlc8ODQ3FiRMnYtOmTZFlWVx11VWxd+/eOX4dAAAAAAAATlcdM33g\ngQceiK985St1r61bty66u7sjIqKrqysGBwfr3h8aGqq8X3xmaGgoIiJuuOGG+Pa3v1332dWrV9d9\n9uDBg9Nu09q1Z0ZHR/tMmw4so/Xru2f+EECT0XYBrUr7BbQibRfQqrRf0NxmDHzt3Lkzdu7cWffa\nbbfdFkePHo2IiKNHj8aaNWvq3l+9enXl/eIztYGwmT47/veN19//2kybDSyj9eu749ChwZk/CNBE\ntF1Aq9J+Aa1I2wW0Ku0XNIfpAtBzSnW4bdu2ePTRRyMi4pvf/GZs37697v2tW7fGvn374vjx4zE4\nOBjPPvtsbNmyZdLftXr16lixYkW88MILked5PPbYY3HZZZfNZbMAAAAAAAA4jc244msyN998c3zs\nYx+Lm2++OVasWBF33313RETcc889sWnTprj++uvjlltuiV27dkWe5/GRj3wkOjs7p/x9f/zHfxy/\n93u/F6Ojo3HVVVfFJZdcMrdvAwAAAAAAwGkry/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K\n+wXNYcFTHQIAAAAAAECzEfgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEqhY7k3AABaWV9fFnv3tsfAQBY9PXns\n2DEavb35cm8WAAAAAJyWBL4AYI76+rLYvbsj8jyLiIj+/iwOHMhi164RwS8AAAAAWAZSHQLAHO3d\n214JehXyPK0AAwAAAACWnsAXAMzRwEA2q9cBAAAAgMUl8AUAc9TTM3k6w6leBwAAAAAWl8AXAMzR\njh2jkWX1Qa4sy2PHjtFl2iIAAAAAOL11LPcGAECr6u3NY9eukdi7tz0GBrLo6UlBr95eK74AAAAA\nYDkIfAHAPPT25rFz58hybwYAAAAAEFIdAgAAAAAAUBICXwAAAAAAAJSCwBcAAAAAAAClIPAFAAAA\nAABAKQh8AQAAAAAAUApzCnwNDw/H7bffHrt27YoPfvCD8corr0z4zP333x/vec974n3ve1984xvf\nqHvv61//enz0ox+t+/c73vGOuOWWW+KWW26J73znO3PZLAAAAAAAAE5jHXP5ofvuuy+2bNkSt99+\nezz44IPx+c9/Pv7wD/+w8v6hQ4fi3nvvja9+9atx/Pjx2LVrV1x55ZWxcuXK+MQnPhGPPfZYvPnN\nb658/qmnnoo77rgj3vWud83/GwEAAAAAAHBamtOKr3379sXVV18dERHXXHNNPP7443Xv79+/Py69\n9NJYuXJldHd3x6ZNm+IHP/hBRERs27Yt7rrrrrrPP/300/HVr341du3aFZ/61KdiZGRkLpsFAAAA\nAADAaWzGFV8PPPBAfOUrX6l7bd26ddHd3R0REV1dXTE4OFj3/tDQUOX94jNDQ0MREXHDDTfEt7/9\n7brPX3nllfGOd7wjLrjggrjzzjtjz5498Vu/9VtTbtPatWdGR0f7TJsOLKP167tn/hBAk9F2Aa1K\n+wW0Im0X0Kq0X9DcZgx87dy5M3bu3Fn32m233RZHjx6NiIijR4/GmjVr6t5fvXp15f3iM7WBsPHe\n+973Vn7H9ddfHw8//PC029Tf/9pMmw0so/Xru+PQocGZPwjQRLRdQKvSfgGtSNsFtCrtFzSH6QLQ\nc0p1uG3btnj00UcjIuKb3/xmbN++ve79rVu3xr59++L48eMxODgYzz77bGzZsmXS35XnefzGb/xG\nvPTSSxER8fjjj8dFF100l80CAAAAAADgNDbjiq/J3HzzzfGxj30sbr755lixYkXcfffdERFxzz33\nxKZNm+L666+PW265JXbt2hV5nsdHPvKR6OzsnPR3ZVkWn/jEJ+K2226LVatWxRve8IZ43/veN/dv\nBAAAAAAAwGkpy/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K+wXNYcFTHQIAAAAAAECzEfgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+\nAAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB\n4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACg\nFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS6JjLDw0PD8cdd9wRhw8fjq6urvj0pz8dZ599\ndt1n7r///tizZ090dHTEb//2b8e1114bg4ODcccdd8TQ0FCcPHky/v2///dx6aWXxhNPPBGf/OQn\no729Pa666qq47bbbFuTLAQAAAAAAcPqY04qv++67L7Zs2RK7d++OG2+8MT7/+c/XvX/o0KG49957\nY8+ePfHlL385PvOZz8SJEyfinnvuiSuuuCL+5//8n/Gnf/qn8R//43+MiIg777wz7r777rjvvvvi\n+9//fjzzzDPz/2YAAAAAAACcVuYU+Nq3b19cffXVERFxzTXXxOOPP173/v79++PSSy+NlStXRnd3\nd2zatCl+8IMfxAc+8IG46aabIiJidHQ0Ojs7Y2hoKE6cOBGbNm2KLMviqquuir17987zawEAAAAA\nAHC6mTHV4QMPPBBf+cpX6l5bt25ddHd3R0REV1dXDA4O1r0/NDRUeb/4zNDQUKxZsyYi0oqwO+64\nI/7gD/4ghoaGYvXq1XWfPXjw4LTbtHbtmdHR0T7TpgPLaP367pk/BNBktF1Aq9J+Aa1I2wW0Ku0X\nNLcZA187d+6MnTt31r122223xdGjRyMi4ujRo5WAVmH16tWV94vPFIGwH/7wh/Hv/t2/i9///d+P\nyy+/PIaGhiZ8dvzvG6+//7WZNhtYRuvXd8ehQ4MzfxCgiWi7gFal/QJakbYLaFXaL2gO0wWg55Tq\ncNu2bfHoo49GRMQ3v/nN2L59e937W7dujX379sXx48djcHAwnn322diyZUv8+Mc/jt/5nd+Ju+++\nO97+9rdHRAqSrVixIl544YXI8zwee+yxuOyyy+ayWQAAAAAAAJzGZlzxNZmbb745Pvaxj8XNN98c\nK1asiLvvvjsiIu65557YtGlTXH/99XHLLbfErl27Is/z+MhHPhKdnZ1x9913x4kTJ+KTn/xkRKSg\n15/92Z/FH//xH8fv/d7vxejoaFx11VVxySWXLNw3BAAAAAAA4LSQ5XmeL/dGzJalpNDcLPkGWpG2\nC2hV2i+gFWm7gFal/YLmsOCpDgEAAAAAAKDZCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQ\nCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAA\nAKUg8AUAAAAAAEApZHme58u9EQAAAAAAADBfVnwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFzBr3//+9+OWW26Z8PojjzwS733ve+P9739/\n3H///RERcfLkyfjoRz8aN910U+zatSueffbZpd5cgIqp2q+IiGPHjsVNN91UaafGxsbij/7oj+L9\n739/3HLLLfGP//iPS7mpABWzabtOnjwZd9xxR+zatSv++T//5/E3f/M3S7mpABWzabsKhw8fjre/\n/e2eG4FlNdv264tf/GK8//3vj/e85z3xwAMPLNVmAtPoWO4NAFrLl770pfjrv/7rOOOMM+peP3ny\nZPzpn/5p/K//9b/ijDPOiJtvvjmuu+66eOKJJ2JkZCT27NkT3/rWt+Kzn/1sfO5zn1umrQdOZ1O1\nXxERTz75ZNx5553xs5/9rPLa//2//zdOnDgRf/7nfx5PPPFEfOpTn4o/+7M/W8pNBph12/XXf/3X\n0dPTE//lv/yXGBgYiBtvvDGuv/76pdxkgFm3XRHpmfKP/uiPYtWqVUu1mQATzLb9+va3vx3f+973\n4r777otjx47F//gf/2MpNxeYghVfwKxs2rRp0sDVs88+G5s2bYqzzjorVq5cGdu3b4+//du/jc2b\nN8fo6GiMjY3F0NBQdHSItwPLY6r2KyLixIkT8d/+23+L17/+9ZXX9u3bF1dffXVERLz1rW+Np556\nakm2E6DWbNuuf/pP/2n8zu/8TkRE5Hke7e3tS7KdALVm23ZFRHz605+Om266KTZs2LAUmwgwqdm2\nX4899lhs2bIlPvzhD8ett94av/qrv7pEWwpMxwg0MCvvete74sUXX5zw+tDQUHR3d1f+3dXVFUND\nQ3HmmWdGX19f/Nqv/Vr09/fHF77whaXcXICKqdqviIjt27dPeG1oaChWr15d+Xd7e3uMjIwI4ANL\narZtV1dXV0SkNuzf/tt/G7/7u7+7qNsHMJnZtl1/8Rd/EWeffXZcffXV8d//+39f7M0DmNJs26/+\n/v74yU9+El/4whf+f3v378r7Asdx/GVB8muRnVJGrBaDUQaKFInJaBAZjMo/IKPCaJCFlVgYbGal\nJJIU8vNzh1unzr23+z11zj3fc7/n8di+23N6L6/v5/PJ5eVlZmZmsre3l6qqqv86FfgXnvgCfoj6\n+vo8Pj5++f34+JiGhoasr6+nt7c3+/v72dnZycLCQl5eXspYCvBt/nrXPj8/jV7A/8LV1VUmJiYy\nODiYgYGBcucAlLS9vZ3j4+OMj4/n/Pw88/Pzubm5KXcWQEnNzc3p7e1NdXV12traUlNTk7u7u3Jn\nwW/P8AX8EO3t7bm4uMj9/X1eX19zenqarq6uNDY2fnkSrKmpKe/v7/n4+ChzLUBp3d3dOTg4SJKc\nnZ2lo6OjzEUApd3e3mZqaipzc3MZHh4udw7AN9na2srm5mY2NjbS2dmZlZWVtLS0lDsLoKSenp4c\nHh6mKIpcX1/n+fk5zc3N5c6C356/LQPfZXd3N09PTxkZGcnCwkKmp6dTFEWGhobS2tqaycnJLC4u\nZmxsLG9vb5mdnU1dXV25swG+ul//pL+/P0dHRxkdHU1RFFleXv7JhQB/V+p2ra2t5eHhIaurq1ld\nXU3y50faa2trf2YmwFdK3S6AX1Wp+9XX15eTk5MMDw+nKIosLS35xir8AqqKoijKHQEAAAAAAADf\ny6sOAQAAAAAAqAiGLwAAAAAAACqC4QsAAAAAAICKYPgCAAAAAACgIhi+AAAAAAAAqAiGLwAAAAAA\nACqC4QsAAAAAAICKYPgCAAAAAACgIvwBFIC5bdolSUwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg_linear.predict(X_train), reg_linear.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg_linear.predict(X_test), reg_linear.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pred: 1.110524, actual: 1.110180\n" + ] + } + ], + "source": [ + "print(\"pred: %f, actual: %f\" % (reg_linear.predict(X_test[0,:].reshape(1,-1)), y_test[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try ridge regression, to be more robust to correlation in features" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "hideCode": true, + "hideOutput": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\scipy\\linalg\\basic.py:40: RuntimeWarning: scipy.linalg.solve\n", + "Ill-conditioned matrix detected. Result is not guaranteed to be accurate.\n", + "Reciprocal condition number/precision: 6.576732214380598e-11 / 5.960464477539063e-08\n", + " RuntimeWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFlCAYAAABhvHtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtAVWW+//EPbBBUoECx6VhOYVmpkfd0GnXMiKajmYqB\n0HZST7/OqfHSmUN4x8LUqcZTEeroNGdOpqU1ZmKectTUJszMCwqOOZKRmGNeULm5N7DX7w+HncrD\nRWXLBt6vf8a912V/v6xZ8eFZa6/Hx7IsSwAAAJfwre8CAACAdyIkAAAAI0ICAAAwIiQAAAAjQgIA\nADAiJAAAACNCAlDPunbtqry8PO3du1fjx4+vdt09e/ZoxowZl/0ZL7zwglJTU6+0xMt2+PBhjRs3\n7qr2Ybfb9fHHH3ts/auVl5enrl27Gpe98847WrRokXFZxfEGGgK/+i4AwHl33323Xn/99WrXOXjw\noI4dO3aNKrpy33//vQ4dOlTfZdSbkSNH1ncJQJ0gJAC1tG3bNr300ku64YYbdPjwYQUGBmru3Llq\n3769Jk2apNOnT+vw4cP6xS9+oQkTJuiVV17R9u3bVV5ero4dO2ratGkKCgrSV199pZSUFPn4+Oju\nu++Wy+Vy7z8lJUVr1qxRUVGRZs2apZ07d8pms+mBBx7QyJEj9frrr6ugoECTJ0/WnDlztHHjRi1Y\nsEClpaUKDAxUUlKSunbtqsLCQk2dOlX79+9XmzZtZLPZ1L1794v6cblcGjBggN544w3dfffdkqRn\nn31WPXv2VHx8/EXrLly4UOvXr5fD4VBJSYmSkpIUFRWlsrIyvfzyy9q0aZNsNpu6du2q5ORkTZs2\nTceOHdPYsWP1/PPPa/Dgwdq1a5ek83+BV7wuLi7WzJkz9e233+rMmTNq2bKlXnnlFUVERFR5HI4f\nP67k5GR988038vX1VVxcnEaNGnXROuvXr9cbb7yh8vJyBQUFafLkyYqMjFROTo6mTp0qp9Mpy7IU\nExOjhIQESdKCBQu0bt06uVwutW3bVsnJybrhhhuq/f+Ey+XS1KlTlZ2dLT8/P02bNk1dunRRamqq\n8vPzNWPGjCqPN9AQcLkBuAz79u3TmDFjlJ6ermHDhikxMdG97Ny5c/roo4+UmJioRYsWyWazaeXK\nlVq9erXatGmjV155RU6nUxMmTNCkSZO0atUq3XvvvTp37lylz3n99dflcDi0du1arVq1Sjt37tR3\n332n8ePHq0ePHpozZ46+/fZb/fd//7cWLVqkVatWKSUlRePGjVNxcbFef/11BQYG6uOPP9Zrr71m\n/Kve19dXw4cP1wcffCBJOnPmjDIyMjR48OCL1jty5IgyMjL09ttvKz09Xc8++6x7xGPZsmXKzs7W\nhx9+6A43a9eu1axZs9SuXTu9+eab1f48t2zZopCQEK1YsUKffPKJOnfurKVLl1a7zfPPP69bbrlF\nH3/8sZYvX64VK1YoNzfXvTwnJ0fJyclKTU1Venq6xo8fr6efflqFhYV68803df/992vlypVatGiR\nvvrqK7lcLq1atUoHDhzQe++9pw8//FD9+/fXtGnTqq1DOn/M77vvPq1atUoTJkzQxIkT5XQ63ctr\ne7wBb8VIAnAZ7rzzTvXo0UOSNHz4cL3wwgvKz8+XpIv+Ut+0aZMKCgqUkZEhSSotLVWrVq104MAB\n+fn5qU+fPpKkQYMGGe8xyMjI0OTJk2Wz2WSz2fT2229LklauXOle5/PPP9cPP/ygJ554wv2ej4+P\nvvvuO23dulVTpkyRj4+PwsLCFBUVZexn+PDhiomJ0aRJk7RmzRoNGDBAwcHBF63Ttm1b/fa3v1V6\nerpyc3OVmZmpoqIid51DhgxRYGCgJOnVV1+VdH5UpDYeeugh3XzzzVqyZIlyc3P15ZdfVnmd/8Kf\nTUU4Cw4O1po1ay5a/sUXX6h37966+eabJUl9+vRRWFiYsrKyFBUVpaSkJO3Zs0d9+vTRtGnT5Ovr\nq08//VR79+7V8OHDJZ0fISgpKamx/pCQED388MOSpL59+8qyLH3zzTfu5bU93oC3IiQAl8Fms130\n2rIs93stWrRwv+9yuTRlyhT1799fklRUVCSHw6GjR4/q0ulS/Pwqn4Z+fn7y8fFxvz569Kj7F/GF\nn9GnTx/3L+aK9dq0aeOuraq6K7Rt21YdO3bUpk2btHLlSk2ZMqXSOtnZ2Xr66af1xBNP6L777lPP\nnj31/PPPG2s/ceJEpeF0Hx+fi2opLS11/3vZsmVasWKFEhISNHjwYF1//fU13tR36c/m8OHDCg0N\ndb82TUdjWZbKyso0YMAAffLJJ8rIyNDWrVuVlpamd999Vy6XS//2b//mvszidDp15syZauuQzo/G\nXPo5/v7+VfZeUT/QUHC5AbgM+/fv1/79+yVJy5cvV7du3RQSElJpvZ///OdaunSpnE6nXC6Xpk+f\nrnnz5qlDhw6yLEubN2+WJG3YsMH4y6hPnz764IMP5HK55HQ6NX78eG3fvl02m01lZWWSpN69e+vz\nzz9XTk6OJGnz5s165JFH5HA41LdvX73//vtyuVw6c+aMNmzYUGVPjz32mBYvXqxz585Vum9BkrZv\n367OnTtr9OjR6tWrlzZs2KDy8nJ3nWvWrHH3OXPmTH300Uey2WzuMBASEqLS0lIdPHhQkvSXv/zF\nve+//vWvGjp0qEaMGKFbb71VGzdudO+7Kn369NGf//xnSVJBQYF+9atf6dtvv3Uvr/i5HD58WJK0\ndetWHT16VPfcc49+85vfaO3atfrXf/1XJScnKygoSEePHtXPf/5zvf/++yosLJQkvfbaa3ruueeq\nrUOSTp8+rU8//VSStHHjRgUEBOinP/2pe3ltjzfgrYi0wGVo3bq1Xn31VR05ckRhYWF66aWXjOs9\n/fTT+u1vf6uhQ4eqvLxcd911lyZNmiR/f3+lpaVp5syZmjdvnu666y61atWq0va//vWv9eKLL2rI\nkCEqLy/Xww8/rAcffFDfffedXn31VT3zzDNKS0vTCy+8oP/8z/+UZVny8/PTggUL1KJFC40bN07J\nycn65S9/qbCwMHXo0KHKnu6//349//zzevLJJ43LBw0apHXr1unhhx+Wv7+/+vTpozNnzqiwsFBx\ncXE6cuSIhg0bJsuy1KtXL9ntdhUVFclmsykmJkbvvfeeEhMT9eSTTyosLEwPPfSQe99jxozRjBkz\ntHLlStlsNnXq1EkHDhyo9hjMmDFDM2fO1ODBg2VZlp566il17tzZvfy2225TcnKyfv3rX6u8vFyB\ngYFauHChgoOD9fTTT2vq1Klavny5+4bQXr16qWfPnjp27Jgee+wx+fj46MYbb9TcuXOrrUOSWrVq\npXXr1unVV19V8+bNlZqaetFIQW2PN+CtfJgqGqidC799AABNASMJAFCF2bNnV3kT5uTJk9W7d+9r\nXBFwbTGSAAAAjLhxEQAAGBESAACAESEBAAAYNcobF48fL6jvEq5YaGgL5ecX13cZV40+vAt9eI/G\n0INEH94mNLSF/PzMD027GowkeBlPHOT6QB/ehT68R2PoQaIPb+OpPggJAADAiJAAAACMCAkAAMCI\nkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAA\nAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAA\njAgJAADAyKMhITMzU3a73bispKREcXFxysnJkSSVlpYqMTFR8fHxiomJ0YYNGyRJ+/btU9++fWW3\n22W327V27VpPlgwAAP7Jz1M7Xrx4sVavXq3mzZtXWrZ3714lJyfr2LFj7vdWr16t66+/Xi+//LJO\nnz6tRx99VAMHDlR2drZGjx6tMWPGeKpUAABg4LGRhHbt2ik1NdW4zOl0Ki0tTREREe73HnroIU2Y\nMEGSZFmWbDabJCkrK0ubNm1SQkKCpkyZosLCQk+VDAAALuCxkYTo6Gjl5eUZl3Xv3r3Sey1btpQk\nFRYWavz48Zo4caIkKTIyUiNGjFDnzp21YMECpaWlKSkpqdrPDg1tIT8/21V2UH/Cw4Pru4Q6QR/e\nhT68R2PoQaKPpsBjIeFKHD16VM8884zi4+M1ePBgSVJUVJRCQkLc/05JSalxP/n5xR6t05PCw4N1\n/HhBfZdx1ejDu9CH92gMPUj04W08FXS85tsNJ06c0JgxY5SYmKiYmBj3+2PHjtWePXskSVu3blWn\nTp3qq0QAAJqUazaSkJ6eruLiYsXGxhqXL1y4UGfPntX8+fM1f/58Sedvfpw5c6ZSUlLk7++v1q1b\n12okAQAAXD0fy7Ks+i6irjXkoaPGNPRFH96DPrxHY+hBog9v0+gvNwAAAO9CSAAAAEaEBAAAYERI\nAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAA\nAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABG\nhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQE\nAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARh4NCZmZmbLb7cZlJSUliouLU05OjiSptLRU\niYmJio+PV0xMjDZs2CBJys3N1ciRIxUfH6/k5GS5XC5PlgwAAP7JYyFh8eLFmjZtmhwOR6Vle/fu\nVUJCgg4fPux+b/Xq1br++uu1bNky/eEPf1BKSookac6cOZo4caKWLVsmy7Lc4QEAAHiWx0JCu3bt\nlJqaalzmdDqVlpamiIgI93sPPfSQJkyYIEmyLEs2m02SlJ2drV69ekmS+vXrp4yMDE+VDAAALuDn\nqR1HR0crLy/PuKx79+6V3mvZsqUkqbCwUOPHj9fEiRMlnQ8MPj4+7nUKCgpq/OzQ0Bby87Ndaen1\nLjw8uL5LqBP04V3ow3s0hh4k+mgKPBYSrsTRo0f1zDPPKD4+XoMHD5Yk+fr+ONhRVFSkkJCQGveT\nn1/ssRo9LTw8WMeP1xyEvB19eBf68B6NoQeJPryNp4KO13y74cSJExozZowSExMVExPjfr9jx47a\ntm2bJGnLli3q0aNHfZUIAECTcs1CQnp6upYvX17l8oULF+rs2bOaP3++7Ha77Ha7zp07p6SkJKWm\npio2NlalpaWKjo6+ViUDANCk+ViWZdV3EXWtIQ8dNaahL/rwHvThPRpDDxJ9eJtGf7kBAAB4F0IC\nAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAA\nMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAaFIcpeX6Ib9YjtJy42sAP/Lz5M4zMzP1\nyiuvaMmSJZWWlZSUaPTo0XrxxRfVvn37KrfZt2+fnnrqKd1yyy2SpJEjR+rhhx/2ZNkAGqFyl0vL\nNx7UrgPHdeqsQ6HBzRTg76cSh1Oni8oUFtxM3e5oo9j7b5PNl7+fAMmDIWHx4sVavXq1mjdvXmnZ\n3r17lZycrGPHjtW4TXZ2tkaPHq0xY8Z4qlQATcDyjQe1/qs89+tTBU5Jzoter/8qTy7L0uNRd9RD\nhYD38VhcbteunVJTU43LnE6n0tLSFBERUeM2WVlZ2rRpkxISEjRlyhQVFhZ6qmQAjdTJs+e0cUde\nzStK2rTriIodZR6uCGgYPBYSoqOj5ednHqjo3r27brzxxlptExkZqeeee05Lly7VzTffrLS0NI/U\nC6DxKXe5tGz9ASUtzJDLqt02Lpf09idfe7YwoIHw6D0JdSEqKkohISHuf6ekpNS4TWhoC/n52Txd\nmseEhwfXdwl1gj68S1Pp45yzTPlnHQoNCdCStX+76BJDbR04fFrB1zVXYDPP/CeyqRyLhqKx9OEJ\nXh8Sxo4dq+nTpysyMlJbt25Vp06datwmP7/4GlTmGeHhwTp+vKC+y7hq9OFdmkIf50cN/q7dB07o\ndOH5GxOLHVf2jYVTBQ7lfHtSbUJbXE25Rk3hWDQkjakPT7hmISE9PV3FxcWKjY29rO1mzpyplJQU\n+fv7q3Xr1rUaSQDQOJ1zlumH/GJdFxSgAH+bHKXlOlPoUFCLZpr79g7lHS9yr3v+xsQrc31QM10X\nFFAXJQMNmo9lWbW8UtdwNORU2JhSLX14j4beR8XXF/fknNTx/BKFBjdT80B/FZWU6nShUz4+Ul3+\nl6zfPT/RE7/sWHc7vEBDPxYV6MO7NPiRBACoSsWIQMUIwaWWrf+7Pt15xP36VIFTumCkoK7/1Inu\n9dO63SHQQBESANSbSx9wFBYSoK4dwt0PNCp3ufTWJ/v1WeY/rvgzAvx8FdTCX/kFDvnbfOUoc1W7\nflhwM4WFBF7x5wGNCSEBQL259AFHJ8863K8f7XurZv3pK/0jv+SqPuNnkTfqsQG3ue9dWPXZN/rr\nnqM65zTf1NjtjjbG0QygKSIkAKgXjtJy7Tpw3Ljss8zvtXFHXq2fbVAVX19peP/2CvC3ub+pEP9A\nBz3a91a9/ZcD2vX1cTlKz48sBDaz6b67f6LY+2+7ug8FGhFCAoB6cabQoVNnHcZlFb+4r5blkgqL\nnWoRcPF/6loE+Ov/DeokR3S5jucXSz4+Cr++OSMIwCUICQDqxXVBAQoLCdDJKoJCXQgLCaz2q4wB\n/jbd1IYH6QBVYaozAPUiwN+myPatPPoZXTu0ZnQAuArVjiTY7Xb5+PhUufytt96q84IANG4Xft2x\nX5e2+nTX93X+GRdO+wzgylUbEsaNG3et6gDQQNX0jIMKlz42uZm/r1xXe2diFSaOuIfLCEAdqDYk\n9OrVy/3vffv2qbi4WJZlqby8XHl5eRctB9C01PSMg0vXfeFPX+nwDz9O9V5XNyde6vqWzRTugTkX\ngKaoVjcuJiUladeuXTpz5owiIiK0f/9+devWTTExMZ6uD4CXqu4ZB/EPdLho3WV/OXBRQPCkrneE\ncx8CUEdqdePi9u3b9dFHHyk6OlopKSlasWKFnM4rnzwFQMNW3TMOdh04IUdp+cXr/v3ENanrpvCW\nin/g9mvyWUBTUKuQ0KZNG/n7+6t9+/b6+uuvdfvtt6uoqKjmDQE0StU94yC/4JzOFDouWvd0oWf/\nqPDxOT8pU/LonpUudQC4crW63HDDDTfo97//vfr06aOXX35ZklRcXOzRwgB4B9ONidU94yA0+OJn\nE1wXFKBWHn4ewi+6tpX9wTs8tn+gqapVSHjxxRe1efNmRUZG6sEHH9SaNWs0c+ZMD5cGoD5Vd2Ni\ngL9NXTuEX3RPQoVLn00Q4G/Tne1C9XnWlU/SVCE0uJnujghT9qHTyi84p9DgQHXt0JqvOgIeUquQ\ncPbsWXXt2lXff/+9Bg4cqIEDB3q6LgD1rKYbEyt+Me86cKLGX9gjozpox4EfdM55dd9o6NvlJj16\n3y21/tolgKtTq5Dw+OOPy8fHR5ZlqaysTCdOnNBdd92lP//5z56uD0A9qOnGxIpJk+If6KDh/dvX\n+Au7RYCffh75L8aRhwB/X+PXIW2+Prqupb9OFzrdAWTM4E46daroogmbAHhOrULCxo0bL3q9Z88e\nLV261CMFAah/tbkxseKXdG1/YVc18mBZljbsOFJp/QHd2lYKIDYbNyUC19IVTfAUGRmpKVOm1HUt\nAOrJpcP3l3NjYm3ZfH2NIw/lLpd8fHyMly1svr6MGAD1qFYh4Y033rjo9cGDB9WqlWcnZgHgeZfe\nnHh9UIC6dGit+Adur/WNiZfr0pGHqsIDgPp3RSMJPXv21KBBg+q6FgDX2KU3J+YXOvTpziM6mHdG\nU0d1k1S7GxPrAvcZAN6nViGhbdu2Gjp06EXvLV26VAkJCR4pCoBnXHhZQVKVNyce/qFQyzcclD36\nTv7CB5qwakPCn/70JxUWFurdd9/VkSM/3lhUXl6u9PR0QgLQQJSXu7Rs/YGLnnlwR7vQKm9OlKRd\nfz+hR/s6VeIoIyAATVS1IeGnP/2psrOzK73frFkzzZ0712NFAahbf0zPrvTMg4ysfyjAz1eOMvOz\nC04XOjXzj9t1urD6GR4BNF7VhoQBAwZowIAB+uUvfymHw6GOHTuqoKBAWVlZ6tGjx7WqEcBluvSy\nwhdZR80r+lS/n/x/zsFQ3QyPABqvWt2T8MEHH2jfvn364x//qJKSEs2fP19fffWVxo0b5+n6AFwG\n06OU72gXquOnS4zrO0tdujGshY6eqt1cLBc+SAlA41erccNNmzZp8eLFks7PCPk///M/WrdunUcL\nA3D5Kr6tcPKsQ5Z+vKwQ2Mz890BYSKCm/qqHBnT9F10f1Ew+kq5r6V/l/i+d4RFA41arkYSysjKd\nO3dOLVu2lCSVlpZ6tCgANbv0AUjVPUpZsozvdu3QWi0C/GSPvlOP3X9+f/+37Ttt3v29cf0rfZAS\ngIapViEhLi5Ow4YN0/333y/LsvTZZ5/xzQagnlQ1O+OArm2r/LbCOUe57uv8E+3/rurZEyuetJj1\nzckqPzuyfRiXGoAmpFYhYeTIkSotLZXT6VRISIhiYmJ0/HhVf7EA8KSqZmcsL3dV+Sjl8NDmejz6\nDkmq9pkH1c3ZIEkP9Li5DjoA0FDUKiSMGzdOJSUl+u6779SjRw9t375dXbp08XRtQJN3OZcU9uSc\nUuRtrfXpzsqTJfXufKM7FFT3VMPq5mxoFRKosJDAK+wEQENUq5Bw6NAhrVu3Ti+++KKGDx+u5557\nThMmTPB0bUCTdSWXFPILzumB7jfJ5lt5sqSKKZZrEuBv89icDQAanlqFhFatWsnHx0e33nqrvv76\naz366KNyOp2erg1osq7kkkJo8Pm/9E2TJV3OFMtVTensqTkbAHivWoWE22+/XSkpKRo5cqT+67/+\nSz/88APfcAA85EovKVz4l/7VTJbErIwAKtQqJMycOVO7du3SbbfdpnHjxmnr1q363e9+5+nagCbp\nH6eKjCMFknSq4Jz63fMvcjrLtf+7fOUXODz2lz6zMgKoVUiw2WzuxzAPHDhQAwcO9GhRQFNUcR/C\nZ5mVRwkqWJY0+63tKi2XwoKbqXennyg+6na1CKj6AUgAcKWYqQXwEhX3IThKzQ8+qlBafv5/TxU4\nlZH1D6367NA1qA5AU0RIALxA9U9LrN6uA8flqEgOAFCHCAmAF6jpIUbVOXnWwXwKADyCkAB4geuC\nAhTQ7Mq+QeAjqXlArW4vAoDL4tGQkJmZKbvdblxWUlKiuLg45eTkVLtNbm6uRo4cqfj4eCUnJ8vl\ncnmyZKAeVX8vQnVblTjK6rYUAJAHQ8LixYs1bdo0ORyVh0H37t2rhIQEHT58uMZt5syZo4kTJ2rZ\nsmWyLEsbNmzwVMlAvTlT6NA555UF4JAWfszMCMAjPBYS2rVrp9TUVOMyp9OptLQ0RURE1LhNdna2\nevXqJUnq16+fMjIyPFMwUI+uCwpQq5Ar+0Xf8RZmZgTgGR67kBkdHa28vMrPf5ek7t2713oby7Lk\n4+MjSWrZsqUKCgpq/OzQ0Bby82u4/9EMDw+u7xLqBH1cnvvuaavVn31zWdv4+kgT47urZfNmNa7L\n8fAejaEHiT6aAq+/28nX98fBjqKiIoWEhNS4TX5+sSdL8qjw8GAdP15zEPJ29HH5Bvdpp+ISp3Yd\nOKFTBedk1eIWhV90a6viQoeKa/h2A8fDezSGHiT68DaeCjpeHxI6duyobdu26d5779WWLVvUu3fv\n+i4J8IhL50z4v2252rz7qHHdsOAAdbsjnEmXAHjUNQsJ6enpKi4uVmxs7GVtl5SUpOnTp2vevHmK\niIhQdHS0hyoEvEPFnAmPP3iH/P1s2vn18X/O0RCge25vrQe636SwkEDuQwDgcT6WVZtBzYalIQ8d\nNaahL/qoG47S8quejdEb+qgLjaGPxtCDRB/epslebgCaOmZjBFBfeOIiAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAA\nI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNC\nAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADDyaEjIzMyU3W43LispKVFcXJxycnIkSS6XSzNmzFBs\nbKzsdrtyc3MlSfv27VPfvn1lt9tlt9u1du1aT5YMAAD+yc9TO168eLFWr16t5s2bV1q2d+9eJScn\n69ixY+731q9fL6fTqeXLl2v37t2aO3euFixYoOzsbI0ePVpjxozxVKkAAMDAYyMJ7dq1U2pqqnGZ\n0+lUWlqaIiIi3O/t2LFDffv2lSR16dJFWVlZkqSsrCxt2rRJCQkJmjJligoLCz1VMgAAuIDHRhKi\no6OVl5dnXNa9e/dK7xUWFiooKMj92mazqaysTJGRkRoxYoQ6d+6sBQsWKC0tTUlJSdV+dmhoC/n5\n2a6ugXoUHh5c3yXUCfrwLvThPRpDDxJ9NAUeCwmXKygoSEVFRe7XLpdLfn5+ioqKUkhIiCQpKipK\nKSkpNe4rP7/YY3V6Wnh4sI4fL6jvMq4afXgX+vAejaEHiT68jaeCjtd8u6Fbt27asmWLJGn37t3q\n0KGDJGns2LHas2ePJGnr1q3q1KlTvdUIAEBTcs1GEtLT01VcXKzY2Fjj8qioKH3++eeKi4uTZVma\nPXu2JGlbf3Y9AAAM20lEQVTmzJlKSUmRv7+/WrduXauRBAAAcPV8LMuy6ruIutaQh44a09AXfXgP\n+vAejaEHiT68TaO/3AAAALwLIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgR\nEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIA\nAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACA\nESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEh\nAQAAGHk0JGRmZsputxuXlZSUKC4uTjk5OZIkl8ulGTNmKDY2Vna7Xbm5uZKk3NxcjRw5UvHx8UpO\nTpbL5fJkyQAA4J88FhIWL16sadOmyeFwVFq2d+9eJSQk6PDhw+731q9fL6fTqeXLl+s3v/mN5s6d\nK0maM2eOJk6cqGXLlsmyLG3YsMFTJQMAgAt4LCS0a9dOqampxmVOp1NpaWmKiIhwv7djxw717dtX\nktSlSxdlZWVJkrKzs9WrVy9JUr9+/ZSRkeGpkgEAwAX8PLXj6Oho5eXlGZd179690nuFhYUKCgpy\nv7bZbCorK5NlWfLx8ZEktWzZUgUFBTV+dmhoC/n52a6w8voXHh5c3yXUCfrwLvThPRpDDxJ9NAUe\nCwmXKygoSEVFRe7XLpdLfn5+8vX9cbCjqKhIISEhNe4rP7/YIzVeC+HhwTp+vOYg5O3ow7vQh/do\nDD1I9OFtPBV0vObbDd26ddOWLVskSbt371aHDh0kSR07dtS2bdskSVu2bFGPHj3qrUYAAJqSaxYS\n0tPTtXz58iqXR0VFqVmzZoqLi9OcOXM0efJkSVJSUpJSU1MVGxur0tJSRUdHX6uSAQBo0nwsy7Lq\nu4i61pCHjhrT0Bd9eA/68B6NoQeJPrxNo7/cAAAAvAshAQAAGBESAACAESEBAAAYERIAAIARIQEA\nABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAY\nERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgJGPZVlWfRcB\nAAC8DyMJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJHpSZmSm73W5cVlJSori4OOXk\n5EiSXC6XZsyYodjYWNntduXm5kqS9u3bp759+8put8tut2vt2rWSpBUrVmjYsGF67LHH9Omnn3p1\nD88++6y7/vvvv1/PPvusJGnWrFkaNmyYe1lBQYFX9FHVNrm5uRo5cqTi4+OVnJwsl8sl6dodC1NN\nF6ptH3/7298UHx8vu92usWPH6sSJE5Ia3vGo73PDVNOFattHQzs/SktLlZiYqPj4eMXExGjDhg2S\nGt75UVUfDe38qKqPOjs/LHjEokWLrEGDBlkjRoyotGzPnj3W0KFDrZ/97GfWwYMHLcuyrE8++cRK\nSkqyLMuydu3aZf37v/+7ZVmWtWLFCuvNN9+8aPsffvjBGjRokOVwOKyzZ8+6/+2tPVQ4ffq09cgj\nj1jHjh2zLMuy4uLirJMnT9Z53Ze63D6q2uapp56yvvjiC8uyLGv69OnWunXrrtmxqMs+EhISrH37\n9lmWZVnvvPOONXv2bMuyGt7xqM9zoy77qNBQzo/333/fmjVrlmVZlpWfn2/179/fsqyGd35U1UdD\nOz+q6qOuzg9GEjykXbt2Sk1NNS5zOp1KS0tTRESE+70dO3aob9++kqQuXbooKytLkpSVlaVNmzYp\nISFBU6ZMUWFhofbs2aOuXbuqWbNmCg4OVrt27bR//36v7aFCamqqHn/8cbVp00Yul0u5ubmaMWOG\n4uLi9P7779d5/VfaR1XbZGdnq1evXpKkfv36KSMj45odi7rsY968ebrrrrskSeXl5QoICGiQx6M+\nz4267KNCQzk/HnroIU2YMEGSZFmWbDabpIZ3flTVR0M7P6rqo67OD7866guXiI6OVl5ennFZ9+7d\nK71XWFiooKAg92ubzaaysjJFRkZqxIgR6ty5sxYsWKC0tDTdeeedCg4Odq/bsmVLFRYWem0Pfn5+\nOnnypLZu3arJkydLkoqLi/X4449r9OjRKi8v16hRo9S5c2fdeeed9d5HVdtYliUfHx9J53/mBQUF\nKiwsvCbHoqqaKlxOH23atJEk7dy5U2+//baWLl3aII9HfZ4bVdVU4XL6kNSgzo+WLVtKOn++jx8/\nXhMnTpTU8M6PqvpoaOdHVX3U1fnBSIKXCAoKUlFRkfu1y+WSn5+foqKi1LlzZ0lSVFSU9u3bV2nd\noqKiiw58famqB0n6+OOPNWjQIHfKbd68uUaNGqXmzZsrKChIvXv39thfGHXF1/fH06WoqEghISFe\neyxqsnbtWiUnJ2vRokUKCwtrkMejIZ0bNWlo58fRo0c1atQoDRkyRIMHD5bUMM8PUx9Swzs/TH3U\n1flBSPAS3bp105YtWyRJu3fvVocOHSRJY8eO1Z49eyRJW7duVadOnRQZGakdO3bI4XCooKBAOTk5\n7vXrU1U9SOdr79evn/v1t99+q5EjR6q8vFylpaXauXOnOnXqdM1rvhwdO3bUtm3bJElbtmxRjx49\nvPZYVOfDDz/U22+/rSVLlujmm2+W1DCPR0M6N2rSkM6PEydOaMyYMUpMTFRMTIz7/YZ2flTVR0M7\nP6rqo67ODy43XCPp6ekqLi5WbGyscXlUVJQ+//xzxcXFybIszZ49W5I0c+ZMpaSkyN/fX61bt1ZK\nSoqCgoJkt9sVHx8vy7L07LPPKiAgwGt7kKRDhw65TzhJat++vYYMGaLHHntM/v7+GjJkiG6//XaP\n9yDV3EdVkpKSNH36dM2bN08RERGKjo6WzWarl2MhXVkf5eXlevHFF3XjjTdq3LhxkqSePXtq/Pjx\nDe54eNO5IV15H1LDOj8WLlyos2fPav78+Zo/f74kafHixQ3u/DD18fvf/77BnR9VHY+6Oj+YBRIA\nABhxuQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAXLVJkyZp5cqVOnbsmJ588slq161q4pqq\nbNu27bK3AVA3CAkA6swNN9ygxYsXV7vOl19+eY2qAXC1eJgS0ERt27ZNqamp8vPz09GjRxUZGan/\n+I//0NNPP63Q0FAFBATozTff1EsvvaQvv/xS5eXlGjZsmJ544glZlqW5c+dq06ZNatOmjcrLy9Wr\nVy/l5eVp1KhR2rhxo44cOaLJkyfr1KlTCgwM1KxZs9wT44wYMULvvfeetmzZotdff11lZWW66aab\nlJKSotDQUP31r3/VnDlzFBAQoFtvvbWef1JA00VIAJqwPXv2aNWqVbr11ls1YcIEbd68WYcOHdIf\n/vAH3XTTTXrnnXckSR988IGcTqfGjh2rzp0768SJE9q3b5/WrFmjgoICPfLII5X2/fzzzys6OloJ\nCQnavHmzFixYoNdee01LlizRe++9p1OnTul3v/ud3nrrLV133XV699139corryg5OVmTJk3S//7v\n/6p9+/aaOnXqtf6xAPgnQgLQhPXs2dM97eyQIUO0YsUKtWrVSjfddJOk8898/9vf/qYvvvhC0vnZ\nCb/++mvl5OTowQcflL+/v8LCwi6ad6DC9u3bNW/ePElS//791b9//4uWZ2Zmuiemkc5PCHbdddfp\n66+/Vps2bdS+fXtJ0tChQ/Xaa6955gcAoFqEBKAJq5h1UPpxLvrAwED3e+Xl5UpMTNSDDz4oSTp1\n6pRatGihl19+WS6Xy71exWyfF7rwPcuylJOTo9tuu+2ifXfr1k0LFy6UJDkcDhUVFen777+/aN8X\n1gjg2uLGRaAJ27Fjh44dOyaXy6VVq1ZVGhHo3bu3VqxYodLSUhUVFSk+Pl6ZmZnq06ePPv74Yzmd\nTp05c0afffZZpX336NFDH330kSQpIyND06dPl3T+l35ZWZnuuece7d69W4cOHZIkzZ8/Xy+99JLu\nuOMOnTx50j0Vb8U+AFx7jCQATVibNm303HPP6dixY7rvvvv0s5/9TIsWLXIvj4uLU25uroYOHaqy\nsjINGzZM9957ryRp7969GjRokFq3bu2+NHChGTNmaNq0aVq2bJmaN2+uWbNmSZIGDhyoIUOGaOXK\nlZo9e7YmTpwol8ulG264QS+//LL8/f01b948JSYmys/PTx07drw2PwwAlTALJNBEbdu2TW+88YaW\nLFlS36UA8FJcbgAAAEaMJAAAACNGEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABj9f4fo\ndQYEqmhTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mse train all feature: 9.51813e-07\n", + "mse test all feature: 1.49011e-06\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1wXOWB5/vfc7otydZby7YAI8sgM3iy2GbBZjI1nkt2\nhlxXpsykdqY8xOAUW5Ww87azM5Oq1Eyo1CTxvRCgdqtmp4rLJTvMsn+k8C4vWzUbxsxlA4Z4g0jA\ndoyRTbCxLVkSxpZttdR6s9R9nvvH49PqllpSq9VSdx99P1UpYnX36dPn5TnnPL/nxVhrrQAAAAAA\nAAAAAIAK55V6BQAAAAAAAAAAAIBiIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAA\nABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEK01CtQiL6+RKlXAUCGpqZV6u8fKfVqAMC8UX4B\nqFSUXwAqGWUYgEpF+QWUj+bm+hlfo8cXgAWLRiOlXgUAKAjlF4BKRfkFoJJRhgGoVJRfQGUg+AIA\nAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAA\nAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8\nAQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAA\nAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAU\nooV8yPd97du3Tx9//LGqqqr0+OOP65Zbbkm/fvDgQT3zzDOKRqPavXu3vvKVr2hiYkLf/va31dvb\nq/Hxcf3pn/6pvvjFL6qrq0uPPvqojDG6/fbb9b3vfU+eRx4HAAAAAAAAAACA+SkoYXrjjTc0Pj6u\nF198Ud/85jf11FNPpV+bmJjQk08+qeeff14//OEP9eKLL+ry5cv60Y9+pFgspv379+sf/uEf9Nhj\nj0mSnnzySX3jG9/Q/v37Za3Vm2++WZxfBgAAAAAAAAAAgGWloODryJEjuvfeeyVJd911lzo6OtKv\nnTlzRhs2bFBjY6Oqqqq0fft2vf/++/qd3/kd/eVf/qUkyVqrSCQiSTpx4oQ+//nPS5K+8IUvqL29\nfUE/CAAAAAAAAAAAAMtTQUMdDg0Nqa6uLv3vSCSiZDKpaDSqoaEh1dfXp1+rra3V0NCQamtr05/9\ni7/4C33jG9+Q5EIwY0z6vYlEYs7vb2papWg0UsiqA1gkzc31c78JAMoQ5ReASkX5BaCSUYYBqFSU\nX0D5Kyj4qqur0/DwcPrfvu8rGo3mfG14eDgdhF24cEF/9md/pr179+rLX/6yJGXN5zU8PKyGhoY5\nv7+/f6SQ1QawSJqb69XXN3doDQDlhvILQKWi/AJQySjDAFQqyi+gfMwWQhc01OG2bdt06NAhSdKx\nY8e0adOm9Gu33Xaburq6FI/HNT4+rsOHD+vuu+/W5cuX9fWvf11/9Vd/pT/4gz9Iv/+OO+7Qz3/+\nc0nSoUOHdM899xSySgAAAAAAAAAAAFjmjLXWzvdDvu9r3759OnXqlKy1euKJJ3Ty5EmNjIxoz549\nOnjwoJ555hlZa7V792599atf1eOPP65//ud/1saNG9PLee6553ThwgV95zvf0cTEhDZu3KjHH388\nPf/XTEjVgfJCaxcAlYryC0ClovwCUMkowwBUKsovoHzM1uOroOCr1ChcgPLCRR9ApaL8AlCpKL8A\nVDLKMACVivILKB9FH+oQAAAAAAAAAAAAKDcEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAA\nAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAA\nIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsA\nAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAA\nAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDw\nBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAA\nAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQ\nIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAA\nAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAA\nQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFQUPDl+76++93vas+ePXr44YfV1dWV9frBgwe1e/du7dmzRy+99FLWax988IEe\nfvjh9L9Pnjype++9Vw8//LAefvhhvfbaa4WsEgAAAAAAAAAAAJa5aCEfeuONNzQ+Pq4XX3xRx44d\n01NPPaVnn31WkjQxMaEnn3xSr7zyilauXKmHHnpI9913n9auXavnnntOP/rRj7Ry5cr0sk6cOKGv\nfe1r+vrXv16cXwQAAAAAAAAAAIBlqaAeX0eOHNG9994rSbrrrrvU0dGRfu3MmTPasGGDGhsbVVVV\npe3bt+v999+XJG3YsEFPP/101rI6Ojr09ttv66tf/aq+/e1va2hoqNDfAgAAAAAAAAAAgGWsoB5f\nQ0NDqqurS/87EokomUwqGo1qaGhI9fX16ddqa2vTYdaXvvQl9fT0ZC3rzjvv1AMPPKAtW7bo2Wef\n1TPPPKNvfetbs35/U9MqRaORQlYdwCJpbq6f+00AUIYovwBUKsovAJWMMgxApaL8AspfQcFXXV2d\nhoeH0//2fV/RaDTna8PDw1lB2FQ7d+5UQ0ND+v8/9thjc35/f/9IIasNYJE0N9erry9R6tUAgHmj\n/AJQqSi/AFQyyjAAlYryCygfs4XQBQ11uG3bNh06dEiSdOzYMW3atCn92m233aauri7F43GNj4/r\n8OHDuvvuu2dc1iOPPKLjx49Lkt59911t3ry5kFUCAAAAAAAAAADAMldQj6+dO3fqnXfe0YMPPihr\nrZ544gm9+uqrGhkZ0Z49e/Too4/qkUcekbVWu3fv1o033jjjsvbt26fHHntMK1as0Nq1a/Pq8QUA\nAAAAAAAAAABMZay1ttQrMV90JwXKC928AVQqyi8AlYryC0AlowwDUKkov4DyUfShDgEAAAAAAAAA\nAIByQ/AFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUoqVeAQAAgJn09hq1t0cU\njxvFYlY7dqTU0mJLvVoAAAAAAAAoUwRfAACgLPX2Gu3fH5W1RpLU32/U2Wm0d2+S8AsAAAAAAAA5\nMdQhAAAoS+3tkXToFbDW9QADAAAAAAAAciH4AgAAZSkeN/P6OwAAAAAAAEDwBQAAylIslns4w5n+\nDgAAAAAAABB8AQCAsrRjR0rGZIdcxljt2JEq0RoBAAAAAACg3EVLvQIAAAC5tLRY7d2bVHt7RPG4\nUSzmQq+WFnp8AQAAAAAAIDeCLwAAULZaWqweeCBZ6tUAAAAAAABAhWCoQwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAA\nAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAACh\nQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAA\nAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAA\ngFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8A\nAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAA\nAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEJB\nwZfv+/rud7+rPXv26OGHH1ZXV1fW6wcPHtTu3bu1Z88evfTSS1mvffDBB3r44YfT/+7q6tJDDz2k\nvXv36nvf+5583y9klQAAAAAAAAAAALDMFRR8vfHGGxofH9eLL76ob37zm3rqqafSr01MTOjJJ5/U\n888/rx/+8Id68cUXdfnyZUnSc889p7/5m7/RtWvX0u9/8skn9Y1vfEP79++XtVZvvvnmAn8SAAAA\nAAAAAAAAlqOCgq8jR47o3nvvlSTddddd6ujoSL925swZbdiwQY2NjaqqqtL27dv1/vvvS5I2bNig\np59+OmtZJ06c0Oc//3lJ0he+8AW1t7cX9EMAAAAAAAAAAACwvEUL+dDQ0JDq6urS/45EIkomk4pG\noxoaGlJ9fX36tdraWg0NDUmSvvSlL6mnpydrWdZaGWPS700kEnN+f1PTKkWjkUJWHcAiaW6un/tN\nAFCGKL8AVCrKLwCVjDIMQKWi/ALKX0HBV11dnYaHh9P/9n1f0Wg052vDw8NZQdhUnudlvbehoWHO\n7+/vHylktQEskubmevX1zR1aA0C5ofwCUKkovwBUMsowAJWK8gsoH7OF0AUNdbht2zYdOnRIknTs\n2DFt2rQp/dptt92mrq4uxeNxjY+P6/Dhw7r77rtnXNYdd9yhn//855KkQ4cO6Z577ilklQAAAAAA\nAAAAALDMFdTja+fOnXrnnXf04IMPylqrJ554Qq+++qpGRka0Z88ePfroo3rkkUdkrdXu3bt14403\nzrisb33rW/rOd76jv/3bv9XGjRv1pS99qeAfAwAAAAAAAAAAgOXLWGttqVdivuhOCpQXunkDqFSU\nXwAqFeUXgEpGGQagUlF+AeWj6EMdAgAAAAAAAAAAAOWG4AsAAAAAAAAAAAChQPAFAAAAAAAAAACA\nUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAA\nAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAA\nAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEArRUq8AAGB56e01am+PKB43isWsduxIqaXFlnq1\nAAAAAAAAAIQAwRcAYMn09hrt3x+VtUaS1N9v1NlptHdvkvALAAAAAAAAwIIx1CEAYMm0t0fSoVfA\nWtcDDAAAAAAAAAAWiuALALBk4nEzr78DAAAAAAAAwHwQfAEAlkwslns4w5n+DgAAAAAAAADzQfAF\nAFgyO3akZEx2yGWM1Y4dqRKtEQAAAAAAAIAwiZZ6BQAAy0dLi9XevUm1t0cUjxvFYi70ammhxxcA\nAAAAAACAhSP4AgAsqZYWqwceSJZ6NQAAAAAAAACEEEMdAgAAAAAAAAAAIBQIvgAAAAAAAAAAABAK\nBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAA\nAAAAAACAUCD4AgAAAAAAAAAAQChES70CAABUkt5eo/b2iOJxo1jMaseOlFpabKlXCwAAAAAAAIAI\nvgAAyFtvr9H+/VFZayRJ/f1GnZ1Ge/cmCb8AAAAAAACAMsBQhwAA5Km9PZIOvQLWuh5gAAAAAAAA\nAEqP4AsAgDzF42ZefwcAAAAAAACwtBjqEADKCPNHlbdYzKq/f3rIFYuxjwAAAAAAAIByQPAFAGWC\n+aPK344dKXV2mqzhDo1xASUAAEC5onEVAAAAlhOGOgSAMsH8UeWvpcVq796k2tp8NTVZtbX5BJMA\nAKCsBY2rzp3z1N9vdO6cp/37o+rtZahmAAAAhBM9vgCgTDB/VGVoabF64IFkqVcDAAAgL7M1ruKe\nBgAAAGFEjy8AKBMzzRPF/FEAAAAoFI2rAAAAsNwQfAFAmdixIyVjskMu5o8CAADAQtC4CgAAAMsN\nwRcAlAnmjwIAAECx0bgKAAAAyw1zfAFAGWH+KAAAABRT0LiqvT2ieNwoFnOhF42rAAAAEFYEXwAA\nAAAAhBiNqwAAALCcMNQhAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAA\nAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAK0VKvAAAAgCT19hq1t0cUjxvFYlY7dqTU\n0mJLvVoAAAAAAACoIARfAACg5Hp7jfbvj8paI0nq7zfq7DTauzdJ+AUAAAAAAIC8MdQhAAAoufb2\nSDr0CljreoABAAAAAAAA+Sqox5fv+9q3b58+/vhjVVVV6fHHH9ctt9ySfv3gwYN65plnFI1GtXv3\nbn3lK1+Z8TMnT57UH//xH+vWW2+VJD300EPatWtXUX4cAACoDPG4mdffAQAAlhJDMgMAAFSOgoKv\nN954Q+Pj43rxxRd17NgxPfXUU3r22WclSRMTE3ryySf1yiuvaOXKlXrooYd033336ejRozk/c+LE\nCX3ta1/T17/+9aL+MAAAUDliMav+/ukhVyxGhRIAACgthmQGAACoLAUNdXjkyBHde++9kqS77rpL\nHR0d6dfOnDmjDRs2qLGxUVVVVdq+fbvef//9GT/T0dGht99+W1/96lf17W9/W0NDQwv9TQAAoMLs\n2JGSMdkVR8a41tQAAAClxJDMAAAAlaWg4GtoaEh1dXXpf0ciESWTyfRr9fX16ddqa2s1NDQ042fu\nvPNO/fVf/7VeeOEFtba26plnnin0twAAgArV0mK1d29SbW2+mpqs2tp8WlEDAICywJDMAAAAlaWg\noQ7r6uo0PDyc/rfv+4pGozlfGx4eVn19/Yyf2blzpxoaGiRJO3fu1GOPPTbn9zc1rVI0SssqoJw0\nN9fP/SYAmEVzs3TXXaX4XsovAJWJ8gtYGhs2SOPjuf/e3Fyz9CsUEpRhACoV5RdQ/goKvrZt26a3\n3npLu3bt0rFjx7Rp06b0a7fddpu6uroUj8e1atUqHT58WI888oiMMTk/88gjj+g73/mO7rzzTr37\n7rvavHnznN/f3z9SyGoDWCTNzfXq60uUejUAYN4ovwBUKsovYOls2WJ0/Hg0a7hDY6y2bEmqr4/e\n6YWgDANQqSi/gPIxWwhdUPC1c+dOvfPOO3rwwQdlrdUTTzyhV199VSMjI9qzZ48effRRPfLII7LW\navfu3brxxhtzfkaS9u3bp8cee0wrVqzQ2rVr8+rxBQAAAAAAsBSCIZnb2yOKx41iMTcPKUMyAwAA\nlCdjra24OzVSdaC80NoFQKWi/AJQqSi/AFQyyjAAlYryCygfs/X48pZwPQAAAAAAAAAAAIBFQ/AF\nAAAAAAAAAACAUChoji8AADBdb69h7gcAAAAAAACghAi+AADzQriTW2+v0f79UVlrJEn9/UadnUZ7\n9ybZPgAAAAAAAMASYahDAEDegnDn3DlP/f1G58552r8/qt5eU+pVK7n29kg69ApY60JCAAAAAAAA\nAEuD4AsAkDfCnZnF47nDv5n+DgAAAAAAAKD4GOoQAJC3UoY75T7EYixm1d8/fTvEYuWzjgCAypTr\nGtjcXOq1AgAAAIDyRPAFACGy2OFQqcKdSpg/a8eOlDo7TVaPOGPcPgAAoFAzXQPXrJFqakq8cshS\n7o10AAAAgOWCoQ4BICSWYv6tHTtSMia7Amcpwp1KGGKxpcVq796k2tp8NTVZtbX5ZRXMAQAq00zX\nwJ/8pEQrhJyYBxUAAAAoH/T4AoCQmC0ceuCBZFG+Iwh3lro1c7GHWFysFtktLbZo2xoAAGnma93V\nq0u8IpjVUtyHAQAAAMgPwRcAhMRSzb9VinCnmEMsVsKwiaXEME2Vh30GhNtM18DVq0uwMphRKedB\nBQAAAJCN4AsAQmIx598qRsX6QpZRzPmzaJE9M0LBysM+A8Jvpmvgv/pXJVwpTFOqeVCB+aLBDAAA\nWA4IvgBgCSzFA2Yh4VA+61WMivWFLqOYQyzSIntmhIKVh30GhN9M18DWVqmvr9Rrh0AxG+kAi4UG\nMwAAYLkg+AJQMSq1dWIxHzBn2wbzDYemrldXl9GBAxFt3uzr1lsnP1uMivViLKNYQyzSIntmhIKV\nh30GLA/MIVn+SjUPKjAfNJgBAADLBcEXgIpQya0Ti/WAmc82mE/FWOZ6DQ5KH37oSTI6ccLIWj+9\n7IVWrPf2Gr31VkRXr3qqqbFqbbWqr7fzWkYx0SJ7ZoSClYd9BgDlg4AS5Y4GMwAAYLnwSr0CAJCP\n2cKjclesB8xib4PM7+/pMZLcv8fGTNayZ6pAz6diPQjrRkak0VEX1n34oadEwuS9jGILWmS3tflq\narJqa/MrIkBdCjt2pGRM9nYgFCxv7DNUgt5eo5dfjuq551bo5Zej6u2lghUAFqqQsnUh9/UAAACV\nhB5fACpCJbdOLFaPjGJvg8z1CsIuSaqpmVyveNxo165kwT2kgrBu/Xqr/n4rychaqbvbaPNmv2SV\n85ktsit1CM3FwDBNlYd9hnIztUzduDGlgwcrs8c2AMylVPeRhY6GwcgHWI543gOA5YngC0BFqOTh\nvIr1gFnsbZC5XjU1VqOjRsZIra2Ty4vF7IIq1oNQrqFB2rrVV0+P0diYUW2t1X33JadVjp49u7QP\nJJU8hOZiWc7DNFXqQ/Fy3mcoL7nK1AMHIlq/3qqhYfJ9xZxPplLPWwCVr5T3kYUOpU6DGSw3PO8B\nwPJF8AWgIlRy68T5PmDOVIlX7G2QuV7GGJ04IbW2Kj3/VuayC61YzwzrGhqkO+6wkqwaG/2sHgDn\nz3t64YWotmzx1dCwdA8kTPCNQDEeiqmAx3KXq0wdG/PU0+NfL/8nFaPHdq7z9vhxo9ZWK2PK8zws\nl3KiXNYDqGSlvI9cyEgQNJjBcsLzHgAsXwRfACpCsVonlqqiJ98HzLkq34vdQnOxh/ybKawzRll/\n6+527+npMenK0aV4IKnkITSRW6HH8UIfimlNCkwvOwcHpcuXpdFRT5Kf1fOr0N7Kmef4qVOeqqsn\nlzk4KH34YUTd3dIdd/hldx6WSzlRLusBVLpS3kdW8mgYwFLieQ8Ali+CL4QarVnDZaGtEyuhomeu\nyvfFbKG5GMtuaXFDGv73/16ly5eltWulBx+c0NGj2ZefYI4x91+3LwYHpbffXtzzd7ZKg4WUH5Q9\npbGQc3yhD8W0JgWyy1QXQnlascJoZETq7/fU32+1dauvxsbCeitPPce7uz2NjrplNjRIPT1GktHY\n2ORnyuk8LJdyolzWA6h0pQyfKnk0DGApERIDwPJF8IXQqoSQA0urEip6itUibWrwku/8WcUObHp7\njQ4ejKq52aq52f3t4MGoGhqspMnfFMwxVlMzGXp9+KGnpiZ37i7W+TtTpcHGjamCyw/KntJZyDm+\n0IdiWpMC2WVqEEJVV1v9+q+73ldjY0bXrhnt3TtRUHk49RwPrh1Bb+GgEUVwLQmUy3lYLuVEuawH\nUOlKGT4xVxeQH0JiAFi+CL4QWpUQcmBplXtFT2+vG7apu9tTTY1Va6tNz7c1nx5IU4OXri6jF16I\nautWt7ypQUyw3M5OoxMnvPRQVPkENnOtU+Z5mEgYdXe7is/Vq32tWeOrvt691tpqFY9L69e7z/b0\nGBlj1Nrqp5c12/lbaGA3U6XBQsoPyp78zeeYzud9CznHF/pQTGtSILtM/eijiJqaJq9l69a5c6Gp\nyc7rPM/8+y9+4WnNmsm5KN21w6R7C9fUuPCrtTV7+Ut1Hs5VVpVLOVEu6wFUulKHT8zVBcyt1Ocp\nAKB0CL4QWuUecmDp5aroGRyU+vo8PffcipJPMr9/f1TV1Vajo64Fezxurg/f5GvjxpR+8IOours9\njY25nlHHjxv9yZ9MD6WmBi89Pa4y3815kj1/1o4dkz2bTp70rveumhw2aq6waf/+qAYGXGv7sTGj\nV16JaPv2lJqa3ENFZ+dk6HX4sKeBAaNk0ujCBWnbNqv16315nlFbm6/f+73JXmmrVrnQK6jcDOQ6\nfxfawypXpcFCyo9yLHvKaejFqUFra6tyBrKZ7893/y6kMnehD8XFbk260H1WTvscy0tmmXrunDft\n9Vzn40zn+X33JXXw4OTfR0akTz/1tHWruz7U17vr1diYC9R+4zd89fRY1ddPLnupWnXnU1Ytdqvz\nfM/7UrV+p1wKF/anQ/gElD/OUwBYniL79u3bV+qVmK+RkfFSrwIqwNmzXs6K5nXrrDZv9nN8AoWq\nra2uiPMyFrPq6PAUDLE3OCh1dHhqaZF83wUTHR2ebr3V9XhaSq+/HlV/v6fqareeExPu77W10h/+\n4YTefjuHOdyuAAAgAElEQVSin/40qrExT8mkC5kuXjSyVrrnnuzjub09kh7uSXJzoCSTrgdVba3V\nmTNG3d2eLl0yGhyUxsa8jPdJktHEhNJDExojbd8+/Zz5b/8tqnfeiejIEbfu4+NGvb0RffKJp9Wr\nXXh38qSnmhqjU6eMzp+PKJk08n1XwTYx4WnTJl9/9EdJbd7s6+abpc2bfW3f7mtkxGhkJL/zN9h2\n2YyGhkxe53pvr9Hrr0fV3h7R2bOeYjGrvj5TcPmRq+xJJNz+6ury0t+xVMdYUBnb3+9C01Ie55nr\n4oJWdxzGYlJ1tZRrv81n/049xyV3rO3alZrxt2aWX65XYhAuu94k+W6jhgbp1luthoaMjHHHyq5d\nhVUCLnSfLdU+z3XuLPUxVWzl8psWYz2W+rfN53yc6Tx/772oVq2a/Et1tXTxotH4uFFzszu3amqs\n/vAPJ/Rbv5XSPff4+tVf9YtyHs5XPmVVMcsJKbv8ms95X+z1yEc5XYuwcOxPFEOlPEMCwFSUX0D5\nqK2tnvE1gi+EViEVoCjMUl30F1ppN7Wi59IlF3pl9ypaWGBS6LGVGVZVV7vQqa5OGhiQhoaM/uf/\njCqZ9BSJZH7KaHTU6P77s1toTw1e+vulsTGjaNTq009NOjyLRKTTp43q6oyqq5Wef0VSuiJMyh32\n9PYa/ef/XKXz5z1NTLjlXbnigrixMenyZSmRkIaGpFOnPPX2ekqljDxPkqxWr5aiUWlkZPr6S9LY\nmNWBA1F1d0fU3+9CiJqa3Ofv1KAvvXVmCOym/o6g4ubSJaMjRzy99lpEK1daJRJSdfX8y4+pZU8i\nYfThh0Y332xl7dJXDi0kGCz0GJ/pc5nrEgSykjQ+rnQl9tT9Np/9W0hlblB+ZR4LfX2eDh+O6LXX\norpyxS0nn9/d0DAZ3m7e7Be8f/PZZ7Ptm4WGwfkIY6XnQn5TMa8Hi7FtS7G/5nM+znSenz9v0o0w\nJKUbh6RSUlubzbnMYp2H85VvWVXM9cu8/5rveb/U22kpyiUsHfbn8lasax4VxwAqFeUXUD5mC74Y\n6hChle+wVQzTURkWOpxdIHOYg+eeW5FzWLR8hqQr1voEpg7R5sIST7GYr/5+o6Eh97cbb5SqqiaX\nb3N81dQhjNavt4rHgzdOBlutrVbd3VJ3t9Edd9j0XCnWupDJvS/30Eft7RHV1Eip1OQ6T0wYjYxY\nrVpllEh4SiTc32+4wS1rdNSqsdFqzRqppkbp9Ziqt9fo4MGo1q+36unxNTbmhmn88z/PvW0XMrxd\nMCzk4KD04YeTYdXJk26oxcZGNxTjQuYN6+sz2rIlu1JxvnN+LaScKnToxUKP8dk+l/mdNTWuV6Ck\nrMriqfttvvu30KFMgmMhOPeCc+vddyMaHCz83C7EXPtsrn1T7OE2cx1/YZzLrtDfVOzrwWJs24Uu\ncyHzKOaz/JnO87Vrp7+3oUH6l/8yVZTjrJj3gKWeN2sphtnNtb0kLdocjNyjl69yHNZ5OSrFOVLs\nax4AAMBiIfhCqM1V4ZLPjXuxHyh4iC/MYlQEFiMwKdb6TA2ruruNrLVav96ty003WfX3W3V3G61a\n5XpLNTZa3XXX9FBqavDS1mb1+78/of/yX6p09aqbH6y11c2Nsn699Mkn7juDuVJOnZJGR6VDhzyt\nXWt14EAk3SsrWOaxY56amqyiUZvuteP7VpJRdbXV+LhUVeX+nkxa/eqv+jp92tOKFZOhl2R15525\nQzVrjRoagjnJ3DY4ezai7dunb9uFzFUSVND09Bhl9g4dGzOqr5dWr5YeeGBizuVMVayAVVp4BUMs\nZnX+vKfubpOeH6611aqx0dfLL0dnLIva2yMaHJz+ueAYn6ksm+3cyDzn1q93x7RkZg1aZ9u/mevg\n+1bGSMYUVrYG+8Ode5N/Hxszix7oTN2W1rrtMlVQNs1V/sRiVl1dk3Pv1dS4sqStrfBhF6cefzOp\n5ErPQityi309WIwK5YUscyEheL73OzOd5w8+OJE1x1fw92LMRTX1d50/7+nAgYg2b/Z1663zL0NK\nNW9WINc9TSLhGl8UYx7TXMfB8eOeJKv6+sy/GbW2Wg0MGF265OmGG9z2DO4Rcq13vt9H5Xr5KHXQ\ni/mdI8V8/gxjwxcAABBOBF9Y1ua6cS/2QzcP8YVbjIrAYgQmxVqfqWFVba2rqA56Ca1bZ/XRR24u\nMldx5AKh7dtzr2tm8BI87BqjrNBLci3nf/u3k1q9WursdMMVDgxIAwOeGhrcMfraa54++shTXZ1U\nX++WPzxs1NMjbdniq6PDKJl0gZfvS9Fo9rFcV2e1aZPV4KDVyIjVypXBevj63d+dvv7z2bbBb5Ok\nvj6TrmDL94E+qLiZOjxVEMQUoxJ/oZVDC61g2LgxpRdemCx3RkeNPvtMGhrytG6de8/Usqi31+jA\ngYg++igiz3PHYU2NGx6tocHPu1dXpnjcaNeuZPqcM8YNYfnZZ1JTk1Us5uv++6fvt5l670pKr4Pr\nsReRMUZbt/rq77fzLluX4ljIJde2TCTcdwbnm5RdNs11juTa5/G4C8Dna6bjr69vco6lTJVc6Vno\nuVrs68FiVCgvdUOP+d7vzNZL/6ab5u69X4jM35XZ0/PECWlgwKZDsIaG/EL1fEcayGUhldLBZzs7\njU6eNOl7h2CY3S1bXM/xhVaK5zoOurtd8OUaqShdFp86JV275hoRnDplNDDga3hY+vTToOx39ziN\njTPfc+Vz3NGYrHRKHfQi/7K52M+fQVmT2bCmoaGyG74AAIBwIvjCsjZXZdV8HijyefCmhdyk+VZW\nFKMiMNd3FlpJtRgVk5lh1csvR3Xu3OTcCfG40bp1VqmU1dq1Nv2gObUX1NTfuHFjKt1avqnJqqfH\n6OJF73pFnpG1vm6/3Q3ndu6cq8AYHTVKpYz6+qyam61qalxF1vr19vrwiCY9hF9Nja/77kuqp8fo\n3DkXZIyOugo2a61uvNFtk/p6q3vu8TU2Jt1wg69Ll1yw1t4embbN8922wYP8wMBkz5a+Pk/33Tee\n94N8UHGTOexeMAxkru8sxEIrhxZaqX72bERbtvhZvX9GR6X+fk/r1k3OwxGURTt2pLR/f1S9vRFN\nTLiecJnHwqVLXt69ujLFYjZdMXzgQERHj7q51O691w0DOTAw8+/J1Xv35ZcnK3F6eozGxz0NDEj/\n+39HdOutflbvtExTz5Evf9n1Qsx1LEiTvS7nOhYKrYDNtS3r640aG32tXq2cy5vrHDl7NqKtW91Q\nppm99WbqNTmbmY6zG25wx04lVXrOtY8KPVeLfT1YjArlYjX0GBxUuizp6jJFvd+ZqZd+S8vk8Jrx\nuMl53ciU6zp49uz0/Z75uzJ7esbj5vr+NDp82GhsTHmH6oUMtbqQSunubukHP1ih7m5PFy8affqp\n0XvvSS0tvlpabF7D7B45YvT001UaG/PSZUWu759aFiQSRqdOeRoctDp3TrrppuB6YvTZZ653+sCA\nlEx66u83qq2VGhrcdWRszFNPj6/f//2JGX/jQod8xeLKJ+hd7GByuQef+d4fFvP5s7fX6MQJLz2/\nm7vndyNGFNKrHJjLcj/PAQALQ/CFZW2uyqp8Hijm8+DNePhOIZUVC60InO0756oYz3WDXcyKyVzf\nN3X5Y2NGK1dKbW2u5XY87qm31+iTT1Lp9ZE07TceOBBRa6sbxtBcn1Crq8uoqsrollt8DQ15On06\nokjEtc7u75fGx4O5w4wuX3ZzdKVSRiMjRidPTq732Jj0i194unbN6vbbpZ07r+nll6tVUyPV1koX\nLwYPw8G289XcbHXkiJsfrLrahWVT932+27a9PaKBAZM1N9foqKvA+/738wu/goqbf/qniN56ywV3\nQY+4zO9cyEPXfHoB5PqehVSq9/YavfVWRFevugrN2293v+3oUW9azyZJ6Upla12vwytXJLdtjQYH\nXeB6ww1+3r26ApnbsqXFqqlJ2rYte/1nq4TJtV0y1yEeN7p40f07mbTXzxHXO23qcqaeI88/L/3r\nf20yQjmrgwfdMRq0Yp7r3J663K4uk/eQaTNtS88zMw6zOdc5Eo8b1ddP9sKY67tmM9PxF/yuSqmM\nyOe6U2iPnflcD/IpSxbSc2i277rvvmTOAGguwTEwdS7E4WF3zVns+52Zhthbv97X4ODkcHoNDVaD\ng9KRI9F0WX7+vPT889F0Y4+aGqvjx43+5E+SWcd2Znl49aqbszKVMrp2TVq3zgVfP/tZRGvWuHLw\nwAGrP/qj4jRYmm+ldOZ+PXlS+uUvIxofD4YgdT3C43GjwUGjpia3XTJNvYd9+umqrErseNxo61ZN\n+/7M7ZVIGLW3e7pwwZPvW01MuP0Sibh7hokJpctkyfXIHhoyqq72s3qqnz0b0U035S5H5rr20Zis\n9GYLehc7mCT4zL/RRTHL4/Z291wRj2fOM+waoP3pn06e24QVKAbOcwDAQhF8YVmY6eZ7rsqqfB4o\ncj14DwwY/d3fVWnTJj/vh/jl9IBQaEvwfCoCZ5rz5xe/8HTlyuQQO01NVv39np54wtNv/VYqvayZ\nbrBzVRgG69PZGVS82Tlbok812/c1NlodO+bJGDcUXE2N1blznsbGpEuXXAXXwICnV14x+h//I6qm\nJqs1a2xW6+6xMaPubqm11VVYul5aRtGo1YULnhIJN0zhxIQbpvDatez9MjZmdOmS+y11da431OCg\nlExOto4/etTo3Dmr11+vke8b+b5UVSWtW5dSQ4OrQGxsTOnCBU8/+9kKDQy477940Q3V2NCQve/z\n3dednUaHDkV0+bJ3ff2s1qxxLcnzrfgKjhfPM/rt307mHM6qGA9d+fQCmO1YKCRkDZY3MuLmbHND\nHBo1Nlp99pkLPxMJkx72UnJlUVAREotZjY0F+9t9Z3AM1ta6XlLWul6E/f1Gw8MuKIrFInNWsM93\nOMtc26Wx0c0Xk0gY9fR4SiQkz5MaG93nrHW90zL90z9FdOKElzU8T23tZAVvS4urzL7//vkFOpll\nWmY4cOKE61U52/GSeV0YHJROn/b02Wduv/i+1e/+7vyDkWL2QJrpOrlx49zbqJyua/ledwrpsTOf\n61O+Zcl81yMYnvTYMTes7S23pJRIeOnhMhdSWRQcAz09k6FX0DN2pmt3Psdgob3lg2EJT51yPc/G\nxoyuXvWUShmNj1vdeKNRXZ0ry6y1unjRUzxuFYsZnT8vnTzprhv/9t+Op4/toKfn2JjV0NDk75yY\nkC5ccNe7mhqrVatcWXrwYCTn0Kyzyfy91lpZ6wLuX/zC05o1yiqLpfzKw+PH3b51vVSD9xsND7sy\nsqMjonXrpu+bYFmPP16lw4c9+b5rHBG9/mQ4PByZ1nAgsyw4dcodD8ZYeZ5RMumuE9XVVomEtGKF\naxwTuN7uRsPD2b+ps9OoszP3OZFPwJ9LMRuTZQ4jmTlfWZjv0YtlsYNJgs/8G10U854gaFizdauf\nNQfs5s1+1vzYlRxWlNO9y3LHeQ4AWCiCL4TeXDffs1VW5fNAETxgJxImPQTcpUtGN9zghgabOtF3\n5vwLwfI2bkyV5AGhVDf2hVZWzFURmLmvM+f8aWvzdfhwRMmk1Nxs5Xmejh93rZJjMencOS+9vXPd\nYA8Oenr66ap074npFTNRNTe7CsBcPZgy12/q9p4pOA2+79Zb3TISCTdPhrXS4KCr4Lp2za3b0JBV\nXZ1rfV9b63qFbdpkZa3V5cvS6Kinc+fcMq5enazkSyZdZZXkgpFck85LQUt4tzwXjE0Pxy5cmKwM\nraqSGhtdZePnPpfSzTf7evfdiN57L6LRUSkalVaudA/Lp09bbd8+vQdRPvv68OGgtbn77LVrrqKt\noWHmHklTl5F53klGxkz2ivjBD6I6cSKiK1dcJd6WLb5uvtm9s1gPXZmV1efPu6GgNm2anIPNWqOz\nZyMF9f4Ijq316636++31oSBdLwDX+8Hqww89bd3qq77eXj8+pOPHPQ0Pu6Ex43E3d9u1a+64vHbN\naM0aX9Zavf++J2O86wGTOy5WrPDV3q45eztNrYQJhk9btcro5ZejWaHj3/1dlbq7s+eRsNZVHCcS\nLmRKpdy5kUy6Y+DaNVdhfeyY0de+Vq21a6UvfnFcb70VTQ9jGAzPs2qVVFU1+/HX2+vWK58gr6dn\n8hwJepHMdrwE15mBAaMjRyK6eNHNmbNypfTaa1H19LjeKfMJRjKvXcG1aWxMamx087PNp5zPdZ3M\nHEJVyn3NKreKr8WuJM8nqFqsCpzeXqMf/GCF3n8/ooEBKZUy+slPPN1wg/Sbvxmc30bd3dMbe8y0\nvFzDAn//+1UaG5s+V2SubTjX/dNCessHwxJ+9plryHHhgivXrHUNXgYHXY/iVMqVAytWSJGIdPmy\nkedJ1dXSyZOe/vEfo6qvt+rsdOdcTY0bhi+RmAxt6urccH3B/w/U1EzvETXXPgp+74ULRj//ubsn\naWtz2+PcOS+rV1prq1Vbmz9tObmOIcmd3152zn99ni+bUQa4IN4Y6T/+xxU6fNjTqVNuSNvxcVcG\neZ5UVWU1NCQdPuxllReZQ9WeORPRtWvuel5T43p4+b6R51ndcMPkfUvQA23VKte4prZ2ct8mEm7I\ntKoqk3VMZZ4TSxXw5xLss8FBLz3/WzBf2VKWZZVaCV9omZvP753am32u8iis8m10MVt5XOjQ81N7\nlQfPK9LShBWLdV6U273LcsdoOQCAhSL4QujNdfM9W2VVPg8UsZjV+fOTD8UXLrjKg6DC+Oabrc6e\n9dTdLd1xh6/WVldpk1kpXIrWTPO5sZ/vw8Vc71+syorM7RhUPlsrdXREFI26XkqDg/Z6y2MXjjU2\n+jpyxOj8+YheeSWqmhqrm25yQ8IF4WRQaSy59XOV9J6+//0q1da6Fs5zzaEx0/aWNKVSyurCBTfE\n0uioq/QyxlUsSVJTk68LFzwND0uJhKvlci3epVTKvaejw+ijjzwlk66yzy1L1+drcoaHXUWfta5i\ncKbQa5IL2uZ6n7VuqMQrV4yiUaOXX3YVbcmkp0jEyBj3fcmkVX29q7iUcs/fldl74c47U1k9X9rb\nI5JcJVsQfLl1DAIjO2tQESwj87wLetscOFCjxkZXGRqJGCUS0sqV0qFDnr7whWQ6/FroQ1dQWf3h\nhxFZK50/747Jo0eldeustm1L6eab3fcU0gslWL+GBmnrVl8/+5mnaNSoqkr6tV/z0721rlyRWlt9\nJRKuB2EwF1w87qWH1uzsNNqwwWaFco2NVlevepqYcJXAjY1W4+NGP/5xRKtWGfX0+PqN3/Bz9pjc\nuHGyEubCBaOf/jSi4WF3HFy54hoL/N7vJXXwYFTd3V66x1owj0RDg+spsX69a3Hc3++Odcn9fWDA\n9SyoqzO6etXq6lXpnXdq1Nw8tYwx6uqSbr995l63+ZSVMw2ZFpy3kuvZMPWYlIJj2VXEX77seqxU\nVel6QCl1d+ffgzEwdS61mhqrX/kVq4EBT/v35+7BOluZPvX4y5xfLTC13Cu3VrqLXUmej8WowDny\n2fv67v/3Dzq1sltjd9VKsrLRUdn4Bo0c/zM1n7pHmzYpfY8yNiYdPx7JGU739hq98EJEBw5EJRmt\nvP1nGvzc/6snPzuvO29Zr83/x7/TrT2/Pm0dcm3Due6fguPjgnlPR6ueVb9/Xt7gBr3z/X+nWJN0\n8ob/W30rjsnKalX/3Yod+790w8SvZfVKlVz5NTzsrpm+r/R/JyZcmTAx4f7nAiX3qZER1xDgzTej\nam11jS8k6cIF6ehRT/G4205ufkqpv999bnLIQBfCz9QjK9dvDn5vIuFCr6CcOH/e08qVVpcvG12+\n7HpDp1KeTp2y+s3fHJ+2vOC+IXDzzVJ//+RQxpKr0A565a5b51+f60+y1jUKeeedFaquturu9jQy\nYhSNum0SbDtj3HoMDHg6cCAybUjHgQHXSCORcPdVo6Oux3Uk4q4Pu3Yldfq0+73Dwy4wdPc2bq6v\nkyfddcbNKzrZI9kNseiC2mDbzja/22LMhZcp2GeZ878FQ7oFc5QWMlT2fCzmvfpiK6TMzef35urN\nnnns5HP/Fyb53B/OVB5L04dIL8bQ84sdVixmODXXvUu5nWdhVw73bgCAykbwhdBbyM33XDe3vb2u\nwvXQIaPxcSkadfPMpFKuotwFXlaNjW74HEnXW8i5lnHBg0opWjPlWymZz9B/GzZIW7aYvCuJF6uy\nInN7ZVY+j4y4CisXDk32xhgddfNOXL7serh4nmuZ3NtrdeqU1aZNvm6/3V4fxsNVjLn5Q9zcUsa4\nluSe5+auClpqT60Qm63XSmen0aefetcDI6OLFz0lEq4H1+nTbrilG2+0Gh21GhiQ7rorJclodNR9\nxloplZJ837Vid0MMeRofdxVYnmdVXe2WLUnRqJXnucoqyVWy5y+/4zFYp1Qq+Iyr2A96lxnjWoZH\no+53njzphqAMevp89pn0H/5DlTo7I/I8t616ekxWz5d43H3GHXP2+m91rcmvXVO696U08wNx5j4K\nhqe7dMkolfLU1+drbMxTXZ3bXq5lu1FHh6ebb3bHQjGC2u5utx8TCV0fntOVHxcvWh08aNTWllJL\nS3YvqHxlPiw2NEhr17rt09Rk0z1A3LFkdfp05HqlsE0HZT09Luy8//7pQy1KrnJ0zRq3PqOj7hjr\n6Zkc6nJw0A1H1tamnD0m77svqSNHInrppaguX3Zzw1y5YjQ05D57+bKntjabHoLs+reqp8fojjts\nugL8jjusWlv9dMW+ZNXV5SpzM+e2SSZdeb16dea8FG7dg163g4NeOoQ+cCCiP//zcZ09O3dZmVmm\nBesbDAUnTYbl1k5ug+PHXfhcX++W7fvumF250p0rV65IfX3SwICnzZsne37Mdl2a+pq10u23u/Ph\nk0+89DCvTz9dpfXrXcCZ+Vu3b5/7+OrtNXr77YiuXMkuz6Tsc6rcWukudiV5ppn20dQKnAsXjDo6\nIpJ8nTrl6cEHZ98HU5db/7mf6dFf/Bt9eq1Xisn9L3CzNNHyEx1/8yXp1D3pY97ayRDspz81+l//\ny9N/+k/ueldVZdXREdXYmNG1te/p6u0PKbWqR5LU0yMdqfmp/k9vv9b5k+HX1G04133Tkc/e19Pv\n/b3eO9cr/1qtEvVHNbGiz73Y/I4+XfWm5I1LK+Lpz4w0/ViXP39Mn736I8XOf14TE1Jzc+p6w6OI\nkklXbvo3/1z+9v9Hajyv1MAGmaP/Xqb719PXh2TSXSt932h42MoY12NacsP8fvqpUSJhtXKlKz/c\nsHxWa9darVjhKxabLDs++SSia9eye1Bm3v8kEkZvvGH0zDMrrjcgkPr7I7p61S135Up3zU6l3Dlo\njE2H9a7skv7rf3VDZgdlhAuNTHreTkn6F/9C6uuzqq6213u0uUZXa9ZYjY+7MuDataBckmpqgt5y\nnpJJFwYGvduC7Mzz3HldXS0dOxaRNHlPGNw73nSTaxThruuu8U1trdVNN/m6//6UpNSUHvieVq92\njY3GxqQPP3S98c+d8zQ4OFled3dPlu9Tt2mwDaaO2pDdSGZ6L7lCBWXV1Pkwg17wU8uyYlbGB+fR\n229HNDxssno0zXavnusalk+5vhgKKXPzeTaZ2ps9aOTW3e22UyKRff8XjLoxdRjrsMtVFk8NyPJp\nxDJVPo1Cfd/q5MnsYaUbGooXVixmw5qZ7lE6O43+/u+jWXPA0hts8S3lvRsAIJwi+/bt21fqlZiv\nkZHxUq8CKsjZs17Om9h162y6MrG31+j116N67bWI/vEfV+iDDzx1dHg6eDCqkRE3dOGRI55eey2i\nq1eNbrrJPVjt3x/V2Jiny5c9DQy4ShNrXQV50EPG81wAcOONNqu3gTFKtzLOXMdEwujMGU/d3a7H\nzubNflZvomJpb49Me5iful6S9Prr0fSk54FEwtOPfxzRihXu4XpoKKqjR13L8fb2yLT3S25S82B7\nNzS44G9oyFUOr1tntWvXwh9Eg+04OOiGo7lyxT10rVjhWhzX1EgrVrggwxirlSvd0H1DQ264PGNc\ni2fXM8r9d2jIhUVtba4SqKPDS1e0RaOuwujiRe96xVIwJ5bRr/yKr3vu8dO9etrbo+rrc62dr151\ngUF1tfTppyY9zODVqyY9/KDvu7+NjroQwPddi+qPPvKUSHhZ+y6orAqCuFRK6eAr+B1uLhH3ejTq\nemWlUvZ6Jd7SV0QHLfJra31t22ZVXW2ut+b29NJLUX38cURDQ+74Gh11QbLvu//GYlYHDkT18ccu\n4Fu92g3bl0y6CrvaWmndOlepGEgkPP30pxF98IGXPsfPn3f7vbpaOnPGaGxssgJueNik5yurqXHb\nK1je5z7nvm/XLjeHWVB+tLdHdPasp1jMlQ9T/zb1PG5vj+j0aTfcVU+PUTLpXd9nLlRKJl15sG2b\n1ciIC91uvXX6cmYSi1l1dEzOVdPf746lSETq7HRlXDJpVFtrdfWqC2BjsSDA8jQ25noifPGLSb35\nZlTt7Z5On3bzxPX1ufnCxseNVq50w2ZevWquzxnnljEy4obW/OUvPV265LZpIuG247VrRh98ENWx\nY55++cuIfN+7Pnyhq8C21gXWzf8/e28aY9d5pgc+33fOXWpfWCyuRZG0SFsUtbREWRtitaTGuGEp\nge1AgeLMBMH0RG0D1sAZdJKZdtBOx+3+0W0kBmw4XloDTKetUZrtXmxRadsyJVJDSpRIiSqSRbGK\nrCrWvt+t7n7v+ebHc95zzr11a+NO9X0Bgaqqe8/6re/zPs+z0WB6Wjy8lMdKcxyD3/7tklfpHYkA\n7e2UJJuf11hYMGhsZHJZPGsWFymH1tnJBHMkQu+8z37WQjJZRl+fhbfe0pie1kgmyZDs69MIh4Fa\nfSQ4VqZSCpcvK/T3a5dBSQkgSVReusRkdbBNXrrE9rZxI3/+6CMLyaTyGCqOI9Jt7LcPPeR4804s\nxtELAqcAACAASURBVDEgHvfbRa2/vfGGhZERjWJRuTKQ/jXOz5PVNzND75q33rJw991lj9FYKyS5\nOj7O9yHjXXs7x7PgvLqWufdGxvWad6pDnlGtd9TT4/fJyUmFI0csly1DFs3Roxb27Kn9Dmod90eD\nf4DL5vjyFxNNoqxyKJ/9IpQiGz2RUMhkKFt66ZIw1DUGBzUuXbLcogQg+dD/hcKWYxWHS5dSKCGP\njqkvoLmZ82LwGa50762tBL3+1Wv/EqcX3kYmPIJs4yU4VqbymsNpIJTDkghnUGg9A+fU/4amJoI4\nSnGMcRxF0Ou5fwLseAdoHwE2n4Fz58+A0c/ASm932c/w5kKl4AFUsRjHhsVF9hPb5jpOwLJo1GDb\nNoOtW4G5Oe3O02T0Dwz49yfrpVSKUrwjIxbyeRZEXbpkeZ6apRL7DmV/WVzDuUehsZHnS6cVxse1\nWwyjMDXF9UNHBzA9DW/caGmx0dZWxGc+U8aOHVKU4cBxeK/z85xjikUyl8Jh3l8+z3WB4yiEw8Zb\n99g25V8BjhetrQaf/7yfYJS1Y3MzXCllGa8Iaj30kINCgUDDPfc4WFzkHGBZCnfdZdDZaZDJAMPD\nFj76SKFQ0FhcZJuMxfhctm1z8IUvlJY8U1kb83Mcf/msLbS3cw7I59c/Vy4XMoaxfWgsLPDfchno\n7gbuuMOpGMtqrZer179riWA/GhzkvXOc9ecQpYDNm423zjh0yEYioXDhgkY264/3vb0aDz10ffYR\nq8WVjLlr2ZvIZzjvG5fRSdb5nj0OjPHfgciez83R77B6TLqdotZac7l7WG0slljrXrA6Wlu5P33w\nQWfJPnV8XOHwYRsjI5RRlXVCR4eDL3yhvOSam5oiGBgorvnerua61xLS74NjzsQE9/hTU5a3B/PX\nPuvv47djrKf9Xcu4UWu3etTjSqKpKVLPTdejHrdINDVFlv1bnfFVj4997N5dxqFDVkXVWVvbUp+J\nag3/aNQgn6fUV2+vxvQ0AYSLFy2cP1/Cpz7leNVH7e0G4+MAwIp+Ss4JMMLjxONMokrVJr/jm2b3\n9TGhMTTksxaKRYOvfz28olfOlcZq0gFyba+9xqq6YLVpUPqPGwMgkbA94+9acSUeTtWeMitJcwn7\n7vhxsqaiUbhm6woNDY4LXBgcOOBAKYUzZ5QnTekELpngESV7lAI6OoB9+8pQiklokeYrlfh+kkkm\nEBMJgy1b5BjKA6MOHbJw5oyFYlG8hwgapNPAE084aGoCtm8nu2ZuzkIk4qCtDR7bBuD1LS4aLC5q\n2LaBZRGMC0oXAkziaW1QKAiryk/0KcX/tyzxRxJG1s0LxwFmZjR++UuCMaEQn9HcHBPDco2ZDFw5\nPVZWDg/bKBbJgovF2F8iEYJimzbRr0m8q+hxwp9zOYNk0kappGBZGvv3lzE7q3HPPX5Ft22ToZlI\nGBeAZGW3XFsoxKTiM88sL4PX28sEYksLvN/Vqghtb/fZTKUSk6yWxbZFBimZUytVea8U1VW527c7\n6OvTmJ/XyGQoCbi4SKnIqSmObzMzFhoaeE0ENoBf/rIBlqU8n5zxcaCx0WDDBgeWRZaBJI/p4aZQ\nLNKnJZ/nO8znNQYHDbZsMZicNG5/YCKhWGSSyrLgJmspX1YsKvz61xZaWwkMEBwkWBqL0Qfv+ecL\nXt8E2L/a2hw4DhMRMzPw/GaE1WAMZbqMMejpKeOLXwzhu9+tlB8rlRRmZ8n8GBqiHFg8rpBOEyjk\nGMT3QHCbkowyz2zd6ngV5mR5WRgY8L1IAI71ZEvws01NBtGoQjwuxRMAQNnDnh5fEnG5Kudaf0un\nyWjp7vZ/x3tT6Ooi41VAvWTSwne/G8a3vlVYdp6RKuueHrIdBDgfG2PSJ1iBeytW6V6JZOh6I1iJ\nHpSxnZnR+NrXCl6fPHrU9mRyRYLPGIVXXgnjwQfzKx5Xjj3e2Lf6BW08C8DB8LBGayv7iG0TaCuV\nOD8IawfgmqW5Gcg3jNQ83Lzu84p4ghKJx49beOMNC5kMKliAwXHrpbM/wnRufE3PsWb0vIvsp/5v\nhC79r2hqImCkNecCPP4NoGW28vMtszCf+Qasg3+PpibHY3bLWCPFSbkc51n6lwHhsAOluL4JhQhy\n7Nlj8M47ZAF3dFQyt1991UJnJ7z10tQUcPGiRqEAV06Y/UAp9metOafFYnCLO5Q713EcNYaAmG1z\nfJmeNi4gBrS1Kdx1VwmzsxpzcxwbPv/5osfqGR8v4eWXbZw7pxGLEcRPJuk7a1lwwXaDTZscJJME\n3AQoKZU414VC8MC9bBYVrDZhcsRiHGObm1lgUCgAbW18Hh9+qCqkNHfudCqYX7mcctli2i3UAQBe\nXzptILLSALwEtM/opbTd4cMWnnnm+kqFyxjW0WHQ2wuIX5llkbEWBATlWmvFelmuwXuSNYIwmoQ5\n7TimYu0xOqowMkKfuGCBRS538+RlgZWlKmtFrb1JKsU568c/Drl/N+jr8/d13J842LVrqb+ryJ7n\nAlj61baPmyF1t1424Vr7xfWQkTt+3EJLC5UDZP6LRsmAr3Wto6Prl1u8nvJ3jz1WRm+vrhhzCHLJ\nvkzCVyD4uPtN3WzfsxuxdqtHPepRj3p8fKMOfNXjYxO1NiJTU5TYise1J8kyPGzwuc8Vve+IBJ1I\nbTEBxURwezvwzjsas7PaW+wlEsCRIzYmJspeoqGjwyAe114SUCm4EnJMKm/YQGZNLCY69GVPWkuO\n29PDc4kUWXu7wdAQAYBz5+iTVGuReaUbsNWMjuXaKq+b+vki/SfJiFCIiYvRUYXZWV2R9JJYz2bk\n1CkmtWVT295u8NJLNtrafL+r3l5f9i54vZEIJfDSafoWRaP+d4wBTpzQiESA3/iNEkZGLFy+LICQ\n8QAw26ZkT2Mj7/voURsPPFB25dYIipVKQLmsPTZGscikVnu78RLeAPD22xZmZpggiseZcFQKmJsj\n+MbkuXaTGY63kWts5HMulQzKZT9JaVkEeATYAphEM8Z4ybJCwWcOBeWtAOO2TeBmMb0qQ7ngh3El\nI32/MQLIyr035fpvKRSLFvbupTxSZycAEHjJZoE77yzj3nuN6/nkb0hHR5WbvNMIh/kc83mFY8cU\n9uwpY24O2LDBIJ0Gdu82GBxU6O5WGB42XmV+NGrQ2Gjw6KNlJBL+c6uVXBgdZb/dt89HVIPJ0SCY\n29OjEY9bsG2yDx3HIBTiv+Uy7/viRUqp5nJkFa3Wx0+dYvJ8dJTMq7vvLqOlxeDoURvFIhlF+bxC\nucy2FYv5UpQLC3zm4bBxPWEsjyEh7ARpe93dBq2tBm+/baFcBopFXnuxSOBf3qewCuJxfqZc1i5T\nrLJ9ChBL4JaePWRwMlnsOLyfSITJh1iM9ylyhG+8YaG93cH27WRLHDnChFcyyePaNnDgQBmFgp+I\naWkxOHIEOHKEY6iAe9I+p6cVpqcJ3KXT/I5lKeTzTOiMj/O99vbScw4QLzKFT32qhGeeYRKav+ff\nRkeZyF1cZNJ+asr3hNyyxXGlSwkGRiIGzc0GZ84ofPCBjeZmgmPBQgRg+cRqUxMlUoNh2778YnAM\nsG2DXG5lPzE5T0uLqUhqNTYCTz1VWlKs0NZmcPq09nz6Dhwo3/CE4Y2OIHs7mDgbHeU89aUvlfDc\ncyW89poFy1r63ubm+O9q3k6jowqluxNLvl8doea4WxRBcEdAjvxSbM0NjpcquaPmXxfUACbVu9hi\nPu0lsWX+XVigH1/Qiy/4TMZSo6te74qhgPJnv4r4+TcRf++rCI89hGjUBW+3fFD7O5tPo1g0Hjs4\nmyXAxXlQWN4c/5Qy7njHubqlRUFrB4uLBLKKRfZTAR8AuL6MNvbsoWfWzAy9+sgo8yV+5QYKBVlv\nKFfm1menBCVYKbNIFnM0SllUpThfZrM2nnmmjI0bgaYm4PBhG5s3lyq8xMT7U5jDhQIZtOk01w97\n9xpMTxtcvMhrlfZRLCo4joNIxKCtjR5i3/kOJRcdx+CjjzTicTJ/KR1NIIjSiAoDA8otIFA4eVLh\n5EngwgWNUIgATj5PNjDllv0IhXgsrXm9cs7+fo2REVXxbACu1aV/1IprkYiW4pHvfCeMnh7H8ytr\nbyfwOTho4cEHrz2IELz2oJyfFGYoZTzGokQ0alwfW1SoS0Sj1yYpf6V7jfUmzKv3JhxHFfbv5/p4\nZETjvff4t0gk6O9V9gC24DuQZxb02wSuvH3cLABgvQDvWvvF9ShQCa4TgmNl0IcwGEeOLF/QU+ve\nxscVFhboxyiAWkuLuWaFNdu2Gc8/Vtb/XCux+Kmx0b8nkT39uPtN3WqerTcj6t5u9ahHPepx+0Yd\n+KrHxyJqsy40+vspX5bP00MHoCF1X5+FH/yAiYSBAUo9LSxwY71tm+MyNbjQnZri5l5YM6ykpPyB\nSNTMz5Pd4TiUcFGKyVGRSevocBCNOp4HVGurg1deCWNgQFcwCJqauEHet8+gr8+vxJeNW/Uic70b\nsOCizXFoAD087Ccln32Wi7ig5rtsusXge98+g2iUyWXxJ5Jg5WVlVSpQCaittmgcH1f4kz8JY3TU\n8iSHcrnKDb0kll991eB3f7fkLcgnJoCPPmKyh8ldgwcfNO7Gmc/PtjUWFoBDh8Kgv45xgRXlgZXR\nKKXlWluBkREm8F9/3UZ3N5NihYKBbTNZpTXf+4YNBu3tjnffwugbHOTGKZ8XNg+TXmTEUO4nEnEQ\ni2nE4/T0aWkx6OwERkcJhgDKS55JdTSZSAxKABrs2uVgdlYjEjE1JEB4XZkqValbIcpl9hXLIjAi\n0nJBDzMCLxqJhMG777K/RaOUvGCQMdnSwjYYjytvQxqPK4yPE+yhz5uf5JuZ0VDK4PHH6Tc1MQEA\nfO6WRTCS8ntMDpLBAy/h+8YbFhYWfO8mpcgibGjgNQXBWz85Kr+38PzzBfT0ODh82MK770ryD96Y\nEwoRaN+92yAcZtJSkue1+vipUwrf/GYE+TxZqgAl9ZTyfWXCYSa9CX75CUX513GWJiX5OyahwmEy\nA4aGFBxHQ2sfAM7nhS3gJ3aVgivfR+BSKUkimAqAtjqxWShoWBaLDTimcjwgM43AWy6nMTjIMXF4\nWOHcOe15WR04UMbgoEapxLF1717jtheOCf39Cn/3dzYuXWK/yGT43Aly8hrm5xU2bGDyGWDCtqOD\ngF9LC1kNP/852a7iUSNzRG+v5fqJ+V4k+TxlGwGCWgAribu7+b1o1ODuuw3icXp8EWRlYq+5md5v\nSimcPw9s3uwgGuXPPT0Gd95ZRjWYTRkeg4YGeG1x926yFZLJSkmutrbVk6TBxG4wqdXe7uDwYX/e\nuHxZ4Sc/sXHPPQY7d/IzY2MaY2Oqwq/oZnpjXK8khjyj0VG1ZH4MzuHRKDAzwzZnWT7zq6ur9tze\n16eW+KmZbBvQtPL1lMolb/xKJDhfiQzucmGMQUPvV7F4518D4Wzl8XQG74f/K57Jf9pjcFSzU4KV\n8PJMAGB7Sw8wueZHWTtCeZh7fwLsOIL8Xx5EfuJhYOsJIBqv/fnwIoxhEUk8Ds/vS8Zy775K7Ktc\nG/F3xSJ9wNJpYGGBTNxUSmHPHh/UGxsjUPjrX1O2cmGhEsivFT5be/Xku+Nw3Mnn4XmZVSfxJyY0\nXnghgkKBbWXbNge5HNd3slYoFlkQdNddZTz+OFns585Z2LEDXmGYSBAvLBDMVsrBkSMWCgXg3Xe5\n3mtsBO66y8H0tOWxaLT2n9nUFCVzUyngo494/lKJbLbqxGkwpLAnnVZ4/XULd97J9V4kYjA0ZKGz\nM8hk8r1UryfzA2ASfO9eBxs3Lj3H9QIRqu8pGjWYmuIzamtz8OyzZbz2mr+FT6XI2ltc5M+trbJX\n4XOqVnK43uBVMGR8CLJfo1GDQ4cMXnhhacK8mqk+O0vQS/rb6CiLX6JRx9uDUc3D8dhlvb3aY2DP\nzXFNIkxrCcfhXmd4WHlqFWtR1rhZAMB6Ad619ou1+HWtN9bbJxcWlv4umQTefHPpNQXb4p13Ui1j\nYAB46ilfieFahNYyf/F4fX1s901NosDAz3EN9vH3m7rVPFtvdNxsxls96lGPetTj6qIOfNXjYxHL\nsS6mpqj5n0z6IFIiQakYYYHMzHAjxspcVvDv2mWwebNxGQqV1bilEtyKYSaiKBnEBKWwVQiGMNFg\n2waTk/RUeeIJZnlPnaJEx8gIjz0/zwrkZFI2zJXARTDJEVxkHj9uVRhZi+RHrQ1YcNEmmvdK+Swu\nPqOl55DzT03xeT32mIMXXyzj8GEbFy8GP8cNtjCJhodVBaAGrE3K4tAhC0NDlpd4L5WYfLZtX7pQ\n5OjIsighHifodfSo7bKkmGjp69PYtauIeJwJgVCIOu1McvP4zc1lbN1aRi7ns/oiEdfjJCnMLuWa\nZdNnK51m8pueAkxIbdjgV/7JJuj4ccv1gyMIoN2mVCrBS6JMTLACmklPJrBzOYNUSkNr5Sbs/E2W\nADbBsG0CJt3dwKZNZfT3W0gmqysob93NiUgwisxdkIkg9xoOC+gJ13NDpAIpjSQSpdmshlKsyo9E\nCCBfukR/p3IZXgJYfE5Ep//cOQtbtgAnTjB56TgES+JxJuptm5XFv/iFjXvuKWNx0WB42EYmQ7mq\n2VmyvDZt4jVOTXFMiUbZ1k+eZPLl7FmFUEgAcI1XXqG03AsvlPAHfxDCoUMhpNO+V5sAlfPzrLzv\n6TErJlleeSUMY1QFyyeX49gUCvl+LNL+1xPyLujnojE+LtXn8NhbjkMmmdbGfafKY4jx70w4i8eM\nyDtWt+ng+QQkk74A8PrTaeD++8mE/eEPbRw6ZKNQUC74xO888kgZ993HA/X2Wujro+zszIzyQOiJ\nCbIBo1EgkzGu7Bavl4ld5RU9iF/Y1JTG8eMKsZj4Z/F4i4vwZFanpjTm56X4gf8ODxO4DoeNB9om\nk0A2yzlnz54y3nrLdkFFMtBiMd+/ZHGR40UkQk+wpiaDTZsM9uwxLqBmPGAJIOvV/52Aswaf/WwJ\n3/52BMmk5Y6nBOJ6elauXK6V2E2lmJiOxXw54bEx5RZLwAM/yISsrAC/WZJTteQpgyzi1Y5d628A\n8OqrFt55x8LQENtFayvftcyPAFwgXuSUpbCB0prd3Q6efrrgMtF9aUwB9KWo5GLmXfTe+UMUmy6v\neq/FUBzpNMcjy1Ku3O3K31HKoEcdwEh+L9LhD5f8PaXI3GpvrwRKgxKYMh9O6hPoi3wf/+1vRpHO\nFle93jVH+xjw8PeAEwD+2XNAaJljhzLAfS+h0Ps70Fp5UtTVIc9E5vygNGqhAKTTBH2KRbKPhfEf\njyuMjrKIqVSSApraUQvgX2vwmsiImp2l7+zWrQajo8Dp07Yr28j5k2tLA8tSCIc53mrNAp3HHy/j\nhRdKGB9XOHjQwtgY71V8ABkKs7PAzAzXqkoxkV0ucx4ZH1funCqyzpxnW1oImto23DW2gG6r37fj\nCMjH6+nrczAzY3nS05mMQXs7vDGmtRVe37vekqo3GkSQe0okyBqVwp577nG8tbpcU5BZumULWXwL\nC8CuXQ727KG0++7dZfzwhzbeeMP2GDKxmFlzoVx/v/ZkWSVqjd21xsXVpCqDUqnB78lxf/zjUE0G\nl1LCqudBta7cj3Afxfl2YYGFLnv3smAjleIae2xMVUjcj487FRKdtd7dagDA9S6oqPX7WlENAHIu\ncWr2i2stI7fePslCP/9nkUTt6OD6ObhfrLXfBxQGBiwA16/PS/FSezv7j0j+P/qoXzT6cY7rXWBw\nq0ed8VaPetSjHrd31IGvenwsotZGJAgc5XJMWtDDQcAFAmOtrcb1dSA44jiU1jpwwGBggMnGREK5\nCVt4Mi2UbSEbKZHgxlQi6Ksklb2TkwrHj2vXhNlUmKiLHFdbG68T8CunlaqsVAwuMoeHl24m43GF\n1lanQoJL/r5hAzd9onkf9AwILuBkgSubD0C5CQcu/hIJJpc7OhwAypWpMzh5UmNsjD4ie/fSt0Y2\n6WtdNJ4+bXkgV/BzmQxZXKUSK4InJphI/bf/NoLu7jLOnqXUWDQKr+pVa+DsWY2uLsoBTU4SXBQj\ndgBIpy1MTzvYtYtAiVJsT6ywFs8JPgNhvViWQUMDje6jUUpTSiVge7sDYwjyHTlieZ8HDEol7VU1\ni/8TZTOAhgY+r/5+heFhVlgTgKlMGNUCCAhkEOhrbnawsKCWBRNu1aC8W+3kmG0ThJqdZX8Rhlgy\nSSaXZfFdT03RG6qxkd+JRh2USgqZDKX1gErwpqWF/27eDNdzBJ6UJ9lJ/G9hQRgC7LunTlno7VXY\nuJHnuXxZAaD/2vw8jx+NwpPYm51VrmcWvZtyOcpr5fP0kJI+cM89Bv39BvE4wfJ0WphXHIMef7zs\nydstl3wRmbQgY4vMKwehEKufg2zBK31X5TLvRcZFgv4+8E1mpD8OynsVGUFKaxFgFPlJAC5zThiu\nlawJ//953nhcobeXY5htE9xMpdgGtm0j2DM2pvCVr1D29ic/IfA+OcmEYjZLAHtuDq58ovE8HEol\nzhuRiHLN2Y0H0AI09V5YQIVkVyQCr4hCKTJ3RkYsWBaZPY2N8EC1dJps0EjEoLubLMfBQYXz58NI\nJpnEYxKdY2soxHfb0MB7LRSMyyCGyz7zmTWU3iVzpb2dRRlklVUm8zZuzLuSsj7A0tpaOzEmUZ3Y\ndRwmEGMx7Uk5xmLG8zisnIfl/2++5NRy8pTCIl7u2E89RWbo4cMWolFJhpFhvrhI6TNh6I6MwPOJ\nfPhhP2kcixm8+GLE86Lk3CCgsHEBSQXbJnAWlBm++24DbHsXv5j5F8h2j63tQSle58hILRZw7Wff\n3W3wzDNlHIrsw3ksBb5aTE9FgUeQBSgSmE1NBmr7Cbye+xKmx67C12ulaBsl+NW+wrPQAJ74FsyH\nv+OOIau1N8q1WpYUM3HsUYrrgjvuoFdYRwel/xYWtOsV6nve1Q4e82q8NeUc4TBw+rTG22/zGik5\nWHkPAM8lDPhNm8hUVYrA67e/HcLQkHYLrpaeS6QW5Xhy3fk8PDax/M2XUHbQ0WEwMqKRzfprprWG\nUvAKfcplMqlbWnjsYtGgs5NzzMCASEvze9easVId60nkXwmIIPLEc3OcN55/vuBJLDY0qAoAXNbN\nAmwcPWq5Xo0szLr/frLxxLezubmMV16JIpvlvNLdbQJjCrz1R7UixEcfcVxnkR7HtK1bfTnvlpZK\n0Hu5MbO1leva6Wmf3cqCJYVvfSuM++8vY3R0eSZwLfZbNqtQzXqUvRH9pZQ3Nnd0kOk+P0/lhy1b\n4LFSs1l/bZLP0+ezuxs4eVLh3DmDn/7UwlNPlSuYRCsBAFejwrFau11rGwx6R/f3K+9zAgauFtcC\nuFsOAAaAgwftJcd+4gmgt9d49zY2plwmOxfsZAtq/PEfs3qwo4PXI/tToFJK+Fr0/ern3drKQk6R\nsr/33n9YUne3omfrjYxbnfFWl2GsRz3qUY+Vow581eO2jOoJPpgsFTmNyUkme1MpAheSnCyXfXkU\ngJXz3d0GySQBCqUMduxwcN99DtraFNragF/9SpLgvleS42jEYqaCESYJXmE4hEJBDxtuHstlbk6T\nSW4ko1EmRLnZd7Bhg/HYUtGog61b4VaWaUSjDp5+2l9kzszoJQkLY4ChIY0f/MCuSOxNTdHf4sAB\npyIZGY8r9PVxc3v+PJP8ySTZbNksvO8XCvC8cc6dYxV/VxfBhbGxEJJJjeFhmpVblsH0tEY8bnDP\nPfA2YX19PjNNKnal+l3e5+XLypXl8u+JSVTK3OTz8DyWHIdVz1NT2vXLIcDV3EwwUyqTSyXjMraY\n1BbmiYAZ2awvo2gMP5tOqwBLhe9Ka+NVfZdKlEQUwKSnp4zPf76Ev/1bPveBAY1cjufo7DQeI0SS\nR5cvK9xxBzeiInlZKvnyflr7AM9aolgkI00YT45z+y14l6sIL5cV0mmCRaEQn386LeylYNLOuHKS\nDhoa6F1FoFG58n7csGrNdyl9NJFgInFyUnxLfJBcKR/oYUhSVHsghshPas0xYtcuJpTm5wmml8vK\n/YyMIexb0SgwNKTw2mtEg3bvLiMatbCwYGFxkW3csozrA2QwMaE8ltBy0kWUWBSQmMfQ2nh96lqC\noewTvEZKJvoMsEjEZ5WxLfvPKhz2/UmY6BTpGCaj+P/VZ6vN0JifF/lKBctSCIUM0mmNCxfIbvjE\nJ3jDr7wSBkD2VCwG18cMyOW0C3CxXUWjjgs6EdizbSAe9xPLch+UM1NobNSulxnBScuS+zfemDE2\nRvZmJmNcxjDbYD7PsWVoiDKWbW1wgVrlyXvKf5SKgjdnhMMEvNrayCx74w2CW9Gog8ceM3j66QLO\nnLE9iamREYX33rOxc6eD4WG4fokKjz5ahlKUPVvrZjmY2D140EYiEZS447taXCRYHUxO8jNmyTyw\na9eVjVWHDlk4d86qYDsHE7krRXBu9MNnEVcXatBjUOPVVyMIhZQLtiv09/M9zM4SOG1t5d/Gx9kf\n6M9o8M47CkAZ09PA6GgI2SyZnyzyMK4nj8KFC5YLuBg0NbFtd3cbr0Bl506DNzq+j2x8jaAXgEbT\nheZmBx0d2pU6hAdM1g6De+5hQ3+g+GUstBzFdM4HrtqwHc9u/DK+9ETJkxYLJsQI0Dn40pdK+D/e\n/yam49cJ9AKA1hFg67urf65pdl2H9aUI/aDEIP+94w6Dz32uhB/8wMbkpBUAvSojCPr7MrbrupQl\nx7Nt48qy6tW/AN/Pkz6sGqdPG7z+ehjvv295TMCrDVn3lkosglhcNK5s5PqPI+t5KXIqlfyx5f33\n+RzDYWDnToPjx5kQ//KXi1dUdb9csrDW75cD166GdXr8uIUzZxT+/u9tdz6kosHZsxH80R/lXYnF\npceSZOviIguCBKCdm1OYn7ddgJPyuydP+mMKQDb4xo0OIhGyFmUNHgRsjh3T+OgjG01NbG+x5UpJ\nfAAAIABJREFUmHIZeXyvApy1tzsekNHfrz3fTP99KiQS9CuW9UguRzbhjh0s0iJzGhWegMGiuOrx\npaeHso/ZrHg8VTKZPD/BMX89IV6/gMLCgsHUlPakITdv5ryRTApQzMIjWWsdP85CmaeeKmFw0N/L\nBGVng0UA1fPG2JjGf/gPYXR1cX2Ry1FWsa3NrAj4Vcda2ITB98h5ljLXUjgBrMxQuZpiklr9QJ5J\nPK7w8ssWTp60oJRfaCPHvv/+SvC6sZGgF9l5LPDM5eDtSQsFzruplPZUQHp6nGvKwLka9ubHEYS4\nHpKYt1Pcyoy3ugxjPepRj3qsHnXgqx63bKy0Ia2e4FMpmdgrF8ilkkYmYxCJOK7UHDcrNEN3sHkz\nmV+RiJhBs1r5vvscPPdcCT/6kY3BQY2mJkqN+Qlc5RqhVyYNqtkNTK4aN3Fu3AU6XD8xbrKKRSYD\nm5rIFGpoUNi5k9mCixfJLimX6Sd2zz2VJubd3Y5b0Vcp8UEpP78SLpdjIiKVUigWNTZsIFOrUOAm\nmOwMSi8uLHBD29MDvPUWvRra24Xdxu8MDdGPanGR19/YSD8Hy2JyU3x52toU3nnHwsAAN+SWRYaC\nsAK4cTYV77O52WBykhV9fIcKDQ1kIjQ303NNku1KKdf0XMEY47H1uroMurvJsotGec7ZWd//QN6V\nyPZIwmZhAZiaIlgiskGFAllGsmlmwklkMTUyGR8I+/f/PoLLl7mhtm1eZy4HTEw4sCyROvSro6en\nmeTO59WSRNuVJMfEC0Qkgz4uYYxseAVEIkBdKFQn/iRxod33xqSZZUnbJBguUl8dHWwjc3PA6KiF\nSEQYOcrzwaklTeU4kgSCK9nn/61QIMvQssh40Np4oHmQ0eY4TOrl8xoXLrAN9/RoPP98Ab/3e1EX\nDBIghaDv1JQG4FR45lWPhZGIg0JBoaGBzCe2A+Mym6rHitqhlIFt+2yH1SISYfsn0KM8ZmatIKir\nPJ87+rmhQsZwfaFcpoFIkynPvyceBw4dsl2PMxYJLC4SdBFZTWPYPrJZAgybNgGAg4kJC8K0q30f\n/H0mA69fA0wMhkJsb8kkE3xkixhXbgweOBYEAx1Hed59UmBRLW8qIHwux/EqEiGAbllMRto2Zc3O\nnjU4diyK/fsdJBLKA9YjEY7ZH3zAtu5X7zv48peLV7RBliRjUOIOYAGCUkxuSTHK9DQwN6fR2Qlv\nHojHDb7whZUbWq21gDD4slnxVvOZUWupwF0u2S+/Dx5DmM+zs0yyZbPwCigAeP0sm2VhBecZ5a0F\nikUmdo8f19iwgX2Q/R8e8yGVUu6c5HsJJpME0i5fZhJ3aAh49lkHg+W1g14wwNZLv4/duw0AB4uL\nHJtkzqvV51paHJRKGm1tJfyLZx/A/2z9OV46+yOMpcawvWU7fmf/C3hw829A2AOSEAsyzO+/38GZ\nhfdwbPzo2q91vWEAdA5fv+NXn87wvSeTHL//+I/DuHBBV7SFWhcpICPHGym6uLL52XGMN86tJ4pF\nFgkUiwahkMF779koFPQVjrnLXRtZM3Nz4pV2pUfyix9E3lp+L36plI01mJ836O/XaGlx8O/+ne99\nu5bk7EqszqBfYTCJWJ1QP3VKuaxZH8hfC8NH/Ch7eoCjRy3MzGgUCsb1MlVIJCy89BLZUH19leC+\nMQazsxoffBBGf79GY6NBoUDp32JR1kBSBOLPrVK8YVncgwwNaezdS2/YIGCTTAL9/ZQbT6d9EBIQ\nFiBZd2fO8HPiXRyLqQr5dInhYQu7djno79dIJITFTHlhkR1tbAQGBiq9KJXbcarHl3Ra/DGD6xm/\nP0iCutrnNp1W0NpgYkJUJfisxse55xJ1hmTSlzQGeD2JBN+zyM2Kb+wjj5QqmD+15o1CgZLHnZ0G\nMzMWNm40aGgQL97lAb9asRqbMCh/PzDANU9bW6Xv8krz45XIuY2P0+v08GH/u0op/NVfWdi61WDL\nFhak/vrXLLCkn6mApzzn/fdX3tuPfmTj+HEbuZzG/DzHkliMa572dvpqj4zw51CI/yaTyitwvFax\nFvZm9Xize3d52fHjdgchrrUk5vWMaw0+3sqMt7oMYz3qUY96rB514Kset2SsVL1Sa4JvaVFoa3Nw\n8aIFY5is7Ogw0JoMolJJYd++MqJRbszTabKKHnywjJMn4W3ctm+nHr4klc+fV5iY4GK61ia+OtnB\nTStcUAxQynFZSMqtFApKesGTgdmwgYv3hgZf2oGbJhtKKa/ic2hIo7nZr2jfudMgkXBcjwblyu5R\nBiYW4wItGuVmzLII/ExMMCEeCvE6Ojt57ERC5Pd8U/qdOwkG7ttn8P77FgoFhelpbh5TKd5PJmOw\nZw/vo6nJeJvrXE55EjvGaIRCTHxu3GhceSeep6en0otqzx6DeNxBuaywY4dxWQL0LojHFeJxC+Uy\nNzqUr1SetKT4B8XjvB96rPD+6NckZvW+D1uhQP+IhQWypchcCb5bSejzd+EwXNk6gqpS6X3uXMgD\nx0olAiChEP/L5/kuLIsbdgG54nENrc1VVYBXR1Di7toEwYlS6WoSWdfgKtw24idrl692LxbZRgW8\ndBy+N/Y3kaIzuHgRLlsHAHxvMbYNVQFi14pKJpiE+AWSmSi+E9XPTtqYePskEgq9vTb6+5Une+Y4\nxmMmWRYB/F27HG8Dd/CgvWQs3LJFoamphHfesdHWxr6xcaNBIgE0NBhXfnH5NkJZPYPGRgL1BFmW\nZwVoTbaSMLxE4jDIgBD2kjwD26asKMEa9qcrTcDy/VXej5yH44HGpUuUjDOG4KGAlgxfwmtmRqOh\noYxkksC+1qoCoFouKt8twVYfMPOTuHzfBNr4TIzXnmsxTOT+gmxDX0JSef5v8l1hIM7P850dP26h\ntRUem1SYEwKe2TavKR63cOiQgxdeWP9LkCRjUOJO5ISff74QkAUkiCOMg4YGXzJrcNDCgw+uvQK9\nt1ejv59FGMKkDTKj7r13+U4ryZBMhsUQbW3iwcU5+/77yxX3BfjMAfog8X2wuMF4Y4W833zeBykB\neKA7WXBM8ALwQHbxYvTXDMIE5HlmZwGtNTo7DWxb46//OoTE0zuArcdWfzkOsPXS/4lt0/8KE+Dc\nuGMHx4CFBfqfZjIs/pE2HIkY/MY/fgeTu76P/0eN4MPzBLq+/1s/XvV0yaSwmDm3/eTwj1EIFVa/\nziuN9Ux1ia1r+lhwnKoVjkPQ4NQpyy0GguvTVjssS7lrIP5cLnPck/UEsD7Pr2shUzs5SW+uawl6\nAfLc1HUvupFCmEKBILRlKbz8cthTQ6iWb10u6bxcsvCVV8JLWFZBeUEBrgYHNT78kAVm4ispBV2H\nDlno6MASmbcgGycW4zwzPi5Auj9nJpMGx44pzM/TL1DA/akpSjweOGAwOqqRTFJiNpXyiyb8dYs/\nzovCgYxN+TyL0X7+cwvGlDEwQGlEKSTJZv0CL8uCV7hTLHLd1NRkkMlobNvmFzHMzCwFWZJJYGRE\neeNtcL2ez7PAzXG4LwEsdHWRRUU5To1kEpifJ3A0Pa2xaZNf5JhIGLS1UcFidJTS7r/7uz5DLMhC\nVorXPD0N91mKKgSZ1KOj7JMbN3Id09npv/tolPLw8Tjfl7yjxka4bMNCTRlEmTcSCbiewfw5meQe\naGqKksmy35KoVsFYT9I+KH/vOAb5vDDaK4HB5aIaNCJjTeH8eaoSSDsOSmKOjdFHLJHQrgQqGcyp\nlIWhITK6qQDC5+2ra/C579hRec7xcb7PWIw/i4e2qKPMz/NZSnuUvazjYNX5v1ZcDUBSa31y6JBV\nwQYU1t+3vhXGk0+WV/UKvd3BsVshrgcD6lZmvN0s38F61KMe9bidog581eOWjJWqV5ab4LVW2LvX\nwewsq8qSSb/SPhymMXRPj8GZMwqNjdx4GMOKx+3by9C6spr83/ybCC5d0p53zVqyLOI1FA4btLQ4\nrgyb8hJZIoEoCS5JfnR3E/wIVkoODGjXW4znlQRdcKMgGzwusEUSQnkMNfHCUkp5CdZ8HgiFWCWq\nNT0TOjqMx4gAfFP6nh76nAHc/NEjhNeayfisCfoKKc+3DIDrh0MPm85OXntHByv1RFbsvvucKkNq\nbu7vusvBxYtkuXV1AfffX8DPfhbG4KDypJrI1DIBoEp5XkMCboXDQCymkUiQbUHAjc+qVFLu++D7\nCfqxVUYlcFEoCPCiXPBv+WD7Y4JbQDFK2QiAQ5DhWiWK1srQWV8oFApiIL42xtD1j9WvQZ6pVNsL\nSFBdIVwL1KBM5LWRgFoNLDSGUqzsUwYnTtiBcUJ5gG4mA/zWb/kV5+PjCm++aWF+vlI6FKDE4yOP\nOG6yRmFhQWFujtJqKyV2WU3reOCuyEEyUVX7mYfDwCc/6SASMejttdxxd+mz0xquFyBZne3t7JOX\nL1+d501Q5nbp3+jNZVn0t7pwwfKSbkuDwNCFC5brhwGv4nw9gK+wdmqFjBtyvzJ+rhTBc68Gwgm7\naH4eLpuYxQH0Y+P9ZLNM0BIENt73Tp+mxJ/EWjfKwSrYlhYWSShlvATD4CDwwAP83vvva4TDBhs3\nsp1daQX66KjG1BTnvdlZf1xKJlGRZK6OYDJk+3aDqSkHiYRGdzc85tszz5SX3FcsRunk+XnOKSwE\n4PONRMR30FR43gXbGOVX+f+plPgV+UCljK08TvD3lcwXYU1HPnwR2PRTwFoZVGqZ/SzuGPwmVAML\nSPIb3sH4xv+KQsMIQtketF/4KhovPozJSccFaIDGPe/gnZ5/jkJoDCgBF/uB4xP/H176n/4cD25+\naMnzlDZSS+YsqUZWvL4bGpOfXvUjoZAvD1s7gkl3/p/IuS4XwlhiIUElezNYXHO951WtfYnU/n7t\nrUlv5yiXfdCxXFb4T/8pjGiUjG/A97wVVkl15buMO8JIleKxXI5jFOAn/uNxhV/9SuMnPyFbNh5X\nSCYV5uY0Ght94B1QOHqUKg179hjPZ2p4WKGtzfcwEjaSMb4vZDAch8fO5bg+F7DasgzCYY2BAYP5\nec5ZBK6N540mUtmy9pE5Q2Rz5WcWYCj87GdhZLMsBlSK5wmC91IQxIIh5So/8Fizs8YrZmtthTsG\n+8yxs2epmHHpkuVJPgdjbIzy1eK5BRi3QI3Faj/9aQi2rTyZ6sFBfz6zLKCry2DLFjLgTp+28MYb\nBBy7ukT2kGM7GfN8j1u2GHetQwUR6RebN/M5b97sQPpjPk8QcGxMI59X2LDBBPYRfHfBtkXfNcpv\nknHly9UuLPhtNcgElf2W/+59FYxUSuHYMYWf/tTGk0+W8OyzKyesg/L3ra3A5KRBPs/2196uKiQh\nq+PUKYX/8T8sTE9TZWPXLgczMwR2OzooV9nbqwEYT56xr08jHmd/kzFRwL18Hkil6H2bzXKsZDEV\npSXZV7m+GB0Ffv5zXzIzEiGAPDamMDtLpRLHYbGktE0p3OEczHN2dKDi/lZbx1wtQFJrfZLLaYyN\ncX0T9MnO5YChIR+IB1CXp7uCqPYvv//+Sg8+oPZ7SSQUvvOdMPbuda7Ku+5WZFBdS9/BetSjHvX4\nuEYd+KrHLRm1EmHJJPDmm1zoZDKoSPQCfhVbPK5co2cew7JYbSjHFI+u7dv5+ZYWoLMTeO45ogan\nTil87WsR9Pfb60p8U46MkhVPPlkEoHDihI35eR9QkSRt0F+qqclg82YHGzf6SaNUSmF4WC9hT23a\nxA223Gt1BdLQEIGmfJ7sLm4gtbcZlo2WVMh3dXGzcuAAgQ1ZOBkDz/ers9NBW5uDHTsMTp9WKJe1\n+yyVx0gZHWVFoTEEtEQ+saGB/gTJpHI9l1j93NVFaZbjxy309BgveUS/LerrNzQodHU5KJUM/uIv\nIojFlMvWUMswbYKh3YSCVNwzQeA4Co2NTkXSgc9jbUmnSqbI2j4vFbiAD7wJOCpA3a0fa/MSuRVD\nwMf1xY0D9yRJXigI0EW5H2GASOUuAPT1WTh4EJ6USjpNebWgdCgZPkzUFAqswBU/tFxu9WcRi2m0\ntjqYn2cfFxCuVmgNNDYa7NlDds/Xvx7xNqPV4TgEoFpamFDhRk27APaVP+/Vxmhj6DfV16dX7btB\nSS05tvFOcO3bxGqg19LPr/4ZkeDlvywMEJZSJGK8QgOtTYWcUybjm85LFTcZwCtvlFergg3O5cEK\n/GCybz0V6DI3zs9zvmxrY6Ka/n8GTz65/GY+mAxpbeW8NzZGqd7qSuygvFY8biGbVWhpIXAVZIAX\nCkBzs4OmJrK5ikWDdJrJaGF7SYEL5W7pCyk+ghLSz2rNa5bFPi1Jfh17GKG7nkRx5y+WfW5Ibofz\n6/+I0YxGZ6cDe+cJ9O3558hFXJnEVmCu8S3Y6W+g/Ok3YVpH4KR2wOqcQ6GhUkpxYnEcL539UQXw\nVZ1MEeAgWLzTanZgHGtgpl3vSG0ETnx1xY+wOMVxZSC1ByL4wYQ3vf/4rhoafC+r1SKXYzJ5KaMc\nuBHzDcFXrjlmZpQHwN3uESwoGxiw0NZGmWuJ5Vgl/C6lxIeHybxvbaUccjrNfm4M/z4/LwoKnO/E\nazaXExCbIPzCgr+2bm/nnDw1RXZzPG5hYYHAJ9uRQXu7QnOzWVKMIm1D1ovRKM8zNQUkkxqRCEHq\ncJhjUblslvj2SRuzLF+SOTi+8F45rpRKBDMA2ZeI3KoURvjAnPjUFQrGZa/6DKZolEzenh6CdbOz\nGvfcwy+++66/BwkyHQsFHwwTKWIy9I27htceWCcy8yzw8AtBcjmuWyzL4MIF7a4nLBw4UEZ7Oz10\n29sJ0GWzLCBYXITno7p9u0FPTxn79hnXD5PMqWyWn4lEtOvrSuliX7UCnqJGUMKyv19715lKESRc\nWPDfjWXxAWza5CCfVxU+mEr5/qdBb6tkUuHll0N4+20LL75YwIMPVoI3Mv+OjJA9J2tJ2UNSUnr5\nwrVTpxS++c0I8nntrilZYLJtG/tFRwfXUMPDBLIefZTjvIC2AmpJ5HLKldaHW4ijvHVePq8xOekg\nHDZoajIYGgL+y38BLIv7DLLHyMoTGXjLUt78J+8+HGYxleMYtz8YPPCAvxYxZnkPNYDrgTfesJbk\nE4whsNLZiVULf2rlKsT7GTBVPnN+fzp+3PL+PxgfZ3m6YB+ZmaHP3c6d62fYVfuXT0xoz+ex1roT\n8GVHGxqooPNxA39WkmGsyyDWox71qAejDnzV45aM6uoVWbQIa2tiQlckeoM6yz/8oY3g4t62uVFh\nYoMbsmoZgjff9JN2hw5ZGB2tnbxdKcJh4BOf8KuB4nFW1+VyXOBWJ8zk+CIf+OKLeU8XnLIb3GAz\neD+JBDdLwYo2qUAaH1f49a8jHkjGKlC1ZENdLTsmVXTi0ZLPM8FGHwkywsbGuDH+5CcdvP8+UCho\niFePHLdQULAsB5kME0IAN4r0BAAmJvh7yzLuPQMbN9JoenTUryocG2MCeudOtoH+fu1Wu/usLj8k\nebp84kg2zOI9FGSHXQtGz1pCa9kcGs9fRSlJWNy+oNLtEjfqPV9JOA48zzHHgdfnw2F4XlmlEtwE\nP305Dh2y0NMjJu9kH5TLGrEYExT0nuMmKBQSmSL2lXBYeX5pwRCJtVCISSRJ3Cx9dsbtS0w0dHU5\n6O528MorYY/9EpQ4lGOLx10uR6mwXbsM4nGyZIKMmPXEarJkgbtbN2srKBd1O4WA7cYYjwksLDfK\n7hoUi3Ar9DkWz8/Dq+zu6WH1dTyuK0CMlTbKK1XBBufyoA+YJIFW80gwxngeN8awiKJQYIFFPq+R\nzwvjwKCjw8Gzzy5/rOpkSGsrsG8f1wTV1y9Jmg8/tLB5s4NUiok3ynjKp3i8bFbDGFax79xJD56J\nCQfJJMf6hgbebz5PkNqylrJ8JZlbdfdQSvwElSe5a9sKoWP/EcXthwG7RuWEo4AP/xdk9n8P2fYR\nzOV2wInMoRCpBLScljEUnv7fgTAHhDKAxVLtbcFYamwJwysS8ddRAmoGZc4eKHwFF0N/hyIyNY95\nQyKxGfjvfwNMPLzsR8R3T2uCm/RdrQQnffat8diUDQ0cp9eiCkBZZVUDULsRYbzrXFi4OobtrRYy\nrgFMvheLlPAU+VLAZ5UEY3xceRJtLExTLnuJcsJHjmgsLGikUjw42VJSRGJQLmuPheQ4BEjyeYOm\nJuX6+cKVIvST9LEYjxEOEyC6fBnYssUvggsCQpZFxhPAPcrwsPZkVHM5oL8frpw7PxMOG3fcV978\n5TgOolEW0lDVQHngUbGoUCgYV84Qrvy3cT2TeP3NzQaLi74sp6wRhPXa0ECG5OKiwsICwbmmJuCx\nx0r43OfKiMdtnDunPRBgOWUDWfsA/pohn/elpxlLv0vJS0reyri4sKDQ3Mzvvv667fqPythv0N1d\nxtmzNlIp3k9jI9/LvffKMSkP+MlPOjh82EahQDn3zZs5j0WjPtAnBZTGkKGVSNDTmJKGxvXypbT5\nxATXYrZt0N7Oc+/da7C4yEK88+cVurqAp58u4mc/C2Nhgd5W5bLxCg1LJa7NvvvdML71rcISz2sy\nFy3X59fxikx6egw+8QkH+/bxIdeax//sz8KYmdEusC9zs3ILTBwcO8Y9sUhlZzIa+/c7mJggM7Fc\nNh4gpQNbGq35LrlvMx6reX6ev9u/3+DYMRuxGNDZabl+0gbT0xbiccdtE1xvptPB/RPB46YmvsMt\nW7gGSKU0hoZ47r4+C7EYlVQAuJYAGoODGl1dDlpaFBYWKBUazCckk8D779t44AF+rxokqTUP+scX\nkJi/kyJLpfgeJFZiua/mUXY7ytZJO00klMeAGxjQSCaddTPsJF8gweIGXdGuq3NIAkAGQeaV1rS3\n2zNeqQBtNRnEetSjHvX4hxJ14Kset2RUV6+MjbFarKfHqfASicUU7ruvslL7scfKeP11mtDbtkFb\nGyvdH320jJ07KdcgEQTUYjEe7+RJyzOYX5/3AqUFDx+2MTnpyztJNDTAM4oGZCNNffJ4HDh5kgDZ\n7CylIHbsoE+MMdxoSUX7iy8Wai7Ajh+3XK19VtjRm6f2tRaLUgEI7NzpoLER2LHDQU9PGR98YLkb\nPB8g7Osj8NXaapBO++9FGFCSXI9G/cROocCNnlwDN1QO2toMZmbg3hf1+20bWFxkZa5SBs3NvI/m\nZt8rKZut3CD7sXa2Fr1ZrizJfqUhlbm+JE/wr/WFZz38fmRZZLHk88oFKViRbdv0AeTGnpvt06eV\nl9ASo/bpaTJhCF5TPjEcNl6f0Vrk7YJVgZWyW8b4cm382f9/pZi4sG3j9nuDT33KIJnUePddC1NT\nlTJL1QnWxkbj+RrGYsBzz+Xxn/9zFMWigythFQZ9S+rhhzyPTAaerKwxTAzt3+8gm4Xnd8mxmCBQ\nLKa8BKEwJaq9R1aLWkbvQSlEzt1ATw9libu7jeedUy1BdOiQhddeo/RSaytlk3I5hY4Ox2UKshgk\nlwO2bHGWnRslVpKDqb6Hl1+2kUxqnDtnIZWi3wgTxUvbKQspDJqbHWzaRMZDKmXw7rtkoKTTlEoM\nJgWV8v1Al4+l4LMUr9gTnwaGngT2/HLp17QBHv4OTDgLAyAHAKVw7VOEq1Bwu/YF6VIDvvRXLyCp\nRtBqdqAx/lWEZx7ykoWUdDNeog8AtuIh/P59f4o/Oft7yJYD51kZI1p7pNuBUgPQNln77/HtwF8e\nXBH0Aghm0R+Jay8yWZYm6sVbTykm/EUSTlgaq41DN4vdLcBeJCLMk4/HukPmJelTnN8ULl4EOjo4\nZ4bDBtHoUnm348cttLRQgm5mxmfyRaMsxFpc1Ein2SbImDIuS58KEsLKYVGHL2lZKBhXUly5yXnl\nShWTGSigaSjEcXlujoB9sVi97+D5Zmfp8yegKeB7lU5NKY/x0tjI6xAGojBMHUe5awgHWhuvCMZx\nxHfOLwoplUT+kD8vLprAHKtcr8LK8YhAnL8nSKcNXnopgoMHHU/emyDb8u/xaufvIKu/XJZ+qTwF\nCa2phDE7q3D5so1w2FffWFykz/Fbb1HCkjKXBiMjlvduy2WO321tDgoFheZmoKPD8TyhEwnu34aG\nNBYXlbufUa6HmM9QMoZrOq05L87NaUxOarS3E8QcGQG+8Y0oIhHuFxMJhURCeQVFwhTL5fwkf5DN\nMTrKfdvMjIZlSdvgHH/gQO15XObZw4ct5PN8x7bNPXNjo0E6Dc8+IJNhOwyHjbvXJfuLcsraYwkK\nMCUFHtKGRNa9WIR3fZOTlMe2LJG9VF7faWhQHrPOcQjEsk9xHdvSojzwsqPDwb59ZQTXkaL+cvgw\n77e1Fa7kpUZbG9nJPgvd97YeG/PPKxH0+AsynaNR4L33eE7xUVMK2LWLSikbNrD/9fSYChlgWXOs\nZT0SjGshW3czQB1pp0EGnL/GXDv7KB5XFWsMiVxOVbTr6hxSLqeWgI9yvOq4UdKA1/o9LFeAttZ1\nbz3qUY96fNyjDnzV45aM6uqVxkYf9ALgeYlUV2qPj7P6TCrtQiGgtdXB3r0GO3dys3HokOUZX2ez\ncKuwDd5/X7vVQGaJJMdaolRSmJ+nL9X8PPCLXyi0tzvo6ODmq1SirOLiIo8bDnMTZFmURXr7bQv7\n9nHTNTurXClGLsI7OhSiUQePPlqukLgIBhlmwgDhhnel65fN/J49Du67j4mBQ4csXLxIPfVNm2Tj\najwW2cSEhjF6ybPhxo6fcxzjSTtGIvT+KZcV2tqYnAQULIuMsXRauRr83EAsLvJ9lEqyOaIsCcG2\ntb+L5aKWx8D1Dsvy/cTqUY9aIWCRJDa6ux0XKCUIEYkAly8Dc3MEvFIpjjexGDfkra3G9exTroya\nX1nL4/hJLvH5kP4U9PwABExiUkjGQUmcWhYrbltbjXtOVlqOjvqsMoK8S5NZjsNEDhliBNV/9asw\ntm+n8flKibGVgomSa5VJ/ziF8phfwsC9+24H//SflrF7dxmDg5T5aW8XFpafjEin6RMxW6zEAAAg\nAElEQVRZnWBYbaO8XMLgqadKGBzkXL5rl4PPf55SnS0tTNIODS2tqH75ZRvnzjFZ0tbGIpVSibJh\nXV0Ge/dSxqitjXK8X/96YQlwJusHxzEuSKbQ16fQ08M1BCvkycQ+fDiCXI73PzPD5NvkJJNWnN9U\nRQLTe8pK2FoKtu1AKYOFBeDeex389m8X8corYVy4oCuSywJmrTfha4zPMMlkFPDmHwI73wRCNTrP\nEkDrCjsYgBDC6J37EIuhWQDAOI4huu8t3Jn77xgbO4B9+1ggc889HLc6OkzAa+1fInN5P/524gcY\nTY2hsbADheaLWOw4sfYLKFtAZgMQ2wnkOoFwBkj0+PKF/+w5oD3AZiuGgaGngDe/sSroxVAV/0+2\ne2UE/bgEwBCvGfEu5Bi49ttae5grliaUYgW2u4/HOBmJGFhW0CeLa30WjLCvz84qJBIGmzYZfOUr\nSwFxSXi2txvv3ebzwKVLGpmMrpCpFv9X+tb6xSCShCdIymMo5SfeTcWi1Qe1KOUH1/PL/5vWJgBu\nUQ6spYUFcMsF26HyAJfgKcvlILvb8q7ZmEp5Tvl9uUwgyLZ5LYWCz/wWyURhphaLymV/kUVeLIrM\nI/8/m9WeN6iA9dcrZA1DyVsgmFgHBGz0/U0JQPuFeePj2pWqNa6fo/+efT807TL6DO6918EDDzhe\nYcef/mkYIyPct0hxHfdCvmS1FDk2NBg8+qioXPD5TE4Cvb3aK2AyxmBx0QeOWNxUya6V9htM3Ody\nfN+NjZwrBcRsauJcvGULG4fM4zLPnjxpefuuUknYqfCk7Ak2+CAuZblF7lNVeCNbFhnNoZBGqcRx\nq1TiHiif53MNhXyALZMJSPhqeg8Kg7ZQ4N87O8mkZHAM4/M0yOXIYs/lgCNHbOzdS8+3VEphZkZ5\nz6ShgUUN3d1+nxsY4DuYnFSu7DPXyrkcsGfP0rVOPK6WyMZRbpnMsQbXS5MgFy0Ufv/3CxVrIqCS\n5b6cPN1ycbWydTfL70naafWaUn5eK/uovd1USGZLRKOmYn1anUPq6eH3guCjHK86boQ04I18DyvJ\nINajHvWoxz+kqANf9bhlI1i9cvCgXcHUkgguWsbHFb797RDee48LHUnuUnbC8Xxxtm83GBujvMTI\nCBffCwsai4sAwIpNrZngBdaXyLBtVq2JBwCr0RU2bTLI57kY96vhuDnhZoifSyaNZ6Q9NqbwyCOO\nW3FPmcaVZJxY1cMKxEiEi/2VwDulDD796TLa2rh5+/a3Qzhxgh4v5TIQi1lIJh0cOMCquIkJJt79\n7/Nf//hS2edLMikFdHfzXLt2OXj/fRosU8JNNs4iw+L7HBUK3JwMDcnmee3vYPW4kYkfbj7z+Vtb\nbq8eNyOqk5AGra0O7rrLQWcnsHu3g8FBjVOntCs9SDm6YpFAMj0w+P1kUlWwCSyLfS4cZsJCKm4l\nkSMJkaBnnYxLgMgi+m1Wvh+NwvPnAigzRD9FyubNzwOAQmcnDeoFaJNrcxxgelohmdS4cIEeSJSk\n8pNS6w1+p3afvhZsMHkutyurTN5zaytZu0ND2gOj3nyTEoKLi37lvjAfQiEWlkisZaO8XMJgcLAy\nYXDwoL1iYkGOIxXbPhvDQUcH2d8tLY7HRtu1y1nWsJ6sbgtKscJ7+3bjev7w3/Z2g/feszAzo73C\nCPHqWU5eq9bP/J5GZ6fB9u2UOezttZDNwvP2KRT85OGVJYKrwI/xh4Hhp4A9f7+2r5fClQBYvhGI\nrC5DqJ1GLOrZit/lImOYuuP7UCNfwens95EOjaIptB3/+sC/RnvxEcTjypWNVmhpeRh7+h5B86TG\nTPhdJJ/8/NKTZDuAsgKaF5b8SZ17Hvrv/puXLJUxzYu/PAg8/D2gbdQHxNYEeNWOlfu68tgXfsIW\nrgfNFZ9ylbiywh+5Lkm6YwWPn9spmpqEVWJc1hXZKAJ6yXpy40ZKoB07FsLlyw609ivrpQpe5FdZ\n2MWiEmGp1GLoGWM8sItR+UyXerf583xQyjCd5t+jUXpdindtMMheWvl9BaXTV1My8Nmj/nXJ/Gbb\nLFgzhkyzbDaYKPWZOz7wwOeTy3Ft4rPCfXnx1YrvrlX4Molre1YS/vvlfqlY5DgtIJ73V+U/X66B\nymhvZ7L+z/4sjIkJf55i+6t8l1x3cZ4tFjVef537Hplf5+dZbJLPk5HU1KTQ3U3ZeLYT31dMWCuy\nBguyOaJRMpLJ2GJbTSS4rxJgIZUyiMWAH/84hPff15iYUDh3jhKHxSLHVwEGjeG5ZmZ4HSLZKV5s\n5fJSIF2kuY0xLshlPLl7mb/8+VytoMChPHnuZJLglzAh02kWS7a0OO79is+twpEjwBNPlDExwfeR\nSiHwPjkH9/Q4mJzUSCaVJxc6M0MP6WIRePDBElpa/L0uVRaU67NJYDEaZREK/byADRsMHnig7BbT\nUFJxeFjhscfKK3qgrvS3WnG1snU3y+9J2mk1aCXSg2tlHz32WBm9vcpt8z7DrqdnKas3mEOqBpr4\nvdpr2hshDXgj38NqPrz1qEc96vEPJerAVz1ui6hVsZJKMaH04x+H0N5Og9wTJ2yUy74EmGwctm93\nMDhouewIeGDSxASlJoKSNiLhtXmzg7k5X7NbNP4p47f0GkMh4+no2zaThgTeDAYGmPASMI0G0QSo\nCgWDLVu4URDta4Ayf2NjCnffvTYDWHlGSnGhUyxywyEVfIAvrxiJGNxxh4PHH/eZXidO2MjlmNQp\nFLixmZ/nIr6jw8HiolXhD1a9oZUNbzhsXO8v423uROZh926/WnZmht8rlci4y+WEZSDVvLgOoNeN\nDaXIRrmR0or1uF2ictOjFJmNrFClD0RzMzf8c3PwWJCS3KHskPGqjPN5v7/YNqt8i0XjendU+ogJ\nGFLtxeA4xvXEqEzcaM0q+0iEldNzc0ySURqM3hpkFhmXmUM5sGiUY7AkPCTpVigoz09MfB8A8aYK\nPpPV+3+wKh/gMSXxFg6jJntj2TfiFSU4CId5z6mUXjWhdiuHMawy37qVjKdf/pLSfX/xFzYaG5Xn\n8RKL0d9IpCyNMdi3r4SOjrVvlONxFUj8KK/6uTphsFpiQY4jFduAJNMUGhoMOjr879RKXgSTCiKt\nE5Ru3LfPYHZWY98+g1OnNMbGLM/XcmXWzvLtQCn224sXFWZmLPT08DlIYlzkxeSarxkA8cY3gI1n\nqxhPjUCoBqA19JtAdiPQ6gJEg78JPPWHQNvY0s8GwwnVVCItdZzF+bbnUWri9xMA/qj/LTy98P/i\n3s6HKjxW2B6A/P7voxSdXXIsPfkQ9JE/ROmLz1VeT2I7rFNfhbbEn5PtmYwKN7E+8TDwN1cOdFWH\nz4zx1yvBcUgk4eSzlEC8ZqevGauztfy/C9AlzDTAZ2msV8lgjVe3yrVd23PlcsB99znYvZtr5tFR\nhXxewxjlzSFKkTGSz9NTpr+f/XBqSuF73wvhH/2jIpSCJ7969KjlqTEEVQuCIXOn+L2tLWo/F7K0\nuBeQebn6mOtnhK7n0z4YJ2wvmZ8FnPePGbxffk+Arepz347rdekTSpGJVL2/k3HAGGD//jLef98C\nwELGU6fo6ZVOVz6PWsF1CZVBuroIKEUiqFDoKJUoF6mUwtatDj71KQenTmkPaNq9m1LBra0KBw/a\nFVLCPT0G/f0mIHPPQbtYNBgepqz98LCFt96iD9j0tD//yzsm+Me9aTRqXO86X3KX6ykfyFrmiaJQ\ngMvCXNog5DxBKfxaQfCZ+2nLIps4GmXRSiQCXLpkYdMmQEDohgZ6h/3qV5araMICMc7tvB/LonJJ\nJsN1cTJJj9xQCGhpUYjHNd57z8ZddznYsoWg18mTGtPTChs3kn05OEi5y82bHWhNxYO2NsAYgmli\nI5DJAC+/bONLXyotC2as5I9aK65Wtu5m+T1JfmL7dvqpCeje02PWxT7ats3gy18u4dVXDd5+28Lc\nnEJXF4uNglFLRnCt4M+NkAa80e9hve2sHvWoRz0+jlEHvupxW0R1xYoxBpOTCm+/bXkL2v5+X6KG\nyTv+P2UmFIaH6VUVTMhRe155nwWY5O3oMHjiCQfd3Q5efdWCZVH2aHExWKm9tFonm2XyF6CsYTLJ\njc3iom9Q39Rk3AQY76O93QSMuP1jtrczQbdz59oWLPKMZmYInkWjZYyMUPqRoBsTuU1NBlu3Gnzx\ni/5i/PRpy9uA2DYr2vJ5g0yG1bV33eVgYoImwGIKXavyXUAxMrrIWhFDZaUMHn3UQTzOzVgqRSPo\nRILnSKWMJ0dCqbQbUy16PWMtVbj1qAcg/nMaZ85QDlCYKUNDPjAflMssFOCCVBxLZHwxhtXZBLyF\nvWq8pEslsMRq13BYeYA/mQsOCgWRN2S1cWcnsLBAJuquXRxPUin2Y61puq41x6F8ngAYzdxRAb4D\nqBhr5N5EglHYVb4HCbBcgkXGIYJ6lPTTmj4UlkVJvMlJtWbgij4UQFcXK0hnZjgOkj17e41HQVAz\nm4U7Pyp0dIhEkUYqxQQSq90VUilK8/b0ONizx8GuXcBzz/m0h5U8CcbHFT74QOPUKQtaU5YpGlWu\nzEx5iSF8sShMC99Pctcuv/r32DFKHAaBy2gU3nmVWj55US3/xH+BoSHlyRzH48DIiMaHH2qPHX01\nAIbIf2Uy9JgZH/cZAD6zUrmyXNcwuTHxMPCXB6Ee+R7QPoJQZgdC47+JzEN/CNMaAJDi24EjfwiM\n+QBRY6NBObUfxQe+B90xgohqQLrtNNA0433GSm+HM3s3sPMXS06dMXEP9JIoN4/h2NQPsHHy0xge\n1l7x0YYNHKfyDSM1b0OFcgjNPAznpwdhDnwPRsC5974Ke+5hhCK+BFc4zDEpmxUZuGv3PIWNHwQi\nagESUhDlfqvmcYShEAqpmuyh9cfyABNZO5SSNoYybsEEvoyt117u8MYOikqxX507ZyGToVrBxITt\n+WwBPogRixEgaGwERkYsBO/78OEQHn645CZeFZTSaG4m4F4L9AJ8KeJruaZLpZbO7Tc6qgG2tRSL\nrA7K3dxikeV8RmtFsL8HZaCDxwqHga4ug0JBeSyV/n5KTCYSa5dQJ+hDqWiAEtYio8lzs2AokaAn\n1cyMwmc+4yAWI2h7/Lh2fYo0EgnjsbdPnrTQ12e5DCvAcSgfLXKTqZTCwYNhV5ZyNc81X9aX++21\n3Vt1lEqVkprVIczM5Y4vCgVa0/MaAKamuGZoa3PQ2KiQydATulAgCygS4XzDdY2BeGkWi/w+C6I4\nD1OlQEFrgmvlMo8/O6sxMkKGeDqtkE4bbNyICt+vXI7FQrkcixvn5oBEQkNrhW3bDMJhruGXY/HI\nemh4mJKm3d3rK3C9Utm6m+X3FMzh0Odbo6HBQTar0doK/OQnFoaHyZDv6gKef76wrK3Dtm1Uv0km\n/eeQSGi8/DKlAgEsKyO4llzKjZAGrPtu1aMe9ajHjY868FWPWypWSqwFK1Z++EMbg4P+RjabVZ5P\nCf1MKsMYg3PnLHehyiqv8+c10mlhKPkMiEiEm5x0GhgeZhXp/Lz2kriFgr9RlWrJcNg3WFaKwFk2\nK+wL5UpQ+ObUHR0Gts1F+X33OdiwwcHAgOVdb9CEdT0VQNu2GXzta76m+L33KvT2Gnz0kXb9zgj4\n7d3r4Jln/EWcbA6CCWnbZjXsb/5mGfG4wp49ZMBdvKgDsid+wlqSe8Ui77etzbhyEMZb0E9NAd/9\nru+xtn9/GefPcxOWSvG4mYxyte3XfNv1qMfHInwJGY2jRynTVCyyrwljS/qojCciP6S1bPAl4U7W\njlIcw2SskvNQDpHMzHLZ98ZobKTUTjrtoLWVRQMtLQSVGhoopROJ8DgdHZTOoUSPJB2YRNi502B2\nllJby/kZ+ewa37tI7nMtiTORdDSGY7BU9DoOQa/WVh5rYYHj9nLXIaGUQVMTE8YzMxpNTQ7uvbeM\njz6yvCrq5ZKit1r4SXtVkaSfnw+2A/peyLMvFjk37d1Lj4rg3LOSJwHARMP8vMhEaczNSdLJIBy2\nMDqq0dLCY5VKwNGjtiffxPnb4AtfIDrw2GNl/PSnNsJhg02bmAQslYAdOwwOHODcJesEMZwPJouq\n5Z9iMUpR8VzwpIQbGsSDRq0Z9CIwYirmwMBfvQRoqVQbDBGg+pqGy3gKhVhEUiopWCP7gYe/B9U+\ngvLCDjjvfBV64mEEL1lroC37aWR+9edwHAeABtreBT5N2UCd7IE+9VU+ly+eW8LEKuXbgcbLSy4n\nHx3BiTe5nimVKG1qWfQ/i2R3IFXjFqzFHq6Xph4GXn3YG9u0Bkoug6lc9qWyikWu1UQ2+VqGSDWv\nFCu1FfFFFLAzFDLetV95rH6PZN7ClcM13u9CIbJYSyXlFjk4boEAAGhobbxrvR7XdS2DcyDHreFh\nhf5+bmNLJd5DsEChVKJHrHhABfcGuZzCmTM2CgUHjY3Apk0Gc3M+O7RWXOt2JswXAcTrce2CBXhr\n+aTx1kLGoKZcKddRIhkI7N9PttfQkPbWMEGpR3pKqsDP/rFEatpnPCnXj9W4LHMWKAIGnZ0GGzZw\nHdPUZNDXZ6NYVLh8GZifN+jrAzo7HbzxhgVj4AFw2axeItUrP68VgKdk4dU1ypVAL1l3CiN6uXAc\n7sVPn7awYQOZVeGwQTLJOTubVfC99vjOm5sNNmwALl/WrqyiKJkYNDcbV71AobubxTelEtlZi4tc\n74pSx8AAP5PLsRhUoqkJnoyi49A/zLaNC4IB8bjBjh3AxYsWjDHo61MVOQ2A66VkUuPMGfpd9/cr\nJBLOqj5PVytbdzP8nqrzOsE1Y3MzPV2PHg3h/2fv3YPjuM4r8XNvzxOYGbxBvAlQAimJJkWJelCS\nZUn0WrZetbK1TvlR3lIqsVdZx1WubMXlsuNYFa/WrlSyldT+kvjxx2Z3HZVdcspbrpUS2ZZsSRZt\nRaQtizQlkeJLAAESAPEaYGYwM93398fpr7tnMAMMQJCixPmqWCTn0dN9+/a93+ucA1AWYnra4Gtf\ni+IrX1lCVxcqXutKVIHy70rvrVb4knMFqBNZa0FypdxVJavrbtWtbnWr28U3Zczae3kcx8Gjjz6K\nN954A5FIBP/1v/5XbN682Xv/2Wefxd/93d8hFArhoYcewu/93u9V/c6pU6fwxS9+EUopDA8P46tf\n/Sr0KhHA5GSlsLlu73SrxsFcyQn87GejGB0tnSdjY9TzaGwEfEfaYHjYxu7dNg4csPDaaxrz89rr\n7Bfu+njcD5LYEeZgyxYHZ85ojI+TP7ypSagTlUcnJkFNOGzQ0EBasmIRSKUcJBLK4xmnLgV1CJQi\ndWB3t0FLi4PHHmPr3d/8TQQjIzogjstrHhpy1gxRL3fCtmyxcfx4dafsW98K4Yc/DHloseDY/ff/\nnse+fRZefdXCiy9qHD+uXJozjnMsBpdixnhJwf5+BzffbKOnxz9/ub9zc0w6Sqd/S4uNl16KIJcj\nXUgmoy6gSHzd6nbpG7WvWHiamwNsW3uJlSAdoF90NgiFfN0NX8fLT8DI5yUxz/WPJokb0XaKxYwr\nRK7Q1mbQ0cFEjFJMzIgmIddGIltDISk+8ZgdHQa5nPE6aKVQEOzwlQQx4HjoL0lsVusEFo0J6rkw\nMSTrsdYsmnd2Oti5Ezh6VGNujutwJsPx0JrIXFKVMVEUCmkY4yAcZhI9lWLBMR43HnpVKe43Z8+e\nj0bThbNSPTMWKilQ71P1iklSUJoVfIpHjufVVzvYvdvB0BCpcPfts/Czn5Eeqa+PiTixpiYHb75J\nLSei64CzZ4mstix2Yy8sMFnV3m68ho75eaK+2tvh7Xk7d9olzS1BRHdfH+fyyAg8vc+uLoPhYQdN\nTaV+wunTCt/8ZggjIxozMwpvvqlgWdrtxDaYnOSePz7O8ZmdXZ2mSiw4bpeaaU2KVNGYiccNwmFq\namQyy1EJSnHsWVQycBzt6VGKf0OKScB0vwTs+f98msR/+2Pqau38p+XnceiTGNj/v9HWxqSWbTto\nbFSIxRw0bH0JR3Z9HAvaL6JFcn1IPvUEFt64CYJeld8lZR99QXmN13q+haTK4+eOjDc+633ORQcs\nEiGVazarPGQHf6v0eeX/ay+slK6PbGCQYwndNlFQor1q3IYFBa0dxOPcK7JZeNp26//9tZvQfa4f\ngWbcJLVP4Qv4iB3ZI6RJQ2t4VK62zaS1oIQBInmyWdL8vZOQvXWrZsYt6K5cWInFHGzebLCwYDx2\njHJErujJJRLGay5YWiI1dT6/HD1lWcalxa9clI9G6VOxucSgsZH7USbDAnkqZfDRjxagtcJbb5HK\n88gRhdOniSjSmo1KuRwppYOF9o0uzl48C65h5cY1gowEgs7m55WCu5aR1rChgXrSk5Okh0ynfd84\nlWJDZmMj9z1pgC0WSyUBAN7vhgYgGnUQjXKNbGiAqyWokEgYLC4aWJb22BWoecfz6unh705MkB1h\nxw4bW7dSxzeVMpib0zh8WJegflpaqFu6nphfrFoBJvg6C7NYETVf63FX+wwAzxdjA5ZPSwnQn/zV\nrzSmp1lsisUk3gB6e+mDVsoJPfVUqCJiSnTzKr0nTbjVrqFajuJzn6uOPgt+zxj6wIcOWVhcNLj2\nWgf//t/nkU5XZ0m4HHW33o3X3dGRrOem61a3S8Q6OpJV31sX4uunP/0p8vk8vv/97+OVV17BN77x\nDfzDP/wDAKBQKODrX/86fvCDHyAej+PjH/849u7di1//+tcVv/P1r38dn//853HzzTfjz//8z/HM\nM8/gAx/4wPqutG7vaFuL2GelwLStjUnKgQEmWwGFri4Hv//7efzjP0YxN6eQyYiINBMNDQ1M3M3M\nKA/lVCwysJmbU67Ys0IopLCwQASF6HRZFmkMpFuwtdXB+99PR+/cOQAgP3ooxM9PTAANDey2jccd\ntLTQoZINP4jUEltPB1A1p2L37uqO9P332xgdVThypHTsvvAFnt+tt9r4wQ94zGiUWmXSUSzJKUmg\nNjc72LPHwcyMxpkzyhP4lfsb1FgDgOeeC3mJ9Xxe4Y034InG161ul6NRd0G7VC3sjLUsn4rPcQRF\nwCA8n1ee7owkVgXBFew4luJ+kFLQ74o2HqqVWl8aCwsM5CcngaYmosC6u+EFsKRpUq4mlgbAotn0\nNAPAVMrgrrtsPP+88mgRy5PVkqwXXZrFRX6uWsJZKa7zbW3UZrnmGhPQlWLgvH27DRblWZijvhXQ\n2WkQjTrI5Yg0opi5QSikEQ7bmJvTyOeNVziwbeWioRxYloNcTnt7wKVW+AqOa2MjqXkmJvxEmHRX\ny+eC+omSKAbYmXz8uMENN7BhQvak6WlSAp49yyLW3Jx2qYoMOjsFvaBw7hw8BB7ARpGlJYN8XmNp\nyeDcOd6j9vbllGFBhFk5lQ21NhSmpoiI5GtEb+/ebVfwEzg343GFpiaFYpGd3s3N1P7h/s75tnJn\num9CGVrr5y++Ua/E1+3h8yz3WZ71ICVcLgcPLSp0X6X3hX6OGieqrMT3+hWAgedK9cVm++D86o+B\nkPESbI2NvBdKadzYfSM+f8f/xo/OfgvHz43CWhjA1swjGGu7Hm/1OThzRiGfJ0JdCtFEH5SO+YUo\nPJYek8/5egs8nG8Oenp4L6amFObnjZdUl98Kh4n0KBSMW8CpbW2pfk7KexaD6A5Bd3Lf0AiFWBSa\nn/f3ilrtfGj5BAUajwsrglq2DtR4pIpzIPia6OrRr1eYm+M9zWbhoovZsFUo6GXNAXV7Zxsbflae\nqJEIfYJPfaqA2VngxRdDOHDAWqa3xv2Rz2Umo9z4rrpJIbnafCoUuE6HQg4GBx2Mj2vMzfE9aV66\n4QY2ax48yPfeekuVsY3ItV2qe9FGGq+xfE2T14W5xRiD9nZq/42Pc09ra/PRrO3tRPQdOwaEw/Rv\nlTIeTXjQjGEjJv0Wv0krm+WfTIa+uNZw/U4WQPN5+ozptMHcnE+TefCghZERg5tvBk6eBDZvNh4N\ns1guxz3i5z9fX1GgGip/794inn02VDJnqjUVr+W45c1GlT5jjMGrr5KdZ2kJbnMtG+Q6OgxmZoxH\n9wrIPs9jHj2qMDhYOSe0GlVg+Xvz88DoqPYKb5WuYd8+C3NzqkRrPZtV+B//I4LHHssvKyDK/ZHc\nxvi4wnPPCRORwssvAy+9FMcdd9jo7jbLfvNy1N2qZS7VrW51q9uFsnUVvg4cOIDbb78dALBr1y4c\nOnTIe+/YsWMYGBhAU1MTAGD37t14+eWX8corr1T8zu9+9zvcdNNNAID3ve99ePHFF+uFr8vU1iL2\nuWuXjbExXRKcxGLA3r1FDA1hmVMSizFBppQgHfxu9J4egyuuIN2JUnRoMxlqoPgc4EwwF4vGQzRo\nzeSGbfNYN99seyitnTvZKf/Nb4Y8p6+zk7o3nZ0O7rmniPvvL3Voz5fCAKjdQa30G488Uv23e3vZ\nGctrJ4c8dcCCFJFMciWTwGuv+XRoIvBbzQqFUkqS2uhJ6la3d7cJsisU0rAsdvFHIhLEs1t4acmn\n/aqGQipP4MjzJUgmGgv/TU0MxrNZ///5PBMLU1OkM8zl4CIJNNJpJlnjcdLGhsMKp08rNDUZj2Lm\nxAmN/n4bk5Ma4bDCzIz2EvPSkU+UFvUHR0ep21Ctc9lxSEt1++1F9PQwEE4mjVtMpzU3K9x7bxFP\nPmnw7LMWWlqA3buJVDp8WGF4WFBLHLBjxziWHR0Gb72lPFSAaJ1kMsqlP2MB8lIvzBeLCtGo4+q1\n8Z5TD271JH6hQFQbYHDggN+MYozByIh2u+KZsGeymAi6TZsMmpqY4Jc1nQVcv+DmOEwOLSwoTE/z\n8/E4aYdEC0yst9dg794ivve9iKufwfkvyDuAxx8dpY7U9LQqocFJJuHpS8Zi2tX/YLL91Cl29bPY\nsDLCg4VW/h2Ps+B36ZiPlpEkq6wBHH/lFm+Nl9gPogO0ZvJfayn2+igaIEjhVfmIZbYAACAASURB\nVEWrxdUXw82kRsRcP/DSHyM0cRPynQ6mprhWhEJEwXd1cd1Kv74Hf//RG0oOdfp0Ho8/buGf/imM\nmRmZM7VTUG6MqZJ/n19xWyGTsTA25uDKKx10dztIp5fPHZmHkkBd0y+soSgnqKhikSj9YtFHBq7V\nRLvMPYs1fVc01ARxW/u9XR8yjA1uTEJns3C1fKQZoFT38u1CcZ4veq5uy82YlfWlJH6LRKil+vzz\nFkIh7e1b0gwSvC/Z7NpQptUQlMZwLo6NKSwtWchmDbJZMpG0thp0dxv85V9GMD5OtPriYikK7dJt\nvHh7TPayVApIJhXGxogompykL9jRwZt28iQbeCIRoSmknxOPG6TTQKX1RQptgvIrFskEQHkD+r3J\npNDjKndtM54euDRtaE0WgZ/8xML27TY2b2YDUDYbvK8GBw9qtLQwdl9rUaBa8/D3vhfxUFTB12uh\n/qt0XCkiPfZYBHfdZXt5lvl5ohNnZ5VHef7WW9RUi8Xo0xMpyWdvbo73h1Tkvj64yCVEIvTXg6j/\nVIr5nXvvLa5IFVj+3uioQn9/6XWVj4FQYJfPg1xOe5TalfIrYocOlepIZjJsvjt0yEJ3d3HN4/5u\ntLU0uNetbnWr20bbuqgOv/zlL+Puu+/GHXfcAQC488478dOf/hShUAj79+/Hd7/7XfzN3/wNAOBv\n//Zv0dPTg1deeaXid+6880784he/AAD88pe/xD//8z/jr/7qr1b8/TqcdG22e/d73u5TqMnoDC1/\nPRQS+kLfhF9bglahaRIqk6Cl03Q8RXMrOOOlY6uhwXi/IXR7wWA4mBwo73YVxBN52WmNjT56LJv1\ndcEiEVNCq7jRttoYFov8TLnJ+YoxKVKqexYUcBbR4SC9jLwu4yOUFOGwcSnWlCcOHjRSi/i/e6kh\nKepWt7fTqnXXCz3darpVtR5Xnt1yKsLgbwgdojz/YkF6KQBuMatUMF4C/yBVY1AXQyjNjMEy6qDy\n8xZtH0GplFtwzyhfyyqtj7mcKkl2Ba+7/LVLkeKuViulV6tupMArLZQuLQGV9EHkHgpqKEgZtNp4\nBb9rWdyHgzpgwb0qn1+uTxL8HcviHpxMwkN0+J9TXmJFvlfuC6x0jqLjGTzGO8VqTapX+9z5JOVl\n7OQ+C32i1iyql/sci4vw6KLeTYUAKf5d3CJe3cSC2pb1IlPdgubTLftr+9s1P2RultMS1602k5gz\nSKktzR5AKdJ5PVYe5wapw8t95kr3rdzflXOSY4kfzbyEf5KVciBiQf82n2eBrRxpWCiQIYK5DD9n\nEg6z+aja8cSnW1jwacq1Nh4drDH+mAdfD/rSwWuv1ecC/Psmx/fHgg0QluX/Hv2z0txKLX6//I74\nnOW5n+BnolGz7DiCzhZq+fK4JRg3xGL+uFTyf94Oq5TnWcs5ref7ootXbsH78E40Um/XHYu6XRg7\ncODQ6h+qm2cbTnWYSCSwGMhIOI6DkLvalb+3uLiIZDJZ9TtBPa/FxUWkguIRVaylpQGhkLWeU78s\nTet3RndYQwPcrqvlr5c7cpEI0NzMDlnZdGMx5XaRlpokaikkXFqsEYezocEXl25o4HGDWgxBxzS4\nactr4TCpNXge8M4jEvEpn2gX/l5US5QLhUal9wsF/zxJ5+G/J/+nDoj/GzKu4tjJWIhGCCDHVF5B\nq1BQJR2/0qWXyUhnXD0xUbe6BS1YVPL1bfj3WgLJ8uPJ94PBuFiQMrHcJNgtLwhJsM8CROl3WNSg\nllKwaBb8TUkESJdstYQPmwwAuDSOldaz4J5RvgZLcl1Mfk/OR4p87zbaKxkrKU6tZDJHgvtdtaRx\nMLkk+54kSVbTwgo2l3BO+ftw+V4VTGDJPSqfv4UCEYmhkI+CFM27YJEseJxaLKiH906ztSCCLkRx\nN/j7kiByHDbSkM6QPpPcb5lP76YGGCYlL2+/Zq3P3EZaMFEtFKB1q5tYeYPLxbTgnlr+d93WZqUa\nXf69DD7v5zO2wYJasBlMfi/oz1TzleS85JzEZ5L1SeLi8lxBJX+0PFYHROvMf99v9imnvoVXOJJz\nKD+eUEEHr1lieLlGYRFwHLUsLql0/Wuxcv9Tfj8c9s8DEN1fFRi71f1+MWoD89/luZ/gZ0Ihv/hn\n28xz2Lbv91Yr5sg9L//tTEYhmUTFnNXFsGp5ntXOSZgwCgX+kTGv9fvim1d6/Z0ec71Tcq11e+fZ\nSoWcuq3N1lX4uv766/Gzn/0M9957L1555RVs3brVe++KK67AqVOnMDs7i4aGBuzfvx9/8Ad/AKVU\nxe9cc801eOmll3DzzTfj+eefx549e1b9/ZmZzKqfqZtvL7988O0+hZrtQoheCv3f/LzGwYMauRxc\nykHqfVQSLj1wgLzOuZxGLGbQ309R2k98ghnDS1WY84knQjhxYrn3IGK53/lOuKog7Kc/XVjxGE1N\nDkZHtSdSy3GhUG9DQwyLi0sA4An2xuMGV17puGOukE4rNDX5WjvNzY439nLfv/3tEMbHLQ/RR40G\nP9ne1kaNlbk5dnxRQ0SEiVd2OsqRLOJUr80ZZ7dZ+fFq/U7d3t22MqJGJkvtc0HmvKBVGexRbDse\nJzVHsUgqs0KhtuNGozxmLifICgeRiPKKPY2NBsPDDo4c0Vhaooj3wgK844fDBomEwvw8dWk6O6nx\nBFBTatMmLNMllPVH1tWzZ7Un+p3PAzfdZOPKK/2H6cknQ5iagqfxFNTD+chHiuju5mdbWgzuvXdt\n9LDldLA//rGFc+dCsG0boRCRwXNzHNNwmM8uO2nh6XZIsLsSMu1SsGiUnbjJJDW1jHEwO6swN6eR\nzVZG1WhN2sJduxz09Tl4803qHRw/TuodapH4SQ6lgETCoKfHwX332VCKFIUHDlj45S8tPPecRqGg\nYVnKa1QJGotxBq2twHvfW8Tf/z33kfK9Kp1WePlljelphdZWgyNHtEeJ09/veN2ifX0OvvSlPL75\nzTD277dc2kbOVxrphSIRosAqBeFioRCPJ/tWPk8ayCDtVLm9XY0b/u/yx8NhVZJgY/LG8eiGlpuB\n1sZNTOjzRj/4STzjJQQaGw26u51AtzvnpdxDYxR+/OMQlpYUZmZ8NDiJKd7Ze+iFnRMK/v5yYS2o\nD7mWa7Isg9ZW4+45ykueXUijvg41IRMJ/nt2VnvUtXW7nM24esVwdT79hh9BZ1oWk+fVaPg35Cwq\nPEPvhvVu7XZ+a5hoaRUKvK+Ow6aKhgbua8JYcr401UE2AFkHw2HGoX6zkAmskark862tvMZIhLIJ\n4bDB0BBzDLkcllESAr7/XG7lsXo6TX2qaJR+3vw86YK7uhyMjSm0tsKTasjngVTKoL3d4NprbRgD\n/Pa3FjIZeFSLJ09q5PNAR4fjXd/4uMLiooFlae+6Fhc5rkILnc+XssMEm5akWFRt7+BneZxk0ng0\n3RLraE1932KRY6W18go4yaSDBx5YLiMBLPf7eS+X65z9678q/PVfx7z50tlpsGkTcxXHj1vYt8/C\nc89ZWFxUHh17KOTgjjtsnD2rcPQo8xzSwz85qdDf78B/nqlNnErxvgpN5MXOJwXnjq+RzHP9/Ofz\nFc8hOIaS5wleD1B9rlY6htha9OYuVevoSNbZyOp2waw+t9ZmKxUKrUcfffTRtR5wy5YteOGFF/Ct\nb30LL7zwAh599FG8+OKLeOWVV7Bz50709vbiz/7sz/CDH/wADz30EG655ZaK32ltbcX27dvxjW98\nA9///vfR1NSEz3zmMyUosEqWyVzi2aa6rdtSKWD7dge7dzvYvt3fTGux06cVnn46hH37LBw/rtHc\nTD7oVAoYHDSeo5dIUDj4fe9z8PDDRWzbtnyz7ekB+vsdjIxoZLN0qB94oIBt28x5neOFtuZmg0OH\nfGFWgE7FvffaSKWA48d1xSCuu9tg+3Zmuvbts5aJ7gLshvr4x4uIxxlMAExATkxoKGVBa3q6sRgw\nMcGE+fy8Qi6nMTMDNDVRo6WxER7f949/HMIvfmEhnQbe/34b4TAwNiYOlR8wCIxeKZ5HPA60tzuu\no2SwuFjK511qDErKne31JKKSSdIpsMMMQE0aFSsFWmsvhtTt7bbqSYmVExZqhfcq/46gKhMJHy2R\nShmEQsrtYFRecXilYwc7DwGgvZ1BN/WfFNraDCyLnaKxGGk9pqb4nYYGQXeyUKCU8hJDADA46CAe\n57Nx5ZVcQzo6Alftrj/ptMKPfhRCoQAcO8Y1KhQy6OkxyGQ0mpt9pFg6zXPbtMmUUIlcfbWNnTv9\nB66722DPHqem9Vj2h4MHLUSjBtGoQUMD8NprCq2tFhobHSwtsROTOh9cN5aWlHcfpLuVHa5vf3JK\nKd63ahR1TOSxQ7a3l2M5Py/abMvPXSkgHmdyYc8ejuVVV9mYm1M4dUp59MLBdS8Uok7Xe97j4Kab\nHNx7r41EApia0ujoYJPJ9LRy6Qcr/ya1MQy6ugwefJD7SPleFY0C7e3c49raDKanubf39vI+iiWT\nBh//eBFHjzIJlMko7746Du+nUNTUgnyLRklLUyjwOwsLK+01tdiFmDfBY/L+CEWzzFd5jowxXvfy\nsqMY7X33vM/ISHe06LvxPBcWqCE4McF7E41yTH/7WwtvvMHX5+b8pJLss3VbyS7e+KwHZQxIE5Nx\n1wB/fq5m54PA0ZrNbdddZyMS4fM7Obly4bpul4cppVxNIUD2M2HvSKV8arNMRrnFjIs5Zy7H+Xl+\n10zWFdnjgnuHT19XKJwvhS6bM8qReUSsswgQChmXJppat2RA8eeasJ3kcsqlR+PrExMKvb22W5iq\nHL+XW3msHo2SCefQIYWzZ/leJEJt3nRauRpybDRaWmKh49gxheefD+GllyxMTCgsLWm8/jobX9Jp\nNn1lswo7d9IpWFzk/+Nxnqf4dVKsKha5xsvYBFFYq+nuyZgqxTU6m+Xxia5SniZlLqcQDrN54swZ\nhakp5V3PxASLOJKrEUun6cMeOUK/cnDQwUMPlRaZTp9WeOaZEGIxg7Ex7lOFAnDllQZTUwrXX2/j\n8cfDyGa1d1+p/apQKCjceaeNK6900NPDRo+hIYNPf3oJZ85YKBTom4q+cDqtsH+/xlNPSQFKIZNR\nOHRIY3DQXPC8kswdKZZms2wGyWSAc+dUxXN4+ukQZmZ4M0dGtOs/c4wk5lMK2L27ugMp+biFBeZk\nurs5v9/JRS8AaGyM1nPTdavbJWKNjdGq760L8aW1xl/8xV+UvHbFFVd4/967dy/27t276ncAYGho\nCN/97nfXcxp1q5tn5V0k5aKwvb1mTcKZp08rPPtsCB0dxtvQn302hK6uS7srpbeXnTPVOohuvdVe\nURAWYGKxEiqsuZnjyGNwbIxRiEYNXnkF2LZNIZkkumDHDht9fQ5+9SsLLS2mpOiUz9MxBSQQMBgb\nI5LswQcLGBnRmJsDZmfpYEnXFZOX7OpqbuZ579gB/PCHFixLr5hEqZasqbU7X1ANsRgRD0qRMz0a\nZQKcyIHKXfSWVV1AXrro6nah7MIXJ0pRXhvzW1oTdTU3x27GWMyn3wuHGWgK/QZQioz0rRSdKOY4\nDBxDIXZNxuMs5p4751/HyIjGpk3G00cEKAIfLEA3NfGZaGkBrrnGcX/H4FOfKuD48eXrzxNPcH2e\nnVUuQownG4sBuRwF5q+5hq9t3crgcWZGo7OTSKX5+dKAqnzdWsmWdxkqD5n0L/9iYXyczyLAovri\nYilNCgt+pccUWr63U4MjFuO5lWuUAJwLQq+WyRgcPapcJK0q6UIOmmUZN3nCdVwpgxtusDE6qtHW\nxoA4FPLXM62J4tiyxcFjj7FLNDjW8/PA6dMajsNEhdADicmYWhaLV0Edi0p7VSrl4JFHuAd/+9sh\nPPVUuOQalAJ27bLdc+MzMTMjunK+/kStlkgYWBafgZtvtvGTn1iIx4mArPys17LeXIj1qLZjStGh\n8hjwGBtJA1dOFw0w0TI/72umHT7s0y0xseVfS13f5t1lRH76BdlaaFeB9aMoo1Ggq8tg61Yb//Zv\nwFtvhTyNG9GvCYf95HSdAvFyMq7V4gNFIkzaNzQQ3SINbpmM8opk9flxaVokwmKOrBPFYiltmjS5\nnP/9q9yULb5jJKLQ0OB4bAz5POns5uY412yb/ns67ccNkQiRXvSDNR55JF8zAkhi9fl5YHSUhZ9s\nlv67FGoLBRaOolH6+7GYwYkTbOjNZBQWFqRoRz9xdpbNbvPzxlufjQEOHbLQ1kb0E4tiGuk0PDYK\n0fVlUU+YWEqLYLVauT5rJuP7BLatXNkEH00nEgsLC8DCgoXRUYVUyuBP/5Sbi8/gQ4aAvj6DkRGN\n//f/6CfS37Xx7W9HcfasRi5n0NzM5l2APmR3t8KBAxYKBYNcjmPJpi/+LaizHTsMbr3Vv4fptIXN\nm20sLoaQy2mMjhq0tPAeLCywCWl+XuHVV0kT2NLCZuJqqKuNMpk7IyOl9ycWY15n3z5rWc4s2IgW\ni5E5AYBbfDXecVezYD7uQrA81a1udatbNXubpRXrVreNsX37rGWdRNU277fjeBfTViryrVYYA1Yv\njpWPTSoF7NoFzMwAAwOm5JitrcCJExqHDyuvmCaUUZGIgmXRwzWGzvrx4xYeeaSAXE5hZEScK3hd\nbS0tDq65xuDwYQYgySQRZAsLxkv+S0AhfNwStAKlRYogZcVKFokYhMNMcot+TLFoXMQLu/ukICFB\ngn/clbvnjTHu99ZfAGPMJZ10bz8K5dKyjR0L3tfSY1bj8z+f30gmDWxbeTQf3d0OYjGD2VlBSgD5\nvPF+P9iFCvhzMai/pTXFrYXqRGhDOjsdpNMaTU08wMICX9+500Fjo/EC6nPnSNOilB88KsXXW1pK\nn/vdu5evPxI0laNJl5YUYjFSsTQ2KuzcaeOTn/TXGlmntmyxKxbUarFK6/ncnMJf/mUEtg1MTwOS\nBJPxisX4eqWieSjkrzdvpxUKytVWNF4XcXnxSz6nFJsOJBER1HoDmDxqbSUieutWp4SGJZkkSnB8\nnEVBFl15z1tbHdxzj98QEhzr0VEWWkT/kVREpQURSR7EYgY7d/qZqdX2qvvuszEyspx69777eIyZ\nGYPjxzWKRb8ovJb7JQXeYtFgcdHg9dcVsllBD5eut5bFa8hk/DEN6lS9XfSHl4pxjTQeiovFd0BQ\n3YC/j13uY/VOs7XcL6INuTdRF0V5RbDq31nfeYlm4JkzGj/4QcT1CZVbyPZ9ROqUGK97vW7vbhP9\nGc4/A2OAWMyBbRN9urSkMTDAdejUKaKF3+naM+92y+fF3/WRXvJ8834bbBRiL6i5K//30dUsmFgW\nfXjxdeJxhXye/rcUSITFANA4eZIsKq2tfK/WHMOtt9p49VWFgwctwKXkPnKEbBBiuRyZGhoaDNJp\nhfFxjXxeuddAqsCgvpgUymIxMrosLvrNb4KsHxiw8fLLRIfJWIgP1tBgSjStSulsz+8eyF4T1I4N\nNqRZFp/X+XmNJ54IY8cOG2+9ZeEf/5FSF+EwJRhGRhh3S7Pd4cMazz0X8dBm6TQbXDdvZvOTIKN+\n/WsLoZBCLKZKil0Ai4VKMU4JNtmdOkVkl1JE32WzRJ01NdFnn5hgs8/CAikk02nuW48/Hrqg9H+S\n5+H84PWyMEpmh0rMQMGm6P5+xqNcP417L2pvRgRWb1jfCAsW1og49Iud9SJb3ep2+Vm98FW3d4VV\n42BfLzf7Ssd7p3eorIZ+Wy3hWGlsmprIAy46YWLiXPX1MREpyWWiKUqh9Lkc0SC9vQaf/3zec4gI\nxafT0tdH5/3kSYXmZoXDh0lZlkoppNN+8kISu5bFjiqhZQuHmbClw0pnvrmZjn42KwlN/73WVha9\nslmfklA6C0khYVwqFL4fifC3pfCwtOR+q0JySCmf2g0oFSJeSzJJKXarSmIxSG91OZifhL7wVm1M\npViyEYUQBtbKTQwDV15pQylgeNhgYcG4CBry8AsNSPB3pRCSSABEanEuEhlE+rpQiJSJu3c7OHnS\n8jSzAGB8nIUsdjkaF4VlcPIk6S+COgxjYwZnzmjs26fR3g5s2WKjt9c/l+BaeeSIRjRqyjoFiUDq\n6NDo6THYvJn0qMD6ugKrfa7SmnX0qMKJE7z2zZt5Lfk8Kfe6u4EzZ4BgYl6KN/JsnQ8F10aYUkRk\nNTby/orWm/suAOMibRQsi923Qjsj6yMAj2qnsdFg0yZgz54iHnmksGy9VwrYvNng7Fl+LxQy6O42\niMcN7r/fD3aDY53LKY+edmnJeB3ASvnFsHCY+pl79hS945Tfx3vvXR4I9/YaPPJIoeq8OHnScq97\nfeNbLBpXL4Rje/y49go2gtSVRBuT7ETJLSzw9cZG4xUii0Up6Fy+iXXHUSgUlq/VpbRR/lzz9VIu\n7nnWbXUT7azGRq7fti3P9cro+miUCWHLIrrApw3d+OdCUAGSnCNSuhT1QfpP5TY2mTqi5zKwcJh7\nXTbr09OJlqggcs6epW8/Oxukkq7bpWr0vVVJM49x/5HLUe9yI4ouiYTxaBODr8fjxmtCSibpF508\nqdHVRT8ynyfdoFLGm0vRKH10NpoxVs1kFL785Qi2b3cwOFibn3vunEYsxvOYnfUbSsSMYZyQzWqE\nQnzfX+d8lGsk4iPn2Mhj0NTkYG5Ou82qBrGYg+Fhg9FRjVRKucgn5RUYi0U+P11dDmZmFGZmLK8Z\ndCNsuV/AnEKQclJ0eAGF//bfolBKew1YlsWGwnPnFFIpB83NLPI8/7yFdFqjWBSNMvpq4+MGw8Ms\n7IyMsLC3Y4eD554j80FDg1CeG/T28sZ+73sRNyfBcxodVYhG+d143Lg0jYy/3npLYWZGe9q3WrMQ\ntbRkoFQIv/ylhVtusVecC+s1yfOcOKFx4oQFrcnekcsx39Lfv3wzDDZFk9nHwcgIVp2v1SzYJBfU\nGVsN8VZrPBhE+hnDZsdolOddrcj2Ts/v1a1udVvZ6oWvur0rbCV6vo08nuOYC96hcinYSsWxtYx1\nsIjW1EQIf0sLnUHLUh76BKBzKccoL77191N8d35e4Xe/U9i0yUEup3HmDAtjmYwIUTNZ6ThMssTj\nQrcAj5axs5OfmZtj5rexkRpKjY2kU8vnDSIRJkKWlpg47epyMD2tXBFsg4YGjUTCoKODyWdSBtCp\nloSuZcFNRCuvMAIwwBFqCHY/M3GktfIS6iLwy2R2ddSJJK+DOipCOUHu9bXddwaOvjCz1n4H5aWZ\niPR55TcqqSxBqARsodByijSip4KIyPMfH6VYBKBeFp+HpiY66UoxICgUGGTMz7N7cHycKJ7FReMG\n9/69a2oy2LTJIJUSWg0GYAMDDNREkDiddlyaFQZnQrlSjszatYtaTzLOY2PA88+HsGkT9bCmp4Gv\nfS2Kr3xlCbt3m2XdfLEYcPCgxuCg4xXB02kWzZViByGwHFlba1fgSp+rtGadOaNdfQ+eQzxOFOfY\nmPF0rISOLfgMOg7pS1e/z+tFXwaLV5VNAnuA82RuTrn330cgxmLU1JGuY6FmCYcpAA9IMM75fuWV\nNu6918Z995UGejJ2LFiyODY3x/cyGYWWFgawEiAGxzoWMy46jEmjVMrg3Dkgk+Gca2mhqPuePbYn\nSL6WLtCV9qlsFmhrM5iZYVNDaedxLSbrPdFcuZzB4qIuoRT112uKl0uhKxplsS8a5e/LHnC5NCNU\nMq6htT0P5RoqdbuUjAlb6epXintGLMaibyikKvoeUlyPxeBS6HItCjb81GJreY78Z1V5SJ+SK/EQ\nsfxM3d69Jv5VczP3BhZGhYrN1/EUf75Q8HUG63ZpW7Dw4b7iUczLOrXevURrB+GwgdYWQiGi4ufm\nxJ8gSisapQ9s26R9vuUWG88+ayGX027TpR9rFgqy7lEbSuJCxyFlYS6n8LvfMQ5bzc+dnwd+9zv6\n6oODjqv5W/1aqjUBFQqMaRh3MLa87jobJ05o2LZ2kVzAoUMaJ04Q6ZTNKq+ZgI1XcDVkqW1m2z6N\n4/loKgbvW7DYBcDTtw36C45jPBr3s2e1W9yW+FiaWJWrC25w8KDG4qLymgMLBdH4ZVFyYYF71siI\nQn8/m2/vuMP2dLEsy0E8zhjr1Vc1Jie1S2HJ+CqfV27zmYHWxr1HzC1QU82PLalfBuTzGm++yfE7\nc0ajs9PgySctfO5zeezevbHFr2uvtXH6dGlhWJBRlT4fzMsMDTl45JH1F4akSU50xuQ3R0Y4x/fu\nLZawfGzZYuPAAQvPPmshFgP6+kxJfACgBN31zDN8BgFqe+Zy1CIbHSXSb72xZt3qVrd3rlmPPvro\no2/3SazV6gKCdSu35maDQ4coECq2kijseo8nSeFSI0x9+/ZLqiJwwazS2ESjIXzgA0sVxzqVYrL+\nttsc3H23jRtvdHD2LLuugh3ew8MOPvzhoncM+d7u3fxzww0OxsZIV5BI0DmamBAKARaBUimDG25w\n0NrKopEkIi2LQUdrq8HWrQ62bjU4flyhoYEJ3bY2IJFw0NxskM9r9PcbNDUByaR0xBm0tRm0t/s6\nKeRuJ01AV5eDSMQvloi+Dh11osSk0/Sqqwy6u+ksZzLBhIxQZzEwikR8KjD/fb/A19lpPIHfIDJF\nEBxBIeFg4a2aUb+J6AtqRxkP0UAEEc8t2C146djaz0XGQ3TmZAyFtlK68iIRn6fepzfxx1Xun+jU\nrB5gE4UohVHRv0kkWABQiijG3l4H73mP4wqt08nv6mJXXns759fsrEJjo081YVks1sj86ekxHgc9\n54VxdZR8QeJQiEiu7m7qGSYSpN9IJoGODp/C4qGHbOzY4XiixAcOWIhG+ewF78P4uMbdd9slQsiA\nL7xtjMLVVztulyoTUcPDRMsE743oeZUfR36nfM1d6XO33movW7OOHlVIJpWrS6Bh2w4si7SS2SzX\nDqGwY4LXv79aK0+rppqFw/z9tSZcLIvrmz/fKs9tok6Vp/FFNBeLNZYleWydfAAAIABJREFUxXZ/\nTks3cqHgF2YiERZKP/KRPL761SLuustZtobncgZPPhnCzAwD9UhEdByINkwkGMwfPUpR7v5+f3+I\nRqkdt7io0NbmIz7uvNPGX/91Hn/8x0U8+KCNG27wf7fW+336tMLTT4ewb5+F48c1mptLEcQvvhhC\nOq28xMtqlGrBcZXkejhssG2bg5YWYGyMiQ45hnwuHnegFGDb2kWysZEhl+O84Vq8fv0gmXeXY+GM\nKCHuY5fbta/NLu5e3NHhuLTP9BOSSTYVDQ1JkpjPjsxbUn/5vtP8vIJS2n0mV7+3Svl72FrMsoy7\n/imXtnS1b6y3WaFul7o1NzvYto3Fgbk57frR8Gjf6AdyTmcy6ryS9XVbj61/vJevDSujT2s1yyLi\nJ5Wir00kt+hx8W+hBmxoMNi718bu3Q4+85kitmxx8OqrGnNzGoUC/S3L8n317m6hy1ZuQYSMA9ks\nr4eNYNX93Pl5NpKl06QuzGTImELNrbWNpTRENTUZDA3Z+Pznl3DqVAiZjPZois+c0SgWNQoFhWyW\nBRtB2gF+rGuMcrXDfE3XjaKZpJVSdQdRflozzm9oYGMri3KqZI8R9K/WwKZNzBPMzQk7gXL9duPG\ngIzru7pY+MvlNCYmFPr6yITR0+NgZERjZsbC3JzC5KRQaysUChoLC9RSKxRYpMxmtXuPNaanlUc9\nXm5kKlBerJHL0ad/9VWNG29c7qOfj/3mNxaKRYXRUeUiX4GrrjLo7CzVVBYL5mW2bz+/czl+XGN2\nVuHYMe2xgACMEWIxhZ/8xHJzHAojIxpPPBHCW29przFzYoIFsWiUaLH9+y0XQUdayqNHLZflh/SX\npFZm446wnKwn1qxkjY3Rem66bnW7RKyxMVr1vXrhq27vCkulgMFB4yVlu7tZ9Fpvl0a14735prUM\nCQGUbp7vdqs0Nh/7WBitrUs1f3/bNuNSMBAyf/vtxZq6avbt4/hHo9TfWVxUXtHggx+0cd11Bjfd\n5OC224r4+c9DyGaJwBL+7d5eJll37HAwNGR7jnJzMykcjhxhwpbFAZ7f7CyLBK2tvtMci1HTrFgk\n4sEYBg233VbExARRaABRGEJF2NTExP/mzQ6++MU8cjkWCbQWbSHldkUDgPG6FZk49ZEGSpHmjh12\nygtaRMuMSC1SdEkn82oFGSl6DQzYaGoCikUmcSkSzWAgkSBPfXOzOOw13e7zMiatqiejJLEv1GO1\nmiTkolGDeNxBQ4MEz8odC9GAYLFSOgb93+OYUePIuONuPHHn8mBGimzhMBEkcpzGRqCtjcdpbze4\n4w7H7TLm2Dc2kmJjZIQBVWur483/jg4T0LTjOYZCytMvSac5d8+cYeDQ2Gi865Rz6ulx8MADBZw8\nqTE/r3DsGIvJoRA7AVtaStfSYNDzr/9qYXpaY3SUweD8vHKDRYMHH7S9ZzVoUsD73OcKuPtuG8bw\nO9EyH6W723iBRqXjyPkH19yVPnfnnfayNaujw8H4uHbnAwtfSgF3313Ee97jeF2ttk1KE44d0XK2\n7WvFVJqb4bBxaVDk/pSiA6sVoeV16j3wGY5Gud6wcML1JBTia6LTEA77uhI+So3i3PK55mbSTCrF\nJPTQkMEVVxjs2eNg507+XW6nTyv86EchxGJ85kMh5QqIkz6ouZnnNDGh0NQEnD2rMDXFYHZyUqOt\nzWDXLgfDw6TrbGoyeO97bXziE9X35lrut3RmSpA7O6tw6BALbxKIt7U52LfPQjrNwDWI1KpmUiAU\ndEAqxfUvkSB1UaGgSpIsUnDkGqxcFK7yxOJtWzp811u48ZsP5Df5/MrzfqkhcFe31RowWPj396TG\nRu5vxtQpx6pbtUHd+EKOZTHpx2fDeAWC7m42C8Vivv8kBaeWFuMiHIjOLhaVW5z3aahXsmjUR+PU\nqmUqyG0pRgO1PCv1Yse70bQ2uO46B7t2OTh1ioWIxkYfCS2NLCyyU3e0bhfb1jfmEiMBpfv7RjSK\nhEJs9GlrY8GKGl4OkklpclRes6NtK/T2shjQ3Gzw6qsWIhEioBIJMgp0dDhob6f/Jk1stk1fXSnt\nNsiwqNTTYzyd0Up+7rFjLOAuLioXgcYmzkzGL6bU0vCoFCn42tsN/vAPC/jc54q4/nqDU6c0WlrY\nYPnKKyzkBMdWa+U9J8GmHjYYMIZZWlKe37rRFqTr5nX6fsPioiC3WECSBiSJ29raDDZvthEOaw95\nfO4cP08fSyGVMrjySoP2doWdOx0kk2wIDDYNSrxULFLDvHJjhfLiMykE+g1tK40LEXjijyaT/t8b\n2WR94IDGyy+HEA5LMxyLvMPD9gXPaUkT9ciIFRg749Fp5nLKK1BJcWxqKsgU5N+L11/XbjxCGxnR\nSKf5LDU2slAtDDrd3Q46Ovi59cSalaxe+Kpb3S4dW6nwVac6rNu7xlbTrtqI4200peI71crHpqMD\nmJxc2/f/038qAljb/QqOv1IKnZ0AYNDS4ic8CZ+38MEPOjhyxODsWULou7ocvP/9Nj7zmSCs3adu\no/nHWVggzJ3IBSbo83mDW24p4IUXwojFSOlAxAudtWuvBQYGinj88QjGxzknRMy9WDQIh41bODDo\n6ioimTR46qkwHEd5lGp01JSn3bS0xICcv++jvqTIFY+zCJJOk4KjWCR6Zts2B0eOKMzNWbBtH7Hk\na+uIPhQLNokEkXKARjTqIJNhMSOdJkVDYyOTTvm83zGnlPCh+yModH/S8U3EkcHk5GqOfukxSJNm\n3ESZ9q49aNIRFwr5emorG4OjcJhzaXjYxhe+kMf+/Rb+4R8iXtFL6BMBFi3a2sjNnssx+CUtoIOB\nAXj3OJvl/AAk6FYeLV4kQtHnRIIBFrs6mQjk50lLCDBJeOQInfxjxzT6+nwqqZERjkEyyWA5mwXG\nx5WHaBwf98dBAuqGBlL4JZPA1VeT2zyXI22HX2wuulzopDXp7+fzVUlbKTj28nwALLKePAn09/P9\nWtbKIGe8WLlAcq1r7mqfK1+zTp9WSKc1Rka0VywG+Aw1NREZOjxs8MILFrJZ3sv2dgawp05x3mnN\n54Tn7QfXiYSDxkYmN6amNNJpjo9lKbeQKoip5QVS0SHs73cAaIhWhVB1zM7yWPL8i66BZZF6dX4e\nLhWjgyuvdBCNcr7aNp/VgQGDrVtLEXbVNC337bMwP6897n12VwJnzqiy8acuwAsvhNHdzQJbXx/f\nFwrDWtf6SvcxnVaYnFT4znfC7vvLu5rLaUt27zb4yleW8NnPxhCPOwiH4dKFVrpW4xWjxcJhoLOT\nyC3phA0m02TtJeqL+8Diop/YILWu3xG+djMBCiWeWCjEtaC11WBpiYXcbHb9OmYX26RQaFmmYoIB\n4Lh1djqe9gl1UeqIr/VaOS3v+R9P4fXXLY+2sKvLuDS63DN27HBw5Ag/m8nw2RWUw6ZNxksQsuCw\n+u8JBZ1o6hFpu/r1OI5oC/pUZ1xL60WNy8VkPw2HuTZPT5M2vaND4cwZDds2LoqF8yMaZdJ8pcLq\nRj9PdVufhcMsUkoDYCUN5dqt/H4brxHRtkmNFg4DmzaRteRnP7Ogta+nZQz//eyzFu64I19Cl7Z9\nu8HBg/DYGwBSvfb1OTh9WuHgwZBXQKMPyRhU6Niq+bmCwAeUx0qwuAjEYo7bKKm8GM22HQ9tW26y\nhj/8cMGNyUt/J5k0LkUj530sBlerCpieNsuOKxpb8tsXY9+WeFia0bRmwVJYOKTAbVkGiYSDoSEH\nv//7eTzzTAQjIwotLQbhsIPTpy0UCoyVbr/dxvg4KfMOH9Zuw6Ef3w0NkYL+5EmrTDdtuYnkQbBp\naqUmDMsyHlJJ/g8wBlyvbn01q7Qv5nIGv/mNhe98Z206V2vVxxLqxIkJ7Wmo9fVx/kuM7Z9T5evm\n62bZ806pAIXpab7f1MRn1LL82GS9sWbd6la3d67VEV91q9sabKMpFd8tdjG6XU6fJtR/3z7tcvD7\nHTzDw8ZDjXR3iyg1u+aGhx1s3ep4tG/SuVMJuUYUCLnrBGVDp4ndV5al0NSkcN11tkcpKH9mZjTO\nnpUghLpjUpSJRBhgbN1KRJpQBNx2m4MPfMBGc7PBG29oLC2RviwUQoAPnEFXMinCw8ajGEsmSUkQ\nj/P82ttZ3PvoR2189asFaM3kOpEBvt5OJCIBEf/d2soCTTar0NFhsGMHaTcaG5l0ZXAkXPDS1cfE\nkiDgBI2QSPBco1HjddFS+F5QF6XoF7FgsKS18Sj+GHwqL7gtd3AbGnjtS0tCDSH85MuLCqT/Y0Fg\n82YHf/In5Ey/4QYHP/85+fgty0d75PMKs7PBMWCXplIGXV087uQkr4sJfxa5Nm1yYNs8Rmurg6uv\ntnHbbTbuuMPGwICD2VmgoYGd8Zs3E3F2zTUc8zfe0AiFlIco1JpBc1sbKR06O0mTeeCARjxOitDZ\nWYXxcQagMl4AO91ZnOV4NDYC11zjoKfHwac/XfCCkhdfDCEcVu4zIM/SyhQPP/xhCCMj5Wsh0N/v\n4MMftmtaK2tB6ta65q51bSby1EE8DrS2hjExYWNoiGOcyxHh1N/PhEFzM581y9KudiDPL5Egl393\nN9FWDQ2kivnIR4oYGDDYvJlzaWmJz3BHhwNjSKG5e7eNM2dKqU6kiDI05KC9HTh3TrvUK3wO5uaY\nSJb7S1Qpv9fRYTA46CAU4nP6vvc5Lh0L59iXvlRAOExts4kJ7ep28RkLdj0G7amnLOzfb3nFFaEc\nAeChOgAGlCdOaEQiTDgIDYmgwE6c0FUpCcut/D6S/1+hp4eF99lZhX37NBIJtQwpWN6Z2dNDKpdI\nRCGVIu1iuW5LMPku6FHLYhc01wzjrl3U+JLmAVmn+DxyLWWHM5sWjGHwXY3OZiUTXbFw2LhrANFk\noRCL58PDDnbudHD0aOWGgEvVREC9oQErUjJlMrx+reHSKgkl6Vr0QmQeXJjxWVti9UJb5ZMhClHQ\nyhvwK4r+CROJXCcpGE8k8tQU0aCpFHDNNcCOHRS9LxaByUmiE6Twz2IwEawraSlJ4VOSqIKwXJ06\n1HhU1ZKg5p54+VGGXs5mDOfB1VezOY1oBqI5LAsuQgYeUnppSVVlEPAT1pfUw/8usbXukcaNiZTn\n7xvD+0j/zKcXrrT2hcNCZ6cQDhtvfRH0XzzOQoc0GYmfMD6u8eabFhYWuJ4I4ksan06e1Ojs9H2T\nfJ5r5MgIz29w0MEnPlFEKmXwk5+EcO4c/QWJ1To7jctQwlilmp/72msa2SxPSmLRaFSho4NFtfl5\nhXicMS8ZQtSyAqFlCUVjEQ8/XN2fHh1VsG36voyjjafjGA4rV6fRH2RpVPB/a+OfF7kf0mgUDtPf\nXFqSOJlFK8Y+PnvHzp1saJub03jggQKWljhm7e3w0EO33cZ4a2yMFHnU+/PHcO/eIv7jfyxibEzj\nrbdYXBFqx0rmI5VXR+FFIsaL0VmsI0ItFOL6NThY2Vdfr/3mN5bXoCWFVxaTiPirxKZQyWphYahk\nwiJy7hzvgzw3MzNkB/H/7zffBX1A5kAMBgackkbCWIxNpu3tsk4Ara029u4toqurNNYU2vSTJxUO\nH9aIxfznt9b8Xh3xVbe6XTpWpzqsW902yDaaUvFi2GpaKBtxjAu96YtTlcsx4Tk/T3HaWIy0O4Je\nECdlclJV7IwqT/CW81UPDhJVk8/T2ZdEdGdnkE7D4MYbHU9rbGyMBbJi0Uc2tbQwYcvuUZ5HJALs\n2mWX6JjJOeze7aBYJJy/UPC1YWybx1SKjpzjwHPKhof5+uKicTV3iEzL54EPfaiInh4Was6dY6Af\niTAwymSUizQyMEZ7rzPRyELJ4KDxHM1cjuPa2Oh31m3aJCgxCZ44tm1txkvUM0hy0NdnkMlYsCwe\nI5vlmDBQYweWUBlJMEN9M1L5kZvbBGgtfNSb0FLE4/A0o3bvpkaW8NNrzeNFIkBjo4PmZmDnToMv\nfzmPRALevH71VfLlS4GO/Ow8dl8fA+CmJqJ+rruuCGNIu6A19bAWF5VbOGMB6b3vZdCZSBAx9id/\nUsBddzm46y52jfb1EVV0/fUO+vsdGONznVsWg+DGRl9nS/5uaGAgG48zUBAtrjfeYJDKLlhBiMBb\np4xhgfOmm5xla9Z6KB6+//2Qy43PZyIaddDbS/Tlgw/aNa+Vq3HGr+U4a12b5benp6NwnGJJIUWC\n/E9+soizZ0lLKuMaiwHvfa/j0Sfdc4+N3l4HnZ0sUg4OArfcYiMaVR7qYNMm0qUSPSkIUuXpELAb\nlfdoaIjPzews5ztRR1xTiFhSXgLYsvjvzk4H99zj4KabHHzykwUkEigZB4AdyadOaS9pLRz55WuS\n2P/9v2FXi9G3XI7PbkOD/9r0NOfrpk2+5h1AXYOTJy3E46g5GC6/j2fPsugV/PzMDPcAeSbEKhXw\nRkepPxYKKczOUjhcEhTSVSvUkaKvl0hwnYtGFTZtIpWkFP+I9GPirKUFGBhgksSy4GmKGaO8ZoeF\nBY7FyiboYBYGuO+wyCPnQd0HHkvoN2dmuJ4zmX9po1mUYld1SwsLhfk89TQrmXSrM9GkvaSaJCJr\nHc9wWHuJpvUXOziuQq8jRSSlgpqOb/fYV1q7jUuRuhaKSBkktSxBpxTXdrF8ngUCFpY0MhmiAyYm\nNI4e1a6GIjwfiXo4ykMrCx2o1sYrglU8I0MNnKBfoZRy50F143NqPO0WmQPGmECyvG5ioRAT7u+k\nQnotZlkKfX1cc86coX89Pc09pqeHCdNolIjdQkHW9krjwGc8SD1bt4202sdV1t5wWGFggI1johcY\nDlM3NpUyyOWImpeilK/RSh+a8YpBby/XykiEvlRLi/FodkXHUCi5T5zQXvOR0NFL014iYTy/jCwc\nCgcP0t8ipT7w9NMW/s//CeF//s+IFzuGQvSp6D+xSae/35Q0p4mJf7R/v4Vz55SnBQ1XI7qry+B9\n76MvPjurPLYIrQ0aGvwGEml4uu02G1/8YvXfWVhgM9/ICNfuhQXGOozJDGybWo3VGlJkna/1vgb3\nUt4vee6Wf1ZeM4bFOEEFFwraW/Obm/l6PG6wbRtw880OolGi+H/72xAaGw1OnKDmFpvgDLq6HAwN\nsZHt9OnSZjqyu1BzvLmZ352fpz9aee2k/1heGPSvN+hPcEy3byf7CinFiYy6+moHTU0b32R9/Lh2\nG179puFiUSOZNAH/enWdq/XqYwVRYpOTGomEwdCQwYc+VHSp6P2Ya2KCrCWbNsFjyLn9dhsPPWRj\n61aDffssHDtGFo9MhpSGN95oY/Nmg+uvt/GHf1jEPfeUxprBgh1cXeLRURagh4Zqz+/VC191q9ul\nY3Wqw7rVbQNtoykVL6TJpi7dRjMzpO+rRU9rI49xvrZvn+X9fjLJYhdAba6WFiyD1tdCoVbJensN\nHnmkgH37LExNsRsvlUKAU5qdYXL8kREdSKD4EPrRUYUbbyTV4JkzCoUC6cVSKTpnlSgA7r/fxlNP\nWThzxnLFcRnMNTYCg4M2FhdZBJLk1NycONsG09MMlJqbeQ7PPhtCVxfvz969RXzvexHkcgaFgoNb\nb2Vy6sgR5fGiA9QgM8bgzBn+v7+fTnBTk/GuMRajAz47q3DTTQ6mpuhgSmGuo8NBNqs92su+PoM3\n39QuWoGFymjUweysj64ibRfcDkJ27UWjTKRPTUkCS3lBkdBfScHNGBYKm5sN/t2/yyMcthCLMbCR\nDjBJTsZiDA47O+mIy7xmwpr0ISxUKA/tJ0FxLMaA+JprDFpaFP7oj/J47DEGr6dP87OLiwyIczmN\nrVtt9PcbjIxwfIL3vRLt3uOPq5Lik2X5yf7g683Ny+kuUik+C7OzLDCye095xcJYjEHAvffaFdeu\ntVI8nD6tcO6chmVptLT4r0ciBu3t/v83aq2s9Tjr/b3p6cqvz86qinQc/f1+sX1wUNabEDo62Nl5\n4oS/RgKWG7zz8yJKfuYMKVaE8kvQjQA8uo977ilifh548skwolGF9nZ+Np+X50B5NKTDw0yUiO3e\nXToOTzwRQjJJKrLRUeVSiRj09TlV1/HOTq5hEnzm8z5NmU/7wsTI1q0G5QieM2cUhoZKj1lOSVjJ\ngvfxO98JL5ubXFdKX6u2vt9/v43RUYUjRzSiUY1wmAlO0fmjDhAT9FIAm53leijJh/l5BvCxmPG6\nm0MhzvV4HPjTPyVd6hNPhDA2xjVaKenklgQ/6YIqIVGNUV7SIxo1LnWqchsf4FJywf1tFhBmZri+\nxeNMWC8ukkJpLXahqIgsy3jaHrIGUStNo6HBuLoNBoWCWUb3KYlJoaRkUo3HClIXrXTekmwTKtD1\n56qN21xhPMo9STLKv7necu6/ncUUSZ4JdXEoBLchw3iJSf8zlY+htV8kCzaihMN8FmIxNjosLjIp\nGA7zPhUK/Mzp0742aD4PPPusxvbtfCZjMWBoyEY8zqYN0u8ajIxoF2Fb+ZzkmWxu5rpD/ZbVxyMS\nMS4FrCpJNLJJqVQ7L2gyvy60CfLs4s4ZU3KPl71rVn7/Ypi/Jp1fMVkprustLWxk8H0o+r3NzaQq\nGxoy+KM/svHUUyE884zC8ePct6TJS7TlWDjh+BCtWpniu24XxqTY5RewgfZ2Inhef10jl6MPVSzy\nXg0NkWXh6aephSX7gGXRdxsedtDSYjx/OpdjMWx8nNqlLS0Gv/61RjZrPM3f06e1R20tFpwjmzbx\nb5lrgvICGN/85CcWZme15wdks4ypqM+qkMk42LyZvttK8XVvr8F997F5zm/sYbGvuZl018ePM/4l\nPTf3sHTaQSzGGOf2222kUo7ro9I/LI+jxQ/76EeB224r4q/+KgqlNFIp+pwTEywQnDgBrxBYbuUU\n0SuZUDnncsaLv3x9W5/SO4gADsY4sRjPYXaW48umJoNEgs2oEs+IDy6ovrExFrR37HA8v158+lgM\nXkzc1cV5Iz6d5AuefNLBE0+EcPQo50fwekMhNoTYtuNSZpcW8WRdaWigr5FMAnv3Ot55jo7yfl17\nrXNBKAfLcyVsFGH8H7TVKBarvb/S98pzS1Jok/Pt6ip61zE05ODBB20cP87/79xZel0Sg/vNOwaJ\nhAlQrVe2YG4JELQ6m3/fKXm+utWtbrVbHfFVt7q9i229XThrPcaF7naphkiJx4FPfaq4DC1SDf0h\n17MS+k1QINu22ThwwHI7/mhKGXz2s3ls20bH6KWXhBOciWeh5+vspMZWT4/Bjh022toM+voAoDrq\nIZ1WeOopC1NTlucck5KQicLGRrhBAbsHz51TLooCMIY0Qtdc47iFB96f5maDH/0o5CKy6FjOzChs\n3WpjZEQjHKYGVFubT7HQ3U1UEFFlNq66yvGKP1df7WDnToOHHy7ihhuYQO/oID1ESwuv/dOfJn0E\n6Q7hUvbx/ACiXoiOA7ZsYUItn1fo6iqlnZmfZzAlHYqka1Re53lfH3V7IhEisW680UYyyfPo7uZv\nTE/zferxsMtcEhS5HDvVASLtHIdJ5ELBuBSQvD/GsMCYy/G7AwO8H3v2UN/pyBGNqSkFY9gxtrTk\nJ2snJjSyWWDzZoNstjraRebra6+xkJhMGlx5pYN0mkUH6b5bCdG4uMjCREeHcWlAOQ+Epm/rVlIQ\nVuoWXCtN4NNPh7C0pHDqlAp8h12gX/jCEnp6ln/nUraxsSjOnrUxP0/B6pER7VJtsLPTp+NACR2H\njNG+fVbVNZJJFX9co1G/0NjUpNDaymQF6RBJVzg0xGM/9JCNdFqjo4P0dkRAKmSz2qMVJbKIHZIr\nCTDLGhqN8hoSCR7r9GmiyCqthWNj2issLy3xeWpqYhFV6P327i1i504mVKg54VsuR3TlapSEK9nx\n43rZXI9GgauustHTY1ZF95HS0uC11yyXCshBLke6FCbVjat3yMC5owOeplSxyI7puTl2ebP72dfh\nANhY8B/+g4PuboPDh0mrqDXRbkKb5DjK7VCXQoxfDJOOcRa/mCgRZG6xqDwaH9I4yRrKjmAWgJg4\ny+d5H1dKMPm/VfraRppSTDgIjS5pewFAubqRPhVtsehT3gX1vwCOmdBIiXEc1bKkc/k1WhY8jY/z\n0QcjUoBJsebmYJc5O8wFRSDd3NWoGy+8KW+suY+zYUcpuEUpzm0/aay86ys5Stn/BdkIsEjPPZjP\nX18fnxVSgZHauVDwk3osOpKyl80gwFVXOdiyhUm1664j2rmrCzh8mF3nlUxon6JR46FnBSm7kolu\njiQpl3fZL0cRyDXL54hS5PhuZIFKjls7befG2EpUfZblI/guDTTcWsYmmPDkmk6UMNf5piYVQCKz\nqLFzp8GnPlX04objxzVOnNCYnFQu8t+n7w6HSQmXSpE1gP6d8QrxZB9Yb8Hw7UaLXipWbQz4rEgz\ng9yXeJzrz+goiw2JhHGLUPR3BwaA++8v4uBBy9PADIcZx9x5p41du0yAMQG49VYHX/hCAbffbnu+\nzblzyqN0PntWY2lJeyiv4NqhNYtOPT0Otm0je0dHh9Dl8xomJohoId2g/2XGHXDplckYUAnpVW7N\nzQZHj2rXX+H8C4fJBMLGJvrzPlKWvk9PD5+NPXtsLyauhaLuN78Joa0NSKUcTEwonDrFYqMgsMXX\nAUzJngj4LAArFcCUgks5qRAOs8koFvOfvRtusNHS4mB6WnvHFJ+hrY0xD30vfp5Noywo9fezyC2S\nCMeOcXySSRYJJQ7M56X4QmrKX//awsKC9hpfJyeVG8cqb90QxpZsljF8ZyebVcWn6+w02LKFx4xE\nSAscjxvYtvFkDFpaWLTL5Rgfb93quPeM82hoiGtVLUivtVIOludKikU2+wU1gIHqdOhilfz01b63\nWm6pnA2kp6c6O8jTT4eQyWgPucY4bfVc13rYTipZHfFVt7pdOlanOqxb3S5T24hNvZZjXOhNfz1O\nVbnTlE6vzSHs6WHhZ3xcwxiiPD77WWpCyfGFNjCYDAfoqH70o0yDJddyAAAgAElEQVREHz+ukcms\nXnx8+ukQjh4NefpBUrhIJplUbWryg+y5OSbTFxelk5tUClNT7Cykjo8qceoB35Hets3gqqsYwAiF\nIeA7/tId9/7327jrLge33UZ6vttu8x3OlZxWoiaU95vnzrHwRD0xJm47OxnYJJPsyNWahT0KNMNF\nkvEYfvKUf19/PSnmIhEGrtdcw8IOi080oR+cnQXice19v63N4OqrSVHR3MzXJECNRknjuHkzu/oW\nFph8ZhKWRa2+Pr+A1Nxs8L/+V9ij7BJ0AIsKpEGTgmi1+14+X4XrPJnk8QsFvh6kXahUqBKuc6F+\nDIcNGhocXHWVg717bXziE9U739ZKE7hvn4VQiGNJrQMWRO64o4hPfvIitMtvsPX1RfHTnzJJkstp\n915zHLdt8wPcamO00hpZCaEXjQI7d7Ig3t3NYmp/P2l3du0qvdfBY8tzRT07X1Pu5pttPPzwyoFx\ncA0VCp5sVrmFn8prYTC5kk77WlNXX81Cfnc3x+H977dx5AiLA6Qg4br13vfaXrEmaKsF0UGrVpR9\n6CEbe/ZUp8gMWioFnDpFzYKBASYilOKcnZ1lA0A+D1ffDQAMMhnldnArFz3qa30kEryGVMrgPe/h\n+vz44yGMjSl3TLk3NDT4tK1tbbxfxaKBMcYVY/epikgdpLyiDVGnxpsvgvBjcovX3d1N9F9np8HM\nDOAn6P2xEuou0jEZD9FSWhAIPufnk4Tl2MZi1FVgswHpkURfxBgmjxYW+HwJPa9lKZc+knt1tSKS\ndO0Hz7WUdtDXPPHRWcZLRMnnOTbGTWL6+4z/vmhtKLf4w6RqLscka2cn54UkYst1Ti6mJRLK1SCk\nhgz3Dc5Fx2FDgqC+qmlsAqWoFaEIbmnhOG3a5GBoyEEqxUYZGftslvNrbq5c/47Hsm3jFdWlGUdo\ntoTe6NVXrapFW6ERIyLWYHqaY75S0YgNMT4tpvg3ggCUeSjn6idmjXevAa4bvI5gUeP8CxVC+3ix\nCkxBv6QcYQn4z1QkcnHPa6NMNJmoWUnWAGolGVd3MahJySa1WKw0BpK97tgx+oLyLIfDnK9CY6aU\ndn+Lx+Ua5mvMrt3qRS9a5XGQ5jbZs6TYUSwCLS0OMhnqXC4s8LXubq6HxaLC669rDA4CbW3UKL7i\nCiLEFhcZB3m/HGjyEr/+4EGNpiaFiQk2xY2NaQR1hmWNA1iU7+pysGePg44Og499rABA4exZ5Wkz\niW8ZLJzJfIlG+btXXeXgy1/O14TqKaUiJNp7eNh4KFrbVti2zSnxPcNhIoceeqiAmRmNgwctPPlk\nCLZdrpe6PE5hs6jC88+HkM1qLC2RUnBpSSGVcjzUrtA2Cl2xXKtQSmvtePda7mVw/5YmoUSCDY2b\nN9PHuvVW26OZVEoFkFJAfz/Xe7kfV1zBpoqmJjZo7NnDYmYyyfdlfIaHWZAUCnOlSDV97JjCr35l\nwbZ532dmWBA3hs1FW7ca7N+v8OabGr/+NZtoz57luiM+olBcO45PhQ9wvbjuOsfVz6LvSekBzt++\nPgcDA2srOgVtLc3OImFx8CBZUvbutbFnj13C8sBxWZ1ica3Nk8DGFZ3O51jryS1Vsnrhq251u3Ss\nXviqW90uU9uITb2WY1zoTX89TlW5rQf91tMD3H23jQcftHH33fYyJEst51WrQ7Zvn4XxcZ5POu3z\nvitFFM8jj+SxuMj3zp5l8lA6ToW+JZcj7RA1YYCjRxUSifKghr993322q2fmBya5HOkcjh5lUPT8\n8xb6+52KCJ6VrmvvXtsbF0G4OI7BLbfYuPpqG0NDBvPzTJT19ZEybGKCAVxvLzsSZ2YY/ITDfoKO\nCQ4Ht99uXApKdpoPDTl4/XULluVfazRKWsrJSbgFAmDzZgc7djA4nJtTXuFL9MwAFpD6+gxef526\nQG1tPtXG4CALE3fdxfuWSgHPPWdhbo7fjURIv9LczITJzTevDe1SXlwZHCS67kMfsldFNH74wzZu\nvZVInIEBgzvusPHJTxbQ0cGkzORkZVRP8LdX0toKmqwJySSDzKuucnDFFQ62bdtY4eVabCM0DLu7\no/jtbwuYmtJu0ca4SQSUrA/VxmilNfLWW+2qhZsdOxzvHm7e7FS818Fjy5ym5h7H+oMfLOLhh1en\nnQ2uVaIlJ0lAztHla2Fwnr35JotkpYVczuc777QxOGiQzzPheP31LMTt2HH+6/ZG6WqWj2Nzs6/n\n2NjI51YSJ/G48RCf09NMXti20CESfRsOG+zeTardyUmFmRmKvxP1xkKZaH11dTFZLo0FkYgc0y/K\nhEIsQFJfxm9yiET87matuV42NhJ1Go0CO3Y42L2bNKtLSwpdXYJg497R0MCmiUKBSAdB/7AAIMmp\nYKKj1kSsr3tCekYWR7q6mKwKh1mkmJ9XHm0hECw6MMl0xRWOi3ZkYSUcBtJpXbWwEQ77yWYK1juw\nLOUlJcVsW7mC9wbGOC6tEZNlgtSKxfyxEa08FiSlKcOnSjSGCVWAc3Jujsl0CsOzYBqk1avVyhF4\nazUWYhV27Cjgfe8r4rHHCh5ienraP/elpcp6akHzC4I+2qu1lev6Aw/Y+NrX8tiyhXvt0aNsKkkk\nWBQgzabyCksA524q5WBgQIqK9E86O33k8v79FiYmtKdFVjoWLOZRp0W5iVFT0sxT6RqkUCYoEBYu\npPBpPASlXKs/F1jQTyaZhEwm+cyyCGLcJO35FYaU4lpwMegU+Xv0aYhu0BVRSUoRsaL16qjRC3F+\nUkwUROzazHh6sURlGQ/5ePPNDgCi7VtaTBkzA5ufxG/o7ze44QYHx45ppNM8j1TKeLpPxaJBLgdk\ns9pjJWhoMN7cUqpW/cG6Vbbq40bkMxsQwmGuEQMD3Gsch01yCwvGRU0zbmpuZjxULJIJgygQ+nSi\n31PNn5BYkX4C58LEhCpBJ/sFHYPWVhZnbr+ddOLiB+/a5eDsWSK4f/c7NlxKYUQKaFrD0/L98peX\nsG1b7Q+f+KO33ebgxhsdL5YT1E5bmylpRurvN3jggQKefdZvAH3jDY2xMTYBBmOV8jjl+HGNf/kX\nC9msj7jK55XLPMDnt1BQnm4q41CijUWjMRQSWke/EUa00QChdfabU4SJ5Npr2eSTTLIxcXaWY5pM\nAv39DtrbHezcaSMcBq6/nmwsvM8O/vN/prZyU5ODf/u3EN56i8jzwUGOz8yMT4MaCpH2MJfTmJ3V\nmJ7WLtuB8fZ4IugMjh3jZ5JJNqMdPqy9wunEhHJRydzv8nmOARFejCHTae2h8eJxNmHt2mXDcZRL\nBS33YW3+cq35hmrIsB07nJK4pFZ/ez1++kYVnc7nWBuRWwLqha+61e1Ssnrhq251u0xtIzb1Wo5x\noTf9jUh+nk93UbXkevC85uaAyUmNxkaKGstnanXIjh+nA/r669rrQAPo+O/axW7ce++1kcsBr73G\nbu5oVLk6G34QxWQTu/8yGdKZ+SK1tGjUYGpKkt8Kw8MOQiHSrp04oT3USy6n8OqrGjfeuLwQstJ1\n7dnjVCzg7NjhYP9+dj5alsJbb7FTrrPTuIK1DApuusnBffcVcPSohcZG5SayiCL5L/8lh54eJh7f\nfFOhr88gGlUYG+PxGOgxuT8xweD1hhscvOc9pPmQ4G7zZgdTU8oNYFgYchyO88yMxtwcg9FEggnd\n664jEiceL50vExPsCkwk4Iph814MDJgS/atq973cai1AVfpc8DWhuawV4bgW26hg4XxtrbQe1ayx\nMYpf/IJUmZIg8ekMV18fVhqP3l5Tde2q5V6XHzsaBXp7HXzpSwV87GNFj4pxNau1iFV+rXKOExMK\nIyNMUs/MSHe9P5+rzceNKFqtpShbzSqN49wcsGMHkxqRCJ/fZJL0q3fdZWNyUntUkEJ7lUoZdHUx\nUTE4aDzkitBIisbG1BT3g3gcaGhggb5YBPbsseE4wNSU32ksdKxcu5kgaWjgeZNWkYnbzk7jdi6T\nyiWIfDt7lmugIB4SCeMWdNjA0d/PIp3jEAXhONq7JrG1UPWFQgZX/f/s3XtsXPd1J/Dv786QM3wM\nOXxKfMmkrLcs2bIc16Yfie0kNuyka8dQYajNblCsk3Qdd4ttsy2QLBIgbdFg4dZAiqBA0A2yAWzX\n2izSJnbXm43zQEzXgK3EkiU7sqwXSckiJZEcckjOcO797R9nfvfeGc6QM9SQnBl+P4BhmxzO3LmP\n3733d+45Z5eNAwdkrN+0SePOO4EdOySzbXhYMpLN5GM2raUUUUuLZBX19mrcfbeDN96QBw5ylb6T\ngJdMbofDsg1qa+V3ZnLPP6FoMr+6u5101rWcLxsb5R/piSnrs65Op8tbAvX18kS2BMOkjFogIJle\nN9wg+18iYaWfUpeSeiZzTOvFve6WslT5JyAzky2XcFijo0Ohvt7B5z+/gJ07pSTua68FMDYmk3yS\nlbv8MpnJXKXkfbdu1WhtlYzqpiYHr75q4e//PoSLF+VJ/2BQJvi6umzMz+t0fxPlTuxKmUWN9nZT\ntkqhqUnjqacW3Mzll18OprMqkS4rbQLQGps3a+zZ47gZSa2tkhG+OIPeYzJETCnDbdtsKIV0INrL\nnDRBvtpaWUbJltO4804pZbdrl4P5eZlUr6uTh3GSSeS8hiyEf90qtVbZgRoNDTJBnEzmPqYMqTSg\n0qVBTZ84lV7W1Vs+2S9luVbyOcGgZHtZlowjmzbJpLcZnxsb5Rjav1+7lRmmpyUIODurFk363nuv\njVQKuPFG4No1K11uVacfDPMy/xoa5Lrw6lXTO08jlbKWOFarraRhqb9P7vcyZd/NNmhokOz45mY5\n1m+8UeP8eQsLC5Yb+IrH5fidnlYYGbEwM6Myrln8FTmiUcmq99/bSXaWd51gMu1nZrzStiaAZc5d\nu3fbeOyxzGsb//XP2JhcD/jPUQDQ2OjglltsfO1rCbeayEpkXyOZrB2p8iFlGJ98cgHHjmWW5Z6Y\nkH6iXpk/kX2fEo1qPP98EKmUV92ipka2RzIJ7Nql3Qd1IhHTF1sCPY2NGvv322htlbFW+n3K+VaC\n1hq3327j2jXzUIxOZ2dp7NunsW+f415jRSLycGQoJA8gbdokD4XW1so13NSUvLe/asLoqHJL/nd0\nyNjw29/KQzEmUGWyyFIp2d+SSZUOWJn+k/KaQEDGgVhM1q3phRUOK4yMmLL4Vvp1wKZNck0hpYAl\nYLtpk/y/1gp33+1g/355cLC1tfAS3vkUOt+w1IPAd9zhrOh6u9jr9FLeR670vUp1j8LAF1H5YOCL\nqAilyCAoF6U4qRfyHmtx0r/eyc+VPhG03OS6vzSGTFZmvqavr7ALsmhU49QphWvXLPfJQvPUalub\ndjMrDh6Up9veeCMA27bSE19yIV1fLwG3gwelSa/JQDBPkE1PK7zzjsJ77wUwPGwhHJYJVaXkBkYa\nzUvt9suXgcuXFS5dsnD+vIUDB5xFy7vU98oOwgwNBfA//2dNenLWrDe5wbBtuOXaTMbLtm1SanJs\nzEJ9vUyA/df/msCDD8r2unhRykT4M7wuX5Y+Q++8E8Dly/IU+g03OG5ZQ39vprvusvHeexZiMTP5\nLBkK9fUKjY1Afb3csOze7aC31/vb7P1l82Yvc8TLFnJw+PACzp0rfXDIjE8vvxzAD39Yg7ffNk9s\nZo5Tpejvl0+pbhauV6m+Y0NDCMePL6z46cPl1kexY5f/HDQ+rnDrrTbkxvv61rVZDnkyd3EmaL7v\nOjqq8OqrAZw/7wXEx8ZkrHnssaVLLJYiaFUKubZRV5dkf2SWaNS4914bd91l49VXg+mgjUxWTU3J\nxNfCgpTh6elZ3HMvkZDeaPPzUsImGJSAgGVJkMf0DJqaMmWPVLoEkAQvAOXrZyJBgE2bJCNt3z4H\nyaReVPoUAH7960A6+8g8LS0PINx5p40HHrDR1KQxNiaTTJcuWW4Wlgkcmc9L/1fe9Wh6brS1AUpZ\n6bJ3wMyMld4nJJDU3g53IivXhLvJumprk880wbwTJ6x0oDEzK0YpCaiZsrgmCJhIIN1/0Ur3gpEJ\nUplclAmwhQXlTlYGArL8PT0SUOnsBG66SZ4qv+UWKTM0MyPrPB6Xyf/5eemZ1dKiceCABPmuXJH+\nVfX1pneW1yMpf1Ajc7JY5V/NAEw2t05nBZoJYO9vLUsm9uvqFJJJyWxpbnbwwx/W4Le/DeDKFTmf\nFxKIkwlJk4GgsWOHBHu2b5fA38WLCv/v/wURj1uYmpJtGggod99saZGMCJOxaEpd1dSodJBMshPv\nuEMCtYAck1evSnZaOCxZ4aY81Z49Dh580GwPK13qUEpImRKOudavybpTyvR3kQDb+LiVDkx4fxcI\n6PS+KvvD/ffb2LnTwebNDhoaFG68UR6EkeC1HMsTE/nLcC7F23Yr+/timUnocBhuGWdTbisXk4Hq\nLz9mMuNWLzst//LkOzbMz5XysmFNtmZTk3YfGDDXvyMjCn19DmIxy50Ql/5/2R/gTfqa7OXLl+UB\nArlGtNxjPJUC4nEL4+OW2+MumfTeJ3fwK/cXyjfmLjc25F4vqxtcM+NrIOCV312q5KhSsq5NdpwE\nEXM/fLjUcss+KUGPbds0Uil5gCES0enSxBbicbgBlbY2GYOuXJEH2mZm5GGda9cU2tu9a5Z893ah\nkM4IcJsewJ2dDmprNeJx6UVlSh3fdJODpqbc153m+mdw0EmXolewbTlHbdrk4N//+wX82Z+lisr0\nWk4xZbnNPaJS3n1irvuUpibgrbcCuHJFrodqa+V8HY1KYOvOOyUDb3ZWxulEQsb9lha519q5U7bH\ngQMS5AmFNFIpOUa3bJHxVUr2y31hd7dOlyeVhyb911gmmNfVJT1x33vPBPMke18pZPT09t93mn+i\nUenhlkjI2NHaKvtSJCIPjcZi8jBrKqXS/aYl07O+3it/Gwho3HijV466s1My71Mp+d67djmwbXkw\nqqkJuOceub4bG1PYv99OXyt567jYEt65FBoA8u8H09PyAOjwsDyIessta3OdXqr7yNFRhaGhgFs6\nOTvwWchyXO89CgNfROWDgS+iApUqg6CclOKkvtx7VMJJf6VPBBUyub7c01OFXNyZi8D337fSr3Nw\n880O2tvl9/5JaWnyauPsWYWGBoW2Nim30dAgQS/zfUIh7wkykyGVSgGplOWbvJYb0/FxC9euyTJf\nuiQNvs3TfdeuybFg+h35l3e57+U/ps6cCWB62ps0l3KFErQzJcP8AZylSk3muoELBjV+8xsr/WSe\nTj+ZrzAw4EBryQ4zy3nsWCCjGe7MjExytrTIpFskAoyNWeknIfPvL01N0geqrk5u1vbvd/DYY3Ij\nW+rgkFmXFy4E8OabAVy9qnDhgky0vP9+5jhVyvrpuZRDQKOUjYlrahLX9fRhqdZHrnPQuXMWHn7Y\nxsc+5pVBHB1VeP75IL773Rq89FIQo6NS5q6Qzy12LDSNo03POaVkQnDvXq/sZyXI3kabN8t6qK31\nJlLCYekN8a//WpPu+4X0U7zyYIHWMonf0qLxB38gGTaZZSTlid/paZVuBi/ZRUpJIMxkfExPywRJ\nKCTBn+5upMu9yaSYZMp4Zdd6eyVokKsc5uiowksvBXHunIVgUMZlE6w3T7f390s2bzIpk4TxuEx2\n1dbKBFMyKVlmra2OO3FbVycTQuGwKTMrPRrDYY1AQENry10+k9U1NSVPx0tvFDkOTe8z/2SuZcnE\nZUuLlBIKBKQ3ZTwupQ5lUlu5wZj6esftcxmNygRTPC6Zi7aNdLlEydprbJTzSjgs2XLhsDx9XVsr\nY3Q0KtvvwQftdNkzb7kiEeD2221s2+bg8mUrHQCQSdVwWP7e9FO8eFHWoUx2ef2j8k8Gy89ranS6\nt5sJcObK6tLpJ9Tl+/lLfdXWmrJ/pu+eglIO4nELp09buHrVwuXLkpVlgnGZAbPM/5eJadm27e0O\nvvnNecTjFubmkO7L6eDChQAuX5YJYFPG02Q9yGSjTDqHQtotgWWCKKGQwtycxpUrEiTzP6jR1aVx\n+bJCf78EIPfscbBtm4Pdux13bPeXIp6elvN0IqHcDHcJZMh+aoKbwaBkjAWDcl0Rj1vuMptMwIYG\n6Q/T1aXx0EMpd9Kxq8s7nsNhU75Ulu2DD6yM0p1+JoicL+vHHPurXUpQss41WlvtdLaEZHqmUjq9\nb2Yvv06X99QIhRzccIP8VII6K89QKyZ4Y8rH1dTIsWvbOmMframRCWo5FnW6J6DZ9rL/dndLKetk\nUqOvz8HIiIW+Pjmm/RPip0/nv27YvFm7k6hzcyo9nlnu95+ZkQxgEwyUCXDvIQIvCO71T1Q5VoQJ\nXIdCmeOFycKVkrCFrj2dLv26uoEvydBxUF+v3e8sGYK5Xy+9ASX7ymTkmH6I8h391x8qY1zyfu49\nABAO63T5O9m/t23TGBuz0tnDcMeUQAC4dEkyvVpbdbrHoZSdu+UWGw89tPR9m4xh8t+A6QFsso/k\nu3d0AL29cn7zVwfYvFnnrQ6yb5+MLQcOOHjkkRS+/OUFPPTQ6lw7F1qW22SpNzQg4/4o131KIODg\nF78IuuN+KCQlje++OwWTXRYMShlArZX7cFA8rrBrl42BAcd9XUeHrKt4XKGlBb4MO8mkNIHNvXsd\nPPSQnfeaNRTK7GOd/g0uXJAyurnuO03PvtFRYPduE8CT84yMF1K1JZGQn5kHlEz2dTAo10+mNLY/\nk9BUBTFlNScn5fzc1SUZ1OY6c2BAArClfniwkCo0/v3A3+83lZLtJ+fjtZnzut77Jv/9Unbgcy0f\nxKyEOTCijYKBL6ICrWaWRDUr5KS/3pl0K326qJDJ9eVeU2z5uqtXlVuWRd5n8aR0dzfwkY847iTc\nwICDujqZ6PM+33uCzGRIffhhZilFU+KisVGeZr54UZ6QNDf68qQzcOWKhZMnpTyM/2Zuue/lP6a8\nCSy5CQ2H5aJbnrxGUYHmXBl8w8My6dzert2ygyZT5sABKfVhljN7m8nNrffko3kqMJWSG5ql9pd8\n66HUwSGzLr0eTfL9zLr81a8kK+fMGZm0zLVPrqR+erkqZWPiQCBRMVlso6MK//APQfzqV0HEYhJk\nOX06gOHhzOB0PsWOheZYMRMWUg5SxoZSBFHXS/Z6CIVM70GFM2e88UH6RMkEZ1OTxgMPSE8zQLnH\ntVdG0kI4DLeUj2EmRRsbzWS8lPSTkpc63UdGyr5GIlKizDSEb27W+Mu/TOKOOxZvW3Pjbxqxz815\nEzzhsHfekOCllL3t65PsoPl55b5/KCSBli1bZBKxq0uCPFLuTs4NJhuotRVuFs+mTdLfS5rby/lD\nSgbJU/6mpKN/Er2+XrKYZT1JgGlqykpn/kiQoalJSt/W1Wls2WLj3nsdt1Td6KgEm5JJKVtUVyfl\nIUMhbzLKsjR+53dS6X5sErxpa/NKRe7d6+Dxx/P337tyxUr3MJQspNFRC/G4hStXZBsBOl3O0vTx\nkO/mBZmWyoRQ6aCVhm17GWPyO7P8wM6dOl0GWIJJpkTW/LxMxpnATzIpD3rMzloYGZHAmMnKMuc/\nU47RK7MlE7gmEKaUrJddu+QhEVMWqqEBOHrUwsyMhdlZmaSXIJ+ZqFTo6nIQDEqgsbZWgkw1NV6G\niGXJRGFNjcLsrIWzZy28/76F5mYHx47lflJ7x47cwadQSPY92zYPu8iEfygkD/E0Nsq+Y9uSBWeu\nA7yJPeVOpFuWxtatDrZvlwlZc+3hL08bCknm+fbtUqKqtVUyxTMDQV5mi+lVlnu7yzopVQaVUjLp\nGgzKQGOCo+GwTGZ3dmrcfLOMJXV1ErCZnV2ccWZZXnZec7ODnh558KexUY6/REJlBAIK4d/+S2cF\neUF1yXCVTD3HkWU2AVRZpzqdZWPDlBVtawMGBuQhhs2btVs5IJnMldUs51FTui5bKKTdyXIpa6jw\n1luyDzqOlKuVMrHe35jAmzm2olH576Yms2+acU+560QCPDI+W5aVldkq1QccJzPDMz+Nri4HmzbJ\nmJ4vKJvPcqVUs19bUyPnDRN4T6UWv072c9n/TMBrdlbOA5KF6PjeU6f7W1pu2V3/+jXZZbW1kiHV\n2irX4089lUQoJOe6QEACGF1djvtgzsSEBPIbGrwSxg0Ncnw+8ois8Hz3bfX1wGc+4wUlUik5F5pz\n78WLUgkjFlNulsz0tEJTk4PjxwNLVgdZ74fFcgWQwmGNJ59cyHiwKtvoqMJPfxpEc7OUE0yl5Jzz\nx3+cwMc/7r3n8LC5TgJuv10e+uzqkuzhBx6wF5WbbmmRjLmpKYVgUGP3bo2BAe8ac2BAL7rG8l+z\n5gtinzploblZ/jv7vrOjQ7L4gkHvoUazPCMjcu8dDsvDhKYHmfRGhftgh+yTcg71Vz/o69MYGrLc\nDKrhYXk4ZffuzH7PSsFd36XeH5arQmN+/8478qCMdy9pev5WzpxXuczZMfBFVD6WCnwF8/6GaAPK\ndTO01M+pMGZyztxwT0wonDuncPhwak0nlnt65On3YkSjMumX6+fFvMafjh+NagwO5p5o7unROHw4\nlfe1S73PUr8z+3A4rDNKT5mbhv5+jX37kviLv6hDIiEX5g0N8reJhMLUlMbVqwpnz1pFbTv/sdPX\nJ2UftJbPHR6WCYDeXu99tJbvsNx2Ghy0ce5c5iSO1FR3Ft0Izc+rjG0BLN5mZr2Ew97rIhHJ4Cp2\nn1ktZl1mf7/JSbmxMf1eJiYUpqdNCTHvdUrJPlEtcu0D1/MdVzI+lFoh56ChISlV6p+80FqCt4Uc\nO0Bx37WQ8a1S+dfDkSNBTE3Jz71xUmFyUqf7X2i0tEhgCsjcJv73OXtWgjjHj3vbKBqVLITeXgex\nmPSDqKmxUFtrygvJ2FVXJ+PhyIhM1oTDGnfeuXRQUmsp0bhvn5MO/ktGzP33L7jng9/8xkJLizcB\nd+edNt5/38HEhML27Rr9/TZiMYVIRLnLrpRye1jEYk56QlTb5DwAACAASURBVFJ+PzMjmVUtLZJp\nPDGh05NXZsm8MnkzM0BbmylHZvp/aGzdauONN4JwHMkOS6UUEgmN226z0dwszenHxix0dsoE2kMP\nLeArX6lzgw6OI+sxGtXYudNGezvw/vsyKXXvvSn8/u/bGBoK4OxZ/8SIfB8T4Dh8OIXnngvg5z8P\nYmFBAl0ffuht2+lpOedFIhqxmJRyGh6WnmmpVA1SKekDJBPO8t7ZZRqzyRPkktFWVyelu8zks2WZ\n0nQSMNq3z4HWMuE3MiKT5DU1EuxRSmFhQYKyExMqnbmHjOCGmXivqTGT89rNkJHyYLJOTGnfvj4b\nWmdOJIXDwKVLMsk9PZ1ei9pkp8j+KiXbpFxyMCjfKRiUye9Ll6Qn2uSkfHZTk8KHHwZw6pRy+9qY\n/jL+axb/dZAsF3DsWAChkAPbNoFbKYFp1qMps2XbMsk9OamQSnl9xmZm5PtaljcJ7e4ZvmuPpcbH\nS5cCePNN+YxAQJZ9ZkbOPUpJ2U9T8s4EYh1HuyUEA4Gl949CBQLyvYJBhdlZDceRSdrmZqChQQKY\nUupP48MP5TPr64G5OWQELBxH9l+lgKtXrfTvtDvhK6XjtFuCWynZ7tJD0MuEkFJ2Ztkk+NHQIJ+d\niz/oalkmiId0NqkEtiQQ5P39woKUKG1u1rjrLiejPJv/mnSp8+jDD6dyXjf4A9CAXP/198vyT09r\nJBKLe3jZtkyASzaTg85OOcY+/FChsVGyh+JxCwsLsi7N/rCwIMGcuTkpY2qCPSYbsbHRQSKhMDeX\nP5gq299Gf78cn01NwPz80oFGs97NNjNlQf1Bp1x/Lz3gvOAqYMqTmvKu3noMBoGtW6Wn7vCwfM/m\nZqTLEsrEuvRIk3PW9LTGG28EcO2aHKPxONzAfigkY1dPj43BQQfNzbKdAeDMGaC/38GJExa0lnPb\nnj0aSjkIh60cE+KZWYhLXdf4j3///ev0tDxUIOOIBNSlZJ6DubkAuru9QEs4rNOBkMKuydbCcveX\n+ZjrDCkR7Q1e09MB9PSk3Pd8990AWlrke5vrJECOu6U+e3TUzpgjABZfy+cak/NtQ/9xmn3fCUhZ\nw23bFldd2btXrjUmJxV27JDtm0gojI1p9PQgXf5QHoBobpaHAmZm5KHLoaEAtm6VsuTmHyltvdhq\nXzub7eWXfX47fDiFv/5raW0QDst53ATfymnOq5B5jWzltPxEVD4Y+CLyqeYJvvW03EVYOStkcn25\n1xQb+Ms36bLc+yw1WWP27d5emaQ0E7LhsExabd0qPW127rRx4kQAiYS5OZfXmie6geK2nf+Y8k/O\nmqCa/2LbyHfRmn0BfP/9KZw54/1/NAoMDwdw/Hhm+ZVweHEwJHub9fZqTE5qd6IXgLtejhwJFnWT\nuFrMuswOXs7MyKRnZtBOnt5ubUVZLPtqWOlNfCFGRxV+/OMAjh0LQGspkfPII6u//go5B5lG39nM\nU8alVuoAY7kx48rLL8t5qq9PZ0yWLCxIr5BUSo6x6WkJNGVfF4yOSt+no0clq2BgwDRll3Xo33/2\n7UvhmWfCiMUku+amm2w0NkrwIBJR2LNH/lspjU99yl60rGZ/P3cuc6JW/k62z6uveueKeFwmwfft\nc9zg18GDGgMDdsYEnxdoSKVLs8nnPPqojZ/+NICXX65Bba3C9u0OZmYU3ngjgM5OnR57JEDY0pI5\nibJzp0ZLi5MRzOvtlYnkzk5gbMwLlDQ3S/Bmxw7J0PU7ciSIvj6Ns2fNxKN8t1hMsp6+8pWE28xe\ntmcQjqMxPZ3/AYAPPwReey2IYFDOcRcvKnzjGyEMDkr5puFh2QekdKI8ob5nj8b//b/ypHFNjQTH\n0u+MYFCyVubnc/ezkc+XfwcC2s0Asiw5xqWMknxWMilPnYfDEoTo67PT/a0kAGVKsEmwTB5OaWmR\n9zfBjYUFOX/X1koPpFDIQSgk+3N9vQQvpLycg3vusXH1aiBjwhKQMsTHjsn7mL5qjuOgtdXBAw/Y\n2L/fW58//nHALXXZ1CSBrokJyW6sqZGg1Pi4rKO5uQAA7xrCf12Rb7LrrbdsfOMbIXR3K1y+LJOL\n8bjsd6GQBF8nJmR9NjXJMkspLJ0Oksh3m5pCOtMrUyHXHnV1wLZtMsEp/V9kXba2SjnO3/xGSiSn\nUnL9JMEd7WaU19TINl5ZyUMJlNTUSFAgHNZobnYwNyfjlgSVpc9gW5ucEyIRCRjEYnLsTUzodFa/\nV35RyoXK+pqakjEvldJoa5N92RwfWnsBNqUcJJMBJJNe/zwTNDOlLwHJvsxXKjEUkvc0urtl366t\nlWxRr6SevHd7u1QkaGzUOH5cvtu+fYvP+8sFNXJdN7z88uIpke3bnXQJOyl5m0opX5DHK2/a1qbx\n6KMLGBgAfv7zAPr6JDh+6pTC0aOABEK9PnqdnQ5mZyWoF4vB/Y6OI0HGzk7JmI3FZLuYEotaS0Ax\nEpH9KRKRLL5IRI7LaFTGQwlCeuvDZJ+Za3nTY0mysCS7prFRznmzs8DUlATqFhbkfNTY6AW96+rk\n+Kmrk22dSMjnmTK0H/+47QYk6+q8h7UkMCeZ+lorbNkiQf3ubuDTnwbefjuFDz8031P2RaWk36AJ\nSJhxxn8f1NcHnDql3F58t9ziYM8eG6+9ZgIQ8rmxmIxlR44EMThoF3xd499ffvazADZvdtK9sax0\n8FsyERMJhTfesNwg/tycSvd3Kv/MmeXkGhenpxV+9rPMYwhA1oMmwlwr5btHXem1fL5teMstDiYn\nZTmy7zsHBhw0NzuYmlq8nP393vJFo0H3u8Rikg0Wi8l57bbbZJsePy7tBubnFc6e1XjppYDbo9L8\n3fHjkvnlvzZb7WvnQgJCPT0aH/uYveT2Wm/LzXlwzo6IisFSh0Q+K+0DtdEtl+a92v2GVlMhZcGW\ne02p0vGv533Mvi0lgUyvHo1777Xx+OPS82piwnJvcOWG2HuqurXVwa5dXrmGQrdd9jElTYAd/Kf/\ntIBAABkBHCNXqbpCeh9t3qxx6pSUPJLSUwrBoIObb7YxMrK45r5/m/X3y8SFKUnW1aVx660SDCyX\nnn9mXYbDKl36CTBP0HplKrzX19cDn/1sal1Lq6y21WhMfL2lBK9HIeegM2csnD27OPhlMhRLXeKj\nVE2o14K/pO6bb1o4etTC0aNy7M/Pa7z2Wma53elpb1wZH1eYmLAwNqawaZM8kT41JZN8SsmkIpBZ\n2sbfZ+u554KYn7fQ2KgQi8l4cc89Np5+OoX77svsyfXTnwbR3q7dfk+pFPAf/sMCPvYxJ+96zjUG\nnjwp40Eoq7LD+LgpcyOkXNzSPQv9x9Jtt8m/zXHV3S2T6R0dEpSKRiWrwTwg0dEhJcp27/b6ixk3\n3CCTx/4ymeGwdntPmH5fDQ1ws2JuvTVzPx4dVfj+92tw4YLC9LTX3yoQkPe54QbpsxiN6ox1JGXa\nZFvW1S1ep3/3dyFcvbr4nOo40u9xeDjgy47xxti33pLJ2/l5CXyYrBVAJle1lnPs4vJwUv6rvl7K\nyJm+NyYIobUE/2ZmvBJf8/NSWuvgQTu9jiQTRDKbVDpjRKeDW0Bnp5QPi0Sk31EkIhPzN97oIBCQ\nQNTCggQD6+tl39iyRQJ6U1MqvZ97hodlsq+tTUozNjbKPvDYYza+/OWUO+42NQG33SYBtIYG72l4\nyaQ2vXpknczNScZgdvDJ9MnJ12v32LEAgMxSh62tsi1vv136OkmgT3rkhcMSBKyp0ejtddxspY4O\n6Q80MSH77/CwcssdZ59Hso+78XH5u1jM6/kXjUoW0sGDNqamVDrgJPtjd7fGzTfLpL7jeCVMk8ni\nHlKQAJpXAi8clnVl29LHpb4+M5M/kZAs0o4O4MMPJfi5ZYt2M+L8mUay7qU8oOnRBqh0eUvJwAqH\nNfr75TMbG1U6U0CCZnNzXoabOYYli1W7x2t2oM+yNCIRKa3Y1ibB8E2bnHSmmZQxNv2ETKlP6dMm\nQZTaWinB+NBDKRw7FsgY102mjSk5NjEhgbzGRo2jRwMYH1cYHMzsm5mrdLLpkzs9LfuhWW8eGX/u\nuy+FL34x5ZYVj0TkbxsbpaddKiUB5vZ2CcDefLON8XEJ4vn7B4VCErxsaHCQSgGDgw62btWIx5Hu\nMynfzSxDa6scw9LHzUJNjSmxq3xjpGxbQKUz62RDSBlCCWx1dkpJ28ZGCWh1dkqPYRnTZGAz5VJN\nec1kEumyqA5uuEEyGnftcrBjhzfBv327g0hEMoVM31wTbDOlCqNRjfb2ILS2ccstGrt2yXlk9275\n79tvd/Dkk944k30flEjIuamuTrKX5+clM6uhwXF/PzEh49ru3RqzszKe7NvnYN++/OdbP3NuNNv2\nyhW5lzKlZqenJet2YQFuiT0jHJZexeVgpX3Ms48N0xsqu0z9rbfaOHduZXMoK7mWz3dt6i+VC2Te\nd2b3ccy3nP5rcVPm23GAvXtlXZl+roBcv3R0yPXC7Kx3jWV6qNn28iXzS6nQMvDlPue13JxH9vJP\nT0uf3dpaZPQSXW0sdUhUPtjji6hAlTTBV4zV7q+13Em/VL141kshF+RLvaZUgb/reR//vh0OA/v3\nO/iP/9GbkPX38WlvlyejFxZkIm77dnmq1v+dCt12Sx1TxVx0FxL0M5+VTMrkX3+/ne7zoAqqud/d\nnfn/r71WHvXDDf/3a2qSCZLdux2Ew5k9CIx822i9++2Vm+zx65VXgnjzzcCiptnJpDxVvJrbvpBz\nUDSq8f77XsYDIGPA9u1ORjCm1Mu13v0pluOf1BkbU3jttQBOnw4gHJaJ3//1v2ogE4LeRM35897k\nhTzFLes0mTRZoMAtt0jvIROcaGyU4+q++7z9wD8+ySSJ19vijjsy9xfz2uyeaYDCHXc4eddzrjHQ\n35fCUEqnM2pVxusK7VmYj//888EHCrOzASQSMvnf1oZ09tbiZXn8cTvnBOP0tIzLXhBfRCIan/vc\n4qDi6KiFZFL6bAFe0CYUkie8w2G4wUs/KVVkuX3F+vq88e7554M5H76oqdH4z/95Ae++K72tIhEJ\nevmXyZRBsm1vUj8YhNtgvaVFls0EwKT/kmQm+wNOMzOyz5mgViym0N7uoK/PQU2NfHZjowQYens1\nxsakj5bJhqmpUaitddDQIJlALS3yunvucdDWBnz0ow527ZLSY++/b6WDFNr9e0CCFTfeKAHE7H5O\nw8MyoTwwAOzYIRkY3d35e/xJNqGDRx6xEY/L+VKeyvbeU8pKyjL5dXXpdKAi93nXBENMr7obb3Qw\nMKCxbZuDnTsdvP22BCdaW73Seabn3ic+4aC/30n3spKeeBMTCu++K/uxlCyT/byvT64HgMXHndf/\nRaV73CGdTSX//PEfJ9HXJ33Puro0PvrRFD7/eRuWJROjJuAgWV/LB79MlpDj6HQgQrlBsGRSAjq7\ndjk4d076Dpmsyvl5hQMHJDtlYkKOg+3bJWCdTEpmjbyn7L8miJhIKLeMoenlpDXQ3g7ce6+Nq1e9\nrLXJSWtRAK+xUbJzFhZUunegRjyuMrK+pIQh8MADNu64Qx4w2L1b9tvGRuDqVQkom7J7Wpt+WrJ9\nm5pkn00kFI4ds9zeU2Zc7+hw8N57VjpLSzIfR0floQT/+O+f8M93Pfr44zYCAckGlf56ss9KwFPj\nvvts/MVfLLhjqf9+R/oYaVy7BjQ1Odi2TY7Fjg7ZZsPDASwswA2MNTZKAFX6yWmcP69w5oxyg8az\nsxJksW2N9nbJFp6dVelMUFm+hobMPoO1tSbbTLlZZVL+VILwti3BmmhU49ZbHWzbZuPJJxcQj0um\n1/nzlrvPSY8y00/LQiik0dWFdMUBySLxn1/8AQjTm9ZkK5rg6sIC0NsbQG3tQsa69+8r/nEm+z7I\nBCBMf16z3vv6NPbv17h2TQKlu3f7y+/JeLLU+TYXs20nJqTX1diYckusJpMqfa4A/CV/d+92cNdd\nTllcd6/04cnsY0O2JbIetpMx/uGH7TWdQ8l1bbrcdfRKH2h96KEULl6U7+n1hfbWgylzafZDQPbF\nAwccfPazqTW7di703rrc57wK6Z9uln9qCjh9WqrahEJr+6AqA19E5YM9voiKUA59XkqpHPprVXup\nrOWUKh1/Je9TaG8x/3ubMliADaUcnDgRwOnTlluiqrm5uG1XivIWhZRuyP6uExOZJa6A4so0lmP9\n8FzrMvsYB/IfX+UwHpS7tS4lmG25c1BPj8YXv5jCj3+s17wUYznzl9QdGZHJCel9ZiZPpa+gKTmj\ntUya3nCDNxmyb5+U5FNKShUq5Z239uyRPk8jIwr/9m8BtLZ6PYmKGStWOq7k+n12Xwozhkpvq9wZ\ngSu9vvGfIyYnTeAV6fJpcmzs35/CwIDOOZ5nf665Lti3D25vsnDYwdNPJzP2Y7NdpfyklPObmvIy\nOG6/3XYbtk9OKrcs0fy8TPhOTiq0tCh0dOhF4117O3Dt2uLv2t4ux9mf/Eky59j64IMp/PSnQSST\nltsjKRCQhzlSKcloCocl2NjYKBOuExPK7aljyiJK1o4E7bw+nDJ5I+dgWQ/T08D773v7aDwOABYG\nBhxobWF8XAIWwaBMCpmSvbfcIhlIZvkbG4Fr16T31uQkIBNjEmzwl9X0n0fzlYXKd93hPw+fOmWh\nu1uOG9MfJRiUXmImM8S/XvOVnAPgO68vPg5Miapr15D+e+WWN7NtuZ55+GG51pA+flL+6vXXJXNv\nbEz2LynNqPCtb9Xir/4qmfPYjkRk/U1MyDgRiyk0N8Mda159NYjDh1P4/Ocz9/ff/30bly6lcPRo\n0M3AmpvL+VVdtbUabW1STm183AQftFsu07alzNrYmGSixGJSBnlqSsoxJhIKSjm4804HIyOSnbFv\nn4Nf/EKCGpYlmUSWpd1gkmQvygd4PcokcGtKfwKSfZRM6vT+pdPZaNJzLBSS43TzZmDbNgcvvmj5\netnJJLHJstq2zUY4DLccmNnHw2GN3/42gLo6CR6bTEVAju/eXqTLz8o+7B33Fl5/PYA9exy3ZOzJ\nk8rtK+sf//3Xgktdj27daiMWCyKVksBSQ4N8j49+dAF/9meZ107Z9ztdXRoPPGCjt9eBZWWWhTt5\n0sbEhIVLl7zeapKdq9DRoRCPSzB2dtYr76q1lCmcmJB9qKFBgqiplKwH83BHMOgvtQmkUpKVFQhI\nECyVkmv6tjYHU1MScBsYcNxla27WOHvWwvbt8pBCU5Ns04EBG+++G0Bzs7xOKa+f1ZYti0vUev2f\nlFsGVynljvn19cAf/iHwox/pRecsYPE4kz0GmGs1f6lvs1yHDi2kA1WFn4eXYrZtby9w6hRgAguS\n5WXGf3m4wdwv9ffrsrnuXum1R/ax0dDglTP2n2/Pn5dMynKYQynkOnq55cz1ms2bZT2cP68QjyOj\nn1lfn/S181uPuY5i7q3Lec6rkDkPs/xHjgQzyrsCldNSg4jWBgNfRFWuHPprrWYvnkpQqsBfse9T\n6M1Wdm8ac0MzPa0BWOjrA4aHgfl5CyMjDh57bKFk267Qi+7lLoClPF0Nhoct94nnyUlg377MJsux\nmPRgKGQ/rJT64cUcX+UwHpS7aFQv6qMGIJ2tUR7bvqdH4wtfSMHfI2ej80/e+AOX+f4bWNxnp6lJ\nJkYHBhz3ZtpMxpl+DYBM4J09a7njaTFjxUrHleUm/f1W42ET/3tKlhIA6HQvJVmXc3MWDh1KFPR+\n/nFry5bsZvde8OTXv5Z+RaZXRyikcPashbo6B/fcI0/9mu/24x8HcPy4lMMDpOTj/DwQjXpPs/vH\nuyeeSOIb3wgtWk9PPJF0l/H++1N44YVaXLkiAbEnnlhwe/6YyWGTDdjWJhkGDQ2AbUtvqUhEyhBK\nwE6CCbatcccdKSQSVkYmGQCcPGml91N/z0aN++930NICtwfbyIgEO1Ip4O23Nc6e1ejrk1JjkYj0\nh3vkES+Qde6cgmVJ0CaVgvtvKTmoM64L/PuTXEfIdvcmOSWoNzqqFl1L+K85wmHpg7Jrl+M+DW+C\nm5s3I+c5KxrVuHDB8gVDpW/c+LhCZ6eDkycV+vrgntenpyV4+Z3v1Lh9OS9etHDpUgDBoGyT9nbp\nC+QXiWi0t2vE4w5qaqx0P1MxP2+5+4g57qanvcn6mRkJWNbVZY4h4bBGLGbh2WdrsWOHA8fRbq88\nmZTTqKlx0NxspXtiSfBMsuu9EoFKSRDKZHNfvSrlMR1HZTzMEwxKhv78vOX290okgFBIghrhsMaJ\nExb27nXcUo8tLQrd3TbOnAmks2UU6up0uhebbNfZWdlPpQyrLPfsrJSSnpuT8qFS6k36xqVSEpQL\nBiXDamxMelyFw7JvS+85nS5dKH9rMuVOnpQg+qVLCpOTAbdU4W23Odixw8HwsIVLlxSuXDFZirL/\nXb4sJUxlnXtjMwBcuSKZTKanoRn3s8f/7An/fNejZ84EcNttGqdO2fjwQytdxtHB7t160XVWMddj\nTz+dxLe+VYvJSaQz+eU8Y8rlxeOSeSclVZEuiWiy5ySYvGOHZFm98YYXBAwGZawxmVXJpGR3WZaD\nmRkJ1Nu29G+bn5fAbV8f3P565hju75fylko5GePDkSNL93LKt069v/H6UQ4MOOjrK/yclf06k93o\n78/rX5ZSXsf7t+3p0wpXrsiDDdGoxq5d8v3CYSnV61/+crnuvp514d+Ocl1kLTru4nEZZ/MF9Ap9\nELOcmfUwOGgveiimqcnB009n9p7eutUu+DuXcv2Uc0CrUMVcx5bjg6pEVF5Y6pCoyq1Ff61C0rwr\noVTWailVOYFi36eQsha5etNcuCCTF1evSjPf5mYJhvlLcq11qb/lSjf8wz8E8a//WoPLl2WCamEB\nuHZNvocpp2Ru0gIBlVGXPl8phLWsf27KoLz8cgA//GEN3n7bKqpGeaHHlxkPYjEpESNlpWSC6667\nyrPs6FqXal2PUoJ0/fwlpiYmvEnOSER6HknfHe02nweA/n4HiQSQ7xj3jwFeSSV/iR8ZTwcH7YLH\nipWOK4X+nX/yZHzcQmOjTIxebwkb//nHPO3c2urv5+WVdcol13Hc06MXjVvZfUguXlS4cMFCNCrb\nsrtbJsY3bZLyfP7z4NGjFk6fdptJIRaTSeK2Np1RVs9c/3R3A9u327h0yYLW8r5PPZVMZ1vJsvzL\nvwRRXy9lKRsagHPnpD/Mbbc5iERkgqmzE7j9dhuNjQq7dkngdHZWXl9bKz1xpqbknN3e7qC1VdZj\nXR1QX5/Zoy0chtsn5NIlhddfD+CddyQz6YEHUvjUp2zcdpuU9puZUWhursFNNyXx2c8m0dUl28O/\nTsx+fPy4heZmhWvXpDRcMCjrYPt2ydLIt2+Y7X7hgsLRowEEgwoDAzJxm33+zL7mMCU2HUfKPd16\nq43PfS6FnTu1e87avFnKGx4/LvtFJCJZX3Nzcv6OxSycOGGhr0/6BZnynp2dMuEciwFay74ix7xM\nlNXVSSlCr8SZHA+SrSMmJqTvkClRaZisroMHpY/I0JAEVM0yOY6UHJYsG2//7+4GfvtbKY8ZCCCj\n3OqJEwFcumShtlYy0U25QaUkA0cpjbo6yZYypQAbGiQLLRaTQJQpKQfI72+4wUF7u1cC+coV6evU\n1iavGRuTQNX0NNDUJNlDn/lMCg895OBTn7Jx//02kklgYADo7XVQU6MxPy/HQWOjZLtJRg+QSFjp\nDCTp/zo3J7+T7yBl8Ey/qtpahWjUwcGD0vPn0iXZbj09ErxyHCknK72zLIyNSenXRELWWzIpAeba\nWpUuYyjvPTvr7VddXdI7Z88ex8308khJPek/6J0Pssf/Qkt2Dw0F4DhyLbljhxwz3d3SNzBfuU//\nuDY9nfsaprsb+MhHHDdrtqVFsrKCQS8gmkqpdOaevLfjSInKcFgCWnv22AgGFXbulPOA40ig1+sj\n5+1f7e3SSzEWs9y+X4GABCz27LFx//1OQfcNuc5F09MS4Dc9NbOv0/x/411/Slm4gYEatLYmCrq/\nyb4P6u2VALQ/IJzvHJ7r98Uy29aU+O3rk/si6eknx6i5XzLLXy59rku1Lsz7fPCB5R535rqothY5\nSyeutL9Yucp3P75zp3dNE41q/Mu/FPadq239lEIxcx7r2VKDpQ6Jygd7fBFtYGtxMcCT/vJKFfgz\nN3Lj4yo9sanyBgIKudnK7k0TCmlcvqwQDCq3SbQ0oPYmONf6Zg1Y+gJ4dFThb/6mFrOzFhxHau7H\n4/Ik+8yM9LUA5EbbPGHvr0ufr779WtU/Nzc8589bePPNAK5elYbsgMKpU6qkNz5nzli4cEEaU8/P\nS/kh2c4yAVNuN1hrcTOYPX41NQE7d+p0BotMlt1zT4rlIMtcdjPysTGZmJWMGhkz/cf+Uv2ncvWC\nkHKvMrnjzyJVCvjYx+yCx4qVjiuF/J3/eDF9o5RCycYt/6RffT3cTCfTA2vXrvx9BQs9jnMFTy5f\nlr5EZtI6HNZ48skFfOxjdsb59OjRQHpCWPr/TE5Kn6CrV+VcNj0tk/g33OC4y9ndDXzykzYefdTG\nJz9pu72dci2LyOwPc9ddDj75SRt33eXg/HnJ/jJN7RcWZP3MzQGDgw46OzUuXrSQSsnYu7AgvYP8\n59dwWOOJJxZw7pzC//k/Qdi29KiZm1P45S8D2L5dltFsi/vvD6G/f35Rj8pc/eFMICqZlEBCQwOW\nDHr5t7tk2Ul/Lf/588IFycAbGgrg9dcDCAQyA3nJpHKDftk91rL3i+FhCy++GITjqHTmkmSlNDZK\nYKWjw/TQk151dXXA7OzivndTUwq7dztZyyrZGRJAUO5rz5+Xnl+2rXDtmjz8I8Fix+0j8v77Cleu\nKHdf371bAqlXrsj+FInIRPc77wTS2UYac3NAKmUhkQCGhy1cviyl65JJCXDNz8t3NJlVNTUSrKip\nkeCMCVyEw5IxNT8vx1t7u06X0JSgz/btcjx2dMjYY0W/zwAAIABJREFUUFsrwaPZWQn+AHDHi3x9\nUf29X594YsHtfaaUBAXn5pR7fZhKyWstC0gkNLSWzEcZDzRaW6UHlFKSmReNyvKfPStBx1BIAtJT\nU9InLpEwJTClP2B7uylR6D1QMDwsDyw1NkoQua/PQXu7xt69Npqb4fbbMd91507Hve/p6pJ9INf4\nX+iE//XcRy039pmeeHfeKQGca9ckGLV9u2RkXrsmZRDNfjI/L8HPpibJZjxzRnrUJRIKmzcDmzZp\n3Hyz7QYvW1s1AgHZJvv2yfVyMmml+7pJP8jWVqCtTcbBQu4bss9FoZBkOmqdu5+u/29yBdBPnAii\nu3sh54MQufjvp/wPAay0n9NK5Aoi5TsvlUuf61I/hPlv/xZAKqXc87+5Lsp1j7jS/mLlbLn7+mK+\nczmvn/XsT1fo3MlaPqiajXNgROWDPb6INrCN3l+r2hRTK76QshbZN2OmN47cXDuYm/P65Hi9ETSO\nHAkuKsew2mUs8pVuGBrySlt55Dvs3GljYEAmQerrVfqp8cxlWqoUwlqUizBlUMy6B+Bb56UthzI4\naOOllzLXl/SEwZqVXSlmP1mvEjEsJVh5sktM9fWl3DJj0ajGY48tZJSgWar/VPb7Li7V5DHjaTFj\nxUrHleX+bq2OF3NdIRMKZrIr/3VFMcuVPR43NUk5rNOnLbz7rnLLDebvVanR1yfvU1encf68ZMHM\nzUnvrMlJB48+Wtj1T7Hlc7J7ZZoeQ+fPy7o6edIb4wHZN2+6ycb8vMKWLTpjv3zhhQC6ugB/yUOt\nFV54oRYHDxZWTjLX8kYiXpmxlpbFpdoKeQ8jFgOOHg26pb1mZ4GLFyUjLhLRmJ6WhyyiUSl1mH29\n4t8vzGtjMclGkyCnBDu0Nhmc+a9d/FSeX/X3e6XHJicVBgY07r57Ad/9bi3OnpXSiK2tEmwbHlZu\nKUfLUu629LvzTtmPpqbMsltIpaTP1dmzsuyTk/Igkck6laCxTBzG43KdEgrJ+waDUoLyIx9xcOyY\n9LWybcnWueMOB1NT8lBPT492+zoCcEtRmhK9SnnZYkBm/6NCyvu99Za8fn4e7nc2QQ3JOpMAWGOj\nRk0NMDcnDxd0d8s+NTcH1NV5n9PVpfHRj9rpIKOGZel04MxCMinbW9Yj0Nws23lyUrlj+tiYlL5s\nadG4/XZvgn1gQLan+b3pNQXIOp2elsDm/v32kuP/cq7nPqrQsS9XCbXt2zViMQncp1ISsI5GZX1a\nFtI/tzA2Jtt6clJh3z4Hra3AF77g9dry3zeYPn/BoMKmTRJMAzQ6O71sLv99gynx2dAg1/1mvWWX\nvpPeect/x9ZWrxSg99rru/4sRT+nlXxmoSUty+k+vFTroqdH4777bJw9m/s8nG0jlqJbi96vq61c\n+tMtZ6O31CCi5THwRVTleDGw+taybnkxE4iF3Gwt1Si6t1cmESWIZCanTHmazIvg++9P4dVX1+fi\neHJSYfNmne5J5n2XVAq44w57UV36bOvdt8msy+ynbM3/l/LGxzxRe+KE1z/FNGdeixusYm+iJidV\nRvNss1+u980glaflJnUOHlz5hE++8XTrVjvngwDFKNU5pJjJk+v5zGKvK4pZruxzUiwmAcf2dmD3\nbnn/V18NYvPmxWOG2UbDwxbm5qTHVzAoGTCOA1y+LH1/zpwJFLQvFNsTJd8+sn+/g6kpa9EY7/VA\nknKDfleu5F6mfD9fSq4+VeGwxuBg4cdDrnUxMqLc0nsA3GsG86DM8LD0turtzQzemesV//aX1wKB\ngHazd7SWzKX6ep0RvDHLAyDn9tm/30YslvvaJ9cYcf68jddfR8Y5JhLxlnOp/nqDgzaefbYWdXUS\n1AkEJKsoEJCs09paCXo1N3vZOs3NGnV1GuGwg2jUe7+6OmDrVgeAxvh4EKmUQiCg0+8lAcUtWxw8\n/LAcey+/HEQ0Kn3ozpwJQCmFEyeQ7suqcPmyhakpQCkLJ0/KuX5gYPnsgakpCZ7JtpWM8IkJyToK\nBJAOmDhoaZG+c2+8YaGhwTunX7q0uHRyV5fGnj2yn//3/16D//2/g1BKenFJlr4EY8x29j9Q8Cd/\nklzUT8e/Pf2/NwFUrTUOHHDSfbMkG2ql4//13EcVO6G9+AGOBSgl2+TnPw+gpkY+f24OuHpVrmdT\n6a9lHpjasmVxcNO85/nzCqGQ6UHlXev398t38Y9h/nXZ25vZ19L/3athgn8lCg0iVet9eDEBvUrp\nmVxKa9H7dbWVS3+6QlRDXzMiWj0MfBFtALwYWD1r/TRUMTeNhdxsLdUoOhKRScKRESlrNTDg4No1\nYGoqM3hknkL3904wP1+Li+NoVGPHDo2pKfnHtmWyaMsW6WOR77sC5ZH9aG54zNPaRvYEUKn092to\nvXjyay1usIq9iXIcjePHvQy1uTmVzujgeEZrK9d4unWrfd0B/1KeQwqdPCnFZxZzXVHMpE72OD0y\notJl07wxK9+YYbbRX/+1BJkCAem9YjJKgkF5aKPQSdZizxn5zrmAZOX4x3jJtM0/xre3A9euLf6M\n9vaCFn3R9zh2zEpPYsvP5uYys5oKeY/sdTE/D7eUMCBZbvv2OW6/ooYGmTDPLjVk1r9/vzBBwaYm\npB9iEQ0NkmnlD575t0Gu7WPO+4VONOfL6DLLKetPAqreAyOO+547dkhZRS9QIN/D9M9sbgZqazU2\nbZLMqPp6KT+aa5lGRxW+8pVaAFK+L5VSGB+X8ofDw3Jtlu/YPXTIy7xXSkolRyISEJmYUJicREHZ\njmNjFpqagPl5nV4GpD9PQykph71pk2yTkRGF3/kd2eZm3YTD8t0lY9Fj9nPz/uPjGqGQQiolDy0l\nk/Ke2cfYctey/t//7GcBRKNOxn5XimvRld5HrWRCO99n9fdr9+Gto0cDbpA46JvNmZ9XOd87V0aZ\n4V/fK1mX1TDBv9qq8T68UrPe1kox37lc1081BaqJaGNjjy8ium4bub7xWtflLrZW/HL1sZdrFB0K\nSemdp55awB13OPj1r3PX/79wQfozZFuLfmDRqMapU1ICq6ZGln3zZgf/5b8ksXNn5qTcWvTsKpap\nTW76EgHKbRQdDpe+Rvl61kIvtsn30aMWTp8OZL1WYccOp2T71UYev6hwuTKkjh0LXPf4X8pzSKHH\n9lqft4oZc7LH6atXpc9hdonafGNGU5NkCQ0PW0gkFBzH+8zaWo2GBim1Vcj3XMk5I9c517zP3Bww\nMmIhEvF6xeVbD21tDn75y+yytBpPPZXM6ENWyPiVq0+V9L4rfJvnWhddXXrRgwyhEHDggIPPfjaF\n2VmV8TCHYa5X/PuFCZwEgxo33eSky5RKObunnkoiFFq8DZbaPsX0VV3uump6WuHNNwPpUoYSaGhu\nBm67Td7X/L2/h1pNjWSqSW8z2da7djkYGNC4/XYHhw6lci7TK68Ecfx4EFoD8Tgg21/6hjU2Av39\nDubn8x+75ntfuWKhvl6CXmabb9smgaZ8ffhMH5f33pN+ZA0NUn5Qa+kX1t7uoK9PIxiUHmf33OOg\ntlb6jXV0yHft6JCHpsbGMgNf/v387bctXLpkobZWSmcHAoBlOdi2zcYnPuHkPMYKuZbdu9fBxYty\nfIWy2jysR29aoLTXW9nHy8KCwuyslOc0wa9IxMHnPpd73wIKG9OKXZeFfEezf507p3DypJXuGSe/\nC4WC+MQnEmXXY5aWV+g4u9L7r/XsL3W9ivnO5Xp/Wi796coZ7yGJygd7fBGto7Usg0drb62fhlqN\np8Kyn0Rcap/N97RmvqfQ1+IpTv9Th1u2LH2cleNTl/7lb27WGBuz0NnpuGWUSj1erGfZlWKf9lVK\nelb4y3P19WmofE1ciFZBvgypbKYs57vvSrC2kOOqlOeQpTKO/OUYcy37Sj/zepYr37rJ7h9TbIla\n08uwqUmn+xTJ92puRrrEX+Hny1L2RPnCF1L41KfsgtbDwYMa/+2/JfDCC7W4cgXp3mZJHDy4snF6\nuaymQr9D9rWC6S9lmOuR0VGFiQng6FEph2iyRvJllyilceKE5b6uu1tDKcfNQsxXpq4U22e566qh\noQAiEWDPnsyJPpP54v9700NNKb2oBHT2++YyOSnnuVBIobNTIxaTUna1tRr33ZeCZRV27E5Oqow+\nc/leBywe34zmZsli01pKNW7a5GT0hzt0KJU+PjP/LhLRuP9+KYOYaz/v79eIxZx03y6FcFgCavv3\n29e9Lcsto6iU11vZxwtgYfduKf1sro+efjq57HsXeswUui6X+47Z+5cpxbl3r1znfvrTWFTKlKpP\nsWN1pfSXWspa9H5dTeWaiUZEVCwGvohWUTVctNHS1vomey2CFktdfOe7CH7iiYWiJ3hKqRxvGIpR\n6PKXKpC+Xuur2JsoOb60O9nm/znRWslXonN8XLklXmMx4Phxeeq9pSV/P5RspT6H5A5OZF6HnDyp\n0NeHRVlUq3lcrXTMWcnES0+PTAB/61u1CIctxONSMi8adXJODK/lA0rFrIeDBzUOHkyU5HNX41pl\n6dKOss9t3y6T3KdPK9x3nwT+/OvWvz7W60Gx5a6rlgtOL/X3mzcXd70WjcrDHSaDzIwvLS3aDZrm\n2o6OozOC246T2fPU//7Zssc306utrg7Yvt1Jf15muUnzPvmOz0ceyf89zd/09VkYHpbyfMPDuqAy\njMspx4naUl5vlep4KeRvi1mXS33H7P1LgsMSAD10KIWODmB8vKDFpg2kkvpLVauVzjnwoW8iKjdK\na11xo9D4+PR6LwJRQfI9qTww4FTVRVtHR2TDHpe5npRVSld1cDPfBS0vdFdXtexrxewna/GdN/L4\nRYX5zndqck42y1P3Mhlz8qTCxIQFpaTPkQkqLXe+X+19PNd1iMlM8weUy3ksWem5pZC/K+X6X49z\nYKHj11qeP6rt2nctv4/ZTrGY5ct0loDtwYM653aUnmjKLVEtPwMAjUhk+e2da3yLxSRI3t/vZGTi\n5Xqflez3b72l8K1v1bqZSr29Gs3NpdkfeS26tGLGglKsy+98pwYXLliLMve3bHHw5JMLq3oNxn2h\ncuW77mpp0XjyyYV1WCIqRLXcqxaK95BE5aOjI5L3d8z4IlpFbApa/dazbNx6yfdkZ6VnXZW7ann6\nsdjSHxvt+KLyky9bxpQjHRoK4N13A2hpkQk9fybVcuf71d7Hc32+6cvR368r4rha6bmlkL8r1bha\n7hn+azmWVtu171pmES1XujnXdpyYWLxuIxEZt1palj/Gc41vTU3AzTdL6cHlggcrOT7PnAksKsNY\nqusZXosurZgxrxTrUmuN48ctmEet5+YUJicV+vpWNwuv3MdkWlq5lS2lwlTLvSoRVRcGvohWES/a\nNgbeZNNaqLbJxELx+KL1ttTEt3//LLYXlbGa+/hSQTseV6UbVythsmetxtJqu/Zd6wcwlttO2b//\nzndqcr5OKYVDh5bPjFgusLca+001Xc9UWlbRuXMKJ09aGdlXkYhetXWvtQS//KU3tdZYrZpDZnv8\n/OcBxOMq42GUchuTKb9yLFtKy6umsZ2IqgcDX0SriBdt5a/Sblhp46q2yUQio9zH4UImvsv1fF+u\ny1UuSjWucrLHU4373Ho+gLHc+Hi9+/BS41uh5UKLHb+r5Xqm0rKKRkcVTpyw3HVvsq/27XMwMOCs\nymdalrz/yIjKKG1pWaUfG/3b4+pVlfH9TPBrI47JlYgVHypTtYztRFRdGPgiWkW8aCtvlXbDSquv\nnCfgq3EykahSxuFCsjDK8XxfrstVLko1rnKyx7OR9zlzDXHunMLYmIXOTsctibqS71/I+FiKfTjX\n+FbIZ690/K6W65lKyPT0GxoKoLdXY2LCy8DSGhgeBr74xdVZ92ZszC5tuRpjo397hMMac3Mq/f28\nnpYbcUyuVKz4UHmqZWwnouoS+PrXv/719V6IYs3OJtd7EYgKZnppHDzoYO9ex20OXU0aGkIVeVy+\n8koQExPZpakUZmYU9u69vicfR0cVXnkliKGhAM6csRCN6qrc9tXETOBMTEgJmMlJhXfesdDfXx7b\nrqlJypPNzCgoBXR1aTz88MaYTFwN5hh9/fUavPeew2N0nVTTOFyu5/tyXa5yUKpxNRrVeOcdC/5y\nXkrJe63m+i7X66+NuM+Za4jz5y28+WYAV69aGB6WfeLUKbWia4lCxsfVujYo5LNXOn5Xy/XM0FAA\n8/OLA95KAQcPrk4G1fUwgaFoVGNhQZYzEtHYu9fBQw+tXuBrqbGxlGOYf3uEQsDYmAKgoJRCV5de\nkzGZaCOrlrG9UOV6DUa0ETU0hPL+jhlfRHRdZGIRuHChpuKe6l2t0kSVksFAmSrhyV0+/Vga/mO0\noQGIxy0eo+uE4zCtt1KMqxs5y4mEuYYYGZHJdgC+bJOVXUsUOj6udh+uWAxuqbrz55W7b5vXTE8r\nDA97peyUWllvw9XMul+N9660TE+zvE1NyMjA6u9fveVdy7HRvz2amuCWWKyvBwYGHI7JRGuA96pE\nVG4Y+CKiFTMTi/X1QDyuKm5icbVuWCshgEKLsUfLxsFjtHxwHKZqwcmeylSqgIi5VsjOADL/v5Jr\nifUMrJjPjsWA48e9jJ14HHjuuSAOH04hGtW4cMHC8eMWdHqR5uakj9ToqCpqPa7mwwqr9d6VVtZr\nvZZ3rcbG7O9nMk8r5b6UiIiISi+7NgERUcGWmlisBIOD9qKnUktxA8gASmXKN5FUrk/u0srxGC0f\nHIeJaL2YgMjZsxYmJhTOnrXw3HNBjI6uLEgFSG8hP/P/K7mWWK3xsZjP9mewKQX09Wn3Wn9w0Mbw\nMNygl9Do7dVF3wus5j3Far23yWYaGHDQ0qIxMFDeQZZKW95iVfv3IyIiouIx44uIVqzSJxZXq/xG\npZU+IVFpT+7SyvEYLR8ch4lovZQyM9RcQ/T2AhMTGtJbSAJFK72WWM8Smuaz/+qvajE/LwG8vj6N\nSEQ+e3JSMrr27nVw4gTcMoe9vdLLrNh7gdW8p1jN9660TM9KW95iVfv3IyIiouIw8EVEK1YNE4ur\ncYPEAEplYo+WjYPHaHnhOExE66GUARFzDfHSSwGMjChcuQK0t2v09dl45JGVX0us50R+T4/GfffZ\nOHt28bKba/3+fg2tvX5R2b8v1GreU1TD/QoRERERFY+BLyJaMTOx6MeJRQZQKhmfFN0Y/MdoKgV0\ndrLpebXhOExEy1mNgMjUlMKePV4gaGqqMqog5LPcQwRL/b6Y/mmr+bACH4QoX8PDwI9+FOR5moiI\niFaF0lpX3JXF+Pj0ei8CEaWNjiq8804jLlyY5w0LEVWcjo4IryuIqCJx/Lo+psdXdkBkpX2BjhyR\nfmHZBgacin6oZrkAVq7fA1h23Wb/3datNs6cWZ2HFYoJwtHaGB1V+Od/bsTMTML92fUcf0REa4nX\nYETlo6Mjkvd3DHwR0XXjSZ+IKhXHLyKqVBy/rl8pAyLf+U5NzgyylhaNJ59cuN5FrSjLBQFLHXRc\nDwymXZ8jR4IYG6tDPJ7I+HmlB4qJaGPgNRhR+Vgq8MVSh0RERERERFQViglIlLLEMXtJeZbrnzY0\nFMgIegGA1rLdKiHokR24m5hQOHdOVVTgbr2VssceERERUS4MfBEREREREVHFW8+AxHr1kirHzKPl\ngoCVHvSo9MBdOYhGNcbGcv+cKlc5jkdERLRxMfBFREREREREJbNek5/rGZDo6ZFSfWv5vcs182i5\nIGClZ8dVeuCuHAwO2vjnf8782VoEimn1lOt4REREGxcDX0RERERERFQS6zn5ud4BiVKWTixEuWYe\nLRcEXK/suFKp9MBdOejp0fjDPwR+9COH2UFVolzHIyIi2rgY+CIiIiIiIqKSWM/Jz40WkFjvQN9S\nlgoCrkd2XClVeuCuXPT1gQGRKlLO4xEREW1MDHwRERERERFRSazn5OdGC0hUcqBvrbPjSqnSA3dE\nq6GSxyMiIqpODHwRERERERFRSazn5OdGC0hstEBfOankwB3RauB4RERE5YaBLyIiIiIiIiqJ9Z78\n3EgBiY0W6COi8sXxiIiIyg0DX0RERERERFQSnPxcWxsp0EdE5Y3jERERlZMVBb7m5+fx5S9/GVev\nXkVDQwO++c1vorW1NeM1L774Il544QUEg0H80R/9Ee677768f/eTn/wE3/zmN9HV1QUAePrpp3H7\n7bdf/7cjIiIiIiKiNcXJTyIiIiIiWk8rCnw9//zz2LFjB55++mm89NJL+Pa3v42vfvWr7u/Hx8fx\n/e9/Hz/4wQ+QSCRw+PBh3HXXXXn/7p133sGXv/xlPPjggyX7YkRERERERNVidFRlZFF9+tNAOLze\nS0VERERERFR+rJX80VtvvYV77rkHAHDvvffi9ddfz/j9sWPHcODAAdTW1iISiWDLli1477338v7d\niRMn8IMf/ACHDx/G3/zN3yCV4tOBREREREREgAS9nnsuiLNnLUxMKJw9a+F//A/5OREREREREWVa\nNuPryJEj+N73vpfxs7a2NkQiEQBAQ0MDpqenM34/MzPj/t68ZmZmJuPn/r+766678PGPfxy9vb34\n2te+hhdeeAF/8Ad/cH3fjIiIiIiIqAoMDQWgdWaQS2v5OUsKEhERERERZVo28HXo0CEcOnQo42df\n+tKXEI/HAQDxeBxNTU0Zv29sbHR/b14TiUQyfu7/u8cff9z97wceeACvvPLKksvU0lKPYDCw3KIT\n0Rrq6Igs/yIiojLE8YuIyl0qBTQ05Pp5HTo61n55iIhKgddgRFSpOH4Rlb8V9fi69dZb8Ytf/AL7\n9+/HL3/5Sxw8eDDj9/v378ezzz6LRCKBZDKJDz74ADt27Mj5d1pr/O7v/i5eeOEFbN68Ga+//jr2\n7t275OdPTMyuZLGJaJV0dEQwPj69/AuJiMoMxy+i4mT3mRoctNHTo9d7sapeMBhEPJ5Zpb6hIYRg\ncA7j48z4IqLKw2swIqpUHL+IysdSQWiltS76TnVubg5//ud/jvHxcdTU1OCZZ55BR0cHvvvd72LL\nli144IEH8OKLL+Kf/umfoLXGF77wBTz44IN5/+5Xv/oVnn32WYTDYdx444346le/ipqamryfz8GF\nqLzwpE9ElYrjF1HhTJ8pf8k9pTQOH5bACwNiqyfXum9sDOHf/bsZrmciqki8BiOiSsXxi6h8lDzw\ntd44uBCVF570iahScfwiKtyRI0GcPWst+nlzs4NYTOUMiDEoUzrZ2Xaf/nQdwmGOX0RUmXgNRkSV\niuMXUflYKvC1olKHRERERES0sUxOqpw/P3YsgBtuyAxwaS1BmkOHWIavVHp6dMb67OgAxsfXcYGI\niIiIiIjK1OJHNomIiIiIiLJEo7mzt/LVj8gXKCMiIiIiIiJaTcz4IiKqUNklj9hPhYiIVtPgoI1z\n5xaXNLzlFgeTk4ufp8sXKCMiIiIiIiJaTQx8ERFVoOwm9xMTCufOKfZTISKiVdPTI327sh+6AIDn\nnlscEDO/IyIiIiIiIlpLDHwREVWgoaFAxgQjwH4qRES0+rL7TBm5AmJ8EIOIiIiIiIjWAwNfREQV\nKF/fFPZTISKi9ZAvIEZERERERES01hj4IiKqQNGoxsTE4iAX+6kQ0Vphn0EiIiIiIiIiKkcMfBER\nVaDBQRvnzrGfChGtD/YZJCIiIiIiIqJyZa33AhARUfF6ejQOH05hYMBBS4vGwIDDCWciWjNL9Rkk\nIiIiIiIiIlpPzPgiIqpQ7KdCROuFfQaJiIiIiIiIqFwx44uIiIiIipKvnyD7DBIRERERERHRemPg\ni4iIiIiKMjhoQ6nMIBf7DBIRERERERFROWCpQyIiIiIqiukzODQUwOSkQjQqQS/2GSQiIiIiIiKi\n9cbAFxEREREVjX0GiYiIiIiIiKgcsdQhERERERERERERERERVQUGvoiIiIiIiIiIiIiIiKgqMPBF\nREREREREREREREREVYGBLyIiIiIiIiIiIiIiIqoKDHwRERERERERERERERFRVWDgi4iIiIiIiIiI\niIiIiKoCA19ERERERERERERERERUFRj4IiIiIiIiIiIiIiIioqrAwBcRERERERERERERERFVBQa+\niIiIiIiIiIiIiIiIqCow8EVERERERERERERERERVgYEvIiIiIiIiIiIiIiIiqgoMfBERERERERER\nEREREVFVYOCLiIiIiIiIiIiIiIiIqkJwvReAiIiIiKgcjY4qDA0FMDmpEI1qDA7a6OnR671YRERE\nRERERLQEBr6IiIiIiLKMjio891wQWisAwMSEwrlzCocPpxj8IiIiIiIiIipjLHVIRERERJRlaCjg\nBr0MrSUDjIiIiIiIiIjKFwNfRERERERZJidVUT8nIiIiIiIiovLAwBcRERERUZZoNHc5w3w/JyIi\nIiIiIqLywMAXEREREVGWwUEbSmUGuZTSGBy012mJiIiIiIiIiKgQwfVeACIiIiKictPTo3H4cApD\nQwFMTipEoxL06ulhxhcRERERERFROWPgi4iIiIgoh54ejUOHUuu9GERERERERERUBJY6JCIiIiIi\nIiIiIiIioqrAwBcRERERERERERERERFVBQa+iIiIiIiIiIiIiIiIqCow8EVERERERERERERERERV\ngYEvIiIiIiIiIiIiIiIiqgoMfBEREREREREREREREVFVYOCLiIiIiIiIiIiIiIiIqgIDX0RERERE\nRERERERERFQVGPgiIiIiIiIiIiIiIiKiqsDAFxEREREREREREREREVUFBr6IiIiIiIiIiIiIiIio\nKjDwRURERERERERERERERFWBgS8iIiIiIiIiIiIiIiKqCgx8ERERERERERERERERUVVg4IuIiIiI\niIiIiIiIiIiqAgNfREREREREREREREREVBUY+CIiIiIiIiIiIiIiIqKqsKLA1/z8PJ5++mkcPnwY\nTz75JK5du7boNS+++CI+85nP4Pd+7/fws58W7shmAAATOUlEQVT9LON3P/nJT/Cnf/qn7v//5je/\nwaFDh/DEE0/g7//+71eySERERERERERERERERLTBrSjw9fzzz2PHjh147rnn8Oijj+Lb3/52xu/H\nx8fx/e9/Hy+88AL+8R//EX/7t3+LZDIJAPjLv/xLPPPMM3Acx3391772NTzzzDN4/vnn8fbbb+Pk\nyZPX8ZWIiIiIiIiIiIiIiIhoI1pR4Outt97CPffcAwC499578frrr2f8/tixYzhw4ABqa2sRiUSw\nZcsWvPfeewCAW2+9FV//+tfd187MzCCZTGLLli1QSuHuu+/G0NDQCr8OERERERERERERERERbVTB\n5V5w5MgRfO9738v4WVtbGyKRCACgoaEB09PTGb+fmZlxf29eMzMzAwB4+OGH8cYbb2S8trGxMeO1\nw8PDK/gqREREREREREREREREtJEtG/g6dOgQDh06lPGzL33pS4jH4wCAeDyOpqamjN83Nja6vzev\n8QfClntt9vtla2mpRzAYWG7RiWgNdXTkPsaJiModxy8iqlQcv4ioknEMI6JKxfGLqPwtG/jK5dZb\nb8UvfvEL7N+/H7/85S9x8ODBjN/v378fzz77LBKJBJLJJD744APs2LEj53s1Nv7/9u42ts66/uP4\np2zdxtqOAqmaIE2EpJGYDLclxkCH4jCoCULYytrGGqIxkVjECXULMZsYEBZTs8Q4pkYmGbK6ORMx\nJhLvwhxbEBcHomLiQkCmIRW6uFPGunXn/2ChseymtPzXmx+v17NzXddOv+fBvkn77tWrPrW1tXnh\nhRdy8cUXZ9euXenu7j7j1x8YeHUiYwNnSVNTQ/r7D419IcA0Y38BM5X9BcxkdhgwU9lfMH2cKUJP\nKHx1dHRk9erV6ejoSG1tbXp7e5MkmzdvTnNzc5YtW5aurq50dnamWq1m1apVmTt37mnf76677sod\nd9yR4eHhtLa25vLLL5/IWAAAAAAAALyN1VSr1epUDzFeqjpML37bBZip7C9gprK/gJnMDgNmKvsL\npo8z3fF1ziTOAQAAAAAAAGeN8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghf\nAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwB\nAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUA\nAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAA\nAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAA\nAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAA\nAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAA\nAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQhNlTPQAATJUDB2qye/esHDxY\nk8bGaq64YjgXXVSd6rEAAAAAgAma0B1fr732Wm699dZ0dnbmc5/7XF555ZWTrtm2bVtuvPHG3HTT\nTfnd73436tyvfvWr3H777aNeX3PNNenq6kpXV1f+8Ic/TGQsAHjTDhyoycMPz85zz52TgYGaPPfc\nOXn44dk5cKBmqkcDAAAAACZoQnd8bd26NS0tLbn11lvzi1/8Ihs3bsxXv/rVkfP9/f3ZsmVLduzY\nkSNHjqSzszNXXnll5syZk7vvvju7du3KZZddNnL9M888k56enlx77bVv/RMBwJuwe/esVKujI1e1\neuIOsLa2Y1M0FQAAAADwVkzojq+9e/dm6dKlSZKrrroqe/bsGXX+6aefzqJFizJnzpw0NDSkubk5\nzz77bJJk8eLF+drXvjbq+r/85S/ZsWNHOjs7c9999+XYMT9wBODsOnjw1Hd2ne44AAAAADD9jXnH\n1/bt2/Pggw+OOnbhhRemoaEhSVJXV5dDhw6NOl+pVEbOv35NpVJJknziE5/IE088Mer6K6+8Mtdc\nc03e/e53Z926denr68unPvWpiX0iAHgTGhurGRg4OXI1NnrGFwAAAADMVGOGr7a2trS1tY061t3d\nncHBwSTJ4OBgFixYMOp8fX39yPnXr/nfEPZGy5cvH3mPZcuW5dFHHz3jTOefPz+zZ88aa3RgEjU1\nnf7/OExH112XPPBAUv2fzlVTc+J4U9PUzcXks7+Amcr+AmYyOwyYqewvmP4m9IyvxYsX57HHHsvC\nhQuzc+fOLFmyZNT5hQsXZsOGDTly5EiGhoayf//+tLS0nPK9qtVqPvnJT6avry/vete7smfPnrzv\nfe8749cfGHh1ImMDZ0lTU0P6+w+NfSFMI/PmJddff+KZXgcP1qSxsZorrhjOvHnV9PdP9XRMFvsL\nmKnsL2Ams8OAmcr+gunjTBF6QuGro6Mjq1evTkdHR2pra9Pb25sk2bx5c5qbm7Ns2bJ0dXWls7Mz\n1Wo1q1atyty5c0/5XjU1Nbn77rvT3d2defPm5dJLL81NN900kbEAYFwuuqiatjbPlQQAAACAUtRU\nq9UZ9zATVR2mF7/tAsxU9hcwU9lfwExmhwEzlf0F08eZ7vg6ZxLnAAAAAAAAgLNG+AIAAAAAAKAI\nwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCII\nXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8\nAQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAF\nAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcA\nAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAA\nAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAA\nAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAA\nAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAA\nAABFEL4AAAAAAAAogvAFAAAAAABAEWZP5B+99tpr6enpycsvv5y6urqsX78+F1xwwahrtm3blr6+\nvsyePTu33HJLrr766hw6dCg9PT2pVCo5evRo1qxZk0WLFmXfvn255557MmvWrLS2tqa7u/v/5cMB\nAAAAAADw9jGhO762bt2alpaWPPzww7nhhhuycePGUef7+/uzZcuW9PX15Qc/+EG+9a1vZWhoKJs3\nb84HP/jBPPTQQ7n33nvz9a9/PUmybt269Pb2ZuvWrXnqqafy17/+9a1/MgAAAAAAAN5WJhS+9u7d\nm6VLlyZJrrrqquzZs2fU+aeffjqLFi3KnDlz0tDQkObm5jz77LO5+eab097eniQZHh7O3LlzU6lU\nMjQ0lObm5tTU1KS1tTW7d+9+ix8LAAAAAACAt5sx/9Th9u3b8+CDD446duGFF6ahoSFJUldXl0OH\nDo06X6lURs6/fk2lUsmCBQuSnLgjrKenJ3feeWcqlUrq6+tHXfvPf/5z4p8IAAAAAACAt6Uxw1db\nW1va2tpGHevu7s7g4GCSZHBwcCRova6+vn7k/OvXvB7C/v73v+fLX/5yvvKVr+QDH/hAKpXKSde+\n8f3e6Pzz52f27FljjQ5MoqamhrEvApiG7C9gprK/gJnMDgNmKvsLpr8xw9epLF68OI899lgWLlyY\nnTt3ZsmSJaPOL1y4MBs2bMiRI0cyNDSU/fv3p6WlJf/4xz9y2223ZcOGDXnve9+b5EQkq62tzQsv\nvJCLL744u3btSnd39xm//sDAqxMZGzhLmpoa0t9/aOwLAaYZ+wuYqewvYCazw4CZyv6C6eNMEXpC\n4aujoyOrV69OR0dHamtr09vbmyTZvHlzmpubs2zZsnR1daWzszPVajWrVq3K3Llz09vbm6Ghodxz\nzz1JTkSv+++/P3fddVfuuOOODA8Pp7W1NZdffvlExgIAAAAAAOBtrKZarVaneojxUtVhevHbLsBM\nZX8BM5X9BcxkdhgwU9lfMH2c6Y6vcyZxDgAAAAAAADhrhC8AAAAAAACKIHwBAAAAAABQBOELAAAA\nAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAA\nAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAA\nACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAA\noAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACA\nIghfAAAAAAAAFKGmWq1Wp3oIAAAAAAAAeKvc8QUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOEL\nAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFzCmp556Kl1dXScd/+1vf5vly5dn5cqV2bZtW5Lk\n6NGjuf3229Pe3p7Ozs7s379/sscFGHG6/ZUkhw8fTnt7+8ieOn78eNauXZuVK1emq6srzz///GSO\nCnCS8eywo0ePpqenJ52dnVmxYkV+85vfTOaoAKOMZ3+97uWXX86HPvQh30MCU2q8++u73/1uVq5c\nmRtvvDHbt2+frDGBMcye6gGA6e373/9+HnnkkZx77rmjjh89ejT33ntvfvKTn+Tcc89NR0dHPvKR\nj2Tfvn05duxY+vr68vjjj2fDhg359re/PUXTA29np9tfSfLnP/8569aty0svvTRy7Ne//nWGhoby\n4x//OPv27ct9992X+++/fzJHBhgx3h32yCOPpLGxMd/85jdz8ODB3HDDDVm2bNlkjgyQZPz7Kznx\n/eXatWszb968yRoT4CTj3V9PPPFE/vSnP2Xr1q05fPhwHnjggckcFzgDd3wBZ9Tc3HzKcLV///40\nNzfnvPPOy5w5c7JkyZI8+eSTec973pPh4eEcP348lUols2fr68DUON3+SpKhoaF85zvfySWXXDJy\nbO/evVm6dGmS5P3vf3+eeeaZSZkT4FTGu8M+9rGP5bbbbkuSVKvVzJo1a1LmBHij8e6vJFm/fn3a\n29vzjne8YzJGBDil8e6vXbt2paWlJV/4whfy+c9/Ph/+8IcnaVJgLH4iDZzRtddemxdffPGk45VK\nJQ0NDSOv6+rqUqlUMn/+/Bw4cCAf//jHMzAwkE2bNk3muAAjTre/kmTJkiUnHatUKqmvrx95PWvW\nrBw7dkzAB6bEeHdYXV1dkhO77Itf/GK+9KUvndX5AE5nvPvrpz/9aS644IIsXbo03/ve9872eACn\nNd79NTAwkH/961/ZtGlTXnzxxdxyyy355S9/mZqamrM9KjAGd3wBE1JfX5/BwcGR14ODg2loaMgP\nf/jDtLa25tFHH83PfvazrFmzJkeOHJnCSQHenDfutePHj4tewIzy73//O5/+9Kdz/fXX57rrrpvq\ncQDelB07dmT37t3p6urK3/72t6xevTr9/f1TPRbAmBobG9Pa2po5c+bkkksuydy5c/PKK69M9VhA\nhC9ggi699NI8//zzOXjwYIaGhvLHP/4xixYtyoIFC0buBDvvvPNy7NixDA8PT/G0AGNbvHhxdu7c\nmSTZt29fWlpapngigDfvP//5Tz7zmc+kp6cnK1asmOpxAN60H/3oR3nooYeyZcuWXHbZZVm/fn2a\nmpqmeiyAMS1ZsiS///3vU61W89JLL+Xw4cNpbGyc6rGA+FOHwDj9/Oc/z6uvvpqVK1dmzZo1+exn\nP5tqtZrly5fnne98Z26++ebceeed6ezszNGjR7Nq1arMnz9/qscGGLW/TuWjH/1oHn/88bS3t6da\nreYb3/jGJE8IcHpj7bBNmzblv//9bzZu3JiNGzcmOfGA9nnz5k3mmAAnGWt/AUxXY+2vq6++Ok8+\n+WRWrFiRarWatWvXes4qTBM11Wq1OtVDAAAAAAAAwFvlTx0CAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACK8H9dl4+0\nTpgCWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg = linear_model.Ridge (alpha = .5)\n", + "reg.fit(X_train, y_train) \n", + "reg.coef_\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg.coef_)]\n", + " , index=[\"ridge regression coefficients\"])\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='ridge regression coefficients', axis=1)\n", + "\n", + "print(\"mse train all feature: \", np.mean((reg.predict(X_train) - y_train) ** 2))\n", + "print(\"mse test all feature: \", np.mean((reg.predict(X_test) - y_test) ** 2))\n", + "\n", + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run LSTM Model to predict close bid in next 15 min\n", + "- scale features to range 0-1 to speed up convergence\n", + "- set a larger lookback windows, so LSTM has something to work with and can take a decision which part of history to prioritise\n", + "- todo: make it do error on the sign- for that need to get the sign between next and X[bid]\n", + "- 1% test size, 10% of 99% validation size\n", + "- try to also predict direction. y_pred - X_test close versus y_act - X_test close" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict sign only" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y_orig = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " #y_return_sign = np.sign(y[:,idx_close_bid] - X[:,0,idx_close_bid]) # these are the actuals\n", + " y_return_sign = y_orig[:,idx_close_bid] - X[:,0,idx_close_bid] # these are the actuals\n", + " y = np.sign(y_return_sign) # an array of -1, 1 and 0\n", + "\n", + " y = pd.get_dummies(y).values.astype('float32')\n", + "\n", + "\n", + "\n", + " # need to create a binarised vector, one positive class, one negative class\n", + " #y_pred_return_sign = # comes from model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict exact price value" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " #idx_high = df.columns.tolist().index('high_bid')\n", + " #idx_low = df.columns.tolist().index('low_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " y = y[:,idx_close_bid]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10163, 40, 20)\n", + "(10163,)\n", + "(10061, 40, 20)\n", + "(102, 40, 20)\n", + "(10061,)\n", + "(102,)\n" + ] + } + ], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 99% training and val (10% of those 99%) / 1% test set\n", + "import sklearn\n", + "sklearn.__version__\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.01, shuffle=False) \n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.backend import categorical_crossentropy\n", + "# ensure there is a 1st derivative! else get none error\n", + "# it will check in which direction this error goesn down and walk there\n", + "# maybe it has issue because sign is not continuous...\n", + "# just use categorical crossentropy, it does exactly what i need much better\n", + "def ret_direction_error(y_true, y_pred):\n", + " \n", + " # this guy puts everything into numpy before working on it https://stackoverflow.com/questions/46411573/keras-custom-loss-function-not-working\n", + " \n", + " out = categorical_crossentropy(y_true, y_pred)\n", + " \n", + " return out\n", + " \n", + " # y_true is y_train, y_pred is what the model gives me\n", + " # so should set y_true to the return sign? and stop training on absolute value, but make sure sign is right" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_6 (LSTM) (None, 40, 40) 9760 \n", + "_________________________________________________________________\n", + "lstm_7 (LSTM) (None, 40, 20) 4880 \n", + "_________________________________________________________________\n", + "lstm_8 (LSTM) (None, 40, 10) 1240 \n", + "_________________________________________________________________\n", + "lstm_9 (LSTM) (None, 40, 10) 840 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 40, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 5) 320 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 5) 30 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 1) 6 \n", + "=================================================================\n", + "Total params: 17,076\n", + "Trainable params: 17,076\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "import keras.backend as K\n", + "import tensorflow as tf\n", + "\n", + "# create a small LSTM network\n", + "# shoudl first input number match nb of lookback rows?\n", + "model = Sequential()\n", + "model.add(LSTM(40, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) # does not take into account nb examples\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True)) # a second layer of 10 really helps get the loos to 7 by 10th epoch\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(5, return_sequences=False))\n", + "model.add(Dense(5, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "# for price prediction\n", + "if not runLSTMBinary:\n", + " model.add(Dense(1, kernel_initializer='uniform', activation='relu')) # this compresses everything to one output in the final layer\n", + " #model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " \n", + " \n", + "# for direction prediction\n", + "if runLSTMBinary:\n", + " # need a softmax output for category predictions\n", + " model.add(Dense(3, activation=\"softmax\")) \n", + "\n", + " # loss: optimises this - https://keras.io/losses/\n", + " # loss will show up in the history under 'loss'\n", + " model.compile(loss=ret_direction_error, optimizer='adam', metrics=['mae', 'mse', ret_direction_error, 'accuracy'])\n", + " \n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"500_epochs_40_lookback_pca_unshuffled_binary\"\n", + "sim_desc = \"added directional errors checking and pca as feature with unshuffled data\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.06875, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.06875 to 0.01363, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.01363 to 0.01334, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.01334 to 0.01233, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error improved from 0.01233 to 0.01223, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.01223 to 0.00177, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.00177 to 0.00150, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00150 to 0.00090, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00090 to 0.00043, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00043 to 0.00028, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "Epoch 00018: val_mean_squared_error improved from 0.00028 to 0.00018, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00018 to 0.00017, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00017 to 0.00012, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error improved from 0.00012 to 0.00011, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error improved from 0.00011 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00043: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error improved from 0.00007 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error did not improve\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error did not improve\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error did not improve\n", + "Epoch 00118: val_mean_squared_error did not improve\n", + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error did not improve\n", + "Epoch 00126: val_mean_squared_error did not improve\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error did not improve\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error did not improve\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error did not improve\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error did not improve\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error did not improve\n", + "Epoch 00175: val_mean_squared_error did not improve\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error did not improve\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Epoch 00200: val_mean_squared_error did not improve\n", + "Epoch 00201: val_mean_squared_error did not improve\n", + "Epoch 00202: val_mean_squared_error did not improve\n", + "Epoch 00203: val_mean_squared_error did not improve\n", + "Epoch 00204: val_mean_squared_error did not improve\n", + "Epoch 00205: val_mean_squared_error did not improve\n", + "Epoch 00206: val_mean_squared_error did not improve\n", + "Epoch 00207: val_mean_squared_error did not improve\n", + "Epoch 00208: val_mean_squared_error did not improve\n", + "Epoch 00209: val_mean_squared_error did not improve\n", + "Epoch 00210: val_mean_squared_error did not improve\n", + "Epoch 00211: val_mean_squared_error did not improve\n", + "Epoch 00212: val_mean_squared_error did not improve\n", + "Epoch 00213: val_mean_squared_error did not improve\n", + "Epoch 00214: val_mean_squared_error did not improve\n", + "Epoch 00215: val_mean_squared_error did not improve\n", + "Epoch 00216: val_mean_squared_error did not improve\n", + "Epoch 00217: val_mean_squared_error did not improve\n", + "Epoch 00218: val_mean_squared_error did not improve\n", + "Epoch 00219: val_mean_squared_error did not improve\n", + "Epoch 00220: val_mean_squared_error did not improve\n", + "Epoch 00221: val_mean_squared_error did not improve\n", + "Epoch 00222: val_mean_squared_error did not improve\n", + "Epoch 00223: val_mean_squared_error did not improve\n", + "Epoch 00224: val_mean_squared_error did not improve\n", + "Epoch 00225: val_mean_squared_error did not improve\n", + "Epoch 00226: val_mean_squared_error did not improve\n", + "Epoch 00227: val_mean_squared_error did not improve\n", + "Epoch 00228: val_mean_squared_error did not improve\n", + "Epoch 00229: val_mean_squared_error did not improve\n", + "Epoch 00230: val_mean_squared_error did not improve\n", + "Epoch 00231: val_mean_squared_error did not improve\n", + "Epoch 00232: val_mean_squared_error did not improve\n", + "Epoch 00233: val_mean_squared_error did not improve\n", + "Epoch 00234: val_mean_squared_error did not improve\n", + "Epoch 00235: val_mean_squared_error did not improve\n", + "Epoch 00236: val_mean_squared_error did not improve\n", + "Epoch 00237: val_mean_squared_error did not improve\n", + "Epoch 00238: val_mean_squared_error did not improve\n", + "Epoch 00239: val_mean_squared_error did not improve\n", + "Epoch 00240: val_mean_squared_error did not improve\n", + "Epoch 00241: val_mean_squared_error did not improve\n", + "Epoch 00242: val_mean_squared_error did not improve\n", + "Epoch 00243: val_mean_squared_error did not improve\n", + "Epoch 00244: val_mean_squared_error did not improve\n", + "Epoch 00245: val_mean_squared_error did not improve\n", + "Epoch 00246: val_mean_squared_error did not improve\n", + "Epoch 00247: val_mean_squared_error did not improve\n", + "Epoch 00248: val_mean_squared_error did not improve\n", + "Epoch 00249: val_mean_squared_error did not improve\n", + "Epoch 00250: val_mean_squared_error did not improve\n", + "Epoch 00251: val_mean_squared_error did not improve\n", + "Epoch 00252: val_mean_squared_error did not improve\n", + "Epoch 00253: val_mean_squared_error did not improve\n", + "Epoch 00254: val_mean_squared_error did not improve\n", + "Epoch 00255: val_mean_squared_error did not improve\n", + "Epoch 00256: val_mean_squared_error did not improve\n", + "Epoch 00257: val_mean_squared_error did not improve\n", + "Epoch 00258: val_mean_squared_error did not improve\n", + "Epoch 00259: val_mean_squared_error did not improve\n", + "Epoch 00260: val_mean_squared_error did not improve\n", + "Epoch 00261: val_mean_squared_error did not improve\n", + "Epoch 00262: val_mean_squared_error did not improve\n", + "Epoch 00263: val_mean_squared_error did not improve\n", + "Epoch 00264: val_mean_squared_error did not improve\n", + "Epoch 00265: val_mean_squared_error did not improve\n", + "Epoch 00266: val_mean_squared_error did not improve\n", + "Epoch 00267: val_mean_squared_error did not improve\n", + "Epoch 00268: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00269: val_mean_squared_error did not improve\n", + "Epoch 00270: val_mean_squared_error did not improve\n", + "Epoch 00271: val_mean_squared_error did not improve\n", + "Epoch 00272: val_mean_squared_error did not improve\n", + "Epoch 00273: val_mean_squared_error did not improve\n", + "Epoch 00274: val_mean_squared_error did not improve\n", + "Epoch 00275: val_mean_squared_error did not improve\n", + "Epoch 00276: val_mean_squared_error did not improve\n", + "Epoch 00277: val_mean_squared_error did not improve\n", + "Epoch 00278: val_mean_squared_error did not improve\n", + "Epoch 00279: val_mean_squared_error did not improve\n", + "Epoch 00280: val_mean_squared_error did not improve\n", + "Epoch 00281: val_mean_squared_error did not improve\n", + "Epoch 00282: val_mean_squared_error did not improve\n", + "Epoch 00283: val_mean_squared_error did not improve\n", + "Epoch 00284: val_mean_squared_error did not improve\n", + "Epoch 00285: val_mean_squared_error did not improve\n", + "Epoch 00286: val_mean_squared_error did not improve\n", + "Epoch 00287: val_mean_squared_error did not improve\n", + "Epoch 00288: val_mean_squared_error did not improve\n", + "Epoch 00289: val_mean_squared_error did not improve\n", + "Epoch 00290: val_mean_squared_error did not improve\n", + "Epoch 00291: val_mean_squared_error did not improve\n", + "Epoch 00292: val_mean_squared_error did not improve\n", + "Epoch 00293: val_mean_squared_error did not improve\n", + "Epoch 00294: val_mean_squared_error did not improve\n", + "Epoch 00295: val_mean_squared_error did not improve\n", + "Epoch 00296: val_mean_squared_error did not improve\n", + "Epoch 00297: val_mean_squared_error did not improve\n", + "Epoch 00298: val_mean_squared_error did not improve\n", + "Epoch 00299: val_mean_squared_error did not improve\n", + "Epoch 00300: val_mean_squared_error did not improve\n", + "Epoch 00301: val_mean_squared_error did not improve\n", + "Epoch 00302: val_mean_squared_error did not improve\n", + "Epoch 00303: val_mean_squared_error did not improve\n", + "Epoch 00304: val_mean_squared_error did not improve\n", + "Epoch 00305: val_mean_squared_error did not improve\n", + "Epoch 00306: val_mean_squared_error did not improve\n", + "Epoch 00307: val_mean_squared_error did not improve\n", + "Epoch 00308: val_mean_squared_error did not improve\n", + "Epoch 00309: val_mean_squared_error did not improve\n", + "Epoch 00310: val_mean_squared_error did not improve\n", + "Epoch 00311: val_mean_squared_error did not improve\n", + "Epoch 00312: val_mean_squared_error did not improve\n", + "Epoch 00313: val_mean_squared_error did not improve\n", + "Epoch 00314: val_mean_squared_error did not improve\n", + "Epoch 00315: val_mean_squared_error did not improve\n", + "Epoch 00316: val_mean_squared_error did not improve\n", + "Epoch 00317: val_mean_squared_error did not improve\n", + "Epoch 00318: val_mean_squared_error did not improve\n", + "Epoch 00319: val_mean_squared_error did not improve\n", + "Epoch 00320: val_mean_squared_error did not improve\n", + "Epoch 00321: val_mean_squared_error did not improve\n", + "Epoch 00322: val_mean_squared_error did not improve\n", + "Epoch 00323: val_mean_squared_error did not improve\n", + "Epoch 00324: val_mean_squared_error did not improve\n", + "Epoch 00325: val_mean_squared_error did not improve\n", + "Epoch 00326: val_mean_squared_error did not improve\n", + "Epoch 00327: val_mean_squared_error did not improve\n", + "Epoch 00328: val_mean_squared_error did not improve\n", + "Epoch 00329: val_mean_squared_error did not improve\n", + "Epoch 00330: val_mean_squared_error did not improve\n", + "Epoch 00331: val_mean_squared_error did not improve\n", + "Epoch 00332: val_mean_squared_error did not improve\n", + "Epoch 00333: val_mean_squared_error did not improve\n", + "Epoch 00334: val_mean_squared_error did not improve\n", + "Epoch 00335: val_mean_squared_error did not improve\n", + "Epoch 00336: val_mean_squared_error did not improve\n", + "Epoch 00337: val_mean_squared_error did not improve\n", + "Epoch 00338: val_mean_squared_error did not improve\n", + "Epoch 00339: val_mean_squared_error did not improve\n", + "Epoch 00340: val_mean_squared_error did not improve\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m \"\"\"\n\u001b[1;32m 22\u001b[0m \u001b[0mcallbacks_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mmagic\u001b[0;34m(self, arg_s)\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0marg_s\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpartition\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m' '\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2157\u001b[0m \u001b[0mmagic_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprefilter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mESC_MAGIC\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2158\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2159\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2160\u001b[0m \u001b[1;31m#-------------------------------------------------------------------------\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mrun_line_magic\u001b[0;34m(self, magic_name, line)\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'local_ns'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msys\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_locals\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2078\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2079\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2080\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2081\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magic.py\u001b[0m in \u001b[0;36m\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magics\\execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1180\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1181\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1182\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1428\u001b[0m \u001b[0mval_f\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1429\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1430\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1431\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1432\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m32\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1077\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1078\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1079\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1080\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1081\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2266\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[1;32m 2267\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2268\u001b[0;31m **self.session_kwargs)\n\u001b[0m\u001b[1;32m 2269\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2270\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1124\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m return self._do_call(_run_fn, self._session, feeds, fetches, targets,\n\u001b[0;32m-> 1321\u001b[0;31m options, run_metadata)\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1325\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1327\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1328\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1329\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1304\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1305\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1306\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1307\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1308\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training. Cant handel custom functions for errors\n", + "from keras.callbacks import ModelCheckpoint\n", + "epoch = 500\n", + "\n", + "# write custom errors as string, they seem to refer to the key in err.history dict\n", + "if not runLSTMBinary:\n", + " #checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_absolute_error', verbose=1, save_best_only=True, mode='min')\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "if runLSTMBinary:\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_ret_direction_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\n", + "With more features to train on, convergence seems slower. To get to the same level, i take more epochs.\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors\n", + "- it converges to a low number very fast - how can i get more detail\n", + "- but if i split using cross val split with random state, it takes ages to converge. Maybe i should only allow training on the past, as the model will always be used to predict the future. So training on random parts of the timeseries to predict other random parts might destroy historical trends that influence the future, and can be learned by the model.\n", + "- train it on directional error for more useful results. Need y_train - X_train[:,idx_close_bid] as feature and evaluate against y_true - X_train[:,idx_close_bid]\n", + "- it seems the model always predicts negative, so column zero\n", + "- its easier to optimise over mse than mae, because values bigger and would decline more, so better gradients.\n", + "\n", + "Issues:\n", + "- cannot checkpoint custom error functions\n", + "- cannot write custom error functions\n", + "- cannot debug custom error functions" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 4945.484375\n", + "dtype: float32\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
acclossmean_absolute_errormean_squared_errorval_accval_lossval_mean_absolute_errorval_mean_squared_error
00.0002210.1087670.1087670.0189830.00.1212100.1212100.019710
10.0002210.0756780.0756780.0094180.00.0640850.0640850.005192
20.0002210.0464990.0464990.0038530.00.0754620.0754620.006855
30.0002210.0398160.0398160.0027670.00.0238180.0238180.000790
40.0002210.0394820.0394820.0027680.00.0303280.0303280.001532
50.0002210.0339490.0339490.0022120.00.0319650.0319650.001608
60.0002210.0329270.0329270.0020760.00.0202860.0202860.000780
70.0002210.0322030.0322030.0019550.00.0211500.0211500.000868
80.0002210.0304790.0304790.0017980.00.0198700.0198700.000778
90.0002210.0305250.0305250.0017650.00.0190430.0190430.000673
100.0002210.0315370.0315370.0018420.00.0405430.0405430.002230
110.0002210.0297220.0297220.0016960.00.0202450.0202450.000786
120.0002210.0284030.0284030.0015800.00.0353590.0353590.001807
130.0002210.0276800.0276800.0015060.00.0384400.0384400.002015
140.0002210.0272890.0272890.0014640.00.0305350.0305350.001432
150.0002210.0269030.0269030.0013940.00.0203030.0203030.000738
160.0002210.0259390.0259390.0012880.00.0205240.0205240.000752
170.0002210.0266590.0266590.0012940.00.0230200.0230200.000686
180.0002210.0267420.0267420.0013020.00.0226340.0226340.000842
190.0002210.0236880.0236880.0010610.00.0190730.0190730.000619
\n", + "
" + ], + "text/plain": [ + " acc loss mean_absolute_error mean_squared_error val_acc \\\n", + "0 0.000221 0.108767 0.108767 0.018983 0.0 \n", + "1 0.000221 0.075678 0.075678 0.009418 0.0 \n", + "2 0.000221 0.046499 0.046499 0.003853 0.0 \n", + "3 0.000221 0.039816 0.039816 0.002767 0.0 \n", + "4 0.000221 0.039482 0.039482 0.002768 0.0 \n", + "5 0.000221 0.033949 0.033949 0.002212 0.0 \n", + "6 0.000221 0.032927 0.032927 0.002076 0.0 \n", + "7 0.000221 0.032203 0.032203 0.001955 0.0 \n", + "8 0.000221 0.030479 0.030479 0.001798 0.0 \n", + "9 0.000221 0.030525 0.030525 0.001765 0.0 \n", + "10 0.000221 0.031537 0.031537 0.001842 0.0 \n", + "11 0.000221 0.029722 0.029722 0.001696 0.0 \n", + "12 0.000221 0.028403 0.028403 0.001580 0.0 \n", + "13 0.000221 0.027680 0.027680 0.001506 0.0 \n", + "14 0.000221 0.027289 0.027289 0.001464 0.0 \n", + "15 0.000221 0.026903 0.026903 0.001394 0.0 \n", + "16 0.000221 0.025939 0.025939 0.001288 0.0 \n", + "17 0.000221 0.026659 0.026659 0.001294 0.0 \n", + "18 0.000221 0.026742 0.026742 0.001302 0.0 \n", + "19 0.000221 0.023688 0.023688 0.001061 0.0 \n", + "\n", + " val_loss val_mean_absolute_error val_mean_squared_error \n", + "0 0.121210 0.121210 0.019710 \n", + "1 0.064085 0.064085 0.005192 \n", + "2 0.075462 0.075462 0.006855 \n", + "3 0.023818 0.023818 0.000790 \n", + "4 0.030328 0.030328 0.001532 \n", + "5 0.031965 0.031965 0.001608 \n", + "6 0.020286 0.020286 0.000780 \n", + "7 0.021150 0.021150 0.000868 \n", + "8 0.019870 0.019870 0.000778 \n", + "9 0.019043 0.019043 0.000673 \n", + "10 0.040543 0.040543 0.002230 \n", + "11 0.020245 0.020245 0.000786 \n", + "12 0.035359 0.035359 0.001807 \n", + "13 0.038440 0.038440 0.002015 \n", + "14 0.030535 0.030535 0.001432 \n", + "15 0.020303 0.020303 0.000738 \n", + "16 0.020524 0.020524 0.000752 \n", + "17 0.023020 0.023020 0.000686 \n", + "18 0.022634 0.022634 0.000842 \n", + "19 0.019073 0.019073 0.000619 " + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#pd.DataFrame(model.predict(X_train))\n", + "print(pd.DataFrame(y_train).sum()) # classes are quite balanced\n", + "pd.DataFrame(err.history)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err.history[error_metric])\n", + " plt.plot(err.history['val_' + error_metric])\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Rerun LSTM with decaying learning rate:\n", + "\n", + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model\n", + "\n", + "We need this to get inside the average bid offer spread for EUR/USD, so 1.10115 - 1.10110. But lets not forget the data is scaled. Maybe it looks better when we unscale it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "err_decay_lr = model.fit(X_train, y_train, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors after decaying learning rate\n", + " - here error chart resolution is better, as we start from the trained model" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n", + "decay lr: smallest validation MAE: 0.0123163131533\n", + "decay lr: smallest validation MSE: 0.000265824883329\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "print(\"decay lr: smallest validation MAE: \", min(err_decay_lr.history['val_mean_absolute_error']))\n", + "print(\"decay lr: smallest validation MSE: \", min(err_decay_lr.history['val_mean_squared_error']))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err_decay_lr.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err_decay_lr.history[error_metric]) # this is for train\n", + " plt.plot(err_decay_lr.history['val_' + error_metric]) # this is for test\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is small enough, the model is not usable in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check scaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#simname = \"500_epochs_40_lookback\"\n", + "model.load_weights(simname+\".weights.best.hdf5\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Benchmark\n", + " model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + " X_test_pred = model.predict(X_test) # predict on testset\n", + "\n", + " predictions = pd.DataFrame()\n", + " predictions['predicted'] = pd.Series(np.reshape(X_test_pred, (X_test_pred.shape[0])))\n", + " predictions['actual'] = y_test\n", + " predictions = predictions.astype(float)\n", + "\n", + "\n", + " fig, axarr = plt.subplots(1, 2, figsize=(15,5)) #1 row, 2 cols, x, y\n", + " i_row, icol = 0,0\n", + " fig.suptitle(\"predictions on test set\", fontsize=20)\n", + " predictions.plot(ax=axarr[icol])\n", + " axarr[icol].set_title(\"Predicted close vs actual over time\")\n", + "\n", + " icol +=1\n", + " predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences: actual minus predicted')\n", + " plt.show()\n", + "\n", + " print(\"MSE scaled : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + " print(\"MAE scaled: \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check unscaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#unscale predictions and actuals\n", + "X_test_pred = model.predict(X_test)\n", + "X_test_pred_unscaled = y_scaler.inverse_transform(X_test_pred)\n", + "X_test_pred_unscaled = np.reshape(X_test_pred_unscaled, (X_test_pred_unscaled.shape[0]))\n", + "\n", + "actual = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + "actual = np.reshape(actual, (actual.shape[0]))\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(X_test_pred_unscaled)\n", + "predictions['close_bid'] = pd.Series(actual)\n", + "\n", + "\n", + "# get low and high bid from untransformed dataframe\n", + "p = df[-X_test_pred_unscaled.shape[0]:].copy()\n", + "predictions.index = p.index # get the date index from the dataframe\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " fig, axarr = plt.subplots(1, 4, figsize=(5,10)) #1 row, 2 cols, x, y\n", + " irow, icol = 0,0\n", + "\n", + " predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10), ax=axarr[icol])\n", + " predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=axarr[icol])\n", + " index = [str(item) for item in predictions.index]\n", + " #plt.fill_between(x=predictions.index, y1='low_bid', y2='high_bid', data=predictions, alpha=0.4)\n", + " axarr[icol].set_title('Prediction vs Actual (low and high as blue region)')\n", + "\n", + " icol += 1\n", + " predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences between actual and prediction ')\n", + " #plt.savefig(simname+\"__histogram__actual_minus_pred.jpg\")\n", + "\n", + " icol += 1\n", + " sns.kdeplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol])\n", + " #sns.jointplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol]) # must be by itself\n", + " axarr[icol].set_title('Distribution of error and price')\n", + " #plt.savefig(simname+\"__contour__error_v_price.jpg\")\n", + "\n", + "\n", + " icol +=1\n", + " predictions['correct'] = (predictions['predicted'] <= predictions['high_bid']) & (predictions['predicted'] >= predictions['low_bid'])\n", + " predictions.correct.value_counts().plot(kind=\"bar\", ax=axarr[icol])\n", + " axarr[icol].set_title(\"True (in high low range), False prediction counts\")\n", + "\n", + " plt.show()\n", + "\n", + " print(\"MSE unscaled : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " print(\"MAE unscaled: \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## check binary predictions and confusion matrix\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " from sklearn.metrics import confusion_matrix\n", + "\n", + " #check_shape(y_test, model.predict(X_test))\n", + "\n", + " y_pred_class = np.argmax(model.predict(X_test), axis=1) # find position of largest argument\n", + "\n", + " y_test_class = np.argmax(y_test, axis=1)\n", + "\n", + " test_acc = 100 * np.sum(y_pred_class==y_test_class) / len(y_test)\n", + "\n", + " print(\"acc \", test_acc )\n", + "\n", + " confusion_matrix(y_pred_class, y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " df_unscaled = df_scaler.inverse_transform(df_scaled)\n", + "\n", + " X_test_unscaled = df_scaler.inverse_transform(np.reshape(X_test[:,0,:], (X_test.shape[0], X_test.shape[2])))\n", + " y_prev = X_test_unscaled[:,idx_close_bid]\n", + "\n", + " y_train_unscaled = y_scaler.inverse_transform(np.reshape(y_train, (y_train.shape[0], 1)))\n", + " y_train_unscaled = np.reshape(y_train_unscaled, (y_train_unscaled.shape[0]))\n", + "\n", + " y_test_unscaled = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + " y_test_unscaled = np.reshape(y_test_unscaled, (y_test_unscaled.shape[0]))\n", + "\n", + "\n", + " X_train_pred = model.predict(X_train)\n", + " X_train_pred_unscaled = y_scaler.inverse_transform(X_train_pred)\n", + " X_train_pred_unscaled = np.reshape(X_train_pred_unscaled, (X_train_pred_unscaled.shape[0]))\n", + "\n", + " #check_shape(df,y_train_unscaled, y_test_unscaled, X_train_pred_unscaled, X_test_pred_unscaled, y_prev)\n", + "\n", + " df_err = check_error_metrics(df\n", + " , y_train_unscaled, y_test_unscaled\n", + " , X_train_pred_unscaled, X_test_pred_unscaled\n", + " , y_prev)\n", + " #idx_close_bid\n", + " #X_test[:,0,idx_close_bid].shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Sim results:\n", + "- runing at 500 epochs converges a bit better. seems extra features need more time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check logs and compare to previous simulations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log = True\n", + "initval=False\n", + "#sim_desc = \"500 iterations, lookback 40\"\n", + "#simname = \"500_epoch_lookback_40\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "from collections import OrderedDict\n", + "list_stats=OrderedDict()\n", + "\n", + "if log:\n", + " #simname= \"linear regression\"\n", + " #sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = predictions[\"diff\"].describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "hide_code_all_hidden": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": { + "height": "947px", + "left": "0px", + "right": "1568px", + "top": "67px", + "width": "264px" + }, + "toc_section_display": "block", + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/500_epoch_lookback_40.weights.best.hdf5 b/capstone_project/500_epoch_lookback_40.weights.best.hdf5 new file mode 100644 index 0000000..35e6352 Binary files /dev/null and b/capstone_project/500_epoch_lookback_40.weights.best.hdf5 differ diff --git a/capstone_project/500_epochs_40_lookback.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback.weights.best.hdf5 new file mode 100644 index 0000000..448f77f Binary files /dev/null and b/capstone_project/500_epochs_40_lookback.weights.best.hdf5 differ diff --git a/capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 new file mode 100644 index 0000000..7ef7138 Binary files /dev/null and b/capstone_project/500_epochs_40_lookback_better_errors.weights.best.hdf5 differ diff --git a/capstone_project/500_epochs_40_lookback_pca.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_pca.weights.best.hdf5 new file mode 100644 index 0000000..e914cc1 Binary files /dev/null and b/capstone_project/500_epochs_40_lookback_pca.weights.best.hdf5 differ diff --git a/capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 new file mode 100644 index 0000000..cd0bff8 Binary files /dev/null and b/capstone_project/500_epochs_40_lookback_pca_unshuffled.weights.best.hdf5 differ diff --git a/capstone_project/500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5 b/capstone_project/500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5 new file mode 100644 index 0000000..7d64a97 Binary files /dev/null and b/capstone_project/500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5 differ diff --git a/capstone_project/Machine Learning Capstone Project Proposal V1.docx b/capstone_project/Machine Learning Capstone Project Proposal V1.docx new file mode 100644 index 0000000..3689786 Binary files /dev/null and b/capstone_project/Machine Learning Capstone Project Proposal V1.docx differ diff --git a/capstone_project/Machine Learning Capstone Project Proposal V2.docx b/capstone_project/Machine Learning Capstone Project Proposal V2.docx new file mode 100644 index 0000000..60f69be Binary files /dev/null and b/capstone_project/Machine Learning Capstone Project Proposal V2.docx differ diff --git a/capstone_project/Machine Learning Capstone Project Report.docx b/capstone_project/Machine Learning Capstone Project Report.docx new file mode 100644 index 0000000..46b70e2 Binary files /dev/null and b/capstone_project/Machine Learning Capstone Project Report.docx differ diff --git a/capstone_project/aws_v1 - fx spot prediction notebook.ipynb b/capstone_project/aws_v1 - fx spot prediction notebook.ipynb new file mode 100644 index 0000000..b0f4034 --- /dev/null +++ b/capstone_project/aws_v1 - fx spot prediction notebook.ipynb @@ -0,0 +1,2140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# get data from mongodb\n", + "import io\n", + "import pymongo\n", + "from pymongo import MongoClient\n", + "import datetime\n", + "\n", + "#client = MongoClient(connect=False) #Makes it \"good enough\" for our multi-threaded use case. \n", + "\n", + "# mng_client = pymongo.MongoClient('localhost', 27017)\n", + "# mng_db = mng_client['fx_prediction'] # Replace mongo db name\n", + "# collection_name = 'fx_tick_data_typed' # Replace mongo db table name\n", + "# db = mng_db[collection_name]\n", + "\n", + "#print(db.count())\n", + "#min_date = datetime.datetime(2016, 1, 1, 0)\n", + "#max_date = datetime.datetime(2016, 12, 1, 0)\n", + "min_date = \"1Jan16\"\n", + "max_date = \"1Feb16\"\n", + "\n", + "#https://bitbucket.org/djcbeach/monary/wiki/Home use to speed up" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1Jan16\n", + "1Feb16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# # each of these is a stage in the pipeline - match, project, group, project.\n", + "\n", + "# cursor_group = db.aggregate(\n", + "# [\n", + " \n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"bo_spread\": {\"$subtract\": [\"$ask\", \"$bid\"]}\n", + "# , \"bid\": 1\n", + "# , \"ask\": 1\n", + "# , \"date\": 1\n", + " \n", + "# }\n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# \"dateAgg\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"dateSample\": {\"$first\": \"$date\"},\n", + "# \"high\": { \"$max\": \"$bid\"},\n", + "# \"low\": { \"$min\": \"$bid\"},\n", + "# \"open\": { \"$first\": \"$bid\"},\n", + "# \"close\": { \"$last\": \"$bid\"},\n", + "# \"avg_bo_spread\": { \"$avg\": \"$bo_spread\" },\n", + "# \"max_bo_spread\": { \"$max\": \"$bo_spread\" },\n", + "# \"min_bo_spread\": { \"$min\": \"$bo_spread\" },\n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# },\n", + " \n", + "# {\n", + "# \"$project\": {\n", + "# \"_id\" : 0\n", + "# , \"date\": \"$dateSample\"\n", + "# , \"high\": 1\n", + "# , \"low\": 1\n", + "# , \"open\": 1\n", + "# , \"close\": 1\n", + "# , \"avg_bo_spread\": 1\n", + "# , \"max_bo_spread\": 1\n", + "# , \"min_bo_spread\": 1\n", + "# , \"count\": 1\n", + "# }\n", + "# }\n", + " \n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# cursor_group = db.aggregate(\n", + "# [\n", + "# {\"$match\":{\n", + "# \"date\": {\n", + "# \"$gte\": min_date\n", + "# , \"$lte\": max_date\n", + "# }\n", + "# } \n", + "# },\n", + " \n", + " \n", + "# {\n", + "# \"$group\" : {\n", + "# #\"_id\" : \"null\",\n", + "# \"_id\": {\n", + "# #\"month\": {\"$month\": \"$date\"}, \n", + "# #\"day\" : {\"$dayOfMonth\": \"$date\"}, \n", + "# #\"year\" : {\"$year\": \"$date\"},\n", + "# \"time\": { \"$dateToString\": { \"format\": \"%G/%m/%d %H:%M\", \"date\": \"$date\" } }\n", + "# #\"date\": { \"$dateFromParts\": {\"year\": \"$date\", \"month\": \"$date\", \"day\": \"$date\", \"hour\": \"$date\", \"minute\": \"$date\"}}\n", + "# },\n", + "# #\"high\": { \"$sum\": { \"$multiply\": [ \"$price\", \"$quantity\" ] } },\n", + "# \"high\": { \"$max\": \"$date\"},\n", + "# \"low\": { \"$min\": \"$date\"}, \n", + "# \"count\": { \"$sum\": 1 }\n", + "# }\n", + "# }\n", + "# ], allowDiskUse=True\n", + "# )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdaydatebid_priceask_pricebo_spreadhighlowavg_bo_spreadcountopenclose
020161317102016-01-03 17:00:15.4931.087011.087510.000501.087231.086610.0001651421.087011.08701
120161317102016-01-03 17:00:38.9931.087031.087490.000461.087231.086610.0001651421.087011.08703
220161317102016-01-03 17:00:41.4931.087131.087490.000361.087231.086610.0001651421.087011.08713
320161317102016-01-03 17:00:41.9931.087131.087450.000321.087231.086610.0001651421.087011.08713
420161317102016-01-03 17:00:44.7431.087031.087450.000421.087231.086610.0001651421.087011.08703
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday date bid_price \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:15.493 1.08701 \n", + "1 2016 1 3 17 1 0 2016-01-03 17:00:38.993 1.08703 \n", + "2 2016 1 3 17 1 0 2016-01-03 17:00:41.493 1.08713 \n", + "3 2016 1 3 17 1 0 2016-01-03 17:00:41.993 1.08713 \n", + "4 2016 1 3 17 1 0 2016-01-03 17:00:44.743 1.08703 \n", + "\n", + " ask_price bo_spread high low avg_bo_spread count open \\\n", + "0 1.08751 0.00050 1.08723 1.08661 0.000165 142 1.08701 \n", + "1 1.08749 0.00046 1.08723 1.08661 0.000165 142 1.08701 \n", + "2 1.08749 0.00036 1.08723 1.08661 0.000165 142 1.08701 \n", + "3 1.08745 0.00032 1.08723 1.08661 0.000165 142 1.08701 \n", + "4 1.08745 0.00042 1.08723 1.08661 0.000165 142 1.08701 \n", + "\n", + " close \n", + "0 1.08701 \n", + "1 1.08703 \n", + "2 1.08713 \n", + "3 1.08713 \n", + "4 1.08703 " + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "str_query = \"\"\"\n", + "\n", + "\n", + "select\n", + " --distinct\n", + " const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15\n", + " , const.snaptime 'date'\n", + " , const.bid_price\n", + " , const.ask_price\n", + " , const.ask_price - const.bid_price 'bo_spread'\n", + "\t, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high'\n", + "\t, min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low'\n", + " , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread'\n", + "\t--, min(const.snaptime) 'open_datetime'\n", + "\t--, max(const.snaptime) 'close_datetime'\n", + "\t, count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'count'\n", + " , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'open'\n", + " , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime) 'close'\n", + "from dbo.fx_spot_data_features const\n", + "where\n", + " const.snaptime >= '\"\"\"+min_date+\"\"\"'\n", + " and const.snaptime <= '\"\"\"+max_date+\"\"\"'\n", + " \n", + "--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "--order by const.year, const.month, const.day, const.hour, round(const.minute/15,0)\n", + "order by const.snaptime\n", + "\n", + "\"\"\"\n", + "res = getQueryDataframe(str_query)\n", + "print(res.count())\n", + "res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'date'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2441\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#cursor = list(cursor_group)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdf_res\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'date'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf_res\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/data/eurusd_features.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mset_index\u001b[0;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdrop\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1962\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1963\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1964\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1965\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1966\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1969\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1970\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1971\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1972\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1973\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1643\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1644\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1645\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1646\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1647\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3588\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3589\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3590\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3591\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3592\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2442\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2443\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2444\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2445\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2446\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'date'" + ] + } + ], + "source": [ + "#cursor = list(cursor_group)\n", + "df_res = pd.DataFrame(res)\n", + "df_res.set_index('date', inplace=True)\n", + "#df_res.rename(columns={\"_id\": \"date\"}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "df_res.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load kaggle reference dataset for comparison\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open', 'Close' : 'close', \n", + " 'High' : 'high', 'Low' : 'low', 'Close' : 'close', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df_res = df_kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAIUCAYAAAAnl0eaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QHXd95/v3J5INJjyYYMGCJF8rRODICWadwTYPN9hL\nANnAKrBkyyYbFi+sYgrzcLeSiza7CeRyqy4PYZclGBSFFcY3KbwEHKKAsCEEwi0cZyXA2JZBMJGN\nLcEG8RADdoIj/L1/nBYcH8+MRppzuvuM3q+qLp/+9e90f/vMb8YfdffpTlUhSZLUhZ/ougBJknT8\nMohIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSepML4NIku1JvpHk5nmWJ8nbk8wmuTHJWW3XKEmS\nlq6XQQS4Ati4wPILgPXNtBl4Vws1SZKkMetlEKmqTwPfXqDLJuDKGrgeODnJo9upTpIkjUsvg8gi\nrAbuGJrf37TdT5LNSXYn2X3GGWcU4OQ0OnXCsem0yKkTjk+nRUxjMa1BZNGqaltVzVTVzEknndR1\nOdKPODbVZ45PtWVag8gBYO3Q/JqmTZIkTZFpDSI7gBc33545F7izqr7edVGSJOnorOy6gLkkeR9w\nHnBKkv3A64ATAKpqK7ATuBCYBe4GLummUkmStBS9DCJVdfERlhfwipbKkSRJEzKtp2YkSdIy0Msj\nIm07bctHjqr/bW98zoQqkSTp+OIREUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nBhFJktQZg4gkSeqMQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy\n4AJgA3Bxkg0j3V4B3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3g\nULtlSpKkpepjEFkN3DE0v79pG/YO4GeBrwE3Aa+uqnvnWlmSzUl2J9l98ODBSdQrHRPHpvrM8am2\n9DGILMazgRuAxwBPBN6R5KFzdayqbVU1U1Uzq1atarNGaUGOTfWZ41Nt6WMQOQCsHZpf07QNuwS4\nugZmgVuB01uqT5IkjUkfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5Jc\nBlwLrAC2V9WeJJc2y7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj\n1cdTM5Ik6ThhEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqzMpJrTjJ7wM13/KqetWkti1JkqbDJI+I\n7AY+CzwQOAv4SjM9EThxgtuVJElTYmJHRKrqvQBJXg48raoONfNbgf9vUtuVJEnTo41rRB4OPHRo\n/sFNmyRJOs5N7IjIkDcCn0/ySSDALwKvb2G7kiSp5yZ+RKSq3gOcA/wpcDXw5MOnbeaTZGOSvUlm\nk2yZp895SW5IsifJX42/ckmSNGltHBEB+AHwdQYXrj4uyeOq6tNzdUyyArgceCawH9iVZEdV3TLU\n52TgncDGqro9ySMnvgeSJGnsJh5EkrwMeDWwBrgBOBf4a+BfzPOWs4HZqtrXvP8qYBNwy1CfFwFX\nV9XtAFX1jclUL0mSJqmNi1VfDTwJ+GpVnQ/8c+DvF+i/GrhjaH5/0zbsccDDk3wqyWeTvHi+lSXZ\nnGR3kt0HDx48tj2QJsCxqT5zfKotbQSRf6yqfwRI8oCq+hLw+CWucyXwC8BzgGcDv53kcXN1rKpt\nVTVTVTOrVq1a4mal8XFsqs8cn2pLG9eI7G+u6fgQ8PEk3wG+ukD/A8Daofk1Tdt91gl8q6ruAu5K\n8mngTODL4ytbkiRN2sSDSFU9v3n5+uYrvA8DrlngLbuA9UnWMQggFzG4JmTYnwHvSLKSwV1azwH+\n61gLlyRJE9fKt2aSPA1YX1XvSbKKwTUft87Vt6oOJbkMuBZYAWyvqj1JLm2Wb62qLya5BrgRuBd4\nd1Xd3Ma+SJKk8WnjWzOvA2YYXBfyHuAE4I+Ap873nqraCewcads6Mv8W4C3jrleSJLWnjYtVnw/8\nS+AugKr6GvCQFrYrSZJ6ro0gck9VFVAASX6yhW1KkqQp0EYQeX+SPwBOTvLvgb8A/rCF7UqSpJ5r\n41szv5fkmcB3GVwn8jtV9fFJb1eSJPXfRINI89yYv2juqGr4kCRJ9zHRUzNV9UPg3iQPm+R2JEnS\ndGrjPiLfB25K8nGab84AVNWrWti2JEnqsTaCyNXNJEmSdB9tXKz63iQnAqcz+Arv3qq6Z9LblSRJ\n/dfGnVUvBP4A+FsgwLokv15VH530tiVJUr+1cWrmvwDnV9UsQJLHAh8BDCKSJB3n2rih2fcOh5DG\nPuB7LWxXkiT1XBtHRHYn2Qm8n8E1Ir8C7EryAoCq8kJWSZKOU20EkQcCfwc8vZk/CJwEPI9BMDGI\nSJJ0nGrjWzOXTHobkiRpOk38GpEkb07y0CQnJPlEkoNJ/s2ktytJkvqvjYtVn1VV3wWeC9wG/Azw\nmy1sV5Ik9VwbQeTw6Z/nAH9SVXe2sE1JkjQF2rhY9cNJvgT8A/DyJKuAf2xhu5IkqecmfkSkqrYA\nTwFmquqfgLuBTYeXJ3nmpGuQJEn91MapGarq21X1w+b1XVX1v4YWv2m0f5KNSfYmmU2yZb71JnlS\nkkNJXjiBsiVJ0oS1EkSOIPeZSVYAlwMXABuAi5NsuN+bBv3eBHysjSIlSdL49SGI1Mj82cBsVe1r\nntJ7FUOncoa8Evgg8I0J1ydJkiakD0Fk1GrgjqH5/U3bjyRZDTwfeFeLdUmSpDHrQxC57Rje8zbg\ntVV175E6JtmcZHeS3QcPHjyGTUmT4dhUnzk+1ZY27qx6QpJXJflAM70yyQmHl1fVC0becgBYOzS/\npmkbNgNcleQ24IXAO5P88lzbr6ptVTVTVTOrVq1a8v5I4+LYVJ85PtWWNu4j8i7gBOCdzfyvNW0v\nm6f/LmB9knUMAshFwIuGO1TVusOvk1wBfLiqPjTesiVJ0qS1EUSeVFVnDs3/ZZIvzNe5qg4luQy4\nFlgBbK+qPUkubZZvnWy5kiSpLW0EkR8meWxV/S1Akp8GfrjQG6pqJ7BzpG3OAFJVLxlTnZIkqWVt\nBJHfBD6ZZF8zfxpwSQvblSRJPdfGt2Y+A/wBcC/w7eb1X7ewXUmS1HNtBJErgXXAG4DfB34a+H9b\n2K4kSeq5Nk7N/FxVDd+i/ZNJbmlhu5IkqefaOCLyuSTnHp5Jcg6wu4XtSpKknpvYEZEkNzF4jswJ\nwHVJbm/m/zfgS5PariRJmh6TPDXz3AmuW5IkLQMTCyJV9dVJrVuSJC0PfXjonSRJOk4ZRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqTC+DSJKNSfYmmU2yZY7lv5rkxiQ3JbkuyZld1ClJkpamd0EkyQrgcuACYANwcZINI91u\nBZ5eVT8PvAHY1m6VkiRpHHoXRICzgdmq2ldV9wBXAZuGO1TVdVX1nWb2emBNyzVKkqQx6GMQWQ3c\nMTS/v2mbz0uBj863MMnmJLuT7D548OCYSpSWzrGpPnN8qi19DCKLluR8BkHktfP1qaptVTVTVTOr\nVq1qrzjpCByb6jPHp9qysusC5nAAWDs0v6Zpu48kTwDeDVxQVd9qqTZJkjRGfTwisgtYn2RdkhOB\ni4Adwx2SnApcDfxaVX25gxolSdIY9O6ISFUdSnIZcC2wAtheVXuSXNos3wr8DvAI4J1JAA5V1UxX\nNUuSpGPTuyACUFU7gZ0jbVuHXr8MeFnbdUmSpPHq46kZSZJ0nDCISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzvXzoXd+dtuUjR9X/\ntjc+Z0KVSJI03TwiIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqTC+DSJKN\nSfYmmU2yZY7lSfL2ZvmNSc7qok5JkrQ0vQsiSVYAlwMXABuAi5NsGOl2AbC+mTYD72q1SEmSNBa9\nCyLA2cBsVe2rqnuAq4BNI302AVfWwPXAyUke3XahkiRpafp4i/fVwB1D8/uBcxbRZzXw9dGVJdnM\n4KgJwPeT7G1enwJ8cxwFH0neNNHVt7YfE9blflxTVRvb3ugCY3PYcvn5jlqO+zWpferD+PxBkpvb\nrmFEX8aMdfzYzVX1c0tdSR+DyFhV1TZg22h7kt1VNdNBSWPlfkyv+cbmsOX6uSzH/Vpu+zQ8Pvuw\nb32owTruX8M41tPHUzMHgLVD82uatqPtI0mSeq6PQWQXsD7JuiQnAhcBO0b67ABe3Hx75lzgzqq6\n32kZSZLUb707NVNVh5JcBlwLrAC2V9WeJJc2y7cCO4ELgVngbuCSY9jUgofEp4j7sbwt189lOe7X\nctynw/qwb32oAaxj2FhqSFWNYz2SJElHrY+nZiRJ0nHCICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzvQyiCTZnuQbSW6eZ3mSvD3J\nbJIbk5zVdo2SJGnpehlEgCuAjQssvwBY30ybgXe1UJMkSRqzXgaRqvo08O0FumwCrqyB64GTkzy6\nneokSdK49DKILMJq4I6h+f1N2/0k2Zxkd5LdZ5xxRgFOTqNTJxybToucOuH4dFrENBbTGkQWraq2\nVdVMVc2cdNJJXZcj/YhjU33m+FRbpjWIHADWDs2vadokSdIUmdYgsgN4cfPtmXOBO6vq610XJUmS\njs7KrguYS5L3AecBpyTZD7wOOAGgqrYCO4ELgVngbuCSbiqVJElL0csgUlUXH2F5Aa9oqRxJkjQh\n03pqRpIkLQMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYR\nSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZg4gkSeqM\nQUSSJHWml0EkycYke5PMJtkyx/KHJfnzJF9IsifJJV3UKUmSlqZ3QSTJCuBy4AJgA3Bxkg0j3V4B\n3FJVZwLnAW9NcmKrhUqSpCXrXRABzgZmq2pfVd0DXAVsGulTwEOSBHgw8G3gULtlSpKkpepjEFkN\n3DE0v79pG/YO4GeBrwE3Aa+uqnvbKU+SJI1LH4PIYjwbuAF4DPBE4B1JHjpXxySbk+xOsvvgwYNt\n1igtyLGpPnN8qi19DCIHgLVD82uatmGXAFfXwCxwK3D6XCurqm1VNVNVM6tWrZpIwdKxcGyqzxyf\naksfg8guYH2Sdc0FqBcBO0b63A48AyDJo4DHA/tarVKSJC3Zyq4LGFVVh5JcBlwLrAC2V9WeJJc2\ny7cCbwCuSHITEOC1VfXNzoqWJEnHpHdBBKCqdgI7R9q2Dr3+GvCstuuSJEnj1cdTM5Ik6ThhEJEk\nSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhE\nJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkz\nvQwiSTYm2ZtkNsmWefqcl+SGJHuS/FXbNUqSpKVb2XUBo5KsAC4HngnsB3Yl2VFVtwz1ORl4J7Cx\nqm5P8shuqpUkSUvRxyMiZwOzVbWvqu4BrgI2jfR5EXB1Vd0OUFXfaLlGSZI0Bn0MIquBO4bm9zdt\nwx4HPDzJp5J8NsmL51tZks1JdifZffDgwQmUKx0bx6b6zPGptvQxiCzGSuAXgOcAzwZ+O8nj5upY\nVduqaqaqZlatWtVmjdKCHJvqM8en2tK7a0SAA8Daofk1Tduw/cC3quou4K4knwbOBL7cTomSJGkc\n+nhEZBewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/hiy3VKkqQl6t0Rkao6lOQy4FpgBbC9qvYkubRZ\nvrWqvpjkGuBG4F7g3VV1c3dVS5KkY9G7IAJQVTuBnSNtW0fm3wK8pc26JEnSeE301EySFUk+Oclt\nSJKk6TXRIFJVPwTuTfKwSW5HkiRNpzZOzXwfuCnJx4G7DjdW1ata2LYkSeqxNoLI1c0kSZJ0HxMP\nIlX13klvQ5IkTaeJB5EktwI12l5VPz3pbUuSpH5r49TMzNDrBwK/AvxUC9uVJEk9N/E7q1bVt4am\nA1X1NgbPiJEkSce5Nk7NnDU0+xMMjpD08kZqkiSpXW0EgrcOvT4E3Ab86xa2K0mSeq6Nb82cP+lt\nSJKk6TTxa0SSPCzJf0myu5ne6p1WJUkStBBEgO3A9xicjvnXwHeB97SwXUmS1HNtXCPy2Kr6V0Pz\nv5vkhha2K0mSeq6NIyL/kORph2eSPBX4hxa2K0mSeq6NIyIvB947dF3Id4B/28J2JUlSz7URRL4I\nvBl4LHAycCfwy8CNLWxbkiT1WBtB5M+Avwc+BxxoYXuSJGlKtBFE1lTVxha2I0mSpkwbF6tel+Tn\nW9iOJEmaMhMLIkluSnIj8DTgc0n2JrlxqH2h925s+s8m2bJAvyclOZTkheOuX5IkTd4kT80891je\nlGQFcDnwTGA/sCvJjqq6ZY5+bwI+ttRCJUlSNyYWRKrqq8f41rOB2araB5DkKmATcMtIv1cCHwSe\ndMxFSpKkTrVxjcjRWg3cMTS/v2n7kSSrgecD7zrSypJsPvycm4MHD461UGkpHJvqM8en2tLHILIY\nbwNeW1X3HqljVW2rqpmqmlm1alULpUmL49hUnzk+1ZY2vr57tA4Aa4fm13D/+4/MAFclATgFuDDJ\noar6UDslSpKkcehjENkFrE+yjkEAuQh40XCHqlp3+HWSK4APG0IkSZo+vQsiVXUoyWXAtcAKYHtV\n7UlyabN8a6cFSpKkseldEAGoqp3AzpG2OQNIVb2kjZokSdL4TevFqpIkaRkwiEiSpM4YRCRJUmcM\nIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLU\nGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0y\nm2TLHMt/NcmNSW5Kcl2SM7uoU5IkLU3vgkiSFcDlwAXABuDiJBtGut0KPL2qfh54A7Ct3SolSdI4\n9C6IAGcDs1W1r6ruAa4CNg13qKrrquo7zez1wJqWa5QkSWPQxyCyGrhjaH5/0zaflwIfnW9hks1J\ndifZffDgwTGVKC2dY1N95vhUW1Z2XcBSJDmfQRB52nx9qmobzambmZmZaqk06YimdWyetuUjR9X/\ntjc+Z0KVaJKmdXxq+vQxiBwA1g7Nr2na7iPJE4B3AxdU1bdaqk2SJI1RH0/N7ALWJ1mX5ETgImDH\ncIckpwJXA79WVV/uoEZJkjQGvTsiUlWHklwGXAusALZX1Z4klzbLtwK/AzwCeGcSgENVNdNVzZIk\n6dj0LogAVNVOYOdI29ah1y8DXtZ2XZIkabx6GUQkLR9e3CppIX28RkSSJB0nDCKSJKkzBhFJktQZ\ng4gkSeqMF6tKy4wXh0qaJh4RkSRJnTGISJKkznhqRuqxoz3NcrzydJQ0vQwi0nHOsCOpSwYRSb1i\nMJKOL14jIkmSOuMREUkas2M5quN1KzpeGUQk6Qg8XSRNjqdmJElSZwwikiSpMwYRSZLUGYOIJEnq\njBerSjruePGp1B8eEZEkSZ3pZRBJsjHJ3iSzSbbMsTxJ3t4svzHJWV3UKUmSlqZ3QSTJCuBy4AJg\nA3Bxkg0j3S4A1jfTZuBdrRYpSZLGondBBDgbmK2qfVV1D3AVsGmkzybgyhq4Hjg5yaPbLlSSJC1N\nHy9WXQ3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+lu6aqNra90QXG5rDl8vMd\ntRz3a0n7lDfNu6gP4/MHSW5uu4YRfRkz1vFjN1fVzy11JX0MImNVVduAbaPtSXZX1UwHJY2V+zG9\n5hubw5br57Ic92u57dPw+OzDvvWhBuu4fw3jWE8fT80cANYOza9p2o62jyRJ6rk+BpFdwPok65Kc\nCFwE7BjpswN4cfPtmXOBO6vqfqdlJElSv/Xu1ExVHUpyGXAtsALYXlV7klzaLN8K7AQuBGaBu4FL\njmFTCx4SnyLux/K2XD+X5bhfy3GfDuvDvvWhBrCOYWOpIVU1jvVIkiQdtT6empEkSccJg4gkSeqM\nQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmS\nOtPLIJJke5JvJLl5nuVJ8vYks0luTHJW2zVKkqSl62UQAa4ANi6w/AJgfTNtBt7VQk2SJGnMehlE\nqurTwLcX6LIJuLIGrgdOTvLodqqTJEnj0ssgsgirgTuG5vc3bfeTZHOS3Ul2n3HGGQU4OY1OnXBs\nOi1y6oTj02kR01hMaxBZtKraVlUzVTVz0kkndV2O9COOTfWZ41NtmdYgcgBYOzS/pmmTJElTZFqD\nyA7gxc23Z84F7qyqr3ddlCRJOjoruy5gLkneB5wHnJJkP/A64ASAqtoK7AQuBGaBu4FLuqlUkiQt\nRS+DSFVdfITlBbyipXIkSdKETOupGUmStAwYRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYg\nIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmd\nMYhIkqTOGEQkSVJnDCKSJKkzBhFJktSZXgaRJBuT7E0ym2TLHMsfluTPk3whyZ4kl3RRpyRJWpre\nBZEkK4DLgQuADcDFSTaMdHsFcEtVnQmcB7w1yYmtFipJkpasd0EEOBuYrap9VXUPcBWwaaRPAQ9J\nEuDBwLeBQ+2WKUmSlqqPQWQ1cMfQ/P6mbdg7gJ8FvgbcBLy6qu6da2VJNifZnWT3wYMHJ1GvdEwc\nm+ozx6fa0scgshjPBm4AHgM8EXhHkofO1bGqtlXVTFXNrFq1qs0apQU5NtVnjk+1pY9B5ACwdmh+\nTdM27BLg6hqYBW4FTm+pPkmSNCZ9DCK7gPVJ1jUXoF4E7BjpczvwDIAkjwIeD+xrtUpJkrRkK7su\nYFRVHUpyGXAtsALYXlV7klzaLN8KvAG4IslNQIDXVtU3OytakiQdk94FEYCq2gnsHGnbOvT6a8Cz\n2q5LkiSNVx9PzUiSpOOEQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmD\niCRJ6oxBRJIkdcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1\nxiAiSZI6YxCRJEmdMYhIkqTO9DKIJNmYZG+S2SRb5ulzXpIbkuxJ8ldt1yhJkpZuZdcFjEqyArgc\neCawH9iVZEdV3TLU52TgncDGqro9ySO7qVaSJC1FH4+InA3MVtW+qroHuArYNNLnRcDVVXU7QFV9\no+UaJUnSGEw8iCR5UJLfTvKHzfz6JM9d4C2rgTuG5vc3bcMeBzw8yaeSfDbJixfY/uYku5PsPnjw\n4LHuhjR2jk31meNTbWnjiMh7gB8AT27mDwD/9xLXuRL4BeA5wLOB307yuLk6VtW2qpqpqplVq1Yt\ncbPS+Dg21WeOT7WljSDy2Kp6M/BPAFV1N5AF+h8A1g7Nr2nahu0Hrq2qu6rqm8CngTPHV7IkSWpD\nG0HkniQnAQWQ5LEMjpDMZxewPsm6JCcCFwE7Rvr8GfC0JCuTPAg4B/ji+EuXJEmT1Ma3Zl4PXAOs\nTfLHwFOBS+brXFWHklwGXAusALZX1Z4klzbLt1bVF5NcA9wI3Au8u6punvB+SJKkMZt4EKmqjyX5\nLHAug1Myr25Opyz0np3AzpG2rSPzbwHeMuZyJUlSi9r41swnqupbVfWRqvpwVX0zyScmvV1JktR/\nEzsikuSBwIOAU5I8nB9foPpQ7v91XEmSdBya5KmZXwdeAzwG+NxQ+3eBd0xwu5IkaUpMLIhU1X8D\n/luSV1bV709qO5IkaXq18a2ZO+e682lVXdnCtiVJUo+1EUSeNPT6gcAzGJyqMYhIknSca+Pru68c\nnm+enHvVpLcrSZL6r4un794FrOtgu5IkqWcmfkQkyZ/T3N6dQfDZALx/0tuVJEn918Y1Ir839PoQ\n8NWq2t/CdiVJUs+1cY3IX016G5IkaTq1cYv3FyT5SpI7k3w3yfeSfHfS25UkSf3XxqmZNwPPq6ov\ntrAtSZI0Rdr41szfGUIkSdJc2jgisjvJ/wA+BPzgcGNVXd3CtiVJUo+1EUQeCtwNPGuorQCDiCRJ\nx7k2vjVzyaS3IUmSptPEgkiS/7Oq3pzk9/nxDc1+pKpeNaltS5Kk6TDJIyKHL1DdzRxBRJIkaWJB\npKr+vHl5C/BbwGlD2yt8+q4kSce9Nr6++0fAe4AXAM9tpuct9IYkG5PsTTKbZMsC/Z6U5FCSF461\nYkmS1Io2vjVzsKp2LLZzkhXA5cAzgf3AriQ7quqWOfq9CfjYOIuVJEntaSOIvC7Ju4FPsLj7iJwN\nzFbVPoAkVwGbGJziGfZK4IPAk8ZesSRJakUbQeQS4HTgBODepm2h+4isBu4Ymt8PnDPcIclq4PnA\n+RwhiCTZDGwGOPXUU4+ydGlyHJvqM8en2tJGEHlSVT1+zOt8G/Daqro3yYIdq2obsA1gZmbGb++o\nNxyb6jNOoAD0AAANjklEQVTHp9rSRhC5LsmG0Ws8FnAAWDs0v6ZpGzYDXNWEkFOAC5McqqoPLbla\nSZLUmjaCyLnADUluZXCNSICqqifM038XsD7JOgYB5CLgRcMdqmrd4ddJrgA+bAiRJGn6tBFENh5N\n56o6lOQy4FpgBbC9qvYkubRZvnUCNUqSpA608ayZrx7De3YCO0fa5gwgVfWSY6tMkiR1rY0bmkmS\nJM3JICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIkdcYgIkmSOmMQ\nkSRJnTGISJKkzhhEJElSZwwikiSpMwYRSZLUGYOIJEnqjEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTO\n9DKIJNmYZG+S2SRb5lj+q0luTHJTkuuSnNlFnZIkaWl6F0SSrAAuBy4ANgAXJ9kw0u1W4OlV9fPA\nG4Bt7VYpSZLGoXdBBDgbmK2qfVV1D3AVsGm4Q1VdV1XfaWavB9a0XKMkSRqDPgaR1cAdQ/P7m7b5\nvBT46EQrkiRJE7Gy6wKWIsn5DILI0xbosxnYDHDqqae2VJl0ZI5N9ZnjU23p4xGRA8Daofk1Tdt9\nJHkC8G5gU1V9a76VVdW2qpqpqplVq1aNvVjpWDk21WeOT7Wlj0FkF7A+ybokJwIXATuGOyQ5Fbga\n+LWq+nIHNUqSpDHo3amZqjqU5DLgWmAFsL2q9iS5tFm+Ffgd4BHAO5MAHKqqma5qliRJx6Z3QQSg\nqnYCO0fatg69fhnwsrbrkiRJ49XHUzOSJOk4YRCRJEmdMYhIkqTOGEQkSVJnDCKSJKkzBhFJktQZ\ng4gkSeqMQUSSJHXGICJJkjpjEJEkSZ0xiEiSpM4YRCRJUmcMIpIkqTMGEUmS1BmDiCRJ6oxBRJIk\ndcYgIkmSOmMQkSRJnTGISJKkzhhEJElSZwwikiSpM70MIkk2JtmbZDbJljmWJ8nbm+U3Jjmrizol\nSdLS9C6IJFkBXA5cAGwALk6yYaTbBcD6ZtoMvKvVIiVJ0lj0LogAZwOzVbWvqu4BrgI2jfTZBFxZ\nA9cDJyd5dNuFSpKkpVnZdQFzWA3cMTS/HzhnEX1WA18fXVmSzQyOmgB8P8ne5vUpwDfHUXDH3I+l\nu6aqNra90QXG5rDl8vMdtRz3a1L71Ifx+YMkN7ddw4i+jBnr+LGbq+rnlrqSPgaRsaqqbcC20fYk\nu6tqpoOSxsr9mF7zjc1hy/VzWY77tdz2aXh89mHf+lCDddy/hnGsp4+nZg4Aa4fm1zRtR9tHkiT1\nXB+DyC5gfZJ1SU4ELgJ2jPTZAby4+fbMucCdVXW/0zKSJKnfendqpqoOJbkMuBZYAWyvqj1JLm2W\nbwV2AhcCs8DdwCXHsKkFD4lPEfdjeVuun8ty3K/luE+H9WHf+lADWMewsdSQqhrHeiRJko5aH0/N\nSJKk44RBRJIkdWaqg8hSbgU/33uT/FSSjyf5SvPfhw8t+49N/71Jnj1t+5DkmUk+m+Sm5r//Yhz7\n0PZ+DC0/Ncn3k/zGuPajT470mU6DJNuTfGP4HhRH+rn2XZK1ST6Z5JYke5K8ummfuv2axO/thOr4\n1Wb7NyW5LsmZQ8tua9pvyBK+TrqIGs5LcmeznRuS/M5i3zvmOn5zqIabk/wwyU81y8b1Wdzv93Zk\n+XjHRVVN5cTgQta/BX4aOBH4ArBhpM+FwEeBAOcCf3Ok9wJvBrY0r7cAb2peb2j6PQBY17x/xZTt\nwz8HHtO8/jngwDT+LIbW+QHgT4Df6Ho8djG+p2ECfhE4i8GNjw63Lfhz7fsEPBo4q3n9EODLzd+H\nqdqvSf3eTqiOpwAPb15fcLiOZv424JQWPovzgA8fy3vHWcdI/+cBfznOz6JZz/1+byc5Lqb5iMhS\nbgW/0Hs3Ae9tXr8X+OWh9quq6gdVdSuDb+ycPU37UFWfr6qvNe17gJOSPGCJ+9D6fgAk+WXg1mY/\nlqPFfKa9V1WfBr490jzvz3UaVNXXq+pzzevvAV9kcGfnaduvSf3ejr2Oqrquqr7TzF7P4N5R47SU\n/Wn1sxhxMfC+Y9zWvOb5vR021nExzUFkvtu8L6bPQu99VP34niT/C3jUUWzvaLW9D8P+FfC5qvrB\nsZW+qBoX0+eo9yPJg4HXAr87htr7ahLjrS8WMz6nQpLTGBxp/Bumb78m9Xs7iTqGvZTBv8YPK+Av\nmtPNm+d5z7hqeEpzKuKjSc44yveOsw6SPAjYCHxwqHkcn8VijHVc9O4+In1SVZVkqr/fPNc+NL9A\nbwKe1U1VR29kP14P/Neq+n6SDqvSUk3z71gTiD8IvKaqvjs8Fqd5v/osyfkMgsjThpqfVlUHkjwS\n+HiSLzX/oh+3zwGnNn93LgQ+xOAJ8F15HvCZqho+ctHWZzFW03xEZCm3gl/ovX/XHGKi+e83jmJ7\nR6vtfSDJGuBPgRdX1d8usf4j1biYPseyH+cAb05yG/Aa4LcyuAnecrKcH2Mw7/icFklOYBBC/riq\nrm6ap22/JvV7O4k6SPIE4N3Apqr61uH2qjrQ/PcbDP62Hcsp8yPWUFXfrarvN693AickOWWx9Y+r\njiEXMXJaZkyfxWKMd1ws9aKWriYGR3P2Mbhw9PBFMWeM9HkO972g5n8e6b3AW7jvBWdvbl6fwX0v\nVt3H0i9WbXsfTm76vWCafxYj6309y/Ni1SN+ptMyAadx34tVj/hz7fPUjOErgbeNtE/Vfk3q93ZC\ndZzK4Lq8p4y0/yTwkKHX1wEbJ1TDP+PHNwE9G7i9+Vxa/Syafg9jcA3HT477sxha331+byc5Ljr/\nZVjKxODK3S8zuEr3PzVtlwKXNq8DXN4svwmYWei9TfsjgE8AXwH+AvipoWX/qem/F7hg2vYB+M/A\nXcANQ9Mjp20/Rrb7epZhEFnoc5mmicG/2L4O/BOD88UvXczPtc8Tg9MCBdw49Ht04TTu1yR+bydU\nx7uB7wx93rub9p9m8D+7LzC4cP2Y61hEDZc12/gCgwtmn7LQeydVRzP/EgZfnhh+3zg/i7l+byc2\nLrzFuyRJ6sw0XyMiSZKmnEFEkiR1xiAiSZI6YxCRJEmdMYhIkqTOGEQktSLJafM9zVPqiyT/cilP\n0E3ymub261okg0gPTfsf7CQvSfKOruvQ8pfEx1RorKpqR1W9cQmreA1gEDkKBhHdh3/YNWErkvxh\nkj1JPpbkpCRPTHJ98zCxP03ycIAkn0oy07w+pbml/+GguyPJXzK4gZi0KM0/8r6U5IokX07yx0l+\nKclnknwlydnD/5Bq+r09yXVJ9iV5YdN+XpIPD633Hc37XgU8Bvhkkk82y56V5K+TfC7JnzTPKNIQ\ng0h/rWx+Sb6Y5ANJHpTkGUk+n+SmJNuTPGC+Nyd5Y5Jbmj/uv9e0XZFka5LdzS/hc5v2+/1hT/Kb\nSXY17//dofV+qHmy457hpzsmuaRZ5/8EnjqpD0VTbz1weVWdAfw9g6dAXwm8tqqewOAuja9bxHrO\nAl5YVU+fWKVarn4GeCtwejO9iMHdcn8D+K05+j+6Wf5cYMEjJVX1duBrwPlVdX7zLJr/DPxSVZ0F\n7Ab+w5j2Y9nwX7/99XjgpVX1mSTbGQzeXweeUVVfTnIl8HLgbaNvTPII4PnA6VVVSU4eWnwag+ck\nPJZBav+Zpv0s4AlV9e0kz2LwP4yzGdzKd0eSX6zBUxz/XdPnJGBXkg8yeKbA7wK/ANwJfBL4/Fg/\nDS0Xt1bVDc3rzzIYhydX1V81be8F/mQR6/l43fepo9Ji3VpVNwEk2QN8ovk7eRODv4+jPlRV9wK3\nJHnUUW7rXGAD8Jnm6cwnAn99zJUvUx4R6a87quozzes/Ap7B4Bfoy03be4FfnOe9dwL/CPz3JC8A\n7h5a9v6qureqvsLg4USnN+3Df9if1UyfZ/Do69P58eOuX5Xk8LMW1jbt5wCfqqqDVXUP8D+Odae1\n7P1g6PUPGTyIcT6H+PHfqAeOLLtrnEXpuDI8Bu8dmr+Xuf9xPtw/zX+Hxybcf3wO9/94VT2xmTZU\n1UuPoeZlzSDSX6MPAfr7Rb+x6hCDoxkfYHA48ZoF1nt4fvgPe4D/Z+iX52eq6r8nOQ/4JeDJVXUm\ng6Ay3y+gtBh3At9J8r83878GHD46chuDo2wAL2y5LmkhXwU2JHlAc8T5GUPLvgc8pHl9PfDUw0ee\nk/xkkse1W2r/GUT669QkT25ev4jBucXThk6lDP/Bvo/mYqiHVdVO4P8Azhxa/CtJfiLJYxk8rXHv\nHKu4Fvh3hy+qSrI6ySMZPHr6O1V1d5LTGRx2BPgb4OlJHpHkBOBXjnGfdXz6t8BbktwIPBH4v5r2\n3wNenuTzwCldFSeNqqo7gPcDNzf/HT4VvQ24Jsknq+oggyflvq8Z33/Nj49Cq+HTd3soyWkMjmLs\nZvAvwlsYBI8nM/jjvBLYBby8qn4wx/sfDfwZg6MVAX6vqt6b5AoGp2xmgIcC/6GqPpzkJQwe43zZ\n0DpeDbysmf0+8G8YPA76QwzOo+5lcFj99VX1qSSXAP+RwZGbG4B7htcnSdJcDCLHkSaIfLiqPtB1\nLZIkgadmJElShzwiMuWS/CmwbqT5tVV1bRf1SJJ0NAwikiSpM56akSRJnTGISJKkzhhEJElSZwwi\nkiSpM/8/Q2Ep4tIP3CQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIUCAYAAADMoPyZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX24HWV99/v9zXrZOzsJxMTIoUAMb+KFApskYGl7+diq\ngLYPWLzQpEBCS4nl1IdYq1WfPtU8nPYSK20NrSeSKJCoTdCjVU5FAW0t5TQCCUReVCSE8BpJsjc7\nyd5rr5dZc58/1twr95p1z6yZ9bJnr72/n+uaa611v/5m9mTmzlq/73dEKQVCCCGEkKnGSTsAQggh\nhMxOuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGE\nEJIKXIQQQgghJBVm3SLk0ksvVQC4cQtuqcNzk1vEljo8P7mFbB0x6xYhhw4dSjsEQqzw3CTTGZ6f\npBfMukUIIYQQQqYHXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIamQTTsAEbkUwAYAGQBf\nVkrdHKgXv/69AAoArlVKPSoipwDYCuAE1GRCm5RSG7oR09JPfi9R+303/243piWEEEJmFal+EyIi\nGQBfBPAeAGcDWCUiZweavQfAmf62FsBGv9wF8OdKqbMB/DqAP7X0JYQQQsg0Je2fYy4EsEcptVcp\nVQawHcDlgTaXA9iqavwEwAIROVEptV8p9SgAKKWOAvg5gJOmMnhCCCGEtE/ai5CTALxofH4JzQuJ\nlm1EZCmA8wE8ZJtERNaKyE4R2Xnw4MEOQyake/DcJNMZnp+k16S9COkYEZkH4FsAPqKUOmJro5Ta\npJRaoZRasXjx4qkNkJAIeG6S6QzPT9Jr0l6EvAzgFOPzyX5ZrDYikkNtAfJ1pdS3exgnIYQQQrpM\n2ouQRwCcKSKnikgewEoAdwfa3A1gtdT4dQCHlVL7fdXMVwD8XCn191MbNiGEEEI6JVWJrlLKFZEP\nA7gXNYnu7Uqpp0TkT/z6LwG4BzV57h7UJLp/6Hf/TQDXAHhCRHb7Zf9TKXXPVO4DIYQQQtojdZ8Q\nf9FwT6DsS8Z7BeBPLf0eBCA9D5AQQgghPSHtn2MIIYQQMkvhIoQQQgghqcBFCCGEEEJSgYsQQggh\nhKQCFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgpchBBCCCEkFVJfhIjIpSLytIjsEZFP\nWupFRG716x8XkWVG3e0ickBEnpzaqAkhhBDSKakuQkQkA+CLAN4D4GwAq0Tk7ECz9wA409/WAtho\n1N0J4NLeR0oIIYSQbpP2NyEXAtijlNqrlCoD2A7g8kCbywFsVTV+AmCBiJwIAEqpBwCMTmnEhBBC\nCOkKaS9CTgLwovH5Jb8saZtIRGStiOwUkZ0HDx5sK1BCegHPTTKd4flJek3ai5ApQSm1SSm1Qim1\nYvHixWmHQ0gdnptkOsPzk/SatBchLwM4xfh8sl+WtA0hhBBC+oy0FyGPADhTRE4VkTyAlQDuDrS5\nG8BqXyXz6wAOK6X2T3WghBBCCOkuqS5ClFIugA8DuBfAzwF8Qyn1lIj8iYj8id/sHgB7AewBsBnA\n/6n7i8g2ADsAnCUiL4nIdVO6A4QQQghpm2zaASil7kFtoWGWfcl4rwD8aUjfVb2NjhBCCCG9Iu2f\nYwghhBAyS+EihBBCCCGpwEUIIYQQQlKhZU6IiPwjABVWr5S6sasREUIIIWRWEOebkJ0AdgEYBLAM\nwDP+Ngwg37vQCCGEEDKTaflNiFJqCwCIyA0AfsuX1UJEvgTgP3sbHiGEEEJmKklyQl4H4Djj8zy/\njBBCCCEkMUl8Qm4G8JiI/DsAAfB2AOt7ERQhhBBCZj6xFyFKqTtE5PsA3uYXfUIp9avehEUIIYSQ\nmU5SiW4JwH4ArwF4k4i8vfshEUIIIWQ2EPubEBH5YwDrUHuK7W4Av47ac1t+pzehEUIIIWQmk+Sb\nkHUALgDwvFLqtwGcD2CsJ1ERQgghZMaTZBFSVEoVAUBEBpRSvwBwVm/CIoQQQshMJ4k65iURWQDg\nOwDuF5HXADzfm7AIIYQQMtNJoo75ff/tel+mezyAH/QkKkIIIYTMeJJ8EwIR+S0AZ/py3cUATgLw\nXE8iI4QQQsiMJnZOiIh8BsAnAHzKL8oB+FovgiKEEELIzCdJYurvA7gMwAQAKKVeATC/F0ERQggh\nZOaTZBFSVkopAAoARGRub0IihBBCyGwgySLkGyJyG4AFInI9gB8C2NybsAghhBAy00mijrlFRN4N\n4Ahq/iCfVkrd37PICCGEEDKjibUIEZEMgB/6TqlceBBCCCGkY2ItQpRSVRHxROR4pdThXgdFCJne\nuK6HSbeKuQNZTJRczMlmAKCpLJtN+ozM3s2bVszETrXqwa16AICypxL/DWx/z0m3Wn/V5QOOIJvN\nwHGkYe5Cxeiby2CyUuvreh4qlng8T6FQqWIon0GhXMWcrIPJShVDA1kUSlU4gtoGoGT0H3AEHprL\nc47AU7U+AOApIJ9xkM06cF0Pnuc1tLftlwKQcRwU3SocEQzkHExWPAzlGvd3OpPEJ2QcwBMicj98\nhQwAKKVu7CQAEbkUwAYAGQBfVkrdHKgXv/69AAoArlVKPRqnLyEzhSQ30LhtOynzPK8hvuBnXea6\n02fe0UIZ67bvxiP7RnHB0oW449oVTUlxvYg5yd9kJiyAPE+h6FYBBWT9+6Drvy95yriJZyColc3J\nZjBRcjGUz6DqeiiXm/+uJsp/HXAEbqWKAUdQrnq1G77n1csBIJvL1I9v1fNQ9ucz+3pGX/0X8KoK\nAsDJCMaLLvJObSFRKFUxNJBBoeTCEfHjURjIZTBZri0GzIWGAiB+HKWSC6+q6vsxmG/c70m3ijlA\nfTGVUR4Kpdo5UtALGq8Wlz4Onuch7y90ShUPeQHKbm3f9SIn6y9UzAVTVo4dmwFH4Cog4w+cyTgo\nVmr7ohdGvSLJIuTb/tY1/J95vgjg3QBeAvCIiNytlPqZ0ew9AM70t7cB2AjgbTH7EtL3uK6H0cky\n1m07dgPdcu2Kpnb6Bhr3Rj1WdBtuymFjxikLI24svZ530q1i3fbd2LF3BACwY+8IHMB6DOIe67hl\nSf4mrou+XIjo/7kDwKTrAQLMyRzbD70YGXAEVffYDV+XjRbK2PX8KN551hsAoH7jDqNqLHB0e/Oz\n/uahYaHheRC/rNW5pNvk/f5559h+lJRqmFOPX3Vr7YFjZQ3HyIhjINCu6noN8+rXrNQORC2GWh+v\nemwe80xxcOxbFV1e/5bFsi/BOBuOnzFHr8/LJImpW0QkD+DNqB3/p5VS5Q7nvxDAHqXUXgAQke0A\nLgdgLiQuB7DVlwf/REQWiMiJAJbG6EtI3zPpVrFuW+MNFGi+gW5YOYwFg1nrjTVYtmn18qabsm1M\nW99+LPv69W/DI/tGG45ryVNNx6DkqVjHOu68Sf4mum0y0WL6mAuQsqdQdD28bjD+/29LnsL2h1/A\nmt84FSXv2LcEGRFkpXazMRcdJU813eAlMF6w3jYngJbtgoT/zWY2vVyIxD56IvJeALcBeBa1v/mp\nIvIhpdT3O5j/JAAvGp9fQu3bjlZtTorZl5C+Z+5ANtYNdN323dbFha1t3DFnStlEycUFSxfWy8KO\na7ePS5K/iW6bt58G05ZJ/6t/oHb8AGlYTLRi7kAWl7z1RMwbzEKMNUGhVK1/6yCQ+nv9U0fUeFH1\nx+JEy3ZBwv5mswKvivlpLkIA/D2A31ZK7QEAETkdwPcAdLIImRJEZC2AtQCwZMmSlKMh5Bhxzs1C\nqRrrBvrIvtHYN9ZObsr9WDbgCDasHG74X6ztGMQ91nHLkvxNdNvpRJzz04xZ50skYbzo4ow3zMOe\nA+M4acEcKBxbbNiYKLmRx0nnUEShFx9Jj3c//M36jSTLmqN6AeKzF8DRDud/GcApxueT/bI4beL0\nBQAopTYppVYopVYsXry4w5AJ6R5xzk1HgM9feS4uOm0Rso7gotMW1W+gJuaN1cRWpm/KrcacKWUA\nsGAwi02rl+OXf/MebFq9HDnLMYh7rOOWJfmb6LbTiTjn50TJrW+O1BYVZlmr7dmDRzFRcnHvk/vh\nSO3czDuCQkj7vCOR4zmClnPmHMFAi3FsW9jfbLZsvSDJImSniNwjIteKyBoA/y9qyaBXiMgVbc7/\nCIAzReRUP99kJYC7A23uBrBaavw6gMNKqf0x+xLS9+QzDuYNZPHZK87B03/9Hnz2inOsi4gNK4cx\nJ5tpKre1BZpvyrZ2M6XMhgNgKJ/BxquX4Zd/8x5svHoZsoJYxzpuWZK/iW7bb2ilyYBTy+EYzEj9\nc5zt5NcN4dB4ESvftgSAQtlXf+RD2uvk0rAtK9H1A47Ub3xJ4gz7myUdo1+3Xp2bolS83+5E5I6I\naqWU+qO2AqjlmnwBNZnt7UqpvxGRP/EH/ZIv0f0nAJeiJtH9Q6XUzrC+reZbsWKF2rlzZ2SbpZ/8\nXqJ92Hfz7yZqT6YlqYvqo87N6SbRZdmUS3Sn/fmZRL0UpOwpzDGku+WqB08Bg1mno3F7QdADZDbg\nOJEy3Y4OQuxFyEyBixASQupXkzjnJpm18Pwk05WOzs3YP8eIyN+KyHEikhORH4nIQRG5upPJCSGE\nEDJ7SZITcrFS6giA3wOwD8AZAD7ei6AIIYQQMvNJsgjROqTfBfBNPkOGEEIIIZ2QROD8ryLyCwCT\nAG4QkcUAir0JixBCCCEzndjfhCilPgngNwCsUEpVUFOqXK7rReTd3Q+PEEIIITOVRB6sSqlRpVTV\nfz+hlPqVUf25rkZGCCGEkBlNN43gU5eQEUIIIaR/6OYiZHYZjhBCCCGkI/rrmdGEEEIImTF0cxGy\nr4tjEUIIIWSGE1uiKyI5ADcAeLtf9B8AvuQrZaCUavchdoQQQgiZhSTxCdkIIAfg//Y/X+OX/XG3\ngyKEEELIzCfJIuQCpdR5xud/E5GfdjsgQgghhMwOkuSEVEXkdP1BRE4DUO1+SIQQQgiZDST5JuTj\nAP5dRPb6n5cC+MOuR0QIIYSQWUGSb0L+PwC3AfAAjPrvd/QiKEIIIYTMfJIsQrYCOBXA/wXgHwGc\nBuCrvQiKEEIIITOfJD/HvFUpdbbx+d9F5GfdDogQQgghs4Mk34Q8KiK/rj+IyNsA7Ox+SIQQQgiZ\nDbT8JkREnkDtuTA5AP8lIi/4n98I4Be9DY8QQgghM5U4P8f8Xs+jIIQQQsiso+UiRCn1/FQEQggh\nhJDZBZ+iSwghhJBU4CKEEEIIIamQ2iJERBaKyP0i8oz/+rqQdpeKyNMiskdEPmmUXykiT4mIJyIr\npi5yQgghhHSDNL8J+SSAHymlzgTwI/9zAyKSAfBFAO8BcDaAVSKivUqeBHAFgAemJlxCCCGEdJM0\nFyGXA9jiv98C4H2WNhcC2KOU2quUKgPY7veDUurnSqmnpyRSQgghhHSdNBchJyil9vvvfwXgBEub\nkwC8aHx+yS9LhIisFZGdIrLz4MGDySMlpEfw3CTTGZ6fpNf0dBEiIj8UkSct2+VmO6WUQs0ArSco\npTYppVYopVYsXry4V9MQkhiem2Q6w/OT9Jokz45JjFLqXWF1IvKqiJyolNovIicCOGBp9jKAU4zP\nJ/tlhBBCCOlz0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLvRwghhJA+J81FyM0A3i0izwB4l/8Z\nIvJrInIPACilXAAfBnAvgJ8D+IZS6im/3e+LyEsALgLwPRG5N4V9IIQQQkib9PTnmCiUUiMA3mkp\nfwXAe43P9wC4x9LuXwD8Sy9jJIQQQkjvoGMqIYQQQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIK\nXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEIIIanARQghhBBCUoGLEEIIIYSkAhchhBBCCEkF\nLkIIIYQQkgpchBBCCCEkFbgIIYQQQkgqcBFCCCGEkFTgIoQQQgghqcBFCCGEEEJSgYsQQgghhKQC\nFyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVMimNbGILARwF4ClAPYB+IBS\n6jVLu0sBbACQAfBlpdTNfvnnAfx3AGUAzwL4Q6XU2JQEH2DpJ78Xu+2+m3+3h5EQQggh/UOa34R8\nEsCPlFJnAviR/7kBEckA+CKA9wA4G8AqETnbr74fwFuVUucC+CWAT01J1IQQQgjpCmkuQi4HsMV/\nvwXA+yxtLgSwRym1VylVBrDd7wel1H1KKddv9xMAJ/c4XkIIIYR0kTQXIScopfb7738F4ARLm5MA\nvGh8fskvC/JHAL4fNpGIrBWRnSKy8+DBg+3GS0jX4blJpjM8P0mv6ekiRER+KCJPWrbLzXZKKQVA\ntTnHXwJwAXw9rI1SapNSaoVSasXixYvbmYaQnsBzk0xneH6SXtPTxFSl1LvC6kTkVRE5USm1X0RO\nBHDA0uxlAKcYn0/2y/QY1wL4PQDv9BcyhBBCCOkT0vw55m4Aa/z3awB819LmEQBnisipIpIHsNLv\np1UzfwHgMqVUYQriJYQQQkgXSXMRcjOAd4vIMwDe5X+GiPyaiNwDAH7i6YcB3Avg5wC+oZR6yu//\nTwDmA7hfRHaLyJemegcIIYQQ0j6p+YQopUYAvNNS/gqA9xqf7wFwj6XdGT0NkBBCCCE9hY6phBBC\nCEkFLkIIIYQQkgoy20QlInIQwPMh1a8HcGgKw+kmjL0zDimlLk0zgBbnpmY6HKtuMVP2ZSr2Yzqe\nn/309+uXWPslTuBYrB2dm7NuERKFiOxUSq1IO452YOyzg5l0rGbKvsyU/UhKP+13v8TaL3EC3YuV\nP8cQQgghJBW4CCGEEEJIKnAR0simtAPoAMY+O5hJx2qm7MtM2Y+k9NN+90us/RIn0KVYmRNCCCGE\nkFTgNyGEEEIISQUuQgghhBCSClyEEEIIISQVuAghhBBCSCpwEUIIIYSQVOAihBBCCCGpwEUIIYQQ\nQlKBixBCCCGEpAIXIYQQQghJBS5CCCGEEJIKXIQQQgghJBW4CCGEEEJIKnARQgghhJBU4CKEEEII\nIanARQghhBBCUmHWLUIuvfRSBYAbt+CWOjw3uUVsqcPzk1vI1hGzbhFy6NChtEMgxArPTTKd4flJ\nesGsW4QQQgghZHrARQghhBBCUoGLEEIIIYSkAhchhBBCCEkFLkIIIYQQkgrZtAOYTriuh0m3ijnZ\nDCbdKuYOZOFWqih5ql42J5fBZKVWN1FyMeAIsrkMJkpuva6hzBhrouQi7whyuQwK5SqGchk4jgAA\nPE+hUKliKN9cRwghMxXX9eB5HkqeariuOo6DbLa7/08Om8vEvN7b2oT11df84HhBouYGAMep7bPn\neQ3t3Uo10Ti2cSdd//6UnT73F34T4uO6HkYLZew5cBSjhTLWbt2FkaNFjBXdetmDzxzE6ESt7k1/\n+X2s3boLY0UXbqWKtVt3YXSi1mas6OLnrxyulRXKyAjq7Q8XXTzwywO4fstOjEyU4XkKnqcwMlHG\n9Vt24k1/+f2GOkIImanoRcFY0W26rnqeB9f1pmQukwFH6veAN/3l9xtu8FF99X1grOgiLOpWcwO1\nxYdegOj2wQWIbZxWdwvP8zDgSO2e5Vanzf2FixCfSbeKddt34/TF87Fu+27s2DuCwXy2oeyi019f\nr3M9hR17R7Bu+26UjPe6zZJFc+tlVYWG9suWLMSOvSO4cdtjKFSqKFSquHHbYw3j6jpCCJmpTLq1\nb5rDrquTbveuga3mMjezTVi5ra8uqwT6xe0f1j7OOOWIcYJ9S/4379MB/hzjM3cgi0f2jWLeYO3V\nVnbcnFy9TvPIvlHMHcjW3+s2Zpl+rz/PGzxWN5TP1N8Hx9V1hBAyEzGvkybB6+ZUz2W2CV6/4/QN\niz3pfpr3ok7GabftVMBvQnwmSi4uWLoQ48Xaq63syGSlXqe5YOlCTJTc+nvdxizT7/Xn8eKxukK5\nikK5ah23UJ4eK1VCCOkFEyW3fp010ddN89o5FXPZ2oSV2/qGjZdkblv7TscJ9p0oudPm/iJKTY/f\nhaaKFStWqJ07dzaV65yQl8cKOGnBENZt341bV54HBamX7Xp+FMvfuBDrtu/GI/tGccHShdiwchgL\nBrNYc+dObFg5XG9z8GgRf/29X2DDymHMG8jg3P99f739z/Yfxm3/8RxuXTWMufks8hkHo5NlrNt2\nbFxdlxEgm3VQKB9LkhrKZZDJcP3YZVLP0go7NwnBDD0/zTwN23XVRrsJq0nmMtv8bP3F1nJbX30f\nOG4wa/0fvquAbBf+krY4jh/MxjpJxoouFgxmu5mc2tEgXIT4mFnTvVTH5BxBLpvBi6MFLBjKYSjr\nYMxfWBwaL+OUhUP1uucOjeOkBUMYzDn40FcfbTjhFs3NcyHSXWbkRZ7MGGbk+amvu0AytUfShYg5\nT6u5bPeAYL2tr6k+sVFwPQx1Ue0zjdQxHQ00fX4YSplJt5bZvGn1clxz+8PYsXcEuz/9btzwtUex\n8epl9TLNRactwqbVy7Hmzp3YtHo5zll/X1PdOevvw0WnLcJt1yzHVZsfwm3XLMebP31vU7t123bj\ns1ecg3fc8uOGutuuWY4PfXUXNl69rD63TkLatHo55nMRQgjpY/R113ZtjcSrYn6CG7qZ4NpqPn3d\n3rR6ufXnoND+XhVK1b4NsdWPFSrIzMvHjrkVVU/hqs0Phe6L7Z4E1BYv+WkizwW4CKmjk1D1K4B6\nkmlUQmqrxCQzsXXeoL3dI/tGccrCoaY6MyE2bHxCCOlXzOutppdJqXr8VvN1klwaVj+Uz0K6fO+P\ne+ym8z1jekaVAmbCzgVLaxJanWSqX80Vp9k2uFoOJqbqxNbxor3dBUsX4sXRQlOdmRBr6zd/sHFx\nQggh/YR5vdXYrqk2klz/guKAVvNFxRDVX6nw+pHxMhZ1+ZuQuMcuWD6d7h38Pt9nTjaDDSuHkRFg\nw8phXHTaInx398vYsHIYO549VC/LOoKLTlvU0HbALzPrPM+rv3/24FFsWDlcrzfbDTiCDauGsWAo\n11Sn+zmCprqhHOW7hJD+Rl93bdfFqG1ONtn1b042U+/bar5WMUT1z0bULxjKtdyvJFvUXLZ7UrvH\nrtcwMdXAZtterlRR8VRTQqpuEzcxdU42A9fzUDGSicy6ctWDpxSGAnV5R6iOmRpS/5GUiakkghl7\nfurrbpIkS6B1cmowGdUkLKkzk3VQjeHSGpUUqgCUQ+q7pY7ReEDDPSUYS9BKvhdW+Ojw3OSdzEdL\ndNdu3YU3f/oHWLt1FwolF0d8e9w3/1Wt7KXRSdzx4HMYLZQxUaqE2rYXy27dtl3bAHtKYbJcxXix\n0jDPK4eL+PJ/7kWhXMVXd+yr93vwmYM4XHShvNrXZ44I5g/muAAhhMwYslmn4fqWz2frz08ZK7pY\nc+dOnL3+Pqy5c2eDzXmUrXvYAkSPd/5N9+OqzQ9hMuCVEWUTb8aydusuHDpaarJ0X3PnTrwlUL/m\nzmMLN70AidqvuHhA/f4UZgPvVVX9mObz2V4sQDpm+kWUEtq23bTC9RSayj7xrcdxyVtPxLrtuzF3\nIBdq215VaLDl1WXrtu+G59fZxrx8+KSmsbppXUwIIdOduBbrYddG3T+pbXqU9XmrvlGP9OjUvt22\nVTo4PtMJJqb62LK0TQt3zSP7RnHGG+ZZ1TFRtu3mq03tosfUdbaxCCFkNtCpnXu3bNOT9I2q76bt\nei/GSRN+E+Jjs8I1Ldw1FyxdiD0Hxq3qmCjbdvPVpnbRY+o621iEEDIbSGJPHtW/23bnUX2jHunR\nzTiSjjPd6YvEVBE5BcBWACeglvezSSm1QUQWArgLwFIA+wB8QCn1WtRYrWzbTSvczauXo1CuNpR9\n7v3n4juPvYSVFy6Bpzw44lht2+cNZHDdll11C9+s6VYXSFrNOYJND+zFyguX4PtP7scPnny1YayF\nQ3lMulUM5TMolGuvkxUPQ7muut7NdlI/kExMJRHMqPMzKmnUJImdexxajacQfqBb9Q2rX3PnTmy5\ndkXX90vnhLQap0fJqCYz37ZdRE4EcKJS6lERmQ9gF4D3AbgWwKhS6mYR+SSA1ymlPhE1Vhzb9roK\nJZ+B63oNmc56IRBHHXNksoKsI8g7UvfrHyu6Dc+VmZN3MFn2sGAwCw9APjBW3hHseG4Et/3Hc/UF\n0PvOPxnfeewlrHrbG7Fobp4Lke6Q+kHkIoREMGPOz7gLEE1Se/Jejteqr61el8W1f+/F/vR4ITLz\nbduVUvsB7PffHxWRnwM4CcDlAN7hN9sC4McAIhchYWj74PWXvQXr736qwQDmifUX46rND1nrghbt\nus2m1csxfNP9x6zZfat1/Wrar+vXtVtrFu2638arl+Harbtw2zXLsWPvTnziW49j/WVvqb/euO0x\nbF6zAvP67DdAQsjsJW6yZFt27gnHKnmN/wk/Z/19eMJ/YF1YH/0Th+4bZY+u68zyOPulHyFi2w9b\neZR9O4DENvdTSd/dvURkKYDzATwE4AR/gQIAv0Lt5xpbn7UA1gLAkiVLrOPqpFGdIBq3LpiEaiat\nmvVhiaxhSatmYqq2ezfH169D+ellPEOSEefcJCQtenF+disRNAlJxuokKTaObXontvFR5UljnS5M\nz6VRCCIyD8C3AHxEKXXErFO135Wsvy0ppTYppVYopVYsXrzYOrZO8tEJonHrgkmoZtKqWR+WyBqW\ntGompmq7d3N8/VooT38JFgknzrlJSFr04vzsZtJlt8cy40vSJ6yNrTzOuGFzRZW3GnO60jeLEBHJ\nobYA+bpS6tt+8at+vojOGznQ7vjaPvjeJ/fjc+8/t8HyNu/b49rqTNv2z73/XNz75H5sWDmMF0Ym\nGq3ZjVeDT7fFAAAgAElEQVSzDlANr9/d/XK9TtvFP/rCaMP4+vXWVefTvp0Q0leYFupRWzt27p2O\nlXUEE6VKoj5RbWzlccYNmyuqPGrM6WbVbtIviamCWs7HqFLqI0b55wGMGImpC5VSfxE1Vhzbdp18\nqpN9MiLIZxxrnZmYquvCbNvD1DGmSsaWmJoLjE91TE9I/UAyMZVEMKPOz7jJqd1MSm1nrDh9oto4\nhiqy01jMvnOymabjFzbmdFfH9Ms3Ib8J4BoAvyMiu/3tvQBuBvBuEXkGwLv8z21h2raf9b9qduoH\nj5ZQ9RQyAowWyrjjwefw8mvFJpvcn79yGGu37sLIeBkZQaOVu2Hbri3dtZWutivWr4P5bN26OJup\nlQ0YZRnHqb/OG8hyAUII6Wta2ZfPyWYS27mH1Q84AtdXL+pxWjFZruKqzQ/h/Jvub5qnlQU8ULOW\n19btZl8dy2S5Gtu+Xc834Ag8z2vax8lytb5/milYgHTM9I7ORyn1oFJKlFLnKqWG/e0epdSIUuqd\nSqkzlVLvUkqNth7Njs22/SPbd2OsUEHZt8e95K0n4hPferzJJnfJorn199qavRSw0aUNOyGE1GjX\nlj1uvzjjxrFGjxonifV6WH2SMXTbJH374V7TH+mzU4DNtv2RfaM4ZeEQRBqVKcE2YWqXYBlt2Akh\npH0FStx+U2GLnnSOMBVM3DF0204t7acbffFNyFQQlmH84mghkTomSgFDG3ZCCGnflj1uv6mwRU8y\nR1h9kjF0207UO9MRLkJ8tDrGzDD+wsphLBjKtVTHmGqXjKBBMWOqYrTaZTpnKhNCSK/RCpmkqo64\n/eKM26mqJol6J0oFE3cM3TZJ33641/SFOqabxFHHmBbtVderZyO3UsfEUcA01PkKmKh+pjqm3t5/\nzYhgMN/Yfu5AFsVyFZ5SGApYzetXs58ua1Dh5DLIZGbd+jT1LF+qY0gEM+78tD0qI47teNx+YfWZ\njAOlENs6PjhONpepW7B3Q72TZIygBXy3Le3bTGSdFeqYnmOqY7TyZaLs1p/1ElTHPPDLA5gsV/Gl\nB/bipdFJrN26C2/+9A+aFDOmOmbAkUblzERNMTNaKANQTaqajACHiy4e+OWBxvZGv4/etRt7Dhyt\nx/7Ru3ZjtFDG9cZ+vPxasR77HQ8+V+9n1pnzjEyUUa3Gf7YDIYQkJZt1kM9nMSebaakU8TwPruvV\nFyBjRbfhWh3EVXZli+PYFyAK4YobU1UDAG6l2qCMSapyCRJHKRNU+JixHTpawtqtu9qaO4g+zlMJ\nFyE+NnWM59WULovnDzapY5YtWRhbMaMzmc1XXacVM4A01WmlzbIlC5vaX3T66/Hxbz6OG95xBk5f\nPL8e+w3vOAMf/2ZjPJ/41uP1OC9564n1fmZdcJ5CZfpnVRNC+p8kSpmwtkFViBsynjmGuZVjzB+m\nakmqcmlHiWNT5rSjsImzTbWipv9SaXuETR1jqlmC6ph5g/GfJxP17JjgHLZ+5rNjdHv9esYb5tXV\nOwBC4wk+c+aMN8xrqjPn6ccsa0JI/9GO2sP2fK9WbeKoV9qZP0xZmfQaGkfxE7w/JI17OsJvQnxs\n2cammiWojhkvtqeYCdYF57D1M58do9vr1z0HxuuxAAiNJ/jMmT0HxpvqzHn6IauaENL/dKIUCY6h\nN/OaGGe8Tubvlhonaozg53ZVOnG3qYSJqT46J2Td9t14ZN8oLli6ELetXoZi2cN4qYJ5Azlsf/gF\nvO/8k/GJbz2OD/23U3H2icc3lOl+G1YO4+DRIv76e7/AhpXDWDCYxVjRbXhdc+dObFg5jF3Pj2L5\nGxdiTt7BZNnDwqF8LZHVTz4dcAROxsFk5VgybFSSaxzr+GBCa7nqoapU0/imbf1AzmlIyNX9PKUw\nGGjfkEwbqLPtj47ZtK03k2ld10PZa47Pto86MbeqVNPcc7KZqKSrGZf4R2YUM+78rFY9uFWvvmNj\nRbfh+quvnRrtcqpzQsy2W65d0TC2q4DxUvN4C4fy9TFMFGr5d1Hzm5jz/2z9xS1jj0PUGPp+oT/r\n+0ic45aUNpJTOzo3uQjxsWVct1LHVCpVlD0VSzETVx1z9vr76ieSXqDoRYt5kumFUXBB85ZfW4Dv\nPPYSVl64pKFOt89lgImyh1vufRqvHilhw8phzBvM4rrA+AsGs/VY/u4D5yHnCG4MnOiDOQfPHhzH\nSQuGmv4R/Gz/YRw/J9dUt/HqZahUPdy47VjZ595/bj3m7z+5Hz948tV62R/91qkolKtN4788VsBJ\nC4YgULhx+0/rZVv+63l87JKz8Ia5ees/zoVD+bB/YDPuIk9mFDPq/KxWPZRcD9nAXrV6/on5zJlW\nyhAFNPznRdu1B8dpNX/ZU8iHqG/MZ7j0SikT9vyZVv3aIQ11DBchPkeLFazdugu3XbMcH/rqLuzY\nO4In1l+MtVt3Yf1lb8H6u5/Cjr0j9fYXnbYIn73iHCwYyuGGrz3aVLf+srfgki88UH+//u6nGl6D\ndZ+94hy845YfN4yx8epluOFrj2LT6uU4Z/19DXWbVi/H2q276nVmez2mWWe21/ukYwgbX5fpfbXF\n54jUj5dZd9s1ywGgqe7HH3sHPvXtJ6zHa/3dT2Hj1cswfNP99bITjx8MHf9DX23c/9uuWY79h4v1\nfV+7tbnfptXLMX8wZzs1ZtRFnsw4ZtT5ebRYgVKABPYq7N8sAMwfzNWv02FtWo2hx7HFE9Z349XL\nkDFu7GabJ9ZfHDv+VkT1Na/FtvHizhty7euUjs7N/sle6TFmEqhpjxuVfGpaugfrbImfUUmhpywc\nahojzOa9VZKrHjMqOdaMIWz84L7a4tPvg3VmkqvJKQuHIhNnzTGDSbfB8YP7OG8wizMG5jXsZ9R+\nEULSIW7CafDfbJx/1+38u49K8tTXJNv4ndiwB4nTN2y8fr7WMTHVx0wCNe1xo5JPXxwt1BNEg3W2\nxM+opNAXRwtNY4TZvLdKctVjRiXHmjGEjR/cV1t8YQlg40V7ctiLo4XIxNkjk5WGsqjxg/s4XnQb\n9j0qYZgQkh46eTRpcmacRMxW9WHxhPU9MlmJTEptN7k16b5HjdfPFu5chPho2/ZnDx6t2+F6nhdp\n175gKFe3YjfrPn/ludj44z246LRF+Nz7z633v/fJ/da6DatqYwXH12Nr21+z7uDRYpM9/I5nDx0b\nM1Cn27vVakMMG1YOI2MZf8CR+ue/+8B5mJvPNLVxBA3Hy6x79IVRa92CoRxuXdVYZsb83d0vN5Q5\nvg1+cHw9drHsNpRt/PEefP7Kc0NtjfvBxpiQmc5QLoNsApt0/e/W9niNJJbtYf/+o+zgg3GabTqx\nYU/St9V4tr65PrFwZ06IgbZtNxNN3UrN2CaYfNqQtOonmJpqkqAtepRl+pxsBq7noWIqQKa5OmYo\nn0HFrcUcbB+mjglVreQyKLv2GMKOTbVqV8zozzlHkLUcN6pjSJ8y487PoDpGE0yyDCZLBh+vkcSy\nHQCy2QwcSx+bOCHnSP1/6o7jxLJ6b5Uk6io0JeRG9Y2bdBrVrs2E07jQtr0bmLbtZ/2vmv36S6OT\n+NIDezFZruJrP3kea7fuwqGjJTz4zEH8+Td+igMTNSv3V8aKDRbCpi36yHitjR5T193x4HMYGa/N\n9/SrR3Ck6GKiVKlb8H7smz/F4ckK1ty5E2/+qx/gjgefO1b3/xyrq8850TjPgYlj8+j9+vrDz2Oy\nXMV1W3Y2xPqrI5OYLFfx1R37GtrrNuWqhwP+fusYvvaT53Gk6Nb2/3Cxbhl/eLKCa/24zLG0nXxG\n0DT+axNljE1Wmo7hngNHMV52cThg0XykWMHh0rEyW8xHii6+/tDz9b+jbjPVlsSEEDuZjIOM4+Bw\nqdEu/fBkBUcmK/UbadBKPJt1MCebibQrt1m2a1y3Cs+z/+c7aAd/JGAdH4eqp/DK2GRDbIf9n0IK\nhiLIZhNvWsTr8slytcE2PoyofU7Djj0uXIT42GzbTUvzy4dParBO1/boNtt20xZdW7sH6/S4O/aO\nYMmiuVi3fTfmDuRC7dfN9jZr9jjzXD58ktXiV9vSXz58UkN73WasUMFH7/pp3TLeHMvc/zgxayt6\nc/yJchV//o2fNsV1+uL5GCtU8JFA+yOTLtZt222dx+yv/2bm33GqLYkJIeFMulXcuG130/VzrFCJ\ntBK3Xa+TWJnbHkvRasy421ih0nR9vnHb7npd3BiTxhDH9n460h/ps1NAWNa1TbVx3Jwc5g82KlFs\n/YLvbXXm3GYMwXHNz63mDJtHq2eC/fS85n6ZaEWL2T+oxIkbs+04hylm5g1mY7UPOx5BpU0/ZYwT\nMhsIu+5q5WHSfp1YmXdLUTeUDx9nKJ+t71fcueLG0K8KGX4T4hOWYWxTbRyZrDQpXmz9gu/Nz2a/\noHIFaLZfNz+3mjNsnjAlj57X3C8TrWgx+weVOHFjth3nMMXMeNG11gXLwo5HUGlDdQwh04uw6+6L\no4VIZUcrRUgrtUih3PytQKfqFr2FXc90XVIVT9wY4sQ+HemLRYiI3C4iB0TkSaNsvYi8LCK7/e29\nncxhy7q2qTa0CkWrMGzKmaD65N4n9zfV6XEvOm0RXhiZwIaVw5goVeplenw9rtk+WBd3nu/uftma\nRa2VM9/d/XJDe1PR8vcfPK9BCaTHMvc/TswZi9plbj6Dv/vAeVYFzIKhHL4QaH/cnCw2GAobW8w2\npQ3VMYRMH1zXw4AjTWq5z195LhYM5SKVHbbr9ZZrV8RWqQzlmq8DcZQ3cbYFQ7mm6/Otq4brdXFj\n/OVNl+CXN13SsF/tqmv0Vi67KJfdaZUf0hfqGBF5O4BxAFuVUm/1y9YDGFdK3ZJkrKS27cFnmtjU\nHkHlTFB9ElSa2Oq0Cic4vqcUhiwKED23TR1SKLlwzHkM9U65Um1Umvj9wvZRZ4jnsjV1jG0sc/+j\n4gpTxwzlMyhVwtUxQfVO1PNkzJiDz6GhOob0MTPq/Azappe92nWuUKrCkUb1iE3ZEbxeu5Ycj1YW\n8GHxdMMC3VWAp4ChgQwKvmLQrNP71y27dU2S8bqomJn5jqlKqQdEZGkv55h0q00W7UHb9k2rl+Oa\n2x/Gjr0juPcjb7dauW9avRxnf+beprLTPnVPw2dtNb55zQo4Isjns8j7feZnHYyXXFy/ZWfT+Lr9\nkPFbn7bine+fUPMMa956XaZWN5jPYjCkn61sfsNYTsRYtbKouBrqAuMPDYTHkLXEl8k7GIgVc64h\nPkJI+tiSJK/a/JDdetyrNlyjgv1tPzNE2pi3GC8yFgtRc+nYSoYap+opVB3pyOLdRtVT1keIhI5p\nOQ5p0BeLkAj+h4isBrATwJ8rpV6zNRKRtQDWAsCSJUusA9ks2oNlUYmjQHwLdDN5aihv/3lgKJ+x\njh/WnvQncc5NQtKiV+dnp9bjrRIukyZpdmK/3m5CaC8SSfsxOTX9ZVD7bARwGoBhAPsB/F1YQ6XU\nJqXUCqXUisWLF1vb6MQeW8KoLakyLBkyuCq3WaDrzxcsXWhNkAKAQrlqHT+sPelP4pybhKRFr87P\ndm3Lo/onSdJsNV6SBNWkyazaBr4bSbDBcZOOOR3o20WIUupVpVRVKeUB2Azgwk7G00lJZqJlzk/2\n0WU6gTMqOdRmsR603c0I/GSl860JUkDN1vjWVecHkpvC2xNCSL+gbdKTWLa36h83STMsKbVd+/Wk\nyazZNvu12rIJx5wuSfp9kZgKAH5OyL8aiaknKqX2++//DMDblFIrW43TqW17q+TQVhboVht2P9nT\nTAC1JaYGY7Aluc7JZlD17EmbZqKtaWnelABrJJ827aNRVyhV4TjAgBGzLhvM6VgdTLreMft6/wJQ\nMCzmh3LHbJQ930jIVhdF0MpZ/wMLljExlfQpfX9+BpNRTRSAqn8rCrM0T4otSTOTcZDJOPA8BbeF\neVe3k0anYg4PaBAexB2zwyTVmW/bLiLbAOwAcJaIvCQi1wH4WxF5QkQeB/DbAP6skzm0bfuDzxys\n26l/9K7ddWv2l1+rWZO/+dPHLN2//J81S/cHfnmgbjWeFdRtdnXZgCN1G+CxoouiX2darj/4zEEU\n3Zo9uq67bstOFMpVFEpug538aKGMg0eLDfbw2uZ8tFBGxVNNFuiAwsuvFXHHg8+haFjUazv16wPx\n3PHgc/W6Bnv0iWOfr9+6E2OFCkbHG8tGfcv467fsxMhEGbf/595a3ZadOFqsYGSihOt963jdxvMU\nPE9hZKJsrYvztzP32fOay2jbTkg6hC1ACq6HilKYdD0UKm59AdLuf41NK3T9mA3zRqwUQhcgQRv1\nKLt03VbjBV7jYtq022Iwrdc1rlKh9Y5lzDjjpmnr3heLEKXUKqXUiUqpnFLqZKXUV5RS1yilzlFK\nnauUukx/K9Iu2rLXtCaPsmY3rcCXLVnYYJOrX80y00pXvzfLLjr99XV79GCdrf3i+YNN9vCnL54f\n2h6QesxjhUrd9jzKAj7Khl23/fNv/BQT5Wps2/rXCpUmm+Ybtz2GQqWKQqWKG7c9Zq2L87cz+4XZ\nGE9X62JCZjKTbjXU4rzqAWOFCsaLx9qUE1qlJ7EuL1TssSSxbNdt9edK4LXdLU4MVYWuW7qnaes+\nvdNmpxDTujyogImySdf24rrMtGA3y8x+2k48WGazTA9rbyp3dNm8wWyi9uY+2vbNbBfV9pSFQ5H9\nTTv5MIt2rfppRxFks1vulgUzIaRzwv7daRtzXR9l1R6HTv7Nt6OI6fb1JGn8M8HSvS++CZkKdLay\nmWEcx5pd24vrMj2OqYAJqmO0nXiwLMzu19beVO7osvGiG6u9OU/UvkXZsJttXxwtWPsH3wPhFu2F\ncrVtRZAt0zwq+5wQMrWEqTNeHC3UH89gs2pPusVRhxTK1Y5VLqaCsptb3BjixNjJuFMJFyE+Wh1j\nWpNHWbObVuCPvjDakIl8x7UrMHcgiyfWX4w7fctdM1tZvzfLdjx7qG6PHqyztT94tNhkD//swaOh\n7QFVj3nBUK5uex5lAR9lw67b/t0HzsPcfCa2bf3rhnJNNs1a9dOuIshmtxyWfT5dMsIJmU2EqVkW\nDOWQcYAFQznMGzzWJt+mQiSOOiQv6FjlsuXaFfXrzIAjyAVe293ixtALS/e0ro19o47pFnFs223q\nkKA1u/6cdwQ53x7cTC76/pP78YMnX8WGlcNYMJhF1m+TdwSZmOqYuprGcZpUHt1Wx4QpYPpZHRO0\n4dfHMiQLvO/VB2RG09fnp+t6qHqedSdcBWSke+qYThQnSftmcxmrZXwn9EqVE2fcNlUyM9+2fSqw\n2bZrLjptEdZf9hZc8oUH6u/X3/1U/XXj1cswfNP9dYvcddt3Y+PVy/CZu3+Gddt3Y9Pq5Viz+SGs\nv+wtGMg6+NS3nwid57NXnIN33PJjPP6Zi/Ghrzbb+q6/7C044bgB3PC1R7Hx6mW4bvNObLx6Wd1O\nvlXMn73iHJRcL9RyPmjzbrVhz2h7eLOuuWye33eebj9gqQv8Luk4EloXRTbrNNi2Hy1WQm2Rp4NV\nMSGziUm3GmkrXjX+L3zdlnh25ubjGTRHi7Wfoo9MVpJZmKOF1XsIpYifMNoZT6laXoz+aeRNn763\nYzt3kwlfaZnE0r7XTOkiREQyAH6olPrtqZw3Djbbdo0t0dJ81YmgZgKorcw2RnAeneSpk0xtcYgc\nS1gNJtO2ilmPP50TlboBE1MJmT6YifomYY+6aNWm1TztjNPt60W3xuv2dWu6XRendMmjlKoC8ETk\n+KmcNw5m4mZYoqb53nzViaBmAqitzEwKbZXkqZNMbXHo5Nnga5yYXxwtxLac72eYmErI9GGiFN9W\nvJMkSl3XjoV5t23U2xlvvNi8j53GkTSuqSaN76XHATwhIl8RkVv1lkIcDdhs222Jljq500xM/e7u\nlxuSfYJlE6VKvf28wQxuufI86zxmkuejL4w2JRPpMbQ9r06iNZNpo2K+5crzMG8wY517w8rhGWUJ\nb0tWZWIqIekwJ5uJbSveSRKlToBNamGeNDE1asv5WzvjZQOfu2HnnmQ/07g+TnliqoissZUrpbZM\nxfxJbdsnSm5DAmg9YdJI8sznGpNDbWW6fUYEAzmnYQxzHl03dyCLSqXakGBq2rbr5FOdKGomjEbF\nXHI9eB4wJ9+YADuUyyCTmVm5ErZkVdq2kz6l789P1/Xgel4sW/GoJMpWyZNaZNCOhXm3k0KTjKfQ\n+EfOBgQP3SRxAm42UiDQX7btSqkttm2q4wgSZtt+eLKC63wb8YlSpV6nLdSPFF38/JXDDRbtR4ou\nRo4WG8pGxsuYk81gaCCLjONg/mCu/uqIYP5grqHOEcFAPttQr+uyWadel804Da/mWMF+GcfBUD6L\neYPZprln2gIE8JNVjX3s4NkIhJAOqFZrCwObrbhpge75n83HLdisy6PIZh3k81lkHadpruB8QWzt\nzT5Rduq29uffdD+u2vwQJi1eR+aYQPOdvN04bG2Chuxh+xmG61ZbPj6jXab8qiwiz4nI3uA21XEE\nibJt13a3cwdyVvvbJYvmNtm2D+azTWW0DCeEzEbCrNKDFuiVmNbrcQizig9arnfL9jxpe7NNN+Ow\ntenUTr7kWyf0gjRSYlcY7wcBXAlgYUjbKSPKtj3YxsRm0d6qjBBCZhNxVClJFDSdzNmO5XovlDbB\ne0u34phu6pdWTHlkSqmRQNEXRGQXgE9PdSwmpqrlgqW1B9JpFYnWVOs2psbaZtEeVWbTthNCyEwm\nSnWhr6nmNTPsGquJcx0NmzM4XxzixJS0ffDe0q04ksYaFxFJ5N0Ue9wUElOXGR8d1L4ZuUEpdd5U\nzB/lmDpaKGPX86NY/saFWLd9N044bgAfu+QsfPybj+ORfaN48BPvgCMO1m3fjUf2jeKCpQvrFup/\n/b1f1N1Rx4ouBAo3bv8pbl01jOMHamULBrMoe8DQQDI3UDIlpP6HYGIqiaCvzk+dHJoUD8CRott0\njV1gmCCaiantzpOUsRYxddq+m3HY2hw3mO049yIiObWjczONRci/Gx9dAPsA3KKUenoq5m/Xtj1o\ngW5mFmcDSpgBR5DNZvDCaAELhnIYyjq1hKtJF39217GT49ZV52PR3DwXItOD1P8IXISQCPrm/OzG\nwiCOOmaqFiBxYupG+27G0e25e6mOSePnmGnnlgocs23fePUyXPOVmgW6tk7fePUyXLX5Iast+vq7\nn8Km1ctxzvr76va3a+6sWam/45Yf18tGxsv41LefqI+xY+8Ibtz2GDavWdGTr7gIISQNupWAb7vm\n3nbNcohvLd6rRP8oW/OJkotzfDWLzU49rG8pgbIkjt27+dO+tqoP0tKiHWi4b2mmOmVgyu9+vlvq\nZwC83S/6DwA3KaUOT3UsJrbEVG2dHmWLHpaEGrRtH8rbk1qH8jTPIoTMHLqVBGm7XprPpupVsmXc\nxM5eJYUmHaMbCbJpJq6mMfPtAJ4E8AH/8zUA7gBwRQqx1LElpmrrdLNMY1qh25JQg7btI+Nl6xiF\ncpXfhBBCZgzdsv62XS/Hiy5Eav9b75XFeNzEzl4lhcYdQ39j0Y0EWbNsqr8JScO96XSl1GeUUnv9\n7X8DOC2FOBrQNt+mBbq2TrfZopu27aa9LqCabNtzjmDBUA7/8MHGMW5ddf6MskonhBBtnd4Le/Gs\nYS3erXmS2rd3ajnf6fxBe/Wo49BqrNlq274DwMeVUg/6n38TtcTUiyL63A7g9wAcUEq91S9bCOAu\nAEtRS279gFLqtVbzx7FtNxNTtXV60BZdW6HbElNttu1zshkU3SocEeSzTsNYc3IZlF0PVdU8T94R\n5HLhlvG5bMB+3bCHb7Jtz2UgIihUqg1lTIwF0EeJf2RWMq3Pz14liZoJlnlH6geh18mprRJjtQAh\nad9uzN+tsYK28K3s8CPoL9t2ADcA+KKI7BORfQD+CcCHWvS5E8ClgbJPAviRUupMAD/yP7eNluiu\n3boLb/6rmiX7oaMl/NvTB1Byq3j1SKnBSnhkvAxA4cBEGR+9a3eTbfvRyXK97MFnDmK0UMYzB47i\nSNHFeKnRlnh0ooyK59XaTZQb6g4XXTzwywNYu3UXXn6tiDsefK7+WnQ9HDjaGJeuGy0ci0uXjRTK\nOFqs4Hrfhv76LTsxMlHumR0vIWTmY1sIaPv1OFbnUe1Me3HzTud5HlzXq1u02zbHcXC4xU8hYXNH\n2Zp7nocBR0L3a7JcxVWbH8L5N90fy+IdAFylGsYT2G3bO9mXoAV+0vF7RRqLkJ8D+FvUckO+DeA7\nAN4X1UEp9QCA0UDx5QD0M2e2tBqjFdq2PWh3e9Hpr8d4sYqPffOnTXWA4OPffBw3vOOMJot2x3Ea\nxli3fTdOXzwff3bXbowVKk1jKYUGy3izbtmS2u96n/jW47jkrSfWX8cKFXz0rsa4dJ0Zly5bt203\nXgvMfeO2x3pmx0sImfnY7NHj2K+3a4ke17590q3ixm2d26uHbWF92hmzqtDQPomVe9x5W8WS1mNF\n0siI/C6AMQCPAni5g3FOUErt99//CsAJYQ1FZC2AtQCwZMkSa5swS/bj5uQwf9CujtF9znjDvKYy\nUzGj1TVabXPKwiHrPPp9sE5nhJuKHHPOYHtbG11mm5sKnfSIc24SkhZxr502kqhM4rRLSpzHZXRL\nzWL26XRM836QNI5W86athLGRRjQnK6WCP610hFJKiUjobwpKqU0ANgG13zVtbcIs2Y9MVjBWsKtj\ndJ89B8abykzFjFbXaLXNi6OFhrmDahpbRrh+rxU5ew6MYyDrRKp2zLh0mW1uKnTSI865SUhaxL12\n2kiiMmlXURKl5AheizuJMYpgn07H1PeDTMKfStpRwgRJ47Eiafwc818ick4XxnlVRE4EAP/1QCeD\naXVMMJN4x7OHMG8wg1uuPK+pDlD4/JXnYuOP9zRkGW9YOQzP8xrG2LByGM8ePIp/+OAwFgzlmsYS\ngZOCs1oAACAASURBVFWFs2HlMB59YbRBkaNfFwzl8PcfPM+q2jHjqit5Vg3jdYG5qdAhhHSCTZ2R\nS6AUaVdR0krJMSebwa2rosfqRM0S1qedMTOCJhVQt1U1rWJJQxkDTKE6RkSeAKBQ+/blTAB7AZRQ\ny6xVSqlzW/RfCuBfDXXM5wGMKKVuFpFPAliolPqLVnHEUceYqpVipaZoGcg1qlC06sVUodjUMUFF\nS0P7gBIm5wiyGSeROibrZ2rHUcfok6xhH7OZdjOiZxqpZ2hRHUMimNbnZ5hKJa7KI6kaxHFq16xu\nKGM6VaJ4SOd/8zbiKmHCaFMh0zfqmN8D8N8BvAfAGQAu9j/r8lBEZBuAHQDOEpGXROQ6ADcDeLeI\nPAPgXf7nttHqmAefOYhDvuLkzX/1A1y/dRfKVQ8jAdXKK4dripPxklvPPB4tlHHwaBGHJpqVKTbV\nyuhEGXc8+Fx9zCNFFw/uOYi1W3ehUHIxWa7i2jt3NihyHnzmIEbGyyi7Hv796QN1RY/ZJiOC67bs\nbFLMlKteU/vRQhmuO3XPXyCEzDzCVCrzB3NwpPX/sk01ylipUeVxYKKMSdeD4xybA+h8AaLVJJFK\nGLRW+TgAygkUhnFVQ+30DdsXt1L7j2mr/lp1NJVM2SJEKfV81Nai7yql1IlKqZxS6mSl1FeUUiNK\nqXcqpc5USr1LKRVUzyRCq2NsCpWxQgXrtu22qlB0trHOPF48f9CqTLGpVtZt341L3nqiVQnjhmQ7\n6/iOFt1QNY1+H4w1bMy0sqIJIbMDm4ImVOURuNZ+/JuP47VCpeE6lWS8VmqSqDZxVT5J1CydKHI6\nVfPE6T/V9wNmI/rYnh2jOWXhUOJnx9iUKWGqFXNMrYQJe16NLj9l4RBEWj9fwZwnrP10y5YmhMws\nkqpDgp/19a6d8VrN02qsbl8zOxmvG8qbTvr3At59fGzPjtG8OFpI/OwYmzIlTLVijqmVMGHPq9Hl\nL44WsGAoF6mmCcZ64vGDoRnUaWRFE0JmB0nVIcFr1IujBSyal4/1vJSk87QaK47qpOqp2GqWTtQz\nnfRVKvlzaaaCKbdtT5uw5CqdE7Lr+VEsf+NCrNu+G4/sG8UFSxdi49XLUK56WLftWNnn3n8uvvPY\nS1h54RIsGMxizZ07sWHlMMZLFeSzGdxy79N49Uip3u5955+M7zz2Eq5YfnK9bsPKYWx/+AXc+m97\ncMHShdiwchgL5+Yx6f+m5/oGNvMGsxgvushnBEdLLhbNG8BEyYXn102Uqpg3mMWRyQqyfmZ62UhQ\n0gmzYcmuVddrSGjS7VsluXpeoJ9hPx9MlJ2Ty8Cteqh4zXVD+QwmK16ohXxTwnDMZNqE/aZ14h+Z\n9fTN+el5CmW32vZv/WMlt+Fa+/krz8X8gSzm5rP1f7+9smsP4gE4UnQb7gcbVg5jQeDb5rKnkE/B\nfXSs6DbFEoargPFS632x0SJhtaMd5yLER5/UJa/5+S1RKhTbs2Osz22JoY558JmD+B/bdtdOjlXD\nyGcc3PC1RxtOmJfHCrjySz/BBUsX4h//YBilisLHvvnThjZzBzL44y278Mi+Udz4O2dg5YVLmk68\nn+0/jNv+4zl8Zc0K64npKQ9lF00LJ72oWv0bS5sWZhtWDiPjCD78z481Ldb+6LdORaFcbZgnuEBb\n9bY3YtHcfMNCRC8Og/EtHMpHLkTa6Nc3F3kyK+mL89PzFAplt+Mbsv7PTaFUhSNAPuNM+QLEFo9N\nYRJHHaMwDf6AqMVRjtiXKCIWIn2jjpnWTLpVrLlzJ6qewjVfeRjnrL8P48XaM16eH53ENbc/jFfG\nirhq80M4Z/19OP1/fh/n+BnGEyUX56y/D9fc/jAA4Lotx8qu/nKtTLc36675Sm3MI5MVrN26Czd8\n/bFjCUPb7Pbupy+eX/8cZidf9VAv08mzYVbwVWVPVpo7kIu0gLcl6+qE2bhJscGkXZuFfJidfhzL\nZibhEjK1FCrVWEmaa+7ciTd9+t76tubOnQ31QO0nFwWFqlItk1JfOVJCyVMoVttPVI2KSccDoKHP\nc6OTqMTZpw7i6samYzvr0/finPX34arNDzXtS6utV9dO5oT42BJTtc16MLHUJCwxNVgW1j4qYdRm\nsW4mnYYlzJptwmLWbcLs6s0E27Bk2rgxR+1j8NgGLeSj4oui3X6EkPap/fttbXrVyb9NW7uhfLYh\ncbUd2olJX9va7T9VTOfYpkcU0wBbYqq2WQ8mloYl9oTZtgctfc26PQfGccJxA6HJWCbBpNOwhFmz\nTVjMuk2YXb2ZYGtLpg2zjLfFHLWPwWMbtJCPii+OZTOTcAmZOgrlKtyq1zJJs50Ey6ik1JHxMhbN\ny0MptL0YaSemV8aK+LUFgy37dxJXN+iGPT3Qm4RV/hzjo23bTev0R18YxYaVww1W6Z97/7lWa9yg\nbftrE6WGMrP9CyMTDXbqAjRb7q6y27s/e/Bo/XOYnXzGQb3s3if3R1rBZ8Ru9ztRqkRawC8YymHD\nquZ+8wezVhv5rMVWOGhDb7OQD7PTj2PZ3E4/Qkj7DOUysSzHk1qbm/9ubTbxrxvK1a+zSe3OO7Fb\nv/fJ/RhwBPkW/TuJqxtbVGy5mGP06trJxFQDraYwE0YrlSrKnmpKMDUTe4KJqbYyW3tzzIrbqByx\nqk8CY2VC7OTL1UaFSifqGNf1rEqbMHVMUAGjj+WcXAbVamAsv85UxwC135XrxyaXgef/HmlTuXie\namqvxxjMNlrgUx1D+pi+OT/jqmOikj2jCLNsdxWQlc6SQJPElMk6dXFCVP/pkpTa7vEGequO4c8x\nPlpNsf3hF/C+80/GJ771OD70307F2Scej5fHCjhpwVCT0mLeQKYmkQKwduuuutxprOhinlINZW/6\ny+/jgqULsWn1cowdLTXMo8e8ddUwqp7CDV97FJ97/1sxmMs2zaljGS9V8H8cPwcj480KkDn5DNZu\n3dVQZkqB//EPhlGaqDSqaoy5ddk/fHAYg7lmhc4xhYmDvH/85g/m4HkKR0tV3LjtMWOfzseiubVW\nr4XUOY5g3oADz1MYmShb2+ivAc2vA23tv+TLqW8MkVO3UtUQQjrDcQSD+fBbS7XqoVr1kBHBoaOl\nxJJRzztm4W6SD2kfpqYx5a1x5atnr7+voS54M7fZpgfv0GMxJL+2WJP0sS0azGv1dIJXYx+tptBq\njR17R7BsycK6IsWmtKgqNNm2a2vdqkJDme5X9evNeXTdjYYi5nVzB6xz6lgWzx+sj9WsjlFNZaY9\nvFVVY1Hj/NlddoVOWJZ0oVJbZDTuU03xElUXp3/c+V4rVHBjhMU+1TGEpEuhUk1kI96pUiPM4t2c\nK24s7dil2+ZNus9J+/TTdY7fhPgE1SDAMXWMfjWJUsJEqWO0+iZMtaLVJWHqDh2LOX6wzXFzck1l\npj18mKrGpmyxlYVlVQ/lM9ZxteIlqi5O/zjzxbXYJ4SkQ1AtaNKLf6Nh49mUi3Fj6STOdvZ5Oqtb\nOoXfhPgE1SAA6uoY/WoSpYSJUsdo9Y05jzmmVpfocYL1OpaJkhva5shkpanMtIfXqpqwuVuVhWVV\nF8pV67iFcjWyLk7/uPOF7VvQYp8Qkg762hV1XY2zJZ0vuJlzxY2lnTht8ybd53b69AtchPhoNYWp\ngNHqmGcPHrVmF2cEoeqYjMCqjsn49Talza2GIua1iZJ1Th3LwaPF+ljN6hhpKtMKlVBVjUWN8w8f\ntCt0wrKkh3IZ3Lrq/MA+1RQvUXVx+sed73VDOdy6yq7CoTqGkPRwXQ/lstugGGlHkaK3uI+ct6lp\n9HU6aSy/vOkS/PKmS7Dl2hVTqsJpp0+57MY+RmlCdYyPadtuKmC0OiaoMLEpYcxkJJs6plBy4Ygg\nn3Eans0ydyBrVYK4/m+nNmWKtofXYwXVMZ5SGAqoUKJUNaaqxLSmt6ljohI7bWoVbcMeVRenf9z5\n9H4MWZ53Q3UM6VP6+vwMSw7txEYcaKnaaDl/N2NJQjtKlU7URD1Oxqc6phtMulWs3bqrwdDlotMW\nYePVy5BxBNfc/jBuu2Y5rtr8EHbsHcG9H3k71t/9VFP7TauXY+3WXVh/2VtwyRceqJc5IphnZCXP\n90+K+YO1V23Q5ThSr8vns00ZzfV+xkl1bKxaG/OEq/fLNLYx524oC7TL5B0MBMaKoqZ0yTbsU5y6\nJG3itNfvj6lq+KUfIWnRKlFSX1c1+roJ1JSH+n0TXrXhWhiGVvMdLVas9bZrf+icFpQCPNX4JN2R\n8TI+9e0nQsc1beDDCIsrrI/1WMU8RmnBRYhPWCKoTvIMJqhGWbgHrc1nSgIRIYS0QyeJl928hkYl\nmobN3y5D+c4fHZG0fz/eb/or2h4SZvN9ZLKCjCMNSaE79o5EWrgHbc5pFU4Imc20SpSM8ziMMJJc\nW8PG6dTWPOybkE7HTdo/rH4633/6PidERPYBOAqgCsBVSq2Iah+VE2J79Puu50fxzrPegLGi22Ba\ndsJxA/jYJWfh4998vKH9gsEsDkyUccu9T+PVI6VYj50n04K+/s2dzHj6+vxslZMRZcZlmooFSZrv\nEGVcltRArGFcfxGSNxYhBdfDeMltuEfcumoYr5uTb5mf0m5ctmM13XNCZsoiZIVS6lCc9nFs201b\n8WKl2pBMaiaaFstVqz16RgSDflJknKTQYDKpTrBUqjHpsiEu12uZtEkSkfqB5CKERNCX52echFBN\nMPHScZx68n8Som66UfG0myyqH2Fhs2evLU6AoYEMCv4jM5LSQ7v1bsHE1G5g+ybkttXLUCx71m9H\nlr9xYf2bkQFHGmzSP3/lubjlX57Gaa+fi5UXLmno/49/MIzXCqrRMn3lMIYGMrjeGGPz6uUolKtW\ne3cdw4qli+q254QQMp2w3fCj/mc/J5uBI9Lw08Ec1Gzak3wj4HkeXBdNN18znuB4W65dgclytelx\nF62+DRlwpD6mvgrbYs07aGsB0sk3NFO0AOmY6R9haxSAH4rILhFZ2+4g2rbdtMb1PFjtci86/fUN\nFuratl23+fg3H8cN7zijbhVu1lkt07fvhuehoUzbCNvs3XUMUZbmhBCSJja79Cj7cZuCRo/RDdty\nM57geO3aqXfLlr0XY/WLdftM+Cbkt5RSL4vIGwDcLyK/UEo9YDbwFydrAWDJkiXWQWzqGG2xbqIV\nMzYLdbONqY4xCbMVnxdY3bayd9f1YZbmpD+Ic24SkhadnJ82lUZStUfU4ymSqkCiLNrD1JHtKE26\nqbSZyXbtmr7/JkQp9bL/egDAvwC40NJmk1JqhVJqxeLFi63j2KxxtcW6iVbMBC3Ug232HBi3WrOH\n2YqPFxvHaGXvruvDLM1JfxDn3CQkLTo5P9uxHw8boxu25VFxtDtHtyzWezVWP9DXixARmSsi8/V7\nABcDeLKdsbRtu2mN6ziw2uXuePZQg4W6tm3XbT5/5bnY+OM9datws85qmb5yGAMZweOfuRh7P/te\nPP6ZizEn64Tau+sYbl01jMFszYDHUwpHixW41VpGthdhgEMIIb3Edb3E9uO2Rypoy/V2bcvNLSqO\ndufolsV6r8YKHoOwLU17975Wx4jIaah9+wHUflr6Z6XU30T1iWPbbtqWV93GMq12MW3bM9lGtUvF\n9XD8UB7jJRdz8/HUMTZ58MKhfJO9+3ixZrH+0tgkFgzlUPUUPvzPjzFptXNSP1BUx5AI+ub8bKWI\nsak94ihaOlGJxI2jW3N0M9Zu73cYHSSyzl51jFJqL4DzujGWtm1ff9lbmuzYH//Mxbhq80PYePUy\nXPOVh7Fj7wieWH9xk6Xu7k+/Gzd87dF6WZi1u2npvvHqZQ1JsQDqCUibVi83MsWrVmvjz15xTlO/\njVcvww1fexSb16yIZX1OCCHdIiohMtQePcJaXFuul4qVSHv3JETZtJt26u3auSsVbUWfNKarNj8U\nadfeFVKyd+cdyse0Ww8mA+kEVDNRNU4ia1hSqZm0atrCB9uZCUhhiVOnLBxqKmPSKiEkLVrZigc/\nx020TCN5tJP52rFcD2s/ExNSNX2dE9JNTLv1YDKQTkA1E1XjJLKGJZWalu5HJiuRCUjB+IJtXhwt\nNJUxaZUQkhbtJlrGGXeqk0fbnU/fM5L0jWrfSXLrdE9k5SLERyem2hJBM36Cqk5Ivei0Rchbkoay\ngTJbYqpOWjUTTF8YmbAmIJmJWkO55sTZDauGMX8wG5K0en79sfaEEDJV6GTSJImWtqRU27hTnTza\n7nzBe0GcvlHt486bbzMBNu7foBf0dWJqO8Sxbf//2Tv3OCuqK9//VlWdR59+gN3iC0RAfEQUm4ca\novE6SUbUuRe9OkSYKGJyQ3SSgNfoNYl5tEbHMRBHmORjxMTgayAajSGfqJjMaIyJo4I2Lw3aCiJI\neLVAd58+j6ra9496dFWdXafrdJ/u06dZ38+nP92nateuXXWq91619lq/7Q0ETWd1v2y7R4Zdzxv+\noFVNhW6ayEsCWb2Bqa6ku0cCXlYXEZDO+wNYvbLycYWgBYJiWdK9z1T8ZnFgKlOEqno++yqPrmnF\n+61SZOB7I2rA52AFhg72uYpRYpDq4RuYWk5ksu13XzEZT7+5A5dPG+NbkK4zm0d3LlYg2+5I6gal\nf2viCna0d+PpN3dgztljsXVfJ+743V/dTJY1m3cXLIZ331VTkTNMLFrpz5hZ9dp2LPuvNnsxpClo\n0lQ3eNX5Xaeyg4sZeMZ983clld/2r/8wQC1hhhqapkDXEUm2vSGpuS55XTdCDZG+GiDC/gn2igmF\noOd71qaRtW1EUnPLdecMLFjViofmh6+R6tRRrIxD2AJ3jmciyDUr1hbIthdb3K+3NhaTgg+Tvh8I\neLSykcm23/LkBsw8/VhXht3JPhlVn5TKtssk3BetagVAbl2LVrVibFOtT379+gsm4uYn/NLsB9J5\nLFpZKNk78/Rj3c8s284wzFAlqmx7PlAmrE+T1RflJ2eKgnNElUjPSfZHqSNKuw6k8wX9/sKV4bLs\nMtn2vkjCR5WCHyzZd/aE2IRFXjsZLt6MFqdsULY9TMI9mHnjLd9QE0N9slAePkze3WmH85kzYBiG\nGYqUO9tkoLNDemubNzOytzqitDUVLz3bR9amUu/LUJOCZyPExolA9uZpe7NlvBktTtmgbHuYhHsw\n88Zb/lB3HrsPZQvO7ci7y9rj/ZzOGawFwjDMkEOWbSHr04LliEjapw109kZvbXP2F2tHlDIO+ztz\nke5HsP5gm0q9L6Wc07ui8UDB0zE2ssjru6+YjDWbdhVktOztyEhl22US7kvnNAMQWDL7TDdbZvv+\nLl8my30vtmHxbH9GzshUDEvnFkZLr9m0y/3MGTAMwww1TFMUyKQXywCJBTM8CFIZ8WJZN71ljATP\nEbVtccn+3up45/aZkdo1MhUr6Pe9MSHBn3dun4mH5k/3bQt+Lmdm0GBly3B2jE2YbHs6Z0gzWryy\n7VqsZ1/OMGEKgZQnoyWjGzBMgZiqQCP4yjvZLpmcAUP0kh3jybRJ5wzOgCkvFb+R1ZYdU2pgaqlw\nIKuPqng+TVNA7yWWIGoGiCxDo5zZMaW2TVEUXzZjOdAFYAoglVCRtjMeB4PevgPOjqkAxWTbX7zp\nAnzrqY24/+ppuPrB16TSume0PO/+veDhdQXbrnv0Dbdurxy7I5Ob8rgfvS6wejvTxS1vf+YpGIZh\nhhrpvAHZi22YJHlRGXKJjLgj4Q4AHZl80bqLEUW2/eTvrfHvMw3f/igEz7Ox5cJIbbn/6mmgEof2\nUu+DV55+MKZdwuCRzKaYbLsTJOoEonqRBaaGbQsGpjIMwwwnwgLlByIY0tvHllp3Kcf0p63B80QN\n1q0rMe02rJ5qGGuGfgsHiWDwqCxI1AlEDQvq8QahyrZ5A1MraXkyDMMMBOmc3BNSagCmQ7F+0tvH\nllp3Kcf0Jfgz7DxRg3U7M3rJnpC+3mNgcAJQw+DAVJtisu0jUzH825U9gaiyoB5vEKosWNUJcg3K\nsTMMwwwXUjF58Ghf5M976yedQNW+1B3lmP5Kw8vOE7UtWhnOFbXdlR6PODDVg0y2PSiPHpRODwam\nyoJVvYGsNZo6KCp0TMlUReBfqQykqikHpg4qVfN8hgWn9lWSvFiQpCyhIGrdxY4pp3x6lLq8ZeIK\n9fnL7ku7SwxClcGBqeVAJtu+bE4z8qbANx5fHyqdvnROM97auh/3/3GrK9Ge1gXyWR0LA5Lr6z5o\nx/RxTWiqjXNWC8MwwxJFIcTjhUNL3P7tuP4dA6I3GfFiEuJOoGqwbi/FzuN4A4J4l94Ik2Dvrd3S\n84XEeiQUvzR8MUn13trgeDecLKL+3N/BgF/JbWSy7V05A994fH1R6fRFq1oxdWyjT6L9QDqPhRLJ\n9RknHslS6wzDMOiRYY8iI94fCfFSzuOVSHfK9VX+vJTz9fWYsPJeifuBvr/9hT0hNjLZ9qjS6U4k\nsxONHCbH21ATY6l1pl8M9BRItcKL6VUf/cluGczzFMuaKVbfQGftRC0/1LNmhk5LKoxMtj2qdHpn\nxp8JEybHe6g7z1LrzJCGjRxmsCg1u6WvGRz9yaLxHh8kqsx7Kefri4x7b+UH+v72l6oPTCWiiwAs\nBaAC+JkQ4l+LlS+mmNrnmJBdB30xIYYJ5A2TY0Kqi4p/IVEC/9hIKA9V6AmpiuezFKLGhAD9C54s\n5TwO16xYOyAxIcXiO/pyTFh5RVEix4QA/Q5O7dezWdVGCBGpAN4B8PcAdgB4HcBcIcRbYcdEyY7x\nyrZn86ZfTt0jne5EMsck2TGqnU3jlWHPGCZLrQ9dKv6lsBEyeLARUjoDZYQAvcul9zdostQsmnKV\nK3fWThiOpHxCIWiaNcYM4v09rLNjzgbQJoR4HwCIaBWASwGEGiFhOJ6QhqSGfR1ZLFrViqMbErhp\n5inYuOMApp3QiFWvbcdlU8bglic3uFblj/9pCoyApbl49mQsWbMFuw9lXauzPZ1DY4o9IAwz3OH4\nlN4pmrHieUsvhwECWJkfug4kYELPW4N1MQ+Bkx3zlkdm3Vve2Z5QyB0vZPU4WS/OwB92Tsfz8lbL\nhT2ZMnkDC1b6x5W6hIaU5H6YpumTf5B59qN4YirB0GtRaYwG8KHn8w4A5/SlIic7Zvm8aW408Zob\nzsfNT2zAfVdNxfX22i+3PLnBnV975f396Mjo+NZTG33bbn5iA1pmTcLMe1/y1bl83rSCtRAYhhna\nsPep/DjZGE5fC8DN3PCtdyJZP6a/53Qodm5nu3dtG2/5sO3Sa4hwTmm9K1sLxpW7Lj8Dal28sGLA\nd6+82Z69tquM97gvVLsREgkiWgBgAQCMHTtWWsa75osTTeys9eJktRRbV8aLN4NGtp4MwzhEeTYZ\nplIM1PM5WJkxsnN6z9XbucOyXfqaBdNb2d7qPb4xFUnOXZbtOVTHoGp/Ld8J4HjP5zH2Nh9CiOVC\niOlCiOmjRo2SVuRd8+WscY0A4K714mS1OJ+9OBk0XrwZNLL1ZBjGIcqzyTCVYqCez66s7utrHZx+\n0vtT7nNGObfsGG/5qPVEPWfUej9sT4fWHaynlHZVkmo3Ql4HcBIRjSeiOIA5AFb3pSJn7ZiYR4P/\nvhfbsHj2ZLzy3r7QdWXqk1qBZv/i2ZNx34ttPv1+XjOGYRjGIuq6L+XsM51zRllrxdkeVr6va7YU\nW3usoN65hePKyFQs0howzngWpV2VHpeqOjsGAIjoEgD3wkrRfVAIcWex8lGyY7zrw2RyBgwh3KyY\n4LoyKhHimuLLmFGJkIwXrh3Da8YMaSoeMczZMYNHFa6RUxXPZyn0lrFSrqBU2Tkdws5dju3eNFkv\nsrK91ZvOGlAI0EKeAtm9CmZ7yjJtynSPD+vsGAghngHwTDnq0jTFDdBxfqc8c2j1qr0v6fyOSfZ5\nttl/czAqwwwt2JirPFHWfRmoczqEnbtc22WTDbKyvdVb14esFt94ViEhsijw6MgwDMMwTEVgI4Rh\nGIZhmIrARgjDMAzDMBWBjRCGYRiGYSpC1WfHlAoR7QXwQcjuIwHsG8TmlBNue//YJ4S4qJIN6OXZ\ndBgK96pcDJdrGYzrGIrPZzV9f9XS1mppJ9DT1n49m4edEVIMIlorhJAvmTjE4bYfHgynezVcrmW4\nXEepVNN1V0tbq6WdQPnaytMxDMMwDMNUBDZCGIZhGIapCGyE+Fle6Qb0A2774cFwulfD5VqGy3WU\nSjVdd7W0tVraCZSprRwTwjAMwzBMRWBPCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzDVAQ2QhiGYRiG\nqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoC\nGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHCMAzDMExFOOyMkIsuukgA4B/+\nCf5UHH42+afIT8Xh55N/Qn76RcWNECJ6kIj2ENGmkP2nEtErRJQlops8248noheI6C0i2kxEi6Kc\nb9++feVqOsOUFX42maEMP5/MQFBxIwTACgAXFdnfDmAhgCWB7TqAbwghTgPwSQBfJaLTBqSFDMMw\nDMOUnYobIUKIl2AZGmH79wghXgeQD2zfJYR4w/67A8DbAEYPZFsZhmEYhikfFTdCygERjQMwBcCr\nIfsXENFaIlq7d+/ewWwawxSFn01mKMPPJzPQVL0RQkR1AJ4EcIMQ4pCsjBBiuRBiuhBi+qhRowa3\ngQxTBH42maEMP5/MQFPVRggRxWAZII8JIZ6qdHsYhmEYholO1RohREQAfg7gbSHEPZVuD8MwDMMw\npaFVugFEtBLABQCOJKIdAL4PIAYAQoifEtExANYCaABgEtENAE4DMBnA1QA2ElGrXd23hRDPDPIl\nMAzDMAzTBypuhAgh5vay/28Axkh2vQyABqRRDMMwDMMMOFU7HcMwDMMwTHXDRgjDMAzDMBWBqDkB\nKgAAIABJREFUjRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMR2AhhGIZhGKYisBHC\nMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEqAhshDMMwDMNUBDZCGIZhGIapCGyEMAzD\nMAxTEdgIYRiGYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgIbIQzDMAzD\nVAQ2QhiGYRiGqQhshDAMwzAMUxHYCGEYhmEYpiKwEcIwDMMwTEVgI4RhGIZhmIrARgjDMAzDMBWB\njRCGYRiGYSoCGyEMwzAMw1QENkIYhmEYhqkIbIQwDMMwDFMRKm6EENGDRLSHiDaF7D+ViF4hoiwR\n3RTYdxERbSGiNiL65uC0mGEYhmGYclBxIwTACgAXFdnfDmAhgCXejUSkAvgJgIsBnAZgLhGdNkBt\nZBiGYRimzFTcCBFCvATL0Ajbv0cI8TqAfGDX2QDahBDvCyFyAFYBuHTgWsowDMMwTDmpuBHSD0YD\n+NDzeYe9jWEYhmGYKqCajZDIENECIlpLRGv37t0bWk7XTXRk8tAN67cpBNJZ3f3bu88pm8vpPfv0\nnn0ME4Woz2Y14Dz/3v+HoVQfUzrD6flkhibVbITsBHC85/MYe1sBQojlQojpQojpo0aNklam6yZM\ns7CTM4SASlR4gGSTW5dpcofJRCLKs1kOBnpAl/3/mP34Pyh3fUzfGKznkzl8qWYj5HUAJxHReCKK\nA5gDYHVfK/N1eMK/T/EaHPY+RfFbIfs7c+jK6YgphLwpoKiEjkwehsGdJlNZBmNAlxnwzva+GD/F\n6htoTFOgM2t5ODuzOkxT9H4QwzB9Qqt0A4hoJYALABxJRDsAfB9ADACEED8lomMArAXQAMAkohsA\nnCaEOEREXwOwBoAK4EEhxOZytElRCdCtzsgxKmJC+PYJ+7PTPTXVxVGjqejWDSQUghCWYWKkYkhq\nCjRFQc4wYQqBVEJDOmcgFVMLjBmGKTfFDQQDtQkNXVkdNZoKTRvY9xLL+AG6df95Af+2RJH/i45M\nvuix/bkO0xTQdaPn/1tYnzWN/1cZZiCouBEihJjby/6/wZpqke17BsAzA9AmAJa3I5+3pmOEGSzT\nSx2mcMsZAujozqE2ruFP7+7F11e24qxxjVg2txm1cQ3JuMpGCVMUXTd7HbidwTdYttiA7sUxEAbD\nECn2uT91Odv6eh26boRuj8cr3l0yzLCjmqdjBoW4QjCENb0C9Bgojgsk2L07n03TxLee2oisboIA\nLFzZCkMI/I+Tj8LP5k1Dy6xJaKxNIGeYuPGXrfjyQ2uxvyvHrl+mgLDplLApFtnAfCCjY8HD63Dy\nrc9iwcPrQs9V7umOqOctd319nQYaTDjwlmHYCOkVw7YJHOOA7CBVktw50zTx7p4OHMjoAICWWZPw\n+OvbYQqBi04/GrUJDZ05Hc1jj0DL6s045TvP4vpH38CNf38KRtUnsHDlm0jn5W9izOFLmGEQHJAP\nZHRp2awpsGhVK155fz90U+CV9/cPSDuD7Sn3ecPqi2KYVDqoVWZwcOAtw7AREp2Ag0IIQCVCzuO5\nUBQFpxzdgFRchRZTcdzIJL5y/gTUxFVcfPqxyOUNLFrZigPpvK8jveXJDbj90kk4uiGBVFx1Oykn\nKM4JlDMCb3cc9Hr4oIueKUAh5APyolWt0mNrExpe3xaqB1gWZO0JO6/MaIhiSMjqK8XQkXlHgsZB\nKUT1ZIQZHGFtZJjDCZ7k9JAzBUwBX/yHRpY3JBiQCv8vF0MIvOyJ+1g6pxkjkxoaU3F06wYemj8d\nqqZgY8uF7px9Kq4imzdxx2Wn++pyg+JiKgxToCuro70rj1Rcc4Ne6+IaunUDKTuuxKlTJUIyrrqx\nAt264f6OKwRVUXxxA9LyMRXdeWNQAhaZcASAzqyORata8fq2dpw1rhGPffmcggE5zNDoyuo4a1xj\nnz0RsniU4PMgMxBk582aAiOTGpbPm+bW5zUkAPg8HN5rXj5vWkF9/TGwSh3wgwGxck9GYSyKaZoF\n1/LQ/Ol9ajPDDDd4ZLExYcV/KOSfatGDHhC733FiRGR85pSj8M6dF2P5vGloTMWRNT0xJeiZ0jEN\nAWG/4XbmdHzZ8ybY3p0DICwXuyGgEJCKaWiqi0OYAo11cSQ1paAd+zsy1vHpHG78ZSsWPLwOGd2A\n8LRZt40qw/ay7O/MIZ3X3fKdOR2GKaAohEzeQGdOl771ZXN6wbZgSqNhFHpvOAWyNHKSt31ngPfi\nfA56FRIKYemcZsyY0ARNIcyY0FT0fFGnDbzlZO2JS85bo6kF7Yvq4ZBdh+y8snsQtq2vlJKS7DW8\nnH6BYRgL9oTYeK0xrydEtT0hbkyIp2CYkJlzuGEKZHQDbXs6MPun/+16Rt7auh/3/3Grmx2Tsadp\nvG+Ci1a2Yvm8aVi0yvq94OF1WDqnGTsPpDF6ZMr97dR19xWT8fSbOzDn7LFYNudMLFy1Hi2zJuGV\n9/YhnTN8b2GLZ0/Grb/egt2Hsrj7islY3boTl08bg5tnnoK7n9uCzqyOm5/Y4Jb/0efPBABc/+gb\n7rZlc5sRU5WCbQ0JDV05HbUJDbm8gUOBN8Clc5rRWBu3ppkMAd0wIWIKOjI64gohFistUyj4lu54\nlQwhXI/OYKagDgSyQdoZkIP3NsyrEPQ+RCXqtEFCITw0fzqypnDPQZLzdutGQftkHpMwD0ewPtl9\nkN2DqN6Wh+ZPj+y1iFLONE2p14RhGIvq65EHAcdjYJoCOdMyNJwB0TFQTDtiVZOMk6rzWyHEFcKp\nxzT45u2njrU6XCdjJiXpcF/f1u52xLUJzT32xFH1vt9OXbc8uQEzTz8Wi1a1Ihm3jpt4VB0umzK6\n4I3y5ic24PoLJvqOu/mJDRhRE8dX/24ibn5ig6/8Nx5fXxDHslAS27JwZSuyhnDfNjO6KY1b6MoZ\naO/KQVEJqn1fTQHkTQEhrB/TFKHS+U5sTDqrFwQIC9P2Nkm+12oN/OvK6nir5UJsbLkQ7991CTa2\nXAgABW/XI5PaoMR/9IdiBlUUD4eM4H2QnSOqtyVq8GvUck6wsMwLE/T/sT+QORxhT0gvJBRCVjJd\n4MSIyAiWVj1/v76tHXVJzf27NqGhI1P4JnjWuEZ0ZXUs/MxE983VOTb429k38ag6t86zxjWiO2eg\noSYmNXAmHlVXcFwqoeKko+uk5Y9vTEXaVpfQ0DJrEk46qg6gwjiF17e1oz6p4eOunKWhYt/bdFZH\nTVzFgXQOj/33dsw5eywWrWrF0Q0J3HbpJDco0zAFOjM6/vLePpw7cRSSRNjfmcN3n96E3YeyWDqn\nGXUJDTGFkNENt37DFMgBiMNEtdnepbxJOwaL1yMxlAiLT4ni4ejPOaJ6W3ozVgCEBt3KyjmeTJkX\n5qDESzgyyV0yc3hRXb3xIOEVKwvGhDhv3qYhCrJjZCiqgqwp8P5dl2DD9y/EE9d9Ep12Cu9Z4xqR\nzhqojalYOtf/JrhsbjMUAq49bzxqExo2fP9C/PX2i1zDpNM2XLx1te3pdI2XpXObkdSU0NiBtj2d\nBcels0Zo+Q/b05G2deV0nNBYAwERWldXVkdTXRyAgEKE7pyBJ9Z+iM6sjpqY5np0Xnl/P777Pz+B\nbN7E9Y++gZNvtVKas7qJvzvlKJj29zQyFcO//O8z8NOrpuHI+gQAK44iqamup8XxSlWfH6S0AMqo\nwmSDSV/jU0qJozij5XlM+NYzOKPleek5YhG9LbJtxYJueyvn9Wh6Cctukr3wMMxwhs1uCU7gqBCi\nJybE8OuEAFZMSEIhnHzrs+6bTGc2j/pkDI1O7IGnT2nvymH8kXXI5nXMmNCExbMnQyHg4+4cRiYK\n3wSDc85L5zRj3QftmHP2WOzrzGDpnGa8sb0dMyY0uTEhS+c0I6EQ2j5OAwJY90F7wRvl4tmTsWTN\nFt9xi2dPxnee3ogJR9YWxhrMbUZCVTBjQlNBTEhwm0oEBcDB7jyI5HELNXbchzABEJBKaLj2vPFQ\niJCIKThuZBKPffkc9y1+wcPrpG+Xiue7MIXAQ3/Zivf3deGmmafgqNo42tM5ftMsA/2JmwBQ4AEo\nJT7ljJbn3b/fuX1maDlvtpnsHAqAVFzFfVdNRUNNDIe681Jvi2ybzIsStVzY9mIGC8McTpCbcnqY\nMH36dLF27dqC7bmc1XllzcKARpUIcVUpCIBM5wz3zfPk763BjAlNbhDpv//TFHz9P97E0rnNWPXq\ndiz7rzbXAGhMxaGbAnVJDemsjj+9uxfTxjVi0Ur/wL/q1e245w/vum2cMaEJ9101Fdc/+gaWz5vm\nBnJ626MbBmKqCgH4AjLD0nFTcRUftnfjnt+/g9XrPwIA3Pi5k1wPTFdWt4wDyfXndRN5j9vfSen1\n1u9MZzllurJ5nHf3i/j3uc2YdkKjrxP/0efPREwhLAykop5867PQPW+ImkJ4586L8YUHXvUZGKoC\n7OvMo2X1Zvd78Hb8zvdTn4zJHo2KuxCKPZthg7733nq9ILLtUbbJ0mKD93Fjy4UF2xwDQXaOk7+3\nJlI577YaTcWp33vO971HPXYgtkW9/7IXh5FJLdJ9rdbnkzns6dezydMxMiS31A1WlXhEtJiKjS0X\n4oF5U903nMbauJvlcuVZY31Boaaw3tyFAPZ15nDuxFFudozrml3ZipmnH+trw+vb2tFQE8MjXzob\nAKAqCm78ZSs+OpABQPjoQAa3/fZtpBIafvHyVpx867P4xctb0d6d8wfLdefddFwiwufu+aNrgADA\nsv9qQ21CwyOvbIMphJWuq1qL8qWzVoDdNx5fj31d/no/OpCxzmenB//i5a0FAXkKKfjZvGmYceKR\nBe7obzy+Hl05I1Iq6qHufIErO66pvriY4fKmWUoQZLnPEzVuohx4r6VbNyLHgZSSetvXFN2oU0Oy\nYGHZdtmUkePFZJjDierrkQcBb9at86cbJ+JZYTdITFGg5w03vgKwBr5RDQm3jBMA+oUH1vYqPOUE\njzqcNa4R2/enkYqrWPdBO6ad0IjbL52ErzzSkya7ePZkZHIGvnjeBHz17yYinTdQG7eCRX/yQhtW\nr/8I33h8PX74j5Px6R++gO3701IX8vb9aVxyxrEQArju0XW+N7uZk47GjBOPdLNoALiZNj/8x8nQ\nDYF7rmzGoe48Hv7LtoKplPuvnuYG1gavecwRNVhzw/mYeFQd2vZ0okZTpVM6v2ndCQCYdeZx+Orf\nTcTEo+rQnTPwt4PdbjDvljsu8gm4xRRCV1YPe9McspQSBPnQ/OkF6qphBN/OZc9h1CDPYnin7Irh\nvZaogalhqbdhBKeB+jvV1B9kwbgMc7jBRogEr05IWB8ukQdxWTx7srvfa5A4n53UVsDqNMMMgc6s\n7uvA775iMpY8vwV7O7LutMx9V0311XXzExtw/9XT0J03kDMIX33sTV/Mxg8unQQQoS6hYsP3L0Rt\n3AqK9U4FLZvbjJxuYuWr2zGrebQ0HiPM0zD6iBrfNMn986b6pnaAnmmiv/7gIry3t8s1jhZ+ZiLa\nu3JoWb3Z15Y6T7yMFYgr8Nym3Zh15nG46cJTcMuTPZomP/6nKZhzzlj84uWt+OJ5432DsSmGZuBm\nb5QSUyBTV5UNrLKMjaixD6VmrvRFnwSIFjvSH69Mf/VEGIbpP2U1QoioBsBYIcSWctY72Hgl2p2Y\nBhFIUPAZKvZIF4upyOQMjKiJoSam4sWbLkBdUgUgoCnkDqq3/3azr657//AOls1txsKAIfD0mzvw\nwLzpqImraNvTiSXPb8Hq9R9BU8hNvW2o8b/VO2m7X3lkHe66/AxfZ7pwZSvunzcNK17eisumjHEH\n74WfmYifXj0N9UkN2/encefv3naFzI4bmSyo3zEGZIbT7oMZtMyahIlH1aG9K4tM3vTHutjBteOa\n6jC2KYWGpIbv/sMnMHFULeafOx4r/rzVPb5tTydWvrod15w7Htc90uONWTL7TPz7PzWjM2Pglict\nb8yK+dMx9YRG1CWtti04f4I77eX73vryQFSYUoIgcxEH1qgCaIDcGOir+FkY16zoW6xBmFcmiodD\n5vmJ6nUKIywmhGEYOWWLCSGi/wWgFcBz9udmIlpdrvorgRA96qeyVXNVsgwUrwy7bgor88MuoykK\nYnYgZcusSTAFsPtQ1lfP7kNZqERomTUJW+6wytXEVDy3aTd2HujGVT97FTPvfcmN23BiIpzfXhzP\nSzEdj5mnH+sO3ropcM8f3sV1j6zD9v1pXLDkRTzd+pE7vdIZGGCcAbA7b2Dx7MkFacWaQu4KwV1Z\nozDWZVUrpoxtxLee2oiTb30WNz6+HlnDxP/59ATUJlRcNmWMe3zL6s24bMoY1MZVXx03PbEeCU3F\n2KYUXt/WjhXzp+O040bgK49Y8/1feWQdTGF5BLzbgtdSLSiKEjmmIGoMR5gYWKXkxR+aPz2yrLwX\n2X2IKkLWnxRdIJqAWdiigg7ljOlhmGqknIGpLQDOBnAAAIQQrQDGl7H+QcMJPlUUQt4UiClUMLdO\nSk+KrnucaWJfZ8aeihEYmYpBtSPmT77VGlRVBVgy+8xCTRDP4N2y2vKULJ3TjDWbduHuKyYXDDav\nvLcPS+c0u9uc34tnT8bB7lyojkc6a7jBm15e39aOsU0prLnhfMw68zh3W0NNDDd+7iTfuWtiKo6s\nS2DJmi2u4XTfVVNRG9ew0NMJH9+Ykp6nzlaADQbrpnOGzzgKM4Qcb4wzYEy1s2y8x+mmwM4Dadx/\ntTWg3n/1NOw8kO5V12Uo0q0b0u2yIMioA2up68l4UZSBiWfvq/HTV8VU2T2Iqt4aNYi3t6ki1glh\nDnfK6SfMCyEOkj9Yoir/o7xej7hiCZLFAncqOD0DWF6TMSNqYKIne4YAjEhqeOfOi9302CNSittZ\nHurO43u/2YzLpxznBmx2ZnS8u6cDnzimAfM+NQ71Add3TUzFeSeNQkIhqJriHrf7YAaaQlj52nYs\nndMMRfEHBS6ePRmAcMXJgq78d3d3omX1Ztx9xWQAwN6OLNJZHfPPHY+vffaknnTfvBXsectFp0JT\nCc7XnIyrvgDYsPM4QmkOTrCu83dwX0MgkNQJnK1Lqlgy+0xpkGsqpmLSMQ1up04ETDqmYcAG0IGk\nNqEVpCmHaWaUEsNRypTKgod7psMcT0wlyJnCp4ILSTtKCaaNMtUku39RVw0uRem1WrO3GKY/lPOJ\n30xE/wRAJaKTACwE8Jcy1l8RerJjei+rKQoyuuEaIAfSeYxMxaAphP0dWax8bTsunzYGS9ZscSXG\nV722Hc9s3IW9HVksnTMCv35zB57btBuLZ0/G/q4cbnpiA+67aiqab/+9ex5HT0AXgAay032tNWhq\n4ypmNY9GKq5CNwXuuvwMHN+YwoftadQlNBhCuN4Vb0CnE/TqeB/uu2oq6pMa9nf2CH4t/MxEV07d\nq+3R3pnzaXs4RsxPXmjD4tmTfYvhOfonXpxYEt0UoQG6L950gXsdtXEVP/jd29jbkcWS2ZOlnb9s\n+fSe+fnqMkRk15c1BV5+dy9mnHgkAGtA/s939+KzpxxV9hiOa1as9cVDxIroZkTFa9REXSDuF/On\nFyzGKDu2HMG0QYL3L2oQ79I5zZHP4Ux1Vlv2FsP0h3IaIV8HcCuALICVANYA+EEZ668IzgJ2cLMs\n/Km6gEc7xB7buvM6bv31Ruw+lMXi2ZMRV+NorIvj2vPGQyXCPVc2u16Fa8/r8TLEFMLVnxyH/3Hy\nUUioiuvRcNzCBcqkBIAsSXJhWi+FikJoqovjV+t2AAAumzIaREBTXRw1moqMbuCac8ej1qMe+e7u\nnqBXwFnfJYa2PZZnxOlovXLqAFxtj2AA7C1PbkDLrEloWb0ZdQnN9dQ41zj3nLF45f123/Xc+bu3\nYQprquqmJ9b79plC4FtPbfQFpjrtPGZEDf70zp5IK6k6mT3xgXtcBoSwN/Gvr2wtEHH76+0X9WvF\nVq/BAQDv33VJwRu/TH0UKC2DpLfsE1n2Tr6EANGBDqaN6l3qzWPk/b9mnRDmcKRsRogQIg3LCLmV\niFQAtUKITLnqH0y8su0C9uDuZMzY/btXadbZl9dN/OndvfjUxFG458pmvLu7E0+t24EvnjcBRASV\nyJet4V2HpmejZTCk4paB8tQbO/CFc07wZYzc+bu3cc+VzTj51mex5Y6LcUbL866K6Mm3PmsFwf72\nLQBAy2/fcvftaO/Gkue34N+ubMYp37Hc+2tuON9naAA9UybB2JGwWBJZAOxJR9ehZdYkPPyXbZh5\n+rFoecRSMV3+0vu48uyxvutxgnWdNjj7OjJ5ZHVr3RjvwHPTE+vRMmsS9nZk0banE/NXrMWv/3mG\nr/MfTmJlQLQ38bPGNaJbN0oayLyy6DKDI2waI66QO9eq2hlkpeh1eImavVNqOq7X2/LYl8+Bni+M\nrQkaXe/cPjOyMRXVqFE1BUbI6s2sE8Ic7pQzO+Y/iKiBiGoBbATwFhHdXK76BxOvKmrCDk51DQW7\nnyCJUIimKvj0SaPw0J+3uoGol00Zg5q4dZsNYaXqmqYoqEMl6zwOhm4irhCe27QbOz7uxsx7X8KJ\n334GM+99CbsPZd3BwbsQnZM2K8uY6crqrrfjw/a0++b2kxfaCgJf775iMn7yQpsb0+EQ/OzULQuA\nfXd3J2be+xKW/Vdbj4ppXMPnzxqLhKb4gnAVAD/6vBWs+8zGXWhZvRk7P+7Gw3/ZhlH1iVAht8Wz\nJ+O+F9swY0ITRo9MoW1PB/Z35lAblwdoOveh2pAFKxZT3CxFQdRLfwJY+6PXETV7JyyjJ4xgJsw1\nK9b6FrrTYmrRdNxi6rSybVpMLWgDAGTz0T1THJjKHG6U87XwNCHEISL6AoBnAXwTwDoAi8t4jgHl\nQEbHzgNpjB6ZwqJVrVg250wIkLvNUSktiDOA9dblaGDMPWcsvvqZiUjnDADCVe10DI14rMfTAgAg\ny9tiuFM+gC6sYMqlc5sRDywUt3ROM/Z2ZHwL0S2d04z39nZIp2+seWmBZzbuwowJTRiZirkCZc9s\n3IWJo2p9QbEr/rzVnZrxxo6s2bSrwAXtrPciE1UDAqv75nQ0JDXENcX3BpiKq8jmzYJt1543PvSN\nP53TcUQqjnuubEZnRscbH7Rj/oq1mDGhCQ9cMz10fr4a3zZlgakbWy4Mdf1HfUM/kPGL4fUngLU/\nKqph8RUPzZ9esDZLcFtUomqtRNUJyZqi4L7IPC0AoFE03ZKlc5rRmKq2yUKG6R9lW8COiDYDaAbw\nHwB+LIT4IxGtF0KcWZYTlImwRZg6MnkseHgd7r96Gr7yiLWwlLNQl7PNUSmVLTp1RsvzBQvMOYZJ\nQ1KDplgLwMUUcv/2DrhdWQOaYi38dqg7D00haAqBYK0R4y3vLEjnXSjO2VajqTBME7lA553WTTTU\nxNCR0RFXCTFFQTpvuLEaCgE1MQ2ZvIH2dM4NJl34mYm45tzxqE9amTx1cQ2dOR0NNTHs78wiFdeQ\n0BR0ZnU0JK36H/rLVnfBPmeV3sumjMHoI5IgooIB9f27LgldpM40Bdq7ClfDbayN49TvPoctd1yM\nE7/9TMFxAKDnjYJBTIupvtV3PVTcOunt2QzGasju2VstFwLo+wJs/dnWn3OUIp8etX1RFs6LsrDc\n+3ddUvAs1WgqTNOMtIBdTVyNtAggL2DHVCn9ejbL6Qm5H8A2AOsBvEREJwA4VMb6BxTnDcib7hnc\n5qiUevHGGXjL1NpaGE4wpG4arvpqMN0XAOKqPe1jCqgKIZWwVthViCB38lpvWEFIAXK6o21iDVBa\nTIVqTykpBKRzOkam4q60vEoEQwiArCmjo2rjblzGRwe60ZnJoy6hQlEIikpQyJpS6soaaKpL+AZD\nZy0XJ9g2FVMx8/Rj8fSbOzDvU+OgEBW8fe4+mJF6OzoyOgjAqte2+2JIVr22HfPPHR+uhZIzIIQo\ntZMfspSimBpGuRVOo56jr/EV/YkxcdjYcmGv1xslHVfPG5GuIywYOqoyazXHLDFMXylnYOoyAMs8\nmz4gor8rV/0DjdOpe+XIg9scldJgx+90ct4y3gXsahMa9nVkoSWtKRlv4Cvg1xxR7Lc407SCYjU7\nA6ZXAmUUwKfk6qUmprn7drR3QVEUfxrtnGaMb6wBESzBNY/mCWBNExEBxzQkrDVgbr/I56mJe6Y8\nhACOG5nE1z57EjI5A4YQeOSLZ/s9OzEVP79mOgwhCrw9NZqKL3xyLDRFBRFw7Igk/vmCiTDMnumb\njS0XuuW9i9U98qWzXU0TZ4CpRp0Qr2JqscGylHRQB29gapj2SF/pj9y5bOAuhf6kEEc1iKK0+fVt\n7ZF1SzhFlzkcKWdg6ggiuoeI1to/PwJQW676BxqnU3fiKmZMaEImp/u2OSqlsmBAr5Lp4tmTXQ0l\np2NZtKoVeVNA9RgLXuMjbwq07elwg9zau3J4+d29OJDRYRqmLwCuPZ3D3o4MDmSseWhv+Z0fZ/CL\nl7f699nl29M56IY13XLjL1ux4OF1SMY05HRDqtzoykl359HemfO1YU9HFhnddOv17juY0fHSO3vw\ni5e3uvtu/GUr2tM5xBQqKN/elUO33VbvNbbt6UBGN2CY1kq+jvx6e3cO3XrPPfGexzlet6dxhoMs\ndimKqVFRFAWneQwQh74GtcqIGqwaVVI9Kv0JLo16HVHb7I216U2ZtVpjlhimP5TztfBBAB0APm//\nHALwizLWP+CMTGqYeFQ9GlNxLJ83DU31Sd+2804ahcbaeEHHryiWamljbRzTxzWiLqEBEG7HElPI\n9Yj4uhj7Q0Y30JXNY/TIFH42b5prCMw48UjXIAgaCaPqk759Tvlbntzg6nlkJeU1VcXNT2zA9RdM\n9O3z4rTVOd83Hl+PrpzfULnxl+txIJ136w22b+rYRp+uyPUXTMTNT2zwaT14y3dk9IKiK304AAAg\nAElEQVRtJ46qhy4rv7LVXYlYN4XvPF7Zdtl5wgb0oUx/Ml4cgsd360bBgNnfwTu4LaohEVVSPep5\noxoNUa836noyYYYFIF+Tpz9GJMMMF8r51J8ohLjC8/k2Iiq+etMQRbZYnaMF4sRROGm2zj6yX7KT\nMdUNgLzvqqnQFIKCHo8IAYD91u9k00w7oREja+K4dsVat4MKxpd4cbaFxaO4KbGefd7yThnvPi/B\nVNYwLZDjG1Mgkkut1yU1TEz06Ip42xRVa6Qu2dP+YuVl+iW9xe9UE7LpmFKQZXJElSKPuty9bFtY\nto0sGDSKpHrU80bNeol6vVFjcmRtLtWz0XeZOYapTsrpCekmovOcD0R0LoDuMtY/aMjWhSks1POn\nM+3x0QFrKuRgVocQVoBpXCHsONjtulrTOQMmeoLWHG9H3hS+QdIbXxIcdLydoCwexU2J9ezzlg/q\ni3Rl9aJu4bAA0A/b06Eu6M6M7tMV8bYpqtZIZ0Z3r6lYeZl+Sdhx1agTUqr3RuYZOK3leZ9GBlD4\nJh71jb8UIbHgOWTeh3g/tEiieiT6u2JulFWMixHVk1V9EUsM0z/K+cxfD+AnRLSNiD4A8GMA1/V2\nEBE9SER7iGhTyH4iomVE1EZEG4hoqmff/yWizUS0iYhWElFSVkd/CNojjoGieII7tJiK5fOmYfQR\nSVx73niMSPQEfiqKglH1Saz7oN3tgB1RsqC3w2sQeGNQnJgTr5GwtyMjjUe5+4rJrp5HQlJeNwyf\nyJdTLugWvmbFWvd8P/r8maiNq7423HPlmRiZirn1Btv3xvYeXZEZE5pw34vWOjKxEJd1fVIr2Pbe\n3g5osvJzmzEyFXO3ec/jXVV4uMy5hxkRwYHtQEaPHKsQVQAt6uDdn6kXAlx5f2fFYxmlnDeK0RD1\nesOQTbHIiDrtU60xSwzTH8qmE+JWSNQAAEKISOm5RHQ+gE4ADwshTpfsvwTWujSXADgHwFIhxDlE\nNBrAy7BE0rqJ6HEAzwghVhQ7X1iuey5ndQBZU/gyLXJ5A3mvPkCsZxXZ4D5HdMu0F5PzumNPa3ne\nJ6s+4VvP+HRF7p83DZmcgRFJDTlTuOdJKARFVXxZHk77nGkfb7tScRXpXGCfJ9MkTF8kphBimoJ0\nzvBdo7PybyKmuKJrzrXmdRP5wP1ysmNigXPXJjQ3OyZYviamIqebodkxHTkdCgj1NZaYWipWqIUi\ny47RAvctk9PRVJ8cFjohYToTj335HOmKu7JMjmC5tjsujqR9EabhEUXXA0BBu8M0PGTbyq0nogQ0\neErVO7lmxdqiGiNh3wnrhDDDiMrqhBDRjSHbAQBCiHuKHS+EeImIxhUpciksA0UA+G8iGklEx9r7\nNAA1RJQHkALwUWmt70EXPbobTvyHaYpCV5HHZnP6FK/MuyGEm9LqJTglEvR2xBWCltCgKgpgGj2p\nurBEqAD/ejUqWZojwS+QiGAKa209xbSWPVdUQmenjpxm4rbfvoWJo2oLVsN11Fd3H8piRSCdUaZH\nAsDO9rG0Q8iwdEmm3P576KbAivnTMfWExp57aViGmUO9psAwLLeSolj3LebxUpDS8wzldROLVrXi\notOPxqXNo6GohG69pzwRQVHI7bzrkzF0ZPK4dsVrw1YnJCy2Jmqsgqxc2LozUReDixK3Uu7VbKOe\nFwDSuokD6TxScWt16OMaEtLF/qLWF1xduJTvhHVCGMaiHE98vf1boNAiKoebZTSADz2fdwAYLYRY\nS0RLAGyHFXvyvBCiMOcwIhpZnVR3zvImCGENjt15a6ANam2E4Qp/BXCmApbOaUaNPX1TE1Nx3kmj\nfJ6N9nShOuizaz/Ec5t2u+qjc84ei9qE6luga+mcZqx6bburVLp0bjOSmoID6TzqkzHUxFXUJzXc\ncdnpUBXC/3mopwP9yvnj0ZCMuav7dtuLxjl133fVVOQCb4dOWy6fNgZLfm0ZL0vnNmPhZyZi8pgR\nOO24EfjKI/72Nabi0DR7HR3DxH6JEmrwWueeMxZ1CQ0r5k/HwYzua5e3/LK5U9BUG3eNt1RMlepo\npELW9xjqRF3ALuogH7bcfX/0Nfp6LaUgW3AuSNYsFKp767aZ6MzqvtWYi3lRZPRlsb+w74R1QhjG\not8xIUKI24QQtwE4EdZUifN5GYBx/a0/DCI6ApaXZDyA4wDUEtFVIWUXOPole/fuDa0zpSluRkaB\nmqhbWYS2ef5WFAVZU6AxFUfGENh5II339nbhjJbncfXPX4MQQGfOmhuWzR0vWtWKS5tH45X39/vS\nbw0TBeVmnn6sL41VgPCtpzbilO88i+sffQM7P85gxZ+3Ip3TcXRDAgCwYv5012Bw5qY7szpG1Sfc\nug6k8wXtctriS/dd2Yr5547HVHt9nWLpsem8EelaF65sxZ6OLHIh9+Z/TxmDV97fj4Ur30Tas3aH\nqipoCqRTN9XGoapDK/QvyrMpE1grNR1URpS00bDzVwLZgnNAtBRdUwA3P7Gh1xRd2SJ0Mk0VWexI\nKd9JWNkabWgZyVH7TobpK+X0/U0WQhxwPgghPiaiKWWodyeA4z2fx9jbPgdgqxBiLwAQ0VMAPgXg\n0WAFQojlAJYD1rxmbyf02hzONIGTtuudaXH2eaccDGGJjqXiMcy89yV3CmDid54FYE2tbLnDWtsk\nmIYa5qJtqIm5fzvpqM5x3nJO2q1bty0dD8Ad2FtmTcLCla246/Iz8HTrR5h6QqO7Vo5T7uYnrHLO\nInbHN6ak7XLa4k33LZZWW5vQoNtLmpdyrb2lAjt/p+JWrEg6Z0g78zKHP5WFKM+mpinQdQBmj5EV\npqI6UHinunTdlE5jDDQy70HUFN1UotCACVu9VxZ/E6wv6mJ/znei2NOsDoqiuHpE3rgmx1M4VCi1\n72SYUinnE6/Y3gkAABE1ojxGzmoA8+wsmU8COCiE2AVrGuaTRJQiK3jgswDeLsP5fJNIzsq3boxL\noO9V0BMTYpomEgphVH2yIPvEIZge601DDUtfPdSd9x3rHBcs59Qr+wz4B/axTSnMmNDkWysnWM7h\nw/a0tF1OW4LX48jcB8t3ZnW0p3MwTTM0hVZ2rW17OkPvjTcNefv+tKsYa5pmoTJrOucaQdWGpimo\nT8agkBX7omlKgYfC8boFl6zvL0GDQ3buwUDmPZAZErKU36iZNVGzaIDoHidFUaTfn2wbwxxulPOp\n/xGAV4joB0T0AwB/AfDD3g4iopUAXgFwChHtIKIvEdF1ROSk9z4D4H0AbQAeAPDPACCEeBXArwC8\nAWCjfS3Ly3EhXrEyx35wDA0nNdcbI+Js80693HNlM5bPm4aGpIYdB7vdziuYHutNQ+3K5qUu2t+0\n7sSMCU2+9FtVQUG5NZt2+dJY12za5bsu78C+91AWLbMmFdXtcOoamYoVtMtpS/B6Vvx5K974oF3u\nlhbCVXJ9+s2dka717ism4ycvtEE3hbR8zNOee37/jjuNEza1VY2KqWHIBrGoUukOUVVYOzJ5mEKg\nI5OHrpsF5x4MvN6fYtomspTfhEJYOrfvxkVUg0Pe7oontjDMkKWsKbpEdBqAz9gf/0sI8VbZKi8T\nUVJ0nTRXb7pn3E45dfaFpcLmjMIUXW9qnyw91rssuCzVNHhu5zy6KVCXLEwddtJkD2V1LFwpDyYl\nAOfe/QJWXDsdpx07wh/AObcZdXHNbaemEOKago6MjoZkDF05qy2dWQM53UBjbQJtezpx4qhanPrd\n53zZMU771n3Qjk+fdBRO+U5PinLL/zoNl00ZjYaamPRaP2zvxr1/eAe7D2Xx06umQlUIuinQUBPD\noe48NIWQ1FS8t68LP3mhDavXf+ROdxFButT9O3deXHUpuqUgS+ctlgIbXO4+anqqLLU17Bzl2uZM\nsfUnpbZS24L3qw9TL8Pi+WSGJf16Nsvq/xNCvCWE+LH9M+QMkKh4V7lNKNZ0jDcN19rXU94x5BTV\nCmINDnLe6RhTCOzvyLjTA3GF8NhrH0DVVEy5/fcAAR8dyAAA9nfm8P+e3IgJ33oGtQkN33h8PT46\nkAEphKxuuvEpQgAvt+1FbULDybc+i1Rcw6SW53FEKo6WWZOw5Y6Lcd9VU3HcyCS+eN4ELFmzBceM\nqAEA3P/HrRiR9L817vw4DUMIfOGBVyEE8MUVa9G2pwvNt/8eX/jZqzBMgQ/bu3HdI+tw1p3/iRO/\n/Qxm3vsSdnzc7b6Vzl+xFpNvex5feOBVfHQgg/v/uLVAybXlt29ZdT7wKgAgGdfcN2sC4cj6BO65\nshkPXDMd9ckYkpoK1b6Xjhrt1Q++hpn3vuTGr0Sdvhmu1GhqSUqeXsJEtWSUOyYkiqKoacpjUaJ6\nKYLTVLIg1HIgEyALtts0zaqdGmSYcsKTkBIco4KIoNvGRnAaxnGxCvQYJsXSeJ19cYXQVJ/E8nnT\nsLcjg1O+twbPbdrtDtDpnIGW1ZvxyCvbkIqr2NuRhaYQOjM6dh/KYua9L+HEbz+DKT/4vbu41uTb\nnsf9f9xaINu+4+Nut3zz7b+3snEgsPtQFm17Ot0pjY+7c8jkDeTzBr7yyDqMHpmCSnCni4JTLq+8\ntw+1cRU/+vyZvsFuZCpW4PL2TqsElVyLZQUoCqEuYRkldQkNikKS6QcVy+ZOkZ6vWrIPoqLrZsGU\niGybpvUEPJY6dVDqVE65KMX4OZDt+0J+sjgRWfxMX1fbdQhOAYZhmoXfH8McbpRdMXWoU6piqqPy\nGZyiScVVdOcMKIHplaCSZ0IhXLNirU/3YkRC8yktuvof54xFXVxDzjDRUBNDJm/AsOvK5w0cDLid\nl85pRkIjXPfom+5ieJOOG+lqicQ1pUBXwxQmFMVKX3WmdgrUV4sprHqUWbP5gMppTIVumAUqssHp\nq1Jd04ZhIu2ZakrFVDfV1jQF0nZ7glNWAEo5z5B1dzvZKFEVQIHC6w47vjfFz1LUTGXbdCFgCBQt\n53jwelN5fWDeNHy5zO0biKkc7xSXphDearkw8vFOEKuEIft8Moc9lVVMHe4oBHgdHM7quUQEAb+a\nKClAzlbydIw7Z12ZVFzFteeNdzuf+6+e5sZLpGIqrjl3PDozecRrFFeXxDCtukxTIGcHvAbT/7SA\n8JlzHpUIcVUpSAF8b18XRqYUXPWzQjXR+6+ehsm3Pe/bdt9VU7Hg0XX44T9Oxv/71QbXYLpi2vFI\nxAhf/4+eDnzZ3GbEVAUP/2UbLpsyBrc8uaFg3zUBgbWgdofXqEjnDCRVRSrg5hzneEwAbxqpAtMU\n2N+V9cXELJvbjKbaRNUFCoZNfQQH0KVzmqXLwZumKU0RBdDryrqy80QVMNNiKk6LYFzIVtGVpd6m\n+hB0W0yYzFknqa/CaTKuWeEfpIvdw/Dvjx3UzOEDP+294PSf5AZg+Pfrwm+YANZNDZuiyZkC3brp\nEwfb35XDQ3/einPvfgETv/MszmixYikIhNNbngcRYcHD6/C3jgwIwPb9acs1/L01rhv56p+/hv2d\nOez8OINbf70JiZiKU7/3HG799SbsaO/GgofX4dTvPYeW1ZuR1BQsmX1mwTRGbcI/VeFdYG/0ETU+\nEbGbnliPzozhcz0vXNmKA+k8Zp5+LG55coN0X9BV7RUYswyHHL780FqcfOuz+PJDa9Gty0XNvMfJ\nSOesoNxgG9K56owJCU4HhGX/hCGLSQgiyz6JuviaDFlcjqy+qKm36axRksx7b8JksoUBtZgaabHA\nsG2yKUDZucO+P9nCggwznGFPiAfn398RH9vR3oWn3/wI888d31PI8xKtEsEUwidgRrDXoXE+22ae\noy+iKYSauOq+fW3fn0YqruLzZ43FK++3+9ZyOdidw1njGtGdM9AyaxKWrNmCez7fjLFNcm2PsU0p\n3LCqFavXf4Qb//5knDWu0Q3YbJk1CROPqkNHJo/OrI4n1+1wt7Xt6cTTb+7AvE+N89Xp6HacNa4R\n6azhnscrIhZsg7NN1j5Zee9aGem8gYUr34y0Hkdva2zI3ppf39buW7+mWpB5BcLuSxiyN/GMbk33\nAZbXzTRN6UJ3wXpl7Qk7R5Q1b4BosvQKAYtnT8bNT/R42KISJkwWPEdUQTQAGBFos5BcR42mQlEp\nklAarx3DHI6wJ8SDY0s4UyljGmtx7XnjEVepICDV8X6Ywi9gFnyPcfY5ga3duglh9pRrqosjGbPW\ndVk+bxq23HEx7rr8DCRUBU+u24Glc5rxq3UfYua9L2H3oSy6cjrSIZkf2/en8czGXW6Q6DI7SPSZ\njbvQsnoz/nYwA9008eS6Hbhsyhi0rN6MU77zLFpWb8acs8eCUKg98sp7+1yDyDmPE/j6YXu6oA0f\ntqfd/bJ9wW1eF3gqXqhqGSZq1pvrXPbW7DWmqoliA6gX53PwGZS9dZsA0jkD1z/6Bk6+1ZL1l5WT\nnUfWnjCPSRRdDxky74hGlv7HXZef4f6fRKU/wmRhhlNwUs/5HNRuiSqUdjhkbzFMEDZCJHhTdAHL\n0FBUgkqE/Z1Za2rju8/hSw+tRUY3XG+HaQh05w18yZ5OWPDwOnzcncOh7jxuWNWK7fu7oNky7wQg\nndWxvzMHIsKh7jyIrO2NtXE01sVx7Xnjse6Ddtzxu7ddo0AIgT+9u7ego/y3K5txVH3C7eyTmoLu\nnI77rppqpd7Om4ZjGhJIxjTMPWcsRh+RdAeH+21RtbrAgNGYiuMTx45AMqZg8ZotvuyTJbPPRF1S\n9bVh2dxmjEzF3GwY2b6gkeNdUC6dKzQcnFWGix0nw3lr9h63ePZkVFk4CIDS1yk5GGEtlXzI9ESw\nnOw8UQ0TGWECYTJkqbcpTUFTXRxElgEfhgB6NS7CztHQR8MpDFna9HDL3mKYvsLZMTZh2TF63vAL\nJgVEwZzg0O3707j3D+9gwpG1mH/ueNQlNOw+lEFNXPVlqPzo82ciphAWrmrF0Q0J3PC5kzG2KYXd\nBzO469m/utMnMyY04d45zTiQzrtTJms27cK8T41DzjCRiqnY15nD8Y0pfNiexshUDElNQUxTkM4Z\niCuEWCDbJSzbJ50z3EE9nTdQE1N8mUDe7BhvtktWN2Ga1rocTh2mKdCtG9L6hRChWS5AT0zIwpVv\neoJJp+CImpgv2yN4nAxdN9GZ03Egnffdo7q4VnXZB7puFgTnhmVxyFaQ3dhyYcG29++6pCAjRVYu\nLPtEFuRZ7sya4LawLBoBFGSkyeqTZWXJsoZk5aLefwCIxwunVHTdLKgTGB7ZW8xhD2fHDCZO/Ic3\n4FTPGxiZiuGeK5td5U8QUJfUUBNTfXPEed3EiFQM9101FfXJGLpzBoQQ+PQPX/B1rq9va8eRdQmc\n8y//6W7TFMLXPnsSvvDAq7jr8jNwwZIX3X0zJjThgWumI6koqE/2dGRuxojduXljIpxydZ5tPZkm\niu94X132vlRcKThOUcg9V2H9hHq1sF4HRSE01cbxwDXTe4ydmBqoM5pEuKYpqIMGVSH3rXkoLhAW\nBa/2h/McuWu3BDJeamOF8QdRl5IPy46RIVuoLeqxfUXWZiBaD+iu3xJ4jmQLA8rKye5/WHCvDFmd\nAEp+rhlmuMFGiAxPr5Y1BeK9+PBPa3neTQFNxTXopoCSN3yLhznprropkNdNNN/+e9dw6M6bBZ1r\nWAzFoe58aJBnKl79rlxvyq3XOOoLYR1/NRJ1EOvI5KUDdVSjoSFiyqqiKKiP95w7l9NLSnf1/m84\nHpPeKMXQCbYvjKjPSCkGDMMw0WEjREZghorgV1F1NqpEyJkC79x5sW/awzFaZkxo8mkAxFUFmkLY\n05Gx4ySmuNMgy+ZOCUxDWLoawTqefnNnqIGSzhn9HriZ6qY/3gxAHiQm0xjpz2Ab1NKIiqJE9wgN\nhjEwnIxchqkUPGLZmOjpgCnQf+kC0AK6H4pipefKFkMjAKoWEAqzY0kSCmFMY6015WBPNQAomIZQ\nCPjjlj346VXTUF+j4VB3Hr9p3Yk1m3dj2VzLoPEaKF6Dhjm86Y8AV5jB0Z/Btmcaz/KY9NebwdMa\nDDN8YCPERoEV3GaYAkQEwxRI26vR5kIEhBRbJ8RLzA4OrHUybEzR0wl7gimDHovgNIRpCkwf14Tr\nHl3nBrBePWMcrph6vDvtIoudYA5visYqSBRTy2VwqKoCwyg8ryyAOIqRxFMbDHN4wEaIjaIoiMN0\nZ2JUhZCMqW7H6q6i6+kXDXuVXdPoMTQ0KEja+/vzViYL0oSwgl0dyhU7wQwfNE2JHGwJlM+D4Bob\nnvOqqlJghBQzkqLEcDAMM7zg0ctG1nlDWN6RhK3tAb1HfKxnWmbg3tjKGaTJHD5UKlZBVZWi2U9O\n2zigk2EYBx7ZPMg673pP5xjcVs8dJ8OUDAd0MgzjwKMowzAMwzAVgY0QhmEYhmEqAhshDMMwDMNU\nBDZCGIZhGIapCGyEMAzDMAxTEdgIYRiGYRimInCKLsMwDMMMIOO++bvIZbf96z8MYEuGHuwJYRiG\nYRimIrARwjAMwzBMRWAjhGEYhmGYisBGCMMwDMMwFYGNEIZhGIZhKgJnxzAMwzBMCZSS7cIUh40Q\nhmEY5rCGjYrKUfHpGCJ6kIj2ENGmkP1ERMuIqI2INhDRVM++kUT0KyL6KxG9TUQzBq/lDMMwDMP0\nh4obIQBWALioyP6LAZxk/ywAcJ9n31IAzwkhTgVwJoC3B6iNDMMwDMOUmYpPxwghXiKicUWKXArg\nYSGEAPDftvfjWABpAOcDmG/XkwOQG9jWMgzDMAxTLoaCJ6Q3RgP40PN5h71tPIC9AH5BRG8S0c+I\nqFZWAREtIKK1RLR27969A99ihokIP5vMUIafT2agqQYjJAwNwFQA9wkhpgDoAvBNWUEhxHIhxHQh\nxPRRo0YNZhsZpij8bDJDGX4+mYGmGoyQnQCO93weY2/bAWCHEOJVe/uvYBklDMMwDMNUARWPCYnA\nagBfI6JVAM4BcFAIsQsAiOhDIjpFCLEFwGcBvFXBdjIMwzBMvyg1XbjaV92tuBFCRCsBXADgSCLa\nAeD7AGIAIIT4KYBnAFwCoA1WMOq1nsO/DuAxIooDeD+wj2EYhmGYIUzFjRAhxNxe9gsAXw3Z1wpg\n+kC0i2EYhmGYgaUaYkIYhmEYhhmGsBHCMAzDMExFYCOEYRiGYZiKwEYIwzAMwzAVgY0QhmEYhmEq\nAhshDMMwDMNUhIqn6DIMwzBMuSlV9IupDOwJYRiGYRimIrARwjAMwzBMReDpGIZhGIapUkqZdhqK\n68ywJ4RhGIZhmIrARgjDMAzDMBWBjRCGYRiGYSoCx4QwDMMwFaHa4xmY/sOeEIZhGIZhKgJ7QhiG\nYZghD4uPDU/YE8IwDMMwTEVgTwjDMAxTFthbMbQp9fsZjDgc9oQwDMMwDFMRSAhR6TYMKkS0F8AH\nIbuPBLBvEJtTTrjt/WOfEOKiSjagl2fTYSjcq3IxXK5lMK5jKD6f1fT9VUtbq6WdQE9b+/VsHnZG\nSDGIaK0QYnql29EXuO2HB8PpXg2Xaxku11Eq1XTd1dLWamknUL628nQMwzAMwzAVgY0QhmEYhmEq\nAhshfpZXugH9gNt+eDCc7tVwuZbhch2lUk3XXS1trZZ2AmVqK8eEMAzDMAxTEdgTwjAMwzBMRWAj\nhGEYhmGYijCsjBAiuoiIthBRGxF9U7KfiGiZvX8DEU3t7VgiaiSi3xPRu/bvIzz7vmWX30JEM6ul\n7UT090S0jog22r8/Uy1t9+wfS0SdRHRTf9peTfR2n4cyRPQgEe0hok2ebUW/46EIER1PRC8Q0VtE\ntJmIFtnbq+5awpB9V4H90v9nIjqFiFo9P4eI6Iah2FZ73/+1v8NNRLSSiJJDtJ2L7DZuHuj7GbGt\npxLRK0SUDfa/feqjhBDD4geACuA9ABMAxAGsB3BaoMwlAJ4FQAA+CeDV3o4F8EMA37T//iaAu+2/\nT7PLJQCMt49Xq6TtUwAcZ/99OoCd1XLfPXX+CsATAG6q9LM3VJ7vofwD4HwAUwFs8mwr+h0PxR8A\nxwKYav9dD+Aduy+oumsp5bsK7Jf+PwfKqAD+BuCEodhWAKMBbAVQY39+HMD8IdjO0wFsApCCtczK\nHwBMrPA9PQrAWQDu9Pa/fe2jhpMn5GwAbUKI94UQOQCrAFwaKHMpgIeFxX8DGElEx/Zy7KUAHrL/\nfgjAZZ7tq4QQWSHEVgBtdj1Dvu1CiDeFEB/Z2zcDqCGiRDW0HQCI6DJYHcjmPra5Golyn4csQoiX\nALQHNod+x0MVIcQuIcQb9t8dAN6GNaBV3bWEEfJdeQn7f/byWQDvCSF6UwDuF/1sqwar79NgDfIf\nhVVSwXZ+ApZBkhZC6AD+CODygWpnlLYKIfYIIV4HkA/s6lMfNZyMkNEAPvR83mFvi1Km2LFHCyF2\n2X//DcDRJZxvqLbdyxUA3hBCZPvW9MFtOxHVAbgFwG19bG+1Us7nbagQ5fkcshDROFhexVdR5ddS\nIlGexTkAVg5ai8KRtlUIsRPAEgDbAewCcFAI8XwF2ucQdk83Afg0ETURUQqWx+T4CrQvCn3qo4aT\nETLgCMvnVJU5zbK2E9EkAHcD+EpFGhWRQNtbAPybEKKzci1iyk21/W/ZxvCTAG4QQhzy7qu2ayk3\nRBQHMAvWdOmQxI7ZuRTWVPpxAGqJ6KrKtqoQIcTbsPro5wE8B6AVgFHRRpWZ4WSE7ITfQhxjb4tS\nptixux33nf17TwnnG6ptBxGNAfBrAPOEEO/1sd2VaPs5AH5IRNsA3ADg20T0tX60v1oo5/M2VAh9\nPocyRBSDZYA8JoR4yt5cldfSR3p7Fi+G5V3dPaitkhPW1s8B2CqE2CuEyAN4CsCnKtA+h9B7KoT4\nuRBimhDifAAfw4pDGor0qY8aTkbI6wBOIqLxtiU+B8DqQJnVAObZkcifhOWC29XLsasBXGP/fQ2A\n33i2zyGiBBGNB3ASgNeqoe1ENBLA72AF0v25j22uSNuFEJ8WQowTQowDcC+Af3x5wEIAAAWQSURB\nVBFC/Lif11ANRLnP1UbY/9aQhYgIwM8BvC2EuMezq+qupR+E/T87zMXQmIoBwtu6HcAniShlf6ef\nhRXfM9TaCSI6yv49FlY8yH9UrplF6Vsf1VvkajX9wJovewdWhO6t9rbrAFxn/00AfmLv3whgerFj\n7e1NAP4TwLuwIpMbPftutctvAXBxtbQdwHcAdMFy7Tk/R1VD2wPnbcFhkh1T7F5Vww+sQWkXrGC2\nHQC+FOU7Hmo/AM6DNdWywfO/c0k1XkuJ31XU/+daAPsBjKiCtt4G4K+w4i4eAZAYou38E4C3YGWb\nfHYI3NNj7O2HAByw/26w95XcR7FsO8MwDMMwFWE4TccwDMMwDFNFsBHCMAzDMExFYCOEYRiGYZiK\nwEYIwzAMwzAVgY0QhmEYhmEqAhshQxQiGhe2imE1QETziehw0O9gSqDan2vm8IGIWoKrxDLlh40Q\npgB7QSeGqQr4eWWY6oWNkKGNRkSPEdHbRPQrW93vs0T0JhFtJKIHi61+S0T/SkRv0f9v735CtKrC\nOI5/f0pgaSnZJiKxbEgTUxuRRNJy4UZblEoQZekijGqiIEYwqKhokYsIiokorAxKAysq0mAaV07+\nKZ2QsCClFm0iFVIstKfFeUYvwzs2aDN33pnfBwbue865l3OG572cuefOeaQeSRuzbJOkDkl7Jf0o\naXmWPyjpU0mdlE2XkPSUpD15/nOV634saZ+kg5IeqpSvyWvuBhYO1i/Fmt5YSW9m/OyQdKmkOZK6\nM9a2qeT2QFKXpHl5fFVu198wXs0uhqTVGX8HJL3Xp66/+Gyr3GM/yLLxeW/enffqpsl2XQdPQoa3\nG4HXI2IGZXe6J4FNwD0RMYuSivrhRidKmgzcBcyMiJuBFyrVUylpl5cBHZLGZfktwMqIWCxpKWUr\n+vnAHKBV0qJstzYiWoF5QJtKhserKTsQLqTsKnnT/zB+G5lagNciYiZlx8UVwLtAe8bq98AzA7jO\n2XgdtJ7aqKCSzPNpYElEzAYe79Okv/hcD8zN8nVZtgHojIj5wB3Ay5LGD/YYmpUnIcPbr3Eut8tm\nSn6DwxHRm8DoHWBRwzPhOHAKeEvS3cDJSt2WiPgnIn4CfgamZ/lXEfFHHi/Nn++Ab7NNS9a1SToA\ndFMSFrVQEst1RUkI9Tfw4YUO2ka8wxGxP4/3AdOASRGxM8vOF9dV1Xg1uxhLgK0R8TtANa4kTaT/\n+OwB3lfJwHs6y5YC6yXtB7qAccCUQR9Bk/Ja6vDWd0/9Y5QcFf99YsRpSfMpE5eVwKOUL1qj6/Z+\nPlEpE/BSRLxRbSjpdkoGygURcVJSF+VLZjZQf1WOzwCTztP2NOf+WOobZycwq9cyyoTkTmCDpFmU\ne+eKiDhUa8+ahJ+EDG9TJC3I43uBvcBUSTdk2f3AzkYnSppASSL1BfAEMLtSvUrSGEnTgOspCfj6\n2g6szesg6ZrM5jgROJoTkOnArdn+G2BxLs1cAqy6wDHb6HMcOCrptvxcjesjQGserxziftno0Um5\nL04GkHRlb0VENIxPSWOAayPia6Cdcm+cQLl3PpbZeZE0d+iG0Xz8JGR4OwQ8IultShbFNsoSyNb8\nj4A9QEc/514OfJLve4jyPkmvX4DdwBWUzIin8vtyVkTskDQD2JV1fwL3AV8C6yT9kP3rzva/SXoW\n2EV5YrMfs4F7gPJ+0mWUJcI1Wb4R2JIvQH9eV+dsZIuIg5JepEwuzlCWoY9UmjSKz7HA5lyuEfBq\nRByT9DzwCtCTE5XDwPKhG01zcRbdUUbSJuCziPio7r6Ymdno5uUYMzMzq4WfhIwAkrYB1/Upbo+I\n7XX0x8zMbCA8CTEzM7NaeDnGzMzMauFJiJmZmdXCkxAzMzOrhSchZmZmVgtPQszMzKwW/wJHcOPn\nk2csnAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#df_res.date = pd.to_datetime(df_res.date.dateAgg, format='%Y%m%d %H:%M')\n", + "df_res.head()\n", + "sns.pairplot(df_res.loc[:,[\"bo_spread\", \"hour\", \"close\"]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "year 2081682\n", + "month 2081682\n", + "day 2081682\n", + "hour 2081682\n", + "weekday 2081682\n", + "Unnamed: 6 2081682\n", + "bid_price 2081682\n", + "ask_price 2081682\n", + "bo_spread 2081682\n", + "high 2081682\n", + "low 2081682\n", + "avg_bo_spread 2081682\n", + "count 2081682\n", + "open 2081682\n", + "close 2081682\n", + "avg_price 2081682\n", + "range 2081682\n", + "ohlc_price 2081682\n", + "oc_diff 2081682\n", + "period_return 2081682\n", + "pca 2081682\n", + "dtype: int64\n", + "2016-01-03 17:00:15.493 2016-01-31 23:59:41.170\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekdayUnnamed: 6bid_priceask_pricebo_spreadhigh...avg_bo_spreadcountopencloseavg_pricerangeohlc_priceoc_diffperiod_returnpca
date
2016-01-03 17:00:15.49320161317101.087011.087510.000501.08723...0.0001651421.087011.087011.086920.000621.0869650.000001.000000-1322.240112
2016-01-03 17:00:38.99320161317101.087031.087490.000461.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.160522
2016-01-03 17:00:41.49320161317101.087131.087490.000361.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161377
2016-01-03 17:00:41.99320161317101.087131.087450.000321.08723...0.0001651421.087011.087131.086920.000621.086995-0.000121.000110-1322.161865
2016-01-03 17:00:44.74320161317101.087031.087450.000421.08723...0.0001651421.087011.087031.086920.000621.086970-0.000021.000018-1322.161011
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " year month day hour weekday Unnamed: 6 \\\n", + "date \n", + "2016-01-03 17:00:15.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:38.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.493 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:41.993 2016 1 3 17 1 0 \n", + "2016-01-03 17:00:44.743 2016 1 3 17 1 0 \n", + "\n", + " bid_price ask_price bo_spread high \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08701 1.08751 0.00050 1.08723 \n", + "2016-01-03 17:00:38.993 1.08703 1.08749 0.00046 1.08723 \n", + "2016-01-03 17:00:41.493 1.08713 1.08749 0.00036 1.08723 \n", + "2016-01-03 17:00:41.993 1.08713 1.08745 0.00032 1.08723 \n", + "2016-01-03 17:00:44.743 1.08703 1.08745 0.00042 1.08723 \n", + "\n", + " ... avg_bo_spread count open close \\\n", + "date ... \n", + "2016-01-03 17:00:15.493 ... 0.000165 142 1.08701 1.08701 \n", + "2016-01-03 17:00:38.993 ... 0.000165 142 1.08701 1.08703 \n", + "2016-01-03 17:00:41.493 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:41.993 ... 0.000165 142 1.08701 1.08713 \n", + "2016-01-03 17:00:44.743 ... 0.000165 142 1.08701 1.08703 \n", + "\n", + " avg_price range ohlc_price oc_diff \\\n", + "date \n", + "2016-01-03 17:00:15.493 1.08692 0.00062 1.086965 0.00000 \n", + "2016-01-03 17:00:38.993 1.08692 0.00062 1.086970 -0.00002 \n", + "2016-01-03 17:00:41.493 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:41.993 1.08692 0.00062 1.086995 -0.00012 \n", + "2016-01-03 17:00:44.743 1.08692 0.00062 1.086970 -0.00002 \n", + "\n", + " period_return pca \n", + "date \n", + "2016-01-03 17:00:15.493 1.000000 -1322.240112 \n", + "2016-01-03 17:00:38.993 1.000018 -1322.160522 \n", + "2016-01-03 17:00:41.493 1.000110 -1322.161377 \n", + "2016-01-03 17:00:41.993 1.000110 -1322.161865 \n", + "2016-01-03 17:00:44.743 1.000018 -1322.161011 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#plt.savefig(\"test.png\")\n", + "print(df_res.count())\n", + "print(df_res.index.min(), df_res.index.max())\n", + "df_res.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['year', 'month', 'day', 'hour', 'weekday', 'Unnamed: 6', 'bid_price',\n", + " 'ask_price', 'bo_spread', 'high', 'low', 'avg_bo_spread', 'count',\n", + " 'open', 'close', 'avg_price', 'range', 'ohlc_price', 'oc_diff',\n", + " 'period_return', 'pca'],\n", + " dtype='object')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#df.drop([\"vol\"], axis=1, inplace=True)\n", + "df_res.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df = df_res\n", + "# all these should refer to the price prediction period, so for tick it doesnt exist\n", + "#df['low'] = df.bid.min()\n", + "#df['high'] = df.bid.max()\n", + "#df['open'] = df.bid.iat[1]\n", + "#df['close'] = df.bid.iat[-1]\n", + "\n", + "# to include seasonality as a feature\n", + "#df['hour'] = df.index.hour\n", + "#df['day'] = df.index.weekday\n", + "#df['week'] = df.index.week\n", + "#df['month'] = df.index.month\n", + "\n", + "#df['momentum'] = df['volume'] * (df['open'] - df['close'])\n", + "df['avg_price'] = (df['low'] + df['high'])/2\n", + "df['range'] = df['high'] - df['low']\n", + "df['ohlc_price'] = (df['low'] + df['high'] + df['open'] + df['close'])/4\n", + "df['oc_diff'] = df['open'] - df['close']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close / df.open" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2081682\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAELCAYAAADQsFGkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt0nFd57/HvMzfdLEuyrTi+JU6I\nQ+OkIQRDoJwCJQVMaEnaBS3QghvSlQWE3ji0De1ah9OeZhUWbaGUAiclKUlLAoHCIS1JQxoCKZc4\ncUJutnNxQuJ7fJElW9cZzTznj3ePPbYlS5oZaUbv+/usNUvv7Peddx5JM/PM3vvde5u7IyIiyZNq\ndAAiItIYSgAiIgmlBCAiklBKACIiCaUEICKSUEoAIiIJpQQgIpJQSgAiIgmlBCAiklCZRgdwKkuW\nLPHVq1c3OgwRkXnloYceOuDuvVMd19QJYPXq1WzatKnRYYiIzCtm9sJ0jlMTkIhIQk2ZAMzsRjPb\nZ2ZPVJR9ysyeNLPHzOxbZtZdse9jZrbNzJ4ys7dUlK8PZdvM7Nr6/yoiIjIT06kBfBlYf0LZ3cAF\n7n4h8DTwMQAzWwu8Czg/PObzZpY2szTwj8BbgbXAu8OxIiLSIFMmAHe/D+g7oey77j4e7t4PrAzb\nlwNfdfcxd/8ZsA14Vbhtc/fn3D0PfDUcKyIiDVKPPoD3A3eG7RXAjop9O0PZZOUnMbOrzWyTmW3a\nv39/HcITEZGJ1JQAzOzPgXHgK/UJB9z9endf5+7renunvIpJRESqVPVloGb2O8CvAJf6sWXFdgGr\nKg5bGco4RbmIiDRAVTUAM1sP/Anwdncfrth1O/AuM2sxs7OANcADwIPAGjM7y8xyRB3Ft9cWuoiI\n1GI6l4HeCvwEeKmZ7TSzq4DPAZ3A3Wb2iJl9EcDdNwO3AVuA/wSucfdi6DD+MHAXsBW4LRwrInNs\nz8AI6z9zH7v7RxodijTYlE1A7v7uCYpvOMXx1wHXTVB+B3DHjKITkbp7au8Rntx7hCd2DbC8u63R\n4UgDaSSwSMIM54sAHBrONzgSaTQlAJGEKSeAvqFCgyORRlMCEEmY4Xw0hlM1AFECEEmYYzUAJYCk\nUwIQSZjhsVADUAJIPCUAkYQ5WgNQE1DiKQGIJMxQ+Sog1QASTwlAJGFGQiew+gBECUAkYco1gMOj\n4xSKpQZHI42kBCCSMCMhAYAuBU06JQCRhBnKjx/dPqTBYImmBCCSMCP5Ip2t0TRg6gdINiUAkYQZ\nyo+zsqcdUBNQ0ikBiCTMSL7IijALqGoAyaYEIJIwQ2NFVvZECUBjAZJNCUAkQUolZ6RQZGFbls6W\njEYDJ5wSgEiCjBSiS0A7cml6OnKqASScEoBIgpQvAW0PCaBvWJeBJpkSgEiClAeBtecyLO7I0Tc0\n1uCIpJGUAEQSZGgsNAG1pOlpz2kgWMIpAYgkyEghagJqy2VY1JHVZaAJpwQgkiBHawChD2CkUDxu\nbiBJFiUAkQQpLwbTlkuzqD0HaDRwkikBiCRIeUH4jlyGno4oAagZKLmUAEQSZPjoVUBpFnWoBpB0\nSgAiCVKuAbS3ZOhpVw0g6aZMAGZ2o5ntM7MnKsoWmdndZvZM+NkTys3MPmtm28zsMTO7uOIxG8Lx\nz5jZhtn5dUTkVI72AWQragBKAIk1nRrAl4H1J5RdC9zj7muAe8J9gLcCa8LtauALECUM4OPAJcCr\ngI+Xk4aIzJ3hfJHWbIp0yuhqy2KGRgMn2JQJwN3vA/pOKL4cuCls3wRcUVF+s0fuB7rNbBnwFuBu\nd+9z90PA3ZycVERklg3nx2nPRYvBpFNGd1tWNYAEq7YPYKm77wnbe4GlYXsFsKPiuJ2hbLJyEZlD\nw2NF2nPpo/cXdeTUB5BgNXcCu7sDXodYADCzq81sk5lt2r9/f71OKyJETUBKAFJWbQJ4MTTtEH7u\nC+W7gFUVx60MZZOVn8Tdr3f3de6+rre3t8rwRGQiQxVNQEA0H5AuA02sahPA7UD5Sp4NwLcryt8X\nrgZ6NTAQmoruAt5sZj2h8/fNoUxE5tCIagBSITPVAWZ2K/AGYImZ7SS6mucTwG1mdhXwAvAb4fA7\ngMuAbcAwcCWAu/eZ2f8BHgzH/aW7n9ixLCKzbChfpDtc/w9Ei8IM53F3zKyBkUkjTJkA3P3dk+y6\ndIJjHbhmkvPcCNw4o+hEpK5G8uN0tFTUANpzFIrO4Ng4na3ZBkYmjaCRwCIJMnRCE1DP0cFgGguQ\nRFPWAEQkPqI+gOhtf8vG7Ty59zAAtz6wnVWL2gF4zyVnNCw+mVuqAYgkhLuHq4CO1QA6QjIorxUs\nyaIEIJIQY+Ml3DnuMtC2bJQMtChMMikBiCTE0FiYCbSiBtCSjT4CRsdLDYlJGksJQCQhKtcCKGsN\nNYCxgmoASaQEIJIQxxLAsSagbDqaGXS0oBpAEikBiCTE0NHFYNLHlbdmUoyOqwaQREoAIglR7uht\nzx6fAFqyaUbVBJRISgAiCVHuBO5oOX74T2s2xZiagBJJCUAkIUbCt/y23IlNQGk1ASWUEoBIQgyN\nRR/yHbkTawBp1QASSglAJCGGQyfwSTWAbEp9AAmlBCCSEBONA4DQCawmoERSAhBJiOF8kVwmRTZ9\n/Nu+NRN1Ape8biu7yjyhBCCSEMMnTARX1ppN40Be00EkjhKASEIM54sndQBDdBUQRJPFSbIoAYgk\nxHB+/KQOYKiYEE4dwYmjBCCSEFENYOImIFACSCIlAJGEGB4rTlgDaM2UawBqAkoaJQCRhBgujE/Y\nB9BSrgHoUtDEUQIQSYhJawBH1wRQDSBplABEEmLSq4DUCZxYJ78aRCRWbtm4HYD+kTzbDw0fvV+W\nS6dImZqAkkg1AJEEcHfy4yVa0ie/5c2MlkxancAJpAQgkgDFklNyyGUmfsu3ZFNaFziBakoAZvZH\nZrbZzJ4ws1vNrNXMzjKzjWa2zcy+Zma5cGxLuL8t7F9dj19ARKaWL0bf7idLAK0ZrQqWRFUnADNb\nAfw+sM7dLwDSwLuATwKfdvdzgEPAVeEhVwGHQvmnw3EiMgfK8/zkJmgCgjAltKaCSJxam4AyQJuZ\nZYB2YA/wRuAbYf9NwBVh+/Jwn7D/UjOzGp9fRKahPM/PpDWAbFpNQAlUdQJw913A3wDbiT74B4CH\ngH53Hw+H7QRWhO0VwI7w2PFw/OJqn19Epq8wVRNQNq0aQALV0gTUQ/St/ixgOdABrK81IDO72sw2\nmdmm/fv313o6EaGiBjBJE1BLRquCJVEtTUC/DPzM3fe7ewH4JvBaoDs0CQGsBHaF7V3AKoCwvws4\neOJJ3f16d1/n7ut6e3trCE9EygrTaAIaLRRxLQqTKLUkgO3Aq82sPbTlXwpsAe4F3hGO2QB8O2zf\nHu4T9n/P9WoTmRPl5p2WzMlTQUA0IVzJYbykt2SS1NIHsJGoM/dh4PFwruuBPwU+YmbbiNr4bwgP\nuQFYHMo/AlxbQ9wiMgMjkywIX9aiKaETqaapINz948DHTyh+DnjVBMeOAu+s5flEpDoj4YO9LTtJ\nDeBoAlBHcJJoJLBIAozki7RkUqRTE195rQnhkkkJQCQBhvMTTwVdVu4b0IRwyaIEIJIAI4Ui7ZM0\n/0BlDUBNQEmiBCCSACP5Iq2nqAEcWxRGNYAkUQIQSYDhqWoAR5uAVANIEiUAkQQYnaoPQJ3AiaQE\nIBJz7s5woUhbdvKrvlNm5DJaEyBplABEYq5QdIolp/0UNQCIRgOrEzhZlABEYm6qQWBl0YygqgEk\niRKASMwNTzENRFm0JoBqAEmiBCAScyP5UAOYMgGkVANIGCUAkZibbhNQi9YFThwlAJGYK9cApuwE\nzqoTOGmUAERibni6TUCqASSOEoBIzI0UiqRs8uUgy1qyacZLTl6jgRNDCUAk5kbyRdpyGaKF+yZX\nnhBucGx8LsKSJqAEIBJzU80DVFaeEO7IaGG2Q5ImoQQgEnNTzQNU1hoWjD8yqhpAUigBiMTccGF8\nyktA4di6wIdVA0gMJQCRmBvJF6e8BBSONQENqgaQGEoAIjE3Ujj1YjBlagJKHiUAkRgbL5YYLZSm\n1Qlc7ifoH1ETUFIoAYjE2OHR6U0EB1ETkAH9w/lZjkqahRKASIwNhG/z0+kETpnRnkvTN6QEkBRK\nACIxVv42P51OYID2lgyHVANIDCUAkRgrt+e35SZfDrJSh2oAiVJTAjCzbjP7hpk9aWZbzew1ZrbI\nzO42s2fCz55wrJnZZ81sm5k9ZmYX1+dXEJHJHJ5BExBAey7DoSF1AidFrTWAvwf+091/DngZsBW4\nFrjH3dcA94T7AG8F1oTb1cAXanxuEZlC/3C5BjC9BNDRkqZPTUCJUXUCMLMu4HXADQDunnf3fuBy\n4KZw2E3AFWH7cuBmj9wPdJvZsqojF5EpHU0AM6oB5HH32QxLmkQtNYCzgP3AP5vZT83sS2bWASx1\n9z3hmL3A0rC9AthR8fidoUxEZsnASIGWTIp06tQzgZZ15KIpoY9oRtBEqCUBZICLgS+4+8uBIY41\n9wDg0deIGX2VMLOrzWyTmW3av39/DeGJSP9IftrNPxBdBQRwSB3BiVBLAtgJ7HT3jeH+N4gSwovl\npp3wc1/YvwtYVfH4laHsOO5+vbuvc/d1vb29NYQnIgPDhWk3/0BUAwB0JVBCVJ0A3H0vsMPMXhqK\nLgW2ALcDG0LZBuDbYft24H3haqBXAwMVTUUiMgsGRgozqwGEy0U1FiAZpndx8OR+D/iKmeWA54Ar\niZLKbWZ2FfAC8Bvh2DuAy4BtwHA4VkRmUf9IYVrzAJV1hCagPl0Kmgg1JQB3fwRYN8GuSyc41oFr\nank+EZmZ/uECZy1pn/bx5RHD6gNIBo0EFokpd+fwSIG27PS/57VkUmTTprEACaEEIBJTI4Ui+WJp\n2vMAAZgZPe051QASQglAJKZmOgisbFFHTlcBJYQSgEhMHZ0KegY1ACCqAagJKBGUAERiaqbzAJWp\nBpAcSgAiMTUwEn2Iz7QJqKcjy6FhXQaaBEoAIjFVbRPQovYc/cN5iiVNCBd3SgAiMXUwNON0THMx\nmLKejhwlP7aWgMSXEoBITB0czNOeS5PLzOxtvqgjB6CxAAmgBCASUwcHx1i8IDfjx/W0R4/RWID4\nUwIQiamDQ3kWdbTM+HFHawBKALGnBCASUwcH8yzpqKIGEB6jsQDxpwQgElN9Q/mj3+ZnYlF7uQag\nTuC4UwIQiSF35+DQGIsXzLwJqC2XpjWbUg0gAZQARGLoyNg4haKzpIpOYIhqAeoDiD8lAJEYOjgY\nfXhX0wQEUT+ArgKKPyUAkRg6ODgGUFUTEIT5gNQEFHtKACIxVB4FvLjaGoDWBEgEJQCRGCo3AVUz\nEAw0I2hSKAGIxFDfUNQEVHUfQHuOw6PjFIqleoYlTUYJQCSGDgzm6WzJ0JKZ2UygZYs6ssCxNQUk\nnpQARGLo4FC+6uYf0GjgpFACEImhvqGxqpt/oHI0sBJAnCkBiMTQwcF81ZeAwrEaQL9qALGmBCAS\nQweH8lVfAgqVM4KqDyDOlABEYqZUcvpq7APobo86gQ+EAWUSTzNbK05Emt7h0QLFkle1FgDALRu3\nA9CRS/PDZw6wJDQlveeSM+oWozSHmmsAZpY2s5+a2X+E+2eZ2UYz22ZmXzOzXChvCfe3hf2ra31u\nETnZgTAIrNqJ4Mq62rJHF5aXeKpHE9AfAFsr7n8S+LS7nwMcAq4K5VcBh0L5p8NxIlJnR+cBqrIG\nUKYEEH81JQAzWwm8DfhSuG/AG4FvhENuAq4I25eH+4T9l4bjRaSOypdu1nIZKEBXe5b+EV0FFGe1\n1gA+A/wJUB4vvhjod/fxcH8nsCJsrwB2AIT9A+H445jZ1Wa2ycw27d+/v8bwRJLnwFCdmoBas4wW\nSoyNF+sRljShqhOAmf0KsM/dH6pjPLj79e6+zt3X9fb21vPUIonQF/oAeupQAwDUDBRjtVwF9Frg\n7WZ2GdAKLAT+Hug2s0z4lr8S2BWO3wWsAnaaWQboAg7W8PwiMoGDQ2N0tWXJpmur4He1RQlkYKTA\naZ2t9QhNmkzVCcDdPwZ8DMDM3gB81N1/y8y+DrwD+CqwAfh2eMjt4f5Pwv7vubtXH7qIVCpfvvnT\n7f1k03b0frW62qIawGHVAGJrNgaC/SnwETPbRtTGf0MovwFYHMo/Alw7C88tkniDY+N0tNQ+xGdh\na3SOfiWA2KrLQDB3/z7w/bD9HPCqCY4ZBd5Zj+cTkckNjY3T21nbJaAAmXSKBS0ZBjQldGxpKgiR\nmBkaG6cjV59B/hoLEG9KACIxUnJnOF+sSxMQKAHEnRKASIwM54s40NFS3UpgJ1ICiDclAJEYGRqL\nxmAuqGMNYGy8xGhBg8HiSAlAJEYGQwKoWxOQBoPFmhKASIwM1TsBtCoBxJkSgEiM1L0JSDWAWFMC\nEImRvqE8mZTRnqtPJ/DC1iyGEkBcKQGIxMiu/lGWdbWSqtNM6+mU0dmqwWBxpQQgEhMld/YMjLC8\nu62u513YlmVgVAkgjpQARGKibzDP2HiJFXVOAF1tWdUAYkoJQCQmdvWPANS9BtAdBoNp8t74UQIQ\niYnd/SNkUsbShfWdu39hW5Z8scTh0fGpD5Z5RQlAJCZ29Y9welcr6VR9l9ourwuwZ2CkrueVxlMC\nEIkBd2f3wAjLu+rb/ANRExDAnv7Rup9bGksJQCQGtvcNM1qofwcwQFd7tDTkbtUAYkcJQCQGHt81\nAMDynvongAUtGVKmGkAcKQGIxMATuw6TNmNpHVYCO1E6ZSzqyPH0i0fqfm5pLCUAkRh4YtcAS7ta\nyKRn5y29rKuNLXsOz8q5pXGUAETmOXfn8V0Ds9IBXLa8u42dh0Y0ICxmlABE5rmdh0YYGCmwYhba\n/8uWdUVjCzbvGZi155C5pwQgMs89ETqAZ+MKoLLy6OItu9UMFCdKACLz3BO7B2ZlBHClBS0Zli5s\nUQKIGSUAkXluy+7DnHPaArKz1AFctnbZQjYrAcSKEoDIPLdlz2HWLl84689z/vIutu0f1ALxMaIE\nIDKPHRgc48XDY6xdNhcJYCHFkms8QIxUnQDMbJWZ3WtmW8xss5n9QShfZGZ3m9kz4WdPKDcz+6yZ\nbTOzx8zs4nr9EiJJtTVcmz8XNYDyc6gZKD5qqQGMA//T3dcCrwauMbO1wLXAPe6+Brgn3Ad4K7Am\n3K4GvlDDc4sIx67KmYsawKqedjpbMuoIjpGqE4C773H3h8P2EWArsAK4HLgpHHYTcEXYvhy42SP3\nA91mtqzqyEWELXsOs6K7je4wYdtsSqWM85YvZPNujQWIi7r0AZjZauDlwEZgqbvvCbv2AkvD9gpg\nR8XDdoYyEanS5t2HOW8Ovv2XrV22kK17jlAsaXWwOKg5AZjZAuDfgD909+Pqhh6tITejV4qZXW1m\nm8xs0/79+2sNTyS2RvJFnts/OCft/2XnL1/ISKHI8weH5uw5ZfbUlADMLEv04f8Vd/9mKH6x3LQT\nfu4L5buAVRUPXxnKjuPu17v7Ondf19vbW0t4IrH21ItHKPnctP+Xnb+8C1BHcFzUchWQATcAW939\n7yp23Q5sCNsbgG9XlL8vXA30amCgoqlIRGao3Bl7/hzWAKIBZ6Z+gJjI1PDY1wLvBR43s0dC2Z8B\nnwBuM7OrgBeA3wj77gAuA7YBw8CVNTy3SOJt2TNAZ0uGlbM4CVylWzZuB+D0ha3c8dgezlzUAcB7\nLjljTp5f6q/qBODuPwQmW3360gmOd+Caap9PRCLlD+L7nj7A4gUt3PrAjikeUV/nLu3ke0/uY3hs\nnPaWWr5DSqNpJLDIPFRyZ+/AKMu6Z28CuMmcu7QTB57ZPzjnzy31pQQgMg/1DebJF0ss75r7BLCi\np422bJpnNCXEvKcEIDIP7R4YAaKlGudayow1Sxfw9IuDlFzjAeYzJQCReWjPwCgpg9NmYRH46Th3\naSeDY+PsHRhtyPNLfSgBiMwz7s7WPYdZ2dM+a4vAT2XNaQsA1Aw0zykBiMwzO/qG2XdkjFec2dOw\nGDpbsyzvauXpfeoIns+UAETmmU0vHCKXTnHhiq6GxrFmaScvHBziyGihoXFI9ZQAROaRwbFxHts5\nwM+v7KIlm25oLOcu7aTk8KNtBxsah1RPCUBkHvnOY7vJF0usa2DzT9kZi9ppyaS498l9Ux8sTUkJ\nQGQe+dqDO+jtbOGMRe2NDoV0yjh/eRe3P7qbvqF8o8ORKigBiMwTz7x4hIe397PuzB6iuRgb7xfX\nLGGkUOTLP36+0aFIFZQAROaJWx7YTjZtvPyMxjf/lC1d2Mqb1i7lph8/z9DYeKPDkRlSAhCZB54/\nMMRX7t/Or75sOQuabAK2D77hJQyMFLj1ge2NDkVmSAlApMm5O3/x75vJZVJcu/7nGh3OSS4+o4dX\nn72If/rv5xgbLzY6HJkBJQCRJvdfW/dx71P7+cNfXsNpC+d+8rfp+NAbzuHFw2P8v5+etMifNLHm\nqkuKyHFGC0X+4t83c+7SBWz4hdWNDmdCt2zcjruzvLuVT9z5JCP5ErlMSgvFzAOqAYg0qVs2bueD\n//owOw+N8Lo1vXx9086ji8E0GzPjsp9fxqHhAj94WuMC5gslAJEm9dyBQX7w9D4uWtXN2b0LGh3O\nlM5esoCXr+rmvmcOcODIWKPDkWlQAhBpQvsOj/K1B3awqCPH21+2vNHhTNv6C04nmzZuf2w3rrUC\nmp4SgEiTGS+W+PCtP2V0vMh7LjmT1gbP+TMTna1Z3nTeUrbtG+Q7j+9pdDgyBSUAkSbzN999mgd+\n1scVF63g9Ca96udULjl7Mcu7W/nIbY/y13duZWBEs4U2KyUAkSZy1+a9fPEHz/KeS85oqhG/M5Ey\n432vWc2vXLiM6+97jtd/6l6++INnOaT5gpqOEoBIk3j+wBAfve1RLlzZxcd/dW2jw6nJwtYs685c\nxDVvOIfeBS184s4neeV1/8Xln/shP952gEKx1OgQBY0DEGkKI/kiH/jXh0injc//1sW0ZOZPu/+p\nLO9u48rXnsWegREefP4Qj+w4xHu+tJHO1gyvO7eX9eefztt+fhmpVHNMbpc01sw99evWrfNNmzY1\nOgyRWePufOqup/jek/t4au8RNvzCas5d2tnosGZNfrzE0y8e4akXj/DU3iMMjo2zqqeNyy9awUff\n8tJGhxcbZvaQu6+b6jjVAETm2ODYOJue7+Mnzx3kzsf3sr1vmLQZ6y84PdYf/gC5TIoLVnRxwYou\nSu48uqOfO57Yyz/eu43BsXF+85Wr+LnTO5tmuuu4m/MagJmtB/4eSANfcvdPTHasagASF4dHC9z+\nyG6++fBOHtnRT8khkzJe85LFnNbZwtplXbTl4tHsM1Mj+SJ3bdnLpuf7KDmcubidXz5vKecvX8jZ\nvQs4u7eDha3ZRoc5r0y3BjCnCcDM0sDTwJuAncCDwLvdfctExysByHzh7owWShwZLXB4tED/cIFd\n/SPs6BvmqRcHuXvLXkYLJU5f2Mp5yzo5a8kCzljUTi6j6zDKjowWeHLPETbvGeDZ/UMUS8c+m5Ys\naOHsJR2sXtLOyp52VnS3saKnjdZsGiO68qi7PctpC1ti039Si2ZtAnoVsM3dnwMws68ClwMTJgCR\nueDuuEPlVyEDSu7kiyXy4yXGxkuMFUqMjRfZf2SMB58/xIPP97Flz2GGxsYZG5/8qpbOlgwXruhm\n3eoeVnS3qXljEp2tWV551iJeedYiiiWnbyjP/iNj7B8c4+DgGPuOjLF1z2GOTLHwzKKOHMu7W1nZ\n3c6qRW2c1tlKV3uWnvYc7bk0KTPSKSObNlqzaVoyKXKZFGaGAWYcfT2kzVjQmqEjl47l/22uE8AK\nYEfF/Z3AJfV+kkNDea74/I8m3HeqCo+HjwD38s0peVSeOvriOPYiKO8vhZ9UPn6iY0rHtt0Bi15g\nKeOkF1e5ZpYyI5UyMinDgWLJj34zSqeiF3LKOO453KHox47JplOkU8de3IaFn5GpXtjl3eW/nXv0\nl/Lwt6n8m5px9G9VeW6zk89z4vmPPepYWVR+ssq/xdGbO8WiU/Jou+SQMsikwu9vx/9fC8UShWKJ\n0ileE6f6m5y+sJWX9HbQmk2TTafIplO0ZlO0ZtO0ZdN0tUUfOvqWP3PplNHb2UJvZ8tJ+wrFEgPD\nBfpHCoyXSuDR6384P87h0QKHR8bpH8nz0AuH+K+tLzJezT/4BCmD9lzmuM+EbCpFJn3s/RW9V489\npvw5Em0fH0P5fZGa4KVRfn+uXbaQL/z2K2qO/VSarhPYzK4Grg53B83sqRpPuQQ4UOM5ZlMzx9fM\nsUGD43t+6kP096tNouO7D/jie6t++JnTOWiuE8AuYFXF/ZWh7Ch3vx64vl5PaGabptMW1ijNHF8z\nxwaKr1aKrzbNHt90zHXd9EFgjZmdZWY54F3A7XMcg4iIMMc1AHcfN7MPA3cRXQZ6o7tvnssYREQk\nMud9AO5+B3DHHD5l3ZqTZkkzx9fMsYHiq5Xiq02zxzelpp4KQkREZo+uTxMRSah5lQDMbL2ZPWVm\n28zs2gn2n2lm95jZY2b2fTNbWbHvk2b2RLj9ZkX5WWa2MZzza6Fzupni+0o45xNmdqOZVT0mfjbi\nq9j/WTMbrDa22YrPIteZ2dNmttXMfr/J4rvUzB42s0fM7Idmdk6Vsd1oZvvM7IlJ9lv4H20L8V1c\nsW+DmT0Tbhsqyl9hZo+Hx3zWphowMofxmVm7mX3HzJ40s81mNumUMo2I74TH3j7ZeRsuGgXZ/Dei\nTuNngbOBHPAosPaEY74ObAjbbwT+JWy/DbibqM+jg+hqpIVh323Au8L2F4EPNll8lxGNhTLg1maL\nL+xfB/wLMNiE/98rgZuBVLh/WpPF9zRwXtj+EPDlKuN7HXAx8MQk+y8D7gyvo1cDG0P5IuC58LMn\nbPeEfQ+EYy089q01/H/rGh/QDvxSOCYH/HczxVfxuF8HbpnsvI2+zacawNFpJNw9D5Snkai0Fvhe\n2L63Yv9a4D53H3f3IeAxYH34RvNG4BvhuJuAK5olPog6zT0gekOupDqzEp9F8zt9CviTKuOa1fiA\nDwJ/6e4lAHff12TxObAwbHcIPHYTAAAF4klEQVQBu6sJzt3vA/pOccjlwM3hpXQ/0G1my4C3AHe7\ne5+7HyJKVOvDvoXufn947d1M9e+Nusfn7sPufm84dx54mOrfG3WPD8DMFgAfAf6q2rhm23xKABNN\nI7HihGMeJcq4AL8GdJrZ4lC+PlQblwC/RDQgbTHQ7+7jpzhnI+M7KjT9vBf4zyaL78PA7e5e6wrg\nsxXfS4DfNLNNZnanma1psvh+F7jDzHYS/X9rasqoIv5Tle+coHy2zDS+o8ysG/hV4J4mi+//AH8L\nDM9iXDWZTwlgOj4KvN7Mfgq8nmiUcdHdv0t06emPiZpRfgIU51l8nyf6FvnfzRKfmS0H3gn8wyzG\nVHV84TEtwKhHIzb/CbixyeL7I+Ayd18J/DPwd7MYX+yYWYbob/pZD5NMNgMzuwh4ibt/q9GxnMp8\nSgDTmUZit7v/uru/HPjzUNYffl7n7he5+5uI2vGeBg4SVeUyk52zwfEBYGYfB3qJqpPVmo34Xg6c\nA2wzs+eBdjPb1kTxQfSN7Jth+1vAhc0Sn5n1Ai9z943hFF8DfqHK+KqN/1TlKycony0zja/seuAZ\nd//MLMZWTXyvAdaF98UPgXPN7PuzHOPM1btTYbZuRB1ozwFncawT7vwTjlnCsc6+64jafiHqwFsc\nti8EngAy4f7XOb4T+ENNFt/vEn1zbGvGv98Jj6+lE3i2/n6fAN4ftt8APNgs8YXbAeDcsO8q4N9q\n+BuuZvJOzLdxfCfmA6F8EfAzog7MnrC9KOw7sRP4shpfg/WO76+Afyv/zWu91Tu+6Zy30beGBzDD\nf9BlRN/sngX+PJT9JfD2sP0O4JlwzJeAllDeSrTmwBbgfuCiinOeHV7o24iSQUuTxTcezvdIuP2v\nZorvhPNXnQBm8e/XDXwHeJyo6eVlTRbfr4XYHgW+D5xdZWy3AnuAAlGt5yrgA8AHwn4D/jHE/jiw\nruKx7w+v/23AlRXl64iS1bPA5wgDR5shPqJv2g5srXhv/G6zxHfCuVfTpAlAI4FFRBJqPvUBiIhI\nHSkBiIgklBKAiEhCKQGIiCSUEoCISEIpAYiIJJQSgCSSmX3AzN43g+NX12NKXzPrNrMP1XoekXpQ\nApDEMbOMu3/R3W+erfOfYnc30bTPMz1nuvqIRCamBCDzUvhG/qRFC+ZsNbNvhNk2X2FmPzCzh8zs\nrjBlLxYt0PIZM9sE/IGZ/W8z+2jYd5GZ3R8W+viWmfWE8leY2aNm9ihwzRTx/E5Y+ON7hFkpzeyP\nzezBcN6/CId+AniJRQvAfMrM3mBm/1Fxns+Z2e+E7ectWkjmYeCd4Xf4pJk9YNECN79Y1z+qJI4S\ngMxnLwU+7+7nAYeJPqT/AXiHu7+CaObP6yqOz7n7Onf/2xPOczPwp+5+IdEw/4+H8n8Gfs/dXzbN\neC4Oz/16M3szsIZoHYGLgFeY2euAa4FnPZoY7o+ncc6D7n6xu3813M+4+6uAP6yIU6Qqp6qqijS7\nHe7+o7D9r8CfARcAd0dr/ZAmmt+l7GsnnsDMuoBud/9BKLoJ+HqYY77bo4VCIFrx7K1TxHO3u5cX\nFXlzuP003F9AlBC2T/N3myzm8symDxHNMSNSNSUAmc9OnMjqCLDZ3V8zyfFDsxxP5fkN+Gt3/7+V\nB5jZ6hMeM87xNfHWU5wTYCz8LKL3r9RITUAyn51hZuUP+/cQzbTZWy4zs6yZnX+qE7j7AHCooj39\nvcAPPJrHv9/M/kco/60ZxnYX8P6wLCBmtsLMTiNKUp0Vx70ArDWzllDruHSGzyNSNX2DkPnsKeAa\nM7uRaKrlfyD64P1saNrJAJ8BNk9xng3AF82snWjO/ytD+ZXAjWbmwHdnEpi7f9fMzgN+EpqjBoHf\ndvdnzexH4ZLSO939j83sNqJpl3/GsSYjkVmn6aBlXgpNKf/h7hc0OBSReUtNQCIiCaUagMgMmNlb\ngE+eUPwzd/+1RsQjUgslABGRhFITkIhIQikBiIgklBKAiEhCKQGIiCSUEoCISEL9f4tOzVoPcWjQ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# create ohlc prices\n", + "df_res.head()\n", + "print(df.high.count())\n", + "sns.distplot(df.period_return)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#df.drop([\"_id\"], axis=1, inplace=True)\n", + "df.head()\n", + "#df.to_excel(\"df_res.xlsx\")\n", + "import dill as pickle\n", + "with open(simname+'_fx_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFUXwOHf2VBFepMqIL2pgBQFO2JB7NhBsYOgKCD6\nqWBBUaSJFRVsIGBFRRCkCdIElC49SC/SQkhIu98fM7s725IN2WSzcN7nwdm50+4ESU5uOVeMMSil\nlFJKqdjginYFlFJKKaVU+DR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRS\nSqkYosGbUipPiMinIvJqJseNiNTOw/o8JyIf59XzlFIqUgpEuwJKKRUNxpjXol0HpZQ6GdryppQ6\n7YiI/uKqlIpZGrwppSJGRBqIyBwROSwia0Skk98ppUVkiogkiMhiETknxH2KishQEdkmIkdEZL6I\nFM3kuTXsbteHRWSXiOwWkT6O4wNF5BsR+VJEjgL32WVfOs5pKyIL7LpvF5H77PLCIvKWiPwrIntF\n5INgdbHPOywijR1l5UUkSUQqiEg5EfnZPuegiMwTkaDfg+136SUiW0TkgIgMcZ4rIg+JyDr767hW\nRJrZ5f1FZLOj/KZQXzOlVOzS4E0pFREiUhD4CZgOVAB6AuNEpJ7jtDuAl4DSwCZgUIjbvQU0By4E\nygD9gIwwqnEZUAe4CnhGRK50HLsB+AYoBYzzq/vZwFRgFFAeOA/42z48GKhrl9UGqgAv+j/YGHMC\n+A6401HcGZhrjNkHPA3ssO9fEXgOyGx9wpuAFkAzu+7d7LreBgwEugAlgE7Af/Y1m4F2QEmsr/OX\nIlIpk2copWKQBm9KqUhpDZwJDDbGpBhjZgE/4xvMfG+MWWKMScMKoM7zv4ndwtQNeMIYs9MYk26M\nWWAHR1l5yRiTaIxZBYz1e/ZCY8wPxpgMY0yS33V3Ab8ZY74yxqQaY/4zxvwtIgI8DPQ2xhw0xiQA\nr2EFocGM9zt2l10GkApUAs62nzHPZL649Bv2M/8FRjje5UHgTWPMn8ayyRizDcAY87UxZpf9jhOB\njUDLTJ6hlIpBGrwppSKlMrDdGONsIduG1VLltsfx+ThWsOevHFAEqxUpu7b7PbtyiGP+qoV4Xnng\nDGCZ3d15GJhmlwczGzhDRFqJSA2s4PR7+9gQrNbG6XZ3aP+TfJdQdUVEuojI3466Nsb6eiqlTiEa\nvCmlImUXUM1vHFd1YGc273MASAaCjofLQjW/Z+9y7GfWyrU9xPMOAElAI2NMKftPSWNMsKATY0w6\nMAmrlexO4Ge7tQ5jTIIx5mljTC2srs6nROSKk3iXoHW1u34/Ah4HyhpjSgGrAcnkGUqpGKTBm1Iq\nUhZjtab1E5GCInIpcD0wITs3sVvuxgDDRKSyiMSJSBsRKRzG5S+IyBki0gi4H5gY5mPHAVeKSGcR\nKSAiZUXkPLsuHwHDRaQCgIhUEZEOmdxrPHA7cDfeLlNEpKOI1La7Yo8A6WQ+jq+viJQWkWrAE453\n+RjoIyLNxVLbDtyKYQWo++3n3Y/V8qaUOsVo8KaUighjTApWsHYNVovVe0AXY8w/J3G7PsAq4E/g\nIPAG4X2/movVNTkTeMsYMz2ch9njyq7FmlRwEGuywrn24Wfsey6yZ6r+BtQLdh/7XouBRKxuzqmO\nQ3Xsa48BC4H3jDGzM6nWZGCZXZcpwCf2/b/GmugxHkgAfgDKGGPWAkPte+8FmgB/hPP+SqnYIpmP\nl1VKqfzPHl+2FShoT4aIaSJigDrGmE3RrotSKv/RljellFJKqRiiwZtSKiaIyN0icizInzXRrptS\nSuUl7TZVSimllIoh2vKmlFJKKRVDNHhTSimllIohBaJdgZwqV66cqVGjRrSroZRSSimVpWXLlh0w\nxoRapSUsEQveRCQOWArsNMZ0FJEyWEklawDxQGdjzCH73GeBB7CSVPYyxvxqlzcHPgWKAr9grW2Y\n6aC8GjVqsHTp0ki9hlJKKaVUrhGRbTm9RyS7TZ8A1jn2+wMzjTF1sBJm9gcQkYZYCzc3Aq4G3rMD\nP4D3gYewklnWsY8rpZRSSilbRII3EakKXIe1bIvbDcBn9ufPgBsd5ROMMSeMMVuxMpe3FJFKQAlj\nzCK7te1zxzVKKaWUUorItbyNAPrhu05fRWPMbvvzHqCi/bkK1sLKbjvssir2Z/9ypZRSSilly3Hw\nJiIdgX3GmGWhzrFb0iKWUE5EHhaRpSKydP/+/ZG6rVJKKaVUvheJlreLgE4iEg9MAC4XkS+BvXZX\nKPZ2n33+TqCa4/qqdtlO+7N/eQBjzGhjTAtjTIvy5XM0YUMppZRSKqbkOHgzxjxrjKlqjKmBNRFh\nljHmHuBHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIaxERoIvjGqWUUkopRe7meRsMTBKRB4Bt\nQGcAY8waEZkErAXSgB7GmHT7mu54U4VMtf8opZRSSilbzK9t2qJFC6N53pRSSikVC0RkmTGmRU7u\noctjKaWUUkrFkJhfHksppWJVUnIyrb56mxZFyzIr6QAI1h/cW0fPiL0vnuOGRwrUoP/td+VhjZVS\n+YEGb0oplYXzRw3lsGPfCCB2YGUHU3VLlmT63Q9l677dZ//AUWBW0n+Om9v3dG99Dvj6MC3eWrpG\nKXVa0eBNKaWykJ71KZCR/fHDY6+5I9vXKKWUBm9KKZWFlT2fjnYVlFLKQycsKKWUUkrFEA3elFJK\nKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIoh\nGrwppZRSSsUQDd6UUkoppWKIBm9KKaWUUjFEgzellFJKqRiiC9MrpVSMqTnudcAggPUf71bEgMC3\nl97HeRWrRKeCSqlcpS1vSikVYxoVONP6IL7l4tivXbJs3lVIKZWntOVNKaVizM+394x2FZRSUaQt\nb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNExb0qpfK/eK8MBMO4C5wxL8SsX2Ni/d15WTyml8pS2\nvCmllFJKxRBteVNK5XvrX9CWNKWUctOWN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikV\nQzR4U0oppZSKIRq8KaWUUkrFEA3elFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkoppVQM0eBN\nKaWUUiqGaPCmlFJKKRVDchy8iUgREVkiIitEZI2IvGSXlxGRGSKy0d6WdlzzrIhsEpH1ItLBUd5c\nRFbZx94WEclp/ZRSSimlTiWRaHk7AVxujDkXOA+4WkRaA/2BmcaYOsBMex8RaQjcATQCrgbeE5E4\n+17vAw8Bdew/V0egfkoppZRSp4wcB2/GcszeLWj/McANwGd2+WfAjfbnG4AJxpgTxpitwCagpYhU\nAkoYYxYZYwzwueMapZRSSilFhMa8iUiciPwN7ANmGGMWAxWNMbvtU/YAFe3PVYDtjst32GVV7M/+\n5UoppZRSyhaR4M0Yk26MOQ+oitWK1tjvuMFqjYsIEXlYRJaKyNL9+/dH6rZKKaWUUvleRGebGmMO\nA7OxxqrttbtCsbf77NN2AtUcl1W1y3ban/3Lgz1ntDGmhTGmRfny5SP5CkoppZRS+VokZpuWF5FS\n9ueiQHvgH+BHoKt9Wldgsv35R+AOESksIjWxJiYssbtYj4pIa3uWaRfHNUoppZRSCigQgXtUAj6z\nZ4y6gEnGmJ9FZCEwSUQeALYBnQGMMWtEZBKwFkgDehhj0u17dQc+BYoCU+0/SimllFLKJtZwtNjV\nokULs3Tp0mhXQymllFIqSyKyzBjTIif30BUWlFJKKaViiAZvSimllFIxRIM3pZRSSqkYosGbUkop\npVQM0eBNKaWUUiqGaPCmlFJKKRVDIpHnTSmlcqT+gOHeHbE2RryfPWX27uI+j1K6aNE8qp1SSuUv\n2vKmlIq688oUsT74BWuhaOCmlDqdacubUirqJjzxWLSroJRSMUNb3pRSSimlYogGb0oppZRSMUSD\nN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhmjwppRSSikVQzRViFJKZUP7d4ayEexcdMYnN11VYP5j\nfaJVNaXUaUJb3pRSKhs2eT6ZgGM78rIiSqnTlra8KaVUNmx9/OloV0EpdZrTljellFJKqRiiLW9K\nKQX8unYtj02fZu2I1SVq/NZafa3NJdzZokXeV04ppRy05U0ppYBqYSx236RMmTyoiVJKZU5b3pRS\nCmhYsyZbnnwq2tVQSqksacubUkoppVQM0eBNKaWUUiqGaPCmlFJKKRVDNHhTSimllIohGrwppZRS\nSsUQDd6UUkoppWKIBm9KKaWUUjFE87wppVQQtd4e6l16XrzlW3vq2qZKqejSljellMqGxTu2RbsK\nSqnTnLa8KaVUEFt6aQubUip/0pY3pZRSSqkYosGbUkoppVQM0W5TpdQp4Y1fZ/Lx8pUY9+QCx3ZT\nv97RqpZSSkWctrwppU4Jz3S4AvCZGArA1M435X1llFIqF2nLm1LqlLHxWW1hU0qd+rTlTSmllFIq\nhuQ4eBORaiIyW0TWisgaEXnCLi8jIjNEZKO9Le245lkR2SQi60Wkg6O8uYisso+9LSL+PSBKKaWU\nUqe1SLS8pQFPG2MaAq2BHiLSEOgPzDTG1AFm2vvYx+4AGgFXA++JSJx9r/eBh4A69p+rI1A/pZRS\nSqlTRo6DN2PMbmPMcvtzArAOqALcAHxmn/YZcKP9+QZggjHmhDFmK7AJaCkilYASxphFxhgDfO64\nRimllFJKEeExbyJSAzgfWAxUNMbstg/tASran6sA2x2X7bDLqtif/cuVUkoppZQtYrNNReRM4Fvg\nSWPMUedwNWOMERET8uLsP+th4GGA6tWrR+q2SimVqZqjhgJYueTc39IE4rv3iV6llFKnnYgEbyJS\nECtwG2eM+c4u3isilYwxu+0u0X12+U6gmuPyqnbZTvuzf3kAY8xoYDRAixYtIhYUKqVUZrb21PVO\nlVLRl+PgzZ4R+gmwzhgzzHHoR6ArMNjeTnaUjxeRYUBlrIkJS4wx6SJyVERaY3W7dgFG5bR+SqnI\naPL0cO+OgLG3AKuHaH41pZTKK5FoebsIuBdYJSJ/22XPYQVtk0TkAWAb0BnAGLNGRCYBa7FmqvYw\nxqTb13UHPgWKAlPtP0qpfOZ0b+6u8e5Q+5PxWYbLfxv/iHanKqUiL8fBmzFmPoEr0rhdEeKaQcCg\nIOVLgcY5rZNSKvJWDdXWNV9Zh7Cp6ekUjIvL8jyllMoOXR5LKaWyKb6Hjn1TSkWPLo+llFJKKRVD\ntOVNKXVaefbXX/lp7TrSgRST4TPxwru1ukSNf7nNP1VIqG27KtV48oK2nFu+En/t20WNEqW4fvIX\n7D6eQIdqtahbtiIbDx2gecXKXFjpbBqXO4vktFQ++2c5Z5cozcGkRO6qdz7/HjvMN5tWkZhygjEb\n/vSpo/g9N04MGX7H3JmaShUsxEMN2vJwvYtO4iunlMovxFrMIHa1aNHCLF26NNrVUErFiOTUVI6d\nOEFaRgapKSl8NnMm9WvX5p9t21jybzwbgRMCYOwgzbquLPAfUFjgrrKVOatqVSqULEn1UqXY9t9/\nTF80j9qVz6ZpnTpUL1MGAaqXKUOhggVxiZBhDC4RDiUlcSwlhQrFiuHCGhdXKC6OuLg43PkxU9PT\ncYlggAIuF8YYUtPTMcDGAwd48bexHBdDa6lKh/NasD0xEVdGBhVLlqRB5cokpKay/eBBdh85Qipw\nWe3a7D1+nJqlSlG8SBEKuLTTRaloEZFlxpgWObqHBm9KqXB9/8efvPjd/IBUIc4g5wLg0zd0coNS\nSgUTieBNf/1SSoXtxe/mAyHmWdqFf+ZZbZRS6vSkY96UUmHTdCFKKRV9GrwppcJy+Ggi7V4abe0E\n6zZ17PuXz37mASqWKpE3FVVKqVOcdpsqpcKy90iC53N2R8ruO5qQ9UlKKaXCoi1vSqmw1Kt2lnab\nKqVUPqAtb0oppZRSMUSDN6WUUkqpGKLBm1JKKaVUDNHgTSmllFIqhuiEBaViwA9z/ub1L2aRbgiS\nnkO8+yFSdSDQpkEV3uvZOW8qHIYGLwwHgqcZqVS4ALOf7RmVeimlVH6nLW9KxYB/tu23Arcc2LB9\nX2Qqkwd2n0ij3kvDqffy8GhXRSml8h1d21QpFVXzVq/moa9neAv81ktd/6KmJzlVfffPPN7e+QMA\nItbPIpdj6xIA4y0j8Byxr729/HVMPzCXBBIAw31VO3Nd9cvz8nWUCksk1jbVblOlVFS1a9yYfxo3\njnY1VBT8tHdBpsczjDuAC809kmD2gXkcsQM3F/D7gQUavKlTlgZvSqmoafzicNLcO8HG6wn0v6w1\n97drk/eVi4Aao4dYHzzLiRnPvnPrbnWKv/+ZvKxe1I295PR6X6UiRYM3pVTUhDNo4/PZixg8ZxGt\ngFe73sJTn3/LN8/HcFdqFi1JOdV04iAS7a+s+AWHbze9gWvqNc3dCiilcp2OeVNK5Sv1X7JnoUJg\na5y9W0RgZSwHcLmo9sRBmBDB2/lx5bmoeg2W79zJovSdnAEkAVUxPFa3A+9unMZhsb7cyWJ1P7pb\nC0WM435gjUWztlcXqUvVkuV4tNk1uETnwSmVmUiMedPgTSmlTgNL9m7lnnlfWjviF9xhPAGef8Dn\ncgRv/sf9j33X9mnOLl42V99D5Y258bUBcJEBQJz9dxznmTSSQRwAhjiqIBxEJI4m1dZFobaxRScs\nKKWUCkvLijXZcOsL0a6GOqW4G392Et4gCBUpGrwppZRSysclNTZFuwoqExq8KaVUhL0051fGrl9p\n7fjMnvXONt32QL+o1E3FruTUo2xOmM7iAyPA051pbd058OIkgzj7mMs+FgecV/x1alW4Os/rrHKH\nBm9KqVyzaeceOr37lbVjBzGL+j9MieLFwro+KSmJ84Z84DNhwSVwda1qXHNuI3r+MM0q91sazD3Z\noUeLpvS+4ooIvU34Lqlcwxu8KRUh4nIR5yoKFAKSs3l14VyokYoWnbCglMo1X85ezGsz7ESsdnA1\npsuNtK5XM6zrbxz1EesOHQuYbYpYQVyGvetcH9V/rdQN/Z7E5R5lr5RSUaazTdHgTanT0UNjP2fu\nzv8CEvoCbHz21EghYoyh/9yfmPjvWqvAb7Zn4L71Jdh853N5Wk+lVPbobFOlTiEjv5jBuBmrrB07\nGHHmOvNvUfLui2e/YYXCfPlq97ypcBTN3flfYKF7naRThIhQNK5gtKuhlMqHNHhTKp/YeyjBt+Ak\ngpEDh05ErD752YbTJEHvwHbXMLDdNdGuhlJZSkk5zvq9dQBvLrg4+5hLvPvuFM5x9ve2OPubXOUq\nu/KopqcGDd6Uyide63Uzr0W7EuqUlJiYyPlTh3kL/Lpc19z4PAVcujLCqeZI0r/M3HU7kEwcZ4Ok\nADsciXe9iXatv/0MR1CVDpxFk7IjKVO8eZbPKlTojEyPx2V6tEqW91e+NHhTMSkpKYWUlDREhAIF\nXHw1/g/+3baXpudWZ83aHcyZuwVrVDsULAAp6eBuxqpetRiPP9aBvi98ByJBl2H64v37qF69Qp6/\n16lu+sp1PDHJmiEaqjvYuf37uccpUjDvuw5rjRwKBKmb/TmzRebxG5Pm3u/TvA2PN2+bG9XNUrFi\ngbN73YHbeYgGbqeo1Qc/JJ1k4jCkE+9JIeKUjjuw8kz/cRzdw5r/boP/rBUWPIGeWOfH0ZNm1ft6\nzm5SbWeuvIcKpBMWVEz6bfoqtm7ZzxlnFCKuoIuPPpzjM/YL8O67/PadaSUAIxLwg7dq1ZKM+/CR\n3HyFU8KJEyk0f/5dz9f80fPPpkCJsuw4fJhBd98QcP4DH09kQbzdPZJF8GYEBnW8lEPJxzmxezdN\natTgkhY5GuMbtkgHb3HAiEs7cn3dBrlUY0tiagpvLpvOxkP72Z1wmO0kWlXIZLKD/a/Cc87SDv0o\ndkbmrSiRcPHMPoA3P5n/clzW1goU3GUVCpbkQOphz34p1xmUKFyMtmXO55s904gjjgltRur6qhEQ\n7vJYzar/G5X6xTKdbYoGb0pF06BvfuOrxauCBmBrBoc3Lq3+i8MDrnVv/e+7/oXTY6zbydqblMA9\nM75gZ9JBUhwBZ2bBG/iubTrx4m40LVs91+s6eO5XTEtbBkAlhD2SDliBmnvBe+e2KmcysNnjrPsv\nnu0Ht1OlZBXqlqtBkQIFKVGwBBsOb6BQgUI0LF0/1+uuVE5o8IYGb0oppVROHDlyhCUHBwPf2WPe\n3F2kj+NihGccXBVmc/bZZ0ermqcMTRWilFK5oPnIoRwiq25T6FChEh/edlee10+pSFpysDWBY94y\ngLcBSDdWt+lOLuVstkahhsqfBm9KqXwhPT2dRq+87dn3X/IKfPPe+ZQ7zxPY2D9n3auHMjvoSOHy\n677dOXrOyZq3agVdVk4B/JL0CjQoUoqfbzz1c/2pyGlfc120q6CySYM3pVRIn/86jyG/+g1LCJJA\nePWQkw+WVm/YwK3jpvjePwQBTB4k493yxNO5+4Ac+nxT8HVTjYF/kg/ncW2UUnktIsGbiIwBOgL7\njDGN7bIywESgBhAPdDbGHLKPPQs8gDVLuZcx5le7vDnwKVAU+AV4wsT6oDylYti89cFnkkXyH+Wa\nw0lhnxv0uQKVgN0CzYvF8fqdd0aqavnWRzfdG+0qRMXL895jsVnnNyM1yAxVrNmQVhn4TH5wzJZ0\nXxPnOZbhdz94rfEoShUqnfsvp1Q2RGTCgohcDBwDPncEb28CB40xg0WkP1DaGPOMiDQEvgJaApWB\n34C6xph0EVkC9AIWYwVvbxtjpmb2bJ2woFTea9zHd4ZoZuk+3PvLBvagaKFCYd2/25iv+GP7nuDd\npsAGnXV6Wrr7974cJjnM4A2u4EKuqN2WPUf2UrZ4OWbHz6EEJXAJJJFIvMRzJsVoUKg+ZV1l+PTE\nx0AGLoH+NV/hRFoS9SrkbnoXdfrJV7NNRaQG8LMjeFsPXGqM2S0ilYA5xph6dqsbxpjX7fN+BQZi\ntc7NNsbUt8vvtK/PNNmWBm9K5Z6mTw0PbO0KksIj0+BNoOYZBZjyfM+I1m37/v1cMfrLwOdHYMxb\nJDQZPQTngmfOMXzbHuwb7JJT0vTtyxiwbpL1VyMmMJ8b3rQlFYCJlw+NUk2Vyhv5fbZpRWOMezTv\nHqCi/bkKsMhx3g67LNX+7F+ulMqHBFiVg7Fup7p3Lr6Wrr//Yu1EeIzewaTjNP9uJFZyXTzPELv7\nz53HrZTEUclVlPXGCiM33vZCZCsShsS08NfbTcj6FJVDxhg2/fcpuxJ+J5HFjuWx/JPx2l3I9rai\nayB1q3eJQo1VMHkyYcEYY8T961YEiMjDwMMA1avnfjJJpU5XK4dZwdnl/3uX/UkpPscM0Livt/u0\njAt+DzMxbyRUK1+eDf/Lv8HjJfUbEV+/Ua7c+88dwdM1GOOYfQocIZ0jGcd8yvLaTTUv5KaaF+b6\nc+Zt/pMRe8fYa3R6l3CqIuXpe+7jVCpaKdfrEAsyMtJJTt/DCfZk67pksymXaqRORm4Gb3tFpJKj\n23SfXb4TqOY4r6pdttP+7F8ewBgzGhgNVrdppCuulPI1a1CPaFdBOXSo04itdXInMIxVI/aOBSDD\nscg6wG728+OO6TxSp2vU6pZfnEg7yoY93xKfMgEX6X5BvUtThsSQ3AzefgS6AoPt7WRH+XgRGYY1\nYaEOsMSesHBURFpjTVjoAozKxfopdVr65o+/efWr2UDgWLGAMsd+8YIw99WeFCwY2W8b0/5ewZPf\nz/IW+KUi6daiMc9c2z6iz4wV3adO5Jf9diubY0mrrfc8G971M75k+qH4LNc2Pa9YRSZ0yN21fC+a\n8QzONVS9Y94IXh5kbdMyFGPcxa8Hvf+3F76Xi7XP/4wxfLXZSrbrXmjeJVCcQaSRRjq/UkjKksZ3\nQAYZWGvuehemh93711CpvP5SEAsilSrkK+BSoJyI7AAGYAVtk0TkAWAb0BnAGLNGRCYBa4E0oIcx\nJt2+VXe8qUKm2n+UOu1t33OQm5/71Ce3WufLGnN5iwY8MvQbIHhS2+UfBHYrVil5pm9BFl1qxQpC\nWipULFGCAgXiMj85TBv37KXTu+OBEKsYOHK5jV26+rQN3hKyMV4smOmH4rM8xwB/J+7N0XNyi0sE\nZ4KYwxzjut97hj3bFGDUeYOoULRsHtY6OqzAzS3Ds03gWc9i8inA5VV+oXjhqv6XqxgTkeDNGBMq\nsdIVIc4fBAwKUr4UaByJOil1Ktn4776AWZ9zl2+kTKni2b5Xm8a1+fud6I4VS0gOPyjJ6biI9PR0\n6g0b6b1PkNbGzU89lcOn+Npx8CBtv/7E51newNsw4sKruKnheVne54vrczZAfFPn53N0fST90f6N\nXLnvTX/4dum7/I4XdPmXnJruqr042lVQeUhXWFAqBlzesj5LW9YPeuzBjm1y/fm3vvkp6/ccyrJr\n1b/lD4FPHriZ1rV9F7NuVqM6617JmwDyeFpa6IPGqrsxBongqP62X4/x3B9xbO0Q8smF08MK3npN\nnciPQbpNg+1Xk4LMvTNnKUga/jDQ89m/G9O/63VQo5voWLNZjp6XGzKwArjKlGd4m1eCntN1yQOA\nM0mvtwv3DIqTLIc9x8Ax81IMF5Roxz3n5M8xoOM3dQJ2O+przyC1/7+Lkwyf8YDX11qd95VUERGx\nPG/RonnelMp9aWlpvPz+x6yMT2IzeFqSmheDZcdDB29NK5Xiix5dItbdGqv+3b+fdj98yvkCD1x8\nFQlHkzmSkMhV9RvwxLQvqEBhZkkyl1GKey+7hFFzf+Yv0vFpd7SDv6DBm8DnF91EoaKFaFn+nJOu\n52sLJ/Pl3r8AK1AxBA/eRGDRVc9TpGDhk36WirzExAQm777cZ8ybNQYuMHirL29Sp+a1Uarp6S1f\nJemNFg3elIp99QcM9+74JfgFOFNgWT5bVWHl3r2sio/ns2XzeO7yjrwz+2eWgiOAtb+3+ryP8Rnb\nJ3YQLH6moJyLAAAgAElEQVTnBtzD8TlUy5v7GhETcMwZeG24Ne9zvWVH+znuv+fACQvepa38t/D9\nRe/63Of2hY/Y1/ueGwd83urjXH2H/O5gwj8sOnAr7ha4uCB53s4t+TVlS58brSqe0vJ7kl6lVAwY\n9cMcPp71l0/gsGJE9gKl48kpXDDA8cPTca81r/em4f98gzPnxIugExb8ZIQ+FBUfLF3M4MXzrB2B\n+2b9HLr+4rdjIr/CwsB5P/P5jpWO1A++A/3delTLf92c/mZcOjzrk8JQnjLs57+A8trUjsj9Y1np\nM+vBAeuzt03chfNfmgZu+ZsGb0qd5hau3x5QlpSUTNGiRcK+xxlFHGuWOoKxla/2Cn5BiEDnm243\n0/jss4MfzEcebdGKR1u0inY1PAa268hAOka7GtwzbRjrzQGf8XLuVR/cC8OLwINV21OyUBFGbp2M\nO8gMnioExrcaQPmi2V8Y/p02wVOK5JUjxw8yfMv9uN/PRQZx4rvwvTtw6tcwbxMriAjX1tTxbrFM\ngzelTnPjn7kXgMOHD3PJgLEYoNWz7/sEYYNvvZJrL2wS8h5b9x/07jjSfDR5/m3PPRCoWaY4va5q\nx6+r1zN17eaA+9w65jsQ+ObBzjSuqqvjxZpkUsM670T6CW6q1d4O3gK503y4BMoXLc2rS8bwR/Lf\nQbpNwb9r1AVMaPUOcXHRHWd5LOVQVJ+vTm0avCmlALhz2ISg5QZ45pvfMg3eChcILx1D2TOKUKxQ\nYUqeUTTT84oVyj8D4WuOCrJQusDWx5/O+8pkQ+tJb3DADqYyS9I7tMmN7Eo9wsMN2530s5pPfQ4I\nTNMB1pJdlxasw+DLHww4NueKt8K6/8LkFSGOBHYNZwD7kg9QqVjFwNPzUJVS5zCwVPDgVKmc0uBN\nKQXA1JcfPelrK5cuxZo3go+Ta/TccM+P2KU79rP0i+99xry5rXiuB4ULFyIcdV/1rqnq3pogY+i6\nNm3EC9dcFeZbBNekQGFWOZPlCmR3ReWHPxrBr6R604UIPFK7Cc9dck2O6paZA2G2gvVZ9QNgGL5+\nJhA4ycF/tunK64On38jM9rT9AWUHjx/m5oWvklm3qcuny9Xrca7ngkYXMGztMNbKIXtWLDSnGlcW\nuJKzzqiQ7ToGszNhG3/v/JMlx//gsOzx1NVKL+JeuN1dZu2/2OBzzih4ZtD7KRUpGrwppbK0dede\nOg0dHyLpbOhUIWsG9w47yW5yRjqRbm9LSA0vgMnMj489nqPrdx05wnRPIOX9any4aVWuBm/hJuht\n8d3LHANCTXIAb0D39FkXBz2+7JrXwq7XkROJ3Dx/IKmesWChZRhvAOf0Dj/Bmp+sQM9YgVuGgWWy\nnWVpY+mxN43Lz7ow7DqF8t2ur9hwfBWQkWk93YQCuRK4JaYe5MstNwA4ctJ5Z4cWoy231hmS5X2O\np+xh5o6r8MwyFedsU2h11gxKFNXVF2KBpgpRSmWpyVN+s0XDTNI7/38PUbp47rZCLIvfzh3jv/E+\nV2Bj/+zNlu01cQI/79oVkKIj6ExYT+AaKr0HxD/aJ1vPj4ZvNy3juZVTABDH2qL+LW/FBRZ1eili\nz80wGTy79FMWHl0LeFuuMl/bFKZePBKAF+a9zd9sCDjX3TrXulAj+rbIn0l0oy0jI40p8c1wBm/W\nyECDi8pcWWMGIt4wdV58bce5xnMuWC2NnvxxfmMR42hOw2o/5vr7xCpNFaKUyhOrhuWvHGtOd7oD\nN4c6g4cHDeD2HU2gzeiPrJ0g+eTC4piQEctKFgxvNnHJCD/XJS7euKDbSV9/SbWW/L19Q0B5hrGC\nhyIpZ+Skeqc0l6sA19damQdPCuwmV5GlwZtSp7Fze/m2qH3x4JU0bRJ6YkJuqz/QO5bNZ1ycvV2f\nWaJeR0AVKrFEhRLFfXsHHdf8r3VrHmiT8642p5S0NOqOsd7Jk6TX+VyfxLqOC52teF2eiWid3K48\nuxHrz24UsfulZ6RzzfQXOWRM0PFyLoGCwF1VL6ZMoeK8Hf8TAL9dMohCBYKPdUxOTmb9+vWMOzKO\nVSTbXZeBY+Cc5rCE5AUH6FS2E/Xq1cvWO2w6uJ43t7waJLGvb4oPa8wbvNn0K1xy6q6d2q7GJs/n\njIwMdu78nV0ZA3DJNrvU+sd0BsOoU72zz7XHjq9h53/tAd/UKO6vVpz9dxhn/8/uohdnVemfS29y\n6tHgTSnlcf/Hv7FsZHSCN58hHCFat9bu2k3DypV8yjY8l71Wwc1Pn9wi9M5Zp/6BWHz34N2khQoU\nYFanu+n/03gW2y/VWgzt6rXij63/0KJ6dWZsWcWFVRoyZtdaz/3c258vuT1kfWqNe81encF7vjun\nmvseFaQA+0kNMtsUNtwS2ZUW0kwGhzMZhpNhIFVgxeF4yhYubpcajqckBwRv1ioLgSsshBqT58uw\nhM0sPTicAYeeomHpumG/w57k7LUYZWRk4Io7dYM3p/3HJrMr4ynA2K2c4P77OM7TQGe/KzKfUR6o\nbI7reDrRMW9KqaCaPjXcE0R5vkuEmLCAwOo380fX6u7Dh2n3wVhP3c4S2GMHNP517lCxAtP27Qu5\nLFWwMW+jr+3EQ9N+xP1VOdPlYvVjJxcQ5kTNcdYkgewuj+U+d377HlQoUSaidTLG8NBvo1iZvhsI\nbHmDwFa5zMa8OWebPsJltGvUjlKlSkU9h1sw01ZPZE7GRMf4L+9YMfd6ok3lam5sFHoCzPB1V/pe\n62hl7F5vdm5VXeUxHfN2mjLGkHQsmeSkZP7be5hel7/hPegSrunWilp1q/LvzgP89K69hI/L+vYx\nZftIXK7T4zdFlUPBfq/Lg/Fe9V8a7n18kOAp065TsAI3hz2ZnPvePfdQa9iwsOs24677qFW6NBM6\ndWbj7t0sX7GCIfffH/b1kbT17uei8lyA86a8gDM5rifwso/LSf4/Uhh8Epx4Z5vCjRffeHI3zaYe\ny+4n3a6Ff7fp0KafhezinZMxMeQ9M7C+NmuYxo2EDt58F6hSKjRteYtBhw8cZe53f7J5zXZmfLMA\nY6egEnFZbdneX7e9F9kBW+N2NRgyIX8nF40lk6b8ycgxc60dzwB48e67W3vsn2rP3HcRl7U+l5Il\ns9ulkD817usYzwUBwZZPeZCyZlXKM+7Re3zu2fql4RwmePDmjh2dAdwLP05hwuoNnvOc99/0TPBA\n75yh3oDNZ8KCz9Z47lVMIBHY2lP/7eTENb/9jwRSAG9gNKFZfyqXLhfW9RO2TGHczmk48625t95u\nPKuly+VZigq+aj067Do+uuzegPu7g7fBjT6mWOFiYd9LqWAi0fKmwZtSOTD+h0W8+8V8aydY8IYj\nmHBZnwVYOD42g4AmTwcP1k42eBt5+7Vc1ThwULkxhvovjwgavLn3NzxvBWYrtm7l1q9+8HmOO/AL\nFrylpqZS/+1R3mf5BW9d69RhwHXXB33//CTcbtNZHXpQvWT21wbNj9LS0vjonwlMO7TIas0KlV4E\nb/DWu9IDtK6Rf9ahVUqDNzR4Uyfv7gfeZueu5OAtPC5vADbj6yfCzvx/qvv81zkMmf5XwPixR9ud\ny+OdLgegUX/vDFZnoLb2tazHxHlmm+INqsoXLMD+tDSrzH3QEbydrvYkJHDhT3YQan+dqwkcwpAo\nVu62G6U6b3Xukqv1aD71f3gXX7er41h79LfLXuDMQt70HUdOJHL9/IGOa3y7XmdfHn439vAlH/N7\n6l84W8qcM1K7l7uPS+q0Pqn3yq6BK+8jmaOZjnk7R5pzd6OX8qQ+Kv/SMW8qZnQ4f4B3x29gjPHr\n5i1UtACXdWjE08/dkKt12rkrOazzDh1J4qwKGrwBdOlwKdXKVaDnV7/6lL8/fwXvz1/hEwSP7noj\nFzWoGfa9e48dH7R8f2oa/7zwJOI3kKruoOBB4sZn8yaoazvmfXYkJfoG/vbnrY88HVDfSDureHG2\n3JV7494aTbb+zfqPaxPHrFaX/0QIP60KVPcJ3ABKZtLt2JbwZ4YCduDmKwPj+Rbz64HZeRa8SRhr\nMLgomAc1UacDDd5UvlLmrAK0aduES9s3zvVnzZnaL1fuO2DoJGYs3u7ZNwILJjyV6z/MAaYsXM0L\nn87ItDvzr3dzFtzsTkgI67wdhw4HLR/w9XQmrViTZZerU9+vf+Ktzp18ypY8+TAtR4z2nF9Q4MFz\nG4ZVt0h44vwL6LtgTkB5CUBEqPGhvVyR8z0zy/MWpNx9fnyXvM9/1ZoiLCKZrnEt+Tx9ic8xY9wB\nmwAm5PJYc3ev5qLp/fGmLzE+rXIW4Y7K7Xi0QfZ/Wfv+onfDPjch+RjdVzwJfi1jVs42b8vhB83G\nhjWpq8+K2+xrfO9nfbaOvNLk+7Drp1R2aLepUhF2YeehPvtG4PdxT1CwQO7/rrRwTTw9Rnl/YGQ2\nNm3xsMcpXCjvWwK27N7Hde+OCz4G7rqL6NCyZY7u/93K1aQkHef5OX947osY33Qnjmd+2LEjT035\nmWNAE4GtQBGBczAsFvj5trtoWKkS2ZGWkUHtj4Z6n0feBW8jls1i1KYF9n19719CYNmt2c/vNmXK\nFPZl7GOEbHHc19BVynI2ZzNIlgGG84GVnokD4acKEcc1XatfyX21r812HbNijKHLkocIHrxZz3cB\no1t8Ftb9+qy4HWvNU79uUk96D2+3KVhrkbrXEn2u4ZQc/zI3ZsOF9v3t93AvVSUZjqTC3joB1Cz8\nIOdXzdlavSrndMwbGrxFkjGG0YO/44ePFloFnnFfnn4Spm54I8TV4Vu/die9unzkfa7/7Fj7l96x\nEx+jytnlc/y8002zR4N3J/rvT3rmbupWq5CndcuJY4mJNBtmzxr0e6+HGtWl743XAdBkyNskZaR7\nLwyVs82xDTzme83WXjmbYFLjoyGZroc65+YHqFmqLKv27uT6aV8G1N17rvH8M9l6z7NBn5Walkb9\nb9/wOdcdMP1+RQ8qlclebrd3/5zGh3sWgGdsmveeoVOFBAZv7n3/Y7WlAlvZi3/A595ObPUSZYqG\nXqTrpj96+F3rnrAAkIFL4KPmwzgzFxaMDyU1/QQvr7WS1gYL3vrU/o7ChcNbniwU3+DNZd+/GhBv\nr0FaBJccB9xrkArXVllAkSLZn+m+Zd8I9iRZa8s6g1Pv2qYAVTi3+qIcvdPpQoM3NHiLpP27D9Hl\nokHeAp/gDUAiErxt27qPh297z7NvHPe3nmttxk7qTpXq4aUQUKe+eq8MD5osGILPas3u4vRunUYO\nY7V1V4zAd9fewPm1awNw75iPmH/8qGOyhgmoS/xjJ78ofXJqKvXHD3PcLzB4ixO4uWo9hlx680k/\nJzsOJx7j4llv4gzevGPe3IHZyQRv8PsVQ0hNT+Wquf0JHrz5rrDgwlAlrjyjL3oxaF1vW/CY/cn4\ntKz5bEO0vN1W8Ha+TZ2AFfD5XvNes3HZ+6JF0HvrLwG86Uq8weCZdKs7LU/qkJi4lxUHWtv1cAZv\nANaC9RULfcRZZ12dJ/WJdRq8ocFbXnjqnndZt2QbeNff8QR2zlazxq2r8NYn3aNTSXVaqP/KcOtH\nmDtgsqMFZ1DnDOSeaHMBPS9um+V9k1NSaPjeO94Cv5a3MgLLej5NzXeGep8XsqvT9x6eoO7hvlnW\nI1oafP+S/Smwtc4l8F27x7j1D+/4Mv8JC8uvHcTQ5T8wYe8Sv2u9wZsANQqUZvzlgV3Al816msxy\nt3kDL+hZ8w6urhZ8DVoreAsMzny2mY55C37N4zX60bDMuUGfmdtCB2/Qre78qNRJ5YwGb2jwlheu\nqfuMc4SytQ0SvAFMWzMo2C2UiohDSUm0GvqBt8BuaXOmLQnePWq1kLmAmd26Uq2s7zqKuxMSuOjj\nj0J2myKxn6D3nl/HsiRhh0+LnqfR2zEWzT94O1vgl04v8dXq3xkcP8NxTpBxbPhe6xJY1OH1LOsW\nKngD6Fb2Ku5sEpkxcPcufpBgwZ0zIAp3zFt+t2rreP7JsCbNeLo3BTrV/CtPJk/lthO7a3k+x4n1\nf54LF1Jxfb5/Pw3e0OAtGub/9jeDelpLwQQbr/bV3Ge489I3veUiGBHaXFaXhXM3eMpLlS3K4f+S\nAu7x4YSHqVnrrLx6HZWJpk8Nx/87xKphOU/FsWjzVu7/1Eqs6w6QGpcuzDe9M2+5TUlPp/Hrb3sL\nHAFbhaIF+aP346Skp9PwLf9zjCfI++au2zm/SpUcv8OppsH3AwG/MW3Aqhte8pxz7s8vOM4JZ8wb\nLLhqEC45+SX5Zm1ZypAdn9v3t+77ev3HaVohMLlzLHh97bW4uxrdY/LcAaVzokHzIt1oW+OegOsT\nExOZuPNqwBrXGScZuICq3MJu+QarOzP4hIU4gRYlxlKl3Plh1XVefG38J17EAS2rb7ZW9ImiUMEb\n5dfiisvfiTQ0z5uKit27jmZ6/M5L3vD+BACr1Q74c/5Gx1mGY0eD51k7cii8/Gsq9zTt7Z304J+6\no8nTw0Fg1VsnH8SNnTEnoGz14RNBz633imMChqNOrcqX5ItHugWcXyguLuSyWDlx36efMDfBSn/i\nTiA89uKruKxJk4g/K9/w+7tf0fGViN7+0pl98LYCelvc7qlwOfc3sla5uLxWCy6vlaOfc/lMAXxX\ncA2uUomaQctn7OyH/8LDGcAOvqUsF3GYeXhXSXVvrb/IG2oF5sXLTPW4Ufyb3iOgPNqBG0DhSlui\nXYWo0pY3lSuubvq89cExU3Xa3y9HsUYqO57/+Gd+XGMH2+IbNBUBxj11B3WrBKbPaP38CBLSvN9T\n3K1qa1/PfjBV76XhgRMTHPUYe9PVXNSoAQB1Xg+cYbvpJCcs/Bkfz+2Tv/XeK0gPjLu8BLCyR2x3\np7oFtrzBmhsGBpyXkp5Ky2kv499tWo0i/HDNi2RkZNB6+v8AKxCrJaXYyqFMU4VYz8tqzJsw9eKR\nkX5tpfKctrypfGvaylejXQWVA68+2JGT+Ru864Jz+XDh3zl+fqhfKgXfRendfn/sfi5+f6znHAN0\nfGM415UowtCEZDb1Cz+Q23r4UNjnZt4GnbdqfeVe69Q7A3bz7f8L+/p1Nw0M67zP1s1y7Hn/nrZj\ntZgnpPu2nG/Faq3MMM7EvE7CdcWa8svxwP9vMoxxXOP7/8TWwzt5cvVr1ChcicpFytGiXFPmbf2D\nNWwGvF2G7Yu25cHzcr5E2BN/3YlzXF6cOxUJUJxKPNVwEMUKFs/xc5QKh7a85QMditzt3XE3R1tz\n8Glz07kM/OKpXHnuoF4fM/+H1b4pQYC+797F5deeSt0U0XXjYyPZe9hemzMgxYX47VufO7Suw50d\nWtCwVvDksMkpqVzU3b2upQQM2ndvl3+Q/9b/vHrgcLalETDB4J+Xc1bXDGOoN3hE0AkL8x7smu38\nZpmp8a47EXNgqhDP7NJHvSlDvHneAq+Jv79vRAZYXz9hBGs57rn/kMYduLlR7v47HjXrZ8YmL/SM\ngWtCCdZwlDZSgRTiGHJZN4pnshyW0xWzn7IDPO94uRmXDg95/sJdKxi8ZTQl5AzKFi5Fq3JNmb1r\nPoc4Yl9vBW+1pQqDWg/I0XumpKXQd1VXfIM3d3JcS5szrmJp0lTHOf6zQ1282PiHHNUjVqWmHmL7\nXmv1E/fXK87+Xz7O/sfgLXfvi+e4C0GKr6J48dD5/mKJtrzFiPau27w7dnAmLmFc/CjKV8k8CW1G\nau4F1/N/XB20fOLbMzR4i6B2LerzzW/Bv9Y+7G9mRQsJzetVp1zp8H7oRVvjfuHnX1s7qLcVuAVR\nf8DwwGsFlj/TnWKFC2dZj3qDR4Q4Ymj38af0at2SXmGkDQlHISAlG+cv7HgPrX+2ku8OjCvPwIz9\nFAB6U5Kanw7B06rkDOq6PpOtOv10x5PZOj+nmv3yPN7WMGu7xm6LXMReANrPeSVgZmphcTHtspcp\nFOe7XvDMy8JfkB6gTeVzmVzZd3msO2tcH/b1iYmJPL72cazceZmnCnFPAHiz0ViKFvZNcrtg42/8\ncPwDFidNtc/1ihM4k6acTwOaVLgk7LqdagoWLA38gDXWrxhxUgTYRxwHgR5BAreHgVb21/0RoM4p\nE7hFira85YFQwdsHywdTq0mN6FRK5Uh6ejovD/uBmQu3Bm1N63RZPfp37xi1+sWaZgOGc9y94xe8\nOcuCdZk2f224t/tSsl4tAYHNfXLWmn3w+HGajX3P7znWJv6xPnT78Rtm7d7qU+5+n20PevO9paSn\nU/fzoUQieMuOut9a40+dqUL+uTl7rVPO4C07KyyUlSJ8f9kA4uLiCNc1v/ey7x88ncjktuGvceo2\n6s9RLGc52QneRjX7KuA+/Vbcap/rO7PTJeS7tU1/2nILGWz0vKe1lNaZuEgAhMJUIE7OJI0NuGeZ\nus+9sPo64lxZ/xKlsqYtbzFiRsbXUXnu9OnzGN51AhSCum1KsWF+AnIOmC1C1dZF+XDia2EtwOwv\nLS2N29u9wvHDKVYaEPB0uU5Z+XK2vikD3HLlYBKOnPBJNwLulRe83YrnNavEkFEPZLu+uWHmvLXM\nXLg15PEfZ6/PNHjbvXsfN/X5IqDbtFH1AowZ1CuSVc11/i1va94Ir/uz8QvDSSdIsOX/2aHuK97W\nubYVSzLmoW74/zhxj3nLTaWKBF/aqCFWa9K1Nc7xBm+ZKBQXR/z9/SJat+yypgLAhH+W8PI/v3jK\nRQy1KU63xpfxybrfiDfHfCYzXFKyLiPb+o4liz+6j84LgreAVpZifNved2WE5XvX89Tq0Z7ngRUw\nFUFIkQy8Kyxk/g43/dHdc60L+PrC97N8754X9MzynHC8ee43Pvv/Hd7BiO09gQxeWHUDcQIDG0+O\nyLNyqlnxZ1me4DtDu2bhp9h/YhaFpSzli11AocLF2HDQ/2tTRAO3fEaDt1NUctIJK3ADSIEN86y2\nCbPZ+tG2Y1ES97Z6kXF/Zn9YesLRJCtwI/CH5OYNu6nboGq27peUGDxFhL/9+xKzdd/cdNWlTbjq\n0pNPEXFT3y+Dlq/enkbLrsMQYPFnuTPWMdKWvdKd5i+8hwFuysY69/dc0JjP/gzenfzPgN40fnl4\npgkVKp1ZAoAFzwUGi7XfCBwrtbmv79fznKFWN51/C9+WJ7P+urtcLuJ7hF4G69am53Nr0/ByaUXD\nhlsCl5fyn20KsIkEnl8z2VPuztVtDMw9sjHgHr/tCD1ZZZcJ/PdbpljwrrBkn/VJsycDuG3Boz5r\nm37VenT2b+TQc/mdgG+LnHfCglV2hpRlYNMPWX1gcWCdMjICflFOS0vjow0vkcASnxY+n0XtHct8\n3VJuDBXLnpOj96hSvgVVyq8MKK/LHZ7Ps+Lr2s92SmbBtpqeOgE0KD2DEiXq5Kg+6uRpt6lSUZKU\nnMqlD7onHVgbZyvU+bXK8OGA+6JRtbA17msFSc56h9vyFo56L/uOg1v/Qm8mL/+bvr/M9inf8L/s\nP3Py5Mm8snkzB4E6AruBmffcS/nymY9DjaS+n49hUtoBT6uTc23Wr1p1ok39BgHXbPpvD+2njcV/\noXjv6nWGFTf35cxChQKuzcyuY4e4csZIz/NDdX061za9vnwTphxY6dlfds1rtJr2HIbg11prm8L8\nK9/0PvfIfu5eNtjzPs4JC971Tb3dsu4y33OdW3fgl+G5T06CtxMnTtBnzX0Bz/FOWPDWd3DTb4Le\nI5iha28n3Z6J69896xLvuqHuYK57vbknVf+UlGP8vN0a6+mu8wUlP6Fy2QuCnu8N3ny7TePEeOok\nQKNyayhWLDbG5eY32m2qouqahs85usuEi9rX5YURXaNZpRz5atIcPvjMWpvReGbgWhsjULF8AfYe\nSOPmqxrSu/t1OX5e0SIFWfxldFvXvl+wgoET7NQPQQLImQMepHyp7KU/uPiFkfz+yhMB5Z2GjWXT\nwcM+XayTe9xN3bMqhLzX+hcDg7ILz6kJzM5WndzWbNtGp6+/9Wlp+7RjRy6uWzfb96rx7luee7i3\n2V2UflLagcBCux/zzsU/Eh8kePtkyR8h7+duGTv3eys48l/qqkHBMvx4ozfp6vLdu7hr4cf4LI+F\n1eriXFnhUPIxLpnxRsBzphxY5ag0HD2RSOfyrZi4f1HmL+5QuWR5Zl8+NOsTHa6f97jn80PSmU+Y\n6GmlcyG0oSm9Wz8achZvjyVPcMweKRnO2qbeVihh5PmB4978JZ9IYtAGqzUrzj1hgwwggzi7G/jZ\nhr9kdouIKVToTPwHE4QK3Cy9gLdxJvotJpNodnaz3KymyiZteVMnpfdd7/DPXzuDLo8FcEu31jzU\nO/yZX/nBJdd5WwOCBW/OcVjzfsh/i4wfPJrIlX3tFgZHQFGwAKRYK+l4ArNGFYoxbsDDJCWn0Lrf\nuz7XBE7A8H1OsOWxGvXztpDN7teVCmUD03KMnDaPPzZsYtW+wwF1LACsyiRViHuVhWCzWt+95Tra\n1w8v+DrnLceMRucEhqeyH0RHIngDqDH2TYJNWLC2ju/PfmuPBu57W8T8j7kDs1Ii/Hnr8z7Pr/+d\nlXA3cG3T4El6Q+nzx2fMPbre53kuxz0XXjU47Hv5G/3Pt3y/b65PK1c9qvFWu5MfL9h1yf2eGbC+\nAVboCQvBWt561BzEh/HP4ezqtM6xArUG3MV6lgNrPF2t7WUgLRu2POm655Z58ZeQym4gsOXtoupr\ncbmCj/VU2aNrm6LBW7Rc0+BZIPjapu79WE/UuyV+L/f1stZUdAcwk0Z3o1JF76Lm13Z5iyPuoTye\nYMc38GvTrDJD+9+Z6/Xd+O8+bh80zufZ/vnf3O/hElj+TvBgqWnv4d5R7PgGb1880IHzGjWMSH1H\nTpnFB4tWgMCMJ7tSNZM8bPd/+DEL9iUEDd4WP/EQLd/+yLMfarbp+j5PEncSE3SCmbdxHfdOnxJQ\nF/d2wW33U7lsWZ9rkpOTqffl2z7nbrj3SeK3bqXDgsmeevaRYrxFIp6ccG5BgjfxfzZ24OQ4t1yB\nokdFVS8AACAASURBVCy6OfQqEBM2LGXg6imewC+z4K3Fzy+Q6qmD8QnOIPRqCeLoAnWue2oFTNb+\nnCu8rW/t5/TGmV7EJfBkldvpcM6FXD+vp+frEthtCt9e+F7Id3XruuQBcARkceKue2CQJgRvkXMH\nYm82mchzqzsTLHgDb563PjU/4cxiwbvkk1KP8cGmmx3P996rtNTh7no5G7OXFWMy+C2+gU99vcGb\npV2NTblah9PJKRm8icjVwEisluqPjTGZ/rp2KgdvHc60uiDF/QNHhDd/7UfT1vWjWKvTx+sjfmLq\nrH8Ab0DQqUMD+jpmkaampnLZHSMxQNOq0LRFNb78cYdPALFg4qmxfJI/93g3AARWv3lyY92uffNd\ntiQ6sqbZX7t1A570dHt9/+ff9J82OyB4m/loF6qVK0ud17wtf+GkCvFs/YJbn4kLT4RujTt06BDn\nj/8k8H6O7ZpuvWj06UhvvTzHjOecbQ+cfMvR+JWLeH61Y7UDZyub/Tk7Kyz4azTZSh0SbMybe983\neDN82eYxGpSqBsDx48e5fN7LAXnewlkey7tYu+9s06kXj2T+v3/xxrZPfO9hX3MlbXjswnuzfLfA\n4C10t6l7AXln+fDzxuMSF/1W3IZ/Ut6CntZS3+DtmXMmULToGSHrNHzdVRAw5g2uLvkGtStl1s0Z\nGTO2PgD8Q5wcALzv7QKalJpPqVJn5XodThen3Jg3EYkD3gXaAzuAP0XkR2PM2ujWLP+oWrditKsQ\nVO+732fdyh3eAhGu7NSEPq/eHr1K5dCzT17Ps09m3vVbsGBB5n/r21X2WNY/O5TDG3fdwG0f+aXT\nEXzGKx1KOhb0Wncr58YgM04BNuzYwbXjJ4V+uKOFMSs1Rw311M0Alxc6k4SC8GeIurUc6x3873zO\ntgcDA7ZO349h5ZH93gL73AU3P0Ll4qWC3n//8YSQdQ0VtD39zXB+kmO4W9hGNOxM77WTCNVtGj7r\n2i4LrRQdJaQwZcWaMOEeH+ddHst3/FUwma2s0Lb6+bSt/k5A+Q8rfuGLxJ+YtWABOGZplpHivN/a\nd0zdZy0/Ye2/axmyd4jfXdzjvCzvNRtHz+V3408y+Z/m2uKP0abGVQxcdQPpjvIhmzt7JznYY97e\nWncjGSYpyNg6SMdqeZt+tB/Tj0L3eic3zjNc7Wt+kqv3V5GVr1reRKQNMNAY08HefxbAGPN6qGtO\n5Za3/OSauo6EoeL9VXjqOuuvJjExiVtav+o9Tuysb3r1zUNJSra/zdrfk885pxxj3u4W+qIcuvKB\ntzmWnBrQxbo4l5ZCC9e3f/zNS1/7zuR0t1jNGfggZUt4Jy+06jscT/IHgTn97qVcuXLZfmb710aw\n/YSze9DavHhNW+5qlbMWh9pvDscdKLjf45d77uTa8d5B587xjFt6B//6r9u3j2snfhFwzdy77+eS\n8WN86u3edqnTgJevCG9iy/ZDe2k3+VNvgUBBgdRMuk233vNsWPd2S0lPp/H3rwW9lwQN3rxdkZ/X\nvJWu8ZP8AjsT0CrnGDXBkqtfy7JOzyz4gMVJG/2eZ21vP+tiHm5wU9Dr3BMW3C1u7aUVM1mEp7WO\nyM02DUf/lbeSVbepi4yA4G3qundYY37y/H3EBek2dQlU5CpuqZe9v2+Vf51yLW9AFWC7Y38H0CpK\ndVFhcOcvKlasKNNWDYp2dU7Ke8Pu5v7un/uUffDWPbn6zN8+yZ+JeNdt3xvy2NHjqZQt4d33z9p1\n6ZtfnHTXaW4JtSD95qcDg7QBU36m1gh7QoMjdUfLAoWY0L0nW3v6dn/XeHcol4wbE9By1xL4slsv\nCmUjVUe10hWJvy/3VlQAKyHwhltfCCjvOHk4m9KPBrnCzdBl69cBed4yb5kztJz2LC6BRR0Cf/f+\ncuaXjGYF7kArmPXHdgQtt8a8eWUYmIE1u9XbsgcT23gDtmFr32NZwl84x9h5ujldjtQjft2jraUt\n9zV7NLMXBaAjD/Azn+BstXPyvmMBulR7k2olrKEvZxQpQ0aS87i75U9wYShPY/5jNXuZxofr/+SR\net9lWZfsmLrVvd6od7JGRVdXmp79XESfoyIvv7W83QpcbYx50N6/F2hljHnc77yHgYcBqlev3nzb\ntm15XlelImHUZzP48rdVnn3/tUCDjcdynrP049hI5JsX9h85woXvjQk55q2wwJq+wb9etYYPC3qN\n+17jb7qZNtVqes7v9t0EZu3e4XeNd3tx5ap83smb+BQgOTWVep8ND3qNu9WpnsTx631WN3yNz9/A\nd8ICFAQ23ts/6Du4nTNxkOc6Z0vZso5PU6Ko77qc1kxTCN5t6j/pwHBt4XOYmrI5jJY3b6udf/Bm\njOGSWf3wBkx2q5PL/a7O5zrHvDkDL2tbQQwHHWPqXiz1COc2PDfgazLqnw9ZdGQpwYK3zMe8wXvN\nvAm1e/91h2fconNh+tebTCDOZXV6frbqFTaxHP8xb76pQpzdpBlB9t0tbwVxSYp1HfDISeZ6CyVY\n8FZc2tC6xqcRfY7ydSq2vO0Eqjn2q9plPowxo4HRYHWb5k3VlIq8+Ws2hh53FaT8ylY1WL1hF7sP\nZ2dZ9JPX9qnhHHEWOIIOAzQuBh/0fZSLXv4g4Piawd5Wr4b/845hcgdEfw94nMIFs7EkQw7Ne+TB\nkMc+bd6C+5Z5h18svqtLpsl6x9x8R8hjwbT/8j02JCUG/3t2ePKiaz2fKwD7/I6v7uzbknjixAme\n+PYjpovVctbW0QXsb91/e2hVtWbwg4B7LNqSjv0Zt2kxb6+fFXDGLyc2h9ny5ma4/dfXmdjB2+Un\nIvx+hf9YM3hjyedMT/RdocG7wkLwb/MH7EMue0zdy4c/xLXA2zXpspfYsvbD/1HRoeh1zEieAhi6\nL7/b0Z1pvbxVL3crWSFP4AbQtUlg6+bLq28BThAnvmPqAPo1/DXsekXaNTV1OHmsym8tbwWADfB/\n9s4yMIqrjcLPbJCgH+6SIMEJHrwUtwItLVpcWtyhuLtb0Ra3Foc2uLu7hiQ4xYpLbL4f4zuzyUaQ\ntnt+kJ2Ze997Z0l2z7xyXiogkbbjQCNRFC86muPKeXPBhZhBUFAwRXvPMFV02uu82Vd0nh/XlXx9\nppi8hHry1nDMZM6+1OwJwKURzodYK06ew+1XbyylQhSbZ3t2IH6cOGQbY+/dMnrRevgUpX3ZMpbr\n2IdNlTk3OnXHJghS0YLOIxrYwblK4sLzJvOYEEM49stkGVj4dSMqLhiHn64CVbkeS4AQHWkJbPoT\noiiSZdkYEKAQcNqgAyf/sJMKAWiXtgizHxw3acTFF+BUnQFq66bc64do5nTep/O1huK9eaDhgcK+\n2nR+4dYUTGVNDu++ekK9w5KenTPVpgCxdJ44+7GOGtO/fPOSlmd6q+d9hHwc54xpPRuAILWiqk99\nVgsr5GsSsWqWojXLns5DIX4aeYPJ3suw2Wz0PFsffXsshWgOyrGI+HFjpvPA6is9eCicwo3kwCMk\nz520XmuvAzGyBsCtW7e4GnoMN56CsBQ33gI/4J3kW84/W4+bsAgYQtF0JYn9ER+4/q34t0qFVAem\nIHmQfxVFMdxEKhd5+/hQNN4A7BvTe+RKzuzVrlDePxGv3wRRst9Mp8ibcu3EyI7EjRub0NAw8veb\nahwjz02XIC47BrQ3rZdrkFl498pQM6G7ducOXy343TTWfp3DnduQImFCdV5IaCg5J0wzETH7uRUy\npGdufakqeu3Fi/TcoXhCRJM4swJRgAk+Jfm2aAk8fjaK9V5s0ZEEFo3rM88fr92BVdjUjrxJP+3J\nmWgiYPZab1bkzT4kqr++pFQTiqWWSJcj8gaQ1ubOX7zR2TGStzVFO+ORwlwNX2LbT0RWKkT5abNb\nxxF5U/TY9OFbmxBqOXZpsXkOOy8o+PFkE8O6evLWP/skUiVMS8+z9TCGYQHC6J51BqkSpAvXvjMI\nDnnLHL/quhCqMQybiKrU9xrgcL6zCBOD2BnojX2Y16o9FkDJzAHRXvO/jn8leYssXOQtZvD04XMa\n+wyVDgQ5c0XtMmD3002XYmxH3nIUTsvUxYYUxX80ho1dzI5DfxlJg3zPu1ZFLin9n4L8XY2eK0fk\n7fwEI9HK08eo+6bM7VCuEB2qfGFa55J/AHUXrlff21QCPNQRkQ7FctKpWjXGbdrCL2cuS/Z09q8N\niFxxRL81a1gVcNO0x/6lStKyeHHT+JtPnlBu+ULT+cyCG3s6diU4OJjs88yE1UC8BGj8v3SMrN+Y\nsLAwPH+diF7nzT7nzdIGxtcxQd6UwoW/37yhxJYJhJ/zhnq9ZtI8jCrtOGTs49tPSre3yJdTjo26\nbxo5sCJvWs6bY/LWnCo8EO6yQzgPiFSnCFs44ZC82YAlPvMt9/865CU9zrbHPtSq77BQJlllvs38\n4SrRXfj3w0XecJG3mEQ1T9ljJpO30l9nIWWajKRKnZg5I6Q+fIN/aUbxMjGjsP9PQNna40E0em0U\nstqgdh46Nq8WoY0S9WWNKZsWMjy8/J8j3Juvu53mlgPyFh0UHzWdZ+9DNPsYJTwQYGXTuhTMnAmv\nEWaSqPy/VPTIwKxG3zlc58W7dxScaVTgt19H+ilq/9fA5R864h43Lp4zpP9LURmD1VydDfk4sK2x\nnVrmX8YZxlqSN0FdyWDPOfImzU0kwJl6A8j++3DTXKNKjXPkLS3x2fqVtWTFl779UBTvwidvMiES\nYK+c+3b/yUManR2DTQAvBPyEMAqShtfCG97xglAhMX/xd7ieN+WnDVhVYiYNj/xoOSYVSZnsM54W\nx1vIu3Wut+n0Qsss7zs8hIWFMexSHbmQQypW6J9ns2nchMuV5XU0qZDEZKdFzjmRXtOFzx8u8oaL\nvH1O6NR4OtfPPdB9Q0D+YpkZN7/NJ9zVp0eJ+hN1ZXiQKiFsmPvPIW8fCz+tWs/6y1pIxp5UFcuY\njiXN61uSNwO51r326yMRzMrzfuHGs+eGOeFV9NqTt2PN25AycWI2nT5F54O7zd0SLEKePTPloGN1\no8hz5vlG0haR5y2WIBJisCuSToD79iFUe1uCtVCv1+rh2v2hI2oRkLfztYYa7BT4YyD6UOip6iNZ\neGUnMwN22s11TN5sAswp0IF2Z6ZbzrHpcuq0alPNI2c/Vp1jUU1q+IlsS855C5+8GatNI4udd5az\n/9lKg+1BeZ0jb7FJTvucv5vGfkzsD8wmvwrDTeiAG4eA2NiEa8RjHEF0BF6TPekREiVK/wl3+s+C\ni7zhIm8A1VLqdIjsQp2FKuRi5LJOFrNiHlXz9Tesrbzecnb4R1nfhX8Wcg2Uc950hMUq580K+69c\np9Ua3ZegANcsuixYifQiwPXuXdUk/ZjAw9evKbZ4lmpf+qkjZAIEtunFzv37aXn1sImk3WwZtTZZ\nWZbrhHDDDZuCnuwJNtFumnStT6KShMZPwKSH21QbegJWzj0LwUHBHOY2+pywJmmK0a1Q7SjdQ7td\no7ksPo5y2FT6ibof+xw0M3kzk7sPRd6cxYTLVQBwQwn1GkV6JakQe+kRqJVqMSmSZPkge7pxZw33\nQvqgz4UTkAs+1D1pnsn8GW8iCDH3N/Vvxr9RKsSFKOC7buX5fbJc1p8C6reryaoRUtPsoYvafbR9\nfCyR3vZt53DtymNAa4+k5KLt3P3PUCEv3lgOv9l1WFAIxsLBjcid9cP2EhRFkQKdp2jrC3B2qvOh\n0OfPX1NqxFx1fueKhWlbuWy4c876B9Dg1/XamlFEmZzZDcezvywBQOFJM3geFGy0b7HOkxcvSJnE\nuu1UlqmTsCd8FVKnYX79xrx8+ZL8i+aaPW8O1tEj87zxGHLYYgD+jTQx1eorR3FVPRLQh1ybJcrO\n4lfXwrWVjfg0r1gJgPR+CelxcY1pTOJ3oWwSbptkQo4/iXoS+6hi7fjmWFQf8AQ2lDa3ytJjzJGJ\nnOUKIKjErZWtCeWKlgOg9YnmUVw7phH5340XoXdIQeTI2yb//GiEDKp7XrAclzVDXbJSN9J7cuHj\nwOV5+w9i9erV/NJtPwgCeerF4smTUKZOHUrixIkjnvwZoGJZjSTak5+de/4ZyuAVWk7i9XvRIXn7\nY1JrUqaImf+PtuNXcDzggcE+AszvUIdWP683kY9lbSqRN2/eCO0W6zVZrj3U5m7u1YIaExeoY/Tr\nXRrVjaUHDzPS94hhzpTvqlElf86o3JoBoijiNWaKKRTq16cb2cZPMhQ73OjpuCLairztrtuAL9eu\nNN6XMzlvOpKjhYFFmmbNw/AvnWudpaDLkjFssKg27eiWiZniLXVcZAoWootCf/Y32DeL9Iq0y1CB\nZnkqxch6etQ+0BFz+BTWlPw5nFlmSORN239RitOmiOOH3jlnxnKFUwaRXoBx3s6FOC882Memp5Jw\nsZudp0857pZrR6TuITI47n+cB7TATYDC8XeSOvXn2S/73wxX2BQXeYssAq/epV3FcdoJfZ/SQMfN\noCODqvnl8nVB/UciKYLA1tNDHc5z4cNgxII/WHNc8rroyVS5XOnZfeWueqwnH8fHdSZOHDd7UxHi\n/ftgyg+ZwTP5Y0VZr3uZHLSuXt3hvCVLljDS7zEI0MgGISKsAr4RYPQgozdwzpw5THz0RgqV9teu\nPXj5kjIz5jvssKA/f6Blc9ImSxbh/Tx//ZoCv842nc/qHg+/oDd261iva1+A4d+yB25yyNZjwThZ\n8NaaCJ7+tgNJEyTEY8kY7LsmxJRUiDRVDpvmrEDzXKXDe0sMaLl1JmdC74VL3uyP9Tlviljvl7t6\nYCZimvyHTQDfsrrKXhyRNznUij5sCkr4dZnPPKfvzRHGnxnIPa7pyJsWhpX+YrTj9OThx3zGHq8T\nLzUgSJa+/hTkTY9Hf1/k1LPvUN4zgEqelz/K2v9luMgbLvIG8PeT5zTKKfdF1OW8LT4/NFyV+JjG\n8QNXGNhuibq+/qcoCFSqm5ueA61lBioXG6YdyJ8iq7f0InGSeJbjXfi4MFScCnBidEfixjGKdd57\n9JRKExapY8BOW033WgS+8UrJyKbfs/XsRbqs3Wawr84VYHC1cjQqWlC9HF7BwnW7vLeN5y7Qfcs2\n816A5fW+xSdTpnDv++Hr1/hYkDdjMUUElaKCds+OvHWC3pNnZUM315KACeDf0Oh1rrN2OhdCnstj\ntLGjC9ak75lN6rH8F4ogwL4qPUgZP6HBTv6NgyRtXgtCGHF7LFE3VllHOjckfT0q5ioKOCZv5pw3\n5GsOihGcKljQjrt7dMM7VT4iix1XNrDl/VI7e2byBjA834ZI249pvA95xpZb5cCk3abLrdOFUkHU\n6bx1pozH59mL+Z8KV86bCwDcD3hieb5pvsHaJ62SnC0I9J7ehC+/Lhrj+0iRIrFEHsOMDwRZ8sfh\n5yXhh2m+b12KpfMP6j/9nSJuQUHBVKs8Xp0DsHxlW1KnTh7p/dtj7i87WbrhFGD84t+/vpfjSTGI\nYs0nGcJ/9uTj6NyuuLnFfIJwhDpvwPN370llR95+3X/cKfvKb8fa648YCVTxzsMV7zymcTmGSvsY\n6ruHoVv2qOevDZQI2s+79zHl0EltgsU+a+XPS638eRFFkWwTjKTPJ1MmSs6YwYOgIAOZ8u+qhVRT\nJUhA1UTJ2PLyaTh3AoHte4Zzx/Dy7VuKLJ3BuBI1uHjrFgU8PBh+eBP35OuX6nckfvz4eCwcazRv\ncU96CAIkBs40NKcLLK7WmkKbJhrOeQJ1sxakbtaCpvGOEL3He0HtbVpqex/1XDVyq8QNYHf5iXy5\nyyqULUR6B3GIQ4jgXPu4jO5Rq5CsmLM2FXG+QGPYhVpIFZvWnjbzcRjJ8KJJTvODQ2Rw9cZRLvIj\naqcI9ffJJhc+tMeNXXjSnpv0AV5hfr+ncDRwAz4eO6O1FxdiFi7P2z8EVf+nE4XUEbEk6RKz8oL0\nAV0ttS5Pw15YVzdn1aWRJE6c6APvOPqoVHKEdiDfxrYD/Q3q6BXK6avt1BgQO3dFv3AhNDSML79W\nCgukc6N+qk2ZEl7Rtv3k2StqdJzrsJtB3DgC++dHXUft9LWbtJq01kD4Tv/snL2vBk7m5kvjntb2\n+J7s6c1eXFEUtdZY8jrHB3cgfvzoiReHhYWRa/hUk4dKT2b1xCaDm8Bt+bPs+zxeDK7lXD7ZurNn\n6bFzp8OQp3+XHhwMDOT7TbrkfQsvmp68dd+8jrV3byi7RRAgoK1zhF8lb7p9pIkTnyMNHHs+1IpT\nQ9hUeg4S7TxjghBz+W72KOqrEUh7z1tr95IsCDqI4uH7NqUPXb2tk+HvP/uLpmeUMLF1tenmMtPC\n7ZIw8fAMjnHOsAe9jRxxsjOg4E+RvsfN/ivZ+WI9kryIfdgUxuRfbTlvwoXuvOGaTJ60CtiuniuI\nF8+6cCYmsPZGK0ROIajkLQyITe0sJ8OdtzfQC72XLgWtyeXxz8gn/ifAFTblv0PeJnadxfYFsmdD\nR8SGbu6MT0nJ7b998wEmtVqmXgNI5OlOmlQpGDy3HclTJzXY/Cpbd0KCwkzyIr4Bk9QxXetO4eq5\ne+r1pCndWH7QmMNhhaqFBkCIZlPJeZP2D1tPDg13fuUSww2dGzQiIb3YccCsYdW2zRxu+D3VERaB\nXTsj/wH9MSCKIr3G/c6B83fM3jUBfu5ZhyL5oi4BMG/DXmb5njJ560QBmpfPT9e6FaKxeyPy9p5s\nIG8Xx0ZPvDfnUF3bLHnfE2qU56vC3lLIVPFI6b677TXhrv9k3MPLt2+ZsmcfSy5elMUYNBuWhFBH\n3vRwRqQ3r82NC4SiejDs1imRJA2Hn983zLHKeXMX4EpTxVul28Oy0fJ7EF7Om86mzr59yPVa3UEm\n+/Y4+tCPNkcXoyejik2bAKeqj+DUk2v8cGyhaT2FpBSwJeM8T1DIW5H4nkwp2Y5yO3uqdvdUkN5b\nv79v0+6sVjRiaJNlEVpVrgFkFlIzpeRgdR8Nj7Q12AErqRBYUHRBhO8DgN/Di8y8Nxxr8qaFIPXH\nHztseuXx75x9NsZuT1Ajwy7ixk0azkwXPhZc5I3/Dnn7VKiWXac/JSfI+F4dS7U8fSFMIlMC4HvJ\nSOjevHnD1KlT8fb2Zlq/I3gUh4Cj0qf+qt3dSOJApkFBVMhbhS9Hy2O0/X6u5O1jomB7LVwoCjCs\nQTlqlXEubDZl8z5+2WV8Sj89rjOxYhmLGYKDgykwQCfZoCOLbUrkoVutyoSGhpJv8DR1iKPG9Fbk\nLWkcgSM/dXVqz1Y46B9I0zVrDXuzJ8z211IjklCAb7zy0K5qVYM9j5m6cKQd8fL/obuqIffwxTOK\nrZxnt45oWs9Rh4VAC/K2+foFOh3dFAF5i6hgATILCdhUuxMlNozmbTgivYfKdafVvoVc47FJN07f\n29SGmSwO8KrNz37rea4jUMq1xQW60vKspsOnkDd7LLi8nt8e7ZbtW+XFOSpYMOe8JSEh04tOosWJ\nNijFDPnIR/ei3Wl7opm8olkbTt/btLhQjYYFmpr2eej8bjaK003kzaghJ3VZsAnQN/eflvcbXVx/\nvJFTz4Ya94CLvH1OcJE3XOTtU0FpTi8aP83ZcvHjaL258HEQEhLCpYD7NJ4lh4MEOD9RI10zNm1n\n9r4LDpu+iwJ8552NoQ2+IigolALDzOTt+xkLOPHwmWnuF2mTM+cH6Usyx3BjJfTVgZH37k3evJkZ\nV65Z7vNGdynfKsuUSbrzonpfAZ3NHTGWnj7JgEO7LYlfGuDIj+HnwdljzLHtzL50ys6WkwULujkR\nkbf/Acfl0OmLoHcU2zwOwiFvS0o0p1AqTwAKbx6odnwIr2AhrS0xr3nOa7RepmAkb709a5MjThp+\nuDbLaEP+6Vt2LLFtsam+v6s2Xxei3FRG6sywJWAnc+6tsfDOaYRrRfG5RATnyJt03DH9IObcHyqN\nRVo3tZCBzrnGEzt2bAae/xr7Ru82mbgppPFDkbeIcPh2Fx4H75T3Ju2xuuelaNkMDnnGlft5UXPr\ngAz/O0rixBmiZfffClfBggsmqHlvelKlC7MiQM+pTajwTfQKFhbu6E1zveSIHap6D0TWQCB2XDeC\ng8I0oidvJ0/hVEya2yFa+4gORFHky+rjrcNmNoG9mz5OYcLnjFixYpE/e0bOT7ImSw1KFWH2PmuR\nT4CVTaqRP3dOcvc3Fgs0L5RDPTzx8Jnl3D0PnpBjmLF4AmBEhRLO34AO3WrWpFvN8MfoixUAPKdN\nBAFqTZ+IBzC+bUdyzpthDJtaIH3sBOprj3lSQY1+zrqaDSiUxljpmj2hMacwsFkf7jx/RukNjpLW\nBfwb/WTI/QoTRbL/Fn5aw3FdzlviOO5c+Sbi0KmCEgk92f8qwCTSa48HolTlahPUjwHDvkGkVlZZ\nkkSnHayQPy8hAXHcpLzJsTk70ufKdIP9smie4zn3JI9qmCjXS6GI8dqQCJRI46NtMBNAxx0WlH06\n6q4w+GxbUMdKcx9xi4GX6+s8b/oCAaibuh95Upa0tBdVLLpeEi03Tctr82IagdylsFthToStxI3f\nkEK9NbGRA9ip7i1/7FXR3kfsWEmAvsBolLwGF3H7sHCRt38B2pbuz+2rcsWpzeJTNSxMInCi9Efl\nu+xAtMlb6vRJ8b082uH1BMnh9RNpL982LcGtW484sP26YczFU4+oUmQIq3f3JlGi+NHaT1QgCAIp\nU8Tm4eNg07X2LYp99P18aHSZuZq9l25LB4pnTFesGluAE3YdFrYePUvPVbu0E3aet3KjFxrGHxvU\ngQQJIi5WWHjqKr2/qY7/o0fWAxyQg6h43OzRe9Mm1ly7rq5jRd79u3anxKyZ0oEI5wU4D2yaOyPc\n/QEE2nvclBw9HeK4GSt1AVLENX8cH3kQ6HghRLIsH01AYy2R3BYRq4oitlw/Se8r61USphEyiYhF\nDtL4sjul9ykpCVhaqheJ3K2LqPKnyo5vqmmW1wDWlZL+n+oeam+wj46IKcQuYiiEL3wM9ZY8upFt\n4gAAIABJREFUeSduHuK3Z5McjgsVNQIniiEOxzmDw7dnc+7NMhPR1BNE6bWNG3QGwjgRZiSYsJEw\nwCvOQHJlqB/hmqcCZ/CaSbJtxatWlXwpxxPfTlImX8YOwKd7GP+vwRU2/Rdg18Z9jG+1XDqwKz6w\nrzb1vTudiBAcFEKt3LpqTaWQ4bpjT5s9NKFeaa6+YMHbJzVnj/+lHg8cU5vSFZ2XLnAhaijaYTIq\nTbUgb3oCIwJdqxVn1tYjvLM3JGAiPUp48eK4iMlVrgGaN6101vTs99cJBdvb1J2LLHGrs2ApFx4+\nMuSkuQNdSxVn9GGpy0McAd5brK33wN179oxSS35RjyeUKUePA3vk90Ef1oRMghv7fuyGx5wJGAoW\n5PtJI8DR1pHz6D5+85oiq6c7FTbV9OLsQ6CgFAtYzQ2vMf3F2kM5cd+PlicWmT5WTlcfZvD8KRWn\nzon0Gj1hjnLe7HH/xV+0lfslKzbqJC9P5vhpmHl3KY5z3jSR3nEnJnIx7IJ6XSFA84ssBODHk98b\n5upz3gblnE7yeCkAGH22E39zX76m5ZdJx1JpjJ5spSInz2zXEQmysyuN6ZlLp3doh7/+vsqGh611\n75s0t6XXISfetahBakxvDP+6Aanjt8YjpTnv2AXn4Aqb/kcRGhrK0CZTObblskrW1tycTIIEUqim\nWpr24c51c7NWzh/eZQGHNp4Hpbmw7lF10C/NLOc4BU0JFIBhU1rh7h436vZkVPxilFFqQxDIkjU5\n8+a3jbbtfyOOzzSTn5GLNvHbST/L8XWK5qdlFSlEaRDpxexrsSJtLef8xpFAiZgJglmnbmuXpmRK\noenxVRk6mZuicUxkMW/fAcYdOm70pun2PL5yRap556d1SefDV+mSJCGgk5bzVniGQjJEk1ftlhiK\nx+wJ0oHFPTyIYK2Gfyzl8OO72glDIUPEXi5R1A3VoWLyLOx4ciOC1R2jSNpsnPsq4v6jvdJVYvy9\n7U5aVe5HYGURqTCqwu7uoAs7bi9n/L0LCwuj7dkR2GPr012szDWT8plLMeXoPA6GmqUwuqXpqL7u\nUagrLU+01n3ESWu+D3pP3Dhx+R+pec5fhvkJhDT4UFglbgB9vR0/DA88r+nAKc9IT4QrIIbJHlJ9\naFfAk/BbiKVOmoO2SfdbXgsLC2XZDel32k0IIxfDKJitWrj2nEEZD+vPBhc+PVyet38gBn0/hWN/\nXtRO2ARSZkzCktPOe8as8ODBY1qUGGUmb4IQKa+bgicPX9K4kjRP8byt2tmHJMmkEGlYWBjVfIar\nX0fbjg+OlH2VvKmkQGDWnCZ4ef03ci0Kt1aS61X3CSfnRj+sGBnk7SVXhuqIWTpg+9hudFy0nl1X\nAgA5F8nOS2fpadMdz6pfjS9zOe55euvWLZovWcMdnRfQM0lC/J+/srMvqvYFwK+X476mUUXfWTNZ\nwVu7dWFB+Rq02L1ZXT+gVQ+1EtUK79+/59y5c3x3aRdqZaoCO89YwPeSd9xa500b2zBzAYb7RJDs\nJyNUDCPfhmHq3HTA9tpDDGNWHNrN2L93oWiwgUhRIRXN89emRHoPdVzxrX3RPICiXNkpckdw4xkh\nhq4JO74YQ6xYsezIm/ZzVq4eZEkl5Qh+tb+TacyiIiNJ4i5VsDc61JFgQkyet+qJKtAkj7HDS4vj\nLZBywaRjxfMWXQw734ZgHgKax6qt50QWBHaR9ySNi6mihaCQV6wKqCCvJ3V6qJ/NOdFsBQGPlxHw\nagYgpeBoHRagZMaLuLlF/4HbBQmualP+m+Ttc0TVPLILXf5eWrmvL0mSJqRqgYGgSETa9TZ99y6Y\n2mVGRZm8uWDEk6fPqNR3gXQgfzlM+KEm5QtmD3feqzfvKdVXa+atkJyzUzQiePDSVX6c/6dmW4Bj\nozpQtP9MdY5+3fC03l6+fEmHcfNRvlqWff0FHh4e9Fv7B3vuPDbsY8o3laiWLy+hoaHkHjXNJGps\nT/wOtm9BKp0MTf1fF3Py8WN17O/ffk1BT89w3w+ALFN14sz2HjQdWexftDgjTxy23JPeaxYb2FCl\nHtW2S4njCOBbqha5czompwo8Fo8x2ItKtWl8AdIhsuW7gdx+9TcVtk5Xr2cmPrd4bQqbZnRPxNaq\nmsdx/72rdDylJfAbq01BCVeqe0AXdjTsyTpsqj+vabdZi/T+Udbs8QoJDaH+0U6GitQhnt3JlcYs\nqt3z2E9AKMFCEK95rhJlGzC3yCLT+MjCqtr0+/RDyJa0ULRtxwQ2+ecFpBw5N5JSxXM/t59uwO/F\ndERuSdcM5O0Sbm6Oc1lFUeTCnYzoq01zZ7zrcPx/Ha6wqQufBaweAF6/eEuSpAnp2L8aM0ZuUc9X\nKTiYBm1L0KJdVdzdY7PVRdgihSKtdMnRAvRu5EO98qUA2Hfltmn8mRt3IiRvCePH5ezU8D12Pl5Z\nTefixYnDhfHdyKcT6XVGoDdRokQsHu68h/CHxb+x56ZzXwSlZi0AAQalT0GTJk1Y1bIpXddsYPON\nG4jAt6vXEU+ACz3D9751yZWXP65c4BXIGU1QNE583ge/4RyQBEhHLCYrxE2HOeVr8MPuPwzngkEj\nbjKqHdzITSfIW0zgLSI3AK/VcuhT0Ejatm+kwoFc64ao4wUBssdPZbBRJl0OOGVvWaB5mpJ0LlSd\nir795HbrGo5UkYin1Bor4rCvYnN7uUlU2uNY1+/2swdkTJLGcC6WWyyZPGrrpEucmku3LzH87mRr\nkV65kMFN3VcYbU80Ucc2T9KO4llLObFnDUPONSMMzbs2JO/GSM0HmHGlvPxKNOTSVU03hsyJolZt\nrSAsTF+gFUao7GnLmKw2GZOZW36FhYVx5HY2QFR7txbL5I8gR2jO3tJIm00QiE8rsmYcarLjQszC\n5Xn7j+DVq9d8l9NYhLDRfyJzhvzOH8uOqecAhNg2/rw2IUbWbf31eO4EvDQI7rongg37ovbHXbG0\nrCMnP+Ir8iPLf+tI6tSJo7nbzx/25M0GHJsfM2HAHSfO0WPJTpMXbcfA1qRKZqwEzNdzsmXBAgKs\nbl2XXNnDb/huj5yDtdymPhWKM3b3EWsJF6TCBbU5vcX6yutptapQPXduso+fhCgax9yIgLwZPG92\n6+vz3+wxbIcvv/rJKQ12wrt6L95NJ4oWeu7dzOqbOhkWR543XRT2f8Bpiz6noCNuwIVafYgTx/kW\nZt9sGoEfQXbeOckrdrjCQOLG1UJq796/o+xu6e/bvhm9VcHCvgrSZ83Gm/uY6i+1nlLHInnkCgge\nnCPAosMCbCitE4e2w/b7e/j15jLjHCekQpSx/xOSMLaQY/tWGHjua5m8fT6N6aODe/f2EBjcEs2r\nJlI001VsgvR/fvbWl4Afyu9D+gQHSZYs86fa7j8CLs+bC04jYcIEpnOxY8fiwR2zxpYYInnTwusd\n6Czmr4tZrbSMmRNw++Zr9Vh5xo4scZs1Zyer1kmkX5QLKvb+2TuCWZ8eJ36J+XwtBVtOXrQ8f//p\ncwN5C3jwxOg/EYw+lUgTt0FGIrZg15FwCxY2njcLil7v59iTdz0KOW5ZBPDX3WQyQGlN7zl9okzE\njOQssH1PSqXPpJE3S0hzMv8yzjD3Zsvexqb08vmGGb1JFdfGVP/TOPRc6Yo8srqnIuuqkepJ5U/4\nYp3eDnua5lw7DH0l6uWvzd5wP4IAUZUI0aRCRErsHGYS6dU+OrT9asUBxvsot7Mn7VNX5cIjneCb\nbnaTBOVpUqQ2NfZZ9XcVqX2gAzZBkwzRo1LaclRKW850/nXQazqe6aj7PbN/bwWSk5yRhaZYrBk+\nhudfx+jzrXmDJIMz5EItQCOGg/JuNs0JCgpi5o2aKKHWbrl2WNqef62M/Eo0SIUkJjNfZ18R4d42\n+OeX9wIQxhcp9pM4cfhdF9KlK0c6/B1e9860O8J1XYh5uMjbfwi+d8xaSSMWtbMY+WFRpbD85aCX\nEZGPtx4dGC5pXLAs6i2S9ChdMqNE3j6QLlbJeprswYafW5IyxefflmbXJa0WUgDOTrYmRJ5pknNh\nwocrjHgIUlqYAFcGmdd5HxzM6A1b5WAP1PHMaBqTc+xktRMAAvj1jtx+d1h0VJg4fSIzgOICHFYM\ny1/4g70K4DHLvspUYEDRsiy6fJLbb145XEvJ0Lv4XUcuXbokFSsAfxSpSZ48eQDoVqqKOv5dSAi5\nVo23tHX6/UO7PUjIu0Eihsqv+6Yv25AjuTHsCJADd3KvHwLApTrSzzsvH5vGReXPJjyttYrpC+NO\nHA4+MlY32gSIFSR5CP8oK31+SQULUcPQoyPxk4mITYBSCUvQNpd1dfqAU91of6oxIIUsayatRxVP\nc1jRChVi1WdTiNlj5yaYH6IBTjxeazh+/PY2KeKZf68l2BP4VJRL41hrzhoS8Xv59hqJE/tEcm74\nuHQ7PfrctxwZ78WofRckuMKmnzHWz9nCrB4rEOTqtNjJBDYF/vrR97Fo2kZWzjionRAE9VM4PKFe\nRwiPvG07ZlR7373zNKMG/qF+GW0/OCDS630K6Mlbi6+L0KbhF59wN2YU6GTsH7pzWGsqDJ4vndOF\nCk+N70SsWB/3GS/nEF0Fq24vjnTevpu7gDOPn6njrvftxiE/P5qu2SSf0zxkvUoW54dSJck6Ufuy\nU9bJHCcOuzt0JKpQyJuk8i/ZvNS8E3sDrtNuv68uDCyq9xXYsleEHu579+5RcsdiEGBTgRrky5dP\nak5v513TChbgRgMpdHrs4U0a711iGlssSTqWVmxluZ49edPj3N3bNDk91xA2NYRFla3IxzmFZFwX\nnhjG2gTYb9Gd5did8/S9vkDdq1bsoNhTCiJEbPZFDw48b/ZocrS1zn4Y8YS4zC5q3cGi/anv0UiI\nRHamF4rYuxVV3Hh8jI2P+ql7k9bV57ylwE14qO0/ijpvlx4s4sYbifzHVHssg/3bwwGp5ZmLvFnD\nFTb9l+PhfaP6fPD76NmrlkEXdhAEfG9PdWqed8lsRvLmJPyu3qNjvVkgSNWmXQbWonrdImw96Xy+\nm9+VO4bjoKCgSOXqfCoc+s1xXtSHQqEftLyxU3OMROfmw0fUGbrUrH8mvz508YZatNB+1GQOPISE\n8MGI25s3byg8eg4AxQRYNCxiz1iO4VphBAJc7d8VQRBwt+tWkG2MuaWWgtbFfQgKCrK0/zbEsQL+\nrb//5oul2oOTfdg0PVLY1Art9vnq9mN8WL7/6jnpEiUxzRm69w8W3LxgN17kqzOb6fH2qWl8Ore4\nHKjfg6wrRwEiWVeNZGeVHymWKjPXvzM+8HitGc6x53fxWjPMoHOmF/K1Im4ALU5LnQWksKnAqepS\nHl1R336WfQmu8UT1oiqeNxGR0jt6mXLetj4wVUPIOxOVenXMXieB9aWmO53iscRnvlPjALU11rJL\n8znyTuoF2uV0A9IIGelbwNrz6SzWXJrENbabRHrdMHsn09CJR6zlhxzLo7Wmglypm3IjYLwqj+JG\nOdMYURTZd1MqdLIBpTNfUwsUIkLujAMB6xC9CzEHl+ftX4btq/cxqcMK7RFb/vn79XEc8L3I1DFL\n4aFA7Eyw8aBz5O2fgPfvQ6heVf5AlW99566+jid8QhRvrHnlFK9jlZJeDGvvnBaXIzTtOJkLciGZ\nPXk7fiWAttPXm8ibvXcL4OREyds2dslalp2+iQgkd3djzyirnKOoIddAY6/Tyw7Im31vUz15uzbA\nOGf6rv1MO3rCVGTg10cb12HhIrY8fmK0KUBcm43LXa1D8qIokmWGMSxlT9565fJm/JWz2nF+HzqU\nlPKTPOaON8252Tr8/Mp+e/9guT150xULKBpvekjEDWmOg24J178biNea4apdTT/bSN60uebm80qz\nlG/JR7tSlUieJCnnH96k+ck52JDtRaLDgkLePjaaHWuhegMrCOX5vkhTy3GdTjUGHckSgCkFV0Zr\n7dGXqiNVb9qTt/Bz3j4WbtzZxJ0Q6e/GBuRK8SspEpb9pHv6N8Gl84aLvNmjWpp2smi5kbwNXdae\nYuXzaOMy6b6obAK+gUYl84+NysWGaQc2qNesMK3b1XB6/p+bTzBxoqTsrnx579jxEzbnGhp+VFiR\nNwQomTcjhy7e1jTEWn9B7TKFo7yOKIoUaj9Fta/83D2uLTsuXGfE0t0a0dGN0cuG5O8uebscNab/\nUMg51FjNigCHOrdk6t7DrDx3WR3n7S7we08j6fL/6y8qL1gu5br1+Xj7/mHxfLa+fgaCRX/TGEDO\nJaN5h7naNIkApxv1c5q8KcixVvubC689lhV5U47dBDhZfQSF5bZYim/meDVlL5GDlUjv9nKRLxrQ\no/GRNnL1pxbaXeIzn2bHWqjruAkwMs9YUsdL7bTdnme/k+1p+81Ibjrkj7gThT0mXK4M6NtlSUK7\nHXPuCmeWsTF9s+xHIr2uC58GLvKGi7xFFd8V/YlXf0ldKz2KJmTWGnPLmY+JI0eOMKjzNvXT/+v6\nhVn72yn1myJdhrgs+i1mK1c/R/y2/QATlkrSLccWRb+y9OdVW5i357KBBJ22aJPlDLrOWcPOa7dU\nO3riF27XBAGO9W9HwgTuTq+1d98+2u4+abDnnTYlv7X+XpMJsVvnYu9OxIkVyxA2HVq2BI1LFKfD\nyt/YcvuOwetY4H+JWdOmtXqcZYrkXcsDbOoatfe+9YZV7Lgv6+0JInVsiZjS5kf1eub5xirThZXq\n8GUms4isFc79dZfa2xbr3hPps3trxWZ4pU6PKIpkWyXnwil9Sb/ujbuTaQaKzpuz5M3NJuWhGcYq\nWxPgYMWhxI5lDGmX3tEbe3JmA9aXGkwS90Qm8mYTYOsXjsnb3Ud36XhNChXHF2BZSUlsuv7hH8HO\nq6X8zER6Rvs4n7rhCCvPzuIEu3R5eNAr2wySxzcWgoSGhjLysiTaK4Uqw1SPn5teiBgRQUfeALpE\nSN5GARuxAU3CIW8PX5zg8OPWoBPe/SrLOdO4sLAw9tyStAeVJopfeJirgF2IHlzkDRd5i2kEBwdT\nK4cckrEJVGiYm57DW3z0fVy+cIvObRerxx26l6fOt873o/y3YMmGHUxbL33IKgTpxK8fTi4kPKj9\nTWVCVjN/Zjadv6mes/Li6UndpVGRI41qyFSenyJeXB69fW+wr19n+4/N8EiWzJTz5tenG6UmT+OB\nktOmkA8BrvWQ3sug0FByTtfSCPyjSN7UvqagEqjAH6SHjlzzx/NGCYPKe7jZKmJ5mtyLx/BGnuPf\nuDdZl4812D/+TRdSxJOqGFesXMEA/E2etzZpvOlT9ivVpt7rJpmOnOdtuMe3DLn1O+GRt70VBxEv\nljvfbxvNDZ7pihukn1tKDiZh/ISW99xg70CeiC8xd1jQqk4Bvj7YQX5lTwi1RH+bACuKz7Vc57+E\nDf4F5FdhDskbwK7AHGiCvGWxsUcubPgJnwytHPbGdsF5uMgbLvIW01g3dxtzx2yTDpSKUr/oJeeG\nhypFh+rymMzVpi7ArJW7+HXrGZN3Szk+NLMTcePGNhQsIMDPXepQPJfnB9uX0tdUWe+CRXP6yEKp\nNAXratNF+w8zco+kA3e2x4/Eixcv2mvGNDxmTzAWJ9h5IfXVptgRpVPfdSBZQiOh0dpjwQjvcnyf\nv3i464uiSI7fRhKKRsQ6ZyzGjLtHtUGCjowBGXHnjvBG3os0pGH83AysXM9k/9nbV5TbNRarfDg9\neTtWVQqdltj2E3pypdg/YFdx2uLAKAKDHltUkmqeKc0ObCqjtcja7L+DBQ/WArKwbzTI248nm6jr\nzCywCDc3N0RRpOuZRuirZpVKTX07rjH5Vzu9TlQg6bzpq01ttPQ6ECkbm/wrAfdVLyBAyZRbSZJQ\nkyY5f3cwT4NXIBE9rc2XO2UplHlRtO/jvw4XecNF3qyw/Nf1LOknEzBBoN+qlpQpG/XcqQ+Jw4cv\nMLjzGhAEOvetQc2vP899fmjsPHiFfnP+NCTkH/61C25ubhRtOUnOY5QuiTZA1Mjb8bldsdlsBAUF\nUbzTTHX+qdndOH72Om1nb1bnHp3SIUardVUCJ8Dxoe2IF08Kjeb5ydyw3hnPW9khkyWdN0GTMQGp\n60LLUlFrC7T67HnmHT+O39+anIjys14OL0bXjF6hiB4lZ0/gnrqGjryp92MkdPbk7WrjbsR14v/n\n9bt35F0zGX2BAQLEFiAbblwRQgCRllkL0r9IDY4+8KfJgWWaAX3xAUAkPG/7K/Xhi50KeTPOVchb\nDfecPI/1nsNvbqhzC7ilY1aFLqZ76bJzKGd5Ye55Kv8sHD8LY4p15vt9/fibl/I1I3lzhIZH2qIn\nfMt85kU4R0/eJuaZQwL3BHQ53VC+Kp33ipeHgPfndPcsvRfVkjTni0wx9/v0IfD8+SMOPqkFwksg\nDDdSUcVzz6fe1n8KLvKGi7xZoVqa9tqB/Ensez9iDaTPFdW+GIES8VIS/EeOr4tPCXNfyFGj1rBj\nh5yjIQjs2vnTx9omzTpNxO++qHZsiBsHdi91TjLEp4mUb2XwrtkRGHvP2+HZnYgd25hTZI+C7Ywh\nxJQJY7NtXNS1zOyhJ2+zm39F6dzZAGvyhgCXRkZM4JYfPcmwLftMBQtgrDYFqeI0ODiY3ONnOHyf\nOvoUZdGZ07wIDjacR4CiqVMxvUoVfJYuUc+FFzL1nDFR24eFFy2jezz2t+hgOTfzfMWDrc2pmzIj\na5/cxkD0gMDmfSxtBIeG4rVCyZszki0DETSEKFFDlVZN7TXyZj8n4oIF5dqp6iPVPY478DurX51S\n5woClMeNkZW1MXqU29nDYH93+UlU2tNNfU8yCsn59YuoSU8o5M0mQFW+pIlPoyjZsSdvVVJ8Q9Y3\n3sx7NwAb4Eke4gmJaJ4/4r/3+Ze68YQbQLAux02y2zPXtijt70Nhf2A2FO9cHKEjPpnNfxtnb+UF\nniO9z/XIlzGygsH/Pbh03lywhO+Dn2Pc5rWzt+nynawYLov0RkWg1wrNGg/l/nVIl0WgmE9Bduw8\nTbZcSRk3XlJSt5LfevL3W0tbadP8L0b2FBX4PTAev7eWE7PE0SXmD8VizSdpxMAOzrbJOj0r8qHM\nM4G3aTpltbr2OV2nhZr9JnPzPZJnb3QnLoy3tn9xTDcqDp/OvTeOtdMcYdiWfSAtYaHqZTy3+uQ5\n+m2VNLj03kk9upYrjU/GtHy/VuoxmRA4G0Fv06ji9ru3Wt6bnZdNEEAUjHcUxz0ujrDi/DH6ntYl\nrNuTNQQCGvcly3Krys6IH8oX5v+Gktnzqse51g1x9Otmgr2sWmHfftiAo1VG8Mer06bxuwihzPY+\n7K80ltkXfVl6f5cuP834v1phtyxRIZPJuzxm3KH59C7Z2mQ3IkQ3123bqY1sYpW6n2zkp1NBrXfs\nBH6P0MbDh9eZ/bAHUsGCFsoFrSjgn4BQ1gFWfzcScZPwG+Aibx8DLvLmglNI65lMevEB2kndlx1l\n9/xhvf9psMGZ/X/z14OXpE6TKFJdFVq0rEiLlhVjfI/O4ODvMSvMe2yh9kHZcdxyjlx5EM7omMOU\ndXstz999+kwibjIGLN3M2BZ1HNrZMTD8NkZdf1nG1psP1Y/9K04I9Spjrw3oxsOXLyk93U501eLX\nM9u4SYZrSqOqrJMmaTad/LUO6Kj9Hz99+pRCK35lWMJUJEqUiG4Pbji1dz1W3PHj29RZmVijrula\nw3zFmHJ6F38hEc7XJhuigbj5yw3ppd6mEa/e/NxahPNrEYCLtfuro7S3QqBPti9omudLAEpuHshr\nkxUNYcDW2+fYK+e6Fd8qFT4pfVBD5C08fWtut6WsKjggnbtDzvOxOg/rw6ZVheqGay8wCyRHBIm4\nmVHCrSHlclhryzmLRdcrgPy/El7F6ZkHY7j5ZiVatamNr7KcidB+GQ+pXdmhmwWAOxy66SlXyEIi\noQm5Mw3HO9PtaN2DC1GDK2zqgiVuBTzgh0qyHplM2L5t/yWtulVTx1TL3U/7qI0nQAj4nhnhtNr5\nPxH7T/jRb+R66fW6mNPyUsKmCHB0ccx7hdYdPs+wpTtMROXMjA+ng1Zn4gKu6dpW2ee8rTh2kmGb\n95lCoeYEf925cMbqm9O/fPuWgtPktkeyh0cJp97o1Z0qEyfhJ8+3Cs+6CXC9i/b/EBYWxv4zZ9h8\n5gyVCxdm+P4d3LJoTG8Fj7nj1TGra9Snrq9O4NUuRIkA/fKXp22hoiY7L16/5urjx7Tfv5zWmUrx\n19OnvHxznxP8TTnBg8ENzSHBbL+NMNi3CpsCzC/yHW1PrjKcEwSomdCLsRUku96bjaFLQRBVD5Ig\nSF0QBKCwzYPZVaR+oaO3jmaj8JzDlcdQansflLCsfbGCAnupkM4pv+KrPBUsx+rR5lAfnogvEQRY\nUzJ6kQc9eZtdeGm0bOkx8qLWeN4mQN/cf1qOCwkNZuZ1qZdtRFpvi663ACTdw4jkQqRq0zDi05MS\nqb4mYcJETu/90M0sKO+Jm/r/40HRTHuctuGCBlfY1IUYQ7taowg8Lz8RK21Q7ARufcp6sXTONpZN\n2oXuU1v6+Q6wwd9PXpEsRcQfClWKDFFf/7z8R7J6adpI634/yKxJu+QvVcl+k1YladqqfBTuLGZR\nunDWT72FKOGL3J7qaxvSV0gGix7ZQUFBFO09ExFII8A2B83prXDo0g3aLNooHQgw7rtK9Fq9Xb2e\nu785D65VCW96Vi9PWFgYuYdG3PFD0M+3g/+9+2RJlxaQyJZ+VrnUKZnf7Hv1jNr+3EGoNRSRLFMn\n4t9F8pr8ef0anQ7uBmD1/h0G/1Bc4KodcfOYMwFDHpu8Tvtdm/j9yzp03L2evxzcY2YHbsDECRJQ\nNEECjmfWuiuUXz6Nm8AiMZBFK0bRI2txOhTT/k786hm91g3WTuWU+EI9vvqNrrr7pHnNZgXKqa+V\n53ylw0JCkCRM7HAyLJBiW6Q92gQRRCixrY/h40QURcuHvB5xazDx/Wb5SHCKuAE8lQvvY5ZFAAAg\nAElEQVQZFNsNDreT/1/D1PDscp+5pjW7HO/CC57jpiu4mFtkiVNr9jxbDxDValPPuHlol3OoU3PD\nw8zr1XRHIndenyZDgoKWY5tlX+C03dpOeNocoWRmf0RR5NitLID08Z835boo23Mh+nB53v6jGNVj\nKvvXBEAYNO1dkYYdnauQevv2Ld8UGAo2gTYDK/NNoy8jvXZISCg1imsq5J5eqZi9XCuymDJ2HX+u\nv2Agb30GVaZi1WIGOxW/GKV+ia7Z0JkkSaw1o6IDURT5os4Eg8dn//oPKxY8YMZ6th33l9YXIG3S\n+Gyc/GMEs2IG5X6axtN3odKBoOW7VRsykzsvpCS+LMkSsWFAa4NUiKVIr+zV6lutBE3KmuUtjh07\nRu9NB8kmQHIBNigX5GcHZwoWlHUArvUzE81s4yajJ1F+vSRvWpnZs7n3+o22dwHaexfg53Nn1GT/\nIy3aMHTHFv68axcWku9rSKlynH9wmzUBfoY9TSpcmu6nD6AvTLjWoitxYscm+/zxBFlKhUBy4GQL\nLTjosXis/o4lspu1IANLVlFPFVo+lmdo/1/fpPFiwpffmt4HgAdvnlH2T7lC08mCBSXvTDlW5gCc\nrWnsJFDWdxBvCTGMtenmTPFuRu7/ZaTagWEoMiMDs9SnkqfZyxgdbL21m/l3VumkQqQ9JBbcecVb\nlWy5CTDNezJ7z+1lg7AGEMmMJwN1D5ZW6HamAdZSIUoDeaibsgeF0pbi+bunTPZrLo8LI6WQlXZ5\npIeU0ZeqUYOx5M+d32D/1q1bbHwjzUlAdZrn6PGvjmb8F+GqNsVF3qKKz609VlSgJ2+/re1I8uSJ\nP8g6ZWuPN5CGX8Y3xCt7hhhdw6fpJE3+Q/c5XSoFjBj2IwkSxKdIS2PulkKYTs6Pepj1+fO3lB2o\nhBehULrELOjTyuH4fD206lKHlbD67xkBLo42k6qxG7az8MQFy7mtvL345dy1CMmbfW9Te2Qbq+xV\nFzaV7Zxu9wOJE0iux8sPHlBjxXLV7urv6lMofXqyTJtoJoto95tNgDoFCjDh7GnjGF3/7sAfjB45\n+w4LevK2uGwtymbVKqityNvi0t9S1jNbuPdthRfv3lJks1lAWOvOZiUVAoVipeNM6B2V2Cnntb6n\ncKq6dXcWKedNm3O48hgGnVjMrmfnAaPw7p4P1N9ULxXiJoiIGHXZFhX7JdI2J54ZyB2uhUve6qXq\nhXeaEgQFBTHq2rfyuDB84tTiVMh6bU8WvU1tssdQKWbQh03nXyuLEnrNG7sdxT0bR3r/0cHrd35c\n+EvKKbYJUDRT4Edd/98CV9jUhSjD91b0+gV+Dtixt1/Eg2IA+zZ8mrZch37pTKxY0p9o0ZYfpoIr\nXjxjvVuCeFr14+Blm1h3UvIq/dzmK0rnyqZGABVKYV9t2mnOcnYFaAFB7/TW1b99aleiT+1KtJq/\nnIO3pPFXhmq2en1dgzoTJ3NZzpC/OtBM1LxGag8chzu1InlijbwHKbIg9pDDl8vOnGHCEUm01p4w\nH/D3p1D69IAW8bSCHzDhzGlz2FWE8uk9+KVmXeovncfRN8/MuXUyKqfxYF51sxAuQGBTs1yI59LR\ncFCzE9DY3KDeCi/e2ZcaCJyr/RPusWLTY+8K/nhi1QJJ5FTIXWyCFDLdXaE3FXZL5FMpQvBx04Rd\n34W8p8x2KWwoyA3cFSKYVB4zrEhThgFld/Yi/Hc35rHUZ37Eg+zQ/pREjvQkKy/FmFxwFX3PtiWY\nv9WxY/KvNc2PEycOQ/JuVI9FMYz7l28QTBDxiMM97hNfiMc7AhAw8H5CkfLLfr4qRTfa59iN/v36\nK/gYEHXy9mdAXhSS+GX6E8SJEz/COfHjSmkjEsH8PtyxLnxYRMvzJgjCd8AQIBdQTBTFE7prfYFW\nSL+DnUVR3CqfLwwsBOIBfwJdRFEUBUGICywGCgNPgPqiKAZGtAeX5y3yaF9tNAEX5MpFRfbjE3ve\nQkJCqV5SrpJTwmbaI776ZaVUnlYsO1IbA+z8SETuU6Foy0nqx/aHbI/l3XWyus6UFlXpumgLADsH\ntiZlUimXMV9PbcyFCd347fAJhq7bb/ImrezUkHzp05C7n+atW9+hIV7p0lBm4GQe68aOrFKCb0pJ\noVXfc5fotm6ryfNmT+D05O1c746422nevXj7lkLTZ6N84YlyiFAJnWadpHk7kwhwqpv2vj58/Zri\nv8w2ed6a5c7PkAqVAFh29hT9D+wy3bf201jQ4EyHhRRCLE40t65OPBB4mSYH1msnBLhSrydxI9D6\nA8j++3B5Hem4dOI0/Fq5jWFMZHubCoJII6EwWVNlxBYnDrXz5cVnywCHc20ClE2Wm9GFm6lrltvZ\nE/uw7O7y2oNKlb1dUTx8gxO3oHiBAsQU3gS/ocOZDkghUKR1HPRD1ZO3JCRjaMGYl2OywuPHj/nt\nyXcycYtZKOQNIGus/uTI+HG9eP9lfA6etwvAN8Ac/UlBEHIDDZB6PKcDdgiC4CWKYigwC2gDHEUi\nb1UBXySi97coitkEQWgAjAXqR3N/Lligx4zv6VhugvopnDpjkkjbOLb/NIPb/qaSJwSBxKngt93W\nQpwRwZTSYZHjUbZSdvV10uSx+fuJ5F3Jk98i8/4zQ4mGSuWu9OPw8sjJihz/BP1Mi2Tz5NwkjTDp\ne5sKApyf0E3NexNk74w+Ob/B9BVcHNMN79hwNhhyAF7ppMIUVSxCJk/9th7m3N2HDKlXizI5zEUh\nzQuZBZmv9Q8/bJo4Xjz8ejsec6O79p5mmTyJLJMnOSReDRMmY8Wrpyy6dI5Fl87h174rjb0L0di7\nkKVtqWBBBwHOftcG79XzmJMhPz/cte8rKb1xCyp853C/pT1yEeCRiwWXDjPs9B5AJOdv4wlobHxw\nmXpiJ9NuHEHJX2tlkVN24OV9vNYMU3Pe1GrXSGIlJ+DhCQQB4iYIIitJ8OcZIKjEB+Bw5bGW8yMT\nLh3xYgGb0Ypaah/oiL57wrpSkRMid3dzJy1puS/1xJChlPM4xrMoyIU4g92XF3EGqVgid5yaVMna\nlRQpUtA+RcwTN4DqnhcMx9sDcgBSLmByfsLbo8UHWdeFmEGM5LwJgrAH6Kl43mSvG6IojpaPtyJ5\n6AKB3aIo5pTPNwTKiaL4gzJGFMXDgiDEAh4AKcUINujyvH08jOyziAPrpbJ0pXRMT94AtlzUyFtV\nb01aQO9F23p66EfYbdTxxVdajtu8SY3JkT0dAG/evKFKo5kgCGRLDwtmOC8VEl3y9jnAvjG9nrw5\nktxQ8tlOD+tE3NjmZ8VcgzQvnjM6bx8CJwL8qbde9mjZkTdTIYb8OqBjD+rPn83R969M9/xLpZpU\nyGYmm1KHBY0Ulk6RnmW1Y97bIem8aV6yOAhcqtefhqtHclIhJnZeNKXq9NrtQOqcXChfM3vP9M9U\n+g4Lynmbbt20xGNDVevOCGV39qIUiTjIC5IBibCRRciIIIQx5EtzCy0rND3Qi+dyvetErz5kS5XJ\nqXn2aH2iufxKlKtNFxmui6JI19ONpE6i8v1OLbiS6OD9+/dMvSFpJPbO7QvA5MuV0UuJdMm5I1pr\nRBbbA3IhCQlDeY+rH3Xt/xo+B8+bI6QH9IIzd+RzwfJr+/PKnNsAoiiGCILwHKkAy0rR0YVPgB5D\n63Ng/RDLa3rSFh7WHujN3JkbWfPrSRAElm/t/sEKDaKKvZusc9z2Hb0uvRBF/O6aPYPh4fCKfw5Z\ny9/V2FLLI3k8Ng74kfOTzOTqwvhu5O09OcLMpYKDp6v2SmXNwLyWZg9TaFgYeYZpnpXy2TLz8/ff\nGMZ4DTfu7cJPnYgj5wVmH61du/5TxERQEekF8Nd74aZq5083bUXBJXZJ7SIM2r2do++tJWtb7dhM\noEzePOaON+xXYjnSu3Xg8V2K/jqJNgWLMerMQQCyxUvMjgbtVFsNFo9RP0iv1OuKu7t7hPdljyBE\n3rx7xyu3hBD6wnJMzrVD+SJRFvKkSu3Qzq4Kfaiwy9qDBpCK+PhW609oaCgltg/gPm8ovlVqT6cU\nLOhxEGkvzxB5Rih3CAARjjy4QPE0eU327bG49PgIxziD+UUWhntdEASmFlqhHnc704BuZ+qrjd1H\n511ObLeIQ9d6XLq7X3394tU9EidMJx9F7PlT8Ou1kgC6wonwdd4iQiXPy1Ge68LHR4TkTRCEHUAa\ni0v9RVHcYHH+g0MQhLZAW4BMmaL2tOVC5FDNS06eFgQGzG3AiB9XmcZUzddfO5AfxZOlScjybcb+\noqcOaE91fz149tmRNwXv3wdT6TupsMM+qd3LI+VH2UPRFrpCBZ13y9n2WDGBgKdvydd9MsdHdcLd\n3fyRcWFcN/L0tsiZdMBvD/jfIfeAyVwa0Y3LOm/b9QcPDeMGf1WBHMM0QnZ1YDfa++Tj56NStWJG\nAZW4AVzvGznPXSNgOdDSy4thO7az8Px5A8na0qgJj0Ose5wtvngOBAjsoHlfPWZpIUCP2RMk75Zi\nT68np3tfHhLCqDOH1GO/dy/YEXCNip5ehIaGGp6Ac/4uvRe1MudkWtmvybF8FEpZxtCspWji8wVZ\nV44yrQHgvWm8clsOse+VP5U8c3Ch1iDybRqmuyJwvpbkLT9bczj9/ljDn5yhNG7MqC6dL+Lbj4e8\npqhvP7t1BI5UGY3f47uqSO+20oPZVyFmiJczWHhtCdv/3icfibgTm198ZsWAZYk09b/QiDRkpLt3\nxEVFp27uwPfVJGwCtEu3hCRJUqjXukWyr2lLr0MRD4oAfwbklqtaRYqn/YP/uWeJtk0XPg4iJG+i\nKEal19BdIKPuOIN87q782v68fs4dOWz6P6TCBas9zQXmghQ2jcL+XIgE7gY+0g5EkSmDVuJ7eYxp\nXMK08Oq+8VzsWFL1QZWCg7WTckHC1hNDYninMYu4cbWnaQHY94H13T4XnJsikaD83ScbigF/6j+d\nncD5iWaSdHGc+VyevkYv2dmhnfAeMt3hutnTpOLKkPAJWNfKFfkidy7qL/yN26JWtNA4SwaWBt4h\nHnDOSRI3vHt3FKWyl69eSeRNh7rLl3Dgh/bmiQ4wq3gFph/dyWsBbionRQj8oRce8zSykkEUONha\n+l16HxJCjiWTUHLevsCdip5eALi5uRHY9Ce6bVnFuocB8mwB31tXpKpTXT3P4BsHGe1/UEfaJHuH\na3Sl5J/GyvLLX/cj9wbNU76kZCOaHV4GiAw8/yeDLkjK/3qil3/TIPQacAAHZI+Pb8Apk+f1WFWp\n73Gb7ZMose0n9LlpjQ+OYX3F4cQUvj4oFR38j9gsLGUWem6arTHbj+9T9xBEEM2OSXI4i4r9QpgY\nxuiTI3nJc57yCE+y0qfQAGw2m6Ha1CbApPzWHReSkNapvb5F68kcwisghePBOjx98Re/35ckRxRB\n4eZZ9qjV6FHBoQCp+laqaoW7L1fyP/d/d+HXvwkfKuctD9JDbTGkgoWdQHZRFEMFQTgGdEYrWJgu\niuKfgiB0APKJovijXLDwjSiK1jX0Orhy3j4NquWSJQoEAd9LVo2xjbAkbyc/79w3F4xQct6mNa/B\nl/m91PN5dV63CxYkLiaQQw6XWon0NvDMwIqbWjZGZD1w9lDCpv5duuM5zZirqEDxxKYFDncwhsT3\nXr1Csz2b1d0GtO2J53xZ6NmuEMK+2lQ5bpE6M4OrNeDKk0dU/UMO25paXEGDxB6sehmgHiv6az2y\nFKF9MUnMN+fvIwjV5aL1y1OB0ZeN+VTWOm+Oq00FAQoSjwU1+nHj2X3qHZZIuSJ14WiuTdDEgG0C\nVImfj/4lotffUyFvrRJ/Q8181r6GVX7r2PjkD3l/WluvRcV+4fLfl5l4Y4y8f4mQphXSM7TwGNqf\naix7pqTz1VLVpXoGaxFkeww8XxuQyJb06yLlk/XPszn8iRYIDQ1mvl951Z60V8hARyp7NYi0PRc+\nLT65SK8gCF8D04GUwDPgjCiKVeRr/YGWQAjQVRRFX/l8ETSpEF+gkywV4g4sAQoCT4EGoij6R7QH\nF3mLOdTI2ZMwXZTI199cCfbkyUu+L62RtQ5Dv6VmvcIfY3ufFNeu3adVb+2pW+myULqu9B6JwME1\n0e91WqypRBzyZE3JxYBHapj0+IKPX23qDPQFC/DhyNutx4+pNGuJ+n6kj2tjdy/nEtujA0vyZlec\nEdjB+XzGMvMncYsQE3m72bI3Hgt1+WQCBDaTUhU8Fstebj25kucFNO6rNafXka4sgjvb6zve1937\n9yl/eJ5uWuTIm/LzTA2zBy0kJISSOwZazpXIm+aFa/g/H9oVCZ8Mfb2vB+/kALEN+KPsNNOY0w8v\nMsJvJooKoQ34veTscO06g06nlIISo4RI0wyd8E7uQyybY8/XrPN9uMcV3ARRJbXuQjJ651kY7X39\neq20+rql14Fo23Ph4+KTFyyIorgOsGxwJoriSMCUxS5750zZqKIovgMc18m78MFhs0WcKtu66kjk\nsisAatYrTNU8Wq5b8swJeHJH1/FQEFjg25Nnj57TtbnsQbCB7/HB2Gx6ScrPG56euvCGXeLQh4jb\nj+nwFd0mr+T6XavukR8e+bvpNNSc7G/6oYgbQKYUuvdfJMaJ25+nT9Nxz24Q4GjL1qSUBX8DOksE\nqPicn/kr6K26viBAgI60hYWFkWWORLxrpfVgWh2JkKgFCyjeOum35eC3bcnwP02i59wDvVwFzEol\ntUwqslhLT5hWrDq1cnib9u7fyDrUNeTQRpbekSRJHDWmv1Z3ED5rh/FcOgnA2a8GENvNKN4cGUQU\nykuKQHkK062CpARVe9dAnotvVC24Nh7VaeCpedDaZ67LpJur5EpWkRr7OvFHWWP4PY6gFXLYnBD/\nlcKm0qddv4w/ce3FVTa8XIONMARgjtzfdGrBJXQ53cQ03//1JXInLRgueWuXz1zcIYoioy9VV/fX\nV6401ePuqwusvtMZG1A+Xn/yZJb6u955cIEtL6RiltYuwvafh6vDggsqNl2KWHNp3fExDO+2kENb\npKKDqrnlLw75W+HJ7deGY4C06f5HLLvvAivitmLZHhZMlxKLO/WuxFfflIjsLXwwxI4d29DT9OjJ\na/QYKSmnCwIciAGvG8CxxZqHbfnIj9PP1BmoMiHAuYld1V6L9h0WHEFpSg+a/MblERHPLTJsMi8F\niFj7PXoYsXeP+vrk3btU1XVr8Jw+0ThYkO7BY+YE9Vj/c+ODQMy+ISMSx45jOK7lu8Rgo93Dc7Do\nnMHjd+b+bZW87blyiRYnJXmTaSW+4qss+UxrrLhjryUnIQ8JuMgrBAFyrB1muAUQ8d6kCPqKjM1Y\nm5qFNC27Nf5HGHbpD2m8INIrV1UaZ5G8QMuu7maK/3Z5rqM7F9hU0UhqeudqSP9LWkVvnfRlDNcr\nZS5JpcwlHRmU7illVtakjFg4d+nVlWx9Ju1RCZ1mSp6JHGlzsOHEGsBGZiGzOt4m2JheaJl6vMJ/\nFsde7OXQsx0cfb6DCd7mwq3wIAgCVRnJlv+3d9/RUVVrA4d/OyEoRSU0lSaRD0IEC1UUCxApAQED\nAnKNiooiTQVZAiJFQRQXfngvouD1Ij1SBBUlFFERc6WICBJCJzRpAooxCoTs+8c+05LJJJNMySTv\ns1ZWJufsmTnzZq+Zd3ZlFJWJdzmXfakQc8Pxxnn8z61ePZco3mRvU+GVuGhr5qi7dd6sfKxGnSs5\neuACZa5RLFuf/4HJvxw7RZ/upqtjYdILREYW3cV3n3hhFnsOWqvY+DB5K4gmT5vE6IMB7Wl0201+\neY5XZyeyeNsJ2sdUZfJTOdcmazx8ChecZlSmTHJNzNwlb290a82IT8wCpF/0782N15tJ7YdPn6bd\nu/PYNXaIy2zTqV070O6WGN++MCeHz56l1ZxZ1vOZ98XeNWqw4JejOcq62y2hbvmrmdaxK+2WzCVO\nRfB4s7tp7pT4xH7wNvsw4xIOPjHM5QtM7Q9NQvPqTS0ZsyvZfjyp02PEVHY32R+i5k/kg+tuJzY2\ntkCvd1nqFkakfmFeLs6tc66/U7qasamLdyczYe9K+/3D7bNpNY0jrmNbpmO2UniYtmbYuu6wsLTp\ncK6NrFig63Wn63cDAWtdtNqP0Kp6i1zLPryxrynrNHlCkcXE+q9R7epqOcoP+DEBxx6kMLXxfGtT\negDN/epJYm9t57PXMiO1PxnsJ0xl8UT1pVx1Vc5Z+OcvHmdRmumgqkocXeqNylFGFH1B7zYVJdCV\nwAVzc9CrnXhn7ApHB0UW3FC/IjM+LtiaZtWqV2X1hjG+uEq/uHw5i1bdTSuMVoqV8wdRvqz3627l\n16FjZ3hw1GxQ0DfuVvr1zOVD2voHPPveKtbP8E/yNuax3nj6z8x9Op6eM8wIinpulryKqRJJ6mmz\nD2TKq88RFhbGhOWOpRE6vpfo2oKl4Ksff6bH9ZVYfPwM9QAVpokeP4Vu0bV5sVM7IsuVo95ER1K4\n56XCddvO/ilny8aCY0cd1wRUBM4q+KLzg5zJyuTRFY5RI3v/PE+7xXNBQZK+RNLmr0hzSt7W9n0+\n1+dOe9yMb3t781qX43ErZgGwtcdzNFpiZo0qBVvv759jZwVv2RI3m9T4sSzYkcyEfWusI2aXhJs/\nG8v2zuNcyl4LVFKR7Lb29tyaabbbCwM2x5kxeB1XjecsrmvhbfhtD10jc0+w8pKw/iXO6T8IU7D8\n7ql8etc0hiW/wn5O5UjczvxxhlEpY/idS7xVaxx9whOYdXke5SnNtGbT7Mnzsz8MIoN0ylCOqU3z\nu0uD8mniBtAvJu/lS64ufT22mcSSuJVskrwJryRtc10ipFOPu8jIyKBbMzO8MWHgfXS45WVHAaWY\n+lE/6sbUINRl7woKU3mP2ft2088Mf8skKcmJQ7wa53fopGOlnO9Tj9Avl3Jb/h2cnQmcNahT2+1y\nITa2xA3gYuZlEr/7jvmbUswBBTMT7ueJ+Y5ZeLvGDuHvzEz6f25mRe4BBln7nX68O40M9TX/7HG/\nT1/D6DaxjG5jEuQb//mW2zJbBrt+MbGt8/bGN18yPfUnxwmrrhz/9VfuWPqhY3LDU56Xm3m+WSzP\nN4sl48IFblroWOIj/ZLrenPPJX/O7E5mY/BjZ85w9+oZ7IwfmucivvWWjLdfn60+z7r9Ee6oHgVA\nZER5e9ky2L+noZSiR3RLekS3zPGYTZJG4TzGrFnSS4y6sRNncR6vqUhum3N5IYBRayfzX47zxR3j\nKVvWcwf5XzrnunuTW451UxIGpYwkS5sWthcOjyOxxfu0pVWOchk6HZTmL9JZkpLI6r9W2Lstw6xF\nlcOsj8opt3m/s8LR8/uYeXgott0LoGAzTm361lufdyFR7Em3qfC5TxKTmf56kv3T4ZaWtXjzXbMJ\ndvsmjjfaerdUZOqH/p8x6K0+A9/nwGEzhJsw7AusznmnD48MngVKEQasW+a+q3Tc2x+z+r9p9r9t\n3YTfLwydXRb8KeZl1xmqKEh9dQj1x5rj1yjYmMd6b8ES9Y5J6vpHN+TFtu1zLWff29Rpf0+t4Ntu\nfbihUu4LPLeZPZkDXLbuC6B5sEYMk9t0zfU+zrNNbQnZvl4j7eMSAU78cZ64Vf/iT1s3oILU7qNd\nxrzt6lbwVu8m1uK8tq8mj1Vuxryzm3DedF4Ba1qNoVxp1+EQrda+YJWBr9u4T5p94eGNT2GbiWpm\njZrxZd0j4+lStwsAa1OTWPjnAit50/bfzhvThymIUOG0juxCXK28t9/Oyspizs7RHGUbSkFDOtK1\nQf7XDwT4LeMEC4+Y7tJwJQlcqJNuU1EkPdC7JQ/0zvkNPbtuve4JwNV4b9DTbRn68pIcx68o7egP\nvMrDcLzboq+1J29lS8Oq2c8TXojZe0WZ81Ihla5QrBufs2vwbPpf3DVxOijY+doQ5j/amYfnLGfF\nMz2Jql7dXm7XK0UrYUs7cYLWi+aDMqMFUp1a3Vbt3sG7e3awosMD3FSnTr4e777ranpM3ADi6tzM\ntP0/EQH23RNiq9Xjy23b6LvdzExMe8R1xxLbbFP77grA0T/PUbO8Y2zZ5lNp9sQNYHWHgfm65tzc\n9sVobMnNjx0nsCXO8dxdvp7EnDObAKeB95YLlzPJ70jW9uscdWnVvW97KAnxyQMIU2Y8WwThLLjz\nHTel3DdURFeMtt+OjYkjljiX82v2LOez9AX2v7M0XCKTcuqqfLwKMzmrT8P8bR+Ym7+zzuVdSJQo\n0vImgq5dMzMgevVm990fouhyTt563hrFmIfNZtuNRk7hIubjMkJZiYiVvGVveatWoTxrX3jK5XHr\nvzLFZS21JY8/yM01axJIa/bu5umkzx1rqjklb7WnOVqIvFnnraC01kTNM5MasidvzrK0pu7CiaAg\nvnI0k2Pzt6Cst2zJ27AKrUho6VjWo3nSS6ahWtla+MykhjdjEmhRvT6tvzKJ5pXAl/e9Cfim5S0+\neYBTixosvjPn+DHbhIWbS8UwoknB/2dm0oLmzQbziIjwbk/TgvrhwEK2XDKzaftFrwvIcwr/kZY3\nIYqB8+l/szJ5B2/NN8ukTBwQR2wL/82q9KXclgrZ+voQBo+cQufWDWjbtq1LF15tIA1IHe/+vpv2\n7s1xbPevvwU8eWtbNxqSPrd3m/+ekcE11pisvBK29IsXafih2aqpVbVazOqcd/eaJ0opj0mbTZhT\nnHvVzbl8iK+4W5wXYNIN3Xnx0MfWtcBXseMoU+pKNqZtp9VaM8BeKbivdAP7fb6JLXxX6bKWeS8T\nMv/2Dwr9PFCwcW+F1SSqJ1v2vEs9+gf8uUXRJC1vwqemT17BJ3PMhskrt08I8tWEhg3bDjD63eWc\n/8tsYlSn2jUkvvFksC9L4LrDwoFBQ12S0Lw88/5UDvA3q54a5tX9Qs3tSaPIBLpUacRYa7eEQ+mn\n6ZVsFi2Or9qYT06b9+gwBd2vb8HQhq5rnB374zQJm82EBn+OexOiKAj69lhFgXkjFowAAAd2SURB\nVCRvRcuG9SmMG5gISPJWGM37mA8+DUwf+SBNomsF94KCKEtrJi1bzqyU/S57m+55ObBj5GyL9R4c\nnL8ut9ozzO4Kaf08zzD11o5TR+iyZh49b2jIosM/Uz+8PCt6PevT5/BGx6TRnLQmWYQBGzpMINxp\nJvbIzXP45pyZWfxhowH03WbGow2s3YEZh8w4vm9i814gXIjiQrpNRVAtnbWe5K9TSNl8GJRiZcpr\ntLi7gSRtPlShbBjR1X23qGko+nT7Tmal7A/2ZXjNm6TtP5u+Y/xOszhvWp/hHssqzKKx5axtqMqW\nKu2xvL8taDOCJVuTWXpuHfNaj+TX387SeeP/k1C5Kc827cbrzVw3nq9PBLu4RMvrbuGrQ98yoq60\nMgvhLWl5EwV25OBpfjl6grHPfAThsHJ74WZUCVfTF33NinVbeSiuBf+43/P2QCK0vbdpHZN2bgDc\nJ2/f7NlJn42fYTaQh7uq1GZu+94Bvsq8aa25fZVj3bdNHV63n9t18ghPbp/K3AaD2H3+JK8fW8SC\nJi9So4LnGbhCFDfS8iaCqmZUFWpGVWFliv8GRpdkM1dsRQNTPt4gyVsx17/5vfRvfm+u54f/uNrl\n70yVRUbmxaC3urlTnnDSyaRm+DUux4dvfx+AR3dOpZaKBGDZoe8YXCE+x2MIITyTljchhAgBly5d\not7CyZQBEmKa8mKjWEp5sWNHIOzatYuoqCiuuOKKYF+KEEWWtLwJIUQJERERwcGEkcG+DI8eOTgH\nDjr2NxVC+Ickb0IIIXxCkjYhAqNotbkLIYQQQgiPJHkTQgghhAghkrwJIYQQQoQQSd6EEEIIIUKI\nJG9CCCGEECFEkjchhBBCiBAiyZsQQgghRAiR5E0IIYQQIoRI8iaEEEIIEUIkeRNCCCGECCGSvAkh\nhBBChBCltQ72NRSKUuo0cKiAd68M/OrDyxHuSZwDQ+IcGBLnwJA4+5/EODCyx/kGrXWVwjxgyCdv\nhaGU+kFr3TTY11HcSZwDQ+IcGBLnwJA4+5/EODD8EWfpNhVCCCGECCGSvAkhhBBChJCSnry9H+wL\nKCEkzoEhcQ4MiXNgSJz9T2IcGD6Pc4ke8yaEEEIIEWpKesubEEIIIURIKTbJm1JqplLqlFJqRy7n\nlVLqX0qpfUqp7UqpxtbxaKXUT04/55VSz1vnKiql1iil9lq/IwP5mooiP8V5nFLqmNO5joF8TUVR\nQeNsnRuilEpRSu1QSiUqpa60jkt9duKnGEtdzqaQcX7OinGK7f3COi51ORs/xVnqczb5iHN9pdT3\nSqkLSqlh2c51UErttv4HI5yOe1+ftdbF4ge4B2gM7MjlfEcgCVBAC2CjmzLhwAnMGiwAbwIjrNsj\ngEnBfp3B/vFTnMcBw4L92orST0HjDFQHDgJlrL8XAX2s21Kf/R9jqcu+i3NDYAdQFigFfAn8n3VO\n6nJg4iz12fs4VwWaAa85x8763NsP3AiUBrYBN1nnvK7PxablTWv9LXDWQ5GuwBxtbAAqKKWuz1Ym\nFtivtT7kdJ/Z1u3ZwAO+vOZQ5Kc4i2wKGedSQBmlVCnMG/IvTveR+mzxU4xFNoWIcwwmwcjQWmcC\n64BuTveRuuzET3EW2eQVZ631Ka31ZuBStlPNgX1a6wNa64vAR5j/CRSgPheb5C0fqgNHnP4+ah1z\n9hCQ6PT3tVrr49btE8C1/ru8YqMgcQYYbDXlz5QukHxxG2et9TFgMnAYOA78rrVebZWR+uydgsQY\npC57K7f3jB3A3UqpSkqpspiWo5pWGanL3itInEHqs694+mz0uj6XpOTNI6VUaaALsNjdeW3aM2Vq\nbiHlEuf3ME3Jt2E+DN8KwqUVC9aba1cgCqgGlFNKJWQvJ/W54PKIsdRlH9FapwKTgNXASuAn4LKb\nclKXCyGPOEt9DrD81ueSlLwdw/XbRA3rmE0c8KPW+qTTsZO2bhLr9ym/X2Xo8zrOWuuTWuvLWuss\n4N+Y5mXhWW5xvg84qLU+rbW+BCwF7rTKSH32jtcxlrpcILm+Z2it/6O1bqK1vgc4B+yxykhd9p7X\ncZb67FOePhu9rs8lKXn7DHjUmnHTAtPVcdzpfG9yduV9Bjxm3X4M+NT/lxnyvI5ztjFx8ZhmfOFZ\nbnE+DLRQSpVVSinM+MJUp/tIfc4/r2MsdblAcn3PUEpVtX7XwozDWuB0H6nL3vE6zlKffWozUFcp\nFWX1QD2E+Z9AAepzsVmkVymVCLQCKgMngbFABIDWerr1JvsO0AHIAB7XWv9g3bcc5g35Rq31706P\nWQkzk6wWcAjoqbX2NCC02PNTnOdimuU1kAb0y5bwlTiFjPMrQC8gE9gK9NVaX5D67MpPMZa6nE0h\n47weqIQZ/D1Ua73WOi51ORs/xVnqczb5iPN1wA/A1UAWkI6ZVXpemaVW3sbMPJ2ptX7Nekyv63Ox\nSd6EEEIIIUqCktRtKoQQQggR8iR5E0IIIYQIIZK8CSGEEEKEEEnehBBCCCFCiCRvQgghhBAhRJI3\nIYQQQogQIsmbEEIIIUQIkeRNCCGEECKE/A+zhXSpwiKKCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAE/CAYAAADPHl79AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cXVV56PHfc84MIYJBkRQR0ECBFtCiMKVUq1UQZ8Za\nQdsqlgsICip4fUHknSteQUFAKCpaWqmEqoje3spVh4HyYm0FMbGgAoIRQYgoQVtQioHMee4fe0/m\nzGReAjkzZ+/M7/v5nM/ss/bbs87OnDyz9lp7RWYiSZKk+mp0OwBJkiRtGBM6SZKkmjOhkyRJqjkT\nOkmSpJozoZMkSao5EzpJkqSaM6GT1FUR8dmIOKPbccyF+VRXSXPLhE6SJKnmTOgkaRJR8DtSUi34\nZSVpnIg4MSJ+HBG/jojbI+J1ZfmCiPiviHh+27aLI+KxiPid8v3xEfFARPwsIt4aERkRO63HabeK\niGvKc34jIp7Xdo4XR8R3IuLh8ueL16MOb46Iu8vj/SQiDm4r//eI+ER5vB9GxH5t+90QEWdGxL8D\n/w3sGBFbRMRnynqtjIgzIqJZbv+7EXFdRPwyIh6KiM9FxDPajveiiPhuGccXgU2niHfazzYitoqI\nr5bb/CoivjlVsll+5u8q6/9QRJzTvm1EHBkRd7Rd3z3L8kmvu6R6MKGTNNGPgZcCWwAfBP4xIrbJ\nzNXAPwFvatv2DcA3MvPBiBgAjgVeCewEvPxJnPNg4EPAVsAtwOcAImJL4GvAhcCzgI8BX4uIZ011\noIjYrNx+MDOfDry4POaoPyrruBXwAeCfyvOMOgQ4Cng6cC/wWWBNWacXAa8C3jp6OuAjwHOAXYHt\ngdPLODYB/hm4DNgS+BLwF5PFPNNnC7wPuB9YDGwNnAxMN2/j64A+YE/gAOCIMqa/KuM7FFgEvBb4\nZbnPpNd9mnNIqhATOknjZOaXMvNnmdnKzC8CPwL2Lld/HjiobfO/LsugSED+ITNvy8z/pkxs1tPX\nMvNfy8TmFOCPI2J74M+AH2XmZZm5JjO/APwQ+PMZjtcCnh8RCzPzgcy8rW3dg8AFmflEWb87y/OM\n+mxZhzUUidirgfdk5qNlcnX+6GeQmSsy85rMXJ2ZqygSzj8tj7MP0Nt2ri8D35km5uk+2yeAbYDn\nlcf6Zk4/EffZmfmrzPwpcAFjieJbgY9m5neysCIz7y3rMt11l1RxJnSSxomIQyPilvL23n8Bz6do\nzQK4HnhaRPxRRCwBXgj833Ldc4D72g7VvjyTtdtm5m+AX5XHew5FK1m7e4FtpzpQZj4KvBF4O/BA\nRHwtIn6/bZOVE5Khe8vzTBb38yiSsgfaPo+/BUZvMW8dEZeXt2IfAf6Rsc/qOVOcayrTfbbnACuA\nq8tbqSdOc5yJdWiv3/YULXHrmOG6S6o4EzpJa5V91/4OeCfwrMx8BvADiluLZOYIcAVFi8+bgK9m\n5q/L3R8Atms73PZP4tRrt42IzSlaxn5Wvp43YdvnAiunO1hmDmfm/hStWj8s6zRq24iICcf7Wfvu\nbcv3AauBrTLzGeVrUWbuXq7/cLn9CzJzEfA/KD8ris9jsnNNFfOUn21m/joz35eZO1LcJj22ve/f\nJNo/+/b63Qf87sSNZ7rukqrPhE5Su80oEpRVABFxOEVLTbvPU7SAHczYLUEokpHDI2LXiHgacNqT\nOO+rI+JPyn5nHwJuysz7gK8Du0TEX0dET0S8EdgN+OpUBypbzQ4o+9KtBn5DcQt21O8A74qI3rJP\n2a7ledaRmQ8AVwPnRcSiiGiUAyFGb6s+vTz+wxGxLfD+tt1vpOh7N3qu1zPzLcxJP9uIeE1E7FQm\nhw8DIxPqNNH7I+KZ5W3rdwNfLMv/HjguIvaKwk5lMrc+111ShZnQSVorM28HzqNIRn4BvAD49wnb\nfBt4lOI23lBb+RDFYITrKW4P3lSuWr0ep/48xQCFXwF7UbR0kZm/BF5DMSjgl8DxwGsy86FpjtWg\nGJzxs/J4fwq8o239t4GdgYeAM4G/LM8zlUOBTYDbgf8EvkzR8gfF4IE9KZKsr1EMbKCM/XHg9cCb\nyzje2L5+MlN9tmW8/0KRPN4IXJSZ109zqK8AyykGg3wN+Ex5/C+Vdf488GuKQRtbrs91l1RtMX2/\nWkl6aiJiV4rbdgvKAQZdFxFvBt6amX/S7VhmS0QksHNmruh2LJLmji10kjomIl5XPlPtmcDZwP+r\nSjInSRszEzpJnfQ2iseC/Jiin9c7ACLitoj4zSSvg5/qiaY43m8i4qWdqYok1Ye3XCVJkmrOFjpJ\nkqSaM6GTJEmquZ5uB7Chttpqq1yyZEm3w5AkSZrR8uXLH8rMxZ0+bscSuohoAssoprp5TTnZ9ReB\nJcA9wBsy8z/LbU8C3kLRafpdmTlclu9FMRH2QooHfb57hvkKWbJkCcuWLetUNSRJkmZNREw3BeBT\n1slbru8G7mh7fyJwbWbuDFxbvicidqOYgHp3YAC4qEwGAT4FHEnxEM2dy/WSJEmaRkcSuojYDvgz\nimllRh0AXFouXwoc2FZ+eWauzsyfUDxRfu+I2AZYlJk3la1yS9v2kSRJ0hQ61UJ3AcWUPO1zC25d\nzoMI8HNg63J5W4oJokfdX5ZtWy5PLJckSdI0Njihi4jXAA9m5vKptilb3Dr2wLuIOCoilkXEslWr\nVnXqsJIkSbXUiRa6lwCvjYh7gMuBfSPiH4FflLdRKX8+WG6/Eti+bf/tyrKV5fLE8nVk5sWZ2ZeZ\nfYsXd3ygiCRJUq1scEKXmSdl5naZuYRisMN1mfk/gCuBw8rNDgO+Ui5fCRxUzve4A8Xgh5vL27OP\nRMQ+ERHAoW37SJIkaQqz+Ry6s4ArIuItwL3AGwAy87aIuAK4HVgDHJOZI+U+RzP22JKh8iVJkqRp\n1H4u176+vvQ5dJIkqQ4iYnlm9nX6uE79JUmSVHMmdJIqrX/hId0OQZIqz4ROUmWNJnMDiw7vciSS\nVG0mdJIqa/ixy4je2Ry7JUkbB78pJVXaVY/8Q7dDkKTKs4VOkiSp5kzoJEmSas6ETpIkqeZM6CRJ\nkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoRO\nUqX1b34Y/Zsf1u0wJKnSTOgkSZJqrqfbAUjSdIZ/c2m3Q5CkyrOFTpIkqeZM6CRJkmrOhE6SJKnm\nTOgkVVr/Zod2OwRJqjwTOkmSpJozoZNUacOPLu12CJJUeSZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJ\nklRzJnSSJEk1Z0InSZJUcyZ0kiRJNWdCJ0mSVHMmdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcxuc\n0EXEphFxc0TcGhG3RcQHy/ItI+KaiPhR+fOZbfucFBErIuLOiOhvK98rIr5frrswImJD45MkSdrY\ndaKFbjWwb2buAbwQGIiIfYATgWszc2fg2vI9EbEbcBCwOzAAXBQRzfJYnwKOBHYuXwMdiE+SJGmj\ntsEJXRZ+U77tLV8JHABcWpZfChxYLh8AXJ6ZqzPzJ8AKYO+I2AZYlJk3ZWYCS9v2kSRJ0hQ60ocu\nIpoRcQvwIHBNZn4b2DozHyg3+Tmwdbm8LXBf2+73l2XblssTyyVJkjSNjiR0mTmSmS8EtqNobXv+\nhPVJ0WrXERFxVEQsi4hlq1at6tRhJUmSaqmjo1wz87+A6yn6vv2ivI1K+fPBcrOVwPZtu21Xlq0s\nlyeWT3aeizOzLzP7Fi9e3MkqSJIk1U4nRrkujohnlMsLgf2BHwJXAoeVmx0GfKVcvhI4KCIWRMQO\nFIMfbi5vzz4SEfuUo1sPbdtHkiRJU+jpwDG2AS4tR6o2gCsy86sRcSNwRUS8BbgXeANAZt4WEVcA\ntwNrgGMyc6Q81tHAZ4GFwFD5kiRJ0jSi6N5WX319fbls2bJuhyFJkjSjiFiemX2dPq4zRUiSJNWc\nCZ0kSVLNmdBJkiTVnAmdJElSzZnQSZIk1ZwJnSRJUs2Z0EmqtP7ND6N/88Nm3lCS5jETOkmVN/yb\nS7sdgiRVmgmdpEozmZOkmZnQSZIk1ZwJnSRJUs2Z0EmSJNWcCZ0kSVLNmdBJkiTVnAmdJElSzZnQ\nSaq0gUWHM7Do8G6HIUmVZkInSZJUcz3dDkCSpnPVI//Q7RAkqfJsoZMkSao5EzpJldW/8BD6Fx7S\n7TAkqfJM6CRJkmrOPnSSKmv4scu6HYIk1YItdJIkSTVnQidJklRzJnSSJEk1Z0InSZJUcyZ0kiRJ\nNWdCJ0mSVHMmdJIkSTVnQiep0ga2OIKBLY7odhiSVGkmdJIkSTXnTBGSKu2qhy/pdgiSVHm20EmS\nJNWcCZ0kSVLNmdBJqjQHRUjSzEzoJEmSas5BEZIqzUERkjQzW+gkSZJqboMTuojYPiKuj4jbI+K2\niHh3Wb5lRFwTET8qfz6zbZ+TImJFRNwZEf1t5XtFxPfLdRdGRGxofJIkSRu7TrTQrQHel5m7AfsA\nx0TEbsCJwLWZuTNwbfmect1BwO7AAHBRRDTLY30KOBLYuXwNdCA+SZKkjdoGJ3SZ+UBmfrdc/jVw\nB7AtcABwabnZpcCB5fIBwOWZuTozfwKsAPaOiG2ARZl5U2YmsLRtH0mSJE2ho33oImIJ8CLg28DW\nmflAuernwNbl8rbAfW273V+WbVsuTyyXJEnSNDqW0EXE5sD/Ad6TmY+0rytb3LKD5zoqIpZFxLJV\nq1Z16rCSKqh/88Po3/ywbochSZXWkceWREQvRTL3ucz8p7L4FxGxTWY+UN5OfbAsXwls37b7dmXZ\nynJ5Yvk6MvNi4GKAvr6+jiWKkqpn+DeXzryRJM1znRjlGsBngDsy82Ntq64ERv+sPgz4Slv5QRGx\nICJ2oBj8cHN5e/aRiNinPOahbftImscGtjySgS2P7HYYklRZnWihewlwCPD9iLilLDsZOAu4IiLe\nAtwLvAEgM2+LiCuA2ylGyB6TmSPlfkcDnwUWAkPlS9I8tnbar2Zz+g0laR7b4IQuM/8NmOp5cftN\nsc+ZwJmTlC8Dnr+hMUna+Fz1q7/rdgiSVFlO/SWp0pz6S5Jm5tRfkiRJNWdCJ6m2+vtOp7/v9G6H\nIUldZ0InSZJUc/ahk1R5A1seOemgiOFlp899MJJUQbbQSaoFn0MnSVOzhU5S5fnIEkmani10kmpl\ncMfjGNzxuG6HIUmVYkInSZJUc95ylVQrQ3ef2+0QJKlybKGTJEmqORM6SZKkmjOhkyRJqjkTOkmS\npJozoZNUaQNbHMHAFkeMKxvc7WQGdzu5SxFJUvWY0EmqFZ9BJ0nr8rElkirtqocvWads6PYPj3u/\n/5+cCcA1/3bKnMQkSVVjC52kWvE5dJK0LlvoJNXC4HbvKhYaDYZ+esG4dbbMSZrvbKGTVHkDWx3V\n7RAkqdJM6CTVQv72twDrtM5N5qUHnjPb4UhSpZjQSaqNofsvXO9tTeokzSf2oZO00fnmP7+/2yFI\n0pwyoZNUeVc9dHG3Q5CkSjOhk1R5g1u/o1hYsABYv350kjSfmNBJqrx8Yg00guh2IJJUUSZ0kuqh\nlbbMSdIUHOUqqdL6Nz+Mq371d8QmvQw+++huhyNJlWRCJ6ny+jc/rNshSFKlmdBJqrRoNolmk6Gf\nXwQ99hKRpMn47SipFga3OabbIUhSZdlCJ6nSrnr4Eq56+BJotSBzbfnAC07pYlSSVC220EmqvIGt\njiKaTQAGdzyuKNxsQRcjkqRqMaGTVAs5MkJsuikAQ3ef2+VoJKlaTOgkVd5VD13M4OK3M3T/hd0O\nRZIqyYROUmW9apO/BqC5xaIuRyJJ1eagCEnV1whoBIPb/s9uRyJJlWRCJ6nycmSEHBmBVovB576n\n2+FIUuV0JKGLiEsi4sGI+EFb2ZYRcU1E/Kj8+cy2dSdFxIqIuDMi+tvK94qI75frLowI5+KW5rGr\nH/880dsDI6312v4V/Wfziv6zZzkqSaqeTrXQfRYYmFB2InBtZu4MXFu+JyJ2Aw4Cdi/3uSgimuU+\nnwKOBHYuXxOPKWk+GhkpZot44JMM/fSCbkcjSZXTkUERmfmvEbFkQvEBwMvL5UuBG4ATyvLLM3M1\n8JOIWAHsHRH3AIsy8yaAiFgKHAgMdSJGSfU0+vy5HBmZcdvrh0+Y7XAkqZJmsw/d1pn5QLn8c2Dr\ncnlb4L627e4vy7YtlyeWS5rHcmQENuntdhiSVGlzMigiMxPIGTdcTxFxVEQsi4hlq1at6tRhJVXV\nE2u6HYEkVdpsJnS/iIhtAMqfD5blK4Ht27bbrixbWS5PLF9HZl6cmX2Z2bd48eKOBy6pOqLHx2VK\n0kxmM6G7EjisXD4M+Epb+UERsSAidqAY/HBzeXv2kYjYpxzdemjbPpLmqasevgSaTWh1rJFfkjY6\nHfnTNyK+QDEAYquIuB/4AHAWcEVEvAW4F3gDQGbeFhFXALcDa4BjMnO0t/PRFCNmF1IMhnBAhDTP\nDSw6vFiwpU6SptSpUa5vmmLVflNsfyZw5iTly4DndyImSRuHbBXPoPOhlJI0NWeKkFR9ZnOSNC0T\nOkmVFs0m0WgWc7lu965uhyNJlWSnFEmVNvpA4dEHDEuS1mULnaTK6l94CIy0iN7iwcJD91/Y5Ygk\nqZpM6CRV1vBjl61TNrjLCQzu4hRfktTOhE5SpQ0/dhlEEM0mg88+utvhSFIl2YdOUqX1b3YosWAB\nOTLCVas+3e1wJKmSTOgkVd/ICDSbDG7/bhjtT3f3uV0OSpKqw4ROUj00Ap54AiIY+ukF3Y5GkirF\nPnSSKi1Gp/wq53I1mZOkdZnQSaqHRjFdhKNcJWldJnSSKqt/4SHk409Alq1zP79o7brB3U7uVliS\nVDkmdJJqY/DZRzN019nQ46wRktTOhE5SZa19sHDE+J8jLYZu/3B3gpKkCjKhk1RZ/QsPAcr5XMtB\nEZKkdZnQSaqs4ccuI3p7iMbYV9XgTu+HTPvQSVIbn0MnqbJGW+hoNgiAtY8waQH2o5OkUSZ0kuqh\nEQzd9zfdjkKSKslbrpIqa/ixy6DZdrv12UczuOS9XYxIkqrJhE5S5UWj4aAISZqGCZ2kSmsfEFEU\nRHcCkaQKM6GTVGnZajGubW7NCIO7nsTgrid1KyRJqhwTOknV12qtnct1dJaIBAZecEr3YpKkCjGh\nk1QPo33o1owwdMdHoKfBVd8/s7sxSVJF+NgSSZUWvb2TlpvMSdIYEzpJlTX6YOHo7Rl7qLCDIiRp\nHd5ylVR5GUAATWeHkKTJmNBJqq5GQCMIohgF0Wp1OyJJqiQTOkn1MfGZdJIkwD50kiosn1gDQDSb\nRWvdyAhDKz/e5agkqXr8c1dSPZSPLRnc4dguByJJ1WMLnaTKitGHCY8OhoiAHD+n6/4vPgOAa751\n6lyGJkmVYgudpMoa/u3noNkkWyNFQdmHbnCXExj8vRO7GJkkVYstdJIqq3+zQ4uFVkJvFKNcy1uv\nQ3eeBdgyJ0lgC52kCht+dCnRbBIRY1N/AUN3nd3FqCSpekzoJFVajoyMzQ6RCY1gcNeTGNz1pO4G\nJkkVYkInqbLW3nIdNaGlTpJUsA+dpNoZuuMj3Q5Bkiqlci10ETEQEXdGxIqIcBibNI8NP7oUGL3t\nSnHLtdlgYMfjGNj9lO4GJ0kVUqkWuohoAp8E9gfuB74TEVdm5u3djUxSN/RvenCx0NP2VTXSIjZp\nkkD/H34QgDWb9QJw7Q0nz3GEklQNVWuh2xtYkZl3Z+bjwOXAAV2OSVKXRaMxfmAEcNVtZ65dbyIn\nab6rVAsdsC1wX9v7+4E/6lIskrps+LefY2DR4cWb0RkiIhhacU6x/jsfWLutSZ2k+axqLXTrJSKO\niohlEbFs1apV3Q5H0izpX3gI+cQaEsZa6Hp6GNz5+G6GJUmVU7WEbiWwfdv77cqycTLz4szsy8y+\nxYsXz1lwkrojYOxxJWvWwEirm+FIUuVULaH7DrBzROwQEZsABwFXdjkmSV0y/NhlRG/ZMyRoa6Vr\nMvAHpzLwB8W0X/u/+IyOnG+ns89np7PP78ixJGkuVaoPXWauiYh3AsNAE7gkM2/rcliSuihHRohm\ns3yTY33pgKu+dwb77/O/uxSZJFVHpRI6gMz8OvD1bschqWLaJogYuutsBvY4DShvx3bIihPe28Gj\nSdLcqVxCJ0njRJDZKu62RkCzUQyKeNoCBvY4jatv/VC3I5SkrqtaHzpJWtfE6VsjuOrWD5G9Tfr7\nTu9GRJJUKSZ0kqqv/aHCrYnZnSTJW66SKi8ixid1EQz+3okM33lWdwOTpIqwhU5SPbTGZoqQJI1n\nC52kyupfeAgAGTF+NGsmQ3ed3ZWYJKmKbKGTVH0R6zyfZHA3526VpFEmdJIqa/ixy6DZgFbbVF+Z\n0NMkgYEX/q+uxSZJVeItV0nVlkn09IzrOzd0+4e7GJAkVY8tdJIqq3+zQwHIdECEJE3HhE5S5UVE\nMcq1fGSJJGk8EzpJlTX86NKxBK4xlsgN7nhclyKSpGoyoZNUWf0LD4GRFtk+KKIRDN197pzG8bxL\nPjqn55OkJ8uETlIl7d/4K1qrfwuUt1xH+9G1koFdTmBg91Om3PdlB5zTsThM5iTVgQmdpGobvdXa\nNvVXwPhHmUyiU0ndvUccz71HHN+RY0nSbPGxJZIq6ZrWlwDo3/wwkhx7rnAENBsTnzM8zr9+5f2z\nHZ4kVYoJnaTKGn1sSdAYu+XaCFj9xKT96F7RX0wHdv3wCXMWoyRVgbdcJVXW8KNLJ1/R05xyH5M5\nSfORLXSSKi16yq+p0T50rVzbf67/RR8AYPg/PgiYzEmav0zoJFVajoxAo0GM3nId/clYIjeTvrd8\nDIBlnzm24/FJUhWY0EmqrNE+dEwx9Vf/Xh+gBbCgl2u+deqcxiZJVWIfOknVlwnZ9r4x9tXVmJDk\nvey15/Cy13buOXSSVAcmdJKqq5XQSmI0gRttqVszUvwskzlb5yTNd5GZM29VYX19fbls2bJuhyFp\nFvQvPKRYaDaITRcUAyR6e8neXli4AJpBa7MFAFx942ldjHRmn/jhvgC88/ev63IkkropIpZnZl+n\nj2sLnaTKGn7sMmhO+JoKirLM4i7s42s26By7nXr+Bu0vSVXgoAhJlTbudmsELFiwdpaI7G0SwHCH\nW+d2vPA8AO5+1/s6dkxb5iTNJlvoJFVW/6YHk48/XryJKJK6kVbROjfSYnj5BxleXjy6ZL+Xf/gp\nneP2M97bqXAlqWtsoZNUeZlZPIcuAtasITfpnXa2iA3VyZY5SZoLttBJqq5oQDSI0UeTlIO4IgIa\nMPCCU9Zums0G++53VjeilKSuM6GTVHnZahXPoRtN7EZa62400qI10uLlA2dPeow933Y+e77NARCS\nNk4mdJIqL9oeJExmMcp1TQsi2P/FZ7D/i88oBkpsun63Yfd4z7qJ3S5nnM8uZ5jwSaonEzpJ9VHe\ncs2yhe6q752xdtW1N5xctOBNmDli1Hf/9r1892+LARC3XuBACEkbFwdFSKq8BNrTtPac7Zpvncor\nX3Ymr3zZmfC0p/6VdtepJnmS6ssWOknVlS3IVpHMtSVxGUE2GvT3nc7+fafDSNFy1xhJshH86as/\nusGnXvLJ81jyyfM2+DiSNBdM6CRVVrayGOnaLPvGTbyl+sTI2PIUt1qfqnuOGXt0yZJ/2PAEUZJm\nkwmdpErLkRFojRT3XTMhk2g0yGb5oOFNeoiEVk8DWvCNrx/PN75+fEfOPV1St9s/n96Rc0hSJ5jQ\nSaqs6O0henuKlrpGW+tc5tgd2MeemHTfP3n9uTMef/eTzmf3k9Yd2brjheetnf4L4J7Dj+eew8eS\nRJM5SVXjoAhJlTX86FIGFh0+VlCOcgVg9RrYtJcGMPytU4upvxpFmrc+yRzAbR8ZPxBi57PK5O5p\n0+93+4Gnr9fxJWmubFBCFxF/BZwO7ArsnZnL2tadBLwFGAHelZnDZflewGeBhcDXgXdnZkbEAmAp\nsBfwS+CNmXnPhsQnqf6yVTyiZFwPud7yqysCmlGMcG3zb/903KTH2vMd5/PdT00/mvVHJ67/aNc9\nv34qAN999RkzbClJs2tDb7n+AHg98K/thRGxG3AQsDswAFwUEaNP/PwUcCSwc/kaKMvfAvxnZu4E\nnA9M/rh3SfNONJvjWufy8eI2a2TS2qQH1hS3YK+94eQZj7XnO6Z+ePCTSeYkqUo2qIUuM+8AxuZZ\nHHMAcHlmrgZ+EhErgL0j4h5gUWbeVO63FDgQGCr3Ob3c/8vAJyIiMtvvsUiab6J9hOuEnwk0Vj/B\n8PIPAvCK/uLvwOuHT5j0WDO1zj1ZtsxJqorZGhSxLXBf2/v7y7Jty+WJ5eP2ycw1wMPAs2YpPkk1\n0L/wkLWtcUz82y4TetbvK+wPj/gYf3jEx9a+n2zqL0mqsxlb6CLiX4BnT7LqlMz8SudDmllEHAUc\nBfDc5z63GyFImkPZahHZLFrnMqFVJndPjNDapIf9X3wGrQVlS16vg/clzT8zfvNl5isz8/mTvKZL\n5lYC27e9364sW1kuTywft09E9ABbUAyOmCymizOzLzP7Fi9ePFMVJNXU8GOXFSNXM8d+NhvFa9SE\nLh/XXz12u3Wfg89jn4PPI1rQasFeRz25lrkln1q/0bKS1G2z9afslcBBEbEgInagGPxwc2Y+ADwS\nEftE0fHuUOArbfscVi7/JXCd/eek+a1/4SHQSqLZGGuVazSJkdbaW7CNVotsBPFEC3obvOJV646n\nuvmzx8ImY4nfrRcUfemmeg5dO5M6SXWwoY8teR3wcWAx8LWIuCUz+zPztoi4ArgdWAMck5mjc/Qc\nzdhjS4bKF8BngMvKARS/ohglK0nFLBGj1qwhe3qY+NdeAqxpjetXF62x9csvfvIDIu55x+SPP5lN\nrZ/vAkDj2XfN+bkl1VfUvRGsr68vly1bNvOGkmrlVb3F33SNp5VP+W02iQWbQE8P2dtL9vaQT1sA\nzeDqZaez374fAeDa605ae4w/ftN5jCwoWuZu/uyxALzwnedzyyc2fLTrC678AADff+0HN/hY7Uzo\npI1bRCwitY56AAAKOUlEQVTPzL5OH9eZIiRV2+gfnTG2HFG8Heltrt2sPZEbdeMXirlY937zx8aV\ndyqpmw0mcpKeChM6SZV09ROX07/ZoeTICDQaYzNFRDmna2Od51+u7T83OjDij99UzMd6c5nYAR1L\n5DrdMidJG8Lx/ZIqLxqNsdGsmdBo0ALiiaJr7qv++ENrt73+6hN42WvPKXdkwpxh69rtlPGDInY6\nZ6w1b8mnznVQhKRaMKGTVH3tfX0jYM3I2JdXs8jY9tv3I7CmxctedTa5Jnnp687lxs+/jxs/P9Y6\n96Kjz+dFR48lcLuddD6UAyd+70M+bFhSfXnLVVJlDT+6lIFFh48vLJO7BKLVYvjG04AioWsArZ5i\nSrB1ZpaY4PnHn08ArSb8/mnnQ0+R1K047Vh2vKBopbvnPXM/ylWSngoTOkmV1b/wEABi4abjE7S2\n59Lt/+JiPtVrv3Xq2tUvPfCcSY/3HxeN7z8XsPZbMIAfnlbNgRKSNBMTOknVlW0PkhsdDAHFIIlG\nMLKgd+2z5/bb9yPF3dPeBt8cPmGdQ+11ZHFLdfnfjU/a7vjQuknc3e85dtz7JZcWgy3uOWzd40pS\nFdiHTlL1NYOIBvT0MHTf3xQtdGVyF8A1ba1zU0kgm1Ov3+XM89nlTPvRSaonW+gkVdbwbz8HwODi\nt68tG9z+3Qzd9zcM7nYyV9/8v9aWJ0Vyd90krXN/eMTHaAIjzbEhrz/46PrfXrVlTlLV2UInqfKG\nVn2aoVWfHleWPQ0G/qBomdv/JWdw3XUncd11J/Gy154z9tiSNi3GTwU20V2nvJdWD+x09lgr3ZJP\nn8uST5/LsUvPZsnS4rbr737xzA2vkCR1mAmdpPpo60e3w0vgqu+dUQyKaBsvsWiTdXf7ziXHQk+x\n3wvfuf63VbcBXt32vkjmWuzy5Q9NsYckdYcJnaT6aLUY+ukFnH3SpfzkW8HAHqets8lXv/x+sgEv\nOfAc3nbiJ8etG9xjq2kPv+KE90Ij+fjHPw7AjW8/jovefhwfO/QE7jn0BH78xlNoTtMPT5K6xT50\nkmrhsssuW7t8w1fuLBZ6m9MOiPjBj3877v3QrQ9xy8XT951b8f5ihOsOHz+P87f/XQ488MBx6+/6\ny3WTSEnqtsgZHr5ZdX19fbls2bJuhyGpi2699Vb22GOPjh5zh4+fx0/+5/tm3lCSnoSIWJ6ZfZ0+\nrrdcJdXeccd8lSP++qKOHtNkTlKdeMtVUu1d82+ndDsESeoqW+gkSZJqzoROkiSp5kzoJEmSas6E\nTpIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM6CRJkmouMrPbMWyQ\niFgF3NvtOGbRVsBD3Q6iC+ZrvWH+1t16zy/We36x3mOel5mLO32i2id0G7uIWJaZfd2OY67N13rD\n/K279Z5frPf8Yr1nn7dcJUmSas6ETpIkqeZM6Krv4m4H0CXztd4wf+tuvecX6z2/WO9ZZh86SZKk\nmrOFTpIkqeZM6GZZRGwZEddExI/Kn8+cYruBiLgzIlZExInrs39EnFRuf2dE9JdlT4+IW9peD0XE\nBeW6N0fEqrZ1b91Y6l2W31CWjdbvd8ryBRHxxXKfb0fEko2l3hHxtIj4WkT8MCJui4iz2raf1es9\nVR3a1kdEXFiu/15E7Nnp+pfle0XE98t1F0ZEdLKek5nLukfE/hGxvKzj8ojYt22fSf/NbyT1XhIR\nj7XV7dNt+8zpNZ/jeh8c47/DWxHxwnLdxnC9/yqK76pWRPRNOF4lfsfnst4d/f3OTF+z+AI+CpxY\nLp8InD3JNk3gx8COwCbArcBu0+0P7FZutwDYody/OcmxlwMvK5ffDHxiY603cAPQN8l5jgY+XS4f\nBHxxY6k38DTgFeU2mwDfBAZn+3pPV4e2bV4NDAEB7AN8e5au+83l8aM83+As/9ue67q/CHhOufx8\nYGXbeSb9N7+R1HsJ8IMpYpmzaz7X9Z5w3BcAP97IrveuwO9NrAsV+R3vQr079vttC93sOwC4tFy+\nFDhwkm32BlZk5t2Z+ThwebnfdPsfAFyemasz8yfAivI4a0XELsDvUPwnP9e6Vu8ZYvkysN8s/oU3\np/XOzP/OzOsBymN9F9iuw3WazHR1GHUAsDQLNwHPiIhtZtj3SdW/PN6izLwpi2/ApUz+mXfSnNY9\nM/8jM39Wlt8GLIyIBbNVuWnM9TWfVBeueTfr/aZyn26YlXpn5h2Zeeck56vK7/ic1ruTv98mdLNv\n68x8oFz+ObD1JNtsC9zX9v7+smy6/afbZ9Roa1T7yJe/KJt2vxwR2z+5qjwp3ar3pWXT9GltSdva\nfTJzDfAw8KwnX6X10rXrHRHPAP4cuLateLau9/r8+5tqm07Wf9tyebo4Om2u697uL4DvZubqtrLJ\n/s3Phm7Ue4eybt+IiJe2nWMur3k3r/cbgS9MKKv79X6y59tYrvf62KDf754ncSJNISL+BXj2JKtO\naX+TmRkRT3lY8VPY/yDgkLb3/w/4Qmaujoi3UfxVuO+ke66HCtb74MxcGRFPB/4PRd2XPtXzTqWC\n9SYieii++C/MzLvL4o5e77m2oZ9fnU1W94jYHTgbeFVb8Zz8m58rE+r9APDczPxlROwF/HP5GWx0\nprjefwT8d2b+oK14o7reGtOJ328Tug7IzFdOtS4ifhER22TmA2WT7IOTbLYSaG892a4sA5hq/+n2\nISL2AHoyc3lbnL9s2/7vKfpwPGVVq3dmjv78dUR8nqL5e2nbPveXic8WQPtn8aRUrd6li4EfZeYF\nbXF29HpPMFM8023TO82+T7b+Kxl/i3myODptrutORGwH/F/g0Mz88Wj5NP/mZ8Oc1rtspVhdLi+P\niB8DuzD313zOr3fpICa0zm0k1/vJnm9jud5T6tjvd85B58r5/ALOYXzH149Osk0PcDdFR9DRjpS7\nT7c/sDvjO5DeTdugCOAs4IMTzrNN2/LrgJs2lnqXx9qq3KaXoq/c28v3xzB+UMQVG0u9y3VnUPz1\n1pir6z1dHdq2+TPGdxy+eZbqP7HD9Ktn6/p2qe7PKLd7/SRxTPpvfiOp9+K2a7wjxX+MW871NZ/r\nepfvG2V9d9zYrnfbvjcwfnBAJX7Hu1Dvjv1+z8oH4mvcRXkWRZ+mHwH/0vaF9Bzg623bvRq4i2KE\nzCkz7V+uO6Xc/k4mjPop/1H9/oSyj1B0urwVuH7i+jrXG9iMYkTv98o6/k3bl8GmwJcoOtneTNuX\n5EZQ7+2ABO4Abilfb52L6z1ZHYC3M5ZIB/DJcv33Gf8l1rF/70Af8INy3ScoH5g+y7/Xc1Z34FTg\n0bbrewvFYKcp/81vJPX+i7Jet1AM9vnzbl3zLvxbfzkT/gDbiK736yj6lq0GfgEMt62rxO/4XNab\nDv5+O1OEJElSzTnKVZIkqeZM6CRJkmrOhE6SJKnmTOgkSZJqzoROkiSp5kzoJEmSas6ETpIkqeZM\n6CRJkmru/wNh7xHC3s7IPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHVW1sPF3dTphljEgkwYUZVJBIiIIl9EMigG5Kjgw\nXAZRQEBFQERQUQGFYC4KwgUBB0QBlSvEAJFB/UQJgwwiEBCEECACgoo3pLvX90dVJ6c7PSan+9Tp\nvL/nOU+fql21a+1zOpXVe++qisxEkiRJzaGl0QFIkiRp4EzeJEmSmojJmyRJUhMxeZMkSWoiJm+S\nJElNxORNkiSpiZi8SepTRFwSEac1Oo7h0Oi2RsTNEXFIL2XjIiIjonUY4zk/Ik4eruNJGphhOwlI\nkppLZh7e6BgkLc6eN0lNKQqew4ZIRIxqdAySeuaJT2oyEXFCRDwSEf+IiD9FxN7l+uUi4u8RsWXN\ntmMj4t8RsXa5/NmImBsRT0XEIeUw3OsHcNi1IuKG8pi3RMRra46xfUTcHhEvlj+3H0AbDoyIR8v6\n/hIRH65Z/9uIOLes788RsVvNfjdHxFci4rfAy8DGEbFqRFxUtmtORJzWmXhExOsi4lcR8VxE/C0i\nfhARq9XUt3VE3FnGcQWwfC/x9vnZRsRaEfGLcpvnI+LXvSWWA/i8Xlt+Bv+IiOsjYq1e6lkjIr5b\nfpcvRMTP+vnMd46IJyPic+Vn8Vjn516WXxIR50XEdRHxL2CX7sPIETElIu6OiJfK38GJ5fpevwNJ\n9WfyJjWfR4AdgVWBLwLfj4h1M3M+cDWwX822HwBuycxny/9oPwXsDrwe2HkQx/ww8GVgLeBu4AdQ\nJBDAtcA0YE3gbODaiFizt4oiYqVy+0mZuQqwfVlnp7eXbVwLOAW4ujxOp48ChwGrAI8DlwBtZZu2\nBt4FdM4bC+BrwHrAZsCGwKllHGOAnwHfA9YAfgLs01PM/X22wKeBJ4GxwDrA54DFnj04wM/rQ8BB\nwNrAGOAzPcVUxr0isEW57dRetqv1aorPdX3gAOCCiHhjt2N/heKz/U232LcFLgOOA1YDdgIeK4sv\noffvQFKdmbxJTSYzf5KZT2VmR2ZeATwMbFsW/xDYt2bzD5XroEg2vpuZ92fmy5RJzABdm5m3lknM\nScA7ImJD4N3Aw5n5vcxsy8zLgT8De/ZTXwewZUSskJlzM/P+mrJngXMyc0HZvgfL43S6pGxDG0XS\nNRk4JjP/VSZSUzs/g8ycnZk3ZOb8zJxHkSz9R1nPdsDommNdCdzeR8x9fbYLgHWB15Z1/Tp7fnD0\nQD6v72bmQ5n5b+DHwFbdK4mIdYFJwOGZ+UJ5zFv6iL3WyeXncQtFIvmBmrKfZ+Zvy9+t/+u238HA\nxeXn2ZGZczLzzxGxDn18B5Lqz+RNajIRsX85dPX3iPg7sCVFbwrATcCKEfH2iBhH8R//T8uy9YAn\naqqqfd+fhdtm5j+B58v61qPo/ar1OEXPTo8y81/AB4HDgbkRcW1EbFqzyZxuic/j5XF6ivu1FAnY\n3JrP4zsUPVFExDoR8aNyKO8l4Pss+qzW6+VYvenrs/06MBu4vhwOPqGXOgbyeT1d8/5lYOUe6tkQ\neD4zX+gj3p68UH7+tcfu7bPt6ZiP9LC+z+9AUv2ZvElNpJxrdiFwJLBmZq4G3EcxPEhmtlP01uxX\nvn6Rmf8od58LbFBT3YaDOPTCbSNiZYoer6fK12u7bfsaYE5flWXmjMzcg6K36s9lmzqtHxHRrb6n\nanevef8EMB9YKzNXK1+vyswtyvKvltu/KTNfBXyE8rOi+Dx6OlZvMff62WbmPzLz05m5MfBe4FO1\nc/VqLNHn1YMngDVq5+8N0OrlsHXtsXv7bHs65ut6Wd/XdyCpzkzepOayEsV/sPMAIuIgip63Wj+k\n6Nn6MIuG9aBIPA6KiM0iYkVgMPfvmhwR7yzniX0ZuC0znwCuA94QER+KiNaI+CCwOfCL3ioqe8Om\nlEnEfOCfFMOondYGPhkRoyPi/RRz1a7rqa7MnAtcD5wVEa+KiJbyIoXOodFVyvpfjIj1KeZrdfod\nxTytzmO9j0XDz73p8bONiPdExOvLRPBFoL1bmzoN+vPqo93TgW9HxOpl/DsNcPcvRsSYiNgReA/F\nXL+BuIji92e38nNePyI2HcB3IKnOTN6kJpKZfwLOokg8ngHeBPy22za/B/5FMRw2vWb9dIqJ8jdR\nDPHdVhbNH8Chf0hx8cDzwDYUPVhk5nMUCcCngeeAzwLvycy/9VFXC8WFE0+V9f0H8PGa8t8DmwB/\no5g8/5/lcXqzP8XE/j8BLwBXUvToQXFBx1spEqprKS46oIz9FeB9wIFlHB+sLe9Jb59tGe+NFIni\n74BvZ+ZNPey/JJ9Xbz5KMdfuzxTzBI8ZwD5PU3xGT1FcdHJ4Zv55IAfLzD9QXEgxleLzvIVFvYh9\nfQeS6ix6nlMraaSLiM0ohlyXKyf/N1xEHAgckpnvbHQsI01E7Ax8PzM36G9bSdVmz5u0DImIvaO4\nZ9nqwBnA/1YlcZMkDYzJm7Rs+RjFENsjFPOyPg4QEfdHxD97eH24r8r60kt9/yznWmkIRHED3p4+\n8+n97y2pWThsKkmS1ETseZMkSWoiJm+SJElNpLXRAQzGWmutlePGjWt0GJIkSf264447/paZY+td\nb1Mlb+PGjWPWrFmNDkOSJKlfEdHXI/eWmMOmkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQm0m/yFhEX\nR8SzEXFfL+WbRsTvImJ+RHymW9nEiHgwImZHxAk169eIiBsi4uHy5+pL3xRJkqSRbyA9b5cAE/so\nfx74JPCN2pURMQr4FjAJ2BzYLyI2L4tPAGZm5ibAzHJZkiRJ/eg3ecvMWykStN7Kn83M24EF3Yq2\nBWZn5qOZ+QrwI2BKWTYFuLR8fymw12ADlyRJWhYN5Zy39YEnapafLNcBrJOZc8v3TwPrDGEckiRJ\nI0bDL1jIzASyt/KIOCwiZkXErHnz5g1jZJIkSdUzlMnbHGDDmuUNynUAz0TEugDlz2d7qyQzL8jM\n8Zk5fuzYuj9hQpIkqakMZfJ2O7BJRGwUEWOAfYFryrJrgAPK9wcAPx/COCRJkkaMfp9tGhGXAzsD\na0XEk8ApwGiAzDw/Il4NzAJeBXRExDHA5pn5UkQcCcwARgEXZ+b9ZbWnAz+OiIOBx4EP1LdZkiRJ\nI1O/yVtm7tdP+dMUQ6I9lV0HXNfD+ueA3QYYoyRJkkoNv2BBkiRJA2fyJkmS1ERM3iRJkpqIyZsk\nSVITMXmTJElqIiZvkiRJTcTkTZIkqYmYvEmSJDURkzdJkqQmYvImSZLUREzeJEmSmojJm6RKaW9v\nb3QIklRpJm+SKuOQQw7l3WMPb3QYklRpJm+SKuPJqxsdgSRVn8mbJElSE2ltdACS1OmXz1/IVRdN\nb3QYklRp9rxJqpR9Dp7EpPWPYtL6RzU6FEmqJJM3SZKkJmLyJkmS1ERM3iRVj/d6k6ReecGCpMqY\nuOp/ARDLL9fgSCSpuux5kyRJaiImb5Iq6dK7Tm10CJJUSSZvkipp7bXXbHQIklRJJm+SKunFF19s\ndAiSVEkmb5KqpyPZd9PPNToKSaokkzdJ1ZHZ6AgkqfJM3iRVTpLQ0vX0dOwh3+LEYy5qUESSVB3e\n501SU/jT3fMaHYIkVYI9b5KqI6L4WQ6ftvukBUlajMmbpGrq6OA9G3260VFIUuWYvElqGh3AHtuf\n1ugwJKmh+k3eIuLiiHg2Iu7rpTwiYlpEzI6IeyLirTVlR0fEfRFxf0QcU7P+1IiYExF3l6/J9WmO\nJEnSyDaQnrdLgIl9lE8CNilfhwHnAUTElsChwLbAW4D3RMTra/abmplbla/rliB2SSNNZvEq575N\n/+s5C4uOPnmPRkUlSZXSb/KWmbcCz/exyRTgsizcBqwWEesCmwG/z8yXM7MNuAV4Xz2ClrTsmTxl\nB1pW8AJ5SarHnLf1gSdqlp8s190H7BgRa0bEisBkYMOa7Y4qh1kvjojV6xCHpCY2YYWPkm1txUIv\nN+vt8OJTSRq6CxYy8wHgDOB64JfA3UDnqfc8YGNgK2AucFZv9UTEYRExKyJmzZvnfZ6kEc0HLEhS\nv+qRvM2ha4/aBuU6MvOizNwmM3cCXgAeKtc/k5ntmdkBXEgxL65HmXlBZo7PzPFjx46tQ7iSKq3z\nXm+SpB7VI3m7Bti/vOp0O+DFzJwLEBFrlz9fQzHf7Yfl8ro1++9NMcQqaRk249/fI8aM7nObfT68\nNe/cZaNhikiSqqnf2b8RcTmwM7BWRDwJnAKMBsjM84HrKOazzQZeBg6q2f2qiFgTWAAckZl/L9ef\nGRFbUQySPAZ8rB6NkTSyHX7EuxsdgiQ1XL/JW2bu1095Akf0UrZjL+s/OqDoJC1bWrxvuCT1xzOl\npOrpSGhpYa83f6rRkUhS5Zi8Saqe8pqF+f/ouvrdu57m47EkLfO846WkyomWUQvfT9ziJACytYWO\n0aNgTHHaOuPM73H8Z5d8Bsb3r76arTbfnC033XTpgpWkYWbPm6TKyAULyAULioWOjq5l3W7c+8sb\nnwJgx72+zo57fX3h+m0PPHtAxzr14cfZ6+fTlyJaSWoMkzdJ1dXLkxb6s82hU9nm0Kl1DkaSqsHk\nTVLlZPui52BFWzuMCgK4YdapdIxpYbedv8pN1x8PwEbrr8Bxn9h94fZ/uKS4yOGOC48d1pglabg4\n501SpcTobjfqbW+HljG9bn/Zt45cbJ2Jm6SRzORN0jJp9vFFgvetm2fy8vw2jpswocERSdLAOGwq\nqXJiVHm1aUdC+b6eTzx9w2lTecNpxZy4s+65m/Me9Al9kpqHPW+SqqnzYoXMxa48laRlmT1vkioj\nRo0qE7UOiJq+trYOEph2xs+YefPnuPCi/wLgPyafycsvvzygun/+h7u7LL99dC8bSlLFmbxJqozO\nq0wz6XKbkABYbjTXXvlHADZ+3avZ5V1nQFsy6T/PHVDdn/vpTWxxYjFUOgo48aMfrGPkkjR8HDaV\nVAkTVtp/0UJ0neE2/U9fZcLbvtjjfrdc99lBH+uBzy+6GvXRT3560PtLUiOZvEmqnvYOGN3/6Wkw\nQweXHvw+xr/+tX1uk5n8e8ECVhzT+61JJKnRHDaVVAkrb9zDypbgw0ftCsAHD34bY5ZbVLTuq1dc\neKPegegvcQMY992vs9n3zxlwnZLUCCZvkirhqnsvKy5Y6Jzr1lH8/MG0mQA8cM9fufSaoxc+4/SH\nlx3VkDglqdEcNpVULb3c0O2ePzzNB991DoxpZdX1Wnn+BfjVzBPqeuhTt96RS+6/o651SlK92fMm\nqZpqLlr48aW3UPuI+udfWPJq33LaN7l/7tweyw7a+h3c8pHFH7c1VDoWPEnHP64dtuNJGhlM3iRV\nR2fC1hLQ0lJcuAB894wZxXLL0p+y5rd3MO3qiiRMz+0K//I5rJIGx2FTSRVTJnAdHdDSUvS4ZXL9\nH75A8TaJWLqHZd3yt38sXYiS1ED2vEmqln7yss7EbbdJZ3Di53+0RIe44P2Dfwh9e/qILknVYPIm\nqToy6TK5LQJaR/U4XNrRAbfd/vigD/HnU45lp80377Ju/vz5jDvvG33u97bpX+Ct131+0MfrS8ur\nH6Ll1Q/VtU5JI5/Jm6Rq6rxlyIK2Qe027fu/YNuDzx7UPm+8+L8Htb0kNZLJm6RqqR02zRzQkxZq\nXXbTQwx2gHO7AW637iDrlaSh4AULkqqldth0VAu0tUHr0J6qfvTxz3D33Kf63W7SBjsOaRySNBAm\nb5KqKaJ4ykLCDlNey1c//xPu+N1DXDXzpD53+4+N1uCWvzw/4MNsPO0soP8H1N8x6ctLfZWrJNWD\nw6aSqiWzyw16o6WFk08/nFtm/Il/vrRo/luWr52mfL3L7md9/kBmXfSpJT78uO+eSXt7+2LrTdwk\nVYXJm6RqqUCO9LrLzmp0CJLUK4dNJTWFGbefAsAe7/wKO+6+Ud3q7W+4VJKqxuRNUsXEotuEtCx6\nP2H8qcVVpMu18usb/0KsVJy+zjvzw3WP4BNrvrHudUpSvZi8SaqeQcwv2+KN6wHwjv3O4neXF71o\n2xw2FYA7Lhj8c0MfO+izg95HkoaTc94kVUtn3pYJLaMWrp4x61SuvumzXRK712zQddd37OdcNUkj\nX789bxFxMfAe4NnM3LKH8gC+CUwGXgYOzMw7y7KjgUMpTscXZuY55fo1gCuAccBjwAcy84U6tEdS\ns+vIRcOm7W0wagy3/+bPvO2dm7LKKisu3OymGcd32W2vHTbg+CM/CCxZj5skNYuB9LxdAkzso3wS\nsEn5Ogw4DyAitqRI3LYF3gK8JyJeX+5zAjAzMzcBZpbLkpZx2VHzbISWFkjICE7++Pf63bczcZOk\nka7f5C0zbwX6uuPlFOCyLNwGrBYR6wKbAb/PzJczsw24BXhfzT6Xlu8vBfZa0gZIGmE6h0U7E7kI\n6ICJW32hy2Y7TzyDnSeeMczBSVLj1WPO2/rAEzXLT5br7gN2jIg1I2JFimHVDctt1snMueX7p4F1\n6hCHpGaXNc/G6kziatdJkobugoXMfAA4A7ge+CVwN7DYbcszs/NG6T2KiMMiYlZEzJo3b95QhSup\nwSastH+f5ZP33brfOu598K9se+DZ9QpJkiqpHrcKmcOiHjWADcp1ZOZFwEUAEfFVil45gGciYt3M\nnFsOsT7bW+WZeQFwAcD48eP9E1xaxgTFXLhPnrB3l/U3//L4xbY9+GtXDlNUktQ49eh5uwbYPwrb\nAS92DolGxNrlz9dQzHf7Yc0+B5TvDwB+Xoc4JI0UEYsNl0588+cbFIwkVctAbhVyObAzsFZEPAmc\nAowGyMzzgeso5rPNprhVyEE1u18VEWsCC4AjMvPv5frTgR9HxMHA48AH6tIaSSNDt4fTE0EHMGWX\nL7H2Oqvy3xceAsBO7y0eSn/rNcfxjv3OYodNXsXULx3agIAlafj0m7xl5n79lCdwRC9lO/ay/jlg\nt4EEKGnk26Pl/QC0rLDC4g+m7+yBi+Df/4Kf33R0r/Xc9vBLfR7n2rvuZYc3vo7VVlyxz+0kqcp8\nPJakSkuKm/a2AB3A7v/xVQBuvOVz3HrNcYOq6zNX3wjcyANf9ia+kpqXj8eSVB21T1eA4sH0PW0G\n7LrH6QD87413AfC7yz+98Nmmnb51zS1DEqYkNZLJm6RqK3O5jgjo6GDs2ouKbr7515w57UamfOjr\ndHR0sGDBorsRTf7kVC68/s4uVT3w5WPtdZPU9EzeJDXcDR0/oWW55YuF6NbbVi5Ga3G6+tvcJFqC\naE++cPZtADz/Mmz/0anseOA5fO+623nssTlcN+3YQc0LGXf+Nxh3/jeWsiWSNPRM3iRVymI3c6x9\n6AJww29OAmDmr07scf9pV/6a93/pCgBmnWsvm6SRxwsWJFXCkT8+kHP3vbRr9tZRLrR0/Ttz5k1F\n4nbrNcex417F7UJu+0Ex3+3X985mo9VXHvTxr3zvvmy6xlqDD1yShpk9b5IqYc89dyuTtUW3BqnV\n2gqve8Na7L7TV9h9p6/0Ws+Ob3o9G2zw6kEff/x6G7Dy8ssPej9JGm4mb5IqYcLyH6ZI3GoeSN8S\nC3vf2l9uY9plhzcsPkmqCpM3SdWRNT1vAB1ZpHKjggQmvf3LRFty460nNSY+SaoAkzdJFROLnm3a\ny33e+jL+4LMZf/DZQxCXJFWDyZukSpjxfz+A1lZi8etNu/jEMT5ZT9KyzatNJVXCRz5yALR3wKiW\n8ueoLuUB3HDHF/utZ9ZFn+px/ReuuJYr732IP53m7UMkNTd73iRVwryrOnou6DZ02tbWtkT1X3nv\nQ0u035I498+7cu6fdx2240lattjzJqnyoq2DC6Z/ij22Pw2A9hWKU9evZp4w4DrO3HtnPvvTm5fo\n+I8+9xQbr7neEu0rSfVmz5ukSvjvP57ctZet86KF0iH7nAsdHcWrm122G9dv/e/ZZuslHjKd8tvv\nLNF+kjQU7HmTVAlHbV30qi28OW9mcdeQ0a1kJixoL24b0tr1b86rLjyUtceuNpyh9uvITX/V6BAk\njWAmb5KaTu1w6UASty0/OxWA+85csp63e9/b/4USkjRcHDaVVC0di98qJABGF1ef/nTmZ4Y3Hkmq\nGJM3SdVUPoz+Q8fswvQHvgYUSdxKK63Ibjt/tYGBSVJjOWwqqSISOoBRFBculBcrfPRj71q4RQew\n2/anwZjB/d05mOHScZedAcBj+x8/qGNI0nCx501SNZQXkS4cNM2ETPZ624n85td31f1wmckOXz+b\nV155hd3+5/y61y9JQ8XkTVK1dN4upLzqdP4/4SuH/bjLJh1tyS7vOoMbb7y1xyq2OWwqZ176v30e\n5tBzz+UZYMaMGTz6738tXH/W+Ams6KCEpAozeZNULW3ti24XAsWjsoD9P74LjB5F1Nz77Utn/o6d\n3vv1Hqu54rez+zzM/xx1FEdtszV77rknK9as32fzrfjT/p9e4vAlaaj556Wk6ulM0FZYHoDpD3yN\nW66/j6AYVo2WmuHVtuLd9Jv+yE7bvp6VVlqJWd85hojoXutijt51FwDuP8pkTVLzsOdNUjVlwiuv\nLFycO+d5oDhp/erWk/jPvTaB1kUJ2pcuvJHdDy3mrkUEWx05la2OnDqsIUvScDB5k1QN2QHZQbTU\nnJY6kukPFVd/7jrxzWRHBxnBrnuczlU/fYhbr/sst1732T6rfcsxJnCSRhaTN0nV0tJ1uHPSJkVy\ndsgHv0lL++I38O30ux9+mt/9cNHw593ndr09yBYnTmWLE03kJDU/57xJqqZuSdz8l4vELVuDlvnt\n3HjrSb3u+taPFUlartB79ZucXmzz8AlL9sgsSWoUkzdJ1RDFQEBm+Tgs+r/gYDDu/5pJmqSRweRN\nUiX874sXseeqB/dY9se7ZnPq1P143SavZu1XrwrAzpPOBODm6b3PefvjOcfy2DPPLbb+jV+eCqOL\neSMbf/NsAB49+lNL2QJJGh7OeZNUCXuucSiMKk9J5dMVoLglyPEfvpipX7mcxx97ekB13fmdY6EF\nXnrpJcats2aP2zx8wrE86JCppCZk8iapYrLrTXpLLz7VxuePvByA3Xb9GhN22rjPXjeAnY+/qMf1\nD568KGl79OhP2esmqamYvEmqlMXStpaWIpkb03WWx403PNxvXXeeZ8+apJGn3+QtIi6OiGcj4r5e\nyiMipkXE7Ii4JyLeWlN2bETcHxH3RcTlEbF8uf7UiJgTEXeXr8n1a5KkptQ5VJrdloG37Thu0NWZ\nuEkaqQbS83YJMLGP8knAJuXrMOA8gIhYH/gkMD4ztwRGAfvW7Dc1M7cqX9ctQeySRpBc0Ea2ty92\ni5AAbr/tCWjr6HG/d77vG7zzfd8YhgglqRr6vdo0M2+NiHF9bDIFuCwzE7gtIlaLiHVr6l8hIhYA\nKwJPLWW8kka6zp63ct5bto6CBe0wKuj8e/OII3dh0qS39ry/JI1w9Zjztj7wRM3yk8D6mTkH+Abw\nV2Au8GJmXl+z3VHlMOvFEbF6b5VHxGERMSsiZs2bN68O4UqqtpqnKHQmcOViB7DHDqfxvvdtxwor\njOm1hhde+DvHTPvB0IUoSQ00ZBcslAnZFGAjYD1gpYj4SFl8HrAxsBVFYndWb/Vk5gWZOT4zx48d\nO3aowpVUGeWwaSYf++K7e9xit12/xm67fg2A31z9GX5z9We6lp/4XW7907NDGqUkNUo9krc5wIY1\nyxuU63YH/pKZ8zJzAXA1sD1AZj6Tme2Z2QFcCGxbhzgkNbuOrs8u/c4p1/KLP36xHDItTlg3/Pbz\n/VZz+K5vHoroJKkS6vGEhWuAIyPiR8DbKYZH50bEX4HtImJF4N/AbsAsgIhYNzPnlvvvDfR4Jauk\nZVwmra2tBF0GU5n5qxP73O2wD+zGYR/YbUhDk6RG6Td5i4jLgZ2BtSLiSeAUYDRAZp4PXAdMBmYD\nLwMHlWW/j4grgTuBNuAu4IKy2jMjYiuK8/FjwMfq1iJJTSlGjSrfdK7odse3MT7NT5JgYFeb7tdP\neQJH9FJ2CkWy1339RwcaoKRlREsUw6a1XWxlAvfLe05jwvhTGxKWJFWNT1iQVA2d890ye91k5TU8\nZUmS4xCSqiHLm/C2LP5cU4A99nwT2+7whmEMSJKqyeRNUrX00vH2mVP2Gd44JKmiHIOQVB0RfQ6b\nSpJM3iRVRbQAsehq09KkzU7k2h/+piEhSVIVmbxJqpSErjfrbWvj3C9fC0BHR88Pp5ekZYlz3iRV\nQ+2FCqMW/V2Z7QljWpiwzSlFYjemlet/d/KwhydJVWHPm6SKKee9deZyKyw3JEc57LuXccqll/a7\n3UV/+C2HT79wSGKQpCVhz5ukSsgFbdASi5600MOFCwHMqFOv26+e/RsAX+xjm0deeJaznrqhLseT\npHqx501SddQ+Eispkrn5r/DL+79Cy5jgTePXBuCRR+by97//X7/VPfroo7zlmKkAbH7SVDY/aeqi\nwhZ6PAPeNucxHp73DK+74iu863p73CRVjz1vkqqr7H371fW/5drffoGWliLbOuzQSwCY/N638Olj\nJve6+97Tft5r2ezjPtXj+n1vvKL4uep6/GT+U/zgTR/l1mf+tATBS9LQsOdNUrV06X0rkrczj/sl\nk7fu+pjkDuAX0+/ts6o/nnMsO7xmLAAn7Pq2QYVx+l4H8cgHT2Lr172Oo7ffc1D7StJQimyiG2KO\nHz8+Z82a1egwJA2Bd435UDFMutxyxOhWorUVRo+G5ZejY8XiooUZf/zywu13mXAGq64CP7vy+EaF\nLEl9iog7MnN8vet12FRSJcTo1uL+bp1/UAZde+F68OI/hj4uSaoakzdJ1dDeDtFS3CGkIxdesDD9\n4TMbHJgkVYtz3iRVR3Z9gsL0x6YycYuTmLjFSQ0KSJKqx543SdXSeZ+3foZMP7Tvtrx/77pPJZGk\nyjN5k1QNUQ4EdHQsTOAmjTuWT377Q0yevPiVoocetMtwRidJlWHyJqnS/vvIK5j86NuYMP5UALab\nvD6/uXXNG4ZuAAAS00lEQVQeM2/+XGMDk6QGcc6bpGrKhJZRi63+za3zGhCMJFWHyZskSVITcdhU\nUjWsAvwDIKGl54sVNt50dc77/tHDGZUkVY7Jm6RKmPHs95j4qoMWrYiAtjZoLU5TM2ad2pjAJKli\nHDaVVC2dtwjp51YhkrSsMnmTVAkTNtmfbG8vnqyQNY/JGuVpSpJqeVaUVAn5eNuihZby1NTL3DdJ\nWpaZvEmqjFxQJnCdvW4d6bNNJakbkzdJlRGjFr+vmySpK5M3SZWwMHFbOGTawvS/ntO4gCSpokze\nJFVPRzY6AkmqLJM3SdXQEsUrYuGFCpNec0yDg5Kk6jF5k1Qt2bXXbdLmn2PS5j6EXpI69Zu8RcTF\nEfFsRNzXS3lExLSImB0R90TEW2vKjo2I+yPivoi4PCKWL9evERE3RMTD5c/V69ckSc1oxr8uI8aM\nASDCvyslqTcDOUNeAkzso3wSsEn5Ogw4DyAi1gc+CYzPzC2BUcC+5T4nADMzcxNgZrksSYuk894k\nqSf9Jm+ZeSvwfB+bTAEuy8JtwGoRsW5Z1gqsEBGtwIrAUzX7XFq+vxTYa0mClyRJWtbUY2xifeCJ\nmuUngfUzcw7wDeCvwFzgxcy8vtxmncycW75/Glint8oj4rCImBURs+bNm1eHcCU1hY4ODj9790ZH\nIUmVM2QTS8p5bFOAjYD1gJUi4iPdt8vMpHiaYY8y84LMHJ+Z48eOHTtU4UqqoPOP+xW0tS9VHd/9\nxc31CUaSKqIeydscYMOa5Q3KdbsDf8nMeZm5ALga2L7c5pnOodXy57N1iEPSSNJ5096lmPv2lmOm\ncs6Nd9UpIEmqhnokb9cA+5dXnW5HMTw6l2K4dLuIWDEiAtgNeKBmnwPK9wcAP69DHJJGmj563eb9\n7cVhDESSqmMgtwq5HPgd8MaIeDIiDo6IwyPi8HKT64BHgdnAhcAnADLz98CVwJ3AveWxLij3OR3Y\nIyIepuihO71+TZI0kuSY0WREl3W7vOsMPvCh8xcu7/D+s9jh/WctXH7HYVO5+Lr/x+1nHslGr1p+\n2GKVpOHQ2t8GmblfP+UJHNFL2SnAKT2sf46iJ06SFpPZQUDxtIXShK1PYcZdXwTgmqs+wXv3+Xav\n+78CfOtnv+e/Jm/Pz7708aENVpKGWb/JmyQ1RGfi1tZOto7qUrTKKqtw0/XHL1z+7U8+vdjukzft\n/d7fb/jKVAAeOunYOgQqScPL5E1SdbS3QwCjlm467h0XmJRJGrlM3iRVU8TCJC4y+WU5ZFoP39iz\nr4fGSFK1mbxJqqZyqDTa25e6J6679755s7rWJ0nDyac/S6qMX770XRjVCh3J9L+cDT6gXpIW45lR\nUmVMfNVB0N7W6DAkqdJM3iRVSwLLB5M2+GTNuiV/yoIkjTQmb5IqJ1rKG+u2RN8bStIyyAsWJFXH\nqFE9r+/2hIXddv0aADN/deJQRyRJlWPPm6TqaWtj+pPTGh2FJFWSPW+SKmv67K9z7Y9v47WbrM2E\nbU7h2t+fTGtrfU9bG59zNh2jE0h+/f792XDttetavyTVmz1vkqonk0lv/wQA557yc4770IUAvPvt\nXwaK4dLBDpluceJUtjhxas+FC4ofO1512ZLFK0nDyORNUuXkgjaO+dKURcsAbR1ccPV/DcnxHjum\neDbqH/bZf0jql6R6MnmTVEm77LLLYuuOPvS7S1XnCTss/mSFR4/5FACPHfEZ1nbIVFITcM6bpOpo\nby9+LjeGKa89lulzv7WobFTw7+eXvOr7v+bD6iWNDPa8SaqeTH7y8BnF2851LZ6uJAnseZNUERNW\nKuabRXmvt5VXXrlL+YxZpw53SJJUSSZvkqqt1R43SarlWVFSNbyh+HHM+Qcyfd53Fq5+9cYNikeS\nKsqeN0mVMOOunu+x9vSjwxyIJFWcPW+SJElNxJ43SZUxcfVDAIgxo5n+zHkNjkaSqsmeN0mVk533\newM22mq5BkYiSdVj8iapMrb/yBbQ0dFl3YbrjWtMMJJUUSZvkirj/11272LrjvjcPqy21goNiEaS\nqsnkTVIlTRp3BAARLWy51bjGBiNJFWLyJqkSJqy0P9nWBqPL66jmFz9e9aoV+PzUjzQuMEmqGJM3\nSdXSkf1vI0nLMJM3SZV1ySWXNDoESaockzdJlZILXln4/oqT72LS649rYDSSVD3epFdSNUQUP7O4\nSIHW4vT0vkO2bGBQklQ99rxJqobM4lUrgkNPOICJbzmZiW85eUDVXD/rj9x85wNDEKAkVUO/yVtE\nXBwRz0bEfb2UR0RMi4jZEXFPRLy1XP/GiLi75vVSRBxTlp0aEXNqyibXt1mSmlpLLOyJ+9mlNw9q\n15O+PZPjzp0+BEFJUjUMpOftEmBiH+WTgE3K12HAeQCZ+WBmbpWZWwHbAC8DP63Zb2pneWZetyTB\nSxo59v3KhIVXmuaCNliwAIDvfPWXPW7/97//e9hik6Qq6XfOW2beGhHj+thkCnBZZiZwW0SsFhHr\nZubcmm12Ax7JzMeXKlpJI9aPTqxJ0lpi4Zw3YNF8uBp7f3AaADfNOL7L+tsv/hQAL7z0T1ZeYXlG\nj3Zqr6SRpR5ntfWBJ2qWnyzX1SZv+wKXd9vvqIjYH5gFfDozX+ip8og4jKJHj9e85jV1CFdS1bxr\n9L4AROvoInGDYv5bBNMfPB2Atra2QdW56wkXAnDXt4+tX6CSVAFDfsFCRIwB3gv8pGb1ecDGwFYU\nSd5Zve2fmRdk5vjMHD927NghjVVSBfTQywbQ2rr435pHHb7DUEcjSZVTj563OcCGNcsblOs6TQLu\nzMxnOlfUvo+IC4Ff1CEOSU3qm/ecwtFv/mLXlS0ti3rhetB9uLS726cd1WPCNxj3Pvs0r19lVVZY\nYYWlqkeS6qkeyds1wJER8SPg7cCL3ea77Ue3IdNuc+L2Bnq8klXSsmGzzTYrhkyBoEjYpv/1nKWq\nc2kTN4B9bi2GXh/6z4HdpkSShkO/Z7eIuBzYGVgrIp4ETgFGA2Tm+cB1wGRgNsUVpQfV7LsSsAfw\nsW7VnhkRWwEJPNZDuaRlVXmvt0nrHsH0ud9qcDCwaqMDkKRuIrvfFLPCxo8fn7NmzWp0GJKGwIQV\nPgpAjG6FMaOJ0aOhtZXpT3yzYTH985X/Y7nW0YxuGdWwGCQ1r4i4IzPH17ter6GXVA2jul0/1dL4\nB8CsPGb5RocgSYtp/NlRknrS0bF4QidJMnmTVDGjHKKUpL44bCqpGppo/q0kNZI9b5KqpZeb9EqS\nCiZvkqqppYXpj01tdBSSVDkOm0qqhg6HTSVpIOx5k1QtnY/EcvhUknpk8iapWjp74NrbGxuHJFWU\nyZukamlra3QEklRpJm+SJElNxORNUiX97LGzGx2CJFWSyZukSpjx7+91eRzWY4/9tYHRSFJ1mbxJ\nqowZ/7wUWlsh4Zidz2l0OJJUSSZvkipjwsoHFG98VJYk9cqb9Eqqlhbv7yZJfbHnTVIlvGvMh7os\nT5/7rQZFIknVZvImqTLylQUcesoHuOpxn2kqSb1x2FRSpexz1O6NDkGSKs2eN0mSpCZiz5ukSoiW\n8M9JSRoAT5WSqqOj0QFIUvWZvEmSJDURkzdJkqQm4pw3SZUw4/9+0OgQJKkp2PMmSZLUREzeJEmS\nmojJmyRJUhMxeZMkSWoiJm+SJElNxORNkiSpiZi8SZIkNZF+k7eIuDgino2I+3opj4iYFhGzI+Ke\niHhruf6NEXF3zeuliDimLFsjIm6IiIfLn6vXt1mSJEkj00B63i4BJvZRPgnYpHwdBpwHkJkPZuZW\nmbkVsA3wMvDTcp8TgJmZuQkws1yWJElSP/pN3jLzVuD5PjaZAlyWhduA1SJi3W7b7AY8kpmP1+xz\nafn+UmCvwYUtSZK0bKrHnLf1gSdqlp8s19XaF7i8ZnmdzJxbvn8aWKe3yiPisIiYFRGz5s2bV4dw\nJUmSmteQX7AQEWOA9wI/6ak8MxPI3vbPzAsyc3xmjh87duwQRSlJktQc6pG8zQE2rFneoFzXaRJw\nZ2Y+U7Pumc6h1fLns3WIQ5IkacSrR/J2DbB/edXpdsCLNUOiAPvRdci0c58DyvcHAD+vQxySJEkj\nXmt/G0TE5cDOwFoR8SRwCjAaIDPPB64DJgOzKa4oPahm35WAPYCPdav2dODHEXEw8DjwgaVtiCRJ\n0rKg3+QtM/frpzyBI3op+xewZg/rn6O4AlWSJEmD4BMWJEmSmojJmyRJUhMxeZMkSWoiJm+SJElN\nxORNkiSpiZi8SZIkNRGTN0mSpCZi8iZJktRETN4kSZKaiMmbJElSE4ni6VbNISLmUTwLdaRaC/hb\no4NoANu9bFlW2w3Lbttt97LFdi/y2swcW+8DNVXyNtJFxKzMHN/oOIab7V62LKvthmW37bZ72WK7\nh57DppIkSU3E5E2SJKmJmLxVywWNDqBBbPeyZVltNyy7bbfdyxbbPcSc8yZJktRE7HmTJElqIiZv\ndRIRa0TEDRHxcPlz9V62mxgRD0bE7Ig4YSD7R8SJ5fYPRsSEct0qEXF3zetvEXFOWXZgRMyrKTtk\nJLW9XH9zua6zjWuX65eLiCvKfX4fEeNGSrsjYsWIuDYi/hwR90fE6TXbD+l33lsbasojIqaV5fdE\nxFvr3f5y/TYRcW9ZNi0iop7tbGS7I2KPiLijbN8dEbFrzT49/r6PkHaPi4h/17Tt/Jp9RvL3/eHo\neg7viIityrJh/b6HsO3vj+Jc1RER47vVN5L/jffY7rr+G89MX3V4AWcCJ5TvTwDO6GGbUcAjwMbA\nGOCPwOZ97Q9sXm63HLBRuf+oHuq+A9ipfH8gcO5IbjtwMzC+h+N8Aji/fL8vcMVIaTewIrBLuc0Y\n4NfApKH+zvtqQ802k4HpQADbAb8fou/9D2X9UR5v0hB+v8Pd7q2B9cr3WwJzao7T4+/7CGn3OOC+\nXmIZsd93t3rfBDzSiO97iNu+GfDG7u1h5P8b763ddfs3bs9b/UwBLi3fXwrs1cM22wKzM/PRzHwF\n+FG5X1/7TwF+lJnzM/MvwOyynoUi4g3A2hT/mTdCw9reTyxXArsN4V9uw9ruzHw5M28CKOu6E9ig\nzm3qSV9t6DQFuCwLtwGrRcS6/ew7qPaX9b0qM2/L4mx3GT1/5vUyrO3OzLsy86ly/f3AChGx3FA1\nrg/D/X33aKR/393sV+7TKEPS9sx8IDMf7OF4I/rfeG/true/cZO3+lknM+eW758G1ulhm/WBJ2qW\nnyzX9bV/X/t06uxhqr36ZJ+ya/bKiNhwcE0ZtEa1/dKye/nkmgRt4T6Z2Qa8CKw5+CYNSMO+84hY\nDdgTmFmzeqi+84H8Dva2TT3bv375vq846mm4211rH+DOzJxfs66n3/eh0Ih2b1S27ZaI2LHmGMvK\n9/1B4PJu64br+4aha/tgjzdSvvOBWKp/462DONAyLyJuBF7dQ9FJtQuZmRGxxJfxLsH++wIfrVn+\nX+DyzJwfER+j+Gtv1x73HKAKtv3DmTknIlYBrqJo/2VLetzeVLDdREQrxYl+WmY+Wq6u+3c+nJb2\n82tWPbU7IrYAzgDeVbN6WH7fh0u3ds8FXpOZz0XENsDPys9gxOnl+3478HJm3lezekR93+qqHv/G\nTd4GITN3760sIp6JiHUzc27ZpfpsD5vNAWp7RDYo1wH0tn9f+xARbwFaM/OOmjifq9n+fyjmXCyV\nqrU9Mzt//iMifkjRhX1ZzT5PlknOqkDt5zEoVWt36QLg4cw8pybOun/nNfqLp69tRvex72DbP4eu\nw8Q9xVFPw91uImID4KfA/pn5SOf6Pn7fh8KwtrvseZhfvr8jIh4B3sAy8H2X9qVbr9swf98wdG0f\n7PFGynfeq7r9G89hmhA50l/A1+k6KfXMHrZpBR6lmKDZOcFxi772B7ag68TOR6m5YAE4Hfhit+Os\nW/N+b+C2kdT2sq61ym1GU8xtO7xcPoKuFyz8eKS0uyw7jeKvspbh+s77akPNNu+m66TePwxR+7tP\nZp48hN/vcLd7tXK79/UQR4+/7yOk3WNrvt+NKf4DXGOkf9/lckvZ3o0b9X0PZdtr9r2ZrhP3R/S/\n8T7aXbd/40P2y7CsvSjmVc0EHgZurDn5rAdcV7PdZOAhiqtUTupv/7LspHL7B+l25U35y7Npt3Vf\no5gM+Ufgpu7lzd52YCWKq2vvKdv5zZp/+MsDP6GYAPsHak6KI6DdGwAJPADcXb4OGY7vvKc2AIez\nKGkO4Ftl+b10PWHV7XceGA/cV5adS3mj8SH8joet3cDngX/VfLd3U1yI1Ovv+whp9z5lu+6muAhn\nz2Xh+y7LdqbbH1qN+L6HsO17U8wFmw88A8yoKRvJ/8Z7bDd1/DfuExYkSZKaiFebSpIkNRGTN0mS\npCZi8iZJktRETN4kSZKaiMmbJElSEzF5kyRJaiImb5IkSU3E5E2SJKmJ/H+R2oE1UwVndAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XVWd///XO0nT0hulbSi90hYKUhCr1IKORQa8AMNM\nBW/l64AwIHYEL6M//aHOPBwdGVHHn18dUcSRrzAKha+IoqKgIqAO0IsUbCmFtlzaUkppaek1aZLP\n74+9ku6mJ8kJTXMueT8fj0POWWvttT/rnOTw6dp77a2IwMzMzMwqX02pAzAzMzOz3uHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixM7N9SPqBpC+WOo6+UIljlbRd0tRXsN1k\nSSGp7mDEZWblwYmdmVkFiYihEbG61HG0kXSRpD+WOg4zyzixM7OKoEy//c4qxUxbX7znnkE06139\n9kvSrFJIulLSKknbJD0m6dxUPlDSFkkn5No2SNol6fD0+lOS1kt6TtKl6VDc0UXsdrSk36R93ifp\nyNw+3ihpoaSt6ecbixjDRZJWp/6ekvS+XPmfJH0r9fe4pDNy290r6SpJfwJ2AlMlHSrp+2lc6yR9\nUVJtan+UpHskbZL0oqQfSRqR6++1kv6c4rgFGNRJvF2+t5JGS/pFarNZ0h86S4DSe/6RNP4XJX01\n31bSP0haLuklSXd1eK9D0uWSngSezJUdnZ4fKulGSRslPSPpn9v6llQr6T/SPlcDf9Pd59TT91zS\nccC1wBvSIeItuT4u7fD5/zH3urNxzZP0ZHpfr5GkYmI2s72c2JmVv1XAbOBQ4PPADyWNjYhG4CfA\n+bm27wHui4gXJJ0JfBx4C3A0cFoP9vk+4N+A0cAS4EcAkkYCvwS+CYwC/j/gl5JGddaRpCGp/VkR\nMQx4Y+qzzclpjKOBzwE/SftpcwFwGTAMeAb4AdCcxvRa4G1AWxIh4EvAOOA4YCLwrymOeuCnwH8D\nI4H/C7yzUMzdvbfAJ4C1QAMwBvgM0NX9Gc8FZgKvA+YA/5BimpO2PS/19Qfg5g7bviO9R9ML9Puf\nZL8XU4E3AxcCF6e6DwDnkL1HM4F3dRFfR0W95xGxHJgHPJAOEY8o3F1BhcZ1DvB64ESy9/vtPejP\nzAAiwg8//KigB1lSNCc9fwuwKlf3J+DC9Px64Eu5uqPJko+ju+n/B8D83OuhQAtZknQBsKBD+weA\ni7robwiwhSyJOqRD3UXAc4ByZQuAC9Lze4Ev5OrGAI35fsiSr993su93AA+n56cW2Nf/AF/sZNuu\n3tsvAD/r7r1MbQM4M/f6Q8Dv0vNfAZfk6mrIZsmOzG17eoH+jgZqgSZgeq7ug8C96fk9wLxc3dvS\ntnXdxNuj9zx9hn8s0MelHT7nP3YYQ6FxvSn3+lbgylL8jfnhRyU/PGNnVuYkXShpSTo8tQU4gWx2\nC+D3wGBJJ0uaDMwAbk9144A1ua7yz7vT3jYitgObU3/jyGZw8p4BxnfWUUTsAN5LNrOzXtIvJb0q\n12RdRORnu55J+ykU95HAgNRP2/vxXaDt0PMYSfPT4cKXgR+y970a18m+OtPVe/tVYCVwdzrEemUX\n/XQcQ358RwLfyI1lM9ms4/hOts0bTfZe5MeQ/yw6fv5djbWreLt8zw9AoXE9n3u+k+wfFWbWA07s\nzMpYOt/qe8AVwKjIDnUtJfufPxHRQjazcX56/CIitqXN1wMTct1N7MGu29tKGkp26PK59DiyQ9tJ\nwLquOouIuyLircBY4PE0pjbjO5xLNSntp33z3PM1ZLNHoyNiRHoMj4jjU/2/p/avjojhwN+T3iuy\n96PQvjqLudP3NiK2RcQnImIq8HfAx/PnBhaQf+/z41sDfDA3lhERcUhE/E8n4897EdjDvp9H/rNY\nX2C/xerJe14ovh3A4NzrI7rZh5n1Eid2ZuVtCNn/ADcCSLqYbMYu7yayGbH3pedtbgUulnScpMHA\nv/Rgv2dLelM6L+3fgAcjYg1wJ3CMpP8lqU7Se8nOkfpFZx2lWbQ56Vy7RmA70JprcjjwEUkDJL2b\n7Ny4Owv1FRHrgbuBr0kaLqkmLZh4c2oyLPW/VdJ44JO5zR8gO0+sbV/nAbO6eR8KvreSzpF0dEoS\nt5Idqm4t3AUAn5R0mKSJwEeBW1L5tcCnJR2f+j00vQfdyiWeV0kalv4R8HGyWUpS3UckTZB0GNDd\nrGJn++nuPd8ATEi/K22WAOdJGpwWelzySvZtZj3nxM6sjEXEY8DXyJKSDcCryc71yrd5iGyGZBzZ\nOVtt5b8iW7Twe7LDhg+mqsYidn0T2UKGzcBJZDNfRMQmshPcPwFsAj4FnBMRL3bRVw1ZwvFc6u/N\nwD/m6h8CppHNQF0FvCvtpzMXAvXAY8BLwI/JZgIhW1zyOrJk65dkCyBIsTeRLVK4KMXx3nx9IZ29\ntyne35IlkQ8A346I33fR1c+AxWQJzy+B76f+bwe+DMxPh46XAmd1FVMHH07xrQb+SPa5XZ/qvgfc\nBTwC/JluxtqNrt7ze4BlwPOS2n4Pvk52/t8G4AbS4hszO/i07+kmZlat0qUplgIDI6K51PFAdhkM\nspPs31TqWA4WSQFMi4iVpY7FzKqfZ+zMqpikc5Vdk+0wspmhn5dLUmdmZr3PiZ1Zdfsg8ALZdeJa\nSIdAJS1LF5Tt+HjfK91RJ/1tlzS7d4ZivcWflVn18qFYMzMzsyrhGTszMzOzKuHEzszMzKxK1JU6\ngN4wevTomDx5cqnDMDMzM+vW4sWLX4yIhoPRd7eJnaTrya5b9UJEdLwwKukCnd8Azia7BcxFEfHn\nVHdmqqsF/isirk7ltwDHpi5GAFsiYka6bc9yYEWqezAi5nUX4+TJk1m0aFF3zczMzMxKTlJPbvHX\nI8XM2P0A+BZwYyf1Z5FdrHMacDLwHeBkSbXANcBbgbXAQkl3RMRjEfHeto0lfY3sYqJtVkXEjJ4O\nxMzMzKy/6/Ycu4i4n+wq7Z2ZA9wYmQeBEZLGkt2qZ2VErE5XfJ+f2rZLs33vAW5+pQMwMzMzs0xv\nLJ4YT3aT6DZrU1ln5XmzgQ0R8WSubIqkJZLu8zWVzMzMzIpX6sUT57PvbN16YFJEbJJ0EvBTScdH\nxMsdN5R0GXAZwKRJk/okWDMzM7Ny1hszduuAibnXE1JZZ+UASKojuyH3LW1lEdHYdvPviFhMdrX8\nYwrtNCKui4iZETGzoeGgLCwxMzMzqyi9kdjdAVyozCnA1ohYDywEpkmaIqkemJvatnkL8HhErG0r\nkNSQFl0gaSrZgozVvRCjmZmZWdUr5nInNwOnAaMlrQU+BwwAiIhrgTvJLnWykuxyJxenumZJVwB3\nkV3u5PqIWJbrei77L5o4FfiCpD1AKzAvIrpauGFmZmZmSVXcK3bmzJnh69iZmZlZJZC0OCJmHoy+\nfUsxMzMzsyrhxM7MzMysSjixMzMzM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7s\nzMzMzKqEEzszMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjixMzMz\nM6sSTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTMzMzOrEk7szMzMzKqEEzszMzOzKuHEzszMzKxK\nOLEzMzMzqxJO7MzMzMyqRLeJnaTrJb0gaWkn9ZL0TUkrJT0q6XW5ujMlrUh1V+bK/1XSOklL0uPs\nXN2nU/sVkt5+oAM0MzMz6y+KmbH7AXBmF/VnAdPS4zLgOwCSaoFrUv104HxJ03PbfT0iZqTHnWmb\n6cBc4Pi0z2+nfszMzMysG90mdhFxP7C5iyZzgBsj8yAwQtJYYBawMiJWR0QTMD+17cocYH5ENEbE\nU8DK1I+ZGQDf+H/ns/mFraUOw8ysLPXGOXbjgTW512tTWWflbT6cDt1eL+mwbvoyMwPg97c/xBNL\nny11GGZmZalUiye+A0wFZgDrga/1tANJl0laJGnRxo0bezs+MytTE6cdwdiJo0odhplZWeqNxG4d\nMDH3ekIq66yciNgQES0R0Qp8j72HWzvdpqOIuC4iZkbEzIaGhl4YhplVgtraOmoH+NRbM7NCeiOx\nuwO4MK2OPQXYGhHrgYXANElTJNWTLYq4AyCdg9fmXGBprq+5kgZKmkK2IGNBL8RoZlViy6Zt7Ni6\nq9RhmJmVpbruGki6GTgNGC1pLfA5YABARFwL3AmcTbbQYSdwcaprlnQFcBdQC1wfEctSt1+RNAMI\n4Gngg2mbZZJuBR4DmoHLI6KlV0ZqZlVhwzObeeh3f+HY10wudShmZmWn28QuIs7vpj6Ayzupu5Ms\n8etYfkEX/V0FXNVdXGbWfzXu3F3qEMzMypLvPGFmFWdUw8hSh2BmVpac2JlZRampEyMnOLEzMyvE\niZ2ZVZShwwcxZuzwUodhZlaWnNiZWUVpamxm8+adpQ7DzKwsObEzs4py+nmv55jjJ+5XvuG5l1j+\nmO9IYWb9mxM7M6so9/98Eeuf3rBf+T9e8n3+6UP/XYKIzMzKhxM7M6sorS3QQgBw03fvYdUTzwHZ\nuXf19f5KM7P+zd+CZlZRdm5r4tkns2TuJ//9R+67O7txzfp1W9m1s7WUoZmZlZwTOzOrONs2ZbcU\n2761kb8seLzE0ZiZlQ8ndmZWMXbvbARg6+Zt7WXLH07n26kUEZmZlZdubylmZlYuPnL2lwAYNf7Q\n9rLhI7Ovsc98bg5bX95VkrjMzMqFZ+zMrGKsefwFACYcOaa9bNuWZgB++IP7+dH195ckLjOzcuHE\nzswqS3Mzd9zwh/aXkdZLjG4YzvCRw9rLW1uD1tbo6+jMzErKh2LNrLLU1bH1xRf3K371ayaxaeP2\n9tdPP7sZgKmTR/VZaGZmpebEzswqS0szOxub9it+29tOZFtaXAHwpW/9nJqaGr77lQv7Mjozs5Jy\nYmdmFefFp/ZfJLF12y62bdvd/nr985v7MiQzs7Lgc+zMrLIEjJpyyH7F13z913z9K79of71nj9jT\n7GugmFn/4hk7M6ssEnt2738o9rFlzxG5tRJ/dcpU5LzOzPoZJ3ZmVjlS5vby+pb9qgYPgR17106w\nYNEqnNmZWX/jxM7MKl5zcwu7du5btnXH/smfmVm18zl2ZlbRAnjwvhW0tpY6EjOz0nNiZ2YVr35Q\nHeMmDGfYsAGlDsXMrKR8KNbMKsKu7Z3fB/beu5fy3NqX+zAaM7Py5Bk7M6sI5068vNO6Y48f34eR\nmJmVr24TO0nXS3pB0tJO6iXpm5JWSnpU0utydWdKWpHqrsyVf1XS46n97ZJGpPLJknZJWpIe1/bG\nIM2ssv12/h+hFSIK3/v1tz9/uI8jMjMrT8XM2P0AOLOL+rOAaelxGfAdAEm1wDWpfjpwvqTpaZvf\nACdExInAE8Cnc/2tiogZ6TGvB2Mxsyr19Y99P7vUSaEVEgMH8Owz+9871sysP+o2sYuI+4Gu7s0z\nB7gxMg8CIySNBWYBKyNidUQ0AfNTWyLi7ohoTts/CEw4kEGYWXVrabuUifb9yjr21WM5//1vYPYZ\nx/d9UGZmZag3zrEbD6zJvV6byjor7+gfgF/lXk9Jh2HvkzS7F+Izs2oR+87YvfOiN3PMiRM4ZHB9\niQIyMysvJV0VK+mzQDPwo1S0HpgUEZsknQT8VNLxEbHfcjdJl5Ed+mXSpEl9FbKZlVLrvufYrX36\nRYYeOpBNL3hFrJkZ9E5itw6YmHs9IZUN6KQcAEkXAecAZ0Q6IzoiGoHG9HyxpFXAMcCijjuNiOuA\n6wBmzpxZ+IxqM6tqt3z/94yZNJL167fiqzeZmfXOodg7gAvT6thTgK0RsR5YCEyTNEVSPTA3tUXS\nmcCngL+LiPYbAUlqSIsukDSVbEHG6l6I0cyqQYdbvzbubOGZp7bQtNv/tjMzgyL+iSvpZuA0YLSk\ntcDnyGbjiIhrgTuBs4GVwE7g4lTXLOkK4C6gFrg+Ipalbr8FDAR+o+wm3Q+mFbCnAl+QtAdoBeZF\nRFcLN8ysPymQv9XXQ1MT2WHaGu3fwMysH+k2sYuI87upD6DglUMj4k6yxK9j+dGdtL8NuK27mMzM\n2jQ1NePDsGZmGX8bmlllSRcpvujsq6Ale17g6nZmZv2SbylmZhVpw6pt0NKalluZmRk4sTOzCtHZ\n7cTAX2RmZm38fWhmZS8K3Uosp3ZAHwViZlbmnNiZWflrn60rPGvX0tJ3oZiZlTMndmZWOQrldQPh\n8LFD+zwUM7Ny5MTOzMpfa4GMbk8zAMOH1tPU1NTHAZmZlScndmZW0YYNG8QR49OMna9PbGb9nBM7\nM6to27fu4s2nz8xe+M5iZtbPObEzs8qifaflRo47jN/f/RffTszMDN95wswqSYekTsCu7U2seWYL\n1PrrzMzMM3ZmVrECaGzcwZRpR5Q6FDOzsuB/4ppZWdu9e3eX9S89v4dtO9ZDzYFfpXjxmnUAnDRx\n/AH3ZWZWCp6xM7Oy9h8f+07XDQQ16p1/o55/w62cf8OtvdKXmVkpOLEzs7J2/38vJAreWiLaf7Q0\nNxfV168eXE5zc+Hbk33ytl+8wgjNzMqHEzszK297um9S7C3FbrhzAXv2FO7w8fUv9CAoM7Py5MTO\nzMrWC2tfJJr3dH3h4dy32IABXV/yZOW6Tfz5sacL1l38V7N6HqCZWZlxYmdmZetz7/5y1w0iyL7G\nAiJ4w5umddvnR7/9y4LlJ0+e0OV2v3tqBX96ZlW3/ZuZlZITOzMrWysferr7Rq2t0AJI3P/7J2ht\nDZqaOj/nrvAZdvDJ237ZXn/Ml7++X/0l9/6M991zW/fxmJmVkC93YmYVL38nsUcffZYHF+6dWdu+\no4nGliZGDR/aXtbc0kpd7b7/rt3euDcZbPWtycysQnnGzswqUnvu1TYFlxKzBxY8yT33Lm9v99ZL\n/5NzPvjdfbb9/I137dff4cMP2a9sT7GrMszMyoQTOzOrePkJtsFDBrDxxe1dtv/Fwsfbn3/wv27j\nXV//AX9cvS47pJt6XLd5Myd/91tsa+r6AslmZuXEh2LNrPLlFsP+n+/9CeprCzYrdIT1j6ueJYBB\nddA0EJrSt+L1CxewZU8zb7nxe7zj2OOyjbtedGtmVnKesTOz8tfZOW8dEq29CyOCoYP2/Xpb98KW\nzvsBdgc0t9A+a/fb5U8AsGFPI/+1dAkBRGQdfOqBnwHwznuu4csPH5wLG7c2PkBEZ0s9zMwK6zax\nk3S9pBckLe2kXpK+KWmlpEclvS5Xd6akFanuylz5SEm/kfRk+nlYru7Tqf0KSW8/0AGaWZWrAYh9\nEq8I2L5736To3E9dT7RmuV0Af1n9XJfdrsldyDh/pl1rayu3PbuUo265iie2v8AP1yyg5WAkYI0L\niFaf42dmPVPMjN0PgDO7qD8LmJYelwHfAZBUC1yT6qcD50uanra5EvhdREwDfpdek+rnAsenfX47\n9WNm/dCxbziq+0bRyfOmKNhMAK3w99+8hbsffqw9a6sB6PLbJuvhG3/6bXrdSktr9vP+55d3ttEr\nN+QCamoH9H6/ZlbVuk3sIuJ+YHMXTeYAN0bmQWCEpLHALGBlRKyOiCZgfmrbts0N6fkNwDty5fMj\nojEingJWpn7MrB9a8WAnFwRW7hhsPn/reGi2FWjucAQ21+aTN9zV3kUrZElefvIt8q+zDX/41MP7\nx9N6EE6+2/g3tG5/qff7NbOq1hvn2I0H1uRer01lnZUDjImI9en588CYbvoys/6o03Pien6huejw\nkw7XMBbs940Ybf/JJXvfPP1d+7QZUAefeOSmomJobGzkW4+fXlRb2Ak+x87MeqjkiyciOymmx9/S\nki6TtEjSoo0bNx6EyMysYvTkG0TFz66p/T97nTBqHJMHj2DywMH7V3bj50/9vAetW6C+vkf9m5n1\nRmK3DpiYez0hlXVWDrAhHa4l/Xyhm772ExHXRcTMiJjZ0NBwwIMws/IzYEiHKzJ1zKOKSOjGjhq0\nz+b5vK7TpQkSFDi9TYhD6uu56YwL+MRJXZ16XNiRHNmD1k3w0q96vA8z6996I7G7A7gwrY49Bdia\nDrMuBKZJmiKpnmxRxB25bd6fnr8f+FmufK6kgZKmkC3IWNALMZpZBbpz282otmfrp7JZtr3Z24ZN\nu6Em+7IrdLi1M6eOHL1f2/818RgARg4awimHT+lRXAALWdiD1jNg5Dk93oeZ9W/FXO7kZuAB4FhJ\nayVdImmepHmpyZ3AarKFDt8DPgQQEc3AFcBdwHLg1ohYlra5GnirpCeBt6TXpPpbgceAXwOXR4TX\n+5v1d69gpq7NP//j25h8xDAA3nva8YX7S2X/Z+47GD8kO/w5bswRWXlN9njX1Onc++IzrNyyke17\nGlmxZQP1QD01HNL1ctp2rfy4+MAPvQRqBxbf3syMIu48ERHnd1MfwOWd1N1Jlvh1LN8EnNHJNlcB\nV3UXl5n1E+rBgYUO588JOOv0V3PW6a/muz/+A+e/7XXc/NBj7fW17F1DMVhw8lFHsn5XE9TBaRPH\nMX/FUkYPPIRzph7Fy2ph3a7d3P/MSt553Ay27WmkCfjlaR9FRZ5rd+G4n3Ljc+/oviFA8x4Y6Ftd\nmFnP+JZiZlb+ipihE0BdlgjVAK11+yZFH3zX7C633xlQV1NDa/pWrE8LF3583vmMHjyUhzc+x7+9\n4S0MqR9IawRvHJMdil3y4jPUSowbPLLbGIcPH84Vw+/pfjAAOz4OO+rgiJ6fy2dm/VfJV8WamR0o\n1RQ/s/Wrz3+g/ULEl5x+YvttZf/xlOymOZ95Y3bpzOEpsZs8YiRD6+uZPX4yQ+qzQ6M1EkMHZM+/\nveK3XPtEkclajzV338TMLMczdmZWWaLD9F1n/zztJNcbc/hQvnP5uTyw4hne8YYTef2xR7Ps+Q1c\n+uYsobvn6WcAGFEzoNsz504YdgQvN75EjXp+Xb3i/BbwAgozK55n7Mys8kgFrzHXMZfrbB7vDcdN\n5pjxoxg8oJ6xI4dyylF7r7L0vbnv5otvO4MFGzd0fjmU5NYz5lFXW0Nt7cH6Kh1xkPo1s2rlxM7M\nKkdrFzNjtQWyvC6O0P7Lj37Dt3/1ByY3jOKECWPbyw8ZMIC5rz2RV40eXVRIW1saeal5d1Fte6zu\nQwenXzOrWj4Ua2YVaP8ETx1ejBjW9V0bWoElTz7Taf0jz28oKpIdNBXVrseGfhoGHXZw+jazquXE\nzswqW7rEScdUb8rE0dDNoopVm3d2Wjd+xPCidj+qbjB1PbkkS5Fqhl7c632aWfVzYmdmla2Te782\nNbd0m9h15a+POoZfzO1+xuxfT3wnNQewHzOz3uTEzswqW1pIETX7zppFQHeLVRu6OFpbW1PDhEO7\nX7zw7RW/oZYa3nD4MUUEa2Z2cHnxhJlVroDT/vZ4kBg5akhWlu7CVVer/dZTdNTdVeKGD+z+ll4r\ndjzPih3PdR+rmVkf8IydmVWeNBMnoC798/SWn/8TZ5z27+1Nnl67udtu/ur4ow84lP98/fupPQjn\n2JmZvRJO7MyssnQ4p+6+e5d3aJBdVvikGZOp6eJ6J0eMGMpxk4444HCmHzr+gPswM+stTuzMrKKN\nHFXLhh0t6flgxkw4lJWrNvKF/2dOl9vd9In3ceghgw54/4fWDz7gPszMeosTOzOrHPusPs2eq6YW\n0j0iduzYTfOewbQWuM5dR6OGOSEzs+rjxM7MKlsuh2vc3cqTq16itXTRmJmVlBM7M6toNXX7zs69\n6ujhvHrGsSWKxsystLyUy8wq2nOr9rQ/f+Mbp1E3aAi3/XRhCSMyMysdJ3ZmVjmiw7lzdbXU5k6V\n+7d/fzdPPb2R5u4uUGdmVqWc2JlZ5Shw+7Dvz/8Y4ycd2v66ts639zKz/suJnZmVtelvyl1EuOOM\nHTB23Aiu/8k/tb8eNHBAX4RlZlaWnNiZWVn7+u8+DzU10FrcWteLLngzr5sx6SBHZWZWnrwq1szK\nmiTUfghWBWft8o6ZdgS7djUd/MDMzMqQZ+zMrPIUONeuzcrVL/DAQ6v6MBgzs/LhxM7MKosEAzo/\nj+5/HnyChx95uu/iMTMrI0UldpLOlLRC0kpJVxaoP0zS7ZIelbRA0gm5uo9KWippmaSP5cpvkbQk\nPZ6WtCSVT5a0K1d3bW8M1Mz6h8NHDefQ4b5dmJn1T92eYyepFrgGeCuwFlgo6Y6IeCzX7DPAkog4\nV9KrUvszUoL3AWAW0AT8WtIvImJlRLw3t4+vAVtz/a2KiBkHOjgzqyI1NR3uFZt58YWXWfn4ek45\nNbvbxNQpDTz1zIt9HZ2ZWVkoZsZuFrAyIlZHRBMwH5jToc104B6AiHgcmCxpDHAc8FBE7IyIZuA+\n4Lz8hsrOin4PcPMBjcTMqppqCn9djWoYxoxZU9tfjxlzGEceObqvwjIzKyvFJHbjgTW512tTWd4j\npIRN0izgSGACsBSYLWmUpMHA2cDEDtvOBjZExJO5sinpMOx9kmYXPRoz63f2NDbz0qbt7a9XP/U8\nS5etK2FEZmal01uLJ64GRqTz5D4MPAy0RMRy4MvA3cCvgSVAS4dtz2ff2br1wKR0KPbjwE2Shnfc\noaTLJC2StGjjxo29NAwzK1sDsjNHLvrndMBgUD0AL23ZwYpla9ubDR9+CMOGDurz8MzMykExid06\n9p1lm5DK2kXEyxFxcUrGLgQagNWp7vsRcVJEnAq8BDzRtp2kOrKZvltyfTVGxKb0fDGwCjimY1AR\ncV1EzIyImQ0NDUUN1swq19BxA5BqeGnjlqygObtW3aBBAxg5amh7u3v/uIKFi58uQYRmZqVXTGK3\nEJgmaYqkemAucEe+gaQRqQ7gUuD+iHg51R2efk4iS+Juym36FuDxiFib66shLdhA0lRgGilJNLP+\n66/ePhOAn333vqygOfvRtHsPW7fsam+38sn1fR2amVnZ6DaxS4sergDuApYDt0bEMknzJM1LzY4D\nlkpaAZwFfDTXxW2SHgN+DlweEVtydXPZf9HEqcCj6bDuj4F5EbH5FYzNzKrEvK9dwFvfPRtqa3jt\nX09rLx8U1upTAAAU8UlEQVQ4qI5hIwZz5FF7Z+23b99ZihDNzMpCUbcUi4g7gTs7lF2be/4ABQ6X\nprpOFz9ExEUFym4DbismLjPrH8790NtY8NtHAdjywrb28po60dLcyp6m5vayHc7rzKwf850nzKwi\nvO604wF4fu2m9rJd2/cgiQEDfNtrMzNwYmdmFaKurhZqYNzUMe1ltQPEgPpahg7buwp2UH2hrc3M\n+gcndmZWOVph3ZPPt788/ZzXsn7tZu67e2l72e6mUgRmZlYenNiZWcU4ZNhAXn3K0e2vNzy3hfpD\n6hky3NetMzODIhdPmJmVgy/88HLGTBrFj/7zbo6ePo6/fsdM7v7Fw/zi1kW87ZzXljo8M7OSc2Jn\nZhXjhJOz2bqP/ft728te87qpbH1pd6lCMjMrKz4Ua2YVrbZWDB48oNRhmJmVBSd2ZlbRtm9v5Pl1\nL5U6DDOzsuDEzswq2pSjD+fv3ntKqcMwMysLPsfOzCra4CGDmHyUV8WamYFn7MzMzMyqhhM7MzMz\nsyrhxM7MKtqunY2sefrFUodhZlYWnNiZWUUbdEg9Y8Ye2v66YXRtCaMxMystJ3ZmVtEkUT9w73Xs\nLnjfGZz46okljMjMrHS8KtbMqsrfnv1a/ubMGaUOw8ysJDxjZ2ZVp6ZGpQ7BzKwknNiZWUXbvauJ\n9Ws3lzoMM7Oy4MTOzCragPo6Dj1sSKnDMDMrC07szKyi1dbWMHjIwFKHYWZWFpzYmVlF27plB8se\nebbUYZiZlQUndmZW0Xbv3sP6tS+VOgwzs7LgxM7MKtpzT2/i4QWrSh2GmVlZcGJnZhVt245dvPD8\nllKHYWZWFopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkfy5X/q6R1kpakx9m5uk+n\nfa2Q9PYDHaSZVa8VS9ey8on1pQ7DzKwsdJvYSaoFrgHOAqYD50ua3qHZZ4AlEXEicCHwjbTtCcAH\ngFnAa4BzJB2d2+7rETEjPe5M20wH5gLHA2cC304xmJntp66ullr54IOZGRQ3YzcLWBkRqyOiCZgP\nzOnQZjpwD0BEPA5MljQGOA54KCJ2RkQzcB9wXjf7mwPMj4jGiHgKWJliMDPbz3EnTuL41/jesGZm\nUFxiNx5Yk3u9NpXlPUJK2CTNAo4EJgBLgdmSRkkaDJwN5L+BP5wO314v6bAe7M/MDIBhIw5h1JhD\nSx2GmVlZ6K3jF1cDIyQtAT4MPAy0RMRy4MvA3cCvgSVAS9rmO8BUYAawHvhaT3Yo6TJJiyQt2rhx\nY++MwswqzgP3Lef+u5eWOgwzs7JQTGK3jn1n2SaksnYR8XJEXBwRM8jOsWsAVqe670fESRFxKvAS\n8EQq3xARLRHRCnyPvYdbu91f2v66iJgZETMbGhqKGIaZVaPmpj3sbmwsdRhmZmWhmMRuITBN0hRJ\n9WQLG+7IN5A0ItUBXArcHxEvp7rD089JZIdrb0qvx+a6OJfssC2p77mSBkqaAkwDFrySwZlZ9bvr\njsXscV5nZgZAXXcNIqJZ0hXAXUAtcH1ELJM0L9VfS7ZI4gZJASwDLsl1cZukUcAe4PKIaLvg1Fck\nzQACeBr4YOpvmaRbgceA5rRNC2ZmBRx19Dj+smS/SX0zs36p28QOIF2K5M4OZdfmnj8AHNPJtrM7\nKb+gi/1dBVxVTGxm1r+NGnsoOLEzMwN85wkzq3AP3PdYqUMwMysbTuzMrKJFlDoCM7Py4cTOzCpa\nw+hhpQ7BzKxsOLEzs4r2mpOPpa6os4XNzKqfEzszq2hSK6pRqcMwMysLTuzMrKLt2rmLlhafaGdm\nBk7szKzCTT16HA2H+16xZmbgxM7MKlz94AEMHFzffUMzs37AiZ2ZVbRnVz7P+mdfLHUYZmZlwYmd\nmVW0Deu3sGePz7EzMwMndmZW4Y6aNpYhw30o1swMnNiZWYVb/fgGdrzcVOowzMzKghM7M6toGuRr\n2JmZtXFiZ2YVbcvmnaUOwcysbDixM7OKtmvbrlKHYGZWNpzYmVlFe3mLZ+zMzNo4sTOzirZ7z55S\nh2BmVjac2JlZRfM17MzM9nJiZ2YVrWV3qSMwMysfTuzMzMzMqoQTOzMzM7Mq4cTOzMzMrEo4sTOz\niqbaUkdgZlY+nNiZWUWLllJHYGZWPopK7CSdKWmFpJWSrixQf5ik2yU9KmmBpBNydR+VtFTSMkkf\ny5V/VdLjaZvbJY1I5ZMl7ZK0JD2u7Y2BmpmZmVW7bhM7SbXANcBZwHTgfEnTOzT7DLAkIk4ELgS+\nkbY9AfgAMAt4DXCOpKPTNr8BTkjbPAF8OtffqoiYkR7zXvHozMzMzPqRYmbsZgErI2J1RDQB84E5\nHdpMB+4BiIjHgcmSxgDHAQ9FxM6IaAbuA85L7e5OZQAPAhMOeDRmZmZm/Vgxid14YE3u9dpUlvcI\nKWGTNAs4kixRWwrMljRK0mDgbGBigX38A/Cr3Osp6TDsfZJmFzUSMzMzs36urpf6uRr4hqQlwF+A\nh4GWiFgu6cvA3cAOYAmwz6nOkj4LNAM/SkXrgUkRsUnSScBPJR0fES932O4y4DKASZMm9dIwzMzM\nzCpXMTN269h3lm1CKmsXES9HxMURMYPsHLsGYHWq+35EnBQRpwIvkZ1PB4Cki4BzgPdFRKT2jRGx\nKT1fDKwCjukYVERcFxEzI2JmQ0NDseM1MzMzq1rFJHYLgWmSpkiqB+YCd+QbSBqR6gAuBe5vm2GT\ndHj6OYnscO1N6fWZwKeAv4uInbm+GtKCDSRNBaaRkkQzMzMz61y3h2IjolnSFcBdQC1wfUQskzQv\n1V9LtkjiBkkBLAMuyXVxm6RRwB7g8ojYksq/BQwEfiMJ4MG0AvZU4AuS9gCtwLyI2NwLYzUzMzOr\nakWdYxcRdwJ3dii7Nvf8AQocLk11BRc/RMTRnZTfBtxWTFxmZmZmtpfvPGFmZmZWJZzYmZmZmVUJ\nJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlnNiZ\nmZmZVQkndmZW0WoHlDoCM7Py4cTOzCra8OEDSx2CmVnZcGJnZhXt9bOPpbau1FGYmZUHJ3ZmVuFE\nTY2/yszMwImdmVW4upoaWltaSx2GmVlZcGJnZhXtyeVraGkpdRRmZuXBiZ2ZVbQNz28udQhmZmXD\niZ2ZVbRRDcNKHYKZWdlwYmdmFW3m7BMYdqgveWJmBuCLBJhZRTv5lGns2Lyr1GGYmZUFz9iZWUUb\nOmwgY8aNKHUYZmZlwYmdmVW0uro66uprSx2GmVlZcGJnZhVt3ZqX+Muip0sdhplZWXBiZ2YVbcDA\nGgbU+3RhMzMoMrGTdKakFZJWSrqyQP1hkm6X9KikBZJOyNV9VNJSScskfSxXPlLSbyQ9mX4elqv7\ndNrXCklvP9BBmln1GjJ4EKPH+JInZmZQRGInqRa4BjgLmA6cL2l6h2afAZZExInAhcA30rYnAB8A\nZgGvAc6RdHTa5krgdxExDfhdek3qey5wPHAm8O0Ug5nZflQDtTX+ijAzg+Jm7GYBKyNidUQ0AfOB\nOR3aTAfuAYiIx4HJksYAxwEPRcTOiGgG7gPOS9vMAW5Iz28A3pErnx8RjRHxFLAyxWBmth9RQ02t\nzyoxM4PiErvxwJrc67WpLO8RUsImaRZwJDABWArMljRK0mDgbGBi2mZMRKxPz58HxvRgf2ZmABwx\nYQRvOPXYUodhZlYWeuuM46uBb0haAvwFeBhoiYjlkr4M3A3sAJYA+92uOyJCUvRkh5IuAy4DmDRp\n0gGGb2aVavjwwUx/jb8DzMyguBm7deydZYNsJm5dvkFEvBwRF0fEDLJz7BqA1anu+xFxUkScCrwE\nPJE22yBpLED6+UKx+0v9XhcRMyNiZkNDQxHDMDMzM6tuxSR2C4FpkqZIqidb2HBHvoGkEakO4FLg\n/oh4OdUdnn5OIjtce1Nqdwfw/vT8/cDPcuVzJQ2UNAWYBix4JYMzMzMz60+6PRQbEc2SrgDuAmqB\n6yNimaR5qf5askUSN6TDqcuAS3Jd3CZpFLAHuDwitqTyq4FbJV0CPAO8J/W3TNKtwGNAc9pmv8O3\nZmZmZrYvRfTo1LayNHPmzFi0aFGpwzAzMzPrlqTFETHzYPTtawSYmZmZVQkndmZmZmZVwomdmZmZ\nWZVwYmdmZmZWJZzYmZmZmVUJJ3ZmZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXC\niZ2ZmZlZlXBiZ2ZmZlYlnNiZmZmZVQkndmZmZmZVwomdmZmZWZVwYmdmZmZWJZzYmZmZmVUJJ3Zm\nZmZmVcKJnZmZmVmVcGJnZmZmViWc2JmZmZlVCSd2ZmZmZlXCiZ2ZmZlZlXBiZ2ZmZlYlikrsJJ0p\naYWklZKuLFB/mKTbJT0qaYGkE3J1/yRpmaSlkm6WNCiV3yJpSXo8LWlJKp8saVeu7treGqyZmZlZ\nNavrroGkWuAa4K3AWmChpDsi4rFcs88ASyLiXEmvSu3PkDQe+AgwPSJ2SboVmAv8ICLem9vH14Ct\nuf5WRcSMAx2cmZmZWX9SzIzdLGBlRKyOiCZgPjCnQ5vpwD0AEfE4MFnSmFRXBxwiqQ4YDDyX31CS\ngPcAN7/iUZiZmZlZUYndeGBN7vXaVJb3CHAegKRZwJHAhIhYB/wH8CywHtgaEXd32HY2sCEinsyV\nTUmHYe+TNLvo0ZiZmZn1Y721eOJqYEQ6T+7DwMNAi6TDyGb3pgDjgCGS/r7Dtuez72zdemBSOhT7\nceAmScM77lDSZZIWSVq0cePGXhqGmZmZWeUqJrFbB0zMvZ6QytpFxMsRcXFKxi4EGoDVwFuApyJi\nY0TsAX4CvLFtu3R49jzgllxfjRGxKT1fDKwCjukYVERcFxEzI2JmQ0NDUYM1MzMzq2bFJHYLgWmS\npkiqJ1v8cEe+gaQRqQ7gUuD+iHiZ7BDsKZIGp3PpzgCW5zZ9C/B4RKzN9dWQFmwgaSowjSxJNDMz\nM7MudLsqNiKaJV0B3AXUAtdHxDJJ81L9tcBxwA2SAlgGXJLqHpL0Y+DPQDPZIdrrct3PZf9FE6cC\nX5C0B2gF5kXE5q5iXLx48YuSnul2tJVtNPBiqYMoAY+7f/G4+xePu3/xuPc68mDtTBFxsPq2XiRp\nUUTMLHUcfc3j7l887v7F4+5fPO6+4TtPmJmZmVUJJ3ZmZmZmVcKJXeW4rvsmVcnj7l887v7F4+5f\nPO4+4HPszMzMzKqEZ+zMzMzMqoQTuz4gaaSk30h6Mv08rJN2Z0paIWmlpCuL2V7Sp1P7FZLensqG\npVuytT1elPS/U91Fkjbm6i6tlnGn8ntTWdv4Dk/lAyXdkrZ5SNLkahl3uk7kLyU9LmmZpKtz7Q/6\n593ZOHL1kvTNVP+opNf19nuQyk+S9JdU901J6u2xlmrckt4qaXEa32JJp+e2Kfg7XyXjnixpV25s\n1+a2qebP+33a9zu8VdKMVFcNn/e7lX1XtUqa2aG/av77LjjuXv/7jgg/DvID+ApwZXp+JfDlAm1q\nye6yMRWoJ7v/7vSutgemp3YDyW7btgqoLdD3YuDU9Pwi4FvVOm7gXmBmgf18CLg2PZ8L3FIt4wYG\nA3+d2tQDfwDO6ovPu6tx5NqcDfwKEHAK8NBB+uwXpP6V9ndWFY37tcC49PwEYF1uPwV/56tk3JOB\npZ3EUrWfd4d+Xw2sqrLP+zjg2I5jofr/vjsbd6/+fXvGrm/MAW5Iz28A3lGgzSxgZUSsjogmYH7a\nrqvt5wDzI7sN21PAytRPO0nHAIeT/c++r5Vs3N3E8mPgjIP4L74+HXdE7IyI3wOkvv5Mduu/vtDV\nONrMAW6MzINk95Ue2822PXoPUn/DI+LByL4Nb6Tw+95b+nTcEfFwRDyXypcBh0gaeLAG14W+/rwL\nqvbPu4Pz0zalcFDGHRHLI2JFgf1V9d93Z+Pu7b9vJ3Z9Y0xErE/PnwfGFGgzHliTe702lXW1fVfb\ntGmbncqvknlnmvL9saSJHDylGvcNacr6X3LJW/s2EdEMbAVG9XxIRSnZ5y1pBPC3wO9yxQfz8y7m\nd7CzNr35HoxPz7uKozf19bjz3gn8OSIac2WFfucPhlKMe0oa232SZuf20V8+7/ey/x2aKv3z7un+\nquXzLsYB/313e0sxK46k3wJHFKj6bP5FRISyW6+9Iq9g+7nABbnXPwdujohGSR8k+1fi6QW3LEIZ\njvt9EbFO0jDgNrKx3/hK99uZMhw3kurI/gfwzYhou79yr37epXCg72GlKjRuSccDXwbelivuk9/5\nvtJh3OuBSRGxSdJJwE/Te1B1Ovm8TwZ2RsTSXHFVfd62V2/9fTux6yUR8ZbO6iRtkDQ2ItanqdoX\nCjRbB+RnUyakMoDOtu9qGyS9BqiLiMW5ODfl2v8X2Tker1i5jTsi2n5uk3QT2bT4jblt1qYE6FAg\n/170SLmNO7kOeDIi/ncuzl79vAvoLqau2gzoYtuevgfr2Pfwc6E4elNfjxtJE4DbgQsjYlVbeRe/\n8wdDn447zVo0pueLJa0CjqEffN7JfvdTr5LPu6f7q5bPu1O9+vcdfXACZn9/AF9l3xNkv1KgTR2w\nmuyE0bYTLo/vanvgePY90XQ1ucUTwNXA5zvsZ2zu+bnAg9Uy7tTX6NRmANm5dPPS68vZd/HErdUy\n7lT3RbJ/zdX05efd1Thybf6GfU8yXnCQ3oOOJ1effRA/474e94jU7rwCcRT8na+ScTfkPt+pZP+D\nHFntn3d6XZPGO7XaPu/ctvey7yKCqv777mLcvfr3fVDeFD/2+yUZRXbO05PAb3NfTOOAO3Ptzgae\nIFtR89nutk91n03tV9BhlVD65XpVh7IvkZ2c+Qjw+471lTxuYAjZCuBH0xi/kftSGAT8X7KTcReQ\n+7KsgnFPAAJYDixJj0v76vMuNA5gHnuTagHXpPq/sO8XWq/9zgMzgaWp7lukC7AfxM+5z8YN/DOw\nI/f5LiFbFNXp73yVjPudaVxLyBYF/W1/+LxT3Wl0+IdYFX3e55Kde9YIbADuytVV8993wXHTy3/f\nvvOEmZmZWZXwqlgzMzOzKuHEzszMzKxKOLEzMzMzqxJO7MzMzMyqhBM7MzMzsyrhxM7MzMysSjix\nMzMzM6sSTuzMzMzMqsT/DwTnGDSgc8FCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAE/CAYAAADL647AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV9///Xe2YyCbmHZAjkRhJIkIAQJQ1oC7WiCJQa\nQauhVISCiAWr1W/7Q+33Z7VFwdavYkUpCgVUbpViEbGAoKB+uSSRAAkkkIRLEpIQciW3uX6+f+w1\nk53JXM4kkzmXeT8fj/OYc9Zae+3POmfm5JO199pbEYGZmZmZlb+qYgdgZmZmZr3DiZ2ZmZlZhXBi\nZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdWYSTdJOmfix1HXyjHsUraJmnqPmw3WVJI\nqjkQcZWC7sYo6QuSfpB7fbaklek9fVvfRWpWupzYmZn1oYgYGhErih1HK0kXSPptseMoRER8NSIu\nzhX9K3B5ek+fkvSypPcUKz6zUuDEzsz6hDL99junGDNtffGeF3kG8XBgcRH3b1Zy+u2XrFlfkXSF\npOWS3pT0nKSzU/lASZslHZtrWydpp6RD0uu/l7RG0muSLk6HqY4sYLdjJD2Y9vmIpMNz+3inpHmS\ntqSf7yxgDBdIWpH6e0nSebny30n6TupviaRTc9v9WtKVkn4H7ACmShoh6YY0rtWS/llSdWp/hKSH\nJW2Q9IakH0samevvbZJ+n+K4AxjUSbxdvreSxki6N7XZKOk3nSVA6T3/mzT+NyT9S76tpL+S9Lyk\nTZLub/deh6TLJL0IvJgrOzI9HyHpFknrJb0i6R9a+5ZULelf0z5XAH/a3efU0/dc0tHAdcA70uHM\nzbk+Ls71ucesXhfjulTSi+l9vVaSOolxtqT5krZKWifp/7Rrcp6kV9PYv5jb7h8l/Sh9vtuAauBp\nZX9fPwQmAT9LY/n7Qt4vs0rjxM7swFsOnAyMAL4M/EjSYRFRD/wXcG6u7YeBRyLidUmnA58F3gMc\nCbyrB/s8D/gnYAywEPgxgKSDgZ8D3wZGA/8H+Lmk0Z11JGlIan9GRAwD3pn6bHViGuMY4EvAf6X9\ntPoocAkwDHgFuAloSmN6G3Aa0JpECPgaMA44GpgI/GOKoxb4KfBD4GDgP4EPdhRzd+8t8DlgFVAH\njAW+AHR1f8WzgVnA24E5wF+lmOakbc9Jff0GuK3dth9I79GMDvr9N7Lfi6nAHwPnAxemuo8DZ5G9\nR7OAD3URX3sFvecR8TxwKfBYOpw5suPuOtTRuM4C/gA4juz9fl8n214DXBMRw4EjgDvb1f8RcBRw\nKvD/pwS0TUTUR8TQ9PL4iDgiIj4KvAr8WRrL13swFrOK4cTO7ACLiP+MiNcioiUi7iCb4Zidqm8F\n5uaa/0Uqg+wfxv+IiMURsYOU4BTo5xHxaEpwvkg2IzORbNbnxYj4YUQ0RcRtwBLgz7rprwU4VtJB\nEbEmIvKHv14HvhURjWl8S9lzdummNIYmsoTsTOAzEbE9JVnfbH0PImJZRDyY/uFeT5Z4/nHq5yRg\nQG5fPwHmdRFzV+9tI3AYcHjq6zfR9Y2zr46IjRHxKvAtdieMlwJfi4jn0/i+CszMz9ql+o0RsTPf\nYZqlnAt8PiLejIiXgW+QJWWQff7fioiVEbGRLOEtVMHv+X7oaFxXRcTm9D79CpjZybaNwJGSxkTE\ntoh4vF39lyNiZ0Q8DTwNHL+fsZr1G07szA4wSedLWpgOT20GjiWb3YLsH7/Bkk6UNJnsH8K7U904\nYGWuq/zz7rS1jYhtwMbU3ziyGZy8V4DxnXUUEduBj5AlMWsk/VzSW3JNVrdLil5J++ko7sPJkrM1\nuffj34HWQ89jJd2eDhduBX7E7vdqXCf76kxX7+2/AMuAB9Ih1iu66Kf9GPLjOxy4JjeWjWSzjuM7\n2TZvDNl7kR9D/rNo//l3Ndau4u3yPd8PHY1rbe75DmBoB20ALgKmA0uUnQ5w1j72Y2btOLEzO4DS\nzM33gcuB0elQ1yKyf/yJiGayw1Dnpse9EfFm2nwNMCHX3cQe7LqtraShZLM2r6XH4e3aTgJWd9VZ\nRNwfEe8lm+VaksbUany7c6kmpf20bZ57vhKoB8ZExMj0GB4Rx6T6r6b2b02H6f6S9F6RvR8d7auz\nmDt9b9MM2eciYirwfuCzyp0b2IH8e58f30rgE7mxjIyIgyLi/3Yy/rw3yGau8p9H/rNY08F+C9WT\n97yj+LYDg3OvD+1mHz0SES9GxLlkyeXVwE/SIf/9tc8xmVUKJ3ZmB9YQsn9s1gNIupBsxi7vVrIZ\nsfPYfagQsqTkQklHSxoM/O8e7PdMSX+Uzkv7J+DxiFgJ3AdMl/QXkmokfYTsHKl7O+sozaLNSf/w\n1gPbyA7NtjoE+BtJAyT9Odm5cfd11FdErAEeAL4habikKmULJloPtw5L/W+RNB74u9zmj5GdJ9a6\nr3PYfUi7Mx2+t5LOknRkShK3AM3txtTe30kalQ5nfxq4I5VfB3xe0jGp3xHpPehWLvG8UtKw9J+A\nz5LNUpLq/kbSBEmjgO5mFTvbT3fv+TpgQvpdabUQOEfSYGULPS7al313RtJfSqqLiBZgcyru6v0v\n1Dqy8xXN+i0ndmYHUEQ8R3be1GNk/+i8FfhduzZPkM2QjAN+kSv/BdmihV+RHTZsPQ+pvoBd30q2\nkGEjcALZzBcRsYHsBPfPARuAvwfOiog3uuiriizheC3198fAJ3P1TwDTyGagrgQ+lPbTmfOBWuA5\nYBPwE7KZQMgWl7ydLNn6OdkCCFLsDWSLFC5IcXwkX9+Rzt7bFO8vyZLIx4DvRsSvuujqv4EFZAnP\nz4EbUv93k8043Z4OHS8CzugqpnY+leJbAfyW7HO7MdV9H7if7Byz39PNWLvR1Xv+MNklQ9ZKav09\n+CbQQPY7ezNp8U0vOh1YnFa2XgPMbX8O4j76GvAP6ZDz/+qF/szKjro+X9jMSkVaGbgIGJhOii86\nSReQra78o2LHcqBICmBaRCwrdixmZt3xjJ1ZCVN2y6SB6VDc1cDPSiWpMzOz0uPEzqy0fYLsciLL\nyc4D+ySApMXpIqztH+ft64466W+bpJN7ZyjWW/xZmVlnfCjWzMzMrEJ4xs7MzMysQjixMzMzM6sQ\nNcUOoDeMGTMmJk+eXOwwzMzMzLq1YMGCNyKi7kD03W1iJ+lGsutevR4R7S+sSrrA5zVk9yLcAVwQ\nEb9PdaenumrgBxFxVSq/g+wGzwAjgc0RMTPd9ud5sntNQnZR1Uu7i3Hy5MnMnz+/u2ZmZmZmRSep\nJ7cI7JFCZuxuAr4D3NJJ/RlkF/ucBpwIfA84Md3g+lrgvcAqYJ6keyLiuYj4SOvGkr5BdjHSVssj\norMbR5uZmZlZJ7o9xy4iHiW7yntn5gC3ROZxYKSkw8hu9bMsIlakK8bfntq2SbN9HwZu29cBmJmZ\nmVmmNxZPjCe7yXSrVamss/K8k4F1EfFirmyKpIWSHvE1mczMzMwKV+zFE+ey52zdGmBSRGyQdALw\nU0nHRMTW9htKugS4BGDSpEl9EqyZmZlZKeuNGbvVwMTc6wmprLNyACTVkN3Q+47Wsoiob715eEQs\nILva/vSOdhoR10fErIiYVVd3QBaWmJmZmZWV3kjs7gHOV+YkYEtErAHmAdMkTZFUC8xNbVu9B1gS\nEataCyTVpUUXSJpKtiBjRS/EaGZmZlbxCrncyW3Au4AxklYBXwIGAETEdcB9ZJc6WUZ2uZMLU12T\npMuB+8kud3JjRCzOdT2XvRdNnAJ8RVIj0AJcGhFdLdwwMzMzs6Qi7hU7a9as8HXszMzMrBxIWhAR\nsw5E376lmJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZ\nVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc\n2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFaLbxE7SjZJel7Sok3pJ+rakZZKekfT2XN3pkpamuity5f8oabWk\nhelxZq7u86n9Uknv298BmpmZmfUXhczY3QSc3kX9GcC09LgE+B6ApGrg2lQ/AzhX0ozcdt+MiJnp\ncV/aZgYwFzgm7fO7qR8zMzMz60a3iV1EPAps7KLJHOCWyDwOjJR0GDAbWBYRKyKiAbg9te3KHOD2\niKiPiJeAZakfMzMArvn/bmfj61uKHYaZWUnqjXPsxgMrc69XpbLOylt9Kh26vVHSqG76MjMD4Fd3\nP8ELi14tdhhmZiWpWIsnvgdMBWYCa4Bv9LQDSZdImi9p/vr163s7PjMrUROnHcphE0cXOwwzs5LU\nG4ndamBi7vWEVNZZORGxLiKaI6IF+D67D7d2uk17EXF9RMyKiFl1dXW9MAwzKwfV1TVUD/Cpt2Zm\nHemNxO4e4Py0OvYkYEtErAHmAdMkTZFUS7Yo4h6AdA5eq7OBRbm+5koaKGkK2YKMJ3shRjOrEJs3\nvMn2LTuLHYaZWUmq6a6BpNuAdwFjJK0CvgQMAIiI64D7gDPJFjrsAC5MdU2SLgfuB6qBGyNicer2\n65JmAgG8DHwibbNY0p3Ac0ATcFlENPfKSM2sIqx7ZSNPPPQsRx0/udihmJmVnG4Tu4g4t5v6AC7r\npO4+ssSvfflHu+jvSuDK7uIys/6rfseuYodgZlaSfOcJMys7o+sOLnYIZmYlyYmdmZWVqhpx8AQn\ndmZmHXFiZ2ZlZejwQYw9bHixwzAzK0lO7MysrDTUN7Fx445ih2FmVpKc2JlZWXn3OX/A9GMm7lW+\n7rVNPP+c70hhZv2bEzszKyuP/mw+a15et1f5Jy+6gb/96x8WISIzs9LhxM7MykpLMzQTvLF2Cz++\n7iGWv/AaAMNHHsTAgb4jhZn1b91ex87MrJTseLOBV198jQlTDuW/fvhb6puaOWL6OFav3Fzs0MzM\nis4zdmZWdt7csJO6Q0eyfWsDzz65pNjhmJmVDCd2ZlY2du2oB2DLxjfbyp5/Kp1vp2JEZGZWWnwo\n1szKxt+c+TUARo8f0VY2/ODsa+wLX5rDlq07ixKXmVmp8IydmZWNlUteB2DC4WPbyt7c3ATAj256\nlB/f+GhR4jIzKxVO7MysvDQ1cc/Nv2l7GS3ZzzF1wxl+8LC28paWoKUl+jo6M7Oi8qFYMysvNTVs\neeMNIvZM2t56/CQ2rN/W9vrlVzcCMHXy6D4Nz8ysmJzYmVl5aW7ize3bWbVi/R7Fp512HG+mxRUA\nX/vOz6iqquLfv35+X0doZlY0TuzMrOxsWtnExCMO2aNsy5s7efPNXW2v16zd2NdhmZkVnc+xM7Py\nEjBm6uC9iq/95v/wza/f2/a6sVE0NvkaKGbWv3jGzszKTsPO+r3Knlv8GvnT7v7wpKnIeZ2Z9TNO\n7MysfESAxNY1zXtVDR4C23evneDJ+ctxZmdm/Y0TOzMre01NzezcsWfZlu17J39mZpXO59iZWVkL\n4PFHltLSUuxIzMyKz4mdmZW92kE1jJswnGHDBhQ7FDOzovKhWDMrCxvXbiIiUAfnzf36gUW8tmpr\nEaIyMystnrEzs7LwF0d/rtO6o44Z34eRmJmVrm4TO0k3Snpd0qJO6iXp25KWSXpG0ttzdadLWprq\nrsiV/4ukJan93ZJGpvLJknZKWpge1/XGIM2svP3y9t9CF+fQ/fJnT/VdMGZmJayQGbubgNO7qD8D\nmJYelwDfA5BUDVyb6mcA50qakbZ5EDg2Io4DXgA+n+tveUTMTI9LezAWM6tQ3/rbG7JLnTR3sNJ1\n4ABefeWNvg/KzKwEdZvYRcSjQFf35pkD3BKZx4GRkg4DZgPLImJFRDQAt6e2RMQDEdGUtn8cmLA/\ngzCzyta0PT2pqt6j/Ki3Hsa5H3sHJ596TN8HZWZWgnrjHLvxwMrc61WprLPy9v4K+EXu9ZR0GPYR\nSSf3QnxmVili9/HY7dt2cfJpxzH9uAkcNLi2iEGZmZWOoq6KlfRFoAn4cSpaA0yKiA2STgB+KumY\niNhruZukS8gO/TJp0qS+CtnMiqll9z3DhgwdRENDM2+s3cKG170i1swMeiexWw1MzL2ekMoGdFIO\ngKQLgLOAUyOyOzxGRD1Qn54vkLQcmA7Mb7/TiLgeuB5g1qxZ0b7ezCrfHTf8irGTDmbNmi346k1m\nZr1zKPYe4Py0OvYkYEtErAHmAdMkTZFUC8xNbZF0OvD3wPsjou1GQJLq0qILJE0lW5CxohdiNLNK\n0O4SdvU7mnnlpc007PL/7czMoID/4kq6DXgXMEbSKuBLZLNxRMR1wH3AmcAyYAdwYaprknQ5cD9Q\nDdwYEYtTt98BBgIPpouNPp5WwJ4CfEVSI9nFDS6NiK4WbphZf9JB/lZbCw0NZIdpq/a+eLGZWX/S\nbWIXEed2Ux/AZZ3U3UeW+LUvP7KT9ncBd3UXk5lZq4aGJnwY1sws429DMysv2Sm5XHDmldCcPe/i\n2sVmZv2KbylmZmVp3fI3obklLbcyMzNwYmdmZSItnu+Qv8jMzDL+PjSzkhctXR9srR7QR4GYmZU4\nJ3ZmVvpaZ+s6mbVrbuqw2Mys33FiZ2alr4vDsAyEMYcO6btYzMxKmBM7Myt9HeV1jdk03fChtTQ1\nNfZtPGZmJcqJnZmVtWHDBnHo+KHZC1+f2Mz6OSd2ZlbWtm3ZyR+/e1b2wncWM7N+zomdmZUX7Tkt\nd/C4UfzqgWd9OzEzM3znCTMrJ+2SOgE7tzWw8pXNUO2vMzMzz9iZWdkKoL5+O1OmHVrsUMzMSoL/\ni2tmJW3Xrl1d1m9a28ib29dA1f5fpXjBytUAnDBx/H73ZWZWDJ6xM7OS9q+f+V63barUO/9HPffm\nOzn35jt7pS8zs2JwYmdmJe3RH84jmps7qNm9BLa5qbBbT8xfspKWlo6Xzn7hp7/Yl/DMzEqKEzsz\nK21dXXs43ZGiw7yvA9+649c0NHTc4XOvrethYGZmpceJnZmVrNdXvUE0NXZ+4WFpj2+xAQO6vuTJ\nklfXs2DxSx3Wnf+OWfsYpZlZ6XBiZ2Yl60t/fnXXDSLIvsYCInjHH03rts9Pf/fnHZafOHlCl9s9\n9NJSfvfK8m77NzMrJid2Zlaylj3xcveNWlqIZkDi0V+9QEtL0NDQ+Tl3LZ2U/91dP2+rn371N/eq\nv+jX/815D9/VfTxmZkXky52YWenrwa3Cfv/7l5j31Mttr7dtb6C+uYHRw4e2lTU1t1BTvef/a7fV\np2RQ0BLQ3NLC8k0bmT56zP5Evs+iZSOqOrgo+zaz8uUZOzMrS225XusUXErMfvmrRTz08HNt7d57\n8b9x1if+neWr32jb6Mu33L9Xf4cMP2iPjqurqhhz0ODeD7xQLZuJ8M1vzaxnnNiZWenr5jaw+fTn\nsHEj2LBx+15txo8Z0dbPvfOWtJV/4gd38aFv3sRvV6yGttW1weqNG3nPTd/nzYauL5B8oKhmKpLv\nf2tmPeNDsWZW/nL5z398/3dQW71Xk0EDB3R4RPe3y18lgIMGQH0tNKRvxRvnPcnmxibe+8MfMGf6\nW7LssYM8qyVaEHISZmYlwTN2Zlb6OjsiqT2btOReDR2059fbyrWbujxXb2cLNDXTNmv30JIXAFjb\nsIsbFi0koO3Q6BefuBeA8x65nque+hmv79pa2DAieG3HswW1bal/jIjOlnqYmXWs28RO0o2SXpe0\nqJN6Sfq2pGWSnpH09lzd6ZKWprorcuUHS3pQ0ovp56hc3edT+6WS3re/AzSzClcFrRlba+IVAdt2\n7ZkUffCK/yBaspYBPLvitS67fTV3IeP8GtuWlhZuf/lpjrjjSp7ZsprbVi1gzKBhBYUqiXGD31pQ\nW+qfJFoKvPKymVlSyIzdTcDpXdSfAUxLj0uA7wFIqgauTfUzgHMlzUjbXAE8FBHTgIfSa1L9XOCY\ntM/vpn7MrB866h1HdN8oOnneEB1WCaAF/vLbd/DAU8+1zdBVAeS+bfY+sJr1cM3vfplet9Dckv18\ndO3z3cfZU0M+SlX1gN7v18wqWreJXUQ8Cmzsoskc4JbIPA6MlHQYMBtYFhErIqIBuD21bd3m5vT8\nZuADufLbI6I+Il4ClqV+zKwfWvp4JxcEVrtjsG3lezaLFqCp3RHYXJu/u/n+ti5aIEvyWnLd7nF8\nN9vwRy89tXc8LQfg/Lr1f0rLtk2936+ZVbTeOMduPLAy93pVKuusHGBsRKxJz9cCY7vpy8z6o07P\niev5ZUCi3U/aXcNYsNc34l6XVAG+/e4P7dFmQA187ulbC4qhvr6e7yx5d0FtYUfKTM3MClf0xROR\nnRTT429pSZdImi9p/vr16w9AZGZWNnryDdKDybWOmh47ehyTB49k8sDBPesM+NlLP+tB62aore1R\n/2ZmvZHYrQYm5l5PSGWdlQOsS4drST9f76avvUTE9RExKyJm1dXV7fcgzKz0DBjS7opM7fOoAhK6\nw0YP2mPzfBedLk2QoIPT24Q4qLaWW0/9KJ87oatTjzt2OIf3oHUDbPpFj/dhZv1bbyR29wDnp9Wx\nJwFb0mHWecA0SVMk1ZItirgnt83H0vOPAf+dK58raaCkKWQLMp7shRjNrAzd9+ZtqLpn66fa535r\nN+wCZV92AqguZJYt+MNRo/f6hvyLidMBOHjQEE46ZEqP4gKYx7wetJ4JB5/V432YWf9WyOVObgMe\nA46StErSRZIulXRpanIfsIJsocP3gb8GiIgm4HLgfuB54M6IWJy2uQp4r6QXgfek16T6O4HngP8B\nLosIr/c36+/2Yaau1RUfP5XxdUMA+Mi7julyHz/48Ps5dGCWSE4Ye2hWXpU9PjR1Bo9seJVlm9ez\nrbGepZvXUQvUUsVBFJZ8tvCTwgMfcRFUDyy8vZkZBdx5IiLO7aY+gMs6qbuPLPFrX74BOLWTba4E\nruwuLjPrJ9SDAwutCWBaNSvg/afN5P2nzeTff/Ibzj3t7dz2xO77yFazew3FYGDKIWN4vbEZasSf\nTBrPHS8sZszAgZw1dRpDhw5h1c6d/G7lCj5w1HG82VhPA/Dzd30aFXiu3fnjfsotr32g+4YATY0w\n0HezMLOe8S3FzKz0FTBDlz/MKoCaPZOiT3zo5C633wFMHDWClvStWJsWLvzknPMYM3goT61/jU8e\n9xmG1A6kJYJ3js0OxS584xWqJcYNPrjbGIcPH87lwx/ufjAA2z8L22vg0J6fy2dm/VfRV8Wame0v\nVaUkLjdT15lffPnjbRcivujdxzEgfQt+8qTspjlfeGd26czhKbGbPPJghtbWcvL4yQypzQ6Nbti1\nnaEDsuffXfpLrnuhwGStx5q6b2JmluMZOzMrL9Fu+q6z/552kt2NPWQo37vsbB5b+gpzTnor48eO\npZFm5p54PAAPv/wKACOrBlAN7GxspLa6mgA21e+k7qAh7GhuJCKYNXIir+94nSr1/Lp6hfkl4AUU\nZlY4z9iZWflRx2e1qV3SJ2D1us1s2Lx9j/J3HD2Z6eNHM6R2IO+YPpFZk3dfB/37c/+cfz7tVJ5c\nv45mYP3O7exsaiIIGtO9W8cMGsLzW9Zxy7suoqa6iurqA/VVOqr7JmZmOU7szKx8tLSbGctnd9Xa\n81Zj6aJ1h9WN4OARg/fq6n//+EG++4vfMG7UCI4cO6at/KABA5j7tuN4y5isbNLwkQytrWVAVTXj\nhgwHYEhNLTNGZqtmtzY3sKWpvleGt5eaTx6Yfs2sYvlQrJmVob0Pfardi5HDsnPkqqo6PibbAjyz\n/NVO9/D02nUFRbKNA5TUDf08DPKMnZn1jBM7MytvaZaufao3ZeIY6CSpa/XiG9s7rRs/cnhBux9d\nM5ianlySpUBVQy/s9T7NrPI5sTOzitTQ1NxtYteVPzliOvfO7X7G7B+P+2Cns4JmZn3NiZ2Zlbe0\nkCKq9pw1i4DuFqvW1XZeV11VxYQRI7vd/XeXPkg1VbzjkOkFBGtmdmB58YSZla+Ad73/WJA4eHR2\n2zDSXbhqqtXtbWG7u0rc8IHd39Jr6fa1LN3+Wvexmpn1Ac/YmVn5STNxAmrSf0/v+Nnfcuq7vtrW\n5OVVG7vt5g+POXK/Q/m3P/gY1QfgHDszs33hxM7Myov2nIZ75NfPt2uQ3VbihJmTqeriHhSHjhzK\n0ZMO3e9wZowY330jM7M+4sTOzMrawaOrWbe9OT0fzNgJI1i2fD1f+V9zutzu1s+dx4iDBu33/kfU\n7n2NPDOzYnFiZ2blY4/Vp+m+sFXVQJbYbd++i6bGwbR0cJ279kYPc0JmZpXHiZ2ZlbdcDle/q4UX\nl2+ipXjRmJkVlRM7MytrVTV7zs695cjhvHXmUUWKxsysuLyUy8zKS+yZyL22vBGAxc+u5J3vnEbN\noCHc9dN5xYjMzKzonNiZWfmI2HNVbE011elUuaOPmcA/ffXPeenl9TR1d4E6M7MK5cTOzMqH9r58\nyQ23f4bxk0a03darusa39zKz/suJnZmVtBl/lLuIcOy92vWwcSO58b/+tu31oIED+iIsM7OS5MTO\nzEraNx/6MlRVQUtha10v+Ogf8/aZkw5wVGZmpcmrYs2spElCbYdg1eGsXd70aYeyc2fDgQ/MzKwE\necbOzMpPB+fatVq24nUee2J5HwZjZlY6nNiZWUnbuX0XkZ+lk2BA5+fR/d/HX+Cpp18+8IGZmZWg\nghI7SadLWippmaQrOqgfJeluSc9IelLSsbm6T0taJGmxpM/kyu+QtDA9Xpa0MJVPlrQzV3ddbwzU\nzMrTru31PWp/yOjhjBju24WZWf/U7Tl2kqqBa4H3AquAeZLuiYjncs2+ACyMiLMlvSW1PzUleB8H\nZgMNwP9IujcilkXER3L7+AawJdff8oiYub+DM7PyN+qQEdk5dlVV7e4Vm3nj9a0sW7KGk07J7jYx\ndUodL73yRl+HaWZWEgqZsZsNLIuIFRHRANwOzGnXZgbwMEBELAEmSxoLHA08ERE7IqIJeAQ4J7+h\nsrOiPwwLbuqyAAAXIElEQVTctl8jMbOKpqqqDhdOjK4bxszZU9tejx07isMPH9OXoZmZlYxCErvx\nwMrc61WpLO9pUsImaTZwODABWAScLGm0pMHAmcDEdtueDKyLiBdzZVPSYdhHJJ1c8GjMrN9prG9i\n04Ztba9XvLSWRYtXFzEiM7Pi6a3FE1cBI9N5cp8CngKaI+J54GrgAeB/gIVAc7ttz2XP2bo1wKR0\nKPazwK2ShrffoaRLJM2XNH/9+vW9NAwzK1kDakDign9IBwwG1QKwafN2li5e1dZs+PCDGDZ0UDEi\nNDMrukISu9XsOcs2IZW1iYitEXFhSsbOB+qAFanuhog4ISJOATYBL7RuJ6mGbKbvjlxf9RGxIT1f\nACwHprcPKiKuj4hZETGrrq6uoMGaWfkaPHYAUhWb1m/OCpqya9UNGjSAg0cPbWv3698uZd6Cl4sQ\noZlZ8RWS2M0DpkmaIqkWmAvck28gaWSqA7gYeDQitqa6Q9LPSWRJ3K25Td8DLImIVbm+6tKCDSRN\nBaaRkkQz67/edlK22P6///2RrKAp+9Gwq5Etm3e2tVv24pq+Ds3MrGR0uyo2IpokXQ7cD1QDN0bE\nYkmXpvrryBZJ3CwpgMXARbku7pI0GmgELouIzbm6uey9aOIU4CuSGoEW4NKI2LhvwzOzSnDpNz7K\nIZPr+N29zzD7tLcw77evAjBwUA3DRg7m8CN2z9pv27ajWGGamRVdQbcUi4j7gPvalV2Xe/4YHRwu\nTXWdLn6IiAs6KLsLuKuQuMysfzj7r0/jd/f9HoANr+2+MlJVjWhuaqGxoamtbLvzOjPrx3znCTMr\nCyeedjySWLNy9zXqdm5rRBIDBvi212Zm4MTOzMpETU01VMG4qWPbyqoHiAG11QwdtnsV7KDajrY2\nM+sfnNiZWflogdUvrm17+e6z3saaVRt55IFFbWW7GooRmJlZaXBiZ2Zl46BhA3nrSUe2vV732mZq\nD6plyHBft87MDApcPGFmVgq+8qPLGDtpND/+twc4csY4/uQDs3jg3qe49875nHbW24odnplZ0Tmx\nM7OyceyJ2WzdZ776kbay498+lS2bdhUrJDOzkuJDsWZW1qqrxeDBA4odhplZSXBiZ2Zlbdu2etau\n3lTsMMzMSoIPxZpZWZty5CG8/yMn0VDfRHNLS7HDMTMrKid2ZlbWBg8ZxOQjBrF1606aGpuLHY6Z\nWVE5sTOzijB8+EHFDsHMrOh8jp2ZmZlZhXBiZ2ZlbeeOela+/Eb3Dc3M+gEndmZW1gYdVMvYw0a0\nva4bU13EaMzMisuJnZmVNUnUDtx9HbuPnncqx711YhEjMjMrHi+eMLOK8mdnvo0/PX1mscMwMysK\nz9iZWcWpqlKxQzAzKwondmZW1nbtbGDNqo3FDsPMrCQ4sTOzsjagtoYRo4YUOwwzs5LgxM7Mylp1\ndRWDhwwsdhhmZiXBiZ2ZlbUtm7ez+OlXix2GmVlJcGJnZmVt165G1qzaVOwwzMxKghM7Mytrr728\ngaeeXF7sMMzMSoITOzMra29u38nrazcXOwwzs5JQUGIn6XRJSyUtk3RFB/WjJN0t6RlJT0o6Nlf3\naUmLJC2W9Jlc+T9KWi1pYXqcmav7fNrXUknv299BmlnlWrpoFcteWFPsMMzMSkK3iZ2kauBa4Axg\nBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZG67b0bEzPS4L20zA5gLHAOcDnw3xWBmtpea\nmmqq5YMPZmZQ2IzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnSWOBo4ImI2BERTcAjwDnd7G8OcHtE\n1EfES8CyFIOZ2V6OPm4Sxxzve8OamUFhid14YGXu9apUlvc0KWGTNBs4HJgALAJOljRa0mDgTCD/\nDfypdPj2RkmjerA/MzMAho08iNFjRxQ7DDOzktBbxy+uAkZKWgh8CngKaI6I54GrgQeA/wEWAs1p\nm+8BU4GZwBrgGz3ZoaRLJM2XNH/9+vW9MwozKzuPPfI8jz6wqNhhmJmVhEISu9XsOcs2IZW1iYit\nEXFhRMwkO8euDliR6m6IiBMi4hRgE/BCKl8XEc0R0QJ8n92HW7vdX9r++oiYFRGz6urqChiGmVWi\npoZGdtXXFzsMM7OSUEhiNw+YJmmKpFqyhQ335BtIGpnqAC4GHo2IranukPRzEtnh2lvT68NyXZxN\ndtiW1PdcSQMlTQGmAU/uy+DMrPLdf88CGp3XmZkBUNNdg4hoknQ5cD9QDdwYEYslXZrqryNbJHGz\npAAWAxflurhL0migEbgsIlovOPV1STOBAF4GPpH6WyzpTuA5oClt04yZWQeOOHIczy7ca1LfzKxf\n6jaxA0iXIrmvXdl1ueePAdM72fbkTso/2sX+rgSuLCQ2M+vfRh82ApzYmZkBvvOEmZW5xx55rtgh\nmJmVDCd2ZlbWIoodgZlZ6XBiZ2ZlrW7MsGKHYGZWMpzYmVlZO/7Eo6gp6GxhM7PK58TOzMqa1IKq\nVOwwzMxKghM7MytrO3fspLnZJ9qZmYETOzMrc1OPHEfdIb5XrJkZOLEzszJXO3gAAwfXdt/QzKwf\ncGJnZmXt1WVrWfPqG8UOw8ysJDixM7Oytm7NZhobfY6dmRk4sTOzMnfEtMMYMtyHYs3MwImdmZW5\nFUvWsX1rQ7HDMDMrCU7szKysaZCvYWdm1sqJnZmVtc0bdxQ7BDOzkuHEzszK2s43dxY7BDOzkuHE\nzszK2tbNnrEzM2vlxM7MytquxsZih2BmVjKc2JlZWfM17MzMdnNiZ2ZlrXlXsSMwMysdTuzMzMzM\nKkRNsQMwM9sX9bsaeXX568UOw8yspHjGzszK0sBBA5h2zPhih2FmVlKc2JlZWVN1sSMwMysdTuzM\nrKxFc7EjMDMrHQUldpJOl7RU0jJJV3RQP0rS3ZKekfSkpGNzdZ+WtEjSYkmfyZX/i6QlaZu7JY1M\n5ZMl7ZS0MD2u642BmpmZmVW6bhM7SdXAtcAZwAzgXEkz2jX7ArAwIo4DzgeuSdseC3wcmA0cD5wl\n6ci0zYPAsWmbF4DP5/pbHhEz0+PSfR6dmZmZWT9SyIzdbGBZRKyIiAbgdmBOuzYzgIcBImIJMFnS\nWOBo4ImI2BERTcAjwDmp3QOpDOBxYMJ+j8bMzMysHysksRsPrMy9XpXK8p4mJWySZgOHkyVqi4CT\nJY2WNBg4E5jYwT7+CvhF7vWUdBj2EUknFzQSMzMzs36ut65jdxVwjaSFwLPAU0BzRDwv6WrgAWA7\nsBDY41RnSV8EmoAfp6I1wKSI2CDpBOCnko6JiK3ttrsEuARg0qRJvTQMMzMzs/JVyIzdavacZZuQ\nytpExNaIuDAiZpKdY1cHrEh1N0TECRFxCrCJ7Hw6ACRdAJwFnBcRkdrXR8SG9HwBsByY3j6oiLg+\nImZFxKy6urpCx2tmZmZWsQpJ7OYB0yRNkVQLzAXuyTeQNDLVAVwMPNo6wybpkPRzEtnh2lvT69OB\nvwfeHxE7cn3VpQUbSJoKTCMliWZmZmbWuW4PxUZEk6TLgfuBauDGiFgs6dJUfx3ZIombJQWwGLgo\n18VdkkYDjcBlEbE5lX8HGAg8KAng8bQC9hTgK5IagRbg0ojY2AtjNTMzM6toBZ1jFxH3Afe1K7su\n9/wxOjhcmuo6XPwQEUd2Un4XcFchcZmZmZnZbr7zhJmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZm\nZhXCiZ2ZmZlZhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmVlZqx5Q\n7AjMzEqHEzszK2vDhw8sdghmZiXDiZ2ZlbU/OPkoqmuKHYWZWWlwYmdmZU5UVfmrzMwMnNiZWZmr\nqaqipbml2GGYmZUEJ3ZmVtZefH4lzc3FjsLMrDQ4sTOzsrZu7cZih2BmVjKc2JlZWRtdN6zYIZiZ\nlQwndmZW1madfCzDRviSJ2ZmAL5IgJmVtRNPmsb2jTuLHYaZWUnwjJ2ZlbWhwwYydtzIYodhZlYS\nnNiZWVmrqamhpra62GGYmZUEJ3ZmVtZWr9zEs/NfLnYYZmYlwYmdmZW1AQOrGFDr04XNzKDAxE7S\n6ZKWSlom6YoO6kdJulvSM5KelHRsru7TkhZJWizpM7nygyU9KOnF9HNUru7zaV9LJb1vfwdpZpVr\nyOBBjBnrS56YmUEBiZ2kauBa4AxgBnCupBntmn0BWBgRxwHnA9ekbY8FPg7MBo4HzpJ0ZNrmCuCh\niJgGPJRek/qeCxwDnA58N8VgZrYXVUF1lb8izMygsBm72cCyiFgREQ3A7cCcdm1mAA8DRMQSYLKk\nscDRwBMRsSMimoBHgHPSNnOAm9Pzm4EP5Mpvj4j6iHgJWJZiMDPbi6iiqtpnlZiZQWGJ3XhgZe71\nqlSW9zQpYZM0GzgcmAAsAk6WNFrSYOBMYGLaZmxErEnP1wJje7A/MzMADp0wknecclSxwzAzKwm9\ndcbxVcA1khYCzwJPAc0R8bykq4EHgO3AQmCv23VHREiKnuxQ0iXAJQCTJk3az/DNrFwNHz6YGcf7\nO8DMDAqbsVvN7lk2yGbiVucbRMTWiLgwImaSnWNXB6xIdTdExAkRcQqwCXghbbZO0mEA6efrhe4v\n9Xt9RMyKiFl1dXUFDMPMzMysshWS2M0DpkmaIqmWbGHDPfkGkkamOoCLgUcjYmuqOyT9nER2uPbW\n1O4e4GPp+ceA/86Vz5U0UNIUYBrw5L4MzszMzKw/6fZQbEQ0SbocuB+oBm6MiMWSLk3115Etkrg5\nHU5dDFyU6+IuSaOBRuCyiNicyq8C7pR0EfAK8OHU32JJdwLPAU1pm70O35qZmZnZnhTRo1PbStKs\nWbNi/vz5xQ7DzMzMrFuSFkTErAPRt68RYGZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdm\nZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZ\nhXBiZ2ZmZlYhnNiZmZmZVQgndmZmZmYVwomdmZmZWYVwYmdmZmZWIZzYmZmZmVUIJ3ZmZmZmFcKJ\nnZmZmVmFcGJnZmZmViGc2JmZmZlVCCd2ZmZmZhXCiZ2ZmZlZhSgosZN0uqSlkpZJuqKD+lGS7pb0\njKQnJR2bq/tbSYslLZJ0m6RBqfwOSQvT42VJC1P5ZEk7c3XX9dZgzczMzCpZTXcNJFUD1wLvBVYB\n8yTdExHP5Zp9AVgYEWdLektqf6qk8cDfADMiYqekO4G5wE0R8ZHcPr4BbMn1tzwiZu7v4MzMzMz6\nk0Jm7GYDyyJiRUQ0ALcDc9q1mQE8DBARS4DJksamuhrgIEk1wGDgtfyGkgR8GLhtn0dhZmZmZgUl\nduOBlbnXq1JZ3tPAOQCSZgOHAxMiYjXwr8CrwBpgS0Q80G7bk4F1EfFirmxKOgz7iKSTCx6NmZmZ\nWT/WW4snrgJGpvPkPgU8BTRLGkU2uzcFGAcMkfSX7bY9lz1n69YAk9Kh2M8Ct0oa3n6Hki6RNF/S\n/PXr1/fSMMzMzMzKVyGJ3WpgYu71hFTWJiK2RsSFKRk7H6gDVgDvAV6KiPUR0Qj8F/DO1u3S4dlz\ngDtyfdVHxIb0fAGwHJjePqiIuD4iZkXErLq6uoIGa2ZmZlbJCkns5gHTJE2RVEu2+OGefANJI1Md\nwMXAoxGxlewQ7EmSBqdz6U4Fns9t+h5gSUSsyvVVlxZsIGkqMI0sSTQzMzOzLnS7KjYimiRdDtwP\nVAM3RsRiSZem+uuAo4GbJQWwGLgo1T0h6SfA74EmskO01+e6n8veiyZOAb4iqRFoAS6NiI1dxbhg\nwYI3JL3S7WjL2xjgjWIHUQQed//icfcvHnf/4nHvdviB2pki4kD1bb1I0vyImFXsOPqax92/eNz9\ni8fdv3jcfcN3njAzMzOrEE7szMzMzCqEE7vycX33TSqSx92/eNz9i8fdv3jcfcDn2JmZmZlVCM/Y\nmZmZmVUIJ3Z9QNLBkh6U9GL6OaqTdqdLWippmaQrCtle0udT+6WS3pfKhqVbsrU+3pD0rVR3gaT1\nubqLK2XcqfzXqax1fIek8oGS7kjbPCFpcqWMO10n8ueSlkhaLOmqXPsD/nl3No5cvSR9O9U/I+nt\nvf0epPITJD2b6r4tSb091mKNW9J7JS1I41sg6d25bTr8na+QcU+WtDM3tuty21Ty532e9vwOb5E0\nM9VVwuf958q+q1okzWrXXyX/fXc47l7/+44IPw7wA/g6cEV6fgVwdQdtqsnusjEVqCW7/+6MrrYH\nZqR2A8lu27YcqO6g7wXAKen5BcB3KnXcwK+BWR3s56+B69LzucAdlTJuYDDwJ6lNLfAb4Iy++Ly7\nGkeuzZnALwABJwFPHKDP/snUv9L+zqigcb8NGJeeHwuszu2nw9/5Chn3ZGBRJ7FU7Ofdrt+3Assr\n7PM+Gjiq/Vio/L/vzsbdq3/fnrHrG3OAm9Pzm4EPdNBmNrAsIlZERANwe9quq+3nALdHdhu2l4Bl\nqZ82kqYDh5D9Y9/XijbubmL5CXDqAfwfX5+OOyJ2RMSvAFJfvye79V9f6GocreYAt0TmcbL7Sh/W\nzbY9eg9Sf8Mj4vHIvg1voeP3vbf06bgj4qmIeC2VLwYOkjTwQA2uC339eXeo0j/vds5N2xTDARl3\nRDwfEUs72F9F/313Nu7e/vt2Ytc3xkbEmvR8LTC2gzbjgZW516tSWVfbd7VNq9bZqfwqmQ+mKd+f\nSJrIgVOscd+cpqz/dy55a9smIpqALcDong+pIEX7vCWNBP4MeChXfCA/70J+Bztr05vvwfj0vKs4\nelNfjzvvg8DvI6I+V9bR7/yBUIxxT0lje0TSybl99JfP+yPsfYemcv+8e7q/Svm8C7Hff9/d3lLM\nCiPpl8ChHVR9Mf8iIkLZrdf2yT5sPxf4aO71z4DbIqJe0ifI/pf47g63LEAJjvu8iFgtaRhwF9nY\nb9nX/XamBMeNpBqyfwC+HRGt91fu1c+7GPb3PSxXHY1b0jHA1cBpueI++Z3vK+3GvQaYFBEbJJ0A\n/DS9BxWnk8/7RGBHRCzKFVfU52279dbftxO7XhIR7+msTtI6SYdFxJo0Vft6B81WA/nZlAmpDKCz\n7bvaBknHAzURsSAX54Zc+x+QneOxz0pt3BHR+vNNSbeSTYvfkttmVUqARgD596JHSm3cyfXAixHx\nrVycvfp5d6C7mLpqM6CLbXv6Hqxmz8PPHcXRm/p63EiaANwNnB8Ry1vLu/idPxD6dNxp1qI+PV8g\naTkwnX7weSd73U+9Qj7vnu6vUj7vTvXq33f0wQmY/f0B/At7niD79Q7a1AAryE4YbT3h8piutgeO\nYc8TTVeQWzwBXAV8ud1+Dss9Pxt4vFLGnfoak9oMIDuX7tL0+jL2XDxxZ6WMO9X9M9n/5qr68vPu\nahy5Nn/KnicZP3mA3oP2J1efeQA/474e98jU7pwO4ujwd75Cxl2X+3ynkv0DeXClf97pdVUa79RK\n+7xz2/6aPRcRVPTfdxfj7tW/7wPypvix1y/JaLJznl4Efpn7YhoH3JdrdybwAtmKmi92t32q+2Jq\nv5R2q4TSL9db2pV9jezkzKeBX7WvL+dxA0PIVgA/k8Z4Te5LYRDwn2Qn4z5J7suyAsY9AQjgeWBh\nelzcV593R+MALmV3Ui3g2lT/LHt+ofXa7zwwC1iU6r5DugD7Afyc+2zcwD8A23Of70KyRVGd/s5X\nyLg/mMa1kGxR0J/1h8871b2Ldv8Rq6DP+2yyc8/qgXXA/bm6Sv777nDc9PLft+88YWZmZlYhvCrW\nzMzMrEI4sTMzMzOrEE7szMzMzCqEEzszMzOzCuHEzszMzKxCOLEzMzMzqxBO7MzMzMwqhBM7MzMz\nswrx/wBqQ1b+/IecaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAE/CAYAAAAQUCTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFXawPHfMzNpkEAooYUuTZoirGLB3vvuq666tl17\n73UtuIriuoJlbeiKvbAWbIuKIq4NEVakKUUJQuglIT1TzvvHvTNzp6VOysDz/XzCzD23nZkJyZNT\nniPGGJRSSimlVGpwtXQFlFJKKaVU3WnwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEA3elFJKKaVS\niAZvSimllFIpRIM3pVKQiDwvIvfWsN+IyIBmrM9tIvJsc92vuYlIbxEpFRF3A8+/VEQ22tfolOz6\nKaV2LRq8KaUazRhznzHmgua+r4hMEZFlIhIQkfOi9p0nIn47YAp+HdyQ+xhjfjPGZBtj/A2oYxow\nCTjSvsbWWo4/T0S+akg9lVK7Bg3elFKNIiKeFrz9j8BlwP8S7P/WDpiCX7Obr2ohXYFMYElz3KyF\nPw+lVDPQ4E2pVkpEdheR2SJSJCJLROTEqEM6iMiHIlIiIt+JyG4JrpMlIg+JyGoRKRaRr0Qkq4b7\n9rW7XS8SkXUisl5EbnDsHy8ib4rIyyKyAzjPLnvZccwBIvKNXfc1wVYxEckQkX+IyG92N+JTNdWl\nNsaYx40xnwGV9T1XRApE5EYRWSgiZSLyLxHpKiIz7Pf0UxHpEPWeeOzt2SJyj4h8bR/7iYh0jnOP\nQcAye7NIRGZFX8txvQtEZHfgKWBfu6WwyLnfcXxE65x9vctFZAWwwi4bIiIzRWSb3Tp5WoL34Y8i\nMi+q7FoRec9+fqyILLVfZ6HzeyHqnPPs9+Of9vfZzyJymGN/RxGZan9PbReR6XZ5BxH5QEQ22+Uf\niEjPhB+cUkqDN6VaI7ur7X3gE6ALcCXwiogMdhx2OnA30AFYCUxIcLl/AKOB/YCOwE1AoA7VOAQY\nCBwJ3Cwihzv2nQS8CeQCr0TVvQ8wA3gMyAP2BBbYuycCg+yyAUA+cGcd6tJQo0Rki4gsF5E74rRK\n/R9whF2nE+x632bX2wVcVcO1zwT+jPX5pAMxQY0xZjkwzN7MNcYcWlNljTE/AZcQbjHMre0FOpwM\n7AMMFZG2wEzgVbt+pwNPiMjQOOe9DwwWkYFRr+1V+/m/gIuNMTnAcGBWDXXYB/gF6AzcBbwtIh3t\nfS8BbbDejy7AZLvcBUwF+gC9gQrgn3V8zUrtkjR4U6p1GgtkAxONMdXGmFnAB8AZjmPeMcbMNcb4\nsAKoPaMvIiIu4C/A1caYQmOM3xjzjTGmqg51uNsYU2aMWYT1y9V572+NMdONMQFjTEXUeWcCnxpj\nXjPGeI0xW40xC0REgIuAa40x24wxJcB9WIFFU/gvVrDRBStIOwO4MeqYx4wxG40xhcCXwHfGmB+M\nMZXAO8CoGq4/1Riz3H7904jz/jez++33tQI4Higwxkw1xviMMT8AbwGnRp9kjCkH3sX+fO0gbgjw\nnn2IFysgbGeM2W6MSdRFDbAJeNj+3N/AanU8TkS6A8cAl9jX8BpjvrDvv9UY85Yxptz+npgAHNT4\nt0OpnZcGb0q1Tj2ANcYYZwvZaqyWqqANjuflWMFetM5Y461+aUAd1kTdu0eCfdF6JbhfHlbLy3y7\nO7UI+Mguj2F3FQcnGoyrX9XBGPOrMWaVHWAuAv4GnBJ12EbH84o42/He06C6vP/NyfmZ9AH2Cb7P\n9nv9J6BbgnNfJRycnwlMt4M6sALfY4HVIvKFiOxbQx0KjTHGsR38vukFbDPGbI8+QUTaiMjTdrf+\nDqygO1caOLNXqV2BBm9KtU7rgF52y1lQb6CwntfZgjUeLO54uFr0irr3Ose2IbE1Ce63BSsgGmaM\nybW/2htj4gY9xphhjokGX9a38vEuCUgSrtNYZfZjG0eZM6iK996W1XB8vPPWAF843udc+328NEGd\nZgJ5IrInVhAX7DLFGPO9MeYkrBbM6VitjInk2y2sQcHvmzVARxGJ1w18PTAY2McY0w440C5vDZ+V\nUq2SBm9KtU7fYbXm3CQiaWKluDgBeL0+F7Fb7p4DJolIDxFxi8i+IpJRh9PvsFtFhmGN7Xqjjrd9\nBThcRE4TEY+IdBKRPe26PANMFpEuACKSLyJH1ec1OYlIuohkYv2iTxORzGDAKyLHiEhX+/kQ4A6s\n7sEWZYzZjBWEn2V/Hn8hMtjdCPQUkXRH2QLgD/bnMQA4v5bbfAAMEpGz7e+fNBH5nT0hIl6dvMC/\ngQexxkXOhND7+ycRaW8fs4Oax0t2Aa6y73cqsDvwH2PMeqzxhE/YExTSRCQYpOVgBfVF9vi4u2p5\nbUrt8jR4U6oVMsZUYwVrx2C1WD0BnGOM+bkBl7sBWAR8D2wDHqBu//e/wJoI8RnwD2PMJ3W5mTHm\nN6xutuvt+y0A9rB332xfc47dRfYpVqtLQ32C9Yt/P2CK/TwYFBwGLBSRMuA/wNtYY+xagwuxxt9t\nxRrA/41j3yystCIbRGSLXTYZqMYK7F4gapJINHvs2JFY4wnXYXXxPgDUFLS/ChwO/NseRxl0NlBg\nf16XYHW/JvId1iSXLVhj105x5LU7G2v83M9YY+OuscsfBrLsc+ZgdaUrpWogkcMTlFK7OhHpC6wC\n0qJ+iSuVkFjpYC4wxhzQ0nVRamenLW9KKaWUUilEgzeldkH2OKbSOF/NsgqAUkqphtNuU6WUUkqp\nFKItb0oppZRSKUSDN6WUUkqpFBK9zl/K6dy5s+nbt29LV0MppZRSqlbz58/fYoyJu7JMXSUteLOX\nMpmHtTzK8XayxTeAvkABcFpwaRQRuRUryaQfuMoY87FdPhp4Hivnz3+w1mOscVBe3759mTdvXrJe\nhlJKKaVUkxGR1Y29RjK7Ta8GfnJs3wJ8ZowZiJXk8xYAERmKlThyGHA0Vsbt4Bp2T2Ilrxxofx2d\nxPoppZRSSqW8pARvItITOA541lF8ElYmcOzHkx3lrxtjqowxq7Cyre8tIt2BdsaYOXZr24uOc5RS\nSimlFMlreXsYuInINe+62uvZgbU0S1f7eT7WIsVBa+2yfPt5dLlSSimllLI1OngTkeOBTcaY+YmO\nsVvSkpZQTkQuEpF5IjJv8+bNybqsUkoppVSrl4yWt/2BE0WkAHgdOFREXgY22l2h2I+b7OMLgV6O\n83vaZYX28+jyGMaYKcaYMcaYMXl5jZqwoZRSSimVUhodvBljbjXG9DTG9MWaiDDLGHMW8B5wrn3Y\nucC79vP3gNNFJENE+mFNTJhrd7HuEJGxIiLAOY5zlFJKKaUUTZvnbSIwTUTOB1YDpwEYY5aIyDRg\nKeADLjfG+O1zLiOcKmSG/aWUUkoppWwpv7bpmDFjjOZ5U0oppVQqEJH5xpgxjbmGLo+llFJKKZVC\nUn55LKWUSlUVlZWMfe1RRmd1YlbFFhB7h9hfzkn6Yj0XCW9f7OnLLX88EwBvwE+ay41SauenwZtS\nStVi1GMPUWQ/NxAOrEJBFgxq355P/nRhva57+efTKQ7ArIqtsTuNCQdzCTztK7CWrgGWFW1mcG6e\nBnBK7QI0eFNKqVr4az8EAvUfPzzlqNPYUl5Gt+ycep8bbXjHbo2+hlIqNWjwppRStVh45fVNcl2P\ny5WUwE0ptWvRCQtKKaWUUilEgzellFJKqRSiwZtSSimlVArR4E0ppZRSKoVo8KaUUkoplUI0eFNK\nKaWUSiEavCmllFJKpRAN3pRSSimlUogGb0oppZRSKUSDN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIq\nhejC9EoplWQby0vI8qTRLj2zSa7f75X7AYMA1j/BR4PY228dch57ds1vkvsrpVqWtrwppVSSZadl\nkOlOa7LrD/NkW08k8TED2ndqsvsrpVqWtrwppVSStU1Lb9Lrf/DHK5v0+kqp1k1b3pRSSimlUogG\nb0oppZRSKUSDN6WUUkqpFKJj3pRSrd7geyYDYIIFzhmWElu+4tZrm61uSinV3LTlTSmllFIqhWjL\nm1Kq1Vt2h7akKaVUkLa8KaWUUkqlEA3elFJKKaVSiAZvSimllFIpRIM3pZRSSqkUosGbUkoppVQK\n0eBNKaWUUiqFaPCmlFJKKZVCNHhTSimllEohGrwppZRSSqUQDd6UUkoppVKIBm9KKaWUUilEgzel\nlFJKqRTS6OBNRDJFZK6I/CgiS0Tkbru8o4jMFJEV9mMHxzm3ishKEVkmIkc5ykeLyCJ736MiIo2t\nn1JKKaXUziQZLW9VwKHGmD2APYGjRWQscAvwmTFmIPCZvY2IDAVOB4YBRwNPiIjbvtaTwIXAQPvr\n6CTUTymllFJqp9Ho4M1YSu3NNPvLACcBL9jlLwAn289PAl43xlQZY1YBK4G9RaQ70M4YM8cYY4AX\nHecopZRSSimSNOZNRNwisgDYBMw0xnwHdDXGrLcP2QB0tZ/nA2scp6+1y/Lt59HlSimllFLKlpTg\nzRjjN8bsCfTEakUbHrXfYLXGJYWIXCQi80Rk3ubNm5N1WaWUUkqpVi+ps02NMUXA51hj1TbaXaHY\nj5vswwqBXo7Tetplhfbz6PJ495lijBljjBmTl5eXzJeglFJKKdWqJWO2aZ6I5NrPs4AjgJ+B94Bz\n7cPOBd61n78HnC4iGSLSD2tiwly7i3WHiIy1Z5me4zhHKaWUUkoBniRcozvwgj1j1AVMM8Z8ICLf\nAtNE5HxgNXAagDFmiYhMA5YCPuByY4zfvtZlwPNAFjDD/lJKKaWUUjaxhqOlrjFjxph58+a1dDWU\nUkoppWolIvONMWMacw1dYUEppZRSKoVo8KaUUkoplUI0eFNKKaWUSiEavCmllFJKpRAN3pRSSiml\nUogGb0oppZRSKSQZed6UUqpRhtw1Obwh9lp6Et6OKAe+u+ESOmRlNVv9lFKqNdGWN6VUi9uzY6b1\nRCIeYgM4mwZuSqldmba8KaVa3OtXX9rSVVBKqZShLW9KKaWUUilEgzellFJKqRSiwZtSSimlVArR\n4E0ppZRSKoVo8KaUUkoplUI0eFNKKaWUSiGaKkQpperhiH8+xAqwc8+ZiFx0PYGvLr2hpaqmlNpF\naMubUkrVw4rgE2Ni9q1t1poopXZV2vKmlFL1UHDF9S1dBaXULk5b3pRSSimlUoi2vCmldhqby8to\n40mjbXp6vc/9eOlSLv3kI2tDrC5RE7W26n37HsQZY8YkoaZKKdVw2vKmlNppZLjdeFwN+7HWqw6L\n3Y/o2LFB11ZKqWTSljel1E6jXUZmg88d2q8fv15zXRJro5RSTUNb3pRSSimlUogGb0oppZRSKUSD\nN6WUUkqpFKLBm1JKKaVUCtHgTSmllFIqhWjwppRSSimVQjR4U0oppZRKIZrnTSml4uj/6EOElp6X\ncPmqK3VtU6VUy9KWN6WUqofv1q5u6SoopXZx2vKmlFJx/HqVtrAppVonbXlTSimllEohGrwppZRS\nSqUQ7TZVSrV6pVXVrNuxg0F5nRMe88DHn/Hs/xZakwyCEwzE+lp507XNUEullGoe2vKmlGr1sjPS\n6d+pY43H3HzUYQCIRJbPOO33TVUtpZRqEdryppRKCR5X7X9rrrhVW9iUUjs/bXlTSimllEohjQ7e\nRKSXiHwuIktFZImIXG2XdxSRmSKywn7s4DjnVhFZKSLLROQoR/loEVlk73tUJLoDRCmllFJq15aM\nljcfcL0xZigwFrhcRIYCtwCfGWMGAp/Z29j7TgeGAUcDT4iI277Wk8CFwED76+gk1E8ppZRSaqfR\n6ODNGLPeGPM/+3kJ8BOQD5wEvGAf9gJwsv38JOB1Y0yVMWYVsBLYW0S6A+2MMXOMMQZ40XGOUkop\npZQiyWPeRKQvMAr4DuhqjFlv79oAdLWf5wNrHKettcvy7efR5UoppZRSypa02aYikg28BVxjjNnh\nHK5mjDEiYhKeXP97XQRcBNC7d+9kXVYppWrU77GHHHnkTCiP3PT/+xN7du3eonVTSu06khK8iUga\nVuD2ijHmbbt4o4h0N8ast7tEN9nlhUAvx+k97bJC+3l0eQxjzBRgCsCYMWOSFhQqpVRNVl2p650q\npVpeo4M3e0bov4CfjDGTHLveA84FJtqP7zrKXxWRSUAPrIkJc40xfhHZISJjsbpdzwEea2z9lFLJ\nMeL6yaHnodYnu4F98YM151czxlBWVU12ZkaT1U8ppXYVyWh52x84G1gkIgvsstuwgrZpInI+sBo4\nDcAYs0REpgFLsWaqXm6M8dvnXQY8D2QBM+wvpVRrZQgvRVUDnz/A5h1lKRe8VXi9pLvduKMSBPd9\n/CHsEDZyKa6ox4KLb2iGWiqldjWNDt6MMV+R+Mf3YQnOmQBMiFM+Dxje2DoppZJv0UMNX70gzeOm\nX5eal7dqjTaXl9EhK4uc9BqCzhoCWK/fT5rbHX+nUko1kC6PpZRSCfRunxu3vOByHfumlGo5ujyW\nUkoppVQK0ZY3pdQu5daPP+b9pT/hB6oCgQRj1gzGue3oFo1JFQKx3ab2n8Xjevbimt8dwB553Vmw\naR192uVywvSXWF9RwtG9+jGwUzeWb9/CmC492K9HH4Z37kalz8sLP/2PPu07sK2ijDMHj+K3kiL+\nvXIRZdVVTF3xfcS9IxYRFINbIOAYjycCwUxNuWnpXLj7AVw0eP+Gvn21Kq6qYFNlGQPbd26yeyi1\nqxNrMYPUNWbMGDNv3ryWroZSKkVUer2UVlXhCwTwVlfzwmefMWTAAH5evZq5vxWwAqiygyNnANcJ\n2ApkAGd27kG3nj3p0r49vXNzWb11K5/M+ZIBPfowcuBAenfsiAC9O3YkPS0NlwgBY3CJsL2igtLq\narq0bYsLa1xcutuN2+0mmB/T6/fjEsEAHpcLYwxevx8DrNiyhTs/nUq5GMbSk6NGjWFNWRmuQICu\n7duze48elHi9rNm2jfXFxXiBQwYMYGN5Of1yc8nJzMTjatpOl+BrVUrFEpH5xpgxjbqGBm9KqboI\nBAzTv/6eu6Z/bQU2EGr9MY7Wqd8Bzz/Q8MkNSim1M0tG8KZj3pRSdbK1tMwK3IC4f/PZZd83X5WU\nUmqXpGPelFJ1ktcuu1HpQpRSSiWHBm9KqTop2lHGuLunAHG6TB3bzgH+wX2f33w+XXPbNU9FU9DW\n0nI6Zbdp6WoopVKEdpsqpepkY3FJg8/dtKPh5+4KSiqqWroKSqkUohMWlFJKKaWaiU5YUEoppZTa\nxWjwppRSSimVQjR4U0oppZRKIRq8KaWUUkqlEE0VolQKmD57Afe/NAu/Pb/IxF1v0y4I/knmXAVB\nYN/d83niytOarI7ri0vwuFzk5bSt0/G73zEZiJ9qpHuGh89vvTL5lWykbSXldMzRlB5KqZalLW9K\npYCfV28OBW4NtXzNpuRUJoG87LZ0bJuVlGutr/Ix+O7JDL57co3HlVVXU1rVPGk2AgGjKT2UUq2C\npgpRSrWoLxcv5sJ/zwwXRK2buuyuxKs67KisJGAgNyuzSeuomsbby77k0bXTARCxfhe5Ih4NLnGU\nES6Lfjyl89F8tvVLdlCCAOf1PI3jeh/azK9IqdolI1WIdpsqpVrUuOHD+Xn48Aad2y5Tg7ZU9v6G\nb6JKTNRj9HNHkUQWfbb1K4opBXvXf7d8o8Gb2mlp8KaUqlV5tZcqn48ObZLTLRo0/M7J+IIbjjFv\nzpa3Ww4dy5/H7ZvU+ybLhrISsjxptM+IH0T2nfKg9ST0mkxk0GE/D7Y6Ffz55iara2s09aBd6/Uq\nlSwavCmlWkxdBm28+PkcJs6ewz7Avef+H9e98BZv3pG4K7U5tc/IxC3NM3S40uel0u8jN6PmAHrk\nGxMoc7yzIuHg8NGRJ3HM4JFNWk+lVNPTMW9KqVZlyN2TI4M650L3dlGmwMLbr+W3bUVkpaeRl123\nGa6prNxXTbnPS+fMml/rgDcmYBzdj1bwZm2Ncuexf+++/K+wkDm+QtoIVAA9MVw66CgeX/ERRWK9\n3ZVirBltduAnocfgdYP74ejMQfRs35lL9joGVzMFs0qlqmSMedPgTSmldlLbq8op8VbSO7sjczeu\n4qwvXwaMo7sWwFjxsUQGfMH9wYkD4ujuFTGOCQbhc98+4Hr65HRq+hemmtwXBQMAcBEAwG1/xm6C\nn3sANwAGF/kI23CJmxG9fmqB2qYWnbCglFIqoQ4ZbeiQYeWl27trP5afckcL10jtHKwAzo/BDQQo\nDAV1qnlo8KaUUkqpCAf1XdnSVVA10OBNKaWS7O7ZHzN12UJrI2L2rAmN4Vt9/k0tVj9VszLvZjI9\nubglraWrEqHSu4NfSz5hzpaHIdSdGcDqugQI4Barq9P6NgsgAm5gz5z76d/l6JaqukoyDd6UUk2i\n2u/ntw2bOfHx18KFAnNuuYh2OW2pqPYiImSmJf4xVFFRwZ4PPhU612CNsTq6fy+O2WMYV07/CIhc\nYsuZZuTy343k2sMOS/ZLq9VBPfqGgzcniS1SrY9L3Egr/LDE5cLlygLSgcp4R5B4DndGk9VLNT+d\nsKCUSrqAMSzdsIkFPxdw30xHIlaB5845mbGD+7GttBwRoUMNS2qd/Ngz/LS9NHRu6KeVWEFcwN50\nruHqDN4QWH7TNbik9f0iVkrtmnS2KRq8KbUrunDqi3xRuDWcQsSRTmTZLddgjMHtSu2UFcYYbvni\nfd74balVIJG524hI3UHo9f96xm0x1yr3VVPh89KpljQjSqmmp7NNldqJPPLSTF6ZucjaiNOCZJyN\nR85tkdCxQ7tk8PK9lzVTjVvOF4VbYwvtJZO2lpVT7feT375ds9crmUSELHdyxly5EG19VGonosGb\nUq3Exu0ljb7Glu1VSahJ67f89taxwkJTGz/uGMaPO6bR18n0pJHpaV2D71XTqvQuI8MzEGmmpMnV\n1eUs2zgQCOeCC+WBs/9ucNvHuuwvazKFtbNH/rpmqefOQoM3pVqJ+676A/e1dCXUTunnTWs58b9T\nwwVRXa5LTr4dT4p3M6tIae5u7Khcy2fr/ghU4KYvSDWw1k68a3DZyZfdwUTNBBxBVQDoyohOj9Ax\nZ3St90tPt/IJGmM3gocaeiMnUTg6DBzyG/FKd00avKkWZ4zB7w/g8bhrP9hWUVFNdbUPEcHjcfHa\nq1/z2+qNjNyjN0uWrmX2F79ijWqHNA9U+yH4Y6N3z7ZccelR3HjH23bXo8QsFv7Sk+fRu3eX5L3I\nnVx5tZd0txuPu+YA4JOFP3H1NGuGaMR4Nce283HBbVeQmVZ7i5HX72djWRk92yWnq7T/Iw/Fr1tE\nmYmpb/jRxJTfMHpfrhh9QFLqV1+D8hL/ctwT0cBtJ+R2tWfxtr/jpxIX4KfADsiCgVQAZ2Bl7PQi\nxg7krMcNLNl6KmyNXmHB4BKDmyvZq/eNoXuO6FVIlW8TYMjwdG2ul7pL0gkLqsWVllSyvaiMXr3q\nvqzOpzMXseqXzbRpk447zcUzT8+2djjGfwEYsQK4EJGIwe3GLsNxDgI9e7bnlacvbuAr2nVUVVUz\n+vbHCbgAA5eO6oOnXSfWFhUx4U8nxRx//rNv8E2B3T1SQ/AW/AwnHH8w2yvLqVq/nhF9+3LQmMgx\nvsGfXwFjKKqqpFNWm6S8rpqCt3D96h68uYGHDz6eEwbtnpT6RSvzVuNxufAFAvx9/ies2L6Z9SVF\nrKHMqkLM5IaodUqxHwXmHXUTbdsk532syYGf3QCAi8i1U12hx4D9aNXNJZDnac9WX1HomFxXG3LS\n2zKu8yj+ve4jPOLm9X0fqdP6qmvLN5Cb3o5sT9O/1tbGmABl1T+SnTEq4THxl8cyjuDNOu53vX9r\n4trufHS2KRq8KdWSJrz5Ka99tyhuALZkYvxxaT+t28RuXTqRbre0DrlzcuS5wedxJm0suyPymoVF\nO/C4XHRtl934F5PCNleUkuH2UOH3ctbMlyis2EZ11Fqk1mOwIHHw9saBf2Fkp95NXueJX7zKR77/\nAdANYaP4ASt4c9l1DK65Khh6Sg7jR13Bz9sK+G3rGvJz8xnSuS9p7jRy09uxrGg5GZ50hnYYUqf7\n+40fFy5EJ3KoZqbBGxq8KaWUUo1RXFzM3G0Tgbcd3aMAV+DiYWtbIJ/P6d27twa8jaSpQpRSqgmM\nfuQhthOZ/Ncp2PV+VJfuPH3qmc1eP4Cy6mrapqe3yL3VzmXutrEEU14HTLCrOgA86jjKUMjBdPHN\nwuNqR5q77sNcVPJp8KaUahX8fj9D77F+WQg1j4ULidO1CjDvmkvJzkhvcKLe7TXsM44nH29a36Dr\nO22rKqdjRv3GXX2xcAHnLpiBuE1Mkt6hWbl8cPLOn+tPJc8R/X5q6SqoetLgTSmV0Isff8mDH0cN\nS4gTMC1+sOF51xYvX84pr3wYe/1oxjE3TsJlEcGcAVywo7KKrDRPnYK38movq7cXsXvXvFDZr1df\nX89X0XDbGxC8vfzLIsQdf8jLz5VFyaiWUqoVS0rwJiLPAccDm4wxw+2yjsAbQF+gADjNGLPd3ncr\ncD7gB64yxnxsl48GngeygP8AV5tUH5SnVAr7clnTzyRbUlQRCtacMVkEO2ozcYbaCNANWA+MznZz\n/xln0KtD+zrfv016GoPyWq4LaLd2net9zjO/P7sJatL63fPlE8wxPzlmpDofwxMcrJA9gMvOAiRi\nwrNWcc5mdSSQFYMQQELXsboP7xv+GLnpHRpc51Vlv9CnTb86zYBVqq6SMmFBRA4ESoEXHcHb34Ft\nxpiJInIL0MEYc7OIDAVeA/YGegCfAoOMMX4RmQtcBXyHFbw9aoyZUdO9dcKCUk1n/fYdpLnddG4X\nuSbm8BsiZ4jW2sUpMH/85WQlGKO1eO1GcrLS6dPJ+iX5l+de4+s1G8LXdKZ2AZbfsWussKAinfXf\nG9lOZYLgLRzEWWGS4WAZy9EDDmJD8UY65XTm84LZtKMdLoEKyiiggLbSlqHpQ+jk6sjzVVMAEAy3\n9r+XKl8Fg7s0Lr1LwAQ0cFMRWtVsUxHpC3zgCN6WAQcbY9aLSHdgtjFmsN3qhjHmfvu4j4HxWK1z\nnxtjhtibll1WAAAgAElEQVTlZ9jn15hsS4M3pZrOyOsmx20Fix7Ib4L9mRKnHOjX1sOHt1+Z8D7V\nPh/pnvp1BKzZvJnDprwcd8zbiltbPrgbOeVBdtjPo+u4+oIb45/UQrwBH2W+SnLTk59y5ZM18xn/\n0zQM4dYvq1XLDrjsvGEiQhfgjUMfSnodlGpNWvts067GmOBo3g1AMN1yPjDHcdxau8xrP48uV0q1\nQgIscox18wcCbCoupXuH+q9yUN/ALRU8ftBxnP2FNZZP4k22aIRtFeWMefsRKwt+VOAqdusTArni\nprsri2XGWjd3xal3xL2eAXwm0OD6VPi8uETIcMd+jmW+qvhjGONo/Oq+qjb+gJflW6ewqXQeZXwX\nXn80Ihkv9lJZ4W7mrq7xDOp9TstUWsVolp+YxhgjwSyRSSAiFwEXAfTu3fTJJJXaVS2cZAVnh/71\ncTZXVEfsM8DwG8Pdpx1d8N8EiXmLyirYWlrObl2TN7asV14ey//a8i1siYwbPJSCwUOb5NrzCwsS\nBESRpcX4KQ6UUltarnSXh84ZDV9arNRXRZrLHTd4+32//fh9v/0afO1ovoDfWntTIpfT+/KX73l4\n479CDb/BFRryJY8b97iC7lndk1aHVOYPeKnwraeKDRHlwYZzY4j7/VJpVjZL/VTdNGXwtlFEuju6\nTTfZ5YVAL8dxPe2yQvt5dHkMY8wUYApY3abJrrhSKtKsCZc36vzctlnkts1KUm3UEQOGsmpA0wSG\nDZGX2XwrXOzwlSAIHdIjJ6U8svE5IByEWPnKDOvMZt5d+wmXDDy32erYWlX5ilm+4W0Kq9/HhRUE\n+zG4sdrejtSUISmjKYO394BzgYn247uO8ldFZBLWhIWBwFx7wsIOERmLNWHhHOCxJqyfUiltzeYi\neuXl1vu8N79ewL2vfR47VizO5APnMe3Thc/vuYK0tOT+2PhowY9c886scIFEzio9f+8R3HTM4Um9\nZ1PzBQJ4A36yPGkx+9aX7aB727q1cl024w3+s3mVteFY0mrVWbfW7fyZL/PJ9oJalseCUW278vpR\nTbuW7/4zb8Ya2xY1yQDilwcnHzjWNs0hg9fHPRB3AsCb+z3ZpPVv7YwxvPaLlWzXapMM2O/ZBHz4\n8PMxGdIJL28DAQJ20Oa0btNienQZ3txVVw2QrFQhrwEHA51FZC1wF1bQNk1EzgdWA6cBGGOWiMg0\nYCngAy43xvjtS11GOFXIDPtLqV3emg3b+MNtz0cEUyfsP5jj9hvJxQ+9GXfQPgL/eyq2WzG/ff1a\nSdqmgd8H3dq3w+OJ/nHfMCs2bOTEx18F4i/+LsG0IALPfb8o5YK3Cr+XHdUV5Htig+v6jC0r8VU1\nqh6fbC+IUxrbWbGgbGOj7lM31n0TdcvVJHh4CZWc8OXVUYFdZKoQMLhD5fDYnhPoktW47vqACbC1\nejt5Ga13VQErcLPeY78dwBkToERutReThyrg0Pz/kJPRM+b8Ct9m/KZx32+q+SQleDPGnJFg12EJ\njp8ATIhTPg/QsF+pKCt+2xTzK3fu4gJ6dulY72vtO3wAC/5Z+1ix4rJKfH4/naLShCRDSWUdf0kk\nyO1WH36/n8GTHgm/f3GC3F+uuy7mvIAxlFVXk5ORUe977igtZ/9pz4auHw6urYkED+93JL8fumfC\n832BAB6Xi5dOaNwA8ZWn3d6o85Pp6yP+3iTX/f3X4S79eEFhWgNX2XASBHcrT/dx5oDvGnV+liev\n9oNUq7HzTfFSaid06N5DmLf3kLj7zj9+3ya5Z/u2mQAsK9zMra98yIoN2yPzrSXoao1+/Nf5f2Ds\ngD4R196rb2/euuRMBnbrTJo7Oa15iZT7fAn3hQdpm5jFtr1+P1vKyxsUvO0/7V817r/m208SBm+V\nPi+/Fm9naKcuXDXjDd6L020ab7uXpPHFGYlTkJT5qthSWUqf7MStR0Onjw89j+7GjO56nTDs9xzf\nb6+E12pp+ZLHw/veE9reXLUZj3jokN6Bc+eej7V2p7ET+VpdjC6ENuRQKdYqFa7QIu2B0PaYduM4\ne7fGjQFtKq+uPBErXXVk12mw5c0tgVACY4AT+i9OeK1S71rSXNlkuOs/NEM1vaTleWspmudNqaYV\nCBgCAT9/e/JZFhZU8AuEWpNGt4X55YmDt5Hdc3np8nPidrdW+/ykJ6kbtr78gUCD1z1tiN82b2bc\n9OcZJXD+gUdSsqOS4pIyjhyyO1d/9BJdyGAWlRziyuXsgw/isS8+4AfjDwVoobXBSBy8vXjA70nP\nSmfvvN3i1iFgAlT5fWR5Ei9mf9+37/Lyxh8AK2VEgPjBmwjMOfJ2MtPqH9iqplNWVsK76w+1gzUT\nmnEbL3jbXSYxoN+RCa8VMD4EF9LKWxxTUatK0ttSNHhTKvUNuWtyeCPO6gzZAvOTuKrCoi0bGdSh\nE2kuN676DsCyLdy4kfcX/8gXyxZy26HH88/PP2CeXV8gHHhFd5s6fhcG87+J41icx4aqFh28xQvm\nrPL4+00o6Fp+Svxcb8m2omQNvdt0JcMdGSwuK1lNv7b5pLvid/wcMftawuPyIicshJe2inx0i+Ht\n/Z+IuM4fv70IsFZLcCYFdgMv7vNso19fqgmYasq9BWSnD2Jbyc/M2fJ/YAd5oVY6rPfLJbBH+3/T\nqcMeLVnlnVZrT9KrlEoBj02fzbOzrNaWYFfojw/HBkrFZZXkZGXgskeJ/7h6PcN7dcXtclFeWc3v\n7no8fLAjoFhw71WMvPPRcBwSFZzFm7AQreHpY+Mb0dnKGb5s6xZ65OSQk16/FqSn5n3HxO++tDYE\nzpv1QeL6S9SGSd4KC8YYfCbA/d98xPNrfrRvFiews13eq/m6OQfm9IpbPjinT9zyoJkHT65xfzw7\nvLHpffPoxGa2xrwHAxhQ7+vvDFySTpbH+kw6ZA+GLdb3SvBvidCj/X5p4Na6afCm1C7u22VrYsoq\nKirJysqMKCupqKRNRhoul/V3+ohe3UKBXJtMR+uKIxhbeO9VeANxWvcTBDpv/uUPDO9T8y/3ZBrc\nqf6LwgNcMmYfLhmzT5JrU38iQpq4ufOA47iT45rlnusrtpLpTqdDek7MvrM+msQysyVivFz02DmA\ni3sfSaeMtjz4y1sEW9kkbooQeHWfu8jLqnlh+HZp4boEjJ8Kfyn/3Pf+hr7EpCgu38bkX/+M9frC\n3ZVuiUyTIsBNQ5snsYLbZeVaFBGO7Zd4vJtq/TR4U6oVWrutmJ4d29d+YBK8evPZABQVFXHQXVMx\nwD63PhkRhE085XCO3W8EPn+4DSwYuAGs2rwtfMHgLABgxO2PWpewW/T6dczhqqPG8fGiZcxY+ktM\nXU557m0QePOC0xjeU1fHa43yMnITdjVX4q3TNar81RzX93A7eItlXd8K4PKyOjDh+6l8VfFDqNs0\n3BUKwUH5zi7WZ/YaT1tP8/z/SaS0envCfQ1Jl6KUkwZvSrVCTT0DM54zJr1uPXEEX8HNm9/8lGP3\nG8HSNRsZ0adbzMzMDE/dBjV3apNJ27QM2repebWFtvXsxmxK/R6Ls1C6wKorrq/xvNLqarZWlNOn\nfcvM1hs77QG22MFUTUl6HxpxMuu8xVw0dFydrutxxX5vjp5xGxAxnC/EGOHgtAFMPPSCmH2zD/sH\nW6q2k+nOINvTJmLfjupK2qVbrb/fVizAmZ/Ob6yxa0icVl2EKn/LR0b5ubsxPvfd2g9UqgE0eFOq\nFepaz0S6yTDjb5fUeszIvvHXh+zRIZclD8SfUDDstsnWr10D89ZuZt5L78RdpP3H2y4nIyP+TMjN\nJWXk5YTzzQ26N7ymavAxOHbOee1z9xjGHccknlEXVFJVhSBkx7n/CE8Gi6KS5SZaUdk5i7VNWhpu\nsep80TMP8zHeiIkIFw8YwW0HHVNr3RpqS8JWsMiA5/pF7yDApJ8/CwV31uSG6FQhAUBYeMI91Nca\n3+aYsgVblnPNj0+HtiWqu9QfENLd/ojJBkHnuQ5lv8FjeXr5EyxlOwaDS4TR9ORwz+F0a9Ol3nUM\ncqaNKSxZzYLC75lb/jVFsj54RKhr1x1s8cNKNyICd+7+Im3Smv//r9q1aPCmlKrVT6sLOe2RadaG\nc6JBLXnelky8NsEC6rEqA34StbeVV9etOy5aibdu5wWMQRLU9L1Lr6jzNRZu2cCoLj0Aq+svKy2N\ndcXFVuAGdn+Z9fTplYuaNHira4LeMW//jVLHa4/XnSdicIvhmq4Hxb3G/GPuq3O9iqvK+MNX4/Ha\nTbyumPfdKk9zBxzrlAbTXliB8YtmFi/9PAu3yw74MAQMzJc1zPdN5fKNPg7ttl+N9agOeCms2EC/\ntuGJFduri6kKVNMt00pY+/a611hevghrzJo9GcR6R4gOgq1ST50Dty2Vy8hN74vHVXsrc5l3Gy//\nehIRq0fY03jcYmjLAZwy8MFar1NevYHP1h4JoXPDqUQEGNttJu2yYldfUK2PpgpRStVqxHU1p/KI\nTtobfPzqrxfSIafhrRD/W7uOPfO715jOY37BGk5/9c2I+664tW5pRSp9XjI9aVw97Q3eLyyMSfMR\nbyZs9GoJ8RITf/B/Z7NbbgfcLjfpSeoCL/NWUR3w0SEjOStevLVyPrct/BDnslLBdCIQbnnLEZhz\n4t1JuSdY+eZunfc83+5YCoTTf0S3vDknLrgEZhz4CAB3fPkoP5jlAHbw5kwdAmPTh3HjmLol0fUF\n/HG7gXcm1b6NpHus2dWBgI8PC/YifvDWgyP6zozI6/ZlwQDHscGUIvYEDAnnjxO79TGcjmU0Q3u9\n1/QvLkVpqhClVLNYNCl5OdbqY1R+95jxddFCgZvDwImTWXj9FWSlRS4Mv2lHCftOeQawAjMT7BJE\nwo0pzttFb9fR0M5dqPB6WVtcxMCOyVkP0yXJXaKpfVpm7QcByR727xIXD/zuL/U6xxvwUuorJ9vT\nhoN67c2CNcsde03EY2Z1m5jzE9nZAzdjDAFTHdp2uTyc0H9hM9w5tptcJZcGb0rtwva4KrJF7aUL\nDmfkiBGhIq/PD9J8EyiGjA/Xx8Rp1Vp021V4XK6Ilrh4HVi5QIYn9sdbl3Y5kanQjIRaz/46dizn\n71tzV5sxhmq/P+61nYoqK9haWUGfdu3pO+XBWlvrRExkkOjYX3DOzQBkedKpeZpH/RzeZxjL+gxr\n0Lk7vOW09WRGBJP+gJ9jP7mTbcbEtKIFW/EyBM7seSAd03N4tOB9AD49aALpCVZ9qKysZNmyZbxU\n/DJLqIzJRRbPbOZS9s0Gft/pDwwePLher2vltmX8/dd7Yxe+NwHH2LtgwmB4cI/XcLXiFQhEhMy0\n+Pn26mJc35Wh54FAgMLC/7IucBcuWQ0ECNjd3tlMYmDv0wDw+dbg8fSitHwJhVuPsOpht+q6CX/7\nu8Aus95kF1fRLf+WBtd1V6PBm1Iq5C/Pfsq8R8LBW1FZBSJC5yZYnD5a3CEcUS1fX/y8nH1260e7\nzHCr0fLb6tcq+Mv1sYvQB81bX8jobj3itvYFZ53GC8QKLrsh4tjczCzaZWTiEmHWiX/ilvdf5Tv7\n+LEC4wbvw9erfmZM797M/HUR++UP5bl1S2Pu+eHBpyesa/9X7rNXZ7AL7Do5t7uIh81448w2heX/\n1/CVFsp8lWS60yOCN2/Az/a44wbDZV7gx6ICOmXkhPaVV1fGBG+HfX6dPQHAucJCbJhupdyILjfM\nZzXztkzmwuw/cVR+3WbRAmyojN9iFLDHBkRPnAgEArjcrTd4S6bNpe+yLnAdYAgYq9vU2O97OdcD\nVvAmEvxDz/pTwxgwIqEu1sSS00K9q9Axb0qpuEZeNzkUPEX8lIgzYQGBxX+vWxBljGFraTnGBeVe\nL31yk5tKY31REeOemhqqWzeBDXbgFD1W76iuXfho06bQdq1j3gxMOe5ELvzoPYLvSrbLxeJLEweE\nTaXfK9YkgYg4U+IvjxUvePvPQeczoHOPpNXHG/CzumQbE+e+xkK/NTMz2FIloQCM0HZoFqs95s45\nu9UYe8F4CY95u5hDGDdsHLm5ubjr2BLsnDna1D5a/DqzA9PsICWARwIEcOEOJeQNMFKO5uRhiSfA\nTP7pcOtYCRBetsp6/ZcN/rxpX4BqNjrmbRdljKGitJLKikq2biziqkMfCO90Ccf8ZR/6D+rJb4Vb\nef/x/9rl1l+HH655BFcSFuQ2xhDwB3C30MLiqhk04u+6NduL6JnbPu4vTmOgvMpL7865cVvbhtw9\nOW6wGHxcVssap+OemmrfyDpnQw3j1p446yz6T5pU53Ftjx91PIf27c/rJ57GLxs2MG/BAh7885/Z\nUFpCm7R02mU0X366VX+6rdnuFW3PD4MzWcNBFoTj38iP3WoZk+CjHcAFAyvnoRlYrXPOiRNBJx94\ncr3r2ZDA7fL5f8aPF2e3qdsetP/QyBdiWgl9AR9VgUpmB6ZFlJuIV2adv9h8xMkkDt5cJH8pOLVz\n0pa3FFS0ZQdfvPM9vyxew8w3v8HYKahCs4SCzfjOH1x2wDZ8XF8efL3m5KJ1sWNbKaVF5fTo3/B8\nSq1NIGAiVg0I8nr9lJRV0jE3tutw2off88hzX1gboRYpCW2HWm7sj+Tm8/bnkLF70L59MkcvtZxh\nN8bmW4PwULJ4KUScM1P3ys/jlUvOirjmfndPZquzIOpcITKAu+O9D3l98fJwK2EogoCVN19LwBh+\n3bqNAZ3D3TK7PTTJqmecuociEGNC12orUAasujL+/52y6mrS3MmbWbqzOubTv1KCNYA+OA7q9b1u\nIa99LsXeMjpnJJ4esaVqG++vnsXbG78g+JdF5Ng0g3PZKZc9k9Il8NrYKXWu4yXzzya4YHt08DZx\n2LO0jZrtWx2ootxXTm56zUt4KRWUjJY3Dd6UAnw+P8sKNjFsQGwSWq/XT3FpBZ07xKa8eHX6HB5/\n6StrI17w5igPjbYW+PbVxgfQLWHE9Vaw5gzAIn6C2K8xbt634Pvj2H7kj8dy5PDYQeXlVdWMmvh4\nbFBIeHv57VYA9+OqVZzy2vSEwRtAcWUl7e1xcl6vlyGPPhZZF8fjeYMHceexx1NUWYHH5SY7Pf5g\n+ub2646t5GZk0THDmk0Z023qHPPm6CadddTl9G6f+oFFwATw+Xz8a9k0Pto+hwCJgzfr47fGZV3b\n/XzG9m35dWiVCtLgDQ3eVMP96fxHWbuuMlzgDDBc4QBs5r+vTpj5f1fz4sezefCTH2Lyul18wB5c\nctxBpHncDLslasaofezS+2ofExecbeoMqvLSPWz2+cLl9r5g8LarsBLVhluGN5SUsN/7j4UPEOgl\nsB1DmVgtW7+XPjx42tlNWq/RM/5KqCUsWBVH3rVPD7mD7PQ2rCrdQH5WJyp81Zzw1XjHOcFxcdb2\n54dOpq4mz32W/3p/ILKlLJhzDC7rfB4HDRzb2JdYJ+MXnkclO0ID84Mtf24x1uQLoL+M4qxh9V+h\nQu1cdMybSgnGGI7ea3xkYXCeOM6WKusxPcvNIUcN5/rbTmrSehU6A7cabC+uoFuXXSN4215WQVW1\nj7aZ6eRkxY7fOueog+nVuQtXvvZxRPlTX/3IU1//GNGKNeXck9l/9351vve1U1+NW77Z6+PnO64J\njV9aV7wDj9vFoAmxgR5S9wS9jXXAc0+ytqIsdF9nHVZdfD0/b93C7p3zkna/6ETF3XJy+PXM21hW\nvIFebTvSJkG6jYYa9u5d9n2dSXQjJ0C4oidCRBmb1ofsdKulMD+rE+nuNNLdaXGPFWBfBtarjlbg\nFl/AwMdbPm+24E3iruwayUX8165UfWnwpppczKDhGn7GdezmYd8DRnDwEcObtlLA7Bk3Ncl173po\nGjO/WxPaNgLfvH5do2e9FZdU0D6n5rFyH367mDuen2ltRI0vC5b98Hji4Kba5yfN4yK9hoko60tK\n6lTfwqLiuOXj3/yENxYsiZy1Gqynk2P7lrc+5IFTjgega042IsLcay5i74enhPK8pQlcsMfQOtUt\nGa4e9Ttu/GZ2TL3bYX3PH/PW81ZBxOusIc+b81j73+Aw1oJzEue/GtCuS8LkvZsrysjLalial7Fk\nModKznXvzYv+uRH7rBQdVoDkksTLY32xfjH7f3IL1uuODALDw0uFE7vux3XD/6/edXxn/8frfGxJ\nZSmX/XgNRLSMhVvr3GL9aJq8xz8Rge3eHXTN6IrHFf/X5A0/nmo/c65t6nxtLu4Z8U69X5NSdaHB\nm2oWH/9wd0tXodk4A7cgn99PWi2JXWuzvbi81uCtY7tsQtFMHAbY8/LJIDB38pV4/QHaZoZbbLq2\nr30pqzMP3oczD274GKJz9t/TCt7ieOS4/Tl41F64XJIwMbAvECDD4yG3bVuW/zU2EH174WKqK8q5\nffbXVoE40oRATOD09AnHc92HH1AKjBBYBWQK7IbhO4EPTj2Tod0jx0IGjOHoYSM4dVT8ng9fwDFn\n0ARXcmhc8J5IdOD28PxZPLbyG+vWAbAWEbDGwrUTmH9K3fK7/eukW0PPd/9Q2BTYxMPyKxD8g8xw\ntnSiP/0YM+M2DIZRCAuDQWpEkt7w32zBwC/4CIb3N33D+7Osz+vc3odz3oBjG/BO1Cw77rJi1utw\nOz4at8sDGDqld0wYuDnPTSzAHYtOslOFBOzXH8AtcNvQDxv9x9xzy4MJpa11Z4PLjFlLXgXshLgB\nOxGuta9fxgWM6lm3tXqjVfuLqQ4Uk53Wu1H1VsmhY95UiDGGKRPfZvoz31oFzp+89g+aGcuttCTV\nVV7SM8JdABvXF9G1e93ydS1bWshV5zwTvm9Ut2nwp/zUNy4lv0/yup12FXtdEn/MWfT2O7edgx9D\nv24dcSchfUxT8vr9VFVWstcke9Zg1Ou6ePhgrj/J+oU/4sFHqQj4wycnytnmeIxtoQy2fVllq66K\nnGBS6fOyqaKM3jk1f8+XVFWxrrSEI9+205c48q857zf7D+fTL7cTizYWcsJHL8ceG6pvuJty1Vm3\nEo/X52PIWxMjylz2GqD/PexyunfsWGOdV5Vspnd2p1BQ+Pj3H/H0hm8i7h1+HkwVYs/stCsc2a1a\nc563Qa6u/GI2hNLGRK9X+sY+d9MxKzwLdVXpOvq2DS+b9vuvLyfRmLfgGpzPjJ5Edh0WjF9fsZE2\nnizap7Wr9diaeP1V3LP0NAzEDd5uGPA2GRl1W54skeeW74ex/ybwiJVHzkUvRArs/HCZuKTcuqc9\nm+fY/G/IzKz/TPdfNz3M+nJrbVlPcAxfsMUSexQM+ezRe06jXtOuQicsoMFbMm1ev51z9p8QLogI\n3gAkFLytXLyW/kN7hHLGbd5YTF7Xuq2CuHrVJi469YnQtnFc37qv9TB12mXk9+7c8BekdgrGGBau\n28hpz72WsPXMBBtBJPy14paGjX078ZFJLCYc8L197EmMGjAAgLOfe4avynfYQV1kV2fwseDSyNUW\n6qPS62XIq5PCBc6M/o7uvT/0HMyDB/+h1uv5AwF8JkCGu+6tvsXV5bRPD68PWlRWyoGz/k508Bb8\nb2sFhs7JB45jsAI5Z/Dm7Fp8b9xdVPu9/PHbe6OCtzjpP+zWu+6uTjx7wF1x637qN5eG6xJKFRIZ\nDLoi9odbB09P/yNveV+NODa4/4m9XrFXFWjeP3L8xsvTy63EvW7HAvEALrL5y6CPmqUeZWUb+XHL\nWLsewc81EGrRcwNd05+hW7ejm6U+qU6DNzR4q011lRcgopWsvq4763F+mrsaxwAd69ElEa1mw8fm\n849/XdaI2ipVsyH3TLZ+hQUDpmBqEvsf47IW7Am2yly93++48sADQuev2V5MhzaZZEcl062srmbo\nE/8MF0S11nUUmH/l9fT750OhJYEI1iNhi15kcFdw0Y31fbmNUli+nQyXh86ZObUeu/s7wWEN4eW1\nnEHW2+Mu5ZSvnePLjN31aQU3Pxw3gYf+N53XN86NOjdynFs/TwdePTQ8fs8b8GEwHDXbHhdHuLUu\nGLx5JBD6484FXNnvdI7uFbkGbamvFMHFeXOvp27BWyAiKAx3nQbsVrvI4O2KvjfRJiObXm364Jbm\nG21U6S/iuZXWxK3Y4A3+MuirZquLSh6dbapqVVZSibikUcHbT3N/C7dq1GDxnMIG30OpRIwx+I3B\n43Lx7Q2XsM9DTzl22o/OIMpF6Pv1kW+/55Fvvw+NexNg5nlnk50X2R2/vrTMSm2foGFlm/246orW\nl59vwda1DO/QA09U13f3rMiW8LM+nsrckrX2+xQAxG49Cwcq8YZh9QIGdujGLX2PYGKBNRnG8fcb\nAKNnWKs9xL59wpyj7k9Y97Qax5RZ55/T8RjOGFHzGDg3bkSEf+/3ZI3Hnf3dBaHrhhnHt46LKWNe\nqKVOzSfTnctlg79o0LmLVr3Kz4EHCXZtArgFTuz3Az5TRpqr9m7k5mQCJSAeROrWrVu1vn/oebCL\n34UL6bqs2ZZEa0na8qbqpGRHBRkZHtIz0vjq0wVMuPINIDgmSBw/zeGZd6/iwpPt/FNit86JsO8h\ng/j2i+Wh8txOWRRtrYgZ8/b06xfRr3+35ntxKqGR10UtVQUsmpS4O7K0sopNxaX071rzItNzflnF\nn5+fDoRbt4Z3yODNa2Nbbksqq9hUWsZunTtS7fcz/P5Hwzsd3aZdstL4+torqPb7GfqPRyMv4pi0\n8OaZf2RUfn7kPaqqqPb76dSmDbuCn4rXMSCnK2mu8KSQ3d8ZH3oeTAfiAhaddHeofI8P7rD3B5Ph\nmsjUIaHzw61a3xw5oc7djT/tWMWgnD4RkzBm/TqPB9e+aF/fuu79Q65gZJfY5M5NqcS7lUx3W9Jc\njRurdv/SYwkHVIFQy59VFmx1NIzO/AsH9I1cfcRvvJSXVvLv9ccC1rhOt93C2IdTWSdvWOfbeeWi\n10h1C4xpN5XsnGzape8WXpUngS8LBkBUi58b2Lv3L7WeW18msBVIQ1x1G2+YKHgjbymuegwTaAna\n8mAHs2IAACAASURBVKaaRcHKjbjcLrrYY9rWr9tR4/EXnvQoEX/C238gfP/ViojjSkvi51kr3l63\n/Guq4Zau3cjAbp1JS5ASZOS1jkSpUX/EBldZWPRQbBCXnZlBRlrtP1amzpwdU7a4qCrusWMedIyP\ndNRpTG42r15xYczx6W53aGWFusqpZU1SfyDAGf+awveVZRGTG6YeeCSHjBhRr3u1Bru3r9uC9NEN\nGAuO+xubKkvommX9gg2YAAFj8LgatizYwZ/dgHPyA1hdlmd1OZQ/DzsBgEP7j+HQ/o36PZcUHlc6\nLknG8mcerBVca9a9Xb+Ysm2VK/h6/ePgaC0NWsO/6cQBFPFl1H/Z8NZJ/RPnxYunt/sxfvNfHlUq\nSQ/cAMRV8x980TK6/5r0OqQSbXlTTeLokfbC1Y5WtY8W/K3lKqQi+PwBPO7EP4Bvf/YD3ltiB9tC\nROtbpsAr153OoPzYpcT2veMRdnjDaTKCrWpL778WYwwrN25lYLfaJ6H4AwGG3vNI7MQEwtvPnnwU\nBw638roNvN8xw9bev7KGCQvbKyrITk+Pm47k+4IC/vjuW+H6RwUwzqTA7QQWXt76ulLrq9xXxej3\nre5NZ0P4kpPGxxxb7fey90d/w+putAMul6EXmUw/5k4CgQBjP7FWXXCJoY+05zeKI8aRhWebmjit\ndbFj31x2qpUZBz7SBK9eqealLW+q1fpo4b0tXQVVg5oCN4B7LziehnyCf/rdHjz5Tfy/7kWEbrm1\nD54HqLKXw4oeaylELkof9N9L/8yBT06172OddvwDkzmuXSYPlVSy8qbIcyp9PtqkxR8Huqpoe53q\nCFBzG3Tz6v/afUSMWxP45Y9/rdO5W6p28MOJfyUzweoHTi/8NAtnOB/M2bZGrBbzEr+z5Vz4DStZ\nczChbySr4Li2I/lP+QKI6aS3WDnhIvetKirkmsX30TejOz2y8hjTaQRfrvqaJfwChCcsHJF1ABfs\neU7c6wZMAG+gmgx37V2hV/9wBs6UJO5QehTIoTvXDZ1A27S6fX8r1Vja8tYKHJX5p/BGsDna/im3\n7x/2ZPxL1zX42pvWbqVLz/jN0ROuepavpi8O38/+qX/j42dy6LGJ/ygwxlBeWkXbnMaN/UglBYVb\n6Ztfv2b9oJMvfYSNRfbanDEpLiS07eyOO/Ww4Rx3wAiG9o9t3QKorPay/2XOcYWOnY7Wov891TLr\nfwYChpKqKtpnxX6PHD1+Mqvt2AwJvyc//61xdQ0Yw+CJD8ddVeLLC86tNb9ZffR9/CH7mWNGadRn\nUHBJOGVIn2cedOyLzPVW8OcbERGMMczbVMjvuvZsUJ1OeP1hlphyK8gReGjE0Zw8dHSDrlVXj836\ngKmV34YCqxG0Ywk72Fe6UIWLfxxyPjlRyXGNMWyo3EL3rMhJI4d9fp29fqu17RKYeXDidU6/Xfcj\nE3+dQjtpQ+fMXPbuNJLP133FdjtYDOYiG0A+E/aNn1qkyl9Jia+Yzhlda3yd1b5qblwUDADt1sBQ\nrjMrgNu3zZHMq5hB9GzX8OxQF3cOn17jfVq7quoFpKftjkjNwwyieb3bWbPRaiUP/tkYTIzstv8z\nhMuD2xKx352zmJyc2HRUft8viHTA5U7e/++mpi1vKeII16nhDTs4E5fwSsFj5OVbP8CCQXT0GJOA\nt3HBtQkkPv+r9xbHLX/j0Zk1Bm8+r5/tm3bsUsFbbi0rG9Rk3JghvPlp/Pc6gv3ZZ6ULew7sRecO\nDVvWqLkNv2lyRHem89EZrBpg9i0XhgM3iJgtOuSuyRHHhgLQWy6jrT0mrbzaS5XPR4c2sZ/H4IkP\nRxaEWu0M4559nqvG7s1VjrQhjZEBhEboRbcmxZnoNuf4sxj7wcsgMN6dx/jAZjzAtbSn3/MPEnwj\nrDQn1jUKzr25xjrsqK6iyu8LLX/1/unXNPj1JLKpspgumfHzN+71n9uJbilbYrdFzmEjYDhi9j0x\n3aEZ4uKjQyKHUBhj+OyQSdTHvj324N0ekctjjesykq6ZPUhz1d6CWFZWxhVLryDY/esSO+AjPAM3\nmDDYbc/O/fuw58jKiPze+3blZ7xT9iTfVcywj42UzUhGsTsjuhyUsC7VgSrSXfULiFpCetoeDZrJ\nmZbWAZiONdavLW7JBDbhZhsQHlMnwSTPXATsY7/vF+NiUNzADcDl7r9LzC6Npi1vzSBR8PbU/ybS\nf0RfALZtKCKzbQZtGhEkqObj9/v526TpfPbtqohAw2pJEk48ZDC3XHZ8jdfw+fy4XC5csX1JO4Ut\npWV4/QG6t7e6knz+AFvLyunaLjZFwV53TaY8uBEVvDlbtX64+YqY4G3P/2fvzON8qv4//jyfZfYN\nY+yMfd/JEqWFQvuqVCgpa/aiEH1TKWRLSslS0S+VJAptKISyb8MYZJkx+/7Z7u+Pu3+WmSEqNa/H\ng/u5957zPufcz2fufd33OnUmuYCEJGuwfPqac7Yh4NjoS9dmpxfkk5yTwy0rDCklDHM8MXA0j3/5\nKd+dTfS7nqQn5Xxv2Y5C0gvyuW7lO5g0eMq2OPJW4HLi9HiIDLr4h369lTJ50hW/Eofu8dVOnc5L\no2qYf42Gkbz5jzY1V1RQ98uJED6/YRJWxd8w3+XgZN4F6kcFDqLo/tMwbZ4quTJWaVjVSSZxLo/L\nb0mrdEcWUfZwrIaAgzm/zmEXO5U9Oc9b0eQN5rT62Ef22N33yWtXNW2a5o0S1zY9lZdEldBqJYrK\ndXsKyHedISKoVrFtvbH6+D14SMCCUkJLgJUILGQBFoKJwyoicElHkIR6LeRtx+oHsV4FBPNqQKnm\n7SrBes//FdumbMWSlZa6GHz77SZm9lkOQVCvQwxHNmUh6gik41C1fRgLVkzVKiQAeDwe034guN1u\nHuz8ErnphbLJDrSnwJo9U7Sbcm52QYm0c/d3e02OMPUqj2VKISKgRatKvD7niRKv/0pAkiTcbg/f\nbT7Axl8SA7b78vvDRZK3s2eTuXvUEi2NivrQblzdxvsvD7vc0/5T2HPyLI2qVAjoJ+etedv/mmz+\njAkLxfhyaLNaTMStyYSZuPFTtsr42YvXtnhtrna8Q/koFj/1hEHToby1e5O/y4xQm52qkf7TGTRC\nrhPbI762Tt6MMMwpxGajbEgYJ/qNvaR5hNjsXB7dt/wdLT+0nSmHvtaOCiFRh0geb3ID7x3cwAkp\nxxTMcH10Paa2f4Awa7Cm+TiRlcwDP6saUIGu/pSoTAQru040jfxt0jamJnyizUMlZCEIHF4VECzC\nv6LBI8FdmwdppboswNJ2bxJi1YmGW3JrpaRUDG079GIvlF9Ma/6paT814zRvnhqKXtsUXmyyqkgZ\n1cJq4JE85LtzCLUWnX/NIoIJtfl3pygOrSLHsyv7cVUS4KFm8EhSCr8jWJSjfHhbgoLDOZI21OtP\nMKSUuP3DUEre/qUoyC+UiRuAA45sks0ZkuzLy+mt+TzafiIfbpfd0iVJ4tCuJBq1qVms7Py8Qpm4\n4etefOzIWeo1rIrH4yHlXGaJyFtejv8UEd5ISc4tUbsribx8BykZuXTr0pRuXS49RcTdY5Zhyo+H\nfC33nXJxzWMzEAK2Lb407ZBugr887KVptYpFytr50iBaT3gLCbjbYK3yThrrjUfaNGHxDv/m5N/H\nDaHtq3NxYs7Da0RlhUDtHD+CPIeTkxkZNIiT3RDqvOYVfQocG2O+nrWnz/Cr4Ts+vOjrHmKzgc3G\nicGBy2Dd16wl9zVrWaQcu8WKPehypJ7wj/P5WdgtVmKCQn00OkfunejTvtHnL+pmWwUJZPPCfpl4\nGIvJSxL8mHmU1MJs7KE2gpSqAxtO/+5nJvI3cAbfv99KEeV92oFEgSEK1QjtqxLmY5Ik97YIOSvZ\no9ueMVRYgI/bv+NHWskxdNdDiizdBCyUHG1q7rkwUY4Xmy1g34VtPv39vRi7XC7ePTKZbLZjEZJ8\nbfFgF5KiLTbngrs39n0qlKuNEAJrCRPZqihwncNmiaBK+TZUKb/H53w9emmfvztRD/A2/+bzc1JN\n5bi83oZl1hMVVfei5lGKy4dSs2kpSvE3Ib/ASZf+atCBvDFqoVrWKsuCSX0vWu651CwEggrlrnzk\nW5MxMkkyzlvVvF0O1J+i+8GBHGn60dbtvLhhi+n4kef1MZOzcwi22bRgCUmS/JLPVatW8dKxY6QB\ndQWcBTY+8ijlvaovXEmMWfI+n7gu6JGUhuv4cbs76NCgoU+fhNRzdF23CN1kqfdR5ey+Zwx2q8At\nSSTmpFAzojw2YSXIT2oUFWdy0rl5vZ6eJVCJK2P5rB6xTViXulczi+7sPpX268bj8Sp1ZS5MD1u6\nTtPHzUyh985XseDBg4RFdVgXxhJXeuF7VaZpbmqSW4syDqCSnkshbwnZx4kPr47NYqOwsJDR+/ua\n1qMWvbcayJtFwKvNdC2cJHk4k3+YKmG+3yHA9AMP4ibDtA6rYs60KMp4C5I2ZlGVFgrd6Tg92UTY\nq/ucczhy+OqU7OupRsi2jX6PyuXa+pWlkzf1muuBF/KvR55rk9j9hIdfHX65/zSUmk1L8beie6Px\nBnOZoFO3+rww039IvorTiSlUrfnXPRwvBh9/8gNvL5ZrM0rqU8ZAqiqUt3H+gov7uzdh2FPdffrn\nFzgIDQkq8XihIXa2Lbt036tAqFiuZBnKAT7/eTcvLv9OPyDMROyrcX2oHld8FJemHZPgugmz+Oml\nZ3za3DFjEQlpGSYT66rBvalXMS6g3MMTfYlg14b1dfLmBxHBwdgMfoRG4rY/KYk7/k/N4SZHZX5w\n2+1cV69e4MUZIEmSouERxM97Q1uHur3YovSfuC54DaDLe2jbl5zwQ97e2x547apmrPnnMjnSly5f\n9UZBZfnyLt1BfNfZMzz8y7taG6FYOm1Cr6xwoSCH8/mZPLTZUJZMkbcudZ9pP6swl4fiOvJhcuA5\neqNydHm+v3F6kW1cHhcuyUOIVf77un3TEO3ck+IB3mOFQvokLAg60IwRHZ72Ie1Oj4Mz+X8wbf+b\n5JCF0S9PJmKB6qFqRnlmtVxe7JoKCvN5+YiszbKqxNXgZ2YRMK7R10WJuCgEWWIIClCZICjI1wwb\niLjJGAbMRjWrgoVwPqFVjVaXYaaluFwo1byV4qLhKHQy7vF3ObDrlE9pK9XWce/j7XlyxO0+fTPS\ncogp+8+qqafi+p66NsBI3nxSTwCbvvAtMp6QmEytGuX/tgCEtKxcbh6jaBgMhMJuA4dcSUcjZo3j\nwvlw0gDyCxy0HzvP1Efymr7kZb9Sy2NJksTupLO0iK9Mo7GyhkwI+H5sH9KcbmqXL2tKgjtr3Sa2\nHElgb3KGzxxtwN4pIzidkUl0SAiRIWb/mvoveZXpMvSdd29PujYoGfmq/YYe0ShZZFubEIJjI0tG\nopNzcnC43VSNji6WvBW4nITYio96jF80DTV/mCGCQNk3NBTKfC2GfQw+fihkQ5jPyVt5P0YIfr3v\nBdP4DT6brHxSS12h9VWT9PrTXibnZ1E+JJIsZz7RQWGM3rKYH7MOm8azGObxS7dXi70WgfDOoZV8\nnvyjSctVn2q80Vn2F8xwZBBtjy6Rq4C6lj7b+xryzvkjb6rWSyjlpnSiZ0wVMrjmyyw4MR6tjBQS\nHklgE24sAhqJhznETgQHFCLnoat4kWsaXXPJ1+NKYdOJ63FyFvDVvF1b/QCWP1karBQyLofmrZS8\nleKicf6PdPreLBMdLVjBi7whxFWfqPf4ifP0HSbXVFQJzSfvPE4lQ93OHo+9QabqyqORH7PWrkOr\nykx/TvaZ2XfkDI3qVLoiBO/oyWQefPlD/YBCOI1+Xeo6LAJ2zTVrtVKzcykXGS6XxpJ8+wAsfeIW\nWjRupO17PJLftThcLoJsRSv2Z635jre37gYB64f3oWrZsuQ7nQRZrVi9/IP6LVjIluRs89qU7bZn\nnuSa2e9q+7553uR73OHRw33kXio2HT3Io9+u8ZmLul1/V2+kEBvVI8sQotRZLCgooP4yc13WI48O\n50RiIt22fAEWOZJytIjgDXK1eetQiFAA8qaaJoUXeYu1hbL1nsBVIJYf2cGkvWtkYiIkv+RNRZuv\nJmiFnYSQEF6ETyVXwuBvpsqyCI+WbFcIdCKk9PnhJl371vWHEejkSb60QyvdQ7Oq9Ri0c6p2LXw0\nZAJWdtTLqQVCn+1PoNYGVfvaFWKlH5PHtyEhGUijel4lYtOarmD8vgcwkjdJkvRIVUX+mFqLCA/z\nnysy35nD2wn3GMbXZZWhLr0b6GbfTMcZQq3RBFkvn8lSkjxsOCFreS3Kd6qTNxmd4xMu23gqHO4U\nPJ4CQuzVLrvsfzL+leRNCHErMAvZX3KhJElFvq5dreTt1NGzVKtbdMTQLRF9tM/CYgEhmPbNWJq1\nb3Clp1cK4JU3V7P2u0OATmDuuKUhYwxRpE6nky695JI9zapC87bVWbrqlMn0+PMK/cEZiOxcjVD9\n3QB5nZMHEuUnKa83cgodpObkUaOcHGHdY9o8juc6TLIADk4armlSPv/1d55b971PPrmZd9xCz2aN\nqDvVkCPOh0z5pgrRtgatlZnwwfFn5KSxSZkZ1IwpY1pDeno6LT96z1eetpXY228YTRfrZE0vtaVr\n1JKekDVH/oJM8lwO7BYLdj+pLwA+2rOVF/aZTd66f5mMY71KVmHhSGYK1cJjCDVoChuvklOHePu8\nqZ+9/diEkFjWYSANY6qR4cghMzeLB7fPNvQ1OPsLQFJIgpd8i9BJmznaFL7sNJ3NJ3cw49Qy09zk\nAALoKjowsOOjPuvLceUQYgnBZrHh8DgYsOMpLbOe5m+mkDHZRKqnClGDBozjzWzxERZhYdTvD2ga\nOJVw2bW5m5P0PldnBSEhgQMNZh7shi95g1ujX6NOJd3M6fQUYBX2y1RnVcf6xCeAg1jFBW1s9Xo0\njdlMTEzFyzoeqL976YrUSv0n41/n8yaEsALzgK7AaeBXIcSXkiQd+HtndvkReYkJWKvWKzoT+N+F\nEb3nc3DPaf2AENx8RxNG/69X4E4KDu05Rb0mVUqUpuSvxLjhtzNuuK/p1wi73c6WlWY/p6cfCdz+\n30Lc/CE0qHgTIUCY3Y7NkDLktYfv5P53fdPpGIlMen6OX1mNK8t/D0fH+w+SOHL6ND0++sTvOSTZ\nR8xvWKM6ByBKSRBcc8507aAEXGcPoSDYzva8bE2e0cx5zQezde2lQWZSf9/UIPd9uYSd6efMAwPr\nbu9Lg7Lmv/ndF87SPLYSKXnZBMLOu0f61TKO+nQmq8nRNGxvNnqAEQc+UWaoVgwQJm2a6kdXNOQV\nPvbLfACiRDDlhLf/p9CJGxgz5PiMs77Lmzg9LtySB7uwYjUUvr8hvj3X17jGJ4L2i91fszR3NRt/\n3iI7+ysEqKyIZGqrFwiyyPOxYGFeq9kknTnF6+fVyhfGmGZJi6h9q9WHDN3VG2+oyWQtXmQZoEfk\nQDrEd+PFvXcquj0AD9MS7kclQ1YB4xp/zRsH78Ij5WuaPiNR1PwKM8diyYKn623AIqzYr5DpsmvN\n966I3KIg1IzUpbho/KM0b0KIDsCLkiTdouyPA5Ak6ZVAfa5WzdvVhu71DAlDdZsHaw/KX01ubj73\ntv+fqU1JzaYlzS93pXDrPdPJL1Bus8p9pHbtWN6f/XjgTiXEkaRkqlaIIcwrkOHm/rPJyXf6mFi3\n/YlSaJcDK7f8zuT/+17e8TKb/vBif8pF6RGs7cbM1JM/CPhh7KPExhZfdN4bXae+yalCw31IGW9i\n90483K4ox2pfFLpc5BQ6KBceBkCdaTNRH4LqOr5+5CF6fPSxTN7AYOqH4yP8X//f/viDez6THdWN\nZtkfe/fj+o/eN81b3T5WtyFTbupZonmfyUih4xfv6wcE2JFwGp9rJs0XJD4yDqfbjcPjJtxefKCM\nw+2myedTTbI0UyvgS97k9BUWAe/F382TJ1ca+pjNppq/nPwRiwW23zqVDEcukfZQrAE0K8/+/Dbb\n8o8qe+bEuw9WvI4BDe/226/HT0OxKho6i4Cuoh0b2YrqO2jBGKn651OFAGQ6kokO8h9c89ye+zCa\nTY0aPZngefQIWHTytvbgXPZJqzWtozHaVCVzFgFl6EKvehMvW/qfUvy9+NeZTYUQ9wG3SpLUX9l/\nFGgnSdKQQH1Kydtfg0Dkbc3+l/9xGrOLxfET5+g3SPZtUx+86z8fTlBQySNH/y343/Jv+GSrouj2\nIm9fju1DzYp65Km32RRg37SLTxNyJcnbxeDFr9ew5MhhZQ6SNpdrbEEsHyQndJVrbwo8kkStt2Zg\nCipQttcIWPb4sKvm93PbqpkkuOXIS9BdWAOnCpE0LZlFmMmbucKCbDLccOOLhNvN2qJlG5fxDnJO\nON1PTt7aLG48koUWEbWY7ieR7u2bhmpzNafuMJhYgf/rOF/rM+/QQn7O3IbRx04zc1p0k65aTUBd\ncwfRmT6tngp47TySB4uwsHnPWr5C9ru0esnXa5t6sAorj1V7jWpRsuvLj4kfsjVviaGSA8jkTZ5T\nRRpzgX0I4cFKOZ6q/1nAuZQUha4Ugm1yxP/axEaYUqsAFSx9aFZj/J8epxSB8Z8lb0KIAcAAgOrV\nq7dOSkr6y+dailJcDsxbuoEl38pJM42BBSZfLDDmKjD5bu1YWLymLq/AwYXMXKpXKFNs238qsgoK\nsAgLEcGBCVFKZiYd33rf9zoqD88QAfvH+L9etWbO0NrLkEz+cx/dfQ+N4ypzPjebumVjeXDFUral\nnPfxk1O311WuypI7enEoLYWa0WUIttoocDqpv9iL8Bq0WAANhJ11feU5xi/xcvcVYAeOPvocGYX5\nxAT795+qveJlvHPACQE7bxtFVKjeJ8dZSJvVr6H/0ryjTX3JW4/g2qx1JCgETjYxqrnVhNA5r8Wi\nO/h/0H4YtSPjsCumT0mSuP67sdq4KpmyaiRKriNqJGRCGd9iIG2SpBAvQ7uJMU/RvFFzn2vyzpFF\n/Jj+szxfPEgmwqeYLIXwkyoE3mq1TJMz4rdeBg2oRympBa82Xa6ZdhfvfYkEdmH2eVPnrqYKMZM1\n1cfOpvrdaT5vdgQOTXP3dBG53kqKXOcJwu3xgH/yFik60D7+gz89TikC41/n8wb8ARjDTqoqx0yQ\nJOkd4B2QNW9/zdRKUYrLj837jvr4SqmQH43mcze3i2ffkTOczXD4dgiAkCA7cWUuLT1Lp5EzyVQ+\na15BBlLTJBzeHvM01055W5+0st3/qq6Fa/S8oeKB0ub3SUMItst+cofOptCgUuD8fx7J7DB/MVCv\n448DApdW+6B1G/ru1DX423o/5jdZr+r/tuJBX6d4f4iPkolb12VvcSQ/V59QAOvX8E56/sAKCM6b\nKTz7HhiBR5JILcwlJjgUh8PBM5++yzdC/pY6FSH7YOo52lWtqe3/kZfht932257jw4RtzD78nc+5\nrwuPIYTQNG/a1x3QmicxaesHrLhlHH/kpRFiDaJccAQ/3fS6T8vXf13Kupzf0PV3ukZM/RMRWtyn\nPKZb4W4WIf9GpmQsQPysa8/8JfTV41clbWtB7o8i65bQnqwvWANIDNrVG4ukkCmL/FZlLNUlCDL5\n5PVpOgGQS3JlOFIpFxzHlH33AoV+3SvHNvqGAnc2IdYrn1Qb0IgbQPea/zp38v8M/mmaNxtwBLgJ\nmbT9CjwsSdL+QH1KzaalKMXlgcPhpO3YuT4RncZUIRLoecUUorDj5SG0eWGuj8bLSN4eenUmu7N1\neQI48D/9fG6hg/AAWrVzWTn0WriUs7kFZipjICqSgN2jBxMWFESdV721W7JzmxrtOapdWwZd19ln\nnDNZWXR6b6Hex7D2Y0NHcvhCCj2WLzWtc+cTA4kJDik2BUnrhTO5ILnQzKwCbixXjUV3PcTNi14j\nwXjtlM82AS7Dik889hySJFFz2auARFML7PchTZKSSkQ35woBAyu15u1zO7R9dX3hAnbe9QJHsy5Q\nKSyK9l/r2j5h0D7tvWMyzb+aYHjRMEebCgELW/enZZxODgEK3U4ynLm4XG4e+MUo25gA12yOVU2I\nNouk5GQztlW1cmZCpham/y35EFMTZmmkrb1oznZ+M7X1Nps+JB7kUyEXnBeS7PfXJ7Y/H6a9i0b8\nNPIGM5t/iMViYfTu+5WvStIIJMDE+osJCw7HI3lILTxPueC4EkWGuiUXVmHWp3x6aBTJYhdWygHn\n5Tko6+hfb3OxMlUEqjKi4uTJkxx2b8dKKogPsZIPPEXzmPvYm7EKq/gAmEzbyh2w20sWmFSKwPjX\nmU0BhBA9gDeRNcrvS5L0clHtS8nbX4/uDcfpO8JcmD6+YTne/vTvdbovxaUhN89Bx/HziiRvxuMq\ncbParBw+m8wDcz72aSMJqBwezIYXBvmM13CiUlrLcOzQFJ3Q7T9znoYV49iflMR9yz73aWtK9SHg\nl2FPEhsRwcm0DKqWicbj8dDgjdk+RMzbzHlT1Sq88+CDpOblsebwYV786XttJD29hw4JWe30Yutr\naBRfkwc+W24ikvv7DSE8xDcisMbC180r0Oah5mbD7zn9mHH1kpbvTZjWo5MqI3nT/NRA7qcQWgQs\n6fgI7SvVIstREJC8AVSyhHCePH18L/K2su0w4mPNkbEuj5vOG2T/KUnyaG39kTf12qjmU2NONV/i\n5bsVygJV3zuLcPttu+yad4t1/H9656OY0oigBz88W2sqlaNrauRND5AA8DCy9lziwisDkO5IJsIW\ng91SvP/j+fz9VAhtrO07XfksSOiBGsCgzkFNFhzJrTxY74UA0nQ43Gk43ZmEB9X0e94jOdh4ojne\nqU38lccC6FgjsdgxS1E0/pXk7WJRSt4uD9KSM+ndbrK8oz4VjBk2jVurQcvgRd7qt67ErCUB40uu\nOkyZtoQNW86bCI263u9WyE7pefkOwkKvDuf0QMjKLyDMHsSp1AzufGWxfLAY8rZ3uk60cgoKoCxH\n5wAAIABJREFUaTfpLZ82koDBXVox+JbrTSI8HolDJ05w7wdfaNc2TkCygYg81bIOI+64nWmr1/He\n7wdleQb5R14oWXBEnlNOK/u/L79kRWKSzxyfv7Yjj7dvT47DgUUIwhTNQlJqKl0++sBHXhVhYWW/\nJ4my2Wn43hwfed7Eq3dMZV5+sDcej4ea700H4TEQNaEQDsmPDAkzoTP6sUkmy59O/sxJeuX25nQW\nQsCR+yaQVpgHLomO3yiVIvBK42EibxJCSHSNrs8rnXpxOOsMDaOqYLOYNUrt1o5XHvVmIuYvJ5we\nXODRjsnjGcmb6vOmBkQY2iim9H7iFs6JP1jPXiQkmooKHOR8QPJmAZa2W4g/JOYc57XDk7T5+5I3\niRYR7elTZ5hPqpJSlKKkKCVvlJK3y4nuNRWNmXJT6nR3LcpXrEZchSgWvLQGhGDSe31o37mRqZ/L\n6cZmv7wJI/8puO7O13WTG5jIW687GzPosVs5npRCnZqB63N2eFDJD2bRzY6/fCQn7s0vcHI+NYv4\nKv4zr/9VOHUhgwoxEX6rIjQdOdN8wA95uxhk5BWQlptHrfJ65Gr7l+eQ4XCZ5Js0ZQKW97mPltWr\nUe9/vlGu6vdyc3xV5j8sa0Q8kkSuw0FksF5qK6uggJbzdJKp6XyEqrVR2YVkIq0HnxpCSHAwNedO\nN/STTOObCZfAGLF6YoBcTi2rsJCMwnw6/98C+YRSoguMBMxblnrMTMiM53zIm9I3UsDXtw3l+jWz\n9XYGWUIhRurVKI68xUmhrOk5hmCrr+nsxrXjydaujswq/ZM3NTkv/HjT60iSxOHzJ3h6/xwsAsoK\niUwBLalIrsijkGzcIpJzpPto3jRS55Ws95MO8+j1y9OAboZV28RRhpntXqffr/0wBmvIwQduBMJH\nrhWY00qvXpJSmEz54MB/8yo8Hg9TDtylBQRYBTxTbzERdvPf+xsHu8lzMJh0o6hLvwYLih2jFFcf\nSskbpeTtn4QhvWaRsD8Z42t+83bxvPZu/79xVn8/OvSabnoox0XAqndk8iZJEg6nm+Cgf1rs0F+L\nzPwCJn62hm+OngR8I28R0LxSHB/260XjV8wlpsAfuZZ3Nz7VjxplYujx3iIOp6Wb+mh9MZA3RRPm\nTd62932S8lFRrP5tF8O2KJUejNoyra1O3sbUaMDg7no1DoAaC/X6uUbfOmGYC+jKb5uQdL83uSwB\nlQScMxE143r0Y/6qK9T79CWlrVmLJ9D76gRO1TYJdt02kaNZKTRSsuy3WDMBo1lxUfun+S35CPMS\nN6ISPRCaX5k/8mYRsKDFYJ7+bY6pj5Fs+dOaGYMQvEmWQNLMeyhpP7zJmyTJGjyrxWNau0WADTfa\nT0D4RpuqyHCkExNUfPT2xtMfsSljOXq0KfSuMZnaka1N7fyRNzvlGNTAN3n1XwVJcrM5qb6y58Eq\nBmPhZwR2LOIIoUzDwRAgl7plthIZWeVvm+vVhlLyxn+HvOVm5XPhbAY16vuW1Ope/mnzAYO5s9VN\nDXn5Q99cSVcCtzZ9XhtXgxCs2/3SXzJ+Ka4uNJyg+LwZyNShySXT5v1y5Bh9/u9L/YCAI+NHIEkS\nB8+n0KiirBXxl6QXAUdHDr+s+QmTc3O5Zsl8Tb68NZO7E0+OYeOmTTx++BcfApn0uP8yWQUuF+fy\nsgmz24kLjaDQ7aLA7SQ6KJQ8l4Mmn6gmT12WrJUzk0JjLjYAYTFo8dDbPhvZEXdYODOSvwWf+qQS\nXUJq4XQ4+YWTyjmFkFS8hlGt7ryoa5bmyCbEYmfgT6+SJGWjltCyeBE9i1GzZtC8yQmEzXVSjeRN\nJmAePwRQJ0j6+pXC9MKjfF263Fkt3scluQm1Bi5t9WfxxsFbALBq9Vb1hL+qLx14sGLMGwd3xC0h\nNqaWj7x8Vzqhtj+XGujAiZmkMg9fXzj9+mmfgebVkvivlbm6VPwbU4WUIgDCo0IJjQj2e+7+ETfy\nfzOVsP44wYMDb2PFS18BMHnxwL9qiqzbW2RsSZHIySkgIqJkZV8GDVjAkUNy/T3vCgUbf7g6kku2\n762Y37zmrxKMDyY9TKPal7+WoBGSJNFi2Jum8XfPLrkpNDMzl2v/947mdzWsa2sGdLsOp8uN3WYl\nI6+A8GA7dqtuUt99PJFe739hGvNS0KFebdP+2zd0AKDNzHlkFjrN2jA/46RmZVE+Jsav7FqzlOS7\n6N/HDXFxvN/rUbKzs2m2+B3dbAqmCg0BIUGNd5WAhSLaeTvSW4Qg0h5MuVA56bBL8uD0yA/4MFsQ\nxx/Wf+89l0/lkC5Jnx/QJ7IuS3KOFDFBqEs4fW/uCkCVhAhG7V+pT15BVIGb1eKURgI9kkxwdqZe\nvBN7kLBhE1bGN+vD03vm+p13UZC1hIJVneaS6yogxGrH6ieq87Wt0/mdQ6CYQwGesDxKl7ZdAOi/\no6/WVjJsVUkuyY3DU3hFyZt5dDPUa+wPWe7TxOJL3go9OYTin7ytPt4MnZBB1xpbyXedISqonqld\no/gRwKW5RpTiyqNU8/YvRqDw8JUrV7Jw+E8gBI0fsJGa6mbWrMlERUX9DbOUkZiYQnx8bLFRYAA3\nX6eTxKuVvN30+AxyC6WA5G3NjP6Uj70838fT05ez7dhZk3wELBx8F0+89YUPyVnYpwttW7UsVu41\nY2bKsYcKeUPAV2P60fONRZo843gHpo5g2ZZfeHntVtN4bz10Ozc0qoPD5eJMRjbxsZemMZAkiXqv\nvukTVbp/1FAaz5xtCnY4NjpwRLQ/8vZJ99t5YN1qfSwBevgm/smil1+aZDj2QPV6vN7tLtO4u1JO\n07xcZZ+0I+rf8TNLX2WV0VSqaEKG2mow15Okzdno8+ajcVO2R+6bEHD9xeF8fgaR9lDCbMG0+vp5\nRa6ugTHtC4mh1brRu9GN5LoKCbf5fwEtCjmuPIItduwWs5/dnZuHoPrXGYvXr+z4lo+MoiCTN33+\nzWjFU60G+YynYsHvr3FIScJrFfqapzX3b+LMdKYSZg3Hbgkhw3GWP9KO8WWafA+zeiUFVvdHNNxw\nUWu4GPx6/FfO0Q+rgDbh3xEXF1dsKpFSXF6Umk0pJW9F4cjuk8Q3qExQsK5gPZVwlgE3GDK3C/2u\nt/aEl2O6F5LPZhAUZCOmXNEJX29tpoSvK74/qoM/QvDNb5Mveh2l+HN4ZfHXfLJNLvtkJDZdGlbh\n+0N/aPtG8vHF+D6EBdmpEHNxiUMLC53cNHku6UptbXW8kZ3r079Hj4D9li5dyssJsjb1YaucfHU5\ncI+AqROGmx4sCxYsYHpKnmwqfV7XDJzLzqbz3IW6z5vWRSFiBg3Z5sf7UqmsHjABkO0oJDIomAKn\nkxyHg9jwcDJzc2nx/ts+860dEkqCI8980EcDp5M7ox/e0X4jsFutCCGIX/Saxn1NfZXtb/cN5kxh\nLj3XLMJbM6OaPv0FIXiTN22KFv9tVRHPNbyJvg07+azXiFxXAemF+YTZghj9wwf87j6j+8cpkswm\nUKP/nDKeYpJUk/Xe8N0obZ7GaFNJ0uuXruk8kzRHNpH2UEKswX7Jm1B85yzGzwbz6/xWM7EKK+E2\nsxYtz5VPmNcxj+TBI7mxeZG413+fwBmOoJM3oxlRv94W4aEKjbmn7iAswkVscDw5zlTeOTqEQuQE\nycb0H0L8NeTNiJT0/ezKuF+ZswcLFm6osQOrCCslc1cQpeSNUvIGkJ6aycMNDLVHlWRKS/ZO9skS\nL0kSORl5RJYJv+hxXE43wiKwWv37Nfy6+RATBi6Vd4RQHtxCNoQIQdd7GzF6Qi8AUs5lEl0mjKBg\n+cbY7ZophvnLm0/XjSEq5kqbKkpREpgiTgXseGUIwUHmh9qZlDS6vrFYawP4EimDhrFDGLw/fgTr\ndu9n+GffmuQbyc6Adi0Y3u16TSPlL9pUJYlHx+tkbs/ZcxxPTmH0N+tNbdQ+Hz1wH+2qV9faH05N\noW7ZWJxuNzkOB+XCwkjOzaWdF3nzCabQzKeGwALjcSOBMxA6Y39hrC1lumbG+7NZk2f0WwNI7G3W\nOt/12Rz2uTKVKelk7ZWWtzHut9WKDGV8pc0P3UZRIdxM2Jt/OVFOjWuQoSbPVcmRSs6EcpEtXkEC\nQvUlM5C3l6r24oYGsuP+Dd+NMiTk1YmeTN7kcQQoRd7VQAhzLjh9q5I3jylQQvWTsxrajoofQbO4\npvyWvpuGUfVJc6RTOVT2K85zZVPgzqVssK/7woZDq1hXqAYyqHnefMkbwEtNV/n0/6tR6Mpg3cku\n4JO7Tb6OWk1V1NuvhE37TgfQqsp9RAT5mmdLcWko9XkrBQBnE1N9D0oSjzWdZNCs6Rk9n3jhTu57\n+qaLHqe4dCCxsVGyE4VbeagoKoVazYJ4a6nZTBMcYjc5jD/S/1qWLdyiNxDCh7h5PBIWL+cPh8NJ\n926va30APlo+gAoV/nzqjcXLfuS9T7bLSzE8bDd9McZv+5zcQjKy8qha6eLNfvmFTk6eS6d+DT39\nQNu+M/QGwpd8/LpwxBV5O242fKZpHJ88b0BmQSFxXuTt/U2/lki+Ku+XfHnbuFoVvn2mH+XCwwgP\nDkKSJPKcTlq9ImfNf2f777zz6+9a/yMTZII2ff1GFmzfE3CchnHlaVapInc1b4okSdR5w6xZble9\nOh3nzuWcw2Fa7/ERIwlWUqbEhYdza2RZ1mWnGUJBtZVo+ycGjdaK1vtDdn4+bZbNZVrHnuw/eZIW\n8fG89MtqzigCDjw4hLCwMOI/eM1wobz847xMn+rnKGDXQ4bE2QqWdO9Pq9XTTcdqAvfWbsm9tVvi\ncLsIshq08rlphPqJevb4WY8xKtU0Od+WbL3lFRxuFzd8N1471p1GGnEDWN9lGjd/P0Y7L0OPfjVL\nN34R3soHiWDsuIVTO6LeMtSSXkZUDZEjJOtG1CZIBFHWEEEaZoskzOZf83xzgzu5mZIHaEzZdzuq\ndstc29RMQnUzqoey1OO2ms8TbI0kzObfP7M4HD62jf08jdEsDICwYBUeBPdg4QA1GUQSzwI5eJeh\nE+Jt9v2xjvY1fculleLvQ6nm7SrBrdGP6zsGIhZTOYrl++QbdPcKcnCCFrFmsfiSN2DFwalERf01\ndfRKguysfBwOF+VizXPq2vF/pn1JwBffjDYFNtzUZarewHBn3vi978PsYiFJEtff+YY2NsDU5+6k\nc4d6ftt7PBIut5sge/HvRKkZOfQc8o7+6PEiSkFBgs0LAzsLp+fkUyYisFbytyNJPDHjMxPh++2t\nkjkf3z5hJknZ5jl9NuoRqpUvQ4jXw12SJJo++6ZpHb9OGkxY2KUnLXa43SRdSOO2t5dpWi5TKg0v\nEgtQ1SY4pRSnfKRxPSbd0bNEY32+ezejNm7U5XmZII8/M4otJ07wyOqVGk/QzK8GLdqJQaM1mSO/\n+pzP/kjQ9i0Cjg/QCX9SZgZVI6P8ltTSyJvB9FklOJwtD5ojxg+np1C/THmSstO5YfV8fS6g5Xyz\nAB7FdGj0efsz/m7e8EgeTuelUT08lrZrdc2ft9n0ydBrea9gkzaHe8u3pV+jWykTpP/NpztyiLKH\nkZyZwmO/yyXAvKNN1VJUX3We7ffFpcBdQLAlmBlb57Edmdj7izatH1SHF1pe/D3iq+PL2Zj1uTIX\nj26SRb78rzX/1G+/l/cNxM0pvMnbsPhlhIdduRyPnx17AoldWqCGrGmzc2etnUX2+/FEPYxaulj6\n0zD+6vAnvhpQajblv0Pepg+fz/pFimbDQN4mfzWMdh2bArD+q83MeOJD7RxAeLVg4srH8tKiQURG\nRxAUomtL7qg7CmehW5GpPyHXJuoan+H3vsnhPWc0mWXjbHy4ufio0u4tn0dyyXPVfN4MW6Pvm8Ph\nwu32EGqoUtCtw0sGQqA5tGgO/t/8MI7MzDzKGvzvBjy5gGMJaQZTneC7jc8VOc/8fAdWq4WgvzjP\nmiRJjH39UzbtOWUiJCrZemvMXbRpGthMcTI5naqxMT6aSBXvrvqR+Wt3+WjrJAF9b2zG8HsvXvMa\nCE3GzjSRt/2vXVqEWp7DSajdRsMpOhlUr82wjq0ZeGMnGk6dZQqQUOFdxuroOPMcsvLzmfXDTyzb\nvx+XYa4+ff2QNyNqzplu0ERK5n7K5yYWK/v0UXxMyG2i49iRdd7UR9V2aDolC4QAh/oY3CEUxC97\nRXEnVXOo6X8fmiyFVEiSfLsQJh83fX1H7p3oIx/k36cHCauwsC05gSe3LdFm5x0EsbzTIPJcOTy1\n/QN9yV6EqaWlHLulFK1f67CaTGzTm/s2v6TJXX7tC8QGRXEi8wwDd+tBIxaj35ofvzj9nIfyohyz\n208iSClH9dDWASY54JsqxCJgUdtFfq+DNxKS9zPvzBRFjsEsi26mtXrJf6npKhyeQgSiRGWyLha5\nzjOE2Sppv4NDF/6P3RmvmuZgBXpW/Y7g4D+XPqQUlwel5I3/Dnn7qyBJEo5CF8EKyeted6x+UrFf\nrD38Gt0bjwOPTKYEsPbAVJOcE0fPsGz5B7Rq3YLZ47cS3x4St8k3lxXfjyAmQJoGFV07GHLDGewm\nKnlb98NzZKTnEltej8i86YZX5DZQYvKWlpaDzWYlKurf6VuXV+Dg2pHztH1JwJReXbijc9HRpLtP\nnKVp9YrM/noT731nfkv/bdowbDazCd3pdNLihbn6AQMxerJDY0bc0Q23203TSXqCXWNheoDjF9Ko\nHB1Fi6lzzMYwATF22Dbu0tMWbDl+gsdWfmaenwigyVPOVUAiQsA99Roz8NZbATiYkkJMSAgdlrxj\nkCWZ+h9/aqTmEpCclcE1y981r8diaO+HvBkrLZzwIm8eSWLhnq28svcHE3mTJHT/NSHPSTUTGsmW\nMKyxhghn9Z1D6bBqKvmobSQkScj50ZQXg5+7jOSJnz7gCBeU8fT5ovqpWSSMekT1/Av17uSthM/J\nVOSrpEsIwZIWw3l8t56H74ebZAtCpiOX84UpVAqJJdOZw/qkrXyS8p3miwV+fNxUEuWHTBnbliGS\n2W2n02/Hk6iapeaiKSPbjmTAjj7qVfbR1lnxICFrMztYuvNQi8dM30uhO49N+9exgWVYvHz3rJof\nntFsCuMafc3lQJ4rmTCb7m5x9MKX7MqYrMy/lLz9E1FK3iglb5cbjkInZ0+lUaNOhSLbdW84zo9m\nTLBuv66VcznduN0ejQiW4uqB6l/ocrk4kHiW3vMVc5Awl8Wau3o9b/+0L2DRd0nA/c3rMLjHDeTk\nObht7mKtr0reHpm7iB3JGea+ErQoG8aSIf0Jslqp/5LBX02CraOfpkzYxRHumV99xdxDhlxnBpJ0\nbKScOqTWmzMM89erLCQO0zVwielphNuD+P54As9u2uCX/FUEtj49mpNZGVSLjC6Rb+Kr29fz9oFd\npvHNPm9FRZeqkDQSZzQ3GzVv0cCviuk0y1HANV+9pvfVaoaiVXlY2qEvreJqAtD6qwmKTtF/ySuV\nwFUSkVwQWQrlMbbVydvYmncSbyvLsISFgPAxtb7TZixxwVE8sHU8us+WSqpgdWe5ruy6xI0sOLNS\nOa5r59SC7gJY3sFAthXkuvLIc+dTPlg2W5aMvMlrGVJlIgvOTpbbKmusIKoysP5U0tzJLDg2Eu/k\nthY8mqn1cpK3i8Uvp57hgnOjMjd5jj1qHkCSJDId+4gJbmpqn+/YTYi9IUIE1ho6XRkcOtsE9Xuy\nAlWjtxEVVfWKrOFqRyl5o5S8qcjNzic8MlTzezOZKQ1mVoRg3Py+XHdb8Xm8ikJOVj73tZviM5ZK\n3m5tPgE8HhACe4gNp8Ojm0+V6TRuHceQMfdSo1ZcwAjWKwlJkrihx+tmvzP1QWgR/Ljaf2BCKXRc\nSEunyysfBCRvy/v0oGnD+jR63hwh2rdVfcbeI6cOaTBxpm9fSXkMWM3yACZ1acd1jRtT6HZRu/yV\n8xc6l5NNh/flh34zATWAaU8OpuHCeYEjRxX1TGt7OCufGEhybg7XfDRfbQ3IRek/v+0hWlXUI11P\nZWey/VQio7Z/o8lKfGws+1LOcfs6lfCaCRkCEh561uQ755Ek6n7ysm5axqwp8+fzlu0sIMtRQOWw\naFySB4fHZcrHdjL3AmWCIoi0hzDkh/fZlJOIRtY053Zz4Xg9A5G67wGEUhFB/rz5ZjnQqMvGUUob\nRXsnJOqJcGZ1noTdYmNvSgLPHpKJmiq/i2jJmM6yH/DdWwajBgOoASMWJINZVCeYRhnG86DWNpWj\nYi1Kqa43ms8nwuabGmnS7gHkkq7IM8tR/d8sQtayqePeX+E5Gpfv6CPrz2Dx0Y7ovmm6X1t95pDI\naVpbW7PDsxwrnyjz6IKVWliE7G9rEx6a2VdQtapM2DySE4swv2xLkoeSVE7Ye2oeIFtgrAgaVTt9\nmVb570NptOl/HKeOnqNyzfIM7DKRU4cNEafeflAej0zgFKK+7uMtf5q8RUSFsu7gKwHPh5eD3FT5\nD/6+xzpw8mQKm9cfNbXZvyuFgb3m8+kPz2IRFsJLWGHhckEIQVz5IM6nOMwaDmBQv2v+0rlcSWTl\nFRAREsyI+Sv58cAp+aBqMrSgPehtAra8PtQUlPDNtt2MXmGOMts7Q9e8dXnlA9O57RMHEx6uv6FL\nkkSh04U3Pth1mLH39OB4Sor/SavPCgMJATg8QR87p7DQf98ikJGfz4vr1rH6eKIs3iDbWN/0+PCR\n3LlE94Pao/xb/a5igi5CkXa4/3AtWjU2LFwmol7tg7wKu9ssFmKDzbdjIQSH088XsRqJOh+/qqUI\n2Zt2hiZlKsmT84oYLAqR9hBswsLhrLM0iK6M3WLFI3k4l59F5bAYKoXGsD5hN88d/sJHy6fPVftk\nOu49X0Axy8J1G+Ugj2gpjHfaD6NSRHm/vZrF1WVt3Gy/5wrdDqY3f5aqoRV5eNswnVQbR5VkeuN9\nW/QXfaqGeeir8f9FT24uk/odST/zSYasrfVIutZQnYFbQiFwIEny34HTI0c3F+f/lu08S4g1BrtF\n1jD/fHIBe/OXmTR5oMvXP1tIYCjg4Ve3bDqWUFOtfAfiO6paRlKvSjfC7WbNmDdx23ViLrnMUGSr\nWrWuNC0/g7AwM6ltWm0wMLjINZXi8qFU83YVI/VsBmUrRvP96k28/sRH8kGB0dHF8AosPw2X732V\nvJwCKlX3r7FwFDoRQnBHI0MklhrIcHSa3z4qPB4PfySlUq1meUOiXnOSXoDm7Sqw+9fz2v74l28n\nvm51atTyf/MuxZ/DyeQMKpWLpOOw2Tjx8vMykDeVYAjkz8O7t2f+N1sp8BZoaOsdaLF/mtkvLd/h\n5ExmlqYhO5eZzQ2vL9T6dqpdhU3H/zDJ8uuLJszErSS4a9Ey9iWnmHzS7MDQDu2Yvm0bAHYBSqIQ\nH/KmpizJzMvj2qXvaXLf6NyFUZt/ACTMjl5QXVj56ekRxC94A+0RblhPRWDbk7pGN7OwgPO5OdQr\nGxtwHSm5ObRdOTeg2VQ7pmiL0EyTRo2b0I4Z++qxDhLmoAYJ9Ydx4K7J7DibwOM7FhvIjmz6/K3H\nFM0kfC4/g9t/mKbIMJsdveuWym6synwkmVj8eLM5rUkgnM06zwClXrIq/65yN1I7oiqzTn2Aqv0y\na9Zk8vZhu3cBmLZjOvvc+wAJq0Wei0XAwjaylvPpnY+Y+uopPGBigzmUC5W/rym7B5FDshLN6UEI\noSmLLcKNqtFTfd7iaECaOIqEA4vwrbAwsO4K3JKTKHscDk8eNhGERcik/nz6Ib5MflK/tkrfx+v9\nXKLrdinYdKIOvrVNoUJYf+LLP3/Fxv23o9Rsyn+HvLndHs206Ha7mfTQTHZskLPmYxGsTJpJeLic\neLd7xUF6Ry/y9uWJGQgsfnO2vfTMIn7+Yo8anqa/qgrBxPf60OG6xsXOMysjj6iYMDN580oKteqX\n8YSEXHyZHG/cfP1UL5OnoFbtcowZewd16lQIGIn5X0dugYN8h5PYqHCmLvmKFTsUjahJCwU/TBxA\nmTJh5DtctBtnDkbwJm/7XvclVoPe/4wfjibJzQwERlLkf/PMo9Qor5OWWybPJEn1g/djhi0JeVvw\n0ybe+HmHF/mTNJlzu91M9+bNipUDcsqSk5kZ1ClrftFpPXc6sp7bj9nUz7jeZDTJQN7O5+YQFRxM\nqE3WeDy0Zhm/XFDIrNHnzUCaQLmekjyGRtKM72teROzG2Fp8n3r8IsibPtaBuyZr88105JPuyKV6\neFksXqY0j+Thk90/Mv3ser9kTd0XBjKlEq3lbcZSMTqOm74fqY1rEbC0/fOEWoKJVlKKZBRm8+h2\ngw+cIitEwHvXTCPCHs6sbe+y2b3TJ5HvqEpDqFC+LBVDKmLBwuM7+pvMvlYB85q9Q3BQMM/uHEUm\n503kLZyKtBOtubvlI6Z1S5KER9GqWQ3VGCbslfPAGTVlqo+ZXlEBVN+8mnTlngYjkZCw+KnRWhQ8\nHjcfHuuojOehIVNoWae7qY3LU4BAYLX8+XtvKf4cSskb/x3ylrDnJNXrVSIoxM7ER95k+9f79ZMC\nylcvw9LfitaMFYdz5y7Qr8NUNE9lA3krTutWkO/g7Ol0atbVAx1Sk7Pp3XWaSfO2YuOzxJSVi2x7\nPB66t9NTgnz766Ri55iXW4g9yIbdbvVL3uYveJT4+Ip/eeqPvwLn07JxezxUjo0GoHV/1bleV5nt\nfOevLSTdZIzsr2Y0C1YWsP61EYz5eA1r9sgBAhahvL8byJvwIibehO3dh3pSv3JlCpwuqpf1jU4+\nefIk/Zau5JQmU6J6ZAQnc3L1RgYiIwl5N2FM4LqmF4uj6ReoE1OO8W+/xcdKzKaRcC26sSf9vv9K\nI2+JT4wyJafOKMgnzB5EkFV+WBcWFrJnzx7uP/Cdr+nTi1xtumsQVSOiqfXRVIxEz5u89a3Vhhfa\n3Fqi9bglD01XTdH6Vkaw/k797zLbWcDn2zczI+NHjOSsrYjj4SY9qVOuLFXCyuLyuOltWJSSAAAg\nAElEQVS0/gV0sin7fzUBTgjI0YIXZF+tDde/hs1m8yJvqh8bzG84mlpx1clzFfDgL2PwJm/vtZqM\nxwJxIbE8/PMQnLh8NG89Im+iV8N7TTVL+/3aD81PTcDCNh+U6DoVhyl7n8RJMqBHm/aPf53FSfJv\nT7ldXbagBYcrhxWJN6FGs4Lg4TrbTW0KXKkIYSXY6j/SP/HChyTmzAXl1UTTCgIdq+3Hai0lfZcL\npeSN/w55+yciIzWH6LLhCCG4tbGiQleeS8t/GkdMmQhubTEB0E2nxvxuBQVO7uw89aLIW8r5LMLC\ngwmPKL2ReCM1LYOu4xQ/LeVB/sZTt3Fjy7pF9tuZcJLH56zU9lWSs/tNnQhuOXCYpxd+bZK9/ZXB\ntH1+ntmnS9FE/fjCAELtdsJDfP16srOzGTJtIeqj5cO7ryc+Pp7xn63hh9NyOgqV7My+txvdGjfC\n4/HQaKq5uLwRkkX26/nhqT5ULSdrytLz8un/8Qp2p6ZpfVbcexcta9YMWAlBRa1Z07Vr4TOWYX9E\ny9bM3L3DPCejdksJYLBK8EW3+7ht46eoRGtNx9tp0rChz9guj4cjGSk0Kiu/CMUveVWXh5dmzDAX\nuVyWHrVpDG4IE1AJiW/un8CpnHRu+maOJqsGYZwkF2NmfSGgVmg0X90yghM5qYTbgjmU9gdDdukl\noeSSVbL5VB7Ho/z5C8y1TBUCYzKhGh38jfP2DjDQy2pZhO6Uv+a6Ob7Xze3iwW1D5Dkp3mrP1xhM\nldgqxAab69iO3v4c4MYpHOSSqVxHmcS9o5hO/wwm7L0bb3Nj32pTiY9u8qdlXw6sPi7PQ67NWoab\na3zDmfRvOZY9F4mT8jkTeTuA1RrYR0+SJPadroYx2rRRtT8Ctv+vozRgoRR/K/LzHETGhOEnUTy5\nWfnElIlgyPPdmfPyOu34LS0n0WtAB/oNvJWQEDvfKIQtOyu/RGOWrxBVfKN/Mdo8YS6ZNfbhdjxw\n47UA/HjwpO6Frbg//X7sdLHkrUWtqnw5vi81KgTOAdWuXm3zAQGhQUHse30ETcfM1MiW6vOWnV+I\nLUAEcWRkJItfKpmG0Onx8ND8RfyWmllsW4HghgVLQMDEqrHcdu99vP9wL15Ys5a1xxORgAdWfkGQ\ngIOji9a+PdOwCWsO7SMHOKscaxsURqEzjz1ADFBZ2Hlrt++L44Ibe/LU92tMfvNugU7ckDc9f15N\nkh/ydjInnagg75cTXZh/R/uikY/EcaDep0r+REP/b++RAwcafv6idkwIqBuukMcImQyXr1wfdnnP\nStCv4rUMa9WDm9eOx/tb2nqLTDyvXe+bbFhfh/diBOu7zKDrD8O1fWG8mMCpjHNUizHXHLVZbXj/\n4qpGV+HE2SSGnnvWf5JeSclPLunVEgbseFRr2zdmIO1rX+szd28UugtJLjxPtbDqTN7T1xQg8WKT\nL7V2bslFoTuPMFvR97G5h25E/86V9CJA59ixxEd3INxWtojeRcPjcRr38JBKgescVcp0p3q5u3C5\nM7FZow3tPWw9Jf/9qwmIr6l+XItA3X1SJ20WIQjjCapU6HXJ8ytFyVCqefsXIuVMOvZgOzGG6gM5\nObnc38AchPDpwVeZP2klG1fu1I4BWIIsrDn8xmWZS/+7X+dUYrZp3JBIWPXTZFO7E8eSqVGrPMXl\nw7q5k5JHTrlLq0l733izN3XrVjCVzvo3wpu8WYDtC2Ui4nS5OZ2cQc3Kl5Y+Y8OOPYxautHHfLlh\nQn+iIkM5kZJGg8pyMtAmo82pP4zaqE/630PjejVIy8mjbERYicZuMEmXN+y61szevNNXy6ZsD08Y\nIRenVwiq9/gSgAVm33ELnWrVotWct3y0g8eKIW8mzZtxDkDi0FE+7R1uN0FWK1M2rOX9BMWlwZ/P\nmyInqX/RaWjO5WXz0pb1rDmr5qUzaq5U+6iyb2As0cBvD/mWMcpxFtJqle76sO+OZwkKKjra0S15\n8EgSdouVe1b/jwQcGIMe1KL0v9w0geBgnWym5KTTc7M8lu7zpgRRKGuxWHS/r59uku81Xyb9xKzj\nX+BtErUIiRYinj1SotbHGISwqpPBH9ML3575jkUnP1bGVoraG8mbZvpVkud6jR0tYnitlVm+0+Mg\nx5VDmSAzgfJIHizCwoQ9dyvkzbcwvdPjIM+VSXTQPzc4K8+ZQKitlkbOzpz5gRPOfspZuYh92+qH\nsQj5O9998kbgKOq1rBK+heiYMlgt/+0X7aJQqnkrhV9El4vEajWToIiIcJ92FmEh+Uy6z3GPU1aD\nX46i5ws/L1mutPjaccU3AqrXjOBkYo62L5Bv9Y0bVfEbhBEI8xdsZMXnqmO7vM4VHzxFxQrRRfb7\nu7HjvcCkw26zXjJxA1i3c7/5gEKOzqZlElc2kroV5eCCxHOp5nZeP5M6NasgSRJZeYUlIm/eed4+\n3LTTJ7WGERsPJ/gcOzo+sCbvUnzcagk4bnivLQsoxlfi50zXzGxGQjbzph60iKsECV7XEf13qv5f\n471p+gkg6fGx5qL0yvGHqjUnLtjCrOO/oWtivCDpfWqHxFF7xcvaQfVPeP9dY/n21sHYhKBquFnD\n2uAz/UVKCDh4t6wNz3TkU+hxUik0RiNu3oN6JIkOG6cglIoOqu+Yd9CDPD35KujRrDK6bBxNr7Kd\nOZlxSpcuSfLPT8Aj4TfyaJs76fnTMEWOeR53bh6MRcDn187DG90q30i3yjfiVLRNqr9briOXIb8P\nUSYqYdF+xPrFLEc5Xm71po9Mi7CY/OaMxwFeavY5r+ztTx5yGpwX992Bbh6GiU2+8unrcDiYd+w2\nVFPriIYbfNoALDzSWZunMVVIFDW4u+7HfvsYseq4HKwjz9RDx7JrKRdTzdQmzF5H+5ztOE25Ci2p\nbE0MKLN59dKC9X8HSsnbvxBBwf6/1rWnfXMlTft4qJ+WVxa3tFZ825Q7vKSGzgnBN9snIoTA6XST\nmpJNxcpm59r3lz5zWebQqWM1Vnxu1tiGh18+P7qOD+hpD1a99TjlY80PzNx8B+Ghl7/O4aXA7ZGT\nm3534Jx2zNvnDdCSwdasWI59bxRv9oyPu7RSPKmgZb04NGkELreHhJRUGlSUtRUOl4tY4IJCnO6q\nqT98EtPSKR8eTps355lqmCaMvbhAjg3DfLVrM+bMYA4SHQT8AtqDH2By/ZaM2Pi1icyB4IW217H4\n4E5O5uaYSJYR6lXaf/8QDhw4IAcrAGva3EbjxnKEd982ncl1OqgaEUOBy0XDFXKCW28T6q6CZCVg\nwTxGk1Wvmcplrb7hSeqXU82OQknECvUJpdEXLwJw4C55ezr7AnrqEJAkoblKGAO65fQfZqiGHTXX\nmFzxwEjiZPSseg27bDFsu3Dc0F6Wl5frwOVxs+Y6+f51+6YhXCxUsjV528skcBxVS3RdZCeeaPCE\nT/t8dz4v/z6eQbt6A7IP121lHuCWmndiFTYibJFFjneT7UFWu4waO3nNVuH7Eg2w48Jnpv0L+aeI\nDa3mt60viY+jS8UZflsGhkz80nP3+pA3I8LtFRE+xuiiceBUFW2OVqB+tTMXObdSlASlZtN/ML5Y\nsI75oz5GKHfKoHIWvkx8r8g+aecziS4XgdV2caHm3sjNLqCwwEnZ8pEsnv0ly+du0U8a0oisLSJR\nbyAURd7UoAW320NOdgG/7TrCyy98pT0V1m954dIX9RfCSN763d2GJx+63nT++KkLVK9UxqdG6F+F\nFkOVKFEAAV88/xh3TV1iOoaAXa8PxaYknD2TloXNaiEu2jfj/OVEgxe9IliVB/mecUPxSBJhQWat\nx/3vLOL3Cxlan6PPDeeXY8d4bOVqpb9uvhzYphW927Tm2nfkfF/aWoEawUGsfeop8p0uyoRefK3b\n+Pmy+c8YWXug71B+TDzKwJ/WKuZc8/32xBNjitVwnzlzho4bZF++1S160rRpU7k4vU/eN7T9Iw88\nh9Vi4dfkJB7+cam6Uq3tNTGVWXJTP9ySB7vFxoGMswRZbNSJKu9D3lQUup38evo4g/cu80n3oece\nU+cg79chhuMi3ScYYdPNvtHr20/vZdzRRahEUa9XKkzVCzBGqhrm8fm188h25hFpD6ztfXRbf4N8\niTARyvy2b/m0O1+QzIv7R2jXS3Xen9OqeO1WIEiSRK4rlQi7/5x+xy5s58uU8cp6ZJOuMZWIlfJY\nxXk0s/Il5nk7cG4xx/Jk8m8sj2WE21NAriuJqKD6FyUb4MCpF4D3ZfmUkjd/KDWb/suRfNacfd5R\nWDzR9rg9BCLk3asO03eEYO2pWQHl2IOs2kOlecc6ZvLmBwX5Dk4npVKnQSXtWMLhMwx5YL7ml/bM\nhDvocW8bvtk5OZAYDVarheiYMBIOmUusOByOYn11/gn4+RNfzY0RtaoFTsp6KUjPyefGUW9rmo+l\n4x6iYXU9111Scgp3TV5mIivGz8dOnWP3rBEcO5vKG+8tYcsFiACNuAFUjIm8aEd5I9R6qQB5eXm0\nfmUBAO0EfDDFj2ZMVb0oaPaKEmGoEMtfRz5NdFgoVkNOLAHUfe1NfccLQzpdi9vt9ju/fJcLSQK3\nn7+fk+npXLdMfXFSVEwGUlgFODFotKlPrtNBjtPBwJ/W6vMxrklInM3JpHKkb+qGyT+uYVHSXvNB\nSeL2379iVH6auqt9H5WtwWx+cBS1l0/F45Gos+IVvu/+NC1jq3H0fv2FJ8tRQJvV09ie+QcNPnvJ\nEHVrNmcevPtFnzkFW+0M37tMGVvut+mWFwi3BdN27XhDXQJJuQcJjgvdLUPOhyandOm0YYxGvL7p\nMpVQaxDfnDNGQwj0Sge61s9X6yT44to5CCHwSB7SndlFkrel7Rb6Pe7yOHFLboKtss9shZA45rf+\nEIAPDyxka4FcC/SZ33pRkWqMa/l6wDGKggf5t7fywAyOsN4nSa8VmYhqP0EBlRlKCp/zVP0PL2lM\nbzSs8BjHEvX5W+ni08Yigtn1R0/5PR3oVOOI5gPn9hRgtQT2LW5U7X/A/y7LXEsRGKWat38Z1n/6\nEzMGf6zf1ZXt/x2dxua1+5n1ylJIFthrCL7cEpi8XS2QJAmXy4PHI9HjVsWUpDxbN343rujOfxPa\n99a1ciqxvaVjPaYMuu2SZZ6+kMG4SYvYr9gKt701DLvVytm0LEKC7CScPseAOV+YCJs8vmFf2e6c\nPpSDf1zgq++38PGek0hAuRArP0w1kP+LRFZ+AeezcqhbQSatDSeYAx4OKuRNdfxXUX+K2R/OGMTw\n66iniQ4N5WxWNmVCQ3l30y/M3rYDSTHRqS8fCc/qxHDwB4tZdyFVkyEhk4kQq5WDzwzHHyRJotbc\nGUiq9gqhaAV1n7cxDZvz+qHdmtwxzdrxxDUdKHS7aL5YJp2SgfAl9R/L6ZxMqkb497Ec/+MaPtLI\nm8r45PGEgMRHxlHgcuJBIswmv8zUXi7ne5MkvZ0xuABgUefePL5lmTaOSti0n4BBm6cn1pX8nrtd\nasSA9jdSLbYCe5OT6LtzgY/mzaLNWfaJU5MBWyw6YVndeTLRQbo5Ma0wm3y3gyphV65uLUCf7f00\n7d71ojN3N7+baLtvFOfQXb3Bi2TNarn8kseVJA+vHuyJrFkzaxCtxfi8/VVI/OMbTjrlUlcWoGHs\n+8RGXCdrDx37iQj+Z6Q8uVpRmueNUvLmje4VB6J5+qoQgskfDqJV5wb8cTyZGvUr0b264UFlgbUn\nZG1FTmYeLqebmNiifTouBYcP/EHdBpX9Vj7ods0U03we6NOa/gN7FiszL6+QCxdy2LcnkenT1wO6\nRmnDhuf+kVUW/JE3BHRsUo2f95/S5v/8E9dz53Wt2X/sLPVrxF20iVWSJFoN8tJCCfh+2gA27DvK\n/5Z9bw4MUD7vnjVC05I1GymnATHWM72SOJJ8geplYmg+1ZDHSyFIPw97nFk//sLyPQe1U81DBP83\n2ky6Tl24wA0Ll8q+bs+O4GxWNpWiLv/vGeScbDbFreGpJQv5JjcDBJx4enQxPS8eDZb+f3vnHR5F\n8cfhd+7SE0IPvffem6AivQgoP0GwAApYKApIUVCqFJGiYEHEgiAIoqAoXaVKkd5Beq+BhJB2uZvf\nH7t7u5dLQgIhgMz7PJq73Z3Zubll77Pf+ZaxxGJdJtXu3VkE7HhusFu8uSVuEuJtx1MDCfH1J97l\npMIiPXJbF2+Jl2ET52NLvF0IzVl+W4v3qbZUX+7Te1zeYDDZ/JNfXj8TfZkw/yxeNV7NJL1mZYSV\n9b2DBtLC85u647L0J4DZtWbQectL7vMIYGz5D8gVmCvZfs7FnCBXQH7sermq/rvaAZ4RqgUoS8+K\no245puvx5wiwZSJA952bcKAJYC2XpeXM61066WCAm46LIGwsON4GQ1h2LrHpludV3B8o8YYSb7dL\nuxpvE3VRq1pZuEYIn/+kmbnjYuNxJrgIugspNxwOJ77JRIRu2rSJoW+s0N7Y4Olnq/Hz/O3uX5K8\n+f2ZOT91kasPMj+u2sCHs7S6m1tmalGS1uXGtPLZvGV8ufqAh3jb8WnSQsyR4MQ3BYHYb/rPrDx0\nEsAreW1S5aysx20Z8johweY15XA6EQivXHAOp5MbsXHs3b6N7n9u9eivSt4wfuj6vJYmBHO7IXb3\nDeyNn48PxceZ1rr369elbqlSjFu2nGWnz3iMuXLmUH7q3s39vuhHmtN3OWBxn7RFqBoWw26/zGPV\neT1qUkja2kN56ak2lMiSnQAfXwrN8Iwy/a7J0zxeIOU8fAa7L56lzYrvPJZdkbC4wfOUz1sIKSXF\n543Rd2oWrz1PDSDIP3WBOFqeN0OkCfdrw1qWWLxpX52nVc60vMGGRiPw9THF2W9ntzDugJHrzrDo\nae7wi+oOI0tApiQqLHiLN6d0YdeX8M5ePkuvw1p0bbAQzH5E8197duNrJLaWGX8Lko+xtTxdN6IT\nognySTky2uGK9ygmP2/XNP7hD4t4gwHFPyF7kGf+OZfLxfv7n8JM2utyi2WrT5sNibCIN4A3kxBv\nZ6P3kSegNEIIvjsyDtDyyKUk3i5FbmXjlW7mnACNCmr320Cf3MQ6zmCzBeAjsrH6VGltnHrbxwsf\n9u5QcUco8YYSb+mBIz4BX72clMPhoHUpfbnRJmjYsSz9R72UIeNwOl3ExjoIDvbnwN5TvPHKd+59\nPfs14KlnHsmQcdxPzPplFVMW7QZMgbT16/Qr72TlwJlLFM+THV970gKuQj9TFEmgVaVCLN5z0iuH\nmXGMdcwI2D/GFI0XIm5gt9nImckz+i4+IYHw6Bhyh2Yyl0z19jmDArgUHevRP+DO67bytc4UzpbN\nQ7yBZn2rO3kKFxISPLbbBRx+S5vLeKeT0lNNN4JjaRRvOy+ep3KuPBSeZuRHlO7znHhVe+goM+ND\noi1WMYCTXQcm2V+Cy4VEy7FW9rtxROttjj0/kGJz9JQiuhhZ3eo1XAKKZMrG3B/m8i7HSFyNoXvu\nSgx6rBWgpfcos9BqHTLzr2kiTehtk7O8weB8T/LB+cVYxVviVCFrGg0l0CeAF1aM5SjXsVrThJAs\ne2QYIUGmde5mQiz+Nl98bHaeWzuUy65ITMuYdPtfTazch9KhRQFos74nApdbcFoT8dosVR7m1p6e\n5DwDnI05T77APMnu/6/wy7HK+ivNqvdkkV1o36sNKZ2AQAgbf54ohRks8Rg2VqPlwRtErfzdsCdz\nf1CkHiXeUOLtTnHEJ3D66CWKlskLwMLpK5g+zrCAaXfapUduzzk3NTStMcLixyRYsWUoAOfPXMMv\nwIfsd2H59kEiOjaez+b9xbzV+7ysW8b7vz/tjb+/L1Vf9RQ7n735FKFBQZTInyNZQXYnGHVNjfPt\nHX/nS6tGpCngVXLr0Ht9mbluI6NXbwIBu956DbuvL34+GR935ZISp8uV5LwWnjYBaYgn9/8sPm+G\nC1viYvLA9nY9yRYSwpWYm8S7nOQNDjXLYwHDyj/KS1W9M/5fiY0iR4AmhKSUlJo/Gqel336F6vDR\naUtUojDFGUBhAjnJTQ8/uY5BZXmvSXuP8xyKuECwzYcn135MYn84KcFu+Txbmo0hOiGOhn8O0wMY\nJIahVQhYnyji9IV173MmPhy7LXG0qbU0lmnlWvyoubT+27FVfHPhZ3N/KsTblTgt8MPP5kuor3mf\neW3bi+5+plb6hlgZQ4hPJvrsfM7jMxuRmlbL27iKC7zOczvEOiOJSbhKVv8iHtu1PG/WaFMbL5dc\nn6o+bzrO4CMCWXGqA3Be/660z/BIzuVkCTFThhw4N5lL8Z+jCT098lWAH3WpXmh2Er0r0oISbyjx\nlhRzvl7ErMG6ABOCIfO7Uu/Rqvd2UMmwceNehr2h1dV8Y/CTPPl0NQB3xGx6JAp+EPh99W5Gfr3K\nwyF/0zd9SHC6eOTVKWaNcgHSBkhT3PwzvQ82m434+Hhq9/7Ufdz2aX3Zsuswr0773S0SNn/U0yta\n1+lyuXO4pRYpJdFxDmq9Z57vnxGvExioLY2We9ssmWXst1reDC5H3SQ0wB9/XYA9Nnwyl7AEJujD\nGtCgFt3q3Z7l9afde/l661YOXgn3tBAKaF+qJGOffBKny8W12FhyBKWuIsS12BhuxMdRMNQzUvSR\naRM4h3EOi5VNaEEU7nNLtLQhicTboef74p9CNPW+qxcpky2MvZfP0WblTI+2CPAFigs7B0UCIHmp\nSGUGVGvGwfDztFvzrXlyy3lNq5vL3ZGwiDub++LTrF/rGg/i8T8+wCqwPAIUgJYBZYjwiWNj9FH9\nPJIqPvn4rIF30Mubf4xgF5GmL50R1KCPsbx/ASbXeYsX1g7mGjf0MXmKN4BYZyxX4695WNE6bnoF\nq+D7vtaXyc6tgVW8jS/7KQ6bg5H7jXyY2vaSgeU4Hrdb/8y456J5li48XlALPIpwhOOSTrL45uBy\n3AXCAu6tdU9KFyCIjLzChqutQdwAXNgJo2mR1fd0bA8bSryhxFtSNM/dw3yj39mXnvfOPn4/ExMT\nj8vpIjgkgOaPv4+x4mU4+I/+8H/UqlPaq90HHyxk+fKD2hsh+POPtzNqyHTuPZEj56U2RgH+fvDX\n7JRThhjUelHzt/LIbWa1PEldtBnvgY3TeuPr68vh05fJlyNzkkl/q7zuuYSYM8SXFePNJKdOl4sD\npy5RvnBur7Yp4Uhwcjo8gtYfznT3P61LK+qV1bKzJyXeELB/tKeAO371GrEOB2VymxU25mzexshl\na5NNa2L9PGvf6IavgNpTZ3gfq7/vXbsGs3bu5FpcvCmk9DQbNXKHMbVpU2rNnuXu91ifftyIj0NK\nSai/p+9nkU8meiarsFjPEJDTx491L/UgwGINdLpcxDkTKDPzI892wP9yFuTnq6fxEHrAiS5mLdCD\n1y6RNziUUL8AHE4nJeeOJ7EAM9takt9aLGs2m7HPOnqJsJl1QzXrme6HZktevBnHWstUbW8x2t3r\nB+vm89PNHe62QkBDfHi/SdLpI+r/8Za7T4AvavSjx9aJ7vcFRHa+fvy9JNtakVKSIBM8qh8Y4s0m\noBlP8GKt527ZT1K8uaOjcRYAGmRtSYnYKnwdNwIbUITyBIoQulQ0/71rVSIkNmEjyhFJiK9WLmrG\n/r6EcxRw4ELzf7Ppc9u/zIrbGt/dYt2J4hjWOT/Ri6r5X8bX7vnAsutUeUDLs2gT7alQIK0Jgx8+\nVJ43RZIsveCddPJOObzrNG+20zOGG4Lw0LgUWqSezs+P4Py/kLeooGatKqz6YwdFSmRh6DDNmTwh\nwbvN5avRSfaVJ/e9K2915ILn+7j41LfdPMvbx6pml0l62gs8hQueZbJKFki+TuKOz1NeyrTbbF7C\nbeeJ03T6aIH7nLsna31IKWk5+CNOx2vj2T62N3s/NPtPcJqZvvaN60v9EVO4FGvJqZbEc2KR7FmR\nUnL40hVKhmlpREYuWwu4Nav2WngkzHCz8uC/jFq5xhS4SRhq33y8HtXz5abTQs2xOxOw9LXu5A4J\nSdGym/xzrSG0vNteToin9IyPsIorN1oFdMsGQVBQoFZSwqNvreHcPVt4Z4fFYd3Dj0075vjz71B0\njhFlmsQYvTDUl2Ro4cdoX/lR/Ozaz0CZhcNTnI9EAezaWXQRXG3pYGzA5qbvs+TmTvc+YxR/CAdr\nVgxiXZMPmLZvKbPP/4nNvdTq+a2+vnUiUkrdf05yliuM/3sGPWo+x5W4CAoHJ23BEkLgKzyjV1Py\ndUsNK7b/ymLmAdrXV5yK9K4ymKiEcAJsmZhg+zHZtkIIBIILFw8y/fJANL8xM2DAQ2g/ADhZiMPZ\nGh9b5kTXSYTl9XxAibeMQIk3RarIUyRR/qN0vOkYtbfPHYNFx3aADfZcuU5srJPMJF1V4diRi8RE\nxxMY5Glt6tS5AZ06N0i/waWBDT+mzsqWWrZ8qwm0G9GxDJzyI/8cvnyLFunDlEVrk9x+8ko4p+Nw\nC6Wh3//O2C5ttDHGxHE5MoqiuczcXKuHpZwXrs9X37P85CXzB75fV/JlSbmYtXHs9gE9uBEby+Of\nfu1xLRoiz32wgOLjJ7mFnRBwA7gQeYN607/EGq1qPUEmv6QjNI/30r7jyLg4Em7epOrcrxkZEoYz\nKJARl08mGmVKaCecdeowVYNCmd32JYL9/HFJ6U6c27FCTT7a8ScX0RIm30xiNjThpnGg/SD87T56\nbVNzPpIb08gTaxl1ch0A+9sMSaKNYFDxx6lToDRhAZlpvmJsEmMwcQHLT+9mTTNtTLWXG3kWtXMb\nz2BXY65oWz1NmOCOthTu9wZ/OvYw0CeIkFtEhKYFl3ThcMW7E/MaWJdNm4kWHvsi9Qq3IT7e+eCS\nwxBuHgioI56nfpkX0zxuKzP/bYhxZdiA54uvx6anMol3XifOeY1MfkXYeWEcJ6N/wIw2tdGq6M5b\n9v9oYa2O8N8nKwNn2Hm+sTs3XSbxImULjqJSwdO4ZCwuGYeP7f6uDf1fQi2bKpoWODYAACAASURB\nVJLk3OnLdH3CSGug3c2f6fEEXfs25+rFSAKC/Xim5kjTMhIkkAmwdMf7/2k/tXVbjzB49CLt9cL0\ny+VlLJsiYOHEruTNefs3wRsxcUTHxpMrq+mEvXDjHkbOXuVlxdv5Sfrnb4uJd3AxMoo+MxdxWC9b\nlZTP29wt2xj521oPPz/jr8fink3bltjqBrh94qTwLE5/IyaGKlOm6f1prVx6/8cG9KPpxEkcAe88\nd/pJbAKOWCJOXS4X63bu5LedO2lavToj167klKXCApgVFrTlOxe7Ll6gep58FJ7+ofuYBS2f5X9L\nf/A8p9YKoyZpr9KP0LJkKXxsNkpkMStxRN68yaErV+ixbg7dCtblYng4N6LPs41rPC4KM6yj55Jg\ndEI8FX/W/g17l9IyIki1DTOqt+OVbfM8jhECWgQV5/lqj1E5W0Eq/WZdujTSiGDxj9OsZZXIx4zm\nWoLXMSvG8KuMZFPTcdRdOcjdLnGwgkHiVCFv5GxFq3INkzzWSte/3+KajEEI+OmR1K08xDpjiEq4\nQQ7/MI/tVvE2rVr6OeeP3mcWngcYUm6Jx/4bjqv42wK5Hneeuae6A1q6jl7J5HoDmPnvS4CW91AT\nbxuwWSqOSGl+x1q0qYsg+lMn7GlCQlIfDPb3yaIYc2ImFi5EjYJrAHC6onHJKHztYcl1obCglk0V\nt42Ukv3bTlCuehEAXm89hhN7tCdiRBJVp4Faj5Xki7ELWfSNnk/IbnPf6WUMYINrV6PIlooI0abV\nh7tfT5/fk0JFzaW/hT9u4LNJ+g1L7//Fro/Qqeu9sahZqVet2F0/R+LcZ2klwM9HX4oyebxsEfdr\nG+AECiaRQzU+Pp4aAz9FArkFrJicenH39/6jdJ+pLU0iYHy7xgxYsNK9v+xgS81S/b+nKxTnlYb1\nyB4cSI2xn3v1meSjZVLPBhKOnTtP0bzakprL5fJoUDdndqZ0bM/ZyEg2nznNEesJEvcnwIWk6McT\nOfamZmlb8u9hem/4C4AFa1dq49Lb+gOHLKWxhBCUmD7ZHL0wj+3x52J+fOIpev61iEvWU1rGUMEv\nkDLZwnC6PK01ocHB1AgO5p9CZuWQxnOnckLCCXmCmXPH8Gqhqgx6pBkAQT5+HGnvabV+9ueP2SEj\n3R/0UNuh5s5teNGx8mPk8Nf+PVuLzAOESLiZxHexi7PUXKaN0fCJq7NikPu1lKaocEkXJ29epkiI\nlhz3Lf+WTIz7zT2+1Ag3KSXXiXG/dzgTeGFzL7BGgwqYU2u6x4NlgD2QQdvfJpIIjGhKGzC9+iyv\nc0QlRBGVcIPclqADI0mvIVqL+Jfj9dIjbjneZD8HkmvxZ/jhVA/3FoAzN3eQP7hKkm06l/gmxT6t\nn7dNKixtyfFIoWNIKdlyqqh7W/mci9yv7bYg7KSfVVRxa5Tl7SFlbP8prP3pGDih08BGdOzlXZrJ\n5XJhSxSFGBERRYea74NN0P29JrR97ok0nzshwUnL2maeqVIV8jLlm1fc7z/6YCG/L9qrvdFvPoOG\nNqFRs5oe/TR6fIz7x/3Lb16mcOFc6V5RQUrJ409N8LAOrVuU/smCExKcHD51mbJFc/PuJ4tY8c8x\nt5UsT9Ygfp38Wrqe7/jFcLKFBJE52HPJqP7bUwg3/NQELB7cheAAPzpNmsnpiDgACmYLYU6/F6k7\nzBRbSSXpNba907wOLz5W28MKALBlyxYGLt5AcQE5BLh/CmyJRJsh9sDje0i8//BgT6EZHe+g4kef\nYBVRRwb0wyUlDaZP53TUTbNPAT0qV+bT3TvcVr5NL3VnxKplLDl72nPydMvg8Lr12XPhND8dP+Ix\npglV69J/xwbTv03A6HqN6FimMqW/mkCc2x/O+KtFd2YHfvpfd/KFhOJrs1P4uw/wmAkBXYtV4b1H\nmro3VZ8znnDM/HVNsxbm82ZJO+VfiL7OY0uM+rBWS5xnhQXDj81mM6NJsew3vsLFT/QhLCCUGGcc\nWf1CeHzpMKJxeBxrs7T5qFJnSofmp+WGUZpPm5AMLfYstfOXJ5NvYJJjTis3HFH8fvIvfrr0uztV\niBGwECoCiCLGHRFrFzCl0mTW7l7LIqElD85HfkZUH02cMw4hBH6WpLwu6cImbPTd2UGfE5eebkMT\nb0YxeR+gbc7+VM1Tl4jYcCYf6aIfI8lJMV4vr+UTHLu/OU8yngplK7j/bUjp4vTpM/wa3QWAYFrQ\npdRb/+nVjIcRFW2KEm+3i0d5LGDpKc8s5vGxDk79e4HiFQpwv2IVb59+0YUSJXJjv0OrVVI81uZD\nD9Hw+Zh22Hz8KVsy/UL/a3Uy/bKMaEgE1M4G495/jeDgIKq/bC6tgimOts24/aS9ERExPPaesbwI\nVfOGMmPAS1yOuEnurN4W1ApvTfYUUFZRZXlv/btvbF+2HDtNjkzBFM2p+Qp98MtKvt2qCXRjOdNY\nNnyhbBFmHzjunoPkxNved97g30tXKJfHs6SRw+lEAmUnTNGP1UWJpZ8dr79KaHAwZyMiORF+lRcX\nLdSPkfzUrgNhmUJ49NsZpmXO8ttp1DgtbhO0rVKF8Tu3e35myyW4pkM3CoRmJjbBQZCvn1eFBfQq\nA0LAd4+1plL+wmTy88cmhEd+N6PNd/We4bEixUkrkbExVP9tgrkhCfFmLGkaPwl2O1T1yctO5xn3\ncR5thGac397CM4rUECKaz5vZZladN/n8wGI2R/6rfxwz8e7qhhNIT6ISbhJsD+K5za+6x+AjpJ4Z\nzRCWMLPmV+42sc4YfIQvPjYfIh2R2ISNEB9v8/SYnYO4zHF3hKjZn54PDWgfNpBKuesQHx/PmMPP\nYIi3Wn6t2Z6wyD0mG06Py8suXO78awJtboxlU5dM4KvDT2DMfXnf16ld5Pn0nLZbcjP2CHsvNtLG\nLqBGwRM4nFdwyTj8ffJl6FgeZNSyqeK2SSzWEuMX4HtfCzeAVWsGZ8h51v6S8WW5hIDlU18hODAA\nP18farx8dyK4AgM9k8wGB2qO+jabYNj3i1m4TbMqfda9FbVKaEuvxiog4BFtCtD7izn8efyi+32l\nfJrvXvn8uQnyMyMBB7VpzKA2jek6Yw4bTmnHHxxh9vUu0PSDyZzQCyoces97+bbkaDOh74IX21Gx\nYH4ArsfEEudIJtRXF2Pf79zJhE2bvdKZCClYcegQrz1Sx/ysSS2tAkckjN+x3XufhFph+ZjWvA2v\n/fQ9m6Ove/vW6RPYKE9hvmrxbJJDPdHJO81NkdljYYM5nuPPv+N1TFJExiYONRDsbvM2AT6+9F/7\nA79dOeTh62YItO0JZ7Hpgu6vhgNp+Nd4d3uQ1LTl50TUJQqHhBGbEMejK0fofRjWPO3orEDh4DAm\n1nyFOKeDxqsHe05EOnPDEUWAzTPoZFatGSm2CbCb1r9QPa1Hj+2aOLJbSm2VpQoDK73Pe3t64uCa\nu824ij979enn58fw8r+630vp4vyBoziIJxA/znGWIIKJFccRmCWpzEcE+PTgEwgBr5RY5tH3RccW\n4PbEm5SSpScqYPjgNcq3FT+/Wy97BvlrbiOaRfYFAHxsWZGJAzIUd507srwJIdoBw4EyQE0p5VbL\nvneArmjuNW9IKZfr26sB3wKBwBLgTSmlFEL4A98B1dCC55+VUp641RiU5S3t9Gg+luN79bwW+uPz\n0hOTU250l0lIcNLiET1Kzlg2s/6aAAiYtaAXufNkodFj2rFG3rc/dCEXEx3PlSs3KFAwO/8larw8\nyX0zv1vlsQAq9TEta592a0HPrzWn6j/e60bmTIFERsfxxMjppnib0Jf5G7cyYuE6L6vbD707UiFf\nbrevG8CiXh0Jy5KFVmM/54rl2NFN69C2bm0Alu7eT9+Fy72CKw4N9RRwVvG24rUuFM6e1WN/ZEwM\nVadOwxAIUl8OPTJAm79ik0xrZ1YB2/r2I8ahLfvdiI+n9lfTvJZpO5etyPCGjQH4atsWRm1cayno\nmfivZ0CDafmTHn5wAMKmHZtD+LC1ixm1HJPg4GxUBMWz5GD9iQO8uN70M0LAwfb98ff1TI9hcC46\ngrxBmngu8aPmpmD8U6oXmpuvm2hO8RdiIvERNh5dOsHjGGvSXNCWUaXu7GfT3V2fE9XIkyOMTIGh\ntC5fjlrL3k2yrZF0t07WEvQt14b8QZqPa/0/+pN4WfavBpOIToglyCeApmv6YCx7Ds/8MrUqVUry\ns94O0Y5oeu7U/MsMK5rAZX5eYS77WsVbFrIxtPJU7OLulomSUhIeHs68K8/Qo9Rf6dq30xXH8pPV\nMMRbMZ8hlCqQsVa8h5n7wfK2F2gLfGHdKIQoC3RAq/GcF1glhCgptQJqnwPdgc1o4q0ZsBRN6F2T\nUhYXQnQAPgCSfiRV3BFvffICvepPcN+lcxfKeosW3vz8w598OWKlWzwhBKG5YP6foz2Oi49z4Oef\n9I+LFS+XjsTCDXi0YXEyZ9aeDrPl8Cf8iuaDVa6iWR8zINCXXLnufbi60+XiWkQ0ObJqyy51Ok7U\ndugfZ+OctKUV+ecuCrbkqFqsCLsnmYLJWttUAL8M6kz5/pO195alXkOUdJg6l33j+lLRDrudUEpA\nyby5OXn1OleMTnXxNHj5RnafvcTw9q15tJR3UEiXat4JmQ8PSTmYIjQwkCMDkz/maD9zTotOnkTR\nyZO8hZf+eZ8Nzsq8qGvM3L+bmft3c6RHH7pWq8kz5SoSHhtDkSye/4YKf+G9DLirXXcqLfiSL/JX\n5NWzuxNZ7LSJ+6ZhO482AXYf8odoSVHrFS7D8cJl+Gb/RkbuWA1ISs//kOPPaw8uZ29q+bYWHNjK\nlKMbMaJJXylay2ss62+cp+RPI93fmzuYALM+qcfoPJZNtbFKCXPYiu2Ktt8v6GmKkYVjXAfMOqMA\ns+r0oUBwDgLsnveC5JZLz8depVhIPvOcSN6P+IrFTHEf02Z9L/d+m4CFddOWiDzAHkAe8nKec5bn\nQy2cJyUPs+uEczn2ArkD03eZcPWBWexgJgCl7M1pUfItsmfPTo/s6SvcAOw2f1oU2euxbeXxUto+\nAdkZRKXCL6f7eRXpR7r4vAkhVgP9DcubbnVDSjlWf78czUJ3AvhLSlla394RqC+lfNU4Rkq5UQjh\nA1wAcspbDFBZ3tKfyGs3iYmOJ1c+zx+k0YNmsn6RFpZurInIRCJr6o89KVQsJ37+vjSrqD2FS2vB\nRCFYvmNERnyM2+bxVpqPmwS+nfIiTpegQL6sSFcCTZ/TfiCK5xd880nyqUISnC7Cr98kLLvmN3an\n4u1+wCreAJYOfplmY792+4QlXoIE0y9vx8je+Pt6Pis6nE4qDp/iPubgyPRPW5KYyLg4YhMchAWb\nvkxbjx+j/SLdopVIvHnVk0UiEGzo0p1+8+eyKeaGl1/eV42fpGFxT7F59Ho4DRZ8hTV44tGc+Znd\n+vYy/l+N1Wqf5gwIIdbpIMTXXCLU8ryZvmb+2NjXfjAdFrzPdvf5PYMPDrUdyrEbVzhw5hj9Dy6x\npP+wBh2YBeBJZFEz+rHpok4IyCeCWNTsXaSUHIg4S8nQPPjY9HLnfwygLpnYQCTZgRBsFBUFEMLF\n8Cfe9Pq8CS6nu61Bp/UDiEBL1j2x5CCKhxW8rbnstrWL/kpb6v2y+kz3Pocrnkuxlxh/cIDmL6fP\nxcdVfkjcTZqIi4vj46NPATCw7FIAJu1vArjcvoRvll51R+dIKyuPl8aIum1Q+FCGnvth436wvCVH\nPmCT5f0ZfZtDf514u9HmNICUMkEIEYEWgHUFRYYSHBpIQLB3ktK3RjzL+kXDtTeJHs2X7dOXMa0R\nhUlESP28fiDTP/2Vn77eBkIwZ3k/smdPOTFrRrNmsebjdupsOHnCMuPrq/1orFhz0H3MkbMp9+Fj\nt7mFG8DGuQ+OWKvYx1OkFc0RxKIhr7Jnkre42juhL+UHWoIYEqPvqDLMiHKEusXy8+XL7Th8wfOf\ndoLTSflRpmWlQfFCfPZCW49jSo7yXN7f+05vd2H6EmPNff++k7QQ9Lfb3Ulwi00y/QiP6VY4l5QU\nn2L2s6NTV6rM+sqjD4lk2tbNbIqN8hBtBl1X/cYJXbwVnv6h1/KvoX3WXT5Dza8n061KDcbs3KB9\nvqDMrHjWjCzu8N049410c5vXyJVZs8JlD9CszdEJ8VyLi/YQb4mJw0V0bCw37ZnAGZnEEZLSP4/g\nidBi5AoJwbOElhl9+mfDt2n45wfmx0j0uXMRzJLmg4mKi+GJP0dyjpvUXm767W1q6hmAsQFtLNeQ\nhEsnpziODdh0YS+1c5f3ODaxcAP4rt6HyX7mtDCj+rfJ7vO1+ZEvKD8fV53r3tZ3Zwf67nzWHVgw\ntvwcfO23Xl2wsv/sOvfryKhzhIbk1d/Z8EromwxfH9Zq/VqrNrxYYlMKLVKmcZGDtz5Icd9wS/Em\nhFgFJFX4cIiU8pf0H9KtEUK8ArwCULDg7T1tKZLHbrd5RW02L2nWWhz0aXs+6K2XhdHv4PFxDlpb\ncrcZ27PlDuHb3/pz5MA5ylbSvqvt682nuosXrt934g0gNs5B5I0YXnhd++FO7HBerkTaaoHeLjVe\nsgQqCLcWYuXHryEQZMmUPikWUuLo1Wgq9JvMP2N6ExDgfcvYO74v5QaagscYY3LZDdYfO0PZdyez\ne8SbHBhliqx/L1zyOG5Yq4aUGmkKye2DevJcheLM2aMFURSy4RZukLxgs+Lv44Mhc54D5gAvlyzJ\nyFUr+XbPHsuyr2DRsx24EB/r0d6oBPrdPm3Z84/nXiaTnz/Bvr6UmzHFLdIKT5uAte6pcEcSC/2N\ndp6LwsGYnX+7+z8cE8Gak0d5vFAxnE6n5QlYUuuXz0FA64JlmPhoK8r+8AFONHH1btHadK3TgGI/\njHbPl5VKizWhY13+tCKB1TeO8mrO2ux48l2q/m5GkAoh2NNas5bvenIUg35fwHJ28Sh2prYcDkD1\npYO5SBQ1lg726FULdBjO9otH3Ul6V9QbxtqG6SO8UsO3h2ex8ppRNUQSgC9f1fLOKXgrzkQfJ39Q\nEYz5c0otMvSdvc+RlwL0q+QZVBTrjMbPFoBNmPfS7SdXsTRqEjYBncM+JSxbfnz0dCT9yqatrunL\nJf++9UG3YMnxsnqQhKRO3mWE+he64z4VGcMtxZuUstFt9HsWsIYq5te3ndVfJ95ubXNGXzbNTKKq\nf5YxTQemg7ZsehvjU6SBsyc8yzJ9+v6PLNw+kvArN8hrCQwIzA0xiep7+vrYEAL6dp5hXVsBYPnW\n4Xdx1HdGgL8v5UubPi0CWLOoP7FxDgIDvAvAZzSBfr5eP9Dpxe6P+hLnSKDGoKkeJYxaDpnKJWDP\nRG+RtG+8ue1SZBQOp5Mm47/WNujj3DWyN5WGT3UflzgZcYncYRwcnrwA87Pb6d+8Ca2rVaHDzB85\nKc2gheeL5mf2iTMEATvf7kO804m/T8q3t1H9+mFkG7wRFaWJN8t4O877gU9aP5ViH0WzZHVbmj+t\n3YBPt/xJpIAzxrxJOPnqAAp/aYqVPFKwqtObhPj5EZeQQKlZkzBU4+MEUCm3ZoWx2+2c6PQ2fZfN\nY+Gl4xjOhEtPHWDxnP1uX0MhYPTxTUw8sUn/N2Z+aRtavkm9JR97jPnA00Mo+4vpmzqtejte3zof\ngC+ObWT68Y3uwRufreLioRgpKgzWCS0f4OIjW7zk4JL67xDhuMngTd/Q4M9hbtFoE9BhwzhmP/Y2\nmf2CuVPC467TdasmGEPxY2Zd7yj6TsWfZ+U/azHmJZ54Om/pCmipQlzSxdhto7lBBOFcpCglGVh1\nCDabjR7bn9fqr+rLmR9Vmo2UAiG05UWXrs+zCO+0QTcTbmD39cEmzPtFjDWZMJGpjtIMj7zIj+ef\nAcCuW0Zb5/2KLIH58LMnkW07FWw4rqUIcqJFuZ6P+plQ/7vvuqBIH+6Wz1s5tIfammgBC38AJaSU\nTiHEFuANzICFqVLKJUKInkAFKeVresBCWyll+1udW/m8ZTyXz1+nUwN9+UQIlu4fk3IDoGmVYeYb\nQ7xtu7993xRw5moEfj52wjKHuH3epnRpyRMVSwKa31qVd8ylzr3j787Nv5S+XJo4+hMB7QvnY94p\ncx1751s9uXAjimLZU19/0krRjzULyrE3+1Hk44mePn36qQ1LrF3APy+/TrZAM83Civ17eWXdMvdo\nj7/SnyIzjETPlgjURP50IN3FTZ4MysXkZ15kzeljdFvzk3u/VbALG7TLVJAFUSct/WgC662i1elR\nsynRCfFUWjgew9QnBAwp35gx+83KF0ZOMUgcJ+RCCOFOdpvYG6IyAcx8cgiHw8/QcbNWksodeOv2\nl7O2NZL+aq/tNmgaVIEhdTpxu8S7HDy7UYtI7RralicrJG1rmHdkIb9e/d0jxxto4u3AtQNMPDpO\nH7823ry2/AyvOpYe25/X3QNd2AS0zt2RMlkqkisgL742P3fi3qR4b08bDB8yo28bMLDsAvxsAUm2\nSQ6n08GMI1qFGUO82YDcdKdFyc5p6ktx77nnSXqFEE8DU4GcwHVgp5Syqb5vCPAyWj3iPlLKpfr2\n6pipQpYCvfVUIQHALKAKEA50kFIeu9UYlHhLP1qW7o/Lkh5r6THvSLCrV2/wQj1TrPUc8QxPtq+W\nEcO7pxw+fJ6uA806h+sWDeD0uWt07KVZFCWw4SczgCE2zkFAKqJsrdyMieeJVz8BoFyxnOw9rls8\nBfzzTcZHm6aG8gM8/eMM8XYzNh5hEx653e6EU1eu0PjzWW7/sfwBdv7sn3Lh+/SgyBQz0MTjTmkR\nXid6pt6f8bEZkzmJw8sH7nCnfpSaPdFj24nOg7geF0PleYblTHqIPiG0PG/u4vQW8VZUBLDyWc9x\nSSk5HxNJnsBQzl24QIONX+rNTDOhZ2xRUgIMM0LVBjtbmpVSohJiSXA5CbH588iq99DEmpGEWGKK\nNzPBb8fMtXi9+jPJzte5mMv0+GcMcWhWPhvw+2NTvI7bcWkf7x/5FEOk2oAfH9EsS7HOGMLjIsgT\nmIuLcVfI6Z8dezKCy8AlXZyLOckHB43yYp7VGjrl702l7LXwsSVv3f1izzucYb+H2PITWRhY9huP\n+qNpIcEVxw3HWRaeNAXvyyXX31ZfinvHPQ9YkFIuBBYms280MDqJ7VuB8klsjwXaJd6uyDhstlu7\nynZrNlo7SPffebJ9NZqVG+Len71QMFfPRGuBC3qnQz9+gaxZA+nT5Sv9rg9Ltw73Kr11P1OkSA6v\nbZkzaU/PiR9/4h0JnLt4naIFc3q1SQnrg9S4nq3oO/kH/j0bneaxpgcV+5o+bLsn9+XU5euEZQ4h\nwC/5W4bV6hbvdGJzCbhD8WZUSyiYwzL/knQXbkt27KDX6r9AwJau3cmRSQs2Of6GJoBqf/EZF+Nj\nPNqseK4LRfUUIS6Xi6JfaBa71nkKM+UpTZAUnv6hMWS3uELAhmdewdfXh1A/f6SULD/h6Sz+eVhF\nABrPM4XKhBpNaFqsPJn8PIMTjj2XdLLq4X//yuwzu3GLMn0MRvpXIeDw/4ZS6+eRRFiWSHe1ehdf\ne9rFhR0bCPBxL1d7LuEaZBVQi/K811CzGLX58z0iZLQ7crV74RZ0KKJZ0HL4Z6VHwf8x+dR83aon\nabm2N78/NtWjTz+RvCUr0hFBREIEeUVuAu0B2BD6sql2txtc4G0ORx7ilxs/YdOtkF9Un4VTwoeV\nvmLALu+UGcdu7qds1iopirdXK4z12ialZNyBlu55eUePNAU4G32QPIElOBr5N0vOD0MADQOHUK6Q\nVt/1zIW9LIt8HYBuSrA99KjyWIo0M6rvt/y9TAs6SJwqxFg3cecftdn4betwroVH8UKzSRg/Xsu3\njwTg5s04bkbFEpYrM/PmruGrj9cA0HtgY1q1rZNhnyktOBxO/tlxmIHjftc2CFj/U/JpQx5ErOJt\n1psdeOFjPTWCgN0T+5gRxamk7BBLQIPe9MD7t15irTJyMtECgoGbmFLgcBIVF+6ERz6azAWpXZtf\nNG9J41Kl3PuKTJ3ocawE7TqXnpYwD2vca9r14CXedCvMnud64bIJAn198bf7UPibD7z6sJwNBLyQ\nryS96zQmV1Am1h46QOet2nPzsCqN6FLWs+4vQKn57+v2KulhNStDEPu56VFJwVw2tfq1SSYUeooW\nVcyi6AuObmTUgSWatU7AgDLNeL5oPSIdMfx0ZD2fnfjL3Q9Y04yYy5XrG43DIZ346cJnw/n9DNn/\nlVu8/V53LAF+yUfPppUEVwLxrniCfIKYd3gBv11bqo9FE2/TKn9GoF8g3bZ2xoaLghTh3eojcbji\n8bXUNr0Ue44/zv3Clsg1GNa9iZXnpXk8O/bvYBlDyMHTdC/b3b190v4mCCNyVP/bKHgo5QrUB+Cf\no9+xy6lZS7uVXIfiweWeL5veDyjxlrE0L6WH/utOI9qPkv4roAu3vAX9OHcqnsAsgoXr3k+yH4OE\nBCeOeCeBQX6cP3eZzm21KLB5S98ia9Y7d2i+G1wJj+Kt4fM4ekYvjXOPxFtsfAIBfj5Ue2UySJjR\nsylVKpdN9/M4XS7GzJ7P/J3naVomjAndvTOxVxk0mXi3Yod9H3iKq6TE24fPNGTAz38A8HP39pQp\noAWInL5yhcafzmL/0D6UGaU7oAuY2qYZTSqWSd8PZ+FUeDj1v/tWH6MmaDrmz8+cc3p2I2kZv0WI\nGeMrGhLC+AYteea3ebQQfnSqXpdaVau6hW6jrz7mX6kllj7+cn8Py7Mh3l4vWonPT+xyb1/c/EVK\nZc+FXxKWsCLfj2FG7lo0aNAgzWIa4Mf9//DuwaXG8DGXTT2XUfe10XxTv93zJ5NPmglj7e5oWkkR\nezZOuq6gxeOC3aZH1FrEm03AohpvkzNL2pOCJ0eb9T0B7XbUOW9bnshfk8y+mZBScvDGMcqEmgmf\nn9/cTTvWw+/NxdjSo8kbmtd93PGoY+Twz8GgPT0wvnQ7MLnyTAbsfsE96cyryQAAEjRJREFUN0/Q\nlsfLNSaz7+35ViZm+oEe3OQI4KJb/p8JCgnCLjwtezcdV5h7XAuiCaM5rUsOSaInxf3OPV82VTyE\nBAC6X1yvkS35ZNgSc2HEBflLZmXER13InT9bqorE+/jY8fHRfpjy5M3Jik1D78qw0wOn00X9/010\nC9Zl3/fShGdg+kefxjsSOHLqCp1HzQGgW4tKvNq+occxpy9dp3DurG5R8cbny1n3RfqLN7vNxnud\nOvBeCn7lY9o9Qf/52g97SctKaXxCAhHRsZTNmZX9lzWxu2/km9hsNsb+biYhffrL+Z5WJwFz122i\nVVhWFl+6RknAZtcCF9qWKszAlk2Id0kenfqlu4/Dg+/MGvfZP5sxbMbGgt+cs2fMMQFZ0Jx7f2v1\nDJFC0vHXBe59x25G8czieSBgiYxnyda/2FKmNGFB2kPIqq7eyWcNTrykpeIZv3mlx/ZWy74DYEGT\n53hmxffaUGyw48nX3ZUVbhdNuJlhGAfbDmPO3g28f2QlVr+0Cr8OY3er4QRbrGGZgXwiK4f02p4n\nXFcx5u2PRu8RlRBLt3WfEC6t9lLYfP1fnszibSVMDRHxN+i1+QPCZQQ2AYsfncov9T5lwIaRHOEi\nrQrX10egpTcJE1l4bVNPInAwseBwuthf4JuE2QQLXyZVnUSQrxZk8sbWXkRzgyAyMaX6J+QJzItL\nOr3O77lEKniyUvp6+bxS5rNbHhPsmwNjOVoJt4cbJd4UaWLpLs9Emy3b1eP6tUg61NMsBy/2bEjX\nVpZwfSGY+sOrlCiTnwedxMYNm7AhbGakXlKs3bKHQRO1/E2/fv4KoSGB+KfgN2YQn+Dk37Nm3rON\nB07zaqJjSuTX/MC2fXnvw/ubV69M8+qVvbZHxMRxITLKLdxA+2xz16/nu01mao4Zz7ek2/e/u4XQ\nwWF9iU1IYORqLdPZYQk9f16GBH46dIJo8RfvNn8iXT/DiIaNGdWoCb52O0U/nujtsSVgR2/PIIBd\n3Xphswk+Wr+arw7pnwfpvlic0TEUnv2Zu/2J7gNSHMPAWo0ZWKsx0XFxlJ1nWisTl5V6c8NvzGyp\nWYFOX7nC4yuns//pfgQEpBzFWHLBKPdYDKZUbUezIproz+prpp0IQhBrKYnVrlRd2pWqS4LLyQ1H\nLFn9NVFabakhIjRrZcNVI+lfsIku3MyTbWjsee8wePuP8WzmIr/XGUVQUPLF0Z24iNYtl1Y+rJv0\nA1+vfe/gkpoAfevUcD6rOp7KrvKE+mbimiPcLd6iZRQuJNEikgX75rAiZqk7GtWmp16x6T+VEyrN\n5mbCTUJ9U1+C70zkEb4+1UfrD+3SGFLut1S3T4xaMlWAWjZVpAMXzl4jOFMAmUK1hLGL5m5g2ljd\nEVcIKj5SgPGfvwJA02pmypCSFbMx9Zs3OXv6KjnDQlNVAzUj6NJzOsdOaXUi3b/gNvh2Shc6v/Et\nWn4twdqFSS+VjpzyM8vWH3e/N5YJl3z5OsGBfvj5PrzPTHGOBCqPMKstGH93vNebyqOmgoAsAjal\nkO8to4lzJhAd7yBrYCBFPtH833qWrkD/Rk08jjOqi1yKjqLmLC3S0UjIa/jJrW3bhULZvQNZjkZc\npWhoNhp+N5FjuqeaseTYJFdRpjdNOmtSvNNJ6Xmmv5zxgLH96b5k9jcTOF+4EUmL5VOJ0p30fQT8\n/WR/av72oTuYYf/T77mrT6QFh8tJ7eV6dKk+kGezVmFBxHasZbQAVtUfSrBfMFfiIsnul4kYZxwt\n1gzRj4G/GkxM6hTpwvObu7vHqEXYarnb/pf1aRoXbQzA34f/Yt7Nue6oWOOvUZhe6BG0/jZfGmZ7\niiYFtMCUSEcEvjZfAu3e4tPlcvHd/vc4wy6EgPK0oE25Hmka+/XoC8w7rVn67EIJuAcdtWyquC/I\nnagG6lMd6/JUx7q3bNf22ccAyJI1GB/f2wudvxv0eqUx/d5d4LU9wN/85xKagoGjUslcbvEW5Ae/\nfdWbeIeT0JC7Xw0ho7GmCsnuL1gzqo/XMeFRMdQbo4mZNW93Z2q7hvT+8Q+WvNaeIvnMRMgZUds0\nLZy4cIEn5n8PAgIEHOhlWt2WHdzDJ4f2sLT505QpWhTA7XcWFuSdNFUADXMXSFK4AWTzD0IIQfNi\nFfj06E58AYf+5PC/whVZtWsX3XZrD0QnXjRLTvnZ7e5o02I/mCl8dlw5Rf18ZtDF1ssn3cINYHmz\nnoT4+ntYkyMdsWTxS901Wvn3d92fa0fL99nW3Dz306s/ZP717QBu8WMQ50wgGIh3JQAQ5OP5D8la\nXq/pGvNaWv64d/Jdg6iEaF7c3B+b0PzZ/PDh+0fMaFSndGIXdtxlLRLZyktlK0WgXfvcDcu0oCEt\nPPavPLyYX6M09wUhtB7ipYMAaS4j+9p8vfzTDGw2G13KeyVeSBOxrmu3PkjxUKEsb4p7TpMamkP0\n0o3vcerEZYoUz3WPR6RILVbx1rZCITo2rEeZvGFUeWcy8Wg/dH5Cd5MU8GOP53jm8znuNgCFsmdm\nWR/PdAylR1jqpQpY8NIzVCigFW2RUuKUEp+7nGpm5b+HeGXpb+5xHrcsmRb+1LQQpSXP2+0ipaTI\nbM3CZhVviXFJSYl5mpB6OmcpJjTULEM3HHFEOeLIE5Q+pegq/65Z2vpnqc8Ldc3EuDWXDtari2lC\n0a77L04s24kaeUvyxJ+a0AwAVjUaD0D9P7T5u13LW4TjBl22DMKGGd364yNm+auzMefI5puVbtt6\na2P3Lc+Aqt4PGaml784OgGRc2e/wT8eo2JTYemwe2xza8nvn4ouJd0YR6pf3Fq0U9yvK8qb4T2H3\nsXlZ8R4GIqNiWbZhLxO/1+ovjunRnIa1k46qjI6NJ+g+KM9lsPdDT2uZ8TC4Y2xfer8zmdYNytOo\nUSO3NcXhdFIYOAEedU2tbPn3X09fMwnHr0dRQS+4FxEbx/XoGApnv7vXSuMSpWDpb25jzanwq9h8\nfMnk53dLwRYVH0/5b7TkurVy5GFik1bkz5R6P6nECCFSFG0G7mVPAc+WqODeHmD3wZaO9dSsyXmt\ndMv6CF9e+9sYAn82HE6gTwCbT+ym/h/m8mgjv3LuNqsb3tlSaWbfTCysm7yzf75ATeR8X2vGHZ3H\nYHLlH9Kln7RQrUh7th3+jJK8jr8tBF/bf8+Kr0gbyvKmSFemTVjCou+0m/evW4fjlwrn/IedTbuO\n8d5ni4mM0RLSFsubmbnjuiZ57OGTlyhZKCxjB/gQY62wcOj1N4l1OgmPiaZwKtJdvD79E44Sw7Ju\nb4EQt+VP9iBQe+kQHEDTLOUYU+c5AE5GXebZDVrS4vpZS7Pm+n5AW0ZtkL0so6p6lnRadWYHow9r\nFUzupt+bQnE/oPK8ocTb/camdfsY3nMuAEt2jnygqijca85ejiBrpkCCAvyo2WWS2/o07Z1nqFaq\n4D0d273EJSVD58xn/rFz5kYBh9/NOB+567ExVPlSs+4c733rZdJ4p5OSMzTxcuLVlCNM08r+y2do\ntWIW7QqVZ97JPZTxCWHJs3e/VFhytFw6lAtoPmwC2NzsfY/yU+9unc0f4XsQSMaX7cTbB2cC0CFv\nPRac1xzvVzf0LsWnUPxXUcuminvKz9+uY8Nf+9j3zykt79m+0dR+tBzLdnsn5j1/OpzM2YIJCs4Y\nH5EHkayZvNOIZAmyUSpf+iQBfVD5Zfd+frQKt3tAbEJCmo73s9vTJNq+37aJIXvWAHCiyyCPfRdu\n3iAsKMRtuRNoSWOD9TJUQT73dhn9+waD+Gnn3/wUvprZT7zDlevhtNo8iRdyVOeN6m0ZVrUDI4Vm\nkbMJG6UP+nIQB43y1mDX+e0MLtntno5foXgQUZY3xW1z+vhlzp25wLDXfgAfWLYr+Yiq2Oh4fP19\nUpW4V6ExfcFqflu9nXZNavJi63r3ejiKu8g32zYwYo9WrzKxeDt3M5LDZ8/QZfOvGJGbj4YVZlbT\njhk9zFsipaTW8iEY49zSbCxno8MJ8Qng/LWrdN09ldnle7Mv/AzjL/zMnGoDyZ4pM77Cjo/t/ok4\nVyjuJsryprinFCiSkwJFcrJsX4VbHhsQdP842T8ozPhtOxKYsnCLEm//cV6qVpeXqiWdXidvcCj/\n2+FZeeFmQizRCfH33OqWFJnw4QYO8tu1AI18QZrluNNurVD7i/umkEtoDvcLT66nfan6BPsEEKKc\n8BWKVKMsbwqFQvEA4HA4KDlvAkHA/4pXYmjNZnc9XUpaOXToEIUKFcLf3/+26q0qFA8DyvKmUCgU\nDwm+vr4cf+Gdez2MFHnh2Ew4BovrDyR3YJZ7PRyF4j+LEm8KhUKhSBf+sVRaUCgUd4/7y+auUCgU\nCoVCoUgRJd4UCoVCoVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVC\noVAoHiCUeFMoFAqFQqF4gFDiTaFQKBQKheIBQok3hUKhUCgUigcIJd4UCoVCoVAoHiCUeFMoFAqF\nQqF4gBBSyns9hjtCCHEZOHmbzXMAV9JxOIqkUfOcMah5zhjUPGcMap7vPmqOM4bE81xISpnzTjp8\n4MXbnSCE2CqlrH6vx/FfR81zxqDmOWNQ85wxqHm++6g5zhjuxjyrZVOFQqFQKBSKBwgl3hQKhUKh\nUCgeIB528Tb9Xg/gIUHNc8ag5jljUPOcMah5vvuoOc4Y0n2eH2qfN4VCoVAoFIoHjYfd8qZQKBQK\nhULxQPGfEW9CiK+FEJeEEHuT2S+EEFOEEEeEELuFEFX17aWEEDst/0UKIfro+7IJIVYKIf7V/2bN\nyM90P3KX5nm4EOKsZV+LjPxM9yO3O8/6vr5CiH1CiL1CiLlCiAB9u7qeLdylOVbXciLucJ7f1Od4\nn3G/0LerazkRd2me1fWciFTMc2khxEYhRJwQon+ifc2EEIf07+Bty/a0X89Syv/Ef8BjQFVgbzL7\nWwBLAQHUBjYncYwduICWgwVgPPC2/vpt4IN7/Tnv9X93aZ6HA/3v9We7n/673XkG8gHHgUD9/Xyg\ni/5aXc93f47VtZx+81we2AsEAT7AKqC4vk9dyxkzz+p6Tvs8hwE1gNHWudN/944CRQE/YBdQVt+X\n5uv5P2N5k1KuBcJTOKQN8J3U2ARkEULkSXRMQ+ColPKkpc1M/fVM4Kn0HPODyF2aZ0Ui7nCefYBA\nIYQP2g35nKWNup517tIcKxJxB/NcBk1gREspE4A1QFtLG3UtW7hL86xIxK3mWUp5SUr5D+BItKsm\ncERKeUxKGQ/8gPadwG1cz/8Z8ZYK8gGnLe/P6NusdADmWt7nklKe119fAHLdveH9Z7ideQborZvy\nv1ZLIKkiyXmWUp4FJgCngPNAhJRyhX6Mup7Txu3MMahrOa0kd8/YCzwqhMguhAhCsxwV0I9R13La\nuZ15BnU9pxcp/Tam+Xp+mMRbiggh/IDWwI9J7ZeaPVOF5t4hyczz52im5MpoP4YT78HQ/hPoN9c2\nQBEgLxAshHgh8XHqer59bjHH6lpOJ6SUB4APgBXAMmAn4EziOHUt3wG3mGd1PWcwqb2eHybxdhbP\np4n8+jaD5sB2KeVFy7aLxjKJ/vfSXR/lg0+a51lKeVFK6ZRSuoAv0czLipRJbp4bAcellJellA7g\nZ+AR/Rh1PaeNNM+xupZvi2TvGVLKr6SU1aSUjwHXgMP6MepaTjtpnmd1PacrKf02pvl6fpjE269A\nJz3ipjbaUsd5y/6OeC/l/Qp01l93Bn65+8N84EnzPCfyiXsazYyvSJnk5vkUUFsIESSEEGj+hQcs\nbdT1nHrSPMfqWr4tkr1nCCHC9L8F0fyw5ljaqGs5baR5ntX1nK78A5QQQhTRV6A6oH0ncBvX838m\nSa8QYi5QH8gBXASGAb4AUspp+k32E6AZEA28JKXcqrcNRrshF5VSRlj6zI4WSVYQOAm0l1Km5BD6\nn+cuzfMsNLO8BE4AryYSfA8ddzjPI4BngQRgB9BNShmnrmdP7tIcq2s5EXc4z+uA7GjO3/2klH/o\n29W1nIi7NM/qek5EKuY5N7AVCAVcQBRaVGmk0FKtfIQWefq1lHK03mear+f/jHhTKBQKhUKheBh4\nmJZNFQqFQqFQKB54lHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHCCXeFAqFQqFQKB4g\nlHhTKBQKhUKheIBQ4k2hUCgUCoXiAUKJN4VCoVAoFIoHiP8DKNsV7qFGMyIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.colors as colors\n", + "import matplotlib.cm as cm\n", + "import pylab\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['bo_spread'].values.min(), df['bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['bo_spread'].values))\n", + " plt.scatter(df['bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('bo_spread vs period_return shift')\n", + " plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume vs pca')\n", + "#plt.show()\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n", + "\n", + "#plt.figure(figsize=(10,5))\n", + "#norm = colors.Normalize(df['volume'].values.min(), df['volume'].values.max())\n", + "#color = cm.viridis(norm(df['volume'].values))\n", + "#plt.scatter(df['volume'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "#plt.title('volume - 15min future vs pca')\n", + "#plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back=20):\n", + " dataX, dataY = [], []\n", + " for i in range(len(dataset)-look_back-1):\n", + " a = dataset[i:(i+look_back)]\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back])\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAANKCAYAAAAdrnZ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeUFFXax/Hv08NEZoDJgCRBQAUkgwQBMaxpzRlcM2sW\nc87ouq6r6+oa0PV1VcxpTasiCgqKBAWUnDOTBwYm99z3j+oZJgMDTNPy+5zDYbrqVt1QXdX99L11\ny5xziIiIiIiIyL7NF+wCiIiIiIiIyI4peBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTURE\nREREJAQoeBMREREREQkBCt5ERERERERCgII3ERERERGREKDgTUREREREJAQ0CXYBRERERERk/+Jn\nggt2GeoTxigLdhlqo543ERERERGREKDgTUREREREJAQoeBMREREREQkBuudNREREREQaVVmZP9hF\nqFfYPtrFtY8WS0RERERERCpT8CYiIiIiIhICNGxSREREREQalXOlwS5CSFLPm4iIiIiISAhQ8CYi\nIiIiIhICNGxSREREREQalXP79myT+yr1vImIiIiIiIQABW8iIiIiIiIhQMGbiIiIiIhICNA9byIi\nIiIi0qjK9KiABlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaldOwyQZRz5uIiIiIiEgIUPAm\nIiIiIiISAjRsUkREREREGpWGTTaMet5ERERERERCgII3EfndMLP7zcxV+rfBzN43s07BLpuAmXUI\nHJeTdnG7s83solqWTzaz9/ZYAfcQM7vXzNabWZmZvVJPusvNbKWZlZrZ5D1chlrbTEREQpuGTYrI\n781m4LjA3x2Bh4BJZtbNObcteMWS3XA2kAS8Um35VUBJo5emHmbWD3gAuBOYDKTXka4l8BzwDPAu\nkLOHi1JXm4mI7BNcmYZNNoSCNxH5vSl1zk0P/D3dzFYDU4Hjgb3aS2Nm0c65gr2ZR7DUVTczCwPC\nnHPFjV0m59yCxs5zJxwc+P9fzrkt9aQ7CAgDXnbOzdv7xdo9v+f3tohIKNGwSRH5vfs58P+B5QvM\n7Agzm2Jm+WaWZWYvmllcpfWtzOxlM1thZgVmtsTMxplZRKU05UMAR5nZq2aWC3wSWHeymc02s21m\nlmNmP5nZ8ErbxpjZP81sk5kVmtlMMzu2cqHLhwSa2flmtszMtpjZ/8yszY4qbGbtzexNM8sM1HGe\nmZ1faX2Smf0nUPf8QF79qu1jlZn93czuMbN1wJbA8lfMbJaZnWpm84FCYGBgXTsze8vMsgP7/dLM\nuu6grH8ys6mBbXLM7NvKZQkMOzwDGF5pOOz9lduo2v5GBtq70MzSzOxZM4uttH5EYB8jzOxdM9sa\nOM5X7US7hgWG5q4xsyIzm1+tXV8BXgu83FyeTy37uR/4PvBybiDdRYF1UWb2mJmtDeQx18xO2INt\ntsrMHq+2v4sCaWKrtdEfzOxjM9uK10OImfnM7PbAe7IocG5cWG1/Q83s+8B7douZzTGzs3bUviIi\nsmPqeROR37sOgf83AZjZEOBr4CPgTCAReBSID7wGb7hZLnALkAl0Ae4HkoE/V9v/48AHwFmA37z7\n694DngpsHwX0BRIqbfMicDLe0LplwOXAZ2Z2pHNuaqV0A4HWwE1AdGCf44EqX+YrM7MU4EcgH7gZ\nWAt0B9pWSvYRXs/PzYH63QJ8a2a9nXPLKqU7H5iPNzyx8udFB+Ax4EG8dl1pZgl4PZxZwBWB/G8H\nvjazLvX02hwITACWAuHAecD35g1zXYE37LUd0CJQDoB1ddS9G/AFMBEveGmLd2w7sn0obbkXgf/g\nted5wL/MbJZzbkYd5SRQ31vxhkXODOQxwcycc+7NQFnXAncDI4ECoLbewZfwhlP+CxgFrACWB9a9\nBwwA7gssOxv42Mz6OefmBNLssTbbgX8D/wf8Ay9IB3gauDDQFj8DxwAvm1mWc+5TM2sGfAr8N5DG\ngB6BsoiIbKfZJhtEwZuI/O6YWfm1rSPefUV5wKTAskeBH5xz51RKvx7vvrjuzrnfnHO/AjdWWj8N\n2Ib3JfXaakMEpzvnrq6U9kwgzzl3S6U0n1dafwjel+2LnXP/CSz7EpgH3AP8odJ2zYATnXM5gXQt\ngSet/iFsNwDNgb7OuY2BZeV1x8yOA4YAI5xzUwLLvgFW4QVx1YPTk5xzhdWWJQJHVwomMLOHgKZA\nL+dcdmDZtMB+L8ELVGpwzj1QaR8+vMBrADAaeNA5t9zMsgFfpeGwdbkHWA2c7JzzB/aZDbxtZoOc\ncz9WSvumc25cIM1k4I/A6UCtwVsgOB0LjCvfDvjSvJ7Q+wP7W25m5UHYTOfc1jrqvM7MyoO6ec65\n3wJ5HAWcSKVjA3xlZl2Au/B+INjTbVafd51z91TK6yDgSiq9d/GC81Z4weaneD90NAeucc7llddh\nN8ogIiKVaNikiPzeJOJNYlECLMbrpTjHObfBzGKAQcA7Ztak/B9ej1EJXg8Z5hlrZgvMrCCwbgIQ\nidejUdln1V7/CjQ3b1jisWbWtNr6/ni9Ee+WL3DOlQVeD62WdmZ54BZQ/oX/gHrqPxL4olLgVt0A\nIL1ScEBgIpdPa8l/Ui2BG8D6yoFbwNF4QcSWSu2aB8wG+lXfQTkzO8TMPjSzNMCP19Zd8YKAXTUA\n+LA8cAt4HyilZt0qAgrnXAleL1Z9Q1K7AzFUOm4BbwNdzCy5AeWt7mi8nsxp1d6fk6jUhnu4zepT\n/b19FFAGfFhL+XqZd//jcmAr8IaZnWJm6nETEdmDFLyJyO/NZrwAqR/el/EOzrn/BdbF400S8Szb\nA7wSoAhv+Fn50MKxeMMhPwROwQsKynvXoqrll1b5hXNucWCbjng9bplm9kalL/etgK3Oufxa9hNj\nZpGVluVWS1Pe41e9DJUlAnUFbuX51zYDYhpVh3aWL6tNbcuTgHOo2q4lwJFUHbJZwbz7DL8KrL8R\nOALv2M2l/jrWpVX1sgUCuSxq1q22tq0vz1aB/6vXvfx19f03RBLQkppteD+BNtwLbVaf6nVNwjt/\nNlcr3yt4I3laBX5sOAbvfHoHyDCzz8ys4x4um4jIfknDJkXk96bUOTerjnW5gMP7Mvx5Les3BP4/\nC3jPOXdX+QozO7SOfboaC5z7DO8etuZ4w+D+gXev0Ll4gVWsmcVUC+BSgXznXFFdFdtJWWwPNGqz\nEUipZXkqkF1tWY261bM8G/gY736r6vJqWQZeL2gb4Bjn3KLyhYF2a4gadQv0BiVSs24N2TeB/WdV\nWp4a+H9391++j/XAqfWk2d02KwQiqi2LryNt9eOcjdeLOQSvB666dIDAUM3jzCwarzfxCeAN4PCd\nLKOI7Aec7nlrEAVvIrLfcM5tM7PpQFfn3IP1JI3G642rbFQD8tuMN3xsON6XbvAmunB4k6O8Ct4w\nzcDrqbXtZxdNAq4zs1TnXG09ZD8BD5jZMOfcd4H8Y/CCzA93M9+zgfm7MKV8dOD/irY2s8F4E6LM\nrpRuR71i5X4CTjOzOysNnTwd77Nud9v2N7xJWM7Cm4ij3NnAEudcxm7uH7w2vAmvZ3ZRHWl2t83W\nAYdUW3ZsLelq8w1ez1tz59zEHSUOvA8+MbPuwB07mYeIiNRDwZuI7G9uxZucpAxvZr88vPvYTgTu\ncs4twbt36zoz+wnvHp5ReLMz7pCZ/RkvUPsCryevM94X/lcBnHMLzexN4JnAELjleLNNHow3GcTu\nehL4E97sgw/jzX54CNDUOfeYc+5LM/sBbxKP2/F6kW7GCwr+thv5PoE3YcY3ZvY0Xg9SKjAcmBqY\njbG66Xj3R71oZo/h9SjdH9i2skXAKWZ2Kl7wscE5t4GaxgG/AB+Z2XOB/f0V+LLaZCW7zDmXbWb/\nAO42s1JgFl5geALeBDR7wkTgS2Cimf0Vb6bPZkAvIMo5dwe732YfAk+b2Z1snzGz284Uzjm32Mye\nB94K5D0LL0DsBnRxzl1mZifiTVDzEbAG7/7MP+MFfiIispsUvInIfsU5N9XMhuFN9/4aXk/Carxg\nq7yn6kG8xwKUzyr4AXAdgee47cA8vMcAPIF3H9RGvGnp762U5nK8oOJevCnUf8Wb1XG3e96ccxmB\nxyE8hjdcMxJvMo6/VEp2KvD3wPoovBkWR1Z7TMCu5ptpZocDD+MFkC3w6j4Vr01q2yYt8Pyvx/Gm\nll+K95iBW6slfRboDbyMN8TvAbyApfr+5pvZ8cAjeMdsC/BmLftrqHvxhg1eiReYLgNGO+fe2hM7\nd845Mzsd7xESY/F+VMgG5uANu90TbTYe6IT3fo7E+1FhHPDCThbzamAJ3nv4Qbw2XoD3WAHw2sTh\nHYMUIANvMpw7d3L/IrK/KCsJdglCkjlX1y0NIiIiIiIie15e3r37dBASF/egBbsMtdFskyIiIiIi\nIiFAwyZFRERERKRRabbJhlHPm4iIiIiISAhQ8CYiIiIiIhICNGxSREREREQaV5mGTTaEet5ERERE\nRERCgII3ERERERGREKBhkyIiIiIi0rg0bLJB1PMmIiIiIiISAhS8iYiIiIiIhAAFbyIiIiIiIiFA\n97yJiIiIiEjjcrrnrSHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRRmV6VECDqOdNREREREQk\nBCh4ExERERERCQEaNikiIiIiIo1LwyYbRD1vIiIiIiIiIUDBm4iIiIiISAjQsEkREREREWlcGjbZ\nIOp5ExERERERCQEK3kREREREREKAhk2KiIiIiEijMqdhkw2hnjcREREREZEQoOBNREREREQkBGjY\npIiIiIiINK4yf7BLEJLU8yYiIiIiIhICFLyJiIiIiIiEAAVvIiIiIiIiIUD3vImIiIiISKOyMj0q\noCHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBERERGRxqVHBTSIet5ERERERERCgII3ERERERGREKBh\nkyIiIiIi0rg022SDqOdNREREREQkBKjnrXG4YBdARERERPYLFuwCyN6j4E1ERERERBqVabbJBtGw\nSRERERERkRCg4E1ERERERCQEaNikiIiIiIg0Lg2bbBD1vImIiIiIiOwiMzvOzBab2TIzu72W9c3N\n7BMzm2tm883s4t3NU8GbiIiIiIjILjCzMOBfwPHAocB5ZnZotWRXAwuccz2BEcDfzSxid/JV8CYi\nIiIiIrJrBgDLnHMrnHPFwFvAKdXSOCDOzAyIBbKB3Xo6ue55ExERERGRRvU7eFTAAcDaSq/XAQOr\npXkG+BjYAMQB5zjnynYnU/W8iYiIiIiIVGJmY8xsVqV/Yxqwmz8Ac4DWQC/gGTNrtjvlUs+biIiI\niIhIJc658cD4epKsB9pWet0msKyyi4FHnXMOWGZmK4GDgRkNLZeCNxERERERaVyhP2xyJtDZzA7E\nC9rOBc6vlmYNcBTwvZmlAl2BFbuTqYI3ERERERGRXeCcKzWza4AvgTDgZefcfDO7IrD+eeAh4BUz\n+xUw4DbnXObu5GteL57sZWpkEREREWkMFuwC7IyCBUfv09+Pow/9ep9sR/W87QFmFuacC/m+XxER\nERGRxvA7mG0yKPa72SbN7EEzG1vp9cNmdr2Z3WJmM81snpk9UGn9R2Y2O/BU9DGVlm81s7+b2Vxg\nUCNXQ0RERERE9jP7XfAGvAz8CcDMfHg3F24COuM9bK8X0NfMhgXSX+Kc6wv0A64zs8TA8qbAT865\nns65qdUzqTy96Pjx9U1UIyIiIiIismP73bBJ59wqM8sys95AKvAL0B84NvA3eE9A7wx8hxewnRZY\n3jawPAvwA+/Xk0/l6UX36TG9IiIiIiKNSsMmG2S/C94CXgIuAlri9cQdBfzFOfdC5URmNgI4Ghjk\nnMs3s8lAVGB1oe5zExERERGRxrI/DpsE+BA4Dq/H7cvAv0vMLBbAzA4wsxSgOZATCNwOBg4PVoFF\nRERERGT/tl/2vDnnis3sWyA30Hv2lZkdAvxoZgBbgdHAF8AVZrYQWAxMD1aZRURERER+LzTbZMPs\nl895C0xU8jNwlnNuaSNkuf81soiIiIgEwz75fLLqiuYM2ae/H0f2mrZPtuN+N2zSzA4FlgGTGilw\nExERERER2W373bBJ59wCoGOwyyEiIiIist/SsMkG2e963kREREREREKRgjcREREREZEQoOBNRERE\nREQkBOx397yJiIiIiEhwWVlZsIsQktTzJiIiIiIiEgIUvImIiIiIiIQADZsUEREREZHGpUcFNIh6\n3kREREREREKAgjcREREREZEQoGGTIiIiIiLSuDRsskHU8yYiIiIiIhICFLyJiIiIiIiEAA2bFBER\nERGRRmVOD+luCPW8iYiIiIiIhAAFbyIiIiIiIiFAwyZFRERERKRxabbJBlHPm4iIiIiISAhQ8CYi\nIiIiIhICFLyJiIiIiIiEAN3zJiIiIiIijatMjwpoCPW87YCZtTCzqyq9HmFmnwazTCIiIiIisv9R\n8LZjLYCrdphKRERERERkL/pdBW9m1sHMFpnZK2a2xMwmmNnRZjbNzJaa2QAzSzCzj8xsnplNN7PD\nAtveb2Yvm9lkM1thZtcFdvso0MnM5pjZ3wLLYs3svUBeE8zMglJhEREREZFQVFa2b//bR/0e73k7\nCDgLuASYCZwPDAVOBu4E1gK/OOdONbORwKtAr8C2BwNHAnHAYjN7Drgd6O6c6wXesEmgN9AN2ABM\nA4YAUxujciIiIiIisn/6XfW8Bax0zv3qnCsD5gOTnHMO+BXogBfIvQbgnPsGSDSzZoFtP3POFTnn\nMoF0ILWOPGY459YF8pgT2G8VZjbGzGaZ2azx48fvweqJiIiIiMj+6PfY81ZU6e+ySq/L8OpbspPb\n+qm7fXaYzjk3HiiP2lw9eYqIiIiI7FeszB/sIoSk32PP2458D4yCiiGQmc65LfWkz8MbRikiIiIi\nIhI0v8eetx25H3jZzOYB+cCF9SV2zmUFJjz5Dfgf8NneL6KIiIiIiEhV5t0OJnuZGllEREREGkNI\nzIJeOqnjPv39uMlRK/bJdtwfh02KiIiIiIiEHAVvIiIiIiIiIWB/vOdNRERERESCaR9+EPa+TD1v\nIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiIiIg0Lt3z1iDqeRMREREREQkBCt5ERERE\nRERCgIZNioiIiIhI4yrzB7sEIUk9byIiIiIiIiFAwZuIiIiIiEgI0LBJ2ev8TAha3mGM4osB5wYt\n/+NmvMXiPw4PWv5dP5nCxIFnBy3/Y356h/RLugct/5SXfwt6/lOGnB6UvIdP+wCAtIsPC0r+qf83\nj8zLDw1K3gBJLy5g6tBTg5b/0Kkf8d8+o4OW/yk/v07GZd2Cln/yS/ODfu4FO/+3e14UtPzPmftK\n0I5/8kvzAfhuyGlByX/YtA/5rN/5Qckb4MRZbwT93A8VptkmG0Q9byIiIiIiIiFAwZuIiIiIiEgI\n0LBJERERERFpXBo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI49KwyQZRz5uIiIiIiEgI\nUPAmIiIiIiISAjRsUkREREREGpeGTTaIgjfZZ911x8dMmbyEhMSmfPzplXtsv4fcdCFJg3tTVljE\nrw8+x5bFq2qkiW6dTM9x1xPePJYti1Yy775ncKV+mrZvTY97r6BZ1wNZ8tzbrJrwKQBN27Wi5yPX\nV2wf0zqFpePfrbccMX0GkHr5teDzsXniZ2S/90aV9RFt2tHy+tuJ7NSZzNdeIufDtwEIP6AtrW+9\nryJdeMvWZE14mZyP36szr643XkzS4N74C4uY/9Cz5C1eWSNNVKtkDhs3lvDmcWxZtILf7n8aV+qv\nd/tD776S5CF9KM7ZzI/n31xr3ikv/0bGdUNxW3Or1q/7EGLPvx0sjMLv3yf/839XWR95+Ik0Pf5S\nMHCF+eS99hClaxcDEH30aKKHnQFmFHz3HgUTX6+z7nVp7PzjB/bmoLGXYD4fGz/5mrWvf1gjTaex\nl5I4qA/+wiIWP/wMW5esIDIlkYPvuY7w+BaAY+N/J7L+3c8AOOTBm4hp1xqAJrFNKd26jdkX3bRT\ndY87/zbw+Sj47gPyP3+5yvqow08g5oRLwAxXuI28V8dRunaJV/djRhEz7AwwKJjyAfkNaPvwbkNp\neu4dmC+Mwu/fo+CLl6qWr+dIYk69FpzD+UvZ9vajlC77GYDYC8cRcdhwyvKyyb3/lJ3Os8XA3nS8\n/jLM5yPt04mse/2DGmk6Xn8Z8YP6UlZYxJJH/sm2JSu2r/T56PXS4xRnZLHgtocB6HDVhSQM6Y8r\nKaVwwyaWPPI0/q3b6ixDj1suIGVoL/yFRfxy33g2L1pVI01M62T6/eVqwlvEsXnhSmbf/Ryu1E9i\n30MY+MQN5G/IAGDDNzNZ8uJHXrlHHUf7U0eAc2xZto5f7h+/0+0S3m0osefdjvnCKPj+fQr+V+1Y\n9DqSpqdeC2UOV1bK1rf+WnEsGirY5/6ulCWi15HEnnYtzpVBmZ+tbz5KydJfdjmf3reNotXQw/AX\nFjPjnpfIWbS6RpqmByQx6K9XEtE8lpyFq/jpzvGUlfoJj4thwIOXEtsmBX9xCTPv+zebl60H4KTP\nH6ckvwDndzi/n4nnP7BL5WqM4x8/sDedxl6K+Xxs+uRr1tZy7nUaeykJg/riLyxiycNPs3XJCiwi\nnJ7/ehhfeBOsSRiZ3/7I6n+/BUD7y88jcegAcI6SnM0sfvifFGfm1FmGQ2/+EylDeuEvLGbu/c/X\n+bnf+5FriWgey+aFK5lz77O4Uj+pw/vS5YqzcGVlOH8ZC/7+GjlzF+OLCGfQi/d65QsLY+Okn1g6\n/v1a898Xz30JXQreqjGz+4GtzrnHg12W/d1pp/dk1Oj+3H7bR3tsn0mDexHTthXfnzGW5t0P4tDb\nLmP6JXfXSNflmvNZ9eZnbJr4I4fefiltThnJ2vcnUrJlKwsef4XUEf2rpN+2ZiM/jL7de+Ezjvzs\nOdImz+SQGy+svSA+H6lXjGXdPTdRkpVB+ydeYOtP0yheu/0D3Z+3hfTx/yT28KFVNi1Zv5bV119W\nsZ9Or7xH3o/f11Pn3sS0bcm0M6+jeffOHHLrZcy49K4a6TpfM5rVb31G2sQfOOS2yzng5JGs+2Bi\nvdtv+HQya9/9gu73XV1jf5EpiV49MjfULJT5iBt9Nzl/v5yy7E3E3/s2RXO+xb9h+5dlf8Z6cv56\nES5/CxE9hhJ34X3kjDufsAMOInrYGWSPOw9KS2hx4/MUz52CP31tnW0Q9Px9PjrfdDnzxj5AUXoW\nfV56jKypM8lfta4iScKgPsS0acWMc64mrlsXOt88hl/G3I7zl7H86f+wdckKwmKi6PPvx8mZOZf8\nVetYeO/fK7bveM1F+LfVHThUqfsFd5L7+Bj82Wkk3PsmRXMmV6175npyHr0Yl59HRI+hNLvwPrLH\njSLsgIOIGXYGWQ+dH6j7cxQ1oO1jz7+bzU9eRllOGi3uepviud/i37i8IknxoukUP/ANAGEHdCHu\nz0+Qe+9JABT+8CEF304g7pJHdz5Pn49ON/6Z3264j+L0LHq99Deyps6goFL7xx/el6i2rZh97pXE\ndevCQTdfwdwxt1asb33WSeSvXkeTmOiKZbkz57LqhdfAX0aHK/9E2wvOYNVzr9ZahJQhPWnariWT\nTrmJ+B6d6HnHRXx34f010h163bksn/AF67+azmF3Xkz7U0ew6r1JAGTNWcxP1/+9Svqo5Hg6nnss\n35x5G2VFJfR79FoO+MPhO9cu5iNu1F3kPnE5ZTlpxN/9NsVzqh2LhT9RPOdbAMLadKHZn/9Ozj1/\n3Ln915VnMM/9XSxLycLpZFeqf/MrHyf7rpN3KZtWQw8jrl0qn//xNhJ7dKLv3X/i69EP1Uh32PVn\ns/j1r1j7xU/0vftCDjxtGMvf/ZZDL/sjuYvWMO2Gp4nr0Iq+d17A5DGPVWz37WV/pTh3a8Pqv7eP\nv8/HQTeN4dex91OUnkXvlx4ja+qMKte++EF9iG7TmpnnXBU49/7MnDG34YpLmHfdvZQVFGJhYfR8\n7hGyp/9M3vwlrJvwEatffBOA1meeSLuLz2HZ356vtQjJQ3rRtG1LJp92Iy26H0T3Oy7hh4vurZHu\n4GvPY+Ub/2PjVz/S/Y5LaHvKkax5/2syZ/xG2pTZAMQd1JY+j17PlDNvpqy4hOlXjMNfUISFhTHo\n3/eR8cPcGvvdJ899CWm65032Wf36t6d58+gdJ9wFqcP6seHz7wDY/NsywuNiiExsUSNdYr9upH3z\nEwAbPvuO1OH9ACjO2cKWhSsqeqRqk9i/B/nr0ijclFlnmqjOh1CycT0laRuhtJS8774hdmDVIM2/\nOZfCpYtwpaV17iemZx9KNm6gNCOtzjTJw/qx8X/ldV5Kk7imRNRS54R+3Uj/ZnqgzpNJHt5/h9vn\nzllIyZbavzR0vaE8cHU11jXp2IPS9DWUZawDfylFP/2PyF4jq6QpXT4Hl78FgJLl8/DFp3rbtupI\nycpfobgQyvwUL55FZJ+j66x/bRo7/2aHHETBuo0UbkjDlZaSPmkqiUcMqJImcegANn0xGYC8+UsC\n7RxPcVYOWwM9QP78QvJXryMyObFGHskjB5M+ceoO6x7esTv+9DX4M9aDv5TCGV8Q2fvIKmlKls3F\n5ecF6j4XX0JKoO4HUrJiXkXdSxbPIrLvLrb9gT3wZ6yhLHMd+Esomvk/Iqq1PUX5FX9aZDSV30Ol\nS2fjtm3epTzjDulM4bqNFAXaP+PrqSQOHVglTcIRA0iv1P5hsU0JT4wHICI5kYRB/Uj7ZGKVbXJn\nzgF/WWCbxUTUclzKtRrRl7Wfescn59flhMc1JTKp5nmY1P9QNkyaAcDaT7+n1ZF9d1g/X1gYYZER\nWJiPsOgICjPq7oGorMmBPfCnr604FoUzPieiV9X3QpVjEVH1WDREsM/9XS2LKyqo+NsioxtU/QOO\n7M2qT6YBkPXrcsLjYohKal4jXeqAQ1g3cSYAqz6eygEj+wDQrGNr0mYsBCBv1Uaatk4iMqHZrhek\nmsY4/nEL7p8SAAAgAElEQVSHdK5y7cuo5dqXNHQAaV94AWLlax9AWUGhl3eTMKxJGDgvf3/+9uMS\nFh1Zsbw2qcP7sv5z7wfO3Ho+95P6d2PTJO9zf92n39NyhPe57y8oqpRXVJW8ytdZkzB8lcpX2b54\n7ktoU88bYGZ3ARcC6cBaYLaZXQ6MASKAZcAFQBgwD+jinCsxs2bA3PLXQSm87JLIlAQK0rIqXhem\nZxOZkkBR1vYhfeHN4yjJy8cFvpQVpmUTmZyw03m0OmYQG7/6od40TRKTKMlMr3hdmpVBVJdDdjqP\ncs2OOIot302qN01kcgKFadsDycL0LKKSEyiuVufSynVOzyYqUOed2b665GH9KMrIrnN9WIsUyrI3\nVbwuy0mjSccedaaPOuJ0in/1PvxK1y+j6enXYU2b40qKiOxxBCWr5te57b6Qf0RyIkXp2993RelZ\nNOvWuUqayOQEitIzq6SJSE6gOGv7h3Fky2RiOx/IlvlLqmzbvOehlOTkUrBuY73lAPDFp1KWvT3Y\nL8tOI7xT3XWPHnY6xb96XzxL1y8j9oxrK+oecdgRlO5i2/tapFZr+000OfCwGukieh9FzGk34GuW\nyJZ/XrFLedTYV/W2zcgi7tBq7Z+UQHGlNMXpWUQmJVCSlUPH6y5l5XP/qdLrVl3qiUeTManu4Dkq\nJb7KtacgPZvo5HiKMrefRxEtYinZuv08LEjLJio5vmJ9wmGdGfH2IxSm5zD/yTfIW7Gewowclr32\nOcd+/hT+omLSf/yVjOm/7USreO8Ff87290xZThrhHWs/Fk1PH4uvWSKbn9q9IezBPvcbUpaIPkcR\ne8b1+OISyX3qql3OJzolnvy07dfDgrQcolPiKczc/iNERItYiitdg/PTcohJ8Y597pI1tDmqL5m/\nLCGh+4HEtEokJjWeouwtOBwjXrgVV1bG8ve+ZcX7U3a6XI1x/Gu7rsV161J1/7VcHyuufT4ffV5+\nnOgDWrLhg/+Rt2BpRboOY0aRetwISrflM+/ae+osQ1RyPAWbtrd/YVo2USnxtXzub6v0GZhFVMr2\ncy91RD8OvuZcIuKbMXPs37bv3GcMfe1hmrZtyep3vyJ3/vZey4r898Fzf59Rtns/Bu2v9vvgzcz6\nAucCvfDa42dgNvCBc+7FQJpxwKXOuafNbDJwIvBRYLsPFLhJOWsSRsqwvix59q29n1mTJjQdOJiM\nV/etMe6+yAgOvPA0fr5uHO3OOWG39xd+cH+ijzidnL9cAIB/4wry//cyLW4ajysqoGTtYnB776bn\nYOdfzhcdRbeHb2X5P1+u8qszQMoxQ3eq121XeXU/jexHvF5U/8aVbPv8/4i/+QVcUQGlaxbj9tIN\n58W/TKL4l0k06dyXmFOuY8uTl+6VfHYkfnA/SnI3s23xcpr37l5rmjZ/OhPn95Px1c5/cd5Vmxet\n4qsTrsdfUETKkJ4MeOIGJp16M+FxMbQc0YeJJ91AydZ8+v/1WtqcMGSP5l1+LMI796Xpqdey+YnL\n9uj+67KvnHvFP08i++dJhHfpS+xp15D7+OV7Pc/KFr78GX1uG8Wxbz/I5mXryF20Ghf40vvNRQ9T\nkJ5LZEIcI56/hbyVG8n4eckO9rhrgnX8ASgr4+eLbiQsNoZuf7mdmAPbkb9yDQCrxk9g1fgJtL3g\ndFqfcULF/XB7Q9rkWaRNnkVC74PpesVZ/HT1I4HyOaaOupMmsTH0e/wGYju12eN5B/Pcl33Tfh+8\nAUcAHzrn8gHM7OPA8u6BoK0FEAt8GVj+EnArXvB2MVDrVdzMxuD13PHCCy8wZsyYvVYBqV+7M4+l\nzaneUJjNC5YTnZpI+e9dUSkJFKVX7SEq2ZxHeFwMFubD+cuISk2otxepsuTBvdiyaBXF2fUP6yrN\nyiQ8KaXidZPEZEqz6h5mWZvYvgMpWr4Uf27NYRItTjiV5n/w7hEqyswlKjUJ8G74j0pJpDCjZp2b\nVK5zSkJFmqKM7B1uX1lMm1SiW6dw+Over5O++FQS7nuXnIfOpWyL9+ujPzcdX0LLim188amU5aTX\n2FdYmy40u+hBcp+8ospQucLvP6Dwe++m96anX09ZzqYa29ansfMvzsiquAcQvPsBq7+nijKyiUxJ\nqpKmOJDGwsLo9vAtpH/1HZlTfqpWSB9Jww9n9iW37KDWnrKcNHwJqRWvfQmp+Gupe5M2nWl28f3k\nPnFVtbp/SOH33mQrsWdchz+77iG7teafm1at7VtSllsz/3KlS2cTltwGi21RY9KbnVVcvW2Tt7dt\nuaLMbCIqpYlISaQoM5vEEYNIGNKf+MP74osIJ6xpDF3uGcuSh/4BQMrxI0kY3I/frq95D82BZx9N\n+9O8YWg581cQnbr9PRCdkkBBtSFOxblbCY/dfh5GpyZUDIMq3bY9YE+fNhffHRcR0SKWpH6Hkr8+\ng+Jcb5jrxm9mkXBY1V7FupTlpBEW36ritdcTU/fxLNkDxyLY535DylKuZMmu1f/Ytx8EIHv+SmJS\nt4/eiE6NpyC95rGPqHQNjkmNJz+9/NgXMuPe7ROpnPT542xd55WzIN0rR1F2Huu++ZmE7h13Onhr\njONf+3Utq0qa2q6P1c9P/9Z8cn/+jYTDe1cEb+XSv/qO7o/fUyV4a3/WMbQ91Tv3Ni9YQXTLBHIC\nt6NFpSZQWK39vc/9ppU+AxNrpAHI/mURMQekeD11m/MqlpduzSdz1gJSBvUE9v1zX0Kb7nmr2yvA\nNc65HsADQBSAc24a0MHMRgBhzrla+6idc+Odc/2cc/0UuAXXmve+4ofRt/PD6NtJnzKL1icMA6B5\n94Mo2ZpfZehEuezZC0gd6d0T0/rEYaRNmbVTebU6dggbv5q2w3SFSxcR3roN4aktoUkT4oaNZOuM\nHW9XWdywo9gypfYhk7mff1QxqUnGdzNodXx5nTtTujW/1iGPObPnkzLSu9m59YkjyPjOq3PG97N2\navtyW5evZcrxlzP1tGsA7wtC9gNnVQRuAKUrf6NJajt8SQdAWBMiBx5PUeCm+HK+hJY0v/ofbH7x\nDvxpVWdms7iEijSRfY+icPrndZanNo2d/5ZFy4hu04qoVilYkyakHDWUrKkzq6TJmjqTlseNACCu\nW5dAO3sf3l3uuJr81etZ9/YnNfYd368n+avX1/hCVJeSlfMJS2lfUfeoAcdR9MvkmnW/5km2vHjn\nnm/7Vb9Vyj+cyP7HUzy3Wtsnt6v4O6zdIdAkosHBAkDeoqVEt21FZKD9k48eSva0GVXSZE+dQUql\n9vdv3UZJVg6rX3idmadfxqyzxrD4/r+zefa8isCtxcDetDn/NBbc/ghlRcU18l35ztdMPu8uJp93\nF5smz6btSd59rfE9OnnXnsyadcqctYDWR3n3BLU96Qg2TvZm9otM3H6PVItuHcGM4tytFGzKIr7H\nQYRFRQCQNKAbeSvX71S7lK76jbCK8yCcqAEn1DwWKduPRZM9cCyCfe7valnCUtpW/L2r9f/qnHv5\n6px7Wf/tz3T4o9cjktijEyVbC6oMmSyXPnMRbY7x7jXucPJQNnzrzWoZHhfj3U8FdDx9OBk/L6Z0\nWyFh0RE0iYnyyhkdQctB3Spmodyp+jfC8c9btLTKtS+5jmtf6nFeoFP52hfeohlhsTFeOSIiiO/v\nXesAotpsDzoTjxhA/up1Vfa5+t2JTB11J1NH3Una5FkccMIRALTofhClWwtq/dzPmrWAlkd5n/tt\nTjqi4nM/ps32H7uade2AL6IJJZvziGgRR5Py8kWGkzywB1tXeRN07evn/j6jrGzf/rePUs8bfAe8\nYmZ/wWuPPwIvAHHARjMLB0YBlc+IV4E3gJrTRckec/ON7zNjxmpyc/I5ctiTXHPtCM44q/du7TNj\n2i8kDe7FsA+ewl9YxK8PbZ+dqu+Tt/Hbw+Mpysxh8dNv0PPh6+h8xTnkLVnFuo+9D7SIxOYMfuUR\nmjSNxjlHh3OP5/tzb8a/rYCwqEgSB/Zg/l9e3HFByvykP/8P2jzwuPeogK8/p3jNKpof581itvmL\njwlrkUD7J1/AF9MUysqIP/lMVl11IWUF+VhkFE179SPtX3/fQUaQOe0Xkgb3Ycj7/8RfWMyCh56t\nWNf7ydtZ8PALFGXmsPSZCfQYN5aD/nwueUtWsv7jb3a4fY+Hrie+z6GEt4jjiE+eY/n4d9jwybc1\nylBb/fNef4QWN77gTVE99UP8G5YTNeJsAAonv0PTk6/EF9ucuAvurtgm58FzAGh+9ZP4Ylvg/KXk\nvf4wriCvrpz2jfz9ZSx78iV6PHEvFuZj06eTyF+5llanHgvAxo++IvvH2SQM6sOAd571HhXwyDMA\nNDvsYFoeP4Kty1bR9xXveK98YQLZP3of7ClHDyH967pnG6217hMeIf6m58AXRuH3H+HfsJzoEWcB\nUDD5XWJPuQJfbAviLgjMSur3k/3geQC0uOYJfE2be3V/7ZEGtf3WNx6m+dgXwXwUTvsQ/4ZlRA33\n2rZwyttE9j2GyEGngL8UV1xI3vjtjz+Iu/xvhHcZgMW2IP6xb8j/+BmKptacerwKfxnLn3iR7k/c\nB74w0j77mvyVa2l5yh8A2PTfL8n5cTbxg/rS9+3nKSssYukj/9xhVTrdMAZfeDjdn/SmZ8+bv5jl\nj9c+413a1DmkDu3J0f/9O/7C4ipTeh/+z5uZ8+BLFGbmsuCfb9HvL9dw8NVnsXnRKtZ8NBmA1kcP\noMOZR+H8fvxFJcy6418A5Py2nA2TZjB8wjic38/mxatZ/cG3HHZbHTPdVlZxLMZjvvJjsZyo4YHz\nYMo7RPY5hqhBJ3vHoqSQLS/U/kiQnRbsc38XyxLZ9xiiBp+M85dCcSFbnt/1+m/8fi6thh7GiZ8+\nRmlhUZVetCOeuYGZD/wfhRm5zP3HOwx67Ep6XH06uYvWsOJDb6KoZge2YuC4y3HOsWX5embc5z3a\nIyqhOUOfvBbwhuyv/nw6m374dZfqv9ePv7+MZU96517Va5937m386MvAta8v/d95jrLCIhY/8jQA\nEYnxdL37OvD5MJ+PjG+mkf2DF1AdeOUFxLQ7AFdWRtGmDJbWMdMkQPq0OSQP6cWIj57EX1jEvAde\nqFjX/6lbmffQeIoyc1n49Jv0eeRaul55FlsWr2btfycD0PKoAbQ54QjKSkspKyrh5zu88kUmtaDn\nA1diPh/mMzZMnE761JqPkdgnz30JaebqmaFnf1FtwpI1ePe9bcMbHpkB/ATEOecuCqRvCawEWjnn\nduYnqP26kf1MCFreYYziiwHnBi3/42a8xeI/Dg9a/l0/mcLEgWcHLf9jfnqH9Etqv0+oMaS8/FvQ\n858y5PSg5D18mhfQpF1ccwKCxpD6f/PIvPzQoOQNkPTiAqYOPTVo+Q+d+hH/7TM6aPmf8vPrZFzW\nLWj5J780P+jnXrDzf7vnRUHL/5y5rwTt+Ce/5E0i892Q04KS/7BpH/JZv/ODkjfAibPeCPq5D1jQ\nCrAL/O+22Ke/H4edlbtPtqN63gDn3MPAw7Wseq6OTYYC7+1k4CYiIiIiIpXtw0MT92UK3naRmT0N\nHA/s/jR6IiIiIiIiO0nB2y5yzl0b7DKIiIiIiMj+R8GbiIiIiIg0Lj2ku0H0qAAREREREZEQoOBN\nREREREQkBGjYpIiIiIiINC6n2SYbQj1vIiIiIiIiIUDBm4iIiIiISAhQ8CYiIiIiIhICdM+biIiI\niIg0Lj0qoEHMOTVcI1Aji4iIiEhjsGAXYGf4X4/Zp78fh43O3yfbUcMmRUREREREQoCGTcpe98WA\nc4OW93Ez3sLPhKDlH8Yonu5yZdDyv3bJc0wceHbQ8j/mp3f4ZtCZQct/5I/vBT3/RSeNCEreB386\nGSBox/+Yn95h8uAzgpI3wIgf3mfDBb2Dln/r137h2a5XBC3/qxY/H/T3/v6e/5uHXRy0/M+b939B\nq//IH98DgnvtmXT4WUHJG+Co6e8G/dwPGRo22SDqeRMREREREQkBCt5ERERERERCgIZNioiIiIhI\n49KwyQZRz5uIiIiIiEgIUPAmIiIiIiISAjRsUkREREREGpUrC3YJQpN63kREREREREKAgjcRERER\nEZEQoGGTIiIiIiLSuDTbZIMoeJNGd8hNF5I0uDdlhUX8+uBzbFm8qkaa6NbJ9Bx3PeHNY9myaCXz\n7nsGV+qnafvW9Lj3Cpp1PZAlz73NqgmfAtC0XSt6PnJ9xfYxrVNYOv7d3SrnXXd8zJTJS0hIbMrH\nn165W/uqy7C7z6b98G6UFhTz9e2vkrFgbY00xz5+MSnd21NW6idt3iq+vXcCZaVlxHdM5ai//ImU\nbm358YmP+eXlr+vMp+uNF5M0uDf+wiLmP/QseYtX1kgT1SqZw8aNJbx5HFsWreC3+5/Glfp3vL3P\nGPjKoxRlZDPnpr8C0OnP55B8RD8Aev3jHhaMe4bizJwq+SUc3ovOYy/Gwnxs/HgSq1/7qEaZOt9w\nCYmDe1NWWMyCh55h6xIv34PvuoqkwX0pztnMjNE37qCV915+ySMHceClZ9O0wwHMuvQO8hYt36my\nADTtM4CUMddgvjByv/qM7PfeqLI+ok07Wo29jchOncl89d9kf/h2xTpf01haXncLke0OBBwbn/or\nhYsW1JrP3jr2iYf3pOuNF2M+H+s/nsSqV/8LVD32h/3jHhYFjn3CwF4cNPYSr/0/mcSa1z6sUY6D\nbriExEF98BcWs2jc0xXt3/XOq0gc0o+SnM3MHH3D9jY8qD1dbv0zYdFRFG7MYOH9/8CfX7DDto/s\nMZjmF9wCPh/5kz9i66f/V2V99ODjiT3xIjDDFeaT+8ojlK5ZAoDFxNLi0vto0qYTOEfuSw9Qsmze\nDvOsbuhdZ9N+eHdKC4uZdPt/yKzl3O8+agQ9LxxJ8/YpvHz4TRTmbPPK3yyGIx/5E83bJVFaVMq3\nd75K9tINNbbfnfd8XdvGHtSerreOISzGa/P59z1Vpc0jU5MY+MaT9da9sc79gW89FZS6r/z3jj97\n+tx2Pq2POAx/YTHT7/k3OQtX1yzfuUfRdfQxxLVL5f1h11KcuxWAuA4tOfyhS4k/pD3znv6ARf/5\nIqj1j2qZzMC3/kH+6qrvwb1x7fFFhNPv+QfwRTTBwsJI+2Y6K1702ju2c3sOue1yAA57/Dbm3/tP\n/PkFJBzeiy43eNeqDXW0RZcbL/auPUVFLHzoXxVl3dG27c4/ic7XXch3f7iEks15tR6H6hrj3Jff\nt/1u2KSZdTCz34Jdjv1V0uBexLRtxfdnjOW3v7zIobddVmu6Ltecz6o3P+P7M8ZSkreVNqeMBKBk\ny1YWPP4KKwNBW7ltazbyw+jbvX9/ugN/UTFpk2fuVllPO70n418atVv7qE/74d1o0SGF1465j2/u\neYMRD5xXa7rFn8zg9ePu542THqJJVDiHnjUUgMLcfL4b9w4//7vuoA0gaXBvYtq2ZNqZ17Hw0fEc\ncmvtbd75mtGsfuszpp15HaV52zjg5JE7tX27c05g26r1VZatev1jpo++BYDMabM58JKzqmbm89H1\npsuYe+PD/HTeDaQcM5SYDm2qJEkc1JuYtq2Yfta1LHr0ebreOqZi3abPvmXODePqrXdj5Ldt+Rp+\nu+Nv5M5ZuPNlCZQn9crrWXffbay46kKaDR9JRNv2VZL487aQ9sI/yf7g7Rqbp465hm2zZ7Dyyj+x\n8tpLKV67ps6s9sqx9xkH33Ipv4x9hB/OvYGWxw6h6YEHAFWPfda02XS4+Czw+eh88+XMu+lhZpw/\nlpSja7Z/wqA+RLdpxU9nX8OSvz5Hl1sqtf/nk5l3w0M1yt31jqtY8ezrzLrgRjKn/ETbUafU2Q4V\nzEfzC28n62/XkH7bGUQPOo4mrTtWSVKasYHMhy8j486zyfvoRVpccnfFuuajb6Vo3g9k3HY6GXed\nQ+mGFTvOs5p2w7rTvEMKE469l8n3TGD4/efXmm7Tz8v5+OKn2LIuq8ryPlccR+bCtbx98jgm3fZ/\nDL3r7Fq3b/B7vp7z5eA7rmT5cxOYMfomMqbMoN3oqm3e+boLyZ4+p+7KN8a57/O+2uxzdQ9oNfQw\n4tqn8ulJtzPjwVfod/cFtabLnLOUb8f8ja3rM6ssL96yjdmPvlFn0GY+a/T6F6xLY+aFtzDzwlsq\nlu2Na09ZcQmzr36A6aNvZfroW0k6vBfNu3cG4NA7/8yyf00AIGPyDNqPPtmrz82XMueGh5l+3g2k\nHjuEprW0RXTbVvx41rUs+ssLdL318u1tUc+2kSmJJAzoScHGjFrrVpvGOvfl922/C972BjNTD+ZO\nSh3Wjw2ffwfA5t+WER4XQ2RiixrpEvt1I+2bnwDY8Nl3pA73fskvztnCloUrKn6Zq01i/x7kr0uj\ncFNmnWl2Rr/+7WnePHq39lGfjkf1ZOGH0wFIm7uSyLgYYpKb1Ui3esr8ir/T5q0itqXXXgXZeaT/\nupqyetoCIHlYPzb+r7zNl9IkrikRtbR5Qr9upH/jlWfDZ5NJHt5/h9tHpiSQNKQP6/87qcq+/Nu2\n/xodFh2Jc1WHRjQ79CDy122icEM6rrSU9K+nkTysf5U0ScP6s+l/kwHYMn8pTWJjKvLNnbOQ0i1b\n6613Y+SXv3o9+Wt2/VfPqC4HU7xxPSVpG6G0lC3ffUPs4UOqpPFvzqVw6WLwVz2+vpimRHfryeav\nPvMWlJZStq3uttgbx755oD0LNqTjSv1smvhDRXtWOfZRkTjntX/Buk0UbkgLtP9Uko6o1v5H9Cft\niylAeftvL+vmOQtqbf+Ytq3YPMfrccyZOZfkEYfX2Q7lwjt1pzRtLf6M9eAvpWD6l0T1HVElTcnS\nubh871f04mXzCItPBcCiY4k4uA/5UwK9hv5SXP7Ovw/LHXjUYSz+aPu5H9EsutZzP3PhWvLWZ9VY\nntCpFeunLwYgd0UacQckEp0YVyNdQ9/z9Z0vMe1akfuL1+bZM+aSMmJglf0VbExn24qaPQnlGuPc\nb3boQQD7XN3LtTmyN6s++QGArHkriIiLISqpeY10OYvWsG1DzeNflJ1H9vyVdV77E7p3bPT612Zv\nfe74C4oAsCZhWJOwis+XmHatyfllYaB880g58vBK1x6vPmkTp5E0rF+VMiQP68+mz2tee3a0bZex\nF7HsmdeBnR/611jnfsgo28f/7aP21+AtzMxeNLP5ZvaVmUWbWS8zm25m88zsQzOLBzCzyWbWL/B3\nkpmtCvx9kZl9bGbfAJPqzkoqi0xJoCBt+wWpMD2byJSEKmnCm8dRkpeP83tnTmFaNpHJVdPUp9Ux\ng9j41Q97psB7UdPUFmzdtH0o4da0HGJTa364lfM18dH1lIGs+b724XF1iUxOoDBteyBbmJ5FVHLN\nNi+t3Obp2RVp6tu+6w0XsfSZ18HV/PDqdMW5AKQeewQrX6zaexSZnEBR+vZ9FqVn1TjGkcmJFFZ6\nrxRlZBOZnLjzFQ9ifjsSnphMacb2X2tLMzMIT0zeuW1TW+HfkkursbfT4akXaXntLVhkVJ3p98ax\nj0xJoKhyW1Vrz4pj/4dhrHrpLa/9K+2ntratmSZrh+2/beVakoYNACB55GAiU5LqTQ8QFp+CPzut\n4rU/O42w+LrbPmbEqRTOm+Ztm9yasi05tBjzAMkPvUnzS++tt+3rUv3c37Ypl6b1nPvVZS5aR8dj\newOQ0qMDca0TiG0ZXyNdQ9/z9Z0v21auIynwZT5l5KCKNg+LjqL96FNZtYMhg41xLlbf375S93LR\nKS3Ytim74nV+Wg4xKTWPX0PFpFbd196uP0B06xT6/+dv9H72gYple+tzB59x+GuPMfyLl8ia8Stb\n5i/zyrdibUWgmXLUICJTEolKTqAwvfK1qvZrT9U0Xp3r2zbpiH4UZWSzdVnN4a71aaxzX37f9tfg\nrTPwL+dcNyAXOAN4FbjNOXcY8Ctw307spw9wpnNu+F4rqewSaxJGyrC+bJo0PdhF2eNG3H8eG2Yu\nY8OsZcEuCgBJQ/pQnL2ZvEU172MAWP78WwCkffU9bc48rjGL9rtmYWFEdepCzuf/ZdX1l1NWVEDi\nWbUPvQmWimP/5XcccMbxey2fxY88S+vT/0Dflx8jLCYKV1q6R/cfcUg/Yoadypa3nwLAwpoQ3uFg\ntk16l4x7zsMVFRB70iV7NM+d8fP4L4mIi+bsj+6ixwUjyFy4ljJ/4/xMvPDhf9Hm9OPo939/JSwm\nuqLND7zsbNa+/Sn+gsJGKUcw7M91h7rrX5SVw7RTr2Dmhbew7Kn/7P2ClDmmX3Ar3//xCpp360TT\njm0BmD/uOdqeeSwATfbC9aCcLzKCDhedzvLxNYe0723BPPdl37G/Dvdb6ZwrH5g+G+gEtHDOTQks\n+w+wMz+hTXTOZde2wszGAGMAXnjhBcaMGVNbsv1CuzOPpc2p3jj2zQuWE52aSG5gXVRKAkXpVZuw\nZHMe4XExWJgP5y8jKjWBooxam7mG5MG92LJoFcXZm/dkFfaYHqOG0+1sb3hc+q+rq/xiFpsaz9a0\n3Fq3G3DNiUQnxPLNPeN3OZ+izFyiUpMAb6hFVEoihRk127xJ5TZPSahIU5SRXev2KSMHkjysH0mD\ne+OLjKBJ02i63///7N13eBRV28Dh32w2PYH0BqGGjlJCD02KFQUVbAgCIop0BKXZAfVVsaKA6Pt+\nKjawgIBKM3QIvRNaQknvfTfZ3fn+2LDJplCTbALPfV25YGfOmWfOmTkze2bOzE7g6BufWS07/p+t\ntPlwFlFLf7FM0yelWl21dfTzLrWN9UkpOPl7c3lLOvp6oU8qPYzkWlR1vKspSElC61t0t0fr40tB\nyrU9N1GQnIQhOQndKfPwoKztm/EeXNR583hgEB73DLB8roxtr2jtcPQvunpdVn2CueN+54ezSd19\nAEf/YvVfRt3qk1JLpPG+av3nno/h8GTzs3DOwYF4dwu9YnoAY1oidl7+ls92Xv4Y00rXvTa4CR7P\nvtx/KRsAACAASURBVEbKB+NRs817hTE1AWNqIgVnzY9N6yI24PbgyKvGBGj9VC9aPmZ+XrVk23cN\n8CCnnLZfloIcHf/O+tby+emN88i8WHqY+I3u84rWrty8uedjOViszn3C2gNQq2UTfO/qQuNxw9C6\nuQJQZ/C9xKywfi6rKtpiyeVVednL+OXhJo/3ofGj5uu8KceicA3w4vIWc/H3JDcxrVSeG5WbYL2s\nyi6/WmDAUJBNnUfvJeihvpa8lXHsKc6QnUvavmP4dG1LzrmL5J6PZf/EefTf/Qvx67bj3S0UXVIq\nTn7Fj1VlH3uc/IrVRWGZFa22zLzOdQNwDvSj8/fvF9adN53+7z/sGTWT/NTS7dgWbV/c2m7XO2/6\nYv83Ale6Z22gqJ5Kjo/JKS+TqqpLVFXtoKpqh9u54wZwYcU6y8tEEjfvJej+ngDUbh1CQXYu+pTS\nB67Ufcfx72MeTx/0QE8SNu+9pliBd4cRt257xa18BTuybDM/DZzPTwPnc27DIVo8bH5Gx79NQ/Kz\n88hNyiyVp+WQMOp1b8HfU74pc3jileIAJG2JIPC+y3XeBEN2Lvll1HnavmP49TGvT9ADvUnaYq7z\npK17y8x/5osf2frgWLY9PJ4jcz4mde9RS8fNJTjAslzfHh3JPW/9QpOsE2dwCQ7EKdAPRavFr18Y\nyVutXzCTvHUvAff1BqBWqyYYc8pe72tR1fGuRncqEoegutj7B4BWS62efcjefW1DfY3pqRQkJ+JQ\nx3y12bVNKPoLRUN30tf8QfTEopcDVMa2zzxxtrA+fVG0dgT072bJU3zb+xRu+6wTZ3CuW7z+u5O8\nzbpNJ2/bg/+95i+3tVo1wXAN9W/vWfisiKJQf8RgYn9fd5Xag4Jzx9AG1MPONwjstDh3uQfd/nCr\nNHbeAXhN+oC0xa9ijC96GYwpIwVjajx2AeaXyzi26oQh5tpeWHL0h838MmgevwyaR9SGgzQbVKzt\nZ+nKbPvlcXB3RmNvB0CLId2J23uagpzSd31udJ+/UnspXucNRg4m5vf1AOwf+yo7H3mRnY+8yKWf\nzc9jluy4QdW0xawT5tEJtip79P+VfpPq6Z838fdjr/P3Y68Ts2k/DR7sBoD3nY0oyMpDl1xxFxxT\nj0VVafntPWqBRkPMr39zZOb7lhiVceyx93BH6+YCgMbRHq9Od1pemGVZP6DhyEeJ+X1dqfL49w8j\neav1sSdp614C7i927Mkuuy4u5805e4Gt949mx8Pj2PHwOPRJKUQ883KZHTewTduvMWz9TFsNfebt\ndr3zVlIGkKYoSg9VVbcCw4DLd+GigVAgAhhsm9W7dSRtP4BPt7b0/O0TjDo9R95eZJkX+tErHJ23\nBH1yGpGf/UCbeRNp8sLjZJ2K5tKqfwFw8K5Nt//NR+vqjKqqNHjiPrY+MQ1jTh52To54d76DY+98\nVSHrOm3qr0REnCc9LZe7en7E+Am9eXRIuwpZNkB0+FHq92rN8A1vUZCXz8aZRVfTHvxqHJtmf09O\nYgZ3vfkkWbGpDPnF/Bavs+sOsmfhWlx8avH4bzNwcHNCNam0HdGH7+97q9SBPHn7AXy6tSfs108x\n6vI5/vYXlnntPprB8XmL0SencfrzZdwxdzIhzz9B1qkoYlZtumr+8oSMG4prvUAAvDq34eR/rO8Y\nqkYTpz5cStuP55hfwbx6EzlRlwh62DzkJfb3daTs2I93t/Z0Xf65+fXNc4vitnpzMh7tW2Hv4U63\nlYuJWvozcX9uKnd9KiueT69ONJ36LA4etWjz4UyyTkVz6FregmkykrDoE4Lfeh80GjLW/0X+hWg8\n7nsIgPS/VmHn4UWDjxejcXEBk4rnwMFEjX0GU14uCYs+JXDaHBStloL4OOI+frfcUHmxiRW+7VWj\nicgPvqH9p7PN9fnnv+REXQKst71np7ac+s9iVKOJ0wuWcudHr5pfP756E7lRFwkaVFj/f6wjdcd+\nvLu2p/PyhRh1eiLnLbSsa4s3p+DRzlz/Xf9YQtTSn4lfvRG//j2o84h5SG7y5t3Eryl/Hyhe9xnf\nvof39C/MPxWwZSWGmHO49DEf3nM3rcBt0Bg0bh54PDOzsLxGkl83v3k249v38Bw7H0WrxZAUQ/qS\naxlhb+385qPU69WaoevfxpCXz6ZZRUPNHlgynn/nfEduYgZ3DLuLdqPvNrf1Va9yfvNRwud8j2fj\nAPq+OwIVlbTTcfw7+7sy49zoPl9eewHw79+duo+a6zwpfDdxq6+hzoupirZ/+Rmq6lb2y2K3Hiaw\nx50MWPMeRl0+u1/92jKv18IpRLzxX/KS0mn6VD9ajLwPJ+/a3LfiLeK2HSHijf/i5F2Le356HXtX\nZ1STSrOn+7Nm0GwMhcf+qi6/R9sWNHzuCfMwxWIXGCvj2OPo40mr18ahaDQoGoWEjTtJ3r4fgIC7\nwwgefA8A+uQ04labvzdEfvA17T6ZDRoNcavNx6o6D/cHIOb39aTs2I9Pt3Z0XfGZ+WcT5i601EVZ\neW9GVbV9cWtTSr4F7lanKEoDYLWqqq0LP08D3IA/gEWAC3AOGKmqapqiKM2BXzDfoVsDPK2qagNF\nUUYAHVRVHX8NYW+vSi7h705P2Cz2vRE/YWSZzeLbMZTPmlbOb8RdiwmnvmR9Z9u9Srj/7l/Y1NV2\n1zz67Fxh8/gnB/S2Sezmq8MBbLb9++/+hfBuj9okNkDvHb8SO6ziLrZcr6DvDvBFsxdsFv/FyEU2\n3/dv9/g/3nltQ2orw5OH/2uz8vfZuQKw7bFnY5chV09YSfruWm7ztg8oNluB62BY5Fitvx9rX9BX\ny3q87e68qaoaDbQu9vmDYrNLvWdaVdWTwJ3FJs0pnP4/4H+VsY5CCCGEEELc0qp11636ul2feRNC\nCCGEEEKIGkU6b0IIIYQQQghRA9x2wyaFEEIIIYQQtqWaquUjZdWe3HkTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFE1arGP4RdncmdNyGEEEIIIYSoAaTzJoQQQgghhBA1gAybFEIIIYQQQlQt\nedvkDZE7b0IIIYQQQghRAyiqqtp6HW4HUslCCCGEEKIq1IhbWgWfOFfr78f2k/KqZT3KsElR6SIf\n7GWz2M3+3MxnTcfaLP6EU19iZJnN4tsxlI1dhtgsft9dyzk5oLfN4jdfHW7z+Gs6PGWT2A/s/QGA\nUw/1tEn8pqu2cOy+vjaJDdDqr42sbP+0zeIP3P89Fx7vZLP49X6OsPm+f7vHP/dImM3iN/ptu83K\n33x1OADrOj1uk/h3R/zMpq6DbRIboM/OFTZv++LWJp03IYQQQgghRJVS5Zm3GyLPvAkhhBBCCCFE\nDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJqybDJGyJ33oQQQgghhBCiBpDOmxBCCCGEEELUADJsUggh\nhBBCCFG1VBk2eSPkzpsQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RzpuwGZf2\nnfB/bgJoNGSsX0Pqih+s5jvUrUfApBk4Nm5C8ndLSfv9ZwDs6wQT9PLrlnT2AUGkLPuGtFUrrnsd\nes55jPq9WmHIy2fDjG9JOn6xVJq7PxiJX+v6mAxGEg5H8+9ryzAZTHg28qfvO8PxaxXMzgWrOPDN\nhuuOX57ZM1exOfwUXt6urFo99qaW5dWlLU2njETRaIhdtZHz3/1RKk3TqSPx7toeo17PibcXkhUZ\ndcW8DUcPIeihfhSkZwJw9ssfSNl5gFotQ2g+43nzQq9yTHZt3wm/MeNRNHakryt7+wdOfsW8/b/9\nmtTC7Q+gcXUjYOJ0HOs1BFTiPnkP3cnj11Uvtojfctpw/MLaYtTlc+iNRWRGRpdK4xzkS7v5E3Co\n7UbGiSgOvvYFqsGIf69Qmr4wBNVkQjWaOP7hd6QdigRA6+bCna8+h3vjYFBVDr215Irr4dK+E36j\nJ4Kdhox1a0j7dZnVfPs6l9teU1K+W0raHz9Z5nk8NITadw8AVUV//hwJn7yLWpB/1bIX5xbakYAX\nxoFGQ/rfa0le/pPVfIe6wdSZ+jJOISEk/t83pPy63HoBGg2NPv0CQ3IKF96Yfc1x75g+DL/ubTHq\n9Bx4fQkZJ6NLpXEJ8qXDO+Ow93An40QU++Z8iWow4h3ags4LppAbmwRA7KY9nPrqD9zqB9Lh3fFF\n+ev4cXLRlY9FTm264DniJdBoyNm0ksyV31qvQ/d7qPXQcFAU1LxcUr9+j4Lzp8HeAf83FqPYO4DG\njrzdG8lY/tU1l/+y27HtVaf4xTm364z3qMkoGg2ZG/4k4/fvrea79byb2oOGoigKprxckpd8QH70\nmRuOB1VX/mYvjcC3WzuMOj1H3/rScl6xKn+QL3fOnYR9bXcyT57jyOufoxqMV8xf78n7qTuwD6iQ\ndeYCx97+ElN+AU0nDMW3RygA7RfPxcGzNigQV855r8mUUXh3a4dJl8/xtz8n+1TRea/J5JEodhqr\nvG5NGtDs5TFoHOxRjSYiP/iKrONncG8ZQvNXLp/3rnzis3XbF7eG26bzpihKODBNVdW9V0gzAuig\nqur48tKICqLR4P/CZC69+hIFKUnUX7CY7N3byb943pLEmJVJ4pJPcevS3SprQcxFzk8abVlO4/+t\nIGvn1utehfq9WuHRwI/v+r+Of5uG9H7zSZYP+U+pdJF/RrBu2n8BuGfBKFoO6c7RH7egS89ly9xf\naNSvzXXHvpqHH2nD0Kc7MuOV0iec69Vs2rMcmPg2+sRUOv73HZK37iUn+pJlvnfXdjgHB7JzyARq\ntWpCs5efY++zs0CjuWLeiz+t5sIPf1rFyj57gT0jX0E1mnDw9qDHmq9AYwcmo/VKaTT4j53ExTnT\nKEhJosFHi8rc/gmLS29/AP8x48nZF0HsO6+DVovG0en6KsUG8X3D2uIaHED4w1PxaB1C65mj2DHi\ntVLpmk94kqgf/iJu3U5azxxF8MC7uPDrBpIjjpKweR8A7iHBtH93EpsHTwOg1bThJO04xP5XPkHR\n2mHn5HjFsvs9P4WY16aa296HS8iJ2GZVdlN22W1P6+WD54ODiR43DDU/n8CX38C9Rx8yN/191fIX\njx84biLRs17GkJxEo0++IGv3TvQXitd9FnGLPqdW17AyF+E98BH0Fy5g5+J6zWH9wtrgWi+AjQNf\nwvOOxrSZOYItz7xRKl3LiU9wdtnfxKzbxZ2zRlJ/UG+iV2wEIOVgJLsnfWiVPvt8HOFPFnYgNQr3\n/P0Zcf/u5Y5pw8peEUWD56iXSZw3HmNKIgHv/B+5e7diiCn6YmtIjCXhzRdQc7JwatsVr+dmkjBn\nFBTkk/jWi6j6PLCzw//Nr8g7uJP800evuR5ux7ZXreKXWBef514i7s3JGFISqfOfpeTu2UbBpWhL\nkoKEWOJeHY8pJwvndl3weeFlYmeMuamYVVV+1+AAtj06idqtm9DylWfZPWpOqTRNxg/l/I9riV+/\ngxYzRlNnYB8u/boen25ty8zv6OtJ/cfvY/vjUzHpC7hz/mQC+ncjds1mUiKOcPqLH+m/80dcGwaT\nuGE7pxZ8Q4dv3iVp615yS5z3XIID2WU5741h3+iZ5vPeS6M5MOkt9ImpVnlDxg0j6uvlpO46gHfX\ndoSMG8aBca+Tc/YCe0cVnfe6r15a9nnP1m1f3DLkmTdhE05NWlAQF0NBQhwYDGRt2YRbZ+sThTEj\nHd3pk6gGQ7nLcWnTnoK4WAxJCde9Do36tuHE77sASDgUhaO7Cy6+tUqlO7/5mOX/CYejcQvwACAv\nNYvEI+cxGYyl8tysDh3rU7u2c4UsK+9SPLrYRFSDgYT12/Hp2cFqvm/PjsSv3QxA5rHTaN1ccfD2\noFbLkKvmLcmkz0c1mgDQODiUm86paXPyi23/zC2bcOti/UXdvP0jwWhdvxoXV5xbtSFj3RrzBIMB\nU072NdWFLeP79wolZq35IkP60TPYu7vg6O1RKp1Px1bEb9wNwKXVWwnoba5zY57eksbO2QlUFQCt\nqzNe7ZpzcWU4AKrBiCE7t/yyl2h7mVs34lpG29OfOVmq7OYKsENxcDT/6+iEITXlqmUvzrlpc/Jj\nYyiIj0M1GMjY/C/uXbqViq87FVlm29f6+ODWqTPp/6y9rriBvUO5uHobAGlHzmLv7oqjT1n135LY\njREAXFy9lcC7Qq85hm+nVuRcSiQvrvw6cQhphSHhEsbEWDAayN2xDpeOPa3S5J86gpqTBYD+9FHs\nvP0s81R9HgCKnRZFq7XsB9fqdmx71Sl+cY4hLSiIu4QhIRYMBnK2bcS1Uw+rNPrIo5gu7wunjqEt\nti/ciKosf+zaLQBkHD2N1t18XinJq0MrEjaZz8Oxazbj16sjYD4vlZdfsdOgcXRAsdNg5+SAPjkN\ngJTdhy3nH11cInYuzqgGA4kbtuPbs6NVXJ+eHYn/Kxy4fN5zsZz3coud94rnVVUVrav5vKx1c0Gf\nnApc+3nP1m2/WjJpqvdfNVVt77wpijId0Kuq+qmiKB8BbVRV7aMoSh/gWeD/gDcBR+AsMFJV1WxF\nUUKBBYAbkAyMUFU1rthyNcA3wCVVVecoijISmAmkA4cAfWG6B4E5gAOQAgwFkoBIoJuqqkmFyzoF\ndFVVNamSq+SWovX2oSA50fLZkJKEU9MW172cWj36krll4w2tg6u/B9nxaZbP2QlpuPl7kJuUWWZ6\njVZDs4Gd2TpveZnzqytdYtEXSX1iKrVaNbGa7+jrVSJNCo6+XjiVmm6dt+6Q+wi4vxdZJ85y+tNv\nMWTlAFCrVQgtZr+IU4CvOWHJq4+AvbcvhqSiJmNITsK5WctrKo+9fyDGzHQCJ8/AsWFjdGdOkbDk\nM1S97pry2yq+k68nefGpls+6hFSc/DzRp6QXLbu2OwVZOUVfQBJTcPLztMz3792B5uOfwMGzFnsm\nvw+Yh+nlp2dx5+vPU6tpfTJORHH8A+uhOMVpvX0wFG9711F2Q2oyaX/8RKOvl2PKzyf3wB5yD+65\npryWMvr4UFCs7guSk3Budu1tP+D5cSR8vQSNs8t1xXXy8yQvoWh/zktMxdnXE31yUf07eLhRkJ1r\nqf+8hFScfIvq3+vOJvT+eT66xDSOffQDWedirGLUuacrMf/svOJ62Hn5YkwputhkSEnEMaRVuend\n7noI3cFiy1Q0BLz7LdqAumT/s4L8M8fKzVuW27HtVaf4xWm9fTGkFD8PJuLYpPx9wb3fAHIP7Lqh\nWJdVZfl1xdqb+VjmRX6J450hq6i96RJScfL1Aszttaz8mSfOEf39anqu+gKTPp+U3YdJ2X249LrW\nciNl537AfE4rfd7ztlq+PikVR19vHH290CcmF00vlvf0x/+l7cdzCJkwHEWjsG9M0ZDtWi2b0Hz2\nizgF+JgnlHHes3XbF7eO6tuthK3A5UtQHQA3RVHsC6cdxtyx6qeqantgLzC1cP5nwGBVVUMxd9Lm\nFVumFlgGnC7suAVi7gCGAd2B4kewbUAXVVXbAT8BL6uqagK+x9yRA+gHHJKOm41otbh27kbW9vAq\nCdf7jSeJ3XOG2L0397zBrSDmt3XseHQ8EcOmo09Jp8nE4ZZ5mcfOsPupqewZNQPAPEa/Ail2djg1\nbkra2pVET3oOkz4P7yFPVWiM6ho/IXwvmwdPY9+0BTR7YUjh+mio1awBF1ZsYNvQWRjz9DQe8VCl\nxNe4uuHWuTtRzz3OuREPo3Fywr13/0qJVRa3Tl0wpqehO3O6ymJelnEymnX3TyL88Vmc+2kdnRZM\nsZqvaO0I6Nme2PW7KyymY6tQ3Po8RPqyz4smqibiX3mamLEDcAhpiX1wowqLdzW3c9uzdXyn1u1x\n7zuA1G+/qJJ4ZbF1/QNo3V3x69WBrYPGs/n+F7BzdiTw3tLDO1VVJeGf63+c4krqPHIPpz/5HzsG\nvcDpT/5H81kvWuZlHj9NxNAp7C0873GT573q1vZF9VKdO2/7gFBFUWphvhu2E3MnrgeQh7mjtV1R\nlIPAM0B9oBnQGlhfOH0OULfYMhcDR1VVvdyh6wyEq6qapKpqPvBzsbR1gX8URTkCTAcuXx75Brj8\nTXUU8N+yVl5RlDGKouxVFGXvkiVXfnnA7ciQkoy9T9FwAPMVyOQr5CjNLbQz+rOnMaanXT1xoTuG\n9uKJlbN4YuUscpMycAsouqru5u9JdkJ6mfk6jX8AZy83tr5z/S9FsTUnP2/L/x39vNAnWQ/p0iel\nlkjjjT4pFV2p6UV581MzwGQCVSV25QZqtQwpFTc32nxXwrF+w1LzClKS0Pr6Wj5rfXwpSLm2ayAF\nyUkYkpPQnToBQNb2zTg1bnKVXLaL333ZfLovm48+OR3nAC/LdCd/L3SJ1vtuQUYW9u6uKHbmQ7OT\nn3epNACpB07iUscP+9ru6BJT0SWmkn7sLABxG3dTu3mDctfHkJKMtnjbu46yu7TtQEFCHMbMDDAa\nydq5Befmra8p72UFycnYF6t7e59rb/suLVvh3qUbTf63jLoz5uDapi11ps8sN33Dx/rR+8d59P5x\nHrqkdJz9i/ZnZz8v8pKs6zY/PRt7NxdL/Tv7e6ErTGPIybMMXU3cfgiN1g4HDzdLXv+wNmScjEaf\nWvad+8uMqUnYeftbPmu9/TCmla5/+3oheI2ZTdL70zFlZ5Sar+Zmozu2D6c2Xa8Yr6Tbqe1Vx/jF\nGVKSrIZBar39MKaWXheH+o3xfXEGCe/MwJR95f3raiqz/B4PDKLBp0stn52KtTfzsaxo5AGYj3da\n96L25uTvhS7JnEaXmFZmfu9Od5Abm0hBehaq0UjCvxF43NnMki7ogV4A5F2Mt0y7fE4rTp+UYrV8\nR1/z+U2flIqjn0+ZeQPv70VSuPniTOLGnWWf986bz3sOwY1LzbN12xe3jmrbeVNVtQCIAkYAOzDf\nibsLCCmcvl5V1baFfy1VVX0W8/vtjhWbfoeqqncXW+wO4C5FUa7lCePPgM9VVb0DeB5wKlyvi0BC\n4fDNTsBf5az/ElVVO6iq2mHMmJt4uPgWpTt9Evugutj7B4BWi3vPPmRHbL+uZbj37Evm5usbMnlk\n2WZ+GjifnwbO59yGQ7R4uAsA/m0akp+dV+aQyZZDwqjXvQV/T/mmRo4xdwkOxCnQD0Wrxb9/GMlb\nrd/Zk7R1LwH3m094tVo1wZCdS35KOlknzpSbt/izC769OpFzzvyWTqdAv6ITceHwkYLEeErSnYrE\nodj2r9WzD9m7d1xTeYzpqRQkJ+JQJxgA1zahVi+7uBZVGX/b0FlsGzqLhPC91LnfPJjAo3UIhuw8\nqyGTl6XsPU5A384A1B3Qg4TN5jp3qVt00q/VrAEaBy0FGVnoUzLQJaTgWj8QAJ9OrUsN57Mqe2Hb\n0/oHmsveoy85u6+t7RmSEnBq1tL8zBvg0ibU6kUH1yLv1Ekcgupg7x+AotVSu9ddZO26trpP/N/X\nnBr2BKdHDOXSu3PJOXSQmPffKTd91C8bCH9yNuFPziY+fB/BA8xX6D3vaExBdq7VkMnLkvceJ6hv\nJwCCB/QgLtw89MrRu7YljUerRqAo5KcXPe9T596rD5kEyD97HPuAYOx8g8BOi0u3u8nba32HwM7b\nH5+X3iNl4esY4i5YpmvcPVBczB1Gxd4Rpzs6UxBbffd9iX9l+jMnsQ+si9bP3BZdu/clZ882qzR2\nPv74vzyfxE/eoiCu9NuQr1dllj99zR9ETxxt+Rx0v/l5rtqti84rJaXuO45/H/N5OOiBXiQVHu+S\ntu4tM78uPhmP1k3QOJrvbHl3bE124YVC7y5taDDMPOrAuY6/5dzl1y+M5K3Ww7uTt+4l4L7egPm8\nZ8wp+7xXPK8+OQ2Pdubr+J4d7iD3ovmJnLLOe4ak2FJltXXbr5ZMSvX+q6aq7TNvhbYC0zDf4TqC\n+Vm2fcAuYKGiKCGqqp5RFMUVqIP5eTRfRVG6qqq6s3AYZVNVVS8PDP4a6An8oijKI8Bu4BNFUbyB\nTGAI5ufeAGoDl78BPVNivZZiHj75naqqFf+2ituByUjioo+p++YH5p8K2LCW/AvR1L7XfODN+HsV\ndh5e1P9oMRoXVzCZ8HxoMNEvPoMpLxfF0QnXth1IWPjhVQKVLzr8KPV7tWb4hrcoyMtn48yi54Qe\n/Gocm2Z/T05iBne9+SRZsakM+WU6AGfXHWTPwrW4+NTi8d9m4ODmhGpSaTuiD9/f9xYFOTf2/ENx\n06b+SkTEedLTcrmr50eMn9CbR4e0u6FlRX7wNe0+mQ0aDXGr/yUn6hJ1HjYPdYv5fT0pO/bj060d\nXVd8Zn5l8tyFAIWvQi6dFyBk/DDcmzRARUUXl8TJdxcD4NGmOfWHD0I1GDGPMsZ8l6Ykk5GERZ8Q\n/Nb7hT8V8Rf5F6LxuM+8/dP/Mm//Bh8vRuPiAiYVz4GDiRpr3v4Jiz4lcNocFK2Wgvg44j5+9/oq\nxQbxE7cfxDesLb3/+AijTs/hNxdb5nX85GUOv70EfXI6Jz77kfbzJ9Bs7BAyI89bXkQS0LcTde/v\ngclgwKQvYP/Mzyz5j73/f7R9exwaey25MYkcenMxjYcPKLfsSYs/pu4b5raXuWEt+RdLt716C5ZY\n2p7HQ4M5P244ulMnyN4eTv2Pl6IajejPnSbjnz/LjlNu3ZuI+/Iz6s99D8VOQ9q6v9BfOI/n/eb1\nTVu7Gq2nJ40+/dJS996DHuXM86Mw5Zb/IparSdh2EP/ubei38kOMunwOvFE0IqLLp9M4+NZSdMnp\nHP/0Jzq8M57m44aQcTKaC3+EAxDUrxMNBvdFNRox6gvYO3OhJb+dkyN+nVtzaN4311B+I6nfvI/f\nrE/NrwsP/5OCS+dw6/cIANkbfqP24NHYudXG69lXAMx3GGY9g52nD94vvg4aDWg05O7cgG7/titF\nKzP+7db2qlX8EuuSvPQjAl5bgKKxI2vjagouRuF+9yAAstb9gedjI9G418JnjPnNshiNxLz8byQt\nmQAAIABJREFU7E3FrKry58Yk0v23TzDq8jn29peW6e0+msHxeYvRJ6dx+rNl3DlvEiEvPE7mqWgu\nrdoEQPL2A/h0a1cqf8axMyRs3E3X795FNZrIjIzi0u/mn+lpMX0UGgfz11oVlU7fvk9BehaxqzeR\nE3WJoIfN1/Jjf19Hyo79eHdrT9fln5t/ImeueTiqajRx6sOltP14jvkncgrzApx8ZxFNpoxEsbPD\nlF9AZLHzXr1hD5tfsFR4gdeUVfZ5z6ZtX9wyFLUa30lQFKUv8DfgoapqjqIop4BFqqouKLzz9R7m\nF5YAzFFVdZWiKG2BTzF3vrTAx6qqflX8pwIURXkTaIr52bVnKHphyUEgX1XV8YqiDAQ+AtKATUBH\nVVV7F66XPeaXmHRSVfXkNRSl+lZyFYh8sJfNYjf7czOfNb2530m7GRNOfYmRZVdPWEnsGMrGLkNs\nFr/vruWcHNDbZvGbrw63efw1Har2mZDLHthr/u2mUw/1vErKytF01RaO3dfXJrEBWv21kZXtn7ZZ\n/IH7v+fC451sFr/ezxE23/dv9/jnHin7py6qQqPfttus/M1XhwOwrtPjNol/d8TPbOo62CaxAfrs\nXGHzts9Vf2m1etDP96jW348dZ6VXy3qs1nfeVFXdCNgX+9y02P83AR3LyHMQ8921ktN7F/v/68Vm\n/ZcynltTVXUlsLKcVWuD+UUl19JxE0IIIYQQQhSjqtWyb1TtVevOW3WkKMoMYCxFb5wUQgghhBBC\niEpXbV9YUl2pqvquqqr1VVWVwcZCCCGEEEKIKiN33oQQQgghhBBVyyT3kG6E1JoQQgghhBBC1ADS\neRNCCCGEEEKIGkCGTQohhBBCCCGqlFqNfwi7OpM7b0IIIYQQQghRA0jnTQghhBBCCCFqABk2KYQQ\nQgghhKhaMmzyhsidNyGEEEIIIYSoARRVVW29DrcDqWQhhBBCCFEVasQtrbzXfav192PnN5OqZT3K\nsElR6dZ3fsxmsfvv/sXm8Td2GWKz+H13LcfIMpvFt2Oozct/u8bvu2s5gE3j3651fzn+6tChNos/\nYN8ym5f/do//V8cnbRb/vj0/2vzYs637IJvE777tD5u3PVvHrylUtVr2jao9GTYphBBCCCGEEDWA\ndN6EEEIIIYQQogaQzpsQQgghhBBC1ADyzJsQQgghhBCiapnkHtKNkFoTQgghhBBCiBpAOm9CCCGE\nEEIIUQPIsEkhhBBCCCFElVJN8lMBN0LuvAkhhBBCCCHEdVIU5V5FUSIVRTmjKMqMK6TrqCiKQVGU\nwTcbUzpvQgghhBBCCHEdFEWxAxYC9wEtgScVRWlZTrr3gHUVEVeGTQohhBBCCCGqlKrW+GGTnYAz\nqqqeA1AU5SdgIHC8RLoJwK9Ax4oIKp03USWaTR2JT7d2GHV6jr39BVmRUaXSOAX6cufcydjXdifz\n5DmOvvEZqsF4xfwt54zFN6w9+WkZ7HxqWpmx++/+hUt/bMArtHWFxwdAo9D5f++iT0rl4EvvAdD4\n+cfx7dEBgI7/ew+tmwuoELtqI+e/+6NU7KZTR+LdtT1GvZ4Tby+0LN+rS1uaThmJotFY5W04eghB\nD/WjID0TgLNf/kDKzgPUahlC8xnPmxd6E8fE2TNXsTn8FF7erqxaPfbGFwR0+fmTUutf3PWW3a9P\nFxqOfgzXBnXYM2omWSfPAeB/T3fqDx1oWa5bSD2bxLdzccbJzwvFvvzD6/XG1NZyo/XcKTgH+pIX\nl8TR2QswZOWUWebID76h3hP3W6Z1/mEBydv2cfaLZRUev+T+FrV0OUmbIyxxwlYuwsGzFgDnv1/J\nuSU/33RdlLfve3W6k8YvDkWj1WIyGK64jMrY/tpabtz5zku4twghbk14mdu91fTh+IW1wajL5+Ab\ni8k8GV0qjXOQL+3fGY9DbTcyTkRz4NUvLMchgNotGxH23zc4MOtz4jZG4Fo/kPbvTLDMd6njx6lF\nKyqt/K3nTsGlXpC5zO4uGLJyiRg+vdS+CNDt94WoBtMt0/ZDxg/Dp3soJoOBvEsJnJi7EEN2Loqd\nHS1mvYB7s0YoWg1xazeXitXipWfwDWuLUZfPkTe/JDMyulQa5yBf2s6biH1tNzJPRnHotYWoBiNB\n94bRcPhDKAoYcnUce/drsk5fwLV+IG3nT7Tkdwny4/SSFUT/+FellL/RmMfx6dkRTCr5aRkcf3sh\n+clpZW774jw6t6PRpNEoGg0Jq9dz6fvfSqVpNGk0nl1DMen0nJr/KTmnzhXN1Ghou/QD8pNSOP7K\nPAAavPgMXmEdUQsM6GLjOTX/M4zZOeWuQ2W0PSd/L9q+NRZHr9qgqlz4fRNRP/5TZfGv1PZFlakD\nXCz2+RLQuXgCRVHqAA8Dd1FBnTcZNikqnU+3drgEB7B98EROvLuEFi+PLjNdk/FPc/6nNWwfPBFD\nVg51Hupz1fyxq8PZP3l+mctz9PMGQJ+agXMd/0qJD1Dv8fvJiY6xmhb9/Sp2PT0dAKcAHzKOnmbX\nk1PwvzsM1wZ1rdJ6d22Hc3AgO4dM4OQ7i2n28nPmGRoNzaY9y8Ep88rMe/Gn1UQMn07E8Omk7DwA\nQPbZC+wZ+QoRw6dzcPK8wpTX34t7+JE2LFk69LrzWTPHLW/94cbKnn3uIkdmfED6wRNWy0r4Z5ul\nPo69+Rl5sYlVH3/EK4DKoZf/Q15MAkCFxGwwfBBpe46wc8hE0vYcof7wQeWWud5TAzj08n8s8Y6+\n9gkedzbDu2vbCo9fcn9r/soYFLtipxUFdj4xmfA+w/Hp0aFS9/389EwOTXuX3U+/xPG3Pge44jIq\nevub8gs4u+Rnznz2LWXxC2uDa3AA/w56icNzv+aOmSPLTNdi4hNELfuLfwe9REFmDvUG9S6aqVFo\nMfEJkncdsUzKOR/H1qdmmf+eno1Rpyf+372VVv6jcz6y1H3iv7tJCt8NlNgXC+t//7g3b6m2nxpx\niN1DpxLx9DRyL8ZS/5mHzdu2b1c0DvbsfvolIp55hToP97eK5dutLa71AtjyyBSOzf+KVjOeLXPb\nNxv/FNE/rGXLI1MoyMwheOBdAOTGJrL7+bfY9uQrnPn6N1rPes6y7bcPnWn+GzYLoz6f+H/3gKZy\njr3nv19FxNPTiBg+neTt+2g4anCZ9W9Fo6Hx1Oc5Nu0t9j89Ad9+PXAusS6eXUJxCg5k3xNjOfP+\nF4RMe8FqftCQAeSev2Q1LX3PIfYPn8iBEZPJuxhL8LBHy6xTqLy2pxpNHP9oGZuHvMy2Ea9Tf0h/\n3BrWqbL4V2r7omIoijJGUZS9xf7G3MBiPgZeUVXVVFHrJZ03Uel8e3Yg7q8tAGQcPY3W3RUHb49S\n6bw6tCJx0y4AYteE49ur41Xzpx88QUFmdplxm015BgA7RwcS1u+olPiOfl74hLUnZuVGq2UZc/Is\n/zdkZmPMzUM1GEhYvx2fnh1K1E9H4guv1GYeO43Wzbz8Wi1DyLsUjy42sdy8JZn0+ahG8/FB4+Bw\nxbRX0qFjfWrXdr7h/GbmzvOV1v9Gyp4bHUPuhdgrRg7oH0b6oZNVHv9yPs+2LUjYYN7nKiKmT4+O\nxK0NByBubTi+PTuVW+a8S/HkFruY4NOtHVmRUZaLGRUZv/T+plqtkz4hpcLrvzzZp6LJT04DIOec\n+UJoXmxClW1/k05PxqGTmPILylw//16hXFqzFYD0o2ewd3PB0af0ccinYyviNprvXl5cvQX/3kXr\n3PDxe4jbuAd9WmaZMXw6tSb3UiJ58cnm8l+lDm+2/v37diV+/bZS0+s/OQC49dp+asRhy/6eefQ0\nToVtClVF4+yIYqdB4+iAWmCwiuXXK5SYYtte6+6CYxnnIO+OrYjfZO4Mx6zZgl8vc9z0w6cxZJnv\nKqUfOYOTn1epvD4dW5N7KQFdfDIerUIqpfzG3KLzmp2TY7n1X5x7iyboLsWhj01ANRhI2rAN7+5W\nNybw6tGJxL/DAcg6dgo7N1fsvT0BcPD1xqtrBxL+XG+VJ33PQSjcFlnHInHw9S5zfaDy2p4+Od1y\nB82YqyM7KhYnP88qi2+Vt0TbrzFMmmr9p6rqElVVOxT7W1KiBDFAcLHPdQunFdcB+ElRlGhgMPCF\noiiDbqbapPMmKp2jrxe6hKIDii4xBSdf65OPfW13DFm5lhOjLjHVkuZa8pfk27MD+qRUABQ7jeX/\nFR2/2ZQRnP78e1Ctv7QCNH7hCfOyPWpZhovpE1NxLHGScfT1QpeYYvmsT0zB0dcLp1LTrfPWHXIf\nnb7/gBazx6J1d7VMr9UqhM4/LKDzsg8Lp5Ret6ph3fmryLJfjV+/bmSfjq7y+Jfz+fXrRsK6bYUx\nbj6mg1dt8lPSAchPScfBq3a5ZS6+DADnIH98uoeSuudIpcQvvr+dfO8rSxsCcKkfRKdv36fByEer\nZN+31MVdXQDQFfsiU5X7X1mc/LzISyhapvkYY/1Fz97DjYKsnBLHIXMaJ19PAu7qwPkVG8qNEXR3\nF2L/2VEsxpXLcDPl92jbgvzUDPIuxpdaD68ubaw+34ptP/DBuyx3fRM37cKUp6f76q/ovvJLzi/7\n0yqtk68XuhLb3tGv9DnIetunlNlJCx7Ym6QdB0uvz93dLNu+5H5VkeVv9MKThK38koB7epQ5DNqv\nXzerzw6+XugTi7XDpBQcSpx/HX28yC+WJj8xBUcfc5pGE58l6sv/K/Mce5n/A/1I27W/3PlV0fac\nA32o3bw+6UfP2iR+ybYvqsweoImiKA0VRXEAngBWFU+gqmpDVVUbqKraAFgBvKiqaulxzNdBOm/i\nlqNxdKDhMw9zdnHpE0tF8glrT35qBlknSz8/B3B20U8A5F6Kp+7geys0dsxv69jx6Hgihk1Hn5JO\nk4nDLfMyj51h91NT2TPq8htrb69mXqtVCCZdPvqElKsnrgQOHrUw6fItd38qRYkvMlcqs1eXNlz8\nZS26wqFkFR2/+P5Wf/jDaBzsLfMSw3ez74VX8WjbgtptmlVI6Cvt+wCuDevSeNzNDvmtflpOG8aJ\nT38q90usorUjoFcosRt2V8n6+N/dnYQy7rrVahWCKd9QRo7KV1Vtv8GIR1ANJuL/3mqJq5pMbBsw\nhu2PjKPeUw9WSlyv0JbUfeguIj//0Wq6orXDr2co8Rsrf9ufW/Qj2weOJf6fraXOa5frv6J4dutA\nQXoGOZGlO0SX1R0+GNVoJGld6ecMK8rV2p6dsyOh70/m2AffYSg26qaq4ld12xdFVFU1AOOBf4AT\nwC+qqh5TFOUFRVFeuHLuGycvLKkkheNixwAsXryYMWNuZJjsrUGfnI6Tvw8QCYCTnze6YnfCAAoy\nstC6u6DYaVCNJpz8vCxp9EmpV81fnEtdf1wb1qXXP0sB0DjY0+r1cex88iXyUzMqLL5fn8749uyA\nT7d2aBwd0Lo60/qNCRx9w3rMv0mfj99dnYla+guOfl7ok6y/WOiTUnHy8yaj8LOjnzf6pFQUrbZo\nWA5Y5c1PzbBMj125gTYflP5pkaKhcx5A+fVVeaxPYhVV9qvx7xdG/PptpbZxVcTXJaXi1qQ+MX8U\nXSGtqO3t4O1hvuvl7UF+iaEzxctcfBlgvnJ+8ee1lRofzPubMU+Ha6Ngy4sknPy8MebqSFi3jaBB\n/UneuqdC6uKykvu+o68Xd743neNvfU6HJXOvug0rY/8rrv6Q/tR72PzcUsbxczj7e5NWOM98jEmz\nSl+Qno29u2uJ45A5jUeLhrR/ZzwADh7u+IW1wWQ0khC+DwC/sLZknIwmP7Vo21RW+RU7DX69OxHx\nzCulyuzfL4yUnQeo+8jdlRL7Sqqi7Qc+0BufsFD2j3/TMi3g7u6k7DyIajRSkJZJxuGTuNYPImzZ\nO4B52zv5Fy3Tyc8LfWLpc5D1tvdGVyyNe0g97pgzhj2T3qUgw/pRAd9ubck8GWVpGyX3q8qo//h/\nttF2wUyilv5imXa5/kNCnrJMy09KxdHPp2h5vt7kl9g++uRUHIqlcfDzRp+cinfvrniFdcSzSyga\nB3vsXF1o+upkTr39MQB+9/XBq1sHjk56rdT6VVXbU7R2hL4/mZi/tls9b2brtl9T3Ao/0q2q6lpg\nbYlpi8pJO6IiYt5el+SrUPFxsrdzxw0gaUsEgff1BKB26yYYsnMtQ7CKS9t3DL8+5uFOQQ/0JmmL\n+UCYtHXvNeW/LPvsRf7t8wwbu5uvvuenZZJ1+jz5qRkVGv/MFz+y9cGxbHt4PEfmfEzq3qOWjptL\ncIBlua4N66JLSEHRavHvH0byVusHipO27iXg/l4A1GpVtPysE2dwCQ7EKdCvVN7iz+z59upkucvj\nFOhneWGEU8Dlk2H5b+CqXClF61SBZb8iRcGvbzcS1m8n68SZKo+fdfIsjn7epB86iaI1XxuriJjJ\nW/cSeH9vAALv723dCSpR5svLuOzku4srLX7J/c21fhC6uCTLNJfgQJzrBuDTvQNO/t6Vuu9r3Vxo\ns2AmZ75YRsbhSEv8Kt3/Sji/fL3lhQLx4Xup+0APADxah2DIzkOfXPo4lLz3OIF9zc8UBg/oScJm\n8xe0TQ9NYdODk9n04GTiNkZw9N3/Wb68AQTd05WYv62HTVVW+T073klOdKzVcHTAsi+e/8E8bPBW\na/teXdpS/+mBHJr+HiZ90R0mXUIynh1aA6BxcqR266YAlpeJJITvpY7Vts9FX8Y5KGXvMQL6mJ8H\nq/NATxK3mLevk7837f4zhUOvLyT3QulhqoH3dCN2XdG2zzh+tlLK71zsvObbswO554s9f1is/ovL\nOnka5+BAHAuX59uvO6nbI6zSpG6LwO/e3gC4t2qKMTuHgpQ0zi/+nj2PjGbvkDFEvvEhGfsOWzpu\nHp3bUfephzk+Y77Vtrisqtpem1efIzsqhqhlf9kkPpTd9sWtTe68iUqXvP0APt3aE/brpxh1+Rx/\n+wvLvHYfzeD4vMXok9M4/fky7pg7mZDnnyDrVBQxqzZdNf8db0/Cs31L7D3c6fHnl5xd8guxf/5r\nFd+kz0cXl1Qp8csTMm4orvUCAciLScC1fhBdfvqIuNX/khN1yfI2spjf15OyYz8+3drRdcVnmHT5\nHJ+7EDC/ySryg69p98ls0GgsecH8ymr3Jg1QUdHFJVm+oHu0aU794YNQDUaKXmykv+Ztddm0qb8S\nEXGe9LRc7ur5EeMn9ObRIe2ucynmIR4l1/9my+7bqxNNXxqFg0ct2i6YSdapaMubNT3atUCfmGw1\nRLAq49e+sxl5F+NpOesF0Jg7MBURM/rb37lj3lSCHuqDLj6JI7M/spSvZJkjP/ia9p8XXYlu9cZE\n7Gu7k7b/KMff/LxC45fc306+v5SCjCw0hS8zUBXo8sMCTPn5nF/2Z6Xu+3WH3ItL3QAajhpCw1FD\nADiz+Mcq3f7dfl+I1sXF8jMRbg3rkB1lvgOeuO0gfmFtuWvlAoy6fA69UdSp7vTJdA69/RX65HRO\nfvoj7edPoNmLQ8iIPM/FP8K5GjsnR3w7t+bI/K+tppdVhpstP4B//7Ayh0xa9sVL5g7Grdb2m730\nLBoHLe0+fRWAjKOniPzPV1xa8Q8t5rxI5x8WoCgKsav/pcmEYZb1SNp+AN+wtvT6/WOMOj2H3yra\n9qEfv8zRuV+hT04j8vMfaTtvAk3GPkZmZDSXVprPZSGjH8GhthutXhllXkeDiR3PzLZse59Od3Bs\n/lLLMi8/N1XR5Q95cSgu9YJQVRVdfBKR731VetuXHJ5tNHF2wVe0XvA6aOxIWLOB3KiLBAy8B4D4\nlf+QtnMfnl1DCf15ESadntPzPy21b5XUeMoYNPb2tP7IfAc061gkZz8o82ZHpbU9z7ZNqTugB5mn\nL9DjB/NbryMXln5cwxZtX9zaFPUKD4GKCnNbV/L6zo/ZLHb/3b/YPP7GLkNsFr/vruUYWXb1hJXE\njqE2L//tGr/vruUANo1/u9b95firQ2337N2AfctsXv7bPf5fHZ+0Wfz79vxo82PPtu439UK9G9Z9\n2x82b3u2js9N/dJr1cmaHlytvx+7v3+xWtaj3HkTQgghhBBCVClVrZZ9o2pPnnkTQgghhBBCiBpA\nOm9CCCGEEEIIUQPIsEkhhBBCCCFE1TLJPaQbIbUmhBBCCCGEEDWAdN6EEEIIIYQQogaQYZNCCCGE\nEEKIKqWa5G2TN0LuvAkhhBBCCCFEDSCdNyGEEEIIIYSoAWTYpBBCCCGEEKJKyY903xi58yaEEEII\nIYQQNYCiqqqt1+F2IJUshBBCCCGqQo24pZU+qVG1/n7s8cm5almPMmxSVLrEUa1tFtvvm6Ns6jrY\nZvH77FzByQG9bRa/+epwNnYZYrP4fXctx8gym8W3Y6jN4+/s+ZBNYnfdsgqAAtO3Nolvrxlu87rf\n2+d+m8XvsGmtzduerbY9VI/tb+v427oPsln87tv+sFn57RgKwKrQoTaJ/9C+ZWzvMdAmsQHCtq60\neduvMeRHum+I1JoQQgghhBBC1ADSeRNCCCGEEEKIGkCGTQohhBBCCCGqlPxI942RO29CCCGEEEII\nUQNI500IIYQQQgghagDpvAkhhBBCCCFEDSDPvAkhhBBCCCGqlKrKM283Qu68CSGEEEIIIUQNIJ03\nIYQQQgghhKgBZNikEEIIIYQQokrJTwXcGOm8CZtxaB2G21MzQLFDt/VXctd+bTXfscsDuN73LCig\n6nLJ+u5tDBcjAXDu9zTOPR8FRSFvywry1n9/3fG9urSlyeSRKHYa4lZt5Px3f5RK02TKKLy7tcOk\ny+f425+TfSoKgOazX8SnWyj5aRlEPD31BkoPru074TdmPIrGjvR1a0hd8YPVfIe69Qic/AqOjZuQ\n/O3XpP7+s2WextWNgInTcazXEFCJ++Q9dCePl1vOplNGomg0xJZTzqZTR+LdtT1GvZ4Tby8kKzLq\ninn9+nSh4ejHcG1Qhz2jZpJ18hwA/vd0p/7QgSWW7gmkXVfdzJ65is3hp/DydmXV6rHXlbciVEZ8\nj07taTBxNIrGjoQ164hd9mupNA0mPodnlw4Y9XrOvvMxOafM9dru568w5eWhGk2oRiNHxrwEQJM3\npuMcXAcAOzdXjNk5HH528lXXZdvWs7w7fx1Gk8qjg9sy+rluVvMzMvJ4dfZqLl5Mx9HRjrfnDqBJ\nUz8Avvs2gl+XH0RVVQYPacewZzpdd11s3XKGd+b9g9FkYvCQdjw3pnup+HNmreLihTQcHbXMnf9Q\nUfz/283y5ftRVRgypB3DR3S5ppi1OoZSb/zzoNGQvPYf4n9cXipN8Pjnqd25Iyadnuj/LCD39FkA\n/B4ZiO8D94CikLTmbxJ/XQlA3edHUbtrZ9QCA/q4OKLf+whjTo5leZXR9gDqDrmXuo/ei2oykbJj\nP2c+Nx//3ELq0fyV57FzdS5MqQFMpWLaevtfyS3Z9ju3o9Gk0SgaDQmr13Pp+99KpWk0aTSeXUMx\n6fScmv+ppe0DoNHQdukH5CelcPyVeVb56jwxkIbjR7LrgWEYMrJuel0rq/5bTx+Of1gbjLp8Dryx\nmIyT0aXSuAT5EvrOeBxqu5F+Ipr9r36BajDiHdqCTgumkhuTBEDcv3s49dXvRRk1Cr2+m0teUhoR\nkz8otVyPTu1oNOk5KKz/mDKOvQ0nPYdnl1BMej2n539iqf/QX5ZgzM1DNZnAaOLQcy9Z5Qt6fCAN\nx49i94Cnrerf9m0fJ0BXKqi4JciwSWEbigb3p+eQ/tFYUuc8hGPn+7ELamSVxJgUQ9p7I0h97RFy\n/lyE+zOvA2BXJwTnno+SOvdJUl9/FMc2vbDzC76++BoNzV4azaGp89j95BT8+nfHpUFdqyTeXdvh\nEhzIriETOPnuIpq9PMYyL37NvxycMvfGyl4Y33/sJC69/grnXnyGWr364BBc3yqJMSuThMWfkvrb\nz6Wy+48ZT86+CKLGDidqwrPkX7xQbqhm057l4JR57HpyCv53h+FaRjmdgwPZOWQCJ99ZTLOXn7Os\nY3l5s89d5MiMD0g/eMJqWQn/bCNi+HQihk/n2JufFU69vo4bwMOPtGHJ0qHXna+iVHh8jYaGU57n\nxPQ3OTh8HD59e+Jc33qf9egSilPdIA489Tzn3l9Iw6nWX5yOTZrN4WcnWzpuAKffeJ/Dz07m8LOT\nSd2yk9QtO6+6Kkajiblv/82XS55g1Z/Ps3bNMc6eSbJK89WSHTRv4c/vK59j/rsP8e47683xTiXy\n6/KD/PjLSH794zk2h5/mwvnU66oKo9HE3Lf+YvHSp/hzzYusXX2MMyXiL1m0jeYtAvjjzxd4571B\nzJ/3tyX+8uX7+Xn5aH5f+Tzh4ac5fy3xNRrqTXqRUzNe49jIF/Dq0wunEvVfu3MHnOrU4eiw0Zxf\n8Cn1Jo8HwKlBfXwfuIcTL07h2OhxeHTphGNQIACZ+w5wbNRYjj83Dt3FGAKeesxqmZXR9jzbt8K3\nZ0d2D5vG7qemcn7ZKgAUOw0t35jIyfeWsPupyxeU1LLr34bb/2puxbbfeOrzHJv2FvufnoBvvx44\nl9gPPLuE4hQcyL4nxnLm/S8ImfaC1fygIQPIPX+p1KId/Hzw6NgWXXxiha1uZdS/X1gbXIMD2Djo\nJQ7N/Zo7Z44sM12LiU9wdtlfbBz0EgWZOdQf1NsyL+VAJJufmsXmp2ZZd9yARk/eS1Z0bNnBNRoa\nTX2eY9Pe5MCw8YX1b932PbuE4lw3kP1PvsCZ/yyk8UvWx96jk+ZwaNSUUh03Bz8fPDq1K7P+bd/2\nKSi7QsStoNp23hRFaaAoytEypi9VFKVlGdNHKIryeQXEDVIUZcXNLkdcmbbRHRgSL2BKugRGA/rd\nf+HYto9VGsPZg6i5mQAUnD2MxtPfnDewEQVRRyBfByYj+ZF7cWzf77ri12oZQu6leHSxiagGA4kb\ntuPbs6NVGp+eHYn/KxyAzGOn0bq54ODtAUD6wRMYMrNvpOgAODVtTn5cDAUJcWAwkLkI9YNuAAAg\nAElEQVRlE25dwqzSGDPS0Z2OBKPRarrGxRXnVm3IWLfGPMFgwJRT/rrkFStnwvrt+PTsYDXft2dH\n4tduLlZOVxy8PajVMqTcvLnRMeReKOdkWSigf9gV519Jh471qV3b+eoJK0lFx3dr0QRdTBz6uARU\ng4HkjVvx7N7ZKo1X984k/fMvANnHI9G6uWLv7XnNMbzvCiN545arpjtyOJZ69bwIDvbE3uH/2Tvv\n+Car9YF/T9I23XQlbYECQsuwIKPsLeDALcJ1L5YLZAgqigsQ9HevgDgB9XpVrnrRq6KAlyVThmXL\nXm0pXUnadCdpkvf3R9q0aVpakJKi5/v59PNp3jzPec55zvuc8573jKgZftPVbNhw3E3m1Ek9vXq1\nAqB16yjOnTNhMBRx+rSRTtc0JSDAFx8fFd17tGDd2mP1zqPT/jlatAwnLi4cPz81w29OZMN69zRO\nndLTq3e5/TZRZJzLx2Ao4tQpA9dc08xlv0ePlqxbc6QGK+4EtW+L5VwG1swsFJuN3A2bCevbx00m\nrG9vjGvXA1B8pNz/EeEEtIyj6MgxHBYLOBwU7v+d8AHOe7sgeS84HOU6R/HTRrml2RCx12zE9aR8\n9j1KmQ2AsjxnGxnRszNFJ1MpOplaxYLn4M3b9V8Xf7bYD+mQgDk9E0uGM/b167YSWT32B/Qk5+eN\nABQeOo66Suz7aSOJ6NOd7B/XeqTdeuJoUj74V03VfNE0hP9jBiWRvnILAHm/n8Q3OBBNVJiHXFSP\nRDLX7wLg7E+biRnc3UOmOv66CKL7dyHt+19q/D6kQwLmc1mutle/fgsR/d1niyP69yTn54q293i9\n296rJo4h5f1PQfGsAO/HPu4PDo0URVE16r/GSuPNWS0oijJWUZSa14f9QYQQPoqiZCiKMrIh0pdU\nog7T4cjNcn125GWjCtfVKu8/YATWg1sBsJ07iW9CN0RQE/DzR9NpAKqImAuyr9FGYMkxuD5bcoxo\ntBHVZCIxZxsrZfS5aLSRF2SnNnwjtdj0lW+7bQY9vpHa+ulGx2IvMBE7+Xlavb2UmInTERr/WuXN\nOVXKkONZBo02opqM0xf+HtcvrPy6YX3rFvqL4BcV6Xa/WfUGD1/6RUVizdFXkTHiF1Upc/X82XRa\nOh/drTd4pB/SOZGyXBPm9Mw685KTU0hMTIjrc3R0KDnZ7sut2rWPdj2UHzxwjsyMfLKzC4lP0LJn\n91lMeSWUlpaxZfMpsrIK6rRZlezsQmJimrg+x9Rmf81RAA4cOEdGhonsrAIS2mrZvTvNZX/z5hNk\n1sO+07dV/G8w4FfN/75RUdX8b8A3KorSM6mEdOqIOjQElUZDk17d8dW5D9IAooZfT/6uZLdrDRF7\ngS2aEta5A90/nku3918jpEOb8uuxoECXhS/S419v1uoLb9f/Xw2/6n2N3ohf9b4mKsL9/swxooly\nyrR+egxnPviXxwAhon9PrAYjxSdTGi7zlwh/XQSlVfrS0pxc/LXugyO/sGBshcUodkeNMhHXJDD4\nq3n0WvQsIa2bua53fOZBDr/9JYqj5hGsn7Za7OuNaKIiPWTc68hQKaNA4oJZdP7oLaJvvb4yP/17\nYtUbKTmVUqPdxhj7kj8PjX3Pm48QYhnQDTgEPASsAqYpipIshHgUmAGYgP2ApbaEhBCf4lz/2x0I\nBaYqivKTEOIRYAQQDKiFEA8DPymK0lEIoQbeBG7EuXFgqaIo7wghkoD55ToG4BFFUep+apJcFL7t\nexAwYAR58x4EwJ55mpLVnxD2zBIUSyllZ4+B4rmv48+KUKvxb9OW7A8XYT5+BN34CUSOug/DF594\nO2suQhPjcZit3s7Gn4ZDTz2H1ZCLT1gTrp4/i9K0dAr3H3J9HzV0IIb1Wy6ZvbHj+vLG3DXcdedS\nEhJ0tO8Qg1olaNMmitFj+zB+7JcEBPjSrn00KtWl33A+bnx/5r7+M3fevpi2bXV06BCLSq2iTRst\nY8f2Y+yYZQQE+NK+fQxqVcO+gzSnnSXrq+W0/b85OMwWSk6dds22VRB7/90odju562p++38pEWoV\nvk2CSR7zAqFXx9Pp9an8OuIphFpNWOf2/Pbo89jNFq7dtAxBDApZdSdaDW/Xv8RJeN/ulJnyKT52\niiZdO7quqzR+xD00kt+nvOq9zF1G8o+msPbmp7GXWtD160yPt6ay4c5niB7QFUtePvlHU4hM6tAg\ntg8+9TxWQy6+YU1IXPAapWnpFB09SfMHR3Fo6isNYrM2LiT2gaHA+suaQcllo7EP3toBYxRF2SaE\n+AR4suILIUQs8BqQBOQDvwB760ivFdATaAP8IoSIL7/eDbhGUZRcIUSrKvLjy3W6KIpiE0JECCF8\ngXeA2xVF0Qsh7gZeB0ZXNSSEGF+uz+LFixk/fjySSuymHLfZMlV4NI48z3Xj6uZtCX1kFqYFj6MU\n57uum7f8F/MW56bvoBGTcORd2AOKRZ+Lpsrbc40uEos+t5qMEf/oSCqsarQRWPRGLgVlRj0+2sqZ\nNp8oLWVG/Xk0quga9NgMeszHncvFCrdtInLkfbXK++sq3/hpdJ5lsOhz8ddVKWe5L4SPT526tRE9\nrB9Za7cSH197vv5KWA1Gt/vNTxvl4UurwYifTgscKZeJxGowln/nvDdtpnxyt+wguENC5eBNrSJi\nYB8OjptSr7zodCFkZVXOtGRnF6CLDnGTCQ7WMGfurQAoisINw96jeZzzLfhdI7tw18guACxc8Asx\n1XTrIjo6hKysyljOqsX+3Hm3u+xfN3QRcRX2R3XlrlFdAVgwfz0x0aF12nT6tor/o6KwVvN/mcFQ\n7v9yGW0UZQbn23jD6jUYVq8BoNmYh7HqK9/SR94wjCa9e3J82gsedhsi9iw5ueh/2QlAweGTKA4H\nvmGhWHKMmPYepqzKoQmCSI/Bm7fr/6+GtXpfo43EWr2vMeS635+6SCyGXCIH9yGiXw/Ceyeh8vNF\nHRRI25cmk77sOzSxOrp+utCVZpdP5rN/3HTKck2Xp2D1YNC/5wJgOnyagOjK+zlAF4FZ774X2moq\nwickCKFWodgdbjK24lKXXM62/aieV+MXFkxE57bEDEwiul8XVH6++AQH0G22+341q75a7GsjsRiM\nHjIaXRQVUaHRRrlkKtreMlM+xs07CO7QFlthMZpYHV3+udAl3+XjBewfP83lf2/HPs7n2sY/eJOn\nTV4UjX3Z5FlFUbaV//8FUPVIsl7ARkVR9IqiWAHPUx08+Y+iKA5FUU4Ap4H25dfXKopS067rYcBi\nRVFsAOUy7YCOwFohxD5gJtC8uqKiKEsURemuKEp3OXDzxHbmd3yiW6CKagZqHzS9hmPZ5/7WWhUR\nQ5OnFpK/dAb2bLe13IiQCJeMJmko5h2rLsh+4ZGTBMbF4h+rQ/j4oBvWD8OW39xkDFuSiRk+GIDQ\nxATsxSVYjZemYzQfP4Zf0+b4RseAjw+hA4dQtPPXeunaTbmUGXLwa+bcdB3UOQlLWmqt8lXLGX1d\nPwxb3Jd26bckE3PTIMBZTluRs5zVfVSTbo0IgW5oX7LXbqtb9i9C0dET+DdviiY2GuHjQ9TQAeRt\n2+kmk7t1F9obrgUg+Op22ItLKDPmofLXoApw7kFR+WsI69GF0tOVB9SEJXXBnJbuMRipjY6dmpKW\nmkt6uokyq53Vqw5z7bVt3WQKCsyUWZ1bJr5dvo+k7i0IDtYAYDQ6T1PMzMhn/dpj3HRLRy6Ejp2a\nkZqSS/rZPKxWO6tXHuLaIZ72reX2v1m+l+7dW3rYz8jIZ92ao9x8a6c6bRYfPY5/s6b4xTj9HzFk\nIKbtO9xkTL/uJPK6oQAEdWiHvbiYslznw6NPmHOZp59OS9iAvuSu3wg4T7CMuXskJ2e+5twTV42G\niD395l2EJzl9HhAXi8rXhzJTAcad+wmKb4FK44dQO7t2Bc/2ytv1/1ej8OgJAuJi0ZTXpXZYf3K3\n7XKTyd26C92NgwEISWyLvaiYMmMeqYu/4LcRY0keNZ5jr75F/u4DHJ+9kJLTqey69RGSR40nedR4\nLHoj+0ZPbVQDN8B1wEjmxmSa3zwAgPCO8ZQVlWIxeObVmHyY2KHO/Whxtwwka9NuADSRlcuswxJb\ng0pgNRVx5N2vWXvTRNbdOpndL7yL4bfD7HnpA7c0C4+eIKB5Ff8PHUDu1mr+37YL3Y0VbW9bbOX+\nV/lrULu1vV0pOZ1KyelUfrvtYXb/bTy7/zYei97AvjFT3Pzv7dgHGmR7kaRx0Nhn3qovYv6j23Jr\nS6+4uuB5EMAhRVH61CkpqR2HncIv5hI2dTFCpaZ063fYM07hP9h5Wpt5438Iuu0JVMFNCHlwpksn\nb9bdADR5agGq4DAUu43CL15HKb2wI5IVu4Pjb31El4Uzncfx/rSB4jPpNL3TuaY947s1GH/dQ2Tf\nbvRZ/q7zKN8577v0E1+bTFi3RHzDQuj7w2LOfPQ1mT9uuKDyZ3/4NnGz/g4qFflrV2NNSyFs+G0A\nmFavQB0WQauFi1EFBoJDIfz2kZx54mEcpSVkf7iI2GkzET4+lGVlkrnwjVpNHfvHx3R9+0VQqcj8\n6ReKz6TT7M7rADj33VqMv+4hqm9X+nzzjvMnEea85/JRTboA2kE9afvMaPzCQukyfwaFx1PYN9l5\nhHVY1w5YcgyYMy7+BLRpU79l165UTHklXDtwARMmDnbNtlwOLrl9u4MzCxfT4R+vIlQqclatozTl\nLNG33QhA9oqfMe1IJrxPEl2/XIzDYuHkvEUA+IaH0e5156yOUKsxrNuEadceV9KRQwdgWFf3QSUV\n+PioeGHmDTw29kvsDgd3juhMfIKWr79yPijdfU8Sp08ZeHHGjwgBbeK1zJpzs0t/yqRvMZlK8fFR\n8eJLNxAaWvt+y9rsv/jycMaNXYbDrnDnXV1ISNDx1ZfOB5R77u3O6VN6Zjz/AwJBfIKW2a/f6tKf\nNPE/mEyl+PqomfnK8PrZdzhIe+cD2r45B9QqjKvXYE5JQ3vrTQDof1xF/s7faNKrBx2/+Lj8pwIW\nuNTbvPoiPqGhKHYbaW+/7/o5gBZPP4HK15e2f3fe+0WHj5G2sPLcrIaIvYwff6HDzCfotewtHDYb\nh2c5dWyFxZz98id6/PMN1/4ohXM1+t+b9V8Xf8bYPzV/KR3nvwIqNdkr11Fy5iwxtzv3rmb98D/y\ntu8mvE8SSV9/iMNs4cTcRZeoNBdOQ/g/Z+s+ovt1YegP810/FVBBr7ens2/2UiwGE4cXfUnS3Il0\neHIU+cdSSft+IwCxQ3vSauQwFLsdu6WM3TMu4Gw6u4PTC5aQ+NaroFKRs3I9pSlnibnd2fZm/fCz\n0/+9u9PtK6f/T85znpTsGx5Gh7kzAGfbq1+7GdOuuhZ4OfF27AMr6+8kyZWGUGo4JacxUL588QzQ\nV1GU7UKIj3CuJ7oVmAacA3bgnBouADYA+xVFmVBLep8COuAW4CpgExAP3AN0r9Art1ux5+1xnLNv\n91QsmwSKcL7ReLA8X75AW0VRDlE7jdPJl4mc0d57M6v75Hc29PHe+TNDtn/D0VsGe81++582sr73\nKK/ZH7pjOXaWec2+mvu9bn/7wNu8YrvPZucx0mWOz7xi31f1kNd9nzzkJq/Z775hlddjz1t1D42j\n/r1tf2v/O7xmv//W771WfjXOnxpYkeSdn3y4bfcytg2o/nujl49+W37weuzjnGho9OjHJjbq52Pt\nR4capR8b+7LJY8BTQogjOH/p1zUfXn5AyKvAdmAbFRtFzk8asAtYDTyuKEpdP2D4UbnOASHEfuC+\n8iWaI4E3y6/tA+SxehKJRCKRSCQSiaRBabTLJhVFSaFyT1pVBleR+SfwzwtIdp2iKG6/fqkoyqfA\np9Xsdiz/3wZMLf+rqrMPGHgBdiUSiUQikUgkEonkD9HYZ94kEolEIpFIJBKJREIjnnm7WIQQLwLV\nFxsvVxTlES9kRyKRSCQSiUQikVRDkT8VcFH86QZviqK8jvN31yQSiUQikUgkEonkT4NcNimRSCQS\niUQikUgkVwB/upk3iUQikUgkEolE0rhRFDmHdDFIr0kkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJ\nFYBcNimRSCQSiUQikUguK/K0yYtDzrxJJBKJRCKRSCQSyRWAUBTF23n4KyCdLJFIJBKJRCK5HFwR\nU1pZD3du1M/HMf/a3yj9KJdNShqcnNEdvWZb98nvbOgz0mv2h2z/hqO3DPaa/fY/bWR97+q/WX/5\nGLpjOXaWec2+mvu9bn/7wNu8YrvP5hUAlDk+84p9X9VDXvf97qHDvWY/af1qr8eet+oeGkf9e9v+\n1v53eM1+/63fe638au4HYEXS/V6xf9vuZWwbcLtXbAP02/KD12P/SkFRGuXYqNEjl01KJBKJRCKR\nSCQSyRWAHLxJJBKJRCKRSCQSyRWAXDYpkUgkEolEIpFILity2eTFIWfeJBKJRCKRSCQSieQKQA7e\nJBKJRCKRSCQSieQKQA7eJBKJRCKRSCQSieQKQO55k0gkEolEIpFIJJcVxSH3vF0McuZNIpFIJBKJ\nRCKRSK4A5OBNIpFIJBKJRCKRSK4A5LJJiUQikUgkEolEcllRFDmHdDHIwZvEa/h17Efwfc+DUGPe\n8i0lqz52+17T+2aCho8BAYq5hMLPZ2M7ewyAgGEPEDDwLhCC0s3fULr2i3rZjOjdhYTJjyLUKjJX\nrCf18+89ZBKmjCayb1ccZiuHZ79L0fEzALR/8Umi+iZhzctn1wNTXfLaIX24aszfCGrVjOQxMyg8\neqpeeQnq1hPd+AkIlRrTmpXkfvNvd/80b0Hs5OfQtEnA8NnH5H73tes7VVAwMU9PR9PiKkAh8+03\nMR89XGuZ2055FKFSkVFLmdtOfZTIPt2wWywcmf0ehcfOnFdXN6Q3V411lvm30TMoPHoagOgb+tPy\n/turpR4O5NXLJxW8OGMFmzYeJyIyiBU/PXFBupeChrAf1rMbrZ4ei1CpyV65hoxl33rItHp6HOG9\nu2O3WDg1byHFx51+VQcH0ebZCQRe1RIFhVNvLKLo0DEiBvcj7tF7CWjZnIOPTaP42Ml65WXrllO8\nMXcNdofCXSO7MHZcX7fv8/NLeenFnzh71oRGo2b2nFtIaKsD4PPPdvHt8n0oisLIUV158OGeF+yL\nLZtPMu/1/2F3OBg5qivjxvf3sD/zhRWcTctDo/FhztzbKu3/ayfLl+9BUWDUqK489EjvetkM7ZFE\n3FOPg0qFYdXPZH+13EMm7qnHCe3VA4fFQsr/vUXpCWcs60bcTtRNN4IQGFb+TM5/nXEQ+9D9RN18\nIzZTPgDnPv4XBbt+c6XXELEH0HzUjTS/60YUhwPjr3s4+e4X+IQGc828ZwjpEE/myo3n9YW36/98\n/Cljv1dXWk8ai1CpyP5pLelf/NdDpvWksYT3ScJhtnB87iJX7AOgUtHlo39g1Rs5/NzrbnrN7rmd\nqyY8yo6bH8SWX/iH89pQ/u84/SGi+3XGbray99XF5B9N8ZAJbKolad4E/JoEYzqSwp6X3kex2YlM\n6kDP+VMpOacHIPOX3zi+9LtKRZVg0OdzKNXnsWvyPzzSDevZldaTxkG5/8/V0PZeNWkc4b2TcFgs\nnJj7tsv/Sf9Zgr2kFMXhALuD/eOecdNrevftXDVhNDtveaBW/1/OdkDy10AOeSXeQagIeWAmpgVP\nkDvzNjS9bkLdtLWbiF1/jrw3HyH35REU//ghIQ+/AoC6WTwBA+8id8695L5yF5rOg1Dr4uq2qVLR\n7pmx7J/6OjvvnYLuuv4EtmruJhLZpyuBcbHsGDWRo298SLtnx7u+y1r5C/umzPFItvhUGr/P+Dum\nfUfqX36ViugnJpH+ynOcfvJhQgcNwS+upXv5CwvIXryI3P9+7aEePX4Cxbt3ceaJhzgzcQzWs2m1\nmmo3bQz7przOjnunEH19P4JqKHNAXCzbR03k6LzFtHt2nCuPtekWnT7Lwef/4VHm7P9tZddD09n1\n0HQOvfZO+dULG7gB3DmiM0s+uv+C9S4Vl9y+SsVVUx7jyPTX2PfQU0QNHUhAS/d7Nqx3Ev7Nm7L3\nvsc4/ff3uGpq5YNTq6fHYdq5h30PPsmBRydRmpoOQOmZVI7NnEfB/kP1zord7mDO7J/5YMk9rPjx\nMVatPMSpk3o3maVLfqV9h2i++2Ecc9+4jTfmrQXgxPEcvl2+jy//8yjffj+OTRtPkJaae0GusNsd\nzJm1msUf3cePK59k1U+HOFnN/pIPt9K+Qwzf//g48968g7mv/+yyv3z5Hr5ePpbvfniMjRtPkFof\n+yoVLZ5+ihMzXuLw6MeIGDIY/5Yt3ERCe/ZA07wphx4aQ9r8RbScNAEA/1YtibrpRo48NZnD456k\nSe+eaJrGuvRyvvmeI49N4MhjE9wGbtAwsRfeLRHtwB7sfHAaO++bSuqyFQA4rGWcWvI1J9/5rG7/\ne7H+6+LPGPttpj7GoWmz2PPARLTDBhBQ7T4I752Ef1wsu+95gpN/f5/4aY+7fd901C2UlMd8Vfx0\nUYT16II5K+eSZbch/K/r15mguBjW3/EM++d8zDUzHq1RrsPT93Bq2WrW3/EMZQXFtLxjsOs7495j\nbLrvBTbd94L7wA1ofe+NFKZk1GxcpaL11Mc4NO019j44odz/7m1veO8kAprHsufexzn5f+/R5hn3\nQevvk2ayf/QUj4Gbny6KsJ5dz+//88RyBZeyHZD8NbiiB29CiI1CiO6XOM3HhRAPXco0JZ74tO6E\nLScNhz4d7DYsO1ej6TLETcZ2ah9KSQEAZacOoAqPdurGtqbszEGwmsFhx3osGU23YXXaDL06npL0\nLMwZOSg2GznrtqEd2MNNJmpgD7JWbwSg4NAJfIID8YsMA8C07wi2giKPdEtSz1GSVkvHUQv+bdtj\nzTxHWXYm2GwUbN5AcO9+bjL2fBPmE8fAbne7rgoMIiCxM/lrVjov2Gw4ij3zVUFplTJnr91G1ED3\nkNEO7EHWqk1VyhyEX2QYoVfH16pbklJ3mWOu63fe789H9x4tadIk4KL1/yiX2n5whwTM5zKxZGaj\n2GwY1m8hvH8vN5mI/r3Q/+8XAIoOH8MnOAjfyHDUQYGEdk4kZ6XzAVqx2bAXFQNQmpqO+ey5C8rL\nwQMZtGgRQVxcOL5+aobfdDUbNhx3kzl1Uk+vXq0AaN06inPnTBgMRZw+baTTNU0JCPDFx0dF9x4t\nWLf22AXaP0eLluHExYXj56dm+M2JbFjvnsapU3p69S633yaKjHP5GAxFnDpl4Jprmrns9+jRknVr\n6n5pEtS+LeZzGVgzs1BsNvJ+2URYX/cZu7B+vTGuWQ9A8ZGjqIOD8YkIx79FHMVHj6FYLOBwUHjg\nIGED6ndvN0TsNRtxPSmffY9SZgOgLM/ZRjrMFvL3H8VhLTtvnrxd/3XxZ4v9kA4JmNMzsWQ4Y1+/\nbiuR1WN/QE9yft4IQOGh46jLYx/ATxtJRJ/uZP+41iPt1hNHk/LBv0C5ZNltEP/HDEoifeUWAPJ+\nP4lvcCCaqDAPuageiWSu3wXA2Z82EzO47sc7f10E0f27kPb9LzV+H9IhAfO5LFfbq1+/hYj+7rPF\nEf17kvNzRdt73NX21sVVE8eQ8v6noNReAeeL5QouZTtwpaE4RKP+a6xc0YO3S40QwkdRlA8VRTn/\nq0vJH0YdpsORm+X67MjLRhWuq1Xef8AIrAe3AmA7dxLfhG6IoCbg54+m0wBUETF12tRoI7DkGFyf\nLTlGNNqIajKRmLONlTL6XDTayHqXq774Rmqx6SvfdtsMenwjtfXTjY7FXmAidvLztHp7KTETpyM0\n/rXKm3OqlCfHszwabUQ1Gadf/D2uX5gvdMP61i30F8EvKtLt3rPqDR6+9IuKxJqjryJjxC8qEk1s\nNDZTPm1mTOKajxbS+tkJqPw1F52XnJxCYmJCXJ+jo0PJyXZf7tOufbTrofzggXNkZuSTnV1IfIKW\nPbvPYsorobS0jC2bT5GVdWEPDdnZhcTENHF9jqnN/pqjABw4cI6MDBPZWQUktNWye3eay/7mzSfI\nrId936goyvRVfWvANyqymkwkVr17HflFRWFOSSW4UyLq0BCERkOTXj3w01bGqvbOW+mw9H1aTpuC\nOjjYLc2GiL3AFk0J69yB7h/Ppdv7rxHSoU2d5a+Kt+v/r4Zf9X5Hb8Sver8TFYG1avuQY0QT5ZRp\n/fQYznzwL48BQkT/nlgNRopPpjRc5i8R/roISqv0q6U5ufhr3QdHfmHB2AqLUeyOGmUirklg8Ffz\n6LXoWUJaN3Nd7/jMgxx++0sUR80DKD9tpLtv9UY01WLfTxtZrY4MlTIKJC6YReeP3iL61usr89O/\nJ1a9kZJTKecvez36UW+0A5Irm0Y5eBNCfC+E2C2EOCSEGC+EUAshPhVC/C6EOCiEmFJNXlX+veea\ntkqZIiHEgvI01wshtOXXNwohFgohkoFJQohXhRDTyr+LF0KsE0LsF0LsEUK0Kb8+XQjxmxDigBDi\ntVrsjRdCJAshkpcsWXLJfPNXxLd9DwIGjKBo+XwA7JmnKVn9CWHPLCFsyoeUnT0GisPLubx8CLUa\n/zZtyVv1AymTxuGwlBI56j5vZ8uN0MR4HGart7Pxp0Co1QQltCH7+9UcGDsZh9lMs/tHNqjNseP6\nUlho5q47l7Lsi2Tad4hBrRK0aRPF6LF9GD/2Sx4f9yXt2kejUl36t5PjxvenoNDMnbcvZtnnu+jQ\nIRaVWkWbNlrGju3H2DHLGD92Ge3bx6BWNWw3Zk47S9ZXy0l483US3phN6cnTzv0vgP7Hlfz+wGiO\njH+Kstxcmj8+rkHzAiDUKnybBJM85gVOvvs5nV6fWrfSBeLt+pc4Ce/bnTJTPsXH3PdRqzR+xD00\nktSPvvRSzi4v+UdTWHvz02y8ZwZnvv4fPd5y3vPRA7piycuvcf/cpeLgU8+zf5fLl0sAACAASURB\nVPQUDk+bReyImwjtfDUqjR/NHxxF2sf/rjuBBuJytAOSxktjPbBktKIouUKIAOA3YDfQTFGUjgBC\niKrz7T7AMuB3RVFe90zKRRCQrCjKFCHEy8ArwITy7/wURelenvarVXSWAW8oivKdEMIfUAkhrgcS\ngJ6AAFYIIQYqirK5qjFFUZYAFaO2S7io4c+B3ZTjNlumCo/Gkee5blzdvC2hj8zCtOBxlOJ813Xz\nlv9i3uLc9B00YhKOvCwP3epY9LlodFGuzxpdJBZ9bjUZI/7RkVRY0mgjsOiNXGrKjHp8qry994nS\nUmbUn0ejiq5Bj82gx3zcuVyscNsmIkfWPnjz11W+5dPoPMtj0efir6tS5nK/CB+fOnVrI3pYP7LW\nbiU+vnENKr2F1WB0u/f8tFEevrQajPjptMCRcplIrAYjKAoWvYGiI86lbcaNv9Ls/rsuOi86XQhZ\nWZUzLdnZBeiiQ9xkgoM1zJl7KwCKonDDsPdoHud8C37XyC7cNbILAAsX/EJMNd26iI4OISurMpaz\narE/d97tLvvXDV1EXIX9UV25a1RXABbMX09MdGidNssMBnyrxJufNooyg7GajBE/bRTFVWSsBufb\neOPqNRhXrwGg6ZiHKSufobPlmVz6hpWriX/d/V1eQ8SeJScX/S87ASg4fBLF4cA3LJQyU/1mwLxd\n/381rNX7HW0k1ur9jiEXv6rtgy4SiyGXyMF9iOjXg/DeSaj8fFEHBdL2pcmkL/sOTayOrp8udKXZ\n5ZP57B83nbJcE42FQf+eC4Dp8GkCoivv5wBdBGa9+15oq6kIn5AghFqFYne4ydiKS11yOdv2o3pe\njV9YMBGd2xIzMInofl1Q+fniExxAt9nu+9WseqO7b7WRWKrFvlXvbJ8rokKjjXLJWA3Ouioz5WPc\nvIPgDm2xFRajidXR5Z8LXfJdPl7A/vHTPPxvLo/xChpLO9BYUBT58udiaJQzb8DTQoj9wA4gDvAD\nWgsh3hFC3AhUvTsXU/fADcABVJz88AVQ9XgzjxMhhBAhOAeM3wEoimJWFKUEuL78by+wB2iPczAn\nuQBsZ37HJ7oFqqhmoPZB02s4ln3ua9ZVETE0eWoh+UtnYM9OdftOhES4ZDRJQzHvWFWnzcIjJwmM\ni8U/Vofw8UE3rB+GLe4HDBi2JBMzfDAAoYkJ2ItLsBovfWdoPn4Mv6bN8Y2OAR8fQgcOoWjnr/XS\ntZtyKTPk4NfMuek6qHMSlrTUWuWrljn6un4YtiS7fa/fkkzMTYMAZ5ltRc4yV/dXTbo1IgS6oX3J\nXrutXuX5K1B09AT+zZuiiY1G+PgQNXQAedt2usnkbt2F9oZrAQi+uh324hLKjHmU5Zqw5hjwj3Mu\nFWqS1JnSlLMXnZeOnZqSlppLerqJMqud1asOc+21bd1kCgrMlFmdey2/Xb6PpO4tCA52LtU0Gp3D\nm8yMfNavPcZNt3S8QPvNSE3JJf1sHlarndUrD3HtEE/71nL73yzfS/fuLT3sZ2Tks27NUW6+tVOd\nNouPHse/WVP8Ypz+D792EKZfd7jJmH7dQeT1QwEI6tAee3Extlznw6NPmHOZp69OS3j/fuSu3+i8\nHlG5rCusf19KU9zjsCFiT795F+FJTp8HxMWi8vW5oAc2b9f/X43CoycIiItFU16X2mH9yd22y00m\nd+sudDcOBiAksS32omLKjHmkLv6C30aMJXnUeI69+hb5uw9wfPZCSk6nsuvWR0geNZ7kUeOx6I3s\nGz21UQ3cANcBI5kbk2l+8wAAwjvGU1ZUisXgmVdj8mFihzr3o8XdMpCsTbsB0ERWLrMOS2wNKoHV\nVMSRd79m7U0TWXfrZHa/8C6G3w6z56UP3NIsPHqCgOZV/D90ALlbq/l/2y50N1a0vW2xlftf5a9B\nHeDc/6fy1xDWoyslp1MpOZ3Kb7c9zO6/jWf338Zj0RvYN2ZKjf6vTz/qjXZAcmXT6GbehBCDgWFA\nH0VRSoQQGwEN0Bm4AXgc+BswulzlV+BaIcRbiqKYL8BU1dmw4lqlasgiME9RlMUXoCOpjsNO4Rdz\nCZu6GKFSU7r1O+wZp/Af/DcAzBv/Q9BtT6AKbkLIgzNdOnmz7gagyVMLUAWHodhtFH7xOkpp3Uck\nK3YHx9/6iC4LZzqP3f1pA8Vn0ml6p3Mde8Z3azD+uofIvt3os/xd55G9c9536Se+Npmwbon4hoXQ\n94fFnPnoazJ/3EDUoJ60nToGv7BQOr81g8LjKeyv4VTK6uXP/vBt4mb9HVQq8teuxpqWQtjw2wAw\nrV6BOiyCVgsXowoMBIdC+O0jOfPEwzhKS8j+cBGx02YifHwoy8okc+EbtZo69o+P6fr2i6BSkfnT\nLxSfSafZndcBcO67tRh/3UNU3670+eYd588jzHnP5a+adAG0g3rS9pnR+IWF0mW+s8z7Jjvfn4R1\n7YAlx4A54+JPQJs29Vt27UrFlFfCtQMXMGHiYNdsy+Xgktu3OzizcDEd/vEqQqUiZ9U6SlPOEn3b\njQBkr/gZ045kwvsk0fXLxTgsFk7OW+RSP/P2EhJemorw9cWSkcXJeW8DEDGgN60mjcc3rAnt33yZ\nkpOnOTLt1fNmxcdHxQszb+CxsV9idzi4c0Rn4hO0fP2V80Hp7nuSOH3KwIszfkQIaBOvZdacm136\nUyZ9i8lUio+PihdfuoHQ0Nr3W9Zm/8WXhzNu7DIcdoU77+pCQoKOr750PpTcc293Tp/SM+P5HxAI\n4hO0zH79Vpf+pIn/wWQqxddHzcxXhtfPvsNB2jsfkPDmHIRKjWH1GsypaUTdchMAhp9WUbDzN5r0\n6kHHzz/BYTaT8vcFLvXWr87EJzQUxWYjbdH72IudXUbz8WMIbNMaBbBmZZO6YJGb2YaIvYwff6HD\nzCfotewtHDYbh2e957LX97v38AkMRPhWdO1NgPyqWfJ6/dfFnzH2T81fSsf5r4BKTfbKdZScOUvM\n7TcAkPXD/8jbvpvwPkkkff0hDrOFE3MX1ZFow9EQ/s/Zuo/ofl0Y+sN8108FVNDr7ensm70Ui8HE\n4UVfkjR3Ih2eHEX+sVTSvt8IQOzQnrQaOQzFbsduKWP3jHfrb9zu4PSCJSS+9SqoVOSsXE9pylli\nbne2vVk//Oz0f+/udPvK6f+T85wnJfuGh9Fh7gzAuXxdv3Yzpl17L6jstcVyQ7YDkj8/QjnPKTne\nQAhxOzBWUZRbhRDtgX3AA8AaRVEKhBAdgS8URelSPrCbBgwEBgMjFEWx1ZKuAtyrKMpXQoiZQLSi\nKBMr0lAUJblc7lWgSFGUfwghduBcNvm9EEIDqHHO2M0GhiqKUiSEaAaUKYpyvifVxuXky0zOaO+9\nmdV98jsb+jTs/qDzMWT7Nxy9ZbDX7Lf/aSPre4/ymv2hO5ZjZ5nX7Ku53+v2tw+8zSu2+2x2Hh1d\n5vDO+Uu+qoe87vvdQ4d7zX7S+tVejz1v1T00jvr3tv2t/e/wmv3+W7/3WvnVOH9qYEWSd37y4bbd\ny9g2oPrvjV4++m35weuxj3OiodGT+rdejfr5uOV/djZKPza6mTfgZ+BxIcQR4BjOpZPNgI1CiIpl\nnjOqKiiKMl8I0QT4XAhxv6LUeHpFMdCzfOCWA9xdj7w8CCwWQswCyoBRiqKsEUJ0ALYLIQCKcA4u\nL90PrUgkEolEIpFIJBJJNRrd4E1RFAtQ0+vSt2uQHVzl/1fqkbbHcTxV0yj//GqV/08AQ6qpoCjK\n2zXlRyKRSCQSiUQikUgaikY3eJNIJBKJRCKRSCR/bhrzD2E3Zv50gzchxE6cB5xU5UFFUYJrkpdI\nJBKJRCKRSCSSK4E/3eBNUZRe3s6DRCKRSCQSiUQikVxqGuvvvEkkEolEIpFIJBKJpAp/upk3iUQi\nkUgkEolE0rhRFLnn7WKQM28SiUQikUgkEolEcgUgB28SiUQikUgkEolEcgUgl01KJBKJRCKRSCSS\ny4qiyDmki0F6TSKRSCQSiUQikUiuAISiKN7Ow18B6WSJRCKRSCQSyeXgijgJ5PSIfo36+bj1f7c1\nSj/KZZOSBmdTvxFesz1o2385estgr9lv/9NGVna/z2v2b07+N+t7j/Ka/aE7lrN94G1es99n8wqv\n27ezzCu21dwP4LXyNwrffxvhNfvqu3L5otNor9l/4OAnXvf/X93+hj4jvWZ/yPZvvBr7ABv73uUV\n+4N//Zafe97jFdsAN+76yuuxf6XgkKdNXhRy2aREIpFIJBKJRCKRXAHIwZtEIpFIJBKJRCKRXAHI\nZZMSiUQikUgkEonksqI45LLJi0HOvEkkEolEIpFIJBLJFYAcvEkkEolEIpFIJBLJFYBcNimRSCQS\niUQikUguK4o8bfKikDNvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIFIAdvEolEIpFIJBKJRHIF\nIPe8SSQSiUQikUgkksuK3PN2ccjBm+SyEt6rK/GTRyNUKjJ/XMfZL77zkGkzeQyRfbphN1s49vq7\nFB0/jUYXSfuXnsY3PAxQyPxhLeeWrwSgw6xnCGzRFACf4CBsRcXsfuSZOvMS1K0nuvETECo1pjUr\nyf3m327f+zVvQezk59C0ScDw2cfkfve16ztVUDAxT09H0+IqZ37efhPz0cP18sHV0x5C168LdrOV\n/a9+SMGxFA+ZgKZaus6diF+TYPKPnGHfy++j2OxED0qi7eOjUBwOFLuDw299Tt7+Y+VlD+Sal8YR\n1jEeTXgolryCWvPQduqjTh9bLByZ/R6Fx84AENG7C22nPIpQqchYsZ7Uz793ph0aTMc5UwiI1VKa\nqef3F+djKywm+ob+tLz/dle6wfEt2PXwc5SkZdBprrMOOv/rXfJ+3UXa4s8I69mNVk+PRajUZK9c\nQ8aybz3y1urpcYT37o7dYuHUvIUUHz8NQNevl+IoLUWxO1Dsdg6Od6af8Op0AuKaAaAODsJeVMyB\nMZM90v0jttXBQbR5dgKBV7VEQeHUG4soOnSMiMH9iHv0XgJaNufgY9MoPnayVp9fCC/OWMGmjceJ\niAxixU9PXJI0G8L3gW1a0fqZJ1EH+mPOzOHk7Lewl5RePvvxV9H6mSdR+fmi2O2cWfAhRUdO1OmL\nLcd9mfdTMHaHYGSPUsYN8szzrtO+zFsZjM0O4YEOPhufj6UMHloahtUmsDng+o4WJg4rqdNeTXR/\n/j6aDeiEzWxl+8yPyT2S5iHT9t4hdHjgOkJaRLN8wNNYTEVOP93cm8TRw0EIbMVmds7+HNPxs/W2\n3RCx0JA2/2jsN5T9+t5/Eb27kDD5UYRaRWaVdrUqCVNGE9m3Kw6zlcOz36Xo+Jnz6gbHt6Tds+PL\nY0/PoVfevryxdwGxH9Gri7PfV6vI/HE9aZ979vvxU0aX9/tWjs55h6LjZ1z9vl9EE1AgY8Vazv3H\n2e9rr+1DqzF3E9iqGXvGPk/h0VM12q6gwzMPE9W3Kw6zhYOzPqi13+08ZxK+TYIpOHqGA6+8i2Kz\nE3tDP1o/dJsz3krMHH7zIwpPOOO148zH0PbvhjWvgG33Tj9vHirwZuxL/hzIwZvk8qFSkfDMOA5M\nfg1LjpFuH/0fxq2/UZKS7hKJ6NONwOax7Lr7KUIS25IwbTx7xz+PYndw6p1/UXT8NOpAf7p9/A/y\nfttPSUo6R15+y6XfesIj2IuL65WX6CcmcXbmNMqMelot+JCinduwnk11idgLC8hevIjg3v091KPH\nT6B49y4y5r0CPj6oNP71coG2XxeC4mLYeOdUwjrG03HGaH595GUPufYT7+XMv1eTuWY7HWeMJu72\na0n7dh2GXb+TvWk3ACHxcXR7YxKbRk4DIHHaQ+i3HyC0XSs23fMcZQXFXL9uMUGtmlNcxceRfboS\nEBfL9lETCU1MoN2z40ge8wKoVLSbNoa9T8/GkpNLj3/Ow7AlmeKUdFo9dAd5vx1k3+ff0/LBO2j5\n0B2cem8Z2f/bSvb/tgIQ1KYF17w5naITKag0fqQtW0FUv24cGDOZqxfMJqx3EldNGs/hqS9j1Rvp\ntOQt8rbuojS1suMJ652Ef/Om7L3vMYKvbsdVU5/g98crO8RDk17Ell/o5qsTr/7d9X/Lp0ZjL6qh\n/lUqrpry2EXbbvX0OEw793D85TcRPj6o/DUAlJ5J5djMebSe9mS96r++3DmiM/c/0IPnn/N8yLso\n/mD5oWbft3l2Iqnvf0LB/kNobxpG03tHcPbjZZfNfssnHiH90y8x7dxDWO8kWjz+CIcnvXheV9gd\nMGdFCB+NNhEd6uDu98O5tr2V+Gi7S6agVDDrh2CWPJpP0zAHxiLn22E/H/hkjIkgDZTZ4YHFYQxs\na6VzC9t5bVan6YBOhLSM5oebZxB1TWt6znyIn++f4yGn33uSc5v2c90nz7ldL0rXs/bRN7EWlNC0\nfyd6v/Jwjfo10kCx0JA24Q/EfgPar9f9p1LR7pmx7J00C0tOLt0/eQP9lmS3fi+yT1cC42LZ4WqT\nx7N77Izz6raf8QQn3/0M097DxN4yhBYP3M6ZJV9dtrJfSOwnTBvH/kmzsOQYSfr4TQxbPPv9gOax\n7PzbBEITE2g7fTx7xs1Asds59c6nFB0/gzrQn6RP/k7eLme/X3w6jd9f+D/aPftYzXVehai+XQiM\ni2XLXZNp0jGeq58by47RMz3k2k64j5QvV5K1djtXPz+G5rcP4ey3aynN0LPz8VnYCouJ6tOFxBnj\nXfrnVm4ibfn/6PTqU3XmA7wc+5I/DV7d8yaEaCWE+N2befgjCCEeEUK86+18XCmEdoinND0Tc0Y2\nis1GzvqtRA7o6SYT2b8nWT9vBKDw0HF8QoLwiwzHasyjqPxNoL3ETElqOhptpIcN7ZC+5KzdWmde\n/Nu2x5p5jrLsTLDZKNi8geDe/dxk7PkmzCeOgd3udl0VGERAYmfy1zjfAGKz4SguqpcPogclcW7V\nFgBMv5/ENyQQTWSYh1xUj0Sy1u8EIP2nLcQM7u7MU6nFJaMO8AdFAcAnKICIru0pPJVOydlsStKy\nKDM5O9uogd3d0tYO7EHWqk0AFBw6gU9wEH6RYYReHU9pehbmjBwUm43stdtculEDepC5aiMAmas2\noh3oXm8AMdf1I3vdrwA4LFby9hwCQLHZKD5xipBrEjGfy8SS6ax/w/othPfv5ZZGRP9e6P/3CwBF\nh4/hExyEb2R4vXwLEHltPwzrN3tcD+6QcNG21UGBhHZOJGflWld5Kh4SS1PTMZ89V+/81ZfuPVrS\npEnAJUvvj5T/fPjHNaVgv7Oe85P3ETGoz2W1j6KgDgoEQB0URJkh9/zywMF0H1pE2omLcODnA8Ov\nMbPhiJ+bzMr9Gq5LtNA0zAFAZLAzzoSAoPKxis0ONgdwEat+4q7typkVzlgxHDiNX0ggAVFNPOTy\njqZRnGH0uG7YfwprQUm5/ikCo+sfIw0VCw1ls77UFvsNar8e91/o1fGUVGlXc9ZtQzuwh5tM1MAe\nZK3eCFS0yYGuNrk23cAWsZj2Old75O7aj26we3kauuz1jf3KfqW831+3lagB1co/oAfZP3v2SVaj\nyTUDWdnvRwBQknqO0rSM8+axguiB3clY5bw38s/T70Z2TyR7g7PfzVi5mehBzv7PdPA4tkLnfW76\n/QT+ugiXTt7eo5QV1OOFcTnejP3GiKKIRv3XWPnLHlgihJCzjpcZP20klpzKxsiSY3Q1xBVotBFY\ncgxuMn7VZWK0BCdcRcGh427Xm3S+mrI8E6XpmXXmxTdSi02vd322GfT4RmrrVQ7f6FjsBSZiJz9P\nq7eXEjNxOqKeM2/+2nBKsyo7eHN2Lv4698bXt0kIZYXFKHbng6M5x+gmEz24O4O++Qc9Fk5n/6wl\nAAQ202E1FdLuqb/RpMNVdJo5DnX5G/Hqg1yNNgJzDfXg73E916XrF9EEq9EEgNVoci5jqYZuWF+y\n13gOnNXBQYT37Yk1R+9Wt1a9wSNvflGRWHP0VWSM+EVVylw9fzadls5Hd+sNHnZCOidSlmvCXEP9\n+0VFXrRtTWw0NlM+bWZM4pqPFtL62Qn1m21oRPyR8ldQk+9LU9JcD4KRg/uh0UVdVvsp73xEyyce\npds3H9PqyUdJXfLZ+R0BZOeriGlS+UImpomDnAK1m0yKQU1BqYqHlzZh5Lth/LCnsr7tDrjznXD6\nz42ib3wZneMubNYNIEAXTnGVdqA4O5cA3cU9hLW5cwAZWw/WW94bsdBQ9V/B+WK/Ie3X5/6rqU/z\n7PciMWdXaXv1zrb3fLrFZ9KJKh/I6Yb0ueyxV9/Y12gjsGRXKYM+t8Y+yV3G6CHj7+r3614W7ZEH\nXQSlVfxrzslFo3OvA2e/W1LZ72bnetQTQPPbrkW/fd8F56ECb8a+5M9DYxi8+QghlgkhjgghvhFC\nBAohhgoh9gohDgohPhFC1No7CCHeEEIcFkIcEEL8o/zap0KID4UQyUKI40KIW8qvPyKEWCGE2ACs\nL782XQjxW7n+a1XS/V4IsVsIcUgIMb7K9UfL09wFuE/VuOdrfLn95CVLlvxxL0kAUAX4k/j6s5xa\n9InH+nrddf3rNev2RxFqNf5t2pK36gdSJo3DYSklctR9DW63guyNyWwaOY3d0+bT7vFR5XlSEdqu\nFYbtB8namIy91EKbR25ruEyUz/hVEJoYj8Nspfi059r7hJenkfntT5Tl5f8hk4eeeo4DYyZzZPpr\nxNx5EyGdE92+jxo6EMP6LX/IRk0ItZqghDZkf7+aA2Mn4zCbaXb/yEtupzFTm+9PvrGImDtvotPS\n+agDA3CUXfhA5o/Yj759OCnvfsSekWNIefcj2jw38ZLYszsEhzJ8+ODhfJY+ms8HvwSSYnAO8NQq\n+G5iHr88Z+TgWR9OZKnrSK3hiO7RnvgRA9izYPllseetWPBW7Ndlv6Huv/pw5PX3aD7iRrr/803U\ngQEotssbe5cr9sG5yiRx7nROvv3PWvfVXQ4ikq6m+W3Xcvzdf9ct3MBc7tiXNC4aw+xTO2CMoijb\nhBCfAFOBx4ChiqIcF0J8BjwBLKyuKISIBO4E2iuKogghqs6DtwJ6Am2AX4QQ8eXXuwHXKIqSK4S4\nHkgolxPACiHEQEVRNgOjy2UCgN+EEN8CfsBrQBKQD/wC7K2pUIqiLAEqRm1KTTJ/Nax6Ixpd5ds0\njS4Si959mYlFn+v2Bk+ji8RaLiPUahJfn07Oms0YNu10T1ytImpQb3aPrt+G4TKjHh9t5UybT5SW\nMqP+PBpVdA16bAY95uNHACjctonIkbUP3lqOuo64O64FIP/waQJiIsjb7/zOPzoCc06ee/r5hfiG\nBCHUKhS7A39dpIcMQO7eowQ20+HbJARzTi7mnFyMe44Q2f1qTnz8HfHlgzeL3n3phUWfi78ukoqh\nVEU9CB8f/N3qJ8Kla83Ndy1j8YsMw1rtMJToYf3IqmXgbE7PIGv5CoIT27nVrZ82yiNvVoMRP50W\nOFIuE4nVUJ6H8iVJNlM+uVt2ENwhgcLyZTuoVUQM7MPBcVNqzIPVYLx424qCRW+g6Ihzpte48Vea\n3X9XjXYaK3+o/NTue3PaOY488woA/s2bEt7HfYluQ9vX3jiElEVLATD+so3Wz9b98BzdxEFWfuWA\nKytfhS7UXk3GTpNAB4F+EOin0L1VGUcz1bSKqpQLDVDo2bqMLSf8SIip+4Gy7T1DiL9roDOvv58h\nKCaCihYnKDqC0hpi/HyEtW1O79ceYcMTC7Dm13/ZljdioaHqH6gz9hvSfn3uv5r6NM9+z4h/dJU2\nWetse4WPulbdktQM9k2eDUBAXCxR/bpd1rLXN/Yt+lw00VXKoI2osU9yl4l0yQi1msS508les8Wz\n3z8PLUZeT/M7hgCQf/gUAdGRmMq/89dFYMlxrwNnvxtY2e9GR7jVU3B8Czq++BjJk9+gLL9+2yQq\naCyx3xhxKI1hDunKozF47ayiKNvK//8CGAqcURSlYk3cv4CBtejmA2bgYyHECKDqsV//URTFoSjK\nCeA00L78+lpFUSoi8vryv73AnnKZhPLvnhZC7Ad2AHHl13sBGxVF0SuKYgUqjx+U1EnB0ZMENI/F\nP1aH8PFBN7Q/xq2/uckYt/5GzI2DAQhJbIutqASr0dmwtZ3xFCWp50j/+kePtMO7d6Yk9RxWveca\n8ZowHz+GX9Pm+EbHgI8PoQOHULTz13rp2k25lBly8GsWB0BQ5yQsaam1yqcuX8vW+19g6/0vkL0x\nmWY3DQAgrGM8tqJSLEaTh44x+TAxQ51LUprfMoDsTckABDaPdsmEtmuFys+HsvxCLMZ8zNlGbEUl\nBMXFEDO0J4Upzv0Ahi3JbmnrtyQTc9MgZxqJCeU+NlF45CSBcZX1E31dP5euYUsysTcNBiD2psEY\ntlSpNyHQDe1L9tptbnZaP3YP4FxaBFB09AT+zZuiiY1G+PgQNXQAedvcO+PcrbvQ3uAc6AZf3Q57\ncQllxjxU/hpUAc49YCp/DWE9ulB6uvKErrCkLpjT0mut/z9iuyzXhDXHgH/5qXZNkjpTmnJlne7V\nUL73CStfPisEzR/6G1k//HxZ7VuNuYR26QhAaLdrMKfXvQemYzMbqQY16bkqrDZYfcCfaztY3WSG\ndLCyJ8UXmx1KrXDgrC9ttHZyiwQFpc59EOYy+PWkH6219prMeHD8qw2sGvUqq0a9SvqGvVx1W18A\noq5pjbWohFJD/WemA2MiGLTgKbbNWEphana99cA7seDN2G9I+/W5/6q3q7ph/dzbT5zta8zwwc50\nEhOwF9fcJlfV9Q0PdSoLQatHR3Luu7WXtez1jf3CI9X6/WH9MWx175MMW38j+sYqfVJ5+QHavfAk\nJSnppH/l2e+fj7Rv1vDrA8/z6wPPk7MpmaY3OR8jm3SMp6yopMZ+N3f3YaKHOPvdpjcPdPW7/tGR\ndH1zKgdeeY+StLq3ZVSnscS+5M9DY5h5qz4rZQI8T6KoSVFRbEKInjgH1aGZBgAAIABJREFUfCOB\nCcCQWtKt+Fz1NYUA5imKsriqoBBiMDAM6KMoSokQYiNQv01NktqxOzi54CM6zX8ZoVaR9dN6Ss6c\nJfaO6wHI/H4Nudt3E9GnGz3/877zpwLmOs+DCb2mPTHDB1N0MoWkT52nS55ZvIzc7XsA0A3rR866\nC1g247CT/eHbxM36O6hU5K9djTUthbDhztkq0+oVqMMiaLVwMarAQHAohN8+kjNPPIyjtITsDxcR\nO20mwseHsqxMMhe+US+zOdv2oe3XhcHfL8ButnDgtcpbr8fbz3Jg9hIsBhNH3vmSbnMn0u6JURQc\nS+XsD//P3n2HR1H8Dxx/76WHhPRCQuihdwKhgyAqoCgCiiIoCIKCCCgqon5Rmqg/UMQCYhdBAVGk\nSTP0IiC9BAgESL/0dpfc3f7+uHjJpRBQyCXyeT0PD8ntzH5mZneyO7uzexEABPbuQM1+3TAZDJj0\n+RyZ9pEl/6n3vqHVW8+CArUevMtydyz70jWCB/YBIGbNFpL3HsG3cxs6rfrI/FrqWR8DoBpNnHv/\nC9p8OB00GuLW/UH2JfMbwS5/u4YWs6cQNKAXuvgkTkxfYInr2aYJ+kQtuthEy2dOft7UHWm+It9y\nqTlt/M/rufTBYpq8PwNFoyFxw1ZyL18lYMB9ACSs3UTa/kN4dWpHm+WLMen1XJi7EAAHL08azX4N\nMF+J1W7dQdrBI5Z4Pr27od1a+ssKADCa/nFsgEsfLiH0jSkoDg7oY+O5MPdDALy7daTOC8/g4OlB\n43lvknMhijMvzSi7HDfopSmrOXgwmrTUHO7qvoAJz/dk0JA2/3yF/6L+12t737u7EziwHwApO/eR\ntGFrhcaPencRdSaOQbGzw5SXR9R7H5fbFPZ2MH1AFmO+8sCkKgxspyM0wMiKA+Y/8UPDddT3N9K1\nYR4PLfRCo8Dg9jpCA42ci7Nj2ip3TKqCyQT3tdDTs3FeORFLitl1nKDuLXlwwzsFrwv/0rLsrk8m\nsf9/X5OblEajx++m6aj7cPHxoP/qt4nddZz9M76m5bgBOHq60eH14YC5724c+vaNBb9NfeF2xfzX\nff82xr+R/U81moj8v6W0/uB181ewrNtO9qVrBA00H/di12wmee8RfDq3pdPKReavb5n1yXXzAgT0\n6UrNQebyJ0UcIG7d9gqt+432fdVo4vz8pbRc8Ib5qwLWbSfn0lWCCo77sb9sJmXvEXw6tSV85ccF\nXxFkbkcPy3E/mrCv3ze3+eIfSNl3BN/uHQidMhoHz+q0eP81ss5f5vjkmaWWIWnPX/h2bk33nz/E\nqNNzYuZnlmXtFrzCydlL0GtTOffRD7SaPZHQcY+SGXmZa2vNL3GpP3oQjh5uNH1lVEGdjOx70vxW\n0VYzn8erXVMcPd3p+dvHnP98VenboYBN+774z1BU1XYz+hRFqQNcAjqrqrpPUZSlBb+PBXqpqnpB\nUZSvgb9UVS1xhFAUxQ1wVVU1UVEUDyBKVVWfgjz+wP1AXWAH0AAYCoSpqjqhIP89wEzMUzSzFEUJ\nBvKBTsBoVVUfUBSlMXAUuA84h/lOXFsgA9gOHPt7fddxR0+b3NHlYZvF7rHnZ87e39Nm8Ruvi2B9\nWMU9D1dc/0M/sK3jEJvF771/Jfu638Zn78rRaedam8c3UsrrsyuAHcMAbFb/StH2q0u+cKCi2A1K\n4fsWo2wW/4kTX9q8/e/0+Ns72e7Z2F77Vtm07wNEdLbN9PKee1ezqcNQm8QGuO/gCpv3ff7Re3Ar\n3qm+vSv1+XGzjdsqZTtWhjtv54DxBc+7nQYmYh4grSx4I+SfwGdl5HUHflUUxRnzjjqlyLIrwEGg\nOjBOVVWdolhvA1VVNyuK0gTYV7AsC3gC2ASMUxTlDIUDNlRVjVMUZQawD/Mdwn/+yiEhhBBCCCGE\nuAk2HbypqnqZwmfRitoGlDtHSFXVOMwvGynNVlVVxxVL/zXwdbHPPgRKm/fRt4yYXwFflVc2IYQQ\nQgghhLiVKsOdNyGEEEIIIcQdpDJ/EXZlVmUGb4qirMH8/FpRr6iq+nvxtKqqPlUhhRJCCCGEEEKI\nClJlBm+qqg60dRmEEEIIIYQQwlaqzOBNCCGEEEII8d8g0yb/mcrwJd1CCCGEEEIIIcohgzchhBBC\nCCGEqAJk8CaEEEIIIYQQVYA88yaEEEIIIYSoUCZ55u0fkTtvQgghhBBCCFEFKKqq2roMdwJpZCGE\nEEIIURGqxC2tY/fcU6nPj1tt3lwp21GmTYrbLmFkS5vFDvjqOFvCH7FZ/D4HfiJyQHebxW+4difb\nOg6xWfze+1eSb/rWZvEdNCNsHn9f9wE2id1p51oAjCyzSXw7hpFn/NImsQEc7UZxqFc/m8UP277B\nZtsezNvf1vu+rePbat8H8/5/qm9vm8VvtnGbTfs+wPZOg20Sv9e+VWzu8KhNYgPcc/BHm/f9qkK+\nKuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCGEqFAybfKfkTtvQgghhBBCCFEFyOBN\nCCGEEEIIIaoAmTYphBBCCCGEqFDyJd3/jNx5E0IIIYQQQogqQAZvQgghhBBCCFEFyLRJIYQQQggh\nRIWSt03+M3LnTQghhBBCCCGqALnzJmzGsXkX3B9/BTQacnf+TM6GL62WO3fsh2u/UaAoqLpsMr+d\nheFqJAAufYbh2n0QKJC742dytnx/3ViNpozEt3MbjDo9p2Z+Qua5SyXSONfwo+WsSTh4uJNxNoqT\nMz5CNRivm9+nYysaTRmJotEQs3Ybl7/9FYD6Yx/Fr1sYAMFv/R/xH87BmJJsFc+1bQf8R08EOw3p\nm9eTunqZ1XKH4FoEvvAqTvUbkvzdUlJ/WWFZ5jlgCB733A+qij46ioQP30HNzyux3rI0nDISn05t\nMer1nJn5saU+3h1b03CyuT6xa7cR/d0vANhXd6P5rMm41PAjNy6Jk9PnY8jMpnrTBjR+dax5pQpc\nWrqSpB0HAWj7yQxzXuV+AAzqVkBnKcPuXRd5Z85mjCaVQYNbM3pMZ6sypqfn8sb0dVy9moaTkx0z\nZ91PaEN/AL779iCrVx5FVVUGD2nD8Cc7lFnXslR0fM8ObakzcTSKxo6E9ZuJXba6RJo6E8fg1TEM\no17PxbkfkB0ZBUCbHz/HlJuLajShGo2ceOZFAFzr16Hei89h5+qMLi6RCzP/D2NO7k23RXHTp61l\nR0Qk3j7VWLvu2X+9vuJ274pi3txtGI0mHh7citFjOlotT0/X8ebrGwra3p63Z/UlNNQPgG+/+ZOf\nVx1DURRCG/oxc3Y/nJzKP5RVb9+OWhPGgkaDdsPvxC9fWSJNyISxeIS3x6TTc/nd+eScvwiA/8MP\n4tf/XlAUktZvInG1uZ8HjRyOZ+eOoJrIT0vn8rz55CenlBq/Mm3/O63v3Yzbve8DuLVrT+C48aDR\nkLZpA9qVK6yWO9YMIXjKyzg3aEDiN1+SvLrYvqrRUG/hJxi0yVyZMf2Wlu121N+7Y2tCJ41EsdMQ\nV+S4UlTo5FH4dG6DSZfH6ZmLyIo0H5MaT38O387tyEtN5+ATUyzp608Yjm/XMNR8A7kx8ZyZ9TGG\nrJwyy9DoxafwKziGn3z701LPAVyC/Gg56wXLOcCJ/y1CNRhxrR1E8zefpXqjupz/dAXRy9YB4OTv\nQ4sZ43H09gBUrq3ZxpUfN5ZYb2Xq++K/4Y6886YoSh1FUU6W8vnbiqLcXU7eGYqivHT7SneHUDS4\nD3+NtAXPkjz9IZzD+2IXVM8qiVEbQ+o7I0l5YxDZa5dQ/cn/AWAX3ADX7oNInvk4yW8OwbFVd+z8\nQ8oM5du5Da4hgewZPJEz7yyhycujS00XOuEJolesZ8/giRgyswke0Ov6+TUKjac+zV+T5rB36GQC\n7+lCtbrBAFz+fi37n5gKQPafe/F59CnrYBoN/mMnE/PWVC6PH0H17r1xDKltlcSUlUHikoWkrrE+\nsNt7++L1wGCuTBlD9PNPoWg0uHfrVep6AarVqWmV36dTG1xCarBvyPOcnbuYRi+PseRt9NLTHJ08\nm/2PTSbgni6WvHVGPETqnyfYN2QiqX+eoPaIhwDIuniFP0e+wsERUzk6aTaNX3kGpdig0aCuw6Cu\no+jAzWg0MWvmJj5dMpS1v41lw/pTXLyQZJXv8yV7adwkgDW/jmHOOwN4Z+4WAM5HJrJ65VGW/zSS\n1b+MYUfEea5El37CXJYKj6/RUHfyWM5MfYujI8bj27s7LrWt91nPju1wrhnEX4+PJeq9j6k7xfrE\n6dQL0zn+9CTLwRug/svPc2XxNxx7aiIpu/YT9NjDN9UOZRn4cCuWLB12S9ZVnNFoYvasLXyyeAi/\n/jaajRtOc/GC1irN0iX7aNzYn59/GcXsuf2ZN2cbAAkJmfzw/WFWrHySNWufxmg0sXHDmfKDajTU\neuE5Il99k1Mjx+HdqwfOxdrfIzwM5+BgTg4fTfT8hdSaNAEA5zq18et/L2eem8yp0ePx7NgBp6Aa\nAMT/uIrTY8Zz+pnnSd93kBrDHy8zfmXZ/ndc37tJt3PfB0Cjocb4iUS/MY2LY0fh0bMXTrWs//Yb\nMzOJ+2xRyUFbAZ8HH0Z/5cptKd4tr79GQ6MXR3NsymwOPDYZ/z5dcS3lmOQaUoP9Q57n7Duf0ejl\nZyzL4tf/wdHJs0qsNvXgcQ4Om8zB4S+ScyWO2iPK3vd9O7emWkgguwe9wOm5n9P0ladLTRc6YRjR\nyzewe9AL5GdmE/yg+bhqyMji7Ptfc3nZb1bpVaORcx9+x96hL3Jg1OuEDLnHcg5QtP6Vpe+L/447\ncvBWFlVV31RVdauty3EncKjXHGPiFYxJMWA0oDu4Cac2d1mlyb9wDDUn0/zzxWNovM1XXu1r1CU/\n6jjk6cBkJP/cIZzalT3m9useRtzGnQCknzyPvXs1HH08S6TzDmtG4vb9AMSuj8CvR/vr5vdo2oCc\na/HkxiaiGozEb9mLX3dzHmN24RUwxdkZUK1iOYc2IT8uhvyEODAYyNi1jWrhXa3SGNPT0F84C0Zj\nyUpp7FAcncz/OzljKLirV3y9AL7dw4q1R3viN+wAIOPUeezdzPWp3rQBudfi0cUmohoMJGzZY8nr\n2609cRsiAIjbEIFfd/PVbpM+D9VoMhfJ0bFEPcty4ngstWp5ExLihYOjHX37NWX79kirNBcvJBEe\nXgeAevV8iYlJQ6vNIioqmRYtg3BxccDeXkNY+1ps3XLuhuLaKr5bk1B0MXHo4xJQDQa023bh1TXc\nKo1313CSfv8DgKzT57B3q4aDj9d11+scEkTGsVMApB86inePTjfTDGUKa18bDw+XW7Ku4k6ciKNW\nLU9CQjzNbd+3CX9sP2+V5uJFLR3CzSe09er5EBObjlabDYDBaEKvM2AwmNDpDPj7u5Ubs1rjhuhj\nYsmLi0c1GEjZvhPPztZt5dm5I8lbzIPE7DMF7e/thUvtELLOnMOk14PJROaxk3h16wKAqciVbk0p\n/fxvlWn732l972bdzn0fwKVhY/JiY8iPj0M1GEjf8QfuHa3vPBrT09BFnkMt+BtelL2vL24dwkn7\nfcNtKd+trn/1guPk38eVxK17LMfJv/l2b0/8xgjg72OSq+UYnXb0DIaMrBLrTTl4zHLsST8ViZO/\nT5ll8OventgNN3YOkGA5B9iBf8E5QF5qBhlnLlpm4vwtLznNcgfPmKMj+1IMTn7eVmkqU9+vjFRV\nqdT/Kqs7efBmpyjK54qinFIUZbOiKC6KonytKMpgAEVR+imKclZRlMOKoixUFGVdkbxNFUWJUBQl\nSlGUiTYqf5Wm8QrAlJJg+d2UkoCdl3+Z6V26P0zeiT0AGGIu4NCwLUo1D3B0xrFlN+y8A8rM6+Tn\njS6h8Mq+LjEZ52J/YB083DFk5lgOBrrEFEuasvI7+XujTyicCqlPTLb6w11/3FAAqvfoQ/KyL6zi\n2fv4YtAmWn43aJNw8PErsw5FGVK0pP6ygnpfrKTeN2swZWeTc/TPUtdrLr9Psd+90SWWLLdzic9T\nLHkdvT3IS04DzAcs8zQRs+rNGhD+w3zCl/0fZ+d9bmlDS12V+9HQwuqzxMRMAgPdLb8HBFQnMSHT\nKk2jxgGWE7MTx2OIi00nISGTBqF+HDl8lbTUHHJz89m18yLx8Rk30HK2i+/o64M+sXAfykvSltgu\njr4+5CUmFUmTjKNvYZqm82fS4vP5+D9wr+Wz3MtXLCcCPj274OTve6NNYDOJCZkEBla3/B4Q6E5C\novXJWaNG/mzdaj6hP3E81tL2AQHuPDWyA316f0qvHotwc3Oic5e65cY0t22R9tdqcSzW/g6+vsXa\nX4uDry+5l6Jxb9Ecu+ruaJyc8AgPw6FIOwePGkHLFd/gc3dPYr/6rsz4lWX732l9r7Jx8PUlP6lw\nO+drk7D3ufF+Gzh2PAlfLEE13diFMltz8vO22veLHyfNaXzQFT2WJqWU6B/XE3R/L5L3HSlzubO/\nl9X6dYnJOPuXcw6QkFLiPOF6nGv44d6oLumnLlh9Xpn6vvjvuJMHb6HAx6qqNgPSgEF/L1AUxRlY\nDPRVVbUdUPysujFwL9AB+J+iKA7FV64oyjOKohxSFOXQkiVLblcd7ggOjdvj0m0gmT8tAMAYd4ns\nDV/h9dJivKZ8iuHKOVSTqZy1VLyLn5mnO2bs2IJn/1s3pUFTzQ238K5cGvMoUU8NROPsjHvPPrds\n/TdELTxxyDh1gQOPT+HPUa9Se8RANI7m7nDqfwsBMKibUJQAFOqVuqqyjB7TmcxMHYMGfs6y7w/R\nuEkgdhqF+vV9GTW6E8+MXs64Mctp1DgAjebWXyGzdfyiTo1/heNPT+LM1LcIHNgP91bNALjwzkIC\nB/ajxefzsXN1wZRf8kp9VfT0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx5Obm89va\nU7e1LLorV4lfsZKG784idN5Mci5GQZG/NzFffsvxoU+SvDUC/4ceuC1lqOjtb+t939bxKyu3Dh0x\npqWiu3C+/MR3iNpPPoxqNJLw+y6blcHOxYnW70zh3PxvrGbd3Ap32t9+cWPu5BeWXFJV9WjBz4eB\nOkWWNQaiVFX9+4nW5cAzRZavV1VVD+gVRUkEAoBrRVeuquoS4O9RW9W4RFaBTKkJaIrcLdN4B2BM\nTSyRzr5mKNVHziBt/nOo2emWz3W71qDbtQYAt0ETMRa5iwfg0utRXHqYx+N6bRrOAb6A+Uqus78P\nuiTr5yTy0zOxd3dFsdOgGk04+3tb0uiTUkrNr9jb4RRQeHXMyd8HfVLJ5y8yI7YQ/L93SV7+leUz\nQ7IWe9/CO432vn7kJyeVyFsa19Zh5CfEYcwwt0fmvp24NG5OZsSWEus1lz+52O8pOPv78Hdr/l1u\nxd4eZ/+i9fG25M1LScfRx9N8183Hk7zUkle7cy7HYMzVUa1eCJlno4q0hQGTeglF8UVVzQ9h+/u7\nEx9feLU9ISED/wB3q/W5uTkxa475ZFhVVe69+2Nqhpinkgwa3JpBg1sD8MGCPwgslrc8FR0/T5ts\ndWXU0c+3xHbJ0ybj6O8HnClI40OetqD9tea2NKSlk7JrP25NQsk8dgrdlRjOvGh+FtS5ZhBenayn\nyFZG/gHuVndLEuIzCSg29dHc9v0Bc9vf1+czaoZ4smf3JYKDPfD2dgXg7j4NOXY0hgcGNLtuTHPb\nFml/X1/yirV/vlZb0P4Fafx8ydear5hrN25Gu3EzAMFPP0lekvUzegAp2/4gdO5bxH6zrMSyyrT9\n77S+V9nka7U4+BXuZw6+fhiSS+5PpXFt2gz3jp1xax+O4uCInasrwVOnEfPe3NtV3H9Nn5Rite+X\ndpzUJyXjHFDkmOTnXaJ/lCawX098u7Tjr+ffKrEsZPA9BD/UG4CM0xdxLnKsdvb3QZdYzjlAgHeJ\n84TSKHZ2tJr3InG/7yYx4mCJ5ZWp71dGpko8NbEyu5PvvOmL/Gzk5gay/yavAPIvncLOvzYa32Cw\ns8e5w33o/4qwSqPxDsRjwgIyPn8NY0K01TLF3duSxqldb3T7ref/527/kZT/PQJA0s6D1OjbHQCP\n5qEYsnIsUwCLSj18Cv9e5rfeBfXvSdLOQ+b8uw6Vmj/jzEVcQ2rgXMMPxd6OwD6dLXlcQwIt63UL\n70reNeuHy3Xnz+IQVBP7gBpgb0/1br3JPrDnhtrOkJSAc6Om5mfeANdW7ci7Gl3qegG0uw5Z5U/a\ndYjAfj0AqN6ssD6ZZy4U1Mcfxd6egD5dLHm1uw5Ro19PAGr064l2l3mapnMNf8sLSpwDfalWOwhd\nXBKKnQYHj79PqhQ0Sk1QC9u8eYsgrkSncO1aGvl5RjZuOM1ddzW0KmdGho78PPMzBqtXHqVdWC3c\n3Mx1Tk42P/8UF5vOti3n6Hd/8xtqO1vFzzp7HueaQTjVCECxt8e3dzdS9xywSpOy+yB+95qf+3Rr\n2ghjdg75yalonJ3QuJifQdE4O+HZvjW5Ueb9yd6zYPqqolBzxCPE/7rpptrBFpo3r0F0dGph2288\nQ8+7GlilsWr7VcdoFxaCm5sTNWpU5/ixWHJz81FVlQP7o6lbr/zpVdlnI3EODsIx0Nz+3r26k7Zv\nv1WatL0H8OljPtmr1qQRxuxs8lNSgcJ2dvT3w7NbZ1K2RQDgFBxkye/ZpSO5V6yu4VlUpu1/p/W9\nyiY38iyOQcE4BASi2Nvj0eMuMvfvvaG8iV9/QeTwoZx/ahjX3plF9rGjlXrgBpQ4rvjf3cVy/Pib\ndtchAvv2BMzHJGN26cfoorw7tqb2Ew9y/OV5mPR5JZZfXbWZ/U+8wv4nXiFxx58E9Sv/HCDl8GkC\nLOcAPUjacahEmuKavTGO7EsxRP+wvtTllanvi/8OGXSU7hxQT1GUOqqqXgYetXF5/ntMRjKXzcHr\nxU9BY4du1y8YYy/i0nMIALkRK3F7cBwaN0/chxe8CtloJOXtxwDwnDAfTTUPVKOBzO/moOZmlhUJ\n7Z6/8O3cli6rF2LU5XF65ieWZW0WvMrp2YvRa1M5v2gZLWZNosHYoWRGXiJm7fbr5leNJs69/yVt\nF043v1r/tz/IvmQ+eWswfhjVapnfSOfapj2Jn/xfifonLf6AmjPeB42GjK0byLt6GY/7BgCQvmkt\ndp7e1Jq/BI1rNTCZ8BwwmOjxI9BFniFrTwS1P1iKajSijzpP+u+/lbpegOxL1wgeaJ5WGbNmC8l7\nj+DbuQ2dVn1kfi3zrI+L1OcL2nw4HTQa4tYV1ufyt2toMXsKQQN6oYtP4sR08xRWz1aNqT3iIVSD\nEVU1cfa9peSnZ6JxdqL1h68DYK88gIk4TBRO9bG31/Da6/cydvRyjCYTAx9uRYNQP35ccRiAR4e2\nI+qilunTfkNRoH4DP96e1d+Sf/ILq0lLy8XeXsP0N+6lenXnMrd/aSo8vtHEpQ8W0+T9GSgaDYkb\ntpJ7+SoBA+4DIGHtJtL2H8KrUzvaLF+MSa/nwlzztFMHL08azX4NMF/l1W7dQdpB8/Mdvnd3J3Bg\nPwBSdu4jacOted/SS1NWc/BgNGmpOdzVfQETnu/JoCFtbsm67e01vDa9D+PG/ITRpDJwYAsahPrx\n04q/AHhkaBuiopJ5fdp6FEWhfgNf3prZF4CWrYLoc08jHhn8NfZ2Gho3CWDII63KD2oyceWjT2k4\nbxbYaUjeuBnd5Sv4PWBuu6TfNpB+4E88wtvT/PsvCr4qYIEle/0Z07GvXh3VaODKh59gzDYPIGqO\nGYlzSDCqSSUvMZHoBYtKj1+Jtv8d1/du0u3c9wEwmYj79CNqz5qHYqchdfNG9Fei8epn/kqV1A3r\nsPfyot7CT9G4uoJJxeehQVwYOwpTTtmvwr9VbnX9VaOJyP9bSusPXjcfJ9dtJ/vSNYIG3gNA7JrN\nJO89gk/ntnRaucj89TWzCo/Rzd6ahGfbZjh4utP518VcWvojcb9tp+GLT6NxcKD1h28A5hednHu3\n9EdUzMfwNnT9+UOMujxOzfzUsszqHOCjZbSc/QINxj1KRuRlrhWcAzj6eNDx67nYV3NBVVVqD+3H\nnqEv4t6gFkH9upN5PpqO388D4MIny62DV6K+L/47FFW982b0KYpSB1inqmrzgt9fAtwwT51cp6rq\nKkVRHgDeA7KBPwF3VVWHKYoyA8hSVfX9grwngfsLBnllufMauYiEkS1tFjvgq+NsCX/EZvH7HPiJ\nyAHdbRa/4dqdbOs4xGbxe+9fSb7pW5vFd9CMsHn8fd0H2CR2p51rATBSchpfRbBjGHnGL8tPeJs4\n2o3iUK9+Nosftn2DzbY9mLe/rfd9W8e31b4P5v3/VN/eNovfbOM2m/Z9gO2dBtskfq99q9jcwXbX\n3O85+KPN+z5QJeYj7u/xQKU+P+6447dK2Y535J23goFW8yK/v19Ksj9UVW2sKIoCfAwcKkg7o9i6\nqtacDSGEEEIIIUSVdCc/81aeMYqiHAVOAR6Y3z4phBBCCCGEEDZxR955uxGqqi4AFpSbUAghhBBC\nCHFTKvMXYVdmcudNCCGEEEIIIaoAGbwJIYQQQgghRBUg0yaFEEIIIYQQFUq+pPufkTtvQgghhBBC\nCFEFyOBNCCGEEEIIIaoAGbwJIYQQQgghRBUgz7wJIYQQQgghKpR8VcA/I3fehBBCCCGEEKIKUFRV\ntXUZ7gTSyEIIIYQQoiJUiVtau7s+VKnPj7vu/qVStqNMmxS3nXZMU5vF9v38NBGdB9ksfs+9qznV\nt7fN4jfbuI1tHYfYLH7v/Ssxssxm8e0YZvP4+7oPsEnsTjvXApBn/NIm8R3tRtm87Q/16mez+GHb\nN7Cu3TCbxb//8DLyTd/aLL6DZoTNt7+t468Pe9xm8fsf+sFm9bfDvN9vCX/EJvH7HPjJ5sc9W/f9\nqkK+KuCfkWmTQgghhBBCCFEFyOBNCCGEEEIIIaoAmTYphBBCCCEFYG+QAAAgAElEQVSEqFBq1Xg0\nr9KRO29CCCGEEEIIUQXI4E0IIYQQQgghqgCZNimEEEIIIYSoUPIl3f+M3HkTQgghhBBCiCpABm9C\nCCGEEEIIUQXItEkhhBBCCCFEhZIv6f5nZPAmbMahWVeqDZ2GorFDt2sVuZuWWi13bNUL14eeB1VF\nNRrI/vEdDBeOAOD25CwcW/bAlJlC2owHbzimd3hrGkwahWKnIe63bVz5bk2JNA0mj8KnU1uMujzO\nzvqIrMhLADR67Tl8uoSRn5rOn09MtqSv1qA2DV8ei52LM7q4JM7M+ABjTm65ZXFr157AceNBoyFt\n0wa0K1dY179mCMFTXsa5QQMSv/mS5NUrrVeg0VBv4ScYtMlcmTG97Dp3bE3DySNRNBpi124j+rtf\nSqRpOGWkuc56PWdmfkzmuUvXzVt39BCCBtxNfloGABc//YHkfX/h3aEl9Z8bhsbeHpPBcN3679p5\ngbmzf8doMjF4SBvGPNPVanl6ei6vv7aWq1dScXKyZ9acAYQ29Afgu28OsHLlEVQVhgxpw4inOl43\nVmWI79mhLXUmjkbR2JGwfjOxy1aXSFNn4hi8OoZh1Ou5OPcDsiOjAGjz4+eYcnNRjSZUo5ETz7wI\ngGuDutR78Tk0jg6oRiOXFnxG1pnz5ZZl964o5s3dhtFo4uHBrRg9xrr86ek63nx9A1evpuHkZM/b\ns/oSGuoHwLff/MnPq46hKAqhDf2YObsfTk639lAyfdpadkRE4u1TjbXrnr0l66zevh21JowFjQbt\nht+JX76yRJqQCWPxCG+PSafn8rvzyTl/EQD/hx/Er/+9oCgkrd9E4upfAfDq0ZWgJ4fhXCuEM89N\nJify+m3fbOoI/Lu0wqjL4+iMxWScvVwijUuQH23nTsDRw430M5f5641PUA1Gy3KPpvXo8tUM/npt\nEXHbDgJg7+ZKqzfG4N6gJqqqcuytJdctx+5dF3lnzmaMJpVBg1szekxnq+Xp6bm8MX1dwfa3Y+as\n+wv3/W8PsnrlUVRVZfCQNgx/ssN1Y5XG1n3/em7HvgfQ9KUR+HdpjVGXx7EZn5Fx7nKJNC5BfrSZ\n83zBtr/E0TfN2z6gRzsajhuCajKhGk2c/r/vSD12DoA6Q++j1sC7AIUrv2zn8vJN/6qct7L+jaaM\nxLdzG4w6PadmfmI5rhTlXMOPlrMm4eDhTsbZKE7O+Miyv183v0Yh/Ot30CelcPTFeQDUH/soft3C\nAGj/9Tzs3VxB5ZYd9+o98yi+3duDSSUvNZ3TMz8mT5uKYm9P41efoXrj+qiqqdS2qCx9X/w3yLTJ\nAoqiZNm6DHcURYPb46+T8eFYUt98AKcO/bCrUd8qSd7Z/aS9NZC0tx8m6+vXcRvxtmWZbu8a0j98\n5uZiajSEvjSG4y/O5uDjk/C/uyuudWpaJfHu1BaXmjU48MgEIud9SsOphTHiN0RwfPLMEqttNO05\noj75nkPDp6DdcYCQYTcwmNRoqDF+ItFvTOPi2FF49OyFU63aVkmMmZnEfbao5KCtgM+DD6O/cqXc\nUI1eepqjk2ez/7HJBNzThWrF6uzTqQ0uITXYN+R5zs5dTKOXx1jKeL28V1es4+CIqRwcMZXkfX8B\nkJeWwbGX3uHAEy9y+u1FZZbJaDQx6+2NLF76OL+tf44N605x4UKSVZoln+2mcZNAfvltHHPnPcSc\n2eaTkvORiaxceYQfV45mza9jiYg4T3R0SrntYNP4Gg11J4/lzNS3ODpiPL69u+NSO8QqiWfHdjjX\nDOKvx8cS9d7H1J1ifeJ06oXpHH96kmXgBlD72ae49vVyjj89iatf/kCtcU/dUN1nz9rCJ4uH8Otv\no9m44TQXL2it0ixdso/Gjf35+ZdRzJ7bn3lztgGQkJDJD98fZsXKJ1mz9mmMRhMbN5wpN+bNGvhw\nK5YsHXbrVqjRUOuF54h89U1OjRyHd68eOBdrf4/wMJyDgzk5fDTR8xdSa9IEAJzr1Mav/72ceW4y\np0aPx7NjB5yCagCQeymaC/+bRdbxk+UWwb9LK6qFBPLHQy9yfNYXtJg2stR0TSYO5dKyjfzx0Ivk\nZ2RT66GeReqh0GTiULT7T1jlaTZ1OIn7jhExaCo7h04j61JsmeUwGk3MmrmJT5cMZe1vY9mw/hQX\ni+37ny/ZS+MmAaz5dQxz3hnAO3O3AOZ9f/XKoyz/aSSrfxnDjojzXKnsfe8m3fJ9D/Dr0ppqIYFE\nDJzCidlLaT5tVKnpGj//GJd+2EjEwCnkZ2YT8uBdAGgPnmTXY6+ye9hrHH97MS3fMP+Ndqtfk1oD\n72L3iDfY9firBHRti2vNgH9V1ltZf9eQQPYMnsiZd5bQ5OXRpaYJnfAE0SvWs2fwRAyZ2QQP6AWA\nb+c2181f69F+ZF+Osfrs8vdr2f/EVACcA31JP3n+lh73or9fy8EnXuLgiKlo9xym7qjBAAQ/2BuA\nA0+8yF8TC84RlMI7SpWl74vbQ1GU+xRFOacoygVFUV4tZbmiKMrCguXHFUVp+29jyuBN2IR93RYY\nk65g0l4DYz76Pzfi2LqXdSJ9juVHxckFUC2/G84fRs1Ov6mY1Zs2IPdaPLrYBFSDgcStu/Ht1t4q\njW+39iRs2gFAxqnz2LtVw9HHE4D0o6cxZJQc47uG1CD96GkAUv88hl/P8q8EuzRsTF5sDPnxcagG\nA+k7/sC9o/XVb2N6GrrIc6il3MGy9/XFrUM4ab9vKDeWuc6JqAYDCVv24Ns9zGq5X/f2xG8oWefC\n9io7b3FZkZfJ06YCkB11teDTkn9mThyPoVZtL0JCvHB0tKNv/2Zs33bOKs3Fi0mEd6wDQL36vsTG\npKPVZnHxopaWLYNxcXHA3l5D+/a12br55gYQFR3frUkoupg49HHmfU+7bRdeXcOt0nh3DSfp9z8A\nyDp9Dnu3ajj4eF2/IqqKXTVXAOyqVSNfW/6J7IkTcdSq5UlIiCcOjnb07duEP7Zb3zG6eFFLh3Dz\nxYR69XyIiU1Hq80GwGA0odcZMBhM6HQG/P3dyo15s8La18bDw+WWra9a44boY2LJi4tHNRhI2b4T\nz86drNJ4du5I8hbzIDX7TEH7e3vhUjuErDPnMOn1YDKReewkXt26AKC7chX91ZgS8UoT0KMd19bv\nAiDt5AUc3Fxx8vUskc63fTPLVfWr63YS0LOwz9V99F7itv2JPjXD8pm9mws+bRpz9ZcIAFSDEUNW\nDmU5cTyWWrW8CQnxMm//fk3Zvj3SKs3FC0mEh9cBoF49X2Ji0tBqs4iKSqZFyyDLvh/WvhZbt5wr\nJUrZbN33y3Or9z0wb/uYDUW2vbsrTj6lb/v4bQcAuLZuF4EF296Yq7eksXNxBtV8LHSrE0zayQuY\n9HmoRhPJR84Q2Kt9ifXejFtZ/7iNOwFIP3kee/fCY2lR3mHNSNy+H4DY9RH49TCX3697WJn5nfy9\n8e3Slphft1mty5hdOOPFkJGFMSf3lh73is6osXN2svxcrW5NUg+ZL+DkF/RNz6Z1LcsrS9+vjFRV\nqdT/yqMoih3wMdAXaAo8pihK02LJ+gKhBf+eAT79t+0mg7diCkbI7ymKclJRlBOKojxa8PnHiqIM\nKPh5jaIoXxb8PEpRlNm2LHNVpPEMwJQSb/ndlBqPxtO/RDrHNr3xfHsd1Sd+RtbXr/+rmE5+3ugT\nCu8w6JNScPLzKSdNcok0xWVfuopvd/PUIb9enXHy9y23LA6+vuQnFV5tztcmYe9Tfr6/BY4dT8IX\nS1BNarlpdYnJlp/1iaXX2TpNMk5+3jiX+Nw6b80hfenw/fs0mf4s9u7VSsT1v+vvQWzJaSQJCZkE\nBnoU1iegOokJmVZpGjUOYOvmswAcPx5DbGwaCfEZhDb04/DhK6Sl5pCbm8/OneeJi8/gZlR0fEdf\nH/SJhftVXpK2xHZw9PUhLzGpSJpkHH0L0zSdP5MWn8/H/4F7LZ9d/mgptZ8dSdtVX1DnuZFEL/m2\n3LonJmQSGFjd8ntAoDsJidYXJRo18mfrVvMJ/YnjscTFppOQkElAgDtPjexAn96f0qvHItzcnOjc\npS6Vnblti7S/VotjsfZ38PUt1v5aHHx9yb0UjXuL5thVd0fj5IRHeBgON9DHi3P29yY3obA/6RJT\ncPazHpw7eLqRn5mNajSVSOPs50XgXWFEr9pqlcc1yJ+81ExazRhLt2WzafnGaKsTy+ISEzMJDHS3\n/B5Q1r5fMCg7cTzGsv0bhPpx5PBVy76/a+dF4it536sMnP28yI0vvLCiS0jB2b/YtvdwL7btk63S\nBPQMo8eq92n/wVSOvW2eGpd18SperRvj4OGGxskR/y6tcQm4/vGqIumKHEt1ick4+3lbLXfwcMeQ\nmVNsfzencfLzLjN/o8lPcX7R95ZBbFH1xw01r9uzOlFLfgRu7XGv3rjH6PLrpwTe282y/szz0fh2\nC0Ox0+Bcw3we41xkO1SWvi9uiw7ABVVVo1RVzQNWAMWnXz0IfKua7Qc8FUWp8W+CyuCtpIeB1kAr\n4G7gvYJG3gV0K0gTjHmETcFnOyu6kHeKvL+2kfbm/WR8PAHXByfaujilOjfnE4Ievpd2X76Lnatz\nqXfKbiW3Dh0xpqWiu1D+s023S8zPm9k7aAIHh09Fn5xG6MQRVsur1a1J/fH/burNmGe6kpGpY+CD\ni1n23UGaNKmBxk5D/fp+jB7dhdFPL+OZ0cto3DgQO82t/1Nm6/hFnRr/CsefnsSZqW8ROLAf7q2a\nARDwYF8uL1rKkcFPc3nRUuq/8vwtiff0mI5kZugYPPArflh2hMZNArDTKKSn6/hj+3k2bRnHtojx\n5Obm89vaU7ckZmWlu3KV+BUrafjuLELnzSTnYhSYSn+u5XZq+tJwzixcUeKEVbHTUL1xHaJXbWXX\nsOkYc/XUH/nAv4o1ekxnMjN1DBr4Ocu+P0TjJoHYaRTq1/dl1OhOPDN6OePGLKdR4wA0mlv/woHK\n1Pcqi4SIQ+wY/BKHX5pPo3FDAMi6HEvUt78RvmgaHT56hYzIaMvJ/3+Vb5e25KWkk3m25PNzABc/\nMz87nnMtnpqD77vl8aM+W86eB58l/vddlvXHrduOPjGZ9l/No+HkpwBQb+HfiIrs++KmBQNXi/x+\nreCzm01zU+SFJSV1BZarqmoEEhRF2QG0xzx4m1RwO/Q04FUwqOsElBhVKIryDObboyxevJhnnrnJ\n57P+40xpCWi8Ay2/a7wCMaUllpnecP4wdn41Udw8UbPS/lFMfVIKTgGFV8yd/LzRJyWXk8anRJri\ncqJjOD7JPM/dJaQGPp3blVuWfK0WBz8/y+8Ovn4YkrXXyVHItWkz3Dt2xq19OIqDI3aurgRPnUbM\ne3NLTe/sX3gF0Mm/9Do7+/uQbknjgz4pBcXevsy8eSmFU1Zjf91Kq/cLp3k7+XnTct5UTr+9iLAl\ns0otU0CAO/HxheuIT8jAP8DdKo2bmxNz5povYKmqSp/eCwkJMV+JHDSkDYOGtAFgwfxtBAZU52ZU\ndPw8bbLVHVlHP98S2yFPm4yjvx9wpiCND3nagvYumA5pSEsnZdd+3JqEknnsFH739eLyws8BSP5j\nD/VeLn/w5h/gbnW3JCE+k4BiUx/d3JyYNae/pe739fmMmiGe7Nl9ieBgD7y9zVM17+7TkGNHY3hg\nQLNy49qSuW2LtL+vL3nF2j9fqy1o/4I0fr7ka819UrtxM9qNmwEIfvpJ8pJurK/WHtKn4GUSkH46\nCpcAH1ILljn7e6NLSrVKn5+WhYN7NRQ7DarRZJXGs0ld2s41P4fn6OmOf5dWmIxG0k5cQJeYQtpJ\n88tV4rYevO4JnL+/O/HxhXe6EsrY92fNMa9DVVXuvftjav697w9uzaDBrQH4YMEfBBbLWx5b9/2K\n1HXZHKBg2wd6k3rM/LlzgDe6xGLbPj2z2Lb3KZEGIOWvs7gG+5vv1KVncvXXCK7+GgFAo+cetbpr\nVNEUGqJQ+Oy6c4AvYL6D6+zvgy7Jelp3fnom9u6uxfZ3cxp9Ukqp+f17hePXPQzfzm3QODliX82F\n5jOe5+SMj6zWbdLn4X9XOJeW/nTLjntFxf++m9bzp3Fp6U+oRhPnP/zGsqz3/pV4NKlLw2cGAZWn\n74ubV/RcvsASVVVt/laYO+OS1S2gqmoM4Anch/lO2y7gESBLVdXMUtIvUVU1TFXVMBm4lWS4fBI7\n/9pofIPBzgGn9n3JO/aHVRqNXy3Lz3a1moC94z8euAFknrmAS80aONfwR7G3x//urmh3H7JKo939\nJwH39QCgerNQDNk55CVfP6aDV8HJg6JQ+6nBxK7ZXG5ZciPP4hgUjENAIIq9PR497iJz/94bqkfi\n118QOXwo558axrV3ZpF97GiZAzcwP5P3d50D+nRBu8u6zkm7DhHYr0ids8x1zjxzocy8RZ9d8OvR\nwfJ8m72bK63mT+PCJ8tIP172szDNWwQTfTmFa1dTycszsnH9Ke7q1dAqTUaGjrw885u2Vq38i7Cw\n2ri5maeEJCebn7+KjU1n6+az9H+gxQ21na3iZ509j3PNIJxqBKDY2+Pbuxupew5YpUnZfRC/e80n\n+m5NG2HMziE/ORWNsxMaF/MzKBpnJzzbtyY3yvyimrzkFKq3bg5A9bYt0V0r/2H15s1rEB2dyrVr\naeTnGdm48Qw972pQou75BXVfveoY7cJCcHNzokaN6hw/Fktubj6qqnJgfzR161WeaVplyT4biXNw\nEI6B5vb37tWdtH37rdKk7T2ATx/ziweqNWmEMTub/BTzyZO9p3man6O/H57dOpOyLeKG4kav3MKu\nx19j1+OvER9xiJr9zZM3PJs3wJCVi15b8m+L9tBpavQ2T8MOub87CTsOA7B9wGS2PzCJ7Q9MIm7b\nQU6+8zUJEYfRJ6eTm5BMtdrmWTi+HZqRFVX2c3jNWwRxJTqlcPtvOM1dd5Xc9y3bf+VR2oXVKrHv\nx8Wms23LOfrd3/yG2qIwvm37fkXaPew1dg97jYSIQwT3K7btSzmuJB86TWBv87OwNe/vRsIO89/b\noi8hqd6oDhpHe/LTzacdjgXHH+cAHwJ7tSdm040dR24HlUhMbLT8XqNvdwA8mhceV4pLPXwK/17m\nKfZB/XuStNNc56Rdh0rNf+GT5ex64Fl2D5zAidc/IOXQScvAzTWk8IJwtbo10SUk39LjnkuR9ft1\nDyMn2vz3VuPkiKZguqJ3h5YARH66qtL1/crIpCqV+l/Rc/mCf8UHbjFA0bdf1Sz47GbT3BS581bS\nLmCsoijfAN5Ad2BqwbL9wCSgF+ADrCr4J26WyUjWD7PxmPQ5KBp0e9ZgjL2Ac49HAdDt+BGndn1w\n6vQgGA2oeToylxS+Zc99zHs4NOyA4uaJ17vbyVm7CP3un68bUjWaOD9/KS0XvGH+qoB128m5dJWg\nh+4BIPaXzaTsPYJPp7aEr/wYo07PudkfW/I3eWsynm2a4eDpTqdflnBp6Y/Er9uGf59uBD9snj6h\n3XGA+PXbb6D+JuI+/Yjas+ah2GlI3bwR/ZVovPrdD0DqhnXYe3lRb+GnaFxdwaTi89AgLowdhSnn\n5h5IPvf+F7T5cDpoNMSt+4PsS9cIHtgHgJg1W0jeewTfzm3otOojTLo8Ts/62NJepeUFaDBhOO6h\ndVBR0cUlcfadxQDUHHIfrjUDqTtqCHVHDSkogROgtyqTvb2G6W/2ZczoZZiMKgMHtSY01J8Vy80H\nyaGPhRF1MYlpr/6KgkKDUD9mzi68ovjC8z+RlpaLg70dr/+vL9WrO99Um1R4fKOJSx8spsn7M1A0\nGhI3bCX38lUCBpj3m4S1m0jbfwivTu1os3wxJr2eC3MXAuDg5Umj2a8BoNjZod26g7SD5q/MiHp3\nEXUmjkGxs8OUl0fUex+XHr9Y3V+b3odxY37CaFIZOLAFDUL9+GmF+Y2hjwxtQ1RUMq9PW4+iKNRv\n4MtbM/sC0LJVEH3uacQjg7/G3k5D4yYBDHmk1U20/I15acpqDh6MJi01h7u6L2DC8z0td1v+EZOJ\nKx99SsN5s8BOQ/LGzeguX8HvgX4AJP22gfQDf+IR3p7m339R8FUBCyzZ68+Yjn316qhGA1c+/ARj\ntnkA4dm1E7WefxZ7Dw9C58wg52IU5195o9QiJO4+in+X1tz16/yC18Uvtizr8OFUjs38HL02jbML\nl9N2zvM0em4I6eeiLS8juJ5T735Lm1nPoXGwJycmkWMzFlN/xP2lprW31/Da6/cydvRyjCYTAx9u\nRYNQP35cYT5RfHRoO6Iuapk+7TcUBeo38OPtWf0t+Se/sJq0tFxzH3rj3srf927SLd/3gMQ9R/Hr\n0pqevyzAqNNz/K3Cbd/+w5c5PnMJem0aZz4q2PbPDiHjXLTljlpg7w7U7NcNk8GASZ/PkWmFd5na\nvTsJBw83VIORk/O++tcvrLiV9c+NTaTL6oUYdXmcnvmJ5fM2C17l9OzF6LWpnF+0jBazJtFg7FAy\nIy8Rs9Z8/NTu+Qvfzm1LzV+WBuOHUa1WwZtgYxKoVjuIjisW3Lrj3nPDcK0VhKqq6OKTODfPPOvB\n0duD1h+8DqoJfVLJl0ZVlr4vbos/gVBFUepiHpANBR4vlmYtMEFRlBVAOJCuqmrcvwmqqKU88Hkn\nUhQlS1VVN0VRFOBdzG+HUYFZqqr+WJDmaWCmqqpBiqI4AGnAcFVVrz9qKPqaxDuQdkzxF+9UHN/P\nTxPReZDN4vfcu5pTfXvbLH6zjdvY1nFI+Qlvk977V2Jkmc3i2zHM5vH3dR9gk9iddq4FIM/4pU3i\nO9qNsnnbH+rVz2bxw7ZvYF27W/vK+Ztx/+Fl5JvKf4HN7eKgGWHz7W/r+OvDip/DVZz+h36wWf3t\nMO/3W8IfsUn8Pgd+svlxz9Z9H6gS3369JfyRSn1+3OfAT+W2o6Io/YAPADvgS1VVZyuKMg5AVdXP\nCsYVizDP3MsBRqqqeqjMFd4AufNWQFVVt4L/Vcx32qaWkuYL4IuCn/OBkq/YE0IIIYQQQlzXjbyO\nv7JTVXUDsKHYZ58V+VkFxt/KmPLMmxBCCCGEEEJUATJ4E0IIIYQQQogqQKZNCiGEEEIIISqUqWo8\nmlfpyJ03IYQQQgghhKgCZPAmhBBCCCGEEFWATJsUQgghhBBCVKj/wtsmbUHuvAkhhBBCCCFEFSCD\nNyGEEEIIIYSoAmTapBBCCCGEEKJCmWTa5D8id96EEEIIIYQQogqQwZsQQgghhBBCVAGKqqq2LsOd\nQBpZCCGEEEJUhCoxH3F92OOV+vy4/6EfKmU7yjNv4rbb3fUhm8XuuvsXYoe3sVn8oO/+4te2T9gs\n/oNHvmdbxyE2i997/0oO9epns/hh2zdwuHdfm8Vvt20jxtXeNoltNygFwGbtH7Z9g823vZFlNotv\nxzAWNRpns/gTzn1m833f1tvf1vG3dxpss/i99q2yad8HiOg8yCbxe+5dzaYOQ20SG+C+gyts3ver\nCvmqgH9Gpk0KIYQQQgghRBUggzchhBBCCCGEqAJk2qQQQgghhBCiQplsXYAqSu68CSGEEEIIIUQV\nIIM3IYQQQgghhKgCZNqkEEIIIYQQokLJ2yb/GbnzJoQQQgghhBBVgAzehBBCCCGEEKIKkGmTQggh\nhBBCiAplkmmT/4gM3kSF8gxvQ70XRqNoNCSs28K1738ukabeC6Px6tQOk05P5JyFZEdGFS7UaGi9\n9H3ykpI5/cpsAOo89yTeXdqj5hvQxcYTOecjjFnZ5ZbFqUVnPIZPBY2GnIhfyFr3ldVyl859cev/\nFCgKqi6HtK/nYLgSCYDi6obn0//DvmZ9UFXSlr5F/oXjN9QGLaYOx79ra4w6PX/9bwnpZy+XSOMa\n5EfY3PE4eLqTfuYSh1//FNVgxKddE8LnTyYnNgmA2O1/Evn5L7jVrkHYOxMK8wf7c/azVQB4d2xN\nw8kjUTQaYtduI/q7X0rEazhlJD6d2mLU6zkz82Myz126bl7/Xh2pO/oRqtUJ5s9R08g8a95G9tXd\naDn3RdybNCBufUSJONXbt6PWhLGg0aDd8Dvxy1eWSBMyYSwe4e0x6fRcfnc+OecvmmM+/CB+/e8F\nRSFp/SYSV/8KQM2xo/DoFI6ab0AfF8fleQswZpfc/tXbtyNk/LiC2JtIWFFK7PHjqB7eHpNez+V3\n/4/cIrF9+90HioJ2/SYSfza3Q40Rw/Dtfx+GtHQAYr74hoyDf5ZYb2l2RTowd50bRpPC4Pa5jOmR\nWyLNwSgH5q53w2AEL1cT3z6Tjj4fRnzuSZ5BwWCCe5rref7unHLj3Y62Dxo5HM/OHUE1kZ+WzuV5\n88lPTqmw+F49uhL05DCca4Vw5rnJ5ESeL7cdbsT0aWvZERGJt0811q579pas83q6TX+E2j2aY9Dl\nse3Vb0g6fbVEmj7vj8K/eS1M+UYSTlwm4s1lmAw3/qJtW+//tuz7tyv+je7/3h1bEzppJIqdhrgy\n/gaHTh6FT+c2mHR5nJ65iKxI89/gxtOfw7dzO/JS0zn4xJSSZX7sAUInPsmu+0aSn55Z6eoO4B3e\nmgaTRpnr/9s2rny3pkSaBpNHmY9BujzOzvqIrMhLOPn70PiNiTh6e4AKsWu3EPPTegD87upEnacf\nxbVOMEdGv0rm2Yulxv5bkxefxLdzG0w6PSfe/pSMc5dLpHEJ8qPVrBdw8HAj4+wljv9vEarBSI17\nu1BvxABQFAw5Ok7PW0rm+SsANH99LH5d25KXmsGex6ZetwylqYi+L/57ZNqkqDgaDfWnjOXUS29z\n5Inn8bu7Gy51alol8erYDueQGhwe+iwX3vuEBi+Ns1oeNOR+cqKvWX2W9ucxjoyYyF9PTSL3aiwh\nwweVXxZFg8eTr5L83gQSXxmES6f7sA+qZ5XEkBSLdvZokl57hMxfPsdz1OuWZR5PvIz++F6SXnmY\npOmPYoiNKh6hVP5dWlGtViDbHnyRY7O+oNW0p0pN13TiULFS7a4AACAASURBVC4u28S2B18kLyOb\n2g/1tCxLPnqOiMemE/HYdCI/N58EZEXHWT6LGPY6Rp2euD8OAdDopac5Onk2+x+bTMA9XahWrM19\nOrXBJaQG+4Y8z9m5i2n08hjzAo2mzLxZUVc58er7pB09Y7UuU14+F5f8yIWPvi1ZKY2GWi88R+Sr\nb3Jq5Di8e/XAuXaIVRKP8DCcg4M5OXw00fMXUmuSeUDqXKc2fv3v5cxzkzk1ejyeHTvgFFQDgIzD\nf3Fq1LOcHjMe3dUYAh9/pPTYE8dzftobnB41Fu9ePXGuXcsqSfUO7XGqGcSpEU9zZf5Car9QGNu3\n332cGT+J02Oew6NIbOD/2Tvv8Kaq/4+/TpKmK91tWgpll7333i5coOAARWWJbBVUnCiC46e4B6g4\ncXzFzVD2XrL3pmV0pnslaZL7++OGtmlaWpASquf1PD7Sez/nvM8593zuuWeGlEW/cvjhiRx+eGKl\nO252B7z8ewDzHszij6npLN3rw4lkrYtNdoHgpd8MfHB/Fn9MzeCtYdkA6HWwYFQmv0zO4OdJGWw8\npmfvmQrG4aqo7JN+WMShMRM4NHYSWVu2U+P+YVdVv+B0PCdeeJncfQcqLvRLYPAdrZn/6fArGmd5\n1OnVguC6Rr65/nnWPLeQ3jPLLsNjv29n4Y0z+e7WWei89TQb2qPyIp6u/570/SrUr1T912ho/Pho\n9j42m233Porxuh74lfEO9oupwdahkzjy6sc0fmJs0b2kJWvY8+jLZWbL2xhGaKfWmBNTy863p/Pu\n1I+dNoZ9j89m+7CpGAe45z+0azt8a9Vg210TOfbaRzSaruZfsds5+d4X/D18KrvGPkXNO24sCpt3\n6gwHnn6drD2Hys+7k/BubfCLqcGGO6dy4JVPaPbk6DLtGk0cRtx3S9hw51QKc3KpdXs/AAoSUtk2\n7iU2DXuCk5/9TPMZxc/n/JJ17JzySoVpKIur4vuSfyUe7bwJIdYKITp4Mg3/FCFErqfTUF0IaBqL\n+VwiloRkFJuN1JUbCevR2cUmtGcnUv5cC0DOwWNoDf54hYUAoI8II7RrB5L/WOESJvPvPerXMJBz\n8Cj6iLAK0+LVoAW25LPYU8+D3UbB1r/wad/Hxabw+F6UfHUk03piH9qQSACErwF9k3bkr3OOHtpt\nKPmVqwY1+rTn7OKNAGTsP4lXgD/e4cFuduEdm5GwajsAZxdvoEbf9pWKHyCiU3PyzqVQkJgGQMG5\nJMwJKSg2G8krNhHey9XlInp1JGnpOgCyDx5HZ/BHHxZMYLOG5YbNjztP/pkEN22H2ULW3iM4rIVu\n9/ybNMJyPgFrYhKKzUb66vUEd+vqYhPcrQtpK1YBkHf4KDqDP16hIfjWiSH38FEcFgs4HOTsPUBI\nz+5qmnfsBofDGeYI+ojwMrXNJbQz1qxTR41LanfvQtryVUXxaA0GdKEh+NSOIe/IUZQL2vv2E+zU\nvlz2n9NRO8xOTKgDvQ5uamVm9WG9i82Svd5c19xCdLCatzCDAoAQ4O+t2tjsYHMAFaw8qaqyd+QX\nzxZqfHwA5arqm8+cxXL2/MUzfxl06FiHoCDfKx5vWdTr34ojv24FIHnvabwDffGLCHSzi19f3EFN\n3heHITKk0hqerv+e9P2q1K9M/Q9s1pD8Eu/RlJWbiOjV0cUmvFdHkpatVfN08Dg6gx/6MLVdyNxz\nGFt22e1L7JQHOfnB1yjl+J2n834h/2o7kuzM/0bCe5bKf8+OJP/p3gZZ0zKLZiDt+Wby48/hHREK\nQH78eQrKaIPKIrJXBxKWrgcg68AJvAL88A5zb3fDOjQnefU2ABKWrCeyt9reZe4/hi1HndHNPHAc\nH2NoUZiM3UcozK54pU9ZXA3fv9ZRENf0f9cq/+mZNyGEtmIryZVCHxGKJcVU9LclNQ19RKiLjXd4\nKNYSNtaUNLzDVZv6k0dx+qMvQSm/oYq8eQAZW3dVmBZtiBF7enLR3/b0ZLQhEeXa+/UZhHnfJjVs\nRDSO7AyCx75IxKzvCBr1PMLbp0JNAB9jCAXJaUV/F6Sk4xvh+iLWBxsozM1HcXZIC5LT8SlhE9oq\nlj4/zKHLe9MJqF/TTaPmDV05/9eWor/NKcV6lpR0vEt1br0jQkvZpOEdEYqP23X3sJeCPjzM9dma\nTG4dba/wcKwpxaPI1lQTXuHhFJyOJ6BlC7SBAWi8vQnq3AEvo/uHWvhN15O1fYfbda/wcApTS8db\nWjsMa6rJxUYfHo45Lh5Dy+ZoAwMQ3t4Ede6IPqK4rkQMvpWmn3xInWmPojUYKlUWyVkaooLsRX9H\nBTlIyXZ9HcWZtGQXaHjgkyCGvB/Mb7u8i+7ZHTD4vRB6zAmnW8NCWsfYLqpXlWVfc+QIWn3/JWED\n+pDw+ddXXb+6Y4gMJjcpo+jv3KRMDJHuH5YX0Og0NL69M/EbDlZaw9P135O+X9X6FdV/79LtnvP9\n6moThrlEu2BJrfhdG96zI5bUdHJPxF/UztO+7x0RiiW5ZLtfdhvkapPmZuMTFYEhth7ZBy99abS3\nMdSl3TWnpONtdH0GXkEBFOYUt7vm5HS35wRQ67a+pG7Zc8lpKIur4fuSfyeV2vMmhPgViAF8gHdQ\nO30NFEWZ7rz/INBBUZSJQojngPuAVOAssFNRlDcuEv39QohPnWkZqSjKdiFEKLAAqA/kA2MVRSlz\nQ5EQorczTaAO/fQC2gMvATlAQ2ANMF5RFIdzpmweMACYIIQoAOYCBsAEPKgoSqIQYgwwFtADJ4D7\nFUXJF0LUA7512v9WmfKT/HNCunWgMDOLvKMnCWrbokybWiOGoNjtpC5fd0W19U074NdrEKaXRwIg\ntDq86jYh6+vXKDx5gMD7pmO4ZSQ5P314RXXLIutIHMsHTsFeYMHYvTWd5j7KqkHTiu4LnZaoXu04\n/N4PVZ6Wq4n5zFmSvv+RRq+/jMNsIf/kqaIR9wvUGH43it1O+so1VaId+9psHGYzBSdOoTi1U/9Y\nQuI334GiEP3QCGqNG0P8G29dEV27Q3AwQceCUZlYCgX3fhxM69o26obb0Wrgl0kZZBcIJn8TyPEk\nLbFR9oojvQwqKvvzC77i/IKviLr3LoyDbiXhy4VXVf+/Ru8XhpGw4ziJO09cFT1P1f/S+p7w/cro\nV3X9LwuNt546D9zBnimzqlTnWsm71teH5nOmc+Kdz7Hnu+8NvlqEtm9Grdv6sm3sCx7Rv9q+L7l2\nqeyBJSMVRUkXQvgCfwP9gU3Ahd2ZdwOzhRAdgTuB1oAXsAvYWUHcfoqitBFC9ELtsLUAXgR2K4oy\nSAjRD/gKaFNO+GnABEVRNgkhDIDZeb0T0AyIB/4E7gAWAf7ANkVRHhdCeAHrgNsVRUkVQtwNzAZG\nAj8rivIJgBDiZWAU8B5qR/EjRVG+EkJMKC9TQoixqJ0/5s2bx9ixY8sz/c9gTU3Hu8SonXdEGNZU\n1w3OFlM6+hI2emMYFlM6YX26Etq9IyFd2qPRe6H196PRc1M5NuttAIw39SO0WwcOTHm+UmmxZ6Sg\nDY0s+lsbGok9w33fgC4mluBRz5P2xkSUXHVTvj09GXt6CoUn1aUM5u0rMdz6ULla9e4aQJ3BfQHI\nOHgK38jiEUVfYygFqRku9tbMXLwMfgitBsXuwDcyFLPTxpZX3HClbNqLZsaD6IMNWDPVZTWR3VuT\ndSQOS3p2kZ2PsVjP2xiKJbV4BBLUkVAfYxhZRTZhWFLTETpdhWEvBaspzfXZhodjLRVfocmE3lg8\nqq+PCKfQpI7ImpYtx7RsOQA1Rz3gMksQdsMAgrp04ti0p8vULjSZ8IooHW9p7TT0EeHklbCxOrXT\nli0nzakdPeoBCp3atozMovCmJctoOPvFigsCiAxykJRVPNOWlKXBGGgvZWMnyM+Bnx789Aod6hZy\nJFFL3fBiu0BfhU71C9lwXE9sVPkfNVVZ9hdIX7WG2FdeLPMD7mroVydaDutNs7vUfSsp++MxRBXP\nrBuigslNziwzXMcJN+MbamDNxEv7SPZ0/fek71e1/gXKq/+W0u2e8/3qapOGT2SJd3DExd+1vrWi\n8K1hpNPXbzjtw+j4xevsGDUDa7pr3fG071tS0/GOLNnul90GudqEFdkIrZbmc6aTvHwDpnXbyi2T\n0tQecj21Bql71rIOncQ3MowLJeNjDMWS4voMCrNy8Aoobnd9IkNdnpOhYW1aPPMwO6a+SmHW5e+W\nudq+f60jT5u8PCq7bHKyEGIvsBV1Bq4ecEoI0UUIEQY0Qe3MdQd+UxTFrChKDvBHJeL+DkBRlPVA\noBAiGOgBfO28vhoIE0K4LwRW2QTMFUJMBoIVRbmwfmi7oiinFEWxOzUu7PC0Az85/90YtbO4Qgix\nB3gWuLCTtoUQYoMQYj8wHGjuvN79QpovpLEsFEWZryhKB0VROsiOm0rOkeP4xtTAu4YRodMRMaAH\n6Zu2u9ikb9yO8cY+AAQ0b4Q9N4/CtAzi533D33eMZsfQsRyd+SZZO/cVddyCO7el1rDBHHpqDg6L\ntVJpKTx1EF1UbbQR0aDV4dvlBsy71rrYaMOiCJ3yBhnznsOedKbouiMrDXt6EtqoOgB4N++E7Xz5\nB5ac/t/KosNEktbuJOYWtSqGtGxAYW4+FpP7y9q04xDR/TsBEHNLTxLXqktBvcOCimyCm9cHIYo6\nbgA1b3RdMgngF1MDH2eZR17XHdMG16VFqRt2EDWwNwCBzWOx5eZjTcsk5/CJCsNeCnlHjuFTMxp9\nVCRCpyO0Xy8yt2x1scncvI2w6/oD4N+0Mfa8PArT1Y6rLljNu94YQXDPbqSvWqumuWN7ou4ewoln\nX1T3ZlRCO6RvbzI3l9beStj1F7SbYM/Lw1ZK28sYQUiP7kXautDihje4RzcK4i6+hOkCLWraiDdp\nOZeuwWqDZft86NvUte72a2plV5wXNjsUWGHfWS8aRNhJzxVkF6gNnrkQNp/QUz/i4rNuVVX23jWj\ni/PfvQsFZ1wPE6pq/erK/m/X8cOg2fwwaDanVu6hySB1/1lk63pYc8zkp2a7hWk2pDu1ezTjr8c+\nu+jS8bLwdP33pO9XpX5l6n/p96hxQHdMG1wPdjFt2EHUTX3UPDWPxZ6nvoPLzc/JM2y8eRRb7hjP\nljvGY0lN4+8Hn3DruHk67xfy71urZP57YNro2o6YNv5N5I0l2qAS+W/89Hjy485x7vvKfE4Wc2bR\ncjbf9xSb73uKlHU7iB7YC4CgFg3VdreM8k3feYjIfuo+/Oibe5G8Tk2nT2QYbV97jH0vfED+mcRL\nSkdprrbvS/6dVDjzJoTog7rEsKtz2eBa1OWT3wN3AUeAXxRFUYS4rB506Zp4STVTUZRXhRBLgIHA\nJiHEDRXEa3Z26EDd5n9QUZSuuPMFMEhRlL3OZaF9LjeNEid2ByfnfkKLuS+ARkvykpXknz5L1O3q\nI0v67S8ytuwkpGt72v/wMQ6zheNz3q0w2gaPjkXj5UWLt9RR35yDRzn5xscXD+Swk/XVa4RN/1D9\nqYD1v2E7fwq/fkMAyF+9CMOgsWgMwQQ/MANQT74yvaCeQJf11WuEPDIHodNhSz1P5vzKLaNI3riH\nyB6tGfDbm9jNVnbPnF90r8u709jz0qeYTZkcevd7OrwykSYThpJ1JI4zv64FIHpAJ+oO6Y9it2O3\nFLJjxgdF4bU+3hg7t2Dv7AUumkff+Iy27zwDGg2Ji9eQd/ocNQdfB8D5X1aQtnkX4d3a0nXRe+ox\n1S9/4Myvo8ywABG9O9Ho8ZHogwNpM3cGOcfi2DNV/emGbr98gM7PD+Glvl586sRgjj8LDgdn3vuI\nRq+9DFoNacuWY447Q8StAwFI/WMpWdv+JqhzR1p885nzyOriJVgNZj6DLjAQxW7jzDsfFh0JXnvy\nI2i8vGj0f6p+7qGjnHn7/VLPW9WOfe1lhEaLadlyzPFnCL9F1TYtXkr2Be2vF+Awm4n7v2Lt+jOf\nVbVtNs68W6xda+wo/BrURwGsScnEv1VxfQXQaeGZ23IZ83kQDkUwuL2Z2Eg7329T907e09lMA6Od\nHo2sDHo3BI2AIR3NxEbZOZqoZcaiAByKwOGAG1ta6NOkgkGLKir7WmMewiemJopDwZqSQvxb75cp\nX1X6wT26UnvSI+iCgoidM5P8k6c4/uRzlXoGF2PaYz+xfXs8mRn59O31FhMn9eHOoW3/cbxlEb/u\nAHV6t+D+FbOwFVhZ9fSXRfdumT+RNc9+TV5KFn1eHEZOQjpDfngCgFMrdvP3B0srJ+Lp+u9J369C\n/crUf8Xu4Nibn9Lm7WfVn1xZvJq80+eIHnw9AAm/LCdt8y7CurWj64/vqz/X8nLxEvzmL04luF1z\nvIID6PbbPE5/+gOJf6wu/1lfQ3m/kP/jcz+l1VvPqT8VsHg1+afPEj3Imf9fl5O+eRdhXdvR+ccP\nsJstHJ2ttkFBrZoQdVMfck/E0+ELdZbx1LxvSd+yi/BenYh9bDRewYG0fONpco/Hse/RspeRpm7a\nTXi3NvT6+R3sZgv7ZxV/H7R/60kOzJ6PxZTB0fe+pfXsycSOu5ucY3Gc+11dhttg9J3ogww0e3Kk\nM092tjzwDACtZ00ipH0z9MEB9PnjA45/sqjSj+aq+L7kX4lQKujFCyFuB0YrinKrEKIJsAe4EdgL\n7ADOAE8696p1RN1P1g21Y7gLmF/enjdnR/CIoijjhBA9UJcjthRCvAukKooyy9l5fEtRlDJbTiFE\nA0VRTjr/vQj4BsgEllG8bHKZMx0/CSFyFUUxOO31wCHU/WxbnMsoGymKclAIYXKGzwCWAucVRXlQ\nCPE78D9FUb4RQjwC/N+F+C7Cf7qzt7HHII9p99j4Kwn3V81HV2WI/no3v7W7z2P6t+/6hlVdhnpM\nv//WH9nRb6DH9DusXsrO/jd5TL/9qmXYf3Lf9H410N6pLvnxVPl3WL3U48/ejueWGGkZzvuNx1Vs\nWEVMPPqxx+u+p5+/p/VXdx3iMf1+WxZ51PcB1narxM/2VAF9Nv/En53u8Yg2wI3bv/e471PhGcTX\nBovaPHBNfx8P2fPlNVmOldnz9icwTghxGDiKunQSRVEynNeaKYqy3Xntb2fnZh+QDOyHomXc5WEW\nQuxG3SM30nltJrBACLEP9cCSBy4SfqoQoi/gAA6idtS6ou7Ne5/iA0vcfhVSURSrEGII8K4QIgi1\nPN52xvMcsA314JVtQIAz2BTgWyHEk8gDSyQSiUQikUgkkkvGcU133a5dKuy8KYpiAcocvlMU5ZYy\nLr+hKMpMIYQfsJ6LHFiiKEqfcq6nA5WarlEUZVLpa87lm9llpa/0LJmiKHtQT6gsbfcR8FEZ10+j\ndg4v8GxpG4lEIpFIJBKJRCK50lT2tMlLYb4QohnqvrgvFUWp+Ee3JBKJRCKRSCQSiURyUa54501R\nlGGlrwkhPkA9pbEk7yiK8nll4xVCPIS6ZLEkmxRFcTuuX1GUtcDaysYtkUgkEolEIpFIrh5K9dia\nd81RFTNvbpTVwbqMOD4HKt3Zk0gkEolEIpFIJJJ/E5X9nTeJRCKRSCQSiUQikXiQqzLzJpFIJBKJ\nRCKRSCQXcChy2eTlIGfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF\nkT/SfVnImTeJRCKRSCQSiUQiqQYIRXZ7rwaykCUSiUQikUgkV4NqcRLIty0fuqa/j4ft//yaLEe5\nbFIikUgkEolEIpFcVRzVo495zSE7b5Iq57d293lM+/Zd3/Bh43Ee0x9/9GPO3N3JY/q1f9jO4vbD\nPaZ/y86FrOoy1GP6/bf+6HH9b1qO9Ij2ffsXALCl120e0e+6/neP1733Pej7E49+jJ2FHtPXMtzj\ndf+/rm//wsdj+toHzR7Lf/+tPwKwpMMwj+jfvONb1ncf7BFtgF6bfvG470v+3cg9bxKJRCKRSCQS\niURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqoihyz9vlIGfeJBKJRCKRSCQSiaQaIDtv\nEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVXFIZdNXhZy5k0ikUgkEolEIpFIqgGy8yaRSCQSiUQi\nkUgk1QC5bFIikUgkEolEIpFcVRRPJ6CaIjtvkqtOy+n3Y+zRBrvZwu4X5pN1JM7Nxi86gg6vTMAr\nOICsw6fZ+exHKDY7Ye2b0nnuo+QnpAKQsPpvjn3yKwD1h99InUF9QFHIPnGO3TPnV5iWHs/cRZ3e\nLbCZrax66ktMh8662bQY3ofWD/QjqI6RBV0ex5yRB4B3oB9954wgqHY4NouNNU9/RfrxhEqXg0/r\nLoQ8+DhoNOSt/o3s375yLYMeNxB42wgQAqUgn/TPXqMw/jh46YmcOQ/hpQeNloJtq8j68ZNK6zaf\nPgJj99bYzVb2zJxHdhnl7xsdQbtXJqIPMpB1OI7dz32IYrMX3Q9qVp/un89k99Pvk7hqO/51atDu\nlUnFaa9p5NjHiwDo8sM7CI2GhN9XEf/1r25ajR57iLCu7bBbLBye9QE5R08DENqlDY0efajMsLWG\n3kitO29EcThI27yLE+9/A4ChYW2aPPkwWn9fcChXVV8XaKDVK48T0LQhiUvWcuzNzyp8Fh2eGkbN\nni2xma1sefYz0g+fcU/fvf1oet91BNSO5Meek7Fk5gJQ9+YuNB95EwiBLc/Mtllfk3nMvf5eILhT\nO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAqDtD5/gKChAsTtQ7Hb2j30cAL8Gdan/\n+Hi0fj6YE1M4MetN7PkF5aahKuoegM7gR+vnxhDQsBaKorD3xYp9vyQ9S70HUst4D1z3xkiMLWrj\nKLSTvD+Otc8vxGFzXJJOZXlmxu+sW3uM0DB/fl/8yGXHc7E6fIFLrf/Gfl2oN/ou/OvW5O+RM8g5\notaR0vUf/ju+X55+eWw46cMrK0OxO2BIm1zGdM12ub893puJPxmpGWQD4LrG+YzvkcXpNB2P/RpR\nZHcuU8eknpmM6JRTps6Vzn+90UOJvm0AhZlqek9+9C1pW3YT2qkVDcYPR6PT4bDZykxLs2kjMHZv\ng91sZe/Mj8k+Gudm4xsdQds5k5y+f5o9z6u+H9m7PY3GDUVxOFDsDg69+TUZe4+qaRp2EzG39wUU\nsk+cZd+L89ziDenclgZTRyE0GpL+WMnZb352s2kwdRShXdtjN1s4Nvs9co+dQui9aP3BbDReOoRO\ni2nNFuI/+x4A/9i6xE4fh0avR7HbOfHGfHIOHy8z75fClfJ9yb8b2Xm7TIQQU4H5iqLkezot1Qlj\n99b4145i1e2PE9KyAa1nPMj6B2a62TWbfA8nF/7J+eVbafX0Q9QZ1Ie4RasASNtzlG1T3nSx94kI\nof4917N6yJM4LIV0eHUSNW/octG01O7VgqC6RhZe/zyRrevRe+YwfrrrNTe7pF0niV+7n9u/eszl\nertxN2I6fJY/J35McP1Iej1/L78/+HblCkJoCBn5BCmzJ2JPSyHqlS/J37EB2/nTRSa2lASSXxyH\nkpeDT5uuhI6ZQfKzI6HQSspL41EsBaDVEvniJxTs2YL1+IEKZY3dW+MfE8WaQY8T3KIhLWc8xKYH\nXnCzazr5Hk4vXEbC8q20nDGS2oP6EO8sfzSCppPvwbR1f5F9XnwiG4Y9XXR/wLL3SVq3k+bT7mfP\no7OxpKTT8fNXMG3YQV7cuaJwYV3b4htTgy1DJxHYPJbGT4xhx6inQaOh8bRR7J48yy1sSLvmRPTq\nyLb7p6EU2vAKCVSLVKuh2czJHJr5Hrkn4tEFB9D7zwVXTd9hLeTk/B8w1I/Bv37tCp9FdM+WBNSJ\n5LebZxDeqj6dnh3Bn8NfdrNL3X2C8+v2ct2CJ12u555LZcVDr2HNzie6R0u6vPBAmeHVZ6Kh3qMP\nc+ix57GmptFy/ptkbNxOQXxxJyW4S3t8akWze9jDGJo1pt5jj3Bg3PSi+wenPIMty/UjscETk4j/\ncAHZew8SMXAA0ffewdnPFpaZhKqqewDNp99Pypa97HzyHYROi9bHu+xyKIM6vVoQXNfINyXeA4vK\neA8c+307K6YtAOD6N0fRbGgPDny3vtI6l8LgO1oz/L6OPPWk+wf3pVBeHb7A5dT/3FNn2f/UGzR5\naqyLVln1/7/i+276gQZ6L/+8zGdid8DLy0P59J4UIgNt3P1FDfrGFtAwvNDFrn0tMx/dlepyrV6Y\njV9GJRbF0+f9WvRvXMYniNBUSfkDnP1+MWe+/cNFzpqZzd5pr2I1ZeBfP4Yu3851uR/RvQ3+MVGs\nHfwYwS0a0mLGSDY/+LxbsptMupfT3y4jcfkWWswYScztfTnz00pM2w+QvG4nAAENY2j36hTWDZmG\nd0QIde++gXV3TcdhKaTtK5OJvr6ra6QaDQ0fH8v+qTOxpKTR9tPXSdu4nfwSZRHStR2+taL5++7x\nBDRvRMNpD7Nn7JMo1kL2TX4eR4EZodXS+qM5pG/dRc7BY9Qf/wDxC/5HxtZdhHRtR73xI9g36Tn3\nZ3GJXCnfl/y7kXveLp+pgJ+nE1HdqNGnPWcXbwQgY/9JvAL88Q4PdrML79iMBOeo+tnFG6jRt32F\ncWu0WrTeeoRWg9ZXjzk146L29fq34uivWwFI3nsafaAvfhGBbnamw2fJOZ/mdj20QQ3Ob1VH/zJP\nJRNQMwzfsIAK0wmgb9gcW/I57CkJYLeRv3k5fh17udhYj+1HyVM/li3HD6ANMxbdUyzq7IbQ6hA6\nHSiVW3wQ2bs955ZsUNN84AReBr9yyr950azG2cXriezToehevbtvIHHV31gyst3CAYR3akH+uRS8\nw4IAMCekoNhsJK/YRHivDi62Eb06krR0HQDZB4+jM/ijDwsmsFlDCs4llRm25h3XE/fVryiF6ghv\noTMdoZ1ak3sintwT8QD41apxVfUdZgtZe4/gsLp+n5ttMwAAIABJREFUhJVHTN+2nP59MwCmfafQ\nB/jhGx7kZpdx5Ax5Ce71z7T3JNbsfGf4k/hFhpSrZWgai/l8IpbEZBSbDdOqDYT06OxiE9qjM6l/\nrQEg99BRdAZ/vMLKjxPAJyaa7L0HAcjasYfQ3l3Lta2quqcz+BLWtglnf10LgGKzY8ut/Jhavf6t\nOFLiPeBdznsgfn3x4EjyvjgMFynvf0qHjnUICvL9x/GUV4cvcDn1Pz/uPPln3FcYlKz/+lD1uf5X\nfL+0vi07t9xnsj9BT+0QGzEhNvRauKlpHquPXfqz3hrnQ+3gQmoG2d1vhneskvyXR+6xOKwmtb3N\nO+U+ax3Zuz3nl5bw/QA/vMPK9v2kVdsAOLd4A1FO37cXWIpstL4+Lu2dKNnu+7i3+wFNYyk4l4g5\nQX33pa7aSFjPTq66PTqR/Kf67ss5eAxdgD9657vPUWBWdXRahE5bpK0oCjp/9bnp/P2wmtIvWkaV\n5Ur5fnXBoYhr+r9rlX/1zJsQYgQwDXVZ7T7gOWABEA6kAg8pinJGCPEFsFhRlEXOcLmKohiEEH2A\nmYAJaAHsBO4DJgHRwBohhElRlL5XM1/VGR9jCAXJxR+iBSnp+EaEYDFlFl3TBxsozM1HsatLkgqS\n0/GJKP5QCm0VS58f5mBOyeDgW9+Sc+o85tQMTny9lOuXvoPdYiVly35St158Jso/MpjcpOIXfV5S\nJv6RweSnlt0pKY3pyDnqX9+WxJ0nMLasS0B0KIaoEArSyl7CUhJtaAT2tOSiv21pKXg3bF6uvaHv\nbZj3bCm+IDREvfoVuqha5P61COuJg5VKs48x1KX8zSlq2ZYsf69gA4U5eUXlf8EG1BnOqL4d2PLw\nbIKbu468XyD6+i4k/LUZX2Ooy3VLSjqBzWNdrnlHhGJOSSthk4Z3RCg+bteLw/rVjia4dVMajLsX\nh6WQ4+99Rc7hk/jVrgEKtHn7GbxCAt0+Iqpa/1LxNYaQl1Tc4Oclp+NrDKHAlHXJcTUY3JOEjfvL\nva8PD8OSYir625pqIqBZYzcba0pqCZs09OFhFKapPtJs7iwUh4Pk3/8i5Y+/ACiIO0NIj85kbNxG\nWJ/ueBvDy01DVdU9v2gj1owcWs98mMDY2mQdOc3B//u6/MIqhaHUeyA3KRPDRd4DGp2Gxrd3ZsPs\n/1Vaw1OUV4cvcDn1vzJofV1nPv/tvl9aP3nFpnLLJjlXR1Rg8dLCqAA7+xL0bna7z3sz6NMaGAPs\nTO+XQWyE66DQ0sP+DGxWziCFX3SV5B+g1tCbiBrYm5zDJzn+7lfYcvJc4jX2dV/x4hMRQkGJd505\nOR0fYwiWtBK+HxRQyvfT8DEWt/uRfTrQZOI96EMC+Xvq/6lpS83g1DdL6Lf4PewWK6at+zFtc30P\nekeEurz7LClpBDRv5GKjjwjDUqos9BGhWNMyQKOh3YI38K0ZRcLPy8g5pC6NPPnOAlrOfZ76Ex4E\njWDPwzPc8i2RVBX/2pk3IURz4Fmgn6IorYEpwHvAl4qitAIWAu9WIqq2qLNszYD6QHdFUd4FEoC+\nsuN2dck6EsfygVNYe/fTnPp+OZ3mPgqAV4AfUX3aseKWR/nrhknofL2pNbB7laZl1/y/0Af4ctev\nz9Dy/j6YDp/FYb/ye2C8m7fH0O82Mhe+X3xRcZD05H2cf+QW9A2b4RVT/4rrlkWzafdz+N3vy53p\nEzotUb3bk7ByW5WlQWg1eAUZ2DHqaU68/zUtZz/mvK4luHUTDr7wLjvHPkdgs8p/bF4JfU8R2bEJ\nDe/oya63fqwyjYMTnmTfqKkcnv4iUYMHEtBaHWg48eq7RA0eSMtP5qL188VRWPZ+lytBeXVPaDUE\nNqlL/KKVbBj+DPYCCw0eurXK0tH7hWEk7DhO4s4TVaYhKZtr1fdL6xt7d64gpovTLMrKqgnn+XV0\nIsPbZzPppwiX+1Y7rDnuyw1N88qJoWo4//NyNt85ke33T8eSlkns5BEu9/3r1aLBhOFVop28dgfr\nhkxj57S5NB43FABdgD+Rvduz5rYprLpxAlpfb2redIXbfYeDXQ8+xtbBowloFotfPXVJcPTgGzj1\n3gK23TGGk+8uoNGMCVdWVyK5CP/mmbd+wI+KopgAFEVJF0J0Be5w3v8aeL0S8WxXFOUcgBBiD1AX\n2FhRICHEWGAswLx58xg7tuxZiv8C9e4aQJ3Bah834+ApfCPDiu75GkMpKLXMwZqZi5fBD6HVoNgd\n+EaGFi2FsOUVH4aQsmkvmhkPog82EN6hGfnnU7FmqrNeiat3ENrKvQFvMaw3ze7qoYbfH48hqnhk\nzz8qmLzkTLcw5VGYZ2bN08WHjNy3ajbZZ00XCVGMPT0VbVhk0d+6MCP2jFQ3O6/aDQkd+wypr07F\nkes+I6Pk52I+uBOf1l0pPHuqTK06Q6+jtrP8sw6p5X+hxH2MoW7LTAozc/EK8C8q/5I2wU3r0e6V\niQDogwMwdm+Nw24nea26H8HYvQ1ZR+KwpmdTkOK6jMTbGIol1XX5nyU1HR9jGFlFNmFYUtMROh0+\nxrAyw1pS0kldo3YOsw+dQHE48AoOxJKSRubuQxQ692Vl7D6If53oMuOoCv0Lm/gvRqN7+tHwTnV5\nbNqB0/hHhXLhqftHhlKQcvGlvqUJblSLLi8+yOpH3sKaVf6HnNWU5jIrpo8IdysLqykNvTECOOy0\nCcNqSnPeU5+lLTOL9A1bMTSNJWfvQcxnznP4cXXfmk+taEK6ui6vuhp1L3P/Ccwp6WQeUGc/E1du\nr7Dz1vIi7wFDVDC55bwHOk64Gd9QA2smlr2v71qjvDp8gcup/5Wh5DK3K6l9rfp+aX3T5l0EtXSd\n3blApMFGUnbxp1dSjhZjgOvSR4N38QBF74ZmZi0XZORrCPFTBwc3nPSlWaSVcP9yBgvzXZe1Xqn8\nW9OL26CE31bS+o2niu0iQmn12nQOvfQ+Heare297LJwDOH0/KpSMvaqtT2Qo5lLvusKsnFK+H+Zm\nA5C++wh+NY14BQUQ1qEZBQkpRe1+0pq/CWnlWu6W1HSXd5+3MQxr6XdfahreLnkOw5rq2n7Zc/PJ\n3HWA0C5tyT99hsib+nLybfVQKtPqzTR6SnbeLoeqOfLp38+/dubtErHhLAshhAYouYahZCtkp5Id\nXkVR5iuK0kFRlA7/5Y4bwOn/rWTtvc+w9t5nSFq7k5hb1I+mkJYNKMzNd1k2dQHTjkNE91fXpcfc\n0pPEtbsAivZRAQQ3rw9CYM3MpSApjZCWDdH6qI8uvFNzck6fd4v3wLfr+N+g2fxv0GxOr9xD40Hq\nEo/I1vWw5pgrvWQSQB/gi8ZLC0DToT1I3HGcwjxzpcJaTx7CKyoGbUQ0aHX4dbuegh0bXGy0YZGE\nP/4aaR+8gC2x+BRCTUAwws8AgPDyxqdlZwoT4svViv9xBRuGPc2GYU+TtHYHtW7uCUBwi4bYcgvK\nLf8aReXfq2iz+OrbHmX1rVNZfetUEldt58CrXxR13ACib+jK+T/VfVxZh9TOpE8NI0KnI/K67pg2\n7HDRSd2wg6iBvQEIbB6LLTcfa1omOYdP4BdTo8ywqeu3E9K+BQC+MTXQeOkozMwmbdte/BvWRuPc\n/+BXM/Kq6leGY9+vZunQmSwdOpNzq3dT77ZuAIS3qo81N/+Slkz6RYXS+60JbJrxCTnxyRe1zT1y\nHJ9a0XjXiETodIT370nGJtfZ0fSN24m4Qe1oGZo1xp6XT2FaBhofbzS+6h4MjY83wR3bUHBKrY+6\nYKc/CkGtEXeR9NufLnFejbpnScuiIDkN/zrqPqfwTs3JPeXu+yXZ/+06fhg0mx8GzebUyj00qcR7\noNmQ7tTu0Yy/Hvus0ntMPU15dfgCl1P/K4M1Q63H/xXfL60f0q5ZuWXTItpKfIaOc5k6rHZYdtif\nvrGuJ7Sm5mqKqti+BD0OBYJ9iz9zlx7yZ2Dzi8y6mXZUSf71JfapRfTuVLQ8VWfwo/XcGZz4cCFZ\n+44W2Wwc/jQbhz9N8tod1BxYyvfT3H0/bcchovqrs5a1bulJ8jpV169W8UBnYOO6aPQ6CrNyMCeZ\nCG4Ri8bb2e53bE5unKvv5xw5jm+t4vxE9O9B2sa/XXU3/k3kjeq7L6B5I2dZZOAVHIjWoB5toNHr\nCenYmvx4NX6rKYOgtuoKhOD2LSk4m1ju45BIrjT/5pm31cAvQoi5iqKkCSFCgc3APaizbsOBC1/L\ncUB74H/AbYBXJeLPAQJQ98NJKknyxj1E9mjNgN/exG62uhzn3+Xdaex56VPMpkwOvfs9HV6ZSJMJ\nQ8k6EscZ52EE0QM6UXdIfxS7HbulkB0zPgAg48BJElZtp/fCl1HsdrKOxhP/8xpaPflAuWmJX3eA\n2r1bMHzFLGwFVlY//WXRvZvnT2TNs1+Tn5JFy/v70nb09fiFB3L3788Rv+4Aa5/9hpAGUfR/9UEU\nFDKOJ7Lmmcrvs8FhJ33B/2F8+l31pwLW/kHhuVMYBqgTw7krfyZoyGi0hiBCR6mnDCp2O8lPP4A2\nJJyw8S+ARgMaDflbVmLeVeFkMAApG/dg7N6Gvr/NdR7ZXHyscqd3prN31idYTJkcefc72s2ZROPx\nQ8k6Gl90GMTF0Pp4E9G5BfvnfOZMr/qx0fadZ0CjIXHxGvJOn6Pm4OsAOP/LCtI27yK8W1u6LnoP\nh9nKoZc/KAp79I3P3MICJPyxhqbPPkLnhW/isNk49JIaxpaTx9nvFtPx81dBUdQjrDu2umr6AN1+\n+QCdnx/CS0dE744XLa/zG/YR3asVty991flTAQuK7vX9cCpbX/iCgtRMGg8bQLORN+IbFsTNP71E\nwoZ9bJ35Ba3G3YY+2ECnZ+8vSvOye14qW8zu4PTb82j6xkyERkPK0pUUxJ0l8rYbAUj+/U8yt+4g\npGt72n43D4fFwolX1FXlXiHBNJ6tniQqtFpMK9eRuV0dTAkf0IuowQMBSF+/hdSlK8vNb1XWvYOv\nf0Xbl8ej8dKRfz6FvTPn0WDELRWGA/U9UKd3C+53vgdWlXgP3OJ8D+SlZNHnxWHkJKQz5IcnADi1\nYjd/f7C0UhqXyrTHfmL79ngyM/Lp2+stJk7qw51D215yPGXV4X9a/yN6d6LR4yPRBwfSZu4Mco7F\nsWfqbMC1/gO0+/AFFLvjX+/75emXhU4Dz1yXzpjvjTgUGNwql9iIQr7fpQ7I3dMul+VH/Pl+twGd\nBrx1Cm/ebkI4z07Itwo2n/Zh5o0XmQlV1Jm8K53/hhPvJyC2LgoK5sRUjryq+nCtoTfiVyuKeiOH\nUm/kULfkpGzaQ0T3NvT59S3sZovLcf4d33mCfbPmYzFlcvg9p+8/MpTso/Gc/W0tAFH9O1FrYE8c\nNhsOSyG7ZrwHQObBkySu2kbPhXOc7X4cZ35eTfPpDxaL2x2ceOsTWsx9AaHVkLR4Ffmnz1Jj0A0A\nJP76F+lbdhLatT0d//cRDrOFo3PU+PVhITR+djJoNAiNhtTVm0jfrHYoj732IQ2mjEJoNTishRx/\n/cPyn8clcKV8X/LvRijVZATxchBCPABMR50x2w28AHyO+4ElkcBvgC/wJzChxIEl0xRFucUZ3/vA\nDkVRvhBCTAImAgmV2Pf27y3kSvBbu/s8pn37rm/4sPE4j+mPP/oxZ+7uVLFhFVH7h+0sbl81exAq\nwy07F7Kqi3tjfrXov/VHj+t/03KkR7Tv2692Brf0us0j+l3X/+7xuve+B31/4tGPseO55ZVahnu8\n7v/X9e1f+HhMX/ug2WP5779V3X+7pMMwj+jfvONb1ncf7BFtgF6bfvG47wPX7lGJJfi02Zhr+vt4\n9KFPrsly/DfPvKEoypfAl6Uu9yvDLhkoeUTSk87ra4G1Jewmlvj3e6gHoEgkEolEIpFIJJJLQLmG\nj+O/lpF73iQSiUQikUgkEomkGiA7bxKJRCKRSCQSiURSDfhXL5uUSCQSiUQikUgk1x4OuWzyspAz\nbxKJRCKRSCQSiURSDZCdN4lEIpFIJBKJRCKpBshlkxKJRCKRSCQSieSqck3/TsA1jJx5k0gkEolE\nIpFIJJJqgOy8SSQSiUQikUgkEkk1QC6blEgkEolEIpFIJFcVedrk5SFn3iQSiUQikUgkEomkGiAU\nRW4XvArIQpZIJBKJRCKRXA2qxZTWh43HXdPfx+OPfnxNlqNcNimpclJHN/eYdsSnB1nddYjH9Ptt\nWcSRW/p4TL/J4rWs6jLUY/r9t/5IoeMrj+l7aUZ4XH9Lr9s8ot11/e8AHsv/tVD2O/vf5DH99quW\nedz37Cz0mL6W4R5//p7Ov6d8H1T/91T+tQwHYEe/gR7R77B6Kf9r/YBHtAHu2vulx32/uuDwdAKq\nKXLZpEQikUgkEolEIpFUA2TnTSKRSCQSiUQikUiqAXLZpEQikUgkEolEIrmqKPK0yctCzrxJJBKJ\nRCKRSCQSSTVAdt4kEolEIpFIJBKJpBogO28SiUQikUgkEolEUg2Qe94kEolEIpFIJBLJVUX+VMDl\nIWfeJBKJRCKRSCQSiaQaIDtvEolEIpFIJBKJRFINkMsmJRKJRCKRSCQSyVVF/lTA5SE7b5JrAq/m\nPTDc+xRCo6Vgw08ULPvU5b6+TV/8B00Ch4LisJH7/WvYTuyqVNyhXdoQO/UhhFZD4u+riP/6Vzeb\n2EdHEtatLQ6zlUOz3if32OmLhjU0rEPjJ8ai9fPBnJjKwRfewZ5fUBSfd2Q4nb9966Lp8m/XCePY\niQiNlszlS0hf9K1rnmvVpsbUJ/FuEIvpq89I/+WHonsafwNRk6fjXbseoJD4zmuYjxwqN/+NHn0I\nodGQUE7+Gz32EGFd22G3WDg86wNyjp6+aNgWLz+KX+1oAHQBfthy8tk+YjqRN/SgzvDbS8UeAmS4\naW7ccJJX5yzH7lC4c0gbRo/p5nI/K6uA555ZzNmzmXh7a5n18i3ENjIC8PVX2/npxz0oisKQoW25\n/4FO5ZZzeXhaP7hTO+pOHo3QaElespyEhT+52dSdPIaQLh2wWyycfOVt8o6dAkBr8KfBExPxq1cH\nBYWTr75L7sGj1SbvntAP7NiemAnjQKPBtPRPkr//0c0mZsI4Ajt3xGGxEPf6mxQcPwmA8Y7bCR94\nIwiBacmfpPys+kGNEcMJv/lGbJlZAJz/7Euyt/9dFF9V+J6xXxfqjb4L/7o1+XvkDHKOqHVCF2ig\n1SuPE9C0IYlL1laqTMrimRm/s27tMULD/Pl98SOXHc/F8HT927D+BK/M/gu7w8GQoW0ZM7aHm/6z\nT//O2TMZeHvreHnObcX6X27jxx93oSgwdGhbRjzYpUK9f+LrbX/4BEdBAYrdgWK3s3/s4wDEzpyO\nb0xNQH0f2HPz2Ddq6iWXRWmq4vkHdmxP7YkPO33vL5K+K8P3Jj5MUOeOOMwW4l6fS77T9yKHDCJ8\n4A2gKOSfjiPutbdQCgvxrV+POo9OROPrizU5mVOzX8dRog0uTdsnhxPVozV2s5Xtz31C5pF4Nxv/\nmuF0eW08+iADGYfj2P70PBw2O14GXzrPeRi/qDCETsvRL5cR99sGAGKHXUf9O/uAEJz6aS3HFy4H\nqqfvS6oPctmkxPMIDQHDnyHr7XGkP3cbPp0Goq3RwMXEengbGTPvIOOlO8n54jkCHnix0tE3fnw0\nex+bzbZ7H8V4XQ/86tZyuR/WtS1+MTXYOnQSR179mMZPjFVvaDTlhm0y4xFOfrSQ7fc9Tuq67dS+\nz7XDEjv5AdK37ik/URoNkY9M4dwLT3Jq/AME9u6HPqaOi4k9J5vkee+S/vMPbsEjx04kb+d2Tj8y\ngtOTRmE9e6b8/E8bxZ5HZ7P13keJvL47/mXk3zemBluGTuLIK/No/MSY4vyXE/bAs2+xfcR0to+Y\nTsqabaSu3QZA8l8bi64ffPE9p4J7x81ud/DyrD/5aP49/P7HwyxdcpCTJ1JdbD6Zv5kmTSP55bcx\nzHn1Nl59ZQUAx4+l8NOPe/jufw/x069jWLf2OGfi08sv6zLwtD4aDfUefZjD019kz4gJhPfvhW+d\nGBeT4C7t8akVze5hD3Pq/z6g3mPFH1J1J48hc9su9tw/nn0PTaEg/ly1ybtH9DUaak+ewPEZz3Fo\n5MOE9uuDT53aLiaBnTriXSuagyNGcWbuu9SZMhEAn7p1CB94I4cnTOXQmPEEdemEd3SNonApi37l\n8MMTOfzwRJeOG1SN7+WeOsv+p94gc89hl7gc1kJOzv+BE+99VXF5XITBd7Rm/qfD/1EcF+OaqH8v\nLWPep8P4Y8l4li4+yIlS+vM/3kiTplH8+sc4XnltEHNm/1mk/+OPu/jhx9H88tvDrF17nPiK9P+h\nrwMcnPIM+0ZNLeq4ARyf+X/sGzWVfaOmkr5+C+nrt1xSOZTHFX/+Gg21p4zn2FPPc/ChcYT2641P\nqfwHde6AT82aHLh/NPFz36X2VNX3vMLDMA6+jUPjpnBw1HiERktov94A1J02hXOffM6h0ePJ2LCZ\nqLuHlJuEqB6tMNSOYtmtT7Djpc9p/+wDZdq1mnI3x775i2W3PkFhdh71BqtaDe/uT/apBJbf9Rxr\nR71C68fvQaPTEtiwJvXv7MPK4S+yfOizRPdqgyFG7eRXR9+XVB9k503icXT1WmJPOYvDdA7shZi3\nL0Xfpq+rkSW/6J9C7wsolY4//1wS5oQUFJuNlJWbiOjV0eV+eK+OJC1bC0D2wePoDH7ow4IJbNaw\n3LB+tWuQuVud6Urfvhdjn84u8RUkppB36my5afJp1ARr4nkKkxPBZiN7/WoMXbq72NizMjEfPwp2\nu8t1jZ8/vs1bk7V8iXrBZsORl1uuVkGJPCSv2ER4rw4u9yN6dSRp6boS+fcvyn9FYQEi+3clacVG\nt+tR13V3u3aB/fsSqF07lJiYELz0Wm4a2IzVq4+52Jw8kUrnznUBqF8/nPPnMzGZcjl1Ko2WraLx\n9fVCp9PQoWNtVq6o/KzTtaBvaBqL+XwilsRkFJsN06oNhPTo7GIT2qMzqX+tASD30FF0Bn+8wkLQ\n+vsR2Lo5KUvUD1rFZsOem1dt8u4Jff8mjTCfT8CamIRis5GxZh3B3VxnTIK7dyFt+SoA8g4fQWsw\noAsNwad2DHlHjqJYLOBwkLNvP8E9y6/bJakK38uPO0/+mQQ3LYfZQtbeIzishZVKW3l06FiHoCDf\nfxTHxfB8/TtP7TohxMSEoNdruenm5qxe5RrHyZOpdO7i1G8QTsL5LEymXE6eNNGqVc0i/Y4d67By\n+eEyVIr5J75eWcL6dse0an2l7S/GlX7+/k0aYSnhe+mr1xPcrauLTXC3LqStuOB7zvyHqvkXWi0a\nbz1oNGi8vSlMSwPAu1ZNcvcdACB7525CLuKTNfu2I+6PTQCk7z+JV4AfPuFBbnbGTk05t0IdgIn7\nfSM1+7UDQFFA5+cDgM7PG2tWHg67g8B60aTtP4ndbEWxO0jdeYSa/VU/rY6+7wkcyrX937XKf6rz\nJoR4TAhxwPnfVCFEXSHEESHEQiHEYSHEIiGEn9O2vRBinRBipxDiLyFEDef1tUKI14QQ24UQx4QQ\nPT2bq+qPJiQSe0Zi0d+OjGS0IZFudvq2/QmZ9QdBUz4i5/PnKh2/JcVU4t9peEeEutz3jgjDnJxW\nbJOajndEGN4RoeWGzTt9jnBnR87YryvexnAAtL4+1LlvEHGfuS8LKYlXWAS21OLRXpspFa+wiErl\nxyuyBvbsTGpMfYq673xC1KTpCG+fcu3NKSXylqLmrSTeEaGlbNR8+rhddw8b3KYp1vQsCs4mueka\nB3Rzu3aBlJQcoqICiv6OjAwkJTnHxaZxk8iiD7P9+86TmJBFcnIODWMj2LXzLJkZ+RQUFLJh/UmS\nkrLL1boW9fXhYS51y5pqcitbfXgY1pTUEjZp6MPD8K4RiS0ziwYzptDq07ep/8REND7e1SbvntD3\nCg+nMLVkWZrwCg8rZROGNdX1mejDwzHHxWNo2RxtYADC25ugzh3RRxT7asTgW2n6yYfUmfYoWoPB\nJc6q9L3qiqfrX3JyDlFRxR/uUeXpLz8CwL5950lIyCQ5KZvYRhHs3HmmSH/9+uMkVqD/T3z9As3m\nzqLlJ3Mx3nqDW/wBrZtTmJ6J+Vyi271rATVvJfJvMqGPKO174aXyb1J91pRG0v9+ptX3X9J60ULs\neXlk79gNgDk+nuDuaicwtHdP9M42uCx8jSEUlGjjC5LT8TW6do71wQasOfkodvXw+vzkjCKbE9+v\nJLB+NLeufIfrF81mz+sLQVHIOnGOiHaN0Qf5o/XRE9WjNX5R6jeC9H1JVfKf2fMmhGgPPAR0BgSw\nDVgHNAZGKYqySQixABgvhHgHeA+4XVGUVCHE3cBsYKQzOp2iKJ2EEAOBF4ABVzk7/0msu1dh3b0K\nr9j2+A+aRNbc0R5Ly+HZH9Do0VHUfWgIpg07UGw2AOqNvouzPyzGXmCuMm2h1eLToBHJH7+L+dhh\njGMnEjZ0GKZvFlSZZnlEXt+D5DJm3QKbN8Rhtv6juEeP6carc5Zz5+BPiI010qRpFFqNoEGDcEaO\n7srY0d/h6+tF4yaRaDRXftOzp/XLQ2i1+Mc24PTb88k9fIy6k0dTc/gQzn628IppeDrvntYvifnM\nWZK+/5HY12bjMJspOHEKxaF+4KX+sYTEb74DRSH6oRHUGjeG+DcuvtdVUjGefv5jxvZgzuw/GXz7\nPBo1MtK0aQ00Wg0NGkQwenR3Ro9aiK+vF02aRKHVVO0Y+MEJT2I1paMLDqLZ3JcoOHOOnL0Hi+6H\n9++FadWGKk2Dp9AaDAR378L+YQ9hz82j/gtPEzqgL+kr1xD3+tvETBpHjfvvIXPzNpRCW5WlI6pb\nCzKPnGHt6FcxxBjpNe8JUncdJed0Ikc+X0Kvj5/AXmAh8+iZos6fRFKV/Gc6b0AP4BdFUfIAhBA/\nAz2Bs4qibHLafANMBv4EWgArhBAAWqDksNa+UI0VAAAgAElEQVTPzv/vBOqWJSaEGAuMBZg3bx5j\nx469knn5V6HOtBXvIVFn4pLLtS88vhNtRC2EIRglN7PC+L1LjMh5G8OwpLruUbCkpuETGUbWBZuI\nUCypaQidttyw+fEJ7Jk6CwDfmBqEd1eXVwQ2iyWibxcaTLgfncEfgOBbBpO5+BfXPKSloisxeq8L\nj6AwzXXfRbn5N6ViM6ViPqYu18nZtI6wIcPKtfcxFo/aeRvVvLnmPx0fY4n8O/MpdLqLhhVaDcY+\nndj+wJNumpEDupO0YiMNG5adLqMxgKSk4tHu5ORsjJEBLjYGgzcvz7kVAEVRuGHAB9SKUUdC7xzS\nhjuHtAHg7bfWEFUqbEV4Wt9qSnOpW/qIcLfnYjWloTdGAIedNmFYTWmgKFhSTeQeVpeapa3dTM3h\nd1Za29N594R+ocmEVwl/00eoo/quNmnoI8LJK2FjNakzBmnLlvP/7N13eFTF+sDx7+ymQgjphd4C\nBFAICRCqCKKCCoJgwU4VpIsVvKI0O0UsYPldr3JR0YsgRelVIAIC0msIJW3TIG2T7M7vjw1JNkWK\nwCbwfp6Hh+w5M+edmT2z58yeOWeTVtgeRFBt4NPk5l+hy0sp/PwxLVtBg6n29+Jer75XkTl6/wsM\nrEJcXFrB67gy4k+b3qsgfreus6l5MX6/MB7qFwbAjA/XEBTo+bfx/lFfB3JMtmNOXmoayZu24REa\nUjh4Mxrw6dSWvwaPvZImuKFsdStSfz8/chKL9z1Tfv3z0/j7kWsy4RneAnNsHHlptqubqZu24NE0\nlOTV68g+fYajL00EbFMovSLtb4do8EhX6vax3bOWsv8k7oG+wFEA3AN9yEqwvxc7JzUdlyqVUEYD\n2mKlUqB3QZo6vTpy6CvbbQrppxPIOJuIZ91qJO87wclFGzm5yDZl9baRfcmMt71f0vcvTzmemViu\n3VLTJstQfN/R2K7M7ddat8j/d5vW+u4iacz5/1soYwCstZ6ntY7QWkfIwO3v5UXvwxhYC4NfdTA6\n49a6Bzl71tmlMQQUPlzAqVYoOLlc1sANoFLNYNyCA1BOTgTc1R7TJvuHCpg27SCoe2cAPJuGYMnI\nJCcplQsHj5WZ19k7/4CtFHWe7cvZRbb7j3YNe52tfYaztc9wznxv+7AvPnADyD5yGJdqNXAODAIn\nJzw7dSF9+++XVR9LajK5pgRcqttu+q7cPBxzTMknZ5VW/8Bu7TFt2mG3PnHTDoJ63FFQ/7z00utf\nPK93q9vJiD5XYjCMUgR0bUf8qi2Updlt1Yg5lcyZM6nk5lhYsfwAd97Z0C7N+fPZ5ObY7vf7aeFu\nwiNq4eFhmx6YlGQ7xY49l8aaVYfpcX+zv2uychc//dBR3GpUwzU4EOXkhF/XjqRs2W6XJnlzFP73\n2O799GjSCEtGJrlJKeQmp5KTYMIt/0lzVcObkxVd9v2V5a3ujoifcegIbtWr4RJka2/vO+8g9fdt\ndmlSf9+G791dAagc2hhLRgZ5ybaTNycv2zQ75wB/vDu0J3nNettyn8KpV14d2pEVbd8Pr1ffq8gc\nv/9V51R0MmdOp5CTY2HFsv3c2aVk/Jz8+D8u/JOIiNol4p87l8bqlYe474Hb/jbeP+nrBjdXDO62\n+88Mbq54tWpB1onCh1N5hbcgO+ZMicFQeVK87/l06UTq1uJ9bzu+3S72vUZYMjLITU4hJz4RjyaN\nMbja2r5KyxZkx9g+6y72SZQi+IlHSViy3G6bx75fw6pH/sWqR/7F2XW7qPOA7Z44n9vqk5ueRbYp\njeIS/jhIjW62QWCdnh04u872ROvMuGQC2zQBwNXHkyp1gkk/k5D/2jbwrxTkQ/Wu4cSssNVN+r64\nnm6lK2+bgH8rpd7GNjjrDTwJzFJKtdVabwX6A5uBw4D/xeVKKWegodZ6f1kbF/+A1UL6f6dSdcw8\nlMFA9pZFWM4dx+2OhwHI3vADri274da2J1jy0LnZnJ87/rI3f+SDL2gxc6LtsbtL15Jx8gzVetvG\n4ucWrSTp9134tmtJ24VzbI/snfIJANpiLTUvQGC3DtR46F4AEtdvJ3bp2iuuc/xns6j51ntgMJC2\nagU5MdF4de8JQOqKJRi9fKgzcy6GSpXAqvHu1ZeTw57GmpVJ/GezCR4/EeXkRG5cLLEz3y4z1OH3\nvyRs1gQwGIhduo6Mk2eo3rsbAGcXrSLp9134tQuj7Y8f2X4qYcrHBfUvLe9Fgd3alzpl0issFHOC\niexzCWWWycnJwGsT72HooAVYrFZ692lOgxB/vv9uJwCPPBrOieMmJrz6C0pB/Qb+vDXlvoL8Y0f/\nRGpqFk5OBia8fg+enmXf81ce42OxcnLmXELfn4QyGEhYvpqs6NME9rTtU/FLfiV12w6824YTtmAu\nVrOZY9NnF2Q/OWseIa+PQzk7Yz4Xx7HpsypM3R0S32ol5qNPCXlnCspgxLRiJdmnYvC7vwcApqXL\nOb/9D6q2aUWzb77Cmp1N9HuF0x/rTZqIk6cnOi+PmNmfYMmwncDXGDKQSvXroYGcuHhOzZhtF/Z6\n9D3/O1rT8IUBuHh50uLDV7lwJJrdY6YC0G7RxzhVqoRyvnho9wSu7J6w8eN+IirqFKkpmdzZaQYj\nRnYuuNJ0LZSH/W/Cv7ozeNB8rBZN74daEBISwHcLbCfIjz4WwYnjibz6ymIUigYh/kye+kBB/tEj\nfyA1NQtnJyMT3+h+6fj/oK87e3vRaOprgG26tGn1BlKjCn8ix7drR0yrr82DSi665u9/ft9r+M4U\nMBpIWrGS7OgY/B+w9b3EX5aTdrHvfftl/k8F2PpexqHDpGzYTOjc2WCxkHnsBIlLVwDg06UzAb3u\nByBl8xaSfl1VZhFiN+0huMPt9Fj6HnnZZv74V+FPEXWcM44/3vyK7MRU9s78gch3h9Ps+YdIPXSq\n4IragXmLaT15MHf/OAWlFHtn/kBOqu0hYe0+GIlLVQ90noVd074h94Lt4WqO7/s0AUr//SBR4Smt\nb52LlkqpcRTet/YF8DO2KZI7gHBsO/qTWutMpVQLYDZQFdsgd6bW+nOl1HpgvNZ6h1LKD9ihta5z\nidC3TiOXInFQU4fF9v9iP2vblv0I4euty9YfOXR/Z4fFb7x0PWsi+zksftdtC8m1Ou7xxc6Gpxwe\nf2unng6J3XbjEgCH1b88tP3Ort0dFj98zQqH9z0L1+4+yCtl5HGHv/+Orr+j+j7Y+r+j6m/E9lMD\nO7r0cEj8iLXL+aF56T8HcCM8vOdrh/d9bBcpyr336j9frs+PXzz+cblsx1vpyhta6w+BDy++VkrV\nAfK01k+UknY30KmU5Z2L/G2ijHvehBBCCCGEEOJaknvehBBCCCGEEKICuKWuvBWntY7G9lRJIYQQ\nQgghhCjXbunBmxBCCCGEEOLGk1/FuzoybVIIIYQQQgghKgAZvAkhhBBCCCFEBSDTJoUQQgghhBA3\nlNbl8kn85Z5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0SSGEEEIIIcQNJU+bvDpy5U0IIYQQQggh\nKgCltXZ0GW4F0shCCCGEEOJGqBBPAplWb0S5Pj9+7cScctmOMm1SXHcJA5o5LHbAV/tY27avw+J3\n2fojh+7v7LD4jZeuZ01kP4fF77ptIRbmOyy+kccdHn9rp54Oid124xIAcq3/cUh8Z8NTDm/7HV16\nOCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L32Hzzw6rv5HHAVgS/rhD4vfcOZ8tHXs5JDZA+02LHd73\nKwq5fnR1ZNqkEEIIIYQQQlQAMngTQgghhBBCiApApk0KIYQQQgghbihrxbg1r9yRK29CCCGEEEII\nUQHI4E0IIYQQQgghKgCZNimEEEIIIYS4oazytMmrIlfehBBCCCGEEKICkMGbEEIIIYQQQlQAMngT\nQgghhBBCiApA7nkTQgghhBBC3FBa7nm7KjJ4Ew7j0qw9Hv1fAWUke9NPZC7/0m69a+R9VO4+EBTo\n7EwufDOZvNOHAXC/6wncOz0ESpG18UeyVn17xfF9IlsQMuZZlNFA7JI1nPrm5xJpQsYOwLddGNbs\nHA5MnkP6kZMANJ4wHL924eSkpBH1xLirqD1UbtmagCEjUAYjqSuXkfzjf+3Wu9SoRfCYl3GtH4Lp\nP1+SvOj7gnWGyh4EjXoR11p1AU3srHfIPnSgzHo2HPssymDgXBn1bDjuWXzbtsRiNnNw8sdcOHzy\nb/MGdImk7qCHqVynOn8MeJULh04AEHhPB2o/3qvY1r2BlCtqmwmvLmHD+iP4+FZmydJhV5T3Wrge\n8b1at6TOqEEog5H4ZSs5N/+nEmnqjBqMd2QEFrOZ49NnknHE1q5h33+ONSsLbbGiLRb+GvICACGT\nXsS9ZnUAjB6VsaRnsHfgmEuWZfOm47w9bSUWq+ahvi0YNLid3fq0tCxen7CU06dTcXU1MnnK/YQ0\nDADgm/9E8dPC3Wit6dsvjCefbn3FbbFp4zGmT/0Ni9VK335hDB7SoUT8ia8t4XRMCq6uTkyZ1rMw\n/tfbWbhwF1pDv35hPPVM5GXF9GwVTq0RQ8FgwLT8N+IWLCyRpuaIoVRt0wprtpnodz8k8+hxAAL6\n9ML/vntAKRKX/UrCT4sBqDF0AFXbtkHn5mGOjSX6nRlYMjIKtnc9+h5AjX73UuOhe9FWK0m/7+LY\nHNvnn0eDWjR+eSjGyu75KQ2AtURMR7//f+em7Pttwqg3ehDKYCB+6SrOfPu/EmnqjR6Ed9twrNlm\njkybXdD3ATAYaPHF++QkJnHg5al2+ao/2ou6I55l231Pkpd24R+X9Xq1f7MXnyKwfXMs2Tn8OWku\naYeiS6SpVM2f8OkjcKnqQerBaHa9/gk6z4JveCitPxxH5tlEAGLX/cGRzxcVZjQo7vhmClmJKUSN\neb/Edr1ah1Fv9GDIb/+zpXz21h09GO/IcKxmM0enzSpo//Af5mHJzEJbrWCxsmfwC3b5qj3Si7oj\nBrD9/ifs2t/xfR83ILtEUHFTuGWnTSqlJimlxju6HLcsZaDKExNJnTGM5Ik9cW3TA2O1enZJLIln\nSXnnGZL/1YeMXz6jytNvAGCs3gD3Tg+RPOUxkt94CNfmd2AMqHll8Q0GGr0wiD3jprL9sbEEdOtA\npTo17JL4tg2jUs1gtvUbyaG3P6PRS0MK1sUtW8fusVOuru758QOHjebMGy9zYvjTeN7RBZeate2S\nWC6cJ37ubJL/932J7IFDRpCxM4qTw57i5MiB5JyOKTNUo/ED2T12KtseG0vg3e2pXEo93WsGs7Xf\nSA5Nn0ujlwYXlLGsvOknTvPXK++Tuvug3bbif9tM1FMvEvXUi+x/86P8pVc2cAPo3ac58754/Irz\nXSvXPL7BQN2xQzn44pvsfup5/Lp2wr22/T7rFRmOW41q/Nl/KCfe+5i64+xPnPaPnsDegWMKBm4A\nRye9x96BY9g7cAzJG7eSvHHrJYtisViZMvlXPp33KEt+GcryZfs5fizRLs3n836ncWggixYPZtrb\nPXl7+ipbvCMJ/LRwNwt+eJaffh7MhvVHiTmVfEVNYbFYmfLWCuZ+0Z9flg1n+dL9HCsWf95nm2kc\nGsTPvzzH9HceZNrUXwviL1y4i+8XDmLR4qGsX3+UU5cT32Cg1ujhHHnlX+x/9jl8utyBW7H2r9om\nArfq1dn35CBOfTibWmNGAOBWpzb+993DweFj2T/oebwiW+NaLRiA8zv/ZP+AYRwY/DzZp88S1P9h\nu21ej77n3bIp/p1asf3J8WzvP45T85cAoIwGmkwaxaF35rG9/8UvlEp+re3o9/9Sbsa+X3/cUPaP\nf4tdT4zE/66OuBfbD7wjw3GrGczOR4dx7L1PaDD+Obv11frdT+apMyU27RLgh1erFmTHJVyz4l6P\n9g9o35zKNYNY8+AL7JnyJbe/+myp6UJHPcrx+StY8+AL5J7PoPaDnQvWJf15mA39X2ND/9fsB25A\nvcfu5UL0udKDGwzUGzeU/ePf5M8nR+S3v33f944Mx71GMLsee45j735M/RfsP3v3jZ7IngFjSwzc\nXAL88GodVmr7O77vk1t6g4ibwS07eBOO5VTvNvISYrAmngFLHubtK3Bt0cUuTd7x3ejM8wDkHt+L\nwTvQlje4Hrkn/4KcbLBayDm8A9eWd11RfM8mDcg8E0f2uQR0Xh4Jq7fg36mVXRq/Tq2IW7EegPP7\nj+LkUQkXXy8AUncfJO98+tVUHQC3ho3JiT1Lbnws5OVxfuNaPCLb26WxpKWSffQwWCx2yw2VKuPe\ntDlpK5fZFuTlYc0ouyxZReoZv2oLfp0i7Nb7d2pF3PINRepZGRdfLzybNCgzb2b0WTJjyjhY5gvq\n1v5v1/+diFa1qVrV/dIJr5NrHd8jNITss7GYY+PReXmY1mzCu0MbuzQ+HdqQ+Ns6ANIPHMbJozLO\nvt6XHcP3zvaY1my8ZLq/9p6jVi0fatb0xtnFSPceTVi79ohdmuPHEmnTpg4A9er5cfZsKiZTOidO\nJHHb7dVwd3fGyclARKtarF51+LLLaIt/llq1valZ0xsXFyPd72vK2jX22zh+PJE2kfnx6/tx7mwa\nJlM6x4+buP326gXxW7WqzeqVB0uJYq9y44aYz54jJzYOnZdH8tqNeLVra5fGq10kSavWAJBxML/9\nfbxxr12T9IOHsZrNYLVyYc8+vDva9u3zO/4EqzU/zyFc/P3stnk9+l71PncT/Z+f0bl5AOSm2D4j\nfVo3J/3YKdKPnSoSoeTgzdHv/6XcbH2/SmgI2WdiMZ+z9f3E1ZvxLd73O7Ym4df1AFzYfwRjkb7v\n4u+LT9sI4n9ZVWLb9UYOIPrTr0t7m6/a9Wj/oDvCObNsEwAp+47h7FEJVz+vEun8WjUldk0UAKeX\nbiSoc0SJNMW5BfgQ2KEFMT+vK3V9ldAQss/GFXz2Jq7ZhE8H+6vFPh1ak/Drxc/eI5f92Vt35ECi\nP/l3qXP/HN/3sT9xKKesqHL9r7y6ZQZvSqmnlFJ7lVJ7lFLfFFvXQim1LX/9IqWUd/7yUUqpA/nL\nv8tfVlkp9ZVSKkop9adSqvgcMXEZjF4BWJPjCl5bU+IxeAeUmd6tYx9y/toMQN7ZYziHtERVrgou\nbrje1hGDT9AVxXf198GcYCp4bU5IwtXfp1gaX7LjkwrTJCbj6u97RXHK4uzrT15i4bfdeaZEnH39\nLy9vYDCW86kEj3mFOrM+J2jkiyhXtzLTZycUqUNCyTq4+vsUS2NrC7cSy6+s/gF3tbt0oluEi5+v\n3f6Wk2gq0ZYufr7kJCQWSZOEi19hmiYfTua2zz8k4IF7Smy/SvOm5Cankn0m9pJlSUi4QFBQlYLX\ngYGeJMTbT7dq1Diw4KT8r71niT2XRnz8BRqE+LNr52lSUzLJyspl08bjxMWdv2TMouLjLxAUVLXg\ndVBZ8VceAmDv3rOcO5dKfNx5Qhr6s3NnTEH8jRuPEnsZ8W1tW6T9TSZcirW/s59fsfY34eznR9bJ\nU1S5rRlGzyoYXF2p2iYC5wD7QRqAX/e7SYvaYbfsevS9SrWq4dU8lIgvp9HykzepElo/f3kwaGgx\ncwKtvn6nzLZw9Pt/q3EpfqxJTMKl+LHGz8d+/0xIwtXPlqbeqIGc/PTrEgMEnw6tyTElkXEs+voV\n/hpxC/Ahq8ixNCshGTd/+8GRi5cHeRcy0BZrqWl8bg+h83fTaTP7JarUq16wvNkLT3Jg1gJ0GT8Y\n5uJfrO8nJuHq51sijf17ZCpMo6HpjLdo/sUHBD5wd2F5OrQmJzGJzOPRpcYtj31f3DxuiXvelFJN\ngYlAO621SSnlA4wqkuQ/wEit9Qal1FvAG8AY4BWgrtbarJS6+DXRBGCt1npA/rIopdRqrXUG4rpw\nbtwK9459SJn+JACW2BNkrvgKrxfmoc1Z5J4+DLrkfR03K2U04la/IfGfzSb7yEEChozAt19/TN9+\n5eiiFfBs2gBrdo6ji3HT2P/8y+SYknHyqkqTD98iK+YMF/bsL1jv17UTpjWbrlm8QYPb8fa0lTzU\n+3NCQgJoHBqE0aCoX9+PAYPaMmTQAtzdnWnUOBCD4dp/Ozl4SAemTf2V3r3m0rBhAKGhwRiMBurX\n92fQoPYMGjgfd3dnGjcOwmi4vt9BZsecJu67hTR8dwrWbDOZx08UXG27KPjxR9AWC8mrS//2/1pS\nRgPOVT3YMfA1PJs04Lap4/i9z/MooxGv5o3549lXsGSbuXPDfBRBaOIuvdFiHP3+CxvvdhHkpqaR\ncfg4VcOaFSw3uLpQ86m+7Bs7yXGFu4HSDkWz6r5RWLLMBLRvTqsPxrG29wsEdgzDnJJG2qFofMND\nr0vsv55/hRxTMs5eVWk6402yYs6QfugYNZ7sx/5xb1yXmGW5kr4PdAXW3NACihvmlhi8AV2AhVpr\nE4DWOlkp2wFHKVUV8NJab8hP+zVw8U72vcB8pdTPwMU7Ru8Geha5X84NqAXYzd1RSg0BhgDMnTuX\nIUOGIApZUhPsrpYZvAOxppScN26s0RDPZ94idcZz6Iy0guXZm/5H9ibbTd+V+4zGmnJlJyjmxGRc\ni3x77hrgizkxuViaJNwCfbkY1dXfB3NiEtdCblIiTv6FV9qc/PzJTUr8mxxF8poSyTMlkn3Etstd\n2LIB3779y0zvFlD4jZ9rQMk6mBOTcQsoUs/8tlBOTpfMW5bAu9oTt2ozDRqUXa5bSY4pyW5/c/H3\nK9GWOaYkXAL8ufhR4uLvS44pKX+dbd/MS00jedM2PEJDCgdvRgM+ndry1+Cxl1WWgIAqxMUVXmmJ\njz9PQGAVuzQeHq5MmfYAAFpr7rnrY2rUtH0L/lDfFjzUtwUAM2esI6hY3ksJDKxCXFxhX44rI/60\n6b0K4nfrOpuaF+P3C+OhfmEAzPhwDUGBnpeMaWvbIu3v50dOsfbPNZny2z8/jb8fuSbbt/GmFSsx\nrVgJQPWBT5OTWPgtve89d1E1sjVHxr9WIu716HvmhGQS120H4PyBY2irFWcvT8wJSaT+eYDcIg9N\nUPiWGLw5+v2/1eQUP9b4+5JT/FhjSrbfPwN8MZuS8e3cFp/2rfCODMfg4oyxciUavj6GM/MX4Roc\nQNi/ZxZss8VXH7Jn8IvkJqfemIpdhjv+Ow2A1AMncA8s3J/dA3zITrS/FzonNR2nKpVRRgPaYrVL\nk5eRVZAuYcseDK8YcfHywKd5Q4I6hRPYvgUGF2ecPNxpOdn+frWcxGJ9398XsympRBrXAD8u9gpX\nf7+CNBc/e3NT00jauA2P0IbkXcjANTiAFv83syB9iy9nsGfI+IL2d3TfB1pSAQZv8rTJq3PLTJu8\nSvcBH2PrBH8opZwABTyktW6R/6+W1rrETRda63la6witdYQM3ErKO7kPp8BaGPyqg9EJ1zbdMe+2\n/9ba4BNE1ednkvb5q1ji7eZyo6r4FKRxDe9K9rblVxT/wsFjVKoZjFtwAMrJiYC72mPa9IddGtOm\nHQR17wyAZ9MQLBmZ5CRdmwNj9pHDuFSrgXNgEDg54dmpC+nbf7+svJbUZHJNCbhUt910Xbl5OOaY\nU2WmL1rPwG7tMW2yn9qVuGkHQT3uAGz1zEu31bN4G5WWt1RKEdC1HfGrtlxWfW4F6YeO4lajGq7B\ngSgnJ/y6diRly3a7NMmbo/C/504APJo0wpKRSW5SCgY3VwzutntQDG6ueLVqQdaJwgfUeIW3IDvm\nTInBSFma3VaNmFPJnDmTSm6OhRXLD3DnnQ3t0pw/n01uju2WiZ8W7iY8ohYeHq4AJCXZJhnEnktj\nzarD9Li/GVei2W3VORWdzJnTKeTkWFixbD93dikZPyc//o8L/yQionaJ+OfOpbF65SHue+C2S8bM\nOHQEt+rVcAmytb9Pl06kbt1mlyb19+34dusKQOXQRlgyMshNtp08OnnZpnm6BPjj1bEdyWvWA7Yn\nWAY90pdjE9+03RNXzPXoe4kbo/AOt7W5e81gDM5O5KaeJ2n7Hio3qIXB1QVltB3aNSU/rxz9/t9q\nLhw6invNYFzz30v/uzqQvCXKLk3y5igC7u0MQJWmDbGkZ5CblMKpud/yR59B7Og3hMOTPiBt516O\nTJ5J5olTRD3wDDv6DWFHvyGYE5PYPWBcuRq4AQUPGIldv4Ma93UEwLtZA3LTszCbSpY1accBgrva\n7kereX8n4jbsBMDVt3CatVfTemBQ5KSmc3DO96zqMZLVD4xh52tzMP1xgF2vf2q3zQuHjuJeo0j7\nd+1I8uZi7b8lioB7L372NiQvv/0Nbq4Y7T57w8g8cYrME6f4o+fT7Hx4CDsfHoI50cTugWPt2t/R\nfR8o/fHT4qZwq1x5WwssUkp9qLVOyp82CYDWOk0plaKU6qi13gQ8CWxQShmAmlrrdUqpzcCjgAfw\nGzBSKTVSa62VUmFa6z8dUakKzWrhwrfT8Bo3F2UwkrV5EZZzx3HrbHtaW/b6H6jccxgGj6pUeXJi\nQZ6Utx4BoOrzMzB4eKEteVz4dio668oekawtVo588AUtZk60PY536VoyTp6hWm/bnPZzi1aS9Psu\nfNu1pO3CObZH+U75pCB/0zfH4NWyKc5eVWi3eC4nv/ie2F/WXlH94z+bRc233gODgbRVK8iJicar\ne08AUlcswejlQ52ZczFUqgRWjXevvpwc9jTWrEziP5tN8PiJKCcncuNiiZ35dpmhDr//JWGzJoDB\nQOzSdWScPEP13t0AOLtoFUm/78KvXRhtf/zI9pMIUz4uaKPS8gL439Gahi8MwMXLkxYfvsqFI9Hs\nHmN7hLVXWCjmBBPZ567+CWjjx/1EVNQpUlMyubPTDEaM7FxwteVGuObxLVZOzpxL6PuTUAYDCctX\nkxV9msCe9wIQv+RXUrftwLttOGEL5mI1mzk2fTYAzt5eNJpqu6qjjEZMqzeQGrWrYNO+XTtiWn3p\nB5Vc5ORk4LWJ9zB00AIsViu9+zSnQdCqkpYAACAASURBVIg/339nO1F65NFwThw3MeHVX1AK6jfw\n560p9xXkHzv6J1JTs3ByMjDh9Xvw9Cz7fsuy4k/4V3cGD5qP1aLp/VALQkIC+G6B7QTl0cciOHE8\nkVdfWYxC0SDEn8lTHyjIP3rkD6SmZuHsZGTiG90vL77VSsxHn9LwnSlgNJC0YiXZ0TH4P9ADgMRf\nlpO2/Q+qtmlFs2+/zP+pgBkF2etPmoCTpyfakkfMrE8Kfg6g1qhhGJydafiebd9PP3CYmJlzCvJd\nj7537pd1hE4cRpv5H2DNy+PAW7Y8eRcyOL1gKa3+7+2Cr7M1Z0ttf0e+/5dyM/b94x9+TrMP3wCD\nkfhlq8k8eZqgXrZ7V+MW/0bK1p14tw0n/PvPsGabOTpt9jWqzZW7Hu2fsHk3ge1b0HXxhwU/FXBR\nm1kvsnvy55hNqRyYvYDwaSMJHd6PtMOniPl5PQDBXVtTp+9daIsFizmXna/OKSNSKSxWTsyYR9MP\nJoHBQMKyNWRFnyaol+2zN27xr7b2j4yg5Xe29j823fakZGdvL0KnvQrYPnsTV20kNeryTvcc3feB\nZZffSKKiUfoWuWaplHoaeBHbE3j+BKKBdK31+0qpFsBnQCXgBPAskA6sA6piu9r2rdb6baWUOzAT\naIftyuVJrfX9lwh/azRyGRIGOO6b2YCv9rG2bV+Hxe+y9UcO3d/ZYfEbL13Pmsh+DovfddtCLMx3\nWHwjjzs8/tZOPR0Su+1G22Okc63/cUh8Z8NTDm/7HV16OCx+xNrlDu97jnrvoXy8/46Ov7nDgw6L\n32Hzzw6rvxHbTw0sCXfMTz703DmfLR0d9yy59psWO7zvQzl+VGIRE2qNKtfnx1NjZpfLdrxVrryh\ntf4a2/1spa3bDZT2S68dSkmbBQy9tqUTQgghhBBCiL8n97wJIYQQQgghRAVwy1x5E0IIIYQQQpQP\nZfw8n7gEufImhBBCCCGEEBWADN6EEEIIIYQQogKQwZsQQgghhBBCVAByz5sQQgghhBDihpJb3q6O\nXHkTQgghhBBCiApABm9CCCGEEEIIUQHItEkhhBBCCCHEDWXVytFFqJDkypsQQgghhBBCVABKa7ld\n8AaQRhZCCCGEEDdChbik9VKN0eX6/PjdM7PKZTvKtElx3SUMaOaw2AFf7WNt274Oi99l648cur+z\nw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dejokdtuNSwAcVv/y0PY7uvRwWPyItcul793i8bd0\n7OWw+O03LXZo3wcctv933baQVW0edkhsgG7bf3B4368o5PrR1ZFpk0IIIYQQQghRAcjgTQghhBBC\nCCEqAJk2KYQQQgghhLihrI4uQAUlV96EEEIIIYQQogKQwZsQQgghhBBCVAAybVIIIYQQQghxQ8nT\nJq+OXHkTQgghhBBCiApABm9CCCGEEEIIUQHI4E0IIYQQQgghKgC5500IIYQQQghxQ8lPBVwdGbyJ\ncsGlWXs8+r8Cykj2pp/IXP6l/foWd+LReyRaW8FqIX3B2+Qe/fOytu0T2YKQMc+ijAZil6zh1Dc/\nl0gTMnYAvu3CsGbncGDyHNKPnPzbvB4NatPopSEYK7mRHZvI/jdmYcnMKtiea6Afbf4742/LVbll\nawKGjEAZjKSuXEbyj/+1r3ONWgSPeRnX+iGY/vMlyYu+L1hnqOxB0KgXca1VF9DEznqH7EMHyqx/\nw7HPogwGzpVR/4bjnsW3bUssZjMHJ3/MhcMn/zZvgxFP4tchHGteHlln4jk45WPy0jNRRiOhrz1H\nlUb1UE5Xf2F/wqtL2LD+CD6+lVmydNhVb6c8xfdq3ZI6owahDEbil63k3PyfSqSpM2ow3pERWMxm\njk+fScaREwCEff851qwstMWKtlj4a8gLAFRqUJd6LwzH4OKMtlg4OeMz0g8e/cdlvRnb37NVOLVG\nDAWDAdPy34hbsLBEmpojhlK1TSus2Wai3/2QzKPHAQjo0wv/++4BpUhc9isJPy0GoNqzT+LVLhK0\nldzUNKLf+ZDcpOSC7V2PvgdQo9+91HjoXrTVStLvuzg251sAPBrUovHLQzFWds9PaaC006NNG48x\nfepvWKxW+vYLY/CQDnbr09KymPjaEk7HpODq6sSUaT0JaRgAwDdfb2fhwl1oDf36hfHUM5GX+Q5c\nnptx3/NqHUa90YPBYCB+6SrOltL3644ejHdkOFazmaPTZhX0/fAf5mHJzEJbrWCxsmewre/XGtgf\nn45t0FYruSlpHJs2m5wi+97Vupb1j/x+1jXd9+sNeQS/Tq3AqslJSePA5I/JMaWUedxpNO5Z/NqF\nYck2s3/yJwXbL8ot2J/bp4zBuWoVzh86wb5JH6HzLJfOb1C0+ffbmBOT2f3COwAEdImk/uB+QH4f\n7dvdgX0fNyD7Mt4mUQHJtEnheMpAlScmkjpjGMkTe+LapgfGavXskuQe3EbyG31ImdSX81+9TpVn\n3rzszTd6YRB7xk1l+2NjCejWgUp1atit920bRqWawWzrN5JDb39Go5eG2FYYDGXmbfzqMI5/Op+o\nJ14gcUMUtZ7oZbfNkFFPk7xtd9mFMhgIHDaaM2+8zInhT+N5Rxdcata2S2K5cJ74ubNJ/t/3JbIH\nDhlBxs4oTg57ipMjB5JzOqbs+o8fyO6xU9n22FgC725P5VLq714zmK39RnJo+lwavTS4sP5l5E2O\n2sP2x8cR9cR4Mk+fo/bTvQEI6NoWg4sz2594gainX86PULnsdihD7z7NmffF41ec71q55vENBuqO\nHcrBF99k91PP49e1E+61a9ol8YoMx61GNf7sP5QT731M3XH2J077R09g78AxBQM3gNrDnuHMvxew\nd+AYTn/1X2o998w1Ke7N2P61Rg/nyCv/Yv+zz+HT5Q7cirV/1TYRuFWvzr4nB3Hqw9nUGjMCALc6\ntfG/7x4ODh/L/kHP4xXZGtdqwQDEff8jBwY/z4EhI0nbGkXwk/3ttnk9+p53y6b4d2rF9ifHs73/\nOE7NXwKAMhpoMmkUh96Zx/b+4/IjlHyUm8ViZcpbK5j7RX9+WTac5Uv3c+xYol2aeZ9tpnFoED//\n8hzT33mQaVN/BeDokQQWLtzF9wsHsWjxUNavP8qpU/98wFDUzbjv1Rs3lP3j3+TPJ0fgf1dH3OvY\n73vekeG41whm12PPcezdj6n/gn3f3zd6InsGjC0YuAGcXbCI3c+MZs+AsaT8voOazzxyTYp7Let/\nrff9U98uIeqJ8UQ99SKmLTupO6AvUPpxJ/j+zlSqGcSWvqM4+PY8Ql8aVGoZQ0Y8wanvlrGl7yjy\nLmRQvWcXAPzahf1t/lqP9CAj+qzdsowTp9nz8vsA1H7yQQf3fXIv9f6IiksGb0UopSKUUrMdXY5b\njVO928hLiMGaeAYseZi3r8C1RRe7NNpceFVLubqXdk5SpswzcWSfS0Dn5ZGwegv+nVrZrffr1Iq4\nFesBOL//KE4elXDx9cKzSYMy81aqFUzqn7YrXclRewjo3MZue1mxCWScOF1mmdwaNiYn9iy58bGQ\nl8f5jWvxiGxvl8aSlkr20cNgsdgtN1SqjHvT5qStXGZbkJeHNSO9zFhZReoQv2oLfp0i7Nb7d2pF\n3PINRepfuaD+ZeVNjtqLtti+0T+/7yhuAb62jWmNwd0VZTRgcHXJj3Dlx5CIVrWpWtX90gmvk2sd\n3yM0hOyzsZhj49F5eZjWbMK7Qxu7ND4d2pD42zoA0g8cxsmjMs6+3n+/Ya0xVq4EgLFyZXJN1+ZE\n+mZr/8qNG2I+e46c2Dh0Xh7Jazfi1a6tXRqvdpEkrVoDQMbB/Pb38ca9dk3SDx7GajaD1cqFPfvw\n7mjrq9YiV9sNbm4U/2C6Hn2vep+7if7Pz+jcPAByU84D4NO6OenHTpF+7FSRCCU/KP/ae5Zatb2p\nWdMbFxcj3e9ryto1h+3SHD+eSJvIOgDUq+/HubNpmEzpHD9u4vbbq+Pu7oyTk4FWrWqzeuXBSzX/\nFbnZ9r0qoSFkn40r6PuJazbh06G1XRqfDq1J+PVi3z9yWX2/6EwPg7sr+koOin/jWtb/Wu/7Rets\ndHMt3Fgpxx3vsCbErtgIQNq+ozhVsW2/OJ+IpiSs3QbAuWXr8b+jVX75IsrM7xrgg1/7lpxdvMZu\nWxnRZ8mMiQXAHJ/k4L6P/YlDOWXV5ftfeSXTJvMppZy01juAHY4uy63G6BWANTmu4LU1JR6nereV\nSOfSsiseD43GUMWX1FnDL3v75gRTkb+T8GwaYrfe1d+X7PikwjSJybj6++Lq71Nm3oyTZ/Dr1ArT\nxj8I6NIW1wA/W13c3aj9xIPsHj2ZWv17llkmZ19/8hILv+3OMyXi3qjJZdXHOTAYy/lUgse8gmvd\n+mQfO0L8vI/Q5tJnSGQnFKlbQnIp9fcpliYJV38f3EosL5kXIPiBO0lY/TsACWu34d+pFR2Wfo7R\n7eLgLeey6nUzc/HztduXchJNVGnSqESanITEImmScPHzJTcpBYAmH05GW63EL/mNhF9+AyD6oy8I\nff9Nag9/FqUM/DX8pRtQm4rH1rZF2t9kwiPUvv2d/fyKtb8JZz8/sk6eovqApzF6VkGbc6jaJoKM\nI4VTU6sPeArfu7tiycjg8LhX7LZ5PfpepVrV8GoeSv3nHsNqzuXoR//hwsHjVKoVDBpazJyAs7dn\nmW0RH3+BoKCqBa+DAj3Zu9f+CkKjxoGsXnmIiIja7N17lnPnUomPO09IQ39mzVxLakomrm7ObNx4\nlKbNqpUZS4CLf7F9LzGJKqENS6SxO9YkmnC92Pc1NJ3xFlitxC3+jfhfVhakqzX4CQLuuZO8jAz2\njZ54/Stzla7lcafec48R3L0TeemZ7HreNgOntOOOi1cVsuML2zQ7IQk3fx9yklILljlXrULehcyC\nLyKzE5Jx8/cpLF8Z+RuNfYajc77FqVLZg1xzcmGc8tL3xc2jXF15U0r9rJTaqZTar5QaopR6Tin1\nXpH1zyil5uT//bpS6rBSarNSaoFSavzfbHe9UmqWUmq3UmqfUqp1/vJJSqlvlFJbgG+UUp2VUkvz\n13kopf5PKfWXUmqvUuqh/OV3K6W2KqV2KaUWKqU8rmujiAI5u9aQPKEnaXNG4dF7hEPLcnDqx9To\ncy8R//cOxkru6DzbN2F1Bz3M6e+XYsm6flPNldGIW/2GpCxfTPTowVjNWfj263/pjNdBnWf6oPOs\nxP26CQDPpg3QViub7x/Clj7P56eSLvJP7X/+ZfYOHMPBF98kqHcPqjRvCkBgr+5Ez/mCXX0HEj3n\nC+q/PNLBJb35ZMecJu67hTR8dwoh70wm8/gJsBbeR3b2q/+w99GnSVq9noAHH7ju5VFGA85VPdgx\n8DWOzfmG26aOy19uxKt5Y/a/MZudQ17PTx14VTEGD+nA+QvZ9O41l/nfRBEaGozBaKB+fX8GDWrP\noIHzGTJoPo0bB2E0lKvTiJvOX8+/wp4BYzkw/i2C+/TAs3nhl3wxn3/Ljr4DSVy1geA+9zmwlDfO\nic8WsKXXMOJ+20SNvvcCpR937K7MXUN+7VuSk5zGhUMl75+73q6s79P1hhdQ2FFK+SilVimljub/\nX+bldKWUUSn158UxyKWUt0/dAVrrcCACGAUsAnoXWf8I8J1SqhXwENAc6J6f/lIqaa1bAMOBr4os\nbwLcpbV+rFj614E0rfVtWuvbgbVKKT9gYn76ltiu0o2jFPmDzx1KqR3z5s27jOLduiypCRh8ggpe\nG7wDsaYklJk+98hOjP41UB4lp0CU5uJVMdvfvpgT7aeWmROTcAv0LUzj74M5Mcl2Ba6MvJmnzrF7\nzGR2PPsy8as2k3XWduXQs0kI9Z9/krb/+4Qaj9gOpl73F92F8+uQlIiTv3/Bayc/f3KTEkukK02u\nKZE8UyLZR2zTlS5s2YBb/ZJXxC4qmNKIbbqHOTHJbr05MblYGls9s0sst88bfF9n/NqHs/+NWQXL\ngu7uQNLW3WiLpWBKh8Lnsup1M8sxJdntSy7+fiXehxxTEi4B/kXS+JJjSspfZ9vv8lLTSN60DY9Q\n2/vtf28XkjdsBSBp3RY8in2jL2xsbVuk/f38yCnW/rkmU7H29yPXZPvm3bRiJQefG83hMS9huZBO\n9mn7K1UAyWvW4d3Jfurz9eh75oRkEtdtB+D8gWNoqxVnL0/MCUmk/nmA3LQLWM22q92l9b3AwCrE\nxaUVvI6LP09AYBW7NB4erkyb3otFi4fy9rsPkpySQc2atvOOh/qF8eP/BvPN/GfwrOpGnTrSv/9O\nTmKxfc/fF7MpqUQau2ONv19Bmot9Pzc1jaSN20rt44krN+B7R9sSy8uLa3ncuSjut80E3Gmben7x\nuFP9wbsIm2UbvGitcQssbFO3AF+yix37c9Mu4FSlEspoyE/jU5DGnJhcan6v5o3w7xRBh0VzuG3K\nGHwimtFsUskvzVx9Cs9PHNH3gZYlClUO6XL+7x96BVijtQ4B1uS/Lsto4LLnoJe3wdsopdQeYBtQ\nE6gLnFBKRSqlfIHGwBagPbBYa52ttb4A/HIZ214AoLXeCHgqpS72rCVa66xS0t8FfHzxhdY6BYjE\nNtjbopTaDTwN1C4lL1rreVrrCK11xJAhQy6jeLeuvJP7cAqshcGvOhidcG3THfPudXZpjAGFN3g7\n1QoFJxd0emrxTZWqUs1g3IIDUE5OBNzVHtOmP+zWmzbtIKh7ZwA8m4ZgycgkJymVCwePlZm3YGqC\nUtR5ti9nF60CYNew19naZzhb+wznzPe2e9JSly4qUabsI4dxqVYD58AgcHLCs1MX0rf/fln1saQm\nk2tKwKW6rU0qNw/HHHOqzPRF6xDYrT2mTfYzgxM37SCoxx0F9c9LL73+RfP6RLag9hO92PPiO0UP\nFmTHm/COaAaAIf+bT835y6rXzSz90FHcalTDNTgQ5eSEX9eOpGzZbpcmeXMU/vfcCYBHk0ZYMjLJ\nTUrB4OaKwd02Pcfg5opXqxZknbA9oCYnKRnPFrb29mx5O9lnzt3AWlUcGYeO4Fa9Gi5Btvb36dKJ\n1K3b7NKk/r4d3262L6srhzbCkpFBbrJtyqqTl22aoUuAP14d25G8Zj0ArtULpwx6tY8kK+aM3Tav\nR99L3BiFd7jtPXevGYzB2Ync1PMkbd9D5Qa1MLi6FJyMatIortlt1TkVncyZ0ynk5FhYsWw/d3ax\nHxCcP59NTo7tlpkfF/5JRERtPDxs/TkpKQOAc+fSWL3yEPc9UHKKuyh04dBR3GsE45r/Xvp37Ujy\n5ii7NMlbogi492Lfb0heekZB3zfa9f0wMk/YPuvdagQX5Pft2IasmJJfKDjatd733WsWfsnr3ymC\nzFO2z7uLx50zP/3GjiG26aMJ66MI7t4JgKrNCrdfXMrO/QR0sT0xtdp9nUncuKOgfKXlP/bJAjY9\nMIzNvUfw18SZJO/Yx75JH5XYrmugr0P7PlD646fFjdQL+Dr/76+BB0tLpJSqAdwHfHG5Gy4397wp\npTpjGzC11VpnKqXWY3vU6XfAw8AhYJHWWiulriZE8UH0xdcZV1JMYFUpV+nEP2G1cOHbaXiNm4sy\nGMnavAjLueO4dX4YgOz1P+Aa3g23dj3RljzIyeb8Z2XOki3hyAdf0GLmRNtjd5euJePkGar1vhuA\nc4tWkvT7LnzbtaTtwjm2R/ZO+QQAbbGWmhcgsFsHajxkm7KRuH47sUvXXnGd4z+bRc233gODgbRV\nK8iJicaru+0+udQVSzB6+VBn5lwMlSqBVePdqy8nhz2NNSuT+M9mEzx+IsrJidy4WGJnvl1mqMPv\nf0nYrAlgMBC7dB0ZJ89QvXc3AM4uWkXS77vwaxdG2x8/sv1UwpSPC+pfWl6ARi8MxODiRNhs27ec\nafuOcPjdzznz42+EThxOm/9+SGE/vbxBdlHjx/1EVNQpUlMyubPTDEaM7MxD/cKueDtX65rHt1g5\nOXMuoe9PQhkMJCxfTVb0aQJ72vah+CW/krptB95twwlbMBer2cyx6bZnJzl7e9Fo6muAbXqMafUG\nUqN2AXDi3TnUGTUYZTRizcnhxHsflx7/Ct107W+1EvPRpzR8ZwoYDSStWEl2dAz+D/QAIPGX5aRt\n/4OqbVrR7Nsv838qoPCnPupPmoCTpyfakkfMrE+wZNgOGzUGP4tbzepoqyYnIYFTM+bYhb0efe/c\nL+sInTiMNvM/wJqXx4G3bHnyLmRwesFSWv3f26AvHt5KDuadnAxM+Fd3Bg+aj9Wi6f1QC0JCAvhu\nge0E8dHHIjhxPJFXX1mMQtEgxJ/JUwung44e+QOpqVk4OxmZ+EZ3PD3drv59KcVNt+9ZrJyYMY+m\nH0wCg4GEZWvIij5NUC9b349b/CspW3fiHRlBy+8+w5pt5th022DA2duL0GmvAra+n7hqI6lRtp/I\nqT30KdxrVQetMcclcPz9T/9RvS+6lvW/1vt+g+GPU6lWNbTWZMclcvidzwFKPe6c+fE3POrWoP1P\ns7Fk53Bg8ieF5ZrxCgemzsVsSuHonPncNmUMDYY+yoUjJzm7xHYsN235E792LUvNXxb/O1rRePwA\nAIzurkT+9wPMSakO6vssu6o3TVxLgVrr2Py/4yh7HvtM4CWgShnrS1BaX4MLg9eAUqoXMEhr/YBS\nqjGwG7gX2INtemIM8LLWOip/2uRcoB22AeguYJ7W+v0ytr0eOKS1fk4p1QH4VGt9m1JqEpB+MV/+\nAHK81vp+pdTbgJvWekz+Ou/8WDuBLlrrY0qpykB1rfWRS1SvfDSygyQMaOaw2AFf7WNt274Oi99l\n648cur+zw+I3XrqeNZH9HBa/67aFWJjvsPhGHnd4/K2dyn5wzfXUdqPtMdKOqn95aPsdXXo4LH7E\n2uXS927x+Fs69rp0wuuk/abFDu37gMP2/67bFrKqzcMOiQ3QbfsPDu/72C42lHvPB40u1+fHn8TP\nHgoUnT43T2tdcC+UUmo1EFQiI0wAvtZaexVJm6K1trvvTSl1P9BDaz286BjkUuUqN1fegF+B55RS\nB4HD2KZOorVOyV/WRGsdlb/sD6XUEmAvEA/8BaXMD7GXrZT6E3AGBlxGeaYAHyul9mF75OqbWuv/\nKaWeARYopS7eDTsRuNTgTQghhBBCCFFB5A/Uynxwhdb6rrLWKaXilVLBWutYpVQwUNrDHNoDPZVS\nPbDNNvRUSn2rtX7i78pVbgZvWmsztoePlLautFHo+1rrSUqpSsBGbFfE/s63F6+iFdnupGKv1wPr\n8/9Ox3ZPW/GyrAVaFV8uhBBCCCGEEMASbOOIt/P/X1w8gdb6VeBVsJv997cDNyhHg7erME8p1QTb\nSPVrrfUuRxdICCGEEEIIcWnl5M6t6+Vt4Ael1EDgFLbnd6CUqgZ8obW+6nn9FXbwprUu8cNWSqmP\nsV2CLGqW1rrzDSmUEEIIIYQQ4pamtU6ilN/b01qfA0oM3IrO/ruUCjt4K43W+vlLpxJCCCGEEEKI\niuemGrwJIYQQQgghyj+rowtQQZW3H+kWQgghhBBCCFEKGbwJIYQQQgghRAUggzchhBBCCCGEqADk\nnjchhBBCCCHEDWW9uX8q4LqRK29CCCGEEEIIUQEofZP/Ql45IY0shBBCCCFuBOXoAlyOIQGjy/X5\n8byEWeWyHWXapLjuvm/+jMNiP7Ln3yy4/VmHxX9s7/9xok/x342/cer9bwsrWj3msPjd/1jA5g4P\nOix+h80/Ozz+2rZ9HRK7y9YfAdjfvcRvhN4QTVesYVlEf4fEBrhvx38d1vZga3/Lv90cFt/4TDZb\nO/V0WPy2G5c4vO9t6djLYfHbb1qMhfkOi2/kcYfVv/2mxQDs6FLid4hviIi1y/mh+dMOiQ3w8J6v\nHd73K4pyPXIrx2TapBBCCCGEEEJUADJ4E0IIIYQQQogKQKZNCiGEEEIIIW4oedrk1ZErb0IIIYQQ\nQghRAcjgTQghhBBCCCEqAJk2KYQQQgghhLih5NfKro5ceRNCCCGEEEKICkAGb0IIIYQQQghRAci0\nSSGEEEIIIcQNZXV0ASooufImhBBCCCGEEBWAXHkTN1zYy48T3OF2LNk5RL3+BSmHTpVIU7m6H23f\nGYZLVQ9SDkaz/bV5WPMsOFepROu3BuJRIwBLTi5/vPElacfOAnD/8vfJzcxCWzTaYmFV/zcvWZaW\nL/enWkdbWba9/iUpB0uWJeTRrjR6ohtVagXyU6eR5KSmA1ClThCRkwfiHVqbvR/9j0Nf/3rVbeIe\n1gbfAWNQBgPnV/9C2qJv7dZ7dLqbqg8+jlIKa1YmpnnvkxN97Kpihb7wNP7tW2DJzuGvNz/l/OHo\nkuWp5k+LqaNwrurB+UMn2fOvj9F5Fqrd2566T/VEKcjLzGb/219y4WgMlWsH02LaqIL8laoFcHTe\njyW269UmjHqjB6EMBuKXruLMt/8rkabe6EF4tw3Hmm3myLTZZBw5UbjSYKDFF++Tk5jEgZen2uWr\n/mgv6o54lm33PUle2oVyFRvAJ7IFIWOeRRkNxC5Zw6lvfi6RJmTsAHzbhWHNzuHA5DmkHzn5t3k9\nGtSm0UtDMFZyIzs2kf1vzMKSmVVq/KI8wlsR9NzzYDCQ+utyTAu/s1vvUqMm1ce9hFuDBiR8/RVJ\nPy2034DBQL3Zn5BnSiJm0oRLxruoyfinCMjf9/ZM+qzMfS9s2khcqnqQdvAku//1CTrPQuAd4TR8\nrh/aakVbrBz44BtS9hwGoM6j91Kr952AIubntUQvKNkX/0n7N54wHL924eSkpBH1xLgS+Wo+9gAh\no55m073PklvG+1/UpuNuTF/tg8UKfVukM7jtebv1UadcGfFTANWr5gHQrVEmwzukcTLJiXE/+xek\nO5PqxMiOqTzV+tIxvVq3pM6oQSiDkfhlKzk3/6cSaeqMGox3ZAQWs5nj02cW7P9h33+ONSsLbbGi\nLRb+GvKCrb0mvYh7zeoAGD0qp4i55QAAIABJREFUY0nPYO/AMaXHd3D/82odRr3RgyE//tlS6l93\n9GC8I8Oxms0cnTarIH74D/OwZGahrVawWNkz2Fb/WgP749OxDdpqJTcljWPTZpOTlFxq/Ms14dUl\nbFh/BB/fyixZOuwfbeui61H3OsOfwbtdK3ReHtln4zg6fTaW9IxS43u2CqfWiKFgMGBa/htxCxaW\nSFNzxFCqtmmFNdtM9Lsfknn0OACBfR/Er8c9oDWZJ6OJfmcGOjcX9/r1qD12BAYXZ7TFSsysj8k4\ndKTMNgh7+XGCOjTPP+/4nNQyzjsi3xlecN4R9dpc23mHhzttpg2lUpAvysnI4a9XEL14E1VqBxH5\n7vCC/B41Atj3Scn9uihH9H1x85HBm7ihgjvcTpVagSx/4GV8b6tP+MSnWP3E5BLpbh/9MIe/Xcnp\nX7cTPvFp6vbuxPGF62gy6AFSD8WwZexHVKkTTPhrT7J+yLsF+dYNeqdgcHVZZakdyNL7X8H39npE\nTHySVY9PKZHOtPso5zbupsuXr9gtzzmfwc63/0uNLmFX2ArFGAz4DX6B2DfH8P/snXd8U9X7x983\nHUkXtM1oC2Uvochqy16COHCCIiqoDBkiyBBQ9OsE3CAqigx/7q1fvyqggiBToJQpe7ZAZ5IOupI0\nyf39cdO0aVpApKTgefviZXrvc87nnOeeJ/eee0bs5mzqv7aM4u2bKD2T4jYpzUon45mJOIsKCOrY\nFd34maQ/OfZvS+m7dyCkYTQbBk8lvG1z4p4czZaRz3jZtZp4PylfrCRj9RbinhxNgzuu49T3v1Oc\nns22cS9iLyhC1709bZ8aw5aRz1CUmsHmYbNc9ZHot/I9Mv/YTutpD3rUs9m0ceyb+hy2bDMdlr2O\neVMSJSln3CYRXePRNIhhx72PEBbXkubTx7Nn7Ez3+XpDbqU49Qz+wUEe5Q006AhP7IAlM7taH/tM\n26Xf6vGH2TX5RazZOST83ysYNyZTXEFf260jwQ1i2DpkEnXiWtBq5lh2PDzrnGmvmfUIxxZ+Qt6u\nA8Tc2o+Gw+/g5JKvqi+Hqywxjz5GylMzsZuMNH3rPQq2bcF6qvxhxlFQQMb7C6nTrUeVWWjvGIz1\n1Cn8gkPOrVUBfY8OhDSIZt2gaYS3bU7bWaP4c8SzXnbXTLqPk1/8QsaqLbSdNcrd9kxJ+8havwOA\nsOYN6PTKZNbfPZ3QZrE0HHQdmx58Btlup/PbT5K9cZdXnS/a/0Dmij848+0vtHl2kld51QYtkZ3b\nY8kwXpAfHE6YsyqSZfdmE1XHztCPYriuRQnNdaUedvGxFhbd45lnE62dH0ZnuPPpuzCW/q2Kzy+q\nUtFk6jgOTHsWm9HMtUvmkbspiZLU026T8K7xaGLrsev+cYS2aUWTaY+wb/wM9/n9k5/26hgdff51\n9+dGj46q9uG9NsRf02nj2D/1OWxGM+2XvkHO5iRKUsrrH9E1nqDYGHbeN57QNi1p9vgj7B1XXv99\nk//jVf+0L3/g1AdfABBz1600GDGU4/MWVV+OC2DQ4PYMG57Ik094v1y4KGqo7nnbd5Oy+BNwOGk0\n/kFih99F6vufVKnfcPIEjsx4mlKjidaLFpD351YsFdpe3S4JaOrXZ98DDxPSuhUNp0zk0KNTCdBp\nMQy6nX0jxyPbbDR9dhaR/fpg/u13YseNIv2TLziblEzdLgnEjh3F4WlPeusD0T3bEdowml9um0nk\ntc2I/89DrBn+opddu8lDOfLZbxWeO/pw/Nu1NB/an7Mn0tn02ALUEWHc9OMrnFrxJwWpmaweqnyH\nSSqJW1cvIG3tDjrOHFZlOXwS+4Krkn/FtElJ4V9R19pO/es6kvLzZgDMfx0nICwYja6ul11U59ac\nWb0dgJSfNlG/XycA6jStR1bSQQAKUjIIqadDHVnnosoSe11HUn7+UynL3hMEVlOW3EOnKEo3ex23\n5hSQs/8kTrvjovTLUDdvTWnGGexZ6WC3U7RpDSGde3lqHd6Hs0i5eVqP7Mdfa7goLUOfeNJWbAQg\nb98x/MOCUWvDvey0iXFkrt0GQNqKDRj6JChp9h7FXqA8oOX9dQyNIdIrrS6xLcVnsrBkmjyOh7Vu\ngeVMBtb0LGS7HePvm9D27OJhE9mrM9m/rgOgYP8R/EJDCNBGABCo1xLZLYGsn1d7aTadNIqURR9D\nNdsO+1IboE6b5hSfycSSno1st5P9+2b0vRM9bHS9E8n8RdE/u/8o/qHBBGrDz5k2uGEMebsOAJCT\ntAdDX886VUVQy2uwpadRmpmBbLeTv/4Pwrp297Bx5OdhOXIY2W73Su+v0xHauQt5v608r1ZFovrE\nk7ayvO0FVNP2dIlxZK5R2t6Z5RuJ7qu0PUeJ1W3jF6Rx7zEd2rg+efuO4bTakB1OzDsPEt3P07f/\nxP8AebsPYj9b9UuhFpNHcPzdT5HP1QAq8Fd6IA0j7DSIsBPoBze3LmLtkaDzJ6zE1hQNDcNLqV/3\n/N8/oa1bYEnLwJqhtH/Tmo1EVG7/Pbtg/O0PAAoPHMa/Qvu/ELTX9cC0ZkOV53wdf2GtW2BJy3TX\n37hmI5E9O3vq9+xM9q9l9T9yQfWvOMqtClJfcBs4FwmJjahb9++3h+qoqbrnbd+t9CJQrpdar6vS\nLuSalljT0rFlZCLb7eSs3UB4924eNuHdu2JevQaAooOuthep6Et+fqjUgaBSoVKrKTW77sWyjF9w\nMAB+ISHnHPGsf10n93NHzjmeOwzVPHfIMvgHawDwD1Zjyy/C6fBcrWXoEkfRaSPFGd7PCmX4IvZr\nO065dv+rrVy1HRpJkhpLknRYkqRPgH3AB5IkJUuStF+SpBcq2KVIkvSCJEk7JUn6S5Kka1zH9ZIk\nrXbZL5MkKVWSJJ3r3HBJkpIkSdotSdJiSZL8fFPLK48gQwTFWeVfsiVZuQQZPG8SgeGh2AqKkV1f\njsVZuQS7bPKOnCK2fzwAkW2bEByjJThKOScj03fxTAZ8+TxN7+pzAWUJpyizvCwVdS4n/lo9dnP5\nW2O7ORu/SH219mHX30rxrq0XpaXRR2LJKr+5WLJzUFfqgAXUDaO0oMjtf0u2ucpOWoM7+mL8c7fX\n8ZgbupP+259exwP1kVizyzt0VqOZQL1nvmpdJLYKNrZsM2qdYtP0sdGcXPSx1w/DRPbsjM1kpuhY\nSnXV9qk2gLqyfrYZdWV9vdbj2liNOaj12nOmLTp5Bp2rE2Lo1w21oeoHqIoE6HSUGsvf6paajPhr\nz5+ujOhxj5L1wRLkv3ln0+gjKKkQb5asHDSV4q3qtlduE9U3gT7fvUHighnseXEJAIXHTxPR4RoC\n6oaiUgdi6NGBoCitR77/xP/nQtcrEasxh8Jj3lOwqiOr0J/oOuWd4ugwB9kF3reQXWlq7lwWw9iv\nDRw1BnidX3kwhIFtLuzNe6BO61F/m9HkVbdAnRZbtrGCjZlAXblNm/mzuXbpfAy33eiVf1j7OEpz\n8rCcyaha38fxF6jXeuZtNKPWab1sPMtoKreRIe7NF2m/bB5Rt93gka7hmOEkfPcB+gF93KNwtYma\nrHsZUbf0J3fbjqr1dZX0TSYCK7W9AJ2uUtszKd9TJjOZ3/yXdl99TPvvPsdRVMTZZGVU/fS7S4gd\nN4p2X31M7PjRpC37qFofBBkiKKkQ2yVZORf03FFmc+yr36nTtB63/f4WN3w3l92vfe7VFhve1IVT\nv577vuyL2BdcnVy1nTcXLYD3ZFmOAx6XZTkBaAf0kSSpXQU7kyzLnYBFwHTXseeAta603wENASRJ\nag0MBXrIstwBcABeY+SSJI11dRaTlyxZUkPV+/dx8P9WEFgnmBu+fpEW9w0g71Cq+yFy7Yi5rBr6\nLBsenUeLof3Rd2rp49JeejRtOxHW/1ZyPnnPp+WIjG9D7O3XcXjhlx7HJX8/DL3j3SMnl4qI7gmU\n5uVTdPi4x3GVOpAGD95N6rIvq0l5ZWufj4Nz3yV28E0kfPgqfsFBVY6UXUpCO3fFkZeL5djRGtWp\njqx1yay/ezo7ps+n1fghABSmpHPik5/psnAWnd95grNHUt0PYDWJSh1Io4cGc2Lp15c87zbRNtY8\nmsb/Hs5gWPxZJn3v+TLH5oA/jgZxY+tqpileYvY/+gR7R0/h4IwXiB40kLD2cR7ndf17Y1qzsUa0\na0P8/fXok+wZNZUD018kZvBA6rRv4z53aulnJN89GuPq9cQMvqXGy3K5OVfdAWIfGILscGJctf6S\na/uFhhLeoyt/3T+SvUOGo9JoiLz+OgD0tw/k9HtL2XvvQ5x+dymNp0++5PplRHdvS96hU/x8/WRW\n3/MMHWc9gH+Ixn1e5e9HvT4dOb0q6R9r1bbYF9ROrvY1b6myLJe9CrlHkqSxKHWOAdoAe13nylaY\n7gAGuz73BAYByLL8qyRJua7j/YF4YLskSQBBgNdke1mWlwBlvbZaPPha8zQf2p+mg5WRsJz9JwmO\nKn/jGhQVQUl2roe9La+QwLBgJD8VssNJcFQExS4be5GFpGc/cNveuvINCs8o7i/JzgOU6Yxn1u4k\nsm1Tr7K0GNqPZq5ROfP+k4RER1L2TrCizuXEbjZ6TIP01xpw5Hivnwls1Az9hCfJnP04zsKzXuer\no+GQATS4sx8A+QdOoKkwKqExRGLN9pxuUppfQEBYiNv/GoMWSwWbsOYNufY/Y9k++RVK8z2nkum7\nd+DsoZPYcvK9ymEz5niMDKn1WmxGT22rKYfACjaBBi1WUw7avt2I7JFIRNd4VIEB+IUE0/KZKZz5\n/AfUMQY6frTAnWeH/5vPnjEzKM3JqxXa4BrFqahv0GKtrG80o4nSUuY5tT4Sq9GM5O9Xbdri1HR2\nT1HWjAY1iEHXo5OX3ytTajIRoC9/IAjQ6bGbTedIUU5wmzjCunYnNLELUkAgfsHB1J8xi7TXX67S\nvtGQATS4U3nYyj9wgqDoSHL3KOc0UZFYKsVb1W3POyZzdh0iuL5BGanLL+D0j+s4/eM6AFpNGIol\n23Pq0j/xf3UExUYTFGOg86dvuOy1JH70GsmjZ2GrdP0rEhVqJ/Ns+a03s8APQ5jn9KdQdfkto09z\nC7NXSeQWq4gIVjqlG48H0SbKhi7kwjqpNpPZo/6Bep1X3WwmM4EGPXDQZaPFZjK7zim+suflk7Nx\nK6GtW1CwZ7+S0E9FZO9u/DVmavX6Po4/m9Hsmbdei9Vk9rJRG3SUrexS63Vum7L6l+blY96wldDW\nLTm754BHeuOq9bR5/VlO/5/vXuZURU3W3XBzPyK6J7B/ive6aXfepkr6Oh22Sm2v1GRytb2yMuoo\nNZmoE98Ba0Ym9nzlfpe3cTOhca3J+f0PtDdcz+mFiwHIXb/Rq/PWfGh/mrieO3L3n3SNxisvnYKi\nIi/ouaPMpvEdvTj0fysAKDydTVGakTpN6pGzT9nUJbpnO3IPpWLNOfd92RexX9v5Vz8c/wOu9pG3\nIgBJkpqgjKj1l2W5HbAC0FSwK1tM4eD8HVoJ+FiW5Q6uf61kWX7+0hb76uLY12tYNfRZVg19lrQ/\ndtL4NmUTBO21zSgtLMFi8n7Qz95+iNgBynSwxrf3JP0PZapEQFgwKn9lmkHTwX0w7jyMvciCX1Cg\ne066X1Ag0d3i3LtQVuTo12v59Z7n+PWe50hbu5PGtylrfbTtmlJaUHVZahrrsUMExMTib4gBf39C\nevanaPsmDxs/XRRRM18i+60XKc04XU1OVXPq29VsHjaLzcNmkbUumfq3KOvpwts2x15YjNXs/aBp\nTt5PdD9lTUr9W3qTvUGZEqOJ0tLxtansee5dik9leqWLubE76au8p0wCFBw6SlCDGNQxBiR/f/TX\n9yRns+ebypxNSRhu6gtAWFxLHIVFlJpzSV38GdsHP0zykLEcfn4e+Tv2cmT2AopPpJJ02wiSh4wl\nechYrEYzu0dN83p486U2QMHBYwQ3iEHj0jdc3wPTxu0eNqaNyUTfrOjXiWuBo6gYmznvnGkDIlzr\nPSWJxiPvJu0H7zVBlSk5cojAevUJiIpG8venbp/rKNha9TWrTPZHH3DkgXs5OmIYZ16ZQ9Ge3dV2\n3ABSv13NpmFPsWnYU0rbG1ix7ZVU0/YOEN1faXuxt/Yia30yAMGxUW6bOq0aowr0d+/sGOjygyZK\nS3S/RNJ+9azPP/F/dRQdP8WmW0azZfAEtgyegNVoZvuImefsuAG0rWcjNdefM3n+2Bzwy8EQrmvh\nuUOosVDlnpW1Nz0QpwzhQeUPaysPhDAw7sLfvBceOoomth7qmCgkf390/XuRu9lzdDxnUxL6G5WO\ndmibVjiKiik156LSqFEFKetyVBo14YkdKDlxyp0uPL4DllNnvB7IK+Lz+Dt0lKDYCvr9e5GzqZL+\n5iQMN5XVvyV2l75Ko8bPo/4dKT6hTJPVxMa402t7daHklPc9x9fUVN3DO3ek/v2DOThrLk6rrVr9\nokNH0NSvR2C00vYi+/Umb4vn9MK8P7ehHdAfgJDWrXAUFVGak4sty0hom2tQqdUAhHXqgOWUcv8r\nNZsJa3+tcrxjeyxpnr4/9vUaVg99ltWVnjsiz/nccdDjuSPtj50AFGfmENVFGXFUR9YhrHGM+6Ux\nQMObu3Lql/MvZfBF7AuuTq72kbcy6qB05PIlSYoCbgbWnSfNZuAe4FVJkm4AyiZIrwF+lCTpTVmW\nsyVJigTCZFm+8EUP/2IyNu4hpmc7bln+GnaL1WMUrdfCqWx/4UMsxjz2LPiGbq89wrWPDibv0ClO\n/KAshK/TJIYuc8YgyzJnj6eR9Nz/AaCJrEvPN5Wd4CR/P1JXbiXzz7/OWZb0jXuJ6dWOW1e8isNi\nY9sz5WXp8+5Ukp7/kBJjHi3vv57WI29Go63Lzd+9SMamv0h6/kM02jrc+NVzBIQEITtlWg0fwIo7\nn8ZeZPl7TnE6MC17k+hn5yOp/ChYs5zS0ycJu+FOAApW/Y+Ie0aiCquDbqxrVq/DQdrM0X9PBzBu\n3oW+Rwf6/LAAh8XK3hcXu8/FL5jJvjlLsZpyObzwSzrMnUSLR+7h7OEUzvyoLGZv/vBgAuuGEvfE\nKABku5M/H1K2ivfTqNF1vpb9Ly2rWtzh5Pj8pbSd/xyo/Mha8TvFJ08TfYeyhibzx9/I3bKDiG7x\nxH/9Pk6LlaMvvf2361jrtAHZ4eTIvGV0WPAfJJWK9OVrKTp5hnqDlDUk6T+swvznTrTdO9Ht24U4\nrFYOznnvnGkBogb0JPaumwAwrttGxvK15y+M00nGondoNOdVJD8Vuat+wXoqlYiBtwKQu3I5/hER\nNH17EargYHDKaO+8i2PjRuEsvvh1Ftmbd6Pv0YG+/3tTaXsvlLe9xLdmsnf2EqymPA6+8yWdXppE\nq0eGcPZwqntELbp/Z2IH9sJpt+O0lrJz1jvu9PGvTSGgbiiy3cG+Vz/EXuhZzn/if4C4F6YQ3imO\ngPAwuv+4mJPLvibj5wvwdRX4q+DpATmM+cqAU4ZB7QppoS/lq52hANzbqZBVh0L4alco/ipQ+8vM\nu8OEMtEDim0Sf57U8PxN1XeWvHA4OblgMa3feB5JpSJ75e+UpJwm6nal7WT99Ct5W5OJ6BZPxy8X\n47RaOfay0v4DIsJpNfcpQNk8wvT7evKSdrqz1vbvhen3qjcqqajvy/jD4eTEm0uIm/c8qFRkr1hD\nScppou+4yaX/q6LfNYFOXyn6x15+x13/1i/NctffuHoDeUnKy8RG4x4kqGF9kGWsmdkcf+Of7TQJ\nMH3a9yQlpZKXW8x1vd9k4qS+3DXkH+xoXEN1bzp1HKqAAOLmK1sIFO4/UvVOm04np95ZRMtX54Cf\nCvMvq7CknEJ/20AAjD+vJH/bdup2SaTtZx+4firgTQCKDh0md/0mWi9+GxwOio+dwLj8FwBS571N\ng4njkPz8cNpKSZ33jre2i7LnjoHLX8dusbL92fJ7VK+F09j+wv9hMeaxd8E3dH1tAm0fvYu8Q6mc\ndD13HFjyI51nj+GG7+YgSRJ7F3zj3tXaLyiQqK5t2TH7o/NeCp/EvuCqRJLlq3PQUpKkxsByWZbb\nuv7+COgOnAbygZ9kWf5IkqQUIEGWZZMkSQnAG7Is95UkyQB8CUQBW4BbgcayLFslSRoKzEIZuSwF\nHq0wPbMqrk4nXyBftx/hM+2hez7iy3YjfaZ/394POTG46u3WLwdN/7uZXxLv85n+zdu/ZFPPO32m\n33PT/3yuv7bb3T7R7rdF+Z29/Tf394l+3C9rWJFwv0+0AW5J/sJnvgfF/46PNOc3rCH8RljY0vt2\nn+l32/CTz2Nvc687fKbfY+OPOPjcZ/p+DPNZ/Xts/BGA5H4DfaKfsHYl37R/yCfaAPfs+djnsY8y\nS6zWMyxycq1+Pv48561a6cerduRNluUUoG2Fv0dUY9e4wudkoK/rz3zgRlmW7ZIkdQMSZVm2uuy+\nBi79KnWBQCAQCAQCgUAgqIartvN2CWgIfOP6fTgbMMbH5REIBAKBQCAQCAT/YkTnrRpkWT4K/IOJ\n5gKBQCAQCAQCgaAqrtKVWzXO1b7bpEAgEAgEAoFAIBBcFYjOm0AgEAgEAoFAIBBcAYhpkwKBQCAQ\nCAQCgeCycnX81PjlR4y8CQQCgUAgEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4r\nTrHd5EUhRt4EAoFAIBAIBAKB4ApAdN4EAoFAIBAIBAKB4ApAksWQ5eVAOFkgEAgEAoFAcDmQfF2A\nC+Ge8Mdq9fPxN3lv10o/ijVvghrH+HCcz7T1y/azttvdPtPvt+U7Dt3a12f61yxfx5quQ3ym33/r\ntzj43Gf6fgzzuf6W3rf7RLvbhp8AfFb/2uD75H4DfaafsHaliL1/uf7mXnf4TL/Hxh99GvuAz+69\n/bZ8x6rOQ32iDXBD0tc+j/0rhVrdc6vFiGmTAoFAIBAIBAKBQHAFIDpvAoFAIBAIBAKBQHAFIKZN\nCgQCgUAgEAgEgsuKU8ybvCjEyJtAIBAIBAKBQCAQXAGIzptAIBAIBAKBQCAQXAGIaZMCgUAgEAgE\nAoHgsiKL/SYvCjHyJhAIBAKBQCAQCARXAKLzJhAIBAKBQCAQCARXAGLapEAgEAgEAoFAILisiN0m\nLw4x8iYQCAQCgUAgEAgEVwBi5E1QKwiI60nofU8iqfwo2fg9Jb8s8zgf2OE6Qu6cBE4Z2Wmn8KtX\nsR/beUF5R3btQIspI5H8VGT8tIbUT//nZdNi6ii03TvitNg4MHshhUdOnjNtaPNGtJo5Fr9gDZYM\nI/ufewtHcQmaaD1dvlpAcWr6ecsV0qkzhrETkVR+5K1aQc53X3jWObYhMVOeQN2sBaZPPiDnh6/d\n51QhoUQ/NgN1wyaATMZbr2I5dKDa+recOhJJpSK9mvq3nDYSbbdOOKxWDs5+l4LDJ8+ZtunYoeh6\nJ4JTxpabz4HZ72Iz5RJ1Y08aDbujUu4RQO55/VGRp2f9xPp1R4jUhvDT8kf+VtpLQU3oh3fuROPH\nHkZS+ZG1YhXpn3/vZdP4sTFEdE3AYbVy/OUFFB05AUDHr5fiLClBdjiRHQ7+Gvs4AMHNGtP08Qmu\ndpjNsdnzcBSX/OOyXo3+r5MYT8OJ40ClwrTyNzK//NbLpsHEcdTtkojTYiXltfkUHz0OgGHwHehv\nuREkCeOKX8n+/kcA6o18gPDuXUF2UpqXT8qr8yk157jzq4nYa/LwEOrdfj2leWcBOL7oC8xbdhHZ\nuR3NJgxD5e+P026/aD9djdfe1/rhnTvSdPIYUKnIWr6atCpiv8nkMUR0jcdptXL0pbfcsR//zRIc\nxSXITic4nOwZo8R+4wkjiOieiGy3Y0nL5OjLb+MoLPrHZa2J+v+Te/A1T09A1z0eW24+ScOnue31\n/brRZPQ9hDSuT/LoWRQcOn7OMrR6fAT67h1xWKzse3GRO84qElRPT7s5kwmoG8bZQyf467mFyHYH\nwY3q0fbZR6jTqglHF31F6ufL3Wni/jMefc9O2HLP8ud90z3qfKXFvuDKQYy8CXyPpCJs2NPkLxhP\nzjO3o+k8EL+YZh4mtoPbyH1+MLkv3kXBR88Q9tALF5x9q8cfZs+0uWy7byqGAT0JbhzrcV7brSPB\nDWLYOmQSh155n1YzxyonVKpq014z6xGOL/qcpOGPY1yfRMPh5R2WkjNZbH9oBtsfmlF9oVQqoh6Z\nzJnnnuDEhIeo06cfgQ0aeZg4Cs6Stfhtcv77tVfyqLETKdqRxMlHHuTkpNHYTp+qvv7TR7N76ly2\n3jeVqBt6EFJF/YMaxLBlyCQOvbyYVjPHlNe/mrSpn/1E0vDpJD04A9PmHTQZdTcAWb9tIunBGSQ9\nOIP9L7zjUvh7HTeAQYPbs2TZsL+d7lJxyfVVKppMHcfBGS+w+8FH0fXvTVCjBh4m4V3j0cTWY9f9\n4zjx+rs0meb54LR/8tPsHT3F3XEDaDZzEqcWf8yeEY+Rs3Er9e4bfEmKezX6v+HkCRx58ln2jxxP\nZL8+aCr5v26XBDT167PvgYdJnf82DadMBEDTuBH6W27k4ISp7H/4UcK7dkZdLwaAzK+/48CYRzkw\ndhL5W5KIeeB+jzxrIvYATn+13B1n5i27ALDlnWXP9FfYNvxxDry48KJdddVde1/rq1Q0nTaO/dNf\nYNcDE9Ff34ugxp5tL6JrPEGxMey8bzzHXnuXZo97xv6+yf9hz6ip7o4bQN723ex6aBK7R0ym5HQa\nscPvuiTFrYn6X/Q9GMhc8Qe7p87xyrbo+Cn2zXqdvN0Hz1sEXfcOhDSIZtNdkznw8lLaPDG6SrsW\nE4eR+uVKNt01mdKCIurf0Q8A+9lCDr3xESmf/+yVJn3FenZMftnr+JUY+77AWcv/1VZqZedNkqTG\nkiTtq+bcR5Ik3V2D2islSQqvqfwF3vg3uRZH9mmcpjPgKMWStJLADtd5GlmL3R+lwCD4G9vLFp/J\nxJKejWy3k/37ZvS9Ez1yE+qZAAAgAElEQVTO63onkvnLOgDO7j+Kf2gwgdpw6rRpXm3a4IYx5O1S\nRrpykvZg6Nvlb9VZ0/IabBlplGZlgN3O2Q1rCe3aw8PGkZ+H5ehhcDg8jquCQwiKa0/+qhXKAbsd\nZ1FhtVolFeqQtXozut4JHuf1vRPJXLm+Qv1D3PWvLm3F0R0/jbpK3egBPao8fiEkJDaibt2gi07/\nT7nU+qGtW2BJy8CakYVst2Nas5GInp5tJrJnF4y//QFA4YHD+IeGEKCNOGe+mgb1OLtnPwD5ybuJ\n7NPtkpT3avN/yDUtsaalY8vIRLbbyVm7gfDunr4K794V8+o1ABQddPk/MoKgRg0oPHgYp9UKTicF\ne/YR0Utp284KcaDSaKj8vVQTsVcdhUdSsJmUFyVFJ06Xlepv+Qmuvmvva/2w1i2wpGW6Y9+4ZiOR\nPTt72ET27Ez2r2Wxf+SCYj9v+25wKI+XBfuPoNbrLkl5L3X9z3UfLaO6ezBA3u6D2M9639+KU9Mo\nPnX+GS6gxFn6yg0A5O87in9YiDv/ikQmxJG1diugdMoMfZRy2nLPcvbgcWS7wytN7q6DlFZRPt/H\nPlXfmAVXBbWy8+YLJAWVLMsDZVnO83V5/k2oIqJw5Ga4/3bmZuEXEeVlF9ixPxGzf6bu5EUUfPjM\nBedvzTZV+GxGrY/0OK/Wa7FkmcttjDmo9VrU+shq0xadPKNMGwQM/bqhNpTfOIPqGUj8+HU6vlf9\n6GCAVo/daHT/bTcZCdDqL6g+AVExOM7mETPlSRq/tZToSTOQ1Jpq7S3ZFeqWrdStImp9ZCUbpZ4a\nr+OeaZuOv48ePy4i+sZenFjiPTpouL77BdXn30CgTuvRlmxGk9d1CNRpsWUbK9iYCdSV27SZP5tr\nl87HcNuN7mMlKafcnUBt3x4e7VBQjuLbCv43mQis5P8Ana6S/00E6HSUnEwl7Nq2+NUJQ6VWU7dL\nAgEV/Fx/1IO0++pjtNf3Jf3DTz3yrKnYix1yM50/e4PWTz+Cf1iIV30N13V1farN747/HQTqK7U9\noxm1Tutl43GvMZrKbWSIe/NF2i+bR9RtN1SpEXVLf3K37bj0hb8EnOs+Wm5T9T34UqExRHjkb8k2\nozF4liGgbhj2gmJkV4fYkpWDplI5/w6+j32sF114Qa2nVnTeJEmaJknSPte/Ka7DfpIkLZUkab8k\nSaskSfJ6FSRJUqIkSX9KkrRHkqQkSZLCqsl/hCRJP0qStE6SpKOSJD3nOt5YkqTDkiR9AuwDGkiS\nlCJJks51/kFJkva68v/UdUwvSdL3kiRtd/2rcnhBkqSxkiQlS5KUvGTJkkvgJYFt1xpyn7mNswsn\nKevffMjBue8SO/gmEj58Fb/gIGTXPHOrOZfNd45n+0MzOPbWxwCogoIvqbbk54emWUtyV/5IyuQx\nOK0laIfcf/6El5gT73/J5jseIfO3jcTefZPHuTpxzXFabJe9TFcr+x99gr2jp3BwxgtEDxpIWPs4\nAI698jbRgwZy7dL5+AUH4SwV6x0uNZZTp8n86ltavjaHFq/Opvj4CXCWd4rS/u8T9t77EObf12G4\n87YaL0/af1fx510TSXpgBlZzHi0ee9DjfEiTWJo96rtph4JLy1+PPsmeUVM5MP1FYgYPpE77Nh7n\nYx8YguxwYly13kclFFwuROwLyvB5502SpHhgJNAF6AqMQdnhoAXwrizLcUAecFeldIHA18BkWZbb\nA9cD51qp39mVRztgiCRJZePQLYD3ZFmOk2U5tUL+ccB/gH6u/Ce7Tr0FvCnLcqIrP8+dNVzIsrxE\nluUEWZYTxo4dW5WJwIUy0hbj/lsZicuq1r706A789LFIoRc2u7XiaITaoMVqzPE4bzWa0USVv9lS\n6yOxGs3K279q0hanprN7ymySRz5B1upNlKRlAiCX2t1TPAoOKwvOA+t7rm8AKDUb8deXj7T56/SU\nmo1edlVRajJiNxmxHFHm+hdsXo+mWYtq7TWGCnUzKHXzrH9OJRulnhav495pATJ/24ThOs8pgFHX\n9yBz9aYLqs+/AZvJ7NGWAvU6L1/aTGYCDfoKNlpsJrPrnNLu7Hn55GzcSmhr5XpbTqVx8PHn+GvM\nNEy/b8CanlnTVbkiUXxbwf86HbZK/i81mSr5X0epSRkxMP2yioPjJ3N4ykwcBYVYTqd5aeSs+YOI\n3p7v8moi9mw5+UrnUZZJ//F36rRpXm6nj6TdqzOuuHUvVzM2Y6W2p9diNZm9bDzuNXqd26Ys9kvz\n8jFv2Epo65ZuO8PN/YjonsCRF+fVZBX+Eee6j5bbVH0P/ic0uPsGun72Kl0/exWrKc8jf41BiyXb\nswyl+QX4hwUj+SmPxZqoSCyVyvl3ELF/YciyXKv/1VZ83nkDegI/yLJcJMtyIfBfoBdwUpbl3S6b\nHUDjSulaARmyLG8HkGX5rCzL53rtvFqWZbMsyyUujZ6u46myLG+twr4f8K0syyZX/mVRfD2wUJKk\n3cBPQB1JkkL/Rn0FlbCn7MMvqiEqXX3wC0DTeSC2PX942KgMDd2f/Ru2Bv9A5MILm90a3CAGTYwB\nyd8fw/U9MG3c7nHetDGZ6Jv7AlAnrgWOomJs5jwKDh6rNm1ARB0lsSTReOTdpP2wWjkeXgdUri//\negYAbJne8/ItRw4TWC+WgKho8PenTu9+FG7784Lq48jLodSU7e4UhrSPx3oqtVr7inWIGtAD08Zk\nj/PGjclED+zjrr+9sOr6V0wb1CDanV7fO8Fzd01JwtC/O1mrN19Qff4NFB46iia2HuqYKCR/f3T9\ne5G7eZuHTc6mJPQ3Kms9Q9u0wlFUTKk5F5VGjSpImXig0qgJT+xAyQllgxr/8LpKYkki9sF7yPzx\n18tXqSuIokNH0NSvR2C04v/Ifr3J2+L5tZ/35za0A/oDENK6FY6iIkpzlHUkZX4ONOgJ79WdnDXr\nAFDXr+dOH96jKyWnznjkWROxV3Gtjr5PZ/caF//QYNrPn8Wx9z4nf+/hf+QvwaWj4NBRgmJjULuu\npb5/L3I2JXnY5GxOwnBTWey3xF5Y5I59P4/Y70jxCeW7PrxzR+rfP5iDs+bitNbeWQ7nuo+WUd09\n+J9w+rtVbB3+BFuHP0H2+u3UG9gbgLpty+OsMjk7DhDVT5l2WO+WPhjXJ3vZXCgi9gU1SW3+qYCK\n83UdwD9dQVu5C13299/dW1cFdJVl2fIPyyMow+mg8Iu51J2yBEmlwrL5Bxzpx9H0uQcAy/pvUHca\ngKbb7eCwI5daOLt4+nkyLefIvGV0WPAfZdvd5WspOnmGeoOUtQPpP6zC/OdOtN070e3bhcqWvXPe\nA0B2OKtMCxA1oCexdylTBY3rtpGxfC0A4R1a02TMvco0StdbG2dhQZV1znr/LRq8+DqoVOSv/gXb\nqRTCb74dgLxffsIvPJLGCxajCg4Gp0zEHXdz8pGHcJYUk/X+28RM/w+Svz+lmRlkLHil2voffuMD\nOr71NKhUZCz/g6KTZ6g/aAAAaT+sxvznTnTdO9Ltu3eUbZrnvOuuf1VpAZpPGEZww3rIsowl08jh\nV5e69cI7tsaabcKSnn3B16gy06d9T1JSKnm5xVzX+00mTurLXUM6XnR+Ptd3ODm5YDGt33geSaUi\ne+XvlKScJup2pQ1l/fQreVuTiegWT8cvF+O0Wjn28tsABESE02ruU4AyZdb0+3rykpSfydBd35vo\nQQMByNmwBePK3/9Brcu56vzvdHLqnUW0fHUO+Kkw/7IKS8op9LcpvjP+vJL8bdup2yWRtp994Pqp\ngDfdyZs9/zT+deogO+yceus9HEXKbSN2zEg0DeojO2Vs2dmkvun51rtGYm/iA4S1aIyMjCXDyKFX\nFitlGXITwbHRNBk1hCajhrhKoObvLn256q69r/UdTk68uYS4ec+DSkX2ijWUpJwm+g4l9jN//JXc\nLTuI6JpAp6/ex2mxcuxlZafegIhwWr80C1Bi37h6A3lJyg6DTaeOQxUQQNx8ZW114f4jHJ+36OLL\n6eJS17+6++iF3IMB4l6YQninOALCw+j+42JOLvuajJ/XouvTmZbTRhMYXof282ZRcCSFPVXsSglg\n2rwLXfeO9PzvWzgsNvbPLvdTxzef5MDcxVhNuRx953PazZ1M8/FDOXskhTM/Kff1QG1dun70Mv4h\nQciyTKN7B7L53sdxFJVw7ezHiIxvQ0B4GL1/fo/jS5WfIPF97GMALv4mLKjVSL4eFpQkqRPwEcqU\nSQnYBjwAfCrLcluXzXQgVJbl5yVJ+ghYjjLqdQgYKsvydtd6t5KqRt8kSRoBvAS0RZlauQ0YBZiA\n5WU6LtsUIAGIAn4AusmybJYkKVKW5RxJkr4Adsmy/LrLvkOFEcLqqL1jr5cB48NxPtPWL9vP2m41\ntjnpeem35TsO3drXZ/rXLF/Hmq5Dzm9YQ/Tf+i0OPveZvh/DfK6/pfftPtHutuEnAJ/Vvzb4Prnf\nQJ/pJ6xdKWLvX66/uVfl37y8fPTY+KNPYx/w2b2335bvWNV5qE+0AW5I+trnsY/yPF3ruSVsYq1+\nPl5RsLBW+tHn0yZlWd6J0nlLQulULeMCfhhKlmUbMBR4R5KkPcBqoPot95T8vwf2At/LsnzO8XBZ\nlvcDc4H1rvznu049BiS4NjI5AIw/X1kFAoFAIBAIBAKB4J9SK6ZNyrI8n/LOURltK5x/o8LnERU+\nb0cZsbsQzsiyfGcl3ZSKOq5jjSt8/hj4uNJ5E0qnUSAQCAQCgUAgEAguG7Wi8yYQCAQCgUAgEAj+\nPfh66daVylXVeZMk6Ubg1UqHT8qyPAhlaqZAIBAIBAKBQCAQXJFcVZ03WZZ/A37zdTkEAoFAIBAI\nBAKB4FJzVXXeBAKBQCAQCAQCQe3H6esCXKH4fLdJgUAgEAgEAoFAIBCcH9F5EwgEAoFAIBAIBIIr\nADFtUiAQCAQCgUAgEFxWnGK3yYtCjLwJBAKBQCAQCAQCwRWA6LwJBAKBQCAQCAQCwRWAJH4g77Ig\nnCwQCAQCgUAguBxIvi7AhXBDyIRa/Xy8qui9WulHseZNUONs6DHIZ9q9N//A6i73+Ex/wLZvWNV5\nqM/0b0j6mk097/SZfs9N/+On+GE+0799x+c+11/X/S6faPf983sA1na72yf6/bZ85/PY85XvQfH/\nioT7faZ/S/IXJPcb6DP9hLUrfR57a7oO8Zl+/63f+tz/vox9AAef+0Tfj2FIUoBPtAFkudTnsX+l\nIIuxjYtCTJsUCAQCgUAgEAgEgisA0XkTCAQCgUAgEAgEgisAMW1SIBAIBAKBQCAQXFacvi7AFYoY\neRMIBAKBQCAQCASCKwDReRMIBAKBQCAQCASCKwAxbVIgEAgEAoFAIBBcVpxit8mLQoy8CQQCgUAg\nEAgEAsEVgOi8CQQCgUAgEAgEAsEVgJg2KRAIBAKBQCAQCC4rTllMm7wYROdNcFmJ6NKRZlNGI6lU\nZP78O6c/+6+XTbMpo4nsFo/DYuXI3HcoPHICKTCA9u/ORRXgj+Tvh+mPLaR+8BUAjcbch7ZnZ5Bl\nSnPzOTz3bWymXI88W00bia57RxwWK/tnv0fB4ZNeupoYPe3mTCGgbhhnD51g3/PvINsd1aZXBQaQ\n8P4LqAL9kfz8yFq7lRNLvwUgtEUjWj8xBoCO82ZiMeagTbwWh8XKvhcXVakfVE9PuzmT3fp/Pbew\nXP/xEehd+hXTN7xvILF39AMZCo6dYv/sRThtpbScNAx9r3gAWr/0JEdeegdHYRHhXTrSdPLDSCoV\nWctXc6YK/zed/DAR3eJxWqwceeltio6cKD+pUtFh2RvYjGYOPDEXgMYTHiKyRyJyqR1LeqZbqzra\nzniQqB7tcVhs7Hp+MfmHUrxsguvpiX95IoF1Q8k7mMLOZ95DtjvQxrem8/xpFKcZAcj4YztHlv5Q\noXwSfT6dQ4kxl6Qpb9Qq/cguHWg+ZRSSn4qMn9dw6tMfqEzzqaPQduuEw2Lj0Jx3KDxyErVByzXP\nPEZgZF2QIf2n1aR9swIA/XXdaDx6KMGN67Pz4ScpOHS8Wr9Hdu1AiykjFf2f1pD66f+8bFpMHYW2\ne0ecFhsHZi+k8IjSzq55egK67vHYcvNJGj7Nbd9s4gPoeiYgl9opScvk4Jx3sRcWe+RZE7FX0d9d\nPnoFqzGH3Y+/qpRp3FD0vRIAaLfgGQ7NWYjNlOtz/wO0mf4ghh4dcFhs7Hn+fc4eTvGyCaqnp+NL\nkwisG0r+wZPsflZpe1F94mk5fgiy04nscHJg3qfk7jkMQJP7b6bBHdcBMmePnWbvC4u98q2TGE/D\nieNApcK08jcyv/zWy6bBxHHU7ZKI02Il5bX5FB9V6hN1953oBt4IskzxyRRSXn0TubSUoKZNaDR1\nIqqgIGxZWZyY+xrO4pJq63+5Y6/r128hqVSkV9PeW04bqVxvq5WDs991t63Irh1oOXWkV9qmY4ei\n650IThlbbj4HZr+LzZSL5OdH66fGE9aqKZK/ioyV62ve982aKr4PDEB2ODn11rsUHTpSpd9rIvb1\n/brRZPQ9hDSuT/LoWedt+xfK07N+Yv26I0RqQ/hp+SOXJM+/Q6tWrfjww2V06tSRp59+hnnz3rwk\n+foy9gVXH2LapODyoVLR/PGx7Ht8NsnDHkN/fU+CG8d6mER060RQbD22D53A0dcW0Xz6OABkWyl7\nH3uWnSOmsfOhaUR06UhYXEsAznz+P3Y+NJWdI6Zh3pxMw5FDPfLUde9IcINoNt/9GAdfWULrmQ9X\nWbwWE4eT+tUKNt/9GPaCIurf3u+c6Z22UnY8+gJbh89k6/CZ6Lp2oG7bFgC0eWocx979HICiM5lo\nE69l012TOfDyUto8Mboa/WGkfrmSTXdNprSgiPp3lOl3IKRBtFd6tT6CRkNvZutDs/jzvulIfiqi\nB3QHwJz0F3/eNx2AktPpNHjgLlCpaDZtHPunv8jO4ZPQX9+LoMr+7xqPpkEMO+59hGOvv0fz6eM9\nztcbcivFqWc8juVt38POBx9j14gp5VrVYOjRnpAG0ay583H2zPmAdrNGVmnX+rF7Of75L6y583FK\nzxbR6M6+7nPmXYdZf/9TrL//Kc+HN6DpfTdRkJJe+/RVKlpMH8Pex+eSdP8UDFW0/chunQiKjWHb\nPRM58uoiWs4YC4DscHD8nY/YPmwKO8c+Sf3BN7nTFp04xb6nXiN/94Fq61ym3+rxh9kzbS7b7puK\nYYC3vrZbR4IbxLB1yCQOvfI+rWaOdZ/LXPEHu6fO8co2N2kvScOmkvTA4xSfyqDRg4M9ztdU7JXR\ncOhAilLSPI6lfPYTW4fPAMC8eQeNRw7xvf8BfQ8ljtcNmsZfc5fRdtaoKu2umXQfJ7/4hXWDplFa\nUOR6MANT0j423vckm4Y9xd4XF9PuGeXlkFofQeOhN7LpwafZMPQJJJWKejd088xUpaLh5AkcefJZ\n9o8cT2S/PmgaNfAwqdslAU39+ux74GFS579NwykTAQjQaTEMup0D4yezf/QEJJUfkf36ANB4+mTO\nLP2QAw9PIHfjn0QPvbva+l/W2FNJAOyeOpet900l6oYehFTR3oMaxLBlyCQOvbyYVjPHuH3Vavro\nKtOmfvYTScOnk/TgDEybd9BklFJfQ/9uqAID2Db8cZIeeoL6gwbUuO9jx40i/ZMvODB2EukffUrs\n2KrbU03FftHxU+yb9Tp5uw9WrXuRDBrcniXLhl3SPP8OOTk5PPbYVN54Y/4ly9OnsS+4KhGdt2qQ\nJKnQ9f96kiR9V+H4l5Ik7ZUkaaokSddIkrRbkqRdkiQ1811prwzCWreg5EwGlvQsZLsd45pNaHt1\n9rDR9exM1q9/AFCw/wj+YSEEaiMAcJZYAJD8/ZD8/cA13O6o8KbXL0jtPl6GvncCGb9sACB/31FX\nnuFe5YtMiCN77VYA0lesQ98n8bzpHSVWjzLJLu3ghvXI3aXc1ALD66AKDLgg/Sy3/noMbv1E0ldW\nrS/5qVCpA5H8VPhpArG6RhzN2/YiO5wuPx4mUK8lrHULLGcysJb5//dNaHt28SxDr85k/7rO7X+/\n0BACXP4P1GuJ7JZA1s+rPdLkbd8NlbSqI7pPPGdWbAQgd98xAkKDUeu8faFLjCNjTRIAp5dvILpv\nQrV5lqExRBLVswOn/vdHrdOv06Y5JWcy3W0/+/dN6Holemr2SiTrV+WN/dn9R/EPVa6zzZznfgvu\nKLZQnHoGtT4SgOLUNEpOVd9ZrahffCYTS3q2S38z+t6V9HsnkvnLugr6we52lrf7IPazhV755iTt\ncbez/P1HUBs8r31Nxp7aEImuRyfSflzjkZejqML3gUaNLPve/wBRfeJJW6m0vbx9xwgIC0ZdhS90\niXFkrtkGwJnlG91tr+y7BsAvSOPxPSf5+eFX4XvAYvSceRByTUusaenYMjKR7XZy1m4gvLvnQ154\n966YVyu+LDp4GP/QEAIiI9z5q9SBoFKhUqspNZsBUMfWp3DvPsVnO3YR0atHtfW/nLEXEafcjsva\ne9bqzeh6e+aj751I5krv613eVrzTetxrNOryzGQZVZDa/X0sl9rdp2rK98gyfsHBSllCQrCZc6r0\nTU3FfnFqGsUX2Pb/DgmJjahbN+iS53uhGI1GkpOTKS0tvWR5+jL2aztyLf+vtiI6b+dBluV0WZbv\nBpAkKRpIlGW5nSzLbwJ3At/JstxRluVLM2fgKkatj8SabXL/bc02ez3oB+q1WLPNlWyUByVUKjp9\nNJ9uyz8ib/seCg4cdds1HjuMLv9diuGGPqQu+9JL15JVrmvJNqMpy9NFQN0w7AXF7gdRS3aO2+ac\n6VUSXT99jT6/LsOc9Bdn9x8DoOjEafcNsk6rJvjXCfVMbziPfla5vsYQgSXL7JXeaswl5bPl9P7p\nPfqsXIy9sATztr1UJuqW68ndupPAyv43VvBtma90kdgq2Niyzah1ik3Tx0ZzctHHXp3jqrSqQ2OI\npKRCXUqyc9DoIzxsAsNDsRcUuX1R2SayXQv6fvUyXd6eSVjT+u7jbR9/gANvfYnsrL58vtJX6yOx\nZlX0fQ7qSm3f28bsZaOJ1hPaogln9x/l71BV7KkrX3u91qOdVVXGc1Hv1n6Yt3he+5qMvVZTR3B0\n4WdVtsdm4+8FIOrG3qQs+8rn/gfQ6CMoySx/wLZk5aAxeLa9gLphlFZoe0qsl9tE9U2gz3dvkLhg\nBnteXOIqZy4nPltBv+Xv0P/X97AXlmDa9pdHvoE6rWdcm0xe370BOh22bGO5jdFEgE5HqclM5jf/\npd1XH9P+u89xFBVxNnmXUr7UVMJ7KB2RyD69CDToqq//ZYy9yt+v1uyqr7el0r1GrY9E43XcM23T\n8ffR48dFRN/YixNLvgYge+1WnCVWei5fSs8fF5H6+c/ldaoh359+dwmx40bR7quPiR0/mrRlH1EV\nlyP2BefGl7EvuDq5qjpvkiRNkyRpn+vfFNexB10jZXskSfr0HGmbSJK0RZKkvyRJmlPheGNJkva5\n/lwF1HeNtj0HTAEekSSp+lf9gkuH08nOEdPYOuhhwtq0ILhJQ/eplCWfs23wGLJXrafeXQMvY5lk\ntj4wk423jaduXDNCmirTYfbPWUSDu28AlNEx2eG45NL+YSEY+iSw8c6JrB84Hr8gNTE39fSykx0O\njKvWV5HDhRPRPYHSvHyKDlf/jiL2wbsvida5yD+UwupbHmPdvbM4+fVvJM5T1mBE9eqINTe/yjU0\nV4u+X5CGuJdmcOytDz1GAGoDjR4ajOxwkPXbxsuip+vRCVtOPgWHvNfPARx/X1kPm/XbBurfdfMl\n0awN/s9al8z6u6ezY/p8Wo0fAijfA1F94vnj9smsuelR/ILU1L+5+hGwv4tfaCjhPbry1/0j2Ttk\nOCqNhsjrlelcKa8tQH/HLbR+/y1UwUEeI06XGl/Hfhkn3v+SzXc8QuZvG4m9+yYA6sQ1R3Y62XTr\nWDYPfpSG9992SbTO5Xv97QM5/d5S9t77EKffXUrj6ZMviaagduKL2BfUXq6aDUskSYoHRgJdAAnY\nJknSduA/QHdZlk2SJEWeI4u3gEWyLH8iSdKj1djcDiyXZbmDS1MCCmVZ9toZQZKkscBYgMWLFzN2\n7NjKJv86rMYc1BXezKoNWmxGs4eNzWj2mHql2HhOB3EUFpO3cx+RXTtSfPKUx7nsVRto+8Yz2HLz\nibldWXdgNeWhidIBygJfjUGLpVKepfkF+IcFuzpaTjSGSLeN1Zhz3vT2wmJyd+xH160DRSdOE5l4\nLYERdQEoOJpKHVX5exKNQYsl+zz6UeX6luxcNFFar/TaztdSnJ5NaV4BAFl/JBHerhUZv24CoN4t\nytqIwy/Md/m2kv/13r61mnI83p4HGrRYTTlo+3YjskciEV3jUQUG4BcSTMtnpnBk9gIADDf3I7J7\nAvsmP0tlGg8ZQKNBygNH3oETBFWoS5Ah0muahy2vEP+wELcvKtrYK0yJy968B9WTfgSGhxLZviXR\nveOJ6tEBVWAA/qFBdJr9SK3QB1fbj6ro+0isldq+t43WbSP5+RH30gyyVm3EtH6bl4/PR1WxZ618\n7Y1mNFFa8s9RxqqIHtgXXY94dk16AYD6d91Evdv7K3nWUOwZ+nVB3zsBXfeOqNSB+IcE0fb5Sex7\n/h2PvLNWbaTdvKfJ2bbLJ/5vNGQADe5U2l7+gRMERUeSu0c5p4mKxJLt2fZK8wsIqND2lFj3ngaV\ns+sQwfUNBNQNQ5vQhpL0bGyu74HMP7YT0a6lh73NZPaMa53O67u31GQi0KAvt9HrKDWZqBPfAWtG\nJvb8swDkbdxMaFxrcn7/A8vpMxyd+R/FX7H1Ce/qOR3PV7Gn8vN8L602VH29NYYK7d0VE5K/PxqP\ne1DVcZD52yY6zJ/FyWXfEH1DT8xbdiM7HJTmniV/7yFCGtWrUd9rb7ie0wuVzSly12+stvNWk7F/\ntTBhwiOMGaOsJT09EY4AACAASURBVB848DYyMjL+cZ61JfZrO+JHui+Oq2nkrSfwgyzLRbIsFwL/\nBRKAb2VZNgHIslz1pHCFHkDZfLtqR+guFFmWl8iynCDLcoLouCkUHDpKUGwMmhgDkr8/+v49MW/a\n7mFj3rSdqJuUL7ywuJbYC4uxmXMJCK+DX6gyv18VGEhEYnuKU5WNCjSxMe702l6dKU49Q8Z/f2Hn\nCOXNrHFDEjE39wagbtsWrjzzvMqXu2M/hn5dAah3S1+MG5KV9BuTq0wfEB6Gf1mZ1AFEdm7n3jwh\na80Wtj4wE1CmQzistvPq5+w4QJRbvw/G9eX69QZ661syTYS3baGshwC0iW0pdOlru7an8QO3A+B0\naRccOkpQgxjUZf6/vic5m5M8y7ApCcNNfd3+dxQWUWrOJXXxZ2wf/DDJQ8Zy+Pl55O/Y6+64hXfp\nSOz9gzjw5EturYqkfLvavclAxrpkYm/pBUBE2+aUFpZgNXn7wpx8gJj+ynrIBrf2JnP9DgDU2rpu\nm/C4pqCSsOUVcnDh16weOInfb5vCjqcWYtp+gJ3PLKoV+gAFB495tH3D9T0xbUr20DRt2k7UTUqH\nu05cC+xF5e2k1VMTKE45w5mvfuZiKDh4jOAGFfV7YNroGXumjclE39zXre8oqrqdViSyawcaDb+D\nvTNfdV/7tO9/ZftDyoYhNRV7x977ko23PcKmQRP56z8LyEne5+64BTeIduer65VIcWqaz/yf+u1q\nNg17ik3DniJrXTL1ByptL7xtc+yFJVir8IU5+QDR/ZW1qLG39iLL9T0QHBvltqnTqjGqQH9K8wu8\nvgd0iXHu74Eyig4dQVO/HoHRUUj+/kT2603elq0eNnl/bkM7QOl0h7RuhaOoiNKcXGxZRkLbXINK\nrazxCuvUAcup0wD4h7viQZKIGX4v2T+t9MjTV7G3zbXbZNn1jhrQA9NGz+tt3JhM9MAK19vVtirH\nSsW0QRXalr53AsWpypovS5aJiIS2AKg0auq2LX+Arinfl5rN/D979x0fRdE/cPwzl94gPaFKR2oI\nhN5F1AcrjyIKKoiKSJOqgqgoIuhPQUSRYn0Ee0Ox0XsNvdcQWkgP6e1ufn/skeRyCSCSXMDv25ev\nF7mbne/s3Mzezs7snk9YM+P18DCyz9p+5heVVd+/kcyZ8yHh4RGEh0dck4EbVJy+L25MN8zM2zUi\nlwDKktnCsZkLaDrjFZSTifNLVpAZdZoq990OQMzPf5G0aTv+7VvR+tsPsWTncPgN44TMNcCPhpNG\ngsmEMpmIX7mBpI3Gga32M4/iWbMa2mIh53w8R/9vrk3YhA07CezQko4/vIc5O5cDU+YUvBc+8wUO\nTJ1HTkIyR99fRLPXR1Hv6YdIOxLF2V9WXnJ7t0A/mrw8DGUyoUyK2BWbSNhg3PMTeltHajxg7Ffq\ngWM4eXrQ6cdZmLNz2T/lw5Ljz15E86nPUm9IX1KPnOSMTfxwu+0v7D9G7IottP9iOtpsIfVwFGd+\nWg5Ao/GDMLka3bvFpzNJ23+Y42/P5fgMo/4xORH723Iyo04Teq9RzvOL/yJ503b82rei1TdzsWTn\ncPSN9y77sdYdPRiTiwtNZxozLxdjlSRu/S5COragx+IZBY8Lv6jtrPHsmrKAnIQUDrz3Fa3eGEGj\noX24cDiaUz+vBqBKjzbUeuBWtNmMOSeP7RPev2z5KkJ8bbZwdMZHNJ/5kvG47iUryYw6TdX7jKW1\n535eStLGHQS0b0nb7z7AnJ3D4akfAFC5+c2E/qcb6ceiifjMOCk9Me9LkjbtILBLG+qPeRIX30o0\ne3si6UdPsmf0lBLjH3nnI1q8O8l4/PmSlWREnaFqb2v8n5aSuHEHAR1a0v67941Hp79e2E+avDoK\n35ZNcPH1ocPieUR99A0xv66kwdgnMLm40GLWS4DxsIPDb80v2K6s+t6l1BvWH6+axgUdvzYtOPLW\nPIfXP0Dchl0EdWxBt59nYs7OsXmkd+tZz7FnynxyElI4OPsrWr4xgobP9CH1cDSnF68GILRHG6r3\n6owlPx9LTh47JhjHxpT9x4lZsYXOi95Am81cOHySUz+upMn4gYXBLRZOzf6QBm++Dk4mEv9YSvbJ\nUwTdbSwxj//1dy5s2Ubltq1puvBj6+PqjUekZxw6TPKa9TSa9x6YzWQeO0H8kj8A8L+lG8H33gVA\n8voNJP5p+zAjm/0vx7538b6h8FkvgslEzJJVZESdKXgK5NmflpG4cQeBHcJp//1s4/H4r39QsO3h\ntz+22xag3tD+eNasitaa7PPxHH5zAQBnvv+LRpOG0vbLGSilOLdkFfVHPFqmdR/9znvUGP40yskJ\nS24e0e/YzjoXrYuy6PuBXdvQYMwTuPpWIuydCaQdOcnuEp5K+XeNG/MDW7dGk5KcSfcuMxk+ohv3\n9wn/x/leqZCQECIjN1OpUiUsFgujRo2kcePmpKWlXXWeDu374oak9A3yA3lKqZbAZ0A7rMsmgaeB\nT4H2WutEpZR/abNvSqlfgG+11guVUs8A/6e19lZK1cJYKtm06L+t20ymlGWTxdwYlXyV1nbs7bDY\nXTb8xLK2Dzosfs8t37K0Td/LJywjt239hvWd7nNY/E7rf+aXVo577PM92xc5PP7qDqX/dEJZ6rbx\nBwBWti/98e1l6ZZN3zu87zmq7sGo/98i+jks/p2RXxJ5Szne/1tMxMrfHd73VrTr47D4PTZ/5/D6\nd2TfBzCzyCHxneiPUi4OiQ2gdZ7D+z7GeXCF18nzqQp9frw+c0GFrMcbZuZNa71DKfUZcHEd2Eda\n6w1KqanAGqWUGdgJDCwli2eBL5VSzwOLy7q8QgghhBBC/FvJPW9X54YZvAForWcAM4q99jnw+RVs\nGwUU/fGVSdbXTwJNi//b+vfkf1hkIYQQQgghhLgiN9IDS4QQQgghhBDihnVDzbxdCaXUi0DxhfDf\naa2nOqI8QgghhBBC/NtoWTZ5Vf51gzfrIE0GakIIIYQQQojriiybFEIIIYQQQojrwL9u5k0IIYQQ\nQgjhWPK0yasjM29CCCGEEEIIcR2QwZsQQgghhBBCXAdk2aQQQgghhBCiXFmUxdFFuC7JzJsQQggh\nhBBCXAdk8CaEEEIIIYQQ1wGltTzppRxIJQshhBBCiPKgHF2AK9HKa0CFPj/envF5haxHuedNlLnf\nIvo5LPadkV+yol0fh8Xvsfk7VrZ/wGHxb9n0PUta9XdY/Lu2L2JD53sdFr/jusUOj/9nm4ccEvuO\nrV8DsLRNX4fEv23rNw7ve46qezDqf23H3g6L32XDT3wbNsBh8R/c/bnD+96ytg86LH7PLd86vP4d\n2fcBlHJxSHyt8zCzyCGxAZzo7/C+L25ssmxSCCGEEEIIIa4DMngTQgghhBBCiOuALJsUQgghhBBC\nlCuN/FTA1ZCZNyGEEEIIIYS4DsjgTQghhBBCCCGuA7JsUgghhBBCCFGuLPJLWldFZt6EEEIIIYQQ\n4joggzchhBBCCCGEuA7IskkhhBBCCCFEubIoedrk1ZDBmyh3jcc9RnDHFpizc9k9eS6ph0/apfGo\nGkT4GyNwrezNhYNR7Hp5DjrfTEjXVjQY0gdtsaDNFg688wXJuw9jcnWh/YKXMbk4o5yciFmxhaPz\nf7DL179dCxqMfhxlMnHulxVEf/GzXZoGYx4noH1LzDk5HJzyAWmHo65o25r97qL+yAGsvX0QeRfS\nbGLWH/U4yslETCkx648eRECHcCzZuRyY8j7pR6Iuua13/Vo0fG4wJlcXtNnC4bcXkHbgGD6N63Hz\n808bmSpVYv03Gf8YwR3DMGfnsmvyPFIPlVz/LacNt9b/SXa+ZNT/RZUb16Hjp5PZOfF9YlZsxT3E\nnxavPYObf2XQmlM/rSTqq7/s8vVtE06dZ58Ck4nYJcs4u8j+M6r97FP4tWuFJSeHo2/MIuPICQBa\nfTsfc2YW2mIBs4XdT4212a5q33upPXwQW+56hPwi9V8RYl/UaOwAAjuEY8nOYe9rH5ba9sNefxaX\nyt6kHopizyvvo/PNVLm9I3UeuweUIj8zmwNvfkTa0VMANJ30NEGdWpKbnMqGh8eXGr/h2IEEdQjH\nnJ3Dvtc+LGjbxeM3f/1ZXCr7kHroBHut8T1vqkrTl5+hUsPaHP3wa6IXLQHALTiAZpOH4epfGdCc\n+WkFp775Ayib/lZncF8Cu7QGiyY3+QIHpnxAbkIyytmZm18YTKWb66J1yScEjqx/v7bh1B31BMpk\n4vyvyzm98Ee7NHVHPYF/+1aYs3M4MnU26UdOoFxdCPtgqnFsc3YiYdUmoj/+GgCv+rWoP34IJldX\ntNnMsbfnk3bwaInxAcKf709oJ6Pvb31pASmHou3SeFULpN2bQ3Gt7E3ywZNsnTgPS74ZF28P2r7x\nNJ6hAShnJw5//gcnF68DoH6/ntS5vxsoxYkfVnN00VK7fB3R/xqOeZxAa3vfP2VOie3dvUoQzV8f\nVdDe902eXXCsu+T2JkXbz6aTE5/ErrFvAhB8SzvqPtUHr1rVyqXufW4Kpd1bQwu2964ezL45P5ZY\n/2XR9wGaTBpS0PY3PjzOLs+/q2HDhnz66Ue0bBnOiy++xDvvzPzHef4dL074hTWrj+Af4MUvS565\nJnlWhL4vbiyybFKUq6COLfCqEcrq3mPYO/Ujmk4YVGK6m0c8TNSXf7C69xjy0jKocW93ABK27mPd\nwy+wvv9E9rw2j+YvPQWAJTePzUNeZ12/CazrN4GgDmH4Nq1nm6nJRMNxT7Br9FQ2PzyakNs64lWr\nuk2SgPbheNSowqY+Izg0bR4Nn3vqirZ1Cw7Av00YWTHxdvvScOyT7B4zlS0Pjya4Zyc8S4jpWaMK\nm/uM4ND0uTR8bnBhzFK2rTfsUaI+/o5tA8YTteBr6g17FICM46eIHPQ82waMZ/fo1wFQToXdPLhj\nGF41Qll131j2vP4xzSY8XmL9Nxr5EFGL/mDVfWPJS82g5n3ditSjotHIh0jYvLfgJW22cGDmItb0\neY71A1/hpj498a5d7ATGZKLOmKfZP+5Vdj46nKBbO+NRq4ZNEr92rfCoXoUdDw/h2FsfUHes7Zfn\nvmcnsXvQaLuTN9fgQHzbhJN9Pq7E/XFobKvADi3wrFGFdfePYt+0BTR+/skS0zUY3o+TX/3GuvtH\nkZeWTvV7bwEg61w8W4a8xoZ+z3H84x9pMmFwwTZnf1vD9menXTa+V41Q1t//LAemLaDx80+UmK7+\n8P5Ef/U76+9/lry0DKpZ4+enpnPo7c84uehXm/TabObwrC/Y+NBYtgyaRI0+t+Fl/ezLor9FL/yF\nrY+MY+tj40nYsJ3agx4AoNq9PQDY8shYdo6cYuRT5AKGQ+vfZKLe2MHsGzuFyP4jCbrV/jjg174l\nHtWrsq3vUI6+9SH1xhkXYXRuHntGvsyOgWPYMWAMfm3D8WnSAIA6QwcQ/cm37Bg4hpMffUXtoY+V\nWoTQTs3xrhnKH3c/R+Rrn9Jq0oAS0zV/ti9HFv7FH3c/R15qBrV7dwWgXt8epJ44x9IHX2L1E9MI\nG/sQJmcnKtWrRp37u7G8/6ss7TOJql1a4F0j2G7/HdH/PGuEsuGBkRycPp9Gz5X8edcf/gjRX//G\nhgdGkp+WQbV7jM87sEP4Jbev2bcXGSfP2ryWceI0u59/m+SdB21eL6u6T4s+z7K+L7Os78ssf/gV\n8rNzOLtyu12+ZdX3Ac5dwbHn70hKSmLkyNG8/faMa5bn39H7v2HM/6j/tcuwAvR9ceNx6OBNKTVE\nKXXFLU4pVUspte8axPVVSg29fEpxrYV0bcXZ342rtSn7juHi44lbgK9dusDWTTi/YgsAZ5asI7Rb\nBADmrJyCNE4e7qALn1R08T3l7ITJ2cnmPYBKjeuRdeY82efi0Pn5xC7bQGCXCJs0QV1ac/73NQCk\n7j+Ks7cXrgG+l922waiBHHt/IZTw5KTMItvFLd9AUJfWtvvapTXn/1hdJKZnQczSttVa4+zlAYCz\ntyc5CUkAWHJy0WZj1sHk6mpXlpCurTjzW5H69/bELbDk+o9ZsRWA00vWEtKtcF9r972dmBXbyElO\nLXgtJyGlYAbPnJlNetQ53IP9bPL0aVSf7LPnyYmJRefnE79iHf6d2tik8e/Uhrg/VwGQfuAIzt5e\nuATY5lOS2iOe4OScz+w+84oQ+6KQLhGc+30tABcu0fYDIpoQu9Jo++d+W0tIV6PuU/YeIT8tw/j3\nvqO4B/sXbJO88xB5qRmXjB/UpXWR+Edx9jHadnH+EU2IXbnZGn8NwV2NNpebnErqweM2M7AAuYkp\nBVfxzZnZZESdxS3IKFtZ9DdzZlbB9k7ubgX/9qpdneRI4+shz9o2KzeqU/C+I+vfp1F9ss7EkH3u\nYvtbT0Bn2/YX2KkNsdb2l7b/iPXzMdqfJSsbMI5tqsixzeY44OVJrvU4UJJq3Vty8tcNACTtPY6L\njyfugZXt0gW3acSZZdsAOPnLeqrd0tIaC5w93Y1Ynm7kXsjAYrZQqXZVEvcex5xtHHvitx+iWg/b\nz9lR/S/mjytr73EF7X01Qdb2HtQlotTt3YL9CezYkrOLV9jklXHyLJmnYuxilFXd22zbtgkZp+PJ\njEm0y7es+j5A8s6D5KWm271+teLj44mMjCQvL++a5fl3RLS+icqVPa5ZfhWh71dklgr+X0XlsMGb\nUspZaz1Xa/2/ssr/Em/7An978KaUcrr6EgkA9yA/ss4XHmSyY5PsTvJdKvuQl5ZRMAjJjku0SRPS\nLYKu379N63fHs/u1+YUbmhSdFr1Bz2VzSdiyl5T9x4vF9ic7rvCLLScuCbegAJs0bnZpEnEL8r/k\ntoGdI8iJTyL9mP0yGCNtgl1+tjEDyI4tkne8kbdbkH+p2x5991PqDX+UDj/Ppd6Ixzjx4aKCdJUa\n16fNopm0WfgOQEE9ArgH+5NVJFZ2XBLuQcXq39e7WP0XpnEP8iO0ewTR3y8vcV8BPKoEUvnmm0jZ\nZ1v/rkEB5BbZn9z4RNwCA+zS2OxzfEJhGg1NZr5G2EfvEHL3bQVp/Du1ITc+kczjJ0stkyNjX+RW\nQt27Bdu2BaPtZxbWfWySXXsBqH5Pd+I37bpszKLcg/1s2pnRr+zj5xeL715C/FJjVAnCp2FtLuw/\nVhDjomvV3wDqDHmYjos/JPT2zpyY/w0AaUejCewcgXIy4V7FmPlxDyncxpH1X1Jfdg0qqf0lFktj\njW0y0fKzGbRf8hkp23aTdsBYHnV81ifUHjqAtj8uoM7wgUTNXVhqGTyC/Wz2Pys2CY9ix15XX29y\ni+x/ZmxyQZpjXy+nUp2q3L18Frd9P5Vdby0Crblw7AxBLRviWtkLJ3dXQjuF4RlqW2eO6n/ZsYX5\nZccl2rVlu/YeV9je3YL8S92+4eiBHH1/4WUv2FxUVnVfVM072nLqz80lxi+Pvi9KVhH6vrjx/KN7\n3pRStYA/ge1AS2A/8BjQCJgBeAMJwECtdYxSajWwC+gEfKWU8gHStdZvK6VaAHMBT+A4MEhrnayU\nagV8Yg1pv5DbtjwDgf9a4zoBXZVS44EHATfgJ631K8B0oK5SahewDPgNGKe1vsuaz/tApNb6M6XU\nSeAboCfwllJqCLAF6I4xCHxCa73uqipQXJXY1ZHEro7EP/xmGg7pw5ZhbxhvWDTr+0/E2duTiLdH\n4123+qUzugZMbq7UGvhfdo58vcxjFVXtv7dzdNZnxK/eQnCP9tw8cSi7Rr4GQOqBo2ztPxrPm6rR\n7utZmFxdsORem6uYjcc9ysH3vi71pMXJw41W/zeK/W9/QX5GVolprtbeYS+Qm5CEi29lmsx8laxT\nZ0g/dIzqj/Zh/5hXrmmsihS7OP9Wjal+T3e2DC7fuJfj5OFGi+ljODzjc8zX+LMv7sTcrzgx9ytu\neuw+qj9wB1EffUvMkpV41apG60/fJPu8sXxZW679lVOH1L/Fwo6BY3Dy9qTJtBfwrF2TzKhTVO19\nOydmf0LC6s0E3tKBBhOGsXfU5DIpQmiHpqQcOsXqJ6fjXSOYLvOeI37HYdKiYjj06W90mfsc5qwc\nUg6fsrlgdC1UpP4X2LEluUkXSDsUhV/LxuUSs7S6z88wZmVMzk5U7RrOnlnflUt5RDmqAH1fVDzX\n4oElDTEGMBuUUp8Aw4DewL1a63ilVF9gKnDx5iZXrXUEgFJqcpF8/geM0FqvUUq9BrwCjAI+BYZr\nrdcqpf7vCsrTEmiutU5SSt0G1AfaAAr4RSnVBXgBaKq1bmEtR7fL5JmotW5pTTsEcNZat1FK9bKW\n89biGyilBgODAebNm8fgwYOLJ/nXuKlPT2rcZ9yzduHACTxC/UnebbznHuJPdlyyTfq8C2m4+Hih\nnExoswX34AC7NABJOw/hWS3YuFpe5Cb1/PRMEiIPENw+zCZ9dnwS7sG2V+Jz4m2XmORY01woSBNA\nTnwSytm5xG09qofiUSWYtguNpukWFECbz99i26AJ5CalWNMGFtnOyM82ZiLuIUViBhl5K2enUret\n0qsrR2ca1zTiVmzi5gn2N1ZnRhv3YzR4+n6C2jcHrPUfEsDF2nQP9ic7vlj9p6QXq//CNL6NatNy\n2nAAXH19CO4YhsVsJnb1dpSzE63+bxRn/9jA+VWRduXJjU/Etcj+uAYFkJOQaJfGLTiQi5+mW1Bg\nQZqLy0LyUi6QuHYz3o0akJ+WgVuVYFp8+m5B+hYfz2T34HHkWevf0bE7LJxurfvjeIQEcPEd92B/\ncuJs24LR9j0L6z7E36a9eNerSdMXnyZy1HTyLlzZUqV2C42HKaQeOG4zE2X0K/v4zsXiZ8dffjmO\ncnIi7M2xxPy1nrjVW21iXHQt+ltx5/9aT4sZE4j66Fu02cLRWZ8XvNdj83dUurkO9Z4y7olzVP1f\n3M/ifTk3vqT2F1AsjW35zOmZpOzYh3+7cDKjThHyn+4cf/djABJWbqTBC8Ns0tfr24Pa/zXum0re\nH4VHSABgXLn3CPEnq9hxNTclHdci++8Z4leQpta9nTn0yW8ApJ+OI+NsPJVqVyVp3wmiflpL1E/G\nsrxmIx4gM9a23OXV/1p++SG5CUlos7G8zz0kEDhs/Ds4wK4t27X34ML2nhOfVOL2wbe0JahLBIEd\nwjG5ueLs5UHTySPYN3k2xfX85rUyr3sw7qlLPhRNTlKqTZ7l0fevhaFDn+Gpp4z78Hr1upuYGPul\np9crR/X960VFXppYkV2LZZOntdYbrP9eCNwONAWWWWe2JgFFp0C+KZ6BUqoy4Ku1XmN96XOgi1LK\n1/r6WuvrX1xBeZZprS+2+tus/+8EdgA3Ywzm/q7iZb74qKDtQK2SNtBaz9daR2itI/7NAzeA6O+W\nsb7/RNb3n0js6kiq9eoMgG/TeuSnZ5GTmGK3TWLkAUJ7tAWg+l2diV1jDAY8q4cUpKnUsBYmV2fy\nLqTh6uuDs7cnACY3F4LaNiP95DmbPNMOHsOzRhXcqwSjnJ0J6dmRhHW2g4z4dZGE9jJOdio1qU9+\neqZxT08p22YcP8W6Xk+ysfcwNvYeRk58IlsHPFcwcANstgu+tSMJ67bZxExYF0nof7oVxDRnlByz\n6LY5Ccn4hjcBwC+iGZmnjS879yrBBQ8ocQ81vjCOf7GEdf0msq7fRM6vjqT6ncXqP8G+/hMiD1Cl\nh7Euv8ZdXYhdY9wEv/Ke0ay8exQr7x5FzIqt7Jv+GbGrjffCXnqK9KizRC36wy4/gLRDR/GoXgU3\n6/4E9ehM0vqtNmmSNmwl+A5joO/duAH56RnkJSZjcnfDycNY329yd8O3dTiZJ6LJPBHNtnsGsP3B\nwWx/cDA58QnsemK0zeDJ0bE3PvICGx95gbg1kVTt1QWAyk3rkZeeWWLbT9p+gJBbjLZf9c4uBW3f\nPSSA8DfHsOeVD0q8r6Y0mx95ns2PPE/cmm1F4he27ZLjt7PG70r8GvuBeHFNXhpCRtRZor/8zeb1\na93fADxqhBZsH9Qlgsxoo5+b3FwxWe+B829jXKw4Nu9bh9c/FLY/94L214nE9bbHgcT12wixtj+f\nJg2sdZGMi28lnC4e21xd8WsdVnBhJjchmcrW44Bvq2ZknbYt17FvVhQ80OLsqh3UurujUT/N6pKX\nnkV2wgWKi9t2kOo9jXudat3TibOrdgCQeT6JkLbGTJObfyV8alUh/Uyc9W8fADxD/anWoxWn/rBd\nvlde/W9Hv2fYNWAkuweNBqDKfy7f3pO37ye4oL13I36t8XnHr4sscftjc75i3d3PsL73cPZOepek\nyH0lDtyAcql7gJr/aWdX51A+ff9amDPnQ8LDIwgPj7ihBm7guL4vbmzXYuat+PqpNGC/1rp9Kekv\nfVf9P1c0fwVM01rPK5rAutyzqHxsB7Lul8gT4OJTM8zIzy38LXEbdhHUsQXdfp6JOTuHPa8WfjSt\nZz3HninzyUlI4eDsr2j5xggaPtOH1MPRnF68GoDQHm2o3qszlvx8LDl57JhgfGm6BfoS9uozKJMJ\nZVKcW7aZuPU7bWIbj9T/mPBZL4LJRMySVWREnaFa754AnP1pGYkbdxDYIZz23882Htv/+geX3PZK\nHHnnI1q8O8l45PmSlWREnaFqb+O+jXM/LSVx4w4COrSk/XfvG49Lf31OQcyStgU4NG0u9Uc/jnJy\nwpKbx+HpRj36ht1MzUd7o/PzC5Y25qUUzhDErd9FcMcWdF88w/pTDYX132bWeHZPWUBOQgqH3rPW\n/9A+XDgczemfV19yH/1aNKD6XZ1JPXqKzl8ay1gPf1DsmofZwomZ82nyzmQwmYj7bQVZJ08Teu8d\nAJxf/CfJm7bj1y6Cll/PxZKdw7Fpxufr4udLozcmAMYsT/yytaRstf18L8mRsa3iN+wksEMLuvw4\nC3N2DnunzC14r9XM59k3dT45Cckcnv0lYVNHUn9IX9KOnOTML8aN7HWfvB/Xyt40ft5YxKDNZjYN\neBGAsCkjQ+kULgAAIABJREFU8GvVGFdfH7r9+gFHF3xvFz9hw04CO4TT6cdZmLNz2T/lw4L3wme+\nwIGp88hJSObo7EU0n/os9Yb0JfXISc78shIA14DKtPtsGs5eHmituemhXmx4aCw+9WpStVcX0o5G\nF1zpPzbnK4Ay6W/1hvbHs2ZVtNZkn4/n8JsLjPL5V6bFu5NAW+xmtx1e/2YLx2YuoOmMV1BOJs4v\nWUFm1Gmq3Hc7ADE//0XSpu34t29F628/xJKdw+E3Zlvr3Y+Gk0aCyYQymYhfuYGkjcZJ9ZE351D3\n2SdQTiYsuXkcfWtOCS3PELNuN1U6NafXkv8jPzuHbS9/VPBe5/fHsO3VT8iOT2HPu9/S7q2hNB12\nPymHogtm1A7MX0ybKU9x2/evo5Riz7vfkms9tnR4x/hZF51vZscbX5CXlmm3/47of1nn4uj4w3uY\ns3M5MKWwbmza+/uLaPb6KOo9/RBpR6I4a23vRn9pWeL2pQnq2pqbxw3C1bcSAF0+HMfaZ94u07p3\n8nAlpF1Ttk/5rNRylVXfN2dk0WzKSPxbNcbF14cuv87h+IJ/tnQzJCSEyMjNVKpUCYvFwqhRI2nc\nuDlpaaX/BMu1NG7MD2zdGk1Kcibdu8xk+Ihu3N8n/OozrAB9X9x4lL7CG25L3NgYBEUBHbTWm5RS\nH2GsC3gKeNT6mgvQQGu933rP2zitdaR1+8kU3vO2G2N55Drr65W11qOVUnuAoVrr9UqpN4E7tdZN\nSynPQCBCaz3c+vdtwBSgh9Y6XSlVDcjDGHTt0FrfZE1XA1iHsQTUA2Om7tUi97xFaK0TrGkL9kEp\nFYhxb1yty1TV1VfyDeC3iH4Oi31n5JesaNfHYfF7bP6Ole0fcFj8WzZ9z5JW1/Cxx3/TXdsXsaHz\nvQ6L33HdYofH/7PNQw6JfcdW4/eAlrbp65D4t239xuF9z1F1D0b9r+3Y22Hxu2z4iW/DSn4kfXl4\ncPfnDu97y9o+6LD4Pbd86/D6d2TfBzBO/8qf1nmYWXT5hGXEif4O7/sYkxcVXiPvByr0+fHB9O8r\nZD1ei1mjw8Aw6/1uB4DZwF/Ae9blkM7AuxgPM7mUAcBcpZQncAK4+ANUjwOfKKU0l3lgSXFa66VK\nqUbAJmX83k868IjW+rhSaoP1Zwf+0FqPV0p9C+zDGIz+/cvqQgghhBBCCFGGrsXgLV9r/Uix13YB\nXYon1Fp3K/b35CL/3gW0K2Gb7UDRJ088V1pBtNafAZ8Ve20WMKuEtP2K/f1cSXkXn1Urug/W2bha\nCCGEEEIIIUQZc+iPdAshhBBCCCGEuDL/aOZNa30S48mS5UopdTvwZrGXo7TWjltkLIQQQgghhLgi\nFiU/FXA1rssnJWqt/8K4r04IIYQQQggh/hVk2aQQQgghhBBCXAeuy5k3IYQQQgghxPXLgiybvBoy\n8yaEEEIIIYQQ1wEZvAkhhBBCCCHEdUCWTQohhBBCCCHKlcbs6CJcl2TmTQghhBBCCCGuA0pr7egy\n/BtIJQshhBBCiPKgHF2AK1HP5+4KfX58LO3XClmPsmxSCCGEEEIIUa7kaZNXRwZvoswtbvmIw2Lf\nu2MhcxoOcVj8oYfncqpvG4fFr/nNVpa06u+w+HdtX8SKdn0cFr/H5u8cHn9hs0EOif3I3k8A2NTl\nHofEb7/2F4e3vfcd2PeHH56LmUUOi+9Ef4e3/X97fPNn7g6L7zQw22H732PzdwD8FtHPIfHvjPyS\ntR17OyQ2QJcNPzm874sbm9zzJoQQQgghhBDXAZl5E0IIIYQQQpQrWTZ5dWTmTQghhBBCCCGuAzJ4\nE0IIIYQQQojrgAzehBBCCCGEEOI6IPe8CSGEEEIIIcqVxuzoIlyXZOZNCCGEEEIIIa4DMngTQggh\nhBBCiOuALJsUQgghhBBClCv5qYCrI4M3Ue6ajX+U4E4tMGfnsPOV+Vw4dNIujWfVICKmDcPF14cL\nB6PYPulDdL6ZgFaNaDtjNJnn4gE4t3IbRxb8DECd/ndw033dQGtSj51h5+T5ly1Lpxcf5KauTcnP\nzmXFC5+TcOC0XZqm/bsRNuAWKt8UzCftxpKdnAGAWyVPur/xGJVrBpKfk8+qif8j6ei5K64H97B2\n+A0cCyYTGSsXk7r4f7Z10Ol2Kt3zGCiFzsok6eM3yYs+Ci6uhEyeh3JxBZMTWVtWcOG7BVcct8n4\nxwjuGIY5O5ddk+eRWkL9e1QNouW04bhW9ubCwZPsfGkOOr9wbXrlxnXo+Olkdk58n5gVW/G6qQot\np40oLHu1YI7M/R6Adt/MQplMnPtlBdFf/GwXq8GYxwlo3xJzTg4Hp3xA2uEoAPzbtaDB6MdL3LZ6\nnzuofv8daIuFxI07OPb+QgC869Xk5uefxsnLAyzaJs6l8iuLslyJiBf6Ua1zM/Kzc9k06WOSDp6y\nL9PDt9DokZ741Azhu84jyUlJB6DWne1oMug/oBT5GdlsmfIFKUfs2+9Fvm1aUmvkkyiTE7G/LeXc\noh/s0tQa+RR+7SIw5+RwfNq7ZBw5AUD4NwuwZGWhzRa02czewWMB8Kxbizpjh+Lk6U52TBzHpryD\nOTOr1DKURdsDcPb2JOylp/CpVx2tNbtfvXzfL6pzseNAfAnHgZ5vDyK4aU0seWZi955k9cuLsOSX\nzYnHixN+Yc3qI/gHePHLkmeuOp+yaPPBt7Sj9pMP4lWrGtsGTSDtkNFGnCt503zaWHwa1SPmt9WA\n4/u+o+OXZt1xd6Yt98dsgQdapPNU+1Sb97dGuzH8h2CqVc4HoGfDTIZ2ukBUojNjfg4qSHcmxZkR\nnVN4rE1aiXGu9f7XfrIPVe+5lbwUo7zHP/ySxE078W/TnLpD+2NydsaSn19iWRqPe4zgji0wZ+ey\ne/JcUg+ftEvjUTWI8DdGWPt+FLteNvp+SNdWNBjSB22xoM0WDrzzBcm7Dxtl6vcfatzbHdCkHjvN\nnlfn2eXr1zacuqOeQJlMnP91OacX/miXpu6oJ/Bv3wpzdg5Hps4m/cgJlKsLYR9MxeTijHJ2ImHV\nJqI//hoAr/q1qD9+CCZXV7TZzLG355N28GiJ+/53XKu+L25sMngT5Sq4YxheNUNZce9Y/JrVJWzC\nQNYOmGyXrvHIhzi+6E/OLt1M84mPc9N93Tj5/QoAEncdZsuz79ikdw/yo85Dt7Hygeex5OQRMX0E\n1W5vd8my1OzSlMq1gll028uEhNWm6+R+/PDgm3bpzu84TvTqvdz7vzE2r7cccgcJB0/z5/C5+NYJ\nocvLD/PLwHevrCKUCb9BzxE3dTjmxDhCp31OZuQ68s9GFSTJjztH7KtD0BlpuLdoj/9TE4idNAjy\ncol7bSg6JwucnAh5dQFZuzaRe3TfZcMGdwzDq0Yoq+4bi2/TejSb8DgbBrxil67RyIeIWvQH55Zu\nptmEQdS8rxvR1vrHpGg08iESNu8tSJ8RHcO6fhML3r/1j/c5v2Y7TcY9yq7RU8mJS6L1p9NIWBdJ\nxskzBdsFtA/Ho0YVNvUZQaUm9Wn43FNEPjERTCYajnuCnSOn2G3r17IJQV1as+XRcei8fFz8KhlV\n6mSi8eSRHJg8m/Rj0ThX8qbr0k+tZSo9v7Ioy5Wo2rkZPjeFsPjOCQQ2r0ObSY/xZ//X7dLF7zzG\n2TW76fnJ8zavp5+JZ9njb5KbmknVTs1o98qAEre/uP+1Rz/NgTEvkxufSLP575C8fitZ0YWDFN92\nrXCvXpWd/Z7Gu3FDao95hn1Dxhe8v//ZF8m/YHuSWPe5EUTP+YTU3fsJ6nUrVR/+L6c/XlRiEcqq\n7QE0Gf8ocZt2s/35WShnJ5zc3UquhxLc1KUpvrWCWVjkOPB9CceBI79sZdm4TwC47Z0naNynE/u+\nWnvFcf6O3v8No/8jrXnhefsT7r+jLNp8+onT7H3hbW5+YbBNLEtuHsfnf4N3nRp41akJ4Li+7+tD\n1z8/qRjHnmLMFnh9qT8fPRRHSKV8+n5Whe71s6gXmGeTrlX1bD58MN7mtdoB+fz0RExBPt3er06P\nhpn2QZSpTOof4PTXSzj15a824XJTUtk9bjq5Ccl41alBuy9n2Lwf1LEFXjVCWd17DL5N69F0wiA2\nDnzZrtg3j3iYqC//IGbpJppOGESNe7tz6oflJGzdR+ya7QD41KtBy+nPsuaBcbgF+VGr7+2seXA8\nlpw8wqeNpOpt7W0zNZmoN3Ywe0dNJicukfCP3iJx/VYyi9SFX/uWeFSvyra+Q/Fp0oB6455m1+Dn\n0bl57Bn5MpasbJSTE2EfvkHS5h2k7T9CnaEDiP7kW5I378CvfUtqD32MPSNesv8s/qZr1ffFjU3u\neRPlqkq3Vpxesh6A5L3HcfHxwi3Q1y5dYOvGnLNeVT+9ZB1Vure6bN4mJyec3FxRTiacPFzJjk++\nZPraPZpz+OfNAMTujsK1kgeeQfYn3wkHT5N2NtHudf+6VTi72bj6l3IiFp9qAXgE+Fy2nACu9ZqQ\nH3sGc9w5MOeTuXEpnq272KTJPbIXnWGcLOcc3YdTQHDBezrHmN1QTs4oZ2fQl77Se1FI11ac+W2d\nUeZ9x3Dx9iyl/psUzGqcXrKWkG4RBe/V7ns7MSu2kZOcarcdQGCbpmSeicMtoDIA2efi0Pn5xC7b\nQGCXCJu0QV1ac/73NQCk7j+Ks7cXrgG+VGpcj6wz50vcttp/b+Pk/35G5xlXePOs5fBvE0b6sWjS\nj0UDkJ+aXhDnUvmVRVmuRI3u4UT9shGAhD0ncPXxxCOwsl265EOnyDhn3/4Sdh8nNzXTuv1xPEP8\nSo3l3ag+2WdjyImJRefnk7BiHX6d2tqk8e/Ulvi/VgGQfuAwzt5euASUnieAe42qpO7eD8CFyF34\nd21fatqyanvO3h4EhN/M6Z9XA6DzzeSnl3BCW4raPZpzqMhxwK2U40D02sKLI7F7TuJ9ifr+pyJa\n30Tlyh7/OJ+yaPOZJ8+Secp+hYElO4cLuw9hyc3D1d/4XB3V9z2rV3Fo/KLHnuL2nnOlpl8+Nfzy\ncXWC/zTKYOWRv/9Zbz7pTk3fPKpVLuFpfYGty2T/S5N+5CS5Ccb3bcYJ+1nrkK6tOPt7kb7v44lb\nQMl9//yKLQCcWbKOUGvfN2flFKRx8nC3+b5TRb/33e2/930a1SfrTAzZ54xjX/yK9QR0bmMbt1Mb\nYv80jn1p+4/g7OOFq/XYZ8nKNuI4O6GcnQpia61x9jI+N2cvT3ITki5ZR1fqWvX964XGUqH/r6hk\n5g1QStUC/gS2Ay2B/cBjQBNgFuAF5AA9gADgC+trAMO11hvLt8TXL/dgP7JiC09Es+KS8AjyIych\npeA1V19v8tIz0Waj42TFJuEeVHii5N+8Pt2+eYPsuGT2z/yStBNnyY5P5tgXv3Pb77Mw5+QSt2kv\n8ZsvPRPlFeJL+vnCA33G+RS8QnzJjL+yE/CEQ2eoc1s4MduPEdysFj5V/fEO9SMrseQlLEU5+Qdh\nTowt+Ds/MQ63ek1KTe/d/R6yd20qfEGZCJ3+P5xDq5P+1/fkHtt/RWV2D/a3qf/sOKNui9a/i683\neWkZBfV/MQ0YM5yh3SPY9PRUfJvYXnm/qOpt7Tj310Y8gv1tXs+JS6JSk/o2r7kF+ZMdl1gkTSJu\nQf64271euK1nzar4hjWi7pCHseTkcXT2/0g7eBzPmlVAQ4t3X8TFrxKxyzYU7vcl8iuLslwJj2A/\nMs4XfuFnxCbhEexHVsKFK9q+qLq9O3Nu/d5S33cNDCAnLqHg79z4BHwaN7RLkxsXXyRNIq6BAeQl\nGn2k8YwpaIuF2F/+Iu7XvwDIOnkKv05tSV6/hYBuHXELDiy1DGXV9jyrBpObnEbY5KepVL8mFw5F\nsf//vii9sorxLnYcSD+fgvcljgMmZxMN723LuqnfXnEMRymLNn8lnDxsZz7Lu+8XH0A48thTXGy6\nM6GVCpcWhvqY2XPO1S7dzrNu3PdRFYJ9zIy/JZn6QbYzc78f9KJX41IuUnhWLZP9B6je5z+E9upK\n2sHjHH3vf+SnZdjkG9zdfsWLe5AfWUWOddmxSbgH+5GTWKTvV/Yp1vcTcQ8u/N4P6RbBzcMfwtWv\nEttG/Z9RtvhkTiz8jVuWzMack0vC5r0kbLE9DroF+dsc+3LiEvFp0sAmjWtQADnF6sI1yJ/cxGQw\nmWj5ydt4VAvl3I9/kHbAWBp5fNYnNJvxMnWGDQSTYtfTE+z2W4iyIjNvhRoCc7TWjYBUYDjwDfCs\n1joMuBXIAuKAnlrrlkBf4D0Hlfdf6cKhkyzt9Syr+07kxNdLaTNjNAAuPp6EdmvJsrtG89ftI3D2\ncKN6r45lWpYd8//C1ceDB39+kWaPdiPh4Gks5mt/pcatSSu8b7mHlEXvF76oLZx//hHOPnMXrvUa\n41KjzjWPW5LG4x7l4HtflzrTp5ydCO3ainPLt5RZGZSTCZfK3kQ+MZFj739Bs6ljrK874Rt2M/tf\neY/tg18iuGvby+RUdmUpTyGtb6befzuzY+Z3ZRZj/7Dn2fPEKA6Of5XQ3r3wCTMuNByb/h6hvXvR\nbMEMnDw9sOSVfL/LtVBa21NOJirdXIvo75ezrv+LmLNyqPv43WVWjq6v9ONc5FFith8rsxiiZFfa\n9ys1vvKBZlnE/6fHnsahuawYdpafn4yhf6tURvwQZPN+rhlWHfXg9kYZpeRQNs7+uJSN9w9n66Pj\nyUlMof7Ix2ze96pdnbrD+pdJ7NjVkax5YBzbx82g4ZA+ADj7eBHStRWr7nmWFXcMw8nDjWr/ucbf\n+xYLOwaOYXPvJ/FpXB/P2saS4Kq9b+fE7E/Y8t+nOP7eJzSYMOzaxhXiEmTmrdBprfXFy2ULgReB\nGK31NgCtdSqAUsoLeF8p1QIwAw1KykwpNRgYDDBv3jwGDy55luLfoPaDt3JT7+4AJO8/gUdIQMF7\nHsH+ZBVb5pCbko6LtyfKyYQ2W/AI8S9YCpGfUfgwhLgNuzFNGIirrzeBEY3JPBtPboox6xWzMhL/\n5vZf4E37daXxg52M7fdG4x1aeGXPK9SXjNgUu21Kk5eRzaqJhQ8ZeWTFVFJPJ1xii0LmpHicAkIK\n/nYOCMacHG+XzqVmPfwHv0j89FFY0u1nZHRmOtn7t+Me1p680ydKjHVTn57UtNb/hQNG/V+scfdg\nf7tlJnkp6bj4eBXUf9E0vo1q03LacABcfX0I7hiGxWwmdrVxP0JwxxZcOHSS3KRUsuJsl5G4BfuT\nE2+7/C8nPgn34AAuFKQJICc+CeXsjHtwQInb5sQlEb/KGBymHjiGtlhw8a1ETlwiKTsPkGe9Lyth\n4w4qNzO6Z7Y1TnmV5eIN/cU1eOgW6t1vLI9N3BeFV6g/Fz91rxB/suIuvdS3ON8G1Wn36kBWPjOT\n3Auln8jlJiTazIq5BgXa7X9uQiKuwUHAQWuaAHITEq3vGZ9lfsoFktZtxrtRfdJ27yf71FkOjjXu\nW3OvXhW/9rbLq8qj7aXsPUZ2XBIp+4wZz5jlWy87eGt2ieOAd6gv6aUcB1oPuxMPf29WDS/5vr6K\npiza/JUousztWsa+0r6fvHM/XjdVLTGP8ohf9NhTXIh3PudTC0+9zqc5Eexju/TR263wAkXXetlM\nWapIzjTh52lcHFx33IPGIbkEepVysTDTdlnrtdr/3KTC76Bzi5cT9vYLhemC/Gn+5ngOvPY+EfON\ne287LXoDsPb9UH+Sdxtp3UP8yS52rMu7kFas7wfYpQFI2nkIz2rBuFT2ISCiMVnn4gq+98+v2oZf\nc9t6z4lPsjn2uQUHkFv82BefiJvNPgeQG2/7/WVOzyRlxz7824WTGXWKkP905/i7HwOQsHIjDV6Q\nwdvVsMiPdF8VmXkrVHwqobS1c6OBWCAMiADs1zsAWuv5WusIrXXEv3ngBhD17XJWP/wiqx9+kfOr\nt1PjLuOkya9ZXfLSM22WTV2UEHmAqj2Mdek17upMzOodAAX3UQH4NqkDSpGbkk7W+UT8mtXDyd34\nOALbNCEt6qxdvvu+XMO3903l2/umErV8Fw3vM5Z4hITVJjct+4qXTAK4+nhgcnECoFGfTsREHiUv\nI/uKts09fgCX0Bo4BVUFJ2c8O9xGVuQ6mzROASEEjn2TxA9eIT+m8CmEJh9flKc3AMrFDfdmbck7\nF11qrOjvlrGu30TW9ZvI+dWRVL+zMwC+TeuRn55Vav1XKaj/LgU3i6+8ZzQr7x7FyrtHEbNiK/um\nf1YwcAOoent7zv5prCK+cMAYTLpXCUY5OxPSsyMJ6yJt4sSviyS0V1cAKjWpT356JrmJKaQdPIZn\njSolbhu/dit+rZoC4FGjCiYXZ/JSUkncshuvejUxWe9/8GvZuCDOpfIri7KU5sjXK/m9z2R+7zOZ\nMyt3UvueDgAENq9Dbnrm31oy6RnqT9eZw9gwYQFp0bGXTJt+6Cju1aviViUE5exMYI/OJG+wnR1N\nWr+VoNuNgZZ344aYMzLJS0zG5O6GycO4B8Pk7oZv6xZknTDao7OvtT8qRfXHHuT84j9t8iyPtpeT\neIGs2ES8bjLucwps04T0E/Z9v6i9X67hm/um8s19UzmxfBc3X8FxoPEDHanZqTF/jfn4iu8xdbSy\naPNXIjfZaMeO6vue1UIcGr/osae4plVziU525kyKM7lm+OOgF93r2z6hNT7dVNDE9pxzxaLB16Nw\noPb7AS96NbnErFtCZJnsv2uR+9SCurYpWJ7q7O1J2IwJHJuziAt7DhekWd9/Iuv7TyR2dSTVehXr\n+4n2fT8x8gChPYxZy+p3dSZ2jRHXs3rhhc5KDWthcnUm70Ia2ecT8G1aH5Ob9Xu/dRPST9r2/bRD\nR/GoXrg/QT06kbh+m23c9dsIucM49vk0aWCti2RcfCvh5O0JgMnVFb/WYWRGG/nnJiRTOdxYgeDb\nqhlZp2NK/TiEuNZk5q1QTaVUe631JqAfsBl4WinVWmu9TSnlg7FssjJwRmttUUoNAJwcWObrTuz6\nXYR0CuPWxe9gzs61eZx/u/fGseu1j8hOSOHAe18TMW04Nw/rw4VDJzllfRhB1VvbUOuBHmizGXNO\nHpETPgAged9xzq3YStdFr6PNZi4cjib6x1U0f35AqWWJXrOPml2b0n/ZFPKzclk58fOC9+6cP5xV\nk74gM+4CzR7tTviTt+EZWIm+v7xE9Jp9rJ60EL+6ofSYPhCNJvloDKtevPL7bLCYSfrk/wie+J7x\nUwGrfyXvzAm8b/0vAOnLf6TyA0/i5F0Z/yeMpwxqs5nYiQNw8gskYOgrYDKByUTmpuVk71h/RWHj\n1u8iuGMLui+eYX1kc+FjldvMGs/uKQvISUjh0Htf0fKNETQc2ocLh6MLHgZxKU7ubgS1bcreNz62\nltc42Qif9SKYTMQsWUVG1Bmq9e4JwNmflpG4cQeBHcJp//1sLNm5HHj9g4JtD7/9sd22AOd+XUWj\nSc/QdtE7WPLzOfCasU1+Wganv1pC60+ng9bGI6xbN79kfmVVlitxdt0eqnZpzr2/T7f+VMAnBe91\nnzOKza98RlZ8Cg373UrjQXfgEVCZO394jXPr9rB58mc0H3IPrr7etJn0aEE5/3jotZKDmS1EvTuP\nRm9PRplMxP2+nKyTpwm55w4AYn/5k5TNkfi1b0X4V/Ow5ORwbJqxItzFz5eGU40niSonJxKWryFl\nq3ExJfDWLoT27gVA0tpNxP++vNT9Lcu2t/+t/xH++lBMLs5kno1j9+R51H3srstuB8Zx4KauTXnU\nehxYUeQ4cJf1OJARd4Fur/Yj7VwSD3zzHAAnlu1k2we/X1GMv2vcmB/YujWalORMuneZyfAR3bi/\nT/jfzqcs2nxQ1zY0GDsIV99KtJgxgbQjJ9k1aioAHX76AGdPT5SLcWrRcs4raLPFYX2/Ihx7inM2\nwYs9k3jq62AsGno3T6d+UB5f7zAuyD3UMp2lh7z4eqc3ziZwc9a8c28CShnbZ+YqNka5M/mOS8yE\namM241rvf73hj+JTvxYaTXZMPIemG324ep878KweSu1Bfag9qI9dceI27CKoYwu6/TwTc3aOzeP8\nW896jj1T5pOTkMLB2da+/0wfUg9Hc3rxagBCe7Sheq/OWPLzseTksWPCbABS9h8nZsUWOi96w/q9\nf5JTP66kyfiBhcHNFo7NXEDTGa+gnEycX7KCzKjTVLnvdgBifv6LpE3b8W/fitbffoglO4fDbxj5\nuwb40XDSSDCZUCYT8Ss3kLTRGFAeeXMOdZ99AuVkwpKbx9G35pT+efwN16rvixub0tfJFcSyVOSB\nJZFAK+AA8CjGA0tmAx4YA7dbgSrADxgzdX8Cw7TW3pcJ8a+u5MUtH3FY7Ht3LGROwyEOiz/08FxO\n9W1z+YRlpOY3W1nSqmzuQbgSd21fxIp29l/m5aXH5u8cHn9hs0EOif3IXmMwuKnLPQ6J337tLw5v\ne+87sO8PPzwXM45bXulEf4e3/X97fPNn7g6L7zQw22H732Ozcf/tbxH9HBL/zsgvWduxt0NiA3TZ\n8JPD+z6gHFaAv6GKT+cKfX4ck7auQtajzLwVytdaFx9lbAOKPzrpKFD0ktrzCCGEEEIIIQSglPLH\nePBhLeAk8KDW2u5GTqXUaOBJjImevcDjWutL3oMj97wJIYQQQgghxLXzArBCa10fWGH924ZSqhow\nEojQWjfFuBXroctlLIM3QGt90lppQgghhBBCCPFP3AtcvIn6c+C+UtI5Ax5KKWfAEzhXSjqbDYQQ\nQgghhBCi3Fh0xf6pgKI/+2U1X2s9v7T0xYRorS8+hvQ8EFI8gdb6rFLqbeAUxrM1lmqtl14uYxm8\nCSGEEEIIIUQR1oFaqYM1pdRyILSEt14slo9WStk9nEUp5YcxQ1cbSAG+U0o9orVeeKlyyeBNCCGE\nEEIIIf4GrfWtpb2nlIpVSlXRWscopaoAcSUkuxWI0lrHW7f5EegAXHLwJve8CSGEEEIIIcqVxlKh\n//8xV4PdAAAgAElEQVSHfgEu/tjwAGBxCWlOAe2UUp5KKQX0AA5eLmMZvAkhhBBCCCHEtTMd6KmU\nOooxwzYdQClVVSn1O4DWegvwPbAD42cCTFximeZFsmxSCCGEEEIIIa4RrXUixkxa8dfPAb2K/P0K\n8MrfyVsGb0IIIYQQQohypanYT5usqGTZpBBCCCGEEEJcB5TWdk+uFNeeVLIQQgghhCgPytEFuBJB\n3q0r9PlxfPq2ClmPMvNWPtQ/+V8p9fQ/zUPiS/zrLbbEl/gS/98b/9+87xJf4l+D+NcFi7ZU6P8r\nKhm8XR8GXz6JxJf4N1xsiS/xJf6/N/6/ed8lvsR3dHxRgcngTQghhBBCCCGuA/K0SSGEEEIIIUS5\nugY/hP2vJDNv14fL/mCfxJf4N2BsiS/xJf6/N/6/ed8lvsR3dHxRgcnTJoUQQgghhBDlyt8rvEIP\nQpIydlbIh7/IskkhhBBCCCFEudJafqT7asiySSGEEEIIIYS4DsjgrYJRSpmUUh0cXQ4hhBBCiLKm\nlKrt6DIIcT2RwVsFo7W2AB84uhwASqkOSql+SqnHLv5fTnGdyiPOpeIrpVY5MH6Ao2ILg1Kqk1Lq\nceu/g/5tJxfWPlBVKVXz4v/lGHuKUqqnUsqrvGJWFEqpFVfy2o1MKeWhlGrooNieSqmXlFILrH/X\nV0rdVY7xlVLqEaXUy9a/ayql2pRX/CLl8CznkN9b4/6r2roQV0vueauYViil7gd+1A56ooxS6gug\nLrALuLgoWQP/K4fwR5VSPwCfaq0PlEM8G1prs1LKopSqrLW+UN7xgc1KqV3Ap8AfjmoDjqSUCgHe\nAKpqrf+jlGoMtNdaf1wOsV8BIoCGGJ+BC7AQ6FjGcWdj9LESaa1HlmX8IuUYAbwCxELBc5w10Lw8\n4gMngIeB95RSacA6YK3WenFZBrXGulT9VyrD2O6AJxColPIDLt4kXwmoVlZxSyhHR2AycBPG+YEC\ntNa6TjnFvxt4G3AFaiulWgCvaa3vKY/4GP19O9De+vdZ4DtgSTnFn4PR524BXgPSgB+A1uUR3Lrq\n5yPAG6iplAoDntZaDy3j0Cal1ESggVJqTPE3tdYzyjg+UCHafztgNtAIow84ARlleexxNIv8VMBV\nkcFbxfQ0MAbIV0plU3gAKc8OHAE0dtDAIQx4CPhIKWUCPgG+1lqnlmMZ0oG9SqllQMbFF8vpBLoB\ncCswCOME9lvgM631kXKIXVF8hnEi9aL17yPAN//f3plH2VVVafz3BcIghBlBG0GJNIjIEEHCoIiK\nouKAiMio4AQog4oKDcqg4hJFm6EVRAigIIZWEBuZlNEwJyBRBhuQqZ0VQgiBEPj6j3Nu6qVIJSHm\nnnNTb//WqvXq3FRl76p6776zz97720DrwRuwI7AJMAnA9h8ljSpg99b8uBWwPunnBdgZKHmIcRCw\nru1/FLQ5C9vjgHGSVgc+ABwCfBxo9W9gexSkzB/wJ+AHpHvv7sBL2rRNuucfDLyUFDw0wdvjwMkt\n2+7ldODT2YcaSgJHAa8DrgawfXvhrPdo27tI2jXbf1JSSbW5zW2PkXRbtv+opCUK2v828Dbgomz/\nN5LeUMDuB4H3kvakJe61Q1H7+X8y6XdxPmkPthdpPxAEsxHBWwdpNhGV+S2wOmkTUxTbU4HTgNMk\nbQOcC3xb0n8DX7Z9bwE3fpo/ipMD5iuAKyRtS8r67C/pN8Chtm+o4VdhVrE9XtJhALZnSir1ZjrD\ntiUZoFT5nu2zsr39gK1tz8zrU0jZp1I8DNTIOAMg6fuk4PUvpJ/7/eRAuhDvtr1Rz/q7+bX3pbYM\n2j4BOEHSAbZPasvOfDDF9iUV7T9je8qgeKnkAeIMSUs3NiWNBp4uaP+Z3DbQ2F8VyqYmbD886Pdf\n4r67ve2vS1rS9jEF7A1F7ec/tu+VtJiTDOO4HMgfVtOnoHtE8NZRcunMOsBSzTXb1xaw+3PSG8co\n4E5JN9Pz5lWifCW/eb0T2Bt4OXA8cA7weuAXFDiJajbSNcg9b3sAe5I2sAeQTkI3Jp3I9UP/1bT8\ne2g2MWMpF1CMl3QqsIKkj5EyoKcVsg2wIqlc7p95vWy+1io95Ur3A1dLupjZX/tFSpeAlUnlQo+R\nfgd/bwLZQkyTtDtwHun5tys92fc2sX1SLl17OT3vz7ZLlKsDXCXpG6SDq96/fang+XeSdgMWk7QO\ncCBwfSHbkMqFLwVeJukcUhb8wwXtnwhcALxY0ldJBxdHFLT/cH7+WdJIUhb+rgJ29wZOIGXfagZv\ntZ//T+ZM6+2SjiMdng9rbYok8xC8UGJIdweR9FHSTXMNUs/ZWOAG228qYHubuf277WsK+HA/cBVw\nuu3rB/3biSVKFyX9gTmc+JaofZf0e1LJ1jjbjwz6ty/Y/nrbPtRG0hhS7f8GpCzwqsD7bd9RyP52\nwFtJ5WuX2b6ihN1se29S+dhV2f4bgKPaPlDIvX5DYvvoNu0PRtKrSCVcnwYWs71GIbsvJ20ktyLd\nAyYAB9t+oIDtOfYaF+x3nJNQk0u892T7LyKVSs967ZGqLZ4qYT/7sDLpPVfAjbb/Xsp2tr8e8OZs\n/1e2SwRPje1VSM/9t2T7lwMHtV1CLelHpDLBlwL39f4T6flXpN+2A8//tUgHtkuQ7nvLA98pVG1U\nheWWXr/TQcjj0+/s5JDuCN46iKTJpAblG21vnG/mx9p+X0Efvm77C/O61pLtZW0/0badefjQq/i4\nFKnvaCXbrZVO9dhWP4qUDEbS4iTREAH32H6mkN1XAH9qNoy5jGq1Epv3Hh9WBzbPy5ts/7mU7doo\nqfu9nhS0rgDcCFxn+4yqjhVA0l3U6zXuFLkCY5mSvc6SdgSubISqJK0AvNH2hYXsrzSHy1NL3ftq\nku95lwHPq+6x/WAB+yNIB4Tj27Y1Fx+WAaZn1fHmNbCk7Sdr+dQ2EbwtGBG8dRBJt9jeLCsObm77\naUm/s/3qgj5Msj1m0LU7SpyAZeW1jwCvZvay0X3atj03JE20/doCdlYFPs/zf/4ip39dQNIngXNs\nP5bXKwK72v5OAdu3AlvanpHXSwATbBdRfMs2q5RNZ9tN6XQvU0iCKqe2nQWRdDKp1+06239s09YQ\n9qvdfySdDxxou3ivcbZfTeU12z8X2JeUdbyFVD58gu1vFLJ/u+2NB127zfYmhew/ALwMeJR0aLUC\n8GdSNuZjtie2bP8sUqat9757fO333lJIutX2phXt3wi8pTm8lrQscLntYTv7d9TS63Y6CJk6/Z5O\nBm/DupZ2EeaRfOJ3IUm04mdA6ydPkMQScuZvXUl39Hz8AZhcwgdSyeDqpJKpa0jlo1ML2QZS2V7P\nx6aS9qVcj+g5wN2k3rajgQdIG5l+4mPNBgKS6hrwsUK2F28Ct2x7BqmMpQi5bPpa0in00fnxqFL2\nST1vT5BFg0iKh1NJvaat9/7Z/hRJbXCMpB0kvbhtm4Ooef9ZhdRrfJmki5qPQrYhqbxeRipfg6Ty\nenBB++vnTNt7gUtI98A9C9qf056opDbAFcA7bK9ie2Xg7aQxBfuTxgi0zYZzuO+2HrgqKSojafKg\nfcdkSUVK5TO/lHSIpJdJWqn5KGh/qd6qo/x56Zl7wSJACJZ0ENs75k+PyjXYy5OaqEtwLulN82vA\noT3Xp9r+55y/ZaHzSts7S3qP7bPyaWxJtT1IIikNM0kB1AcK2V7Z9umSDso9htdI6rfgbbHe8tFc\nPlIqgPqbpHfbvijbfg9Qsu/lIAbKprdtyqYL2t9yUJbx5z3VAL9r27iknUmzvq4mZR9OkvQ52//d\ntu1MzfvPUYXsDEVNlVeAkUpCGe8FTrb9jLLqayFulfQt4L/y+pMk2fhSjLU965DK9uWSvmn7E5KW\nLGB/hKQVc9DWlHGW2CcelB+LDUQfgl3y4yd7rhkoMueNJJY0phFIkbQpML2Q7WARIoK3jiJpa2Ad\n2+NyGd2/AX9o226u9Z8C7Jo3zKuRnifL5l60h9r2AWjq+x+TtAGpbKTo6bvtbUvaG0Tz8/9J0juB\nPwIlT/+6wKXAj5VUHyHNwSp1gLEvcE4u3xNJOn+vQrYBnrL9lCSUpLPvlrRuQfvLSlqzea1LWpOk\neAkwY+hvW2gcAWxm+6/Z/qrAL4FSwVu1+08JQah5UFPlFeBU0kHZb4BrlQQcSs73PAD4IgMzFq9g\n9o182/xJ0hdISqeQgom/5PfiErJ8xwM35PJdkdQuv9q20aZMuERv2zz8qK3kfDBwvqSmXPwlDASU\nw5JQm1wwInjrIEqqb5uSxBrGASNJs762KujDp0inwH9h4E3DQAnVp+/lWvsjSBL5y5LeUIshaXmS\nbHQzoPQa4Jimkb1lvpLtf5akuLgcSXmqn/gCKWDbL6+vAL5fwrDt+4Cxud+gKV0pyeCy6UcpVDad\n+Szwa0n3kTZwryDNGVwGKDFCY0QTuGX+QdkS/+b+80UG7j+tCxUBSJrKQL/hEqR7/zTby5WwD3yG\n9DOPljSBrPJayDa2TyTJ5Tc8qDTrspT9acxecVKa3UjvO41AyoR8bTEKVH7YPjv3/Db91e+zfWfb\ndgc97+fkV5Hnv6Q5HtK53KiOycAppJLtx0mvxdarHYJFjxAs6SBKQiWbAJOaRmkVEgvp8eFeklhK\nqxLBg2x+Zk6X86Ndbs4Ukn5CkqhvNqt7AhuVVPwMyiJpD9s/HOJ5WHLOWa9P25DLpnv78ArYXRJY\nLy/vaVukZJDtb5AOiX6UL+0C3FFC6bZLSBLwHlIpXbGAQpVUXrPtKodmkv7T9sGas1hPkfmmNZG0\nnO3Hh+rvKtUyIenLpNlmPyA9/3YHXlJC5TnbP6lnuRRpZMMk20UOMHLv3+OkvndIgfsKtncuYb8G\nyy61TqeDkCee+t9OCpZE5q2bzLDtptY/n3iX5mHKlstAGgwOaeOwGenUCeBdwM2FfRlte6ee9dE5\nqG6N/MYxt9PHIrOeaiJpvO0PZNGcOW2i2jzAaF5no+b6VQWoUTYt6U22r5Q0+IBitCRs/7RN+w22\nPydpJwYqDb5n+4IStqG+4mJD7ve8MFdiFAnelJQ29we2Jr3+rpN0SsHg/QzSoVmTZdqTVH3S9qHZ\nD/LjN1u2M1ck/TtwCM8f0t620vC5pH6zicx+3xVle77ebXujnvV3Jf2GQplv2wf0rnMFxHlDfHkb\nbGB7/Z71VZJaz3zWxEWqgYcfEbx1k/G512cFSR8D9qGAytsg7geulnQx8HRzsc3sg/MQYEnXAmNs\nT83ro4CL27I7BNMlbW3719mHrWi/cfjW/LgVsD4DfRc7A8P6Bt5DtcZ126fm3pLHbX+7tP2GimXT\n2wBXkg5LYGAT12zgigRvALZ/AvyklL1BnEn6vR+e178nvRZbD94GBc4jSM+DYllP4GySsmaTgdiN\nFNiUOvkvfmgGYHtifu1/3PbubdubC+eTyua+z8CQ9taxvUPO9G5TqK99KKZJ2p0UMBnYFZhW0x9S\n2XgpJkkaa/tGAEmbM7AvCIJZRPDWTWaQGvQfJ23gvmT7isI+PJQ/lqCgTHpmNWYXRpiRr5VkP+Cs\nXMYDae7Oh9o0aPssSOMagK1tz8zrUyivtlkF23/Km6gza4jG2H5W0q5AteAN2JFcNp19+qOk1rOB\nto/Mn+4H7MTsp/+tl7bMpe9Fyb1ifV81FRff1fN5o3L7nkK2of7Jf41DM2DWa38tSUuULFEexEzb\n361hOFf7XAy8pob9zG7ACfnDDPT8FWFQ2ewI0iHq+aXsA68FrpfUBNBrAvc0lSglW2eCbhPBWzd5\nMXAgafN2BimQK0pPFqyGaMPZwM2SmlKp95JOw0tyF3AcMJo0KHVK9qPEzJkVSSIlTZ/BsvlaX5A3\nUc9JWr6QQMxgJmSlyR/Tc+rbyDcXoHbZ9IXAY6T7T5P1aT14s129XDVTTXHR9t4l7MyF2if/vYdm\nIt0DP1zQ/v2k1/9FzP7aL9Xv+nNJ+wMXMHvFS6kxPZMkbWa7ymga2w8wl8MKSYfZ/lqLLvSWzc4E\nHrT9SIv2BrN9QVvBIkwIlnSUXMLwVmBvUunMeOD0rIRXwv4GpHKZpoH578BetosoH0kaA7w+L6+1\nfVsJuz32L2VgAzvr1N328UN+08KzvTdJ6fMq0gbmDcDRts9s23ZXUBpMvwlJZbJ3E9V635/SbMXB\nuEDfSWP/EGAdYDvSvMV9gHNtnzTXb1x49n9re4MStrpIvvecBGxA6r9aFXi/7dYPbiStkW03JbLX\nAQeV2kBKuotU7fEQKXhdC7iHtJEtdvIvaTmSwZJjApqS5efRHGYWsD+nvlbbLtJzJulu4JUkddtp\nDGS9O5HxkTTJ9pgW//+vDxZGmtO1YOHxoiVf3ukg5MmnH+ikYEkEbx1G0kak4G170kZ+LHCF7c8X\nsH09cLjtq/L6jcCxtrds23YXqL2BlbQ6sHle3mT7z7V8qYGkOZaoNqWlwx1J25EObwRcVrJsWtL3\ngJNsTy5lsytIGkG6z95MBcVFSVeQxCMaAY09gN1tb1fI/lqkLP+sgzPSIRbQ3hyuoRRee+wWVXrN\nwaObvut+If/9n0dbf/cXiqTbnBW4W/r/nxccqrDSd78RwduCEWWTHUTSQaShwH8nNS5/zvYzeWPx\nv0DrwRuwTBO4Adi+upLqZS2ul/SaGhtYScdkaeSf5fUISedUbqQviu2zJC1Bkqs3aQNdpA8ll8wd\nyYDi3q9JcuWtj83I/X6/zP1+RftcexQ+Fwf2lnQ/qXSrU6fvbWL7OUn/lTeINeYrrWp7XM/6TEkH\nF7T/XuCjJHEakYLI0wpkfZuSWTMwHoaea0WQtClJrGZUXk8B9rE9saAPG5B6rZZqrrnQnDHbD+bM\nc3Pvm1CwXHx+aOW5kPvM9wfWltSbYR9F6rsLgk4RwVs3WYk0HHO20668sSilwne/pC8y+wnw/YVs\nV6MjG9iXNbX9SvO2xgNFy0ZrI+kdwKnArEHRkj5h+5IC5s8jZRwa1bvdSf1vb2nbcOV+v+IKnx3l\nV0qjCn7q8qUp/5C0BwMz7nYlDSkvxUdIc+WmQSoZA25gQH2yFXp6rM8ilYk+ltcrAq2XqvdwBrC/\n7euy/a1JwVypctEjgTeSgrdfAG8nHR4VCd4kfYmkLNooy46TdL7tr5SwPx+0lQU5F7iEVKbeO5Zj\nasF+w77EjlEBC0KUTQZzJL9pHs3svRdHNW+qw5WhykYaSpSP5H7Hc4DJwLbAJTWl62uQey92sH1v\nXo8GLra93ty/c6HYfl7JrKTJtouosNXs9wtmqV4uQ+p1nU5Btct8/zkJ2IJ0iHQ9cIDth9u2ne1P\nBjZznuumNPftloLP/eeVxbVdKjcf9lvtsxpkazKwEXCb7Y2UZg7+sGDZ7D3ARj1//6WB222vW8L+\nvJD0H7aPbdlG74zNVYBRtludsdnPLL3Emp0OQqbPeCjKJoNFitHAy0hyuYsDbwbeRKETyFrUrO3P\n5SoNJ5AyTxOAaySN6Vj5SttMbQK3zP2k+VMluFzSB0kZT4D3A5cVsg3p1LvYTLVgdiqrXh4DfMj2\nowCSViIp4O1TyP444KZBSr8lh5OPkLTioJ+/5D7lGqUZqz8iBc+7kOadjoEiirNP5Qqbmbnv7q+k\n9+FS/JFUrtmozC4J/F8p40NlXm3vA1AgcBs8Y3MJyszYDIIXRGTegjmST+AOIamtzcprd6VxeTgy\nhMphQzG1wy4g6bskpbvxpE3UziQFvF8C2G4tuBmUeQFYjIEMWKkMTJV+vyChNCy76fu5zvaFhexW\nzTxle03PE6SfvVjJtqS9gP9gYLbWzsBXbf9g6O9aqPar3YNzxcX3gc8CH8yPT5AyX0VGSEi6ENiM\nlPU3SfH2ZuARaD/7X/v5rzQQfhNgUmMzBEvaZakl1uh0EPLUjEci8xYsUvzN9s9rO9FPuMJQ6g6z\nFPAXYJu8/huwNGmIsWkxMzWvzIukV7vFkRmV+/36HknfIcmlN31n+0razvYnC5ivnXlqsktVsvy2\nz5Z0K6nKA1Lvd7Eh4fO6B0v6UFuKt7Yt6XU563SK0ria5VxgREUPF+SPhqsL2ob6z//aMzaDYL6I\nzFswRyS9mdQs/ytmHxYa5Vwtk/scjgVeavvtktYHtrBdsnyp06j9Ya1zs932rKFq/X7BrN//qxqx\nkqzy+zvbrypgu2rmKZg7BV77ZwEnu9KQ7Hkh6Se2d5r3Vy7w/78XcDip4kKkkvWSmdeqMzb7kci8\nLRiReQuGYm9S2dZIBsomW814BLM4k1Rvf3he/56kdhjB2wA7k95ca9D2zbxmv18A9wJrkgYVQ+o5\nunfoL1941M48BfOk7df+5sDukjo5JBtodVh4fv7fS+o7M7C37RvatDnI/jeVZmw+Tup7+5ILztjs\nR0JtcsGI4C0Yis26ojDVh6xie7ykwwBsz5T07Ly+qc+oeRrW9knhrZJ+wez9frfkPqzIfrfPKOAu\nSTfn9Wakv8lFALbf3abxHKxFwNZN2n7tv63l//9fpdWfX2nGbe+cwVMllZgzWHXGZhC8UCJ4C4bi\neknrx6lvFaYpDYpuyrbGAqVnfnWdTpda/ItU6/cLAPhSbQeCztLqoVEIgtWZMwjVZ2wGwQsigrdg\nKMYCt0v6A+WHVPc7nwEuAkZLmgCsSqr9DwaomXlrVfmxlLJcMCS3AtOzZPu/k8rHL7H9TGW/gvpM\nqO1AZdq+74oBlV/y5yXv9U8AkyXFjM1CmCibXBAieAuGYvvaDvQrtidJ2oZUcy+SVHxsHGfn/Hl/\nyYIh6RjbX+pZLwacbXt3ANtj27Kd7R0HfIU0IPpS0mzFT9v+YZt2g1lcC7w+z5i6HLiFNO9r96pe\nBa0j6TNzuDwFmGj7dtufKu1TSbK64nTnRqQs1rOU7Sfzl3yhZRdqzxmMGZvBIkGoTQZBx5D0IlL2\nbS3bH5O0DrCu7f+p7FrrSDqJuZREljgBlTQO+L3tr0laktR7dpvto9q2ne3fbntjSTsCO5CeC9fa\n3qiE/X6nURSUdACwtO3jJP0mfv/DH0nnksQymjE5OwB3AC8Hzrd9XCXXiiDpRuAttp/I62WBy21v\nWdCHanMG50Xbapv9yBIjV+90EDLjmT+H2mQQBPPFOGAisEVe/x8p0zTsgzdSyRrAVsD6JJVNSKId\npfov9wHOyYIx2wK/sP2fhWzDwH35naQN45Q0vzcohCRtQcq0fSRfG1HRn6AcawBjeoKXI4GLgTeQ\n7snDOngjZdmeaBa2n8iHicWoOWdwPmhVbbMfsUOLbUGI4C0Iusdo27tI2hXA9pPqk917MwBX0n7A\n1rZn5vUpwHVt2s4nvg0nkAZlTwCulTQmbypK8D951th0YD9JqwJPFbIdwEHAYcAFtn8naW3gqso+\nBWV4MT1zTYFngNVsT5f09BDfM5yY1nuvk/Ra0n0oSHQ6SxT0DxG8BUH3mCFpaQbUJkcz+4aiH1gR\nWA74Z14vm6+1yfGD1o+Ssn/Hk/4Wb3red7SA7UNz39uUrID2JPCe5t8lbRezh9rD9rWkvrdmfT8w\nq1xX0km2D6jhW9A655B6rn6W1+8Czs29YP2gvHwwcL6kP5L6rVcn9XsGQdAhouctCDpGHhJ6BClw\nuJxUQvhh21fX9KskkvYGjiJlPEQqWzqqycz1M01PVm0/+pX4/Q9vJG1KuucCTLB969y+frghaSRJ\nLAtCLGs2JN1me5PafgwnRi6+aqeDkGdm/q2TVU8RvAVBx5D0Q1KT/HTgfuAm23+v61V5JK0ObJ6X\nN9n+cyG7B5H6DqcCpwFjgENtX17C/ryIDURdIngbvkg6ETjP9vW1fSmJpPfN7d9thwIjIOmtXXkf\nGC6MXHzlTgchz8z8RyeDtyibDILucTrwemA7YDRwm6RrbZ9Q1632kbSe7bt7+s8ezo8vlfTSQn1n\n+9g+QdLbgJWBPYEfkLKgXaDTb3ZBsAgzEThC0rrABaRArh8yb++ay7+ZYS6fL2kyc1c53jA/duU9\nIOhzIvMWBB0kzxbbjKR2uC9p9s56db1qH0nfs/1xSVcx+5tpMyS+9b4zSXfY3lDSCcDVti/oUrYr\nMj916dJzIWgHSSsBOwEfBNa0vU5ll4IWkbRW/vST+fEH+bGZ7Xlocaf6hMi8LRiReQuCjiHpV8Ay\nwA0khcXNbP+1rldlsP3x/Ok7gP1J835M+j18t5AbEyVdDrwCOEzSKOC5QrbnhwdqO9AP5BlX9Eqn\nZ4Z9BjzglcB6wFrAXZV9KUaea7kTaa7drP2h7WNq+VQC2w/CLDGo3oOZQyVNAiJ4a4k8Dz54gUTw\nFgTd4w7gtcAGwBTgMUk32O4nyeazgMeBE/N6N+Bs4AMFbH8E2BgYSRrYuwpwZgG7wCzBgP1IIi0A\n1wCnNMIBtufanxL8a0h6Dem5tlJa6m/Ah2z/FsD2mRXdC1okq7zuCNwHnAd82fZjdb0qys9I7zkT\n6T+FY0iv961sT8iLLYkZj0EHibLJIOgoOePzYeAQYHXbS9b1qByS7rS9/ryutWT7o6RZX2sAtwNj\ngRtKlGxm+98nBY6NsuaewLO2P1rCfr8j6XrgcNtX5fUbgWNtb1nVsaB1JH2C1N+1NjDrfpvHRwx7\nJP3W9ga1/ahFnmt3BrA8qVT/UVIPdFeHhi/yLL7Yip0OQmY++2iUTQZBMG8kfYokWPJaUoncGbQ8\noLqDTJI01vaNAJI2B0oJBxxE6je80fa2ktYDji1kG1KZ7EY96ysl/aag/X5nmSZwA7B9dZ7zFQx/\nngOuZNDBDYVmPHaA6yW9xvbk2o7UwPZEYCNJy+f1lMouDXvcqY6ERYcI3oKgeywFfAuYaHtmbWdK\n0qP6NZK0kXgor9cC7i7kxlO2n5KEpCWz+uW68/62hcazkkbbvg9A0trAswXt9zv3S/oiA6IFe5BG\ndgTDnwOpe3BThZ777uLA3pLuJ5VNNkJRG9b0rxQ5aDuSXLIu6RrgmAjigq4RwVsQdAzb36ztQ4NT\n4RgAAAWkSURBVEV2qO0A8IikFYALgSskPQo8WND+54Cr8gYKknjA3gXt9zv7AEczII9+Xb4WDH9q\nH9zUove+uyKp8gPgWqCfev7OAH7LQG/1nqSZn9FnHHSK6HkLgiAYAknbkPofLrU9o5DNpYDPAm8m\nbZxuAb5t+6kS9oNEPoV/zvbU2r4EZZB0Aemg5GBSqeSjwEjb76jqWCEkHQR8lHRwIeC9wGm2T6rq\nWCEk3W5743ldCxYeiy02qtNByLPPTu1kz1sEb0EQBB1C0niS0uY5+dJuwAq2d67nVf8gaTPSCfyo\nfGkKSbRgYj2vgtLUOLipjaQ7gC1sT8vrZUhiTf1SNnkD8Dnbv87rrYBv2t6irmfDlwjeFowomwyC\nIOgWGwxS1bxK0p3VvOk/Tgf2t30dgKStSaVTfbGBDRK2r6ntQwXE7P21z+Zr/cJ+wFk56y7gnyTF\n5yDoFBG8BUEQdIuaSptBGsswS93V9q8l9ZVwUNC3jANuyuWjkMomT6/oT1Fs305Sm1wurx+v7NLw\nJ4Z0LxBRNhkEQdABBiltrgvMprRZYsZdPyNpTP50L2Bp4Eek3/8uJCGLz9TyLQhKkV8HW+fldbZv\nq+lPCSTtYfuHkub4Grf9rdI+9QuLjVim00HIs89N62TmOTJvQRAE3aALSpv9zPGD1kf2fN7pDUYQ\nLCzyQOp+G0rdzHEcNdevCoKOEJm3IAiCIJhPJH3I9lm1/QiCYOEhaTHgQNvfru1LPxGZtwUjgrcg\nCIIgmE8kTbI9Zt5fGQTBooSkm22/rrYf/cSIEUt3Ogh57rnpnQzeomwyCIIgCOafTr6ZB0HwLzNB\n0snAj4FpzcVcShoEnSGCtyAIgiCYfzp9UhwEwQLTDOM+pueaSQPbg6AzRPAWBEEQBPNPZN6CYBhi\ne9vaPvQfMSpgQRhR24EgCIIgWISYUNuBIAgWPpJWk3S6pEvyen1JH6ntVxAMJgRLgiAIgiAzxKyn\nKcDEPMQ3CIJhSA7axgGH295I0uLAbbZfU9m1YcuIEUt2Ogh57rmnO1lpEZm3IAiCIBhgU2Bf4N/y\nxyeA7YHTJH2+pmNBELTKKrbHk2v5bM8Enq3r0jDH7vZHR4metyAIgiAYYA1gjO0nACQdCVwMvAGY\nCBxX0bcgCNpjmqSVyaJEksaSsu5B0CkieAuCIAiCAV4MPN2zfgZYzfZ0SU8P8T1BECz6fAa4CFhb\n0gRgVeD9dV0KgucTwVsQBEEQDHAOcJOkn+X1u4BzJS0D3FnPrSAIWuZO4ALgSWAqcCHw+6oeDXMc\nk1cWiBAsCYIgCIIeJG0KbJWXE2zfWtOfIAjaR9J44HHSAQ7AbsAKtneu59XwRhrZ6SDEfqaTgiUR\nvAVBEARBRtKJwHm2r6/tSxAE5ZB0p+3153UtWHhE8LZgRNlkEARBEAwwEThC0rqkEqrzIvMWBH3B\nJEljbd8IIGlzIF77LdLV4KjrROYtCIIgCAYhaSVgJ+CDwJq216nsUhAELSLpLmBd4KF8aU3gHmAm\nYNsb1vItCHqJzFsQBEEQPJ9XAusBawF3VfYlCIL22b62A0EwP0TmLQiCIAgyko4DdgTuA84DLrT9\nWF2vgiAIgiARmbcgCIIgGOA+YEtgbWBJYENJ2L62rltBEARBEMFbEARBEPTyHHAlsAZwOzAWuAF4\nU02ngiAIggBgRG0HgiAIgqBDHAhsBjxoe1tgEyDKJoMgCIJOEMFbEARBEAzwlO2nACQtaftukgJd\nEARBEFQnyiaDIAiCYIBHJK0AXAhcIelR4MHKPgVBEAQBEGqTQRAEQTBHJG0DLA9cantGbX+CIAiC\nIIK3IAiCIAiCIAiCRYDoeQuCIAiCIAiCIFgEiOAtCIIgCIIgCIJgESCCtyAIgiAIgiAIgkWACN6C\nIAiCIAiCIAgWASJ4C4IgCIIgCIIgWAT4f2+l+5OX/kY/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAElCAYAAACrn37VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8VfP+x/HX55yiiKJ5IirRRaRMIVMTEZJrdoXMcnGv\n+Zpd3Gt2jQklU4ZkCMlQMjWLkEpoVNFA+alzPr8/vmufs89pdwbaa53TeT8fj/04Z6291v589z5n\nrb2+6/v9fr7m7oiIiIiIiBSXk3QBRERERESkYlJlQUREREREMlJlQUREREREMlJlQUREREREMlJl\nQUREREREMlJlQUREREREMlJlQURERESkkjOzgWb2o5l9vo7nzczuMbMZZvaZmbUvy+uqsiAiIiIi\nUvk9DnQv4fkeQOvo0Q94oCwvqsqCiIiIiEgl5+6jgZ9K2KQXMMiDj4E6Zta4tNdVZUFEREREZMPX\nFPghbXlOtK5E1bJWHBERERERWUseQ7y8+1SzE88kdB9KedjdH15/pVpH3GwHEBERERGRQvn5eeXe\nJ6oY/JnKwVygedpys2hdidQNSUREREQkRu5ryv1YD4YDJ0dZkfYElrn7/NJ2UsuCiIiIiEiM3Mvf\nslAaM3sa2B+oZ2ZzgGuA6iGePwi8DhwCzABWAqeW5XVVWRARERERiVH++mkpKMLdjyvleQfOLe/r\nqrIgIiIiIhKj9dStKBaqLIiIiIiIxEiVBRERERERycjzVVkQEREREZFMKlHLglKnioiIiIhIRmpZ\nEBERERGJkcYsiIiIiIhIZvmrky5BmamyICIiIiISI7UsiIiIiIhIZsqGJCIiIiIiGamyICIiIiIi\nGakbkoiIiIiIZGJqWRARERERkYxUWRARERERkYxUWRARERERkUxMYxZERERERCSj/LykS1BmqiyI\niIiIiMRIA5xFRERERCQztSyIiIiIiEhGalkQEREREZFMTC0LIiIiIiKSUSWqLOQkXQAREREREamY\n1LIgIiIiIhIjdUMSEREREZHMVFkQEREREZFM1LIgIiIiIiKZqbIgIiIiIiKZqGVBREREREQyU2VB\nREREREQysfz8pItQZqosiIiIiIjESS0LIiIiIiKSkSoLIiIiIiKSibm6IYmIiIiISCZqWRARERER\nkYw0wFlERERERDJSZUFERERERDLRpGwiIiIiIpKZWhZERERERCSjSlRZyEm6ACIiIiIiUjGpZUFE\nREREJE6VqGVBlQURERERkThpgLOIiIiIiGRialkQEREREZGMKlFlQQOcRURERETilJ9f/kcZmFl3\nM/vazGaY2WUZnq9tZq+Y2RQz+8LMTi3tNdWyICIiIiISpyy0LJhZLvA/oAswBxhnZsPdfVraZucC\n09z9MDOrD3xtZkPc/fd1va5aFkRERERE4pTv5X+UbndghrvPii7+nwF6FdvGgc3MzIBawE/AmpJe\nVJUFEREREZE4/YFuSGbWz8zGpz36FXvVpsAPactzonXp7gN2AOYBU4H+7l5iM4e6IYmIiIiIxOkP\ndENy94eBh/9k5G7AZOBAoCUw0szGuPvyde2glgURERERkThlpxvSXKB52nKzaF26U4EXPZgBfAts\nX9KLqrIgIiIiIhInzy//o3TjgNZmto2ZbQQcCwwvts33wEEAZtYQaAPMKulF1Q1JRERERCROZWsp\nKBd3X2Nm5wFvArnAQHf/wszOip5/ELgBeNzMpgIGXOrui0t6XXNf/4UVEREREZHM8gbVLPcFeO7J\nqywbZSmNWhZEREREROKUhZaFbFFlQUREREQkRmUbglAxqLIgIiIiIhKnStSyoGxIIiIiIiKSkVoW\nRERERETipG5IIiIiIiKSkSoLIiIiIiKSUeUZsqDKgoiIiIhInDw/kSkT/hBVFkRERERE4qRuSCIi\nIiIikpFaFkREREREJBN1QxIRERERkcxUWRARERERkYxclQUREREREclA3ZBERERERCSz/JykS1Bm\nqiyIiIiIiMRJLQsiIiIiIpKJa8yCiIiIiIhkpG5IIiIiIiKSiQY4i4iIiIhIZpWoslB52kBERERE\nRCRWalkQEREREYmRBjiLiIiIiEhmGuAsIiIiIiKZaICziIiIiIhkpG5IIiIiIiKSmbohiYiIiIhI\nJuqGJCIiIiIiGakbkoiIiIiIZKZuSCIiIiIikom6IYmIiIiISEbqhiQiIiIiIpmpG5KIiIiIiGSi\nbkgiIiIiIpKRuiGJiIiIiEhGalkQEREREZGM3DVmQUREREREMlHLgoiIiIiIZFKZxixUnjYQERER\nERGJlVoWRERERERipAHOIiIiIiKSkQY4i4iIiIhIRpWpZaHyVGtERERERDYA7lbuR1mYWXcz+9rM\nZpjZZevYZn8zm2xmX5jZ+6W9ploWRERERERilI1sSGaWC/wP6ALMAcaZ2XB3n5a2TR3gfqC7u39v\nZg1Ke11VFkREREREYpSlbki7AzPcfRaAmT0D9AKmpW1zPPCiu38P4O4/lvai6oYkIiIiIhIj95xy\nP8qgKfBD2vKcaF267YAtzOw9M5tgZieX9qJqWRARERERidEfaVkws35Av7RVD7v7w+V8mWrAbsBB\nQE3gIzP72N2nl7SDiIiIiIjE5I+MWYgqBiVVDuYCzdOWm0Xr0s0Blrj7r8CvZjYaaAess7Kgbkgi\nIiIiIjHKUjakcUBrM9vGzDYCjgWGF9vmZWAfM6tmZpsAewBflvSialkQEREREYlRNgY4u/saMzsP\neBPIBQa6+xdmdlb0/IPu/qWZvQF8BuQDA9z985Je19x9vRdWREREREQy+7b3XuW+AN/mhY8SmclN\nLQsiIiIiIjEqY3ajCkGVBRERERGRGOVnYVK2bFFlQUREREQkRlmalC0rVFkQEREREYnRH0mdmpTK\n02FKRERERERipZYFEREREZEYVaaWBVUWRERERERipMqCiIiIiIhklK/UqSIiIiIikomyIYmIiIiI\nSEbqhiQiIiIiIhmpslCUxxBDRERERKRSXIVrBmcp4rLmFyQS95Yf7mHTGi0TiQ3w628zOWjTsxOL\nP+rXB6i50VaJxV/1+/fkMSSx+LmckHj8Jpt1Tiz+vBXv83vewMTib5Tbl9X5gxKJXT3nZNpsdlQi\nsQG+XvEim2zcIrH4K/9vduJ/+6SPvaTj16/VMbH4i34Zl/j7N6ueSGz31QA03mzfROLPXzEm8WO/\nslDLgoiIiIiIZKTKgoiIiIiIZKRuSCIiIiIikpFaFkREREREJCNVFkREREREJCN1QxIRERERkYzU\nsiAiIiIiIhmpsiAiIiIiIhlVpm5IOUkXQEREREREKia1LIiIiIiIxKgydUNSy0JCttt/By5+70ou\nGXM1nc85eK3ndzmiA/3fupQLR17G2S/9ncY7NCl4rlPfzlz49mX8/e3L6XTa/n8ofpcu+zHps5F8\n9sU7XHzJmRm3+c/t/+KzL97hk3GvscsufylY/8BDtzD7+08ZN2HEH4oN0LFLWx6fdC2DPruOYy/u\nutbzzbdryL3v/IMRP91Dn/5FP59Na9fkmifP4LGJ1zBwwr9ou/s264zTpWtnpnz+Lp9PG80l/zgn\n4za333Edn08bzacT3mSXXXYsdd+jeh/KhMlv8+tvs2nffueC9ccedwQfjxtR8Ai2KMvHUcSVlw9n\nn73+y+E9Hyj3vutDNuLvf/DujJk4mLGTh3DeRcdn3OaG2y5g7OQhvP3RQHZq17pg/SefP8Oojx9j\n5NgBjHj/oYL1Dz5+DSPHDmDk2AF88vkzjBw7oMzl+WDMLA475BEO6fYQAx75eK3nly37jf7nv8hR\nRwzkuL8O4ptvFhU89+Tg8Rx5+KMccdgABg8aV+aYhbFn0rPHA/Todj8DHvkwQ+xVXHDeUI7s9QjH\nHjOQb6b/WPDc4EGfcsRhD9Or50MMfuLTMsfc9+BdeWPivbw1+X+ccdGRGbe58rbTeGvy/xj+0R20\nbbdtwfqTzz6UVz65i1c/vYtTzulZsP6fN57MiAn3MPyjO7jvqUvZrPYmRV6vS9fOTJ46iqnT3uPi\nS87OGPO/d1zD1Gnv8cn4EUXOMSXte9Y5pzDps1GMn/QWN958WcH6HXfcnnfff5Hxk96K1uRmjJnk\n3740G+KxD3DgwXvx0cTn+XTKi1xw0SkZt7n5Pxfz6ZQXee/jp9i5XZsiz+Xk5PDO2CcZMvSOtfY7\n+/wTWPTLOLasW/tPlzNb7//uu+/km2++ZMqUiey6664Zt2nRogUffzyWb775kmeeGUL16tUB6Nx5\nP5YuXcykSeOZNGk8V199ZZH9cnJymDhxHK+8Mizj6x5w8O6MmTiEDyc/zXkXnZBxmxtu68+Hk59m\n1EePs1O77QrWf/r5c7zz8eOMHDuQN95/ZK39zjz/r8xfMWatzz75Y58aGYNWMPlu5X4kRZWFBFiO\n0evGPjx28oPceeDN7NJrNxq0blRkm59+WMLDfe7hri63MOruNzjy1mMBaNimMR2P34v/9bydu7vd\nyvYH/YW6LeqVK35OTg533H0tR/bqy267dKPPMYex/fatimzTrdv+tGrVgp3/ciDnnXsld91zfcFz\nTw5+gSMOP/UPvnvIyTEuuONYLj/yPvrudj0H9unI1tsXff8rfl7JfZc8x9C7315r//P+cwzjRk7j\n1PbX0W/Pm/ju6wXrjHXX3TfS67BT2LXdQfT56+Fsv0PrIs93634ALVu1YMe2+3He2Zdxz303RWXM\nWee+X3zxNcce048PxnxS5LWeeXoYe3bswZ4de3DaqRdGa38u78fDkUe14+EBmU/qcVjf8XNycrj5\n9gs54ah/sn/HU+h19EG0brN1kW0O7LoH27RsRqddTuCfF/yXf995UZHn+xx6IV06nU6PzoUV27P+\ndh1dOp1Ol06n89rw0bw+fEyZypOXl89NN47k/of68PIrpzPi9WnMnLG4yDYDHv6I7bdvwIvD+nLT\nvw/l1ptHAfDNN4t4YegUnnr2ZJ5/qS/vvzeT778r+984Ly+fG294gwcePpbhr5zJ6699wcwZi4ps\n88jDH7L9Dg156eUzuPmWw7nl3yND7Ok/8sLQyTz93Km8MOwM3n/vG77/7qdSY+bk5PCv28/g9KNu\n5NCO/el59L60bNOsyDb7dW1Pi5aN6brLuVx9wYNce2c/AFrvsBV9/taFPvv/k157XcT+3Xdjq23D\nsTr2nSn03P1CDt/rImbPmMeZF/cu8pp33n09Rxz+N9q36xKOn+LnmO7706rVNuzUdn/OO+cK7r63\n8Nhb1777dd6Lnod1YY8OPeiwa1fuvjNcwOTm5vLo43dywXlX0mHX1M2H/Iyff1J/+7LY0I59CH/P\nW+74J8ce1Z9OHY7hyD5d2W77ojd4Du66N9u23Ird2x3FxeffzG13XVbk+X7nHMv0r79d67WbNG3I\nAQftwQ/fz18vZc3G++/RozutW7eidesd6NfvbB544L6M2916683ceefdtG69Az//vJTTTutb8NyY\nMR+w664d2HXXDtxww01F9uvf/wK+/PLLjK8Zzr0XccJRl9C540kccfTBbNemRZFtDuy6J9u2bMbe\nuxzHPy64jVvuvLjI80cf2p8unfrSvfMZRdY3adqA/Q/cnTnfr/39m/yxz+qMH0gF41i5H0lRZSEB\nzXfZmiWzF/HT90vIW53HlOETadt1pyLbfD/hW1YtWwXAD5NmU7txHQAatGrID5O+Y/Vvq8nPy+fb\nT2bwl+7tyhW/Q8d2zJr5HbO//YHVq1fz/NBX6XlY0bv3hx52ME8NeQmAcZ9OpnadzWnUqD4AYz8Y\nx08/L/1D7x1g+w4tmDtrEfNnL2bN6jzefX48e/cs+h6WLlrB1xO/Y83qvCLrN928Bjt1asXrT4wF\nYM3qPH6NPqdMZs6czexvv2f16tUMfe4Veh5WtBWj52FdeWrICwB8+umk6H02oGPHXda579dfzeCb\n6bNKfI/H/LVX2T6MDDp03JratWv+4f3/rPUdf9cOOzB71ly+nz2f1avX8PIL79Ct5z5Ftul26D48\n//SbAEwcN43adWrRoOGWZY5x+JEHMOz5tSuWmUydOp+ttqpD8+Z1qL5RLj167MC773xTZJuZMxez\n+x6hQrPttnWZO28Zixf/yqyZS9hp58bUrFmdatVy6NCxOW+/Pb3M5Zz62Ty22mpLmjffIsQ+pC3v\nvFN0/5kzFrHHHi2i2PWYO3cpixf/wqxZS9hp5yZpsbfi7ZFflxpz5w6t+G7WfObMXsjq1Wt47YUP\nOKjn7kW2OejQ3Rn29HsATBk3nc3rbEr9hlvQsk1TPhs/nd9W/U5eXj7jPphG18P3BEJlIS8vXJBP\nHjedRk3qFvsM084x6zj2hjz5IgDjPp1E7Tqb0ahRfTp03GWd+57R7wRu/88D/P777wAsWrQEgIO7\n7MvnU79i6tT0iyZf+/NP8G9fFhvasQ/QvsNfmD3rB76bPZfVq9cw7PmR9Di0c5FtuvfszLNPvwbA\nhHGfU7v2ZjRsGP6fGjdpQJfu+/DkEy+v9do33vp3rrvqXtzX/lv/Edl4/716Hc6gQU8C8Mknn1Cn\nTm0aNWq01nYHHngAzz8fvoueeGIwRxxxeKmv3bRpUw49tAcDBgzM+Pza595Ra517ux+6D0OffgMI\n597N69SiQcO6mV6uiOtuOZ8brr4/42ef/LFP0QuHCsrdyv1ISpkrC2ZW08zalL6llGbzRnVYNq/w\nYnvZ/KVs3mjdTagdjt2L6e+GA2HB1/NpsXtLNqmzCdVrVKfNAW2p06ROueI3adKQOXMK78TMnbuA\nxk0aZthmXsHyvLkLaNxk7RPcH1GvSR0WzSm8I7do7s/Ua1y299CoRT2WLf6Ffz50Mg9+eAUX/+9E\namyy0Tq3T38Pc+fOp+la77MRc35I+yzmLKBJk0Y0adqo1H1LcvTRh5V52w1do8b1mDe3sCvN/LmL\naNy4aGtYoyZFt5k3dxGNmoTKqTs8O/x23hj9MCecuvbnukennVn04098O3Numcrz48IVNGq0ecFy\nw0absfDHX4ps06ZNg4ILwamfzWP+vGUsXLiC1q3rMXHCHJYuXcWqVasZM3oWC+YvL1NcgB9/XEGj\nRpsVxm64OT8uXFE09vYNCyoBUz+bWxC7Vev6TJzwA0t/XhnFnsmCBaXHbti4LgvmLilYXjh3CQ0b\nF62INWyyJQvmFt5hXzB3CQ2bbMn0L79nt73bUmfLWtSouRH7dWtPo6Zrt2T2PulARo+cWGTd3B+K\nHj9NmpZ8jpk7Nzr2mjRc576tW29Lp0678/6YYbw58ll22y10A2zVelvcnZdfHcSHH7+6zs8iyb99\nVdW4SX3mzllYsDxv7kIaR8d2wTaN6zMvfZt5P9KoSQMAbrrtIq676h7y84u2FHU/dD/mz1vEF58X\nrexVNE2bNuGHH+YULM+ZM5emTZsW2aZu3bosXbqUvLy8aJs5NG1a2PV47733YsqUibz++iu0bdu2\nYP1dd93OP/95+VqfTUqjxvWZW+zc22itc2/9tc/PTcI27s6zw+/kzdEDODHt3Nvt0H1YMG8R0z6f\nmTFuRTz2K6LK1A2pTAOczeww4L/ARsA2ZrYLcL27Z6z6mlk/oB/AQw89RL9+/dZTcauebfdqTce/\n7smDR90FwKIZC3n//rfpO+RcVq/6P+ZPm0t+3vq5q1IZ5Obm0HqX5tx78bN8NX425/6nD8de3I3H\nb3gl6aIV6NhxF1auWndrh5TPEV3PY8H8xdStV4dnht/OjOnf8cnYzwqfP/pghj0/ar3GPO2MPbnl\n5rc5+sjHaL1dfbbfoSG5Oca2LevR9/Q96Hf6s9SsWZ3tt29Abu76PYGffsbe3HLzW/Q+8hFat27A\n9js0IjfHaNmyHn1P34t+pz9NzZrVabN9Q3JysvvlMevruQy48yUeHXYNq1b+xleffUt+XtELk7Mu\n6U3emnyGPzs6q2UByK2WyxZb1qbzvkfQoUM7Bj/1P9q22Zdq1XLZu1NH9t37cFauXMWSpV9hNMYp\nf/eUJP/2UlSX7vuwaNHPfDb5K/bet33B+po1N+bCS06lT6/zEixdPCZOnMRWW23Lr7/+So8e3Rk2\n7Hm2264thx56CD/+uIiJEyfSufN+WYndq+u5BefeZ4ffyYzp3zNl4ldccPFJHHvERaW/wHpUnmMf\nOAhYv18KWVCZBjiXNRvStcDuwHsA7j7ZzNY5qtTdHwYeTi3+ifJtkJYvWErttNaA2o3rsHzBsrW2\na7R9E3r/5zgeO+kBVi5dWbB+/LMfM/7ZMDCv26U9WTa/fF2C5s1bSLNmjQuWmzZtxPx5CzNs0wSY\nAECTpo2YP2/dYwPKY/G8pdRvVjjwt37TLVhcxvewaN5SFs1dylfjZwMw+qVJGQdIp4T3EDRt2pi5\na73PBTRrnvZZNGvEvHkLqF69Wqn7rkufYw7nuWdfZscdty/T9hu6BfMX06Rpg4Llxk3rM39+0X7i\nC+YV3aZJ0/osmLeoYH+AJYuX8sYrY9h1tx0KKgu5ubkccvi+dN+37DckGjTcrMgd+YULVtCwQa0i\n29SqtTE33nwoEO6ude/yIM2ah2P2qN7tOKp36DZ3953v0zCtpaDU2A02Y8GCwpaEhQuX06Bh0f1D\n7MMKYnc7+H80ax6Ol95H70Lvo3cB4K4736VRw9JjL5y/hEZNC7sVNGxal4Xzi451WDjvpyItBo2a\n1mXhvLDN84NG8fyg8L3792tOYGFaK8WRJxzA/j068Lee16wVt2nzosfPvLnrOsektgnHXrXq1de5\n77y5C3h5WOiuNn78FPLz86lXb0vmzlnAB2M+ZcmSwhZLs7q4F60sJPm3r6rmz1tE02aFd5abNG3I\n/HlFx+nMn7+IJunbNGnAgnk/clivA+l+yL4c3HVvatTYmFqbbcr9A67n3jufYKsWTXjvo6ei12zA\nqA+epFvnv/Hjj0uoCCZNGg/AuHHjad68cIxQs2ZNmTu3aCvokiVLqFOnDrm5ueTl5dGsWTPmzg13\n2FesKDxfjBjxBvfffy9169alU6e9OfzwnhxySHdq1KjB5ptvzuDBTxR53QXzF9G02Ll3wVrn3kVr\nn5/nLY72Lzz3jnhlNLvstgNLf17BVi0aM+rDxwq2f2vMo/TYvx+LfgznjKSPfaA9laCysCHOs7Da\n3YtfzaoS8AfNmfI9dVvUZ4vmW5JbPZd2h7dn2sipRbap3WQLTnzkNJ7tP5jF3xY9sW5at1bBNn/p\n3o7JwyaUK/6E8Z/RslULtm7RjOrVq3N0n5689mrR4+q1V9/m+BNC1pSOu+/C8mUrWLBgUaaXK7ev\nJnxH05YNaLR1XapVz+WAozvw4Wuflb4j8PPC5Sya8zPNWocvll33b8N3X627EtOq1TZs3aI51atX\np88xh/HaqyOLPP/aqyM5/oQwMHP33XeN3uePjB8/pdR9MzEzeh/dk6HPVZyWjqRNnvAV27RsRvOt\nG1G9ejV69T6Qt14bW2Sbt14fy9HHdQOgfce2LF/2Kz8u/Imam9Rg01qhD3HNTWrQ+aCOfDWtcKDj\nvgfsxozp36918VGSHXdszHff/cycOUtZ/XseI0Z8yf4HFB2At3z5b6z+PXQJeOH5KezWoTm1am0M\nwJIlvwIwf95y3n57Oocc2pay2nGnJnz/3U+FsV+fxgEHbFdkmyKxh05mtw5bZYi9jFEjv+aQnjtS\nmqkTZtCiZWOabd2A6tWrcWjvfXjntaKZfN55fRxHHLc/AO06bseKZStZtDB8+W5ZL3SRbNysHl0P\n34NXhoYWhH0P3pXTLzyCs//6b35b9ftacVuln2PWceydcOJRAHQsOPYWMWH8lHXu+8rwt+jcOYyZ\naNV6GzaqXp3Fi3/i7ZHvs+OObahZswa5uSELkvvaNyCS/NtXVZMmTGObllux1dZNqF69Gkcc3YU3\nXi/aCvXma6P563GhgrZbxx1ZvvwXFi5cwo3X/o92bXqy2196ccbfruCD98dxzun/4ssvZtJ2m27s\n9pde7PaXXsyb+yMH7XNihakoAAUDkocNe5mTTz4RgD322INly5azYMHa31nvvvseRx8dvotOOeUk\nXn45fIc0bFhYierYsSM5OTksWbKEK664iubNt2GbbVpz7LEn8M4773LSSUUzTRWeextH596DePO1\nD4ps8+brY+lzXHcgnHtXLPuFHxcuyXju/XraLL6aNoudtj2c3Xc8ht13PIb5cxfRdd/TCioKkPyx\nD0wr218pWZVpzEJZWxa+MLPjgVwzaw1cAKyd80/KJD8vn+FXP0/fJ88hJzeH8c9+zI/TF7DHiZ0A\n+OTJsRx8YXc2rbMpR9zUp2Cf+w79LwAnPnwam9TZlPw1ebx81VB+W16+Li95eXlcfOF1vPzK4+Tm\n5jDoief58stvOO304wB4dMDTvPnGe3Trvj9Tp73DqpW/cWa/Swv2f3zQXey77x7UrbcF02d8wI03\n3s2gx4eW6/3fe/Ez3Pry+eTk5jBi0Id89+V8ep62LwCvPjqGLRpuzgNjLmOTzWrg+U7vcw+k727X\ns3LFb9x7ybNcMfBUqm+Uy/xvF3PbWYPXGevvF17NK68NJjcnlyeeeJYvp03n9DPCiXvAI0/yxoh3\n6Nb9AL74cgwrV63izNMvKfiMMu0LcHivbtxx5/XUq78lL778GJ9NmcbhPU8CYJ9992DOnHnM/vb7\ncvxFirrkohf49NPvWPrzSg7Y707OO39/evfJnG4vG9Z3/Ly8PK685C6eGvZfcnNyeGbw60z/ajYn\n9Q29GAcPHM6oNz/moK578uGUp1i16v/4+9m3AFC/wRY8+tSNAFSrlstLz73Ne28XpgztdfSBDBta\nvhtI1arlcMWVXTjrjOfIy3eOPHInWrWuz3PPTALgmGN3ZdasJVx1+WuYGS1b1eO6G3oU7H9R/2Es\nXbqKatVzuPKqLmy+edmz9FWrlsMVV3XjzNOfJi8/nyOPaker1vV59plQ4f/rsbsxa+Zirrz8Fcyg\nZav6XH/joQX7/73/CyF2tRyuvLpbmWLn5eVz/SUDGDDsX+Tm5PDC4FHM+OoHju0bWuSeGfgW7785\ngc5d2zPDPgclAAAgAElEQVRyyv2sWvV/XHF2YcaWe4f8gzpbbsaa1Xlcd9EjrFgWWjmv/u/pbLRx\ndR57ObQqTBk3nWsuLExte9GF/2L4q4PIzc1l0OPP8eWX33D6GSHTzIBHhvDGiHfp1v0APv/yfVau\nXMVZZ/wjKm9exn0Bnnj8OR58+DbGTXyT1b+v5ozTQ+aWpUuXc8/dAxjz4fCCAZdOYT/xIp9/Qn/7\nstjQjn0If8/LL76N54bdQ05uLk8PHs7XX87ilNPCxeITj77IyDfHcnC3Tnz62UusWvUbF5x1fSmv\nmh3ZeP+vvz6CQw7pwYwZX7Fy5SpOPfX0gudee204p59+JvPnz+fSS6/gmWeGcOON1zFp0mQefTQM\nWj766N6cfXY/1qzJY9WqVRx77Illjp2Xl8cVl9zJ08Nuj869rzH9q9mc3Dck4Bg08GVGvfkRB3Xd\nk4+mPMOqVb/x97P/DYRz78CnbgZS596RvPt22dI1J33sA6+V+UNKUH6C2Y3Ky8qSRcDMNgGuBLoC\nBrwJ3ODuv5UhRpVvgbis+QWJxL3lh3vYtEbLRGID/PrbTA7aNHOO5TiM+vUBam60VWLxV/3+PXkM\nSSx+LickHr/JZp1L3zBL5q14n9/zMmcJicNGuX1ZnT8okdjVc06mzWZHJRIb4OsVL7LJxi0Si7/y\n/2Yn/rdP+thLOn79Wh0Ti7/ol3GJv3+z6onEdg9ZQxtvtm8i8eevGJP4sQ+V4yp8RMfjyn193GPc\n04m8tzK1LLj7SkJl4UozywU2LWNFQURERERE0mxwYxbM7Ckz29zMNgWmAtPM7B/ZLZqIiIiIyIan\nMo1ZKOsA57buvhw4AhgBbAOclLVSiYiIiIhsoPL/wCMpZR3gXN1CB7wjgPvcfbWZVfmxCCIiIiIi\n5bUhzrPwEDAbmAKMNrOtAU1dKSIiIiJSTpVpzEJZBzjfA9yTtuo7MzsgO0USEREREdlweeVI2gSU\nfYBzbTO7w8zGR4/bgU2zXDYREREREUlQWQc4DwRWAMdEj+XAY9kqlIiIiIjIhirfrdyPpJR1zEJL\nd++dtnydmU3ORoFERERERDZk+ZUoTVBZWxZWmdk+qQUz6wSsyk6RREREREQ2XI6V+5GUsrYsnA08\nYWa1CdNo/wT8LVuFEhERERHZUFWmbEjmXvZ2EDPbHCCaoC0WZtbP3R+OK57iK35FiV+V37viK77i\n69yj+Iq/IXtqp1PL3RHp+KmPlVrDMLPuwN1ALjDA3W9Zx3YdgY+AY939+RJfs6TKgpldVNLO7n5H\naYX+s8xsvLt3yHYcxVf8iha/Kr93xVd8xde5R/EVf0P25E59y11ZOHHqwBIrC2aWC0wHugBzgHHA\nce4+LcN2I4HfgIGlVRZK64a0WfTTYa3OUpVoaIaIiIiISMWQpRmcdwdmuPssADN7BugFTCu23fnA\nC0DHsrxoiZUFd78uCvYE0N/dl0bLWwC3l6f0IiIiIiLyx8YsmFk/oF/aqoeLddlqCvyQtjwH2KPY\nazQFjgQOYH1UFtLsnKooALj7z2a2axn3/bOS7rem+IpfFWMrvuIrftWNX5Xfu+Irfiz+SPecqGLw\nZz+fu4BL3T3frGwVljINcDazKcD+7v5ztLwl8L677/QnCisiIiIiUuUMbHtGuesLfac9UtqYhb2A\na929W7R8OYC7/zttm28pHFpQD1gJ9HP3Yet63bK2LNwOfGRmQ6PlPsBNZdxXREREREQi+dl52XFA\nazPbBpgLHAscn76Bu2+T+t3MHgdeLamiAGWsLLj7IDMbDxwYrTqq+MhqEREREREpXTYGOLv7GjM7\nD3iTkDp1oLt/YWZnRc8/+Edet6wtC0SVA1UQRERERET+hGxNyuburwOvF1uXsZLg7n8ry2vm/Pli\nrT9mlmNmeyddjiRFuW9FRERkAxd1F5EqyP/AIykVqrLg7vnA/5IuB4CZ7W1mx5vZyalHTKG/MbP/\nmFnbmOIVYWa5ZvZuErGj+HWTil1RmFlDM3vUzEZEy23N7LQY4+9jZqdGv9eval9m0THQxMy2Sj1i\njH2DmXUxs03jillRmNmosqzbkJlZTTNrk2D8TczsajN7JFpubWY9Y4ptZnaimf0rWt7KzHaPI3ax\ncmwSc8jno7hV6n9dQstCeR9JKXM3pBiNMrPewItellRNWWBmg4GWwGQgL1rtwKAYwrcjDEgZYGY5\nwEDgGXdfHkNs3D3PzPLNrLa7L4sjZjEfm9lk4DFgRFL/Awl7nPD+r4yWpwPPAo9mO7CZXQN0ANpE\nZagOPAl0iiH2vZRw88TdL4ihDOcD1wALKRx/5sDO2Y4dmQUcB9xjZiuAMcBod385m0GjWCV99ptn\nMXYNYBOgXjSHT+obcXNCzvBYmFkn4Fpga8J3owHu7tvGFP8w4L/ARsA2ZrYLcL27Hx5H/MhjwARg\nr2h5LjAUeDWG2PcTjrkDgeuBFZRj0qg/K+rVMACoBWxlZu2AM939nCyHzjGzK4DtzOyi4k+6+x1Z\njg9UiP//PYF7gR0Ix0Au8Gs2zz1Jy9IA56yoiJWFM4GLgDVm9huF/7Bx/sN0ANomcaHq7iuAR4BH\nzKwz8BRwp5k9D9zg7jNiKMYvwFQzGwn8mla2rF+sAdsBBwN9CRdMzwGPu/v0GGJXFPXc/bm0lGdr\nzCyvtJ3WkyOBXYGJUex5ZrZZybusN+Ojn52AtoQKEoTsa3GNl+oPtHH3JTHFK8LdHwMeM7NGwDHA\nJYQJeLL6N3D3zSC0bADzgcGEc+8JQONsxiac8y8EmhAuVFOVheXAfVmOne5R4O9RGeI63tJdS5h9\n9T0Ad5+cQKteS3f/q5kdF5VhpZU1Efuft4e7tzezSVHsn81so5hiA9wJdAOGR/GnmNl+McQ9FjiC\ncD0W17k2k6T//+8jfBZDCddgJxOuB6QCqHCVhdSXVsI+BxoRvjRjFY1ZOBQ4FWhBSFs7BNiXMGAl\njoPnxegRu6iCNhIYaWYHEO5qnxPN9XGZu3+URLli9mvUHcuh4I5LXK08v7u7m1kqdmzdYdz9iSjm\n2cA+7r4mWn6QcIc9Dj8Q32e9FjMbQKgoLSS856OJKm4xOdzd26UtPxAde//KVkB3vxu428zOd/d7\nsxWnDJa5+4gE469292XFrs3jvmH1u5nVpPDc0xL4v5hir46+/1Kx6xPzzVd3/6HY5x/HRXN3d7/V\nzDZ29+tjiLcuSf//4+4zzCzX3fMIN00mAZcnWaZsykY2pGypcJUFgKgpujVQI7XO3UfHEPcVwolq\nM2CamX1K2okypubgb4B3gf+4+4dp65+P6S5HwUVbEqKL5BOBkwgXTOcT7vTsQrjjUBX6z19EeM8t\nzWwsUJ9w0RiH58zsIaCOmZ1BaOF5JKbYKVsQuqD8FC3XitZlTVrz/yzgPTN7jaLHfixdAYC6hOb3\npYT3vzhVaYrJr2Z2AvAM4Vx4HGmti9nk7vdGXUFakPbd5O5xdP8EeNfM/kO4UZL+t4+rsvaFmR0P\n5JpZa+AC4MNS9lnfrgHeAJqb2RBCK9/fYop9D/AS0MDMbiKc866KKTbAD9H/n5tZdUIr45cxxD0V\nuJvQupBkZSHp//+VUUvSZDO7jXCztkKNq13fKlM3pDLN4BwnMzudcJA2I4wZ2BP4yN0PLHHH9RO7\nc0nPu/v7MZShlrv/ku04pZThWzLc0Yqj76KZTSd0gXjM3ecUe+5Sd78122WoCMysGmHcgAFfu/vq\nGGN3AbpGsd9095FxxY7in0rokvFuVIb9CDNSZq0SG43VWCd3vy5bsTMxsx0IXSL+DuS6e7OY4rYg\nXLh0IpwDxgIXuvvsGGJnHCsWU/dHLHNiB4/juyeKvwlhnFLBsUfoevpbHPHTylGX8L1rwMfuvjjG\n2NsDB0WxR7l7HBfrqdj1CP/7B0fx3wL6Z7tLopk9Teh20wSYmf4U4f8vlvFSFeD/f2vCDcKNCOe9\n2sD9MXW9TsRdrc8p9wX4hd/cn0hzREWsLEwlDGj62N13iU4eN7v7UTGW4VZ3v7S0dVmKXQM4DfgL\nRVtW+mY7dloZ0jMS1SD0Gd/S3bPWFSEttlXRQc0FzOxcYIi7L42WtwCOc/f7Y4i9DTA/dYESdUlo\nGMfFYrFyNAL2iBY/cfcFccZPioXMM/sSKkh1gI+BMe4+MNGCxcDMviShsWIVTdQdZ9O4ElukxT0S\neCeV3MLM6gD7lza763qKvWWG1SvivFGSlOh89yawVu8Fd/8uhvg5wNHu/ly2Y5VQhk2BVVFWzNQx\nsLG7r0yqTNl2R6vyVxYumpFMZaEiNvH8lnahsrG7f0W4wxqnLhnW9Ygp9mDCeIluwPuEFpYVMcUG\nwN2XpD3muvtdhHEUcahnIXXs62b2TuoRU+yK4oxURQHCQD/gjJhiD6Vo62hetC5u/0dohv6ZkCUk\nli54ZvaKmQ0v9hhsZv2jiny2dSeMUejt7ju4+6lxVhTMrIaZnWtm95vZwNQjpvCpsWKJsORTFj9l\nZptHF01TCV1h/xFX/Mg16VnwovNQia1u69FEYBEh+9s30e+zzWyime2W7eBm9kRUOUotbxHX/767\nL3D3du7+XfFHTPHzgX/GEasEowhZ0VJqAm8nVJZYaJ6FP2dOdMAOIwxyfRmI5YAxs7Ojlo02ZvZZ\n2uNbwsk7Dq3c/WpCyrAnCBfpe5Syz3plZu3THh0sTBMe1/iWIcBXhLEJ1wGzgXExxa4oci1tlF10\nhyWurCDV3P331EL0e5wZSVJdEUcT7rRdF/28NqbwswjZwB6JHssJlfXtiGHshrufR8iG097MeppZ\ng2zHLCbJmxX1CBfIb6ZX1mKKDSFl8ZuE7iAQLlovjDF+26gl4QhgBOEceFKM8SHzNUFc5/6RwCHu\nXs/d6xJu0L0KnENIq5ptO2e4SbNrtoNayPiHmU0tdt0x1cw+y3b8NG+b2SVm1tzMtkw9YoxfI70L\ndvR73HNexErzLPwJ7n5k9Ou1UR+62oQBV3F4inCS/jdwWdr6Fe7+U+Zd1rtUk+tSM9sRWADEfcFw\ne9rvawgX7MfEFLuuuz9qZv2jMSLvm1lVqyy8ATxrYaAxhNSScR0Di8zscHcfDmBmvYDY+ixH+lPY\nFfGAVFfEmGLv7e7ped1fMbNx7t7RzL7IdnAz60PItf8eoc/yvWb2D3d/PtuxI63cvY+Z9XL3J8zs\nKeLLRHVtTHHWJcmUxQDVLQysPQK4z91XW5SVLEbjzewOCidHPZeQSjMOe7p7QQuqu79lZv919zPN\nbOMY4ueY2RZRJSHVLSqOa6T+0c9YJr8rwV+jn+emrXMglnkWCMkV2qcGVJtZB2BVTLETUZkGOFe4\nygKEGWSB1u7+mIX0aU2Bb7MdN2p+XQYcF93NbUj4jGpZGHj8fbbLADwc9VG/ipARpxZwdQxxC7j7\nAXHGKyZVWZpvZocC84A4725UBJcSKghnR8sjCZMFxeEsYIiZ3Ue4WP2BkO86Tr+5+29mVtAV0eKb\n1baWmW2VOtYtzN5cK3ru93Xvtt5cBXR09x+j+PUJTfFxVRYSu1kRRwKJUiSZshjgIcKNmSnAaAsD\nPmMds0DIPnc1hXOcjKToxWM2zTezSwmZuCBcvC6MvovjuK66HfjIzIYSzn1HAzdlO6i7z49+xtKD\nooRyJJ1p8EJgqJnNi5YbU1iB2SApdeqfYAnOIJtWhvMId7lim8XVis7ceGr0M3V3J7Zc91FZahP6\nqab6ib9PmEk0ji/OG6P4FxNmc9yckBmhyoj6jz4QPeKOPRPY08xqRctJZOYq3hXxZ2Lqikj4v/vA\nzGYSLhi2IczzsSkQR0rhnFRFIbKEeLuLpm5WXE3hzYqsJzaAtWaR3ohw7o9zBtckUxbj7vcQ0oem\nfGdhrpnYuPuvFG1Vj9PxhO+d1GDqsdG6XGJo2Xb3QWY2njCDNMBR7p71ySAtwdnTi5Uj400hjy91\n8VTgQUIXyOWEYzHrrblJqkwtCxUxG9Jkohlk3X3XaN1ncaUPi+LNIMwmGdssrlaYurENoQtGqq/u\nYcCn7n5ijGV5gTDYMHVxdBLQLs6MVFWRmT3n7sdE42Yypa7NZmX1RHd/slilNT12XPMMFGEhnXFt\n4I30sRRZjrkxsH20+HWcqSst5DnfGXg6WvVX4LM4MrFVJNGYnV6ErimxXbxasimLE7tJY2Z3ufuF\nVjjXUBEezxxDiTCzzd19+br658fVBdnWMXt6HFkIo/jpEyLWIKSwnejusVSYo7EbywnjFiFUFOu4\ne5844ifhpm3OK/cF+JXf3pdIc0SFa1kgwRlk08Q+i6tHedzNbDTQ3t1XRMvXAq/FWRagpbv3Tlu+\nLqrEZU10oirp7kosudYTlmTf1dRxVhFmUI+9K6KZHeju75hZ8QpxSzPD3WOZ0dzd/2FmvSlsSX3Y\n3V+KIzaEjECE8SFN3L2HmbUF9nL3R+MqAxTM5D4suokSS2XBQrarc4B9COeiMWb2YIyVxYGEmzSp\nu+gnEVrX47hJMzj6+d8YYmVkZtsBl7D2pHzZzvP/FOGcO4Gi30FGvH32Y589PZ27n5++HLXuPrOO\nzbNhR3dvm7b8rpllvWUnSfmoG9KfURFmkE1yFteGFO0b/Xu0Lk6rzGwfd/8AwMw6kf2BRuOjn52A\nthT2me0DbNAnjBR3nx/1z3087nEj7v5QFHu5u98ZZ+ziEuqK2Bl4h9CSB4UXDakLhlgqCwDu/gLw\nQlzxinmc8JlfGS1PJxyLWa8sFKuo5RD+B+KckGwQIfNT6g7r8YSL6LjubMZ+kybF3SdEx38/dz8h\njpgZDCV0QxlA4aR8WefuPaOWrM4xjUtcl8RmT19XeQjdMOMy0cz2dPePAcxsDwqvCzZI+RWrY0+J\nKmJl4XfCgL7lhIuFf3nMM8gC30ePjYg5bSThC+tTM0vdTTyC8AUep7OBJ6JmcQi57k/JZsAoTSxm\ndjawj7uviZYfJL5sLIlz9zwzyzez2jGNESke+zgg0coCcCRRV0QAd59nZllt8XD3VDfAs4HeFL27\nmfVTegn9llOzuMbVbz/JjECHpf2eysLWK6bYkPydzSRu0hSIjv+tzWyjuLr8FbPG3WMfpwXhAItu\nDu6URPzI8YQZpO+mcPb04+MKXqwLWg7hpl2cc+zsBnxoZqkK21bA16luuXF2RY9LBRsFUKKKWFlo\nAFxAuFAYSAKTcqR1CYp9kKe732RhUqB9o1WnuvukuOJHvgRuA1oSZpFdRqi0xJHzeQvCoOZUP9Fa\n0bqq5BdgqpmNJO3OUkxdscZGmZCeLRZ7YgyxU5LsijgMWEo4/6Tuamf9lO7uFaL7FwlmBHL3U0vf\nKquSvrOZfpPGCOfAv8UYH0Kr+lgL81ukH/9xtKq/YmbnAC9RtEU/rrTlE82so7snkqrb3WdTQuXY\nzC53939nsQjpXdDWAN+5+5wsxiuue4yxKgR1Q/oT3P0qM7sa6ErICnRfNPDl0ShTS9ZFKQMHE6Xs\nNLPFwMnuHsvI/OjCLM6Ls+JepvCCaW7MsW8BJlmYY8MIg/2ui7kMSXuRGLu9FLNL9PP6tHVOYYaQ\nOCTZFbGZu1e5L600iWUEMrNmhC5Aqe5mY4D+MV6wpN/ZdGBrYryz6e6TgXZmtnm0HHfaVICZ0SOH\n+McvpVqv02etjnPMwB7ACWb2HaGilGrVqyh3tPsQ5oDKlkOKJ1Iws1vjSq6QdOrYJKhl4U+K7iou\nIOT4XkO4s/y8mY109zimJH8YuMjd3wUws/0JFyt7xxC7Ikjsgika0DqCwlmrL3X3BUmUJSkeJsPa\niJCRxwlZWWLpFhD3WIl1lOG/ZtaFZLoifmhmO7l7XDO2VxhmlkPIgtKZZDICPUYYbJoaI3BitK5L\nTPG7E75rUq26owk3TbJqXRnILJrEPc5MZGmt6puHRY9r9u6KkOe/W8LxS5Pt29BdCHP8pOuRYZ2s\nJ5UpdWqFqyyYWX/CJFCLCQOd/uFhJssc4BsgjsrCpqmKAoC7v5dQVqakJHbBZGbXR6niXo6Wc8xs\nSIKD7mJnZocQJmgqyPVvZme6+4gYYtclpG9MZYT5gJC+MZY0wtEgy7ejSktsY5WsMF1tNeBUM5tF\n6ApR0e4uZo2755vZ/zykrE4iv3l9d38sbflxM7swxvhHAKcTWvWM0Lr8iLvfW+Jef17qDr6z9gVh\nrPceLcya+1iqTGa2DOjr7rHM4hy16rclVFqB+PL8u/t3ZtaewnPf2Ji7X5YmK/8L0TjBc4BtzSy9\nq/FmhHETkiUa4PznbEmYDKVIk1T0RRZXSslZUVeoVDq5Ewl9OTdoFeSCqXmqb6aFfPfPAXGP2Uja\nHcAB7j4DwMxaEtLnZr2yQMjEMZowyBdCru9ngYNjiJ3kAO8k0tVWRKOi1K0vRulL47TEzE6kcI6J\n4wiT0sXlNMK8Dr9C6IIBfERhdqSsSLub/wSh29XSaHkLwqzCcRoInOPuY6Iy7EOoPGT93B9lQduf\nUFl4nXBX+wNC0o+sM7N/EVq1Ul1AHzOzoe5+YxzxyyBbLQtPEb5b/k3RNMUrYhwvIhVchZuUrSKI\nTtLXUbTv7LWpk/iGysy2Lun5OPoURinshhBmczwAGJF0Ks+4mdk4d++YtmyEifk6lrDb+or9ubvv\nWGzdVHePLUuImb1MyIaUxADvKi3KyrQpIXXlKmLMxhSdf+4F9iLctPgQON/df8h27Cj+VKCjR/Mq\nWJh3YVxc//tmNilq1SlxXQJlmOju7WOIPRVoB0xy93YW5vx40t1j6YZmZl8TJh9N/f1rApPdvU0c\n8UtjZle4+81ZjpE+v009YDN3z9r8NlXdZc0vKPcF+C0/3KNJ2SqQlkBzwiCvaoSZDA8khrsrSUpy\ngFHU/JtyN6EbzljgfTNrX8Gag7NtvJm9TmhVccLdrnEW5aH37E4Q9paZHRvFhjC49c0sxsskyQHe\nVVrCWZmuB05x958BLMyo+1/CAPc4PAZ8YkXTVsc5GV2OmW1R7P3H/R39fpRc4GnCueevhDmH2kPW\ns6L9FvUgWBONmfiR8D0cl3mE7k+pLGgbE2OCj3W1LLl7X4AYKgrF57fZiOzPb1Ol5buyIVV2Qwgz\nSX5O5RqDUpkVb27/mdAcfTvxZ+NJWg1gIWGgKcAioCYhD322Jwg7A7iQwi54uYR0mmcS0x3mJAd4\nS8HkaAWzGLv7sJhC75y6UIaQMtPMYrur7u53mNl7hPcO8aetvh34yMxSue37ADfFGB/CnX0I45bS\n7UoWz8NR6+lnFmYNfoQwm/IvhG5gcVkGfGEhZbUTBvx+amb3QCwtmzun915w95/j/P8ngfltqrrK\n1LFHlYXMFrn7K0kXoiqpCFl4KgovJd98NvNtl3Zn2cz+ku0UwkkO8K7qzOx+oBWF4wbOMrMu7n5u\nDOETv7OeZNpqdx9kZuMpvCA/yt1jnb2+tPOwmZ3i0QSa6zmum9nu0cXyg2b2BrC5u8cxt0/KS9Ej\n5b0YY0Py//9Jzm9TJVWmO9GqLGR2jZkNAEZRdHIYdY3Isqif6s1AE3fvYWZtgb3cPc7uABVdtvNt\nl2QwkO3+y0kO8K7qDgR2SA1ujrpGxJUZqSLcWU9UVDmItYJQTv2B9V5ZiBRMiuZhgrJYlVYJMrMX\n3L13Sdv8SbcDH1uYV8oIXUDj/P9Pcn6bKkktC5XfqYQuENUprPxlu/uHBI8T+kteGS1PJ2TjUWWh\nUJIdHeOIvSJVUYjMAmLL917FzQC2AlLjl5pH67KuItxZl1Jl8/iv6JOiZXVyuOj/fwZh3IATusHF\n1g3Lk53fpkpSy0Ll17GiZECoguq5+3NmdjmAu68xs7ykC1XBJHk/Io7YSQ7wruo2A740s0+j5Y6E\nv8dwAHc/PJvBK8Gd9aoum8d/RZ8ULavnPgtzTKXP8/GQmcUxz0di89tUdZpnofL70Mza6q5WIn61\nMDFYqhvEnoSBZ1Ko8qRQ+GOSHOBd1f0r6QJIhZa1c0+S2fgqiETm+YBE57ep0ipRXUGVhXXYE5hs\nZt9SxWZxrQAuAoYDLc1sLFCf0HdTCg0tfZOsyXpWotIGeEtWjQdWRSkstyN0xxzh7qsTLpdUDFV5\nRt9s36QxwvwmKXkxxEz3CzA1ygal+W1ioJaFyq970gWoqtx9opl1JvSZNELazCpxoWJm91LCzYbU\nSTub+bbN7Hp3/1faci4wyN1PiGLvma3YaTFvA24kTAr2BmF+k7+7+5PZji2MBvaNcry/BYwj5No/\nIdFSSSzM7KIMq5cBE9x9srufF3eZ4hJl/1nl7vnRcg5Qw91XRptcmuUiJD3Ph+a3iZkGOFdyag5N\njpltQmhd2NrdzzCz1mbWxt1fTbpsMRgf/exEmGPi2Wi5D/H1426eSs1qZhsTxg3EmWseoKu7/9PM\njgRmA0cRLmJVWcg+c/eVZnYacL+732ZmU5IulMSmQ/RIpQ7vCXxGSKE71N1vS6xk2TcKOJhwhx1g\nE0KFeW8Ad38rm8GTnuejAmSDqnI0wFnkj3uMMCHPXtHyXEK3mw2+spA6WZvZ2cA+7r4mWn4QGBNT\nMfoCQ6IB5gcAr7v7XTHFTkmdlw4Fhrr7sjBnk8TAzGwvQkvCadG6nATLI/FqBrR391+gYFbf14D9\nCOflDbmyUCP1vgHc/Zfo5lVskpznowyymg2qKqpM3ZD0JSAVTcvo7tVqgKgJuKpdKW4BpM+UXCta\nlzVm1t7M2hNm8Lyb0PXkG2B0tD5Or5rZV8BuwCgzqw/8FnMZqqr+wOXAS+7+hZltC7ybcJkkPg1I\nm1uIcB5u6O6riq3fEP2afq4zs90IXSElqESXtpWD/4FHUtSyIBXN72ZWk8JsSC3Z8L+kirsFmGRm\n7xIqSvsB12Y55u3Fln8mdIW6nfC3OHCtPbLE3S+Lxi0si7J0rAR6pZ6PZhRWer8scPfRhC5fqeVZ\nQMEARzO7193PT6JsEoshhH7zL0fLhwFPRf35N/TsgBcCQ81sHuG824hw00QkKypTy4J5ZRphIRu8\naPBADqIAAAzJSURBVFKYqwgXqm8R+u//zd3fS7JccTOzRoRJigA+cfcFSZanIjGzie4ed2uHoM++\nKjCzDoTzLsBYdx9f0vYbEjOrTkiuAVUouUZZmNkkd9816XJsSPrW61/uC/CBi+9OpKeFWhakojmF\n0Ef2ecLMvf3dfXGyRYqHmW3v7l+lNYX/EP1sYmZNov6s2S5Df8K4kRXAI0B74LJsD+4rp6rWLU0k\nFmZ2D/CMu9+ddFnikprsMYPtzEyTQBbKdjaoKkcDnEX+uEeBfYEuQEtCd5zRVeTL6yKgH4Vdf1KM\n+LoC9XX3u82sG1AXOAkYTGjlqSjUHCqSHROAq8ysDfASoeKwobcsHFbCcxv8JJBmNpWSU3bvHP2s\nSN8BEjNVFqRCcfd3zWw00JGQjecs4C+EQbcbNHfvF/16CHAOIYWeEzIhPRBTMVJ37Q8hzK/whSkV\nkRTS/8IGLMrI9oSZbQn0Bm41s63cvXXCRcsaTQJJz+jnudHPwdFPza2SZZVpzIIqC1KhmNkoYFPC\nNPdjgI7u/mOypYrdE8By4J5o+XhgEHBMDLEnmNlbwDbA5Wa2GRWvtXR20gXY0JlZLQjpI4s9tcFX\n2gWAVoTZu7cGvky4LLGI5pXpDbQg7drI3a9PqkxxSM0rFSWOSB+TcJmZTQQuS6ZkG75KVFdQZUEq\nnM8IKTN3JMwcutTMPopS91UVO7p727Tld80srkwkpwG7ANUJkzPVAx6PKTZQMMjwbEIWKID3gQdT\ngw3dfV19jOVPMrOdCBXTLcOiLQJOcffPAdz98QSLJ1kWZSE7EpgJPAPc4O5Lky1VbF4mmq2aqpeB\nD8Lx3sndx0YLe6P0+lmllgWRP8jd/w4Q3dH+G2GwbSNg4wSLFbeJZranu38MYGZ7UDi7c7b1JeTa\nbwZMBvYktPLcG1N8CF2uqgP3R8snRetOj7EMVdVDwEXu/i6Ame0PPEw0i61s8GYS/tbbEs65O0eD\nfEeXvNsGoZm7d0+6EAk6DRhoZrUJ3Q1/JnwfSJZkKxmpmXUntALnAgPc/ZZiz59AGLBuhGQmZ7v7\nlJJeU5UFqVDM7DzCAOfdCN1NBhLf7MWJShtoVh340My+j5a3Br6KqRj9CeNFPnb3A8xse+DmmGKn\ndHT3dmnL75hZiScyWW82TVUUANz9vSjHvlQN+cA7rH2zILZ5VhL0oZnt5O5Tky5IEtx9AtAuqizg\n7ssSLtIGLxv9e80sF/gfIUnMHGCcmQ139/TeCd8Cnd39ZzPrQbghtMfar1ZIlQWpaGoAdwAT3H1N\n0oWJWc/SN8m639z9NzPDzDaOUrm2KX239SrPzFq6+0yAaBbhvJjLUFXNMrOrKRzkeCIhhbFUDReQ\n/M2CWKXdpKnG/7d3t6GWlVUAx/9LK6kwp6wkfCmtwZCQslGnlEAj0EBsMMkkDRuwKQYFoQiKxpdP\nihWJlU1paW+jH9ImSkVosHF8QceGSksZBWukTzY5Nr7kzFl92Ps4Zy577txzuXs/95z9/w2be55z\n9t1nMXA5Z+31POuBiyLiaappSAHksBvQtKuThDXU0z8j4l7gSpOG9gzaKS2cBGytN9QkItZRbWr6\nWrKQmfePnP8g1c2BWZksaFHJzGtLx1DKcKFZYdsiYglwB3BPRGwHuo7rK1TrNIZfUt8D9L1jSVe+\nAFzBnnaRG3EqQp8shpsFXRu9SfNWqso2VDuZ92W9BlRV/L+yp5HGBVTTgF0j1pKWZiEdzp49mqCq\nLsxWNVgJ3Lm/i5osSHpNZq6oH14eERuAQ4C7Og5jE9Xc+Y9TfVjfTTUVQi3LzO3AJfVdxkFmvlA6\nJnVqMdws6NRIN6BLqdZF/ZqqqvAzqo0pu1yvVdJ7M/OckfEVEbGlWDQ9MJ8FzhFxMdV+TENrM3Pt\nfN4/Ik6jShZO3d+5JguSGmXmvYXe+haq1rFX1ePzqT64zy0UT29ExIlUdxgPrsfPU23Ut7loYOrE\nIrlZUMpKYHlm7gSIiKvpvrlDSS9FxKmZeR9ARJwC9KkLYedyHrWFOjGYLTl4FjhyZHxE/dxeIuJ4\n4MfAmZn53P7e12RB0mJTsnVs390IfDkzNwJExKlUUxF6MW9bexS8WVBKsPfaqN30axPCL1FtyDfs\nhvRvqo6EaklLrVMfBpZGxNFUScJ5VDfcXhMRR1FV0C7IzCfnclGTBUmLTcnWsX23e5goAGTmfRHR\nt0YD6qefAA9FxO31+FNUyXMvZOYWqm5Ib6nHOwqHNPXa6IaUmbvqrpJ3U7VOvSkzH4uIVfXrNwDf\nBA4Fvh8RALsyc9ls141sq9GrJI1hRuvYY4G9WsfOqDZoAUXECfXDC4E3Ar+i+r//DNWi18tKxSZ1\npf47GM7f3piZfyoZTxci4nOZ+fOIaPwbz8xvdx1TX5x18Oqxv4D/9oXri1S7rCxIWiwWQ+vYvvrW\njPGakcfeUVIvZOajwKOl4+jYcB+Vg4tG0UNtVBbaYrIgaVFYJK1jeykzT5vLeRHx+cy8ue14JHUj\nM39Yb+S1IzO/UzqePpmkmT0HlA5AkjQxLi0dgKSFlZm7gc+WjqNvBvM4SrGyIEmaqz51h5H6ZFNE\nXA/cCuwcPllPzVILWtrBuRUmC5KkuZqcTzdJ4/hg/fPKkecSOL1ALFpkTBYkSXNlZUGaQnNdt6SF\nM59N2UpxzYIkaa42lQ5A0sKLiMMi4saIuLMeHxcRK0vHNc1csyBJmjj76LX+PLA5M7dk5uquY5LU\niZ9SbUz39Xr8JNX6hd5sTNe1gZUFSdIEWgasAg6vjy8CZwA/ioivlgxMUqvenpm3Ud/AzsxdwO6y\nIU23QebYRylWFiRJQ0cAJ2TmfwEiYg3wO+BjwGbgmoKxSWrPzog4lLqJQUQsp6oqqiWTtGbBZEGS\nNPRO4JWR8avAYZn5UkS8so/fkTT5LgPWA8dExCbgHcCny4Y03SZpGpLJgiRp6BfAQxHxm3p8FvDL\niHgz8Hi5sCS17HHgduBF4AXgDqp1C2rJJCULMUnbTUuS2hURy4BT6uGmzHykZDyS2hcRtwE7qG4Y\nAJwPLMnMc8tFNd0+8qaVY38Bf+DFG4u0r7ayIEkCICKuA9Zl5ndLxyKpUx/IzONGxhsiwmpiiyap\nsmA3JEnS0GbgGxHxVERcW1cZJE2/R+tFzQBExMmAVcUWDWIw9lGKlQVJEgCZeTNwc0S8DTgHuDoi\njsrMpYVDk9SuDwP3R8Q/6vFRwBMR8RcgM/P4cqFNp0mqLJgsSJJmeh/wfuDdwN8KxyKpfWeUDqBv\nsuiezOMxWZAkARAR1wArgKeAdcBVmfmfslFJaltmPlM6hr6xsiBJmkRPAR8FjgEOAo6PCDLzj2XD\nkqTpUnINwrhMFiRJQwPgD1Q7OW8BlgMPAKeXDEqSps1ggqYh2Q1JkjR0CXAi8ExmngZ8CHAakiQt\nsME8/pVisiBJGno5M18GiIiDMvPvwLGFY5IkFeQ0JEnS0LaIWALcAdwTEdsBFz5K0gKzG5IkaeJk\n5or64eURsQE4BLirYEiSNJVc4CxJmmiZeW/pGCRpWk3SAmeTBUmSJKlDye7SIcyZyYIkSZLUISsL\nkiRJkhqZLEiSJElq5DQkSZIkSY2sLEiSJElq5D4LkiRJkhoNnIYkSZIkqYmVBUmSJEmNBmllQZIk\nSVIDKwuSJEmSGtk6VZIkSVKjQVpZkCRJktRgkqYhHVA6AEmSJEmLk5UFSZIkqUNpNyRJkiRJTQYT\nNA3JZEGSJEnqULrAWZIkSVKTSWqd6gJnSZIkqUOZg7GPuYiIMyLiiYjYGhFfa3g9IuK6+vU/R8QJ\n+7umlQVJkiSpQ220To2IA4HvAZ8AtgEPR8T6zHx85LQzgaX1cTLwg/rnPllZkCRJkjqUuXvsYw5O\nArZm5tOZ+T9gHXD2jHPOBm7JyoPAkoh412wXNVmQJEmSOjSfaUgRcXFEPDJyXDzjsocD/xwZb6uf\nG/ecvTgNSZIkSerQfKYhZeZaYO3CRzM7kwVJkiSpQy21Tn0WOHJkfET93Ljn7MVpSJIkSVKHksHY\nxxw8DCyNiKMj4g3AecD6GeesBy6suyItB57PzH/NdlErC5IkSVKH5rhgecxr5q6IWA3cDRwI3JSZ\nj0XEqvr1G4DfA58EtgIvAhft77qRmQserCRJkqRmr3/doWN/AX9113PRRiz7Y2VBkiRJ6lBLaxZa\nYbIgSZIkdaiNTdnaYrIgSZIkdcpkQZIkSVKTCZqGZOtUSZIkSY2sLEiSJEkdcs2CJEmSpH0wWZAk\nSZLUZIL2OXNTNkmSJEmNXOAsSZIkqZHJgiRJkqRGJguSJEmSGpksSJIkSWpksiBJkiSpkcmCJEmS\npEYmC5IkSZIamSxIkiRJamSyIEmSJKmRyYIkSZKkRv8HTqMxXMLHyw8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# fit model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRandomForestRegressor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_estimators\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mforest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mforest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 326\u001b[0m verbose=self.verbose, class_weight=self.class_weight)\n\u001b[0;32m--> 327\u001b[0;31m for i, t in enumerate(trees))\n\u001b[0m\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[0;31m# Collect newly grown trees\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 777\u001b[0m \u001b[0;31m# was dispatched. In particular this covers the edge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0;31m# case of Parallel used with an exhausted iterator.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 779\u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_one_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 780\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 781\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 625\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dispatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtasks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 626\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m_dispatch\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 586\u001b[0m \u001b[0mdispatch_timestamp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[0mcb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBatchCompletionCallBack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdispatch_timestamp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 588\u001b[0;31m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 589\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 590\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mapply_async\u001b[0;34m(self, func, callback)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0;34m\"\"\"Schedule a func to be run\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImmediateResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;31m# Don't delay the application, to avoid keeping the input\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;31m# arguments in memory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/ensemble/forest.py\u001b[0m in \u001b[0;36m_parallel_build_trees\u001b[0;34m(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mcurr_sample_weight\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mcompute_sample_weight\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'balanced'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcurr_sample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[0mtree\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcheck_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1124\u001b[0;31m X_idx_sorted=X_idx_sorted)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/sklearn/tree/tree.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight, check_input, X_idx_sorted)\u001b[0m\n\u001b[1;32m 360\u001b[0m min_impurity_split)\n\u001b[1;32m 361\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0mbuilder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_idx_sorted\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_outputs_\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. pca 19 (0.453368)\n", + "1. ask_price 7 (0.217941)\n", + "2. ohlc_price 16 (0.075821)\n", + "3. close 13 (0.069535)\n", + "4. period_return 18 (0.064586)\n", + "5. bid_price 6 (0.060840)\n", + "6. oc_diff 17 (0.057908)\n", + "7. month 1 (0.000000)\n", + "8. day 2 (0.000000)\n", + "9. hour 3 (0.000000)\n", + "10. weekday 4 (0.000000)\n", + "11. 5 (0.000000)\n", + "12. low 9 (0.000000)\n", + "13. high 8 (0.000000)\n", + "14. avg_bo_spread 10 (0.000000)\n", + "15. count 11 (0.000000)\n", + "16. open 12 (0.000000)\n", + "17. avg_price 14 (0.000000)\n", + "18. range 15 (0.000000)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJOCAYAAADGcdzeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu0pXdd3/HPl5kEJaARMnJJAok1aCMCwhBpizpKkSSg\nQeslqFDxEmMNiosqkVaUWtcCkVovSBohhlYkKDcjjgLaom0VzISGSwLRSUjIhEtGLoqAJiHf/rGf\nwc1kTubMnD2z2ef3eq11VvblOXt/f+dM9ux5n+d5TnV3AAAAABjH3ZY9AAAAAABHlyAEAAAAMBhB\nCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAgCFV1UVV9dPLngMAYBmqu5c9AwCwQqrqhiT3\nTfLpuZsf3N3v38Bj7kjyW9190samW01VdWmSPd39H5c9CwAwBnsIAQCH45u6+55zH4cdgxahqrYu\n8/k3oqq2LHsGAGA8ghAAsDBV9eiq+vOq+lhVvX3a82fffU+rqndX1cer6vqq+qHp9uOS/GGSB1TV\n308fD6iqS6vqP899/o6q2jN3/YaqelZVvSPJJ6pq6/R5r66qvVX13qr60buY9TOPv++xq+onq+qW\nqvpAVT2pqs6uqr+qqo9U1bPnPvdnq+pVVfXKaT1vq6qHzd3/z6vqzdPX4eqq+ub9nvfFVbWzqj6R\n5PuTfHeSn5zW/vvTdhdW1XXT419TVd8y9xjfW1X/p6p+sao+Oq31rLn7711Vv1lV75/uf93cfU+s\nqqum2f68qh46d9+zqurm6TmvrarHruPbDgCsIEEIAFiIqjoxyR8k+c9J7p3k3yd5dVVtmza5JckT\nk3xBkqcl+aWqekR3fyLJWUnefxh7HD05yROSHJ/kjiS/n+TtSU5M8tgkz6iqx6/zse6X5POmz31O\nkt9I8j1JHpnka5L8dFWdOrf9OUl+d1rrbyd5XVUdU1XHTHO8MckXJ3l6kpdX1ZfNfe53Jfn5JPdK\n8t+TvDzJL0xr/6Zpm+um5/3CJM9N8ltVdf+5x/jqJNcmOSHJLyR5aVXVdN//SHKPJF8xzfBLSVJV\nX5XkkiQ/lOQ+Sf5bksur6u7TfBckeVR33yvJ45PcsM6vHQCwYgQhAOBwvG7aw+Rjc3uffE+Snd29\ns7vv6O43JdmV5Owk6e4/6O7reuZPMwsmX7PBOX6lu2/q7k8leVSSbd39n7r71u6+PrOoc+46H+u2\nJD/f3bcluSyz0PLL3f3x7r46yTVJHja3/ZXd/app+/+SWUx69PRxzyTPm+b4n0len1m82uf3uvv/\nTl+nfzjQMN39u939/mmbVyb56yRnzG1yY3f/Rnd/OsnLktw/yX2naHRWkvO7+6Pdfdv09U6S85L8\nt+5+a3d/urtfluQfp5k/neTuSU6vqmO6+4buvm6dXzsAYMUIQgDA4XhSdx8/fTxpuu1BSb59LhR9\nLMljMgsVqaqzquot0+FXH8ssFJ2wwTlumrv8oMwOO5t//mdndgLs9fjwFFeS5FPTfz80d/+nMgs9\nd3ru7r4jyZ4kD5g+bppu2+fGzPY8OtDcB1RVT507tOtjSR6Sz/56fXDu+T85XbxnkpOTfKS7P3qA\nh31Qkmfu9zU6OckDunt3kmck+dkkt1TVZVX1gIPNCQCsJkEIAFiUm5L8j7lQdHx3H9fdz6uquyd5\ndZJfTHLf7j4+yc4k+w5xOtCvPf1EZoc97XO/A2wz/3k3JXnvfs9/r+4+e8MrO7CT912oqrslOSnJ\n+6ePk6fb9nlgkpvXmPtO16vqQZnt3XRBkvtMX6935Z++XnflpiT3rqrj17jv5/f7Gt2ju1+RJN39\n2939mMzCUSd5/jqeDwBYQYIQALAov5Xkm6rq8VW1pao+bzpZ80lJjs3scKS9SW6fToD8jXOf+6Ek\n96mqL5y77aokZ08nSL5fZnuv3JW/TPLx6cTInz/N8JCqetTCVvjZHllV31qz33D2jMwOvXpLkrcm\n+WRmJ4k+pmYn1v6mzA5DW8uHknzJ3PXjMgsye5PZCbkz20PooLr7A5mdpPvXq+qLphm+drr7N5Kc\nX1VfXTPHVdUTqupeVfVlVfUNU7z7h8z2iLpjjacBAFacIAQALER335TZiZafnVnIuCnJTyS5W3d/\nPMmPJvmdJB/N7KTKl8997nuSvCLJ9dOhTA/I7MTIb8/sxMZvTPLKgzz/pzM7afXDk7w3yd8keUlm\nJ2U+En4vyXdmtp6nJPnW6Xw9t2YWgM6aZvj1JE+d1riWl2Z27p6PVdXruvuaJC9M8heZxaKvTPJ/\nD2G2p2R2TqT3ZHYy72ckSXfvSvKDSX5tmnt3ku+dPufuSZ43zfzBzE5G/VOH8JwAwAqp7gPtoQ0A\nwFqq6meTfGl3f8+yZwEAOBz2EAIAAAAYjCAEAAAAMBiHjAEAAAAMxh5CAAAAAIPZuqwnPuGEE/qU\nU05Z1tMDAAAAbDpXXnnl33T3toNtt7QgdMopp2TXrl3LenoAAACATaeqblzPdg4ZAwAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQA\nAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgtyI4dO7Jjx45ljwEAAABw\nUIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABg\nMOsKQlV1ZlVdW1W7q+rCNbbZUVVXVdXVVfWnix0TAAAAgEXZerANqmpLkhcleVySPUmuqKrLu/ua\nuW2OT/LrSc7s7vdV1RcfqYEBAAAA2Jj17CF0RpLd3X19d9+a5LIk5+y3zXcleU13vy9JuvuWxY4J\nAAAAwKKsJwidmOSmuet7ptvmPTjJF1XVm6vqyqp66oEeqKrOq6pdVbVr7969hzcxAAAAABuyqJNK\nb03yyCRPSPL4JD9dVQ/ef6Puvri7t3f39m3bti3oqQEAAAA4FAc9h1CSm5OcPHf9pOm2eXuSfLi7\nP5HkE1X1Z0keluSvFjIlAAAAAAuznj2ErkhyWlWdWlXHJjk3yeX7bfN7SR5TVVur6h5JvjrJuxc7\nKgAAAACLcNA9hLr79qq6IMkbkmxJckl3X11V50/3X9Td766qP0ryjiR3JHlJd7/rSA4OAAAAwOFZ\nzyFj6e6dSXbud9tF+11/QZIXLG40AAAAAI6ERZ1UGgAAAIAVIQgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAw\nGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGs64gVFVnVtW1VbW7qi48wP07qupv\nq+qq6eM5ix8VAAAAgEXYerANqmpLkhcleVySPUmuqKrLu/ua/Tb93939xCMwIwAAAAALtJ49hM5I\nsru7r+/uW5NcluScIzsWAAAAAEfKeoLQiUlumru+Z7ptf/+yqt5RVX9YVV9xoAeqqvOqaldV7dq7\nd+9hjAsAAADARi3qpNJvS/LA7n5okl9N8roDbdTdF3f39u7evm3btgU9NQAAAACHYj1B6OYkJ89d\nP2m67TO6+++6+++nyzuTHFNVJyxsSgAAAAAWZj1B6Iokp1XVqVV1bJJzk1w+v0FV3a+qarp8xvS4\nH170sAAAAABs3EF/y1h3315VFyR5Q5ItSS7p7qur6vzp/ouSfFuSH66q25N8Ksm53d1HcG4AAAAA\nDtNBg1DymcPAdu5320Vzl38tya8tdjQAAAAAjoRFnVQaAAAAgBUhCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAA\nADCYrcseYFlue+4zF/p4fcN1R+Rxk+SYn3nhwh8TAAAAGJc9hAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiM\nIAQAAAAwmHUFoao6s6qurardVXXhXWz3qKq6vaq+bXEjAgAAALBIBw1CVbUlyYuSnJXk9CRPrqrT\n19ju+UneuOghAQAAAFic9ewhdEaS3d19fXffmuSyJOccYLunJ3l1klsWOB8AAAAAC7aeIHRikpvm\nru+ZbvuMqjoxybckefFdPVBVnVdVu6pq1969ew91VgAAAAAWYFEnlf6vSZ7V3Xfc1UbdfXF3b+/u\n7du2bVvQUwMAAABwKLauY5ubk5w8d/2k6bZ525NcVlVJckKSs6vq9u5+3UKmBAAAAGBh1hOErkhy\nWlWdmlkIOjfJd81v0N2n7rtcVZcmeb0YBAAAAPC56aBBqLtvr6oLkrwhyZYkl3T31VV1/nT/RUd4\nRgAAAAAWaD17CKW7dybZud9tBwxB3f29Gx8LAAAAgCNlUSeVBgAAAGBFCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYj\nCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEWNOOHTuy\nY8eOZY8BAAAALJggBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEA\nAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qra\nXVUXHuD+c6rqHVV1VVXtqqrHLH5UAAAAABZh68E2qKotSV6U5HFJ9iS5oqou7+5r5jb7kySXd3dX\n1UOT/E6SLz8SAwMAAACwMevZQ+iMJLu7+/ruvjXJZUnOmd+gu/++u3u6elySDgAAAACfk9YThE5M\nctPc9T3TbZ+lqr6lqt6T5A+SfN+BHqiqzpsOKdu1d+/ew5kXAAAAgA1a2Emlu/u13f3lSZ6U5OfW\n2Obi7t7e3du3bdu2qKcGAAAA4BCsJwjdnOTkuesnTbcdUHf/WZIvqaoTNjgbAAAAAEfAeoLQFUlO\nq6pTq+rYJOcmuXx+g6r60qqq6fIjktw9yYcXPSwAAAAAG3fQ3zLW3bdX1QVJ3pBkS5JLuvvqqjp/\nuv+iJP8myVOr6rYkn0rynXMnmQYAAADgc8hBg1CSdPfOJDv3u+2iucvPT/L8xY4GAAAAwJGwsJNK\nAwAAALAaBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAADEYQAgAAABiMIAQAAAAwGEEIAAAAYDCC\nEAAAAMBgBCEAAACAwWxd9gCbxR8/7TuWPQIAAADAuthDCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACDEYQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAA\nAACD2brsAVic2577zIU+Xt9w3RF53CQ55mdeuPDHBAAAANbHHkIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAg1lXEKqqM6vq2qraXVUX\nHuD+766qd1TVO6vqz6vqYYsfFQAAAIBFOGgQqqotSV6U5Kwkpyd5clWdvt9m703ydd39lUl+LsnF\nix4UAAAAgMVYzx5CZyTZ3d3Xd/etSS5Lcs78Bt3959390enqW5KctNgxAQAAAFiU9QShE5PcNHd9\nz3TbWr4/yR8e6I6qOq+qdlXVrr17965/SgAAAAAWZqEnla6qr88sCD3rQPd398Xdvb27t2/btm2R\nTw0AAADAOm1dxzY3Jzl57vpJ022fpaoemuQlSc7q7g8vZjwAAAAAFm09ewhdkeS0qjq1qo5Ncm6S\ny+c3qKoHJnlNkqd0918tfkwAAAAAFuWgewh19+1VdUGSNyTZkuSS7r66qs6f7r8oyXOS3CfJr1dV\nktze3duP3NgAAAAAHK71HDKW7t6ZZOd+t100d/kHkvzAYkcDAAAA4EhY6EmlAQAAAPjcJwgBAAAA\nDEYQAgAAABiMIAQAAAAwGEEIAAAAYDCCEAAAAMBgBCEAAACAwQhCAAAAAIMRhAAAAAAGIwgBAAAA\nDEYQAgAAABiMIMRwduzYkR07dix7DAAAAFgaQQgAAABgMIIQAAAAwGAEIQAAAIDBCEKwCTgvEgAA\nAIdCEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAABiMIAQAA\nAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQsDnpB07dmTHjh3LHgMAAGBT\nEoQAAAAABiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghDAUbIZf3PaZlwTAACMQBACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAA\nGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBrCsIVdWZVXVtVe2uqgsPcP+XV9VfVNU/VtW/\nX/yYAAAAACzK1oNtUFVbkrwoyeOS7ElyRVVd3t3XzG32kSQ/muRJR2RKAAAAABbmoEEoyRlJdnf3\n9UlSVZclOSfJZ4JQd9+S5JaqesIRmZKl+OOnfceyRwAAAACOgPUcMnZikpvmru+ZbjtkVXVeVe2q\nql179+49nIcAAAAAYIOO6kmlu/vi7t7e3du3bdt2NJ8aAAAAgMl6gtDNSU6eu37SdBsAAAAAK2g9\nQeiKJKdV1alVdWySc5NcfmTHAgAAAOBIOehJpbv79qq6IMkbkmxJckl3X11V50/3X1RV90uyK8kX\nJLmjqp6R5PTu/rsjODsAAAAAh2E9v2Us3b0zyc79brto7vIHMzuUDAAAAIDPcUf1pNIAAAAALJ8g\nBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwg\nBAAAADAYQQgAAABgMIIQAAAAwGC2LnsAuCu3PfeZC3/MvuG6I/LYx/zMCxf6eAAAAHCk2EMIAAAA\nYDCCEAAAAMBgBCEAAACAwTiHECzBos9f5LxIAAAAHAp7CAEAAAAMRhACAAAAGIwgBAAAADAY5xAC\nFsJ5kQAAAFaHPYQAAAAABiMIAQAAAAzGIWMAa3AYHAAAsFnZQwgAAABgMPYQAhiIvZ4AAIDEHkIA\nAAAAwxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBCEIA\nAAAAgxGEAAAAAAYjCAEAAAAMRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGDWFYSq6syquraq\ndlfVhQe4v6rqV6b731FVj1j8qAAAAAAswkGDUFVtSfKiJGclOT3Jk6vq9P02OyvJadPHeUlevOA5\nAQAAAFiQ9ewhdEaS3d19fXffmuSyJOfst805Sf57z7wlyfFVdf8FzwoAAADAAlR33/UGVd+W5Mzu\n/oHp+lOSfHV3XzC3zeuTPK+7/890/U+SPKu7d+33WOdltgdRHvjABz7yxhtvXORaYF127NiRJHnz\nm9+81DkWyZpWgzUBAABHWlVd2d3bD7bdUT2pdHdf3N3bu3v7tm3bjuZTAwAAADBZTxC6OcnJc9dP\nmm471G0AAAAA+BywniB0RZLTqurUqjo2yblJLt9vm8uTPHX6bWOPTvK33f2BBc8KAAAAwAJsPdgG\n3X17VV2Q5A1JtiS5pLuvrqrzp/svSrIzydlJdif5ZJKnHbmRAQAAANiIgwahJOnunZlFn/nbLpq7\n3El+ZLGjAQAAAHAkHNWTSgMAAACwfIIQAAAAwGAEIQAAAIDBCEIAAAAAgxGEAAAAAAYjCAEAAAAM\nRhACAAAAGIwgBAAAADAYQQgAAABgMIIQAAAAwGAEIQAAAIDBbF32AAAH8uY3v3nZIyzcZlwTAACw\nmgQhhuMf5QAAAIzOIWMAAAAAgxGEAAAAAAbjkDEADptDMAEAYDXZQwgAAABgMPYQgk3AXhoAAAAc\nCnsIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBiMIAQAAAAxGEAIAAAAYjCAEAAAAMBhBCAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAAAA\nBlPdvZwnrtqb5MalPPmRc0KSv1n2EAu2GdeUbM51WdNqsKbVYE2rYzOuy5pWgzWtBmtaHZtxXda0\nGjbjmh7U3dsOttHSgtBmVFW7unv7sudYpM24pmRzrsuaVoM1rQZrWh2bcV3WtBqsaTVY0+rYjOuy\nptWwGde0Xg4ZAwAAABiMIAQAAAAwGEFosS5e9gBHwGZcU7I512VNq8GaVoM1rY7NuC5rWg3WtBqs\naXVsxnVZ02rYjGtaF+cQAgAAABiMPYQAAAAABiMIAQAAAAxGEDpMVXVJVd1SVe+au+1hVfUXVfXO\nqvr9qvqCZc64EVX1ZVV11dzH31XVM5Y916E60Pdpuv3pVfWeqrq6qn5hWfMdrjX+/P1cVb1j+n69\nsaoesMwZD9Uaa3p4Vb1lWtOuqjpjmTNuVFUdX1Wvmv7svbuq/sWyZzpUa3yfXjn3WnFDVV21zBk3\nYq3XjFVWVSdX1f+qqmum17wfW/ZMG1VVn1dVf1lVb5/W9Nxlz7QoVbWlqv5fVb1+2bMsyvS68M59\nr+XLnmd7JX2wAAAISUlEQVSjqurHqupd05+9lXtvtJaq+vFpTe+qqldU1ecte6ZDtcbfUfeuqjdV\n1V9P//2iZc54qNZY07dP36s7qmrlflX2Gmt6wfT+6B1V9dqqOn6ZMx6Ou3oPUVXPrKquqhOWMdvh\nWuN79bNVdfPce7+zlznjRlTVmVV1bVXtrqoLlz3PMghCh+/SJGfud9tLklzY3V+Z5LVJfuJoD7Uo\n3X1tdz+8ux+e5JFJPpnZmlbNpdnv+1RVX5/knCQP6+6vSPKLS5hroy7Nnf/8vaC7Hzp9z16f5DlH\nfaqNuTR3XtMvJHnutKbnTNdX2S8n+aPu/vIkD0vy7iXPczguzX7fp+7+zrnXi1cnec0yBluQS3Pn\nP4er7vYkz+zu05M8OsmPVNXpS55po/4xyTd098OSPDzJmVX16CXPtCg/ltV8bTiYr59eJ1buH6/z\nquohSX4wyRmZvY4/saq+dLlTbVxVnZjkR5Ns7+6HJNmS5NzlTnVYLs2dX8MvTPIn3X1akj+Zrq+S\nS3PnNb0rybcm+bOjPs1iXJo7r+lNSR7S3Q9N8ldJfupoD7UAl+YA7yGq6uQk35jkfUd7oAW4NAd+\nX/RL+977dffOozzTQlTVliQvSnJWktOTPHkTvD86ZILQYeruP0vykf1ufnD+6YX5TUn+zVEd6sh5\nbJLruvvGZQ9yqNb4Pv1wkud19z9O29xy1AfboAOtq7v/bu7qcUlW6ozxa3yvOsm+Pe2+MMn7j+pQ\nC1RVX5jka5O8NEm6+9bu/thypzp0a3yfkiRVVUm+I8krjupQC3RX61tV3f2B7n7bdPnjmcWGE5c7\n1cb0zN9PV4+ZPlbqNe9AquqkJE/I7AdMfG7650ne2t2f7O7bk/xpZv8w3wy2Jvn8qtqa5B5Zwb9z\n13gNPyfJy6bLL0vypKM61Aat8Z7v3d197ZJG2rA11vTG6f+pJHlLkpOO+mAbdBfvIX4pyU9mBf+e\n2ozvi+ackWR3d1/f3bcmuSyz14uhCEKLdXX+6Q/Rtyc5eYmzLNK5WeF/4B3Ag5N8TVW9tar+tKoe\nteyBFqWqfr6qbkry3Vm9PYQO5BlJXjCt6Rezmj8t2ufUJHuT/OZ0OMhLquq4ZQ+1YF+T5EPd/dfL\nHoQDq6pTknxVkrcud5KNmw6tuirJLUne1N0rv6Yk/zWzfzTcsexBFqyT/HFVXVlV5y17mA16V2bv\nIe5TVfdIcnY2wfu97r45s79n35fkA0n+trvfuNypFua+3f2B6fIHk9x3mcOwLt+X5A+XPcQiVNU5\nSW7u7rcve5YFe/p0eN8lq3YY5pwTk9w0d31PVvwHZodDEFqs70vy76rqyiT3SnLrkufZsKo6Nsk3\nJ/ndZc+yQFuT3DuzQyd+IsnvTHs2rLzu/g/dfXKSlye5YNnzLMAPJ/nxaU0/nmnvmhW1Nckjkry4\nu78qySeyerutH8yTs7ni8aZSVffM7JC+Z+y3R+FK6u5PT4cpnpTkjOlQnpVVVU9Mckt3X7nsWY6A\nx0zfq7MyO2Txa5c90OHq7ncneX6SNyb5oyRXJfn0UodagOkfdOdk9sOLByQ5rqq+Z7lTLV53d1Zw\nL42RVNV/yOxQ55cve5aNmqLxs7M5fkg778VJviSzQ7Y/kOSFyx2HjRCEFqi739Pd39jdj8zsH0XX\nLXumBTgrydu6+0PLHmSB9iR5zXTIwV9m9pPYlTrB2zq8PJvjkMV/m386H83vZrZr56rak2TP3F4M\nr8osEG0K0yEG35rklcuehTurqmMyi0Ev7+5VPsfTnUyHXv6vrP65n/5Vkm+uqhsy2239G6rqt5Y7\n0mJMe5/sO0T7tVnt1/J090u7+5Hd/bVJPprZ+U5W3b9O8t7u3tvdt2X2d++/XPJMi/Khqrp/kkz/\nXblTBYyiqr43yROTfPcU71bdP8sssr59em0/Kcnbqup+S51qg7r7Q9MPZe5I8htZ3df0m/PZe3ie\nNN02FEFogarqi6f/3i3Jf0xy0XInWojN+BP/1yX5+iSpqgcnOTbJ3yx1ogWoqtPmrp6T5D3LmmWB\n3p/k66bL35BkZQ9F6u4PJrmpqr5suumxSa5Z4kiL9q+TvKe79yx7ED7btAfkS5O8u7v/y7LnWYSq\n2rbvN9BU1ecneVxW/DWvu3+qu0/q7lMyO1T7f3b3yu+hUVXHVdW99l3O7MSqK/1b/Obe7z0wsxD+\n28udaCHel+TRVXWP6TXjsdk8Jze/PLMfMGX67+8tcRbWUFVnZnbI7Dd39yeXPc8idPc7u/uLu/uU\n6bV9T5JHTO8JV9a+wDr5lqzua/oVSU6rqlOno2LOzez1Yihblz3AqqqqVyTZkeSEqtqT5GeS3LOq\nfmTa5DVJfnNJ4y3E9MbtcUl+aNmzHK41vk+XJLlk+vWJtyb5t6v2U4g11nX2FBvuSHJjkvOXN+Gh\nW2NNP5jkl6e9T/4hyaqfe+LpSV4+/aVzfZKnLXmeQ3ag71N3vzSb5Fxjd7G+VfavkjwlyTunc+4k\nybNX9beCTO6f5GXTbwi5W5Lf6e5N82vaN5n7JnntdGT21iS/3d1/tNyRNuzVVXWfJLcl+ZFV/AUB\n++vut1bVq5K8LbPDdf5fkouXO9WhW+O9xPMyOz3A92f2/ug7ljfhoVtjTR9J8qtJtiX5g6q6qrsf\nv7wpD80aa/qpJHdP8qbp9eIt3b3y72VX/T3EGt+rHVX18MwOv7whK/pvxe6+vaouSPKGzH6z4iXd\nffWSxzrqasX+HQwAAADABjlkDAAAAGAwghAAAADAYAQhAAAAgMEIQgAAAACDEYQAAACA/9+OHQgA\nAAAACPK3HuTCiBkhBAAAADAjhAAAAABmAsSSvmEJzLbbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1]\n", + "\n", + "column_list = df.columns.tolist()\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + "# Plot the feature importances coming from the forest of decision trees\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill_between\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'low'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'high'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# plot first 200 entries\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(*args, **kw)\u001b[0m\n\u001b[1;32m 251\u001b[0m \"\"\"\n\u001b[1;32m 252\u001b[0m \u001b[0;32mglobal\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_show\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/ipykernel/pylab/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfigure_manager\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_to_draw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 302\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 303\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 171\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 172\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 215\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 216\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36m\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 235\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 236\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'png'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 237\u001b[0;31m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'png'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'retina'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'png2x'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformats\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mpng_formatter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mretina_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0mbytes_io\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)\u001b[0m\n\u001b[1;32m 2198\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2199\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2200\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2201\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2202\u001b[0m \u001b[0mbbox_inches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_tightbbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, *args, **kwargs)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 545\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 546\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0moriginal_dpi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 466\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1143\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1144\u001b[0;31m renderer, self, dsu, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1146\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2424\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2426\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, dsu, suppress_composite)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mzorder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdsu\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mbefore\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mafter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegendPatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 482\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 483\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legend_box\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 484\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'legend'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 280\u001b[0m renderer)\n\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 282\u001b[0;31m \u001b[0mpx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 283\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_visible_children\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/offsetbox.py\u001b[0m in \u001b[0;36mget_offset\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 219\u001b[0m \"\"\"\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_offset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_findoffset_best\u001b[0;34m(self, width, height, xdescent, ydescent, renderer)\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_findoffset_best\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0;34m\"Helper function to locate the legend at its best position\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 434\u001b[0;31m \u001b[0mox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_find_best_position\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mox\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mxdescent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moy\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mydescent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/legend.py\u001b[0m in \u001b[0;36m_find_best_position\u001b[0;34m(self, width, height, renderer, consider)\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;31m# take their into account when checking vertex overlaps in\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 949\u001b[0m \u001b[0;31m# the next line.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 950\u001b[0;31m \u001b[0mbadness\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 951\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_contains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moffsets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 952\u001b[0m \u001b[0mbadness\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mlegendBox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_overlaps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbboxes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/transforms.py\u001b[0m in \u001b[0;36mcount_contains\u001b[0;34m(self, vertices)\u001b[0m\n\u001b[1;32m 658\u001b[0m \u001b[0mdy0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 659\u001b[0m \u001b[0mdx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 660\u001b[0;31m \u001b[0mdy1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvertices\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0my1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 661\u001b[0m \u001b[0minside\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdx0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdx1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdy0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mdy1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minside\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low',y2='high', data=df, alpha=0.4)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close')\n", + "high_index = df.columns.tolist().index('high')\n", + "low_index = df.columns.tolist().index('low')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back=1)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 1, 20) 3360 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 1, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 1, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 1, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 8,145\n", + "Trainable params: 8,145\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.02140, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.02140 to 0.00056, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.00056 to 0.00035, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.00035 to 0.00024, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.00024 to 0.00011, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error improved from 0.00011 to 0.00006, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00006: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.00005 to 0.00003, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00003 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error improved from 0.00002 to 0.00002, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error improved from 0.00002 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "CPU times: user 16min 23s, sys: 1min 23s, total: 17min 46s\n", + "Wall time: 15min 1s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "simname = \"bm_kaggle_4\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=100, batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X2U5XddJ/j3p2/VTd8bQhKSBicJ\nmnZFTjIwE7CJIA+DwyAJCMHlQR7iiuue4BndcfcIY3wAhNnZkz0zKqKg4pgZHQTMwKDM0gwBJwwq\nMKaJGUxIIIET6U5c0hPIY1VSVd3f/aNuJdWV6u5boe/9Vader3Pq5P4e7/sS/sp5n8+nWmsBAAAA\nAAAAAAA2l21dBwAAAAAAAAAAAB5OsQcAAAAAAAAAADYhxR4AAAAAAAAAANiEFHsAAAAAAAAAAGAT\nUuwBAAAAAAAAAIBNSLEHAAAAAAAAAAA2IcUeAAAAADpTVbdU1T/pOgcAAADAZqTYAwAAAAAAAAAA\nm5BiDwAAAADHRFXNbMYMG821GX4HAAAAQKLYAwAAADC20dqoN1fVF6vqvqr6/ap6QlV9vKruqapP\nVdWpo3ufWVWfrao7q+q/V9XzV73nJ6rqhtEzX6uqN6669vyq2ldVP1dVt1fV31XVT4yR7cVV9aXR\nO2+tqjetuvbm0Xtuq6r/tapaVX3P6Nqnq+p/W3XvG6rqL1Yd/0ZV7a2qu6vqC1X13FXXfqWqPlRV\n76uqu5O8oaq2VdWlVfXVqrqjqq6oqseteubHqupvR9d+acz/3Q/7zqo6e/R7frKqvp7kv6x3bnTv\ny6rq+tG/k09X1Tlr/t3+fFV9Mcl9yj0AAADAZqDYAwAAALAxr0jywiTfm+SlST6e5BeT7Mjyf2v5\nZ1V1ZpKPJfm/kjwuyZuSfLiqdozecXuSH07y2CQ/keTXq+rpq77jO5KcnOTMJD+Z5N0rhaEj+P0k\nb2ytnZTkKXmozHLB6PtfmORJSf7JBn/v1UnOG/2O9yf5D1W1fdX1i5J8KMkpSf4oyf+e5OVJ/lGS\nM5J8K8m7R1nOTfLbSX5sdO20JGeNkeGw71zlHyU5J8mL1jtXVd+b5ANJ/o8s/7vaneQ/VVV/1f2v\nTfKSJKe01pbGyAUAAAAwUYo9AAAAABvzm621b7TWbk3y50n+W2vtr1tr9yf5SJKnJbk4ye7W2u7W\n2sHW2ieT7Eny4iRprX2stfbVtuy/JrkyyXNXfcdikne01hZba7uT3JvkyUfJtZjk3Kp6bGvtW621\na0bnX53k37bWrmut3ZfkVzbyY1tr72ut3dFaW2qt/WqSE9Zk+Vxr7U9Gv3M+yU8l+aXW2r7W2gOj\n73vlaALOK5P8v621z4yuvSXJwTFiHOmdK36ltXbfKMN65340ycdaa59srS0m+ddJBkl+YNX972qt\n7V3zDgAAAIDOKPYAAAAAbMw3Vn2eX+f4MUm+K8mrRiuf7qyqO5M8J8nfS5KqurCqPl9V3xxde3GS\n01e95441E2PmRu89kleM3vO3VfVfq+pZo/NnJNm76r6/HetXjlTVm0Zrw+4aZT15Tda9ax75riQf\nWfW7b0hyIMkT1mYZFY3uGCPGkd55uBxrz52RVb+9tXZwdP3Mo7wDAAAAoDOKPQAAAADH3t4k/761\ndsqqvxNba5dV1QlJPpzliTFPaK2dkuW1UPXtfGFr7erW2kVJHp/kT5JcMbr0d0meuOrW71zz6H1J\nhquOv2PlQ1U9N8k/z/LUn1NHWe9ak7Wted/eJBeu+e3bRxOODslSVcMsr+M6miO983A51p67LcsF\noZXvrlGWo70DAAAAoDOKPQAAAADH3vuSvLSqXlRVvaraXlXPr6qzkvSzvM5qf5KlqrowyQ99O19W\nVf2qen1VnTxaM3V3HlpxdUWSN1TVuaMizdvWPH5tkv+5qoZV9T1JfnLVtZOSLI2yzlTVW5M89ihx\nfifJv6yq7xpl21FVF42ufSjJD1fVc6qqn+QdGe+/Tx3pneO6IslLquoFVTWb5OeSPJDksxt8DwAA\nAMDUKPYAAAAAHGOttb1JLkryi1kuxexN8uYk21pr9yT5Z1kumnwryeuSfPQYfO2PJbmlqu5O8lNJ\nXj/K8vEk70zyX5LcPPrnar+eZCHLK8X+IMkfrbr2iST/OclXsrzG6v4cfV3Vb2T591xZVfck+XyS\n7x9luT7JTyd5f5an93wryb4xftth3zmu1tqXk1yc5DeT/I8kL03y0tbawkbeAwAAADBN1ZoJwwAA\nAABbSVW1JE9qrd3cdRYAAAAADs/EHgAAAAAAAAAA2IQUewAAAACOE1V1fVXdu87f67vO9u2qqo8f\n5rf9YtfZAAAAALpiFRcAAAAAAAAAAGxCJvYAAAAAAAAAAMAmNNN1gGPp9NNPb2effXbXMQAAAAAA\nAAAAYF1f+MIX/kdrbcc490682FNVFyT5jSS9JP+mtXbZmuvPS/LOJP8gyWtaax9ade07k/ybJE9M\n0pK8uLV2y+G+6+yzz86ePXuO+W8AAAAAAAAAAIBjoar+dtx7J7qKq6p6Sd6d5MIk5yZ5bVWdu+a2\nryd5Q5L3r/OKP0zyr1pr5yQ5P8ntk0sLAAAAAAAAAACbx6Qn9pyf5ObW2teSpKo+mOSiJF9auWFl\nAk9VHVz94KgANNNa++TovnsnnBUAAAAAAAAAADaNiU7sSXJmkr2rjveNzo3je5PcWVX/sar+uqr+\n1WgC0CGq6pKq2lNVe/bv338MIgMAAAAAAAAAQPcmPbHn2zGT5LlJnpbldV1/nOWVXb+/+qbW2nuT\nvDdJdu3a1da+ZHFxMfv27cv9998/6byd2759e84666zMzs52HQUAAAAAAAAAgG/TpIs9tyZ54qrj\ns0bnxrEvybWr1nj9SZJnZk2x56gv2bcvJ510Us4+++xU1UYePa601nLHHXdk37592blzZ9dxAAAA\nAAAAAAD4Nk16FdfVSZ5UVTurqp/kNUk+uoFnT6mqHaPjf5zkSxsNcP/99+e00057VJd6kqSqctpp\np22JyUQAAAAAAAAAAFvBRIs9rbWlJD+T5BNJbkhyRWvt+qp6R1W9LEmq6hlVtS/Jq5L8blVdP3r2\nQJI3JfmzqvqbJJXk9x5Jjkd7qWfFVvmdAAAAAAAAAABbwaRXcaW1tjvJ7jXn3rrq89VZXtG13rOf\nTPIPJhoQAAAAAAAAAAA2oUmv4iLJnXfemfe85z0bfu7FL35x7rzzzgkkAgAAAAAAAABgs1PsmYLD\nFXuWlpaO+Nzu3btzyimnTCoWAAAAAAAAAACb2MRXcZFceuml+epXv5rzzjsvs7Oz2b59e0499dTc\neOON+cpXvpKXv/zl2bt3b+6///787M/+bC655JIkydlnn509e/bk3nvvzYUXXpjnPOc5+exnP5sz\nzzwzf/qnf5rBYNDxLwMAAAAAAAAAYFK2VLHn7f/p+nzptruP6TvPPeOxedtL//4R77nsssty3XXX\n5dprr82nP/3pvOQlL8l1112XnTt3Jkkuv/zyPO5xj8v8/Hye8Yxn5BWveEVOO+20Q95x00035QMf\n+EB+7/d+L69+9avz4Q9/OBdffPEx/S0AAAAAAAAAAGweW6rYs1mcf/75D5Z6kuRd73pXPvKRjyRJ\n9u7dm5tuuulhxZ6dO3fmvPPOS5J83/d9X2655Zap5QUAAAAAAAAAYPq2VLHnaJN1puXEE0988POn\nP/3pfOpTn8rnPve5DIfDPP/5z8/999//sGdOOOGEBz/3er3Mz89PJSsAAAAAAAAAAN3Y1nWAreCk\nk07KPffcs+61u+66K6eeemqGw2FuvPHGfP7zn59yOgAAAAAAAAAANqMtNbGnK6eddlqe/exn5ylP\neUoGg0Ge8IQnPHjtggsuyO/8zu/knHPOyZOf/OQ885nP7DApAAAAAAAAAACbRbXWus5wzOzatavt\n2bPnkHM33HBDzjnnnI4STd9W+70AAAAAAAAAAMeTqvpCa23XOPdaxQUAAAAAAAAAAJuQYg8AAAAA\nAAAAAGxCij0AAAAAAAAAALAJKfYAAAAAAAAAAMAmpNgDAAAAAAAAAACbkGIPE/XS3/yLvPuqm7uO\nAQAAAAAAAABw3FHsmYI777wz73nPex7Rs+985zszNzd3jBNNz613zufv7prvOgYAAAAAAAAAwHFH\nsWcKtnKxZzDby9zCga5jAAAAAAAAAAAcd2a6DrAVXHrppfnqV7+a8847Ly984Qvz+Mc/PldccUUe\neOCB/MiP/Eje/va357777surX/3q7Nu3LwcOHMhb3vKWfOMb38htt92WH/zBH8zpp5+eq666quuf\nsmHDfi/zij0AAAAAAAAAABu2tYo9H780+f/+5ti+8zuemlx42RFvueyyy3Ldddfl2muvzZVXXpkP\nfehD+au/+qu01vKyl70sn/nMZ7J///6cccYZ+djHPpYkueuuu3LyySfn137t13LVVVfl9NNPP7a5\np2TYN7EHAAAAAAAAAOCRsIpryq688spceeWVedrTnpanP/3pufHGG3PTTTflqU99aj75yU/m53/+\n5/Pnf/7nOfnkk7uOekwMTOwBAAAAAAAAAHhEttbEnqNM1pmG1lp+4Rd+IW984xsfdu2aa67J7t27\n88u//Mt5wQtekLe+9a0dJDy2hv2Z3H7P/V3HAAAAAAAAAAA47pjYMwUnnXRS7rnnniTJi170olx+\n+eW59957kyS33nprbr/99tx2220ZDoe5+OKL8+Y3vznXXHPNw549Hg36vcw9YGIPAAAAAAAAAMBG\nba2JPR057bTT8uxnPztPecpTcuGFF+Z1r3tdnvWsZyVJHvOYx+R973tfbr755rz5zW/Otm3bMjs7\nm9/+7d9OklxyySW54IILcsYZZ+Sqq67q8mc8IsPZXuas4gIAAAAAAAAA2LBqrXWd4ZjZtWtX27Nn\nzyHnbrjhhpxzzjkdJZq+zfZ73/an1+Ujf31rvvgrL+o6CgAAAAAAAABA56rqC621XePcaxUXEzXo\nz2R+0cQeAAAAAAAAAICNUuxhoob9XhYPtCweONh1FAAAAAAAAACA48qWKPY8mtaNHclm/J3Dfi9J\nMrdgag8AAAAAAAAAwEY86os927dvzx133LEpSy/HUmstd9xxR7Zv3951lEMMRsWeecUeAAAAAAAA\nAIANmek6wKSdddZZ2bdvX/bv3991lInbvn17zjrrrK5jHOKhiT1LHScBAAAAAAAAADi+POqLPbOz\ns9m5c2fXMbaswezy/8Ws4gIAAAAAAAAA2JhH/SouunXiCaNVXIuKPQAAAAAAAAAAG6HYw0Q9tIpL\nsQcAAAAAAAAAYCMUe5iolVVc8wtLHScBAAAAAAAAADi+KPYwUSb2AAAAAAAAAAA8Moo9TJRiDwAA\nAAAAAADAI6PYw0QNRsWeecUeAAAAAAAAAIANUexhoob9mSQm9gAAAAAAAAAAbJRiDxPV21bpz2zL\n3MJS11EAAAAAAAAAAI4rij1M3LDfM7EHAAAAAAAAAGCDFHuYuOGsYg8AAAAAAAAAwEYp9jBxg34v\n84tWcQEAAAAAAAAAbIRiDxM37M+Y2AMAAAAAAAAAsEGKPUzcoG8VFwAAAAAAAADARin2MHHDfi/z\nij0AAAAAAAAAABui2MPEDfu9zC0sdR0DAAAAAAAAAOC4otjDxA1mZ0zsAQAAAAAAAADYIMUeJu7E\nE3qZW1TsAQAAAAAAAADYCMUeJm7Q72XOxB4AAAAAAAAAgA1R7GHihrMzWVg6mAMHW9dRAAAAAAAA\nAACOG4o9TNyw30uSzC0sdZwEAAAAAAAAAOD4odjDxA1GxZ5567gAAAAAAAAAAMam2MPEPTSxR7EH\nAAAAAAAAAGBcij1M3Eqx5z6ruAAAAAAAAAAAxqbYw8QN+jNJrOICAAAAAAAAANgIxR4mziouAAAA\nAAAAAICNm3ixp6ouqKovV9XNVXXpOtefV1XXVNVSVb1yneuPrap9VfVbk87KZAxmFXsAAAAAAAAA\nADZqosWequoleXeSC5Ocm+S1VXXumtu+nuQNSd5/mNf8iySfmVRGJm9lYs/84lLHSQAAAAAAAAAA\njh+TnthzfpKbW2tfa60tJPlgkotW39Bau6W19sUkB9c+XFXfl+QJSa6ccE4maNifSWJiDwAAAAAA\nAADARky62HNmkr2rjveNzh1VVW1L8qtJ3nSU+y6pqj1VtWf//v2POCiTM1iZ2KPYAwAAAAAAAAAw\ntkkXe74d/zTJ7tbaviPd1Fp7b2ttV2tt144dO6YUjY1YWcVlYg8AAAAAAAAAwPhmJvz+W5M8cdXx\nWaNz43hWkudW1T9N8pgk/aq6t7V26THOyITN9rZltleKPQAAAAAAAAAAGzDpYs/VSZ5UVTuzXOh5\nTZLXjfNga+31K5+r6g1Jdin1HL+G/ZnMLyx1HQMAAAAAAAAA4Lgx0VVcrbWlJD+T5BNJbkhyRWvt\n+qp6R1W9LEmq6hlVtS/Jq5L8blVdP8lMdGPY75nYAwAAAAAAAACwAZOe2JPW2u4ku9ece+uqz1dn\neUXXkd7x75L8uwnEY0oG/V7mFhV7AAAAAAAAAADGNdGJPbBi2O9l3sQeAAAAAAAAAICxKfYwFcPZ\nmcwtLHUdAwAAAAAAAADguKHYw1QMTOwBAAAAAAAAANgQxR6mYtjvZU6xBwAAAAAAAABgbIo9TMVA\nsQcAAAAAAAAAYEMUe5iK5Yk9S13HAAAAAAAAAAA4bij2MBXD/oyJPQAAAAAAAAAAG6DYw1QMZnt5\nYOlgDhxsXUcBAAAAAAAAADguKPYwFcN+L0kyv2hqDwAAAAAAAADAOBR7mIqVYs/cwlLHSQAAAAAA\nAAAAjg+KPUzFoD+TJJlfMLEHAAAAAAAAAGAcij1MxUMTexR7AAAAAAAAAADGodjDVCj2AAAAAAAA\nAABsjGIPUzG0igsAAAAAAAAAYEMUe5iKhyb2LHWcBAAAAAAAAADg+KDYw1QMRsWe+UUTewAAAAAA\nAAAAxqHYw1Q8NLFHsQcAAAAAAAAAYByKPUzFcHYmiWIPAAAAAAAAAMC4FHuYigdXcS0sdZwEAAAA\nAAAAAOD4oNjDVPRntmVmW5nYAwAAAAAAAAAwJsUepmbQ7yn2AAAAAAAAAACMSbGHqRn2e5mzigsA\nAAAAAAAAYCyKPUzNsD9jYg8AAAAAAAAAwJgUe5iawWwv84o9AAAAAAAAAABjUexhapZXcSn2AAAA\nAAAAAACMQ7GHqRn0e5lbVOwBAAAAAAAAABiHYg9TM+z3Mr+w1HUMAAAAAAAAAIDjgmIPU3Nif8Yq\nLgAAAAAAAACAMSn2MDWDfi/zij0AAAAAAAAAAGNR7GFqhv2eiT0AAAAAAAAAAGNS7GFqBv2ZzC8e\nyMGDresoAAAAAAAAAACbnmIPUzPs95Ik9y+Z2gMAAAAAAAAAcDSKPUzNSrHHOi4AAAAAAAAAgKNT\n7GFqBrPLxZ55xR4AAAAAAAAAgKNS7GFqhv2ZJCb2AAAAAAAAAACMQ7GHqVlZxXXfwlLHSQAAAAAA\nAAAANj/FHqZm0LeKCwAAAAAAAABgXIo9TM3KxB6ruAAAAAAAAAAAjk6xh6l5qNhjFRcAAAAAAAAA\nwNEo9jA1g/5MEqu4AAAAAAAAAADGodjD1AxnreICAAAAAAAAABiXYg9TMxit4ppfVOwBAAAAAAAA\nADgaxR6m5oSZbeltq8wtLHUdBQAAAAAAAABg01PsYWqqKsPZnlVcAAAAAAAAAABjUOxhqgb9XuYV\newAAAAAAAAAAjkqxh6ka9k3sAQAAAAAAAAAYh2IPUzXozyj2AAAAAAAAAACMQbGHqRr2e5lfXOo6\nBgAAAAAAAADApqfYw1RZxQUAAAAAAAAAMB7FHqZqMNvLvGIPAAAAAAAAAMBRKfYwVSb2AAAAAAAA\nAACMR7GHqRr0ZzK3sNR1DAAAAAAAAACATU+xh6kysQcAAAAAAAAAYDyKPUzVsN/L/OKBtNa6jgIA\nAAAAAAAAsKkp9jBVg34vrSX3Lx7sOgoAAAAAAAAAwKam2MNUDWd7SZK5haWOkwAAAAAAAAAAbG4T\nL/ZU1QVV9eWqurmqLl3n+vOq6pqqWqqqV646f15Vfa6qrq+qL1bVj046K5M37M8kSeYWDnScBAAA\nAAAAAABgc5tosaeqekneneTCJOcmeW1Vnbvmtq8neUOS9685P5fkf2mt/f0kFyR5Z1WdMsm8TN7w\nhOWJPfOLij0AAAAAAAAAAEcyM+H3n5/k5tba15Kkqj6Y5KIkX1q5obV2y+jawdUPtta+surzbVV1\ne5IdSe6ccGYmaNhfWcWl2AMAAAAAAAAAcCSTXsV1ZpK9q473jc5tSFWdn6Sf5KvrXLukqvZU1Z79\n+/c/4qBMx2B2ZRXXUsdJAAAAAAAAAAA2t0kXe75tVfX3kvz7JD/RWju49npr7b2ttV2ttV07duyY\nfkA2ZGViz7yJPQAAAAAAAAAARzTpYs+tSZ646vis0bmxVNVjk3wsyS+11j5/jLPRAau4AAAAAAAA\nAADGM+liz9VJnlRVO6uqn+Q1ST46zoOj+z+S5A9bax+aYEamaGBiDwAAAAAAAADAWCZa7GmtLSX5\nmSSfSHJDkitaa9dX1Tuq6mVJUlXPqKp9SV6V5Her6vrR469O8rwkb6iqa0d/500yL5M37M8kSeYW\nljpOAgAAAAAAAACwuc1M+gtaa7uT7F5z7q2rPl+d5RVda597X5L3TTof0/XgKq5FE3sAAAAAAAAA\nAI5k0qu44BAnzGxLlVVcAAAAAAAAAABHo9jDVFVVhrO9zCn2AAAAAAAAAAAckWIPUzfoz2RuYanr\nGAAAAAAAAAAAm5piD1M37JvYAwAAAAAAAABwNIo9TJ1iDwAAAAAAAADA0Sn2MHWDfi/zij0AAAAA\nAAAAAEek2MPULU/sWeo6BgAAAAAAAADApqbYw9QN+zNWcQEAAAAAAAAAHIViD1M37Pcyv6jYAwAA\nAAAAAABwJIo9TN3yKi7FHgAAAAAAAACAI1HsYeoGszOZV+wBAAAAAAAAADgixR6mbnliz1Jaa11H\nAQAAAAAAAADYtBR7mLpBv5eDLXlg6WDXUQAAAAAAAAAANi3FHqZu2O8liXVcAAAAAAAAAABHoNjD\n1K0Ue+YWFXsAAAAAAAAAAA5HsYepG/RnkiTzC0sdJwEAAAAAAAAA2LwUe5i64exoYo9VXAAAAAAA\nAAAAh6XYw9StrOK67wHFHgAAAAAAAACAw1HsYeoGo2LP/KJVXAAAAAAAAAAAh6PYw9QN+zNJrOIC\nAAAAAAAAADgSxR6mbmUVl2IPAAAAAAAAAMDhKfYwdQ+u4lLsAQAAAAAAAAA4LMUepu5Eq7gAAAAA\nAAAAAI5KsYep2z67LVXJ/MJS11EAAAAAAAAAADYtxR6mrqoymO2Z2AMAAAAAAAAAcASKPXRi2O9l\nblGxBwAAAAAAAADgcBR76MSg38u8iT0AAAAAAAAAAIel2EMnhrMzmVtY6joGAAAAAAAAAMCmpdhD\nJwb9XuZM7AEAAAAAAAAAOCzFHjoxtIoLAAAAAAAAAOCIFHvoxNDEHgAAAAAAAACAI1LsoROD/kzm\nFxV7AAAAAAAAAAAOR7GHTgxne5lbWOo6BgAAAAAAAADApqXYQycG/V7mHjCxBwAAAAAAAADgcBR7\n6MSw38vc4oG01rqOAgAAAAAAAACwKSn20Ilhv5cDB1sWDhzsOgoAAAAAAAAAwKak2EMnBv2ZJMn8\ngnVcAAAAAAAAAADrUeyhEyf2e0mSOcUeAAAAAAAAAIB1KfbQiYFiDwAAAAAAAADAESn20ImhVVwA\nAAAAAAAAAEek2EMnhg9O7FnqOAkAAAAAAAAAwOak2EMnHlzFtWhiDwAAAAAAAADAehR76MTKxB6r\nuAAAAAAAAAAA1qfYQyeGszNJkjnFHgAAAAAAAACAdSn20InBgxN7ljpOAgAAAAAAAACwOSn20ImV\nVVwm9gAAAAAAAAAArE+xh04MZhV7AAAAAAAAAACORLGHTmzbVtk+uy3zi4o9AAAAAAAAAADrUeyh\nM8P+TO57YKnrGAAAAAAAAAAAm5JiD50ZzPYybxUXAAAAAAAAAMC6FHvozLDfy5xiDwAAAAAAAADA\nuhR76Myw38vcomIPAAAAAAAAAMB6FHvozKDfy/zCUtcxAAAAAAAAAAA2JcUeOnNif8YqLgAAAAAA\nAACAw1DsoTPLE3sUewAAAAAAAAAA1jPxYk9VXVBVX66qm6vq0nWuP6+qrqmqpap65ZprP15VN43+\nfnzSWZmuYb9nYg8AAAAAAAAAwGFMtNhTVb0k705yYZJzk7y2qs5dc9vXk7whyfvXPPu4JG9L8v1J\nzk/ytqo6dZJ5ma5hfyZzC0tdxwAAAAAAAAAA2JQmPbHn/CQ3t9a+1lpbSPLBJBetvqG1dktr7YtJ\nDq559kVJPtla+2Zr7VtJPpnkggnnZYoG/V7mF03sAQAAAAAAAABYz6SLPWcm2bvqeN/o3DF7tqou\nqao9VbVn//79jzgo0zec7WXxQMvigbWdLgAAAAAAAAAAJl3smbjW2ntba7taa7t27NjRdRw2YNDv\nJUnmFkztAQAAAAAAAABYa9LFnluTPHHV8Vmjc5N+luPAsD+TJJlX7AEAAAAAAAAAeJhJF3uuTvKk\nqtpZVf0kr0ny0TGf/USSH6qqU6vq1CQ/NDrHo8TwwYk9Sx0nAQAAAAAAAADYfCZa7GmtLSX5mSwX\ncm5IckVr7fqqekdVvSxJquoZVbUvyauS/G5VXT969ptJ/kWWy0FXJ3nH6ByPElZxAQAAAAAAAAAc\n3sykv6C1tjvJ7jXn3rrq89VZXrO13rOXJ7l8ogHpzMrEnvlFxR4AAAAAAAAAgLUmvYoLDmul2HPf\nA1ZxAQAAAAAAAACspdhDZwazywOj5q3iAgAAAAAAAAB4GMUeOrMysWdOsQcAAAAAAAAA4GEUe+jM\ng8WeRcUeAAAAAAAAAIC1FHvozPCElVVcSx0nAQAAAAAAAADYfBR76Mxg1iouAAAAAAAAAIDDUeyh\nM71tlRNmtmVesQcAAAAAAAAA4GEUe+jUsN8zsQcAAAAAAAAAYB2KPXRq2J9R7AEAAAAAAAAAWIdi\nD50a9HuZX1zqOgYAAAAAAAAB28ijAAAgAElEQVQAwKaj2EOnrOICAAAAAAAAAFifYg+dGswq9gAA\nAAAAAAAArEexh04N+73MK/YAAAAAAAAAADyMYg+dGvZnMrew1HUMAAAAAAAAAIBNR7GHTg1M7AEA\nAAAAAAAAWJdiD50a9nuZW1TsAQAAAAAAAABYS7GHTg36vcw9oNgDAAAAAAAAALCWYg+dGs7OZOHA\nwSwdONh1FAAAAAAAAACATUWxh04N+70ksY4LAAAAAAAAAGANxR46NTxhudgzv6DYAwAAAAAAAACw\n2ljFnqrqVdX/OekwbD0PTuxR7AEAAAAAAAAAOMRYxZ7W2oEkr51wFragwexMkmRuYanjJAAAAAAA\nAAAAm8vMBu79y6r6rSR/nOS+lZOttWuOeSq2jJWJPVZxAQAAAAAAAAAcaiPFnvNG/3zHqnMtyT8+\ndnHYaqziAgAAAAAAAABY39jFntbaD04yCFvTQLEHAAAAAAAAAGBd28a9sapOrqpfq6o9o79fraqT\nJxmOR79hf7lbNr+41HESAAAAAAAAAIDNZexiT5LLk9yT5NWjv7uT/NtJhGLrsIoLAAAAAAAAAGB9\nY6/iSvI/tdZeser47VV17bEOxNaysoprXrEHAAAAAAAAAOAQG5nYM19Vz1k5qKpnJ5k/9pHYSoaz\nJvYAAAAAAAAAAKxnIxN7firJH1bVyaPjbyX58WMfia1kprct/d42xR4AAAAAAAAAgDXGKvZU1bYk\nT26t/cOqemyStNbunmgytoxBv5f5haWuYwAAAAAAAAAAbCpjreJqrR1M8s9Hn+9W6uFYGvZ7uc/E\nHgAAAAAAAACAQ4xV7Bn5VFW9qaqeWFWPW/mbWDK2jOWJPYo9AAAAAAAAAACrjbWKa+RHR//86VXn\nWpLvPnZx2IqG/V7mrOICAAAAAAAAADjEWMWeqtqW5OLW2l9OOA9b0LA/kzkTewAAAAAAAAAADjHW\nKq7W2sEkvzXhLGxRw34v84uKPQAAAAAAAAAAq41V7Bn5s6p6RVXVxNKwJS2v4lLsAQAAAAAAAABY\nbSPFnjcm+Q9JFqrq7qq6p6runlAutpDB7EzmFXsAAAAAAAAAAA4xM+6NrbWTJhmErWt5Ys9S1zEA\nAAAAAAAAADaVsSf21LKLq+oto+MnVtX5k4vGVmEVFwAAAAAAAADAw21kFdd7kjwryetGx/cmefcx\nT8SWM+j38sDSwRw42LqOAgAAAAAAAACwaWyk2PP9rbWfTnJ/krTWvpWkP5FUbCnDfi9JMr9oag8A\nAAAAAAAAwIqNFHsWq6qXpCVJVe1IcnAiqdhSBv2ZJMncwlLHSQAAAAAAAAAANo+NFHveleQjSR5f\nVf8yyV8k+b8nkootZTg7mtizYGIPAAAAAAAAAMCKmXFvbK39UVV9IckLklSSl7fWbli5XlWnjtZz\nwYasrOKaU+wBAAAAAAAAAHjQ2MWeJGmt3ZjkxsNc/rMkT/+2E7HlDBR7AAAAAAAAAAAeZiOruI6m\njuG72EKG/eV+mVVcAAAAAAAAAAAPOZbFnnYM38UWsrKK676FpY6TAAAAAAAAAABsHsey2AOPyMoq\nLhN7AAAAAAAAAAAeYhUXnTtxtIprTrEHAAAAAAAAAOBBM0e7oaoed6TrrbVvjj6+4JgkYstZmdgz\nZxUXAAAAAAAAAMCDjlrsSfKFJC3LE3m+M8m3Rp9PSfL1JDuTQwo+sCFDq7gAAAAAAAAAAB7mqKu4\nWms7W2vfneRTSV7aWju9tXZakh9OcuWkA/LoN9vbltleZW5RsQcAAAAAAAAAYMVRiz2rPLO1tnvl\noLX28SQ/cOwjsRUNZnsm9gAAAAAAAAAArDLOKq4Vt1XVLyd53+j49UluO/aR2IqG/ZnMLSx1HQMA\nAAAAAAAAYNPYyMSe1ybZkeQjSf7j6PNrj/ZQVV1QVV+uqpur6tJ1rp9QVX88uv7fqurs0fnZqvqD\nqvqbqrqhqn5hA1k5zgz7vcyZ2AMAAAAAAAAA8KCxJ/a01r6Z5Ger6sTW2n3jPFNVvSTvTvLCJPuS\nXF1VH22tfWnVbT+Z5Futte+pqtck+X+S/GiSVyU5obX21KoaJvlSVX2gtXbLuJk5fgz6VnEBAAAA\nAAAAAKw29sSeqvqBqvpSkhtGx/+wqt5zlMfOT3Jza+1rrbWFJB9MctGaey5K8gejzx9K8oKqqiQt\nyYlVNZNkkGQhyd3j5uX4YmIPAAAAAAAAAMChNrKK69eTvCjJHUnSWvvvSZ53lGfOTLJ31fG+0bl1\n72mtLSW5K8lpWS753Jfk75J8Pcm/Hk0NOkRVXVJVe6pqz/79+zfwc9hMBv2ZzC0q9gAAAAAAAAAA\nrNhIsSettb1rTk2yiXH+6P1nJNmZ5Oeq6rvXyfTe1tqu1tquHTt2TDAOkzSc7WV+YanrGAAAAAAA\nAAAAm8ZGij17q+oHkrSqmq2qN2W0lusIbk3yxFXHZ43OrXvPaO3WyVmeCvS6JP+5tbbYWrs9yV8m\n2bWBvBxHrOICAAAAAAAAADjURoo9P5Xkp7O8OuvWJOeNjo/k6iRPqqqdVdVP8pokH/3/2bv3KEnT\nuk7w3ydumRF16epuuqGhG2hpuhAWbzSIzDgOoDPd7SruCiOKyuxhlj2uuLNnz+wOe3YPi6xnd3D2\njOsuqMcRHcWZ1Vnd2dNKA7OCl/EyCig6NlLS3ASBpqEvVZUZmRmR+ewfEZkZlZV1ye6MiqiOz+ec\n97zP+75PRPyyMg9a2d/6/fbsuSfJa8frVyZ5f621ZjR+62VJUko5kuTFST56gHq5inQ7zfQFewAA\nAAAAAAAAdrQuZ1MppZnk+2qtrznIm9dah6WUNyR5b5Jmkp+ttd5XSnlLkg/WWu9J8o4k7yyl3J/k\noYzCP0ny9iQ/V0q5L0lJ8nO11j87yOdz9dCxBwAAAAAAAADgXJcV7Km1bpZSvifJjx30A2qt9ya5\nd8+9N02s15K8ap/Xnd3vPk9M3U4r/cFmtrZqGo0y63IAAAAAAAAAAGbusoI9Y79bSnlbkl9OsrJ9\ns9b6x4deFQvnSKeZJOkPNnNk6SA/lgAAAAAAAAAAT0wHSVB8zfj8lol7NcnLDq8cFlVvHOxZ3RDs\nAQAAAAAAAABIDhDsqbW+dJqFsNi6ndGPYn9jc8aVAAAAAAAAAADMhwO1RimlfGuS5yVZ3r5Xa33L\nhV8Bl2enY89gOONKAAAAAAAAAADmQ+NyN5ZSfirJdyX5oSQlyauSPGNKdbFguhOjuAAAAAAAAAAA\nOECwJ8lLaq3fn+ThWusPJ/mGJLdPpywWTa89CvYYxQUAAAAAAAAAMHKQYE9/fF4tpTw1ySDJTYdf\nEouo1xlNhdOxBwAAAAAAAABgpHWAvb9eSjmR5J8m+eMkNcnPTKUqFs7uKK7hjCsBAAAAAAAAAJgP\nlx3sqbX+z+Plr5ZSfj3Jcq310emUxaLpdYziAgAAAAAAAACYdNnBnlLK9+9zL7XWXzjcklhEvZ2O\nPYI9AAAAAAAAAADJwUZxvXBivZzk5RmN5BLs4XHbHsXVHwj2AAAAAAAAAAAkBxvF9UOT16WUE0l+\n6dArYiF1mo00GyWrG8NZlwIAAAAAAAAAMBcaj+O1K0luPaxCWGyllPTaTaO4AAAAAAAAAADGLrtj\nTynl15LU8WUjyXOT/OtpFMVi6naa6Qv2AAAAAAAAAAAkOUCwJ8n/NrEeJvl0rfWzh1wPC6zXaWZF\nsAcAAAAAAAAAIMkBgj211t+eZiHQ67TS3xjOugwAAAAAAAAAgLlwkFFcZ7I7iuucR0lqrfX4oVXF\nQup1mlnVsQcAAAAAAAAAIMnBRnH970k+n+SdGYV5XpPkplrrm6ZRGIun22nmzJqOPQAAAAAAAAAA\nSdI4wN5vr7X+RK31TK31dK31J5O8YlqFsXh6nWb6OvYAAAAAAAAAACQ5WLBnpZTymlJKs5TSKKW8\nJsnKtApj8fQ6rawOdOwBAAAAAAAAAEgOFuz5niR/L8kD4+NV43twKLo69gAAAAAAAAAA7Ghd7sZa\n66di9BZT1Gs3syrYAwAAAAAAAACQ5AAde0opP1pKOV5KaZdS3ldKebCU8r3TLI7F0us00x9sptY6\n61IAAAAAAAAAAGbuIKO4/k6t9XSS/zjJp5LcluS/nUZRLKZup5Vak7XB1qxLAQAAAAAAAACYuYME\ne7bHdn1rkv+71vroFOphgfU6zSTJ6sZwxpUAAAAAAAAAAMzeQYI9v15K+WiSFyR5XynlhiRr0ymL\nRdTdCfZszrgSAAAAAAAAAIDZu+xgT631jUlekuSOWusgyWqSV2w/L6V8y+GXxyLZ7tjTHwj2AAAA\nAAAAAAAcpGNPaq0P1Vo3x+uVWusXJh6/9VArY+H0dOwBAAAAAAAAANhxoGDPJZRDfC8WULfdSpKs\nbgxnXAkAAAAAAAAAwOwdZrCnHuJ7sYB2RnHp2AMAAAAAAAAAcKjBHnhcjiyNgj0rgj0AAAAAAAAA\nAIca7PnUIb4XC6jbGY3i6hvFBQAAAAAAAACQ1kE2l1JekuSZk6+rtf7C+PyfHmplLJxee9SxZ1XH\nHgAAAAAAAACAyw/2lFLemeRZST6cZDt5UZP8whTqYgF1O4I9AAAAAAAAAADbDtKx544kz6211mkV\nw2JbajXSKElfsAcAAAAAAAAAII0D7P3zJE+ZViFQSkmv09KxBwAAAAAAAAAgB+vY86QkHyml/FGS\n9e2btdZvP/SqWFjdTjP9wXDWZQAAAAAAAAAAzNxBgj1vnlYRsK3XaerYAwAAAAAAAACQAwR7aq2/\nPc1CIEm6bcEeAAAAAAAAAIAkaVzuxlLKi0spHyilnC2lbJRSNkspp6dZHIun12mmL9gDAAAAAAAA\nAHD5wZ4kb0vy3Uk+lqSb5B8kefs0imJx9TqtrG4MZ10GAAAAAAAAAMDMHSTYk1rr/UmatdbNWuvP\nJblzOmWxqLodo7gAAAAAAAAAAJKkdYC9q6WUTpIPl1J+NMnnc8BgEFxKr9NMfyDYAwAAAAAAAABw\nkGDO9433vyHJSpJbknznNIpicfV07AEAAAAAAAAASHKAjj211k+XUrpJbqq1/vAUa2KBddut9AV7\nAAAAAAAAAAAuv2NPKeXbknw4yXvG119TSrlnWoWxmI4sNbOyMUytddalAAAAAAAAAADM1EFGcb05\nyYuSPJIktdYPJ7l1CjWxwLqdZmpN1odbsy4FAAAAAAAAAGCmDhLsGdRaH91zT1sVDlWv3UySrBrH\nBQAAAAAAAAAsuIMEe+4rpXxPkmYp5dmllP8zye9PqS4WVK/TSpKsbgxnXAkAAAAAAAAAwGwdJNjz\nQ0mel2Q9yb9K8miSfziNolhc3c6oY09fxx4AAAAAAAAAYMEdJNjz3PHRSrKc5BVJPjCNolhcvY5R\nXAAAAAAAAAAAySikc7n+ZZJ/lOTPk2xNpxwWXVewBwAAAAAAAAAgycGCPQ/WWn9tapVAkl5n9CPZ\nHwxnXAkAAAAAAAAAwGwdJNjzP5VSfibJ+5Ksb9+stf4/h14VC8soLgAAAAAAAACAkYMEe/6zJM9J\n0s7uKK6aRLCHQ9NtC/YAAAAAAAAAACQHC/a8sNZ6cmqVQHY79vQFewAAAAAAAACABdc4wN7fL6U8\n96AfUEq5s5RyqpRyfynljfs8Xyql/PL4+R+WUp458eyrSil/UEq5r5TyH0opywf9fK4uvc4oa6Zj\nDwAAAAAAAACw6A7SsefFST5cSvlkkvUkJUmttX7VhV5QSmkmeXuSb0ny2SQfKKXcU2v9yMS21yV5\nuNZ6Wynl1UnemuS7SimtJL+Y5PtqrX9aSrk+yeAgXxxXn+V2I6Uk/Y3hrEsBAAAAAAAAAJipgwR7\n7nwM7/+iJPfXWj+RJKWUX0ryiiSTwZ5XJHnzeP0rSd5WSilJ/k6SP6u1/mmS1Fq//Bg+n6tMKSXd\ndlPHHgAAAAAAAABg4V12sKfW+unH8P5PS/KZievPJvn6C+2ptQ5LKY8muT7J7UlqKeW9SW5I8ku1\n1h/d+wGllNcneX2SPP3pT38MJTJvep1mVgeCPQAAAAAAAADAYmvMuoCLaCX5m0leMz7/J6WUl+/d\nVGv96VrrHbXWO2644YYrXSNT0O0009exBwAAAAAAAABYcNMO9vx1klsmrm8e39t3TymlleSaJF/O\nqLvP79Rav1RrXU1yb5Kvm3K9zIEjnVZW1oezLgMAAAAAAAAAYKamHez5QJJnl1JuLaV0krw6yT17\n9tyT5LXj9SuTvL/WWpO8N8nzSym9ceDnm5J8ZMr1Mge6nWb6RnEBAAAAAAAAAAuuNc03r7UOSylv\nyCik00zys7XW+0opb0nywVrrPUnekeSdpZT7kzyUUfgntdaHSyn/LKNwUE1yb631XdOsl/nQ6zSz\nahQXAAAAAAAAALDgphrsSZJa670ZjdGavPemifVakldd4LW/mOQXp1ogc6fbbuWhlf6sywAAAAAA\nAAAAmKlpj+KCA+t1mulvDGddBgAAAAAAAADATAn2MHeM4gIAAAAAAAAAEOxhDnU7zfQFewAAAAAA\nAACABSfYw9zpdZpZHWym1jrrUgAAAAAAAAAAZkawh7nT67SyuVWzsbk161IAAAAAAAAAAGZGsIe5\n0203k8Q4LgAAAAAAAABgoQn2MHd6nVGwZ1WwBwAAAAAAAABYYII9zJ2uYA8AAAAAAAAAgGAP86fX\naSUxigsAAAAAAAAAWGyCPcyd3VFcwxlXAgAAAAAAAAAwO4I9zJ2dUVwDHXsAAAAAAAAAgMUl2MPc\nOWIUFwAAAAAAAACAYA/zZ3sU18q6UVwAAAAAAAAAwOIS7GHubI/i6hvFBQAAAAAAAAAsMMEe5s52\nx55Vo7gAAAAAAAAAgAUm2MPcWW4J9gAAAAAAAAAACPYwdxqNkm67mf7GcNalAAAAAAAAAADMjGAP\nc6nXaerYAwAAAAAAAAAsNMEe5lK300xfsAcAAAAAAAAAWGCCPcwlHXsAAAAAAAAAgEUn2MNc6nZa\nWR0I9gAAAAAAAAAAi0uwh7nUazfT3xjOugwAAAAAAAAAgJkR7GEuGcUFAAAAAAAAACw6wR7mUrfT\nTF+wBwAAAAAAAABYYII9zCUdewAAAAAAAACARSfYw1zqdVpZ3RjOugwAAAAAAAAAgJkR7GEu9TrN\n9Ac69gAAAAAAAAAAi0uwh7nU6zQz2KzZGG7NuhQAAAAAAAAAgJkQ7GEudTutJEl/Q9ceAAAAAAAA\nAGAxCfYwl3qdZpJkdTCccSUAAAAAAAAAALMh2MNc2gn26NgDAAAAAAAAACwowR7mUrc9CvYYxQUA\nAAAAAAAALCrBHuZSr9NKomMPAAAAAAAAALC4BHuYS92dUVzDGVcCAAAAAAAAADAbgj3MpV7HKC4A\nAAAAAAAAYLEJ9jCXejsdewR7AAAAAAAAAIDFJNjDXNoZxTUQ7AEAAAAAAAAAFpNgD3Op12klSfob\nwxlXAgAAAAAAAAAwG4I9zKVu2yguAAAAAAAAAGCxCfYwl5qNkqVWI33BHgAAAAAAAABgQQn2MLd6\nnaaOPQAAAAAAAADAwhLsYW71Oi3BHgAAAAAAAABgYQn2MLd6nWb6g+GsywAAAAAAAAAAmAnBHuZW\nr9PMyrqOPQAAAAAAAADAYhLsYW51O830jeICAAAAAAAAABaUYA9zq9dpZdUoLgAAAAAAAABgQQn2\nMLe6nWZWdewBAAAAAAAAABaUYA9zq9c2igsAAAAAAAAAWFyCPcytno49AAAAAAAAAMACE+xhbnU7\nLR17AAAAAAAAAICFJdjD3Op1mtnY3Mpwc2vWpQAAAAAAAAAAXHGCPcytXqeZJFkd6NoDAAAAAAAA\nACwewR7mVncc7DGOCwAAAAAAAABYRII9zK2djj2CPQAAAAAAAADAAhLsYW51260kyerGcMaVAAAA\nAAAAAABceVMP9pRS7iylnCql3F9KeeM+z5dKKb88fv6HpZRn7nn+9FLK2VLKP5p2rcyXnlFcAAAA\nAAAAAMACm2qwp5TSTPL2JHcleW6S7y6lPHfPttclebjWeluSH0vy1j3P/1mSd0+zTubTkSWjuAAA\nAAAAAACAxTXtjj0vSnJ/rfUTtdaNJL+U5BV79rwiyc+P17+S5OWllJIkpZTvSPLJJPdNuU7m0O4o\nLsEeAAAAAAAAAGDxTDvY87Qkn5m4/uz43r57aq3DJI8mub6UcjTJP07ywxf7gFLK60spHyylfPDB\nBx88tMKZvZ1RXIPhjCsBAAAAAAAAALjyph3seTzenOTHaq1nL7ap1vrTtdY7aq133HDDDVemMq6I\n7WDPyrqOPQAAAAAAAADA4mlN+f3/OsktE9c3j+/tt+ezpZRWkmuSfDnJ1yd5ZSnlR5OcSLJVSlmr\ntb5tyjUzJ7rbHXuM4gIAAAAAAAAAFtC0gz0fSPLsUsqtGQV4Xp3ke/bsuSfJa5P8QZJXJnl/rbUm\n+cbtDaWUNyc5K9SzWHqd0Y/nqmAPAAAAAAAAALCAphrsqbUOSylvSPLeJM0kP1trva+U8pYkH6y1\n3pPkHUneWUq5P8lDGYV/IM1GSafVyOpgOOtSAAAAAAAAAACuuGl37Emt9d4k9+6596aJ9VqSV13i\nPd48leKYe71O0yguAAAAAAAAAGAhNWZdAFxMr900igsAAAAAAAAAWEiCPcy1ro49AAAAAAAAAMCC\nEuxhrvU6raxuDGddBgAAAAAAAADAFSfYw1zrdoziAgAAAAAAAAAWk2APc63XaaY/EOwBAAAAAAAA\nABaPYA9zradjDwAAAAAAAACwoAR7mGvddit9wR4AAAAAAAAAYAEJ9jDXjiw1s7oxnHUZAAAAAAAA\nAABXnGAPc61rFBcAAAAAAAAAsKAEe5hrvXYr68OtbG7VWZcCAAAAAAAAAHBFCfYw13qdZpIYxwUA\nAAAAAAAALBzBHuZadxzs6RvHBQAAAAAAAAAsGMEe5tpuxx7BHgAAAAAAAABgsQj2MNcEewAAAAAA\nAACARSXYw1zrdlpJkv5gOONKAAAAAAAAAACuLMEe5pqOPQAAAAAAAADAohLsYa5124I9AAAAAAAA\nAMBiEuxhrm137OkL9gAAAAAAAAAAC0awh7nW67SS6NgDAAAAAAAAACwewR7mWrezPYprOONKAAAA\nAAAAAACuLMEe5ppRXAAAAAAAAADAohLsYa61m420myWrA8EeAAAAAAAAAGCxCPYw93qdlo49AAAA\nAAAAAMDCEexh7vU6zaxuDGddBgAAAAAAAADAFSXYw9zrdppZ1bEHAAAAAAAAAFgwgj3MvV6naRQX\nAAAAAAAAALBwBHuYe712KytGcQEAAAAAAAAAC0awh7nX1bEHAAAAAAAAAFhAgj3MvV6nmVXBHgAA\nAAAAAABgwQj2MPe6gj0AAAAAAAAAwAIS7GHu9TrN9AeCPQAAAAAAAADAYhHsYe71Oq2sbgxnXQYA\nAAAAAAAAwBUl2MPc67abWRtsZWurzroUAAAAAAAAAIArRrCHudfrNJPEOC4AAAAAAAAAYKEI9jD3\ntoM9qxuCPQAAAAAAAADA4hDsYe51O60kSV+wBwAAAAAAAABYIII9zL2djj2D4YwrAQAAAAAAAAC4\ncgR7mHtGcQEAAAAAAAAAi0iwh7nXM4oLAAAAAAAAAFhAgj3MPR17AAAAAAAAAIBFJNjD3OvuBHuG\nM64EAAAAAAAAAODKEexh7unYAwAAAAAAAAAsIsEe5l6v3Uoi2AMAAAAAAAAALBbBHube9iiuvlFc\nAAAAAAAAAMACEexh7nVajbQaRcceAAAAAAAAAGChCPZwVeh2moI9AAAAAAAAAMBCEezhqtDrNNMX\n7AEAAAAAAAAAFohgD1eFXqeV1YFgDwAAAAAAAACwOAR7uCp02830N4azLgMAAAAAAAAA4IoR7OGq\n0Os0s2oUFwAAAAAAAACwQAR7uCp0BXsAAAAAAAAAgAUj2MNVoddppi/YAwAAAAAAAAAsEMEergpH\nOq2sDoazLgMAAAAAAAAA4IoR7GF6huvJb/4vyUfvfdxv1dWxBwAAAAAAAABYMII9TE+zk3z4XyV/\n8ouP+616nWZWBXsAAAAAAAAAgAUi2MP0lJKcvCv5+PuTQf9xvVW300p/sJla6yEVBwAAAAAAAAAw\n36Ye7Cml3FlKOVVKub+U8sZ9ni+VUn55/PwPSynPHN//llLKh0op/2F8ftm0a2UKTt6VDPvJJ377\ncb1Nr9NMrcnaYOuQCgMAAAAAAAAAmG9TDfaUUppJ3p7kriTPTfLdpZTn7tn2uiQP11pvS/JjSd46\nvv+lJN9Wa31+ktcmeec0a2VKnvE3k86x5NS7Htfb9DrNJMnKxvAwqgIAAAAAAAAAmHvT7tjzoiT3\n11o/UWvdSPJLSV6xZ88rkvz8eP0rSV5eSim11j+ptX5ufP++JN1SytKU6+WwtTrJs785OfWeZOux\nd9vptkfBnv7G5mFVBgAAAAAAAAAw16Yd7Hlaks9MXH92fG/fPbXWYZJHk1y/Z893JvnjWuv63g8o\npby+lPLBUsoHH3zwwUMrnEN08luTlS8mn/vjx/wWvU4rSbIq2AMAAAAAAAAALIhpB3set1LK8zIa\nz/Vf7Pe81vrTtdY7aq133HDDDVe2OC7Ps785Kc3k1L2P+S22R3GtGsUFAAAAAAAAACyIaQd7/jrJ\nLRPXN4/v7bunlNJKck2SL4+vb07yb5J8f63141OulWnpXps84yXJqXc/9rfoGMUFAAAAAAAAACyW\naQd7PpDk2aWUW0spnSSvTnLPnj33JHnteP3KJO+vtdZSyokk70ryxlrr7025Tqbt5N3JFz+SPPTJ\nx/Ty3Y49gj0AAAAAAAAAwGKYarCn1jpM8oYk703yF0n+da31vlLKW0op3z7e9o4k15dS7k/y3yR5\n4/j+G5LcluRNpZQPj48bp1kvU3TyztH5L9/zmF6+E+wZCPYAAAAAAAAAAIuhNe0PqLXem+TePffe\nNLFeS/KqfV73I0l+ZCPFEyIAACAASURBVNr1cYVc9xXJDV+ZfPRdyYt/4MAv73ZGP6r9jeFhVwYA\nAAAAAAAAMJemPYoLdp28K/n07yf9hw/80l7bKC4AAAAAAAAAYLEI9nDlPOdbk7qZfOw3DvzSbkew\nBwAAAAAAAABYLII9XDlP/brkyI3JqXsvvXePpVYjjZL0BXsAAAAAAAAAgAUh2MOV02gkJ+9M7v+N\nZLhxoJeWUnKk09KxBwAAAAAAAABYGII9XFkn707WTyef/r0Dv7TbaaY/GE6hKAAAAAAAAACA+SPY\nw5V16zclrW5y6t0Hfmmv09SxBwAAAAAAAABYGII9XFmdXvKsl46CPbUe6KVdo7gAAAAAAAAAgAUi\n2MOVd/Ku5NG/Sh748wO9rNdppi/YAwAAAAAAAAAsCMEerrzb70xSDjyOq9dpZmVjOJ2aAAAAAAAA\nAADmjGAPV97RG5ObX5icuvdAL+u2dewBAAAAAAAAABaHYA+zcfKu5HN/kpz+3GW/pNdpZlWwBwAA\nAAAAAABYEII9zMbJu0fnv3zPZb+k22kJ9gAAAAAAAAAAC0Owh9m44WRy7a3JqXdf9kt6nWb6G8Mp\nFgUAAAAAAAAAMD8Ee5iNUkZdez7x28n62ct6Sa/TzOpgM7XWKRcHAAAAAAAAADB7gj3Mzsm7ks31\n5OPvv6zt3U4ztSbrw60pFwYAAAAAAAAAMHuCPczO078hWT5x2eO4eu1mkmR1Y3OaVQEAAAAAAAAA\nzAXBHman2Upu/7vJX74n2bp0WKfXaSVJVjeG064MAAAAAAAAAGDmBHuYrZN3Jf2Hks/80SW3djuj\njj19HXsAAAAAAAAAgAUg2MNsPevlSaOdnLr3kluPLBnFBQAAAAAAAAAsDsEeZmv5eHLrNyan3n3J\nrd329iguwR4AAAAAAAAA4IlPsIfZO3l38uWPJV/62EW39bZHcQ2GV6IqAAAAAAAAAICZEuxh9m6/\nc3S+RNee7WCPjj0AAAAAAAAAwCIQ7GH2TtySPOX5yal7L7qtK9gDAAAAAAAAACwQwR7mw8m7k8/8\nYbLypQtu6XVaSZLVdaO4AAAAAAAAAIAnPsEe5sPJu5O6lXzs315wy84oroGOPQAAAAAAAADAE59g\nD/Phpq9Ojj31ouO4llqNlJL0jeICAAAAAAAAABaAYA/zoZTk5F3J/e9PBmsX2FLSazezKtgDAAAA\nAAAAACwAwR7mx8m7k8FK8ql/d8Et3U5LsAcAAAAAAAAAWAiCPcyPW78x6Ry96DiuXqeZ/sbwChYF\nAAAAAAAAADAbgj3Mj9ZS8qyXJafenWxt7bul1zGKCwAAAAAAAABYDK1ZFwDnOHl38hf3JJ//cPK0\nrzvvcbfTTH8g2AMAAAAAAADAE8zmIFl9KNlcH603N8bHnvVwff/7F1rf9FXJ137vrL86HiPBHubL\n7X83KY1R1559gj069gAAAAAAAABwVdkcJGcfSM48kJz5fHL2C8mZPcfZLyQrX0pSD+czG+2k2Uma\n7WS4JthzFRPsYb70rkue/g2jYM/L/ofzHnfbrTy00p9BYQAAAAAAAAAsjFqTujU6p+5eb6+3z2uP\n7AZ2znx+HOD5/PjeRQI7pZEcuTE59pTkmpuTm1+QHLspOfKkpNXdDeU0OxdZX+R5KVf+z4ypEOxh\n/py8K/m3/2PyyF8lJ55+zqMjS830N4YzKgwAAAAAAADgCa7WZNBP1k8na6fH50f3XO89Pzp6TbOT\ntJaSdnd0bi2Pz3uuL/p8OWmPz1ubyWB19N6D1T3rfrKxMr6efL66e2/v8+HabljnvJDORIjn8bhQ\nYOfok0fnY08ZHUduSBrNQ/iG8UQn2MP8OXn3KNhz6j3J17/+nEdGcQEAAAAAAABXtVqT4XqyuT46\nbx+b66PgyXBjdN7cmHi2kWwNx+GTzWRra2K9OTrXrfH97fXmnvXWufcH/QsHd7Yu1WyhJEvHkqXj\nyfLx3fPmINk4m6x+aVT3YG38Na0nw/7o6zhspZG0j4zCQu1u0tle90Zhmu11pzcKC5Uyek3KuKvN\n5Lmxz7399k2cl44L7DBVgj3Mn+uflTzp9uTUvecFe7rtVvqCPQAAAAAAADB7w41RIGTt0dE4orVH\nJq4fTfqPJOtndgMlO11Rsue67rmevJcLdFhJzumscij3LrDnsVxvDSfCOpNBnbXphFv2UxpJaY5C\nJjvrxu663d0N5By7Kbnh5PlBnaVr9lyPz51jo/c6qK2t3QDT3tDPcO/9tVGdnd5uOGfn6I7v90Zd\ngoyd4glMsIf5dPKu5A9+YvR/8Jev2bnd6zSzOthMrTXF/zgDAAAAAADwWG1tJYOVZP3sqMPI+pnx\neXy9sTIKQDSa40BEaxyK2F43d4MSjdZugGJnvc/9reFoHNDGnnFC+40Q2tm3597k/uFG0myfO7ro\nkmOPJvft87rNjXPDOXvDOtuBnbVHR2GMi2m0R11dGq09XVIae7qgNC7wvHFuZ5XJ/dvO+W+G5RDv\nTXZrmdxWLrJ/4rrRGv2ZNrf/3Dujc7Ozz/XSBZ4tjZ8tjb7P2z9POz+XjXN/Rs9Zl8xl2KXRSBrj\nzjrdWRcDVwfBHubTybuT3/vx5P7fSP6j79y53e00s7lV8/EHz+a2G4/NsEAAAAAAAOBQbG0m/YeT\n1YdGQYHW0miMSufoeJxK77F1hThste52kEiZCHVMng/5P6LXOvrz2dwYH4MLrDfOv39e54v13fqH\nE/cGE10y9nbNmHyP1FFIo9kan9u7183OPs9aE3v27N++N/nnNvlnORlaOKfTyCWCDJsbE8GcM6Og\nzoVCO+tnRsGd1Et9F6680pwYJdQ9t0PJ3rFCzaXx93ufbicbK8nql/d8v8frzfXLrKUx+kf4yyfG\n52uSJz15dO6e2PNsYs/20e7OZ7gE4Coi2MN8uvmFSe9Jyal3nxPs+YZnXZ/ldiPf8mO/k7uff1N+\n8G/fluc+9fgMCwUAAAAAAHZMhnRWvzw6+hPr1Ycn1uNn/Udy8XBFGQd9Jo+jF1jv8yxlT5eT/Tqf\nXOzZxP1LhkDKPkGU7dE3e0NAE4GUunXh0M5hBk9K4+KdXDq9pHfd+R1dWkujcMbmMNkajOrbGuy5\nHp57f7g2Cs9cbN/WVlI3R1//1uZovbV5OF9zcylZOjr6GVg6Plr3npRc+8zxvWPj8/b62MT+o6Pr\nTm93pFLdHNW7s56od2c9vPj9rc1RsKm9d6xQ99xzq/P4v/5LmRyHdE7Aqz8KXm2HdjpHBXMAZkyw\nh/nUaCa335l89NdG/89ds50k+bqnX5vf/ccvyzt+95N55x98Ou/6s8/n5c+5MT/4stvydU+/dsZF\nAwAAAADAAdU6OjI+161z1zsBgq3d895QQd06PxixHULYu/9SwYy94Yx9QxsT19sdQS4npNNaHgUr\netcmveuTE7ck3etG6971o0DJ8jW7nUa2RyHtHBPX62dG4aFHPjPx7Oyorst1XleUifVkV5RzuqZ0\nR19H6vnfg32/P/t9v/a5X5qjrjfN9vh8ofWlnk+s23sCPK3lnf/eMve2f/7P+zmf+LPb73mzvRva\nuVq+1lmZHIcEwFwrtc5he7nH6I477qgf/OAHZ10Gh+Uvfj355dckr/215Na/dd7jR1cH+fk/+FR+\n9vc+mUdWB3nJs67PD770trzkWdenSA4DAAAAAHAxtY7H9qxMjOfZGyY5c36wZN99K8lgZRQ4yHYg\n5yJhnUyEeeZdaYy6dzRa+49g6hyZCOZcPxHUuW58TNzv9KZf73Bj4nsz/n6Vcn44p90T/AAAZqaU\n8qFa6x2XtVewh7m1sZK89dbkha9L7vxfL7htZX2Y/+uP/io//TufyBfPrOdrbjmRN7z0trz8K28U\n8AEAAAAAuNpsbSZrj47GOfUfGZ3XHhmPixmPjNk+Ntf3ub6cPeuj8UoH6e7SPjIez7N33NN4dE+7\nuzteKWV3dE1pjNdlz7rs2bv9POc+32980+QIp3NGPV3G/uZ2SKc9EdJpnRvWmQzvNBqH/A0GAECw\nhyeOf/n3kgc/mvzDP73k/M61wWZ+5UOfzU/99sfz2Yf7ec5TjuUHX3pb7n7+TWk2BHwAAAAAAK6o\nzcFuMOcgx9qjuexONo32eMxQZ3fcUHNpPHZoaZ/riT3t5d1QztLRPWGdicBO58iou4uACwAAh0Sw\nhyeOD/5c8uv/dfJf/vvkxq+8rJcMNrdyz4c/l5/4rfvz8QdXcuuTjuQHvulZ+Y6vfVo6LX/xAgAA\nAACegLY2k/Uz4+P06Lx2erw+PV5f4Nn62aRujt5ncjxUzcS6Hmw96I/GIF1QSbonku61lz6WT4z2\ntpZ3gznb4RxhGwAArkIHCfa0pl0MPC633zk6f/Rdlx3saTcb+c4X3Jzv+Nqn5b33fSFve//9+e9+\n9c/y4+/7WF7/t74i3/XCW7Lcbk6xaAAAAACAx2n9THLmgeTM55OzDyRnvrC7Xn3o/LDORUM0Y6WR\nLB0fHcvHk6VjydGnJNcfHY1oSs4dEzW6sWedC9zfs24t7wno7AnxLF0jlAMAAJdBxx7m30+/dPQX\nzv/8fY/p5bXW/NapB/O237w/H/r0w3nS0aX8g2+8Nd/74mfk6JJsGwAAAABwhdQ6GjN15gvJ2S+c\nH9w5O74+80AyWDn/9a3l5OiTkyNPGgd0jo0DOnvCOjvPrtm9Xj4+Gie1E8ABAABmRccenliec3fy\n/h8Z/WX22JMP/PJSSl76nBvzt0/ekH//iYfyE791f/7Juz+an/ytj+fvv+SZ+fsveWauPdKZQuEA\nAAAAwBPG1tYobLN+NtlYGXXI2Vi5yHp8Xj+dnP3ibnBnuHb+e7ePJMeeMjpu+prk9vH66FNGvxM9\nOr5evkYwBwAAFoyOPcy/B+5LfvIlybf9H8kLXnsob/nhzzySt//m/fn/PvJAep1mXnTrdbn52m5u\nubaXW67r7axP9Nop/qIMAAAAAE8sg7VxZ5zxeKvt4/Tnk/5D+wd2BquX//6NVtI5OjqWjiZHbtgN\n7myHdI4+OTl20yi4s3Rsel8rAAAwd3Ts4YnlxucmJ56enHr3oQV7vuaWE/nn339HPvqF03nHv/tk\nPvL50/mTv3okj/YH5+w7utTKzdd2c/O147DPdb3cMr6+5bpuji23D6UeAAAAAOAQbG0mKw/uhnT2\nhnbOfCE587mk//D5r20tjwI3vetHgZwjNySdIxPH0Qusj52/r6VDOAAAcDgEe5h/pSQn704+9C+S\njdWk0zu0t37OU47nn77qq3euT68N8pmHVvPZh/s7588+vJrPPLSa3//4l7K6sXnO60/02jvdfXaD\nP7089UQ31x/t5NpeJ82Gjj8AAAAAcCDD9WT9zGiM1fqZPcfpZG18f+3R0Xir7eDO2QeSeu7v8FIa\n4+44T0mufWby9Bcnx28ad8sZH8dvSpZPGHMFAADMHcEerg4n70r+8KeST/xW8py7p/Yxx5fbed5T\nr8nznnrNec9qrXl4dSL48/DqOPTTz6kHzuR9H/1iNoZb57ymlOTaXifXHenk+iOdXH90e72071oQ\nCAAAAICr3tbWKHzTf/jcY+2RpP/IPkGdvQGe08nmxqU/p9FKlo7vjri64StH572hnaM3Jo3m9L9u\nAACAKRDs4erwjL+RLF2TnLp3qsGeiyml5LojowDOV99y4rznW1s1Xzq7ns883M/nHunnoZWNfPns\ner68sjFeb+TUF87koZWNPLw62OcTLh4EuqbbzvFuO8eWWzm+3M7x7vi83M7R5ZZAEAAAAACHa3M4\n6oizN6BzqWPtkaRuXfh9G+1k+fgolLN0bHQ+/rTxenyc83zymLjfWtJhBwAAeMIT7OHq0Gwnz/7m\n5C/fM5qTPYf/wqbRKLnx+HJuPL6cFzzj2ovuHW5u5eHVwT7hn4MFgSYdXWrthH6OLbfOCQHtd31s\nuZ2jS60cWWrmSKeVI0utdFqNw/rjAAAAAGDWhhvjsVWPjsI2a4+Oj9MT6/Gxvs+9jbMXf//la5Lu\ntbvHtc8493q/Y+l40l6+Ml8/AADAE4BgD1ePk3cnf/6ryV9/KLnlRbOu5nFpNRu54dhSbji2lOTY\nJfcPN7dydn2Y0/1hTq8NRkd/mDNrg5xeG593rgc5szbMF8+s5eMPDnO6P7oebtVLfk6n2UhvHPQ5\nutRKb6k5Cv+Mgz9Hlpo5sjR+1jl3fXSplW6nmW67ec6502yk+JdTAAAAwKKpdTROamMlGfSTwep4\nvZpsrI7OmxvJ1jDZHFx4vTUY37uM9aB/bjBn2L94jaUxCudMHtd9RbJ8Ynx9POleNw7lnDg3oLN8\nzVz+4zsAAIAnGsEerh63ffNobvape6/6YM9BtZqNnOh1cqLXeUyvr7WmP9jMmbVR0Gc7DLSyvpmV\n9WFWNoZZWR/m7PpmVjeGObs+ul5Z38zZ9WEeOL22s15Zv7yQ0LZGyU7IZ7ndPH993rNGuu3R9XK7\nmU6rkaVWI+1mI51mI+3W6NxplXSazbRbZXS/OdrX2d7baqTVKEJFAAAAwLlqHYVghv1ksDY6D9dH\noZjh2p7z+u6+weq5oZyd9co+98Yhnrr5+Ottdkajq5qtS687veT4U0eBnJ2wzjiks3T8/BBP54hR\nVgAAAHNu6sGeUsqdSX48STPJz9Ra/8me50tJfiHJC5J8Ocl31Vo/NX723yd5XZLNJP9VrfW9066X\nOdY9kTzjbyT3/ZvkSbePZmi3uqNze3xuLe8ek/cW/F8PlVLS67TS67Ty5OOPv9Xx+nBz31BQf2Mz\na4PN9AejdX8wvh6vJ69XNzbzyOpGPr+zfytrg1Gw6AC5oUvq7ASBGmk3S1qNRlrNkmajpNUoaTYa\n43PZPTcvcH+8v9nIOc+bjZJGGY1ja5bt6wvfb5SM1uP7u+fsvK5ktK+Uc8+NUlL2u87uZ23vL8n4\n88rO7+i217vnJHs/K9ufcf77Z/tedj9j+3nG77f3/vZnlwu91i8QAQAAnji2tsbdYzZGY6A2t49B\nsrk+sd4YhWa21zsdasbPz+lWM76/3ZXmgp1shufeG65dOKhTtx7b11caSfvIKEDT7o2CMe3uaH3k\nSeN7vdGednd3fc65u/u8tTT6h2zNzmgUfaM9Om+vG03BGwAAgAU31WBPKaWZ5O1JviXJZ5N8oJRy\nT631IxPbXpfk4VrrbaWUVyd5a5LvKqU8N8mrkzwvyVOT/EYp5fZaD+OfuXDVev4rk3t+KPl/f+Bg\nr2u0J4I+22GgiRDQzi9LWqNfmDS31+NfoDRaE/cmjmZrYt8+r937r6ca7f1/STP5rNmZ+Lz5/AXO\nUquZpVYz1x15bB2ELqbWmsFm3QkBbQy3MtjcysbmVgbDmo3NzawPtzLYrLvPhqPnk9e79+v4PHqv\nza1kc2srw62aza2657yV4WbN+v/f3t3G2pbfdQH//u49M51pR/tAC9FpSwcYxWqkrTe1WjENmEiF\nMLyotspD02j6pkYwPoHRoCS+MDECBoI0bbVoQ4GxyIQX+FBIlcQ+TAGBthgnReg0hakWKmDaueec\nny/2Oueu/Xj2PWfvu/c59/PJ3Tlr/Z/Wbz3svfba97fXvnmcw+Oj6fKTdkc9V96dHB13jrpzPPzt\nDSYn3S0miUC3En1OEn8m05PKmmo7Shqa6Tfddnm7W0+tOl3+ePxxXMl0EtI4Yek0xqn56T6jRS2t\nWzbWyrZnLH88yPxyFqzXklgy12dVrMvrVq3LopgWtcmydV043vw+O6vdeNBx6dy+PCP2qbZrxLR8\n3CXt504N0wVz6zvbeq5+ef9F22GRVWOuimfRsb6o3fxuWr3OC7qcO8ZFz6VF/eaOpTXjWtn2jPcB\nt7Mvly17cYyLl7vu25JFca+/7NVjrbNOs41Whb1snZZtg3ViOGu/LOq0/LhYEcfSmtWve4tiWmff\nLovlPNt3UQzr97vd5Z3/uXmRY3n5cpYedEutXucLxniR16411+/8+3Nzz8PbPVeeJ6bVS1y+7Ok+\n53teLKpfZ1+s/bq+5hZa95y/an+cdR5Y1m5VHNP9bu/1b9n72WWxzL036J7cteX4KJXD1PFx0kep\nk7KezE/Kjm+VHR+mjo+SPkz1YXI0/D0pPz5MHR8O7Sfz6UndpHxSN2l3czL+8SQppo4OJ8s8unk6\ndk7qTvueTN+cLGOon/Q/Sa6ZJObUKHGnjg9Xb9AL6NPPVQ6WJMEcTH/W8ozfnzzwhemD+5N77kud\nfiHs/vQ996XuuW/qS2N1z/2jL4udfHFsaDNuu2ef0wAAAHC1bfuOPa9M8kR3fzxJqurdSR5JMk7s\neSTJPxqmH03yfTX5hOSRJO/u7s8n+dWqemIY779tOWb22Su+JflDr53c4vj0Fsmfn7ll8mj+8HPD\nLZVHj9P50a2UDz83fCB168Orkw+uTr8JNn4c3dzMrZTXdfLhVFVS14bHMJ1x2bWZ+pm6zPQ//Z/r\n8fTJQmv0QdWidkvqxuVLyxaNNamrVO6tyr1Jnr3wY9oFGTMLs2jWbZfk2vDYoJMldSedzvBvUj6U\n9UlI3aP2PRXqMDfMT9edlvTJaDldzq3pnt4So/rZrTGJtU5rb7WrZDae0b6Z3aw9WsjCPTMb/3jk\nPjkqJsuvqT6Tb1PeKhtHm9RoO0/Hc6tXn/4dT4/WpSrdNep3Uj9qs3TNTuKfWavZ7bNsB8wVj6dq\nYZ91jvyeeR7N7/fZdaupNitz1Fbs51tNFgd9UlqLevfcxPKIzkiiW1Y9PgYW1c7VTcU9PkrHTRaP\nt/iYX8+6SYKr98G6/cfP6/UWvKpV9fzRPHu0Le27oH5ZSIuPkrP3xVRcdatyUYxT/1G34Jmy/Eia\nj2f8OrQo3kV91v+v5nUs3/YLn48bjmDd58Dy5+d+WLWtptvtbsx1x7uoM88zt1m/qu0+mN2uc8kH\nC6Jed5+t+3q2j9vlIlYmZuzh2m7jeX3e8c46OtY5Hhe3We84XrfvbPmyc+jS8uqp8++t6VvzNdW/\n5+pu9T1pN9/m2un1xvSYp8urXlg3mT7O9eFxLT2aHv7W/hzLR105zEEOcy2HuT796OvzZaO6o1zL\nzRzkKPflZp6VmznIzT7I07knT+dgMp/ruZmDPN3jsoM8nYM83dPzN0dlT+ee3ByWdbMPTqcPM56+\nns2+L1rmc8NjsTuVGDppv7LytqrWTTS9naT0SfvltSv31kW24x2KcXm3FeOdb5dtLeFznWVPj7f5\n59j6XwxYs90WXgcuw3Zc19pL3nCI21jjy7AdL0Oe5zaeM2sv+xJsn125DHex387zeguD7rm7cZ2T\n3b727Mpl2Ndf+fDz83f+/JfvOgzOaduJPQ8m+cRo/skkf3JZm+4+rKrPJvmCofz9M30fnF1AVb05\nyZuT5MUvfvHGAmePPfCCJC/YdRST/wA8Pjr9Rtt0YtD41tAzt5A+vbX0oltGr+jTxzm9TfTJ9NSj\n56fTq9uN12UyMZrv+bqF7cZ1M/2n/jd7KDs+nh9rqv1sDIs+rVn8sfK5221Bzfy9vc61ouOqT3pu\nY32XJkMty0KZbbdh3TPxj6ZPy0cf4p7ZdjTuWcfy6XNh2TE+ml77ndmd+U/4+abz/126eqiz9ved\n2NfJ3PY6s37dZZ2zcmVSy7Lskoum1mzJ2rcP21aMm34Nn3E7r1FL2654XTnztaZuJXgtfP2Ziad7\npm62flHZdNxzyXLncva5ZNl/y17Iho7Hfbkr3nTCxYqg1j13dNIbP8/cTtLMOTbs3DG7YIxeOnO+\nZZ5lzSEv9lxafd5anKx01j5btO3WfI27rfco69n882zJ+/o1ei1dt9uM8ezmtxPj+uvSi5pe6PC7\nNWB3Vr5v6pn509Jxn6WvPeuVzfXt6WuZZYmqPXde7ZXtkxqWVdPtqhZPn6TezHwhpauSnhmrKp1b\nX34ZpxClkuNUUtdOU3hOl3/afjJe17V0XU9n+FvXcjz87Yzmcy197SDHqdN2J/2OR/OT6es5roPR\nWAc5HuqO62AyTk3SiG61nSTgnNT1qP1xXZ+sy6K3HyfzK14Apvv1wrqD4TH7I+ALvxByRpvlcazX\nd37dVsewLAn8rAUtfLVeGM/trfPKK4yV/dbYGEvGX3fbrhpjvX4b3v8bjOOsfudd1qqeK2M8Z/zr\njjE93prtbudjivXfnG2y2W3ZxBdbpsc7fywXtX6Mmw1yK6u80+242efWLu32eLw623HTLsMqb2e/\nXIY136y78fhO7sY9vflz67Y88Ix7dh0CF7DtxJ6t6+63Jnlrkty4ceNyPGu4GqqGn9q69E8jAOCc\n7vQXMS7BFz8AAAAAAIAN2vCPz8z5ZJIXjeZfOJQtbFNVB0meneT/rNkXAAAAAAAAAACupG0n9nwo\nycNV9VBV3ZvkDUkem2nzWJI3DtOvS/LTPblf1WNJ3lBVz6iqh5I8nOSDW44XAAAAAAAAAAD2wlZ/\nQ6i7D6vqryf5D0muJ3lHd3+kqr4ryePd/ViStyf5N1X1RJLPZJL8k6Hdjyb5aJLDJG/p7qNtxgsA\nAAAAAAAAAPuiJjfHuRpu3LjRjz/++K7DAAAAAAAAAACAharqw919Y5222/4pLgAAAAAAAAAA4Bwk\n9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtIYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAA\nAMAektgDAAAAAAAAAAB7SGIPAAAAAAAAAADsIYk9AAAAAAAAAACwhyT2AAAAAAAAAADAHpLYAwAA\nAAAAAAAAe0hiDwAAAAAAAAAA7CGJPQAAAAAAAAAAsIck9gAAAAAAAAAAwB6S2AMAAAAAAAAAAHtI\nYg8AAAAAAAAAAOwhiT0AAAAAAAAAALCHJPYAAAAAAAAAAMAektgDAAAAAAAAAAB7qLp71zFsTFV9\nOsmv7ToO5jw/yf/edRAAXFnOMwBsk/MMANvkPAPAtjjHALBNzjMX98Xd/YJ1Gl6pxB72U1U93t03\ndh0HAFeT8wwAH4KPMQAABx1JREFU2+Q8A8A2Oc8AsC3OMQBsk/PMneWnuAAAAAAAAAAAYA9J7AEA\nAAAAAAAAgD0ksYc74a27DgCAK815BoBtcp4BYJucZwDYFucYALbJeeYOqu7edQwAAAAAAAAAAMAM\nd+wBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQetqaqvqaq/kdVPVFV377reAC43KrqRVX1M1X10ar6\nSFV961D+vKr6T1X1P4e/z911rABcXlV1vap+vqp+cph/qKo+MFzX/EhV3bvrGAG4nKrqOVX1aFX9\nSlV9rKr+lOsZADalqv7m8JnZL1fVD1fVfa5nADivqnpHVT1VVb88Klt4/VIT/2I43/xiVb1id5Ff\nTRJ72Iqqup7k+5O8NslLk/zlqnrpbqMC4JI7TPK3uvulSV6V5C3DueXbk7y3ux9O8t5hHgDO61uT\nfGw0/0+TfHd3f1mS30ryV3cSFQBXwfcm+anu/vIkX5HJ+cb1DAAXVlUPJvkbSW509x9Lcj3JG+J6\nBoDz+9dJvmambNn1y2uTPDw83pzkB+5QjHcNiT1syyuTPNHdH+/up5O8O8kjO44JgEusuz/V3T83\nTP9OJh+CP5jJ+eWdQ7N3JvmG3UQIwGVXVS9M8rVJ3jbMV5KvSvLo0MR5BoBzqapnJ/mzSd6eJN39\ndHf/dlzPALA5B0nur6qDJM9M8qm4ngHgnLr7vyT5zEzxsuuXR5L8UE+8P8lzquoP3JlI7w4Se9iW\nB5N8YjT/5FAGABdWVS9J8vIkH0jyRd39qaHqN5J80Y7CAuDy+54kfzfJ8TD/BUl+u7sPh3nXNQCc\n10NJPp3kXw0/+fi2qnpWXM8AsAHd/ckk/yzJr2eS0PPZJB+O6xkANmvZ9YvcgC2T2AMAXCpV9UCS\nf5fk27r7/47ruruT9E4CA+BSq6qvS/JUd39417EAcCUdJHlFkh/o7pcn+b3M/OyW6xkAzquqnpvJ\n3RIeSvIHkzwr8z+fAgAb4/rlzpLYw7Z8MsmLRvMvHMoA4Nyq6p5Mknre1d3vGYp/8+SWjsPfp3YV\nHwCX2quTfH1V/a9Mfkr4q5J8bya3Dj4Y2riuAeC8nkzyZHd/YJh/NJNEH9czAGzCn0vyq9396e6+\nmeQ9mVzjuJ4BYJOWXb/IDdgyiT1sy4eSPFxVD1XVvUnekOSxHccEwCVWVZXk7Uk+1t3/fFT1WJI3\nDtNvTPITdzo2AC6/7v6O7n5hd78kk+uXn+7ub0zyM0leNzRzngHgXLr7N5J8oqr+8FD01Uk+Gtcz\nAGzGryd5VVU9c/gM7eQ843oGgE1adv3yWJJvqYlXJfns6Ce72ICa3CEJNq+q/kKS70lyPck7uvuf\n7DgkAC6xqvozSf5rkl9KcjwU//0kH0jyo0lenOTXkvyl7v7MToIE4Eqoqtck+dvd/XVV9SWZ3MHn\neUl+Psk3dffndxkfAJdTVb0syduS3Jvk40nelMkXL13PAHBhVfWPk7w+yWEm1y5/LcmDcT0DwDlU\n1Q8neU2S5yf5zSTfmeTfZ8H1y5BU+n2Z/Azk/0vypu5+fBdxX1USewAAAAAAAAAAYA/5KS4AAAAA\nAAAAANhDEnsAAAAAAAAAAGAPSewBAAAAAAAAAIA9JLEHAAAAAAAAAAD2kMQeAAAAAAAAAADYQxJ7\nAAAAALiQqnpNVf3kruMAAAAAuGok9gAAAAAAAAAAwB6S2AMAAABwl6iqb6qqD1bVL1TVD1bV9ar6\n3ar67qr6SFW9t6peMLR9WVW9v6p+sap+vKqeO5R/WVX956r671X1c1X1pcPwD1TVo1X1K1X1rqqq\nna0oAAAAwBUhsQcAAADgLlBVfyTJ65O8urtfluQoyTcmeVaSx7v7jyZ5X5LvHLr8UJK/191/PMkv\njcrfleT7u/srkvzpJJ8ayl+e5NuSvDTJlyR59dZXCgAAAOCKO9h1AAAAAADcEV+d5E8k+dBwM537\nkzyV5DjJjwxt/m2S91TVs5M8p7vfN5S/M8mPVdXvS/Jgd/94knT355JkGO+D3f3kMP8LSV6S5Ge3\nv1oAAAAAV5fEHgAAAIC7QyV5Z3d/x1Rh1T+cadfnHP/zo+mj+NwJAAAA4ML8FBcAAADA3eG9SV5X\nVV+YJFX1vKr64kw+H3rd0OavJPnZ7v5skt+qqq8cyr85yfu6+3eSPFlV3zCM8YyqeuYdXQsAAACA\nu4hvTgEAAADcBbr7o1X1D5L8x6q6luRmkrck+b0krxzqnkry+qHLG5P8yyFx5+NJ3jSUf3OSH6yq\n7xrG+It3cDUAAAAA7irVfd67KwMAAABw2VXV73b3A7uOAwAAAIB5fooLAAAAAAAAAAD2kDv2AAAA\nAAAAAADAHnLHHgAAAAAAAAAA2EMSewAAAAAAAAAAYA9J7AEAAAAAAAAAgD0ksQcAAAAAAAAAAPaQ\nxB4AAAAAAAAAANhD/x8Q5j5wGrfO2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPYAAAJcCAYAAABwybgsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+U7XdZH/r3c/Y+s09mT4ghCXiT\ngImUusKProDHgIVeQUASkID1XgSbVin3xvbqLV5rSmgRhWploUWUEhVXo/diCyJcLnERasAmRcVU\nDiGVX8EkFM1JKImBYGZPMpMz53P/mD1xzsmcOTNk9v7Oybxea83K/v6c9x7OX6z3ep5qrQUAAAAA\nAAAAANhZ9nQdAAAAAAAAAAAAeCjFHgAAAAAAAAAA2IEUewAAAAAAAAAAYAdS7AEAAAAAAAAAgB1I\nsQcAAAAAAAAAAHYgxR4AAAAAAAAAANiBFHsAAAAAAAAAAGAHUuwBAAAAeASrqnOqqlVVf5vf+6Wq\nev52vhMAAACAIyn2AAAAADBRSkAAAAAA3xjFHgAAAAAecdabULTVqUXbPeUIAAAAYKsUewAAAAA2\nYTx15rKq+rOqGlXVv6+qx1bVh6vq3qr6aFWdOr73mVX18aq6p6r+W1U9Z817XlVVnx8/88Wq+pE1\n155TVQer6p9X1Z1V9eWqetUmsr24qj5VVX9dVbdV1c+sc9s/rqo7xu/8yTXPXlBVB8bPfqWq3rrm\n2sVV9dnx97iuqs47xu//rar62aO/x/jzu5I8PsnvVdV8Vf2L4/2NNviep4z/7l+uqtur6merqje+\n9sNV9cdV9UtVdXeSnznGuT1V9fqq+ovx3/j/qapTxu9YXVv26qr6yyT/+XiZAAAAACZJsQcAAABg\n874/yQuS/O0kL0ny4ST/MskZWfn/Wf5ZVZ2V5ENJfjbJo5P8ZJL3V9UZ43fcmeR7kzwqyauS/FJV\nPX3N7/jmJKckOSvJq5O8Y7UwtIFRkn+U5JuSvDjJP62qlx11z3OTPDHJ9yR57ZrVWL+c5Jdba49K\n8oQk702SqvrbSd6d5MfH3+/qrJRzZo6T5QittX+Y5C+TvKS1Ntdae8sm/kbH8ltJDiX5W0meNv4u\n/9ua689I8sUkj03yc8c498Pjn+cm+dYkc0n+3VG/57uSnJfkhVv5rgAAAADbTbEHAAAAYPPe3lr7\nSmvt9iR/mOS/ttY+1Vq7P8kHslI2uSTJ1a21q1trh1trH0lyIMmLkqS19qHW2q1txX9Jck2Sv7fm\ndzyQ5E2ttQdaa1cnmU/ybRuFaq1d11r79Pj3/VlWCjnfddRtb2ytjVprn07ym0leueb3/a2qOr21\nNt9au358/geSfKi19pHW2gNJfjHJSUn+7lb/aOvY8G+0nqp67Pj6j4+/x51JfinJK9bcdkdr7e2t\ntUOttfuOce4fJHlra+2LrbX5JK9L8oqj1m79zPh33BcAAACADin2AAAAAGzeV9Z8vm+d47kk35Lk\nfx2vmLqnqu5J8uwk/1OSVNVFVXV9VX11fO1FSU5f8567W2uH1hwvjN97TFX1jKq6tqruqqqvJ/kn\nR70zSW5b8/kvkpw5/vzqrEwguqmqPlFV3zs+f+b4viRJa+3w+B1nbZRlkzb8G23wzN4kX17zzK8n\necyae25b57mjzx3xvcaf+1mZ6LPRewAAAACmrn/8WwAAAADYgtuSvKu19r8ffaGqBknen5W1WR9s\nrT1QVf9fknqYv/M/ZmWd1EWttfur6m15aLHncUluGn9+fJI7kqS1dnOSV1bVniR/P8n7quq08fWn\nrsle43fcvs7vHyWZXXP8zUddb0cdH/NvtIHbkiwmOf2o4tNGv2e9c3dkpSS06vFZWe/1lSRnb/Ae\nAAAAgKkzsQcAAABge/12kpdU1QurqldV+6rqOVV1dpKZJIMkdyU5VFUXJfmebfidJyf56rjUc0GS\nH1znnp+qqtmqenKSVyX5nSSpqkuq6ozxRJ57xvceTvLeJC+uqudV1d4k/zwrxZqPr/PuG5O8qKoe\nXVXfnOTHj7r+lSTfuuZ4o7/RulprX87K2rJ/W1WPqqo9VfWEqjp65djxvDvJ/1VV51bVXJJ/k+R3\nNigLAQAAAHRGsQcAAABgG7XWbkvy0iT/MisFntuSXJZkT2vt3iT/LCulma9lpYBz1Tb82v8jyZuq\n6t4kbxi//2j/JcktSf4gyS+21q4Zn78wyWeraj7JLyd5RWvtvtbaF5JckuTtSf4qyUuSvKS1trTO\nu9+V5L8l+VJWyje/c9T1n0/y+vEKrZ/c6G90nO/5j7JSjvpcVv5+78vG67vWc+U478eS/Pck9yf5\nP7f4DgAAAICpqNZMFgYAAAAAAAAAgJ3GxB4AAAAAAAAAANiBFHsAAAAATgBV9dmqml/n5x90nW07\nHeM7zlfV3+s6GwAAAMC0WcUFAAAAAAAAAAA7UL/rANvp9NNPb+ecc07XMQAAAAAAAAAAYF2f/OQn\n/6q1dsZm7n1EFXvOOeecHDhwoOsYAAAAAAAAAACwrqr6i83eu2eSQQAAAAAAAAAAgG+MYg8AAAAA\nAAAAAOxAij0AAAAAAAAAALAD9bsOMGkPPPBADh48mPvvv7/rKBO3b9++nH322dm7d2/XUQAAAAAA\nAAAAeJge8cWegwcP5uSTT84555yTquo6zsS01nL33Xfn4MGDOffcc7uOAwAAAAAAAADAw/SIX8V1\n//3357TTTntEl3qSpKpy2mmn7YrJRAAAAAAAAAAAu8EjvtiT5BFf6lm1W74nAAAAAAAAAMBusCuK\nPQAAAAAAAAAAcKJR7JmCe+65J1dcccWWn3vRi16Ue+65ZwKJAAAAAAAAAADY6RR7puBYxZ5Dhw5t\n+NzVV1+db/qmb5pULAAAAAAAAAAAdrB+1wF2g8svvzy33nprzj///Ozduzf79u3Lqaeemptuuil/\n/ud/npe97GW57bbbcv/99+c1r3lNLr300iTJOeeckwMHDmR+fj4XXXRRnv3sZ+fjH/94zjrrrHzw\ngx/MSSed1PE3AwAAAAAAAABgUnZVseeNv/fZfO6Ov97Wdz7pzEflp1/y5A3vefOb35zPfOYzufHG\nG3PdddflxS9+cT7zmc/k3HPPTZJceeWVefSjH5377rsv3/Ed35Hv//7vz2mnnXbEO26++ea8+93v\nzm/8xm/k5S9/ed7//vfnkksu2dbvAgAAAAAAAADAzrGrij07xQUXXPBgqSdJfuVXfiUf+MAHkiS3\n3XZbbr755ocUe84999ycf/75SZJv//Zvz5e+9KWp5QUAAAAAAAAAYPp2VbHneJN1pmU4HD74+brr\nrstHP/rR/Mmf/ElmZ2fznOc8J/fff/9DnhkMBg9+7vV6ue+++6aSFQAAAAAAAACAbuzpOsBucPLJ\nJ+fee+9d99rXv/71nHrqqZmdnc1NN92U66+/fsrpAAAAAAAAAADYiXbVxJ6unHbaaXnWs56Vpzzl\nKTnppJPy2Mc+9sFrF154YX7t134t5513Xr7t274tz3zmMztMCgAAAAAAAADATlGtta4zbJv9+/e3\nAwcOHHHu85//fM4777yOEk3fbvu+AAAAAAAAAAAnkqr6ZGtt/2butYoLAAAAAAAAAAB2IMUeAAAA\nAAAAAADYgRR7AAAAAAAAAABgB1LsAQAAAAAAAACAHUixBwAAAAAAAAAAdiDFHibqJW//o7zj2lu6\njgEAAAAAAAAAcMJR7JmCe+65J1dcccU39Ozb3va2LCwsbHOi6bnjnvtyxz33dR0DAAAAAAAAAOCE\no9gzBbu52DM76GW0eKjrGAAAAAAAAAAAJ5x+1wF2g8svvzy33nprzj///LzgBS/IYx7zmLz3ve/N\n4uJivu/7vi9vfOMbMxqN8vKXvzwHDx7M8vJyfuqnfipf+cpXcscdd+S5z31uTj/99Fx77bVdf5Ut\nG870M7+43HUMAAAAAAAAAIATzu4q9nz48uR/fHp73/nNT00uevOGt7z5zW/OZz7zmdx444255ppr\n8r73vS9/+qd/mtZaLr744nzsYx/LXXfdlTPPPDMf+tCHkiRf//rXc8opp+Stb31rrr322px++unb\nm3tK5gZ9E3sAAAAAAAAAAL4BVnFN2TXXXJNrrrkmT3va0/L0pz89N910U26++eY89alPzUc+8pG8\n9rWvzR/+4R/mlFNO6TrqthgO+llYUuwBAAAAAAAAANiq3TWx5ziTdaahtZbXve51+ZEf+ZGHXLvh\nhhty9dVX5/Wvf32e97zn5Q1veEMHCbfXcNDLwa8p9gAAAAAAAAAAbJWJPVNw8skn5957702SvPCF\nL8yVV16Z+fn5JMntt9+eO++8M3fccUdmZ2dzySWX5LLLLssNN9zwkGdPRMOZfkaLy13HAAAAAAAA\nAAA44eyuiT0dOe200/KsZz0rT3nKU3LRRRflB3/wB/Od3/mdSZK5ubn89m//dm655ZZcdtll2bNn\nT/bu3Ztf/dVfTZJceumlufDCC3PmmWfm2muv7fJrfEOGg35Giyb2AAAAAAAAAABsVbXWus6wbfbv\n398OHDhwxLnPf/7zOe+88zpKNH077fv+4u9/IVdcd0tu/TcvSlV1HQcAAAAAAAAAoFNV9cnW2v7N\n3GsVFxM1O+jlcEvuf+Bw11EAAAAAAAAAAE4oij1M1NxgZdvbvHVcAAAAAAAAAABbsiuKPY+kdWMb\n2YnfczizUuwZKfYAAAAAAAAAAGzJI77Ys2/fvtx99907svSynVprufvuu7Nv376uoxxhOJ7YM1pS\n7AEAAAAAAAAA2Ip+1wEm7eyzz87Bgwdz1113dR1l4vbt25ezzz676xhHGA56SZLR4nLHSQAAAAAA\nAAAATiyP+GLP3r17c+6553YdY9d6cGKPVVwAAAAAAAAAAFvyiF/FRbfmxsWeecUeAAAAAAAAAIAt\nUexholYn9iwsKfYAAAAAAAAAAGyFYg8TNZzpJUnmF5c7TgIAAAAAAAAAcGJR7GGiVif2jKziAgAA\nAAAAAADYEsUeJmpvb09m+nsUewAAAAAAAAAAtkixh4mbG/QzWlLsAQAAAAAAAADYCsUeJm52ppfR\n4nLXMQAAAAAAAAAATiiKPUzc3KCfeau4AAAAAAAAAAC2RLGHiRsO+hkp9gAAAAAAAAAAbIliDxM3\nHPQzWrKKCwAAAAAAAABgKxR7mLjhTM/EHgAAAAAAAACALVLsYeKs4gIAAAAAAAAA2DrFHiZubtDP\nvGIPAAAAAAAAAMCWKPYwccNBLwtLy2mtdR0FAAAAAAAAAOCEodjDxM3O9LN8uGXx0OGuowAAAAAA\nAAAAnDAUe5i4uUE/SazjAgAAAAAAAADYAsUeJm44LvaMFHsAAAAAAAAAADZt4sWeqrqwqr5QVbdU\n1eXrXP8nVfXpqrqxqv6oqp605trrxs99oapeOOmsTMbcoJckGS0ud5wEAAAAAAAAAODEMdFiT1X1\nkrwjyUVJnpTklWuLO2P/sbX21Nba+UnekuSt42eflOQVSZ6c5MIkV4zfxwlmdmY8sWfJxB4AAAAA\nAAAAgM2a9MSeC5Lc0lr7YmttKcl7krx07Q2ttb9eczhM0safX5rkPa21xdbaf09yy/h9nGBWV3HN\nW8UFAAAAAAAAALBp/Qm//6wkt605PpjkGUffVFU/muQnkswk+e41z15/1LNnrfPspUkuTZLHP/7x\n2xKa7TU3LvYsWMUFAAAAAAAAALBpk57YsymttXe01p6Q5LVJXr/FZ9/ZWtvfWtt/xhlnTCYgD8tw\nsLJBbWRiDwAAAAAAAADApk262HN7ksetOT57fO5Y3pPkZd/gs+xQwxmruAAAAAAAAAAAtmrSxZ5P\nJHliVZ1bVTNJXpHkqrU3VNUT1xy+OMnN489XJXlFVQ2q6twkT0zypxPOywQMx6u4TOwBAAAAAAAA\nANi8/iRf3lo7VFU/luT3k/SSXNla+2xVvSnJgdbaVUl+rKqen+SBJF9L8kPjZz9bVe9N8rkkh5L8\naGtteZJ5mYyZ/p7M9PZktOR/PgAAAAAAAACAzZposSdJWmtXJ7n6qHNvWPP5NRs8+3NJfm5y6ZiW\n4aBnYg8AAAAAAAAAwBZMehUXJElmZ/qKPQAAAAAAAAAAW6DYw1TMDfqZV+wBAAAAAAAAANg0xR6m\nYjjoZWFpuesYAAAAAAAAAAAnDMUepmJoYg8AAAAAAAAAwJYo9jAVw5l+Roo9AAAAAAAAAACbptjD\nVAwHij0AAAAAAAAAAFuh2MNUzA16GS0tdx0DAAAAAAAAAOCEodjDVMyOJ/a01rqOAgAAAAAAAABw\nQlDsYSrmBv0cOtyyeOhw11EAAAAAAAAAAE4Iij1MxXCmlyQZLR7qOAkAAAAAAAAAwIlBsYepGA76\nSZKFpeWOkwAAAAAAAAAAnBgUe5iK1WLPvIk9AAAAAAAAAACbotjDVKwWe6ziAgAAAAAAAADYHMUe\npmJu0EtiYg8AAAAAAAAAwGYp9jAVqxN7FpaWO04CAAAAAAAAAHBiUOxhKoYzK8UeE3sAAAAAAAAA\nADZHsYepWJ3YM1LsAQAAAAAAAADYFMUepmI46CVR7AEAAAAAAAAA2CzFHqZi0O9lb68yWlruOgoA\nAAAAAAAAwAlBsYepmZ3pm9gDAAAAAAAAALBJij1Mzdygn3nFHgAAAAAAAACATVHsYWqGg56JPQAA\nAAAAAAAAm6TYw9QMB/0sLC13HQMAAAAAAAAA4ISg2MPUDGes4gIAAAAAAAAA2CzFHqbGKi4AAAAA\nAAAAgM1T7GFqhoN+RotWcQEAAAAAAAAAbIZiD1MzN+hntGRiDwAAAAAAAADAZij2MDWzM32ruAAA\nAAAAAAAANkmxh6mZG/TywHLL4iHruAAAAAAAAAAAjkexh6kZDvpJktGiYg8AAAAAAAAAwPEo9jA1\nf1PssY4LAAAAAAAAAOB4FHuYmuHMuNizpNgDAAAAAAAAAHA8ij1MzXDQS2JiDwAAAAAAAADAZij2\nMDVzD67iWu44CQAAAAAAAADAzqfYw9QMHyz2mNgDAAAAAAAAAHA8ij1MzXBmpdgzr9gDAAAAAAAA\nAHBcij1MzXDQS2JiDwAAAAAAAADAZij2MDUPruJaWu44CQAAAAAAAADAzqfYw9QM+nvS31Mm9gAA\nAAAAAAAAbIJiD1NTVZmd6Sn2AAAAAAAAAABsgmIPUzU36Gd+0SouAAAAAAAAAIDjUexhqoaDfhaW\nTOwBAAAAAAAAADgexR6majjoZ94qLgAAAAAAAACA41LsYaqGg15Gij0AAAAAAAAAAMel2MNUDWf6\nGS0udx0DAAAAAAAAAGDHU+xhquYG/YyWTOwBAAAAAAAAADgexR6majjoW8UFAAAAAAAAALAJij1M\n1eygZxUXAAAAAAAAAMAmKPYwVXMz/SwtH87SocNdRwEAAAAAAAAA2NEUe5iq4aCfJFlYso4LAAAA\nAAAAAGAjij1M1dy42DO/qNgDAAAAAAAAALARxR6manbQS5KMFpc7TgIAAAAAAAAAsLMp9jBVQxN7\nAAAAAAAAAAA2RbGHqVpdxbWwpNgDAAAAAAAAALARxR6majizUuwZmdgDAAAAAAAAALAhxR6majjo\nJUnmF5c7TgIAAAAAAAAAsLMp9jBVw4GJPQAAAAAAAAAAm6HYw1TNrRZ7lhR7AAAAAAAAAAA2otjD\nVA36e9LbUyb2AAAAAAAAAAAch2IPU1VVmZ3pZbS43HUUAAAAAAAAAIAdTbGHqZsb9DNvYg8AAAAA\nAAAAwIYUe5i64aCfhSXFHgAAAAAAAACAjSj2MHXDQT/zVnEBAAAAAAAAAGxIsYepG870MrKKCwAA\nAAAAAABgQ4o9TN1w0FfsAQAAAAAAAAA4DsUepm5u0M9oSbEHAAAAAAAAAGAjij1M3exML6PF5a5j\nAAAAAAAAAADsaIo9TN3coJ95q7gAAAAAAAAAADY08WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6g\nqr5lzbXlqrpx/HPVpLMyHcNBP0uHDueB5cNdRwEAAAAAAAAA2LH6k3x5VfWSvCPJC5IcTPKJqrqq\ntfa5Nbd9Ksn+1tpCVf3TJG9J8gPja/e11s6fZEambzhY+We3sLicU2YNjQIAAAAAAAAAWM+kWxUX\nJLmltfbF1tpSkvckeenaG1pr17bWFsaH1yc5e8KZ6NhwppckmV+yjgsAAAAAAAAA4FgmXew5K8lt\na44Pjs8dy6uTfHjN8b6qOlBV11fVy9Z7oKouHd9z4K677nr4iZm41Yk9o0XFHgAAAAAAAACAY5no\nKq6tqKpLkuxP8l1rTn9La+32qvrWJP+5qj7dWrt17XOttXcmeWeS7N+/v00tMN+wOcUeAAAAAAAA\nAIDjmvTEntuTPG7N8dnjc0eoqucn+VdJLm6tLa6eb63dPv7vF5Ncl+RpkwzLdPzNxJ7ljpMAAAAA\nAAAAAOxcky72fCLJE6vq3KqaSfKKJFetvaGqnpbk17NS6rlzzflTq2ow/nx6kmcl+dyE8zIFszO9\nJMm8iT0AAAAAAAAAAMc00VVcrbVDVfVjSX4/SS/Jla21z1bVm5IcaK1dleQXkswl+d2qSpK/bK1d\nnOS8JL9eVYezUkB6c2tNsecRwCouAAAAAAAAAIDjm2ixJ0laa1cnufqoc29Y8/n5x3ju40meOtl0\ndGF1FdfCkmIPAAAAAAAAAMCxTHoVFzzE6sSe+cXljpMAAAAAAAAAAOxcij1M3b69e7KnrOICAAAA\nAAAAANiIYg9TV1UZzvQzr9gDAAAAAAAAAHBMij10YjjoZ2FJsQcAAAAAAAAA4FgUe+jEcNDLaHG5\n6xgAAAAAAAAAADuWYg+dGA6s4gIAAAAAAAAA2IhiD50YzvQzUuwBAAAAAAAAADgmxR46MRz0M1qy\nigsAAAAAAAAA4FgUe+jE3KBnYg8AAAAAAAAAwAYUe+jE7MAqLgAAAAAAAACAjSj20Im5QT/zij0A\nAAAAAAAAAMek2EMnhjP9LB46nEPLh7uOAgAAAAAAAACwIyn20InhoJckGS0td5wEAAAAAAAAAGBn\nUuyhE8NBP0kyso4LAAAAAAAAAGBdij10QrEHAAAAAAAAAGBjij10Ys4qLgAAAAAAAACADSn20Inh\njIk9AAAAAAAAAAAbUeyhE6uruOYVewAAAAAAAAAA1qXYQydWiz0m9gAAAAAAAAAArE+xh04MB70k\nyWhpueMkAAAAAAAAAAA7k2IPnZgzsQcAAAAAAAAAYEOKPXTipL29VCn2AAAAAAAAAAAci2IPnaiq\nDGf6mVfsAQAAAAAAAABYl2IPnRkOellYXO46BgAAAAAAAADAjqTYQ2eGg37ml0zsAQAAAAAAAABY\nj2IPnRnO9DOyigsAAAAAAAAAYF2KPXRmOOgp9gAAAAAAAAAAHINiD52ZG/QzWlzuOgYAAAAAAAAA\nwI6k2ENnhoN+Rksm9gAAAAAAAAAArEexh87MzvSt4gIAAAAAAAAAOAbFHjozN+hlXrEHAAAAAAAA\nAGBdij10Zjjo5/4HDmf5cOs6CgAAAAAAAADAjqPYQ2fmBv0kyWjJ1B4AAAAAAAAAgKMp9tCZ2Zlx\nscc6LgAAAAAAAACAh1DsoTPDQS+JYg8AAAAAAAAAwHoUe+jMg6u4Fpc7TgIAAAAAAAAAsPMo9tCZ\n4cAqLgAAAAAAAACAY1HsoTPDmZViz7xiDwAAAAAAAADAQyj20JnhoJckWViyigsAAAAAAAAA4GiK\nPXRmbmBiDwAAAAAAAADAsSj20JnhuNgzUuwBAAAAAAAAAHgIxR46c9LelVVcij0AAAAAAAAAAA+l\n2ENn9uypDGd6GS0tdx0FAAAAAAAAAGDHUeyhU8NB38QeAAAAAAAAAIB1KPbQqblBP/OKPQAAAAAA\nAAAAD6HYQ6dmBz0TewAAAAAAAAAA1qHYQ6eGM/2Mlpa7jgEAAAAAAAAAsOMo9tCpuUHfxB4AAAAA\nAAAAgHUo9tCpWcUeAAAAAAAAAIB1KfbQqblBL/OLVnEBAAAAAAAAABxNsYdODWf6WVgysQcAAAAA\nAAAA4GiKPXRqOOhnYWk5hw+3rqMAAAAAAAAAAOwoij10ajjoJUlGpvYAAAAAAAAAABxBsYdODQf9\nJMlocbnjJAAAAAAAAAAAO4tiD52aWy32mNgDAAAAAAAAAHAExR46NZxZndij2AMAAAAAAAAAsJZi\nD52aHfSSJPOKPQAAAAAAAAAAR1DsoVMPruJaXO44CQAAAAAAAADAzqLYQ6eG42LPwpKJPQAAAAAA\nAAAAayn20KnViT1WcQEAAAAAAAAAHEmxh07NzvSSJCPFHgAAAAAAAACAIyj20KnhzOrEnuWOkwAA\nAAAAAAAA7CyKPXRqz57K7EwvCyb2AAAAAAAAAAAcQbGHzg0H/YyWFHsAAAAAAAAAANZS7KFzw5me\nVVwAAAAAAAAAAEdR7KFzw0E/I6u4AAAAAAAAAACOoNhD5xR7AAAAAAAAAAAeSrGHzs0N+hktKfYA\nAAAAAAAAAKw18WJPVV1YVV+oqluq6vJ1rv9EVX2uqv6sqv6gqr5lzbUfqqqbxz8/NOmsdGN2ppfR\n4nLXMQAAAAAAAAAAdpSJFnuqqpfkHUkuSvKkJK+sqicdddunkuxvrf2dJO9L8pbxs49O8tNJnpHk\ngiQ/XVWnTjIv3Zgb9DNvFRcAAAAAAAAAwBEmPbHngiS3tNa+2FpbSvKeJC9de0Nr7drW2sL48Pok\nZ48/vzDJR1prX22tfS3JR5JcOOG8dGA46GdBsQcAAAAAAAAA4AiTLvacleS2NccHx+eO5dVJPryV\nZ6vq0qo6UFUH7rrrrocZly4MB/2MlpZz+HDrOgoAAAAAAAAAwI4x6WLPplXVJUn2J/mFrTzXWntn\na21/a23/GWecMZlwTNRwppckWXhgueMkAAAAAAAAAAA7x6SLPbcnedya47PH545QVc9P8q+SXNxa\nW9zKs5z4hoN+kmRkHRcAAAAAAAAAwIMmXez5RJInVtW5VTWT5BVJrlp7Q1U9LcmvZ6XUc+eaS7+f\n5Huq6tSqOjXJ94zP8Qgzp9gDAAAAAAAAAPAQ/Um+vLV2qKp+LCuFnF6SK1trn62qNyU50Fq7Kiur\nt+aS/G5VJclfttYubq19tao4yQp1AAAgAElEQVT+dVbKQUnyptbaVyeZl278zcQeq7gAAAAAAAAA\nAFZNtNiTJK21q5NcfdS5N6z5/PwNnr0yyZWTS8dOMJzpJUnmTewBAAAAAAAAAHjQpFdxwXGtTuxZ\nWFLsAQAAAAAAAABYpdhD51aLPSb2AAAAAAAAAAD8jU0Ve6qqV1W/OOkw7E5z42LPaHG54yQAAAAA\nAAAAADvHpoo9rbXlJM+ecBZ2qdlBL0kyMrEHAAAAAAAAAOBB/S3c+6mquirJ7yYZrZ5srf2/256K\nXWU4M57Ys6TYAwAAAAAAAACwaivFnn1J7k7y3WvOtSSKPTwsvT2Vk/b2TOwBAAAAAAAAAFhj08We\n1tqrJhmE3W046Gd+cbnrGAAAAAAAAAAAO8aezd5YVWdX1Qeq6s7xz/ur6uxJhmP3GA5M7AEAAAAA\nAAAAWGvTxZ4kv5nkqiRnjn9+b3wOHrbhTD8LS4o9AAAAAAAAAACrtlLsOaO19puttUPjn99KcsaE\ncrHLzA36mTexBwAAAAAAAADgQVsp9txdVZdUVW/8c0mSuycVjN1lZRXXctcxAAAAAAAAAAB2jK0U\ne/5xkpcn+R9Jvpzkf0nyqkmEYveZHfQzMrEHAAAAAAAAAOBB/c3cVFW9JH+/tXbxhPOwS83N9DNa\nUuwBAAAAAAAAAFi1qYk9rbXlJK+ccBZ2seGgbxUXAAAAAAAAAMAam5rYM/bHVfXvkvxOktHqydba\nDdueil1nbtDLaOlQWmupqq7jAAAAAAAAAAB0bivFnvPH/33TmnMtyXdvXxx2q9lBP60lC0vLGQ62\n8s8SAAAAAAAAAOCRaVMNiqrak+RXW2vvnXAedqnVMs9o6ZBiDwAAAAAAAABAkj2buam1djjJv5hw\nFnaxuUEvSTJaXO44CQAAAAAAAADAzrCpYs/YR6vqJ6vqcVX16NWfiSVjVxnOjCf2LB7qOAkAAAAA\nAAAAwM6wlZ1HPzD+74+uOdeSfOv2xWG3Wl2/Na/YAwAAAAAAAACQZAvFntbauZMMwu62WuxZWFLs\nAQAAAAAAAABItrCKq6pmq+r1VfXO8fETq+p7JxeN3WRu0EuSzC8ud5wEAAAAAAAAAGBn2HSxJ8lv\nJllK8nfHx7cn+dltT8SutDqxZ2QVFwAAAAAAAABAkq0Ve57QWntLkgeSpLW2kKQmkopdZ3ZGsQcA\nAAAAAAAAYK2tFHuWquqkJC1JquoJSRYnkopdZzizsoprZBUXAAAAAAAAAECSpL+Fe386yX9K8riq\n+g9JnpXkhycRit2n39uTfXv3ZLRkYg8AAAAAAAAAQLKFYk9r7SNVdUOSZ2ZlBddrWmt/tXq9qp7c\nWvvsBDKyS8wN+pm3igsAAAAAAAAAIMnWJvaktXZ3kg8d4/K7kjz9YSdi15qd6Wek2AMAAAAAAAAA\nkCTZs43vqm18F7vQcNDPaHG56xgAAAAAAAAAADvCdhZ72ja+i11obtAzsQcAAAAAAAAAYGw7iz3w\nsMzO9DNaUuwBAAAAAAAAAEi2t9iztI3vYheaG/Qzb2IPAAAAAAAAAECSLRR7asUlVfWG8fHjq+qC\n1euttWdOIiC7x3DQy8LictcxAAAAAAAAAAB2hK1M7LkiyXcmeeX4+N4k79j2ROxaw0E/IxN7AAAA\nAAAAAACSJP0t3PuM1trTq+pTSdJa+1pVzUwoF7vQcKaf0dKhtNZSVV3HAQAAAAAAAADo1FYm9jxQ\nVb0kLUmq6owkhyeSil1pOOjncEvue8A6LgAAAAAAAACArRR7fiXJB5I8pqp+LskfJfn5iaRiV5ob\n9JIko0XFHgAAAAAAAACATa/iaq39h6r6ZJLnJakkL2utfX5iydh1hoOVf46jxUM54+RBx2kAAAAA\nAAAAALq16WJPVb2rtfYPk9y0zjl42GZnVv45zi8e6jgJAAAAAAAAAED3trKK68lrD6qql+TbtzcO\nu9ncmok9AAAAAAAAAAC73XGLPVX1uqq6N8nfqaq/rqp7x8d3JvngxBOyawwHvSTJwtJyx0kAAAAA\nAAAAALp33GJPa+3nW2snJ/mF1tqjWmsnj39Oa629bgoZ2SVWJ/ZYxQUAAAAAAAAAkPS3cO+Hq+p/\nPvpka+1j25iHXWzWKi4AAAAAAAAAgAdtpdhz2ZrP+5JckOSTSb57WxOxa83NjIs9VnEBAAAAAAAA\nAGy+2NNae8na46p6XJK3bXsidq3hoJfExB4AAAAAAAAAgCTZ8zCePZjkvO0KAv3engz6exR7AAAA\nAAAAAACyhYk9VfX2JG18uCfJ+UlumEQodq/hoJ95xR4AAAAAAAAAgM0Xe5IcWPP5UJJ3t9b+eJvz\nsMsNB70sLC13HQMAAAAAAAAAoHObLva01v7vSQaBJP8/e/ceZedd3of++5vZmpFmj2br7suMbAtj\nGxtjLpYNmJhCGwLkAuFOkiaQJpAuVkLOOU27krYradJ2NWmTnHS1SRNCICf0JDmUGEISGg7JIRQw\nF9uEm42NjW+SfNHF1kgzI81oZt7zx7vHuliWZmzt2SPtz2etd/3e/b6/d+9nxCxAo+88T5oDOvYA\nAAAAAAAAACSLCPaUUr6RoyO4jruVpKqq6pozXhU9a3iwkUnBHgAAAAAAAACARXXs+f6OVwFtQ4ON\njE/NdLsMAAAAAAAAAICuO22wp6qqBxbOSynnJbmu/fLLVVXt7lRh9Kbhwf48tH+u22UAAAAAAAAA\nAHRd32I3llLemuTLSd6S5K1JvlRKeXOnCqM3NQeM4gIAAAAAAAAASBY3imvBv0py3UKXnlLK5iR/\nk+QjnSiM3tQcbGRCsAcAAAAAAAAAYPEde5L0nTB6a98Sn4fTag72Z3J6NlVVdbsUAAAAAAAAAICu\nWkrHnr8upXwyyZ+0X78tySfOfEn0suZgI/NVMj07n9Wr+rtdDgAAAAAAAABA1yw62FNV1T8vpbwx\nyXe1L72vqqqPdqYsetXwYP0tOTE9K9gDAAAAAAAAAPS0RQd7SinNJH9eVdVNpZQrklxRSllVVdWR\nzpVHr2kO1N+Sk9Oz2TQ82OVqAAAAAAAAAAC6p28Je/9XksFSymiSv07yo0n+sBNF0buag3WXnonp\n2S5XAgAAAAAAAADQXUsJ9pSqqqaSvDHJf6uq6i1JntuZsuhVzfYorqmZuS5XAgAAAAAAAADQXUsK\n9pRSXprkR5L8Vfta/5kviV62EOzRsQcAAAAAAAAA6HVLCfb8b0l+IclHq6q6vZTyrCSf7kxZ9Krh\ndrBnUrAHAAAAAAAAAOhxjcVurKrqM0k+U0oZKaWsrarq3iTv7Vxp9KKhgboJlGAPAAAAAAAAANDr\nFt2xp5SyvZTyjSRfT/LNUsrXSinXdq40etHRjj1zXa4EAAAAAAAAAKC7Ft2xJ8kHkrynqqrPJkkp\n5buSfDDJNZ0ojN7UNIoLAAAAAAAAACDJEjr2JJlbCPUkSVVVn0sifcEZtaq/LwONvkzM+NYCAAAA\nAAAAAHrbaTv2lFJe1D79TCnl95L8SZIqyduS/F3nSqNXNQf6dewBAAAAAAAAAHreYkZx/cYJr3/p\nmPPqDNYCSepxXFPTc90uAwAAAAAAAACgq04b7Kmq6pXP5ANKKa9J8p+T9Cd5f1VVv3rC/Zcn+a0k\n1yR5e1VVHznm3lySb7RfPlhV1eueSS2cHYYHG5nQsQcAAAAAAAAA6HGL6djzhFLK9yV5bpLVC9eq\nqvqVU+zvT/LbSV6VZGeSW0opH6+q6o5jtj2Y5J1Jfu4kb3GoqqoXLKVGzn7NwUYmZwR7AAAAAAAA\nAIDetuhgTynld5MMJXllkvcneXOSL5/mseuT3FNV1b3t9/jTJK9P8kSwp6qq+9v35pdSOOeuoYH+\nHDgs2AMAAAAAAAAA9La+Jey9oaqqH0vyeFVVv5zkpUkuP80zo0l2HPN6Z/vaYq0updxaSvliKeUH\nT7ahlPLu9p5b9+zZs4S3ZqUaHmxkyiguAAAAAAAAAKDHLSXYc6i9TpVSLkxyJMkFZ76k41xcVdX2\nJD+c5LdKKZeeuKGqqvdVVbW9qqrtmzdv7nA5LIfmYCOTgj0AAAAAAAAAQI9bSrDnL0sp65L8pyRf\nSXJ/kj8+zTO7kmw95vVY+9qiVFW1q73em+Tvkrxw8eVythoebGRCsAcAAAAAAAAA6HGLDvZUVfVv\nq6raX1XVnyW5OMlzqqr6xYX7pZRXneSxW5JcVkrZVkoZSPL2JB9fzOeVUtaXUgbb55uSvCzJHYut\nl7PX0EB/JmfmUlVVt0sBAAAAAAAAAOiapXTseUJVVdNVVY2fcPnXTrJvNslPJ/lkkm8l+XBVVbeX\nUn6llPK6JCmlXFdK2ZnkLUl+r5Rye/vxK5PcWkr5WpJPJ/nVqqoEe3pAc7CRufkq07Pz3S4FAAAA\nAAAAAKBrGmfwvcrJLlZV9Ykknzjh2i8ec35L6hFdJz53c5LnncH6OEsMD9bflpPTs1m9qr/L1QAA\nAAAAAAAAdMfT6tjzFMxN4oxoPhHsmetyJQAAAAAAAAAA3XMmgz1wRjQH6i49E9OzXa4EAAAAAAAA\nAKB7zmSw5/4z+F70sIWOPVMzgj0AAAAAAAAAQO9qLGVzKeWGJJcc+1xVVX/UXt94RiujZy0Ee3Ts\nAQAAAAAAAAB62aKDPaWUDyW5NMlXk8y1L1dJ/qgDddHDhtvBnsnpudPsBAAAAAAAAAA4dy2lY8/2\nJFdVVVV1qhhIkqGB/iTJpFFcAAAAAAAAAEAP61vC3m8mOb9ThcCCox17BHsAAAAAAAAAgN61lI49\nm5LcUUr5cpLphYtVVb3ujFdFT2sK9gAAAAAAAAAALCnY8286VQQca6DRl1X9JRPTc90uBQAAAAAA\nAACgaxYd7Kmq6jOdLASO1RxsZGpGxx4AAAAAAAAAoHf1LXZjKeUlpZRbSikTpZSZUspcKeVAJ4uj\ndzUHGpkwigsAAAAAAAAA6GGLDvYk+a9JfijJ3UnWJPnJJL/diaJgeLCRScEeAAAAAAAAAKCHLSXY\nk6qq7knSX1XVXFVVH0zyms6URa8bGuzP5PRct8sAAAAAAAAAAOiaxhL2TpVSBpJ8tZTyH5M8nCUG\ng2CxhgeN4gIAAAAAAAAAettSgjk/2t7/00kmk2xN8qZOFAXNAaO4AAAAAAAAAIDetuiOPVVVPVBK\nWZPkgqqqfrmDNUGagw2juAAAAAAAAACAnrbojj2llB9I8tUkf91+/YJSysc7VRi9rTnYbxQXAAAA\nAAAAANDTljKK698kuT7J/iSpquqrSbZ1oCZIc7CRqRnBHgAAAAAAAACgdy0l2HOkqqrxE65VZ7IY\nWDA82MiRuSrTs8ZxAQAAAAAAAAC9aSnBnttLKT+cpL+Uclkp5b8kublDddHjmgP9SZLJacEeAAAA\nAAAAAKA3LSXY8zNJnptkOskfJxlP8rOdKAqGBhtJkslp47gAAAAAAAAAgN60lGDPVe2jkWR1ktcn\nuaUTRXGOqKrkj9+WfPn3l/zo8EKwZ0awBwAAAAAAAADoTY0l7P2/k/xckm8mme9MOZxTSkke/noy\ntHHJjzZ17AEAAAAAAAAAetxSgj17qqr6i45VwrmpNZaM71zyY8OD/UmSiem5M10RAAAAAAAAAMBZ\nYSnBnl8qpbw/yd8mmV64WFXVTWe8Ks4drdG6a88SDQ3o2AMAAAAAAAAA9LalBHt+PMlzkqzK0VFc\nVRLBHp5aayy5638mVVWP5lqkYaO4AAAAAAAAAIAet5Rgz3VVVV3RsUo4N42MJbOHk6l9SXPToh9r\nCvYAAAAAAAAAAD2ubwl7by6lXNWxSjg3tcbqdXzHkh5rDvYnSSZn5s50RQAAAAAAAAAAZ4WldOx5\nSZKvllLuSzKdpCSpqqq6piOVcW54ItizK7nwhYt+bKC/L42+kgkdewAAAAAAAACAHrWUYM9rOlYF\n564ngj07l/RYKSXNwUamBHsAAAAAAAAAgB616GBPVVUPdLIQzlFDG5PG6uTA0oI9STI82MjEtFFc\nAAAAAAAAAEBv6ut2AZzjSklGRpfcsSdJmoP9mdSxBwAAAAAAAADoUYI9dF5rLBnfteTHhgYamZwR\n7AEAAAAAAAAAepNgD53XGntaHXuGBxs69gAAAAAAAAAAPUuwh85rjSUTjyRzR5b0WD2Ka65DRQEA\nAAAAAAAArGyCPXTeyGhSzScHH17SY83BRiZ07AEAAAAAAAAAepRgD53XGqvXJY7jag40Mjkj2AMA\nAAAAAAAA9CbBHjqvtbVex3ct6bHmYCNTRnEBAAAAAAAAAD1KsIfOa43W6/iOJT02PNifmbn5zMzO\nd6AoAAAAAAAAAICVTbCHzhtoJmvWJweW3rEnSSanjeMCAAAAAAAAAHqPYA/LY2QsGd+5pEeaA3Ww\nZ0KwBwAAAAAAAADoQYI9LI/WWDL+9Dr2TM3MdaIiAAAAAAAAAIAVTbCH5dEaTcZ3LOmR5mB/Eh17\nAAAAAAAAAIDeJNjD8miNJYf3J9MTi35kuN2xZ1KwBwAAAAAAAADoQYI9LI+RsXo9sPhxXEMDC6O4\nBHsAAAAAAAAAgN4j2MPyaLWDPeM7F/3IQseeiem5TlQEAAAAAAAAALCiCfawPJ5GsKc52J/EKC4A\nAAAAAAAAoDcJ9rA81l6QlL4lBnsWOvYI9gAAAAAAAAAAvUewh+XR36jDPQd2LfqRwUZf+vtKpmYE\newAAAAAAAACA3iPYw/IZGU3Gdyx6eyklzYH+TE7PdbAoAAAAAAAAAICVSbCH5dMaS8YX37EnSYYH\nG0ZxAQAAAAAAAAA9SbCH5dMarUdxVdWiH2kONjIp2AMAAAAAAAAA9CDBHpZPa2syeziZ2rfoR4YG\nG5mcMYoLAAAAAAAAAOg9gj0sn5HReh3fsehHhgf7dewBAAAAAAAAAHqSYA/LpzVWr+O7Fv1Ic8Ao\nLgAAAAAAAACgNwn2sHxaW+t1fOeiHxkebGRCsAcAAAAAAAAA6EGCPSyfoQ1JY/WSRnENDfZnamau\ng0UBAAAAAAAAAKxMgj0sn1LqcVwHljCKS8ceAAAAAAAAAKBHCfawvEZGlzaKa6CRmdn5HJmb72BR\nAAAAAAAAAAArj2APy6u1NRlfWseeJJnUtQcAAAAAAAAA6DGCPSyv1mhy8OFk7siitjcH+5MkkzNz\nnawKAAAAAAAAAGDFEexhebXGklR1uGcRdOwBAAAAAAAAAHqVYA/La2S0Xsd3Lmr7QrBnQrAHAAAA\nAAAAAOgxgj0sr9bWeh3ftajtwzr2AAAAAAAAAAA9SrCH5dVa6NizY1Hbhwb6kyST03OdqggAAAAA\nAAAAYEUS7GF5DTSTNesXPYpLxx4AAAAAAAAAoFcJ9rD8WmPJgcWN4mouBHtmBHsAAAAAAAAAgN4i\n2MPyGxlbdMee5kAd7JnQsQcAAAAAAAAA6DEdD/aUUl5TSrmrlHJPKeXnT3L/5aWUr5RSZkspbz7h\n3jtKKXe3j3d0ulaWSWvxwZ7Vq/rSV5Kp6bkOFwUAAAAAAAAAsLJ0NNhTSulP8ttJXpvkqiQ/VEq5\n6oRtDyZ5Z5I/PuHZDUl+KcmLk1yf5JdKKes7WS/LpDWaHN6fTE+cdmspJc3Bho49AAAAAAAAAEDP\n6XTHnuuT3FNV1b1VVc0k+dMkrz92Q1VV91dV9fUk8yc8++okn6qq6rGqqh5P8qkkr+lwvSyH1tZ6\nPbBrUduHBxuZFOwBAAAAAAAAAHpMp4M9o0l2HPN6Z/vaGXu2lPLuUsqtpZRb9+zZ87QLZRmNtP9j\nHN9x6n1tQwP9mZwR7AEAAAAAAAAAekungz0dV1XV+6qq2l5V1fbNmzd3uxwWozVWr+NL6dgz18GC\nAAAAAAAAAABWnk4He3Yl2XrM67H2tU4/y0q29oKk9CXjOxe1vWkUFwAAAAAAAADQgzod7LklyWWl\nlG2llIEkb0/y8UU++8kk31NKWV9KWZ/ke9rXONv1N+pwzxKCPROCPQAAAAAAAABAj+losKeqqtkk\nP506kPOtJB+uqur2UsqvlFJelySllOtKKTuTvCXJ75VSbm8/+1iSf5s6HHRLkl9pX+Nc0BpLDiwy\n2DPQn8kZwR4AAAAAAAAAoLc0Ov0BVVV9IsknTrj2i8ec35J6zNbJnv1Akg90tEC6Y2Q0efiri9ra\nHGxkanquwwUBAAAAAAAAAKwsnR7FBSfXGkvGdyVVddqtw0ZxAQAAAAAAAAA9SLCH7miNJXPTyeTe\n025tDjYyPTuf2bn5ZSgMAAAAAAAAAGBlEOyhO1rt6WsHdp5269BAf5Jk0jguAAAAAAAAAKCHCPbQ\nHSOj9Tp++mDP8GAjSTI5YxwXAAAAAAAAANA7BHvojtbWeh3fddqtzYVgz7RgDwAAAAAAAADQOwR7\n6I6hDUljTTK+47RbFzr2TAj2AAAAAAAAAAA9RLCH7iglaY0uahTX0EB/kmRyeq7TVQEAAAAAAAAA\nrBiCPXRPayw5sIRRXDM69gAAAAAAAAAAvUOwh+4ZGVtUx56FUVyTRnEBAAAAAAAAAD1EsIfuaY0l\nBx9J5o6ccltTsAcAAAAAAAAA6EGCPXRPazRJlRx46JTbmoP9SZLJmbllKAoAAAAAAAAAYGUQ7KF7\nWmP1emDXKbetWdWfvqJjDwAAAAAAAADQWwR76J6RdrBnfOcpt5VS0hxoZEKwBwAAAAAAAADoIYI9\ndE9rtF5PE+xJkuZgQ8ceAAAAAAAAAKCnCPbQPQPNZM2GRQV7hgb7MzkztwxFAQAAAAAAAACsDII9\ndFdrdFHBnmEdewAAAAAAAACAHiPYQ3e1tiYHdp12W3NAsAcAAAAAAAAA6C2CPXTXyGgyvuO025qD\njUxMG8UFAAAAAAAAAPQOwR66qzWWHB5Ppg+ecltzsD9TMzr2AAAAAAAAAAC9Q7CH7mqN1ev4qcdx\nNQeN4gIAAAAAAAAAeotgD921EOw5sPOU24YHG5kQ7AEAAAAAAAAAekij2wXQ40ZG63X81MGe5kAj\nh4/MZ3ZuPo1+eTQAAAAAAAAAeEpVlUwfTA7vT0p/0hrtdkU8TYI9dNfaC5LSt4hRXP1JkqkjcxkR\n7AEAAAAAAACgF8xOJ4f2J4cer0M6hx4/yeuTXdufVHP1ezzvLcmb3t/dr4OnTbCH7upvJGsvPH3H\nnsH6W3VyejYjq1ctR2UAAAAAAAAA0HnTE8mDX0ju+1/JQ3+fTD12NKBzZOoUD5ZkdStZsy5Zsz5Z\nvS5Zd9HR1wvXNl2+bF8KZ55gD93XGk3Gd5xyy7HBHgAAAAAAAAA4ax05lOz4Uh3kue+zyUNfSeZn\nk75VyQXPT9Zf0g7mrDs+tPPEtXZoZ3Ak6evv9ldDhwn20H2tsTp1eArD7VFcE9Nzy1ERAAAAAAAA\nAJwZs9PJzluT+z9bh3l23pLMzSSlP7nwhckN70223ZhsfXEy0Ox2tawwgj1038ho8q2/TKoqKeWk\nW4YG6m/VKR17AAAAAAAAAFjJ5mbr5hb3faYO8zz4pWT2UJKSXHBN8uKfSi55eXLRS5LVI92ulhVO\nsIfua21N5qaTyb3J8OaTbhluj+KaEOwBAAAAAAAAYCWZn0se+Xo9Vuu+/5U8+IVkZqK+t+W5ybXv\nSLa9PLn4hnqEFiyBYA/d1xqt1/EdTxnsabaDPZMzgj0AAAAAAAAALNH8fHJ4fz0Wa/5IMrdwzBz/\n+kn3Zut17sjx5wv3H709eeBzyeHx+nM2XZ5c87Z6tNYlNybNTd39ujnrCfbQfa2xej2wKxl90Um3\nNAf7kyQT03PLVRUAAAAAAAAAT+XwgWTvt+tjz131v/euXpcMb0mam4+uC+cDzc7VMjebTDyaHHio\nruO4tX0cfLgO7Zxp67clV72+Hq217cZk7fln/jPoaYI9dN9IO9gzvvMptzQH6m/VKaO4AAAAAAAA\nAJZHVSUHHzk+wLNwfvDho/v6ViUjF9RdaxY615xoVbOe4NJcCP60z08MADU3J6tbSSn1c7PT9Wc9\nEdI5IbBz4KFk4pGkmj/+8xqrk5ELk5HR5OKX1ufD5yWNwbre/oGkv1GvfauS/oXjZK/b+xauLdzv\naxytEzpEsIfuG9qQNNacMtgzNNCfUpJJwR4AAAAAAACAM2tuNtn/QDu4c1ey9+72+d3J9DFBnYG1\nyebLk2e9Mtl0WbL5imTTFcn6S+qQTFIHcSb3JpO7k4k97XX3Mdd2J4/fl+z4UjK1L0n15Hr6B+uA\nz9x0MrnnyfcHR5K1F9RhnUv/YTvA0w7xLJyvWS90wzlBsIfuK6Uex3WKYE8pJc2BhlFcAAAAAAAA\nACczP5/MHkqOHF7cOr6rDvHs+Xby2HeSuZmj7zV8fh3gueYtdXBn8+X1uvb804dlGoNJa7Q+Tlvz\nXB3umdh9TBBoz9HzxsDxYZ2R0TrQs3rkmf1ZwVlEsIeVoTV6ymBPkjQH+3XsAQAAAAAAAM49c0fq\ngMvkQrBlb/tov556LDkylcweTo4cOmFtB3WODeYsRulL1m9LNl2eXP49dXBn0+V1J5416zrzdZ6o\nr78evzW8ZXk+D85Cgj2sDK2x5J6/PeWW5kAjkzOCPQAAAAAAAMAZMD+fVHNJNV+/Ln1JSrsjTXt9\nuqOc5ueTw/uPD+c8Edg55nyq/frQ4yd/n75GPZJqzYZkYChprK5DMI3Vyao1z2xtbqq76wArmmAP\nK8PIWHLwkWR2pm6ndhLNwYaOPQAAAAAAALCSTT2WPPKN9vH1ZO/ddXhmURYZoqnmjx7zc/X7P7HO\nn/B67iT75pdQU7uuY8M+T4R+ThIEWlhnJp/iM0oytCEZ2lQHdrZcVa/NzXXQ5rjzTcnqdU8/XASc\nEwR7WBlaY0mq5ODDyfqLT7qlHsW1lP+BBQAAAAAAADqiqpLxnXV455FvJA9/vT4f33F0z9oLks1X\nJP1nsitMVQdqSn/S13fMef8xa98Jr0+8fsIzTwRnqqRKu4NPVX+NC+vJrqV9vaqO/pksXBtonjyw\ns2ZD0u+f6YHF898YrKI2Fw4AACAASURBVAyt0Xod3/mUwZ7hwUYe2n94GYsCAAAAAACALps+mIzv\nSg7srP8tbXxXcmBXfT61L1mzPhk+r31sOWE9LxnaWAdgnom52WTvt4924VkI8zwxPqokG5+dbL0+\nue4nkvOvqY/hzc/4ywfodYI9rAytrfV6YNdTbhkaaGRqxiguAAAAAAAAOuTwgWTf3fX4qP0PJo3B\nuvPKwNp6HRxOBhaOY173r3p6n3fkUHLgoTqkc2DXMQGeXUdfT48f/0zpS4bPr39xvrW1Dtfsui2Z\neDQ5MvXkzyj9daeYY8M+JwsArT2v/lqOTCWP3l6Hdxa68Dx6RzI3Xb9f/2By3lXJla9LLmgHeM57\nbv3nAcAZJ9jDyjCy0LFnx1NuaQ42MmEUFwAAAAAAAM9EVSUHH6k70Cwce+6qwzwHH3p679k/eELw\np3lM+Gft0ddHptpdd9pBnql9T36voU11aGf9tuSS70paY/W/pS2sa89/6iDR9EQd8JnYfcJ6zPmj\ntyeTu5P5k/xCfWNNMns49TyqJKvXJec/L7n+Xe0uPM9LNl1ulBTAMvLfuKwMA0P1PMnxp+7YMzzY\nn8lpHXsAAAAAAACesaqqRzxN7qkDH5O72+ueE9bdyeTeZO7I8WGVJ45TvT7NeWMwKaVzX+PcbPL4\nfccHd/a21+kDR/cNDNdhlW0vTzZfXp9vuiJZf3H9dc9MJDOT9Tq9cH6wXk98PTNZ/7ku7J94tL2n\nfTTWtDvtjCWj19bnI2PttX2sWv30v+bB4frYeOmp983P151+Tgz9TDxa/3lc0A7xtLZ29j8jAE5L\nsIeVozVWp5OfQnOwkUNH5jI3X6W/z/+BAAAAAACAc8r0wTp80RqrxwIJEyzd3JHk0P7k0GPHhHX2\nHBPa2Xv8tdnDJ3mTkgxtrEc0NTcnY9clzS11h5aF4MoTQZfJuuPME9cnkyOTSyi4JKvW1EdjzdHz\np7rWWJ2sGnrqPVOPtYM73072fDt57N5k/sjRjxs+vw7uXPPWOriz6bJk8xXJ2gue+vutMVgHZc41\nfX1Jc2N9nHdVt6sB4BQEe1g5WmPJ4w885e3mQP3tOjUzm7Wrn+acUgAAAAAAYGU49Hjy4BeT+z+X\nPHBz8vDXkmquvre6lWx+Th262Pyco8fIhcsf+KmqOryy/4Fk/4P1CKe+xjFBk0Ws/QOLr7uq6nFN\nhx4/5th/wuvHk8P7n3x/ZuLk71n6k+amOqAzvDnZeFm9NrccDfAMb6lfD218ZmOW5ufr+k8MAD3p\n9cHkyOFk9lBy5MRjql6n9tV7Fq7NHq7XUyn9yYZtdXDnitfW30ObLq9DPKtbT//rAoAuEexh5WiN\nJQ98/ilvNwfrb9fJ6TnBHgAAAAAAONtM7q3/HeCBm5P7P588+s0kVR16GbsuufH/SC54QXLgoWTP\nnXX3njs/kXzlj46+x8DaY8I+VyRbrqzXkbG6A8nTUVV1p5eF4M7JjiV1oTmZcurgz9yR4wM7czNP\n/VZ9q5I1648eI2PJec9L1qw7/voTQZ4tyZoNT//PZ6n6+o6Og8p5Z/79qyqZnT4a/lkI+xw5lAyO\nJBuelTQGzvznAkCXCPawcoyMJofH61abg2ufdLs52J8kmZieXe7KAAAAAACApTrwcDvI8/k6yLP3\nrvp6Y02y9frklf8yufiGZHR7smr1U7/P5N520Kcd9tlzZ3LPp5Kv/veje1Y16xFLx3b32XxFsu7i\nulPOocdPHdw5sdPN6lay7qJk46XJpa+sz9ddXK9rL6g7Cz0RKlnqutCl5pi1f1Vd77HBnCeOEwI7\nq4Z6e0xZKfX3y6m+ZwDgHCLYw8rRGqvX8V3Jluc86fbwEx17BHsAAAAAAGDFefyBuhvPA5+rgzyP\n31dfH1ibXPSS5AU/lFz8srorz1I6qjQ3Jc3vSi75ruOvTz12NOizsN77meRrf3J0T2NNPTZr5uDx\nzw6O1EGd9duSZ72iHdxpH62tdZgGAGAFEOxh5Xgi2LPzpMGeoYF2sGdGsAcAAAAAALpifq7uvr8w\nNurR24+O1xrfUe9Zva4O8Fz3k8klL6vHRPV34J+khjYkF7+0Po51ePz4wM/87NFuOwuH4A4AcJYQ\n7GHlWAj2HNh50ttHO/bMLVdFAAAAAABwbpqdPhrOObT/mPOTHIePuX94/Mnv1dxcj9S64b11kGfz\nlUlf3/J/TQtWt+pRX1uv714NAABniGAPK8fw+Unpqzv2nERzsD+JUVwAAAAAAJwD5ueSuSPJ/JH2\nOnvM69l6nZ1uH4eTuZl6XXh93Pki1yOHj4Z0jkw9dW2lL1mz/ugxtCnZeNnx1xaO9Zckmy5LSlm2\nPzoAgF4i2MPK0d9I1l6YjO866e3moFFcAAAAAACsANMTyWPfSfbdk+y7t173P5jMHjoayjk2pDM3\nc3xgZ+5IkurM1tRYkzQGk8bqpDHQXhder65DOGtX1yOoVq87eUhnTfv6wNrudtwBAOAJgj2sLK2x\nozN4T/BEsEfHHgAAAAAAOm12Onnsvjq0c2KIZ+KR4/eOjNada4Y2Jf2rkr5Ge11V/1Jr/0D7/FT3\nGsfsOebeQjDnuKDOCWv/Kh1zAADOUYI9rCyt0WTXV056a2hVPYprYnpuOSsCAAAAAOBcNTebjD+Y\n7PtO+7jnaJBn/44c11VnaFOy8dnJs/9RsvHSZMOl9esNz0oGhrr2JQAAcG4T7GFlaY0l3/rLZH7+\nSW0++/pKmgP9OvYAAAAAAHBqVZUcejyZeDSZ2N0+Hk0mjznfvyN5/P56NNaCwZE6tDN2ffL8H67P\nF0I8a9Z17csBAKB3CfawsoyMJXPTydTeZHjLk24PDTYyNSPYAwAAAADQc6oqmT5wfFBnYnc7rHNs\ngKd9bf4kP0vuH0iaW+qfP295TnLl9x/tvLPx0qS52UgrAABWFMEeVpbWWL2O7zxpsGd4sGEUFwAA\nAADAua6qkj13JQ98Pnng5mTXrcnBR5LZw0/eW/rrnyc3NyfD5yXnXZ0Mt88Xrg2fV19bvU5wBwCA\ns4pgDytLa7Rex3cmoy960u3moFFcAAAAAADnnPm55NHb20Gedphnal99b/j85KIXJ1e+rg7wnBjY\nWbM+6evrbv0AANAhgj2sLK2t9Xpg10lvNwcamRDsAQAAAAA4u80dSR7+Wh3iuf/zyYNfTKbH63vr\nLkou+57k4huSi1+WbHiWLjsAAPQswR5WljXrk8aaumPPSTQHG9l98CStVgEAAAAAWLmOHE523VZ3\n4nng88mOLydHJut7Gy9LnvuDdYjn4huSdVu7WysAAKwggj2sLKUkrbFTBnsm984tc1EAAAAAACzJ\nzGQd3lkYq7Xz1mRuur635bnJC3+kDvFcdEOy9rzu1goAACuYYA8rzymCPcOD/UZxAQAAAAA8XbPT\nye5v1WOwHvl6ve75djJ/JElpj7w6dl148GT3TrFOPJrMzyalL7ng+cn176o78lz0kmRoQze+cgAA\nOCsJ9rDytEaTu//mpLeaA41MCvYAAAAAAJze9ETy6DeTh9sBnke+Vod65ts/Yx1Ym1xwTXLNW5PG\nYH2tqpJU7TXHnC9hTZLmljrIs/X6ZPXI8n3NAABwjhHsYeVpba1/m2N2JmkMHHdraLCRqZm5zM9X\n6esrT/EGAAAAAAA9Zuqxox14FoI8++7JE0GboY1155wbvjs5/5r6fP22pK+vq2UDAACnJtjDyjMy\nmqRKDj6UrL/kuFvrh1YlSW594PFcv027VgAAAACgx1RVcvCR40dpPfz1ZPzBo3tGxurgzvPeXK/n\nX5OMXNgelQUAAJxNBHtYeVpj9Tq+60nBnje8cDR/9IUH8lMfujUffc/Lcsmm5vLXBwAAAACwnKoq\n2X1H8s2bkttvSh679+i9DZcmY9uT6/5JO8Tz/KS5sXu1AgAAZ5RgDyvPE8GenU+6tW5oIB9453V5\nw+98Pv/kD2/JTe+5IeuGBp60DwAAAADgrLf37qNhnj13JqUv2fby5Lp3JRe+IDnv6mT1SLerBAAA\nOkiwh5VnZLReDzw52JMk2zY1874f3Z5//P4v5d0fui0f+onrM9joX8YCAQAAAAA65PH7j4Z5HvlG\nkpJcfEPyvb+eXPX6ZHhLtysEAACWkWAPK8/AULJmw0k79iy4ftuG/Ke3XJOf/dOv5hf+7Bv5jbc+\nP8V8aAAAAADgbDS+K7n9o3WYZ9dt9bWx65JX/4fkuT+YjFzY3foAAICuEexhZWqN1X+ZPYXXv2A0\nD+ybym9+6tu5ZFMz7/1Hly1TcQAAAAAAz9DBR5M7/rwO8zz4hfraBc9PvvuXk+e+IVl/cXfrAwAA\nVgTBHlam1ta65exp/Mw/fHbu3zeZ3/zUt3PRhqH84AtHO18bAAAAAMDTMbkv+dbH6zDP/Z9Lqvlk\ny1XJK/91cvUbk42XdrtCAABghel4sKeU8pok/zlJf5L3V1X1qyfcH0zyR0muTbIvyduqqrq/lHJJ\nkm8luau99YtVVf3TTtfLCtEaTR743Gm3lVLyq2+8Jg/tP5R/8ZGv58J1a3L9tg3LUCAAAAAAwCIc\n2p/c+Vd1mOfev0vmZ5MNlyY3/lwd5tlyZbcrBAAAVrCOBntKKf1JfjvJq5LsTHJLKeXjVVXdccy2\nn0jyeFVVzy6lvD3JryV5W/ved6qqekEna2SFao0lh8eTwweS1SOn3DrQ6Mvv/uNr88b/dnPe/aFb\n89H3vCzbNjWXqVAAAAAAgCRTjyV7v53svfv49fH7k2ouWXdR8tKfrsM851+TlNLtigEAgLNApzv2\nXJ/knqqq7k2SUsqfJnl9kmODPa9P8m/a5x9J8l9L8TeanjfSHql1YNdpgz1Jsm5oIB9853V5w+/c\nnB//4Jfz0fe8LOubAx0uEgAAAADoKXOzyf4Hnhzg2Xd3MrXv6L7+gWTjs5Pzr06uflNy+auT0WuF\neQAAgCXrdLBnNMmOY17vTPLip9pTVdVsKWU8ycb2vW2llL9PciDJv66q6rMnfkAp5d1J3p0kF110\n0Zmtnu5pba3X8V2LbkV78cZmfv/Hrs0P/f6X8u4P3Zr//pMvzmCjv4NFAgAAAADnpEP7k333PDnA\n89i9yfyRo/uam5NNlydX/kCy8bL6fNNldXeePj+bBAAAnrlOB3ueiYeTXFRV1b5SyrVJPlZKeW5V\nVQeO3VRV1fuSvC9Jtm/fXnWhTjqh1e7YM77j1PtOcO3FG/Lrb3l+3vsnf59/8ZGv57fe9oJoAAUA\nAAAAnFJVJQ/cnNzy/uSBzycTjx6919dINjyrDu1c8dp2eOfyZNOzkzXru1czAADQEzod7NmVZOsx\nr8fa1062Z2cppZGklWRfVVVVkukkqarqtlLKd5JcnuTWDtfMSjB8flL661FcS/S651+YHY9N5T99\n8q5csrGZ//1Vl3egQAAAAADgrDc9kXz9/0lu+YNk9+3J6lZyxfclm684GuBZf3HSv6rblQIAAD2q\n08GeW5JcVkrZljrA8/YkP3zCno8neUeSLyR5c5L/r6qqqpSyOcljVVXNlVKeleSyJPd2uF5Wiv5G\nsvaCZHzn03r8Pa+4NPfvncx//tu7c9GGobzp2rEzXCAAAAAAcNba8+26O8/X/iSZPpCcf03yuv+S\nXP3mZGCo29UBAAA8oaPBnqqqZkspP53kk0n6k3ygqqrbSym/kuTWqqo+nuQPknyolHJPksdSh3+S\n5OVJfqWUciTJfJJ/WlXVY52slxWmNfa0gz2llPz7Nzwvu/Yfys/f9PWMrl+Tlzxr4xkuEAAAAAA4\na8zNJnd9og703PeZpH8gee4bkuvelYxtT0rpdoUAAABPUuqJV+eG7du3V7fealLXOeMjP5Hsui35\n2a8+7bcYP3Qkb/pvN2fPwenc9J4bcunm4TNYIAAAAACw4k3sTm77v5LbPpgc2JW0tibbfzx54Y8l\nw5u7XR0AANCDSim3VVW1fTF7+zpdDDxtrdHkwEPJ/PzTf4s1q/LBd16XRl/Jj3/wluybmD6DBQIA\nAAAAK1JVJQ9+sf7lwd+8Kvn0v0s2XZ68/Y+T9341ufGfCfUAAABnBcEeVq7W1mRuOpna+4zeZuuG\nofz+O7bn0QOH8+4P3ZbDR+bOUIEAAAAAwIoyM5nc9ofJ796YfODVyd2fSq77yeSnb01+7GPJc74v\n6W90u0oAAIBFE+xh5RoZrdfxHc/4rV500fr8n297QW574PH83P/4Wubnz50RdAAAAADQ8/bek/z1\nLyS/cWXyFz+bpEq+/7eSf/at5LW/mmy6rNsVAgAAPC1+NYGVqzVWr+O7ktFrn/Hbfe/zLsjPv/Y5\n+dX/eWcu2djMz736imf8ngAAAABAlxw+kNz3meSWP0ju/XTS10iuen1y3buSi16SlNLtCgEAAJ4x\nwR5WrieCPTvP2Fv+1MuflQf2Tea/fvqeXLxxKG/ZvvWMvTcAAAAA0EH7dyQ7vpQ8+MVkxxeTR29P\nqvlk7YXJK/9V8qJ3JGvP63aVAAAAZ5RgDyvXmvXJqqHkwK4z9pallPzK66/OzscP5Rdu+kZG163J\nDc/edMbeHwAAAAA4A+Zmk9231yGeB79YB3oWfk64qpmMbU9e/s/rzjyXvDzp96NuAADg3ORvO6xc\npSQjo8n4jjP6tqv6+/LbP/KivOl3bs4//e+35ab33JBnb1l7Rj8DAAAAAFiC6YPJzluSB79Ud+PZ\neWsyM1HfW3thHeC56CXJ1hcn510tyAMAAPQMf/thZWuNJeNnrmPPgpHVq/KBd16XN/zOzfnxP7wl\nH/6pl+aC1poz/jkAAAAAwEmM7zzaiefBLyaPfrMeq5VSB3ee//Zk60uSi16ctLbWvwQIAADQgwR7\nWNlaY8ndn+rIW2/dMJQ/eMf2vO19X8iNv/bp/KMrt+St27fmH1y+OY3+vo58JgAAAAD0pEP7kzv/\nMvnOp+sgz4Gd9fVVzWTs2uTGn6s78oxdl6we6W6tAAAAK4hgDytbayyZeDSZnUkaA2f87Z+/dV0+\n8d4b86e37MhNX9mZT97+aDavHcwbXzSat1y7Nc/eMnzGPxMAAAAAesLMZHLX/0y+eVNyz6eSuZlk\n+Pzk4pcmW3+m7sZz3vOM1QIAADgFf2NiZWuNJamSgw8l6y/pyEc8a/Nw/uX3Xpl//uor8uk7d+d/\n3LYz7//sffm9z9ybF120Lm/dvjXfd80FWbt6VUc+HwAAAADOGbPTyT1/k3zjI8m3/zo5MpWsvSC5\n7l3J896UXPgiY7UAAACWQLCHlW1ktF7Hd3Ys2LNgVX9fvue55+d7nnt+dh88nI/9/a58+Nad+fmb\nvpFf/os78trnnZ+3bt+aF2/bkOKHDwAAAABQm5tN7vtM8s0/S771l8n0eDK0MXn+25Or35xc9NKk\nr6/bVQIAAJyVBHtY2Vpb63V817J+7Ja1q/Pul1+ad934rHx1x/58+Nad+YuvPZSbvrIrF28cyptf\nNJY3XTuWC9etWda6AAAAAGBFmJ9PHvxCHea548+Tqb3J4Ehy5Q8kV78x2fYPkn4dsAEAAJ4pwR5W\ntpEL63V8R1c+vpSSF160Pi+8aH1+8fuvyl/f/nA+fMvO/Manvp3f/Jtv58bLNuct147lVVedl9Wr\n+rtSIwAAAAAsi6pKHvpK8s2b6uPgQ0ljTXLFa5Or35Q8+7uTVau7XSUAAMA5RbCHlW1gqG7be2B5\nO/aczJqB/rzhhWN5wwvH8uC+qXzkth35yG078zN/8vdprVmVH3zBhXnL9q25erTV7VIBAAAA4Mx5\n9I66M883/yx5/L6kb1Vy2auSq/9tcvlrksHhblcIAABwzipVVXW7hjNm+/bt1a233trtMjjTfvfG\nZO35yY/8j25X8iRz81Vu/s7efPjWnfnk7Y9kZnY+V14wkje9aDTffeV5uWRTs9slAgAAAMDS7b0n\nueOjyTf+LNnzraT01eO1rn5TcuX3J2vWd7tCAACAs1Yp5baqqrYvZq+OPax8ra3J4/d3u4qT6u8r\nufGyzbnxss0ZnzqSj39tVz586878u7/6Vv7dX30r2zY184orNueVV2zJ9ds2GNcFAAAAwMq19+7k\n9o8ld3wsefSb9bWLXpp8768nV70+Gd7S3foAAAB6kGAPK19rLLn/c92u4rRaQ6vyoy+9JD/60kty\n/97J/N1du/Ppu/bkj7/0YD74+fuzZlV/brh0Y17xnC15xeWbs3XDULdLBgAAAKDX7bnraJhn9x31\nta0vSV79H5KrXlf/bA4AAICuEexh5WuNJtPjyeEDyeqRblezKJdsauadm7blnS/blkMzc/nivfvy\n6bt259N37c7f3rk7SfLsLcN5Zbubz/ZLNmSg0dflqgEAAADoCbvvrIM8t3+sHrOVklz0kuQ1v1aH\neUYu7HaFAAAAtAn2sPIt/FbQgV1nTbDnWGsG+vPK52zJK5+zJVVV5d69k/n0nbvzd3ftyR/efH9+\n/7P3pTnQn5c9e1Ne+ZwtecUVm3NBa023ywYAAADgXLL7W0c78+y5M3WY56XJa/9jcuXrkpELul0h\nAAAAJyHYw8o30g72jO9MtlzZ3VqeoVJKLt08nEs3D+cnb3xWJqdnc/N36m4+f3fn7vy/dzyaJHnO\n+Wvziiu25JVXbM6LLl6fVf26+QAAAACwBFVVj9a6/WPJHX+e7L0rSUkuflnyvb+eXPkDydrzu10l\nAAAApyHYw8rXOibYc45pDjbyqqvOy6uuOi9VVeXu3RP59J31yK73f/be/O5nvpO1g43cePmm3HjZ\n5rzs0k25aONQt8sGAAAAYCWqquTR24+O2dp3d1L66jDP9e+qO/OsPa/bVQIA/P/t3XmQHOd93vHn\n7Tl2F3sBi2MBLO6D4CVRJCFSJChTluSYknW4KkpEH7KiUuKoSi7bqbgSO0e54qpUxVVJZKd8xC5J\nsWQ78sHIMSPTsmQdtAiKByhKFA+ABAGCuIHFsdhd7O7MdL/54+2efrtnZrEAdnd2F99Pcdjdb7/d\n885gZmdn5tnfCwC4CgR7sPD1rpVMYUkGe3zGGN002KubBnv1Lx/crtHJqvYeHNa39p/Vt189o8d+\neEqStGFFl/ZsX6X7d6zU/dtXaXVvR5tHDgAAAAAAgHkTRdLlc9LoSXe5dCJdvvld6dzBNMzzjk+5\nME/PmnaPGgAAAABwjQj2YOELClLfeunS8XaPZF71dpb00O3r9NDt62St1cEzY9p7cFhPvn5Oj714\nUn++76gkaddgr+7bvlJ7dqzSvdsG1NdZavPIAQAAAAAAcE0q49LoqWxYZ/SUNHpCunQyXj8pRdXc\ngUbqXi0N3ird92np5g9KPavbchMAAAAAALOLYA8Wh76hJV+xZzrGGO0c7NXOwV79sz1bFUZWLx4f\n0d7Xh/XkwXP60jNv6o+efEOFwOgtQ/3as2Ol9mxfpbs2r1BnqdDu4QMAAAAAACARhdKxZ6XXvyld\nPOpCO6OnXHBnaqSxf7lH6l0n9a2TNt8Xr693Va5717v2nkGpwB97AQAAAMBSZKy17R7DrNm9e7fd\nt29fu4eBufDIJ6Xjz0m/9P12j2RBmqyG+t6bF/Td189p78Fh/eDYiMLIqqMYaPeWFbp/+yrt2bFK\nbxnqVyEw7R4uAAAAAADAjaVyWTr0LWn/Y9KrX5UuD7vpsnrXpaGd+noutNPR2+7RAwAAAABmmTHm\nOWvt7hn1JdiDReHrvy499XvSvz8tBUG7R7PgjU5W9czh89p78JyefH1Y+0+NSpJ6O4t6x7aVun/7\nSj2wY5V2rOmRMQR9AAAAAAAAZt3YGRfi2f+YC/XUJqWOfmnnj0k3v1/a8V6ps7/dowQAAAAAtMHV\nBHuYiguLQ/8GKay4v2bqWdPu0Sx4vZ0lveeWQb3nlkFJ0vDYlL77ugv57D14Tl9/+bQkabCvQ3t2\nrNID8WVNX2c7hw0AAAAAALC4nX1VOvA30oG/lY4+I8lK/Ruluz4u7XqftHmPVCy3e5QAAAAAgEWE\nYA8Wh/4NbjlylGDPNVjV06EP3rFeH7xjvSTp6PnL2ntwWE8cHNa39p/Rl793XJJ002CPHtixWu/c\nuUr3bB1Qdwc/IgAAAAAAAFqKQhfgOfCYu5w76NrX3SG961elXe+X1r5FomIyAAAAAOAa8a09Foe+\nIbccOSYN3d3esSwBGweW6eF7NunhezYpiqxePnlJTxwc1hOvDetPnj6iz+89rFLB6M5NK1w1n52r\n9NahfhULTIMGAAAAAABucJXLbmqt/Y+5qbYuD0tBSdrygHTvp1xlnuSP1AAAAAAAuE4Ee7A41Cv2\nHG/vOJagIDC6fahftw/161MPbtdkNdS+Ny7oOwfPau/BYX3m71/Vf//6q+rtLOq+bSv1zp2rtGfH\nKm1d1S3DX5sBAAAAAIAbwegp6bWvuTDPoW9JtUmpo1/a+WPSze+XdrxX6uxv9ygBAAAAAEsQwR4s\nDl0rpNIyV7EHc6qzVNADO12VHkk6P17Rk6+7aj7feW1YX3v5tCRpaHmX9uxYqQd2rtae7Su1sqej\nncMGAAAAAACYPRMXpSN7pUOPS4e+LQ0fcO39G6W7Pu6q8mzeIxXLbR0mAAAAAGDpI9iDxcEYV7Xn\nEsGe+TbQXdYH3rpeH3jrellrdeTcZX3n4LCeeO2s/vbFU/qLfe7f5NZ1fbpv+0rdu3VAb98yoBXd\nfLAFAAAAAAAWieqkdPQpF+Q5/Lh04nnJRlKxS9p8n/S2n5a2v1ta+xb3ORUAAAAAAPOEYA8Wj74h\nKva0mTFGW1Z1a8uqbn3sHZtVCyP98PiI9h501Xz++Kkj+twThyVJN6/t1T1bB3Tv1pW6Z+uAVvdS\n0QcAAAAAACwQUSid+L50+NsuzPPmU1I4JZmCtGG39M5fkbY9KG14u1TkMw0AAAAAQPsQ7MHi0b9B\neu3r7R4FPMVCoDs3rdCdm1boF969U5PVUC8cG9HTh87pmTfO6y/3HdMXv3tEkrRtdbfu3eoq+ty7\nbUDr+rvaPHoAsW2XYQAAIABJREFUAAAAAHDDsFY6e8BV4zn0uPTGE9LUiNu35jbp7Z+Utj4obb5f\n6uxr71gBAAAAAPAQ7MHi0b9RGjst1SrMX75AdZYKumfrgO7ZOiBJqoaRXjw+oqcPn9fTh87pKz84\noS8986YkaeNAVxr02bpSGwe6ZChlDQAAAAAAZsvIMRfiOfRt6fA/SGOnXPvyzdJtH3ZBnq0PSj2r\n2zpMAAAAAACmQ7AHi0f/kCQrjZ6QVmxp92gwAyWvos+nHtyuMLJ65eQlPX34vJ45fE7feOW0HnnO\nTa+2rr8zM3XX9tXdBH0AAAAAAMCVRaF04Q3p9EvSmVekMy9JJ1+QLrjpwrVslbT1R9zUWlsflAa2\ntnW4AAAAAABcDYI9WDz6N7jlyDGCPYtUITC6fahftw/165MPbFUUWR08O6anD53TU4fP68nXz+mv\nv39CkrSqp6zdmwd087pe7Rrs1U1re7V5YJmKhaDNtwIAAAAAALSFtdLYGRfcOf2ydCa57JdqE3En\n4z43GrxNuudfuCDPmlulgM8TAAAAAACLE8EeLB59XrAHS0IQGN002KubBnv1sfu2yFqrw8Pjeubw\neT1z+LyeP3pRf/fyKVnr+peLgXas7tGute6YXWt7dNNgr4aWM40XAAAAAABLytRoXH3n5TTEc/ol\naeJ82qd7jbTmFmn3J1x4Z/BWafXNUrm7feMGAAAAAGCWEezB4tE/5JYEe5YsY4y2re7RttU9evie\nTZKkiUqo18+O6cCpUb16elT7T43qqUPn9FfPH68f19NR1E2DXuAnrvCzqqejXTcFAAAAAADMhLXS\n+UPSieezU2ldfDPtU+p2AZ5bPiCtuc2tD94mda9q37gBAAAAAJgnBHuweJS6pGUrCfbcYLrKhfr0\nXb6RiapeOz2qA6dH9eopt/zqi6f0pWeO1vus7C7HlX3SCj+bBrq1srusIKDCDwAAAAAA885aafg1\n6cgT0ht7pSN7pdGTbl9QlFbulDa8Xbrr51yIZ/BWqX8TU2kBAAAAAG5YBHuwuPRvkC4dv3I/LHn9\nXSXt3jKg3VsG6m3WWg2PVeqVfZLAz1/uO6rxSljvVy4EWtvfqfXLO7W+v0vrlndqXX+X217epXX9\nXerrLDK9FwAAAAAA1yuKpLP7XYDnjSekI09K42fcvp610pY90uY90sZ7pFU3SUWq7wIAAAAA4CPY\ng8Wlb4N04XC7R4EFyhij1b0dWt3boT070nLcUWR1/OKEXj09qmMXJnRiZEInL07qxMUJPX34vE5d\nmlQY2cy5ussFrVvepXX9LvyzfrkLACVBoPX9XeoqF+b7JgIAAAAAsLBFkZtK6429rirPkSely+fc\nvr4N0vYfdUGeLQ9IA9sk/qgGAAAAAIBpEezB4tK/QXrjO65sMx/8YIaCwGjjwDJtHFjWdH8YWZ0d\nndKJkQmduBiHfuLwz8mRCb1yclTDY1MNxy1fVtLavk6t6unQyp6yBrrLWtXToYHuZL2sgW63r7eD\nCkAAAAAAgCUoCqVTL6TTah15Upq86PYt3yTt/HFXlWfLA9LyzXyeAwAAAADAVSLYg8VlYKs0dUn6\nb7uk7e+Rdr5X2vaj0rKBKx8LtFAIjNb2d2ptf6fu2rSiaZ+pWqjTIy78c3JkQifiij+nL03q3HhF\nR49e1rmxisamak2PLxeCeuBnZU9ZK7vLWhmHgPwA0Mrusvq7SurpKKpYCObyZgMAAAAAcPVqU9Kp\nH8bTau2V3nzKfVYjuQo8t3zQhXg275GWb2zvWAEAAAAAWAII9mBxufsTUme/9NrXpQOPST/435IJ\npKG7pR3vdZf1d0oBUyRhdnUUC9q0cpk2rWxe9ScxWQ11fryi8+MVDY9N6fx4RefGKjo3XtG5eHt4\nvKI3zo3r3FhFlythy3MtKxfU01FUb2dRvZ0l9XYW1ddZamhLL6XMsqejqM4SzwUAAAAAwDUKa9Lw\nAen496QT33PL0y9JUdXtX3WTdPs/joM890t969s7XgAAAAAAliBjrW33GGbN7t277b59+9o9DMyX\nKHQfKB38e3c5/pwkK3WtkLa/W9rxY27ZO9jukQItTVRCnRvPBoAuTVQ1OlnT6GS8nEq207axqdq0\noaBEuRCot7OornJB3eV42VHQsnJRy8pu2V0uuPWObJvrW1RXyS2TtmXlogoBpdMBAAAAYEmJIunC\n4WyI59QLUvWy29/RL61/m/uDqqG7pE33ST1r2jtmAAAAAAAWKWPMc9ba3TPqS7AHS8b4OenQt9Kg\nz/hZ1772rWk1n433SIVSe8cJzJJaGGlsygV+Lk1WNZaEfzJBoJrGpqq6XAl1eSrUeKWmiUqo8Uqo\ny5Va3F7T5Wqoq3k5KBcDdRYDdZZc2KezWFBnyW27S6Cu+nra1lkqxO1Bdl8xUKkYqFwIVI6X9e24\nrVQwTE8GAAAAALPBWunS8WyI58T3pakRt7/YJa27Iw3xrL/LTbMV8J4MAAAAAIDZQLAHiCLp9A/j\nkM833HzvNpQ6+qRtD7qQz/b3MNc7ELPWarIaecGfWpMwULycCjVRDTWZuUS5tkiTtVATlXi7FqlS\ni657nIGRSl74xwV+sstywahcDFQMXBioVAhULAQqBcm6WyZBobTd729UCnJ94+10aVSIjy0EbrtY\nCOKlidvSvsXA7QuodgQAAABgvo0P50I8z0vjZ9y+oCgN3ubCO0mIZ/XNUqHY3jEDAAAAALCEEewB\n8iZHpEOPp0GfS8dc++qbXchnYJtU7naX0rLceo9UXiaVuvnLNOA6hJHVVBL2qUWarLr1qZoLAlXC\nSNVavAxdEKgSWlVq6XbaHuXaraZy+2uha6+GkWqRW1bDSLWGtvl9HTRGKgVxGKgeEHLhocagkNtX\n9LaTgFCmb5PzJNtJ32JgVJhpv9x1Z9q9sfvthfz+3HHGEGgCAAAA5kVYk06/KB17Vjr6tHT0Geni\nkXinkVbvyoZ4Bm+TSp1tHTIAAAAAADcagj3AdKyVzh6IQz5fl448KYWVmR1b7HIhn3K3C/qUu9PQ\nT7Je7pG6V0s3/bi05lb3LT6ABctaqzCyLgQUpcEfPwRUDa1qkQsD1eL1sL5uVYuDQmEcFgojq2pk\nFcbt+X2Nx1iF3vldn6h+/oZj43357WpoFVl37tC73lrU/tf6evjHZINAgTEqBFIxCBQEUsG4qkbF\n+j6TOTbwwkLJ/uQcQbw/MEYF42+r3i85xpj0uly76gGkgskGl4KW20G67QenTDYc5a4nO4bMmJIx\nmvj64+30trjxBt4+glIAAACoGz+XhniOPSsdf06qXnb7ete5acmHdktDd0vr3ip19LZ3vAAAAAAA\ngGAPcFWqk9LkRaky7i7Vy1JlTKpcjrfj9srl7HplLO7bbN+oO/fAdumWD0q3fsj9FRxfxAJogyS8\n5Ad9wiYBoVbhotA/Pswenz9vlDtXtr9rDyO5AFKyHqXXEcbrkXe+zL4oDi9l9qW3MbJWkXXnD+M+\nkZVCa70+itvj6/K2F0AGakbqwaQ4NJQEgFoFmfw+pun+OEyUCxIlxyVhJD+IVG/3tpuOK3NdLrCU\nhJ+SIFXzdtXHlpzTxKEmF26SjNI2E98vgbcupUEof7/cf/VQlh8Yy1agSoJbgQqFxmBatg9T7QEA\ngHkQhdLZ/a4Kz9FnpGPPSOcOun1BUVr7FmnjvdKGt7tl/wY+iwAAAAAAYAG6mmAPk2UDpU6ptHZ2\nzzl6Wtr/FemV/yd993ekvb8l9W2QbvmAdMuHpE3vkILC7F4nALRg4gozRX7sXJGNwz1hlA0vhVHz\ncNR0ffLbtkmQyLUrbveCSPWgUbrtjy3Z54eaXHhJ3noyBjVcd/YcVqFNbrtVFKXBqEqYjsEPRlmb\nHX/TcdZvT3qcH9xaTEGqqxH44SOlIaJs6CgNGpkksKT0OCltC0waTirkQlRpBSo/bKVMJapkXxKw\nSsem7LYX1pJ/Lm/Mfj9TH0N6nH8bg8ALiPnHKDtOv08S1MpUtQpMprpWoWlgzKva5e3LV79KA1/p\ndfmSsFh9vUlf4/XNX1dmPVepy686BgDAVZm4KB3fJx2NK/Icf06auuT2LVvlqvHc+bPShnuk9Xe6\nSsIAAAAAAGBJoWIPMNcun5de/aoL+Rz8hhROuQ/fbv4JV8lny49IxXK7RwkAwLzLh5XqgaNI9UpN\n9fBRnAKyVrJKA0Y2afPWozjkZBUv/XV5+20ugGVdlal8lajGPpFCq3oFKn8ZedeVrMf/1W9vdmze\nbfCOk2zmtiTBLb8qlR+Qyt+Xad80rOWqVLkrS8aW7PPv1yi+o/zrst51ZO7/3NhaLZdqkOtaZII/\ncdin0BA+8gNfXnUqZafiSwJI+f3xKZpWmbpSW72CVZN+gfGCT/kxJvvi/zXs90NT8UoS9CoESXgs\nDWkllbsCr7pX08ph+Spi01Tp8kN3ze67IGhe8SsfqMsE0rzrTe6ffCWzevgtvr0maB1o86uTAbgB\nRZE0/Goc5HnahXnO7pdkJRNIa26TNr49rcgzsI1qPAAAAAAALFJMxQUsVFNj0mtfcyGf177mpvPq\n6Jd2PeQq+Wx/N39dBwAAlixrGwNKfvjHSg2Vq5oFvpIqVG7KvWzVq1YVrJK3PUnAKxmPpHq4Km5N\n+3rtVjZzvH9dkb+Mq2D5UwlGuX6hVxnLr6CVnNt64a58MC0zHi80Zr2xJdv18TSZ1jA/9WGr6RBr\nUXYKxHhoDdebjKl+/+bGrSb9Mb18RSyT286HjDLVrPzgWBI+iqtbFZLgVJCdojGthKUm1cCyUzk2\nq8gVtAo8edW50mphaQArPSatYtasb73aWD2Ala2GVQikQhCkUzyaNKyWBNXyVb7yAbck1CWlITQ/\nKOb2elW8cqG2fFhM3v1XD3IF2ftOIth1Qxs760I8x/a55fHvpdV4OvtdFZ6N8WXobqmjt73jBQAA\nAAAAs4ZgD7AYVCelQ9+WXnlUOvCYNHFBKi2TdrxXuvXD0s5/JHX2tXuUAAAAwJxIqkA1qy6VrTSV\nBsD8KQD96QFD75hWVbrSSlhe+Mn6ASnVA2bWX8bHRDadbjATSMuF1RorXjUG2fxj6tW6ouwxyfia\nVc5qVhErnWrRC47Z7NSM/jSMfmCuHj7zzpNWGmtxnVH+37B1f/98/m1Ha62CXUmQqZgLLaXhrCSo\nFdSDXA3TBQbZUFQ9YBX4Fa2yUzf60zQaub5pZStvOkfJVf2KL8k4i/GYstvZftn1IBPW8sNq/hSH\nrYJp9TCbf2w9BJZeXzEOsc2L6qR06oU0xHPsWenim26fKUiDt0kbdktDu91y5U7FdzQAAAAAAFiC\nCPYAi01YlY7slV5+VNr/FWnstFQoS9ve5Sr57Hq/1L2y3aMEAAAAgFmTBH3SEFO2UlU+1GRzIaJ8\n5a50akSbCTdlK2ypoS30wkzJuNwyDV6l22nwKzkgX1UrOVMUN+TDTw1hMM0s2NVY/Ssb2koqa+Vv\nV2StamGrY9Pb6ldP84NkydSN/riSwJvkh7rSqSKTal/VcOF/5hQYqRgEaeCn4Ad/AgVBbn+Q3V8I\njIqFbHipGEhrwxPaNrVfWyZf1qbLL2vd5EEVbE2SdKk8qFO9t+ts3+062/8WXVh+q1RapmIhOT45\nZ7xdCOrXUQzS9VLBXX+pkF53ti3dntcQEwAAAAAAuCKCPcBiFkXuL/deedRdLr4pmUBatUtafVO8\n3CWtuklatVMqdbV7xAAAAAAANJWf1i+MQ0a1KFIYudBRfZ93yW9nwlxXqDiVVqtSrnJVEvqSwiiq\nX0d9Gdrm7VESHGvW36qjNqLtlf3aXjmgXbUD2lV7Vf0alSRdVqde0na9oB36frRDz0fbdSJc3paq\nVUnwp1iIl9NtB2l7qZAGiur9ikE9aJSEiOrBJC+EVA8dJW2FQKUgFzoqeIGkXF8/5FQqmEz4qUBY\nCQAAAACwiBHsAZYKa12p7v1/I518QRo+IF14Q7JR3MFIyzelQZ/Vu9IAUNeKdo4cAAAAAIDFy1pp\n6pI0dsZV1R07na6P5rbHz8QHGWnNLdLQ3em0WmtukYJCw+mTQFItdCEnt8yth1G8jNsjq2qYBqIy\nfaJI1TAJHKXHVaNIYWhV9dortah+PdUwOdYdn/Sphsn+qN4nOV/SnhlbPJ75Vq9MlASCvDBQKa6o\nlISHkqpGjdWXgibVmpr096smxdulTNUmr38hrehUDz55oaV8NaXmU9S5qeiS6w1M2hcAAAAAsPhd\nTbCnONeDAXAdjJHW3eEuieqkdP516ewBafjVdHnocSmcSvt1r8kFfuJl7zp3XgAAAAAAbjS1igvi\nJMGc0VPNwztjZ6TaROPxQVHqGZR61kj9Q9LQndKKLS7Es/5OqbNvRsMIAqNARqWCJDUGfxajpDJS\nLWoMJtUDSZEfCHJ9kkBSEhoKo8gLHKVhpWqYO74eakqDSP71VsMonYouU4HJBZkmqtnKS/UqUg2V\nmaLM7QrbEGDyGSMX+GkIBQUqxFPHFQvpfn+71Gr6OG+75B9byIehsufOBpFahKfiUFV9zN5Ucn6F\nqFLRjbVcyFaLoioTAAAAABDsARafUqc0eJu7+KJQunhEOvuqq+yTLH/4iDQ1kvYr97qKPiu2ug8c\nyz3u0uEvexu3y91u2i8+UAEAAAAALCS1ijR+Ng7sxJfM+tk0rDN5sfk5ugbSwM7Ge92yd23a1jPo\nLp3LpSCY39u3SBgThzaWRk6ppXyAKUwqI+UCTaFfYcmrbpSvuBR6U8U1m5IuqrdH2WnkrLvu/FR3\nSV8/QOVvh5HVZC30xuFNP+eNsR64igNS1bA9gaZ6BaY4CJRMDVdOpoMrBCoXGqsdJYGnpNJRoWBU\nMK0rJPnVkQrG9akvA6PASIFJ+wfGxNvZdmPic8Xtyb7MeAreuLwgVL5PGuAKFMShrfrSiNATAAAA\ncAMh2AMsFUFBGtjmLrseStutdR9g5iv8HN8nTY1JlTGpNjmz6zCFJiGgHqmj1y17B6Xlm6UVm92y\nf6MLIgEAAAAAMFNRJFVGpckR6fI5aeysV2WnSYBn4kLz83T0Sd2rXTBnzS3S1gezIZ1kvXu1VCzP\n723EonWjBJiaiaJs5aNWYaR8kMg/JooUT/GWVlaqJtO7hZEqXjWmZNq4an1aOFeZqZKbKi5Tncla\nTVTDTCgq8sbbNBDVJEi1GARGuZCRcRWdmgSPAmMUBKqHlYI4gJT0T0JJQVwRKoj3Jce57TTglASL\n0m2vv8n2N0YyMnEm0sTbqh9j5M6V9KvvD4yMO8T1lerX0Xws/nXnx3flPq2OScYaBLntuI9MdtuY\n7O1MAljJ+JPbKG+7vp67D/xz5cfebJkZd4tj/PuScBgAAMDiQbAHWOqMcX9l2LtW2vZg8z5h1QV8\nkqBPZVyaGs22Nd0ed+vjw2579KQUVbPn7l0nLd/kBX7i9eWbpP4NUqE09/cBbgxR6D74n7ggTV2S\nOvulvg18QA8AAADMNz+YM+PLRW/9kqQWX6yXe6We1en001vf6dZ71mSDOj1rXNVZALMmCIzKQRIE\nWNrJpigJAcUBoMjKrcftkbWKIrn1yO9n48pK/nbanoSbalF2qrh85aZ6KOkKfdKxeGP0xmHr16/M\nWPLjj6xVaF3/ZF/Svxqm94G16bkiv3/cZuv70nNYK1kl+yQpafP2WysrZdbTYyUl51c6BsweP4QU\nJGEj0xhGqoewJG+/FzBSs2BT4/HJdTaEu3LnnQlrZ/5gyIfR6tW4kgpdXpAtDcgpU40rv78+ynxI\nK3Pfpu3psnVfP5yVbqehNree7pMf4JK7PVJ6/7r7KV7Gv1/5d1tyH6Z9pj/GD40Zk61qZnL3Wb3a\nmR8u8wOHSUBuBq72ae/fr/mwXRpuyz/eTdPHrf/vq8x5G68v3T+z/q0fD2bax5Hf7j+2mj0Xg2a3\ny2Rvb/3xnHscNh9v7v4w+X2N90H++Pw5Wj3lZ9o/85j2Hi2tfkS06p9cj//48MOsBCIBtBPBHgAu\nXNO1wl2uRxS5cM/FI9LFN6ULR9L1N5+SXnxEslHa3wQueLF8U1rlp76+yX0gG1alcMqVVk+WtcnG\ntnBKqk1JYSW3zPWLapIN3Tgif5lbj6ImbWH8CUPoHWPj3/ACud96g9y2ucJ+fzu+T5LrjGreJUzH\n7m/XL1Hz/lHNnbfUlU6nVuqSSt25tmXxpUsqL/O2l8XbXdm2QslViQqK7mIK8XbB2y5efYl6P5wz\neVGauJhdb7qMvwSYutTkhMY9jpZvdEGy/o3u4m939rd+5wAAAAAsZmFNqk1I1QmpejleepfaRPb9\nU8N7qGTf5BXavH1Tl6YP5iQ6+tzv4smyb4O05ja37l+6VsTVdeIwT3nZvNx1AG5sQWAUyKi0tPNL\ni1o2ZOSHirKBoZZ9onQ7DRIlgaXsMZnAUpw0Ss4RZYJLaeApCSS5RXqeJJyUBJnqPer7vP7ebW28\nfdmxNgtdtTomG5qyDdeb3Cb5420yPv/fweZugzK3ufH45NxR5tzp/WZlG4IULc30Y71c+K0xDOfa\nkmkS039jt8/afBguDbw0Dcp4/8Z+OCYbnMm214NtUTbsltzH+X/b7OMIwHzJhH28IFA9YBentPyA\nnR9a9MNXUhrq8oNT+aCX6utumX/u13+GqvnPHredP9Y/SS5IKC9k2OS2JevJvmScfrU+/7YlG9nA\nWvb25e+Demgs3567L/L7GoJ03vmz/WdmpoGu5D67UoW9/P2ZVAX0Q5t+wDN/mxpuR5MQnVrcX7es\n69OH7lg/w1uOhYZgD4DZEwRS/5C7bL6/cX9YlS4djwM/b7rQT7L++jddKGiuFDqkYocLniQhFBPE\n60GTtmQ9yB0TB1aKHW7dmPi3IOsCOdam4SUbxQGhqMl+f9s/PvJCMkXvUnCVZ/JtDcGaJvtl0w/y\nK8mH+Um1pbOu8lJ9/7gLD80a0zzskx+3jVygp2k4x1PslDqXS13L3bJvyH34n2wny84+F/wZOeou\nF49KJ1+Q9j/mvnDwlXtzwZ8NaUWp/o2u2lUwzSd51rovNaoTueVk/CVKi2Vtyj1+CmV3CYrpeqHk\nrbdqL0lBKdte7FiaVbAql90UDJeH3XL8nLd93v37lJa5oFq5O17vcV/6lLtdkC2zHve52uAZMDXm\npgAZPeVes5L1sdNue3zYPb66vYoBPavT6T6643W+kMT1iCJXITGqud+tkiBvWHXtYRLyTfZF2VBy\nlFufyb5k3RQav3DvjL+QL/fyc1WKfy+YctUspy7Fl1F3mYzXo5qbyraj191/HX3xdrwsdxM6Xsis\n9Z5v+edi8hxM9uXD+M0C+rnt+vOuSZ+w6h5f9YDOZe93T79tMl3PV1S9GiaI30eV42Wnt+4tO/u8\n30U70p8L0106+qb/HRsAgCtwFVSkwoy/lgOWrnxoK4q/tY+sneaL7sYvjJt9yZ7Zb0zmusLID5Cl\nlbr8gJkfkqqHo7ygWRjZGb/9mWnYKxOkagij5cNmfkAqF0JrEZ7KV3i5wmbL4xsCfN4J8rchOW9j\ncCwfDstWOJPf1hDWs02Pk81WRvOvM397bK5Ps9vctFLUFfrm27PnTs+XrWDU/PExk6o//pGZ0GH9\nOZWG65JAZJTblwni1e/z5kG/ZiG/Zo/RZsfKpgNu9hxuFXJJb2/jMf7jKYr8IKH/PEhChvHPmOQ+\nyfWXF0JMxp/ermS98d+52fPUPy75Gq3+mG8ZWmr+eE2fX9n9VzLT8KQf4vV/FmcfK62XfiVEq/Rn\nZn6s0z8fm98n/sZPvHUdwZ5FjGAPgPlTKEkrtrhLM9VJaeSYdPENF/YZH44DC/EHxsXOxg+Rk8BO\n/YNk7wPlZH+hxJcjV6NWib8QuJwLBF1O15t++ZCvKhTNvI8x2WBOq2Wp8/puWxS5MNPIMWnkzfjx\ndjTdPvasqxDkC4pS73qpe2X8RUouwFObvL4xzbZCRxxw6ZE6etKwS7knvnTH7T1ee76/tz8oes+f\nOG7vL6Vs25Wea1HoQlf1kM5wNqTTbLs20fxcpuD+gttGLpSWD21diV+VqtyTDQcVO+P9na5iVbHL\nq3g13XZnWv2q2NX6508S8ss8J/JVwmpqqCKW9JfSIFf952C8Xigv7C/XkzBcffrHZArIMTdlR309\nv2/M3cbk3ympPlavKtZs3a88tszdN81q9U5disM6p7zgzilp7JQ0ejpennJjyCuUXQCwZ600sM31\nufCGdPRp91hu9jYxmUKkZ9AFgLrXpOv5aUSKHVd339bDot6yHiiN22pTTYKIfvgw9zOuWTDR/1kY\n1eJwYikbMJ3RdhL6jPcVvOBnErCtX5KfM/n2fB+/Kp7XLv9nVLN1/5PM3M+3Zuv16haTLZZT3nar\nPpNedYypmYV1/OqHC4qJQyotgj/+l/n+vqRaoR+AnvZip++b+2uzdNVcZVvSbt3vPq1COlOj0tRI\ntv16ghSSu0/KSein17v0ZdeT/eUed1xyHzQNbl1le3JfNHsuBoUmz8V8P5MNysu4+yX/3KhXfZnK\nPheSSjCZPn7lzvj50vT6p/k5EUz38yNo8ryrNj4nZzUEf5WCYuPvIEllza4VUt96b79fdbOzsS35\nXaeYD+x0pO+nCnxkBAAAsBjMZ9DNvy6qmgEAMH/M1cxButDt3r3b7tu3r93DAAAsZlOj0sjxuNJP\nHP4ZOeoCP8XO+EuQzvhLk+tZdrovJcNK+qVRWIkv/na1RZ9atn9UdV+6J0GIynguJDGeDUrMSyCp\nSRAoqqllHr7cIy1b6S7dq9L1zHayHHBhLz/AEtbialRJCG3MrVfG0/bKWFqdqjLeYv2yN2WFN03F\nNd0FBfcFmpQN6sz1F/NBMQ021r+cK6UBSL/CUxKEbPnhzzS/K073e2RUc/f3VJOAzky/FA2Kceis\n1335GNWyYcOr/fLcFLJTEMq64E6zf9/SsjSw0zuYLnvXudBN71q37FrROtAW1lxIbey0NHYmvsTr\n42eybZO6pvb7AAANaklEQVQXm5+jGD9+WoV00j9XmVvJY7mYhN060p9nQdH70jtXLWa67QUbUJll\nJnD3Vf3Lc++L8/p2p1e9LanIVkxDT34oqmF9mr5JBb9MBcKit+5VKqxX0mvWFp8jCl2IZTK5XPLW\n48p7ky32T420+19idgSlXOCmLxu46ey7crsJ4p+PfkCoVXAov4z3XevrUktGmSqVMjMITl2noJg+\n9pNgSWa7I/v8yPdJKlMmAaUZBcOuEBozQe55VUq3g0Lrfc2egw3PxRaVN/MVLVv1qYcUAQAAAAAA\nsBQYY56z1u6eSV/+/AoAAF9Hr7TmZneZD8Xy/FxPXlj1AkD54IUXCkqqwzRUAUlOlA8YNGvzamgW\nStnAjn+53opMhaJUiKtAzLakykw96JNMeREvp92eSKsHNEztV5h5mwnSL/qkuIJBxVUuSKbmyKxX\n0ooiYTWtcFBfr7ixJevTmfaLxBb7gkIc1hpw092VexurQvnVo5LpZ5IgT7n7ytVqksexP51gMt1g\ndSIOACXr42klsmRd8kI6a90yCex09F7/F6iFYnrOK6lNuYpimRDQGRf4yVShMVe/zLclX5QnQZ3p\nAovFDtdvLqb58yu7RfGUNUlljJZVWvzpLKfp02zb/1lUX4//1/DzawbrrcI5yX1ab1tib7m6V17b\ncVGYBlT84I9sY6WXaasy+RWYWu1TLnhor64t317uTkM6xY7ZCVcsG7i+48OqF/iJq4k1vGa0ei1p\n1j7D29QsPFMP1vjPvXxb5AVLO9MpcgEAAAAAAABc0Zx/ymyMeUjSb0sqSPqstfa/5PZ3SPqipLsl\nnZP0UWvtG/G+X5P0SUmhpF+01v7dXI8XAIAbQqHkpjjrWt7ukSwOxqTTXWDhWEqP42KH1L/BXW4U\nQSAFZUltCjhifgWFpfN8XQgKJRcOut6A0NVKpucSoRwAAAAAAABgvgRX7nLtjDEFSb8r6X2SbpX0\nU8aYW3PdPinpgrV2h6TPSPrN+NhbJT0s6TZJD0n6vfh8AAAAAAAAAAAAAAAAwJI3p8EeSfdIOmit\nPWStrUj6M0kfzvX5sKQvxOuPSHqPMcbE7X9mrZ2y1h6WdDA+HwAAAAAAAAAAAAAAALDkzXWwZ0jS\nUW/7WNzWtI+1tiZpRNLKGR4rY8zPG2P2GWP2nT17dhaHDgAAAAAAAAAAAAAAALTPXAd75py19g+t\ntbuttbtXr17d7uEAAAAAAAAAAAAAAAAAs2Kugz3HJW30tjfEbU37GGOKkvolnZvhsQAAAAAAAAAA\nAAAAAMCSNNfBnmcl7TTGbDXGlCU9LOnRXJ9HJX08Xv+IpG9aa23c/rAxpsMYs1XSTknPzPF4AQAA\nAAAAAAAAAAAAgAWhOJcnt9bWjDG/IOnvJBUkfd5a+5Ix5jck7bPWPirpc5L+2BhzUNJ5ufCP4n5/\nIellSTVJn7bWhnM5XgAAAAAAAAAAAAAAAGChMK44ztKwe/duu2/fvnYPAwAAAAAAAAAAAAAAAGjK\nGPOctXb3TPrO9VRcAAAAAAAAAAAAAAAAAK4BwR4AAAAAAAAAAAAAAABgASLYAwAAAAAAAAAAAAAA\nACxABHsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEewBAAAAAAAAAAAAAAAAFiCCPQAA\nAAAAAAAAAAAAAMACRLAHAAAAAAAAAAAAAAAAWIAI9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAA\nAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHs\nAQAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAmSste0ew6wxxpyVdKTd40CDVZKG2z0IAMCS\nxesMAGAu8ToDAJhLvM4AAOYKrzEAgLnE68z122ytXT2Tjksq2IOFyRizz1q7u93jAAAsTbzOAADm\nEq8zAIC5xOsMAGCu8BoDAJhLvM7ML6biAgAAAAAAAAAAAAAAABYggj0AAAAAAAAAAAAAAADAAkSw\nB/PhD9s9AADAksbrDABgLvE6AwCYS7zOAADmCq8xAIC5xOvMPDLW2naPAQAAAAAAAAAAAAAAAEAO\nFXsAAAAAAAAAAAAAAACABYhgDwAAAAAAAAAAAAAAALAAEezBnDHGPGSMOWCMOWiM+dV2jwcAsLgZ\nYzYaY75ljHnZGPOSMeaX4vYBY8zXjTGvxcsV7R4rAGDxMsYUjDHPG2O+Em9vNcY8Hb+v+XNjTLnd\nYwQALE7GmOXGmEeMMfuNMa8YY+7j/QwAYLYYY/5V/JnZi8aYLxljOnk/AwC4VsaYzxtjzhhjXvTa\nmr5/Mc7/iF9vXjDG3NW+kS9NBHswJ4wxBUm/K+l9km6V9FPGmFvbOyoAwCJXk/SvrbW3SnqHpE/H\nry2/Kukb1tqdkr4RbwMAcK1+SdIr3vZvSvqMtXaHpAuSPtmWUQEAloLflvRVa+3Nku6Qe73h/QwA\n4LoZY4Yk/aKk3dba2yUVJD0s3s8AAK7dH0l6KNfW6v3L+yTtjC8/L+n352mMNwyCPZgr90g6aK09\nZK2tSPozSR9u85gAAIuYtfaktfZ78fqo3IfgQ3KvL1+Iu31B0k+2Z4QAgMXOGLNB0k9I+my8bSS9\nW9IjcRdeZwAA18QY0y/pRyR9TpKstRVr7UXxfgYAMHuKkrqMMUVJyySdFO9nAADXyFr7D5LO55pb\nvX/5sKQvWucpScuNMevmZ6Q3BoI9mCtDko5628fiNgAArpsxZoukOyU9LWnQWnsy3nVK0mCbhgUA\nWPx+S9K/kRTF2yslXbTW1uJt3tcAAK7VVklnJf2veMrHzxpjusX7GQDALLDWHpf0XyW9KRfoGZH0\nnHg/AwCYXa3ev5ANmGMEewAAwKJijOmR9H8k/bK19pK/z1prJdm2DAwAsKgZYz4g6Yy19rl2jwUA\nsCQVJd0l6fettXdKGldu2i3ezwAArpUxZoVctYStktZL6lbj9CkAAMwa3r/ML4I9mCvHJW30tjfE\nbQAAXDNjTEku1POn1tovx82nk5KO8fJMu8YHAFjU9kj6kDHmDbmphN8t6bflSgcX4z68rwEAXKtj\nko5Za5+Otx+RC/rwfgYAMBveK+mwtfastbYq6cty73F4PwMAmE2t3r+QDZhjBHswV56VtNMYs9UY\nU5b0sKRH2zwmAMAiZowxkj4n6RVr7X/3dj0q6ePx+scl/fV8jw0AsPhZa3/NWrvBWrtF7v3LN621\nPyPpW5I+EnfjdQYAcE2stackHTXG7Iqb3iPpZfF+BgAwO96U9A5jzLL4M7TkdYb3MwCA2dTq/cuj\nkn7OOO+QNOJN2YVZYFyFJGD2GWPeL+m3JBUkfd5a+5/bPCQAwCJmjHlA0nck/VBSFDf/O0lPS/oL\nSZskHZH0T62159sySADAkmCMeZekX7HWfsAYs02ugs+ApOcl/ay1dqqd4wMALE7GmLdJ+qyksqRD\nkj4h94eXvJ8BAFw3Y8x/kvRRSTW59y7/XNKQeD8DALgGxpgvSXqXpFWSTkv6dUn/V03ev8Sh0t+R\nmwbysqRPWGv3tWPcSxXBHgAAAAAAAAAAAAAAAGABYiouAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAA\nAAAAAAAsQAR7AAAAAAAAAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwABHsAQAAAAAAAAAAAAAAABYg\ngj0AAAAAAAC4LsaYdxljvtLucQAAAAAAACw1BHsAAAAAAAAAAAAAAACABYhgDwAAAAAAwA3CGPOz\nxphnjDHfN8b8gTGmYIwZM8Z8xhjzkjHmG8aY1XHftxljnjLGvGCM+StjzIq4fYcx5u+NMT8wxnzP\nGLM9Pn2PMeYRY8x+Y8yfGmNM224oAAAAAADAEkGwBwAAAAAA4AZgjLlF0kcl7bHWvk1SKOlnJHVL\n2metvU3S45J+PT7ki5L+rbX2rZJ+6LX/qaTftdbeIel+SSfj9jsl/bKkWyVtk7Rnzm8UAAAAAADA\nElds9wAAAAAAAAAwL94j6W5Jz8bFdLoknZEUSfrzuM+fSPqyMaZf0nJr7eNx+xck/aUxplfSkLX2\nryTJWjspSfH5nrHWHou3vy9pi6Qn5v5mAQAAAAAALF0EewAAAAAAAG4MRtIXrLW/lmk05j/m+tlr\nPP+Utx6Kz50AAAAAAACuG1NxAQAAAAAA3Bi+Iekjxpg1kmSMGTDGbJb7fOgjcZ+flvSEtXZE0gVj\nzDvj9o9JetxaOyrpmDHmJ+NzdBhjls3rrQAAAAAAALiB8JdTAAAAAAAANwBr7cvGmP8g6WvGmEBS\nVdKnJY1Luifed0bSR+NDPi7pf8bBnUOSPhG3f0zSHxhjfiM+xz+Zx5sBAAAAAABwQzHWXmt1ZQAA\nAAAAACx2xpgxa21Pu8cBAAAAAACARkzFBQAAAAAAAAAAAAAAACxAVOwBAAAAAAAAAAAAAAAAFiAq\n9gAAAAAAAAAAAAAAAAALEMEeAAAAAAAAAAAAAAAAYAEi2AMAAAAAAAAAAAAAAAAsQAR7AAAAAAAA\nAAAAAAAAgAWIYA8AAAAAAAAAAAAAAACwAP1/Nt8O2ertn9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPUAAAJcCAYAAACb/gMvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X+s5Hd93/vXe2fO7M4YB4y9SWtM\n461KkV1oTVi7IBKUhCaxSa9JFHCAkoa2kiNVSKmaohiFOIXmD1fpTWkUSEJSt025QBGUG26ztxhu\njYIaUry4iNjYYBs5eO0m3jqxY/vM+pzZ/dw/9pzN2fX+OMfsd76zex4PyfKZme8cv4/kP596v6u1\nFgAAAAAAAAAAYHHs6HsAAAAAAAAAAADgeKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAAAAA\nAABYMKIeAAAAAAAAAABYMKIeAAAAAAAAAABYMKIeAAAAgG2mqh6sqr/T9xwAAAAAnJqoBwAAAAAA\nAAAAFoyoBwAAAAAAAAAAFoyoBwAAAGCbqqqdVfW+qnpk7Z/3VdXOtc8uqar/UlWPV9WfVtXnq2rH\n2mc/W1UPV9WTVfW1qnpdv38JAAAAwPln2PcAAAAAAPTm55K8KslVSVqS30ny7iQ/n+RnkhxIsnvt\n2VclaVX10iTvSHJ1a+2Rqro8yWC+YwMAAACc/2zqAQAAANi+/l6S97bWHm2tHUzyniQ/sfbZapK/\nnOQ7W2urrbXPt9ZaksNJdia5sqqWWmsPttYe6GV6AAAAgPOYqAcAAABg+7o0yR9teP1Ha+8lyS8l\nuT/JbVX1jaq6KUlaa/cn+SdJ/nmSR6vqo1V1aQAAAAA4q0Q9AAAAANvXI0m+c8Prv7L2XlprT7bW\nfqa19leTXJ/kn1bV69Y++3Br7bvXvtuS/Mv5jg0AAABw/hP1AAAAAGxfH0ny7qraXVWXJLk5yYeS\npKr+blX9taqqJE/k6NmtI1X10qr6/qrameRQkmmSIz3NDwAAAHDeEvUAAAAAbF+/mGR/kq8k+cMk\nd669lyQvSfLZJE8l+UKSD7TWbk+yM8ktSf53kj9O8u1J3jXfsQEAAADOf9Va63sGAAAAAAAAAABg\nA5t6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwYh6AAAAAAAAAABgwQz7HuBsueSS\nS9rll1/e9xgAAAAAAAAAAHBSX/rSl/53a233Zp7tNOqpqmuT/JskgyS/1Vq75YTPX5vkfUn+ZpI3\nt9Y+vuGzv5Lkt5K8OElL8vrW2oOn+m9dfvnl2b9//1n/GwAAAAAAAAAA4Gyoqj/a7LOdnd+qqkGS\n9ye5LsmVSd5SVVee8Ng3k7w9yYdP8it+O8kvtdauSHJNkke7mhUAAAAAAAAAABZJl5t6rklyf2vt\nG0lSVR9N8oYkX11/YH3zTlUd2fjFtfhn2Fr7zNpzT3U4JwAAAAAAAAAALJTONvUkeVGShza8PrD2\n3mb89SSPV9V/rqr/WVW/tLb55zhVdWNV7a+q/QcPHjwLIwMAAAAAAAAAQP+63NTzrRgm+Z4kr8jR\nE13/KUfPdP3bjQ+11j6Y5INJsnfv3nbiL1ldXc2BAwdy6NChruft3a5du3LZZZdlaWmp71EAAAAA\nAAAAAPgWdRn1PJzkxRteX7b23mYcSPLlDae7/u8kr8oJUc8Zf8mBA7nwwgtz+eWXp6q28tVzSmst\njz32WA4cOJA9e/b0PQ4AAAAAAAAAAN+iLs9v3ZHkJVW1p6pGSd6c5FNb+O4Lqmr32uvvT/LVrQ5w\n6NChXHzxxed10JMkVZWLL754W2wkAgAAAAAAAADYDjqLelprsyTvSPLpJPck+Vhr7e6qem9VXZ8k\nVXV1VR1I8qYkv1FVd69993CSf5bk/6uqP0xSSX7zucxxvgc967bL3wkAAAAAAAAAsB10eX4rrbV9\nSfad8N7NG36+I0fPcp3su59J8je7nA8AAAAAAAAAABZRl+e3SPL444/nAx/4wJa/9/rXvz6PP/54\nBxMBAAAAAAAAALDoRD0dO1XUM5vNTvu9ffv25QUveEFXYwEAAAAAAAAAsMA6Pb9FctNNN+WBBx7I\nVVddlaWlpezatSsXXXRR7r333nz961/Pj/zIj+Shhx7KoUOH8tM//dO58cYbkySXX3559u/fn6ee\neirXXXddvvu7vzu///u/nxe96EX5nd/5nYzH457/MgAAAAAAAAAAurJtop73/D9356uP/PlZ/Z1X\nXvpt+YX/42+c9plbbrkld911V7785S/nc5/7XH74h384d911V/bs2ZMkufXWW/PCF74w0+k0V199\ndX7sx34sF1988XG/47777stHPvKR/OZv/mZuuOGGfOITn8jb3va2s/q3AAAAAAAAAACwOLZN1LMo\nrrnmmmNBT5L8yq/8Sj75yU8mSR566KHcd999z4p69uzZk6uuuipJ8spXvjIPPvjg3OYFAAAAAAAA\nAGD+tk3Uc6aNOvNywQUXHPv5c5/7XD772c/mC1/4QiaTSb73e783hw4detZ3du7ceeznwWCQ6XQ6\nl1kBAAAAAAAAAOjHjr4HON9deOGFefLJJ0/62RNPPJGLLrook8kk9957b/7gD/5gztMBAAAAAAAA\nALCIts2mnr5cfPHFec1rXpOXvexlGY/H+Y7v+I5jn1177bX59V//9VxxxRV56Utfmle96lU9TgoA\nAAAAAAAAwKKo1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN33b7ewEAAAAAAAAAziVV9aXW2t7N\nPOv8FgAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAAAAAALBhRDwAAAAAA\nAAAALBhRD535+7d+Mb/4X77a9xgAAAAAAAAAAOccUU/HHn/88XzgAx94Tt993/vel+Xl5bM80fz8\nyROH8tCfnbvzAwAAAAAAAAD0RdTTse0c9YxHgyyvHO57DAAAAAAAAACAc86w7wHOdzfddFMeeOCB\nXHXVVfmBH/iBfPu3f3s+9rGP5ZlnnsmP/uiP5j3veU+efvrp3HDDDTlw4EAOHz6cn//5n8+f/Mmf\n5JFHHsn3fd/35ZJLLsntt9/e95+yZZPRIFNRDwAAAAAAAADAlm2fqOf/vSn54z88u7/zL708ue6W\n0z5yyy235K677sqXv/zl3Hbbbfn4xz+eL37xi2mt5frrr8/v/d7v5eDBg7n00kvzu7/7u0mSJ554\nIs9//vPzy7/8y7n99ttzySWXnN2552QyGuTx5dW+xwAAAAAAAAAAOOc4vzVHt912W2677ba84hWv\nyHd913fl3nvvzX333ZeXv/zl+cxnPpOf/dmfzec///k8//nP73vUs2I8Gma6alMPAAAAAAAAAMBW\nbZ9NPWfYqDMPrbW8613vyk/91E8967M777wz+/bty7vf/e687nWvy80339zDhGfXZGmQ5ZVZ32MA\nAAAAAAAAAJxzbOrp2IUXXpgnn3wySfJDP/RDufXWW/PUU08lSR5++OE8+uijeeSRRzKZTPK2t70t\n73znO3PnnXc+67vnovFokOVnbOoBAAAAAAAAANiq7bOppycXX3xxXvOa1+RlL3tZrrvuurz1rW/N\nq1/96iTJ8573vHzoQx/K/fffn3e+853ZsWNHlpaW8mu/9mtJkhtvvDHXXnttLr300tx+++19/hnP\nyWQ0yPLq4bTWUlV9jwMAAAAAAAAAcM6o1lrfM5wVe/fubfv37z/uvXvuuSdXXHFFTxPN36L9vb/6\n3+7Lv7rt6/naL16bncNB3+MAAAAAAAAAAPSqqr7UWtu7mWed36Iz49HRRVDTFSe4AAAAAAAAAAC2\nQtRDZyajo9t5lkU9AAAAAAAAAABbct5HPefLebEzWcS/U9QDAAAAAAAAAPDcnNdRz65du/LYY48t\nZPByNrXW8thjj2XXrl19j3Kc8dLRqMf5LQAAAAAAAACArRn2PUCXLrvsshw4cCAHDx7se5TO7dq1\nK5dddlnfYxxnMjr6v9fyyqznSQAAAAAAAAAAzi3nddSztLSUPXv29D3GtjVeP7+1alMPAAAAAAAA\nAMBWnNfnt+jXBTud3wIAAAAAAAAAeC5EPXRmsrR+fkvUAwAAAAAAAACwFaIeOrN+fmu6Mut5EgAA\nAAAAAACAc4uoh85M1qIem3oAAAAAAAAAALZG1ENnxkuiHgAAAAAAAACA50LUQ2d27KjsWtqR6aqo\nBwAAAAAAAABgK0Q9dGoyGmZ5Zdb3GAAAAAAAAAAA5xRRD50aLw2y/IxNPQAAAAAAAAAAWyHqoVOT\n0SDLK6IeAAAAAAAAAICtEPXQqclokOVVUQ8AAAAAAAAAwFaIeujUeDTIdGXW9xgAAAAAAAAAAOcU\nUQ+dmoyGzm8BAAAAAAAAAGyRqIdOHd3UI+oBAAAAAAAAANgKUQ+dmiwNbOoBAAAAAAAAANgiUQ+d\nmowGWV6Z9T0GAAAAAAAAAMA5RdRDp8ajYaarNvUAAAAAAAAAAGyFqIdOXTAaZPVwy+rhI32PAgAA\nAAAAAABwzhD10KnxaJAkWV6xrQcAAAAAAAAAYLNEPXRqMhomSaaiHgAAAAAAAACATRP10KnJsU09\ns54nAQAAAAAAAAA4d4h66JTzWwAAAAAAAAAAWyfqoVPrm3qmq6IeAAAAAAAAAIDNEvXQqfWo5+ln\nnN8CAAAAAAAAANgsUQ+dGi8NkyRT57cAAAAAAAAAADZN1EOn1jf1LIt6AAAAAAAAAAA2rdOop6qu\nraqvVdX9VXXTST5/bVXdWVWzqnrjST7/tqo6UFW/2uWcdOdY1LMq6gEAAAAAAAAA2KzOop6qGiR5\nf5LrklyZ5C1VdeUJj30zyduTfPgUv+ZfJPm9rmake+O1qGe6Mut5EgAAAAAAAACAc0eXm3quSXJ/\na+0brbWVJB9N8oaND7TWHmytfSXJkRO/XFWvTPIdSW7rcEY6NhkNkzi/BQAAAAAAAACwFV1GPS9K\n8tCG1wfW3jujqtqR5P9M8s/O8NyNVbW/qvYfPHjwOQ9KdwY7KqPhjkxFPQAAAAAAAAAAm9Zl1POt\n+MdJ9rXWDpzuodbaB1tre1tre3fv3j2n0diqyWhgUw8AAAAAAAAAwBYMO/zdDyd58YbXl629txmv\nTvI9VfWPkzwvyaiqnmqt3XSWZ2QOJkuiHgAAAAAAAACAregy6rkjyUuqak+OxjxvTvLWzXyxtfb3\n1n+uqrcn2SvoOXdNdg4zXZ31PQYAAAAAAAAAwDmjs/NbrbVZknck+XSSe5J8rLV2d1W9t6quT5Kq\nurqqDiR5U5LfqKq7u5qH/ji/BQAAAAAAAACwNV1u6klrbV+SfSe8d/OGn+/I0bNcp/sd/z7Jv+9g\nPOZk7PwWAAAAAAAAAMCWdLapB9ZNRoNMRT0AAAAAAAAAAJsm6qFzk9EwyyuzvscAAAAAAAAAADhn\niHro3NimHgAAAAAAAACALRH10LnJaJDlVVEPAAAAAAAAAMBmiXro3Hg0yPIzoh4AAAAAAAAAgM0S\n9dC5ydIwK4ePZHb4SN+jAAAAAAAAAACcE0Q9dG4yGiSJE1wAAAAAAAAAAJsk6qFz47WoZ7oi6gEA\nAAAAAAAA2AxRD507tqlH1AMAAAAAAAAAsCmiHjr3F1HPrOdJAAAAAAAAAADODaIeOjceDZM4vwUA\nAAAAAAAAsFmiHjrn/BYAAAAAAAAAwNaIeuicqAcAAAAAAAAAYGtEPXRusn5+a3XW8yQAAAAAAAAA\nAOcGUQ+ds6kHAAAAAAAAAGBrRD10brwW9UxFPQAAAAAAAAAAmyLqoXOTJZt6AAAAAAAAAAC2QtRD\n54aDHRkNdoh6AAAAAAAAAAA2SdTDXIxHg0xXZn2PAQAAAAAAAABwThD1MBeT0cCmHgAAAAAAAACA\nTRL1MBdjUQ8AAAAAAAAAwKaJepiLo5t6nN8CAAAAAAAAANgMUQ9zMVka2tQDAAAAAAAAALBJoh7m\nYjwaZLoq6gEAAAAAAAAA2AxRD3Nx9PyWqAcAAAAAAAAAYDNEPczFeDTIVNQDAAAAAAAAALApoh7m\n4uimnlnfYwAAAAAAAAAAnBNEPczFBaOh81sAAAAAAAAAAJsk6mEuxqNBnpkdyeEjre9RAAAAAAAA\nAAAWnqiHuZiMBkmS6aptPQAAAAAAAAAAZyLqYS7Go2GSZHll1vMkAAAAAAAAAACLT9TDXEyW1jb1\nrNjUAwAAAAAAAABwJqIe5mL9/NayqAcAAAAAAAAA4IxEPczFWNQDAAAAAAAAALBpoh7mYjIaJnF+\nCwAAAAAAAABgM0Q9zMX6+a2nV2Y9TwIAAAAAAAAAsPhEPczF+vktm3oAAAAAAAAAAM5M1MNcrG/q\nWRb1AAAAAAAAAACckaiHuZgsDZMky85vAQAAAAAAAACckaiHuXB+CwAAAAAAAABg80Q9zMVouCPD\nHZXlVVEPAAAAAAAAAMCZiHqYm/FoYFMPAAAAAAAAAMAmiHqYmwtGwyyvzPoeAwAAAAAAAABg4Yl6\nmJvJaJBlm3oAAAAAAAAAAM5I1MPcOL8FAAAAAAAAALA5oh7mxqYeAAAAAAAAAIDNEfUwN+PRMMur\noh4AAAAAAAAAgDMR9TA3k6VBpiuzvscAAAAAAAAAAFh4oh7mxvktAAAAAAAAAIDNEfUwN+PRIFNR\nDwAAAAAAAADAGYl6mBubegAAAAAAAAAANkfUw9yMR8NMVw/nyJHW9ygAAAAAAAAAAAtN1MPcTEaD\nJMl01bYeAAAAAAAAAIDTEfUwN+tRjxNcAAAAAAAAAACnJ+phbsZLa5t6RD0AAAAAAAAAAKcl6mFu\nJqNhkmR5ddbzJAAAAAAAAAAAi63TqKeqrq2qr1XV/VV100k+f21V3VlVs6p644b3r6qqL1TV3VX1\nlar68S7nZD6c3wIAAAAAAAAA2JzOop6qGiR5f5LrklyZ5C1VdeUJj30zyduTfPiE95eT/P3W2t9I\ncm2S91XVC7qalflYj3qc3wIAAAAAAAAAOL1hh7/7miT3t9a+kSRV9dEkb0jy1fUHWmsPrn12ZOMX\nW2tf3/DzI1X1aJLdSR7vcF46duz8lqgHAAAAAAAAAOC0ujy/9aIkD214fWDtvS2pqmuSjJI8cJLP\nbqyq/VW1/+DBg895UOZjfOz81qznSQAAAAAAAAAAFluXUc+3rKr+cpL/mOQftNaOnPh5a+2DrbW9\nrbW9u3fvnv+AbInzWwAAAAAAAAAAm9Nl1PNwkhdveH3Z2nubUlXfluR3k/xca+0PzvJs9GBybFOP\nqAcAAAAAAAAA4HS6jHruSPKSqtpTVaMkb07yqc18ce35Tyb57dbaxzuckTlaP781XRX1AAAAAAAA\nAACcTmdRT2ttluQdST6d5J4kH2ut3V1V762q65Okqq6uqgNJ3pTkN6rq7rWv35DktUneXlVfXvvn\nqq5mZT5Ggx0Z7Kgsr8z6HgUAAAAAAAAAYKENu/zlrbV9Sfad8N7NG36+I0fPcp34vQ8l+VCXszF/\nVZXJ0sD5LQAAAAAAAACAM+jy/BY8y3g0yFTUAwAAAAAAAABwWqIe5moysqkHAAAAAAAAAOBMRD3M\n1Xg0zPLKrO8xAAAAAAAAAAAWmqiHubKpBwAAAAAAAADgzEQ9zJWoBwAAAAAAAADgzEQ9zNV4aZCp\nqAcAAAAAAAAA4LREPczVZDTI8uqs7zEAAAAAAAAAABaaqIe5muwc2tQDAAAAAAAAAHAGoh7marI0\nyLKoBwAAAAAAAADgtEQ9zNVkNMh09XBaa32PAgAAAAAAAACwsEQ9zNV4NExryaHVI32PAgAAAAAA\nAACwsEQ9zNVkNEiSLK/Mep4EAAAAAAAAAGBxiXqYq/GxqOdwz5MAAAAAAAAAACwuUQ9ztb6pZ7oq\n6gEAAAAAAAAAOBVRD3M1sakHAAAAAAAAAOCMRD3M1XhpmCRZXpn1PAkAAAAAAAAAwOIS9TBXx85v\n2dQDAAAAAAAAAHBKoh7maj3qeVrUAwAAAAAAAABwSqIe5mp8bFOP81sAAAAAAAAAAKci6mGuJqNh\nkmTZph4AAAAAAAAAgFMS9TBX6+e3RD0AAAAAAAAAAKcm6mGudg53pCqZinoAAAAAAAAAAE5J1MNc\nVVUuGA1t6gEAAAAAAAAAOA1RD3M3Hg0yXZ31PQYAAAAAAAAAwMIS9TB3k9HAph4AAAAAAAAAgNMQ\n9TB34yVRDwAAAAAAAADA6Yh6mLvJaJCpqAcAAAAAAAAA4JREPczdZDTM8sqs7zEAAAAAAAAAABaW\nqIe5G4+c3wIAAAAAAAAAOB1RD3M3GQ0yXRX1AAAAAAAAAACciqiHuZvY1AMAAAAAAAAAcFqiHuZu\nvDTMVNQDAAAAAAAAAHBKoh7m7uimnllaa32PAgAAAAAAAACwkEQ9zN14NMiRljwzO9L3KAAAAAAA\nAAAAC0nUw9xNRoMkybITXAAAAAAAAAAAJyXqYe7+IuqZ9TwJAAAAAAAAAMBiEvUwd+PRMEkytakH\nAAAAAAAAAOCkRD3M3QXObwEAAAAAAAAAnJaoh7kbi3oAAAAAAAAAAE5L1MPcTdbPb63Oep4EAAAA\nAAAAAGAxiXqYu4lNPQAAAAAAAAAApyXqYe7GS6IeAAAAAAAAAIDTEfUwd+ubeqaiHgAAAAAAAACA\nkxL1MHeT0TCJTT0AAAAAAAAAAKci6mHudi3tSFUyXZn1PQoAAAAAAAAAwEIS9TB3VZXx0sCmHgAA\nAAAAAACAUxD10IvJaJDlVVEPAAAAAAAAAMDJiHroxXg0yNSmHgAAAAAAAACAkxL10IvJ0jBPPzPr\newwAAAAAAAAAgIUk6qEX49EgU+e3AAAAAAAAAABOStRDLyajQZad3wIAAAAAAAAAOClRD70Q9QAA\nAAAAAAAAnJqoh16MR8NMV2Z9jwEAAAAAAAAAsJBEPfTiApt6AAAAAAAAAABOSdRDL8ajQaaiHgAA\nAAAAAACAk+o06qmqa6vqa1V1f1XddJLPX1tVd1bVrKreeMJnP1lV963985Ndzsn8TUaDLK8eTmut\n71EAAAAAAAAAABZOZ1FPVQ2SvD/JdUmuTPKWqrryhMe+meTtST58wndfmOQXkvztJNck+YWquqir\nWZm/yWiYw0daVg4f6XsUAAAAAAAAAICF0+WmnmuS3N9a+0ZrbSXJR5O8YeMDrbUHW2tfSXJi2fFD\nST7TWvvT1tqfJflMkms7nJU5Gy8NksQJLgAAAAAAAACAk+gy6nlRkoc2vD6w9t5Z+25V3VhV+6tq\n/8GDB5/zoMzfZHQ06lkW9QAAAAAAAAAAPEuXUU/nWmsfbK3tba3t3b17d9/jsAVjUQ8AAAAAAAAA\nwCl1GfU8nOTFG15ftvZe19/lHDAZDZM4vwUAAAAAAAAAcDJdRj13JHlJVe2pqlGSNyf51Ca/++kk\nP1hVF1XVRUl+cO09zhN/cX5r1vMkAAAAAAAAAACLp7Oop7U2S/KOHI1x7knysdba3VX13qq6Pkmq\n6uqqOpDkTUl+o6ruXvvunyb5FzkaBt2R5L1r73GeOHZ+a9WmHgAAAAAAAACAEw27/OWttX1J9p3w\n3s0bfr4jR09rney7tya5tcv56M/6ph7ntwAAAAAAAAAAnq3L81twSpOloz3Z0884vwUAAAAAAAAA\ncCJRD71YP781dX4LAAAAAAAAAOBZRD30Yv381rLzWwAAAAAAAAAAzyLqoRfjJVEPAAAAAAAAAMCp\niHroxY4dlfHSINOVWd+jAAAAAAAAAAAsHFEPvZmMBjb1AAAAAAAAAACchKiH3oxHg0xFPQAAAAAA\nAAAAzyLqoTc29QAAAAAAAAAAnJyoh96MR8Msr4p6AAAAAAAAAABOJOqhN5OlQaYrs77HAAAAAAAA\nAABYOKIeeuP8FgAAAAAAAADAyYl66M14NMhU1AMAAAAAAAAA8CyiHnpjUw8AAAAAAAAAwMmJeujN\nZDTM8sqs7zEAAAAAAAAAABaOqIfejEeDTFdt6gEAAAAAAAAAOJGoh95MlgZZPdyyMjvS9ygAAAAA\nAAAAAAtF1ENvxqNBkmS6YlsPAAAAAAAAAMBGoh56MxkNkyTLq7OeJwEAAAAAAAAAWCyiHnozWdvU\ns2xTDwAAAAAAAADAcUQ99Gbi/BYAAAAAAAAAwEmJeujNsfNboh4AAAAAAAAAgOOIeujN+Nj5rVnP\nkwAAAAAAAAAALBZRD71xfgsAAAAAAAAA4OREPfRmcmxTj6gHAAAAAAAAAGAjUQ+9OXZ+a1XUAwAA\nAAAAAACwkaiH3kxGwyTJdGXW8yQAAAAAAAAAAItF1ENvxkvObwEAAAAAAAAAnIyoh94MdlR2Dndk\nKuoBAAAAAAAAADiOqIdeTUYDm3oAAAAAAAAAAE4g6qFXk9FQ1AMAAAAAAAAAcAJRD70ajwaZrs76\nHgMAAAAAAAAAYKGIeujVZDTI08/Y1AMAAAAAAAAAsJGoh16NlwaZOr8FAAAAAAAAAHAcUQ+9mowG\nWXZ+CwAAAAAAAADgOKIeejXZOcyyTT0AAAAAAAAAAMcR9dCrifNbAAAAAAAAAADPIuqhV5PRwKYe\nAAAAAAAAAIATiHro1Xg0tKkHAAAAAAAAAOAEoh56NRkNsnL4SGaHj/Q9CgAAAAAAAADAwhD10KvJ\naJAkWV61rQcAAAAAAAAAYJ2oh16N16IeJ7gAAAAAAAAAAP6CqIdeHdvUI+oBAAAAAAAAADhG1EOv\nxkvDJMnyyqznSQAAAAAAAAAAFoeoh15NnN8CAAAAAAAAAHgWUQ+9cn4LAAAAAAAAAODZRD30aizq\nAQAAAAAAAAB4FlEPvZqMhkmS6eqs50kAAAAAAAAAABaHqIderZ/fevoZm3oAAAAAAAAAANaJeujV\n+vmtqfNbAAAAAAAAAADHiHro1WTpaNSzLOoBAAAAAAAAADhG1EOvhoMdGQ13ZHl11vcoAAAAAAAA\nAAALQ9RD7yajgfNbAAAAAAAAAAAbiHro3WRp4PwWAAAAAAAAAMAGoh56N7apBwAAAAAAAADgOKIe\nejcZDbO8Mut7DAAAAAAAAACAhdFp1FNV11bV16rq/qq66SSf76yq/7T2+f+oqsvX3l+qqv9QVX9Y\nVfdU1bu6nJN+jUfObwEAAAARBxskAAAgAElEQVQAAAAAbNRZ1FNVgyTvT3JdkiuTvKWqrjzhsX+U\n5M9aa38tyb9O8i/X3n9Tkp2ttZcneWWSn1oPfjj/TEaDTFdFPQAAAAAAAAAA67rc1HNNkvtba99o\nra0k+WiSN5zwzBuS/Ie1nz+e5HVVVUlakguqaphknGQlyZ93OCs9mtjUAwAAAAAAAABwnC6jnhcl\neWjD6wNr7530mdbaLMkTSS7O0cDn6ST/K8k3k/yr1tqfnvgfqKobq2p/Ve0/ePDg2f8LmIvx0jBT\nUQ8AAAAAAAAAwDFdRj3fimuSHE5yaZI9SX6mqv7qiQ+11j7YWtvbWtu7e/fuec/IWXJ0U8+s7zEA\nAAAAAAAAABZGl1HPw0levOH1ZWvvnfSZtVNbz0/yWJK3JvmvrbXV1tqjSf57kr0dzkqPnN8CAAAA\nAAAAADhel1HPHUleUlV7qmqU5M1JPnXCM59K8pNrP78xyX9rrbUcPbn1/UlSVRckeVWSezuclR6N\nR4M8MzuSw0da36MAAAAAAAAAACyEzqKe1tosyTuSfDrJPUk+1lq7u6reW1XXrz32b5NcXFX3J/mn\nSW5ae//9SZ5XVXfnaBz071prX+lqVvo1GQ2SJNNV23oAAAAAAAAAAJJkuJmHquqnk/y7JE8m+a0k\nr0hyU2vtttN9r7W2L8m+E967ecPPh5K86STfe+pk73N+Go+O/m+4/Mwsz9u5qf8lAQAAAAAAAADO\na5vd1PMPW2t/nuQHk1yU5CeS3NLZVGwrF6xt6llesakHAAAAAAAAACDZfNRTa/9+fZL/2Fq7e8N7\n8C2ZiHoAAAAAAAAAAI6z2ajnS1V1W45GPZ+uqguTHOluLLaT9fNb09VZz5MAAAAAAAAAACyG4Saf\n+0dJrkryjdbaclW9MMk/6G4sthObegAAAAAAAAAAjrfZTT2vTvK11trjVfW2JO9O8kR3Y7GdjJdE\nPQAAAAAAAAAAG2026vm1JMtV9beS/EySB5L8dmdTsa2sb+qZinoAAAAAAAAAAJJsPuqZtdZakjck\n+dXW2vuTXNjdWGwnk9HRK3A29QAAAAAAAAAAHDXc5HNPVtW7kvxEku+pqh1Jlrobi+1kPFo/vzXr\neRIAAAAAAAAAgMWw2U09P57kmST/sLX2x0kuS/JLnU3FtuL8FgAAAAAAAADA8TYV9ayFPP9XkudX\n1d9Ncqi19tudTsa2sTTYkaVBZXlV1AMAAAAAAAAAkGwy6qmqG5J8McmbktyQ5H9U1Ru7HIztZbw0\nsKkHAAAAAAAAAGDNcJPP/VySq1trjyZJVe1O8tkkH+9qMLaXyWiY5ZVZ32MAAAAAAAAAACyETW3q\nSbJjPehZ89gWvgtnNBkNsmxTDwAAAAAAAABAks1v6vmvVfXpJB9Ze/3jSfZ1MxLb0Xjk/BYAAAAA\nAAAAwLpNRT2ttXdW1Y8lec3aWx9srX2yu7HYbiajQZ52fgsAAAAAAAAAIMnmN/WktfaJJJ/ocBa2\nsclomMeXV/oeAwAAAAAAAABgIZw26qmqJ5O0k32UpLXWvq2Tqdh2JqNBHnnc+S0AAAAAAAAAgOQM\nUU9r7cJ5DcL2Nh4Nsrwi6gEAAAAAAAAASJIdfQ8AydFNPdNVUQ8AAAAAAAAAQCLqYUFMRsMsr8z6\nHgMAAAAAAAAAYCGIelgI46VBDq0eyZEjre9RAAAAAAAAAAB6J+phIUxGgyRxguv/Z+/eYyTLDvsw\n/05VdXVXzWvfXIq7JJfa5TAUGVnWglT0iiRSNncDhxZEwZQdiDGIMH4QQRAkDhMggqIYQSTAFmyI\nSkCJAhQpBiUIMLSAliISU7Ilh6a4skIJVLTU8iHvkiKzL+7OTPd0V3Xd/HGru6urqx8z0zV1Z+v7\nsBf33HPOvffUo1+1vzkHAAAAAAAAACBCPTTETqhnfUuoBwAAAAAAAABAqIdG6HU7SZINoR4AAAAA\nAAAAAKEemmF3pp7BcMEjAQAAAAAAAABYPKEeGqFn+S0AAAAAAAAAgF1CPTRCf6UO9Vh+CwAAAAAA\nAABAqIeG6Hc7SczUAwAAAAAAAACQCPXQEHvLbw0XPBIAAAAAAAAAgMUT6qER+l3LbwEAAAAAAAAA\n7BDqoRHOjJffuiLUAwAAAAAAAAAg1EMz9HZn6rH8FgAAAAAAAACAUA+N0O200mmVrJupBwAAAAAA\nAABAqIfm6HXbQj0AAAAAAAAAABHqoUH63XY2hHoAAAAAAAAAAIR6aI5+t5P1gVAPAAAAAAAAAIBQ\nD43RW2lnY2u46GEAAAAAAAAAACycUA+N0e+2s275LQAAAAAAAAAAoR6aoyfUAwAAAAAAAACQRKiH\nBul329kQ6gEAAAAAAAAAEOqhOfrdTtYHw0UPAwAAAAAAAABg4YR6aIyemXoAAAAAAAAAAJII9dAg\n/ZV21oV6AAAAAAAAAACEemiOfredjcF2qqpa9FAAAAAAAAAAABZKqIfG6HU7qark6mC06KEAAAAA\nAAAAACyUUA+NcWa1nSS5sjVc8EgAAAAAAAAAABZLqIfG6K3UoZ6Nre0FjwQAAAAAAAAAYLGEemiM\nfreTJFkX6gEAAAAAAAAAlpxQD43R79Yz9axbfgsAAAAAAAAAWHJCPTRGr2v5LQAAAAAAAACARKiH\nBtmbqUeoBwAAAAAAAABYbkI9NMZuqGcg1AMAAAAAAAAALDehHhqj1+0kSTa2hgseCQAAAAAAAADA\nYgn10Bj9FctvAQAAAAAAAAAkQj00SK8r1AMAAAAAAAAAkAj10CCrnVZaJdkQ6gEAAAAAAAAAltxc\nQz2llHeVUp4spTxVSvnQjPbVUsqvjts/XUp5/UTbv19K+VQp5XOllD8upazNc6wsXikl/W7HTD0A\nAAAAAAAAwNKbW6inlNJO8uEkjyR5c5IfLaW8earb+5O8WFXVg0l+JslPjc/tJPmVJH+nqqpvSfJ9\nSQbzGivN0eu2szEYLnoYAAAAAAAAAAALNc+Zet6W5Kmqqr5YVdVWko8lefdUn3cn+aVx+deTvKOU\nUpL8lSR/VFXVZ5Okqqrnq6oyfcsS6HfbZuoBAAAAAAAAAJbePEM9r0ny9MTxM+O6mX2qqhomeSnJ\nnUnemKQqpXyilPJvSyn/YNYNSikfKKU8UUp54tlnnz31B8DN11sR6gEAAAAAAAAAmGeo50Z0knx3\nkr813v9QKeUd052qqvpIVVUPV1X18N13332zx8gc9LvtbAj1AAAAAAAAAABLbp6hnq8kuX/i+L5x\n3cw+pZROkgtJnk89q8+/qqrquaqq1pM8nuQvz3GsNMSZ1U6ubA0XPQwAAAAAAAAAgIWaZ6jnM0ke\nKqU8UErpJnlvksem+jyW5H3j8nuSfLKqqirJJ5K8tZTSH4d9/sMkfzLHsdIQvRUz9QAAAAAAAAAA\ndOZ14aqqhqWUD6YO6LST/GJVVZ8rpfxkkieqqnosyUeT/HIp5akkL6QO/qSqqhdLKf84dTCoSvJ4\nVVW/Oa+x0hz9bjvrQj0AAAAAAAAAwJKbW6gnSaqqejz10lmTdT8+Ub6a5EcOOfdXkvzKPMdH8/S6\nHaEeAAAAAAAAAGDpzXP5Lbhm/W47G1vDRQ8DAAAAAAAAAGChhHpolH63nfXBdqqqWvRQAAAAAAAA\nAAAWRqiHRul126mqZHM4WvRQAAAAAAAAAAAWRqiHRumvtJMk61vbCx4JAAAAAAAAAMDiCPXQKP1u\nJ0myvjVc8EgAAAAAAAAAABZHqIdG6XXrmXo2zNQDAAAAAAAAACwxoR4apd+1/BYAAAAAAAAAgFAP\njdIT6gEAAAAAAAAAEOqhWfrdTpJkYzBc8EgAAAAAAAAAABZHqIdGsfwWAAAAAAAAAIBQDw3TWxHq\nAQAAAAAAAAAQ6qFRzqyOl98S6gEAAAAAAAAAlphQD42ys/zWla3hgkcCAAAAAAAAALA4Qj00ymqn\nlVLM1AMAAAAAAAAALDehHhqllJL+SjvrQj0AAAAAAAAAwBIT6qFxet2OUA8AAAAAAAAAsNSEemic\nfredja3hoocBAAAAAAAAALAwQj00Tr9r+S0AAAAAAAAAYLkJ9dA4vW47GwOhHgAAAAAAAABgeQn1\n0Dhm6gEAAAAAAAAAlp1QD43TW+kI9QAAAAAAAAAAS02oh8bpd9vZ2BouehgAAAAAAAAAAAsj1EPj\nWH4LAAAAAAAAAFh2Qj00Tq/bzoZQDwAAAAAAAACwxIR6aJx+t531wXaqqlr0UAAAAAAAAAAAFkKo\nh8bpdzvZHlXZ2h4teigAAAAAAAAAAAsh1EPj9LvtJLEEFwAAAAAAAACwtIR6aJydUM8VoR4AAAAA\nAAAAYEkJ9dA4vW4nSbKxNVzwSAAAAAAAAAAAFkOoh8bpr9Qz9aybqQcAAAAAAAAAWFJCPTTOzvJb\nQj0AAAAAAAAAwLIS6qFxeuNQz4ZQDwAAAAAAAACwpIR6aJx+t5PETD0AAAAAAAAAwPIS6qFx9pbf\nGi54JAAAAAAAAAAAiyHUQ+PsLr81MFMPAAAAAAAAALCchHponL2ZeoR6AAAAAAAAAIDlJNRD46x1\nhHoAAAAAAAAAgOUm1EPjtFolvZV2NraGix4KAAAAAAAAAMBCCPXQSP1u20w9AAAAAAAAAMDSEuqh\nkXrddjaEegAAAAAAAACAJSXUQyOZqQcAAAAAAAAAWGZCPTRSv9vJ+kCoBwAAAAAAAABYTkI9NFK/\n287G1nDRwwAAAAAAAAAAWAihHhqp323nyqaZegAAAAAAAACA5STUQyP1up1sWH4LAAAAAAAAAFhS\nQj00Un+lnXXLbwEAAAAAAAAAS0qoh0bqddtZ3zJTDwAAAAAAAACwnIR6aKR+t50NoR4AAAAAAAAA\nYEkJ9dBI/W47w1GVreFo0UMBAAAAAAAAALjphHpopF63kyRm6wEAAAAAAAAAlpJQD43U77aTJOuD\n4YJHAgAAAAAAAABw8wn10Ei7oR4z9QAAAAAAAAAAS0ioh0bqrdShHstvAQAAAAAAAADLSKiHRup3\nO0nM1AMAAAAAAAAALCehHhqpt7v81nDBIwEAAAAAAAAAuPnmGuoppbyrlPJkKeWpUsqHZrSvllJ+\nddz+6VLK66faX1tKuVxK+a/nOU6ap9+1/BYAAAAAAAAAsLzmFuoppbSTfDjJI0nenORHSylvnur2\n/iQvVlX1YJKfSfJTU+3/OMnH5zVGmuuM5bcAAAAAAAAAgCU2z5l63pbkqaqqvlhV1VaSjyV591Sf\ndyf5pXH515O8o5RSkqSU8teTfCnJ5+Y4Rhpqd/mtgVAPAAAAAAAAALB85hnqeU2SpyeOnxnXzexT\nVdUwyUtJ7iylnE3y3yb5H4+6QSnlA6WUJ0opTzz77LOnNnAWb2/5reGCRwIAAAAAAAAAcPPNM9Rz\nI34iyc9UVXX5qE5VVX2kqqqHq6p6+O677745I+Om6K3UoZ4rm2bqAQAAAAAAAACWT2eO1/5Kkvsn\nju8b183q80wppZPkQpLnk7w9yXtKKT+d5LYko1LK1aqqfnaO46VBWq2StZVWNiy/BQAAAAAAAAAs\noXmGej6T5KFSygOpwzvvTfI3p/o8luR9ST6V5D1JPllVVZXke3Y6lFJ+IsllgZ7l0+92sm75LQAA\nAAAAAABgCc0t1FNV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQOvgDSeoluNa3\nzNQDAAAAAAAAACyfec7Uk6qqHk/y+FTdj0+Uryb5kWOu8RNzGRyN1++2syHUAwAAAAAAAAAsodai\nBwCH6XfN1AMAAAAAAAAALCehHhqrZ6YeAAAAAAAAAGBJCfXQWP1uJ+uD4aKHAQAAAAAAAABw0wn1\n0Fg9y28BAAAAAAAAAEtKqIfG6q9YfgsAAAAAAAAAWE5CPTRW30w9AAAAAAAAAMCSEuqhsXrdjpl6\nAAAAAAAAAIClJNRDY53ptrO1Pcpwe7TooQAAAAAAAAAA3FRCPTRWr9tOkqwPzNYDAAAAAAAAACwX\noR4aq9/tJIkluAAAAAAAAACApSPUQ2P1xzP1XNkcLngkAAAAAAAAAAA3l1APjbW7/JaZegAAAAAA\nAACAJSPUQ2PtzNSzMRDqAQAAAAAAAACWi1APjdU3Uw8AAAAAAAAAsKSEemis3konSbKxNVzwSAAA\nAAAAAAAAbi6hHhrLTD0AAAAAAAAAwLIS6qGxhHoAAAAAAAAAgGUl1ENj9cahng2hHgAAAAAAAABg\nyQj10Fj9bieJmXoAAAAAAAAAgOUj1ENjtVsl3U4r64PhoocCAAAAAAAAAHBTCfXQaP1u2/JbAAAA\nAAAAAMDSEeqh0forbctvAQAAAAAAAABLR6iHRuuvdszUAwAAAAAAAAAsHaEeGq3fbWd9a7joYQAA\nAAAAAAAA3FRCPTRaz/JbAAAAAAAAAMASEuqh0frddjYGQj0AAAAAAAAAwHIR6qHR+t1OrmxafgsA\nAAAAAAAAWC5CPTRar9vOhuW3AAAAAAAAAIAlI9RDo/W77axbfgsAAAAAAAAAWDJCPTRar9vOupl6\nAAAAAAAAAIAlI9RDo/VXOtkajrI9qhY9FAAAAAAAAACAm0aoh0brd9tJkvWt4YJHAgAAAAAAAABw\n8wj10Gi9cahnwxJcAAAAAAAAAMASEeqh0fZm6hHqAQAAAAAAAACWh1APjSbUAwAAAAAAAAAsI6Ee\nGq3X7SRJNgbDBY8EAAAAAAAAAODmEeqh0czUAwAAAAAAAAAsI6EeGk2oBwAAAAAAAABYRkI9NFp/\nZ/ktoR4AAAAAAAAAYIkI9dBoZuoBAAAAAAAAAJaRUA+N1tsN9QwXPBIAAAAAAAAAgJtHqIdG66+Y\nqQcAAAAAAAAAWD5CPTRap91Kt90S6gEAAAAAAAAAlopQD43X67azYfktAAAAAAAAAGCJCPXQeP1u\n20w9AAAAAAAAAMBSEeqh8XrddtYHQj0AAAAAAAAAwPIQ6qHx+t12NszUAwAAAAAAAAAsEaEeGq+/\n0sn61nDRwwAAAAAAAAAAuGmEemi8npl6AAAAAAAAAIAlI9RD4/W77awL9QAAAAAAAAAAS0Soh8br\nCfUAAAAAAAAAAEtGqIfG63fb2RgI9QAAAAAAAAAAy0Ooh8Y70+1kfWu46GEAAAAAAAAAANw0Qj3M\nR1Ulv/uPks9+7IYv1eu2c3UwymhUncLAAAAAAAAAAACaT6iH+Sgl+dPfTH7/52/4Uv1uO0kswQUA\nAAAAAAAALA2hHubn4iPJV55ILn39hi7T63aSJOtbQj0AAAAAAAAAwHKYa6inlPKuUsqTpZSnSikf\nmtG+Wkr51XH7p0sprx/X/2Ap5Q9KKX883v/APMfJnFx8tN5//rdu6DL9lfFMPUI9AAAAAAAAAMCS\nmFuop5TSTvLhJI8keXOSHy2lvHmq2/uTvFhV1YNJfibJT43rn0vy16qqemuS9yX55XmNkzm6583J\nba9Nnnz8hi6zs/zWla3haYwKAAAAAAAAAKDx5jlTz9uSPFVV1RerqtpK8rEk757q8+4kvzQu/3qS\nd5RSSlVVf1hV1VfH9Z9L0iulrM5xrMxDKfVsPV/8nWTrynVfpjcO9Vh+CwAAAAAAAABYFvMM9bwm\nydMTx8+M62b2qapqmOSlJHdO9fnhJP+2qqrN6RuUUj5QSnmilPLEs88+e2oD5xRdfDQZXq2DPdep\n3+0ksfwWAAAAAAAAALA85hnquWGllG9JvSTXfz6rvaqqj1RV9XBVVQ/ffffdN3dwnMzrvjNZvXBD\nS3D1d2fqsfwWAAAAAAAAALAc5hnq+UqS+yeO7xvXzexTSukkuZDk+fHxfUn+eZIfq6rqC3McJ/PU\nXkke+sHkyd9KRtc3087O8lsbAzP1AAAAAAAAAADLYZ6hns8keaiU8kAppZvkvUkem+rzWJL3jcvv\nSfLJqqqqUsptSX4zyYeqqvrXcxwjN8PFR5L155Kv/MF1nb43U49QDwAAAAAAAACwHOYW6qmqapjk\ng0k+keT/TfJrVVV9rpTyk6WU/3jc7aNJ7iylPJXkv0ryoXH9B5M8mOTHSyn/z3i7Z15jZc4efGfS\n6lz3Elz9lU4SoR4AAAAAAAAAYHl05nnxqqoeT/L4VN2PT5SvJvmRGef9wyT/cJ5j4ybq3Za87ruS\nP308eedPXPvpO8tvbQ1Pd1wAAAAAAAAAAA01z+W3YM/FR5Pnnkye/8I1n9rttNJpFTP1AAAAAAAA\nAABLQ6iHm+PiI/X+yY9f1+m9bluoBwAAAAAAAABYGkI93By3vy551VuuO9TT77azIdQDAAAAAAAA\nACwJoR5unouPJP/uU8n6C9d86pluJ+sDoR4AAAAAAAAAYDkI9XDzXHwkqbaTP/s/r/nUXredja3h\nHAYFAAAAAAAAANA8Qj3cPK/+tuTsvcmTj1/zqf1uO+uW3wIAAAAAAAAAloRQDzdPq5VcfFfy1L9I\nhpvXdGqv2xHqAQAAAAAAAACWhlAPN9fFR5OtS8mXf/eaTuuvtLMh1AMAAAAAAAAALAmhHm6uB743\nWeknT378mk7rd9u5sjWc06AAAAAAAAAAAJpFqIeba6WXfPMP1KGeqjrxab2umXoAAAAAAAAAgOUh\n1MPNd/HR5OWvJF/7oxOf0u+2sy7UAwAAAAAAAAAsCaEebr43/tUk5ZqW4Op1O9kYbGc0OvnsPgAA\nAAAAAAAAtyqhHm6+M3cl9789efLxE5/S77aTJFeHZusBAAAAAAAAAF75hHpYjIuPJH/x2eSlr5yo\n+06oxxJcAAAAAAAAAMAyEOphMS4+Wu9POFtPb6UO9WwI9QAAAAAAAAAAS0Coh8W466Hkjm9Onvz4\nibr3u50kZuoBAAAAAAAAAJaDUA+LUUrypkeTL/2r5OrLx3bfW35rOO+RAQAAAAAAAAAsnFAPi3Px\n0WQ0SL7wyWO79rqW3wIAAAAAAAAAlodQD4tz39uS3h0nWoLrjOW3AAAAAAAAAIAlItTD4rQ7yRv/\navJnn0i2j15Wa2emnvWBUA8AAAAAAAAA8Mon1MNiXXwk2XgxefrTR3br7y6/dXT4BwAAAAAAAADg\nlUCoh8X65h9I2t3kyceP7LYT6rH8FgAAAAAAAACwDIR6WKzVc8kD31uHeqrq0G49oR4AAAAAAAAA\nYIkI9bB4Fx9JXvhi8tznD+3SbbfSbpWsW34LAAAAAAAAAFgCQj0s3hsfqfdHLMFVSkl/pW2mHgAA\nAAAAAABgKQj1sHgXXpO8+i8lT378yG69bjsbQj0AAAAAAAAAwBIQ6qEZLj6aPP37yeVnD+3S75qp\nBwAAAAAAAABYDkI9NMPFR5JUyZ994tAuvW5HqAcAAAAAAAAAWApCPTTDvW9Nzt935BJc/W47G4Ph\nTRwUAAAAAAAAAMBiCPXQDKXUs/V84ZPJYGNmF8tvAQAAAAAAAADLorPoAcCui48kn/n55Iv/Mrn4\nrgPNvZV2nr20uYCBAQAAAAAAAMAcbQ+TjReS4dVke5Bsb423Gyzf/kDyHX9n0Y+O6yTUQ3O8/nuS\n7rnkycdnhnrM1AMAAAAAAADALWV7mFx5Nrn0F8nlr9f7S1/b2y6P91eeTarR6dyz1Una3aS9krzu\nu4V6bmFCPTRHp5s89M7k87+VjEZJa//qcL1uR6gHAAAAAAAAgPmqqjpgU1VJqon9VN3mpb2QzuWv\nXUNYpyRn7k7O3Vtvr/7W5Oy9ydl7kpXeXiCn3b32cmvlwP9r59Yl1EOzXHw0+dw/T776h8l9376v\n6Uy3nY2t4YIGBgAAAAAAAPAKV1X18k9XX042Xx7vX6rDK/vqJtquvpxsXalDJZ218bZa71emjo9t\n7+2VUyWD9WSwUe+3JsqDjWRwZbyfbF+fqLsy1X9jL5RTjbI/rDNRd0MOCeucuzc59+rk3Kvq/Zl7\nkra4BsfzLqFZHnxnUtr1ElxToZ5+t531wXaqqkopZUEDBAAAAAAAALhOVZVsb9XBmeF4v72VDDcn\nyjPaRsNxIGW7XvVkt7x9gvrtcWhlp7ydDK6OgzkvHQzqjAbHP47uuWTtfLJ6vt6vnU+2B3W4Z/35\n8WO4Wo99MC5vb87hCS1J90w9u81KL1nZKffrcM1OeaVfB4Varfqc0kpKGZcn9qV1sG63bUZd96yw\nDnPl3USz9O9IXvedyZMfT97xP+xr6nU79Qxmw1HWVtoLGiAAAAAAAACQ7UEdCLn6UnL1G/V+4xsT\ndeOwyE64ZHfpokwdV0ccV7Pbk+ybUeVU6g7pc63HSR3AGW7ubdtT5ZuhtOrJFEorabUnyuP6ztpe\nKOfsq5I7H9of0lk9n6xdmDoe71fP1de8VqPROKS0sRdiGkyEf3aDQOPjZBzIGQdzuv39xyv9elYf\nE0LwCibUQ/NcfCT5xH+fvPjl5PbX71b3u/UPhvWtbaEeAAAAAAAArl9V1TOKbF1ONi8nW5fG+/Hx\n4Erdr9WpAxCt9l4wotWeqG/t71PGbTvBiVZnr74ajZcBml4iaNayQUf1G5eHm/WMIJPLFXVW68DD\nrKWOVqb6TZ63swTSaHt/SGdymw7s7DxHh2l1xuGPlakZUFpTs560DmmfPM7BGVSSqTDHadZNzs4y\n2a0c0X/iuLSnnuvVpL2adLp1Xbs7o2116nit7r9zXquzF9RpjQM6BwI7O+WSRgZdWq2kNX6/ASci\n1EPz7IR6nvx48h1/d7e6Nw71/OnXXs53fvNdixodAAAAAABwWkajOjyw/kKy8WL9P667Z+ulVLpn\n6mVUWq1Fj7IOgAw369klUvaHO3b/J/scxrk9rGe12N6qZ0U5UXlzvGzPxv6ZL46aDWNm++beNUbb\nSXul3lqT+87EcWfcp7tXPtBnZe8607OG7HsujwostGb0bdfLBR0I51yaHdjZGm/V6PRfsxtVWhPL\nB03NTnLm7uS2qRlKtgezX9fBRv11ddjrfbLB1DO17Gy925K7Hhwf3za1n+q3dqEeYxODJQC3EKEe\nmueONyR3vyl58vF9oZHv0igAAB5CSURBVJ6HX3d7zq128jd//tP5gTfdk7///Q/m2193+wIHCgAA\nAAAA7JoM6Kw/v7dtTB6/uL9+48XjgxUr/XHI5+z+wM9u3azy+LjVnpjpZHp/TN2+mVPWs29pncPs\nm62lvRf2OVA/EVhJpsI5EyGdUw2dlMNncOms1W39O6ZmFxn3Ka16OaHtQR2e2R5MHQ/31w8360DN\nrLadc0aj8VJK2+PlmcZLNJ3GY26Pw2GrZ5PuuXrfvyO57bX763b6rJ6f6H+2nl1mpV9fq9quxz0a\nTZTH4x2N6uOdx7BbnlU/Ggd2DltKqFeHedor8w/C7IbUpsJbw6tJyl4op3uuGaE6gCUm1EMzXXw0\n+df/pP5lvlcHd95w99n83od+IL/8qS/no7/3pfzw//p/5zvecEc++P0P5bsevDNF0hcAAAAAgFtJ\nVdVbxvtqtL+8G3YYBx12gwST+2pG3bj+QP/h4QGL40Ias9q21k8e0GmvJv07x9vtyb1vqcu9O/bq\n1y5MzLZyebw00pWp8vj46jeSl7+yv3176+TP/eRsKPuCFePZUHbK+/a9ermiVBOvy/ZE2GP6+T6k\nfvq1ScbL7YxnuWl3jygf1z6eBWfWckytzq0xa8rO+38y6LPvOZ31vI72lnrqnq1nfOJwpdTLH1kC\nCaDxSlWdIFV8C3j44YerJ554YtHD4LQ8/Znko+9MfvijyVvfc6B5fWuYf/bpf5ef/90v5usvb+Zb\n778tH/z+B/OON92TVusW+IUUAAAAAIDFGm7NCI5MHW9enhEqme43rhvtBHJGhwd1ptsbrxyxhFKn\nDrv0J0I5kwGd/u0T5TtvzjI8w61kMPG6bF6uQx8Hwjn9mzMbCgDADKWUP6iq6uET9RXqoZFGo+Qf\nvTF54HuT9/ziod02h9v59T94Jv/bv/xCnn5hI2+691z+3vc/mP/ora9OW7gHAAAAAODWMholmy/X\nM77sbFe/US9/NNyst+3NvfLOcjHTddsTbcOtcZ+tvePBej0jzEkdtfzTzjI9O0sqpeyFRUprXB7X\n7WsvU+2tpGR/3wNLNpWjl3GabCutGcs+dWaHc3aPOxP1K3tLQwEAcGqEenhl+I0PJn/yWPLfPHXs\nNInD7VEe++xX83O/84U89f9dzuvv7Ofvft8354e+7b50O9b6BAAAAAC4qbaHdRhnMpwzc/vGwQDP\nYcs3TWutjJcXWq2XduqszjheO6TPWrI6GdCZDuucHbef2QvsAADAKRDq4ZXhTx9PPvajyY/9RvKG\n7zvRKaNRlU987mv52d9+Kp/76sv5pgtr+cD3viHvfdtrs7bijy4AAAAA4BVoNBovFfVycvXlZPNS\nXT5wfGl8PNG2dTkZbWff8lDZ2e2Uq2srDzfr6x9l7ULSu/1k29qFOlgzHc4RtAEA4BYk1MMrw9Z6\n8tMPJH/5fcmjP31Np1ZVld/5/LP58CefyhN//mLuOtvN+7/7DflPvuO1Obe2MqcBAwAAAACcgq0r\nyaWvJZe/nlz6i+TS15PLX6v3688dDOpsXspuoOZQJVk9n6ydr5eL2il3z9ZLLiV7y0BNlneWkUrZ\nbTpYP1Vud5PeHTMCOrfthXQEcgAAWFJCPbxy/LP3Jl//XPJf/tHEH4bX5tNffD4/+9tP5Xf/7Lmc\nX+vkP/3O1+dvf9cDuf3M0Ut6AQAAAACcmqqqwzcHgjpfmwjwjMtblw6e3+4mZ+9Nztw5Ec45fzCo\ns3pudlv37HV/xgoAAJyeawn1dOY9GLghb3o0+fzH62DPvW+5rku8/Q135u1vuDOfffob+fBvP5V/\n+smn8gu/96X8rbe/Nv/Z97wh95xfO+VBAwAAAACvKKNRMlivZ9DZujzerkwczyhvXq7DOZef3Qvv\nDNYPXrvTS869qg7svOpbkgffkZx9VXLu3no7O973bhfKAQCAJSPUQ7O98V1JSvLkx6871LPjW++/\nLR/5sYfz5Ncu5ed+56l89Pe+lF/61J/n7Q/ckftu7+f+O3q5//Z+7ru9l/vv6OfOM90UfyQDAAAA\nwCvLcKsO2bz8F+MZc76WXPpqvb/y3OyAzuDKya9f2snq2XpmnO6Z5Mw9yTd9214459y9+0M7q+eF\ndQAAgJksv0Xz/cI7k9F28oHfPtXLfvm5K/no730pn33mG3nmxY28cGVrX3tvpb0b8Lnv9jrwc/8d\nvToAdHs/F/orpzoeAAAAAOAGjEbJ+vN7AZ2Xv7o/sLMT4ll/7uC57W4dsOnftT+Qc2B/SHnynHZX\nSAcAADiU5bd4Zbn4SPIvfrL+o/v8q0/tsq+/60z+p7++N/vP5c1hnnlxPc+8sJGnX1zPMy9u5OkX\n1vP0ixv5zJdeyKXN4b7zz611xgGf3u5MP/eNZ/q582w3d/S76bRbpzZeAAAAAFgKw616lpyrLyWb\nl6a2l/fKV19KLn99YradryWjwdTFSnL2njqwc+E1yX0PJ+deXX/OeG5i698hiAMAADSOUA/Nd/HR\nOtTz+d9KHv7bc7vN2dVO3nTv+bzp3vMz219aH4zDPut5+oWNev/iRr78/JX87p89l43B9oFzbuuv\n5I4z3dx1ZjV3nOnmjrPd3HWmOy6v1uWz42MhIAAAAABudVVVB242Xjy47QvpvHxI+VIyvHr8fUo7\nWTtfL211/tXJ6797L6AzGdg5e0/SNuM2AABwaxLqofnuflNy++uTJz8+11DPcS70V3KhfyFvec2F\nA21VVeX5K1t55sWNfOXFjbxwZTPPXd7KC1fq7bnLm/nCs5fzmS9v5YX1rRy26t1hIaAL/W7OrXVy\nfm0l53vj/dpKzq11cm6tIwwEAAAAwOkabdchnAPhnG/MDuxMbtXBf/y2q9VJVs8nq+fq/dr5Onxz\n1xvHdef22nb7TdaNyys9M+sAAACveEI9NF8p9Ww9n/losnm5Xp+6YUopuevsau46u5q/dP9tR/bd\nHlX5xvpO2Gcn+HN9IaAd/W57N+RzvreyGwA67Pj8WidnVjs50x3vV9tZ7bRP8RkBAAAAYKG2B8nV\nl5Or36hnwrn60oxtRv1O382Xj77+6oWkd1vSu73eX3jNuHzEtnYh6awJ4wAAAJyQUA+3houPJP/m\n55Iv/nby7/21RY/mhrRbJXeeXc2dZ1fz0KuO7789qnL56jAvXx3U28Ywl64O8vLV8X73eJBL434v\nXNnKl5+7sns82D4mFZRkpV3S73ZydhzymSzvhX86OdNt58zqTlsn/dV2zq520ltpp9dtp7fSTr/b\nztpKO6udVooPaQAAAIBlNNxKBleSwUaytV6Xd/aDjWR7qw7ebA+S0WCqPKzbd+pHw73+B8qD+nh4\ndX9IZ3DlmAGWOmSzdqGeLWfttuSOB+rj1fP1/qhwTttHywAAAPPmLy9uDa/9D+oPFp78+C0f6rlW\n7VYZL/11fWt/V1WVzeEoL2/UQaCd8M+VzYltazuXN4dZ3xzm8ub2uK5ue/bSZt22NcyVze1sbY9O\nfO9SUod9VuqQz07op7fSzlq3nd5KazcMtLay19brtrO60s5qu5Vup95W2jv7ktV9x610d/q1W1nZ\n2beLQBEAAABw0PagDtUMr+7th1eTwdVkuDG132lbHwdy1veXt64c0nalDtzcqNZK0u7WAZrjyp21\n5K5XTQR1bhuHdS7s33YCO92zScuS7gAAAE0211BPKeVdSf5JknaSX6iq6n+Zal9N8r8n+fYkzyf5\nG1VVfXnc9t8leX+S7ST/RVVVn5jnWGm49kry0F+pQz1/+H8kndV63ezOatLp1R9arKzV+51t57i1\n3MtKlVKyNg7V3HP+xq+3NRxNhH7qMNCVzWE2Btu5OtjOxtZ2Ngb1dnWivLE1ysZguNv+0sYgX39p\nf9/1wXa2R8fPKnRS3YkgULfTSqfVSqdd0m6VdFol7VZrvC+7+3ZrRnu7TPXbO69VStqtpNUqaZe6\nrpSd8qz6Oqi1U9+avEYpE1v92k3uW6WkzDrO+LhV75P97a1xuGnyuN7v9d29V3busb+uVZLsnJu6\nrd7X7Rlfb7p+J1c1Oc59fQSvAAAAXjmqajyDzNbE7DGbe+UD22DcvrU348yBWWqGE7PVzJjN5kDd\nePaao0I61fZ1PsCSdM8kK/2k209WztSfT3X7Se+OcV1/3KdXt++r64/7j9s7a0mrU3/uNSuk02pb\npgoAAGDJzS3UU0ppJ/lwkh9M8kySz5RSHquq6k8mur0/yYtVVT1YSnlvkp9K8jdKKW9O8t4k35Lk\nm5L8X6WUN1bVdf/FzSvBW344+eNfS37j713bea3OOPgzHQQaH7dX6j6tlfrDkt0PUzr7t/ZO+0Rb\nu3PIuSsTH8Ks7O1ntU2277S1u3vXbNiHN/XMOd3cfqY7l+sPtke7IZ+t7VG2hqMMtqtsDUcTx6Pd\n48H2KJsTdXtt1f7j4SjDUZXt0c6+mtqPMhyfs1O/vds+mtG/ynB7lFFVL5G2XVUZjaqMqiqnmEta\nGnXoZ6e8F/pJ9kJDZV/fsu+8nXDQOKe0/1q719nfb+9La7rPwesnBwNIO+Gn3THuG/P+cyZudWjb\nYdfKRP8DfY+5/+RFDt7n4OM6bCw5cM7EuKbvfYLHcfi1ju+Twx7rEWOb2XZEv+nHOzmmk4593/mH\n3GvW+UeN7bDxH7zCjOd9uveB9iOeqwPnzv65dNQ1jxrP/sdVDu138GU6+jHPOOW6xzjra2nWeQfe\nS4eMa9Z1Dut7XPjxWl7La7nvrGsd1fdgvxnnnvDex73nTnLOdKejhn0tj/+wc457r8283glem73r\nHfJ1d+Q5xxxfx+t71PvxsJajrnktz/FJ7nX4eSd7rLPfo9f/Xj78Ptf+4K71/TGPr/UTPrXX/N66\nnvf+rGse/3V47d8fr3VMR99x+jqHnXN9XxeHtR/7c+Gk39dP+Ayd9Gf+Ua/HSX/3mNX3sHHsP+f4\nnyvHtR/1O8uB56BKHSAZbadkO6Ua1eVqO6m2U0ajccBk3KcapYy2k9Gw3lfDlGpYt42G++tHw71r\nbQ/GdTvn1m0Z7Zy/UzfY7ZPtwe41U42PJ6+1PW6bOHf3eDekM0jZ3gvtlNHg6Cf0BlStWZ+l7Hwm\nM6O+ezbp35VqHJ4pK72kXX8WVHXWUlbW9oI1O+0ra/VnRjv73c+SJvo27HMaAAAAXtnmOVPP25I8\nVVXVF5OklPKxJO9OMhnqeXeSnxiXfz3Jz5b6k5F3J/lYVVWbSb5USnlqfL1PzXG8NN3FdyX/4EvJ\n5qWpaZGv1v+qa7hR7wcb+4/39Zs+72qyeXnvg6mJD6x2t51/4TXa3vcB1k2zG+5pTWyl3qdM1U+0\nlYm2A/1Kdj923FfeuWmZ+JBqst9RbVPlffup847ov1JKVpKcn/nx7Iy0TDUrQXPSfkla4+0U7dyp\nqpIqVcb/1fXjump3SNXu0KpxYfc4k+3723Zrqp2rZfc+u+0715s4oZo8d1/fpNp9zquJ9nJwPBOv\nzfTTWk3cZOYrMz3+6Z47z0n23o71OXvLvu3efeLxlYnnef94Jh7H+Mz6tdgpTzyWUsbXKBPP08R7\n9bAxTwynTPeYfn4OewGOuX6VcvBaR54/cd5R7dX0Yyv7+hybTzvita7rZw96p7bMOrM6UDh8RMcM\n8PBxHXxuJlsPtO17i5bdXvu7zL7e7Pf8yRz2betAv+ts299n8uv6ZDc+qlepDr6bZ30lzTz3kK+v\naxnDrNfj4Per8f3KXuOsMe77n3QzvlIOfycdHEs14w7H1Z38fzOfxOHP/cyvx1MewUm/Bg7/+myG\no56rg31P95qnfb0bdezPmWtsP6pvE0w/rzODMyfoM8vsn3ozvped8Hq3iiNDLw18tNfy3em0x3/8\ne+vg/Y47Z9YYZ9cdP57D6qbrD/sZemh92fvtfHJfdvd7Xyll4re8nbad602eM91nf/lg3eQ4Zt27\nZJT2eGulmiiP96U57+XtqmSYdoZpZzvtDCb3VSuDdKba6rrtqrV73jBrGaadQTrZqjr1PlP73fqV\nDNLJIO1sVZPHdd+dfjt9BulkWLV3x7FTv3Pv0/296DCb4222mxUKrfsf2XhNTScNmZ441Lnb/9pD\nd4c1nvh5vEljPPy0I653fS/ZXELQJ733/uud/tfYyf9RwAn7zeH7wK3wPJ7Uie88hyGe9iVvhefx\nVsh4zuNr5sT3vgWen0W6FWawP/2v61O+4C1iGR/3Ir/3LFLTX+u3vOZC/ucfeuuih8F1mmeo5zVJ\nnp44fibJ2w/rU1XVsJTyUpI7x/X/Zurc10zfoJTygSQfSJLXvva1pzZwGqx/R70tWlXt/ou3vaDP\n9sGpno+cGnprf7+jppoebSfVONRQjaa26uBxputm9Jt8LHVh4ri6trYD5cm6ifNGo2P6T99n1ic1\nsz9Svu5+c1Cm9td2cjnixKM+5bmGx3toEOqwBMp0v1NWVVPjnyjv1rcPqZ9VN3HdunBEebRX3j3n\nkPKJfyM77ffZSZMdB/9X6dGXOe71vhmvdXLg+Tq2/aT3us7GIwMthyVLbjRWMycnTQXNbYyn/T18\nyqGPb0b9od/Pyoz7HVG3r77shbuO+v4zawwz2w8UDoz7QFDuupzsZ8nJ/pfuNTil9+OJLzNn+8MW\nxwzqRO/n1OHSE7nxfrNHfI1PbjV9MOtr76jrz+PnzEm73ci9j/u5NSuMc9xrdi3ft2b0O+VPjU7/\n6+yQ3+tPcNahj+1G3q6H9jj93/Wqw7pe73M8+X26yrG/N1UH6qbeL4d+7zlZ3YFzq/1/yxwWUq0O\n/FytjuyflPG9pq5RJiI947HshfLL1PjGx9X+a+2Uq/E/htkXGyrJKPvbU1IH43fOG1+3Kq1UpZ0q\n4/34eFTqmE9VWhkdaN8rjybqR6WdUemMz+/snVs647b2RFt7qn/dtj3uu9de90lpHRp0TnJkuHt/\nWL2a2dYZb2tHnHvcNY4za4yzr390n5Pc/+CfUDPuffC0Ez3ew/oddd2TnXeSB3LYuBc3xht6/U9x\nHMedd733OurMI8d4neM/6TX2X++E/a7hZ9iJf+c65TFei9P4Ry37r3f9Y7lRJx/j6Q9yLr8+Lshp\nf20t0mLfj6+c53EeboWHPZ+/C5fPMr7Hl/AhJ5nPz9fTdn5tZdFD4AbMM9Qzd1VVfSTJR5Lk4Ycf\nbv5XC68cpYyXyZr1cRUAsAxu9j++aPg/9gAAAAAAAE7ZKS86s89Xktw/cXzfuG5mn1JKJ8mFJM+f\n8FwAAAAAAAAAAHhFmmeo5zNJHiqlPFBK6SZ5b5LHpvo8luR94/J7knyyqueneizJe0spq6WUB5I8\nlOT35zhWAAAAAAAAAABojLktv1VV1bCU8sEkn0jSTvKLVVV9rpTyk0meqKrqsSQfTfLLpZSnkryQ\nOviTcb9fS/InSYZJ/n5VVdvzGisAAAAAAAAAADRJqSfGufU9/PDD1RNPPLHoYQAAAAAAAAAAwEyl\nlD+oqurhk/Sd5/JbAAAAAAAAAADAdRDqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACA\nhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAA\nAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAA\nAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHqAQAAAAAAAACAhhHq\nAQAAAAAAAACAhilVVS16DKeilPJskj9f9Dg44K4kzy16EAC8Yvk5A8A8+TkD8P+3d2+xtl5VHcD/\nf8+hSltDW0Wip0iLNGol0gIh1SJpwAdAIn2oFgVsGg0vJALBcDEYAokPJEYugSCkoCU2CNSiTR+M\nWkmVBwrlIpcWI6naHlI4JEC5RaB08LA+kk3hJGSfvc5ae5/fL9nZa85vri/jexoZX8aak3WSZwBY\nJ3kGgHWRY07cI2bmoT/KwgPT1MN2anvbzDx+03EAcDDJMwCskzwDwDrJMwCskzwDwLrIMSeX47cA\nAAAAAAAAAGDLaOoBAAAAAAAAAIAto6mHdXvrpgMA4ECTZwBYJ3kGgHWSZwBYJ3kGgHWRY06izsym\nYwAAAAAAAAAAAHawUw8AAAAAAAAAAGwZTT0AAAAAAAAAALBlNPWwFm2f2va/2n6m7cs2HQ8A+1vb\nh7d9X9vb236q7QuW+XPa/kvb/17+n73pWAHYv9oeavvRtjct4/Pb3rrUNe9qe9qmYwRgf2p7Vtvr\n23667R1tf009A8Beafui5Z3ZJ9u+s+1PqGcA2K22b297rO0nd8z90PqlK29Y8s3H2z52c5EfTJp6\n2HNtDyV5U5KnJbkwye+1vXCzUQGwz92X5MUzc2GSS5I8f8ktL0ty88xckOTmZQwAu/WCJHfsGL8m\nyWtn5lFJvpTkDzcSFQAHweuT/NPM/FKSx2SVb9QzAJywtkeS/HGSx8/Mo5McSvKsqGcA2L2/SfLU\nB8wdr355WpILlr/nJXnzSYrxlKGph3V4QpLPzMydM/OtJH+X5JkbjgmAfWxm7pmZjyyfv5rVC/Aj\nWeWXa5dl1ya5fDMRArDftT03yW8luWYZN8mTk1y/LJFnANiVtg9J8qQkb0uSmfnWzHw56hkA9s7h\nJA9uezjJ6UnuiXoGgF2amX9P8sUHTB+vfnlmknfMygeSnNX2Z09OpKcGTT2sw5Ekd+8YH13mAOCE\ntT0vycVJbk3ysJm5Z7n0uSQP21BYAOx/r0vykiT3L+OfSvLlmblvGatrANit85N8IclfL8c8XtP2\njKhnANgDM/PZJH+R5K6smnnuTfLhqGcA2FvHq1/0BqyZph4AYN9oe2aSv0/ywpn5ys5rMzNJZiOB\nAbCvtX1GkmMz8+FNxwLAgXQ4yWOTvHlmLk7y9TzgqC31DAC71fbsrHZJOD/JzyU5Iz94ZAoA7Bn1\ny8mlqYd1+GySh+8Yn7vMAcCutX1QVg09183MDcv057+3jePy/9im4gNgX7s0yW+3/d+sjg9+cpLX\nZ7Vd8OFljboGgN06muTozNy6jK/PqslHPQPAXvjNJP8zM1+YmW8nuSGrGkc9A8BeOl79ojdgzTT1\nsA4fSnJB2/PbnpbkWUlu3HBMAOxjbZvkbUnumJm/3HHpxiRXLZ+vSvKPJzs2APa/mXn5zJw7M+dl\nVb/828w8O8n7klyxLJNnANiVmflckrvb/uIy9ZQkt0c9A8DeuCvJJW1PX96hfS/PqGcA2EvHq19u\nTPIHXbkkyb07juliD3S1MxLsrbZPT/K6JIeSvH1m/nzDIQGwj7V9YpL/SPKJJPcv03+a5NYk707y\n80n+L8nvzswXNxIkAAdC28uS/MnMPKPtI7PaueecJB9N8pyZ+eYm4wNgf2p7UZJrkpyW5M4kV2f1\ng0v1DAAnrO2rklyZ5L6sapc/SnIk6hkAdqHtO5NcluSnk3w+ySuT/EN+SP2yNJS+MaujH7+R5OqZ\nuW0TcR9UmnoAAAAAAAAAAGDLOH4LAAAAAAAAAAC2jKYeAAAAAAAAAADYMpp6AAAAAAAAAABgy2jq\nAQAAAAAAAACALaOpBwAAAAAAAAAAtoymHgAAAAB2re1lbW/adBwAAAAAB42mHgAAAAAAAAAA2DKa\negAAAABOAW2f0/aDbT/W9i1tD7X9WtvXtv1U25vbPnRZe1HbD7T9eNv3tj17mX9U239t+59tP9L2\nF5bbn9n2+rafbntd227sQQEAAAAOCE09AAAAAAdc219OcmWSS2fmoiTfSfLsJGckuW1mfiXJLUle\nuXzlHUleOjO/muQTO+avS/KmmXlMkl9Pcs8yf3GSFya5MMkjk1y69ocCAAAAOOAObzoAAAAAANbu\nKUkel+RDyyY6D05yLMn9Sd61rPnbJDe0fUiSs2bmlmX+2iTvafuTSY7MzHuTZGb+P0mW+31wZo4u\n448lOS/J+9f/WAAAAAAHl6YeAAAAgIOvSa6dmZd/32T7Zw9YN7u8/zd3fP5OvHMCAAAAOGGO3wIA\nAAA4+G5OckXbn0mStue0fURW74auWNb8fpL3z8y9Sb7U9jeW+ecmuWVmvprkaNvLl3v8eNvTT+pT\nAAAAAJxC/GoKAAAA4ICbmdvbviLJP7f9sSTfTvL8JF9P8oTl2rEkVy5fuSrJXy1NO3cmuXqZf26S\nt7R99XKP3zmJjwEAAABwSunMbndVBgAAAGA/a/u1mTlz03EAAAAA8IMcvwUAAAAAAAAAAFvGTj0A\nAAAAAAAAALBl7NQDAAAAAAAAAABbRlMPAAAAAAAAAABsGU09AAAAAAAAAACwZTT1AAAAAAAAAADA\nltHUAwAAAAAAAAAAW+a7BZle4q9yLYgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0022660818189899888" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0009000000427477062\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0008100000384729356\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.0007290000503417104\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0006561000715009868\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00012: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00001 to 0.00001, saving model to bm_kaggle_4.weights.best.hdf5\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00032: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler)\n", + "\n", + "callbacks_list = [checkpoint, lr_decay]\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=10000, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQIAAAJcCAYAAACo4EsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmQn1d9JvrndKul1tKWZO3dMpZA\ntvHewgpxMAEcIN7A6gwZQhJSSW7uhUwlN7n3Tpg4e6DmVjF17w2ZLCQzmZDKDJkkHigkgw3YDDaE\nxYBsS95tyRvaJcuyLMna+9w/9LOQhZaW1a23l8+nStXd73t+p59jlf2H66nzLbXWAAAAAAAAAAAA\nI1tb0wEAAAAAAAAAAIAzpwgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopAAAAAAAAAAAAwCigCAQAA\nAAAAAADAKKAIBAAAAAAAAAAAo4AiEAAAAAAjRinl2VLKu5rOAQAAADAcKQIBAAAAAAAAAMAooAgE\nAAAAQCNKKeOGY4bTzTUczgEAAACQKAIBAAAADJnWGKuPlFIeLKXsLqX8bSllTinli6WUnaWUr5RS\nprfWXl1K+VYp5cVSyqpSyjuO2ueXSymPtT7zdCnlw0e9e0cpZV0p5d+WUraUUjaWUn55ANluLKU8\n2tpzfSnlt45695HWPhtKKf9LKaWWUha13t1TSvlfj1r7S6WUbxz1838spawtpbxUSrmvlPLjR737\n41LKZ0opny6lvJTkl0opbaWUW0opT5VStpVSbi2lnHvUZ36hlPJc693vDfCf+wn3LKUsaJ3nV0op\n30/y1eM9a629uZTySOvv5J5SysXH/N3+dinlwSS7lYEAAACA4UARCAAAAGBovS/Ju5NcmOS9Sb6Y\n5HeTzMrh/zfzG6WUniS3J/n3Sc5N8ltJPltKmdXaY0uS9yQ5J8kvJ/lEKeVNR/2OuUmmJulJ8itJ\n/vKVgtFJ/G2SD9dau5Jclh+UX65v/f53J7kgybtO87zfS9LbOsd/T/I/SimdR71fmuQzSaYl+Yck\n/3uSviRvT9KdZHuSv2xluSTJXyX5hda7GUnmDyDDCfc8ytuTXJzkuuM9K6VcmOQfk/wfOfx3dUeS\nz5dSxh+1/meT3JRkWq314AByAQAAAAwpRSAAAACAofXntdbNtdb1Sf4lyXdqrQ/UWvcm+VySxUk+\nmOSOWusdtdb+WutdSVYkuTFJaq2311qfqod9LcmdSX78qN9xIMnHaq0Haq13JNmV5KJT5DqQ5JJS\nyjm11u211vtbz9+f5O9qrQ/XWncn+ePTOWyt9dO11m211oO11v8vyYRjsny71rqsdc49SX41ye/V\nWtfVWve1ft9Pt27Y+ekkX6i1fr317g+S9A8gxsn2fMUf11p3tzIc79nPJLm91npXrfVAkv83ycQk\nbzlq/Z/VWtceswcAAABAYxSBAAAAAIbW5qO+33Ocn6ckOT/Jv26NoHqxlPJikrcmmZckpZQbSin3\nllJeaL27McnMo/bZdsyNNC+39j2Z97X2ea6U8rVSyo+1nncnWXvUuucGdMqWUspvtcaY7WhlnXpM\n1rXHfOT8JJ876tyPJTmUZM6xWVrFpG0DiHGyPU+U49hn3Tnq7LXW/tb7nlPsAQAAANAYRSAAAACA\n5q1N8t9qrdOO+jO51vrxUsqEJJ/N4Rtp5tRap+XwmKpyJr+w1vq9WuvSJLOTLEtya+vVxiTnHbX0\ndcd8dHeSSUf9PPeVb0opP57k3+XwrULTW1l3HJO1HrPf2iQ3HHP2ztYNSq/KUkqZlMPjwU7lZHue\nKMexzzbkcKHold9dWllOtQcAAABAYxSBAAAAAJr36STvLaVcV0ppL6V0llLeUUqZn2R8Do/X2prk\nYCnlhiQ/eSa/rJQyvpTy86WUqa2xVy/lByO3bk3yS6WUS1rFmz865uMrk/yrUsqkUsqiJL9y1Luu\nJAdbWceVUv4wyTmniPPXSf7vUsr5rWyzSilLW+8+k+Q9pZS3llLGJ/lYBvb/s06250DdmuSmUso7\nSykdSf5tkn1JvnWa+wAAAACcNYpAAAAAAA2rta5NsjTJ7+ZwiWZtko8kaau17kzyGzlcTNme5OeS\n3DYIv/YXkjxbSnkpya8m+flWli8m+dMkX02ypvX1aJ9Isj+HR5z9fZJ/OOrdl5N8KcmTOTxWa29O\nPT7rP+bwee4spexMcm+SH21leSTJryX57zl8O9D2JOsGcLYT7jlQtdYnknwwyZ8neT7Je5O8t9a6\n/3T2AQAAADibSq1uMAYAAADgxEopNckFtdY1TWcBAAAA4MTcCAQAAAAAAAAAAKOAIhAAAADAKFVK\neaSUsus4f36+6WxnqpTyxROc7XebzgYAAADQFKPBAAAAAAAAAABgFHAjEAAAAAAAAAAAjALjmg7Q\ntJkzZ9YFCxY0HQMAAAAAAAAAAI7rvvvue77WOutU68Z8EWjBggVZsWJF0zEAAAAAAAAAAOC4SinP\nDWSd0WAAAAAAAAAAADAKKAIBAAAAAAAAAMAooAgEAAAAAAAAAACjwLimAwxHBw4cyLp167J3796m\nowypzs7OzJ8/Px0dHU1HAQAAAAAAAADgDCkCHce6devS1dWVBQsWpJTSdJwhUWvNtm3bsm7duixc\nuLDpOAAAAAAAAAAAnCGjwY5j7969mTFjxqgtASVJKSUzZswY9bceAQAAAAAAAACMFYpAJzCaS0Cv\nGAtnBAAAAAAAAAAYKxSBAAAAAAAAAABgFFAEGoZefPHFfPKTnzztz91444158cUXhyARAAAAAAAA\nAADDnSLQMHSiItDBgwdP+rk77rgj06ZNG6pYAAAAAAAAAAAMY+OaDsAPu+WWW/LUU0+lt7c3HR0d\n6ezszPTp0/P444/nySefTF9fX9auXZu9e/fmN3/zN/OhD30oSbJgwYKsWLEiu3btyg033JC3vvWt\n+da3vpWenp4sX748EydObPhkAAAAAAAAAAAMFUWgU/jo5x/JoxteGtQ9L+k+J3/03ktP+P7jH/94\nHn744axcuTL33HNPbrrppjz88MNZuHBhkuRTn/pUzj333OzZsyc/8iM/kve9732ZMWPGq/ZYvXp1\n/vEf/zF/8zd/k/e///357Gc/mw9+8IODeg4AAAAAAAAAAIYPRaAR4M1vfvORElCS/Nmf/Vk+97nP\nJUnWrl2b1atX/1ARaOHChent7U2SXHXVVXn22WfPWl4AAAAAAAAAAM4+RaBTONnNPWfL5MmTj3x/\nzz335Ctf+Uq+/e1vZ9KkSXnHO96RvXv3/tBnJkyYcOT79vb27Nmz56xkBQAAAAAAAACgGW1NB+CH\ndXV1ZefOncd9t2PHjkyfPj2TJk3K448/nnvvvfcspwMAAAAAAAAAYDhyI9AwNGPGjFxzzTW57LLL\nMnHixMyZM+fIu+uvvz5//dd/nYsvvjgXXXRRrr766gaTAgAAAAAAAAAwXJRaa9MZGrVkyZK6YsWK\nVz177LHHcvHFFzeU6OwaS2cFAAAAAAAAABiJSin31VqXnGqd0WAAAAAAAAAAADAKKAIBAAAAAAAA\nAMAooAgEAAAAAAAAAACjgCIQAAAAAAAAAACMAopADDu11qYjAAAAAAAAAACMOIpADCt/8dXVWfqX\n31QGAgAAAAAAAAA4TYpAw9CLL76YT37yk6/ps3/6p3+al19+eZATnT3TJo3Pg+t25JENLzUdBQAA\nAAAAAABgRFEEGobGchHopsvnZVxbyfKV65uOAgAAAAAAAAAwooxrOgA/7JZbbslTTz2V3t7evPvd\n787s2bNz6623Zt++ffmpn/qpfPSjH83u3bvz/ve/P+vWrcuhQ4fyB3/wB9m8eXM2bNiQa6+9NjNn\nzszdd9/d9FFO2/TJ4/OOi2bltlUbcssNF6e9rTQdCQAAAAAAAABgRFAEOpUv3pJsemhw95x7eXLD\nx0/4+uMf/3gefvjhrFy5MnfeeWc+85nP5Lvf/W5qrbn55pvz9a9/PVu3bk13d3duv/32JMmOHTsy\nderU/Mmf/EnuvvvuzJw5c3Azn0VLe3vylce25DtPb8tbFo3ccwAAAAAAAAAAnE1Ggw1zd955Z+68\n884sXrw4b3rTm/L4449n9erVufzyy3PXXXflt3/7t/Mv//IvmTp1atNRB827Lp6TyePbs8x4MAAA\nAAAAAACAAXMj0Kmc5Oaes6HWmt/5nd/Jhz/84R96d//99+eOO+7I7//+7+ed73xn/vAP/7CBhINv\n4vj2XHfZ3HzxoU352NLL0tnR3nQkAAAAAAAAAIBhz41Aw1BXV1d27tyZJLnuuuvyqU99Krt27UqS\nrF+/Plu2bMmGDRsyadKkfPCDH8xHPvKR3H///T/02ZGsr7cnO/cdzN2Pb2k6CgAAAAAAAADAiOBG\noGFoxowZueaaa3LZZZflhhtuyM/93M/lx37sx5IkU6ZMyac//emsWbMmH/nIR9LW1paOjo781V/9\nVZLkQx/6UK6//vp0d3fn7rvvbvIYZ+Qtb5iRmVMmZNnK9bnh8nlNxwEAAAAAAAAAGPZKrbXpDI1a\nsmRJXbFixauePfbYY7n44osbSnR2DeezfvTzj+Qf7v1+vvd778rUSR1NxwEAAAAAAAAAaEQp5b5a\n65JTrTMajGGrr7cn+w/154sPb2w6CgAAAAAAAADAsKcIxLB1xfypWThzcpatXN90FAAAAAAAAACA\nYU8R6ATGwsi04X7GUkqW9nbnO8+8kI079jQdBwAAAAAAAABgWFMEOo7Ozs5s27Zt2BdlzkStNdu2\nbUtnZ2fTUU6qr7cntSa3rdzQdBQAAAAAAAAAgGFtXNMBhqP58+dn3bp12bp1a9NRhlRnZ2fmz5/f\ndIyTWjBzcq48b1qWrdyQD7/9DU3HAQAAAAAAAAAYthSBjqOjoyMLFy5sOgYtfb3d+ejnH82Tm3fm\nwjldTccBAAAAAAAAABiWjAZj2HvPFd1pbytZ9sD6pqMAAAAAAAAAAAxbikAMe7O6JuSaRTOzfOWG\n9PfXpuMAAAAAAAAAAAxLikCMCH293Vn/4p7c9/3tTUcBAAAAAAAAABiWFIEYEX7y0rnp7GgzHgwA\nAAAAAAAA4AQUgRgRpkwYl3dfMje3P7Qx+w/2Nx0HAAAAAAAAAGDYUQRixOjr7c6LLx/I15/c2nQU\nAAAAAAAAAIBhRxGIEeNtF87K9EkdWbbSeDAAAAAAAAAAgGMpAjFidLS35aYr5uUrj23Orn0Hm44D\nAAAAAAAAADCsKAIxovT19mTvgf58+eFNTUcBAAAAAAAAABhWFIEYUa46f3rmT59oPBgAAAAAAAAA\nwDEUgRhRSilZ2tudb655Plt27m06DgAAAAAAAADAsKEIxIjT19uT/pp8YdXGpqMAAAAAAAAAAAwb\nikCMOBfM6col887JcuPBAAAAAAAAAACOUARiROpb3J1V63bkmed3Nx0FAAAAAAAAAGBYUARiRLr5\nyp6Ukix7wK1AAAAAAAAAAACJIhAj1Nypnbl64YwsX7k+tdam4wAAAAAAAAAANE4RiBGrb3F3nt32\nclat29F0FAAAAAAAAACAxikCMWJdf9m8jG9vMx4MAAAAAAAAACBnoQhUSrm+lPJEKWVNKeWW47yf\nUEr559b775RSFhz17ndaz58opVx3Gnv+WSll11CdieFh6sSOvPPi2fnCgxty8FB/03EAAAAAAAAA\nABo1pEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/VnqWU\nJUmmD+W5GD6W9vbk+V37882ntjUdBQAAAAAAAACgUUN9I9Cbk6yptT5da92f5J+SLD1mzdIkf9/6\n/jNJ3llKKa3n/1Rr3VdrfSbJmtZ+J9yzVRL6f5L8uyE+F8PEtW+clXM6x2W58WAAAAAAAAAAwBg3\n1EWgniRrj/p5XevZcdfUWg8m2ZFkxkk+e7I9fz3JbbXWjScLVUr5UCllRSllxdatW0/rQAwvE8a1\n58bL5+XLj2zKnv2Hmo4DAAAAAAAAANCYoS4CnTWllO4k/zrJn59qba31P9dal9Ral8yaNWvowzGk\nlvb2ZPf+Q7nrsc1NRwEAAAAAAAAAaMxQF4HWJznvqJ/nt54dd00pZVySqUm2neSzJ3q+OMmiJGtK\nKc8mmVRKWTNYB2H4+tGF52be1E7jwQAAAAAAAACAMW2oi0DfS3JBKWVhKWV8kg8kue2YNbcl+cXW\n9z+d5Ku11tp6/oFSyoRSysIkFyT57on2rLXeXmudW2tdUGtdkOTlWuuiIT4fw0BbW8nNV3bna09u\nzQu79zcdBwAAAAAAAACgEUNaBKq1Hkzy60m+nOSxJLfWWh8ppXyslHJza9nfJpnRur3n/0pyS+uz\njyS5NcmjSb6U5NdqrYdOtOdQnoPhb2lvTw7219z+0MamowAAAAAAAAAANKIcvnxn7FqyZEldsWJF\n0zE4Q7XWXPenX885nR35zL95S9NxAAAAAAAAAAAGTSnlvlrrklOtG+rRYHBWlFKytLcnK57bnrUv\nvNx0HAAAAAAAAACAs04RiFFjaW93kuS2VRsaTgIAAAAAAAAAcPYpAjFqzJ8+KT+yYHqWPbA+Y33k\nHQAAAAAAAAAw9igCMaos7e3J6i278ujGl5qOAgAAAAAAAABwVikCMarcdPm8jGsrWb7SeDAAAAAA\nAAAAYGxRBGJUmT55fN5x0azctnJDDvUbDwYAAAAAAAAAjB2KQIw6S3t7sumlvfnOM9uajgIAAAAA\nAAAAcNYoAjHqvOviOZk8vj3LHzAeDAAAAAAAAAAYOxSBGHUmjm/PdZfNzR0Pb8zeA4eajgMAAAAA\nAAAAcFYoAjEq9fX2ZOfeg7nniS1NRwEAAAAAAAAAOCsUgRiV3vKGGZk5ZUKWGQ8GAAAAAAAAAIwR\nikCMSuPa2/LeK+flq49vyY49B5qOAwAAAAAAAAAw5BSBGLX6enuy/1B/vvTwxqajAAAAAAAAAAAM\nOUUgRq0r5k/NwpmTjQcDAAAAAAAAAMYERSBGrVJKlvZ2595ntmXTjr1NxwEAAAAAAAAAGFKKQIxq\nfb09qTW5bdX6pqMAAAAAAAAAAAwpRSBGtQUzJ+fK86YZDwYAAAAAAAAAjHqKQIx6fb3deXTjS1m9\neWfTUQAAAAAAAAAAhowiEKPee67oTntbybKVxoMBAAAAAAAAAKOXIhCj3qyuCblm0cwsX7khtdam\n4wAAAAAAAAAADAlFIMaEvt7urNu+J/c9t73pKAAAAAAAAAAAQ0IRiDHhJy+dm86ONuPBAAAAAAAA\nAIBRSxGIMWHKhHF59yVzc/uDG3PgUH/TcQAAAAAAAAAABp0iEGNGX293tr98IF9/cmvTUQAAAAAA\nAAAABp0iEGPG2y6clemTOrJs5YamowAAAAAAAAAADDpFIMaMjva23HTFvNz16Kbs2new6TgAAAAA\nAAAAAINKEYgxpa+3J3sP9OfORzY1HQUAAAAAAAAAYFApAjGmXHX+9MyfPtF4MAAAAAAAAABg1FEE\nYkwppWRpb3e+sXprtu7c13QcAAAAAAAAAIBBowjEmNPX25P+mnzhQbcCAQAAAAAAAACjhyIQY84F\nc7pyybxzjAcDAAAAAAAAAEYVRSDGpL7F3Vm19sU88/zupqMAAAAAAAAAAAwKRSDGpJuv7EkpyfKV\n65uOAgAAAAAAAAAwKBSBGJPmTu3M1QtnZNkD61NrbToOAAAAAAAAAMAZUwRizOpb3J1nt72cVet2\nNB0FAAAAAAAAAOCMKQIxZl1/2byMb2/LsgeMBwMAAAAAAAAARj5FIMasqRM78hNvnJ0vPLghBw/1\nNx0HAAAAAAAAAOCMKAIxpvUt7s7zu/bnm09tazoKAAAAAAAAAMAZUQRiTHvHRbPT1Tkuy40HAwAA\nAAAAAABGOEUgxrTOjvbceNm8fPmRTdmz/1DTcQAAAAAAAAAAXjNFIMa8pYu7s3v/odz12OamowAA\nAAAAAAAAvGaKQIx5Vy+ckbnndBoPBgAAAAAAAACMaIpAjHltbSU393bna09uzQu79zcdBwAAAAAA\nAADgNVEEgiRLe7tzsL/m9oc2Nh0FAAAAAAAAAOA1UQSCJJfMOycXzJ5iPBgAAAAAAAAAMGIpAkGS\nUkr6FvdkxXPbs/aFl5uOAwAAAAAAAABw2hSBoOXmK7uTJLet2tBwEgAAAAAAAACA06cIBC3nnTsp\nS86fnmUPrE+ttek4AAAAAAAAAACnRREIjrJ0cU9Wb9mVRze+1HQUAAAAAAAAAIDToggER7np8nkZ\n11ayfKXxYAAAAAAAAADAyKIIBEc5d/L4vP3CWblt5YYc6jceDAAAAAAAAAAYORSB4BhLF/dk00t7\n851ntjUdBQAAAAAAAABgwBSB4BjvvnhOJo9vz/IHjAcDAAAAAAAAAEYORSA4xsTx7bnu0rm54+GN\n2XvgUNNxAAAAAAAAAAAGRBEIjmPp4p7s3Hsw9zyxpekoAAAAAAAAAAADoggEx3HNG2Zk5pTxWWY8\nGAAAAAAAAAAwQigCwXGMa2/Le67ozlcf35Idew40HQcAAAAAAAAA4JQUgeAE+hb3ZP+h/nzp4Y1N\nRwEAAAAAAAAAOCVFIDiBK+dPzYIZk4wHAwAAAAAAAABGBEUgOIFSSpb29uTeZ7Zl0469TccBAAAA\nAAAAADgpRSA4ib7FPak1uW3V+qajAAAAAAAAAACclCIQnMTCmZNz5fypxoMBAAAAAAAAAMOeIhCc\nwtLenjy68aWs3ryz6SgAAAAAAAAAACekCASn8J4r56WtJMtWGg8GAAAAAAAAAAxfikBwCrO7OnPN\noplZvnJDaq1NxwEAAAAAAAAAOC5FIBiAvt6erNu+J/c9t73pKAAAAAAAAAAAx6UIBANw3WVz09nR\nZjwYAAAAAAAAADBsKQLBAEyZMC7vunhObn9wYw4c6m86DgAAAAAAAADAD1EEggHq6+3J9pcP5OtP\nbm06CgAAAAAAAADAD1EEggF624WzMm1SR5at3NB0FAAAAAAAAACAH6IIBAM0flxbbrp8Xu56dFN2\n7TvYdBwAAAAAAAAAgFdRBILT0Le4J3sP9OfORzY1HQUAAAAAAAAA4FUUgeA0XPW66emZNtF4MAAA\nAAAAAABg2FEEgtPQ1laytLc731i9NVt37ms6DgAAAAAAAADAEYpAcJr6FvekvyZfeNCtQAAAAAAA\nAADA8KEIBKfpwjlduXjeOcaDAQAAAAAAAADDiiIQvAZ9vd1ZtfbFPPP87qajAAAAAAAAAAAkUQSC\n1+Tm3u6Ukixfub7pKAAAAAAAAAAASRSB4DWZN3VifnThuVm+ckNqrU3HAQAAAAAAAABQBILXqq+3\nJ888vzsPrtvRdBQAAAAAAAAAAEUgeK1uuHxexre3ZZnxYAAAAAAAAADAMKAIBK/R1IkdufaNs/L5\nVRtz8FB/03EAAAAAAAAAgDFOEQjOQF9vT57ftS/fempb01EAAAAAAAAAgDFOEQjOwLVvnJ2uznHG\ngwEAAAAAAAAAjVMEgjPQ2dGeGy6bmy8/vCl79h9qOg4AAAAAAAAAMIYpAsEZ6uvtye79h/KVxzY3\nHQUAAAAAAAAAGMMUgeAM/ejrZ2TOOROy3HgwAAAAAAAAAKBBikBwhtrbSm6+sjv3PLE123fvbzoO\nAAAAAAAAADBGKQLBIFja25OD/TW3P7Sx6SgAAAAAAAAAwBilCASD4NLuc7Jo9hTjwQAAAAAAAACA\nxigCwSAopaSvtzvfe3Z71m1/uek4AAAAAAAAAMAYpAgEg2Rpb0+SZPnKDQ0nAQAAAAAAAADGIkUg\nGCTnnTspV50/PctXrk+ttek4AAAAAAAAAMAYowgEg6ivtztPbt6VxzbubDoKAAAAAAAAADDGKALB\nILrpiu6MaytZvnJ901EAAAAAAAAAgDFGEQgG0bmTx+dtF87Kbas2pL/feDAAAAAAAAAA4OxRBIJB\ntrS3Oxt37M13nnmh6SgAAAAAAAAAwBiiCASD7N2XzMmk8e3GgwEAAAAAAAAAZ5UiEAyySePH5bpL\n5+aOhzZm38FDTccBAAAAAAAAAMYIRSAYAkt7u/PS3oO5+/GtTUcBAAAAAAAAAMYIRSAYAm9dNDMz\np4w3HgwAAAAAAAAAOGsUgWAIjGtvy3uu6M7/fHxLXtp7oOk4AAAAAAAAAMAYoAgEQ2Rpb3f2H+zP\nlx7a1HQUAAAAAAAAAGAMUASCIdJ73rScP2NSlhkPBgAAAAAAAACcBYpAMERKKVna25NvP70tm3bs\nbToOAAAAAAAAADDKKQLBEOrr7U6tyedXbWg6CgAAAAAAAAAwyikCwRB6/awpuWL+VOPBAAAAAAAA\nAIAhpwgEQ2xpb08e2fBS1mzZ2XQUAAAAAAAAAGAUG/IiUCnl+lLKE6WUNaWUW47zfkIp5Z9b779T\nSllw1LvfaT1/opRy3an2LKX8bSllVSnlwVLKZ0opU4b6fHAq771yXtpKsuwB48EAAAAAAAAAgKEz\npEWgUkp7kr9MckOSS5L8bCnlkmOW/UqS7bXWRUk+keQ/tD57SZIPJLk0yfVJPllKaT/Fnv9nrfXK\nWusVSb6f5NeH8nwwELO7OnPNoplZvmp9aq1NxwEAAAAAAAAARqmhvhHozUnW1FqfrrXuT/JPSZYe\ns2Zpkr9vff+ZJO8spZTW83+qte6rtT6TZE1rvxPuWWt9KUlan5+YROuCYWFpb0/WvrAn939/e9NR\nAAAAAAAAAIBRaqiLQD1J1h7187rWs+OuqbUeTLIjyYyTfPake5ZS/i7JpiRvTPLnxwtVSvlQKWVF\nKWXF1q1bT/9UcJquu3ROJoxrMx4MAAAAAAAAABgyQ10EOutqrb+cpDvJY0l+5gRr/nOtdUmtdcms\nWbPOaj7Gpq7Ojrzrkjm5/aGNOXCov+k4AAAAAAAAAMAoNNRFoPVJzjvq5/mtZ8ddU0oZl2Rqkm0n\n+ewp96y1HsrhkWHvO+MTwCDp6+3JC7v3519Wu4UKAAAAAAAAABh8Q10E+l6SC0opC0sp45N8IMlt\nx6y5Lckvtr7/6SRfrbXW1vMPlFImlFIWJrkgyXdPtGc5bFGSlFJKkpuTPD7E54MBe/uFszJtUofx\nYAAAAAAAAADAkBg3lJvXWg9JAGctAAAgAElEQVSWUn49yZeTtCf5VK31kVLKx5KsqLXeluRvk/y3\nUsqaJC/kcLEnrXW3Jnk0ycEkv9a66Scn2LMtyd+XUs5JUpKsSvJvhvJ8cDrGj2vLjZfPy+fuX5/d\n+w5m8oQh/dcPAAAAAAAAABhjyuHLd8auJUuW1BUrVjQdgzHiu8+8kPf/p2/nEz9zZX5q8fym4wAA\nAAAAAAAAI0Ap5b5a65JTrRvq0WDAUZacPz090yYaDwYAAAAAAAAADDpFIDiL2tpKbu7tzjfWPJ/n\nd+1rOg4AAAAAAAAAMIooAsFZ1tfbk0P9NV9Y5VYgAAAAAAAAAGDwKALBWXbR3K68cW5Xlq1UBAIA\nAAAAAAAABo8iEDSgb3FPVq59Mc8+v7vpKAAAAAAAAADAKKEIBA24+crulJIsdysQAAAAAAAAADBI\nFIGgAd3TJubNC87N8pXrU2ttOg4AAAAAAAAAMAooAkFD+hb35Onnd+eh9TuajgIAAAAAAAAAjAKK\nQNCQGy+bl/HtbVn2gPFgAAAAAAAAAMCZUwSChkyd1JF3XDQrn39wQw71Gw8GAAAAAAAAAJwZRSBo\nUN/inmzduS/feur5pqMAAAAAAAAAACOcIhA06CfeODtdE8YZDwYAAAAAAAAAnDFFIGhQZ0d7rr9s\nbr78yKbsPXCo6TgAAAAAAAAAwAimCAQN61vck137DuYrj21uOgoAAAAAAAAAMIIpAkHDrn79jMzu\nmmA8GAAAAAAAAABwRhSBoGHtbSU3X9mdrz25JS++vL/pOAAAAAAAAADACKUIBMNA3+KeHDhUc/tD\nG5uOAgAAAAAAAACMUIpAMAxc2n1OFs2ekuXGgwEAAAAAAAAAr5EiEAwDpZT09Xbnu8++kLse3ZyX\n9x9sOhIAAAAAAAAAMMKMazoAcNhPvWl+/ss3nsn/9l9XZFxbyZXnTcvVrz83V79+Rq46f3omjfev\nKwAAAAAAAABwYqXW2nSGRi1ZsqSuWLGi6RiQJNm972Due2577n16W+59elseXLcjB/urYhAAAAAA\nAAAAjGGllPtqrUtOuU4RSBGI4UsxCAAAAAAAAABQBBogRSBGkt37DmbFMcWgQ/01He0lV86flqtf\nPyNXv35G3nT+NMUgAAAAAAAAABglFIEGSBGIkUwxCAAAAAAAAABGP0WgAVIEYjTZdZxRYscrBl11\n/vRMHN/edFwAAAAAAAAAYAAUgQZIEYjRTDEIAAAAAAAAAEY+RaABUgRiLFEMAgAAAAAAAICRRxFo\ngBSBGMt27TuYFc++kHuffiH3Pr0tD61XDAIAAAAAAACA4UYRaIAUgeAHFIMAAAAAAAAAYPhRBBog\nRSA4sZMVg3rP+0Ex6E2vUwwCAAAAAAAAgKGiCDRAikAwcIpBAAAAAAAAAHD2KQINkCIQvHY79x7I\niue2596nt+Xep1/Iw4pBAAAAAAAAADDoFIEGSBEIBo9iEAAAAAAAAAAMPkWgAVIEgqGjGAQAAAAA\nAAAAZ04RaIAUgeDsObYY9NC6F9Nfc6QY9KbXTc+Fc7py0dyuLJo9JZ0dykEAAAAAAAAAMNAi0Liz\nEQYgSbo6O3LtRbNz7UWzkxxTDHpqW/7um89m/6H+JElbSc6fMTkXzpmSi+Z05cK5XbloTlcWzJyc\njva2Jo8BAAAAAAAAAMOSIhDQmGOLQQcP9efZbS/nyc0788SmnYe/bt6Zux7dnP7W5WUd7SVvmDXl\nyM1BF845XBCaP31i2tpKg6cBAAAAAAAAgGYpAgHDxrj2tiyaPSWLZk/JjZfPO/J874FDeWrrrlZB\n6PDX+57bnttWbTiyZmJHey6cc7ggdOFRNwjNOWdCSlEQAgAAAAAAAGD0UwQChr3OjvZc2j01l3ZP\nfdXznXsPZPWWXXly0848uflwQeieJ7fmf9y37siaczrH/eDmoKNuEJo+efzZPgYAAAAAAAAADKkB\nFYFKKe1JfqPW+okhzgMwYF2dHXnT66bnTa+b/qrnL+zenyc373zViLHPr9qQf/jOwSNrZnVNyEVz\nXikIHb5J6II5XZkyQT8SAAAAAAAAgJGp1FoHtrCU79Za3zzEec66JUuW1BUrVjQdAxhitdZsfmlf\nnti8M09u2nn4a+vP3gP9R9bNnz4xF7VKQa8UhN4wa0o6O9obTA8AAAAAAADAWFZKua/WuuRU607n\n6otvllL+Isk/J9n9ysNa6/2vIR/AWVVKydypnZk7tTNvv3DWkef9/TVrt7985OagV0aMfX311hw4\ndLgo2VaSBTMnH3WD0OGvC2ZMyrj2tqaOBAAAAAAAAACvcjo3At19nMe11voTgxvp7HIjEHA8Bw71\n59nndx9zg9CuPLttd175z+b49ra8YfaUXDRnSi6c23WkKNQzbWLa2kqzBwAAAAAAAABg1Bj0G4Fq\nrdeeWSSAkaOjvS0XtEaE5YofPN+z/1Ce2rrryA1CT2zeme8+80KWrdxwZM3k8e25YE5XLpwz5cgN\nQhfN6cqsrgkpRUEIAAAAAAAAgKEx4CJQKWVqkj9K8rbWo68l+VitdcdQBAMYjiaOb89lPVNzWc/U\nVz1/ae+BrN68M09sOjxa7IlNO/M/H9uSW1esO7Jm2qSOw8WgOV1H3SA0JdMmjT/bxwAAAAAAAABg\nFBpwESjJp5I8nOT9rZ9/IcnfJflXgx0KYKQ5p7MjV51/bq46/9xXPX9+1748eWS82OGS0LIH1mfn\nvoNH1sw5Z0IunNOVC2Z35YI5U3LB7Cm5YHZXpk7qONvHAAAAAAAAAGAEO50i0Btqre876uePllJW\nDnYggNFk5pQJmTllQt7yhplHntVas3HH3jxxpCB0eMzYP373+9lz4NCRdbO6JrRKQVOyaE7Xke9n\nTJnQxFEAAAAAAAAAGOZOpwi0p5Ty1lrrN5KklHJNkj1DEwtg9CqlpHvaxHRPm5hrL5p95Hl/f836\nF/dkzZZdWb1lZ1Zv3pXVW3bls/evz66jbhA6d/L4LJo95Ugx6IJWSWhW14SUUpo4EgAAAAAAAADD\nwOkUgX41yX8tpUxt/bw9yS8OfiSAsamtreS8cyflvHMn5do3/qAgVGvNppf2HikGrWmVhD6/akNe\n2vuDgtA5neOOlIIWHVUQmje1U0EIAAAAAAAAYAwYUBGolNKW5KJa65WllHOSpNb60pAmAyDJ4RuE\n5k2dmHlTJ+ZtF8468rzWmq279mVNqyD0yi1Cdz26Of/0vbVH1k0e3/6q0WIXzJmSC2Z3pWfaxLS1\nKQgBAAAAAAAAjBal1jqwhaWsqLUuGeI8Z92SJUvqihUrmo4BMKi27drXGjG261Wjxrbs3HdkTWdH\nW2vEWNcPRo3N6crrzp2UdgUhAAAAAAAAgGGjlHLfQHo7pzMa7CullN9K8s9Jdr/ysNb6wmvIB8AQ\nmjFlQmZMmZAfff2MVz3f8fKBrNm688iYsdVbduU7T2/L5x5Yf2TN+HFtef3MyUdGi71yi9D5Myan\no73tbB8FAAAAAAAAgAE6nRuBnjnO41prff3gRjq73AgEkOzceyBPbd2d1Zt3HrlJaPWWnVn7wp4j\na8a1lSycOTkXzJmSRbO7jhSEFs6cnAnj2htMDwAAAAAAADC6DeqNQKWUtiQfrLV+84yTATDsdHV2\npPe8aek9b9qrnr+8/2Ce3rr7yGix1Vt25bGNO/Olhzelv9UjbSvJghmTD48Xm/ODUWNvmDUlE8cr\nCAEAAAAAAACcLQMqAtVa+0spf5Fk8RDnAWAYmTR+XC7rmZrLeqa+6vneA4fyzPO7s3rLrqzZvPP/\nZ+/OYy3N87u+f35nvVvdW9U91ctM94hmZux4nBhEmkX8EQkcYiMUDwFLDHYARRBIggERRREoKICd\nSIGQEBIMiJhEMdgyhoA0IIIhtgIEQ8Y9xhjPYty2Z6a7p/e6td7lbL/8cZ5z7rlb1b3ddbuqTr1e\nUunZn3puyZKnq9/9/c2XGfuxL72VUVMIlZI8f2Utn3hqIx9vAqFPPLWRjz21kY3+eVamBAAAAAAA\nAOAszvNvYn+0lPJbk/ytetb1xABYSivddr7h2c18w7Obh84PRpN85d1pIDSdIDRdauyf/Nw7GYwn\n8/s+cnl1OkGomSL0/JW1PLO1kme2VrLWEwkBAAAAAAAAvBflrE1PKeVWkvUk4yS7SUqSWmvdvOuD\nD7kXX3yxvvTSSw/6MwCW2mg8yVev7UwnCL11Oz/XTBF6+a3b2R9NDt27udJpoqDVPLPZb7YreWar\nn2c2V/PM1kqurHVTSnlAPw0AAAAAAADAB6uU8rla64v3uu/MYxdqrZfe3ycB8LjqtFv5pVc38kuv\nbuRbvvHg/HhS89r2bl69vpM3buzljZt7022z/6XXb+bt2/s52qz2Oq0mDlrJM5sreXZrJU/PtlvT\n7dWNfjrt1gf7gwIAAAAAAAA8QGcOgcp09MJ3Jnmh1vo9pZTnkzxba/3shX0dAEut3Sr56JNr+eiT\na6feMxxP8vat/WOR0Gz/p165nr//M3uHlh5LklZJrl7qHwqGntlaPTRZ6JnNlaz22hf9YwIAAAAA\nAAB8IM4cAiX5C0kmSX59ku9JcjvJ9yb5lRfwXQCQJOm2W/nw5dV8+PLqqffUWrO9M8zrN3bz5s29\nvH5jL282wdDrN/byi+/cyY///Lu5tTc69uzWanc+UWgeDW0dnja0tWopMgAAAAAAAODhd54Q6FfX\nWn9FKeVfJEmtdbuU0rug7wKAMyul5In1Xp5Y7+UbP7x16n139kd54+Y0Enp9cbJQs/3C6zfzzglL\nkfU7rePLj82jodU8s7mSq5f6abfEQgAAAAAAAMCDc54QaFhKaSepSVJKuZrphCAAeCSs9zv52NWN\nfOzqxqn3DMeTvHVr/8gyZLt54+Z+3rixm899dTtv3tg/thRZu1VydaO/sAzZ9NfRaUMrXUuRAQAA\nAAAAABfjPCHQ/5zkbyd5qpTy3yb59iR/7EK+CgAekG67lY9cXs1H7rEU2bU7g+kSZLOlyBa2P//2\n7fzTl9/Jrf3jS5FdXuvOo6Bnt1by7NZqnruymueurOW5K6t5enPFZCEAAAAAAADgPTlzCFRr/YFS\nyueSfHOSkuQ311q/OLteSrlSa92+gG8EgIdKKSVPbvTz5EY//+ZHTl+K7Pb+KG8ci4V288aN/bxx\nczc/89p0KbJF3XbJhy83cdDlaRz03BOref7KWp67spanLvXTEgoBAAAAAAAAJzjPRKDUWr+U5Eun\nXP7RJL/ifX8RACyJjX4nH39qIx9/6vSlyPaG47x+Yy+vXNvJq9u7eXX7YPtjP/tW3r51OBTqtVv5\n8OWVPHdlLc8/cTBJ6Lkr01joQxtCIQAAAAAAAHhcnSsEugf/1hEAzmml284LH1rPCx9aP/H63nCc\n167v5tXt3WOx0D/8wlvHJgr1Oq08d3k1H2mWGzsaC13d6KcU/y8bAAAAAAAAltH9DIHqfXwXAJBp\nKPSxqxv52NWTpwrtDsZ57fpOXtmexkKvLsRC/+Brb+TdO4ND9/c7rSYKWptvF2OhJ9d7QiEAAAAA\nAAB4RN3PEAgA+ICt9tr5+FOX8vGnLp14fWcwOrLk2HT/lWu7+elXr2d7Z3j4fd32fHrQSbHQlbWu\nUAgAAAAAAAAeUpYGA4Alttbr5OuevpSve/rkUOj2/iivzZcdW4iFru/kJ796PTd2h0feNw2Fnl+I\nhBZjoa1VoRAAAAAAAAA8KPcMgUopT9zteq31WrP7zffliwCAD8xGv5Ovf+ZSvv6Zk0Ohm3vDvHZk\nktAsGPqJL1/Lzb3RsfedNFFoFg9trXU/iB8LAAAAAAAAHktnmQj0uSQ104k/H02y3exfTvLVJC8k\nh4IgAGBJbK50s/lsN9/w7OaJ12/sDk9cduzV7Z3881+4ltv7h0OhSyudhUBoNc9sruTpzZU8damf\npzZX8vRmPxv9jqlCAAAAAAAA8B7cMwSqtb6QJKWU/zXJ3661/r3m+Dcm+c0X+3kAwMNsa7WbrdWt\nfOOHt45dq7Xm5u4or2zvHIuFvvruTn785XdyZzA+9txqt52nN6dh0FOX+vNQ6OnNlTy12c9TlwRD\nAAAAAAAAcJJSaz3bjaX8q1rrv3Wvc4+aF198sb700ksP+jMA4LF0e3+UN2/u5a2b+3nr1nT75s29\nvHlrP2/d3Mtbt6bHOycEQ2u99nyS0CwUeroJhQRDAAAAAAAALJNSyudqrS/e676zLA0287VSyh9L\n8tea4+9M8rX38nEAAEmy0e9k4+pGPnZ14673HQ2GZvtvNqHQ5792Mz/2pbfeUzA0mzgkGAIAAAAA\nAOBRd54Q6Lcn+eNJ/naSmuQfN+cAAC7UeYOhN2/u5e0mEnrz5v58stDnv3YzP/rFt7I7vHswdLAc\nmWAIAAAAAACAR8eZQ6Ba67Ukf6iUsl5rvXOB3wQA8J6cJRiqteb2/mgeB50UDP2rV6/nzZv7pwZD\nT2+u5Oql/qFg6Og5wRAAAAAAAAAftDOHQKWUX5vk+5JsJPloKeWXJfl9tdb/7KI+DgDgfiul5NJK\nN5dWuucKhg6WJWuOb+0LhgAAAAAAAHionGdpsD+b5FuSfCZJaq3/spTy71zIVwEAPGDnDYbebEKh\ntxZCobMEQ6vddp7a7M+XJXvqUrMc2SwWaq5trXYFQwAAAAAAANzVeUKg1FpfOfIvoI7/2ywAgMfI\nYjD08afOGAw1gdBswtBbt6bnvvi1m/lHt/Zze3907Plep5WrG9OpQk9dWjk5Htrs54m1XlotwRAA\nAAAAAMDj6Dwh0CvN8mC1lNJN8oeSfPFiPgsAYLmcNRhKkjvNkmRvLUwWevvW/jweevnt2/nxn38n\nN/eOB0OdVsnVS9NI6GoTBz29GA41+0+u99Jpty7qxwUAAAAAAOABOE8I9J8k+XNJPpLktST/IMnv\nv4iPAgB4nK33O3mh38kLH1q/6317w3HeXliC7GDS0PTcq9s7+cmvbufancGxZ1sleXJjFgc1y5Bd\n6ufq5srh40v9dAVDAAAAAAAAj4QzhUCllHaS31Fr/c4L/h4AAM5opdvO80+s5fkn1u5632A0ydu3\nD4dCb9+cLUs2PfczX7uZd27vp9bjzz+x3juyDNnBsmSzpcquXupnpdu+oJ8UAAAAAACAszhTCFRr\nHZdSviPJn73g7wEA4D7rdVr5yOXVfOTy6l3vG40neffOIG81gdBiKPTWzf28fWsv//qNW3n79n7G\nk+PF0OZKZzpJqImDZhOFZtOFZiHRev88QykBAAAAAAA4q/P8W5j/t5Ty55P89SR3ZidrrT95378K\nAIAPXKfdytObK3l6cyXJ1qn3TSY113amwdCbt/by9kIwNFum7LO/eC1v39rPYDw59vx6r50r671c\nWevl8lo3V9Z6ubLWzeVme2W9d7Df3LPR76SUcoE/PQAAAAAAwKPvPCHQL2+2371wrib59ffvcwAA\neNi1WiUf2ujnQxv9fDKbp95Xa82N3eHBZKGb+83SZHu5vjPM9s4g2zvDfPXaTrbvDHJzb3Tqu7rt\nkq3Vg1DoIBI6HAzNrl1e6+Xyajeddusi/ggAAAAAAAAeSmcOgWqtv+4iPwQAgOVSSpkGOWu9fP0z\nl+55/2g8yY3dYbZ3hrneRELbdwbzYGh6brr/i+/cyU/uXM/1nUGG4+PLlM1cWukcmzg03fZyZX02\njehwRLTabZs+BAAAAAAAPJLOMxEopZTflOQbk6zMztVav/v0JwAA4Gw67Vae3OjnyY3+mZ+ptebO\nYJztO4OFKUMH+4uTh7Z3BvmFd25n+84wt/dPnz7U67QOTxk6afJQExLNoqKt1W7aLfEQAAAAAADw\nYJ05BCql/KUka0l+XZLvS/LtST57Qd8FAAD3VErJRr+TjX4nzz9x9ucGo0mu7zah0J3BoSlEi5OH\nru8M8nNv3Z5fG09Onj5USrK1ejQe6h6ZRjTd32qOt1a7We+ZPgQAAAAAANw/55kI9Gtrrd9USvnp\nWuufLKX8D0n+r4v6MAAAuCi9TitPXVrJU5dW7n1zo9aaW/ujXL9zePLQtTuDg6XMmnNv3tzLz75x\nK9s7g+wMxqe+s9Mq2VqdxkFbq91cXm22a71sHjo+2G425/qd9v34owAAAAAAAJbIeUKg3Wa7U0r5\ncJJ3kzx7/z8JAAAePqWUbK50s7nSzUefXDvzc/uj8cESZXeGubE7yI3dYa7vDKfb3en2xs4w79we\n5OW3b+fGzjA3905fvixJVrvteSC0dSwYOiUkWu3l0konLcuYAQAAAADAUjpPCPR3SymXk/z3SX4y\nSc10iTAAAOAU/U47T2+28/Tm2acPJcl4UnNr76Rg6OSQ6Cvv7uSnXx3m+u4ge8PJqe8tJdlcORwI\nnRQTba32jk0jWu1aygwAAAAAAB5mZw6Baq3f0+z+n6WUv5tkpdZ642I+CwAAHm/tVsnltV4ur/XO\n/ezecJybuwuh0M5CSLQYEzXHr23vzo/Hk3rqe7vt0gRCnVxe682XM9s8EgydFBJ1263388cBAAAA\nAACcwZlDoFLK7zzhXGqt339/PwkAAHg/VrrtrHTbeeqcU4hqrbkzGOd6EwrdODJ1aDaFaLa82Zs3\n9/Kv37yVGzvD3Nq/+1Jm6712EzZ1c2WtlyvrvVyZ7a91m+Nenlif3vPEes8EIgAAAAAAOKfzLA32\nKxf2V5J8c6ZLhAmBAABgCZRSstHvZKPfyXNXzvfsaDzJzb1REwwNDqYPLQRE2zuDXN+Zbl/d3sl2\nc/40vU4rTyzEQ4uR0OW1Xp5Y7063a70mLupmo98RDwEAAAAA8Ng6z9Jgf2DxuJRyOckP3fcvAgAA\nHjmdditPrE9jnWT9zM+NxpMmEpoGQtt3BtPtznC+f+3ONC764hs3c31nun/aCmbd9nRJtStrC5HQ\n+mzy0MIkotkEorVeLq100mqJhwAAAAAAePSdZyLQUXeSvHC/PgQAAHj8dNqtPLnRz5Mb/TM/M5nU\n3NybxkPX7gxyfWfQbIe5tnNwvL0zzM+/fTvbX5nGQ6NT6qFWSa6ctGzZQix0eBJRL1ur3bTFQwAA\nAAAAPGTOHAKVUv5OktnfnLeSfDLJD1/ERwEAAJym1ZpO/bm81ssLHzrb9KFaa27tj3L9zjQWOpg+\nNFyYQjTI9p1hXrm2k59+dbo/GE9OfF8pydZqdx4QPbF2ZLmyWUzUhEWX17q5vNpLr9O6n38UAAAA\nAABwyHkmAv2Zhf1Rkq/UWl+9z98DAABw35VSsrnSzeZKNx99cu1Mz9RaszMYzwOh7YWA6FqzRNls\nEtHrN/byxddvZntnmN3h+NR3rnbb2VztZGu1O/+1udLN5mx/4fz0+ODe1W47pZhCBAAAAADA6c4c\nAtVa/9FFfggAAMDDpJSS9X4n6/1Onrty9uf2htN4aL5cWbN82Y3d4aFfN3dH+dr1vXxx91Zu7g1z\na2901/d229OYaRYMHURDnfn5rROCos2Vbi6tdNKylBkAAAAAwNI7z9Jgt3KwNNihS0lqrXXzvn0V\nAADAI2ql286zW6t5dmv1XM+NJzW39g4ioXkwtHc0IGr2dwZ55drO/Px4ctI/rk2Vklzqd7K11j0U\nDW2udLO1thAXrXROjIm6bUuaAQAAAAA8Cs6zNNj/lOT1JH810/jnO5M8W2v9ry/iwwAAAB4n7VbJ\n5bVeLq/1zv1srTV3BuODSGgxGGr2b+6NDh2//Nbt+fH+aHLX96/12ocDotXOsalD84lER2KjlW7L\nkmYAAAAAAB+Q84RA31Zr/WULx3+xlPIvkwiBAAAAHqBSSjb6nWz0O/nw5fNNIkqmy5nd3JvFQ6PT\ng6JmOtFr1/fyxddv5ebuMLf2776kWa/dyuZqN5fXurmy1s3Wam++f3mtl63Vbq6sTc9trXZzZb2X\ny6vdrPXaAiIAAAAAgHM6Twh0p5TynUl+KNMlwn57kjsX8lUAAAB8YFa67ax023nq0sq5nx2NJ7nV\nTBtaXMZscXmzG7uD3NgdZvvOMK9d380XvnYj2zvD7A7Hp763125la62by00oNN9fn8ZD05hoGg1t\nrR3ERKtdAREAAAAA8Pg6Twj0HUn+XPOrJvmnzTkAAAAeU512K1fWe7myfv4lzfaG49zYHeb6zjDX\ndwbZ3plGQ9d3hkf2B3nl2k5+Zne6vzc8fSmzXqeVy00odLkJhWbR0DQm6k0nE83216fb1V77/fwx\nAAAAAAA8FM4cAtVav5zkUxf3KQAAADxOZpOInt483ySiveF4Gg81odD1nWbbhEI3dobzgOir13by\nL1+dRkaD0ekBUb/TmsZDzdJl8/31g3Ozpc2uLJxb6QqIAAAAAICHx5lDoFLKn07y3yTZTfL3k3xT\nkj9ca/1rF/RtAAAAcMxKt51nttp5Zuv8AdH2LBqaBUQLE4lmcdH2zjBffmcn13ev3zMgWum2jsdD\ns2lEzXJml1a62Vjp5NJKJ5f6nWysdLLR72S910mrZRkzAAAAAOD+Oc/SYP9erfW/LKX8B0m+nOS3\nJPnHSYRAAAAAPPRWuu08u7WaZ7dWz/xMrTV7w8lBQLS7EBIdnUi0M8wvvHN7vj8Ynx4QJUkpyUav\nM4+ENvqdbKx0D4KhfucgIuofvu/SSnOt38lar51SBEUAAAAAwPlCoNm9vynJ36i13vAXjQAAACyz\nUkpWe+2s9lbz4cvnC4h2myXMbu2Ncnt/th1Nt3uj3Nof5dbeMLcXzt/YHea17Z35vTuD8T1/r1bJ\nQTTUREIbJwRDB8edbPS78/suNc+udFuCIgAAAAB4xJ0nBPq7pZQvZbo02H9aSrmaZO9iPgsAAAAe\nXaWUrPU6Weud5x+7jxuNJ7kzGE+Dof0mIGoioun+8CAu2j843r4zyFff3Znftzu8d1DUbpUTgqHD\nU4lOnFy0cN+llU76HUERAAAAADwoZ/4byVrrHyml/OkkN2qt41LKTpJPza6XUn5DrfUfHn2ulPKt\nSf5cknaS76u1/ndHrpp4E0oAACAASURBVPeTfH+SfzvJu0l+W631y821P5rkdycZJ/mDtdYfuds7\nSyk/kOTFJMMkn03y+2qtw7P+jAAAAPAw6bRb2VptZWu1+77eMxxPcudQMHQwpWh2bhYWzeKh2/uj\nvHN7kC+/u9PcN8z+6O7LnSVJp1Xm04bWup30u630O630O+2sdKfbfqfVnJ/tN9sj+yvz/fbJ72nO\n9driIwAAAABIzjcRKLXWawv7d5LcWbj8p5IcCoFKKe0k35vkNyR5NclPlFI+U2v9wsJtvzvJdq31\n46WUTzfv+W2llE8m+XSSb0zy4ST/dynl65pnTnvnDyT5D5t7fjDJ70nyF8/zMwIAAMCy6bZbubzW\ny+W13vt6z2B0EBTd2j+8rNlJU4p2B+Psj8bZH02mS6XtDrI3nEzPDSfZH03394b3Dozu5VA4tBAZ\nrSxGRgvx0KHIaOGZ02Kl06KkfqeVVkuEBAAAAMDD4f3NKD/spL/1+lVJXq61/kKSlFJ+KNMpQosh\n0KeS/Ilm/28m+fNl+p/xfSrJD9Va95P8Yinl5eZ9Oe2dtda/N/+YUj6b5Ln79LMBAADAY6/XaaXX\n6eXK+vsLio6qtWYwbsKgWSjU7O/No6Hm3GiS/eE4e812fm7xvoXIaPae2/uDU98zntT39f29duvE\ncOjyWjdX1nq5vNad72+tLp5rtqvddNqt+/SnCQAAAMDj7H6GQCf9rdlHkryycPxqkl992j211lEp\n5UaSJ5vz//zIsx9p9u/6zlJKN8nvSPKHTvrQUsrvTfJ7k+SjH/3oqT8QAAAAcPFKKU1A005WPvjf\nfzSLkBYmFB0Lig5FSfeOlXb2R7mxO8yX3riZ6zvDXN8d3jU4urTSOTUWutKERJfXerm8cG1zpWsa\nEQAAAACH3M8Q6GHyF5L841rrPznpYq31Lyf5y0ny4osvvr//7A8AAAB4pHXarXTaraz3L+73qLXm\n1v4oN3aG2d4Z5PrCdrZ/Y3e63d4Z5pVrO9neGebm3jD1lL+5aJVka/XwZKEra71srZ0QEq0eTCba\n6HcyHcYMAAAAwLK5nyHQl08491qS5xeOn2vOnXTPq6WUTpKtJO/e49lT31lK+eNJrib5fef+CQAA\nAAAuQCklmyvTKT7PP7F25ufGk5qbu9OJQtNwaBYRDXOjiYau7w5zfWeQt2/v5+feup3rO8Pc3h+d\n+s5OqxyaMHRs6tAsJJpdW5+GRKu99v34owAAAADgAp0rBCql/Nokv2TxuVrr9zfb33LCIz+R5BOl\nlBcyjXU+neQ7jtzzmSS/K8k/S/LtSX6s1lpLKZ9J8oOllP8xyYeTfCLJZ5OU095ZSvk9Sb4lyTfX\nWifn+dkAAAAAHjbtVsmV9V6urPfyQtbP/NxwPGmmDQ2mEdGdwTwYmoVEs/1Xt3fy+a9NQ6O94el/\nndLvtI4tX3ZlvZut1ePLl6322um0Wul1SrrtVrrtVjrtkl6zP/1VTCYCAAAAuM/OHAKVUv5qko8l\n+akk4+Z0TfL9pz1Tax2VUr4ryY8kaSf532qtny+lfHeSl2qtn0nyV5L81VLKy0muZRr2pLnvh5N8\nIckoye+vtY6bbzn2zua3/EtJvpLknzV/kfS3aq3ffdafEQAAAGAZdNutXL3Uz9VL51vvbG84PrJs\n2WA+jWi2rNl0GtEwP//27Vz/6vSe4fi9rbzeaZV5FDQPhGbxUGth/8g9vea4Mz8uTWx0sN/ttNJp\nlfQ6rRPfca/9XvN8t9OaB0ztlnAJAAAAeLiVetpC80dvLOWLST5Zz/rAI+LFF1+sL7300oP+DAAA\nAIBHUq01O4PxQjw0zP5onOF4ksG4ZjiaZDQ52B+OJxlNagbN/vRXPfP+YDR9fjieZDiavnc0mTTv\nrhmML25IdCk5FiL1joRE/W4rl1a6udTv5NLK9NdGvzvdrnSyudLJpZVuNubXp9f6nZYJSQAAAMCp\nSimfq7W+eK/7zrM02M8keSbJ6+/5qwAAAABYKqWUrPc7We938tyVB/010zBpPKnzKGg4nmQ0i4gW\njgfjg3joWGy08MzR4+lzTXw0nmQwqk3cNN3fG45zY3e65NrtvVFu7Y2yOxzf87u77XIoEJpuu9ls\nAqJLxwKig4hodu9Gv2NqEQAAADzmzhMCfSjJF0opn02yPztZa/22+/5VAAAAAPAelFLSaZd02slq\n2g/6c5Ikw/Ekd/anUdDNveE8ELq1P92/2Rzf3h9Ot83xq9s7ud08d2tvmMkZ5nSv99oHgdAsFjph\nOtFpMZHpRAAAAPBoO08I9Ccu6iMAAAAAYFl1261cXuvl8lrvPb+j1prd4XgeBd2ax0OHj2fXZwHR\njZ1BXt3emQdG72U60SwgOm060eZKd35+vTeNitb67fQ7D0eIBQAAAI+TM4dAtdZ/dJEfAgAAAACc\nrJSStV4na71Ont5cec/vGY4nud0ERDf3FiYQ7R+OiW4vHN9uphMthkdnmU7UbTfLxjVx0Hq/PT9e\n73eyMTvud7LeazfnOgfn+u2FZzvpdVrv+ecGAACAx8WZQ6BSyq9J8r8k+YYkvSTtJHdqrZsX9G0A\nAAAAwH3UbbdyZb2XK+vvbzrRzmB84jSiO/uj3BlMt7f3x9Pj/WlAtDOYTjR648be/NydwTjjs1RF\nSXrtVtb77awdCYs2+p3m3EFYtHEkMDo4157fLywCAABgGZ1nabA/n+TTSf5GkheT/M4kX3cRHwUA\nAAAAPJxKKfO45v1MJ0qmUdH+aNIEQ+MmDhrNj+fB0P4otwej7CyeG4xy8z6ERQcx0eGpRLNwaK23\neG56z2KMNLvWbQuLAAAAePDOEwKl1vpyKaVdax0n+d9LKf8iyR+9mE8DAAAAAJZZKSUr3XZWuu08\nufH+3zcLi27vT6OhWTA0i4nm55qwaDE4moVFrzdh0Z33EBat9tpZ67Xn27Vu5/i5Xier3dl+O6u9\nzsH1bnO9t3i9nV67lVLK+/8DAgAAYOmdJwTaKaX0kvxUKeVPJ3k9if/MBQAAAAB4KCyGRbnPYdHi\nEmez48Ul0HYG4+wOptud4Ti7g3F2BqNc3xnka9fH0+vD6bm94eRc39Fulax12wtRUecgFOqecO6E\nqGi1iZAWn1nrdbLSFRkBAAAsk/OEQL8j0/Dnu5L84STPJ/mtF/FRAAAAAAAP2mJY9KGN/n1772RS\nmyioCYaGTUC0Pw2FZtcOxUXzew/O3dob5a2b+9kZjprwaBob1bMNMWp+xizERIenGM0Do277+LlD\nIdLxKUazyUftlsgIAADgg3TmEKjW+pVSymqSZ2utf/ICvwkAAAAAYGm1WiXr/U7W++f57zTPptaa\nveEkO00sdBAVLcRCzfHB5KLD0dHsme2d4cG5JkI661JpM/1O69D0oWPRUPfIJKOF+Gh27rTYyJJp\nAAAAx535nzRLKf9+kj+TpJfkhVLKL0/y3bXWb7uojwMAAAAA4OxKKdN4ptfOk/f53bXWDMaTI/HQ\n8ahod2Fq0aF7hwfTjd69PcgrszipCY8Go/u7ZNrqkdjopElHx5ZNmz3bbadlmhEAAPAIOs9/cvIn\nkvyqJP9PktRaf6qU8sIFfBMAAAAAAA+ZUkr6nXb6nXYur93/94/nS6aNToyNTlsybW94ODa6vT/K\n27f2D997ziXTkhxMMOqesOxZrz0PiVa67fS77fQ7ren+wvbYuW4rK53D237HEmoAAMD9c54QaFhr\nvXFk1Oo5/9EJAAAAAACOa7dKNvqdbFzQkmn7o8mhZdJmYdFBdHRybDS/3kw6euvW3qHze8Nx9s85\nzeiobrscCoNm25XuCTHRXbZHg6SDdzTbbjsrnYNtp926T3/CAADAw+I8/0T1+VLKdyRpl1I+keQP\nJvnxi/ksAAAAAAC4P0opWelOp/c8sd677++fhUb7w0n2R9MwaBYInXe7P5xkbzQ+eNdwkmt3BofO\nL27PO+loUbtVDoVB/VOCooPt8bhodWFq0mxJttWFaUmzSUorHcutAQDAB+E8IdAfSPJfJdlP8oNJ\nfiTJ91zERwEAAAAAwKNiMTRKuh/Y71trzXBcD8KgWUw0GmdvISRaPL77djFIGufG7jD7C8d7C9vx\n5PwF0uJya6snhEPHzh+LijrHn1m4r2vCEQAAnCsE+mTzq9P8+lSSb0vyTRfwXQAAAAAAwF2UUtLr\nlPQ6rWTlg/29R+NJdofTJdb2BpPsDJsl1xaXXRsePt4bzpZmm2S3uX9nMM71nUG+dv3w/bvD8087\n6rbLwRSibruZVjSNj1aOxka9dtbOEhwt3NfvtFKKqUYAADzczhMC/UCS/yLJzyR5fwseAwAAAAAA\nj6xOu5VL7VYurVzMBKTZcmsHQdEsIJrGRHtHY6PBODsL+0fjo3fvDKbvWDg/HJ+vNColh4KhXqeV\nXruVbruVbrs024X9+fWDa73OkePZ9c7icSuddjn87hN+r17nyHG7Zfk1AADOFQK9XWv9Oxf2JQAA\nAAAAADm63NrFGM6mGs1ComNTjE4PjvYG4wzGkwzHkwzHNcPxJIPRJDuD0cHx7PqoZjSZXp9dG72H\npdXOot0qh8KgY1FR54QI6YzR0uJ+v9OaTktqoqiTlntb7bbTsVwbAMAH7jwh0B8vpXxfkh9Nsj87\nWWv9W/f9qwAAAAAAAC7QLGrZvKCpRnczmdQMJ00YNJoshEMHUdGhyGg8yXA0DYgOrtfmntn1I8cL\n545GS7MI6ube8d/r6PvfT7R0dLm2lSYUOnR8ZIm22fGh5dy67awsLOG2eNwVGwEAHHKeEOg/SvJv\nJOnmYGmwmkQIBAAAAAAAcEatVkm/1U6/k6T/oL/m7o5GS4MmFJpNSZottbY4TWm+bfYXJyvtNeeu\n7wyP3bc/mtz7g47otMqxaUQrJwRDi8u6HY2OFuOjeWy0cNxtl5Ri2TUA4NFwnhDoV9Zav/7CvgQA\nAAAAAICHygcZLY0n9VBUNNufR0RHwqHFkGgeGy0ERzf3htNQ6dB954+N2q2StSYqWuk2S6W1pkut\ndVrTZdU67ZJOu5Vee3qu22ml2yrpHFlerTPbb832D65P750ed1qt9Jr3z5Z3W7y/0zr+3vl3tIRL\nAPA4O08I9OOllE/WWr9wYV8DAAAAAADAY6ndKlnvd7LeP8+/vjqfyaRmb3Q4GNodTLIzGB0cL0RF\nB2HSJLvDUXYH4wwnNaOF5dRG45rBaJI7g3GzhFtzrrk2XFiabdRMV7po3VmQNAuHjgZJd7vWhErd\nJj7qNec67ZJ+c1+vs/CrOe7Pj9vpdabvmp9vzi0+Y9ISAFyM8/wvqV+T5KdKKb+YZD9JSVJrrd90\nIV8GAAAAAAAA91GrVbLW62Std3Gx0b3UWjOa1IVYaJLRZBoTjSYH4dBBRNQER5Mj8dGR0Gg0mS7f\nNpzM7jl8/3A8WYiYDl+7PRqd8t4mXhpN9wfj809Uupte+3hQdOr+CQHSLD7qnnBP/4T3dI88d9Lv\nJU4C4FF3nv+V860X9hUAAAAAAADwGChltgRYspr2g/6cc6m1zgOiwWiSQbPdHx0+Hi6en907mmQw\nGmfQBEbzZ0aTDMbjhf3ZtmYwGmdnMMr13cV3LN4z3U7u45ClbrMU2/GpR+35dKTZNKXewkSl3pHp\nSr3OwRJuswlJs2Xjeu3DE5cWl4frzaczLSwd1zzfbR3eb7VESwAcd+YQqNb6lYv8EAAAAAAAAODh\nVUpJrzNd8mu9/6C/5sBofDg42p/FSOPDAdH+wvFZY6bF52ZTlgbjSe7sj3J9FkUdmc50eLrTxS0F\n126Vg1jolEDp5EhptjzcdL/bbjWR0jREWtxffPfBsm4nT2JavGd2ffasSUsAH5wHN/cQAAAAAAAA\n4H3qNNN11noP+kuOm01Rmi6xVpuJSAfLsA3Hh5dqO/F4VDM8skTb4pJvx985XSZuNJlOVho2QdOd\nwbh5x0m/58G76gW0S0djoeMR0eHl23oLIdLser9zUoRUDkVHx97Z/J4nPzv9ZbISsGyEQAAAAAAA\nAAAXYD5FKa3kIQyVTjKeHA6EBgsTlmYTj4bj2eSleuKEpcXpSIMj95x076AJnnZ2h/NYaXru8FJw\nw3HN+H6uBZfpZKXefOpR+1BctBgpdU6YvnR0wlK30yzhdmi/NEu6HX7u8P7p1w7/3qYrAfcmBAIA\nAAAAAAAgyTSMabfaWem2H/SnnGgWKu2fEhfdLU46NWI64Z7pudos/TY9tzMYnz5RaTSZTm66gFhp\nUadVjodDzRJv3dYp++8xQuq0DyYzzfZPDqKaJeZmQdXCfrdl6hJ80IRAAAAAAAAAADwSHvZQKUkm\nkzqPgubLsU3qoWlHi0u7jRaiosG4zsOjwcIyb7NwaXH/7kvETbI/nOT23mj6nnnQtBg3Hdx7EUvC\nzbRbZR4FdTutk2OmeUxUTp3C1JktIdfsT4On4xOXOq3pVKfO4kSm1uF3nPz7HP79TF/iUSUEAgAA\nAAAAAID7pNUq6bfa6XeS9B/015zNbNLSbEm20WQhNprMIqQmWBodhE2jyfF4aXTC1KTRPECqJ09U\nGjeR06jm1nA0358GVQvB0+J3jC+wXso0YJpFS512mYdFnSZqmp2bbst8CtL8vtZBZHTi9YX99vyZ\nw/ctPn/8Ow6f77ZaabdLus07Dn+nsOlxIgQCAAAAAAAAgMfYozBp6aha66EoaDg+PF3paGw0Gh8s\nHzfbn9+/MLHpIHyaXa/zSUyj8UGINFo839y7N5xkNB4dOjc88p7RPHy62GXkjppGRgtxUDNRaTEa\nmk1v6rRb+cH/+Fen33l0/u+BA0IgAAAAAAAAAOCRUkqZL+f1qKr1cGg0njQTlWbbE+KhYxHSCaHS\nQbB0+H0nP79wfVwznNSMJ5O0TRB6ZAmBAAAAAAAAAAA+YKWU9DolvTy6MRMPH//XBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAA\nS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAA\nAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAA\nAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AI\nBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS0AIBAAAAAAAAAAAS+DCQ6BSyreWUn62\nlPJyKeWPnHC9X0r56831/6+U8ksWrv3R5vzPllK+5V7vLKV8V3OullI+dNE/GwAAAAAAAAAAPCwu\nNAQqpbSTfG+S35jkk0l+eynlk0du+91JtmutH0/yZ5P8qebZTyb5dJJvTPKtSf5CKaV9j3f+0yT/\nbpKvXOTPBQAAAAAAAAAAD5uLngj0q5K8XGv9hVrrIMkPJfnUkXs+leT/aPb/ZpJvLqWU5vwP1Vr3\na62/mOTl5n2nvrPW+i9qrV++4J8JAAAAAAAAAAAeOhcdAn0kySsLx6825068p9Y6SnIjyZN3efYs\n77yrUsrvLaW8VEp56e233z7PowAAAAAAAAAA8FC66BDooVRr/cu11hdrrS9evXr1QX8OAAAAAAAA\nAAC8bxcdAr2W5PmF4+eacyfeU0rpJNlK8u5dnj3LOwEAAAAAAAAA4LFy0SHQTyT5RCnlhVJKL8mn\nk3zmyD2fSfK7mv1vT/JjtdbanP90KaVfSnkhySeSfPaM7wQAAAAAAAAAgMfKhYZAtdZRku9K8iNJ\nvpjkh2utny+lfHcp5dua2/5KkidLKS8n+c+T/JHm2c8n+eEkX0jy95P8/lrr+LR3Jkkp5Q+WUl7N\ndErQT5dSvu8ifz4AAAAAAAAAAHhYlOnwncfXiy++WF966aUH/RkAAAAAAAAAAHCiUsrnaq0v3uu+\ni14aDAAAAAAAAAAA+AAIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAA\nYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAA\nAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAA\nAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkI\ngQAAAAAAAAAAYAkIgQAAAAAAAAAAYAkIgQAAAAAAgP+/vfuNtS2t7wL+/Z1z7p0ZZmhh2pEQwDJt\nSRSaSnUk0VZD2lRp34DJ2IK2QWNSX9CExje0RtNKNGmNim9qaU1JpooOFMFOfGNrRZQXDgx0KAVE\nR6TpkJGh5Y8MDPfec87ji732uWuvs/afc+85d5+7zueT7NlrPetZz3rOnbOfvc5a3/1sAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABg\nAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAA\nAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAA\nAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSBAAAAAAAAAABgAgSB\nAAAA4Cy0luxfSQ4Pt90TAAAAAOCC2Nt2BwAm5fAgObiWHF6bPR9cSw6uduv7veVri/UO98+oQ3UG\nTZ5Fm7vJ7l6ys+SxeynZ2e2V9dZ3L82ea+ds+gYAXBz7V5Orz3SPr80eV756fflqt3xlvn1Z3d72\n1oWAdu9ILt2Z7N214fOdyaW7bvx599J2/y0BAAAAgK0QBOJ8efZLswvmtZOkuhv7O9dv8FeNbOst\nH5WXQMDtqrUuTLMkMLNpsOaoXldn6baxer3l4X6HXf2FY/eWm097b9VRSGhvFhSah4Tm6zu99ZXB\no73x0NGxUFLvWP1Q0vBYx/qyt7htXWBr7Xh2M/uv23fNoW+2760lad1y95952cK2Nr6ttRztfGxb\nVmy7kbaHdW+i7aNt646/yfOafmz0fKv7kdn79fw1UDvXX0e1u6JsN9nZGSkbLI+VHe2zs2HZ7qCP\nq8q6Nk5La7P39lUYwAAAEtZJREFUovn71OH+7L1xXnZ4bbC+P3svOlz1OOi11Ss7vDZYHzvmSB8O\nRvqw8phd3XbYG2cvXR8bdy8tWd9Ldi9fX950n6PyU9zPueX5c3hwPHQzFtC58sxinWPhnt72g6ub\nH//yPcnlu7vHPbPH3fcl996/WHbpztlr4dqzyf43Rp6/kXzjK8m1zyf7z87W+883qnZHAkInCSLd\nQFDJ6wQAAAAAtk4QiPPlv/x88ujbT6+9YwGhYXioBtvGQkU7s/vcp9bWmkDT2huohzd207YdDsqy\n4b6HI2Ub7HvseBvsO7/ZeNZ2+jcVe4+d4fLl2fLeHdeXl9bbW1wetr9wrMvHb27u7J7+jZOjoMKp\nNno2TbZVN7Svrbj5fG3kZvPIze1VN8jn7e1fOX68Yze6h9tuwe8r3JTqvT+d9Pks98/sfeLwYPZo\n/ef92VfoDMvOvRoJHu2Ml6WNh2Tm49Y2Q6VHQaexoGN/ZrYlj0t3DQKYg7aqjs+e1x9TD/ZnwYh+\neT+8O69ztO8tHIc3ChetCR0NA2RVI2U7i+G0GiwfK1vVzop9dnZG2hkee5N2uuMv2+foNd9mwZdj\nAZ3eLDvLAjpXejPu9Ote+/rm///27lwM51y+O7nzm5JveuFi2R295VXll55zugHAZeZfLTYWEFp4\nHgsYrXl+9svXg0j99m5mzN0bCwjdMZsNaeG8+nK3fGm2bWG52z5cHt1/bHlevzsvBwCAi+joenv/\nesvw+kvvmszRB3h612aO1nsf7jnar7t20w676zj9azk3u60trm+07fD6taaFYxys2DZWb922jFwf\n2R2U9T9otje+bdjG0fWYZW3eaLtj7QyP1b9esaI9M/ID3FZcFeN8+a4Hkxe8YvHErQ2DJf3yw0F5\nW1I+qL8QclnW1mEXUFjXVnezbm1b87DLweq2Vt1YPQoPDbbNb0Is3XdndbvL9l12vLU3e9cdb8nx\na/f6BfybDdYsrecT/Zyy+R/FS0NJw+DRSMhppTXhq7XZrBUV1obF1h37FPYfjgVLx5bhtsFzsuG2\nsXZutO2s2LZJ20v6csPBm/74PcFxrh8O6l+IOgoUrSvrXdhaVXZ0YWtYdrCkD/OywQW0hYtjg7L+\nbEcrZxZbMjPZpsGcYzOfjcxWtvAVi6c8s9GtMD+3Gg0VjYSM+gGihfUl+x0LIa1qc6TetWcX6x39\nPgwvKM5/R9ri7+d8+1kEcW+Veei9f968zs7eSAjn7uQ59y7OwnPHc5cEdgZll++5fQMhVbPZdy7d\nmdx1i455sL9B8GiD5/0rXejoSnJwZfa6+PrXutfWla58vny1m3Xzyun+LLUzEipaEUI6ChudNHg0\nElza6/4uGc4SeLSc2fpGyxkvH233pMsnON6y5VXHOGqqv96WlK/bdprtnXb/lvV1cH53w8u5iX1P\nsrxpn7t6K5cri9cGetuWXmtYci3hpNc6FtrPCeufwXn1/LrP8P194Wbm4CbnsfOCTcpHbnIeKx8e\nf+xG57rykTbn5yvVCxr3P0S3szO+7ShQvGzb/INzY+Ujj4Vtg7aPbevaPtbesm1r+t0//1+4kd4P\n/h+sqdNfH968X1Ln6Lg3UaeNHXuwz7E6vfW0ketyg+t6x5aXfdhuSdnojKHD/fauf5Dv2PIt/GAe\nJ3d0TX/ZmDMy7q3ddgMBj357q/px7JpDPzAzDNsMrk2Mra8K6fSvUawM6Yzsd1v9Hdkfc3ePj83H\ntvXeGxa2Dcbs/rb5+f2xbYN667bNP+B0bIxfNp52ZUcfQl02vo8999o9N0bOCU+0fjNtnFYfbrDP\nVb3rdt17yPBbAObvSwvbVtVdt76urZO0fZu97y2cQ/fvGc/Xe/dWR+sM7r0eqzPyWKjTG/OT62NC\n/2+I/vlgesv97aPlJ5xAYqG8Njhuv5+3yf9vzsRtejWUyXrJn509AG4XOzvJzuUkl7fdE5i2nZ0k\nO7M/XGGuqruQ381GNFX9m4TrwkPrbvgtDSGdwj4LF9EH++zsLgZzlgV27rhndmPGhYrt2d1Ldp87\nC1rdaq1dD+HNH/tXlix3waGj5auDUNHYvtcG+3RlV7+eHHxptrzseLfF7HTA2dg0OLSTZOQ9+7a6\nEbvEsRuzI7MLpnL95x+5gTK8uTKFf5fzZGGGiLGZHJbNItHbZz6759I6wza6siTHQvHLlvevJodf\nO15+uN+95w5C+bfi9+SmQkp7OfrdHw3JZrC8SZj2Rutlw3qndNz5+qazr4yGbHr7TcHw9XM0w0v/\ntdOfXbU3M0t/v91Ls9k1x/ZbqLtz/PXaP+aqY4x+lfqS9dFjjM0Gu7PhtrGwj7//VjoKRJw0+DlW\nbxgqGwaPRsJI89fwwXxW5hVjwkbry8pups3TWl/Rv/m/2dG3CPQ/FLbfm+F6uK2/3v+A8P52xr/h\nBw83CRXV7uzfZGlgph/Q6dfph3FGgjiHg/V+HU7JJsGhNYGlNz8+C1Jy2xEEAgAAOM/mgSd/vjF1\nVbOZdPbOYcD68HAkbLQieDR/rJo1Jbl+we2GluedW3GMTZZPdLyRT8uuXe7182hx5BPB67Zt3N6w\n2s22d4P9O/HMTxvcMD615ZxOO0d9HSwfPSfXZ0sebjscKWvXL/qfqP6w/Zyw/rz9nLD+yDH7M9gs\nm71g2U3QYzdOu31Gy+ez7JykfGzmhCUzHgwDP2dh009xL2wb3HRatm3VTaWFm1JjN6zWBJhGPzl+\nkMVwzM7iDbRNvpblWJ2RoM6yOlO+iT6/8Xxsps6rvdk5+8vDENLIDJ8nXR6GlK4+sxhYmttk9rSj\np03qbdreinoLb1k32d7othoZc1bNzNIfpzbYtjATS2XpODU6Vm4wQ8zSfgyOtWzbMJQDZ6V/DhE3\n4ydl+G0DB/3ldaGiE6zfbFuHB1mcDbE/S1YvOLJqpsXR7SOPY3VqcKxhnRrpT79OjfRnXmesDyPH\nT7Lw90H/PHb0G2DakvKx+m1FO/3ytsFxD8+mn7W7hRcHp8GVZAAAAIBVdnaSne5r2gC4efObOtk1\n6yfLzWck8f4LwBT5tgHgDIkpAwAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAA\nAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABAgCAQAAAAAAAADABJx5EKiqXlNVn66qJ6rq\np0e231FV7+q2P1pVL+1t+5mu/NNV9ZfXtVlV93dtPNG1efmsfz4AAAAAAAAAADgPzjQIVFW7SX4x\nyQ8leXmSN1TVywfV/laSL7XWvjPJ25L8Qrfvy5O8Pskrkrwmyb+oqt01bf5Ckrd1bX2paxsAAAAA\nAAAAACbvrGcEelWSJ1prn2mtXU3ycJLXDuq8NslD3fJ7kvxAVVVX/nBr7Upr7f8keaJrb7TNbp/v\n79pI1+brzvBnAwAAAAAAAACAc+Osg0AvSvIHvfUnu7LROq21/SRfSfItK/ZdVv4tSb7ctbHsWEmS\nqvqJqnqsqh77whe+cAM/FgAAAAAAAAAAnC9nHQQ6l1prv9Jae6C19sB999237e4AAAAAAAAAAMBN\nO+sg0OeSvKS3/uKubLROVe0l+eYkf7Ri32Xlf5TkeV0by44FAAAAAAAAAACTdNZBoA8neVlV3V9V\nl5O8PskjgzqPJHljt/xgkv/cWmtd+eur6o6quj/Jy5J8aFmb3T7v79pI1+ZvnOHPBgAAAAAAAAAA\n58be+io3rrW2X1U/meQ/JtlN8o7W2ieq6q1JHmutPZLkV5P8q6p6IskXMwv2pKv37iSfTLKf5E2t\ntYMkGWuzO+RbkjxcVf8wye90bQMAAAAAAAAAwOTVbCKdi+uBBx5ojz322La7AQAAAAAAAAAAo6rq\nI621B9bVO+uvBgMAAAAAAAAAAG4BQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgA\nQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJgAQSAAAAAAAAAAAJiAaq1tuw9bVVVfSPL72+4HC741yR9u\nuxMAt4gxD7hIjHnARWLMAy4SYx5wkRjzgIvEmAfny7e11u5bV+nCB4E4f6rqsdbaA9vuB8CtYMwD\nLhJjHnCRGPOAi8SYB1wkxjzgIjHmwe3JV4MBAAAAAAAAAMAECAIBAAAAAAAAAMAECAJxHv3KtjsA\ncAsZ84CLxJgHXCTGPOAiMeYBF4kxD7hIjHlwG6rW2rb7AAAAAAAAAAAA3CQzAgEAAAAAAAAAwAQI\nAgEAAAAAAAAAwAQIAnGuVNVrqurTVfVEVf30tvsDcJaq6rNV9fGqeryqHtt2fwBOU1W9o6qerqrf\n65XdW1W/VVX/q3t+/jb7CHBalox5P1dVn+vO9R6vqh/eZh8BTktVvaSq3l9Vn6yqT1TVm7ty53rA\n5KwY85zrAZNTVXdW1Yeq6mPdmPcPuvL7q+rR7v7tu6rq8rb7CqxWrbVt9wGSJFW1m+R/JvnBJE8m\n+XCSN7TWPrnVjgGckar6bJIHWmt/uO2+AJy2qvqLSZ5J8mutte/qyv5xki+21n6+C30/v7X2lm32\nE+A0LBnzfi7JM621f7LNvgGctqp6YZIXttY+WlXPTfKRJK9L8jfiXA+YmBVj3o/EuR4wMVVVSe5u\nrT1TVZeSfDDJm5P8nSTvba09XFVvT/Kx1tovbbOvwGpmBOI8eVWSJ1prn2mtXU3ycJLXbrlPAADc\ngNbaf03yxUHxa5M81C0/lNnFU4Db3pIxD2CSWmtPtdY+2i1/NcmnkrwozvWACVox5gFMTpt5plu9\n1D1aku9P8p6u3Hke3AYEgThPXpTkD3rrT8YJNTBtLclvVtVHquontt0ZgFvgBa21p7rl/5vkBdvs\nDMAt8JNV9bvdV4f5ihxgcqrqpUm+J8mjca4HTNxgzEuc6wETVFW7VfV4kqeT/FaS/53ky621/a6K\n+7dwGxAEAoDt+b7W2p9O8kNJ3tR9pQTAhdBm31Hse4qBKfulJN+R5JVJnkryT7fbHYDTVVX3JPl3\nSX6qtfb/+tuc6wFTMzLmOdcDJqm1dtBae2WSF2f2bS5/YstdAm6AIBDnyeeSvKS3/uKuDGCSWmuf\n656fTvK+zE6qAabs81X1wiTpnp/ecn8Azkxr7fPdBdTDJP8yzvWACamqS5ndEH9na+29XbFzPWCS\nxsY853rA1LXWvpzk/Un+XJLnVdVet8n9W7gNCAJxnnw4ycuq6v6qupzk9Uke2XKfAM5EVd1dVc+d\nLyf5S0l+b7u9AjhzjyR5Y7f8xiS/scW+AJyp+c3wzl+Jcz1gIqqqkvxqkk+11v5Zb5NzPWBylo15\nzvWAKaqq+6rqed3yXUl+MMmnMgsEPdhVc54Ht4GazdIK50NV/XCSf55kN8k7Wmv/aMtdAjgTVfXt\nmc0ClCR7Sf6NMQ+Ykqr6t0leneRbk3w+yc8m+fdJ3p3kjyf5/SQ/0lr74rb6CHBalox5r87sqyJa\nks8m+duttae200OA01NV35fkvyX5eJLDrvjvJnk0zvWAiVkx5r0hzvWAiamq707yUGb3aXeSvLu1\n9tbufsbDSe5N8jtJfqy1dmV7PQXWEQQCAAAAAAAAAIAJ8NVgAAAAAAAAAAAwAYJAAAAAAAAAAAAw\nAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAAAAAAAAwAYJAAAAAANxSVfXqqvoP2+4HAAAA\nwNQIAgEAAAAAAAAAwAQIAgEAAAAwqqp+rKo+VFWPV9UvV9VuVT1TVW+rqk9U1W9X1X1d3VdW1X+v\nqt+tqvdV1fO78u+sqv9UVR+rqo9W1Xd0zd9TVe+pqv9RVe+sqtraDwoAAAAwEYJAAAAAABxTVX8y\nyY8m+d7W2iuTHCT560nuTvJYa+0VST6Q5Ge7XX4tyVtaa9+d5OO98ncm+cXW2p9K8ueTPNWVf0+S\nn0ry8iTfnuR7z/yHAgAAAJi4vW13AAAAAIBz6QeS/JkkH+4m67krydNJDpO8q6vzr5O8t6q+Ocnz\nWmsf6MofSvLrVfXcJC9qrb0vSVpr30iSrr0Ptdae7NYfT/LSJB88+x8LAAAAYLoEgQAAAAAYU0ke\naq39zEJh1d8f1Gs32P6V3vJBXKcCAAAAuGm+GgwAAACAMb+d5MGq+mNJUlX3VtW3ZXY96cGuzl9L\n8sHW2leSfKmq/kJX/uNJPtBa+2qSJ6vqdV0bd1TVc27pTwEAAABwgfikFQAAAADHtNY+WVV/L8lv\nVtVOkmtJ3pTka0le1W17OsmPdru8Mcnbu6DPZ5L8za78x5P8clW9tWvjr97CHwMAAADgQqnWbnT2\nZgAAAAAumqp6prV2z7b7AQAAAMBxvhoMAAAAAAAAAAAmwIxAAAAAAAAAAAAwAWYEAgAAAAAAAACA\nCRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACRAEAgAAAAAAAACACfj/hQx2uebc\nveQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPwAAAJcCAYAAABn6yjlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xmc5Xdd5/v39yxVp7au3tNJOqE7\nC0lHVg0MCI4wCCQEcJtBdBhHxhmccbwjF0WDA14XRhlGERzBZa7ovXJH4aIoQwKEJYiAKM2ihHSH\n7KQ7W6fTW+3bb/6o09VVvXe6q09X1/P5eNTjnPP7/c6vPr965JE/ktfj+y1VVQUAAAAAAAAAAFga\nap0eAAAAAAAAAAAAOHmCHwAAAAAAAAAAWEIEPwAAAAAAAAAAsIQIfgAAAAAAAAAAYAkR/AAAAAAA\nAAAAwBIi+AEAAAAAAAAAgCVE8AMAAAAAAAAAAEuI4AcAAABgGSqlbCqlVKWUxhm+732llO85k/cE\nAAAAYCHBDwAAAAAdIQ4CAAAAeGIEPwAAAAAsG0db0ehUVzk606siAQAAAJwqwQ8AAADAaWivUvPG\nUso/llKGSyl/WEq5oJTy0VLKgVLKJ0spq9rXPqeU8oVSyt5Syj+UUl4w7z6vLaVsa3/nnlLKT8w7\n94JSyo5Sys+UUh4tpTxUSnntScx2Qynlq6WU/aWUB0opv3SUy/5NKeXB9j1/dt53n11K2dr+7iOl\nlHfMO/fKUso32s/xmVLKlmP8/j8upbz18Odov/+TJJcm+V+llKFSys+d6G90nOccbP/dHyql7Cyl\nvLWUUm+f+7FSyudLKb9VStmd5JeOcaxWSnlzKeX+9t/4/y2lDLbvcXD7sx8vpXwryadPNBMAAADA\nYhL8AAAAAJy+H0zy4iRPTvKKJB9N8gtJ1mX2v7/8p1LKxUluSvLWJKuT/GySPy+lrGvf49EkL0+y\nIslrk/xWKeXb5/2ODUkGk1yc5MeTvPtgSHQcw0l+NMnKJDck+Q+llO877JoXJrkyyUuS/Py8Lbbe\nleRdVVWtSHJ5kg8kSSnlyUn+NMnr2893c2ajna4TzLJAVVX/Ksm3kryiqqr+qqrefhJ/o2P54yRT\nSa5I8sz2s/zbeef/SZJ7klyQ5L8c49iPtX9emOSyJP1Jfuew3/PdSbYkeempPCsAAADAmSb4AQAA\nADh9/72qqkeqqtqZ5G+S/F1VVV+tqmosyYcyG6G8JsnNVVXdXFXVTFVVn0iyNcnLkqSqqpuqqrq7\nmvXXSW5J8l3zfsdkkl+pqmqyqqqbkwwluep4Q1VV9Zmqqr7e/n3/mNlQ57sPu+yXq6oarqrq60n+\nKMkPz/t9V5RS1lZVNVRV1Rfbx38oyU1VVX2iqqrJJL+RpCfJd57qH+0ojvs3OppSygXt869vP8ej\nSX4ryavnXfZgVVX/vaqqqaqqRo9x7F8meUdVVfdUVTWU5E1JXn3Y9l2/1P4dowEAAADoIMEPAAAA\nwOl7ZN770aN87k/ypCT/or1V1d5Syt4kz09yYZKUUq4vpXyxlPJ4+9zLkqydd5/dVVVNzfs80r7v\nMZVS/kkp5dZSyq5Syr4k//6weybJA/Pe35/kovb7H8/sikXbSylfKqW8vH38ovZ1SZKqqmba97j4\neLOcpOP+jY7znWaSh+Z95/eTrJ93zQNH+d7hxxY8V/t9I7MrAB3vPgAAAABnXePElwAAAABwBjyQ\n5E+qqvp3h58opXQn+fPMbr/1V1VVTZZS/jJJOc3f+T8zuy3V9VVVjZVS3pkjg59Lkmxvv780yYNJ\nUlXVnUl+uJRSS/IDST5YSlnTPv/UebOX9j12HuX3Dyfpnfd5w2Hnq8M+H/NvdBwPJBlPsvawIOp4\nv+doxx7MbDx00KWZ3SbskSQbj3MfAAAAgLPOCj8AAAAAZ8f7kryilPLSUkq9lNIqpbyglLIxSVeS\n7iS7kkyVUq5P8pIz8DsHkjzejn2eneRHjnLNW0opvaWUb0vy2iTvT5JSymtKKevaK/jsbV87k+QD\nSW4opbyolNJM8jOZDW6+cJR7fy3Jy0opq0spG5K8/rDzjyS5bN7n4/2Njqqqqocyu/3Zb5ZSVpRS\naqWUy0sph29ddiJ/muT/LKVsLqX0J/m1JO8/TkQEAAAA0DGCHwAAAICzoKqqB5J8b5JfyGzY80CS\nNyapVVV1IMl/ymxMsyezYc6Hz8Cv/ckkv1JKOZDkF9v3P9xfJ7kryaeS/EZVVbe0j1+X5BullKEk\n70ry6qqqRququiPJa5L89ySPJXlFkldUVTVxlHv/SZJ/SHJfZqOc9x92/teTvLm9FdfPHu9vdILn\n/NHMRlO3Z/bv98Ecfxuwo3lve97PJrk3yViS/+MU7wEAAABwVpSqshIxAAAAAAAAAAAsFVb4AQAA\nAAAAAACAJUTwAwAAALCElVK+UUoZOsrPv+z0bGfSMZ5xqJTyXZ2eDQAAAOBss6UXAAAAAAAAAAAs\nIY1OD3C2rF27ttq0aVOnxwAAAAAAAAAAgKP68pe//FhVVetOdN2yCX42bdqUrVu3dnoMAAAAAAAA\nAAA4qlLK/SdzXW2xBwEAAAAAAAAAAM4cwQ8AAAAAAAAAACwhgh8AAAAAAAAAAFhCGp0eoJMmJyez\nY8eOjI2NdXqURdVqtbJx48Y0m81OjwIAAAAAAAAAwGla1sHPjh07MjAwkE2bNqWU0ulxFkVVVdm9\ne3d27NiRzZs3d3ocAAAAAAAAAABO07Le0mtsbCxr1qw5b2OfJCmlZM2aNef9KkYAAAAAAAAAAMvF\nsg5+kpzXsc9By+EZAQAAAAAAAACWi2Uf/AAAAAAAAAAAwFIi+OmgvXv35j3vec8pf+9lL3tZ9u7d\nuwgTAQAAAAAAAABwrhP8dNCxgp+pqanjfu/mm2/OypUrF2ssAAAAAAAAAADOYY1OD7Cc3Xjjjbn7\n7rvzjGc8I81mM61WK6tWrcr27dvzzW9+M9/3fd+XBx54IGNjY/npn/7pvO51r0uSbNq0KVu3bs3Q\n0FCuv/76PP/5z88XvvCFXHzxxfmrv/qr9PT0dPjJAAAAAAAAAABYLIKftl/+X9/I7Q/uP6P3vOai\nFfm/XvFtxzz/tre9Lbfddlu+9rWv5TOf+UxuuOGG3Hbbbdm8eXOS5L3vfW9Wr16d0dHRPOtZz8oP\n/uAPZs2aNQvuceedd+ZP//RP8z/+x//Iq171qvz5n/95XvOa15zR5wAAAAAAAAAA4Nwh+DmHPPvZ\nz56LfZLkt3/7t/OhD30oSfLAAw/kzjvvPCL42bx5c57xjGckSb7jO74j991331mbFwAAAAAAAACA\ns0/w03a8lXjOlr6+vrn3n/nMZ/LJT34yf/u3f5ve3t684AUvyNjY2BHf6e7unntfr9czOjp6VmYF\nAAAAAAAAAKAzap0eYDkbGBjIgQMHjnpu3759WbVqVXp7e7N9+/Z88YtfPMvTAQAAAAAAAABwLrLC\nTwetWbMmz3ve8/KUpzwlPT09ueCCC+bOXXfddfm93/u9bNmyJVdddVWe85zndHBSAAAAAAAAAADO\nFaWqqk7PcFZce+211datWxcc27ZtW7Zs2dKhic6u5fSsAAAAAAAAAABLUSnly1VVXXui62zpBQAA\nAAAAAAAAS4jgBwAAAAAAAAAAlhDBDwAAAAAAAAAALCGCHwAAAAAAAAAAWEIEP3TM1PRMp0cAAAAA\nAAAAAFhyBD90xJv/8uv5D//fVzo9BgAAAAAAAADAkiP46aC9e/fmPe95zxP67jvf+c6MjIyc4YnO\nnotW9uQTtz+SL9z1WKdHAQAAAAAAAABYUgQ/HbScg59/87zN2biqJ7/ykdszPVN1ehwAAAAAAAAA\ngCWj0ekBlrMbb7wxd999d57xjGfkxS9+cdavX58PfOADGR8fz/d///fnl3/5lzM8PJxXvepV2bFj\nR6anp/OWt7wljzzySB588MG88IUvzNq1a3Prrbd2+lFOWatZz43XX52f+p9fzf+/9YG8+tmXdnok\nAAAAAAAAAIAlQfBz0EdvTB7++pm954anJte/7Zin3/a2t+W2227L1772tdxyyy354Ac/mL//+79P\nVVV55Stfmc9+9rPZtWtXLrrootx0001Jkn379mVwcDDveMc7cuutt2bt2rVnduaz6IanXpg/ftJ9\n+Y1bvpmXP/2i9Hf7xxEAAAAAAAAA4ERs6XWOuOWWW3LLLbfkmc98Zr79278927dvz5133pmnPvWp\n+cQnPpGf//mfz9/8zd9kcHCw06OeMaWUvOXl1+SxofG859a7Oj0OAAAAAAAAAMCSYEmVg46zEs/Z\nUFVV3vSmN+UnfuInjjj3la98JTfffHPe/OY350UvelF+8Rd/sQMTLo6nX7IyP/DMi/N/f+7e/PCz\nL80lq3s7PRIAAAAAAAAAwDnNCj8dNDAwkAMHDiRJXvrSl+a9731vhoaGkiQ7d+7Mo48+mgcffDC9\nvb15zWtekze+8Y35yle+csR3l7o3XndVaiV528e2d3oUAAAAAAAAAIBznhV+OmjNmjV53vOel6c8\n5Sm5/vrr8yM/8iN57nOfmyTp7+/P+973vtx111154xvfmFqtlmazmd/93d9Nkrzuda/Lddddl4su\nuii33nprJx/jtF042JOf+KeX512fujOv/c7Hc+2m1Z0eCQAAAAAAAADgnFWqqur0DGfFtddeW23d\nunXBsW3btmXLli0dmujsOtefdWRiKi/8jc9kw4pWPvSTz0utVjo9EgAAAAAAAADAWVVK+XJVVdee\n6DpbenFO6O1q5OdeenX+Yce+/NU/7Oz0OAAAAAAAAAAA5yzBD+eM73/mxXnaxsG8/WN3ZHRiutPj\nAAAAAAAAAACck5Z98LMctjRbKs9Yq5W8+YZr8tC+sfzBZ+/p9DgAAAAAAAAAAOekRQ9+SinXlVLu\nKKXcVUq58Sjnu0sp72+f/7tSyqb28TWllFtLKUOllN85xr0/XEq57YnO1mq1snv37iUTxDwRVVVl\n9+7dabVanR7lpDx78+q87Kkb8nt/fXce3jfW6XEAAAAAAAAAAM45jcW8eSmlnuTdSV6cZEeSL5VS\nPlxV1e3zLvvxJHuqqrqilPLqJP81yQ8lGUvyliRPaf8cfu8fSDJ0OvNt3LgxO3bsyK5du07nNue8\nVquVjRs3dnqMk3bjdVvyydsfzX/7+B35zVc9vdPjAAAAAAAAAACcUxY1+Eny7CR3VVV1T5KUUv4s\nyfcmmR/8fG+SX2q//2CS3ymllKqqhpN8rpRyxeE3LaX0J3lDktcl+cATHa7ZbGbz5s1P9OsskkvX\n9Oa1z9+U3//re/Jj37kpT9042OmRAAAAAAAAAADOGYu9pdfFSR6Y93lH+9hRr6mqairJviRrTnDf\nX03ym0lGjndRKeV1pZStpZSt5/sqPuebn3rhFVnT15Vf+cg3zust1wAAAAAAAAAATtViBz9nXCnl\nGUkur6rqQye6tqqqP6iq6tqqqq5dt27dWZiOM2Wg1czPvOSqfOm+PfnobQ93ehwAAAAAAAAAgHPG\nYgc/O5NcMu/zxvaxo15TSmkkGUyy+zj3fG6Sa0sp9yX5XJInl1I+c4bm5RzyQ8+6JFdvGMivf3Rb\nxianOz0OAAAAAAAAAMA5YbGDny8lubKUsrmU0pXk1Uk+fNg1H07yr9vv/3mST1fH2cOpqqrfrarq\noqqqNiV5fpJvVlX1gjM+OR1Xr5W8+YZr8sDjo/njL9zX6XEAAAAAAAAAAM4Jixr8VFU1leSnknw8\nybYkH6iq6hullF8ppbyyfdkfJllTSrkryRuS3Hjw++1VfN6R5MdKKTtKKdcs5ryce55/5dq86Or1\n+Z1P35XHhsY7PQ4AAAAAAAAAQMeV4yymc1659tprq61bt3Z6DJ6Au3cN5aW/9dm86lmX5Ne+/6md\nHgcAAAAAAAAAYFGUUr5cVdW1J7pusbf0gtN2+br+vOY5T8qf/f23sv3h/Z0eBwAAAAAAAACgowQ/\nLAmv/54rM9Bq5r/ctC3LZVUqAAAAAAAAAICjEfywJKzs7cpPv+jK/M2dj+XWOx7t9DgAAAAAAAAA\nAB0j+GHJ+FfPfVIuW9uXt960LZPTM50eBwAAAAAAAACgIwQ/LBnNei2/8LItuWfXcN73xfs7PQ4A\nAAAAAAAAQEcIflhSXrRlfZ5/xdq885N3Zu/IRKfHAQAAAAAAAAA46wQ/LCmllLz55VtyYGwy7/rU\nnZ0eBwAAAAAAAADgrBP8sORcvWFFfuhZl+ZP/vb+3L1rqNPjAAAAAAAAAACcVYIflqQ3vPjJaTXr\n+fWbt3V6FAAAAAAAAACAs0rww5K0bqA7//GFV+ST2x7N5+96rNPjAAAAAAAAAACcNYIflqzXPm9T\nNq7qya9+5PZMz1SdHgcAAAAAAAAA4KwQ/LBktZr1vOn6Ldn+8IF8YOsDnR4HAAAAAAAAAOCsEPyw\npL3sqRvyrE2r8pu33JEDY5OdHgcAAAAAAAAAYNEJfljSSil58w3X5LGhibz71rs7PQ4AAAAAAAAA\nwKIT/LDkPf2SlfmBZ16c937u3jzw+EinxwEAAAAAAAAAWFSCH84Lb7zuqtRrJW/76PZOjwIAAAAA\nAAAAsKgEP5wXLhzsyU9892W56esP5Uv3Pd7pcQAAAAAAAAAAFo3gh/PG6/7pZdmwopVf/cjtmZmp\nOj0OAAAAAAAAAMCiEPxw3ujtauTnrrsq/7hjX/7yazs7PQ4AAAAAAAAAwKIQ/HBe+b5nXJynbRzM\n2z92R0Ympjo9DgAAAAAAAADAGSf44bxSq5W85eXX5OH9Y/mDz97T6XEAAAAAAAAAAM44wQ/nnWdt\nWp0bnnphfv+v78nD+8Y6PQ4AAAAAAAAAwBkl+OG8dOP1V2d6psrbP76906MAAAAAAAAAAJxRgh/O\nS5es7s2/ef7m/MVXduYfHtjb6XEAAAAAAAAAAM4YwQ/nrf/4wsuztr8rv/qR21NVVafHAQAAAAAA\nAAA4IwQ/nLcGWs38zEuuytb79+Tmrz/c6XEAAAAAAAAAAM4IwQ/ntVdde0mu3jCQX//otoxNTnd6\nHAAAAAAAAACA0yb44bxWr5W85eXXZMee0fzR5+/r9DgAAAAAAAAAAKdN8MN573lXrM33bFmfd996\nV3YdGO/0OAAAAAAAAAAAp0Xww7LwCy/bkrHJ6bzjE9/s9CgAAAAAAAAAAKdF8MOycNm6/vyr5z4p\n7//St7L94f2dHgcAAAAAAAAA4AkT/LBs/PSLrsxAq5m3fmRbqqrq9DgAAAAAAAAAAE+I4IdlY2Vv\nV17/PVfmc3c9lk9vf7TT4wAAAAAAAAAAPCGCH5aV1zznSblsXV/+y03bMjE10+lxAAAAAAAAAABO\nmeCHZaVZr+U/v2xL7nlsOO/74v2dHgcAAAAAAAAA4JQJflh2/tnV6/NdV67Nuz51Z/aOTHR6HAAA\nAAAAAACAUyL4YdkppeTNN1yTA2OTeecn7+z0OAAAAAAAAAAAp0Tww7J01YaBvPrZl+Z9X7w/d+8a\n6vQ4AAAAAAAAAAAnTfDDsvWGFz85Pc16fu2mbZ0eBQAAAAAAAADgpAl+WLbW9nfnP/6zK/Kp7Y/m\nc3c+1ulxAAAAAAAAAABOiuCHZe21z9uUS1b35K033Z7pmarT4wAAAAAAAAAAnJDgh2Wtu1HPm67f\nku0PH8j7v/RAp8cBAAAAAAAAADghwQ/L3vVP2ZBnb1qd37zljuwfm+z0OAAAAAAAAAAAxyX4Ydkr\npeTNL9+S3cMTefetd3V6HAAAAAAAAACA4xL8QJKnbVyZH/j2i/NHn7sv39o90ulxAAAAAAAAAACO\nSfADbT/30qtTr5W87WPbOj0KAAAAAAAAAMAxCX6gbcNgK//+uy/PzV9/OH9/7+OdHgcAAAAAAAAA\n4KgEPzDP6/7pZblwsJVf/cjtmZmpOj0OAAAAAAAAAMARBD8wT09XPT933VX5+s59+dBXd3Z6HAAA\nAAAAAACAIwh+4DDf+/SL8/SNg3n7x7dnZGKq0+MAAAAAAAAAACwg+IHD1Golb3n5NXlk/3h+/6/v\n6fQ4AAAAAAAAAAALCH7gKK7dtDo3PO3C/P5n785D+0Y7PQ4AAAAAAAAAwBzBDxzDjdddnZkqefvH\n7uj0KAAAAAAAAAAAcwQ/cAyXrO7Njz9/cz701Z352gN7Oz0OAAAAAAAAAEASwQ8c10++4PKs7e/K\nWz9ye6qq6vQ4AAAAAAAAAACCHziegVYzP/uSq7L1/j256esPdXocAAAAAAAAAADBD5zIv7j2kmy5\ncEXe9tHtGZuc7vQ4AAAAAAAAAMAyJ/iBE6jXSt5yw5bs2DOa937+3k6PAwAAAAAAAAAsc4IfOAnf\necXafM+WC/KeW+/OrgPjnR4HAAAAAAAAAFjGBD9wkn7hZVdnbHI67/jEHZ0eBQAAAAAAAABYxgQ/\ncJIuW9efH33uprz/Sw9k20P7Oz0OAAAAAAAAALBMCX7gFPz0i67Mip5m3nrT7amqqtPjAAAAAAAA\nAADLkOAHTsFgbzOvf9GV+fxdu/PJbY92ehwAAAAAAAAAYBkS/MAp+pfPeVIuX9eXX7t5WyamZjo9\nDgAAAAAAAACwzAh+4BQ167X85xu25N7HhvMnX7y/0+MAAAAAAAAAAMuM4AeegBdetT7fdeXavOuT\n38ye4YlOjwMAAAAAAAAALCOCH3gCSil58w3XZGh8Ku/61J2dHgcAAAAAAAAAWEYEP/AEXbVhID/8\n7EvzJ1+8P3c9OtTpcQAAAAAAAACAZULwA6fhDS9+cnqb9fzazds6PQoAAAAAAAAAsEwIfuA0rOnv\nzk/9syvy6e2P5m/u3NXpcQAAAAAAAACAZUDwA6fpx563KZeu7s1bP7ItU9MznR4HAAAAAAAAADjP\nCX7gNHU36nnT9VfnjkcO5M++9ECnxwEAAAAAAAAAznOLHvyUUq4rpdxRSrmrlHLjUc53l1Le3z7/\nd6WUTe3ja0opt5ZShkopvzPv+t5Syk2llO2llG+UUt622M8AJ3LdUzbk2ZtX57c+8c3sH5vs9DgA\nAAAAAAAAwHlsUYOfUko9ybuTXJ/kmiQ/XEq55rDLfjzJnqqqrkjyW0n+a/v4WJK3JPnZo9z6N6qq\nujrJM5M8r5Ry/WLMDyerlJK33HBNHh+ZyLs/fVenxwEAAAAAAAAAzmOLvcLPs5PcVVXVPVVVTST5\nsyTfe9g135vk/2m//2CSF5VSSlVVw1VVfS6z4c+cqqpGqqq6tf1+IslXkmxczIeAk/HUjYP5gWdu\nzB99/r58a/dIp8cBAAAAAAAAAM5Tix38XJzkgXmfd7SPHfWaqqqmkuxLsuZkbl5KWZnkFUk+dYzz\nryulbC2lbN21a9cpjg6n7ueuuyr1Wsmvf3Rbp0cBAAAAAAAAAM5Tix38LJpSSiPJnyb57aqq7jna\nNVVV/UFVVddWVXXtunXrzu6ALEsXrGjlP7zg8nz0tofzd/fs7vQ4AAAAAAAAAMB5aLGDn51JLpn3\neWP72FGvaUc8g0lOppT4gyR3VlX1zjMwJ5wx/+67LsuFg6289aZtmZmpOj0OAAAAAAAAAHCeWezg\n50tJriylbC6ldCV5dZIPH3bNh5P86/b7f57k01VVHbeSKKW8NbNh0OvP8Lxw2nq66vn5667O13fu\ny1989fC+DQAAAAAAAADg9Cxq8FNV1VSSn0ry8STbknygqqpvlFJ+pZTyyvZlf5hkTSnlriRvSHLj\nwe+XUu5L8o4kP1ZK2VFKuaaUsjHJf05yTZKvlFK+Vkr5t4v5HHCqXvn0i/L0S1bmv318e0Ympjo9\nDgAAAAAAAABwHiknWEznvHHttddWW7du7fQYLCNfvv/x/ODv/m3+04uuzBte/OROjwMAAAAAAAAA\nnONKKV+uquraE1232Ft6wbL1HU9anZc/7cL8wWfvzoN7Rzs9DgAAAAAAAABwnhD8wCK68fqrM1Ml\nb//Y9k6PAgAAAAAAAACcJwQ/sIg2rurNv33+5vzl1x7M1x7Y2+lxAAAAAAAAAIDzgOAHFtlPvvCK\nrO3vzq9+5PZUVdXpcQAAAAAAAACAJU7wA4usv7uRn33Jk/Pl+/fkI//4UKfHAQAAAAAAAACWOMEP\nnAX/4tpLsuXCFXnbR7dnbHK60+MAAAAAAAAAAEuY4AfOgnqt5C0v35Kde0fzh5+7t9PjAAAAAAAA\nAABLmOAHzpLvvHxtXnzNBXnPrXfl0QNjnR4HAAAAAAAAAFiiBD9wFv3Cy7ZkYnom77jlm50eBQAA\nAAAAAABYohqdHgCWk81r+/Kjz92U937+3nzlW3uyeW1fLlvXn8vW9uWydX25bG1/VvV1dXpMAAAA\nAAAAAOAcJviBs+wNL35y+rrquf2hA7nz0aF8atujmZqp5s6v6m3msnX97RhoNgK6bF1fnrSmN92N\negcnBwAAAAAAAADOBYIfOMv6uht5w0uumvs8NT2TB/aM5p5dQ7n3seHcvWs49+wayme/uSsf/PKO\nuetqJdm4qvdQCDRvZaANK1oppXTicQAAAAAAAACAs0zwAx3WqNeyeW1fNq/tO+LcgbHJ3PvY8IIQ\n6N7HhvOl+x7PyMT03HU9zfpRQ6DNa/sy0GqezccBAAAAAAAAABaZ4AfOYQOtZp62cWWetnHlguNV\nVeXh/WO5d9dw7n5sNgS6Z9dw/nHHvtz89Ycyb4ewrBvobgdAh0Kgy9b155JVPWnUa2f5iQAAAAAA\nAACA0yX4gSWolJILB3ty4WBPvvOKtQvOjU9N5/7dI7ln13DueWw2BLr3seF87LaHsmdkcu66Rq3k\n0jW9uWxt/2wEdDAKWteXNX1dtggDAAAAAAAAgHOU4AfOM92Nep58wUCefMHAEef2DE/knoMrAj02\nnHvbUdBnv7krE9Mzc9cNtBq5bF1/Lm9vNXYwBNq0pi89XfWz+TgAAAAAAAAAwGEEP7CMrOrrynf0\ndeU7nrRqwfHpmSoP7h3N3bsOrQh0z2ND+dt7ducvvrpzwbUXr+zJZevaIVA7Btq8ti8Xr+xJrWZV\nIAAAAAAAAABYbIIfIPVaySWre3PJ6t684KqF50YmpmYDoIMhUHt1oL/4ys4MjU/NXdfdqGXz3IpA\nfblsbX82r+vL5Wv7M9jbPMuGk2+jAAAgAElEQVRPBAAAAAAAAADnL8EPcFy9XY1820WD+baLBhcc\nr6oqu4bGF4ZAu4Zzx8MHcsvtj2R6ppq7dk1f16EQaF1/Nq7qyYWDrVywopX1A610NWpn+7EAAAAA\nAAAAYMkS/ABPSCkl6wdmg53nXLZmwbnJ6Zl86/GRdgw0GwLds2s4n96+Kx/YuuOIe63t78qGwVY2\nrJiNgDasaOWCwVYuHDz0fqC7kVJsGQYAAAAAAAAAgh/gjGvWa7l8XX8uX9ef5IIF5/aPTebBvaN5\naN9YHtk3lof3j+WR/WN5aN9YduwZzZfv35M9I5NH3LO3qz4XBc0Pgg4GQhsGW1nb3516TRQEAAAA\nAAAAwPlN8AOcVStazazY0MzVG1Yc85qxyek8un88D+0bnQuCHt43nof3j+bhfWP5u3sfzyP7xzI1\nb9uwJKnXStYPdC+IgBasHNR+39NVX+zHBAAAAAAAAIBFI/gBzjmtZj2XrunNpWt6j3nNzEyVx4bH\n88i+8Ty8v71S0L7ZlYIe2T+Wu3YN5fN3PZYD41NHfHewpzm3StCGFd3ZMNjTDoRmY6ELB3uyqrdp\nCzEAAAAAAAAAzkmCH2BJqtVK1g+0sn6gladm8JjXDY1P5eF9B1cJmg2DHp63ldj2h/Zn19B4qoWL\nBaWrUcsFK7rnVgea2z5s8NDqQesHWulq1Bb5SQEAAAAAAABgIcEPcF7r727kivX9uWJ9/zGvmZye\nya4D40esEnQwDvr6zn35xO2PZHxq5ojvru3vWriF2NzKQe1IaLCVge6G1YIAAAAAAAAAOGMEP8Cy\n16zXctHKnly0sueY11RVlX2jk4dWCJq3StDD+8ayc+9ovvKtPdkzMnnEd3u76kcNguavGLRuoDv1\nmigIAAAAAAAAgBMT/ACchFJKVvZ2ZWVvV67esOKY141NTufR/eN5aN/ovCBoPI/sH8tD+0bzd/c+\nnkf2j2VqZuEeYvVaybr+7nYM1L0gDJq/jVhvl39tAwAAAAAAACx3/s8xwBnUatZz6ZreXLqm95jX\nzMxU2T080Y6Axua2EjsYCN2zazhfuHt3DoxNHfHdgVZjLv654OC2YfO2FLtgRStr+rpSs1oQAAAA\nAAAAwHlL8ANwltVqJesGurNuoDtPuXjwmNcNj08tiIEWvh/PnY88lkcPjOWwxYLSrJesH5i3hdiK\nVjYMds+FQRcO9mT9iu60mvVFflIAAAAAAAAAFoPgB+Ac1dfdyOXr+nP5uv5jXjM1PZPHhiZmI6B9\n7S3E2mHQQ/vGsu2h/bn1jkczMjF9xHdX9TbbMdChMOjCwXlbia1oZWVvM6VYLQgAAAAAAADgXCL4\nAVjCGvXabLAz2EouOfo1VVXlwPjUodWB9rV/9h8KhG7buT+7h8dTHbZaUHejtmDLsA0LthCbXTVo\n/UArXY3a4j8sAAAAAAAAAEkEPwDnvVJKVrSaWdFq5soLBo553eT0TB49MH5kENR+/w879ubj3xjL\n+NTMYfdP1vR1Z8Ng96EtxFYcWino4KpBA90NqwUBAAAAAAAAnAGCHwCSJM16LRev7MnFK3uOeU1V\nVdk7Mjm7UlB767D5YdCOPaP58v17smdk8ojv9nbVs6a/K6t6Z39W9x1838yqvtnPK3ubWd3XldW9\nXVnZ22XlIAAAAAAAAICjEPwAcNJKKVnV15VVfV3ZcuGKY143NjmdR/ePHxEGPT48kceHJ7J3ZCL3\nPDaUPcOTGRqfOuZ9+rsbWdXXXBAJrextZnVvl0gIAAAAAAAAWLYEPwCcca1mPZeu6c2la3pPeO3E\n1Ez2jkzk8ZGJ7BmezJ6RQ1HQ4+3Pe0Ymsmd4NhLaOzyZA6cRCa3q7cqqPpEQAAAAAAAAsHQJfgDo\nqK5GLetXtLJ+Reukv3MwEtozMpnHhycWREGPD0/OC4jOfCS0qnf2XHejfiYeHwAAAAAAAOCUCX4A\nWHIWOxK697Hh7BmeOGEkdHA7sZOJhFZZSQgAAAAAAAA4QwQ/ACwLTzgSGp3damxum7F2FLRnZHI2\nFjqFSGigu5HV/bNx0Jq+2dfVfd2H3vcfOr6mrzs9XVYRAgAAAAAAAI4k+AGAY+hq1LJ+oJX1A6cf\nCT0+NJHdwxN5vP2zc+9Yvr5zXx4fnsjkdHXUe/U067PxT//BOOhgEHT0SKi/u5FSypl6fAAAAAAA\nAOAcJfgBgDPoVCOhqqpyYHzqsCBofPb90Ozn3cMT2T00kTsfGcru4fGMTc4c/XfXa4fCoKNEQvOP\nr+nryopWM7WaQAgAAAAAAACWGsEPAHRQKSUrWs2saDWzaW3fSX1nZGIqu4cOrRa0+xiR0P27R/L4\n8ESGjrHNWL1Wsqq36xhbih0ZCa3q7UpdIAQAAAAAAAAdJ/gBgCWmt6uR3tWNXLK696SuH5+ano2A\njhIJzT++7cH92T08kX2jk0e9TynJyp5mOwjqPiISmn98Tf9sINTVqJ3JRwcAAAAAAAAi+AGA8153\no54LB3ty4WDPSV0/OT2TPSPtOGjeVmOHR0J37xrKl+6byJ6RicxUR7/XQKuRNX1dGexpZkVPM4M9\nzazsnX1d+DN7zWD7XF9XPaVYTQgAAAAAAACORvADACzQrNeyfqCV9QOtk7p+eqbKvtHJ2W3FhubH\nQYfe7xudzL7RyezYMzr3fvpYlVCSRq3MxUAr5oVB82OhuYBoXig02NNMT1MsBAAAAAAAwPlN8AMA\nnJZ6rcxt6XXF+pP7TlVVGRqfmot/9o1OZv/oZPaOTC44dvBnz8hE7ts9PHfdcVqhNOvlKCsItX96\nu444Nj8iajXrZ+aPAgAAAAAAAItI8AMAnHWllAy0mhloNbNx1al9d2amyoHxqew/LAo6PBY6eH7X\n0Hju2jWUfSOTOTA+leo4sVBXo3Zo1aCehasJHX0rskOrC3U3xEIAAAAAAACcHYIfAGBJqc3b7uuS\nU/zu9EyVobGp7B2dOGIVob0jk0dERA/vH8v2hw9k/+hsLHQ8rWbt0KpBPV0LtiJb0dOYfW0t3I7s\n4HHbkAEAAAAAAHAqBD8AwLJRr5XZFXl6m6f83anpmRwYm92GbO/okasJ7R1ZGBHt3Dua2x/cl/1j\nUxk6QSzUrJesaM2GQCt6mlnRaiwMg1rHDocGWo0067Un+icBAAAAAABgCRL8AACchEa9llV9XVnV\n13XK350fC+0fOxgJHf65/dq+buee0bl4aGrmOPuQJenrqi+Ig1Ycb1WhViODvYeO93ZZXQgAAAAA\nAGCpEfwAACyy04mFqqrK6OR09o9OHRkHjU5m31GO79w7mm0PTZ7UVmSNWjliVaEVh60qdNRoqP3Z\n6kIAAAAAAABnn+AHAOAcVkpJb1cjvV2NbBhsnfL3p6ZnMjQ+dYJVhdrh0Lxg6OD7yenjry7U21U/\n6pZjKw4LhI6IiHqa6e9qpFazuhAAAAAAAMCpEvwAAJzHGvVaVvZ2ZWXvE1tdaGxy5uiB0Mih7cfm\nH9+5dyzbRg+c1OpCtZIMtA5bRejwz0cLidrnWs2a7cgAAAAAAIBlSfADAMBRlVLS01VPT1c9F6w4\n9dWFpmeqDI0dWlVo/4LVhabmjs2en11h6O5dQ+3jUxmdnD7u/Zv1Mhf/DMxbSeiY4dD8bctazXQ1\nbEcGAAAAAAAsTYIfAAAWRb1WMtjbzGBv8wl9f2JqZl4oNLVgJaGDwdDBFYYOnt+5Z3Tu+Im2I2s1\na4etHLQwCJrbfqzVPCIkGmg1U7cdGQAAAAAA0CGCHwAAzkldjVrW9ndnbX/3KX+3qqqMT83MC4Jm\nI6GFqw1Ntbcmm/15bGgid+8anjs/c/xeKAPdsysKDRwWCh3cgqy/u5Herkb6uuuzr1319HYf9trV\nsNIQAAAAAABwygQ/AACcd0opaTXraTWf2HZkVVVleGL6UDB02NZjR9ua7IHHR3Kgff7A+NRJ/66u\nei293fX0dTXSe1gMdKJYaO58+/t93bP36G7UUooViAAAAAAA4Hwl+AEAgMOUUtLf3Uh/dyMXr+w5\n5e9Pz1QZmZjKyMR0hscPe52Yysj4dIbGpzIyMZXhiemMjLdfJ6YyPD77+uDe0SPOn6x6raS3qx0R\nzYuJDgZBC44f7Xz7df4qRa1GPTXbmAEAAAAAwDlB8AMAAGdYvVYy0GpmoNU8Y/ecmakyNjU9FwTN\nvc4LgobHp+aCogWv7XO7DowvOD48PnXCrcsOKiXpbR57haH5KxH1z/sZaDXS32pkoLs5+9qaPW4V\nIgAAAAAAeOIEPwAAsATUaiW9XbMr7iTdZ+SeVVVlfGrmqCsQHQyCFqxAdJSViPaOTrZXIzr03Ynp\nmRP+7ma9tIOg5mwc1GpkYF4g1N/dzMC8QOjgNSvmXd/f3UirWT8jfwsAAAAAAFhKBD8AALBMlVLS\natbTatazuq/rjN13vL0S0YGxyRwYm8rQ+FSGxqZyYHyy/dr+3D53YGwqB8Ym8/D+sdy169C5kwmH\nuuq1ufjn4IpCByOhgVZz7tyh480jrutvNdLdEA4BAAAAALB0CH4AAIAzqrtRT3fj9COi8anpDC2I\ngtrx0Pjkws/tYOjgdQ/tG5sXE01mcvrE+5Z11WvzVhc6FAzNj4IG2qsQzV+BaG7bsvb1XY3aaT0z\nAAAAAACcDMEPAABwTupu1NPdX8+a/tPbwmx8ano2ADpsRaHZeGh+TDQ5d83+sak8uHd0Lho6MDaV\nqZmTCIcatfR3N9LbVZ977WsHRL1djfR3z37u626kr2ve++7Zc7PXzH7u7aqnu1FLKeW0nh8AAAAA\ngPOP4AcAADivHQyH1p5GOFRVVcanZuYCoQVblM2tPDSV/WOTGRmfznD788jEbGz08L6xjExMZ2h8\nKsPjJxcPJUmjVhbEQb3tMKiv62Ao1I6Guo4dDfV3H7q2p1kXEAEAAAAAnAcEPwAAACdQSkmrWU+r\neXrhUDIbD01Mz2S4HQYNT0y1A6HpjLRDodnj7fPz3h+MiHYPjcy9HxqfysTUzEk+R9px0PxQqD63\nAtHRoqG+owRGc6sXdTVSqwmIAAAAAADONsEPAADAWVRKmV11qFHP6r6uM3LPyemZjIxPZ6gdD83+\nTLejoHlB0UQ7Gpp37cj4dB7cO9YOj2bDotHJ6ZP+3T3N+lwo1NfdyECrkf7uZgZaB9830t9qZKDV\nzEA7FhpotY+1r+tvNdKs187I3wIAAAAAYDkQ/AAAACxxzXotg721DPY2z8j9pmeqdih0KBoaakdE\nh95PLVilaOjgVmZjU9m5dzQHxibntkCbPoktzLobtdkoqDUvCmrHQitazXnh0KHzAwePd89e09dd\nT0M4BAAAAAAsA4IfAAAAFqjXSju+Of2AqKqqjE3O5MD4ZIbGZgOggyHQwShoaGwqB8bnn5u99lvD\nIwuuO4luKD3N+rwVhA5FQUccWxAOHVqVqL81u9VZ3VZlAAAAAMA5TPADAADAoimlpKernp6uetYP\nPPH7VFWVkYnpuVhofhg0FwuNTWVofHI2EjoYEo1N5tEDY4dio4mpVCcRDh1cOeiIVYW6jx4L9bca\n6WnW09tVT6s5+7wHP3c3ailFQAQAAAAAnDmCHwAAAM55pZT0dTfS193IBSue+H1mZqqMTE4fPxZq\nB0Wz5yfnPj+0b6x93ezPqeiZFwHNvTbraXXV09s+1moePF9Lb1djweeeZmPB93q6aunpasx97m7U\nUrMqEQAAAAAsG4IfAAAAlo1arcyt3pPBJ36f6ZkqwxNT87Ypm8zY5ExGJqYzOjmdsfbr3OfJ6Yy2\n389/3T86mUf3jy343sjkdKZPZv+yw8yPiVrNWnq66ultNtLqqqenWWufb8yLiGYjo96uxpGf29cc\njI56uxqiIgAAAAA4hwh+AAAA4BTVayUrWs2saDUX5f4TUzNHhEIjE8cIh9rvx+YFRvOjo9moaN53\nTiMqarXDodkViGpzgVFXo5ZGrZZmvZZmvaTRfm3WamnUy2HHa/nf7N1/tO15Xd/313vvfc65d5gB\nLR0TAxgmQrVDlrV4JahZaRfUOq4YcVkMQ4qx1pY/Akq6lsmSlbYa2q6UpF0mVaAh8kOpES3VlamJ\n0KS0JsYWuPxoIxBWpqBl0JRxwPl57zln7/3pH/u7z/5x9r3nnJmz597vzOOx1l3fvT/fz/d7PmfA\nJevy5PPZGSzNGa7N2fSe7rnRYDFv5bm1n+MINQAAAACe6gQ/AAAAcJPZHQ2yOxrkWRe3ExQlyeFk\nuthVaC0UWvnehUJHwdFadPTYwST7h9M8Mp1kPJnmcDLNeNJy0F3H02kOxtOMp+1ofNuGg9oQHC0+\nL4dDK+HRYDUm2u2uo8Ggi5pm83e750aDyoWdYW67MJoFYBdHue3CztH3W3aH4iMAAAAAtmLrwU9V\n3ZXkbyUZJvmZ1tp/vXZ/L8nPJfmmJA8keVVr7ber6tlJ3pfkm5O8u7X2+qVnvinJu5NcTPIPkryh\ntXb2/2kiAAAAPE3NI5ht7VJ0La21TKYt4+kiCjpcCoVmn2eh0NHnpTmLe617ZunzdPVdq9HR7LoY\nn80/GE9z9XCah6+Ou591rZ+z+BmnNRxUbrswOgqAZp93jj4/8+JOnrly/3g0tDsabPFfDQAAAAD6\naqvBT1UNk7wlybcnuS/JR6rqntbap5am/VCSL7fWXlBVdyd5c5JXJbma5D9L8se7P8veluQ/TvKh\nzIKfu5L82jZ/FwAAAOCJq6rZrjnD5MLO8EYv58xaaysx0P7hJA9dHeehq4d5+Oo4D12ZXR++eng0\ntjz++S89Nvve3TvJ3miQZ15cjoXWdhPaGx3dXw6J5vNv2xtlMLDLEAAAAMBTzbZ3+HlJkntba59N\nkqp6b5JXJFkOfl6R5Ce6z+9L8tNVVa21R5P8RlW9YPmFVfXVSZ7ZWvs/u+8/l+R7IvgBAAAAtqyq\nsjuq7KbbeefiTr7qmY/vXdNpyyMHy5FQ93n/MA9dmUVD8zjooaVo6Hf/4Eoe6qKiq4fXPyKtKrl1\ndzkC2hwGrY89c2nXoQs7A0eTAQAAANxkth38PCfJ55e+35fkT1xrTmttXFUPJnl2kt+/zjvvW3vn\nczZNrKrXJnltknzN13zNWdcOAAAAsDWDQc1263kCx6odjKcrYdDR7kJXFqHQw2u7D/3Lh67mX3xx\nvgvROJMTjinbGdbKMWPL172d2dFwu6NBdoeLz4uxWh1bu78zrA1ji3lDuxMBAAAAbLTt4OeGaq29\nPcnbk+TSpUvX/9srAAAAgJ7ZHQ3y7Fv38uxb9x7X8621XDmcHO0odNrjyT73+4/m4auH2R9PczCZ\n5nAyzcF4mhPaoTMbVDbGQjvDyu5omN1hLY0twqN5THSmGOnYvNn9vWvESHujgePSAAAAgBtm28HP\nF5I8b+n7c7uxTXPuq6pRkmcleeCEdz73hHcCAAAAcIKqyi27o9yyO8offtaFJ/y+ybTlYC0COuw+\n74+nOZy0o7GDpfuLsbZhbOk94zb7vvbug/E0jx5Mjo3Nr7P1tBN3MzqrW/dGuXVvlGfsDXPrhZ3c\n1n2/9cLsetuF+f3F5/n92/Z2cuuF2bN7o+G5rgsAAAB46tt28PORJC+sqjsyi3LuTvLn1ubck+QH\nkvwfSV6Z5IOttWv+7Utr7feq6qGqemmSDyX580l+ahuLBwAAAOD0hoPKxd1hLubmDFgm03bt2KiL\niVYioaV46XDcsr80duVgkkf2x3nk6jiPHHTX/XHuf3g/j+zPdkZ6ZH98ql2PdoeDo0hoEQSNVseO\nhUQ7x565ZWdo1yEAAAB4mthq8NNaG1fV65N8IMkwyTtba5+sqjcludxauyfJO5K8p6ruTfKlzKKg\nJElV/XaSZybZrarvSfLvttY+leQvJHl3kotJfq37AwAAAADXNBxUhoNhLuw8OUHS/Mi0eQw0D4Qe\n3h+vjD18dZxH9g+7sUke2T/M//fw1fw/9y/u74+nJ/68quTW3aVQaCkQesbueki0s/L9GbtLuxBd\nGGVnOHgS/gkBAAAAj1ddZzOdp5RLly61y5cv3+hlAAAAAMCZHYyneXR/KRw6Fg8drnx/9GAeEi3F\nRd1uRKf568C90WAlAFoOgp6xN8reaJjd0SB7o8HRdfF59d7ucJC9nWF3HRxd94azebujQYZ2JgIA\nAIAkSVV9tLV26aR52z7SCwAAAAB4gmZhzG6+8hm7T+g902nLY0e7Dh3OdhTqPq8HQkfxUPf5d//g\n6lFsdDBeHH12HkaDWgRCG6Kh2XW4FAst4qGNkdE13rE3GmR3OFwJj5bfsTOsVImPAAAAuPkJfgAA\nAADgaWIwqNmuPXujJBee8Pum05aDyTT7SwHQ/uGku06XrpMcjGfz5n/m0dD+eHFvZWztHQ9eObzu\n/Ok5bWS+Gggdj4Yu7AyzNxrm4u4wF3cGubgzzIXdYS4cjQ2XxgZHYxd2Zvcv7Czm7I0GGdjdCAAA\ngMdB8AMAAAAAPC6DQeXCYBax3GjjY+HRLDS6uhIenRAZLQdJK8HRIkB6dH+c33/kIFcPJ7lyMMmV\nw0muHk6yP358ux1d2BmsRECLMGiw+L4UCy3mDo5HREfh0eDYmLAIAADgqUXwAwAAAAD03mg4yGg4\nyDP2bszPn05bro6XI6DpLApaC4MWodB08f1w83NffvRwdU53//HYHQ2OoqKLu7PdhY7vSDSLhY52\nIFqaP4+PVkKk3fm8xTOj4eCc/8kCAACwieAHAAAAAOAJGgwqt+yOcsvudv/KdTpt2R9PVyKgKwfz\nmGi6CIOWIqPjY9PFvYNJHrp62L1junjfeJL2OI5JGw1qERAtxUEXjnYwGixFR8sx0WA1MjqKigZr\nOxsNu2PVHIcGAAA8vQl+AAAAAAB6YjCoWSSzO8xXbvHntLYWFq3tQLQ8fnU8PRYYHe1U1MVDVw4m\n+YPHDlajpO7P4eRxlEXJyi5FiyhocZzZ8q5FF0YbjkXrxi8svWM5Ppo/vzOsVImLAACAm4vgBwAA\nAACAFVV1FMd8xZZ/1ngyzdXxdGmnouM7EV1d2snoSje+vxYdXTmYZL+Lix68criy69H8nY9n16Lh\noHJhNMjeziz+2R0NsjMcZHc4yO5odt3pPu8MB9kbDVbnjRZzd9auu2vv2xkNstddl9+7eH51vl2O\nAADg6UvwAwAAAADADTMaDnLrcJBb97b719XzXYv21yKg1ahouhQcLe9kNM3hZJqD8ey6P5nmcDzN\nwWQx/tiVydH95evB0vXxBEfXMxpcKyw6OUzaHdWGsU1xUmVvNMzezmxHpJVrd7za/LozHJzvLwgA\nAFyT4AcAAAAAgKe85V2LnpWdG7KG8WSaw0lbhEBL4dB8bD0kOujmrwRHG8Oi4/Pm731kf7w03lZC\npPn4ePrEa6ThoI4CoPmuSHvd9cLG68kR0d7a903X0cCxawAAPP0IfgAAAAAA4EkwGg4yGiYXd4c3\neinHTKdtJTRaDoP2x5Psj2e7H812SVr9fvVwkv3Daa6O16+zufPrg1cO88UNz149nOSJ9EaDykoA\ndHIsNMjeaHjida+7zo5bq6Mdk0bD2eejo9iGlaHoCACAJ5ngBwAAAAAAnuYGg8qFwSyWuRHmOxed\nFBHtr0dFm+KjtetDVw5XYqXlEGlyDjsbzc3jn53RIKPBILvd53kctHMUCh2Ph+bHq+2MavbsaHn+\n6udj0VEXI82e2/zM8ecESgAAfSf4AQAAAAAAbqh5lHLr3pP7X1uMJ8d3IrrahUXz6+GkZTw/gm3S\nctjthHT0+egItdYd2zb7PJ83nix2T5o/Nz9m7XDczZsuPh8sPXceR61dyzwIGg2qC4w2xEVLOyLt\njQbXPW5t9mexM9Lsunx/aX53b3c4EB4BADxOgh8AAAAAAOBpaTQc5NYbEBqd1nTaZjHQenQ0XouO\nlu6tREfzedPlZ46HSweTafdcFyeNF+/cP5zmoSvjxS5Ja0e8tSfQJFVlJQba2xnkwnI0tCEourCz\niI2OBUVrsdHKEW3d++djYiMAoO9uzv8ECwAAAAAA8DQ3GFT2BsPcpD1SWms5nLSVHZFmR6etHcO2\nFAjNj1Zbua7cXz227eGr42u+/4nERklWo6G1yGh3OJgdyTaolSPUdoaV0XA2vjMcZDScHd826o5M\n2+12TZo9u3qM2nz+zmB+9NvivUfPDrtj3RzBBgCc4FT/EbGqhkne3Fr70S2vBwAAAAAAgB6oquyO\nZkeC3Xbhyf3Zy7HRSjC0diTbsaBoQ2y0Mv9wMXblyuToeLX50WtHn7vr/Mi2bRsOahYNDQZrsVAX\nIM0/DzbESUfHty2HR2uB0do750e6zY972x0NstdFULvDxfje2pxdgRIAPGlOFfy01iZV9Se3vRgA\nAAAAAAA4yUpsdIPX0lrLZNoyns6PR1scwbYcCI2n02Ox0Oq9+fjsSLbxZDp753i6dn8tOpoeD5Ae\nOxgvPbv+XPe5e24yfYJbJW2wiIJqNRxaCoNWQqH52MbxWsREo+PvWA+ONr6/uw4HQiQAnjrOsgnk\nx6vqniT/Y5JH54OttV8+91UBAAAAAABAD1TNjv0aDZMLO8MbvZwzm07b0e5F82DocDLNwXgWLS1f\nj8ZXxloOxpPuuZb98fG5h5Np9je849H98Wz+ZH1+O/oZ52m+U9IsABouYqKlOGinO5ZtfvzasNv5\naNgd7za/NxrMdkc6GuvG5z9j2O2oNBzU0fFuy+86mtP9jKN3Dtfee/Szlsa7OQImgKe3swQ/F5I8\nkORlS2MtieAHAAAAAAAAemgwqOwNhtk7y39r+CSZH912LDhai4kOxrOg6HBDnLS/EhBNjj7vb4iS\nlt/76MEkk3kINV3suHT0fTrNpNspaTKdrfPJVpVFCNTFQiuh0TxUWg6JjkVFy2PzI982HP82GGRn\n1B0r1x0XNz8Wbmdl/uLzPJ7aWR9bf2bgGDiAx+PU/6+7tfaD21wIAAAAAAAAwNzy0W3Zu9Grub7W\nWqYtOZzMAqBxd1TbeL1yz3MAACAASURBVLopGFoNiSbTlsNpy2TpmLXV9yyOfVuec/TO9Z+39LOW\n37X8M64cTjK+Ot3w7PxousVRcYeTabZw8tuKnS4+Wg+D5lHRLDia7Yi0fm8+fyVEGtTa/NWIaTU4\nGmR3tPyewcqxdMu7Px2NDQYZ2GEJuMFOHfxU1XOT/FSSb+uG/kmSN7TW7tvGwgAAAAAAAAD6oKoy\nrGQ46N+xbqcxD4fG05bD8TSHXTg07oKgRRzUzVuKhQ4ni2DpsIuJDjY8O57Odl8aT6c5HLdr/ozx\nPFhambf8MxfzzvtYuGXz3YuOYqBhFxl1wdDOqBsbLmKh3eXdjkbHw6Kd4SB7o8FKxLR4rouejo6l\nWw2Udka19HMHRzs8AU9dZ9mc711J/m6S7+u+v6Yb+/bzXhQAAAAAAAAAN4fhoBYx002+29Ky1trR\nkWuH09mxb4uwaC1KmiwfCbe4Nz9G7nB+PNzS+PzZ+f3FvdXnH90f52DtnYdrP2u8hW2UBpWlIGke\nDdXR50U0VCtz5jsozefPdkFaDZOu/Xn1++5ovnvTYiel+Y5Lyz/PrklwdmcJfm5vrb1r6fu7q+ov\nnveCAAAAAAAAAOCJqqrZkWDD5GJu7t2XJmsB0kpsNJntZnSwEhp10dCkrYzNI6KVsfV7RwHTPGZq\neWQ8Pvo5h5NuF6fu88HSDkrbCJPmRmtHts2Do53B0udNUdHa8W673fFuRzsvLUdGXeQ0Giw+DweV\n0WD2zGhQR99n1+7+8Brjg8pwuDo+qNm/92DbzhL8PFBVr0nyC933Vyd54PyXBAAAAAAAAABPH/Nd\nlC7s3Nxh0nS6etzawTxQ6o5jW97d6HDlaLe1nZPWjms7Os5tKVaaR0bzYGm8tMPS1cNpHrm6unPS\n8v3lHZluhGPh0FJYdOag6Oj+piBpU6g02PC+tee7+7fsDvOyr/9DN+SfEU/cWYKf/zDJTyX5ySQt\nyW8m+cFtLAoAAAAAAAAAuLkMBpW9wTB7ZykNbqDlY91mOxUt7aC0FApNpi3j6fw6XXyfXGP86P50\n9fvRdbrh+aXxY+9fHb9yOFmML61vPJ1ueOdibYeTs+3A9FW37eXDf0Xw01en+j/Dqhom+d7W2ndv\neT0AAAAAAAAAAE9Yn451Oy/Ta8VLK5HRbNzJY/12quCntTapqldntrsPAAAAAAAAAAA3mcGgsjuY\nlzxPj8jp6eosG23906r66SS/mOTR+WBr7WPnvioAAAAAAAAAAGCjswQ/39hd37Q01pK87PyWAwAA\nAAAAAAAAXM+pgp+qGiR5W2vtl7a8HgAAAAAAAAAA4DoGp5nUWpsm+ctbXgsAAAAAAAAAAHCCUwU/\nnX9UVT9aVc+rqn9l/mdrKwMAAAAAAAAAAI451ZFenVd119ctjbUkf+z8lgMAAAAAAAAAAFzPqYOf\n1tod21wIAAAAAAAAAABwslMf6VVVt1TVf1pVb+++v7Cqvmt7SwMAAAAAAAAAANadOvhJ8q4kB0m+\ntfv+hST/5bmvCAAAAAAAAAAAuKazBD9f21r760kOk6S19liS2sqqAAAAAAAAAACAjc4S/BxU1cUk\nLUmq6muT7G9lVQAAAAAAAAAAwEajM8z98STvT/K8qvr5JN+W5D/YxqIAAAAAAAAAAIDNTh38tNb+\nYVV9LMlLMzvK6w2ttd+f36+qF7XWPrmFNQIAAAAAAAAAAJ2z7PCT1toDSf7+NW6/J8mLn/CKAAAA\nAAAAAACAaxqc47vqHN8FAAAAAAAAAABscJ7BTzvHdwEAAAAAAAAAABucZ/ADAAAAAAAAAABs2XkG\nPwfn+C4AAAAAAAAAAGCDUwc/NfOaqvrPu+9fU1Uvmd9vrb10GwsEAAAAAAAAAAAWzrLDz1uTfEuS\nV3ffH07ylnNfEQAAAAAAAAAAcE2jM8z9E621F1fVx5Oktfblqtrd0roAAAAAAAAAAIANzrLDz2FV\nDZO0JKmq25NMt7IqAAAAAAAAAABgo7MEP/9dkl9J8lVV9V8l+Y0kf20rqwIAAAAAAAAAADY69ZFe\nrbWfr6qPJnl5kkryPa21T29tZQAAAAAAAAAAwDGnDn6q6j2tte9P8s83jAEAAAAAAAAAAE+Csxzp\n9aLlL1U1TPJN57scAAAAAAAAAADgek4MfqrqjVX1cJJvqKqHqurh7vsXk/y9ra8QAAAAAAAAAAA4\ncmLw01r7a62125L8jdbaM1trt3V/nt1ae+OTsEYAAAAAAAAAAKAzOsPcX6uqP7U+2Fr7x+e4HgAA\nAAAAAAAA4DrOEvz8paXPF5K8JMlHk7zsXFcEAAAAAAAAAABc06mDn9ban1n+XlXPS/I3z31FAAAA\nAAAAAADANQ2ewLP3JfnXz2shAAAAAAAAAADAyU69w09V/VSS1n0dJPnGJB/bxqIAAAAAAAAAAIDN\nTh38JLm89Hmc5Bdaa//0nNcDAAAAAAAAAABcx6mDn9baz25zIQAAAAAAAAAAwMlODH6q6p9lcZTX\nyq0krbX2Dee+KgAAAAAAAAAAYKPT7PDzXVtfBQAAAAAAAAAAcConBj+ttd+Zf66qP5Tkm7uvH26t\nfXFbCwMAAAAAAAAAAI4bnHZiVf3ZJB9O8n1J/mySD1XVK7e1MAAAAAAAAAAA4LjTHOk191eSfPN8\nV5+quj3JP0ryvm0sDAAAAAAAAAAAOO7UO/wkGawd4fXAGZ8HAAAAAAAAAACeoLPs8PP+qvpAkl/o\nvr8qyT84/yUBAAAAAAAAAADXcurgp7X2l6rqe5P8yW7o7a21X9nOsgAAAAAAAAAAgE1OHfxU1TOS\n/L3W2i9X1dcl+bqq2mmtHW5veQAAAAAAAAAAwLLBGeb+4yR7VfWcJO9P8v1J3r2NRQEAAAAAAAAA\nAJudJfip1tpjSb43ydtaa9+X5EXbWRYAAAAAAAAAALDJmYKfqvqWJP9+kr/fjQ1P8dBdVfWZqrq3\nqn5sw/29qvrF7v6Hqur5S/fe2I1/pqq+Y2n8P6mqT1bVb1XVL1TVhTP8HgAAAAAAAAAA0FtnCX7+\nYpI3JvmV1tonq+qPJfnfrvdAVQ2TvCXJdya5M8mrq+rOtWk/lOTLrbUXJPnJJG/unr0zyd2Z7SJ0\nV5K3VtWwO1LsR5Jcaq398cyio7vP8HsAAAAAAAAAAEBvnTr4aa39emvtu5O8rapua619trX2Iyc8\n9pIk93ZzD5K8N8kr1ua8IsnPdp/fl+TlVVXd+Htba/uttc8lubd7X5KMklysqlGSW5L87ml/DwAA\nAAAAAAAA6LNTBz9Vdamq/lmS/zvJb1XV/1VV33TCY89J8vml7/d1YxvntNbGSR5M8uxrPdta+0KS\n/ybJ/5vk95I82Fr7X66x5tdW1eWqunz//fef5tcEAAAAAAAAAICb2lmO9Hpnkr/QWnt+a+2PJnld\nkndtZ1nXVlVfmdnuP3ck+SNJnlFVr9k0t7X29tbapdbapdtvv/3JXCYAAAAAAAAAAGzFWYKfSWvt\nn8y/tNZ+I8n4hGe+kOR5S9+f241tnNMd0fWsJA9c59l/J8nnWmv3t9YOk/xykm89w+8BAAAAAAAA\nAAC9dWLwU1UvrqoXJ/n1qvrbVfVvV9W/VVVvTfK/n/D4R5K8sKruqKrdJHcnuWdtzj1JfqD7/Mok\nH2yttW787qraq6o7krwwyYczO8rrpVV1S1VVkpcn+fSpflsAAAAAAAAAAOi50Snm/Ldr33986XO7\n3oOttXFVvT7JB5IMk7yztfbJqnpTksuttXuSvCPJe6rq3iRfyiwKSjfvl5J8KrOdhF7XWpsk+VBV\nvS/Jx7rxjyd5+yl+DwAAAAAAAAAA6L2ababz1Hfp0qV2+fLlG70MAAAAAAAAAADYqKo+2lq7dNK8\n0+zws/zSP53kRUkuzMdaa286+/IAAAAAAAAAAIDHY3DaiVX13yd5VZIfTlJJvi/JH93SugAAAAAA\nAAAAgA1OHfwk+dbW2p9P8uXW2l9N8i1J/rXtLAsAAAAAAAAAANjkLMHPle76WFX9kSSHSb76/JcE\nAAAAAAAAAABcy+gMc3+1qr4iyd9I8rEkLcnf2cqqAAAAAAAAAACAjU4d/LTW/ovu4/9UVb+a5EJr\n7cH5/ar69tbaPzzvBQIAAAAAAAAAAAtnOdLrSGttfzn26bz5HNYDAAAAAAAAAABcx+MKfq6hzvFd\nAAAAAAAAAADABucZ/LRzfBcAAAAAAAAAALDBeQY/AAAAAAAAAADAlp1n8PPb5/guAAAAAAAAAABg\ng9FZJlfVtyZ5/vJzrbWf667fe64rAwAAAAAAAAAAjjl18FNV70nytUk+kWTSDbckP7eFdQEAAAAA\nAAAAABucZYefS0nubK21bS0GAAAAAAAAAAC4vsEZ5v5Wkj+8rYUAAAAAAAAAAAAnO8sOP/9qkk9V\n1YeT7M8HW2vffe6rAgAAAAAAAAAANjpL8PMT21oEAAAAAAAAAABwOqcOflprv77NhQAAAAAAAAAA\nACcbnHZiVb20qj5SVY9U1UFVTarqoW0uDgAAAAAAAAAAWHXq4CfJTyd5dZJ/keRikv8oyVu2sSgA\nAAAAAAAAAGCzswQ/aa3dm2TYWpu01t6V5K7tLAsAAAAAAAAAANhkdIa5j1XVbpJPVNVfT/J7OWMw\nBAAAAAAAAAAAPDFnCXa+v5v/+iSPJnlekn9vG4sCAAAAAAAAAAA2O/UOP62136mqi0m+urX2V7e4\nJgAAAAAAAAAA4BpOvcNPVf2ZJJ9I8v7u+zdW1T3bWhgAAAAAAAAAAHDcWY70+okkL0nyB0nSWvtE\nkju2sCYAAAAAAAAAAOAazhL8HLbWHlwba+e5GAAAAAAAAAAA4PpGZ5j7yar6c0mGVfXCJD+S5De3\nsywAAAAAAAAAAGCTs+zw88NJXpRkP8nfTfJgkjdsY1EAAAAAAAAAAMBmZwl+7uz+jJJcSPKKJB/Z\nxqIAAAAAAAAAAIDNznKk188n+dEkv5Vkup3lAAAAAAAAAAAA13OW4Of+1tr/vLWVAAAAAAAAAAAA\nJzpL8PPjVfUzSf7XJPvzwdbaL5/7qgAAAAAAAAAAgI3OEvz8YJKvT7KTxZFeLYngBwAAAAAAAAAA\nniRnCX6+ubX2dVtbCQAAAAAAAAAAcKLBGeb+ZlXdubWVAAAAAAAAAAAAJzrLDj8vTfKJqvpckv0k\nlaS11r5hKysDAAAAAAAAAACOOUvwc9fWVgEAAAAAAAAAAJzKqYOf1trvbHMhAAAAAAAAAADAyQY3\negEAAAAAAAAAAMDpCX4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAA\nAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAA\nAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4If\nAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAe\nEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAA\nAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI9sPfipqruq\n6jNVdW9V/diG+3tV9Yvd/Q9V1fOX7r2xG/9MVX3H0vhXVNX7quqfV9Wnq+pbtv17AAAAAAAAAADA\nzWCrwU9VDZO8Jcl3Jrkzyaur6s61aT+U5MuttRck+ckkb+6evTPJ3UlelOSuJG/t3pckfyvJ+1tr\nX5/k30jy6W3+HgAAAAAAAAAAcLPY9g4/L0lyb2vts621gyTvTfKKtTmvSPKz3ef3JXl5VVU3/t7W\n2n5r7XNJ7k3ykqp6VpI/leQdSdJaO2it/cGWfw8AAAAAAAAAALgpbDv4eU6Szy99v68b2zintTZO\n8mCSZ1/n2TuS3J/kXVX18ar6map6xqYfXlWvrarLVXX5/vvvP4/fBwAAAAAAAAAAbqhtBz/bMEry\n4iRva639m0keTfJjmya21t7eWrvUWrt0++23P5lrBAAAAAAAAACArdh28POFJM9b+v7cbmzjnKoa\nJXlWkgeu8+x9Se5rrX2oG39fZgEQAAAAAAAAAAA85W07+PlIkhdW1R1VtZvk7iT3rM25J8kPdJ9f\nmeSDrbXWjd9dVXtVdUeSFyb5cGvtXyb5fFV9XffMy5N8asu/BwAAAAAAAAAA3BRG23x5a21cVa9P\n8oEkwyTvbK19sqrelORya+2eJO9I8p6qujfJlzKLgtLN+6XMYp5xkte11ibdq384yc93EdFnk/zg\nNn8PAAAAAAAAAAC4WdRsM52nvkuXLrXLly/f6GUAAAAAAAAAAMBGVfXR1tqlk+Zt+0gvAAAAAAAA\nAADgHAl+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAA\nAABAjwh+AAAAAAAAAACgRwQ/AAAAAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAA\nAAAAAAB6RPADAAAAAAAAAAA9IvgBAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8A\nAAAAAAAAANAjgh8AAAAAAAAAAOgRwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i\n+AEAAAAAAAAAgB4R/AAAAAAAAAAAQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA\n6BHBDwAAAAAAAAAA9IjgBwAAAAAAAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHtl68FNVd1XV\nZ6rq3qr6sQ3396rqF7v7H6qq5y/de2M3/pmq+o6154ZV9fGq+tVt/w4AAAAAAAAAAHCz2GrwU1XD\nJG9J8p1J7kzy6qq6c23aDyX5cmvtBUl+Msmbu2fvTHJ3khcluSvJW7v3zb0hyae3uX4AAAAAAAAA\nALjZbHuHn5ckube19tnW2kGS9yZ5xdqcVyT52e7z+5K8vKqqG39va22/tfa5JPd270tVPTfJn07y\nM1tePwAAAAAAAAAA3FS2Hfw8J8nnl77f141tnNNaGyd5MMmzT3j2byb5y0mm1/vhVfXaqrpcVZfv\nv//+x/s7AAAAAAAAAADATWPbwc+5q6rvSvLF1tpHT5rbWnt7a+1Sa+3S7bff/iSsDgAAAAAAAAAA\ntmvbwc8Xkjxv6ftzu7GNc6pqlORZSR64zrPfluS7q+q3Mzsi7GVV9T9sY/EAAAAAAAAAAHCz2Xbw\n85EkL6yqO6pqN8ndSe5Zm3NPkh/oPr8yyQdba60bv7uq9qrqjiQvTPLh1tobW2vPba09v3vfB1tr\nr9ny7wEAAAAAAAAAADeF0TZf3lobV9Xrk3wgyTDJO1trn6yqNyW53Fq7J8k7krynqu5N8qXMIp50\n834pyaeSjJO8rrU22eZ6AQAAAAAAAADgZlezzXSe+i5dutQuX758o5cBAAAAAAAAAAAbVdVHW2uX\nTpq37SO9AAAAAAAAAACAcyT4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4AAAAAAAAAAKBHBD8AAAAAAAAAANAjgh8AAAAAAAAAAOgR\nwQ8AAAAAAAAAAPSI4AcAAAAAAAAAAHpE8AMAAAAAAAAAAD0i+AEAAAAAAAAAgB4R/AAAAAAAAAAA\nQI8IfgAAAAAAAAAAoEcEPwAAAAAAAAAA0COCHwAAAAAAAAAA6BHBDwAAAAAAAAAA9IjgBwAAAAAA\nAAAAekTwAwAAAAAAAAAAPSL4AQAAAAAAAACAHhH8AAAAAAAAAABAjwh+AAAAAAAAAACgRwQ/AAAA\nAAAAAADQI4IfAAAAAAAAAADoEcEPAAAAAAAAAAD0iOAHAAAAAAAAAAB6RPADAAAAAAAAAAA9IvgB\nAAAAAAAAAIAeEfwAAAAAAAAAAECPCH4A4P9v715jJMsO+oD/Tz/nPbOzu7bXu+tdPwCztsHYiwWs\nHSEQCZBIdogDNsFyokjkA0ig5AMPJYIgRUoiApEiAiECySQOhhiTWBFSeAQRbMC7a+O3Y2zMmn15\n197ZndnZme7p7jr5cG9NV92uqu6enZ7q6v79pKu699xHnZquuX37nv89BwAAAAAAAGCGCPwAAAAA\nAAAAAMAMEfgBAAAAAAAAAIAZIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMEIEf\nAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABghgj8AAAAAAAAAADADFmYdgUAAABgZvV6\nyZOfTp76fPKi1yRnX5aUMu1aAQAAAAAHnMAPAAAA7FSvlzz5qeShDzTTFz+YXH56c/3Rm5I7vnFz\nuv11yZHT06svAAAAAHAgCfwAAADAOL2N5IlPJg99cDPgs/JMs+7MXcnX/O3k7jcmt3x1s90jDzTT\n5363PUBJbn1lcudACOiWr0nmjLANAAAAAFw7gR8AAADo620kX/rEZrjnix9MVs436256afK1fye5\n+03JXfclZ+4c3veO1yevf2czf/mZ5LGPJA+3AaBPvz/5yK8165ZPJbe/fqAnoHuTY2dv3GcEAAAA\nAGaewA8AAACHV28j+dLH2yG6Pph88U+S1Tbgc/ZlyT1vTu56Y3L3fcnpO3Z+3KNnkpd/WzMlSa3J\nU3+ZPHL/Zi9Af/yzSe01629+xWb45443JC+4J5n3JzsAAAAAMJq7hwAAABweG+sDAZ8PJH/9p8nq\nhWbd2Zcnr3pL04PP3fclp158/d63lOSWVzTTa7+/KVu9mDz2520A6MHk87+ffOzXm3WLx5IXv254\nKLATL7h+9QEAAAAAZprADwAAAAfXxnrypY8NBHz+bDPgc/Mrkld/z+YQXaduu7F1Wz6RvPRNzZQ0\nvQA988Um/PPIA8nD9yd/8h+S3nqz/sxLmt5/+gGgF70mWVi6sXUGAAAAAPYFgR8AAOD5W7ucXDqX\nXHoq2VhrhjM6elNy5HQyNz/t2nGYbKwnj390OOBz5dlm3S1fnbz67yV3v7GZTr5ounXtKiW56e5m\nes1bm7K1y8njH98cCuyv/zT55HubdfPLyYtfOzwU2Onbp1V7AAAAAOAGKrXWadfhhrj33nvrgw8+\nOO1qAADA/re2klxuwztXp3ObgZ5LTw2sb1/XLo05WGlCP0dv2tl07GwbFDqTzHs+gR3YWEse+2jy\n0B8nX/xgG/C52Ky75Ws2wz133ZecfOF063q9nH+0HQasHQrssT9PNlabdSdf3IR/7mx7Arrt65PF\no9OtLwAAAACwY6WUD9da791uO3fQAfbK2kry7GPJhceSC48385eeSmqvGa6h1iR1czltWe2NmR/Y\nZst+k46x0/3685lcj5H7Zft6pCaLx5tG3yOnkuVTm/NHTg8vL58eXrewfKN+agAHz/rqcFDnamDn\n6fGBnrXnxh9v+XQTyjl2c3LiRckL7mnm+2VHzybzS8nKM817jJqe/qt2/pm0v0TGvNepzZ6CdjP5\nvXGwbaw1AZeH/rjtwedDm9/ZW1+ZfP3bNgM+J14w3bruldO3N9Or3tIsr19JnvjE8FBgn3l/s25u\noRn66+pQYPc2PQiVMrXqAwAAAADPnx5+AHar1qYR88LjTZjnaqjnseTZxzfnL5/buu/8UtPoktI0\nspS5dj7t61zb+NKdH9y2jC+feIx0jjFmfmi/7KJOc+32Y+qRNL0/rJxPVi40r6vt/KTG3qQZrmJk\nMKg/f3pg3ZjtDCfD81Fr08C8sdq8rq925q800/rqwHZXmgbY3nrGB+YGA3ITwnIj9xkM243aZ9Jx\ncg371Ob9drNPKcnC0aZnicWjycKRZPFYsnikXT7azh/rrOsvH93cbm7uhvyo971+eGdL7zud8M5g\n7zv9nk5GWT6dHLupDezcvBnY6Yd3BoM8x25uwjTzi9fv8/R6ze+CoUBQGxS6dG58YOjy00ndGH/c\nxWOdEFA3NHR2rQKHtwAAGotJREFUdFBo8agQxH60fmU44PPwhzZ7lHrBPU2w52rA59bp1nU/ufhk\nGwC6v3l99CObwajjtw4MA/aNyYtflyyfmG59AQAAAIAkO+/hR+AHYFBvo2kcuRrkeTy58OhwkOfC\nY8n65a37Hr81OfXiZhiFU7cNzLfTydua8AnDer2mMXr1QicM1F8+P7xu1HZjh5EZsHRym9BQd11n\nu8VjGoH3Wq3N/8GN1eHgzHobphkbtlnbuk8/bLPTUM52x964Mu1/nV3aJqA3KhC4F/vUXrK+0vR4\ntna5+b86KaQxyfzy+DDQYhscGgwXDa07OrzPpLDRwtEbN4zU+pWtw2L158cNp3Xl2fHHWz7VDol1\ncyesc7YT5hkI7yws3ZjPer3Vmqw+OzkQdHlUD0PnJv9/nl8e02vQNr0MLZ/0O+J6Wr+SPPaRgYDP\n/QMBn1e1Q3Td1wR8jt8y3brOko315Mufaf49+z0BPfW5Zl2Za/5tB4cCO/tyYUsAAGB21ZpceW7z\nHvPKMwPz58eXX36m2XfkPZURD0gdPdvcUwKA60jgp0PgB9gyxFY3yPPs48mzX9raGD232IR1TvWD\nPLe3ywPzJ2+b3UbTg2BjrQ0DnR8RGtomQNRf7q1Pfo+5hTE9CJ0eExoanD/TDC9TN5pAS60D8xtN\nKKI3+NqZ7/VGlPW3qyPKepv7jH2Pzvpeb0RZf7vu+/aG67XleCPeY2J4ZyCIs11vT7s1v9z0rLWw\n1M4vNj+LofnFZnlwfsfbjTr2Ulvezs/NZ3xoZlSopjO/myDOLAQONtba8M/lJjy5ttI05K+3r/1w\n0Nh1/eX+MUata+d7a9dWx7nF0b0SbQkUbbPuysUJve+ca8494yydHNPzzs3jby75PbS9WpvvTTcE\ntJPA0KRw6dxCc64fDAgdObP5euT0+LKlE7Pxf3cvra8mj344eeiDTcjn4fs3w9UvfPVm7z133Zcc\nv3m6dT1oLp1r/u0feaCdPtxcTyXN9/SOe9uhwO5Nbn99850FAAC4EWod6DF+QlDn8rggz/ntHzxb\nPD7wN/tAT/IpnYexnt78W2nccUY9eNV/4EpICIBdEvjpEPiBA+zqEFttkGdwiK2rw2w92jTWdS2d\nHNEbz2Co58XJsVs83XzQ9RuAt/QmNCpANKanoUm9bsyaMpeU+SaoUuab5blRZYOvnfm5ueHjDIVg\n+sGZtmxswOZ57jO3oBH9sNtYHx8cWr+8GRrqBoe2rOvPT1g3qdeYpRMjngKb1PvO2eY7zP6yttJc\nb0zsVagdiqx703FSmHFuob2heGbgBuOZnYWGlk/N5jXK+mrTw8xDH0i+2Pbgs76SpCQvenVy1xvb\nkM+3NP8fuHF6veQrfzEQAHogefIzufodvuVrkju/sR0O7BuTW19p2FQAAGC0Wpu/9UYFcS4/PSHI\nMzBt9zDX4rHhoM6W6cyE8lO7G7Z8/crmg0OjemUeGmJ9tyGhEUOqCwntXK3NvYa1S02vTmuXmgfx\nrlzqlF1qhrq+8tzAfGebxWPJ6TuS03e2r+106nb//sANJfDTIfADM2rLEFuDIZ4dDLF1sg3vGGKL\nvdbbaIaXGRcMWl/pBGbKQDjmGkM0V1/LiLK5zr7znX1Hre8fS0gGdq23sbXnoaXjbsbQBChWL7Rh\nof5Th/35SWXt68SnEUvbo9wOA0Ld9Tdq+Lq1leTRNuDz0AeaEMnVgM9rkrvf1AzR9ZJvFvDZj1Yu\nNEOsPTwQArp8rlm3dDK5/XVN+OfMSzpPxQ7MCwUBAMBsWl8dHupq4tBYI9ZNekAqaXpI3lFAp7P+\naPsQzH7v7bgfEtoSBjqEIaFam+/DlecGAji7COIM7TewzZXnmvna2119Fo8nS8eagM/S8fb1WLJ6\nsXmA/OITW/c5futACKgbCLqjWT+LD2YB+5LAT4fAD+xDa5cHgjuDQ2w92vbUs8Mhtkb1zHPyRXpH\nAABmW63NjaudBoSu3oBtyzZWJx9/6eTuexXqbz/pOmttpQmFDAZ8NlaTlOS2r2sCPnfdl9z1zc0N\nSWZLrcm5Lwz3AvSlT04Opw0OhTp4A39cQGiw3LB3AACwc/2HEq881/Rwsnqx7emkP9+u65dP2nb1\nQvuwxgTzS9uHdMZd9y+f2j9hlP1k1yGh7YaN7/Y8vU1I6Mjpgd5yRgRrJgZxxgV42nXbDbHWNS6U\ns3i8Wb46393m+PB8d7/Fo9v/nbm+2rRVnX9kYHp4eLk7/Pv8UtNGNSoQdPrO5PTtzfsD7IDAT4fA\nD0ywsd40wqyvNgnr9dVkY21E2ZXh+W3Xtcfpll06Z4gtAIC9tnZ5970K9UNDa89NPvbC0a0hoCNn\nmptfjzzQXPuVueRFX9cMz3X3m5KXfFOzLQfP2uXmRvPQU7/ns2V4u+4Tv5ef2X5Y1DI/uaFg8Ps3\nKjTkIQAAAPazjfXmmnj14kDw5tk2ePPc5vzV9d1tOyGeUT3hj1SaIMjyiTYccSJZPtm8Lh1vyrft\neeeMwM5+sZOQ0NC6bUJCu7F4bETIphvEOTE6lDNpv4Wj+7sdqNbm33xcIKj/gHu356GjN40PBJ26\nvXmYXS+5QAR+thD4YV/od1nYDcCsX+kEZvplg4GZgbKr23fL+sftrhsM8IzYfrddHU4yt9CkmOeX\nmpvr88tNt5rzy814uAvLTZrcEFsAAPvX+pVOKKg///SEXoXOJ8dvaYbn6gd8jpye9idhv9tY3xz2\nbstQATsIDW33xPHCkd33KmQ4MoCtam3uL/XWmoa4/dwAx86tXW4afS+f23y9/HQ7//RwWe01D+Ed\n7/cEcUtz7Xfslmb5eFu2dFzvfBxs61c6PeZ05reUDYZ0RoR4tuuZta/MtaGJbUI6SycH5vvrR2y7\neMy5/LAbFxJaOd/8HbWTXnX2eyhn2jbWmtDPyB6C2t6DukO4zS007WZDYaDBgNDt7rVMsn6lOceu\nXtgMUI6brgwuX2z+/l9Ybr7XC8vt/4MjzevVabnpIaq/vj8tDqzv7794dKDsiPsL7JrAT4fAzyHW\n67UBl5XhsMv6ytZQzGAQZ32lE85Z6azvhnA6ZaP232682t2aX25DNf2AzdJwwGahDdlsKetuvzwQ\n0FncYdnS8Hz/1S8sAADgRllbGdN70NPjexUaLNvu4YedDEe2fLL9+2hx8++k7vzc4uRt3CSfLbUm\nvfXmdW7Bz4/9rdcb7i2i3wCypdHjwnCDx6jy3lpzzDLXnPu658ehc+bg1ClfPuX+0fW2sd78btsS\n2tkmyDMpOLt4rB0C5qbmtZTkuaeSS19JnvvK5veha+FIGwI6uxkIOn7L5pAx3bIjZ5xH2XuD58Kr\n0/nRDcArnfJuiGen9/jLXBO+6QdvBgM52wV2Rq3fyRBEwOxZOb8Z/ukOGXbhkeTCY83fHoOWT00I\nBN3RPFw/vzidz3Mtehudc/TF4WvQoWvYzrn8SuccvtNz9NLJ5vy6PHCerb22rfdyO6zdymbb8Prl\n59/GO7e4g7BQt2wnoaJtwkfzi35/zCiBnw6Bn33miU8lz35pl4GaUYGdwR5xuoGdtrz7i/Balfnh\ncMvV3mv6ZUeGAzcLRzpBm37ZhJ5vutvPjwrwDNwcdoIGAAC4NrU2Nw4nDTk2qXy74ch2o8yPCAIN\nvk4IE00MEi1ss9+k+TH7btdI3w/DbKw1r/1pKssbTYP0TpZ7602DeW+9LdsYOGZnuW5s/dxzC83P\ncW6h+Team9+6vO02C03j4NzCLrcZLBt8n4H33ck2E+s711le2PrdWVhubmJruL8++j1IbBvOGdEo\n0m0E2YmFo22jx+B0arMRpD/NLbY9s10YOEe20+qFzdftLJ3cPhg0GBAaChedmq1GrN2otfm5Tepp\nZ1SQZ+X8+GOW+SZ8c/RsM4xIf74f5BkqG9hu0jA9/Xpe+spmCOjSU00QaGTZU833eVL9roaAznZ6\nDxoRHDqoP3+26vW2Nub2z3cr3fPehfHnwtVnk+ygLWzxeBtoPLXZAHz1tR/C6YZ4xgR2Fo64fw88\nf72N5OITowNB5x9uwkKXzw3vU+aSEy8aHwg6fUfzu/75nKNqbXoKHDwHT+pRZ0vwfGDb7YaV71s4\nsnlNunSivVbtBHeWTw6EecZM19pbZa/XtlWvDAeD1lcGwkED69cu73K7gfJu2Oh5jdRStg8GnXhh\n8j2//Dzeg70g8NMh8LPP/Prbk8/+zvbbjQq8DIVuBgM0zzeIM+F95pebm50AAACQbA5HtvpsGxbp\nD728tov5td1v31vb2bbX6+GXrjI3HCiqG9uHYfba1SDLYhtEWRhYnm97WRq1PBBcuRp0WRwom7Tc\n3iPo9TY/d2+9DRFtTFget816cxN3x9sMlHe32UmD5l66GjRb3LyvMy6odvXBpu76cfv0eyseF1jr\nHm9x4N5OJwy3F42wtSZrlyYEcyZNnW13NMRLGR3KGQrsjChbGrH99QxQ9DY2wz8r5yeHg4aClQNl\n232PF4/tIBw0GCQ6M1y2sHz9Pu8466ubgZ2RPe2cSy49vTXcM67nnCRZbnuZGxXQGRfkWT61P0IH\naytbQ0D9136vQYNll5/O2O/B8unNIcTG9h40EBxaOn5DPyoZ7q1hKJhzYcQ5b2C+G+LZaWhx6Lx2\navT8kVHlA2VLJ7QBALPpynNtL0EjAkEX2t6Dur3TLB7bGgg6dvOIa9mBYE43tLOTEEqZ75xvTwyf\nd0eGdjqhy724Xp0l/YdqdhIMuhos2mXYaPlk8o73TfuT0iHw0yHws8888enml8GWgM1grze6NQcA\nAIBr0ut1wkHjAkfbhI22CzOVfoBmfkzg5gYsu3cwrNfbDGL1A0TdoNDV9YPL62PKRoWa1jvfhxHf\nkfVx35vV0eXrq2PCaxPCD8/H/NKIaSdhpKWmrqN60tlpw8fc4piG54Fp5JPJne0Wjx3M739/6J2R\nwaAJ0+C224Ue55d3NvzYkTObIaLlk02D2tXwTifIc7WsDe9Melp9frkT2rlpfE87V+fPHK6Gro31\n9t/yK51gUCcgNBgSGjvM2NEd9h7Uls3CMGO1tqHPXjsNzPc2mvVbynrD09j9e8Pla5e3hhJXtgnu\njOvRqat7rht7bhwR0BnshccwgQDj9XrN786RPQQ90oSFnntyeJ+lbjBnQg+QQ+fyTohHb2dwzQR+\nOgR+AAAAAGDGbAmvdQNF3fDQbgNI7fDxo8pHvsdq03AxtjeJcWUDjR83oneZw6zf09LIHoaemRAk\nurC5Tfcp+HHKXBMO2e2QWYtHNX5db7U2P9ehnoJG9SjUn39qfCirzA/0GHRzE7ZK2SYsU8eHaLoB\nmt0Gc4bKN57nsB7XQ9mmV7HtetUZ6G1svwerAA6LtZUmaLt03PkZ9omdBn70TwgAAAAA7E9zc8nc\nspAMO1dK21h1PDn14ms7xtpKJxjUDjm2dGK4R55Z6AnmsChls2emm1++s33WLu+s96CvfC5JaQJe\nZa75mZe5Jhh0taydX5gfXT44DZX158tAeXf/Mlw+6pgjj1vGvNcuj7t4rNOTg4ZggANn8UiyeNu0\nawFcA4EfAAAAAADoWzzSTCdfOO2asJcWjyZn7mwmAACYQWLYAAAAAAAAAAAwQwR+AAAAAAAAAABg\nhux54KeU8p2llM+WUj5fSvnxEeuXSym/0a7/UCnl7oF1P9GWf7aU8rfasjtLKX9YSvl0KeVTpZQf\n2evPAAAAAAAAAAAA+8WeBn5KKfNJfiHJdyW5J8nbSyn3dDb7x0merrW+IsnPJ/k37b73JHlbklcl\n+c4k/7E93nqSf1ZrvSfJNyX5oRHHBAAAAAAAAACAA2mve/h5Q5LP11q/UGu9kuQ9Sd7c2ebNSd7V\nzr83ybeXUkpb/p5a62qt9a+SfD7JG2qtj9daP5IktdZnk3wmye17/DkAAAAAAAAAAGBf2OvAz+1J\nHh5YfiRbwzlXt6m1ric5n+TmnezbDv/1DUk+NOrNSyk/WEp5sJTy4Je//OVr/hAAAAAAAAAAALBf\n7HXgZ8+UUk4k+a0kP1prvTBqm1rrL9da76213nvrrbfe2AoCAAAAAAAAAMAe2OvAz6NJ7hxYvqMt\nG7lNKWUhyekkT03at5SymCbs8+5a6/v2pOYAAAAAAAAAALAP7XXg54EkX1VKeWkpZSnJ25K8v7PN\n+5O8s51/a5L/U2utbfnbSinLpZSXJvmqJPeXUkqSX0nymVrrz+1x/QEAAAAAAAAAYF9Z2MuD11rX\nSyk/nOR/J5lP8qu11k+VUn4myYO11venCe/8l1LK55OcSxMKSrvdbyb5dJL1JD9Ua90opbwxyTuS\nfKKU8tH2rX6y1vo7e/lZAAAAAAAAAABgPyhNZzoH37333lsffPDBaVcDAAAAAAAAAABGKqV8uNZ6\n73bb7fWQXgAAAAAAAAAAwHUk8AMAAAAAAAAAADNE4AcAAAAAAAAAAGaIwA8AAAAAAAAAAMwQgR8A\nAAAAAAAAAJghAj8AAAAAAAAAADBDBH4AAAAAAAAAAGCGCPwAAAAAAAAAAMAMEfgBAAAAAAAAAIAZ\nIvADAAAAAAAAAAAzROAHAAAAAAAAAABmiMAPAAAAAAAAAADMkFJrnXYdbohSypeTfHHa9WDILUm+\nMu1KANwgznnAYeKcBxwmznnAYeKcBxwmznnAYeKcB/vLXbXWW7fb6NAEfth/SikP1lrvnXY9AG4E\n5zzgMHHOAw4T5zzgMHHOAw4T5zzgMHHOg9lkSC8AAAAAAAAAAJghAj8AAAAAAAAAADBDBH6Ypl+e\ndgUAbiDnPOAwcc4DDhPnPOAwcc4DDhPnPOAwcc6DGVRqrdOuAwAAAAAAAAAAsEN6+AEAAAAAAAAA\ngBki8AMAAAAAAAAAADNE4IepKKV8Zynls6WUz5dSfnza9QHYS6WUh0opnyilfLSU8uC06wNwPZVS\nfrWU8mQp5ZMDZWdLKb9XSvlc+3rTNOsIcL2MOef9dCnl0fZa76OllO+eZh0BrpdSyp2llD8spXy6\nlPKpUsqPtOWu9YADZ8I5z7UecOCUUo6UUu4vpXysPef9y7b8paWUD7Xtt79RSlmadl2ByUqtddp1\n4JAppcwn+Ysk35HkkSQPJHl7rfXTU60YwB4ppTyU5N5a61emXReA662U8jeSXEzya7XWV7dl/zbJ\nuVrrv27D3TfVWn9smvUEuB7GnPN+OsnFWuvPTrNuANdbKeW2JLfVWj9SSjmZ5MNJ3pLkH8a1HnDA\nTDjnfW9c6wEHTCmlJDlea71YSllM8oEkP5LknyZ5X631PaWUX0rysVrrL06zrsBkevhhGt6Q5PO1\n1i/UWq8keU+SN0+5TgAAXINa6/9Ncq5T/OYk72rn35XmJinAzBtzzgM4kGqtj9daP9LOP5vkM0lu\nj2s94ACacM4DOHBq42K7uNhONcm3JXlvW+46D2aAwA/TcHuShweWH4kLZ+Bgq0l+t5Ty4VLKD067\nMgA3wAtrrY+3819K8sJpVgbgBvjhUsrH2yG/DG0DHDillLuTfEOSD8W1HnDAdc55iWs94AAqpcyX\nUj6a5Mkkv5fkL5M8U2tdbzfRfgszQOAHAPbeG2utr0vyXUl+qB0KAuBQqM0YwsYRBg6yX0zy8iSv\nTfJ4kn833eoAXF+llBNJfivJj9ZaLwyuc60HHDQjznmu9YADqda6UWt9bZI70ozO8sopVwm4BgI/\nTMOjSe4cWL6jLQM4kGqtj7avTyb57TQXzwAH2ROllNuSpH19csr1AdgztdYn2hulvST/Oa71gAOk\nlLKYpuH73bXW97XFrvWAA2nUOc+1HnDQ1VqfSfKHSb45yZlSykK7SvstzACBH6bhgSRfVUp5aSll\nKcnbkrx/ynUC2BOllOOllJP9+SR/M8knp1srgD33/iTvbOffmeR/TrEuAHuq3+jd+rtxrQccEKWU\nkuRXknym1vpzA6tc6wEHzrhznms94CAqpdxaSjnTzh9N8h1JPpMm+PPWdjPXeTADStPrKtxYpZTv\nTvLvk8wn+dVa67+acpUA9kQp5WVpevVJkoUk/805DzhISim/nuRbk9yS5IkkP5XkfyT5zSQvSfLF\nJN9baz03rToCXC9jznnfmmaIh5rkoST/pNb6+HRqCHD9lFLemOSPk3wiSa8t/skkH4prPeCAmXDO\ne3tc6wEHTCnl65K8K0077VyS36y1/kzbnvGeJGeT/HmSH6i1rk6vpsB2BH4AAAAAAAAAAGCGGNIL\nAAAAAAAAAABmiMAPAAAAAAAAAADMEIEfAAAAAAAAAACYIQI/AAAAAAAAAAAwQwR+AAAAAAAAAABg\nhgj8AAAAALAnSinfWkr5X9OuBwAAAMBBI/ADAAAAAAAAAAAzROAHAAAA4JArpfxAKeX+UspHSyn/\nqZQyX0q5WEr5+VLKp0opf1BKubXd9rWllD8rpXy8lPLbpZSb2vJXlFJ+v5TysVLKR0opL28Pf6KU\n8t5Syv8rpby7lFKm9kEBAAAADgiBHwAAAIBDrJTytUm+L8l9tdbXJtlI8g+SHE/yYK31VUn+KMlP\ntbv8WpIfq7V+XZJPDJS/O8kv1Fq/Psm3JHm8Lf+GJD+a5J4kL0ty355/KAAAAIADbmHaFQAAAABg\nqr49yeuTPNB2vnM0yZNJekl+o93mvyZ5XynldJIztdY/asvfleS/l1JOJrm91vrbSVJrXUmS9nj3\n11ofaZc/muTuJB/Y+48FAAAAcHAJ/AAAAAAcbiXJu2qtPzFUWMq/6GxXr/H4qwPzG3E/CgAAAOB5\nM6QXAAAAwOH2B0neWkp5QZKUUs6WUu5Kc9/ore0235/kA7XW80meLqW8qS1/R5I/qrU+m+SRUspb\n2mMsl1KO3dBPAQAAAHCIeKIKAAAA4BCrtX66lPLPk/xuKWUuyVqSH0ryXJI3tOueTPJ97S7vTPJL\nbaDnC0n+UVv+jiT/qZTyM+0x/v4N/BgAAAAAh0qp9Vp7YwYAAADgoCqlXKy1nph2PQAAAADYypBe\nAAAAAAAAAAAwQ/TwAwAAAAAAAAAAM0QPPwAAAAAAAAAAMEMEfgAAAAAAAAAAYIYI/AAAAAAAAAAA\nwAwR+AEAAAAAAAAAgBki8AMAAAAAAAAAADPk/wO6hR0MIHEqoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAJcCAYAAABD1/AMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3WuMX/d95/fPb+6cC4eX4W2GkkmZ\nlExZl2FMa5XISezYjmTLFhlk63qzbhfFAg6KDZB2t27kNkmboA+cbps1vFgn2GxcBM2uvV6nJmVL\niWXDki9JZIeSKFlXkpIs884hxcvwMiRn5vQBRyNSIilS4syZy+sFCBye//kffA8gSA/mjd+3VFUV\nAAAAAAAAAABg+mqoewAAAAAAAAAAAODtEQEBAAAAAAAAAMA0JwICAAAAAAAAAIBpTgQEAAAAAAAA\nAADTnAgIAAAAAAAAAACmOREQAAAAAAAAAABMcyIgAAAAAC6plPLTUsqH6p4DAAAAgIsTAQEAAAAA\nAAAAwDQnAgIAAAAAAAAAgGlOBAQAAADAZSmltJZSPl9K2T32z+dLKa1jn/WUUr5ZSjlcSnmllPKD\nUkrD2Ge/U0rZVUoZLKU8X0r5YL1vAgAAADDzNNU9AAAAAADTxv+a5PYk/UmqJJuS/G6S30vyr5Ls\nTLJo7N7bk1SllBuS/FaS91ZVtbuUsiJJ4+SODQAAADDzOQkIAAAAgMv1T5P8YVVV+6uqGkjyB0n+\nm7HPziRZluQdVVWdqarqB1VVVUlGkrQmubGU0lxV1U+rqnqhlukBAAAAZjAREAAAAACXqzfJy+f8\n/eWxa0nyr5NsT/JgKeXFUsq9SVJV1fYk/0OS/z3J/lLKV0opvQEAAADgqhIBAQAAAHC5did5xzl/\nv3bsWqqqGqyq6l9VVXVdknuS/MtSygfHPvtPVVW9b+y7VZI/mtyxAQAAAGY+ERAAAAAAl+vLSX63\nlLKolNKT5PeT/GWSlFI+VkpZVUopSY7k7Bqw0VLKDaWUXymltCYZSnIyyWhN8wMAAADMWCIgAAAA\nAC7X/5Fkc5Ink/wkyWNj15JkdZLvJDmW5O+TfLGqqoeStCb5XJIDSfYmWZzks5M7NgAAAMDMV6qq\nqnsGAAAAAAAAAADgbXASEAAAAAAAAAAATHMiIAAAAAAAAAAAmOZEQAAAAAAAAAAAMM2JgAAAAAAA\nAAAAYJprqnuAOvX09FQrVqyoewwAAAAAAAAAALigRx999EBVVYve7L5ZHQGtWLEimzdvrnsMAAAA\nAAAAAAC4oFLKy5dzn3VgAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBAQAAAAAAAADANNdU9wBTzZkz\nZ7Jz584MDQ3VPcqEamtry/Lly9Pc3Fz3KAAAAAAAAAAAvE0ioNfZuXNnurq6smLFipRS6h5nQlRV\nlYMHD2bnzp1ZuXJl3eMAAAAAAAAAAPA2WQf2OkNDQ1m4cOGMDYCSpJSShQsXzvjTjgAAAAAAAAAA\nZgsR0AXM5ADoVbPhHQEAAAAAAAAAZgsREAAAAAAAAAAATHMioCnm8OHD+eIXv3jF3/voRz+aw4cP\nT8BEAAAAAAAAAABMdSKgKeZiEdDw8PAlv/fAAw9k3rx5EzUWAAAAAAAAAABTWFPdA3C+e++9Ny+8\n8EL6+/vT3Nyctra2zJ8/P88991y2bt2aDRs2ZMeOHRkaGspv//Zv59Of/nSSZMWKFdm8eXOOHTuW\nj3zkI3nf+96Xv/u7v0tfX182bdqUOXPm1PxmAAAAAAAAAABMFBHQJfzBN57OM7uPXtVn3tg7N//b\nx9990c8/97nP5amnnsqWLVvy8MMP5+67785TTz2VlStXJkm+9KUvZcGCBTl58mTe+9735td//dez\ncOHC856xbdu2fPnLX86f/dmf5ROf+ET+6q/+Kp/61Keu6nsAAAAAAAAAADB1iICmuNtuu208AEqS\nL3zhC/n617+eJNmxY0e2bdv2hgho5cqV6e/vT5K85z3vyU9/+tNJmxcAAAAAAAAAgMknArqES53Y\nM1k6OjrGf3744Yfzne98J3//93+f9vb2vP/978/Q0NAbvtPa2jr+c2NjY06ePDkpswIAAAAAAAAA\nUI+GugfgfF1dXRkcHLzgZ0eOHMn8+fPT3t6e5557Lo888sgkTwcAAAAAAAAAwFTkJKApZuHChbnj\njjty0003Zc6cOVmyZMn4Z3fddVf+9E//NGvWrMkNN9yQ22+/vcZJAQAAAAAAAACYKkpVVXXPUJt1\n69ZVmzdvPu/as88+mzVr1tQ00eSaTe8KAAAAAAAAADAdlVIerapq3ZvdZx0YAAAAAAAAAABMcyIg\nAAAAAAAAAACY5kRAAAAAAAAAAAAwzYmAAAAAAAAAAABgmhMBMaVUVVX3CAAAAAAAAAAA044IiCnj\nP/7o5fzK//29nBkZrXsUAAAAAAAAAIBpRQQ0xRw+fDhf/OIX39J3P//5z+fEiRNXeaLJ09PZmpcO\nHM8Ptx+oexQAAAAAAAAAgGlFBDTFzOYI6P03LMrctqZsenxX3aMAAAAAAAAAAEwrTXUPwPnuvffe\nvPDCC+nv78+HP/zhLF68OF/96ldz6tSp/Nqv/Vr+4A/+IMePH88nPvGJ7Ny5MyMjI/m93/u97Nu3\nL7t3784HPvCB9PT05KGHHqr7Va5Ya1Nj7r5lWTZt2Z0Tp4fT3uJfTwAAAAAAAACAy6GyuJS/vjfZ\n+5Or+8ylNycf+dxFP/7c5z6Xp556Klu2bMmDDz6Yr33ta/nxj3+cqqpyzz335Pvf/34GBgbS29ub\n+++/P0ly5MiRdHd354//+I/z0EMPpaen5+rOPInW9/flyz/ekW8/sy/r+/vqHgcAAAAAAAAAYFqw\nDmwKe/DBB/Pggw9m7dq1+bmf+7k899xz2bZtW26++eZ8+9vfzu/8zu/kBz/4Qbq7u+se9aq5bcWC\n9Ha3ZaOVYAAAAAAAAAAAl81JQJdyiRN7JkNVVfnsZz+b3/zN33zDZ4899lgeeOCB/O7v/m4++MEP\n5vd///drmPDqa2go+Xh/b/7DD17KwWOnsrCzte6RAAAAAAAAAACmPCcBTTFdXV0ZHBxMktx55535\n0pe+lGPHjiVJdu3alf3792f37t1pb2/Ppz71qXzmM5/JY4899obvTmcb+vsyMlrl/p/sqXsUAAAA\nAAAAAIBpwUlAU8zChQtzxx135KabbspHPvKR/MZv/EZ+/ud/PknS2dmZv/zLv8z27dvzmc98Jg0N\nDWlubs6f/MmfJEk+/elP56677kpvb28eeuihOl/jbVmzbG5uWNKVjY/vyn/78yvqHgcAAAAAAAAA\nYMorVVXVPUNt1q1bV23evPm8a88++2zWrFlT00STayq/6xcf3p7/82+ez/c/84Fcu7C97nEAAAAA\nAAAAAGpRSnm0qqp1b3afdWBMSffc2psk2bRlV82TAAAAAAAAAABMfSIgpqTl89tz24oF2bhlV2bz\naVUAAAAAAAAAAJdDBHQBsyE6mQ7vuH5tb14YOJ6ndx+texQAAAAAAAAAgClNBPQ6bW1tOXjw4LSI\nZN6qqqpy8ODBtLW11T3KJd1987I0N5ZsfNxKMAAAAAAAAACAS2mqe4CpZvny5dm5c2cGBgbqHmVC\ntbW1Zfny5XWPcUnz2lvyy9cvzn1P7M5nP7omjQ2l7pEAAAAAAAAAAKYkEdDrNDc3Z+XKlXWPwZgN\na3vznWf35ZEXD+aOVT11jwMAAAAAAAAAMCVZB8aU9qE1S9LZ2mQlGAAAAAAAAADAJYiAmNLamhtz\n57uX5m+e2puhMyN1jwMAAAAAAAAAMCWJgJjyNqztzeCp4Xz3uf11jwIAAAAAAAAAMCWJgJjyfuGd\nPVnU1WolGAAAAAAAAADARYiAmPIaG0o+fktvHn5+IEdOnKl7HAAAAAAAAACAKUcExLSwYW1vTo+M\n5oGn9tQ9CgAAAAAAAADAlCMCYlq4ua871/V0WAkGAAAAAAAAAHABIiCmhVJK1vf35UcvvZLdh0/W\nPQ4AAAAAAAAAwJQiAmLaWN/fmyS574ndNU8CAAAAAAAAADC1iICYNlb0dKT/mnlWggEAAAAAAAAA\nvI4IiGllQ39vnts7mOf3DtY9CgAAAAAAAADAlCECYlr52K29aWwo2bjFaUAAAAAAAAAAAK8SATGt\n9HS25n2renLflt0ZHa3qHgcAAAAAAAAAYEoQATHtbFjbm12HT2bzy4fqHgUAAAAAAAAAYEoQATHt\n/OqNSzOnudFKMAAAAAAAAACAMSIgpp2O1qZ8+MYleeAne3J6eLTucQAAAAAAAAAAaicCYlrasLY3\nh0+cyfe2DtQ9CgAAAAAAAABA7URATEu/uHpRFnS0WAkGAAAAAAAAAJAJjoBKKXeVUp4vpWwvpdx7\ngc9bSyn/eezzH5VSVpzz2WfHrj9fSrnzCp75hVLKsYl6J6aG5saGfOyWZfnOM/syOHSm7nEAAAAA\nAAAAAGo1YRFQKaUxyb9L8pEkNyb5J6WUG1932z9PcqiqqlVJ/k2SPxr77o1JPpnk3UnuSvLFUkrj\nmz2zlLIuyfyJeiemlvX9fTk1PJpvPb2v7lEAAAAAAAAAAGo1kScB3ZZke1VVL1ZVdTrJV5Ksf909\n65P8xdjPX0vywVJKGbv+laqqTlVV9VKS7WPPu+gzxwKhf53kf57Ad2IK+blr5+XaBe3ZZCUYAAAA\nAAAAADDLTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O6lnvlbSe6rqmrPpYYqpXy6lLK5lLJ5YGDg\nil6IqaWUkvX9vfnb7Qeyf3Co7nEAAAAAAAAAAGozkRHQpCml9Cb5r5L82ze7t6qqf19V1bqqqtYt\nWrRo4odjQq3v78tolXzjiUu2XwAAAAAAAAAAM9pERkC7klxzzt+Xj1274D2llKYk3UkOXuK7F7u+\nNsmqJNtLKT9N0l5K2X61XoSpa9XiztzUN9dKMAAAAAAAAABgVpvICOgfkqwupawspbQk+WSS+153\nz31J/tnYz/84yXerqqrGrn+ylNJaSlmZZHWSH1/smVVV3V9V1dKqqlZUVbUiyYmqqlZN4LsxhWzo\n78uTO4/kxYFjdY8CAAAAAAAAAFCLCYuAqqoaTvJbSb6V5NkkX62q6ulSyh+WUu4Zu+3PkywcO7Xn\nXya5d+y7Tyf5apJnkvxNkn9RVdXIxZ45Ue/A9PDxW3tTSrJxy+66RwEAAAAAAAAAqEU5e/DO7LRu\n3bpq8+bNdY/BVfBP/8Mj2XnoZB7+n96fUkrd4wAAAAAAAAAAXBWllEerqlr3ZvdN5DowmDTr+/vy\n8sET2bLjcN2jAAAAAAAAAABMOhEQM8JdNy1NS1NDNlkJBgAAAAAAAADMQiIgZoS5bc350JrF+eaT\nuzM8Mlr3OAAAAAAAAAAAk0oExIyxvr8vB46dzg+3H6h7FAAAAAAAAACASSUCYsZ4/w2LMretyUow\nAAAAAAAAAGDWEQExY7Q2NebuW5blW0/vzYnTw3WPAwAAAAAAAAAwaURAzCjr+/ty4vRIvv3MvrpH\nAQAAAAAAAACYNCIgZpTbVixIb3eblWAAAAAAAAAAwKwiAmJGaWgo+Xh/b76/dSCvHD9d9zgAAAAA\nAAAAAJNCBMSMs6G/L8OjVe5/0mlAAAAAAAAAAMDsIAJixlmzbG5uWNKVjVaCAQAAAAAAAACzhAiI\nGWn92t48+vKh7HjlRN2jAAAAAAAAAABMOBEQM9I9t/YmSTZt2VXzJAAAAAAAAAAAE08ExIy0fH57\nbluxIBu37E5VVXWPAwAAAAAAAAAwoURAzFjr1/Zm+/5jeXr30bpHAQAAAAAAAACYUCIgZqy7b16W\n5sZiJRgAAAAAAAAAMOOJgJix5rW35JevX5z7ntidkVErwQAAAAAAAACAmUsExIy2YW1v9h09lR+9\neLDuUQAAAAAAAAAAJowIiBntQ2uWpLO1KRutBAMAAAAAAAAAZjAREDNaW3Nj7nz30vz1T/Zm6MxI\n3eMAAAAAAAAAAEwIERAz3oa1vRk8NZyHnttf9ygAAAAAAAAAABNCBMSM9wvv7MmirlYrwQAAAAAA\nAACAGUsExIzX2FDy8Vt689BzAzly4kzd4wAAAAAAAAAAXHUiIGaFDWt7c3pkNH/91J66RwEAAAAA\nAAAAuOpEQMwKN/d157qeDivBAAAAAAAAAIAZSQTErFBKyfr+vvzopVey58jJuscBAAAAAAAAALiq\nREDMGuv7e1NVyX1bdtc9CgAAAAAAAADAVSUCYtZY0dOR/mvmZaMICAAAAAAAAACYYURAzCob+nvz\n7J6j2bpvsO5RAAAAAAAAAACuGhEQs8rHbu1NY0PJxsd31T0KAAAAAAAAAMBVIwJiVunpbM37VvVk\n05bdGR2t6h4HAAAAAAAAAOCqEAEx62xY25tdh0/m0Z8dqnsUAAAAAAAAAICrQgTErPOrNy7NnOZG\nK8EAAAAAAAAAgBlDBMSs09HalA/fuCT3/2RPTg+P1j0OAAAAAAAAAMDbJgJiVtqwtjeHT5zJ97YO\n1D0KAAAAAAAAAMDbJgJiVvrF1YuyoKMlG7dYCQYAAAAAAAAATH8iIGal5saG3H3zsnznmX0ZHDpT\n9zgAAAAAAAAAAG+LCIhZa8Pa3pwaHs23nt5X9ygAAAAAAAAAAG+LCIhZ6+eunZ9rFszJJivBAAAA\nAAAAAIBpTgTErFVKyfpb+/K32w9k/+BQ3eMAAAAAAAAAALxlIiBmtQ1rezNaJd94Yk/dowAAAAAA\nAAAAvGUiIGa1VYu78u7euVaCAQAAAAAAAADTmgiIWW9Df1+e3HkkLw4cq3sUAAAAAAAAAIC3RATE\nrPfxW3tTSrJxy+66RwEAAAAAAAAAeEtEQMx6S7vb8vPXLcymLbtSVVXd4wAAAAAAAAAAXDEREOTs\nSrCXD57Ilh2H6x4FAAAAAAAAAOCKiYAgyV03L01LU0M2WQkGAAAAAAAAAExDIiBIMretOR981+J8\n88ndGR4ZrXscAAAAAAAAAIArIgKCMev7+3Lg2On8cPuBukcBAAAAAAAAALgiIiAY84F3LcrctiYr\nwQAAAAAAAACAaUcEBGNamxrz0ZuX5VtP782J08N1jwMAAAAAAAAAcNlEQHCO9f19OXF6JN9+Zl/d\nowAAAAAAAAAAXDYREJzjH61ckGXdbVaCAQAAAAAAAADTiggIztHQUHLPrb35/taBvHL8dN3jAAAA\nAAAAAABcFhEQvM76/r4Mj1a5/0mnAQEAAAAAAAAA04MICF5nzbKuXL+kMxutBAMAAAAAAAAApgkR\nELxOKSXr+/vy6MuHsuOVE3WPAwAAAAAAAADwpkRAcAHr+3uTJJu27Kp5EgAAAAAAAACANycCggtY\nPr89710xPxu37E5VVXWPAwAAAAAAAABwSSIguIj1/X3Zvv9Ynt59tO5RAAAAAAAAAAAuSQQEF3H3\nzcvS1FCsBAMAAAAAAAAApjwREFzE/I6WvP+GRbnvid0ZGbUSDAAAAAAAAACYukRAcAnr+/uy7+ip\n/OjFg3WPAgAAAAAAAABwUSIguIQPrVmSjpbGbLQSDAAAAAAAAACYwkRAcAlzWhpz501L89c/2Zuh\nMyN1jwMAAAAAAAAAcEEiIHgTG/r7MnhqOA89t7/uUQAAAAAAAAAALkgEBG/iF965MD2drVaCAQAA\nAAAAAABTlggI3kRTY0M+fuuyPPTcQI6cOFP3OAAAAAAAAAAAbyACgsuwob8vp0dG89dP7al7FAAA\nAAAAAACANxABwWW4ZXl3VvZ0WAkGAAAAAAAAAExJIiC4DKWUrO/vzY9eeiV7jpysexwAAAAAAAAA\ngPOIgOAybejvS1Ul923ZXfcoAAAAAAAAAADnEQHBZVrR05Fbr5mXjSIgAAAAAAAAAGCKEQHBFdjQ\n35tn9xzN1n2DdY8CAAAAAAAAADBOBARX4GO39KaxoWTj47vqHgUAAAAAAAAAYJwICK7Aoq7W3LGq\nJ5u27M7oaFX3OAAAAAAAAAAASURAcMU29Pdm1+GTefRnh+oeBQAAAAAAAAAgiQgIrtivvntp2pob\nrAQDAAAAAAAAAKYMERBcoc7Wpnz4xqW5/yd7cnp4tO5xAAAAAAAAAABEQPBWbOjvzeETZ/L9rQN1\njwIAAAAAAAAAIAKCt+KXrl+U+e3N2bjFSjAAAAAAAAAAoH4iIHgLmhsbcvcty/KdZ/fl2KnhuscB\nAAAAAAAAAGY5ERC8RRv6+zJ0ZjTfempv3aMAAAAAAAAAALOcCAjeove8Y36Wz59jJRgAAAAAAAAA\nUDsRELxFpZSs7+/N324/kP2DQ3WPAwAAAAAAAADMYiIgeBs29PdltEq++cSeukcBAAAAAAAAAGYx\nERC8DauXdOXGZXOzyUowAAAAAAAAAKBGIiB4mzas7c0TO4/kpQPH6x4FAAAAAAAAAJilREDwNt1z\na19KSTY+7jQgAAAAAAAAAKAeIiB4m5Z2t+X2lQuzacuuVFVV9zgAAAAAAAAAwCwkAoKrYMPa3vz0\n4Ik8sfNI3aMAAAAAAAAAALOQCAiugrtuWpaWxgYrwQAAAAAAAACAWoiA4CrontOcX3nX4nzzyd0Z\nHhmtexwAAAAAAAAAYJYRAcFVsmFtbw4cO52/feFg3aMAAAAAAAAAALOMCAiukvffsDhdbU3ZZCUY\nAAAAAAAAADDJREBwlbQ1N+ajNy3Lt57em5OnR+oeBwAAAAAAAACYRURAcBWtX9ub46dH8u1n99U9\nCgAAAAAAAAAwi4iA4Cq6feXCLJ3bZiUYAAAAAAAAADCpREBwFTU0lNzT35vvbR3IK8dP1z0OAAAA\nAAAAADBLiIDgKlvf35vh0Sr3/2RP3aMAAAAAAAAAALOECAiushuXzc3qxZ1WggEAAAAAAAAAk0YE\nBFdZKSUb1vZl88uHsuOVE3WPAwAAAAAAAADMAiIgmAD33NqbJLnvid01TwIAAAAAAAAAzAYiIJgA\n1yxoz7p3zM/Gx3elqqq6xwEAAAAAAAAAZjgREEyQ9Wv7sm3/sTyz52jdowAAAAAAAAAAM5wICCbI\n3TcvS1NDyaYtVoIBAAAAAAAAABNLBAQTZEFHS375+kW5b8vujIxaCQYAAAAAAAAATBwREEyg9Wv7\nsvfoUH700sG6RwEAAAAAAAAAZrAJjYBKKXeVUp4vpWwvpdx7gc9bSyn/eezzH5VSVpzz2WfHrj9f\nSrnzzZ5ZSvnzUsoTpZQnSylfK6V0TuS7weX48Jol6WhpzKbHrQQDAAAAAAAAACbOhEVApZTGJP8u\nyUeS3Jjkn5RSbnzdbf88yaGqqlYl+TdJ/mjsuzcm+WSSdye5K8kXSymNb/LM/7Gqqlurqrolyc+S\n/NZEvRtcrjktjbnz3UvzwFN7MnRmpO5xAAAAAAAAAIAZaiJPArotyfaqql6squp0kq8kWf+6e9Yn\n+Yuxn7+W5IOllDJ2/StVVZ2qquqlJNvHnnfRZ1ZVdTRJxr4/J0k1ge8Gl2392r4MDg3n4ef31z0K\nAAAAAAAAADBDTWQE1Jdkxzl/3zl27YL3VFU1nORIkoWX+O4ln1lK+X+S7E3yriT/9kJDlVI+XUrZ\nXErZPDAwcOVvBVfojncuTE9nSzZaCQYAAAAAAAAATJCJjIAmXVVV/12S3iTPJvmvL3LPv6+qal1V\nVesWLVo0qfMxOzU1NuRjt/Tmu8/tz5GTZ+oeBwAAAAAAAACYgSYyAtqV5Jpz/r587NoF7ymlNCXp\nTnLwEt9902dWVTWSs2vCfv1tvwFcJRvW9uX0yGj+5qk9dY8CAAAAAAAAAMxAExkB/UOS1aWUlaWU\nliSfTHLf6+65L8k/G/v5Hyf5blVV1dj1T5ZSWkspK5OsTvLjiz2znLUqSUopJck9SZ6bwHeDK3Lr\n8u6sWNhuJRgAAAAAAAAAMCGaJurBVVUNl1J+K8m3kjQm+VJVVU+XUv4wyeaqqu5L8udJ/t9SyvYk\nr+Rs1JOx+76a5Jkkw0n+xdgJP7nIMxuS/EUpZW6SkuSJJP/9RL0bXKlSStb39+UL392WvUeGsrS7\nre6RAAAAAAAAAIAZpJw9eGd2WrduXbV58+a6x2CWeOnA8Xzg/3o4/8tH35VP/9I76x4HAAAAAAAA\nAJgGSimPVlW17s3um8h1YMA5VvZ05Nbl3VaCAQAAAAAAAABXnQgIJtH6/r48s+dotu0brHsUAAAA\nAAAAAGAGEQHBJPrYrcvSUJKNW3bVPQoAAAAAAAAAMIOIgGASLe5qyx2rerJpy+5UVVX3OAAAAAAA\nAADADCECgkm2ob8vOw+dzKMvH6p7FAAAAAAAAABghhABwSS786alaWtusBIMAAAAAAAAALhqREAw\nyTpbm/KhNUty/5N7cmZktO5xAAAAAAAAAIAZQAQENdjQ35dDJ87k+1sH6h4FAAAAAAAAAJgBREBQ\ng1+6flHmtTdn45bddY8CAAAAAAAAAMwAIiCoQUtTQ+6+eVm+/czeHDs1XPc4AAAAAAAAAMA0JwKC\nmmxY25ehM6N58Om9dY8CAAAAAAAAAExzIiCoyXuunZ++eXOsBAMAAAAAAAAA3jYRENSkoaFkfX9v\nfrhtIAODp+oeBwAAAAAAAACYxkRAUKMNa/syWiXffNJpQAAAAAAAAADAWycCghpdv6Qra5bNtRIM\nAAAAAAAAAHhbREBQsw39vXlix+G8dOB43aMAAAAAAAAAANOUCAhqdk9/b0pJNm3ZVfcoAAAAAAAA\nAMA0JQKCmi3rnpPbVy7Mpi27U1VV3eMAAAAAAAAAANOQCAimgA1re/PSgeP5L4/uzNGhM3WPAwAA\nAAAAAABMM2U2nzyybt26avPmzXWPATly8kzu+vz3s+fIUBpKclNfd26/bmFuv25B1q1YkLltzXWP\nCAAAAAAAAADUoJTyaFVV6970PhGQCIipYejMSB7/2eE88uLBPPLiwTz+s8M5PTIqCgIAAAAAAACA\nWUwEdBlEQExloiAAAAAAAAAAQAR0GURATCdDZ0by2M8O5ZEXX8kjLx7MlnOioJvHo6CFWbdifrpE\nQQAAAAAAAAAwI4iALoMIiOlMFAQAAAAAAAAAM58I6DKIgJhJREEAAAAAAAAAMPOIgC6DCIiZTBQE\nAAAAAAAAANOfCOgyiICYTURklJ0DAAAgAElEQVRBAAAAAAAAADD9iIAugwiI2ezk6ZE8/rNDeeTF\ng3nkxVfy+I5DOTNSiYIAAAAAAAAAYAoRAV0GERC8RhQEAAAAAAAAAFOPCOgyiIDg4i4WBTU2lNzU\n153br1twNgp6hygIAAAAAAAAACaKCOgyiIDg8omCAAAAAAAAAGDyiYAugwgI3rqTp0fy2HgUdDBb\ndhy+YBT03hUL0tnaVPe4AAAAAAAAADAtiYAugwgIrh5REAAAAAAAAABcfSKgyyACgokjCgIAAAAA\nAACAt08EdBlEQDB53iwKes+18/OupV25fmlXVi/uTIcwCAAAAAAAAAAuOwLyW3ZgUsxpacwdq3py\nx6qeJOdHQX//wsH8px+/nKEzo+P3X7NgTm5Y0pXrl3TlhqVn/7xuUUdamxrregUAAAAAAAAAmLJE\nQEAtXh8FjYxW2fHKiTy/bzBb9w6e/XPfYB5+fiDDo2dPLGtsKFnZ03FOHNSZ65d05R0LO9LYUOp8\nHQAAAAAAAAColQgImBIaG0pW9HRkRU9H7nz30vHrp4dH89KB4+fFQU/tPpIHntqTV7cZtjQ1ZNWi\nzvETg16Ng/rmzUkp4iAAAAAAAAAAZj4REDCltTQ15IalZ1eC5dbXrp84PZzt+49l675j2bpvMM/v\nHcwjLx7M1x/fNX5PZ2tTVi/pfMNasZ7OFnEQAAAAAAAAADOKCAiYltpbmnLL8nm5Zfm8864fOXkm\n2/YNnndy0Lee3puv/MOO8XsWdLTk+lfjoKVduWFJV1Yv6Ur3nObJfg0AAAAAAAAAuCpEQMCM0j2n\nOetWLMi6FQvGr1VVlQPHTo+fGLR1LBL62qM7c/z0yPh9S+e2jUVBneMnB61a3Jn2Fv+pBAAAAAAA\nAGBq85ttYMYrpWRRV2sWdbXmjlU949erqsquwyezdd/g2bViYycH/cWLB3N6eHTsu8m1C9rPRkHn\nnBy0sqcjLU0Ndb0SAAAAAAAAAJxHBATMWqWULJ/fnuXz2/Mr71oyfn14ZDQ/e+XE2MlBx8ZPDvru\nc/szMlolSZoaSq5b1PGGOOiaBe1pbCh1vRIAAAAAAAAAs5QICOB1mhobct2izly3qDN33fTa9VPD\nI3lx4Ph5a8We2Hk433xyz/g9bc0NWbW48w1x0LLutpQiDgIAAAAAAABgYoiAAC5Ta1Nj1iybmzXL\n5p53/fip4Wzb/9o6sa37BvO32w/k/3ts1/g9Xa1NuX5p11gc1DkeBy3sbJ3s1wAAAAAAAABgBhIB\nAbxNHa1N6b9mXvqvmXfe9cMnTmfrvmNnw6CxQOiBn+zJl398Zvyens6WrF7cleuXdGbVkq6sXtyZ\n1Ys7xUEAAAAAAAAAXBEREMAEmdfekttWLshtKxeMX6uqKgODp/L8OSvFnt93LH/12K4cOzU8ft+C\njpasGguCVi/uzOqxQGhRV6u1YgAAAAAAAAC8gQgIYBKVUrJ4blsWz23LL65eNH69qqrsOTKUbfuP\nZdu+wbwwcCzb9h3LN57YnaNDr8VBc9uaxoOgVefEQcu628RBAAAAAAAAALNYqaqq7hlqs27dumrz\n5s11jwFwUVVVZeDYqWzfd+xsILR/MNvGfn7l+Onx+zpaGs9bJ7Z6SWdWL+5K37w5aWgQBwEAAAAA\nAABMV6WUR6uqWvdm9zkJCGAKK6VkcVdbFne15RdW9Zz32cFjp7J9/9kgaPtYIPT9rQP52qM7x+9p\na24YWyvW9dp6sSVduXZBexrFQQAAAAAAAAAzhggIYJpa2NmahZ2t+UfXLTzv+pETZ7J94LUTg7bt\nP5YfvXgwX3981/g9LU0Nua6nY3yd2KunB71jYUeaGxsm+1UAAAAAAAAAeJtEQAAzTHd7c97zjgV5\nzzsWnHd9cOhMXhg4nm37BsdPENqy41C+8cTu8XuaGkpW9nRk9ZLOrFrcNR4HrezpSGtT42S/CgAA\nAAAAAACXSQQEMEt0tTWn/5p56b9m3nnXT5wezosDx7Nt/2unBz27ZzB/89TejFZn72koyYqFHWdX\nii15bb3YOxd1Zk6LOAgAAAAAAACgbiIggFmuvaUpN/V156a+7vOuD50ZyUsHjmfb/mPZvm9wfLXY\nd5/bn+GxOqiU5Jr57Vm9uDOrxuKg1Ys7s2pxZzpa/S8GAAAAAAAAYLL4DS0AF9TW3Jg1y+ZmzbK5\n510/PTyalw+ejYPOnhx0dr3YD7YdyOmR0fH7+ubNOXty0NjpQavGTg/qntM82a8CAAAAAAAAMOOJ\ngAC4Ii1NDVm9pCurl3QlN792fXhkND975cTZk4P2H8u2sdODHnnxYE4NvxYHLZnbOr5ObPWSzrxj\nQUeWdrdmafecdDo9CAAAAAAAAOAt8dtWAK6KpsaGXLeoM9ct6syd737t+sholV2HTmbb/sHx04O2\n7x/MVzfvyInTI+c9o7O1KUu727J0bluWzG3Lsu62LOluy7K5bWevd7dlQXtLGhrKJL8dAAAAAAAA\nwNQmAgJgQjU2lFy7sD3XLmzPB9csGb8+Olpl95GT2XnoZPYdHcqeI0PZe2Ro/OcXXjiQfUeHMlqd\n/7zmxpIlc8+GQq8GQ68GQsu6z8ZDi7va0tLUMMlvCgAAAAAAAFAfERAAtWhoKFk+vz3L57df9J6R\n0SoHjp0aD4T2HjmZvUdPjf05lKd2Hcl3nt2XoTOj532vlGRhR+t4FLSs+/xg6NVrHdaPAQAAAAAA\nADOE334CMGU1Npw99WfJ3LbkmgvfU1VVjpw8k71jJwjtOzKUvUfHoqGjQ9l56EQ2v/xKDp8484bv\ndr26fux1Jwqde8rQgo6WlGL9GAAAAAAAADC1iYAAmNZKKZnX3pJ57S1519K5F73v5OmR8VVj5/95\n9nShrfsGMjB46g3rx1qaGrJkbmuWzZ2TJeesHDv3z0VdrWlutH4MAAAAAAAAqI8ICIBZYU5LY1b0\ndGRFT8dF7xkeGc2BY6ez58jJ8VBo/FShI0N5cufhPPj0UE4Nv3H92KLO1vNWjY2vITvnhKH2Fv/b\nBQAAAAAAACaG30YCwJimxobxYOdiqqrK4RNnzls5du4asp8dPJEfv/RKjpx84/qxuW2vrh+bk6Vz\nW7Ose06Wz5+T5fPbs3z+nCzrbkuTE4UAAAAAAACAt0AEBABXoJSS+R0tmd/RkjXLLr1+bO/YurF9\n54RCr64he27P0QwcO5XqnPVjjQ0lS+e25ZoFr4VBy+e355r5c7J8QXuWzm1LY0OZhLcEAAAAAAAA\nphsREABMgDktjVnZ05GVl1g/dnp4NHuPDGXHoRPZeehEdh46OfbPifxw24HsGxw6LxJqaihZNq8t\ny+e1vzEUWjAni7tEQgAAAAAAADBbiYAAoCYtTQ25dmF7rl3YfsHPTw2PZM/hoew8dPINodD3tg5k\n39FT593f3FjSO29sxdgFQqHFXa1pEAkBAAAAAADAjCQCAoApqrWpMSt6OrLiIqcJDZ0Zye7DJ8fD\noB3jkdCJfPf5/RkYPD8SamlsSN/8sUho/htXjvV0ioQAAAAAAP5/9u4tRrL8Puz7738uVd3V3XPZ\n5S5pXiRRIAWBfnDirB0EQZAHJ5ESBOZDjIhxLBgxDfnBgg0kMCAhDwn0FCNAAiG2FQhUgkiQowhy\nAvDBsBzHSJwETkhKkZyQtOSFSGp3Se6Su90zPV1dXbeTh3Oq+lR1dU/3zNTMnJnPB2ic+7+qh7uz\nw67v/P8A0FUiIADoqJ0yjx9+bT9++LX9jddHk9kyCmovNfbW4Wn8z197N77/YLxyf6/I1uKg80Do\n43cH8aH9XqQkEgIAAAAAAIDnkQgIAF5QO2Uen3p9Pz71+uZI6HQ8i3eO6ijo7Q9WQ6H/75178cHJ\neG28LD52Zzc+8cpg40xCr+yJhAAAAAAAAOBZEQEBwEtqt5fHp14/iE+9frDx+snZNN45Op9J6K1W\nKPS7bx3F4XCyOl6ZL2cQ2hQK3R2UIiEAAAAAAADYEhEQALDRXr+IH/nwQfzIhzdHQsejSR0JfdAK\nhZrtb//hUdw7XY2E9nr5ylJjH7m9G68f9OPDt3biw7f68frBTtzaLYRCAAAAAAAA8AhEQADAIznY\nKeNHP1LGj37k1sbr90eTlUBosdTYW4en8aVvfhDHo+mFZ/pFFh++tbOMg15bi4TEQgAAAAAAALCZ\nCAgA2IpbO2V85qNlfOajmyOh4Xga790/i3fvj+K94/Pte/dH8e79s/j6d+/HP/r9szg+e3gs9Ppa\nJPThW/14/dZO3NoRCwEAAAAAAPByEAEBAM/EoFfED32oiB/60N6V97VjoXebSGgZDT1GLLQ4LxYC\nAAAAAADgRSACAgCea9eNhU7OpuczCV0SC/1vv38WD66IhRYzCYmFAAAAAAAA6BoREADwQtjrF/HJ\nfhGffIxY6N37oytjoZ0yW1l27PVWJCQWAgAAAAAA4FkSAQEAL5WbxkLvNpHQe00ktDj32LHQwU7c\n2hULAQAAAAAA8GSIgAAANniUWOjd+6P4Xiscevf+KL7+nauXIVssPbYIhF476C9nFFqcuzsoxUIA\nAAAAAABcSQQEAPAYrhsLPTibriw99r3js9YMQ2fx++8ex//x5vfjeHQxFirzFK/t9+O1Wzvx4YP+\nSjj0emu2oVf3+pFnYiEAAAAAAICXkQgIAOAp2O8Xsf/afvzwa/tX3nc6nsV7x4slyM7iveM6Enrv\nuA6HvvX+ML78zQ/icDi58GyepXh1r3e+5Nitfrx2sLYM2a1+fGi/H2WebetbBQAAAAAA4BkQAQEA\nPEd2e3n84Kt78YOvXj2z0Nl01ppNqI6Eltvjs/j2vVH87ttH8f7JOKpq9dmUIl7d6y0DoUUctAiF\nXmvNMtQv8i1+twAAAAAAADwpIiAAgA7qF3l8/O4gPn53cOV9k9k83n8wXplRqI6FzpbLk/3T796P\n7z8Yx2xeXXj+zqBsQqFFGLS6DNmHm+1uTywEAAAAAADwLF0rAkop/dWI+G8j4jgivhAR/3xE/ExV\nVX9/i+8NAIDHVOZZfOT2Tnzk9s6V983mVbx/Us8qVM8wVMdC77aioW98/yTeOx7FZHYxFjroF/Ha\nrf7q0mMHO8tY6PXm2n6/iJTStr5dAAAAAACAl9Z1ZwL6C1VV/XxK6cci4m5E/GRE/EpEiIAAAF4A\neZaa2X6ujoXm8yqOTicrMwq9e3+0Eg799h8exnv3z+JsOr/w/G6Zxyt7vbgzKOPu4Hx7d1DGnUEv\n7u412+bc3b1eHAiHAAAAAAAAHuq6EdDiU5d/KyJ+paqqryafxAAAvHSyLMUre714Za8XP/qRy++r\nqiruj6bxvQ3LkB0Ox3E0nMThcBzvHJ3G4XAc904nUV2cYCgiIoosxZ1FJNTa1hHR2rlWYFTm2XZ+\nEQAAAAAAAJ5D142Afiul9Pcj4pMR8bMppYOIuPhXuwEAICJSSnF7t4zbu2V86vWDh94/m1dx73TS\nBELjODyZrMRCh8NJfX44jrc+GMY/ebs+N94w29DCfr9YmXHolb3eyuxD57MQNft7vdjr5WYdAgAA\nAAAAOum6EdDnI+Kfi4g/qKpqmFJ6JSL+g+29LQAAXiZ5a4ah66qqKk4nszgcTuLw5DwYOmqioQ9O\nzvePhuP41vvDOByO43g0vXTMMk9XzjjUDooW527vllGYdQgAAAAAAHjGrhsB/UsR8TtVVZ2klP5c\nRPzxiPj57b0tAAC4WkopBr0iBr0iPnZn99rPTWfzODqdLAOhdkDUnnHocDiJb3z/JH57eBRHw3FM\nZpesVxYRt3aKZimy1Vjo7kpQVJ+7vVvGnUEZ+/3CrEMAAAAAAMATc90I6Bci4o+llP5YRPxHEfGF\niPjliPhXt/XGAABgG4o8iw/t9+ND+/1rP1NVVTw4m16MhU7a4VB97f0H43jzvQdxNJzEg7PLZx3K\ns/Ml0xZfy0hot4xbu3U8tOn8Tpk/iV8KAAAAAADgBXLdCGhaVVWVUvpsRPyNqqp+KaX0+W2+MQAA\neF6klOJgp4yDnTI+8crg2s+Np/M4Om1mGjoZx9HpJO4NJ3HvdBJHp+N62xwfDsfxzfdP4mg4ifuj\nSVSXTzwUO2XWREF1JHS7FQm1j2+3Q6ImIMozsw8BAAAAAMCL6LoR0HFK6Wcj4icj4l9JKWURUW7v\nbQEAQPf1iixeP9iJ1w92bvTcfF7F8Wi6MRZafg3Pr731wTC+ejqJo9NJDMezK8c+2CnWZhfqNbMO\nbQ6JFhHRXi+3fBkAAAAAADzHrhsB/URE/NmI+AtVVX03pfQDEfGfb+9tAQDAyyvLUh3hDMr4gbj+\nzEMR9exD57HQakC0HhIdDcfx3Xv3l8eT2eXTDxWL5cvWYqE7gyYiWl/SbFDPPHR7t4x+YfkyAAAA\nAADYtmtFQE3486sR8SdSSv92RHypqqpf3u5bAwAAbqpXZPHaQT9eO+jf6LmqqmI4nq3FQmsRUWsW\nou8/GMeb33sQ94aTuD+aXjn2bpnHnUEdDL2y12wHvbi7PNeLO4MyXtnrxd1BL+7u9cw8BAAAAAAA\nN3StCCil9O9GPfPP/xoRKSL+q5TSX6uq6je2+N4AAICnJKUUe/0i9vpFfPTO7o2enc2rOB5tioXG\ny1mGDof1zEOHw0l8/dv343A4jqPTSVSXTD5U5qkOgga9uLtXLuOgu4Py4vnm2q2dQjgEAAAAAMBL\n67rLgf3HEfEnqqp6LyIipfRaRPyDiBABAQDASy7PUtwZ9OLOoHej52bzKu6fTuKD4TiOhuP44GRS\nx0HNfr0dx9FwEv/svQfLiGg231wO5Vk6n11ocD67UHsGortrsxHd2i0jz4RDAAAAAAB033UjoGwR\nADXej4hsC+8HAAB4SeRZqmf32bt+PDSfV3F8No3Dk3EcDpuvJh46bCKhxbVvvT+M33nrKA6H45jM\nNodDKUXc2d0w09BiabLWkmV3B2Xc3evFnd0yitz/HQIAAAAA4Ply3Qjo76WUfjMi/vvm+Cci4u9u\n5y0BAABslmUpbu+WcXu3jB+KvWs9U1VVnIxnyzhoMbtQHRDV4dBiNqJ3jkbx1W/fjw9OxnE2nV86\n5q2dYiUU2rxfL1m2mHFop8yf1C8DAAAAAABccK0IqKqqv5ZS+nci4l9uTv1iVVX/0/beFgAAwJOR\nUor9fhH7/SI+8crg2s+djmfxQRMKHQ3by5Y1x01U9L0HZ/H77z6Iw+E4huPZpeP1i2wZMN1qtrd3\ny7i1U6ycW7nWbPd6eaRk2TIAAAAAAC533ZmAoqqqvxMRf2eL7wUAAOC5sdvL42O93fjYnd1rPzOa\nzM5nGWqWKvtgOI77p5O4dzpZbu+dTuK941H8s/eO495wEsdn06g2r1gWERFFluLWWjDUjoXqmKgd\nDxXL/YOdMvJMQAQAAAAA8KK7MgJKKR1HxKYfRaeIqKqqurWVdwUAANBBO2UeH7mdx0du79zoufm8\niuOz6cZY6N7pJO6PFvvn97xzeLq8Pp1fURBFxEG/aM00VFyMhwbn+6szERXRLyxjBgAAAADQBVdG\nQFVVHTytNwIAAPCyyrK0DG8+ccNnq6qK08msiYemq/HQWki0OP7G90+W955OLl/CLCJip8wuzDS0\naTaixSxFtwfn9w4sYwYAAAAA8NRcezkwAAAAnj8ppRj0ihj0ivgjt2/+/Hg6b800dB4PLWclGk3j\n3vD82nfvj+L33j2Oe6eTOB5Nrxy7WMRNgzLuDnpxZ7eMO4Ne3BmU9f7e4lx9/Xazv98vxEMAAAAA\nADckAgIAAHiJ9YosPrTfjw/t92/87GxexYPRdMOyZecx0dHpJO4NJ3F0Oo7v3h/FP/3ucRwNx3Ey\nvnwGoiJLdSg0OI+ELuwPyriz22ybc3tmHgIAAAAAXmIiIAAAAB5JnqW4Pahn+rmp8XQeR6fjuDec\nxOFwEkfDcRydNtvhZGX/20ej+Nq378fR6SSGV8RDZZ7i9m4v7jZhUHv/snDojmXLAAAAAIAXhAgI\nAACAp65XZPH6wU68frBzo+fOprNmZqFJHJ6MlzMNHS4jovN46J2j0/jqt+/F0XASp5PL46FenjVL\nltWR0HK/WaLsbnsJs8F5RLRbiocAAAAAgOeHCAgAAIDO6Bd5vH4rj9dv3SweGk1mca+JhA6bSOje\n6biZhajZP6mXLXvrg2H8v2/X+6PJ/NIxe0UWd5pI6HYTCS2CoTok6sXBThH7/SIOdoo42Cljv1/E\n/k4R+70iskxABAAAAAA8OSIgAAAAXng7ZR47ZR4ffoR4qF6ebLwyy9Bhc+5eKyr6ww+G8btvH8Xh\ncBLj6eXx0MJ+v1hGQSuxUL+sQ6FlPFTEfnOuvr54poxBmYuJAAAAAICIEAEBAADApXbKPD5yO4+P\n3L55PHQ4HMeD0TTuj6bx4GwaD0bTeHA2iePRNI6bc8ejSbOtv75zb9TcV389TEoR+70mFFqGQ00w\n1L94vH7fIj4a9CxtBgAAAABdJwICAACAJ2ynzOOP3N6NuP3oY8zmVZyM63joeENA9GA0jeNFSLSM\niqZxdDqJtw+Hy/uG49lDXytLcR4MXRELXba82UFz306ZiYkAAAAA4BnZagSUUvrxiPj5iMgj4gtV\nVf1na9f7EfHLEfEvRMT7EfETVVV9s7n2sxHx+YiYRcRfqarqN68aM6X0qxHxRkRMIuJLEfGXqqqa\nbPP7AwAAgG3JsxS3dsq4tVM+1jjT2TxOxrPlrEOLqOh4uX8+G1F7dqLDk3H84fvD5X2nk4fHRHmW\nlpHQoJdHv8hjp8yiX+TRL7Lot/Z3yuZckUV/437e3J9dOU6/EB4BAAAAQMQWI6CUUh4RfzMi/vWI\neDsivpxS+mJVVV9r3fb5iDisqupTKaXPRcRfj4ifSCl9JiI+FxF/NCI+GhH/IKX0I80zl435qxHx\n55p7/nZE/MWI+IVtfX8AAADQBUWexe3dLG7vPl5MNJnN46S1dFm9ZNmG2YlG9bnTySzOpvM4m85i\nNJnF0ek4zibz5bmz6TzOJvMYTWdRVY/3PW6KiXZuGBMt718JjFr3t8ZY3N8rssgzARIAAAAAz4dt\nzgT0JyPizaqq/iAiIqX0axHx2YhoR0CfjYj/tNn/jYj4G6n+63ufjYhfq6rqLCK+kVJ6sxkvLhuz\nqqq/uxg0pfSliPj4tr4xAAAAeNmUeRZ3Br24M+g90XGrqorJrDoPg6bzOJvMYjSZXzh3Np3HaNI6\nN50tQ6JNgdHi+uHJeHXs1njT+eMVSGWeVmYl2inz6Jd53Nkt486gbH7Nyrg7KOPObrO/12uu18dl\nnj2hX00AAAAAXmbbjIA+FhFvtY7fjoh/8bJ7qqqappTuRcSrzfn/a+3ZjzX7V46ZUioj4icj4q9u\nelMppZ+KiJ+KiPiBH/iB6383AAAAwBOXUopekaJXZHHwDF5/OpvHeDa/MiYatWY1Wg2S2qHS+bPD\n8SzunY7jzfcexOFwEkfD8ZWx0X6/iNu7ZdzdK+PuoFfvN4HQnUEdDN3da+0PenFrtzQLEQAAAAAr\nthkBPSt/KyL+UVVV//umi1VV/WJE/GJExBtvvPGYE44DAAAAXVbkWRR5Fk94gqMVVVXFyXgWhyfj\nuHc6icPhOI6aOOhoOFmGQkfNtXcOT+NwWN97WTuUUsStnXI1FFqZeWgtIhr04s5eGQf9IupJmAEA\nAAB40WwzAnonIj7ROv54c27TPW+nlIqIuB0R7z/k2UvHTCn9JxHxWkT8pSfw/gEAAAAeW0op9vtF\n7PeLlR9qPMx8XsXxaFpHQ00gdG9Ybw+Hk7jXbBfXvvH9kzgcjuN4NL10zDxLcWe3jNuLUGh3bcmy\nVkRUz05U3zPo5eIhAAAAgOfcNiOgL0fEp1NKn4w61PlcRPzZtXu+GBF/PiL+cUT8mYj4h1VVVSml\nL0bE304p/RcR8dGI+HREfCki0mVjppT+YkT8WET8qaqq5lv8vgAAAAC2LstS3B7Uwc5NTGfzZsah\nSdw7HcfhSR0KHQ3HrVmIJnF0Oo7v3BvF179zP45OJzEczy4ds5dnzcxCa7MLDS5GRLtlHmWeRa9I\nUWRZlEUWZZ6i18y6VOYpyiyLzHJmAAAAAE/U1iKgqqqmKaWfjojfjIg8Iv6bqqq+mlL6uYj4SlVV\nX4yIX4qIX0kpvRkRH0Qd9URz369HxNciYhoRf7mqqllExKYxm5f8ryPiWxHxj5u/mfY/VlX1c9v6\n/gAAAACeR0Wexav7/Xh1v3+j586ms2amoUUwtLpM2WIWoqPhJL71/jB+562jOBpOYjx7tL+LVWQp\nijzVwVCeRZlnUTSxUJlnUTYRUa/ZL/OsPm72y0VQtNzPopenJjRqwqOifmaxX4+Roiwuec18bewi\ni7J5Ps+S2ZAAAACA51qqqksWl38JvPHGG9VXvvKVZ/02AAAAADqpqqo4ncziqBUIjSazmMyqmMzm\nra9qZX88ncd0fr4/mc1j2twznp0fj1vPTGfzGLfGWbk+ncdkXo+1LSlFHQc1EdEiXipa4VC/yOJg\np6i/+mXsN/v7/SJu7ZT1/k4RB83+Qb/e3ykzgREAAABwqZTSb1VV9cbD7tvmcmAAAAAAvMBSSjHo\nFTHoFfHRO7vP+u1EVVUxm1d1dDRv4qC1AGkRGq1ER9N5TOfN8SXPXNxfPR5PqzibzuJ4NI3v3BvF\n8WgSx6PplcusLRRZagVDdSB0q4mHDtbjoX4TGe2UzfU6MNrr51Hk2VP4VQYAAACeVyIgAAAAAF4I\nKdVLjBV5xG7kz/rtRETEdDaPk7NZ3B9N4sHZNI5H0zhu9u+PpvGgOT4eTZvrk7g/msa3j0ZxfDZp\n7p/GbP7w2bwHvXw589BytqG1WYnaIZFZiQAAAODFIgICAAAAgC0p8ixuD7K4PSgfeYyqqmI0mdex\nUBMSteOh47NWSDSarsRD3z46XcZHN52VaBEPXTYrUfv8YlaiQS+PvX4R/UJMBAAAAE+bCAgAAAAA\nnmMppdjt5bHby+P1xzil7+EAACAASURBVBinPStRe+ahdkj0YHRxtqJ3jkbx4IazEhVZir1+HQnt\n9fMY9M73F+frc/Xx+b1F7PXy1eN+Hv3i+ZjZCQAAAJ5nIiAAAAAAeAlsa1aiRUh0ctZ8jWfxoNl/\ncDaN4dksTsb1/nvHozhpjk/OpjGZPTwoiogo83RJSLQaDO03EdFg5VwTGvVERQAAALzYREAAAAAA\nwLU8qVmJFs6mszoKWgRD42k8aB23w6LVc3Vo9O790XL/5Gwa02vMUhRRR0XnYVArJOqdh0ODVlS0\njI7WoqJFaNQrsifwqwEAAACPRwQEAAAAADwT/aKeleeVvd5jj1VVVZxN5zFcC4bquGi2EhUtQqPF\njEQnZ7M4Hk3ju/dGK/feJCraLetlzwZNJFVvixiU+cVzi/0Nz7Sf2+3l0S+ySCk99q8PAAAALz4R\nEAAAAADQeSml2Cnz2CmfbFS0iIQWwdCDxXE7IhrP4nQ8i+G4Do7q/VncO53Ed++drpw7ncxu9D6y\nFDHoFecRUbmIhYrVcKi8PCY6P796z06RR5YJjAAAAF4UIiAAAAAAgDXtqOjV/Sc37nxexWg6WwmD\nhuPp+f5kFqdNTDTcEBbVIVEdIH3/wdn5ufE0hpNZVNebvGhpd9NMRWvnlsFRuTkmakdI7eAoFxgB\nAAA8VSIgAAAAAICnJMtSE9E8+R/NtpdEWwmLmnDoPBhqhUPL8Gg1OPrOvUmcTlbPXXd5tIVekdVh\nUJnHziIYKluzGrUjo3JtBqPm+oXzlkkDAAC4lAgIAAAAAOAF8KSXRFs3ns7rWGiyPjvRdGW5s/NZ\njVrnW5HR4XAc7xytnjubzm/0Xh62TNr6DEft0GjjbEZNnLSY8cgyaQAAQBeJgAAAAAAAeKhekUWv\nyOJ2lE987Pm8amYeml0rNFrEQ6PJbG2Go3qZtJWxxtO44SRG0V/MYnRFaDTo1cHVTpFFv6xnJ+q3\nji9syyz6RX3fTnm+tWwaAADwpIiAAAAAAAB4prIsxV6/iL3+9pZJO10ufTaN0/G8DokmG5ZHWwuN\n2vHR9x+MYzgeLscaTWYxmtxsFqN1RZZWoqB+KypahEPr2/WQqF9msVPU236xerzcLsZunimyZEk1\nAAB4wYiAAAAAAAB4YbWXSbu7hfGrqorxbB6jyTzOprM4a7ajte3ZZB6jxXZSL4G2fs+mZ46G4/Pj\nafvZ2Y1nOGrLUlyIjy5GSGvn14KkxWxI9exIWeyWqzMnLZZm27XEGgAAPBUiIAAAAAAAeEQppWZ2\nnjxiC0ulXaaqqpjOq5UoaNP2bLndFCFdvj0eTeN7x2cxbo/V7E8foT5aLLG2jIN6eQzKInZ6eQxa\n5xbLru2U5/u7redWwqNWaNQrsi38KgMAQLeIgAAAAAAAoGNSSlHmKco8i4On/NrT2TxGzRJro8nq\nEmrL4+bcYjm19n2nrfvvnU7iu/dOz883S61VN+yMiiytBEbtaKjeL2K3zGLQK5qIaHW2okEvXwmS\n1mOjnTKzfBoAAM89ERAAAAAAAHBtRZ7Ffp7Ffn87HzFUVRVnTWR0OjmPiE5XAqNpnI7nq+HRSmB0\nHh4dnkxaQdI0RpN5jGfzG7+v9ixF/SKLMs+iLOoQq8yz6OXZMswqi7Xjtf1esXa8cazmnmLt+JJr\nuSXXAABeeiIgAAAAAADguZFSip2yjm3ubuk1prP5hWhofTaiURMNnU7mcTqertw3mVUxmc5jMquD\nokkz3v3RPMbN+cmsaraLc/Xxoyyndh1ZilZQdB4MLQOiDcFScY146UKwVGTnS7WV9QxKm47L3BJt\nAABPmwgIAAAAAAB4qRR5Fgd5Fgc75VN/7fm8isl8fh4StfeXUVETEE3XjteCouX90yqm8/P9lWuP\nECxN59Xy/KMqsrSyNNtuma8sxbaIhdozLO22zrWf3Wnd1z4u82SZNgCAFhEQAAAAAADAU5JlKfpZ\nHv0iIvrP+t1craqqC8HR2WS+ujxbM2vS6WR1NqXF8WhlGbf6+P5oUi/ZtnLfzZdoy7MUg7WgaKeX\nx2AtPNrtZTHoFct4aLfM6uu9ohUdZU2kVLTGqmdGEhoBAF0hAgIAAAAAAOCClFL0ihS9YvtLe83n\nVYymq7HQ6XjeLMk2W4ZHi3Pt43o7bYKieYzGs3jveBSn4zouai/9dlN5lpYx0U55vrxasVwiLUWR\nNUuwZWl5rddsF0uuFVla3lMslmjLz+8vs3rJtiLbcG3xmln9v0WRtc6tvw+zIwHAS00EBAAAAAAA\nwDOVZSkGvSIGve19dDWfV3E2nV86a1EdDbVmOGrFQ8Pm2mJWpOmsinGznc7nMTydxbR1bTJvLdPW\nLLG2eGbbimw9IKoDodWAaBEjrUZGq9fakVMdNvXyepzFV5ln0S/Wzrf2+8096+fNsAQA2yECAgAA\nAAAA4IWXZalZBix/Zu+hqqqYzZtl1uZNMNTEQ5NZFdNm2bVFXDRuQqLz62v3z+fLJdvqZ+sxpvOq\niY/qGGkyPx9/eX9z7cF0uvF9TObVSvA0mc2jqp7cr0U7Cirz1AqF8jog2hAWLYKi/obgqHdJbNSO\nlnr5WpjUvi/PIsuESQB0mwgIAAAAAAAAnoKUUrNMWMRuPLsY6VFUVbWMi8bTOlZa2a7tn03rcGjT\nPWfN/mTDs2fL/XoWpnunk4vXp7Pl8fwJhklls5Rbbz0Uap1bLMvWnjWptzar0qX7rWXjyiKLXns5\nueUycpv327M7CZYAuIwICAAAAAAAALhSSmkZtOz1n/W7OTdrhUlns9mFqGjSio4ujZba5y65Z9Ka\nYenkbLqcUWnSml1p9Vx9vC15luogKT+PiBbLvi3+d6oDpcvipKtipRRl1pxrLfu2CJDKZRiVlrHU\n4toimlrcU+bJ0m8AT5EICAAAAAAAAOikfGWZt/JZv50Vi9mTJrP2smz1/ri1JNtiubXFsmzt48X+\nZNpESIuxZvN6vOl5eDSerS4xN14uATePk/GsGaOOk9ph02R6/ppPcmalhUUMtDLD0tqMS/X1PHrt\n+1aCo8WsSHmURVoNjlpj9S+Muem1zu/LzagEvGBEQAAAAAAAAABPWHv2pOg963dzPbP5xRmOlku3\nLQOmWYwX8VIrIFrMnHR+rlpZFm59ebjz8/VY908nG+6tYjydLe+ZPeFKKc/SyjJwq7MYnS/btmlm\npWJtqbblMyvHrSXjimb5t9YsSvXsTRf3N41fZpaBAx5OBAQAAAAAAABA5FmKPMtjp8yf9VvZaBEp\ntUOiC2HSpbFROyw6X7btsjDpbLqYXameYWk4njx0xqbprJ79aVuKLF0ZIBVNpLQpOtoUIC1mVWrv\nt8fZtGTcpnCpfj6Lsnl/ZZEtl6sTLsHTJQICAAAAAAAA4Ln3vEdKERHz+WLpt3o5tsWsSIvl2MbN\nEm7t/fbMS5uPL9lfLg1Xj9/eP5vM48Fs+tBxxrN5VNvrliJLsQyTirWoqFgs57bcv3i9jpTShcio\nzM5naFos/VaHTlfMpnRZ2NTct3wPZl2iw0RAAAAAAAAAAPAEZFmKfpZHv0OfxF+2DNx07Xw7appe\nERYtZkeabrq2IYSazs/veXA2ffgYzbVtyrMUxeJrESVl5zHR6vnVezbfe8nzV4zTvrfMs/o9rZ0r\n2q/ZGm+xhFzRjJuSqOll0aHfegAAAAAAAACAJ6kLMyytq6qqiZeq5bJt7SBpOj9f9m26mClpw4xJ\n03m9RFw7aho35+sAqY6UpvNquTTcZF4tX+/8vnmMJvOYNrMvLc+3xpmtndvm0nHr1kOk83CoHQud\nx0S/8O//8Xj91s5Te388OSIgAAAAAAAAAKAzUmqiljxiN7oTL7VVVdXERa0wqAmUNkVGi3vXzy1m\nR5q2lqGbNoFUe7zFvbPWtY3Pz+eWQ+swERAAAAAAAAAAwFOUUooyT1F2OGTi+ZM96zcAAAAAAAAA\nAAA8HhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdJwICAAAAAAAAAICOEwEBAAAA\nAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAAAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgA\nAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4TAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONE\nQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAAdJwICAAAAAAAAAAAOk4EBAAAAAAAAAAA\nHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAAAACg40RAAAAAAAAAAADQcSIgAAAAAAAA\nAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAAAAAAAAAdt9UIKKX04yml30spvZlS+pkN\n1/sppf+huf5/p5R+qHXtZ5vzv5dS+rGHjZlS+unmXJVS+tA2vy8AAAAAAAAAAHiebC0CSinlEfE3\nI+LfjIjPRMS/l1L6zNptn4+Iw6qqPhUR/2VE/PXm2c9ExOci4o9GxI9HxN9KKeUPGfP/jIh/LSK+\nta3vCQAAAAAAAAAAnkfbnAnoT0bEm1VV/UFVVeOI+LWI+OzaPZ+NiP+u2f+NiPhTKaXUnP+1qqrO\nqqr6RkS82Yx36ZhVVf0/VVV9c4vfDwAAAAAAAAAAPJe2GQF9LCLeah2/3ZzbeE9VVdOIuBcRr17x\n7HXGvFJK6adSSl9JKX3le9/73k0eBQAAAAAAAACA59I2I6DnUlVVv1hV1RtVVb3x2muvPeu3AwAA\nAAAAAAAAj22bEdA7EfGJ1vHHm3Mb70kpFRFxOyLev+LZ64wJAAAAAAAAAAAvlW1GQF+OiE+nlD6Z\nUupFxOci4otr93wxIv58s/9nIuIfVlVVNec/l1Lqp5Q+GRGfjogvXXNMAAAAAAAAAAB4qWwtAqqq\nahoRPx0RvxkRX4+IX6+q6qsppZ9LKf3p5rZfiohXU0pvRsR/GBE/0zz71Yj49Yj4WkT8vYj4y1VV\nzS4bMyIipfRXUkpvRz070D9JKX1hW98bAAAAAAAAAAA8T1I98c7L6Y033qi+8pWvPOu3AQAAAAAA\nAAAAG6WUfquqqjcedt82lwMDAAAAAAAAAACeAhEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAAAAAAABAx4mAAAAAAAAA\nAACg40RAAAAAAAAAAADQcSIgAAAAAAAAAADoOBEQAAAAAAAAAAB0nAgIAAAAAAAAAAA6TgQEAAAA\nAAAAAAAdJwICAAAAAAAAAICOEwEBAAAAAAAAAEDHiYAAAAAAAAAAAKDjREAAAAAAAAAAANBxIiAA\nAAAAAAAAAOg4ERAAAAAAAAAAAHScCAgAAAAAAAAAADpOBAQAAAAAAAAAAB0nAgIAAAAAAAAAgI4T\nAQEAAAAAAAAAQMeJgAAAAAAAAAAAoONEQAAAAAAAAAAA0HEiIAAAAAAAAAAA6DgREAAAAAAAAAAA\ndJwICAAAAAAAAAAAOk4EBAAAAAAAAAAAHScCAgAAAAAAAACAjhMBAQAAwJNWVRHTs4j5/Fm/EwAA\nAADgJVE86zcA8MKYzyPmk4jZOGI2qb+Wx9PV/dm4OW7Ob0XawpDbGDOPyPKIrIjIy3qb5RHZYr85\nztvH61/5dt4bAPDymE0ixg8ixicRZ812fNxsTyLOWvvjB/XX8r4H588un38QUc3qsfNeRLEbUe5E\nFDsR5e41tzut526wzUt/NgIAAACAl5AIiOfH6F79g/WURUSqtymrf3i92G48n609k/zAu6uqKmI+\nuyScuUFUs9zf8MxV983GEfPp2n7z2u395Zhr41f+lvcztQyCyvOoaBkW5a1rm6Ki/JrXioj8shBp\n/bXW3stK4NS69rBY66G/n23x+Yf+VvqYr11Vi52IarGtVrfL+254rYrW2JvuueraprHjmq97k7Ef\nNs51tg95rWttn/b7iPq/14t/Fxb77SBw5VzR2s+ueS5f3b/0XNF6fv312u8xv+Jc8x6elKqq/5vT\n/pqtHS/+W9k+nq0dz6ete2atsTacm0823DO7+D7W38N1XrM9VjVv/T5anv++mJeXHD/ufb1HHGPD\nmP5s+fyZzyMma8HNuBXknLWCnEXIc7Z2z/q9s7Prv345iOjtR/T2Ivr79f7g1Yg7P7h6vtyt/x2e\nnkZMRhu2o/r/A518L2JyWh+3t+f/QbuZlF0RCd0kQrrmtth5sr8XAgAAAACPRATE8+PLX4j4X37u\nyY13IQ5aC4cirQZGG4OirP6M+4mN1bpv01g3+dD1xh/Qzh/tw9pqvnbuus/ON5y74tmq+TDxUT/o\nuK5FfLH4YDDvnX/Yt9xvfQjY22+Oe82Hhb3WB4e91XtX9tsfPD7kvm3MYlNt49dxC2NWUf+zsv7B\n8YUPllvHKx+GX/XB9aYPoi/58Hx8dvkH3Rc+fG+91rb/eYXHsohiH2W7zeej+fd+1vr3f1b/d2Dj\nuenT+yV7HBfCoEtCpKg2BzKLr8WsIc9Cyi4PKi9EkBviyqJ/dRCZUuv3+Ekrsl0cT+vwYdP5+WTz\n8dP6fTi7LCZ6WGTU+nPDyj8P2cUALi2CtGa78fp1zz3qMzd97XaIt+m1F//OV/X/tiuz6bSCnI2z\n7qwHO2thz+Tk+v/75f06yuntN8FOs7//4YvnFgFPby+if3DxfH+/DoCyfDv/rLVVVR2ab4qDrtxu\nio3Wtmf3L8ZIk9PHm6Ey71+Mjop+/ZX3mtmQ+s2fhfsRRXPu0v3e6rN5r7nWv2K/bJ7pb+fP2AAA\n0AVV62cPi5+trP/MZXlttvozmI3H09bPclo/v6lm9V/QWOy3f97zyNfW7nvsa9XF91zNV1//2tdi\n7ecdeVz42cnKz1YuuWflL5gVG8ZcP/eo424ab33cy8bZ8Pr+/xVAZ4iAeH58+t+I2Hvt/A9s1XpI\nsn5+3gpUFuerDefXnom45PzauFVcY6z2a141VnX+B++rvpfrfLjajo4ixfJv3D702eySa1c9e9kz\nD/mgd/09XrltXj/lN4xqLol2Hhb3+IMqT9L/3969x9h21XUA//5mbh9IkfKoSFqE8ki0KBa9IVHQ\nEAgK/FNMKhSFVKPBPyCB+A9gNCDRRIyK/yAPA0lRtDwEafxHHhKUP2x7gfIqoleE0KbSQilSwXt7\n5y7/mD1z9+w558yZuXPmzDnz+SSTWXvttdde594566yz12+vfXbji/MgIGnqIKadght2mNzece57\np+Mn7T+fY6c8fqMvSHboW5KJfcikfmZL3Zmwb7d1Z/Lxe6p7p2Om/L2M/dzZ/oWXtYy+ANW/oDXM\nW+vVMcjrX/TadvGrX8+wDePyem3YUnd3rv5qQlMF24z72WHVsrGrkI0558aqSItmYlDRmMChbdtn\nJgcm7em4B84FVKz1PiO2XFBcm5DXSy90wGmt/631x+E7HrI6CMzpgnB+8IrdB+ts5K1eMNuXOStV\n54JoDsrZtT0EHU34vXY6OXOqC2b6XnLmdLe65qleeqPMLlZimkrtMgBpRODRlvSkoKMxQUvDFQBH\nrhq4Uzrn0pt1nU96F+fr5+/lfJtV9bfbmPyd9u1nffvdvnFtHYzv9pzOeRw7bf21mTV6vLrb9Ma4\ndOPawHDfmGsNI68lZJfl+/Vnl+VnMK7euO4z/Hxva+euE22ZqByMC6bOHzW5OmZSdNwE7FT5wzp7\n2/0b4jaCimulCxieZt/q1nIbwZzbjhmU23bMNPm9urfs6wUyj903ot2jbmTY/Dm7dbv/fWbqMoOJ\n+GnKDCfvpyoz7jwTyqRlW3D8yOt6I4LkN9PD63eD9KhVPjdv1hukd2rDsD3L+P15EW3r2/p9TtvF\nvhEBHJP2jQz8GHGucf1v//277VrF8L12dsR7atS1hL0E6KwNzt/VtTCq19+ubu9/t+0bVW6HfSvH\n1sfqo+rv3/Cy076Nm5v6/WobbI/qe8+cmv4zYFsffZhujhsxhpy4vZdjxm3vd327bHPV4Drbse3b\nk/aN3e5dzzvvuqZo16J87vXnTvvjz81+eTC3uq3MiJ8tZXqfHyPLtHPnSs71B/3vFZu/xyz6sOW7\nxk7la0I9/fya4rz9di7I/zczIQiIw+OHf2L9B2BRrKwkKxcmuXDeLYHltrKSZGVxJ/KZnY2703Lx\nvFsyO5sThDsFDu00CbjHY7ZdJB91zPBi+OCYWhkE6/QCdoaBPccucpFinlZW1/9PLrrk4M+98TjE\njaChzQChLmhobPqBrcec6fLWTg3SYwKQHvh+8v37Jp/vUF14Bw7WLoKGku2fpQsdzNvZttLfxkqA\nvfxUkmHA04jJlY19y/DvcphsWfGhC+4f3kCwbVWIwTHHLt5+zHBlilHnSTchvnY6W4PmT/cC5Xvp\njSDhjQD6frofyL92Ogfyd7IyTcDQhACljb/9JKMDb/vpXQTo7rrciHMdxHlHfh9ove8OwyCaMcE3\ny2C4osvmqi39906Xt+3x5IMbd45d3KtndcRxq716++WG22POMVXbxp1j5VwdUwXsTLPP97+JNt9r\nYwI7RwZ99gLEdgxEHZM3KrhpXP8wcXvaMrupc0bbW5KDMv1/j82bvTY+v9bWb4TZcgPwAztvz6P/\nq+FNhVMEJ60cy+Y4b1KwzLaAmmEgzrBM/3rXoAz7ZJqgoR2ClX7zo8lDL5/z62AvBAEBAAAcVlXd\nBAMsuapzE26Hzdmzg8CkKYKO1k5nS2DAYVq1ZU/n3uv5esdtJkfcZbvTvqnrGxY73/r22L49r/50\nPsdOm8659Ob59jG97XHgZ0fs6/LHPi58N+WH9WeX5Secc+r29/7fRj1ac+TKBKvjJ0Z3zB8RhLMl\nf9T5h3VOk7+xWs4MJmd3c/f2ln29Cadxk0bbJp2GgUjjjpkwmbVT+/oT6v2J/G2T+yMm+8eWGRe8\nMzx+iSfQh6t+jktvCTQasSJoP0BpYrDSIChpVIDS6e8lZ79z7hwbpv7MzZTldvMZPqpcZctKr+dd\n36hyNb4vmrhaS43phwZ921QBJP36RrVjmn1TrP4yqh39wJtlfh8yf1Xn/tZYLpurQE0RMLTb7Y3g\npH2pu1sNZ+TKir2gkZErMq6e2z+2zOBnS5kanGtYpka0p1+mRrSnX2ZUGwbnT7LlO0B/HDvyyS9t\nTP6o8m1CPf38jIvAWAAAChVJREFUNsV5z86mnRc86IDfGOwXV5MBAAAAxllZSVYuTi5Y4lXHAA7S\nxoRmTGgywVFY9ROAo8tTBoAZWtm5CAAAAAAAAAAAcJgJAgIAAAAAAAAAgAUnCAgAAAAAAAAAABac\nICAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAAAAAAAIAFJwgIAAAAAAAAAAAW3EyDgKrquVX1\n5ao6WVWvGbH/oqp6T7f/5qp6XG/fa7v8L1fVL+5UZ1Vd2dVxsqvzwlm+NgAAAAAAAAAAOCxmFgRU\nVatJ3pzkeUmuSvLiqrpqUOw3kny7tfbEJG9K8sbu2KuSXJfkyUmem+Qvqmp1hzrfmORNXV3f7uoG\nAAAAAAAAAIClN8uVgJ6W5GRr7SuttdNJbkxyzaDMNUlu6NLvT/Lsqqou/8bW2qnW2n8lOdnVN7LO\n7phndXWkq/MFM3xtAAAAAAAAAABwaMwyCOjyJF/vbd/R5Y0s01o7k+Q7SR4x4dhx+Y9Icl9Xx7hz\nJUmq6mVVdaKqTtxzzz17eFkAAAAAAAAAAHC4zDII6FBqrb29tXa8tXb8sssum3dzAAAAAAAAAADg\nvM0yCOjOJI/pbV/R5Y0sU1XHkjw0ybcmHDsu/1tJLu3qGHcuAAAAAAAAAABYSrMMAro1yZOq6sqq\nujDJdUluGpS5Kcn1XfraJP/UWmtd/nVVdVFVXZnkSUluGVdnd8zHuzrS1fmhGb42AAAAAAAAAAA4\nNI7tXGRvWmtnquoVSf4xyWqSd7bWvlhVb0hyorV2U5J3JPmrqjqZ5N6sB/WkK/feJLcnOZPk5a21\ntSQZVWd3ylcnubGq/iDJZ7q6AQAAAAAAAABg6dX6IjpH0/Hjx9uJEyfm3QwAAAAAAAAAABipqj7V\nWju+U7lZPg4MAAAAAAAAAAA4AIKAAAAAAAAAAABgwQkCAgAAAAAAAACABScICAAAAAAAAAAAFpwg\nIAAAAAAAAAAAWHCCgAAAAAAAAAAAYMEJAgIAAAAAAAAAgAVXrbV5t2FuquqeJF+bdzvY4pFJvjnv\nRgAcEH0ecJTo84CjRJ8HHCX6POCo0e8BR4k+Dw6Px7bWLtup0JEOAuLwqaoTrbXj824HwEHQ5wFH\niT4POEr0ecBRos8Djhr9HnCU6PNg8XgcGAAAAAAAAAAALDhBQAAAAAAAAAAAsOAEAXHYvH3eDQA4\nQPo84CjR5wFHiT4POEr0ecBRo98DjhJ9HiyYaq3Nuw0AAAAAAAAAAMB5sBIQAAAAAAAAAAAsOEFA\nAAAAAAAAAACw4AQBcWhU1XOr6stVdbKqXjPv9gDMUlV9tao+X1W3VdWJebcHYD9V1Tur6u6q+kIv\n7+FV9ZGq+o/u98Pm2UaA/TKmz3t9Vd3ZjfVuq6rnz7ONAPulqh5TVR+vqtur6otV9cou31gPWDoT\n+jxjPWDpVNXFVXVLVX226/N+v8u/sqpu7uZv31NVF867rcBk1VqbdxsgVbWa5N+TPCfJHUluTfLi\n1trtc20YwIxU1VeTHG+tfXPebQHYb1X180nuT/Ku1tqPd3l/nOTe1tofdQHfD2utvXqe7QTYD2P6\nvNcnub+19ifzbBvAfquqRyd5dGvt01X1kCSfSvKCJL8WYz1gyUzo814YYz1gyVRVJXlwa+3+qrog\nySeTvDLJbyf5QGvtxqp6a5LPttbeMs+2ApNZCYjD4mlJTrbWvtJaO53kxiTXzLlNAADsQWvtn5Pc\nO8i+JskNXfqGrF84BVh4Y/o8gKXUWrurtfbpLv3dJF9KcnmM9YAlNKHPA1g6bd393eYF3U9L8qwk\n7+/yjfNgAQgC4rC4PMnXe9t3xGAaWG4tyYer6lNV9bJ5NwbgADyqtXZXl/7vJI+aZ2MADsArqupz\n3ePCPBYHWDpV9bgkT01yc4z1gCU36PMSYz1gCVXValXdluTuJB9J8p9J7mutnemKmL+FBSAICADm\n4xmttZ9K8rwkL+8eIwFwJLT1ZxJ7LjGwzN6S5AlJrk5yV5I/nW9zAPZXVV2S5O+SvKq19j/9fcZ6\nwLIZ0ecZ6wFLqbW21lq7OskVWX+Ky4/OuUnAHggC4rC4M8ljettXdHkAS6m1dmf3++4kH8z6gBpg\nmX2jqh6dJN3vu+fcHoCZaa19o7t4ejbJX8ZYD1giVXVB1ifD391a+0CXbawHLKVRfZ6xHrDsWmv3\nJfl4kp9JcmlVHet2mb+FBSAIiMPi1iRPqqorq+rCJNcluWnObQKYiap6cFU9ZCOd5BeSfGG+rQKY\nuZuSXN+lr0/yoTm2BWCmNibCO78UYz1gSVRVJXlHki+11v6st8tYD1g64/o8Yz1gGVXVZVV1aZd+\nUJLnJPlS1oOBru2KGefBAqj11Vlh/qrq+Un+PMlqkne21v5wzk0CmImqenzWV/9JkmNJ/kafByyT\nqvrbJM9M8sgk30jyuiR/n+S9SX4kydeSvLC1du+82giwX8b0ec/M+uMhWpKvJvmt1tpd82khwP6p\nqmck+Zckn09ytsv+nSQ3x1gPWDIT+rwXx1gPWDJV9ZQkN2R9nnYlyXtba2/o5jNuTPLwJJ9J8pLW\n2qn5tRTYiSAgAAAAAAAAAABYcB4HBgAAAAAAAAAAC04QEAAAAAAAAAAALDhBQAAAAAAAAAAAsOAE\nAQEAAAAAAAAAwIITBAQAAAAAAAAAAAtOEBAAAAAAB6aqnllV/zDvdgAAAAAsG0FAAAAAAAAAAACw\n4AQBAQAAALBNVb2kqm6pqtuq6m1VtVpV91fVm6rqi1X1saq6rCt7dVX9a1V9rqo+WFUP6/KfWFUf\nrarPVtWnq+oJXfWXVNX7q+rfqurdVVVze6EAAAAAS0IQEAAAAABbVNWPJXlRkqe31q5OspbkV5M8\nOMmJ1tqTk3wiyeu6Q96V5NWttack+Xwv/91J3txa+8kkP5vkri7/qUleleSqJI9P8vSZvygAAACA\nJXds3g0AAAAA4NB5dpKfTnJrt0jPg5LcneRskvd0Zf46yQeq6qFJLm2tfaLLvyHJ+6rqIUkub619\nMElaa/+XJF19t7TW7ui2b0vyuCSfnP3LAgAAAFhegoAAAAAAGKokN7TWXrsls+r3BuXaHus/1Uuv\nxTUqAAAAgPPmcWAAAAAADH0sybVV9UNJUlUPr6rHZv1a0rVdmV9J8snW2neSfLuqfq7Lf2mST7TW\nvpvkjqp6QVfHRVX1Awf6KgAAAACOEHdZAQAAALBFa+32qvrdJB+uqpUkDyR5eZL/TfK0bt/dSV7U\nHXJ9krd2QT5fSfLrXf5Lk7ytqt7Q1fHLB/gyAAAAAI6Uam2vqzYDAAAAcJRU1f2ttUvm3Q4AAAAA\ntvM4MAAAAAAAAAAAWHBWAgIAAAAAAAAAgAVnJSAAAAAAAAAAAFhwgoAAAAAAAAAAAGDBCQICAAAA\nAAAAAIAFJwgIAAAAAAAAAAAWnCAgAAAAAAAAAABYcP8PaVBck7IscfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left')\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0021724022948290786" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJCCAYAAABAuEcoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVNX9x/H3mb6NshQRKUtsoDTB\nTjQae6wxGntiEnv8mcQYe9QkxhJjNEajIRoTY40tasSGiogUAQFBirQFls4u23en3t8fd3bKzpaZ\n3dnC8nk9D8/ee+65957dBZ5nPs8532Msy0JERERERERERATA0dUDEBERERERERGR7kNhkYiIiIiI\niIiIxCgsEhERERERERGRGIVFIiIiIiIiIiISo7BIRERERERERERiFBaJiIiIiIiIiEiMwiIRERER\nEREREYlRWCQiIiIiIiIiIjEKi0REREREREREJMbV1QNorH///lZRUVFXD0NEREREREREpMeYP3/+\nDsuyBqTTt9uFRUVFRcybN6+rhyEiIiIiIiIi0mMYY9al21fL0EREREREREREJEZhkYiIiIiIiIiI\nxCgsEhERERERERGRmG5Xs6gpwWCQkpIS6uvru3oouzyfz8eQIUNwu91dPRQRERERERER6YZ2ibCo\npKSEgoICioqKMMZ09XB2WZZlUVpaSklJCSNGjOjq4YiIiIiIiIhIN7RLLEOrr6+nX79+CorayRhD\nv379NENLRERERERERJq1S4RFgIKiLNHPUURERERERERassuERSIiIiIiIiIi0vEUFnWR/Px8ADZt\n2sQ555zTYt+HH36Y2trajJ4/bdo0TjvttDaPT0RERERERER2TwqLsigcDmd8z+DBg3nllVda7NOW\nsEhEREREREREpC0UFqWpuLiYkSNHctFFFzFq1CjOOeccamtrKSoq4qabbmLChAm8/PLLrF69mpNP\nPpmJEydy1FFHsXz5cgDWrl3LEUccwZgxY7j99tuTnjt69GjADptuuOEGRo8ezdixY/nLX/7CI488\nwqZNmzj22GM59thjAXj//fc54ogjmDBhAueeey7V1dUAvPvuu4wcOZIJEybw2muvdfJPSERERERE\nRER6AldXDyBTv3nrK5ZuqszqMw8Y3Is7Tz+w1X4rVqzgqaeeYtKkSfz4xz/mr3/9KwD9+vXjiy++\nAOC4447jiSeeYN9992XOnDlcc801fPTRR/zsZz/j6quv5gc/+AGPPfZYk8+fPHkyxcXFLFy4EJfL\nRVlZGYWFhfzpT3/i448/pn///uzYsYO7776bqVOnkpeXx/3338+f/vQnbrzxRi6//HI++ugj9tln\nH84777zs/YBEREREREREZLeR1swiY8zJxpgVxphVxpibm7h+qTFmuzFmYfTPZdH28caYWcaYr4wx\nXxpjdukEY+jQoUyaNAmAiy++mBkzZgDEgpnq6mpmzpzJueeey/jx47nyyivZvHkzAJ999hkXXHAB\nAJdcckmTz586dSpXXnklLped4RUWFqb0mT17NkuXLmXSpEmMHz+ef/3rX6xbt47ly5czYsQI9t13\nX4wxXHzxxdn95kVERERERERkt9DqzCJjjBN4DDgBKAHmGmPetCxraaOuL1mWdW2jtlrgB5ZlrTTG\nDAbmG2PesyyrvK0DTmcGUEdpvO18w3leXh4AkUiEPn36sHDhwrTubwvLsjjhhBN44YUXktqbe6eI\niIiIiIiISCbSmVl0KLDKsqw1lmUFgBeBM9N5uGVZX1uWtTJ6vAnYBgxo62C72vr165k1axYAzz//\nPN/85jeTrvfq1YsRI0bw8ssvA3aws2jRIgAmTZrEiy++CMBzzz3X5PNPOOEE/va3vxEKhQAoKysD\noKCggKqqKgAOP/xwPvvsM1atWgVATU0NX3/9NSNHjqS4uJjVq1cDpIRJIiIiIiIiIiLpSCcs2gvY\nkHBeEm1r7HvRpWavGGOGNr5ojDkU8ACr2zTSbmD//ffnscceY9SoUezcuZOrr746pc9zzz3HU089\nxbhx4zjwwAN54403APjzn//MY489xpgxY9i4cWOTz7/ssssYNmwYY8eOZdy4cTz//PMAXHHFFZx8\n8skce+yxDBgwgH/+859ccMEFjB07liOOOILly5fj8/mYPHkyp556KhMmTGDgwIEd94MQERERERER\nkR7LWJbVcgdjzgFOtiyroQ7RJcBhiUvOjDH9gGrLsvzGmCuB8yzL+nbC9T2BacAPLcua3cQ7rgCu\nABg2bNjEdevWJV1ftmwZo0aNatt3mCXFxcWcdtppLFmypEvHkQ3d4ecpIiIiIiIiIp3HGDPfsqyD\n0+mbzsyijUDiTKEh0bYYy7JKLcvyR0+fBCYmDKYX8DZwW1NBUfT+yZZlHWxZ1sEDBuyyq9RERERE\nRERERHZ56YRFc4F9jTEjjDEe4HzgzcQO0ZlDDc4AlkXbPcDrwDOWZb2SnSF3jaKioh4xq0hERERE\nREREpCWt7oZmWVbIGHMt8B7gBP5hWdZXxpjfAvMsy3oTuM4YcwYQAsqAS6O3fx84GuhnjGlou9Sy\nLG3dJSIiIiIiIiLSDbUaFgFYljUFmNKo7Y6E41uAW5q471ng2XaOUUREREREREREOkk6y9BERERE\nRERERGQ3obBIRERERERERLKmvDbAmY/OYH1pbVcPRdpIYVEHmDZtGjNnzmzXM/Lz87M0GhERERER\nEZHOM2XxFhaVVPD4J6u6eijSRgqLOkA2wiIRERERERGRXdH7SzZyrnMa4VCoq4cibaSwKANnnXUW\nEydO5MADD2Ty5MkAvPvuu0yYMIFx48Zx3HHHUVxczBNPPMFDDz3E+PHj+fTTT7n00kt55ZVXYs9p\nmDVUXV3Ncccdx4QJExgzZgxvvPFGl3xfIiIiIiIiItkQCkcYvuYFHnBPxrPoma4ejrRRWruhdSvv\n3AxbFmf3mYPGwCn3tdrtH//4B4WFhdTV1XHIIYdw5plncvnllzN9+nRGjBhBWVkZhYWFXHXVVeTn\n53PDDTcA8NRTTzX5PJ/Px+uvv06vXr3YsWMHhx9+OGeccQbGmKx+eyIiIiIiIiIdbf66Mh6eupKJ\npgqA/qYCy7L4alMlg/vkUOMPMbQwt4tHKenY9cKiLvTII4/w+uuvA7BhwwYmT57M0UcfzYgRIwAo\nLCzM6HmWZXHrrbcyffp0HA4HGzduZOvWrQwaNCjrYxcRERERERHJlrpAmFF3vEuB18UvTtiPCw8b\nxvcen4WTMP/2vQbAd/sW88ysddz55lex+z751TEM75fXVcOWNO16YVEaM4A6wrRp05g6dSqzZs0i\nNzeXY445hvHjx7N8+fJW73W5XEQiEQAikQiBQACA5557ju3btzN//nzcbjdFRUXU19d36PchIiIi\nIiIi0l4LNuzkXOc09guX8MmUMbzzxSGs8l7Mn0LnxPoMr/qCFVurku771gPTKL7v1M4ermRINYvS\nVFFRQd++fcnNzWX58uXMnj2b+vp6pk+fztq1awEoKysDoKCggKqq+D+IoqIi5s+fD8Cbb75JMBiM\nPXPgwIG43W4+/vhj1q1b18nflYiIiIiIiEj6bn1uGsf87g3y/Vt5wD2Zy11T+Jfnfv5WeikuE+FG\n939ifVf0OZocl2GI2UYvqhlt1gAQDEe6aviSJoVFaTr55JMJhUKMGjWKm2++mcMPP5wBAwYwefJk\nzj77bMaNG8d5550HwOmnn87rr78eK3B9+eWX88knnzBu3DhmzZpFXp495e6iiy5i3rx5jBkzhmee\neYaRI0d25bcoIiIiIiIi0qJ7Vp7Je6Gf8NN/z0lqLzTVKX3X54zi8C3PM8P7c770XcH/vLdTZDZT\nGwh31nCljYxlWV09hiQHH3ywNW/evKS2ZcuWMWrUqC4aUc+jn6eIiIiIiIi0yV290+76aOQczhq0\ngyHbpiW1b7t+KwN7+bI8MGmNMWa+ZVkHp9NXM4tEREREREREJPsiQQImNRQKRrrXpJX2uvX1xTw3\np2eVlVFYJCIiIiIiIiJZ158KqrauTWkP9ZCaRRV1Qc6fPIvpn8/j/tfnYFkWr84voT646y+z22XC\nou62XG5XpZ+jiIiIiIiIpOvjFdsouvltPlq+FSKZhTx9TA2LQsNS2oPBULaG1ymaC39++9ZSZq8p\nY4b35/zPcyszVu3gly8v4g/vrujkEWbfLhEW+Xw+SktLFXS0k2VZlJaW4vNpbaiIiIiIiIi0btrb\nL1Lsu5Cdz/2YsoryjO492TkXP+6U9kjQn63hdbitlfWM/PW77H/7OynXJlhfMd97JQDDHNu5/R9v\nMtd7FQtnvtfZw8w6V1cPIB1DhgyhpKSE7du3d/VQdnk+n48hQ4Z09TBERERERERkF3Be+G0Avuec\nwY0PPcgfGk05CThz8YRrAVjdZxJ7n/s7mP5HWDEFgMtd9leGHkZFVTW9y78iHKjrtPG3x45qP4vW\nbmW296fcHzyfl+YeyHmHxGdKjS57n36mKnb+ifd6AG50vwT8orOHm1W7RFjkdrsZMWJEVw9DRERE\nREREZPdi4unQHxyPplzeOOwMRqx90T7ufRB77zURLnghdde0i19j8wdP0nvenYRD9R065PZYu62S\nB55+gd9ccyln/f4FznZ+yonunTzkeZwDXz04KSwyjqYjlYCvf2cNt8PsEsvQRERERERERKTz1QeD\nLV7vf9DpCWctRAxODw6nvSQtEgwkXbrplS854t4P2zrErNlQVsubj1zHX+tuZN7MqXzm+xm/dL8S\nu36965Wk/sbhbPI5gbpqavy7Vl2mxhQWiYiIiIiIiEiTJvjntnjdsc9xsWPLmOY7ujwYlweAcKOw\n6KV5G9hcUU8k0rV1it/5y3X8zPU6AL7AzpTrP3E1qlvUzPd7vHMB20pT79+VKCwSERERERERkTbJ\n8fkIGXvGkCMxPPlpasjkcEbDonAg5RqAP5TZbmvZdoX1cuy4+vN/t9o/MdwKnPFE0rVwbWn2BtYF\nFBaJiIiIiIiISJs4HIaZoZEAfLWlJn5hwH7x4wk/BMC4osvQQslL2452LOJ0x0z8oaa3qO8sKwed\nFjs+3Tm7yT7hhICo3orWLLpiGp6x34NxF7JqtF3Y+uk3PuiwcXYGhUUiIiIiIiIi0mZHOxcDsF9w\nWfKF81+wv37TDlCc0bAoHIrPLLIsi2c89/MXz6PUB7t2ZlGlZ4+mL9xVwYKhl1BreQmG42M0oXoq\nrDwYfBC4PPDdxyl22AWwf191e2cMucMoLBIRERERERGR9N2wqsnmXEejos4jvwN3VUChvbu5iS5D\nsxLCoppAfDZRfbBrZxZZkRaKUjvcuAnFwqJN5XUUb95ODd6kbqOH7fo7oYHCIhERERERERFpwuez\npqU2nvkY5A+A//sCrluQdCngyG3xeZbDnlm0Zmt5rK2qPr4kzR9oeee19qqoC1J089vMWLkjqX3p\npkqKbn6bL4u3ptyzcN9rATBON24TJhStq/TujNl83/UJOSTXX+q754gOGn3nUlgkIiIiIiIiIikm\nvHd20vkWqxAOutg+6bc3FH4DgNqDfgLA8EJfi8/LzbGvr9tWEWurqqmLHfv9dSn3ZNOfp64E4OKn\n5jBnTWmsQPV5k2cB4CU1rAr1LrIPoju5BYN+AMZu/A8AfU11Un9PXp/Y8cIN5XxZUs6uSGGRiIiI\niIiIiKRwkbwsbJApa7Jf7rd+DsDwb/+kxef175UHwIhCT6yttiq+xXyovjblnlA4wuaK7IRIifWG\nzps8mzveXAJAVb29/MxrUsMiV04vAIzDHvMtL9mFr02k6VlQJm9A7Pisxz7jjEc/Y+2Omib7dmcK\ni0RERERERESk7foMs2sT7XN8i92My67vU1AeL4S9fvOW2HHAnxoW/X7KMo649yN21gRSrmVq7wF5\nSefPzl5PZX2QicP7AuAlwJrIIBaNvD7Wx53b2z6Izix6cPOlAEQwTb/E7WPhN64CwGCHUw998HW7\nx97ZFBaJiIiIiIiISMfrvy8A9SF7+de84jJee39a7HKwibDow2XbANhY3v7ZRbkeV0rbk9PXMLxf\nLm6n4XTnbL7h2IJxxWc+GV+B/TXa1sfYs4QO2fqfZt/j9trL7fKoB2Dc0D7N9u2uFBaJiIiIiIiI\nSIolg88FYPOJT2Tnge5cQpaDrdu3Y1kWa7bXUEA8IAoHUgOh9WX29WzMzqmvr+VFz+/oS2Wsrah/\nHjm1W3nZfWesLTEsGtSvEIAdFfHaRJX1LRfi9oftMOxx98McaNby8fJt7R57Z1NYJCIiIiIiIiIp\n/M58gpYT556js/NAY6gilwJq8Yci5HldDDXbY5dDCTOLIhGLJz5ZHTs/cK/e7X794Yvv5HDHMhb4\nrqI/dpHtX/93CT8vuY7xxMOo2nB8BlLhoGEADC2fG2urroqHTU3pV7cOgKOcS3jbexszVu3g8Hs+\nbPO4Lcvi928v7dTaRwqLRERERERERCSFFQkSwonTRFrvnKaIp4B8U0e1P8QepXO40f1S7FrxltLY\n8Y/+OZf73lkeO9+rT8s7raWjV+262PE839V807GYmkCYAaF43SS/tx9m1Qfxmzx2naNhY4+O96nc\nwUrfGADqBoxLec9eIw9JOj/SsYQtlfVsr/K3adxbKuv5+6drufTpz9t0f1soLBIRERERERGRVGE7\nLOrjzV500C+4me85Z1DjD1GwY0HStU+WlvDxim0EwxE++dqecfSu5yaKfRdSE92xrD3CVnJR6mc9\n99KLhNk6vYbg/eUSRvu205j3W79ky7BTARjx70MZVrecYmcROZe9ndLXdeRPk85HmfUAVNS1vHyt\nOQ5jj7sqCz+DtN/ZaW8SERERERERkW5h0ZyP4K7ePPTgb5vt44gECeLCOShLy9ASfOuBacxdkxzK\n+Aiwels1X2+twkGEy53/Y6RjAwDBuop2v/O90ISUtmMcC5nlOcI++dlC8ORSd9zvU292ONjcZ2Ls\n1GuCbPaOAG9Bal9jKDnid7HTAaYcgGC4bTO0LLsEEmVZ2BEuXQqLRERERERERHYT5VXVvDVtJuPe\n+S4Av6h6sNm+gdJ1hHGAMYSLjiZ87O1ZG4eLELVV5Ulto8x67n57Gec+MYtfuV7iNvfzsWuj1z3T\n7neWVdentFWSS2VdkPXuEeB0A+D25DR5f9Gkc5POw67cZt815KTr4JDLALjK9T8OMcsJR6w2jTts\nWQwzW3ESbtP9baGwSERERERERGQ3sWjyFZw+7ZRW+wXDEfYOrSI3uv2789K3cH7rV+1+//yRvwTs\nWUR1eJKuXe9+hdFmDVaghqtdbyVd27g1dWlYa4LhCIfdM5W3Fm2ieEcNXpO6DOwu1zPk4KfU74y1\n9RpoF7Wum3RTUt++ewxj/difx87d5atp0Yl3xw5f9v4WK9y2ZWT+im1M9/6CO13tD8zSpbBIRERE\nREREZDexX61dJ6iYPVvsd9+D9zHAVLDOu39W318T8QKwxHcZE429A5n/R1Nj14ebbVznej3lvnl1\ngzJ+V3ltkK2Vfm59bTH3TFmGj9RlXEWOreQYP3VWQnDVZyhcv4yc425O6T/wmCtix2PNmpYH4E6e\noWTqy5vp2LKLH58GwInOedQGOqdukcIiERERERERkd1EMLp0qr+1M9YWaWJ51KXV/7D7W9mNDZxu\nb+z4m86vAPD03iPWdppzVsqsIoAC6jJ+13/m2fWOqvwh3l+6lVwSdiMbdmTsMIcAtXiTb+41GByp\n37vHGw+AckyGNYSCNa33acSyLCzsAteDzE7eXLgp42e0hcIiERERERERkd1E0JkPQL6J1+/5eNHK\nlH5uY9fHCTm8Kdfa45DwgpQ248mPHZ/inNvkfXnUU7KzNqN3PfDeiqTzb5jNCWfxgGy0o5gjRw5N\n65mOhLArfNFrrd9w7G0EfP0AKK2s47GPV2FZ6dcu8ociOE28MPaOan8LvbNHYZGIiIiIiEgPFolY\nTc4ckd1PtT/EzqArpX35q79LaXNjL3eKZBBspMPjdiedBywnOD3N9I7LM3W80c5ZNXs7Eu5fPyvp\nWu7KN9N7iDMeFjn3Pa71/t+6kbUTbgPg3ilLeeC9FSzemP7ObrWBcFJh62Wbyrn8mXksWL+zhbva\nT2GRiIiIiIhID/aNW6fww6c/7+phSDfwxqM3cHBwXux8Rq4ddozum7rLVm+qAaisSy0K3S69Bied\n1uMB03o0UUAdHmdmEcax+/Si2Hch33d+zGB2MNA0qhl04Hczeh4AztSwrTXG2MvIAiE7gPOHIi11\nT1JTH+QT7/Wx80+XrOWDpVv57l9ntnl3tXQoLBIREREREemhVmypAuDTlTu6eCTSHVxU9XTS+ZpK\nByXOIXhDdjBUtvxTuKs3O7dvxhVd+pRfuEfKc9rloB8knfrxgCcXvv/vFm/LM/U4HCajVx2fZxeg\nvsn1IjN918Uv7HsSXLcA1s3M6Hlt5rB3WjPRpW/BcPph0ZL125LOD3Csix13ZLFrhUUiIiIiIiI9\nUCgc4bbXF3f1MKQL/eYP9/GX519j6YKZfP7FFynXa/Hhd+bjCdmhYuGLpwGw+JFz2W71BiB07J3Z\nHVTfoqTTsCO6BO2AM2DCD5u97Uxn5sHORSvsgKifqYo3HnEtXPQfKPxG8oymC17M+PnpCkYnABVQ\nxzizikAGM4tue2l20nli3aXaQOqMsGzJfP6UiIiIiIiIdHt/+uBr5q3r2Lom0r3dWXsvfI39pwlD\n++ZQF8rHWVPGspWrGBVtP9pph4yLXGOZNP6A7A7K6YK7Klj14s3ss/xxcq2EotVnPAJf/KvZW3M2\nTAdGtO/9B10SPz7yOnjvFjj0Stj/lPY9twWlNXao85D7MUY4tvJ+1YnAwFbvq/GHyE0oRA6Qgx8f\nfurxUO0Pkc68r7cWbeK1L0oyGrNmFomIiIiIiPRA84oVFEnLhhx6JiXVhnGONWx85rKU62F3Xoe9\n2+krAGC9Sa5hxO3bmuht85dvbvZaU0I4UxsHjowfH3EN3LIRTrk/o+dmas8+uQCMcGwF4LevzuHV\n+a2HN6c/OoN8ksOiX7ufZbnvRxT7LqLWn97Mov97YQEfr9ie0ZgVFomIiIiIiPRAq7dXd/UQpJvL\nz8tlr8F2WHO8M3VL+3pHboe9u5YcAGrCjQIdlzf5/PvPxO8JZRZhfJJ3ctJ5xbdSd33Dmw8ms1pI\nXPYR/OzLtLvvOzA/6dyHnwfeW9HqfWu21/CE+6Fmr3+8fGvaY8iUwiIREREREZEeqLQm0NVDkG5u\n73FHUdVrv2avB3E3e629hg22l2E5aaF+z4l3wwFnxk59wcxmyxUGk8OU3vsfldH9zRoyEfoOT79/\nRfIsonzq086nihzNB0J/nbqk1fvL2vj/gMIiERERERERkd3EPM8hAFQcczc43fQvOrDZvumXYc6c\nN9cuoO0hmHpxr4OhzzA48v/s8/EXAVAY3JLRO6rq/MkN7o6bKdWi2tKk016mhs0VddQHW15G5nO3\nnCjlUc/DU79u8TkTfvcBhgiODH+bCotERERERER6oMI8T+x4eL8u+pAs3c6IM2+DuyrofYwdxOw3\n6btJ19/rc17seEx1x20t7/bZfyf3NRtTL17+Ifw8YSe/s/5KEDeWZWX0jpSAxJ2T6TCzo1dyXaZn\nPPdzkfNDznz0sxZvey/vty1ezzF+Hp66kuMe/KTJ628u2gTAo+5HWOO7OIMBKywSERERERHpkZyO\n+KwER6Y1WWSXV+/3N9ne78BjU9q+nnB77Dj/oLNjx/1NZfYHFmX67Q2Ax+Ntpaet2vJSVV3N+tLa\n1jtHeU2jWUumiYLXnWHCD2HwQUlN5zo/YcXWKr4sKW/2tuH1y+Inl/w35fq1TrttY3ldk/df94Jd\nh+pU5+eZjlhhkYiIiIiIiLTN/HVlvLsks6VB0jn8m5eltNVbTdcgWmLidYsOOfJ46g61Zx0VX9xx\nM4saloQ5TXqzhfy48RLk6Ac+Tqt/OGLhbbzErdEMn07jcMDwSUlNBvv7fuHzDa3fX3QU7B0P+WoO\nuRaA813TAHA7sx8GKywSERERERHpgeoCdh2THOpxWOltsZ2p7z0+i6uenc+WivrWO+9C1myvpujm\nt1mxpaqrh9Jm4UD8d7J8wElAE8uyog6bMIFSq4DrIr/E43aR85274a4KivZpvp5RuzmjwVWaS8v8\nljt1plALagMh+psK/K4Cu+HoGzPf9SybDvwuuPNip72pAeCFz9e3fu+pDyadOveP7/I2kJ30zfU0\nviPel7b921dYJCIiIiIi0gNV+0MALPP9mLvr7+nQdx3/p6Zrpuyq3vvK3oHq5y8t7OKRtF0gFA+G\nagYdDjS/89heew1lykmfcuMvbuiUsdmDiS4/+8YxaXVvmFmUrvqqcgabMryhKrizHL59W+ZjzKYh\nB8Ot8fpMRY6tnOqY3eIt83ImUewsggH7J7X78nrHjj/3/ZSi+qXNPuMm14ttGq6rTXeJiIiIiIhI\nt7efsZe4HBGe16HvaQimuptAKEKNP4TLaSjwpb8NfO8cu++yzR1Xs6ejBcLxYMiXmw+0vOTrkiNH\ndPiYknhy4epZ0Lcore77OTayHxvpG2z9d+IPhamvKos3dJeaXY3G8ZjnEb6o37fZ7o5IkLBpIrbx\n5CWd/s1xP3BdUptlWTzjvpejnYtpC80sEhERERER6YH6Usn73pu6ehhd6qg/fMRBv/uAMXe9n/Y9\nVfVBFqzf2YGj6hxBv10IenHfE3C40ysi3en2OMAOjTLwlOePLV5fXFLB/re/y4ylxQCs3ffSNg6u\ng5z1eNLp5f2/ZOmmSq769/yUrg4rRCQxLPrRO3DWE+BMXnbW11Sn3FsbCLc5KAKFRSIiIiIiIj3S\nE56Hk85Ldqa/i1S68qijAPu5kUhm25p3hq2VTe8I1pJrn1/Ay/NLOmA0nStQZwcIkYMvw+H2dfFo\nsmeCYxXbq5r/vc5bZ88omvu1XQuoavA3O2VcaRt/IeT2i53+uPrvfOeRT3n3qy1MW7EtqauJBLEc\nCTPihh8J4y+AvAEpj7Ua1X6qaedsP4VFIiIiIiIiPdAwk/zB81sPTMvq819fUMIc709Z7LsMSF72\ntKvaWlnPJ19v7+phZIXvk9/zTKNOAAAgAElEQVQBsGXLJpzddWZRG9UGmg9CGmo1ecN2iOnK6dUp\nY8rIjWvgugUpzZc+PZeim9+m6Oa3ATCRULwQeKJG4d82qw/hRmFtVWJY1HtYxkNUWCQiIiIiItID\n7WnKks4bf5hsr1+8tIh8Y++4daxjQbcLi/yhzHeB2hadibS32chc79XsSSllNYFsD61TjAitAaCf\nJ4jLk9PFo8muz9eWNXstp3ItC72XMyy0DgBPbjcMiwAc8eVlIwcVNNnFHakn4mpmVtjRv4r3I8Tn\na8vwh8KxIK22NmEmYWFR5sPL+A4RERERERGRBE97Hkjafas7qPEnh0VLNla0eo/HZX9EPtf5CQNM\nBXe4n2HW6tIOGV9HW7LftQAMnngq3vzCLh5NFlz2Uexw8vQ1zXY7YMt/6WNqOCnwAQCenLxm+3ap\nPvZsnzVmGKMCi5nrvRov8WAyHLHwWn4irmZqOh39K+i/P9MjY3ERZsaqHRzzwDQOuOM9NlfUMW9x\nwg5pBYMzHp7CIhERERERkR4uYDk7/B3BbjazqKo+eZv1zRX1rd7T8D3stOyZHqc457a45Kk7Czjs\nGSlOl4eCoaMAWOw8oCuH1D5DJsYOHeEWalFFa/e4LPv3783JrIB2Z1qZO57t4Vweqr2VAaaC0xyz\nOcUxhwHs5IH3VuCjHtNcAXCXF679nOXWMNyE+Ou01bG/40fc+xHPfvZ1vO+kn4HJLP5pYg82ERER\nERER6Um+tPYG7CK4JkvbiOd7kz9OBkPdq8B1VX1yyJPOMryGpXRVxD+g+7vZjKl01fntWSrG5SQ/\nL5/IHeWMcXSTLeTbaZ++zYefxor+3q0IGMjxddOZRcDmqjD5Jv739EHPE7Hjok+e50pvgEp3y0sI\nJ4zYA/e61EDThx2WWU4vZo8DwJ0LlKc9Ns0sEhERERER6eEc2IHHRU/Oydoz783/T9J52OpeYVF9\n0F6G9qNJRQAU+FqfKxEMRTjJ8Tn3uJ8CYHVkT0LdbMZUuiatfQQAV7RAsqMHBEXBg68A4DuFm5rt\nYyz79+7A/urrxjOLBhUW4CLMusjAJq/n4sd4Ww67DvRswWkshpstSe052LOMzHnP2g2B6ozGprBI\nRERERESkh9nZqCizK/rBeebqUkp21nLr64vbHYKcXvNK0nk4FGymZ9eoD0Y43jGfXy0+ndtd/6Y2\n0HrB62AozN88Dye1dbfC3ZlyuprYTWsX5Vr3KQAjS15uvpNl/77c2LNtPL7uGxYN6dcLN2ECpP6O\n8qjDa4I4PS2HRTmr7J3TTnLM5SjHl5zisAPhgx3RZWg5fds0NoVFIiIiIiIiPUjxjhqOfuDjpLaG\nD865Hic/f3Ehz89Zz6KS1gs+ZyISbL0mUGeqD4Z50vMguYFSLnO9k1btId/2hUnnezs2Ewhmvqta\nd+J09pzqM8bltb+GW9ihLjrDzU2IiGWSdh3rbrxeH6Mc62Mz/xLd5rJnBLnSDLtOds7l3577eNzz\nZ0aZddzsftG+0PD7H3pYRmNLKywyxpxsjFlhjFlljLm5ieuXGmO2G2MWRv9clnDth8aYldE/P8xo\ndCIiIiIiIpKR0/4yI6VejycaFo0d0pt563YCsK60hqKb3+b2/y7OynutYAtFh7tAfTD5Z5DezKLU\npXQDdn6RtTF1hRxP9w1LMjbyNAC2e4c226VhGZqLMH7ckKUaXR3BEa2vtLdjc8q1C1124JvjaGVm\n274nATDBsSrW9I73lvj1vAH215+8n9nYWutgjHECjwGnAAcAFxhjmiqh/pJlWeOjf56M3lsI3Akc\nBhwK3GmMadscKBEREREREWlVtT91Bk3DzKKDhsU/jl3/n0UAPDt7fbveVzrwCAAi4e61DC1Yn1yj\npaWwyB8KU1EXJBhO/dm56ndmfWzpqKoP8t8FG7HaWAtqqxnIgpzDcfaAWkUxE+35J29tzOPNRc3U\nLYrYv+deps4Oi7oxc8S1sWProEua7jNwZMsPOeE3zV6qKtgbeg9p09jSmVl0KLDKsqw1lmUFgBeB\nM9N8/knAB5ZllVmWtRP4ADi5TSMVERERERGRNhnm2M4YsyarxZrXOoYDsH2Y/REvHO5ey7UWripJ\nOg/7my/wu//t7zLuN++zaXtZyrVgGruodYQH3lvBz19ayOdrU8eUjj2sbSyt6r47gbVJdBmalwDX\nvbCg6T6ReGjp9LS8k1iXy+0XOzS9BjfZxZvfynwbl6/ZSwVVq9s0LEgvLNoL2JBwXhJta+x7xpgv\njTGvGGMa5oSle6+IiIiIiIh0oLe8txMMZy/4sICF+UdhorttdaeZRaXVfqYvWZvUts+mN6kNhJiy\nOHXJT4MPFiXcc/L9AMxZ2fzOWx2pNFqkfEtlG2pBRWdIDcjpXjvUtZvLDn8atoVvijOhnlFBcEeH\nD6ldvPnxY39Vk118eb1bfobD2fy10x5qw6Cij23zncneAoosyxqLPXvoX5ncbIy5whgzzxgzb/v2\n7VkakoiIiIiIyO4lcclSpImPe6FI9mYWOa0QlnFhVy4BK9J9ZhbVBsLkUZfU5rfcHHDHe1zz3Bcs\n2lDe5H25JNRdGmXXx3FHuqZwd+8cO4Qrr808hAtFZ1HlDBmb1TF1OaebCAavSS5wXXTz2xTdbO8K\nVm+8XTGytvH1iR+PPsf+uv938Cd8D57WwqKcwuav7TmuzUNLJyzaCCRWjxoSbYuxLKvUsqyGf1VP\nAhPTvTd6/2TLsg62LOvgAQMGpDt2ERERERERSRBOWDI1N7JfyvVQ2GLcEPvDZ7HvQop9F3KX659t\nepfLChFxuGO7LUVC3WdmEcBwsy3pvCwU/wA+Z21p0rUJw+wP7b6GEOJnX4Lb3oUqKUDqREs22rvV\nVdRl/nOtr7XDIuPu5suwMmUMfjxc5/ovz7vv5s9TV6bUdApZu1CNJk8u/LoUbt0MQybCHTvh/OfZ\n7B4e62K8BS0/w5sPV37a9LV27ASXTlg0F9jXGDPCGOMBzgfeTOxgjNkz4fQMYFn0+D3gRGNM32hh\n6xOjbSIiIiIiIpJloYSwqDc1KddfnLuByvoQ9iIy26WuzHZJauAihOVw4Yh+IO1OM4siiQFCdDlZ\nVX18fI2Lerud9kfjWDDkyY+FRTm0sE17ByrbuJJ7XX/PKIT7Yv1OlmysYNXCGQBUhD0dNbwuE7Ds\nmWxHOpfy0NSv2Zkw8yoSsXAk1CzinH909vAy53TZoRGAwwHGEDQJhblbC4sABo2BUx+E/U+1vzaI\npBZsT1erMZNlWSFjzLXYIY8T+IdlWV8ZY34LzLMs603gOmPMGUAIKAMujd5bZoz5HXbgBPBby7La\nVp1LREREREREWpQYkvQzlSnXC6hl3Y4IN+y1FEpTLmfESQjL4cY47Q/vkSZ2EusqwXAET0Ndm8Jv\nABAOxZeTnTk+uZhwYXAzY00JOQ1hkTsHXF4sDAXOrplZdK/rSY5yLuHVqi+wNyZv3pTFm9lQVsvz\n706jgFp+M8b+2L3n/od1wkg7V6DRDmf3TFnGJMdi+1r4ZByRhHBv9Pc6c2hZU1YXjk/tiYaWLTIG\nDrnM/hOogbd/abcPavsytLTmJFmWNQWY0qjtjoTjW4Bbmrn3H8AuEOeJiIiIiIjs2hJnFg0wFSnX\n73U/yZzISK4t/We73+WywuBw4WhYhtaNwqKq+hBeEw2LfL0ACAXioU+40Q5nj+/4EXjhiZBdpwh3\njj3Dw5GDO+THsiyM6dzlTcHox3VXpPWw6prnvgCg2Hc9AF+GLidsGYaNmtjSbbukQEKM4SbEK/M3\nUOy7F4Cq8C9xNswsyh/UFcPLipCVULQ60793njy4K/XffqayVeBaREREREREulg4utvZdx1N1zAZ\nYrazl2nnlKIoFyEspxvTDZeh/fqNJfGZRdFlPOFgfGZR47CowVWu/9kH0Q/olWE3OfhZvLH9H74z\nlZdjb4nepz7z3djCNeVUkke+z916511M4t/flb4f0J/4DLoafxinFWCVe3+4YUVXDC8rwt0gqun6\nEYiIiIiIiEhWVPtDnOSYy0Oex5vts48pycq73IQhYRma1Y76KNm2ZGMl3lhYZM8sigT9HOX4kt+4\nniYYTm9L+f6mgotdH1Ky095ZbVtlPZOnr242bMqmscFFAATasLvXQVtfJgc/XlfP/8j/zegSNIAr\n/z0PZyRI2OzaIVmR2QJAidW/y8bQ8//miIiIiIiI7Ca+9/hM/uZ5qNnrH4Qnst3q0+z1dIUjFi5C\n4HTjcNofzK00lqF9+4/TOOXPzezclEWHjijkbKdd5LlhZlEkGODfnvv4oesDcuu3JPWvoeW6MA2h\ny+OfrOaeKcv5ePm2FvtnQ45lB1TpxFIjzXrGmVVJbT4T7PSlc13hYc9fY8eLSspxWkHCjl07LBrm\n2A5AHvWt9Ow4CotERERERER6iG1VTdS32fekpFOPCbIhMiB2vjaSeW2XYDCI01gYpxuHw55ZFE4j\nLFqzo4Zlm1MLb2fbd/csY5QjuuNZtEBwYcJeS3uXf5bUv8QR3+B71b4/SXne9ujPdWN0hlEwHMnq\neFvSeGv4przrvZk3vHe02q+n8xLEZQUJO3rGLnAdP3+teQqLREREREREeoDiHTWpjcffBRf9J3bq\nNiG8BPEn7CjlIkwow/AjEIyGUk43Tpf9rKYKXP/8xQUcds/UjJ/fboGEn0V05lNfUx1rMsG6pO4O\nK15vaZ+h8eAodPhPqbM8sRCuoYD4nLVlLC7pnDpGJnEreLGLN+91cJOX/uh+okeFRV05L0xhkYiI\niIiISA/w6zeW4KRRkenDr7G/Xr8MsIMhL6Gk7cfdJpR2DZ8GwYC9PblxenC57ALXf5v2dVKfkp21\n/HfhJrZW+tnntnc46aHpsWsvfL4+o/dlKmnmjzEEcNGLeIC0bGNZUv+kn5snP3boyulDjgmwraI6\n6bn/nFnM6Y/O6ICRx611DAPAobAo1bn/bLL5dOdsXFaQyC6+DK1BL0/XxUUKi0RERERERHoAl8Mw\nkPJ4wz4ngCtaHLnXYAB+4PwAD0F7+/HzX6DKNxg3IQKhzGb+hGMzizy43PYHcyf2M6Ys3kxptZ8F\n68uT7lmxtSp2fMtri7O+lKuiNshNr3xJjT/1+wlYLnqbeFjkJMyFf5/NlMWbWVxSgTNhZhEmYdvy\naL2jOUuLWb6lkrpAchiX6c8tE37s2THGatsuc+XnvZHN4XQvfYbCiXezI3eflEsuK4S1ixe4buCM\nBLrs3a4ue7OIiIiIiIhkjdPhIJK4cGXVByl9eplaDnQUs9oaDCO/Q8keb7NX8av4WwluagMhcj3x\nj48hf3QZl8uHK7oMzUWYspoA1zz3RVrjXbKxgoOG9U2rbzqemL6al+ZtoMDnYvGSTVyWsIlYEBe9\nqI2duwkzc3UpM1fb27DP8CWGRQk/w+hOav6anZz8cGph7v1uf4f7zh7D+YcOy9r30aB3JLrMzco8\nkLJu304fV89YitWsI/+PHYtm0b82ubC3sUKU1nfysseOEm6iBlkn0cwiERERERGRHsDpIDksakYv\nahi5V3RLbpcHDyECLYRFG8vrOOCO93h+TnzpWChgh0XG7cPt8QHgJsSO6vQ/3GZ7+3mXw/7en5yx\nlrvc/0q6FqTRzCKTPFvHSUK9JZPwMdltf2+jzLpm33vza4vTKkKdqb7YYVFLz7Ysi/97YUFy421b\nMT09KIqynL6UNhchttf0kLBo/MVd9mqFRSIiIiIiIj2A02FiS8GA5NAjgceE8eXk2F2cHtyECDZa\nThWOWNQG7ABlXbRw9luLNsWu19TYbS6PF1c0LPqb52G2VKS/1XdLAVV7xXZCiwo1qlnkblTbyZE4\neye69AyAPccD9owsgGMcC/jIcz0D2Jl0f2Vd6zvBZarWsqdGtbQMbUNZHW8t2sR2qxeV3kHwsy9j\nAdfuIOLyJp3/L3wYHkLsP6RfF40oy77zQJe9WmGRiIiIiIhID+AwBpdJCD2umdNsXxP9kG1cXpzG\nIhBMro1yw8uLOOCO9wBomAA0a01p7Pr9/1sEQEF+Ac6EWSwbd9ZyufN/9KfpncK+7fiC6/bdYT83\ny1mRx9nEx9uT7gUgbFzkmfisp337+7j91FGxcydhvuz/HTjhdzD6e/H78wcCcJCxlzpd7XqLbzi2\ncEiv5LCoLti2ukItMQ0bp0eDrO//bRZ/nroydn1jeR3/+GwtYG8ZPz/3m9B3eNbH0a25c2OHKyJD\ncBGht6mlsCC3hZt2AdfMhu8/A56u+z4UFomIiIiIiPQAToehL/Ei0gzYr/nOLnv2iYluKx8MJC8f\ne33BRgAiEYuwZbG32YhJmLVUWW3P0unbqwCc8bCoftNSbnM/zzzf1Zzv/Ihckmca/cPzR67fcB0A\n4Swv3RrWL/7Beq4VDYImXGKPk8qkvscPd/GDI4pi5y7CBF35MOk6cCQUuI7ujJYTDZrG7mGHbHcc\n1Ys+CT/r+iyHRZZlxXdosyJsrqjj87VlPDT1a+58YwkA1z7/Bf+cWQzYYdGooQOyOoZdgcdr/86D\nuKjDQx9j71rnjaQ/w61bGjgKDjizS4egsEhERERERKQHcBrDW97b0+rr2r4UAEd0VlAo0PSHa38o\nQs7O5Xzo/RVXO9+KtZ89xl7mY4dF8Z2nXvl8Tez4PveT3Ot+stkxRLJcsygUjj9vhWNvO+iJLinL\nTyhuDcCiF3A74/WdXITB0cT+T8YQHjiGo4d6WPbbk8lx2IHZoA+vY6Hvylg3f5Z3RQuGrfhSOSvC\nWY99Frv2r1l2/aSGndgcRPCaEIMK+2R1DLsC47GXU37lHo0fT2xGm7/fAV05rB5Bu6GJiIiIiIj0\nAMa0Utzakw8Be+aFqbBr+jiiy9FCjWYWeZwOAuEIVf4g3hp7ltFEx9ex6y4rumzN5Uvaar6fSV5+\ndqZzJmc6Z/JZ+EA2E68jc5xjPuHIwRl8d61LLJjtsgJJM56aYn7Th3c8Q6nFh4swVlNhEeDM7UO/\nSD14nBBOXq7nIEIER9ZnFgXCEXzRotvGirC1Mv77ufZYe7t4j8uBixCrfD+wLzSq37M7cESXofmN\nj8McC+Ptub27akg9hmYWiYiIiIiI9AC9Q9tb7nDZ1NihiYZGDnd0ZlEoOSwaGVnJBc4POfT3H9JQ\nh/oQx4rY9T2r7KVQuDyQFw+B9jDJtXwaTHJ+xTnO6bHzpzwPEs5y0SJHfTm/cr2IkzDOSCC21K4l\noxwbmOhYaRcGbyYswpMH62fBXb1hx4qkS791Pc0AyrMeFvn9gXj9KSuCIcLX3kuY6rmBUDgIwNF9\nSrnJ9WLCXa3vhNfTRKK/40hCYAngylFY1F6aWSQiIiIiIp0iGI6wYksVo/fSB7mOcMHGe1ru0H//\nlKaGmUXhYHJY9Kb31wC8ED6OhhVWDTuCAXxry9PRIzugsPIGYmq2sSdlaY/XV1kM7Jl2/9aMW/4g\n+7reZEVkGGebT8Cfn/a9bhPGahQ4xJTMa/a+i10fcrJzLl+FTsx0uC2qqKmJz8OyIpzqmIPHhNnH\nbGJ46WfAaK5afQ05roQaVUVHZXUMu4Kw0w6LnCZ5SaMvf/dbkpdtmlkkIiIiIiKd4q8fr+a0v8xg\nycamd8qS9oktDWuOI/Xjn8MdDYsaLUNLtGRjeew43LjOUG4hAOasxwHY05SSLhOqbb1TJiL2sq2f\nuV61w4NAVSs3JJu3obLpC7U7Wryvv6kk4I/XfCreUcN/5m1I/VllYO6qLfETK8Kjnr/E31djLwf0\nhBv9/IZMbPP7dlVBY9fLcpL8sy4s7N8Vw+lRFBaJiIiIiEinWBwNiTaW13XxSHomK5OPdwWDAQhH\nP2w/N3NV7NK2ynjw4SLE9JXxAKi6PkQkYvFs6Dj8lht62c/Ba8/iucD1sX1+3UJw5bQ83nAo/fGm\nI2IvBdvbsbnlfrdtabK50t/2ZVyJYdExf5zGja98yRmPzmjz877ROz7LaX1pcuhVa9mzaWpcCbNn\nfjKV3ZEVXZIXcbig3z6xdoevV1cNqcdQWCQiIiIiIp1qs8KirNpQVssjH66ExALXp/6p5Zt+9DYA\nYWNXJtlUWkldIMwr80s49J4PY93ucT0FCbM2qgMhjrzvI1yE2UnCMq+8Rtu25w2AS99ucQhWJLth\nkTuU5kwidw4cdhWc+mBSc15OMwWir5kTP554KZz1BFzy36QuIX8NEN+hDOCrTc3MVEqDFY6HT6FQ\ncj0kE7Znga3MGWc37P8d2Gv3m1UEEAnZs+kixg0//F/8QkH2ljfurhQWiYiIiIhIp2goAvzh8m1d\nPJKe5afPf8GfPvia2mBCwejeQ1u+KfphOj/P3k3KTYhbXvuSG15elNTt+65P4lu4A5c8NYctlfW4\nTZgQCTV+Ggc/njx7WdSR/5fy6tp9TgfAimS3KPSG3o12V7vy0+Y7n3I/jL8oqen7h45ouu/AkXDt\nfBh7HpzyAIy/AAaPT+ryh7cWUnTz2+z/63dSbg+F21DIOxBfYuZotMSqqrqao//wMRvL61gd2RMu\neKHJJYa7g2B0+aRxuqFXQkDkanknPGnd7vk3SkREREREOt2oPQsA+OY+qieSTRHLDhOSMonWZu1E\nd/4a2Mf+nZxyQL9mZ8K4iT9rzXZ7FzUXYYJWQliUPzB2uHXf8+OznCZcmvK8cJ8iAKxwdsOiRZvj\ns3Espxf2HJvaafT34seNdkvr3zuv+Yf33wfOnhwPIXL6Jl32Gns5lNWoTFHRzW+zz23v8MHSra1/\nAwmctfGd7RzEf7F+PFRVV7O+rBYfAfzs5qFIdCmjlbiT3d7HddFgehaFRSIiIiIi0uG2VdUzZ236\nO2VJ+gq8dt2hQGL2YrUSxDR8uPbbS7eGff0vVm6zg6ApnluSuv7V80js2BWdZeQiRF5OQk2ihPBk\nj5yExMSTGsAYpz3eSJZnFu2orIm/o/F7Bx5gf/3eUwkDSa5R5HC2fbNwHy0XF793yrKMnpdYG/tS\n1/sABDx9CODCQzD2znrcmQ20hxnbzw7Sxgy2Q0/uLIeLX+3CEfUcCotERERERKTDHfr7D/myxC5w\n3fY9oqQpeV57hk8wMWFoLYhpCEpq7BksJzrnM8as4WXPXRzgWNfsbS7CnOP8hFOdnzPQX9x0p0A8\ntMHtS7nscdrvrvO3sntbhpwJy+VwNgpRLn3bLgLdKCBi0s/jx/VtrzHkI8ChRYUMKLDrHr169RFJ\n148bNbCp25pVWZO6U5wnUE695cYbDYu8JsiwPfq1ccQ9g8dhh0W5vexd+TAm9XcsbaKwSERERERE\nOoUPP8c75rdrS3FJZaIfjkOJy9Bam1nUwFsQO3ze83sOcXzdYvejHIv5o/tvTV884lr7azAh6PD1\nSenmjoZFgUD2wqJIxEqqrZQitxCGHpLaXnRU/HjOE21+/zM/GMd/rjqCubcdT/HNY5i4+nHOGhkv\nAO5zO/nVy4t4fs76tJ73wqzVTba7vTnkGD+nOmZzsLuY/n16t3nMPUJDKOrJb7mfZExhkYiIiIiI\ndIpfu57lSc+DFJZ/1dVD6VEa5lFYJMyoaG53rMOuTj4fYgcoO6xeac34+runhV3WDr8anJ7kwtFN\nzPIwe9q7eAWC2dsNLWxZOBNq+6QUD2pOXsLMHHdum9+f7/DHTx4eA9P/wPnr74qPL2Lx8vwSbn19\nMX98b0Wrzxs1MCe1sc9w+hQUcLZzBo95HsEZrofgbr6z4L4n2l/3P6Vrx9EDKSwSEREREZFOMdjs\nAMDr39HFI+lZHNFAJhYW9R0BfYua7nzKfXBXRfy89xAA+ptKepl2Bg+9h8BtW2DMOU1f/9Vq+93R\ndwZDwfa9L0E4YsXqKdnSDIv67x8/bgge0tVvn/hxffRnWh6fOXR45IvYcY0/How9+vEqrFbCrFF7\nNBEWfecBCNUntw1qooj37mSvCfbfqb0mdPVIehyFRSIiIiIi0inqozs35dVv6eKR9CwNu6bH4ofO\nqtlyw8omBuNMbWvQsFQo2mfG11uJZGlJYjhi4TQJYVHN9uY7J0rcEe34uzJ76U8+sGshAbx+JdzV\n255VlGCl9xKKfRfiKU9eVlYTaHmZ4PCyz1Ib9zspNSwK1qT2E8kChUUiIiIiItIpgti7TYX0MSSr\neod3cpxjfvIyrGw79UG+HPnz5Lb8zIo247KLPzfsxOYkQnlddmYXhSIWrrZ8/46Ev4tNFONuUW4h\nDDuixS7uaIA1aduLSe21/paX4B24fUpywyX/tb+eeLf99RvH2l+PuzO9sYpkSP9Li4iIiIhIh6oL\nhHERYrjZCkAooo8h2XRdyS95yvMgBbFlZBnOLNpjTPPXfH3g/OfhkMswpoVZQ+lomPEUfY6LMIFQ\ndgKuuWvL6E3CLJu9Dk7/5sOvgV5D2vZihxMGNfHzG/7NpNP1kf5J5/5Wvu8Kz6DkhmhtKcadby+7\n+sF/7a+5hRkPWSQd+l9aREREREQ6VMSyeMnzO8Y51gAQ0mZoWTUgUAJAPm2sOXTJ681fu6kYRp4K\nwPqd8SVQliuDWTh3VSTXSYpuaz/UbGPhhnKue2FBu0OjvnluLnJ9GH/f5R+mf/PJ98L17Si6fuWn\ncGe5/eeYW+22U+7jK+/4WJed/uRbKutbnlG1rPfRVJMT/9l5tduXdC6FRSIiIiIi0qHClsVER7y+\njRWxZ5TMXlPahaPqOVzYS5qGm2gtqJzU7epbfoC36fZfrUmqf1SbkPKZH01p6o705NmzbPx4+MVL\nC3lz0SaWbq5s+/OIF/nuEsbE/xx9A1z1GQwaQ69IebxPoJq/uB/hYucHAPzsxYVJj5i5egfrS2vj\nDZEAQdydMXqRJiksEhERERGRDmU1mjSyZEMp90xZxvmTZ7N0U/tCAonzNBR4Pu/ZzG709YJTHkhu\nO/XB5G3lgWAkIZAp2LMNI4yKblHvI0Bd0B5za7uDtSacpULZ7eZwwqDRAPhMfPZQHnWc7pzN3e6n\nOdnxOau2VSfdduHf5/yeRgsAACAASURBVHD0Ax/HzsPBQKzGl0hXUFgkIiIiIiJZVVEbpOjmt/my\nxJ5ZEW4UBITDIf45sxiApz9b29nD69HW5I2HXoMzv/GwK5LPD7kspcsZByXU9fH1zvwdDZxuIg43\nuSZhWVvbnwZAKNRyweiu0C8vvlSvF/FZQ094HgZg5dYqIDkoe+Hz9QBs2VlJfaSdNaJE2kFhkYiI\niIiIZE04YjHut+8DcMaj9vbfkUZhUeKuXS/PL+m8wfVQ67z7x46H7dGvhZ7tk795dvwkOjuorSIu\nHzkEYuftnRlkBezi1usPvq1dz8kmhyM+E2uAKU+5fsJD0wmGI/z0+S9ibbe8tph3l2zGQ0gzi6RL\nKSwSEREREZGsaapQcWpYFI4dX3TYsA4fU08WiVjsTNh+3uXJaf9De+3VdPvX78WP21sjyOnlx653\nY6evtjM0tPz2si7Lk9eu52SViX/c3iMlLLL/Tbw0dwNTFm/hf55bY/WMrnr2CzyEcHmaqSUl0gkU\nFomIiIiISNY0lSFEGuVH7oSwqMCnIr7tMX3ldqzEj3U129v+sMs+hAO/C5dNbfp6O+sKJQr1LgLi\nxblfnLuhfQ8M2jOLTHcKi4j+Y8jtxwhfcm0uL3bA9+s3lgAWox3F3O1+Onb9JOc8hoeKO2mcIqkU\nFomIiIiISNY0nkUEUL5zR9K5m3h9me1VfvyhcONbJE0RyyJCQkK3YU7bHzbkYDj3n83XPLr4lbY/\nu5Hg/qcD0JcqDjTF7X+g3w6LrO60xXzDzCKnl5zAzqRL71w5HrDzt1z8sfYis7nThifSEoVFIiIi\nIiKSNY2zovpgmHOfmBW/bhzsXeiJnb/6RQmX/mNuZw2vx+md48Gik7aNH3G0/bVw73Y/ypVjhzq/\ncf+Lt7230pd27ooXtAtIO9zdaGZRwzS7qk0pl74x7zex43zqYsfTvL/EQepSTpHOprBIRERERESy\n5t+z1yWdL1hfHvvwu3DUDRinh4OH5nGGYybFvgvJoZ5Za0q55rn5vDR3fVcMeZcWjljJO4mNPK1j\nX3hLCVw9s92P8XjtUOc7zs+B5Nk1bWGF7WLZDrenlZ6dqPfQ1DZvdBe5r17HE12KdrhjaVKXNb6L\nAXg+9O0OHZ5ISxQWiYiIiIhIVtT4Q9z3znIAvC4HLoehT647tvvZTr8DQvUMWfp3HvE8CsBhDrv/\nlMVbuOnVxV0z8F1YKBLBk7Csj46u2eMtALev9X6tcPqSl4v1y2n77KgNZbVYYTt4cTi70Q5iZ/8N\nzn4S8gbE2/aJB0B/dz+IhyCPeB5r8nZXr4EdPUKRZiksEhERERGRrAiG7VDIQYSfuKZgIkFCYSu2\n+9lXW6pT7rnC+b9OHWNP89oXGymzCuIN7izshtYZGo1zaO+2hTzTVmzjqD98zFPTVwHw/+zdd5wV\n5fX48c8zc8tWelNAF1AsYEfF9tVo1NhbNGo0avxp1MT0GEwxGI3GWGI09t6NvaGioqioqIh0pPe6\ntO17y8zz+2PuvTNzyxb2bj/v10t3yjNznwsL7Jx7znkMswM1TC/sDXufDZe4q74RcoNkR5qzONiY\nn/PyktKerTk7IRokwSIhhBBCCCFEXsQspyDqxsCjXMOTvB26llP+OyWVWTSkb2nGNSv0wDadY1fz\n5sy1KMBSpnNg1+PadT5NFizy7ep4hAmz1qGbueLaV8u2OLdLZFcFOlIZWlK/XdztPU7xndpLLc15\n2eEDWlaaJ0RLSLBICCGEEEIIkRdRy6aYOs4PfAjArsYaAALKCRYdv9fgjGsaCxbFLZuycRN47LNl\neZ5t1/CjA4diYhEbuB/8eT3sflJ7T6lp0oJFh297k58/O51PFm3KcUGmTdUR7p28BCAVkOxQZWhe\nf94Af1oLI4+Ha5bB751MqGuCL/jHBdwSvx7FHahZt+h2JFgkhBBCCCGEyIto3Kafqkjtx7XzuHGC\n4SznXhgOZ1zj67eTRU3EKWG7/s15zc466Q6e/mIZR5hzCASCnacEDTKCRckAY0VdrMm3WLmlNrUd\nSJQ6moEOVIbmFSxw+0kV9XF6P3nYe50DF78NV0+HHfdLXNOJfj9FlyPBIiGEEEIIIUReROM2FmZq\nP5lR9Ofgs84BZcLJ//ZdM8ZYQH+28RNzIrupzNXQamNuMOmxz5bnf9KdTNm4CZSNm8Dabc5y6/3Z\n5pwo7GT9bXIEQprT5to7NhksMjpqsCid4c+AMoYdAWWHQc/Bbimh0UGzpES3IMEiIYQQQgghRF5E\n4zYxbfqO7aMWuzuGCWN+Cuc+mzr0f+Zsvi64ir8Hn2BieFxG9lBNxA0WzVq9rXUm3gnNXuNkcJUq\nJ7tG7XV2e06n+QL+FdWW2045ompGtKg2arm3U852qCP2LMrG8P85YcmH7vYu3/d/FaIdSLBICCGE\nEEKILujzxZuYvbqi8YF5FLUsdFpuiIEn+BNzsmHY/SQYn31u0cSKagB1UYvv3/FJav/1mWvzN9lO\nzrKdX9d+gXoAzMJe7Tmd5gv5y9A24sxfNSO3yBssSvYsCoU6SbAoPSpW1NfdHnqQ8+dj6IFtOych\nPCRYJIQQQgghRBd0/sNfcsp/p7Tpa0aiUe4J/cd3zPI+ctRubvQe9TE3WPT458t957SGVZ4+NV7/\n/XARizZUNX2ynVzIdH5df9R7gXMgnLnSXIcW8jdvrtRO8Kg5mUVTl26mLxVMHvYkNx6faJ5udJIy\ntHSH/7a9ZyCEjwSLhBBCCCGEEHmhKlZzoLEQgHigiEpdlFrS3DnY+FLgkbiVcexoYzolOEGiI/71\nEX96dTabqt171UUtbntvIcf++5OMa7uq4rDTz+aMymecA+GSdpzNdjr1vwAssgenGp1/2ozV0B6Z\nsozfBF6ibN27BD683jmYXt7VWaSV5QnR3iRYJIQQQgghhMiLiKcZta2CBLAoUfXugF2PbfQelXXu\nPYpCJoMp59HQbdwTvCt1/NkvV/K92ya7r+sJMJ1896fbOfvOJW7b/gOdceWs/S+E8RVsoZSwihEm\nynNfZTY5z+X8g3diZ7XBf7CzNoXujME+0aVJsEgIIYQQQogurC2Xm49F3MBQIBSmSEV4InSLc+CS\nd2HHfRu9xz/f+S61XRg0KVROBtGR5ix2VatT56rq3aCSt3RtzppKbFszc9U2nvpi+Xa+k44vbqX9\nvhZ0sp5FHhEd5GDjOxYUXMwgGi9VTLKmP80R5hz/QbMTlqGNr4BAuL1nIYSPBIuEEEIIIYTowiJx\nu/FBeRKPusEio2aj/2Sg8cbDcW2wcktNar8wZKYaFwPsayzOdllG6Vp1NM5p93zGX1+f25Rpd0qx\nRCPwVE+ooj7tOJuW6V3iZkUNM9Y3+brTyFJ22Fkzi4ToYCRYJIQQQgghRBfmXTGqtXmDRRnMxjMn\nAsrme7sPSO3rWB2Phm5N7ReRveeRN7MIYP7aytT2ys3ZG2J3Rratucp8nXdCf8RKBIu8wbTOatSQ\n3qnt9NX0GvKqfXjmQdWJehad8h+49P32noUQWUmwSAghhBBCiC6sOT1gWsqKNRAs0lmCVgdfAcUD\nfIcqaqKp7V2/u5fByi1LOrR/rmCR/96vTF+T2t5WF00f3mnFbJtrgv9jD2MVn06e2N7TyRvDlw3U\n9GBRTGfJIjI60SPuARfD0IPaexZCZNWJ/iQJIYQQQgghmuvWiQva7LWsmCeY03uY/2S2pd1PuAUu\n/8h36KVpy1PbZqzad+74bc+jsmTSpAeLxpT1ZoeezupSd01a1ISZdw4xT5+iReu2sLWmiwTCPAEe\nWzsZVI2JWzZBFW90nBBi+0iwSAghhBBCiC5oecH5fBj6bZu+pu3NLAoWudsXvw19hme/KK08LUic\nxz5bBkBMZfY5WlZwAZeZbwFu8+5IpI73Qn/gcGM2AFtro2xOBFI+mL8x4x6dVczTf8rCQAMz7OGs\n1v3ab1L5sH52ajOgLOJNCBbVRCzOMKY4Oxe+Cteuhl/PbvgiIUSTSbBICCGEEEKILmp4ollweuZN\na9HJYNHos2Dsle6JssNyX5S2elUxEa5/cx6zV1eAnT1z5M/BZ9ldrUwFFYxtKxhprOHp0M0AbK6O\ncmFZBcca07b/zXRAyabWABGCrK+oJ0qQlfaABq7qBLYuT22eYHyF1YRgUXU0zqHmPGdn4F5O5lqv\nnVppgkJ0PxIsEkIIIYQQoovb0kblSspKlKEd/RdY8E7TLkoLFl0ecLKGTvnvFCoKhua87N3wOKKJ\nTJtY3A0q7dOzlvLqCH9d/TMeCt1BWd+iXLfodKKeYFEAi9dnriGIRYyuswLYhYEPiNuNN+1et60O\nWyf6GxX2auVZCdH9SLBICCGEEEKILm5DZQONp/PItBKvEyiEwfs18SJ/GdoAtTW1HSWYPtpn8Uan\np1Es6gbDXo/8P8qr3N5JlbXZm2J3RrFYLLUdwOKBj5cSIM7A3iXtOKv8ayyzaMKsdbw/bwOGSowz\nG/4+EUI0nwSLhBBCCCGE6OJWbqlFa807s9f5SpnyzUgGi4IFMObSpl1kBuB3C2HX4wHYVbkrmc1c\nuanBS9+Z45TZ2ZEa3/HNVW5wLFS/qUkNkzuDWMR9X0HllBYGsRjQq2sFixrqWbRycy0/f3Y6D3yy\ntA1nJET3I8EiIYQQQgghujCFzdLyGj78biNXPjOdO95fmGoMncv2BpQCyTK0QCEU9Wn6haUD4YeP\nABDGzZ7ZUlXnG6aHHenbv//jJSzcUIUVrfXfL+quovZDYzLV0a6xalY04v56BEgGi+JgdPLMmiu/\n8O02lFkUtZL9t7pGAFCIjkqCRUIIIYQQQnRhwwuq+c+kRVz6hNPs+b7JSxh27ds5A0KvTF/Nrn9+\nh1Vb/AGYO95fyNfLtzT4WoYdwUZBIFFatv9P4PvXN22i4VIAdjHWMiKRXZQMiCSpnkMyLquJxNEx\n/1x7xjentn8ffJFFG6rTL+uU6uvc93moMRdI/Bp19jKsgXvCUdcCUKmLGswsWlLuZJF5g4pCiPyT\nYJEQQgghhBBdjSdzaBJXZB0ydenmrMc/XljuO//Fks28N3c9d01axNn3f5H1mqSAFXH6DKlE4+FT\n74bDf93c2TMp/AcAzGSwaId9na9ZgiIBw4C0zKIyazn1hFL7Z933ebPn0BHFIu77vCrwBqAJqjh2\nZ88sAjhqHAtHXIKJxaT5GzJO18csysZN4GdPfQNAMW3Th0uI7qpJwSKl1A+UUguUUouVUuMaGHeW\nUkorpcYk9oNKqSeUUrOVUvOVUtfma+JCCCGEEEJ0NfdNXsKNb81r8X20bryMzLI11ZE4H3230Xd8\nQKmTFZRcQe28h6ZyeeIBvTEBO0JUhRsf2AS3BB4kQOJ9XPQmjFsFZihjXNSyMoJFYbuOApz5T7d3\nyct8OoJYxF+WV0odO6ot9Fn6RjvNKM8MkwA2170+N+OUt2k5QJFygkXR425pk6kJ0d00GixSSpnA\nPcAJwJ7AeUqpPbOMKwV+BXzpOXw2ENZa7wUcAPxMKVXW8mkLIYQQQgjR9dzy7nc8PGVZi++zYlNN\no2M08LsXZnDJ41/7Ss4CpvOI0FApUC5OsCgzoLM9fhSY7JahhYqhoEfW3jyRuA1xfxCl2HbLzoro\nOquh2TF/Ns2OymkAblhd5D0agVQ22ZdpmW/p349DEu89VNK3beYmRDfTlMyig4DFWuulWuso8Dxw\nWpZxNwC3gC8fUAPFSqkAUAhEgcqWTVkIIYQQQoiux1sW1lgD6sZMX+F/0DbTev8ARGI2E+c65T6R\nuHs+YDglZJatG13C3GvGqm1sqawi3shy9w3qN9K321tVEdcGGKZzIK0MTWEngkX+IMqu2g24lSh/\nIKkz0zF/UOjfwfvaaSatQ5kBAsoGdEZ/rKXl/r5Tfws84WwsmthGsxOie2lKsGgwsMqzvzpxLEUp\ntT8wVGs9Ie3al4AaYB2wErhNa91wVzwhhBBCCCG6oQ2VbsDjdy/ObNG9ehUGfPujlRM8Gd6/mKcu\nPQiAeWsrUue9samAkcgssmxmrNrW5Nc8/Z7PMLGIY27vtMH2r1p2SWAilvIEiNLK0PpSRSRmQ9wp\nOeOvTpBsCG7Pmx40nmXVWei0DKI9jRXOxr4/bofZ5J9KZI6Z2OzQs9B3LtmgHeDPJ+7BwD0Pd3aG\nf6/N5idEd9LiBtdKKQO4A/hdltMHARawIzAM+J1SaniWe1yulJqmlJpWXl7e0ikJIYQQQgjR6Yx/\nw+3T8sr0NRm9hJriwH98wA1vzaMm4qwUVbPz0QD0U05gqDgUYI8degCwrsINTkU9K6MFTCezKG5r\nIrEsGUnxzGNJJjY1cdXseadYmUvcx73Bot47+85NK7iSeLQWZUWwMMAMsKbH/pi476eHqiOc6F/U\n6cVzNHXe/ydtO49W0qPI6XcVwMLI8aR6/6k7ctmH+9En7pShUXZ4G81OiO6lKcGiNcBQz/6QxLGk\nUmA0MFkptRwYC7yRaHJ9PvCu1jqmtd4IfAaMSX8BrfWDWusxWusx/fv33753IoQQQgghRAemtebz\nJZs48T+fZi0z21rrXwr8kse/bvZrlFdFeGTKMqrqnAwUo5fzY/yeagXF1HHhhn9Rop1Mm6p6NzBz\n0l1TUitQmYkytNlrKrKumHZFA82uA1hYLcksyhJnUgFPNlGWDJp/vPgZyoqmyt+sUAlB/EGn3lRR\nG80MRHU6iQyqWK8R/uNZGn93RgN6FgNO0LE64g9KnjNmCADf77/VObD4fedrID8N1YUQfk0JFn0N\n7KqUGqaUCgHnAql2+1rrCq11P611mda6DJgKnKq1noZTenY0gFKqGCeQ9F2e34MQQgghhBAdyrqK\nOl/T6Okrt/LoZ8s5/6EvmbeukmHXvp2RobNTn6Ks99pQWc8hN09i8cbqrOeTonE3myYZCAr0doJF\nBxeu5tbgA5wT+JiC24dxsvEF785d77v+mS9XAhC26jjV+Iypi9Zz14eLU+cPUvPpQTUfLSjnrkmL\neHTKMj6Y5wSY7ERvIxObeEuKF877H+x3oe9QUczTxUIp+Mkb0HOn1CFDWygrQiyRgWSYQQJYRHSQ\nlbbzQfRoYznVka4QLHKCgNYeaS1ku0rAxHDKJ/c1FhOL+1f0Mw3FNUVvEVg5xX9NFwmUCdHRBBob\noLWOK6V+AUwETOBRrfVcpdTfgWla64bWabwHeEwpNRfnc4LHtNaz8jFxIYQQQgghOqpDbv4QgDd/\ncTjXvzmXaSu2ZozZ7S/vMrhXIZ+Nc0rFVm6pzRgD8N8PF7Ouop5nvlzB304Z5Tv3xsy1DO9XzO6D\nSvnZU25Pl+pEZlEwGIZgEYfHpuJN+Plv6G6m1+/KWvqljiWDTXuufp5LQvdwdVTxpn0oCpsANi+E\nb2CevTMnRm/mjvcXpq47dZ8deWPmWsDJLOrXI3vQq0kG7gmn/Re2Lofln2YfM/xIOPtxeNj5dQup\nOIYdS5WrGcEwQeKYWEQL+kK0nIdDt7Mq9vvtn1dHkehZZISL/cfNrhUsejZ0Ew/ZZ/tO9alaxFX2\ns5D+bWG2oKG6ECKnRoNFAFrrt4G3045dl2PsUZ7tauDsbOOEEEIIIYTo6k7575QGz6/ZVsf3bpvM\nR78/KnXs+lNH8bdE/6Kyce76MT0KMh+Kf/nctwA8cOEBfLTA7f357pz1TkNRZUCoBGKZgaiBaitr\ntRssiiX6FhVHnGyh3qoKgGUFF6TGpBoqeyQDReAEiwrDeQhcXPwWjO+Z+3ywILU5oncAIxbBSjRH\njmqDEHECysbovTNscAob6rP0X+psVCKzyIhWpZ1oQZ+ojsRwI5qFNasAt92tGavKcgFdJ1AmRAfT\n4gbXQgghhBBCiO23bFNNaon6f+wwhYvCk7OOCwVy/+j+s7Q+QjUViV5DdVugJnujbBvF3moJNwYe\nATTxxBysxCOCt0l0U/UvNulVUtj4wOYYeULmsYAbLIpG6jB1DEs55Ug9i4vooZy+TEN33Ts1rj7W\n/PfT0ahkZlHVWv8J3fnfG5DKLALoVb3EdypqZfb54gf/hICUoQnRGiRYJIQQQgghRDsb8ae3Ac2P\nt94Lb/6KV646NGPMrRMX+PazNclOuigw0dn44t6cYwJYvBH+KxcEJlFCHfFEZtG0Fc7KaQZ2RqPo\nhoxUq9glOh+V77IgO5Z5zBMsqq2tJRqpT2UW9S4toqdyMqmCJW7mVH0Dq7h1Fspyfi2MkKfU75Bf\nQJ8ROa7oZDzBIkv7s6WKI1mCngdf0dozEqLbkmCREEIIIYQQHcApxhep7YE9ChoY6YhlybQoIIKB\nzXI9yDlw2K/8A3bcL7V5pDkztR3ASt3Pm1n0PePbJs//vfAfMeyYU/qWD30SJUhGls4ZnqbGYRUj\nRIzyusQBwxOsWjs9tRnpAplFC9Ylel8FPNlbx/+DnOvMdzZB933VK/+fgau33OQfu/vJXaf8TogO\nqIv8rSKEEEIIIUTb01qzYH2OXipZjD9lT3YfVApklpXtoNxl6gsaKDlLilqZwY/vCi7hjuC9bNMl\nzoE9T4OfvucOCJXAaU620RXmm+5h4sRt53479k4uX67ppyozXqOYuoxjPks+bHTuTXLcjc7X3U7M\nPOfpWRQiTogYURJBIu/qWJ7sqwse+ZL56zLfT2dRXhWhoqbe2Rm0V/tOprX0HJLazLmq3oWvwfgK\nOPeZNpqUEN2TBIuEEEIIIYTYTs99tYrj7/yETxaW8+6cdZSNm8DMVdtyjr/4sGH88phdAThm9wG+\nc+eYH6e2+350TWr79OGa94qv44cj/eVdkbSGzYFEydjp5ucMV+ucg8FC2OlgN4CydgZUOv1uQsq9\n/quCn7NDbJVzScDJ5DGwCZFZAnayOdV5L4eW5XyfebH7SXDpB7D/TzLPhUvhjAcBuMh8j5CKE9UB\n91xSsVuGZmJxwn9yrLDWCSzaWOX2kdrn3PadTGsZciDs7bw3beUogbQ7fzmhEJ2BBIuEEEIIIYTY\nTn96dTYAizZWc8XTTsnTafd8lnXsTn2KoHwhA9Z/AjhJLz8YNSh1fhfD07T4m8dZ/sdRLP/nSdxZ\n8jQjrcWMrX7Pd79I3J9ZVErmimeU7uB8TZb3RKuyB1+AX0QeAiCWWDD5EGMuR2cpQ7sl+BA/Mj/i\nb8O+4/I9YpRSy6d9b856zxYbemDuUqP+IwE4ypxJiBj7Dx/oHC/wrKJ2yC9Sm0VEWmeObaQwaGIq\nC1sr36phXYpScMBFzmZar6rPzAOdjRHfa+tZCdEtZSkAFkIIIYQQQjRHLK0krJg6NIpaCrj55OGc\ntauC3sPhpv6MAQZxN5qBlIQbaAb90NFw+WRY+A4AdarYdzoatxmh1lCue1JJCbsoN9hUqmrRgUJU\nslzL9syvoEeD7yXZs+hwc27OMbcEH4KXH+JPwFXhYnrV1LgnSwblvC6veg9Lbe67QxEUJJo+e4NF\nnvdaRD1VeBpDdzJ3vL+QsVjoZKBot5Mg383EO4JEz6n0zKJqXUB5aAj9u2qgTIgORjKLhBBCCCGE\naKH6mMUOPd0+OnMLLmVO+FIAzvtgLKH7DiZ0u7ti1dSCqzmiXy0ap6fOrT/cmwy1m+FOtzdNrXID\nHR/M28BRt01mUvgPzCq4nMOM2bwY/nvqfA9q/EEhK+p87T3Mt5KYV7KMTenMMp/YlV85fWKy6KVq\n/AfOfizruLwr7OUETAaMgnjEDZx45x8owD7DyZgqVvVtM69W8umiTZjYqGTD7/OehXOeaN9JtQbT\neX86LbPItKPYRhcMjgnRQUlmkRBCCCGEEC1UH7NZV+EPRhhKs7zgfPdAxN9c+YIvT+EC4MjgoQzp\n/2yjr2F7Vhl79LNlGLjZQs+E/GVg5wc+gmrPAStRgnXxWznLukZYy515ZwkWmcFwo/MD4Ijfw06H\nNG1sPkSrYWMiA2rw/omDnvdnBjHCTrPvIjp3sAicVet0ttXhupLE+4tF3WBR3LLRVpwt9TCwveYl\nRDcjmUVCCCGEEEI009Slm1lS7kZjqiOZjaCb6jTzcw4Ykli9rHcZnP9i1nG71s9ObQdNI2vz6UaV\nJB61dz8549Rm1QuAsdUfZJwzAk0MFo38QdsuZ77MbQqeyp7a+0fO18N+5XwNOeV7xZ28ZxHAOeZk\nzFh14wM7s0T20PRlG1lX4ay8VxezCBInjpSgCdFWJFgkhBBCCCGEx3frKykbN4Flm2pyjjn3wakc\nc7sbqJi9poVLsj95uvN163IYeRyMODpjyPerXk9tNztYdPp9MGhvt1TriN9mDIlp50G8n7Ux8/pE\nsEjveUbDr9NIP6S867+Huz33VedrIOSUzB2bKMsLOYG4wk5ehgaaHqquvSfR+hLfoyYWh9z8IXPX\nVvDgJ0sJEmdAr9JGLhZC5IsEi4QQQgghhEiwbc0P7nSWV//bG7kbPKebuWpby154xRT//jHXNTj8\ng/kbCJNjafGkwWPc7X3Phys8y8bHM7NsYg11qEg8wKv9Lmj4NcNt/TCvGx+Slllk2024pgP66Ygu\nnlGUlGhgHVROOeRJd03h7g8XE1RxtBlqz5kJ0a1IsEgIIYQQQoiEU+9xgzajduzB18u3sLGqni+W\nbG7bIEOg0LcbI8BnRccAsK3WKbdqNLPovOdyn0uWbHlfI5FZ9F1oVOZ4M1GGZnmCTOc9n3tcWynu\n3/iYkNMYvCiRWRSz7YZGd1j9YmsbH9QVJMrQAvh7ZwWxUueEEK1PgkVCCCGEEEIkzPGUk903eQln\n3/8FB/1jEuc9NJWLHvsKrTV1Ufch9kzjE14IXY+BTS+q+E3gJQ4xGshIOvNh2OlQZ3vH/TPP9xji\nfB2wOxx4Gez7Y7jiMzYb/VI5NMmYVUg1klkUbl5JmEo0zI6qMHXKH6xyl2j39CPa7QR3+9Bfwun3\nQ3HfZr1mi53/grv9m3nZxyTK0M4c1ROAaLxzBouG1ye+r/Y4tX0n0toSDa4zg0VxtCnBIiHaShdv\npS+EEEIIIUTTBOl3LAAAIABJREFUnbbvjrw+I3sGx6eLNjHs2rd9x+4I3Q/A94xv+VngLQ4yFvCr\nhl5g77Ohbgus/ByGjIG10/3nPSuecdJt/lOJcJHWmjBR9lWLG34zDTWl9paoJaRWQdM2K4LD2P3E\nq+G1KxMvrvzz2/U45+vYq2DqvU7j7H3Pa3g+rSFU5PQnanCMU4YWthOZRVbnLEP7QeVLzsZBl7Xv\nRFqbmT2zKEwMJWVoQrQZySwSQgghhBAioSi0fZ+lFlOfO3jTu8z5uuN+iQOJwIvWMHSsf+w+P8p6\nC62UMx6nS88/go/y79B9mQN3OdbdbmhVsnAJ7LCPs73HKUBiWXatMdBojFRGjo/yzL2zMENgBAjb\nTnPozppZlFK6Y3vPoHXlyCwqVBF0sKg9ZiREtySZRUIIIYQQQiSY2/lRapGKECNAKO0BF4BT7oKh\nB6ca96ZKtUoHwsZE6dQZD8Iux0BhnxyvoCCVWQRj1ILMIRdPcIJPt5RBtKrxSf+/SWBbYAZZdvep\nmJuXYdkapS0ngyiRkeOfRvIXKC1Y1FBgqr0pBaFiQtoJFsWsTh4sCnXxgEmuYBERIhIsEqLNSLBI\nCCGEEEKIBGM7gx7F1FGsMlcYc25qQrDA3R91Jtg2jDodln7sHCsdBMX9ct5fo1LdgjQ6+xpg4VIw\nA3DVF7BlaeOTNoOpkp94sJgAFlHLRmmNbeTILEplRXWygEuohJBVC0C0sweLunqT5xxlaEVEiIUl\nWCREW5EyNCGEEEIIIRKaGizaXa2kD24z7D8cuUP2gbudBEMO9B9TyuldZAbh5DudMrCdxma/3itZ\n+qXBzvZjfDKI0GsoDD+yCe/CMyUzSBCLSMxGYaOV4ZSqpSs7HHY7EU641dk/7New6/FOI+6OLFjE\nzitfpS8VnbYMrUonmo4XtXET8baWyCw6zJiLiUVfKthDraBQRQkVZAtgCiFag2QWCSGEEEIIkTBj\n1TYATCwszJzj3g2Po1y7q40V1G/MPvC8Zxt+wX67wI+ebnRe2luGlnPQ9gdBlBnEVBaRuJ1opK2y\nl6EFC+C859z90oHw4xcyx3U0mxcB8E3Blby7+Wj22KF5K8V1BHPsYRjK5mCji3/enwjYHmLO41f6\nZX5sTqKvcsoqQ4USLBKirXTxv2mEEEIIIYRouuI1n7K84HyWFFzICLWmwbH9lZtZxPQnW3lmyl0N\nzbIYYazLHNLQ6meNMMyAk1kUt1A6kVlU0HO779eRXfH0N+09he1iKgtLd6/Ht18GXksFigBKSrvm\n96QQHVH3+ttGCCGEEEKIBlxlvpHafvoHQa4yX+N44ytuDdxPCbXtNi/bsxoa0RxLxffbdbvvr8wg\nASzqk2VoGFDYe7vvJ/LPxCbeQLZbtxAsbO8ZCNFtSBmaEEIIIYQQCcWqPrW9g72Oa4JuidXhxauZ\nVDOM+61Tc99gxDGwZFIrzMzNLFL1lf5Tp90LlWtbdHfDDGFisaUmSr9kZlFXcvp98NqV7T2L7fbi\ntFXsipW9V1V3IsEiIdpMN//bRgghhBBCJC3a0ITl1rs4X+bGx7f4zu0QWcoFgUlMCf8q+8WBAjjk\n5+7+qDPyNi/tLUPTaV2LRp0OR/6hRfffFrUJYvH7F2dioCEZLBowCgbt1aJ7dwj7ns/yYT/y9Znq\nTP7w0qxEZlE3f3wLZumjJYRoFd38bxshhBBCCAEwce56jv33J7w1q2UZKh1ZNG5TNm4CT01dkXOM\n1ZIfjwt6pVZyouwIOPvx7b9XOk8Zmk5vZJ2tEXUzxbVJAIs12+qwbIu4TqwKd9XncMWUFt+/Iygp\nKiJEnN5F+V96fvXWWva/4X2Wllfn/d5JAWzJLJLMIiHaTDf/20YIIYQQQgAsXO9kFc1fV8lH321k\nYRfMMqqqjwHw19fmZD1fG40nVh1rpp0Pc76GS91gUQtWJsvOXQ2N9MyiPBg1tC9BZfHjg4aibZsN\nVdG8v0Z769ezhCAWF47dOe/3/seE+WypifLCtNV5v3fSHsZKDjbmt9r9O4U8BEaFEE0jwSIhhBBC\nCJFcrZovlmzmkse/5rh/f9K+E2oFdTErtV3v2U569suVaL0dwaL+u8ERv4PzngcjUcZmx7d3mln5\nwkPeYNGl7+fl/uGQs5La+m01mNjY2xM06+jMEEHi3PXh4rzf+p056wH46LuNeb+3w/k976nar8l6\nhyCZRUK0GQkWCSGEEEKIlOkrt7X3FFpNXdQNEG2pycycKetbTFhtR0ZN72FwzHXQbxcncAT+3kV5\nkdmz6Mv9boGhB+Xn9omMqCkL16PQ7LZDr/zctyMxggSVhSLfWV+uBa2UkafIfzZZp1TUr71nIES3\nIauhCSGEEEJ0Y799YQavTF/D0D5d/xP7Gk+wqKIuxo69/O/Z0pr9je3IOtGeLKXC3jA+x9L2LaBx\nexalvqo8Zv8kgkUBLAxsAoEuuET7Vw8AMESV5/W25VWRvN4vG0OCRY6SAe09AyG6DcksEkIIIYTo\nxl6ZvgaAVVvq2nkmrW/1VreEZ1ttLON83GreA7ne98eJjdbLVElRnsyiVOAgj8Ei02n6XGDYGGiU\n0QWDRXVbAdhJ5bdUbFtt6/d3+nXg5VZ/jQ7r//4A1yyDq6fnN0AqhGiQBIuEEEIIIbqxknD3STS/\na9Ki1Pb4N+ZmnI/baUGf/S/KeS9LK1TpIGcn/bpWoD3/b83MoiJd7QSLVBd8TDj2BgA26Z55va1K\n+314fcaavN4f4OrAa3m/Z6dx9F+gqA/0HdHeMxGiW+mC/woIIYQQQoimGtgjnPNcW2RMtJVPF5Wz\n39Deqf012zIzqXyZRSN/AKfeBWVHOPt7nwt9d0mdtjGcYwCjzmiVOXtpjIyeRelBihZZ9jEA1wWe\nwlA2yuiCjwm9ywCnpMu281fWlf7b8KvnZ1A2boKvR1ZLrPV8r9qhHnm5Z6ex1zntPQMhuq0u+K+A\nEEIIIYRoiUNH9AXgvIe+bOeZNE5rzUOfLGVDZX3OMTNWbePCR77if9NWUda3CIDzD94pY5wvs+j8\n/zlfL37L6UF05gNw9Tcw+iwgESzqP9I512+XjHvlnbcMLVX2lsdgUb+Rzr1RTn+crliGlnhPBjaz\n1uSvr1TIzP5Itcd17+bl/vPWVqa2je5WhnXWQ+09AyG6LQkWCSGEEEJ0E49OWUbZuAlU1jv9erbU\nRFlSXgPASLWKGeHLGMgW1icCL/PXVea8V3urjsTRWrN6ax3/eHs+lz05Leu4snETOP2ezwAoIMJL\ndZdyYtE8aiKZS9vH4k4Qpm70+blfOOA0xW7rpeV9Da5phTK0sVcBMNXekx3UFgYv64I9chKldQaa\nrVlWw9tetm7d5tOm4fl9LurTqq8lhBBJEiwSQgghhOgmnv1qJQDrK5xg0K0TF6TO/cR8j16qhi8P\n+4Zf9PmGkWpVu8yxKSpqY4z+20TumrSYjxY4zYpnrc7MFKlOCwgNU+vpZ2/mXvtGnvlyZaqcq7I+\nRnUkTrDOWSVLJ8qVskpk9RSq9ijRS2QW2a3Q4DpcCsCxxjeJO3fB1beUk1lkYhPMkQ20PfJY0ZaV\n4Q0WnXF/676YEEIkdJ+OhkIIIYQQ3VzyATmayKDxJqYM7VsCFcA3j3EmcGYYzh70TttPsglqok4Q\n6IkvlnPUyP45xzWWPbJ0Uw0j+pew9/j3KAya3L3PCgBUcb/cF818ttnzzQ+FgkS5XSv0LDJDABxi\nzgOgvngwBfm7e8eQ6MMUIE59bPv6Cf38mel8s2IrU/90TOqYlYgWHVjWm6+Xb00dH96vuAWTdWlv\n5lKvnfNyzw7v0F9C1fr2noUQ3ZpkFgkhhBBCdBPlVREAJs51HsIiMbdHzxEjemeM9z74diTJh/Mt\nNVGO3M0NFqU3FI5ZuVcpCxP1ja+LWWjLCUKpnQ7N53TzQitFbSTGwTdNYn1FrXMwn8GitHut3uvn\n+bt3R7HNyaz7ffBFrO0sHZswe12qTDMpGcwJBfyPVkfs2kDQcXuFivJ/z47ouBukX5EQ7UyCRUII\nIYQQ3YSVaOB894eLAdh3p17cHbyL5QXnY0x/vB1n1jzxHHU/b89e59uPWf5xAdzgUC+qicTtVP8m\ngLdnOqV3ZjCYr6nmkUoVnX0wb0PiUH77JlX028/dCZXm9d4dQrVTZjjWmO9f+a6FkoGnsr7FWY/n\nlZLHNyFE25C/bYQQQgghuokLxrolLIs3VrG+oo5TzKnbdS+tNVc98w0fLyzP1/SaLO7JGPI+9Kc/\nmqdnFg1UbqbUYLWJuqjFDW/OSx0LKCeYFAg0ECzq2wYrn2XlroY2on9x4kh+f5TvMWi4uxMI5/Xe\nHYLh/nr5Vr7bDt7vLcvWFFPHpXWP8e7PD2TZzSfSryRMA4ltzWN7e291s9XQhBDtRoJFQgghhBDd\nRHLVppJwgO/f8Qn3fLSkwfEKm+/WZ18RLRK3eXv2ei569Ku8z7Mx3oyhjYnSOsh8jI4mntYfv+RA\nfjhgHUOUG9jqqWqoicapqncfxIOJzCOV6N+T1RkPtGDm20/jvr9Uv+M8ZxapYGFqOxjqiNlVLeX+\nelkt7Ert/b7RGsYHnmD4wkfYfd3rKKUwDbDz1Pm675oP3Z1gNylDE0K0O2lwLYQQQgjRTSTLt3Yb\nVMo3K5wsm5V2f3YysmcHFRHx9TXyau3lwhvizQq55d3vUttG2segs1ZtA6Bf+ZfcVvk78MQ/Sqml\nLmoRDroXBUgEAMwGAiVDxmz/xFtgS20s1dA6Fk8EtfL9IuEeqc2Sgi7X3hp2OgSAafbInKWMTVVR\nF6NPsRNUtGzN2YFPnBOJ1fJMpfJXhua9T/o3uRBCtBL520YIIYQQopuwEhk53hIaQ2V5oD3yjwD8\nOfA0ATN7SMKbmWHbmjs/WJhqoN3avJlFFx3iltaFTNM3bnyixKy4dmXGPXqoWupiFrv0L0kdS2YW\nYXS8z1NtbaTK0JKr2eU7swjPKnAlhV0wWLSz07h8jLGwyT2LLFvzp1dns6S82nd87ba61LZRs8E9\nkegpZBgqb5lFuh0Ds0KI7kuCRUIIIYQQ3USfmsX8OvASs1ZXANCfrQxRm9wBu58MZz0CvcsAOD/w\nUc5yHe/xuWsrufODRfzyuW9bbe5e3p5FxWE3sJPZh0YzJfxLhn3+p9SRqpCzeloPaojb2hc4SzXA\nbiizqJ1oYLhax7jAc8QTq7blvdlxjyGpzXC4gVK8zkp5y9Cc3/cj/vUhv31hRs5LFqyv4tkvV/Lz\nZ6b7jq/YXJvaDm9d4LngHQBMI3+ZRbYVb3yQEELkmQSLhBBCCCG6iUsWXsWvA69QiLP093XBp/wD\nTrod9vqhr+wlV7mON1gUDDgP4Ztr2iazqLzaeR2l4N7JSzhYzSdInEjcDfxsrYnSmyp/MAxYHXUy\nia4JvkDcsonEbXYz1jCIzW6wyGgkWHTOk3DE7/P3hppAo+ivKrgi8CalNc6qbXnPLCod5G53wOyq\nfIlrg7itqYnEWbWljlemr0mde3PmWo7798eprKCVW5yg0Kottb5MoSmLy3k/sSqdpTzfL0smAYky\ntDxlFn26cGNe7iOEEM0hwSIhhBBCiG7C0E6GgokTVIl521ce+ks3WDBwFOA8VOcqpfFmTYQDTvlX\nfY7+Rvn2i2edDCatYQ+1gv+Fb+DawLO+LKHNNRGGqfUZ10ZNd3lzM1JBJG4zMfQHphZc7QkWNRIo\n2fM0OOavLX8jzeD9XbCsGNAKPYs2zne3u2iwKD5kLF/ZuxO3NN+tr3KPJ753fv2/GSzcUE19oi/U\ni9OcwFxN1KI2ZqXGvz17PZc9OQ0AS2X+WhmGyltfr37FHS/TTQjR9UmwSAghhBCim7BxgjqhRCPn\nGp3oS2ME4Ni/uwN33JdI0SA206NJmUVJK7fU8vCnS/MyV601ZeMmUDZuQsa5fdRilheczwFqAcU4\nvWNOMqdSF3Uf5utjttuDyGPoDm72jIpWE4m7YwLKckq7OmATYe0JDem4EyzKexmaZzW0vN+7gwis\nnsqh5jzqYhZn3fd56vim6ijgfl8nG7v/38j+qTG3TfSUm3lY6WsGfXQTH1Semrfysb7FXTNwJ4To\n2LrmvwJCCCGEECJDtdkTgEONuQDUEnZO9ByaUdIUKxxAtS6kJuI88L4wbRVl4ybw+ow1bK2JcveH\ni1NjvQ14b5ww39dTaHs1tFrVoYbTuPqx0L+wEz/ODlTbuHHCfMrGTUBrzcottQRU5sN67z59sQ+6\nAgAVq6VvlRsAuDrwWuMlaO3EGyxavylRWpfvMrS9zna3u2hmUVJNba1vf1O1v4QymTlXGHSbpj/+\n+fKM+ywpr2ZheZ3/4Me3ANA/sioPMwXLygx6CiFEa5NgkRBCCCFEN7G0cDQARxiz2V8txEgWN510\ne8bYTYGBjDDWcecHiwC45R1nifpfPT+D696Yy7NfruRQYw69qCI9rlNV3/KMiqin/1D6alDlOEGv\nHqqOSwNvZ1y7tTbGVc9Mz5pZpIJFqOH/52zH6zim/En/AKtt+i41V5Fy52VFnOCEas3Moi4eLOqz\ndSaDe7nvNxK3fA3akxlGt76XPZso6ZjbP+bxz7Jn0/WPrc7DTKG6PpqX+wghRHNIsEgIIYQQopuo\nMpJBlhpeCY/nsmSgZciBGWPLNrwPwPo1K1ixuYYCT4bFmzPXEiLGs6GbeDx0C/6OOs0LFj386VKW\nlldz16RFrKtwMzQmzFqX2vY2ri6vilCrw6n9mfaI1PZByum5M3P1NgAKyPKQHSxEBYsAUPFaQvGa\nJs+1PY0xFqa2gyRXQ8vzi3gzlUJFeb55BzF0LACVMZPisEmvIieTLBrXvDFzbWpYMlhUXuUPHhrY\nmGlBSIPsWXCF8aqsx5vrq2Wb83IfIYRoDgkWCSGEEEJ0F9p5yA2kZ9w0kEUSVlGOvHUya7b5S22S\nD8yjjRWk9/GtrI+xcENVxoN2urqoxY0T5nP07R9zx/sL+eVz36Z6FV3z8qzUOG9/pH+9+x1x3MDV\nT088zDNXp5dPRa3z9f7Qnc6JK93eNATCEHKaXJuxOpbUdL4l4oOJ8jrVmj/K9xjcevduT0deA4C2\nokTjNsUh53s/bvtLJy1bZ2S0AXwQ+j0zw5f5jiUbxqcbGl2SjxnnDEYJIURrkmCREEIIIUR3oZ2H\n2n0GFfiPm5l9evQJtwK5H1STJV4BrIwRD3+6lOP+/QlH3z6ZR6csY86aiiZNr7IuzsueZcyTvCuv\nRS2behIBnsLeDCpwH9TrtXN8Y1W9/wbePkSBglS51UdzVrBG92vS3DqSZGaRznfPIq8s3xNdgul8\nj9hWnGjcpiTsBItiaX22yqsj/OGlWRmXDzfWU6L8319GjmBRjcpPdtYuKvPPhBBCtLauXYwshBBC\nCCFcicyiATUL/cezZBap4r6Ap+QpjbcUJ32J8NdmOOU8VfVx/v6W04x6+T9PyriHlXadpTWLN1Zn\njNtYGWHv8e9x8aFlvD5jLUcmP+4MFsPWZalxQRUH7ZQOBbzzNj3vz7acgBHOqnChHO+vI0vOWbVG\nsOjiCVD+Xf7v21Ekv9ftOJG4zcCwk6UWjfu/F+/8YBGfLCxv4EaaZB1grmCR0vlpTB0sKIY4/gw5\nIYRoZZJZJIQQQgjRTahkqU3tptQxGzP7qlqJDIwwsdSh0rAbdPGWsmkNvakkvXeR1zG3T6Y+5n94\nTg8y2Vrz+ZJNpJs4dz3grkalUq+jwXLnN+7YYQBsq41RjCf7w/SUmn12Jxhm4j3ECXneX2fhvrdW\nCBaVHQ4H/r/837ejSASLdCOZRbG4f//+C/b37Rfillimsu9Gnekbo3TLVwUECOooUVUAA0fl5X5C\nCNEUEiwSQgghhOgG5qypYENFZjNnW5lZRpMKsHgzi6oicXYfVArAV+OOTB0PVK7m24IruNx8y3eL\n4f2LU9tLymt4cZp/KXE7bRk1rWHW6syStVsn+lekSgWLtIaI20Q4pJ3AT1V9nBI8PZa8ZWiDx6T2\nTWUTJoZlesryxjetZK49nRP4GIDPlkjj42ZLBAq1HSdi5e5Z5BU0FcePGuQ7dvOJO6W2TZW4dsxP\nne+f8RVECaUy+VoqqKPEjc7XW0sI0blJGZoQQgghRBdUURdjn+vf8x27JZCZ+WMGcvSmyRIsAnju\nsrGs3lqH0lvdoTXOymXHm9N40DoldTw9W6Oizp/FkxYrYtmmpq1MdmvwAWcjXgfTn0gdT2YJvTt3\nPbspT7DIu8T86fekskuCWIRUDCNUBHVpfY46gZpofjJXupVkGVois6g4kVkUjduYhmLkwFLmr6tM\nDS+llveK/o5at6PvNqfvXsKv394IeIKXhht41cogo/P7djrHficv9xFCiOaQzCIhhBBCiC7o3+8v\nzDiWyoDwULEcAZpksEg52RFD1Qb+uvM8eheH2GtIT7DcIJKdyNQJEud7u/XnZ/83nNP33ZHqen+g\nqSoS5+vlW/h8sVNqll6W1lT9VOJhvm6r73iQaGo7Vao1/HtQ0h/2u8DZ7z0s1bzZxCJEHBXsnMvE\n//CAIe09hc4nESxatdnJSBtuL+cY4xuqIxaWrdklsJGTjKmpysyxxjx2iK2Eyf/032eL2yvrzyeM\ndDY8QUkbAyse490561rvvQghRCuSYJEQQgghRBexcnMtJ9/9KZuqI6leLF65GvFmlWgCPUytZ2CP\nMK+E/salG26E2i1Ok+ity1NDtXKzkHoWBrn2xD0oLQhSG/UHgyIxm7Pv/4LzH/4SIHX+yqNGZJ3C\nMLWO/mxr8pRDVm1quzSZWfS9PzlfT7vHKRFSKpUBEsRyspESq6N1Nv1KCxofJPwSwaJkz62ff/cT\nHgndzpNfLAfgtk1Xck/ortTwVGadGaQk7CnZrHGbX4eST1Sekk4bg6q6KFc8PZ3FG53A1Htz13PO\n/V+g85RxJIQQrUmCRUIIIYQQXcRjny9jzppKxtz4AbOyLFffrGBRuASAm4KP8OlVo+mfzOb51zCY\n9Hd45qzUUDsRfAkRx0ikZFTWx4ikNQkOB/w/em6odLJ/DtipNy9dcUjq+LOXHczNJ+3MR+Hf8XXB\nVU2eckHVytR2cbJnUagkc2AiYGBiOQ28O2mwqCCUo9+UyC3xvWpiM1RtSB1esdkJNIa107ha206Q\nyA0WhZjz5/9z76NtrvnBbuy3Uy+G9018/3gyiyK28xoA9THn6+VPfcNXy7fwh5dmUVEb47rX52SU\nZmazSfdkev8ztuPNCiHE9pNgkRBCCCFEF9G7yG2Cm23Zb7M5wSJPkCUU9Zd78dmdvt1kpsQIYx0/\nX3E1AK/PWJtxy/Sl3n+cyDAqCpmMKevDrT/cmxtPH82hI/px3j59s07rih0XZx684GUAesx5ildC\n19GTau5NZoeEswWLnDK0ADZHmHNg/aysr9XRBU0JFjVbMrNIWZxmeJei92f7RBMlkskyTMwgxDx9\nsN76NVfNOINXrzoMUyV7FrmPVhZG6s/b81+vZH2F2xPrpW9Wc9o9U3jyixXcOznL93P6lLF8/ZCE\nEKItSLCoi9tUHeGbFVuaPL6iNsbabXWNDxTt5iePfsXPnprW3tMQQgjRAQ3tk5khs+SmE3ngwgMA\nOGa3fk2/mTfI8srlOYd9Y+/KL5+bntofUTsLbIvfHTsyY+x789antuckMp8uNt+lR3wzTLmTs0eV\ncMHYnZ0BM5/1XfvETw8C4Or445mTKN0RSndE2VH2NxYz1pjvnuuRpa9PImBwjDk981wnohofItKl\nsspsfh98MXU4TIyxxrzU/pzVzs/Pqcyimc/Bggn+e21LZLLpRBA2rWdRMpPv6akrOfLWj3yXLk9k\nMikU49+Yyz0f5Q4aBbDdxtxCCNFGJFjUxZ374FTOuq/ptdHH3/kJh/7zw1aelaisj1E2bgIvpC0h\n3BSfLCxn4twN290UVAghRNcVs7KsdmY4y34v/+dJFCWfN3fYF3bYp+Gbecu3Gsi8sTAw0rIyiEe4\nev8QxdQxTK1LPXAvLXebaZ989xR2UhsYH3yS0c8fBB/8Dd6+xllBauF7TqmbxxG79GPmdcdRXFSc\nOYk+w8F0H6bDeEp7jCw/7iayNMYYiSbgJYMyx3Q0R46DPU6FwQe4xxZPar/5dFaBMAAFnmboAIVE\neD50Y2o/GejxrQb4xtWZ96suh6pEEFRlzyw6YfSgjJLMpKCpePzz5dw6cUHW87atMbHQEiwSQrQx\nCRZ1cYs3VgNurXRj1lf6l42dunQzy5u4jK1oulVbnE+THp2yrJGRuX23vipf0xFCCNFFxLMEi3y0\nDQP3gp99DCN/4BwbdWb2sU0oe5mqR6PQmb2Q4vXwn735dsD1fBT+Hf8IPAJAQdD/o6dKDzLVbYWv\nH4Znz86cjqHoWRRMrdIGOA2rx1dAsMDN8gD6qMqM6/0vrGDEMe7+uc84X/c4teHr2tP3roUfPQWX\neT7UG7hn+82nswqXAp6eVglFRHz7yQCoL/CYzW27wITfOtueBteGEUitPlgYzP1nacKs7KulbauN\nMu7lWdz63gIC2MS0PLYJIdqW/K3TTWypjTY+KItzH5zKUbdNzu9kBNHEp0uGaloC+cbKeuqiFuVV\n7g8yspKGEEKIdHHbH7RR2HDX/jDtUeeAbbmZNgW9nK9lh+W+4UVvNvJ6GkWWoM+/hgEQqnQCOOf0\nnM+eO/SgKOTPjrBIf4jWsDpbqbXn/skH8n675ZxX38aCRQD9dnW3AwVwzTL44aONX9eRDD+qvWfQ\n+QTC2EaIElXPZMvNritU/mBRMivoz0F/OWSDPJlFA3oWcfLogew+qJStDfwcvjTHh7J3f7iY579e\nxX2Tl2BiMW1lZsN6IYRoTU0KFimlfqCUWqCUWqyUGtfAuLOUUlopNcZzbG+l1BdKqblKqdlKKVnj\ns41EPemulz3ReI+bl79ZnfOcBCbyK7nyhWk0HixavLGKg26axB7Xvcsr01dzqvEZhxmzqY7EG71W\nCCFE57cCVmtbAAAgAElEQVS5OkLZuAlMnLu+0bHezKKeVLOs4ALYsgTe+g289xdYNBHWzXQGHHQ5\nnHo3HHBJ7hv2zNLvJ+mCV9CJrjkZZWjpajZiaIstNf6H5oyMJK0hkhnoCROD96+D1d/A6q+cg0V9\n/IMueiu12ZfEPS79IPecYrXu9qDRzv3MYMPvo6MJZinJE43SoRJKqCPkyRoqTMss6qcq+GPguebd\n2PBmFpmETU2PgiAfLXCbzT972cFNupVlJ/9MaQLKRitpcC2EaFuNBouUUiZwD3ACsCdwnlIqI+dV\nKVUK/Ar40nMsADwNXKG1HgUcBY3lcop8sT0BnnnrGv+EbdbqbantDWnlaMOufbtJS3uKpnnmS+eT\nVqMJwaIz73VX6rj5ne+4K3QPz4RupqpegkVCCNEdLN/sZB7cN3lJo2OteIR91WJm/u04vj5wsv/k\n53f7980A7P+ThsvN0oMRBb3gnKfgwMtgl2MY2qcoexlaFidXv5hxLEB6/z0NC97OvNaYCp/9Bx4+\n2j34/fH+QcOOgPP+B8D5o4ucY4NG557Q9CcbnXOH19mCWx2EDhZSSIQiVZ8qa0wvQ7s+8DhXBhrO\nrMvQY7C7bZhgW6yrdMvdfnLIzhw6oh8P/2QMN5zufG/2Lmr49zAZiP3ZUbkz6YQQojU0JbPoIGCx\n1nqp1joKPA+clmXcDcAtgDfKcBwwS2s9E0BrvVlr3e268n6+eBNl4yawYnN+e//MXLWNsnETKBs3\ngbiV+UNac5OBjt3Tbe7obUCZ1JSlPUXTvD9vAwBNiBVRmSMolP7prBBCiK6pINHvJH1hgw2V9Vz3\n+hxfJnGPaf/ltfB1FG6cTigUosUKevj3T74D9jwVTroNgLK+xRywU6/cmUWeJtpXxJ9mtFoKwFOX\nOiubmelBphxNfG8P3Z95cKexmcdCieBW7Wbna6CBhPa9f5T7XGfRxHJ24afMIAFlUUwEigcAUJRW\nhlaqtmN14FCR90VAW6ze6t7nmh/sDsD39xzIhWN3pjQcYGttwx/GJgOqoZAEBoUQbaspwaLBgHfJ\nptWJYylKqf2BoVrrtPUkGQlopdREpdR0pdQ1LZptJ/XSdKe868tlTV/CvilOu+ez1PZXWe5ta80N\ngUdZEL4IgEi84Tid9vygt2B9ZibSAx8v3d6pijR7mStZXnA+o2n81/TIkf1T295Pbv/y2pxWmZsQ\nQoiOJVlKXpcIFn20YCNl4yZw8E2TePKLFYz8yzv8+dXZrKuow9i2AoDQY8dBZfbGuc0SLIQ/rYM/\nr4c/roDRZ/nPKwVaZ/YsSor5H7hHKudnokE9nCBORmbRovdaNt9ksGjlF+78cjk9SwBKdA9miCBx\nilU9lDjBopK0htcZ2XL7XtDwPb9/vX/fMMG22aGHG7AsCfuDoVWJlgJfh6/g7uBd2aea/DMiq6EJ\nIdpYixtcK6UM4A7gd1lOB4DDgR8nvp6hlDomfZBS6nKl1DSl1LTy8vL0051eIJE+4tYet9x3acGc\nbLe2tebCwAeElfOJxROfL2/wni9/s5rjja851/yQ8W/Ooy7a7ZLA2sxJhU6gZ/DaibwwbVWDY719\njQawNbUdNOXTRCGE6A7WVjhJ2ys21xK3bC557OuMMc98uZJDbv6QOXqYe3DRROfr/j+BPT1J4ee/\n0LwJhIqcoFFhrywnnX+LHrpwf/dQ7zI46k9O8+W0YFGcAKcYn9N7kVOSdlkg8TmjmYcsqObex5B1\nXrorwwwSxKJvMJoKFv39+wN8YwLpwaJj/upuH/Qz2Od8d3/sVXDARf7xygBtMbh3IQCTfndkxjx+\ne+xIAPqrSk4xp6aOxy071W7gaGOGc9CSdhBCiLbVlH8l1wBDPftDEseSSoHRwGSl1HJgLPBGosn1\nauATrfUmrXUt8Dbg+WnCobV+UGs9Rms9pn///umnO72FG5zl6699ZXbe7rm52l+C9PmSTRljvAui\nFFPXaJrrazPW8kDo3/wz+DAAe1z3bsaYdRXbkZIrMmyoc364DhPlmpdm8Ytnp+ccG7Ns9lOL6EUV\nvw28lDp+2l4Dcl4jhBCia3ovUcaci02WDxJOvRsGJ9YeGftzGHl8fidlRei73G0uzc6Hw1F/hEAh\nVPg/ENHA3aH/0u+D3wBwpjnFOXHus87cmkrl+BFWsi9EEygzyPG79yVs10Gx8+zRRzurjcV3PNAZ\n4w0WFfSCgp7u/on/gjPuc/fHXgWFvf0vkuhZdM+P9+eWs/ZiRP+SjHkM7BHOOr/fvziT16cv53Bj\nNveEEhlHc15u5rsUQoiWaUqw6GtgV6XUMKVUCDgXeCN5UmtdobXup7Uu01qXAVOBU7XW04CJwF5K\nqaJEs+sjgXl5fxcd3IxVbuNob1+BlkhfReveLE0vdZWbfv5A8A72HtwzY0yjr4NFALdnzjG3f9zs\ne4hMEZxPPpMrb7w1K3epQDQW49Xw33gidEtq1RmAL+csyGu2mhBCiI7vk4UNZ2AHMxpGJ/R3eqUw\nOOMzu5ZRCtbPhq8edI8lM3aWT8kYntGjKHWNCcf/w90fdQbssC/sdU728aPOzH2f5tj9ZBjatNWp\nOpSBo6GwT+PjRHZmEKI1YMdTmUXUbAQgUOT8vLxrf09z94Mub7j/VbYgZaJn0YDSAn504E5ZLysO\nZf9+fW3GWn4TeImnQze7ByPVuV9fCCFaQaPBIq11HPgFTuBnPvCC1nquUurvSqlTG7l2K06J2tfA\nDGB6lr5G3UpdLD+lXcmVzi46ZOecY7Qn9ftwcy6xtMDCys213PzOfGJZmmMnPRi8g5dD41P7tVKa\n1mJxyyaG88PBSGN16niuwM8PV98CwD7GUn4UmJw6rqwI+9/wfutNVAghRIfz/Nf+TJ0bThvF6MFu\nE2ozV7Bo5HFw7WrY64f5ndDiLEvTJ7N+olUZp7xNhG8+cy/3hBF0Ak9/2Qh/2wZnPQr/7wM49Ors\nr5utuTX4g0V7nd3Y7OGcJ+HiTvij6ZWfwR+XtfcsOq/VX8OKRDAzkVmUWh2vci3gtpFwdkJu/6te\nWQI/2ValWzMNlnwI43tCbaK36Fu/dfbH94Rln3Dyq3tynJFZVgowXKV9kLjXWVnHCSFEa2lSsbbW\n+m2t9Uit9Qit9T8Sx67TWr+RZexRiayi5P7TWutRWuvRWutu2eD60L7V3Ba8nyBxXp+xpvELmsC2\nYTDlXP/tYSwvOJ8QsYwV0Wzl/4frl89969u/YcI8Hvh4KYs2VKO1ZkfcUrZgIpvoGPNb9jGW+lNx\nRYv8853vOMH4CoCtujR1/NaJC7KOPzvwSdbjA9hKRV2swWCfEEKIrq1fSTjV9wQayCwCCJfmPpdP\nKnd2z9ghbtnNeR8e4Z5IZmYEws5DuWE4D+ABT5nOyBOcrzvsA2Mubfy1q9Y3PlfDlOXnu7twqT9r\nqDz585jnQ7ySxIrB/+9D5790diMfpq6dDnNfg2mPuMfevRaAY41vmjbPY/7WtHFCCJEn0tmvlWmt\n+U3dPfzQ/IQjjFlc9/rcvNw3bts8E7optb+PWkJtWtaSzuhboInGbR6dsoyYZTN7tVObrRRMW7GV\nx0L/So3sSY3vyp+a70CulU5Ek2mteXjKMo42nWaFJjYHqAUMURu5/+PMUsKG/DLwKgA/fujLvM9T\nCCFEx3K88RVhohnHexQGOXr3gSz/50lAlsyi42/KuKb1JX5eOPe5jDMnly5yd+rdMv2cvYa8D/Fn\nPgj7XQgXvZm7ObX3PsGi7GOE8AoV+79XDv+187X8O/fY3olyyCEHQImnv+pVX8Ihv3BL2XJ5+TJ4\nMa0B9gZnsZMqsn+fZvwc39DKfkII0QokWNSKNldHGHbt25hxJ/BSpjbQtzg/q31YtqbMcJtcKjQ6\nLcEkWaqWdJwxjUemLOPvb83jic+XpzJSYpZNeVWEd+0DU2MHqq2+a/8afIZRakVe5t6dVdT5m4xb\nGLwcvp4p4V9z3kFDs14T09k/of1W7wrAV8u35HeSQgghOoxXv13NvmoxD4Tu5LrAU2lnNf3Dbl/B\nf5wx2lkKPOnP6+GQZjSNzhcrEdTa/UQYX+H817sMACOSWZoGgJkjWBTy9I0p6AGn/dffaDid7fl3\nNthAjxnRvSUbvgOESv3fZ8VZAj+B7I2oGbC702ursUDOkANzntpJ+ZvWV9XLqmdCiI5BgkWt6Lb3\nFgKwv7EYgOuCTzGmrDczV23LCBo0V+GW+b79nqoGKy04ZKelxA5UW9lU7fQKqKqPp4JF0biNaSjm\n2W7/o2xlZ8+HbgCgOhLPONfdWLbmprfn8+q3qxsf7LG5xvkB+hPL6dOgGsnWisZtZnuXQfZYq/s2\n67WFEEJ0LtWROL/530x6KOdDp6Fqo+/85eZbjHxkN6h2jvcuCnFFILEq2fgKZ7n79lBfmXnsVzOd\n7I2aHA26wz2yH2/uewh4x0smhsjhSE9nDMP0Zxa1xp+bgaNynvq+6W8T8d36HAFVIYRoYxIsakXZ\nVj7bWhvjtHs+49wHp7bo3sVb/cGiB4L/zmiQbNv+1/f2NVq2qSY1PmrZmErx1+DTqbFnm5mrnpUq\np2H2AvlHjP9MWsT/Z++8w+Smrj78SpqyzeveK24YV2yKMdX0XoIJxRAIoXcI8OFQgkMJkNASSkJJ\nQjMdAwZjDAZsA8aAccG44Lruvex66xTp+0OakTSjmZ2xt3rP+zz7jHTvlXR3VzMj/XTO7zw/fQW3\nvDUvq+22lZpi0Yjc1QDxdDSAHWXJAuLijSUE8RYWT++3+94Tk+Zv4PZ35vG3TxfTY8xEflplR5KV\nVIYZO2EBJXvpk62xExZwzWsZ+gMIgiDUE9OXbGHgvZMBeND3XwAKAgpdlC3MDV7BZ4HbudNvpXk9\n2gfGNmdo8Rd1P9Fbf4Wb57vbnFEaLhTY7pFy3e80aN3LexNfljfuzdrby5KGJqTCaYSuqBBwnCup\nooj2hFDmlcxa5gU4Tf2OU7Qf4m3h89+q+TkJgiBUg4hFtUj31skXKfNWmmaLizaU8Nhnv2IYu+cD\nFPK5hQJVMZLSzozE6mdGe17+zkwlmzBvfTwSKRZZ1EWxDa4v8X3OGwclX9B1YBuVNVTRrTHjLF2c\nzd/j+enm39QfKk7q21mR7EUR1Y2UYtHhXXM4oX97+nXIXjS6Ztxs3vlpLc9ONedz0Yu279GHc9bx\n0owiXpy+Iuv9NgZemlHEpF8yMD0VBEGoRy7+r32j2FU1v3OGRX/mKu0jWihl9FWTC2Z0nFIPKWfN\nOiRXh0plpB0u827vdUzq/afyJkrHpZPMsvInPpj9tkLTwOlt1W0E+J3pji1q9ljNOsK2Zfb6jXNT\nDt1VGcYwDJ4OPOVq97ftU7NzEgRByAARi2oJwzB4/HMzDc3It59yjdK+ji8/9eUynvpyWdK26fZ5\nwfMz+WLRJkKa+aSttOcp8X5nZFFxeZi3fixybd9acYeFx7SlcNTA8EiHGjH/nqS2ScE/satS0tDm\nrrFNOR9NUcXMiymLNjNMWeLZt2XlfF7/frWrrTKsJ4tFvY83DT93rMTvUwnVQDU057kTW965h6mS\nDRFnBJUgCEJjpKXSQKN7m3Xa/W1rOpKj+6FmWfm8VjW7X2HvwSkW+QIQst5XB19lRhrVBEN/Z3oV\n+XJguaOCWitvewEwI9DDUY8HyakM4AVBEGoREYtqiSpHCppi2JEnI1X304RXvivKaH93fzCfQWM/\n47sV27js5Vl886sZGbFr2NXxMRHry6UqEmXIfZ8xYa7bT+dh/4uecwxF9Pi21dFSKU2KYGqKnDHE\nvijORlQppJTxwbGefTf5xnPn++5Q/spIlICSsP+L3oVIJcx7g/0q5mb8v0tH2JGymB80L0im/prC\nV6IRM+pfM+p7CoIgCHvEaVoDrYDZc6S93GFQ9eNvdTw4cVadEoS6IFF82WDZCjTrAHoNPRQ982m4\nfArsWJnc136g5yYjH53Kiq0eKWuav2bmJAiCkAUiFtUSFaEoI9U5FOWMhnI7vWuL4Q5t3VqanHrk\nJBzVuev9+bw2c7XLWHrJ+m0AqD77y+M5K8Vpw06zEopqRQut7na2576PVOfxTmAs0VAlEWfKmj+V\n14BJojdSU6RVfiBe+KJX24KMtimtitBJSV257HjV9NGJOCKFqhIji466w7XN9WtuYfX2cnqMmUiP\nMRNZvqV0t/4/Tv2vlVWxb/X28qz3IwiCIOw+b/24ml53fhIvQJERZ78IgYTvoX6n1ezEMuH0J+H6\nWXDNDDOiojqcN7/yEEqoa1JF6oTLIb9t7R33lgXm60XjU6ajXf/6nORGrWaqKQuCIGSDiEW1REU4\nyt/8LyS1N1fKuFibTA9lQ7zt5RlFKffzyfwNjEtITQLwY0Yrqb4ga4O9AVi/3XwSMWb8z4BdaUtx\nlPMMEuJSbRIqOo/6n+MgdQlK+VaiIYcwYJW3TYVEFoFatomPgn/mXt/LRPXMLurLqiIUkFqAeTFq\nphRuKLbLHldFom6xKNEXAhik2N5Cxz42jcc/zzwtzovGXO3uh5Xb+fc0D/NUQRCEBs72shB3vDef\nqG5Qkk0acPPOcP2P7rbCzjU7uUzwBaFNH7PqU3VlxMG8+b10ErTZF0b+qfbnJwhOnAbXTg6/Jfn8\nvWh8zR23eRfztVl7aLUPRl4bj0GShiYIQsNAxKJaojwUZbHeNam9v1LEff6Xecz/73hbulS0Vy1D\n6kT8mDf0qi9AzgEXAHDyvs0BmLnCjF6JRRZta2GHut7kG8+9/lc5Tf2Odorpu1NaUUGHNZPsned6\nGPt1GBxfFLEIzloyhoEs41LfZKIZpoGVVkXoGIssumo69Dza1R8T9/ya/basqIoQJExV18NBC0Lf\nk5L2+1Hwbtf6V4vTp48VbfU2GC0PmefUTW+mNl5s6Jz73Hc8PEnSGQRBaHw88bmdluWM9r39hL7m\nQtdDvDf05UBhJxjrKJyQ6ka4vtnnSHtZC5jeQtf/AMHMInQFocaIReq06mm+nvoYtO2XXMkvrw30\nPrZmjnndj0lNyuBzk9qOUn9O3lbEIkEQ6gERi2qJynCUn3TrAu/PO2BsMVUdD6KnanoN7a8s49h+\n7QA4dVDHlPuZ5WHIe/GI7nGxqGWzAoLBHLNDd6e0qZgRLzsMuypJc0yhoFCxI1xemPorWshhmOlP\nKFPb+UAYZfsd1YCfcqOnh25He/XbNCGjbcqqIjwVeNpcyWkBF3/g6m9mRR1FHJFKu8orUBXDvMC+\nZzPkez2BcrOtrCpt/8hHp3q2X/D8zGr33VjY3SqDgiAI9cWrM+2HQxHd4MQBZnGMq4+wIkpTVQzz\n5djLx99vLWQQ2VMfXPKRvSweLEJ9oliCakyEOehyuM7yA6vpa4hDrjVfva7hEsQpPxEUPC60JQ1N\nEIR6QMSiWmLjjl3c4n/PXImVfW0/IN6vKQY3bv0LuX6NXzft4uR/fM2uyjCbd1V67M3anO0U5Yzm\nvjmHMUA1LypVnx/Vb10oRkyxKI9KinJGMzk4BoCD9mlDVafhAFzo+wKAB/z/i+83QIQ5axyV0rYu\nNV877m++blvqKiOqpCp9C1z16iwe+2zP0qAaAyHsi9z2uxZktE1ZlW107lX55ejuZlvMc2jS/A08\nO9nMW/cHcpLGO9FU+8ZgU0l6sQjgZt+7vBe4l0f9/6YoZzSHqfOZt9Z8Kt1LWceS4O/orjTe8vLF\naVI4HvX/m6f9/6jD2QiCIGSHrhu0yA3QrlkQ7UHzwRLrZnkP9ju+HzJJ/6pvgoXma2OYq7D34rPE\nl2YdUvcBFLRP7s+W4++HWxZ6V+dL8BvLIcR2o9A95o+L3XMSBEGoI0QsyoJFG0p46JNFKaMWxk5Y\nwD+/WEpVJMr/vfZ1Ur+vVXfX+pDSr+nsK2bygk0s2lDCFa/M4uAHv2DmCtO8+qvFm13jz9Omxpcv\n81lpY1oAxXraYERD6LrBPgk3+fk5foLrU1dP8RNh+XaHwLDTerpZusk6RtDMrbbIKXVXWVu9zTRY\n/nDuOiYv2MRTXy5Leay9gbKqCBOjw+Pr6/P2y3i7OLGLk3P+C/nmjUC3dR/TQ9lAOGpw74e/cM24\n2bSySiSrWkL48VXTYfQ7ACzTO3HTsX1c3dWZXN/sG88B6lLO0aYD8H++twCzMt5N7eYSUKJc23p2\nRr9XQyJgpfDtKE8tFp2jTW+41YQEQRCASb9soH35Ej4IX2M3Lv0MOg1NHqw5Hz7EBJgGHF151TTz\nu08Q6pNWPeH0f8Ioj3Oxw2A49XE48a9w0Xt7fizNZ3qLeeFzPwwMEI5nD5DbEn73ARSmzkAQBEGo\nTUQsyoJrx83muekrWL4luaTl/LXFvDSjiMc/X8KY9+aTS3J0h5bXMqntAZ6NL8e8hs5/fiY9xkxk\nU4kZZTRYWc5R6jz+6H83eVKaH9VvikXlZWV8vmgTBVS4hijVeBf4iaA7Q9bPfcV8Pe1J17iKfqMA\neO6LBUz91RayTn/6G6Bxe91kyootpSzeuCtuMA6g6Okr2sUoC3kYRw8cBbcvheamv9X4wL18sWgT\nL1teVflYkWaxnPoYHYdA3xNY0vxQVHTahtZS9PCp8e6qSJRsCFgXJmVVEQyrGl4Lw442e+arZfQY\nM5Ff1jk8MUrWw/YVNCis01gq9gmC0Jj56yeL+eOKy+iE46HRBW/BWf9OHuys3DTot9CmLxx8Ze1P\ncndp1dP87suGAy+DY+6pnfkITZcDLoECj8pnigIHXQYjrqt9oWbhh67Vc7Vptr/lua9Ar6M9NhIE\nQagbxC0tQ6Yt2cJKyxj4ohd/YESv1sxbs5MVW8u44OCuHLefHXnz/px19FI8BASP/PyBxpLkcRZj\nxs/nZPV7/hVIkzKjBfCtMb1mfLOep6L7P/lf4G/uMYoK3Q6F1TM8d/HmH4Zy50t2dTb6n2kaZYas\ndLNB5wBQNfh35C5+j3ylko/mbWDkvmZETH5AS5v2szdxzGPTAHjMHyKq5aJFKzAyrIZWUW56ElXs\nexa5iZ1t94XiNbRSSnnIYdCcr1hiUbBZ4hYABHIK6KFupOf3Z8HJtpCzbkcFfdp7b+NFx2Y+2Gaa\nlxfr5uxaRLbG+/8+2UwtvP712Uy93bpwefl0KN0Cf0qu1ldfhCLm/yKVCXtB0P7IMwzDVSlQEASh\nPikI+tJXo9w3ocCB09A6RrP2yZXR9gZOe7y+ZyAItUN39/X5Hf437b5goccGgiAIdYdEFmXIJf/9\nIb68saSS9+esY4UlHr3xwxoSAxnikUXOUOvW7lQhgALKOVydn/K4vZT16Sem+lFCZgRIB2UHEd0g\nT0mIaoqG4Og7U+5C0cNEDetUuHKq3RHIhztWwQkPmOM0M0LJR5RKR+RKwNf0TqMcQuj+PAAUPbNS\n849NMM8hpevByZ3LpsQXNUfUUsz0OjGnPUb3ts3tlX8OoyhnNIeoC7ny1Z8ymlMM1TB/B92AhdtM\nwWV41QwMw4iLpElsWwZVHjcrDYBIigp1YYc7u3hgC4LQkIjqBt1b59X3NARBqEsG/TZ1n6MSsSAI\nQn3Q9O7yd4PiNP4nMSIJJcKCWNs4jKFTlYbtmUYQOlNLjgaKFnazVzQ/HHYTABOiI/jLRx5my7s2\nJpcCdaDqYXyKJVDktXZ35raIl+CN+eaoGFSGbEEjnGHp+L2JU7Uf8Fea3lKG4U75WrppV5KvVVUk\nSr5ipgcGChL+xgnEzx0caWgpIosUp+Hh9uUAXKB9mVLgmbM6uboeQGG5GR20dkc5naJr4u37/OkT\njnZUTyvaVp64aYMkVWSRsxx1qjGCIAj1QdQw2FGWQVrzNTPg0km1PyFBEGofNU2Shyq3aYIg1C/y\nKZQB5eHqI0fKQ1F6Kutpi3kzfoBqpZc5q14lCjb7XwhAIeUcqc7juqO68/5pKrPuPo5mOeaXRx91\nnXub815D6z3SXlcU1IAV4YJB5xZJCU4QKgW/R7uFqodsDx41dSnbmPeRis4XDvPtpu4PM3fVNm58\nYw7rdlbw5JQlHP/EdJ6f7vby2Vkejgs/ak76sOK4sSHVp6F5XWQoaYxN1+2soBUlnn0qOjsrwtzo\n+yDl9s0pha/+Ct8/l3JMQyDVORnUbT+vJn7aCkLWrNtZwe3vzHNF6Ak1h64bmX2fth9gpq4IgtD4\nqcZXVBAEoT4Rz6IMiPmgpOPWd+ZRlHMbAD0qX+dO/xtmR8VOe1BiKpEVdXSz7z18ig7b58L3k6Hb\nZ9x4TB8e/GRR8oH2Ox2Wf+Vqiok4PqIs3rgLEqusdzkIlNRfRko0bKc+pXnCoTnEIoC3flzNnNU7\nObpfW974YY1rrK4bqGrT8IPRMJgwbz0T5tkRYg9NWsxVR/WKr+8oD9HMiizyjDDrc4JZ6QbbbHpI\n1xYMCauwk9RikYcPlo/U5taqojA752rPvlt9b+NTD4mvbzJaJI2Zl3MlTEu5+wZDNEXU0G2+t+PL\nElkkCNlx2MNfAnD2sC6M6JU+QlLInqhhpJb6h11Sl1MRBKGuSHXdffLfvNsFQRDqEIksyoAqSyy6\nUvuIopzR+OKRHwZFOaO5zfcWndkSH3+r44YUxfEnThKLTL8Zn2KJUUsnm6/FawhFdQIkpL8NGW2+\nxkrax7C+aDRFp79SlPwL9Dg8bRoaXz9mRxYllmh3EBOlNEssuuO9+bz54xqXaXCMf01bnvp4jZRY\nallOQqW7mHiWSGXYFm12VUbIj1Wp8/IfuuAtOOVRwIwsOqZ3IR9uOYXflr5uCn2+RAUwdvDkv30/\nZbVrvq7hafS7Y9S5jTraZtlmu0rh018u8xwzQl0YXxatSBB2j9yAPAmvaQzDwDCgTzuP74erv4HT\n0xS6EASh8ZJKLMpp7t0uCIJQh4hYlAFVYZ2rtQnxaKFBykqmBW5mQuBuAK73fchg1U47usGZxuNM\nQ3MuA6gqYcPjovu9yzhw2VO0oNTdfupj5uvmhe52xRZxjlJ/9v4lmneGk//u3bdlEX0VKzIoTRqa\nqonlX/AAACAASURBVMUiiwz272pHnbzw9cr48mXaRI5S58WrZ9UHJZVhvlq82VMs2RNCVupFy9j/\nxSr9myqSZ1NJZXy5IhSlICYWeVW3UNX4+dFV2cIRFVb0WKQCjKhZxtVzUsneRD3VjQBUhpNFrHTV\nvzorW6moCjMlOhSAlYa7XGyfdgUU+fZJuX19c9zj0zhSncel2iS+dKRJxli3s8Il7ElkkSBkzswV\n2+LLmUTbCtkRSz8b3WULPw/7mAd9/2F6dJDZ2WFQ6u8AQRAaN06x6Mxn7OVUDwkFQRDqEBGLMmBT\nSSVjHKUs3w/eS3d1M4NVWyQJJkYBxehxhL2sKHD4LeC3onzClfgVb6Fh+LqXGKo6oiPO+hdY3kRE\nE45lfdH0UtbTXEkQmJwcdLlZdeE3zyd1ne+bai5ogaS++GGsyKJj1DlUhmxfnSAh3gvcS0tKuMc/\njpcDj6SeQx3wjylLufSlH1myKc3fYjcIRXT2VVZzpe9js2HfUwBQFfvG6bj92seXN++yI5AqwlEO\nUJeaKymMzln8CQB/8r/Opdsey2xSu0xhiGPuSegwKLf+R7puEI7qPPDxQq5KrJJ22zLodxoAhUo5\n14/7EZ8lqDjP6b7KGk4Of+4djlPPoktVJEqPMRMBeCXwCPf6X/Ucd9jDX8aj4kDEIkHIlOtfn835\nz8+Mr+8oz8CEWciKWOrseXN/T+HC17nQ9wVHavMBEYkEYa/G6Vk09CJ7ecO8up+LIAhCAiIWZcBf\n3v6m2jFBxUMsGv0O+BLEl+PGQp/jzOX2/dPu87nAE/bK/qPt5YgVsdL3ZPPV+qK5wvcJV8eEDC9U\nFUa9CEPOSz0mcb6uzc3jnOubxqEVX8bbvwneyAHqUuak8MKpa35ea/pE1fQNTUU4yuTgGC71WemC\n/jyiaC4B4rj92tnjrYpxU3/dzBeLNnGx73OzwysNDWBf8/85S++LbmR4g2BVQKPdfjDWLmMfIMKX\nizezsbiSnnd+Qp+7JvHiNyvd2+a1gYK2cP44fup9A2BGjeVZptrONMjPgnfwx4qn6BEtSp7Dkk8z\nm2stMXf1zuoHWWiOKLDGnHInCHXFuO9X8fHPG1xtt70jNzE1jZ4yWEs+qARhryYWWZSYjtb/zLqf\niyAIQgIiFmVAnxbV37gH8RAmWvX0HhxrL+yc3FfYJbnt0oSb8U7DzNezrYpUXpUUghnkOrfsAffu\nNP0QMkB1+BkVlK2NL7dVvKtr1ReaZcyj17AaUF6VEAWWU4ihqC6xyK+pcV+gWKrG7//3IxNmOTyc\nUvlHWWLR5b5JqEqGc49dTOS5zWYv1yZy+7s/s3lXpcdGFm37xRd/Wm0KTQoGuZYnUyyyaNqVvdPP\noWR9+v5apiKc2tA7EZ/jf1XTaYqCsDeieqQ/7aqsvkKokB1Rw+AE9cf6noYgCHVN7Bq+2wjzVbMs\nKzrtXz/zEQRBcCDV0NLw2YKNDOvekjMGtoJq9JT9VQ9D51Tl6o++C/Y5Erod4m6/bAq07gXrZ8Nr\no+z2xFLrZz8PWxbb5neOSmdTo0MYqc2DG+dAVTFEU1zUX/6lKRYpCjTr6D0mEcdNQ75SkWagycL1\nJQR8Cr3bpajkVUvEbm5qWgooDyWIEl0PwWeEuUr7mN7KetYZrRn10WeMCsJbkZG88UM7jutvpqU1\no9zeLpX3RJoUwJQcfZeZ6phwLv2f/22ejZ6VlCFW6PTBOvbP8cUj+7aHXyCHEIPUIgB6q+sZ63uJ\n7q98ln4OeuZiTW2Qyj9l9bZyurbKdfk0dVVtI3qJLBKE6unaMq++p9AkiOoGzzujiWN0GFz3kxEE\noe4I5JsPhdsPMNdvmgdlW9JvIwiCUEdIZFEKqiJRrnz1Jy54fiahivJqxw9VLD+aKxxl7Qs7eQ/W\n/NDrmOT2rgdBXivofRwccq3dnlg2PbeFWxxwRBa1VXZS3GYY5Lc2I5ja9vWeQ5cDzDHgrtiWDsdx\nuivJBsKJnPLPrznu8em1GsGxsbiSdTtN4cowDD6ZvyFuFFrTnjTrdyYIZFaklaoYHK/9xO99tqhy\nnm8qXzhMlnOVDFLiEg3QY4z8U+ptND/0PtazKz+gJf0NztUcde87D4sv9utkGpYPjfkqWTh/p1QY\nbfpUO6Y2GT97nWf7kX//ipdnFKXc7v053tsJgmCTppi7UIOkjIRt0a1uJyIIQt3TfYT9YLiwI3QU\nkVgQhIaBiEUpiEUrLN1cypsz7MpePxUc5Tl+H9UqZ995GLTqBcMu3rPqJU4BJ79d6nFgh6wCA9RV\nRP0p0pxS4ZXG5jkne1yOV9pdCiK1GMJxyENfcNjDXxKK6Pxr2nKuHTeb71duB0zfZcMwWLi+pEaq\n93y5eFNW44cri+LLeVZql3HuK6k30FKIRT0Oz/ygnWwB6Lj+7ZOiZwynWarmqHxnnW+VpJhDGqKZ\n+ivVAp/M38CnCzam7P966daUffd/vJBwVKo6CUI6JAKvbrjnw1+8Oyp21O1EBEEQBEEQLEQsSoFT\nXHCaVw/q3t5ruJsbZ8MZT+3ZBCos095THwN/NeUzNR/0Pyu+2mrD19kdS8lULLJPl5j5cffWed7e\nSw4i0dq/2+h79yT+9umvrjYDM+rklH9+zUn/mL7HxxjcITkdY0ebYR4jTQ7oaGd55mF6Bymp/IrA\nNCD3ormHj1UqrrQj28qqoklRXXqqyjrW/zZiZPaRsEzvxKiqewH4fnl2IlpNcu242Z7tbTA9mKrz\nM6rMwu9IEJoiXpGh/TrUbWpxUyDRRDzOgN/U7UQEQRAEQRAsRCxKQdghcByl/hxf9gdT+BAB9By5\nG0eybt5vSLjpNaybWF+a4zlp3Ws3jm2RaWSRY1yeUsn4wJ+ZVnYWDLkgaWhHtsWXw6nLvNQqqgJf\nLzXzvldsKeOA+z9n+Rbbs+eF6Sv40/j5LN20i753T2L26vRPcLVomb3SYRAAgbwWKceHAi3jy3mK\nGVlENlFfN8yGq6ab3lLZsP+FAHz162bO+fd3rq5oqre8JRb5FPN/VTUw+X/qpJRcopjnQ9GWXdnN\nrw5oo5hiUXVRbZVhiSwSBMMweOarZWzZVeXRZ74+fPYgPr7hcPp1aEa7wmoeYAg1x0GX1/cMBEEQ\nBEFooohYlAJnesrVvo/iy0okTXWpFt2zP9CNs+GYezzEnlgESIZROYf/Mftjxw+VfRraFqMlw9Rl\n5src15OG3uV/Lb5cm5FFHTxuWlqwizPVb4jqBgM721XhtpWF+OvERbz701quHfcTD36yiDd+WM0X\nizcTiuh8NC99VS81YnoWRfPbw+8+NBsT/KTKTngsvqxVmuLTmeo33OWz/h7pIouc9D/LPCc6Dsls\nvBPrPDQSjKe7KZu4sqOHETvEo5oGKCsBCLZOfy6XGTlx4cmvNJzonFgaXSzyrboEuZCkoQkCC9aX\n8PfJv3LTm3OS+mKeRft1LGRg5+aUhSLMqUZYF7LnmqP2MRcOvhIGn2937Ek6uyAIgiAIwh4gYlEK\nqiI6LdhFgDALdceN889vpd4oVJq6LxWtesKRtyW3H3ipmd7V44jM9hMsgE5DzeV+p2U3h4w9i+zT\nJej0LNqVLLKoDpErUs0Nua4bTFm4abeMsMuqkqu9/cP/DP8IPMuihfOSSjx/sXgzt70zj0/m2z43\n42evBWD26p1pj+WLmJFF5Uc/EDcH9+e5K9XlN7MjjS4veZrLX/6RfwSeZT91jdmYqVjk9BPKFqsK\nXwGmuNVD2UAntjI9eAtdtlpl/fqe5N7G+t/e4x9nruc0d/e3dptYPxc9LS4W9WvVcD5GdEvQ9GEK\nWM77rB6tk9MIa9N8XRAaC5pqvlG8IotigaGKYq6Ub9+Y9Lkq7DnRsPU3zW8Hpz5av5MRBEEQBEFA\nxKKUhKsqmJtzFUtyLqG/uiqzjULVV03LmK4Hwx8XQsssopViN76H3ZTdsWIiUC/vqlpxHJ46BUpF\nmoHudKeD/2qaUKeq9vLyd0Vc/sos3ktR1SoVhmGwy0MsaqeYT70n/LCUp75cmtSfyJJNpsg3b83O\nuIdNZTjK2c9+63qCroat/2/AFh0CeQmiit/uK6YZUxZtTtmflvnvZDbOi6oSAG71vU0bipkavJUZ\nOTe6x5z8iHt90cfudadYdPEEuGFWfHVy9ECm60M4ZYjppTT4ew+xs56IiUV+Syxy3tR6nX6iFQkC\n5PrN982WUo80NOtVVRSY9jA/5VxDW9IL60J2rN9ZweRfrO8/Vc082lcQBEEQBKEWEbEoBU9N8jbO\nTesh5AvUzmSyJdNIoRiKAjfOgfNeq2acQywivVh0ujbTtb5uZwWbPZ5aA/zlo4UAFG0t8+xPxaIN\n1XvlZFvJp989n/L9im38unEXs1fv5IpXZrG1tIplm0tpVTQRAMX5f96WkNblC8D5ZlreZ76RyQeo\nLrIoW6HPixIz0utEbRYtlBR/Iy3hXF33k3vdKRb1NCsA3h++CAAFg8IcH6cO6brnc61hYj5KfsUU\niRasL6HHGPP/pnsoQyIWCYL93thZHk7ZpyjANFNkbqGUpi71LmTNoQ9/yeYS62GEotnf4YGC+puU\nIAiCIAhNHhGLHCzbXMqtb88jHNWZsyJFhaerv0m9g5F31s7EMsVn+fdEvEWZtLTq6YqY8cTxtLOv\nml0UEFBt+fqnv1rG/R8vzHh/v6wrznoOmXDe8zNZtd28cN9aGuLAB6Zw3OPTOGzzGwAYFSX24CWT\n3BurfuhzAgBa1MPfqjqx6Kg7dnvecSxRT0MnQIp0kUSx6PpZ7nWPCnxrjLbm7oFmOX5UzSFKfvNk\nXKSqS04f0ol92uTzyh8OBqC5bkY8+Dx+72RhyIj7sQhCU8YppP660S0wx1I1FYcDmIrOtrIQQs3h\nw/p+VH3gC8JpT8I139bvpARBEARBaNKIWOTgtnfm8d7stcxfV0yOkuJCuE1vdCPBcPLAy8zytu36\n1f4k03HcWCjoAO0H1M7+s4xY6qFsoJtii26hqLcRcrtmwfjyf75ZmfH+e7XLpyUlFGJ7RXVXNtK2\nwBRCDOvm5qZj+1D08KlZzf3GN5KNXmMUFDgEn4OvdHdWbAfNTxQNPVxBkkF5dX/DQL5Zae3MZ7Oa\nr4tDrgHgO70//pRiUYInUkFb6Li/vb5wQtpD9Gybj+bcx5R74akDTEUmMdqqFrjq1Vn0GDMRXTdQ\nFPBp5v+6SjHPpTw8vFcS1CIFA90wPavGvPdz0nhBaCo4g4Qe//xXV59hQEtKyNs6L96WS4iDHpxS\nV9NrdGzZVcW6nemjbxNR42KR9R1x4KXZV8IUBEEQBEGoQUQschDzbSivipLrcbMZw3nLGUGF0x6H\n375Uu5PLhO4j4LZfk82JawrVEgdyW6YfZzE1eCvTg7fE11OVKe/YfPfKMIciBnNyrubnHFOwOUad\nzbTgH2lTbooVsYvvW47vu1v7T2SXYaYgKs4L+CHnuwdFzTSOsBrEr1e6jL4z5upvYOiFuzlLTLEw\nvx0nHdCHvm2C3mMSI4sAjr7LXm7d23xts2+8aZXRHoAZen+evmCYO7IIIFwO46+Ep4bBmh92f/4p\nWLyxhOLyMD3GTGTyAlOEXLSxBE1ROGSf1lx3dC+Chvm+fcT/Qny7Uwd3BLzEIrPtj2/P480f11AZ\njrJmezk9xkykx5iJlFQmp+QIwt5I1KEWJfqs6QbMybmaHuPtwgm5ym5ErzYhRjxk+vSl4pd1xfQY\nM5HZq3cwd40ZDanFxCLxKxIEQRAEoYHgq+8JNBRCEZ2ibaZnjoHhnb5zuylCaIp9YV1FoOn8ETUf\n3DQPti6FceeYbT2OgIOvMCuxlW6GNn1h/BWw5NOkzVOVKQ/6du/iuDJiRyq94n+II7X5rv59WufS\np2oxjB0NpzwKdIr3BTQ167Lp/4qcwf/533I/7U3MbbJSAaNqkBxC9g1AXRPIJxCt4I7je8J4j37V\no9pa2OEZ1ftY2P9CVzpaafN9OXTnP2nTuSfN8/xU+j32Mf9t83XbMtOkvQY56cmvkyqa7SwP07Yg\niKoq3H58X/jObG/mMGBXrZJoif9uFZ1jH5sWX+93j/ucHTz2s6wj0gShMeIUi6IJXkT5JUuSxqd7\nmCJApBo/p9OeMtPZz352Rrwt/l2hyjM8QRAEQRAaBnJVgvmU79pxs9lQbHrMLN6wixt87ycPzG+T\n1BSmgZha1xUte7gjl3ocDv3PhBbdoMuBkFMIHYe4NlGsi+BUnkU/FG3fralUOSKVEoUigId/058n\nmlml4D+5jT/63iaAGS0Siuocrs5n+hnlLL97OMuOmEp7ZQd+K51JRedm37s0d6S42b+Q420TcvSf\n8ij0M5++R7RccpUQF2r1lKoRKID579Bm/G+T+0570hT+Etno+Bu2HwD5rV0eS89eOIz1tImn92le\n+4ih1M5HS9E2d8XBnuU/86ftd8PaWVBmR0Qs1m3z7bhBr+4WgC/Uvqj2eE9OWcLLM4r2YMaC0PDx\nMn+PkbdrdVLbRZ3W73ZEqOCNKpFFgiAIgiA0MEQswnzKN2WR7a3z8KeLOVZL7VnjJKQ0MbEI3ClM\nqodgkJDi1DHfPM2qPMSi29+Zl9R24xtzMqq0UxWJUmykNuVu5ldQ9z3Z3q/vAy7RJvPkMbkcrv7C\na4GH6PbZ5WgLxuP78Xm+H/ABr51sRsscpc7jZt94/uJ/Kb69Ek8pc3hWdT7QFMeunGZGWFlPhaNa\nDjlUMdb/SrW/R60QTeG5dcbTpheGFwddYb6e+FfPbitAJ24KreS2YpPRwntfZVsyneke8W7wPkZq\n8+DFY2HqQ/H2fuqa+HLMoHek8b1r27/4X652/09OWcq9ExbU0GwFoWGS+HFbGbajNg0j+XP7mK2v\nUxH29qAT0rMrRXrrmf2symfZVjMVBEEQBEGoJUQs8sCnKukH5LWOL5ZHm+CFnc/hg+PlfZNwsfvC\nhYMB78iid35am9Q2Yd56ykIpjJkdTPt1s6eRcRwjmjSXu/yvc9aM3/BawCGIhK1olWWfM3zKORyk\nLI5HIJn7j1UDsu6onFEzwQK4ajp0cphDA7qWQwvKqDe2/urdnu5GpLAjjC2GEdd5dsc8vbq2NAU6\nnz/IEVX/8N7XZ3dnPNUa46eXXKuxiDbdOu18RvXnlCA0RaK6+7N59qod9kqKqKNKEYt2i88WeFda\nvXPXA3U8E0EQBEEQhPSIWORgpDqXopzRtDG2ZbxNqOk4Ftk4BaLEqloAK6a5VoOKeZOeKg1tuLKI\nopzR/OUIO+VJz8DqZ+KcIvxKmhuW/50MGzKocjXlXtfqO8H74iLUCdpPFOVcSFHOaG7zv2MOyCDF\nSvfl0E7Z6W4846nq51LbbFm825v2ad+Mf5y/P4+cY4p/mqYQIY34tKz6NK/aZGXORZyo/hBPsbmE\nDz3HHbdf+7qcliA0OGJRn2cP7QxAizznQwDvz9jKsB6P2hO88fr7aKkeRm1bZr6WrK/FGQmCIAiC\nIGSOiEUOfqd9DsB+xor0A322V0MID7FkbyfqCKPvfXxy/4qvXKu9X96fP/teIRTxjuy4y/8aAN1L\n58bbwmnUoh1lIZZvKaUVu6qfa8JcMuVwDw+kOBkYkEa0HPqo6+LrRqcDYOjvdmsuNcqKqXu0+Zn7\nd6YwxzznfaqCnu4jZOaze3SstPNQv+FybWK1487QZsRTbHYazQDY0Ntdwe4f5+/PN3cczR0n9Uu5\nn9KqCKVVEpkk7J3EhPyOLSyDfkdeWiwLrXjo1XDqYwB8i+lLJ35e6QlHsxCL4htVpO8XBEEQBEGo\nI0Qs2h2O/XN8saopikWxsuoArXsl95+QHE7/B9+nRCu8xZ3B6koAhq5+iVaUACkzH5i+ZAtD7/+c\nYx+bxu98n2c37ywYpX3j2V5a0COj7atwl6xXBp9rm/7UBc27utfPf8N8Pe2JGjtEjl/j9CGdUg/o\ndkiNHSuRfwSe5W7/uGrHBYjEn+77CbOy8EDKC3s6RhhoqkKXlnl8u2xryv0M+ctn7P+Xz/Z02oLQ\nIJm9agfDlUXk+83PKJdYb6lF5f3Ph4Muh0ABbRXzc3rTLqmKlg6vipsFOSmikYdcYL6mSAMWBEEQ\nBEGoa0QschCrRpIbqEYAGnI+kzpcDUDIaIJikeYzvW3GFnsLIANHeW5WXOr28EkM0W9etpLZOVd7\n9sW46wM74meN0dZ7fnnJVesYW+w9NksKmreufhBQYSR4OYU8qqrVJofd5F7vd4r5N+h8QI0e5qkL\nhqbuzG1Zo8faHVSMeBpakDBRNehKI9TQ4x5lD48alHI/Ud2othy2IDRWvvrqM94K3s/hq8xoQFdk\nkSUWKbGIylApfQ1T4O/XoVndTrQR4PRyqvLwdQpq9udP0cOn2h2BAvMzs6Bdrc5PEARBEAQhU0Qs\nAopyRlOUM5qjNbMy15FK9ZXQFEskaZKeRdVR6B1t8sJXi1zrsRB9Z5nzGKnuy9dst0P0NxitzIWu\nCREsV38D1/1gr9+TOmIka3KaZzSsWbOEm6i6FosOuhzurpuKZDFejJzsWi8prcHfWdcpyhnNzb53\nyaUy/Vi/XSFPRY+fSwFCRNUABm6xKJYW0qVl6sp6Mc5//jvXjbQXq7eVc/SjU9lUUs08BaGB4MdM\nsey43fzcDDsiYpZsNKOIFA+vtohHmlVT57pxs+PLXgKz32f+HZ84z0zlO26/dhTljIYfX4CKHUnj\nBUEQBEEQ6osmLxbNW7Mzqe0sfYprXe92KNww29XWp30hAEN7ijlupgQUt+dLLES/a06yR8P8dcWs\n3VGedn9Bq2IZzRL+B6oP2u5rr3uZcHtx9gts7npS+jEZikVd2yVEIIXS/y41jqKALwA3z4fLv6zV\nQ51e9QBHVD3BQLXI1f7mjKXugetmwxf37dYxDN08d67TPqSvklxBLxVHa/PYr+InIBZZFMBwRMOp\n6HHhF+A3lsFvKmau2E5xhbv0dTiqU+Ioh/3a96tYubWM4X/9gh5jqvdVEoT6JvbQo0AxP4tjgujV\nr/7E7FXbAUdkkYNIJpUImhhfL7UfToQT0tAiUT3uD9W+mekP9eIlB9Xd5ARBEARBELKgyYfFfLpg\no2XVaRNLR4uvDz43yZunVzszcqQwLwfBg32OgpXuqmixcvQx/vzhLwCoHiXNr3hlFpAQpp9A0Hoa\nTr4jHe3gqyDfSkM7+W+Ql0Ha2On/hJJ1MPhcfvxlE6fyaeqxmVb/8SecF+Ey73G1TYtu5k8tMt8w\nPYBuCV3Ldzk3cEnoDl4OPMKw3I3ugS8cbb6O/FPmAp6FYUBM0vkw+Oe0Y9Hd59Pw8mnANfiIois+\n7D2ZaWpOnjhvf75dtpXNabxYyqoitMq30wwv/d+PfJPG70gQGjrdWgSgArSoGQ0Xi4j5dMFGfqOa\nywbulOMW7JLUTA80VYkXkEs0uO5916T4slqd0bUgCIIgCEI90+Qjizq3yE1q05SEC+A13ydvuGSy\n+broo1qY1V7AJROSorGCCWLR+Nnr0IiSG3ZHd/lIXXXqokNs4SOohMyFfIfHwyl/s32Uhl8Fg85J\nP8+xxXDAJXD0nQAcs1+H5DFH3g5DRpvLu2vaHKonsagO2UBrelS+zjTdlF/baSl+53A5REKZC28Q\n9x3yK95lvN2D3WOiqBiGYYrAioaR4FmUyN2n9U+7e2cUESBCkdDoMaz3jL98EwAL15fE+xRLUI0k\nvFVmB6+uNiWzKeJziEBTFpp/zx1lIc597jvXOFVRQNehTD4/BEEQBEFomDR5sahLy2SxKIlKD3Pk\nsrr1g2mUJERjJYpFAMtzksvJL8u52HN320qreG3m6uT95XsYWqfj9hVQ2MWzKzcYSG486Aoosqqj\nBTM0dI0kRKa08qgat5dw8Yju3HFSPy4cbgt58/SecYEniV0b4YG28N0zGR8j4wiGUf8BI0FQMnQM\nw4wYNBQVn6bFuxKjCAHOGNKJu07ZL+UhykPu/Z880ENgBM4e1pm8gObZJwgNCisaTzF0RqnT+fvk\nX+NdqvXwJOG0R1UMvl+xvc6m2JDYsquKHmMm8sn8DUl9mmaLRQ9+sgjDMBh6/+f8sNL9t1IV4PH9\n4O9773eDIAiCIAiNmyYvFnnd0G4yWrgbEsuQg8tEV0jDLQvMNC+SPYtctOmb0JD8f1m7w+1t9FvN\nSnOLp6FlGNaf3xqumg7XzEju8zBxpVl7MxoGoG81nkYxIpa58TH3wKWfwsgxmW3XCLnvzIFcM7IX\nJ1miydBuLQgRAD1ZHARgs2V0Pndcxseo9Kgq5ImWLPYpho4ejyxS2adNgT3cQywCuPjQ7q71ds2C\nXDvSvKl7cKI5/+1lIXTdSCmKdWqeS2U4mrKynyA0FIyo/f56LPBvV18ssqhzggH8Er0zEz3EkqbA\nQQ+avobXjptNcbn7c86nqpynfcWN2ngAJi/YlLT9QGUFB760D5RuTOoTBEEQBEFoKDR5sSgaTb5Z\nzE+stuRVAtxvRSSd+lgtzGovonkXaGdGaXhFFsXpORIO+H18NXYT/93ybfG2igTBYIi6wlzoNgIG\nnwej304/l4snwGlPmMv5raH9gPTj9z0Vzvmvufy78XDM3ZlHMUWsFLlmHaD7iKw9ehojR/Rpy7x7\nT2D8NYdSZWiU79oJ485NMveurLTWNy/MeN83vVl9hUIAfMGkJgWdeWuLzXNK1eI3vwCXH+bt5xT0\nafxw17Hx9YP2acVpg80qf3PX7GRraRXD7v+cnnd+4nkzeP3RvckNaOhGsm+JIDQ0FA/fOIABnQrj\n75eA37I4PP8NAHTFjJr7fGHy+d+UuPOD+a71gKbwiP8F/uh/F4CKcPLf9uPg3XUyN0EQBEEQhD2h\nyYtFRtgtDFUafgqUBLGo/5nJG4atKJeO+9fSzPYirBv4RINrF6oPAnbEh89yCL3ghZnxthKrClUH\nttES21OD/DZw9vPQ94T08+h5FBz4h/RjnObIJ9wPA0eZyx2HmN5FmRKLLPI1LQP05rl+FEUh6GuD\nagAAIABJREFUjI/+xnJYOhn+ORSK7QpmVZXJ1e+qY4ZDNEyLhyi3o7SSUf+agYph+hV9+UC879qj\n9km5q3bN7P+dAvTvVBhfv/rVn5LG/3jXcRzVty1z/3w8t524Lzl+82Y6UeQUhIaGonuLRc1z/Q4T\neCtys98pMOBs/Ib5eXzFK7PYWFzpuX0qpi/Zwq1vz9vd6TYoRvR0F1Hw++zLqmY5PjoUZpDqDtD5\nAOhycE1OTRAEQRAEYY9o8mJRhzXu0tYRzePmvr2H4W2noeZrQbvkPsGNFhOLIvQYM5EVW0q58Y2E\nSJGZz0IgP76qeKShFVeEOUv9hpk5NzAn52q7Q6nBqjIxc+QBZyd5LmVFLGqpZY89nlJj5GjNcSNY\nuhGesKO4whWlWe/P63zwREuOLIr5EsXS0Ch3GMrq6YWce0/3NruetWqHa/3J8/anbbMgL//hYFrk\nmalwAeumcchfPsts7oJQTxgJ74OLDjRTSnXDsN97zhRdfy5BxRb/D3noi6yOd/F/f+C92WuTUrga\nC04vssSvH79m/52CPo2Ibn7+9GybT1qu+BIu/7zG5igIgiAIgrCnNHmxqPm2ua71An1XZhue9BBc\n/U2tlyXfK/CZN89BzNSs0S98z4R569FIuFEP2+lKXuLAXz9ZxKlaQmW6YPOanWvMuLx4zZ7t5/Bb\n4Mqp0OXAPZ3RXsf2nTuqH5QNbfvZyx6RXLHICDOyKMFwOtEMO4FW+ea5q1YjSJ41tHNS2wdz1iW1\n6brRaG+Qhb0XNeF9UFhlehGZxvAxscjxHti5mi7KVtqyZ+/lf09fvkfb1xdH9W0bX64Ku1PZnWKR\nYRhErDTUR0YN5se7jtvjv5kgCIIgCEJd0eTFos1t05RCv/xLOONp7z5fEDoMqp1J7W1YN/DD1cUA\nnDnU9H5xeRhd8SXMeyu+qiaIRTOWb2VHeZi8RD+pQA0bjf/ynvm69sc924+q2dFnTZDnOt6fsk8P\nldXswX77sr3ceVhSd8z/SkNnR3lCus3c1+GbJ+Gzu82f/50C711hLi94H8PjPjmRpQ+e7Nn++0N7\nxJd/XrsTgKe+XMaQ+z5jW2mV5zaCUB8kikUHbf8IMMUiz8iioq8BOEJ1+/Vky8c/r9+j7esL3TDo\n1sr87qmKuMWisqqIa1zY8kXM9Wu0bRa0CzMIgiAIgiA0cJq8WKR7F0My6XIADEsu7S5kiZUadJ5v\nKmA/iY1FGnHy302/hjNtYa6lsosgIVrm+SnaWsboF8yIovxEP6ldNVyN54QHzddTHq3Z/TYxZvhT\ni7BGguF1JqRNQ2u1j/n/ymnhqeo409B0RYVDrrM7pz0CU+6F75+DH16EVd/C/Lfhu2dh0h30aW/6\naB29r3e66WuXDXdFEjgZ4PA4iolOH1k3x1tLQ6l/H0GoY/Kx3pNDRgOwJtAbsESRlrFoPcd7a7iZ\nBlxKhn48KUj13mnoRHU7Fa0q4hbaDuje0jHOIKKbb36fZv79dLnsEgRBEAShkdBkrlp03eClb1ei\n6+6bzsm/2Kki77a/Kb5c0unwOpvbXk+C6fBLM4oAOK6PlUIWq2DV90Qmdb4BgG+CN/Nu/iPsKA9z\n0j+mx7ct0Twq09Uk3YbD2GI4+IraPc5ezrQlW1J31kRk0dXfQldLkPIFzf/XmFXmepeDXEOdaWhb\nyiJm5b1Ezn4ebl9mrx96PVTsZECn5sy553jPNDOA/To2SznFvIAvvhzzLfGp5g1jcUVYoouEBsPD\n/hfMhX2OAGCXZn4264ZBMGbY7IwsGmo+RLl+ZM89Ou7pVoXBxkZU1wn4VAKaSmVCGlprK3UVoKQy\nwsqt5uedTzX/fjoeYYo9jqi9yQqCIAiCIOwmvuqH7B2c+OR0lm4u5ee1xTx+nl3BbPuuSohd2zku\nhgvzazi9qSnjUc4c4O7Nt5oLhn2xHdXtC+lB0UUArovxdWonXFZHf1qL0PDo37GQVNYc+61/f88P\n0GEg/G48VHgc5OIPzXbLVNuZhhaKAn4PE3stYP7EyGkO0Sr4/F5aHv8XzykUPXxq2inm+m1/pFiq\nSiyi6NznvgNg4o2HM6BTDftuCUIWGIZhyxeqeUlgWOJmfrSES3Y+Y/Y5o/asz/TBHfO4cHg3Pv1l\nY1bHzAtolIeicRG1sRHRDTRVQVMVogm/w/5bPogva0Tjwrnfiiwqxq76yQVvQvuBkOeuqCYIgiAI\ngtAQaDKRRUs3mxWY2hXmEInqcR+B2I0kgM/ns32IwtmX9xZSoNqRRf+8wPbxaV5l+VWU2NFdOYHU\n+qWPCBdEJ7gbg6kjO4T645Ob6uBJeSAfmneptl1Bp2ebPFTFoFVBrvdTfC3gjoAbOMp8XT3TNey1\ny4Yz9vT+/Dz2hGqnlx+0xaJZRTv4avFmtiZEE81fW1ztfgShNnEH21qpUlbe5AVlrzq6HGJR7L0S\nDZEf9FEWSvACq4aY6XNiVE5jIaob+CyxKCFYmdNWPRJf9hGNC3E+K+Vu1GCHMLTvydCia8177wmC\nIAiCINQATUYsipEX0Bh63+f0uWsSAJpih6mM6N3eFoksA0+hBlDt0+zQXh5PUB2Cz1EpvGEADlEX\n1ei0hMbDaYM67Pa2GjqDO5vnWN8OheZN7+DzEgYF3DfDLXtAnxNgzfdQbEevHd6nDb8/bB8Kc9yp\nlS50HVbNwLfiS7oqmwB4/PMlXPpSsml6jl9LahOEuiQmDAHQ3Ey3VHUzAu6Uyol2nzMNLRaFF6ki\nP+CjMqwTiWYu/IStaJzKcPpqhA2ViG6gKgqKYgpHqQgQiX+s+FUF1s7i4B7Wd+DRd9fBTAVBEARB\nEHafJicWBX0quxzVSpyRRe19ZRARH5HapE2BR0paHztKw799Scpt44bYQpPD87zJEA2dI3u3AqBP\nByvlS02IYHOmoMWoLAEM+E/1UUQuVn8H/zsZxo3iJf/fsp+wINQhumGw0WjJwg5nQtUuAM7f6lUF\n1BlZZL1fomEClqdRJI1o4iSqG3HD9w/mrEvyEWwMRHUDnxaLLDIorYp4/h4+IvHf1acY8OKxMOl2\ns6HPcXU4Y0EQBEEQhOxpcmLRC1+viC/rukGu88F+qNSMKBDqlnb72culm11dd/vsNAg/jfMpdFNl\nYOWLXBC6iwtDf+LMqvs4P7T7T9LTVkOrhiO1+fxm/47Wjqw3fEF79yCnr1asb42VguZIk8yI8q3m\na7v+dC9IH22RLipBEOoCwzAFVUPR4mJRm+jm9BvF3i9bFsdN2zMVi8KOCKSyUJTxc7J8fzUAolZk\nkaYolFZFGHjvZH733++Txs3JuZotu6p4xv8krR5LiI5UJKpQEARBEISGTZMQi5zh8c6S1aWhCIpT\ngIiG4fxx5vLvHeH3wp6T08K7vXlX97rf7d1wuW9SfLlQqYEqWkKdUUoe3+kD+FYfxDyjNzP1/pxY\n9TAfRg+tmwmc95p53ql+lJiJeiyV5ohb3WM7DDZff/syXPRe8r7euRTmvuF9nFXfwZzX7PWQVYa8\noD2Kkd7LZcbybdX8EoJQu+iGgYpuihdKmksCw/FdGUsd9ueiWWJRNJqZWJQoKm0qqcxqvg2B/Spm\n8+qaE7haf5O5a3YC8O2ybTzz1bKksWu2FnOq9kPyTtL9rQVBEARBEBoAGV2tKIpykqIovyqKskxR\nlDFpxo1SFMVQFOXAhPZuiqKUKopy255OeHeYu2YnfZU1HK/OQnGknf2ytpj+rLQH6hGzCtLYYuhx\neD3MdC9m31Mgrw0s/oTOOSGGB1eb7QPOco9LTA9y0N3yf2HE9bU0SaEmeejsQUltvxrduCm8O/+/\n3YjA2e90OOD3pheRbt3oqtbT/EC+Pa55N9Cs827AWbbJ/fH322MWjIeZz3gf538nwYfXwS/jzZ/V\nZqUzgs1skSqBGWOOAeC92Wv5++TF2f9uglBD6LHIIlVzm7wDIRzrwUL3hgUd4McXaVVRBNg+RNWR\nKCqpikcp+QbOQ6VmlOQVxrus2FIab//75F8JGe6IoRPVZK8yQMQiQRAEQRAaPNVerSiKogHPACcD\n/YELFEXp7zGuGXATkByLDY8Dkzza64TKsM5nwTt4IfA4J6g/xdsf+3wJo9Rp9kA9u4ouQhaompme\n8+YFfDFiPm/FNMd1s93jPP4HVx3ZE4DrfFYlNOdNvNBgueDgbhQ9fKrr54KDuwEwITqCFXrmptXG\n7mZrqT5TKEqMLFIUGPUfc3nUC97bHnYj7H+hvV7dzfC7l5o/s182I+TyWqOk+EyJRWMA/O/bogx+\nEUGoHXTDsNPQEt5oK7Qe9oqakDalKBCp5KxvTcF/7uqd/O3TxdV6EE2cv8Hc3HpwEysp31g5V5vq\nWo/gfuBRSq73hol/T0EQBEEQhAZGJo+2DgaWGYaxwjCMEPAmcKbHuPuBRwBXTLmiKGcBK4EFezjX\n3aYw175466Zs4q3Afbzsf5jh+7RyD2zWsY5n1oRwPLHOCe+w2xMjifRw0qa3nrAv4zs50nxUeSLb\nWPnrbway9MGTiaK6zOWrY7c9i1TNTJ/54j5rR44btIGj4LZl0O2Q9NvHSCUmDzjbfL32e/vnpp8h\nWOBO3XHu1hFNoTXCyAph78HQrUIPipaUBqykU2kdqcV3+sZx+SuzeHbqcv41bXna4935/nzu9I3j\n6+DNgIFfa9yf530Ut+dSBLcIFCaFKCSRRYIgCIIgNHAyuVrpDKxxrK+12uIoijIM6GoYxsSE9gLg\nDuAvezjPPSIctm/yDlCXMlxdzFHazzw71XFRe/YLkt5Um1Q4BKLKEnt51IvucYk35J2GElj7HcO2\nf1J7cxPqDEVR8GsqrfJz0ZQ6MHeOiZGzrCiiSIVzMlDQNrPtIbVYpCjQuje062f/FLS1opqSt7no\nkG6uyCJ9t8OmBGHPMTAji1BV6H0sAOMix7J2R7npZZSK7XaxiCt99lf/3yf/Wu0xr/RNpIuylQ5s\nb/Ri0Ty9l2s95IgsWme0xo/1GXDeODjsJnugiEWCIAiCIDRw9vhqRVEUFTPN7FaP7rHAE4ZhlHr0\nOfdxpaIosxRFmbVly5Y9nVIS0bAd7HSSlsI/YPC5tm+JUPOs+s5e/uVd83XQuVDQzj0ual1YtxsA\nvY+HLUvgpVPs/jZ9zdcjbrPTiIRGR16O3ywlXdsk3pCVZvn5kolYZOjeN36qLykNrejhU3ngrEGu\naCIpiCbUJ7oBaiwNTVHYZjRDR+GfXyy1I/p++3Lyhs07J7el4b/frGT26h2utvv8L9EYtaJ5Ru/4\ncpAw+3e1o6yckUUaOsGYWNSiGxx/n70TEYsEQRAEQWjgZHK1sg5wlqzqYrXFaAYMBKYqilIEHAJM\nsEyuhwN/s9pvBu5UFCUpfMcwjOcNwzjQMIwD27at5kn/bqCHUlVbMagyfMzuekmNH1NIIFZO3Enn\nA5LbYjfXx90LlcUQTqiAplrpbMfeA4POqdk5CnWGoajpoxbS0XNk5mO9fFaywSUWeaeUpROLMHSX\nqX68yzG8Ipxiv4JQB8Q8i2LncMAfQCPKB3PWAwY/FxyeXIgA4MDLsjrOfR8v5OxnZ7ja2ijFjVIs\nLTcC7Ah2ASCohCkI2p8TxYZtnq8RtSOLtIB7JyIWCYIgCILQwMnkauVHoI+iKPsoihIAzgcmxDoN\nwyg2DKONYRg9DMPoAcwEzjAMY5ZhGEc42p8E/moYxtM1/2ukJ2fLPM/2E9VZ+ImyrkSMrWud2I32\n8GvstkBe8rhWppk1+W3iKREuNteb9ZVQk2QtFjnGXvR+5pslemJle4M281nHFLKNLDKFqpg3U8Bn\nj3GmoY3ct+YFckHw4teNu5hnlXqPoes6qmLE/bwUzY8PnVBURzV0jFTvmRHX2X5dDrq0TGHo7MFq\no12jS8OM6gYqOmGf+f0VJESO3xalFxg94ss+dDoUWH8/X4JYJAbXgiAIgiA0cKq9czIMIwJcD0wG\nFgFvG4axQFGU+xRFOaO2J1gTNN/wjWf7b7WpqIrBqp3JpspCDRO7aT/2HrvN7yEWnXA/XPieGXUU\nSpu9KDRiDEXb/ciibAzOlT2MLHKSwqwaw/AWi8rNlJtDVVPg/M8lB8a7nAbXbQqCuz8nQciCE5+c\nzpnPfOtqM2JCviVe5OUG0RSzLRKNYpDiPaMocJYpppYYuYwa1oUT+rcn6FOJVhMuZFiXHvP0XtVW\nT2tohKM6PqJELLEohzD5QftzJmzYAnVLpZQbDreqPkpkkSAIgiAIjYyMrlYMw/jEMIy+hmH0Mgzj\nQavtz4ZhTPAYO9IwjFke7WMNw3h0z6ecPZvbHubZ/rNlTNm8wEO0EGqWy6eYPkMBO0TfUyzyBaHP\nceZyqrQfodGTdRra7kYf7OnT+6EX2ctlW+CbJ5LHGLq3CDXzGQBeCTwCuKOJnMtlVRLZKNQfeswn\nLhZZpPrwWe9NlRRCaAx/LsbAUSgF7XngrIHsKA+xfEsZve78hFLrvC6rinDJf39wb2ed/gEijS4N\nrSqioxFF18wIKh8Rmuf6U45vvnaauSBikSAIgiAIjYwmcbUSsa5Go8HmrvZWilmV6/hBXep8Tk2O\nTvu7o4rArCCVjqhEfO21KKp5I1rbzHsj6bhZ0W2Ee33K2GThSo9mtF+fIyLK5xCLwtHdjLAShBog\nMbJIUX1omG2mwXX6aDxFC9LMFyU3oPFjkW1gPfDeyQA89eUypi2xjeUVdBTDSs0kXG0UUkMjFNFN\nMU0zBSJN0V1ikZL4uWb9rkliUU4LBEEQBEEQGjJNQizSLdEh3G6wq/33vs8A6NCiWZ3PSSC5Eloi\nqTxihEZP1mlouxtZ1KxTQkOWaWhe0W2J6ZGGnpzuBtBpmPvIinPZKRY1rptlYe9Cj5rnuBE7h1Uf\nfodYlNKzKIYvCJGqlN35Afd7I5dQfDmgRGrNs2jqr5uprAXz+FDUjCxC9aMbCgoGc1bbPlAt8hJ8\n0vQEg+uxxeaPP6fG5yYIgiAIglCTNA2xKGJerPlKVnsPiKSqlibUKrnVPFlNNCcW9h4UFdXIXCyK\nC0tH3JbdcY5MGJ9tZFG4PLmtaheUbYNXfwMvHgfLPof1s5PH/cGMrJiefwKAmZaz6GN4/TyIRujY\n3LxZjOgSWSTUH0YsgjOWsqnZkUVmGlo1AqtDLJr5p+SiBO0K3Z5c+djftzf4PiBQtW03Z56aVdvK\n+P3/fuT/3v25xve9oyxkRhapGjoKGjpn+H/gLt9rAIzs28YcOOo/5uvyL83XxMgiQRAEQRCEBk6T\nuBs3dPNJpq94lfeApZ/D4TfX4YyaOCc+VH1UEcAxd5mh/rNfEbPrvQyD7DyL1Ji5dGFipFA1JAqS\n2Rpce6VCrpsNb11Y/ba+ALToRtCKHCqtjMCn10PFDpj9El/ddinnPvedRBYJdU5UN+K+WWHrYYqi\n2pFFPqvcu0qaamgxfEGImmJRq/xkQaS0yh3dk69UuNY7b/sOOCjbXyEtuyrN+S/bXPPfG89PX8Gt\nhFldEqUtKho65668G3ywSO+GzwhDi27Qdl/3hlL9TBAEQRCERkaTiCyKhs0bvtABV6QYITdrdcqI\na2HQOdWPy20JJz0EV0612wb8prZmJdQlanZpaHGxKNtos8Tx+2VZwNG6CWbw+XZbJkJRjGBzBrRW\n6N2ugCP6tDGFIoCJt5Lj1yjM8RMRzyKhjnH6ZD3zxa8AVOmWkKr6KLAEHVWp3rMILWhG54bKCJRv\n5Inzhri6yy2j68Ic872YjztlrTYsi2K/38INJTW2z0hUp2hrGcf3b0+OEqJXxzboqAxVl8XHPB74\nN+qC8YCS/NmzJ5UYBUEQBEEQ6oGmIRZFrOiAg6+EfU9NHhAsrNsJCdnRpo/t8/Dbl+p7NkJNkKXB\ntWpYvh/ZikXOinsnPAgdB6ce60Urs2IifU+E0W+nHje22Ls92IwCKpjyx6NokZccdeHTlLgBvyDU\nFU6x6OslmwEoC1vnYTTEfjm2UfXyLR6pmE581nn9107w+H78plMJNx/XBwBdN/ihaDsA719nViXN\nxx1ZtL0ivVj68KTFfDRvffo5JFAb76ned01i5KNT+XDuenIJEczNQ0fhEHVR8mBF8fYxEwRBEARB\naEQ0iTS0mFjk9/tB9dDHWveq4xkJQhNHUfEpumlcncET9+Fb3jEXshWL8tvAtd9D6Sbodkj28xzw\nG7NqX8fBsPyr5P7+Z8KR/5d6+9UzzNeQxw23YeBTVUlDE+oEw2Ek7TznNCvCT489O1o/h3zMqmUq\nut2eikQvnmmP4G9rVr7seecn8ebOLcxS828H73cN/2rpDs5Ls/t/T1sOwOlDMk9Brc0Kg1MWbSIY\nDFHpzyUvGICQh7m3okramSAIgiAIjZ4mEVmkR03PIkULJD/tO+I2GPmnepiVIDRddkYt09uV0zIa\nP2LzW+bC7tyAtesHPY8yvVWyRVHsaKR9jrTbB54DZ78I574CHQZWv59ty2BjgtmuHsGvKZKGJtQJ\nFY7KYE4xRVMsschwXw60ZhcqBnp1aWiq372+8AP8WvI2AU3FK+U7qdR8DRCKJL+n9lRAGtGzNWD6\nOAWVCIGcAhSvh08A21eIWCQIgiAIQqOnUUYWLd5YQvdW+eQGMrsYi0YcKSyJF3DH3lPDsxMEoTqi\n6+aABrxyZuoULi/qs6KQqkGL7rBzFZz1bHbi0/bl5g2kkx1F+DRV0tCEOmF7mV2y3imcxLzDwoZb\n4Lnf/19UjOqlnMTzGvB5iChq+VYKSY6w81Hz5e13lNu/67+nLWfpplLem70WgNtP3Jfrju6d9T7z\ng+a1QxBz38Hc/PSpZs6+SydlfTxBEARBEIT6ptFFFlWGo5z05Nfc8IZHqeoU6BHrwlHzQ7cR5vJl\nU7K7SRUEocYI9hi+exs6PYjqg5t/Nj83MhWKYlEX7/wevrjP3ff0gXSIrK/VlBlBiLGz3K7spztO\nuVga2qF9rAqVfU8CoJuyGQUDo7rLhJ/fSmry+zy2ebQ3M7v9y1w+9bF4c2Ew9f6zibrbWlrF1tIq\nwlGdW96aF29/eNLiuFAE8NSXSzPep5PcgPlsLccSi9RAbvroId16SNWiG3Q/dLeOKQiCIAiCUJ80\nSrEI4JtlWzPfKBoTiwJw0OVw/U/QtWZL9QqCkDmVB1xlrzzQPvMNO+1f85OpTc4fl7b7ruWjGRn6\nuo4mIzRl3vxxNUU5oynKGc1xT0xj1bYywI4sap6XYw4s7AzAAHUVfiLVp6FVJVQc63UMgaQ0NDM+\nKW+z9ZDHWVQiJqp4EHKIRXqaCDzDMDjwgSkc+MAUXpu5Ku10C3P8afsTWbWtjGKH0JaDtezLMb2J\nAJp3c2/kjIC0/p6CIAiCIAiNjUYoFln+Clk8jFcileaCL8f0IPl/9u47Xo6q/v/4a2brbclNJ400\nkkBCSIAYuoD0IkEEpFhBQRFRrIiFIkURQVBQge9PEEWEr8oX6RCBAKF3ElJIIQHSy82t22Z+f8xs\nmW13b8vdXd7PxwP3zJkzM2fBZO/97Od8ztCup6CLSO/xFKuNd0DC/YXxnX/CB68WvjBY17cT623h\ngZ0OOTuRm5kh0tv++sLqVDsat/jzc6uAdGZRqnj8wemC7bV0dB4sOvSn6fb4g2D5f2ncviTVdcNp\ns/jnuXO814Qa4MQ/AmBbhZehJT/vAR5+Z13BcZGMGkWX/WdR0enWlrh8PengXz/FJ656gk3NTiHr\nsOF++RSoSQ8avpv3okETYPAEOO46p66ZiIiISAWqwGCR84NlrCvRokSUBCb4KrJEk0jVMbJ3QIu3\nQ6QZ/vcsuO1ThS/0h/t2Yr2thOVqBlqGJn3rrNtfzulLFqEeGHL/LCaXVGVk/fhK2Q1t7y/B4IlO\nxq775/OoZ05mGFvZbeQA5u7awN7Lfue9JtTgFJ2H4plFGUGgeJHP/EQX6n6F/F0vPB2NW2xqiXD0\n9J347wVu4MsfdgLdAOEB3gvm3uS8fuJsqB/e5eeJiIiIlIPKCxbFnWCR3YWasGYiQszoWuq5iOw4\nHW0tJG49vPOB2UGmcuev6XRIwq64v4alwvx38YacvlufWQmAlXAze5IFmTMCnD6jhA/a+uFwwetO\nxu57j6e6Xw5/k1ljB8Ivx8KCG73XhBpSzzOxCgZ7igWIvOPyX3/dqTMZM8j7ZzD5RVNrJE5rpHCg\nKtuyDS0MbQimM5UDNRB3so1yMgi1zF1ERESqQMX9lhKJdf1beCMRJW704y5KIlKUtfQxfJsWpzt+\nPRmeviZ1+Oago2ilwrKKAAIF5vyVR1LNRGfLfET6kJ3M7ElmFmUVbT5wcvczY8xCwd1AXWrZmw+r\nYJH3zCBSe7TwcrXsQtjD2Mqq8Bmc1Lic+T841HMuGrdYv72D6Zc8yvRLHi3lbaQ8v3wzxNqdg8zM\notCAwheJiIiIVKiyDBbZts34ix7k+seX5pz7z5sfpdqZRSeL8VkRBYtEypjvv1k7hbVugCevTB0m\nDD/NVFi9IkjXgclWOzg9xNYyNOkflmWzs73WOSiwDfzIQV3YgfAzt3gOTcOA6Z/JHWcYYDo/fviw\nPIWsM2VmDLXHCgeLsjOT9jbdHc9eugXTNHjpJ4fx9A8OAWDqiAZumJfeEW1tU3vB+364zXtu+cbW\ndIAos2ZR5vLYc1WwXkRERKpDWQaLYgnnB7/MH+iSbnt2Zar92KLCBS8ztbW3EUPL0ETKVShSYHfD\n9q2pZhdWnpaPAr+AZwaRao2Oojs9ifSVaMLit8GbnYP2LXnHmHbhIE2O6Sd6Dn2mkb/OWOPOqT8D\nJhZvrN6W93aZQaC2YplFWX9+UkdNHwAwvCHMuCF1zBzbSMyyuevFdLHv/a7+b8H7Lt/QkmqHiLLk\nqwPSmUWZwaI3/55uj9yj4P1EREREKklZBosKfcsIsMvw+lR7YE3nASDLsgkRoylWlm9VRIpJ7pJW\nmaGi9NbaRfo/sod2rWC/SC/xLuvOv2Ss9vXbSr+hPwS7Hp86HD+kFqItueN8gVQg1U8DtCdtAAAg\nAElEQVSC+nBuBt5rq7e6QR3nz/5ji9YXfGxuzSP3vax9w9Mb9BmpTTJK0dyRrml0gf9fhP56PKx7\ny+nIDILte17J9xQRERGpFGUZQcncASXb3jsPSrX97m4uTW0xrnhgUd7r5i/bSIg4UWUWiVSe5JIP\noNAvs2UtX82WT/7Ak1m00tqJB95cuwMnJR83u48ewG6+D3L6I4mMwEnmrmTHXdf9h51yB7YbPPny\n47Pg3f84/d9Y4B3n/hm4KHB33s/uk25ewO0LVvFs6Ntc6L+XN9fkzz6C3Myi2lD+5Z+1QT/rt3fk\nPZfPN+96LdXe13zXaWx3/6xmZhbtc07J9xQRERGpFGUZLIrEvd/8tUTibGjuIJaw2NbawU/8f2W8\nsZbkl/HXPraE255dyd0vr86518KPthMmQri2PueciPSfwyK/7nTM1g+dotdGpWYWJaK5fR1NniLC\npmHx+pqtueNEeklt0M/Zg9709E0fNcAbpLEyagDWNHb/YT4/RsNOuf2hBu9xxp+BiDuP5RtbWLmp\nNX0rEowxNvFt/7+LPjKRlZl37ckzvAMizfCf7zDAbOf9zW0lvIki3rzLec1eXvflB+Hbb/Xs3iIi\nIiJlpCyDRdnfMh5/4zPMuXIek3/yMO8tfoOv+R/iD4Hf8p+3nGLXd77wPgA//7+FOfeaNnIANUaU\noYMH5ZwTkf6zwh6Zar9hTcw7ZtC9J0OkBdsGuxIzixpGpdt1w9LtjMwiPxYNYWU+St+xbZtVwcmp\nYwML0zC8n7WJjGBRocLspfKF8vRlbTKRsRQzOY/DfvM0h177FIvXbQcgQOGt7aNxi7+/tBrLslN1\nDo/ZfSfuPmdffOGMwNRjP4VfjoNX/8xxW+703OPrB08C6HRp2v3nH8CssQO9nYEaOOpqOPEPzvH4\nA2HQuKL3EREREakkZR8s+vfrH7Aq45tA080wCBLn/974KOda2/ZmIETiFjVEvCnjItLv3rjk6FR7\nlZ0nEyHp6tGVm1lkmulfvA+/1Hmdeqyn8LUPi62teTKQRHpJwrIJZgRe/FhYts3lDyxis+0GVsbO\nSV8QK7xDWEny1eoKDXD+f3/wRe4Yg6ZdTmSlNYJo3PJkFB/9W2dHscw5Tx3hzPPI65/mG399lRvn\nLePH/3qbiRc/xKKPnODSyXuPYd+JQyAz02jB78At0u3busIzpQE1zp/NQnUSk3URdx81EF/2klJ/\nGPY7D2adUezfhIiIiEjFKstgUSQjWHThP7yp8yGK/1K1vcP7TWQknqCGCEagC9v/ikifqw2mAyYn\n+hYUGelUK6rIzCJIB4ZG7QmXbINJh4I/nWXhI8HdL6/pp8nJx4FlwwVbrkgdLwt/kV2ii3lqyUZe\ntHajpWES7JSxdCvf8smuyLeDWrAWfvwBHHJRqsv0BwkYCaKJBFN/+kjOJZmZRe2xBNG4xdL1LTz8\nzjp+/+R7qXPfu9f5OSFh2bBpGfzts3mndYTvVc7yPQw4WUi1AefPZjyRPxjd1B5jVfgMzPvOJadm\nWr56ZCIiIiJVpOyDRdnqiABODZMZowfmnJ952WOs2ZLORIrGEkw01xHaurT3Jyoi3eY3DT4duaLz\ngcCsrbm/SFaMZG0Ww5f+BTPUAGf+ExpG4cNi1tge1IgR6YRl5wZD9o69CsBuxvskfFn1d6zCy79K\nkrmkbc8vwPfcz99grSfIYviDBIkX3NQiM7No65ZNfPvu1/OOM7H4a+BKjrx3Ktx2WNGpHWE67/u7\nR0zh6aUbAfjHy2voiCWIFdqJ9a1/wNo3858TERERqVJlGSwqthtareHsZDLRXMeMMU6w6JNThnnG\nHHTNk6l2IuJs2xvc/G5vT1NEesAwDLYP3j3vuT/Hj+Ki2FdZY6X/bNfSw6Ux/SXmBq8zCvoCMPlw\nqB/GoLCZWu4i0hdGR1fm9E1rd4ImrdQQSGQVfY73MLMoGWwaPg3m/h4aRuQdZvqDBIoEiwJGOli0\nh7mch99Zl3fcIJo50OfWLOxoKjq1GM6fw4DPZP6yTQD86pHF7PqzR9jr8sc9Y0c3Zixfz665JCIi\nIlLlyjNYlLAIE8Eg9wfI+oxfGJesa+bCf7zB/KUbqCH/dri2Gyyyg9oNTaTcPP2DQ/P2/yp+Gncn\nPsVB0RtSfYNo3lHT6hutm3L7DB8+w8qb+SHSW/6w/fycvtmmk+1TSwfRYVm7h40/IN2eeXrXH5gM\nFk09tugwnz9EgHhONnHQb/LZvcbwyPn7pPuKFLv2U7xAdaZ4MljkN/GZ3qVkzRHvM4Y1ZBTqjjbD\n7LOc9sn/r+TniYiIiFSqsgwWxdpbWBz+Cj/w35NzrtaIpNpvvr+Rf7/+Iaf5nuTd8FmMMTbkjE+0\nO4UvE8dc23cTFpFeFSWdabPRHtCPM+lF4dxls5h+fChYJP2n3uggUJu1rX1m/aKDf9T1myaXoXWy\nq5oZcIJFVzyYzvy9/SufYOkVx/CbU2dSm3F5Q5HMwrzBoq89CZc2wQ+zsqrMZGaRwSFZWck5b8PK\n+nPpr3HuuXv+mkgiIiIi1aQsg0VWtBWAM31P5Jz7/qz0D4XjDScl/ZeB2wA41nwRgJ0GpOsvxDqc\nzCJ/TZX8wilSZWZ03OY5XmaNxsr4qylOD7fxLhcjpuX2BcKE7EjuL6UiO0gtHdTVF6mZ5evGEslk\nZlEnwSJfIEiABLi7Hc4a28ghU4enB2TUPmowspbKZd7HyLOMLblsrHYwnDs/1e13M5YbFlzDT4c+\nnXPZ+u3pLGVfIitA1dNaTiIiIiIVpOyCRdvaYtz61BIABmb9cDhuSC3DBtaljgfS6jn/xZrncm/o\nLkMjWJd7TkT6XTO13Bg/MXX8urULPzs+HVhJlN9fU13z9WfhqKvznwvUEbIjnp2+RfrMAd/xHBpY\n1BsdECqyTNsfLnyuEMsN8vg6ySzyBzENO5UZ9KldMwJFG96FlelgTn2RzKJAviVqmTWGRs6EC5zi\n2LHwYI40X6bm+d+w80uX51y2z1XzUu09ollFrQ+8sNjbEREREakqZfdb2Jqtbazdsj3vuemjBqSD\nP4CJ99v4MfHV7G6sIOzL+M0r4tY5CWal2YtIWbjm5D3osNO1QRqGjubsAyekjuO2L99llWOnGbDf\nefnPBWoIESGhZWjSR6zMrLXh3uy2GtxC1sW+TAnUFD5XyIxTnNepxxUf5xbSHms4u5LVhTKCSzfv\nC4//PHU42Mj/cwGAL099Q/xZBakHT4TBEzlgwkBuCV6f6q7NU+9wg5tdFM/+YzlgZME5iIiIiFSb\nsgsWAYSIeY4PmTqMv311H649ZWY6+ENusAjggdBPubftrHRH1A0uFfvmVET6zamzxzJseHq3pI21\nuwDw9qVH8s5lR6UK0lalYC0hu0M1i6TPdMQz6vkEvFlCdclsnWIbQPi7ESwaOdOp7TNsSvFxOzm7\nISY/8+uChf+sTzY+TLW/c/hkLp87nQlDnSBXIF/NonxfEPmChGPe3dIWhc/KGTbHzS66qv0Xxecv\nIiIiUsXKrhjIiAHhnF1Pzrbv44BFzfDyJljyUKp/mrmKFxO7sdAax3Tz/VT/MGM7HbEE4YAPM+Yu\nVdNuaCJl65dr92Ke+WNa7BomNR4CQEPYqZWyi/lRP86sjwVq3WVoChZJ32iPJlhrjWRIQ5jGjBpC\nr1u7UGe4WTXFPh/NPvxOyedkFAbdYNGcdy6Hh+6Fk27LGRqqHQBN8KfAdRw16Iuw95c4/v1f8eet\nUZ62ZnoHf/oGqBuS53kBaMuzKyFw4qxRLNvQwsKP8mQwHX89TDm6a+9NREREpMKVXbDINNI/OAIc\nbz7PQatvgtW5Yy8J3EkdHZ5AETgFcn97z5vcdOZe+FLBItUsEilXAxsaeLZ5BjsNCHPbsbv293R2\nnEAtIatDy9Ckz7THEnQQpLV+nCdY1GqH2MNY4Rzky7w9417YsrxvJ+cWz05+5k9cfa/T/6+v5gzd\nf3w9p4fGctRbr8B/XoHdT2Lw4rv4XgDGzjwGMssL7fWl/M/zh6Hpw5zucMDkt6ftyZ6XP5bqS1h2\nOqdxtxOgbmhX352IiIhIRSu7YJFhGJ7Mot8Hf1d0/PcD9+b0baWeB99ey02AP+EWyVZmkUjZeuCC\nA3l99TaOmr5Tf09lx/KHCBDDTuRZRiPSC7a3xzGxMQwfGOllXj5sbgze5Bzk+zJlypF9Pzm/m1lk\nxMmzqtzDSES5+tNT4C2346Efps6dMn2AEyyq3wl2Ox4MI/9NAjXQnJupOLzBWZ63tS39RdWkix9i\nVXLVXrjIbnEiIiIiVarsahaZBgSNWOcDi/Bn1C8IW21EjFCnu7KISP8Z3hAuGChaFZi0g2ezAy38\nNwBjNzzZzxORavX9e9/ExKI1apEZkTEzt5vvrw0g3GVod3xxJlceO6HwuGA9xCNwZbq2GW/elWoa\nd7kFtU+9A477TeH7ZO/sduCFWIaPv311HwCG1AXzXIR+fhAREZGPpbILFhkYOTWLuqrd3VkpGrcI\n2+1EjG4U6BSRsvCL4dd3PqhSbXPW114R+H+0RXv2955IPkvWN2Nik8AEK/1FimcHsf5apu3uWBaw\n45y59abC46ItsOqZnj9v2ePe40Atpp1g7EBnOVxjbaDnzxARERGpEmUXLBpYE2DmyM6DO7HAQG/H\nJ38A318GwDhzPQCReIKQ3UGHGc6+XEQqRNQMc1zkKr4U/VF/T6X3HX4ZAEON7Zx084J+noxUo4Rl\nM9n8kGEdK8FOB4hmm0vTg/orWORmFpGIwOt/zT2/6/Gw+8ml3y/S0smAjLVuh1+WzjR69XYAlm9s\nzbmi1Tcwp09ERETk46DsgkWGAd85ZFzxQSfdRiKQ9cPtmE9A/XCnaaR3OwnZHUQNBYtEKpVhGCy0\nx+fueFQN9jgVgMXWWBava+7nyUg1G9K2AuwCtbGyl2ftKG5mEa/9xdu/yxFw4h/gtL/Byf9T+v3G\nzil97IyTnRpGAA99H565jttPHgPAgos+xd+/ti9LrdGsHTS79HuKiIiIVJHyXIgfjxQ+d8C3YY9T\nSMy7xtvv86aP72a8jw2E7IiCRSIVbP7Sjf09hb5TO5gttRNY3jysv2ciHwdWgWBRqH9rFrHiqXTf\nmf+EyYd3737hAcXPj5kDH7zktM2AN0g27zIO4TJW/bIJgFGNNbQ3BgkN7+SeIiIiIlWq7DKLACcl\nPZ9wIxx2iTMkO23e5y1MeY7/AcAJFkW0DE1EypTp82N2thWUSBdtaokw/qIHMd3aRK+P/yqE8uwK\nOu4ACPTTZ6QvT42gQJ5l6D9c2TvP+/KD3mfne1aGGh+Y+eYoIiIi8jFQfsGirSvhgQvznxs8EUxn\n6187kPVNaFaw6DO+57BtZxlazAz1xUxFRHrMsg1vsWGRXrDoo+0ABNwNI+L+Oph0GMzNKiTdvHZH\nTy3N8HmPg/Uwbv/cceFeqhvkz/g5wfTnX373wSvptpVI/cwhIiIi8nFTfsGi9m35+3c5HOb+PnXo\ni2cVooy6xyfdBsDb1ngA/HachKFvBkWkPEUSpLI/Fn7U1M+zkWqxtS0KkNpddNb4YU5RwD0/7x24\nZcWOnlpazSDv8ZyvOXPM1hcBG18wf0bVbYel23YiN6AlIiIi8jFRfsEit0g1AHPOdV6PvBI+/08Y\nMT11KjF8uve6xp2d1z1OAWCGuQpsMLCwyvBtiogA7NRYl1qGdt/rH/bzbKRabGuLAenMokCwDJdj\nm1mfzaXWTrq0yfmnJ3wB8Hey86oVV2aRiIiIfGyVYRTF/VZxxIz0D2l5vmn0BzN+yLtoNQyZVOBu\nNka+bypFpCKsuOrY/p5CnzJMM7UM7dZneqk2i3zsNXc4waJ9zUVOx6Zl+QdOm7uDZlSCYAnBouSX\nSN01eKLzavoK7wJ3x6edVy1DExERkY+x8tsNzXDjV6F6UoEjcoM9pps+HrV9BAvUM7CxMbCxjDKM\niYlISUzT4IbTZvHyqi39PZW+YfgY02hCFW/6Jjue5dZM/57/Xqex6pn8A99/fsdMqJARu8P6d5y2\nP1h43FmPwYevwuyz0n2n3w1/P81pl1oE+6xHYcO77vMK1DNcOR9sG9o2wbp3SruviIiISJUpvyiK\nkREgOuh7MONU2OsLOcN8wdrO72XbGLZNOb5NESnd3FmjueLEGf09jb5hmIxtVBF+6V2W7USLJplu\nAevWTfkHnvPUDplPQWfem24XqlkIsPM+sN953jpDEw6G3U6Ac56G2sGlPa9+OEw82GlnBovm3gQN\nI9PHV49xXj94qbT7ioiIiFSZ8ouiZGYB1Q2Bz96at45BMOwsQwsaiYK3sm23cKyWoYlIuTJ9BN2/\n9k7ac3T/zkUqWsKymfv7Z9nQ3IEbK0or9AXLwH7+/9yAUXD6P5z2rsd37dpgLXzuThg1q2dzGDzR\nKfyduTNctKVn9xQRERGpcGUYLHLrA2TvkpKtUK0B4M0JX3NbNsnFaCIiZckwwbYYO7iG7N/vRbri\n148u4c0Pmphz5Tzs7GhR5hcxp9yxYyfWmalHOwWrh+6yY58bcANoI4sEm468csfMRURERKTMlF/N\noppGmPsLGH9g8XG+wrUNLCP9tgxsZRaJSPlya8msjXawNNycc3rNlja2d8SYPip/bTaRpN1HDwBg\nUG0gVbMoxQyk27schuBkVX35oeKZSZnZRiIiIiIfI+UXLDJM2PPMzse5wSILo2B6lG3bmKpZJCIV\nIG7ZLPxoe07/Qdc8CcCyK48h4NPfZVLYIvf/P421QWwrzim+p9InD/puuq1NH9LGH1D8vFV4qbuI\niIhINavcnxjdYJHhC+Se82QS2dj6wVhEypyJVfT85J88zPiLHtxBs5FKdPNTywEI+U0mbX2WXwdu\nSZ8M1qXbPhVUz+ug76XbR17hvO5+Uv/MRURERKSfVW4Uxd1i1zALJ0fZttXpL2AiIuXgCv//5PS1\nROI5fQveK7CrlYhrWEOI+sg6b2dmDSNf+SUVl4XDfu7UTrq0Cfb/lvM6dk5/z0pERESkX1RusChZ\nsyhfsMjNLFqztd0p8qnMIhEpVzPPAOAMv7PcLFmY+PXVW7ljwaqc4Wff8coOm5qUhw3bO/jDU8tZ\n29RecMxtz6xItYM+k0Ciwzsg+3PwwoVw4aLenKaIiIiIVJHK/XoxGSyKRwoO+ewfFvB8SMvQRKSM\nZS4Pwtn+3O8z+MzNC/IOb4+phsrHzZyr5gHwq0cWs+qXx+Udc8WD76baCdumseMD74ApR3uPB47p\n1TmKiIiISHWp3ChKMgBk5/7iZKRebQws7YYmIuXr5Vs9h/GcbaxydShgJFn2nzQk1bZsSGR+vO/5\nBS09ExEREZEuqdxgUf0I5zVPoU6bdHDIyPhfEZGy4w97Di07f7DIZ6b/Hvvlw4v7dEpSeRYs35xq\nW5ZNwsgIDoUa+mFGIiIiIlLJKjdY5HeDRKYv95yRfjGxtAxNRMrXKXekmp8xn8mbWXTQ5KE8eMGB\nqeMH3lq7Q6Ym/c/OEzy87vGlXPTPt1LH2ZlmCcvGMjI+G7OWOoqIiIiIdKZy89KtuPfVI/0NvImN\nbSuzSETK1C6HO4X6rTjXB//A1sTlntND64PcefY+gLPUaMHyzWxqibC5JcKQem2BXu1iidxg0Y3z\nlgGwpTXK3FmjeXyRd+ezhG17Nj8jUNuXUxQRERGRKlS5KTeNOzv/nPa3gkOcmkU2i9e37MCJiYh0\ngc8Ph1yUOky4v+UPCDux/Jd/cnjq3O9O3zPV3vuKJ3bQBKU/xRJWwXOPLVrPN+96jfve+CjVN95Y\ny0srN2NZGddtfq8vpygiIiIiVahyM4sCNfCdtwuczKxZZGNVcExMRD4Ghk5JNZeub2ZbW5TtHXEG\n1gQwMgr0Z9YtAmeJkqEC/lWtWLAo2zRjFQ+FLuYXsc/TEY2lT0T1hYmIiIiIdE1VRlEiceeH68eD\nP2CA0c6M0QP7eUYiIkWE039HnXHrixx+3XwAmtpjnmHZwaKH3/EuP5LycN3jSzn6t/N75V7RLgSL\nxhnrAfhZ4K9E4xl1jGoG9cpcREREROTjo3Izi4p4adUW9gXGmRsAGDqgpn8nJCJSzISD83bvPNhb\nayY7WJQdTJLykKwp1BuicW+wqD2aKDASrq25HdzTiYTbGL03HHV1r81HRERERD4eqjKzKODzvq2J\nw+r7aSYiIiUosJTs2lNmwtb3YaWTpWJmjRsxQAWuq0XCstncEsnpzy5wPf2SRwreoy7RlGpH43G2\nMBC+9l8IqsC1iIiIiHRNScEiwzCONgxjiWEY7xmGcVGRcZ81DMM2DGO2e3yEYRivGobxtvv6qd6a\neDE1wayEKaMqY2IiUuVCfhNu2APu+DRYCfxZmUUdsdKXKEl5+81jS9j7iidyAkbZ2WNW7uZoABw6\ndViq/WhiNpFoHBvVsxIRERGR7uk0imIYhg+4CTgGmAacbhjGtDzjGoBvAy9mdG8CPm3b9gzgS8Cd\nvTHpzhw9faesySlYJCLlLTr2AJZYYzx94cjm9MHlg/H/wlt7piNWeEmS9D/bLhDZyePxRU69oc2t\nUU9/Mni0y/DiGbIXH7tbqh0hANgKFomIiIhIt5USRZkDvGfb9grbtqPA3cDcPON+AfwK6Eh22Lb9\num3byT19FwI1hmH0+bqJnQZm1Shq+qCvHyki0jM1jTm/3DdsXZgz7D+fH8NlJ0wHCmeZSHnIXkJW\nTLIeVSLrP+odz78PwKRhdam+ofW5H6N1oXRGrY8EJjaWvigRERERkW4q5SfJ0cCajOMP3L4UwzD2\nAsbatv1gkft8FnjNtu3cogx97e17d/gjRUS6wvAFCBBPHe9srCfc+mHOuBkv/pDDdhsOgKVoUVnr\nyrb3yXpU2cGi+Us3AvDhtvZUX0M4d2+KsN8EwwdAwA0WKbNIRERERLqrx187GoZhAtcB3ysyZjpO\n1tG5Bc6fYxjGK4ZhvLJx48aeTim3WGzN4J7fU0SkDxmmN1g0P3Qhg5/KUyIuUJPKQrG6sMxJdrxb\nn1lR8tjkf9N/vpY/E9bKiDsld0h7+geHpPrCvgTYzrJEHxamYYOCRSIiIiLSTaUEiz4ExmYcj3H7\nkhqA3YGnDMNYBewL3J9R5HoM8G/gi7ZtL8/3ANu2b7Fte7Zt27OHDRuWb0jPHPLj3r+niEhv8gXw\nGyXUIFrxJCOv3wkfiZz6NlJefvvEMib++EHeXbu94Jg1W9qAdBbSn59blTPme/57eGjr8anj9liC\nubNGMW5Iemla2Eon7QaNBIYyi0RERESkB0oJFr0MTDYMY4JhGEHgNOD+5Enbtpts2x5q2/Z427bH\nAy8AJ9i2/YphGI3Ag8BFtm0/1wfzz2/TMu9xgW2pRUTKhbMMrfSC1UFi/PrRJby4YnPng6XfWDb8\n7L538p57Y802DrrmSf7x8mo+2JpeZpa9fO1b/vsAMHD6WyNxZ6e8DGYifX3IdINFqlkkIiIiIt3U\n6U+Stm3HgfOBR4F3gXts215oGMblhmGc0Mnl5wO7AD83DOMN95/hPZ51Z17P2HRt/EEw/TN9/kgR\nkZ4w/EHPMrQcF7zhORxubAPglfe39uW0pBumjxrgOS703+j9za0APPzOOgbVBVL9S9c3A9DUHvOM\nv+y4KQBE4hYhv897s2hbqrk372JiKVgkIiIiIt1W0k+Stm0/ZNv2FNu2J9m2faXb93Pbtu/PM/YQ\n27ZfcdtX2LZdZ9v2rIx/NvTuW8gj8wfkz/8L6ob2+SNFRHrC8AUIU2BZ2b7nweAJnq7Hgj8CoD1a\nejaS7BilJrMu39ACwFNLNrJmSzoz6LgbnwWgJeIEDy3buWHISAcTk5lFZx84gcbaAMTSwSIfFsPZ\nhmoWiYiIiEh3VefXjpM+lW77g/03DxGREhlbVhA2YhxlvpR78tCLndfRs1NdIcPJOmmNFslGkn4R\nT5RWePzV1cWzwlrdYFHyC5AjX/xy6txqt9bRz46fxhs/PxKWz3NOzDwdgAFGm2oWiYiIiEi3VWew\n6JQ7YP8L4NS/9PdMRERKs/YtAI70vcqpezSm+0fvDaEGp/3Z2zyXhIimAwpSNhKWN1g0dnBN3nEn\nzhrtOf7DmXsB8NUDnSyy5H9b061lNah5aWrsY4vWe2/2xGXO6y6HA1BHO5aCRSIiIiLSTdUZLArV\nw5G/gGlz+3smIiKlcbNHRrKZz2+6Md3/lUfS7fBAzyWfMl/nnlfyb7Uu/Sdh23xyyjAOmuwsgW6L\n5F8qGImnC1nffc6+HDNjJAPCfuJusKm1wHXTjFX86oDsXjdAVTsYgDojQnvMyh4kIiIiIlKS6gwW\niYhUGjdYtL9vEXtsyQgQZS6lNf2eS07xPQ3AI++s7fPpSRckYgwPW9x59j6cf+gubG2LYlm5S9OS\nwaIfHb0r+04cAkAo4Ev1OzWLcq97KHQxn3v1DGjZAPGsOleBOiCZWaSPeBERERHpHv0kKSJSDvJV\nRR4wxnucFSzaTi0AX//ra301K+mGW9q/x7VLjwJgcF0Qy4ZtWTubAXTEnMyhrxwwPtUX9JlE4k5/\nWzROiNzrUq6dDFcM8/YF3WCREWH0oNoevAsRERER+Tjzdz5ERET6XL5tzj+XVXctK1j0aOITqfbm\nlghD6kN9MTPpol3s91PtupCzxX0yMJQpmUGU3NkMIBQwaWqL8eU/v0QkZlFHR+cPvMxZesb0kyCY\nDhA1hLXBg4iIiIh0j4JFIiJlIc8OWjWDvMe+gOfQzLhmc2tUwaIyZLgZY62ROCs2tjBxWD0X/uMN\n/v36h3ztoAmE/GZqDMCKja2s2NiaOh5NxHO/AbTkPsR2A1Gj9kwtQwPAVPKwiIiIiHSPfpIUESkH\nh/40t8+XFfzJWqpmYHPtKTMB+GBrW1/NTHrAdP+bnXXHy3zqN0/T3BHj369/CMCtz6xMF7lOxKB5\nfc71YcNbk+jawJ8KP+zte1PL0JyH6/sgEREREekeBYtERMrB1GNy+3x5lhFd2mcJ9FIAACAASURB\nVATnvwLAjafNZM54ZwnS5pZo7ljpd6Yb31uzpR2AGZc+ln/gf74Nv5lCMKtGUU1WZtFQo6nww8bt\nD4GMOkWGr8vzFREREREBBYtERMpDviwQf4GaM259IxMbn8+JRlh2nmVsUjkW3Q/Ak9/Z19NdtMB1\npmG7wZFXOkvP/DVOn6lgkYiIiIh0j4JFIiLlIF+wKDww/9jkcjTbwu+mriSsPpqXdKqpPUZ7NLeA\nNb/cmTfXbCvtJu5/0yE13gBP0Ih7jvcy38t//blPg8/9/1ByKVpWjSsRERERkVIpWCQiUg66kgWS\n3Dlt7Vupv8QTlqJF/WXmZY8x96ZnAaeQdUpHE2cHnyh67b4TB3uOw2aCVb88jpljnEDhnEFuQetg\nffFJ+DPqWyWDidk1r0RERERESqRgkYhIOcgqXl18rPtX9ws3Ef7gOQASlpah9Ye2qBMcWrq+hYRl\nc+6dr3rO7/ziJXzTd1/B60P+ZJDQ/e8fd2oUfWG/8QBc2HqD099ZsChT60bn1a9gkYiIiIh0j4JF\nIiKVxkj/1R3Y9A4AcQWL+sW37no91d7v6nk8+96mnDFn+x/Ke+1UYzV3rD4CNi2DiFu4OuHUKAr6\nsz6ea4ek28ki1oMnFZ/c4geKnxcRERERKUDBIhGRcjNqLzjvxcLnM4pZ+9e/DSizqL88tzwdHNrQ\n7GQFxW3vR+sjiU+k2ruPHpBqz/UtcBq3HJoefP/5AAR9WZlmDSMyDgyoGQRn3NODmYuIiIiIFKZg\nkYhIuRl/AAzftfD5RDTVNDcvc7q0G1q/mDKiIadvCwM8x+OMDQDUBn3c8oXZqf7Uf7Foc3rw6ueB\nPJlFB1+Ubsc7YK8vwtBd8k9q1pnO65xzO52/iIiIiEg+ChaJiJSbcQcUP2+ni1mb694AIJFQsKg/\nnDJ7bKrtc3emM/EWGx9pbAbgu0dMYVRjTarfpnCdqjGDar0dO+8Dh/3cvTABZpGdzk68GS5tgmOv\nKeUtiIiIiIjkULBIRKRcXPwR/GAFTD2m+LisLdFXhc8gntBuaP3BzsjoCrvZQJ5g0YjdaagJAhDw\neT9yTzAX5L/pk1cxZUQDj134SezGcTDRXaZmZOyYZ/p7PnkRERERkQIULBIRKRfBOqgb0vm4QeNz\nusxER+/PRzplZdSKao0mAPAbNkw6DL7yCIyaRchqA9Ib3p3zyYmcf+gu7GxuzH/Tp38FwJTh9Rjb\n3oeaRqffzAgWRbY7r+e/4jxHRERERKQXKVgkIlIFAtFt/T2Fj6V8q/8GBE0YNhXG7QfBBoKJNs/5\ni4/dje8fNRWmHuu98PS7nddkf6sbTEpmFGVmFr1ws/M6dLLzHBERERGRXqRgkYhIJUoWMXb54sos\n6g92VmHxgyYPdWoKGe7Ha6ieoNWOgYVpxbwXD5mUbn/+n87yQ18Qhk5x+jrc7KHJRzqv2z/sg3cg\nIiIiIpJLwSIRkUo09yb4+RY49U4AjDJchvb66q1c/O+3cwIq1cTKem9/OWsOWIn0krFgPSY2V/n/\nhxOfneu9OJkpNGQX2OVwpx2ohVi7004uNQu7u6tFW9PXNo7rxXchIiIiIuKlYJGISCUyDCcgEXB2\nzXr49ZVlF5Q5/dYXuOvF1bRE4v09lT6TXVfcMAw3s8gNBLnFyE/3P0l9u5sZtOJpePJqsNx/L2c/\nnr5BoNZZfvavc2DLCqcv1OC8ZtYs+tRPe/mdiIiIiIikaTsVEZFK5g8BEDaitEYT1IdK+2v9npfX\nsOvIBvYY09iXswOgJRKnIVxkq/cKlp1ZBIBtpQM7RtZ3MokY/OUEpz3nHAg3Qu3g9HlfABb+y2m/\n9Q/nNeRmFmXWLEpkLWkTEREREelFyiwSEalkgRoAQkSJxa1OBjuaO2L88J9vccLvn2PVptbOL+iC\nY254hkvvXwhAxJ1PLF5eGU+9KSeby7adYFEySJQdLErWIQJnWZkv6D2f3DItU3IZmpkRCJxwUPcm\nLCIiIiJSAgWLREQqmT8MQJgYcau0oEybu8U7wMl/XFB07MpNrby7dnvRMZneXbud2xesApy4CYBN\n9QaLspehYbsdySygD1/znv/1xHT7jb9BR9YudltX5T4kmVmU+e+xcecuzlREREREpHQKFomIVDI3\nsyhMlFufWVHSJZnBoi/tN77guIRlc+i1T3HMDc/0aIplVkqpV1m2zY/9f+M7oxfz5f3HO8WtAUz3\n4/Xd+4vfIBHt/CHJYNHIWd2ep4iIiIhIVyhYJCJSyZKZRUaUW+aXFixqzSg47fcV/hj4yb/fTrUj\n8QRt0eKFqqMFlsFVcawI27I41/8g39l8OZeeMB3atzgnkplFbgHyHvG5y8+mzS0+TkRERESklyhY\nJCJSydxgUYjcgse2bfO7ecvY0Nzh6Y/E05lF7dE4zy/fnPfWd7+8JtU+8vr5TPv5o0Wnsqklkre/\n3HZp6y2vrd7KW0//M92RiMNf3IDOeqduE5/8fu890C1mLiIiIiLS1xQsEhGpZG7WiZ/crJ/3NrTw\nm8eX8o2/euvmRGLpDKAb//sep9/6Ar9+dLFnzH8Xr/ccv7+5rdOp/OKBRXn7qzNUBCfdvIDL/X9O\nd9z3Ddjo/nucdKjzuufni99k0mHe42+9ln8cpItf77x/1yYqIiIiItJFChaJiFQyMxksyl0CFg44\nS6FWb2nj0vsX8tG2diC9S1mmm55cDsCLKzZz9UPv8tcXVnd5KvOXbszbX6WJRQDsbGa857fvSbf3\n+JzzGqgrfgO35lTKkEnw9WfhsEvyjz//FTjz3q5PVERERESkC/ydDxERkbJlBgDwk2D2uEGeU/e/\n+REAG5sj3L5gFR9ta+fCI6YwLytrKKkjluBzt7xQ9HG2bWPk294dbxDqygczs4yqOFpUiM/575Iq\ndF1IdrAIYKcZsNr97zBihvfc0Mk9n5uIiIiISCeUWSQiUsnczKKpw8KeXc4Afv3oEs/xY4vWc8wN\nzxTMGnrt/a2dPm5tU0fBc8Mb0jV1bn1mZapdzZlFDyT2SR+49aMKOvGPcGmTty9fsAjAcpcVjtOS\nMxERERHZ8RQsEhGpZKYJhknIZ9Hi7nK2tqmd8Rc92Omlt31xtuf4f55dWWBk2vaO3ELaSWcdOAGA\ncUO8O4BVcayIt62JTsMXTAd43GyvlGRdolB97g0KBZgSUfe+gfznRURERET6kIJFIiKVzgywqamV\n1VvaiCcsfvLvd0q6bI8xA1n1y+P45qGTAJi3eEOn1/zigUWd7m4WT3jPV3NmkZkMhVkJJ1i0z9fh\n/Je9g5KBn2Ce+kVmgdXgfjfjqKaxdyYqIiIiItIFChaJiFQ6X4D2Dmd52O0LVnHktBGe0wdNHppz\nyafNBdRsfhuAbW2Fs4WyPffeZtZtz78UzbZhrvksIzuWefo7Yom84yuZZTlBIiNZWNx236Pph8ET\nvIOTwaKAN+PKuUGBj+HZX4HDL4P9L+iF2YqIiIiIdI2CRSIilS4e4av+hwkSoyboI2Z5U3lCfl+q\n/Y9z9gXgd8Hf03DH4WDbBHxd+yjwFyjanLBtbgjezP/yQ+e5RBlnrOOW+Su6dP9KEHf/Hfuyd6F7\n/vd5BkecV1/Q298wCmaflf8BvgAc+B3wh/KfFxERERHpQwoWiYhUOsvJDFoa/hLD6kO0R53aOfUh\nZ4nT5/fdmdd+dgR3nDWHfSYOYQAt6Wv/ewVHTh+Rc0uA/SYO4YnvfjKnv8BmaFhZ682uD9zM06Hv\n4qf0zKVKkXyvZnZFpnEH5g5OBosyAz8jZ8L33oUhk/pohiIiIiIi3VegWIKIiFQiy7ZTu6K98tPD\n+WhbOxOHOYWVD54yDICxxsb0BatfYP/Dfpb3Xtd/bhY7DcwtwDz7iic4fo+R/P6MvTz9diLuOT7K\n9woAx06tvro7CTez6BPjG+HDjBNfuj93cMNOsPHddM2iH73f+c5pIiIiIiL9SJlFIiJVxLKhPZog\n6DcJB3ypQFGmB76eEeSZfqLn3Jzxgzljn50BGN7gZMJcc/Ieufd4a21On5mIeI5TS7SseM7YSpdc\nhlYXyEqzMn25gz/7P3DSrTBovHNc0wgBBYtEREREpHwps0hEpIqc97fXaAj5CZhuEGPdO85Sp0BN\naoyRLLgMEG0FYOqIBpasb+b/feUT1AR8/OTY3TATHbDkCU4ZN4VfsxU/FmsZUvDZvnhr3v4l67cz\na3sHIwZUT4DEKlSzKJ+6IbDHqX08IxERERGR3qNgkYhIlXjJmgpAc8TN5GnbAn88AHb/LJz8/9ID\n4xnBokgzWBa3n/UJXl+9LVXnqC7kh3vOgkX/hwG87MZ5xnfcVfD5A1rfz9t/x3Mrue65Laz65XHd\nfm/lJplZZBo2+EKQiMC4A/p5ViIiIiIivUPL0EREKt3PNhGvG0mznbU1e6zdeX1/gbc/c7nYa3fA\n5YMY+fI1HDtjpHfcov/r0jT+87oTLNpqe5e+JRdqNbVVT6FrT4Frw4SL18IX7uvnWYmIiIiI9A4F\ni0REKp0vQLxxPPVGe9YJd6eu5rXw3yvS3fGMYFGrW+z62et6PI0gTkZTIuujxXDn0RFP9PgZ5SKe\nuQzN9EGwFvzBfp6ViIiIiEjvULBIRKQamH72MRenDpdfdSysfCZ9fv6vIdbhtDNrFmXbtgZWzof3\n5nV5CkGczCHDyC7y7ARWXn1/a5fvWa4sy2ZPYxmjNjwF0Zb+no6IiIiISK9SzSIRkSoQXuMEhoax\njY004jMNuO/r3kHvPQG7HgcdTflvYtvwv2fBBy8Vfg4ROnB2SbMsG9MtpL2tLUrIzSwaXB/k71/Y\nF+70Xru1rUiQqsLELZt/hy6B/DW9RUREREQqmjKLRESqiJ8iS73+cSZc1giPXOQcf+ZP3vNWomig\nCGBx+CsY7g5gyaVYAB0xi6DhZha1rGe/OyemziVrFk0d0VDamygTTe0x1mxpy3vud08s2cGzERER\nERHZcRQsEhGpAh2HXgJA0Ijx3Bm1cOnA9MmcZWGuXY+DUXulj5//XUnPSm4X//7mdFpNWzSeqllE\nzSDP+GTNoozYUkWYedljHHTNk3nP3f/Gmh08GxERERGRHUfBIhGRKhAeMh5wikyPfukq78kz78l/\nkS8E5zwJo/d2jp+4tKRnPRX6LnsYyzni+vmpvgfeWpuqWZTOJUoeJYNFFRYtctl55p0MmImIiIiI\nVCMFi0REqoHfqSP0tf1HwZBJ3nNZmT4pvoDzWqzgdR5jjE3cH/qZp+/ZZZvSwSLLuxQuGTqq1GDR\nt+9+I6fPVLBIRERERKqYgkUiItXA5wSLTp01Ijc4NGxXOP+V3GsMN4zjD/f48SfPHkMgWS/JinnO\nfcK/DHDqZ1ei+9/8KKdPmUUiIiIiUs0ULBIRqQb+oPMaj0C8w2nPvRm+8jAE62DoZNj3m3DkFbnX\nDhyb/54XLnSuL2BIXTDVTlh2qsB1dqbST2Y4u69VamZRPsosEhEREZFq5u/vCYiISC9wM4t49noI\nD3QCQHue6R1ztFvLyB+GEbun+4+5Bhb+K338pf/A+oUwcIzzTwHRRDpgEo1bhJIFrq24Z5xtOkGl\nSitwXYwyi0RERESkmimzSESkGiTrDy2f5w385DPnazBuv/Rx/TCYc276eOf9Yd9vZIw/J+9tmjvi\n3DJ/OQCReIJGmvOO6xiyG1BZmUXRuDcYtGx9+r0lLBsflfNeRERERES6SsEiEZFqYGT9dd7Uxa3d\nj70GLm1y/vFlJZ1+6mf5rwGuemgxAJGYxWn+p7wn9zsfACvUCOTfVaxctUa82VFXPPhuqh2JJ7zL\n0AK1O2paIiIiIiI7hIJFIiLVIGvpV68KD8gpkJ0w0gGlVZtauf7xxbnXBesAMG1nblYPVm7Zts11\njy9l9ea27t+kC1qygkWL121PtSMxK70M7ZAfwzee2yFzEhERERHZURQsEhGpBltX9e39h072Hmdk\nMh1y7VM00pJ7TaAGgPFPnMOv/Lf0aOHWmi3t3DhvGefcmWdXtz7Q3OENFpnJneNwajX5DDdYNHAM\nDJ64Q+YkIiIiIrKjKFgkIlIN3MBMyl5f7NPH+awoAzICRGGiuYMCdanm5/xPYfUg++mxResAWLwu\nf12k3padWZQZLHIyixLuCe0TISIiIiLVR8EiEZFqkJ3dcsLvev8Zh1zsvM76PABvhdOFr2uNjtzx\niYj3uAfBorrQjg3KtERinuMPt7UTd3d/e2nVlvQyNMO3Q+clIiIiIrIjKFgkIlINhu+Wbl+4sG+e\n8ckfwHfegcHjc07V4QaLTrkddjnCaSe82UZ2ItHtRzfWBLp9bXe8smprTt9NTzo7v33/3jfTBa5N\nfYyKiIiISPXRT7kiItVm4Ji+ua9pQuNY2Lwi51St4WYR1Q2Dz90JR10Nkw7zDupBZlFbNB1o2hG7\nqt381PKcviXr00WulVkkIiIiItVMxRZERKrFrM/nzfrpddHcukGpzKJgnVM/ab/zINbuGWP3JFgU\nSweL4pZNwGcUGd1zX9pvHPc9v5AwUdYzGIB316bf9yDDrddkKlgkIiIiItVHmUUiItXixJucpWJ9\nbeKhOV21qWBRfbozUAPHXps+7maw6K0PtvGz+95JHccTfZ9ZBPBc+Nu8GD4/dbxyU2uqfXfwCqeh\nzCIRERERqUIlBYsMwzjaMIwlhmG8ZxjGRUXGfdYwDNswjNkZfT92r1tiGMZRvTFpERHpR7PPgsnO\nX+fn+e4D4MCdw865YJ13bNMHqea2Fm+mUalO+P1znuO4ZfHw22tZvz1PUe1e0hpNUE/++Yb8GR+d\nyiwSERERkSrUabDIMAwfcBNwDDANON0wjGl5xjUA3wZezOibBpwGTAeOBm527yciIpXKMCDi1O/5\nYeAeAA7YucY5lx0sirakmr97fHGvPL65I843/vYaX/7zy71yv3zaovmzoMZf9CCRuNVnzxURERER\nKQelZBbNAd6zbXuFbdtR4G5gbp5xvwB+BWR+1TsXuNu27Yht2yuB99z7iYhIJVv9vOfQn2hzGoGs\nYNGB3001fUb3dkPbd+Jgz/HzyzcDsLG5DzOLIum5BiiyfG7tm302BxERERGR/lJKsGg0sCbj+AO3\nL8UwjL2AsbZtP9jVa0VEpPL5423gD4Mva9+EgaNpOuZmAAJG1zJyNjR3MP6iB3lhxRZP/7zF6wGo\nCfZdompmZtHSz24uPNAf7rM5iIiIiIj0lx4XuDYMwwSuA77Xg3ucYxjGK4ZhvLJx48aeTklERPra\n/hekmv8bvJQhb/4R4vkzfQbWOUvUPr37sC49InP3sUwPvb0OgKCv7/ZoiHSk34vx4IXsNCAdFDLI\nCHrVDumzOYiIiIiI9JdSftL+EBibcTzG7UtqAHYHnjIMYxWwL3C/W+S6s2sBsG37Ftu2Z9u2PXvY\nsK79MiEiIv0hvSPZbHNp8aGmk21kW11bhuYzjKLn+6p20LqmDj5Yt97T98LFhzFlhLPTWw3R9ImZ\np/fJHERERERE+lMpwaKXgcmGYUwwDCOIU7D6/uRJ27abbNseatv2eNu2xwMvACfYtv2KO+40wzBC\nhmFMACYDL/X6uxARkR3L7sL29clgUaJI7Z98l2V9Ql048QNCGYGaw3Yd3qX7lWrfq+dRQ8Tb2bEd\nvzuhWiPjXPYkRURERESqQKc/5dq2HQfOBx4F3gXusW17oWEYlxuGcUIn1y4E7gEWAY8A37Rtu3sV\nTkVEpHxMPab0sW6wyLC6FizKSF7i9XNH8e2Pfsgl/jtSfUYnmUc94QkIAfzvVwj4nOcN9Mf67Lki\nIiIiIuWgpK9Ebdt+yLbtKbZtT7Jt+0q37+e2bd+fZ+whblZR8vhK97qptm0/3HtTFxGRfjP+QBZN\nu7C0saZTiNruYrAokkgvMxv0/mMAnOF/MtX395dWd+l+pYi6S9vqyKq/9N4T+N0aSQN9XQx6iYiI\niIhUGOXPi4hI9xglfoQkM4vsrgVZYpk1iZY9mnM+ErewrC4shytBU7uTNVRr5BbrTmYWNfjczKK5\nN/Xqs0VEREREyoWCRSIi0j1miVvXu8EiEl1bhRzNyCwqVEi6PdZ7K5sty2b5xhYAxhveAtfUDac2\n6LyPAcllaAPHIiIiIiJSjRQsEhGRbjG6mllkda3WT8wNFj353QNhe85GmgC0RntvSdgN85Zx2i0v\nAHBV4H+8J4dMoj7kBotMt8h2sK7Xni0iIiIiUk78/T0BERGpUEZGZtGZ/wuTjygwzgkqWSXuoHb+\nXa8xtD7EtJEDAJhw884Fx7ZFEtBQ2nQ78+jCdYVPmn7q3GBRvc8NFgVqeufBIiIiIiJlRplFIiLS\nLXbmMrRgfeGBbrBo79b5Jd33gbfWcvuCVZ4C15lM0v29mVm0eF1z4ZOrnqG+zSmo/aOWXzl9gdpe\ne7aIiIiISDlRsEhERLrFsjO2rg8VCxY5L4e0PtLpPdc2tafangLXGR6/YB8uHvsOg9jO6s1tJc21\nN0xe/CcATNwMqcbCGU8iIiIiIpVMy9BERKRb4mQEi4plFm1fW/I9t7Wl6xq1xxKMYAt2oBYjlg4K\nTTLWMWnjVewamMGfXpzAMTNGdmne3WXUDoLtGR2lFvgWEREREakwyiwSEZFuidsZHyGhIoWDulDY\nemtrNNWeP38eL4bP9wSKAGhxdiobZDRz8t5jSr53MWu2pJ/xo6N3hZEzYfJRnjGnRO/rlWeJiIiI\niJQ7BYtERKRbPCWFimUW+YKp5qpNrTS1Fw4ebWyJpNo7RVblH/TaHQC0EcbKv1KtS2zb5qBrngTg\n6wdP4huHTIJ4BPzBnLEn+552GoPG9/zBIiIiIiJlSsEiERHpllhmZpE/VHjglGMAeMx3MIdc+xQn\n3vRcwaHfvvuNVDtBgWVe7/4HgBDRkndYKyaSURsp6DNg/SLYuBj84Zyx1wacukVsXdXj54qIiIiI\nlCsFi0REpFs64hmBGsMoPNA02e4fTJvtZOqs3NSad5idFfhJdPIR9ZY1qdeDRTVBP/xhP+fAF4Ij\nr4DRs3v8DBERERGRSqJgkYiIdMuIxrqSx9qYYBdfM7a9PZ5qHzxlWKfBohZqsHoeKyKaESyqC2Vk\nM/lDsP+34Gvzci/a47SeP1hEREREpEwpWCQiIt0yY8ygksfaho9YrHih63hGAaI7zprDLZ/fK33y\ngjfgpNs848/z30+iF6JFkXgi1TYyM6SKLa37zB97/FwRERERkXKlYJGIiHSP0YWPEMPANIoHdqJu\nxeyrT5rhdCTSO6MxeAKEcotoZy9d647MZWjvrW9On8gozM2XH0q3G3cuvuxORERERKTCKVgkIiLd\nYxYoQJ1HR8LApPgytJhbA6k+vgVaNjg7kmWK5tY66o3MotWb21Ltnx4/LX0is8D1+ANgyOTcfhER\nERGRKqRgkYiIdI9RerAomgATJ7DTWBvIO+aP85cD8OnHDoZrJ0PCDRaFG53XyPaca6xeCBbd+N9l\nAPzgqKkEYhmZRf6gd2ByWZqCRSIiIiJS5RQsEhGR7umkYHWmAbUhfG5mUaFsoLteXM0k48N0R9xd\nhnbe885raEDONUaio+Q5FHLK3mMBmDtrFLRtSZ/44BXvwOSyNAWLRERERKTKKVgkIiLdk1wWNnhS\np0Ntw0wtQ8vMBrJtm8cWruO59zYBcIj5RvqiZGZRqMF5nX5Szn2NhHep2qaWCOMvepCrH3q31HdB\nwi2sXdu0HB79SfrEkoe8A1OZRUUKX4uIiIiIVAF/f09AREQqVLTFeZ1wUKdDw23rGGc4u47FLZuX\nV21hl2H1vLhyC1//66upcevsIemL1r7pvPrc4Ixpwuf+BiuexF74fxhtGzGy6hotWecsI/vT/BVM\nHz2QE2aO6nRuyQLXjf88FZo/Sp+Y8EnvwGRGUaCm03uKiIiIiFQyZRaJiEj3xNzC0MHcXcqy1dht\nTDffB5zgzCl/fJ5T//Q8G1u8wZ4wGTugvfNP59WXUeNot+PhuN8QP+xSAMysZWg3Pfleqv3qqi2U\nIhksMprXek/MOtN7nNyNTZlFIiIiIlLlFCwSEZHuSRaeHjyh5EtWhc/gIv/fAVi2oYWFHzZ5ztca\neWoQ5dmm3gg4WT7t7W2Mv+hBvvLnlwBYsHxzasz0UQNLmlPUDRbRMDLded4LMPM078BkUEw1i0RE\nRESkyilYJCIi3TPrTDj1L7D3WZ0OtQeMJu6vA+Dr/v+k+u9+eY1n3Jd9j5b0aNNdCrbkgw0APLlk\nI7btLZwds0orwB2JWwR9JkbmErTaobkDk5lU5AavRERERESqiYJFIiLSPaYJ0+Y6r50wRu2Jf/C4\nnP5BtQHP8SRzbc6YvPdzM4tWrUsvNZvwY29B6ngi/65r2aJxi6A/6z3UDskduOj/nNfswtciIiIi\nIlVGwSIREel7vgDE2nO6zz4wvYRtJJtzzhdiuJlFISNWcEwsUVpmUTSRoNaXNbZYAMzQR6eIiIiI\nVDfthiYiIn3PDMDWlTnd2zviqbbP3S0NgEubcsZ6uEWmPQWxs8St0jKLNja18ZKVUZ9ov/OLXxDZ\nXtJ9RUREREQqlb4eFRGRvucL5O2+Zf6KVDuAGyza8wud388tMp0vWHTZCdMBiJeYWbTg3dXpgzGf\ngMMuKX7BgDEl3VdEREREpFIpWCQiIn3PLJ7IOmpgmCDukrJdDu/8fr4gAH4SfGk/by2kY2c4u5rF\nSqxZ5Ak4TT0W/MH8A7/1mvN67vyS7isiIiIiUqkULBIRkb6XlVn0qV2HAzBrbCMTh9ax4MeH8ejX\nprljCwRrMrl1g0xsQgGf51TQ55y7Yd4yPtyWWycp28TGjINQQ+GBQyY5y+Pq8hS/FhERERGpIgoW\niYhI38sMAA3bjRNmjgJgU0uEATUBWP0C/OUE5/z2Dzu/nxss8mERytrJzO9Lb21/3WNLO72VPx5J\nH4QGdP5sEREREZEqp2CRiIj0PTMj+yfeTsDN/gm2fMTvt50HT1+TPt+yl7npuwAAEA9JREFUoeT7\nmYYTLLrhtFkATDY+oO7qIXzKdJaM7blzY8FbJPmtjOwju7Q6RyIiIiIi1UzBIhER6XvRtnQ71kHA\nzf45xX6EMbFVsHxe+vyMkzu/n+EEi/wkOPGdbzF3pLN72vWBmwH4f8FrqaeNn973Dpa7K9qqTa3E\n8hS99lsd6YMPX+3CmxIRERERqU4KFomISN/LXFrWso4h294kQBwfeTJ5gnWd38/NLDrCfJUxW56H\nP+xHA228aO2WGrKfuQiAiRc/xLl3vsIh1z7FtJ8/kvu4REZm0ZxzSns/IiIiIiJVTMEiERHpe1bc\neR3mBHP2fvxUbgz8Ln+wyBfq/H5uZtE4Y32q6+3wVzl02PbUsZ9Eqv3oQmdcvh3SUplF570Iw6Z0\n/mwRERERkSqnYJGIiPS9ZOHorStTXcf4XsaXEdBJqR/W+f3cAteTzLWe7olbn0u1TXIDQwDt0fQz\nYwmLMG6B60BN588VEREREfkYULBIRET63nG/gSN+AQNGebr9+YJFpTA7//i6+jPT8vb/d/EGlq1v\nBuD9zW3UJINFpSx/ExERERH5GFCwSERE+l7tYDjgAjj6V57uIPHu3c/wdTqk1p+//5t3vcYR1893\nxgR91BB1TiizSEREREQEULBIRER2pClHwuGXpQ7rjPYig4sw08GiSGhI3iF+w2bqiIait0lYNrWG\nm1nkV7BIRERERAQULBIRkR1t/wtSzRCx7t0jI7OoqXF3GL13+txn/uS8WgluP+sTBW8RiSdojyUI\nEyHuC5e0tE1ERERE5ONAPxmLiMiOZZpsnDAXAKu7H0MZmUVt9WNg7D7pcw07Oa92glg8XeS6IeRd\nlzb7F09w5PXzqSVCwqesIhH5/+3de6wc1X3A8e/vPm1sjJ+Ay8MYMC5UJMRcOVYD/JEQMJACaUoF\nTYUbt6JUQSqkLxBRS9u/kipUaktDSQohVVJISKK4UtuERukjUYEY6mAMGNuUlljG5hVMCvGL0z/m\n7N7Z693r63v37u7d/X6k0cycnRmf0fx8ZvZ3z5yVJEkVJoskSS2XTlkDwAnHDk7uADF6+1q4aAm8\nun30s1nHFfPND3HygtEk0MoTa19Je3NfMV7S7NjPO76CJkmSJFWZLJIktdzx8+cC8K7FURQse18x\nX7VuYgcoJYvmzZ0LP3vF6GeVZNEL/0Hfrid435nFmEa/ceHyuoeazU/tWSRJkiSVmCySJLVeX/FK\nWLz9Oiw+C67/Jty2Ez705xPbP2J0eWBWbZJpeN7o8ts/5if7DgGweO4wv3fpysMOdUX/Y8x9c8dR\nn4IkSZLUrUwWSZJaLyeLePlZeOU56B+E4bk1YxEdUf9wMR+YVZs8qjlG4sDBd/ja0B8x8oXlXL/m\n1ClXXZIkSep2JoskSa3XN3DkbY6kf6iYDwzXlpd+KY3//GvO3reJ8/u2AXDsjn/gorOWTP3fliRJ\nkrqYySJJUus1JVmUB8cemFXM86DZNT2LdnyHz7z1ydH1h9bTX+qEJEmSJOlwTXhalyTpKJWTRVff\nPbljjO1Z9LF/hJTgnYPj/9NRmy3am2Yzb/VHJ1cHSZIkqQvZs0iS1HrlZNGiMyd3jJ+8VMwrPYv6\n+qF/AAZnwcV/3HC3tW98hQ/2bayuD/AODPpraJIkSVKFySJJUuv1l5JFS989tWPVe6Xtgpvhxu/X\n3fya1+/hc0N35rXEMPtHB8uWJEmSZLJIktQGh0qvig0MTfFgqX7xBHosDXCI/kijvZMkSZIkmSyS\nJLXBof1TP8aiFcW8Qa6IwVlww7+Oe4jb35sHyd7y9anXR5IkSeoSJoskSa13aN/UjzF7QTGfs3ic\nf+fAuIdYd+ZPi4U9T0+9PpIkSVKXMFkkSWq9ShJn7omTP8ZHPg8X3AInvmucf6fUg2nhGTUfzT9m\nkL7jVxYrH/zTyddDkiRJ6jImiyRJrbfs54v5NfdN/hgLlsHFd0DfOLeyJWePLo+sr/lo31tvwoG3\ni5WFyydfD0mSJKnLmCySJLXe/FPhjjdGk0bTZc4imHdysbz8Qrj6s9WPnpm1Hj7/gWIl+qe3HpIk\nSdIMYrJIktTdKuMjDc6Bd1/Hvhjme4d+rnabvoHW10uSJEnqUD4dS5K6W2XcoqE5EMHQKas4d1+C\n3aVtxnuVTZIkSeoxJoskSd2tMpj20DEARPRz3KxUu409iyRJkqQq/5QqSepuKy4p5oNFsoi+Pji4\nr3YbxyySJEmSqkwWSZK624f/Bm7eDP2DxXr0w769tdv0D7W+XpIkSVKHMlkkSepug7OKX1+riD54\n5bnabSqJJEmSJEkmiyRJPWb//x1edvzZra+HJEmS1KFMFkmSesuLjxxeNji79fWQJEmSOpTJIklS\n7zrvV+GWp9tdC0mSJKmjTChZFBFrI2JrRGyPiFvrfH5jRGyOiE0R8b2IOCeXD0bE/fmzZyLitmaf\ngCRJk3blX8JxJ7W7FpIkSVJHOWKyKCL6gbuAy4BzgOsqyaCSL6eUzk0pnQd8Grgzl18DDKeUzgXO\nB34zIk5rUt0lSTp61z1YzFffAH12sJUkSZLGGpjANquB7Sml5wEi4gHgKqDabz+lVP4N4jlAqnwE\nzImIAWA2sB8Y83vFkiS10Mq1cMcb7a6FJEmS1LEmkiw6CXixtP4j4L1jN4qIjwOfAIaA9+fihygS\nS7uAY4BbUkqvTaXCkiRJkiRJmj5N63+fUrorpXQG8AfAJ3PxauAQ8DPAcuB3IuL0sftGxA0RsTEi\nNr788svNqpIkSZIkSZKO0kSSRTuBU0rrJ+eyRh4Ars7LvwL8c0rpQEppD/B9YGTsDimle1JKIyml\nkSVLlkys5pIkSZIkSWq6iSSLfgCsiIjlETEEXAtsKG8QEStKq1cA2/Ly/5JfSYuIOcAa4NmpVlqS\nJEmSJEnT44hjFqWUDkbETcC3gH7g3pTSloj4E2BjSmkDcFNEXAwcAF4H1uXd7wLui4gtQAD3pZSe\nnI4TkSRJkiRJ0tRFSunIW7XQyMhI2rhxY7urIUmSJEmS1DUi4vGU0mFDA9XTtAGuJUmSJEmSNPOZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVZkskiRJkiRJUpXJIkmSJEmSJFWZ\nLJIkSZIkSVKVySJJkiRJkiRVmSySJEmSJElSlckiSZIkSZIkVUVKqd11qBERbwJb210PdZzFwCvt\nroQ6krGheowL1WNcqB7jQvUYF6rHuFA9MykulqWUlkxkw4HprskkbE0pjbS7EuosEbHRuFA9xobq\nMS5Uj3GheowL1WNcqB7jQvV0a1z4GpokSZIkSZKqTBZJkiRJkiSpqhOTRfe0uwLqSMaFGjE2VI9x\noXqMC9VjXKge40L1GBeqpyvjouMGuJYkSZIkSVL7dGLPIkmSJEmSJLVJRyWLImJtRGyNiO0RcWu7\n66PpFRGnRMR3I+LpiNgSEb+dy++IiJ0RsSlPl5f2uS3Hx9aIuLRUbux0kYh4ISI25+u/MZctjIiH\nI2Jbni/I5RERf5Gv/ZMRsap0nHV5+20Rsa5d56Opi4iVpTZhU0TsjYibbS96T0TcGxF7IuKpUlnT\n2oeIOD+3P9vzvtHaM9RkNIiLP4uIZ/O1/0ZEzM/lp0XE26V24+7SPnWvf6MYU2drEBdNu29ExPKI\neDSXPxgRQ607O01Wg7h4sBQTL0TEplxue9EjovF30959xkgpdcQE9AM7gNOBIeCHwDntrpfTtF7z\npcCqvHws8BxwDnAH8Lt1tj8nx8UwsDzHS7+x030T8AKweEzZp4Fb8/KtwKfy8uXAPwEBrAEezeUL\ngefzfEFeXtDuc3NqSnz0Ay8By2wvem8CLgJWAU+VyprWPgCP5W0j73tZu8/ZadJxcQkwkJc/VYqL\n08rbjTlO3evfKMacOntqEBdNu28AXwGuzct3A7/V7nN2mlxcjPn8M8Af5mXbix6ZaPzdtGefMTqp\nZ9FqYHtK6fmU0n7gAeCqNtdJ0yiltCul9ERefhN4BjhpnF2uAh5IKe1LKf03sJ0iboyd3nAVcH9e\nvh+4ulT+xVR4BJgfEUuBS4GHU0qvpZReBx4G1ra60poWHwB2pJT+Z5xtbC+6VErp34HXxhQ3pX3I\nn81LKT2Siqe6L5aOpQ5WLy5SSt9OKR3Mq48AJ493jCNc/0Yxpg7WoL1o5KjuG7lHwPuBh/L+xsUM\nMV5c5Ov6y8Dfj3cM24vuM8530559xuikZNFJwIul9R8xfuJAXSQiTgPeAzyai27K3fnuLXXdbBQj\nxk73ScC3I+LxiLghl52QUtqVl18CTsjLxkXvuZbahzjbCzWrfTgpL48t18y3nuKvuBXLI+K/IuLf\nIuLCXDbe9W8UY5qZmnHfWAT8uJSQtL3oDhcCu1NK20plthc9Zsx30559xuikZJF6VETMBb4G3JxS\n2gt8FjgDOA/YRdEVVL3lgpTSKuAy4OMRcVH5w5yN96cce1AeD+JK4Ku5yPZCNWwfNFZE3A4cBL6U\ni3YBp6aU3gN8AvhyRMyb6PGMsRnP+4bGcx21f5Cyvegxdb6bVvXa9eykZNFO4JTS+sm5TF0sIgYp\n/jN+KaX0dYCU0u6U0qGU0jvA5yi6/0LjGDF2ukxKaWee7wG+QREDu3P3zUrX3z15c+Oit1wGPJFS\n2g22F6pqVvuwk9pXlYyPGS4ifg34EPDR/JBPfs3o1bz8OMV4NGcx/vVvFGOaYZp433iV4rWTgTHl\nmqHytfxF4MFKme1Fb6n33ZQefsbopGTRD4AV+VcFhiheM9jQ5jppGuV3gv8WeCaldGepfGlpsw8D\nlV8q2ABcGxHDEbEcWEExSJix00UiYk5EHFtZphig9CmKa1r5NYF1wDfz8gbg+vyLBGuAN3JX0W8B\nl0TEgtzF/JJcppmt5i9+thfKmtI+5M/2RsSafI+6vnQszTARsRb4feDKlNJbpfIlEdGfl0+naB+e\nP8L1bxRjmmGadd/IycfvAr+U9zcuZr6LgWdTStVXhWwvekej76b08jPG0YyGPd0TxYjiz1FkbG9v\nd32cpv16X0DRje9JYFOeLgf+DticyzcAS0v73J7jYyul0eONne6ZKH5t5Id52lK5nhRjA3wH2Ab8\nC7AwlwdwV772m4GR0rHWUwxQuR34WLvPzWnKsTGH4i+5x5XKbC96bKJIFu4CDlC87//rzWwfgBGK\nL487gL8Cot3n7DTpuNhOMW5E5Rnj7rztR/L9ZRPwBPALR7r+jWLMqbOnBnHRtPtGfmZ5LMfaV4Hh\ndp+z0+TiIpd/AbhxzLa2Fz0y0fi7ac8+Y1QCWpIkSZIkSeqo19AkSZIkSZLUZiaLJEmSJEmSVGWy\nSJIkSZIkSVUmiyRJkiRJklRlskiSJEmSJElVJoskSZIkSZJUZbJIkiRJkiRJVSaLJEmSJEmSVPX/\n8lwR3hyQgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJcCAYAAADKNbH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8pGld7/3vr/ZUlkrS6SW9Dsz0\nAMMwM+DA4KBH3BAQX+jxqIjLqHhGz4MePQ963FBxQfE8B1Afz1HhoCAyICoIIioICOLADDPMwmzM\nPt3pTtLpLFVJaq+6zh/3XenqTNKpSqrqruXzfr361cld21WVpPLN77ru32XOOQEAAKC1QkEPAAAA\noB8RsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZaAsz+xMz+9UW3ddxM1szs7D/+b+a\n2Y+34r79+/tHM7upVffXxOP+tpmdN7O5Bq/vzOwK/+OLXl8z+y9mNu+/TvvM7CVm9oj/+Xe26zkE\nwcxeamYzQY+j35nZm8zsLzv0WE+a2bd04rG2eOwfMbPP132+ZmbP3MX9/ICZfaK1o0OvI2Shaf4b\nYs7MVs1sxcxuNbOfNLON7yfn3E86536rwfu65Jurc+6Uc27EOVdpwdif9ovDOfcK59x79nrfTY7j\nuKQ3SLrKOXeo2dvXv75mFpX0Nkkv81+nRUm/KemP/M//rpVj72X9HNA2hwXsjv8z8/ilrmNml/l/\n9ETqbvc+59zL2j9C9BJCFnbrO5xzo5JOSHqLpF+Q9K5WP0j9m1ifOS5p0Tl3rgX3dVBSQtL9dcdO\nbPq8YX38mqPP8b2LbkPIwp4459LOuY9K+j5JN5nZ1ZJkZu82s9/2P54ys4/5Va8lM/s3MwuZ2Xvl\nhY2/90v0/73uL8TXmdkpSZ/e6q9GSZeb2e1mljGzj5jZpP9YT6tU1KplZvZySb8s6fv8x7vHv3xj\n+tEf1xvN7CkzO2dmf2FmKf+y2jhuMrNT/lTfr2z32phZyr/9gn9/b/Tv/1skfVLSYX8c797m9j9v\nZrNmdtbMfmzTZe/2pxuvlPRV//CKmX3azB6T9My61zXuj+Vd/v2d8W9bm379ETP7dzN7u5ktSnqT\nf/zHzOxBM1s2s382sxN1j+/86uUj/tf1f5mZ1V3+n/3brprZA2b2Av/4YTP7W/81ecLM/mvdbV5k\nZnf4X9N5M3vbdq+tf/1f9r8GT5rZD9Qdj5vZ//S/RvPmTa0OmdmwpH+se93X/PHkzGzKv+2vmFnZ\nzMb8z3/LzH7/Uvdb97ivMrO77UJ195q6y540s58zs3vNLG1mf2VmiW2e1+X+13HRf37vM7PxusuP\nmdmH/Ndw0cz+yMyeI+lPJH2t/7xW/OteNLVuT58a+wMzO+2/5nea2ddf6jWvu92EeT/TC/73x8fM\n7Gjd5f/qv3b/7n8PfKL2GvuX/5B5PxOLdomfIf+67/Zf60/69/XZLb4XX29mj0h6xD/2bP/6S2b2\nVTP73rrr7zOzj/rP+XZJl296vPpp+SEze6s/1rSZfd7/mn/Ov/qK/3p/7Rav7Y1m9iX/dl8ysxsb\nfX3QR5xz/ONfU/8kPSnpW7Y4fkrSf/E/frek3/Y//l15vwCi/r+vl2Rb3ZekyyQ5SX8haVjSUN2x\niH+df5V0RtLV/nX+VtJf+pe9VNLMduOVFyD+ctPl/yrpx/2Pf0zSo/JCyoikD0l676axvdMf17WS\nCpKes83r9BeSPiJp1L/tw5Jet904N9325ZLm657jLf5jX7HF63vR67PN6/phSX/q39cBSbdL+gn/\nsh+RVJb005Ii/nN7tf86PMc/9kZJt9bdn5P0MUnj8oLygqSX+5d9j//1eaEkk3SFvMpaSNKdkn5N\nUsx/jR+X9G3+7b4g6Yf8j0ckvXib1+al/njfJiku6RskrUt6ln/52yV9VNKk/9r/vaTfvcT3x+ck\nfbf/8SckPSbpFXWXfVcD9/t8Seck3SApLOkm/2sQr/t63C7psH/7ByX95DbP7wpJ3+o/t/3+GH7f\nvyws6R5/LMPyKphfV/d1/Px239tbXUfSD0ra53+N3yBpTlJiu5+Vutvtk/TdkpL+a/HXkv5u0+M+\nJulKed9P/yrpLf5lV0lak/Qf/Of4Nv/r+bT3lLrv9dW66//Bpufg5P3RMuk/1rCk05J+1H9ez5d0\nXt7UvCR9QNIH/etdLe97dfP91X7O/pc/9iP+a3+jP4bL9PSfuY3X1h/LsqQf8sfw/f7n+3Z6ffjX\nX/+oZKGVzsp7c9msJGla0gnnXMk592/Of6e5hDc559adc7ltLn+vc+4+59y6pF+V9L3mV2b26Ack\nvc0597hzbk3SL0l6jV1cRfsN51zOOXePvF94126+E38sr5H0S865Vefck5LeKu9NtxHfK+nP657j\nm3b7hMzsoKRXSvpZ/zU9J++X9GvqrnbWOff/O+fK/mv+k/ICxIPOubKk35F0XX0FQd4vhRXn3ClJ\nn5F0nX/8xyX9D+fcl5znUefcU/JC137n3G8654rOW/fyzrpxlCRdYWZTzrk159wXd3hqv+qcKzjn\nPivpH+R9D5ikmyX9N+fcknNu1R/7ay5xP5+V9A3+1/gaSX/of57wx/y5Bu73Zkl/6py7zTlXcd4a\nv4KkF9c9zh86584655bkBbTrtAX/9fqk/9wW5IWQb/AvfpG8oPbz/tcy75zb9Tos59xfOucW/a/7\nW+UFiGc1cLtF59zfOuey/mvx5rox1vy5c+5h//vpg7rwfP+TpI855z7nnCvI+/mt7vCQ/1B3/V+R\nV7E7Vnf57/pfl5ykV0l60jn35/7zukveH2Lf4/9cfrekX/Nfv/skbbke07w1pj8m6Wecc2f8r+ut\n/hh28u2SHnHOvdcfw/slPSTpOxp4fdBHCFlopSOSlrY4/v/Jq4p8wsweN7NfbOC+Tjdx+VPyKmSt\nKLcf9u+v/r4j8tY91dSfDZiVV3XZbMof0+b7OtLEODY/x9064Y9l1p/KWpFX1TpQd53Nr/cJSX9Q\nd/0leVWp+vFv9zock/dX+lbjOFy7T/9+f1kXXtvXyfvL/iF/euVVl3hOy374rHlK3mu2X1515c66\nx/gn//h2PiuvwvUCSV+RVxX5BnkB6VHnnUiw0/2ekPSGTc/tmD+mmka+b2RmB83sA+ZN62Yk/aUu\nfG8fk/SUH3z3zJ/CfNCf0lqRlFIDP0dmljSzP/Wn0TLyqm3jm/7Q2e75XvS97X8dF3d4yPrrr8n7\nfjy81eXyvhY3bPpa/ICkQ/K+XhE19rM1Ja9SuNX38k42v4/UHqeRnx/0ERYJoiXM7IXy3kCe9le1\n/5fuG+T9Erpa3jqrLznnPiWv5L6VnSpd9X/FHpdXBTkvb9ooWTeusC7+BbvT/Z6V9yZdf99leVN3\nR7e8xdbO+2M6IemBuvs60+DtZ/X057hbp+VVVaYu8ct58+tyWtKbnXPv2+XjXb7N8Seccye3HIBz\nj0j6fr+C8B8l/Y2Z7dsUpmomzGy47rLjku6T97rnJD3XObfVa73V1/9WedWb75L0WefcA+ad/flK\neQFMDdxv7fV681bPrUm/44/zec65JfNacPxR3eMcN7PIFl/LrZ7bRT8P8oKGJMlff/XfJX2zpPud\nc1UzW5YXpnfyBnmv2Q3OuTkzu07SXQ3edlbeNHRtHEl504+XsvGzYGYj8irmZ+sur3/up+V9Hb91\n85347wdl//4e8g9v97N1XlJe3vfyPZsua/Z9pPY4/7TD7dBnqGRhT8xszK84fEDe+o2vbHGdV5nZ\nFf6US1pSRRemB+blrc1p1g+a2VX+G/RvSvob57V4eFhSwsy+3bzWBm+UNwVSMy/pMqtrN7HJ+yX9\nNzN7hv9m/juS/qrZyoE/lg9KerOZjfrTbP+vvKpEIz4o6UfqnuOvN/P4m8YyK2+t0Vv9r1fIvMXV\nm6d36v2JpF8ys+dKG4v4v6fBh/w/kn7OzL7GPFf4z/92Satm9gv+guKwmV3tB3SZ2Q+a2X7nXFXS\nin9fl5pG+g0zi/lh4VWS/tq/7Tslvd3MDvj3e8TMvs2/zbykfeafzOC/Pll5a8Verwuh6lZ5U6af\n9a+z0/2+U9JPmtkN/nMe9r8HRxt8zeqNyluzlDazI5J+vu6y2+WFlLf4j5Ews5fUPbejZharu/7d\nkv6jX3m6Ql61sP5xyvLW00XM7NckjTUxxpy8hd+Tau77828kvcrMvs4f629q599Fr6y7/m9J+qJz\nbrtq98ckXWne4vqo/++FZvYc/+fyQ5Le5L8mV8lbP/c0/tf8zyS9zbwTJMLmLXCPy3vNqtr+vevj\n/hhea2YRM/s+eWvRPrbD80SfIWRht/7ezFbl/dX4K/LWjfzoNtc9Kelf5P3i+IKk/+2c+4x/2e9K\neqNf1v+5Jh7/vfIWxM7JK+n/V8k721HS/yPvF/0ZeX/J159t+Nf+/4tm9uUt7vfP/Pv+nKQn5P0l\n+9NNjKveT/uP/7i8Ct8t/v3vyDn3j5J+X9Kn5U21fnqXY6j5YXmLzR+QtwD3b+Stk9vu8T8s6fck\nfcCfDrpP0isaeSDn3F/LW6Nzi7wFy38nadL/BfcqeWtPnpBXKfg/8qaoJG+x//1mtiZvcfNrLrEm\nb85/HmclvU/eIvJaZeIX5L1mX/TH/i/y1xn513m/pMf977nalNNn5U2p3l73+agunEW20/3eIek/\ny6s4LfvX+5FGXq8t/Ia8qcu0vLVmH6pd4L+G3yFvcfwped/b3+df/Gl5bTvmzOy8f+ztkoryAth7\n5L1WNf8sr7LysLyprLx2nqav+X15C7bPS/qimqjQOOfulxdob5EXGJd18c/oVm6RF+SWJH2NvAX7\n293/qqSXyVsvd1be98rv6cIfWz8lb2puTt57yJ9f4nF/Tt4U8pf8x/49SSE/mL9Z0r/730f1a+/k\nTzG/Sl7Fb1FexfBVzrnzwkCpneEFAEDXMa/FyYxz7o1BjwVoFpUsAACANiBkAQAAtAHThQAAAG1A\nJQsAAKANuqJP1tTUlLvsssuCHgYAAMCO7rzzzvPOuUs1OZbUJSHrsssu0x133BH0MAAAAHZkZg3t\nwsF0IQAAQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAA\nQBsQsgAAANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaANCFgAAQBsQsgAA\nANqAkAUAANAGhCwAAIA2IGQBAAC0ASELAACgDQhZAAAAbUDIAgAAaINI0AMAAGztlttONXS9195w\nvM0jAbAbVLIAAADagEoWAHSp937hST21lNVIPKKxRFQjiYhG4xFddXhMJ/YNBz08ADugkgUAXcg5\np0cX1jSWiGpqJK5ipaqnFtd162OL+vBdZ4IeHoAGUMkCgC6UyZdVqjg9//i4vv7k/o3jn35oXv/y\n4DnlihUNxcIBjhDATqhkAUAXms/kJUljQ9GLjtemCU8trXd8TACaQ8gCgC40l/ZDVuLikHVsIqmQ\nSU8tZYMYFoAmELIAoAvN+ZWs1KZKViwS0nRqSE8tErKAbkfIAoAuNO9XskYTT186e3xfUjPLWVWq\nrtPDAtAEQhYAdKG5TF7JWFjR8NPfpk9MJlWqOM2mcwGMDECjCFkA0IXmM/mnrceqqS1+Z8oQ6G6E\nLADoQnOZvMaGtu6ykxqKanwoqqcWOcMQ6GaELADoQnPpwraVLMlbl/XUUlbOsS4L6FaELADoMqVK\nVYvrhaf1yKp3Yt+wVvNlrWRLHRwZgGYQsgCgy5xbLcg5KXWJStaJyaQk6SmakgJdi5AFAF1moxHp\nNmuyJOlQKqF4JMTid6CLEbIAoMtst6VOvZCZjk0mCVlAFyNkAUCX2W5Lnc1OTCY1n8krk2ddFtCN\nCFkA0GXmM3nFIiElY+FLXu/EvmE5SXedWunMwAA0hZAFAF1mLpPXwbG4zOyS1zs2MSSTdOeTS50Z\nGICmELIAoMvMpfM6NJbY8XrxaFjTqYTuPLXcgVEBaBYhCwC6zHwmr4MNhCxJOr5vWHedWlG5Um3z\nqAA0i5AFAF3EOae5TF7TqcZC1onJpLLFih6aW23zyAA0a8eQZWYJM7vdzO4xs/vN7Df8488ws9vM\n7FEz+yszi/nH4/7nj/qXX9bepwAA/SOTKytfqjZcyTqxz2tKegfrsoCu00glqyDpm5xz10q6TtLL\nzezFkn5P0tudc1dIWpb0Ov/6r5O07B9/u389AEAD5vweWYcarGSNJ2OaTiV0x1OsywK6zY4hy3nW\n/E+j/j8n6Zsk/Y1//D2SvtP/+NX+5/Iv/2bb6RQZAICkupDVYCVLkl5wYkJ3n6aNA9BtGlqTZWZh\nM7tb0jlJn5T0mKQV51zZv8qMpCP+x0cknZYk//K0pH1b3OfNZnaHmd2xsLCwt2cBAH1iLp2TpIan\nCyXpmVPDOruSU4nF70BXaShkOecqzrnrJB2V9CJJz97rAzvn3uGcu945d/3+/fv3encA0Bfm0gVJ\nzYWsYxNJVZ10diXXrmEB2IWmzi50zq1I+oykr5U0bma13UuPSjrjf3xG0jFJ8i9PSVpsyWgBoM/N\nZfLaNxxTLNL42/PRySFJ0uklQhbQTRo5u3C/mY37Hw9J+lZJD8oLW//Jv9pNkj7if/xR/3P5l3/a\nOedaOWgA6FfN9MiqOTbhnWE4s8xm0UA3iex8FU1Leo+ZheWFsg865z5mZg9I+oCZ/bakuyS9y7/+\nuyS918welbQk6TVtGDcA9KW5dL7hMwtrplMJhUOm04QsoKvsGLKcc/dKev4Wxx+Xtz5r8/G8pO9p\nyegAYMDMZ/K69th4U7eJhEM6PJ5guhDoMnR8B4AuUShXtLhebKp9Q82xiSSVLKDLELIAoEucy3hn\nFh5KxZu+7dGJISpZQJchZAFAl5j3G5E2u/Bd8ipZ59cKyhUrrR4WgF0iZAFAl2h2S516xyY5wxDo\nNoQsAOgSc+nmt9SpOeb3yppZZsoQ6BaELADoEvOZvOKRkFJD0aZvW+uVxeJ3oHsQsgCgS8xlCjqU\nSsjMmr7t/tG44pGQTi8RsoBuQcgCgC4xn26+23uNmXGGIdBlCFkA0CXmMvldrceqOUqvLKCrNLKt\nDgCgzZxzXsjaxZmFt9x2SpKUL1X02MLaxuf1XnvD8T2PEUBzqGQBQBdYyZZULFd3PV0oSRPJmPKl\nKr2ygC5ByAKALlDrkTW9i0pWzcRwTJK0nC22ZEwA9oaQBQBdYG4P3d5rJpOELKCbELIAoAvMp3ff\n7b1mYtjrr7W8TsgCugEhCwC6wFwmLzPpwGjzm0PXDEXDikdCWsqWWjgyALtFyAKALjCfyWvfcFzR\n8O7fls1ME8kYlSygS9DCAQACsLnNwpefWlEsYlu2X2jGxHBMi2uFPd0HgNagkgUAXSCTL2ks0fye\nhZtNJqNazhblnGvBqADsBSELALpAOlfS2C42ht5sYjimUsVprVBuwagA7AUhCwACVqk6ZYsVjSb2\nvoJjwm/jsMLidyBwhCwACFiu5HVoT0bDe76vWkPSJXplAYEjZAFAwPL+NjhDsVZUsuiVBXQLQhYA\nBCzrV7KGWlDJikfCSsbCdH0HugAhCwACltuoZO09ZEnS5HBMy+usyQKCRsgCgIDlSt6ZgK1YkyV5\ni99ZkwUEj5AFAAGrVbISLapkTSRjSmdLqtIrCwgUIQsAAtbKNVmSt1F0xTllckwZAkEiZAFAwPLF\niuKRkMIha8n9Tfq9spbplQUEipAFAAHLlSotW/QuXeiVRRsHIFiELAAIWLZYadlUoSSND0VloiEp\nEDRCFgAELFdqbciKhEMaTUSoZAEBI2QBQMByxdZOF0relCENSYFgEbIAIGCtrmRJ3uJ3Fr4DwSJk\nAUDAcsWKkm2oZGVyJZWr1ZbeL4DGEbIAIEClSlXlqmt5JSs1FJWTtJort/R+ATSOkAUAAWp1t/ea\n1FBUkrRCQ1IgMIQsAAhQrdt7MhZp6f3WQlaakAUEhpAFAAGqVbJaPV04TsgCAkfIAoAAbYSsFk8X\nxqNhJaIhpXO0cQCCQsgCgADlWrw5dL3UUFRpFr4DgSFkAUCAckUvBLW6hYNUC1lUsoCgELIAIEC5\nUkUmKRZp/dtxaiiqNA1JgcAQsgAgQLlSRYloWCGzlt93aiiq9WJFpQoNSYEgELIAIEDZNnR7r0kN\nxSRJGc4wBAJByAKAAOVLrd8cuoaGpECwCFkAEKBssfWbQ9fQKwsIFiELAAKUK7avkjVGyAICRcgC\ngADlSu2rZMUiISVjYc4wBAJCyAKAgDjn2romS6r1yiJkAUEgZAFAQArlqqquPd3eawhZQHAIWQAQ\nkNq+he1q4SB5IWuFru9AIAhZABCQdu5bWDM+FFW+VNV6gT0MgU4jZAFAQLJ+JWsoFmnbY6SS3hmG\ns+l82x4DwNYIWQAQkE5Usmpd32fTubY9BoCtEbIAICC5jUpWe9dkSdLsCpUsoNMIWQAQkE5UssaG\nIjJJZ6lkAR1HyAKAgOSKFYVDpmjY2vYYkVBII/EIlSwgAIQsAAhIrlRWMhqWWftCluQtfqeSBXQe\nIQsAApIrVpRo43qsmrFElLMLgQAQsgAgINlSRck2rseqSSWjml3JyTnX9scCcAEhCwACki+2d9/C\nmvGhqNaLFWXyNCQFOomQBQAByZYqbT2zsGajjQPrsoCOImQBQEByHapkXQhZrMsCOomQBQABqFSd\nCuVqZytZtHEAOoqQBQAByJfa3+29ZjQRVciYLgQ6jZAFAAHoRLf3mnDIdHAsobNUsoCOImQBQABq\n+xYmO1DJkqTpVIJKFtBhhCwACEAnK1mSND0+xMJ3oMMIWQAQgKxfyepEx3dJOpxK6CwNSYGOImQB\nQABqlaxkLNKRx5tODalQrmo5W+rI4wEgZAFAIGprsjo1XXh4PCFJOrvCuiygUwhZABCAXLGsWCSk\ncMg68njTqSFJNCQFOomQBQAByJU604i0ZtqvZHGGIdA5O4YsMztmZp8xswfM7H4z+xn/+JvM7IyZ\n3e3/e2XdbX7JzB41s6+a2be18wkAQC/KFcsdDVlTw3FFw0avLKCDGllxWZb0Bufcl81sVNKdZvZJ\n/7K3O+f+Z/2VzewqSa+R9FxJhyX9i5ld6ZyrtHLgANDLcqXO7FtYEwqZDqUSmqOSBXTMjpUs59ys\nc+7L/serkh6UdOQSN3m1pA845wrOuSckPSrpRa0YLAD0i2yx0tFKliRNjw3pLGuygI5pak2WmV0m\n6fmSbvMP/ZSZ3Wtmf2ZmE/6xI5JO191sRluEMjO72czuMLM7FhYWmh44APSyfKnSsW7vNdPjdH0H\nOqnhkGVmI5L+VtLPOucykv5Y0uWSrpM0K+mtzTywc+4dzrnrnXPX79+/v5mbAkDPy5UCqGSlhjSX\nzqtapSEp0AkNhSwzi8oLWO9zzn1Ikpxz8865inOuKumdujAleEbSsbqbH/WPAQDkVbFKFdfRNVmS\ndGQ8oVLFaWGt0NHHBQZVI2cXmqR3SXrQOfe2uuPTdVf7Lkn3+R9/VNJrzCxuZs+QdFLS7a0bMgD0\ntkzO67re6ZB18uCoJOmB2UxHHxcYVI2cXfgSST8k6Stmdrd/7Jclfb+ZXSfJSXpS0k9IknPufjP7\noKQH5J2Z+HrOLASAC1ZqIavD04XPO5JSyKR7Tq/oG591oKOPDQyiHUOWc+7zkrZqSfzxS9zmzZLe\nvIdxAUDfSgdUyRqOR3TFgRHdc3qlo48LDCo6vgNAh61kg6lkSdK1R8d170xazrH4HWg3QhYAdFit\nkpWMNbJio7WuPTauxfWiZpZp5QC0GyELADosHdCaLMmrZEnSvTPpjj82MGgIWQDQYelsUSYpHu38\nW/CzDo0qFgnpnhnWZQHtRsgCgA5L50pKRMMK2VbnFLVXLBLSVdNjupvF70DbEbIAoMNWcqWOn1lY\n77pj47rvTFoVOr8DbUXIAoAOS+dKgazHqrn2WErZYkWPnlsLbAzAICBkAUCHrWSDrWRd4y9+p18W\n0F6ELADosEzAlaxn7BvWaCLC4negzQhZANBh6YDXZIVCpmuOpghZQJsRsgCgg5xz3sL3ACtZktcv\n66HZVeVLbC0LtAshCwA6aL1YUaXqlAywkiV567LKVacHZjOBjgPoZ4QsAOiglWxRUjDd3utdd4zF\n70C7EbIAoINqm0MHsW9hvUOphA6OxdleB2gjQhYAdNDSulfJCnq6UPKmDKlkAe1DyAKADlr2pwuT\n8eBD1nXHxvX4+fWNDasBtBYhCwA6aHmjkhXsdKEkXXM0JUn6ClOGQFsQsgCgg5ayJZkFv/Bdkq45\n4i9+p18W0BaELADooJVsUamhqMIhC3ooSiWjeubUMOuygDYhZAFABy2tFzWRjAU9jA10fgfah5AF\nAB20ki1pIhkNehgbrj02rvlMQXPpfNBDAfoOIQsAOqjbKlkvfuY+SdL7bz8V8EiA/kPIAoAOWskW\nNTHcPSHrOdNj+vbnTetPP/cY1SygxQhZANBBS9liV00XStIvvuLZqlal//HPDwU9FKCvELIAoENy\nxYrypWpXVbIk6dhkUj/2dc/Qh758RveyCB5oGUIWAHRIrdv7ZBetyap5/TderqmRmH77Yw/KORf0\ncIC+EHzLYQAYELV9C8eTsY2PO+WW23Ze2P51V+zX3919Rr/y4ft09ZHUttd77Q3HWzk0oG9RyQKA\nDlnJensETnbZdGHN15yY0MGxuP7p/jmVK9WghwP0PEIWAHTIkj9d2G0L32vCIdMrnzetpfWibn1s\nMejhAD2PkAUAHbJSC1ldWsmSpJMHRvWsg6P6zFfPaa1QDno4QE8jZAFAh2ysyRrqzkpWzSuuPqRC\nuaovP7Uc9FCAnkbIAoAOWV4vaiwRUSTc3W+9B8YSOjSW0MPzq0EPBehp3f2TDgB9ZDlb6tpF75td\neXBETy1mVShVgh4K0LMIWQDQIcvZosa7sEfWVq48OKqKc3psYS3ooQA9i5AFAB2ynC32TCXrxL5h\nxSMhfXWekAXsFiELADpkeb2k8S5t37BZOGS6fP+IHp5fpQM8sEuELADokOVssSu31NnOsw6NKp0r\n6dxqIeihAD2JkAUAHZAvVZRXU3CTAAAgAElEQVQtVrq6R9ZmVx4clSR9dY6zDIHdIGQBQAcsb3R7\n752QlRqK0soB2ANCFgB0wPJ6bd/C3liTVUMrB2D3CFkA0AG1SlavtHCooZUDsHuELADogFrI6pUW\nDjW0cgB2j5AFAB2wXNu3sEdaONSEQ6YrDtDKAdgNQhYAdMCSvyarlxa+11x5kFYOwG4QsgCgA5az\nRY3GI4p2+ebQW6GVA7A7vffTDgA9aDlb7KkeWfVo5QDsDiELADpgOVvq2ZAledUsWjkAzSFkAUAH\nLK8XNdFji97rXXlohFYOQJMIWQDQAb22b+FmJyaHFTbT6eVc0EMBegYhCwA6YHm92HONSOuFQ6bR\noYjSuVLQQwF6BiELANqsUK5ovVjpuS11NkslooQsoAmELABos5WsF0x6uZIlSWNDUWUIWUDDCFkA\n0GZL6725pc5mqaGoMvkSnd+BBhGyAKDNavsW9mK393qpoahKFceUIdAgQhYAtNlybUudHl+TNTbk\njX82nQ94JEBvIGQBQJvVKlm93MJBklKJiCRpjpAFNISQBQBttuyvyeqHhe+SNJchZAGNIGQBQJst\nZYsaiUcUi/T2W+5oIioT04VAo3r7Jx4AesBKtqTxHt5SpyYcMo0kIppL0/UdaAQhCwDabGm92PPt\nG2pSQ1EqWUCDCFkA0GYr2WLPt2+oGUtENc+aLKAhhCwAaLOlbFETfTBdKFHJAppByAKANlteL2mi\nT6YLx4aiWs2XtVYoBz0UoOsRsgCgjYrlqtYK5b6ZLkwN0SsLaBQhCwDaaKW2pU4fVbIkQhbQCEIW\nALTRctbfUqdf1mQlaEgKNIqQBQBttLTeH1vq1FyoZNErC9gJIQsA2qjfpguj4ZAmkpxhCDSCkAUA\nbbRUC1l9UsmSpEOpIdZkAQ0gZAFAG13YHLo/1mRJ0nQqwZosoAGELABoo+VsSclYWIloOOihtMzB\nsQSVLKABhCwAaKPl9f7ZUqdmOpXQ4npR+VIl6KEAXY2QBQBttJwtamK4f6YKJelQKiFJOpcpBDwS\noLvtGLLM7JiZfcbMHjCz+83sZ/zjk2b2STN7xP9/wj9uZvaHZvaomd1rZi9o95MAgG61lC31ZSVL\nkmZp4wBcUiOVrLKkNzjnrpL0YkmvN7OrJP2ipE85505K+pT/uSS9QtJJ/9/Nkv645aMGgB6xki1q\nsk/aN9QcGvNCFovfgUvbMWQ552adc1/2P16V9KCkI5JeLek9/tXeI+k7/Y9fLekvnOeLksbNbLrl\nIweAHrDUh2uyatOFLH4HLq2pNVlmdpmk50u6TdJB59ysf9GcpIP+x0ckna672Yx/bPN93Wxmd5jZ\nHQsLC00OGwC6X6lS1Wq+fzaHrhlNRDUSj9CQFNhBwyHLzEYk/a2kn3XOZeovc845Sa6ZB3bOvcM5\nd71z7vr9+/c3c1MA6AkrtX0L+2zhu+RVs6hkAZfWUMgys6i8gPU+59yH/MPztWlA//9z/vEzko7V\n3fyofwwABspyH3Z7r6EhKbCzRs4uNEnvkvSgc+5tdRd9VNJN/sc3SfpI3fEf9s8yfLGkdN20IgAM\njNrm0P0YsmhICuws0sB1XiLphyR9xczu9o/9sqS3SPqgmb1O0lOSvte/7OOSXinpUUlZST/a0hED\nQI84v+b1kdo/Gg94JK03nUro3Gpe5UpVkTAtF4Gt7BiynHOfl2TbXPzNW1zfSXr9HscFAD1vYbV/\nQ9ahVEJVJy2sFTSdGgp6OEBX4s8PAGiThdWCIiHT+FD/LXyfpo0DsCNCFgC0ycJqQVMjcYVC200G\n9K6DY4QsYCeELABok4W1Ql9OFUramCKkVxawvUYWvgMAGnTLbac2Pn54blWjiehFx/rFRDKqWCRE\nGwfgEqhkAUCbrBbKGk3059+yZqbpVIJKFnAJhCwAaIOqc1ovlDXSpyFL8tZlzROygG0RsgCgDbLF\niqpOGo33b8iaTiU0m8kFPQygaxGyAKANVvPevoUjif5r31BzKJXQfLqgarWprWuBgUHIAoA2WMuX\nJfV5JWssoWKlqiV/j0YAFyNkAUAbrBb8kNXHa7IO0ZAUuCRCFgC0wapfyernhe+H/F5ZhCxga4Qs\nAGiDtXxJsUhI8Ug46KG0TW1rnVl6ZQFbImQBQBusFsp9vR5LkqZG4gqHTHNpzjAEtkLIAoA2WM33\nd48sSQqHTAdG45pLF4IeCtCVCFkA0AZr+f6vZEnS5HBMy5xdCGyJkAUAbbBaKPV1j6yayeGYltYJ\nWcBWCFkA0GKlSlX5UrWv2zfUTCSpZAHbIWQBQIutFfq/EWnN5HBMS2uELGArhCwAaLG1AeiRVTM5\nHNNqoaxiuRr0UICuQ8gCgBZb3dhSp//XZE0MxyRJK0wZAk9DyAKAFlst1DaHHoBKVtILWexfCDwd\nIQsAWmxjunAA1mRNDHvVOs4wBJ6OkAUALbZaKCsZCyscsqCH0nb7huOSCFnAVghZANBia/nyQLRv\nkC5UspYJWcDTELIAoMVW86WBWPQueX2yJGlpvRTwSIDuQ8gCgBZbK/T/voU10XBIo4kIDUmBLRCy\nAKCFnHNaHZB9C2vYWgfYGiELAFqoUK6qXHUDU8mSCFnAdgbnXQAAOmCjEWkfh6xbbjt10ee5YkVz\n6fzTjr/2huOdHBbQdahkAUALbTQiHZCF75KUjEWULVaCHgbQdQhZANBCawNQydpsOBbWeqEs51zQ\nQwG6CiELAFrowr6FAxSy4hGVq07FCptEA/UIWQDQQmuFssJmGoqFgx5KxyT955otMGUI1CNkAUAL\nrea9Hllm/b+lTs2wX7VbL5YDHgnQXQhZANBCa4XSQK3HkuoqWSx+By5CyAKAFlrNlzUyQOuxJGk4\n5leyClSygHqELABooUHaHLrmwnQhlSygHiELAFqkUnXevoUD1CNLkuLRkEImZalkARchZAFAiyyu\nF+Q0WD2yJClkpqFYhEoWsAkhCwBaZGG1IEkDtyZL8hqSZjm7ELgIIQsAWqQWsgatkiV5W+us0ycL\nuAghCwBa5ELIGqw1WZI0HA/TJwvYhJAFAC2ysDbI04URFr4DmxCyAKBFFlYLikdCikUG7601GQ8r\nW6yoyibRwIbBeycAgDZZWC0MZBVL8ipZTlK+xLosoIaQBQAtsrBaGMhF75K3Jktik2igHiELAFpk\nYa2gkQFc9C55ZxdKbBIN1CNkAUCLLKwWNDrA04WSaOMA1CFkAUAL5EsVrQ7gvoU1ydp0IZUsYAMh\nCwBaYJC7vUt1lSy21gE2ELIAoAVqPbIGtZIVi4QUDZvW6ZUFbCBkAUALbFSyBnThu+Qtfme6ELiA\nkAUALXAuk5c0uJUsydskmoXvwAWELABogblMXpGQDeyaLElKxqlkAfUIWQDQArPpvA6MxhUyC3oo\ngUnGwix8B+oQsgCgBeYzeR1KJYIeRqCG4xEWvgN1CFkA0AKzaULWcCysQrmqcrUa9FCArkDIAoA9\ncs5pLp3XobGhoIcSqNrWOlmmDAFJhCwA2LPVQlnZYkXTg17J8hf9s0k04CFkAcAezaW99g0HBz1k\nxbytddgkGvAQsgBgj2oha9ArWcl4bZNoQhYgEbIAYM9qIevQ2GCHrFolizVZgIeQBQB7NOuHrANj\n8YBHEqzkxibRVLIAiZAFAHs2l8lr33BM8Ug46KEEKhwyJaIhFr4DPkIWAOzRXDo38D2yaoZjESpZ\ngI+QBQB7NJcpDPyi95pkLEwlC/ARsgBgj+bSOR0c8EXvNcNxKllADSELAPYgX6poOVuikuVLxiKc\nXQj4CFkAsAfzGb8RKZUsSdJwPKz1QlnOuaCHAgSOkAUAezC70Yh0sPctrBmORVSuOhUrbBINELIA\nYA9qlaxDqcHukVWTrDUkZfE7QMgCgL2oVbIOUcmSdGGTaBa/A4QsANiTuXReI/GIRvxwMeiSbK0D\nbNgxZJnZn5nZOTO7r+7Ym8zsjJnd7f97Zd1lv2Rmj5rZV83s29o1cADoBnPpPI1I6wyzSTSwoZFK\n1rslvXyL4293zl3n//u4JJnZVZJeI+m5/m3+t5kN9j4TAPraXCZP+4Y6wxv7F1LJAnYMWc65z0la\navD+Xi3pA865gnPuCUmPSnrRHsYHAF1tLp2nfUOdeDSkkElZKlnAntZk/ZSZ3etPJ074x45IOl13\nnRn/2NOY2c1mdoeZ3bGwsLCHYQBAMMqVqs6tUsmqFzLTUCxCJQvQ7kPWH0u6XNJ1kmYlvbXZO3DO\nvcM5d71z7vr9+/fvchgAEJzza0VVHY1INxuOhZXl7EJgdyHLOTfvnKs456qS3qkLU4JnJB2ru+pR\n/xgA9J3ZdE6SqGRtMhyPaI3pQmB3IcvMpus+/S5JtTMPPyrpNWYWN7NnSDop6fa9DREAuhNb6mxt\nOB7h7EJA0o6NXczs/ZJeKmnKzGYk/bqkl5rZdZKcpCcl/YQkOefuN7MPSnpAUlnS651zTMwD6EsX\nttQhZNUboZIFSGogZDnnvn+Lw++6xPXfLOnNexkUAPSCuUxesXBIk8OxoIfSVUbiEeVLVRXKFcUj\ndPHB4KLjOwDs0lw6r4OpuMws6KF0lVG/IeniWjHgkQDBYh8IAGjALbedetqxe06nFTbb8rJBVuv6\nfn6toMPj7OmIwUUlCwB2KZMvaWwoGvQwus5I4kLIAgYZIQsAdsE5p0yupFSCkLXZyEYli+lCDDZC\nFgDsQq5YUbnqqGRtYSROJQuQCFkAsCvpfEmSCFlbiEVCioVDOr9KJQuDjZAFALuQyXkhK0XI2tJI\nIkIlCwOPkAUAu5DOec02xxKcpL2VkXhEi+uELAw2QhYA7EI6V5JJGmXh+5ZG4hGmCzHwCFkAsAuZ\nfEkjiYjCIRqRbmU4znQhQMgCgF3I5Eqsx7qEkXhES9miypVq0EMBAkPIAoBdSOdKGmOqcFsjiYic\nk5azpaCHAgSGkAUAu0C390ujVxZAyAKAphXKFeVLVaYLL4GQBRCyAKBpGdo37IiQBRCyAKBpaRqR\n7qgWshbZvxADjJAFAE3KsKXOjhJRb2udBSpZGGCELABoUm1LHc4u3J6Zad9IjIakGGiELABoUjpX\n0lA0rFiEt9BLmRqJsyYLA413CABoEo1IGzM1EmP/Qgw0QhYANCmdL2lsiDMLdzI1Eme6EAONkAUA\nTUrnylSyGrBvJK7F9YKcc0EPBQgEIQsAmlCuVLVeKHNmYQOmRmIqVdxGywtg0BCyAKAJq3mvEWmK\nMwt3tH80Lkk6T68sDChCFgA0gUakjZsaqYUsFr9jMBGyAKAJaRqRNmzfSEwSIQuDi5AFAE3IUMlq\n2EYla5WQhcFEyAKAJqRzJcUiIcVpRLqjiWRMIZMW11mThcHEuwQANCGdKymViMrMgh5K1wuHTJPD\ndH3H4CJkAUAT6PbenKmRmBZoSIoBRcgCgCZk8vTIagb7F2KQEbIAoEGVqtMqW+o0hf0LMcgIWQDQ\noLVCWVXHmYXNYP9CDDJCFgA0aKN9A93eG7ZvJK5cqaL1QjnooQAdR8gCgAbVur2zJqtxUzQkxQAj\nZAFAgzJ5GpE2a4r9CzHACFkA0KB0rqRIyJSMhYMeSs/Yz/6FGGCELABoUDpX0tgQjUibwf6FGGSE\nLABoUCZX0hiL3puyb7i2fyHThRg8hCwAaFA6V1KKHllNiUVCSg1F6ZWFgUTIAoAGOOeUyZdZ9L4L\nUyMxpgsxkAhZANCA9WJFlaqjfcMu7KMhKQYUIQsAGrDRiJSQ1bT97F+IAUXIAoAGbDQiZeF705gu\nxKAiZAFAA9JUsnZtaiSuTL6sQrkS9FCAjiJkAUADMvmSQiaNJDi7sFn7/Iaki3R9x4AhZAFAAzK5\nkkYTUYVoRNo09i/EoCJkAUADvB5ZTBXuRm3/QipZGDSELABoQDpXpn3DLtX2L1ygkoUBQ8gCgB04\n55TJlZRiPdausH8hBhUhCwB2kMmXVaxUqWTtUjIWUTIWpiEpBg4hCwB2MJ/JS6J9w15MjcTZvxAD\nh5AFADuYTROy9oqGpBhEhCwA2MFcOidJTBfuwRT7F2IAEbIAYAez6bxM0igL33ft4FhCc/60KzAo\nCFkAsIO5dF7D8YgiId4yd+vIxJDSuZJW86WghwJ0DO8YALCDuUye9Vh7dHRiSJJ0ZiUX8EiAziFk\nAcAO5tJ51mPt0ZFxL2TNLBGyMDgIWQCwg9l0Xqkh1mPtxREqWRhAhCwAuIRsseztW5igkrUX+0fi\nikdChCwMFEIWAFzCnN8ji+nCvTEzHRkf0sxyNuihAB1DyAKASyBktc6RiSGdWaaShcFByAKAS5hj\nS52WOToxpBlCFgYIIQsALqG2pc4Ya7L27OhEUovrReWKlaCHAnQEp8sAwCXMpb0eWbEIf5M265bb\nTl30+VOL65KkP/3cYzowmtg4/tobjnd0XECn8K4BAJdwZiW30eMJezM+FJMkrWTp+o7BQMgCgEs4\nvZTVsUlCVitMDHshaznLRtEYDIQsANiGc04zyzkdnUgGPZS+MJqIKGRUsjA4CFkAsI3F9aJypYqO\nTVDJaoWQmcaTMSpZGBiELADYxuklr3EmlazWGR+KUsnCwCBkAcA2aj2djk0SslplPBnTCpUsDAhC\nFgBs4/RyrZLFdGGrTCSjWs2XVa5Ugx4K0HaELADYxsxyTpPDMQ3HaSnYKuPJmJykdI4pQ/S/HUOW\nmf2ZmZ0zs/vqjk2a2SfN7BH//wn/uJnZH5rZo2Z2r5m9oJ2DB4B2Or2UpYrVYhNJr3P+MuuyMAAa\nqWS9W9LLNx37RUmfcs6dlPQp/3NJeoWkk/6/myX9cWuGCQCdd2Y5p2Msem+p8WStISnrstD/dgxZ\nzrnPSVradPjVkt7jf/weSd9Zd/wvnOeLksbNbLpVgwWATqlW/R5ZNCJtqdRQVCYqWRgMu12TddA5\nN+t/PCfpoP/xEUmn66434x97GjO72czuMLM7FhYWdjkMAGiPhbWCipUq7RtaLBwyjQ1FqWRhIOx5\n4btzzklyu7jdO5xz1zvnrt+/f/9ehwEALVXrkUUj0tYbT0apZGEg7DZkzdemAf3/z/nHz0g6Vne9\no/4xAOgpF9o3UMlqtYlkTCs5Klnof7sNWR+VdJP/8U2SPlJ3/If9swxfLCldN60IAD1jZslrRMrZ\nha03nowqkyupUm16EgToKTs2fzGz90t6qaQpM5uR9OuS3iLpg2b2OklPSfpe/+ofl/RKSY9Kykr6\n0TaMGQDa7vRyVvtH40pEw0EPpe9MJGOqOimTL2nCP9sQ6Ec7hizn3Pdvc9E3b3FdJ+n1ex0UAARt\nZjnHeqw2Gfd7Za1kCVnob3R8B4AtnF7Osh6rTSaGvGC1zBmG6HOELADYpFypanYlr2P0yGqL1EYl\ni5CF/kbIAoBN5jJ5lauOSlabRMMhjcYjtHFA3yNkAcAmM8vemYVsqdM+40kakqL/EbIAYJONRqRM\nF7bNeDKmFSpZ6HOELADY5PRyTmbSdIqQ1S4TyahWciVVHb2y0L8IWQCwycxyVtNjCcUivEW2y3gy\npkrVaS1fDnooQNvwDgIAm8ws5Vj03mYT/hmGtHFAPyNkAcAmM8tZHWU9VluN+01IWZeFfkbIAoA6\nxXJVs5k8law2m9gIWVSy0L8IWQBQZzadk3NiS502i0VCSsbC9MpCXyNkAUCd00tejywqWe03kYxp\nJUclC/2LkAUAdWaW6ZHVKePJqJbXqWShfxGyAKDO6eWswiHTobFE0EPpe7VKVrVKryz0J0IWANSZ\nWc7p8HhCkTBvj+22bySmUsVpNpMPeihAW/AuAgB1Ti9l2bOwQw6MetXCR+ZXAx4J0B6ELACoc3o5\np6OcWdgRB0bjkqRHz60FPBKgPQhZAODLlypaWC1QyeqQ4XhEw7EwIQt9KxL0AAAgaLfcdkqSdG7V\nWxt0aim7cQztdWAsoUcIWehTVLIAwFfb4mVyOBbwSAbH/tG4HplflXOcYYj+Q8gCAN/SutcYs7av\nHtrvwGhcmXxZC6uFoIcCtBwhCwB8K9miwiHTaIKVFJ1SO8OQdVnoR4QsAPAtZUsaH4oqZBb0UAbG\ngTHvDEPWZaEfEbIAwHcuk9fUSDzoYQyU0XhEo4mIHjlHryz0H0IWAEgqlL32DUfokdVRZqaTB0b0\nyDyVLPQfQhYASDq7kpeTaEQagJMHRlmThb5EyAIASTPLWUnSURqRdtzJgyNaXC9unN0J9AtCFgDI\n2xh6fCiqkThnFnbaFQdGJHGGIfoPIQsAJJ1ZybEeKyC1kMXid/QbQhaAgZctlLW0XmSqMCCHU0NK\nxsIsfkffIWQBGHgzKzlJLHoPSihkuuLACNOF6DuELAADr7bo/cg4ISsohCz0I0IWgIE3s5zT1Ehc\niWg46KEMrCsOjGguk1cmXwp6KEDLELIADDTnnM4s55gqDNjJA6OSOMMQ/YWQBWCgzWXyWi2UCVkB\nO1lr48Did/QRQhaAgXbP6bQkmpAG7dhkUrFIiDYO6CuELAAD7d6ZFYVMmk4lgh7KQAuHTM+cGma6\nEH2FkAVgoN07k9ahsYSiYd4Og3by4KgeIWShj/CuAmBgOed078yKjjBV2BVOHhjRzHJO2WI56KEA\nLUHIAjCwnlzMKpNn0Xu3qC1+f+zcesAjAVqDkAVgYN07syKJTu/d4uRB9jBEfyFkARhY95xOKxEN\n6cAoi967wYl9w4qEjMXv6BuELAAD656ZFT33cErhkAU9FEiKhkO6bGqYxe/oG4QsAAOpXKnq/rNp\nXXM0FfRQUOckexiijxCyAAykh+fXlC9Vde3R8aCHgjonD4zoqcV15UuVoIcC7BkhC8BAqi16p5LV\nXU4eHFXVsYch+gMhC8BAumcmrdFERJftGw56KKjz3MNjkqT7z6YDHgmwd5GgBwAAQbjn9IquOZpS\niEXvgbvltlMbH1edUywS0ofvOqNK9cJ1XnvD8QBGBuwNlSwAA+f0UlYPzGb0kiumgh4KNgmZ6XAq\nobMr+aCHAuwZIQvAwPn7e89Kkr7jmsMBjwRbmR4f0mw6p6pzQQ8F2BNCFoCB89G7z+oFx8d1bJI9\nC7vRkdSQShWn86uFoIcC7AkhC8BAeWR+VQ/Nreo7rqWK1a0Oj3vbHJ1N5wIeCbA3hCwAA+Xv751V\nyKRvv2Y66KFgG/tH44qEjHVZ6HmcXQigb9WftSZJzjm974tP6bKpYf3LA+cCGhV2Eg6ZDqUSOrtC\nJQu9jUoWgIFxNp3X4nqRLu894HBqSGfTOTkWv6OHEbIADIx7T68obLbR8BLda3o8oXypquVsKeih\nALtGyAIwEKrO6d4zaZ08OKJkjJUS3e5IbfE7U4boYYQsAAPh1GJW6VxJ1zBV2BMOjiUUMkIWehsh\nC8BAuPfMiqJh03OmR4MeChoQDYd0YDRBGwf0NEIWgL5XqTp95UxGzz40pngkHPRw0KDD4wmdWcmz\n+B09i5AFoO89fn5N64WyrjmaCnooaMJ0akjrhbJW8+WghwLsCiELQN+793Ra8UhIVx5kqrCX0Pkd\nvY6QBaCvlatV3T+b1nMPjyka5i2vlxxOJSSx+B29i3ccAH3tiYV15UtVXX2YqcJeE4+GtW84xvY6\n6FmELAB97YHZjGLhkC4/MBL0ULALh8eHmC5EzyJkAehbVef04GxGJw+OMFXYo46MD2klW9LyejHo\noQBN410HQN86u5JTJl/WVdNso9Orpse9dVkPzGYCHgnQPEIWgL71wNmMQiY96xBnFfaqwynvDMP7\nzqQDHgnQPEIWgL71wGxGl00Ns1dhDxuORzQ+FNV9Z6lkofcQsgD0pSfOr+vcaoGpwj4wPT6k+89S\nyULvIWQB6EuffGBOkvQcQlbPOzye0BPn17VeoPM7egshC0Bf+sT98zqcSmgiGQt6KNijI6khOce6\nLPQeQhaAvrOwWtCdp5b1nMNUsfrB8X1JmUlfeHwx6KEATdlTyDKzJ83sK2Z2t5nd4R+bNLNPmtkj\n/v8TrRkqADTm0w/NyzmxHqtPJGMRXX04pVsfI2Sht7SikvWNzrnrnHPX+5//oqRPOedOSvqU/zkA\ndMwn7p/X0YkhHRpLBD0UtMiNl+/TXaeWlStWgh4K0LB2TBe+WtJ7/I/fI+k72/AYALCl9UJZ//bo\neb3sqkMys6CHgxa58YoplSpOX3pyKeihAA3ba8hykj5hZnea2c3+sYPOuVn/4zlJB7e6oZndbGZ3\nmNkdCwsLexwGAHg+9/CCiuWqXvbcLd960KNeeNmEIiFjyhA9Za8h6+uccy+Q9ApJrzez/1B/oXPO\nyQtiT+Oce4dz7nrn3PX79+/f4zAAwPOJB+Y1kYzq+hMsB+0nyVhEzz8+rlsfOx/0UICG7SlkOefO\n+P+fk/RhSS+SNG9m05Lk/39ur4MEgEaUKlV9+qFz+qZnH1SEDaH7zo2XT+m+M2mls6WghwI0ZNfv\nQmY2bGajtY8lvUzSfZI+Kukm/2o3SfrIXgcJAI24d2ZF6VxJ3/KcA0EPBW1w4+X7VHXSbU8wZYje\nsJc/9Q5K+ryZ3SPpdkn/4Jz7J0lvkfStZvaIpG/xPweAtrv10UWZSS9+5r6gh4I2eP7xCSWiIdZl\noWfsetdU59zjkq7d4viipG/ey6AAYDdufWxRV02PaWKYLu/9KBYJ6YWXTbIuCz2DRQsA+kK+VNGd\np5b1tVSx+tqNl0/p4fk1LawWgh4KsCNCFoC+8OVTyyqWq7rxCkJWP3uJ//WlmoVeQMgC0Be+8Nii\nwiHTCy+bDHooaKPnHk5pLBHRF1iXhR5AyALQF259bFHXHE1pNBENeihoo3DI9OJn7tO/U8lCDyBk\nAeh5a4Wy7jm9wnqsAXHj5ft0eimn00vZoIcCXNKuzy4EgCDdctupjY+/OreqctUpX6pedBz96cYr\npiR5U8THJpMBjwbYHpUsAD3v8fNrCodMx/mFOxBOHhjR1EicKUN0PUIWgJ73+MK6jk0kFYvwljYI\nzEw3Xr5Ptz62KG+LXOJH03cAABSMSURBVKA78Y4EoKflihWdXcnp8v3DQQ8FHfSSK/ZpYbWgxxbW\ngh4KsC3WZAHoaU+cX5OT9Mz9I0EPBW20ea3d8npRkvTWTzysrz+5f+P4a2843tFxAZdCJQtAT3ts\nYV3RsOnY5FDQQ0EHTQzHdGR8SPedSQc9FGBbhCwAPe3x82s6sW9YkRBvZ4PmeUdSOr2c26hqAd2G\ndyUAPWs1X9J8pqDLp1iPNYiuPpKSJN13lmoWuhMhC0DPeuL8uiTWYw2qyeGYjk4M6StMGaJLEbIA\n9KzHFtYVj4R0eJz1WIPqeUdSmlnOaYkpQ3QhQhaAnvX4wpqeMTWscMiCHgoCsjFlSDULXYiQBaAn\nrWSLWlwvMlU44CaSMR1jyhBdipAFoCfdfzYjSbryACFr0D3vSEpnVnJaXCsEPRTgIoQsAD3prtPL\nOjI+pANjiaCHgoDVpgypZqHbELIA9Jyvzq3q7Epezz8+HvRQ0AXGkzEdn0wSstB1CFkAes6H7ppR\nyKRrjhKy4HnekZRm03k9zl6G6CKELAA9pVJ1+ru7zujKg6MaibP9Kjy1KcOPf2U24JEAFxCyAPSU\nWx87r/lMQc8/PhH0UNBFUkNRnZhM6mP3ErLQPQhZAHrKh798RqOJiJ59aDTooaDLPO9oSg/NrerR\nc0wZojsQsgD0jPVCWf9435xedc1hRcO8feFiVx9Oyf5ve3ceHEd55nH8+8yMbusWtiVZlg/AF8bG\nCBsbs5gQCJCYwznKORY2LBBybHYrS+2SSmVDJbvLJqnU1iYEkqw3G4wTIORa45wmDk6IwfcB+HZ8\nSLIObF2WdY1m3v1j2kIYyZYtjVqj+X2qunqmp6fnGT3q1qN+u9/X4Jc6myUjhI5SIpIwfvN6Le3h\nCO+fV+p3KDIC5WSkcM2kAl7YdRznnN/hiKjIEpHE8bPtVUwsyOTqcl2PJX27Y04JB+tb2Vt7yu9Q\nRFRkiUhiqGluZ8OhkyybV4qZxiqUvt12xXiCAeOFncf9DkVERZaIJIZfbD+Oc3D3VWoqlP4Vjklj\n8aVFajKUEUFFloiMeM45fratioryfMoLs/wOR0a4pXNKqGxoZ0dlk9+hSJJTkSUiI96mww0cqG9l\n2bwJfociCeCWWeNIDQVYrSZD8ZmKLBEZ0bYda+SBlVsozk3nvVcW+x2OJICc9BRunHYJv9xVQySq\nJkPxj4osERmxNhw8wcdWbCQ/K5XnH1pIbkaK3yFJglg6p4T6U51sPHzS71AkianIEpER6cXddfzN\nDzZTlp/J859YyIT8TL9DkgRy0/RxZKYGeWGnOiYV/6jIEpERZ/XO4zy0aiszxmfz7IPXMjYn3e+Q\nJMFkpAa5eeY4fv16DV3dUb/DkSSlIktERpSnXz3K3z+7nXnl+ay6fwH5Wal+hyQJ6o45JTS1hfnz\nwRN+hyJJSkWWiIwI0ajjsV/v4Yu/eJ0bp43lqY/PJztd12DJxbv+skvISQ+pY1LxTcjvAEREOsIR\nHn5+J2t21bBgcgE3ThvLz7dX+x2WJKAfbTz2tueXj8tmzWs1zCnL6xlU/CMLJvoRmiQhFVki4qum\nti4eWLmFzUcaeeS26WSnhTRsjgyZKyfkseVoI/tqT3FFaa7f4UiSUXOhiPimsqGNZU9uYGdlM9/6\n8FU8dMNUFVgypKZckkV2WojNRxr8DkWSkIosEfFFRzjC/U9t4cSpTlbdv4Clc0r8DklGoYAZi6YW\ncqC+larGNr/DkSSjIktEfPHYr/awr+4U3/zwVcyfXOB3ODKKLZhSSHpKgJf2vel3KJJkdE2WiAyL\n3hck761tYeUrR7luaiHHmzrecbGyyFBKTwmyaGoR6/bWU9vS4Xc4kkR0JktEhlVLR5ifbK2iODed\n98wa73c4kiQWTSkkNRhg/b56v0ORJKIiS0SGTdQ5frq1inAkyocqyggFdQiS4ZGZFmLB5AJ2VTVz\n5MRpv8ORJKEjnIgMmw2HTnKgvpXbZxczTkPlyDBbfFkRwYDx5EuH/A5FkoSKLBEZFseb2vnt67XM\nKM5h/iRd6C7DLzs9hYpJ+fx0WxXVTe1+hyNJQEWWiMTd8aZ2Vm08SmZakGVXlaovLPHNX112CQDf\nW6+zWRJ/KrJEJK7qT3Xw0RUb6QhHuGfhJLLSdFOz+CcvM5Vl80p5dnMl9ad0p6HEl4osEYmbxtNd\n/PWKTdS1dHDvwkmU5mX4HZIIn1xyKeFIlP9cu59o1PkdjoxiKrJEJC5aOsLc8/1NHD55mhX3VFBe\nmOV3SCIATC7K4p6Fk3hmUyUPPr2V5vaw3yHJKKUiS0SGXFtXN/f972b21rbwnY/NY9GlRX6HJPI2\nX1o6ky++byYv7avnjsdfZk9Ni98hySikiyNEZNB699gedY6nNhzhYH0ry+dPpLa5Uz26y4hjZvzt\n4slcOSGXT/9wG3c/8Wf+/e7ZLJs3we/QZBTRmSwRGVJrd9dxoL6Vu+aWMrs01+9wRM7pmkkFrPns\nYuZMyONzP97J5368Q52VypBRkSUiQ2ZPTQvr97/JNZPyuUaDPkuCGJudzg/vX8Cnlkxlzc4abvzG\nSzz09Fa2HWv0OzRJcGouFJEhcbK1k+e3VlKal8H7rizxOxyRfvXXfD0hP5N/vOVyXjl0kvX73+Q3\nb9RSUZ7PQzdM5aYZY9W/m1wwFVkiMmhd3VF+uPEYhvGR+RNJ0ZiEkqCy01O4ZdZ4bpgW67T0f14+\nzP0rt1BRns/nb5/B1eX5PkcoiURHQhEZFOccq3dWU9fSwYcqysjPSvU7JJFBSwsF+fh1k3np4SU8\ntmw2RxvaeP+TG/jkqq0c1jVbMkA6kyUig/LMpkq2HWviXdPHMm18tt/hiAypUDDAh+dP5I45Jaz4\n02G++8dDrN1dx/L5ZXzs2nKmj8/xO0QZwcw5/3u7raiocFu2bPE7DBG5QK9XN7PsiQ2UF2Zy76JJ\nBHTNioxypzrC/H5PPVuONhB1UJKbzv3XT+HOuSUUjknzOzwZJma21TlXcd71VGSJyMVo6Qiz9Fsv\n09Ud5b7rJmtMQkkqrZ3d7KpqYtuxRo43dRAKGDdOH8v9iyezYEqh3+FJnA20yNJRUUQumHOOR366\ni6rGdp578Fr217X6HZLIsBqTFmLR1CIWTS2itqWD7Ucb2XDwBGt311FemMmSy8dy+bgxPXckfmTB\nRJ8jFj+oyBKRC/b0q0f51Wu1fP626VRMKlCRJUltfE46t80u5qYZ49hytIE/HTjBU68coSQ3nRum\njWVWia7bSlYqskTkgrxW1cy/rtnDu6aP5YHrp/gdjsiIkRoKsGhqEfMnF7Czson1+9/kmU3HKM3L\nYPr4bComqYPeZKMuHERkwFo6wnz6R9soGpPKNz44h0BAF7qLnC0UCHB1eQH/8O7L+eDVEzjVEeYD\n33mFv3tmO1WNbX6HJ8NIZ7JEZEDCkSj/9Pwujje189wnFqo/LJHzCJhx1cR8ZpXk0tDWxXfXH+J3\nb9Ty4F9N4RM3TGWMbhYZ9XQmS0TOa/fxFu769p/5zRu1/POt09XrtcgFSA0F+NzNl7Pu4SXcMms8\n31p3kMVfXcfj6w7Q0hH2OzyJI3XhICL96uqO8vgfDvLEHw6Sl5nCV+68gttmF79jvf7GghORd6ps\naGPd3nr21Z0iPSXAdd5dihmpQd2FmCDUT5aIDMquqiYeWLmFupZOrirL472zi8lU84bIkKlubGfd\nvnr21LSQFgowtyyPz7zrUhZMLiQ1pIamkUxFlohcMOccrxw6yQ82HOHFPXWMSQtx19xSphfrFnSR\neKlpbmf9/jfZU9NCOOLITguxZPpYbp45jusvLdL1jyOQOiMVkQFr6+rmZ9uqWfnKEfbXtVKQlcon\nl0ylIDONjNSg3+GJjGrFuRksv2Yi4UiU0rwM1u6u4/d763hh53EAJuRnMLs0lytKc3vmBSq8EoLO\nZIkkqVWvHuXoyTZ2VDbxWnUTHeHYAX7hlEJmT8glJajmChG/RJ2jsqGNoyfbqG5qp7qpnYbTXT2v\nX5KdxrRx2UwbH5tmFucwbXy29tthojNZIvIOzjkO1Lfyi+3V/GjjMZraw6QEjVkluVw7uYCygsye\nYUBExD8BM8oLsygvzOpZ1t4V4XhzOzVN7dS2dHL4xGle/ctJuqOxkyUpQaM0L4OygkzK8jP57E2X\nMS4nTfu0j+J2JsvMbgX+CwgCK5xz/9HfujqTJXLxIlHHydZOGtvCnO7q5nRnN6c7I7R1ddNwuouq\nxnaqGtu8eTutnd0EA8bUS7KYW5bHjOIc0kJqEhRJRFHnaGjtorq5naqGNo41tHG8uYOIV3gVjUll\nRnEOs0pymVmSw8ziHMoKMrTPD5KvZ7LMLAh8G7gZqAI2m9lq59zueHzeYEWjjnA0SiTq6I46olFH\n1MX+6z8zNzNCASMYNFICAYIBIxgwAob+S4ijqJeTWG6iRKOxg0rEOaLO4RwEA15uAkboAnPjnCMc\ncXR2R+jqjtIVidLeFaGtK0JrZzdtXbGCJRyJetu0nnlqyEhPCZKREiQjNTZPDQWI9MQbm4cjUTrC\nUTrCETrCEdrDETrCUe/37Mx3icUCsZgNMAPD6OqOcLor0hPL6c5uGtu6qGvppK6lgxOtnUTP8b9S\nWihAfmYq+ZkpzJ6Qy9jsNGaV5KojRJFRIGBGUXYaRdlpzJmQB0B3JEpNcweVjW3UNHVwqL6VDQdP\nEul1UiU7PUR+Zipzy/Iozc+gMCuV3IwU8jJTyctMITcjhZRgIHYcxWLHo3McU513PH7rOTicN/de\nh56/r1EXOz6eeU/s1bekBAOkBAOkBgOkhCz2PBAgFDRC3t/hRBhxIl5H2fnAQefcXwDM7FngTsCX\nImtPTQvLntjwtoTj3vpjPdiTeQGL/aE3s55fSIj9Qp4x8n8V4q+/H/PZO2NsWaxIGarcBLxk9GzO\n+8xwxP9rEgcqYLFODVODAbLSQmSnhygryGRWSQ7Z6SlkpgZJC8UKvTRvOlP86R8BkeQRCgZiTYYF\nmT3LuqNR3jzVSW1zB41tXTS2hWls62JHZRO/eq2mp8kxkfT8M42B0fN4+fwyvrR0lt/hAfErskqB\nyl7Pq4AFvVcwsweBB72nrWa2L06xxFsRcMLvIGTIKJ+ji/I5uiifo0tc8vmoN8VZ+UBW8q29wDn3\nPeB7fn3+UDGzLQNpl5XEoHyOLsrn6KJ8ji7JkM943etZDZT1ej7BWyYiIiKSFOJVZG0GLjOzyWaW\nCiwHVsfps0RERERGnLg0Fzrnus3sM8BviXXh8H3n3Bvx+KwRIOGbPOVtlM/RRfkcXZTP0WXU53NE\n9PguIiIiMtqo/30RERGROFCRJSIiIhIHKrL6YWYFZrbWzA548/x+1rvXW+eAmd3ba/m/mVmlmbWe\ntX6amT1nZgfNbKOZTYrvNxEYknxebWaveXn7pnm9e5rZo2ZWbWY7vOn24fpOycjMbjWzfV4eHunj\n9X73LzP7vLd8n5m9Z6DblPiIUy6PePvpDjPTWG3D6GLzaWaFZvYHM2s1s8fPek+fx92EEusKX9PZ\nE/A14BHv8SPAV/tYpwD4izfP9x7ne69dCxQDrWe951PAd7zHy4Hn/P6uyTANQT43eTk14NfAbd7y\nR4GH/f5+yTARu4nmEDAFSAV2AjPPWqfP/QuY6a2fBkz2thMcyDY1JUYuvdeOAEV+f79kmwaZzyxg\nMfAQ8PhZ7+nzuJtIk85k9e9O4Cnv8VPAXX2s8x5grXOuwTnXCKwFbgVwzr3qnKs5z3Z/AtyUkNV5\n4rnofJpZMZDj5dQBK/t5v8RXz3Bdzrku4MxwXb31t3/dCTzrnOt0zh0GDnrbG8g2ZejFI5fin4vO\np3PutHPuZaCj98qj5birIqt/43oVSbXAuD7W6Wv4oNLzbLfnPc65bqAZKBxcqDIAg8lnqff47OVn\nfMbMdpnZ9/trhpQhMZD9rb/961y5vdB9WAYvHrmE2PCkvzOzrd7QbTI8BpPPc23zXMfdhODbsDoj\ngZm9CIzv46Uv9H7inHNmpr4uRjif8vkk8BViB/evAN8A7huibYvIhVnsnKs2s7HAWjPb65z7o99B\nSfJK6iLLOffu/l4zszozK3bO1XinLev7WK0aWNLr+QTgpfN87Jkhh6rMLATkAicvJG7pWxzzWe09\n7r282vvMul6f8d/AmouNX85rIMN19bd/neu9GgJs+MUll865M/N6M/s5sWYsFVnxN5h8nmubfR53\nE4maC/u3Gjhzd9m9wP/1sc5vgVvMLN9rJrrFWzbQ7X4AWOe1N0t8XXQ+vWbGFjO71rsm5J4z7/cK\ntjPuBl6P1xeQAQ3X1d/+tRpY7t3hNBm4jNhFtRoCzB9DnkszyzKzbAAzyyK2/2p/HB6DyWefznXc\nTSh+X3k/UidibcW/Bw4ALwIF3vIKYEWv9e4jduHlQeDjvZZ/jVgbctSbP+otTwee99bfBEzx+7sm\nwzQE+awgdsA+BDzOW6MlPA28BuwidhAp9vu7juYJuB3Y7+XhC96yLwN3eI/73b+INRsfAvbR6y6l\nvrapKfFySezOtp3e9IZymVD5PAI0AK3e38uZ3vI+j7uJNGlYHREREZE4UHOhiIiISByoyBIRERGJ\nAxVZIiIiInGgIktEREQkDlRkiYiIiMSBiiwRGTXM7FEze9jMvmxm7/aWXW9mb5jZDjPLMLOve8+/\n7ne8IjK6JXWP7yIyOjnn/qXX048CjznnVgF4Y9oVOOcivgQnIklD/WSJSEIzsy8Q60m6ntgAtFuB\nK4gNcZRHrGPgZmADkA28l1gHso85557zI2YRSQ46kyUiCcvMriY2hMdcYsezbcSKLACccyvMbDGw\nxjn3E+89rc65uX7EKyLJRUWWiCSy64GfO+faAMxM4w6KyIihC99FRERE4kBFlogksj8Cd3l3DWYD\nS/0OSETkDDUXikjCcs5tM7PngJ3ELnzf7HNIIiI9dHehiIiISByouVBEREQkDlRkiYiIiMSBiiwR\nERGROFCRJSIiIhIHKrJERERE4kBFloiIiEgcqMgSERERiYP/B/Ty4ndfe5dIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 8.5686068097e-06\n", + "MAE : 0.00260148191793\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.002528\n", + "std 0.001476\n", + "min -0.010324\n", + "25% 0.001668\n", + "50% 0.002496\n", + "75% 0.003467\n", + "max 0.010337\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX)\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['actual']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction')\n", + "plt.show()\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQkAAAJcCAYAAABQALD4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYXUX9x/H3bN9Nr6STQEKLhGLA\nUJSqIgQRFAFDUZCOCiigggJKFxFQkB+9BpEmVUB6DRB6h0A66XVLts/vj3Nzd2+2J5tsEt6v58mz\n58zMmTPn3Lv84X78TogxIkmSJEmSJEmSJEmSJGn9ldXRC5AkSZIkSZIkSZIkSZK0ehkSkiRJkiRJ\nkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9Z0hIkiRJkiRJkiRJkiRJ\nWs8ZEpIkSZIkSZIkSZIkSZLWc4aEJEmSJElShwghDA0hxBBCTur8vyGEI1ZiniEhhJIQQnb7r3L9\nknrfw5vpPzaEcHnqOOPzWduFEH4aQnixib5mnyWE8PsQwvWtvM85IYTbV2WtbRVC2DWEMKOZ/ptD\nCOetyTWtjBDCuBDCE+0wzwYhhI9CCPntsS5JkiRJkr4qDAlJkiRJkqQmhRCmhBCWpUI4c1JhhM6r\n414xxu/FGG9p5Zr2rHfdtBhj5xhjzepYV3tJhUtiCOEbbbgm41lXpxBCHnAW8Jc1cb+1SYzxghjj\nzzt6Heu7GOMdMcbvtMM8c4BngGNWfVWSJEmSJH11GBKSJEmSJEkt2TfG2BnYFhhNEiTJEBL+7wxN\nCCEE4HBgYern2mg/4OMY48yOXojWTmtZVak7gGM7ehGSJEmSJK1L/B/vJEmSJElSq6TCI/8FvgYQ\nQng2hHB+COEloAzYKITQLYRwQwhhVghhZgjhvOXbgIUQskMIl4YQ5ocQvgD2qT9/ar6f1zs/OrWl\nUHEI4cMQwrYhhNuAIcBDqepGpzeybdmAEMKDIYSFIYRJIYSj6815Tgjh3yGEW1PzfhBCGN3Y84YQ\n/hlCuHSFtgdCCKemjs9IPWNxCOGTEMIezby+bwL9gV8CB6eq9tSft7XP2mDbqfrVhkII24cQXgkh\nLE59Bv9Y8V7N+B7wXFOdTb3XEEJBqtpU79T5mSGE6hBC19T5n5dvYdbInD+r99xfhBCOrde3awhh\nRgjh1yGEuann+Vm9/l6p9SwNIbwGbNyKZxwXQpiW+g6eWW+ujC3EQgiHhxCmhhAWhBD+0EhFp7zW\nfIdSc10RQpieWucbIYRv1uvbPoQwMdU3J4RwWXOLD8m2aPNT6xnXxJgG266FetvMhRDyU7+H01L3\nvCaEUNjMXC+FEP4WQlgAnJNqPzL1uS0KITweQtiw3jXfSf0+LAkhXB1CeC6kfq9XXFsIYccQwuup\nsa+HEHas1/ds6rvzUuo9P7H8O5byKsl/czZEkiRJkiS1iiEhSZIkSZLUKiGEwcDewFv1mg8j2fKn\nCzAVuBmoBoYD2wDfAZYHf44GxqbaRwM/auZeB5IEEg4HugLfBxbEGA8DppGqbhRjvKSRy/8FzAAG\npO5xQQhh93r930+N6Q48CPyjiWXcCRwUQgipNfVIPc+/QgibAicB28UYuwDfBaY09TzAEcBDwL9T\n5/u207OuqAY4BegN7ADsAZzQiusAtgQ+aaa/0fcaYywHXgd2SY3bheS7sFO986bCR3NJvhNdgZ8B\nfwshbFuvvx/QDRgIHAVclfocAK4CyknCV0em/rVkZ2BTkvfyxxDC5isOCCFsAVwNjEvNvfz+9bX2\nOwTJu9ka6AmMB+4OIRSk+q4ArogxdiUJOf278SmA5F30Tq3lCODa1PewrS4CNkmtaXhqvj82M/4b\nwBfABsD5IYT9gN8DBwB9gBdIfldIhXjuAX4H9CL5Pu3YyJyEEHoCjwBXpsZeBjwSQuhVb9hPSL4X\nfYE84DfLO2KM1cAkYKtWP7kkSZIkSV9xhoQkSZIkSVJL/hNCWAy8SBL2uKBe380xxg9Sf7DvSRIi\nOjnGWBpjnAv8DTg4NfbHwOUxxukxxoXAhc3c8+fAJTHG12NiUoxxaksLTQWZdgLOiDGWxxjfBq4n\nc4uvF2OMj8YYa4DbaDpk8AIQSaoAQRKMeSXG+CVJGCcf2CKEkBtjnBJj/LyJNRUBBwLjY4xVJCGK\n+utZqWdtTIzxjRjjhBhjdYxxCvB/1IV3WtIdKG7iGVp6r88Bu4SkmtMokuDHLqkwzHbA802s95EY\n4+ep534OeIK69w1QBfwpxlgVY3wUKAE2DUl1qh8Cf0x9194HbmnFM54bY1wWY3wHeIfGP/sfAQ/F\nGF+MMVaSBGjiCmNa+x0ixnh7jHFB6jP5K8n3Znm4pwoYHkLoHWMsiTFOaGH9f4gxVqTe1SMkv1Ot\nlgq8HQOcEmNcGGMsJvl9PriZy76MMf49tf5lwHHAhTHGj1K/9xcAW6cq+uwNfBBjvC/VdyUwu4l5\n9wE+izHelpr7TuBj6gXogJtijJ+m7vtvkmBTfcUk31tJkiRJktQKhoQkSZIkSVJLfhBj7B5j3DDG\neELqD/bLTa93vCGQC8wKyXZXi0lCKn1T/QNWGN9cEGYw0GjopgUDgOXhh/r3qV8Jpn5ooQwoSIVb\nMsQYI0m1mENSTT8B7kj1TQJOJqkANDeE8K8QwoAm1rQ/SXWlR1PndwDfCyH0SZ2v7LM2EELYJITw\ncAhhdghhKUmAo3dL16UsIqkI1ZiW3utzwK7AtsB7wP9IwkljgEkxxgVNrPd7IYQJIdnCbDFJyKT+\nehekwibLlQGdSSrY5ND679NyK372nRsZk/E9jTGWASuuv1XfIYAQwm9SW3MtST1jN+qe8SiSqj4f\np7bbGtvM2hfFGEvrnU9NrbUt+gBFwBv1fkcfS7U3ZfoK5xsCV9S7fiEQSL4LK767SFJ9qjEDaPiZ\ntfS7uuLn1QVY3MzaJUmSJElSPYaEJEmSJEnSqqhfYWU6UAH0ToWKuscYu8YYR6b6Z5EEYpYb0sy8\n00m2X2rpniv6EugZQqgfdhkCzGzmmubcCfwoVSXlG8C96UXEOD7GuDNJaCICFzcxxxEk4YZpIYTZ\nwN0kYaqfpPrb8qylJCEPAFIVdeoHPP5JUo1lRGoLq9+TBDha412SwEpjWnqvL5NUx9kfeC7G+GGq\nf2+a2GoshJBP8j4vBTaIMXYnCVK1Zr3zSIJXrf0+tcUsYFC9dRaSbIfVZiGEbwKnk1T86ZF6xiWk\nnjHG+FmM8RCSIN3FwD0hhE5NTNdjhb4hJJ/Lilb8jvSr1zcfWAaMrPc72i3G2FhYarkVv4PTgWPr\nXd89xlgYY3yZhu8u1D9fwZckvzv1tfp3NRXKGk5SEUqSJEmSJLWCISFJkiRJktQuYoyzSLaL+msI\noWsIISuEsHEIYfl2V/8GfhlCGBRC6AH8tpnprgd+E0L4ekgMTwV1AOYAGzWxhukkgZULQwgFIYRR\nJNVabl/JZ3qLJFhxPfB4jHExQAhh0xDC7qmgSzlJ8KJ2xetDCAOBPYCxJFslbU2yNdXF1G3V1ZZn\n/ZSkas0+IYRc4CyS7auW6wIsBUpCCJsBx7fhcR+lia3JWnqvqWo7bwAnUhcKeplka6pGQ0JAXmrt\n84DqEML3gO+0ZqGpbb7uA84JIRSFELYgCWO1h3uAfUMIO4YQ8kiqRbU2aLWiLiRhpnlATgjhj0DX\n5Z0hhENDCH1ijLXUVcRp8D2q59wQQl4qfDSWJHC2oneAkSGErVPbvZ2zvCN1n+uAv4UQ+qbWMDCE\n8N02PNM1wO9CCCNT13cLIRyY6nsE2DKE8INUiOdEoF8T8zwKbBJC+EkIISeEcBCwBfBwK9exPTBl\nZbfmkyRJkiTpq8iQkCRJkiRJak+Hk4Q/PiTZvuoeoH+q7zrgcZIQw5skIY9GxRjvBs4HxgPFwH+A\nnqnuC4GzUtsd/aaRyw8BhpJUKrkfODvG+OQqPNN4YM/Uz+XygYtIAkSzSSrB/K6Raw8D3o4xPhFj\nnL38H3AlMCqE8LW2PGuMcQlwAkmwaCZJ1Zj62zn9hqRCUTHJ+76rDc/5ELBZM9umtfRenyOpkPRa\nvfMuwPONTZbauuyXJOGxRal1P9iG9Z5EUqFpNnAzcFMbrm1SjPED4BckW83NAkqAuSRVstrqcZLt\nvD4l2UqrnMztu/YCPgghlABXAAevsJ1ffbNJ3tOXJFvWHRdj/LiR9X8K/Al4EvgMeHGFIWcAk4AJ\nqS3pniSpAtUqMcb7SUJu/0pd/z7wvVTffOBA4BKSLdq2ACbSyLtLbUE3Fvh1auzpwNjUHK0xjiSw\nJEmSJEmSWikkW4NLkiRJkiTpqy6EcAywRYzx5I5ey9oihNCZpMrPiBjj5I5ez7okhJBFEmIbF2N8\nph3n7UsSQtsmxljeXvNKkiRJkrS+MyQkSZIkSZIk1RNC2Bd4imSbsb8C3wC2jf4PaS1KbV32KskW\nfKeRbDm2UTMVkiRJkiRJ0hridmOSJEmSJElSpv1ItvX6EhhBsg2YAaHW2QH4nGQrvn2BHxgQkiRJ\nkiRp7WAlIUmSJEmSJEmSJEmSJGk9ZyUhSZIkSZIkSZIkSZIkaT2X09ELWJv17t07Dh06tKOXIUmS\nJEmSJEmSJEmSJDXqjTfemB9j7NPSOENCzRg6dCgTJ07s6GVIkiRJkiRJkiRJkiRJjQohTG3NOLcb\nkyRJkiRJkiRJkiRJktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmSJGk9l9PRC1jXVFVV\nMWPGDMrLyzt6Keu8goICBg0aRG5ubkcvRZIkSZIkSZIkSZIkab1mSKiNZsyYQZcuXRg6dCghhI5e\nzjorxsiCBQuYMWMGw4YN6+jlSJIkSZIkSZIkSZIkrdfcbqyNysvL6dWrlwGhVRRCoFevXlZkkiRJ\nkiRJkiRJkiRJWgMMCa0EA0Ltw/coSZIkSZIkSZIkSZK0ZhgSkiRJkiRJkiRJkiRJktZzhoTWA+ec\ncw6XXnppRy9DkiRJkiRJkiRJkiRJaylDQpIkSZIkSZIkSZIkSdJ6zpDQOujWW29l1KhRbLXVVhx2\n2GEZfW+//TZjxoxh1KhR7L///ixatAiAK6+8ki222IJRo0Zx8MEHA1BaWsqRRx7J9ttvzzbbbMMD\nDzywxp9FkiRJkiRJkiRJkiRJq19ORy9gnXbyyfD22+0759Zbw+WXN9n9wQcfcN555/Hyyy/Tu3dv\nFi5cyJVXXpnuP/zww/n73//OLrvswh//+EfOPfdcLr/8ci666CImT55Mfn4+ixcvBuD8889n9913\n58Ybb2Tx4sVsv/327LnnnnTq1Kl9n0mSJEmSJEmSJEmSJEkdykpC65inn36aAw88kN69ewPQs2fP\ndN+SJUtYvHgxu+yyCwBHHHEEzz//PACjRo1i3Lhx3H777eTkJNmwJ554gosuuoitt96aXXfdlfLy\ncqZNm7aGn0iSJEmSJEmSJEmSJEmrm5WEVkUzFX/WNo888gjPP/88Dz30EOeffz7vvfceMUbuvfde\nNt10045eniRJkiRJkiRJkiRJklYjKwmtY3bffXfuvvtuFixYAMDChQvTfd26daNHjx688MILANx2\n223ssssu1NbWMn36dHbbbTcuvvhilixZQklJCd/97nf5+9//TowRgLfeemvNP5AkSZIkSZIkSZIk\nSZJWOysJrWNGjhzJmWeeyS677EJ2djbbbLMNQ4cOTfffcsstHHfccZSVlbHRRhtx0003UVNTw6GH\nHsqSJUuIMfLLX/6S7t2784c//IGTTz6ZUaNGUVtby7Bhw3j44Yc77uEkSZIkSZIkSZIkSZK0WoTl\nVWTU0OjRo+PEiRMz2j766CM233zzDlrR+sf3KUmSJEmSJEmSJEmStPJCCG/EGEe3NM7txiRJkiRJ\nkiRJkiRJkqT1nCEhSZIkSZIkSZIkSZIkaT1nSEiSJEmSJEmSJEmSJElazxkSkiRJkiRJkiRJkiRJ\nktZzhoQkSZIkSZIkSZIkSZKk9ZwhIUmSJEmSJEmSJEmStNa580746U87ehXS+sOQkOjcuTMAX375\nJT/60Y+aHXv55ZdTVlbWpvmfffZZxo4du9LrkyRJkiRJkiRJkiR99fzkJ3DLLR29Cmn9YUhoPVVT\nU9PmawYMGMA999zT7JiVCQlJkiRJkiRJkiRJktRaMcLpp9edV1d33Fqk9UlORy9AbTdlyhT22msv\nvv71r/Pmm28ycuRIbr31VrbYYgsOOugg/ve//3H66aez3XbbceKJJzJv3jyKioq47rrr2GyzzZg8\neTI/+clPKCkpYb/99suYd+zYsbz//vvU1NRwxhln8Nhjj5GVlcXRRx9NjJEvv/yS3Xbbjd69e/PM\nM8/wxBNPcPbZZ1NRUcHGG2/MTTfdROfOnXnsscc4+eSTKSoqYuedd+7AtyVJkiRJkiRJkiRJWttN\nX1jGx7OLAZjwbB5/+UuPdN/51yxmx90rOmppDWw7pDu9Oud39DKkNjMktApOPhnefrt959x6a7j8\n8pbHffLJJ9xwww3stNNOHHnkkVx99dUA9OrVizfffBOAPfbYg2uuuYYRI0bw6quvcsIJJ/D000/z\nq1/9iuOPP57DDz+cq666qtH5r732WqZMmcLbb79NTk4OCxcupGfPnlx22WU888wz9O7dm/nz53Pe\neefx5JNP0qlTJy6++GIuu+wyTj/9dI4++miefvpphg8fzkEHHdRu70eSJEmSJEmSJEmStP5ZXFrN\nmSd1Yb8jljBjVm1G3wfvw4jt6kJCC+dmk50T6dazlsrywPzZ2QwYuubKDVXW1LY8SFoLud3YOmrw\n4MHstNNOABx66KG8+OKLAOlATklJCS+//DIHHnggW2+9NcceeyyzZs0C4KWXXuKQQw4B4LDDDmt0\n/ieffJJjjz2WnJwkR9azZ88GYyZMmMCHH37ITjvtxNZbb80tt9zC1KlT+fjjjxk2bBgjRowghMCh\nhx7avg8vSZIkSZIkSZIkSVpnTJgAIcDTTyc/99wzs/+mm+Abm3Xh9WeKOOun/SmftDCjf/DAkozz\nX3x/ICfsPQiAa8/vyWkHD+DCX/RZrc8grQ+sJLQKWlPxZ3UJITR63qlTJwBqa2vp3r07bzdR6mjF\n61dGjJFvf/vb3HnnnRntTd1TkiRJkiRJkiRJkvTVs8MOyc899kh+PvUUVFRAfj5UVsKRRwLU/Q17\n0kNLMq7P/XwGMKDBvOPGDEkfv/96IePGDOG8m2cxbLOqdn6CTDGu1uml1caQ0Dpq2rRpvPLKK+yw\nww6MHz+enXfembfeeivd37VrV4YNG8bdd9/NgQceSIyRd999l6222oqddtqJf/3rXxx66KHccccd\njc7/7W9/m//7v/9jt912y9hurEuXLhQXF9O7d2/GjBnDiSeeyKRJkxg+fDilpaXMnDmTzTbbjClT\npvD555+z8cYbNwgRSZIkSZIkSZIkSZIylVfV8MzHczt6Gats71H9AfjP67PIy0/aepLHQnpljLvz\n2blsMKCGpx/KBzJ3tnm5dDQAt3A4R3Ary2oLWn3/Fx/rxLDNFq/8A0jrMbcbW0dtuummXHXVVWy+\n+eYsWrSI448/vsGYO+64gxtuuIGtttqKkSNH8sADDwBwxRVXcNVVV7Hlllsyc+bMRuf/+c9/zpAh\nQxg1ahRbbbUV48ePB+CYY45hr732YrfddqNPnz7cfPPNHHLIIYwaNYoddtiBjz/+mIKCAq699lr2\n2Wcftt12W/r27bv6XoQkSZIkSZIkSZIkrQdihEVlVev8v+XefCOLvUf1Z+9R/fke/23wvFMnVzJv\naRWXnlkXEKqpF2HIoobv8yAAFcta/x5zc1d/mR8LCWldFaJ1sJo0evToOHHixIy2jz76iM0337yD\nVpSYMmUKY8eO5f333+/QdbSHteF9SpIkSZIkSZIkSVJHW1ZZw/1vNV7kYV2yfAuwrFBLbWy6bslv\nTv+UIRtV8Mvjtky3RQJHcDO3cgQA1WSTQw2D+y7hogfrtiCrv83Yig44aDY/PKVyVR+jWbts2oeB\n3QtX6z2ktgghvBFjHN3SOCsJSZIkSZIkSZIkSZLUweJ6Vp+muYAQwCtPdmbag/PS54dyG6X9BlJI\nXdmgN39zDgDT53bj2Qc7pdt7sJBBTE+fH8X16eOcGXNWdelaA378Y7jvvo5exVePIaF10NChQ9eL\nKkKSJEmSJEmSJEmSpPVIeUWrh7705gAufXT39PmRF1fxwH9e5pf5V7Mxk3hy43HM3GkPducpAK67\noBcAixdksYie7McDvM5o/s2BXMNxvMZ2yRJq89vxgRrnjk0r59JL4eqrobwc7r4bfvjDzP6pU+H+\n+ztmbV8VOR29gHVRjJEQQkcvY53nfzglSZIkSZIkSZIkad3z028NJjsncs51cxi8cVW6vXpGcYvX\nFoRyymNBg/ZZu+wJQPdtezHplRHwOfyr1zl04730mJpqOHGfQQBcxUn8g18wmjcA2I6JbMgUKpc1\nmFqt8P7MJVTW1LZqbIxQUwM5bUycnHZaDwA23WQyMAyAN6ctSvfvv1tXpk3O5tn3FtGla+a1PYry\nGNa7E1o1hoTaqKCggAULFtCrVy+DQqsgxsiCBQsoKGj4H39JkiRJkiRJkiRJ0tqrqjJQVRn47bj+\n3DFhGgDVVfDuC9kNxn6DCbzKGMZ1uoeXSr/OL0c9yKnv/CpjzAg+BZK/HS/r3TfdXpuXz/0ckD6f\n/HFe+nhY/nRIFS5asNmW9Pr4PQpZtkZCQutjPYzP55VQWlHTqrF/Pa03b75QBMDNz08jN6+FCyD1\n0pKQ0J7fHpZu/vqGPfjWPiXse/hSpk1O+v/8xxyOPGNRxuVDehYZEmoHhoTaaNCgQcyYMYN58+a1\nPFjNKigoYNCgQR29DEmSJEmSJEmSJEnSKnrwL7Xc++BWGW178CS1eXlQCQzpzfgf3sf03faCPTKv\nPXqnF4BvA/Du0afS6cvpTDztvAb3OPvn/QDoyQLuP+xy3s49nX6vv8QLF13D4KcfpeiCMirLDZKs\nDqVLA6UlWfQdUJMOCAH89FtD+MtdXzJgw+pmr8+qqmyy7/lHOvP8I53T588+0KlBSCiyHiazOoAh\noTbKzc1l2LBhLQ+UJEmSJEmSJEmSJKmV1pnqNFUNwyA11XDvg0MbtBcNKqR8frIdWX5RZPLYAwHY\nnA/5iC3S45ZsvgUDU8fL+vbn6av+le57bNBP+MuMI3mKPdNtC+nFVtdfxvgJU/nwiBMB+GLfgyi6\nYBqVFV1W9Qm/kup//+69AEJRLgecXLeV3J+O6s2M6YX87b6ZDa499+gN+L8nGrbXF0rLW72Wwuxy\nYoT6mzutM78fa7msjl6AJEmSJEmSJEmSJElaN8yZVNugLevdLxodW5FdyEeVIwDILqirYfJc1m4Z\n40LDXcrSvjvjTh5i34y2LXmXT390eObAECgM5ZRXta5Wyr3Xd2XcmCEsXWRsApJKPcd+ZyDjxgzh\nvgeHcO+/+mf0z5heCMApBwxscG3J0mymTcptdv6apRUN2j5jODMZkD7vx6xkvqoiHrnDsNfq4Ldd\nkiRJkiRJkiRJkiS1yqk/G96g7d2XCxode+IuzzCjNgmVPPTulun2iTfdxClclj7Pymk+ulBIOb/m\n0vT5f3v8iIm//lODcQXZlVRUty4kdN/13QF4dHzbwyjra1WbkqWZaa3yZXWlfPbkfxl9XViacV42\nu2EIqL6apZnbjZ3GJUy+5iLev+6qdNsm3WZwxYCzAZj99PyM8evpK1/jDAlJkiRJkiRJkiRJkqSV\ndsntYxptr/rJHunj47d8JH28aNOvsWW/6enznGaK0Nz/4ATK+vTjUk7jeo7iAb5PYZ/czL2oUgqy\nKyivzmtxveVlddcWdjZ+Ao0Hn47abTAfvpaErmaSWUHoOXbhLn6cPq+dV9Ls/OWLkq3L9uFhSini\nB2fnMW/r7Zm/5dd5g20ZwEx+dcokNv3TtmzOh+SWFq+wPj+n9mBISJIkSZIkSZIkSZIktVkulcx5\nv7zRvpG8T0X3nunzzc8dldFfst3W6eO8oqbvsaxvfx69/TFmbbczR3Ej3+ch3jrpzEbHFmZXUF7d\n/LZXAEsX10UlYq3hE4DKZQ23kQP45L7FlC8LfMQWAEQCkcDcG85lzO6lfJBqryqubnb+8rlJJaGj\nOt3Oo4+/wpTvHZDum3Pzn3nu+7+h4ttjWPC1bSjIquSJqdty54X57fFoqseQkCRJkiRJkiRJkiRJ\narMq8pj2wOyMtkFhBlMLNubWcdcB0IOFydgu3TLGZdXWhUpyujQf7Kns1oNn/n4HVUWdmbnT7szZ\nfudGx+VnV1Fe03IlodKldVGJ8PnsZkY2Lq6Hm19VzljaaHt5eTY1L3ySPh8/YSrjJ0xlwcitefGC\nf/LO2RcAUFVc0+z8y1IhoS9OO4XKbj0y+hZttiWv/f5iYnay3dlbtUmA7OEHNmDRvKRt/XvjHcOQ\nkCRJkiRJkiRJkiRJHWxdC0Ec0/dfAMydnYRybmcc2/MqD+9wKi8/8Rgfn3QqAB+yBW+zVYPrayrr\nnji7a8vVfwDufup9nvvrTU32F+RUUV7TcvWZqk/mp4+XFTczsAnr485XVdMWN9peXpFN9RvJ1nCP\n5oxt0J/TLfnsqkoar0QE8MDNXTnrju8CUDCwmbJRKWPzH0sfz/+kIjlYD995RzAkJEmSJEmSJEmS\nJEmSWjRuzJD08dbbLgFgybwkdhCvOYarTn2MT847l9q8fAgBgFfvu5fp//pbg7l2GvhR3UlhK7eV\nSs3ZlCk1G1IR8ygtbn5czQcz08cPvbp56+69Drj++uQVLVjQ8tjqajjqqGR8CPDz0xuvzjRig7l8\nMr8fAFOuPLdBf063JCRWWdp0SOjf13SnqiYHgILBnVtc2959Xqw7WVgCrJ/VmzqCISFJkiRJkiRJ\nkiRJktSsUF2VcZ49ONky6pEp2wNQtdFgPv3xz6gu6pQxrnTAYJYOHd5gvi8O/Rl/5yQAOvVrXSWh\nlgzvNA2Aj94saHbcP57apV3ut7Y5+ujk59VXJz/nzYP332987GefwY03Nj3XJ4PGAFBLFn9/OakC\nVLhF7wbjQrdCsqihoqzlEE8E+sheAAAgAElEQVQ21RR0y25x3KitlqSPK5Yk29JN+yKbl19u8VK1\nwJCQJEmSJEmSJEmSJElqVvayZenjX23/MPm9MoM9uZ1y2jRfVeeufOvIXGoJdOrZcnCkNQ4f8DAA\nC+c2P9/i0kIARpIkaKqr23afmTNDm69ZkzqnivVsuy1suSVce23DLdLmz294HcDRQ+5jbO5/+eiy\nSwjUUlEGGxbOAiCvoGGFptrCQjpRyi0vjuHK3/ZsOGF1Td26QllLxaAAKNl/T6awIQAVS5Prf7ZP\nb3baCb72tZavV9MMCUmSJEmSJEmSJEmSpGbVLilPH4+6aCuKumX2Z61Ezuf9Y07hzglTV3FldXrn\nL6GQMhZ+Xtlof0V5oHhJFn2KlnAkN/Bzrk/al7UiuZJSXhbYeesiTjihXZa8Wpx6Krz0EsyYkZwf\neyxsvHHmmFmz6o4vu6zueJu/b8shL4ykplMRnSmhpDiHyWUD2SBnXqP3qirqRCdKAXj12YZbiS2o\n91kUZpc36G/Mgq9tw8SrrgGgbGFmuumDD6C26Z3N1AJDQpIkSZIkSZIkSZIkdbC4YqmXtUzl4rrt\nxgqKIp0K175SOtN335vhTGL2Z42/y0t/3YfjvjuI0vJcuuaUUkASWqmqbH1IaFlZMva661Z9ve2t\nX7+644MPzuybPDnzfPbs5OfcudC1a1378u3Aqgs70ZkS7nlrNABzqvs0es+a/AJm0z99vqw0811e\n/ae+6eO8nNZ/Z7L7dQHgw0k9GvSt+CxqPUNCkiRJkiRJkiRJkiSpWdVLkpDQMVs8AsCS7UZzPr/v\nyCU1sOBr2/AZI3j9g/7cdEnDcMmHbxQAUFZbxJys/nUhoYrWh4SevLdL+yx2NVi8sG5rr+VVhJoy\n68tITlYtvR68iYU/Py3dnpefBKyqCwrpQnHLN83KjJ3cc2VhxvlGPeemj6eVD2h5vpTKHr0AeP6T\nEYwbMySj76STWj2NVtC2TQElSZIkSZIkSZIkSdJXTk1Jsm1U39FJ2ZmYnc2yb24DL3TkqjKV9elH\nOUlI5cn7uvCz0xc1OfapsAfbfX02vNFyJaG5X2bzwesF7LZfKf+5qW6ftTufmUuvvmvH3le1tVBe\n2a9B+2MvTeK0Xw3hvYl5nPnXxeyyVxKM+vC5EjaoLSDr50fyEvenx4flryIri0/ZNN0+cdfD+ITz\nW1xHt5lTgLrqQYPzZ0O9eVqrurCoyb7HHqtb5wOvzaGgaM1W4eqcn8OOw3szcyZcfDFcdBEUNb3c\ntYohIUmSJEmSJEmSJEmS1KzqkqSSUE5RXeWYmdMKOmo5jaru1Jn3w0i+Fj9gqx2WNTv2/v3OZ+Ls\n4QAsmJNDp661dOuZGfiproIjvllXxWaH75Rl9E+bVUMsqmJtsGh+w42keocFfHenEZy4RRIM+t/D\neYzceWkyfkkWPUhCVDfzU3qwmEf3OYtFHNPo/B+dd16TW1X9h/14kj25n/1ZsjBzVMWSZIuxb/I8\nV/Y/mw+5pXUPFAIX8lt+x0Xppl15hmfZLWPYb47qzjnXzWndnO2kvDr5nlx9Nfz977DFFnDccWt0\nCSutw7YbCyHcGEKYG0J4v4n+EEK4MoQwKYTwbghh23p9l4QQPgghfJQaE1Ltz4YQPgkhvJ361zfV\nnh9CuCs116shhKFr4hklSZIkSZIkSZIkSVofVJckW1nldK6rRXJy9+s6ajlNGhk/ZDif0bdkarPj\nOneH7E65AFz0q76csPegBmM+ejMzBLWsNLPi0II52au42vazcG7yuZzGJeRRAUC/+CUAz364MQCv\nP1tETBXdKSvNohtLAJhywnG8ecLvWHTW0RlzjuDT9HFWTtPVluIDv2O/q/oyk0E89sW2jBszhHFj\nhlBTDUsX57BBmMMlZ73Gx3dd26Zn2uawrunje/ghT7JngzGfvZffpjnbQ0y9xNpUpmzBgjW+hJXW\nYSEh4GZgr2b6vweMSP07BvgnQAhhR2AnYBTwNWA7YJd6142LMW6d+rd8c7ujgEUxxuHA34CL2/E5\nJEmSJEmSJEmSJElaK9UsKEmHNv56eO7Kz1OWCgl1qgsJff7nMwHYgZdXbZHtrIgyit77OP3cpcVJ\nwKV7qnLO3ziZLtMmk1PYdMintgb+c3PXjLay4iRi0YOFADx1f+fVsfyV8uKjnQA4hDsZyEwANiCp\nsDModQ7w0mPJvlhlZdl0YwnPXnojHx5+Ah8dfny9vcYSxxS2rupP2QYDmPv1HRq0l5cF7pu+C3Pi\nBnwx9sfU5rUt0LP4yAM4f/SNXL7XTezd8wWyqeWH3APAP/87g9y8yOhdylqYpf3VpkJCXVNfj7PO\nqgsMre06LCQUY3weUr85jdsPuDUmJgDdQwj9gQgUAHlAPpALtFQ7aj9I16y6B9hjefUhSZIkSZIk\nSZIkSZLWJ2/9u4x505LjTw9/It3+5qf9V3rOqx8YDUB2l7x027K+/Zmx2fb85bSXVnre9rZgi63I\noZoH+EG67aSxA6mthcX04I+cy8lcwQc/PYmcFXZL+9kug9Jhjw8mFvDxW5kDTj9kAEC6As/AoWvH\nVmPVVfDEPV0A2JCpTGYjAJ6qV3knkDzYLZf15MzD+/HR/MF0yy3hy533aHLeqj49Adi4+6xWrePP\n/S7NOJ/6fEnrH6IRNYVFDP3HnvQ5Zw/e+sXvAbiDccxkAKNevZcN+y6kpnqVbrFSln9HuhTW3fza\nthVJ6jA5LQ/pMAOB6fXOZwADY4yvhBCeAWYBAfhHjPGjeuNuCiHUAPcC58WkzlN6rhhjdQhhCdAL\nmL/iTUMIx5BULmLIkCErdkuSJEmSJEmSJEmS1O5iO82Tt3ABl162DUU5y7juxXnU5GRWD6quhpw2\nJgWKF2fx2eKBAPQekTnfczffs0rrbW+P3/ggb47J/Ft/ZUUWFcuSOiJdKGbONt9g6dDh5BRMazDu\nsB2HcPPz0ygoaro0zBgmUEUuSxd1b/8HaMbsaTn8+fgNOPva2fQdWJNuv/7CnunjnqlqScuNnzCV\nn4zZkHfYilG8R1lxFlOKk6BXbguFfb797bkMuuEwOl9/HMsY3OL6NvrPj7mDaYxLvf/zz9scgEO5\njcwNotpuyvcOAGDHc09hALMYcM7J9GQM2aEHSZ2ZNae6tpaXP1rMF3e9CewOwOQ5Zbw7o3KNrmO5\nrDbUyFmbQ0KNCiEMBzYHlm8I+L8QwjdjjC+QbDU2M4TQhSQkdBhwa1vmjzFeC1wLMHr06Pb677Ak\nSZIkSZIkSZIkSatd7ZJlAJRVFwJw4ZwTM/oXTqmm7/DWRwUWPvwFvzhvVwB26z2RvA36ts9C17Cy\nuUnVn8oRG/LMlccBUJ3VeEpm0vv59Fg0DejXaP8ZXMynbMKS+Ws2JPT8o51YvCCbx+7qyuGnJmGg\nlx4r4oVHk23PxnE7AL2Zx3z68OLg7zOVfwAwgs8azFeS1/z6PzvyOLp8fw5lGwxo0zr/9s1rOOWF\n49Ln80du06brmzLlewew47mnpM9zqSJ7/kKgbetbVaUlgZ22787ygBDAJecUsdVeDerUrBHZbdhD\nrMO2G2uFmZARRRuUatsfmBBjLIkxlgD/BXYAiDHOTP0sBsYD2684VwghB+gGLFgDzyBJkiRJkiRJ\nkiRJ0hpTs7RuC6zKCtgk7wsAjs29DoDyzxa3ab5lH9QFH/oPLG+HFXaMeZ8m76V6kyHU5iaVdHr2\nSiq/HM/VGWPPO2EDfn3mdk3O1YlS+jGb2Z+vuchFdTU8cHM3AB7/d7K12AcT87n6nN7pMf/HsUza\n9yBm049KctloQLIt2n9vfpgCKhrM2aNz859nzM5uc0AIIG7QM+N81KAZbZ6jJW+d+DtyqGZZUbd2\nn7slxUsa/9xnTl776/SszSGhB4HDQ2IMsCTGOAuYBuwSQsgJIeSS1KT6KHXeGyDVPhZ4v95cR6SO\nfwQ8ndqGTJIkSZIkSZIkSZKk9Ub14rrgR/HiLAblzGTrLh+z+fEbAvC7c7dl3pSapi5vON+yum23\n8gvXjT+zH8c/G7RN/ziJRxT2zE639exVRS2BX3Jlm+b/4vAjeZR9mD2viAtOWjOVlYoXZWecL12U\nxecfZlZC6kQZ75xwBtnUkks1y3r1AWDRJiMzxu26/XQO5xZO3O6x1bLWvKK67a9u41C2O7V/u839\n2hkX8Pk+B/LRYceRnQPVsS6Y8+R9nZnxRW4zV7ePZaWZUZsfcxcA82YZEmpSCOFO4BVg0xDCjBDC\nUSGE40IIy2tOPQp8AUwCrgNOSLXfA3wOvAe8A7wTY3wIyAceDyG8C7xNUj3outQ1NwC9QgiTgFOB\n3672B5QkSZIkSZIkSZJWk9pa8P8SL61fVvV3uqYaHri5KxXz6irGVM0vp6Imj/ycKvpt1yndfv2v\nG99mqzHlJXXHeQWrtsY15WpO4CHGciG/5QaOBOCVV3oB0LVfXUwir3gpAejPLAAubGWUYN539kgf\nfzBxzbyUpYsz4x3/u7czL/63KH1+H/sDUNG9rorPRo/emxxkZVE8aENmMoD/sB/PvDaEW/gpoW/X\n1bLWnE51a62467dUduvRbnNP2n8cr/7h0uQ+WTVU1yb3qqmGmy7pyVk/bXyLuPa0rCTzs7go9b1Z\nvCCb0uLAS48Vce/1XZn4fOFqX0tbdViMKcZ4SAv9ETixkfYa4NhG2kuBrzcxVzlw4MqtVJIkSZIk\nSZIkSVq7ZGfDoYfCbbd19EokrS1uHzefJ6YO4b6wd7otVtZQUZNLYU4NNSMGc8uNEzjiyDEMyJkN\n9G56snoqyuodZ619oYfGBGAsjzCWR1hID47iRj6ZkoRneg7JJr0hW0gq3nQNxVTGXHKp5ndc1PL8\nw/ryUM732bf6wdXzAI0oXpQZTLnv+u7p4z+MuI79P/tPanGBxjz3lxsYe8ie7EfdmmsKVs/nmdup\nrupR/sAuq+UeANmhlppUSKhkafKzqrLx529PpcWZn8XykNldV3fnuvN7ZfTtf9QSfnT0ktW+ptZa\nm7cbkyRJkiRJkiRJkrSCI5OiGNx+e8euQ9La5Ymp2wKZ2y/FyhomVm/LWwtHAJCzxQD2yHuO2bMb\nVr8J1VVct/MU/rBH5rZWy8rqYgU7HL/6Ah/tacFmW6aPe7CILOq2V8sbUFdRacp3f8CEMy/hhYv+\nj1yqAYgEaqkLmmzKxwDcxY/TbSE7i07d1mw5t6Xzk59P8O2M9mF8wZ8+OwaAV3+XBJxeO+08AO55\n/J30uNL+gxrMmVVZuTqWmhESyspZfaGdGAIfLh3G0//pRFnJmom/zP0ym7+e1iejrYAKOlPM0hW2\nhAN4+fGiBm0dyZCQJEmSJEmSJEmStA6YPBmKi+Gmmzp6JZI6wu/37cw959edz7hvBktmVBIj/OfM\n0kavueSMAQCU1NQFYzbN/5xJlUMztjcrXRT54qJ3eLb6W3xROpCqSlj0yhxmv7qU8vK6WEHnwetG\nJaEXL7g6fRyAfJIt2LbjNSq7dEv3xexsvtj3IOZu/Q1mj96RF8+7Kn3NcnvzKAB9h0ZmMoBP2ASA\n3l3r3vnrz6z+91LzYVKtZrNUaGm5KnLTx5P3SrYcm/TDwxg/YSqV3eqqDTVWNeiLfX/coK095HRu\nGJZZHR4r3xOAGy7qxdsvrZnv5ikHDGzQVrrBAHqwqNHxgzeuarS9oxgSkiRJkiRJkiRJktYBG20E\nu+7a0auQ1BGyqiqZOq8n9z80BIDc4iWcccmOnHFQf7Je+Yi7n9q80evmlSchkbEFj6fbOg3tRFks\nSm/PBHDFEVmc9fAB6fPi+bWcdMp2/PpXX6N0WR6ds0q44enpq+PRVovSAUMYP2Eq4ydM5al/jKeG\nJLTShWKqOjeshlTZrTtP/+NOvtxxtwZ9Z3I+k9iYIVtEBjCLTfgMgC0nP8P7jATg/dcbVmZqb0uX\n5pBDFQOZSV4q9ARQShIAK+03kNr81q3j3v++yfgJU6no3nO1rDU/p3q1zNuc956r+z7X1rb//DHC\njMk5jfa9ccrZdGdxRtudL0xixJYVlJetnkpKC+Zkc+YR/Vg4t22BrMafQJIkSZIkSZIkSdJaY86c\n5Oebb3bsOiR1jKyqumokh44ZRCQJCxXXdCJ7/uKmLkv78ROb1s1VlMQEXryxgm1+VEj1C5/ywdxd\nM8b/4oCh6eM75oxlSN5MCorW7PZa7aW8Zx8qyQcgp2cBZDVdS6W6qBN3PfMRfd59g2/+6nle4Fvk\ndcth4yVf8OQ+F7DRo/dmjB/Jh/TnS6qruq7WZwAoXbR867RIPhXpZ1pEEvR58J7nWpzjXy98RlZV\nFdVFnRr09euWT3Yz76YtCgYm8xewjIE92qfCz7LKahaWZlbl2bbgXd4sHwXAO2/XVYh6d0IBfzm1\nL5fd8yUbDGqfwNJzD3fiuvN7pc/n04vzOItP2JTKrt3pxpKM8Qd/cwS38CiTNxrTLvdf0dXn9GLK\nJ3k893AnfvTzpa2+zpCQJEmSJEmSJEmStJb7/POOXoGkjlQ/JBRX2DCotKb56jH5lJOdV3fNmLFV\n8CqM//cwbr8ri291arlCUKiuJnMTrnXHsl590scVOUUtjq8pLGLRpiN5jB2ZxHDoUghLoGyDATx6\n22PE7KRyy3tHncyWN1zOAL5k4bweq239y5UtTUJCCzYfRfFHmaGk1047j5iT28SVdWpz86jNzWu0\nb/thveic304Rkk32IJ76azjuOBgxol2mnLagjBcnzc9oe7H8G0xnMJvyaUb7rZcln8fE5wrZZ1xx\nu9z/8w8y31svFvI3TgXgka6P04m67efuJanK1ZWlfPJFD647P5ejz1zYLutY7uO3kt/7vPy2hffc\nbkySJEmSJEmSJElay/3ylx29AkmrXTN/6w9VlU32zZ5XF3z540bXcDGnc3qnywHYiRe58Y//zbzN\n1zYEoDYmcYHnS7/R4tKm1m7Y4pi1VWWXbpwZzgdgcXXDrcYaU9GtB0UsYxTv8cKF1/DpDw+jZMBg\nFo/YnCUbbQJAVafOAAxkJovnrf4AVWlJNt1ZzMvnXplu+y0XMnXbXZn0w8NW+/3b7K9/bbeAUFMK\nKWdj6lK0P+YuAObMSAJT7bkNXH5B3S/oJ2yS0VfZtTuz6J8+P4D7gSQkBPDsQ52J7VSIq7oarju/\nbpu40uK2xX4MCUmSJEmSJEmSJElruQ3X3b/PS2oHtcua3jKpZG5t+njwpbsxaMJJfOfs7lzBLzll\nfIS9v54xvqJ3nxWnSLtjwjT2G/byqi94bZKVxY5d31x+2DohMHmv/anJyWXxiC2YeNp5DS6ePXpH\nAHozn7K57bOlVVNqa+DlmZszO/SnrG9//si5APyJP1JU2fqtptZH2dQyincAuJTfZPS9O6GQV59q\nn+3OunSrAWAQ09mEzzL6Krt24z22BGAw06gq6sz4CVPJr7erW8WywCfv5PHa06u2njuu6MGzD3VO\nny+en92m6w0JSZIkSZIkSZIkSWu573wn+TlsWF1b586Nj5W0/lkxJHTri9P4y+h/AnDL41sB8DXe\no2hAEkCY863d6T3hN1Rs1DBhWJubx/inP23QvtyBdwxs0LbzNjNXeu1rg6rC5D+YhbkVrb7mlbP/\nxl0vTmqyf/EmI7n30TcoZBlVVas3evHCf5O0ybQ4hJqCAs7lHCKBXKrJXrasXe6xtm8mF5pZ4ATG\nsJQu9GN2g74rz+zDuDFDqF7FHFePt5Og2RSGAjB+wtR0X01+QXobwL/ya2pyk0pGRfl12wQunJvN\nn47txxW/78O//9mtzfcvXpzFyfsP4Im7M6thLZ1Z1cQVjTMkJEmSJEmSJEmSJK3llv9xszK141Dn\nzlBSArW1TV8jaf3x9n8z9yrKzoEuJfMAmFnVD4CjTpnb6vliUQFPXXA9A5nRoC9kBa65+MWMtu59\n1+3/2Az/BhzJDfxpm5taf1FzqZSUyq7dyKKWJeVFnPGTfquwwuZlZTezV1WryyOtfx647wX+d809\nFFJOF0rIpekk0BE7D1mle3X++BNyqCKbWqbtuhcAD/37WR649wUIgbOKLgbguzxOVZckBFSbm5e+\nfupndccP3NL2kNBpB/dn3qycBu1vvdWjTfN8db8tkiRJkiRJkiRJ0jpieUiorCz52bVr8rOi9UUx\n1grXXgs/+EFHr0Ja9yx5oGHln35/3g2AIdnTAagc0LdNc87e/TvMZFD6/NxfTEgfd/nWYJ4/+Lfc\nMOIsRuV9wA9/u26HhMqHDeUGfs6gTgvadd6Yk8vk7I0BmPFFHn87o3e7zr/cspIk2vHmtgdktFfn\nF/Dief9YLfdcF5QOGMK8UZnb6X3G8CbHz5nRMGTTWuW1+RRQDsBrv7sIgOIhwygdmISPftP3eiKB\nrhTz3F+uT67JKUpf/48/ZH43amvadv/ixU1vK1Ze1vo6UIaEJEmSJEmSJEmSpLVcVWo3kUWLkp9d\nOyd/sC8v76AFraRjj4UHHoC//GXdCzh9VZ1xBuy2W0ev4qsh0nS1mKrauoBAAcn2UmUDBjGQGSyt\nTbYfyi5sewBiEz4BoH+3JQwfN6CuIwSmn3wCBbcdwxnPdyGvcG3fjKp5WakybDV5eS2MbLuqnIL0\n8cTniqhu2+5PrTJvVg6FlNGjR5IYreyUfOYP3vcCxRtu3P43XJdkZTF/i62ZudMevHz23xjO50QC\nl/MrAA47cjr7Hr4EgN+OW/lqT8Vd+qZDQpXdGlbv6TYl2ZqurE8/lg4bAcDo3p80GPfN7y4FYOG8\npkM/LTnn9+9QShHXcCwAixe2fq6Vj0lJkiRJkiRJkiRJ65B5xRUsLqvs6GWslNmL84D89HmXTycC\n2/PRjBL6VDYeLOhamMsGXQsa7etop58O77wDt9/e0StRSy65JPl51VVw4okdu5avss16zoQvk+O9\nt/sE6EnMzqZLKGZmTKoBZRe1PXTwu2eLeGT8YvYZt7QdV7tyuhXm0rdrfssDV0KXkZsCULDt1ozY\noPMqzzdz0TLKKpNSMEuzMreOKi3OolvP9q28lP3O5/SmF0OfeoiXz/8H9zz1frvOv6574vr7IQS6\nTPsi3fYrruRXXAk3wmEHfwF0o7Ji5evolOZ0IT+rkvEvT2123KJNRqaP9+j+KjMZwMDlv7zA0Y+f\nyAvcxoLZOfTu1/pyQkVdaikrTtZ/0AUHUcQyNiRZy5IFrX8uQ0KSJEmSJEmSJEn6Spi+qIyPZxV3\n9DJWytR5XckICZE8x+uTltCnrPE/Mg7tXbTWhoQA7rgDzjoLNtuso1ey7qiqSraeq66GkhLo33/N\n3fukkwwJdaSFi+t+/wcPrQs7dskug9R2hNlFbf/zf15BZP8jOz4gBNC3az7bDe25eiY//gjYdjM2\n+sY32CiselWk4vI56ZDQkNyZvLJsdLqvPUJCtbXJv5zUR1rzxXx6sm5Xc1qtspKQTFNVlS55YFdu\nZyqdu7Zxj696yqtyKQrLgOarUb3+mz+lj7MrKxjArIz+oUwBoLKi9Z/n7Gk56YAQQB/mAdCP2QAs\naUMlIbcb0/+zd99RUpX3H8ffd/rObGfpVWmiiAVUsHfFEo29xoKxd2Nii5qfGqOxxS6WGI1g11jA\ngooKigUFKVKll92F7Ts7/f7+uLszOzuz7AJb4fM6J4c7z33uvc/U9Zz7yfcrIiIiIiIiIiIiIiIi\nHVw0mnwzsS4kFA43fpMx1rKFLLZaNM292WXL2n4dndlRR4HXC9nZ0KsXrNh0QYut8umnUFLSeueX\nzfN3/58AuHHvt9nr6q7x8WxndXzbk+ds83V1GoYBo0db/7bE6eoFdp6rOJv3OD7+uKRoy9tI1Xnk\npgLO279f/HFhZn/yKOWTZ97c6nM3poVemna34IxxKWOZXWycxStk+RIBu3AI7rioOz9MzWjWeWvC\nTjJsjff4/O6mf1C2w2D8PXrHx6IuK9wXxsGzviuJYMeN1WszvBlt6WZ9m7zGfKwf57qQUNlGhYRE\nREREREREREREREREth3VyTcms7Eqf/w8LYPykvS3/GJm+jZk7aW0NHWssnMWdmoX4TB88UXy2PLl\nLX8d04T16+HII6FLl8S419vy15LNN+LhURjORCAgx5f4bcjI7Fjf+c3VWTMqmVRzPB/wIccA8NCf\nuzZxRNNmfmV94ep+xitrPGR7atiw215bfe7Oqrkhpp+uvZ0JMxIJyjX7HsLGYSNwE8TYkKiaNe9H\nD0vmunnkpua9X/6wh0x7TaP7l554JpMmTkla6PxzLwPAQZSLqp/ATiweEorWNL+qkb8qcc4YBhUD\nBhH2ZlLABgxirFzc/ICg2o2JiIiIiIiIiIiIiIiIdHCGP5j0uK6S0ITH8vh6ko9/vLI+5ZiKQJh5\na8vbZH1NWb7UxhnHZtIwBrBwtZ95a5tXTiHX66J3bvMqPmyL5sxJHbNvfcGSFH//u9UGriG/36pc\n1L9/y19Tms/W4D3PzorABsgyKlP2SduI2e3YolEGsaTFzx0OGrg8JuXBDLIzg00fIHH1g0L73XoF\nboJJ1ffKNiR/YYrW2rnupEQVoGc+Xk1mTqIkX3XEQ09HmrTrJmwcvgevfrWIMw4cEh/77fRz4DWI\nFVdRv43oppgRax37MAMD+Oq+8VT2H8jwF/6FOd7GlHeymr0mhYREREREREREREREREREOrjMRYuA\nROuZupAQwOrf0lcQqKiJMHtVxwgJXXt6L6oqU8tALF4dZPaq5pUT2qHAt12HhAoLU8dmz4uw68iW\nrR4z/lkHjdV0GTAAyvxWqMvjtOF2KJXSFoxIpNF9Pq/1flSaWcDmBRg6ms7a7iqYm0/GxmKGsNh6\nXGPDNFvm+YTqQkKRLLK8oaYP2ApGp63l1LRgTi4eAgRxA1b1rfp/OwM1BovnJAd21ixzMnR3K5gV\nicCc6iHMYQjnsXKzrh1zJZ832suqXPToo4N55azEuUIBg8oKG126pVYYql5UAeTzNidZ680vAKAm\nv9tmrQUUEhIRERERERWDoWEAACAASURBVBERERERERHp8DIWLCGPPSklH0gOCRnpu411KMXrErcl\nz+FljuJjzuW/BKqafw6zg7VPa2vrU4tFceWlDvJ237wb1k0xHT0AV9LY8bzH+/wOgA9/WQfAHv1y\nGdYzu0Wvvb1r7CNuC4dwEOa03lOAXZL21aQJ30kbqPeyT3nqDfpNeZ/dxj8YH6urALQl6n8OQkGD\nUMAgYHrI9LVuSKijM7YidTXriptwv/0+QcMDWOHZ8sJElaBxh/TluvuKk45ZMNsdDwk1rDq0ub76\nxzMceNMlfDL+LezLqtPOueDgvgD8e+oqKits5BVEsdlgxWInH0/vCUAPrD8E4UzrtzfQZfNb23WC\n/2QQERERERERERERERER2b7Nyd6bwbVVKgA8tZUQOouBuyTa5PyDmziHV3ATILa++ZWOYtt3Roh1\n6xLbF1zQetdxulNf6A84Lr4daV53OGlB9lAIO1EcPVNbCu14Ri8ATt1hahuvSupU9tuBeRdezdLj\nT4uPVVdueRQjWJMIw4SCBlUV1rkyMxuvKCWbFvFlEerTk6DpZuk8KwRpLCsiA398zsN/SQ7cvP5U\nbjywVVpshYTuGfL4Fl1/9cFHM2HGCjaMGIXdm/hsvP5UDi/cl8crj+bGxy44uC9X/64377+cjWnC\nLef2jO+zYbJ+5Jh4maqagm6YGHz1wPPNXotCQiIiIiIiIiIiIiIiIiId3IpYPwaxJP54F+bFt2NR\ng8qyjn3br3tv6+Z2LqX0Zi0APqoJV6W2VWlMTJWEyM6GSZPg/vtb7zr5XRPvSXaetf0/ToiPVZSq\nxVhbi/pDBPHgSNNZcIeTuvHStJWcOHHHtl9Yi+vcVZGKdts7vr01IaFwKPE6BPwGVeXWY192rLFD\npBlWh62wze3jegAQ8NsYzQy+Z69GjylcZVXBW7bAChbt1nPFVq/Dk5n4bPzvPzl89k4WkyakVmWb\n+VUGyxcmvvSPcSU/3vA3Pn/i1fhYTW0lIW/RupTjG9Ox/2tBREREREREREREREREZDsXqDFYV53P\njvwWH+vu2pg059Kj+7B+laPhoR3G0u9jZFHBRrrEx5yEMYPNr4yxfUeEoKQECgpg7Fjr3wE7xDBs\nLf+qRCKJgEJpqRMTg+P5gFuyHwIgGLD2b+eZrTb17DXWd7s66km7395xv/rbleVHn8hEzgCgumIr\nQkLVid/Fh27sSnCD1WbMl7N169vendb3s/h2dYXBzKJBfMGhjOLHRo95/Hbrb9Z/HrRafe60evpW\nr8PIcHIPtzQ5b8Q+AW473wo2nTPsc67kCRadcl7SnGCetb6R9/+12ddXSEhERERERERERERERESk\nA/vgv9nETBtDWBQfy8qKUJHdLWnehvXJFV7+92I282a622SNTSksy6KSbGz1oj4OIrAZIaHtvZJQ\naSnkGuXw7rswZAgXrbsHM2bEQzstprgCgF35Jen92qviKyC5FZK0rMY+4VNXDgegxr9tV3EyOtFH\nK91STYeTgSwFoLpqK57MxsrEZpGDULHVXtKdn6aUlDTbnt2WcpbnDQAuPrIvAAfyJQYw7bBL4vNe\n51S6UgTAsgXJf0MHLv12q9cRc7oIkv5v81MnvxjfDtQY7DLKeu8f+/Uka7DBlyTmdG329ZUpFBER\nEREREREREREREelgohH46LUsjjilkneet8pHZFIV35+dG8W7qgK7wyRaW/klFk3cPDRNeP3pXABe\nmbGyDVfetA07787a/Q7F8WyE2GaEhIoqArz785pWXFnHtnR1AX2W/gC//z0APVgOQGWZDXeP5rdt\na4rzt9Ucxc98xNj4WMTtxhesBiBYY9WhMLf72k5tJ1p7Wz9UpXZTHV0epQBUl295SMgs8Sc9njXD\nC7R+SKijh7S2dnkxp4sLA08zgVPjY1d0fRmKYeRn/wGeAeBU3mQfvqM/qX87f7qq6QpATYk6nfQn\nfduy3d96mpdfGMoVV+zO5IlWC7JdmEsu5Vt93ToKCYmIiIiIiIiIiIiIiIh0MF9P8jHhsTwC/kRj\nEC+JG8dmjg/70iBmvcIioWDiFuozd+UnnW/pPBc9B4T542F9Oe2yMk44r6L1Fp9GHiWczmsAfPbk\na2DGcDwbwQw1P/QQjYE/1HJhmM7GXxyKBxAAfNSFdlr2zn4g4kz6rAGUDd4Z39za67V05SJpUk/W\nso5e7LVvOdC1vZcjm1D3HQ1sCG/xOWJVoaTHkz7vB4C7m5vgli9tuxfIL2Ag3ySN7TWyhI9Oe4+j\nL/xd0ng/VqU9x2/HnbbV6wjm5nMe/2EKhzORs5L2OQlzzoX7cm69EOY8hm/yfBNmrMBuA/bu36zr\nq92YiIiIiIiIiIiIiIiIbBc6U7eqQG21lqryxO08H9UUUAxAMCcPSK4eVD8k9PWkTADcnhihgMHt\n43pw3zVWe7LXn8pt3cWnEba58GC1TYl6PMScThxEiEYVOGmuygoHXdgYf1wXEqr7rGwJ04TSDcnH\nl5JHNskhMiMSSVzPv32+Z2++CT/91D7XzrFVcnCXH9jp6kHts4A2si18shZdfz0AgZIwH/w3i2mT\nvZt9jkiDkFAdZzffVq2ts9vaSkdzxl2LZ1Qfoti4/PpVvMnJhL0+SnbejR/+dBcxDGL1PoWn8yo7\nZK8HoIe3hPNsLxHK3vq/nzXdelI8ch8mcDb59X7TAYYzN+0xcy+4ionTlmz1tUEhIRERERERERER\nEREREZEOxzCsRNMnb2bFx3xUs5ChrKBf2huV4VDi5uaeB1iVYIbuHiRce795yVx3K65400IxJ26C\nTHp5MgCmza6QUDPFojDnOw+VNe6kkFBd+7mtqST00J8LuPK4PnzziZfC1Q4iYVhLr3grnG/ueJgf\nr7uT4t32SlQuCtS2G+tEobuWcOqpMHJk21/XWLOBBbGhLAwMbPuLS6OMRhIroR498FJNuDzCxMfz\neOpvBZt97lBZasW0e7iFWF72Zp9LEkyHg/Wj9sWGyRMP9eNk3qaqt1WlqWiPfTCwgmrf/vVBAFyE\niAatanfr/fnYYpEW68kW9ll/27/mAHZkKX4yMDH49dJrAHi9Xku08fyRFUf8DtPRMu3m1G5MRERE\nREREREREREREpIMJpWnpNIglZFFFPqXMz8oBrBuJp/FGo8f8MiODUKh9gzimCSHcuAhRNnhna9Bm\nqw0JqaZBUya/msWEx6zKUekqCTVs/zVvppsefSJ06d50a7afvraqnDxxuxVkGH14NTHs8ZDQ8rEn\nAeAu2cABr70PwDsvZHPAMdVb85Q6NdNssZxAs/inrwT2ZJ+hK4H8pqZ3ao0FbzqTUHYuXvyEq7a8\nNWKwygqmGMQwsTGL3diNX3g965yWWuZ2y2iQblx+1IkA+Lv1iI8tO/YUYk4nztvDRIMxZkyxfif/\nzYUczsoWWYezuhKAnfmVpSQqhK06ZCwF82Zx6tdv8tvYk9lh8tsATOx3c4tcF1RJSERERERERERE\nRERERKRDWbnYyatP5sUf73mAnxUHjyWrtnIMQLC2ktCpvMlvOx0AJLcbi4QT21ce16e1l7xJsaB1\ns9xNMGncYUSJxjp/KKC1rV+dqPuQSxkAcy68OhESqklU9pnwWC5/v6I7V5/Qu1nn7tU/nPR4xhSr\nnVEfVhPOSLRJCuYXsGbcHwAoXO2MV6faXkQiie2KisbntYaaUuv7M/LYtr2ubJlQdo4VEqredEgo\nFoWzR/fj7NH9KCmyJ+0LWPkRruFfAPSrDaZEvNt3u7GWUDxiVHx7wy57ECjoDkA4M7lK0/q9D8BF\niBAuHrvNClH2Z3mLrePXsy9JOx7J8PLVfeMB4gGh9aP2w3S0XP0fhYREREREREREREREREREOpBV\nS5NbimT4TLrN/gF/10Slg/rtxtwOK7FRPyQUjXSc8E3UbwVRNo7ZN2ncTpSYQkJNqv8KhbJzmDht\nKev2OTClktBHr2Xx4SuJG90Bf9Ovbf8h6dM+meeN4s0pc5PGotmJ1neVZfaGh2zT5tZ7Kdaubb3r\nmGl6uPlLrTFPgav1LiwtJpRlhYQm/zwsPhaJwCuP5lK2MRHPWLE48Tvf8De/qsL6fv0ftxPATV5t\nOLBNS1hto4pGjmHitCW8NnUhU556LbHDMHj168VMnP4bAMHcfKJdcgnaM+JTnjv5+RZbx7p9D2Hi\ntCUU1QstAUQ8XrAlx3h6/Di9xa4LCgmJiIiIiIiIiIiIiIiIdChOV3JQwOU2idntVPYZEB8zoonS\nJi7C2Owmb47P5aWHrApE4RD0G9x4uZc0WYRWE/Nba7W7km9wO4wokZhuVzalfi7AyHRjOhxs2G0v\nQjv2BRJhoIbt5mbP8DR57lDQoN+gEA+/tSY+9jSX4OyagWlPDgKFM7MYxQ8AVFXY2vQz1N7uvDPx\nZMvLW+86s342WDo/OQz0l3dPAcDdren3s7PrTBGYxtYa9npZwLCksQdu6MqkCdm8cF+iXdwPXyQq\nddUPeAIUlXrpwgayqMKN9Tv+/Y13t8zCOzGjhT4hpsNJ1OMh5nInjcecrqTfPYfDpCKahS8zwlgm\n0cfRsglB0+Hkm/97lO9uupefrr6Nb+54mHB2ToteI52Wq0kkIiIiIiIiIiIiIiIiIlvNkVxUglB1\nDO+GIpb8/hy6/zwDgHVjDo7vL5j7M9keP2VRHx+/nsUfri8lEjHoHVvNiw9PI5Lh5chLT0k6Zzho\n4PK0TcojVltJyN6gEIrdiBKJdqZYQDup9xLt0mNtbeMhKD7yMHgawhXW6+vLjiUdZmvGSxvxR/GG\n/bgzEp+FbCoIZaXeqA5lZXMff+EwPqe6ovOHuz77tZDCimDTE4EFS7oAVqunD38u5Dejecc1ZfFc\nF99+4uPc60oxDDj7wH5AD16ZUfsuxxLvaX7/7at6U2cVdWekjM35zhqb+ZWXpfNcDNwlRH63RDuy\nQHXylzUUMvDhjz9+beoCop7U80rrcjis7191lQMXIXZ67QV+uu4OAJx2g1NH9W2Bq/SDE8bEH8Xr\n7T31FFx2mbU9eTJn7dOvyTOd0cwrdv5fbxEREREREREREREREZFtiM2eHN4pXGjdTA5lJlpJBXNy\nk+aUBXxJjyMhg25Lf+GQ687Ds7E4Pt6b1QDUNKMVVUuJ1lYScrgbVhKKqZJQMyydl0hX9eidqA5l\nz8nAIEa4wnp96yoJXfDnEutxqOn3OGPBYrqvmEvXokXxsWwqktrZ1Qn7ssjHOnfRWgcmnbuU0OZU\nQnI5EpW7IuGW++7cfVl3Pn49C39Vg3PWhoNsxaUAXDxmKkZzUl/S7kzHpuu03D6uB+EQRNeUJY5Z\nV5o0JxS04bEFmX/OpQBtFhDq6N3M2np9TnsipOcixK9nXlRvLa28mEsvtX6kTBOOPrpFT62/uiIi\nIiIiIiIiIiIiIrKd6ByhBlu9O3iDhgf5fNUIAEqHDo+PR7yZTJixIv74aCYnnSMSsm5qAhxw6+Xx\n8bu5DYCAv+1uE8YCtSGhBu3GMmw1lId86Q6RWqYJyxYkWuIEunSNb0d9XnxUE662bmQHa0NCw/cK\nAM0Ls8SqwngIcPL5h8XHsqhstJJQFzYCMP7uLlvwbDqWzfk1GLhDZXw73HgXv80WrS0m88kbWfzj\nmsR7W7IwQCwGlb9avc1ye3Xw9EYL6eghleZa7BnGNTzS6P6qcjv2hSvjj1cudiWF1kIhOx5bkFlX\n3pz0Oy9ty+5IvClugiyoHxJqjwW1EIWERERERERERERERERERDoI04SS4kRboXse/Y2+tdV/Ihn1\nqkk0uJv+by6Ib6/+zcnalS7cJFoi7cw8wAqAAARq2rKSkJWEsHuSr9nHsY6NwdQwiiSUFCU+C9PY\nj0B+QfxxxGOFhEK1IaFQ0MBui3HWqXsCVku5ptSQQQY1STe8s6kg6nanzA1nZscrCTUmErE+mnfd\n1eSlOxVzfXl826isabnzxqxX/s3xufGWVABXXbAT5+7bj4tvOhgATy+1mupoNhVoGhRYwCNcx3q6\nJ40fwFeAVSjKX20nvzZ0N/nL/nzyRmZ8XjBsx2WPIO3LXq+qn4MINd16xh935kCbQkIiIiIiIiIi\nIiIiIiIiHcT7L2fz7D2JKi19vvokvh3ZRMsZH9Xx7b+cZd3IdBKOj81gNGvolQgJVbfdbcJojRUS\ncriTr+mz1+CPeFr0Wv93STeuObFXi56zPVWUJl6z/fiGYE5e/HHEa4WEArVvfbQsiC9WiQerklC4\nGe3G/PbM+Pw6eZRSvuPQlLnBnFx8+BNrK0+ZwpdfWv/efnuTl253sc3oN5b5/az4thEIbmLm5snN\nbV5Zoh2Py2t6knQ43SniQa4H4Dje5yKeA6wqXzXVBjkkvkQ/fOGNbwcjDjyOMNK+onZnfPunvAOT\n9ikkJCIiIiIiIiIiIiIiIiJb7edpyaGZHT94I74dyfCybq/9WT9q35TjvPXCG3VCuHj1y4VMmLGC\nLKroxbp4SKjG33Z3OGPBukpCybcmvbYaQqaTSAveC18428OG9Y6WO2E7C9RYr9knHAGQ1AYs4vFS\nTFfmL7FCZd5f5uPFn6ggVVLR9PnJINqzgClPTIyPLb3/Tky7PWVuxGtVOnmEawBYtyb1VrM/9WO4\nTSiPZeOsbd8XC0Vb7Lw7lM1t1jxnTmplp22R0ambOKV3Dv+lK0X8hfvi381wGPw1TrKNxHe0uirx\nfQpGnLidbV9JaFt8/bdGMJYICc0v65+0rzO/VgoJiYiIiIiIiIiIiIiIiHQArz+Vw6JfkkNCPX6c\nHt8O+zL54rFX+PzxiQ0PxU6M0cNWJY2V5vYh5k4+X6xfNwCCbRgSigSsdlj2BpWEskwrsBTcjNZn\nrz6Zw23nd2fRL65NztuMIjEdWt1rUxfuCmdmxfdFvD4qyaawNJNQwOCNZQeznp6JIEJJ01VqAqYL\nlyNC1J1BBVlsJJ9odnb6yYbBdzf9g335BoDVK1ODRBs2JLZNE6ZNg+nTU6Z1CJvzGVlm7MhAlloP\nWjAkVEYuADn5EY45q4JTeb3Fzi3tZ8KMFUyYsYIpT7xKN4opojv7Mz3+3YwEoTLgxutJBIFCRYmK\nXsGoE5ej5T5n24q2juUEQ4nAae/Mjclr6bwZIYWERERERERERERERERERDqC//0np9F9U554lYgv\nK2X8f29PY9blfwHgmN3nJ+3zG96U+cHDRgFQsqbtUjTR2pCQLSP51qQry3p80zk9qa5s+o7rlcf3\n4v2Xcli2wM3fLu4BwIM3FnD1Cantxc4Z049fvmvZVmbtIRiwXpe6dnLhzESAJ+LJYDhzALjg4L7x\n8Z+uuwOA1z4c3PT5TTduR4RIhpcsqsinlFBm6uesTigrm52Zj90eY+6sTYeEKivhgANg//0h2iHz\nDs3/DpS5C+hCbUgg3HIVXsrI5Uoeo6zEyYcTcjiEL1rs3J1RZwpeNKeSTNHIMazZ71AAFpwxjqID\nDwKs4OSGYA5dvFX8nrcB8NdrARmIuXC7OuSXZrviMq3g1u78zNNjn2nn1bQchYRERERERERERERE\nREREOrAFZ4yjaOSYtPuqe/Vl1cFjATh32QNJ+wJmIiTz+b9e5qt7nyYz38BOhJqStrsBXV1phUl8\nDQrU2Lpa7atKihzM+iYjPh4Jw9T3fMRql2iasHKJk9LiRFUHw2YFPH762svGQms80iC7cd813fjo\ntcyWfCqtavpHXqa+70saC9a2G8ukCoBIvcpQEa+Po/g4af5JjncpHbJz0tiaZQ7uuKg71ZUG5Rtt\nvPNC4o2oMT24nFEinsTrH95kSCgHH34yHCE+ed/JnDnw00/WvqoqKCxMzJ06NbF90UXW+xhqurhR\nm9mcSkL+sIdcyqzjIi0TsIvFrJBQHqXxsQv4d3z7FOMNnjv1OSb+88MWuZ60j+9uuZ+Fp57PnAuv\nIZZnffeqN5gsDe9AyOHhQW4AYKh3WfyY8mg23oy2bzcmyS7rPpHHuYIfGUV/e3KlPqMzJdoa2HYa\ncoqIiIiIiIiIiIiIiIh0UrFY4/tCmY20f6oV8VjBkQEzpnCM8yMmhY8GIN9dCbXtjNbvc6A1Z/Lb\n+KgmVLn1ISHTtCrdeDI2HZooLbNag+UUmNS/qsebOM7hTGx//HoWEx7L49m/d+HWJwq554ruKefM\nyokRqNem7L//ymXsmZUp815+OJ+jT69q7lNqV0/eWQDAwcdbVYOuOLY3ZRtrA1a1lYRquiZei3CG\nN96GrM5Q11JizkG4CBLCzW+/uvjrBVbVpYuPSFQbGrpbkKG7BYniwOWIEujSNXFeX+PBKtNuracq\n6KFqJYwY0fjzOeGExPa6dfDMM3DZZVaQqFu3xo9rK82N+pgmVEa95FAOQCzaMiGhgN/AxBYPHwF4\nCPI0lzDqkVMZMO53LXKdzsTr2vbiC4EuXZl5w98AKI9YAbz7b7O+i58UjmYHljOWSayJDgRg5WI7\nZeSSmamQUIo2zuXkxUq4gg8AyF84tz2X0qK2vW+ZiIiIiIiIiIiIiIiISCcTS5PZmcsuwKZDGwCR\njERbsbyw1e+pv20ld+3+PAu4M3mu10cmVQSrtj7o8O6/s3lzfC7PfrYKr6/x85WWu3ETwJNjq426\n1HK74pvRSOKWa3VFohlKuoAQgN1hctXvescfT56YzeSJmw5TdRbRCJSX2OMBIbBCQoG8LsRc7vhY\nzOUm06hKSrt4nUGiLhdOwoRwxwNCDdVU2wgFrdfc7YoSrVdJKOJt/PNWF1I6hg+ZxLHNfk65ufDK\nK9Z29+4wbx7svPOmj2ltza0kFA5BBCfZbj8EIbaV2Y3SYjv/vKErY8+sAEgKCQFcYm47bY0k2W47\nrEt6/MaJ/2T1xiPI+rqSqpgPiPH83XkA/ObvzUHtsEZJsAeD8e2Nw3ZL2teJCwkpJCQiIiIiIiIi\nIiIiIiLS3mLR1DuOuzAfANNmT9lXXzgrh6jLjT0UxIsfgHHOF8n0hVPnZlghoVgJQEbK/nT81Uba\nENCb460qRWUb7Hh9jScnFq0toCvFmPVCQQDVjkQYpXhlvTWGm777arNBt54Rlle6Gp0z6iA/RWs6\n3+3QD17JZswRSXEqvPgp7tsgVWMYeJ0hqNfCK8ftJ+Z0sStzmEH6FnUAgRqDcMh6nZ2O5DJWddWC\n0qnstyOrDjqK8778T7NCQhvKw4w9wk5RMfTqA2AFwP75YJRHHttE+aw2EG1mSijgr2355gnWhoS2\nLmD3xjM5rFjk4um/WZWjAnsN56PL3sMeDBAYvivHb9XZpa1sSUgkOyeCgzARnADsnPkb31z1MJ7D\nfqQm5ubLD2wMGlDOkoVebjj+S0ra+NPQ0YMvDpuN7Iy2+00P9+wJc+DHh56j8MDDyXYmrp3lcbbZ\nOlpa5/urKCIiIiIiIiIiIiIiIrKNaazd2Jr9DmXFkU23HVqz36H0+2JyvP1UOGZPqjpTx9+jN5lU\nUVOT06x1LZzl5v8u7c6NDxWx+76BtHM+fzeTc64pS7uvaI2dH5f3AyCUmdwaa8yQFfCptV28JFFK\nqXRFlC7eSjb6sxpdl80OIw/ys3xRakjomds+JvO4YfzrlgKiW99Vrc2tW+EgHEzcrZ/BPhjAtHuf\nTpnbMCQ0pGo2AdfRTGN/7j3pXV5afCRjz6xgn0NrmP6xlyfvsIIpwRojqZIQwMzr7iBr5W9Nrm/V\nwUeT/+UHKeN3/Xs9f72gBy9xLn/gZc68spSPf63kh++t9/+AY6rwZnrxV9koN6r4cE55s1+T9hSo\ntl6nLG8YysFs0G6sptrg9gt7cMolZewyMkhmTuqXORaDD1/JYvThfvK7J38o3f2yKNnZqlLidW06\nECidm+l2kU8JRXTnCh6n208ziFx5M+szB7Cuqivj77bm9WQt3u4uStp3uR1Ovs/FcSN6td0Fn3kM\nXt6bUVefD5sIT3Y2tqaniIiIiIiIiIiIiIiIiEhraizM8uWD/yaY16XJ45cdcwoAvVkDQEXYR9SZ\nGqAJ5OVbrauCzbvhuXS+dY6533sanbOpNl8b1idqFkS8vqR9tiwPr3EaAEXrE2vdOKucff1fkGEP\n0tBeh1iVkorXOvBXpr/Vefzd5wNgt5tJbcw6OqfbCpd8PSmTYMB6bn+7+Gv24XuWH3kCgS5dU47J\niSTHCIb65xBzurAT49ie33Lns4Xsc2gNALldEh+ygN9GxB+rva41tvD0C/nxxrubXOeGXUfGP2d9\nBloJpUHDg+w4LMQXNz/KufwXE4PjzqnEXbKB4btZ4bB1K53kFkRxe2IEazrP+xIstypyeX3W69ew\nNeA7L+SwdoWTR2/pyiVH9SGU+rFl5RInrz6Rx0sP5vHO88kBvSGDOkdYSrZe2JdJD9YDVpu5H2+8\nC4BPqpIbi+VQjrOqMuV4aWMDBsBf/7pNBYRAISERERERERERERERERHZTjSzu1C7iMW2LjQR8Vgh\nHg9WtZ8QLmKu1JBQJMNLJlXNDgk5nNaLVteaqj6nkdrOrCGj9m7k01nXpvSycVZXchpvMJw5zFuQ\nx33XduXJO7qwqHoA3Snks+jBAJSRwyh+AGDQLsF4K64Vi9O3GsujFLCqDUXTtHHrqOrfh/7vv6xW\nbnl2K0Dy61l/THtMeEi/pMd9WE3UbX0W9nji3qR9Nf7EreFAjUGkygr4OBvPf6VV1ac/vfqHeXbE\nXdwxvpB/f7mS258uBCCnfB0Akdo1nHzMSO6dfSYAS+a6WbvciTvD7FQhoXCJlfrxZVuhqvohoY9e\ny+TDV5JDcjO/8qacI1L7/flpWmLfnTf8iImBmZuomNXR2z3J1ikbNAwHVmvGXMooGTYi7bwcyikb\nOLQtlybbEYWERERERERERERERERERNpZNLJ1x4eyrVCJq7b3VAgXEU9qWMF0OPEZfmpCzmad115b\nCGjK21kpISu7mVh0uuopAAG/lXrYMXd96s7aRIQTK2z0y4wMpn9sVRtaQ2/GMAMTgxwqKMeqvnLg\n4zdzyaeXAzB/qXy4tgAAIABJREFUZvp0i4cgvz9mFO5oTUrVl46sfhBr7XLr/ennqQ3deDPTHmPL\nSFRqshPhh9vuI5SVHFrp/dUnnHLYcPr2qIiPBatiRKus192Rsfm3jEPZuZy3+B94fSYud+JzkrGx\nCADDNOn20wwACtiQdKzbY8YrJXUGoRLrO+XNsd4fs95n6uWH81PmO92pacRQMDX9c8eDe1n7spvX\n+k86li3JcwVz8olipQH9+yQCQrfZ70ma18VWQulOu27N8raIMmrbh87z6ysiIiIiIiIiIiIiIiKy\njUpXqWdzlA4dTtThxIvVjsvAxLSlP2eGI0hNKH0VnoY84ar49jljkqvWBMiIb7/6RF7a40PlVpCo\nS+XqlH2LTvkDAGfwasq+hcZOSY9/YC9u4l4uZjxdKU6ZX1ddqE5GSTEDP32bWGAr01dtJBaDaMTg\ntCN+BSAUsN67uuca9qUPCYXciRZuvzIMf49eYEvcAj5rdH8O+vMfcVVXss/S9+PjkdIQ0UrrtXH5\nNv+zF8rOxVnj57jTDmHoay9w1uj+nDW6P/0++wAAeyjI4ZefDsDefB8/7syhU3FndLJ2Y6XW65SR\nZ72usWhqCGiMfQYfHfUXa74/9bmZpcmfz0P5LL4dzmy8XZ9sW6IeD36s8KazR+I7fVb0v0nzzKzU\ngKdIS1FISEREREREREREREREthmLFkF5eXuvQmTzRcKJYME4nuNXdtrE7PS++b9/cQpvci0Pcy83\n4wgE0s7zOoL4I+5mnXPHqe83um8kP8a369qSNVTw8RTr37KVKftiLjcLT7uAgSxNGs+hjI93u5jq\nHr3rjVVwL7dgw2Qsk1PONWzZlyljDiLYyysbXX9HUteOas9PXwQgGLDhdoTZ9+FbAQj7stIeN6x3\nIcfzHnMYzmCWEMjt0ug1+k/5gEUMpitFBCujlKy3runybv4t48I9RwOQvfI3Rj78t/i4d0NRylwb\nJrfuboUgchfOp3ilwQ9TO08I4vsfrGpB+d2tEkKxNLmzEdFZjPj4JSC5rVud7JmzAHj3kFvYOHRX\nPuNwAIp3HUll3x1aY9nSQVVhhYPqQmcAPXeI8gHHxh9PLj+4rZcl2xGFhEREREREREREREREZJsx\ndCiMGNH0PJGOJuKPxbd7s4adWLjZ51h16LFEuubzMNdTwEbsgZq087zOULNDQpAc/olFYfrHXmIx\nsBFjT2YCUNAzfcWeSpdVYchHddr9M6+/k0MG/spw3+L42J3cSc3IXVl84lkAvPPed0SdicpHBrBz\nphUsOoqPuJLHeGjJmaykL2voFZ/nIEKERDuujixsdbTCTaJvW14k0aYr6k7/ftmyPLzHCQxnHgDB\nvNT2V3V6T/+MwSyhmG58Mb03Dz+1CwAOn33zF2w0rxLQhBkrKNthMN7qUgBi2AhGmm51FwrCp29m\nUr6x/W9nT53ZHwBPd6u9XSyWOuc6HiYTq+pWrLAiZX8wYn0Oh37xNvkL5wIQyszm02ffJuL1pcyX\nbVc11vtt7NA9PrbsmFM4lknxx68ccm+br0u2H+3/qyoiIiIiIiIiIiIiItKCVqYWLBHp8KL+cHy7\n7iayv2v3xqY3yrQlAh+h7Ny0c36JDidsOlk8p/GWY2uXO/ju8wzCMSvc4DWsNmYfv5HFk3cUMPU9\nH2Gc5GGFP8x1ZSnnCNQY/PPr4wH48j9vNHqtcHYOw6p/jj/OpIqoy8X8867grUkzqenWg2Bucvhl\nftVAAH5mDx7janKooC+r6cW6+ByHESVsa24Yqn2FaytJeQiQkWEFrnKoVxatkVBOxJOR9DiYY4Wy\nJk5bypf3Pxcff2vyT8y58Oq05zAymg7tNOTv1jNlbO3og4BElaG5F1wFQKBLN/IWzweskNARfGKN\nb6Ll2IWH9OXFB/K5/Ng+PHpr49WR2sLIASvIooJwTi42osSiUFlu4+zRVvu9XqxhKIviQbhwWSjl\nHAHTChh5SFT3evvDH9pg9dJqtrBjXl0lIVd+4ntXU9DNGiPIbsxidMbMrV6eSGMUEhIRERERERER\nERERkW1COJGxwEzf+UikwzBNeO+lbApXWyGcqD+a2Fd79/nj59/b7PNG3VYYYf2ofVlw5ri0c2bU\n7GH9OyW55dOSuS781QYTH8/lxjN68egtXQkGrduJ15oPA1C81lpv8ToHNWTQhY3YiOJYvDrpXL98\n52HcIX0TA7mZja455nSyEwvij7OoxOmvBsMgmF8AwLR7nmDmNX9NOTYpSFNrzb6H8P7rUwl3ySdi\nbkGVnHYQDlrvuZsgNTXWa7ywtuVc6eCdGz+wQXjIdDhr/3Ww5sAj+OXi65n60L8J5nWhfMehAEzg\nzKRjYp7Gw2KNWXnYsSw76kTmnXtZfOzLB17g29sf4vNHX+GbOx5mzrhrAStQVPf+DulayPm8CMDG\n9enfm5+meTBjief13WftW2nHGQuzM/MJ5ubjJEwkYvD4XxPBpbVYbfGKRo7GRxWhqtQ/QBvLre9l\neN/hFO22F5NemkSs9rsq25cY1ufeXZD43i0/6kS+v/FuqsjkR0bRdXb7BMiMZlYIk86tc9TXExER\nERERERERERERaUJNvc5KhYXQo0f7rUWkKZVlNl57Mpep7/l46M11RP2p7bpqum3+h7guJLT0+NPj\ngZGGxnaZxpvFRxGLJm4Ih4Jwx0U9GLhzkKXzE9V3qkPWdgFW66to7TIXznazkJ3Yg5+JYeeF7w9k\n0qlhHnzDquQzf2ZyBZ9oRnLFm/qCuXncwt+5i9sBsBNl2diTkuZsGDGKDSNGUTpkFw6/4oz4+Dn8\nN+V8X983npjThd2+rPOEhOpVEqqvqkcfPnn27cYPbCIROffCa+LbwVyrytAx9doaAXTvEyW1DlQT\nDINv//YvazMWZf3eB2I6HCw75mQAltd7/wr3HM0hk/7ET+xBt4G5LCu2Ep2P3NSVtSuSP6O9BoRZ\nuzz1cxuNgL32zrZpWm3v7G10p9usDOAmSCgrh1zKqPS7mDsr+fP85f3PUlPQncwLqwhWW+/J/17M\nprzEzplXljL+6wMBmH3H3wnlpK/wBQppbE/cBfV+I202lpx0Dnv/8zYAPn/0lXZalWwPVElIRERE\nRERERERERES2CX5/Yrt+YEikTkcqMBWtLRxUuNoKRERqopuY3XzOqgogue1YQ7fv/DwA+d0i8YxJ\nsMa6bVg/IASw0WUFlepCQlPezgJg4SwrjPRqvao061c5WbbAej4VpcnX31RIaNVBR+MhyFtYwRLf\nXcdRMWBQ2rlFI8dQuMdovrQdxOm9PuE27k6ZE3NaFToctihRHB2+sphpwsevWa+rmyB+Mjh94FTW\n0Iuv7h9P1NP4a1f/Uz3r0hs3eZ2w16rmlENFfOw5xhHbxHvTHLOuupX1+xzQ6P6ywcMA2INZGJj0\nMayqUw0DQkBSQOjg31XFt/+wfz/+fX8eZ4/uxzlj+vGH/fsR8LdNoCYaiOImSMzppIANfLlwcNL+\n//AHSofsQsTrI5MqSkpdfPhKFq8/ncvHr2dx/oH9Eudyd472d9L6jMwGlaRqA2K/HXMy1b37pTlC\npGUoJCQiIiIiIiIiIiIiIp1aJAITJ0J1dWIsGGy/9Yg0RziUHHCI1gsJjeLHLT7vhuF7AmCLhBud\ns9PX7wLw6pN5nDOmH999lsHLj+Slnbs+0g2AEOlbUuU5kmvQfPmBFUT58v1Ee7FJtmOINVLVCGDV\nYcdSOmgYJ/EOJgbu7E2XiCnfcTAHxr7i1bVHYdtE9Mtlt17TtgqTbKllC1zx8JWHABkEeCTvNnqx\njmBu/iaP9XfrBcDM6+5g/nlXbHJuoLZ1G8CTB1hVgE7lDSKt3PaqdOhwVhx2HACFe46hu6d5dYv+\neEsJ97y0Lv647jWqs6GwbapEBWMuyPFi2ux0YSMVNcmhquOG/oy/R2/C3kwyqWL6wh2Z8Fjq92kc\nzxF1KSS0rTDYst+VyRzNn/hnSqtAgAnfLGPGXx/c2qWJbJJCQiIiIiIiIiIiIiIi0qntthucdRYM\nqld4JBRqv/WINEc42DAkFAPgQ47hTF7d4vPWhRDsocaTcs5YcoDo0Vu7Mv0jX9q5kxbvQR4l7DF0\nfdr9l+5gBXs+u+4hAAp6RPj150QQIoqNsbHJaW+I1xf2JUJFTQUp7MFAytjc869MGRuatQKAlYvT\nB5w6ivqfBSfWe+Mu3QjQZEho5eHHMfWBF1h46vlNvsb+Hr2Z8sREQlnZHJkznXWj9iebyniLutYU\nrG2xFc3IIKOmPD5+0kVl3PJEIeNu2sixZ1fwpweLGDAkxM4jrfd4wJAwQ3dPfb8Baqra5lb3nOAw\nqg0fps1GlEQw6Sg+YjW9yV84F4Cwz8dsdm/0PH/Puwdsuj2/vTuaj/knf06/02Zr8nvcmjp2nFJa\nin6FRERERERERERERESkU5s/P3VMISHp6EINQ0IBKyS0C/O26rwxlxWIsYVb7ktQSj6OA3fCwFrj\nybwZ33fu7tMA2P/hmwCIhA2+/8wb37+pSj/1/XzVLfHtWBMhobkXXJ0yVtl3h5SxXLfVrqqmg1cS\ncjgTr9Fvh58IQN7SBYS9mU2+FhgGa/c/rNnhk6KR++Iv6E6/zz6kx4/TAZpoZ9ZC6tZX2/stgJtH\n3lnDSeMq2GVkkENPrOasq8rYY78A97y0njv+uYy+n0+i7+eTuP2pQi6/c0PKKWv8ied86dG9ufnc\nHi2+7A3rrVDQN2V7EPb6mM7+8X3v8Ht6szb+OJLh40XOSzp+wkMfc9alxXzK4dh65rb4+kRENtem\na/WJiIiIiIiIiIiIiIh0MP5QhO+XldQb6ZYy59vFpVRlNd5uaVvRPdvDsJ7Z7b0M2QL1243FohCo\nbZfnw9pYs99hW3Te5UeewOB3XqFozzGNzznid3z36d5c038CM1YManRe0np9mZi19QcO5Cue4jLs\nRPFOscbqKuBEIgaVFdZYPhubve6Nw/dkwekXMuTN/+Dv1nOTc6t796MmvysZJcX4C7rh3VBE0R77\nEHG7WXXosfF5PpdVTSng79h1E2K1GaFR/MCIEaUwxXocyNt0FaEtZdodOGv88cdtUUmoLhxUlxlz\nE6Jrz2ijc/e77Qp6f/MFAF///SmcrpNTpgWqre/QisVOKsvsVJbZKV5n561nczj32lJ82c0LqG1K\nJGxdY2jWCqIZXvY1vuEbc18AMrAqHBXtvrc12WbjrIw32ftEF3MvuJpTjxwB18ORw0bQhV8IrWr6\nt7pjx9mkvp16ZNE3f/MDdoFDD8c5fy4HDiloenIbs9n0CdwetFtIyDCMF4DjgCLTNIen2W8A/wKO\nAfzA+aZp/lS7737gWKxKSJ8C15imadY79j1gx7rzGoZxJ/BHoLh2yi2maU5qpacmIiIiIiIiIiIi\nIiKtKBw1WVuWaD8zcOcgS+cnV9tYXxqiS1nj7Za2FU57xw4/SOPqVxIKBgwmfjQMgDxK+fKfz7Pm\ngMO36LzFe+zDhBkrNjnnl4tv4HefHsQ9Ky7mMD5v8pzXOB7DW7iWzzmE4/iAy3gKJxEAynIH4ynd\niAE4CeFZsYpobEcAbuNuANaPbDywVN9P197OrCtvJuZsuj1YRol122/tmEP4/tb7AXj9y0XJc5xW\ncKmyrGN/TyK1gbH7+AuG95j4eDC3S6tc76erb+Owq8+OPzbt9k3MbhkV/QYCUNW3Pz9feTN7PH4v\njupKIr6slLmHX3IK3X75Mf54xDMP8M4VqSGhukpCVeWJ9/fa3/cGoKBHlFMuLk85ZnPVfU+v2Old\n4Pd80v00fOvXJM2Z8vQb8e2I18ewic8xbOJz8bEuv/4CwJyLrtvq9UjHkedzkefbglaGn30KQJ8W\nXo9Ic7VnJaEXgceBlxrZPxYYXPu/fYCngH0Mw9gX2A8YUTtvGnAQMBXAMIyTgKo053vYNM0HWmjt\nIiIiIiIiIiIiIiLSXhoUh4hGUv+f79Gw/t/w0rHVryQ0Y4qX0iqrIoWdWKLqSiupa0k2Aiu8MImx\nHMPkpDnPMY6LeJ4reJx7Cu6jsHwMhzCVajKT5s3543U4q6sYfc+fcRGCqgA1lUH2ZybX8Qjf33g3\ny48+sXkLM4xmBYSSDtlEO7MMlxUSevGBfLr1jrDbmECjc9tTuPb3ykWIaL3nn7/gl1a5XtSdCFUu\nOvncVrlGQ4tOPY+ywcMo2nM0zqpKAI4adyIxh5PMtatw+q3buzG7HVs0ucJQzoqlOIzUqkOB2jZy\n/qrUEFi0kSJFmytaG0jNrS4ESAoI/Xzlzaw47Lik+WFvJhkbi0ln4WkXNHk9Q3+6RKSVtVts1jTN\nr4CSTUw5AXjJtMwAcg3D6In1n/4ewAW4ASdQCGAYRiZwPdTGkkVEREREREREREREZJtj1gsFmCYs\nX5QaKogEYm25JJHNFq5XSei5e5MrxtgioVa9dqy2ckwBGzExGMtHKXP2YzpTOIxHuBaHv5qZ196e\n9lyrDzyS344/nXff/QYnYSIRg6qFFfTGClMsOfnctNViWsqmWpNlZyRCQZMmtN4attbG9db74SaY\n1PqrYVimxa63yx7x7d+OPbVVrpHCZqNoz9EAlA2yqmblLF+CEY3EA0KQ/JzXjjk4vj3ow9fi27sx\nC4D1K616GOkqRaULj24J3+z5APSbPz1l34IzLsLfM7kezIIzL0pqFfjJs28DELPZlAASkQ6hPSsJ\nNaU3sKre49VAb9M0vzUM4wtgHVZbxsdN0/y1ds5dwINY7ckautIwjD8APwI3mKZZmu6ihmFcDFwM\n0K9fvxZ5IiIiIiIiIiIiIiIi0jq++cQb3z756CVUf7SYjxhLNNA6N9dFWkrGgiVA16SxE3mnTa4d\nysppck5P1rETCwFwVJQRzs5h3h8uZ/BbL/PB658T6NItaX7M4aCMPD6YvSs1ERfn8QKFe4xulfUD\nrNtrf3r+MI0Vhx/X+CSHnYDLhydUzZARrRu82hp1IbFiupLhySCYnYu7oozyAYM2eVymx8HoHfK3\n6JoVTz1L5m03M/KIfTCzs7foHIsKq1hZku627KaV7zCY8v4DyVq1jJnX3ckuLz2Jp6QYh9/Pb787\njRHjHwJg6sP/IXv5Eo4+/zgqpiZuG//MHtgw+eTNbM77UxnlJant0uyOlqnGVWW3wmWVu++ass90\npN5qX3LSOSw56Zyksaba/4mItKWOHBJKyzCMQcAwEm36PjUM4wCgEhhomuZ1hmEMaHDYU1gBIpNE\nkOjCdOc3TXM8MB5g1KhRrVvLUURERERERERERERENlv9Tkw11YkKEm9+NJgFDOUjxkIwgvX/NRbp\nmCLVkZSxe7jV2mjlO1Qxt4cJM1awywuPstv4B9POyaYiZWz25X9h9mV/TlsRxXQ4AagJW5W9ciin\ncNS+LbjqZF889kqTc2yRMO6QFWIpXG3dFjVNePaefA44ppphewZbbX2bY6+d1/HD/J7syzf84BnH\nW5/MbtZxTptBt2xP0xPTufQiuGQcXbeius3qspotO9Aw+PDVz+LbhXvtF98GGDH+IfxduwNQMWAQ\nr3/xK8U3/ATf1E5rcLrKMjsOp0mkXpvJeT96gPItW1894dqnuO73J+JDgR8R6fzard1YM6wB+tZ7\n3Kd27PfADNM0q0zTrAImA2Nq/zfKMIzlwDRgiGEYUwFM0yw0TTNqmmYMeBbYu82ehYiIiIiIiIiI\niIiItJq8Aqti0JNcBoADK3gRDSVXElq+0El5SUe+LbJlTP3fnTutUCS1+omPagBiTmebrCHiywSg\nZMjOOElU2vmMQ1k3+qD447c//CFxUCOhkmiDNQ/ML2Te+Ve24Go3X9HuiVuC0z/2ARDwG3z5QSZ3\nX969vZaVYrB9KdmUk0s5Ec8Whn62RHu2vzKMxPXrbwP/e+trPnzl06S5hiu59sXZ/BeAhbNd+NcH\n6R9emrR/6Tw3P32d0eQyfp7uobQ49btYJ1hj/cg6fY3PERHpTDryfw2/B/zBsIwGyk3TXAesBA4y\nDMNhGIYTOAj41TTNp0zT7GWa5gBgf2CRaZoHAxiGUb8Z6e+BuW35REREREREREREREREpOXUz8XE\nYta/Y/gWACdhAObP8lG0NnFT99bzenLreT3aaokiTQqZrpQxH9XMO/cy1u53WJusYfGJZzFn3LV8\nOv5tJnEM1/MgJgaH8gUz/voA88++mLcmzUxpLZaOaU8OCQ05zINpb99gRXWvvilj/uqOd3s0UGOQ\nReVmH9eeGR9ovVpt1b37Ec5ObonnzUiuvPUKVkuv/7ukB/5fS+lKMaNr/w7UWTjbTSS1YFdcJAwP\n3NCNK4/v3eic8lLrc+3KbpvPjaEKeCLSytrtr6BhGBOBb4GhhmGsNgxjnGEYlxqGcWntlEnAb8AS\nrOo/l9eOvwksBeYAs4HZpmm+38Tl7jcMY45hGL8AhwDXtfDTERERERERERERERGRVnDBBdaNcL8/\nMWbWK58Tqy0YVFdBqC4k9Nln3bnupN6cPbofyxdaN3lLix2sXZ5cjUK2Lx2p8lK4ttPVpxweH/Pi\n55dLbmizcE3M7WHOH68j6sngcD7jQf4U3xfo0o1ZV91KML+geedyOLifG+OPQ9m5Lb7ezRXKzAbg\n0N2W0qOv9dvgr+x4IaFyVwGZVAFQ2XdA+y6mgzpy+K+cyDvMZgQAcxge3zezeDDV+PiWffHndY2P\nf/DfbMYd0peq8vTveUm9CkLLFjj533+y8Vcnh3Se/tRqmZeRr78dIrJtaLdfM9M0z2xivwlckWY8\nClzSxLHLIfGXwTTNc7dslSIiIiIiIiIiIiIi0h4WL4YhQxKPX3gBrkzTuSgSsW7o1oWD7ERT5sz7\nMdG+p2itg14DNlFaQqSNRAImNqIcxmf889W1RJ74BM83IUx75wwjmHY7N/IAkxmLkzDr9t6/vZdE\nuDYklO2opqa2gpC/quNVaqkOu8lkAx9MnELEl9Xey2k2ow1LGRl2O+9wUvzxcOYxeugKZizsD8Cc\n2vBQRumGpOMiYYNLjurD8L1ruPnRYsAKCz7+1y7kdkn8vbjtfKsxTdFqByddVE5psZ1BwxMt+MyM\nNmwDJyLSijpeVFZERERERERERERERLZ7H32U/Pi55xJVYOoXg4k2CAl1pTi+74+3bARgwmN58bGZ\nX2e0/GJFNtPa5Q5enb47MewYQK8BEW76+gJs0Wj795ACfrloC5py1K77cw7jY46mpmv3Fl7V5gtl\nWSGhwTM/orzETtlGG8GaxO3RwtUdI5BVE3CQSRVRl7u9l9JhZWwsAiDi9vDJ+LcA+HbhgPj+gnq/\n/enM/T6Dso3We19TbTBjio+PXstOmTf1/UyuPqE3d1zUg+kfefE4ghzOpwRz2qYyVgf4+ovINk4h\nIRERERERERERERER6XAyM5Mfz54NRdY94qSWUfayCgACPXqy4vDjCXTtFt/XvU9qxaDP3+k8VTpk\n23X7uB4EI8744+4/Tm/H1Vjef+1zvrnjYX666lbmnZ/S7GOzVffq1wKr2jqhnDyW/O4MMqgB4Ipj\n+1C6IdFiatpkX3stLUm0KoSPamJOV3svpcPq9e0XADiCATbsOjI+ftXdGzih11dMI1G56gdGxbef\n/3wVLncMgMduKyAShrKNzWvn9+SdBdgiUUbwC6bD2fQBIiKdgEJCIiIiIiIiIiIiIiLS4TQMCQHU\n1CQ/DoegctJi64HXwfS7H2f6XU/E9+d1TbSSGTDEahtz4gXllJfYiKrjmLSjutZXdQ678qx2WklC\nZf+BLB97EgvOvniLAxGBnLymJ7WxORddRz4l8cfj7+4S3w6H0h3R9sxSPx4CxFydKyTUlkVvIp56\nVeDqldvZ94ASnhhwJ/3zNsbHRjGT74+8iDvGr8fjNbnrxfUALPjZw/Wn9uLG03slnXs4cxq9rh8v\nuZS10LMQEWl/HaOGnoiIiIiIiIiIiIiISD2+NAU+qqutf01MFsxyc9el3QGrWknJqH0AiHg8VJDF\nc5e+Tve+u8SPveel9Zy7X1+qK21cfkwfxp5ZwTnXdP4bv2ZS8zXpLPYfW820yT7MBjGLX/54fYte\nJzvDwcCuaRJ3rWTZr8sZ1iuHwC67ske/lm/PtLEqxMoS/2YdE/Zl0pN1afeVbugYt0oDePAQIOL2\ntPdSOqyoO7lVZEXfHchetYzTD96JkmEjqOi3I57SRFBor0+eZ90f/0AVA3DWy7xt/H/27js8qir/\n4/j7Tk9vJPQqoNgLKoKKDV17Lyv2uuracC1rr2vvdf1Z1gK6WBF1FewFEBVBEKR3CAkJ6dPn/v64\nyUyGmQkB0oDP63l4cuecc+89dyYz0dxPvqc4/jVfSi96sAI7VrWhyTc+wKITz2TkkFglrCCqIiQi\nW4+O8ZNPREREREREREREREQEq1rQE0/A9tvH2vLzobwcamrqG0zqA0Ixi0/+K3Yg4nKTRQ2Dey5h\nOTtR2C1EOAinHziQi+1VTHzXWm7sf29lc8jxNRR0CfPMrQUMGVHHsCM2LnwgsqlCQeiTswYq49vn\njLykRc+T4XYwqGt2ix5zgyoq8LhcDEpL2/DYjbSwtGajQ0KhtHR6szJp3w//y+CyO8qS9rWlWlcO\nDiCclt7eU9koRhuWEqru0TvusWmzqnEZpknB7Bms2XMI497/gYzVKzjsijMAOO7U4Xz9+GuUb3do\n0mP+yFB6sTz6uD/zGfLgPxny4D8Z2SiA+WHB2dzU0heUQltWZxKRbZNCQiIiIiIiIiIiIiIi0mGM\nHQs33wx77mk9/ukn8Plg+PBGISGg98AAS+fFluYxPNYtj7DLDcAeT/+LXl99yg97ZTHz3L9jP8VP\nOpXUURjd5/1XcujWO8i0H9KZ9kM6w45Y1voXKIK13JjLCCa0h7eGSjI5Oe09g3g2G/s6f4X1nu50\n6qijfUI5Pq9BwGeQnWdVr/FHnDiyN+W27bYTKZlx2Y1kLV/M1JvuB+DzV8dz2iE7RvsLZs+gtltP\narv1jNuivELNAAAgAElEQVTv4GvPJe/AvwJjEo6ZTVV0u4TCuMdrKKIzJQDcecx4fJzQkpcjItJu\nbBseIiIiIiIiIiIiIiIi0jZCIevr0qXWV/u0n8l851UgFhIygUF7+kjLiET3c3ism+UNIYvM4hV0\n/ek7Bo5/i+6//QiAB1/cuSZPyGDKF7GQgKmVu7Z6Zgd4kWurDGZMTmNeRQ8A/NmNQjVtWZplG1K2\nyx58NXBk9LGJwakZ48jJD7fLfG45pwuXHdmD0tV25vzmxh9243RGNrxjB2O0YUgp7PHw7WP/wVvU\nFYBQegZLDj8u2l/do0/S/fzZOfT9aULSvi4UR7cLWYubQPRxEaXR7c49EgN9IiJbKlUSEhERERER\nERERERFpwvw11ZTXBjY8UFrE8goXkEVZ/QpA9ssuJoNa4HymL6rGNzHEbddk0qm7HbsjFvgw3E4A\nAlmxpZX+OOdy9njuAXIWzQPAjT/hfCsXx6oReWsN0jPbP0QiW7fqSnt0u66wMx+On8qB119Ej+8n\ntuOstm7BjCx2r57O6CnL6DVxPNwGLnuYYNAKuSz8w0VaZoRuvUNtMp/i5dbn1TUndo+21RdBk40w\n6e6n6TPhIwAWHnt6tL2usAvppVYA6L3PZzBs1IUwOXH/TpTxzsTfcdZUc8KJwwAYM2UpmCZn7teH\n/3AuH3EcWaWrWv9i6iknKCKtTSEhEREREREREREREZEmrKr0sXKdt72nsc1YsCx+EQQ7YTKxSghN\nmgx3jsoDYP5sJ7kFYd444SkqP5xLxDEKgLAnLbpvxYBBAAx66yUA8ilnYRPn9tbZSM9sXmWRFYsd\n3PjXbtz7n9X03aH9qkx0gMI4spHCjXIoDZWvvn/g3xjhtgmobMk2NT9hCwbImz+b3hPGYfdbFcWy\nq4oJuaw30O0XdgFg9JTWXXJw5JBeKfuc7i3vzdwRAi1vfzsXWzhMKC1WFW7cBz/iqq4k4nCAYbD4\nlJFJQ0IAwaxYJa/y7Xe2Nuov7Fxe51xeZ2rOva02fxGRtqblxkREREREREREREREmtARlifaltTV\nxt+6cBIki2oAJryTFdfnxsfIcddwBc9h2hP/Lrqy74C4xwbWa3nQcTVJz+33Nv+O92/fW2Gkj9/M\nZvGfzmbvJ/Lyg/kA3M1thOvLx5h2OxGVkmk17qoKAIbdfhW7P3O/1YafULADpFzqOV36WbMpIm4P\nofSMuMSS6XDgzyuIBoBCaRmxPgxu5j4mM4QpNz8IWEGhbx57lS+fGRMd98u1d0a3F5wYW6pORGRL\np5CQiIiIiIiIiIiIiIh0GAFf/E37dOpIpy7p2DVlGRgNIa5GN4iLBw8j7HThLewSbZt+2Q0EscI8\nwzOnJD1eXXXzb5sY9UOnfJHBred1VUUfiXruzgJGDunF/VcVJu1fMMsKA1WTxdqd92zLqW2zApmx\nZQg9lesAKyQUMW0JnzmtyW5P/UERtits2FrCLlfc4/u4lSH8xPJDjoq2rRp6SFxVoXmnnx/bwaZb\n6iKy9dByYyIiIiIiIiIiIiIi0mEE/IkhIRsmO/IHSzJ2oK7WvsFjfNWoGkTI7aF0t71ZcMJIfnt+\nVwB2G/MshxXl8EXJ3nH7vfZoHve8uqZZ8wwGjPUegwrBCMCPn1lVS2ZNTUvaH4lYX2vJYNrVt7bV\ntLZp5TvsQtep38e1ufEDUFnedgGQ7n2DFHYL4fcazPo5/vujJJC/0cfrCMt9bQnCKT6ct+/flZxM\nT8r9fPsMwTlvLsP6F7TW1BK4HAokiUjrUkhIRERERERERERERKQJHaFAzOxf3XjSTfoNCrT3VFpd\nwG+QXxSivMS6hZGLtUyQB1+zAkLrG/vtXDBN7D4vPzCMM3ibo/mEipJcvuDVuLErFm24ksesqW6+\neD+LlUvix777Yi4nX1yJ29MRvmOkvTSnotReB3j55dt0LtnhE/7IOLb1JyUJSw9CLCRUVbHxnyub\nyltrIy3DJDvPSoo9OnYVdkeE20/K4rhBv+JnYJvNpSVsKSGliMvNzwymiJK49i55GRRlpw4J8dNk\nME16bykXKiLSDIoiioiIiIiIiIiIiIh0cPdd0Znbzu+y4YFbgVBVkJyaNZy357fszm/Mvvhq5px5\nMSvpHh1z3SMlZNi93Mo9zTuoYRBxuhjGJJbTCxdB7ISj3W9xBgBHnF69wUPdf1Vnfv4mnVXrhYQ+\nGZ3N5Ud1p6Js4269+H0GbzyeS221bkJvDYLNyPE5bSEGMI/egYWtPh99V1mW/OXEuMffPPoKtnTr\nPXz7BW3z2RoKQulqB6Wr7dw+8EX+PfINuvQK0bmTl0py2a5zWZvMY1sUdrkZzK/0Ynl8R3PeIAoI\nichWRiEhEREREREREREREZEOrDmVSbYm7kXLyK4r5enVZ/Ebe7Lg+DMo3XUwa4jdyO/RN8jMESO5\noftLzT6u6YhfXKFxSOhYxpNBDaHA5t0M9tXZuOLoHnzwSjYT3s1k8Z/ODYZ/vh6XwWf/zeaSET3x\n+3Qzekvn98VuvXXvmzwx5Fy1Bjd+chfNa6tpiWHw+UsfAjDzwqtZNexQwkWJy3v98L/0VvvMXbbA\nBcDc6R4Oevg6Lhl9DjkL59J7wkeAVe1GWkfYnfjcrttuB2wKAInINkjLjYmIiIiIiIiIiIiINKWd\nQzqRWJaFuhqD9MytOzXkCzlJoxJbfUkW02YnlJYeN8Zj1uHw1hH2pLHigBFkL1mw0edpCAmdzttk\nUEctmUyeGOKsayo2+xrefTE37vHoKctSjvXWxkIl49/IZtLn6dz2fAl5heGU+0jHFWgU9AoFkwcQ\nAmEHHnxtNSWpV7bzHoyZsjT62OvMTBjz/F2dyC1Yw877+Fv8/A0hwL9fNAfq841Hjzw82h/eAkNC\nxhZSqyrsjD2370z8nVNH7MqfIy9he4WERGQbpEpCIiIiIiIiIiIiIiIdWCQS2579q6f9JtJGfGEX\naXhJX1sCgGm3E3ancSMPRMecfso+pJcWE3Kn8d3DL/HxO98069gRuz263RASChNrqyhztEoVkUgT\neZ/Gr+8HL+ewZoWTX79LixtTXWljzNO5hIKJ+2/dkbEtT0MQxO2JEPCnCAlFnLhp+RDKtsBowVDH\nikj3pO2BzawolsqHr2QDcO5LZyftT1btRlpG4ypNwawcxkxZyuKjTsamjJCIbIMUEhIRERERERER\nERER6cAikdhdzNrqrf/X+t6Aiwxqo49Nm42Qx8Nd3BFtS8NLwewZZK5evlHHNm1WIGjqDffR3VkM\nwP78EDemeHnTizAUdQ9i2EyyHTVcwr+j7X85o4pr7i9Nuk9NVerXra4msS+yXvLn3Rdz+GR0Nl+P\nS6x8Ih2L32u9XzNzI3FLjzVm1vhx42fSHY+35dRkPTsXLEna7klrnejdrJ+t8F82VUn7t8RKQk67\ngdth6/D/HOlWwDbsdse1t2ToTERkS6HlxkREREREREREREREmmC2c62WxlVoKsrsqQduBUwTllUX\nchiLo21htwdbKISbQLStoQqLZ13Zxh3fZoU21g3ckSHdX+WPJTsyiDn4cvLoWbmM5fRi0oR0Tr4o\n+U18gHBNiBP6/8q/3X/nvZmDo+0FRWFyUywR5vcakJf8eDWVia/pa4/kc/gpNdHHwfqKNP95JJ8R\njdpl47X2uzlQHwzqvm4ecyI7JB1jLynHjR9vQVErz0aacmiv31kxezuGd/2dhfMzGM43fMtBuNwt\n/10SjH18pQwJRZyuFj9vaxvQOYsBnbPaexrN8/DD2I84gpN36dHeMxERaVdb/58ciIiIiIiIiIiI\niIhswRqHhMY+n8ukCentN5lWVldtUBtOo2+jkFDE5aaqdz8AxvBX/o+L2NTaD3+cewX+7FxquvWi\nZI8h7MgcDMBTuY55DATA72361kmk0kv3eT9TOPNXfMSWfztxvz/IKwgl3SdVRRlouspQg9xOTaxX\nJh1Kw3JjXfzLCQZtvPtiDtUV8a+xHzdu/LiqK9tjilIv4nRSFFnDXaN+YRzHcTP/stojG9hxEzQO\neFYec3B0u6pn3+i2syZ1OFFawD/+Abvs0t6zEBFpdwoJiYiIiIiIiIiIiIg0wWzfQkJxy40BPHt7\np3aaSetruJGe3jMtrj2YlYM/O5dT3R9yES9H29futMdGHf+PC67ivQkz8Od3ImKP3bRfve+B0epE\nn4zOjgtmrc9LGunUAVBLBgA3cT8n//UAdlr8ddJ9GpagSqamMvmtmupG7W5P7Jvw0sO7p56ctLtg\nlVUyphNrAfjglRxeuKcgbsxSepNOHT5VEmpXEacLWzBIoaOc4xiPHeuNHw63/BJUDZ9t97ruhPQ0\nVg0ZDsDHY79m6g33AVDdKDDUXFosS0RENpaWGxMRERERERERERER6cBMrz+xzQRjK7w73LD0Vk5G\n4jWH3W7cVRUAfPXkmxhmhNJd9trkc5mNQkK/XXETR/30XfTx2cN6cf1jJew+1Be/jwk+0kjDC0Ck\n/m+xc7Aqwhw66hzg7IRz+XypXyxvWQhwJ7QXL3OQtYsVOAkGYvvXVMUvT2a2d4pN4hVXAD0oILYU\n3prlsdtxKxY7qCKHcRzP0buXt8MEt2wt+bEXcTqxBwMcfvFJADiwKoG1SiWhUut9e1RgHOlrOvP9\n/S/gWbcWDIMFJ46kdLe9qdxu+5Y/sYiIyHoUEhIRERERERERERER6cA8xcXAdnFtE97J5IjTatpn\nQq3I77ciAM4MOxNefA9PWWm0L710TXR77S57EkrP2LyT1aesarr0oKZHn4Tuh0cVcfx5lfToF2To\n4VbloGD9/BpCQtfwBGvpxFU81eSpmqok5F0bv0TZYSdV88X7Waxe5mRAfUjIrKwDcqJjQkFwOJu+\nPGkf4fpKQvnEAkChYOz1f+eFXABqyQQUEmpPpi0+cNdQSSgSavkE5rr6SkJdWU2Xb6cTTkunNq2X\n1WkYCgiJiEib0XJjIiIiIiIiIiIiIiIdWMjhSWh7/bH8dphJ6wvUh3Ds2S7W7jqYFQcfmXRc2J34\nnGyshuXG5p98NiGPtbzZB5wQN2bcf3LilnfzrxcS8qTDk1xDev3jVKor7Cn7qkIZ/JN/YWLw7qfT\nuOzU6bjcEZbOi6WAPnyvKwAXnj1/g8eT9hWotSo72YiVo9l9WOz745dv0wF4YuCDbTsxSdD9+4lx\njxtCQo5161r8XP97KwuAQkr59erbWvz4IiIizaWQkIiIiIiIiIiIiIhIE9p7NadI2Aob7Mgf7TuR\nNhCsX93Llp24/FZjjZcK21Trtt8ZgKre/cBm3S7Jo+lwQEOIad2QfRkzZSlLDzsm2vfHuVfw2+U3\nJd3vxXsLkraHghAyHWRQC8Bu/36Ek/56IDv0K+fP6YlBqCGTX7fmXKHbOx1VoD4PFLbFFvMIh6yQ\nyNSv0kjLsN7Pw7tMb4/pSSO2YDDuccNyY+HI5lcSCvgMfvw8Pfrzo2SlFfqzE2F5ivCjiIhIW9B/\nRYqIiIiIiIiIiIiIdGBmwAoV3MQDfPrse9H2OdPigzTrSu3M+a3pcE1HF6q2lmqy5SYGZJYedmyL\nnmvpYcfy8VtfsPKAEdG2bKqSjr1pZBfmz3JFQ0wud/2d/0YJsuruvfAWdo7brxsro9szf/KwrjQ+\n3OT3WWGEhpBQ/3FvAbB9UTErlzgSAmo7LPgagMpyVRLqqPx14CBIH8+qaFvAb+PNJ/N48uZCsvPC\n7OL4g5x0fzvOUgBqevSOe9xQScgMJRu9cV5/PI/n7ujE/JkuAHr19XEIXwIQzMjc/BOIiIhsIoWE\nRERERERERERERESa0M6FhDBD1gzshMmoWsshJ1QDsHaNnUgYItZ9bW49rwv3XtYZ0wRv7eZXwgiF\nYsduK5FKKzhhy0lL6Jt21S0tezKbjaq+A8CwnqvFR55EF4qTDl2+0MV/Hs4nWGulB1weK7jl8Fup\nobJBu7L46FPxdiriD3ZkFI8C4CcW2nrg6iLuuiQ+ROT3Wrdp0qmLa++3YBJBv43wes9/ESUAVJXr\n9s6mau3KYNU1TvIp56T8Cfyvzzl06xOMhsEA1qxwUhPJIOx0te5EZIOm/vMBfrrp/ujjcKa1FJwZ\n3PwPvlVLrEpSLz+Qz5inc1m22ENXVgMQSm+5kJBhbP5nvYiIbFv0X5EiIiIiIiIiIiIiIh1Y45BQ\n/4/e5pzzlwNQsdbOZUd159qTuxGJQEWZVV3mrP16cdGhPbnyuG78/lNiRZ7mOnf/Xjx+U6cNjouE\n4eUH81i9zLHBsRsSqqqvJJSfntDnKyja7OM3ZfbZl9GZNQAM6rwqob+6wka4xgoJOT3WjXlnbQ0A\ns86/CtNup7pHH3ZkDrdxDwAH8H3cMUpXxz9HgfUqCTUoXDkXgGD98mYOI8TN3Bed38olTspKVE2o\nI6qsdtGJtYSyszl82WiyfOVUlsXfjlsc6UPE1TYhIYVIUvPn5rPwhDOZcvODLDv4SP4892/A5oeE\nKstszJ1hffauWOTik9HZAORSYR2/BZZLFBER2VQKCYmIiIiIiIiIiIiIdGBmyKpaYydMt8nfcOAz\n/wTA77NRU2lnbbGDT8dkJexXXuLgwas3L1gz7fvEsA7AwtkuJk1IJxKBNSsdfPVBFo9cV7hZ5wLw\nVYSxEcbeKSOhz7TbGTNlKWOmLN3s8yQTyMzGhslMdmbSmh15gBvj+svWOKgts16LjAwrRLB6nwMA\nqOw3EIC6zt0AyKWSnxnMGM7kXlJXQPLWJQ8JebAqFAUDBuEQhEwHaXijy6F99FoOVx3XHWj/SlcS\nr7LWQyGlBDKysEUidCqeT8XiQMK4sHvTA3zSshYddwY/3P8CNqcV3gl64btPMohEmn+Meb+7GDmk\nF1cc3Z3Lj+6RdMwMdmuJ6YqIiGyWzY/1i4iIiIiIiIiIiIhsJUaPhs8/h9dfj7WZrb0+0QZEgrGQ\nEEDfiR9hd5iEGuUOgoHmVwuZ+ZOH3gMDZOc17w54OAT2RncTImG4/YIuAFSWrWOXIV4Aipc7mz2H\nVPyVEbKoJpiTs9nH2ljBTCtotTN/AHAjD3Hydj8wYOGPADhdJm+/3hWAggI/dcC8085j6RHH48/N\ntw5ii/1t9mB+BRIDQI1VV1qhhE6sjWtvHBJqeG09+CjbcXeYvTlXKa2tsi6NvpQRzLCWlHLjp6Q6\nO2Gcu6K8rae2VWjNwkhGfYGftz7oR3FJOuEQHHx86vdvY+Nft17jhopuyezBb4x7//uU/SIiIm1B\nlYRERERERERERERERIDSUjjrLHjjDfjll/aeTcwb7w8AwEYs1BMOGYx/Ixakqa1q3q/7A3544Ooi\nHrq2+VV/Av74u/K11bFzrVziJOBruVsNQZ9JGl6C6ZktdszmCqVnsOKAEXFt/RdOIoCTnff2EgwY\nLFpkzSunqP45MYxYQCiFdOqi2z36xVeUqS2xgl+FlMa1R0NCfiOu2tDSEcdu5FVJW/MGnWRQS96C\nPwH4ikOjfWdeuS66XTR9apvPTZoWxgr4FJdYFdReur+g2fumZzUdJn0n+2we5Tpqu/bc9AmKiIi0\nAIWERERERERERERERESAI46Ibf/+e/vNY31TZ1hVe+pIvvQXgN9nBUmeeH8lo6csi7Z37xsLpQQD\nMGNyGgBL5rqaPGfj4knrh4SWL4xVDAoFY0tmWWObPGxKq5Y6mDwxnaDfCsiEPe2zFNPCY09PaHMS\nYtbPaXFt4fzEyjDJBDKy4kJC1RXxVUa8a63Xx9UlnWCa9fp+8+gr0ZBQIGBQU2aNLaQUf24+j3Ft\ndP92LnIlSfhDDjz2AFkrliT07b6DFQY7ng+ZdMfjbTwz2ZC8rE37ADNN+PGz+M/nv90Rqw529rXl\nnFL1Jk5CrVsKSUREpBkUEhIRERERERERERERAX77Lbb96adw0kng9UJ75zAG9LKqjwzrvyDado5r\ndNwYv9dGUfcghd2syjRPfbSSfoP8rFwcCwONeSqPJ26yKgiZZtM3qiPh2Pb6IaFH/hGrQhQOGXhr\nY7ca1hY72BTXn96NZ27rxJdzB+HBR8iTOhDVmgLZuUnbPyOWIBvPMQSymrccWlXv7aLVSQCqK21x\nwR5flfVg6YUX8M7XcxgzZSnFg4dFQ0J+r0FNmTWmkFL8eQWcyjvR/UPB5l2XtB1/2InbEUrad9j9\nl+HDzXucTNlOu7fxzGRDMrOSv24bMmuqJ+4zNTsvzLAj6rj/zdXc/XIxfzm9pqWmKCIistkUEhIR\nERERERERERGRbd60afGP33sPPvgA0tNh/uxNC75sLNOE84f34NMxWXHt85flsTdTmX/Vtbz93TwA\nXgucxV5DYzeea6psuD2x9ElBUZhFc9wALJtvVf5ZMi9WAchubzr6FA7FbngH1wsJ+b2xWwuL57p4\n/IZYaKhxlaFNEQg7+ZNBhN3tU0kokJ08/HMEE6LbA5nX7JCQt7AzFcSCR5GwEfd8+qpM3PiwZ8Se\nt4jbQ/reXQFYs8LBc/+yKkkVUoovN59MYq/79B/T2j/FJnF8YRceR5B5J52V0Nd9xUzcBCjZeyim\nY/PeK9LyTMPGSN4EYLudrKpCwUBTe1gMI/YmHD1lGc//byU7vvUiN53VjQEDqq3jpGcm/Z4QERFp\nawoJiYiIiIiIiIiIiMhWIRKB8nLYY4+NXy7szDNT9115WqfNm1gz1VTZCPhtjH4qL9pWtc76Nf7P\n7IPpcBBxuaN9oy6ZycBdrYozMyan4S0NMnDsq9H+PYZ5AVi31qpk40mP3cgOhw1eeySPkUN6JV2y\nKtyokpDfZ1C8zMGsn90J41YvjQ86PHVzIUvmOeMqEW0K09E2waz1NSz5VdO1R0Lf0JzpAPRlccqK\nQwAfvfsd0y+/EQDTZuM0xrIfk7iSpwB465nYvr4ayKaKkCd+ObPczlaQaN1aO+Vrree48thD8ecV\nxC1f9vVHmRt9jdJ6QiEIm3acHvjtqlv55pFXeMV9SbQ/myqAdgvBbQ0MWnG5LpuNl7mQV++bwKEn\nWmG8daX2DewEofpQ5ZDDaqNtez59HwCHXHUWZw7pjbOuptnhQhERkdakkJCIiIiIiIiIiIiIdFhr\n18L8+cn7fL5YBaBAAOx2KCiA6dNht93g/vvhww+bd57c1JkPIPmyThPfzeTBawoTOzZRspvRZWus\ntue4DNNmbc8eeSkAnfyrOGrvudGxa6syGPzYnfT57AN2e+5Brjz4SwAeuraI7z/NwOWOTwNNeNeq\nWFRRlniroHElobWrHVx3Wjfuv7Jzs67jlnO6cvawXkQi8PnYTEJB+OK9TH77MXkworxkwzfh20pd\n527MO+ksvnvoJeaeel5c36v9b2ImO+MkRCg9I+Uxanr0Zu6p57Hs4COZffZldKWYSQyjDiuA1PC8\nA3hrDXKoJLxeSCgtI0IWVawrbRSW2qUX/px8nMS+GR1OlRHqSBqqRDnS7YQ9aaza/1BOT499CLmx\nqtPk/7mRKUZpE6Zhw02AXpkldF81CwBv3YZvpfq91uv+j5zncFWuI714ZbSvaPrU6HZTnxubqhUj\nUyIispVSSEhEREREREREREREOqyddoKBA+G886zAUINnn4W0NNhrL1i9GtyJRW64+WY48UQwjNi/\nVH76yfr60EPw4IOJ/dMnxYc4wiH4zyP5/D4lLWklnlS+GZ/BikXx1Xe+/CCTkUN6UbIysXpOeYnV\ntjc/Y9qtX+kv+csJAKSVlTDs5XuiY9PqK8wMvfMadnr9OU6+N1Ye6YW7C/DWJr8lsGpJ4rJHptcf\n3S5rFOKJRGJjuveJrcMzgRHcvN+7ccd49aE8Xn8snzsu6sKrD+fzyHVFAPi8Bred35mRQ3oxckgv\n3n4uPqE1vdvBSefZJmw2frnhPioGDOLX6+7ikzETo10Df/2cnfnDetDUNxMQTkvnh/tfoHzH3Zh3\nyjkAnI9V5cnWaKk3b61BNlUE1wsPRJwuqsnm87GxQJHpchH2eOJCAb9+l74pVymtJNAQEspo9J7x\nxD6cGl67iNPVltOSZmr4jN37oVvY85WHAQgFNxzD8dUvwbjXe89yzGkHc8IJQ5OOc/i8LTRTERGR\nTaeQkIiIiIiIiIiIiIh0WCUl1tfXXoPCQjj4YCuf8fe/x8bMmNH84738srW/z5e8//rr4YYb4Omn\nrXM2ePzGQh64upCRQ3rxxy9uLh4RW47KW9e8Wg611Qb/d18BN57ZNdq2bq2NVx7Mj56jwdL5TiIR\n+GSMFRLpwYpoJSFvJ6uiT9raErKoju7zT+6PO192oz6ILV22vqXzkgQWfLFqNVO/jgVRaqtix5i2\npAddO9fx/FXjGcEX3Df51LhDNFTgWDI3/vjP3l7Aojmx4MSPn8UHZHpllCSdZ3uo7DeQMVOWbtYx\nQh7r+RvGJEZlPINhEF2OzVdjhYT8uflx+4Rdia9JQ9u8k87arPlI6wn46kNCWbHgXebqFcynPxMY\nEW2zp/oAagWqNNN8pmF9ZmWtXBat2BUObXg/X/3PgExq8FSuSznOn5OXsk9ERKStKCQkIiIiIiIi\nIiIi0sFFIiahcGSb/Le+b75JfH6OPNL62r//hkv6XHSR9fX5F2Ln+H2mdZ4zzjAJv/AC4See5G+X\nRThzZIRrr40dc+ZPVjWhf/29M35v7NfrlWXNWy4r2bi/H9MjyUi4+eyunHdAT+ZOt5boKqKEiN3a\nv+FG8+DH7oyGhPpmF3Mr9yYc50sOiW4vX+jisOMreXufm+PGjH4q8ca16Q9HtxvmAPFBoyJK+eCC\np9mhV6zEU1ZubL/Crol31yNh6N43ce02T3qEm59dw8RdLiDcwaus/HLtnRs1PuyOPX89M0oJh4xo\ndaaaOgdZVCeEhCJOF0fyafTxE1yNL68TACV77scZvAVAl55J1sGTJpm03hJtgfoCXM70+Ntv/VnI\nCL5g0p1PWA0bqEQl7cMIxz6/YiGh5lcSyqQm5Zg/z7iQBSecmbJfRESkrSTWLhURERERERERERGR\nDg1K7dYAACAASURBVGXummp+W1bR3tNoJ72aPXLBgtjN3Jz8MJXlqcM7o6618erb3mjwB2Dt2hLs\nl10GwJj9TgRgr9OAx5uewzO3deK+14o3OL+6mlhwYPGfTvpsnxjw2OeQOqZ+ZVWeCYdj12PDjIVN\nbLHj5GFVrdi/YDpGldUWTM/EWWfdrB7caynHHVzJR6/lAOD9ZSWnr7yfpzJOZlLtXinnOmF8ftL2\ndaXWc3ofVtDIiERwemuj/dUVsef84zezE/Y/e1jy59JXZ+Mw/2fs6JxDxN7xQkK/XzyKXf/vMQAW\nHXvaRu1rNCpF0j80F4B/31PAzc+UsGRdIYfbVhD27B63T9jl4mOO4c2PZ3HYxafQbfUcPio8BYDq\nnn14i6MxMPnKjK/eJO0rVGO91o605MGSlcMOYdb5V7LskKPbclrSTHkL5kS3N6aSkL/GxE4IN/6k\n/T/c8wzLRhzbInMUERHZXKokJCIiIiIiIiIiIiJbhXP/UQ6Ayx2h76BAtH3vg+oYenhtwvjGASGA\n3l+Oj25nLVsMWAU/jju3ssnzrr+cVire2tiv5G89rytrlif+He91tyxJaHPV33iuK+qa0DeIP/mO\nA7ir6xOsG7AjY6Ys5Z2v/qB4r/0AsAUDBAOxwMKylZkAHJ71XbStU5fEu+DjP+yc9BrKS605N74Z\n7qiNVc94+NXF0e1IeOOqpRw86jwyilcScTg3PLiNzRl5aXQ7lJbexMhEzkbPz8Dwn9bxpnk4e2gv\nghEndY6shH0iThc2THIC5XRbbQUXvJ2K4s6fRTW+OlurVsaRjfPl+9b7y5We/PZbKD2T3y/9BxUD\nBrXltKSZVg09OLrtwvoZEmpGJaH0GXPIpCa6tFsgK5sxU5ZS2ac/yw76iwJCIiLSoSgkJCIiIiIi\nIiIiIiJtqrLcRmV58349vdNgX0Jb5x5BHhm7KqF9+DG13PLsGh7+72r++vd10fYTLqjkwpvKN3iu\ngBkL+zhrq6PbLndiCOP6x0q4/d9W9aDsvHBCfzJ1tfE3mz8fmxgOOe3Qnfju0rvj2o5O/4Klhx5N\nKCMz2jZm8hJKdt8HgMEFc8muKMZbUBjt/+rZt5lz5sV4ykvx18XO+zxWpaSd0+ZF2wL+xJvgJ5+4\nIuk1rFtrVQpquIFuCwTinqtDf36RvQ+qS7pvc2SuWk6XX37c5P1bS9jjwZ9tVWPa2KWiarpb1ZMq\ne29H38D8hP5SW1FCm1lfLSp7WSx0FfZYobZQ/dcsqvHVmPz0rYvDD4e6TX/apQVMeCeTL/9XAIAj\nRUjItDdvaUJpH1V9+ke3GyoJNSckFKgKRpcaGzNlKe9OnAnAJ29/yQ8P/LsVZhqjletERGRjKSQk\nIiIiIiIiIiIiIm0mEobLj+rB5Uf1iG+PwMghvXjjiVwAKstsfPtxBm5PJOlxirqF2OvAWCpi9JRl\nuD0mO+7lp1OXMD36hkjLsPb1eEw86Sajpyxrcm52YmGfIXeP4sDrL4JIhCP/Wk1eoVVtJ68wxI57\n+dh9qI/j/nyBfjmrGbhr8iVm1te4khDAhHcTQ0IAu0wczSmXWMvLuT0R3qg7DX/uest/GQbfPPoK\nxYOHklZWSsHsGYnnKyjE4fcTqIldVx+WAJC5eFG0LVlIyAxHMEh87sc+b70+DTfQBz9+J3s+/a9o\n/x7PPYAzHB/suv2FNfzrjdX87fayuPaH3lrFA6NXA7AzMxPO1dF8/PZXjB/79UbvN/+ks/jqyTcp\n3XUwTm9ikqebpzShbd2AHQFIX5MYhgt5YpWE/AEHN/8tj4kT4ZxzNnpq0oJGP5UX3fbE8nx818oh\nkW1Na4dixo/9mjV7DKFqB+s9aNYlLgu5Pm/AFQ0JiYiIdHQKCYmIiIiIiIiIiIh0cOZWtJrQg9cW\nJm1vWKbns7ezAbj86B68eG8Bq5Y66dY7yHUPx4IUQ4+ow+6AUQ+txbCZFHSOLZflrK6k3/j/AlYg\nCcCdHgu7vPTl8pRz60JxdDt38Xx6fD+Rk/+yB51X/ckz41cxesoynhm/ilueLcHurWOvx+8iq3IN\nkeQ5pgTrh4RSsQcCZGRbBx2xzxIyqKO6R5+EcaGMLNbuvGf0sbuqIq7fl2891/vO+zDa1lAByEts\nqbXGy5E1iIRMnARZwHY8ec0Ehu65Oq6/4TgNpl92Q3S72/dfRrcn9z+RQYMqGbbqY/6y2xyeGrcy\n2nfOQydz8tjruPfOGXzBYQlz6Gj8+Z2o7tVvo/eLuNwU73sA+fP+AOAAYku9HZw1mZt6v5SwT0P1\noYzilQl9YY8HsEJCjb333kZPTVrQAUfFljTMyo99aK848PD2mI5soupe/fjy+f+ydsgQq8EbaHoH\noNrIIpMaJt/+WCvPTkREZPMpJCQiIiIiIiIiIiIibWbW1LSk7XZH8iRU8XInLmcIhzPWf9KFldh9\nPjxlJYz+YAaPvmNVW0krXcO+993AkPtuoN/4/xJuCAmlxfZNy4htX3xLGdc/VsI5o8q5Y+CL3MFd\nCed3V1Vw9MjDyVq6EFvAj6esFLvPx353XQuAjQhmpHmlLepq4scN2MVPZnaYsV/MimvPWBWreGT3\nWZVnivc5IOkxg+mZSbcBfPmdAHhg+UUMYjYABVjVfBqHhMIhIxqoirYFTRyE2I5F7FG4kB+ndeNI\nPiU9ywovuQjw9WP/AWDxkScx+9wr8OVZSy2ZWNf5DqcwZMGHHH7xSRx44yUcddYRFHSOnajzb1Po\nP+4tbrlzdzpTEm3/45zLk17rlm7WBVcB8B3DGT1lGaOnLOPdrhfhzHImjPXnWa/d9m+/nNAXcboI\npmeQTVVC39YUKNySzPnNzdfjrPffw/yDvE6N3lA2GwuPPY0V+3f8IJzE2BzW51g4uOE3lTfgJMPm\nZfFRJ7f2tERERDabo70nICIiIiIiIiIiIiJSWx37m9ZIBHpuF2D5QhcASxaksd1Oa6P9Nhscdvlp\n0SW2xkxeQvqa1Zxw/H7RMUPuu4Fj2Y4POAm3O/lN3oOOjVX+OPDnd/HMS71s2LGnHxLdru7ei6yV\nVpDHRoTIBkoJXXlcNw46tpZwcSWQy6mM5R1OY/5MN3mFIU49bBce52p67umAaWCLRHBVVQL5OLxe\nALydOic9dig9I7q9et8D4/oaKgk5CPMre7GCHuSzDoA9mQbA/nzPDxxAIGDgaRSmigRjS4o5fNYc\nsqimrv51chJk9dCDGTNlaXSf9z/9lTP360Ok/u+TbfXLlTVU0Em21Nb6qnr2ZcblN25w3JZoxfAj\nmHHpP9jt349gC/iJuNw4a2sIZmQmjDXtdiDFc2YYvPPVbKqGPwvrfcuWl0NBQWvMXpoy+klrGT63\nM8Q/go/yhfvtuP6fbnm4PaYlm6EhXOrbwCpipgm/lG5PFyOXhDekiIhIB6RKQiIiIiIiIiIiIiId\nnMnWWR4k4LMqNUTC8PazedH2s4f2wumKv+aLR1jLL3lsPs4c0jsaEAJweOvY46l7E44/hjNZRF/O\n3r83Zw6x/vX7yLp5v37lorS1a1i9zwF89eSbfPjBj03OuyEgBFYQxllZmXJsMADlJQ7efzmH0Fov\nXVnFQXwT7XeWWpV9ruFJTp72aLT99PlPADBq5tUABLJzkh6/IUxS2Xs75px1aVyfLz+WFknDxwAW\nsPCYUwHYnnlEMDiNsdY8/fFVjiIhcGAt47bfPddZ191oeav1lxsDwDCo7dKdMNacKvrvkDDE5vcl\nvQ6AT9/4H18+99+U/VsDf24+AGccOBAjHCZr5bK4oFcqP979VEJblScxDbR6dUKTrK8VPk4z6its\nNVRyCrvdLX8SaVN5OQHyKGf5Ek+T4+bPtMKsxWbyIKeIiEhHo5CQiIiIiIiIiIiIiLSaWT+7KVlp\nT9o3c6p183VdWWL/ojlu3J74Cj1rKGJ1pEvC2MP+dgq9v/wkod2Dn74siWsb8q8bWUMRL36wINqW\n9+dMCub8Tl3nrhTvewB1XXvwzSOvMPH5sRu8PgOTrEULUvbXNaqQVOt1kkMlvYiFjNaRFze+bIdd\nADj066cwMRjK5PoTJV/SzFFnVUMq3ueAhDG+giJ+GXVnXFvx3vsz8YV3qS3qigGkYVUJCqwXErKV\nV0YrCTVovLzVmv0PSjqfskG7RpcbK1jwR0L/GcO3T7qfL6+AigE74i3cum+0rxx2aHR7xKXW0kRh\nd/IQwncPvhjdXnboMQn9l3ePBaoaqgeVlbXELGVjZeVZn1WBkLWAR9ilkNAWz2GnE2tZtiyNd/8v\nJ+VSfssWWCGh0zM+aMPJiYiIbDqFhEREREREREREREQkqdsv6MwdF21eaOP+Kztz7cndk/a98mA+\n4RC8+URe0n6/L/5X2EWUkkti1Z78ebMBWLvTHs2aUxGlHHXX+aSvXkG3H77kyPOsAEbjJb1W7X8o\npXvsy9TrEysUNWYjYq2PlkJdbewavDUG2VRxDLFAUxBX3PjvHvq/Zl1Dg2WHHUNtUVfmnXpu0v55\np53PyqEHRx8XzPmd0t33ZsVBfwHAg1XZZ/1KQvm//xatJNQgk9i6O94+vZKeb9b5V/IsV3Aer/IX\nPks65lXO4zkui2tLtuTW1shbFAu5dZr1GwA1XXsmHbti+BGMmbKUMVOWRitGNRbOjFUgaggH1Wxg\naSRpHRmZ1mfAJfwbSB38ki1HxOEki2pm/5nLBy/nMPXrNEpXW+9DX53BmKdz8fsM0jKs1/7awpfa\nc7oiIiLN5mjvCYiIiIiIiIiIiIhIx1K83PrV8cLZLVcNo7baIC3DxLCZmBErkDJgFz/n7B8Lm/To\nFyArN8KcadYN9h7bBVix0JX0eEnP0bUHnf74jbDDiT83j/S1JSnHdvnlR044cVhcm7egMGHcgpPP\npu9n71M4c1pc+9xTzqW2W09sT0UIeJIvFxUKwVM3d4o+rqxx07M+5PR3nuYZrkzYx1vUlfH//Ypj\nTz8k2jbtyltSXkdd526M+2hKyn4Ad2VFdHtd/0EA1HSzgimpKgkFcSZUEvqW4bFjpicvq1ExcCdy\nerl4ddkFKedzHq8BsHz4EfT89nMAIvZt93aFPejfpP0aB6tycqCyEqqrm9hBWk0kAhlGLc+ZlwMK\nCW0NIg4HbmLvzadutn4+9OofwOEyWTTbTacuIRo+utI9oWSHaXUpisyJiIikpEpCIiIiIiIiIiIi\nIhIVCcN1p3bjulO7xbWFgrB0vpNlC5xUrbN+tVxZbmP5QmfKY4UaZUwuGdGT8W9ks8PusZuuP3+T\nHjf+ynvL4sIqR56RPPFQV9iF5cOPSGj//ZLrAKju1RdvYaxiy/9e+4TZIy9NOc/ofNOSh31qu/RI\naJt2ze38ecaFGJgE3elJ9oKxz+dGl6IBWFLeKbpkV18Wp5xHde/tqOg3EIA5f72IP/960Qbn3hSH\nry66vWqYFT5y1lolZ6KVhALxd5qrC7pht8UHgZ7k6uh29861Kc9nRMJxjz8YP5WJz49lyq0Px7X/\neM/TfPr6p4AV8NpWhTzJv382JJiRyYS8EwAYW78y3ssvt9SsZGOEQwZ5Zjl2rKoy/pzk1dFky2Ha\nHQlBSbCWF1tUH6B97dF81q21qgulpaWuKCciItKRbLvRfBEREREREREREZEthJm8aEurqKlK/NvS\ndWV27r6kM2uLrV8pF3QO8dS4VdxybhfWlTp46K1V2OzQtVd8JYX1Q0DjXs1mt76r2TW7ji47O5kw\nqU+075RLKrj4tkNY3O9lFv4xFIDuv/0AHJ8wn1VDD6Zk932iVWgApl5/L9W9+jLpjsdZs9dQTJvB\nScfsA1jVdn6/9DqKpk+l0x+/pbx2w0x+k/fnG++jtkt3KgbuSMidRnXP3piO+l+v222YJC/l0L1v\n/A1mX8jFe5wCwEm8z7+4mR+JVTOKNFpSqrLvAHIXzaNiwI5g27y/97X7vLFz1M/b7rfCQSkrCZkO\n7A748pHR5C2Yg6d8Lbu/+UK0Pys7RKqYkBGOhYQ++OgnvIWd8RZ2pnT3fSicPpXtPn7HmovLTcXA\nnfjpnw+wIknoa2v1wz3PsP9tfwegZPd9WHDCXzfpOMGMLIYH3+WL2WvYt6e1VN4XX7TYNGUjOErK\ncGJ930+9/l7CaZsW/GoNqjSzaSKO5CGh9X3wcg4A7rQ2/EEtIiKyGRQSEhEREREREREREZEovy/x\njvLqpY5oQAigbI2DkUNiy4Td8NduceNverKEXfb18cxtneLaMcA1ZxEGTgZM+oUJWEGJw0+t5rwD\np5L34p88t3AYvwyv5Zdv0+n76Xs83+kH+q2dEXcYWzDIymGHUj5wJ/Ln/QFYy4IBLDnypIT5B9Mz\niLjcTHj5Q4bcPYp+n76X/OIjyUNCwcxsZlxxU9I+m2FimsnvwtvsiTeNH2UUAH1Yylqs5WtquvQg\ns3gFEUesKpNpswJDjYNDm+qnmx/isCvOsI5Xf46GkFBDJaH1Q0Jh04bDFmbNPvuzZp/9wTTZ4a2X\neKXnjfy8pDe4clKez6hPtX381hd4i7o06jD46dZHoiGhBguP37SQzJZq2YhjGTPi2M0+Tig9A1dN\nFTafl8z6lcf22GOzDyubIO/36TiwlvJr+CySLVvE4cBFoFljM40aImlprTwjERGRlqHlxkRERERE\nREREREQkKhxKDLzcf2XnjTrGlx9mJq1+5Pfa+IED+Ikh3MUdjc4JXX6dBIAB5BVaFTkqyOUC77/Z\n4SA7s869Ijp+9ZADCWbn8Fn9UlXFg4c2OZ+Iyx3dnnL7YynHrRu40wavbX0GJpEUIaFkz+Wlnf/L\n1Bv/FX1cPnAnPh77FbBeWKa+/IeRIri0MUr22o959cGFiNNa/qxkzyEA+PpaYa/1lxsLRew4jEaV\noQwDX34Bpwbe4jmuiFYkSqahklDY7U45RjZf//ffBGD4vtsDsO++UFjYnjPadkUCYZwEKd5rv/ae\nirSQVMuNJZNp1BDMyGzlGYmIiLQMVRISERERERERERERkahwaMNjNmTnvX2kWLkrqoByBg+v45dv\n0wmHDJzVVQDUdOsZt3iXq7Yad2UF3sJYRZqlh8eWIPvv13OIOJ1sivc+/ZVgRib2gB8Mg2Bm9kYf\nw2iiklAkHP/47O4fE3RlkL1kQbTNtNmIuNyM/Wo2IU+sEkVt1x4AmzSnZH4ddRfTL78pukzaiuFH\n8M4XM0l78l1YnFhBKhyx4TDiL8CX14mcRfOsa2siJNTw4kccrhaZuyRn2q3XwBa0qp243eD3t+eM\ntl0BWxrOSBB7oHmVZ6TjC7vczQ4JZUWqKJzxcyvPSEREpGWokpCIiIiIiIiIiIiIRIWSVL/Z6GME\nU67cBcBZvAHACedWALDznrXs+tLjAGSuWk7+3N8BcGAllnIXzmHBiSOTHiuclo7pSB4SGvfe93zx\n7Nsp5+HP70TE7SGYlbPJYRwbkaRVkyD2XP6Tf2Fi8EDPRwilZdD9x69ig+orBoXSM8AW+5X9zAuv\nZtIdj7Ny/0M3aV7rM+12QutVughmZuPJsCbvr4t/3YMRO3Zb/Ivoy++EPWTdNE/1nAMYEbP+nLoF\n0ZrGv/MNAGtGHA2Ax6OQUHsJGE6cBLGFmhcqkU1nbP6PqGYp32GXZi83VkgpOUsXtvKMkjNooydE\nRES2GqokJCIiIiIiIiIiIiJRyZbI2lhvP5vHwcfXRh+ffFYJH75dGD3241wLwB7OmbzwWYTt/5gY\nt/8zM48jnYc4l9cAMA0bpt3O3NPOp3jwsGbPo7Z7L2q790po//OMCynZY9+Nvq5kDEi53FgkbLVf\nx6MAOGtrCKVn8OM9T3P8yQdY+6dIU0VcbpYceVKLzLEpnvrckL8qfh5h047Tvl4lofzYWlbhJqo3\nfffQ/zHwnf/gy+uUtP/nf9yNLdQCJau2caGMTEp32YvMeXPg8cdx267A71f1prYWCsGE4GEATLnt\n0XaejbQU0+GwgpJNBF7zi0KUlzj4lb345do722xuIiIim6PdQkKGYbwCHAOUmKa5c5J+A3gSOAqo\nA84zTXNafd9DwNFYlZAmAlebZuxvNQzD+Ajo13BcwzDygf8CfYAlwGmmaa5rtYsTERERERERERER\n2UL9PsWz2ccIBoy4pbaemXU8X+Z+T8Va61fSWVQDUDhjKhWnDMIIx4dRCijnZS5iyeHHkzFhHK4a\na/yvo+7c7LkBTLvm9hY5DoDNMDFTVHJo+K21Hev6HN46fHkFccGl/LmzWmwum8KdaVX78a0XEgqZ\ndlxGfBUNX34s9NNUJaGynfdg8s57pOyff8q5mzJVScLbqYjCmb/CqFHUFB3MbyW78/3cMppaDW5b\nV1rTsuWWKsvsse1+A1v02NK+nPb4kNBfzqjis7etqnNfcxDH1FgBVz8eVg07pD2mKCIistHa8z8T\n/wM8A7yeov9IYED9v32B54F9DcMYCgwDdq0f9wMwHPgGwDCMk4Ca9Y51E/ClaZoPGIZxU/3jG1vq\nQkRERERERERERES2Fu/8Ozdp+/WPlWCa8Mh1RdG2pz9ayZXHdU86vnFIqMv0KVzw0Doeu8GqROOu\nX8IlvXQNZw7pnXIudUVdAbCFO27VmaaWG3OXlAB5GFgDnHVWJSGAxUecQN/PP2yjWaYW8bjJogpf\ndfxFhCJ2HOstN+Yt7BzdDrvcbTI/aZrD541uf12yOwD/HWsy9PC69prSNsdmT/EBIFs8hy0+wPrg\n9NO4lWqGMQmA1aFCztzhK97882A+z5vUHlMUERHZaO22ILBpmt8B5U0MOR543bRMAXINw+gKmIAH\ncAFuwAmsATAMIxMYBdyb5Fiv1W+/BpzQUtchIiIiIiIiIiIi0tpShVBa06mMxU6IeQzg3v+sZveh\nPvYY6sVhxAI7u03/kOED5gKw/e4+jj+vMtpXuc4ed7xHbyiKe2waBju99mxc2ydvfk7pLntGH9cV\ndmmx62kthmGmXG4sa/liwAoSAThrqgilWSEhe9AKSv3SQtWRNlXE5SabKnzr/eltyLRbS+00sujI\nk6PbNUmWcZO256quTGgLBTd/yUARgTV0jnvc48+p0YAQQFagkkd3eoJMp49QemZbT09ERGSTdOSC\nk92B5Y0erwC6m6Y52TCMr4HVWMs9P2Oa5pz6MfcAj2ItT9ZYZ9M0V9dvF8N6P9UbMQzjEuASgF69\n9D85IiIiIiIiIiIism26hBcZy+kA9N0+QOaKZWz/31f40lzIw46buHS3zzng9qf4iCyO2mEG1xw9\nhf5lvzHF/g/WhIsoXmYtR3Ur90SP+eNRVxCaVczyPofT87sJCees3G57pl1zB0dceDwA/rz8NrjS\nzWMYJmaKkFAEKyjVUEnIXVVJsL6S0LSrbiWYkcmCE85sm4mmEHJ7MDD55tsizmdFrN20J1TRCGbn\nxB4Y7RtEyfI4OHa3bu06hw7h7TfwnXcBnl+mRpva+aXZppStsXPV8cmrqUnrMNrwG3yVaVWzG8EE\nTuJ98lmXMGbge29YgVa98UREZAvRkUNCSRmG0R8YBPSob5poGMYBQDWwnWma1xqG0SfV/qZpmoZh\npPy7G9M0XwReBBg8eLBqRIqIiIiIiIiIyDZh3TrweqGb7rlLvQpiy465qirZ/5bLyZ87i+2BA0Pf\nw69WXzbV/PBnP7jPevwt49iBuZTMqAUK6dEoeJKXE6CbMYMqoz9zTzuf7ce+CsDk2x9j8VFWlZqy\nnXbHl5uPp6KcYIZVmWH+iSNb/Xo3lQ0TkxQhofqbxg2VhABqeljLq9V16c5Ptzzc+hPcgLDbwwp6\nQhhWLnbQva9VKSpkOhIqCQGs3vdAspcsaOtpJtD9+Ho77UTx/76i+MnnY2sspL4FIi3su08yotsP\nbvcYcEr7TSYFI8Xnk2yYDw8Ad3M7Q/gp5Th/bscPtIqIiDRot+XGmmEl0LPR4x71bScCU0zTrDFN\nswb4H7Bf/b/BhmEsAX4ABhqG8U39vmvqlyqj/mtJm1yBiIiIiIiIiIjIFqJPH+iuYggdlknzbvov\nne9k5JBerFjk3KTzRBoVjhnaaEmVA/55KflzZzXrGLlUAOCttAImDmLLkw166yVyli6k57efs+io\n2NJVRjgUd4yI0wVAMD2TMVOW8vON/9q4C2lDtiaWGzPrn0+j0eu3oIMFnsJud3S7ojy2RNzSUI9o\nJaTGvn7yDcaNm9wmc5PmMQwIedLpg7W8nSdtywoJjXstm8dv7NTe09hsTkd4w4Nki1JjWkHVfMqb\nHOdTSEhERLYgHTkk9BFwjmEZAlTWLxm2DBhuGIbDMAwnMByYY5rm86ZpdjNNsw+wPzDPNM2DGh3r\n3Prtc4FxbXkhIiIiIiIiIiIiHV1VVWLbBx/AwoVtPxfZdJMnpgNw45ldqa7Y+F///jjB2v8JrqYb\nq6PtnadNafYxPPgAWLHKurlqJ/mN83U77EJF3wFJ+xqCK6H0jKT9HUvq5caMkBV+alxJqKMJpWfy\nENcDsHa1tfhAKAhBXHy6Zlh7Tk02QsiTxjucCsSH/Tq6yjIbY5/P5Zdv09t7KpvNVlXb3lOQFlZr\npgGQQ2WT47aEpTFFREQatFtIyDCMt4DJwPaGYawwDONCwzD+ZhjG3+qHfAosAhYA/wdcXt/+LrAQ\nmAnMAGaYpjl+A6d7ABhhGMZ84LD6xyIiIiIiIiIiIrKeyfUFQkIhOOkk6N+/fecjG8eMxMIqD40q\n3Oj9X7jLquaRhneT59Cw75Rfi4DkIaEf734KgC9eeJd5p5zD0hHHx/WHXVZIyLR15L9ztdiM1HWe\njKAVEpp6o7UW28dvTWyjWTVfMCOTv/ECAHNnWM97aX1YSLYcYY8nGmT4zyNbTmDh5Qdjc/3+f1t2\nUCiyuukgiWx53tjuH/yN5ymk9P/Zu+/wqMq0j+PfM30y6ZVQghRBUcQuKig2FBXsDXTtBcW6a2dX\nV10LrnVfK5YVBcvaAQUsgAoGpSlFkB5IgPSe6ef948zMyclMKkgmeH+uy8uZ0+aZSeYMOc9vrseW\nZQAAIABJREFU7rvF7byJyXtoRDFINzkhhBDt1Gl/YamqeomqqrmqqlpVVe2pqurrqqq+rKrqy6H1\nqqqqN6mq2k9V1cGqqi4OLQ+oqnq9qqr7q6o6SFXVO2Ice7Oqqgc2ul+mqupJqqruq6rqyaqqtlwX\nUAghhBBCCCGEEEKIP6ljjgFVhYKCzh6J6Ai1UVplnwHeDh/nEt7t8L5WfIb7jduNhW0ZqYWCvCmp\nLP7bwwQcDsP6FVffBkBdbs8Oj2NP0dqNNXOp3a8FpDaPvpBp+Vuo7jNgD46sbXyuJBKoB2D+dK36\nU3GhFhKaeuxDnTYu0T5+RwKBUHu46oroNnHxSFVh+xa9NWI4pNhVjWROZw9B7GZDktbzEjdiihEF\n3TTq3MjtAR+/syeHJYQQQuyS+P8ahhBCCCGEEEIIIYQQYreaMwcURfsPoLTUuL6uDs48U79fWbnn\nxiZ2TV21fsm3rqb9l38HDnFzAt+SRG2Hx9C0qIGZANPyt1DRf/82H2PrSWcwLX8Lvs6sztAOzbUb\nC4e2lDiu9OBzJWJu0g5tZygklJdc3BlDahNFymcY+J0J9GZLZw+jXWZ/kERRo5AQQENd1/25HsDq\nzh6C2M2CFmNVtfVjLo7cXjbhvsjtskFD9tiYhBBCiF0lISEhhBBCCCGEEEIIIf5kxowx3s9q0pUq\nKQl++02/v27dHz8m0TK1uX5WTcwLVYIB2Lja3u7H8fuVqEpALQlX/GlJuN3YV6/8r93j6QpMSpBg\nc4GVcEgojq/E+50JqIrChfv9QFKq9rMq22HBipfMhI6HxcSe5Utw4cRNHzYCUFwU/9WEVixyRC2r\nr4vjN0sMjrKW21CJ3W9PxsiCFmOIbfHfHmLuM28x799v4M7I4oNvVrLqLzcy59WP9uCohBBCiF3T\ntf61JYQQQgghhBBCCCGE2GX336/ffvPN1revqPjjxiJ2H3e9ceq0ZLuFLeuszWwdW8AHNoxtyuZP\nmszcZ95iwcP/4auXjUGflVfeHLldOuhg3ClpAHzHcHr3rAH0kJDfldSusXQVJkVttpJQMLQ8nisJ\noSgoqsq29RZqKs2UF5vxeRWtBZnV0vr+otMpKNR36wFAL5cWWtlR0L73fmdo/L7I6amFE39Z6OCz\n/yZTUdo1pq9yfloQuZ0/8clOHIn4I6gm4+9h0GZn+9EjKBp2EqB9rv1y492olvh/vwkhhBBhXeNf\nWUIIIYQQQgghhBBCiN2mvl6/fdVV+u177zVu9+672v+nTIGgsRuRiBP1dQqrFmsVg954Ih2AfQd7\n2HewB4CC9e2buAx6g5FKQhtGX0hF//0pPG4k248ewZZTxlBy8JH8es3tgBYKUi0WZr05HYDvH3+Z\nzz/RJsyH8wPd06oAKOt/YOT4684eS9HQ4zv6dOOSoqiozdW2CKoodI03z0L/UABW/OQg4NfCYk0n\nyEUcUxQq+u3HPQOnAFBTFf8/O6tdL5F22e1aGvX1xzP44OVUJpzZk+tH9mDm1PgNF05/O4mntl4B\nwMEso6ZH704dj9j9kgs2dvYQhBBCiN0u/v+VKIQQQgghhBBCCCGE2K2qq6OXTZkCt9yi31+0CEaM\n0G5PnQqTJu2Rof1plJfDI49AINC27ZvrNnbfpbk8OiGHilITC2a7ALjz6WImPFwKgKe+fZeAgz41\nEhJaftO9fPnOrKhtVl5zG9PytzDnjc+057L/QUzL30JDdi7+BBeL7nkcAEdNJQDbjj0psu/P9zzG\nvGentGtM8U5BrxjUVFBVUJr96cWXI1kEQFW5Gb9PazsXNMdvJaG4rs7USYJWK9mmYgBefCCzk0fT\nOodTD9A5EqLfJ7XVZqb9J41Na+KzSstHr6VEbn/NyaiW+H2/iI5xlGufpbNf+5Rp+Vs6eTSxyalQ\nCCFEe8m/WIQQQgghhBBCCCGEAIJBlRq3v7OHsUs8HshJt3LvxAB33xu7esk7UxSmvWum6bTSKV/c\nTMIPFpKTn2bSUwEGHqji8QBok7Pz5gcZf0sbEy1tZLOYcNrMu/WY8aiyElJTjcvuuQcmT4aBA+GC\nC9pxrDITN53Rk579vDwxdQcl27VLvKsXOzhmZB0rF1gYe9nRzJgyC7OlO6U72/f6BkIhoaW3TMST\nmt6ufSNj7L8fAPu4tgMHYrZ16DBdhqmlSkIqmLpAJaEltz/Ah8+cTx5bef/FVIafUokNL1krlnT2\n0EQ7qBYL2UppZw+jzdIy9c8UZ0Lz75Mfv3LRZ7/KPTGkdrFaweeBNMrJoBxPqN2i2HvYq7Xfu/rs\n3E4eiRBCCLH7SEhICCGEEEIIIYQQQgig1utn5ortnT2MXVJXowC9eOpJhQPPjP1cJozPi1p26PB6\nct77PxRgysfnUdc9jy+W+TnwjeeA5wCo8LqZuWL3Tj73y3JxVN+M3XrMePPf/8KVV8KXX8Jpp+nL\nJ0/W/r9pU/uON31KMgDbNthYu9weWf7Oc2n0G+Sld3Azrh2FXDRyMNel+Zg+JYVjTqknb19f1LHq\n67RgS4KrUQWPOg9WfJQPPKB9A2vEn6BVNHpp1Zkcy6XkHXgSJfTr8PHinaKoXb6SUPmAAziMbQAo\nJhVzeRU2vGQv/6mTRybaI2ixYgu4OfbUOn5fYW99h84Wetv0HuDF6Wr+fTLrvSTG3hx/ISGzRRuz\nkwYAanru04mjEX8kd0ZWZw9BCCGE2G0kJCSEEEIIIYQQQgghxF4i4NdmXL2etreYOv+6Ss65qhpl\nqHb/9HGn8r+5v5G+ZgWD33ieC5NO4oOaMah/QM4h/qMTu+7NN7X/jxpFzNewsLB9x0tI0qttPHRD\nTuT2USfVU7DOSoapJrKsukK7/HvvZblMzS+IOtZ1J/fEbIG3vt8aWRb0BrHio7r3ge0bWCMBmxZO\nsOPlat7ga+upHT5WV6CgooZCQjVVJhzOINZQ9SS1i1QS8qRqFVCu4E3+G7ySoEfFhpffxl7bySMT\n7aEqCsmbN+DoHcRd3zlNiKZPSeK9F9N458eCVlvCBUOFhB56fQd1Nc1/bp13bdVuHOHuZyZAdV5f\nMLWvvaPomOwkO2cctGcq+9T/50Vs/3uf0w/puUceryOsZmk4JoQQon0kJCSEEEIIIYQQQgghxF7C\n79MnimoqTSSlNh9OGHJ0Azc+WIYr2biNtaEeAGfpTgDerzmLD1D5eW7Cbh/vHxE8ijeZmbGXu1xQ\nVwfPPw/DhrW95VhDbexJaK9Hob7WRD9TdZvHpqoK/iYFhvxBM77MDNyZObF3aoNwSCjyOKa9u6Vc\nuN1YSZGZ287tQfd9fDz5nlbJS1XpEpWE3OlalYz/ciUAG7clk0U5ay6+pjOHJdopZ9kiABzBenxe\nV6eM4b0XtcDZ4nlOjjihocVtAwEFuzOIxQpOl/5ZdMekEp6+S6/cYjLH53tIDQ3ZRJCA3dG5g/kT\nsZhNpDj3UCBrwniYMJ6UPfNoQgghxB4hsWYhhBBCCCGEEEIIIdg7Ait+v377H1dHhzwaP8ezfpzE\ndaf2QlHgwhH7GbYbO7Q3x91zfdT+DXW799vq6t7wordiwADt/6NGGZd3767fvvDC1o8Tfq08HoXk\ntIBhnc0epKHORH2tiWRFryQ089AJAPQ/0BN1vPdf0qc8t22y8PRdmbgbFNyqDZs1ELV9ezSdLA9a\n9u6QkKKoBFG47dweABRttkbWaZWE4v/33JuSRvGQIyL3t1WmY8OLO72ZlFsckNoZzbPjMYRG96Tw\n+cnraf3xg0Ewh04PNrvW6g7g0OENHHZcPZf/tRyg055LW5kJRIUj40lrFZ2EEEII8eciISEhhBBC\nCCGEEEIIIfYSjSdSiwv1oMLWDVaqykwEQiGi0XzORB4BwFZVicXdcrWHO+/bAMC6lR2fBK2tMvHw\n+GyKC/fuwEhTnlA+JxiMvby9vG4TdqfKP17ZAcC+gz306OPD06BVEsqu3hzZ9vSlLzB8VC0VJcbX\n3O+Dz9/SQ0J3X9KdJd8l8N8n03AH7bshJPTnqiSkKFDsix2mUVWlS1QSAlBNJmaht4az4UW1SDOC\nrqBpCMRmDeL3KZ0Sfu07yAtAdUXr7/ugX8FkUunx3Vf0nD+bV2Zv45mPC1EUuGNSKSMvqEUxqfEb\nEgpo50oTwbgOCQkhhBBCNCYhISGEEEIIIYQQQggh9hKNJ1KTUvWgxz3jcrlrbC5er7b+iIw1WNES\nQ+efOqTV4/ZKrwDgiVuzOzy2pT84WbPMwQevpEaWBbtGdmKXhMNAXq9xeUFBB4/XoGB3BBk4xMvU\n/AL+9fTv2PxuAgFw1yskY2w3lu2ooLLUbAgL1NXEviz8/ReJBLBQx661KQrYHRSMOC1yP7iXB00U\npflfZFUFk9J82794krNsEYewLHI/xeXuxNGIXWFTtBNO03aCe8L6lTYAyktaDwkFAmA2qxx/1zUc\nd/d1uJJUsrsbQ4oWa/yGhMx1WntOE0GW3PFAJ49GCCGEEKJtJCQkhBBCCCGEEEIIIcReIlwpyGxW\nScnQJlqDofnW2iozvlD7l2BOesz9v3xrpuH+goeeB6C3a8cujy01UxtIZeneXVWmKXcoZ9E4JLRl\nS/uPowKb1ljZWWjB5tBDKSfcdjmZ61fgrlNQVYUkagz7pVpqCAQU3PX6JHtDXcuXhcsDqS2ub5Wi\n8MPjr+BOywAgaLXt2vHinKnFkFDXqSTUkJFFBmWR+33tWztxNK2TFkrNs6OdcHydEK6prdLO8V9M\nS25120BAwVlb0eI2FouxlWY8Up0OKvcd1NnDEEIIIYRoEwkJCSGEEEIIIYQQQgixlwhXW3C6gpFA\nUG21fgnQF6ok5PTXRu37yfSfcKdnAVCx7yA+mrWMutyeAIwZP5r+Pco4dFh9h8cWDiuFxwAQVFW2\nbIEnnqBT2uLsCbEqCdWEcjwTJrTvWBOvyKVgnQ27XX+xMlctYxN9WL/KAUAitXz66ULmvPIhACmB\ncsAYDGqo034Gvfp5ueZePRQSdtnAb9o3sGYEzVpYYG9vw9M0rJKQ2KhykKpVGekKvn7xfcyNxppn\n3/VwoNizvn3ubQB6/6y9h/3ePyYkVFJk5tVH0qMqFYXPLWGBVsI9SRvXY/O1/LkSz5WEfGhtPVuq\nJiaEEEIIEW8kJCSEEEIIIYQQQgghxF4i4NYm+BMcfnxehZpKE+NH9YysD08Y5/6+JGrfhqwcGrJy\nmD/pNb75v3fxpKbjTs2IrE+qLY20K+uIcDio6aT1+PFwzz2wdGmHDx3XYoWEqqq0/48eDXfcAa42\ndPdyN+r81GfZNxz9wK2YPNrCInpE1rnMbupzukcCXi53JWCsxFEfCgz95Y4KMnKMrX0ArI7Wx9MW\nAUcCAKbO6HnUSfZP30rAqwcGgmp8hhtiqcnrC8CBzrUA9HPFdyUh0bzszSuB6EpCqgpXHt+TVx6O\nXU2urV5/Ip35MxJZs8wYACzbqbUW7NlXO+GVFLXcajDp998xo5+D8r6aHrVNPIeE6kOtGVuqJiaE\nEEIIEW8kJCSEEEIIIYQQQgghBNBFOgK1KHHNGgAyarfh9yn8ttQ4gRueMHbSYFi+8gq9pE3hcafg\nTdHaTdXl6uETm8m3SxO14X29HmMloQQtR8K6dR0+dNyqrobCQu12OCS0YwcMG6bdTt78K8nJUFcH\nvlZyNK8/ryd3tpNLn9mf0nfmh1HbVSVmgaLgTs8EYOCX7wLGcFa4qlBWxSaS3SVRx0hN9kYt64jv\nnniVTaPOpbZH791yvHgVriYCkF2+AV+jl09VVUxK16gkhKKw85ChTGm4mJFJ33Fw8trOHpFop7JB\nQwAwZ2onVneTyj6z3kvC6zHx3cxEFs5JiHmM5QsdjBuax8qfm68AtmKRU7vR5COhrkZbsP+hWjqy\noV5h2yYL8z6PnYT0mWxY0BOMw/4+IaqsnMXSekWiztZl3uNCCCGEEEDLMW4hhBBCCCGEEEIIIUSX\n4VW1sEKiUovPq2BzGCdbw9V87HjwJKdir65k7tP/ZfsxJ8Q8nmqxsuOwo+m25EfsisfQKqy9wvtW\nlpsjyyrqvXhMbsDB8g015K33dPj48eiUg9MjVXt++y26LVXi9WOp++tXQC6zl5SRntl8Uu2nRUmR\n2+vpD8CRk+6P2q5fRjFVaD87AIeqVRtqHPAKtwQ6Y+KllJsyuZ98AP77zSYOOeks1OSRbGvfU42p\nqt9Afnzgmd1wpPhW4tOrsjhpIIiZYABMZlBVBaULJRBzluWTA3yQcTV1th6tbi/iiy8phZLBh+F0\nm6AU6mr074nX1Si881xa5P7bz6RxzMjoVl9P3pENwKTbspmyoOVqUqXbLYB+3t681gZAcppWHeiH\nL13Mej8ZgKNOqsfpMr4XAorFEBICcBVtpa5HXuR+vFYSctfrY3p0/xep49ZOHI0QQgghRNtJSEgI\nIYQQQgghhBBCiL2EF63yQxK1+H2KYWLVbFEjFU4cuFlz8dWsvvwmVLM51qEi5j73NqdeNYaU9UVs\nzhjc4bGFO0553Y3CKt4gfpMXcLCt2M/vhQ189FoKZ11RRUJifAUr3A0KV5/QC4ApPxRgbsOV1fq6\nzBbX78NmLPVFQC7LVvvod0DzFXy65dlZuVj7+daQ3Ox2g/N28EOj+/bQBL7PF11JKJlq6oN6NREn\nDRzECpbax7Q4bmFU6dd/Hla0X3SfT8FuVlFVBVMXCgmFJews6gIVoOIvOBIPslYsoV+oiUTjkNB1\np/QybHfIMGNFubARo2uZNz2RoadEB4iamvxoBkOOaSAtU6ukM+VpLTCXkq7dDweEAHZstdBnP2PJ\nNK9iiwoJWetrAXAVFXDWucOZ2K0Mv2839UDcjfK/1s6dN/ASQ9LWs7CTxyOEEEII0VbSbkwIIYQQ\nQgghhBBCiL2EPzTXml5XhM+rMP1tfYI24Fd46PpugBYcUU2mVgNCoFWkqew/iJJgJgXrbDG3qa9V\nuOqEnsx6P4mvP040rPv+ywQ2/maLBJaaVoRwJGgBCneDwpUjejHjnWRmf5BEvFn0jR6m2bbJ2sKW\n0YbyY8zlidRx4vppAGxZZ6Vos0Vr8/NTdJufbz9LJCEpSKKpln8kP2lY93LCLQC8x0W4M7Mjy2e9\nOR0bWvDI32hu3l2pTeCnUBVZD5CyeT0AAXvzbYZENG+o3dgNvMQJzAVg8xrtvRJU6VKVhBY++CwA\n1oZ6Atb2/Z6L+NGdIiBc6Sda30EeKkpin/9TM7UqQNk92tbja8KZPXl0QjbjhurVf1LSA1Hb1VVr\n01FlO82sXqKdY7zYIuegyj77AnD6ZaMYO7Q3Rzz5dwDSdmwynL/ihdOlnUfP5WNUU+ufpUIIIYQQ\n8UJCQkIIIYQQQgghhBBCAGoXmshvTsCjPYdwNZP1K2OHPWpJZP05l7b5uCUHHUY+RwNQVW6KVCQK\nK9psxdNg4u1n0nhzUjpV5dplR78PXv5nJn+/shtvPaVVmLDZg4Z9LdZQSKhev1Rps8ffzyIhUR93\nSTMT7825kyejlu1EC/Oc+NUzWK1Bdmy18s2nWsBq3nQ9aPXgtTmMG5pHMKBQX2Ni84BjuO7ALw3H\nujTxQwqHjuAiPiBg03/m5fsfhLu3Vj3E79fDWYGdNdjwYMcbqTQEcPiTE7X1NgkJtYcvqP0+XMo7\n1KOFyR66IYef5zqp8iVhUoIt7R5XyvfTq4WFW9aJrmXlFRPoQSGJ1LC9QP8Z9h6gnbj//vJOnAmq\noV0WwGdvJTNuaB714epDzZyGp/0nNWrZqsXGSj8pGdEhodpqLUhz32Xd+NdNOagqNNiTIiGhJbc/\naNi++4/zALT11bGrHnWm+lrtdcple9yHhKTmlhBCCCEak5CQEEIIIYQQQgghhBB7iXBI6F3GGpZf\nz8uG+2Vjz8abEj3R25yg1cbfeQiAG0/vyVN3ZhnW+7zGKcgbT+9JwA/lxdETpxbVWBIiGMpPuOsV\n9hmoTRZ73H/clKbPCx+8lIK7QXuMqjITH01OiYwjlh1bLTx7j/6caytbv6w6flSPyO00Kgw/g30G\nesmmBAATKimBCmZOTWbWe1rlJ6tNn51ft8IY2LG4GwjYHXz6qdbcZv6k10BRsFVXAVAx4ADjQJK0\nyXt/o5+Ru0YlmWoAQyWhjDUrAOJ+wjveeFStapADN9kUR5Y/e28WX5QM61IT9PVZOZHbSqBtlWRE\nfPn9gstRgCxKqGl0rqoqNzFiTC37HezBalfxeoznsQ9e0j4TikMhSH+MH7+qwsypzbc7BDj1gmqc\nlujWibVVJjasskXCQvU1Ct9XHMZqBrHmoqsI2mJXqrPhxR+Iv3fRa49lAFooVzXF3/iEEEIIIZoj\nISEhhBBCCCGEEEIIIfYSQb8WLrmQ9yPLHvv3ag5jiWG7AXkV7TpubY/enMi3kfsrFjmpKjMx9flU\nxg3NY83y6MozfxmWR/43rugxNgnjqEFtcrWhzoTJpI2/psIYUtm81kpt1e65lDn380Q+eyuFq0/o\nRdlOM/f9JZePX09h7S/G51BSZGbc0DwWzknggWtyDOuahqKa8nmhutFzyKSU55Vb+PcHRTz/WSET\nX9xJQ7oeOioNZhj2NzcqVJTX3zjZnrJ5PQG7g/puPZiWv4XC407BtbOIzNXLAfA7nMbBpGiVbbyh\n4JWqwox5fSlFe/zKIQdHjb9iwKAWn58w8gW1n7UDNxf1+gZbo+pMAApdp5KQP0GvYrVh9EWdOJLW\nKZLLiMmdkc32o47DYQ/g9egvks+rRKq02eyqYV1jyxdo55CmrSGBZluUNfZCyaWcdcUpUctrqkz8\n4+pukftP362dg6pIZentD6CaYp/jbXhjjiVe+LGgKjLVJoQQQoiuQ/7lIoQQQgghhBBCCCHEXsLv\n1SaAn7f/lRf6/JMXv9jGQTlbuZI3I9u8wZUE7O1rJ1Vy8BH0Yqth2QsPZPLFNK2ixNzPEmPtxvsv\nGqsVjeMdAkHjJclwaKi+zkQgVC2iqkLb5uuPE1m12M79l+fyr5u09lyqCv97JYWynR2sdtOohc4D\n1+RQWaYdJ2AscMRt52qVgF5+KIPaKuNjNW7dFUvpDj3lc7BrNQeykm2jziI3z09GToAEhx97ZVnM\nfbNy/YY2QIFGXXsm8rC2zO5oups+NmeC4X737m5Aq2oD8MW0pMi6ZRPupeqgwTTlcyVFLRPNC7cb\ns+PBk5rGAZY1hvVdKsyiKPgStHBfXW7PTh6M6Ci/w4kDtyHQ6PUokSplNruKr5mQUFigUTBn/gwX\n33+ZwO+/6p8d/5qynZPPqzHsc+ARDfSbN93QxjDsw1eNnwdrlmnnsZ6mQgBMsUoXEQ4JtTjUTqEo\n2ms5iNUEmoYzhRBCCCHimISEhBBCCCGEEEIIIYTYSwRDISFcNs5PnklqsodBb7+EBT1p0p2idoeE\nAJIbdRjr3ttH6Q49OFO2UwtJDDm6gWc+Kmz2GL3YSlCNHRJqqFUigZhF37h47OYs3pyUzqMTtCo+\nBeu1VjSFmy18+mYKt5zVg5Ki9geFGrfyqijRwzyb1sZudROIEQhqPGE973MX44bmRZaNH9WDv13Y\nPbL+0szPUABTo53slWWYgkGW33g3AFtzDuDAIxu44PpKElMCNNRpr1FVuYnCTdq4Hhj/Iw/zD21M\nLYSEAnbjZLUtVX9elWUmpv0nDYCBrGHriFGYM10czULe50L9+blih75EbH2sWoBOQcXnSqIsmGZY\nb+pClYQAvn7xfdZecAU1eX07eyiig4JWGw7ckQo8qgo+jwmbIxQScgSbrSQEkJwWMLQbe/WRDF7+\nZyZJqfpnSc8+Pi6ZUMmgw9yRZeHQZRp6tbonpm1vcayrcocBzbe3s+GNCnHGgyxKuZ6XUYBfr/9r\nZw9HCCGEEKLNJCQkhBBCCCGEEEIIIcRewh/qTGVyWjH5fAx8/032mfOZYZsB/N5iyKQ5DnuQa3p/\nQnq2n6ItVnZus0Ztc+fTJWT3CHDhDZWG5aMvq+KcA5dgxUdAbRLsCbVIq681EWwUyFn5c+zKDOZG\nu992bg8WzE5g0bdtr+IQbrfT1HsvpMVc3tjEl3YCxjY8kx/VWoVNfS6Nsp1mQ5sxgEOdqwDjBLij\nrASA6l592HDGBaRRyb3Pl3D2ldU4ElQa6kIVlUIT7t17+zgtY0Fkf5PP2IKssaYBsKDVyj08BsDM\nqcmR5b8wBF+Ci0BKMgs5lvNNH0XWeROTEW33RrfbeJnr6cdGfK5ECoJ5hvVb/T06aWQdU7HfYJb8\n9Z+o5g5W6xJ7XNNqVQGbDYfaEAkChasGNdduTFWNAUqrTY3Z4svToE8pWazgcKrc/0JxZNm2jTaq\n8/qSQnVkWc++PkPFocahoqt7fYJq1cKalf33B2DeU2+w4upbI9vEa7uxerMLJw189dIH+OScKYQQ\nQoguREJCQgghhBBCCCGEEEJ0cfW1Cm/9O43qOq1qjOK0YfJ7sTTUR23bh80dCgkF7Hb+sc8rlBdb\nmt0mPFGdnq1Vm7huYhlvLyzg4puqmHjCJ5hDFY2CjQqrZC5ZBEBDjVZJKCs3djUJu0PbqXH7HIAX\nH8jk+fuyYu0Sk8UWOyTUfR+9VMXmtdEBqIturGS/gz0oihqpLlRerIco5nyYxC1nGcMgz35cyAG2\ntYCxlY4zFBJyZ2ThdyViravV17mCNNRrl23Dr9OF4yuxl+vtyewVsVuVAbhT0w33gxYrV/EGAJ4G\n/bWz48Wf4CJg035n/K5EpuVvYVr+FlRL8z9jEa3P1qVcz6sAKGrs3y8h9qSg1YZd1duNhXOFhpCQ\nWz8fNNQp+LwK2T18XH1PGRarHhJqXFEo/xutneG+g43txC7/W3nkti9Ra1f46Ih3uPgmraLQCWP0\nc1xCov4BcGzKMoJm7XzjSctgWv4Wio49iRXX3sG0/C3MfGe2FhJqpcVjZ/CoWrWmyv77dfZQhBBC\nCCHaRUJCQgghhBBCCCGEEEKgVVKIZ99/obW1mvyvdMYNzWPc0Dy+/lhrC3Xtyb2Y82FqusjVAAAg\nAElEQVQS7y46AoBgggOTz4cvSa9u8Pa+dzLxsu8ACNja324sYHdg9ribXX/SOXqliGGj6rj7uWKO\nO6MOU+gKpMnvixkSStq0HtCCTsGAwn6HuHnsbb09zdT8Ai66sRKP24S7QYkKCUXGFztbFEUNxt6/\naLOVz6cks2qxnfsvz415fEXRqmeEO4dVlLZcaeXk1+8h+9fFgN5uLG3tSk64/XIA3OlZ+FyJWOtq\nIr+ATpcaaTc250Ntst1mV3GW6dU6Ao7mKyfV5/Y03A9arWShhZK++UQ73u2Hf0bQZCJgdxC0hNqR\nxfnvfzxTQn3yFt3zOAGbnZUcwK3Kcwznu04e2d4t/mIj8SNgteFUGyLnKneoAlA4bGmzqwQCSuS8\nWVWuncvOu6aKE8+uw2wh0v6xccWhBbNcADx01uecNP7CyO/+Ecc3RLbJWP0LANdvf4LRl2mfC42D\nQTu26iHEkSkLWgwlBuyOUEgovqaygkHwBSw4cBO0RIdKhRBCCCHiWXz9y0oIIYQQQgghhBBCCBHT\nyw9pba3mTU+MLHtzUjruhuip8oAzgdRN67BVV0WWXbru39yw8Z/a+o5UErLZSVu7iusm6lVscnrq\n1Xeucb2DyatVl1AUOOgot6EFjsnXKCQU0Jf7zFpgqaHBjN8PJjPk7evj9idKuP0JLdziStImmOtr\nTM2GhHYW6hPNm9ZYWTw/dpAmVpWgsPdfTOXRCTmxj79NO77PqzB/RmLMbRrL7uHjgJnvRO6bfD6G\n33Utoy4/I7LMnZ6Jz5WIoqqRqk/OhGCk3dj80M/aZldxlhZT0yOP1ZfewMqrbqWxRfc+DsDn/5sf\nNY6A1UYKVYZlR6Sswp+QCIpC0Bp6PeI9JRfHTKGkRfGhQ1l92XgOYDXPqrdho/m2cEL8kYI2G+ag\nn20bbTw6IZvqCm0qKCktiKOshIM/fAmAylA4qDLU2jA1I0Diti2kb98QaV/ZuOJQ2JhHLidn2SKs\ntVoIyJUciNomfe3KyG2nSz+/bNtoY2p+AVPzCzD5/S2GbAIOJza8+EIhoeULHVSUdH4bPH/oc8iB\nWyqvCSGEEKLLkZCQEEIIIYQQQgghhBBx5MNXU5j9gTGEUl/bfM2Mq0/oFbUsYWcRAINff9awvMeC\nb4GOhYRMXi+mgI+DehYCcMMDpTz94XYycrSAxCnvTGTIy09iLy817Ocs3oHJ5yV7+aJGlYT05+MP\nVbJRVYX6WhNmszaZfPjxDRweqk4RrkJRX6fg88R+LUq36xO1E6/I5Zm7s2LmXqa/nQLAMx8V8sCr\nO3ju08I2Pf8Lbqgi5+cfAKiuMPP1x4n846puABw0tCFq+/OvMwZzcn/6nl7fzTEs8ye48CZp47FV\nVwJauzF3fZPLtgo4y4qpz+7O8gn3UpPXx7B6w1mXMC1/C7W99okaR9Bijaq4kuCtxu/U2gZFQkJi\nl/kdDqr6DaQhXWt/Z0F7b9yRNbkzhyX+hAJWG4HQeXbVYgfVFaEQUEI9555xOJ5yLeB5yxitRWJ1\nuXbOSU4PMub843B6qnFs2QbEDgkloJ3zLA11AISL011+2i+G7WxVWrsxZ6NKQo0pfh/BFkI2/lAl\noYp6F3XVCk/ekc2jN2fH3Hb1Ejvjhubx+6+2Zo+3u4Tbt0klISGEEEJ0RRISEkIIIYQQQgghhBAi\njnzyRgpTnk5n2n9SGTc0DyAywdtWPldSi+s70m5s+9EjsFdXcdMNQ1gxchzDR2mVb/72VAkTTp5P\nBuXsP20y551+WGQfxe/nnDFHceaFJ9Bt8cKY7cb8Zn0sngYTphhP1ZGg7XD3Jd15/FZtgvihN3YY\ntnHXR09kh6tnhNVVKww5Wpvczu4RYMBBXjK7Bfj3B0WG7YYc3cDU/AKe/6yQ9Gw/b8zbyjFzJ3PS\nzeMi27w5KT1y+9JbKyK3nS5trEedWB/9RBqpz9ICRg0Z2vNxlhaH9lfx+5TIJHT4uTlLd9KQGXty\nvCXhENDTjy+OLHN5q/ElaG2DIu3GxC4Lht5XznKtAlYd2mucZqnutDHtzRRFGo6FNX0tgnY7GehV\n36ortXPhGZOuA+Bm/hNZV1Fi5vn7tWBbSrp2jrbiwx/QjulxG8+jhw7Xz23WutrI7an5BVwzbAEA\nay66CiDSotJigWvvK+OIE+r552v6uVurJNRSuzE7RXQH4LqRWiC2aHPsUM7kR7Vz8uR/ZTBvuotF\n3+rV5OZ97uIvw3oZPnt2hb9WC1mVDhsO8nsohBBCiC5GQkJCCCGEEEIIIYQQQgDx1mxp5tRkAL7/\nMoG/XqBNkp57tVad5qwrqnhj3lbD9nc+XcyZ/X+mhkQyVy2LLA+azdT03MewrWpq/2XB+iy9Ddeg\nb96P3M7r7+PCE1cbth07tDcA9qpyABK3axUpwiEhtVFnmoDZOOG77xfvkVSw0fjYNdHjTUo1trdx\nN0RvU1tlXHbdyF788qOTtCy/YXlunp+p+QVceWc5Iy+o4a5ntJBHRk6A/3xehN2hkrN4IQDX87Jh\n37OuqKJHH/14z39WyFMfFHHSPVdGjaexGe99DRAJ/jjLikld9xtHvvMkADee0TOy7UN/7U3Sti24\nM7JaPGYs4ZBQ/x56kKnPotmkbNlgWO8PhYZExzUN3+1Ee890s5XG2lyIP4wvIZFr0SpYpWX5qQ61\nFetfkA9AFqVkJVSRt6+Xey/rFtkvKSXI9qOOw4YXt1mrNtY0gHnqBTWR29ZaYwAu3H4sfK7qO+N/\njB3am9PHjeTE08q57bFS+h+oJyBNfj9qC5V4gjY7HqJDrVs36Pt43Aqrltg5bLgWAC3aYmXyvzJ4\n/j69mtzkRzMI+BWKtuye1mDBOi0kZHFKQEgIIYQQXY+EhIToooJBmDHjj2sX73bD77//MccW4s9i\n3Dg4/fTOHoUQQgghhBCiq3v5n5mR230HeZiaX8CFN1Rhd6g8PnV7ZN1BR7l57Ni3SDC7DfvnT/w3\ndTm5hmX13Xq0exwNmXpIyBQIkLJhLYPeeoEhLz5BQsnOqO17zpuFvaLcsKxxu7FxQ/MYNzQPn9k4\nAexoqCF1/W+GZUNPjq7Kk9nNGBJa+oNWNaK4SC9FdNcl3Vn5U/QEs9NdHSln5CosYN8PpwBw8nm1\nXP7XiqjtU39fRc/vvwJgAPoFk3OvqeTCG7Tg1j4DtYnvhESVbnn+SGs3gEX3PG44XtBswR+q9uQO\nVxIq2cHpl51GZq0WqAoHoybyME60n2npAYdEja014UpBvb+bpT9/9PZoQbP2enkTW64+JVrXNCRU\nSSoA/Qp/7ozhiD8xnyuRI/mZww4rx5UcZNp/0gBIRg/1HJmxGk+DQk2lfs7cZ+4MFL8PG178ARPL\nFzr4bqYxQJhs0kNCI68/H8WvBWacxds56vF7ACIt94a8+hQAqRvW4iiPDsuZWmk3hqIwnTFRiz95\nIzly+61/p/HoTTksW+CM2u6bj42tO212/WL61OdT+ey/yU13aRNfXajiUvuL8gkhhBBCdDoJCQnR\nRU2bBqNHwyuv/DHH/9vfYOBAKC7+Y44vxJ62335a9d/t21vfdndQVe19+uWXWqBPCCGEEEIIIdpK\nMTX/jaDGE5wAvfr5mJpfwNT8AkzmcOsWK8tvvBuAzz76ns2jzmXZzfdH9qnrQEAIMLS6qs/M5vRL\nT+XglyZxwJQXGfju61HbH3fP9fT58qPI/bL9BlPdb18Aqsr1SekqUgz7WfBjqzFWp0gt2sgVt5VE\n7r/3+lyaFkP6ea5W9eLlhzIMyx+7JYd5nxsnuZNqihn4/htY6usYfcHxHPHvv0dVxHCUFdNt0feY\nPG5O/4v+DZDGIaGefXyR2w9O3sHrc0PVnZp8q6vgxNNZ8NDzFA09npLBh/H9Y3o1IneaNt4j/v0P\n7XExhrwaT+oXDj+F9qrqo73m+737GkeMqAMgl+1sPW4koLcD8klIqMMW3fMYOw4/FjUUdgiHucK/\n2938hZ02NvHn5HNp4ZgEk5ttG/SWguG6N7Xde5FlKjOciwGGTbyJhOId2PCysyqJJ+/I5ttPjeeG\nlGClcZ/7byJ583pOmjA2ssybkhY1pvB53VZViTMULFVCn1nt1Wc/vRrRlnXa89uxNfo4M6clRdp2\nAgT9euWfL6Yl88HLqe1+bIBAvVY9TkJCQgghhOiKJCQkRBdVEroutmbNH3P8+fO1/xcVxV4/ezZs\n3Rp7nRDxaO1a7f+rVu2Zx9uht1dn9Og985hCCCGEEEKIri/gBzXYfPuSpiGhpkx+H0GrjdV/uZFp\n+Vuo66FNjlbsNziyzaw3Pu/Q2Oqz9WpEQZsdpVEQJnHHtsjtH//+VOT2oKmvAjBz6hxm/3dGpK3M\n3WP1YxV6cshArzCRTbEhsGOvLGf0hSdw7+bbOfm8Gt679lUuuvpEspfmG8a372APALm9jK3EQGs1\ns6NAr1axD5s57LmHOenGizCFKgrZK40VhM494whOvPVSDnr1acPyzEZjtTv118BqA0fovq26yrCP\nLymZLSPPYt6zU/hq8scUHqeHfdQmVTSqMVa2SDfrxwo4HFHPrTW1vfZh/eiLsNVW8+JhT6GioADf\nT9JaEYUrGW09QUrhdtSGs8fy7f9Ni9yf8/qnTMvfgl3Rggy57KFvLAkR4klJByClKvbvXsBmJ8NU\njrs+eorItaMQG15Ka2MHB5ObhIR6zZ/NmRefRHKjNpF+e/S5ylqnVSAafcFxnDP6SABMAT+q2Ry1\nbWM3OPUQ6uHH12MyqzTU6uOuqzY+h39N2c7bCwoAKC40Bodeezy9xcdqzsI5CSyYlRB6PIW/3XEQ\nANb2n5I7h3RFE0IIIUQjEhISootav177/9q1u7/lWHU1rF6t3a6tjb3NaadBXh74fLHXCxFvrKFr\nAm53y9t1xJYt0e+FZ5/Vb+fkIIQQQgghhBBt4vNpM3lWW+w/9v0+hYxVyzn/lMHk/jgvar3J5yVo\nbbkqgyc9s8X1Le338YyfWHv+5SQWxf7m0Mczf2bTGeez/cjhxn1TtaoSv9X1idqnxp9AEnr7mjwK\nsNXWYKmr5ZzTD+e807SqLN0XzefKOysYUr0IgPQ1KyJVlAYOcUdeM4criN0ZjHqcku16GKcHWmWX\njDUrIsv2m/ZqzOc0aKqxjHPjsVqbCW05yvXSzD/+42mttG0bXcK7hvv7BbRvu/icCW0+RlMFJ2vf\nXknetC5qXW3P3nw882fWXHJNh48vYvsy9Xwe5AEKrr26s4eyV5LcQ/NKDzoMAIdZr7hzP49Q2XcA\n78/9jYDdYTiXAcwmVF3M56We5s8359wW3f6rsfVjLiZos0Utt9VUc+z9N2IPhyhVNVT9roV2Y8Cj\naf9i0YgrmZpfwO1PlJKSHqAyVAHpm08SDef2sTdXsM8AH6Zmcke/Le1YqueFf2Ty4oOZ+H2w4bdG\n5YOsLY9dCCGEECIeSUhIiC5o+nR48UXt9qxZ8Oabu/f4KSkQ+hIdVVUtb/vFF7v3sYX4o7hCleV/\n/73l7dpj+3btOu8++0CvXsZ1kybpt/fff/c9phBCCCGEECJ+zJ/hYtzQPDzu3TdV7fdqx7pofCVJ\nqQHMFj2EMj5nGv+4sSenXn0WtppqBk9+JrKux3dfMXZobwZ8/A6OirKYx/7yvzOY88qHuzQ+d2YO\nUX2+Gq8PVaUJT/quPf9yFjz0fGR5hS+6MsXGuh5sRg8PHcAqDnzzP1x40gE4y/UWYyafNtntTdba\nwxz6/CNkrFwKgM2hsn6ljfGjerBto5XElCBT8ws4dHh9ZP/tW1uezB3w8Tstrgf46a5/kYj+jSq7\nXaXHd3MYO7Q3Jo8bVJXBk5/huLuui2zTkJHV6nHnPa1d3Fl5xQTons6Uwx+IrDuIXwH4YursVo/T\nnPps7dsr4ec499kphvXujOx2BZlE2xzpWcADPERdbs/OHor4kwlabQTNFlyKfg58hL9TNmgIAWcC\nAZudZFWv2Db25gpG8lXk/ixGNXtsJw0tPvbiOx8mYIvuw5W2diW9v5kZuT/m3GEkbduMam753Gyy\nmsgx658FFSUW5k9PZMs6K288YawMdPrYmqa7c+mtFZx5aXXU8o54/fF0nrhVb715QP/Yn7dCCCGE\nEPFMYs5CdEH5xmraXH01nHoq9Oix+x/rzjvhjDOaX3/22dC7N9x3H1x3XfPbCdGZNm6EylAl5A0b\n2r7f9F+K8Pqjv30a9sD1mYD2DaSdO+G+50rxeRTmfOSKLAeYNw8+XLytXddbT94/h5SE9vdkF0II\nIYQQQuw5X0zTAi9Fmy302W/3lNr1hzplOX3VvDxLm+ws2W4mPc3DZSPGGbZ1lpeQ9/UMCo89kePv\nar0KTOOWY7si2ExrmPlP6i1hlt18P6rZwvIJ9xJwOCPLL+n1FV/uPJan/lfEwjkJfDQ5Neo4jdt5\nNVbbXWud5k3S23Gdes05TH//W5zmZLweJ14PrPzJSe8BWqCocZ5pR4H+N9b5RIeltg07Wb8To2zz\nz397mKJjTqAfejs1mz3I8XddC0D/z99j+1HHM/j1Zw37VQw8MObzaazomBOZlr8FgJwlCzmFr5ma\nfzW9vv2CpPtqyZ/4JHWh598RntQMw/3qvOiKTmL3s9bXAeBO7ViLIyF2RcDuoJtNO58ecmQN/ARV\nfQeG1tlJrGrU1tFhPOcdx3y+4/jI/dOZyTIOYTvdW63gFLTaDCGhLSedQe9vZpKzZKFhu8TtWpvK\npu0Zo45nsWLyR7eRvO8yvW3lvf/ZyYFHeAzrH3p9B0u+czLqkhpqq0zMeEf77FDVjmcily3QP8+O\nYQGWhJZbpQkhhBBCxCOpJCT2CgMGaGGVrqCuTvsjJPzfrFntP0as9vOzO/5lshYFm89HAJCRobVa\nuv56mDmz5W2F6Cz33qvfLixs+351Hj8ef7DZ/3r2M04CPHZbJv++O4Nff4p+kxYX0+Kxmv4X3N19\nBIUQQgghhBCtUtv57/D07AAAZTvb9j28We8n8Wt+y61ONq7QjnXgp29ElmXlBshe/2vUtq4dhQyb\neBMDPpoSte6PtH3oCAB+eOSFyDK/w0nhsSdG7lf32ZfvnnzNEBACGJa1gprcXnTr5eeYkfWGdamK\nNlGcRoVh+Yezl7PjsKMj930JiYb1oy86kf6LvjQsS0zWLmjc+lgp51ytHXfZAu21f27kG4wi+oKM\nu1Ebtt5zPotaH7RaCVqtpFIZWdZvwQx9XK4kLA11hn3+N+dXPO0MiDRkZOMoKzEsKx+4awGvcPWl\nsKA1usqH+OO093dAtI0Uv9LFeikCNhtJihY2TUnUAjT+0Dk5YHfg9Ovnq6OPKDbsOxTjt1TNBFjO\nwUy+9dPIsvfnreHLt4wXhNePvggA1axPPeUszac2tyc5yxbFHPuv193R0lNDtVgw+fVrcCefZ6wW\ndO39ZVEBIYB+B3i5cLx2/k9MCTJslPZ8CzdbWr3m3ZzGrUBfYnzMtmpCCCGEEPFOKgmJLm/nTli3\nTvsvFrcvQHmdN/bKPayhHvr3MF4cGzUKCitaLtHalA8LoH37rd8+XjZstvH1PD+nndvytxYTbGZS\nE1r/w6V3by34A7B2LWzbBj2bVEVWFO1bFy4XlIWqqt56a8tVh0R8q/P4qWrYPd98jTfp2fp7pqzc\nR1Fl9LePmlKBYCvzA15Py1ejZnI669iX23iOt59J4+ZH2l6CWCJCQgghhBBCxLcn78ji13ztb/zy\n4uhKAn4/XD4sj0OObeC2x0u4fLixCkxalp/zrqmiVz8fWd39pKRrM5ZP3dMNgF5Fv3LO0N7UZ+Xw\n6fSfsDQYAzU1PXsz7+m3OPWqMRzyf4/9EU+xWTuOGs77c38j4EzgwyOOxe9MwOxxt9iGLExVTJE/\neLK763+bHcZi3s64kZ8rB1F48pn0mfVJZJ03JQ1PagZp61YDoKjRs7tJAWMlisQULcBlMsH511bx\nyespFBdqfxemmGO3nen/+XuY/D6Stm4ia8XSqPX1Wd0IWmyY0R8/vXJr5PbRD91BXU53wz6+RlWP\n2sqdnknOUm2Cfvh94wGt6seuUM1mvn3ubU689TLteDKxvUdJSEh0hqDVRoNXO++57KGQkDMBgIDN\nTi+1ILJtbmCbYV8vxnOEgko2JVzz3DmRZQGHk4qBB/Lh7OWcf+rBAFg8bgBDC7Hq3v3YfMoYjnxy\nIgClgw4mc/VyAOa88mGr1daCVmMloYycgGH9iNF1TXeJyebQzt3zpyeSkh5oZevYMnIClBdrzy2Z\nanZY5VwqhBBCiK5HQkKiyytrZc69pMbD9+til6ne0/7v7xkxl8/5tYQYbZqbVVCVCGgXFyZf9xYn\n3nct775t4cybilrcLy89gWH7Zra4zUcf6QGhsF69wOsFjwcSE7VwUPjLlY2rsrSnjZOIP9sqGliy\npaL1Dbug737MBqycwhyW/3YcBw+ycseTJeT137VQlNejkNXdT0lR7I/TJGo4kxncxnP4ffL1NiGE\nEEIIIfYmyxfqXwJ666l0Rl5QG7lfsN7KLwu1qjXLFjjZ+Fv0JGJFiYXXHtOvE1x6awWnXaxXRxjD\n5wAklOyk+4JvOHbiBAAW//Wf9J3+Ad+88C6+pBRWXnULhz7/CABLb76P3t/MZP1Zl+zGZxpbIDTR\n7E1JAyDYxgsbqqJEQj4mMzz/WSEjnriVAxZ+jN+TxACWsyb7Wn697g78jgS2DT8FAE9aOvZK7SKQ\nEoie3H2FGwz3u5WvZ9Bb01h9+U1R2/Za/zMA8ydNJmXzemxVlWT89gs5S/Pp+8VHzY59+9EjsNQb\nJ6Mb9t/XcN+1s8m1mQ6UOvE7XVjcxi+UBewtV6Bqi4aM7MjtoExs71HutNjXBIX4IwVsNo5PXcy/\nuJxTjt4CX+rnEp8rkcMDP/D41O306OPDuUSrJLR8/F0UnHgG3gtWGI6lttBkLPw5AOAs2QlATV5f\nVl02Hou7gRXX3Eb28p8i21QMPJA1Y6/F7G6gdMgRrT6PoMWKyad/CfiEs2p5/8VUMrr5eWLq9ja8\nEppzr6rm20+SWPKdk55923ZNsK5GwZmgf5UvKUX//MmklDXtuagvhBBCCBEnJCQkurzGgRZFgblz\nYcQIfVk8tezJ/yYhcvvtBQXMn+Hitccy+PErF8ef2bZvPABYzfo3J/p+Ox24tk37ba2o5/2fC1rc\n5uLztW82Duc7vuc4ACxWlaEnuln6g5Np+QUsnJMAaGGjptfl7nq6mIFDPCQmx8/r3pTLbuHMg7q3\nvuGfjLoX165ZvUS7AJJILSWl2u05/0ti9RI7+w72Mv6Btlf4aczrVrDZm69PbMdDPzZiVfzk9t47\nqzQJIYQQQgghNA11Ck6X9nfVvZfmGtZNeTot1i4G7zyXxq+L9CBI42o1Rzz5d6yhSkI7DxnK7xdc\nEVm3s1EbrpKDj2LNuOs7NP49xqREvnmUuWIJWYEAaeZqTKjYarQKP6rZzMqrbjXs5klOxV5dRcbK\nZRz1+L1Rh23KtmwtBy+bFDsktO4nvEnJFB43ksLjRgKQs3hBpHpPLL+NvRYUhaDValh+ygPNX5NZ\n9ZcbWx1nLEGbDbPXo39DCwjshlBPbc999ONJJaE9KhyqE2JPClptDLRvZGp+AdlLtUpB3kStupkv\nMRlbbTW9+mnXq5ylWkho6wmjqO21D0cpr/GiehNX3lXOm5PSOZFvDcdedM/jhvu/XPdXhrz6FI1r\nY/9y0z2R2z6X3iYyaLFQcPKZbX8eFgsmrx4SSkoJcu19ZQw52h353G2L5DTtQvbObVYOONzd6vbr\nVtp48JpuXDdRv2649AftvfwJZ5NI3W45NwshhBBC7GkSEhJd3nnnGe/Pn980JLRHh9OijOwApTu0\nt53JDElp2gW/Vx/JYPioOkzR1clj6v79N4D2rcDeX09nSN/t/LIxt+Wd0K4tBdr4euSynd/Yj8GW\n1fh9Jpb+oH1DcuzQvJjbW6wqfp/Ck3/NZsBBbh54tTjmdvEgEE+/FGKP6c1mXOhhvMTkADu3Wdm5\nzdrxkJBHwRWs4zB+ZQmHR60/nMUAWM0+igstbPzNRt/929b+UI2jgKMQQgghhBB/Frvyr/B7xuXy\n7CdFbNtojVqX19/HpjVatYHeA7xcdnsFj4zPidou3L6sKdcOvYxv04o99dn69YDa3Ca9wuOQioIS\nDGDyeRl57bkAFB57onGbGBdIwhPMp15zdszj/spgLh04l1/Xal9qmoE2AW3yegja7PTs62XbRm0y\nN51y/A5jaGPn4ccy492vOfOSkwF4b/5agnYHhz77EPu99zrLbr4fiK7AY6P5v/F+GX9Xs+taEp50\nNnk9kWX+hES6pzrok+nq0DHD6k89HftP+RwzMKdDVY5E+9SdOQbXjM85tr9UEvojOKxtvJj6JxWw\n2SLhGntlOaBVZQPwJqVgra9D8ftRzeZISKghIwuAseb36T4mj+Jzr+P43F/4y+3PGY694Wxjxbod\nRx3HkFefwlof+4uwPldS5PbA//2XJX/9Z5ufR9Bi1Y+rqqAojBjT9i/chvczmyEhKUjAB2mZWmBI\nofkv/21YpX3e/jQ3OuR3Np8B4JEqYUIIIYTogiQkJLq85GRoaFSBubLSuD6eKgll5fop3WHh/he0\nsqvZuXpFoJoqEynpzf9R0phjpzGAc/bGV/iFBwkGaDVoFAzA/15N4bDhDfQ/sPkLWWZTkP2Ca7l4\nzHre+XhAq2O6+MZK3nlO+2bk77/ueglsIXaXTWu0C/Q38DKb2SeyvHSn/hH42zI7+x/iabprq375\n0cn+bGIE8wwhoTsmlXDeXWdhCk0x1PudLPoGFn3j4sRzarjstopWWwzGz5lLCCGEEEII0VTAH72s\ndIeFS4+O/cWailIzZrPKy7O3kZCo/Wv//6YXMmF0j5jbT+aaZh/b7zD+ze1Jy+C979dh8nrxN6rU\nEK8y1qwgobSYi4frbbqstTWGbYLm6IsbiUVbo5a9P28tF40YCMBgVvLULV/zbcmNjPsAACAASURB\nVPAEHrs5hyPQWoo5S3dS1z2P2x8v5c6Lczk9OIN0yqlx9o06XnWfffng29X4HU4wmQBYeuvfWXrL\nRD1QoyisO+dS+CR0N7TvtB83M/bofYwH7GAIJxiq8nPx8dpzW3z7gwQcDpKdVnpn7FpIiJmfg8dD\n7wSpbLNHfP4pAL0lkCU6QdBqp+cPXzPsvvHsOPxYADypWqjFFTqn9vj+K/rM+oRe82cDWiARAIuZ\n7s4SioHuzrIWmo1pGtK1gGZ17+hzK2jV4DrKVl1FxupfOPvMI0goLWbVX27klxvvjtpuxG1/oXv+\nfOa8+hEjrzuPTaeezY//1MJN4fPzuNAVN3eNdh1eafEKnLZu+YLYAV4AdyhUJYQQQgjRlZg6ewB/\nRqqqEgzKf7vrv6OOMv5D/tlnwe02bhMvPG6FIUc38MhN3Rg7tDe3Xqb/0fTjV22/OOOzaBeLfmUw\nAE60lNT1p/WkbGfLKaHVS+18/lYK770Q/YdZVZl+SnAEtWMe2X1ds8dyopU6z+3tY9jp7fz2hog7\ncZSn260mXqF9q9aOx1BJaPMa/dufj4zPoaGuYxfsSsnkTp6M3C8hk6EH7+AYfoy5/befJPHU3+QC\nghBCCCGEEF2Zx92+vx8qSsykZgUiASGAtKwAqZl+snv4OO9a4zeectne7LHUGAGaoNXWJQJCAGnr\nVkctSyg2Pt9YzzFzxdKoZYEmgansZT+R2U2rDnEq2oT3mRedxP5vv8yoTx/ko49+ZDpjUIgOW4X5\nE1yRgBCgBX1Mxkuo3qTkyO36rBxmv/6ZIRD06acL+WLKFzGP3xYBq/FbJZ50bVJ/t8RMzGaQgNCe\noyhSsUnsEbF+zcJtBfO+/QJHpVZF25OqfckzqXALAIc+90gkINT4QEGzBVNAO59a62tbffz63J58\n/cK7/NSkDVlYXY88lt9wJwBVvfu14RnpHOWlACSEqh0dMOVFw/qs5T9z6LMP0T1/PgAjr9NaD/SZ\n/Skmn/FLsrl5Wnu12vLQ88RMMNCu4eAIXYv/8e9PtW/HTqTsnk8QIYQQQuwlpJJQJ1hfXMvPmys6\nexh7Ba8HVvyegw3wol9AufJvlYy+rKb5HTuJ36dgMel/dTjRex//NDeB0y5q/Q8uAJ9Zu5DVA63c\nuClUFrW+xsTCOQmR575htY26GhMHHaU/zmM3a+XMy4qjL7i99JBeHtWK9gdTrw2LgTNaHM/2LVZ6\nlq0B4r+sufjzqK0ycf2p+u/ksSzgZv4Tub+9wNgCYOVPDo44oYG2Cga0bxuN5yVyKGYEcwliIpMy\nLhh5kGHbI/iJnzlSf6yfndTXKoYJgqb21tCWEEIIIYQQewNPgxYaOerYSm489lsun3Rui9tXlJgj\n4ZXGXphRFLn9w5cudm7T/k7JpJTCY06gx8K5kfULH3yW9DUrcKfvfV86SCjegTcxGVttNRA7JDTv\n6Tc590z976olt/0japuDXnuGldfcxnr7QPp4tC89mX1eDnnhMQA2nXZOZNum7cbaw5uoh4QWPPwC\nZQccDMB3j7+Cs7SY+m49qO8Wu0pUW4QrCYW5U7X2QIqETYQQ7aA2Cjju+78p+BISIy0TFzz8f5wz\n+kjKDjiYxB3bovc1mzH5vPSe81nURaoVV98W8/GKDzumxfGs/suNOCrLWX/22PY9D0v0Z4KtqgJv\nihZ4OuWG85vdN2v5T+w8Yljk/omjq5n6QgZ1Jfpnss+nYDdHX4jz+2Kfc8PX4guHndS2JyCEEEII\nEWekkpDokuZ97uLnuU6uPD6PTWuie/ZsWN1KH59OEvBD2o5NMdcdNrzt4QS/+f/ZO+8wqam3Dd+Z\nsjPb2b5Lr1IERURBUEGwYkPF3vVnAXsXFeyK/bNjRxGwCxYQEQRpC1Kld1hge2/TJ98fmUkmOzPb\n2AUWzn1de21OSXIyk2SSc57zvMrLnBHlZWYR2ouOxaq90Iy/JZ1X7ksNuY1Q/UqbVmmz6PwiobT8\nrUH1ktIVX/UneRGA5xjHkIdv0dWx2w7fjishvjg6WDZP3+F7Mv+qwrpQVFc17CexstyAjEQKBQD8\nzTAWMFRXZ9M1twHoBEJ+xoyoXVQni4BjAoFAIBAIBALBYcmmVRY1TNi12e9ww6uXcf4lBbWuU1lu\nJCbeg9FuQ/KEtix4YVKuupxMIbvPGQnA0qdeZ2rmHnafewmr7h9/xLiS/PT7v+qywePGGRevpuUQ\nsdTtyWlMzdyj/m256tagOlVprQGI7p2khn8OJKowT122lhY3uu2u2DhW05dMBugcifYNPZdto25o\n9Hb9xOzbrUs7fCIhgUAgaAjbLtPuR5ElhTpHIFtKGkU9j8NcFXqirddootOsnxg8/l6On/iarixQ\ncNkgDAZW3T+e8o5dG7aayxWUl7w+2F0uFJFFBcTt0vq3zUalX1vepPURup1Bq7FoVhTT3ksI3R6f\nSMgdKVzZBAKBQCAQtEyESEjQIvnkpST+b6w2c87vIpREIa1bV+v6y9b/a8HtPtgtDI05r5CUHesA\n2DvkHNbdej9d2A6A213/Tj6PpHSWGfHww+y1XMaPapmxDn+wEwYrYqTYVt6gspg4Lc8vEoqVtRfF\nh9/I5/G381VbVicRVLRuzzheICZ7LxOGTVbrfj9R69wTCACK843MnBrL/F+jD8r+cvZoF8P3A8ZS\nld6Gib1e5LVOr4asn7evYeZ6m1Yr9524aEfYOjtHjCJr2Aj6o3R+DxiuhTtzOY+Mjn2BQCAQCAQC\ngeBoYs0SKy+MSVPTlXmK4OfOUWtD1j9paLW6HBPv5cqhPTjplSdC1g10Gk2mEEerJKZm7mHXBZc3\nRdMPG8p8g8P2pFS+m7tBzY/K1QZs5QYIofyioeqUdHJPViZR2VIzqEpvw7RFOyjsfYK2jzwtrFlF\nu06NPgZXTCx9WcsAluOIDz2IfCDUdItytGrCcGMCgeCoYe+wERQf0ytsuaNVIpYwgknZZMRcrfRj\nxeTonYZcBzm8pcGtiYRsvvujpVSL1OAxRwSt42fQM/dzwdVnqemT330GgJWO49W8UI5BHz6bHJR3\nt8+h3C8S8kYcnhOVBQKBQCAQCOpCiIQERwQ76AzAg7xJ2/gS8n2D/VvWWHj5njRmTIqrbfWDhmxz\nquKbJc++gz0hka0cA4A7eEJEWDy+SIFGPLgjI7meybzJAwA47cEvNft3aeKHmHilA9NeHVwvwqqJ\nhEqtygtX11V/qnmdezrpM8BO6w6K6moXnbAW5avld2weT7suytSLP749PD5zQf1pToclWYZ7LmrD\nlHcS+OTFpLpXaAJmfaOcg1/O28GoZROwJyYjWyK4q/z1oLqR0V7y9zdMJLR6USQAJyTvCFvHHRlF\nZEEu0xnJrW1/4q5ni3jivbyw9ZuLzZvh4ouhwqf5+/priIiAyEiw1WFi9sMP8PHHzd9GQdMzcSKc\ncELd9QQCgUAgEAgEtVNdKTH+1jTG3ZzGaw/q3Xrvq1bcFaIK83jj+2xd2XXHzmfG/C5axlxl0lDX\nX77hmoEd1L/TH/kfKWuUiQVDRijhtuIopzo1vbkO6ZAy56Mf+W3aXwC4AwaaDV6tT8IfvqshuKJj\nSFuxhCEP3kRUbja2pFRkkwlzpTb5KSpP+Y7WjH6UZU9MaOwh6MKNuaOafiLMliv1bs2OVooQ6Qgx\nkRIIBAcRjyUybJk9ISmsq5pcy0xUd9TBFQlJvhnAyx95gbnvTwPAUloEQGRBHkaXZgW07tb7+en3\nf1n40ocht2WV7UF5rhAioTMvC3ZYep5xnMssPur5HL9P+TOoXCAQCAQCgaClIERCghaFLMOOjcrM\ngKgYL5/M3Ut21xPozC6cmBnLy3Tes4zdWyNw2iUqypVTfOcmCyv+ieSrNxMOaRgsF2ZVJOSxWqlO\nbY0BGRMuPGFiHIfCg+IkZMCLN8KCBNzNewB8/XYCY6/TdyQ+enVrddnpUPZjqw6+/EsKtJe/Sfbr\nALCguaR02zgPo62aQc756vGYHFp5dfsOvDvi83ofx6FChHE6+NhqiNKevKF5O7u3rNFm8rTepHS2\nl3XsisdiIbKogHS02aPnMRNblYGlc6IbJJSyRMokGktIygh25fLjsVpZ9sQrtCGb0Zf/h9EEx/Z3\ncNaoCmLiQocYUGnC0/Shh+CXX2DJEiU9ZQq4XGC3w+LFta97+eVwxx1N1xbBwWP0aFizBqqq6q4r\nEAgEAoFAIFAI9U6w+I9odmywsHOT3jFgD+2JQlHdD7vvOtqkVPLQa1rYsUc33EMGWgix2+TQ6vu2\nC+dw1p2j6PPJm3xgvY8y4pCgweFYWgrO+FaUd+qmptffdHdQnbKA8vrijoomJmcfbZb8TdrqTGzJ\niqArfvd2tU5G5gIA9px5Ifak0OHZ64MrQBjksVhrqdk4ZJOJn39dDkDhsSfgrcUlQyAQCGrDazar\ny4uffVtX5oxrRXSAi9vPv2Sqy7Ih/NCRx3JwHXSsZYprUNaZF1DesStui5XIQmXi6nnXn6uru/7m\nu7EnpbL3jPNCbiuC4NhiP34S7IgfyoU/jnJmMYLBqRso69K9wcchEAgEAoFAcLggREKCFsUXryYw\n/hZFXHD5naVERctYfHGEzbiRgMpq5cVn6V9ReHzuPC6HxFuPpjD7u1huPaMdWdvNoTbfZBTmGhl9\nXhsmva63nPaLhFbfNRaA4h59AOXlxFsVIvhxDZb8GcXuLWY8vkvXiCIy2HT1/zCjxVTL2h6+88hW\npawbykkoMPxRpNHB9ouvRgLy+/RHRuLMh2/klGcf4MoZjwBwIb+q9Yt6HU/rzAVc/O5obuo0E2tU\neOGE4PCkOcVTZUVGXXr31giqq5pPsPfcnZr9/5l3Xa3s85yRauftRnrR3bSNTfRgJuerde8b2Zp1\ny+rXwVuUa6IVpUE28AA7LricqvQ2OONaUdm6PQCW0mJMPpvmbessVJYbcYRw/vLTlN+GP+Sif8Aj\ncPZpiLDughaOLENygCt2Tk74ugKBQCAQCASCujGZg5/Ou/W20569urzB4+6m36laeLFIn4Aomww+\nuPNnbuGLWvfT57O36fXTJOLwuRccJbYxO88PDqfmimm4O7G7hluGLUl5V1t7+0NqXtJmxc3JfYCh\ncgJdKzzNFG7GlpLG1Mw9/PnZdDVPEgHHBAJBA/GLDN0WC3vOGakrC3RFW/7IC9hSM9R0dI0QYzoO\n8u/TqnuexJaQjDM+ASQJW0o6MfuzSF+2UOeENDVzD7LJHLKNFW2U/jmDRd9HCfDP78G/CQ6bRKTB\njhMz2waOoIooDGLiqUAgEAgEgiMEIRI6BIhHycaza4smfjGZlE/SUlaie6F5lUcBMBhlHHblFK85\nEL9/V9OLhCa9nsDCmdF4vXDfyDaUlxiZ80Ms1w5srw7QOyUL1R06sOn6OwGw+zqsDHgp3Rze6sFW\nJXHtwPa8Pz6ZJ2/MUMON5Q4aAkDbhX8FrVNSoH/heefJJOZNj+a/TKXTzF5lCJohGRWjCHue5yn+\nGfUwy8dOoPiYY0lZt1Kt037+H/RgC9VEcg3T1PyygBmOseV5eNyi40qgsfW/4E7Thob3qi+BIfeK\nSFSXqzLaqTOdEihlTfQAerAFgLe5V6mfZ2LCffWbTVpeaqCLdxu2pBQ2Xf0/Xdmyp15nxvQleM0R\neCMseExmen/xLlcMU+LA7/bdy7J3N89nUBP/te7/HxhizFm3PhGA9eubtk2C5mPrVigq0tLl5Yeu\nLQKBQCAQCARHAqaI4J4cryc4r+3COfSarIU38TvzZpDLyZFr1fypmXuYmrmnGVraMnHFxAKwbeQ1\n6iBuYwagJa/erdXvFLThlnv56fd/9fs8QJGQbrJILW4bTc1RohsTCARNiNcnmgl0g1cxaDeVnIFD\ndEVSQ+y2m5nN197Oz7O0/unq1HTa/fMnw+67Ts3bfdZFQetl+45p2uKd7B2qOA5FOcrU8gyUEJQn\nDLbx7lNJPHxlhtp35rRLRBodmHHTNXOW6hwIIHnF5FiBQCAQCAQtGyESErQoBg7XZuTdYJjM+VcN\nJzp3P1XpbdT8NigWqZ9PSFTFApVl+lP9/aeTmqQ9P38ex7tPJbHgt2jm/BDLxOeSePmeYIHBuJsU\n9yOXbNLNQJSNipCnklgWru8Y1lXk96n6GXReGSS8LPbFVo7dtztonbk/6zu8ls2N5rMJ2nF7PBKu\nGuKA+EQPVzGNp3iRSKvSzqxhI0K2KRI7zlilXRVtO7LnzAvVMqujQhVGCQQAH7+gnHvPfJLLDQ8q\nM3z8rlZNzdzp2rmfSIm6XNG+E2krl6ppv1UxgBu9WGfL2rqt3G0V0EouxRkbz5q7Hlfz//j8F31F\nScIbMLP0opGD1eWNK61cO7C9+lddKeF2QU6WqUGhz+rLiBGKeMQeEH69viKht9+uu47g8CBQIASI\n+7FAIBAIBAJBPSkpgdQ4JVx5IKYQ2v5u3auDM4G+H7zCw7wGQEZAmGO/I4M/hBTAnInfh23L329O\nqm+zWzyOhCR++2YuKx96lj8m/cb0n+uIiRyGpI1rdelAIVDN0GIHGr6rrPMxB7S+QCAQNDXhnMY8\n5vCTZQ0B9tJVfpGmD0dcK1265gS5Q4khhC125rjXg/IWTviIX75fgGw0sna0MrG4DC20mAUH/Y0r\ncbsh869ocvaYWbPEyqZVFjautBJtsgVtE4RISCAQCAQCQctHiIQELQp/OKyh/M3pLz2gxpV3Ryod\nePsHD8Mcp/TeOR0GvnhNcRHJ3WtWXXIAZK/izFNRdmCXwA8ftyLzr2hVAAHKoH9NsrYroZWqicZY\no3Nx1T1PqsvOECKh/GwjP3+mj4tc6bRixIPHquzL3ko5zhuZpNaZ/V1s2HYf43NPsVfrj99V5VHt\n0L2+XtCK9p3Cbqcyox0AVemtKe3aQ82PtJcjeyUO1/elw2gizFHD4HMUp6zrp93B9R/fCICnmYQL\nRp/L2L/0V/MWvfA+AJFFBSHXqUQvqnvnyeSQ9QKxVUrEUY4rNk6zMgaKex4XVNdcXakux+Tu4ynL\nBACmvqsPSXjbme248bT2PHxFa/Lzm+5EDTznk5P1TkL33gvFxcHr1OTTT5usOYI6yM2F0aP1Yq6G\nUPP7FCIhgUAgEAgEgrqZNAnefFNZnjFJP1HHaNQ/myelu7n5+p0A2BJTgiYKvMajyEiY0JxtonP2\nUZ2Sji1FC41c2OdENl91K7vPuoiCPv1026jKaHugh9SiKO/YFa85AldsPNWNPHZjjZlQnhpCoOk/\nL2bXuZewdPybjW6nQCAQtDQ8FqX/uLh776Ayyddh4IwO7keuTmutSzviE5jz4XcsePWTZmhlwwh0\nvXdFRfPjzJW6CXp+PNZIKtt1BEA2mSnsfQIxaH10RjxEy1W6PvLXH0rlhTFpZO8xs9eWHroB8mHa\n6S0QCAQCgUBQT4RISNCicDklDJLMPIapefb4BDZffRuOuFasv/ke7GkZHGPeHrSuxw3HDdSr/7ev\nb/zMsXnTo2stf+aTXKZkZqnpu89X3I6+3Hq2rt7ucy9hFMrsQb8IKpAHLm0TlDdl63DcaKKEFQ8/\nDygvNn6qK5XL+wH0nV892MQTvKSro1JUoYmEfGomd1R4C+78fgOxJaaQNex83aw8i1uZUdlcIhBB\n89Cc4qncHcr/zvN+IaZSEeo0V0i6kgIjRqNMP1YBipV/1pkXALD5qltDrmNHL+6zWGv/MGQZqiqM\nJFCiWuNnnzKU9TfdHdL/vTpF36kw1DGnzuMoLDjwz2f3bhg+HP6qEZFwbcAE29xc6BRGC1hWFjpf\n0LyMHw8TJ8J33zVu/cJCfVqIhAQCgUAgEAjq5uab4YUXlOXASUagOPH6eeaTXF7/JodoX7iSlQ8+\nQ3Gv4+vcfnTOXmxJKbo82Whk1f3jWfL8u8z55Ge2X3y1WuaKiau5CUEdrHzgaV06Oj9Hl67OaMvS\nZ/6PXSMuO5jNalJEuDGBQNBQ/K432y65Nqhs5wWX44yJY9ZXM+u1rYITBrD/9LPrrtjMZD75KgBe\no5Hv523EkVj3ZD+ArGHncwk/89zdimPdbXxClLeS0kJjyPpxhO4YE05CAoFAIBAIWjpCJCRoUbic\nEhFmDxIw58PvmJq5h59mr2HvsBH8+Odainr3wxkTywMuzV40EkWw4rAbiIz28sWCLB57Ox+A8pLQ\nLwD1ITB0V02MJplufZQZbPe+qAgiWndUbFD/b7jejsNrMnMhv6rH1xj8AohAkZCf85ilS9uIZC+K\nA9A377cKKrNiV9sFymwMP5Xpymw+W4Ly4lXYux8/z1zB9kuvQzYa2TvkHADMKMfaXCKQA0U4CR18\ndmzXzqPmPj/KioykGAsxEPxFr7p/PFMz9wTlP8ibnNfjP16erHQiH9u/dguX0iIDTpeR9mTh9HXe\nz3/rS/6785GQ9Q01ZrRGEtquOJD6hgGrjXHjYN68uuuVl0N+fnB+oEjojDMOvD2C+hHh068+/njt\n9cIhREICgUAgEAgEDaNnT306tpV+8M/tUt5d7hxfRLc+TiKsMuYK5WHZH4a7sFffWvcRnbs/KORV\nTZaPnaAu+7crqD9brryFqZl7WBPmvUwgEAiORgxupR/OHR08EbSiQxd++GtdUKixQLJPGdpcTWs0\nWcNGALDjoqvrqKmnqOdxSMCjX12AzRzDo7xKJDYKcjTrf5NZ60+cyQjd+r99MxeAvH6nNLLlAoFA\nIBAIBIcHIaKqC5obIVBoPAu/N2J3Kqet372jJtsuvZ6M1X+q6Td5kNFMBKDjun+IsBxLl54OQHPS\n+eCZJHr0tTNspBISyValdABGRof+ssI55AwYXsWyudFYDQ6uGdgBgIj2d/IOH7Jrs2J5enKHXb5g\nXwpekxELSntChFMOy1DjAkCz//ht2l8Yr96qq3MiK2jHXl3eHjoSgaI++Hd+FGNGtOGJ9/No09GN\nHasqXpB94cbckZq4Y+aU2Rgdds4cfQWRJYVINT6Iso5dabdgNiaU/MY6CXnccMOpystpoBuToGVS\nc3KNen64mudmWFZspI0zWAhUGwmmcl47aSJruz1OXIKHUGHcZRn+nhHNoHOqeeluJURAB/bgjB1e\n5/ZtKelYS4uZ9/bXDLvvOqKpUsseeLWA5HQ3T92YjixrO84r8lJSdWBKoZJSE/XVAy9a5uKMYfrv\nZE+2BD7Xsiqbl5Kq2i9qg0EiPjJ8rHtB/Uj1jR3l5NReDwh5juQXGQFNBFtS6aKkqmmvt1irCZNR\naM0FAoFAIBC0fLxe2LxZnxcVXVMkpPzv5ZtMMHz0FaStXgaAyzfoOufjH7n61C5h92MpLyOivLTe\n7fKHhxE0HH9/kfMIdGOSQr2sCgQCQS04WiUCDb8n2pJSSNimhNWE0CKjQ4U7Opbp05dgS65dfBu0\nXmQUAJaA32OpxiRDvzAYIMo3+dhPeceuzPhpEVXpwc7/AoFAIBAIBC0JIRISNDkeN3z1ZgIjrqkg\nrW3DVCL2aolfvowjrZ2bgmwTI28uw2dow4wv4yh3aoIVrzl0qLDSrt1pwxdqOlAk81v+aYz94lnW\nXX83ANUVBlYsiGTxH9Es/iNaFQndeW5bvF6YvFgvsPHjF7DUZMDwarof7+CBN7VwaOlZ63R1DFb9\nZScbTapIyF3DSSh3b8AsBly6EGP3Rk7Exitqujo1nR78olt/Jf3pxjZOZAUr6a/m38//8RiKLWtZ\nsZHHrtZiTPvbIhuVAWZXtPaZu6NjcEfHYEtOJX7PDiylJbr9rb/1Pnp/+b7qFON2S7jdMqY67jTv\njUti6Zxo3p6+n+R0D2uWRNa+gqBFsWiWPjSf//yQKqppDkO70iIjx5ILwM+/ZIasM33GUoY+eBOr\n7h1HdM4+ek96l45zfsFrNmMyvk5Rrv6kLSsyMOZ8xUlr5yYL2buVazGJIrJ69KmzTQte+5T0FYvJ\nHXAaM35cyCmXXaqWte/iJLWNh9e+zWHCvakU+vZ906goHn0rn+NPqd3VqDbyKpKBKDU99ZvlXHPV\nySQZiynyKJ1Edz2+j/cntOWyi8w88GoB/U/XXI7mzYgGFNe0glIXs9bn1bq/aIuRi/uKjpIDxS8S\nOu+82uu5PV5mrc8Nyt+Q1QrQOv+W7SjBkdb48ygU5xybRlKMpUm3KRAIBAKBQHAoqKoKzvO4Jfbv\nUp7L23Ry4yxRhNl9pn2Aa8gJqkBIQXmPl00mZn41kxE3aK4Dy8ZOIGnjWrrOmAZAyrqV9W+YiCvV\naLaPvAaj08nWy2881E1pcsRpIRAIwhHu/rD67rGUd+xKzoDTG7S9pU+/Rbu/Z7Hzwiso69I9ZLiy\nQ0l1I4Q6Jd17B+X9yCh1+aSh1fw7X+lHe7LH53QpL2bu2CnE7t2N3RcytKp1u0a2WCAQCAQCgeDw\n4ZCJhCRJ+hy4AMiXZTno6UySJAl4GxgBVAM3ybK8ylf2KnA+yujyHOA+WZZlSZL+ADJQjmshcJcs\nyx5Jkp4BbgMKfJt/Qpbl+gXaFTSY3L0m/voplr9+iuXrpVkN6sC4dZj+IXvtUivPf5FHeYmB7z7U\nh8aqDPNAXp2aQRd2qOnerFeXRzKd4z96nf2nnklUTDuqKyV2b9HERtcO1It/AtMTpuQQ18pDfFL4\nmMPHt9lHert8+rJWzasZVshj1g+qykbNSaik0EjH7pqd0EOXa+KdlZxIEUkM428AEg0l7A/crjWK\nu3mPk/iXwSxR8414+YobOJaNANyf8hkRBeEti1JRYg51/u17tlx5C7bktKA6pd16kb5yKYYaVkHe\nCAszflqI+dLJALw9Npkta611ugEtnaOISO4b2YYpmVm8+WiKWibLohOsJZK920R0nJf4RK/qzHUv\nb/PbtDlUL9wDH4Bc5QCaXhBWVmQg3ScSsqVmhKxTndaamVM0x7GeUz8mLmsnfT5/h2LeprjQTFG+\nkcQUDx4PLPpDEzr9PUObOdWzYyF7THU751Snt2HnBVcAUNWmPSWXnAM/3lPAdQAAIABJREFUK2Xd\nytZQ1qYPGe3dvD09m4JsI/dfqnR0zJwWe0AiISlAg3Ujk4gxdGJKZhYjrj2biTtG8n/cz+mnFZK5\nJJGV/0Sxb4dZJxLyh1WMpxSXM6rm5lX++imGnD0mCnPMDP8dYsJNLtu7F4qL4fjjG31MRwP1dZXz\nhjEHstv0N83DNfSjQCAQCAQCweFAebny32xWnsMMBpn5v8Yw/1floXZKZhZfTVTeK06e9hZR0/Tv\n+KVdewQs6+OW7TnzQvJPGKCKhP6Z8FGd7Vn+6Iuk/Lei0cfTEkmLszCgc/iQ7o2i/9Mc07RbDMI5\negxyRmsu6tu67spNRIRw8xQIBA3EHR3LlitvafB6joQktl96HQCbr7mtqZt1aKjRybzjwisY9Oti\nljAYgPZlm/mXfgA8XPoc3uhI8k46lbyTTj3oTRUIBAKBQCBoTg6lk9Ak4D3gqzDl5wHdfH8DgA+B\nAZIkDQIGA8f56i0ChgDzgStkWS73CYx+AC4HvvHVe0uW5deb/jAEflb+E0laO5fODWfuTzGceVkl\nAM+PTmXzaiuTl2Qx5e1W/PFtHGdeWsHNj5aE2ySJqR4A/v5FG3E+n99wRcXgjQjtYOCOjiWeMgBS\nIktpbctWy97mPgAsJUVExXipqjAQFeOp1/E9fq3SKfjlwiyOP8XG2qV6cYMXidLneuCO0g+kB4qE\nbucjvBF6BySv0YQVRQTw+kOpYQU1x6E4EiVQTAmJJBjLdSIh2WjEiJdBLMWLxPGs5XEmAKifB8DT\nsa9CAZS37cSvPywAYNMqCy+MUcRA5/M7AHuGn6+0L8LC1Ex96Ka8EwfR45vPKOp5HDWpat2e8h49\nYDNsWavYo3u9YGhAP1aExYvToazgdEhYrE0bJkdE/Gt+HrlK6SQ996py4hIUYd0EHmdW7D8Yzco9\nwtsM4ca8XigvVkRCa8Y8Vu/1dp99Mcd9+pYuL3eviQ3/Wvno+SQuvL4s5HrO5ORGtdPVKkFdPv+W\nC1j40gfsHaZcc1GxmhBx/fJIvB4wGIM2US8C+z4e4C32OV8DwOhw8Div8BivMN2zjHtfKuTGU9uH\nDYfZk01kVQdf7wAuJ3zxaqKafuvTKkZcEjpMWu/TTsOydw8rdxc37oAOY45tHYfV3Mgvqgb33qv8\nrys8qRzmbuao1t9wvfX7mRMIBAKBQCA4KnH6Hl0/+AD69YNrrpXZsll7kN65SXuHj6oxCWjzlbfg\nsQb0DRgMTM3co4Yf91isVLTvHPROXRvbL71OHZQ9WjAaJGIsLdDs/IP3ARD+mgKBQNAyKTy2H9OW\n3k6Hwg18wv/4dPX/1LJWuXso7dL9ELauaRGTcAUCgUAgEARyyN7AZVn+R5KkjrVUuRj4SpZlGciU\nJKmVJEkZKOP7ViACxdPZDOT5tumb/4XJVy60AAcJjxvefDQFs8VLr34ONf+L1xLZvMbC3c8XsXm1\nIhjZvj6C2d8p8eH/+im2VpHQigWK4Gb1Iq3T7afIq/hpZu0W3ftPP4uf/xnJibaVmHEzjLkUk0gS\nysD08HuvpbWxD7aSDjgSQj8h9x1sY83iYJeT3L1mJAnad3Uyd3svUsnHgxEJSNixGYCSbr2Y/8bn\nGNwuBlyqWZZO5E6WWvVCBAwG1UkoHKloIX7SyKOERDqVrAvwSFKoSmtNdF42EvAfmlNHBjn0ZCOP\nM4FWO7cCIAWMGpvM2qVSdspJrH5gChXtOoZtz/7TzuSH2WtwxieELPeLQPw4HRLWyPpdjm4XnDWq\nkt+nKKFybFVNLxISHDz++EYLeRSJHVdMPBEWRUjhdTbt9+r1wPWDFfevFArYetnt9V854E15Aacz\nhH9wOSQW/6Hcg36dHB+0SifjbuyJjRMJua2RbKOrmj7tiTGUdunOzCl/0u/79yAglOC/CyIZMMwW\nYiu1k5tlYvNqrbs6mUKOv+4cZk36DYNTuedIgNFhxxddEI9H+xycdom0ti7kfcX0YDN7Szrrtu9x\nK05FX7yWqMvPKbWxJVcfs93PiXuVwZEt2WUNUw62ALqmxjSZSMhPnSKh+joJeURPkEAgEAgEAkE4\n/C6OUVGKSKimQH/czekA3BQQ1hxg+4VXsur+8SG3aUtKIbKoALmu2NsCACQxcikQCASCg8SWUTfS\n/YcvAfBYLCRYq9k9/AI6zP2dPziXwICiq+8ae2gaKRAIBAKBQNDMHM4jdG2AvQHpfUAbWZaXAn8D\nOb6/2bIsb/JXkiRpNpAPVKC4Cfm5W5Kk/yRJ+lySpNDKBmX92yVJWiFJ0oqCgoJw1QQ1+HWyIgRw\nOQxBDjtL50RTUqidaiYzqrtQfbh2YHu2rVMGunedfTGOpGT9TL0QlHXpzkhm0I59OGPimMuZrPZZ\nhe4++yL2DD+fBE8RK5bGseTPKKLjPIx5tpBnP1VCFKW2cXHfi4Uht52TZcLpkEiw59GVHcRRQQKl\nujrF3Y/FlppBVev2eAb35jNu4ed7PkJCEQfUJFAk5NfurFliVfMyyFGXf+d8vuJ6Ygn+DJ1xrYLy\nAAzIbORYbmCymid5NbeSQJGQt0MaFe071Tm9IJxACMBYox80f1/9O0YddomFM7XQTg5b09+m5LpG\n3o9SDsbH4rFaMUQo55bHFT50H0BVhURRXv1FFyv/0a6tjcbeuKNj671uZKEmxEvxRaa0VdV+7i2K\nGIo9MaXWOuHwRFjoyg66BoRGbLVjC1G5+znx41d1dd95onH7GHt9OuUl2ufXBsVV7bybLsDo0EKY\nnfzKE5gcdoxGmcAIgn98F0vePjP5pOHCzH5HGm8+qoiiFs+O4oZT23P9oPYs+FUfW+zDZ+sWThmd\noZ2GWjTNcP009pq013AS8jSDk5C4iwoEAoFAIDhScPuegf16nk0bQr8HBL6XA9hS08O+N897ZwqL\nnn+vydooEAgEAoGgaXDFahMaPRYrHouF6BzFrz8ZZTzgfcYA+pCiAoFAIBAIBEcSh7NIKCSSJHUF\negJtUYREwyRJOs1fLsvyOUAGitvvMF/2h0AXoC+KsOiNcNuXZfljWZb7y7LcPyWlcQOzRyPWqNqH\nCwuyNZGI2wVul9aR5rAHd6rFxbvoPyTYiaLtgj/x1lSghKA6JV1d3nzVreryllE3suS5d9l54ZW0\n8gl7SgpMVJUbOev4bXTu6WTIhZU8NmYNcVV5fDxnL2/+kM3kJVoIMLtNwumQSN23iVA44uLZcfHV\nanr/oDO4hS844xclzE95x65B6+y64hp1udAnigi0NP+WK9Xlzuzier4OuW85hDPHmtGPBuVVJ6ci\nBYwaB36kUmREUP2GYjTrz4efPgt2YfHjduvTHzydrBM2NEQkIjh82UknddloVs7TeYuUkGQzvlTE\negBV5RL7dpmwVUk8fm0G917chrx6iszKAs6bsSnvN6h91iJNFBqHYkpnq5JY/69e1PfiV9rAQGvb\nHmyNFQlZrCHzR44cBMBuOujyqyoaPrPWH7IPYBbn6sqsZZqDW/qKxZz06pMYTTIet7afTas0F6Kl\nnALAyn+U72n5PH1YxVD0e+tZ4rdvpuOsn4jO3qsr8zsZCWqn5v2xJuFERDV/V73CSUggEAgEBwGP\nR9FLfPLJoW6JQNAw/E5CZnPt9dLJ1aVNttDumaBMXMo668IDbdpRg3haFQgEAsHBwmvSfvA9Vise\ni5XELesAGM2HmHBxAb9hT0jClpx2qJopEAgEAoFA0KwcziKh/UC7gHRbX94lQKYsy5WyLFcCs8A3\neulDlmU7MAMlZBmyLOfJsuyRZdkLfAKcfBDaHxb5CJx/bzBox9S1d/Dgb2WZNnjvdkm4XVpZcb5S\ntnSONujsLnPy4HP7Oe+qcjVvAJmYHHbi92jOG+FwtNJcbgLDZvkdiFzRMapIyM/IkYMwGOH2J4t5\n8MmTGXnhAKJjZdLaujEY4L3f9gEw8dlktq+3sFd3emr8+Od/FPY5UU17IxTRjb/doURCboM2GP/A\npW1wu+DHTxRXoHJi6c7WOo8ZCBJQ7R1yDpWt2+vyck4+jezBw8OGG/NEWDhQzCb9Of7vfO273bjS\nwk2ntyN7t9JWl0PfHbhmiV6U8dHzSQfcHkH9aM57UywV6rI1RtnPlp3Kdfrdh614f3wyHjfcfnY7\nHru6Nf8b3o7ifOUceXBUa7atr1u8Vl6i/KQt73MZ0SkNE5dlD1I0pdtGXqO2dd9O/T7jEz10PMbF\nBdeV88D9WwCwJzXeSag2OpDFy69oAQVXLaxblBOOCBycy+xa63Se+QNGk95xJiZOcXpqy17u5R1d\n/bLi2j/ftgtm0+Pbzzn/unMY9OwDXHzpqRhcmnuQ0XXkiYSa4/qpy3DJG0Yl5CzXWwd563DtEggE\nAoGgKXjmGeX/7Q2I+CoQHA7UdBLy8+hb+bq0XEPKktt/cHM2SyAQCAQCQTPgDfjBd1useCIsGHwd\nYsfzHy4iaM9eZn82HUJMyBUIBAKBQCA4Ejicn3J+AW6QFAYCZbIs5wBZwBBJkkySJJmBIcAmSZJi\nJEnKAJAkyQScD2z2pTMCtnsJsB5Bk+KwaZ1lFfleLjX8xIJXPuGFSYrrhjNACOJ2S1j27lfTfqeY\n98ZpIWqmcC1XDzmGscdNUfNmc06921PWubvWtlaayCR+pzKw74qOZRpXB613zcAOXDW4CwAGr35Q\n1RKpH4zdRreg9Wf8uDAoz2uuIW4IYUfeKaOEEfyuph+/Tjtl/WHFaooKZk7+I2g7Jcf00qVlo5Hq\ntAxdXtLGtXSdMY3IogKS1/4LgLmJRUKmGjMwM9prqrAX70rD5ZR45KrWlBQa1HOjxwl2QlGYa2Lz\nmgNvk+DgEcr9JFAkJEUYiaMMo8Grc0L5+fPwjlPzf4kJW+anrNhIdJyHbtUbGhwGbMfFV/Ht/C2s\neOQFYnzX3OzvYmndwcWA4VVMycziuwkzuGZgB+48N5Nze20AwJ5Yd2itUHgtdZ/Tfdrm0HewDQCj\nqfECFClAvLLhhjFh6xkNXp2TUHKG8kVO4HHu4x3OSVlC285OvF7UEJDhiM3aFZR31WndmM7FPMGL\nGB1HnkioKVi9Wn/9LFoEv/8evn64syLwNxnA6xQiIYFAIBA0P6tWHeoWCASNo6aTUNv2ylNWVKz+\nGWo4cylv14nv5/zHt/O3kDPojIPZzCOaOqKdCwQCgUDQZASKhLzmCNyRoSfm2ZJSD1aTBAKBQCAQ\nCA46h0wkJEnSNGAp0F2SpH2SJN0qSdKdkiTd6asyE9gJbEdx//GPbP4A7ADWAWuBtbIs/wpEA79I\nkvQfsAbIByb61nlVkqR1vrIzgAea/wiPLmZ/F6su24vdxHtLOf2x2zF5FRsEl0MbyvS6ZOLXrcOK\nMvhdlKefrufBwEhmAJC4ZQPX3V/CxykPEk859UU2KMKjirYdcEdpD/pJG9Yo7YmO4Uz+CrmuwaON\n0A4adw/9X3uKwU+OIUqu0tXLQu/QM/+Nz6lqo88D8ETUI3yXJYLfuYCICGXWQs4epXeyNZqYavFz\n77BtpBaWzNEqMWgza0c/ypKn36KgTz8AjA47hb37sWf4BWqdiErtczz7jlGc/NJjmNyaQCdcGKSG\nYAwQCSWnu3G7Q/f43X1BW7avV8QGftcSPxJa+vk7m9bataV5ec2aBXl5h7oV9WfzqmABSQRO/nr/\nGwBko4nRfIgkydiqtXPDZA7/zdRHJFReYiQ+wYu1qKDBIiEkCY/Vimw0Ygg4Q2zVEkYjmCvLOfv2\nywBIW7mUHtM+BRovEnIHXGf/TPiIbZdcG1Tn1CfH8L/RSqhDe3X9e81rmsuY0UR6/93xMDkDTqew\nV181b92t9wEQaSvDXWjDHwkswqJs6Eq+BcCKHZdTYsK9WifJVWOUsGWnnK0IqQafW0VKazdVGW1D\ntu0OPuJlnqCyUIhWarJrF/TrBw8+qM+/4ILQ9QHkGl+22wVzfoghr0DvyCachAQCgUDQXLjd8Oef\nyvIpPn/fvn3D1xcIDkf8Im2zGaisZPkpd/HJNxvoNn+6WmftbQ/Rmw38NfF7XLHxeKwH/t4s0JBE\nwDGBQCA4YMSdtH74xw0Aio49gTVjHmf9zfew4frRunreJugjFwgEAoFAIDhcMdVdpXmQZTnYxkVf\nLgN3hcj3AHeEyM8DTgqzresb2UxBPSkp1E4lmzuCSJ8AaNArjwLfIhWWA8qgvamqkvKEDDqV7GIT\nvfj4hSSiA2boBQ7QR+XncN7oCoYvWAoFSt7KB56usz2Vbdqz48Ir2HTNbVSntlbz/357MqCIhMZx\nPzM5H4AFnB5yOx3n/KIu7xtyDtADgMJefUnaqLgkrR7zOLbUdLIHDw+5Da9ZE0yEEgKAFpLsj+e/\nZNhjt6j5FWjiq+zBw8g+ZSjdpk8FwBkTS02c8QnsPu9SSo45lv5vjGfniFFgMLDt0mvpMPc3AOa9\nPZm43Tvo/9YzAHT95RsK8szAVxzLelzRdYsx6sIUoX2Hp56Yzay5bZHl0LMDF86KBqDj7mWsQJuJ\nGUsF5YR3ljlacDphxAjo0QM2bTrUrakf/8xUzqHjO+WwdlcGXw5/DfeSKPJPVEaOvCYT7cnC7TGy\nYbn2wl1RquhW3/t1P1PebUVpoZFNq+r/Ql5WbCDJWo51TzG2RoYB8/Mqj/Aor1FSYMJuc9LVd90B\nGNwu2v89C6DR+wkU+eWefBr7hp5Lft+TGfz0fWp+/O7tnDznM+BVFs2KZtjIqhBbAq8H/P0bW/+L\n4Nnb01UXNwATyqjHmjsfQTYa1ftgxpK/Sd6whi1X3ETqqmVYVlfz9/x2rBzp4cNZ+/F6lAvWiIeK\nth2YsU8JyZa3T1MBJmcowsaIinLid2whqqQrsrcdhsCYkgHkowj+IrbtxnVch3p/Xi2BMJG/6uSp\nFxy8OM5C30E2IJJ33w2uM215Vr229cKYtJAuT3IziIQae7wCgUAgODIoKoLhw2HtWiU9aRKU+qI5\nr1lzyJp1VLNoWyF7S6oPdTNaJBv+swBpLNiWR/ysifT/9kMGG90Ypi4A7iTC4iV19TKg8eGGBQKB\nQCAQHB6Yq5X+tfU334NsNFLarSel3XoCcOzkDw9l0wQCgUAgEAgOGodzuDFBC8WJRRUJpW9RPOft\nbm1QWXK7cWIhLsAZ6JsPWpGU5uYmvtBtKzp7L+aKMmL37cJtjWRq5h62XHkLdSEbjSx78jXKOx2D\nO0D0UtKjDwDuyGgGsoz5DKGaSE5HHyYsa+i5/PTbcl3e4PH3qstGu01d3nTDaHafe0nYtnjN2rGH\nEwl5fCHJznjsVm57skjN/4obAMgeOASvOUI3g8Fj1TtFBFLWpTtzP/iWvcMVEZQ7UhHiVKW1JnfA\n6Wy98mZd/YHLJvM8T/ErF1KV3ibsduuLKUJTAw36/V0cdkNYJ5R//1acnjrt+VeX70Ifs8zZlNGJ\nWtDgtlMx42Lz5ubfV1MN+i+fp3ynf+3qgxeJM9xzcUdFq+Vek1m9/uf/GnB9FipKl8gYL3c/V8Tt\nT2nXQmqb0KKT9cstrFqkXBflxUZ6blEcwhrr8OPnZLTrf/MaC1JADKh+776oLgeGM2wIpV20kIj+\nz2bPOSOZmrmHX7+dp5ZFe5QwbVvWWtXQjH5mfxfDtQPbc/3g9mxaZWHfLhPP3p4OwIoFUcQlKAKe\nHxgFwI6LrtKtnzPoDNbd9gDO+AQyx73GPtoBiiPTr1/F4vUqjl4SYE8IPs47xhXR4wQ7Pframbj0\nDM6/9mzaLvsb2e3ViYRsCcnk9h+kW7fPay/W3FyLp7GXz4vjFFHPmiWh7+nJ6W5kmbB/gcQnekJu\nQ4QbEwgEAkFTk5ysCYQAbroJ3nhDSy9bdtCbdNTjleVanxnEX/g/f8hdk9eB0a68eEpeLwafu22H\nbk7SVyw+ZN/t0YAINyYQCASCg0VERRkAzpi4oDKPyRyUJxAIBAKBQHAkcsichI5mjrTZ96GOxy8S\n8jtYSMWVapnkcuPyGjGjCW384bWiUGY+FvY+gcqMdnSc8wuXn3UcAAV9Tmy6NhuNuCKjGGL7R837\nbu4GEres58wxV1LRoQv25DTWjHmMvh+8otZZzCDmfPg9pueq2TniMjLHv1nnvrxGZWB/ww1jKD3m\n2NB1AkKStUrSBnn9YdfKO3RR89wWKyaHvUG9aM64VgDk+ZxcAKYu3Y25ohyD10P7v37lqdfHA7Cs\n9wn13m44AsONpaHEycreY6ZLL2fYdRIo0aVrioS2rbdw7IlNqRRqGQRoU1oMQy+qZPEPBpJRRD7t\nFsymvH1ntVw2GolBuSekttEOsKRAuVb8Ya5SMjwkpLipKjdgqwqtaX35XsWZ5rN5eykvkEklHyBs\nPPH68M8rHzPksdvVtKmiUp1lFEjWGechmxr3M+qODnYC8+MK6KTo9fVEQJnF9PGLiYx9p0Db/zbt\nvvHv/CidkMrllLBYZS5PnMnwYkV0VJtLmGzUH8c3HyRw0Y1lGPGQM+B0kGVuSfyWz4uvVOucfr7y\nmXx78pP0WLMFUFyHvB5ZFVXlkkZGSS6sADnA+NpGeJGjQE9DBkzS24W+YSjhxsTIi0AgEAgOHosW\nwYABh7oVRxfeI62j4SDi8b2CD33yDk4o/QOAHt98hgy8wqPcuP7LQ9c4gUAgEAjqicVspGNS4/vD\njhasHZRJclE9ugV9XkUXXkrqz9+y6q9lR9xnmRwT7DwtEAgEAoHg6EWIhAQNwuuFxbOjOOWsavxj\n415fh5oZJy6UQesSEnx5yqC1XKYJgiSXC4fbTGKASMiPX1zkMVtYM+YxSrv2oO+HryplRfmNbvfM\nybNwxCfq8tyR0Zhtmh27OzqG/H4Dmff21+T3U3q0N117ByVdeyIbTZzw3ksM2raU3HbZGO12PJb6\nDXLn9zuFhS99SPagM8LWCXQbsm8uBFLV9NJxb7DnzAvU9K/fL8BSWkRDqGzbgbnvTKHg+P5apiTh\nilPCeQV+Nl5zRM3VG4wpYBMFvjBz429JZ0pmFq07uMjeEzwrIwn9MY1gJr9wsZr2aa3I2mbGYZfo\n1ie84OhI4mCKhJpqWMHtgFaU6vKWPaGJ7bwmM9EoApPifM0dp6TQRITk4rpBHdh91kVUtOvI6uN2\nMHTxRHaXtqW0yECrpNCOKN9+2IoqW4QqSpMNjTfKc8Qr96+vn5nBdc9czMO8zrFffRBUz2Q7sHAO\nMyf/gTMuOKReqFCCAAnJepcYg0n7xhw2Sb1GAH6fogiNktij5tUWS90bQuz0y5e++0NcK6Lyc7ik\neDKfo4iEvn7jT64ZeA4lXXuSsF2Lg2fEg6m8EqdNRqpxRhnRTmYhEqo/LqfEtvURdOjmpLoy/DUA\nUF4S+rxXnISMIcsEAoFAIGgMxxwDW7cqy337BocYe/hheOihg98ugaAxuH1OQrGlubp8CXiU19T0\n9hrOnIKmQ8jZBQKB4MCJjzQzqOuBOWsfFYx/BE7qTY+RI9F1pgFMnQRL76DfGScfkqYJBAKBQCAQ\nHCxEuDFBg1i1MJKJzyYz4wvf4LFdUjvUMshR6/1ovIKinsepIiFdqCiPF5vHQqTBzir0rjVRVLP7\nrIvIHPc61Rlt2XzVrWrZ/DcnNbrdpd16YUtN1+V5rKEHzHMHnKYKZWSjkZxBZ5A74DTW/e9+AI6f\n+BoRFWU4Y4MtSUMhG43sHTai1vBg1uJCdfnVj/vpynadP0o3uG9LTQ/rSFQbeSefGlYkEChSagoi\nrIo4YDCLuJOJujKXK3T3X0d2q8txxgqmcbWuvLpSoijPyNjrM3jmtnSWzWvZIoOtW2HLltBl2dnK\n7GtomU5CmX9FkYt2vXmNRgqOP0lNuyMjVSehFQu0WTkF2SYiZUU81HHOL/T5/B06zP0dya4Iwjb8\nqz9/AydL5+9XRC6JFAOw94zzGt1+t+9abRtdhMsYwTheCFlv+eMvN3ofAKXdelKd1joov+Z16hfX\nWKP0ohuvW7uWHHYJoylY5uW/B899b2qtbZGNJmQkLj1uRVCZtbiA1LX/0ob9at5Fz1wHoBMIKW1V\nnIR25AZ3SnkDRCp2wguWWipyI2bvT5qk/I+JCx0mDKC0yMgz/0vn5iHtuev8tqowNxSBortA3E6Y\nOTU2bNjHxiC3pLiNAoFAIGhyogImVgc6Bo0adfDbIlAQRkKNx+XwhRuj9pevnIFDDkZzBAKBQCAQ\nNCdRUXDZZcECIQCrFc4IP9FXIBAIBAKB4EhBiIQEDaK0SHl4Li024HbDLUPbMfktvWsQwGtnT2b2\nF7+y9IV3AK3TDQAZKj2RWK0eTkA/5XQV/Vjy/LtUtVZsP70WK9XJqWy87k7KO3Zt0mNx1yLaCYUt\nSXHE6fLb9xg8bkoaIdQJR2AoNSsHP6RWU4uEUhNs/MBl/MqFRFNN59RCJIPSa+1yQs9+djr1cDDk\nAkUocjHTGc5c/id9wqVX5DCv9SiisDGNq7jprmwAbJUGKsu1W1ZhTuON0A6Hwe3u3aFHD9i1C1y+\nSycvD0pLldnYp50G+fmweXP4baxZA++8A3b7wWlzfbHZjDpBiDsyWhczyZ6YqnMaiqNMXS6jVdD2\nJnETAF+9maDLdwWYSbl9n2GsqYqpS3fjjWi8ha7HJ9KxFhVg8rh0ZRuv1cKQVae3afQ+6mLNnY+o\ny/tpg9nsDXKJ8QSIRZbOicYY4pLIoj0VbTuQ139wrfvzOwk9dNpMOvXQ34Mkr5ftF1+tu1/HVhQQ\nCiMePBjBWfsAy5bk/rWWH+ls2gQXXgg336ykpRBPY7voyLB+u4LyK0rDP7o57KHLvv2pE1PeSeDH\nT4OdqwQCgUAgaAzeAGO7igptOerIisrQojgc3nFaIqVFBt4bpwjca4bAronfcVTQDAgrIYFAIBAI\nBAKBQCAQCA4aQiQkaBBOu9JzExEhs3mVMgj/94wYQAsrBXBcO0XYYTAr9V1OrcdHliHfnUxiTHCo\nnpcZG5Q3/bd/WXN3cP6BEhhepyo1o8769kTt+Kb/soysgBBgB0oT+aP1AAAgAElEQVRFhy58P+c/\nNX0Sy3mJsWy75Nom20dteE0HHmJMvz0zl/ETCT4hyMC225C9Ev9lWiktNGGOkHlhUh63P1XMrM9/\nZTqXYMTLJ/Lt/Phda07c+ycAV/Etpw9QwkdVVepvV9IR0onYuTOMHq0IhdLT4fTTocCnv+jYMfzk\nFacTTjgB7rsPIg9zUyVXVLQu7bFaiR6gOejUDDVXk9NYCECfgXo1VKAgoqRQESVFxcoHfHK4I5XR\nrQETHg8qWzv6MQByTjr1gPZRFxtvupupSxSBSBr5dGxbga1Kfw14PfrjLMwNngFVSiu8odRDNfCa\nFKFgJHbadtYLo4p69WX52AmUdO3JEx0+ZswzhaE2AWgioQ4/f6fLP++qcl16TOGrdbappdGQYbkx\nY+C337R0Ran+u7s243c6sodji5cFrVtaHD5sWKAgtw//BZV7w0cqEwgEAoGgQQT+pvTvD7f7dNR+\nJ6FTm/dRSRAC4STUOPyOpADJ6J9zi3odr0vbUvTuxAKBQCAQCAQCgUAgEAgELREhEhI0CL/YJ8Iq\nM+mNRF1ZOYpDwbvcjdvnxGG0KIOZzoCBS68H7LKVqEjFBmMK19AmoYQSWhE3vGNzH4LK7nMuAaAy\nvS2zJs+qs77fSQjAlpLW5O1xxWoOD8sZwFgmYHA6a1mj6WhqJ6FAARZArFOZkfnK/akA/JcZSbu5\nvwNg8NnBlHbqFnJbV90wCABblYGSAm1w/EAGuw91B7o/hFjbtsr/DRug2qeZW7dOq2ezwWCfAUw/\nfRQ6VUgUyFtv1R3iYcYMOPdcfd7tt8NJJ0F1ddN9MBcxQ13OHP9GULkrOYmxUUp+PqlUEKOWTZ+x\nlIq2HdS0BJxoXUtFDSedwNBJ+3cpQreo+ANXj3kCXIjK23cGYO+Qc/jtm7nIJhO/T53DwgkTw63e\ndBgMLHj1UwAijXYcdok1S6xcO7A9f/4Qw+LZevHVT5/qXZiOYQvP8rQaPrE2ZJ/FssHtYuFM7bt4\nlvGsHa24Grkjo7gn5Stuz3lFLd828hpAuT/O/myGEm4MA060fUqSrIYgFCjU1LGZI7TP5+Wvc3hs\nxF8ARBD8G+AX64bCEfBbG01VUHlUtPgeBAKBQKAnOxteeaXhz8der/LcuXSpIlqfOFEJl3vBBTBk\nSOjoDYLm5VC/47RUAp/Llr/yLr9P+VNNb7niZnV55f3jqWjf6WA27ahCElZCAoFAIBAIBAKBQCAQ\nHDSESEjQIPxinwiLTO+TFFePmFjFdSLJN+vuRFaqoX4MEUr9P7f0Vrdhtys9xtYIRSlxDdNYnzCQ\nVpRRFkYo0hxsu+wGtoy6kXnvTcVZD9twr0/41JwsfOlDXdrkODhxpOQmtuWRa4qEHMVBdU57cgwd\nZk/H4IsTVV7ju/f6RhYsvvBrLqfEaw+mavtowY4Ypb5IW48+qgykOBzKXyieegqG9soj2qyvkJ+v\nr3fXXfDgg/Djj/qQD++9pziWfOg7tUaOhNmz9fv75BNYsQL2Zx34T4J/cOIEVvPbtDmsvmsseScO\nCqpnT0phv00R3lURQwxVvHzMO7xoGkd1Wmt+/eEfVt43Tq3f2b6Fojz9eaULY+jDktD4MHR+HAlJ\nqlAosjCfHRdewcJXPlZDHpZ1PgZ3dOwB76c+VPrEUiaviy1rrOo18OXriWHX+eH6d5i6aCdb6MEQ\n/qnXfvxuQ62X/E3/vsq9/Oaef/KE9XVkn8tQVF426SsWc/xHr6vrFffoA8D+QcMoOrYvBrx4MOpE\nQrIsYTgKBgobMjAXeMt9ZJydzj21C9JkktUbXIQn+DfA4wl/vw4U5MohBlrsNjH4IhAIBAI9t98O\njz+uiH0agtcLBgMMHKj8lyRF3O7/jVuwoOnbKqgdoRFqHG6XctLO4lycsfGUdenOigeeIfOJV1RH\n1OJjerHlqlsPZTMFAoFAIBAIBAKBQCAQCJqMAx9NFRxVOAIcDCKjlUHMygplAPk5xtOLjZxCJpv3\nHwuAZFZGhl1e7VSzO3ziD4uHXedeQqc/fqbVzq2AEoboYOGxWln58HMNWmffqWdSndp8FuN7h41g\n/hufM/ShWwDYOurGZttXIObqSgCyBw5pku15IhSBQGmX7riiYnDsD+2INPjp+8h8Ugk75KwhupCN\nJvB4MPi6u3/+LF5X7pX1IewaonPyyjB7Q66azs4y4rBLdDrGXf+NHAD7dhuBFPZVl1Jit1JcYeTP\n/0qA1KC6Owr3Y9y4CbulFa9/2YkIC3Tv42LlvxFAIglJHkqKjHzwgbbOLfdV8r+HKrFVS9xzj+Z6\nZe1YAL6wgLfcX0m/UxxYo2QgGYB33jBzx9PKQE9j8SoGYbjj4ynvdAzlnY4JWc+emMxl8g98xQ1q\n3v8iJhEdt4+fuQ0AZ5zmjJNIMdUBEateuT+Fjt2Dz6ukdDe5QbkNRJLIO/EUWi+dj7m6Erfl0MVz\ns7dSxECrdrattd5p51WycJbiAHTc5HfJGqA5n+WdeErdO/J96SnrVpJJGs9/kMXl877Du09zGYvO\nz9GtsnPEKHJPPpXq5FT2nHMxoIUbCxQJAURGKb8Xp5xdxdI/lcEWo60ajy+029FGoElcbraBWx4r\n4rFrlLCXBiNIPqs0E8H3JE8ttymnXeKUs6v4rGAUK1Yns4yBuvImDTcmRiIFAoHgiGD/fuX/jTfC\ntm31X88vEgpi/XoWLFAmiGRmKiIiwcFBFlZCjcIvEoqlgirfRJWtVyoOQq2XzAP07yWC5uFICScu\nEAgEAoFAIBAIBAJBS0CIhA4BLbnvLmLrbuA4ts2z0667F9CEG4aUGIYWKFNGJY+iFJDNwadYRaUy\n6GyIMrP0mf+j0x8/q2Vu6+E9YPzP6581+z5c0XHqckHfk5p9fwC2JEWcknvS4CbZnsfqE1XIMq7o\nGDzFNl35OjRnqU4zfwTAFRunq+M1mTA6w9jrAN992IrvPtQ6a1/8MoeO3V31bmNRpdPfRG4Z0R6A\nKZlZ9V7/QNizT3GpkSOceDDjdBrJLwk98m+1lmHAS7EjlkduSgLgw1n7WL5E+YxLioItWiqqZAor\nnOzZpg8jd8sITTgydWIMUyfG6MoXzY5i24YMXv8uB0kK7qjduSmCr95M4Il388OGj1JFCNbaQ9jZ\nk1K4iF+Z1+M6em+eDYClpAiPRQv1FRhyLIpq1SXF7VZC1v2XGSzeMaU2jcNP9sChtF46HwCD7352\nKKjL5exWPuUOPiKz7VMsRBHqGPBiqq7CFRnFjouvZtX94xu0TyNeRi2fQITHgccUOlSZ12BQw8hN\n/+3fgHU9uIigGL3T0dmXV+CwS1xwXTlpezfy76YMLjv3BL5bsKVBbTuckRugmlm0SFv2eKBtZxeR\n0V5sVQaMJhnJ96BgkoOFcKWF4W2ZPG6J+AQPiYWlXM8fXM/XpJFLPopY0FuLC5FAIBAIDj0bs8vr\nrtTEZHSIZM0aM1l7ZTZmV9S9gg+7M5oKh5eN2dpzfuTypXS65Fz8StLFq6uJa39wRPgCsLkO3TNr\nS6SyzMDeHWb27VTeWyJwUmnSv8OYq5TJNEIk1PyIp1SBQCAQCAQCgUAgEAgOHkIkJKg3741LYulK\nRUyxdns67VP1g7tmjzaY6TUrnWuy0chFzOAX3+A1wLzFbQDYZOtC5xr7cFsPnWPH4UJVWsZB32dJ\njz78Nm0O5R2bJtybX+wleTyUdunO2MyX+YC7APiN8+nNBrVu2uplALhiajgJNTA+0bJ5UXTsXtbg\ntv7x7cEJGxXI83cqA/bRcV5MZnC7JVyu0N2iidYq1tGHXLTzYvR5tbvKRFi9/PN7NB+/kNTgtuXt\nMzP2+nT27Yhg8pIs3Qzxr95MYNs6C7u3mklI9mC2yLRKUlRBOzZG0KmHE3e1MjgRk7ev1v3YEhXB\n0hmbp6h5sfuzVOccgMLjT2L+659jslUTNa4Eh8OALENFSehzQ0ZiZeLTDT7mUGy94ib6v/UMABHl\nJU2yzcYg+2Yzf8FN3MwkAB5+I5/XH1KEfb3/n73zDo+iavvwvX03PZBA6L1jQYpg74BYUVGxiwVf\n1NeKvffeu/iKBXsDBPwEkd4RFZAqkNBDets+3x+zO7OT3U0joYTnvq5cmTnnzJkzu9P2nN/5Payk\nP0vBtBBC91kPDqzuCqzuCvx1dOrp/fGbbDx7hHYvB1h15X/o9YlqWTX1s19ibrfmihvgU7iBD7S0\n868twmaH4aPUgU+T1YwfK1aPG4u7QhcVHkKcey789JO6POQcVdxosaoDqhYLmtrOpkQLH99+NIO3\nH4UhFxdzxe2FhrxAIORE5NcHZCPdiOrVSUgQBEGod1bkFFZfqJ5JbhEE0ujc21Or/bt9LgorvIZt\nTnzxeUOZ9TsqaJFTVl9NFYR65cbBxt9UdrwEQ2GzzSZIdFhxmdX3M1+r1iQ7pfusIXHaDoH4xIIg\nCIIgCIIgCIJwgCC9HEJMPn0ljX4nVdCjj+7ksuDXRGOhonLDqsOtDgBXNMnk71G3AaobTALGAfZW\n6YVsz03ivAGr8KE7hWw79hR2DDqpHo/i4KQis+HCmVVFvLBQdSEs9jIpCiVtOtKTbcx75FU2Dx3O\nsIFTYm7jTTQ6CUVOJXyPG7iR9wE48pgK/lrkNDhiJCQF8VTULUbWohm6iGLeLwm8/UgGNz+xh0Gn\nl1exVf1gsYDJpJC73cpLd2VG5ac1DWD2esglOi/MuJk5vPdEUxb/ph9HMGCqk0AozNaNqnvMFce0\n5ZYn9zDwtHKCQVj/t+ryEwyauG24KvY76rhyhl9XxMPXZtHjKDcmjyoWfJr7eZf4A03upvoxlbRu\nT/LWzQA4C/MN5bYfdyrJ2ZtI4BeCQTMBPxRUclKZwlDanpoKM9QwZvWCycSKm8Zy5DvPYy+t+az6\nhmIkEzSR0GFHu8ls4Sd3hxUbqojEGXBzS/8p/LkkkR78g+nhWwFqJRJaedUYeo9/S1vvNOlrQ74z\nL1dbLuoQW1CYVxi9v9QmlWa1W83sQr3PHfHuC6y4aSxdvx3P2otHoVgP4teSaoyEIsMi9uunioR8\nPlifG+CP7JA4CDCZFTJWLgfAqsR3X5j2VUqUSCgYMGGxKJhFJCQIgiDUkPAjY/UyJy/cmcndL+VW\nvUGIYMCE2Wx8+LWa95thfcNKO8cMLuNgfrwLhw52vAQt6sma6LBy9hEtoedoCBbR6fbb6ZSYWE0N\ngiAIgiAIgiAIgiAIBwfSXSdE4ferg4/TvkoxhF9q0dbHjmzdVSJ51Wqgj7auVKiD1ctvewh/ohrG\nSLFYmcGphvpLS9SR0KSWNgqA5bfcT/tffmTOs+8RtMUObbM3NE9x0K9dk+oLHkD4jz8B3znnMeyw\n+nUVys4v5+9ttXfbqS1hZxBTMEhez8MB6DDtBzYPHY7PlYCtIlqAEykaAfjzxrvo/6IaJulyPtNE\nQoEiN2aTg2BIRXTpzQVM+yoZT0XdDMrLinVx0duPqAKTNx/KYNDpDR96rGvWLtZ2dTBnCuTuUG/H\nxw4pY940tQP6P4/tweJ18y0XMtN0Cpsuv4pJn6oh/rr3cdO5lxenS+G/T+8BVMv8Gwe35ufPdcHV\n+/+XQ1AxMXpw1e5D8XjjwQwGnpbN6qV6GLDI6FvL5yaQ86963f6z3Mkpp5eyehXM4FTW813cektb\n6O0py2qpiYRiUZHRDBdqKAuP20RFufG7TqCcrO3bAXCn110cVZn1wy/nsMlfkPz0E/V+LdaEORty\nKa7ws+3YU7RBtw7dPVit+vmSjCpgchTs4eqB8zhqydOGOgIOZ43399dNY/GmpHLUG0/HzP/n8hvp\n9PM36krlWHQhVi6J3l/z1kahS3lALVOOi+5fjsNeXETHKd9i9vlYP/wKfCnqOZ64PQeLx01xHEHS\nwUTv3rBqFUyeDMOG6QOylgi9W0JSkKJ8C8GgCVu56rrQZPuGuHUmJEUrfsJOQuZAHJFQpXBjORtt\nfPV2Grc+tSduCMF4HMSRUwVBEIQIAhFulivmufC4TThq8ExQFLCXFZO4LRtMUNayLbuPHECzFYu1\nMjN+SGb9SgfPfLqzQdouNG7KS00U5VtosY9C1tnxRgvWbTZ48MF9sn9BEARBEARBEARBEIR9hYiE\nhCjcZbEdWSoPSHqx04PV/ENPAErbdoAtUNClh1YmaLHiw2bYrqTMjpkA1kzVcWLNZTey5rIb6/MQ\nDFgtZlITbNUXPJCYPQsrUN9BeFyl+8bC25OaDkDOiYMp7NqLHf2Pw1peCoDF6425zZ7euuBs/Xkj\nyT71LE0kFBaIAPRaNY31nIc/9Ok4nAoOp4LHXTeRUGlx3RyI9gaHM8jN7pcZMfRuNn+xDUjX8gad\nrouEevXzYFnj4Sx+4iz7Lzx/2kWaSOjul3NxuowDOFZ79IBOYooCKHTq6WHjakdUfpizryyiXRcf\nbz4U24nH49Y/p8r3iNzt+qPE7zPRkm30Zynr4+4Ngg4n+d1602TtSrKWzmfCwi2MHNguZll/QqIm\nhikvMeMpN+7fip/EndvUtjWJ77pUW3zJqfg2biJpP1nfW0JCnFkvjOOS4zuz6OI7WHPTbYYyXUKf\ncsqWjRR26RlVh9njiUqrijWX3UjTf/6m3fRJUXlhsc6uPgPjbr9np/G1YvQjezjsaLexzW3y+eUv\nGMNb/I9rsZWqLnRHvvsCR777AhMWbgHg3OHHAWjrBzoKsGgRHHEEOJ2wcye0aAHjxqkCIYCzzlIH\nVf3+sJOYug7qNT3vlwSaZAawF6sOQWGBT1rTAIV5xvPw6FONYktFCTsJxQ83lr9br2Ptn3Yev1F1\ndFq/yk6vvh4UBfJzLTRtFmDFfCcv3KGGtfvo9xx8HhNJqWJFJAiC0Njw+43v0Ov/ttO7f/XvD8Eg\ntJ81hXNnXQ/AD5MWU94sWlSdvb7+J4EIhwav3pvJqqVOPpmbjaWOPVcPXJXF5rV2PluQjckEG1fZ\nSUwOsmRW9C9tNdzYQdZvIAiCIAiCIAiCIAiCUAdEJLQfUA7g+fc7sq0EA7HzfBGzTF02LwVp7XHk\n6h3IPca058eu8ynPaqWlKRYLr3IbVzNeSyuqcJFGIb60tPo/AOGAwN00k0lf/05ZC/Vc8CUm4crb\nDcEg5oCf1ZfdSPZpZ1HWvCUZK5dT0rYj5VmtmPjtbCweNyWt2xF0OPlh4kIyVv7B8fffxIlHbWF3\nrot3c0bzJZdq+7LZFRwupc5OQq06+Cgu2LcikEDApIWJOufqM7iHlVpen+njgbu5g5cYdvE7JO3Y\nCkDQaqN9Nx9dDvNQlG8m2VfIRSerLk1/3nAnq669FZst/r3luDPL2LjawaDTy7TQgS99vZ2iAjOP\n35hF9yM9WK3G7Vu09dG6kw9FgZfH6uKbV+6NH9Jr/doEMtnK0jsfq/ZzsLgrqi0TplVmKeTC1C9T\n+OXrZEOeDR/Ogjygfp2EIK5hzj5B27fZjLtJBk1LthEet3huwg7yx05m4NaFAGQtW4ASY1CjLuG7\nIgVCwUojMt//vBRfYnLlTTRufz6XV0Lnyj2v7ubwge6oMhlN1OfGx1zDm9yMORDnoRPC7PM2iMtc\nfZO9xcTAgXDttaowaPVqNX3UqOiyfr86MR30d4Lmrf0MH1VM6sa12nWvCXxMxmszPdOPUkmvE352\nmy0KZr9PS7egf75/LXSxeZ2N9l19mkAIoKTAwor5TgrzLHzwVFMeeX+nJhACGHtJC/bstBrcBQVB\nEITGQeXH8DO3NGf8nGyq00rYCwsxoz+Mzj13IOZQXMsHeJKn0N1XIkNuCkJNWbNCneBQXGAhPbPq\n98V4bF6rvkOWFZtZPNPFuGfj/1Zw4iZo2T+TAwRBEARBEARBEARBEPYl+95CQzjg2LjKTsEeM34/\n3DWipWFgMMwHTzcxzAL1B83MyO3PdlqSjOoCodhtBoEQgC8pmSv5hCx2cCFqmJoSXwJNyMebmo7Q\neClp20Eb2PclJpP27zqa/bEIgKDdTn6Pw/E0yWDbCWdQ3L4zAKWt21HUqRvBUIikimYtKGnTHoDH\nL5rGe6O/IzV0voXp1MtLSaGZ5XMT6tTOf5bHDseUu6PhOogDfn3w324zdnh3n/oFAcy8yF2kbtnI\nzv6qm0pezyMAGPvKbp76ZCdN1unCoiPefwmA1otnxt1nOMxQhn8Xv4x9mzcmbiOrrZ9uR3j57Zbn\nuWLV07TtogoLrrorn1e/34bDqRDwQYTeAAAlGH+UJy/PTlPy8LkSq/0cLCGXm1nPfwDA9Le+ZNr/\noh1sAFKaq/8rC4QATXAFuotVY8AUMZrmbpKJMy+Xfi88yMiB7Th10Ts8u/UGIr+JFotmA7B94Ims\nvehq/vjPvWw8e8RetWHSN78b1t1NMwk444cw63eCLvxS4mjW7BGbL6E/rebNiCrjyt2lLTvzcmvW\n2P1MkWr+w/Ll4HbDa69Fl+nWDaZMgeeeU8tw//04/15hKNMxFNJt63GnafeJhETjh2k2qw4OkYQH\neRMLd5O6ZaOW7sUosHrgymiXhzcezOCFO5rxwVPqwNm//xi3iXSICgbgsoFtGXGuzLQXBEFoDPh9\n0e91y2bXwM/UHzCIhMwRD6YneYhfPviBkbcUANRZzC8c2qSkqy83hXl167aaM0X/PbJ9i5UNK6Nd\nVZ/8eIe2nExJTNG9IAiCIAiCIAiCIAhCY0NEQgIPj8rirhEt8XvVztvcHdHOE79PTNKWhzEZX0At\ns5vm7KAFJSTFnHXnS0zGBOygJc9wn5aeTgGeFHES2tfsrxm8/kT1/DltzCUAdPtyXM23DYlNbBXl\nJOTuBMCLjWtPWUynnh5atvORv7v2bimv3pvBxE9S4uZv/dfGy2Mz2Lqpfg3XgkFQFBNW/Kz4zz0E\ns4yzWa34MaNo4o81l44ir8fhmiNMQpJCQqKCqdK07+Tsfzn5jqsNafe+tpv0tStx5O/BWZwPQPeZ\n33LG82No0kzf/uQ37uGwca/Rds9Kvp22gvOOXUNr5y4sNoXlcxNY91fsMGU3P7EnKs3rtdCUPJQa\nzMJd8OirbB94ItuPORmA3X0Hkd/j8JhlXZVEEkOYqi1HioQw1+9jzcSBMajlSU2n1fyZdP3uUwD6\nvvZE3LILHn6ZZXc+xj9X3oQvObXW+1px01gAfv78/yhr2abW2/fsq7oHxRMJ+dq11JZP5ndmcAom\nFH7mTC09a/EcbTl184Zat2F/8Ee2qhL6808FlwsmTowuk1/k55FnIxy0nnmGjmeeQpvfppDx5xJa\nzf6VHhNU0dzKUf/VRELJaQGuuL1A20wVCRnPzbAQsOd3HwHgSUmjqF0nNtI5qh2XDWxb5bGYLdC2\nS+zQkItnqoLM2b9b8PliFhEEQRAOIgL+6HedBdOrF3sHMWsioeyThkTlnzZ6BK5ENb8iTjhrQaiK\n1HT1/CnKr/3kjT/mOXn3cf131mM3ZDFrcpKhzPFnltKhu+rUCuDAQ7AOLpyCIAiCIAiCIAiCIAgH\nG9JbJwDgLjez6LfqnVju5RkGsNiQlkg5SZQRjDXrzmTi3zMvUBcjwqwtYQABZw1mqAqNAl+isUPW\nFC+mXQwCdtXRwuz10vfVxwGw4WfUCQt4/KNdREZD8npi1RCbJb8n8NXbulDthS+3A/qM1X+WO1k2\nO4GPnmtS80prQO52tcEKJiqaZJKcYByIP4y/DevlzVoQtFox+f2GdEehKvrxudTr9uwRJxvyTzy7\nlGObr2ToVcO44My+vDauN4NHlPAgTwKQsGt7lIrjzCuGcualp3Pe+cdy/tkD2L1NbevTN6s2PjeY\n3jeUT2vi5/xRRQB0O0IPK/UT59ZIJJR7ZH9+f/WTGs3YdSXpbR101E6mciZpqKIJg0ioEWGOUPW1\niBDNVMad3pR5T7yhrQdtezcDevVVY5iwcAtFnbrVafuwAC21SezrXGluFIi+xn8BOIufuYdnARj0\nxJ38xsk8wqOcfNuVdWrHvsYXclBQlPjCstydVlb/YRTdmYJBjr//Js648UJOHHudlu5JTScYek1L\nSgky4KRSLc9sUaJCg4Z1g/aAei3u7nM0v735RZ2OxV1upqwk9iui2axfi2VldapeEARBOIDw+6Bp\nlp//zdJDSi6ZWf3vwkiRUKRD7M6+gwAwB/w4E9RnRkXZgSG6Fg4uktLUl5uSwtqLhF68M9oduTKj\nH1Z/T731n4kooakB4fdoCY8nCIIgCIIgCIIgCEJjRkRCgsb7TzaNSqvsBJFOgWFA/i8O08vGEQVU\nZGYBRpGQmiA9b4cKthJjiLDi9l1qvG04ZNnRz95rSDdHxMAadplav6ei9re05LQA16R+yYXjbuLz\nhdk89K4a5kgbzIjjhlJXxj2rio7mcDzujGYEXS5+aH8DR3TbzUdcE+VbU56ZRdBqw+z3M3JgO0YO\nbAeAMyQSslWUG8ovoR9pCRWMGF1oCNPkws24beeRQgkAJ91xNSMHtWf44CMN27sKVHcgcyBAYuFu\nQ16Cybivx8a05PtxaXw/cTHv/TlYSx/DWyjm+g3XZknShS9dm6nf0RCmAdCUPAC+mf539IZ7yf68\nTdVk13+MuY9JX83EnaaL2WIKNvchV92Zz5jH99Che2zxls1hvKic6AKz57lHO8dP5Tce5xHKSNDS\nDmRqeq6UlxrvU2suGcX68y+PKlfWsg25Kepx95z7LaPP7aDlxQo3FnYSCrsPFbftiFKNs9a433Ji\nOoJtXGUnb6eVpFSjEklRoLRYr7NyGwRBEIS6o8Sz4GtgPG4zTlcQuwPe+2VrjbcLKhEioQjnwkgX\nwrCTUFmpdDsItcduV68JX2xzwxphsVZ/XSXt0M97X2J0aGNBEARBEARBEARBEITGhvTWHeJU1xe9\nernR8WAPGdoAJEAzdBGBYoltzV2Roc7iixQJDU2YUdumCvXA/tI7ZP611LA+/e0va7xtPFeUwz54\nhVNuHskJd1/HicvU8DruitofYUmhhcyiLbT/VY0NZLWGO8VErnsAACAASURBVKNDde3Fh+b3Q3mp\nieICMx63ifzdFnZuVa8TJ24qmmbid7o4yTKbl8ZM5xo+jqoj4ErAXlJM8z8WamlHP3EXfV95LOY+\n+7GMH574kk47lmnh3cK0mvebtpy2ca3ajqIC4hEe+AnzcFDfZ2fWYw5d0y3nzyQfXaRyLR+xu8+A\nuPXWhUCCPqP9/GkPA/A+N7CY/qx79CGmfjwZX1L88HEHI5GikxlvfK4tT/l0mrbsbpKBLyWV0lZ6\n+ChlP4dJSEhSOOaM8rj59koioW8YUWV9uwk9Q/wHtmNUrFtFj6PcMVJVmqOGTyzo2gt3k4yYZfq0\n2gLAFcqnWNEFO6YY4cbCTkJW/Gw75mT+ufxGglYr3fknqt5bn8rl84XZOBMUBp1ezms/buONidv4\nfKHqIrF0lnq9lRYZxX4BP3g90SKhbdtgt1FTKAiCIBwkuMtNOFzqszkptebqzwBmKpplkXPiYP4Z\neT1znnqb9edfzpK7VdfKjWddpNX36HVZ9d9wodFjCf0M9Hrq/oMsVji9yhhcbmUikyAIgiAIgiAI\ngiAIhwAiEjrECVQT9cldZjYIifrwByXos+uCvXV3h+I2HYjFrr7HsKdXH7YedoyW1jFpe90aXAek\nm2//M/+x17Tlid/Oxl+LGZq+hKSY6Ym7tpO1dB5NV62g3Zr5QM2dhHZvNw58fx0SKSRv2UjHmT8B\nMGeKut+adCzH46ahrbn+tDbcNLQ1912exS3ntCJvpyrg6MMfuJuoIqG0jWtJ3bQ+avvS0Ezs9A3G\nQf5OP3+jLc9/5JWo7WzlZQy+7rw6tztMZfevNAqZh3odv81/tPSjn72XYfysrbdP2IG7afUW/7XB\nn5CoLfcIiR6SKaU/S9nTqw8F3Q+Lt+lesT/vH5FjFPk9DteWC7v00Jb9LjVsY1lWa81NaH87CVVH\n81Z+Tr+whJSU+KKf+QzSlsMiIVtZabziBywPvq0rZ7LYQddORdq6Ejq7ghYLyTn/xty+ZUs3CiaO\nyTLeA2KHG1PrK+rWg1kvf4w3NR3FbCZAtKuXJoIMkZEV0MLERXL8mcbPvLzUbJjNHxYJtW4NzZvH\nPARBEAThAKYo38xfC12a0ySoDp1WW/XuK0HM+NLTmPPc+3iaZJBz6jCW3PMUQbsDd3pTMv9aRst2\n+rN+PxklCQcxNlulyRu1ICFJF7w9/4Xe9/DGxG1RZcNOWOUZ9fv7RRAEQRAEQRAEQRAE4UBFREKH\nOP5qOtzKy0wEdOMgRvC1Ib/FyiXasi8llVgUdezK/437kdVnXamlZQdb16G1wsFKcYcuTFi4hQkL\nt1DaupZhg8xm/j3zAm11wzlGd5x/LrueRMoAyN1RsxBXebuMTiubUQVug0edx9FvGh166tIpDeD3\nQXmJfovdtdUo3HiEx/CkNcEcUur1e+XRqDq2nnCG2r4zzlHXjz89qszmocO1z3bqx5MB6Pviw1r+\n1I8ns/T26LprRIRKxWXxYAKOYQELHniB05luKGrHh4KJnX0GEcxMq9v+qsDv0p2EWmIUGcYLdXiw\nY4qQKIVDH2w491JDGS0kgtnM99P+YMLCLQf8DGiLFa6+q4An39wUMz+AmWOZr60/yYMAWN0V+6R9\ndaaaj30ZfQ3nbjD0CqZYrHHDGpaE7peVw4bFDDcWelZbrHpDFIs1pkjIVMO3vwGnGB2hls5yGe6J\nlYXGMgAsCIJwcHHHhS0BWLE6A1Popm62KDW6nwcxYzbFLugsyCMl+1+SnR76nag+SyJ/UwpCdWSv\nt2mhwvy+2r/bht9RWrT10aqDn88XZvP5wuyoUKoAZp8qZpv5+udReYIgCIIgCIIgCIIgCI0REQnt\nBw6kQbSAO7aV0AAWAVBRZsbvVRv8HGPJHnIuezr3rtO+lIgR1KObr61THcKhyT+X3agtVw5r50lt\nQhKq28WLd9Zs9qe5Uj/zBjoBYC8txoLxmujdP364oKooLqhauLLpwpEoFgubzzjXkL547FPq9m06\nsPxWVRyx4OFX+HrGSorbddLKfTdlGV/M3WDYNmhXwwNGhhAr6H4Y60ZcXW17Zz/7HnOffMvQjrCT\n0P2v76Q84NTyBj41Vt1fjBCDSdu2UJFZ/5YiQZtdWzY1T+XrGav0vAZ0zjHtR8FNZrKD1uku9a9J\nAnP+3sr2Z1+hdbpLK5PUq7te5gD4y0p1VHFERiypzpjp1krX4GTO5jjmYCmPH8LsQCBxa3bM9GvP\nWsH9PEVLduD0lkTlBy2WKGHX7GffU/Mc6ueZe0R/Q745Zrgxdd0UKRIyW2KKhMxVvP09/tFObbny\npdWqvd8gLh4xwtj0PXvglFNg2bL49deWJ5+E+++vv/oEQRAEHXe5/kBoFwq9G0uIGonHbWLlYgdB\nzNWKTu1FBXQ93APsXcgo4dBiw0o7913RQnN29dXh3DlikPob7pnPdhjSbXbo0cfNbc/mMnJgO0YO\nbMdxD44BwO+I/W4qCIIgCIIgCIIgCILQ2Ige4RUOKV68K1pU8QPnMZSpOPFQUWqGcnVmnQ0fpa3a\n4t+ojho+yQPMfu59ypq3xJeUUu2+OrbRw6xc0eQH5nJmPR2FUFP2p+Bhbwha9VtV0GYctfYnJJBm\nK4b4kYuiqChXP4dHP9zJI9e1MOSlURhzm42r7KRlBmgaIyRPLMpLqx418aSmA+Ct5MDlTUnT/4dG\n8hWrFb81mb9uuIOen72rbt8kI6rOQISQxoDJxIZzLqHzxC8NyTknnEGb2f+nFgkGyD51GHNC50jO\nyUPZ8XwWAElKtLABYPo7X3HGDarLU8Bqw+L3kbh7B7uPGljlsdeFsqxW5NGEEpIp6NITf6Iehi7y\n/GhM9G4V250NgIULYfZsBpzab981qAaUuH1M+nNH9QUBZ0rN70fzOI7CndOxxI5qqWFxV9DvpYf5\nc/Td9R7yrjrS16wEjo5KHze5j7bsDOiiw/C9RrFYopyCwve5sBCv8qBV6taNWOxNjduEbk3miFtk\n0GrRHIsiqepR0KaTlyOPqeDimwopKTZu6w+AN0IkNHeucdtmoY/8lFOgqIhqURRVWJSZGb/MQw+p\n/595Rk8LBg94wyxBEISDil85jR6fbWfzkPMxW0AJxr7J/vZjIuOe1Z8/awracGoV9dpLS7A7QiGj\nPCZIOoBmywgHLHm7jAJnbw2dXYMB9d3CYlX/t+rgpfLPI5MJHnxnd8ztA46ai90FQRAEQRAEQRAE\nQRAOZsRJ6BBn3eqEqDQfNhx4seOhotRE0Kt6w9vxUty2I13S1HApPVnNrj4DKeh+WI1CSJnMJhTU\nv7Zz/q9+D0Ro1JS00ZUBK6+5xZDndyaQ4Kx5/ILVyxy8cIc6ku1KUPAlJBryrQRQMPH5wmwcrqA2\nk/rhUVncO7JF5eriUlpc9e01EHL98UWIXQD2HHYU688byYJHXo7aJmh3sPT2R5n/6Ksx6wza44iE\nAE+6OqCz8qox5HftRc6Jg5nz7Hv8MHER/555AduPORVMJnJOHUbOqcPAbCYQ0pG2mfQ9ABVNjSP5\npa3asv78y9jV52g2DR2upRd27FblsdeFsuYtaUIB7cjGnW4UR1R2l6pPDlgdwtFHw9137+9W7BUO\nZ9UDhaefYRzAsfy9udo6e3z+Pp0mfc3h7720N02rE4EYr1QdpnxnWLcrukioP2q4zlgiIcVs0fIi\n/4dxlhVhLzQKGsNOQmabXlc8JyGTOf5nb3fA3S/n0rZLtPLy6THNmfpF9aLg4uJqiwDwzTeqsMhk\nMv5Nnw4ffRRfCLQ79tieIAiCUEuaZvm5MGs6pzGD8maqONwUCiEWy00oUiAEMH9Hzyrr7/nJO9ht\n6nu6OAkJNabSqVLTcGM3nNGaK49rC6jh7ar8iRDD3jngdMUoKAiCIAiCIAiCIAiC0PgQkZAQhQ/V\nhiCZEpZNt6K41Y5dGz58icmc1WExi+nP+fxocPOoHr1zb3el0CmCUCVmMxMWbmHCwi140ptSltVK\ny/KkN8Vl10VC/mochSZ9qg9wu1x+bOVlMctZKsoxmxWUoNrJDNW7A0WSv1sdmH/w7V0cO1jfx2sf\nr0PBRCDkDFJZJOR3ulhy7zOUtO0Ys951F1/D5iHnx8zzV9GxbS9WbT0qMrOY9skU5jz3PpjNVDTL\nYuHDLxNwRtvrv2e6AYCLpj8MwOrLRxvyvcmpLLnnaWa88zVbTx6ipeecPDRuO+qKP0H/nNrOnGrI\na6xOQo2dSAHIuVcVccr5JQy5WFeXOJs7OOV83cUqZcGSaus8/ANVXGeudCMw+7x72drq8QejxTiD\nHr/DsO4I6iKhD7kOUEVuSqV4LYWduqt5IbFQ5ZB6FgJRg7eBsJNQRLgxVewXI9xYDcdp23et2+c2\nfHj1ZQDmzYudfvrpMGpU/O22bq19mwRBEIRofB4TdpcqlkjI3YWtuIhASJBRVrL3XQUdp3xLp3lT\n1H3V0A1GECq/p/z6bTKb1kSHF/b74Y95Tl67P4PSIjMVZeo5u2aFg2DAhNVaSQikKDgK87G4K2g1\nd0ZUfQEJNyYIgiAIgiAIgiAIwiGCiIQOcXr3jo4HkkkuAHlksH1nIjdc1huAXDLxpqaRtGsb/VkK\nRLsbVIUzP1db3nDeyL1ptlBHGkvX/MRvZ1HaojUA+d16k5n3r5bnqaj6KLdt1juYT33xv3HLtZr3\nG66yQhw7drAjp3YilFmTE3nrYTUcWEYLP8lpeoiyREsFoDsJeZONIaUqiwFqQ2RdK68aw4SFW7T1\n8OdV1KFzjeu7QfkABRMOVKFAYZceWt768y8naNct+QNW3cXIHSMU2t4SKaYq7KwKKHb1UcOaVQ5B\nV59ISKOG5fgzSzn36iJG3FTEqHsKuOy/ujuO2QKj7ingoXd3AVDhq3kICFOEgqbD5G+45PguJOxo\nWGWJN1D9fcIZVK//i/iaBNTlYCUnoQkLt1ARcnNAUY+j8rPWQoBAsFKIshhOQqA/01/hNi3NVMO3\nv8Rkhc8XZvPR7zlVlps9G3ZERJnbtq1m9fes2oBC45JL1An/M2eq6zV1KhIEQTiYiGFs0uB43Cac\nJlXAmr5+NRedcThzf1ZF599/GB321O6IYS9UDS1nTwdg+5aGe18TDly+eieVT15OZ94vCTU+x2O9\npzx4dQvD9rnbLTx6XXNevLMZi39L4MbBrbW8J0Y3Z8V8F+ZKXRX9n7ufC4b04eKTutPtyw+j9rE3\nv8MEQRAEQRAEQRAEQRAOJkQkdIgTDBjXr+ATTmN6zLL9Ds9lT68+JG3LrtO+Irezl0SLkwShpihW\nG798NJEpn04Fsxk7uttFpAgoFnk79YH8nvN+AGDzGefy7S9/smnweawPCdjazJxCPk35aXY3tm+q\nXYfx+0/qoRiSU4OGmdgt16huKGFhiy85lfxuqhCvsEOXWrpzVSJCaLDt+NMMWWtGXs/0t79id99j\n6lz9rn7Hast/jjaGurKXqtd0WVarvTuGOPgSk7Xlma+MB2Dek28y/a0vDWKl+sYkKqEGZfTD+YwY\nrT8PzGawhGZ9t+6ougE5XeqAZIW7elHqnt592E4LvHbdVWvA8w8AkLplY721Oxbbi9OqzN/VZyBb\n3c2i0hWLNa4azRyyBwpWipcR00nIp35ulUVCUxnKB1zHbbzGCe1XA7UXvzmcCmdfEfu5/cEHcPzx\nkJUFX38NiYmwaBG8956xnKLAnj3GtNxcqsXhgA9D43gpISM4EQkJgiDsPYoCXreJBMoN6a4C9eZc\nURb9sDhuqNGB843TP6h2P9Y09T1t4fToMNdC4yZ7g42J41P55etk3n4kg8sHta3ZhnHeUyLPyduG\nt2LTmqp/A1isCkMvG8x5Zx8NQJcfJ2h5WcsWxNivXr+p0UyvEQRBEARBEARBEARBiEZEQoc4gUqh\nma7nA0zAnl59DOm9WEnKeT3AbMbdNLNO+zIp+ojmv2eNqFMdghDGk96Uwi6qDUVFZnMt3eupWYfu\nSczUlgs7d8ebmsaCx14j+7SzALBW6AMm839N1JYnvJHG+r9115zqcLgU5kzRRTOnPDVGrb9cr3/p\nnY+Rc+Jglt/2SI3rjcekr35j1VVjyOt5pCFdsVrZfdTAva5/xuufs/iep/GmGgUR2449lbUXXsXU\n8T/v9T5iEXBEuBa51EEmd9NMdvcd1CD7E/YfH8/K4Z2pWznmDPUacSao4pcP91wMQKs50+k5/q2Y\n2+b602nFdl7/4xwtLexClbR1S8xt6oOls1w8OenMuPmFHbpQntWSNSXtAFhGXy3P7PMZnIQiCYdN\nU6yxREL6vW5njpVFv6ohMkx24z2wNdu4jnEA3D/oO44dXMbhAytqemgal4wpYvzcbE46u5Te/fXt\n+/XTy1x0kSoWAhhtjE7Iu+9CZqY6/rZwofr/oYfUvBUr4u/3++9V4RGISEgQBKE+8XlBUUwkKEaR\nkD2gOgv5fdHv1IpiTDuh/ZqYdf/6ztcsuetx1g2/nHODqig/s6Wf335MZNns+OFxhcbFrq3RLovb\nN1fvvBjwx06v6e+8MLaAh/SNa0jI3Ym1rIR/z7wgqsyUT6fVqk5BEARBEARBEARBEITGgIiEDnH8\nXqPntw0fv4z7iUX3P0cKumtAImWa84kpUMl+qIZsH3Syvt+ExCpKCkLt2HjOJVzFxwB43fFva5HO\nG98zXFv2RZyPYZt5155dWtqSmfrM558/T+GDp5vUuG2u/FycLv2aCbseWTxuLW3P4f2Y89z77Dz6\n+BrXG4+Sdp3486axBlehvaUiPYPtg04CYNeA49hw/mVRZYIOJ8vuehxvanq97deAOPocFNSH85LZ\nAinp+sXavLU6UrTQfRQmv58T7x7Fke88j8WtX0PJ2ZtwFObz0LY7AJi6W3fM8jvVwcj+Lz60122L\nxx/zqh7wXDPyesqyWvEKtwPwL520PHtJUdz4X+HnrVIpXsY2U2tW5Hbih49SuGxgW+68qCVTv1Gv\nPbM1/rXfypnLfx7Lw1ZznaMBqxWufyCfLofr7m0JlYwhlqrRSOnRA95+G0pK4I034D//0csMqqTt\nO+II1dFCUeCdd+DFF/X1MyO0VyISEgRBqD98IcFFYrDUkH516J06tUn0bz5FgcQUPV2J89zP7XM0\n6y+8Cn9CEna3KkKaOD6Vcc825eWxmUz7Khmvpz6Oomq2b7Zy2cC2FOyRbo/9QawQc9W5vgIkpRrt\nEnsdoZ6jAb9+vmW1UYXU14zN59yrY7sdZq1eqi0n52zGmb8nqkxhlx6sG345ZVmtqm2XIAiCIAiC\nIAiCIAhCY0F6yw5xHNnbDOt2vARsNvxOF4XoTiEuKvRwJyFHoBlvfF6rfRV26gbAzn51D3ckCLHw\nO1zcxYuAOsP0ymPbcNnAtoZwesvnOrniGNXifvSwRaRTqOWlbPlXWw6LhJqsWx13f9s2xR9hVxQ9\nXFJHNjJ8WD8urRiv5Ye7tstatqnZwR0ATH/vG35/ZXz1BQWhATCZYETTn2nBDi49ThfXWMvVAaM2\nv03h7BEnccGQPnxXMgyAMr9TK7fO1xErPtbTucHa6KtmZnvA6aK0ZRvOYSJmAnzP+VqeO71p3O1M\nflUgFbRYmPLpNH7mTH7mTNYo3QH49v3oEGdme/y2mH2+uHm14fxr9ME4VyV9VFqa6ib0zz8wZowq\n7Ln11vh1vf22cX30aLjzzthlk0NRB2++WT0v6qhZFgRBEABPSFifoBhDiD3Ik4AaajIKBewOPT2e\nE14YX0IilhhqoE9fSefHj1Jr2+Rac/clLQF46JqsBt+XEE1JgX5+/PdpNYyd1RbjvKqEOeJVpgvr\nOO3YHCDaYWjQGWWcNryUYwbr5/C707biSlT7KxwB3flw6NVn0XLhLG09aLEwYaHqMrl07FP89OP8\nGh6VIAiCIAiCIAiCIAjCwY+IhA5xvBjFDna8KFYbAaeLyGFGE4omnvAlqVP5w+s1xmxm8he/MuuF\ncXvT5FojBiQ6jfWzCDidWFF7jUuLzQQC6oG+85g++P7SXc205Wa7Nxi2T966WVuubrCjOlYtdRDw\nm+h/bDG/cYraDm4ylPG5Esg+ddhe7Wdf4ncmVF9oH/DLuJ+Y9r9J+2x/jfV6ORhxWb2UooYN20R7\nxnMltrJSBj16G8ffr19fA8xLAOhi04V/F+R/QgArExjZYO2LYwSk4Xe42Dz4PExAACuDM+azacj5\nLHzgeXb3HUTS9uyY25nDTkJWK4rFwplM5UymVt0We/wwHuHwZXuLJWIXlUVCADt3Vl9H+/aqqPKm\nm6otquF0GtenT49fNi8P/HHClQiCIAjgdYechAKl7BhwPNPf+pLFY5/CBLgox++PFW6s0vtRNe/N\nYffYSzrMiMrLz7VEpTUUBblWysvkxW5fE3b+ueP5XJq18hvSqiIYoSMyE8TpKVG3Dejb+n0mrKGJ\nGa07+Hnqkx18PDub5LQgCcmqSCj8+zAW4XC0giAIgiAIgiAIgiAIhyLVB4QXGjVe7FzFx4znakAN\nN+Z3urTwLGF+52SCVnUQc8nYpyjs3J3cI/rXen/FHbrudZsFoTJ+V4LWCbx6mUNL37w2tuNPSo8U\nWKKvz3viDW3ZWRBtQw/QvquXzevU+sJOQZEU7DHzzXtp5G5Xb6vubeW0Q71mHHgNZfN6HnFQKVAC\nDmf1hfYBeb2O3Kf7O3i+ocZP8TEDKPtBHWjsyCYA3lozm3Om/WAo11rJYTH9KfDr7gTJJnVgyU3D\nncdmc9Wz4v1OF0G7fm/yJaWw4NFXtfUWi2bH3M4UCDsJWQ0CxlVJR9GrdHnsbWzxB2zb//IjJa3b\ns+G8S0neuoWOk79RR3wrkZyzidLW7VAi1E8Vmc1Ze/G1UfeuWCKh6ti8GVq0qP12lW+bQ4bEbD4e\nD2RkqCHO3nqr9vsRBEE4FPBo4cZKCDic7O47iN19BzHg+QdUd1l/9POkskhIqUYlG352fbTpLL6k\nwpA3Z0oSox/O38ujiE9l15mSAgsJiaIe3Zf4/WrYur4nVJCzUZ1gVPl7iYUSEW1sLd1x+GeFttVP\nvkDAKFpu31UXQicmBclD7dso6NyD9A3/RO3Dl5Bcu4MRBEEQBEEQBEEQBEFoRIhI6BDHY3bhCOoW\n8Ha8VGQ0Q7FEnxqlrdsD4G6ayd/X37GvmigI1eJ36iKhRTMStfQjBqmDEZGd0Xe+kMsxBWsA+PGH\neZS3aG2oK69nbCHKXXevo9SWyr1Xt6FFO70TOm+3hd9/SmL5XBeb19rperhb3c+wmRBncDpr2YLa\nHeA+ol3TBLpl6R3mwZQUzMXFnDSgE1gPvceFiIQOHCyZiXhw8gY3a2lluarLjhebJsQbrEwDoDiQ\nBKgjTF3NG/g70JtnuY/Pie3Ys7dUZaRQkZ5Baet2hrSCrj0N64vvfpIBLzzIjDcnGOuNdBIy644L\nLay747fFFv/MdRbk0f/Fh7C6y3Hl7qL7Vx/hryQCNAUCWEKOQ+G8cFrOyUMpb97SUD4hhtGYyRRb\nvAPx02vKo4+qfwAOR+wyW9ToIXz0kYiEBEEQ4uENiYTS83OiBOF2vPh90SpQRQFM8MH36zh3+LHk\nmG+och/h92oXbk46u5TfJxndW4IBMDeQoZC7wvg8LC0y07x1nMJCgxDwm7TwYuH/fl8NnISCxjK2\ngNpfEekQ6PeZ4oYui3QS8iUkGvLmPf46xz58K/7ExFibCoIgCIIgCIIgCIIgHBIceqO+BwB7O0BW\nFdkbbJQUmenV11Nt2QlvpLErmII9wuXk9/e+xBHhdrCIATzGI4zt+x3b2j7aEE0W9iGmRip78CUm\nYSGgrXfq5WHjKgdTv0xh6pcpPPj2LgDOu6aIo46vwPZVOaCHQIjEk96UCQu3YCspgtP19KuuH8iu\ns4cxYeDH/LXQRXGBmZT0IF+9nca8aXo9zgT1Am+ZaJwZ3Yqt9CB6FuuBhNNmISMpYtS9qAiAjP3U\nHuHgo6HuMD6vWvOt6K5fitvH/7ia23lFS/uFIQCUKQlAKQABpeEjq8YbpCpp1ZZJ383R1hc8/DKD\nHr+DjWddbCi34YIr2HDBFVHb53ftBUBhh64GJyG7VR8l692/gn/+cGqz681242irNzEZe1mJIc1e\nXIS1opzyjGb8OHmJIa/VnOmcePco/A4HX89aq6bN/j9OHHs9joI8TST098YK0uyumKZold9zLr4Y\nvvoK+vSJLltbMiJuSPHq27FD/e92q39Opxp+LBiEzMy9b4MgCEJjIPzccHmKCVp0kfimwedh/TUY\nV8xhNkFKqo9M9pBTjZNQXu8+rLlkFB0nfc31D+RzzT35/Pe8lhTuUbshfp6QzNlXlFRZR10Jvzuk\npAcoLrBQUiSR1vc1fp9Jc2AN/48Vxq4ykU5CAPagOgnjlbGZvPbjdq3ueO9fYTfZL7mUL/4yhpvd\n01t9edh2zClVtuEgMn0VBEEQBEEQBEEQBEGoNdJT1ohYu8LBfZe34OkxzWskRPr58xQANtBZS7Mm\nGE+JASzhZ86ifVpuvbZVEOoTX2KS5iQE8Pi4XZhM+kWwdLY6E7p3fzdtp0+m3yuPArFFQmEiXTu+\n/mkJSZTR5repNGmmipG++zCVgB88lWYpe9zqujOoCpEWPPgiFU0z2UobfuUM1l14JV/9vnYvjlYQ\nDj2OOq4iKq3z++9yLf+jiDQtzRYSvZaRSO8PX2XkwHbgD0RtW98ceazevh6s1panfjLFUG7T0OFM\n/mI6uwYcV6N6Nw27kMlfzmDXgOMMIiEs+v3pvjdyueK2Am3dVMlJqCKjWVS9pmAQi9djCIEWJhAj\nzZPWBIBTbr2Mvi89AkBaukLrOI4MqanG9TffVIVDy2NHSKsV27frywUFscu43fpyu5CJU0YGNIv+\nKARBEA5ZgoGQeIMATdau1NIViwW7yRtTzBEMmrC6yxhxam8A7EVxbsQRBOwOLF51AovVCm9N3s7l\n/1W3S04NVrXpXuELOSWdeLYqGi4rlq6PfY3fr5uRXeKxpQAAIABJREFUhv/XJNyYc9cOw7rdrz7Y\n9+zU57hF1l0Zd7nxu/72lxXMe/x1fvxxPmUt2zLp65n8Nfrumh2EIAiCIAiCIAiCIAhCI0R6yhoJ\nigKPj26uredssGnLwYDRmjtcPsw0hmrLCfpYK/Mf0d0ZKlvQC8KBhC8xGXMotFBymioI+GxBjpa/\nZrl6/qakBzjuwTFaetBmj1unEjEIn771XwD8LheXjikEYPp3yYx7rgnr/jIOqK9doe6r77gXAMg+\n7Wz29D5Ky1965+MEnAfm9SQzZoUDlc69vXy2wBgqrIxokZ8P9Zr24qD7h28CEKCB4phEEHntrKYX\nL3M7X3MR/sTkqILFHbrUquLi9qqQN/KeFLkMcNoFpdpyYqJxwHXm65+xeOxTxnoVVSRUOdQYRD7v\n9YPK73E4qy8fjTc5lawlc6tt9qxZ8PTTUFwM+flG95+95aqr9OW1a6G8HDZuhM8/V9NKSmDsWL3M\n7t1qmiAIglAJtxpa0kIAW5n+HFHMZuz48PuiN3Hk5+Eq2KOtZy2bX+1uAg4nFp9XtXML0XuAKvpw\nJTacSCgcTi0s8BcnoX1PZLix2jgJZc2bbVi3+L1RZapyErrrpd305m+KSWbNJaPwpqaz5YxzKc9q\nBUBJ245R71KCIAiCIAiCIAiCIAiHEtJT1kjwVeo3C0QYJzw5phlXHdfWmB8hGrqPp3mROxnKFLDp\n4qLNQ87Xy9vjiykEYX/jT0jQREIduusXw5uTtwKweZ16/qZl1NxRRDGbmcUJ/Hj8vSTtUAVH3pQ0\nkiJmPM+alERxQewO5oQC1X0r4HQSDE1zDVqsosQRhDpS+dLZSKcqyxeRygY64WXfPb/eYTQAt/Mq\nF/FtvdYd6W4WuQzqZ3P6MVsASEs3juqWN2/JhuGXG8srChaPO7aTkCOcpg+8BW12Vtx8H7lHDMBR\nmE+LhbOwrovviHbEEXDffZCcDOnpNTq8+GzeDFOnan9dy/4wZOfkQOfOcPnl6rvP44/DX38Zq0hJ\n0ZcbMuSrIAjC3rDPb09e9QehhQCL73tGTzeZcATKtXBkkWQtnoMp8vlgqT56edihLuwmBGCzq3V4\nvQ33XhwON5beVH3/LyuRro99jd+vhxsLC3pinVeVCVQKY+etZCgZDIAS1OsO02zZAhwFefQ51s2y\npONIppRVV9+8F0cgCIIgCIIgCIIgCILQOKm+V084KKgoq9SR5tbXw84mG1ba6dxbFVD4IjpkH+MR\nbPi5k5f5xvq3XknEiGyXHyew5N6IzmPhoKSx6lP8zgQy2cM0BpPz1IdaekKSseM4Mbnmwy+K2cIJ\nzIE5c/i7y60AlLTpUKf2tZvxMwDmmvjr70ca6ekhNFIe49Eq88/g/1hBH0OaojTsffAo6iGeVhwi\nw40FY8x+v/PyJUya35W5tv9VW5cpGMTi8cQMLRYrLYzf6cRZmM/Jt12Jt0kGK1asr2Hr6063ocNw\nrdFDuClmM0cPLGXRQjWM5BvjKgB12WqFVm0CEHKPsjsUzUkizNJNhTRNttIxM6nB2y4IgnBAExIJ\nrR05Cucxp2jJnSZ9jZ2xmPKLozZRMGnCfIgWrcZCEwl5PASc6v3a5lDfyX2ehhcJOVwKFqvC5jV2\nNq2x0aF7DIskoUHw+8AamoMU1pOFHaqCAcjbZSGzZfQkjmCEC2RPVuEpM54nPp+6HhabgSoQOm3M\nJQBMWLiF4rYd8aakaiFTBUEQBEEQBEEQBEEQBB0RCe0HlAaYJ1pZJDT1q2S6HekxpEU6noRtvl/l\nv6y9ejS9P1bDsgStjc8xyCTSh0ZPODzOYP6PL5x+lFDHssNpvNbMEZZbCx94vso6Iy3o0zasAaDN\nrF8YObAdl+37ud6CINSSygIhUF30rLYYhQ8CgqGGl4VCZfzFYcx4fQKQCoA16MOBF6UGrg7pa1fS\n/I9F7Ox3bFSe36UO4BZ16BqVFx7cBbDn72H19ugB5Pqm267d5Jw4mNVX3ETrOb/Sa/xb3H3v38xe\n1YHXH8hk2x4vYZEQwLYc/d597+u7ePzGLEN9q3JKaJ/lEJGQIAiHPEpIJGSyRQt9EimjpDha3B7E\nbHASUszV/84Khhxpm6z5m51HHw+oIk4wTlypb8IiUZtdwWZXWD43geVzE/h8YXY1Wwr1RaAKJ6EH\nrs4ie72d0y8s4ao7CwwibsWnCodmchIDWMyS2f2By7R8r1st3GLNMkYOPB1fQhJrL9LjkY4c2A5v\ncgq5h/dvyMMTBEEQBEEQBEEQBEE4aBHP7UZCUZ6xc3fJzISoMh633vPmD3XIOnEbXAPCYZHCzHnq\nbUpateWn7+fUZ3MFoV7xJyaR37UXYBQCRXLN3fnYiwoAcKem8++wi6quNKKnus3s/6tRO17+dnuN\nyh2omBqr1ZQghPBXBKsvVAf2RQgrb2oaS+56gtnPvc+OQSdxGCvp6dqg5ZtCcUYrP8fDrL7sBm25\n+R+LAFgXMaAWpqxFG5b99yEWPPJyVF5YkBmm009fcMxDt3DMQ7fQ7YsPo8pXR+L2HHp99DoE438v\ntvJSSlq3I693H4rbdgTAGvTicIVC1VThQtGyffQA94r5TjzuWjdVEASh8eENObg4op8baRRS6o52\nlvO5kgwiIbOveleevB6HA5C4c6uWFnaAaUiRULhuu0PRREnCvsVTFKDTH9MZPvQo+nzwAqBOVtq+\n2Ur2elU89uu3yTw1phm7t1n4fWIiANaSUgCasZsEKjiR2Yzkc0ANsz53qlpu5oymgPqu0Hv8W4Z9\n20uK474TCYIgCIIgCIIgCIIgHOqISKiR8NLYjKi0qV8k8/ukRFLS1Q7gNx/K0Mbhwv25DjyaOwEY\n3VMAck4dxqTv5lDWsm3DNFwQ6omw6MficdN86Txazf4Vk99H+65eLFaFs07cyMm3qQPiy+58DMx1\nv/21sW4D4N7XdhvSIy3vK5pksvSORwFY+OALdd6XIBxMNLTO7Pbnc0P7UTCZFNp389K8tY8LbyjU\nylx3X17c7f0VDRvyz9TALmPrL7ySgm692RYKCxMWBgGYQ/E7gnGskjaeO9Kwnn3SELaeODi6oMnE\n2kuvoziGk9CuvoMM673/9wat5s2g5YLf6f2/12t1LAD9n3+AI95/iZ6fvE3b6ZOj/tr9OhGrx40/\nUXX9CdrUYzP7fNqAr9cd/6RzuoJ8vjCbzxdmc8Xt+QC8dn8mQ45sxh9/1Lq5giAIjYuQW4vJFi2k\nSKWIMne0w6w3IckQbmz57Y9Uu5vi9l0AaLJmJS3nziBxWzY2W8OLhEqK1Hd9m13R3Gxg3wh7BRVv\nrps0CnEW5HHY+DexmfwE/HD3JS0N5f5Z7uSha7P44OmmBPwQVNTzIvJcG8BitU63CYdLTb+ZN6vc\nf7x3IkEQBEEQBEEQBEEQhEMdmVrVSFACam/ny9zOHbwCwGevpQOQ1lQfRJw7NZEThpVBsTqN3o6X\nTpO+0isSJxHhICXscJH67zpOvVkdDJ/z9Dvc/+YwLDYYfvIArawvce/CzHzX4SbmPPUuWW39XHhD\nId++nwZAYorekb1m5HWsG3ENAJuGDGfgk3fv1T73BXL1Cwc6/U6oiBsm5Pxr9dBXJhN88HRTjh1S\nxrxpiVp68CB2EjLsz6IOfEaKhMLLlcW+YUraduCLuRu5+MSuFLfrxNxn36v1fnf1O5YJC7fQ7YsP\n6fvaE9jKSsg5aQjelDQ6Tfyy1vVVNG0GwJHvVi2kLGumDiaGB/vMPp8WTjLSSeio48pZPld3Uowc\nG6z8sSxbBn2iI9IJgiAcMoTDjSkxnIQy2EN+aQLBQBHmiPtnUDGBxQyhx09+yCWoKgJO9R29xcLf\n6fLDZwBMWLgFi0XBF7qHb91kZcNKB+27emnfrXp3ouooyjfz7mPqJBqTEjCIkQIBEIOZfUOx20k6\nBdq6TfGglHpili0tUk80d7mJsowWgFEk5ETtv/B6TWzbrD7gh/FzlfuP904kCIIgCIIgCIIgCIJw\nqCPdY42Ek4/exoLfkridVykhmUd4XMsrydNHLyeOT+GEYWXsWK+mOXFjCgai6hOEg42AQw2JkLZx\njZaWuCOHxJTo0XtvUkqt65/8xa+cdenpALRNyiWrrTqwcv61xVSUmVn0k4lrTmqLw34FXq8Zn6uL\ntq1ykIxEiEZQaCycdE4Zxw4pw2aH/zyax2UDVTe8oKdhn3cN7SQURrGo95SwMOjkWy+nxWI1LGhV\ns+YVq5UfJi+JChtWW4I21V3CWlZK0GojaLVh9tfepamknRo+bOrHk7V7eGUUi42SNu0N+zX7fdgc\n0SKha+/NZ/lZukgo8p4W6SIB0Lx5rZsrCILQuAiFGzPZo99TO/IvHr+NrZtstO1cSbRj1kVCNWXz\nGefQ/v8mausjB7ZjlNPHT+NT+Wl8qqHsjQ/lqZNa9oL/nNlaW77rqnY84XQDqmAk6DeBVeyEGppg\nEEq9LtLQ3R5t+Ah6owXbGVl+9uxUz8NxzzXhlHRVJGSJONHCIqG7RrTEXa6KpQNHduaHJybRbPkC\njn3kv9Ft2AsnIflZJAiCIAiCIAiCIAhCY0bCjTUS3OWQguqiYKnUaxvAygdcB0Cv/m5WzHfy/FOd\nAUiilDnPvMukr3/n13e/2beNFoR6JDzA3P/Fh7W0hNxdAJgiBq/XXHwteb2OrHX9ZS3a8v1k1ebe\n7Pdq6c2Wzee1ouvILVWFRwOG+rma8WwKhT8TBGH/YIuIknL9MbOABhQJKft2KEkJhUs0h0S+YYEQ\nQLAaUaInvSn+hMQqy1RHwB4S6wSDBO12glYrJn/tnR/C9+bCzj0o7tA15l9J2w6a2id8bBafVw83\nFiESSs8IctGN6mDkzU/sMezLcnBoNQVBEPYZpvIKAAJJxmfCr+98TSAkqLn/yixDnqKYwFz7Z97G\nsy6OSnOavDFKwntPNK11/ZFEzn/pySosSpCyCl0sEpD5MfsEd7mJIGaDk5AdLwGPgs0RZMjFugNk\n5HeyaEYiz/x4GqA6CfmdLtYNvxwHnlC9ehdWUe/DqMhsTs5JQ1h6+6PMfu591l14Jf7Q78Lq3okE\nQRAEQRAEQRAEQRAOVUQk1Ejwlikkos64vIU3ovKbs4vmzdxUlJr59x995DSJUoo6qoNwuUcOiNpO\naFw0ZqeYoFU/r7NPHkpxmw50/3Icnb/7lNRN6wBYcdNYlt/+CEotZ5X+e+YFBJxO3BnN2Xr86WT+\nvRyLWx1Y6ffiw3SarAvsrBVlKCZTlCvG6stu4PcXP6rr4QmCsBd0aKYOUPk9DRNuLMy+dhKylpUC\nUJ6pD+IGbXWfNV9TghEKrIDNTtBmxxwMGsKf1QRzNSHSoverhxsLi4SK8ozbnndNMZ8tyGbQ6eWG\ndIvF+N2MH1+rpgqCIDQ4yj6OXWlyq+LOYJLLkF7auj0d+VdtU9BEYZ7eZRBUTJhMCkGLleyTh9Z4\nX/ndD4tKK/PYY5SsPYoC37yXyvbN6rOxKF9/Liwm+vetmOjuG7aHQoIFMbP68tHMffItbPjwuhV8\nHjNJqUHGz83mlPNLCPhN2OzR5385CezpfRQFXXtHTYQqMSVp7wVBh5N1F1/D1hMHs/SuJ/Amq+5U\nIhISBEEQBEEQBEEQBEGIjYiEGgmeCpMmEkqmJCo/hWISHR4qykz4vLpSZN0t/621YEIQDkTMPn02\n8txn3qWga08ABrzwIC0WqC4iOwaeWKe6Fz78srYc7nTuGBIGOYoKDWUdhQVqKJ9KiqwVtzzA9uNO\nrdP+9xUmMdYX9pID9RyyhMYhg+59NzK4acj5DVa3M283AEc/fQ8ApS30sCp7G0qsJkSKIIN2hzYI\nV1s3IVPAT9BiqbGCNSwGjRQJbVwdHaYsVnWVnYS++65WTRUEQWh0BIPqfdRkMXYJBOwOzmaStl4c\nIboJKGasBPhy3kbmPvNujfflS44O9esL1o+Ao6TQzI//S+XZ25oBsGW9+tv2mUeXk0h5VPlA4MB8\nV2lsLJ+ris82NjmCFTffR8DuwI6X8hL1fHO6FKxWsFrB7zfRumO0s1R31pCyZQMBh4NC0rT0l77I\nIUkpiyuM9oVCS0s/hyAIgiAIgiAIgiAIQmxEJLQfaIhJovYN2ZpIKFa3ZwrFZOSsYfncBCaOT9XS\nHQnSSSo0DkxB1SEkPKt5/mOva3kpWzYC4G6SWet6AzbjLOc/br4PgP4vPkSPT94haDfmt1g8B2vI\nZehgozE7TQmHNmZrKFyVt2FcGio/17+Y9y8LIsSF9U3YycdepoqCnYX5Wt6+EAnZysv0/dnsmkjI\nHBHasSaYAgHNFakm6E5CXuxOoytU/5OiB4IjqewkdPfdNd6tIAjCQcPubRZWLY0WT8Yi7KhjslYS\nCTmcht+Ti35L0NyE/IoFi7kOgluTiS/mbuDLOetjZjdp5ufVH7YBkJZRu2dJ6CcAeTvV50lJoSpq\napZQHLO8hBvbN7Tvqop+RjSdAqgCYxs+SkvV78nhUr84q00h4McwkQngN07GQhBbWSkBu0Nza7zw\nhkJatQiFyrPGdqPyJSUD4iQkCIIgCIIgCIIgCIIQDxEJVYOiKPX+1xCUkaiJhGKRTAl2omfnOZJE\nFXAoYToEVCDhwXPFamXxPU8D0Oln1fXHk5Zeq7p+GfcTE7+bY0gLOPWQDH3efpbEndv2prmCIOwD\nTCGREP6GHRkMD2ApFguYG+4VK+yKVp7ZnNNGX0RK9r9a3r4QCbly/5+9+w6TosoaOPyrzpNzgCFK\nRkAUVIKCggmzLIKAWfHDnBOGNa55dV3XhFnBjBkjIqI4ChIEREDSECfn6dz1/VEdp7snB4Y57/Pw\nWHXrVvXt6XGq+tapc/L9yx6TKZDhp5FBQjqXU8sk1EC+TG7H3HQxcdZAFresbk6ue7iozn1rxyJZ\nO2YspxBC1On6f+Twr6uyqCyr/xykev9k64yh3w/c3gD428doKdc+fjWJJ27WAu09qg6D0rRzqWow\n4jGa+OaFD0La5363kyc/3ENGFzcnTq3EYdfhsCkNLgtWO7ikqlx770lGLZB238ixnMcb/u0eySTU\nJnwZm/TeZD6+TEK+ICFLrHbNpDeouJxK2OeYiZY1UW+34TGZuYDXufnIjzjtvAp0Lm1eI1omIWOl\nFiAWU1TQsm9KCCGEEEIIIYQQ4gAhj1bVoaTawdu/7WzvYTRIpT6JOPcmlv3zSfoteIuStSnsI5vB\nbAC0TEI/cXTYfqZ4BVtbD1aIVrBr/AlsPnMGa2dd728rHDrCv+yyxPgDiBqq+ODhYW1uU8OezhZC\n7Ed8WRJaKUiodcJ/6+AN+IwtzCc2KGAHwNMGpTU2Tr2IQ154HAjNJGQuL2H4M/9i+W0PaYFS9dA1\nMpOQLSXVvzz47ReJTXiamkodblf9N3wVXeBTMhpVqqrkJrEQ4sBVWqgnIdlTZx9fBh5FX+vvoU6H\n22jiyPQNIccDbyYh6j5ufYoOOZzVV9zK3mezef6qT4mNz/ZvM5k91FTquOiY7gw5wsqEM6sYdqSN\nmLjwM+13C+LZ9peJrj0DpS7v+79MNq7RgmUTdVqQ0K7xJ/DGigvoPiWHf30wUTIJtRFf3LDepF2D\neYwmjDiprNa+j1litM/UYAC3S8FhD/097IeWdUrnduM2mTDi4tFfJzPfuANdldN7zMjXPEneLLLZ\nv/7Ysm9KCCGEEEIIIYQQ4gAhQUIHiCp9IoZ4E9snTcZtMnP02itCMgc5BvSCjYH+153xE6s/cWKI\nl18BcWDwmMwsv+2hkDZrRuCmg97eMuFwqqStF6LDUfTeG1Su1g3nUdo+XCjCIFo/+MUVF+9f9hhN\n/r+Lp0091r995XV313scxe1qVCkQZ3xiYMXj4eJbSnjmrnSK9tV/jKycQJajhCQP1dUNz2AkhBAd\nja4Bf+L85caM4VmH3GYLSWogY1t1hdbHreoxKI3LGhdJyYChDCefMUN3UkTgev3zeYG/8+t+i2Hd\nb1oGz3m5eSH726wKrz6aSm2+ACEAo9MOQI33+4DZrmXd9TQgsFQ0ny+A1xcL7Dab2Uw/qitiAXB6\nY7v0Bu3ayW4L/B7+dtMDmB4PBH/VLuWs8+7siVJubOOUCxjwweusvvK2Jo+/EyTgFUIIIYQQQggh\nRCcm5cYOEDa3GYtBmyyzpWUCEEeNf/v2mefzufkMAGZP+IknPzmaxUzAHRPb9oNtYzLB13k5kpL9\nyyWDhrX66727eEP9nfZj8v+KOFD5b4A6Wyl9QFBskKcRmXEOBCkb1+GMjQ9pS93wR4P2VdzuBmUc\nCuwQ+COl6vXEJTY8m0VO78BN7ZR0D1VVDX9ZIYToaJzhVabD+DMJGcIvAN0mM0meUv/6oUdpQRpu\nVYde17xMQhDIAKOvNdDeAyMP3GYNHWN1Zf3TGL4HBHylKo0eLWioo2USstUorPml9UuJtjSnNzOQ\nL47HbTJTTeB6oUdfbe7C4A0SqvF+poMOs6Gogd+xwqGH4YyNCzm2zvt7Ey3Q+Peb7uPtn7aw9fRz\nWuCdCCGEEEIIIYQQQhx4JEjoAOFQDRgN2oynNS0jbLs9JZUJcb+wrctwnvs+UHbMbYlpszGK9qdX\nFIz6zvXPZ8kL70Vsb46q7G4h6x4pRSbE/sngDURppXJjPgoq3z3/Xqu+hk/R4PByiO0haftmdo07\nPqTNXF4a1u+Ih25jxqieZP/6IzNG9SR27y76fTyfmOLCRr3ejw+/AIAtNZ3+w+wR+5hLiph4+TQy\nf/8lpP3QsdpN7vgEVYKEhBAHNJez/mtdfyYhQ/iUgCs2jmRHsX9d56va2QLlxgDcJi1yROcIDQq6\n58V8evYPDxT6e11oxhhrVd3TGEOOsGLwBwlp2Yn6famdn93ujhUV/8GLSTx6fSZb/mxc2eT2tmKJ\nNs8Qb9E+z9olm7v0cJG0dRM9v/rY3zbpnArufLYAPFrg0KL/zuOHJ18n//CjKO/ZB1tKGgDJW7QU\nyXVlcJTsr0IIIYQQQgghhBDRyczJAcLhMWLQHsjEmp7pb/+DodiwUJj8AKpeT6+9a0L2q/1Unjiw\nZSdZOHtk9/YeRtt64QXQ65l8VH9/k83pZsHK3U0+5Kqrbqeqaw/2jDmWaccM9Lc3KiPGfkihY900\nEfuf/TUbla/cmOpq/o3N+lhTwwN1W4Oq3z/ivJfd+zQec2iGg6Ttf5O0dRPlB/Wn+/cLOfyROVi8\ngUMTrj0PgDPPGtuk19sz+hgADNYaLDGRbw6mbN5A1qpcsq48h9+vvYtNUy9C1eu57uFC7FaFufdn\nYo8cXySEEAeEhgQJlVRp3wONMUpY2I8zLh5TTSCa0uHNClPsSqFP7C6ga7PG5zFqAS+1MwnpDXDZ\nHcXccUGXkHa3q3YmoejvL7u7k1ufKkT/SWgmIZM3k5Cng2US2r1d+5JfWbZ/nPcbat1yLUhIH6dN\nOfmyRwHc89I+krZu4pQZx/M0X/nbU0rzgEQU74dUMnCov9TonrET6LfgLQCOfOhWANLWrWLrqVNb\n/b0IIYQQQgghhBBCHGgkSOgA4PGACyN677xbcAmxoawDYEFKasQABmdcfFibEAeUyy4LazIbdEwc\nlBmhcwM9eDcA/YH8citZSdok+MRBmTiHHoLr4IObd/x2Em+WU4I4QPnKjbVSkJAaFKviNrdNRrGM\ntStD1osGD0fvaPvIl+quWuDp6stvYfhzj/rbT5lxPN8+9x5Hz7m8RV/PYzLj0esx1FQDMPGsStKy\nQu/4GoJubI/4z/0UHHokpQOHYjCCwahiMKpYK1t0WEIIsV9x1hMkVF2h8NbvYwDQGXQRg4RiivL9\n63argt2msNPZlQn635o9vtqZhPQ2K3q7DVdMLL0GwP++2MUd53ehRz8Hf+TGhAUJ1XgzCd387wIW\nfxLP1Q8WccFRPQAwmVV0OjBWa3/oXd6SmAa0spMNCaDan/iCmtb9ZmH4GFv7DqYOeZuNZOa4sMSG\nBvA6E7UgLdUQCBI6uHsBp5yoZSGcyyx6kgfAc1+P4fN716F4a+GpusD8hdtoQud0YCovxZaajqW0\nmL/Pmtmq70kIIYQQQgghhBDiQCV3hA8Abm2+E11M4OOcn7uD5E3rOfn8kwGwJ6eit9aE7SvlkURn\npCgKWYmW+js2lDdCIAvgj9UYASnkJ8T+QzG2Xbkxt6lxf1sSYwx0SWr+36Pdb7yDKz2DAc0+UtP8\necGV/HnBlcwY1dPfdvzldT/d//43f/hvHjaYouCKicPovaa5+Nbw0mbG6tBaYgabNXTdAI7wajZC\nCNGhFewOBFS4HPUECVUGZaWJUG7MbTKTtTKXe1/ax8PXZmK36bj5HC27j0M1hvVvLN+50pdJyJeZ\ns7TPQL6c9zXJaR7+98Vu9uYZuGlqDNbqwPtRVfj9R+2hmOxuLq5/pAiAgwbb2fqnGaf3vad7g2ld\nMdpVeQzauaBwr4G+Q5p3Enjj3ykMH2Nl2KjWD9op3Kt9x//ynUTOva6s1V+vKTauNnPf7CwA5uXm\nsWeHNuYZzPOXe/Po9eSwi910Y8qJh/j37cFOvuYEDmENiWiBXYrqCxIK/G56TGZ0bjdTTgyUWy0d\nMKR135gQQgghhBBCCCHEAUqChA4Avqch9ebQyWBbmlbyxJGQiGow+kt9hNhfa8MIIYQQLcVXbszZ\nOpmE4vO2A9o5t7GZhNLjzYzomdr4Fy0vh6++grFjYccODhnRtuFBv8z7ghI1/DLSlpQS+XoD+HPm\n/6Hq9ShuN8UHD298gJCXqaqCAe+9SlVODzZOuzhkW8bq3xj9wE0hbXp76E1cg1GVICEhxAHnrouy\n/cvbNxk57Ghr1L52WyD4Ijhbi09NllZObJT6C4NHnEjhHgPF+7S/+X/V9ObUZo7VbdGChEbfdwOj\n77vB356y5S+OvP8mfr3rcQBi47XzdnWVjn07Ddx4dmiZs9iEwHl90jmV/O9uM3vzjP6AVXtikv+h\nGAUtqP+Zu9IZfXxe08fugq/fS+Dr9xKYl9so/IbRAAAgAElEQVT04zSUxxP4vu6ww/74jE/h3tDf\noZunaZ9TEuX+cm8eg5H1HMzvF98Cr4Tuf0Tv7SRvKwAgcdsmfyYhlKAgIYNMXQkhhBBCCCGEEEK0\nlHYrbK8oyiuKohQoirIuynZFUZSnFUX5W1GUPxRFOSxo26OKoqxXFGWDt4/ibf9KUZQ13m3PK4qi\n97anKoryraIom73/TWmbd9k2XN7064ZaD3Xak1JRFQVbclpI+55R4/nqlU/55a4n2mqIQgghRLtx\npGpBOBmvv4+pvOWfwj9o4QeAdgOysRn6mhyqm5gIU6dCTg6MGdPUozRZ+bDDKO87MKz9m5c+Dllf\n/NQbfLLgJ1ZfcSurr7qdNVfcyuqr57BzwsnNHsOIJ+8Naxv52F3+5bWXXAuA3h5ahk2ChIQQ+yO1\n/i51GnV8IGtsfc+B2K1BmXl04VMCBm+2thNmTUZvAKdDISFZy8aXaqpo5kjBZYmec7PPF+/7l+O8\nQUCvP54aFiAEoUFCiSnh2QKtGYHAqT5s8S/bapr+oMyeHc3PpNQYB48MBLr6yqwF83gCmYXbS3CJ\nsZmjeviXc9gdVG7MQBIVZChFYfu7zYGMiqdOP57hzz6i7aMPvF9DrazIv972cMsMXgghhBBCCCGE\nEKITarcgIeA14KQ6tk8C+nn/XQY8B6AoyhhgLDAMGAIcDoz37jNVVdVDvO0ZwNne9tuARaqq9gMW\nedfbhKrC5rUmXzWiVuG2aZOjemPoZKdqMGBPTsWeHJqhYPktD1Ay+BC2nTKl9QYlhBBC7CfKDNp5\n8FJeZuSdN9TTu/HcwVkYGpmhT6frmBn9or3Nqu69yL3zMQCW3fMUe0eNp7prd/48/4pWy14Yv2sH\n6Wt/J33NcuLy9/jbd44/EQC9w07ypvVYirUsBUYjOJ2tMhQhhGg3ej3ExHkwmT1Yq+v+mr97eyDQ\nRdWHZxJad9FV/uXSfIW9eUYqy7R+Ol3zv9i6zQ0rzGswgqJEfz1fcpnY/D2kpmuRMgf3DQShLLvn\nP/7l7uziOp4EqPfnU5fgAKPW/I4PYLcpVJYFxvrqo6lsWGXm8RszmDmqB+XFOh67IYPzj+pB3t9G\nZo7qwfoVbZ9qKDjoLFgZyTjiveXGvE80mcuKw/rpopyU1aBMQrVLiW45c3qTxiqEEEIIIYQQQggh\n2jFISFXVH4GSOrqcAbyhanKBZEVRuqA9ZGkBTIAZMAL53mP6Hms0eLerQcd63bv8OnBmC76VOq36\nKYZ7ZmWz+JO4VnsNd402Iao3hW+r7NaTqq7dAZifu4P5uTuo7tojvOMBrGPefhVCCNFSBo8IpI2Z\n8dfjLX58nUs7DytNyANxIJ6jtp46lfm5O9h+0lmtcvyFbyz0L3f/fiGnTxnHCbMmc8L/TcFUFchw\n4YqNB7QbkieffzKTTzkckExCQogDk61GISbOQ2y8SnVl3V/zX3xAyzR7BL+GlHTyqejd37+8e1to\n5hyd0vzSnWqE0lG7jj4egKLBw0P7qnWfKZO2buLMM0Zz7G9zmfO/fOae+D8Avn75E8r6DQrpeyir\nAHDYm372DQ6IKc4PD7BqisoyHaWFocfK+9vIxcd05/cfY/1tK5bE8sDlWaz6WQuyuuKUbvyRqy3f\nfm4XAL5bkNAiY2oMmzXy79td3I8jQQsSQlHw6PUYqyoB+PPc2f5+OpeT6qzwTFHBWa4MNdUA5N7x\nKPNzd7TU0IUQQgghhBBCCCE6pfbMJFSfHGBn0PouIEdV1V+AxcBe77+vVVXd4OukKMrXQAFQCXzg\nbc5SVXWvd3kfkBXtRRVFuUxRlBWKoqyoLKsrhqlhSou0yb6/17feE30LXksGIK8y/G39+MhcVtx0\nX6u9thBCCLG/C05g81dlDyZePo0pE4eQtGVjixzfYLMCUBZ0U7UpY+tI2nPYZf0PprJbL0oGDCFt\n/Sp/+5ZTzw7p57Jo5UsOf/xuf1vfj+bRe8EbOGzhZWmEEKKjqizXseTzeKwFDjKL/8ZarfDDp3E8\nd29anfvlMipiubFgpprKkHV9C2QSiuTn+5+htN9gdK7oqd6e+mg3D76xN6Qtbq82ZdDllx84eIQd\ni6qV5yrrMyBs/1i0klV2W9PPYjZb4Oe1eW3zv+OXFumYfVI3rjoth21/aQFZW9ab/EE/jWU0tnJ6\nIyB/l4Ga6sDPcMnn4Q9E3XLWDyRSiSsmsE3VGzB5g4RKBg7l0/eXsO3EM9E7HehqRe8u++eTEPS7\n6TZrP2tbSnqLvpfoOugFmhBCCCGEEEIIIUQD7M9BQhEpitIXGAR0QwskmqAoytG+7aqqngh0Qcsy\nNKH2/qqqqhD9UX9VVV9UVXWkqqojE2qV6WoKo0l7qSWfxTf7WNE4tXuTDO+1K2ybPTUdZ0JSq722\nEEII0RE887l2jjyLj8halYupupJ+H74RsW+vLxeQvPnPBh/bd2OrKqdno8eldNQooXZWdPBwjEFZ\ngwAqevQJWbelZbLtxNDkkT2++wyLrRyHvdWHKIQQbWb2id0AsBKLESeq08Pcf6Xx05fhwRueoBhJ\nVaeLGq26evbNADiplUmohYOEljw6l4VvfonbYqGiR2/0dhsD588ldm/4d9uMLm569Xfyf3cVc98r\n+7T34M2ElLR1EwCm6krcBiNus8W/3w+Pv0LRkEOJQfvi7GhGkFBwJqFn7mp+wMrvSwKZgu68UAsM\nuvuS7CYfL7Obq9ljqs8NU7oya2J3/+/SFu8DUcNGWTl5hnZuHp69DQBXTKC0nMdgwFitBQm5LDFU\nde+F22RG53RitFaHvMbeI8eFrK++8jZWXH8Pe8aGTfEIIYQQQgghhBBCiEban4OEdgPdg9a7edvO\nAnJVVa1SVbUK+BIYHbyjqqo24BO0MmMA+d5SZXj/W9DKY/ez1WiTiLHxzU/LHs3uPG1S7oj+4ROp\nQgghhICUdA8Hs46lHM0KRrCLHHDWyiajqiRt2ciee3/Cct6jDT62zqllPfCYG59RoKOGCLV3cJMj\nIYmE3XkYrDX+NlVf67JWUVh19Rz/qtuo1WW1YMPu0uNpvUszIYRoEx/MTWLmqEAp6Qe4Az1uPK5A\nIE/toEibN8jl5pEfouqil8vafdRxAPQgL6TdoGuZTGzLb7qfvGMnsXvcCZT1G+xtVUjasYXDnn6A\nM88ay5EP3uzvP+2KMv/yuFOqGWFcw6A3niNz1a8AeExmLEX59H//dRSPOyT4ac9RE8mbcIo/k1Bz\nyo3VV8qtsWLi6j8ZjT6hmi49tWuNrj2jZ1qCwPxDWyjYY0D1/qoNHmHj1qcKmXlNGW/+nEef+D0A\nuM21goQqtSAiX/CQx2hEb7f5szL6OBKTQ9ZdcQlsmnZRx03BKIQQQgghhBBCCLEfMbT3AOrwKXCV\noijvAEcC5aqq7lUUJQ+YpSjKQ2j31sYDTymKEg8kePsYgFOApUHHugB42PvfT9rqTRTs1n7ENVWt\nF4/l9s4TqiZTq72GEEII0dH9TV/sWDicFQBc+9e7HBG0fcC8uRQ9s5yz+RqAebVujEZT2a0nbATz\nkYczvHty/TsESU+Qc3dTOBK1LIn9F7wVaFTCr7XsQVkh3SYzKAoJaFkMqqshIaF1xymEEK3po5dD\nM8bewb9YwGRcQYFBt0zvylML9vjXfaW2YnT28ODKIK4YLcPN15xIj6Aq4LGGlknFtnnK+Wyecn5I\nW89Fn4es9/nsPeBdAIYcbgvZdvJ5J4Wse/R6Jp96BNF4jMYWCRKqLAv9mXk8IVWxGs3lCh1LpCxH\nOb2cTL+yjMK9BuKT3Lz0rzTiEjysXhYT1jc405G/zabgdkNsXMtmgVq9LIbMHG0y4sgJgaBdnR4M\nNm3dZQkKEtIbMVdowV6+MmQeowlTZXnIcefn7mjRcQohhBBCCCGEEEKIUO2WSUhRlLeBX4ABiqLs\nUhTlEkVRZiuKMtvbZSGwFfgbmAtc4W3/ANgCrAXWAGtUVf0MiAM+VRTlD2A1Wrag5737PAwcryjK\nZuA473qb+PKdRP9y4d7oT2o2R0K8g2P5HrcECQkhhGhH+/vD3XYsIeu/bO6F4g5kRNj0zBZO8gYI\n+ehtNqaO70/Pb6LHF5cMGAJAlxPGMbhrYqP+ZSZYoh53f9beH7UrNryEjqoPv85SDUY+/GoVG6Zf\niqm6kuwVy0hEy2JQURHWXQghOhSzJTwLjR43q38P+g66J/S5IKc3QMais0cMrvRxe4M7urOL4Smb\n/O1XD1zQrDE3VXxS4HxtqKkO2560Y0ud+3sMQUFCzSg35nYq6PUqM68pBZqfucflDN1/xY+BoJpB\nh9p4fcqzPP/VkaRluhg43E633i7umZvPGRdqgTWz7y7mPx/v9u9jqwn9TL/7MJ6Lj+nOrIndaQnB\n5erefDKFJ27KBCCrVpkzg1XLDOQOChKKKS0itlArE2dNz9KOZzCiqC0bvCSEEEIIIYQQQggh6tZu\nQUKqqk5XVbWLqqpGVVW7qar6sqqqz6uq+rx3u6qq6pWqqvZRVXWoqqorvO1uVVX/T1XVQaqqDlZV\n9QZve76qqoerqjpMVdUhqqperaqqy7utWFXViaqq9lNV9ThVVUsaO96C3XpmjurB2l+bfjPvurNy\nmrxvXaw1ehKpwGNsfJkTIYQQorP6jSMhv9S/PoO3w/okbt+MwW5n7N3XELtvd9h2AFXKVrW5SCVy\n1CipHOzJqSE3KX2ZhCRISAixP2lKnERwjM9ho7S/bQZcUXprHHZtpz65X4aVeAoWnAEmJU7rN1M3\nj6T01gvo+OKtr6NuS0gKnGwtxYWNPrbHYCAG7X3s3Gps/OC8XC4Fg1El3jueyrLmPQjkqlU97M/f\nA/MN1mod539wJWl5mzBWhZ60+g9z8NSC3Rw1qZr0bDfnXOkNWgrKJLTtLyOvPhbIqPfU7em46v71\nqNeHLyVFbM/MCT2wuawEe2JSxABeAFtqOgB6eyBD1LaTzuKLed80b4BCCCGEEEIIIYQQol7tFiTU\n0axbrk3W/fJtbIP3KS5oncxBtW3bmYgFGx5j0yc7hRBCiM7I+OzndW6P27vLvzzi3/fU2VfRtXd+\nnbbT7lmjIkRmqXVkxPAYAtdIvkxClZUtPywhhGhLvnhJo9nDbfdsBbRMQnXxlxsjeoAQhGaAiddp\nGXgyPfk441uvTmN534FRA4UssYHgpJh6goS+e/bdsDaPwUgaxQAseKlxpUGDuZwKeiNkddOie/bs\naF4F99qZhBZ/Eu9fLi8NnNdS/1obtm9GV7f/fHzaeZUMOtTmL3Nuq1G488IuIf2XL47lgqN6NCkg\nzeezNxLD2g4ZbWXYviWYS4r8bTElhdhS0qMeRzVoP7cBH7zubyvtN5jyPgOaPjghhBBCCCGEEEII\n0SDNm9HqRKortcm2n76K47I7G5aIaM2y1i8hsmOzdtPrXc5htue1Vn89IYQQ4kByd+653OldHqpf\nx1r3EP+2uO1bsZSV8AdD6c7OqDdGFbx329o9cqbz0EVIhRAtWwEQEkjtyyT03sJqyLC3/OBEixrY\nJYFEiwTCCxFJUqqbmkodx/+jCoPTATQkk5B2rvKV3opG1etxmc0Y7HZMHi3bSwaF6ByOFhh5dOV9\nB7L0X89x9JzLAYinkioSQk6xluKCkH0+f/tbTp1+PADbTjyTgsNGhR3XYzCSQhkQCPBpqNIiHd9/\nHM9ZF1fgcoLBoJKerQVjLV0Yx6FjbfUcITqXK/q1g680HMDEq2cyP3dHnceKT/awe5v29zJ/d/Sp\nHrtVCQm6aiiPG9zu8PFecelfTLxkBrvHHMuSf78GaNmebGkZ9R5z68lTOGjhBwAUDz6k0WNqLXJJ\nJ4QQQgghhBBCiAOZBAk1kLVaCxJy1zGJV1vRXu3He9EtJbz6aCp6ffSJuJ+/isUSqzJiXN1PdNY2\n5zzt6cDZPIcjPqtR+wohhBCd3ZbqbsA+ALrrd4cECZWf8wpj+60kg3UALI+7OuIx/E/kd6I7Su39\nVo1VgTRA1pR0Pv78Nw5+/Rl/2ztLNob0D84kFJephwJ44t44DptU3PqDFc3SMy1WgoSEiKJ7Hyd7\ndxiZdnkZY67RzlH1ZRLyBZ7Ul0kI4KPPl3PCpWfhqtFOdOkUoXO2frbcnRNO5r3v/yQhbyubLuzP\n19c8RbclFYy79TKqs7oSl78HgAVfLEdVdNhT0/nz3NkMfut5iFJ60uPNXHMGH7PSfHKjxnPVqd0A\nOOwoK267m/iyfIZ//RpwB78uioMHm34ucXtjutKyXBTnB6ZnDju6hjMuqIBLG36shGQ3VeVaCfKC\nXdGneirKdFhi6/49ieS7BYEsR8eeUeXPepRj3w5A9opl/u0xxYUUDxoW8Tjv/hA4Ry+/5QEOWvgB\n5T37UHjokY0ekxBCCCGEEEIIIYRoPCk31kBfzNPSaqdnhz+Z6XZB4Z7AZKnLBU4HeDxgMHi49e/r\nOOGsMmLiw0tj+Dx7Tzr/viUDa3XT7rr9l6spGjaySfsKIYQQLUGh4wXJOFSTf1lH6Hm6iHTsm0v9\n6w++P4GINTp8iYQ6Ubmx9masDgQJlfUdiKrXk7R1s7/NYw7N5hicSahnWuAz9US/NBNCiP2e2wU9\n+jowGCFr1a9AIEjIaPbQq78jLGuOoxFBQs6EJOxJKXTVacG0RhqXgac5XLFx2NIy6cI+Lnz6HMbd\nehmAP0AIwJaSjj1VK2llT0oBQImQaQ5A8ZapTKaMmurI0yD5uwzs2hY9uMbtUtCVVWFWbRz56sON\nf1MRuJwKOr3KUx8F3te9L+3jxseK6DukVtamCNcgOT9+Q98FbwFgNqs47ApfzEvgl+8CZdLPuKA8\nZJ+SgqY9K1ZeEpjzmH5l4FyaWJYPgN5hZ8JVMxj64hMk7NoeNZOQ22IJWo5h8VNvsOjZd5o0JiGE\nEEIIIYQQQgjReBIk1EBJqdpka2V5+I/s7f8lc93kHMqKtW33XJrFheN68NmbSaTpSxmw4E1++8ZM\nVbme6srwG4grl8b4ly+d2N3/NGFDdO3pZGDMVsoGD23kOxJCCCE6l9o3yWrTK6ERIzfyb7bTy7+e\nyygmXnkOA959JXKwUCfS3gFh6y+6xr+serND/HHZjVH7u41m/7IvmwRAdYVcCgshOi63S0Fv0M5H\nld16AVBMGgBOu47ufR1hmXDttoYHCQF4TCb+lX8Fc3iQabyLPzK2DTiilPn0C8oaZE9KBrRAlUiK\nhhwGQBLlWKsi/+2/YUpXbp3elZU/WSgt0qGq8OuiwHf16kodao0DEw5M1qrGvBU2rzWxZb0prN3l\n1D5DnQ6OOa2KCWdWhgQHlffq61/uvvhLRt13A1krfmbg/Lkk7NjC+FtmccSjd6BzOtDpwVajY/5/\nU7QMR152u8K83Dye/HA3APvymhYkZDIHPvu4RJXXfszjxW93ElOU72/PXvEzQ195GgBramiQ0Iob\n7iF3ziNhx907ajy2tMwmjUkIIYQQQgghhBBCNJ6UG2ug7O5a+m+7VUdlmY6EZA/ffxzHoMPsrP5Z\nmzi88pRuYfulmCrBDmXVWp+VS2M5+uTqkD4vPZQasv7r97GMOaGmQeNyOhSGGdZhT05pytvqHCSx\ngxBCCGDq5eV01+3kmVcDJcViDYGbpLWDhAD20NW/fCyLyVqZS9bKXGoystk5wVuuxBswJJmE2o41\nI4u1l1zH0JefwqPXLmcre/Rm99iJ5Py8KHyHoI/GYzByV9dnuH/PVfz8dRwnTasM7y+EEB2A2w06\nb3KX6uyuOGNj2b0pB4BzrixlX54Bd1BVqe2bjDz7Ty3zTgKVVHUJ//5am6+E1IPcCYDShkGywVng\n6lM8eDgAO447LeJ2a2YX/rjsBpJeLMdareDxBGKMXC4o3heYGnnipsgBK3vzjFRWGjGhBQidNLWC\n7z5KQFVDy3DeeHYXho+x8o9Z5cTGaz+ve2ZlA3DwSBtzninwv64vYzHArDtKAgdRVRS3G2dcIFDq\n6DmXA3DQwg8BOOzpB/zbxt55Fe/lvBlx3L5AsbgE7TrHWtO0ANmC3drP6O7n94KqYjQpGE0qMcWF\nEfvXziS0aepFTXpdIYQQQgghhBBCCNGy5PHpBvIETa4u+iiegt16Xn44jdtmdmFvXvTJS4M+9Iaj\n78nNYOaY0D5rf7WE9YnGZlVIcpVgT05r8D5CCCFEZ6UkBDIC6HExyfUF5jLtppyihN/4nMr7gX2D\nsiccPedyUv5aq634bpgqEiTUllwx2mepC0rBuOTxl5m/bFtY35oM7ebs2ouvwWMw0lW/F4A3n5Qg\nayFEx+V2KRgMKtm/LiV7xTJi8/diQ/suec7nN9Pv6w9CMgmtWRY4B6Yby/h0wU+Nf9E2DBJS9dGf\naSoYfkTIennfgby7eAN5x0cOEgJwmS0kUoGqKtisgZ/LtWd25YYpXaPu5/Pmkyms2NLdv56UaMfl\nVHAFVWHbt9PAvp1Gvno3kVnHdae8WBeSuWf9isB3/Z+/CmT7qW30Pdcx/ag+pK9fVe+4ALov+ZpB\n818MaRs5voaTzqngrIu1TIpGbyagppY4/+GzeAD+OTuHId5sQQCWooKI/R0JSU16HSGEEEIIIYQQ\nQgjRuiRIqIHcblB02qTa+y8kc/0/tCc0Xc66J9jWlR0EwNV93gWgJkJq88wc7eaWb/Luxy/imTmq\nBzNH9aCmngk8W41CsrUARQ3PfiCEEEKIUP2OC9ycO5RV1BBLvw/eAECvq/tcOp+ZeIJS0ky68FSO\nePAWVF9bZwoS2g/eqsui3exWXEF1WhUlpPyMz97Rx7D4yddZd8l1qAYD/4j7AoDufRxhfYUQoqNw\nu0BvgAnXnguApbwUB1pJqy47/sDsqArJJBRcOluNj2nSeastMwnVHt+n7y9hyaMv8cudj7PksZfC\nurtjYus8nNtsIRYtY68z6OGdsqK6Eyxf82Boppy1DAOg2x8/A7D8B+11Swv13Hh2aLDR3p1Gbpwa\nOQBp4duBLEGnTJtAvw9eB1Xl8Efm0Pvrj+scUyTzmBmybolVOe+6MpJStesbo7fa2Ydzk/nzd7M/\n3sth17IaNZQOlWFz/+1f75r7Q8R+HlN4eTUhhBBCCCGEEEII0f4kSKiB3G6FmLimT4g+Vjgbo9lD\nVXn4jzwx2UNiipt/zCoP2zb7xOgp4D1ucDp0xFNF7y8XNHlsQgghRGeRlukmLtHNjKtLUVH4kpPJ\nfuktAIzu+gNGkixWFg04z7/e97N3SVu/GpAYobbm9gYJxRRHzmAQQlHYO/oYVL0ej8GIwe2k/zAb\niSkSZC2E6Lg2rrFgK7D71798/QvsmAGIpQYjTqor9Oz1ZrIJ/i5aldOjbQfbTLl3PkZV917sHnc8\n2049G2cTstS4TWZ/kJDd3vAz2ZAjbCHrr3EBAF1/+xGA/92tlXB74YHQMuIA98/OCmt78tZ09u00\nsGuLFkTzLlNJ2rGFwx+/G2NlBf0+mhfSf8fEUxo0zjEsC1l31wr8Cb5OefDKLM4d3YNn70njovE9\nuG1Gl3qP32ewHZM5cN40VpajuN3EFBdSNHg42084A7chkGU5f8ToBo1bCCGEEEIIIYQQQrQtCRJq\nII8bYmPd9Xes5cTEJQCYK8qIiVGx1mgzc9dN7srt52WjqrDsmzhUjxpSLsNn5PiaqMe2eZ9+jKOa\nVVfd3uixCSGEEJ3Ri9/s5pSZlfzOSACyKCCmYC8eS/Qn3nV6LVC4ymbmuI1v8NSCXf5tiTu95a06\nU5TQ/sCbAiF566ZG7eYxGFBcTvQGQjJsCCFER+Lxxmps3RkIlintfzButICgWGowoH2/vGW6FgDi\ndATOUxtmzGrQ62ycelHIet6xk5o85ubYcdzpzT5GcCYhuzUwFZKQHHoyeOTtPby6JA9Fp3LyjAri\nElRe/ymP137Mw4GRC9AyEH7IP/z7fP9xHGt/jaEhViyJDck4FFzaVO+0h/Vfd/G17Bx3ApU5Pfhz\n5mVRjzuXWbx63qucNK0CAJer/usSX8mzukqo+5jMKn37VvnX43fnkbH6VwB2HH8ay+57mhU33w/A\ne9//iccomYSEEEIIIYQQQggh9kcSJNRA+soquuRvaNQ+Z15YxoKKwCRqRZme7z/SUooX7jGQt9nE\nR68kAlBZbmD8TReHHSOnV/S832VFegAyKGTDubMbNTYhhBCipXXkGJnJpx/J+pr+Ube/snhnyPr1\nk3PIO+qEkLaO/P47IoPN2qT9PAYjeqcTvV7F3YAbqEII0RZUGpe11uF9YCSLfQBsP+H0kBNRDFb0\naMEvHrfW7vb+9yiWYk8Kz3oTye833IMjTvsOu3HKBRQdcnijxtlS3BZL/Z3qO4bZQhzVADx9RzpP\n35HGnRdmhWRYmpebR7feLkxmeGvZTmZeUwaAwaCV6zJ6A6/Wn3c5d+gf8u/38sNpTRrTcb3WhKzH\n7d3tX949diJv/7yV8j4DWProXD77cCmrr76Dt3/6m9WX3wLAov8Gsg7FUcOw5C0MPFQLNIrwDFKd\nXM66tzudCkZDIKDq4Nf/x3FXTgdg3xFHA7DljOnMz92BKzaucS8uhBBCCCGEEEIIIdqMBAk1kLvc\nTgaFUbcPHxO4UTX2pGqe/WIXlx73G7GE38BSg+Z/g28ods1dwvsvfsuhYwP7OOpIg75nh/a0X9ZB\nDXkHQgghhAh22NGh2fr+cAyO2jfSw/A3b7kBJwZUX/GtThQlZNLrMBva95/B+/PeOvncRu2HyYji\nckkmISFEh2a3an8D70LL3JKycT0ABTkDWMZourAPN/qQfXyZhBZyMq6Y2Aa/li0tAwCPqWNnhnGb\nLRjRImH2bDfy66I4tv1lRlUVTp5RwX8+3l3PEaCk/2AcCYnY0jM52f0Fk84MnSMYcoSVyZeElxGP\nxlPrPJTgy04IuGJiUfV6alMNRjZOu4TFT71B/sixLH7qDf82g92K3qBNOLic2uc96I3n6P/eq0Dd\nmYp/+iqO8uLoU0Quh0JS6V7/eo/FX+bzZZMAACAASURBVPqXq7Nzou7XEXWeKzohhBBCCCGEEEJ0\nRob2HsD+rHCPgfeeS+KY06vYVtWVUfwQta/RrE3E9R5o54p7igFI+e3PiH2Db0jFJ2p54q/kGQCm\nXHYCzp+2MOMoLfKnriChknxtwjDx4CSKG/aWhBBCCOF18vRKVi4N3CTNYh/5ZAOQlOrm/+4qJjXT\nTf6uyJdL7+09kdWs427uA0DRdZ5bSmP6prf3EGDQjeAp46B77+Wg+PgG71bVJR1TdYVkEuog1MYl\nVxGi07B7MwnFo5V/+u659wAwmlRGkwuAq9bXfXuNwiG99pCwvQq3ueGZeexJKQA44xOaPe725DZb\n6MvfEbf1H2onPTty5KilKJ/0davYdcxJOBKSKIuJw5qWCcD5k9bx5cfH+vvGxKn0OTi8ZFjUMblD\nz0M9v/20YftZLOwdNR6AvUeOY+0l1zH05afQW60kp2lzDF2qt5O6YQuHPvswAJumXkRyWvTo2LkP\nppGa6eK/n+6JuN3phIy88DmOneNOwBXX8POwEEIIIYQQQgghhGhfkkmoDlUVOj55PYnr/6E9Ffc2\nM6L2ze6mPZE489oyf1tMcQEAK6+eA8ComN8BWLMsxt+nvEQL9HmQO/xtmatymXnWZgA2rDRHfc3q\nSu3ji0mWG1x1UeQ5QCGEEBF0O8iJOcbDzDM2AfgDhAAemb+XQ0bb6N7HycjxWoa/+ETtxtqQIwIZ\n/zYxIHDATpRJaL8QGwtPPAGNCBAC8KSlYar0BglJJiEhRAdls2rfBeOoZvUVt2JP1YI3VYPR3yc4\nSEhVYcMqC+VV2vdLtyn698za3N4MQrbkppXUao6d409k26TJLXKsqpweHMS2iNuSM6KfEE666HTG\n3fZ/6Bx2FI8HVafHmq4FCWVW7gjpu2uLkeFjbDz/9a6w41x1f1FYW+0goZxli/3LBmv0rD8hFIW1\ns67HkZCIwWbloEEObr5oOW+vHcNJF53m75awYwsmxQHAIaMD1zJnXBDIfFRSYKCyXEdxfngGI6dD\nwYItrH3pIy82bJxCCCGEEEIIIYQQYr8gmYQa6cVec/jhtJuZ/1/tacpxp1Qx45oyYmI9DBhuZ9Ch\ngacGLcWFuCwx/DXjMjJXL+fqLa+Qax3Bv2/J8Pf56JUkQJvc3TdyDNkrljHx6plMBOahsnNL9JTu\n1jIPsVRDQsNTxQshhBBCk5Ds4ZXFu8j/xcq8T0K3xcR7wvr/5+M9uN0Ql6BitylcfEx3APLJ0jpI\nkFCHoCYkAmDAhdvVsUvnCCE6r+oKLUgomTKquvbwt3sM2ld8t9GEyxn4un/uaK3P9iIt0KcxmYR8\ngUf25NTmDboJWjIApSarK2W9+3FGzWI+yT82ZFtdGXZiC/cBYKypRnG78ZhM/vJavb/7FLjQ33dv\nnvazSkjyMOQIK5YYleseLkJRoLoi/DpBR/TXrerSraFvDQCXJRaDtRqAScM2kEJZyPbTpk3gJx5m\nIbcSmxC4zjl+ShUlhXqWLtSCbm+e1oXKMj3zcvNC9lcrbJixU3ZQf4oHH0Kfz9/HozfI9Y8QQggh\nhBBCCCFEByOZhOrQtZeWHSg10wVAGUlM5X0mnVPp73PZnSUM/v0zjrv5fA4dqz1VN/y/D3LO2D4M\nevslrGkZoCh0W/ot2Xs2RHydGMWGATfbTp4Scfs9s7IittvKPCRThjNWUnsLIYRofx31FpHNmw0g\nmCFCGLUlViUuQat9ZLaozOy6EIAb+TfQucqNdWSeBK1cjhEHHskkJITooCrKtK/yiUku8iae4m9X\nvCnSKnochJvwbDCDsnYD4DY3PJNQdVZXAFyWmHp67v9csfFclPZBWHtympuRj9/F0LlPcuLFp5P+\nx4qwPobqKnQeN6pOT012Dm6TGZ3TwfFTAvMDp51XxoSrptP1p0Xc/nQh1z9S5I+hGf/incQbrSHH\nvG3Am9RkZLNh+qUh7Yuemc+ay29p1HuzJ6VgLivV3s/myHMPJrRMQpYYlWGjtLEkpbmZfXcJ/YfZ\n6HaQg8oy7fem9jnSbfNgxo6pspzltzzIjw89z2fvLUYIIYQQQgghhBBCdCySSagOOm8IVUWpnu7G\nPSQ5K7CVGdAFzbVayks4es4VAAx7/jGGvPZMyDFsqYGsQWP5GYBBh9rYsCrw5KZVtWBLSmH7CWcw\n+r4b/O0vczGX8Aqb15opzteTlhU6S2etULUgoTgJEhJCCCGaKvgm2Kw5xZQUht9UjSR5z9bQBokR\n6hB8mYRMqhOXSz40IUTH5LBrf7+cfbqHZHJJ3bQegJQtf1GZ3hVqVbj6xjEBaFy5sXUXX4MjIZH8\nEaObOer254yNY4wtN6zdaIL+H7zhXx/5xD9Ze+n19Psw0Ja8dZO33Jg2UVA8aBiW0mIufLCUSedU\n8slriUyflkf2qcvIXJnLO8sCpc1yfvyG/h+8wdmM51Uu5qJbSjhuchUD/7kVt8nE6itvY9DbLwHw\n2bvfU9mzT6Pfmz05FUtZMQCmqoqIfXajZUBKTHFz6e0lIdtMFpVNfwQy7JUW60nLdOOwQ+EeAyXO\nJL7jOGwpz+Ixmdl17KRGj1EIIYQQQgghhBBCtD8JEqqDb67V5VSIM9cAYC4vJW7PTkBL137U7Zf7\n+9cOEAKwpab7l804iIlx+TMTBbOUl6LWSlvQjV3+5U9eS+TiW0tDti/LzQAycCT81qj3JYQQQoiA\nXgOczP5nEYcfo5UFaSidSYf3gXwAFCm30SF4UrVyOTGVxXjc4VmkhBCiI3j+Xu17pskUOSXajomn\ncuquH3m76LSQ9pzSTUDjyo3VZOew+uo7mjjS/YsrNo6YkkJueqKAqnI9z9+XFrFf6sZ1jL/5kpC2\nXl99RPyu7diGjgC0oJyEnVogUFY3F5fdWcKg194CQOfxEFOwF2tmFwDG3zILgJe4lEFvn0RObxeo\nKjk/f481LcNf0s2j1zcpQAjAnpRMTOE+4vbsJG7froh9XuViIFCuLti630IzRX33YTyfvp4U0raZ\n/qy87u4mja8jkWs6IYQQQgghhBBCHMik3FgddPrAjUKzagdAUVXOmHwUe0eMQUUha1X4U4jBUjau\nD1k3Gty4qsKDhCIZReDYiz5KoLQo/OOyYMWenNqg4wkhhBAinKLA0ZNqGhUgBFDdu3f4gcR+z9Wt\nOwBVqwopLTSwb6fEzO/PVBr3/6UQHZXaiF/14L7mKEFCf1x2A+PTV5KhL/a3rR37j0DSO13nnApw\nxsVjqK7m0LE2jj65mntf2sedz+bT47vP692356LPMVeU4/EG9NiTUjCXBx7kyVi9nOHPP+ZfP+v0\nUaCqGCvL/W06VAYYtwAw+M3nMFVVkLRDW5+fu4N3fq6VpbARXJZY4vbt5ozJR9Hrm0/97b/d/ADz\nc3fw7XPvsYl+pCZamXFNWdj+514X+lBS7QAhgKUcRcFho5o8RiGEEEIIIYQQQgjR/uSuSB2C5023\nO7uHbMv+/ZcGHSOmKB+A7//zFhOuPRejzo3Dqm17jJuoGjuCa36+0t//w69WkbHqV8bdPptEKvn1\nsjkc+eK/AJj3nxSuuj8wyRtntnOp/QVsKSOb8vaEEEKIFqUoCimxxvYeRpupGj0aNgbWFZ0ECXUE\nbm+Q0GK0kjsfv5rIrDkl6OWqWAjRQVhrAucbsynyAyhuswWP3sCTGf/k3H1axtsEW0nEvp2JKzYO\nY02Vf73vEAdnnno4sUUFUfcpGTCE1I3r/OuORC14RtXpiCkupNviL9l17CSStvwVtu+M0b3C2kze\noKHhzz7S1LcRkcdkwmC3hbebtdJyzrh4+vE3W9KHs9DybVi/Xv0dYW219SCPvOYPVQghhBBCCCGE\nEEK0I7kdUo//u6uYF+5P49XkK6kxZBFbmN+o/fMPHwtAdZduAJgUJ3abNqmbRjEzPC+SSikL3/wK\n0FKW7zp2Er/c9QSj77+RPj8tBLQgIYe91s1Hj4qCKpmEhBBC7Bf0OoVJQ7u09zDazLJutRoMclnV\nIXhvlvosXRjPto0mHpm3r50GJIQQjbPyx0BZqITywoh93CYzqsHAsH1L/G1d/lwOgK0Tf390xsZj\nqKkOaasrQAjg2xc+ZOjcfzN43gtYUzPYOFUr2ZW0bTMA426fzfxftpMcIUgoEl8mopZmsFlD1v8+\n/RzKe/dj20mTAXDGJQCQvHUTB7/6X9ZfcGXIk1FOR3iw8+ARNs69rpQ552nXd9HK2wkhhBBCCCGE\nEEKIjkPuZtVj3CnVjDulmpNO+ZrqjJxGBwmtvuI2IDARa3bbcNhjATDgousvP2BLTqWs36CQ/bad\nMoXR999I2p9r/G0GY2gOelXVnl50xcY1+n0JIYQQonmMnSdp0gHnx4eeZ/ztP7CEYwDYtcXUvgMS\nQohGeO7edP9y1+VLI/Zxm82oOj1u9P42nUfLOtSZHzJxxsahdznp8ssPlPfqS012Tsj2ooMPZdEz\n81ENBo67fCqrL78Ft8XC6qvnsPrqOSF9M9cs9y9nrFlO/wVvNWgMPRZ9TvcfvvSvr7jx3ma8owB9\nrSAha0Y2G6df6l8Pnjc45IXHMZeVsOW0aSTs3Ma+I45mwHAtSOi6hwoZeYyV4nw96dlaUFDvgXa2\n/WWm5ujDW2SsQgghhBBCCCGEEKL9SJBQA+kddmoys+HPyNvticmYK8r861++9jmlA4f6150JiQDE\nVxZQnnSQdky0CTe3JYaGMFtCg4RQvanDFSlvIoQQQrS1klpVW+R03HHsOnYSL3aZwoC9v/nbHHYw\nmevYSQgh2pmqauea7n0c7PQGN7qNkYMc3WYLOqeDHkHFoTwmM9jtbD15SpuMd38U6y0Hfuz1FwDw\n+dvfhWz/5uWPA8svfUxdqjO7EFewF4DjZ5/tb197ybUMffk/Ufcb8toz/uX1F1zJprMvbNjg61E8\neDg9FgeCj1xmS8h2V615h4HvvsLAd1/xr8/P3cG83MDviy9ACOD2/xYw4JzZYG7Y3IUQQgghhBBC\nCCGE2H/p6u8iUFUMNdVU5fSI2sUXIFQ8+BA+/HJlSIAQ4L9zGEsN1hrtaU4D2pOctSfrfP4+YzoA\nr3M+AD36OmsNS0W1yJPvQgghRHvYurW9RyCaI8lYFbJeVa6P0lMIIdrfj1/Ece7oHpQX68ju4fK3\nL7s3NBjFmpoBgKo3oHfYSaWUJ7iBYaOs2BOT2TNqPBvOm92mY9+fqIRG9J46/bgmH+vTBT+x5rIb\nQ9r2HjmO6lrZieribMGswBtmXsan7y9h19HHA1qgWLDa62FUNeqmuASVw1mOJ0pQmhBCCCGEEEII\nIYToOCRIqA7xu3cw8vG76PbDV+jcbu3JyyiqM7sAkHvn49hT0iL2KeszgAwKKS3XJtZ8mYSMVRUR\n+zsSkgA4nU+1hloZClSPluFICCGEEG3P4Qhdd7sj9xP7J5M+9AOzWSUVlBBi//X1uwkA7NtpxB70\n98qRmBTa79VPWfLoS6Ao6JzaieoGnuTdnleRsDtP+/7YiVPfRSvVvfbia/jsvcWNOpZqMLBnzLEh\nbdVZXdk17kTyDz0yrL81JT2sTdW3YICqTkdV915aBmRAQQ3bXpdDnn+MxG2boh/e6YiauUoIIYQQ\nQgghhBBCdBwSJFQHg9VK/w/eYNzt2pOWg956gcpuPcP6ffna5/z84P/YOf5EKnr2iXq8bSdNJpMC\n3G7tx25EywwUW1QQsf+W06YCQZN7QXN8hppqVBTM1ZEDjERAJ54DF0II0Yqs1tB1u8TtdiyG0Kq7\nN0/r2k4DEUKI+m3fpAVnOB1QUaoFlrzDNJxxCSH9arK6snuclklGH3Ri8pWVylqZ2xbD3W9tnHZR\nxPZd406gssdBjT6e78Een94LP8SRlMyiZ98l/9BR/vaCQw5n5Q3/DD+AJ3r2nqZyxsYD2pxBbbuO\nip456eDX/8fEq2ZE3a53OPAYjc0foBBCCCGEEEIIIYRoVxIkVIfqrNCbRX/NmMVnH/zI/GXb/G3v\nLN1M6cChFA0dwdJHXqzzSUBzWQmZBAKC0imK+Do+lT378NFnv/mDhBK3bAzZrqKEPx0ohBBCiDZx\n++2h6xIk1DH4Yoc9ej239Zgbss0j2aCEEPshd6C6GNYaHeUlOk4Zvp5pvIczLj7qfr5MQsHUTv4E\nhS0tM2J7vaW4onDGJ4asbz1tmragKCx67l3m5+5gfu4OvnvhA5wx4VmMFNXTpNetiy9bUqQgIbdZ\ny468bdLkiPvGFBdGPa7O6agzu7IQQgghhBBCCCGE6BgkSKgOvoAfZ2w8NRlZrJl9s7YhKE23pxHp\ntu1JKSFBQlvvuIXP31nEpx8ujbqPLSXNHwhkLi4KGpyKikJB0NOJQgghhGg7J50EpaXQu7e2brO1\n73hE46h6A9d0eYvnv9rlb3vm7sglY4UQoj2VlwQeRLFZFWqqdAxc/SUAzijlsyByaep3lm5u+QF2\nMGv+76awNldMbJOO5YwPzeS08po7GtwXwJaW0aTXrUtVTg8A7MkpYdtUvZZFz5oaeN13lmxk7cXX\n+NePn3UWEy+fFrKf4najc7s7Tbmxzh1KJ4QQQgghhBBCiAOdof4unZcvSMhYU0Vp34HNrlv195kz\nKHn2E/96Qoqbil596x6DwRCULSj49bUgIXQyfSWEEEK0l+Rk+PhjuOkmGDGivUcjGsNjMKC4XSQk\nB7I4/LooDh4sbsdRidpUSZopBGXFgSCh5+9NByCeKgBcEbLT+OgdETIJGaRc1J/nXc4hLzwe0uZI\nTG7SsVS9nkVPz8OWnklM4T7cdQQbFQ4/wr9cPHAoe8Ycy9aTpzTpdeuy4/jTUXV6dh5zUtg2vV2L\naA4OTvKYLay99HqGvvI0BcNGkvnHirD9Ujf8AYC5vLTFxyuEEEIIIYQQQggh2pYECdVBDcoY5Kr1\nhGbuHY+iuBuXGtxtNtOTHf71mDgITwAezhck5NEFJocVbyahTp4tXgghhGh3w4bBN9+09yhEY6l6\nPYpbqy82+dIyFryUzPCx1nYelRBChLPVhH/pS6ASALclpsHHKe0zsMXG1JGpBgMbz76QAe+/5m9r\naiYhgPwjjgKg/KD+9fZd+OZXDH3pSXLvejysVFmLURTyjjs14qb4PTsBsKWm89ut/wpkBtLpKO03\nOCRAyFJcwISrZxJTlI+5ohyAAe+/xu833ts64xZCCCGEEEIIIYQQbULKjdXBl4obwicNt542jS1n\nTm/U8TwmMxfxauD4Rn0dvQMqumt1TJzmoDF4g4QkD7YQQgghRON59AZ0LhcAZ11cAUB2d2d7DkkI\nIdi42swTN6WHZNHyRHg2xZdJyJf9NpIN0y8NWf9y3tctMsYDwe833sv83B1UZ+ewb8ToZmcNbqiy\nfoNY+siLrRcgVI+UzX8C4DEY+fusmWw79eywbT6TTzmc5K2b/AFCAFtOORshhBBCCCGEEEII0bFJ\nkFAdVJ2O6uwcoOnpx0MoCoopEHjkaWCq99x7ngTAbQzqr4KKgk4nNRiEEEIIIRpL1evRubUgIV/y\nyPXLLe04IiGEgPtmZ7Hyp1j+Xmfyt6me8ACW36m/xuXf/zivRcd2IPrk42V8/8zb7T2MNleTmd2k\n/Zbf+mALj0QIIYQQQgghhBBCtDUJEqrH0oee59fbH2btJde2yPHcJrN/2ZGQ1LCdvHeuVDUwOayV\nG9NJIqEGkJ+REEIIIWqL27ebtD/XoHPY/W07t5jq2CNUZbmODSvN9XcUQogmePCqTP+yL5PQPXP3\n+dvu4v4GHWfl1XNadFwHpE5Uw/ujz35j1VW3UzRsZNi21VfcWu/+HmPDz5NCCCGEEEIIIYQQYv8k\nQUL1KBk0jC1nTMea2aVFjucLEhrMeuzJqQ3aR/F9SkFJg1Rf/vnOM58phBBCCNFikrb/DUD62pVN\n2v/aM7vywBVZLPk8riWHJYToxPJ3BbLOOu2Br+q+r34Z637niff3kNf3cLqzq0HHlKAOEcyakcWG\nc2dH3KZ6JxesKen+tnUXXc07P24KdOpEAVVCCCGEEEIIIYQQBypD/V1ES/KYTGxgIBnGUr6O/a1B\n+6je+WE1uLKYW3ucVObohBBCCCGaTudyhqyXFOhJzXTXu5/dql2gvfhAGksXxrFhpVaq7Nb/FDDs\nSFvLD1QIccC7YUpX//LI8TX+ZY9b+9J3xH/+yd+T5xNjcjX4mPkjx7bcAMV+bUhOIhkJTc9wZzjn\nDHj2Yao++QzHzz+RdPvNpD32IOMNBmouuAjzVws5dmBGC454/2XSy/N0QgghhBBCCCGEOHBJkFAb\nc5vMDGQj1SldGhzho/jSBQVFCakeySQkhBBCCNFcE649j2X3PEVc4lVUV+jZvc1Yb5DQuuWBm7CH\nHVXDyp9i/euPXJvJaz/mIck7WoZafxchDki+EmPBy3rcmMvL+H/27jtMqur+4/j7Tt/eWHoTxIIK\nKEZRVESNit3ECvauiVFjEI2J+anRKIklRk1iw4a9oMSCDREL0myoSFFYOmyv0+/vjzs7s3dntsE2\n5PN6Hp6595xzz5xZdvaZ2f3M96QVb2r1PBVDdmnnlUl3lZfuoU9O2tZPcPAYME0K64+v/wPxesqP\nPwZA+9RXFhERERERERGRrqSPR3Wy+u3GWrvVGIDhsJJA9Rmh9atd+Gus/zpVEhIRERFpvfrXTu/f\nNz3eNubWa5l81xYA/LWpX1ytX+ViwWzrj68zHsuJtzcMCNWbPzu5TUR+nh5+GJYvhxUrtn6OYBDS\nPM74+ZDhAcKhxM8iM2K9EXQQxV1TRVrJljbN/8r/5vPaK3O3foEiIiIiIiIiIiLys6FKQp0slJEJ\nQCCvoNXX1G83hgmhIEw+vS8QK0WvkJCIiIhIm9X2Tmzr44hEyMi2SnUEg6lfXN14bm+Cgdbl6x/8\nSw/GHlW07YsUkW5tv/1gwYLEeTS6dR/iWL8+cXzYSVWs/dFNJJyYyFFVDfSMVRIqwxEJUzZsOIuu\nvqlV8/t79Gr7okRERERERERERORnSZWEOll9BSF/WyoJGYlKQhceNqBRX/utTURERGRHEU7LsJ17\nXNYWY6EmQkItBYSmzSni6c8SwaCvP/dt4wpFpDuLRu0BIQC/f+vmqqhIHGfmRHG6IBxOtLlqagDi\nISGAlSeczubRB2zdHYqIiIiIiIiIiMgOSyGhTuaPVRBqSyWh+pAQJgwYGmrU125LExEREdlhhNLt\nIaHM2mIAwk2EhFJxOs34scdrf11251U9qSjVS22Rn6vS0uS2QGDr5jr55MRx38EhXG7Ttt2Ys8oK\nCTmI4omFhMJeBRFFRERERERERESk7fSXi84W++tRIDu39dc4YpWEMNhtlP3jqQoJiYiIiLRdOLYF\nbL1fnT0eaLqS0K4jk0uE3Pf6OvoPCfL7qVvibUN2T6QEaiodRKPtsVoR6W6efDK5rXFI6KGH4Oij\nm5/n7bfhp58S5z16RXC5sG035qxOVBIac/sUAKIe71atW36+9LsBERERERERERFpDYWEOlnGxnUA\nBHLyWn9Rg0pCwcZ/uNIvAkVERES2yqxHXmXNIUcC4MMKASW91orxpiWqBu07rpa7X1pPbkGUO5/Z\nyOhD6uJ9v7u9OH48+Yy+PP73PAWFRH6GPvwwua3xdmOXXgqzZlnHK1ZYb+uefz7RHw7DhAn2a3zp\nUZwu07bdmBm0ThwkfphEFBISERERERERERGRreDq6gV0Zzlpbo7dq0+7zun821/xn3cuq488odXX\nmIaBQRTThFDA/oerRUUDGduuKxQRERHZMZTsuQ+f3vxPTh+/O16sEiBNVRKqfw02+e7NjDowuapQ\nvcI+EX57azH3/7kHAO+/msX7r2YxfV5RO69eRLrSMcfAzJn2tqa2G7v/frjySuv4jDPgtNOswJDb\nnTw2N7iFhXOs96CfzEpn7FG1mFHr54+TSHxcxKftxkRERERERERERKTtVEmoGU6HQU66u13/ZY4b\ny7K5Cwll5bR+IQYYmJimSShokFeY+Fjp8L4bO+CRi4iIiOwYImnpQKI446uP5hCNQiQMX33mIxyG\nD2Zk8P0X1h/kmwsI1XO5zaS2VT+kSAOIyHarvtLPcccl2poKCb3+uv28pqbpeU+95Ij48YzHrPeM\nZtT6mdKwkpARjiDSkKH9xkREREREREREpBUUEuoCRpv3CDOI4mT297sQrjPpX7I03nPxuE/bd3E/\nQ/plqYiIiDSnpqe9cmRlmYPbr+zJ1Gt6cu5BA3n0joI2zef2JIeEbjy3fatTiuwI3n4bPB4oL+/q\nlSQLhazbo45KtDXebqw+QDRggL199WqorbW33fPPKMP2ClDIFkwMBudtpv9Q604isTzQkkuujo8P\np6Vt60MQERERERERERGRHZBCQl2grZkVM3bB6pICFn6SSVq0hp34cesmExERERGbdx551XZumhD0\nJ7/GOvG8ilbN53Ilh4Rk65imvpY7sr//3QrjzJ/f1StJVl9JqEePRFt5ORQ12FnQFdvcu7jYfu2e\ne8LIkfa2iy8xefHAP8U/TtKvbBnVFdbbdTNWQGjjQYdRPnRXADbtq02nRUREREREREREpO0UEtoe\nNAoCzWd/FjGajfRSSEhERERkG9U1qiQUDhnse2idrc3tMTn10kRIyFtWwl4P3w3RKI25PB2zTpEd\njSf2XAqHmx/XHoqL23Y/9ZWEMjMTbUceCYMGJSof1Y/56afk61essG5/9zuYNAkcDhj5338k5s/O\n5rtF1jaHZv3OYi4Hb05/h2fmrdb7QBEREREREREREdkqCgltp/Iopxeb9cthERERkXYWCRtEI4lz\nwzA5aEKN7WXXryfsw16P/pN977op6fqKEvtL7FMuKY/N2yHLFfnZqn/OpcjitatgEAoL4YorWn/N\nypWQng4jRiT3rVpl3daHhL75xrp96im45BL72GuugaefTp5jfqU1cXWFI15Ry3DpvZ80Td8dIiIi\nIiIiIiLSGgoJdYE253oMg/OYNLmabAAAIABJREFUFj/9D5fGj02FhERERES22fcTL+YOpgBWNZFI\nJPEayzQNnM7EtldDZzwbP85b9h0AE8cMYuKYQaRvWMvoQxJViP7y0EbcHuvaUFCv20TawhF7t9rR\nIaHqaus2VVinKY89BrW1MHAgzJ1r7yspsW6DQXv74MHgdifOTz3VagOsfQ5j/Ln57N/D+tlSUeog\nGvt5ZDj19l1ERERERERERES2jX7L2AWMNn7GzzQMpnEBr13xIN/vdxyX8lBirkikmStFREREpDVq\ne/VlF5YB1nZj0UZVf5yuxPHI/0yNH68ZP4EJZ0+In5908lhcLpNzry3l0OOr2WVEMH6tKgmJtE19\nSMjv79j7qYvl+lobRnrxRft579728y1brNv6SkL1CgvtbePHJ47N8jIAisZPIOL1cf7gmQAEAwZm\nbF2qJCQiIiIiIiIiIiLbSiGhLtD24j/WBb2yK8mNltt6enz7RfssSkRERGQH0FRYO5iVgxvrr/eB\nOoPXnsix9fvqKkjftN6ao0GSYOAHb5C3/Dvb2NwVSzny1GouvrEUAKfLqhASDusP/CJtUf++qaND\nQjU11m2DYj7NOu006/a556zbHj3s/fWViRpXEtp5Z/j3vxPnmZmJY6O4GIC1hxxJ1O0mA2tR/joH\n0UhsYaokJM1QkWEREREREREREWkN/ZZxexD7bZ9hmjhC9t80rzl0QqorRERERKQNAjm5eLBeZ5Vu\ndiX17zTzRU468QAA3NWV8fYeS5ID2/3mvms7d8VCQtGI/oLbVq0NbcjPU33o4dxz4Z13Ou5+amut\n22AQpk5tfmxDQ4datzn2TGG8WlAoBEceCWeeCcXF4HRa1ZH23tvqt4eErPJDgdx8oi436ViLCvoN\nQmEnAC6ffoaIiIiIiIiIiIjItkn+C4h0uLZ+ws+sH2+aOENBanr2IWPzBgA27n9w+y7uZ0ifqBQR\nEZGWRDzeeEiorib5xcODXME9/J6JYwa1ONfIh+5i5EN3AfDJLffhcE6Mz5uWaeBLU/JFpDXc7sTx\nUUfB+edDr14wcyYsWZI83h+KsKUq0OycdbVW5aAehYm2lesdgA+AKVPg6F/Vkpff3CzpAKSVfA3G\nSIpfnAGcGO/dXB5kTWmYmjofTm+UO+8PUgvUlsYGOLyAk9qonzWlVmUy1+r19AH8eQVE3R4yolYl\nodXLPWRFnDiI4HA7aOWOaCIiIiIiIiIiIiIpKSTUBZra5qLpC6zx+029EYC1B/8yHhISERERkW0X\ndXvwxbYbq6myim1ecXMxD/7F2kfoQw5t8tqNow9g/vV34K6pYsJ5x9n6hsx8AecxZwIw+Yy+AEyf\nV9Teyxf5Waqrs59Pm5Y4Xr0aBjXK7JXUBJm7vLjZOe+Z0oOFc9J56tMiHLG6unM/z6A+JARwy9Qg\nv7qwMuX10Sg4nAPIK4xQ9dHbAFQ+MR2X+wT6Dg5RtNzD8o01zF1eRVVtH8r9QeYuL7HNURvuCTj5\nflMFxnIr1DR06Wr6UF9JyEWOaW0z/c6LmRzfx4GXAKbT2exjExEREREREREREWmJQkLbBXuoKOp0\n8vFfH8BX1vwvwEVERESkdaJuT7yS0HMP5AGQlZuo2XEA85KuWTf2MGp79mXhtTdjulK/rO6z4GM8\nR9al7BOR5q1ZA3vsYYWFfvzR3jdpEnz8sb0tGm25StfCOVYVoLpqg6hp4PaYfPRGhm3Myw/ncsK5\nlaR6Wn/waibRiEHJRleiZKkJ0+asIRgwuHD8ACJhqzkcMnC5k9fkjM0bCSfe53nLrTJDgdwCoi43\nY754DniW0YfUEVrqxEsADO0WLk1r84eRRERERERERERkh6TfMnaBtm9/Zf/F8sAP36boiONYdup5\n7bUkERERkR1axOPBHaskVC8aaf6aJedfyYIptzUZEKq3x4uP2M79dfpDrkhrrFsHhxwChx6a3PfJ\nJ9s2d9EKD5cd1Z8Lxw/gu0VWFaF7Xl4X7/9gRmbK6zavT36+OyJhHETjgaBw2MBfa1C80cWyr71J\n44+dZFUpGjgsGG/LKvqJsC+NiM9HdX+rRNLArM3UVDqoC3rIpBrTobfvIiIiIiIiIiIism26rJKQ\nYRiPAccBm03T3DNFvwH8EzgGqAXOM01zcaxvKnAsVsjpXeAqIA14ERgKRICZpmleHxt/HvB3oP63\nvvebpmn/a00nyklzM7hHeqvHu0ke25brd3QFGZ6uXoKIiIh0c1F3ckio7yDr3OuL4vfm4asoi/dV\n9R9MyZ77JM3z9UXXMOKRe2xtvZZ9aTsv3uCi/xD7fYlIsro6SE+HzZtT91dWQnZ24txsuZBQ3F+v\n6JXU1rNfIhlYVZ46kJNXaI257KYSiFqBv53efhVXbQ0f3fkwANGIwTfzreDRprXupDlGHei3bTuY\nvmk9Q994kbr8QgA++/Nd9J/zDnnOCqoqssgMWSEhjIykuUTqtf3DSCIiIiIiIiIisiPqyu3GHgfu\nB55son8CMCz2b3/g38D+hmEcCIwFRsTGfQyMA+YD/zBNc7ZhGB7gfcMwJpim+VZs3POmaf62Qx5J\nG/XK9tEr29f6C4b2sGrpr18Pb74J993HgVlZHbdAERERkR1MxOMhiD1YnJkT5cE31tL/y4/w3ZgI\nCK096Ag+vu2BlPMsueB3SSEhs9EWMGtWuhUSEmmFcBhcLhg5El5+OdG+226wdCksWwb77ptoj7Yl\nJdTI7U9tAODvz61n8hl9qSxzphxXW209n8ceXsmYcZPj7QM+egfDAIfTJBKG2a9ZlYh2GeFv8b7H\n/sl6m/rDGRdYDQ4HVf0Hkr6xhs/mp7HSNZzd+A5QSEhERERERERERES2TZfVKzdN8yOgtJkhJwJP\nmpZ5QK5hGH2w9t7yAR7AC7iBTaZp1pqmOTs2dxBYDPTvyMfQqcaOhVNPhWnTQAEhERERkXYVdXvx\nYf9j/uFTzqPAV8HxN06Kt31412N89I9HiXqbCHw7HHx+/R22pnJybeeP3pGvLcdEWiEcBrcb/vhH\n+PJL6/aMM+DJ2MdM1q+3j28pIhSNJrdNn1fE9HlFDBpmBff6Dg5T0DtM0J/6OfrOi9Z7sYzK4pT9\nTpdJTbWDdT9ZFYRunPRR84syTQq/WQTA5r33jzf78wv5rHIUAHVhL1+wd/PziIiIiIiIiIiIiLRC\nl4WEWqEfsKbB+Vqgn2manwGzgQ2xf7NM0/y+4YWGYeQCxwPvN2j+tWEYXxuG8ZJhGAOaulPDMC4x\nDGOhYRgLt2zZ0l6PRURERES6sYjHw+4sZQqJgM+gRbM58eSD4ufBzGzWjz28xbmibvv2QqXk287r\nahxcOH4AwcA2LlrkZywatf65ogGcTqua0G23wbPPQp8+1piNGxtd00IlIX9trArQ0TUU9Apz57Pr\nU47zeExCwdQhoeoKq8KQt7wkZb/TCe+9nEXxRqto7wlTTgPACIfIW/oNRtheRcxdUxU/DmUkPgwS\nyCsgy6hCREREREREREREpD115XZjW8UwjJ2B3UlUCXrXMIyDTdOcG+t3Ac8C95mm+WNszEzgWdM0\nA4ZhXAo8ARyWan7TNB8CHgLYd999t75evYiIiIh0O0YTBXyibmursTu4gY+PuILP30vHgYm3sjw+\nZtHVN7XqPhqHhM7hSa7l7qRx548byANvrCW3IEV5E5F2tqGijip/uKuX0WrBIEAWrttvYdmVU2xP\n3qBp9S1ZHmDZpmC8vbiq+eRdTZX1GZnho/1c8X+pQz4A7mZCQgB77V9HjyVfJHeYJv5a++dwMqgB\n4MyDdo63PTNvdfzYW5YorhvISVQdq8vvwVfuvRkSXAHAIt/+LOXFJtckovp0IiIiIiIiIiLSGt05\nJLQOaFjxp3+s7Sxgnmma1QCGYbwFHADMjY17CFhumua99ReaptnwN8CPAFM7cN0iIiIisp2JeDzx\n4yuvK+L+/o/A41A2bDjesmICuQX8dOwprZor6rKHhHrQdBjhlkt7cfdLG7ZqzSJt8eOWGlaX1Hb1\nMlot4DeALNyE+Oqb1YSyc2z9Xl8GP24IsHBVeeoJUqgPCWVkNR/Mc3tMggErcvH9F17mzMzg0j+X\nsmmN9fZ5+OgAjkYVgQCcgeSQkpswTr8/qR1g4phB8eNvz7kCf0HP+Lk/vwfDgyt5/v1vGfHQ3Qz5\n3/csbeHxiYiIiIiIiIiIiLSkO2839jpwjmEZA1SYprkBKALGGYbhMgzDDYwDvgcwDOOvQA5wdcOJ\nDMPo0+D0hPrxIiIiIiIApjORnXdFw3hC1h/1fcWbcfn9bBp9QNNliBoJZWTGj5efPIkl518ZPx8w\nNMg/XkhscbRprT1QJCKWSMS6dRHGXVud1O9wJsYAFC1303i3se8WeZk0ZiCvPJoNJEJC6S2EhFb9\n4OHreWm8+N8c/np5L+a+mcm0qXn84QzrbWVGVhRXTfKahr38ZMr5Cr+abzvPWfkD2T8tt7WtGT/B\ndh7I6wGAr7QERzhE1NWdP98jIiIiIiIiIiIi24suCwkZhvEs8Bmwq2EYaw3DuNAwjMsMw7gsNuRN\n4EdgBfAwcEWs/SVgJfAN8BXwlWmaMw3D6A/cCAwHFhuG8aVhGBfFrvmdYRjfGobxFfA74LxOeIgi\nIiIisr1oEAByhEI4g1ZFkLSyYjzVlUR8aa2eqnjPfeLHi675C6bDyaNcAMDVdxTTZ2CYaR+uiY9p\nHGwQ6Qjb2/dZJGw9J90kno8NOZ1mfMzXn/u44ew+fDAjk5rKxHP5tt/0AuDlh3M5f1x/bo+dp6ok\nlLZ5Y/yLFIlYc8yYlqhe9P6rWZhRI369u6aaiMfLTxN+FR+zz79us825mL0B6P/RO7b2YycdydCZ\nz9va/Ln59vP8+pDQFhzBINEG1c5EUtJ+YyIiIiIiIiIi0gpd9nFE0zTPbKHfBH6Toj0CXJqifS1N\n/FrMNM0bgBu2bqUiIiIisiOYd+NUxtx2HUY4hDNg3x4o3IaQUDgjk2fmrY6fR51OLmAaaR/fiBnb\niszjM8krDFO2xUVttUFG1naW4BDpYNGwdesinPR8BHC6EpWE7rzK2qbrsTvzeezOfKbPK2LdT/a3\nusFA4vMxjUNCmWtWccKp4/jiiuv5/pzLGX9iNbNfy6QpOQUR3DVVhNIzCGTn2vouOWMJDz23J06X\nyUjzG4jALi8/lTTH7s88bDsP5BXYzv2xc19ZCc5ggKhbISERERERERERERHZdt15uzERERERkU4T\njQV4jrjidHZ+/TlbXzgtfavnNWPbBBkN90YCTjq/EoBgQOUfRBqrr+ZjhYSSKwlVlDr54NUsopGk\nLiaNGch1Z/Ztcu70THtIKGPDWgD6fD4HgItuKGXcccnbidXbbVQAd001ocwsanr3s/Udc/BPAIw5\nvBZHJMXiGpn5wmxmPfpaUrUyf34hAL7SYpyhIBGFhERERERERERERKQdKCQkIiIiIkIizJMZCwys\nG3tYvG/NoUdv9bxRpxMgKTDg8VrVg0IKCckOqrbaIMVOYkCiSpCbEEdddBITxwwifeO6pHEVpc42\n32+TlbsabDs4/qSmQ0KGgRUSSs9g+SnnsGWv0fG+MY/cxl3PFnHxjSUpr119xPHx45XHn0bVwCGU\n7DEqaZw/z9p+zFdWgqu2hnBG05WNRERERERERERERFpLISERERERESDqtG9P9P3Ei+PHtY2qhbSF\nGZvXV7IFb1kiOOD2WEGFYFAhIel4Jt1vS7uLjxjAdWekrvjz6awMAJwkwnVHXH4aOSuWklX0Y7xt\nQ5H1/Kp/PrXkiv8rTmozzORrh+0ZZPq8IqbPK2Ly3Zvj7RdeX4K3rISeX84nlJFF1O3hm4uujvf3\n+uJzdg98Q6rCP19fdA2f/PX++PmPx57a5DpNl5tAdi49F3+Gp7qSYGZ2qx6f7LiM1Luvi4iIiIiI\niIiI2CgkJCIiIiICRBv9VT+YldMu85oO6yX3CaeO49cT9om3q5JQy1JkN+Rn4r1XrMo4WzbYw3lV\nFQ5ME174Ty4AG+gT78vcsJZjzzqK408bz/X/tII7t/2mFwB5hWHbPFPuTQR7ps8rIjvPChulZSR/\nUzlCwWbXOupAf/x4yPAgv56wD57qynhbxOO1jfdWlKWcZ+mZF9nOI15fs/frrSyn96LP6LHkC4JZ\nCgmJiIiIiIiIiIjItlNISEREREQEiLrsYYWo290u87prUm9bVB8SCvr1klw6XncLXE2bmp/U9s6L\nmVx2VH/OOmBgvO233J80DqCfucZ23vB5dPtTGxgxxm/rryyztiUb9eKDjL/qbFtf308/aPW6PQ0q\nFq05dAKQHPZxhEJJ160+4vikLcMah4uak7/0m1aPlR2TobypiIiIiIiIiIi0gqvlISIiIiIiP3+N\ntxur3GkX5kx9hMrBO2/TvDk/LbedZ61eSdWgobjrQ0KqJCQ7uGjUCjg8cZc9OHRN2v2k19WlvGZw\n+XfA6Pi5y209n66ZuoVBw5JDOvWC81fTh48gGmWvR/9JMCubXV55GoDeCz/llCP24qX3kgM5hsPE\njBrx5y0Q/9nQOOzjiCSqGpXuuidrDj2alcefljRnW0JCWeuKWj1WREREREREREREpCkKCYmIiIiI\nAHnLv01qW3fIL7d53ojHvo3Zno/dx2c3/xOXywobRCLbfBci25Wg3x6M27LeRW6P5CfCXoEv+O6s\ny+j38XvkrFph6xuy9CMgURHo3GvLWPmdh33Gpg4V1TuWNwDoO+9D9nr03qR+T3UljoCfaKPqQF6f\nib/WsFUSqu3ZG4CavgOoGDSUnNUrATDCVkgo7PWxcd+xfHv+lba5ok4njkgkqQLRyXv3s50HH38S\nz3nnABB44aWkfpGGvC5VpRMRERERERERkZYpJCQiIiIiAhSP2Dd+XFvYq93mdQaDtvOdZs1gwXV/\nxeW2qqaEQ6okJDuWkP0pgb/OiAeH8nuGKd1svU3NiFYRyB6Kq7YmaY5hrz8HPBw/79EnzD4HNx8Q\nAiigBICxN/6myTFpxZup6TfQ1rbPQXV8+k6GrZJQba++AITTM3jj+Q/IWr2S408/LF5JyIhEMJ3O\npPmjLlcsJGSvJJTmaTT23LOtf0Draw6JiIiIiIiIiIiINE0fNRMRERERAYr3Gs2M1z7jxXe/5o1n\n3m23ef15BUltpx2+JyeeewQADXYmEukwZstDOk0kYgWCevS2vvkDdQaBWEjo1xdVxMf58RH1eOJh\nnBkzPuWNZ95l+cmTcNdWc8t/18XHen2te4ROrIpF7rrapL4Ff7gFgBN/fTBpmzfa+i75Uwl3Prue\n9EyTqv6D2LjvgYTTM2xjzNiWhY5YJSEjmjokVDFkVwCi7kSVMUNZQREREREREREREekECgmJiIiI\niMTU9upLKCuHUFZOu8351eVTUrZ7sMqpqJKQ7Gjqt9jbdWQAgECdg9LNVpjG4zO57p7NABzBe0Rd\nLj6a+jBz/v4otb37UTFkF8p22QOAtNqy+JzetGjS/Rw7qZJL/mRVDjr9inI83ihNPdtmvPoJm0Yf\nGD8fOvN5W7/bA/13CpO9agVZa1dT1yO52ljUZYWEjHCIXgs/wRGN4koRRvrw7seZM/WRpJCRiIiI\niIiIiIiISEdTSEhEREREdhhdEceJ+Hzx4x9OPS9+7CYEQDiskJB0PNPsPrWEolHrez4t0wr2BPwG\nN1/SG4CSjU5GHuDnlZkL6MsGTKeLQF4B6w4+In59fUAno6o43uZJUUlo4pXljDvO2qrshHMqef65\neUljlp1yDu/fN53aPv2p7j8o3j7i4btTrr3PZx8CsHnv/ZMfVywk1HvBJxz+24kA7Pbco0njAnkF\nrDvkl7Y2/RQQERERERERERGRzqCQkIiIiIhIBysZPhKAVUedxDPzVrPw2ptVSUh2WNHYFnvpsZDQ\nh69nxvuG7GE9L4ywFaKrD940VFtohYSiGyvjbR5vyyEod21NUtvCP9zKpv0OsuZze3j19c8BqOnZ\nJ+UcnuoqAH487rSkvvrtxga/+3qLaxERERERERERERHpCgoJiYiIiIh0sFmPvsazH6+kZM+9AVh2\nyrn4+/cDIBLuypVtX/x+OP10WLasq1ci2yISsYJx6RlWSOiLT9IAuORPJewx2tqCzBG2nhhRlzvp\nen9BTwBGZyyJt51z0CAy165u9n7dtdXx4+/PvIhnP/kxaUxdz95EXG5WH3li6jmqKwlmZGE6nUl9\nqQJNVf0HN7umeoaygiIiIiIiIiIiItIJFBISEREREelohoHZMEBgGAQGWCGhJ+7KZ83K5CCEgIm9\nOsyiRfDCC3DeeV2zHmkf0Yh1m5Zp//8dOjwYP3bE0nOpwjjh2BZ+7lDA1p63bInt3FeymTG3/B6n\n32+Nr7FCQkvO/Q1f/ub6lHMDRLw+HLFKRn0++5A9H7k33rfb84/hqalK/bhSBJrefHpWyrEiIiIi\nIiIiIiIiXUEhIRERERGRLlC9y7D48VP35HXY/ZgmvPNi5s8iiPT999ZtWNWX2qzlzbg6T7ySUGy7\nsXq9+ofix0a8klBydZ76bb2MSJjz/lDCPPYHIGPDOtu4A/7vGoa8+TIDZr8JgCtWSajoiOMxUwR6\n6kXdbhwhK7A0/ppzGfHIPfT+fG6LjytV6CgSCzS1xEClhERERERERERERKTjKSQkIiIiItIFnL7E\nS/GODL18OiudJ+7K5/pJfZg0ZiBmd0qLpGCaMPn0Psx6ITOp7+qrrdsmCsDIdiISqyTk9pjc/MjG\neLvbkxhTX0koVXWeaOwbwBXwM+GYzezPfAD2+ddtGOFE0KjPgo8T84WC8UpCoYyMZtdnOp1kbFyP\nUb9Q4LCrzrKdp9J4rat+eUKz40VEREREREREREQ6m0JCIiIiIiJdwZtIRKz9seOq/Py01GM7ryjd\n9rcAZcUOln3taXngVqirNVi/2s2Td+cn9TliS9977w6565+3bhQOi8YqCTmdsPOewZRjHOGmtxur\nrwI04qG749WB6p150M5J43/x9z9zxsHDGHPbdQCE05MDaA2llWyh3yfvc+bYIbZ2b3kpAAuvvTn1\nhQ77c+vTW//V7P3YqJCQiIiIiIiIiIiIdILk2u0iIiIiItLhIp5EyKam0klZsYO8HtFmrtg6WXn2\nOctLnOQWbP39lBU7+O1x/QH454x19OjdfHWVNs+/2QqFOF3JqZaqKus22v5fJulE0di3zO4vPUpv\nzwD23O9XDNndHhaqrwiUqpKQ2SCM466tSeo//eBhtm2+3I2CRKH05isJNWWvR+4FoK6gZ4tjQ2np\nW3UfIiIiIiIiIiIiIh1JlYRERERERLpA1O3hF7FtkgDu/3OPDrmfmkrrJf8pl5QDUF2+9W8BTJN4\nQAjAX2vNFQlDbU37lEIpK7ZCQrkFTYePFBLavtXv2jXw8/c57KqzuOG+LZx+eYVtzC4vPQlA1JXi\ncy1G4ntt+JMPJnU7Q0E8VZVN3n/U492KVcOwV58GoK5H0yGhz266G4Dann3aNLcKCYmIiIiIiIiI\niEhnUEhIRERERKQLRDxe5rN//Nzjbd1+UKWbnbz2eHargzI1VQ5yCyKMOrAOAL/feguwfpWL4o3J\nWzk1pbbG4O7r7EGmYMCKNvz3rwVcfPiAVs/VnEVzrAosOfkRzEZfkmHDrFuFhLZP/jqDe2/owS2X\n9gbARThpjKeiHKffz+B3Xwegtle/Zucc+r8X232dxXvY97MLZmbbzpsLCVX3HWhdk53T7usSERER\nERERERER2VYKCYmIiIjIjqMbleuINKpmkpHduuTLM/fn8sJ/cvluYeuqodRUOUjPiuJLtxI3gTrr\nizD5jL5cdVI/fviydfNMPr0Pi+fat1AK+K25Pnnb2r6pPcI777yUBUB2fvJkgQDtdj87GpPWhdA6\n0p1XFbJgduJ7qD4k5KqxtgPrM28Opxw1kgGz34yPqe4/KOVc7/77ha1aw8e33t/imHcencEPp5wL\nwIzXPmPOPx6z9fvzmw4JhTIyAdj4i4PatC7D6EY/nERERERERERERORnSyEhEREREZEu0HjLo8rS\n1lX18cYqDm1a5wasikDT78ttMjhTWeogOy+C12dd9+BfejBpzMB4/y2X9Uq6dvHcNCaNGUhdbAux\n8hIH5cXJ2z4F/fZgQzjUqofQKm5PcqhFIaHtV02VwbKvfbY2J9a+Y666Gpx+P+OvPgeAA2++BoAv\nL7+uyfkqdxpmOzebCdmsOvLE+HFdYe9WrfeLq/7Em0+9RW2vvmwZua+tL+LzNXEVlA/bnbce/x/f\nXHRNq+5HREREREREREREpDMpJCQiIiIi0gUiHg8At181lx69w1SUtfzSfMrE3nw406pU8tid+Uwa\nM5DJZ/TlzWey2bA6EeJZ9YObFUs81FQZVJY5yS2I4E1rOlnz6N/ybed3TS4E4KLYFmILP0xPugYS\nVYnqrVnpafExNKdh+MdscHzppfDyywoJbYvGW7d1tnAwOcTTcLuxtC0bk/rLdt2z6fl89u/J9/79\nIouv/GP8vLpvYvu7T2+5L37szy9o1Xqjbg/lw4ZbJw0CSO898GyL15btthc42vZWW3WERERERERE\nREREpDMkfxxYREREREQ6XP12Y/sNW8uIMXUsnJM6iFMvGIC1PzYdwrnuzL5JbQOGBvHXGfjSTdLS\nm06JuNyJvosO72/rW/mth2l/t0JE519XyrSpiUBRZbm9+tFNF/Rm+ryiZh9HcyKJzEjs61FDbS08\n9JD1Ly3N6lNIaPsTCjUdEnKEwziDVgLsmwuvZq9H77WuiW3dlUrEa6/EVTZsN7aM+gVLJ10KgLuy\nglOPHJF0XTAze+seQMzm0Qdu0/UiIiIiIiIiIiIiXUmVhEREREREukDUbQV+nMEAPfpEqCxzxrf3\naugvF/Vi0piBrFjiTepryZqVHupqHPjSoziccNsTG/i/hxMVWx79YA0A772SRSC2dVhdjf0twutP\nJkIV/Qbb9xObNjWfuyZrY2OEAAAgAElEQVT3aPO6mhKJJD/+iorEsSoJbb9SVRIq3WsUEAsJBfwA\nlOyeCPb4c5up+mMYzL39wcT8aRm27qjbnfKyUGZWq9fcmZrZLU1ERERERERERESk3SgkJCIiIiLS\nBeq3G3MEg+QWRAB47YnkKif14aDbftMr5Ty3P7Wh2fvx1zriVYQG7xpi2F5Bps8rYvq8InwNqgvd\neE5vyksc5BVa1V3Ov64UwFbhaLe9A0nzL55rr4D02uPZbFq7dQVLG1YSAqirhcrKxHl9OEghobbr\n6u3GUlUSIs0K8jhCwXgloYjHyytvLODdf79A9YDBzc7pqqtLnDTa3st0pf4ejHraHrYTERERERER\nERER+blQSEhEREREpAvUhxWcwQDlxda2XTOfzLGNCYeSLosbNbaOf72+jrSMlhMzaz4oJ/un5c2O\n2VDk5jfH9qdsi4tfjK/l4GNqksa0ptrJC//J5d4btq66UCRsv4PHH3bbQkL1Xn11q6aXLpTqe9nw\nWkEeRzjMLy87FbCeF/6CnmzZe/8W5yz8emGTfVFX6kpCW+vtx17nw7sea9c5G1IlIRERERERERER\nEekMCgmJiIiIiHSB+kpChV/O58Scd1OOKd3sbPL6yXdtIb9nhJ59I/G2fQ6u5Y/3b+KJuUX8fuqW\nePuzqw7nuDOPoPDLBU3ON2JMoirLsq+8eH0mBxyZCAqde21pyw8qxrGVgYdIxH5eVkbKkFAwuHXz\nS9cJxbYbO/O3ZYlGrxXkyVv+XbzJU1lGa608/vSmOxulbhZf+UeKxk9o9dyNlQ4fyfqxh2/19SIi\nIiIiIiIiIiLdwdbtAyAiIiIiItskEqsktMsrT7MLT/PSoUuZtXCYbUzAb2X6L/5jCaMPqePTd9J5\n8u78pLme/qyI+bPT2PtAPx6fta/UPgcnQj87sxKAX152Cs/MW51yPV/PS4sfV5Ra4SRfWmKPqlFj\nrfkeencNhgHfLfZxz3WFKefKKYikbG9J40pCCxdBRZUf8CWNXVzU+jCJQHUg3PKgDlS/3diQ3RMJ\nr9ws69hXkgi0Vfcf3Oo5qxptR5ad5mJIj0z7mCOOZtSAXLh+CtXAqLYtu9O4nSolJCIiIiIiIiIi\nIh1PISERERERkS4QdXtt55llG4mEG4WE6qzgQG6PCFm5UY46rZq9x9aR39MewjEM2P+wuqQ2gONy\n3oeKRLsjFCTq9sTPp88r4uIj+lNbnSgy+p9ZawFY+kVijfUVizKyrODQvofUsdNuAX5aan8cAG6P\nyQ9febjl0t5MOKOSs64ub/oL0UB9SGgKd3An1/PFPA9fzLP6/vHCega+NYPbph3IV4xi6YaqVs0p\n3UMkFhJye0wev/Vt8v/8AL6sgQDs/cDfAPj8+r9RMWSXVs/Z8PsYIMPrYnjf7ERDSQlZmZkM93gQ\nEREREREREREREW03JiIiIiLSJSJee7jG568i3KiSTiBgnXu8iYo+PftFcLlbdx9PfVrE34+cbmvz\nlidX4Bl9SG38+LCTqsjKiQJw/DnWXl8XXl+Scv4b/rU5fpydlwguLZyTzi2X9gbgreeyiUZbt95I\nrNhNNsl7jGXmRNnVvZITeQ0A00waIt1Y/XZjLrdJv/wKjud/SVuCrf7l8W2aM5yewfKTz2L2vU+m\nHpCfDwoIiYiIiIiIiIiIiMQpJCQiIiIi0gUiXvsWWg6fk0jY4Pen9GHSmIGEgrDsKytI5PUlEjFO\nv59eCz9pVUrG4QBfRSkA5UN3BcBdXZE0btzxNQCMOrCOC6YkQkTjjqvhkffXcNhJNfG2vB+WkP/d\nVxQsWUxGlsltT2wA4Kjx65pcx7z30ltcK0AkYoVGMqlO6ktLj1L45QJ8+AEIBWHB7DSWfplcyUi6\nn3DIunV7wIhYgbKS3fYikJ2TGJOR1eZ5F0y5jQ1jxrXLGkVERERERERERER+7rTdmIiIiIhIV2hU\nRcUbtII4m9ZaZYLOO2RgvM/tSQSCdn/6P4x45B7eeehlikfs2+LdeCrLKR4+im/Pv5Jxky/E5fcn\njdltVIALry9h7NG1jZdFWkbivtM3rmPCucfGz5/9eAWDd4Wv0vdlp1d+4EVSbwGWkx9J2d5Y0G/d\neQ7JQSaXG/rMn4uP0QCcPy7x9Xn8oyLcKhjTrcUrCblMHLGSUXWFvZjx2jxOH787P5x2/jbfh9Hy\nEBEREREREREREZEdmioJiYiIiIh0kWc/XslrL8+lYtBQ0vzJW2zVG7BzKH6cv/QbAHxlqbcAa8xd\nU0UoM4twWhoATn8dABPHDGLimEHkrFiKYcBhJ9XYKhalMvD9N2znrthcI2oX4SHY5HWt3Rrspgut\nLcp6sanJMfWVhBr6xx8KW3cH0mXCoVhIyGPGKwmZTheRtHRefvsLFl/1565cnoiIiIiIiIiIiMgO\nQSEhEREREdlhGN2s1ojpclHTbyB1hb1Jq0uunlOvYXUf0+kEYLdnH2HimEGM+tftzdyBSeE3i8nY\nuI6wzwoJ/fLy05g4ZlB8yE5vv9rq9e7zr9ts5666uvixt5mQUH1ApLX6sKHJvlQhoSXz09o0v3S+\n+kpCbneiklA09r0cyM2Pf1+LiIiIiIiIiIiISMdRSEhEREREpIvVFRSSt/GnpPYjflXF9HlF8fP+\nc2aRuXY1AD2/nA/A8On/peeiz1LO6662qhNlF/1IxJs6SNNr8Wc4QvaAT/qGtRx69Tk4/X5yViwl\nfeM6ei76NOna+qpE9e5+cqXtfLe9rUBPa0JCwUDiOIcKlh5yMqdfUW4bE3U6MWhlWSLpVuq/B9yO\nEH0/fh+wKgmJiIiIiIiIiIiISOfRb2VFRERERLpY1rrVfM2xSe3jT6qOH6dt3sAhUy5Jef2hvz+P\nF2Z/b5UcMgwwTVy1NThCiW3K6gp7pby24Luv6LXwUzYccGi87aSTxwJw3GmHkrG56ao+Ln+t7fz0\nBy/k93wYPz/10gpuvczXqpDQW89lx4/7sY4twcGccE4l+42vxemMYoTDOCIRSslvcS7pftxrNgB5\nnHj+kRRuXAGg6kEiIiIiIiIiIiIinUwhIRERERGRLrb+gPG8s+TIpPbBuyRCPp7qqpTXfnvub9jj\niQeYeOBOSX1fXjEFgHk3TiWQm88LH3zHaYcNTxrnbmLu5gJCAAf+39Xkrvwhft533hxbf05+BIAG\nWaUmVZYmipy6CdN33hzSN62n94C+TBwziNWHHwdAf9YmXTtgaNNbnUn7iYRh3So3A3duxX9oAz98\n5WHaK9b3XcHGRLWpqCoJiYiIiIiIiIiIiHQqbTcmIiIiItLFvjvncqZyXfz8ohtKuPeVdQCMueVa\nJo4ZxLETf2m7ZvlJE/n23N9QsdOwJuctWPIFABGPF4BwegYvv7WYDfsfwuc33MHHt94PwEF//i3e\n8lIARj5wR5PzrT3oCNt5w4BQvaGsINNVwy9PqcLjtbYGe/u5bJYs8DY5L0AwYFUb2oMl8bacn5Zj\nRKyg0aD3/wfAqbzIjONvjY/JzovgcmsLss5w2297csNZfdhY1LZwz2uP58SPHQ22i1MlIRERERER\nEREREZHOpZCQiIiIiEgXi7o9HHB4YmuxUQf6KewbAdNkyJsvJY2v6j+IBdf/ja8uv45gVnZSf70B\nH70DJEJCAIG8Amb/8ylWnngmm/Y9MN6+93230W/ue+zx1L+bnO+jqQ+3+FhWMIz5p17NlENmsv+/\nbwFg1Q8e/nZl6u3O6n0wIwuANzkm3mYaBp7Kcts4AxiWvS5+7nCaRCItb2cm2+6HL30ALPgwrU3X\nVZSkDgNFXaokJCIiIiIiIiIiItKZFBISEREREekGTKeTJ/Ov4OgzKskrtKrnuGprUo7NWrs6fly6\n24gW5454fSnbw75E2KPnl58zbvKF8fNP/3JP8gWO1r19MKJRDv/dJPZ7+6FWjW9oIGts597ykqQx\nzlBie7Fe/cNEI22+G9kGzz2Yx+K5rQ8KbVybOgykSkIiIiIiIiIiIiIinUshIRERERGRbiDqcnOy\nZyZnX52onJNWsiXl2GWnnBM/9hcU8sy81aw44Yx4W3mjLchCGZkp52kYHspcnwjnLD95Eqsm/Iqo\nMxHuqC3sHT8Oe5vfOmy35x9L2R4ONXsZu/Qvtp2bhgNveVnSuF1fmMZlN5Vw8gUV5BZEVEmoC9w1\nubDVYzOzowD0ZZ2t3XQoJCQiIiIiIiIiIiLSmVTfXURERESkG4g6XTgiYVubr9QKCS34wy1s3O9g\nclcsJX3LRpb9+pyk6xdOvpW6wt5kr17JZ3+5m8x1RRx3xuEAlOy5T+o7baIykBGxSvOsOfRoBr3/\nP3445Vy+Pf9KAP733PsEs3JwBvyc+KuDWnxccziE6w5/i8/fz6Cu1kFWTjT5sUfBMEwOGLYK1sKX\nl01m1H/+TtTtxlNdlXLeg4+xqiw9cFOBKgl1Y8UbnRRvtN52rqO/ra9hCK09GIbCYiIiIiIiIiIi\nIiLNUUhIRERERKQbMF0uHMEAuz77CJU7DWPDmHH4YpWENo/an6qBQ6gaOKTJ66NuD99cfE38vHLw\nznx16R9Yd9DhzW7rtGbcUQyYM8vWtvPrzzH/j3fy+R/voK6wF19ddh0Rny8+bz1/bj6+8lIASnYf\nQcH3XyfNfwhz2XvfSiskVG2QlZO8hmDAwDQNMpx11rw9egLwy8tPo2j8hPi4ikFDyVm90nat02US\nVSWhDvfpO+lbdV1ZcdPfe9puTERERERERERERKRzabsxEREREdlhdOdCI1GnC19FGaP/eSvjrz4H\nV20NQ958CbC2FNsa355/JeXDhjc7Zu6dD7H0jAttbfP+9HcAwhlZLL76pnhAqLH3/v1C/HjLyF80\neR99sioAuObX/Zjzv4yk/kCd9R+TFba2WgulJ8YMnP1W/PiN595PutbhhIgqCXW4/9xckNR2wfj+\nVFc0/5YyFLA/6YIZWfFjs50rCYmIiIiIiIiIiIhI8xQSEhERERHpBkyXPTBx2mHD6ffJBwAEcvI6\n9L4XX30Tz8xbHf/343Gnteq6yp2G8elf7gGgrJkwkiMcih8/9NcCgn57cKSm0npbMuLDZwEIp2cm\nzfH8h0vBMFh+8lnU5SdCU06nKgl1hkiKr3GgzsGtV/Rs9rpFc9Ns5zNf/oi6vB4ARF0KCYmIiIiI\niIiIiIh0JoWERERERES6gdzl3zXd6ei+L9tXHX0ybzw9i6LDj0vqW3nsqQCM3HmTrf3lRxJ7jj3z\nr1wmn9EXgF5Y48Jee+WiqNNFJNYW8XhwBgPxPoeje1QSqixz8PS9uYSCXb2SjtGzXyhle16P5r/4\nSxbY/y9Nw8Gsaa/z5lNvJQXjRERERERERERERKRjdd+/NoiIiIiI7EB6L/qsq5ewdQyDip13S7kl\n2fqxhwHgCgds7SWbnQB8MiudN6Znx9t7shkAR8geSAlmZcf3iot4vHiqKzn+lHHsf9tkdn9lGtFu\nEBKaek0hbz2XzcI56V29lA5R2CfCriP9PPDGWn51YUW8ffjoQDNXwUFH1wAw9VirSpTpdFDbu1+L\n2+CJiIiIiIiIiIiISPtTSEhEREREpJvaPGJfVhx/elcvo9W+P/Oi+HHJ8JEEM60AUN6K723jdh1h\nBUse/EsPW3t9JaHS3faytTfclsp0WgGjrLWrGDrzBVyEoa7ry/f8tNQLwP1/7tHCyO1TKAguN+QW\nRHF5TFt7c8IhK9w1brD1PWAaegsqIiIiIiIiIiIi0lX0G1oRERERkW6gbOhuSW0f/Gs682+c2gWr\n2TpfXPVnwAo3zXrsdaIeKzgz5q+TWchozvtDKQDRKJhm8vUFlLD8pImEsnOY9ciMeHt68eb4sae6\n0naNizCRqNHeD2WbLJnv7eoltLu6Gge+9CgATmfiP++VR3JZtczd5HUvPZQLgJswAGY33jpPRERE\nRERERERE5OdOv6EVEREREekGZj0+M378+ksf8fpLHxH1Jm/h1d298sYCZt83HYBwgy3IRrOYA4+y\ntp6KRgyWfe1JurZsz5EsuvZmAEr23JuZL3yYNMZbXmY7dxIhEu3atzXRqP3820Xb3/9bc8JhWLPS\nQ22V9XWOFXOKu/GcPtTWJAe1tqxPDDRM64vUkSGh7hUVExEREREREREREel+XC0PERERERGRjhZ1\nJ0Iz1f0HdeFKto2/oGf8uHzn3W199eGSSAQ+fisj6dqS4aNsX4eqgTvx/n3TiXgTlXm85aW2a1yE\nidAotdLJ6mIBmT6DQmxY7ab3gHCXrqe9ffO5FXr6/gvr1uFMLgNVW+UgPSNia7v6V/0SJ/VJKlUS\nEhEREREREREREeky+g2tiIiIiEg3seL40/nyiildvYx2Y7rsn0moD5dEowYfzMhKGu/PzU9q27Tf\nQRSP/EX8/KvLr6Ns2PD4uYswUZxJ1Xw6U32FnV8cWgvYt+P6OfjHtVbw68Z/rCGr6CeMFO8iX/xv\nbpPXnzCxlNwflwFgOro20CUiIiIiIiIiIiKyI1NISERERESkm5h/41S+O+eKrl5Gh4i43IlKQg0K\n7dz32rr4cTgtvcV5SvYYxVtPvZVo8FmVh7oiJOSvM5gysTeP/M0KN+X1sCrpBAM/r42v+g4OAXDR\nqxdx/GmHEqi2QlBHn1HJhdeXAKkrQ9W7adPvGfzOawCYjfcqExEREREREREREZFOo5CQiIiIiIh0\nmBff+4Zvz74cZzjEWQdZ26hFIwbDR/vpPzRIQa8Il1y+ilkcScSX1ub56zxWRaKKks4Pn8x4LJu1\nP3pYssBadyIklHibFY3Ae69kEgp2+vLaTZ+BIQYOCzL4k3cA8BdbDyYrJ8qev/CnvCYaAcNhcsK5\nFQz/4s1OW6uIiIiIiIiIiIiINE0hIRERERER6TChzGwCuXkAGICTMNFQhEgYsnOt8j/HjV/NkbxL\neCtCQndW/g6AG87u3W5rbq1Q0F4xKDcWEqqpSrR/ODODaVPzmfVC8vZq24tgwMDtSWyhVldslYLK\nyIrSs1+E3fa2gkKTxgzk5kt6UlNlcPbYgZhRgw2r3TjCoS5Zt4iIiIiIiIiIiIjYKSQkIiIiIiId\nKmttUfzYRZiMH38iFEwET5yBOoA2hYQW/+5PLLrmL/RzbwRg+OhAO664dTw+03aeU2CFhF55JDfe\ntn6VGwDTPnS7EgoaeBqEhI7K+BCAvfazwkE/fOWN9y372kdlWaKq04Cdg3gryztnoSIiIiIiIiIi\nIiLSrC4LCRmG8ZhhGJsNw1jSRL9hGMZ9hmGsMAzja8Mw9mnQN9UwjG8Nw/g+NsYwDCPdMIw3DMNY\nGuu7o8F4r2EYz8fm+twwjMEd/whFRERERARg7cFHxI9dhDGDEYINQkKuuloAImnprZ5z6cSL+eH0\nCzirx2sA5BdG2nHFTXv/1UwmjRnIpDEDef2JHFtfRlY0afyyr60ATU5+ct/2IhQwcHsTIaFr3jiH\npz9dTe+BVkUhM5qonHTkqVUE6hLnJ59f2XkLFREREREREREREZFmdWUloceBo5vpnwAMi/27BPg3\ngGEYBwJjgRHAnsAvgHGxa/5hmuZuwN7AWMMwJsTaLwTKTNPcGbgHuLNdH4mIiIiIiDRpw4Hj48cu\nwoRxEgoY5JSvY+KYQRx5ya+BtlUSqndV36cA8KV1TgjnibvybOcFvcPx47QMe7mgH7/3sPI7KyTk\ncGy/pYSCAYPeP31tazvm3GPix784tDZ+HAoa1NVYbzP/+MAmctau7JxFioiIiIiIiIiIiEiLuiwk\nZJrmR0BpM0NOBJ40LfOAXMMw+gAm4AM8gBdwA5tM06w1TXN2bO4gsBjo32CuJ2LHLwGHG4aR+Hir\niIiIiOwQ9AKw67kIE3T4KC9xsuuyD219WxMSMt0ufIafcLhz/ncjje6nZKMrfuxwwJgjaugzKATA\nulWJvkhk+/vui0Zg7lvpBPwG+Zt+tPXlLf8ufnz1HcU8/VkRhX3DBAOJkFBaukmvhZ/Gx731xBud\ns3ARERERERERERERScnV8pAu0w9Y0+B8LdDPNM3PDMOYDWzA+jvP/aZpft/wQsMwcoHjgX82nss0\nzbBhGBVAAVDc+E4Nw7gEq3IRAwcObNcHJCIiIiKyo3MRprzKS6DOwWDfT7a+UEZWm+cznU5cRphI\n5+w2ltJRp1XRs6CWnos+xe05jg2r3VSWOfjPzT3iYyLhZibohkwTzh6beD/kSzeh1j6m7yfvs/7A\nw8AwMAxwe0xCQYNgwApEeXxRHNHEf0zZrnt26Jr1MRARERERERERERGR5nXldmNbxTCMnYHdsaoE\n9QMOMwzj4Ab9LuBZ4D7TNH9MPUvTTNN8yDTNfU3T3LewsLC9li0iIiIiskMr2X0EYIWE1pVkA9Cr\noM42pq6wV5vnjTpduAknVfjpKN4G25pdMKWUxz8q4pzfl3H7krM54jdnsnaptY7LJ/S3XRcObV8J\nlrpa+3oLa9cmjTn02gsYMPvN+LnHYxIMGISCRvzc6Mr0loiIiIiIiIiIiIjYdOeQ0DpgQIPz/rG2\nk4F5pmlWm6ZZDbwFHNBg3EPActM07001VyxElAOUdODaRURERESkgVnTZjLj1U9wEWZzReb/t3ff\ncXKV9R7HP8/OzPb0QiAkhF4EpASIcBEMFxVF9IIVLAhX7OWq2Pvl2huIelWqBVEUu4CKIKIGQQzd\nS09Ir7tJdne2zDz3j3N2ZmdLCrvZls/79cprzzlPmd+Z+M/iN78HgIOW/6U0vnn2XApP57ixTIZc\n6By2Tj2TppZDLyee1kKuOrne88+/B6Dq8ZX9rrvu25PpyI+doFDz+kzF/Tye7Hde7YZyc9aa+iL5\n1nInoVxN5OivfgqApn0O2DmFSpIkSZIkSZK222gOCf0SeG1ILACaY4wrgaXASSGEbAghB5wEPAQQ\nQriIJAD0rn72el16/VLgjzHGOBwvIUmSJCkRszmydNHSXgNAAy2lsdqNTy/DHzNZshSGrZNQT9W1\nya8UmXx+wDmX35KcoNy6uYrf/7RxWOoaCk29QkJzsiv6nVfsTkkBk6YW2bQhU9FJqNtfP3lxn7WS\nJEmSJEmSpOGVHakPDiH8EDgZmB5CWAZ8HMgBxBj/F/gt8ALgUaAVeH269CfAQuA+IAI3xhh/FULY\nE/gw8C/g7hACwKUxxsuAy4HvhRAeBTYArxyOd5QkSZJUVsxmydJFVzEJoNTTWhrLtbYMtGzre2Yy\n5Oika5hCQu1tff+dRfXm5tL1ZiZUjGVz5aBMW+to/jcaiTXLMzROKnLLzysDTTO7VrL05OeTnzqd\n6s2bmPf7XyYDPf7txaSpBR64q4bO9uQ+Vw0rFpzEHov+RNO+Bw3XK0iSJEmSJEmSBjBiIaEY46u2\nMR6Bt/bzvAC8sZ/ny4B+/5+BGGMeeNnTq1SSJEnSUOgOCXWro41bv3wlJ7/79Sw55fSntWfSSWj4\njhtrzwdOe+UmXv2uJoiR2g1rqV9TPmLs15zOsdxZus/0aMjT1jK6jxsrdMF/nTW74tn/XL2S+69c\nw/xb7yJza5FrFi3hiK99ujSea9lSup40tUDLpgytLUkYKlcTyU+dTn7yVKga/QEpSZIkSZIkSRrv\nRiwkJEmSJGnXUszmyNBeul+98BRWHL+Qa/76xNMOkRQzGarp3CnHjb31hbOpri3ylZ8mIaAYob0t\nUFOXdM859IpLOPw7Xy7Nv++8d3DMFZfw8n9/iB//4WDO/M8mQo+y1q0c3b9+bVhTecTYjD26mHdg\nJyctvI3MrUXaps4AoFhdPmIs11oZEgJYvSxLTW2REGCf3/50GCqXJEmSJEmSJG0P/zmnJEmSpGFR\nzOW4l2eW7rOTa5KLQXSZqSp0UV1oI9O0abDlVVixJEvT+gxrludoWp/U19EeiLEcEjrguqsq1rRN\n3w2AA3dfA8Cee3dWjPcO4Yw273vV7hX3tXVFAA780ZUA/PHSa4Dk77HbYZdfzPEfezsAk6Ym8++7\no47GyUXO+I8TdnrNkiRJkiRJkqTtZ0hIkiRJ0rCImcpOOnFS46D33O3uRTQxmUfur9725B1w4Sv2\nKF0vfzIJxbS3JW2BamqTMMzq+ZUhmO6Q0MkHPszHv72KYxe2UbtuNR895WcAPP5QzZDWONQ62it/\nPWzekISapj/wTwA2z54LJB2hepr3u19CsUh9Y/K9tG6pYuLkAo0rlwGwcb+Dd2rd3UL/p09LkiRJ\nkiRJklKGhCRJkrTLCMEQwYjq8f3fx6G0T5w86C3rV69gCfNY3zV10HsNZEtT8mtTd0iokS1MfPJR\nQldlp6C2GUlIqD7fzAGHdxACHPm1T/Opm88szSkWdlqZg9LrVQA48QUtFffFmloA6lct7zO3bv1a\nDnxm+Si5uoZYur7nLe8boiolSZIkSZIkSYNhSEiSJEnSsGughY4Jkwa9T4hx25Oehtl7d7DfoUno\nZdPGDDHCu86cDcBJX34vp7/yFObeemPFmvZJUwBYcNGFpWdT/3UfAP9xyiMAFIs7pdxBWfZElraW\n5FfDZ53aQv2EIu//6hpe8eYmAFYftYA1Rxxbmp9pT76XRR/5And88LPJuk+8k6oep6k9+I/a0vWW\nPebu7FeQJEmSJEmSJG0HQ0KSJEmShl0jW+gYgk5ChWyOj/MJoBzAeeqxHPm2p981qliANctz7HNw\nB6EqctUXp/LqZ5WDLg2UO+xsmrN3uZaa2op9Jix9gklLHgNgWsOWdO/R1c1q9bIs73/VHnzg1bMA\nOPiodr7z+2UcviBP9+lwmXyertq60ppMRxISKlTXQBrSmvWPv1Xsexj3ArBiwUlsmrffzn4NSZIk\nSZIkSdJ2MCQkSZIkadglIaHBdxL63eU/p5Y8kByZ1ZEPfOCc3fn6x6Y97T0/fO4sOjsCs+Z0Eot9\nQz2t1Jeuqzc1la6L2WzFvHk3/bx0nSsm53kVRtlxYyuXJjU3rUt+1tSWWx3lNjdz4LWXk21r6T8k\nlKvmiRecVXp+wrRMfcIAACAASURBVEfexsnPWcchuy3nnxwJQPvknXcMnCRJkiRJkiRpxxgSkiRJ\nkjTs6sgPyXFjzfscUAoJdXYE2lqTUM/df67f2rIBbW6qYukj1QCEAZr+7Mtjpeva5o2l686GCaXr\nCUufYLe7/lK6zxY7gKRL0WiypbnyV8Ka2vLxbcd+7sMc/dVPMfmJRyjUlb/PB1/zJtonTmbNUQso\nVteUnu/1h1/x+aO/yTf/6zdkKKZz37yT30CSJEmSJEmStL0MCUmSJEkaNlNCufNOx4SJg94vVmUq\nQ0JbBvcrzk3XlYM+Rz+7jbf99zoOPjJPbX2Rs9++kQ1M4Sj+WZrTlR4xtuaZxxCzWVYfeRwAL3r5\nycy8587SvFx3SKifzkQjKd/WKyRUVw4JNax4qnTds5PQ+kOP4qe/u4eOSVP67JdtaysdQQbQvO+B\nQ1muJEmSJEmSJGkQstueIkmSJElDY/Huz6ZmxWoAuuqeXrefnmJVFTUkx19d/aWp/P2P5T2LBajK\n7Nh+DY1JB5wXnrOJabsVeNaprTzr1NbS+JSvlUNON132czbufzC5li101Tcm448+1O+++914HbBw\n1B031t5WGVrauC79wmJk+oOLS88LaRhqW7L5NnJtyfd1y1euHpoiJUmSJEmSJElDwpCQJEmSpGEz\ntbiRRtYAQxMSIgRqQjtEKgJCAJubq5g0tbiD+yU/Xnxuc7/DxUyGqjTps/7QIwFo7xGgqd68qd91\nWbqS9YVR1kmotbKT0PyTkoBPrmVzxfP2iZMH3OOmy35ONt/KSe85j0y+lUwaEtp4wCFDXK0kSZIk\nSZIkaTA8bkySJEnSsGlctax0HbO5IdkzM0C3oN5dcrZH95qaukjNhnXUr15RMR7Djv0K9c+3fjCp\nkSRYNNo6CV1/+aTS9Yte00zDhOSosNr1ayvmtU+eOuAe6w89ktXzT6Crti7tJNQCQFftEITAJEmS\nJEmSJElDxpCQJEmSpDFtWthQcT9n3w4AOjt2LCS04sks130r6ZiTzcKLz/w3XvLiZ5XGqzo7yHR1\nArD6yAXbtedDr3lTsl/aSSjuYGOj4fKDRUt55VvL3ZOmPXRvxfjWQkLdCrV1ZPJ5sm1tpfvhFEZX\nkyZJkiRJkiRJGnUMCUmSJEka0/bNPlG63mOvTs48Pwm7dHZuf2qkIx+49GPTS/dnL9iLbD4Ju+Q2\nJftlW5NjtO694N3ccsn3trln7JFaKXcSGn1JlkOPbevzLLel8rix/JRp29wn6STUSibfSldNLXGg\nFk+SJEmSJEmSpBFhSEiSJEnSsPvjxd8fsr2ymfIZXue+bwPVtcmRWV1b6SS0cW2Gxx6oLt2//uQ5\nLHm4ut+5E59KQkjZ9Bit1um7Ucz1P/eX1/2JfNp1544PfrZcY9pJaHuPGztnwVzOWTCX6y+fyOam\nnfNrWzGt5YDDks5LoVDgyEsuomHFU8y4586KudvbSWjGvf8g19pKV51HjUmSJEmSJEnSaGNISJIk\nSdKwW3XciUO2V+OW9aXrmppIrjoJCXV3Err79lq6uirXvPcVu/Ox82cB0LS+8teil17QVHFft241\nAMd+7kMAdNU3DljLljnzuOmKX7D8hIUsOfUMAO4/922lkFBxBzsJ/fQ7k3nT8/fcoTXbq601qaW+\nMTkDbfIjD3LwNd/hxWf+G9Wbmyvmtm9HJ6HQ1UUxkyWbNyQkSZIkSZIkSaORISFJkiRJY1qOztL1\nHvM6yeaSkNCN107gqi9O4Uvvnck1l0ypWJNvTX4VihGWPZYrPZ81p5P/OG8Tm+bszeqjFgBQt3Y1\n0x5YzB5/uxWArvqtB2Ba9pjLn750JYU0KHPvmy6kef+DgHL3nq25747aPs862re9bke1bkm+g7o0\nJJRpz5fG9lj0J5Yf/xweOvsNyedPmLTN/VYfcwI1zRvItrYYEpIkSZIkSZKkUSg70gVIkiRJw6U6\nW8XsKXUjXYZgu/4e1m1up72ruM15dbSVrqfmV3HEG9/Mp7iLu/5UDqo8dHdNv2sfe6CaZU+UQ0Ih\nbfRTvWUTa45awG53L+KYL360Yk3nVjoJDeSRzIEA/PMvdcw7sJPFf63lC++eyfkfWM/Cl7RUzP3S\nhTMAeMb8PA/clQSGOvJVVNds+7vYEW3dIaGGZN/apg0V460zd+efb/8wi9/yfmIms8398lOmkWtr\npaZ5I111DUNaqyRJkiRJkiRp8AwJSZIkaZfRWJPlpANmjHQZu7aHH4aWlu36e/jDg6tZs3nbLXRa\n95zDPcsO5+af3Mikxx8hT99OPF2d5WO+Cj2OHvv4f86qmJdvC8y74XpqN66nfeLkfj/v6XTJ6cxU\nA7B2RfIr2BfePROAyz87jY1rs5z1hvLxXp0dSa0TJhd4/fs2cOXnp/Y5Lm0otLYkIaH6hgjFIsd8\n9kMV420zZ0EIxGyuv+V9dDROBGDm4r+zav7xQ1usJEmSJEmSJGnQPG5MkiRJ0vDZf3844ojtmhrC\ntucArDz2RA6YsoLd9kySNCfwlz5zuoM3AJ2dA28cCgWO/+R/JfMmTOx3Tqzadled3k6ddy8ABx+d\n58F/VHY1uv7ySbz1hbMBaNlcrm323uWj07q2UvPT1daS7FnfWKR24zrqNq6rGF9+wik7tN/kx/5V\nuu6q9bgxSZIkSZIkSRptDAlJkiRJGtOK1TVUdXQAkOloJwDf2vejvOnj5dDL2pXZUiimsJWuPI0b\nVpWuu2rqWHP4/D5zWmfO6vNsWzK57s8O/M9bd+sz3rQ+Q7EAN/ywHEw647WbyGZ3XkioNT1urKG2\nnWxra5/xjQceukP7LT3l9NJ1iHFwxT0NQ/8NSZIkSZIkSdL44nFjkiRJksa0YjZHpjMJCZ383vMA\nOGPKLTSe9gYKnev5zqenAXDF56by1k+t32rgJkdn6XrVcSfy8CteDzFuf1ujAYTaJJBT6Bx4Tns+\n8LMrJpXus7nkD7BTjhtbuTTZ/FXnLGB3VlWMXfeH+3Z4vzVHHle6Xvqc0wZXnCRJkiRJkiRpyNlJ\nSJIkSdKYVqiuJtPRTv2q5aVns+5Kjhw7+YyW0rPlTyahmHv+VlexPoRy15tQXw3A4jddyKZ5+3VP\nGHSNVbnukFCx9Oz7f1vKBy9ZXbpfsSRXur78j08B7NTjxn52eRJImkRz6dnt/30pv/vO9XQ29n/U\n2lZVlX+9fGrhCwZdnyRJkiRJkiRpaNlJSJIkSdKotL3ZnGIuCfac9tqtB1M2rs0AydFe3Q49po23\nXbSezRuruPCVe/DqvW5i86a5PHju255e0QPI1Caf2b4pCf284i1NhACHHttemvOx85JjzE5+0RZq\n65N53SGhwk4ICXWro610nZ82g3WHHf2091p24qkAdNU3DLouSZIkSZIkSdLQMiQkSZIkaUzrqqsH\noGZTU8XzUCgQMxne+em1XPyhGRz97CQMU1WVBG8uu/kp6hqS60n1eX70x4c44aM/IjQVGWpVNUlI\nqHl90m2ncWKhNPbCczbxmx+UO/fsMa98Jlk2m9T3sfOTANEPFi0d0rpmN64jbCnfd3+XT9dtX7hs\nkBVJkiRJkiRJknYWjxuTJEmSNKa1T5pScb/4Le8HoHb9WgCOXdjGlBldxPRUsaZ1GWpqi6VuPQCn\nvOWVvHzhIcz+y800rlw25DWGNCS0aUPSEahhYjmI9OLXNVfMrakt15XJVQzR2jJ0HYVy1ZHT9rij\n4lmhumbI9pckSZIkSZIkjS6GhCRJkiSNSoHtC8S0T5lWun7wnDfSMms2ALnWcouc2rpIe1uy3w3X\nTqQ9X8XRX/1kMm/LJmbc94+hKrtfpU5CG5Jmrg0TyiGh+gmxYm51beTsBXtx9oK9qCm0Voy1NA/N\nr3BdXdDZEWiMmyueh+LQd1GSJEmSJEmSJI0OhoQkSZIkjWn5yVNL10+cdiZdtcmRWZl8W+l5TV0k\n31rF8ifKJy4f9KMrANjrpl9U7LczuunE6moydLF5UxIWmpZfwUnveT3VzU2EUHmMWG1dOajzgred\nVbHPf79lN5Y93qu9ENCyObD4r7XbXU93YGruI5WdhJr2O2i795AkSZIkSZIkjS3ZbU+RJEmSpNGr\nvUdIqGWPOdRuWAfAjHvuIptvo2X3Pamtm0m+LXDLLxr7rJ/y6EMV992diIZSIVdNNR00NycBnxdf\n+DJm8xgvfd4zuf7Xf6eYq+EZ82fywF21TK4qHz9WTUfFPutXZbn8s1PIZKG6JvK+r6xlySM5PvSa\n3UtzLv31MqZM33pHoHxb8u9FGtlSORCG7jgzSZIkSZIkSdLoYkhIkiRJ0pjWPrl83FhXfQOFujoA\n5n/lE6XnX9jvUZbGOdxw7UQAttBQGsu0t1fst/awo4e8xmKumkk0s6o5CfNMohwEOvP0YwFY8uPl\n/PzKSZx15+dLY7GfI9cevreyY1DPgBDA1V+cyrs+u26r9bS3Jvt2h4SuWbRke19FkiRJkiRJkjRG\nedyYJEmSpDGtUFsZmumqreszZ3LLKpY9Vl26b6A1uSgWqeqs7NZz5/suGvIai7kcqyiHeXqGhLrt\nPreLD7zmbxz20+8A8Ksf30LngkN2+LN227Nrm3OWP5F0NMrRyQOvefMOf8aoZBMkSZIkSZIkSdoq\nQ0KSJEmSRqcdCH385ZMX89vv3QhAZ8OEPuMzVj7S77psvo1MR7mT0IYDD6VYU9vv3MEoVFdX3FfT\n2e+8Q773zdL15rn7kDl8Dnlq+P5tj/Pd25fygrM3Vcy/7DNTe2/Br7+fdEt68v9yLHkk1+/n/PaH\nyXf0OPvQPmVav3MkSZIkSZIkSeOLISFJkiRJY96S572Epv0PBqB15iw2HPAM7n3Du0vjy5nd77rD\nv/0l5vzpptJ9Z0PjTqmvmM1xErdufVKMNKx4qnJdrpoaOsgWO8lk4YDDKo9Gu+UX/dd795/r+PDr\ndu9zFFm345+bdFJ6Nd+nq65++15CkiRJkiRJkjSmGRKSJEmSNK7EbI4bv/tb7j//naVnq9mtdH3Q\nM7aUr6+9vGJtobpmp9RUrK7hB5xTuu+qqeWaRUu4/b8vLT2r6mhn5j13AvDkc89I1mWzyVh6JNph\nC/IccHiewxe09fmM//nuytL1ly6csdV6urqSNk11tJGf3LcbkSRJkiRJkiRp/DEkJEmSJGlU2oHT\nxgb00xv/SWddPVUUS88u+tR9A84v5qoHHBuMQq6aPVhRut9w0GEALD31RTzx/P8A4JUnHQjAk6ee\nwaKPfimtJzkurKqrC4DausjHv72GWXt2Vez/kW+sZt4B/R9h1q1lcyDfmnyrXUnmiFryHjcmSZIk\nSZIkSbsIQ0KSJEmSxq32yVO55ZLv00JD6dnEtSsGnN8dyhlqxVyuIvS0ad5+pesVJyysmLvqmBNK\nYaViNvlZ1VkZAGrPV0aoJk0rbLOGC06dw/kL5wDQ0ZGsr6GddjsJSZIkSZIkSdIuwZCQJEmSpHFt\n3aFHcRJ/AuDDX1/NsZ95f585bVOmA0nHn52hO/RTX93BK7iWtmnl48Ca9j6gYm7HpCnldelxY88/\n93R2u+svpecve2Mz9Y3l7khTpm89JNS6pTJU1NkRyFYVqCKSt5OQJEmSJEmSJO0SDAlJkiRJGt9C\n4OLq9/DbMz7KIUe30zZjVmloySmnc82iJdxy8XcBWP5v/75TSugOCf3ttR/gWl5F27SZpbHWmbtX\nzO1onNhjXdLZqG7DWk5529ml51NmFHjDh9aX7usaIgAXXbWSF5y9qc/nb1iTrbjv6gjUZDooZjJ0\nTJj0dF9LkiRJkiRJkjSGGBKSJEmSNO5lawP71CwDYPOcvSnkqvnRLQ/x109eDEDTAc/gxzffz9JT\nX7RTPr9QnYSEGlYmNeR7dBLqnDiJX/z0z6X7jgl9Q0LlB+XuQVVp7qcqE0vP9j6ok3Pe0dTn8596\nrHKf9vZAQ+cmqgoFqBofvxYGwrYnSZIkSZIkSdIubHz812BJkiRJ404IQxf6KNTUkulop7p5I/v/\n7PtkOjso1NUTs+UOO10NE4bs8/r7fIDGFUuBypAQQMvsuaXrzp6dhLKV4Z7ajeXuQaufSmovFgJn\nL9iLKf+6rzT27s+vBWD23h0UC3DpR6dX7NPWUsVE+nYckiRJkiRJkiSNX4aEJEmSJI17heoaMu15\n5n/xYyP2+QCNy5OQUM/jxnrr2EpIaOE7ziGTb2Ov3/+Sdfdsrhg77dzTOeS73wDg6Ge3seDfWygW\nA5ubKn/ty7cG/va7Bh5l/6f/QpIkSZIkSZKkMceQkCRJkqRxr1BTS6Y9T2dD48gUUFVFV20dDWtW\nApCfOr3PlAfPuQCArh41TlzyWMWcyY/9HwdcdzUnfPTtvPy2T/bZ44hvfI7Zf/5D90dSLEBnZ2VH\npvMXzhncu0iSJEmSJEmSxiRDQpIkSZJGpaE7bCwJCc295Qb2//k1APzw9se2sWLoZfNtSS25agq1\ndX3GF7/tQ/zw9seImUzpWeeEiX3mHfn1zwBwHlewz74t3MjzKsYbly8BoCoDxWKgq6P/b/JyzmPx\nm9/39F5GkiRJkiRJkjTmGBKSJEmSNO4VampL160zZhGz2RGrpaqrs/+BEPrU9fgLX8a/Xnk+P7lp\nMfed947K6cDXPnE7z+N3Fc9rmjYAMOXJ/yO05vt0Eup2HldWHG0mSZIkSZIkSRrfDAlJkiRJGvcK\nuerS9fpDnjmClUCIcQcmB+5+18fomDSF+y54T5/hvf7wqz7PDvjJd6nZsI6ZD91NtqmZgTJJ0H+n\nIkmSJEmSJEnS+GRISJIkSdK4t/udt5eu73/920ekhnsvePeg97jpsp9X3D/j6q/3mVO9ZRML3/ka\nsnRRIENnj+PG5u7fAcAZCx8HoLNxwqBrkiRJkiRJkiSNDYaEJEmSJO1SNh502Ih87sNnvXbQe6w/\n9EiuWbSE9Qcf3mfsmkVLStfVm5vJUEhCQj2OG7voylV8+ScruHzVWQAUqmsGXZMkSZIkSZIkaWww\nJCRJkiRpVAph23PGks6GxiHbq6qrq+L+19feXHHfsGp5KSRUSENCr3vPBjJZ2G3PLqY/uDiZuCNH\nn0mSJEmSJEmSxjRDQpIkSZJ2Gbd8+aoR++yYzbH4Le/nt9+7cdB7ZVu3lK47Giawad5+feYsYgEb\nmcrqZVkADjyivTT22OkvA2DNkQsGXctoMd5CZZIkSZIkSZI01AwJSZIkSRr37n3Du+lomMDK458z\nonU8+Nq30LT/wYPe5/7z3lm67pgwqXS9/PjnsOJZJwNwJ8cCcNUXpwIws7iabGtLaU1nXT0xmx10\nLZIkSZIkSZKkscGQkCRJkqRRKTB0rWHuP/+d/OTm+4dsv5H2xAtfyvITFgLQuGpZ6fmfvnwVt37l\nagA+wGcq1rz2dcfw8oWHAJDp7KCYqx6maiVJkiRJkiRJo4EhIUmSJEkag6b+674Bx67/zZ2cMfPW\nimc5ukrXVR0dFKoNCUmSJEmSJEnSrsSQkCRJkiSNQX//wGcB2LjvQX3G8tNmsveczVy/75v51BWr\nuOLi2yvGq7o67SQkSZIkSZIkSbsYQ0KSJEmSNAZ11dUB0DFxcr/jsSrDv9X/nX0P6WDPmlUVY5mO\nDgrVNTu9RkmSJEmSJEnS6GFISJIkSdKoFMJIVzC65adMB2DF8c/pdzxmMlQVCgDkWjZXjGXbWinU\nGBKSJEmSJEmSpF1JdqQLkCRJkiTtuOZ9D+RXP76VzXPm9TseM1lCKSS0pfT8yEsuYvZfbqazvmE4\nypQkSZIkSZIkjRKGhCRJkiRpjNo8d+8Bx4rZNCQUI4dd9tXS84Ov+Q4AudaWnV7fcLLxlCRJkiRJ\nkiRt3YgdNxZCuCKEsCaEcP8A4yGEcEkI4dEQwr0hhKN6jH0+hPBACOGhdE5In/9PCOGpEMKWXnud\nG0JYG0JYnP75z537dpIkSZIGy9DH4IRikYlLHmPKww8wcenjfcYffPWbRqAqSZIkSZIkSdJIGbGQ\nEHAV8PytjJ8G7J/+uQD4JkAI4XjgBOBw4FDgGOCkdM2vgGMH2O9HMcYj0j+XDbp6SZIkSRrF9vzz\n78l0drDnbb/vd3zxW94/zBVJkiRJkiRJkkbSiB03FmO8LYQwbytTXgx8N8YYgUUhhMkhhN2BCNQC\n1ST/uDgHrE73XASQNhaSJEmSpF3eYZeXjxq747u/oKqrk7ZZs5k2sXYEqxp6jbWepi1JkiRJkiRJ\nWzOa/yvqbOCpHvfLgNkxxr+FEG4BVpKEhC6NMT60HfudFUJ4NvAw8F8xxqf6mxRCuICkcxFz584d\nTP2SJEmSNGIKuWoynR3lB4sWcdxxx41cQZIkSZIkSZKkETWaQ0L9CiHsBxwM7Jk++n0I4cQY45+3\nsuxXwA9jjO0hhDcCVwML+5sYY/w28G2A+fPnx6GrXJIkSdKOmD9vKkftNWWkyxizuu68i8wRhwMQ\njz6aYEBIkiRJkiRJknZpozkktByY0+N+z/TZq4FFMcYtACGEG4BnAQOGhGKM63vcXgZ8fsirlSRJ\nkjSkqrNVI13C2PbMwyAm/+7BA5klSZIkSZIkSaP5v7r/EnhtSCwAmmOMK4GlwEkhhGwIIQecBGz1\nuLEQwu49bs/Y1nxJkiRJkiRJkiRJkiRpPBmxTkIhhB8CJwPTQwjLgI8DOYAY4/8CvwVeADwKtAKv\nT5f+hOSosPuACNwYY/xVuufngbOB+nTPy2KMnwDeEUI4A+gCNgDn7vw3lCRJkiRJkiRJkiRJkkaH\nENP28+pr/vz58a677hrpMiRJkiRJkiRJkiRJkqR+hRD+EWOcv615o/m4MUmSJEmSJEmSJEmSJElD\nwJCQJEmSJEmSJEmSJEmSNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZIkSZIkSZKkcc6QkCRJkiRJkiRJkiRJkjTOGRKSJEmSJEmSJEmSJEmSxjlDQpIk\nSZIkSZIkSZIkSdI4Z0hIkiRJkiRJkiRJkiRJGucMCUmSJEmSJEmSJEmSJEnjnCEhSZIkSZIkSZIk\nSZIkaZwzJCRJkiRJkiRJkiRJkiSNc4aEJEmSJEmSJEmSJEmSpHHOkJAkSZIkSZIkSZIkSZI0zhkS\nkiRJkiRJkiRJkiRJksY5Q0KSJEmSJEmSJEmSJEnSOBdijCNdw6gVQigCYaTrkCRJkiRJkiRJkiRJ\nkgYQY4zbbBRkJ6GtMyAkSZIkSZIkSZIkSZKk0Wy78i2GhCRJkiRJkiRJkiRJkqRxzpCQJEmSJEmS\nJEmSJEmSNM5lR7qAUW4dMBWI6X0YxdejpQ7rHt3Xo6WOXfEdRksd1j26r0dLHbtK3ePhHUZLHdY9\nuq9HSx27St3j4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHUZLHdY9uq9HSx27St3j\n4R1GSx3WPbqvR0sdu0rd4+EdRksd1j26r0dLHbtK3ePhHXreb2Q7hBjjtmdJkiRJkiRJkiRJkiRJ\nGrM8bkySJEmSJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSePcVkNCIYR3hxBirz/L0rHTez0vhhBO\nCCFc3Ov5qh77PTed13P86n4+9+5ec9amzzf2ev7cAeou9JpXCCE8I4RwRa/njwywvmuAd36kn+/j\nlF5rj+jnHVemY4v6Wf/Nfj6/95yHB1jfFkLI9Fr77X4+f1UIYXo/+7aka7b0M9a+tf9tSJIkSZIk\nSZIkSZIkaezYViehzcBfga8Dx6fPZocQPgVcn96vA1rS6xuBv6drCv3sdwMQgMeA2cArgG/1nBBC\naACOTG8/lv6cnn7mjene23IpcDTJ+xXSn7cCJwKrgXYgAvMGWP8AcG96fQTld54N5IGNJO8cgV/2\nWtsKbEnHuv/MCiH8O3BMuu7etAbSmnrrTH8W03r3DyHUpe/UCfwY6AJqgSt6rd2U/myi/PeyGVif\n3ucpf+f1IYQzgZuBXwEfTOeSfq4kSZIkSZIkSZIkSZLGgRBj3P7JIXRPvgE4Lb1+OTAZ+DZAjDGk\nc/NADbA6xjgrhPAc4I/pmqo4wAeHEH6b7h1jjFUhhC1APbA+xjijVx3PizH+biv1BpIwTg5Ymz7+\nJPAZoJEkwHN4jPGBfta+FLguxhhCCAXgJuB5JIGjtwNfTq+rYoxVvdZuTPfvGVK6ATidJPhzDHAL\nMLH7++m1vntNK7CBJJx0IfBFkrDPs0nCWA3AXTHGY3qsfRjYC7gHODitow3YG3gUWAk8DnR3Yfoj\nSRBqPXAysJwkyLUkxjhvoO9WkiRJkiRJkiRJkiRJY8e2OgmVhBA+3OP2I90XMcbrgMu2Y4vze1x3\nH4fVEUI4qNe8A0iCNN3ddJrSn43bW2tab3O6Ty59dDzwSK86qkgCMlvb583pvI8Aa9LHl6T7ZpIp\n4a3p+3TXXN89lq4tAlNIQklVwJ0kASGATSGEq9MjwppCCFWU/17qgT1JAjz7pM8mkXQ6akjv7+5d\ncvrnEMrfWV26Tx7YnyTs1D13Esl3PA94Kn0WSYJfkiRJkiRJkiRJkiRJGge2KyQUQpgPXJTe3hFj\nrAimDNQVqJe6HtdXkByXlQMWbU8NOyrGOAn4P5JOPkXgNyRdjyakf0I61rWNrb4B3AEsJgn+QBLa\nKa2LMX49xhhijLkQwhEknXs2pMMZkhBO99oOki4/3epjjK+LMVbFGCeTHO3Wln5mW/o500m6CZHu\n1dZj/b696u0+Jqz7++4+8mw28FXg/vR5IAlidaT3bcC/eq2RJEmSJEmSJEmSJEnSOLDNkFAIYQZJ\n5xuAVTHGBb3GXxZCeMN2fNZvui9ijOcDt6W3E9MuPDE9Rmz3tK7uDkDdHW22bKXG2ONPe/rsjyRd\ncr5OEnjZBO94vgAABM5JREFUL8a4PMa4P7A5fRaA2wfYtrsLT/c7TyAJ6wBMoxz66e1ZJB2ApqX7\nA8wAZqb3WeDAHvNre60/MX12LEnQJ9tjD0iOT6uiHOKZ12t9dzcgSEJQ3Z2FFpJ0F+qe391lqZbk\nO15DcjwZ6f7rB3g/SZIkSZIkSZIkSZIkjTFbDQmFEALlzjRtMcbdewx3H631DeArJKGVloH2ijFe\n0WPfDwMnpLetaReeEGMMlDvmhBDCB0mO1QrAt7ayd8/1tSGE24AFJKGYl6fv2RZC2CuE0H1MVwA6\nYozLB3jvy9K9d09/NgNPknQIKgKt6Ttv6LX8h5RDVQWSTj1F4NUkXYC2AM2Uu/Us7rX+ROD96dpW\nyh2LzgeWpc+v7TH/Nip9i3IA6uH0WStwM/A4Sejon5RDRs8lOb6smN4X0z/X9/5eJEmSJEmSJEmS\nJEmSNDZtq5PQ7yh3panr0a3nZuAV6fPpJEEegBeGEM5LOwLVpM92S9ccBfwgfXZROh6B5/X8wBhj\nE+XjuD6d/lwfY/xICKEp3bvbTd2dg3rIkARt6kgCPLPS588GvkYS0pmQPqvttV+3rnQfer3zemBq\nOtYdXvpTCOGt6ZxO4PXA8T1qqU6v24A8MJGkW1IgCeP8OoRwdQihGEJoIunm8zmSME99+vMJksDP\nJGAu8DrKx4VdH0JYnK5/mCTI1N09qLszUCdJZ6SPkHQOOjKtrQM4Ln2XA0n+91BFcuzYZ/v5XiRJ\nkiRJkiRJkiRJkjQGhRj7y8hIkiRJkiRJkiRJkiRJGi+21UlIkiRJkiRJkiRJkiRJ0hhnSEiSJEmS\nJEmSJEmSJEka5wwJSZIkSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmS\nJI1zhoQkSZIkSZI0pEIInwghvHcr4y8JIRwynDVJkiRJkiTt6gwJSZIkSZIkabi9BDAkJEmSJEmS\nNIxCjHGka5AkSZIkSdIYF0L4MPA6YA3wFPAPoBm4AKgGHgVeAxwB/DodawbOSrf4OjADaAXeEGP8\n13DWL0mSJEmSNN4ZEpIkSZIkSdKghBCOBq4CjgOywN3A/wJXxhjXp3MuAlbHGL8WQrgK+HWM8Sfp\n2M3Am2KMj4QQjgM+E2NcOPxvIkmSJEmSNH5lR7oASZIkSZIkjXknAj+LMbYChBB+mT4/NA0HTQYa\ngZt6LwwhNALHA9eFELof1+z0iiVJkiRJknYxhoQkSZIkSZK0s1wFvCTGeE8I4Vzg5H7mVAFNMcYj\nhrEuSZIkSZKkXU7VSBcgSZIkSZKkMe824CUhhLoQwgTgRenzCcDKEEIOOKfH/M3pGDHGTcATIYSX\nAYTEM4evdEmSJEmSpF2DISFJkiRJkiQNSozxbuBHwD3ADcCd6dBHgTuAvwD/6rHkWuDCEMI/Qwj7\nkgSIzg8h3AM8ALx4uGqXJEmSJEnaVYQY40jXIEmSJEmSJEmSJEmSJGknspOQJEmSJEmSJEmSJEmS\nNM4ZEpIkSZIkSZIkSZIkSZLGOUNCkiRJkiRJkiRJkiRJ0jhnSEiSJEmSJEmSJEmSJEka5wwJSZIk\nSZIkSZIkSZIkSeOcISFJkiRJkiRJkiRJkiRpnDMkJEmSJEmSJEmSJEmSJI1z/w+m2leULXkXFAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJcCAYAAABTzWhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcZHdd7//3p2vvvXv2LQuZBAlh\nNSYs94oPUTbRcK+KCGJAlJ/3ct1ABQQvCKLwu1cQrtcFBVkkYESUiLJEIiBCQhIggSTADCGZ6Znp\nmZ7p7uqlqrq27/3jfKunZqZ7equqc07V6/l49GO6T5069a3q7pp3f5fP15xzAgAAQPj6wm4AAAAA\nAgQzAACAiCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghlCZWZ/bma/26JrXWJmC2aW8F9/zsx+\nsRXX9tf7pJnd2KrrbeBxf9/MTpvZ5DrPd2Z20H9+zutrZv/NzE7612mbmT3VzA75r5/XrucQBjP7\nITObCLsd3c7M3mhmf9Ohx3rIzH6kE4+1wmO/xMy+2PT1gpk9YhPXeZGZfaa1rUM3IZihbfybaNHM\n5s1s1sy+ZGa/bGbLP3fOuV92zr15nde66Buyc+6Ic27QOVdrQdsv+M/GOfds59z7t3rtDbbjEkmv\nknS1c273Ru/f/PqaWUrS2yU9w79OZyS9SdKf+K//sZVtj7NuDnXnBwxsjv+defBi55jZZf4PpWTT\n/T7knHtG+1uIuCKYod1+3Dk3JOlSSW+V9GpJ72n1gzS/8XWZSySdcc6dasG1dknKSrqv6dil5329\nbl38mqPL8bOLKCOYoSOcc3nn3C2SfkbSjWZ2jSSZ2fvM7Pf959vN7BO+d23azP7dzPrM7IMKAso/\n+eGD3276S/RlZnZE0m0r/XUq6Qoz+4qZzZnZx81s3D/WBT0ijV45M3uWpN+R9DP+8e7xty8Pjfp2\nvd7MHjazU2b2ATMb8bc12nGjmR3xw5CvW+21MbMRf/8pf73X++v/iKRbJe317XjfKvf/LTM7YWbH\nzewXzrvtfX4o9CpJ3/aHZ83sNjP7rqRHNL2uGd+W9/jrHfP3bQwNv8TM/sPM3mFmZyS90R//BTN7\nwMxmzOzTZnZp0+M730t6yH9f/6+ZWdPtv+TvO29m95vZE/3xvWb29/41+Z6Z/WrTfa4zs7v89/Sk\nmb19tdfWn/87/nvwkJm9qOl4xsz+t/8enbRg2DdnZgOSPtn0ui/49hTNbLu/7+vMrGpmw/7rN5vZ\nH1/suk2P+1wz+7qd7UV+bNNtD5nZb5rZvWaWN7O/NbPsKs/rCv99POOf34fMbLTp9gNm9jH/Gp4x\nsz8xs0dJ+nNJT/bPa9afe86wv104bPdOMzvqX/O7zew/X+w1b7rfmAW/01P+5+MTZra/6fbP+dfu\nP/zPwGcar7G//cUW/E6csYv8Dvlz3+df61v9tT6/ws/iK8zskKRD/tj3+fOnzezbZvb8pvO3mdkt\n/jl/RdIV5z1e85SBnJn9kW9r3sy+6L/nX/Cnz/rX+8krvLZPMbM7/f3uNLOnrPf1QZdyzvHBR1s+\nJD0k6UdWOH5E0n/zn79P0u/7z/9QwX8aKf/xnyXZSteSdJkkJ+kDkgYk5ZqOJf05n5N0TNI1/py/\nl/Q3/rYfkjSxWnsVhI6/Oe/2z0n6Rf/5L0g6rCDYDEr6mKQPnte2v/TtepykJUmPWuV1+oCkj0sa\n8vf9jqSXrdbO8+77LEknm57jTf6xD67w+p7z+qzyuv6DpL/w19op6SuS/j9/20skVSX9iqSkf243\n+NfhUf7Y6yV9qel6TtInJI0qCNdTkp7lb/tp//35AUkm6aCCHrw+SXdL+p+S0v41flDSM/39vizp\nxf7zQUlPWuW1+SHf3rdLykh6mqRFSY/0t79D0i2Sxv1r/0+S/vAiPx9fkPST/vPPSPqupGc33fZf\n1nHdJ0g6Jel6SQlJN/rvQabp+/EVSXv9/R+Q9MurPL+Dkn7UP7cdvg1/7G9LSLrHt2VAQU/pf2r6\nPn5xtZ/tlc6R9HOStvnv8askTUrKrva70nS/bZJ+UlK/fy3+TtI/nve435V0lYKfp89Jequ/7WpJ\nC5J+0D/Ht/vv5wXvKU0/6/NN57/zvOfgFPyhM+4fa0DSUUkv9c/rCZJOK5g2IEkfkXSzP+8aBT+r\n51+v8Xv2f33b9/nX/im+DZfpwt+55dfWt2VG0ot9G37Wf71trdeHj+79oMcMYTiu4A3pfBVJeyRd\n6pyrOOf+3fl3p4t4o3Nu0TlXXOX2DzrnvumcW5T0u5Keb74HaIteJOntzrkHnXMLkl4r6QV2bm/d\n7znnis65exT8J/m48y/i2/ICSa91zs075x6S9EcK3qjX4/mS/rrpOb5xs0/IzHZJeo6kX/ev6SkF\n/7G/oOm04865/+Ocq/rX/JcVhI4HnHNVSX8g6fHNPRUK/iOZdc4dkfRvkh7vj/+ipP/fOXenCxx2\nzj2sIKjtcM69yTlXdsE8nr9sakdF0kEz2+6cW3DO3b7GU/td59ySc+7zkv5Zwc+ASXq5pN9wzk07\n5+Z9219wket8XtLT/Pf4sZLe5b/O+jZ/YR3Xfbmkv3DO3eGcq7lgzuKSpCc1Pc67nHPHnXPTCkLd\n47UC/3rd6p/blILg8jR/83UKwt1v+e9lyTm36Xllzrm/cc6d8d/3P1IQOh65jvudcc79vXOu4F+L\ntzS1seGvnXPf8T9PN+vs8/0pSZ9wzn3BObek4Pe3vsZD/nPT+a9T0DN4oOn2P/Tfl6Kk50p6yDn3\n1/55fU3BH28/7X8vf1LS//Sv3zclrTi/1II5s78g6decc8f89/VLvg1r+TFJh5xzH/Rt+LCkb0n6\n8XW8PuhSBDOEYZ+k6RWO/y8FvS+fMbMHzew167jW0Q3c/rCCnrhWDAXs9ddrvnZSwTyuhuZVlAUF\nvTvn2+7bdP619m2gHec/x8261LflhB9mm1XQe7az6ZzzX+9LJb2z6fxpBb1fze1f7XU4oKA3YKV2\n7G1c01/3d3T2tX2Zgh6Eb/mhn+de5DnN+MDa8LCC12yHgl6cu5se41P++Go+r6An7YmSvqGg9+Vp\nCkLVYRcspljrupdKetV5z+2Ab1PDen5uZGa7zOwjFgw5z0n6G5392T4g6WEflrfMD68+4IfbZiWN\naB2/R2bWb2Z/4Yf45hT06o2e98fRas/3nJ9t/308s8ZDNp+/oODnce9Ktyv4Xlx/3vfiRZJ2K/h+\nJbW+363tCnokV/pZXsv57yONx1nP7w+6FBMg0VFm9gMK3nQu+Ovd/0X9KgX/cV2jYN7Ync65zyoY\nDljJWj1qzX8tX6Kgt+W0giGt/qZ2JXTuf8prXfe4gjf25mtXFQwr7l/xHis77dt0qaT7m651bJ33\nP6ELn+NmHVXQe7P9Iv+hn/+6HJX0Fufchzb5eFescvx7zrkrV2yAc4ck/azvqfivkj5qZtvOC2AN\nY2Y20HTbJZK+qeB1L0p6tHNupdd6pe//lxT0Ev0XSZ93zt1vwarZ5ygIbVrHdRuv11tWem4b9Ae+\nnY9xzk1bUO7kT5oe5xIzS67wvVzpuZ3z+6AgnEiS/Hyy35b0dEn3OefqZjajIICv5VUKXrPrnXOT\nZvZ4SV9b531PKBgib7SjX8HQ6MUs/y6Y2aCCnvnjTbc3P/ejCr6PP3r+Rfz7QdVf71v+8Gq/W6cl\nlRT8LN9z3m0bfR9pPM6n1rgfuhg9ZugIMxv2PRsfUTAf5RsrnPNcMzvoh4Pykmo6O3RxUsFco436\nOTO72r+pv0nSR11QTuM7krJm9mMWlJF4vYLhmYaTki6zptIe5/mwpN8ws8v9fwB/IOlvN9pD4dty\ns6S3mNmQHwJ8pYLej/W4WdJLmp7jGzby+Oe15YSCuVN/5L9ffRZMMD9/6KnZn0t6rZk9WlpeyPDT\n63zIv5L0m2b2/RY46J//VyTNm9mr/aTqhJld40O9zOznzGyHc64uadZf62JDXL9nZmkfMJ4r6e/8\nff9S0jvMbKe/7j4ze6a/z0lJ28wv6PCvT0HB3LdX6GwQ+5KC4dzP+3PWuu5fSvplM7veP+cB/zM4\ntM7XrNmQgjlYeTPbJ+m3mm77ioJg81b/GFkze2rTc9tvZumm878u6b/6Hq6DCnolmx+nqmB+YNLM\n/qek4Q20sahg8vu4Nvbz+VFJzzWz/+Tb+iat/X/Wc5rOf7Ok251zq/Wqf0LSVRYsMEj5jx8ws0f5\n38uPSXqjf02uVjAf8AL+e/5eSW+3YJFIwoJJ/hkFr1ldq793/YtvwwvNLGlmP6Ngbt0n1nie6GIE\nM7TbP5nZvIK/Tl+nYB7MS1c590pJ/6rgP5svS/pT59y/+dv+UNLr/ZDDb27g8T+oYFLwpILhhl+V\nglWikv67gnBwTEGPQfMqzb/z/54xs6+ucN33+mt/QdL3FPzF/CsbaFezX/GP/6CCnsSb/PXX5Jz7\npKQ/lnSbgmHg2zbZhoafVzDh/n4Fk5A/qmDe32qP/w+S3ibpI36o6puSnr2eB3LO/Z2COUc3KZi0\n/Y+Sxv1/is9VMJfmewp6JP5KwfCZFCx4uM/MFhRM8H7BReYYTvrncVzShxRMpG/0gLxawWt2u2/7\nv8rPm/LnfFjSg/5nrjEc9nkFw71fafp6SGdX36113bsk/ZKCnq0Zf95L1vN6reD3FAyr5hXMnftY\n4wb/Gv64ggUCRxT8bP+Mv/k2BSVSJs3stD/2DkllBaHt/Qpeq4ZPK+jB+Y6CYbaS1p5C0PDHCiat\nn5Z0uzbQE+Scu09BCL5JQcic0bm/oyu5SUH4m5b0/QoWLax2/XlJz1Aw/++4gp+Vt+nsH2j/Q8Gw\n4aSC95C/vsjj/qaC4e07/WO/TVKfD/NvkfQf/ueoeS6h/PD3cxX0LJ5R0DP5XOfcaaFnNVa8AQAQ\nWxaUk5lwzr0+7LYAW0GPGQAAQEQQzAAAACKCoUwAAICIoMcMAAAgItasY2Zm71WwauSUc66xv+H/\nUrDip6ygqN5LnXONPddeq2CpdU3SrzrnPu2PP0vBCqqEpL9yzr3VH79cQQmFbQqWor/YOVdeq13b\nt293l1122YaeLAAAQBjuvvvu0865ixWxlrSOoUwz+0EF5Qs+0BTMniHpNudc1czeJknOuVf7Wi8f\n1tntQP5VQYVuKVhq/aMKljvfKelnfYHGmyV9zDn3ETP7c0n3OOf+bK2GX3vtte6uu+5a6zQAAIDQ\nmdndzrlr1zpvzaFM59wXdN72Oc65zzQV0rxdZyud3yDpI37vtu8pqNFznf847IJ9BcsKeshu8IVE\nf1hBrSQpqJ/zvDWfHQAAQBdqxRyzX5D0Sf/5Pp1beHDCH1vt+DZJs00hr3F8RWb2cjO7y8zumpqa\nakHTAQAAomNLwczMXqdgq47N7JO3Yc65dzvnrnXOXbtjx5rDtAAAALGy6U3MzewlChYFPN2dnah2\nTOduqLxfZzdjXun4GUmjTRvtNp8PAADQUzbVY+ZXWP62pJ/we4E13CLpBWaW8astr1Swp9ydkq70\nGz6nFexNdosPdP8m6af8/W+U9PHNPRUAAIB4WzOYmdmHFWwo/UgzmzCzlynYgHdI0q1m9nW/mrKx\n6ezNCjZA/pSkVzjnar437H8o2Az3AUk3+3OlYMPfV5rZYQVzzt7T0mcIAAAQE7Gt/E+5DAAAEBct\nK5cBAACAziCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACA\niCCYAQAARATBDAAAICIIZgAAABFBMAMAAIgIghkAAEBEEMwAAAAigmAGAAAQEQQzAACAiEiG3QAA\nQGvc/fC0XvLeO5VLJzTan9JILvjYNpjRY/aNqM9MkvTC6y8JuaUAVkMwA4AucffDM5pfqmrfWE7z\npaqOzRS1WK5JkrLJPj1y93DILQSwFoIZAHSJyfyS0ok+vfhJl8p871ipUtPv//P9euhMgWAGxABz\nzACgS5ycK2k4l1wOZZKUTSW0dzSnh88shtgyAOtFMAOALjE5V9JwNnXB8UvH+zUxU1S1Xg+hVQA2\ngmAGAF1iMl/ScG6FYLZtQNW604nZUgitArARBDMA6AL1utOp+ZV7zC7Z1i9JDGcCMUAwA4AuMF0o\nq1JzGs5duKZrOJvSWH9KD08XQmgZgI0gmAFAF5jMB8OUK/WYScFw5pEzBTnnOtksABtEMAOALnBy\nLghmIyvMMZOkS8b7Nb9U1Uyh0slmAdggghkAdIFJH8xWmvwvSZcyzwyIBYIZAHSBk/mS+kwazKxc\nN3zXcFaZZB/zzICII5gBQBeYnCtpx1BGiT5b8fY+M10y3q8jZwhmQJQRzACgC0zOLWn3cPai51yy\nrV8n50rKF5lnBkQVwQwAusDJfEm71ghml44PyEn62pGZzjQKwIYRzACgC0zOlbR75OLB7MB4Tibp\nqw8TzICoIpgBQMyVKjXli5U1e8wyyYT2jGR1F8EMiCyCGQDEXKO47FpzzCTpkm0D+vrRWVVrbGgO\nRBHBDABirlHDbK2hTCmoZ1Yo1/Styfl2NwvAJhDMACDmGlX/1xrKlKRLx4NCs3c9NN3WNgHYHIIZ\nAMTc8lDmOnrMRvvTzDMDIoxgBgAxNzlX0mAmuWrV//N9/6VjrMwEIopgBgAxd3KupF3DmXWff+2l\nYzqeL+n4bLGNrQKwGQQzAIi5yfzaNcyaff+l45Kkr1JoFogcghkAxNzJuaV1TfxvOLhzUJL0vanF\ndjUJwCYRzAAgxup1p5NzpXXVMGvIpRPaPpjR0Rk2NAeihmAGADF2ZrGsat1taChTCrZnOjrNHDMg\naghmABBjG6lh1uzAWD89ZkAEEcwAIMY2sh1TswPjOZ3Il9iaCYgYghkAxNhGtmNqdmCsX7W60wkf\n7ABEA8EMAGLs5FxJiT7T9sH11zGTpAN+ayaGM4FoIZgBQIxN5kvaMZhRos82dL8DY0Ewm2ABABAp\nBDMAiLHJuZJ2bXAYU5L2jGbVZ/SYAVFDMAOAGAtqmG1sGFOSUok+7RnJ6eg0wQyIEoIZAMTYZH5j\nxWWbHRjP6egMQ5lAlBDMACCmiuWa5krVTQ1lSr6WGT1mQKQQzAAgppZLZWy6x6xfp+aXVKrUWtks\nAFtAMAOAmNpscdmGA+M5SdIEw5lAZBDMACCmlrdj2sJQpsTKTCBKkmE3AACwOZsdyrzpjiOSpHyx\nIkn6h68e04nZC3cAeOH1l2yxhQA2ih4zAIipyXxJQ5mkBjKb+xt7KJtUss80s1huccsAbBbBDABi\n6uQmi8s29JlptD+l6QLBDIgKghkAxNTk3OZrmDWM9ac1QzADIoNgBgAxdTJf0q6tBrOBtGYWKy1q\nEYCtYvI/AMRAY8J+Q905Tc6VdGZh6YLbNmK8P61ipaZSpaZsKrHVZgLYInrMACCGFpeqqjtpOJfa\n0nXGBtKSpGkWAACRQDADgBiaK1YlScPZLQaz/uD+zDMDooFgBgAxNFcK5oUN57Y2I2W8P+gxo2QG\nEA0EMwCIoUZx2K0OZebSCWWSfZousAAAiAKCGQDE0HypKpM0uMnisg1mFpTMoMcMiASCGQDEULFS\nVTaVUJ/Zlq81NkAtMyAqCGYAEEPFck25dGvKW4z3pzRTKMs515LrAdg8ghkAxFCxUlOuRXXHxgbS\nqtScFsu1llwPwOYRzAAghorlmvpb1GM2xspMIDIIZgAQQ8UWVupvBDM2MwfCRzADgBhqaY/ZgC8y\nS48ZEDqCGQDEjHOupXPMMsmE+tMJVmYCEUAwA4CYKVfrqju1bFWmJI0PpDWzSJFZIGwEMwCImUIl\nWD3Zqh4zKZhnxhwzIHwEMwCImaIva9HKHrOx/rTyhYrq1DIDQkUwA4CYKbajx2wgpZpzmisynAmE\niWAGADHTjh6zcUpmAJFAMAOAmGlPj1mjyCw9ZkCYCGYAEDPt6DEb7U/JJEpmACFbM5iZ2XvN7JSZ\nfbPp2LiZ3Wpmh/y/Y/64mdm7zOywmd1rZk9sus+N/vxDZnZj0/HvN7Nv+Pu8y8ys1U8SALpJsVJT\nwkzpROv+tk729Wkwk1SeOWZAqNbzW/0+Sc8679hrJH3WOXelpM/6ryXp2ZKu9B8vl/RnUhDkJL1B\n0vWSrpP0hkaY8+f8UtP9zn8sAECTYrmmbDqhVv8dO9KfIpgBIVszmDnnviBp+rzDN0h6v//8/ZKe\n13T8Ay5wu6RRM9sj6ZmSbnXOTTvnZiTdKulZ/rZh59ztzjkn6QNN1wIArKBQqam/hfPLGkZyKeUL\nBDMgTJvtB9/lnDvhP5+UtMt/vk/S0abzJvyxix2fWOH4iszs5WZ2l5ndNTU1tcmmA0C8lcq1ls4v\naxjJBT1mjlpmQGi2PEHB93R15LfYOfdu59y1zrlrd+zY0YmHBIDIaeU+mc1GcimVa3WVKvWWXxvA\n+mw2mJ30w5Dy/57yx49JOtB03n5/7GLH969wHACwikK52rYeM0nMMwNCtNlgdoukxsrKGyV9vOn4\nz/vVmU+SlPdDnp+W9AwzG/OT/p8h6dP+tjkze5JfjfnzTdcCAKygnT1mkpQvUjIDCEtyrRPM7MOS\nfkjSdjObULC68q2Sbjazl0l6WNLz/en/Iuk5kg5LKkh6qSQ556bN7M2S7vTnvck511hQ8N8VrPzM\nSfqk/wAArKDunJYq9bb2mM3SYwaEZs1g5pz72VVuevoK5zpJr1jlOu+V9N4Vjt8l6Zq12gEAkEqV\nmpxaW/W/YSgbFJllKBMID5X/ASBG2lH1vyHRZxqmZAYQKoIZAMRIO/bJbDaSSylfIpgBYSGYAUCM\nNHrM+tvQYyZRZBYIG8EMAGKk0WOWbWePGUVmgdAQzAAgRgod6DGr1t3y4wDoLIIZAMRIqQNzzCRW\nZgJhIZgBQIwUyzWlEqZkoj1v3wQzIFwEMwCIkUKbqv43jPQTzIAwEcwAIEaK5Vpbapg1DGaSSpgR\nzICQEMwAIEbatU9mQ5+ZhnNJghkQEoIZAMRI0GO25m56WzKcS2mWWmZAKAhmABAj7e4xkxq1zMpt\nfQwAKyOYAUCMFMu1ttUwaxjNpTRXqqpep8gs0GkEMwCIiVrdqVyrt63qf8NILqVa3enMIr1mQKcR\nzAAgJpY3MG9zj9lILi1JOpEvtvVxAFyIYAYAMVEoVyVJ/e3uMfO1zI7Pltr6OAAuRDADgJgolTvV\nYxYEM3rMgM4jmAFATBTavE9mw0A6oWSf6USeHjOg0whmABATxQ71mJmZhnMpghkQAoIZAMREsUM9\nZlIwnHlilqFMoNMIZgAQE40es3aXy5CCWmb0mAGdRzADgJgoVmrKJPuU6LO2P9ZILqXJuZJqFJkF\nOopgBgAxEeyT2f7eMikomVGrO03NL3Xk8QAECGYAEBPFSq3tNcwaRrKUzADCQDADgJgolmvKdrDH\nTBLzzIAOI5gBQEwUKrWOrMiUzhaZPc7KTKCjCGYAEBOlck39Heoxy6USyqUS9JgBHUYwA4AYcM6p\n2MEeMzPTntEsc8yADiOYAUAMVGpO1brrWDCTpL0jOXrMgA4jmAFADCxX/U8nO/aYu0eyOjFLMAM6\niWAGADFwNph1sscsq1PzJVVr9Y49JtDrCGYAEAPLG5h3cChzz2hOdSedpMgs0DEEMwCIgeVg1sEe\nsz0jWUliM3OggwhmABADxUpVUmd7zPaO5iRJx1kAAHQMwQwAYqDRY9apOmbS2R6zSUpmAB1DMAOA\nGChWajJJ6WTn3raHsikNZZI6zspMoGMIZgAQA4VyTdlUQn1mHX3cy3cM6NCp+Y4+JtDLCGYAEAPF\nSue2Y2r2mH0juvdoXvW66/hjA72IYAYAMVCq1Dq6IrPhcQdGNb9U1ffOLHb8sYFeRDADgBgolDu3\nT2azx+0flSTdOzHb8ccGehHBDABioFgOp8fs4M5B9acTuudovuOPDfQighkAxECxEk6PWaLPdM3e\nEd1DjxnQEQQzAIg451wwxyyEYCZJj90/ovuPz6nCnplA2xHMACDiFpaqqrvObsfU7HEHRrVUrevb\nk5TNANqNYAYAETdbqEjq7HZMzc4uAGCeGdBuBDMAiLh8MQhmYdQxk6QD4zmN9adYmQl0AMEMACJu\nzgezbEjBzMz0mP2j+vpRghnQbgQzAIi42WK4Q5mS9Lj9Izp0amF5M3UA7UEwA4CIOzuUmQytDY/d\nP6pa3em+48wzA9qJYAYAERf25H8p6DGTpHtYAAC0FcEMACIuX6woYaZUwkJrw87hrPaMZFkAALQZ\nwQwAIi5frCibTsgsvGAmBYVm72EBANBWBDMAiLjZQjm0UhnNHrt/VA+dKSjvh1YBtB7BDAAibnqx\nrIEIBLPlQrPH6DUD2oVgBgARN1uohLois+ExfgEAOwAA7UMwA4CIm4nIUOZILqVHbB9gnhnQRgQz\nAIgw55wPZuH3mEl+AQArM4G2IZgBQIQtlmuq1JwGMuH3mEnBAoCTc0s6OVcKuylAVyKYAUCEzSyW\nJYW3gfn5HnfAF5plOBNoC4IZAETYTKERzKIxlHn1nhEl+owFAECbEMwAIMKmI9Zjlksn9MhdQ/r3\nw6flnAu7OUDXIZgBQIQ19skciEiPmSS96EmX6J6js/r0fSfDbgrQdQhmABBhUesxk6SfufaArto1\nqD/85AMqV+thNwfoKgQzAIiw2UJZZlI2QsEsmejT637saj18pqAPfPmhsJsDdBWCGQBE2HShrNFc\nSn0hb2B+vqddtUNPu2qH3vXZQ8srRwFsXXQmLQAALjBTqGisPx3KY990x5GL3v74A6P64uHTeudn\nD+mNP/HoDrUK6G70mAFAhM0sljU2EE4wW8uu4ax+9roD+uDtD+vwqYWwmwN0BYIZAERY0GOWCrsZ\nq/r1H7lK/amE3vrJB8JuCtAVGMoEgAibLZR1zd7hsJuxqs/cd1JPPbhdn7pvUm/6p/t1cOfgiue9\n8PpLOtwyIJ7oMQOACJuO8FBmw5Ov2Kax/pQ+c/9k2E0BYo9gBgARVSzXtFSthzb5f71SiT5df/k2\nTcwUlS9Wwm4OEGsEMwCIqGm/T2aU55g1XLV7SJL0nZPzIbcEiDeCGQBEVKM+WNSHMiVp11BGI7kU\nwQzYIoIZAETUzHKPWfSDmZmiystFAAAgAElEQVTpql2DOnxqQbU6m5sDm0UwA4CImvEbmMdhKFOS\nrto1pKVqXQ9PL4bdFCC2CGYAEFFxGsqUpCt2DKrPpO9MUmwW2CyCGQBEVGMoczQXjx6zbCqhS7cN\nMM8M2AKCGQBE1MxiWcPZpJKJ+LxVP3LXkCbnSpTNADYpPr/tANBjZgqV2AxjNly1KyibcYheM2BT\nCGYAEFEzhXIsVmQ22zWc0XA2qW8TzIBNIZgBQEQFwSwe88sagrIZQ5TNADZpS8HMzH7DzO4zs2+a\n2YfNLGtml5vZHWZ22Mz+1szS/tyM//qwv/2ypuu81h//tpk9c2tPCQC6w8xi/IYypbNlM45MF8Ju\nChA7mw5mZrZP0q9KutY5d42khKQXSHqbpHc45w5KmpH0Mn+Xl0ma8cff4c+TmV3t7/doSc+S9Kdm\nlthsuwCgW8RxKFOSDu70ZTMYzgQ2bKtDmUlJOTNLSuqXdELSD0v6qL/9/ZKe5z+/wX8tf/vTzcz8\n8Y8455acc9+TdFjSdVtsFwDEWqlSU6Fc03gMe8womwFs3qaDmXPumKT/LemIgkCWl3S3pFnnXNWf\nNiFpn/98n6Sj/r5Vf/625uMr3OccZvZyM7vLzO6amprabNMBIPJmfdX/0ZjNMWu4ateQTuRLmqNs\nBrAhWxnKHFPQ23W5pL2SBhQMRbaNc+7dzrlrnXPX7tixo50PBQChahSXHY/hUKYkXbVrUJJ06BS9\nZsBGbGUo80ckfc85N+Wcq0j6mKSnShr1Q5uStF/SMf/5MUkHJMnfPiLpTPPxFe4DAD2psR3TaEyD\n2e7hrC+bwfZMwEZsJZgdkfQkM+v3c8WeLul+Sf8m6af8OTdK+rj//Bb/tfzttznnnD/+Ar9q83JJ\nV0r6yhbaBQCxt7yB+UA8hzLPls2YV/BWD2A9tjLH7A4Fk/i/Kukb/lrvlvRqSa80s8MK5pC9x9/l\nPZK2+eOvlPQaf537JN2sINR9StIrnHO1zbYLALrBdMyHMiVp90hWpUpdhTJv6cB6Jdc+ZXXOuTdI\nesN5hx/UCqsqnXMlST+9ynXeIuktW2kLAHST2ZgPZUrScDbo7WPfTGD9qPwPABE0XShrMJNUOhnf\nt+mRXBDMWJkJrF98f+MBoIvNFiqxLZXRMOyDWb5EMAPWi2AGABE0vViOZXHZZoOZpEz0mAEbQTAD\ngAiaLZRjPb9MkhJ9pqFsUvlide2TAUgimAFAJE0XyhqP+VCmFMwzm2MoE1g3ghkARNDsYiX2PWZS\nMM+MVZnA+hHMACBiKrW65peqsZ9jJgXBjDlmwPoRzAAgYhr7ZI51w1BmNqWlal3zDGcC60IwA4CI\nmfXbMXXLUKYknZwrhdwSIB4IZgAQMdO+6n83DGU2isyeyBPMgPUgmAFAxMwWGtsxdcFQpg9mkwQz\nYF0IZgAQMdOLwVBmN/SYDWWDLZkJZsD6EMwAIGLOTv6PfzBLJfrUn07oBHPMgHUhmAFAxMwslpVL\nJZRNJcJuSkuM5FI6SY8ZsC4EMwCImJlCpStKZTQMZ1NM/gfWiWAGABEzUyhrrAvmlzWM5FKaZCgT\nWBeCGQBEzEyh3BXzyxqGc0lNL5ZVqtTCbgoQeQQzAIiYmcXu6zGTpFNzSyG3BIg+ghkAREzXzTFr\n1DJjOBNYE8EMACKkWqsrX6x011BmtlH9vxhyS4DoI5gBQITki0Fx2W7qMaP6P7B+BDMAiJAZv4F5\nN80xy6YSGswkGcoE1oFgBgAR0k1V/5vtGs7QYwasA8EMACJkZrE7g9mekRxFZoF1IJgBQIQs95gN\ndM8cM0naPZLVSYYygTURzAAgQpbnmHVZj9nu4axOzS+pWquH3RQg0ghmABAhM4tlpZN96k93xwbm\nDbtHsqrVnU4vlMNuChBpBDMAiJBgO6aUzCzsprTU7uGsJIrMAmshmAFAhEwvdldx2YbdIz6YUWQW\nuCiCGQBEyEyhrPEuqmHWsMcHM1ZmAhdHMAOACJmaX9KOoUzYzWi58YG00ok+hjKBNRDMACAinHNB\nMBvsvmBmZto1QpFZYC0EMwCIiMVyTcVKrSt7zCRpzzBFZoG1EMwAICKm5pckqWuD2S6KzAJrIpgB\nQER0ezDbM5LViXxJzrmwmwJEVjLsBgBAL7vpjiPLn3/jWF6SdOf3ZnR0uvvKSuwezqpcrWumUOnK\nladAK9BjBgARMV8KtmMazHbn38xna5kxnAmshmAGABGxsFRVn6nrtmNqWA5mc93XGwi0CsEMACJi\noVTVQCapvi7bjqlheVum/FLILQGii2AGABExX6pqKNOdw5hSsKihz9iWCbgYghkARMTCUrVr55dJ\nUirRpx1DGWqZARdBMAOAiJgvVTSUSYXdjLbaPZxlWybgIghmABABdee6vsdMChYAsCoTWB3BDAAi\noFiuqe6koS4PZntGcgQz4CIIZgAQAfNLVUnSYBdP/pekXcNZzS9VteCfL4BzEcwAIAIWSkFQGcp2\n9xyzXcPBdlOnmGcGrIhgBgAR0Kj6383lMiRpzG/FNFOohNwSIJoIZgAQAY2hvW6f/D/e74PZYjnk\nlgDRRDADgAiYL1WVSpgyye5+W25sXj5dIJgBK+nudwAAiImFpaoGM0lZl27H1LAczOgxA1ZEMAOA\nCFgoVbt+RaYUbNCeTvYxlAmsgmAGABEwv1Tp+hWZkmRmGu9P02MGrIJgBgARMF/q/qr/DWMDac0w\nxwxYEcEMAEJWqzsVyrWuL5XRMD6QoscMWAXBDABC1iulMhrG+tPUMQNWQTADgJAtV/3PdP8cMylY\nmUmPGbAyghkAhGx+yVf975Ees/GBtPLFiqq1ethNASKHYAYAIWv0mPXKUOY42zIBqyKYAUDI5htz\nzHpk8v9YY1smVmYCF+iNdwEAiLD5UlXZVJ9Sie79W/mmO44sf3741IIk6ea7juoR2wfPOe+F11/S\n0XYBUdO97wIAEBMLS9WemfgvSQOZhCSpsFQLuSVA9BDMACBkC6VKz8wvk6T+dPBcF8vVkFsCRA/B\nDABCNt8j+2Q29Kd9j1mZHjPgfAQzAAjZwlK1Z0plSFIq0ad0sk+FJXrMgPMRzAAgROVqXUvVes9s\nx9QwkE5okR4z4AIEMwAI0dntmHpn8r8kDWSSKjDHDLgAwQwAQjRf6q2q/w396YQWWZUJXIBgBgAh\nmi/1VnHZhoF0klWZwAoIZgAQosZQZi/2mFHHDLgQwQwAQjRfqsoUzLnqJQOZpMq1uipsZA6cg2AG\nACFaWKpoIJNUn1nYTemoRpFZapkB5yKYAUCI5ku9VcOsoVFkdpFaZsA5CGYAEKKFpd6q+t/QGLql\nxww4F8EMAEK00KM9ZgONHjNWZgLnIJgBQEicc5rv0R6zfv+cGcoEzkUwA4CQzBWrqtVdz1X9l6Rc\nKiETQ5nA+QhmABCSqYWSJPXcPpmSlOgzZVMJesyA8xDMACAkp+aXJEmDPTjHTJIGMgl6zIDzEMwA\nICRTPpj1Yo+ZFNQyY/I/cC6CGQCEZDmY9eAcMylYmcm2TMC5CGYAEJKphSU/16o334r7M0kV6DED\nztGb7wYAEAFT80sayiRlPbYdU8NAOqnFck3OubCbAkTGloKZmY2a2UfN7Ftm9oCZPdnMxs3sVjM7\n5P8d8+eamb3LzA6b2b1m9sSm69zozz9kZjdu9UkBQBxMzS/17MR/KZj8X6s7latsZA40bLXH7J2S\nPuWc+z5Jj5P0gKTXSPqsc+5KSZ/1X0vSsyVd6T9eLunPJMnMxiW9QdL1kq6T9IZGmAOAbnZ6odyz\nE/+lsxuZL7IyE1i26WBmZiOSflDSeyTJOVd2zs1KukHS+/1p75f0PP/5DZI+4AK3Sxo1sz2Sninp\nVufctHNuRtKtkp612XYBQFycmiv1ZHHZhgE2MgcusJUes8slTUn6azP7mpn9lZkNSNrlnDvhz5mU\ntMt/vk/S0ab7T/hjqx2/gJm93MzuMrO7pqamttB0AAjXUrWmM4tljeR6uMdseSNzghnQsJVglpT0\nREl/5px7gqRFnR22lCS5YEZny2Z1Oufe7Zy71jl37Y4dO1p1WQDouFNzQamMkRw9ZgxlAmdtJZhN\nSJpwzt3hv/6ogqB20g9Ryv97yt9+TNKBpvvv98dWOw4AXetEPtiOabiHhzIbc8wKDGUCyzYdzJxz\nk5KOmtkj/aGnS7pf0i2SGisrb5T0cf/5LZJ+3q/OfJKkvB/y/LSkZ5jZmJ/0/wx/DAC61uScD2Y9\n3GOWTfWpz+gxA5ptdXLDr0j6kJmlJT0o6aUKwt7NZvYySQ9Ler4/918kPUfSYUkFf66cc9Nm9mZJ\nd/rz3uScm95iuwAg0ibzRUm9PZRpZhpIU2QWaLalYOac+7qka1e46ekrnOskvWKV67xX0nu30hYA\niJPJ/JIG0gllkr1d57s/k9Ai2zIBy3r7HQEAQjI5V9SukWzPVv1vYCNz4FwEMwAIwWS+pD0j2bCb\nETo2MgfORTADgBBM5kvaNUww68/QYwY0I5gBQIfV6k4n55foMVPQY1Ys11RnI3NAEsEMADruzMKS\nanWn3fSYqT+dlJNUomQGIIlgBgAd1yguu3skF3JLwjeQofo/0IxgBgAd1iguS4+ZNJBmv0ygGcEM\nADpscrnHjGDW2MicWmZAgGAGAB02OVdSKmHaNpAOuymha2xkTo8ZECCYAUCHTeZL2jmUVV9fbxeX\nlc5uZL7IRuaAJIIZAHTcZL7EMKaXTvYplTAm/wMewQwAOmxyjmDWrJ+NzIFlBDMA6CDnXNBjxorM\nZQNpNjIHGghmANBBc8WqipUaVf+b9GfoMQMaCGYA0EHLNcwIZssG0gnmmAEewQwAOuhEviiJ4rLN\n6DEDziKYAUAHnaTH7AID6YRKlbpqdTYyBwhmANBBjX0ydw4RzBqWa5nRawYQzACgk07OlbR9MKN0\nkrffhgG/LVOBlZkAwQwAOulEvqTdI5mwmxEp/X5bJnrMAIIZAHRUUMMsF3YzImXQ95gtsC0TQDAD\ngE4Kqv7TY9ZsOZiVCGYAwQwAOqRUqWm2UNGeEXrMmuXSCfUZG5kDEsEMADpm0q/I3EUNs3P0mWkg\nk2QoE5CUDLsBANCtbrrjyDlfPzi1IEm6//icbqoeWekuPWuQYAZIoscMADpmrlSRJA3n+Jv4fAQz\nIEAwA4AOyReD4DGSTYXckuhhKBMIEMwAoEPmihVlkn3KpBJhNyVyBjNJLS5V5RzbMqG3EcwAoEPy\nxYpGcvSWrWQwk1Sl5rRYpvo/ehvBDAA6ZK5U0TDBbEWNWman55dCbgkQLoIZAHTIXLHC/LJVDGaD\nYHZmkWCG3kYwA4AOqNWd5ktVVmSuotFjNjVfDrklQLgIZgDQAQtLVTmJocxVDDSGMhfoMUNvI5gB\nQAfMFYMaZgxlrmwgE6xUPbNAjxl6G8EMADogX2wUlyWYrSTZ16dcKkGPGXoewQwAOqBR9Z9yGasb\nzCQJZuh5BDMA6IB8saJkn6k/TXHZ1QxmkwxloucRzACgA/LFoIaZmYXdlMgaoMcMIJgBQCfMFasa\nzlIq42IYygQIZgDQEVT9X9tgJqm5UlVLVbZlQu8imAFAmznnqPq/Do0is8wzQy8jmAFAmxXKNVXr\njh6zNRDMAIIZALQdpTLWp7FfJvPM0MsIZgDQZhSXXZ/l/TIJZuhhBDMAaLNGMKPH7OIYygQIZgDQ\ndnPFikxngwdWlk6yLRNAMAOANpsrVjWUTSrRR3HZtWwfSusMwQw9jGAGAG2Wp4bZum0fzOg0Q5no\nYQQzAGizfLHC/LJ12jaQYSgTPY1gBgBtNlekx2y9dgyl6TFDTyOYAUAblSo1LVXrVP1fp+2DGU0v\nLqlWd2E3BQgFwQwA2miOGmYbsm0grbqTZgr0mqE3EcwAoI3yVP3fkO1DGUnUMkPvIpgBQBvNUVx2\nQ7YPBsGMBQDoVQQzAGijfLEqSRrKUlx2PbYPpiURzNC7CGYA0EZzxYr60wmlErzdrsfZHjOGMtGb\neKcAgDaihtnGDGdTSvYZPWboWQQzAGijuRLBbCP6+kzbBtmWCb2LYAYAbZSnuOyGsS0TehnBDADa\npFKrq1CuaZjishuybZBtmdC7CGYA0CaUytic7YNp6pihZxHMAKBN5kpBqQyC2cbsGMxoamFJzrEt\nE3oPwQwA2iS/vB0TNcw2YttgWuVqXfNL1bCbAnQcwQwA2mR5KJM5ZhvSqGXGcCZ6EcEMANokX6wo\nk+xTJpUIuymxwrZM6GUEMwBoE2qYbc42vy0TtczQiwhmANAmVP3fnB2+x2yKoUz0IIIZALTJXLFC\nDbNNGBvwG5nP02OG3kMwA4A2qNbqmi9Vqfq/CalEn8b6UzqzSDBD7yGYAUAbTC0syYkaZpu1fTCj\n0/MMZaL3EMwAoA1O5EuSpBFqmG3KtsE0qzLRkwhmANAGkz6YMZS5OdsHMzqzSI8Zeg/BDADaYLnH\njMn/mxIMZdJjht5DMAOANjg5V1Kyz5RLU1x2M7YPpjW/VFWpUgu7KUBHEcwAoA1O5EsayaVkZmE3\nJZaWt2ViOBM9hmAGAG0wmS8yv2wLlrdlYjgTPYZgBgBtMDlXolTGFixvy0QtM/QYghkAtFi97nQy\nv0TV/y3YMRT0mJ2cI5ihtxDMAKDFpgtllWt1aphtwe7hrBJ9puOzxbCbAnQUwQwAWowaZluXTPRp\n93BWEzMEM/QWghkAtNjkctV/gtlW7BvN6RjBDD1my8HMzBJm9jUz+4T/+nIzu8PMDpvZ35pZ2h/P\n+K8P+9sva7rGa/3xb5vZM7faJgAI04k5esxaYf9YTscYykSPaUWP2a9JeqDp67dJeodz7qCkGUkv\n88dfJmnGH3+HP09mdrWkF0h6tKRnSfpTM6MiI4DYmswXlewzDWaYY7YV+8ZyOpEvqlKrh90UoGO2\nFMzMbL+kH5P0V/5rk/TDkj7qT3m/pOf5z2/wX8vf/nR//g2SPuKcW3LOfU/SYUnXbaVdABCmE/mS\ndg5l1Edx2S3ZN5pT3Z0dGgZ6wVZ7zP5Y0m9Lavw5s03SrHOu6r+ekLTPf75P0lFJ8rfn/fnLx1e4\nzznM7OVmdpeZ3TU1NbXFpgNAe5ycK2n3SDbsZsTe/rF+SWI4Ez1l08HMzJ4r6ZRz7u4WtueinHPv\nds5d65y7dseOHZ16WADYkBP5kvaM5MJuRuztGwteQ1ZmopdspcfsqZJ+wswekvQRBUOY75Q0amaN\niRX7JR3znx+TdECS/O0jks40H1/hPgAQK845TebpMWuFPf41ZGUmesmmZ6Y6514r6bWSZGY/JOk3\nnXMvMrO/k/RTCsLajZI+7u9yi//6y/7225xzzsxukXSTmb1d0l5JV0r6ymbbBQBhmitVVSjXtHuY\nYLYZN91x5Jyvh7JJfeHQ1PJOAJL0wusv6XSzgI5pRx2zV0t6pZkdVjCH7D3++HskbfPHXynpNZLk\nnLtP0s2S7pf0KUmvcM7V2tAuAGi7RqX6PaMEs1YYzaU0UyiH3QygY1qylts59zlJn/OfP6gVVlU6\n50qSfnqV+79F0lta0RYACFNjPtSBsX7dV5wLuTXxN9qfZvI/egqV/wGghY5OFyQFxVGxdWP9aeUL\nFdWdC7spQEcQzACghSZmiupPJzQ+kA67KV1htD+lmnOaL1XXPhnoAgQzAGihiZmC9o/lZBSXbYmx\n/mBbq1nmmaFHEMwAoIWOzhR1wBdGxdaN9gc9j7OFSsgtATqDYAYALdToMUNrjPlgxspM9AqCGQC0\nSL5Y0XypuryVELYunexTfzpBjxl6BsEMAFqksSLzwDg9Zq001p/WbJEeM/QGghkAtEijhhk9Zq01\n2p/SzCI9ZugNBDMAaJGJGWqYtcNoLqXZYlmOWmboAQQzAGiRiZmihjJJjeRSYTelq4wNpFWpOS2W\n2a0P3Y9gBgAtMjFT0D5qmLXcaK5RMoN5Zuh+BDMAaJGj00UdGGd+WauN+iKzM6zMRA8gmAFACzjn\nqGHWJmP99JihdxDMAKAFZgsVLZZrrMhsg1w6oUyyjx4z9ASCGQC0wFG/IvMAPWZtMdafpscMPYFg\nBgAtQA2z9hrtT1H9Hz2BYAYALdCo+r+fqv9tMdqfZr9M9ASCGQC0wMRMUSO5lIaz1DBrh7H+lJaq\ndRWpZYYuRzADgBZgRWZ7jTZWZrJnJrocwQwAWuDoTFEHmF/WNmONWmbsmYkuRzADgC2ihln70WOG\nXkEwA4AtOrNYVqlSJ5i10UA6oVTCWJmJrkcwA4AtaqzIZDum9jEzjeZYmYnuRzADgC2ihllnjA1Q\nywzdj2AGAFvUqPrPUGZ70WOGXkAwA4AtmpgpanwgrYFMMuymdLXR/pQK5ZoK5WrYTQHahmAGAFs0\nMVOkt6wDxvzKzGN+6BjoRgQzANiiiekCNcw6YNTXMpuYJZihexHMAGAL6nWniVl6zDphlB4z9ACC\nGQBswdTCkspVaph1wlA2qWSf6eEzi2E3BWgbghkAbMFEY0UmNczars9MO4YyOnxqIeymAG1DMAOA\nLWjUMDtAj1lH7BjK6BDBDF2MYAYAW9Co+r9vlB6zTtg5lNHETJGSGehaFN0BgA266Y4jy59/7ttT\nGswk9Q9fOxZii3rHzqGsJOnBqUVds28k5NYArUePGQBswWyhojFfxgHtt3MoI0k6dGo+5JYA7UEw\nA4AtmC6Ul8s4oP22DWaU7DMdOsk8M3QnghkAbFLdOeULFY0PEMw6JdFnumz7ACsz0bUIZgCwSXPF\nimrOLVekR2dcuXOQYIauRTADgE2aXixLksYZyuyogzsH9dCZRS1Va2E3BWg5ghkAbNIxv2fjnlFq\nmHXSwZ2DqjvpodOFsJsCtBzBDAA26dhsUaO5lAYzVB7qpIM7ByWxMhPdiWAGAJs0MVPUPir+d9wV\nOwZlJlZmoisRzABgEwrlqqYXy9rPMGbHZVMJXTLer8NTBDN0H4IZAGzCMb9H5r4xtmIKw8EdgzpM\njxm6EMEMADZhwk/830ePWSgO7hrUg6cXVK3Vw24K0FIEMwDYhGMzRW0bSCuXToTdlJ505c4hVWpO\nR6ZZmYnuQjADgE2YmCloPxP/Q3N2ZSbDmeguBDMA2KC5UkVzpar2M78sNI1gxg4A6DYEMwDYoMbE\nf3rMwjOYSWrPSJZghq5DMAOADZqYKcok7RkhmIXp4M5Bisyi6xDMAGCDjs0WtGs4q3SSt9AwXblz\nSIdPLahed2E3BWgZ3lUAYAOcc1T8j4iDOwdVqtSX9ywFugHBDAA2YGKmqEK5xvyyCLhyFwsA0H0I\nZgCwAfdO5CVRWDYKDu5gM3N0H4IZAGzAvROzSvSZdo9kw25KzxsbSGv7YJoeM3QVghkAbMA9E7Pa\nM5JVso+3zygIVmYSzNA9eGcBgHWq152+eWyOYcwIObgz2MzcOVZmojsQzABgnR48vaiFpSoT/yPk\nyp1Dml+q6tT8UthNAVqCYAYA63TvxKwkaR9bMUXGlY09M08ynInuQDADgHW6dyKv/nRCO4cyYTcF\n3tnNzFmZie5AMAOAdbpnYlbX7B1Rn1nYTYG3Yyij4WySBQDoGgQzAFiHSq2u+4/P6TH7R8JuCpqY\nmR61Z1j3H58LuylASxDMAGAdvnNyXkvVuh5LMIucR+8d0QMn5lSt1cNuCrBlybAbAABxcMeD05Kk\nJxwY0xcPnw65Nb3tpjuOnPP1fKmipWpd/+e2w9o1fLbw7wuvv6TTTQO2jB4zAFiHT9x7XN+3e0iX\nbGNFZtTs8XXljrOZOboAwQwA1nB0uqCvHpnVTzx+b9hNwQp2DGaU7DOCGboCwQwA1vDP3zghSfrx\nxxLMoqixd+nxfCnspgBbRjADgDX80z3H9fgDozowzjBmVO0dzen4bFF1tmZCzBHMAOAivju1oPuO\nz+nHH0dvWZTtHclpqVrXzGI57KYAW8KqTABocv6Kv88+cFImqVytX3AbomPvaLAa83i+pG2D7MyA\n+KLHDABW4ZzTvRN5XbZ9QCO5VNjNwUXsGs6qz1iZifgjmAHAKibnSppaWKKobAykEn3aOZTViTzB\nDPFGMAOAVdw7kVefSdfsJZjFwd7RrI7NluRYAIAYI5gBwAqCYcxZHdw5qIEM03HjYO9oTotLVc2X\nqmE3Bdg0ghkArODoTFEzhYoeu2807KZgnfaMsAMA4o9gBgAruHdiVsk+09V7h8NuCtZp70hjZSbB\nDPFFMAOA89Sd0zeO5XXVriFlU4mwm4N1yqQS2jaQ1vFZdgBAfBHMAOA8D51e1HypymrMGNo7mqPH\nDLFGMAOA83zjWF6phOn7djOMGTd7R3OaLVRUWGIBAOKJYAYATZxzeuDEnK7cOaR0krfIuGneAQCI\nI951AKDJsdmi5kpVJv3H1F5WZiLmNh3MzOyAmf2bmd1vZveZ2a/54+NmdquZHfL/jvnjZmbvMrPD\nZnavmT2x6Vo3+vMPmdmNW39aALA595+YU59J37drKOymYBMGMkmN5FLMM0NsbaXHrCrpVc65qyU9\nSdIrzOxqSa+R9Fnn3JWSPuu/lqRnS7rSf7xc0p9JQZCT9AZJ10u6TtIbGmEOADrt/uNzunTbgPop\nKhtbe0eyrMxEbG06mDnnTjjnvuo/n5f0gKR9km6Q9H5/2vslPc9/foOkD7jA7ZJGzWyPpGdKutU5\nN+2cm5F0q6RnbbZdALBZD51e1Kn5JV29h2HMONs7mtOZhSUtsgAAMdSSOWZmdpmkJ0i6Q9Iu59wJ\nf9OkpF3+832SjjbdbcIfW+34So/zcjO7y8zumpqaakXTAWDZrfeflCSCWcztHc3JSXrgxFzYTQE2\nbMvBzMwGJf29pF93zp3zW+CCnWRbtpusc+7dzrlrnXPX7tixo1WXBQBJ0mfun9SekazGBtJhNwVb\nsHc0WABw33GCGeJnS8HMzFIKQtmHnHMf84dP+iFK+X9P+ePHJB1ouvt+f2y14wDQMacXlnTXwzN6\nFL1lsTecTWogndB9x2n9kCoAABjDSURBVPNhNwXYsK2syjRJ75H0gHPu7U033SKpsbLyRkkfbzr+\n83515pMk5f2Q56clPcPMxvyk/2f4YwDQMbc9cErOMYzZDcxM+8ZyuvvhmbCbAmzYVpYdPVXSiyV9\nw8y+7o/9jqS3SrrZzF4m6WFJz/e3/Yuk50g6LKkg6aWS5JybNrM3S7rTn/cm59z0FtoFABv2mfsn\ntW80pz1+I2zE2yO2D+pT903q1FxJO4f5niI+Nh3MnHNflGSr3Pz0Fc53kl6xyrXeK+m9m20LAGxF\noVzVvx86rRdef4mCwQDE3RU7B6X7pC9994ye94QV15MBkUTlfwA97wvfOa2lal0/evWutU9GLOwZ\nyWokl9KXvns67KYAG0IwA9DzPnP/pEZyKV132XjYTUGL9JnpSY8Y15e+eybspgAbQjAD0NOqtbpu\n+9YpPf1RO5VM8JbYTZ5yxXZNzBR1dLoQdlOAdeNdCEBPu/OhGc0WKnrG1bvDbgpa7ClXbJMkhjMR\nKwQzAD3t1vtPKpPs0w9etT3spqDFDu4c1I6hDMOZiBWCGYCe9h+HT+u6y8fVn2bT8m5jZnrKFdv0\npe+eUVAYAIg+ghmAnnVmYUnfPjmvJ/shL3Sfp1yxTVPzSzp8aiHspgDrQjAD0LNufzCoZf3kRxDM\nutVTrgiGqBnORFwQzAD0rC9997QGM0k9Zt9I2E1BmxwY79f+sRwLABAbBDMAPevLD57RdZePUyaj\nyz3lim26/cFp1erMM0P08W4EoCednCvpwalFhjF7wFOu2K58saIHTsyF3RRgTQQzAD3py37OERP/\nux/1zBAnrA8H0BNuuuPIOV9/7KsTyqX+X3t3Hh1Xfd5//P3MjPZ9s6zFi+QF49gyYMcmDksgCQmJ\nCSlNgZA0QJpD0zb0dEmTtPSXLr/8DrQ07Una01LqhCRNISQQmpilBFIWBxsvGFtmkxfZWJJlS7YW\na19mvr8/5soWHAlMGM29mvm8jufozp17r577zPjOo/u99/sNs7ulh8bWXp+ikmSYU5jN4jn5bDl4\nklsuWeR3OCJvSWfMRCQtHezsp648j5CZ36FIEqxfVMb2Q12MRWN+hyLyllSYiUja6R4cpXtwjPqK\nPL9DkSRZv6iMwdEoe1p6/A5F5C2pKVNE0k5z5wAA9RX5PkciM2ly8/Xg6DgG3PXMQS4/fqaz2RvW\nzfchMpHp6YyZiKSd5s5+8jLDVBZk+R2KJEluZoSq4mwOekW5SFCpMBORtOKco/nEAHUV+ZiuL0sr\nS+YU8PrJAQZHxv0ORWRaKsxEJK2cHBild2iMRbq+LO2srCki5uBl9WcmAabCTETSyunry8p1fVm6\nqSrKpjQvk5fa1D2KBJcKMxFJK80n+inIjlCen+l3KJJkZsbKmiIOdvYzoOZMCSgVZiKSNpxzNHcO\nUF+ep+vL0tREc+Yras6UgFJhJiJpo6NvhP6RcRapm4y0NdGcuVfNmRJQKsxEJG00d8b7r1L/Zelr\nojmzWc2ZElAqzEQkbRzsHKA4J4OS3Ay/QxEfnW7OPKrmTAkeFWYikhaGRqPsO97HsqpCXV+W5qqK\nsinLy2TvUTVnSvCoMBORtPDS0V7GY47z5xX7HYr4zMxY4TVndg2M+h2OyBuoMBORtPDikR7K87Oo\nLcnxOxQJgInmzMdfPuZ3KCJvoMJMRFJeS9cgh08OcP78YjVjCnCmOfORxna/QxF5AxVmIpLyfra7\nDYDzatWMKXETzZlbm09ysn/E73BETlNhJiIpzTnHT3e1sbAsj5I89fYvZ6ysKSIaczz+8nG/QxE5\nTYWZiKS0Pa29NJ+IN2OKTFZVlM3Cslwe3avmTAkOFWYiktIe2tVKZiTEypoiv0ORgDEzPt5Qxdbm\nk5xQc6YEhAozEUlZY9EYmxrb+fDySrIzwn6HIwG0oaGaaMzx2Eu6O1OCQYWZiKSsZ5o66RoY5Zrz\na/wORQJq2dwCFs/JZ9Oeo36HIgKoMBORFPbQi22U5WVyydIKv0ORgDIzrmqoZsfhLtp7h/wOR0SF\nmYikpt6hMZ549ThXraomI6xDnUxvw6oqnEN9mkkg6GglIinp0b3tjI7HuOYCNWPKW1tUkc97qgvZ\npMJMAkCFmYiknKHRKD98/nUWVeTpbkw5K1etqmZPSw9HTg76HYqkORVmIpJS+obHuPG723m1/RR/\n/OGlGoJJzsrHV1YB8PBe3QQg/lJhJiIpo3tglM9s3MauI918+9Pns6Gh2u+QZJaYV5rLBfOL2bRH\nzZniLxVmIpISOk4Nc93dW3ntWB93f261ijJ5x65aVc2r7ac40NHndyiSxlSYicis19o9yLX/vpXW\n7iG+d9N7uXxZpd8hySz08ZVVmKGzZuIrFWYiMqs1Hevj2ru20jUwyg+/sI71i8v9DklmqTmF2VxY\nV8amxqM45/wOR9JUxO8ARER+Xc8dOMEX//MFcjLD/OiW97G8utDvkGSWuXfbkTc8ryzMZmvzSb75\ni31UF+ecnn/DuvnJDk3SlAozEZmVHnyhla8+2Eh9RR6fPK+G3S097G7p8TssmeXeU13Iz/e00dja\n+4bCTCRZ1JQpIrOKc45vPbmfP/3JHtbVl/LA762nODfT77AkReRlRVg8J5/Gth41Z4ovVJiJyKwR\nizm++mAj//TkPn7zglruuWkthdkZfoclKea8ecX0DI6x73i/36FIGlJhJiKzxn9sbubHO1u59fLF\n/MNvNZAZ0SFMEm9FTRFFORk83dShs2aSdDqqicissLe1lzsfb+LKFXP5E/XoLzMoEgpxyZJyXu8a\n5NDJAb/DkTSji/9FJLAm7pgbHY/xL0/tJy8rwuoFJdy3vcXnyCTVrVlYylNNnTzd1El9eb7f4Uga\n0RkzEQm8hxuPcrJ/lN9aXUtupv6elJmXEQ5x0eJyDnT009qtgc0leVSYiUigvdTWy87Xu7lkaQX1\nFTpzIcmztq6U7IwQTzd1+h2KpBEVZiISWD2Dozz0Yhs1xTl88Nw5focjaSY7I8z6ReW80n6KpmMa\nP1OSQ4WZiARSNOb4yQutRGOO6947j0hIhytJvvX1ZWSGQ/zr0wf8DkXShI50IhI4zjn+8r/3cujE\nAFetqqI8P8vvkCRN5WZFWFdXyqY9Rzl8QndoysxTYSYigeKc4xuPvMp921v4wNIKVi8o9TskSXPv\nX1JOJBzirmcO+h2KpAEVZiISKP/05H6+86tD3LR+IR9eXul3OCIUZmdw3Zp5PLirVeOxyoxTYSYi\ngXHXMwf59i/3c+2aWr6+Ybk6kZXA+IPLFjOnIJtr79rKvduOaEQAmTEqzEQkEP5z62HueOw1NjRU\ncfs1DYRCKsokOOYWZbPp1otYV1/KXzy0l6880MjwWNTvsCQFqadGEUm6iR79J+xt6+W+7UdYNreA\ndXVl3L9DPftL8JTmZfK9m9fyrSf38e3/PcAr7ae467OrmVea63dokkJ0xkxEfNXRN8yDu1qZV5LD\np9fOJ6wzZRJg4ZDxJ1ecw3duXENL1yAb/vlXbNzcTP/IuN+hSYpQYSYivhkZj3LvtiNEQsYN6xaQ\nEdYhSWaHD55bycO3Xsy5VQV845FXed/tv+SOx17j+Klhv0OTWU5NmSLiC+ccD73YRmffCDe/v46i\nnAy/QxKZ1pub3yd8YlUN588rYfOBE9z97EG+86tmPnleDX9w2WIWluclOUpJBSrMRMQXzx/qorG1\nlyuWV7J4jsbAlNlrXmkuN6ydz/sXl/HdXx3i/p0t/PfuNj574QL+8PIllORl+h2izCJqNxCRpDvS\nNcijje0sm1vAJUsr/A5HJCEWlOXxN1ev4NmvXManVs/j+1sOc+mdT/EfzzYzMq47OOXs2Gzti2XN\nmjVu586dfochIu/Qyf4RLv/mM4QMvnTZEnIyw36HJDIjjp0a5n9eamff8X5KcjO4ZGkFDTXF/M7F\ndX6HJj4wsxecc2vebjk1ZYpI0sRijj+6fzcDI+N88dJFKsokpc0tzOam9XXs7+jj8ZeO8bPdR3mk\nsZ1dLd186oJaLvaGehKZTIWZiCTNvz1zkM37T3D1edVUF+f4HY5IUiyZU8Diy/Jp6xli15Eethw4\nwSON7ZTnZ3Htmlpufn8dFQVZfocpAaGmTBFJih2Hu7j+7ue5csVc3ldfpuGWJG2Nx2LsO9bHC0d6\neK39FOGQsXpBCZcsqXjDjQI3rJvvY5SSaGrKFJHA6BoY5dZ7X2ReSQ63X7OSTXva/Q5JxDeRUIjl\n1UUsry7iRN8Iz+7vZOfhbnYc7qKhtphLl1ZQWZjtd5jiExVmIjKjYjHHn/54N10Do/z099dTkK3+\nykQmlBdkcc0FtXzw3EqeO3CC7Ye62NPSw9q6Uj66Yi6l6moj7eiqQxGZUXdvbuappk7+z4ZzWVFT\n5Hc4IoFUlJPBx1ZW8ZWPnMOF9WXsONzFB+58inueO8RYNOZ3eJJEKsxEZMZsOXiCOx9v4mMr5/LZ\nCxf4HY5I4OVmRbhqVTW3Xr6EVfOK+ZtNr3DltzbzVFMHs/WacHlnVJiJSMINj0W547HX+OzGbcwv\nzeWO32zQxf4i70BlYTY/+PxaNn5uDePRGDffs4Nr/m2LCrQ0oGvMRCShdh3p5s9+soeDnQNct2Ye\nt204l0JdVybyjt23vQWAz19Uxwuvd/NMUyc337OD2pIcLl82h3MqC/iMzkSnHBVmIpIQw2NRvvmL\nJjZuPkRhTgY3rV/I0soCHtYdmCLvSiQUYl1dGasXlPDi6z08va+DH2x9naqibPpGxrlieSX1FRpv\nNlWoHzMReVc6+oa5b1sLP9z2Op19I6xdGL+bLDtDvfqLzIRozPHikW6eP3SSoz3DACyZk88V76nk\nQ+dWsqKmiAyNKBA4Z9uPmQozEfm17G7p4ftbDvNw41HGoo4PnFPBFy9dRHPngN+hiaSNS8+p4ImX\nj/GLV46z7VAX0ZgjMxLi3KpCVtYU0lBTzIqaIhbPySczomLNTyrMRCSh7t12hL7hMRpbe9nd0kNb\nzxBZkRAXLCjhfXVllGtIGRFfDY6Oc6Cjn7buIVp7hjjaM8TIeLyrjUjIqK/IY2llAcvmFnDO3EIa\naovUkW0Sqed/EUmIgZFxnnjlON/bcogDHf3EHFQXZbOhoYoL5peoyVIkIHIzIzTUFtNQWwxAzDm6\n+kdp6x3ieO8wx04N89yBEzzceOa6z+KcDOaV5jK/NJcvXFzH8upCsiL6P+2nwBRmZvZR4FtAGNjo\nnLvD55BEUpJzjr6RcTr7RhgYGad/ZJzBkSgDo/Hp9p5hWroHae0eorV7kOOnRgAozs3g4iUVnDev\nWH9li8wCITPKC7LiZ7Nrz8wfHoty/NQwrd1DHOkapKVrkL1tvTyyt51IyFg8J5/l1YUsryrkPdXx\nZtDy/Ex1eZMkgWjKNLMwsA/4MNAK7AA+7Zx7Zbp1/GzKdM4xHnNEY97PqCPmJh7x1x0QDhkZoRDh\nsBEJxR/hkOnDPYMmvzcT708sFn9vos4Ri0HI4u9NJBQiEo6/J+GQETYjFHr79yYac4yOxxgZjzI6\nHmN4LMbg2DgDI+MMjEQZHB1ncDSKWfzAOLHtcMjIzgiTkxkmJyN8etq8bcbjjjEec4yMxRgeizI0\nFmXYmx6Nxrx9gahz8c+ZAzMwM0IGhhFzjsHReCwDI+MMjEbpGx6jo2+EjlPDHD81wtBYdNr9C1m8\nF/KS3ExKcjMpzsugvjyfBWW5hPTZFUlJp4bGONI1yNGeIY72DtHeO0zf8Pjp1zPCRnFOJiV5Gbx3\nYSlzC7MpzsukOCeD4twMinMyycsKEzI7feyDM8enySbqjsnlh3PgcN7PM9+jzvtejbn4Md25M+vF\nl4gLmZEZCZERDpERNjLDISLedEY4FIjv39nWlLkWOOCcawYwsx8BVwPTFmYz7Uv37uKXr3YQ8z4c\neB+amIt/ib5bZwqB+JfphInPjL7+4qbK9Jv/A0+8N1GvaHm3Jt4bs0m/35uIegeH2SIzHCIzEiIr\nEqIgO4PCnAxqS3IpyI5QkB0hOxImMxI6/ciKhMnPihA+iwJVRFJHYU4GK2qK3jBsWt/wGO29w5zo\nH6FncIzuwVF6Bsd4dG873YNjPkb764uELF40xv/FC0eMzV+9jPL8YFwnG5TCrAZomfS8FVj35oXM\n7BbgFu9pv5k1zXBc5cCJGf4d6UT5TDzlNPGU08RSPhNPOU2wim8kJadn1RtwUAqzs+Kcuxu4O1m/\nz8x2ns1pRzk7ymfiKaeJp5wmlvKZeMpp4gUpp0Hp1KQNmDfpea03T0RERCRtBKUw2wEsMbM6M8sE\nrgd+7nNMIiIiIkkViKZM59y4mX0JeJx4dxnfdc697HNYkMRm0zShfCaecpp4ymliKZ+Jp5wmXmBy\nGojuMkREREQkOE2ZIiIiImlPhZmIiIhIQKRFYWZmpWb2hJnt936WTLPcjd4y+83sxknzV5vZXjM7\nYGbfNq/r4Om2a2ZXm1mjme02s51mdlFy9jR5fMjpZ7yc7jWzLWa2Kjl7mhw+5HOZmW01sxEz+3Jy\n9jI5zOyjZtbk5eJrU7yeZWb3e69vM7OFk177c29+k5l95O226d2wtM2bf79381LKSXJOv+TNc2ZW\nPtP75ock5/O/vPkvmdl3zSxjpvfPD0nO6XfMbI/3nfSAmeUndGfc6aFdUvcB/D3wNW/6a8DfTbFM\nKdDs/Szxpku817YDFxLvKPgx4Mq32i6Qz5nr9xqA1/zOQQrkdP2kda8Etvmdg1mezznAe4H/B3zZ\n7/1PYB7DwEGgHsgE9gDL37TM7wN3edPXA/d708u95bOAOm874bfaJvBj4Hpv+i7g9/zOQQrk9Hxg\nIXAYKPd7/1Mgnx/zjgsG3KfPaEJyWjhpu/+Id4xN1CMtzpgRH97p+97094FPTrHMR4AnnHNdzrlu\n4Ango2ZWRfxNeN7F34UfTFp/yu065/q9ZQHymHpkodku2Tnd4m0D4HneMCRvSkh2PjucczuA2Tmu\nyvROD+/mnBsFJoZ3m2xyTh4APuidYbwa+JFzbsQ5dwg44G1vym1661zubQOmf99mu6TlFMA596Jz\n7vBM75SPkp3PR52H+B9wqXbshOTn9BSAt34OCf6OT5fCrNI51+5NHwMqp1hmqmGharxH6xTz33K7\nZvYbZvYa8Ajw+Xe9B8GT9JxO8jvEzwqlEj/zmUqmy9GUyzjnxoFeoOwt1p1ufhnQ421jut+VCpKZ\n03TgSz69JszfBv7nXe9B8CQ9p2Z2D/Fj6jLgnxOxExMC0Y9ZIpjZk8DcKV66bfIT55wzs4SfwXrz\ndp1zDwEPmdklwP8FPpTo3znTgpZTL6bLiBdms+66vSDmU0TSxr8CzzrnNvsdSCpwzt1sZmHiRdl1\nwD2J2nbKFGbOuWkLHzM7bmZVzrl2r9mnY4rF2oAPTHpeCzztza990/yJ4aLedrvOuWfNrN7Myp1z\ns2rQ2aDl1MwagI3Er586+Wvskq+Cls8UdTbDu00s02pmEaAIOPk26041/yRQbGYR7y/wVB1KLpk5\nTQdJz6eZ/RVQAfxuAuIPIl8+o865qJn9CPgKCSzM0qUp8+fAxB1sNwI/m2KZx4ErzKzE4neuXQE8\n7jUDnTKzC7325M9NWn/K7ZrZYm9ZzOwC4hcVzrpC4m0kO6fzgZ8Cv+2c2zcTO+SzpOYzhZ3N8G6T\nc/Ip4H+9629+Dlzv3b1VBywhfk3OlNv01nnK2wakbn6TltMk7EsQJDWfZvYF4tenfto5F5vhffNL\n0nJqcYvh9DVmnwBeS+jeJOIOgqA/iLcj/xLYDzwJlHrz1wAbJy33eeIX/h0Abp40fw3wEvE7NP6F\nM3dcTrfdrwIvA7uBrcBFfucgBXK6Eej2crob2Ol3DmZ5PucSv2biFNDjTRcmY1+TkMuPAfu8XNzm\nzftb4BPedDbwEy+H24H6Seve5q3XhHdn63Tb9ObXe9s44G0zy+/9T4Gc/qH3eRwHjk7+/KfKI8n5\nHPfmTRw7v+73/s/mnBI/ofUcsJf4Mfe/En3s1JBMIiIiIgGRLk2ZIiIiIoGnwkxEREQkIFSYiYiI\niASECjMRERGRgFBhJiIiIhIQKsxEJK2Z2V+b2ZfN7G/N7EPevIvN7GUz221mOWZ2p/f8Tr/jFZHU\nljI9/4uIvBvOua9PevoZ4Hbn3A8BzOwW4n3ARX0JTkTShvoxE5G0Y2a3Ee8FvIP4QMUvACuAh4Fi\n4O+JD3K8BSgAPk68Q8nbnXP3+xGziKQHnTETkbRiZquJD69yHvFj4C7ihRkAzrmNZnYR8LBz7gFv\nnX7n3Hl+xCsi6UWFmYikm4uBh5xzgwBmli5jNIrILKCL/0VEREQCQoWZiKSbZ4FPendbFgBX+R2Q\niMgENWWKSFpxzu0ys/uBPcQv/t/hc0giIqfprkwRERGRgFBTpoiIiEhAqDATERERCQgVZiIiIiIB\nocJMREREJCBUmImIiIgEhAozERERkYBQYSYiIiISEP8f4TVwJfqINXMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAGoCAYAAABv1G0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4XOWZ/vHvoy6rWpKL3HvBjeKO\nAQNOQjMOCb0FQgkBAkk2QAgp7Aay2SRks0CAXyghDqEnhG4nENtgwAZTjG1sg3uTLctFxbLqvL8/\nZuSMZZWRNDNnNLo/1zWXpXPOnHlGAt3zlvMec84hIiIinUeC1wWIiIhI2yi8RUREOhmFt4iISCej\n8BYREelkFN4iIiKdjMJbRESkk1F4i4iIdDIKbxERkU5G4S0iItLJJHldQJRoGTkRiRfmdQHiPbW8\nRUREOpmu0vIWiSs+n+O6Jz5k7a5ykhMTSE40zhxXyPUzh5GQoIaZSLxTy1ukE3px+Xb+8dkuctOT\nyctIwTn4zT8+5ztPf0xVbb3X5YlIhKnlLdLJVNXW85v5nzO4IINbTxtFghnOOV5dUcSTS7ewbW8l\nD39jIj2z0rwuVUQiRC1vkU7miSWb2b7/IBdNHkCC+bvIzYyzxvfhe18awZqd5Xzz8Q+orfd5XKmI\nRIrCW6QTKT1Yy33/Wsf4fjmM65tzxP5Jg/L49syhrNxexh/e2uBBhSISDQpvkU7kwYXrKTtYy0WT\nBzR7zJTB+Uwdksfv3vicz3eVR7E6EYkWhbdIJ1FRXcfj725k+rACBuVntHjsldMHk56cyA+eW06d\nus9F4o7CW6ST+MeqnVTV+vjyUb1aPTY7PZkrpg/m022lPPz2xihUJyLRpPAW6SRe/GQHPbJSGd4z\nM6Tjpw7JY9Kg7tz75hcUlR6McHUiEk0Kb5FOYE9FNYu/KGHakHzMQluExcy4bOpA6nw+fvn6mghX\nKCLRpPAW6QReW1FEvXNMH5rfpuf1yErjrPF9ePGTHSzbtDdC1YlItCm8RTqBv3+yg/7d0xmQ163N\nzz17Qh/yM1L42Uur8Pl0jx6ReKDwFolx2/ZV8uHmfUwfWhByl3mwtORELpo8gFU7ynh22dYIVCgi\n0abwFolxLy8vAmBaG7vMg00fms+o3ln87KVVvLl6V7hKExGPKLxFYtxLy7czvGcmvbLbv1a5mfG9\nL42gX/d0rp37IX//eHsYKxSRaFN4i8SwVTtKWV1UzvShBR0+V3ZaMneccRSjCrP43jOf8Ls3Pqe4\nrCoMVYpItJlzXWICS5d4kxJ/fvriSp56fwsPXHwcmWnhuQlgTZ2P3y9cx/sb92LA1CH5XDi5P2dP\n6NOuMXWJOv2SROEtEquqauuZdPcbjO+bw42nDA/7+bfvO8h7G0p4b/0edpRWccrIHvzy6+Pp2YHu\neYkKhbeo21wkVr2+sojyqjpOGdUzIufv2z2dc4/rz6/Pm8A3pg1k8bo9fOl/3+L1FUUReT0RCR+F\nt0iMemrpVnpnpzG6MDuir5NgxmljC/nvr42jIDOF7zz1MZtKDkT0NUWkYxTeIjFow+4K3t+0l5kj\ne0RtHLpPbjo/+PJIkhKNX76+OiqvKSLto/AWiUHPLNtKgsFJI3pE9XVzu6Uwe3wf5q3axQdaTlUk\nZim8RWJMdV09zy/bxrEDupPbLSXqr3/m+ELyMlK465XPtJyqSIxSeIvEmL99tJ09B2r4Ugj37Y6E\n1KREzp/Yj+XbSnn50x2e1CAiLVN4i8SQunofDyxcx9AeGYzrm+NZHScM68Gg/G78et5a6up9ntUh\nIk1TeIvEkFc+LWLr3oN89ei+ni6YkpBgfO2Yfmzbf5B/rSn2rA4RaZrCWyRG+HyO+xeso39eOscO\n7O51ORwzMJe8jBSeXLrF61JEpBGFt0iM+MdnO1lXXMGcCX1JiIFlSpMSEpg5sgeLPt/N1r2VXpcj\nIkEU3iIxwDnHff9aR2FOGtOGtP/Wn+F2ysiemMFT76v1LRJLFN4iMWD+qp2s2lHG2RP6kJDgfau7\nQX5mKsf0784zH2ylpk4T10RihcJbxGM1dT7++/U19O+ezgnDo7soSyhOHd2TPQdq+Odnu7wuRUQC\nFN4iHvvL0s1s3lPJxVMGkBhDre4GE/rl0iMrlb8s3ex1KSISoPAW8VDpwVp+98YXjOubw4R+uV6X\n06SEBOOUkT15d/0e1u4s97ocEUHhLeKpBxaso+xgLRdPGeDpdd2tOXV0T1KTEnj47Q1elyIiKLxF\nPLN1byWPvbORE0f0YFB+htfltCgrLZmTRvTg7x9vZ2dpldfliHR5Cm8Rj/xq/loSzDjvuH5elxKS\nM8YV4nOOx9/d5HUpIl2ewlvEAx9t2cfLy3dwxrhC8jNTvS4nJL2y05g0KI+/LN1MRXWd1+WIdGkK\nb5Eoc85x1yufkdstmbMn9PG6nDaZPaEP5VV1PK1FW0Q8pfAWibLXVuzkoy37Oe+4/qQlJ3pdTpsM\n7ZHJUYVZPLp4I9V19V6XI9JlKbxFoqi6rp5fzlvNgLxuzBwRewuyhOKrx/SjqLSKBxas97oUkS5L\n4S0SRb9fsJ6tew9yyZQBMbUMaluM65vD8UPzeWDhOtYV67pvES8ovEWiZHVRGQ8sWMeMYQWMj9EF\nWUJ12bRBpCYlcvvfVuDzOa/LEelyFN4iUVBX7+OW55eTkZrE5dMGel1Oh+WkJ3PxlAF8sGkfzy7b\n6nU5Il2OwlskCh5ZvJGV28u4YvogstKSvS4nLGaO6MFRhdn84rXVut+3SJQpvEUibPnW/fzvPz9n\n0qDuTBmc53U5YWNmXHPCEOqd45uPf0B5Va3XJYl0GQpvkQhasmEPFz+yhJz0ZK48fnBMr1/eHr1z\n0vjuqSNYv7uCm576mPoYHf++7rrr+PnPfx6Wc23ZsoXMzEzq6/2Xys2cOZNHHnkkLOduTmZmJhs2\nRHddeTNLN7OXzazUzJ6L6ot7xMweN7O7wni+183sG+E6XzCFt0iELFhTzDcee5/cbin8bPYYundL\n8bqkiBjbN4crjx/MgrW7+cVrq6P++oMGDSI9PZ2srCxyc3OZPn06Dz30ED6f79AxDz30ED/5yU9C\nOtcbb7zR4jEDBgygoqKCxMSOX6N/5513cumllx62rakPAxUVFQwZMqTDr9dG5wK9gHzn3HnRfvF4\n4Jw73Tn3p0icOykSJxXpyg5U1/HQovU8uHA9A/K6cdvpo8iOk3Hu5swa3Yvt+w/y6OKN5GWkcMPJ\nw6L6+i+//DKzZs2itLSURYsWcfPNN7N06VL++Mc/hvV16urqSErqMn82BwKfO+c6vBaumSU1Pk9T\n29p6jlhl/i42c875Wj24ndTyFgmTep/jmQ+2MPPXC7nvX+uYMjiPO84cHffB3eCyKQM5YVgBv56/\nlt8vWOdJDTk5OZx99tk888wz/OlPf2LlypUAXHHFFfz4xz8GoKSkhLPOOovc3Fzy8vI44YQT8Pl8\nXHbZZWzZsoXZs2eTmZnJr371KzZt2oSZ8eijjzJgwABOOeWUQ9vq6v6dI+vXr2fy5MlkZ2czZ84c\n9u7dC8DChQvp1+/wG880tO7nzZvHL37xC5555hkyMzOZMGECd9xxB2+//TY33ngjmZmZ3HjjjYB/\nfsG6desavs4xs7lmttvMNpvZj80sIbDvCjNbbGa/MbN9ZrbRzE5v7udlZqPNbKGZ7TezVWZ2dmD7\nfwI/BS4wswozu6qJ5yaY2Q/NbL2Z7TGzZ80sL7BvkJk5M7vKzLYA/2pqW+DYswOvvT9Qy+ig19hk\nZreZ2afAATM74pOTmf2fmW01szIz+9DMTgjad2egrrlmVh54nYlB+48xs48C+54B0lr4WV1hZu+Y\n2f2BoYQ1ZnZq0P6FZna3mb0DVAJDAtuuDjrmGjNbHXi9z8zs2MD2Pmb218DvdKOZ3dRcHQ26zEdI\nkUhataOUH/1tBcu3lTKiVyY3nTqMYT2zvC4rqhISjOtOGooDfj1/LUDUW+ANJk+eTL9+/Xj77bcZ\nO3bsYfvuuece+vXrx+7duwFYsmQJZsaf//xn3n77bR555BFmzZoFwKZNmwBYtGgRq1evJiEhgV27\ndh3xenPnzmX+/PkMHjyYyy+/nJtuuoknnniixRpPO+00fvSjH7Fu3brDjn3nnXe49NJLufrqq5t7\n6n1ADjAEyAf+ARQBjwb2TwH+BBQA1wKPmllf59xhExLMLBl4GXgM+DIwA3jRzCY6535mZg4Y5pw7\nvF//374DfBU4CdgN3Av8Hrgo6JiTgNGAD38X/GHbzGwE8FTgPAuB7wEvm9lRzrmawPEXAWcCJc20\nvD8A/gsoBW4GnjOzQc65hnvXng18DbgSuAu4H5hqZinA34HfBbbNCdTyP828X/D/bJ/H/7P9GvA3\nMxvsnNsb2H8ZcDqwFjhsgouZnQfcGXivy4ChQG3gg9fLwIuB99oPeMPM1jrn5jdXiFreIh1QWVPH\n3a9+xtn3vcOmPZXccPIw7pw9pssFd4OEBOPbJw3l+EAL/Pa/fUpVrTdroPfp0+dQCzhYcnIyRUVF\nbN68meTkZE444YRWJxLeeeedZGRkkJ6e3uT+yy67jLFjx5KRkcHPf/5znn322UMT2sIpcM4Lgdud\nc+XOuU3APfhDo8Fm59zDzrl6/CFeyL+DM9hUIBP4pXOuxjn3L+AVDg/fllwH3OGc2+acq8YfTOc2\nah3f6Zw74Jw72My2C4BXnXP/dM7VAr8B0oHpQcff65zb2ugchzjnnnDO7XHO1Tnn7gFSgZFBhyx2\nzr0W+Hn8GZgQ9P6Tgd8552qdc8/j/yDQkuKg45/BH9JnBu1/3Dm3KlBL48svrgZ+5Zz7wPmtc85t\nBiYBPZxz/xX4PWwAHsb/e26WwlukndYVlzPn/nd4+O2NzBzZg9+cN4EZwwribkZ5WyUkGNefNJQ5\nR/fhqfe3Muf+d1i/uyLqdWzfvp28vCMvzbvlllsYNmwYX/7ylxkyZAi//OUvWz1X//79Q94/cOBA\namtrKSkpaXvRrQicMxnYHLR5M9A36PudDV845xouwM9s4nR9gK2NxmUbn6slA4EXAt3d+4HVQD2H\nf1BoagWf4G19CHovgVq2NqqhxVWAzOwHga7o0kAdOfhbxg12Bn1dCaQFPmD0AbY36pEI/rk2panj\ng28N2FKt/YGmbggwEOjT8HMMvIcf0fQHrkMU3iLt8OIn25l9/zvsKq/i9tNHcfUJQ8hM1ShUg4QE\n48JJA7jttFEUlR7krPsW8/BbG6ipi9j8ncN88MEHbN++nRkzZhyxLysri3vuuYcNGzbw0ksv8dvf\n/pY333wToNkPXq19INu69d9/s7ds2UJycjIFBQVkZGRQWfnvBWzq6+sPddc3d96WXqugoACgFv8f\n/AYDgO0tFti0HUD/hvHydpxrK3C6cy436JHmnAt+flPXDgZv20HQewlM9OrfqIZmrz8MjG/fCpwP\ndHfO5eLvPg/lE3QR0NcO/4EPaOU5TR2/I5Ra8f+8hjazfWOjn2OWc+6MlgpReIu0wbricr7152Xc\n/PQnDMzrxn+fM77Tr1MeSUf3z+UX54xjVO8s7n5tNV/53VssWFMcsdcrKyvjlVde4cILL+TSSy9l\n3LhxRxzzyiuvsG7dOpxz5OTkkJiYSEKC/09hr1692nU99RNPPMFnn31GZWUlP/3pTzn33HNJTExk\nxIgRVFVV8eqrr1JbW8tdd91FdXX1oef16tWLTZs2HXZZW0s1BC5Pexa428yyzGwg8H2g5QH2pi3F\n3xK91cySzWwmMBt4OsTnPxSoYyCAmfUwszltrOFZ4EwzOzUwBv8fQDXwbojPzwLq8I+5J5nZT4Hs\nEJ/7XuC5NwXe/9eAya08p2fQ8efhH7t/LcTXewT4gZkdZ37DAj+794HywMS8dDNLNLOxZjappZMp\nvEVase9ADe+uK+HW55fz5f99i7c+L+H8if2548zR5GXE57Xb4ZSfmcqtXxnFrV8ZSXVtPVc+/gHf\neOx9Pt8VvjuSzZ49m6ysLPr378/dd9/N97///WYvE/viiy+YNWsWmZmZTJs2jeuvv56TTz4ZgNtv\nv5277rqL3NxcfvOb34T8+pdddhlXXHEFvXv3pqqqinvvvRfwz35/4IEHuPrqq+nbty8ZGRmHzT4/\n7zz/5dP5+fkce+yxANx88808//zzdO/enZtuanLS8XeAA8AGYDHwJP5JZ20SmBA2G/8EqxLgAeBy\n59yaEE/xf8BLwD/MrBxYgn9CV1tqWAtcin8SXkmgntlBk9VaMx+YB3yOvwu7ila62YNeuwb/pLMr\ngL34x9//1srTlgLDA7XeDZzrnNsT4us9F3jOk0A5/slyeYGx+LOAo4GNgXM/gr/7v1nWaAJivOoS\nb1I6xjnH+t0H+HjLPr4oruDzXeWsKSpnZ5l/0mpSgvHlo3ox5+i+ZKd3jcu/wq2u3sf8Vbt44eNt\nVNX6uGhKf7514lD653XzurTOpGtPqvCImV0BXO2cO3IsxgMKb+my6n2ODbsrWL6tlPc37uHtL0oo\nKvUHdXKi0Sc3nX7duzEwrxsD87sxuCAjbm4q4rWyqlr++uE23li9C+dg5sgeXDxlIJMH55GjD0at\nUXh7QOHtjS7xJqVl1XX1LN9aypINe1iyYQ8fb93PwRr/5TwZqYmM6ZPDuL45jC7Mpnd2GokJ+hsZ\naSUV1SxYU8yCtcXsq/RfWZOfkcLgHhn0zk6jIDOVHlmp9MxKpTAnnd45qeRnpJKdntyVfz9d9o17\nSeHtjS7xJuXf6n2OnWVVbN1bycdb9vPu+hI+2LSXqlofBgwqyGBEryyG9shgSEEmhTlpJHTdMPBc\nnc/Hyu1lbN1bSVHpQYpKq9h/sJayg7VU1hx5vbQBWelJ5Gf4w71HZio9s1Ppk5NO75w0euek0TPL\nv69bStxdBaD/UKVrhfe64goqa/69QI9z/h3OuSbT3fBftuH/t2Fb5/r/pvE7a3jP/q+PfN/B7/nQ\nNjv8uT7ncM7/b73P/3XDcYb/MiF/DhoNr+Y/3v+aPndkXcH11fscPueoq3fU+XzU1vu/9zmHz+f/\nQ19T56Om3lFRVcf+gzWUVtayt7KGkopq9lbUUFxeTV3QHa7656UzpjCHo/pkM7p3NplpcfcHPW7V\n1PnYV1nD3gP+R1lVLRXVdVRU1VFWVUvpwdpDv/+q2iMvRUtLTiArLZmstCSyUpNIS04kPSWRtKRE\n0pITSEtOPLStW8O+5ETSA9uTE43kpASSExJITLDAA4IzNPj/kab9e0dTx5jZof9/Gv/NAeiZ5f9A\n0nB4yD88iVtdKrzPffBdlm3e53UtEmYZqYlkpSWTk5ZMTrdkctOT6ZGVSmFOGoU5aQzpkalZ4V2A\nc46K6jqKy/0f4PYcqGHPgWrKDtb5w766jsqaeqpr66mu81FV56O2zv91dZ2PgzX1h33giyU3njyM\nH3zl0KJhCm/pGuGdX1Dg+g/wrwOwp6SE/IKCVp4R+/Q+Yk+8vJd4eR8QP+8l+H307tmDefPmeVyR\nJ/ShJUiX6DvsP2AgbyxeCsCsGVMOfd2Z6X3Ennh5L/HyPiB+3kvw+zjtxKkeVyOxQIu0iIiIdDIK\nbxERkU6my4X35d9s9h65nYreR+yJl/cSL+8D4ue9xMv7kPDpEhPWjj72OBcP414SO+rratlfXERt\nTXVL1weJtI8ZySmp5PYsJDHp8BXnTjtxKsuWLfOoME9pwlqQLjFhTSTc9hcXkZudTfe8vC5//24J\nP+cc+/buYX9xEfl9WrtLpXRFXa7bXCQcamuqFdwSMWZG97x8f8+OSBMU3iLt4ZyCWyLKzJockllX\nXOFBNRJrFN4i0qk45/jed29i9MjhHHvMBD7+6KMmj5t1ysmMOWoUE487honHHUNxcTEAc//0OH16\n9zy0/bFHH4lm+Yd89OGHHHP0eEaPHM73vnsToc4/0hQLAY15i0iQuro6kpLC/2ehvr6exMTEsJxr\n3uuvs+6LdXy25nPeX7qUG2+4nnfeW9LksXPnPsFxEycesf2888/n/+69Pyz1tNeNN1zPQw/9gclT\npnD2WWcyf948Tjv99Faf19x9AaRrUctbpBPatGkTY8eM5vLLLmXc2KO44PzzqKysBPwtulNPnsmU\nyRM58/TTKCoqAuDRRx5m2tTJHHfs0Zx/3rmHjr/qm1dyw/XXcfy0qdx+2628tWjRoVbppInHUl5e\njnOOH956C0dPGMcxR4/n2WefAWDRwoXMOuVkLjj/vEP1NLQghw8dzO0/vI3Jk47j+eefC9t7f/nl\nF7nkssswM6ZMncr+0v2H3mNHTTzumCa3Dx86mB/edivHHD2e6VOnsG7dug69TlFREWXlZUyZOhUz\n45LLLuOll/7eoXNK16LwFumkPl+7luuu+zYrVn5GdnYWDz34ALW1tXz35pt4+tnnWPr+Mr5x5ZX8\n9Cd3APDVc77Ge0ve58OPPmHUqFH88bFHD51r+7btvLX4HX59z2/57W/v4d5772fZhx+zYOFbpKen\n88ILf2P58uV8+NEnzJv/T26/7dZDgfnJJx9zz2//l09XrGLjhg28+847h86bn5/P+x98yAUXXHhY\n7U8++ZdDHxCCHxecf16r73vH9h3079f/0Pf9+vZjx/btTR579dXfZOJxx3D3XT8/rFv6hb/9jWOP\nmcAF55/H1q1bD21f9uHHzb5uTk4OH3/yKd++4QZ+8P3vHbF/4YIFTb6nE2cc38R72E6/vv0avYcd\nLb/xAHWbC6jbXKTT6t+/P9OP9wfDxRdfyv3338eXv3Iaq1at5PTTvgz4u6sLexcCsGrlSn7205+w\nv3Q/Byoq+NKXv3zoXF8799xD3drTp0/nlh/8BxddfDFfPedr9OvXj3cXL+aCCy8kMTGRXr16ccKJ\nJ7Fs2QdkZ2UzadJk+vXzB9GEoyewafMmjp8xA4Dzzr+gydovvvgSLr74ksj8YAL+9Ocn6Nu3L+Xl\n5Vxw3rk88cSfueyyyznzrNlccOFFpKam8vAf/h9XXXkF/3jjzVbPd8GFFwFw4YUXcct/fP+I/TNP\nPrnF8A8Xn9JbUHiLdFqNZ7ubGc45jjpqDG+/8+4Rx1991ZU899cXmDBhAnP/9DiLFi06tC8jI+PQ\n17fe9kNOP+NM5r3+GjNPnMErr7V8B6vU1NRDXycmJlJfV9fkeYM9+eRf+O09vzli+9Chw3jm2cO7\n2B984Pc8GphU9tLLr9Knbx+2bvt3a3nb9m306dv3iHP1DWzLysriwosuYtkH73PZZZeTn59/6Jhv\nXnU1t//wthbfX4Pgn3dTVxosXLCAH/zgyFDvlt6Ntxa/c9i2Pn37sm37tkbvoU9IdSi7BdRtLtJp\nbdmyhSXvvQfA008/yfHHH8/IkSMpKdl9aHttbS2rVq0CoLy8nMLCQmpra3nqySebPe/69esZN24c\nt9x6G8dNnMTatWs4/oQTeO7ZZ6mvr2f37t0sfvstJk2a3O7aL774EpZ9+PERj8bBDfDt6284tL9P\nnz6cddbZ/OXPf8Y5x9IlS8jJzqGwsPCw59TV1VFSUnLoZ/Dqq68yZsxYgMPGx19++SVGjRp96Pux\nY0bTnOcC4/zPPvsMU6ZOO2J/Q8u78aNxcAMUFhaSnZXN0iVLcM7xlz//mdmz57T0IzvE51zIM9Ml\nfqnlLdJJjRg5kgcffIBrrrmK0aOP4lvXfZuUlBSeeuY5vv/dmyktK6Wuro6bbrqZMWPGcOd//hcz\npk+loKAHk6dMpry86euF77v3dyxcuJCEhASOOmoMp512OikpKSx97z2OO/ZozIxf/PJ/6N27N2vX\nrInyu4bTzziDefNeY/TI4aR368Yjjzx2aN/E445h2YcfU11dzZlnnEZtbS319fWceuqpXHX1NQDc\nf9+9vPLKyyQlJZHXPY9HHvsjACUlJS2G4r59+zj2mAmkpqby5yea//ATqvvu/z1XXXUlVQcP8pXT\nTgtppjmAA8qr68hOS271WIlfWttcpB12bvyckaOab6VF2qZNm/jqnNl8snyFZzXEm1dfeYWNGzdw\n43duOmLf8KGDeW/pBxQUFES1prVrVtN78IjDtvUdOpq1Kz5hUEHTQxJxTKsiBVHLW0QEOPOss7wu\nIWQb9xzoiuEtQTTmLdIJDRo0SK3uKPpi/caot7pbsl5LpHZ5Cm8RkU4k0YzPdpR5XYZ4TOEt0h6B\ny7JEIsU5B01ckpaeksiCtcXU1fs8qEpihcJbpB2SU1LZt3ePAlwiouF+3skpqUfsy0hNYl9lLR9s\n2udBZRIrNGFNpB1yexayv7iI3SUlWjVDws+M5JRUcnsWHrGrW3IivsQE/vbRNqYNzW/iydIVKLxF\n2iExKZn8PgOO2L5iV/UR28b1OrL1JNJeZnDq6J789aNtXHPiEEb0yvK6JPGAus1FwmDFruomgzt4\nX3P7RdrqnGP6kp6cyC9fj/4iORIbFN4iHdSWUFaISzhkpSVz9oQ+/GtNMa98GtrdyCS+KLxFOqC9\nQawQl446fVwhI3pl8oNnl7Nye6nX5UiUKbxF2ikc4asQl/ZKTkzge7NGkJmWxDVzl7G7XP8ddSUK\nb5F2CHfgKsClPXK7pfD9L41k74EaLn90KcXlVV6XJFGi8BZpo0gFrQJc2mNwQQbf/9IINpQc4NwH\n32Pr3kqvS5IoUHiLhNnKXVXNPlqjAJf2GN8vlzvOGM3eAzV87cF3Wbuz3OuSJMIU3iJhEkpAh3KM\nAlzaY3ivLH561lHU+xxff/Bd/vnZLq9LkghSeIu0QXPBGkqruvHxLT1HAS7t0T+vG/959hh6Zady\nzdxl3POPtdT7tAJgPFJ4i3RQW4O78XObe74CXNqjIDOVn541hpNH9uC+f63jyj++z/7KGq/LkjBT\neIvEgI58ABBpLCUpgWtPHMrVJwzm3fV7OPPexXy8RTcyiScKb5EOaC10VxVXH/Zo67nU+paOOHVU\nL+48ewy19T7Oe+g9Hnl7g+6EFycU3iIhakuQNhfWrQW5AlzCbWiPTO4+ZxxH98/lrldXc83cZepG\njwMKb5Ewa62FHXxcU8eqC13CLTM1ie9/aQSXTxvIwrW7OevexazaoSVVOzOFt0g7hStkQwlwtb6l\no8yM08cW8tOzjqKytp6vP/AqahZpAAAgAElEQVQuL3y8zeuypJ0U3iJhFGqruz3PU4BLOAzvlcXd\nXx3L4B4ZfO+Z5dz50ipq631elyVtpPAWiRGNA1zd5xIpud1S+NEZozljbG8ef3cTV/9pGZU1dV6X\nJW2g8BYJk1Bb3SuLmw/l1gJcrW8Jl6SEBC6bNohrThjC21/s5pKHl2oiWyei8BaJgpXFVYceTX0f\nrL1d7yLtccqonnz31BGs3FHKuQ+9R1HpQa9LkhAovEU81lSIBwe4Wt8SaZMG5/HD00axfd9BLnl4\nKaWVtV6XJK1QeItEWEvd5O05TiQSjuqTwy1fGcmWvZV8+y8fahJbjItYeJvZY2ZWbGYrm9lvZnav\nma0zs0/N7Nigfb8ys1VmtjpwjAW2LzSztWb2SeDRM1L1i3ghOMDV+pZoG12YzdUnDOHd9Xv46Yur\ntBpbDItky/tx4LQW9p8ODA88rgUeBDCz6cDxwHhgLDAJOCnoeZc4544OPIojULdIzGgpwEUi4aQR\nPZhzdB+een8L81ft9LocaUbEwts59xawt4VD5gBznd8SINfMCgEHpAEpQCqQDOjGtNJlhNp9rta3\nRMp5x/Wnf/d07n51NdV19V6XI03wcsy7L7A16PttQF/n3HvAAqAo8JjvnFsddNwfA13mP2noTm+K\nmV1rZsvMbNmekpJI1C8SMaF2n0vXMPexh5k1YwqzZkxh/949EX+9xATjkikD2brvIHPf3Rzx15O2\ni7kJa2Y2DBgN9MMf8KeY2QmB3Zc458YBJwQelzV3HufcH5xzE51zE/MLCiJdtki7FBUVUVRU1O7n\nq/XdNVz+zWt4Y/FS3li8lNy8/Ki85oT+uUzol8ODi9ZT79PYd6zxMry3A/2Dvu8X2HYOsMQ5V+Gc\nqwBeB6YBOOe2B/4tB54EJke1YpEWjOmZ2qbjg0O7qRDX5DXx2okjerD3QA2fbNW9wGONl+H9EnB5\nYNb5VKDUOVcEbAFOMrMkM0vGP1ltdeD7AoDA9rOAJmeyi0TCuF6Hh/PYXmkhPW9szyOPa6613ZFW\nuEi4TeiXS2KC8eZqzQ2ONZG8VOwp4D1gpJltM7OrzOw6M7sucMhrwAZgHfAwcH1g+/PAemAFsBxY\n7px7Gf/ktflm9inwCf5W+sORql8kFqj1LV7KSE1ieM9M3lsf+XF2aZukSJ3YOXdRK/sdcEMT2+uB\nbzWx/QBwXNgKFImAMT1TO7y8aVFREYWFhWGqSKRjemWnsWZnmddlSCMxN2FNpDNpquu8qbHvprrO\nQ6XWt3gpLyOFkvIa6rTiWkxReIvEoPaOfSvAJdxyuyVT7xz7tN55TFF4i7RB40lrzWnrzPPWNNf6\nFom0lER/TGixltii8BbpoFBnnbdVKK3vphZtUetbwin5UHir2zyWKLxFIqSl1nd7JqS1pfWtAJdw\nSUnyx8TBGrW8Y4nCW6SNmuo6D6X13Z5Ja+1tfYMCXMIjI9V/UVLZQY15xxKFt0gERXLs+7DtWvNc\nIiQjJRGAUoV3TFF4i7RDe1vf7dFc6zuUiWtqfUtHZacnA1Bcrv+WYonCWySMIhXgwUK9ZWgDBbh0\nRG56Mt1SElm/u8LrUiSIwlukndpz2Vh7F2sJpfWtrnOJBDOjX/d0Pt9V7nUpEkThLRJmoba+O7IE\naltb3yId0b97Nz4rKsOnW4PGDIW3SAeE2voOh460vtV1Lh0xvFcmZQfr1HUeQxTeIhHQuPUd7lnn\nItE0slc2AB9s0n29Y4XCW6SD2tr67shNSoJb36HesKSBWt/SXr2yU8lOT+LjLQrvWKHwFomQaMw8\nF4kGM2NQfgYrd5R6XYoEKLxFwqC9Y9/tmbTWXOtbJJIG5Wfwxa4KarTGeUxQeIvECV02JpHUJzed\nOp9jx/6DXpciKLxFwqa1Vdeam7TW0da3SDSkJBoAdT61vGOBwlvEAx2ZtNaYus4lGhISGsJb13rH\nAoW3SBhF87rv9tCMc2mvymr/LUFTkxI9rkRA4S0SVZHuOte4t0TK2l3l5HZLZlB+N69LERTeImHX\nuPXd3CVj6jqXzmTtzjImDcrDzLwuRVB4i8SMjqx1LhJJ64or2FlWzYxhBV6XIgEKb5EICHXsu6Ot\n79a6zkXC4cVPtpOTnszXj+vndSkSoPAWiYJQLhmD8Le+Ne4tHbVtXyXLNu/jG9MHkZma5HU5EqDw\nFvFYuMa+Ne4tkfDk+1vISE3kiumDvC5Fgii8RSKkpa7zcLa+tWCLRMpHm/fx8Zb9fG/WCPIyUrwu\nR4IovEWipKUblYRz5jlo3Fs6rqbOx9wlmxjaI4NvqNUdcxTeIh6JxNh3U13nGveW9pi/aie7yqr5\nz7PHkpyoqIg1+o2IRFCo13xD6K3vqi0rj9imrnMJp4rqOl5cvp2ZI3owY7guD4tFCm8RD7W19d0Q\n3E0FeKi0RKq05qVPtlNZXc9tp4/yuhRphsJbJMJaa30HB3hbxr6bC/CGrnONe0t71Pl8LFi7mzPG\nFzK6MNvrcqQZCm+RTiw4wFvqOte4t4RqTVE5FdV1zB7fx+tSpAUKb5EoiFTrWyTclm3eR2pSAieO\n0Fh3LFN4i8SwUGadN9X6bq3rXOPe0pzt+w8yqncW3VK0mlosU3iLRInXrW91nUsoUhKN2nrndRnS\nCoW3iIdaunSsLToy+1wkWHJiAlV19V6XIa1QeItEUWt3G2vp0rFQhdp1LtKUHlmpbNlTSUmF/ruJ\nZQpvEY951frWuLc0ZeaIntT5HM9/uM3rUqQFCm+RKGuq9d3ULUMbxr3bs1Rq49Z3A417S2v6dk9n\nVO8snly6hXqfxr5jlcJbJI401/pW17m0xWlje7NlbyVz39vkdSnSDIW3iAdaa32HqnrrinCUI3KY\nyYPymNA/h1/NX8v2/Qe9LkeaoPAWiUFtmbjWOMAbWt/NdZ0H07i3NMXMuOr4wfh8jp+8sALn1H0e\naxTeIh5pbeY5hH69dygt8Iauc417Syh6ZKVx3nH9+dfa3cxftdPrcqQRhbdIDGmu67ypSWuNA1td\n6BJup43tzcC8btz50mccqK7zuhwJovAW8VAore9gaQPGhnRca13nwa1vdZ1LcxITjG/OGMzOsiru\nffMLr8uRIApvkRgVjgVbGtOsc2mrEb2ymDYkn6c/2Epdvc/rciRA4S3isdbWPG9u3Du1/7gjtrW3\n61ytb2nJlCF5lB6s5YNN+7wuRQIU3iJxqnHXuUh7TeiXS3Ki8c/PdnldigQovEViQChj3+1ZaS2Y\nVluT9kpLTiQ7LZl9lTVelyIBCm+RGNTQdd7UuHeok9aao3Fvaauq2nr2HKhhaI8Mr0uRAIW3SCfQ\nlnHv9tK4tzSnYZW1oT0yPa5EGii8RWJEWy8ba6AAl0ibv3InKYkJHDuwu9elSIDCWyTGBXedN4x7\nN9d13lyQNzdpTePe0poNuyt4e10JV50wmF7Z4bl9rXScwlskRrXlRiWp/ceF1AJvmLTW0ri3Wt/S\nwDnHE0s3k5eRwvUzh3pdjgRReIt0EqGucx4OCnAB+OfqXawuKueWr4wkKy3Z63IkiMJbJIa05ZKx\njs46b6Cuc2nKztIqnly6hROHF3DhpP5elyONKLxFOoFILJXaGrW+uy7nHP/vrfWkJiXwq3MnYGZe\nlySNRCy8zewxMys2s5XN7Dczu9fM1pnZp2Z2bNC+X5nZKjNbHTjGGj33pebOKxJPWlsqtSOt7+Bx\n7+Za3yt2VSvEu6CVO8pYs7Oc204fRe8cTVKLRZFseT8OnNbC/tOB4YHHtcCDAGY2HTgeGA+MBSYB\nJzU8ycy+BlREpGKRTqIjq601XmlNpLFXP91BQWYK5x7Xz+tSpBkRC2/n3FvA3hYOmQPMdX5LgFwz\nKwQckAakAKlAMrALwMwyge8Dd0WqbpHOJhpj32p9dx3b9lWyfFspVx4/mNSkRK/LkWZ4OebdF9ga\n9P02oK9z7j1gAVAUeMx3zq0OHPNz4B6gsrWTm9m1ZrbMzJbtKSkJb+UinVBT13q3ZalUBbh35j72\nMLNmTGHWjCns37snoq9VUuH/PU8ZnBfR15GOibkJa2Y2DBgN9MMf8KeY2QlmdjQw1Dn3Qijncc79\nwTk30Tk3Mb+gIIIVi0RHw6S1hnHv4K7zaM08V4B74/JvXsMbi5fyxuKl5OblR/S1MlKSACirqo3o\n60jHeBne24Hg6w/6BbadAyxxzlU45yqA14FpgcdEM9sELAZGmNnCqFYsEsPaEuDB496NW98K8K4t\nM9Uf3sVl+j3HMi/D+yXg8sCs86lAqXOuCNgCnGRmSWaWjH+y2mrn3IPOuT7OuUHADOBz59xMr4oX\niYSOBqOu/ZaO6pGdSu/sNP7vzS8orVTrO1ZF8lKxp4D3gJFmts3MrjKz68zsusAhrwEbgHXAw8D1\nge3PA+uBFcByYLlz7uVI1SkSbxoCvKkgb26N86bGvjWBrWtKSkjgxlOGUVxezR1/X4FzzuuSpAlJ\nkTqxc+6iVvY74IYmttcD32rluZvwX0Ym0qUVFhY2G8itWVlc1eqSqyt3VbVpjXWJD0N7ZPL1Y/vx\n7LKtjOmTw3UnDdFCLTEm5iasiXRV4WzNtqf7vLmZ5y0t4CLxa86EPkwenMf/zFvDd576mAPVdV6X\nJEEU3iIxLBJjz8Et9cYLtrTl0jGJbwkJxs2nDufCSf15bUURc37/Dut3a32sWKHwFokBTbViGwd3\npII1lABX67trSjBjztF9+eHpoykuq+Ls+xfz5NIt+HwaB/eawltEjtDWCWwS38b1zeHuc8YxIK8b\nP3phBV9/8F1W7Sj1uqwuTeEt4rG2trqDW8rtnazW+Hla71xaU5CZyk/OPIpvnzSU9SUVzL5vMf/1\n8mdUaCzcEwpvkRgTKy3cULvp1XXedZgZJ47owT3nHc3JI3vyx3c2cspvFvLS8h26pCzKFN4iMa65\nVndLqraspGpLy3fNDaX13dbV16RryExN4uoThvBfc8aQkZrETU99zIV/WMLqojKvS+syFN4iHmrc\nam3LJLWmuswbh3ZrAS7SEcN6ZnHXnLFcPWMwnxWVcea9b/OzF1dqZbYoUHiLxKgjWr2tjHU3F9Rt\nCXCNfUtbJSQYp47uxW/PO5pZo3vx5yWbmfmbBbz4yXZ1pUeQwlskRgS3usMV3OGgrnMJRWZaElce\nP5hfnDOO/MxUbn76E66eu4ydpfrvJRIU3iIeCXWiV0vBHcrYdkua+iDQnta3Jq1Jg4H5Gfzn7DFc\nOmUgb39ewpf+dxHPfrBVrfAwU3iLxJhQLwvTeLbEqoQE48zxhfzy6+Po1z2dW//6KVc9/gGlBzUW\nHi4Kb5EY0FRXtIJbOrvCnHR+fOZRfGPaQBZ9UcKc+xezrrjc67LigsJbJIY0NbtcwS2dWYIZp40t\n5MdnjGZfZS1zfv8O//xsl9dldXot3hLUzF4Gmh2ocM6dHfaKRKTZcefGwV29dcURx6T2Hxfy6xQW\nFratMJF2GlWYzd1fHctv//k518xdxn+ePYZvTB/kdVmdVmv38/5N4N+vAb2BJwLfXwToo5NIO4U6\nwauh1R1KaAfva0uAi0RLfmYqP5s9hvv+9QU/e2kVKUkJXDR5gNdldUotdps75xY55xYBxzvnLnDO\nvRx4XAycEJ0SRbqm5tYtbym423KMiBdSkhK46dThHN0/lx/9bQUvfLzN65I6pVDHvDPMbEjDN2Y2\nGMiITEkiXVvjLvPgVnd7Q7mpcXJ1mYtXkhMT+N6sEYzpm81/PLucBWuLvS6p0wk1vL8HLDSzhWa2\nCFgAfDdyZYl0HaEuetI4uKu2fXbEo6XjQzW2Z1q7nifSFilJCfzHl0YyIK8b3336E7btq/S6pE4l\npPB2zs0DhgM3AzcBI51z8yNZmIj8u8UcHMRNBXXwPpHOIi05kZtPHUFtvY8b/vIRNXU+r0vqNEIK\nbzPrBtwC3OicWw4MMLOzIlqZiLRLKAHeXJd5R1rdWmVN2qN3ThrfOnEoy7eVcs8/1npdTqcRarf5\nH4EaYFrg++3AXRGpSESa1daWtSauSWcweXAep4zqySNvb9RtRUMUangPdc79CqgFcM5VAhaxqkS6\nuOCZ5q1dFtbwCNae7vPmWt1jeqa2+VwibXXRpAFkpCZyxwsr8Pm0DnprQg3vGjNLJ7Bgi5kNBdRH\nJhJFrU1IUytbOrPMtCQunjKQj7bs5++fbPe6nJgXanjfCcwD+pvZX4A3gdsiVZRIV9faZVzNBbVm\nmEtnduLwAgbmdePBhet1F7JWhDrb/B/4V1m7AngKmOicWxDBukS6jLG9IhOcmnkunY2Z/25kXxRX\nsHDtbq/LiWmhzjZ/0zm3xzn3qnPuFedciZm9GeniRKTjWmuNt9Tqbut4t2acS0dNG5pPQWYKj72z\n0etSYlqL4W1maWaWBxSYWXczyws8BgF9o1GgSFcXrnXKdTcy6QySEhKYPDifpRv2UlVb73U5Mau1\nlve3gA+BUYF/Gx4vAvdHtjSRrqm5lnBav6OiXImIN8YUZlNT7+OjLfu8LiVmtXZjkv9zzg0GfuCc\nG+KcGxx4THDOKbxFIixtwNg2P8frWefqOpeOGlWYhQHLNim8mxPqbHOfmeU2fBPoQr8+QjWJxL1x\nvTp27XRLXem6Hah0dt1SkkhKNCpr1G3enFDD+xrn3P6Gb5xz+4BrIlOSiMDhl4s1BHJw17lCWuKZ\nc5CgpcCaFWp4J5rZoR+jmSUCKZEpSaTrauvs7nAEeONbkAZbVdx0F3hrd0JT17l0RG29j3qfI1Hp\n3axQw3se8IyZnWpmp+K/1nte5MoS6VoaX+sdPGmtYdy7qdZ3w/bgh0hnt3J7KQ44dkB3r0uJWaGG\n92347+H97cDjTeDWSBUlIn7NrbTW0ZnnwWuni8Sa9zfuJTM1ienD8r0uJWaFusKazzn3oHPu3MDj\n/znnNJNAJAKa6jpv3PqG8F461lLXeXup61zao+xgLR9s3sus0T1JTUr0upyY1doiLc8G/l1hZp82\nfkSnRJGuobmu88at71ADPFzh3ty4t0i4Oed49J2N1NT5+PbMYV6XE9OSWtl/c+DfsyJdiEhXM65X\naptap2kDxh5aJS21/7hD13N7tXjLyl1VEVuXXbqmd9fv4f2Ne7nttFGM7J3ldTkxrbVFWooC/25u\n6hGdEkW6noau88at7+BFW0KdnBbqceo6Fy99saucx97ZyDH9c7n2xCFelxPzWus2LzezsuYe0SpS\nJFo6Q9g0DvBwzjCPRICLtGZ1URn//fpqCjJTuf+SY3WJWAhaa3lnOeeygf8Dfoj/ZiT98M8+/13k\nyxOJnobg9jLAg7uhm2t9w5HLpjZ1qVg4g13j3hIpK7aX8st5ayjMTee566bRNzfd65I6hVAvFTvb\nOfeAc67cOVfmnHsQmBPJwkSiqXFgRyvAQ10mtbkAb2rt81BDu7nLxdT6lmhwzvH6yiJ+NW8NQwoy\nePZb0+iVrTkUoQo1vA+Y2SVmlmhmCWZ2CXAgkoWJeM2rFnhTre9gjWefh3rzkvbc5CQcOsNQhERX\neVUt9/zzc+a+t5mZI3vwzLXTKMjs2Hr/XU2o4X0xcD6wK/A4L7BNJK7FUvAEr7pWWFjYZCu8uYBu\na3Cr9S2RsmZnGbf/bQXLt+7np2cdxcOXTySnW7LXZXU6rV0qBoBzbhPqJheJmrG90g6tHz6mZ+qh\nMeexPdMOC9bCwsIjur+9amGLtKSqtp7nPtzGvJVF9M/rxuNXTmZcvxyvy+q0Qmp5m9kIM3vTzFYG\nvh9vZj+ObGkiXUMo497B3efBLXA4shUuEmtWbC/ltr9+ymsrirhw8gBe+c4MBXcHhdpt/jBwO1AL\n4Jz7FLgwUkWJRFtH768dCY0XQGkc4OEIca1xLpFUUV3HQ4vW84vXVtMtJZGnr53KL84ZR1aausk7\nKtTw7uace7/RtrpwFyMSi2Jp3LuxxgEO4WuJNx731uViEirnHEs27OGW55az+IsSvj1zKPO+eyJT\nh+hGI+ES0pg3UGJmQwEHYGbnAvrILhImzS2VGjz2Df9ufQcHaUOANw7bhgBX61qiaU9FNX98dxMf\nbt7HmD7Z/M/XxzO2r7rIwy3U8L4B+AMwysy2AxuBSyJWlYgc0jjA4fBJbIeOayHEWwrwoqKiiI6Z\nx+KQhISfzzneXL2Lp97finOOO84YzZXHDyIpMdQOXmmLVsPbzBKAic65WWaWASQ458ojX5pIdLX1\nRiHRfP3mAhyO7M5uPCMdWg/w9tBNSaTB/soaHly0nk+3lXL8sHz++5zxDMjv5nVZca3Vj0TOOR9w\na+DrAwpuEW80F5ZNLeTS3Fi4SLit3F7K7S+sYO3Ocu766lieuGqKgjsKQu3PeMPMfmBm/c0sr+ER\n0cpEPOB1F297X7+jAR6pcXGvf54SOfU+x7PLtvKL11aTl5HCizcez6VTB2Kmm4pEQ6jhfQFwPbAI\nWBb0EIk7sRw4Y3ulqQUunqv3OX6/cB0vfLydc4/rxyvfmcGo3tlel9WlhBreRwG/B5YDnwD3AWMi\nVZRILIl2mIfyem0J8FCFu/Udyx+CpP18PsdDi9bz3vo93H76KH593gS6pYQ691nCJdTw/hMwGrgX\nf3AfFdgmEpc6Q/CEGuBNtb5F2sPnHH94ewOL15Vwy1dG8q2ThnpdUpcV6selsc65o4K+X2Bmn0Wi\nIJFY0VkCvPEsdGj6UrJo6gw/O2m7N1bvYtHnu7n51OHccPIwr8vp0kJteX9kZlMbvjGzKWjMWyRi\n2hJ+oVyy1dRSqpGi4I5PlTV1/PXDbUwdnMd3Zw33upwuL9TwPg5418w2mdkm4D1gkpmtMLNPm3qC\nmT1mZsUNNzNpYr+Z2b1mts7MPjWzY4P2/crMVpnZ6sAxFtg+z8yWB/Y9ZGaJbXq3Ip1IRwO8PePf\nLY17h3I+BXf8evGTHZRV1XHHmUdpRnkMCLXb/LR2nPtx4H5gbjP7TweGBx5TgAeBKWY2HTgeGB84\nbjFwErAQON85VxYI8+fx31f86XbUJtIptGXhmOa60EU6qqbOx7xVO5lzdB/dDSxGhHo/781tPbFz\n7i0zG9TCIXOAuc45Bywxs1wzK8S/fnoakAIYkAzsCpyzLKjulMCxIhKCplZeEwnFuuJyaup8zB7f\nx+tSJMDLRWf7AluDvt8G9HXOvQcswH/jkyJgvnNudcNBZjYfKAbK8be+m2Rm15rZMjNbtqekJBL1\ni0RFR7rPO3LpWFupyzxy5j72MLNmTGHWjCns37sn6q//WVEZCQaTBmttrlgRcyvGm9kw/Jel9cMf\n8KeY2QkN+51zXwEKgVTglObO45z7g3NuonNuYn5BQYSrFomsWAtGrWseXZd/8xreWLyUNxYvJTcv\n+rfVXLOznNGF2eSk6z7cscLL8N4O9A/6vl9g2znAEudchXOuAngdmBb8ROdcFfAi/q53ERGJEOcc\nm0oOMKF/rtelSBAvw/sl4PLArPOpQKlzrgjYApxkZklmlox/stpqM8sMjIljZknAmcAar4oXibZQ\nW9+hdp1rmVQJxa6yag7U1DNO9+SOKRFb087MngJmAgVmtg34Gf7JZzjnHgJeA84A1gGVwJWBpz6P\nvzt8Bf4JafOccy+bWS/gJTNLxf+hYwHwUKTqF4lHjSetReJWoRJfVu4oBWBCP7W8Y0nEwts5d1Er\n+x1wQxPb64FvNbF9FzApbAWKdEKRvue4WuMSzDnHv9YUM7JXFqMLs7wuR4LE3IQ1EWlZR25c0hQF\ntjRn/e4DbCw5wKXTdKvPWKPwFukCgse9m7tNqEJcgtX7HH9ZupmM1ES+erSu7441Cm+RTijWLh2T\n+PPch1tZs7Ocu786jqw0XSIWaxTeIl2QbhMqLflk6z5e/GQHF03uz1eP6et1OdIEhbdIJ9Va69vL\n1dak81pdVMa9b37BqN5Z/Gz2GK/LkWYovEW6qNZa321tnUdyFrxEx8rtpfzPvDUU5qYz95uTSUvW\njRtjlcJbpBPraOs71IBWqz3+fbptP7+ev5aB+d145tpp9MzW0EosU3iLdHEa/5YPNu7l1/PXMrRH\nBk9fO40eWfqwFusU3iKdXDjHvsf2TDv0aA91nXc+iz4v5ndvfs74fjk8fe008jJSvC5JQhCxFdZE\nJHaN6ZnKquJ/B61a313TvJVF/Om9zRw/LJ8/XDaRjFRFQmehlrdIHGhr6zuS1PruHN7+Yjd/em8z\nXxnTi8eumKTg7mQU3iJxoq0Lt4Q6CU2T1eLPZ0Vl/OGtDUwbks99Fx1LapJmlXc2Cm+RLqKp1nek\ngnnFrmq1wGNU0f6D/O8/P2dAfjceuvQ4UpIUA52RfmsicaQ93ectBXhHw10BHnsefWcjiQnG41dM\nJqeblj3trBTeInEm3AHeUWqFx46V20tZtaOM784azoD8bl6XIx2g8BaJQ+25ccmYnqmHhXi4A10B\n7i3nHM98sIXCnDQunjLA63KkgxTeIl1QS7PPG4d4OCnAvbNt30HW7T7At2cO1QS1OKDwFolTsXT5\nWDAFuDfWFVcAcPywAo8rkXBQeIvEMd33Wxqs311BdloSg/MzvC5FwkDhLRLnWgpwtb67ju37DzKy\ndxYJCeZ1KRIGCm+RLs6rAJfoqq7zkZWmS8PihcJbpAuIxe5ztb6jq7q2nvQUTVSLFwpvEVHruwuo\nqfeRplnmcUPhLdJFxOrsc4mOep8jJUnj3fFC4S0inlHXefTU+RxJCfqTHy/0mxSRQ9T6jl+19T5S\ndROSuKHfpIhInKur91FV6yMnXbPN44XCW0QkzlVU1wGQq7uIxQ2Ft4gcRl3n8ae8qiG8UzyuRMJF\n4S0ibbZyV5XXJUgb7KusAaBnVuxd7y/to/AWEYlz+ytrAeiZrV6VeKHwFhGJc2VV/vDOz1S3ebxQ\neIvIYdQlHn8qa+oxIDMlyetSJEwU3iLimVhccz0eVdbUk5mWpDuKxRGFt0gXodXMuq66eh8pifpz\nH0/02xSRQ6LZZa5Wd1YDIUUAAA4fSURBVPQkJSZQW+/zugwJI4W3iESdgju6khON6jqFdzxReIsI\nEL1Wt4I7+tKSE6mu86n1HUcU3iISNQpub2Sn+ZdF3XegxuNKJFwU3iKiy8PiXMMNSXZXaNJivFB4\ni3QBsTDTXK1u72Sm+a/vLg2stCadn8JbRCJOwe2ttMB9vCtr6j2uRMJF4S0iEudSkxMBOFBT53El\nEi4KbxGJKLW6vefzOQDMtMJavFB4i3RxmqwW/0oP+se6e2Tqg1S8UHiLSMSo1R0b9jeEt+7nHTcU\n3iIicW7LngMkJRh9c9O9LkXCROEtIhLnVhWVccyAXNJTEr0uRcJE4S0iEscOVNexqeQA04cWeF2K\nhJHCW6SLG9srLSLP0Xh3bPhoyz58Dk4c0cPrUiSMFN4iInHsnfUl9MtN59gBuV6XImGk8BYRiVOl\nB2tZsa2UOcf00TXecUbhLSJt0p5udvHG0o178DmYPaGP16VImCm8RUTi1JINexjWM5NRvbO9LkXC\nTOEtIiG1psf2SlOruxPZe6CGNUXlzB6vVnc8SvK6ABGJrFBvBzq2V9oRS6UqrDuvFdv344Avj+nl\ndSkSAQpvETlEYR0/PttRRm63ZEb2yvK6FIkAdZuLiMShNTvLmTo4n4QEzTKPRwpvEQk7LdDircqa\nOorLqxnfP8frUiRCIhbeZvaYmRWb2cpm9puZ3Wtm68zsUzM7Nmjfr8xslZmtDhxjZtbNzF41szWB\nfb+MVO0iIp3ZrjL/PIdB+RkeVyKREsmW9+PAaS3sPx0YHnhcCzwIYGbTgeOB8cBYYBJwUuA5v3HO\njQKOAY43s9MjUrmISCdWXOafeDgwv5vHlUikRCy8nXNvAXtbOGQOMNf5LQFyzawQcEAakAKkAsnA\nLudcpXNuQeDcNcBHQL9I1S8i0lmVBu7f3TNLExDjlZdj3n2BrUHfbwP6OufeAxYARYHHfOfc6uAn\nmlkuMBt4s7mTm9m1ZrbMzJbtKSkJe/EiItEy97GHmTVjCrNmTGH/3j2tHl9ZWw9AVpouKIpXMTdh\nzcyGAaPxt6r7AqeY2QlB+5OAp4B7nXMbmjuPc+4PzrmJzrmJ+QW6FZ5ItGiyWvhd/s1reGPxUt5Y\nvJTcvPxWjz9YU09SgpGaFHN/4iVMvPzNbgf6B33fL7DtHGCJc67COVcBvA5MCzruD8AXzrnfRa1S\nEZFOpLbeR2pygm5GEse8DO+XgMsDM8mnAqXOuSJgC3CSmSWZWTL+yWqrAczsLiAH+K5XRYtI89Tq\njg0+B4m6vjuuRWxAxMyeAmYCBWa2DfgZ/slnOOceAl4DzgDWAZXAlYGnPg+cAqzAP3ltnnPuZTPr\nB9wBrAE+CnyivN8590ik3oOISGdU73MkqtUd1yIW3s65i1rZ74AbmtheD3yrie3bAP3XKBKj1OqO\nHfU+R1KixrvjmX67IiJxpt7nI1nd5nFN4S0iHaZWd2xRyzv+6bcrIh2i4I49B2vryUzVNd7xTOEt\nIu2m4I5NFdV1dM9I9roMiSCFt4hInKmoriM3PcXrMiSCFN4i0i5qdcemep9jd3k1fbune12KRJDC\nW0TaTMEdu4rLqqitdwzvmel1KRJBCm8RkTiydd9BAIb3yvK4EokkhbdInAt3K1mt7ti2akcpaUkJ\njOqt8I5nCm8RkTjy6bb9TB+aT1pyotelSAQpvEUkZGp1x7Yd+w+ys6yamaN6el2KRJjCW0QkTixc\nW0yiGV8Z09vrUiTCFN4iXYBazPGvrt7Hoi92c+ronvTKTvO6HIkwhbeISBxYunEvZQfruHjKAK9L\nkShQeIt0ER1tfav1Hrucc/z/9u49Rq6yjOP496E3WtrSlkILVKC1BgQFlEoMFgJIwsVoMYZIQgwB\njRcw/kUUQ4IEY4hA/EONIaZKMBIBMRhFMQETg+FSQSgUItBKQdoClQJtKgK9PP5xXtPpZrcs3WHP\nvDPfTzLpmTPnvPM8zB5+e2bePfP7xzewaO5+nPKBA9suR+PA8Jakyj36r9d5ftMbXHLaYvbxq0AH\nguEtDZC9PXv2rLt3ZSa/XbmeBbOmsuz4Q9ouR+PE8JYGzLsNYoO7t61av5nVG7fy1VPfzyS/w3tg\n+EpLA2i0gWxw97bM5DePrGP+zH05b8mCtsvRODK8pQG1p2D+8LwpBncFntywhWde3sqlpy9mykSv\nqDZIJrZdgKT2GNB1u/PxDcydPpnzTvCse9B45i1JFXp+0394bN1mLvrEQq9jPoAMb0mq0F1PvMTU\nyRO4wIuyDCTDW5Iq8+a2HaxYu4llxx3CrGmT2y5HLTC8JakyK9a+ypvbdvI5P+seWIa3JFXmvjWv\ncNicaSw5fHbbpaglhrckVSQT/vHiFs48Zh4RXgp1UPmnYpJUkf9u20HsTJb6BSQDzTNvSarIm9t2\nMGlCcOIRc9ouRS0yvCWpIm9t38mR82cwdbJ/2z3IDG9JqsjbO3bywfkz2y5DLTO8JakiO3YmR86f\n0XYZapnhLUmVWTB7WtslqGWGtyRVZt5Mv1Bm0BneklSZg2bu23YJapnhLUmVmTV1UtslqGWGtyRV\nZpp/JjbwDG9Jqsg+EV4WVYa3JNVkH3NbGN6SVBXPugWGtyRVxegWGN6SVBVPvAWGtyRJ1TG8Jaki\nnngLDG9JqozxLcNbkupidgvDW5Kk6hjeklSRg/f3S0lkeEtSVaZPmdh2CeoBhrckSZUxvCVJqozh\nLUlSZQxvSZIqY3hLklQZw1uSpMoY3pIkVSYys+0a3nMR8W/g+XJ3LvBKi+V0i330nn7ppV/6gP7p\npbOPwzPzwDaLUfsGIrw7RcTDmbmk7TrGyj56T7/00i99QP/00i99qHt821ySpMoY3pIkVWYQw/un\nbRfQJfbRe/qll37pA/qnl37pQ10ycJ95S5JUu0E885YkqWqGtyRJlak2vCNiTkTcHRGry7+zR9ju\nwrLN6oi4sGP9CRGxKiLWRMQPIyL2NG5ELIuIxyNiZUQ8HBFLK+7lgtLLqoi4PyKOq7SPoyLigYh4\nKyIu60L9Z0XE0+X5Lx/m8SkRcWt5fEVEHNHx2LfL+qcj4sx3GjMiFpYx1pQxJ4+1/pb6+HpZlxEx\nt1s9tNTLzWX9ExHx84iYVGkfP4uIx8oxfntETO9WH+ohmVnlDbgWuLwsXw58f5ht5gDPln9nl+XZ\n5bG/AR8HArgLOHtP4wLT2TVH4FjgqYp7Oalj37OBFZX2cRDwMeB7wGVjrH0C8E9gETAZeAw4esg2\nlwA3lOXzgVvL8tFl+ynAwjLOhD2NCdwGnF+WbwC+1qXXYLz7+AhwBPAcMLfLx/h493JO+dkL4FcV\nvyYzO8b9AeXY8dZft2rPvIFlwE1l+Sbg3GG2ORO4OzNfzczXgLuBsyLiYJof8Aez+Qn/Rcf+w46b\nmVvLtgD7Ad2c6TfevdxfxgB4EFhQaR8bM/MhYFsXaj8RWJOZz2bm28At5XlH6u924JPl3YFlwC2Z\n+VZmrgXWlPGGHbPsc3oZY7eeauoDIDMfzcznulR72738MQuaXyS7dVyMdx9bAMr+U+nu/6vUI2oO\n73mZ+WJZfgmYN8w2hwIvdNxfV9YdWpaHrt/juBHx2Yh4CvgDcPGYO9hl3Hvp8EWas9xuaLOPsRqp\nrmG3ycztwGbggD3sO9L6A4DXyxgjPdfeGs8+3mut9FLeLv8C8KcxdzCkxpGeky73ERE30hwrRwE/\n6kYT6i0T2y5gTyLiHmD+MA9d0XknMzMiuv7b5dBxM/MO4I6IOAX4LnDGaMfqtV5KTafRhPeoP7/v\nxT6kLvsJcG9m/rXtQvZWZl4UERNogvvzwI0tl6Qu6+nwzswRwzEiXo6IgzPzxfKW68ZhNlsPnNpx\nfwHwl7J+wZD168vyO46bmfdGxKKImJuZo/rSg17rJSKOBZbTfK68aTQ99GIfXbQeeN8Izz90m3UR\nMRHYH9j0DvsOt34TMCsiJpazrOGeq4Y+3mvj3ktEfAc4EPhKF+ofWuOwzzlkm669Jpm5IyJuAb6J\n4d1/2v7QfW9vwHXsPonp2mG2mQOspZkYNbsszymPDZ0cdc6exgUWs2vC2kdpDpSotJfDaD47O6nm\n16RjzKsY+4S1iTST5xayawLQMUO2uZTdJxXdVpaPYfdJRc/STCgacUzg1+w+Ye2SLr0G49pHx5jP\n0f0Ja+P9mnwJuB+YWmsfNMfO4rJvANcD13ezH2+9cWu9gL0uvPk86M/AauAedgXAEmB5x3YX0wTV\nGuCijvVLgCdoZmz+mF3BPNK43wKeBFYCDwBLK+5lOfBa6WUl8HClfcyn+axvC/B6WZ45hvrPAZ4p\nz39FWXc18JmyvC9N6K6h+UVjUce+V5T9nqbMkh9pzLJ+URljTRlzShd/nsazj2+U/+7bgQ2dr3OF\nvWwv6/5/XFxZWx8085juA1bRHEs3j+WY8Na7Ny+PKklSZWqebS5J0kAyvCVJqozhLUlSZQxvSZIq\nY3hLklQZw1vaSxFxVURcFhFXR8QZZd3JEfFkNN8+NzUiriv3r2u7Xkn9o6evsCbVIDOv7Lh7AXBN\nZv4SICK+TPN36TtaKU5SX/LvvKV3ISKuAC6kuUTrC8DfgQ8BdwKzaL6+dDPNlbpmAJ+iuWDGNZl5\naxs1S+o/nnlLoxQRJ9BcuvJ4mmPnEZrwBiAzl0fEUuDOzLy97LM1M49vo15J/cvwlkbvZOCOzHwD\nICJ+13I9kgaUE9YkSaqM4S2N3r3AuWUW+Qzg020XJGkw+ba5NEqZ+UhE3Erz9YsbgYdaLknSgHK2\nuSRJlfFtc0mSKmN4S5JUGcNbkqTKGN6SJFXG8JYkqTKGtyRJlTG8JUmqzP8AH2BBxmjpd+QAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 6.42847482193e-09\n", + "MAE : 7.12554587774e-05\n" + ] + }, + { + "data": { + "text/plain": [ + "count 20817.000000\n", + "mean 0.000069\n", + "std 0.000040\n", + "min -0.000283\n", + "25% 0.000046\n", + "50% 0.000068\n", + "75% 0.000095\n", + "max 0.000283\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low', 'high']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low', y2='high', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close'].values))\n", + "predictions['diff'].describe()\n" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/bm_kaggle.weights.best.hdf5 b/capstone_project/bm_kaggle.weights.best.hdf5 new file mode 100644 index 0000000..08deef4 Binary files /dev/null and b/capstone_project/bm_kaggle.weights.best.hdf5 differ diff --git a/capstone_project/chromedriver.exe b/capstone_project/chromedriver.exe new file mode 100644 index 0000000..4bfff1e Binary files /dev/null and b/capstone_project/chromedriver.exe differ diff --git a/capstone_project/data preparation/add_row_number_to_existing_query.sql b/capstone_project/data preparation/add_row_number_to_existing_query.sql new file mode 100644 index 0000000..34d53d4 --- /dev/null +++ b/capstone_project/data preparation/add_row_number_to_existing_query.sql @@ -0,0 +1,12 @@ + +--update const set row_num = row_number() over (order by snaptime asc) +--from kai_dw.dbo.fx_spot_data_features const +WITH upd AS +( + SELECT + row_num + ,ROW_NUMBER() over (order by snaptime asc) seq + FROM kai_dw.dbo.fx_spot_data_features const +) +UPDATE upd +SET row_num = Seq diff --git a/capstone_project/data preparation/convert types to datetime.sql b/capstone_project/data preparation/convert types to datetime.sql new file mode 100644 index 0000000..4eed40c Binary files /dev/null and b/capstone_project/data preparation/convert types to datetime.sql differ diff --git a/capstone_project/data preparation/feature creation.sql b/capstone_project/data preparation/feature creation.sql new file mode 100644 index 0000000..22f4178 --- /dev/null +++ b/capstone_project/data preparation/feature creation.sql @@ -0,0 +1,68 @@ + + +select + + const.snaptime + , const.bid_price + , const.ask_price + , datepart(month, const.snaptime) 'month' + , datepart(year, const.snaptime) 'year' + , datepart(WEEK, const.snaptime) 'week' + , datepart(HOUR, const.snaptime) 'hour' + , datepart(day, const.snaptime) 'day' + , datepart(WEEKDAY, const.snaptime) 'weekday' + , datepart(MINUTE, const.snaptime) 'minute' + , datepart(QUARTER, const.snaptime) 'quarter' + , ROW_NUMBER() over (order by snaptime asc) 'row_num' + + + --, count(*) +into kai_dw.dbo.fx_spot_data_features + +--drop table kai_dw.dbo.fx_spot_data_features +from kai_dw.dbo.fx_spot_data_typed const + +--group by const.snaptime +--order by 2 desc + + + +/* +select top 100 + + const.year, const.month, const.day, const.hour, round(const.minute/15,0) * 15 + , max(const.bid_price) 'high' + , min(const.bid_price) 'low' + , min(const.snaptime) 'open_datetime' + , max(const.snaptime) 'close_datetime' + , count(*) + --, max(constMin.bid_price) + +from kai_dw.dbo.fx_spot_data_features const +--left join kai_dw.dbo.fx_spot_data_features constMin +-- on constMin.snaptime = max(const.snaptime) + +group by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +order by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +*/ + +--select round(datepart(minute, '2000-05-30 20:57:47.000') /15, 0) * 15 + +USE [kai_dw] + +GO + +CREATE NONCLUSTERED INDEX [NonClusteredIndex-20171112-181301] ON [dbo].[fx_spot_data_features] +( + [snaptime] ASC, + [row_num] ASC +)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) + +GO + + +select count(*) from kai_dw.dbo.fx_spot_data_features +select count(*) from kai_dw.dbo.fx_spot_data_typed +select count(*) from kai_dw.dbo.fx_spot_data + + diff --git a/capstone_project/data preparation/get_data.sql b/capstone_project/data preparation/get_data.sql new file mode 100644 index 0000000..bbd8a85 --- /dev/null +++ b/capstone_project/data preparation/get_data.sql @@ -0,0 +1,89 @@ + + +declare @min_date datetime = '1Jan16' +declare @max_date datetime = '1Jan17' + +/* +set @min_date = ? -- '1Jan16' +set @max_date = ? -- '1Jan17' +*/ + +set nocount on +drop table kai_dw.dbo.fx_spot_data_15_min + +--insert into kai_dw.dbo.fx_spot_data_15_min +select + --distinct + const.year, const.month, const.day, const.hour, const.weekday, round(const.minute/15,0) * 15 '15_min' + , DATETIMEFROMPARTS(const.year, const.month, const.day, const.hour, round(const.minute/15,0) * 15, 0, 0) 'datestamp' + + --, const.snaptime 'date' + --, const.bid_price + --, const.ask_price + --, const.ask_price - const.bid_price 'bo_spread' + , max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0))'high_bid' + , min(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'low_bid' + , avg(const.ask_price - const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'avg_bo_spread' + --, min(const.snaptime) 'open_datetime' + --, max(const.snaptime) 'close_datetime' + , count(*) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0)) 'nb_ticks' + , first_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc rows between unbounded preceding and unbounded following) 'open_bid' + , last_value(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc rows between unbounded preceding and unbounded following) 'close_bid' + + -- this is current bid price + , const.bid_price + , constPrev.bid_price 'bid_price_prev' + , const.ask_price + , const.snaptime + , constPrev.snaptime 'snaptime_prev' + + , row_number() over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime desc) row_num_window + --, max(const.bid_price) over (partition by const.year, const.month, const.day, const.hour, round(const.minute/15,0) order by const.snaptime asc) 'close' + +into kai_dw.dbo.fx_spot_data_15_min +from kai_dw.dbo.fx_spot_data_features const +left join kai_dw.dbo.fx_spot_data_features constPrev + on const.row_num = constPrev.row_num - 1 + +where + const.snaptime >= @min_date + and const.snaptime <= @max_date + +--group by const.year, const.month, const.day, const.hour, round(const.minute/15,0) +order by const.year, const.month, const.day, const.hour, 6 +--order by const.snaptime + + + +--select * from #tmp1 +select +distinct + const.[year] + , const.[month] + , const.[day] + , const.[hour] + , const.[weekday] + , const.[15_min] + , const.datestamp + + + , const.high_bid + , const.low_bid + , const.avg_bo_spread + , const.nb_ticks + , const.[open_bid] + , const.[close_bid] + + -- last 5 ticks return average + + -- this is current bid price + --, const.bid_price + --, const.snaptime + + --, const.row_num_window + , avg(case when const.row_num_window <= 10 then const.bid_price / const.bid_price_prev-1 else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bid_return' + , avg(case when const.row_num_window <= 10 then const.ask_price - const.bid_price else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bo_spread' + + +from kai_dw.dbo.fx_spot_data_15_min const +order by const.datestamp diff --git a/capstone_project/data preparation/get_data_1y.sql b/capstone_project/data preparation/get_data_1y.sql new file mode 100644 index 0000000..7c8f6fd --- /dev/null +++ b/capstone_project/data preparation/get_data_1y.sql @@ -0,0 +1,54 @@ + + +declare @min_date datetime = '1Jan16' +declare @max_date datetime = '3Jan17' + +/* +set @min_date = ? -- '1Jan16' +set @max_date = ? -- '1Jan17' +*/ + +set nocount on +set ansi_warnings off -- to remove message when avg ignores the NULL + + +--select * from #tmp1 +select +distinct + const.[year] + , const.[month] + , const.[day] + , const.[hour] + , const.[weekday] + , const.[15_min] + , const.datestamp + + + , const.high_bid + , const.low_bid + , const.avg_bo_spread + , const.nb_ticks + , const.[open_bid] + , const.[close_bid] + + -- last 5 ticks return average + + -- this is current bid price + --, const.bid_price + --, const.snaptime + + --, const.row_num_window + , avg(case when const.row_num_window <= 10 then const.bid_price / const.bid_price_prev-1 else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bid_return' + , avg(case when const.row_num_window <= 10 then const.ask_price - const.bid_price else NULL end) over (partition by const.datestamp) 'last_10_tick_avg_bo_spread' + + +from kai_dw.dbo.fx_spot_data_15_min const + + +where + const.snaptime >= @min_date + and const.snaptime <= @max_date + +order by const.datestamp + + diff --git a/capstone_project/data preparation/import csv to sql server.sql b/capstone_project/data preparation/import csv to sql server.sql new file mode 100644 index 0000000..90b53ac --- /dev/null +++ b/capstone_project/data preparation/import csv to sql server.sql @@ -0,0 +1,71 @@ + + +--q1-2011 is the last file that has two description columns + +--declare @varDay as int = 1 +declare @varMonth as int = 1 +declare @varYear as int = 2000 +declare @file as nvarchar(max) +declare @sqlstring as nvarchar(max) + + + +while @varYear <> 2018 + +begin + + + set @file = 'D:\Python Projects\kai_code\capstone_project\data\DAT_ASCII_EURUSD_T_' + convert(nvarchar,@varYear) + format(@varMonth, '0#')+'.csv' + + if @file not in ('sds') + begin + + set @sqlstring = + + ' + BULK INSERT dbo.fx_spot_data FROM '+CHAR(39)+@file+char(39)+' + WITH + ( + FIELDTERMINATOR = '','', + ROWTERMINATOR = ''0x0A'', + MAXERRORS = 100, + DATAFILETYPE = ''char'', + KEEPIDENTITY + --FIRSTROW = 1 + ) + ' + print(@sqlstring) + exec(@sqlstring) + + + end + + + --set @varDay= @varDay + 1 + set @varMonth = @varMonth + 1 + if @varMonth = 13 + begin + set @varMonth = 1 + + set @varYear = @varYear + 1 + end + + + + end + + + + +--BULK INSERT dbo.fx_tick_data +--FROM 'D:\Python Projects\kai_code\capstone_project\data\DAT_ASCII_EURUSD_T_200005.csv' +----WITH (FORMAT = 'CSV'); +--WITH +--( +-- FIELDTERMINATOR = ',', +-- ROWTERMINATOR = '0x0A', +-- MAXERRORS = 100, +-- DATAFILETYPE = 'char', +-- KEEPIDENTITY +-- --FIRSTROW = 1 +--); \ No newline at end of file diff --git a/capstone_project/data preparation/screenscraper_fx_spot.py b/capstone_project/data preparation/screenscraper_fx_spot.py new file mode 100644 index 0000000..3559a0a --- /dev/null +++ b/capstone_project/data preparation/screenscraper_fx_spot.py @@ -0,0 +1,192 @@ +__author__ = 'kai.aeberli' + +from selenium import webdriver +from selenium.webdriver.common.by import By + +from selenium.webdriver.common.keys import Keys +import itertools +from collections import OrderedDict +import sys +import pandas as pd +import pymongo +import json, os + + +def Webscraping(): + + + webstr = "http://www.histdata.com/download-free-forex-historical-data/?/ascii/tick-data-quotes/EURUSD" + driver.get(webstr) + + + # get all hrefs that contain "historical" + from selenium.webdriver.common.by import By + all_links = driver.find_elements(By.CSS_SELECTOR, 'a[href*="eurusd"') + + listHref = [] + for link in all_links: + #print(link.get_attribute("href")) + listHref.append(link.get_attribute("href")) + + # travel down each of them + listHRefMonth = [] + # append months to each of them + for strLink in listHref: + for month in range(12): + listHRefMonth.append(strLink + '/' + str(month+1)) + + + + #liElements=driver.find_element_by_id("listed-islamic-securities").find_element_by_class_name("listed-securities").find_elements_by_xpath(".//li") + #lisElementsDeep = liElements.copy() + + + + + # listHref = [] + # for li in lisElementsDeep: + # href = li.find_element_by_tag_name("a").get_attribute("href") + # listHref.append(href) + + + all_values = [] + for href in listHRefMonth[1:]: + + try: + + + driver.get(href) + import time + time.sleep(2) # give time to load - need this else animations are still running + + zip_file = driver.find_element(By.CSS_SELECTOR, 'a[id="a_file"') + zip_file.click() + + + # go through months + #each_year_month_links = driver.find_elements(By.CSS_SELECTOR, 'a[href*="eurusd"') + + # securityTable = driver.find_element_by_id("currencies-all").find_element_by_tag_name("tbody").find_elements_by_xpath(".//tr") + # + # #dailyValues = [] + # + # for htmlRow in securityTable: + # #if len(htmlRow.find_elements(By.XPATH, "th")) == 0: + # + # # read out all the td elements - each is one column of that row + # + # # can i do it in one go??? + # #htmlRow.find_elements(By.CSS_SELECTOR, "td")[2].text but each needs special treatment + # row = OrderedDict() + # row["Link"] = href + # row["hash"] = htmlRow.find_element_by_xpath("td[1]").text # # + # row["name"] = htmlRow.find_element_by_xpath("td[2]").find_element_by_tag_name('a').text # name + # row["symbol"] = htmlRow.find_element_by_xpath("td[3]").text # symbol + # row["market_cap"] = htmlRow.find_element_by_xpath("td[4]").get_attribute("data-usd") # market cap + # row["price"] = htmlRow.find_element_by_xpath("td[5]").find_element_by_tag_name("a").get_attribute("data-usd") # price + # row["available_supply"] = htmlRow.find_element_by_xpath("td[6]").text # available supply + # row["volume_24h"] = htmlRow.find_element_by_xpath("td[7]").find_element_by_tag_name("a").text # low vol??? + # row["percent_change_1h"] = htmlRow.find_element_by_xpath("td[8]").get_attribute("data-usd") # % 1h + # row["percent_change_24h"] = htmlRow.find_element_by_xpath("td[9]").text # % 24h + # row["percent_change_7d"] = htmlRow.find_element_by_xpath("td[10]").text # % 7d + # row["date"] = href[-9:-1] + # + # all_values.append(row) + + + #all_values.append(dailyValues) + + except: + print("exc") + + + + + return all_values + + +def zip_extract(path): + + + import zipfile + archive = zipfile.ZipFile(path) + archive.extractall() + + + + + +def get_zipfiles(): + + global driver + #driver=webdriver.Firefox() + chromedriver_path = os.path.dirname(__file__) + driver=webdriver.Chrome(chromedriver_path+"/chromedriver.exe") + webstr = "http://www.histdata.com/download-free-forex-historical-data/?/ascii/tick-data-quotes/EURUSD" + driver.get(webstr) + + import time + time.sleep(15) + + listSecurities=Webscraping() + + import pandas as pd + df = pd.DataFrame.from_records(listSecurities) + df.to_csv("fx_spot_quotes.csv") + + for val in listSecurities: + print(val) + + + driver.quit() + + + +def run_function_on_all_files_in_dir(file_ending, file_function, dir = None): + + if dir == None: + foldername = os.path.join(os.path.dirname(__file__), "") + for base, dirs, files in os.walk(foldername): + for file in files: + if file[-3:] == file_ending: + longfilepath = os.path.join(base, file) + #zip_extract(longfilepath) + #import_content(longfilepath) + print("Processing "+longfilepath) + file_function(longfilepath) + + + + +def import_content(filepath): + + + mng_client = pymongo.MongoClient('localhost', 27017) + mng_db = mng_client['fx_prediction'] # Replace mongo db name + collection_name = 'fx_tick_data_typed' # Replace mongo db table name + db_cm = mng_db[collection_name] + + data = pd.read_csv(filepath) + + data.columns = ["date", "bid", "ask", "vol"] + #data.date = pd.to_datetime(data.date, format='%Y%m%d %H%M%S%f') + data.bid = data.bid.astype(float) + data.ask = data.ask.astype(float) + data.vol = data.vol.astype(float) + import datetime + data_json = json.loads(data.to_json(orient='records')) + for row in data_json: + row["date"] = datetime.datetime.strptime(row['date'], '%Y%m%d %H%M%S%f') + + #db_cm.remove() + db_cm.insert_many(data_json) + + +def main(): + #get_zipfiles() # goes to default download folder + #run_function_on_all_files_in_dir("zip", zip_extract) + run_function_on_all_files_in_dir("csv", import_content) + pass + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/capstone_project/kaggle_bm.ipynb b/capstone_project/kaggle_bm.ipynb new file mode 100644 index 0000000..55f379d --- /dev/null +++ b/capstone_project/kaggle_bm.ipynb @@ -0,0 +1,1864 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To run on EC2:\n", + "Enter the repo directory: cd aind2-cnn\n", + "Activate the new environment: source activate aind2\n", + "Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "Find this line in output and copy url to browser: \n", + "Copy/paste this URL into your browser when you connect for the first time to login with a token: \n", + "http://0.0.0.0:8888/?token=3156e...\n", + "\n", + "change the 0.0.0.0 with EC2 IP.\n", + "\n", + "you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"mine\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29Dec15\n", + "31May16\n" + ] + } + ], + "source": [ + "print(min_date)\n", + "print(max_date)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hideCode": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\n", + "strConnDef = \"DRIVER={ODBC Driver 13 for SQL Server};SERVER=localhost,1433;DATABASE=kai_dw;uid=kai_ta;pwd=tenpen12\"\n", + "def getQueryRaw(strQuery, params=None, strConn=strConnDef, commitOn=None):\n", + "\n", + " if commitOn is None:\n", + " commitOn = False\n", + "\n", + " if params is None:\n", + " params = []\n", + "\n", + " pypyodbc.lowercase = False\n", + " conn = pypyodbc.connect(strConn)\n", + " cursor = conn.cursor()\n", + " cursor.execute(strQuery, params)\n", + "\n", + " if commitOn:\n", + " conn.commit()\n", + " return \"sql insert was successful.\", \"sql insert was successful.\"\n", + " try:\n", + " rows = cursor.fetchall()\n", + " #print(\"rows\", rows)\n", + " # print(\"PARAMS:\", params)\n", + " description = cursor.description\n", + " conn.close()\n", + " return rows, description\n", + " except:\n", + " # print(\"THE QUERY: \" + strQuery) TODO: add query\n", + " conn.close()\n", + " raise ValueError(\"There was an error fetching a sql query. Make sure the index exists for your selected dates. THE PARAMS: \", params)\n", + "\n", + "\n", + "\n", + "\n", + "def getQueryDataframe(strQuery, params=None, strConn=strConnDef, columnMustAlwaysExist=None, commitOn=None):\n", + "\n", + " rows, cursorDescription = getQueryRaw(strQuery, params, strConn, commitOn)\n", + " if commitOn:\n", + " return \"sql insert was successful.\"\n", + "\n", + " if len(rows) == 0:\n", + " print(\"No rows were returned.\")\n", + " print(\"THE PARAMS: \", params)\n", + " print(\"THE QUERY: \" + strQuery)\n", + " print(\"Rows length is zero. No records returned\")\n", + "\n", + " if columnMustAlwaysExist is None:\n", + " columnMustAlwaysExist = \"Empty\"\n", + "\n", + " columns = [\"Information\", columnMustAlwaysExist]\n", + " rows = [\n", + " [\"No results were returned.\", \"There is no data.\"]\n", + " , [\"No results were returned.\", \"There is no data.\"]\n", + " ]\n", + "\n", + " else:\n", + " # bytes conversion needed because of the linux pypyodbc bug\n", + " columns = [column[0].decode(\"cp1252\") if type(column[0]) == bytes else column[0] for column in\n", + " cursorDescription]\n", + "\n", + " results = pd.DataFrame(data=rows, columns=columns)\n", + "\n", + "\n", + " return results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + "df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthdayhourweekday15_mindatestamphigh_bidlow_bidavg_bo_spreadnb_ticksopen_bidclose_bidlast_10_tick_avg_bid_returnlast_10_tick_avg_bo_spread
020161317102016-01-03 17:00:001.087231.086610.0001651421.087011.08664-2.760660e-060.000139
1201613171152016-01-03 17:15:001.087141.086620.000149801.086661.086741.104220e-050.000154
2201613171302016-01-03 17:30:001.086991.086710.0001411091.086741.08674-9.201579e-070.000153
3201613171452016-01-03 17:45:001.086871.086550.000102931.086741.086627.362178e-060.000094
420161318102016-01-03 18:00:001.086651.085230.0001134591.086621.085741.013142e-050.000093
\n", + "
" + ], + "text/plain": [ + " year month day hour weekday 15_min datestamp high_bid \\\n", + "0 2016 1 3 17 1 0 2016-01-03 17:00:00 1.08723 \n", + "1 2016 1 3 17 1 15 2016-01-03 17:15:00 1.08714 \n", + "2 2016 1 3 17 1 30 2016-01-03 17:30:00 1.08699 \n", + "3 2016 1 3 17 1 45 2016-01-03 17:45:00 1.08687 \n", + "4 2016 1 3 18 1 0 2016-01-03 18:00:00 1.08665 \n", + "\n", + " low_bid avg_bo_spread nb_ticks open_bid close_bid \\\n", + "0 1.08661 0.000165 142 1.08701 1.08664 \n", + "1 1.08662 0.000149 80 1.08666 1.08674 \n", + "2 1.08671 0.000141 109 1.08674 1.08674 \n", + "3 1.08655 0.000102 93 1.08674 1.08662 \n", + "4 1.08523 0.000113 459 1.08662 1.08574 \n", + "\n", + " last_10_tick_avg_bid_return last_10_tick_avg_bo_spread \n", + "0 -2.760660e-06 0.000139 \n", + "1 1.104220e-05 0.000154 \n", + "2 -9.201579e-07 0.000153 \n", + "3 7.362178e-06 0.000094 \n", + "4 1.013142e-05 0.000093 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + "str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "#print(str_query)\n", + "df = getQueryDataframe(str_query, [min_date, max_date])\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2016-01-03 17:00:00\n", + "max date 2016-05-30 23:45:00\n" + ] + } + ], + "source": [ + "df.set_index('datestamp', inplace=True)\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"eurusd_features.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df_res = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df_res.set_index('date', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min date 2015-12-29 00:00:00\n", + "max date 2016-05-31 23:45:00\n" + ] + } + ], + "source": [ + "# load kaggle reference dataset for comparison\n", + "df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + "#df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + "# Rename bid OHLC columns\n", + "df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + "df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + "df_kaggle.set_index('date', inplace=True)\n", + "df_kaggle = df_kaggle.astype(float)\n", + "\n", + "simname = \"bm_kaggle\"\n", + "\n", + "df = df_kaggle\n", + "print(\"min date\", min(df.index))\n", + "print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + "\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "#df['bo_spread'] = df.ask - df.bid\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAKFCAYAAACeFkmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUnWWZL+xfDamQpAqBzxz0QCeYSEJLiGQ40MoKCEdO\nFDQiSEKqV1AIdoM2CrLoMIW5GYXmEIki0keGlYQIdjegdLcggkabpVHEQMchDMugYpiaVIVUJdn7\n+yPZm1RSmYBK7eG61sKq/b5v7Xru2tub0l8999tQLBaLAQAAAAAAgCrV2N8LAAAAAAAAgLdC4AUA\nAAAAAEBVE3gBAAAAAABQ1QReAAAAAAAAVDWBFwAAAAAAAFVN4AUAAAAAAEBVE3gBAABlP/vZz/Lh\nD384BxxwQObPn9/fy6konZ2dGT16dB577LEkyYwZM3L11Vdv8+uKxWIWLlyYrq6uLV5zzjnn5Atf\n+EKS5Nvf/nYOPvjgt7TW733ve/njH/+YJHnssccyevTodHZ2vqXnBAAAqGTN/b0AAACgctx0003Z\nZ5998s1vfjO77bZbfy+nos2ZMyfNzdv+n1Q//elPM3v27Bx99NEZOHBgr9ecf/75KRaLb8u6nn/+\n+fzd3/1d7rvvvrz73e/OuHHj8qMf/SiDBw9+W54fAACgEgm8AACAstdeey2HHXZY9t577/5eSsXb\n3kBwe4Kstra2t7qcLX6/lpaWDB069G17fgAAgEpkpCEAAJAkOeKII7JkyZLcdNNNGT16dJJk9OjR\nueGGG/LBD34wU6ZMybp16/LMM89k5syZef/735/DDz8811xzTbq7u8vP88QTT2TatGl5//vfnxNO\nOCG33357jjjiiCS9j9ebM2dOjj322PLjrT3/8uXLM3r06Pzbv/1bPvKRj+SAAw7I9OnT8/TTT5e/\nfunSpfnMZz6TcePG5bDDDsvNN9+cJLn44ovT3t7eo+Z77rknRxxxRK+h1Ouvv57zzz8/EyZMyKRJ\nk/LAAw/0OL/xSMMXXnghp556aiZMmJCJEyfmC1/4Ql566aUsX748J554YpJk/Pjx+fa3v505c+bk\nlFNOycyZMzNhwoT88z//c4+RhiVf+9rXcvDBB+fggw/OFVdckbVr1ybpfeThxl//v//3/06SfPzj\nH8+cOXM2+5m/+OKLmTVrVj7wgQ9k/Pjx+eIXv5g///nP5ecaPXp0vv3tb+fYY4/NAQcckClTpuQX\nv/hF+fxdd92VI488MmPGjMlHPvKR/Mu//MtmPzsAAICdTeAFAAAkSe6+++7st99+Ofnkk/OjH/2o\nfPw73/lObr/99lx99dVZu3ZtZs6cmX322Sf//M//nGuuuSY//OEPc/nllydJXn755cycObMcmkyZ\nMiX/+I//uN1r6Orq2urzl9x00025/PLLc/fdd+eVV17JtddeW/7+n/70p/M//sf/yLe+9a1ceuml\n+frXv5677747U6ZMyc9//vP86U9/6lHbxz72sTQ0NGy2lksuuSSLFy/OLbfckq985Su5/fbbt7ju\nSy65JGvWrMnChQtz55135vnnn89VV12Vd7/73ZkzZ06S5MEHH8xRRx2VJPnhD3+Ygw46KAsXLsxh\nhx222fO9+uqr+dGPfpTbbrst11xzTe6///584xvf2K6f4be+9a0kyR133JGTTz65x7m1a9fmM5/5\nTJ5//vnccsstue222/LCCy/k85//fI/Q78Ybb8wXv/jF/Ou//mtaW1tz0UUXJUmeeuqpXHzxxTnr\nrLPy7//+7znxxBNzzjnn5Nlnn92utQEAAPQVgRcAAJAk2WOPPdLU1JTBgwf3GIF3/PHH573vfW/+\n8i//Mvfff38GDBiQ2bNnZ8SIEflf/+t/5ZJLLsm3vvWtdHR05Lvf/W4GDhyY2bNnZ+TIkWlvby+H\nPNtjW89fctppp2XixIkZPXp02tvb86tf/SpJ8sADD2TAgAG5/PLL8973vjeHHXZYLrroogwePDjj\nx4/P3nvvXd6p9eKLL+Y///M/M2XKlM3W0dHRkfvvvz/nnHNOxo8fn/e///259NJLt7ju5cuXp7W1\nNXvvvXf222+/XH/99TnppJPS1NSUd7zjHeWf7y677JIkGTRoUP7mb/4mI0eOzB577LHZ8zU1NeXL\nX/5y9ttvvxx22GE57bTTMm/evO36GZaeb7fddsuQIUN6nPvhD3+YZ599Ntddd13GjBmTAw44IDfc\ncEOeeuqp/PjHPy5f197ensMOOywjRozIzJkz8+tf/zrd3d15/vnn09DQkHe/+93Za6+90t7enltv\nvbXXGgAAAHYm9/ACAAC26i/+4i/Kn//ud7/L73//+4wbN658rFgsplAo5Nlnn83vfve7jB49OgMG\nDCifnzhxYn7yk59s1/fa1vOX7ps1fPjw8vnW1tbyuL/S929paSmf3zjQmjJlSr773e/mpJNOygMP\nPJBRo0blve9972brePrpp7NmzZq8733vKx8bM2ZMGht7/5vBU089NbNmzcrBBx+cv/qrv8qHP/zh\nXoO0kr322qvXXWUle+65Z971rneVH++///554YUX8tprr23xa7bH7373u/zP//k/s+eee5aPvetd\n78pee+2V3/72tznkkEOSJPvss0/5fGtra5L1u8MmTZqUsWPHZurUqRkxYkQ+9KEP5ZOf/GR23XXX\nt7QuAACAt0rgBQAAbFVpV1KyPvQ48MADc+WVV2523Z577plBgwalUCj0OL5x+NRbyFMKq7bn+V98\n8cUk6RGoJSmP4xswYECv9+MqmTJlSubOnZvly5fnO9/5zhZDqdI6N36upqamNDU19Xr9UUcdlb/6\nq7/Kww8/nB/+8If5h3/4h9x333257bbber1+4MCBW1xjks2CtdLPtLm5eZs/w63Z0vctFAo9XrdN\nf77J+p/FLrvskvnz5+cXv/hFHnnkkXz/+9/PnXfema997WvlsAwAAKA/GGkIAABst5EjR+a5557L\nu971rgwfPjzDhw/PK6+8kmuuuSZr1qzJvvvum6VLl2b16tXlr1myZEn581KQ0tnZWT62fPny7X7+\nbdlnn33ym9/8pse1X/nKV/LFL36xfP6AAw7IPffckyVLluToo4/u9Xne8573ZMCAAXniiSfKx379\n619vcQ033HBDli9fnuOOOy433HBDvvKVr+Q///M/8+KLL251J9eWvPDCC3n11VfLjx9//PHstdde\nGTx4cAYMGJDXX3+9Rxi38c9wa99v5MiR+cMf/pAXXnihfOxPf/pT/vjHP2bkyJHbXNcvfvGLzJkz\nJ+PHj8+ZZ56Z++67L/vvv3/+4z/+Y0dLBAAAeFsJvAAAgO02ZcqUNDY2ZtasWfnNb36Tn//85zn3\n3HOzZs2atLW15WMf+1gGDRqU888/P8uWLcv999+f+fPnl79+3333zS677JKbb745v//973P33Xfn\nBz/4wXY///asb926dbnkkkvy9NNP55FHHsltt92Www47rHzNJz7xidx6662ZOHFij9F+G2ttbc3x\nxx+fK6+8Mo899liefPLJXHjhhVsMk55++ulceuml+dWvfpXnnnsu999/f/baa6/sscceGTx4cJLk\nySef7BH0bc26dety1llnZenSpfne976Xm2++OZ/97GeTrB+t2NXVlVtuuSW///3v8/Wvfz1PPfVU\n+WtL3++//uu/snLlyh7P+8EPfjCjR4/OWWedlSVLluRXv/pVvvSlL2WfffbJBz7wgW2ua9CgQbn5\n5ptz++23Z/ny5fnRj36UZcuWZezYsdtVFwAAQF8ReAEAANtt8ODB+ad/+qe89tprOf744/O5z30u\nBx54YL785S8nWT++8JZbbsmf//znHHPMMfl//+//ZerUqeWvb21tzRVXXJEf/OAHOfroo/Pggw/m\n7/7u77b7+beltbU1t9xyS55++ul84hOfyMUXX5zPfe5zOfbYY8vXHHXUUVmzZk0+/vGPb/W5zj33\n3BxxxBE5/fTTM3PmzBxzzDG9jvpLkksuuSTDhw/PKaeckilTpuQPf/hDbr755jQ2NmbUqFE5/PDD\nc/LJJ2fhwoXbVcfIkSMzZsyY/PVf/3UuvPDCfOYzn8kJJ5yQZP0utXPPPTe33357pkyZkmXLluXT\nn/50+Wt33333HH/88bngggty44039njehoaGzJ07N3vssUdmzJiRk046Ke9617vyzW9+s8foyS3Z\nb7/9cu2112bhwoX56Ec/mvPPPz8nnXRSjjvuuO2qCwAAoK80FLc24B4AAOAtuvPOO/NP//RP+f73\nv9/fS0mS/Pa3v82nPvWpLFq0KK2trf29HAAAAN4Gzf29AAAAgJ3hpZdeyk9/+tPceeed+djHPibs\nAgAAqCFGGgIAAHVh1apVOe+887J69eqceeaZ/b0cAAAA3kZGGgIAAAAAAFDV7PACAAAAAACgqgm8\nAAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqa\nwAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACg\nqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAA\nAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAA\nAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAA\nAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvAC\nAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoC\nLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICq\nJvACAAAAAACgqgm8AAAAAAAAqGoCLwAAAAAAAKqawAsAAAAAAICqJvACAAAAAACgqgm8AAAAAAAA\nqGoCL4Aq8ctf/jIzZszY7Pj3v//9HHfccZk2bVoWLlzYDysDqB16LUDf0mcB+pY+C9Sz5v5eAADb\ndsstt+Tee+/NoEGDehxfs2ZNrrzyytx9990ZNGhQpk+fniOOOCLvfOc7+2mlANVLrwXoW/osQN/S\nZ4F6V5GB14oVK3fK99l998F55ZVVO+V77Sy1WFNSm3WpqTINHdrW30vo1bBhwzJnzpz8/d//fY/j\ny5Yty7Bhw/KOd7wjSTJhwoT89Kc/zUc/+tGtPl+xWExDQ0OfrRegGr2dvVafBdic32kB+pY+C9S7\nigy8dpbm5qb+XsLbrhZrSmqzLjWxIyZPnpzly5dvdryjoyNtbW+EdEOGDElHR8c2n6+hoWGn/XFB\nfxo6tK3m66yHGhN11ppK/eOCt7PX6rO1RZ21ox5qTOqjzyb10Wvr6T2rztpRD3Xqs7WlHt6zSX3U\nWQ81JvVV545yDy+AKtba2prOzs7y487Ozh6/xALw1um1AH1LnwXoW/osUC8EXgBVbOTIkXnuuefy\n6quvpru7Oz/72c8ybty4/l4WQE3RawH6lj4L0Lf0WaBe1PVIQ4Bqdd9992XVqlWZNm1azjnnnMyc\nOTPFYjHHHXdc9txzz/5eHkBN0GsB+pY+C9C39Fmg3jQUi8Vify9iUztr/mQtzrqsxZqS2qxLTZWp\nUudw94Vqf622Ry28J7elHmpM1Flr6qXX1strqc7aUQ911kONSf302aT2e209vWfVWTvqoU59trbU\nw3s2qY8666HGpL7q3FFGGgIAAAAAAFDVBF4AAAAAAABUNYEXAAAAAAAAVa15WxesW7cuF1xwQZ55\n5pk0NDTkkksuycCBA3POOeekoaEh++67by666KI0NjZm4cKFWbBgQZqbm3Paaafl8MMPz+rVq3P2\n2WfnpZdeypAhQ3L11Vdnjz322Bm1AQAAAAAAUAe2ucPr4YcfTpIsWLAgZ5xxRv7xH/8xV155Zc44\n44zMmzcvxWIxDz30UFasWJE77rgjCxYsyK233prrr78+3d3dmT9/fkaNGpV58+blmGOOydy5c/u8\nKAAAAAAAAOrHNnd4ffjDH86HPvShJMkf/vCH7Lrrrvnxj3+cgw46KEly6KGHZtGiRWlsbMy4cePS\n0tKSlpaWDBs2LEuXLs3ixYtzyimnlK/dnsBr990Hp7m56S2Utf2GDm3bKd9nZ6qlml7r7M6FX/9x\nZnz0LzNhvz37ezlvu1p6rUpqsSYAAAAAACrbNgOvJGlubs6sWbPyve99LzfeeGMWLVqUhoaGJMmQ\nIUOycuXKdHR0pK3tjf+je8iQIeno6OhxvHTttrzyyqo3U8sOGzq0LStWbHs91aTWavrN71/NsuX/\nnSXLXsqw/29wfy/nbVVrr1VSGzUJ7AAAAAAAqs82RxqWXH311fn3f//3zJ49O11dXeXjnZ2d2XXX\nXdPa2prOzs4ex9va2nocL10L26tYLPb4CAAAAAAAsKltBl7/8i//kptvvjlJMmjQoDQ0NGTMmDF5\n7LHHkiSPPvpoJk6cmLFjx2bx4sXp6urKypUrs2zZsowaNSrjx4/PI488Ur52woQJfVgOtaZQ7PkR\nAAAAAABgU9scafh//s//ybnnnpu//uu/ztq1a3Peeedl5MiRmT17dq6//vqMGDEikydPTlNTU2bM\nmJH29vYUi8WceeaZGThwYKZPn55Zs2Zl+vTpGTBgQK677rqdURc1orSzqyDxAgAAAAAAtmCbgdfg\nwYPzf//v/93s+J133rnZsalTp2bq1Kk9jg0aNCg33njjW1gi9axgpCEAAAAAALAN230PL+gPxfJI\nQ4EXAAAAAADQO4EXFa1Y3uHVzwsBAAAAAAAqlsCLilYolD5KvAAAAAAAgN4JvKhopR1eRhoCAAAA\nAABbIvCiohWMNAQAAAAAALZB4EVFKwVdRYkXAAAAAACwBQIvKlpph9c69/ACAAAAAAC2QOBFRXtj\npKHACwAAAAAA6J3Ai4r2xkjD/l0HAAAAAABQuQReVLTChlGGBYkXAAAAAACwBQIvKlop5yq4hxcA\nAAAAALAFAi8qWrF8D69+XggAAAAAAFCxBF5UtNIoQyMNAQAAAACALRF4UdFKOVdR4AUAAAAAAGyB\nwIuKVt7hVejnhQAAAAAAABVL4EVFK23sMtIQAAAAAADYEoEXFa0UdBlpCAAAAAAAbInAi4pWLJQC\nr35eCAAAAAAAULEEXlS0QmmkYUHiBQAAAAAA9E7gRUUrjTJ0Dy8AAAAAAGBLBF5UtDfu4dXPCwEA\nAAAAACqWwIuKVgq67PACAAAAAAC2ROBFRSsFXe7hBQAAAAAAbInAi4pW2thVtMMLAAAAAADYAoEX\nFa20s0veBQAAAAAAbInAi4pWzIaRhhIvAAAAAABgCwReVLRSziXwAgAAAAAAtkTgRUUrjzQs9PNC\nAAAAAACAiiXwoqLZ4QUAAAAAAGyLwIuKVgq6igIvAAAAAABgCwReVLRS4GWHF/WsUCjkwgsvzLRp\n0zJjxow899xzPc7fe++9+eQnP5njjjsu8+bN66dVAlQ3vRagb+mzAH1LnwVImrd2cs2aNTnvvPPy\n/PPPp7u7O6eddlre/e5352//9m+zzz77JEmmT5+eo446KgsXLsyCBQvS3Nyc0047LYcffnhWr16d\ns88+Oy+99FKGDBmSq6++OnvsscfOqIsaUR5p6B5e1LEHH3ww3d3dueuuu/L444/nqquuyle/+tXy\n+WuuuSb3339/Bg8enKOPPjpHH3103vGOd/TjigGqj14L0Lf0WYC+pc8CbCPwuvfee7Pbbrvl2muv\nzauvvppjjjkmn//853PSSSfl5JNPLl+3YsWK3HHHHbnnnnvS1dWV9vb2HHLIIZk/f35GjRqV008/\nPd/5zncyd+7cXHDBBX1eFLXDSENIFi9enEmTJiVJDjzwwCxZsqTH+dGjR2flypVpbm5OsVhMQ0ND\nfywToKrptQB9S58F6Fv6LMA2Aq+PfOQjmTx5cpL1gUNTU1OWLFmSZ555Jg899FCGDx+e8847L088\n8UTGjRuXlpaWtLS0ZNiwYVm6dGkWL16cU045JUly6KGHZu7cuX1fETWllHPJu6hnHR0daW1tLT9u\namrK2rVr09y8voXvu+++Oe644zJo0KAceeSR2XXXXbfreYcObeuT9VaaeqizHmpM1Enf6oteWy+v\npTprSz3UWQ81ViK/07559VBjos5aUy91VhJ99q1RZ+2ohxqT+qlzR2018BoyZEiS9Q3zC1/4Qs44\n44x0d3fn+OOPz5gxY/LVr341N910U/bbb7+0tbX1+LqOjo50dHSUjw8ZMiQrV67crkXtvvvgNDc3\nvdmadkgtvjFqqaaBA9e/RdcVizVVV4ma2B6tra3p7OwsPy4UCuVfWJcuXZof/OAHeeihhzJ48OCc\nffbZeeCBB/LRj350m8+7YsX29eRqNnRoW83XWQ81JuqsNZX474q+6LX18lqqs3bUQ531UGNSP302\nqf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FYDryT54x//mM9//vNpb2/Pxz/+8bz22mvl\nvwA48sgjc9lll2XixIk9GmpnZ2fa2tp6NNrOzs7t/suBV15ZtcOFvBm1+MaotZpWrepOsn6HYS3V\nldTea5XURk2V+Evr+PHj8/DDD+eoo47K448/nlGjRpXPtbW1ZZdddsnAgQPT1NSUPfbYI6+99lo/\nrhagOum1AH1LnwXoW/oswDYCrxdffDEnn3xyLrzwwnzgAx9IksycOTOzZ8/O2LFj85Of/CT7779/\nxo4dmxtuuCFdXV3p7u7OsmXLMmrUqIwfPz6PPPJIxo4dm0cffTQTJkzYKUVRO8ojDQtmGlK/jjzy\nyCxatCgnnHBCisVirrjiitx3331ZtWpVpk2blmnTpqW9vT0DBgzIsGHD8slPfrK/lwxQdfRagL6l\nzwL0LX0WIGkoFrd8d6TLL788DzzwQEaMGFE+dsYZZ+Taa6/NgAED8s53vjOXXXZZWltbs3Dhwtx1\n110pFov527/920yePDmvv/56Zs2alRUrVmTAgAG57rrrMnTo0G0uamftEKmF3SibqrWavnH/U/nx\nkj9lj113yZc/98H+Xs7bqtZeq6Q2aqrEHV59pdpfq+1RC+/JbamHGhN11pp66bX18lqqs3bUQ531\nUGNSP302qf1eW0/vWXXWjnqoU5+tLfXwnk3qo856qDGprzp31FZ3eF1wwQW54IILNju+YMGCzY5N\nnTo1U6dO7XFs0KBBufHGG3d4UVBSymMLW85lAQAAAACAOtfY3wuArSlNMtzKRkQAAAAAAKDOCbyo\naOUdXoV+XggAAAAAAFCxBF5UNDu8AAAAAACAbRF4UdGKBffwAgAAAAAAtk7gRUUrBV12eAEAAAAA\nAFsi8KKilXKugrwLAAAAAADYAoEXFa28w0viBQAAAAAAbIHAi4pmhxcAAAAAALAtAi8qWmmHV8E9\nvAAAAAAAgC0QeFHRiqWRhgIvAAAAAABgCwReVLRCoRR4Cb0AAAAAAIDeCbyoaBtnXOIuAAAAAACg\nNwIvKtrGu7pKu70AAAAAAAA2JvCiom2ccZloCAAAAAAA9EbgRUXbeIeXe3gBAAAAAAC9EXhR0Qo9\nAq9+XAgAAAAAAFCxBF5UtI1HGhYkXgAAAAAAQC8EXlQ0Iw0BAAAAAIBtEXhR0QqFjT6XdwEAAAAA\nAL0QeFHRirHDCwAAAAAA2DqBFxWtsNG2Lju8AAAAAACA3gi8qGgbb+qywwsAAAAAAOiNwIuKtnHI\nJe8CAAAAAAB6I/CiohWK7uEFAAAAAABsncCLirZxxlVwEy8AAAAAAKAXAi8q2sY7vAr9uA4AAAAA\nAKByCbyoaBvv8DLSEAAAAAAA6I3Ai4rW8x5e/bgQAAAAAACgYgm8qGjFje7b5R5eAAAAAABAbwRe\nVLSCkYYAAAAAAMA2CLyoaEUjDQEAAAAAgG1o3trJNWvW5Lzzzsvzzz+f7u7unHbaaXnve9+bc845\nJw0NDdl3331z0UUXpbGxMQsXLsyCBQvS3Nyc0047LYcffnhWr16ds88+Oy+99FKGDBmSq6++Onvs\nscfOqo0asPEOr4LECwAAAAAA6MVWd3jde++92W233TJv3rx84xvfyGWXXZYrr7wyZ5xxRubNm5di\nsZiHHnooK1asyB133JEFCxbk1ltvzfXXX5/u7u7Mnz8/o0aNyrx583LMMcdk7ty5O6suaoQdXgAA\nAAAAwLZsdYfXRz7ykUyePDnJ+uChqakpTz75ZA466KAkyaGHHppFixalsbEx48aNS0tLS1paWjJs\n2LAsXbo0ixcvzimnnFK+VuDFjtp4V5cdXgAAAAAAQG+2GngNGTIkSdLR0ZEvfOELOeOMM3L11Ven\noaGhfH7lypXp6OhIW1tbj6/r6Ojocbx07fbYfffBaW5uelMF7aihQ9u2fVGVqamaNsq4dtttcG3V\nlhp7rTaoxZoAAAAAAKhsWw28kuSPf/xjPv/5z6e9vT0f//jHc+2115bPdXZ2Ztddd01ra2s6Ozt7\nHG9ra+txvHTt9njllVU7WsebMnRoW1as2L4QrlrUWk3rNrqJ18svd2bFoG2+ZatGrb1WSW3UJLAD\nAAAAAKg+W72H14svvpiTTz45Z599dj71qU8lSd73vvflscceS5I8+uijmThxYsaOHZvFixenq6sr\nK1euzLJlyzJq1KiMHz8+jzzySPnaCRMm9HE51JqNpxgaaQgAAAAAAPRmq9tlvva1r+W1117L3Llz\ny/ffOv/883P55Zfn+uuvz4gRIzJ58uQ0NTVlxowZaW9vT7FYzJlnnpmBAwdm+vTpmTVrVqZPn54B\nAwbkuuuu2ylFUTuKG4Vc8i4AAAAAAKA3Ww28LrjgglxwwQWbHb/zzjs3OzZ16tRMnTq1x7FBgwbl\nxhtvfIsDR9vhAAAgAElEQVRLpF4Vi8WNb+HVI/wCAAAAAAAo2epIQ+hPm+ZbBXkXAAAAAADQC4EX\nFWvTe3a5hxcAAAAAANCbrY40hP606QhDIw2pV4VCIRdffHF+/etfp6WlJZdffnmGDx9ePv/EE0/k\nqquuSrFYzNChQ3Pttddm4MCB/bhigOqj1wL0LX0WoG/pswB2eFHBNh1hKO+iXj344IPp7u7OXXfd\nlbPOOitXXXVV+VyxWMzs2bNz5ZVXZv78+Zk0aVKef/75flwtQHXSawH6lj4L0Lf0WQA7vKhghYId\nXpAkixcvzqRJk5IkBx54YJYsWVI+98wzz2S33XbLN7/5zfz2t7/NYYcdlhEjRmzX8w4d2tYn6600\n9VBnPdSYqJO+1Re9tl5eS3XWlnqosx5qrER+p33z6qHGRJ21pl7qrCT67FujztpRDzUm9VPnjhJ4\nUbE2zbcKhf5ZB/S3jo6OtLa2lh83NTVl7dq1aW5uziuvvJJf/OIXufDCCzNs2LCceuqpGTNmTD7w\ngQ9s83lXrFjZl8uuCEOHttV8nfVQY6LOWlOJv5j3Ra+tl9dSnbWjHuqshxqT+umzSe332np6z6qz\ndtRDnfpsbamH92xSH3XWQ41JfdW5o4w0pGIV3MMLkiStra3p7OwsPy4UCmluXv/3CrvttluGDx+e\nkSNHZsCAAZk0aVKPv+ICYPvotQB9S58F6Fv6LIDAiwq2acC16T29oF6MHz8+jz76aJLk8ccfz6hR\no8rn/uIv/iKdnZ157rnnkiQ/+9nPsu+++/bLOgGqmV4L0Lf0WYC+pc8CGGlIBdt0Q5cdXtSrI488\nMosWLcoJJ5yQYrGYK664Ivfdd19WrVqVadOm5R/+4R9y1llnpVgsZty4cfnQhz7U30sGqDp6LUDf\n0mcB+pY+C5A0FCswRdhZ8ydrcdZlLdX0akdXvvSVReXHp35i/xz0l3v244reXrX0WpXUQk2VOIe7\nr1T7a7U9auE9uS31UGOizlpTL722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJ\nfdRZDzUm9VXnjjLSkIq1+Q6v/lkHAAAAAABQ2QReVKzCJjftqsDNiAAAAAAAQAUQeFGxNg245F0A\nAAAAAEBvBF5UrMKmjyVeAAAAAABALwReVKzihpGGTY0NSQReAAAAAABA7wReVKxSwNW4IfCSdwEA\nAAAAAL0ReFGxNmzwKu/w2vSeXgAAAAAAAInAiwpWCrjeGGnYn6sBAAAAAAAqlcCLilXa0NXU1Ljh\nscQLAAAAAADYnMCLilUo9NzhJe8CAAAAAAB6I/CiYhWz6UhDiRcAAAAAALA5gRcVq1BY/7G8w8tN\nvAAAAAAAgF4IvKhYpXt2NZZ3ePXnagAAAAAAgEol8KJilSYYNjWuf5uWRhwCAAAAAABsTOBFxSrd\ns6s80lDeBQAAAAAA9ELgRcUqjTRsatow0tBMQwAAAAAAoBcCLypWKeB6Y4eXwAsAAAAAANicwIuK\nVdjw0UhDAAAAAABgawReVKziJvfwKki8AAAAAACAXgi8qFiFDVu8mprWv03dwgsAAAAAAOiNwIuK\nVdrh1djgHl4AAAAAAMCWCbyoWKURhk1N7uEFAAAAAABs2XYFXr/85S8zY8aMJMlTTz2VSZMmZcaM\nGZkxY0a++93vJkkWLlyYY489NlOnTs3DDz+cJFm9enVOP/30tLe357Of/WxefvnlPiqDWlQKuEr3\n8LLDCwAAAAAA6E3zti645ZZbcu+992bQoEFJkieffDInnXRSTj755PI1K1asyB133JF77rknXV1d\naW9vzyGHHJL58+dn1KhROf300/Od73wnc+fOzQUXXNB31VBTSgFXU2PpHl4CLwAAAAAAYHPbDLyG\nDRuWOXPm5O///u+TJEuWLMkzzzyThx56KMOHD895552XJ554IuPGjUtLS0taWloybNiwLF26NIsX\nL84pp5ySJDn00EMzd+7c7VrU7rsPTnNz01soa/sNHdq2U77PzlQrNbX+4bUkyZDBLUmSXXZpqZna\nSmqtnqQ2awIAAAAAoLJtM/CaPHlyli9fXn48duzYHH/88RkzZky++tWv5qabbsp+++2XtrY3/k/u\nIUOGpKOjIx0dHeXjQ4YMycqVK7drUa+8smpH63hThg5ty4oV27emalFLNf33f7+eJOnuXpsk6VzV\nVTO1JbX1WpXUQk0COwAAAACA6rNd9/Da2JFHHpkxY8aUP3/qqafS2tqazs7O8jWdnZ1pa2vrcbyz\nszO77rrr27Rs6kGhsGGkYVPpHl79uRoAAAAAAKBS7XDgNXPmzDzxxBNJkp/85CfZf//9M3bs2Cxe\nvDhdXV1ZuXJlli1bllGjRmX8+PF55JFHkiSPPvpoJkyY8PaunppWCriaGtcHXu7hBQAAAAAA9Gab\nIw03dfHFF+eyyy7LgAED8s53vjOXXXZZWltbM2PGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/P\ngAEDct111/VFDdSoUsBVCrzkXQAAAAAAQG+2K/Dae++9s3DhwiTJ/vvvnwULFmx2zdSpUzN16tQe\nxwYNGpQbb7zxbVgm9eiNwGv9RsSixAsAAAAAAOjFDo80hJ1l05GGAi8AAAAAAKA3Ai8qVnmHV9OG\ne3gV+nM1AAAAAABApRJ4UbHs8AIAAAAAALaHwIuKVQq4GjcEXgV5FwAAAAAA0AuBFxWrsCHhampc\n/zYtRuIFAAAAAABsTuBFxdp0pGHBFi8AAAAAAKAXAi8qVmmkYVNT6R5e/bkaAAAAAACgUgm8qFil\nDV1NDaXAS+IFAAAAAABsTuBFxbLDCwAAAAAA2B4CLypWoRR4NTb2eAwAAAAAALAxgRcVqzzSsNEO\nLwAAAAAAYMsEXlSs8kjDDYGXHV7Uq0KhkAsvvDDTpk3LjBkz8txzz/V63ezZs/PlL395J68OoDbo\ntQB9S58F6Fv6LIDAiwpW2LDFq9EOL+rcgw8+mO7u7tx1110566yzctVVV212zYIFC/Kb3/ymH1YH\nUBv0WoC+pc8C9C19FiBp7u8FwJaUAq6mJju8qG+LFy/OpEmTkiQHHnhglixZ0uP8z3/+8/zyl7/M\ntGnT8vTTT2/38w4d2va2rrNS1UOd9VBjok76Vl/02np5LdVZW+qhznqosRL5nfbNq4caE3XWmnqp\ns5Los2+NOmtHPdSY1E+dO0rgRcX5wePPJ0me/dNrSZIlT7+c5I0Rh1BvOjo60traWn7c1NSUtWvX\nprm5OX/+859z00035Stf+UoeeOCBHXreFStWvt1LrThDh7bVfJ31UGOizlpTib+Y90WvrZfXUp21\nox7qrIcak/rps0nt99p6es+qs3bUQ536bG2ph/dsUh911kONSX3VuaMEXlSsUr7V0NDzMdSb1tbW\ndHZ2lh8XCoU0N69v3//2b/+WV155JX/zN3+TFStWZPXq1RkxYkSOPfbY/louQFXSawH6lj4L0Lf0\nWQCBFxWslG+9cQ8viRf1afz48Xn44Ydz1FFH5fHHH8+oUaPK50488cSceOKJSZJvf/vbefrpp/3C\nCvAm6LUAfUufBehb+iyAwIsKVgq4GjZs8SoUBF7UpyOPPDKLFi3KCSeckGKxmCuuuCL33XdfVq1a\nlWnTpvX38gBqgl4L0Lf0WYC+pc8CCLyoYOWRhhv+KfTnYqAfNTY25tJLL+1xbOTIkZtd56+zAN48\nvRagb+mzAH1LnwVIGvt7AbAlxZR2eK3/x0hDAAAAAACgNwIvKlZ5h9eGxEveBQAAAAAA9EbgRcVr\naEgaG9zDCwAAAAAA6J3Ai4pVGmHYsOE/7fACAAAAAAB6I/CiYm080tA9vAAAAAAAgC0ReFGx3gi8\n1v9joiEAAAAAANAbgRcVq5g3Eq6GhgY7vAAAAAAAgF4JvKhYPUYaJikIvAAAAAAAgF4IvKhYpR1d\n60caNkTeBQAAAAAA9EbgRcUq5VsNaUhDQ4w0BAAAAAAAeiXwomK9MdJw/Q4vIw0BAAAAAIDeCLyo\nXBuPNHzjIQAAAAAAQA/bFXj98pe/zIwZM5Ikzz33XKZPn5729vZcdNFFKRQKSZKFCxfm2GOPzdSp\nU/Pwww8nSVavXp3TTz897e3t+exnP5uXX365j8qgFhlpCAAAAAAAbI9tBl633HJLLrjggnR1dSVJ\nrrzyypxxxhmZN29eisViHnrooaxYsSJ33HFHFixYkFtvvTXXX399uru7M3/+/IwaNSrz5s3LMccc\nk7lz5/Z5QdSOzUca9u96AAAAAACAyrTNwGvYsGGZM2dO+fGTTz6Zgw46KEly6KGH5sc//nGeeOKJ\njBs3Li0tLWlra8uwYcOydOnSLF68OJMmTSpf+5Of/KSPyqAWlXd0NawPvdzDCwAAAAAA6E3zti6Y\nPHlyli9fXn5cLBbT0NCQJBkyZEhWrlyZjo6OtLW1la8ZMmRIOjo6ehwvXbs9dt99cJqbm3aokDdr\n6NC2bV9UZaq9prbWXZIkTU3r89hdW3dJQ9bfyKvaa9tUrdWT1GZNAAAAAABUtm0GXptqbHxjU1hn\nZ2d23XXXtLa2prOzs8fxtra2HsdL126PV15ZtaPLelOGDm3LihXbF8JVi1qoaWXH6iTJmrXr7w/X\n0dmVhoZk7bpC1de2sVp4rTZVCzUJ7AAAAAAAqs82Rxpu6n3ve18ee+yxJMmjjz6aiRMnZuzYsVm8\neHG6urqycuXKLFu2LKNGjcr48ePzyCOPlK+dMGHC27t6alpppGFDw/rdXSYaAgAAAAAAvdnhHV6z\nZs3K7Nmzc/3112fEiBGZPHlympqaMmPGjLS3t6dYLObMM8/MwIEDM3369MyaNSvTp0/PgAEDct11\n1/VFDdSoUr7VkKSxoSGFgsQLAAAAAADY3HYFXnvvvXcWLlyYJHnPe96TO++8c7Nrpk6dmqlTp/Y4\nNmjQoNx4441vwzKpSxvyrQ23jEsxAi8AAAAAAGBzOzzSEHaWjUcaNjQ0xAYvAAAAAACgNwIvKlYx\n68cZJut3eRXdxAsAAAAAAOiFwIuKVSwWy4lXQxpSKPTvegAAAAAAgMok8KJiFYvrxxkmdngBAAAA\nAABbJvCiYm0+0rA/VwMAAAAAAFQqgRcVq1gspmGjkYZ2eAEAAAAAAL0ReFGxNhtpGGMNAQAAAACA\nzQm8qGhvjDRc/5m8CwAAAAAA2JTAi4q1fqThGzu8kqQg8QIAAAAAADYh8KJirR9puP7zho2OAQAA\nAAAAbEzgRcVav8Nr/eelnV52eAEAAAAAAJsSeFGx1kdbPUcaFgVeAAAAAADAJgReVKweIw03fCLv\nAgAAAAAANiXwomIVi8Xyvbs2PgYAAAAAALAxgRcVq5g3dnY1lu/h1Y8LAgAAAAAAKpLAi4rVc6Th\n+o8FO7wAAAAAAIBNCLyoYBuNNNzwibwLAAAAAADYlMCLirV+h9f6pKthQ+LlHl4AAAAAAMCmBF5U\nrN5GGsq7AAAAAACATQm8qFjFvJFulXZ6FQoSLwAAAAAAoCeBFxXl5ddW55HH/5COVWt6jjQs7/Aq\n5idL/pQ/vtTZj6sEAAAAAAAqSXN/LwA29uSzL+e5P63MnnsMSrFYfGOk4Ybz/93ZnVvufyof2H/P\nfPbj+/fbOmFnKhQKufjii/PrX/86LS0tufzyyzN8+PDy+fvvvz+33XZbmpqaMmrUqFx88cVpbPT3\nDAA7Qq8F6Fv6LEDf0mcB7PCiwnSvKSRJ1qxd/7EhpR1e6z92rl6bJFm14SPUgwcffDDd3d256667\nctZZZ+Wqq64qn1u9enVuuOGG3H777VmwYEE6Ojry8MMP9+NqAaqTXgvQt/RZgL6lzwIIvKgw3WvX\nJVkfeBWKb4wyLH1c3b12w3WF/lge9IvFixdn0qRJSZIDDzwwS5YsKZ9raWnJggULMmjQoCTJ2rVr\nM3DgwH5ZJ0A102sB+pY+C9C39FkAIw2pMD12eG080nDDJ13d6zZct65f1gf9oaOjI62treXHTU1N\nWbt2bZqbm9PY2Jh3vvOdSZI77rgjq1atyiGHHLJdzzt0aFufrLfS1EOd9VBjok76Vl/02np5LdVZ\nW+qhznqosRL5nfbNq4caE3XWmnqps5Los2+NOmtHPdSY1E+dO0rgRUUpBVlr1hZSLL4RdJXu4bV6\nw/muNXZ4UT9aW1vT2dlZflwoFNLc3Nzj8bXXXptnnnkmc+bMKf/3ZltWrFj5tq+10gwd2lbzddZD\njYk6a00l/mLeF722Xl5LddaOeqizHmpM6qfPJrXfa+vpPavO2lEPdeqztaUe3rNJfdRZDzUm9VXn\njjLSkIrStSHQ6l5bSDFvBF2lfweXd3ittcOL+jF+/Pg8+uijSZLHH388o0aN6nH+wgsvTFdXV+bO\nnVseTwDAjtFrAfqWPgvQt/RZADu8qDDlkYalkYWbjDRc3V3a4SXwon4ceeSRWbRoUU444YQUi8Vc\nccUVue+++7Jq1aqMGTMmd999dyZOnJhPf/rTSZITTzwxRx55ZD+vGqC66LUAfUufBehb+iyAwIsK\nU9q51b12ffC12UjD7rXrzxtpSB1pbGzMpZde2uPYyJEjy58vXbp0Zy8JoObotQB9S58F6Fv6LICR\nhlSYUpBVupdXeZrwhuCrPNLQDi8AAAAAAGADgRcVpXwPrzU9d3g1bki+Vm84v65QzNp1dnkBAAAA\nAABvYaThJz/5ybS2tiZJ9t5775x66qk555xz0tDQkH333TcXXXRRGhsbs3DhwixYsCDNzc057bTT\ncvjhh79ti6f2lEYarllXCrzS42PpHl5JsmZtIc1NMlsAAAAAAKh3byrw6urqSrFYzB133FE+duqp\np+aMM87IwQcfnAsvvDAPPfRQDjzwwNxxxx2555570tXVlfb29hxyyCFpaWl52wqgtmx6b66GTT7r\n2ijw6l6zLoMGug0dAAAAAADUuzeVFixdujSvv/56Tj755KxduzZf+tKX8uSTT+aggw5Kkhx66KFZ\ntGhRGhsbM27cuLS0tKSlpSXDhg3L0qVLM3bs2Le1CGpH1yb35iqNNHxjh9faLV4LAAAAAADUpzcV\neO2yyy6ZOXNmjj/++Dz77LP57Gc/m2KxWA4nhgwZkpUrV6ajoyNtbW3lrxsyZEg6Ojq2+fy77z44\nzc1Nb2ZpO2zo0LZtX1RlqrmmteuKPR4PaG5KW+su5ffWmo3OD2kbVNW1JtX9Wm1JLdYEAAAAAEBl\ne1OB13ve854MHz48DQ0Nec973pPddtstTz75ZPl8Z2dndt1117S2tqazs7PH8Y0DsC155ZVVb2ZZ\nO2zo0LasWLFyp3yvnaXaa1rdtbbH43Xr1mVlx+ryDq/O19eUz/3pz69lSHNDqlW1v1a9qYWaBHYA\nAAAAANWn8c180d13352rrroqSfLCCy+ko6MjhxxySB577LEkyaOPPpqJEydm7NixWbx4cbq6urJy\n5cosW7Yso0aNevtWT83pXrvJmMLSSMPSPbzWbHwPr573+wIAAAAAAOrTm9rh9alPfSrnnntupk+f\nnoaGhlxxxRXZfffdM3v27Fx//fUZMWJEJk+enKampsyYMSPt7e0pFos588wzM3DgwLe7BmrEukJh\ns5GGpf1bpR1ea9a+EXJ1u4cXAAAAAACQNxl4tbS05Lrrrtvs+J133rnZsalTp2bq1Klv5ttQZ3rb\nsVUKuhp6mVzYJfACAAAAAADyJkcaQl/oXttb4NXQ42OP6400BAAAAAAAIvCigpR2bO3S0lQ+1rDJ\nx41tdr8vAAAAAACgLgm8qBile3INGvjGpM2t7fD6r+de2TkLAwAA4P9n796j9Krre/G/Z5655DIh\nARLAKkFIiS0iJwR7sTS9aFPq5dAl+UEQDf39Vs+hnrVae1qOtqeVNL8fiGnRc1wipbWHKuWoSUQs\nhKOoCJaKiBANGBCQEIIg5AKZJDOTzGTy7N8fk4wJhAQy82RmP/v1WotFnvv3M3vznqz15rsfAAAY\n1xRejBt7L1G47w6vHOQ7vAZ3u6QhAAAAAACg8GIc2bvDa9I+O7xaD1B47f3z4O7iSC0NAAAAAAAY\nxxRejBt7v5Nr30sa7t3i1bLPt3h1tg/tALPDCwAAAAAASBRejCPDlzTs/NklDVsOsMOrc88lD3fb\n4QUAAAAAAEThxTjSv+eShu1ttbTV9uzsGi68ftZ4TbDDCwAAAAAA2IfCi3Fj73d4tdVa0t42dGru\nvZThgXZ4Ddbt8AIAAAAAABRejCP9ey5p2FZrTXvbUKm1b9G114ThSxra4QUAAAAAACi8GEcGBod2\neNVa99nhdYBLGra31dLa4pKGAAAAAADAEIUX48bAfju89p6aQ0VX6z47vdpqLanVWjO42yUNAQAA\nAAAAhRdj7LkX+vIvtz2SgV279/sOr449hddw0bXPDq9arTVttZbhHV73P7Ixjz615YiuGwAAAAAA\nGD8UXoypf3/wp/nW6p/m4fVbhi9p2FZrTXttz6m5p+ja96u82lpb0lZrze7dRer1Ip9e+VCWffPx\nI7xyAAAAAABgvFB4Maa6tw8kSbb29O9zScOWtLfv+Q6vPc9r2e+Shq2ptbZksF7P9r6BDO4usmX7\nziO5bAAAAAAAYBxReDGmtvb2D/27ZyD9ey5pWKu1pr2tluRnRVfLPo1XW21oh9fgYJHunqHCbHvf\nruyu14/gygEAAAAAgPFC4cWY2rqnsOruHdjvO7za93yH196i68U7vNpqrakXRbZsHyrMiiTbencd\nuYUDAAAAAADjhsKLMdXds3eHV3/6B+tpaUlaW1rSUXvRJQ33+RavWq0lbbWh2xu7d7zkvQAAAAAA\ngGppG+sFUF27Buvp3TmYJOnuGcjuej0d7bW0tOy7wyv7/TvZ8x1eewqxTVt+Vnjt3S0GAAAAAABU\nix1ejJm939+1988Du+rp3FN0dU1qT5JM6BjqZPf/Dq9WO7wAAAAAAIBhdngxZvbdkbW1ZyBHTe5I\nR3stSTJ96oS8+zdOTtfEoeJrnw1eaau1pG3PDq+NW/qG71d4AQAAAABANdnhxZjp3qfw2l0v0t3T\nn8Hd9SRDO7qmTOoY3tm17yUNa62tqbUO3bF5687h+7f2uqQhAAAAAABUkcKLMbP3koYd7UOnYVFk\n+Lu5Xmz/Sxr+bIfX7nqRiZ1Du8L27hgriiJFUTRs3QAAAAAAwPii8OKIemHbzqz+8eYkP9vhdcxR\nE4Yfb2ttOeDr9t3hte93eCXJCcdMTlutdfiShld/6Ye58oZVo710AAAAAABgnFJ4cUStuPPxfPJL\nD+bZ53uzdU9BdexRncOPt73cDq893+LV2pK0trbs97xpXR2Z1tUxfEnENeuez9qfbsv2Ppc4BAAA\nAACAKlB4cUStfWbb8L/3fufWvju8arWD7/Dae8nDfS99OLWrM9O6OrOtd1ee3tSTwd1DlzNcv2H7\nqK8fAAAAAAAYfxReHDHbegfy/LadSZJ1z21Ld09/2motOWpSx/BzXm6H154NXsOXMtz3kobd23dm\nYHB36kWRlXc/OXz/+ucUXgAAAAAAUAUKLxrqx09357sPP5ckWffstuH71/10W7b2DGRiZ1smdrYN\n39/2Mju8Wlv2Fl2t+/07yX7v8fSmnuH7128Y+vOadc9n5d3rUhTFaIwEAAAAAACMM22HfgocnqIo\n8k8rH87mrTtz6munDRdetdaW/GRjT+pFkRnTJmZCZy0tSYocZIfXHrXWl+7wmtjZlkkDu5Mkm7t3\nptbaks72WtY/ty1FUeRzX38sG7bsyOmnHJuTX3NUQ2YFAAAAAADGjh1ejKp71jyXex/ekCR54qfb\nsnnr0CUM73tkY9Y9O3SJwbmzZ2R3vUhRDJVVrS0tmdBZS7L/d3Ptq+XFO7xaD7zDq0jy2umTc/Jr\npmRT98488lR3NmzZMbyGJHn86a254WuPpn/X7tEcHQAAAAAAGCMKL0bkqQ3bs7V3IEmy4YW+XPd/\nfpT/devD2bx1x3DxlST3Prwh657dlulTJ+SMWccO3z9xT9G1t7Bqaz3wJQ1bhr/Da+iUrb1oh9e+\nl0WcecKUzDxhSpLkxm+tHb7/vh9tTL1e5LO3PZI7f/BM7vz+M0mSHf2Due+Rjdk1WD+8HwIAAAAA\nADCmFF68rKIo8twLfanXh777akf/YL5w+4/z8JMvJEkefWpL/t/P3pcrrr8/vTt35Za716VeFNld\nL3Lzt9flvkc2ZvKEtrzx5GOyfsP29OzYlckT27Np647hz9hbVA0XXofc4bX/Tq+WJBM6a5k0oTb8\n3NefMCWvP2Ho0oXrnt2Wzo5a3vwLx+X5bTuz/I7H89PNvUmSr967PjsHBvOPtzyUa/91TVbc8XiS\n5OmNPfnEFx/Ij/bMmSTrn9uenQODI/hpAgAAAAAAjdLw7/Cq1+tZsmRJHn300XR0dOSKK67ISSed\n1OiPHfeKPcXQ3uKmKIrsGqyno702fLtnx650TWxPS0tLiqLI81t3ZmpXZ9rbWlMURZ7Z3JujJnXk\nqMkdKYoiTz63PX2DRSa1taReL/LQky9k12A9Z8w6Nq0tLbn/0Y15YVt/3nL6CZk8oS3/tvqneWT9\nlpzzyzPz+tdMyS13P5l/f/Cn+d1fOjFvnfu6fO4bj+XbDz6bX5g5Lf/PO34x/7Ty4Tz+zNbc+YOn\n83+//Rdy47fWpiiS57ftzNU3PpgfP701r5vRld31eu7+4XNJkt+c83OZ/bppeWjdUHk0feqEHDW5\nI+211uzaXc+kFxVe++7c2tfee/de8nBv8TWhs5bWlpb9dng9v21nenfuGr79c8dOytmnn5D7H9mY\nb9z/k7S2tORXTjs+9zz0XD62bHWe+OnQd4t98/tP5/hjJub/3LM+W3sH8shTW3Lpwjn53o825pur\nns4Jx0zKn/5fZ2Tztp35319/LK85ZlIWnfOGFEWRf/33dWlra83vn/36TJ7Ynnsf3pAd/YP5tdNP\nyEqgsiEAACAASURBVMTOtjz+zNZs6t6ROT8/I5MmtKW7pz/PbNmR6V0d6WyvZdfg7vx0c19+bvqk\ntLfVUhRFNm3dmWOmdA6fI707d6WzvTZ8e+fAYGqtrWlvG7pdL4aKydaWA/8MKa9D5egdd9yRa665\nJm1tbVmwYEEuuOCCMVwtQDnJWoDGkrMAjSVnAY5A4XX77bdnYGAgy5cvz+rVq7N06dJce+21o/b+\n9aLINTf9MN09Aznu6IkZ2LU7m7p3pLWlJccdPTFpacnGF/qyu17kuKMnpr2tNRu27MjOgd153XFd\naW9tyYYtO7K9byAzpk3MtK6ObOremS3bd+aYoyZk+tQJeX7rzmzs3pFpXZ05/phJ2drTn2ef70vX\nxPb83PTJ6du5K09v6k1He2tOPG5Kdg3W89SG7SmSzDy+K22trVn37Lbs3LU7Jx0/JZMntGXtM1uz\nfceunHhcV6ZPnZh1z27Llu39OeGYSXnt9Ml5Ys/tqZM7cvJrjspTG7fnhW396Wyv5dQTp+bZzb15\nflt/WlqSU187NS9s7x/+vqzXzZic/l27s6l76PZRkzsyoaOWjXu+y+rL//7E8JxJsuqxTZnW1ZHu\nnqFLE37xzrW59TtPZkf/7kye0JZHnurOX/7jPSmK5LTXH50fP701/+vWHyVJzvuNU/Lwky/kkae6\nkyTvnndydu2u5x9ufihJ0tleS8/OXam1tmR3vcixUyektaUlx06dkOde6BsuqiYdcodX9jw+9Ie9\nxdfe13e219LakhRFcvSUztRaW9Le1ppdg/W8/jVH5Y0nH5PJE9rSu3OohFr4tp/P6sc354mfbkvX\nxPZccu5p+eSNP8znb/9xkuTs00/IPQ9tyNL//f0USaZO7shzL/RlyWfuG/7urw0v9OXRn3Rn9+56\nBvZcDvG7Dz2XiZ1t2bK9f/hnfexRE/L0pqFdZZ0dj+Wk47ry42e2piiSCR21zHrt1Dz+zNb0D+zO\nhI5aZp84LU9t2J7unoF0dtTyhhOn5fmtO/PM5t50dtQy+3XT0rNjIE8+tz1ttdb8/GunprUleeLZ\nbakXySmvOSqd7bWhc25gd046vitHTe7ITzb2ZFvfQF47oyvHTOnMs8/35YVtO3Pc0ZNy/NETs6l7\nRzZ178gxR03ICcdMSndPfzZs2ZEpk9rzmmMnp3fHrjz3Ql8mdNTymmMnZ9dgPRu29KW1pSUnHDMp\nLS3J5m396R8YzPFHT0pHe2s27vlvbca0iZk8sS2bu3dm+45dQ8XnpI5s2b4zW3oGcnRXR46eMiHb\nevvzwvb+TJnYnmOnTkjPjsFs3rojkzrbMmPaxOwc2J1NW3ekvdaa446emN27i2zqHjqvZ0ybmNbW\nlmzcsiMDg7tz/NGT8gsnHZ3f/aUTX22sjDsHy9Fdu3blox/9aG688cZMnDgx73nPe/LWt74106dP\nH+NVA5SLrAVoLDkL0FhyFuAIFF6rVq3KvHnzkiRz5szJmjVrDvmaGTOmvKrP+P/ef/ZhrY3Geedv\n/Px+ty96+2n73T5//i+86Pah3/O9v/eL+91+3zveuN/tC373Fw96e9lH3rnf7RVX7n/7t3/59Yde\nBIyBg+Xo2rVrM3PmzEydOjVJctZZZ+W+++7L29/+9kO+76vN2rKqwpxVmDExJ43ViKytyrE0Z3Op\nwpxVmHE88nfaw1eFGRNzNpuqzDmeyNmRMWfzqMKMSXXmfLUa/h1ePT096erqGr5dq9UyOOi7kABe\nqYPlaE9PT6ZM+dkvuMmTJ6enp+eIrxGg7GQtQGPJWYDGkrMAR6Dw6urqSm9v7/Dter2etraGbywD\naBoHy9EXP9bb27vfX2IBeGVkLUBjyVmAxpKzAEeg8Jo7d27uuuuuJMnq1asze/bsRn8kQFM5WI7O\nmjUr69evT3d3dwYGBnL//ffnzDPPHKulApSWrAVoLDkL0FhyFiBpKYqiaOQH1Ov1LFmyJI899liK\nosiVV16ZWbNmNfIjAZrKgXL04YcfTl9fXxYuXJg77rgj11xzTYqiyIIFC/Le9753rJcMUDqyFqCx\n5CxAY8lZgCNQeAEAAAAAAEAjNfyShgAAAAAAANBICi8AAAAAAABKrSkLr507d+ZP/uRPctFFF+U/\n/+f/nBdeeOElz1mxYkXOO++8XHDBBbnzzjv3e+wb3/hGLr300uHbq1evzvnnn58LL7wwn/rUpxq+\n/gM53Jle7nXf+MY38ju/8ztZtGhRFi1alO9973tHbJZ6vZ7Fixdn4cKFWbRoUdavX7/f43fccUcW\nLFiQhQsXZsWKFQd9zfr16/Oe97wnF110Uf7mb/4m9Xr9iM2xr9Gc6eGHH868efOGj81XvvKVIz7P\nXocz114PPPBAFi1aNHx7vByrKhnJ8SuTQ8156623Dmf44sWLS3vuHWrOvS677LJ87GMfO8KrGz2H\nmvPBBx/MRRddlPe85z35wAc+kP7+/jFa6eE71Iy33HJL3v3ud2fBggX5/Oc/P0arHD0v/n2wV1Uy\nqBnmlLP7k7PlUKWslbPVmFPWloecHSJny0PODpGz5VKFrK1SziajmLVFE/rnf/7n4pOf/GRRFEVx\n6623Fpdffvl+j2/cuLF417veVfT39xfbtm0b/nNRFMXll19enHPOOcV//a//dfj55557brF+/fqi\nXq8X/+k//afioYceOnLD7HG4M73c6/7H//gfxW233XZkh9jja1/7WvEXf/EXRVEUxQ9+8IPi/e9/\n//BjAwMDxe/8zu8U3d3dRX9/f3HeeecVmzZtetnX/NEf/VHx3e9+tyiKorjsssuKr3/960d4miGj\nOdOKFSuK66677sgPcQCHM1dRFMWnP/3p4l3veldx/vnnDz9/vByrKjnc41c2B5tzx44dxdve9rai\nr6+vKIqi+LM/+7Pi9ttvH5N1jtTB5tzrC1/4QnHBBRcUV1111ZFe3qg52Jz1er0499xziyeffLIo\niqG8XLt27ZiscyQOdSzPPvvsYsuWLUV/f//wf6dldaDfB0VRnQxqljnl7M/I2fKoStbK2WrMKWvL\nRc4OkbPlIWflbBlVIWurkrNFMbpZ25Q7vFatWpV58+YlSX7jN34j99xzz36PP/jggznzzDPT0dGR\nKVOmZObMmXnkkUeSJHPnzs2SJUuGn9vT05OBgYHMnDkzLS0t+fVf//V85zvfOWKz7HW4M73c6x56\n6KF86UtfykUXXZSlS5dmcHBwTGaZM2dO1qxZM/zY2rVrM3PmzEydOjUdHR0566yzct99973sax56\n6KH88i//8vB8Y3FsktGdac2aNfnWt76V9773vfmrv/qr9PT0HPmB9jicuZJk5syZufrqq/d7r/Fy\nrKrkcI9f2Rxszo6OjixbtiwTJ05MkgwODqazs3NM1jlSB5szSb7//e/ngQceyMKFC8dieaPmYHOu\nW7cu06ZNy2c/+9m8733vS3d3d0455ZSxWuphO9SxfMMb3pDt27dnYGAgRVGkpaVlLJY5Kg70+yCp\nTgY1y5xydoicLZeqZK2crcacsrZc5OwQOVseclbOllEVsrYqOZuMbtaWvvD64he/mHe96137/bN9\n+/ZMmTIlSTJ58uRs3759v9f09PQMP773OXtLhXe84x37nRw9PT3p6ura77kvfr/RNpoz7Xv/vq87\n++yzc9lll+Vzn/tc+vr6smzZsobO9OK17vszrdVqw4XbweY40Gv2/Y/5SByblzOaM51xxhn50Ic+\nlM997nM58cQTc8011xy5QV7kcOZKknPOOSdtbW37vdd4OVZVcrjHr2wONmdra2umT5+eJLnhhhvS\n19eXs88+e0zWOVIHm3Pjxo255pprsnjx4rFa3qg52JxbtmzJD37wg7zvfe/LZz7zmXz3u999yf8A\nUgYHmzFJTj311CxYsCDvfOc781u/9Vs56qijxmKZo+JAvw+S6mRQs8wpZ+VsGVUla+VsNeaUteUi\nZ4fI2fKQs3K2jKqQtVXJ2WR0s/al71Iy559/fs4///z97vvjP/7j9Pb2Jkl6e3tfcrC7urqGH9/7\nnH1/cId6bqNPntGcad/7933dggULhv/8tre9LV/72tcaNs+LvXit9Xp9+IR+JXPs+5rW1tb9njtW\n/2GP5kzz588fnmP+/Pm5/PLLj9AUL3U4c72c8XKsqmQ0j994drA5996+6qqrsm7dulx99dWl/T9e\nDjbnbbfdli1btuSSSy7Jpk2bsnPnzpxyyik577zzxmq5h+1gc06bNi0nnXRSZs2alSSZN29e1qxZ\nk7e85S1jstbDdbAZH3nkkXzrW9/KN7/5zUyaNCkf/OAH89WvfjVvf/vbx2q5DVGVDGqWOeWsnC1b\nziaytlnyJ6lGziayNmmerJWzcrZs5OzPbsvZ8qhC1lY9Z5PDy6DS7/A6kLlz5+bf/u3fkiR33XVX\nzjrrrP0eP+OMM7Jq1ar09/dn+/btWbt2bWbPnn3A9+rq6kp7e3ueeuqpFEWRb3/723nzm9/c8Ble\n7HBnOtDriqLIueeem+eeey5Jcs899+SNb3zjEZ3lrrvuSpKsXr16v5/9rFmzsn79+nR3d2dgYCD3\n339/zjzzzJd9zWmnnZZ77713eL6xODbJ6M70h3/4h3nwwQeTHPlj82KHM9fLGS/HqkpG8/iNZweb\nM0kWL16c/v7+/P3f//3w5QnK6GBzXnzxxbnppptyww035JJLLsm73vWuUv6FNTn4nCeeeGJ6e3uH\nv6j1/vvvz6mnnjom6xyJg804ZcqUTJgwIZ2dnanVajnmmGOybdu2sVpqw1Qlg5plTjkrZ8uo6lnb\nLPmTVCNnE1mbNE/Wylk5WzZydoicLZcqZG3VczY5vAxqKYqiOELrO2J27NiRv/iLv8imTZvS3t6e\nj3/845kxY0Y+85nPZObMmXnb296WFStWZPny5SmKIn/0R3+Uc845Z/j19957b5YtW5b/+T//Z5Kh\nE+rKK6/M7t278+u//uv5sz/7s9LM9HKv+/a3v51PfOITmTBhQmbNmpUPf/jDaW9vPyKz1Ov1LFmy\nJI899liKosiVV16Zhx9+OH19fVm4cGHuuOOOXHPNNSmKIgsWLMh73/veA75m1qxZWbduXS677LLs\n2rUrp5xySq644orUarUjMkejZnrooYdy+eWXp729PdOnT8/ll1++3/bV8T7XXk8//XT+/M//PCtW\nrEiScXOsqmQkx69MDjbn6aefngULFuTNb37z8P+ddfHFF2f+/PljvOpX71DHc6+bbropTzzxRP7b\nf/tvY7jaw3eoOe+55558/OMfT1EUOfPMM/PhD394rJf8qh1qxi984Qv50pe+lPb29sycOTOXX355\nOjo6xnrZh23f3wcrV66sVAY1y5xyVs6WUZWyVs42/5yytlzkrJwtGzkrZ8uoCllbpZxNRi9rm7Lw\nAgAAAAAAoDqa8pKGAAAAAAAAVIfCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8GFd++MMf5q//+q9f1Wve8IY3jMpnP/jgg7nqqqtG5b0AAAAAAIAjp22sFwD7etOb3pQ3velN\nY/LZjz/+eJ5//vkx+WwAAAAAAODwKbwYdffee2+uvvrqtLW15dlnn80ZZ5yRj3zkI/nKV76S66+/\nPvV6PW984xvzN3/zN+ns7Myv/uqv5o1vfGM2b96cD33oQ/mHf/iH3HDDDVm3bl0WL16c7u7uTJo0\nKX/913+dM844I08//XQ++MEPpq+vL//hP/yHQ67npptuype//OV0d3fnt3/7t3PxxRdn8eLFee65\n59LS0pJLL700p59+ej75yU+mr68v1157bY4//vh873vfy9KlS5MkixYtyh//8R8nSa666qrU6/Wc\neuqped3rXpcNGzZk/fr1eeaZZ3L++efnv/yX/9LQny8AAAAAALA/lzSkIR588MEsXrw4t912W/r7\n+3PddddlxYoVWbZsWW6++eYce+yxue6665IkW7ZsySWXXJKbb745bW0/62A/+MEPZtGiRVm5cmX+\n+3//7/nTP/3TDAwM5PLLL895552Xm2++OXPnzn1F69mwYUO+/OUv58///M/zkY98JAsWLMhNN92U\na6+9NosXL05ra2s+8IEP5K1vfeshC6snn3wy119/ff72b/82SfLoo4/muuuuyxe/+MV8+tOfzrZt\n2w7zpwYAAAAAABwOO7xoiF/6pV/KKaeckiT5/d///fzJn/xJjj766FxwwQVJkl27duW0004bfv6L\nd2r19vbmqaeeyu/+7u8mSebMmZOpU6fmiSeeyPe+9718/OMfT5Kce+65+fCHP3zI9Zx22mnDZdp3\nvvOdPPHEE/nkJz+ZJBkcHMxPfvKTVzzbySefnClTpgzf/pVf+ZV0dHTk2GOPzbRp07J9+/YcddRR\nr/j9AAAAAACAkVF40RC1Wm34z0VRZPfu3Xn7298+XE719vZm9+7dw8+ZMGHCfq8viiJFUbzkvr2v\n2ftYS0tLWlpaDrmefd+/Xq/n+uuvz7Rp05IM7f6aPn16fvSjHw0/p6WlZb/P37Vr18uutbOz82Vf\nBwAAAAAANJ5LGtIQq1atyoYNG1Kv1/Ov//qv+au/+qt84xvfyPPPP5+iKLJkyZJcf/31L/v6rq6u\nnHjiifn617+eJFm9enU2b96cU089Nb/2a7+WW265JUny9a9/PQMDA69qbb/6q7+az3/+80mSxx9/\nPOeee2527NiRWq2WwcHBJMnRRx+dtWvXpiiK/OQnP8mjjz56OD8GAAAAAADgCLDDi4Y47rjj8qEP\nfSgbNmzI2Wefnfe9732ZNGlS/uAP/iD1ej2/+Iu/mEsuueSg73HVVVdlyZIlufrqq9Pe3p6rr746\nHR0dWbx4cT74wQ9m2bJledOb3pTJkye/qrV9+MMfzuLFi/Mf/+N/TJL83d/9Xbq6unLGGWfkU5/6\nVD72sY/lAx/4QL70pS/l937v93LyySfnrLPOOuyfBQAAAAAA0FgtheuvMcruvffefOpTn8oNN9ww\n1ksBAAAAAAAqwA4vmsJXvvKV/OM//uMBH7v55puP8GoAAAAAAIAjyQ4vAAAAAAAASq11rBcAAAAA\nAAAAI6HwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAA\nAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEA\nAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqY1a4fXAAw9k0aJFL7n/jjvuyIIFC7Jw4cKsWLFitD4O\noHLkLEDjyVqAxpKzAI0lZ4EqaxuNN/mnf/qn3HLLLZk4ceJ+9+/atSsf/ehHc+ONN2bixIl5z3ve\nk7e+9a2ZPn36aHwsQGXIWYDGk7UAjSVnARpLzgJVNyo7vGbOnJmrr776JfevXbs2M2fOzNSpU9PR\n0ZGzzjor991332h8JEClyFmAxpO1AI0lZwEaS84CVTcqhdc555yTtraXbhbr6enJlClThm9Pnjw5\nPT09h3y/oihGY1kATUPOAjTeaGatnAV4KX+nBWgsOQtU3ahc0vDldHV1pbe3d/h2b2/vfuH6clpa\nWrJp0/ZGLm3MzZgxpelnTMzZbKow54wZh86o8UTOHlxVztlmnzExZ7OpQtbK2eZizuZRhRmTauRs\nUo2srdI5a87mUYU55WxzqcI5m1RjzirMmFRrzldrVHZ4vZxZs2Zl/fr16e7uzsDAQO6///6ceeaZ\njfxIgEqRswCNJ2sBGkvOAjSWnAWqoiE7vFauXJm+vr4sXLgwf/mXf5k//MM/TFEUWbBgQY4//vhG\nfCRApchZgMaTtQCNJWcBGkvOAlXTUozTi7E2+5a8Km07NGfzqMKcZbsswUg0+7FMqnPONvuMiTmb\nTVWytirH0pzNowpzVmHGpDo5mzR/1lbpnDVn86jCnHK2uVThnE2qMWcVZkyqNeer1dBLGgIAAAAA\nAECjKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAA\nAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAA\nAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAA\nAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUA\nAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gB\nAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BRe\nAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLUR\nF171ej2LFy/OwoULs2jRoqxfv36/x2+55Za8+93vzoIFC/L5z39+pB8HUDlyFqDxZC1AY8lZgMaS\nswBJ20jf4Pbbb8/AwECWL1+e1atXZ+nSpbn22muHH/+7v/u73HrrrZk0aVLe+c535p3vfGemTp06\n0o8FqAw5C9B4shagseQsQGPJWYBRKLxWrVqVefPmJUnmzJmTNWvW7Pf4G97whmzfvj1tbW0piiIt\nLS2v6H1nzJgy0qWNe1WYMTFns6nKnOOJnB2ZKsxZhRkTc9JYjcjaqhxLczaXKsxZhRnHI3+nPXxV\nmDExZ7OpypzjiZwdGXM2jyrMmFRnzldrxIVXT09Purq6hm/XarUMDg6mrW3orU899dQsWLAgEydO\nzPz583PUUUe9ovfdtGn7SJc2rs2YMaXpZ0zM2WyqMOd4/GUhZw9fVc7ZZp8xMWezqUrWVuVYmrN5\nVGHOKsyYVCdnk+bP2iqds+ZsHlWYU842lyqcs0k15qzCjEm15ny1RvwdXl1dXent7R2+Xa/Xh4P0\nkUceybe+9a1885vfzB133JEXXnghX/3qV0f6kQCVImcBGk/WAjSWnAVoLDkLMAqF19y5c3PXXXcl\nSVavXp3Zs2cPPzZlypRMmDAhnZ2dqdVqOeaYY7Jt27aRfiRApchZgMaTtQCNJWcBGkvOAozCJQ3n\nz5+fu+++OxdeeGGKosiVV16ZlStXpq+vLwsXLszChQtz0UUXpb29PTNnzsy73/3u0Vg3QGXIWYDG\nk7UAjSVnARpLzgIkLUVRFGO9iANp9mtQVuk6m+ZsHlWYczxeh7tRmv1YJtU5Z5t9xsSczaYqWVuV\nY2nO5lGFOaswY1KdnE2aP2urdM6as3lUYU4521yqcM4m1ZizCjMm1Zrz1RrxJQ0BAAAAAABgLCm8\nAAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoK\nLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKm1jfQN6vV6lixZkkcffTQd\nHR254oorctJJJw0//uCDD2bp0qUpiiIzZszIVVddlc7OzpF+LEBlyFmAxpO1AI0lZwEaS84CjMIO\nr9tvvz0DAwNZvnx5Lr300ixdunT4saIoctlll+WjH/1ovvCFL2TevHl55plnRvqRAJUiZwEaT9YC\nNJacBWgsOQswCju8Vq1alXnz5iVJ5syZkzVr1gw/tm7dukybNi2f/exn8+Mf/zi/+Zu/mVNOOWWk\nHwlQKXIWoPFkLUBjyVmAxpKzAKNQePX09KSrq2v4dq1Wy+DgYNra2rJly5b84Ac/yOLFizNz5sy8\n//3vz+mnn563vOUth3zfGTOmjHRp414VZkzM2WyqMud4ImdHpgpzVmHGxJw0ViOytirH0pzNpQpz\nVmHG8cjfaQ9fFWZMzNlsqjLneCJnR8aczaMKMybVmfPVGnHh1dXVld7e3uHb9Xo9bW1Dbztt2rSc\ndNJJmTVrVpJk3rx5WbNmzSsK002bto90aePajBlTmn7GxJzNpgpzjsdfFnL28FXlnG32GRNzNpuq\nZG1VjqU5m0cV5qzCjEl1cjZp/qyt0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vE3+E1d+7c3HXX\nXUmS1atXZ/bs2cOPnXjiient7c369euTJPfff39OPfXUkX4kQKXIWYDGk7UAjSVnARpLzgKMwg6v\n+fPn5+67786FF16Yoihy5ZVXZuXKlenr68vChQvzkY98JJdeemmKosiZZ56Z3/qt3xqFZQNUh5wF\naDxZC9BYchagseQsQNJSFEUx1os4kGbfklelbYfmbB5VmHM8XpagUZr9WCbVOWebfcbEnM2mKllb\nlWNpzuZRhTmrMGNSnZxNmj9rq3TOmrN5VGFOOdtcqnDOJtWYswozJtWa89Ua8SUNAQAAAAAAYCwp\nvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAb0T6\nSwAAEYxJREFUAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAA\nAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpjbjw\nqtfrWbx4cRYuXJhFixZl/fr1B3zeZZddlo997GMj/TiAypGzAI0nawEaS84CNJacBRiFwuv222/P\nwMBAli9fnksvvTRLly59yXOWLVuWxx57bKQfBVBJchag8WQtQGPJWYDGkrMAo1B4rVq1KvPmzUuS\nzJkzJ2vWrNnv8e9///t54IEHsnDhwpF+FEAlyVmAxpO1AI0lZwEaS84CJG0jfYOenp50dXUN367V\nahkcHExbW1s2btyYa665Jp/61Kfy1a9+9VW974wZU0a6tHGvCjMm5mw2VZlzPJGzI1OFOaswY2JO\nGqsRWVuVY2nO5lKFOasw43jk77SHrwozJuZsNlWZczyRsyNjzuZRhRmT6sz5ao248Orq6kpvb+/w\n7Xq9nra2obe97bbbsmXLllxyySXZtGlTdu7cmVNOOSXnnXfeId9306btI13auDZjxpSmnzExZ7Op\nwpzj8ZeFnD18VTlnm33GxJzNpipZW5Vjac7mUYU5qzBjUp2cTZo/a6t0zpqzeVRhTjnbXKpwzibV\nmLMKMybVmvPVGnHhNXfu3Nx55515xzvekdWrV2f27NnDj1188cW5+OKLkyQ33XRTnnjiiVcUpAD8\njJwFaDxZC9BYchagseQswCgUXvPnz8/dd9+dCy+8MEVR5Morr8zKlSvT19fnmrAAo0DOAjSerAVo\nLDkL0FhyFiBpKYqiGOtFHEizb8mr0rZDczaPKsw5Hi9L0CjNfiyT6pyzzT5jYs5mU5WsrcqxNGfz\nqMKcVZgxqU7OJs2ftVU6Z83ZPKowp5xtLlU4Z5NqzFmFGZNqzflqtTZgHQAAAAAAAHDEKLwAAAAA\nAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAA\nAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAA\nAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIA\nAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAAUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwA\nAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAAAJSawgsAAAAAAIBSU3gBAAAAAABQagov\nAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAAClpvACAAAAAACg1BReAAAAAAAAlJrC\nCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABAqSm8AAAAAAAAKLW2kb5BvV7PkiVL\n8uijj6ajoyNXXHFFTjrppOHHb7311lx//fWp1WqZPXt2lixZktZWPRvAKyVnARpP1gI0lpwFaCw5\nCzAKO7xuv/32DAwMZPny5bn00kuzdOnS4cd27tyZT3ziE/mXf/mXLFu2LD09PbnzzjtH+pEAlSJn\nARpP1gI0lpwFaCw5CzAKO7xWrVqVefPmJUnmzJmTNWvWDD/W0dGRZcuWZeLEiUmSwcHBdHZ2vqL3\nnTFjykiXNu5VYcbEnM2mKnOOJ3J2ZKowZxVmTMxJYzUia6tyLM3ZXKowZxVmHI/8nfbwVWHGxJzN\npipzjidydmTM2TyqMGNSnTlfrREXXj09Penq6hq+XavVMjg4mLa2trS2tmb69OlJkhtuuCF9fX05\n++yzX9H7btq0faRLG9dmzJjS9DMm5mw2VZhzPP6ykLOHryrnbLPPmJiz2VQla6tyLM3ZPKowZxVm\nTKqTs0nzZ22VzllzNo8qzClnm0sVztmkGnNWYcakWnO+WiMuvLq6utLb2zt8u16vp62tbb/bV111\nVdatW5err746LS0tI/1IgEqRswCNJ2sBGkvOAjSWnAUYhe/wmjt3bu66664kyerVqzN79uz9Hl+8\neHH6+/vz93//98PbZgF45eQsQOPJWoDGkrMAjSVnAUZhh9f8+fNz991358ILL0xRFLnyyiuzcuXK\n9PX15fTTT8+NN96YN7/5zfmDP/iDJMnFF1+c+fPnj3jhAFUhZwEaT9YCNJacBWgsOQuQtBRFUYz1\nIg6k2a9BWaXrbJqzeVRhzvF4He5GafZjmVTnnG32GRNzNpuqZG1VjqU5m0cV5qzCjEl1cjZp/qyt\n0jlrzuZRhTnlbHOpwjmbVGPOKsyYVGvOV2vElzQEAAAAAACAsaTwAgAAAAAAoNQUXgAAAAAAAJSa\nwgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAAAACl\npvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAAAABA\nqSm8AAAAAAAAKDWFFwAAAAAAAKWm8AIAAAAAAKDUFF4AAAAAAACUmsILAAAAAACAUlN4AQAAAAAA\nUGoKLwAAAAAAAEpN4QUAAAAAAECpKbwAAAAAAAAoNYUXAAAAAAAApabwAgAAAAAAoNQUXgAAAAAA\nAJSawgsAAAAAAIBSU3gBAAAAAABQagovAAAAAAAASk3hBQAAAAAAQKkpvAAAAAAAACg1hRcAAAAA\nAAClpvACAAAAAACg1BReAAAAAAAAlJrCCwAAAAAAgFJTeAEAAAAAAFBqCi8AAAAAAABKTeEFAAAA\nAABAqSm8AAAAAAAAKDWFFwAAAAAAAKU24sKrXq9n8eLFWbhwYRYtWpT169fv9/gdd9yRBQsWZOHC\nhVmxYsVIPw6gcuQsQOPJWoDGkrMAjSVnAUah8Lr99tszMDCQ5cuX59JLL83SpUuHH9u1a1c++tGP\n5p//+Z9zww03ZPny5dm8efNIPxKgUuQsQOPJWoDGkrMAjSVnAUah8Fq1alXmzZuXJJkzZ07WrFkz\n/NjatWszc+bMTJ06NR0dHTnrrLNy3333jfQj4f9v7w5Cmn4fOI5/zKmFW0n0o1MGiXbpkNZNBKGk\nQxLosJlpHQLpFESHujS6JETdxA5eCoQKCQ8lVFASghRkqRERgZTXghy1LTZkz+8g7Uc//3z3//nd\n/Pbseb9u2zfs+TB6EzysAKfQWQAoPVoLAKVFZwGgtOgsAEghvz8gmUwqHA7nX1dWVmplZUWhUEjJ\nZFKRSCT/rLa2Vslk8v/6uX/9FSn8iyznwkaJneXGlZ1/Ejrrjws7XdgosROlVYrWuvJZsrO8uLDT\nhY1/Iv5Ou34ubJTYWW5c2fknobP+sLN8uLBRcmfnf+X7G17hcFipVCr/OpfLKRQK/c9nqVTqt7gC\nAAqjswBQerQWAEqLzgJAadFZACjChVdLS4ump6clSfPz82pqaso/a2ho0NLSkhKJhLLZrGZnZ9Xc\n3Oz3twQAp9BZACg9WgsApUVnAaC06CwASBXGGOPnB+RyOV25ckUfP36UMUZDQ0N6//690um0YrGY\npqamNDIyImOMotGoTp48WayzA4AT6CwAlB6tBYDSorMAUFp0FgCKcOEFAAAAAAAAAAAABMn3P2kI\nAAAAAAAAAAAABIkLLwAAAAAAAAAAAFiNCy8AAAAAAAAAAABYLbALr1wup3g8rlgspoGBAS0tLf32\nfGpqStFoVLFYTOPj4wGd0r9COycnJ9XT06Pe3l7F43HlcrmATupPoZ2/XL58WTdu3Njg0xVHoY1v\n375VX1+fTpw4oXPnzimTyQR0Un8K7Xzw4IG6uroUjUZ1586dgE5ZHAsLCxoYGFjzviv9cWUnnbWL\nC611qbMSrS2HnXT2d3TWDi61ls66sZPW2oPOrqKz9qCzq+isXVxorUudlYrYWhOQJ0+emIsXLxpj\njJmbmzNnz57NP8tms+bw4cMmkUiYTCZjuru7zdevX4M6qi9eO3/+/GkOHTpk0um0McaY8+fPm6dP\nnwZyTr+8dv5y9+5dc/z4cXP9+vWNPl5ReG3M5XLm2LFj5vPnz8YYY8bHx83i4mIg5/Sr0GfZ2tpq\nlpeXTSaTyf85tdHo6Kjp7Ow0PT09v73vSn9c2Uln7eNCa13prDG0tlx20tl/0Fl7uNJaOuvGTlpr\nFzq7is7ag87SWRu50FpXOmtMcVsb2De8Xr9+rba2NknS/v379e7du/yzxcVF1dfXa9u2baqurtaB\nAwf06tWroI7qi9fO6upq3bt3T1u2bJEkraysqKamJpBz+uW1U5LevHmjhYUFxWKxII5XFF4bP336\npLq6Ot2+fVv9/f1KJBLas2dPUEf1pdBnuXfvXv348UPZbFbGGFVUVARxTN/q6+s1PDy85n1X+uPK\nTjprHxda60pnJVpbLjvp7Co6axdXWktn3dhJa+1CZ1fRWXvQWTprIxda60pnpeK2NrALr2QyqXA4\nnH9dWVmplZWV/LNIJJJ/Vltbq2QyueFnLAavnZs2bdKOHTskSWNjY0qn02ptbQ3knH557fzy5YtG\nRkYUj8eDOl5ReG1cXl7W3Nyc+vv7devWLb18+VIvXrwI6qi+eO2UpMbGRkWjUR09elTt7e3aunVr\nEMf07ciRIwqFQmved6U/ruyks/ZxobWudFaiteWyk87SWRu50lo668ZOWmsXOruKztqDztJZG7nQ\nWlc6KxW3tYFdeIXDYaVSqfzrXC6XH/XvZ6lU6rdhNvHa+ev1tWvXNDMzo+HhYWtvYr12Pn78WMvL\nyxocHNTo6KgmJyc1MTER1FHXzWtjXV2ddu/erYaGBlVVVamtrW3NrbstvHZ++PBBz58/17NnzzQ1\nNaVv377p0aNHQR21JFzpjys7f72ms/ZwobWud1Zyp0HlspPO0lkbud7acumP5EZnJVorlU9r6Syd\ntQ2d/ec1nbWHC611vbPS+hoU2IVXS0uLpqenJUnz8/NqamrKP2toaNDS0pISiYSy2axmZ2fV3Nwc\n1FF98dopSfF4XJlMRjdv3sx/bdZGXjtPnTqliYkJjY2NaXBwUJ2dneru7g7qqOvmtXHXrl1KpVL5\n/zxwdnZWjY2NgZzTL6+dkUhEmzdvVk1NjSorK7V9+3Z9//49qKOWhCv9cWWnRGdt40JrXe+s5E6D\nymUnnaWzNnK9teXSH8mNzkq0Viqf1tJZOmsbOruKztrFhda63llpfQ1a+z2xDdLR0aGZmRn19vbK\nGKOhoSE9fPhQ6XRasVhMly5d0pkzZ2SMUTQa1c6dO4M6qi9eO/ft26f79+/r4MGDOn36tKTV8HR0\ndAR86v+u0OdZDgptvHr1qi5cuCBjjJqbm9Xe3h70kdel0M5YLKa+vj5VVVWpvr5eXV1dQR+5KFzr\njys76ax9XGitq52VaK2tO+ksnbWRq60tt/5IbnRWorXl1Fo6S2dtQ2fprI1caK2rnZX8tbbCGGM2\n6JwAAAAAAAAAAABA0QX2TxoCAAAAAAAAAAAAxcCFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUX\nAAAAAAAAAAAArMaFFwAAAAAAAAAAAKzGhRcAAAAAAAAAAACsxoUXAAAAAAAAAAAArPY37Py3bWHd\ngd8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 14880\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(2, 5, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "i_row, i_col = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[i_row, i_col])\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "# i_col += 1\n", + "# sns.distplot(df.bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " i_col += 1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[i_row, i_col])\n", + "\n", + " x_axis_col = \"ohlc_price\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "\n", + " x_axis_col = \"period_return\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " i_row, i_col = 1, 0 # move down one row\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"avg_bo_spread\"\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + " x_axis_col = \"hour\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + " x_axis_col = \"day\"\n", + " y_axis_col = \"nb_ticks\"\n", + " i_col += 1\n", + " norm = colors.Normalize(df[x_axis_col].values.min(), df[x_axis_col].values.max())\n", + " color = cm.viridis(norm(df[x_axis_col].values))\n", + " axarr[i_row, i_col].scatter(df[x_axis_col].values, df[y_axis_col].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " axarr[i_row, i_col].set_xlabel(x_axis_col)\n", + "\n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + "plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "hideCode": false, + "hideOutput": true + }, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# all at once\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"bo_spread\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, size, aspect, dropna, plot_kws, diag_kws, grid_kws)\u001b[0m\n\u001b[1;32m 2071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"scatter\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2072\u001b[0m \u001b[0mplot_kws\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"edgecolor\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"white\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2073\u001b[0;31m \u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mplot_kws\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2074\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"reg\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2075\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mregression\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mregplot\u001b[0m \u001b[0;31m# Avoid circular import\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_offdiag\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1491\u001b[0m \"\"\"\n\u001b[1;32m 1492\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1493\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_lower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1494\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_upper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1495\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mmap_lower\u001b[0;34m(self, func, **kwargs)\u001b[0m\n\u001b[1;32m 1423\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpalette\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkw_color\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mkw_color\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1424\u001b[0m func(data_k[x_var], data_k[y_var], label=label_k,\n\u001b[0;32m-> 1425\u001b[0;31m color=color, **kwargs)\n\u001b[0m\u001b[1;32m 1426\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1427\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_clean_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, hold, data, **kwargs)\u001b[0m\n\u001b[1;32m 3432\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3433\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlinewidths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverts\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverts\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3434\u001b[0;31m edgecolors=edgecolors, data=data, **kwargs)\n\u001b[0m\u001b[1;32m 3435\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3436\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1896\u001b[0m warnings.warn(msg % (label_namer, func.__name__),\n\u001b[1;32m 1897\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1898\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1899\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpre_doc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)\u001b[0m\n\u001b[1;32m 4061\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ymargin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.05\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4062\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4063\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_collection\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4064\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautoscale_view\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4065\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36madd_collection\u001b[0;34m(self, collection, autolim)\u001b[0m\n\u001b[1;32m 1760\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1761\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mautolim\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1762\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_datalim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1763\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollections\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mget_datalim\u001b[0;34m(self, transData)\u001b[0m\n\u001b[1;32m 227\u001b[0m result = mpath.get_path_collection_extents(\n\u001b[1;32m 228\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m offsets, transOffset.frozen())\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minverse_transformed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mget_path_collection_extents\u001b[0;34m(master_transform, paths, transforms, offsets, offset_transform)\u001b[0m\n\u001b[1;32m 1008\u001b[0m return Bbox.from_extents(*_path.get_path_collection_extents(\n\u001b[1;32m 1009\u001b[0m \u001b[0mmaster_transform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_3d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1010\u001b[0;31m offsets, offset_transform))\n\u001b[0m\u001b[1;32m 1011\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.5/site-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_has_nonfinite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vertices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \"\"\"\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# all at once\n", + "#sns.pairplot(df, hue=\"bo_spread\")" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import dill as pickle\n", + "with open(simname+'_eurusd_features.pkl', 'wb') as file:\n", + " pickle.dump(df, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "dataset = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "hideCode": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQpHV9P/D3c/fT9xw9187eF8rGIOb4eRAqlgajpCxA\nBDQLlMT8kZhDTEVNIlJlhDWS0hQVKY9UjMTERQIKhChRSYiKR5DFLAJ7zuzu7M5M90zfx3N9v78/\neqZnevrpc7qnu2c+r5Qpto/pb8/T08/n+X4/389H4JxzEEIIIYSQjhG7PQBCCCGEkM2OAi5CCCGE\nkA6jgIsQQgghpMMo4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixDSER/5yEfwD//wD673HTx4\nEIuLix19/bm5Odx8880dfQ1CCGkUBVyEkE1pdHQUX/va17o9DEIIAQDI3R4AIaS/HT16FA8++CBE\nUcTw8DA+9rGPYffu3QCA559/HjfffDNisRj279+Pv/3bv4XX6y17/uc//3k8+uijkGUZO3fuxJEj\nRxAIBKq+3uHDh7F3714cP34c8Xgc73znO/HHf/zHuHDhAt773vdi7969mJmZwZEjR/C+970Pzz//\nPGzbxqc//Wn813/9FyRJwmtf+1p8/OMfh6qqeOCBB/DUU0+BMYZt27bh4x//OEZHR8te8+abb8bt\nt9+Ot73tbQCA++67D5xz3H777fjwhz+MeDwOALj66qvxp3/6pxVjfvWrX43bbrsNP/7xj5HL5XDn\nnXfit37rt6q+f0mScPfdd2NqagrJZBI+nw/33Xcf9uzZ0/qBIoR0Fc1wEUJa9uyzz+JLX/oSvvKV\nr+Cxxx7Dtddeiz/8wz/EcgOLubk5/OM//iO+/e1vY25uDk899VTZ87/73e/ikUcewdGjR/HEE09g\ncnIS//zP/1z3dS9evIh//dd/xaOPPoonn3wSTz/9NABgdnYWf/AHf4Bvf/vbiEQipcf/y7/8C158\n8UV885vfxBNPPIFsNosnn3wS3/jGN3DixAl8/etfxze/+U1cffXV+Ku/+quK17vxxhvx6KOPAgAc\nx8Fjjz2GG2+8EQ899BAmJyfx6KOP4qtf/Sqmp6eRTqcrnu84DkKhEB555BF89rOfxV/8xV9gcXGx\n6vt/5plnEAwG8dBDD+Hb3/42Dh06hK9+9auNHxhCSM/pmxmuF154Affddx8efPDBmo+bnp7GBz7w\nATz++OMAgMXFRfzZn/0ZCoUCRkZGcO+990LX9Y0YMiGb3v/8z//g7W9/OwYHBwEA119/PT75yU/i\nwoULAIC3vOUtpb+3/fv3V+RtPfvss3jb296GUCgEAPjoRz/a0OvedNNNUBQFiqLgbW97G77//e9j\n//79kGUZV1xxRcXjf/jDH+Kd73wnPB4PAOCzn/0sAOBP/uRP8H//93+44YYbAACMMeTz+Yrn//Zv\n/zb+5m/+BtFoFL/4xS+wc+dO7Nq1C1dddRV+//d/H5cuXcIb3vAGfOhDH6o6O/e7v/u7AIDLLrsM\nBw4cwE9/+lP89Kc/rfr+t2/fjgcffBDT09P4yU9+gte+9rUN/W4IIb2pLwKuL37xi3jsscfqBkrf\n+MY38JWvfKXsS/1zn/scrr32Wlx//fX4whe+gKNHj+L222/v8IgJ2RrcWrFyzmHbNgBAlle+YgRB\nqHi8JEkQBKH071QqhVQqhcnJyZqvu/rncs4hisXJelVVy+5zezwAxGIxMMbAGMPv/d7v4T3veQ8A\nwDRNJJPJiud7vV5cc801eOKJJ/D888/jxhtvBAC85jWvwXe/+108++yz+NGPfoQbb7wRf//3f48r\nr7yy4mdIklT6b8YYJEmq+v6feeYZPPTQQ3jve9+L3/md30E4HC4FsYSQ/tQXS4o7duzA/fffX/r3\nK6+8gsOHD+Pw4cP4oz/6o9IUfigUqliOeO6553DVVVcBAH7jN34DP/zhDzdu4IRscm9605vw5JNP\nli5y/u3f/g3hcBg7d+5s6PlveMMb8J//+Z/IZDIAgPvvvx9f/vKX6z7vscceA2MMyWQS//Ef/4E3\nv/nNNR//+te/Hk888QRM0wRjDHfffTf+/d//HW9605vw8MMPl17/7/7u7/Dnf/7nrj/j3e9+Nx55\n5BE8//zzuOaaawAUc7k+97nP4S1veQv+8i//Evv27cPU1JTr87/xjW8AAF588UWcPXsWv/qrv1r1\n/X//+9/HddddhxtvvBG7d+/G9773PTiOU/f3QgjpXX0xw3XNNdeUXd197GMfwz333IN9+/bh61//\nOr70pS/hgx/8IH7zN3+z4rmZTKY0xe/z+VzzKwghrXnjG9+I22+/HbfddhsYYxgcHMTnP//50oxT\nPVdffTVOnTqFW265BQCwb98+fOITn6j7vEKhgHe9613IZrN4z3veg9e//vU1Z4BuvvlmzMzM4Prr\nrwfnHL/2a7+Gw4cPQxRFzM3N4d3vfjcEQcD4+DiOHDni+jMOHToEWZZxzTXXQNM0AMBtt92Gj3zk\nI7j22muhqioOHjyIa6+91vX5P/vZz/DQQw+BMYbPfOYzCIVCVd//yy+/jLvuuguPPPIIJEnC5Zdf\njhMnTtT9vRBCepfA3dYEetCFCxdw55134qGHHsLrXvc6vPrVrwYAWJaFXbt2lX1JvvGNb8QPfvAD\nAMB1112HL33pSxgaGsLLL7+Mz3zmM/j85z/flfdACFm/w4cP473vfW9px2A/OHjwIJ599tlSrhsh\nZOvpixmutXbv3o1PfepTmJiYwHPPPYdoNFr1sVdeeSX++7//G9dffz2eeeYZvO51r9vAkRJCmvWj\nH/0I9957r+t9v/7rv77BoyGEkPboyxmu48eP41Of+hRs24YgCPjkJz9ZqvsDlM9wxWIxfPjDH0Y2\nm8XAwIBrHSBCCCGEkE7qm4CLEEIIIaRf9cUuRUIIIYSQfkYBFyGEEEJIh/V80nw0SmUcmjEw4EU8\nnuv2MMg60DHsb3T8+hsdv/7WC8cvEnHvNkEzXJuMLEv1H0R6Gh3D/kbHr7/R8etvvXz81hVwvfDC\nCzh8+HDF7V/+8pfxjne8o1QN/syZM2CM4a677sJNN92Ew4cPY3p6ej0vTQghhBDSN1peUqzV33C5\nbMOhQ4dKtz311FMwTRNHjx7FsWPHcOTIETzwwAOtvjwhhBBCSN9oeYZrbX/D1V588UV84QtfwC23\n3FKq6r66p+EVV1yB48ePt/rShBBCCCF9peUZrrX9DVd7xzvegfe85z3w+/34wAc+gKeffhqZTAZ+\nv7/0GEmSYNs2ZLnn8/YJIYQQQtal7dEO5xy33XZbqWH01VdfjV/84hfw+/3IZrOlxzHGGgq2Bga8\nPZ0E14uq7ZAg/YOOYX+j49ff6Pj1t149fm0PuDKZDK699lo8+eST8Hq9+PGPf4wbbrgBhUIBTz/9\nNN7+9rfj2LFjOHDgQEM/r9vbO/tNJBKgUhp9jo5hf6Pj19/o+PW3Xjh+1QK+tgVcjz/+OHK5HG66\n6SZ88IMfxK233gpVVfH6178eV199NRhj+MEPfoCbb74ZnHPcc8897XppQgghhJCe1vO9FLsdqfab\nXojuyfrQMexvdPz6Gx2//tYLx48KnxJCCCGEdAkFXISQjrIZQ49PpBNCSMdRwEUI6ai5dAbJgtHt\nYRBCSFdRESxCSEdtCwW7PQRCCOk6muEihBBCCOkwCrgIIYQQQjqMAi5CCCGEkA6jgIsQQgghpMMo\n4CKEEEII6TAKuAghhBBCOowCLkIIIYSQDqOAixBCCCGkwyjgIoQQQgjpMAq4CCGEEEI6jAIuQggh\nhJAOo4CLEEIIIaTDKOAihBBCCOkwCrhIX8hkCt0ewoZxGEPesLo9DEIIIW1EARfpC4lEDpzzbg9j\nQ5iWg0Q23+1hEEIIaSO52wMgpBGTk4PdHsKG0TUF44PBbg+DEEJIG9EMFyGkL/18bg5si8x6EkL6\nH81wEUL60i+NjEAQhG4PgxBCGkIzXISQvkTBFiGkn1DARQghhBDSYRRwEUIIIYR0GAVchBBCCCEd\nRgEXIX2Mc45XZqLdHgYhhJA6KOAipI8JgoDdo1unRlk/eTkRhcWcbg+DENIj1lUW4oUXXsB9992H\nBx98sOz2J554Av/0T/8ESZJw4MAB3H333RBFEddddx38fj8AYHJyEvfee+96Xp4QAkCVpW4PgbjY\nFxyELNKxIYQUtRxwffGLX8Rjjz0GXdfLbi8UCvjsZz+Lxx9/HLqu484778TTTz+NN73pTeCcVwRn\nhBCyGVGwRQhZreUlxR07duD++++vuF1VVXzta18rBWK2bUPTNLz88svI5/N43/veh1tvvRXHjh1r\nfdSEkJ5i2DZORhe6PQxCCOlZLc9wXXPNNbhw4ULF7aIoYnh4GADw4IMPIpfL4Y1vfCNOnDiBO+64\nAzfeeCOmpqbw/ve/H9/61rcgy7WHMDDghUxLJk2JRALdHsKGsW0HnAOKsrk+I/14DCdGwxDFrVWM\n9FImDZszbA+Eym7vx+NHVtDx62+9evw60tqHMYZPf/rTOHv2LO6///5iYu/u3di5c2fpv8PhMKLR\nKMbHx2v+rHg814khblqRSADRaLrbw9gwyVQOts0wNOjv9lCaMj27iMGgDwGvVnHfVjuG/UwGIENE\ntLByvOj49Tc6fv2tF45ftYCvI7sU77rrLhiGgc997nOlpcWHH34YR44cAQDMzc0hk8kgEol04uXJ\nFhIKevsu2AKAnWODrsEWIYSQzaltM1yPP/44crkcDh06hIcffhi/8iu/gttuuw0AcOutt+Jd73oX\nPvrRj+KWW26BIAi455576i4nEkIIIYRsBgLnnHd7ELV0e2qw3/TCdCpZHzqG/cNmDKdTizgYHi7d\nRsevv9Hx62+9cPw2dEmREEK2AlkUsTsw0LXXjxlZJK1C116fENI4WtMjhJB1UKXu7ZD1ySokYWvt\nDCWkX1HARQghfUqXlG4PgRDSIFpSJGQLmUumkTPMbg+DEEK2HAq4CNlCgroHmrJ1J7YLto25bKbb\nw9gyHM66PQRCegYFXIRsIbqqQBK37p+9LIrwKrQMt1FO5ma6PQRCesbW/eYlhGw5sigioFLB2Y1y\nmW97t4dASM+ggIuQVSzLQS5POU6EEELaiwIuQlaxbAcFw+r2MEgXzOUot6sXzBjzsJjd7WEQ0nZb\nN3uWEBdeXYVXV7s9DNIFDuvpphtbxpASgix0r7YZIZ1CM1ykZbbtIDqX7PYwthzHYZiej3d7GJvO\nhN+9HQfZWB5Rg0DFXMkmRAEXaZkoitA8tONro0mSiOGgr9vDIIQQ0gQKuEjLRFFAMOTt9jC2JJ+H\nlj1J/+Gclm3J1kUBFyGEkA0xVZhFgdEuYLI1UdI8IYSQDbFbH+/2EAjpGprhIoR0xXQ8gVSh0O1h\nEELIhqCAi5AGnJyOwrTKawMZJtUKWo8d4RCCHk+3h0EIIRuCAi5ScuFsFPms0fTzZs4tIJvZ3DMV\n+3dGoK5q+mw7DJdiqS6OqP/R1n9CyFZCOVykZGLHEESp+Rh8fNtAS8/rZ7IkYtfEYLeH0XOyhom8\nZWHYT2UrCCFkta11liQ1tRo0bUSwlUzmOv4aZP0USYKubK3abBZzuj2ErsvYBZhNtOMxmIkz+Ysd\nHBEhvYcCLtIXsjnaSt4PVFmCT2utRphh28hZ/dfH8kQi1u0hdJ3FbTicNfx4TVSxR5/o4IgI6T20\npEj6wsR4uNtDIB1m2DYczuHtsxmyywdHuz2ErhtQ/N0eAiE9jwIuQkhPoB2LpNdxzpFlKfilULeH\nQvoQLSkSQsgW8Upmbt05ZwkrB7vBn7H5Wvlw2JzSG0hrKOAiJbbtwLYoAZiQzWqvLwJFlNb1M2zu\ngKF+IJVzDJwrzK/rtXqNIIgIy5FuD4P0KQq4SEk2XUAqQbsBCdmsZGH9X/nDagCqWD8bxStp2KlT\nfhshyyiHi5SEBqh2EiGEENIJ67rceeGFF3D48OGK27/3ve/hhhtuwE033YSHHnoIAMAYw1133YWb\nbroJhw8fxvT09HpempBNwXEYGNtseS6EEELWanmG64tf/CIee+wx6LpedrtlWbj33nvx8MMPQ9d1\n3HLLLXjzm9+Mn/3sZzBNE0ePHsWxY8dw5MgRPPDAA+t+A4T0s2gyA4+qIOzX6z+YkC7inFM7JkLW\noeUZrh07duD++++vuP306dPYsWMHQqEQVFXF6173Ovz0pz/Fc889h6uuugoAcMUVV+D48eOtj5qQ\nTWJsMLjpgy3Drl+BPJ7Pb8BIWmMzBrbpdts172Rutqlq8oSQci0HXNdccw1kuXKCLJPJIBAIlP7t\n8/mQyWSQyWTg968Ux5MkCXYDX8SEkP7FOcfUYqLuYzJG7261n81lkDQ3d3P2RhzwjTeULE8Icdf2\nvx6/349sNlv6dzabRSAQqLidMeYasK01MOCFLK9vG/NWE4kE6j9oizhxeg67dwxDUfrrM9StY+gw\nBocxqA38bTZqZCTYlsd0SyvHIhIJ4Cez5/FrY9s7MKL2SVsFcHAElc09y9os+g7tb716/NoecO3d\nuxfT09NIJBLwer343//9X9xxxx0QBAFPP/003v72t+PYsWM4cOBAQz8vHqcyBc2IRAKIRtPdHkbP\nCHg1JPqs1EU3j2EyX0DetDAW6s0vrH6wfPx2S+Ge/1vM2gY4AEOm1YZl9B3a33rh+FUL+NoWcD3+\n+OPI5XK46aab8JGPfAR33HEHOOe44YYbMDo6ire+9a34wQ9+gJtvvhmcc9xzzz3temlCqqLZ0eaE\ndA9COrXY6ZTZfBphVYdH6o2lOZ+sdXsIhGwZAu/x3gvdjlT7Taej+3zOxPxsAjv3jHTsNba6XrhC\na4d4Pg+PLEOv0oz6UioNSRQx4t9c9d9qHb+UVYBXUiGLraXPOpxBakPxUlLdZvn726p64fhVm+Gi\nv1zSFN2rloKt+dkkCgWryyNqnGG6L5tYtoPzF+MbPJoVc/E0LLuzLZVmFpOwHdbR11hLhACxRhmB\n8WCgoWArYzaWUD+fzWIh35nl47OpOBLG+hPng4qn5WDLcGycSi+sewyEkO6ggIu0LBDUofZRMvpc\nNAXTqgy6ZEnE8KDf5Rkbw6MqEMXO1jcK6FrHX2OtkO6B1kDyvc0Yopls1fvns9mqZRl+PjdXum9Q\n1xHSOrMcujs4gHCHfnajNEnGwWB3+vj1+EJIXTPGDBjf2AsOQtbqjUQC0pd0r9rtITRlx7ZB19sF\nQYDucV/22gghX+dP5MEeycsybBucAx6l/KunVj3NPQMDVe97zehKr75WZ4664UI2CY+sYFjzdnso\ndSWsHDJ2AZO6+99PP4goEYi0FEu6jD6BpKMchyG+kOn2MKpKpvOYma1dJ6pfZA0Tl+K9nXtSsG3k\nrPIlQlkUMezbXHlc9Uz6Qn0RbAFAWPH2dbAFAKrYXxeHZHOiGS7Scb28GBEK6AgFNkcNIo8iQ/L3\n9jVUyNP5mTZqQUMI6UW9/e1M+p4kiRgc6l5+1FYiiWLFUt1WdDGTRizXX7XXusVw+mfTixuHOzhb\nONftYRDSEAq4CCGbyrZAEMPe/liua7fjyUtNJbhfNJJ93R9REiTs0nq7mj8hyyjgImAOw9xM98oi\nkPY5eSmGgstOTLI1XBYYbWo5dbd3uOP9EbNOAVmnc70oafmY9AsKuAgEUYDuK1aczmeNLo+GNMpx\nGE5fKtZlyhkm8qaF/ePD8CgyUvkCEtl8l0dYKW9ZMKhpfcf02k7NmJnEolW+kaNaiY9+YXMLjHe2\nbh7ZnHrrr5OsS/RiAtl081eSgiAgGPaCc47YfKrl1+ecg7H+/jKtJZnO91Q9IkkSsX04BACwHVZW\n2FSVZWhdzOdinMNyKk9KBcvGK9FYF0bU+2zmIGZUr0fWjwaVILZpw/BJxc0SNndwJn+xy6Nan5yT\ngsF772KG9D7KsN1EggNeeHQFuRarvwuCgO27Wy+smErmUcibGB0Pt/wzelmuYMHv0yD10BKGuhRU\nBb3lu/+6nTyfMQxkDAsTa5pgD3j1npuF6SU9FM+3xdpOA7IgYZ93W5dG0x5BeajbQyB9igKuTUTT\nVUgb2Kx5Yalf1dBS36hQ2ItQeHMlK+cKJryeYg2f8Uiw469ndrjFz0YJejwIVikBEfBQw2Q3sigh\n4tla9cg2M5ubMFgWPql64V6ytdClJmnZ4LAfg8Obu+TDXGxjC4lOzS5u6mVZQrYKASIkgeY0yAoK\nuEhdyXgWcxcrq7ELgrDpdwjtntzY5YMDk5EN73nYDqlC7dxBm1Efu1b0Us5gIxbMFGaN8u+KrFPA\nrBHHvLk5Ojo0ShJkJOxZSrAnJRRwkbpCAz6MjIeaek6vztJYFn35dUI8V4BTJajKGCYuJJIbPKLO\n2qhA6OeJ2Q15nXYZUoMY08pzOB3OEJB0DCuNfYdwzmGy/i7IumxM3Q9R2Lg0D9LbKODaouYvJmA3\nkS/U7EzW6RPNFWDcKBfnEjAbrFO1mMgik6MyGY3YORiGVCUZ3q+p2DW4ufJYTiQXkLc7HxT88sB4\nxW0Z20C+hyrEO5zV/FsPyl74ZE8pgX7OqF3zz+QWohbVBSSbDwVcWxBzGI4/dxbZZOe2Nu+/bGLD\nlhuzWQNWg8Hjzsmh0s6+ery6Ck2lHIxOO7O4CNOlhEQvOxgehi4rbf2ZNnNwKV+/LIvNGBze/SXa\npJVDwbEwZySQshv7Lnklex6iIIDVGL8mqhhXh9s1zI5j3EGeZbo9DNIHKODagkRJxJt/57UIufQ4\nPH8mCrvPlt0KhgXHaf8JyKMpUBrY9ck5x6nz0ba//laxLRiEKtGyiyAI8Ej1g7iwqsMvt3enZ8Y2\nMGc0X4NPEIAJzyBCSu3dyVFzZUlZ4gJeyk5XfSzjDGcKM02PxU3WydYM7tqBgcHiNBNO6qOAiwAo\nBg35rIGRiTBkpbWT3/SZKFgHAp/Vzl9YBFuTKzQ06IdHa+9sQzMEQcCOse4vmeXN3llmaoYmr8wi\n2owha5p1n3NyYaHvK5avJQkiBlS9K6+tSwpCsg6HM5zIzCFp1Z+xCileaOLK393apUXGOaw1fRoP\n+rbDr3ixUx+r+nNFQcQ+vT39EQvMgNPhpHVZUBCU+rc2F+c2HE4zdBuBAq5NgjGOmbOtz7I4DsNi\nLA3N03rgMjoRhih19iM1NOiH2IOFMxtdpuykS/FU3wchluMgbdQPuCaDwYqimqR1kiDCIyngnMMn\nqS3NoM2bSaTsXOnfeWYgZhVnzSLqSsK8KirwSxsTWA4pg1DE5r/TCiwHi9X/HPYai2eQcc429RwG\nCzbf2PI3W1X3zxKkLURRQNhlibBRsixh28715U141hGsNcrrVRt63NS5GMZGQ12d+doI8UwODucY\nDviwZ7R/r7KX6YoCXal/zBp5zGaQtU345MY+8+0gixK26a3N1o5r5c/zSZ5SS59+43CnL0veKIIf\nsthc8VxJ0CEJ3ZlZ3Wp6b6qAtMwXbP8fzcJ8ynUHEmO8qV2OG23H5NCmD7YAIKB7EPI2f1LjnGM+\n1dllhP+7NLfuGbefz85uyG5Xy3Hw4sJ8y8/vxBg557jYQBJ9o85kY8jZvTtrM2suIOPk6j8QQMbJ\n4pLZ+vGqxycFIELCvFmZS5Zz0jBY8z1rN0q7AkXeAxszNhsKuEhLctkCFuZ7dxq63cVDL0VTWEw2\ndjLYSLIkQmkg4fxiPLXhbYN+aXx03ct+rxkb25CZBkWScPnQSEvPtRnDi/GVk/9MJgXDaaz0SC2C\nICDvWG1bJt7pHYR3A2fLmjWshOEVVy4eDGYiVqU8hF/yYVxt7Xg1ShFVDCmjFbeLggQB/Tf7VQ/n\nNmxe3Nzg8CRMXn1jA2kNBVxbiJE3MXWiuUKKQyNB1xOeP6BjdGJzNql2Mx4JYjDUv30iAx4N8qr8\nOkEQMBLsn7ZMhm3jXLI3i6fKoohDgysnZp+sQBLa89X6mvB423LV1jOmlzIzsFmnk88liKvGKAsS\nfGJ3l7rcWvN4RC9UcfP1A+VwwHhxs4QkhKCJu7s8os2HAq4tRNNV7NxfecXWqNmZOJLxbBtH5O7S\npQQSid6bTepnAV3riyRzzjkupStnTlVJQsTbXMCbtUycXFxo19AaFvbokNuwseN0ZqHjQU6jXuXf\nBlnc2NIdkiBB79McsH4kChpUsfruUbJ+lDS/xaxneWZs28aUPhgf3zozZ6txzmE0WAV/MzmzGMew\nz4ugpkEQBNdgRRCEphPlfYqK/YPt3UhgOg5EARsSfIx7Ahse5LQb5xwWd6CKW+NUk3YWoIsByELv\nLt2S7qEZLkI6zLTshpKqLYdhLr716uHsGRxAUNOwkMthNp1BxNfcLqvFfA4po7nCk/O5LFJm88Uq\n40YeGWtjEs97Od9qNZNVv0goMAvRPmtabTMbZoslIRRBg0CnVVIFfTJIT8lkCjDN9s7yxBOdXwat\nZT6eaWjmSpUl7BztzCxiwbKRyje2s2qje2DmTBO2wzCg64j4ai8bGnbl79EjK9CarFQfVDXoUvOz\nLqNeP8IabaFfxjjHuUKs6v26pGKbp3/a9ACAwQoweP3Crxknibg9V3abR/S75n0RArS4pMgYw913\n341XXnkFqqrir//6r7Fz504AQDQaxZ133ll67EsvvYQPfehDuOWWW3DdddfB7y8m6k5OTuLee+9t\nw1sgmwljvKKS/HoZbWhVxBjHqXNRHNjV/M6oyZHuL5FyzsFYY4HUy7NR7BsZamj3YyNORhewe3Cg\nLGl/tYxpwacCPkkt9oqpgnGOqUQCB4eHYTNWWnr0NrnU+EJ0Fr80vP4dlAQQBQH7vGOYLcQhCRIi\nWrDbQ1qXpB1HQBhBQArVfaxPDADo7/dLNlZLAdd3vvMdmKaJo0eP4tixYzhy5AgeeOABAEAkEsGD\nDz4IAHj++efxmc98Bu9+97thGAY456X7yMZLxIrJyOHhQJdHUl2wA7XExiLr/1IURQF7dwzDshwo\nLbY+6iZdVaCrjQUmrxpv73b7HQOhqsEWAIz4G1tCFAUBB4eHUbBtXEglsW9VflbBtjGVjOOyoUjZ\nbR658ivAb/8RAAAgAElEQVTulyOdTQxOmQYuZJOY9NU+aRccG54WZtl6TcExEbXS2OWJ1H/wGjEz\nAb/shUdsfvk0Yaegix5oLTy3Gk30QBFlAPXbZCWcGFRBg6+B4KxXWay4qUQR+79ocj9oaUnxueee\nw1VXXQUAuOKKK3D8+PGKx3DO8YlPfAJ33303JEnCyy+/jHw+j/e973249dZbcezYsfWNnDTNH/bC\nH+7f0gZr5fMm5qPtKwxZz/lLcVyYT8Bqc3PvkzNR2B3uQdlNy70SU4UCLibXf7w8slwWbC3fNurz\n41xyJV/oYpvqYbkp2FbVHYReWUHOtpAwK5dwT6WLJziHM0xnO5/blHc6319TEkTs0iMIKO4XS6vb\n/azllTxQhNYuYFRBgdjmrBiPqDe8JDggj/R1sAUAkhCEJNAs3UZp6fIqk8mUlgYBQJIk2LYNedXV\n5Pe+9z3s378fe/bsAQB4PB7ccccduPHGGzE1NYX3v//9+Na3vlX2HDcDA17Icv/NKHRTJNJbM1id\nmhWyHQbTtOHVNya5WPep8HvbX39nYNBXMQPUa8ewHYa4HzZjUNu0VLlWBAFwzks7cTv5O5zNpqHL\nCkKae9mCN+5zr2GkBleeMzbSmZP1dGYRA6oXHllBIrOAHcHBjryOm7xtQpXksppfuWweEV+1Y7Ge\nY9S547sZ//62kl49fi0FXH6/H9nsSiIyY6wicHrsscdw6623lv69e/du7Ny5E4IgYPfu3QiHw4hG\noxgfH6/5WvE41WNqRiQSQDTaWxXgT5+cxZ59ow2VpGCMN10lPptpfrfZsjPnYtizo/Gk3ny28zvU\nqh1Dw7Jh2Q78+vqCvtlEGn6PBr9nY3fBZU0TjHEEPJ0tGnk2EcfucHHzgc0YXlmM4fLh9i6TSgBM\nWIi6LD3V+xt0e047KUxEPmfCECyEoW/o98GsEUdQ9sIrrRxjL3REc731nVRLL36Hksb1wvGrFvC1\nNB975ZVX4plnngEAHDt2DAcOHKh4zPHjx3HllVeW/v3www/jyJEjAIC5uTlkMhlEIs2v+ZPWnTs1\nV3cHWrt3CALA3v3l7VmYwzA9FXV97OlTcw0nd9eSTOUa2m03Mdr+WYbp2cWW30O2YCKedr/IcBhz\nXXpknMNpYqPBgE+Hrm587pBQ+n9FDmM4s7jouvNwPQY9K0tbsijiVUP98T1TcGw4a/rXZWwTC0Zz\nF52KKHVtQ8CYNlAWbK0WNZOwVpWQOJWbAetCv75cg/0aCWm3lgKut771rVBVFTfffDPuvfdefPSj\nH8Xjjz+Oo0ePAgAWFxfh9/vLTrLvete7kE6nccstt+CDH/wg7rnnnrrLiaS9IhPhurNMM1OxikCl\nkDfbEgQtEyURo2PuO/f2HxirOsN18VLj+VP5goVGqht0osH1cMjfci9HSRRxcSGFRLZyW7pXUxH2\nV+bJxDN5LFQJ0txoigypDZXQm+VVVQS0lZPxdCKJAV0v5XjVUyuAns9mcTFdzA8LeTxwGMOJpSrz\ny8FHyjBwIe2eQ8Y53/ByGGstGDnk7PLZL0UQoW2CxHoA8IhKWeue3fpY2b/XMpmFS4b7hdl6ZJw0\nHObAZK3PjLeDxfOwGig/QTYPgXf7W6aObk8N9pt2TqcuRtPQvSoS8SyGRoJQ2zArcn56AeMTYcgt\n5HTlciZ0XdmQZsbrkczkkStYGB9uLRm13jG0bAfKFstrzJomLqXT2DfU+G4qw7HLgpXlmUC3chez\n2QwEAKM+9/6SSbMAjyTXDX5ejM/j9Xt3IrXYOyfSqJGBX9agS8WLiwUziyG1cmdoysoj55gY83Qv\nEXx1Dh7nHAY34VnTtzDr5KCLnprBWj0WtxC3FzCiVO5Y3aglKYMVX0MTezPfqF9tuiVFsjXoPhWK\nJmN8crAtwRYAjIwFWwq2bNuB16u2PdhyGEOsRnX3ZpbqlgV9HowMdq4x9MxiCoUOLP02q5FrtVOx\n9vQy9Klq3WBrLpsBWzWmtcGRKAhVa4uN+fxVgy2gmAvGGni/lw+MIJbPYaHQ2JL2RtBEGfKq4CTv\nmK5j88kaBl0CsU7inKOwVNWdc46T+XOl+wRBqAi2ACDPChVLr81SBMU12NpImhigYGuLoYCLVLBt\nB2dPzEL3am3ZIWrbDk6dmAUAaC0s4dm2g3PnF13vS6byuHip9e31wtL/VXNxPolMrrmlB0EQOrZk\nZ1o2hgJeeLqQg7XWS7P1y1mMB9d/QkkbBrJm/c0KtY7jeg15vNDlxj67I14fbMYw0yOJ4kHFA2VV\nT8ZJfcD1wkUSxA3veWhxG4tWcZlXEAQc8O6s+5xhZXCpVhYh/YUCLlJBliUYhdZ3UiUTOdircq0Y\n49g22XrLGlmW4PEocFxO7qGgjvGx1pdARFHA0ED1q/rtYwOYjbVeOypvWFVno2LJLBKZ5paeHMZh\n2e2tA9aqV4+P1CxoChRnpprlMFY2s7g6ODBsG1OJlQA7a5ml3K0Rn2/dyeI5y0Lebv2zP5fPQBEl\njHr9mPStLCkzznEhm6z53EKHaoa1IucYKKyp4fVi+kLd5zHOUXAa38mrigomtP5q/UNIqyjgIq4O\nHJps6HGOw8qCK2CpjcyqJQvLdGAY6zuZBAOeqononc7pGg77WlpaBIozUtUCpJDP41riYSaWrLoc\npWsKBgO1i9faDsPUfLz5wbaJwxjsdbRnWsznsZgvBqKMc5yNx0uBmypJGF3V3NojyRjwtK87gckc\nWGvGfiJRfVn0bCpeVly12rKjANScIbOZg/NLhVAZ56X/ruVUJoas3ZnEb5M5sHn55/bV/m11n2dx\nGwtWjfxDZsNgnS/GSkgvooCLuGp0l102U0AiXt4cOjzgK8v58vk1yIqE+GL1XKl6/H5P15LlDcuB\nbbcWQIT8OgJViqUqsuQ6Q6RI0rreqyyJGA275yOZLiUYCg001m5GPJdHPNfYzF2qUMDMmurzEZ8P\nkaWgShQE/NLoaOk+QRCgL/VOfCkWhSSKpX+3Q1jzIKiWH6+JqkU7gXFfAOqq5bpxr/tjBUHAkFY9\nUJZFCfuDxZkeAYBfqV+rbJ9/GD65+Lj15jStFVa88MvlRV0b+UxqooJtnmKu3YnsTMX9eWYi56w/\nSGymnMSMMQOTNT7rxjhDnmWRcVIt7WTknIHx3piFJr2FAq4tgDkMrMHWMcxhFUt3tZYXgyEvhkfq\n78bTNBl6E1Xa0+k8ZmYan6XJZA2cv+Ce57Veo0MBaBuYMzUysP6Ee7e+iabt4Pxi5bLW+YVEzQRv\nxjmS+co2NdUM+32INNgf0auoSOQLMB0HZxbjpVytF+fn686S7QkPgHGO+WzW9f6Cbbclcd2vVF8W\n9Uhy2y8EBEHAgFqctXM4w1yhfi7Y6czChixJZuwC8g0uGe7xVialB2UvBhQ/YmailCzfLIOZmDFm\nG378uDoO1aXfYoHlXQM3hzvIsxwkSC3thMyzNDIsDs5Zz2ycIL2BAq4tILGQQaLO7FIuU0AuU0Aq\nkUNiofyxszPxhgO2ahRFhiw3/nELBHRMTJTX6qpVC8zv0zC5rfU8sV7kOO6FTpcVTNs1r60aVZaw\nd6Ryp9/+seGaQQNjHBmjsZOjzRjSRuOzArIk4vKxEaiShJ3hUGnp8PKREcguGw8upJKlZbvl+l0c\n7p+L2WwGhtP/Mw1SAyf9A4HIhjTC5uBga37f80YSBcesmGWTl3oknsxdrFie9Eqe0v21JKwUck55\nsK+JKrZpY6VgKeNk4dSYUaoWNKWdNBgqn6eICgblCHTJB1lofvbUK4UQlIaRZjHkWOf7ZdbDuAHO\neyc/cCujgGsLGBwJYjDiPgvFHIa5VTNJ4SE/hpZmrJjDkErksHPvCMQ6ydH12LaDc1Mx9/ssp+JK\ncH4+VXabbTuYnU0gna4+0yIIApKp3ql/tF6pfAFxl6T6RDaP+WQGiWweBctuqFzBesiSiG3hxmqK\nOYwh22BwtlYjOztVSS5LjBcFoWo5h12hMDwdLK5sVWle3U6SIGJYa65Uw7lcvGOfiYCswyuqZcGV\nX/bA4Qyns7Ol13U4wyvZYpL9Xn28IrjySsXlyrXB1FqaqEERVtdSYygwAxknh0W7GMxYzGqpYn1E\nGSkFVItWrO1V74PSCHxS9y8CLZ6Azd1ngd1QcNY5FHBtQaZhIR4rLlMIogCPV4XX74HXX56zwThv\nW6sfWZawZ9+o633z8ynkc+UnaU2TsboPzPkLixgZCSIQcG8WvCyXM9paFb+bBvxeREKVJ9uAR8OA\nT8fYQAAeVcaJi+urxt3OZQ9NljG2VAqCc45z8do78wBgJpVCslB/ydJmrJRMDwCzmQzOJev//E4o\nODam043NXjh8fZsImhVUPOvarWkyG5cK5e/NYg5OZovLeEk7h3lzJe/OK2nwycXSE2k7B8Y5JEHE\nfm8xyb7aWGxm183n0iWtrASExW2k7SyCsh/DSrEp94AShiKuL49PEiQYrPgZ5Jwj47S+M7nXaOIo\nFLHxndx59go45aB1BAVcW5AoiqXio4IgIFSlLIIsSxgeCWJmegFWBwttTmwbgNdXnt8VCnnLEvd3\n74q41gQzDKsUMKTSeQQDetWE/9loCulM47lIvSCRzcN2GAyrmI/kOAySJJYqzUuiiMu2uTdmzptW\nQzMdL87U77G5rNGlRaD42QpUaZCdMU08ffosgGJ199Utf6oRBQHbgyszbTnLQjSb7UqejEeSsS9U\nuxCrzRzM5zOIG3nEmuyHuB5hpfVdmxfycRQcC4E1CfOKKGG3Hln6+T6Ma5WtucKKD5Ig4sfJV1Bw\nzLpBn0fSMKwWA4Gsk8eFwnzVx+acPGaMOWiiiog62OzbqiluL0KAAJMvBVzgpeCrX1ms9QsRr3Q5\nhAaWe0nzKODagmRFQiBUu7TAakMjgZaqw2+E+Vi61F9RliVILnli+byJ8xcXMRT2wddE4r5lO1hI\nVJ+Kj6dzmFvobHHLYh6Xg/PRBM7Nx/HzqUsAinlVZp3dhfFMHkYDOxAPTY655nBF09mVJSJWHEcs\n0/jSBAAM6O4nf5+i4NcmJwAUlyyrnZxThQJiuWKwYjoO4qtmwvYMDOB1ExMd272aMg2cTa2nvIYA\nURAx7PFhTG98I4TFHMzmu1M0dUQLwC97cC6/UJmTJdb+DhhQ/PDLOg75d7oWJr1oLJQ1r17NJ+k1\n63F5JR3bNPcZ8vXyij74pABCcjGQEwURQ4r7RUy/MHkSvAuNwUltFHBtQRenYzAKFi6cjcJpoNyB\nRy+21GGM48SLlVu9m5HPm5g+29oSmNtMxvZtK22HvLrq2oxa11WMj4SgKJLr7JftODh3sXKHoyAI\nkFblrmVyRlkRVK+mYjjcWisUxnhDwdBQ0AePqmDfxDB2jg7itXuLyzR500JsTcPqtbNZE4NB6KoC\nhzHMp8o3QjiM4aWL1WcUgPLf91wqg7RhYtdQe3JSBEGAb9Ws1svzUZguCe4XUimoS7ldHlnGZLA8\nlyxZKGAq0f6aY1OpBAKKihHdh1PJlc/GpWwai4X6eYKMczicYdjT+IXNMlEQXBPgZwtp2E3kjbVS\nKkIVZVjchl/2NJSsD1TmsgVk3fW5YdlfM1G+WnL7opVAzulcbqYmapA2YEbH2sBZM5+0A8I6ek2S\nzqAjsgUNjYagajKGRoOuM0LViKKAA5dXFj+8dCEOq8FaTrquIjIaxNxs81Pec3MpJJKtLc2sXY6M\nJ3OYnS+OQZYkjAxV1k+SJRHhQHGGJp0tQBJFDC3lVBUMC3MLKUiSCKPJ3YIAUDAtLKZaX2byeVRM\nDJYHHy9dcA+gBEGomEGSRBEHxyM1X2Mk6C89byIcxIC3fQVGl52MLcCwbRyMDEN16XN4YHgYQU/1\nvL2Qx4Nd4fYnJoe1Yt03n6JiV6C4fHYysYAhj46QppUCqmVrg92cbSJaqD8baDOnorK9JIgIq5W/\na1WU4KwpKrz8Wqurwi8XYj2djZUVZa1nKreA09koVEHGiNp44/Wz+bmKMRnMKvv9nMzNQBGKJTRS\ndhYzheoXXZxzmKuKo/okr2tZh16WdmIVtbjSLEr1ubY4Cri2IM2jFAtIVlleu3R+AalEbum/F5Gp\ns/MvPOhrqueiR1MQCte/8l87ozU2FkLYZSn09Nlow3k8jHEwxhEO6hhdtXNz7czY2nIMjHEIAqAo\nErJ5E7MLaewYH0QmZyCeyiFvNFc92+tRMT7U+EmtHtO2oVU5BqIgYDhQORO33jY47bB7cACaXL2W\n1erSEJ3O1Tq+MF96jbC2EuQtj2HCF4AqyZAEEXEjj9lccdbQcGycSJbvwPUrGiZ99ROVC46DpNXY\nzMeg6sWimUPcLA/UT2djiBrFsTDOMZUrzsgd8I9UNPBeNm9ULlmOagEMq75i02ip8ST0A76J0mcp\nbmWwYKaQsLJl9br2e7eV+jkGZR+2eaoH+wY3EbNWkvY1UW2ohESnOC3s2pOgAGt6ew7K2yH2WG6U\nxRNw+ObZ2d3rKOAiFca3DyG4FBCNbhuAP1h7ZkOSRJyvUvLBjSiJ8HjKv9DddkOePRst3X7pUvXi\nnNu3uTfjdbOYyGIxkYUgCFWfwxjHmfMxLK7K3woF9FJQ5tNV7Joo5ntkcgYGQ174VwWv2byJZJM9\nEquJZ3J1G0QDgCrL2D1aP5mYcY5MoTPtYFrhVmvLTTSbxaVM650Klr0Ym69o0zSdSiBtGrhsoHY9\nMt9SAVSHMwxoOrYt9UrUJBmDmo7ZFppV+xUVY3pjDb6PJ2cR0fwYWlMmIqL5MakXZ+FEQcDBQO38\nI845LuQrl2F1SUVI8SLnmK7tdzjnmMq7z0xl7AJSdg5B2YuQ4sOoFoZf9uAXmXMNvbfVPKKGCa32\n7GsjYtZC00F6wl4se47FDMSs8iKrnDPE7drL8V4p1FLR1I1WbPje/gsvxhPgfOM2ivSL3v9EkK5y\ny3manYmDcw6jYGH6TBSqJmNisvrJfn4uiUKdZtjnz1f2q9uzZ6SUn6V7VdeTYS5vlrURqidfMOH3\n1U6cF0UB+3ZEYC0FOpblVPRDNEwbsUQGY8NBqEr565+bXWy4NVI9jPGGTxpr61jZDkMyVz57cmEh\ngTPR7vVZbFXE54PNmGuel5tLmTTmspUB2mWDwxW/p23+IPyKWhH8ZS0TpxKLSBh5xI2VAHo+l8Wi\nUR5QRzw+jDSRGN+KVwdHXQPU5RN7o8uHgiBgt7d6grrJbJguuWKCIGBICeBMbq4iIJMFEbIgQRLE\nUvAFAK/272hoTJ2gCAocl8KmtYhrTomKqGFUXdtXVoAmtGd5fdGegsW6N8MkCyFIQu1SO63hS/8j\nq1HARZqm+4rBj+ZRMLmzuDVeViRk0gXYS4HJxQsrV4qSLGIxVvvqf+/e2juQ3JYSASAaTeHsVLRi\n1iIaS2MhXnnCHYuEXBPr1xJFAYokwrQcnJ+NI5svL4cgSSK0VYFWwbQxt1h8j3snhxHwtudLbCjo\ngyJLmI03P3viMFYRKO4YHsBrtle2XOkmmzHMpFKwGYPh0utx2ZCuQ2lwRmzcH3AtiOpWXFUWRddg\n3qeoiBVyyNsW9FVLc+O+QEUyvFue3FoFxy4L3JpV7eePaMX3eSZbvcn2WgNq9SX9sOKtKAux7CfJ\nUxjXBqAt1b0qOCayTgEeSUXeMTFrxOERldL9jTKrNLSOWykk7dZmNr2ijnmr9kzUWkE5XHe2XBAE\neKXGZiXrGZB2QBHbnxvZbaIwAEFobUPRZkYBF2laaNXOvNW7+FLJHLKZ4nJVIKiXvrgGBvyIjJbn\nK9WauTFNGxfq9EV0GINh2ti5YxjbJgZKJ9Llnzs06Megyw5CpUp5iwuz8YqCqYIggIPD79VKyfPL\nZElEwLdyUlJkEX5dW7pPwktTczXH3yy3Jtf1aIqM4eDGfunlTBNnF5qbQROXktNzpon4qsKmacPA\n/0xNwWYMDmPwqe6znO02k0mVZtL2hwcx6PHCI9cOIBYKOczm0khbK8u1DmeYz69/GbQRgiDgVcGV\nixaHM6Tt9e+Ki5lpzBorG1xeH9oPXVpJYGdY2TwwoPgxpg3AI6lNB1yz5gLsNSUjlpPn803u7uOc\nI+tkoYgKJtSJpp670Wgn4dZCR5u4SiVyMJcSwTmvDI7cduWFwt7SVXhgVd6XKApQ1iy7LcTSSCwl\n5jOH4cQrl0r3KYqEkZEgGGM4cbKySW0qnceJE7M4O1XMJ1m9pDg3n0Q6U4AoVs/RchNyKZg6EPJC\nU2TXHYyrxVM5ZPMmfLpaer8Hd1TPo3EYq1tDa62NDpzWyhgmcmb9jQFeVcX2gerJ4tPxRKlB9TJR\nEBDWPQh6PBgLrPyudUXB6yYmIIsiXllY2LBq7XGjgIxlImuZiBuFqonnq4U1D4Y9Xszlq+9M9Egy\nBrSNmc2wGUPGXl+uns0cDCl+jK7aseiVy5fjvZKGoFycLTuVu1TRM9GNwUxk7PL8nh2eMchrancJ\ngoBRbQhjavXlTzcMDLkuLtMRUg0FXKSueCyDhWj5ktaFqVhForvP70Eg1NgJJTISxMBShXtREnHg\n4HjpPkEQoKoyRFHEPpelRr/Pgz27I9i5vbLS9/hYGMGAjniiuYTN1bNVq5lLFd5r0T0q9FXLlCfO\n1d41mTcsxNOdPyG02tNwLdthMO3qPRstx8Gl1MrnY22ekcMYXpwtLu1MBALwKpWzHynDgOU4KFg2\nMkvNr2VRhHepmfWrI5GGE+zX69DQCAY9OnyKin2h2hsRlhPlJUGELErYF1x5vCSIHc/rWmsmn0Te\nsaBJMsY9jbdzWZay85gzirXmzuZjsDmr3dicc7yUKfZMPOCbaGg3IUdxZixupVFwan9GDdb8Z1gS\nJESUlSAtz/KYNYsXdCYzkLA3PoeRLe10NFluQzsjcO7AYOtr/dVJnM+B89qrGZsJBVzEVTDshboU\nRAxGAhgeKV8S3Ll3pKlk9VatnnVyHIbv//AETNOGpinQ9craPI7DcPLMHEyzPFAyTBs/PTaFbK65\nq/7oYga5glnzS9KjyqVWOwCwd9tQ2VLrWn5dw+hge3JAACCezbuOL5bOVuS2tWIxm4MAAX5t5fe9\n/HM55zgVXaxZJFMSRbxqtLjr7PTiomvie8GykLMs5G0Lv4i2/wSRMcuPoc0YslbzJ/NXErGyBs2t\n7ExcjxPp2r+bAUWH5lLlvVE+ScOAUpyx2u8bLZVyqEYUBLzKvzapfEXCqmy95BFVBGUfknYWSbv6\n78/hDubN9Z+MdVHHqDKGvJPDvBWFJrYnv7LAcsg10HOx4KSQdIopBnmWAGsykX/9BFi8V3tDhgBs\n7EVJN1HA1YPmzjVeYqFTEosZzM3EsRhLIzqbBGugNIFZpwBoJlNoqBl2tcdIkohf/9W9S42tK+Xz\nJs7PLGLvrhGMjgTLrsw1VcahV0001doHALaNhpHNmVhcVXA1nTVqBmC1gq1WxDO5mknzecNy3Q+0\nc3jANUm8WSNBPwZ85TOXL80WT/yCIOBVYxGMuNT5Wm15qfmykQg0ufL4BTQNyYKBAV3HRDCIUwvF\nBPCXozH8fG79+XCxfA42YzgeK9baMhwbmTVLm2eS8bq7IHf6QxAFAdPpBAQI2BGoLLpqODYczjCV\naf9MyqRee9bKK6tlyfVrq81fLCRhVmmvwziHAAGqKBf7dq6zNYzBLCSsTHFGi3Ok1ywj7tLHMKoV\nZ6nPFWZRcAwUmIm0XVyWlQQJ2z2NbfA4lT+LS8Ysco77zLYgCNAlLya1Seg1ktTzrPGZcQkSZKF2\nrhrjDlIshpA0CosVEJInIAmdv1BdJggSNHEYJmt8Q8VGEgQPBKG/itquBwVcGyS1mEE63lgfOq3J\noKATwoN+jG4bwGI0jaGRIKZPz8Ne6ll4/mwUuWzlTFEqkXO9fZljs4YCt5kLi64BzaXZBGR5ZUfZ\nzMU40ukCEskcFhYz0HUVO7cPVS3JoGut/WGPDAUwtCoB/+S5+XVVia/l5EysrIgqYxx+j4ZIyD2g\nsR2GicEgREGAaTsNNatuh0MTzfe1y5kWzi7GXeuK6YqCHeFiMBHWNCzm8shZFnYPhHFwyL1JNOMc\nU4mVApkF28bpuPuMyK5QGIok4bLB4VIF+bW7GMd9/rJq95ZTWQV+OXk+oGgQBQGDa3KyOOf4zvQp\nmI6DwRo7AVvllZv7DL+ULq8C75e0qrORC2YGUbMY2P8sOY3vL54o3VdwLCSs4veXw1lDwZjBLPhl\nD0RBAAND1qn+3TCpjcAjaUsVoZrfGBGUAtBFHV5pfb/zjJMCW3pvDrcxb12s+lhF1KDW2WEoChJG\nlD2wuQmDN9eHdL0snkLOKdZB80m7N/S1iTuBb+SCcgui0e40cW23Qs6AKApQPZ2N5iORQN3f2eJ8\nCrIiIThQPxGbOQxiizM2mUwBHo/SVBX68+cWMDIahOZSuiGZzCG0qjwE5xyCIMBxGDjnpddJpvJQ\nFAneVUuOqXQekiQ2PcO1WjZfXJZaXeR0eQyW7SCVKZQFZq1afQwXUlkwDteAy7Qd/Oz0DP7fwWKt\nowsLSQz4dPga/IyZtoOpaBwHxoeRMUxkCgbGQu1b6lxWnC3hmFqMYyIULOVwpQwDpxcWccV4ZfNs\n03GQMYoziZIkIVylvU/SKCC0qiq86TiuLYJa8ZO5GWzzBTCseyEJQt3mzct8YQ3ZRG8Ul/1JfBq7\nvUOILJWOYJw31GGAcw6T26XdhgazUHAshBQv4lYWFrMxolWfbUvaWYRkH87mZ7HdE+lqpfhlBVaA\nAAGKoIDBqTo7tfrvz2QGVLH7F8CtKJ7aGYQe+N1vpEbOgRsxBjc0w7VBPF6t48FWo4IDPvgC1a/M\nzrxyCXMX4zh7orhD8JXjF1p6HaNgNd1jcHwiXAq2OOcoFFaWfaKxNCxrZcln+SQtSWJZUCfLIqQ1\ns1yyLLVUWmE1QVh5TcO0sZDI4mI0WRqLXKMv5cVYEukm88cAYDDgxXDQ/apdFAQc3LZSkXtyKAQI\nqOS+UrYAACAASURBVCh2ulo6b2AuWfwyUmUJ+8aKs0e6IiPcgV6JABDP5zGfzmDf8FBZwnyqUMAv\njY66zsqpkoRBrxd+Tauah/ZidB7eNeUa2hVsAcCvjExgmz+IpGkg00S+l1cp/zs3nPobL9wYjl1W\nZqIZJzNRZG0ThwJjCC7V1JrOLeB7868gaZVv2LiQj5f1YgSKn+fVpR00UUFoKbdrQPGVgq2ZwkLF\nzkTOOTJLJSl262OQBQnzZgI2d5B1CkhY7SmVEbUWSrNRtRSWyko43AHjDgxuIGmvzIzG7QXkHPfZ\np34NtgAsddPYWsFWr6OAawsxjWLuhqxINZtW79o/hmDIi6GRAERJxMFD1ZNiaxkaDrjOVNWyOnBy\nHIZYbOXLee+eESwsZErlJKrxebWK1/XqatNjSabzMCwbF5eaXHs9aqn0QzKTh6bK2DZSbKkiSyJC\n/uoBSyTsb3jmabVoMoto0v1kIEsiQj4PsoYJw7JLsxdrg83VvJpSlo+1PNshiSI8SmdySwa9XkyE\nKvtGToZCkCURL0eLiegnFxYqgi9NljGg6zi5UJmDcnlkBMqqAOtMfBEpo36AEs1VJnK7OZdOImkU\nMKL7EF61dLhYyCNao/zDSwvlxTYv5dIorKkC73CGmVztRGaHMxhV8q3q2e+PwCer8MpaqazFmCeE\nNw7vRUgp/5wOqj6oLon2jSwbBmUvpFWnEYs5OJW7hG2e8mVgTVRgMQecc6gN1OhinCFfYwkSADyC\nttSapraEnYDDHdjcggMGAQKCUrh0f0AKwiNWLg1fNKfBOcOMcabua7TSb7ETqDk2wNnG1L5rBQVc\nmxjnvCxn6uJ0rG4OVWIxA9t2ICsSxBoJ11YDye/rJcsSJle1DEokchgdDSK8qvF1OuM+m5PPm5i+\nsL5EUdthwJolxGUjg4GK2y3bwU9/Me16MldkqSK3LJ0zEE/XDh5Hwn6MhMtzjV48N1sq0mrZDpLZ\nAmLpLPKmBV1V4PdUvyqXRBGqS9J6N10+OgJREGBYNvJWZa0vURAwGawM2DjnSBorx3/PwCCCWu0Z\nCctxYK1qW2MzhvPplcKenHP8PFZM0t8VDCOkebBYyJc9J6iqCKnuS5ycc2wLlC+17QoMQF8zEydA\ngKdOfS+vrGJYa2yJ+mQmWjZGN5ooQ3dpSu2VVNdlxjO5aNUE+2UBWS9bDlZECfu84xWPC8k+GMyE\nAwavVH/WyOYOUk7tE2dA9jdUa29MHQMHh8FM6KKOnJ1BxllZMrSYVdb3kHMOi1sYUSYgCCLG1V11\nXyNqnQNvYZMBW5p1awfOOdLOifoPbJDDs3Cq5J3Z7CIc3v3NXa6cGaBHA08KuDaxbLqAuZniTinL\ntDG5O1KWj2WZdqm46TJRFCGgOLtk25Uf2unT88hmCrhYpxJ8LQsL6VLAwDnHKy9XJqa6BS2W7WDt\nzdVmu3RdxehwAIZRv1hnNUNhHzRVQdDf2DZyRZawfbSykXa15tOaIsGjrpwAZ2JJzCcqTzKxVBbm\nqmNx+Y6xUvCmKTICejGB26epMG0HL1/sTt2dC/EkcqaFE/OxUouehWwOc+mV9+QwVvX3cWhsFD51\nZRbwhdmVore6S+0uh/OGZrRWOxFfwIS/uIO1YNu4lEkjqK4EAIIg4NBQedFaxlnZ504WpapLl2fS\n8dJndzaXRrTgfsJqZHPDXCFTsdRXzU7vQN0SDs3a7xtFwsohYbn/jaXtfCkgM5iFhaWE+2pBUFjx\nIyS7B5AOdzCVv1RaIlRFBaOq+2aJ5cfHrWTV+9cSIcIv+SAJEnTZB2Vplo2Dg6H882hxE0lnsZTj\n1UgT6jF1T0tV4/MsDqNNJRsEQUBIflVbflaRs/S/SpIwAhG1a9TZ7GUwvvGzTYJyEOjRpdSWAi7G\nGO666y7cdNNNOHz4MKanp8vu//KXv4x3vOMdOHz4MA4fPowzZ87UfQ5pP39Qx/iO4pdWNpVHbs1s\nUCFvIpcpP2EFw14oqozkqh2VuayBwlIvwe27I/D5PRgZC9fckVjTqnONIAg4eFl5+w3GOE6drCwF\nMBIJVswSba/VNDuWxvSqwDCeyJblgDmMYWqds2BrjQ2Vz8QUDAsX5hOuj1UVuaxgqq5KOO/yWFkS\nayY6e1QZ+lKgosoSLpso5nXZDsMLU5eqPs9NPFtcRm3FsN8HjyJjX2SoVPohrHsw5FuZkTwVW8Qv\n5oulGRZyuZp1wn55rHZJAFkUsT0YQt6yEMs1tmv08uGVYEqVJAzqelnSPVDes/CVeAxhzdNQbljG\nMiAJAlRJQsYyMKL7MaRV2zXHMbUqOAOA2Xy6rJq+LsmQGzyJq6IMizlNV5c3mY3pXPW/gYSVw5yR\nQtIl6LK4UwqQRIilgG95WREozlQtFzc1mIXzhShs7lRcUKXsLFRRgSiISNjpsuXEeXMRmTXlHgQI\nDQVCy0RBhFcqBnu6qMO/1AtREz3wSeUzyKqoIaK0v9/oVOF/UXDKk7l90jB0sbK0SC+QhCAkoXJm\nGQAEQa4bYMriZRAFPxjvzZIU3dDS2sJ3vvMdmKaJo0eP4tixYzhy5AgeeOCB0v3Hjx/Hpz71KRw6\ndKh021NPPVXzOZtNfC4JX0jvmUT58HDlrolAlYbQADA6UfwSsC0HZ16+hMGRICa2D5YCnkbKO1Qz\ntGosjHGk03n4vBrkpT6Hoihg/4H1f+HtmCy/QhZFsWzHuSSKGIu4f6E0yrKdYt5UlYR8z/9n702a\nJUnT67zHP5+HGO+cc2XW1EBDDbSJEkmRIo1aaAHsYcAGpj0Mv6FX/A/kUlxpxwVXMploBCkQcze6\nu6qyMiunO08xh8/u36eFx43hRtybN7Oypkae1R0iPDx8PP6+5z3HNnmwc/2T4AXa9QBzRSWn6V+t\nDRuECQpFlGY0L7nlG7rAucKcth/F1Bx7yaerGgy40eouYZUG7PLyP9mcOYAfDccYmuBoNOKj9bUb\neYYlRYFzqSWqC4F5xfb/onPGx63VyxaTKpdnmMtVSSkZZSnrjofQBKWS15q7AviGheMbdJOIp8MO\nv7e2OsevVBJD6DystRc+twrRnr2ubr6ZQWcuS+IyJ5iL3+lmIb5uXxlPZGo6m/bV58BH/hYShVih\nlWqbM6JiCh1TeNOfP3C32EuqxAVbmNN8xS2rxVk2INBdasbsuG6ZdS5oh6WZC9u6bTaWPl9ogoZR\nI5c54zLE1z3O8y637Oq6cZaf42senjG7xh2mB+SqoKnXCYw6uqYTTdqW3iXSlcqYUI5pGxu8C2Qy\nYtv6FFtbfc1N5QhDc9Bf4+v1Q4RSQ9Curlb+Y8JbVbj+7u/+jn/5L/8lAL/7u7/Lr3/964X/f/bZ\nZ/z7f//v+aM/+iP+3b/7dzd6z28ajEk0zfcFpwe9qWj+TWCYOp/+zh1s26AsJXuT/EK/5uDX3uyG\nMBxEfPHZAXE8m/jqdEZ0zsc39o86OOiyuzfTDvT60crW5zz6g4gsL2jU3akjvFKKbj/Emasw9QYR\nhyfLbYq8KHn66nTp7wD9Ucw4fncWADX3zaaiNK162g+vaJ1+cmv1DeMqz66m574TjdfLbm/l8r84\nncUePVpr4dsWH66tJkRSKX4511ZMi4K9QbV/evHMXd/S9aUq1QU+uoJsTZdZFitNY8d5Rj9NkCjO\n4+hKkXwhJa9GVVVSm1hH3A4aV5Ktg3DAP3Sr73Q5V3Hd9l9L6q6DpmlT769xkVIqybjIGBarY6TO\n0hFhmeHqJkdJn7N0eZRe0zR0TdxIKzUPXRNsWy0sYdIyZw9YljDYsdsLZOsyPN1ZENYbmj6tZuWy\nWIj7EZrAFCaZzCnndDtNo8l50SGbe+2OdYv7zn1KJLnKJss2V9pDWJq9IKy/KS7ruFIZMShOGMsO\njgiurApJChTfTlbotw1dvPcAu8BbXVnH4zFBMHsi0HWdoigwJhfq3//93+eP//iPCYKAP/3TP+U/\n/+f//Nr3XIVWy3sjH6fvC67y4fiuPtu1DbzAnpLAIi+nFaV5xFGKe0kMrpRi53aLYT+iXndp1B20\nFYHUr8P6esDWVgPXtaZTkm+yncpSousanmcTRSm+byOERqPhXnuMmJaO61rYc9UepRQStfD5163L\nznZj5U3nuvckWT7VaI2jdKX4/ircdLtsUL3uQ1YTqzQvKEq5NCH5TR2fZ6MQ1zT4JNik7i6SoMPB\nkJCCtfXgtdWsL07O+HRznf9tLlLq5wdH/NNP7iM0jXG3oFH3VrrW7w8GNByH2jUC+rMo5DwMabV9\ntlZMUG5Q43A0pJCSlutSs1YvSymFm1o0HXfhb2vrwbQ1OcxSjsIhn7Q2qLVcPlZyyTriTXEaj3EN\nk5o5W6+9sEdgOQSmTRIWNB2PunJRVNW3w2hAKUtsw2TTqeEVFqbQsYQxPY6+DqIiRSpFMFeZGw1D\nNoLadAqykOWN/cwuMF9dHOUhhSppWcvr+wGLVfF26QIazkSkfxQf07ZabOgPpq+JS4O0TGleWt7m\nZjX4kJaVDMPWr364zGVGXIaYmsmoGLHhzKa6pfIoVRPztfYS3979opP8PWvOT7+1z/su8F3ef6/D\nWxGuIAgIw9kTn5RySpyUUvzJn/wJtVr1hf/Vv/pXfP7559e+5zr0et+Mo/dvKq4zfYsnFa6ykOw+\nO+GDucDozumQ5lrA3/yXx9z7aJtmy8cLbIqi5NVXpzz6dAelFLWGx8uX5xi6uLYleQGlFK9enLO9\n08CZWCrEyZsL2fO8ZG+/y8MPNvj5L15xcNjjt390m/X12o2OkTxbfsrXNbGwrY7OBuR5yb1bsxbg\n01en3L/Vxpojl71hRODamCsI6wWUUjzbP+fDuxtIqdg77XF/+/WtxTDJ6MYxphJsv4O8xXGSkRUF\n7eDdu56v/Lw0o1MU6EIjdRf3s4nG/7i5w9nZCE3TrtWleaU+tQTpxTEt1+W26dOZ/C2Lc74cnLIT\nLG8jVUjCJCER13tnNUuLLJScZSMOxyPCPOMsDvnntyoj2fNwzJYXEKUpiTZbllKK8ySqKmuWw3kS\nElvZNFxbr+k8P+pwP5hVSFrKXjjWQt6uKjouMgZZTNNyybScRJ+tl4PB2XBEbGQ4GIwmfmxKKYYq\nmv4cq4wzY7YuUilyVS5kMMZlhqu/GSkMy4TjpM+gCPlp4xEAbRo8GR4SGC6+7vA02ueRe/tG5qsX\nOExPaRpVmoIjbEDjjNXXuKP0mIZRx9M9xuUYDQ1/ot1S0mSgpWhz+7JQOYUqeJl/xqa1g6mZC9fQ\nq1qO8yhVQSojPL2ORoOz0WzdCpWhIdC1dxMk/27w0cI6/qbhN8749Kc//Sl//ud/DsAvfvELPv74\n4+n/xuMxf/AHf0AYVl43f/VXf8WPf/zja9/zHt8udEMskC1g4ugt+Kf/5rdY26hhuyZJnPHV54c8\n/KR6ctQ0jcO9LpZp3IhsARwf9Wm1/SnZusD52Yjx6GqDzsswTZ2HH1RVnHt31/if/8kj1lfo0q5C\nWUqevbx+em+zXVsyR/3o/uYC2XodBuOYopRomsaHd2dVp9eRrTDJiNIMzzb5nYc7NyJbF5Oe1yFw\nrG+NbAEEtoVvWQsi836c8KrXn7YYz6OI7kTk/rzbWzlpeGGQ+rLX43Byc/j87GwqKm+77kqyBeAY\nxlIFrZvE7A4HnEUho6z6PEPXp5+z6fk8qDf5vY3ZebHj1zhPIg7D4ULGogLiImcwWU71tWb7ou14\nC2QLrp7cm8e4yNiPZi3tf+gdLYnLXd1gzfbxDWtJl6WU4iSZ3WhGRcLLqMuoSDlKh5hCx9WtpXig\nsEw5z8YLyzlI3jwH0tcd1ldUnppmwLiI+So6ZMdaeyOyBXDL3iSVKa/iw9f6p+3Y23i6x6tkF1Mz\np2QLwBTWdD8cZYckMsbQTMbliLrexFzRWvT0AE8PKFVxpe2Drhl4elUlLVVBLGf7IJEjchUzLs+J\nytXDM98VbmrGq5QkLj/7htfmHwfeKtpHSsnPfvYznjx5glKKf/tv/y2ff/45URTxh3/4h/zH//gf\n+Q//4T9gWRb/7J/9M/7sz/5s5XsePXr02s/6rpnqDw1fh91fxNQA9DtjHM+i1xmzc2kS8OKQeVNd\nB8Deq3PiOOfBww10XVwb9NzvhxiGTrDCluHV7jn3760zGFRtzuvWpdMb02x4hGFKfxhz7/bNROxv\ng84gpO47U60YwONXJ3x8d/PKjEeoHODP+mMebLXZ2qov7MPPXh3z2/cr0psXJeMkoxW4vDztsVH3\n8R2LflhpmlrfIrm6ClIpnpye8+nWjHBmRcHzbo9PN68XIedlSS9O2Ax8pFKcjMfs1N5Ne0ApxVkc\nkpeS27XXD0t0kogwz6lZFrmUbLo+X/bPuRc0lny15nFxDhayRMGSXcOzUZcPgtYC8ZBKUcgSCdf6\ncxWyfK2maphXDzKPR8d85G/SunJScoaTtLImKJUkMGzqE41VJgsGRczGCiIFi9cMgE4+oqa7S0aq\nuSw5y/ooFLed9cuLWcBheoorHFrmbB+lMkPXBMYNg5+lkhxlRziiunasmWscZodsmpsYmrG03vNY\ndQ3tFac4wscV1/uiFSojkWMCffEaI5VEg7eyjvgmIFVKLF/g65/e6PVK5Wg/EEH/97nC9T5L8TcM\nX+dgO9ztUGt41Bou/e6YoD7TRn356/2p4/z5yRCha7SvqDBddTE7Puzx+PEh/+J//XRBcxWGlR5L\nSjmJo6jemyQ5ui5Wtu6iKMPzLI5PBivtIuZxQbh0Ia690F6HKMnwJjqot13G69AZhrRrHpubi4RL\nSoUQlTFoWpTkRclabfEmmhWV03yalzS8NxtmeNfY7faRKB6033zcvZCSUZrSct2qdRdFbPg+R8Mh\ndcdZ8OmCSbssTWlckbW4avmFlEuTjhfoJTG2bkwrX6WSJEWB0LQFkqWUopPGrDvLZObiHDxPIkCx\n7izepMd5SmAuanr6WcJJXHmC7bhXk8HdsEfb9jiMh9z3Wti6wX7cxxbGNC8xLDI0DaIiQ9M0WqZ3\n46pSIUuENrMhKWRJWKbTWJ955LLkRXzCx/6t6TZ5Gh3ysX976bWHaQdfd2gYPmGZ4AiLUpUrXedP\n0g6e7lIz3u3DQ6GKJcImlSSSYwJ9ts03Nmo8OXqOqVkE+tV5kTeBUpJUhTji+6kp+j5AqRLUV2ji\nk3eyvO8z4fp+0O33+F7g1r01ao3qybbZDhZI0Ue/dZtnX1beOutbddrrNZ58dsCLrxb9spIk59Xz\n1a0717f5yU/uLyxXlpJet9L2nZ2NGA5nWivHMZFScnCw3N5I0pyz8xHbWw3G4fWtycEwppj4b70N\nUZJSctqZaDqSjJeHy6avZSl5/HLZO+xNsFb3F9ZPSkVRyimZPOoOOTgfLJEtAMswMIRO9DWMXq/C\nq06PcXq1BqWQkpPheOoSX3Ns6rbNi06XYTzbN3v9AYMkoZSSZ51qGw6SZMFd3hCiWt54jKZpbPg+\nYZbxot/nJAyJ85zTOS1oqRTD7OZ6KEOIK8kWVFYR8+TkPI74vHfKnx+8XJi6VLDQZlyFdcdbIlvn\nSbTyGGxaDo9qa7SsxX37fNylmHOQv+e3GBcZG1YwbSnecZts2AFSKXpZVEX66BbrdkBSFjfKG7yA\nIfSF7z8sYsIrInZMoU/JFlTn1kNvJlzv5rOb3rbVnpqe/nL0nEKVHGdd8hVO9lv22rVkq5cPrmyH\nnWZnDIvlm+1xdjRZp2VPqFwtnzNNfQ1ffD3LGGDicH91DNR7UOU9am8XH/dDw3vC9R5LePXslCTO\nFlzohdC4/2jRgfvDH93izv01kiRjNKiIkuOYPHi0yclRn68mBK0oSuI4IwgcWmuL4lOhC+7crcrv\nm5t1Gg2PKMo4Pq70DrouFgKsL9Bqeqy1q2WN5rRgB0c9kkuko15zGb2lSesoTNg/GfDgduUjY1sG\nH9xeI79kRaHrgk8fbK1cxucvT3j86oTuMHqjEONxknLaHxOlGb9+ecyDrTaf3rm6JWfogp1W9WQV\nphlHvXfzlHe71SCwVwuowzRjvzfAt61p66yQkqwscU2TeOI4L5VilKYYmoYuBDv11U+Af7t/gJyY\nogIcDIco4J/fu8fDVgtzTncllaKUkrv166sQT3qdBUNRgL882luIBbpAP00Wcg+3vIB/snmH/+XW\nvQUiIjSNW/6bVy0c3cC85ILdz2LGeUpYZPyyd7SQYbjpBEtTfU3TXZhOvIBUiuiSM/1tt7Hw/pdR\nh1Fxc+1k2wrYsZsUsqRUkrBIOLxG32XMfbf5WKBcVRXYXBZ86N7CFib3nC3MFRmOr4NcYeRxYRWx\nYa5TN2b7pZt3yWVOXW8gENiTFmOucmIZITRBy1j2iNLewgpjHoOievgSmk7DePcmqtehUGMyufhQ\nmMrvJn3iptC0m0VY/dCh/+xnP/vZd70S1yGKvk/THdeje9zHcszv1H/L9+2vvc3qTQ8FnB4NqE9y\nC9Mkp98ZL3hvaZrG/qtzTvZ7OJ6F589HpEC96WOaOidHA4bDGNsxMU0DKRX7e100NMZhiudZfPn4\nkG63GtM3DB3bNqftRd+3p1UxKat2XvUdFYahU6/NRvJt28S2jIWLZRSnNGrukl7s1X4H17GWhPIX\nSNIcDY31VkXs8qLk5UGXRuDy6rhHu15tm94oIk5yXGe1xmGjGdCu+xycD/Aca0HfBbB/1scydYyJ\n0PxiH9qmQc2zkUqhlORsGHI6GFdWBJbJ5/unrNf8lTcGXWhYpnHld3sTXNeOsgx94t01y4r0TJPA\ntqg59pSolVIR5znrQbW+F6HTjmEsBFC7pknb82i6LroQ2LqOrc+qLmLi5A4Q5Tkv+j0KJalZNkop\nFLMqZlZWGqq6bWPpOi8H/ekybN3AN80lfVXdsqetw1LK6edal3RVSZFzlkTUTJu4yMmlnC7runPQ\n0vUlQX8vi+mkMbe9OpYw8IyZuNtaYaFgiNXJA0LTsIWBIQTn6ZhxkXKQDFizZjezmuHgrMhTnEc3\nCxkVCf7EQFXTNDr5mFyVBIaLo5s38gsLDJfH4R7rVoPTrI8lDAxNR1KZoV7GQXqKronXhlt7uoOm\naZSqnJjSlpzm59SN2tK5IJGYwsQWNpqmYQkLqSSZzDjOD3CFx2l+jFKQqRRLs7FdnSR++6zYUdkl\nKvtYwvtOjEwVCk0TCG32kFSoAYb2j6Ot+S7uge9iHVbhfYXrHeIbkPV8Jxh0x6Rxxp0HM3HrcBBh\nu5PKglQ8+7Iyb7z3wQZe4FCrLxoZ+oGD51kMhzE7t1vcf7CB0DSklKRpztp6gB/MrBU++fQWH3+y\ng5jorMbjhKdPj+l0RjgTIhPHGXuTKJ6ylCun9C6TLaim0VaR4FtbzQVvrssoJy09gCwviOKMD+9V\nYv9Hd2bbpuY51K44wS4ghMZmc3XY7nojwL5mEtI2DW6vN7m33qTuOTR8FyE01mse56PV7QpdiCXn\n98Peu8lsm8fRYFZFOx+HpEWxoMODKmLoeDTiQbu1RBSkUoTZ7OLYct0FUmWvmDgEGKQJpVJ81F7D\n1Q0KKfmH0xOe92ZP9p044mA0xNYNnvY6KBRNxyEtC0whVgrfL9ZvlKX89ckBabl44z2Oqmm+0cQY\nVSlFJsvXthevw7ZT42FQ6d02HP9GeqtSyWkl7qLVKZXiZVR9/3BCAj/0Fyui80QpvdTO62YhB0mf\nhunSNhcrDhtWnZZZrdtlQfx1+NirWkVrZp2vwgOUYtri7OcjzrOKBA+KMY5mc5pdXT0rLgUSv0r2\nJ99J57a9HJgNkMgUNamIhcWYTGYMij6n+TEP7Ec4wmXHvIOne1iaTSTHdLPVocyJjOgVr68UCQRN\nY+c7c43XNRvjUsXIEauNeC/jey7pXoKmDkDdPFPzu8Z7wnUNhudvdoNqbTXRfyAmrVlasDunv0ri\njIOX54SjBL/uLpmfOo6JP5kW/Pu/esatu9UNYtiPqLc87LnqznAQcTZxbB8Pq5tSHGecnw158viI\n/kSzdXTYYzAJn07TnF6vshL55S9fMR6nfPLJDhtz0Tuua3H7VotxmFCvu7iuRVGUSy3Ey2g2vGun\nIa+C71rUAwcpFeMovfJiZOhiqWp1GQdnA2zLXBm146wgiatgGjq32nWsyWdtNWtsNqrq2xf7p9Nc\nwqsCoq8jdTdBP1puRc1X0AxdpxvGdMOIL05mNyYhNOrOakIaZRn/7eWrqaZrFfKypJ8sfrYhBIYQ\nnIQhx2FIUhT8eGOTR6024yyjlJKW4071Wp5hIjSNg9GQ/eHsAn2ZUF2gZtn8eG0TU+gMs5RxnlJI\nyf64eu+G6/Oj1kYVGGw5NG2HvfGApFg+FnNZufpfEKPP+icLLc4Lh3rgyrDry0jKgpNkyN9299iP\nq3USmsaHwTqFLNl2aoQyvZa8vYw6C8d0Wua0DY/PR4dksmT8Bq3HeZwkvWlb9OLzTc2gYfgMy5BX\ncXXdqRs+bbNOXKb08iGe7nDLnj3IpDKjk1eE7DA95SA9XnCZf+jef+26OMJGUFXB9rI9YhlTNxps\nmtscZQfV9KCmYWgmtnDoFR02ndUtQFtzqF3hPq+UIpeVbMHXm/TLI7Tv0e1VqpRx+fja1+TynEwd\nfktr9G6g2ACu9kj7vuH7c0R8j5CEKePemHH/7cWOT/7uOUVR8PTvXxAOv7556/PP9ineMlS4LCTP\nv5idSEophr2QW3MVLMe12LrTotcZYVnGkgt9rTFz/P/wk22sSSSOX3NoNGcC19OTAZ4/02rdutNC\nKXjyxSGb203uf7DBzu0WrmuxvdPk7iRcO8tKTk8GaJrG7dtrKz22RqOEoigZzwVup2lBGM7/nnN4\n3F/423Q7zN3k8qJk//hmvjillKRZQbP+dlNTSVYgBFOi9HVRSsnz40Xxry60KckaRAm9cNnode01\nlhGH/SFxtkgY5onCKEmX4no2gtmTdN2xaXkuozRj3femlatKiC5WVoEC2+Z///gjHl4z0fj/rsV9\nZgAAIABJREFUPn/O/3cp7N43LTzT5E69zqfr6wSWNcki1BhmKflkEnHLr47Dtuuy5QXUrCptoT5x\njn8+6K0k0i+H/SlJExrsjQYch0Oca+wg1hxvqfUYFzm74YCzJJySqR81NqcmqfNQSjHMk6mtw5PR\n+dI2G+QJ4yLDNyzu+21+0rzFPa+58P/zLMTWjaXq1oWovlQSqRSfBFs8Hh8TF9V+qpkOJZJM5hyn\nAwZXRAK9Dn8z/Iq4TKekSyrF02ifu+4mdcObCuKraUhBrgpc4WALE1vM2mC6pk+MTqFlNLhn31r4\nP8DLZO/adfF1H6EJdE3nU+9HRDJEIPB0j01zaykA+479YOVywnJEqpKVMUAAJQWjcnZOblsf3Shc\nW6qCs/zJa1/3dSE0m2BiAZHJDoncX3qNKdaxxfKE6fcamgXaD6PIAe9tIVYiCROyJKe+9vqed+9k\ngFd3sd3VomIpJYdfnXDn49Ul75tCSnkjbdhVI7FlIadxOoevzlFScfuDqwXY/c4YoQvqTY/nXx7x\n4KPtldYLjz87YHunSbNd3Xh/9fNXfPSjW9M24AVGw3ip7XgZV8UNQTX9eHo25M7tFv/wyz1+73dX\nP91KKen1I8IoXQqvfvr8hIcPNm4UknyBKM4I44yN9ts/RWV5QZIV1P2bWRdctQ8POgN2WpUFRpzl\nuNbiNs6KgmGc0vRcsqLAu0LofhXiLMc2jYWqyMlwjNA0NmrXi1oP+kMO+gMerleBzGu+x7PzDo/W\nq31wHkZ4poFnvXmkTTeKCCzr2ozHUspls9M4xhCC+oqIn+Owag1u+6v36zBLycoS3zRxDZNngw5C\n03hQa722Gvl1xtLDIiOXkqblcJqMCYuMD4KZp9MoT9E1bWpeehAN0DS45S4ODnSzkOacHcQoTzhN\nh7iGTSJz0jzjR41bvAw7bNk13MnyTtIBvm4TGG9vLVI51xccpl0+cKtBkuusVJRSPIl3+cSrzulE\nZjhzxCouEzpFnzv2YuWpl/dxhYOjO5znHUzNomGsvmb3iz6ucLHnInYKla8kUKKecHh+TtNYwxHV\nNSuVCQINU9iMy8GEtL07f7hvwmbm+wipjoEC8Q1OJb63hfiBwfGdG5EtANM2rvWAEkJ8bbJ1sZyv\ngwuyBbB1u71Q3VoFr+ZMRfD3Hs5MO/denhHNVY/ufbBBNGfL8Du/d3+JbAHU6i5RmLK32yG/VKnL\nsoIkzjBMHSkVXz4+mv6v2x2TZQXjcUK75SOEYGfn6lBZRSV2v0y2AD56uPVaspUXJaO572NbxoI+\nqzMIGYYJSZpz2q1O6rPemHGU0htFC1W0C1imcWOydR18x5ruh8tkC5iK0bOiYLxisrMoJXudq/UO\nrmUutaC26sG1ZKuQkkGcsNOo0XQdXMucCuUvyJZSinXfox8nNw4pn0ep1MJcWlIUS1OHX5yfLVWq\nHMOYasEuTyS+GPRYd71K26UUaVlwFoc861etzbplY86J0wPTZtNd1OANs5TjqDoG0jk91Wk05m3h\nGxZNqzpWNp1ggWxBJaKfd4oXmlYNCyjFV+NZGzcsMl5EHcK56tWjYJNbToOsLOgVMS+jDve9Nq5h\nEZUZuSzZshsLZKtUks/Hy22mV/HZ0r5UkylEoWkIxJRswaIdS6FKMpkv/O+CbAEcpWfsJ7OweFd3\nJpXWxX2uMQuudjWXTKVE5eqqnC1sMpkynkT1pDJlP91d+dqa2aClr2POJd/ZwkHXDEpV4AgPS7w7\nr7t/LGQLQGjb3yjZ+r7jPeH6mgiaPqb93TrwRuOE04OrNTCXoRurR56zNGc40VRdtBWlVBztV8vu\nd0Nu31tfmEa0TB3jhtogw9QxLZ2L63SRl8hSVoQrLXj27IRf/WqXu/fajEYxT54eUxQle3sdev1w\n6ji/vdUgilbbPOhCcHunxav9DoNhPM1tLEvJq/0Oh69pI0opyfJy7ndFbzBrCQeujWubmIZO4Nns\nHffQNA3HNikKSWcQUV7ST+2e9BiE8Upd1U2we9ZnGCU0fZfeeLE9/eq0R5zlRGnGIEpoeA6ebVFz\nbY56wwUfLF1otN4B8ZtHKSXn44hBnICmoVQldI+yDKkU3SjiYFBpIW3D4OKo2+31F/y3oCJvqwjZ\nhu8vhFT3k4SjS1lwP97cWjqmPdMkLQteDvp0k9mNWCnFplsJwKMiqwidAg2N20F9+pphlk69rjZd\nH/9S4HQ3iSgm7bnno0rsraimMY/j60nXs1GXQXYzjdRBNKCQklyW7EbV8bsXVVFJLcsln+iQdpyZ\n3vGu1+KRvz51re9kVTszLnM+rW3zPzTu0DJmCQ1hkZLJghfROS/CGXHrZGM2L7nMS6UY5OESOU9k\nzknW54vxHi/iY55Gh9O2YqFKnkWHPIsOGRYh4yuIEcAD5xYts0ZcJoyKar03zPa0RZfIlESmDMph\nRcQokUgMdIbFTHc7KAaMyhEn2QmlKrGFMzU+1TVBXW+QyJioXJSOWMJCFzqnxdHC3yM5JpRDDM0k\nldGVUT9vCqkKusWLd7KsHwKU+uE4D7xrvLeFeMcIB5W79LcpntcNgeWY6Ib+tUZiy1JSFHJBAK9p\nGpZtYpo6/W44NUa9gNAFSlXarXCc4roW4pJAXUpFOiE+vU7I+qTc2umOkaXCtAzOzkbcu7eGYeg0\nmz7HRwMePtwgCBza7WDquXWxnmfnIxSKPC8pinIh7zCMUgK/CrktihJnSogV7aZ/bbXQ0PWpo/zF\n99d1gWXqdCf71p1UmkxDp+Y5+K6FpoHv2iRZjm2ZC1XPmudw1BnSGYSsNV7vNzO/D4tSYpsGgVuR\n3KPuiLpr8/K0SyvwMHTBMEoIHBtF5UtlGhWpLaREqVk1TNO0a9tylzGIEoTGUlVQKUWpFELTMITA\nt03GacZWrYY3+azj4RjXNKjZNvWJC7xnmdMbvGMaFQGb/K6U4mQcch6FBJZ1bSUysCz6aULdtnnS\n6bDuVZqgThxNPbou4BgGDdum5bjkZYmYTFBmsmScZdwK6thGZaXgmeZUW6VpGoWSeEZF2p70u2y4\ni/uuabvUrcqiYGNicCo0DSz4+dEhD2pX69LatntthM88SqVw9Wrd1iYxPaWSmJpOrko2nep8ujw9\nOCoSTtIRTdOlm0V4uslB0qdleRwnQ9asSt+Uljl10+U4HSCVIjDsqSWEq1uMiwRHmIA2nUBtm8GS\nNcSgCGkaPtt2i3Wrjqnp0wDsXJX0i5CWXmdQhJxkXZpGsNKHq7JvMJFITrMumiYIDI/n8R4No0am\nchSKDWuNUpWYmomj27i6i6d7pCpFR8cQBpZmUTNqWMLiODuibtQRmkBD4Ol+RQg1hamZlKokLkMM\nF2SiU5u4zCsl6RTHNI117EmLMZEhlnCmUT2H2RMC0V4i/Wf5CxwRIK7RGWmawNKuf81vCpTKkOoZ\nQrs+4uvr4L0txD8iVFWbryeLK/LyjcZzhRBTEftl9M5HvHpyfKPlWLY59d0a9EKkVJyfDHAmdhDb\nt2c3EKUUeVa1UYKaw517azSaHgpFElcH+6AfTScRv/zikFJKHjycnWgbG3XqEwLnOiaGobO5WSeO\nM3ZuNRcuXmUp6XTGnJ4N0XXBndttnr88J89LsmyxRVkUJUpBMIkLOj4bIoRGq1F5fF20/Tq9kOOz\n4fTni2rY4rbV8Cf6PN+1cC618kop2T3usXtcVTjWGv6S95UQGve3Wjy6fX0bdxXiLGccz6p5QmiM\nkpR00pa9qGZlRYGp64zilKwosQyd9Zq/EFz9pnLNMMtI8oKnJ4tj8qMk5XjODsI2DBzDYL7xd7fV\nWKhKXWCvPyDKsgWyBfDZ6RmbgX/jiJ77jSZC07hbrxNNKmVhvnpa9eJz9kZDHner77LtV+3BXF5t\n51CfmIvausFvtavj9h86x5X9wqhHXhYopZbam+uOz281N3g+qWIVsuTLwTm99O1E6C3LXagmKaVo\nmi4FknGxeGMpZElYVMdLzXC477WRSnHHbfL56HhqBXHPa08nIw/TAaksMDQdWzPo5xHddMxh0kdo\nGqbQ6eVjTrPqXOnnEcMVE4yOsDCEPt3evxy9pJSSXBbYwuRD9xZfxrs4msUj7/bCdypksXR82sLi\nnrNDfRJAfd+5hdAEvu7h6xMPvKJPrmbnv9AE/WJASYmhGehzJGbb2sHQDJ7EjznKDiefYeOKalkS\nSaJikkn17SjbJZMJmibw9UXX+bqxRqpiysln37I+Xtk1WDPu38ge4ruykPi2oWkWuvjRlf+v2uPP\nvsU1+nbxvsL1juF4NsY13k43wcluB93QMe03X85ldh8OY5prAeY165TEGcN+hDvHyof9CM+3SZMC\nz7c5PqjMTS+qQ2mS8/SLQ3rnY9a3qouRaRmkaU4UZpSlJE0LNrcajEcJ65s1glrVwihLyd7uOc3m\npCogBKZVGaJW76tunNbcOh8e9bDMiiwFk7aYbRk0Gx7epYEFZ1KRA3Ada1LtqpDlBbsHXRo1F9+z\np/9TKExz2ZTyMi7bPygFaV5gmzqOvayBuoAQ2rVav3nM70PbNPAdi+PeCKWgFbj4joVtGozjFN+x\nOOgMeXHapeW71D2H/U5/GmLdGUUYeuXu/vS4Q829vno0j6woqzak5y6Yk9qmQd11+Oqsg2dVxrGO\naU5fE+c5L7o91vyJaW5R8Oy8w7rv4xizylaSF+SyxNR1NoOqxeeZJorVIvhfnZyw7i3mAuZS0k9i\narZNw76erDVtB1s3pkQwsKwrY36UUjzun7N5qaolpcQzTYQmOEsiTCH47yd7eIaJoxv8snOEsHXW\nhEtrUsWKihyhiWkV7OviLA0ZlxktyyUwFp+kE1kQllWG4qhIcHWL51EHRxjc8Vo0TGehMtXNQrbt\nBqbQcYSJb9iEZcZZNiQwbGqGg6tb+IaDI0xexuesWzUsYSwsJ5tot+arbFt2k0JJ/nb4hG4+QtcE\nLTNg027h6jaGpvM02mPNbHCUdTA0faniNe/pViqJQi1M/wW6v+BuX/0tWDkhePG3NXO9akFqxsLr\ndE3H03026m2iKKOmN9AnLUhTWx72SGSIrpkLpC4qBxiaNTEf1VaSsO8SueyRqw6GthxbJFVWxex8\ng1CT9vdVqP4n0LS3lz58nytc7wnX9xC1lv9WZAuWDzYvcJbIVllITg96BJfag9bkM7vnQ4K6i2kZ\nCyTMdkzCcVJ5bzV9dFPQaPsLLUjTNPB8G9PQiaKU0TDGry0aowqh4bn2VMifZyW2YzIeJ5SlpNHw\nME29qh4UktE4oVF32dvrYjsmtYmWaxymeK61dAKrC03OKgd2XdBu+jx9eTp1kIdK2D5/g+/2Qwxj\nkYB9+fKUtcais7sQGpapc9IZc9IZEXg2g3GCZV4/THEdVl0whNBIi2ra0Xesqp2n6xi6wHdMdloN\nHKtybb8gW1Ip+mFM4NjoQrBW895oQtOzTGxz0Ql+Hg3XWWl1Yer6lGxB5Zl1MgppuQ7WXGUryquJ\nPPdSG7Afx8RFsRRUvRUEU7KVFgW/Oj3hXqNBbTKFKCfVpqu+o6ZpS1W3g/EQUwhMoVNIiQacxiGl\nUtytLUcGFaqym/AMk6btYOkGYZFxL6gidALT5tHGGp1hyItRb8kq4k22/xeDyq9rPsbnIBpgaIJh\nnrBmLxM4U+j4ho2kOgds3aBteVMX/MttwJNkxJPwhFtOs2qnKmhbPp5hUU7ai+fZCFuYGELHFRa2\nvki2noZHmEKnk49ozhmmVgRKZ9Nq4ukOkczYttsL77U0E0MTNK5oL85jVI4Jyxip5JI9xJviIN3F\nFR7W3HJKVXKQvWKnvnWj+44t3AWyBRDKPpKSTIXYYtmG5XWEYxUS2adUGYZ2vbnyTSBwMLSZI38m\nTyhVhK75JPIZulb7xkiXUjlSfYbQro86+jpkCybXz3CMYA+lXT1g9U3ifUvxPaYQurZAtgxTX4js\nGXQjwtFiyyCoV9UpKRX1VnVRrdU9knh1G0fogtOjAY5t4tgmJ0d9Dg+607bBBbmTUnEwEfw3Gh71\nCTELw5STk5kA1jB0bMdkc71GrxdyejpkY722kGl4dj4iywp6/YjzzvJYcF6U07bhJw+Xcw+H43i6\nfqueTlt1l+GKoGzLNPjo3ga2ZWLoAl1oaMBX++fT1t/r0B/H9MerW06jOCUvJGs1n42JBsw0dOIs\nR0qFZRhYxnJ1rijlQozOIEpWCvez4u383a4iD/04YRAnHA1n++C3tzeXiFvdcRgmKYOJqalSiqed\nDm3PIy8l59HV/nUK8AyD//T0S5RSDJKE/7r3iv/01aKn0Uk4ppdc3cpr2g5ZUZKWBfvjIeM8o2E5\nCwL503gmqm7ZLromSMtiGir94/bWtD3XS2NOozGuYfJhfTYpO8gSOumb+fF9Ut+kYHF/3XLrrNs+\nt93r8yNtYWDrxrS9CPBVeEahJKWSHCYDojKjZXns2A2EpjHII/7P/b8AwNdtWuYiYejn0TQWaH64\n4QNvk5O0Tz+vpnRLJRlNPLyUUvzF4HMaps+W3WQ3uRR2LzNydTOX/qZRp24E1yZ63LRt/sj9GF+f\nkcODdJdMpuxYd3k6ekwnPyWTKWf5IcWKcOtVeJn8CpSGrzep6avlA53iJcUbisYNzbmWbBUqZFS+\nvNGyquva7Lw1tQ1MrVpXV/94IQ7oXUPTTHTxk29s+YswkXxzOrG3xXvCdQMkUUr4NUxQvy+Ixglx\nmKJpGsE1nlgffLzN2mZVcu6cDhc0UoNuOG31WZbB5vbswv/08dF0Qm88irl1t01rLSDLC9Y2aqRx\nzt5uh+Ew4mQyLSiExgcPF0OxAYLAYWeniWnqhOOUPC/Z3mpwdNzHsnXW1oJKP7XbmUb8uK5VVbBa\nPpsbyyXzx0+PiOKrQ6xHYTqdoGw1vCUtlu9aV0YBnfbG3NtuYZkG47ia0Ht0e+3G7u6ebeKt0OGd\nD0N0TcMy9IUoozDJyIqCrCgXJhHnYRk6t1qz7fDspDMlCfPY7QxW2llEWbZkhHoTDOIE3zJZ919v\nFHuv2Zjqtr44PWPD8+lEEduBz5p79TEa5TkPmi1+e32TfppwHkd80l7jn95eHDlvOy6+aXEazc7f\nvCzZHVbHn29a5EqSS8mDehNHN+gl8bSSlhQFX/Yq3VchJbujylajlyaM85xClpxOJhL3xgNu+3V0\nTdBN44XWZ9t2MYXg+ejm08RC07jrLT6hXzwIXFhDSKVIypyX4Wy5R8mAUkkKWU41W6+iLmumj6EJ\nullEXGT8eniIoBLbHyUD6obL/3HvXwBMMg2rY3fdqqFrglFRPZBIpXgSzqwiDE3nI/8W99x1hKZV\nsUMTR3hN0/jXrZ+gawJbmDy45OKeyAxLW32OdLMBu8nipKAtLAJ9dWs2lgmH2dV61dPsZDqRmMnZ\ndWA3ecmoGBCVY2IZcsu9i4GBpKSpr11pdnoZ2+ZDGsbytWwe6+ZDjDckNYbmoF8iXKVKKSfEzdB8\nAnH3jZZ5gSqk+zeDBmiqi6YmdiKaBt/DQOzfjC39DUNJtTK374eIq54ApZyJ4C9+Pz8ZVNOPc8Tj\n7gqz1LKUKKX46NMddF3Q74WcnQwoi+rvv/7FHmmSE9RdPM/m4FWX1mTqUEr12qfSjY0atm1UZVoF\nf/Hfv+LJ02OiKKPRcKetu8C3r43w+eTDbWqBw2AUczapgEmpptFAt7ear20D5vkiYflq75w4zTjv\njdH16r1rE7J2USH74uXJa48fyzQWJi1LKfl8t3qfY5m4tsmX+6fTDMlfvDgkSnJennV5cVLdbMdJ\nSi+MOR+GxFm+RKI+3tnAMZdvHh9urS1Vqw77Q5J82e/qJrjXamDo+lJFqx8nvOz2OBzMKpeaplFI\nyecnp3y0voYhBAfDIblcbL0keb6wLp0oQimFb1kopXjUarMd1Fh3PV70e9MoIFPXMYRYqMgYQhCY\nFsmksvdfDl7g6AZPeuecJxHnSTQV078Y9bjj18hlia5pU4f6bS+gOdGMXeiAAtPi+bDLXx7uYly6\nibmGybrjT6cMvy7SsuCz4THnWcggS9iwZ+1xWxhoaMRlTi+vKk3bdp2m6dLPYwxNcNtt8pPGHWqm\ny7ZTx9BWW8XM4667Vg0aqIINq8FRWg2KpDLnKOmigJNJSPWGNXsQmyeelz9jzaxPt59SakrUqu9h\nIuf2eS8f8JeDn9PPV5tausK5MlOxWp5NJKsqY6foMCh6xGXEhrnFQ/cTLOHgaQG+4dMw2zjCw5z4\nd70OhcoIZe9b02wVKqJQs8rtN629+r5DUx2UclF8Ny3Em+K9husGMC3jSif57xuuEwyalrGg51JK\ncXrQJ5iYkp4c9mi2A2QpSZIcJRWNlo+mwf7Lc2oND03TCMfJgqD9+LCHLgRpkmM7Jnle0l6vUZu0\nIW3HRErF+kYNz7cRhmA8itGF4Bc/f0Wt7qw0S72APrGeCKOUjfU6D+6vU69Xovf5XvkXT49Q8hrB\noi5Is4I0yen2Q9bbVfWt24+murAL5MXMQuACtmWwe9yjXfemf2/WXCzT4PBswPZavWrhGfrC+9Yb\nPk/3z2j4zo00PL5vE8c5G40A36k0anlR0o8SNhoBSV6QZDl31htkRcmj7XVKJfnVq2NqroXvWAzj\ntMob1AVfHJyyXvPfKEuxlJKG5y4FYN8Ef7N7QDeMiIuc8zAisG16cUzTdfFME8vQp4akUN2QA9vC\nnrRGt4JgIfomznMen59jCEGYZYzSFNes2reuUVlwWLrOaRhSyJK6ZXOexLScqkKmaRqBtWj1kcqq\njeiZJr/V3kRoGllZ4pom9+uVnqmQki0vAK2ylxCaWBLZn8bRVFjvGiaWbnB3rYUj9ZU3X0c36KUx\nJ8mYprVYwTtJxjhCv1EkTKkkgzzmvt8mMG2UUjwLz1m3fVy9OmaejE+xNJ227U9jj8ZFim9YOHql\nnaosPiQ18+a6GanUdCLV023+qvdk6q/mGjaevnj+zTupn2V94jLF06vPm9dt5aqgkw+oGdX2zGRO\ntxjgCgdLmJRItq11fN17LbGRSiKRC9vSEQ7epDpW02toCHRhYAubTn7KqOjj6QH1wJ9eQ5WSnBfH\nBPr1LVyh6Xj6clX9m4KhuRhfU+v0mwSNUVXR0qz3ovmvg+96w71LZElGluTXTgx+XbzJwaZpGmUh\ncVwLyzIY9qog6iwtGPVj1rYuTCDheL9Le6OGEBpnxwOCwEGbVIM838Z2TM5OhpydDlnfqGPO3ag9\n38b1qhteFKYoqfB8m89/vc9Pfu8evu9wdNRHKYU9aatJqfjVr/YIo4xWy+f4uE+WldQCByEqLdnl\nala76ZNlBaahkxclur781G6aOp5nY06mCg1dXyJbAIcnAyzTwDR0nu2e47vVNN5l0fzFz5ahk6Y5\nx90Rx50RG81g4TXrDf/GgunL+/DZUQfL1NlsBOhCoKRiEKfstOo0fZdXZz2UAl3XyPKSduARTCYZ\ndzt91ms++50BgWMttUmvgmOab/S0HmU5Lzo9LF1H06DlORUxsiyklCggsKvPnydbwzRF1wSv+n1a\n7syIMy0K9AnhNXUdb7I+G75PzbbxLQtrUr26WJ5E0U1iHMNgkKbERY5UCvdS/uGvzk+4V2uQS8lo\nLnexZtl0kqpyZgjBV4Mu665XkTpN4zgck0xI2jCr1vv/3n/KXb8xNUi1dJ2tVo0oykjLYmVmomuY\nS2QLqqqVo1896ToPQwjW56pahhCsWTMiEpUZaPCBv5i4MCwSxmWKp1s8j845S8fsJz3aVjBpN46J\nygxPtzhJh3i6haLSzM17prm6NSVWcZmzZtXZcpoE+uK5lMqc3eSUlll5hfm6MyVbl6FrOpYweR7v\n4+sunj7RjSJx9Yp09YsRhco5K7pLMT5KKeIy5ig7pqQkkSmePtvOg6LPqBhOtVv9ogcobGEzLkc4\nustIDtmub9Afj9C1asDjKrIVlUNGsocrfjjhyfMoVYgkQbwDMf63BU3+CliDyw8lWjDNVPw+E673\nLcV3jCzNSa5wQc+zkix9c03Mm0JKRbwivPkyiqKk0Z71ue892qxc012LzVvNhdfVW/609Xf73trU\n3DRJcg53q9DW7dtN8rxgf7fD6fGALK1aNvMtQ8OsxO/HR30efrg5DZne2mpMxfNQabsM08CdVL40\nIYjCjOPjAUop9g+6lFJydNxnMIo5Ohmg64K1dsB5d8Svv9gnSa8Wgzdq1+c63t1pTT/70b31K7Vb\nF7Atk58/OaDuO3x4pxKhdocRp70Ruyc9ylIu+Gm9Ce5uNHh2eE6YVhcRyzSqibyJXs4xdZq+y8Ot\nNXZaNR4fnnLUq9ou99dbtHyXj3bWb1zhGqcZ56M30yx6lsnHm+vUHJsP1trIiXP73WaDUik2Ap+z\nccgoXdwGF21LzzSn4nmA4/F42vKDqsJ0YWq6NxwsvPazs1PCLON4POZhs03Dcfl0bZ3btfq0yjWP\nH7U30DSNk3BcVYrShF4S008TtryAUikGWcKnrUXhc1zmqImIfZgl9NKYn7S3qU3ajKWSU6+teff5\nVRjmyZIH2JrtERYZu2Gfs2TmVK+U4jgeTX+e1+E9Hp0SFxlfjk4XCLIjTDbt5XiyCw8tQ+jcdds0\nTJe2FXAQ9+jnETXDpW64lEry88FLBnlMPw+nHlxSKZ7FlU7ms1EVgPxJcItNuzG1Z6h0ZRNbE2Fy\n392il4+nbd3n0SH9bEQx0Zcdp51pm/A069LPxyQyo1QldT2YEiupJE2jRtNs0FxRTcpUzlCOuW3d\nIpEpa2Z7+r4XyQtSmeEKt6rsZye4wqM2Wc6WdQtbODT1Fq/CF/TL12vtPL1O21jUpKUypJMvB0O/\nx7uB0n4EV2j+fgh4X+F6x0jClDzJcS4x3CRKOdvtsHX/zc0vT/Y65GmB69u8fHyI69tXhjz7vs2g\nFzLojJdsHy5j/8U5rm8v5CwCfP7zVwhdYJo6w17E0V6XUpbE45RGa1GIaBg6aVJNy7mGUxX5AAAg\nAElEQVSeRXu9RmstQBMalmVwsN/l+KhPveGi6wJ9slzPs8nTHE2A69pV9eKS0H1tLcAwdExTJ4oy\nbNtAN3Rcx0QpOO+M6PZD9vY6WIa+4EYfhim3tpskacFf//0LpJQ0G2+vn8nygmd75yillny/pFRY\nps697TaGEBx3hzQDF02Dv3u8x+2NBoZRien9G7Smfd/mv/7Dc26tVdtDF4Km71JzZ8fURt2f6s2e\nn3SpezaWUVXktho16t7btxs0DTTgVafPWvB22ywpSrZqVWtwnKYEtl35NOmL05T+xMcrsG3cSbtO\n0zSajrOgATOE4Gg0olSKdc/DnbOX2PR9LF2nZtkLy75coesmMWdRiDepeG14PoFl83cnh9wJ6th6\nlb14YfZ5uTrVst3p9KIldI7jMQ/r7WrCL0s4CAcITbDVrBFH2dR367+dvAQ0fMMkkxJDCIZ5yu64\nz7qzWDG1hU7NtBnkKTXDmqtY5QSGxTBPeT7uTN3l1ywPUzcIDGs6KXnx3feiHo5uVpYXSiI0jXU7\noG64VbtZq7RtoyLmA38dT7fQJ23GXhHxib9DiQQNNibxPpqmsT75ed2qTfy+YgZFRCYLHGEyKiI+\nG7/ijrM+ifQ5QkfjPB/QMmu8jI/JZYEpDBzdJjA8nEm1rGEE+IZLQw8Iy5hIJvSLIQJBieQ4P6eu\nBxxlpwS6j0DjIDumbtToF/2pq3x9rvp1kO2zY+1QN+p0inNCGaJrOpEMkRPyepjvsWFuYwqLdq1O\nEWsYkwpXrjIGZQdX+OynT6npVweYG5qFK2pvVB1+1yhUhKRAvEbsLzTrB1XdApYrWyvwvsL1jwh5\nVlAUy5Ngjmdz70e33mqZW3fXaE2mBu99vP1aPZnlmGzdbV/5/zTJOdrrcO/R5tSeAaoQ6eePj7j3\naJNGuyJN/e4IP7DZ2GpMXegvwzB0LkQcFyRgPEwYjxMGgwg/qMTsWVrQ647J8wIhNHRTJ03LpexB\nqIi2EBqOY/LlkyOE0Dg87tOou1QRI7C5UefRg03W12ogBPHE4f7gqMdonPL3v9xlMIz4n376gLVW\nQBilZJdsGr746nhagUuznOe71UTa0emA/nA2xm+ZBh/d31iZ9XfcGU7tInZP+tP4HMcy+dc//YiN\nVg3HMths3bz10PIdzgbj6VCBO9dqPRuE0+rWQWdAO/CWwqzfJiT6AqauEzg299feTIAqleLXRyeU\nUnI6Gk89r7br1c3PnZijPj0757OTk6X3d8KIvTlBPUAvjqe5iXcbDdquO9UjXcZFa/FwPCLK8yqQ\nOgynE4ptxyUwbf6vL3/Nr85PUEoxzjJ+d2ObXpqwO+ozzjNs3VjQauWyJClmlelOEpFLyYeN9pSU\n1UybpuWy49X4ojMLXn456iEQNC2HsMgZ5tVxsuH4HCUjXo0Xq2CapqFrgtteffodNU1jzXIra4ks\nYt1ZbFcrpTjPwmluYS5L/p+TL1m3fFzdpJSSv+69mr5nN+6SlNX3GRQxa9YspucsGyFRaKoyMTU1\nnf14daVOaBpRmeLpNg3DI5UFimqI4I5TDdfoCB66O+w4a9x3tyiV5PfqH/Ghf5vTfDnXdFCMOUrP\nUChqhs+a2WTTbNMp+rjCxtIq09m22SRRKef/P3tv9mtLmp51/uKLOWLNe+3p7H2GHE5lVmXZVV02\nNGDsgm6EulH3BcLc+sKIvwBuEJLNFbbkC1tCQlxTF21LFqhpI0CysNrYBmNsp7PyZOaZpz2ueYo5\n4vv6ItaOvdcezlSZWWl3PVJKedaOtVZMK+KJ933e58lGGMuQ6YbeIC0y+ulgpaq+Y+1Wflsdo0vL\naOFoZTVrKqekKuWG/fbZo8Bh9oxYlb9/AwOT8ve1a99+6VTfD9vsVKkcxeXV/XnxyZe8LgqlXi0z\n9P8P+FGF63OG5ZjYro3QBXv3DtENHcs5zbL7QfGyz3gVdi+EwLaNqkrWP5yQ5wXzcYDt2RSFpNZw\nEEJwfDCl2fbxfBu/5qCU4tG9Izrd0ydITWiYlrGiqXJcC9s2WevWiKKU2Szi4b1jJqOAVruG61k4\njkW97vDhnz6lVrcr/db9+0eEYUK7XT79t1s+43HA9d01HKfU8riuxSKIyYuCet1lZ2khMZ4E9Psz\n3r61wa3rXXzP5vnBmGbDJUlzdCFW3OLXO2XEy2Fvim0Z1b9rno3rnKtkKXXh/b3xAl0IOs2y4tSu\ne0RJVmUfvskx930bWzd4dDgkXsbVnBCqh0dD5lFCp1aamApNYxJEBElGyy8rmoWU/N9/9Am3NtpX\nmpa+Cl7HpBPKbV2vlVmV4yDCtQySvCQrQtOYxgn3+wO2m40Lwvg7xz0WacI7a2urFZ9lK/FFuqYo\ny3g8mbC2zFQ8DkofLFTpvO6bFp8M+2z5NVJZcL3e4Ea9JJO9KGDd83k6G7O3mPFWs12ZhJ5gkaVM\nkpjjMGDN8ZilMcM4pG279KIFljDQNJhnKXXTptPwyZPyoatmlhmXHcfl6WLKrtestuXteoe2vVqF\n/v7kiDXLu7C9R/GCuMjY8Ro0zwjc+8mC52GZj+jqZkXYtt1mlYeoUGQyZ5pFWEInU5Km4fDZ4rjM\nOxRm5a8VFRmebhEVKVGR0rI8NqzTik2hJMfpFE+3eB4PCIqYluFjCp2a4XA32K9sHiSKTBWM8jkN\nw2Ocz4lliqeXFe2O0Vg51icC/i27i0Ixyecsioi64dMy6uSqwNEtDM3AETa2sPB1j9pSZK9rOobQ\nmRYzLM2qBPknAn9NK6tWhmZiCRtTmDSNFrYo92emMsbZAM+zaOQbZ9zlFZNiRO0NRPGzvEeuUizx\n4m7D5wldsy/YSADkao5BHf1LFdunSLWH0JbtXTmgkHsIsfaS9705vsoVrh8RrjeAUgolVSUaPwtN\naJW+qbFWr8jWF435JCQOEjrd+gv3mZRqqY86vamkSU695fEHv32H9799g8ay9bb3ZMDb720t2446\ncZRimgaua2GY5RRWGCbkucTzyhMsDBPMpct6nhfoQtBoevhLx/t608WyjJXKWmetzDg8IWxrazXa\nZ1qXRSFZBDGNulstk2UFmtBo1N2VCcckycml4vpOm9k8wrYN2k0Pc9mKPEuWnu4NAQ3HNitbhpMK\nnaZpTOcRtmVUVYTnR5OSjHp2OTU4iyhkweFgRqt+agVRc8955hSSg8EU1zZfSGKeHI0wDZ1W0yMM\nU2quzVrDw7MtpFTMwqSc6HMsfMdmFiZkhaRVc/n0+TFhmrPeKPdbp+bR9r+8i/wkjFZc3Ls1n4eD\nIUmeYxl6NQVo6QaebeGZJvMkob8IaDgOG7VSO5UvJwVPoGnalWSrkJJn0wnrvk/njODeNUzcZYRQ\nzbKxdJ0tv6wKnYjjDSHKVq3tIDStNFqNAza8Gq5hkktJmGVYuo6jGzQsh6ZlI7TSlX7Tqy23SWLr\nOklR0HHK341maQznQSW2N3UdRzdpWc4FMgfwcD7EMywSma8QsrOomzaDNLiQq+gbFos8ZcupM84i\nDqIpDdPhv4+ecsNtV/svU5K24eEZFp5ukcmCa24LX7erqUagCsRumh6+YfOHk4ds2I1zMT4ZljBw\ndYu2WeMomZDKDE+3SWVOw/SIihhHt5aasHK/eLqNK6yVyt0JclWgkIzyGY6wOUj7bNtd/DOi90Qm\nJCrlUfR0Obl4sdJfIGkbTQb5YOlib/AgfoAt7EuXPwuN0hRUdyQkq+dgTW8wy0cYywrbZVgUowvE\nytK8L5VsnYVSikH2ezhiC6EZFCQIzXxpq/HzhKYZFdkCkGqA0Bpo2udjj6KpPcBa0XV9lQnXj1qK\nb4BgEnL0pHfp3+Igob83/JLXCGzXWonhuQxpkvHswcVWTppkaMD/9rN/uaoyAaBg2JvSOyxL//2j\nKUUhGY8WlcN8ME8qEiSlYtCbV0ap/eMZi6VjfVmVMitrCCkVYZgSBgm2bVY2E1Iq9vZGPHhwjJSS\nwWDOkyc9umulw/wJ9vfHJEnGcLSgKCSjccAiSGg1PW4vjVSzvCiJ8bmn6M8elOaIhqFjmfpyIlG/\n4MF1PJiRpBlJmvN4b0jdd9jqLg1hpwH3n/VpeC5N38HQNeI0Z7RsQ2Z5wWReCqiHsxBNe3nF6OZm\nG/9MVc13TnMPpVJEaYahC7pL/daT3ogky5lHCd/95ju8v1O2cYSmsdW6KJj+IrFIUhRwNF/QX5TH\nqeG43Oq0ibOy1dT1S4uRSRRxNJ/jWxZhlldC+u16nY736hdiXQjW3CXJOXOMXfNqYjtPE/7ocL/y\n9IrznM9GA240mvyv199hnpbrMogCFllKlGdEy3biiUbqs/GAT0Z9AEZJyIPZkP3gtBU6SWMG8Wk7\n+iCco5RaIVtPFuNqHXa9JpM04uH8xdeNd2pr5FLyYL4aJn7L75R2LXlC3bD5s/Ee150WkTxtg9b0\nMpJHW+rTjpMZhZKYQl8hcKMs4GHYr/49SOYMknLbjpIJGmXLsJxkXFbQlCReflfdKMlFrHIsUV5L\nCiXpp6Vh7FE6YpoHy/edevAdJANyJblmr2MJk5tO6aeVyJThsvXo6S4towFKQ2iCoAjpp0NSmVWf\ns58ckMiE5/EetijXr2N08M7E7GTLdY2KkIPkVOAuNIGn+3TtU/PSUXZMtjQY1TUTjasrrcUljvlf\nZnvxrC/XyXc3jA8Qy3aoqTXQPyei86bQxQ2EeH0d81Uofbf+/AR//6jC9QawXIt653I9jia0Mnj6\nC7R+uAy6IdAN/YXsXjd0Wmvleg+Op+w97uN4Fu1u/dJqnVe3sR0LjTJH0TD1Ugy81azCoR/dO8Lz\nTOTS0qFed3j+dIBfc1jMY1zPxrKNyo9LCEGWFfy3P7iHaRrYjsl8FpetwqXdg5SS7e0WQggWi6Rq\nWX722QFrnVpFztotnw8/eooudPqDOc2GUxHG8TREF6KqvJ1A0zTWlq1K1zHJc4lhCJxLXN51Q8c2\nSzLoOiaTeUSzVt5Qap7N7maLg0FpH+G7NvMwpj9eMJyGtOouD/cHeI5Np+HR8J2XXnxP/u77Ngf9\nKULTeHA4rAhWzbXxbKuKWNruNFhECevNso13UonrzQJqZ4hbkuVMwgjP/uK85Dzb4slwzPV2k/3p\nnIZtMwgCmq5TZi4uW5t1xy49tITANgzWfI9CSp6MT1uCJzjfKjzBNIkZRWVgtW0YBFm6YjUBJZGa\nJnE12XiCrJCsuS7OUnRviDKmJy0KciU5CudIBYks2K03CLKUQkmcM9YSW16N9aX31pPFhE3XZ9ur\nVyRvp9PEKU6jfixdX4kKuj8bsOnUKgJUtlY1tt36Sz24MlXQTxaVaP4smqaLq1v0kjmLIqFQio7l\nERUZn8yP2PXa1bLPozGJzGmZHtOlGaqGhreM9NE1QVSkHCZTbnhr1USlZ9j00tIuwhZltcfVbXJV\nEBUJGhqGprNhN5lkC4I8wtVtMlXg6hZ1w8MRFpNswdP4GIXCFTZNo0auCvRLDFj34iNaZwxS18w2\nlrAwNB1b2AyyIfNiQcOo0zKaGJrBprVBL+sxzxfomo5EYgubQhX08mMm+ZhUJUzyEU2jVYVUw2qF\nRNcMTK1s1VrCRtME03zIYfqYumijcfK7K32/TPHmIvQ3yVk8+95Q7mGL9srrhuaiyAiKJ2jo6JpD\nWDxaZib+Bai3aNYFIf1XucL1I8L1OUMI8YWRrTwrePLZAe2NBv2DMQeP+rTXV8nSVSdbmmRkaVG1\nEg3TYG2j+UIBvhDlVKHtmKRpTjCP8c5NSNqOwXgUYpo6rmejCY12p0YUpghd4Hpl3E6SZNz77JDu\nep2ikLTbPrW6wycf7/Ho4THXb3YxDJ3DwzHTSUi94VYTio26i+taldu8rouqjfjs+Yida22aDRfH\nsZCFpNef0Wp6ZSD1svp2/9Exa+0a+0cTdF1gmQZ5VmYrti+ZXiwKiedY1ft1XWBbRjkgcAaObdJu\neGUgt2PRafi0G2ULc7PTeGUrht5kQbpsv9VqDs8PxzR9t8pOBLi318e1TA5GM+4fDNhZa1JIueKZ\nNVqE5Y3zDLlSlEkJb2Ji+qoQmoZnWfQXAXXHpu6UZEihLujIFmnKLEloLEOnTV2/QKpOXvdNkzDL\nsA2DXEqmcUzdsiuHelMInk2ndFwPqRR3RwO6nr+MtpEXPLgsXWcURwR5Vpmh1k0LzzBxdIOu49Gw\nbeqWzafjPjfqrbKik2eV19YJ4jznD4+e8/G4x7vNNRzDJJcFpqOTxmWV1xAC69zEo6XpuMZqFa6c\njly9cUilLtyATaFXZOtZOMHXyyBzpRQfTvZpmS43/A5du8aatZyAVIpn0ZgbZwjXUTyjYTjUTYdn\n0YhE5hzFU9btOsfJlFxJ6obLW25ZjVDAcTKjsbSNiIoUR5gMsjl1w+U4mWALE1e3iWRSkbB5EdE2\na7j66nXG0S1MoVPXPYb5jFwVjPMZk3yBo9uVxYTQBC2zjrEkRAfJMTXdryKOdE3gC49IxoQyZJCN\naBlNxHLa0tFdEplgC5t5PqOXHbNrX6em16jpDRIZY2gG/aysetvCuUC4jrJnOJpbkTJbc/BEg2fp\np5jCRiAY5UcEakJDf3Nt0qR4iqk5iDewPdA0rSJb0/wOQpnoy1amIkeRYYo2miYQl0QFvQxxcQeh\ntf5cONr/iHD9APhh77ivEoQuaHZLUXeeFmxcb6OfIwBXnWxxmJJnRUWwdENcGmPz2fef0VlvXLjQ\nF4UkDBJMQ1/RX5mWAUphGDrOGfJm2QZFIQmCMjC5yCWD/gzT0FksEjY2m1UboCgUN292S72J0HBc\nE8MwStH+8WypB5M8etRjc7NZkSClFLs7HYTQKApFHGdYpoFtGzx5PqS7dir2bdRddCHoDWZ0Wj66\nLjAM/YLFwwke7w2peyW56w3nWKaOfW4SUCm1ogkDqm24CtlS13YeutD4/qNjXNuk3fSI4wxn+X1Z\nXk5y2pbJLIq5vt5iZ600Y3SskmzNopg4zYjSnM1z7URdiFciW58d9mm4r+aGfxkMXVB3bLzleqdF\nwSJJqZ2rrJU6KuuVnuYzWeYcumapq4qyjHmWMotjTF3gmRadZVsxynOGYciGXwryz5OtEzydTbnV\nbK1oiX7v4Bm7tQaGrle6pzW71Et9POrhGSaWrle2DmlREBc5txotfqyzhdA05lnKw9mIuu8ilt08\nfWm98OH4iGteeVwOohmTNKLzgpifVBb8Xv8Ju17jhVUvd1klU8Asj/D0Uxf5g3iGv7SL6Fo+D4I+\nhiYqcf26VUNoAh3BQTwhUznbToujeErL9IllRqEknmFjC6PKVFRKkaocR1jES+1W26xVLcZCFTyL\n+1xz1miZpw8M42yxQrwehvvUdZeO2QBNq0hWw1i1yji7/aU56ur5NMrHCDQ6ZpuGUVYJ4yLhMDtk\ny9pkUSzwdX9JuubEKmJezKmLOrqm4wgPS9j080Maepua76xcQ+v6agWsrEqW1b1YBksRvkPb2PyB\nqkauaL0R2ToPW1snUf1SJK/5CM3EEKcVrTfRcOna+ueybl8G/sIRLiklv/iLv8i/+lf/in/37/4d\nP/ETP0GrdTpC/lu/9Vv803/6T/k3/+bf8NFHH/Hd734XTdP4u3/37/Lv//2/59/+23/LH/3RH/G3\n/tbfeul3/bB33FcNJxcix7MQl9wYrzrZLNvEckz2HvUrs9M8L5CFQuiCPCvI84Lnj4YMelNaHX+l\nkqXrglF/hmUbOK5FGCTMZxF+zcHz7RWy1T+eMp9FdLqlXktJhW7oaELjyeMeX/9glzwrmE5CPN+h\n2XBA05hMQtptvxTlG3ql4ZJS0mx6OI6BlApNK/VX9+4fEQQJR/0ZrYbHfBExmYVVxe+4NyUIS11X\nfzAnyyQba/WVzMKr0Gl61VSiVAr7jKD+BHef9mjXvZfmL4ZxyuFwhm2ZHAxmtC8xXTV0nesbLSaL\niDDLWARJ5aV15+lRmU1olELvE4uI/WGpi7FNg88O+hxN5qw3fFzr9VzioSSPdcd+rfifEwwWAbZh\nIDSNJM+JlhUptLKF55rGyvqEWcbTS1qIJ5glSSXAN3W9EtHrQuBbFnXLpu26K+L6k2U3/NNWfyEl\nGhd1NBuef+G1s/mKuhAUSvFoNmbNKT2/GpbNOIl5NB2z7deJipwgS3AMk7ppsRfO2PZqTNOUD7Y2\nCcOUTyY9bFFOWS6ypBLoR8upzaZ19bSYrgnatoujnx7Lu7M+dcOuqmWOfrpfZ3mMr5ei/pNKXKFk\nRa5MoeMIg0WRcC/o4eombcurvksBX6ttMs0jNu0GiczQNR19+V6Ap9GAuuFgCL0S2p+P8dE1gaNb\nNAwfqRRH8ZiGWX7POJ9TN06PeceoV/5bhSzKaqgwsIVFLFNSlVU6sOoYC5MH0RM6ZuvMd+oMszGh\njGgZ5YNIrGJ8vYYtrHJiUTMxhEHTaKKAul5jIscUqmBWTAiLBbvWWxjCuPIauiim7KUPaOgdYhlg\nCx9H+DjCxRIOErkU3l/87UmVMyt6OF+CK33Z/myiyNG1l8cgvepnfhFQKv3cq2ZfZcL1RnT8t3/7\nt0nTlN/4jd/gH/2jf8Qv//IvV3+L45hf+7Vf41//63/Nr//6r7NYLPid3/kdkiRBKcX3vvc9vve9\n7/FLv/RLb7YlX0EcPemRZxcFk181aJpGd6uJLCT9wwnTUcBiVgotozAlmMfcur3J1k5nhUCdoNn2\nqS/bb0Uh6R+VN/zZNKyE8lIqoiij1SpJnSwkjx70sCyDnd0Of+WvfY04znj+fIDtmLRaHusbTQb9\nOULTiOOMZOnGXxQKyzJxPRshBEfHMxZBwmQSUhSS9762zXF/ShJlzBcxg+ECWZQmpJZlcG27zdZm\neWF2bJP+aE6a5ewdXu0AfoJFmHB/ORhR951LQ7Hfv7W58np/vFgJqT4Jj3Ztk2vdJqNZQPOSGKGz\nuLbWYK3h01pqxfYGU97ZXmOjVcMxDbwzWrOtVr0yQ/Vtk7fW22gaPO69fPvOI80LerPFyxe8BCfR\nL1Bu84mvmgbomsafHR4RpKcXQM80ud0tWy9JniOV4vtHpS+WVIpREPKDIkhT/uvBHpMkZn8+Yxwv\nBxiikDuDHlmx+nvdqTXQhWAQh6RFgSEEG45PlGf0woBpmrDmeNxulevdiwJMXScuMhJZUCiJrgne\nb50Kgh1h4CwJu65pjJbrsOXW6cUBaVFUvlyXoWk6K4L2d2qdlbbmcTznMJoxzWKOojkarAjzU1mQ\nyFM/Js+wKJTkJ5rX6ZgeD4NSHG8KnQ27zrNwxCJPkCgSmXN/cYR1JuvwpMJ1FpnMVxzzx9mCsEgw\nhU5QRDyJj5nl5fG8Zpf7TilFXCQoSlE8wH7axxYWdjXFeLWP3DvOzer/C1VgaSa3nOvs2qXPYVRE\nDNIhlmaSyhRdO821jIoIRzg8T5/REV3qepOW0WbXvsXT5AHJMqg6VxmJPBWhKyVxhc+2+TYKRUGO\nJWxs4VSVo2nRJz0nXC8/K0VDYH/JEUCW6LzBg1dOLB98QWt02fc9frlPl7oP6vWSL76qeCPC9cd/\n/Mf89E//NADf/va3+fjjj6u/WZbFr//6r+O65Q0jz3Ns2+azzz4jiiJ+/ud/np/7uZ/jww8//BxW\n/6uBWstH6F++2Z0sJFJeNA19EVzfZjGLuPvRczzPqkT09aZLu1vHMAWb1y43vGy2S/F2EmeMhwve\n++YuAEqqKrIoWMT0j6eMRwFhmCClotF0OdgbkS1JmeOY3Ly5TqPhMpuWF6ibt7o0mi6zWcRgUBpd\nJknG5maDzvJ7339vm51rbTzPpt8vl3nv9jU++PoOO9stvvXN6+xca1OvuWxtNKnXnCqSp9X02Nlq\noetiaZ56EWmWM18amKZpTqfpk2Y5zw4uj/n45OHRyr+FVoZMh1GKUoqDwYx5mJQtCF2QZsWKdcJl\n0DSNTsOrphUbnl3psSzTwLFMZmFMmuVVVuTecMrbm2tstOqs1X3e3rza9PYq2KbBjdc0Oj3Bes2v\nqi6eZdHyyv1r6jptz+VGs0X/ChI1CELiLOObmxss0pQ4z1lkWTXBdxZxnjMIQ+70ehf+LpWikBKp\nFNMkxrcs/vruDdqOy6Zfo2mXRNc3LdY9j3xpEnocLOhHAYMopJCSxtJGYm8xQ6IIshTftFhzSm+s\n2lL8fqveouv4bLg1jsI5nn6xTfN2o0MvCfkPe/dQSnK4jOcRmsbX6l3MJcE7i6S4Oo7KOGcpsenU\n2XYb+LrJLb9DVGQE+SmxzVTBk/D03A3zlEke88n8kPtBny37NCNQQ+Oj+XPWLL+0fBAWe8moemgA\n8M9Vs8Ii4X5wxKI4vWGeELSDuJy4/Kn2NypbiBOctBz34z6DdEpcJLzt7mAKg72kfMhxdWfFEuIs\nNE0jKkoH+l42YD85YlbMeRw/pZAFru6yZq5RqIJBNuBh+IhncWn8up8+J1MZ6+YGh+kBn4QfUdPL\ntu26uVXNIBYqr6YTw2LBKO+jawau7mFoJnW9fWG9OsY2tvCY5Meo5fmllGSUPWdc7FfVLalypHq9\n6/ZViOQxUq3GxS2KxwCkcrJiAPsqkMTofHEeWechxHtoL/UFe6sMpv4LgDdqyi4WC2q1U7au6zp5\nnle6m263fMr73ve+RxiG/NRP/RT37t3jH/yDf8Df//t/nydPnvAP/+E/5D/+x/+I8ZIbULvtXRAq\nf9Wwvr6qmSkKyWB/xOaNH3z89eBJn42dzqVRPr39MYap0zn3/efX57L1bTRcbMek0fLIswJNK3MR\nZ0q99P0Au9c7RGHKdBLyzu1N/vN/+j5/7WfeZ329zq231vn9//cz1tZrbF9rsX2txR/+13sEi4Tb\n751eqJRSRGFCrzflgw92uXNnjzjOaDQcmk2XZ8+G3L69ieOUk4KffLrP1laL7e0mrmuhlOLp8yHN\n6x10Q1Cr2zj21e20dcrtCsIEw9Av5CNGcUoUZ3RaPuvrdfaPJ2x1G3Q6tSpX8RV0f4UAACAASURB\nVAT98YL33t1kfWkAO5lHvH2ry3gWMR4t2Nho8J2NVaPEV9mv55c9WecVTEpjVmfZqjNcg3bNZRbG\n9KYLdtdaOMtte9afsN2uX9CafVEIkrQkLu6Zi6gjaCkP2zRWX2d1n1hRjCE0bl67nDAmeU4ty/j6\nzc3yu9KUQRAQZjnrvsfd/oB31jrsBQve3V2/ch1nScIkjlhv1ums+RRK8dHxIU3PReQ63WYNUdNZ\n98qL/NFiTsdbDR9/PB3TdhwmccxbW2uksiBDUVvmKq6v17k/GfL2dhenYWIKg02vRt2yy1bbKODt\ntS4bZ86RMEvpzQLeazcvDb0+jz8d7PNjne1qWRXAk/mQW+01DCGIwpyadFhfOv13VY23tXK/xHlK\noRS+ufTPy1N+fvOnq89+0D/mZ9/7S+yFI27Xty71D5PKZ0s2sc+QzXXqPJgd0NBcmsuW5bOgz9eb\n16vlngbHaKJAFzoLGfC19rWyDaYZrIv3X7rdAJl0yGSOt7ShCPMIO9GoWSY102edOkop/NTkIMzZ\nda8xL8b81PpfAmCUjuhIj3busl5b/a2FecDu5qk1hFI1FAqhCSbpgKZ5as4rleQgesyu9061vJdL\nPP1UB9tVP0YmE2y93B+D5DlJsWDH+/orbeuLEBcFlqgjzrTlGsVNbL3OIptgCx2hGaRyiobA0psv\n1HAleYwu6hh/TgO5T/A619ovE5p6XQoM/NIv/RLf+ta3+Dt/5+8A8DM/8zP87u/+bvV3KSW/8iu/\nwuPHj/nVX/1VXNclTVOklDhOecH92Z/9Wf7Fv/gXbG9vv/C7TioZf54gpWQ2XOA3PKSUL43ieRHm\nkxB/6fr+Klhfr9PrzV5aSp5NQkDRaPmMB3M0TWPUn7Gx06b2kmDn2SRcRnhoHB9NePe9i8cwzwrE\n0gRWSkWe5zy8d8zt97Yr8hiGKcPhnE7HZzBYYFkGhiFYW6uTJBm2XRL4x0/63Li+hhAa40lAzXeY\nTEK63TpCaKRpThRnLBalvYTnWcwXMRvd05vZ4fEUxzGoeQ6LMMG2jCsF868CKRUKxWgSstbymcwj\nHMsgSlKyQrK19vqu1CdYX69fed7PwphJEHFjvc2dZ0d8cKMMzw2TFM+2CJKUZ4MJt7e6GLpgHiX4\njvVCp/bPE0GSIpd6MCgrT0LTCNOUtJC0zhGuvJAYl7RrXwVJXto51JYC/GkSV5UspRRJUaxE9MTL\n9uV5q4hn8yl106JpOzybT2nZDi37dD2PwwVd1yMtikqIHxc5d4ZHWIbBO401PMMkyjNMIbgTD1iT\nDuM05pvtMhD+z0aHbLo1Ppv02A9n/J/Xv85hvOC616yyHR8vRrQtj9YLtF0vglKK/+vZH/N/bH+A\nY5hMsqgKsE5kzuNgwPv1LTJZ8HvD+6xZNW7XNnF1k98fPuCn1t699HNnecQij7nmtAmKBE9cPfBw\nFI85iIfc9ne4H+3TNmplVJAGb7vldWKYTjlMRnzN30VQpiXcDZ+Ryoxv1W9fuW0npOc89pNDUpny\nlnsTqWS1TCpTxvmYTask6PN8zlF6wKa1zYPoLtftm/i6j6evVk9Cr894HLJl7aIBoVyQqYy20WVW\njEo7iOX2T/MBnqhfaQeRq5RRtkfL2K4MUJWSDPMntPQdYjWlpm9c+t7PA/PiPr54i0ItUOQY2osJ\n118EvOj6+WWuw2V4oyvdd77znYpgffjhh3zta19b+fsv/MIvkCQJ//Jf/suqtfibv/mbldbr+PiY\nxWLB+vrVT6FfRSilyNOrS/4nEELQWm+QRAnR/GJP/3VQb3mXkq3ZOGAxvdimSZOcx58dvvRzTVOv\nPrfdrdNaq7G22bySbM0mIcGibB04noXrmtSb7gWy1e/NSJOMw4NxlW0YhSnjUUi96TE6Y146HMxp\nt3183+HGjTW2t1s0mx5pmjObRaRpqQ1569Y6ui54/GTAeByUT8NWGacCYFkGjbpDFGf0h4vSUDVM\nmS9OWx1bGw1cx+KoP6Xu23iuRRRnS7f5izjsz5gtYp4ejPj00RGjaUgYn7ZrhNCYLWI+fniIlIpO\n08OyDAqlSLNiZVmAw8GM7JKMzRdhMLuoW2h4DjfW24Rxii4Ew1nAYBZwOJ4zDSN820KgVRqluvvl\nhNPO4pjj2WIpOi8PzCdHPe72SpNOXYgVsnV/MCRMUx4MhyttKyh/Z+Po5b8b2zCo2zaFUjyfTYnz\nvGqhpLLg2XRStRpzKUmKnIeTER8PesT56e/4Rr1J2yknEm81WrRsp8qiHMUhQZ6hFOwHM+IiZ5rG\nHIULvtXdpmW5HAQzDsM5uiaYpDG3mm2+Pz7mG6310jNNKXa8Bt4yvPp/au8wSiPea3QrsgXwVq3D\n02DEYbSaJ3keUinuzno8C0+zCKM85b8MHvG3t97nT6Z7WMKoyBaALQze8rskRdnOMjSDH2/u4giD\nQkner2+tfMdhPGGcleefjmCel7+lUbYglhlBkVxYr34643F0jI5gki+o6S5bVhuBoG2UFadxNqdj\nNvh67QaGpvOni3toaFyzu1eSLYDDtM/jaI/RJfmLW9YGb7k32Yv3eRw/LatOySGZKo/xiSFp3aiz\na1/H1AxuOrdoLO0jTlCoAqUUlrBxhU8/O+Bpch9Xq9E2ym5FQ1/VRRmaiaGdsWBRsmonhsWUWM7p\nmDvE6vSYKiTlbKiB8QWHR9f12wjNwBQtLNH93MhWrk7bpj/Cq+ONKlxSSv7ZP/tn3Lt3D6UU//yf\n/3M++eQTwjDkm9/8Jn/v7/09fvInf7I6MX/u536O7373u/yTf/JPODg4QNM0/vE//sd85zvfeel3\n/bCZ6lnEQczwYMzO7RdX5X5Q5FlxaQtxZV3CBCHEheigZB6RFor6uaBppRTj/pwn945otH3e/WDn\n0s/tHUzobjUvTN5FyzBpTWjMpxFrSwa/mEcsZjFbO2Wr8OmjHtNxyK13N2k0V8nbdBJi2waLRYJl\n6QSLBMe1iOK08twyTZ1Bf85at4brWkRRRlFIWlcEZw+G82oKUaIIg5Rmw2VjvcHewRghSoPTduv0\nKfazB0d4nsWNax0KKS+1QSgKiRAacZJjWTpRnGEu25CLMKHm2URJhi60C1OPiyjBEKtmqouonLzb\nG0x5a/vFGquTJ7Sj0byMYdIFnfrp9j/rjxnOAt69tk6UZKRFwXa7zh/cfcpffvc6f/r4gL98+3pV\n1bqzd8wHu5sv/E4o3eIH84Bb3Yv6lPPYG0/ZaZ22TXIpKaTk+XhK1/dpeQ5RllWThHf7A25318qq\n6GLBmltGIZ3s//907z5/8+23sAyDQkoOFwt2G69WJVRKMQxD5mnKrdap3cPefEbTtktTUynZ9Gsc\nBXM8w6y8vM6iHwV0HY9cSu5PR3yjs86dUY8POhsM45CmZZNJSZTnaBq0bZdMFvyP/gEbrseNWotF\nlqLXDO4f9PhmZxOpFM+CKe81u8yzBB3BMC2TB2xhYIkyOuhEDD9PE4TQ8I2L1dcgTxmmITe8FrMs\nLjVlhs1BNKVjeQzTgKNoSlwU3KqtseOW1iuTLKJteUyyCKkkHcsnLjL2owmTLMDUTX68cXo9eB6N\n2LQbGJp+aWU0LBKCImHdWj0+j6NjTM1g1yk1QJ8tnrNm1glkgqHpJDLFEiZtw+fjxWM04LZ/nf14\nwE13k4ZxuU5HKskkn+MJB10TmOJy0pCpHB3BR4vvc9u7ja979LM+mgJL2EQyIlMpTb3JZ9Edts0d\nGkaTml5nkPcQlBE+1zc3eHj4DFs4xDJE18wX5ijOivKhraGvMS9KzVxd7yBVOXmpn7NTUEqSqAWO\nePMq+OcNpQpi+QRXf+flCwO5PELXNr5481T5fdA+uGBu+iJ8lStcb0S4vkz8sHfc6yLPCmRRYNom\nwTSk1np9sd+jj59z6xs7K5WtwcEY27NXiFSe5SymEa0zQdLdbo3B4OK02R//7l1+/K+8g5SqrG4t\n2zjzSUiWFbS7NZRUDI5nOJ5Jo+UTRymWZVTLFoVkPg3RdVFWqwZzHt07pt5yuX5rHUMXPH82YHOr\niec7TCch7aUFxXgUkOcF6xsNnj8bUKs5mKbB8fGUZsul06mjaaUgNo4zZrOIvb0R3/jGNXr9klQJ\noVE7N+X3Z99/zjtvreN59gWSKKXiv/y3e/zEt29S807fV0hZepJd4i7/Knh2OGZ3s/VSO4izCOOU\nJMtxbbPy1wKIlsMG7pl1OXvBCOMU2zJWSOHhaEaSFdRdi7XG6fl10p47aeO9Ca4ioOcxDiPa3sVq\naJhmZEVBfxFwo9O64AAPMApDmk7p9/VoNGKrVkMBvmUxDENMIUDTKmPUV0GQpQRpxob/4t/bf3r8\ngHfbHXZqDRzDYH8xo27ZNCyb/cWMTddnmpUTiQCHwZym7TCMQnIlcQ2DNcerNE1KKe6MjpllKX9t\n6wZw9W/wMJwvrR4MgjxlP5yxZnt4ulm1Kv90fMB1r0nXvrgdUikyWVwwYJ1mMaYmOIxn3Jv3+cn2\nLuMs4u1aF4HGQTxl1704EJHLgv1owobTQGhlaI1AI5YZ/jJg+mk05JrdwhQ6j8Iem3bzgnj+BHcX\n+9zyNrCXhKifTpFKsWm3qvXvZxNawufDxQM+qN3C1W0+DZ5ww9m6lHBFRcx+0sMRFnXdp2mW17pc\nFeQqxxE2qUxJZIqnu2hoFKqoSFkZiF1wlB1iC4eW3kIqybyY0bXWqxbkx4s/4Rv+t0vx/LkbdixD\nnDPRQMfpM9aNawhhEBRTBDqu/sPTPMVyQFAc0NY/QLvEqf9VUagA/asmTlcZ8AC0V9e7fZUJ118A\nb/+vFuIgZj4OyJKMT//b/deeIgR4+5vXL7QRW+t1/PrLtR1X/dje+vo2YukaL85oZtyaTa3hcrw/\n5vv/4zFRkPDobjl9N5uElUUDlFOReS5B0/jvv3cPv+7Q6nggJbNJyB//94coqajVXQbHU9I0J8+K\nUgjfdDk+mvD4UY9rOx1Go4BCSubziOPj6cq6O0u7iHp9acegwLL0angiy3Lu3jtkPAn51o9dJ0lz\nRuOAJMnYOxhXrTshNP7qX3qHz+6f5keOl23Yq8hWf7Qgu8Ti4+xzyY3tdkW2BpNFRZquQprlPDse\nYy+nDM8iywvyZfvvYOmrdRb7oxkaGkmWl5mR8xDXNrm12WYSxDw+Pm2JnmihXkS25BXPVyevnydb\nSZ4zvGTC8DKyBeBZJpMo5lqjTpoXJPnFFnzHK6tISZ7zdqeDZ1n4loVchsI7pskguHwMXJ7J3zsL\n37TY8H3maUI/vHqE/G/feodNv0ahJFlR8FHvEHdJYHZqpQFnLiXDOKQXBoyTMvZGCOg6HqjV/atp\nGqM4pB8tVl47gVKKdHl8t706jm4QF2WL8muNLmu2hykEn0zL6byvNzZ4MB8ySSPm2WrbTmgaszy+\nMKHZNMvKz5rl879vf52uXUPXNASlget5siWVYpwGPAoH3PTXcHWTJ+GQSRYSFCk14zSGasOqYyyr\nC297G/i6TS6L6nzJVUGwnFL8mn8NW5QxXw/DQ9atZkW2oEw8cLXS4uV/bn2DmuGhazrfrL1zZXXL\nFhae7uCK04qkVJKoiAiKsu1cKElQBHwW3ieSMaYwK3uH0qTUwNU8HoT3OU6PiVVMx1xDKslhuk8s\nIzbsa5fqw5RSzIvVNqZUkumyqhWrkHFxTKFeLjX5oiAwaOnvE3NMql7fEiaRB0iVoms+hXoza5gv\nDJoJ3Phhr8Xnhh85zX8OmPZnhPMI27VIopT2RhPd0Nl5d+tzM4wTuriQdyh0wbP7R3Q2mys5fJft\nM9M2+PD377Ox214hc0IIdEMQRylbO22UUrz13jaapuHXHTQ0oiglChLms5iNrSamadDdbDA8nuP4\nJoZusHmtRbPl49ccbNsgTQvyLCdLCz69c0CW5RwdTnBdm97RFM+12NhqsrXdAlVWVkyzNDs9yQVs\nNNyyjalBrVZG/YyXIdVbmy3yoihF8q4FGjzfG+P7FkdHM1zHLAmaKvdJnhcsFjFSKXqDOXXfvlQb\nVxQFtnXR5PRPPnmOZV7uTG9dYop6FrouaDe8S01FbcuoXs8KiWubK8dwrV4aFz49HqO0UpOVF4rR\nIsTQBQ23bJm9yLD0zt4xG43yCfzTg371mScIkpSD8Yy27/KgN6Tpnvo/Samq+KBXgVSKtudiGjpB\nmpZ6u0uqXOMwIisKPOt0f6ZFwTxNabsubfdyQrc/n1MoVbUqn04nNO3Tm/EiSbk7HNB23EstOL4/\n6GFoGoM4xNYNhklUmpdaNsfhgkkS0XU83GXUj2MYuIZJWhSYus6HgyNu1le1P5tejd1aE8cw6YUL\nHkcTHKnzZD7BNUz+bHyIp5sUSmLpBnGRkyuJs5zaE5qgs3S1N4Rg12uSK4WhiQvTgWGR4urmBVK9\nF42RKOqmgwJimdM0Lz6gKaU4iCbEMmfLblQ2Dl2rhq4JaobNcTIjlwWGJrD1i1O/j8M++/GQTbvF\nk7BHpgoahre0a0j4/dEnvO1u4ZyL8xlkU46SIfejPa5Za2Tk7Md9WubV1SFN06gbPp7uYi8d5iMZ\nE6uErlm2vgsKJJJr1haO7pCrnGE+oq7XKFTBNJ8yLabU9QYZKfbSPytdkrK60cQ/U6EaaUeQlk7y\nmqbh6+eqFZrCFXV0zcATdXKVY2o2+g8p9kbXHISmo6FjavU3uOcoBGXVMpF7mOL1bWU+DyiVgrqD\npp2TP2ivN9z0F8749EcosX/vAFlI/JZPo1NDFpI0vrra8Trd2zTJePLp/kuX+9q3br7SD8wwdN77\n9o2KZBS5JDwjKq8I25LknCDPC5I4q0KloawcOY7Fzs01NARBkBAGCc2WRxjEpYh8rYYQgk63xgc/\ntsudj55z49Y67Y7P5nYTpZX7QxaSjc0mzabHaBQwHC7K70wyhsMFhqHTaLiVoWi77bO50cS2DY57\ns8poczhc0Gq6hGGK71kc9Wfcf9xDKbBMndkiJogSup0aO5vNK61GGjX3UpPTW9fWCKOU5MzQRJRk\neI6FoQuCKGU8v1gJOhHPv0qbrlP3yPKCabBqBCilwrMNao6NAg7HM9YbPtvtBpZpMA8vCpjP4us7\np1NQ39jZuHCz9m2Lt9bLi+z1dnNlXU1d4FqXk63Lzuc7R73q9bbn4i8J1cPBkEl0brvOvd3SdXZe\notvabTTouC5KKRZpStMuqzFZURBlGU3Hoem4REVWCeODLGWelvvox9c32VgSpKbt8N3dt7hWq3Mc\nLHg4HfF8OuXZfIohBKau01oSoWka4xsm/8vu2xf8sBzDpGWXBHGWxWx5Po5u8E6j3Ke1pTt8sdwv\nNdOmZZXLn/hunRiKKqW4MzmmZlgXoolyWTqZX2YZUSjFtlPuO6Fp7LjNC8tU+1no9JM5e9Fp5aZQ\nkv24/HfTcElUxiyPeBoOCPOE3+7fqZZ9x9/kxxul+eg1d41rdodCScJlePW0CBGaxkEyYpqfVhs3\nrBa3/V02zBaRSnGExXVndUIvlVl1/py0A8+eZ/N8QSQTumaHQhU8jJ6gI+iYbXRN5zA5IpUZ21Y5\nBDAv5kyLKbv2LsfZEbvWdTrmGrqm4+oes2K2NNyVHKTPSGXCtrODoRlXisLrehvrzFSiokAhCYqL\nFeoTSJUzzY+u/PvngUSOkKzef+bF/Ze+z9AaS7d3iY5PWHz80vf8ICjkfZS6uK80zUITP/7yD1gO\nQaCmaOrlA2JfJfyIcP0AaG+3EbrAMHUMy8CwDLo7Vz8dHD7qMR+/mmOuZZvcuMRu4VUgiysuFE2P\nw2fl1Fie5YTB6Y16baOBV3Pwz2ikRoM5jmvR6dZpr9XY3r24bZvbLd77YId6w2UyDqrAaykVh/tj\nxqMA17P463/j62xtNQkWCZ1OjTjOysrN02HlUq9p5eTiw4c9XNdie7tsR4zGAZNzE5lSKlrNMh9R\nCI1222djvVFVs96+uU63U+P+o2PyXNJpetzYKcW8r6PdevR8QJrlrLV9up0ax8NTbcDRYFZN2JmG\nuFBlUkqx17s4VXUZnh6Py8xJqUiznE+f9aq/RWnGh48PKaTkeDIniFOyorTd8GxrpU34pDe+4KL+\nOji/DXGWczS9qIcYBSH704vTdD+2vXnpA0DTcbjfH/B0XO6P9ZrPem21jfTxcY9FkpBfcf6eRS4l\noyhiHEdlxmKe83RWEqW3Wy0+7p9OIvbDgP356brqQqxYQ0ilMIQGUvH+2jo3Gxf1Ts8XMx7NVg1w\nPx4ds8hSjs+0EzfcOrlSJEWO0DRc3eDdRoeG5VRRPnGR82BWtqR+6/mnfDQ+vWlomsZ7jav8+9SV\nLeF3al0U8DQYrTi/B3nCo2Cw8vkbToOu7ZOeaYNpaCgUD4IeQZHQMWt0rDK3NVUFf2PtfXJZsBeP\n+HSxT7p0sL8732M/HpHJnF4yRWiCv9p6j4bp09BdoiKplu2lEzJV8F7tBp6wmOXBhTbeMJsSyxSp\nJA+i5wyzCYvi9Lffy4bUdJejpM8km9HUG5VeK1M5sUxZFKfX2JbR4pZzC1OY3LJvceJsOs5HHKeH\n7NrXAXgU36WtdznODhCaIFcZR9neFcdhFR1jG6kKMhkzyY/J1cXqiobA1NzXNiK9CoVKmeWPV17z\n9V30M9UguVyPXIXk6uWaJoVC0wws7bSFFxd3UerFkonXhS5uo2lXPxC8DBoPQIWAj+KHU417U/yo\npfgDwHzFG7dSiiKXNLv11/LkuqpydfdPn9LdvtwV3HFM7vzJUzobFysFsij1V0opHM/GqzkcPB0y\nn0VVZI8sJEmSoRuC/acDPM8uA6ovQRxn5Llc5h4qLNugvnRxH/TndDo1ag2X//D//An2MoOx3iwN\nV03LwLZN2m2ffn+OoQtMy8DzLHaXxG42i5jNItotvyrRBkHCH/zhQ27dXCMvJI5Ttjye7Y1otzxm\n85hazUETIAtFs+7iexa2bTKeBBi6fqGCtQgSDnoT5kFCGJVtsME4wLFM2g2vMg01DZ3mGduMdsOr\nqkW6Li4Nsp4sItp194VVyDjN6E/meLbJaBby7o310rBwWWm0DB1zOdG3223R9JxKgA/Q9Bz2hlMe\n9YbsrjUvVKQeHo/wbAtdaAzmIf65MOmP947o1i/mC0LpFt86o9caBWHZ5nFsGs6r+0W5pokuBNuN\nerXPcim5PxjS9ctzb7NWYxzH5blwrg35dDJBQNUm1IWg6ThYuo5jGNiGQZzn2IbO7zx+zI1mi516\nnY/6x7y/tk7dtnkwGdF1V6ddH05GaMBxGHCj0abrelWFb5Gl7AVTTKHzXqvLcRjQssqKmqZpbLg1\npJIUSlX2DgKwXROr0NkLpgzigExJ6qZNUuQYQmAIQcMscw8NBL5hVRUy4FItEcAwDWlbLromeBqM\nqyrZWQySoMzbXLYrLWHQNMvzLy7Kh5zH4YB1q44rTIIixTdsjpIpcZEhlaRm2DjLcGaAfjKnZXr8\n4eQB62addbPB07hP1yrF9oVU1EyH/XiELyzuhgdcd7r0synzIkKg4RulzswSJoMl8ZIo3HMC/Lrh\nYYrS0HfNbOLrXtVKBGgZJcHqZUPWrBZ1vcafLe4gNI2GXsfSzPI/YbEoFiQqwV5Wo2pGjVQm5TSj\nphPIBY7mYgqTp8lDbOGwaV2jXnOJwxwLm8+iP2HDunyiu1A506KPK2rM5JC63inNRTXnwm9J0zQC\nOUTXDPTPwZpBAxZyD09/0fSxhr50cQ+Kp9ha94XXIU3TEdhkHGJoZbtW15poXzXfLq1bars0AZcE\nan+VW4o/IlyviZMnlNfpk8dBwvBgTL3z+UyydLdbjHqzMsT5XEWiVnOwrzjY03FAGmUE84hgFuN6\nNvN5hAbV9OPR/pjB0bSsePk25tJ89DJEYYosJLZtMp9FzCchjmdxtD9m61oL17OQhSSYJ7z97iaN\npkfvaIbrWkwmIYP+DHvZkjs+nnJ0NMWyDAaDBbWaQ78/pVZzGI9D6vXy6XA2i7Adg067hm0bHB5N\nS5F90+OoN2U6i7i21eKTu4c0Gy61msOTvSGdlk+aFpiWzngSVo70UZziezathodhCOp+GQek6wLL\nNCpyFkQpB70p9ZqNWk4BxknG06MxncbllhUAnYbHZBHx2dNjNtuX6ysMXadT90jygk69HBaIovKp\nMsly7u33eWtrDUMXWIaOZegV2Xp0NKTm2ARpwmAW0vAcHNNYaRt2al4lqF8kKTVnlXBtNGoX1utB\nb0jdsS+0Qkstk7jSCT1IUqxL2rWaplGzbe72+uRSUrft8iZ57jtqlnWBbAHULetCWDWUbcgoy7g/\nHvFOu4MhBLmSCE2j6/lsLoOqDSHoOBeJr6OXE6BxkbNbaxDlGYVUGMsMRKkkYZ7jLQOsB0lYPrAs\nCdY4iUHTKsJ1fzbEdSxsqS8DqD1atsvdaZ//fPiY9xrdsiq7JDMFimte45WuJ3GR4+gGYhk27Z6L\nE/r/2HuvHkfSNEvz+YRpMyqnixAZqSqruqu70ZjFXs9id+/2j+5vGAwwwPZiMNuyqrJSZ4ZwD9dO\nTZoW314YSXcPd4+MrKia7AbyAImMIBmk8TOj2bH3Pe85QggGTnDr8aKpeJVOGNgBl/kSLSS7ToSr\nLP5x+gpf2fRtn1A59K2Aq3LJrtOhwWBJxWk+5VN/r9WHaZfaGAZOyHBtCRFol67lo4XiwOnhKpun\n7pBJucSVFk/dIafFhGBt6SCE4IfkBC00B851deIsHxOou0TlTWye71td9PpiawsLV7o4yiFrchoa\nXmevGeg+F+UFnXV0D8Dv4t8RiICX+XOe2E9xlUfcLHlsPaNjtdo837eJ45zT8pAPnc/u2Dpst2Ud\nVG0AYQABuYnx3tR8reHKDkpY22zF1qOtYlGf/WSLCCEkhk07+v7zfbttDQKFluGWfP3Y+27IVvv3\nf98pL/fhF8L1Hvi5F+5NTM5mJMsUf13J+f5fX9A/6N46UVRljVSS1Swmwm7ePAAAIABJREFUWWZE\n/eDPRrY2MI1pydAb1Zq3HWyubxN0PDq9AK0VtqPxPBs/9FB6fUFeJIQdryVb1sNkC9rW3KY957hW\nK7IXrV4sy0rSpGAyjvEDByEFjmsRRg6rZYa1tpsQQhD4DvN5Qn8QcnW5YLATUtcN83nK48d9Op2N\nQ7Nhucp59nSHV4cjjl6PicLWdT6K3O3n+p7N0ycDXNdCSsFgbc3hOhZpWlLVDZ5rU9cNl6PVtmq1\nIVhCCGxL3dqntqXoRi7jeUJR1riOxtLqVvXKGENZ1XcqaFpJOoG3jdt5E/Ha+mGyTAg9mzB0SZKC\nrCiZLBK6gUfo2by4GJOXFUIIHEvzw+mIZVqw1w3pBz4fDHvEWYH7ho3EBkKIO2TrIYSOjX2P6Ny1\n9INkyxjD69mCge8xTdKtCBzatt0iz4lch7yqttWxd9G2wfVk4NmybY1sKl3zPON8FbfkxnX5fjLm\nV4MdjhYzHoURSVVuRfsPVfBspejYLQFcFq1Tvqvb7xlaDkVTb72yOrazJVvQTkdepTFSCBylEQiw\nBKKC7xZjFmXGrhswyVP+l53H21bmNE9JqoJd95rsniQLbKnurG9jDLVpCLRN2rRu+SfpnK7lcpIu\n6FouizLjNJuzqnLKpsbXNkVT8Y+TQxyp8JSNoyxCfT1gUBvDh/6AVdXmfbYh1h3SpsCw8Qlr//ty\necyqaluNSshbIdZl05qpbh4TQmBLjSPbhANXWiyqhFWdMikXPHP3UVJgyTV5NAYB2PK2QL8xzfbv\ni2pF1hSMiimevBaoCyG2gvpl1QZ4Z3VGbnL2nD0iFaGFJm1SjrPXhDLkifuUVbkgJ8ORLhfFGfN6\nsjZCVaR6ziKNWdULJuUFPbXLUf4DPX07Y1AIgRY2hoaL8iV9fYC/9usqTc6kek1wT+bivD7Dki5S\naEAgb1S9alMA5p38rSwRoO6ppt1E20qssf4Cnl95/Q0152jxl3PKvwVTAiMQb7+W/kK43gM/98K9\nCT/ytmQLYPCod4uUGGN4+fkRg0c9WLceQGwJzY/h4mjUVo1+pPV4k2x9+7tXrcFn6L7zwWbZbdn+\n8IdLOv1gu31R18fzbZI4Rwpxi9A9/+aMwTDi6MUVaZwzm8Z01pWxoqhYzBJcr61qtVUgyRefH+H5\nLstlyt5+t70wuRauYxFF3jq+R7Ttx9Dlh+8vaEyD77cH7Nn5nOHaZyxNS5bLjG63rQK1YvqGx4/a\nUOr5MmW4E+K9QSqev7pCCsHZ5ZzxdMXTx33Ksub0cs6Hb9HcQWsT4a/blkIIAs9utVTjBd03WoVp\nXjKex3SC23eSSt7Vd21QNw3nkyW9sCVkWqvtPszLVjA8WSUkecnHewO0koyWCaN5zCcHOzwatCfS\nqq5RUhK49i0Sc7WIKav6jh0FwMV8RXxPxWuzzW+DMebetslg3X7MqwpLteTh9WxOUhQcTWc4WuNo\nC/8BIf6PwVaKpKq4iFf0XQ9bKbquy9D3ScqSbycjpllG33WRCCZZRu8dWp9/HF2w7wf4lsWqLJgX\nGZ5upwF9bT3Y5vv96IwPox5101CamrSu6EUe81XKosz5u8EBoyymY7nMy4yu7XKZrQi1zbeLEU/8\nDs+XYzqWy0kyZ8fxt9U1s17TWZkxL1N8ZXGeLRk6AUMn2Arol2VOpB1Oszm+tqmahj/Oz3jkdhjY\nPj3reirVlprKNLyIr9h3O3jK5jCdkFQF/XX2oSMtnPX04maKMVhXwE6yKaNiwbSK26xC7bCoUgpT\n88flIR3t46zbkZNywWF6Sd6U7NhtFU9JSaR9iqbispjiKYeLYoKrnK1/F7Ti+cP8lI4OyJuCUTml\nqEs8ZZM2BZZQNKbhm+QHdqw+UkhepofkpuSRc8DQbnVwmzggjUavSY2nPFKTbp3mC1NSmhJPetjS\nYbczoE4lvmwd5g2G2pTEzRJX+tckUQgaUzOpzjiwPwGu28FK6Ftka16dYQsPISSe7KzJVrt/b7YY\ns2aKoXknB/qHPLeKZratZinhvVNl60+BEBaW/J9k2WAMYID83iBrab5o9VxC/kK43gc/98L9GO69\n6Kz1VUorsjhvK2I/kk+4gR+6OP7DWWX3wXJ0GwGk3u1gy9MCY0xrVzCMbpHBo+eXnB9PaaoG17dv\nOd53uj5CCvK8IM8qnn3cRjNdns24ulyAMISRy+nJlDwrsR1NkZd8/Ku91hC2afjv//AdQhp21jmH\n00lMHOfbA7TbdXn8uE8QuJyfz9jf6+Ctyefl1YKD/Q5KSVZxRhS6W2IG7W/yPkuHQS/gXz8/xLE1\nRVnzaK+dUoxClzcn9i5GC6qq3rrEn13NGXRv2yjYlqYTuizj/FYAtqUVnaDVV71rRmC9Fog3TcM/\nfnvER/uD7T601872dd1wOY8xGPqhT+janI4X7HZDsrLk88MzBILu2tx1Grf+RJZq24+udX1yv4nQ\ntR+seBVVRfnAd2iM4auzS/aih+80XctqyUCeI4D9TsTjbofIdf5ksgUwTdPWINdAtLaD2OzDfzs/\n5dNen8C2OFkuCR2HDzrvJs49CK4rTbMiQ6//fLxa4Gu9nUw8T5YY04rou47D46BDWddkdUVk2ThS\nYXuaJCn4tNNWRGpjcJXFwPW5SmNGRUKgbF7GEx77EcfxnB3XJ7IcvLUNw2Uek1QF4fqxyHKRQt7S\nbQkhsIRiVMRE2uGR16VjufjaZmD7BLr9t1lT0rFcbKkZFSuKpsIY2HUiZmXCY7dH3w7aIY9sykWx\nINIulan5Pr7AEoqLYs6uHTF0otaqwkBaF3jKJtIenrLpaP9WW7AxECmPq3KGwXDg9AmVhxSStMlb\nM1Pt09EB9hvu8RLJoopxhEPSZIyrKbv2gHm9ZFXH+LrVdlWmpqPaVv3Q3iHS4bbVCHBenONIh5qa\nr5Mv8aVP1+ohETiytVPo6h59vYO7zjp0fcViFXOSH6KlJlAdAtWhMTWuCljWM9JmRdqs8GTIuDxB\noYmb+bbCdRONqciaFZ7s/uh53ZL+e8f9jKt/whJdSjNrV/IvpMGSfyEidx+E+RzEHoj727WGna2e\n698z4fplSvEnwhjDiz+8eufXR4OQncc/HpWywabN9lPQHYS3tFzPvzy5NQ1TVTXFDXPONC5u/X2D\num4Y7Eb85u+eUtcNZVmTpdcHblFUHB+O2Bl26A2u7zLqps0PE0IipeTDj3e5uphzejzh018/4tuv\nTtFa8f23Z+wMA5KkJElyqrJmsBOyu9vZmqR2uwFKKVarjEePeliWvraEWLdCAVarfPv4BmHgrON4\nrr9bWdW8ej3iyaM+H384xLEVs0U79dTUZvse42nMZBYzHIR0wuuLWuC1F/WyqklurEVjDKv0fjuG\nLK/Iix+f7JkuE16eTzAYbEvzv/76AyZvWEsoKTkYdPj1kyE/nI5ojMHSimE3ZBanzJOcvU7A40Hn\nxr8RLNMcYwyWUigpeXk5IX2HbdogLSuS4v6TlhSCv33841FBAK7Wd0T6b8Ks8w7fxJsGnwBl0zD0\nAx6/YR9xslzwKIyQUrLjBXRsB09pDufvNiUKrUVD1TQ8DiL2/JC8rgktG1vpreFqz3bxtObR+vnf\njc7456sTHKXb2Bml2PNDxnnKy8WE02RBZDl8Pj3nIl1ymcc887us1tWa58sJrrLI6prIum73DWyP\nfe/+i8tmW79bXrXic2NuWVVoIbePA1xkS+Zlul5r6Fgeny9PqU3DqsppuNalXhULDuwOr5IRjrT4\nyGsrPJ8FB2ip1garEU+9HZSS/LfxF9tzTaS9WzcwoXbpWD4d7fP16mg7PfkyPWNgdahMzWU+JWtu\nH2ezasllOeEj7wmB9tixenzoPiHS7ZDKb/xPaEzDam0/cZSfcFFcMi6mHGent97rsfMYW9pkdUqo\nOjxxn7ZrJC0a0zAqL9FC3yJpr5NDFvWMobWPJ4P1uhnGVWugHKkePb3LpDznqjjiifNrXBXeylS8\nibY9e33TVv+Zp/7exJ71nynMFEWA5HqbavN+ub4/J4z8+3sF8lv8B9Ga/VLh+okQQuB3vDti9XdF\nuspandBPiIV5COdHY4LO7bZWEDgo51rsXRYVP/zxGNux8Nas2/Vt7HsmLKuyIl62Plp13eC41vb/\n0LYhu70AqSTujZZnGLntxOGgrRJcnM9xbM0nv9rHcS3KokJbkt//yyv+t//zb9jb73B2MiNJCjzP\nRinJYpGSpQVFUeG6NvN5Qhi65Hm1/bN1S1dlOHw9Jklyut1r0XpR1rx4dYXjaCxLU1c13bW/VRg4\n7cSfpbEtzdV4ySYI27E1rttO0m0+YzJP2Ftr7/Ki2vpuQUs6ouD+OzzXvusoP1ul9z72bK+/bQPa\nWjFdpezvRHePe2Owtaa/JoMd38FSam0Bsda5JBmBa+NYmlmSErj29gI4CP17xehv4mS6oKxr+oH3\noP/WT4GSdycO38QizxnFbdzPBllV8Xo+x1aKeZZt/byiG3E/N9tujlL0PY8XsylPwoirNCa0bXxt\n4a7zGZdFzmUSUzXNLVuIDa7S1k5gVRZtK9GyOFrO6TkuF8mK0jTM8nzbyrSkYt8L+bjTx1GaeZEx\nyhIe97v4jSavKyyheLGa8rf9PdK6Im8qHvsdfliO+cDv8Em0Q992meYZkyKmZ3ukVcl3iyvSujUv\nvXfQQkq6locl1b3Tii/jMYWpCJRNaLmUTY2nLALdHhMfeH1sqUnrklWdE2l3TYgEAzugp1vLFWut\n/3oTQgjypsSRFntOl+NsvNZWXd/DZ3WrBZNCECiPZZ0Qag9fuizrmEm1xJU2panw1fW+d4RN0mQE\nytt+VqsHk3RUSNlUnBeXRCqkr9sK5sDqkzQpRjR09N0qkxKKuI45LY5Z1nN2rX1saZM2CbWpEEgU\nioYG25NYRcAP2ZeEqouzrny9Lr7Hkd425mdgHVCL1hutffx+t3wpJJa83kfj6iW+7P8JBqW3YdYa\nt2n1JZ68raOyZR8lnFtasLQ5xBLdd9KH/UfGv+cK1y+E6yciWaaMTyZ0hg/ffd7EcrK6NaE4vZjz\n6qsTBvtdTp5f0N15+H1Onl9g2fpBW4ambnD92zs2CByyG+arSsl24vCNWKAiL1FvTJMprdqWpmsR\ndT1sx8JxLdKkdZp33gjKbuqGoqiYTWNeH44JAofx1RK9zmrcWES4nk2vH/K3f/8B2lKYxnB6MuXq\naskHz3Za/ZlnY1maxTwlz0t2dztbl/m25WjTNAYpW/3E6+PWE0lbiu6NKUGt2imj2SIBA4evx+wO\nI7K8xHMs/u2LI7SWSCEo62YrqJfyujW1cVdfxm1INbTtwg3ZitMC+0fCxd/EfdquyL8boBz5zr0n\nDCEEr64mxGmxDbJWUvJ6NOfJoIO7dqw/Hs9xbYtB6N9pl96Hq2XMIm3F7AAd73bLr7lHq/Xnhqv1\nLbIFLaEYrN3m9T2k7dVsyslywYvZlA863a2x6L4frKtcPsuyoOe2beOqaZjnGU+j9rXLosB9Yygg\nsh0cpfh2OiIuSzq2w67n8/urc4QQPA46nCZLdlyPcZYQVyV5XfLtbIyjNH2ntWx4nS2IsAkth6u8\ntXKIbIfQsgm1zfeLMZ91hthKYUuFFJKatpoXWQ6WVOy6IeM85rvViA/8+y1gNvt3Wea38hWrpm1x\nPnI7/PP0iJ7lEdcFXev6or+ZGDzP5m1QtVRIBEpILovFViwPcJbOOM2neNLiKB3hKgtLakLtsuu0\n5EYLhbO2cwBYVAkv0wsi7eEoi47yOc4uGZVL9u0+cm370LGCW2Rr+x1MjaucO1pBIQRH+TGX5YRd\na4AUksvyito0eMohUm3o9pt4nj7nwD4gkhGv8pfsWntoaXFZnhOJgMTE2MJGCU0YuJQZaBQ9Pdzq\nN3esA6z1awBm1YjS5HgyeHCScYO8WVE0MZb0CNTgz/KbmlXf4sgejhhspx7fBlsOMNTvNXloTN1O\nSJry38cEoymRfI8R1951vxCu98DPvXAbNE3D/GpBNAjfmWylqwxjzK2WYtD12X06QOk2G/D0xSW9\n3fsnSIKOh/2WqbLJ5YKwe7fC9eaaJXGOvlEdqquGk1cj6qrBD+8eGGmSY92o4JmmbTrYtt5mI1q2\nJs0KVouU3f0u+496fPXH1+w/6jLYiVjME7K0IM8rAr+dUhRC0DSGi4s5nmuzu9+hqRvGoyWdjsf5\n+ZzdvQ6Oo4njnOk05vvvLxgOQw6Pxmil8NckZTAIiUIX17XRWvL//fML9oYRdWPwXJtu5LUVKyVx\nbE0Uunz3/ILf/qb12VFKcjFaMOzf1SHNFilxUrC3E1GU9VbHZIxhskhYrDJC725Y9tvwJtl6Gzb7\nMCuq7WcLIdjthLiOdct2YdgJUKolkEpK/PXz73pCl0LgaHXHQ2yDL08vt7FA74v7hPY/hjcrZGVd\n891kzKf9AftheEujdTSfURtDXBQtYXIc0qrE1W3lMrLbY71sGrK62la5lkXOLMsIbZuj1Zye7bDj\n+czzjP/n9BBXK0JtUTaGgePiaE1clvQcF0vqbaB1UdckZUksSvqy3d8dqyVa3y1GdLTDrEy5yhM6\nlkNjDC/jKVldMnB8QOCqa73dwPF54v247ufr5QW+sq9Jl4GzfEFaFpxnS3xl81GwQ1IXWFLRGMMf\n5sf0tbfVZBVNxVk+Z9dp9VA3tVgv0kv27S7P00vSpuSpM7gzRGDdIFubfb1n93Ckxbxu9YcfevtM\nqxWR9vCVe6sadhNCCNy1P9dZcbWeerTIm4Lj7Iwda0BHBRwXZyyrmAN7SE1NIAPstWdXbWom5ZRR\nNaaruxgajAAtNX29w7SeEqkOy2pBqCO6eoAS7e/G9gRlagh0uxaj8gxfRev4HMGymWEJm3F1Sk/v\nYQuXwmRUJr/VVqxMsRXtr+oRjTC48s83rV7TJjfkZowSFnL92ZVJyJortGg7Djd/d3HzA1r07lS5\nKjOnMBdo0ZL7pP4SvfbtakxKYY7QYkBhvgcjqDlHiZ/RdNTUtAJ6B0P3VkvxF8L1Hvi5F24D0xhW\n84TgLZ5Lb6JeT5nZ7l2/HADbtYj6wYPWC2+zZID2pOa+Mc1438E2Op/jh8524rDISpI45/TViL3H\nvVuTiMYYzl5P6N7QaCmtsNdVtqKsSJMCz29tI6qyZrlIybKS169G1HVD1PV49eIK29GMr5bs7nU4\nP5uhrfZ92jaeIi8qoo6L5ztorbaVLqUkZ2dTfN/GmFZb5vsOYehut+PV4YidnZAXLy+5mqz45KNd\nbEfzzXdn+L6zFbP7ns18kTKdJWhbM1+k7A5CtFa3yFZV19v19tzW7uLbFxcs4oxhL1yvDaySnMd7\n3S3Zmt/TKtwgL6utTcNPQRA4jKcxL87G7K0/u6hqVlnOKiuwlGSVFVzMV7y6nFI1DZ21YL6oakar\neFux+jFkZWsz8NAU5Z+LbF2t4tYWwnl4u5KyxFIKYwzfjyfs+Ld/a23Ui2HX929NUSZlyelqyUEY\nMUlTnkQdQttmVRR8Nb5ECUnnxuduzEc376GExF5PVPYcl8huW2OHyzl/O9jjN/1dTpMV382uUEIR\n2Q59x9u+j69t/ji5QAoomprX2ZJVkrHrXQvxx3nCRbLkv57+wP/19DfMywzfsjmO52jR2lIkdUmg\nbc7SBQbT2ky8A0ENtYMtr+06XiUTOpbLpEyILJfIcgi1w1EyZWC3vmSesviX2RFaSL6PL0irkot8\nwQfegEkRYwnF/zv5lidunyduH187HDg9Htk9hBD82+wFFQ1dy6dsKo7SEb6yOc9ndLTPSTbmqpgz\nqhY8c/cwGFZVyp7d56qcESmPeR2T1TmVqe+I5jeIbgjqtVB40qUwJTUVHzlPuSpbM9F9exclFItq\ngbUWiecmp2wKumu7h7qpWNYrBrq/Da9GCE7yw7Yytv6c3FrSZJLT4ohQdTgrjnCkh0ZhENRU7d+F\nRd4kXFXHRKqPwaCFTWMaGmryZkVDgyUcHBHgiNt+d5XJaai3E4s/FbbsoIWLLbtIYa+d5QWlmVOT\nYYseDRlJ8wotQmpSXPn43paiFC6KaPucEn0qc4mhQBIhRYAQGi2GSOH/vGQLgATBFETnjn7rF8L1\nHvi5F24DIcVPIlsA2tZ3yNabkFJSZHfbewCTi/k2OuhNfPu7Q56spwQ3aBrD4TenBL3b27mYxszG\nKzq9dspQKontaD78bP+Oj5cQYku2jDEUeYWUkrPjKVG3DZD2fKedrlvfOY2vluw/6hF1fTpdj/Fo\nxWAQIpXk0ZM+x0djqqpmsBMhpcB2NEIKfK91gNdaUVU1tt1OaI3HS87OWtNTz7PxfZt+P8CyFFK2\nsUG2rbFt3Ub+GHjyuN9WeDyb715eIhGE65iiqmpwHc2wHxIGDkpJlnGGY2uyvCTLK07OZ9v2IrQZ\niJZWfPh4cGttwjdauFfTmG54f/Wqqhvq+n5LhskiYbZKCb27E6lB4LBcZW1YttO2Ur86OsdgGIQ+\nF/NV670V+vQCD8+xsJQiyUv+7cUxgevQC95tKtbR+l6yFecPZ0DmZUVeVdhaUTXNndalMYasal3V\nhRAs85zaNOw/MNV4sVohgMu41V1toncspfhhPKbvtVXctKo4X622rcYvry7ZCwK0lG3YtNYtWVp/\nrpSCD7v9rafWBo0x/OvFKf21U/1Nv7ANBK1pqK8tXi4n+NrmcdBh1/OZ5hldx11HCrU+XzuOT8d2\n6dgu4zrlI6+HozRZVaKlomM5HPgRrtbsrM1QLSE5y5Z8FPZ4sZwSVwX7XsiqzFmWOf0b7vPLsh3Q\n2Gxn1dTbKlPVNLxOZ+w47fHbt30Egkg7dCyHQDs4SjOw2+dP0hm7dshTr8+yzknrgqden0+DPYQQ\nRNrFkopHTg9HWfzT9Dld7eOo1k9rUaXt0EiVs+90eZ5ekNU5j5w+WkpsqelZAX0rZM/ubde8weAr\nh/N8zDfxEaf5mJ4VYguLq3JKR9+vgboJLRW/W/2RXXuHcP36fef6PBjXCa50EQhc4fA6P2bH2sGW\nNlVTs2qWuLI1Ub4qz9HSwlU+o/KCju617V0r47vFtzyxPyKpV3T1gMvyGIPBCENhUqTR7VSjAF9F\nuDLYVrdSsyQ3MZHawVpPHG7akjdRmJiGCv2e035FsyBrrqhJ13q3PlLYZM0Zjhxiyx0aShqTocTD\n17CbRKx1nfeReGv7iT+NFP7FIOyWbN2DXwjXe+DnXriHML9acPjVazo70ZYsxfPkQYJljCFLijt6\nrCIvuTwe07nHGLVpDJZj3SFFwL3RPkIIPvpsnyQpOPr+HMdrbR06/QApBc764l6VNfNJTNi5fVEu\n8pIsbe0cAPKs5Px4yuuXV2irje+JVzl+4DCbrJjNEuJVxoef7HH0csT+QRfb0fT67YlwuUj54btz\nbFuT5wW7e13StODibIbrWWRZyXyeEoYul5etaeEm6yyKvG1kkLYUh4cjBoOwJUurjDjOCUOXQT9k\nuHO9dnpdjdOqJV/QTmm+Pp3S7XicXy7QWvL88Aq4Lrc/2mtbUyfnM9KsZND1CW6Qq1cnY+S6PXkT\nD5EtaPVkrm1RNw15Ud1q23mOReQ7fHV4sa1ibRAEDnlW4a+n+15dTul4Do8HXSbLlDgriNai+dPJ\nnD+8POWD3R4n4zl/82yfQfD2KKF3wTJrfdjuc43PqoqyrvEsi2/OrxiGt20z5lnOV2eX2yrbpnr0\nkHj+eLbAUZLHnc6W4G1e62i9NWBdFa0Ie1MlG3jtVJwQguNFK7D//PKCJ1GHyzjmdLVkzw+2JMUY\nw+lqSddx6ToO+obJ6E2tWt00SCnpOi0hC7TNrhcQWBa+ZdN1XI5Xcw5Xc76aXvIkiPh6dkXPdvnH\nqxP+7uAAURrypuZ87bllK7UWmtf8cXpB3/ZYVgW1MXw9v+KvO0Oe+q1PXWS1FbTaNFzlK0LtMC8z\nStMamgIcJjNsqZgUMQLBE/+6tVo0Fa/TKUfJlKKpefRGW3LzPkq0fl97ToeO5XGSzejc0HltJh9n\nZcKyzth1Ig7TMR2r1aqF2uWimPNZ8Ii0KdekqtmK7G8ScSUkjrTaPMWm4ok75JmzT94UxE1GR/uM\nyjkdHfCH1Xd4wt62Fd/EB+5j/LWgPlD+LYNUT3lU1IzKEQ0Nq2qJFJJABXye/IFPvV8xr6ac5ce8\nyL5HSsVH7icMrOE2Q9HxLGThMK4uKMnZ0fv09BBfRdjSRaIZlyc0oqY0GZ4ISZslmUlwpN9WtORd\nYlM0CatmvG0rauG+N9kCEEZhyw627Gxd5wUaLYKtzkoK661k6973vcfnqzJXGHKkeLcbuodgzAjD\nFULcr098H/xCuN4DP/fCPQQ3cLA9C/sGIbo4vCKexyC4Y1yaJwWf/8PXPPp4l3SVc3E4orvTagS6\nD2jC7AfI1tsQBM7WMiG6UelyblRSlJJ3yBZAWdacvR5jO5qyqPEDh7KsydOCT//qMctFynCvNTD0\nfIcgdMmykjByCSMXIQXPvz2nKhssW7G7321d01c5QejRX1fOyrJECkGvH+A4muc/XPDhR0POz2cs\nVyl1bbBtxdnZDNe1GY1XDHYCVquMxTJnNo+xLQvH1iRpQZoWuK6FMYbpLGG4E+HYmi++PqZuWpuE\nYb/VP3U7HmVZ04k8jk+nZEXJk/3eVl/2+mxKFDgE3u0fzCopmC5iQt99J3+tDV5fzqibZkuSbmIe\nZww6/h1S8+YJQ0nBZJWyEwUg4OmwS1nVrLKCySrm1492CVyHQdi22i7nK47HC4adH68YPATftu4l\nW9BmO25idnajgI0lYav3aCNhng16FHVFWpZErnOHbI2ThKPpDM+yeNyJ8O3bv5c/nJ9zEIZbl3iA\nSdqOtb+cTem5LklZMstSQttBIDhZLbhMYiLH5vl0wm92dlFSch634dKO1hRNTVqVZHVNz3X5enJF\nZDl8Oxsz9HwM8NXkirgsyeqKw8WMtC6ZFRlx1eq2AFxl8ciP2PfMF5GEAAAgAElEQVTCLXEZegEH\nXoByFLNVynE85697e0yKlEWR4yrNosz5NNrBVgqD4bvFFXlT0dDG/BzHc7rrvERDS9p8bWOAtC6J\nrPYY6tteS7jymApDx3JpjOGLxRmPvS47drBub8545HWI6wJXWczKhFWVbwX0nrK24vjKtGRpWsa3\n3OQ72uM4m+CstV4HTo+u5RNpj9JU2FJTmgpPORSmpKgrpuWSSF+ff+I6a9uerPenMBS004kHzgBX\nOYSqvVHQKApTclGOGVhv91GrTc3r/ISevn5daQoEgp7u0td9wCCQdHWX8+KMeT1lz37EE+cpl8U5\nO9bu1hYiNzmer7GLEE/69PUulSlZ1DNSsyJvUg6zL5FScmB9tPbiirCETdosH4z1gfZHIoW+pfOK\n6/Ed89Pr75G8NXfRmJqkvmBaf0WkbxuQthW1nyZqN6YCmjstx9os149bgEbivrdgXggf+HF94p+C\nXwjXe+DnXri3wfGcW4SoO4wI+wGOd3exta15+tkBUkpsx6K7E9E0DS+/OGZwcH2yWExWLMYrgnsI\n0X344Y+vGZ3NGOy3B28QOMSrjCTO8W9UX4wxvPzmjP7uW04Iov2hnh6OkVIQdX2axvDo6QCpJK9f\nXjHc63D4/JJOt7Va+PaPJ0Q9D8931lOFgtUq5fT1ZPueT54OSNM2vibPK/7xf/yAUpLhbsTl5ZJB\nP8BxLY5ej/jVrx7R6Xi4bttGzLKSDz8cUhYVi0XGZBJTlhXTWYxlW0Shi9KSNCtJ0pLnLy95tN/j\n/HJO4DtYWrIzCLEsRV03rTbGbp3uB/2APK8piroV9q+tHrpvmNTWdcNsmfL0oH8n8ufHELg2gWsT\nrTVW8zhjNFvRCVzqpkFJwfcnIwbR9VTh5oTx/emInu/iORa9oBX6ayUpq5rz6ZJ5nCGFwHOsbTUM\nIHQdqqYhfAcd1/FkjjFszVH/FEySlEXW6rMWWc40SYkcG+ctHlyb0GlX3x9DdBCGnK9WBNZ13EvH\nceg4DnFZcBnH1E1DTUPP9XC1ZugH9F2PcZryyaBPaDt8OxlTNw19t9Vc+ZaFoxS+1brI73ptBWxv\nnbn4u6uzNr5Hafb9EE9baCk4XM35bX/vOqx83bZ0lG6tGZzrqKKDfgdZwvPllKHj8y/jYz4M+7hK\nrzVfFpZU/N8vP+f/OPiUru0RlwX7XkRkOTiyzcJsXe7b9bOlYl5mFM11lQuga3t0rPazZ2XKvhNt\nK1MD2+eTYMioWLGqMvq2j6va732SzujbPq/T1gdsXiYUTY0nLfKmJVEbwqWlQtFOgYba2TrJH6ZX\nTIuYvhVyVSzwlc3AjniVXqCQdLTP98kpcZOxrBJ6OqQ0NbkpyOqCQDmUTUVS5/jK2bZIXWnjSJus\nzjkrLhna7dBR2VQcZSf01yTMGMPvVl/wV/6vbv0mtdBYot1GJRR5k7OsV9jCZlxNqE3F43WOolo7\n1s/rCbawcaXHIOoSxxlCSJb1nLReYkmbyhRgBL4K2bU+QEuNocGWG/sFgyUf/s3lJqY2BfYb1S8t\n7Ht1Vav6DFuED9o45GaCFGpdKbv9uvpGXuO7ojJjGvI7lbCGhDaCyEYI/WebTvxLTT//QrjeAz/3\nwv1UbA6i+WhJmVf3RvRUZc3LL4/ZOejdIlvQusZ7gfOjgvkNesOInUe97ecGgUOalrfI1ma7bvpn\nlUV1J/OvqhrKvOTZp/torZhPE/o74dYzzPNsHNfCD1201U5Z7h50WMxTNr3AqOOhLcXOMMRf66WE\ngK+/eE3TNJyfTinymg+eDWnqBs+zsddTic+etVMxL19c0u8HHB6NieOc4U7EYpHS6bh8/PEujw56\nOHZLmOw1iWuMwXEsHu23LvJ5UTHotc8vlm3A8HyRtFmLm0qTaA1PBz0fe004Nm2/sqyZzBMCz0ZK\ngeu0Xl2tNcW7nyg2JHQD19aE3rVDepKXPNnp3iIdmxNGd11NWyQZo0VMN3BJsoJFkvPBsMewG5Bk\nBUVV39Fsha7TtsY2nmKrBFurO3qrwLFxrXcTZz8E37a2bT7X0lhKcrGMyet665+1wSRJyKsa37Za\nC4JVGy90vlrdEcmnZYlvWXe2beB57AUBfc+j57bfe5KmeFY7jdhzXQLL5svRJb/qDyiaGiUErtZt\n5JSU23VYFTnfTSfs+W010NcWHdtBCYGnLb6fT/iw0wMDPcfbTjjaD7RH50VGJ/TI0pJnYRdLKT6J\nBuvQaUHZ1BzH83U8DHwcDejYDgPbpzaGnu3d2UcbbFzkH8K0SIjrYkvANlC0DvVFU/MqGVM2NU+9\nHpVpcKXFaTbjdTrjKBkhhaTBsKhSetb1/hgXSx65feK61ZKNyyWVaehbAV+tXvO30TMu8zlaSPo6\nXOviWl+ri2zKwAqJrPamol5PMJ4VE+qm5kV2Sqg8bGlxmJ0xsLrMyhX/tPySvo5wpUNjGk6LCx7b\n+9s2cjtN6VHTGqqqG0TgvLjAljZaaE6yU9I6ZcfeQUvNrrXHt+mXKBSBChECuqq/jtSxCAKHyWrB\nsp7Rt3bxVYQjPU7yl+zofSpKIt22wmzpbrdlVB3jyw5xM6E0Gba8/Zu0hHOHbClhPUioXHm/Z1bR\nLMmaCb7aRwsfKRzS5hx5Y1IxbY5RYpPX+G5QIkAJH2OqW58rhbd93/8I+IVwvQd+7oV7F2Rxxuhk\nQti/buEIIdC2vlcML5Wkv27NvYlW7PvuLSvxxgX9bQfb6GxGZ72Nr749o6kNfujS1A3T8ZKw423N\nUYUUaEuRpUVb8lZya5YaLzNWq4wsKfBDl8Us2VbHbEczGS3xAocsLzk/meH7Dp98dkBTG7Sl2d3r\nEMcpO8MI0xgWi5Tzkxle4OA4Gt9vJxXrusE0hjwv6Hbbac7TsxlSCF6+umJ/r435uRovSdOC4SDk\nh5eXrOKck7Mpj/a7OLZFWdXkRYkQgiyvtnYReV7Ri1wsW9275o0xW83WyeW81QpdtC3CwHNomnez\nOajqhvEixlJyG44Nrdj5q1fn9KM27mSyTPBde7sPN8TOsTSOViAErm0R3qigdgPvXoH8Ms25XMTb\nuJ9FmiMEdwKpF2l2h3BdLeOtQ/3bsMgyVnlxJ6pnsq5wbXIVb0IgMKZBSUlSFvzz8SlVU/M3+3t3\nyaD99oirWZZR1DWWUozTBEsqrPX0oRCCPT9ArclVbRqKuuY8jm9lKy6LgrN4yQdRe+OTr8nU88WU\nqyxhz/X53eictK4ZOj6VqcmqCt+6/wI0y1P6kc/3oxGNafC0tXVir41hVqSM84QPgh6R5fDF/AJP\n23Rtd2sJ8afCUxZKqFueXNDqp5ZV3k4sKoejbMojt8t3qwseuV0u8gW7TsieHdG3fCLLpW/524rT\n7xeHvEqu+NjfY14lnGQTVnVG0pSAwRKKfafXurGXSz5fHvLM28UWFoVpg62HdhdbWhgMl8W0NTxt\nKoSAvw0/wVPtZGikA6SQ2NLiM/8D9p0htalRQjG0B2ipeJEd0ddtRf+yGJE3OYHybxGuSEfbNuGk\nmpA1Gba0qU3FjjXEVwGWtDkrjnnqfEhpCoomRwuLMHAp0gZfhRjTcFEetxPh0ifQnbX7/PV5t2hS\nSlPS1/vttgsXW3g01AjeXsm5KL8mVLsPPn8fJBZaeLf0WVpEW/0WgC17SKFZVa9QwvtJxCs3L9Zi\n+b9MJNBfGr8QrvfAz71wN7ERxW9OoJsfktQSx7dvkSttqXvJ1gZ/znJqVdWUeYVUkjBsD7blPGE5\njW8ZnnZuEMLR+Zyo5+P6NsYY8qzEW1d+Xn3XCu6lFBR5hdK3JyVPjkZcnEyxLYsGw2wc8/y7C2aT\nJXleUWQlL364bE1XB0EbCfR6QlHVPH7Sx/UsdoZtnI+hFciHkcvp2QzLUmjdVrzOL+ZopUizkm+/\nO2d32EEIOL9c8Nu/fsTR8YR+z2c2j9kZdHh1eMX+boeyrPmrXx1sY4DkmlyFoUtRVEzmCVHgcHox\no98NODye3JpQ3MTMeK7FxWhB4NnYliYKXHodD9dqSdzx5Yz+O0yuNsYwX6VkRUXkt5Wn0WxF6Dl0\nA5eL6YrIa9uAnmMhtWwHFqZLjDGkecn5bMk8bVuIm6nHTQ7j1hl/lbBM863b/IZs1U2DpRXTOKXj\n3a5+jFcpcV6Q5OU2V7GqG1xLv5NxqlZ3xfBN0zBNM3o3PutsscTTrS5smmaAoeO6uFrTcR1Cx/nR\nz3s5nRLdeF0baSOZZimPwoiT5YKqbvgfp8d80uuT1zVxWRBYFq62uEpiHoURSkq+m45pjCGrKz7r\n7xBXJbMsw0BL2oTkw6iHwfCvV6f0HJd5kfMs6t0iW1dpzHmypGO7JOuJxL1eiFVJxnnCoiw4SRY4\nSnOetlWhv+61VRpPWzzxOhgD8zIjeEv16l0ghbxDtqDVhs3KhI7loqRkaAdUpuYka33LEPDMHdCx\nPP6wOGboRLjq+mI7sEKO0gmBdkjqHIPh77sfIYXgmTtkx46oTcNFMedDb4+j7IpfB08wNPjKZdfp\nbq0dGhoi5XOYX/Cx9whPOizqGFtopJBbkieF5LwYYQmNLS0saZHWGULA0GqNQxfVkrKp2LV3cKRN\nbWrOi0sC6VObeuuB1dEdPOURqIC4WrGs53R1j0CFSCSe8tHCojQFSR2TqgW6bG8WVvWc0/wlSbNk\nz36ClhbT+gohNhE9goYG1pYQcD2RuKxHINqWYVLPsORdgfxPJVvX76/eeOzuzZExhtQc48idn0S4\ntBj8hyVb8Avhei/83Au3QdM0XL0e0dmJePGHVxjYBlKbps3kexvB+ksiXmRcnU4pi4q9gy5JUmBZ\nCtu1SOOcsqixHc3lybRtBVqK/jC6Vc3ybgi6vcChKut2Yqrrb8mWMYbzkylKS548G9IfhixmCZ5v\n8/Gv9xEIhvutQ7wxhjDyuDhf0B+E7O51cF2Lqm44PZ6itOLqcsHOMCTPK774/IjhbutTkyQFFxdz\nLs4XdLs+g0GAVoowchgMQnaHEWfns9blfp6wSgp2hyH9XsAqznl80OPsYs7ZxRwh2mnPIHB4fTrh\nyUG/9QoLXfpdH7m2p5gvs+1U43yREqcFgWeTFxW+Z2NZm7vJttqntXonsgVtW7ETuFvR/GSRMF4k\n7HQC3HUFTilJd12pmsQJwgjOJkv6gctomdANXPa7YUuE1pWvi9mSxpgtAXMsjWdbt4hLXlYcjmbs\ndcM7ZAtaZ/nIdQhdmzgvWGU5/eDhttZNPDR5+P1ozK92d27dVNSNoVxnFfa8lrS2j2/ImXenonY4\nm2GM2Qr0baUQ689tjGGSpvRcl0maEDkuyzzHtTQf9/rYSrMqCi7iFVpJzuMlRd0w9NuJysiy0VIS\n2g4SgQDmec6+H7AqS76fjblMY5Kq5H9/8jFKSH7VvesQXpmmdWkXgsPljNNkya/3djmZzqmamt+P\nz/g47JM3NR+GPSypsJVa5zbWXGYx8zLF09a99hR/Dkgh6FguqyrHlprzvNVbWVJRmZpVnbNnR2RN\nSYNhWWVo0VYGl1XGqsqYVitsabFnRzzzhnwbn3Lg9FCizVeUCE6zMQdunz27S9oUTMp2WMG9EQ00\nKZc0GB7bO2uxuKI0FdZaF3YTrmxF+PN6Rah8VnWMEmpbuUqbnLheMbTbkPCGhqtyhCNtLssrRtXV\ndkLRlS5pnXJZXrCo5vT1AEtYCAS5yZjXM0LVwRYOB91dsrRa79+SJ84n9KzhVp/lyZBFNea0fEFP\n7SGRLOvxneDqm1YRSTPDEcFfTLd0H4QQuHL/T/b5AmhMhqH8D0XAfiFc74Gfe+E2EELQ2YkwxlAV\nFbtPd7bPJcuU1TQm6P60sds/FxzXojeMCDre9mATsiUGddWQp2WrlwocTNMwn7xdlK+1wnEtrLVm\nqa7bMXkhBKYxXJzO8HybIHSpqgakwLE1Qejy8ocLhBD4gcPufpez0ylh5FFVNYt5ymAnQmmJaVox\nvWVpVquMly8v+U//6WNc1+LLL17z+EmfL7484fHjLp7XftZGu3FyOiVNC4qyptPx8VyLTqe9YNd1\nQ16UWFoRBi6+72DfyE7sdX2qusFzLcqy5rtXl+wOQgRsdVyeaxGsyZfv2ixWraPzu0wnTuYJ//D7\n53x40EcgKKr6zr/zXZth9/rkG3oOeVlt/bCe7PfIs5JB5OHYFv3Qw3dsqrqhWQc9l1VNP2oJ4+W8\nrZBtdGG39qWSDMJ3PS7bFulmOvG/fvkDB93wwWnF+/DNxRW/PdjbfrfpWlvlWppvLkfMs6wVjtvt\n96lMW6Ur6hoJtwjcyWLRVijW4n8tJf/l+Q98NthBAGlVEdg2X1xdYEvFi/mU0LYpm4aT5YKnnS5D\n32+d1Ouaj7o9RmmCpy3SumJRtLmIZ/GSvKl4sZiS1zVKSn7d28GSkk+7A6QQvFhM0FIRvNFKVMCi\nKKhMQ8d2+Ky7QxA4vBxPyJua/7TzGF9bVE1NYLX2EBfpkkVZcJXFLKqcT8I+l1ncapK0TdnUW8H6\ntEjx1J9+sUvrkpN0xlWxYlokDO0QA3y9PCfSLjtOSNaUlKbiv1x+yX8e/oZZmVA1NY60uCqWuNrm\nt9FTutrn8+VrAu2Q1SU7dsR/n33D/ppgSaHo6Pa8MirnZE1JV/u3TE195eLKtT2Nab3EllVC1hR3\nIn7ypmBczlrzU2HhKZfK1CyqFbN6wa41oKs7NDTb6tjA6mNLm67usmPt4EmvNTgFaio8GVBSUZiC\naT3itDjBwiI3KVpoXuTf8lHvGf9w8d8IZEhFgUZzWhzRvRHJ40qfvtrDkg5ZvaKkIFAd4nqGLV1q\nU2HW29W+PnwnspU1CyqT/VnsIv4caIhb89P3tIH4n4lfCNd74OdeuDchhCDoBRx/e4qQ7aSi7Vo/\nG9mKl+mtIOo3D7aN75cxrV6rqmouXk8J1+L2H8NktGRytaS7bkc6roXtaPzAaXMRDVyczdC6dQh/\n8myHNCnYf9RDKUmWlXzw4RDXs+l2fQyGKGqJ4bZSczZvsxOVIIlzlquMx4/7/NVvHrVEt+NxcT7n\nm+/OsSzF+cWMwSBkf7/LcBBSruOGiqImSQsux0v2hhGvXo/od32c9foMByFKSqq6Js1KAt/m/GoO\nDazSHN+zuRqvKMqKZZyTFVXb9jQGva5qzZcp1toV/z7UTcOTnQ5l3TCax0yXCYMHKmHnkwVpXqKl\n4Gqe0FsHU281XDcrRHXD56/OsC1FnJeMFjGubfH96Zj9XvigU/xNxHnB5WJ1b6UL2AZob/Bs0H3Q\nRf8hNMbg29dC96tVQsd1KJtWQ/Wbvd2tBcTZcsHXlyMOohAQ5HVNeENk72pNx3HacOskoee6PI46\n1Ma0/ljr1z7rtvqhWZ7x2+EertJ8Mx79/+y92a4k93nt+Yt5ysg5c481k1UcTIqS2jZ0bB2f9tB9\nY6Av1LCAbvgB/A6GYT+CL3XZF0YDhhs4jW6g0bBh2ZYpWxYlUiJZrHHXnqecM+bx3xeRO2tv1q5i\nkdSxaLQWQHBXZmRkRGRkxMrvW99a1HUDazGNeOB5NE2TSRwxSxP6iwnEnfmUpMiZJQm/ubpJc5F5\nCBAV+ZktHB+NT3mt1VtW4UohGMUhWVlyGvnUdQNdVjBUlUjOqZUabcNmyxszSxNsVSfMM/aCKQ9m\nQ+40uhSiZC+YcsNtV6a2usWWP2GWRdhqVYE7jf0L4dR5WVKK8kI1aJyGDBL/QlYiQFxkbAcjQGKW\nR9xxVzhNPCylCrA+iCdLHy5FlnnDXUeTK4PUhmajSgqzLGTTai/3ORcFe9GIt+pXUWSZtlbjIB6R\nlAV+EdPRXH44vccbtSvYikFQJNTUZ8+3tMz44ewjrpp9nEXUD1QZiqfphJpqo8kqMjLfn/wbfaON\npVTWFxIStmKhSirzwuM972fUlTqmrBOWEcfpMa5SWe7ERcxusoOCii7rnKRHREXAbfs1UpGyrm9y\nkh2yblylprp01D71mo0cWThyjUkxpKY0yETCXvqQjrq6aOnJyIu2Xi5SFEnFkC3CcoYp1wjLKaXI\nL20jfhZS4ZOIOfrnrIhlwkeQ/UIF7rJk/ociW/ArwvWl8Ms+cM+D26lxujtcGpN6Ix/TMZicziiL\n8gIJgmoqcP/+0XNzE78oBodTanVrOUl42ckWhylpnLG/PWRlo02rV2f/yYDWJf5fQgjmkxDT0tnf\nHmI7BpOhh2Ub6IbKfBYiSaAsphTjKKXRctB0pWpj6iqP7h/jeRGdnkujabO3OybLch49OOFwb4zl\n6ERRimXplEVJGMWcnMzQdBVFUWi1bPK8IElyfD+u8hANDcfRsUydjfUWg6HHxiKj0rZ0bEtH1xXi\nJOP6lQ6aqrC9OyJJc8qiJIgS4jijKEoMQ10OAmRZjq6rtJvOUiDv1kwcW8cyNWZ+TLvhLFuKpxOf\nuR/TdC+/COmaSpRm5EXJWqf+XLJVFCUTryJZo3nI1f65vM3FZzicBfhximNWero4zZCoWqRZXum9\n6rZJ4yVzGlVFxtIvt2G4DEGSvhSRO49xFC2tIPKypG1X3kqKLGOq6rKC9XAwQiC41WlTMwxsTUNX\nFMZRuBClaxgLh3hL06gbVQUvzivdTJhl+Gm6zEP8ZDQgK0tcw2BvPmOSJKy7LjuzKTXdoGvbqIs8\nRU2p2nrvnxwRZCmvt3us1+oIIfhkMmScRNyfjrjVaDNOIlqmhSErNHWDPX++tKqYpTHTLOaNVp+k\nLKoWjqKSyAVSVv04C9KUvWCGkGDdctGkyhVfWVRkhknAJI1Zs1xMVUOXFVat+rK12NQtynOa0Uka\nLiOAzmAp2jNka5pFOIpOUGZct9vkVBOJsiSxG42pqQZJkVNS0tCqoQ1NUpaWElC1S/+3/X/mbfcK\nuqLyD+O76JKMIqmsmdWUXlykzPOYtuYuiJLJFauLqegoKPzc38JSDJxz1aujZIwua7xibfDe/B62\nbGApZ4ad0sISozo+kiThKjYN1UWTVRRJQZe1ZVvRlA1aap3D9Ahd1gjLiL7WIxUZSBJH6RF9vc9O\nvE1TaeEqdUqpxCvn1XVMUpgXcxRJwVHc6jhYEifeKXvpYwzJJBMJfW2DmtLgJNsFwCvGOIsWYpWx\nKDPMdulqV8hETCYSasrF+BshxCI8+vnfP1lS0eUammRzkv2cmrz6QtJVioxZ8RBT7lKySId4AeEq\nRUouPJQvWEFLyy0kjK90i/FXhOtL4Jd94J6HyrC0jmZolIUg8mNs10JCqojDp9owiiJTazpL366t\nD3dpdN0lUfqiqLccjvdGOAvj0csJV8Jk6HPrjfWloPM82dp/MiDLCjRNQZJlth8cc3o0JYtTag2L\n6ThAUarpyZ3HJ6xutJdVozwrUBSF0cBjurCR6K3UybKSOE7J0oLJyOfRg2NUXeHO6+voulJNPeoq\nk2nA4f4E3TTQNYXxOGA2i7h5c4UgSBiPgypDrxC0mjayUk2hbW8P6fWqKcW8qKbe9vfHDAYenYUj\nfb9bp9t2sW2DJMmJkgzLrG6WQZgSJzmr/QaObZDlJdN5SJxWy5xNE9YW/lxnqFkGzmKK8nnQVQVd\nU/Gj5LkVIi+MidIMP864tlKRLS9KCOKUbqtGGKZM/Cqq42wqUVdV7u8PuLnWYa3tYura8gYVZ/nS\nu2lvOF0K5s9jEkQY2ssRruOZx6OTEZvtFxtPfhppXnAwnVMKwcPBiL5bW1bqzshWKQTvbu9wrdVE\nV1WejCcgQU3XKURJlOcceR5d22Z/NqNuPg1SNlR1GceTFsVS92RpGh+fnuBoOptunUPPo6brVbi1\nBIMwQFeUJdkCKud4VcXRKyH+nj+nKEtW7BrX602MxaRmLkqeeBP8LKVvOZiKyiAKaBiV/YQiyTia\nvpwyXGvViaOMnw4PKSh5o9Vn3a4vKlYBqqwwigNKSfBOe4OWYXEc+2RluQixvogPpoeUogrCDosM\nRZY/s804TAMc1UBdEDxL1jGV6tx3VYOu4dLRK9NWL4to6w6aXHnMpWXOJAupKQY1RcdSDHbjEWtG\ni57e4IrdWX6mT6JTplnIitlgKzrBUDS6eh1ZkqqqnVZHlRSMRVsxKwssxUBfkL8Vo419LihbkiQ0\nSWU7PsBVqoiitt5Ak58S/0k2q84nWaUUJWEZcdXcRJd0xvmEttYiLCMUSaardZCReRJvMc6H+EVA\nR+vQ1brUlDqJSBCU9PRVysU0JEbGyJvyJHrAa87b6LKJLhtosl5Vu0hpKJ0LAn9V0pYES0JCRn7G\ntDQRAWE5wZRd4tIjKqcYzwmzLsnJRUxBgiE/3ztRkhRMuQtUROtFZAtAkFPy4oif5yErDwEFRXpW\ny/hVwq8I15fAL/vAvQxkRV4K6D9tBTE+mqKZGnsPjrAcY9niq3dqvzCRvSRVQdhnxqefPmampeO2\nbLbvH9FeVNhCP154SsmUZYk/j7EcnThMqdVNNq51sGomo9M5nX6dTr+Oaen0F63CM5SlYHQ6p9Vy\n8OYh/+///T5lUXLjlRXufXxAt+uyeaXDo4dHCCG4crXNzs6Y2SzEMDVGI59Wu4bnRQvzUcF0FtJs\nOqRpQa/nsrraQFGkhYt8DdPU2NhooWkqcZwxHPnU3apFGkYZXhDTbjlL0hRGKYahMZ2HKIuIlVbD\nXorkz46hIsu0Gw7beyO29oZYpo4fJjhWNcn5YGfA1AtpufYLCVc1hejxww+3ee3ayqXLlELg2hat\nmsXUj7AMrRKEKzKNukUYptiGjhclS32WBLRqFllREKeVqHd/OENVZIIkrUTsi9buZURvZzip9FOf\nMiP95PAUR9cvRA+Nw4hr3eYzNhKfhTQvWKu7i8lDHVOtqolhmvH9R0+41a0u1qoi4+g6tqbh6BoN\n08RLE1qWRZhl9GwbXamyGk1V5ZPBgKZpPg2clmWSoiKZuqIQ5Rl3Or3KawvBge/RtmwMVeHY9zkJ\nAroLny8BzJKYe5MhIDGMQ3q2syRQaVGw403JyspyAgF13bhxM/oAACAASURBVMDVjIURamVyaSgK\nfpZyHHl4Wbo0P3Ucg9E8ICkLXm/1+bvDx1xxGmiygqkotHWLvzt6zKtuF1vVkZBo6Sb6whj1/nxA\nTTWWVa6aaiz9uVRZwThnSjrLYkpRosmfvpYITmMfS9EwFuutROoyhlx9JkGekJYFuSgQwH48xZQ1\nVEmhWLjONzSHR8EJQgjaukNUpnh5hKUYeHnEXjSklEpqsomjmtRUk6TMiYuEvWSALEn4RYwqKXhF\nyHEyoak5y0raWRXrPCRJoq01+Mh/hKHoF7RdSZEgIaErT0X2qUgxZZNRPqajtVAlFVM2llWwXOQk\nZUpNdTEXLb6G2kAgUCQZW7ZJyoT70Yc4co1SjZlHc1paDyFK/HKOqzQWGkkZQ7aeEfgfp1vUlNZi\n+2WOs8cIUSxjfKCaVlQlg5ICTTLRJGtZ7TrN7pEKHwUdRdKQJQVTbi2MT39x5EaS1GeNTUXMy2Ql\nyjgo0tOA668qfkW4vgR+2QfuyyJNUgxLp7XSQNMr48X9h8dfqLXoz8KlGP48zsgWPHuyRUHC4GhK\no11bki2AKExBQJrkJHGG7RroukYUpORZgaopODWLwEto9+pomvqM71RZCh7fOwQEK+stBqdzbNug\n1XGpuRZlKWi0HIqy4GB3jBDQ6tS4dr1LHGUUpWA6Cen36/zw3fscH89I0oLX7qzTbNm4rkVRlHzw\nsx1MU+fKZnsZXu37CYahoWkKbs1k68mAlX4DTZORZYnauTbbweGU3YMxtqGRZAVFXkX7nIcsy2ia\nwt1HR6z167g1k0bNxNSfVrvqjkm/7b6QbAHMgxhNVXjn9ubyMS+sxOKyLLF7MqHlVpE+pRDEWYZt\n6AsneWX5GcZZzuFwxnAe0K07/PDeNlleULMMVEVm5se4loGhqbRrNpqqMI9iGpf4XwHULRPbuDjF\nCFU8z/5kjq1rS4F/wzI/N9mCcy0hWcJQn/p7aYrCldZTg1dTq0iWKsvVcsCTyRRNro5Jc1HVsjSN\ntCjwksqO4GyaD6gIzGIbR2G4JG22qrFZb5AWBUGWcb3RZMOt42cph/68IqayQlaWDOOQN9t9JmlM\nVhS8e7iDrqh0TYuabpAWOUlZUNeqv6dpjKOeTU2qlEKwYtVomU+PueMY/Phgjxtui7wsK+IoSuqa\nwcP5iJ1gykNviCJJ7AQTgjzjOPToGA5RmXEaB6zb7nI/DUVlnsX4eYqrGUuyBZCUVUh4kKccxx41\n1SAtc7b8EcPU5yTxaGoWhqKyG445jGf4RUJLtxmkPn3DRUjgqAaOqleGrAhOkzmyJDHNQmRJoqFZ\n/Gy2S03VmeUxq2aDnWjIbWeNDbPDPX8PWzEwFZ2CgkKIysE9D1EkmaTMsBWDvtFEk1WSsrr+xGV6\noXp1HqtG9wLZKkXJ/XALW7FwFHvRohNYytmxlzDkp95tWZnxSXiPhtpgzVhDlmQs2eQ4O8CUbXKR\nMc0nyJKCl89YUzeZFEMaTp1GsUJb6+GodZIyYpif0FSrQamw8EhEjH5On2XKzlLTBWBLLqqkX1rl\nKsnQZOsCcbHlDqbcRJWf/hjKRID6Aud6gEIkpGKK+pyKVSlySrLnTioKkROXO2hy59Lnz+OsO/JV\nx1eZcH0hqlqWJX/2Z3/Gd7/7Xf74j/+YnZ2dC8///d//Pd/5znf47ne/y1//9V+/1Gv+I0EIQVmU\nPP5g+zOXbXTrFypZkiTRXX+q10mTDG8SvNT75llBufBeelkUeYEoxTOP15s2B9tDRicz+utNmu0a\nhqnRXamj6gqzcbVNm9e76LpKnhV8/P4O6aKyApXdwdpme7l/d97Y4OrNLidHU44PJ5RlWfk0aSrN\nTo3f+NYtegvD1zTJ6ffrvP21q1iWTqNpo6gVsVE1mSjKyPOC/f0xpqVhWzoHhxPuPzxiNo+Ik+zC\nMb16pbpguDWLRt1me29U2VgMZmysN7lza4XVlQamoeJHKX4Qs3s4Zv9owmDkLdf1xitrzLwY09BQ\nVWWp3fr5/X0+fHDwUse85dq0XBs/TJaPhXFGXlSO2O26vSQeqiLTeU7moaWr3Nns8ea1VWRZ4nq/\nzZPjKXlWkmQFpqHRrFmM/RA/rt5r4kdLn7hPQ1erFpkQYqkLOsONXutSvdbHhyfPLPsiHM7nnPr+\npc8FScqJVz13NPeWfmdQfYY3Wk00RaZfq8TCkyhiEoZsTSbc7nYRSJxtSZCm7M2r1pKfpgRZhiJJ\nDMIQS9OwNY111+VqvUG2OO62qtEyLVqLKKCkyPlP65X4+8F4xN3xAFs16Fs2HcvhyPf4/v4TylJg\nqhpennGl1iDMc2Zpdby3vAk7/nS5H1lR8OPjfQ5DH1mSeOyNsVSNmqrzg5NtdFnlltvhv6zcoG1Y\nNDULS1XxixRJgofzIdec5gVSBeCoOtYlxKShmViKRl0z0SSZoEj4YLqPreq81djgZq2LqxrMsxhT\n0agpOtMsBGDTapGUOWGeEhcZmSgwZBVL0WlrNrvhCGdBYKIiZV5E6JJKQzN5f/4ER9bZjYaVCF9W\nWDfb3PV32QpPcNTK0qGrutyy17AXMT6qpDDPA3aiEw7iAT/zHj2zT0II0rL6fo+y6fJvWZLp692l\nwem88PgouM/jaLsaClIsSkr2kwMyUQ27SELCVmzG6ZioiEhETElJXEZEZUhdqWNIJsfpAY+T+4yy\nUxzVYZAeMs2HALS0HleMm+wmD4nLEF02MWWbk3SHQlTXw7P/n0GVjWec5gEsuY4lP9umv4zMxGJK\nKYrFMbn8ui+hIPOUpJUiJSoPl/8uCMnEbLmOqNz91Puq2Mqrl677V/jF4wtVuP72b/+WR48e8b3v\nfY+bN2/yl3/5l/zhH/4hUAUT/8mf/Al/9Vd/xR/90R/xF3/xF/ze7/0e77777nNf8yL8spkqQOTH\nhPMQc+Gj9OC9x/Q2OzS67udyhT/DWVsRoFjE6Zj2Z+fembbxmZOFjmMwn0VLrZhmqNiueel2tnou\nzc7FkvVsEnC4U11owiClvgjALkuxDKw+Q+DHfPDeE/Jc0Fup480j/q+/eY/5JGD9aodXbq/x+OEx\n3X69Er3XTKaTECFA11WmY5+trQHDwRzb1vmd33mN+TwiDCtBvSzLzOchrmuxuzvCdau8tfHEp9+r\nM51VbUhgWXWSJInDwwlBmDCdR+zsDQnDlNV+gyd7I/KsoNepkWUlpqHh+TGjWYCqnJmkSkRJxnQe\n0nTt5bHxoxTXMdA0BU1VeLg7IEnzymLCqMxwhQAhWGrKjkZzGk5VqQmilLwosU19aT8BcDicoanq\nBeuIMMvwvJj90ZyO65At1tdwTG6utkmLnH+9v1u1H+0qxFkIqsxFu3q/oiwZeyHGJQam4yDCi5KX\nylrs1ZyX8uQ6g6FWk3qXWUlMwoiiLFFlme3plPuDAQ3LxNY0Dmbzqop4zgV+niScBgFN01oGV5+5\nxOtK5ah+bzQkTFNyIUiKgrZlceDP6Vh2ZTibxPyfj+5xo1EZlj6ajHC0akrvvZND8qIkyFLe6a/R\nMExuNlocBB4dy2bXm7Fec/HSlLpuEBd5RXwW4nZFlhnFFXk5DD26pk0p4GEwoq2YrNv1qoVo2Fiq\nhiHLxGUVEHx3NuBbvWvIkkQJjNOIK3aDrulQ102GcYAqyU9bqJLMdjjB1cxnyBgsbGs0E1PRyIXg\nqtOq2nl5jKVonCQeZVkwSHxuuysYC/J2GM8YpwGmopGWOcM0oK6aTPOQnahquUZlSlAkvFW/UlWC\nJRUZib14hAA6ust1q09cJEzTkGE259fcawyzGZFIOU4mFGXBpllFd2WioKE6zIuA9U9VsQBSkTHK\nZriqQynKhd6r2mdbtjAXAntTNmiqDbpam1kxJyxibNniUfQYqIKtDVnHVV0m+ZiojJAlhRV1FU3R\nMBYVqlk5BiFQZIXX7LcRekocZ4RlQENtVYosSQYkdElHkw1kScGSayhS1bWYFqfP+HB9WRhyHUmS\nCYshg/xn1JUr5CIiFR7qYnJQkuQLDvNV5Ie81HIpkoEqOctzpHrsq2E58d8KX+UK1xdyRPvJT37C\nt7/9bQDeeecdPvroo+Vzjx8/5urVqzQaFYv/5je/yY9//GM++OCD577mqw5FkVHP3STv/Por1eOf\nQ4MVBwnTwZzV6886C/uzkMYlE4NfBGVZsvvohJuvrwOLiKHnbOfJ/pjOSgPdeLpvjZaztIAI5hHz\naUia5tSbNoPjGfWGRZZVRp2WbfCt//zasjLl1i3efOsKiiLT7lT7c3uxHY2mze72kJW1BkVRMPci\nXMfg9TfWybKCw8MJUZRx9WqHWs3EWJCYTsel23VRFZn1RWXw8GhS+X+dQ54Xy/2c+zGb662FOamF\noio83hmw1mvQqFeeYGlWMJtHjMY+iiYTJ1llXqtIqIpS+Y+VJbJc/X3rSrcKjR7OsVd1rq21LhCn\n8SykEALb1Jj7Meu9BtdWn04prbRd9k+nhHFKGKd0m5W2o+laz5CTKMnwooTNboMwqbITSyGoWQZC\nCPaGM1bbdR4dDXl8NOQPf/0NFEXmcDwHBCtNl6wo+en2AV+7usY8SgiSlHeur3My87F1jc5LenN9\n3hZCVpTPDaxWFQVLVRmGEVdcl9ypYWsa8zhmazzm1U6HB/6Qq80G5mJq8Xa3S5CmeElJ17LOvU9B\nVhbUDYOGYaJIEke+x4Zbp6brnAY+Hw8HNA2T31jbZBLH6IrKjUaramMqKj3LpmGYREXGPE2o69VF\n8narQ5RnrNVcvDQhFgV/t7/FhlOvwq6ReTgb8Wa7z5vtfpWfqBkM4oCWYfH13jrxPGGaxvzodJ+2\nafLN7gZenrFmuliqyv90tTqXT2KfFavGm40+uqIsydRuOOWa06Jzzjn+tvvstePD2RFv1FcukLDr\nTnXeDWKPaRrhZQmv11fZDkasWQ00SWGaBmSiZM2o09VrzLKInuHy/mxnEWSd0dNcojLlmtVhmHr0\n9co+IisLxrnPptlmw2xjLNpVBYK6bldtRVEyzXwaao2uVudheMA1e4VJ5rGyCKO+ZW9cep4Yss66\nUe1rTb14nmYi5yg55Zq5sVwWoK48vX7qks6mscF+ckBZ5hwlx6wbGzyJnqBJKpGIsIXFvJzQUFqo\nqNxx3iIpIlQ0FEnQUNr0tOp8uBe+zy3rTRIR0ZCffqeVxX5LkkRXeyofOI/T7DE99eaXasXZShdL\nPhPkqyhc/H6l5RxBgSG3KruKUmVefEJdfX25TC58FEw06eWGYITIgM/OWM3LfZA0FPr/IdqNv2x8\nIcLl+z612lMxoKIo5HmOqqr4vo/rPj35HcfB9/0XvuZFaLXs5xKG/0goOw79lfozYdZCCLrd2qUh\n189DGmfEUXohquc8fvM/37nw74cf7bN6pY37Ka+wmq1j2lXLYDYJ0PTKX+sMtqlyfDhFV2QefXTA\nb//+6yiKwvB0zmwacvPVlcrAMC84OpigaiqvvblBnhdMxz6Oo7O+0a4sDeKM06MpH/xkm9ff3Kh+\n2QtYW2uSJBmjoc8//cNd/uB/fJvT0zmvvFKt2/Niej2XXs9lb39Mp+3w6isreH5Cx1CrQG1d5ZP7\nR9x5dZV/fW+LtbUGt2722T0YI2syx4MZQZByZaNNr+cuzVw7nRoTP+S3fv2VZ8xJJ7OQVsNmMPbZ\nP5nwyrUePddlfa156THv9VxmflWFuXG1e+kyuqXimDofPj6i06ld6uWV5QV2XrDWqS9F7MdjD8uo\nKlVCQKttczrxWOnUaLkWKyuLXE5dwgsTGk0by9D4X9e/CVQVt7P9cxtW5Sn2EiauL4uyFPxkZ583\nN1bJNEGnZj+j//LihK4BSV7wzSubZEXB3aNTsGSypGBjpcHNtS7/8mQXw9VRZBlbM3Atk+k04etX\nnt7QjuYeh7OAr2+s4aUpx57Hj/b2WKvXWelXVYYNIXjj2ippUUW8zJOEohQ8OR3x+7duAfD7jVef\nCdfen88Is4yNTh0rM0CqTFlPt0O+cX2DvlNdw36nW+M0DFhxavRwuT8e4NRNAnLKvORUCni91aeT\nOWy6dZpNm3daFu8PjrhT79K1qu/u/9C7wzSJMBUVU32q97lj9rEUnZ59+RTbGX6355IWBXvBhFv1\ni+ddGcHBaM5vr1xftA1zNuotHFUnjQsMZNp2jUHssak2cTWL3+28gaGoTNOQ/7rzE9q6zUCd07Bt\n/mn+Cb/Vv4OhqHyzfQP3UyHZ47lH23KoqSaWofJ15xajZE7LdPifr/wWhSip5wau9izZP9NjfVqM\nfhnWRQtJkpimcwSClv6URMwzn28036Cpu3x8MiQtU9atVZp1EyYx6+51ZtmEVbNLWNhYisU1ZRWA\nYRLTNRqMkiGxM6Jv31w425fUGxod+Rqm8vk8qVrlm6jy8ydKS1GwE3zANeedCxqwz4Oi1Ckp0RYt\nzChPqJUb1PSn9+Eg8zAUE/WSNudlCLMn6HIHVfmsQkBF6sLkZ5j6HeSvSPWs1/vFFDB+0fhChKtW\nqxEET3VHZVkuidOnnwuCANd1X/iaF2EyCb/IJn7l4E0CkjChu9G+fAE/ufzxS5BEafVf/mxfv9dz\nGQw8sjSvLBPykuZKg09+vs/1O089XYq8RFFl/DBleDJDUWTsmkmwKMUWRUkYJARBgixXYdu72yNq\ndQskqYroOZiQLSpLWV4ymcyJohRJwNpGi9PTOUUh8LyY48MJN271ee2NDXRDo4bE3t6IvCiZTkNq\nNYN3vnGdf/7BfTRdZWd7SL1hUpQCz4/pdV2mk5Dx2Gd9rWqX7OyOMDSlqoK1awwGHo+3TlhfayLK\nKqJntV9nPAnotmtYhsZg4DGZBTx8csJvvHOT12+u8uDRMe2Gs2xLBlHCva0TvvnmVaI4Q5VkRiOf\nNM6fOd7ncTiYIcsyvWZ6qbDejxJSK6fnOoxGF3VO4cLzKoxTFEMl9BO6DYfRvPLiCpOMW6ttdE0l\nzXJ6toPkVJ/lcFit6ydbB7yx2cefx/jEL30+vQiTIMI1jRcSNCEEaiYxm4RossxsEj2zzMFsTssy\nAYntgxGOriPikp8c7VGUgjXX5aeP9unoFtNxyMPxiNe6XbbGAe8fHUEsaFvVpF6cpvQUi7s7JwRJ\ngqLI/MHmLR6Mh9zdPkaWJRxNR5Kq9mwpBB3L5tibYxUKg8FTzV5I9b0rheDAn1fZis0O4Szhf7//\nc37vyk1c3eC6XkcKBYPQWy5/d3JK5LZwNJ1aofH3h4/577obvH51Ff1wRDRLeHw84N7RCe51nZqm\nc1trI/ySdw+eoCkyN2rV9SAoEsIixVF15lmCIknsx1Myp9Iv6QvLhks/ozTiMJphRSrb4ZhXa1V1\nKC5SbkkdoknCv4y3cGSdYeqhWQ3qVDfGk2BOUubYus6PvC0k4Jrd4d8mW/SVOr9mbDBNI1blJj2r\nznQcABJNzSaWq22b5SGGpNJWXN6fb/G6c4Wh51VtR39EYcC7e3f5T803KUTJgRijSxqZqDRdddXh\nx/O7XDfX6emX/6C5DPlC3zSQnn6eWZkhEGSyx2Z5nb14D5M6O9EJSm5z339CV+8yD1N24j0ykfKK\ndYekjNmKH3DDFDTbJlbQZWu+h1/OaEhrTMYRlizj4ZGUEZlIqSkva5ny/O9iITJE0WQUPXufi8sJ\nuYioKesv+T5nx8GgECUzsY++1Iu5hOTnljn/PrsoOJ8SzncJLqwTkuI+BVNs5Tcvee+bBGRAdslz\n/744uwf+srfhMnyhn7nf+MY3+Kd/+icAPvjgA27fvr187tatW+zs7DCdTknTlPfee4+vf/3rL3zN\n/x/g1K1fmOmpYenU209/+ZZFycOf7y3/LYRg5+ExgRczWwjCb7y2duGCvbd1SprkFHmJZRvUm05l\n03A6J01zirzg5GDC6mab3mqDtc0Wqq6w+2RQeXSlBeNRwNaDEyZDH0WV6XRdRFlyfDLlo5/tceVq\n5TAfBDE1t9IWCQGBn2A7BpubLUxTQ5FlwjAl8BN+7a1NXnttHT+IOTiYomsqw+Gcj+8eoOsKH3yw\nSximbO8McSydKMkJgoTv/9M9BiOPr791jV7HpdWweeVGnywr2FxtEcc5H35yQBAmFIXg6kZ1cRlP\nw6o9KYHnx2ztDnEsg3deryoqlqnhOpVP12eh03BQZInR7OIQhBdWFhzDWcCDvcFSnO5HCcfjOZ/s\nnOCFCVle4Nom69065kLnZ+kaq02X16/0URSZNMt5cDDgYDQjSjN+eG+HNM95cjrmnetreFFMlFak\n+WTqESbV36UQ7I2mzKPPR8QqZ/MXi+YlSaIQgiSrCOmT0YQou3jh7dccilJUxyeMOJjP6To2RVlN\nJG5PptzpdnF0DUvXeKPXI8wy2pbF71y/zs5kQrhYZ03X2Z5OuDs4xdQ0hmHIaeCzPZ0yjiMOfY/3\njvd5Mp3QMi06VlVR2XTr3G49vamchD773oy8rHRcsyQGAX6WkhYF//3GDXqWg6VqvNp8Wj0qRIks\nSVx3W+iKwrY3ZRgHKEjsh3OOA4+kyJEk+PbaDf6XV75GTdOJ8oyfj4/48XAfR9VoqCb7wYwPJ0eM\nk5DTOGCcRCAE2/6EO/UehqJyGM0X2q/L0dIt3mysLiwONJKiWtZWdFq6zV40YdVoUNOsZ7Sch/FT\nUfrr7hq3nD6lEHhFzJreZJKG/HS2zaPgBF1WaWg2bc1BPyfgl5EqXxVgVW+SigxXtfnh7B6WYnCS\nTfh2861FYiUgKg+tWeYv9Vu/Xn/jAtnKypx5/uzwxSz3yBbbq0rq0vqhFCVHyTGjfEIqMgpRUIqS\nK+ZVGmqDqAhRJJUNY4NRNmCUDTGVyk0+L3O2ogfM8iGlKHkw/5hRdspB+oSm3MFVmpjnpgAVSUX7\nBbi5CyEIyiGu2r/weCYi5sU+ptx6LtkSoqQUl58ThYhJyykv0+ArREQp4peaUtTl21jyb1y6H1UL\n8lf4LHwh0fzNmzf5wQ9+wPe+9z1+8IMf8Od//ue8++67fPDBB7z99ttsbGzwp3/6p/zN3/wN3/nO\nd/jWt7516Wva7edUe87hly1++0VBkqWlkP3Jx3u0+p/PUPKz1t1ZqdbnOAaD4xmiFLT6dexaRXT8\neYSmVz35OKysH2RZYj4NaHXdZXurLEo0XUXTVfa3h9QbNrq5CBrOSwxTpdVxkYBm20FVZTwvptl0\nmIx9DnZGvPrGOo2mxXQSEoUJ9+8dcrQ/5uYrK0ynIUGQYOgK7Y6L78WYlso/fv9jXNfi4GDCxmaL\nbrfO1752jckk5Ph4imHoXLvaISsKWi0Ht2ZimhqyLOHWTLqdGqoi86P3tjANjZXF8bVMndHEp9Ww\n6XVqeH7CSq9qwela5dlkWTpHpzMURcE0VWxTRwKGk4C5H1N3TDRV+cw2nKrIOJaOszAqPRzMOBrN\nqyqja3Ey9qg7lfA/yws+3DrECxO+dmt9YfVQtRRc1yRPq1/vszAmTnMcU8ePErZPJxVxFtCpOzRt\nC0mCJM9pOhYH4zn7ozmtmlVVzNJs6bs1mPtIkvxSYvkzOIb+UkapqiRz6vu0bIuaoWN8qnqdFSXz\nJOFg5rFaqww3k6KgYZhcbTXpOQ62rmFpGtuTCS3LomlZqLLMvx0cYKoqV5tPb8iyJNFzHNKiYJrE\nFCW8vbKKplRu8k3DYsOtP7PtaVGwPZ/SNi0GoU+QZDyaj+jbNcZxhK4o9CyHj0an/OBwm5Zh8sSb\nsFF7+mNp25uiyTK1hUXDcejhZylZWTBLE17r9/HDhINgziyJSMqKoM3SBBmJURIyzxJWbJewyOib\nDpZaVeRqmsHHsxPiIuNardI6uaqOcU7LdRr7GLLKNIvQZYWdcIwuq0gSHEQz6pp5gRDthGOu2m16\nhkOQp1jKU2uNjl7DPRe9o0gysyyiqzok5GRlzo8nT2hqDqnIsRR9SZx+OH2AX8Q4srF0qT9KxqwZ\nbWRJpqc3kJC4Za0t/MM0DFljkvkkeUopV8aoaZkh4EI7sRAFqcgxZYNhNkFCRpNV0jJjlE9wlIte\nWJIkocoqpShwZJtxPsGSTRRJ5SDdZzvepqY4SBJMsglXzGu4iktaxmRkyJLMK9brJCJmvbFGHgvW\njWtoksa8GGPKNsP8EEepI0sK6sLuoRA5sQjQpJf/Tp3f5pIS7VNtOBkVCWUZfH0ZMuGRiCn6Jaao\nghKQzlW3XgyVzkt5a52fpBSiJCl/BpKKREEhTlCk1mes4d8HX2XRvCSeN0P+FcEvuzT4eVGW5YVf\nkXGQYH7q4KdxtiQxL8L4ZEaz6y6J2svgfDl1eDSlLAW1hsVsHLCy0SIKU06PptRcg95a9QWJwoQo\nSGme0xUJIXh495Dbb14ubH18/4hbd9aYz0JsS0fVVYancz58f5fX3lxjOPC5cr2LN4+YzyO6vTph\nENPpVh5de7tD+isNoijDMFR+8t5jhJC4crVNr9egVjM4PJxycDBG0xWuXOngzSPGk4BSCH79mzfJ\nsoIoTiviJUl8ePeAtZUGnbaDtqgiRXHGcOyx2m+gKjJhlGIaGkenMyRJYrVf3ZS//6/3uXmly7VF\n5csLEu4/OeHOjT7up6JzDgczHFOn8Zx4nzMcDaecjAM6TYe8KLB0lbpTESRZqjy5zkxAz6PTqT3T\ncoRKK/XDT7a5tdbBMTR0XatK1JJEVhSXitX3RlOudJrsDCdYmkaYpphaVTWDSt91MvfYaF1+cS6F\neOkpxTQvnht0fTz3GAQBLctiEsXc7nb44OiIjmNzrdlcutALIfjo5JTX+z1UWWZnOmUUhvxav7/U\nhX14esLrnS6DKCRMM5KiYM2tEWc5758c8Uq7ze12VZHKy5JRFHLoe7zRrSpGoyjkk/GA3964xifj\nAbcabY4Cj2FYTUTealY/BH90vM/b3RWSouA49LhZb+FnKfvBnLc7q8t9++fjba7YTeIyZ8Ou4+kZ\naziEecZ/3fmYP1h/hUEcsmI5PPRG1FUDJIl1y8VQT2RhtQAAIABJREFUVO7PB1x32qiyzDSL2LQb\n3JudcrveQ5Yk/p/De/x27waZKIiLDAmJnlFjmAZ09aryosoKWVmQi3LpQj/LIkxF4zCasmm10GSF\nQeLjqgY/Hu/Q1E3eajwr9v7EO+RRcMLt2gr/NtkiESnX7D6v2WtoikpWZrS1WuUpmIzp6nUMWcVW\nDPKy5CQdsxWd8JZzjZZWY5jPsWWDmvr0+/IkPKSjNahrDuNsjiapuOrlgxxxmaBJ6tIOIipiTNl4\npsVaiIKH4RbXzE0sxaIQBbvxHhv6Og+iB2Qi4bZ1h5P8hK7arUxXkThOD7ll3SYpY/aTbXJzThYp\nvGa9jSppzIsJx8kOpuzQ09cwJHtJ9obZPgUFK9q1F301PhdKUTArdmkoV5kUD+mor33pdQpRLklV\ntog1UqU6QXEPXVpBkz8fWRKiIlmq/LLtzn8/fJVbir8yPv0SKMuSYBaim9WNbnQ04eDhMaZjLAnV\nwaOLJqfeJMCwtJeyk4jDtBK1f474n/Ps3nZNZEUmzwq6qw3EYp1O3aTRqpHnVZXr0ccHmLaGN4uo\n1U0e3zukVrdQZAm7dpFsJHHGwc6IG69WNxzD1Dg6mFTBx6ZKt1+n3nRwHJ27Hx1w5VqH/mqDve0h\ns2nAjVdWmIwrd/npJERVZUZDj8DP+K1v31lMKFaVuIODCbdvr3H1SgfbNph7EaKEV26toOsqP/1g\nh739ETXHIAgS2i0Hw1A5Pp0xHPtLkXkYJTx4fIxAotdx8YKqrVZzDIxF1a/dsAmjlLpb6YQMXWW9\n31jmK144xpaBudjG8SzEWnzWo2kVKC1JEo/3h9QsA7dmstJyORl7XFttoSoKw1mAF8a4tnnB3V2I\nKiNxEkbEcYahqRQL37WzX5eb3eZi4ECwN5hWLbkFIfxk/5R+46LI+izix1BVGrZJy7EvVrgkkOBS\nD64ozdgdT2k7LzfR+KJKWCEETcukaVm0bYu0LHg4HHG12WDoh7QsszI4TVNkWaK1mEjUFYUrjcay\n+gdwOPdYc11+fHjAjVYL19BxNJ29eUWih2HArVab7dmEPW8OojJaVWSJHx3to8sKkyjES1MsVeM0\nDNjzp6zVXMI8ZWUhVB9HEaos0bWchaO9yv/x5C7fXr2GplSO/pIkcbXWpBAlQghOEp9+o4ZRKER5\nTs90OAw9SlEyiAO6psOdZg8vS9AlZZEFKeHqOraqE+c5cZlz1WkuCcWrbhdDUSuPLFnj+6ePeaOx\nQk01lpmDAGGeLXVgAGGRoi1idU4Sj5Zuk5QZs7zKWVy3mhjnIoL8PGGWRVyzu6waDUoEp+mcV+xV\nFGR6houp6MzziFWzyV4ywpFNRpnHqtFkKzpBReIfRh9SUw1yBOO8yinsnRO2l6JknHskIsVVbRzF\nWkb/XAZVUi9UszRZZZpXgvlUZMtcyqiMCYoAQzEwZZN5MScofcIypK/1sGUHS7WIioi60mCcj4iL\nsLJcUVtsR48YZwN+a+0/M/cDIhFQkxvkIsOSHVaMK0SFhyrrS4G7rdSpKS+vO3sZSJKMtZg4tKQO\nmfAJylOMl6hYZcKjJFvaQmSlR1aOicURsqQhoZCIA4TI0eSqAilJynPF7rmYXBpeLUiRpK9mpuJX\nucL1K8L1JVBkBfOhj7PwqlJ1lfZq64Kn1qd1W/ORx/7D4+eL58/BcoyXIltZmrN975B2v/7Myabp\n6nICMk1y/FlIu1dHkiW2HxzT7tXprTVxXAu3YXG0N2Z36xTL1knibGkRcQZVVdBNFU1Tlzcct26h\nGxrDU49W22Fna0CzZdNsO5WAuWbSW6mzebWLEIKDvTG+nyLLUHMtfv7BLp2eSxQllKWoomnMyhYi\nilJc1+TgYEKcZJimzmQa0GrarK01uXGtR80xcWsmtqXjeTFrq026bZeiKEmznHbTwbYMLFPDNDTS\nLKdeM7FMHSFg93CMIitYpo5lPHWqTrOcIEqfIV3nS+tTP8JdfN5BlGKbOlMvQtcUOs0apq6RFwX9\nVuXZlhclYZxyNPZoOBYClhWuWRDz08f7fOutGxRZRbROpz6FKJdRPXd3T+jUHf757jZfv7lBwzE5\nmfl4UcKt1c6lwuqJH+JaJjvDKbahXSBGkiQ9N6BaU5SXJltn54IQgrvHA/ruxfPGVFUMVWUSRoRZ\nTse2ud5uUQhB3TS5ezrgx3sHvLW6uiRbZ9sgSRJb4/EyB7FjWby7t7c0Sp1GEWGWLcxPZVqmRd9x\nuDca8o3VdXJR0rVtZnHCke8hSWAoGn6eUAqJa/UGR4HPJIn4em8ddWEO2zJNaprBPK0sHrqWzTvd\ntWU1rjI8lfDzFD9LWLNcxknEjU6b07nH/dmApm7StWpERc48S9CVKgvSUrSq2qWb9MynUTeWqjFJ\nI+raszfAsxDwO26v8puLFoL3BcEyFPVCqLUpV95armYyTgMUSSItC1zNZNVsLMlWKQQ70ZiWZjPL\nI+IyIy1ztqMhv9t9k02zzffHH7NmNunrdXpGFfRtyBolJRtmG0VSqCkmhSh4xVnDVk1etddpaA5t\nrfq1HxQxh8mQlubS1uo01Bof+Vs4qoX+AsJ1hqzM+cC7y4reIS0zNEklKRNUSVuGWne0NqZskouc\n/eQAW7ZRJZW6WmdaTAiLiJ7WQ5d1BtkxfX0VR3GJigBN0qhpdYSa8vPJTylERi4y5sWYRITYkouj\n1i+dJsxFSi6ypVXEZYjKGYVIUV/Qfhxk93CUp3rBKo7JQJfqL2W7UJItfMM0SpHiFY/QpTq2co1C\n+EiSjiH30RbkTZHsF04WZuIUhcYz710SACnyF8hk/G+NXxGuL4Ff9oF7EWRFXpItqHy5Pqv959Rt\n2qtN5mOf6emcWvNya4fLMDyaohnqMxNwiiLTXozDP+9kO9oZEvgxa+csC9rnyp5lUXJ8MEGSYPNG\nD8c1sW3zgkkrVG2tH/3jPTwvIvBj8qIgz0uyNMc0NfK85PRoymwesXm1g2FoSBKkaV5NM6YFk0lA\nnmcLawaX4WBOp+1gGBp+kGAYKpNJwN27BxSFoNm0MU2NZsPhkwdHmKZGmlbVubMQbYAHj44xDR23\nZiKE4OP7hzRcC7dmMvNiJpMAVZWZTAM6raqKsX88IUtLVvv1RZajRLlw5i8KQZrmyLLEdB5eyF48\ng3uOXEdJimNVIdymrjGaB2R5wTyodGBQVYHG85DVTp3dkwmlKGk4FcEwdY1r/dbyM/znj5/w+tU+\n1rlcxGbN4nTq8c1XNlEVmaKsXOfX23XGfkScZWiKcqE1PA4i6paJpWvPJVeX4cHJkJZjfeaFvihL\nPjkZ0ncrh/i2Yz23DZkWJVlR4BpVYPS/7O5hKDJHc5/fuLJJ7ZK2aJhl/MveHuuui63rJGfO8bpG\nTdM58Dw263XysqTnVCajYZ5xp1MZbdZ0HU1Wlv5bpRCsuDV+rbvKWs3FVDV6loOhqByFHpM4IhMl\nLcNCArZmY24128t98tKESRIhgOPQ44bb4jj02fanlMDrK30Gcx9LUbnqtrBVjb5Vo2va2KrKzyYn\n3HTbzLOYDbsKevazlEHisxNMeLXexc8SFFm+9DiefR5BntDQzCVZO49H/oBR6jPLY7pGjd1wQlGW\npJTUVfNC9qKgmvhzNRMvj5GRWTUbbJptTpIZ/zi+xzcaN3BVi1HmISExzDwMuarm6rLGo+CI7XhA\nS6sRFAkdzWVehBwnY07SCQ21xkEy4Jq1utwnSZKoqw4y0jKI+kXnmiLJuIqDqRjcDx+DkFgxKuf5\nuEzYTw5xZJv3vZ9xGB8xycccZSdYkoWlWKRlgl969LQ+qqxSU1wUFAbZKS21g604OIpLroc0ih4C\nWNWu0NA62LKLoED7VNROLjJkSWE/vY8hW+iyiV+MSUSE8SkLhooIqUvClomYqJygy0/vAWeVred9\n5p8FRdIpySuLDTRyMaOQQgy5tyBXn8+YQJWal763LJlfSbIFvyJcXwq/7AN3GfKsYPujPf4/9t7j\nSZIjzfL8mZoaN3MePBkStApV1ay6emYuc9rj/oF73vvK7mFlh4i01DSRru4uFAocSB6cOGfGTXUP\n5uGZkRmZyCygG5hdPJG8REa4u6mpmT3/vve9195+eSl5Ophf6x5f5iV5VhC2AoKm/9oXEtQxPbb7\n6nbkyzabRpNnBedHY8bDOUVRUeYV48GcsOGtqzZFXmKv2mXDixmeb78QTeSHFg++PMG0BGVWka4q\nYUIKirzEb3g8vneG0tDbaFAUFZ99vM/WTovFPMVxLSoFaVYwmSRoDPZudNh/0kdaJr1exMX5lHYn\n5O23N5jPUxoNH8syuX2zy0avgetIpDQZj5cEvlOTt05IGDoMhgsug2bbTZ/xNGYZ57x7d5OD4zHt\nVrAmT2Hg0GkFV6o+F8M5RakIA2fdLtRaX9teXJ/XSjFdJPhu7WJeW3JUDGcxYuUSf4lW6FFWim4j\nWBugXncOHcsicJ9W3NK8YDBbstdponRdCZSmSeDade7icIrnWLiWtSZchmHQ8Or3flPvrcCx19Wc\nV0EYxpWK1qs0XxerEGlp1lWkOM85ms7ZiUJut6+/ng5nMz7o9bBWuYuV1kzSlN2owaPJmLut2pdp\nMwjwLZtpnnFvNOB8sSAtSwLbXuUnCg7nM365scXj6QRhGAyTGE9aPJlPuNVoUmrF8XzGL3p16Hil\nNWlV0nHrh0teVRwtpwySmLPlAkeaVFpTqIq3G21yVVdPz6cLMlXRc33GWYInLeZFTqJKftHaQgrB\nlhciDINSKU7TGR3bp2179NMl/zw8YMOJSKra5kDrF1u2pVa4puQsmWMLSVzllFphC5NlmbPpRmw6\nIbMywxYmmS4Z5TGeaeGbNl8vzthwIobFkkfLPjtuLTvoOfWe7Ocz/nn8EA38VestFIphPufLxRG3\n3B5tOyTX5SrP0CZTBR07ZJjP+Hy+TyR9brgbVLrCFCY7Tne9N2blEg14poMlJIsyZljOXqrjusSl\n0em8WrLldIhVUuu5MBgWIxZVjEaRVjFLHfMfGr/BMiwO00O6Vpebzi1itcQRLgfpY0rKOvOxGnFe\nHKNRGLbidHnKu94vSHWMNCSeGbxAtgAuigMC0SI0W7gr4iQNB9twX7i3C8O8Uh0z6uTRK3mLl2Rr\nWfUxDfvaatq3odBzMGqXeUf0cMSLhrn/X8ZPhOs74IdeuOsgTEHjJbE+9//wiPZmk2l/RtB6kVBl\nSU66zPDCFy/Ib4Ozirt5HlVZk6fB2ZQgcCiuyVt03Jo4zUZLzg6GbGw1UUrjhy6OZzMZLpiNl7ie\nzWKaMp8lzKcxm9utF6p2x/sjuhsN3v35bh3b49YGpMP+nN6qrZnnJVWlaLV9bFvi+TaPHpzj+Tab\nW02aLb/27AI2ehFJUrCMM95/fwfXtZnOUm7c6KCUpj+Y0+1cjSCSq6nBJMnxfYf9w1rLZZoCYRpY\n0qTVrG0Hzvt1bp8lJVIKGqFLnOQcn0/ptgIqpfjnPz7BMk0C3+bwbMLN1UDBcLLEdSw859Utj/Es\n5uhiijCMumVly3WsTivyrpCdrCj5+vCCzVZ4RcN1iSBwmM/T+nWeqUgVpWI4X9L0XabLlCQv1xOI\nSisw6rBnyzQZzJcE7tVq0b2zAYFjMYnT9d+9Ct+nOeolbLMOnL4k+MIwqJQmq0o2g3BlfmnwdX9A\n5NjrcOuG4+BISVbWGXkniwU7YUjH8xjES6ZZyoPxiLPlAt+U3Gq2wIBFlhPaDq6U/N+P7xFKm2VZ\nkJYlp4s5vzs9rM1LvYBhmnAratFPY6Z5hmdaPJ6PsYRJ03bWn9e3bG5HLXaCiGmRUShF23bIlEKh\niQKXSNvkqiJXinmZ4QmL02TOrt/g8WKMb1oUVcVZuqDteLRtD9us98uDxZBbQZstN+Sz6RkGcJBM\naNs+Ugjuz/t0nQDXrCNvvpydM8pjWpbLKI8pdIUnbSLpYArBcTLlwbLP++EWbwVdAumgtGJRZnTs\nAN+02bQj7i/P163CTJWUWtGUPr9p3yVROa5pcZyNmBUJW3aDhuXXFhkrdyETwVfLY0LTxRQmmcpJ\ndcGe28MWV3VYuSqxDHMthLeF9a1k61mEpo8jbBKV4K0mFn3h0zBDunaHiopNa4v97ICO1aFpNVnq\nGE94HGRPCIyApmyT6Jhte5e27CIQJFXCwhzSVjuEMsQSNvaKaC2qCdKwrlSgQrO92hf1cYzLUzwR\nvZaBax3Lc/19RVEiDee1pgehFtpXJAjDBhSS4NrnS52rqBA/Qu3V94WfCNd3wA+9cC/Dy6pM3Z02\nhjAI21c3fFVWGIaB5Vh4KyH66eOL+gb3Bi7z1+HRF8e0txrkSVFrn15C5PbvnRE2PN758AZxnFFk\nFUVeEbV8vFU7TQiD08MBe7c3aHdDXN9e63Mu4QUOn/z+Ec12gOfZuJ7Nx//6iM3tFq5XX8iNps+o\nP68rUKFDELg4rkWj4dZj5atqGsBkskQpTaPpY5p1YHSa5BRFxeHRkJs3Oldah8/CXVWA2i1/3Wod\nT2OyrKwfuMuUi9GCX36wx9nFDK01/dGCf/7jPhudgNCvH0pCGAjTIApcNp7xOMvzEseW17rCPwvf\ntdloh7Qib10Ju4wH8lfEZzSL8RwLaYorTvLPIwgcJrOEj+4fcWujRaU0908GbHciulFdjfMd+wpp\nMoXAFPW0omNJSqWwpUlZVevKSNNzGcyXTOKUXvT6rezvE5earM/PLtgM62PZCkN2mw36y5hSVXiW\nRS+oyUWlFP90eMiddptKKR6tLCMmaUqpNYFtIzAoteJsMeez/jn/ae8WDcel7XpkqmIzqK/FbT9c\nVewM5nnGThDSdF26ro9vWXRcj0mW0nLcmsilMaFl03AczuIFYOBJa92Ok0LQsGzmZcbtqM1Xk35t\nWxL5/P3Bo5r4RS1atsf+csKdsIVtSrqOj2kI7s+HtByv9r0qU86SBYHlrMxPU+ZVxntRj54bsuVG\nzIqMWZkSSgf/GVf6G36LDSeg0tC1A47TMT27rp6dpBPuBF223QbVaoIxVeVahH9pH3F/ccaiyvh5\nY5d0pd/asiNyVTIulvTzObkq+Hl0k1t+lz/MH/O2v4UlJJYwebA8pZ9PuetvcpHPqIyKpvTpWg0G\nxRTXcK5YVSRVika/lnYLYFHFzKvl2rdLGvU+coTDaX5OJEMSlYABnunRlvUXJsMw2HP3VkTSJjAD\nurLHp/HHxGpJS7ZZqgUCgRQWw6LPXIwo8op+fsq0GtGztjjN97GFg2XYLyVT82pERYX/re7s3w5p\nuGuypXRJqkdYz7XwMjUhVQNAkespihLLCEjVOak6wzKaGM9VyEo9R5EijVcnGDwPpWMU2YrQ/bjx\nE+H6DvihF+5NURYVh9+cvCCWvzgYYhisJxoBonbwnckWQGeriRACP3LpbTauXbNkmZHnFTfeqgW3\nli2JViTFWbXNHNfCtiWWbdHuhtgrknO8P8SUAntFJCxbEkQu9744RmlNpxuhNRRFycXZBMex1kRs\ne7fNoD/n6GDIxdmEre02o9GizjKcxnQ6EePRkr2bXVqtgE/+eMDOTosocsnzgtm8Ng2V0ly//yWK\nomL/cIDv2fzxs9r4NS9LTs+mbPQihqMlGyuPsSh0sW1JI3IJfYedzQY7my3G0yX7J2MuhnPeubP5\nQtvGdaxryZbWmv54sfbcgtouwrHkOoqqrCoWSU6wOseTRS2m/7bKURA4ZGnJrY3WmgQ7sq6YKaX5\n4+OTNRkZLxJsS2IKgWXW2jFhGHi2xTLNmcYZ0eozCmEQeS7TJMWV8qWE798DrjSZpCmOKfnDyQka\n2Gs2cKVknmVrHy+tNQfTKXfadbpAz6+JWM+vHz5HsxkYcLKYozX851t3OJjP2ApCvhz2udtqr8/p\nZbVMo5HCZNMP8aRFpRWDJK4rbar2BvMtm4btorSi5dRanJqMeWitGa7ieCzTxDFNNHA7ajHMY361\ns0OeVLTdWk8GcJEsaNkuwjDIVMXvh8fs+g023ZCTZMq8yDlN5tzym7imZMuL6Ng+n0/P2fYiFJpp\nkdY6Jumshf1n6ZzIciiUYlIkNG2PnhMihckwX3KezlmUGb606wpVMmFaJnTsq+alhVaE0qWx0nGl\nVU5k+ZxkY275XbacBqf5lE/n+9zyerzj7wAwrxIOkgHvBXsoNHtul1JVZLrgJB/wjr9HQ/o8iI/Z\ncp6xHjCMldXD61Vw5tUSC4lj2kyKGZ8uv0JrTSTDVWNOkKuck+yUeTVnWs5wDZdhNWTT3uSb+Gv6\nxYCD9AkSkw1rk0g2sA2bluxgCQthmEzLCdvhFmbhsmPfYMPeQaEodEZbbnxr5cp/zerWm0DXn2Ad\nWL2ojtAoHNHCFg1AIA1v7bulyNEYWEZIqs+RPO0OGJfVyGsmD18FRQKU104s/tjwE+H6DvihF+51\ncfLgDMuR2K6NvwpMfhZhKyCN81XL6/tv1cwnMY5rvXSzDc9neIFNUZS1wadnEy9SsrTAD92VRYQg\nywoOH14wn8Y0V1OGjZZPlhZY0lxPTV6cTJmMluze6rCcp+zc6BAEDlHT52h/QLcXMezPSdOC0WDB\n9l6bZtOrjVQdiRCC5TytK0BhHcrcaHi0OwHTacJwOOeTTw7p9SLeurOB+1x77OJiRqPh0WkHZFlB\nnpVIS2DJetpw/3BIXpacnc84OZvUrx95lKXCNAXNyCeOMw5PJ3z47g6397rX2hrESc7R+YR24+q3\nS8MwSLJiXb2CusplW08jWO4f9dnbaK0Jm+9aHJyP6TRe3Tq5PIeXU38XkznzNKcV1Nqvk+GMvV6T\nvKyrWZety+fhWHJNtp5Fy/deyDr898LBZErTrasUD4YjPGmSFiV5WbIVhSitOZsvUFrjyrpSJ4ya\ncF629KDWiblS0vN9fnd8hG2abPoBe40GO2FdYdj0gyvrMs/qKcUbUYOT5ZzzRd1qdqUkLgsCy8Y1\nJZHtcLKco5Tio/4JDdthlmVMipSO43OwmHCwmLLp+khhMivq680xJR3HozA1aZKz4QXMi4xBFjNI\nYyQGD+ZDboUtbgZNQsthXmQoNHmleK/R45vZgFwpWnb9YNv2ovXxRpbDJE/qSUdx6UlVEKwI2GW2\n4WE8piFdAunUbdFFnwpNqWupwZ3gqat4UhUkVU6h60pWz46YlTENy8cRkkJXjIolHStkx22xY7eo\nUHimTakrJsWSm16vNrJVBbYhaVg+rrAYFgvaVogv3JXBp0michxhIQ3ztckW1HonR9iYhiBWKbNy\nwS239oAal1MOsyMW1ZxEZRRVzt9Of4s0JLe9W5znZ4RmRGAGWIYkN3J8M6BfXNCSHZZqzqQY4QqP\nTMc0g4hlnJCT0pJdKl2S6CWB+fKkkEqXjMoTIvntju1vCo0iVn1cUWscLSO6kolYa8OeXs8GgrQ6\npSJDGh5SBOsuhTCsK2RL6RTjNYT0wnAQhkeungAKgzeXxPx74cdMuL7/J///T7Fxs4vjO+RZwfB4\ndO3vlHlJpb49IuZPweOvT3iVh213q8GDz49ZTBPyLOfg4QVB5NLq1qXl+18cM+rPQcOTB+e89d72\nlWnILMnXnlAAGztN3vtwF1XpdeC1MAWWZaIqzf6jC548vEAYBh/+6iaOLZErPdJwsCDPCrzA5v79\nM7KkwPdt/vt/+4yPPnqM71tY0uQ3v3kLx5aUpSKOM9Rq7RbLlIv+bP1ZgsDlvXe32ew1aDY8+sM5\n3U6ANAW72002NkK+vn/GMs54fDDg9HyKUprJLOVn79bHmaTXR1P4ns1bN66/idrPTfxZsiZbT05H\nXIxmiOdMTU0heHvv+mDrlyHLSx6fj7m92V6/x1+/dxPfselEPg3ffS0n+Gfxukam/xaI7FrgLwyD\nv9rbxbNsGq7D5irYXhgGcVFQVFXdBpKSu50O0zQlK59GmRSrScWT2Yy3W208Kfn7wyf83eE+Xw36\nV6KFKqX4p5NDClVhmaImy2XBHwdnaDTTPKPleLRXbUgAxzQ5ief8zfZN5kUOBnzY3gA0PTfgP27d\nXIdNK61YFBlxWfDl+AJPWpwmtXHtH4YnxEXOr3t7NB2XX7a3qbRilMUoremnSxqmQ9txcU0LX9rc\nCdvkqqJU1dPjVRWLMidTFaApVT3Rt+nWhGxapFRaMSvS1e9m/B8nn2BgEEiXaZFQ6Ion8ZBB/tRU\nd14mfD4/oWdHtO2Afj5nx23TtUM80+aW16UhXc6yCU+SPunKFf6j6SMWZcr95enaed41bfbTPqN8\nzqCY8Tet97msz0Sy1rNq3txnO6kyKiqsVUWuYzX5y8Yv8EwPW9jsOdt0ZIuu1eUXwQcMqxF79i6u\n6dGzejiiljGUOucgO+AkPUKj2bS2GZTnJFVCScFJtk8gGozzAbZw8EW9J01DorViXPZf+hkLnbFp\n3XnjY8vV62QFa3L91MjzOqKjdEmh6vNqGh4t6xeE5h0cUd9vEnVAoSYv/F2qDtEviQi6DpZxC9Po\nkOsvUfr1839/Qo2fKlzfAWVespgscXwHc/WwxYAyr/AilzIvEaZgMVnSPxrVNxylX3Ce/z7guBZe\n4LyU3ZumYPtml0bbR1V67bF1WW2Lmh7Vitj82W/efqEK54fuFQI2HszJ0hLLMqkqRbDSpRmGQW+z\nwcnBkO5Gg92btd+Y7UiSuCZtnW6I69kc7A/Z2IhwPQvPd1Crb2G+bxMELh999ATft9nZafHw4QUY\nBoHvYNuSzZUNRpoV64y+/cMRvm8zGM7Z7DWZTJfcvb3BZq/Bo/0Bt292ubnbQSmFUpqNblRPE1YV\nh6cjbEuu25bnwzmO9aIFxyWKouLobEL3GVuPslKcDmd0mwHnozkn/Rlv7V5P1qaLhCQrrhXjP3sO\n86pir9d6Y1L1Y4VnWYyTmLQsKZVilMQs8oI7nVp8/GA04larRdu7ai0ROQ72amLy68GAUZKwEdRu\n7l8Ph8zSlBvNFr/Z3eNkPuNG1FhZfCjyqsLnaa54AAAgAElEQVSTkiezCe93NngwGfFuq4MnLT46\nPyFyHPbCiJPlAksIPro4pev6BJZNy6kf1o/nEzxp089imrbLRbzg68mQvaDBV5MLtr0IKQTjPGWz\nEbJp1vviTtim69Zkwzbr1q/SikmR0bRdmrbLP/b36Tg+R/GUXb+BI0xGeUyp9do1vp8tuT8f8MvW\nNraQPFwM8Z/Rk43zGNesW3SBtJkWCVopTrMZua5YVnUI+6+ae7imhWmIlQWEQccKCC2Xw2SE0ooH\ny3NcYSGFYFlmTIpl7fdlOiRVgSMsOlZApkqm5ZKeE6HRKKX5dL5PSUWFYtOuneQrrVhWCQ3TZz89\np2e/WazZsooZFGPa1svSEBSmIXiU7dORbSxh0RARHwY/J9MZaZWS67wWwBsWd713cU0XV7h0rC6F\nzrENtxbwG+B6NnYZoKgYlPXQQkN2iNX82iqX0opvkn+h1CkN+WZfqKbVMZ54tXFqTVlLHNFEa4Wm\nekFMX5HVonmsF3RbAJZoYT7nt6V1hTRaL7WKSNV9DJy1bqvUAyo9ROBjGDaG9qj06EdnD/FjrnD9\nRLi+A8qiYnAyQkq5dpZXlWY+WhC2Aw6+OibqhLi+Q6MTEjT975Vsaa2pygphClzfqWN8wpdvtsso\nmcUsYXg+oyyqtSWEtExsR2I7EmmZq2NRLzVeDRsey0XGcDhnNo7Z3nuqz6grbQZ7N6+auwqzzi/E\nMMjzEs93WC5SlILeRlQ/lGyTLCuZTJbcutVlc7NBWVZIadLtRi98u3v0pI9ry7V4fjJdsrfTIVpN\nInZaAUVZcfd2D9uSKKWwLIllmSRJTpzm9EcLNjrhyvrhqQ2EbV/fqoO6aoLBFQ1XWVUIw+B8uCDy\nHX5+d5tsNa0pn2kxp3nB333ykG4jWPtzPYtnbxizJKtdzld/v0gyziaLKzYT/9NBw/94/IRf7dQm\np1vhU41Jx/PWxOpliGx7/TehbTNOEr4cXPC/vvsBjpRsB+F6qOVkMefBZMQ77W6ddZhlHC9mvNPu\n0rAdBumS240W20FEx/X4etTn7VZNkkqtWBYFbbeufmHAbtDAEia+tDhezLgRNkmrsn7tIkNrzc1O\niyKtKJWi0opPR2dseyFqNYF5spzxX47v8bPmBrMio9AVd8I2aVWSrkKvu06AZ1pMixRbmESWQ9v2\nMFdt1a7jX/HSila5jrX9hUlc5limZMMJCUybbadBzwmJLBfTEJym03q/mxZN+/KBqWlKv9Z3GYLT\nbMq0ipmVKVII7vqbmMIkNB2sVTbittsirQoyVVChcIVNXGVIIXmUnJGqnIb0+Do+4oa78cZkC2or\niIYMEYbgUXJIJIO1TmpazrkoBkzLOS3ZoGO1VhW1iEAGHGVHWIZFqlJ27V3+uPyYYdGnZbU4yY84\nz0+56dzhIHtIJJuYhqATNjifXzAuLjjJDhCGQSCaCMMgUQsqXWKLp9ffZes/Eh1s8800Tt9GtmoI\npGGTqCG5WlCwfCFDURgWJi7z6gECicD+1pZfqSdULF4qoJdG94pIXhg+ptEEKpReoiko9AMs8WI8\n1A+JnwjXd8APvXCvgilNHM/GtMw64sexqMoKJ3AQQuAEDmmcXevH9TqY9GdYztMR+ueRLjNGFzOi\nlo9SmkdfHHPzrY1vXTPPd2h1Q+azBD9wyZK8DrYWxlp7pirFk/vnBA0P0xTEy2wtXr/E4GKGKhW/\n/Ms7658ppfn8j/u02iGev4oYiTPiZY4pa1KXZSUX51O+/uqEu29v0umEnJ9NcV2Lzz8/Znu7SVkq\notDFcVZCfstc5yM+i3sPznC9ugUZRS7Nho+UtfGn59kkacGjJwNc16KqFOf9Oa2GhykE+ycj5ssM\n25J02yEnZ1M6q4qV8wzZyvKS8TRei9+hrhjGSUGS5Wsd1yf3jwk9h91eg3mc0Qw9kqxAaX3F3kEp\nzW6vwcY1Hlzw9IaRZAWR57zQugy91wuU/qGQFAVn88Vaq/U8LFPwyckpvSAgdByysuR0Nqfp1rqQ\npCgQz+i1rsPjyYSO53GxXNLxPH7e28SzLEZJwiCJaTr11G3DcfAti/3plN2owflyyd1Wi8Cy0cDb\nrS7hyqcLoO14RHZ9vWoN4yyhUPWEcaEUgVWf60pr5kVGy/Zoux6lqogshz+OTtlrtTBLg3vTAYsi\n42bYwjElTxZjLCE4SubsuCGfjs/5VWcHUwg+Gh5zJ2yx4zVwn4nbGWRLfFlXpPrpAseUSGG+MDn8\nPELL4SAZ8164iS1MWra/dqSflynDPL4S7dPP5oyKmJ4TEkiHQbGgZQfsuR3Q0DA9plXCMJ/TtHyS\nKmdSLDlIBmS6oGuFFEohDGhbYa35sjtIYRJJj7aM+Lvxp7ztv3n23qxaMK8WhKZPqStKXWEZJsIQ\n2IbFRd7HMiQVJdKQnGQn9RfLak5XdrGEhYnJcX5IpjI+DH7JprNFS7YJjJCZmnDLuYtjuLjCY6PZ\n4XR+wU33bTIdM68mJHqOwKRr7WAbV3McK11iYDBW5zTl9+95dam9UrrAFiGueX1KiWEYuKJHrseY\nRvCtlhKm4b1yWrHUYwzsF16njgIKAY3WJaYRXVtV+6HwE+H6DvihF+7bIO26IrQY163Fj//2i5XW\nSXPvo4e4gYvt2uuq0cnDc4QpXiu8ejpaEM9TNKwnCZ/F5aQh1BdbZ+vFaJ+XoShK2t0IpRSPvjrB\n8Wwc1+LBVye0eyEXp1PSNGdzZe6arETcl87zdfxO7e01HS85ORzR6tRk5exkzMZWA8uSfP7JIecn\nE0ajRU2KVgRucDHn7Xe3+PyzQ6qirtJtbDZJkpy7dzfW75GmJY2Gd4XoPYvNXrTKWUwJA4fFMuPg\naEiaFZxdTPnymxPmi5SdrRZR6DKbJ6R5yWSWsLvVYrZI2d5o4NgWUfhUD1VWitP+lEbo1goV40XN\nlu9a+M8Ykzp27aofeA798YJOw8e2TKaL9EolzDTFupKWF+ULbcvLc3g6nuM7V8nVP32zT5KVdEL/\nW60qfiiYQuBI86WmqYZh0HBdWp6LbZqrnMJ6yrJSit8dHtH1PSzTZJZl2KbJIs/Xk4tpUZCX5Zqg\nnS3mTLKMhuvQcl2mWYoU5rpS9tuDJ/zh7Ji8qnin1eHL8QBDa3579ARXSgbJEgzIqorzeIlBHbEz\nWvlxBZZFx/XJqgpPWpRKMU4TTGHiShNbmHwxumBW5PxVb49b3TZxnNNzAzqOj2NK/vb0IcIwuBW2\nScqCXFUcxjO0odlyAnbcxnoa8lkkVcF5OuezyRl3ww5fTM/Y8Rp8Pj1jy42YFglgIIWgVBX9bEko\nHR4tB9iGoGMHDPIlh8kEy6gnFzWaRZWx5aza8lWBK2TtnVUVzMqUYbFgy6mz9v5x/A1aw3E6xDUt\nOnaIXLXfZkXMz6IbpKpgXqb84+Qrbno9BAY5JTtOp27Jpqf8uvH+G+sHS12RqowNuyYZ0jD5dPEV\ng3xE127z1fI+38QPUVoRqwTLkGhDc8e9TaYyhsUI0xBs2BtoNLNqxryasufcQBgmjukQmCGFLniU\nfc2imtHwIn4/+Cd6cguNAgE/8/+KggzffFplT9SCUuUc5feIzA4tc4tMxdcapH4fyPUCUzgvtAC1\nftpirHSOafhk6gJN9cI0YqkX1NJtjVr7dl2PSk8QhvdKMqV0DsQYBGgSjB+BbcRPhOs74IdeuNeF\ntCWWI+nstGiv9EXCNGl0ap2QXBGVoOm/thVE2PTxQ5fDe6d0r3G1H5xNMKXJ/jen3xrt8zw+/eeH\nVIUiXqZoXU8iXpxOamPQls/p4YidG+0rlhGXZOvB16dkWcHgYsqov2Bzp8nOjc66srSz12Y6jgkj\nF9sysRy5Nl51HIt4mWG7Etu2kNJke6fFZBLj+zZ7ex201hweDvn66zOiyKP9XJ7jeLzEW62hXE1O\nPnrSp9308T2bTjsgzUp8z+adu1s4dl3d8j0b15H87g+PGU9qh/puKyB8JnbnEoYBpmliW/UxPU+2\n6t+5WnmUZj0lKU1xZRIxLcor04zP4ugy3/AZ0vXUab4Oum74TytFtzbaOJbEXYVua60ZLxO01j+o\nzcOzMAzjpWRLac3RdIZvWQyWS0wEJ4s5oW2vydftdmvtKD9OElwpGacpDae+iQ3iJcuyzmP8Zjhg\nO4z4l+NDOr5H03YRhiBynt7wVKX49c4NtIZU1a7xD6ZD3m/3eLfd5SJZsuEGHC2mGBjciOq2V15V\n7AQRFZp/ONnHk5K263EeL5BCoNCcxHMCy+JwMcMUBk3bodcI6wplWfC7i0N806JpOeiV4F5rzTiL\n8aXNbzZu8o/9fcZFSigtPGkxSJdUSuGYklA6NCwXjWacx1hCsrny5QI4TWeEZh1dpIFcVVSq4iJf\n8na4gWkIpkVK2/KJLHcdcdSxg3VLclFllFrx2eyILafB343usWlHpKpkXC4JTIdA1v8KXeEYko9n\nj7nhdrntb9Ru/Cpn121zy+3RsSM+m++TqQJfuLimTSg9RsWcUL5Zy02jWVYJk3JGQ9ZEb9fZ4iwf\nMClnLKoFkQi55e6xKOdMqwXveHfJdUGpSzatDUIzJFUpg2KICZwXZ2w7O2tDU4B5OeXz5R/Ys2+D\nU2JkDhfFMaHZwBMBqVowLQe4IsASNrlKUbpCGhYduc2iGpHrjGl18cY6rtdBpQtSNcQ3r7621hWT\n8mssESAMm2V5wKy6R1P+bEW2KmJ1gL1qXRZ6siJsikKPkcb1k5daayo9w8AmU99giU0AlF5S6CcI\nGlR6iiEkUmyjSVF6jHjJ6/174ifC9R3wQy/c62L/yyPaWy0sW9atM9em2Wvg+PaabAGvFUZ9iYNv\nTglbPhvPBF1nSc7J4wua3YhypYNqbzz91vW6m23nVpc0yelsNLAckyDysCxBkZVELZ/uZgPDqNtf\nz1dgGqsWZtTwEaZBb6v5wu9kWYnn25wej+n2IuJlPdHS7gRIabJcZsxnCQ/un9NqBSRJTp5VSFmb\nkP7D39/jzls99vY6OM5VsjOdJYThUxKitaYsKppNn3sPz9noRuwfDChKVVsjhC6OI7FkLYI3hEGl\nFPaqyhSFLqf9KYH3tFVgGAa29XICcynWf34K8XmPLcMwriVbZaUQwqAVei+tcA2mS4pK0VplLT4+\nHxF5Dp5jUZQV/3L/kLwq2e9PCB2bwP23+Wb9fSOr6qmocZLw1cUFrmmy22i8UP0Qq5agFGJNtqAW\n0HdXPly2KenHC361tc0fzs6422pzvlzQcFbVr+WCeZ7j2xb9NGY3iGh7Hh90NjhezJhktbfVdhAS\nWQ69lZXELM+4PxnSsB0ezcd0XZe3Gm2Ol3MCy+beZIQw4GbYwLdsKq3YcgM6bkAYOAxnS+5NB3Sd\ngKwquRE2iasSadRO+1BX0QwM4qrgr7s3+B8Xj3kn6jHKY76annMraK/CiwWzMiWSDmlV8s18wK2g\nfoAuypy27a8tMyxh8r/v/ytbTsSe12JRZfx+csDdoEehSmxT4q8IGtRi+0i6+NImNJ11cPX70Q5b\nToODZMgH4S5Ny+cim/GOv8Xfjr7kP7Xfp2HV+3JWJmg0k2JJrko808YRkk/mj2lKj6VKkZgEqxif\nN0HtIO+uDU8HxZiKCkfY3HFvkKic94O7xCphy9rkm+Qh0jAodcEwH+JJly/jL0mrlIbZoDIUfx7+\nJZ8tPyWvMtpWfW/9cvkJLbMOvt5pbtKsNplWfeblBN+M8ESAY3jYpos0LIblKU2zixS183yucxzh\nE5hN5L9BlUcY5toWAmBYfo4vNjEMgSUiltUxsTrFMTosq0cYhqRiQaHn2EYbcxWYLY0AYVhkuo+B\nRBrXGyAbhkGh+2gjwxFvP3NftBG0UUzBUEhjc/Vz60dBtuAnwvWd8EMv3OuivfX0YnjyxSGz0ZI8\nKzClIEuKtYnom8CLXCzbIs8KjJXgXVomUSvAEAaOZ69/fonX3WxVqRhezFYVLAN3lZlYlgpvtVnm\n0wSl1JV2ZhLna2PTsih5dO8MIQxUpXE9m+l4ibkiTUVesbndRJqCIHLJ07LWGXg2ZVExnSb88pc3\n6fdnvP3ONq5nMRzOOToasbvb4p13tkiSoha3xxn+ajAgCK4KQoVhkKZ1BuRmL1qNn8PeTpvJNCYK\nfe4/vGC+TPF8mwePL7hzo8dbN3u135NjUVUad6WXex3EaVFXIV6Rr/gyaK15cDyg17x6s3tyPib0\nnFrwH+eEnrMmWwC+Y63F85q6WrTdjjCFge8465DrL48u6EZvltP574XLzzTP6lin9zZ7mEIQF+WV\nqtTr4r88uF8LuM06/iewbIQwGCcJoe1QKsVnF+d4UnKeLEnLgkIpup7PrMg4nE3ZjUKOl3MOFhNu\nRS3ioiApC/aiBpHt0HY8NrxaqG0Y0HJcXCl5MBthCsEkz9j0Ao7iOU3bBdtAFLDt1+fmPF2SqpK2\n4yENQVzmnCdLFJpC1eTTNATvNzZW7vUubcfHNS2GWYwlBF0nILQcNtyQL2dn3PbrydWmVRPLB4s+\nDenSzxbcDXv8rLGNBj6fnbEoUkZFzGE8IVXlujoGMM6X7KdDtpx6qnOYzWnZPh9Nn1Dpip9Fe0hh\nsqwyLENymk8IDIdvlse8E2yvX+cP04cMiwV7bofjdIRrWLwd7LLrdomkhyUkzmu6yj8LpRUP40M2\n7A4aTalLFlXMpt3DEpKe3UFeBkIb8CB5wGF8SKxSXOEiDZO2bNdTiqbFrrNHrGKW1Zw77ttYwqpt\nPdScSld0rC5bjR4fDz6iKbp07S027V0SvSDRSzqyJhiB2bxyfc3LPola0i+f0LX23vg4vw3Pa/b8\nVcUJasG8Y3TQlGCUdKy/WK1dgWGY2M8EYpd6TqmXGIhvzViUooM0nh5nqc7J1D2ksbOaTDTI9UOk\n8f1X9L4LfiJc3wE/9ML9KUiWGWVeUCQF0jI5+PqY7k77laHT1+FSwD44mSCluW7pvapK9rqbTQiD\nVjdctaUUBw/7dDYa+OHTjeL69gvasdPDEY1VRuT+wz4K2NpuEYR1gPTF+RTPd/jqsyPOTsbs7LX5\n7JNDHMdatw3LUuEHDu1OgO1Y7D8esLPbrj28lMbzbCxLEi8zLMuk0wnw/ZpkTacJ80X6woYOA4cs\nq72XpCkYDOccnow4Pp1y//E5v/hgh/kyxfdstjcatNt1rIy7IsJfPThls9u4oosqygqt6+lD0xQs\n4oxsFfVz+e9PgWEYL5AtANeu3d9fdg4vq2fDecw8ThktYqQQ3Oi11mQLoBv5P6jX1qsQ5zkfH5/i\n25JpmnFvOOSdboeN4MX1mD3jOA81way0vnJsHddjOwwZZxkazZeDPqD5tH+OJcw63qcqabkuf7G5\nw14Y0fPr93oynfDr7b2VI3wdUdN0XKrVwy1cCeSlEKuMTAPXXFWnVuL1ruthGYKO67PlheRVhbLg\ncDyh5dRi+qbt1lOOsMperPjXwRHbTsCkSLkdtpkUKZvuUwGzs3qfuMpxTEmhal3oosy56bfWAvhL\n+GZdnR3mS94KuvSzBUordr0mrpAcJiN+2dzjpt9GPiOCjix3reU6SkZsug0eLwfMioS/bt/FFpJS\nVZwkY46zEe8H22w6TZKqPo5JvmBeJiQqp2X5fDJ7gi8cHifnGMCgmLKsUozVZ3xTGIbBrFoQSR/T\nMHFNh4YMr5imLqols2pO02ygKs3t4Dab9gZ77i6RjLBFnS/YL/sIBJnO2LC2wICz/Ji21WFQnCMM\ng2k1orJykiTlIH/AlnMDT/jYhoMrAuQ1FgpKKVI1p6KgI2/giO/fjX1c3cMxnhKn69ZJGgGm4WMg\nqPQSBPjm7vpvtC6ZVZ/hGnuYhvtahqdX3gMfkJgrfzLDsDBpAuJH9eXuJ8L1HfBDL9yfAse3cTyb\nzVs93MBl82bvjcnWJRbTmM5Wc022vg2vs9lUpWodlSMxDPj8oyfcfmcL9zW0Zc1nMiJd18IA9h/1\niVp+XXWz5UoYb+CHLvEy590PdggCB9s2KQrFbBLT7taj+//1//mEv/r1W6RpwWKecP/BOdvbTRoN\nj+FwSW8VEp6mOZYlcVdu+tchSYq6tWLWn2Oz12CxSOh2QvaPRniujW0JPvr8ENs28X2bLHvqJdaM\nvCs3jsksIctL+qMF7VUQtoGB9YpW43eDwYPjAbd2Oi89h1lR4liSpu/S9D2aQf2Zx4sYW5prYvBD\nIs4LSqVe0HFprbGl5Fa7RdN1caRF1/Np+961BPF4NqftPX14zfOcYRLTWJGXYRxTKEVSlVjCoO15\n3G602AxC3mvX04eLPOedTpem45JVFV8OLjiLF2x6AU/mE95q1nYmGmisonekEGvCo3Tt0J5VFd+M\nB3S9upW5KHKUVnw8OOVG0GBeZASWzVfTPkggh6bjUmpNWhaEloM0BOcrvVjb8RhlSx4uxvyHzVsr\n7dmLa+DL2l19mC+Jq4LjZEbXCdZO85eQQtSWBrbPQTymVBUX6ZykKvGlTcNy2fNa2EKSVAWTIiaQ\nT6+jSit+O7zHL6I9Pp7uc5JO+LC5hyMsBvmCj6dP6FkhB+mA216PULp8Mt8n1yVPkj67bpv3w716\nHaXPaT7itrtJrgrO8jE/C28xL2PGf4KOq201OMkukIa8tiVZ20ZEKK343eL33PXucJAdYBuSk+KU\nr5OvcA0XGwvX8Cgp2HZ2cYRDa5W5GFdLbrh3EIbJrdYNvKzNg/RLpGEhkZzkj+latYj++eieTMcM\niiNynSAMi9B8c+uLV2FRnqN1iWe+2sXeMATCMFG6pDSWuMYWJYt1OxEMLNFEigBFhoH5rZOMV1/f\nwHyuBVmo+5R6HynefPr03wo/Ea7vgB964d4U4/MJ8SypR8rPp0SdNwsJfRZVWXHwzSndndfxaqnx\nOputKCoWk5ggclnMU7Zvdgmip5qo6XhJvMjWrcWX4dKz69ZbG3i+g5QmRwdDHNdCWpJON6LR9Cjy\nClMKDg8GKK3Z2WuvdUtB4NBoesRxzniy5M/+7BanJxPKSpHnFctlRhS5TKbxFd3W80izgjBwsCyT\nPC+ZLVKWccZkluD7LpYp+OL+MXlW8YsP9vjo0wM6rZAsLwkDB1MKDIwreirftfFdm3azfsha0nwp\n2Tq6mKxF838qhKgrXy87h0ppRvNLZ+r6s15WvS6mC84nS3qNHyaU+lnEeYHWXKlOAZzO5uSqqkXw\nScLFfEGl60Br15KUlSIpi/V04bNkC+rXuyRbAJ6UhLaN0oq263E0m3FvNMQxTdqef2Wo4Xgx4++P\n95GG4O12h8C2YVUt+/j8lGmWcRYv2Amu+ht9PRlgGnX+YdtxQRtM85RJniINg9ByaDkuaVUSWg6b\nbkAz9EjTYm0hMStzNHV1bpondG2fYZ7wdtilYbv03ICTZEbDevn+doWFb9ZWFl3n1UaTAoOuHbCo\nchwh2XGbnKUzdrxniIABzjPkRRgGP4t2eBBf0HMidpwWXTvCFpJAOmy6DX47+ooNq8GW2+I4HfEX\n0R3G5ZItu0UgHXJd8nB5xpPkghtul7+bfMGG3WBcLHnH38UWFp7p/ElZgw0ZrslWVuV8Gd9jy96g\n1CWjcoJvepjCROkKMIirJW95d9iyN9mxd7jIL1ioBQs15z3vA4QhGBUDpGFhGiaBWVfCAhGRWwv6\nywE9uUlHbrHUMzrmBqPqnEU1pSGfeg6e5o9QumTTvk3L3KLQCf4rIoD+FKRqRKnzFwTz16HSKbPq\nKyL5zsona4y10lbVOr/6np7rAcKwyfUZAueNq12XMEUP09j+wb/kPYufCNd3wA+9cG8KL3TxGx6L\n8RLbt/FeQRJehdF5bUxoORZ+dP1rVGWFVvpK9ex1NpspxZpg9U8mzGcxrU7IdLSkqlSt5xLitapq\n9sq/qygqvvr8kM3tJkf7Q4LIqT2+spInj/vM5zHzaUK8zNnebSOEQVUphBC4no3v21iWyenphDQt\n2N1t02r52LbE9+1Xki2Aw6MRrebTh2yc5LiuxWwRc3gy4s7NHh+8s0O7FRD4Du/f3aLZ8IiTHCnr\naB/zFYTpwUGfyHdf6jzvORaOJUnzknmcYZkCVpEnk0VyraP8dXiVee0izcmKkl4zYBqntXHlanqy\nFXg/ONkqqgqlNb5tv0C2ACK39sQqleLhcIQjLd7b6OKujuGLi3O+6Q/Za0RrX6xXwTAMKq05WczZ\nDOogakuYbIXhug1om3UChCkEv+hush1GZFXJf99/SGBabPkhj+cT/nJjhy0/XE+qVkoRFwV7K1F8\nYNmcLhcMs5jbUQvXlLRdn0JXaGDDq9f+y0mfj8en9KSHJy3uTQdsuAEXacyOH/HH0Sm3wzYdx+Pr\nWZ+u7RNYFl9MLrgVtJjkCaM8IZRXdYpPliMeL0cIQ3AYT2hYzhXj02dxkIwZpAu+nJ8RSpu4ypkU\nCXtuE80qxFvIdbLDJYb5gkkR07UCHizP8aRNQ9bVR8+02XXaBNKlX8yodMW226IhPU6zCQpFpkoG\n5Yz3/T2EEPwiusVNb5OGFdCygtUD/7v7x5mGwBE23kpIr9GrtiGEZsi4GrFn7zCuxtjCxhUuTdli\nXI7468bfcJ6fEskGCsWkHKOpOC9OOMkPMAyDt9p3mC8TxtWQG+4dKkoask3DbNOQVz2wHFxcEZLp\nhIUa0bNufufjex6OaL4W2QIo9BQDWds1GFyr04qrR1iiizR8DKwV4frTCZNiivEdX+P7xI+ZcP14\n3RP/J8V8tOD00Tmbt3rMR0vK/PVzqp6FFzi4vk3vFdWt2XjJZDh/6f+/DkzLpN0LGV7MsF2JZUuq\nUjEaLL79j5/B4ZM+WkFZKN7/cI92JyLPy5XhaMV0ktDpRrz7wc6atFSVIn0mw1ApRRi4vPvu9trw\ntNF4vfbD7k6Li369FoZh4DqSdtPnzz+8xa9+foP/9tsvsG2JaRp88+CM//O/fsJgtCAIbKQ06bQC\nvFd4o9290XtlK/EyR1GaAqUUH987Yn1Iup0AACAASURBVB6naF0bp74uHp+NSLLrcx0jz2GnU39b\n7UZ1lWO8qCteJ6MZw/nr5LL922GWZszSb89X+4fH+4SWw+1Wk6PpdJ0vGtkum2FwLVl7Gb4eDHi7\n3WGRZRzMpkSOwzRLr/yOMAwi20EYBl8N+wRS8me9bY7iOV8MLrhYLvjfPv89p4un11KhFNO8fp1S\nVfSTJW812/ysXT/AvhoPeDIf03E8wmf0VB+2N/mwu0mpNElVkpS1ieu7jbod9L/svkuhSv6vwy/5\n8/YOjmkyzGIiy1m9l2KeZ1T6aubq3bDLrzs3uem3CKXNonz5A+XdcIOG7fGfe+9Sas0oj7njdUhU\nwb+On3CcTDhMxjxcXs0GzFVFW/pMy4z/2H6HSLpMinpPaa2ZVwn9YsYH4S4fRjcxDAPPdPjL5lvc\n9DYITZfw/23vzmMkPesDj3/f+627+qo+5u45PQ6Djw2ErCcYvCxYWhSEjcZ4M4gE2QoEcoAsWHZl\n/0fiZNEmhBhzhOAMYINDJExWCxKQxGCsgI1tbDM2c/Z0T99VXdV1vPf77h9vdc30fUz3dA9+Ppal\n6erqqqf66ar61fP8nt9PTlD0qjw7fRovDJkOGtjB+r75SZLUavMjSzLpZhulMArRJQ1dMtAVg36z\nn0ZgUfbLjLvjNIIGQRQwHcTznFLS9Bh9uJGP7Vt0q9uxgjpOYDPsDlBQevhu6TFUdIJmYD2XriQI\nCagHFRJyhmowSRRtTL/cldClfLMVkEcQ2QteJyHvbp1OVKTkqrYVFxKEk9jBs0RRsPyVX+OkaKmO\nx1vAxMSVBRSbYe6JksFXh9m2r2def8K1mBieIteRbp16PPXCBfYd2dG6v66uzIp/Z67jMzlWId+R\nolqx6e7LNy/3kBUFVV39eEvFGpmsiaIoDJwdZ8++bp796VkOHd5GKr36pNkwDPH9uFFvsVSjp3vh\n/IggDHEcH11TOD9YZN+e+BTPk0//ikP7e9A0tbU1GIQh45M1HMdl9471P2FTbdjxNpmh0bBdRktV\n+hfpqbiQlc6h6/kEUTQrYf5aYHkeddcljOISEa7vs7ejo9WcejUB1+W3+W8XznP73v2zLrf9uO1O\nRjf4VWmS58ZHmWjUeX1nN7vzbQzWpvnh4FmO7TtMSjewQp+9uXgVo+a6TNoN2gwTLwpJKCp+FKJK\nMhN2g+2pLF4YcKZS4jc6ulv3OSE1eHFolLdu68cPAxRJxg0DplybnkScYjDaqPJSZYy96XbyeoKk\nqmEoKqerRYIoRJYk9qTaWyt9URThRSFO4DNu1+hPty+7ohBGEU7oc7o6TruRJqloZNS4BdCYU6Vg\nZGgELkW3xvZEG+cbk+xOdjJsl9lmtrVyyoJmr8JxZ5qErGFHHl16HPifa4zjhB5p1aRNTVMPLOq+\nAxKkFZNG6LArUaAe2KSUta32O6FLEIWt0hCLKXoliJq5RpHMC41fcFP6RobdYTrUDqLmf3HOV47T\n1qtklCyVYIpOtUDZL7Lb3I+RD7k4MYEmabihRSAFlNwxQinkcPI/oUqzn29WWCMKI0a8U3Tru0nJ\nbeu+2mOFRSAiIS/9ehVENuPuT2hTj9AIz5FU9mAu8zPrIYjGgAhF6ln2uhttNe+BGzmGhYgtxQ0w\n98lmJHS0NZSFmOvCr0bItqcwzLgchGt7dPbmV72l2BqnHCeAl4s1pkt1OrtzjAyWuDhQpDbdoL1r\ndbkIlak6phmfbPS8ANuKc3na2lNkc/FK1eX9GV85OUznIn+Y5XKdet2JTylN26TTJpJMq7n0jIsj\nU5iG1sqvkmWZXO5SEnZXZ4ZU0ohb9TR/T7IkocgSERGpNbZdWorj+kTAZLmO5fpsL+RWdWpwqTl8\n5vQQjufT1qzftViB0a1MUxSSuk5K18mZJu3NmlqqLC+6lbhUK5tio0Hd87ixpxfL81DkS6emnMDH\nCQKSmoahKOzM5Njf1sGpShFDVXl9Vw83dvVwsjzJnlx7s/yDxIRVZ8qxMVWVlKaT0038KCSK4HSl\nxO5MnnPTZV6aGmudQpQlmUm7ji379CfaMZS4eKsXBoQRnK4W2ZaMn1Nlx+JcfYo3FXbxw9GzHMp1\nIUlS/DNhRF5PkFC01uOoBy6/rIyxuxmgreTv6VRtggmnRm8iRxCFtBspVDleiU2r8RaQLqukVRO1\nWZX+l9WLDFkl0oqBG/rUfIdJt4YuK0x5DQbsCezQpdvIYwcunXqGYadErnmKsBG6FL1pVEnGVDQ6\ntLhMy4RbIavOzj1rBDa1wCKxzOlFL4yLmBqyzqnGeTq0hVf9k0oCK2jwVOVpfl5/nuuTh+g1e3ED\nl1etV5GRSCophp2LaJJGQetGx6BL76ER1sgoeUrBBH3ZHpyGz5g3TLe+jYScos/cQ07pRJPird5p\nv4ghJ5vjs5n0hhhzz9KfuHHdgi0/cgAJSZJRMVClxLKrUV5YQ5USJNU+VDmLE46iS51XPKYoipqV\n5Bd+H5OldLPdz+bbyluKIuC6CtQ1lA/wPX9ejS3d1EllEq2ApThaIZKgXmm0csVWFXA1W/Vkckk6\nmytHmVyCQm9+yWCrVrWYKtZJz8ktG7k4BZJEKmUgyxJmQsMwNFRNQVFkPM9ncKBILp+kXnPou6zh\n9VyKonD+/CSqKlMoxOUapqctbMdvVZkHiMKIZFKnYblMFmtYlkvmsnyv8nSD0+fH2dYz+75cz0dV\nlDWXdliKoauoisKpoQlcP64yX5pukFlhcLfUHOZTJoXc1nhhW6tio8HJsXEyusGUZZM24vkcqVap\nuy4DlQpdydl1xH4xNkZK0+atflUcm7rn0ZuJ39hfnhzH9n3azDjA1xWFpKZRtBqkdYO0buAEPjXP\nY7RRY6xRY0cmhx+F8QlURUZXFFKaTt4wyeiXcqVm6n31pjJcqFVo+B5ZVSela4RRXPh23K5TyGbA\nizAUlZrr8lxphH25DrrNNKemJ0kqGj4h1+e70WQFK/AomHGJFpk4IM0262vNOFMtktMT5LSFTzNe\nLooihu1pdiXbKRgZUqpBPXAwZW3BgHbm9ibdGnbg066nmPJrvFy9yI5EO31mW7x1p5oYska3nkOX\nVYacElk1QaeeRVfiFTpZkrACl6SiM+yW2GF2EQE5NUnZr6HJ6qw8LlmSly2GqkoKiiSjSAoJ2aTo\nT7W2ES/nhC4TXpHXp19HQS+w09zBqDvGqDtCv9mPJmtk1QyarJNQEphKgjP2KXRJo13rxJBNTDlJ\nPpPGavhM+mMEeNSDCoaURJXi9kfxfVmtgEuTDQwpSYiPKhnrVhbCCkvIyChS3M9wJVt/QWRjM0pC\n7kFGI5ICVCl9RQFXGDmE0TR+NIYi5ZAkmbr/JJq0Y91X8tbDVg64RA7XBvIcn/r02vJqJi5OYdcd\nfvnTM0wOTwHMOzVY2N5OKm2uy1al7wUMnBlb0XWTKZOOwvyVqT37uukqXDoRE4URjbqD5wbxAQBN\nZc/eAmEYUq8vnF8AMHB+EkWRaG+PG7DObHq3t6fJ55KEYcj5gUl8P2B4tExpqk61ZpNJGa1g6+VX\nLhJFEemUyesOXSpEWKlaPP3MGSZLNfRm3a+NEIQhh3Z1Y+oaiiyRzyz8Iuz5AVPL5F7FvTljI1Oz\nl8qL03UApi2bC5PlKxz11eEFAT3pNLbvMTw93bo8o+s0PI+DnfM/kXen0ws27M7oBoVUqhU03NDd\ny578/EA+jCLcIGCkVmW0UWNfWzuHO7rQZIl/HTxHhxknr8+cLIT4b3isUWPcqs+6LT8McfyA7mSS\nF6fGaDeSdCVSmIpKl5niV6UJap7L6ekiiizxpsJOIF7B25nKM9ioMGrV0JqP5/VtvQw3ppvXUUip\nOn4YcKo62brPg9kCqiRTcpd/PZEkibC5LTnze+k1c61SFzOGrKlmL8ZYp57mUKaHvakCBT3H67I7\nWsVK64FD2WuQVRMM2SXc0Gd3ootxt0IYhZiyRsVrMGQVuS6zg3rocEO6nzPWCONumWpgMZcmq8uu\nbgG4kce4VwIgIRt0ags3bzZknW1GHz4B242+uL+s1saexB5SalxDKy5bkUOTdarBNAcS16HKGvWg\nyoQ3hjazgiNFJKUE7WqBLn0bg86rTPmXct6y6qUUAS90GPHP0Kb3kVEXHttapJQCmpzCj2xG3WcI\nomVOn4c1/KiOHQzjhzXq4VlkLq1IRdHa8okjXCBEkbIEVAAIoip+OLym23stEwHXBgr8ANdaOAF6\nOb27u0ikTdK5JOYSuU+yIpPvXHhbbjXGR8qkMwlsy6VSqi95XVmWFmwmXa1YjA6XcZtJ4n4QcmFg\nkp8+/Su+939fYCZdUFUVuhfoDTmjuyeLLMv09OQoVxqtYqSyLCHLElEE7W0pHMenszPTajqdTput\n1a+pcoOG5ZIw4yryz710AQDL9jg1MMHwWIWzFyY5fX48bpK9SKL6Wp08N8pkpUZvR4ZTQ5NUGwsn\nk0fN/5dysVihbscvtnt7ZueCuX6cqJpNmPTkM60E9K2sJ5OhK5PG8gMK6RRT1sybsURaNxZchelJ\np0lq87czGq7LkwPn+f7Z0yyVjtqVTDHtOkDEjnSWbels3GWgebLx9FSJIIw4W5niZGmidVtnK1MY\ncz7QlN24r2MhkeYNhe3ossKYFR8yyekmfhhScx1eKI4Qhsx6PFXfIQijVkL+DHNOMFR0GrTrl4J0\nWZLYlszRYazsJOrZehE/vJTEXPcdTs9Jku81c2TV5km/KKLSTJAfs6c5VR9jZ6KDdPP7WTVBwciS\nUHQOpfvQm6tSqqQwZBcB0FE43xjjbGMUXVYZdovsMgv0Gu1k1SRtWiZuer1KhqzToeW56IzhRf6S\ntyEh4YUuT1d+ylnrHEWvSDWsUgtqXLAHqPnVZomOAIk4rcAOLSLAi5xLr1GSxq7EARJKCq/Ztkdf\npCm1Jhv06ftR2ZjGzTIqEjLSMm/XdjiGKifo0N6ALCVIK/sw5M7LtqXPEEbLH2qZS5EyqHInqtyN\nKnUQRVGz2vy1vdK+GUTAtYHMlEHbIkneK1Gftuja1kYytbZk09Xo29kR90+UJQbOjlMcn17y+rbl\nMjJUan0dRRFnTo1imGorGEunTfYd7OENb9rPbx89cOmJX1/6SW+aeqtqvNVwcF2PMIzwm8GF6/o4\nro+uq6RTJrqu0tVs6TOzYnXLb+0nlTQYHa/E/09UODc4SSZlcstv7qUtl+TiaJkdfW34fshEaXWn\nMpfzun19dOXTnLwwTkcuRaFt/otTuWbFjYQzS9dV2lloI7VI8+uZU4sA5brFcHF6ycBjq9Bkmc5k\nAl1RyDVb+piqSsZY+HGOVKtM1Od/ECjZFpoik1A1Bqcry95nxXaYdh38MAQkDubj9k5pLd4a7DDj\ncg5BFGH5Hj+fGCaaswqa0w26E3ETalVWkICi3WjeJpyplEhpGm8q7JzVuQAgpeo4gUemWXR0pq9k\npzk7kMpoBrkl6nItJ6MacQf21v0a7EvFJywbvovXTOafeU6GRNSapwm7zSyvy2yLk9+bgihkzJn/\n++3Ss+xttvhxIp+MmiQh6+jN1avltgvdcPkPOn4UN+Tu1jsZ94r4S6zU6LJGQk6QV3KYkkGP3sM2\nfRtZJcuh5HU4OGhojLhDEMVbmh1aF05o0y7PX1kteqMQwTajf8mtQkNO4OPSCJZ+3VwLWVIpaDc0\nm04vLqPuxZDbMeTOuNXRHJEUAmvP+QyiMmFkxf1h1ZtQ5JXXhxRiawq4bNvmIx/5CHfffTf33HMP\npVJp3nW+8pWv8J73vIf3vOc9fPaznwXiN+WjR49y/Phxjh8/zqc//ekrG/01xHd9rNri22hzhUFI\npVglsU5bhitlGBqGqS77pq0bGh2XJbxLksThIzuYLjfgsp8dulBiZDhePfvlS0NEUbSikhOVioVt\n+xQKWZ555hzj49OMjsUv+ImETldnBlmW0C47SdmwXE6fnb0t2t2Vpa83z62/dZB8NomuK+QyCTJp\nk8MH+uJim463ZEmI1XBcn4HRUlz9vWpx/e4euvLpBVeeHM+f93u+kmCpkEsjyRLhNRBwSZJEUtfj\n6v3NNzlVkUkssIoF8QpXZ3J+YOqHEUe6e+hOpyna8UrZz0dHWsHP5c5MlZBliZSmc6Zc4lB7J6NW\njbrnsj2TJaFq5AyT3dk8qixjKiq/d/AIeXP2/WqygiYrjFp18rqJqWr0JTMozcfx9t37mXIdar6L\nOedQg97MAwukkMFGheHGNF44/zh9UtVRF6mztRJH8ttmtfC5XD1wcMPZQYsiyWwz8zQClxG7jCor\nre1IN/SxAy8+KRkG2MH8IOlsY4yQkDY9TaeeRUZutfJpBA71YOHXvhG3iL9MOYFpv8aAM4IqKfTq\nXQu217mcFdrsS/WT0TLYoY2ExJAzRD2s0a31cNEbpEfbhiIpjLkjAHRoXVTCMnY4e+tTQWXcu4iM\njCkv/cGoTe1Z96KnM1aSv+VHdaIoou5fYNJ9GoCy/4vW9zPKdcsGbUsJojJ+NLn8FYVFremd/NFH\nH+XAgQN8/etf513vehcPPfTQrO8PDg7yxBNP8Nhjj/HNb36TH//4x7zyyitcuHCB66+/nhMnTnDi\nxAk+9rGPrcuD2IrCMGTw1Ut73N4qAy5ZkenbU1j+ihvg4G/sWPaEoixL8xpy67pKd1/brABx34Ee\nduzqYHK80ipMumPX8iUSCoUsyaSOacZ1slzPoy0/exWgWrMpV+JtkDCMGJ+Y5sC+2ceSJUlCUxUS\nCZ1T58Y4OzDJeLFKWy5BX3cOU9cwDJXsGgvUzmXoKr0dWabrNkQRpq5xfrS0YC2u7rbMrEKqQRjy\nyuDEvOutxvaO3IK5TltVbzazosTby6vGX66/rQ1Fkml4HjsyOcbrcYPqhbYl97a1kzNNap7Lzmy8\n8hwX/4SXS+Pzru+FIWPW4jlT21NZnMDnB0NnsIOgNb6EpjNp18lrxrygSZYkplyb/ZkOflmewA58\nat76J/jODbYuX63qMjKERLxYuYgzJ3iKooiSWyetmiSUeLXRCX2KXo1xdxo7dKktEDz1Gm20aRk6\n9QwT3jRJxSClmARRSNVvLPpBYpfZs+w2Y7uW43BqLwCj7iR2uPQKebvWhimb5NU8qWZyfa/Wy5g7\nihVa7DR2o8s6qqyRbbbhqfoVVEnDbK5iWUGdMArJa53sNPdfca2qq8EJS3EDaySyymEA8uqRdblt\nNzyPTPuWa1R9rVnTX9Gzzz7L0aNHAfid3/kdnn766Vnf7+np4Utf+hJKs8qz7/sYhsHLL7/M2NgY\nx48f55577uHs2bNX/gi2KM/x6ey7lLybSJu0L5G3tNWcPrl8QuSZV0fx5gQSgR8QBvNXF8ZGK3T1\nrOzTX6PhMnghzgtpa0vR3ZMnm0kwPFKmXre5MBh/L59L0tkRr7LJssTunQu/GEwUq1SqFgf6u9m9\no518JonrxZ+qS5U6ruuja+t3WlHXVBJGXFHd9XyySWPRSvOTlTquF/8OFVnmup0LB9kzOVy/Dk4X\ni9Td9Xs8WcNgb1s7vxgfZcq28Bc5CNGRSNJhJsnpJglV47nxYaIIfrt3B73JDDXXnbUSqckyPcml\n81S8MKAvmaHDTLSKlZYadWQkdHXhOY8ro6tcn++iO5FuFT3dSD8qnpm18mnKGn2J/Lwtv5RqcH02\nPmQyEyRlVJMOPc3eVDcZNUGnPjtndNAqUvctJAk0SaHPaKdNi39vcfK+vGD/xEF7nKpX56Kz8g8Z\n24xuzEVyqRZjhzYONkfSN5BT4wBr2B3ipfoL+PjYocV55ywXnYHWY66HVYLI56JzHpWrX+fOCxvL\nJsnPlVJ2IEsaKXUH+jr3c1SlAoqUQZbWvzH3a8my7zKPP/44jzzyyKzLOjo6yGTiJ10qlaJanX1y\nStM02tvbiaKIv/zLv+Tw4cPs2bOHyclJ7r33Xm6//XaeeeYZ7rvvPr71rW+t48PZGnzXZ/zCJDsO\nbnxDT8+Nt6XmrjZdqQPXb1v2Ov0HuuetOtRrNrqhzlrlMgyN192wa8X3nUzqyIUsr7wyzKFDfeza\n2YFte+zf1926vdWwbA9dU6g3XBqWS6lSZ3++gGW7JE2dzDrnyNUtl4lyjd298YmlPmPxFz9NVVbU\n2HysXKW/Z+XFU7eqMIqwXD/uZbiAquNgquqq6otVHYeTkxMcbO9kWzbLwY7FP4UHUdyCBuDGQvz8\nfLU0yXB9mp2ZHN859yv+254DqLJMEEVMORZZffE3+O3peG79MODV8iSH2wocKfSSCw1S6vzHqEgy\nN7T3xQn7ioYbBgRRiLrB6bT/tXDdrHISmqzQoc9PwB+0SmRUk7yW5IJVpF1Pk1FNUs3twbLXQG2W\niACoBzZhFOJFAaqk0KFnCaIQK3AwFR1FUujSF/7732HGHy5We3iu7E/jR/6ipxXnSipJksrs7cDt\n+k5q/jRE4EUeZa9Iv3mw9Xo2UyS1R9++KaUPAlyiKEKRNiYRf7VkaentVGFl1lRp/sMf/jD33nsv\nR44coVqt8t73vpd/+Zd/mXUdx3H45Cc/SSqV4oEHHkBRFCzLQlEU9OaL7dGjR3nyySeX/IP2/WDB\nE3FCrFysEYbhqouUbmWVSoPh4Sm6urJ0Nk9gnj03zq6dnYv2MlxIudLAsly6C7lW8vKLJ4dQFJn2\ntjS5jInvh7Pqdm1lURTh+QG6plKuWSiyRCZ5bYx9MQOlMvmESS5hEkUR337xJG850E/OXPnjGq/V\nsH2fkmVxpKdn2TpVQRiXTJAkicFKhUIqhSrL67oVG0URz4xf5De7ty/4/ZdLY1zf3r3g99ZbxbXi\nJPZFVtxWo+47rd6KEOd3NXyH/GXBmxN4TLk1vDAgr6fIaOu7KhIX4YyW7cv4avUUBzP7GbcnyGoZ\ntGaJC2XOFua52hkSUhJZkSiYm18pfYYfuqjy1gi4hPWxpn2Um266iX//93/nyJEjPPnkk9x8882z\nvh9FER/60Id44xvfyL333tu6/LOf/Sz5fJ577rmHV155hd7e3mU/PUxNbW5/uGuD1GplsBXaGlyp\nMAzJ5VJE0aXWTpl0gtIy5Srm304EERSLl5L0uzuy+EHIxEQVpdlc2l5j6Y6Nstgc1m2XqZrF9s4c\nddtFliXs+tYa+2ppAdi+i1vzmKw3SKNhT7u41ZU/robnYigq29Q0xRUcyLgwXSFnGOQME9txKTvS\nokHav108x75cB9vTK/9A09WVYXKyxm45N28ef1ke53C+QGgFjPvTV2X1ZMptYMgqyQVW3NaqRpxH\n5YY+w06J3YnZW+EKKgoqdsPHZnNej9rpYcKu4oYSFcmhGkwAUmtbcUaaAk5oY8gmE9XqvOffoHOa\nHca+qzx6GHB+xDbtDair3EJ9rdsK74GLtfZZ0wqXZVl8/OMfZ2JiAk3T+PSnP01XVxf/8A//wM6d\nOwnDkI9+9KPccMMNrZ/56Ec/Sn9/P/fddx+NRgNFUbj//vvZu3fvkve12b+4a81W+GMTrsxrdQ7D\nKIq3UVa50vT9c2foTWW4vrC6Qya272M2K9e/Uppkdzbf+vpKLDV/TuBjKCqjVpVu88oqgAvrZ8wd\npkvrQZbkefMXReGmJM37kYMqiWBrtbbC6+diAdea/ooSiQSf+cxnePTRR/nHf/xHurri+i6///u/\nz2233cbb3vY2XnzxxdZpxBMnTnDjjTeSy+X4whe+wFe/+lUeeeSRZYMtYWXed+sD63p7x297cM0/\n+9/f+X/WcSSrd+f7Pzfvsjs+8PCsr999z8PzrrMVvf1/fWmzh3BVvfXzf79ssHXr38//ndy6aw8H\nO+fnbf2XE1+cf92vxZedq0zx5se/3Cofcai9c12CreXMVHvvSVw6nfmb/++hpX5kRW79179Z/jo/\nWvq5+dan//ea7/+dP//Umn92s/yPgY+0/v2ZkU/N2qJ8YPCDrX9vdLD1yOSdC14ugq1fP1v/rKuw\npPe94QFYx13XaznYmrFU0HWtBFszXitB1y0Pf4mV5E67wG/PCboWanr9Wye+yNzNxTd+7YvMVFna\nkYm3lf7zNzb39zsTbF1p0OUAb1om6AqAo4sEXa+1YOty/3Pgw7O+/tDPf++q3fdiwZbw62lNW4pX\n02YvDV5rtsJyqnBlxBxe28T8XdvE/F3btsL8reuWoiAIgiAIgrByIuASBEEQBEHYYCLgEgRBEARB\n2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRBEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYCLgEgRB\nEARB2GAi4BIEQRAEQdhgIuASBEEQBEHYYFu+l6IgCIIgCMK1TqxwCYIgCIIgbDARcAmCIAiCIGww\nEXAJgiAIgiBsMBFwCYIgCIIgbDARcAmCIAiCIGwwEXAJgiAIgiBsMBFwXYNeeOEFjh8/Pu/yH/7w\nh9xxxx0cO3aMb37zmwB4nsfHPvYx7rrrLu6++27OnDlztYcrzLHY/AFYlsVdd93VmqcwDLn//vs5\nduwYx48fZ2Bg4GoOVVjAaubP8zzuu+8+7r77bu68805+8IMfXM2hCgtYzfzNKBaLvPnNbxavn1vE\naufw85//PMeOHePd7343jz/++NUa5jzqpt2zsCZf/OIXeeKJJ0gkErMu9zyPP//zP+ef/umfSCQS\nvPe97+Wtb30rzz//PL7v89hjj/HUU0/x13/91/zt3/7tJo1eWGz+AF588UUeeOABxsbGWpd9//vf\nx3VdvvGNb/D888/zF3/xF3zuc5+7mkMWLrPa+XviiSfI5/P81V/9FeVymXe9613cdtttV3PIwmVW\nO38Qv7bef//9mKZ5tYYpLGG1c/gf//EfPPfcczz66KNYlsWXv/zlqzncWcQK1zVm586dCwZMZ86c\nYefOneRyOXRd5+abb+ZnP/sZe/bsIQgCwjCkVquhqiLG3kyLzR+A67r83d/9Hf39/a3Lnn32WY4e\nPQrADTfcwEsvvXRVxiksbLXzh+tAwwAAAt1JREFU9453vIM/+ZM/ASCKIhRFuSrjFBa22vkDePDB\nB7nrrrsoFApXY4jCMlY7hz/+8Y85cOAAf/RHf8Qf/uEfcuutt16lkc4n3n2vMW9/+9sZGhqad3mt\nViOTybS+TqVS1Go1kskkFy9e5Pbbb2dqaoqHH374ag5XmGOx+QO4+eab511Wq9VIp9OtrxVFwfd9\nEThvktXOXyqVAuJ5/OM//mP+9E//dEPHJyxttfP3z//8z7S3t3P06FG+8IUvbPTwhBVY7RxOTU0x\nPDzMww8/zNDQEB/84Af57ne/iyRJGz3UecQK16+JdDpNvV5vfV2v18lkMnzlK1/hlltu4Xvf+x7f\n/va3+cQnPoHjOJs4UmE15s5rGIYi2LrGjIyM8L73vY/f/d3f5Z3vfOdmD0dYhW9961v85Cc/4fjx\n45w8eZKPf/zjTExMbPawhFXI5/Pccsst6LpOf38/hmFQKpU2ZSwi4Po1sXfvXgYGBiiXy7iuyzPP\nPMONN95INpttrXzlcjl83ycIgk0erbBSN910E08++SQAzz//PAcOHNjkEQmrMTk5yR/8wR9w3333\nceedd272cIRV+trXvsZXv/pVTpw4wXXXXceDDz5IV1fXZg9LWIWbb76ZH/3oR0RRxNjYGJZlkc/n\nN2Us4qPyNe473/kOjUaDY8eO8YlPfIIPfOADRFHEHXfcQXd3N+9///v55Cc/yd13343nefzZn/0Z\nyWRys4ctNF0+fwt529vexlNPPcVdd91FFEV86lOfusojFJay3Pw9/PDDTE9P89BDD/HQQw8BcdKv\nSMDeGpabP2HrW24O3/KWt/Czn/2MO++8kyiKuP/++zctl1KKoijalHsWBEEQBEF4jRBbioIgCIIg\nCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIgCIIgCBtMBFyCIAiCIAgbTARcgiAIgiAIG0wEXIIg\nCIIgCBtMBFyCIAiCIAgb7P8D7tjtUAeyfHoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUY2WZP/DvXZObpZJUVaqqu6v3rgaBUQYd5yAwPTKD\nMIDDYZNuOQ2OjLOiDgwi6gj8VKAVZsSDI+M2OuIZaW1bNnEZhXFf0e6xhd7X2lKppLLn5i7v/f2R\nqlSlsm+VpOr5eDyHSqdy38rN8tznfd7n5SzLskAIIYQQQlqGb/cACCGEEEKWOwq4CCGEEEJajAIu\nQgghhJAWo4CLEEIIIaTFKOAihBBCCGkxCrgIIYQQQlqMAi5Cutw999yDz3/+80X/7ayzzkI4HG7p\n8QOBALZv397SYyy2Z88e/N3f/V3ebe985ztx2WWX4ZprrsE111yDBx98sKbH/MAHPoCf/vSnNf3O\n448/jj/90z/F+973vrL3++QnP4nvfe97NT02IWR5Eds9AEJIdxscHMSTTz65JMeKRCL4t3/7Nzzz\nzDP44z/+47x/++1vf4uvf/3rGBwcrOuxH3jggZp/Z8+ePXjkkUfwute9ruz9fvGLX2DLli11jYsQ\nsjxQwEVIl9i9ezeeeOIJ8DyP/v5+fPCDH8TGjRsBZION7du3Y3p6GiMjI/jXf/1XOByOvN//9Kc/\njW984xsQRRHr16/Hrl274Ha7Sx5v586d2Lx5Mw4cOICZmRlcc801eNe73oXR0VHcfPPN2Lx5M8bG\nxrBr1y68/e1vx29/+1sYhoGHH34Y//u//wtBEPCHf/iHuO+++yDLMh5//HF897vfBWMMa9aswX33\n3VdzcPStb30LAwMDuPvuu/GDH/wgd/uZM2eQTCZx3333YWxsDOeddx7e+973wuv1YufOnTj33HPx\n85//HKFQCLfccgtCoRB++ctfIp1O49FHH8VZZ52FnTt34uabb8Z5552Ht73tbdi2bRv279+PaDSK\nO+64A1deeWXeWP7pn/4JgUAAH/jAB/Dud78bX/nKV3DzzTfjiiuuyD1/N998M0KhEA4cOICPfexj\nEAQB3//+9zEyMoLbbrsNQDZDOffzpZdeile/+tU4dOgQ7rzzTrz61a/Ghz70IUxMTEDXdVx11VUF\nmb0TJ05g+/bt+NGPfgRZlmGaJt74xjfiP//zP3H8+HE8/vjj4DgOgiDg7rvvxh/90R/l/f7evXvx\nzW9+E4wxBAIBDA4OYteuXRgcHEQwGMR9992H48ePg+d5bN++Hbfccgv27duHhx9+GJqmIRgM4g1v\neEPNGUVCVhqaUiSkC/zsZz/D5z73OXzpS1/CM888g6uvvhr/+I//iLmNIgKBAL7whS/gO9/5DgKB\nAL773e/m/f73v/997N27F7t378Zzzz2H4eFhfPnLX6543PHxcXzlK1/BN77xDTz//PN48cUXAQCT\nk5P4h3/4B3znO9+B3+/P3f+///u/8fvf/x5PP/00nnvuOSSTSTz//PN46qmncPjwYXzta1/D008/\njW3btuFf/uVfan4eduzYgdtvvx12uz3v9nA4jDe84Q340Ic+hKeeegoOhwPvf//7c/8+NjaGp556\nCp/85CfxyCOP4PWvfz327t2LSy65pOjzcObMGVx88cXYs2cP7rrrLjz88MMF93n00UcxMDCARx55\npCAYW2guiLv77rtx2WWXVfwbR0ZG8K1vfQuXXXYZ3vOe9+D666/H3r17sWfPHvz0pz/F888/n3f/\njRs3YmRkBC+88AIA4Mc//jHWrFmDLVu24GMf+xjuu+8+7N27F+9+97vxi1/8ougxf/Ob3+Dee+/F\n888/j3PPPTeX7ft//+//YcOGDfj2t7+N3bt346tf/SpOnTqFL33pS3jXu96Fr33ta/jmN7+JF154\nAQcOHKj4txGyknVNhmv//v145JFH8MQTT5S936lTp3D77bfj2WefBZD9IL7rrrugqioGBgbw0EMP\nQVGUpRgyIU3zox/9CFdeeSV6e3sBANdddx0eeOABjI6OAgD+/M//PPe6HhkZKajb+tnPfoYrrrgC\nHo8HACrWHM256aabIEkSJEnCFVdcgR//+McYGRmBKIo4//zzC+7/05/+FNdcc00uIHr00UcBAO9+\n97vxu9/9Dtdffz0AgDGGdDpd69NQ0mte8xr8+7//e+7n22+/HRdffDE0TQOAXKCzdu1aAMAll1wC\nAFi3bh1++ctfFjyeJEnYtm0bAOCcc85BJBJp2lgrmZueTKVS+NWvfoVoNIpPfOITudsOHjxYEODd\neOON+MY3voErrrgCe/fuxY033ggAuOqqq3D77bdj27ZtuOiii/COd7yj6DEvuuiiXLb0LW95C665\n5hoA2fP5nve8BwDgdrvx3HPPAQB27dqFH/7wh/iP//gPHD9+HKqqIpVKNfmZIGR56YqA67Of/Sye\neeaZioHSU089hS996Ut5Xzaf+tSncPXVV+O6667DZz7zGezevRtve9vbWjxiQpqr2JanlmXBMAwA\ngCjOv5U5jiu4vyAI4Dgu93MsFkMsFsPw8HDZ4y58XMuywPPZpLgsy3n/Vuz+ADA9PQ3GGBhj+Ou/\n/mu89a1vBQBomoZoNFrw+x/4wAdymZLt27djx44dZcc359e//jWi0Sj+7M/+LDfWuWm0ufEuJElS\n2ceTJCn3ty583ipZ+Lzrul70PovPz+L7zU0FM8ZgWRaefPLJ3GdfOByGzWYreMwrrrgCDz30EI4d\nO4Zf/epX2LVrFwDgjjvuwA033IAf//jH2Lt3Lz7zmc9g7969ub9tztzzNHfcuZ9FUcz7+8+cOQOf\nz4e/+qu/wtlnn41LLrkEf/EXf4H9+/cXfY0SQuZ1xZTiunXr8Nhjj+V+PnToEHbu3ImdO3fine98\nJ+LxOADA4/EUTA+89NJLuavZP/mTP6l5FRIhneDiiy/G888/n7uY+PrXvw6v14v169dX9ftveMMb\n8D//8z9IJBIAgMceewxf/OIXK/7eM888A8YYotEovvWtb+HSSy8te/8LL7wQzz33HDRNA2MM999/\nP775zW/mpufmjv+JT3wCd999d8HvP/DAA3j66afx9NNPVx1sAUAymcRHPvKRXCbq85//PC6//PK8\nQKLVent7c8Hi6dOncejQody/CYKQC459Pl/ufuFwGL/+9a+LPp7L5cL555+PL3zhCwCyQfKOHTvw\n/e9/v+C+NpsNV111Fe655x686U1vgqIoMAwDl156KVKpFHbs2IH77rsPx44dy41joZ///OcIBAIA\ngCeffBJvfOMbAWTP59e//nUAQDwex6233oqTJ0/iwIEDuOuuu/CmN70JgUAAp0+fBmOsrueNkJWi\nKzJcl19+eW7qBAA++MEP4sEHH8SWLVvwta99DZ/73Odwxx135D4kFkokErnCYKfTmQvOCOkmF110\nEd72trfh1ltvBWMMvb29+PSnP12QqShl27ZtOHr0aC6I2bJlCz784Q9X/D1VVXHDDTcgmUzirW99\nKy688MK89+Ji27dvx9jYGK677jpYloXXv/712LlzJ3ieRyAQwFve8hZwHIdVq1blsjDNsG3bNuzc\nuRM7duwAYwxnnXVWVX9fM/393/897rnnHvzgBz/Apk2b8lYuvvGNb8RHP/pR6LqOnTt34q677sLl\nl1+O4eFhvP71ry/5mI888gg+/OEP481vfjM0TcPVV1+Nv/zLvyx63xtvvBFf/vKXcf/99wPIZqfe\n//7346677splqh588MGCbB+QXWn6nve8B8FgEFu2bMGHPvQhAMC9996L+++/H29+85thWRb+9m//\nFueddx7+5m/+Btdeey28Xi98Ph8uuOACnDp1ChdeeGEDzyAhyxtndUkeeHR0FHfeeSe++tWv4rWv\nfS3OOeccANl0/IYNG/I+vC+66CL85Cc/AQBce+21+NznPoe+vj4cPHgQH//4x/HpT3+6LX8DId1k\nbpXd3Ko7sjzt3bsX3/nOd+hzkZAW64oM12IbN27ERz/6UaxevRovvfQSgsFgyftecMEF+MEPfoDr\nrrsOP/zhD/Ha1752CUdKSOf6+c9/joceeqjovy3ucUUIIaQxXZnhOnDgAD760Y/CMAxwHIcHHngg\nt8IGyM9wTU9P473vfS+SySR8Pl/R/kSEEEIIIa3UNQEXIYQQQki36opVioQQQggh3YwCLkIIIYSQ\nFuv4ovlgkNo41MLnc2Bmhjo+dzM6h92Nzl93o/PX3Trh/Pn9xfeopQzXMiOKS9fokbQGncPuRuev\nu9H5626dfP4aCrj279+PnTt3Ftz+xS9+EVdddVWuG/zx48fBGMO9996Lm266CTt37sSpU6caOTQh\nhBBCSNeoe0qx3P6Gc20bzjvvvNxt3/3ud6FpGnbv3o19+/Zh165dePzxx+s9PCGEEEJI16g7w7V4\nf8OFfv/73+Mzn/kMduzYketevHBPw/PPPz+3lxghhBBCyHJXd4Zr8f6GC1111VV461vfCpfLhdtv\nvx0vvvgiEokEXC5X7j5zm7mKYsfX7RNCCCGENKTp0Y5lWbj11ltzG0Zv27YNL7/8MlwuF5LJZO5+\njLGqgi2fz9HRRXCdqNQKCdI96Bx2Nzp/3Y3OX3fr1PPX9IArkUjg6quvxvPPPw+Hw4Ff/OIXuP76\n66GqKl588UVceeWV2LdvH7Zu3VrV47V7eWe38fvd1Eqjy9E57G50/robnb/u1gnnr1TA17SA69ln\nn0UqlcJNN92EO+64A7fccgtkWcaFF16Ibdu2gTGGn/zkJ9i+fTssy8KDDz7YrEMTQgghhHS0jt9L\nsd2RarfphOieNIbOYXej89fd6Px1t044f9T4lBBCCCGkTSjgIoS0DbMsGIy1exiEENJyFHARQtom\nqqqYiifaPQxCCGk5aoJFCGkbn6LAV2S3CkIIWW4ow0UIIYQQ0mIUcBFCCCGEtBgFXIQQQgghLUYB\nFyGEEEJIi1HARQghhBDSYhRwEUIIIYS0GAVchBBCCCEtRgEXIYQQQkiLUcBFCCGEENJiFHARQggh\nhLQYBVyEEEIIIS1GARchhBBCSItRwEUIIYQQ0mIUcJGaMMaQSmlLftykuvTHJIQQQpqFAi5SE103\nkUioS37cYDQBy7KW/LiEEEJIM4jtHgDpLjabhIEBacmPu2Gwd8mPSQghhDQLZbgIIU1zKhrBjJpu\n9zAIIaTjUIaLENI06z3edg+BEEI6EmW4CCGEEEJajAIuQgghhJAWo4CLEEIIIaTFKOAihBBCCGkx\nCrgIabMTU2FkdKPdwyCEENJCFHAR0mZrej2wSbRguBsF1SQmU/F2D4MQ0gUa+pTfv38/HnnkETzx\nxBN5tz/33HP4r//6LwiCgK1bt+L+++8Hz/O49tpr4XK5AADDw8N46KGHGjk8IcuCLArtHgKpU5/N\n0e4hEEK6RN0B12c/+1k888wzUBQl73ZVVfHoo4/i2WefhaIouPPOO/Hiiy/i4osvhmVZBcEZIYR0\nK57j2j0EQkiXqHtKcd26dXjssccKbpdlGU8++WQuEDMMAzabDQcPHkQ6ncbb3/523HLLLdi3b1/9\noyaE1O30TAQxden3wySEkJWs7gzX5ZdfjtHR0YLbeZ5Hf38/AOCJJ55AKpXCRRddhMOHD+O2227D\njTfeiJMnT+Id73gHvv3tb0MUyw/B53NApCmXmvj97nYPYUUzDBOMWZDl+mfsW3kO+/pc4HnKzFTr\neCSMHpsN/Yqz6t+h92B3o/PX3Tr1/LWkUpcxhocffhgnTpzAY489Bo7jsHHjRqxfvz73316vF8Fg\nEKtWrSr7WDMzqVYMcdny+90IBqmIt9kOjwaxYdAHuYri9mgsDcMw0dfrqutYdA47ixsSLJ0hmKju\nnND56250/rpbJ5y/UgFfS1Yp3nvvvchkMvjUpz6Vm1rcs2cPdu3aBQAIBAJIJBLw+/2tODwhTbd1\n2F9VsAUAnh6l7mCLEELI8tS0DNezzz6LVCqF8847D3v27MHrXvc63HrrrQCAW265BTfccAPe9773\nYceOHeA4Dg8++GDF6URCCCGEkOWAsyzLavcgyml3arDbdEI6lTSGzmF3mzt/k6kERJ5Dv7362i/S\nfvT+626dcP6WdEqREEJWun67Az6bUvmOTWBZFk4kQ0tyLEJIfWhOjxBCWkDkl+56luM49MqUSSOk\nk1GGixBClgGPZG/3EAghZVDARcgKcCYUgWGydg+DEEJWLAq4CFkBfE4HBGp22nQmYzgTj7Z7GF3J\ntOgCgKwsFHARsgK47DI42vev6XiOg1uytXsYXelUOoAM09s9DEKWDBXNE0JInTiOg9dOtVP12OQo\nv8sIIcsNZbgIaaJEKgOTaqUIIYQsQgEXIU2USmtUnN4GKV1HQtPaPQzSBNN6BEkz3e5hENJ0NKVI\nSBMN9HXmLvXLHYNFRdjLRI/ghMBRLoAsP/SqJh2JmQxTkytv9deJQBiMdfRuWx3JJcnw2KiWajmQ\neQkCJ7R7GIQ0HQVcpDNxHGx2qd2jWHIDHhd4at9ACCHLDgVcpCPxPAeP19HuYSw5p11u9xAIIYS0\nAAVchBBCOkpIjyGgzbR7GIQ0FRXNE0II6Sh9Uk+7h0BI01GGixCyZIKJJCZi8XYPgxBClhwFXIQA\nyGgGACAaT2N0MtLm0SxffpcTQ25Xu4dBCCFLjgKuFYiZDMcPTrR7GE0xE04gGGisfYRumJicjgEA\nPG4Fw0PeZgyNlEB7OhJCViKq4VqBeIHH+pHBdg+jKbw+J6wG21ZJooD1q3ubMyBSYDqZgiKKcNpo\nBSYhZOWiDNcKJQjddepjsTSsIpEVx3HUt6rDKaIISaBGlgsZjIE1eqXQZgkjDZ0ZTX/ctJnByfRk\n0x+XkHbrrm9dsmKl0lrRgIt0PqdNhiwWBlxRVe36oKNeQTWJiKa2exgN0SyzJdspKYING5Shpj8u\nIe1GU4qkKwwNeto9BNJkCU2DU5LBCysvQ7nK0f17bvZKtPiBkFpQhosQ0hZrenogdtnUNiHlmJaB\nNEu0exikQ9GnHSGErAAnktNIGVrF+83oyZZMFa4EDAyGpbd7GKRD0ZTiCmLoJgBAlKiAmZCVZq2j\nFyJX+RrbsMxsvWQTZ3rDehwaMzBk8zXvQTuQxMmQBFqNS4qjgGsFScTTAABvL9VeELLSVBNsAYBf\nbv62Or1S99esEdIoCrhWEAq0CCGEkPZoqIZr//792LlzZ8HtL7zwAq6//nrcdNNN+OpXvwoAYIzh\n3nvvxU033YSdO3fi1KlTjRyakI7FmAXTpBoYQggh8+rOcH32s5/FM888A0VR8m7XdR0PPfQQ9uzZ\nA0VRsGPHDlx66aX4zW9+A03TsHv3buzbtw+7du3C448/3vAfQEiniaVUpDM6VvU1f2qGkE5iWRZt\n1URIlerOcK1btw6PPfZYwe3Hjh3DunXr4PF4IMsyXvva1+JXv/oVXnrpJVxyySUAgPPPPx8HDhyo\nf9SEdDCvS1mxwZbJGDTTrHg/y7Iwk04vwYhaz2CV/97lSGcmDiepIzwh1ao74Lr88sshioUJskQi\nAbd7vkDS6XQikUggkUjA5ZqvIRIEAYbR/G0hCCHtk9Q0TCdTFe9nAUhkKrco6AYHZ6bbPYS2kHgB\nZ7lWtXsYhHSNphfNu1wuJJPJ3M/JZBJut7vgdsZY0YBtMZ/PAbHItiCkNL+fVgRVKxpLI55QMby6\ns5arN/scqroBmyi0fPrHj+rHPTiwPLKAl/Q5sT84gdcOrsnd1s3vQZ2ZmMkkMaAsj/NTj24+f6Rz\nz1/TA67Nmzfj1KlTiEQicDgc+PWvf43bbrsNHMfhxRdfxJVXXol9+/Zh69atVT3ezEzlq2Uyz+93\nIxiMt3sYXcOyLIgC31HPWSvO4anQDIZ63LBJtDC5FdbxPblz1u3vQYOZiBoqOHll1mZ1+/lb6Trh\n/JUK+Jr26fvss88ilUrhpptuwj333IPbbrsNlmXh+uuvx+DgIC677DL85Cc/wfbt22FZFh588MFm\nHZqQunEcB2EFFP2u7+usDN5KMJqKYsjuhsh314YeIi+gT3a2exiELDucZVlWuwdRTrsj1W7Tzuj+\nyMvj2HzWEHjaH68hnXCFVqtAPAG/ywm+juD1lakgNvX6YKuixKAbzJ2/iJZGj2Sv6zmZY1oMQpUN\nS0lzdOP7j8zrhPNXKsNF72TSNCPnrIZhMkyOz7R7KDhyYqptvbDGQzEwVv91TFrTEYh21wc+z3F1\n7wTzqgE/bKKIhFZbEf3+6UmwGq8Xk7qG07FoTb9TL6+sNBRsAcDLsama/0ZCSGeigIs0lSgK6PE4\n2j0M8BxgGO1Zru+wSWjke1YSBDhttuYNaAn4Xc66C/Ity8JkPIGpZLKq4EI1DByansZr+odqDmgU\nUcKgs3umy87rGWw4aCun24M50zIxro23exiEVIUCLtJUPM/B4Wx/sLB5wwBsNqktx/a6lIZWA4oC\nD5d9+W+AmzEMZGZbw3AcsMnnqyq4sIsizurvr+uYPMfBJnTP1OX+mdb2uTqaCkBj3dueR+AE9Iv1\nvRYIWWoUcJGmUVUdibja7mG0zPRMAlPTnTPVZzKGk1Ptn76tV1LTkNYNcByHQRft81nM+b2t7XO1\n1TkEme+eALQYmV/+FydkeejudxrpLJaFDl+D0ZB+X2cFBQLPY8DTPdNji/U66pt6pu1kCCHdiDJc\npGnsigx3j1L5jqRpHLaVdXWvGgYOhUPtHkbXyph6u4dQs4A2hbiRaPcwCGkYBVyEkK5hF0Wc3bdy\nanZ0ZuJQfKppjzeqRqB32d6Pg/IA3GJnZZcJqQcFXCTP5Gh4WU8LLgcmY3h5tHlfwqRzSbyAzc7m\nBZibnX5IfGdvlRbW4zCt9rR0IaSVKOBawdLJTMFtitNG9TFLaHImjmiytoUGAs/jnOEBANll/WPh\n+b5SkWQaJuucL6tIevkuolgq3dapfk6xlhOGZeJoqnwbBwvdecFnWQyG1X1TtmTpdOc7mTRFeDpe\n0BzU4ytdhM1YflG8oZsYPzndsvF1i2Rag67XN03T3+OEW6m/jQYHwLmgjkszzLb2VtJNMxfwWZaF\nSDqNE+HuXUnZbKFMquum9OphWgxHU2MFt4ucgI3KUNnf7ZN6urK7vmapSJiRdg+DdDBapbiCrVlf\n21RFMBCFXZHh8WZXlwkiD19/Z+7KvpQymgGOAySp9qkascFtkDiOg9c5v1BhwNPeWpfpZAoOSYJH\nsYPjOGzo9SGuFmZSVyrL6tb8TW0EjsdW53DJf1uObLwDNr79TZ9J56KAi1RtcJU372eO46C4ymdn\nNM3A2OkQNm4ZbOXQ6qJmdMiSCJ5vbAq1t0JnfcYsMMtqOLjqBqt6CgNwt739jXA7Rb+9e9t4kOpk\nWAoMJhSeLkZJvuX/DUDaSpZFrN800O5hFBWOpqAvwfY/STWDqQgtaycr00pbhMNzAgR09sIE0h4U\ncJGqMWbhyMu171vWaAapVVYPeGCTW5/kdTvsWN3X0/LjdBqTMaQ0DVqb9rRcjjoxeBlTQziZChT9\nt6iexFgmvMQjai+JsyHBwlBZ5+xKQToDBVykajzPYfPZjW01wlgbC7rrLGwn9RmPxRGIJ3P7JS5H\nSxkAZUwDh+LBJTtetRRexqDNV/TfPJITw/a+hh5fZwZYl7WJ6BWHYacpRbIIBVwrSCKWLvlvhm5C\nTWkVH6PRbNXJY1Mw2hT4jAci0PTmfPkbJsNYgFYklbPW68HGPt+yruE6GgsjqVd+3zSDTRAx7PBA\nbXO3+MU9snplNxSh9I4HcSOFlFn/womQEUGGLc1zTEgrUcC1gkTDyaJX5IZh4tTRAEJTsZaPYdPI\nIMQ6VvM1Qs3oUDM61g/3QZaaM4Uo8Bw8btrGqJnCqRSmEsl2D6MmI54+OKX8YCOSSSOqtab/mMEY\nzCWeVlRNDVE9BQCIG2mMZ2pr88FzPPgivf0WZq1OpCYR14tfEA7J/VAEe03H7BQpM9aR08CkPSjg\nWkHWbOgv2tRUFAVsftVq8AIPNb38riR1zYSuNTerxnEcXI7qMjdnAhGkM9QQsZIeux29SvcHsRIv\nQGpRs1KvrMApls4mHU8GW/AFz+UCJreoYG2VU4Qq0xDRs3VMxTrHn1ID0Fj2feGT3DihjiFupJo0\n5nwJsz2LVjJWumsbuZLmo4CL5PQN9sBml3I/q2mtoDFqMZPjEaRSre21dPp0qO4vErfbDre7fVfI\nQ31u2FtUnK+bZlcXpSc1Dcbsa0zkeQg8h8Oh7t6c2inJcJQJilpp0NZT104RCUPFhBpBVE9BY/nT\n7nZBglusPRDmLA5zJZscCse0UVkFmc9+3nglJ17t3gK3mN9ipVlb/KRZui11YD5xEHwH9x0zrRQY\ndcdfMp37SiA1m56MIpWofypDlsW8D+tENI1MFRmv3n4X7PbWfsH097u7dsshSRRaNvaEqiGe7t7G\noglNg7ag8zrHcVjbs/JWdDaLU6yvXk4RZPTJLhgWa1pGhoEhzTJwCnY4hNrHlTIzGFObE3z7JX9T\nAh/LspAwo5Xv2CVMKwHdCiNuHm/3UFYEany6jLh6FMg2Ccl0c65Y+oc8Vd1PXoLWCg5H8YDu4JEJ\nnD3S2MrJTqcZBiZm4ljvL1wJ5nN29xTcoKuwM74iSUXuSYrJmAYEjoPY4IbUAsdD4Hj0yc3bqUAR\nbFhTR6A1xyHYsE7xN208zWFBX0YZIZnP9kiUqc5sSVCGaxmxO+SmFqQbuolIuHm1D7rW/PYAWzeX\n35dtOZAEYcm27ElrOqKp1hR8BxNJjEdbvzADACbjcQQSzXntvhya6tjWFlFdRcKov+5yKhNHINO+\nflHjmSBS5tJscB4xYghq1WXMkmYMOivMHHOzWbKk2f09tqwFU6zdOnvQbSjgIkvCMEyMnW5+bc5S\nNlX9/dGJJTvWQhzHQZGLZ30sy8Lp6e5oT+F3ObHaszTThUNud9HsWT3O6RvARDqOSJ0rD6OaiplM\n6ZYspRyITMKosNH1gN0Fr1x/ltMvuzDQxKxWrQZkHxS+uW1DTMvEpDZdcLtX7IFfrq7gn+f4XHC1\nmEfwwcGMTNlIAAAgAElEQVR39xZNzMogZf4OptVdq4K7HQVcK9DJw5NV1WaJkgBvb3M+jEVRwIYO\n3E+xFudu6bypS47j4HE0b0GAIktNfbx2OhmJQDObs6Bgg9sHr1zf82LjBdiE2qfdz/MONTxVWAnH\ncTVnN8J6AmNqc7rHi5zY9OwKDx5uobGASOFdELniFzk8J5QMxroFz9lgEzbBwvJbld7JuvtVQ+qy\nfmQQNqXxIvczJ4JIJVtTsH3kyCSMLl59t5Q6IUAyTIZgcumvlvdPTZZcvTrgdLasPUMt7KIEh1h7\nXZplWTgcL8zUtFuv5MIae2+7h1ESx3FwCt1d27gURM4NkSu+QwBpjfZ/GpEl16wryrUb/XA4W9NF\nfGRkCKJIG8AupGodXKzLAUKTMxWRtIpTM+WnS18zMFTy9eyQpKa91lVDB1viwmKO4zCsLL8Vm6bF\noFeYKu0UlsUQMYrvE0lIrSjgIqSDZEpsPWSYDJMz7WneWA2R59HrcFS+YxWYZeGVYBBexY71Pm9D\nj2UyhjOxKE7HItAbmF6cVlNIG0sf8Larn1cpi3t01SNhphE1Ove1nI+DzCnQWAam1R1BIulcFHCR\ntjBNhkik8a7SM5HlU/SpGyYmQ8VX8YkCjw2D1af/05qOZKZ8fUa7thyJZzJls0U8x2FL7/yUVSMr\nBHmOQ49sQ6/dAbGB6cVhl6dgC5+VxrIsnEo3vnm2R3SiX66u5Uw76CyDSe0kgGyW0SH0IM2S0C2q\ndyKNqauBEmMM999/Pw4dOgRZlvGRj3wE69evBwAEg0Hceeedufu+8sor+Od//mfs2LED1157LVyz\nK4eGh4fx0EMPNeFPIN3IsqyquthXkmliq4lILAVVMzDU355pHEkUsH6oObUxJrPKdtY2GcPBiSDO\nXbP0Cxmiqgq7KIIXslPGZyJR+BQFLtt8QCMJ89PJJyMRjPT1gec4GIzVFDhxHAePvbYat4PhaWzo\n8cIuUpvChTiOw4iz+MKRoBaDQ5DhXLTnocp0cABsfGf0VouZEcicDXa+dI2XxNswJG/Iu80jVv++\ntCzW9UX1pDXq+kT53ve+B03TsHv3buzbtw+7du3C448/DgDw+/144oknAAC//e1v8fGPfxxvectb\nkMlkYFlW7t9IczFm4cyxAPx+d7uHUhVRFNDX1/gKyKGB5l0pe9wKehYlXnTdhLTEm203g6tC53+B\n59sSbAHAsCf/nA25XRDKBFFn9fcDyE41HgpN41z/QNnHPzoThs9uR59S3xTn2b39Vd/XtBiEEl+u\nh6PT2OqZfyxmWTAYgyx0z+spaarQmQmvVH7Vn1uwF11RmTE1gONyAVfCSMEAg1dsfSuKgDaNAakv\nr47PxtkhcK19/qf0M+iTVpdc5dipTCsN3QrCzq9r91CWrbrC8JdeegmXXHIJAOD888/HgQMHCu5j\nWRY+/OEP4/7774cgCDh48CDS6TTe/va345ZbbsG+ffsaGznJw/MchtZW12NmOUkmMwg1qTkrx3F5\nfb3GAhEcPdPYFEpgJo5wrDUb8naSQ8HpuovKJUHIbY5cDs9xecHW/qnJovdzy3LRvfta4WgsDNWc\nz7ImdC03VbvGmZ8pTRoaptTqX6sJPYPJdO0NNjPMaNoehCInQOYrX5fbBRnibCCTMNK543skJzwL\n9keUeQl2fmmmZhXeVrBowsbbWx4IDcrruy7YAgAeNshc+YsZ0pi6MlyJRCI3NQgAgiDAMAyIC1Lw\nL7zwAkZGRrBp0yYAgN1ux2233YYbb7wRJ0+exDve8Q58+9vfzvudYnw+B61Wq1GnZbkYs2AxC4LY\n/DS7z+eAbphQWrCXY4/HDoHnG3r9zWXxam3Q2mnnsJIenwLbEk/BXdrvKhqoLeVzt/hYsUgYOmPw\n+91YvCmNH7WNy8sc0E0TjkW1Y+OpKGy8iD578azT6cQMnDYb3FLj7UJ0ZoBZFmxC9QGEntbhkx01\n/U4r1Pp85/1ul73/SL5OPX91fUK6XC4kF/TcYYwVBE7PPPMMbrnlltzPGzduxPr168FxHDZu3Aiv\n14tgMIhVq8o3k5yZWf7ZgWby+90IBjtr24loJAUtY8A/mL3in8sANLPhYSJeXT+wsckI+nudsJXo\n3N4JFp7DaFKF0y5DFJoTrI7PxOBx2OG0tSbLoJkm4pkM+pq0YnGhU9EI1vZ4qsqG1Uo3TRyNhPGq\nvsb27uuBBFkQmvoeTCL/tc0xCzpnIBgvfgwFItS0DhWNr6qM6kmYYOiVqv8CkyAhBhXA0mzZ02yd\n+BlKqtcJ569UwFfXp/gFF1yAH/7whwCAffv2YevWrQX3OXDgAC644ILcz3v27MGuXbsAAIFAAIlE\nAn5/p21MunKEgzHEy6wS1JpYjO7xOnLBFgCEQgmEw6VXF04H44jHa98KBcgGc9EyU3j9vU7IUnMy\nMbGkilC0taskddNEPJ1BJFH5+bAsC0aFhQi9LgfsTfr7i+Fm/1+KyfLHdzwcrnoVotdmb0mwBWSn\nNc+qoXarFUaTUcSr2D5I5IWSdWPN5pGcNQVbo2p1eyPqzMCU1hlbUqlMpZYPZEnU9a697LLLIMsy\ntm/fjoceegjve9/78Oyzz2L37t0AgHA4DJfLlZfBuOGGGxCPx7Fjxw7ccccdePDBBytOJ5LWcfU4\noLhKNy0dPdH48u90iS70/f3usgXzikNGNFZfwMUsC6pa+gvcJjevGaZik+BSmt/4dWomgclw9gqt\nv8cJRZYgVTGtmcxomIyUv7KzS2LZAvVGSYJQth/XK8HpvHYUwx5P0anIYi0riq02HI/H8NPR0wW3\nm4zhcLi2vTtLBXNL1fBU5HlMa92d0V9t64NDqDyVyXM8lDpquTJMK7pPYikay1Rsf5JmKehWa3us\nmZaGDOuW3mOkVTirXc14qtTu1GC3aSSdGo+mwRiDx1ffPmSnT05jzdpeCAIP02SYHA1jzfraswaM\nWchkdChN2H6oU50JROBzK3A5CgO2SudQN8yqArBuFUgkYAEYqmLzaWZZMBnLayMxJ2MaNe1hGEwn\n4VcKX/v/Nz2JV/cPVf04i89ftvg9gS09rVvU8nJ8AltdgxCXIPM1rkbQI9rhEisHVpZlNeUCx7BM\naEyDnbdBtwzYqgzWpvRJ+MQ+SDUUsbdiSkq30jAsFQpPW+m02rKbUiTLk02RYG8gyBlc5YEwW2sk\nCHxdwRaQLTAvFmw1urdiJJaCVqKTeynW7Bd6s63u74Gzjuc6ndExHi7eHLXdqrl2m06mMJMun70c\ndLmqCrbmhNXij1frhtGZEp3oywVbBjNxJFo+k+aSbLlgqxXZMsuyAAvgl2hlZr/sgkOoLrN7XB2D\nXqI7vWpWvw+raZnIMA08x1cdbAHAgDRUU7DVKhKnULBFKOAi82RZhM2e/XCKziQxNZ5fYxGLpTE+\nNlPy92221n6wnTgZLPqlfuhI6Q2MF6rnSjuRymAi2PwARxD4qsaTzuhILegYr9gkrB/ozA/uVyaD\nMCoEp26bDJfceOZyKpnMBS/NagEx7Kq94a3IC1jrqr4X3O9mmr8vH8dxOKdnVcvq2xaTebHqY21W\nhiGVaCsxpUfKNuddyMbL8Emd252ekGpQwEWK6vE60D/Yg/HTISRm66l6ehSsWl3f3nbBQBSJROVi\n2nA4gVSq+JXvyJbiGxWPbB6sKnjxuJWqC+YZs3D8zDTcTjuGByv/zYbJEE/VvyorFEsiHC+s3zEY\nq1gI3ynOWTVQsQu8TRSLTv9Voi3KPs2d7ZORGfTP1owFU0mEy2TPNNNEXKs+q1Ite5FMWkRT8/pz\nzXlN7xBGk9G8TBezrIK/rx2ierrm/l0vJ8YKsnY6M6ranHqdfRA8dWQnKwi92klRHMeBF3gMDffC\n1aPk3V6NjJpfhJrJGMikKxemOhwyZLm2qaBae1xV+5hrigRaiVTxIlyTMagNrOzscdjR48iviTFN\nBjWjF9xei2hKxVS0/cW6hskQSqVwMlL7yjSDMZyYyc+s+p1O8ByHQed8Ly6PzY4eW+mpLoOxktOG\n1ZpKJxHJ5AfWmmniWCycd1t2mq941lURpbyc3FxD1KCaQMqovF/fyWQYEa2+RSXlZJhec8D1Kufq\ngmxX3EwjuWil4uKfCVmJKOAiZdUbzEyMzeSvRlvXh77ZQkLGLIyNhov+nt0ud0yjW1uRwC+WUGGy\nwi9SmyTC761/uxJJFAp7bXHI1cTVy2WX4XXmB2zaojYMao11bfUIJBKQeB4bvPNB7GQ8jqSWDTD0\nEoFQQtMwEY/ntvdZzLlgelIWhLIZNockob/O7X7meGQbXFL+1LksCFjjyC+S9dkU2MXiU+x9Nkfe\nhYtbsmHY6YEiSEW3x1lsg7MXXrn0XoAL1RJADdh6quoqv9Dc36GaGk6mpwAAvZK7YCugkF7/tHy1\n047lZFgGx9JHSz5WhqlIms0pHTCt1r+fSHeigGuFqabw3DBMsCJBxZzF2atiNmweKJkN43kOHk/l\nLz7GGI4cLr59CwAkkhmcKRG4tcrqAU/TmpBWIvA8et2NBQgCz0Ne0HZBM0yMLiq6PxOKVKyBS2la\n1f2yilnj6UHPbFuHyXgCwWQSHrsdNlGEZpo4VSLz5ZAkDLpcSOs6Dk3ntwNIaFouYAOAtN7apf1A\nthC/WFBUKriqhUuyQV702ClDqzubpTMTRxK1t3dJmRkkjdoyUnZBxrC99CrMYVs/xtT6Ws0E9TDi\nRmNZWhtvg0d0wUL+69y0TGgsAx48BK7+NkXWgkBu2jid9zMhcyjgWkEyaQ2Tp0uvqLIsC9OBKEJT\nMSTjpT9wJ0bDVRWpl+Nyl58mMwwTPM9j85bSGyy7nDYMr/GVDQ6XO90wc6sodcOEViGglkUBmwZ6\n824bGeqvOFWc1g3oRWrJIunap4oGXE70OxxQJAkiz0MWBGzpK/5lzXMc5Nm9Fr2L+nBZVv7X52gi\nVrFov9tw4OpuqyDxAs52175BuQWgmmdxcfYsrCWQNucD4IPJM7n/5jkePWI26xXUZqCx6oJjwzIx\nKPfDvWCza9MykTBrbzjcLw0VbFytWRmkWQoSL8PO13dxozEVIWM09/OgtAlcm2vTTKu7+7ktVxRw\nrSA2RcbwpgHEIqmSARXHcRhc7YMg8iUzWRu2VFekvhgzGViJAvDJyfkMB2MWTs02Xq00pclxHMYn\nZhCJppBMZhpuHdENTgdnkJmdBgzFU0iqGphlIaFmEE83vygcAPqcDriKbAcUU9Wag2+eqy2IMBiD\nwPNQFi14cNtseSseR3x9FYv262FarGmbQddKESV4mrAnYi0SupbbiLqYDNNhWRaOJMfzbneJdhjM\nxLFUNiu91TGc9+/u2U2sbbxcVcBlWRbOqOMFt6fMdE0tJYrJMBUJMwaFd8AjNrbqV+bt6JfWNfQY\nzaayiYazbJbFKFPXZBRwrUCSLECU8j9QE7E0knEVfQPZpfGGbpYMjuoViaQQKbGdkN0+PyXD8xw2\nj1TfaHJ4TS/sdgnxhLrkU4ztMOh1Q56tcxvyudHjsGM6loTJLPSVmYJsRY/jdT4vzkTqr32pZmuf\ng9PTMBgDBw5j8cJj6abZ0sxWSE0jVKLXVyOqWcnXDg5BwrFUtn1FSEsgvmh6MajFkLEMnO2aD6gS\nRhp2XoZmmXDw2QCR57iifcdsvIQUqxwwcRyHjcragttTTIVHbGxzYp4TclOIGabCKFJ3xSyGpNmd\njbedwuaGs2yGFYRhVd/Vn1RGAdcKpDhsuX5bc0RRyCtW7/E6oDjnV3xNjs5ATVdeQVVOb58LvSW2\n9PF6q+9uPxGIFtxmt0kYGvRg44bs/pyZTPYK+tRoCHqHZ71C8VRuWjSt6RUbrdoksSBD5O9xwmkv\n39/q92NTLWm86V5w3ESm+GtEN00cDWWns18OTOVuX1tia585SU3DOX4/MqYBjZlwSIW1UqF0uiXt\nHuYMKE4MFOlAX0pS1xDJlA/QTIvhWLwzLg5OpqahLWhO6pbsONu5CgDgEGTYFhXSD9v7YOfzz0Pc\nVGFaDH2yC6vs8wsjDiXH8u43pUXBg8eAnJ9VOq2OI24kcTxdmNFabFDuh8Q3VjMncRKU2SnEbMA1\nn3ELZUJQWRoWLGSs7lpdySwDhtWcVckSPwiJH2jKY5EsCrgIAMDukGF3lP7C9vY5Ibe4sWm17BXG\noesmpma3dhj09+Dk6cav0mIJFakSAadlWTh8aqrov1XDNBksZDvaHzwzhcBM6avqV85MIakWjkM3\nTQRj5etazhserKs5pskYphOFjz2XVfIp2RVzzLIQjBcfgyQIWOvJNq4c6e/Lu72ccDqNhJZBIqOh\nT3HAZy9cnTfkchW9vZmORsNI6NVdcFQzZSpwPM72+Gsaw1gq2pKAebXdC5kXEdFTOJPOBsVzCwMU\nQa5q5eIqmw9SkcUEr3LlTysqvAyVaZjW8i+a1tlXwy06scFefWa7WXpEL+z8/OvHJbogcTIETkCv\nWNs5ajcLOgyr9vo2sjQo4FoBIqEEouH5N6FpMJw+VluAYFfkXD1VcDKKUJ17VR0+ONHwVKXPm70y\nLTVFJkkC1g5nC8PtNgkb1lXeYujkaKho8f14MIpUWgPPcyXryTiOw/pVvTDr/LsGvC4IPA+B5/GH\nm9dgdZ8H6UzxGpfhfg9iReq0ZFHEuv75zEKxL+bjU2GE40lEkrVPjxV7qo9OhfKasvIch439peth\n5jJZi4Os05Foye1+1no8cEpyrmD+5alslu7/pgINBR8pXUcglZ8JGE/GEVKLT3lv6vHBJVXukP/y\nTBCKKMEpynU3M2WWhfF0YRZXEaSKPfWZZdU8dTwXUHklB9YqfQhkYojqtb9GTItVPCduUYEi2OAS\niwfICxuhmpaJ8Uz9FzL1sgm2guL6Ruhs6bJkAqfAzte+UIIsDQq4VgCn2w7nglWBgshjsM6O8QDg\nH/Kgz++GphmYLLPVTzEjZw2Bb6CtQjiUQDyeRiyexvhEdU00F270PB1OYDpcmHIf7O/BTCxV8GXV\n73XCbpPgctjKZtZUTcd0JBvUpopkoGo1EYoV/eJ0Kzas8pWvXzFMhiPjhVm9DX4fHHZbzQseBJ6H\n3104pXb2kL8pLTLWenpyWbJQKoWJWH4wL/B8rt/W1v5+8ByHP/APNLSVjSwIcC4KoAYdTvhspQKB\n+WMF00kE08WnbTb3+MAsC3E9g3AN7Rwsy0JUU5EwMuCAolml3kX9uxaaqwcbV6OIzAZLGjMKAiCD\nmXg5No7RVOnpTJ/kgEusbq/Ehaa1GGJGfsCaYTqOpcaRNjWcSE9AZdmCfHsV+yEKnACX4GhKH652\niRpTiJqlW9uQlYUCrhVAksWCInlbDRsnv/DcvqJZKVEU4PFVX9sCFHaqr/Vq3OW2Q1Fk9LgVrFld\nfnVRJJrCdGj+i9E0Gfp8TvQVGbNil2CYJgwj/++UJTGX2Tp4MpDL6JgmywusPC4Fg33ZQCgQjjfc\nqmLT6r6ygVE8ncHp6eIBpyjwOGtN4VQIz3GwSyI8DXSub4WFf6dPUTDgmj8/i18fc6sQ622VsPBx\nXJIM3TRxMJwNTgWOryqI65FtGE8miq5ctAkiDs9MQ+YFDCnVN8I1LQtTagIzWgocx6HfVtv76lRq\nBqppYFjxwidnM8ABNY6UmR/8T6gxDNg8cBQJqFRTR1RPQ+ZFCHUUXA/avAUNT228BB4CAtoM1toH\nqgq0FsowveO61DOr+sylxNnQJ7Z/BWOGTbR7CAQUcJEq/OlfvLpoVornOSgOGcm4iokaM10AEIkk\nMT4eyZuKsywrr0XEYrIsVt2J3u22w+vJZix0w8TJ0RC4MvU1DruM4Exh5iIaT0M3TJy9YTCX0dFN\nhniyeKH2xtV9BdOPUzOJpu2JOB1LwmWXsaa39GbLyYxWsfi+E/EcB2E2qDIZw4Gp5k8p/W56fjpS\nEgQ4RKnkVCIATKbimFqQ0bIJIl7TP1TyYuHsXn9B9qwSkecx0tOPtY7qWhScTkUwo6WhmgbCWhJb\nXP0FezqudfjgEm0IZuJIm3rutn6bE71yYUBnAbBgQTX1vH5aAHAmHaqpNcaMnoA6+xir7b3YoAxC\n5AQcTI7W9Dh+2ZdrJ9EsGtMQM8qvrE2aCWSKTAVme25lV3CqLIVUhVWMDsHT9p5cWe0bg2lRsDen\nE14JpMNVmgIUJQHpVAaJeBqxBW0fgoFY2ZWNXq8z284hNj/1wnEclDLZN5MxqFV0ugeyU1FzwZkk\nClg14MFYmWDO7bRj9YAHjFmYmJ7/QDZZYV2MLArwuLKZouBMAjNFNp5eyCYJaDApkzMXuAllek5F\nUyrCiVTVQV5a03F4srOWgAs8jz8YnK9HOTEz05T2D+f0+vMyWWtcbvxuagq/CozCKNKqYUBxwW/P\nD1BU08CJeO37QjbLsOKBT1bAIdsctRSNGbALEsQqvvQVQYJXckC3TGRYfpsEn+TE8dRU3mpGIFsz\nNqYWNlMWOSFXj2VbsKLwbOdwXdmzRliWldf2gef4ijVa3Oz/FpN5O/zSagCAAAECV/9CoqQ5jaS5\nNO85W1vrulZuY+rFKOAiZUVL9M1ayGaXsH7TACRJhGzLXmWPng5BtouQiuxHqKp6rui+r88F76Ip\nvnLb/mgZA9EFAdqZsXCuBUQp6bSG06NhKHYJA/2V+/dwHGBfMG5ZEmAY2SnEyVAsl/EKzdZs+Xoc\n6HGWn6bzuJSyAVI5jFmYXLByccjnrjilttrXAw5c1VkuRZawdajy4oJWCSaSua15DJMVLTj3O51N\naWw6dx6SuoaTsRkIPI9ta9djxNuXV7Q9Z27V4cn4/BZIdkHEiKd4d/xIJo1kFZtQN2IuYLQJYm4K\nsZjjyRCcgq3oCsJS3KIdXin/MW28BAYGmRdxYkHgxXMc3LMF8IeSY4gZKaTMDNyiUnJ1o8GMsnVZ\nlmUhUsXei3EjWVV9V8bKIKTP16yJnAinUH7K1iE4IfPl69gk3gYbX//0vIPvg4MvvR3SciFwq9s9\nhI5BARcpK53SqqqzEgQekiTAPpudsttFeDyOopsviyIPZUELiomJCFKp6r6gFEXG4GxzVpMxDPp7\nIAg8dL10XYWiyFiz2guO4/IK6AHAME2MBfIzFRzHwdfjWHRbtp7LIcswTAabLGLNYHbhgSjwVQVT\nqmbg2GjtV7QcB0h1FKf39zhhk+rfHw7Ifvn9fqL1K8XskpgLpuJaBlFVxZFQCIenp3ONURd2lS+m\n1ilUhyhhjSv7WuI4Dl6bUraGyyvbcDw2g4Su4ZfBUcT10r2/ymWdmi3DjNyU4WJnu2trBXImHUJU\nL7zIkngBm5RslmTY3pcXTPWIDliWhS3KKvDgK04ZhoxYxcanehUbQKtMA6uwCVHSTEHmZAzKnddP\nqlx5A1meKOAiedLJDJKJ+dqFodnVjMWKwBmz8m4fG5tBKpX9IDWM+Wk4wzBx5Mj8Sh1RFOBY0FS1\nr88Fu11CJJrCVLD0lW06reHUqfmAJTAVQ0YzkExmEItns15j4zNFx1oqIBJ4Hh5X+R5OLocNil2G\nKPDocduRqGP7nHRGh10WsXF17Ve0HMehr6e2IupGWZaFUCJbwH3WYP2Zr1AqhUC8ciNGt82Waxfh\nUxT4nU6sdruxube3bGPUORnDwLGZ2uoIOY7Ly/zsD06WvbhwSTZMp7PByHqXB9Ml6r68NgWOJmxm\nXa2MaRQUx9drjb0XHql4xmzuuVr4nDHLgmkxRI0UAloELtGey3iVMij3wiUU3iesZ1fmchwHv9xb\n5Dfz+WUfxAobTqtMhVlDkTshrUQBFym06DsnFkkhWKT2aSaUwExofqpr7bo+OBzZQGpoNqMEZAOs\nkTJb9chydiVgj1tBX2/plV2KImPt2vmAZfWQF26XHR6PA329LhiGCa5Mv6xiOI6Dy1l+6iCj5V9t\n93lKBz+HTk0VfGkzZmEynA0kaxlbo0zGkNaqq3dbzAKQmO3eXs00nl5kCnAyFofXbofbbsPBQHZv\nzIXPTUxVy9aYOWUZAs8jlKpiWlsUsbXEBtjVeo1/qGzGQeR5rO/xwilKGFTc2OhubA++ZpnWkvCV\nCJJqNZcNO54Kls1UvZwYBbMsRPQkprU4vJITq+2Vg6SFmMWQYfOBomkxaMxAylTzbm9En9Rbsiv9\nmcwZ6EX2dMyYGUSM6oN3y2IwmQ6Nde6G0ZZlIMOC7R5GUZZlgrEj7R7GkqCAi+RRnDY4XPkBiMfn\nxGCRFgx9fjf6/KVXytWK57miU5CGYeLI0QBMk+H06cIC3TmMWbDN1pD94jcnECqy4nBONJ7GVKi6\n5q2nJ8J5gYLLUTpA2zLcX/ClzfMcNq5qfa3GzKKGppphFtxWLZ7joBksV6ReqaHm0WDheRF4fvZx\nzNzU5qHpUG6KMGOYVa1YS+t6rr6rHjEtkxt7Qqv+izxl6DgZj8C0GEaT9e8XWQvLsnA4XtsX44DN\n1VBPsmKGbJ6yxe3nuIbBcxx6ZRcGbZ6qHtOaDdDmqExD1Jj/2S97wcCQNjOY0pq37dFo5gy0IgHc\nsDxcNBgTOKGq2qykGUWGpaBaCcRYAGlW2Kx2jlnFFGmzZbf5mQ8Cl3KauxYcJ4Djln6HgXaggGuJ\npBMqYqHm7HHValPjEUTCCRx9eRymyQqmDmtRakVhKpUp+W+GYea1ihBFASNbBiEIPFYvath68PD8\nkmNZFtHny2bILviDdegtsz+jy2lDb5ni/DkmY+hx2jFWZP/GYooFjK0WiqcwFUkglcmvt1NkCat9\n9QfEIwN9uexWIJZAKFn6Cv5VQ4U1Mn6XM1sbpdixsTcbsJ/t789NEfpdztx/h1MpHA5OI6lpOBCY\nygV6R0IhDLhcGI1WH/D8bjqQ9/OMmoY5+7xMpZJla70SmoaxxOyxLAsix4EHl5siHHK4imbBDMbK\nrqBkloWT8cpZE47jMKxUF8DMKdaktFQgmzQymNbKfw7pzCzYK7EeR1OjedN5FoD0bO1WzEhB4W25\nPUp7qiAAACAASURBVBXjRgrMsqAINki8iEG5/AVK1IhjSssGpmOZCahlurkP29ZCLtL/a+48aiyT\nt4pR5EUofOWtokROBs+JUPge+MRheMRVRe/HLIaAfhSG1dqFFAXHhQbTyl5UcpwImW/fophKOK6x\nzci7BQVcS0QQBWiqhuh05+8+P7jGB2+vC1vOWQ1B4HHgt6fws/99pa7HCkxEigZrhsFKbvETiaSQ\nXNTjamJ2SlOWRaiqjpf2nUQsnsZZJaYqJUkoOz20sGVEOUdOBbOB2xJeHBqzQS4ATEUSmIoU/4I0\nTIaMbsDnVNDX48CaXk/LinBXedzod9VfR5aqMLUZy2QgCTwUScJaT08u0Fvn8UAWBIBDQUAzlUwi\nWSRjtcnjw9GZ+QzJ+h5v7vE2eX1lFzg4JAn9SjYQlwQBPVK2M79coY1AREsjnJkPSBN6BqPJ+SCd\n5zj02qqb9nOItfXwKuZEMlS0rkviBTgWBR9Hk4Fc3y2NGXgpehK/j48W9OIqZW7FYlRP5XpvAcAm\nZTUMK3/rp1W27LRjwlTzKheSZqZiAfxCHtGNATnb3FfiRKgVivDLUVka45lTNTU0BQAbr0DiKp8r\nnuPhFYZgWK3bYH0hjYWRZuMQOUeb20GQxTir1lbfSyxY5559nUjL6GAGg71CzVAj/H53Vc/ZqSMB\nrN3kr2qbHWayhrbjiUZS8HjrqzFhzMKJE1Po63fDuyAjpekGhEWrA4PTcfT6nBAEHvHZwn+3q3ld\n1ecKejXdQDKt5VYyTs0k0NvjaMo2NwCgwkQmqcNTpNVEMJqEz6VAFHgcmwhBNQycu7Z5H6qT0Tjc\ndhtmkmm47DK8jsY3hTYZw8mZCFa5XZAEoWAvxbkmpBnDgCQIOBgMwrKAcwfnt+/RTDMbeC2Q1DXY\nBLFojVnGNGATGluhGUwnoZkmhhwuHImGscXTW1U9m9/vRmAqBp2ZDY+hVuNqFL2SA3YhP0MVN1TM\naGmsK9JY1bIsWMjfvkhjBiSu/EXLnN/GTuA17g1ImCpkTsw79rHUBDYqQ02f8myUzjRICwJPjWUg\n8zbEjCg2Da3B9HR3zEYUk/1KZ+CauB9kN6n2O7DVYyiGMlxLSLZJLQ22ajG0thexSApTRfYjnBwN\n56b0TJMhMD6T+++jL4/XfKxUKlP1Fj6JhIrR0fnsBM9zWL++PxdsqbPb6ciSWJCpkGUhr1C/2o70\nVY0rlcHpyezzwIHL+wKRxfmmpumMXtXfmkxrGAsWb5y51u/NC7YWZghFYb4SY/OqvlywFYqnkNGr\nrxMxGcPxqcI6Ga9DgV0SscbX05RgC8hmEzf39SKh6QX9teKZDE7PZPtbKZIEkedx3uAg/C5n3vO4\nONgCAKckQ+R5xDIZHF+0QrEZgY5fcWKV0w2e4+CRbUgb1deR8RyXNwadmQ1ttj3HYAyRMns0ekQ7\nJF7A/0Xz36cuwYYB2YlX4oX7+nEch5fjEziZDEFjBs6kZyDzYlXBFrMsDNo84DkOPaICwEIgM/+6\n3uxYlXuv6MxAUMufms/e1pwGstki/GwWKW2mETNKB00hYxqGNX8+53pu6Zae3TRbG23KmNoh225i\nZQZbnY4CrhXIsizwPAdPrxP9g4X1Iq4eJbeajuc59Mw2JhUEHlvOqb2J3arVvqqnulwuO9asyb8K\nXxg4BYNxGEbx1L+nxwGe55DJ6JiYiECx116HEo4ki97usMu57IYkCfC454MRr3u+qWkokoReYnz5\njydhoMIm1EB2U+wTgfnAyOcq0dtM4MFx2UanSTVTMfgSeB6rvIXHt88Gsq2YmhxwOXObUM9xyTJS\nhoHD0/lF90MuV0FAndZ1nI4W1tL12GzY5PNhRk3jVHT+y9tgDDNqbYsGxpNxxLVM3s8hNY1VTjfc\ncuWLpSPR4os6AulkQd+u0WS05r1EGSyoZulz6xRtEDger/bkv085joNdlHGWq3g2dKtrAKsVD0RO\nQG+ZFY+La8N4jsNq2/zqRGl2H8a5+x1KjsGYnarjOT6v6/zcbbXur5gdh1mwktGwDMTMGHSmIayH\nIBVpGZFmaZiWiSF5NcQiXeL7pH5MqGdgWSbSrPhnAbMYrC7cUNvq0nGXZalAGxYk1IsCrmXONArf\nYJqqY2psBhxX2EIhNBWDoZu5rArHcXBWmJbTtea+4Mt92btcdqRLbBc0NhFBPKHCZpOwaWPh5s3V\n0EoESzzPwb1oii+d0RGJz3+ha7oBw2SQSzQbnY4mkcpkx16sCWsxdlnC5hIrHE9NzSCWyk6dehx2\nyKKAVEbHWDiOZKZy/Y0iL2GvKMPAK1OFq+84jsNGnxevGqh8vuyiiEFn8TqyjJGdQlzvmV9UwSyr\nZCE7s6xc8XwgmUBqdhVkr12BQ8o+LydiYaiGnqvpKmZxwLTKUbytybCzBx45//VjF6WaA1uZFzBg\nd+FgPFD5zkWUmtqTeREyL4LnODiLFOHPKba9z0ICx8OEmQuytjpWQ5zNtggcj55F+yIKHF/XXokZ\npiNu5i/ikHkZfskPkZPglwegCHZoLAOVpRf8noqJzDhiRums2pB9GKvltVD44q+1JJtBxGhOiwXT\nqi4j3gyqNQXNqi+bqNfYUkJnozCt5q00LYXHDDh0bjuOxSjgWsZMg+HEoQlkFq0GtCkyvCW2uBEE\nHobBYBXZP3CheDSF8TPZN9TkeARaFUGXZVk4+MoYphuYX9cNE9PhBHTDLBifv88FR5l9GKsx1F96\nVV/PosCT57i8ui1ZErFmwFOyt5Rik/Lql8LxVN6WPYuZJst7rKSqIZqcX421fsCHHsf8mDTDxKHx\n/8/em/TIsqZZuY/1Zm7eR9/s7rSZeTKprCrgKiWg7uhOYMAMwYQ/UKrfkEgIwS9AMEJihJgwvLdU\nUl0lcCFRFZWZp9/9jtYjvHdz682+7w7Mw5tw94jY++zTZOZZZ3K2h7u5dW627H3Xu1abumvTLL/d\nwN83xcfnF/z3F6+I0mwlqcpysbJdeIVOEHAyKqYGFUVZa4Ia5/mSdYSpaWyVVt80e1FIe2Ji6pom\nwzhiGEfYmj61Q6iZDgfuzVXIX/dmLbo4zzgN7nZur2ovRnnKRXS7dkhVFN5xv16bkct4RD9drvC8\n7+4uRfYchZ0Fd/odszGtZK0ilMkK76tVSETKeby6YljSbExFW+nXpSjKdCoxl/nCpGRdb1DRqzea\noRqqcWPgdEXbICVfmGx8U3j5BRnrJyzfJhx1F0t9Pa80uNL4vd6Epa7solJfej0VnyLl2yNIQtlD\nKm/PmujrxhuJ5oUQ/PznP+fLL7/ENE3+5b/8lzx48GD69//wH/4D//k//2eazeLg/ot/8S94+PDh\njZ9Zh29b/PbbhnnBYDCO8L2Irb3FE18IyflRl4OH68eEx6OQYd9nY7uKEEULUgi54BB/9frrQEpJ\ntzNmc42o8C7wxhGdroepaRwczi4g3d4YXdeoVe+mPRJC0u2P2dpYvy7HZ312t6oYxt01EU+O27xz\nsHFr3I+UEimXzVDHWYKrGQzGIZmQbE2MVqMkJRcS154T+06I55XPVS4EUhYtxijNOOoM+GBvkyTL\nMO/g2A7Q9nya7ptnP85DSEmQJJRMc2V15dOLS5CSH04E8u2xz9ZXmIaEYnqxalnYd9xegCjL0FV1\nSRT/yhuwYTuUjcWqTyZyno56/KC+de11wc52lednHVzdQL+WYThKI1IhKOsGj70uP6nvLiwzyFOq\nxpsPevST4MZsxbsiFTlHYZcHzgateIirWzQMlyd+i4fO1oLb/FnUw1FNGmaZMI8xVQMh5VJ+41F0\nySgNUVXBvrlJ3Vj83UkpeRmd8sg5BK40WSmOtrriNs59LMVca2z6pvgqoutBdoqrbmBMfLykFHSz\nIzaNh29xDX87IOQAhTLKLWkAbxvfZdH8G+2Jv/iLvyBJEv7Tf/pP/OpXv+Jf/+t/zb/9t/92+vdP\nPvmEf/Nv/g0//vGPp6/9+Z//+Y2f+V2H1/dRNQW3+s1VHkplm9KKdqCqKjeSrXZriD+OuP/ONlGY\nIIQA1AVvrKvlvC4URVkiW3ku8Mcx5bJ1p2nIStleOX14k0v96nW5fRu2Nsro+vI6pVleGLWuICXv\n37tbO7MQty6/3qy6JEFKo7J4rtgrWoBhkpILMRHuL66Pbeh8sLfJaXdIlGW8u7O6KtIbB19bRUxV\nFMpWccP8/LLNh1ubC8Tro51tXvUH5EKgqOpSCzDKstciTgCWrqEpCs/6PfbLFRzj9hvy1XeM06Tw\n3Zp8xlBVkMtTj7qq8V51uVqgT7bBS2O6ccC2XaZszAiyqeroigQU9p3qtc9qVF8jZHoVRlk8JVxx\nnuHnMU3z9QmsoWrs2XV0VePQmW3nI2driUTOO8yPsoBYpijAPXub46jNllHD1kx2zSYHloqQYmVW\noqIoHFozAqoq6gLZGuc+CgquVmxfeS6AOhYJlmrSSs6pajVKWolUpHSyLnvmLrnMOYqOMVWdA+tw\n6bsTERPkAVLJKOdvfgwq2jbqwm1VoaTOdLKhGGApFdTfA1G7JEDB4Q1pxu8k3ugR9q//+q/5+3//\n7wPw05/+lE8++WTh759++in//t//e/7pP/2n/Lt/9+/u9JnfdeiGhvYWp+beBOdH3bXeV/PY2K5S\nrhSEpuRalCsO/Y63EDj9OhgNA1orpiG9UUi/5yOEJM1ynj+/vHX9Tk57S4apQZAwGt0sjr7sjPD8\niPOLwYI+7eIWt3lNU3l6tKxf6A59wjXGrV8Vq+wg1r63ZGMbOi9WTBxewdC1tWQLIEqzhfbsVsX9\nytUtL4oXMhSFlBiKOiVbV9+X5jkbJQd9ItTfq1a4GI859zyElLwaDO4cSp0LwTCKqFk2hqbxoFa/\nE9m6voxcCoLJRKKmqPyme8kgLto+nShgNI08Wv17NjWNQ7fGO5XmAtkCsDWdi9DjPPQKMveWsWtX\nCPOURGSkMltyFz8Ph/xqeEQmBcfhzRqbkrb8e1+3zVfYsRpoqBxYxUPHrtnAnizHnAjqDVWnpK0+\nx41Ju1JIQZAvttp0RV+ZnZjLnG7am3zfHqUJITNUgw29OO8VFGzNoqatNpUd5z6BCKho9Tu5zK+D\nphjMZ6NJcuJJC62bHpGLhKXstN9RaMo+ivLdmMr/ruCNqOd4PKZcnlUTNE0jyzL0yVPiP/yH/5B/\n9s/+GeVymT/90z/lL//yL2/9zDo0GqW3Ot7/reErtNBe+6tWfFeW5tiGRmWFH1aW5ujXWmY7O7On\n7yRJKf9on+OXHd79YLcwcU0ykBLTuv2GtrlZRgi5NF1XqzkIIbFtY8lBHiBN86W4n1rNwTA0hJBE\nUYphaFQqNlmWU75B3C+QmIaGrqtsbVWmla0/ucNx2dtdNhS9vo/jJMMyV5/L4yC+MQ5oFdaVpNfh\nweF6QjW/rCBOismwuXV93e+6CxrCJcsFtqETJimjKOajR7tUHZtcCH5z2uIP7+3zvNNjq16hYs/2\nz/z6bG9V+NVZi5Jh8O7msg/WvD9Xkudk4zFbteLzl+MxqqqyUZqd890gYBhHlAwDW9ep27P2cy4E\nIlTYcct81rnk/kaDLaXCj5k5iLuphaaqt9pOuHWLF6M+H23skAuxQGCNqk7dejPLjU7kY6gqNXP1\n54dJSCJyFMDCYNMurrmn/oBNu4yWqXxk7hdVvNSkFY54VNnE/IqVtXnIMKeTDPhR7f7a92Qiv5G8\nJSKll6Rs2cWxzGWOdoMb+e5ELxRkIbqqY65oM4owpGk2sDSLVKQM0wGbE2K4RbFsLx2iKuqdfhNx\nHpLJFFefXSvD3GeU9tm2Z9u+QzF1Xc0fYWnfvrYyyjrkMsA11h+f33Z8Hde0t4E3Ilzlchnfnwkq\nhRBT4iSl5J//839OpVJs8J/8yZ/w2Wef3fiZm9Dv//ZMIHwb6F6O2Nie/eBX9a/zTPDq6QXv/GCP\n6Prf8snfPtwjzwWt495Su/G//fkn/O1/8CHVZpne5HiMBgFCSOrNWVn/yhj0OoSQPPnynA9/uNpS\nwvNWi0Z/8/ERB/sNNlZorB4/abG1WcGyDEqTylsYLlacOl0PyzSoVGxUFLJU4Fgm3WsRS0JIRuOI\n+g3aryTNeHbUwTJ03rk/2z+9YUC1bHNyOWB/s7pyQvFVq8e97cat7ctREOFHCX/rw4PpMXx61uFw\ns7aynfgm6PshuqpScd7+k+fl2KdmWwvCdo+iihWlGdI0CL0EVVE4tIvztIJBOIqJvPWiXDfXsBWV\nfndRxB1nGcejIe81Z2TTQp3uuzTPyYC2vyiQLkudOMqQqiD1Zq2t/3l+gqPrqFu7qJHk1y/POChX\nyYSYEr1+HFLWTYI8nU4dtoIxu3PTiVtbFfxBzJZ0aLc9no667Jeq03gggDZ315gIKXk27vJ+ZRM/\nS9AUlUS7WbAtKUjN6bCPlJDIjL7voykqPWb70c1Nhknxm85EsZ80RSUSKc6KCteN3ykl3dRDRyWX\nCu3EI8hjLpIBuqKyazamFayTqE3DqOCuqXQBaFi0PY9UpJwlbR7Y+2Qy53n4kvecR6grhO1e5mGo\nBvaKKpUUBkMlRlEShBREIkdqi8ehm7b5wX6NL89eoCk6NX35QfAKqYjJyQmu/a5VGrS9dce3eD0R\nIeYd4oO+HliARfAa5+BvE77LGq43qmn/0R/9Eb/4xS8A+NWvfsUHH3ww/dt4POYf/aN/hO/7SCn5\n5S9/yY9//OMbP/M93hzyllBhAE1XeecHq3O+NE3lnQ/3pv/f3KrQbg1Jkowszelcjvh7/9ePsW1j\nWmk6ftFGN7QFsgXQOh8wXOFjparKWrJ1etJbO+H4gw/3V5ItgA/e36XRcKdkaxWqFefGvwM8eX6B\nEOJW3yrT0Pnhu7vcP1h26gZ4uNdEVVR6o+UHhAe7zQWyFacZXrBMMsu2xVZtUYf23v7mWrJ1l2N/\nHQ3X+VrIFoCtaysDjw1N43g45MJbzGO8mtT79cUFn7SWbQ5ORiPavs84SVa2Bi1dXyBb12FOXO1z\nIfikcwnA82F/sq7LDvU/2dzmvXqTTAgaljMlUc9H/an3VZLnZFJMW4wAck2L6Orh473qxgLZmoeX\nxpwGq3Min3odxmmMqigcTPRerm5i38HUNcgTjsI+fpbgZTEV3cbPEl4Fi23E+UrdMIsYZCGxyG7N\nW1yFSKScRB0CkTDMihteSbN4aG+zZdSm9hAAh/YWpmIQrZgyvA5DNXhgF9ePMA/ZNDaXyFYmcz4e\nf4amaCvJViYzDNWcHhNVUfHyEUG+eL3aMHYYJAMkkppevzF02lAtbHVWsfLzmy0XOukLxGR5Y9F9\n64HW32RoTCrOyOTqCdLvsR5faUrx8ePHSCn5V//qX/HZZ58RBAH/5J/8E/7Lf/kv/Mf/+B8xTZOf\n/exn/Nmf/dnKz7z77ru3fte3zVR/2/BV2L0/jlCVYhrRdgqPoLEXUV3RhnyTCUWAXneMYWpUJsah\ngR9zdtrnvQ9mYlkhBK3WkP39gty0WkMajRLWivblYBgsRP6sQ54LRl5Id+Bz/6A5rURlWf7WWtZP\njtuULIOD7fVPxVBMG0ZJRr28+glXt3V++clL/vi9RXFvZ+SzUSlNbxqdkc+rdp8/fndZBPxdQpxl\nHPcHvLe1WDl91R/QcGyqdnGD7PgBFcucVsiklAyiCGfS/vsqEFKiKgrPBj22Si7VNSamn/cvERI+\nas7CuNuhT5znHJbvNn5+9Rs8DzxKmk7JMJcm9q6QyyL02tL0lfFF65CI/MY2oJdF+Fky1WFVDZte\n4iMlbFjrRfRHYZea7lAzSjwP2hzaDUxVZ5gGaIpKWV9fkZJScpEMUICmUV27zVfw84hIJGwYi/tV\nSEEoYlxt8fdxFJ1zaO2srGyNshG9dMBDZ3Wb7Cg64v6kzddO25RVF1t1Vlbkr45fKmIGeYct4+DG\n7bjCILugrq+P2cplhvY1TexJKfDFp5S1n3wty1/+vgxQb7TP+LbwXa5wfZ+l+DuGr3KyBeMYRZm0\nBtoe9x5t8fjTU97/0f7ChSnLcl49a/Puh6uDo9e1FjttDyEE3ijk/oNNDFNHSkn7csT2nON9HKeE\nYUK9PrFDiFJMU19J8M5bA/Z2byY4V+s88iIa9dJrm01GcYpprP7+eazb7teF7Rr0egGlawTzYuCx\nXSsvfEdv7JOkgp16+a1899tCmKY8vuzyBwfFOZLl4tasyX4YUjbNBa+yQVi0QDMpUWFKzlbBi+Np\nPNA6rLN/mMdl4NO0ndnEYRJh6QaZEGuJ2jyufoNhljJOY1AUtuzbJwWfel0OSzUU4Dz0eFheXU0F\neOJ1eOA2FkhXlKd8Orzgj5uHPBm3qesOrmEiZVEZi0WGAks+WuuQiGz6Xj+PUVFubTN2Eo9c5uxY\nxW9ylPqcJwM2zQpCSmp6aaW+avF7U4aZx5a5OAUaiRhb/erV2UxmaKzOicxlRuL2Mfw6iUgoaXeb\n8AyFh6N+N3VDvy2QMgGOUJT3vtJyvsuE67tHT7/Ht4ZS2cJxLUplm3sTp/YPPjpAURTCIOHLT07o\nXIzQdW2JbLVO+wwHRbvo+FWXIIiXll+p2mxsVnj3/V1evuxMX79+4fP9eEEob9sGqqrwy//1jJG3\nOI14nWx1+2NOz/tLE4S6rtFsuK9FSq6eRXrD4Na4njwXfPb8gi9fXd55+auQZDmVkr1EtgB26pWl\n9bcNg1+/OCOMv56JyXl8fn45bQOuc3AfhBF/fXxKmudsukWFIslznvdmrazH7c7K9kfDcaZkqxsE\njKKI31xc0PYDxnGMBI5XRPtcwU/Ttet1hVWtxOtQFQUpJc+GPVqBx387PybMbl/2dTi6wZZTZst2\nGSQRg+Rmg8v3KhvYmo6pauzYyxYnr/w+yURn9f6c0P04GBDmKanMuVcqHlwelprYmkFJM3H1giRZ\nEzf5VfjUO106JvPvdTXrTpquTbPCjlUnkzlPglNGecC7pV2aeoVNo8qT4JQgW742LH6vwZbZJBXZ\nQh7iTWSrnXQYZatbs/MY52PaaZtIrj4WmqJzWHpYpBS8RssvEt432tL7XYSimMBq6cvvCrSf//zn\nP/+2V+ImBMHrOdz+vsN1rTfaZ2maoWkqxy/aGIaO5MonqrjBG4ZGtebguBbq3A0rjlKSJKPedLEn\nLu+1emkqcDYn03AnR13cskWa5hiGzsbG7IZy2fGo10q8fNmh0XBxHHNl+3Bjo4xbstaSpjwXdLpj\nGnWXNM2wJ1mKT19eUinbr2118PK0h2XqNGvuQnWmMBeVyLm2qqoqbDfLbNYXn4ijJOVVq89ZZ4ht\n6li3iN+P2wM26mWSuIgJitMMQ9f4/PiSrZq7VEUzdI339jYZxwlhkn6tcT2NOTPUz1tttivLT/+K\nUmi2Toce709aiJqqUnNsVEUhTFM6fsBOZTI9NxyhqwpftjtFCztJKJsmz7s9dspl7tfrNB2Hmm1j\nTciYretEWXEzfNnv03AKYlc2zbVkahhH9KKAimmR5DmPB122nNn6e0nMhT9mkETsuxU0VcXUVDYd\nlw8bm5R0A2eNDus6Vv0Gj/wBigIV4+YKzWkwwjVMTE3nLBhR0o2plYahatgrQqVNVcNSdWzNmMby\nJCInyJMp2YJCFP94fMmmtUzmtsxlMr8K4yziNOrRMG6u/KiKSlOvUDNcVEWdXksc1WKQjhGIqV3E\nOgiZk8psJdGSUpLIdKoLc7US1rX3ddIulmottCCVyX+WYpHKBCEl2jVPrLJrE4f5a9lDOOri/hvl\nHXTFXNn+/CYhZY6fv0BVTFTlq6VwfBNQ3sI6vuk98G3CdVf/zr+vcL1lRH6E1399wem3jaMXRcXp\n4MEmpbJFv+MRXTtpTctA1zV++YsvSSYVlTwXZGm+dLEWUuKNZk+RWztVVFWh31sUqSqKgmMb/OY3\nx7iuheeF/PpXr8jz5YqSZRpkmVg71ahpKo5joOvqgq7rnftbS7mFQkievbo5H+zR4QZZJpaqW6cX\nAy46I/reokD+1XlvyRzWNg226mUa1dLajEWA3iig5wU83GlOLRviNGMcFcfgg4NNup7Pk7OZUPWL\nk6Ka9slRi5JpULa/Xs+beTLz0d72yvdYus52pUy9tKi/ufqsYxj8eHemc9kolbAnrzUdZ2rhsFet\nYE6qUVfnlqIo1CYtxVeDAaqiME7XX1jF3FBBxbSoGhZ/1TolzjI+bCzqyVRFoemUuFeuTT933V1+\nHl4SE+UZqciJssXqYi8KlkKe369ssO9UGacxL8f9tcu1NR114p1latqCj5armytJkYqCqih4WcQw\nDYnylLNouOSjpasa75VXH7d1ZOs47OHPVaTO4wH79vpW5/VlHkdt/Dk/LVs1SGQ6nVa8Qicd0E0X\nq5eGalDTV7dmMpnTS2f7cVVUj61aKChkcuYzd5YcUdEqGKpBJjMEOe20NV3Gi+jpnbZtFYJ8SCSK\na7+uGMQiIBavF57+9iFBUVH47pOt3wd8T7jeNuaqQr9NePeDXV49u5xWbHb2G5TKFpfnM6PQK/z4\njx6gGzpRlNJte5iWwYuni1Nmu3t1difeWkEQY1kGmqaxO4kZOjnukk2IzO5unT/4g/tsb1cplSyc\nksHHH58srePTZxdkWbZEaubh2Ms3pVXaK1VVuL9/e65YtiKzsVlzqVdLbNYXKwXbzcqS1xgUT+Mb\n1dKN1g5V117IRQRwbXMa66OpKpaus1GZEZl3dzemVS3L0DGvkcowSemNvxlblUEQEiQF8VAVBUNR\nV7ZY5ttyp8MRmqpMKzjanLZq3jvrCvMGrR9uFo71H2xs0g18/CQhuNZSbPljjr3CZV9VFHIkddvh\n/37xlEwI/DShe5WnaJiUjSJ+6Hg8ZJisbnu9GPWRUpJJQS4EYZYxShOCLMWbfCZI06WsxKtz0tVN\nDkvrxfcb1kxjuGm5a8Om5/Hc7+KnhcZKV1ROwyH37PpCdSueBE7rKyouich4PF4dhr1jVReIWLx+\nkQAAIABJREFU2/vu7jQn8Tb4eYSQAlOZvX+U+xiqhqvZjDKfXjoiEpM0i9foyKmKwp5VEHchBb/x\nP10638paGVVR6aYdYhkTipBto5h27KRtLMXGVCxctfgda4qGqRgIeXPrWMicy3T5+mSoFvqkQlNS\na2iKtmQ8+01DUXTK2iO016gcyVu2/9uEKh/DW57u/CbxPeF6A2RJRrBi/B/ALlmU618tC+7bghSC\nv/qvXy4QLNMyFuJnfvW/npPGGaqqYNsGtbpDEqU8em95OufZk1aRV9gunvo+/eSEX/3NS4SQfPn5\nGaNh8fR3PudC3+/7vPNoh+3t6tIF9IP3d3EcC9e1iCcVttEoXHhfpWyvNSCdR9HavH0irFl3MQ0d\nz79WVVtxc3DWmMDWys5KstUd+gzGxT7QNfVWUXnZsdiozs4tQ9dwTIP9ZpXnF8sj2po6C9cWUpKu\nqBreBUGS3mqboakq7bHPKIw4GQynLb/rOBkOGcdFVapqWQtt3n4YcjQoqhy5EAukJc4ynvV6JNe2\nwdZ1xmlKazzmxBsuVJv2yxXKhkU60T3VLJv36k3+aHuXX56f0PLHDOMIP1mskj2o1Klbq9tJTauY\nbGtYhSA9yBLKhomUklwK+nGAoijTCT0hJb044NW4OMcVRbnVrf06Hnvt6TaswrvlTb7w2ozSGFe3\nsBVj+v2fjM5J8uxGV/lMCjqxxziLiEVKlKfTdTdXtDCza9WkbjJaqugBuJrNvrXBSTyrJFe00vS4\nljSbilYiFimWalIzCuIT5NE0lDrKY1pxl246IMwjOklR1bpIulMnegWF9513FtYzErPf6465i63a\nJCLmOHnFRdrCUR3G+ZBAjClpswenA+vBrW1AVdGoa1ukMl4gJ4ZiTwnXFbz85ir6t41YXBCLRbId\niE+RN4R7f5sQ3INvOJvxbeJ7wnUDuqerL1JpkhKvEIU///ho2mqLgpiXnxwTeK9fUn7yq1ev/Znb\n0GkN6bVHdFrrRcf3Hm2ze69JPtdCqzcXheYP39umXJtVWeI4wzBnY/wLy3uwiaoq1BslRsOA99/f\n5Sd/6z6qqvDTP3yIaRWfc5y5rDlD5/nzS0rXtFpBEBNFCVJKojglCJPJ6wlXX3veGhBN9r+/4vhM\nlxUlnLfX74frkFIymDuO5ZJFybn9ibHVu1nEW3XthSDqN4fk6HLZA8jUdapOQRy8MKaz5iEBwI8T\nWsPFyZ6r1lqcZUtE5zoqtsV2xWUUJxiKyv1G4c4fZxmjMCaeELCHjQZly5x+Zr6C03AcgjQhyXMu\nfZ9+WOzzTAged7tLpqpXeFCr826zia0b2Nd0Vk3HoXJtsnCnXGHfLeMaBqqi0olW75dPuhd82rvk\n3PcYTny3ateIWNmwMFUN1zDRVY1eHNKcc6/vxQFxnnPfXR0pcx1eGnPkF8fyIioeVB65zSmBivKM\nbry4vqaq8cfNQ/acKkJKXsx5bf2osksoUh46hV+Zl0VT8paKnFEaMkpD3nU3uYxHhFlCJIpooKfB\n6gGQs6hHlC+3ctvJiNOwxxf+8fQ1Q9V55MwGbE7jDvtW0c7VFQ1D1anpLjWjPNVjZTKfEjhdKaph\ntmphqSYVvXjg2Le2p/FAvgiW/LwG2WCpzVjT6zyy32XX3MPVyjSMTcra6mpjLjMGWWfl3wBM1cLP\nB6RyfUvbUl02jHtr/w7g5Rf4+bfnZ2WpO1jq4sOyq/2EHJ8gf/EtrdUNUL4ts9i3g+9tIW767qMO\nW/fXhzxfh5SSYXuEXbaxSxZCCM6eXnD4wetNXgghFoTpr4N1I7FXVatBx6O5XSWJM86Pujx4f71v\nzBXGo5AkzmhuVWidDQqB/ESQ/stffMn/8Q8+pNvxGHTGvPPh7tITcRJnSORKIfwqzFefgiDBsnT6\nfR9vHLEzaTsCDAYB1aqDqipEcUqWCUqOiaoqHJ/22N+rLwnlkzTj5KzPOw/uFjANhaVBqz3i8A72\nE/PoDH02a69f7bx+DC8HY+quvVYDJqVkHCVoqkLJmhG4XAg6I5+d+u3j6rkQpJMoniucDz1MXWPD\nvXscSccPOOr20VSVPzjcYxwndHyfkmmyXb59X4RpSpLnU63WbZCysB1d1XrLhKDljzmsVBdee9Lv\n8sONrem/1wntM5EjJZz6HvtuhSjPMDUNW9N5Nuxx4FaWCB68+Vj6IAnpJyEHpRqmqnEejti7FnAd\n5xlhnhKLjG1r0QrkyO/j6gYbc6L4z70WVd2mabo4mkE79lBRURS4iD0eOhvkMqds2ByHPXas6p1t\nI67jMi50dRtG9bVkFa24i62a1I3F8/RqSvAqP/E0vqCh1zhPWrzrPJy+T0iBRNLPhmzojYXvDkVI\nKlKq+mpiddU+nK9qbW1VaF0M+CL8G951PsKeOMJ3sxZ1bfNr89L6fYSQR4CFqtx+H7orvreF+C3F\n65AtKNoFhmlMyZKqqq9Ntq4+97ahqgqqqtCcxACZls7ho7uRDrtkUq4WN8Dd/fqUbIlcYJcMsjRn\nY7OyMqcRYDyOSNOcQX9RMJ8k2TSI+ooQtlpDdF1lMPBptYb4fvHZzc0Kjx5uTb8bCvJ01dvzgxiF\nmV7r3kFz5VSiaeivRbaklDx5eUnZXaxEpVnOycWA/igoQpPH4UIVDHgjsrUKtqnfOGGpKAqaqkwF\n9vOvd7zgTq1ETVUXyBbAXq3yWmRrFEVoKGxVXMq2RZRmlC2Th83GncgWFMTptmraFfwkoR+FnHqr\nK4mqoqArCu2gOO+OvSGpyKnbNlJKgjTl/z15sXacX1c1NFWlbJiYmkYuZ23O+5UagySmEy2e0+M0\nIbhByH8T6qbDo3JzavdwnWzNv28VnVEUhXCi1Xrhd8lEzg8ru7i6RTsuqmVbVgUvj/hsdM4PK7vE\nMmWUF9Xge05zSraklIzSxfP5E29Rt5RLwVE4qwJtW3VqenlqXXEbrlqCu9bGAtkaZh7DzGOch4zz\nYh1CEaGjUtJsHk0MTM/iNrnMURUVFbXQTM2TrTwiFwJTLX67o2w0bTUKKQjzAC8f4eWj6TZnMkVI\ngaZqPLA+wJxrEZbVGiq/A7m+3yGoyv23Sra+6/iecL1luPUSpv31jea/KUa9Mb3LxRuTpq8+/J2L\nIf54poHQdW0hpLpzMdPZ7B40p8HXWztVRoPl9oxlG+jasog6jlI8L0QIwbNnhY4gTTOyLKded3Fd\nk07b4+x8QJJkfPrpKWdns9bZ9laVKMoQQrLRKK8dxfXGEZ98ccrRyax0n+eCy+7NT0Hn7RFRkmJb\nBlX32tSdptKslUhzwdnlkCTNljRcw3E4IYXQGficrmj73QWmrvHJqxb5DT5QYVIIw7Nc8PS8Q5wW\n/36w1VhL1rJccN5/O0+CXT+gH4SYusbpyMOLIiTyVvLU8jy6fjA9NyxdZ8u9nZzFWcbRcEDVsrlX\nLdp1XhLzfDBrp6lK8ZDRngjjN50SlqaTihwhJSXD4O/tP+DM9xajeubOU1VRMDWNQRzRsJxpRI+h\najz3enTCxfM9k4JMSoSUtIK779tnXo9ROluHI3+wkgg+94tzeNtetCEQUnIaDtg0i+rWtlVBVzUy\nKagbDvdLs8nCsmbxYWUHMdGdGSs0SwLJMAtpJx69ZMwoC+mn44V10hSVTbPCZ+NjgjzmOGpzkfR5\nEpyu3c5IJLwMLziJLnkVrRbqu5pDSXWo6xXqkynFcRZQ0ysMstG0GlXTy6iTW9iz6BUNvTgPjuNT\nEpGQU5CxVtIilzmGaqBNCJMgJxQBtmqjonKWnJHJhG7a4iR4WewnvYo6ZxlhrXGmvwmxCEjFzb5j\nAKP8jEQsx6L9rkHe0IL9fcD3PlxfEV5/jKoqaG8pHuarYp0HiWZoWLaBeoswG0CbEKx1zuqBH1Mq\n22iaihSSMEhonQ2wbQN/HFOuFNUwISR5LrBtA93QsCbO8n4Qc3kxpFyxefH8ErdsT2N88lxgmjqa\nphLHhZfWwUEDTVPxw6RoE85tQ7szWsh5XFjPsJh+8vyY3a0ajbq7sE1Zli9UzK6j1RnSrLpsrDBM\nVRQFQ9dwHZNKyaZcspZE71GcoWsauqbiRwnH7SF7zdvbLdePoa5pIIuqmqFpKwnUWW/Idq0MCry4\n7LNdK09zBK+IxxImqQLXK1vz8OOETOQL7u9XyHIxXa6Ukprj4JgGh/UahqYRZxmZECtzEK9g6jq9\nIERVFCxdX/IZuxiPKZvLOrcwTbF1Y+FvlqZjazon3oiG7ZBNhPf3KsWN2FA1UiEYxQm5FBPdlUpJ\nL6KDFEUhzjOeDHsLHl1SFv5i12N37pVrbDqL5NBSNU7iEWVM2lGAqih3yj5sWs5CrmGOoKQvb/fW\nXLtwmEZYqjb1uKoYNraqoSoqpqoR5xkvgy4b5uI6dlOfXEqEFIyzpJganPh3DZKAYVYMoliKTpRn\nk3akya5ZWyn4lxKaZpmy5lA3XLYnLvN+Hi20J78YH1PRioqpoqjsmHVimU6d5yOR8CI8w8t9Ns3F\n9n0qMxzVxs8DYpEQ5CElzUabrE/TmL2/opW5zC4xFJOy7lLX66iKiqEYU88tBRWQKCioioqruZiq\nRVmrUXFL9MYDBALjhum+dnqErpjoyvrzO8xH9LMzKvrN3RJDcdCU9R6DvwuQMkXIp6jK3TsMb4Lv\nsg/X983or4g8E0u2CW8LWZpPq0dfFVGQUJqcBKEfM+iO2bu/OvjXsg3OjjrUNyrTz8xjc6c2tWaw\nSwZSMA2ydkoWWZqT5YLjow6aqvDo3R3yTEyqWZKNzQquW1xcfvqHD4ttzXLiOKPZLG4ovh8Tx0Wk\nz9Fxl/v3NkjnWohXyHNJkmZTg9V5pGkOhkacZJRduUDKzi+HHMxpsl6ddGk2ypRLM1uJva0a+poq\n4DzmyUyrM8IwNPJcsN2ctUm26mVqrv1G+ZMAu80Kn7xqcdYbsdesUi0VbTFrQpYONmqYRkFYfniw\nPSVlXhhTtk30yWj/PKFRFYVaab1WqjP2GccJrmlg6cttzaPegP16FdvQca3FG5OQkkapNNVHvej1\n2a9WlkTvpqbxoFEch34Y4sUJ9+szgfk6hWnFssiFIEhTSnOEztZ19svFfs+EKMT6FvhpwjhJ6EYh\nuqrwwJl9x7yGy9J03q9tTLMXr5Z5HbksbAyO/SFCSuqmQ9N2yKXgIvTpxQGPKo1bLQbWoWne3sod\nJCElzcCYkIiaYTNMQ6qKjaIoWJrOB+VthmlIPw247zQL89k85YHT4DQasGVVsFS9mLBMfJ4Hl2yb\nVcq2VWgDk4htKpN9s0wshtnMc+x6cHk38XBsi2E6RgKvogv2rQ22rXox/CISlLnfs47Ke87hyjDw\nq0rXlrkxaQdGDLIRW+byNUxVVEpK6UZ7g1fxC2IRcWDdo6wt6m3CPMBSbDSl+D0dJ8+4b83iZmIR\noioaW8bq3MZ5VPQNXO123zL190AXpigGmvKjhdekPAJ234rh6W8Dvq9wfUXYrvXWSNE8kjjl/MUl\ntc3Xy+dax+5HfR9zUgnSDQ27ZE4JyMVpH6dkLZCBXsfDda3pBOI8nn15zhcfH1OplShXnKXWZBgm\ntC9GVGsOB/c2iligL87Y2a1TrV094V4T1ic5UZRMJxY1TUVVFTrdMQ8fbOL7MZapI+RMfN/tjdnZ\nrqJr2koiY1sGhqFRqzpLgnMpJfZcC7BeLdEb+IjJ61kusC3j1ifOIEoYjAJcpyCm5ZKFYxnESUbp\n2gTiqircPLojnywXNOvu0jFs9T32GlUONmuULJNxlBBnGY5pTJzvizbn1WTg/3h8hG3o7DYqGLpG\ne+SjoPCi3WNzhUP8KpiaTtW28eMEQ9OWqlwN1yHOMk4HI/phiK6pU0LlmuaCkL1kFKTt84s2DcdB\nUWbnQCYE4yShbtvUbJtMFB5XmqpStkzCNOV5v8/mNW+uKMsYRCEVa/ZQUNguFPtZV1XcSQVMnejc\nDspVNpyb8zTPfQ8h5Y3O8ueBx2kwommVCNKETcflPPBwNJ1SyWTkhxy6NY78EYaqLlSv3hYSkXMc\nDKiZ9tRfq5P4uPri9KetGdSNEp+PL2iYJWqGjaUZNEyXcRahKyqXyQg/i9m2qmzbVRzNxFR1NEXF\n0mZu95EovM5ehh2aZjFZ6Or2EtkCqBlFZbidDOklHptGjWfROQ+c7Yl1ho6pGkgpeRqekMmiGmup\ni7+bSMRT4TwUx9hUDVxtPSm1NRtbK6wgmFSxUpEiZI6maNT1BpvGFuYKF/vt2gZxKFAnmrCavujX\nF4sQBW6sbOUym7Y+F0X8Hjq3X1feFmLRQsgQTVn9my9CqOU3FkJ91ZKebb8C2G91f3yXK1zfa7i+\nozAtg/sf7r+15W3u1qfkyfcigjmNluNaqNrshE/iFLfiUCqvrn5s79XRdZ16czkiJMty3LJNvTGL\n+im5Fj/86IAszel1C/GuELKoQE1g28a0unX19zBMefSwKD8PhwEnZ33siZWE50UMhgFSwvPjzlp9\n07rqY62yPF68t12bvn503pvqr4SQXHRHk7zE1sJnRn5EcC3HUFEUNua82JI0o3eDJcMVXNtaG81T\nLVkLxqa1kk2zXNxwwjilP54JnG3D4A8f7U9NUwF0VcEyND7cu3s5/8obbLdWWbtermVyv1njnY3m\nAvG5jisi9uH2Jkme86w701rlQkxNU6EQ3w+iufPTMPhwc7klUzIKG4hzb6aVElIyTpLp+XA1MKCr\nKq6x/BT9fNifen5dCeIPylUaE2uHThjQi5atXQ7cKrtOhYbl8H59E1vT2bBLmJpOLPJpO3PLLt0a\n57MOx8GAp95MlJ6KnOfjmQ7Ry2LqpoM2J6E/dOorzU2hsIjQJ4a0V4L4DbOMo5k4qslpPJy0I/Wp\nJUhVd+inM21RmMekMuPQLkiIqeqkMqOdjDiLVtvo7FlNdp0Ghqbzs9oPp8u5sm1QFIV3nH32rA1c\nbfF3KaWknaxerpSSbnqzLjIQ/tS6IZExsVytpzqNX5HKu+WRuloVS725AtlOV1v7JCJCsHytehOz\n0VB0SOXN1xVT2cZQFn87fv7x9P9T2SWT65MP3jYkF0jOpv9WlOpbJ3syfQLfUR+x7wnX7yFMy5iS\nIYBqffGJv98dE47XB+1Wqg5795uIXCyI66MopTURtatzppsnR13Go6jQPJWLm08QxPR66yOQzs76\nRFFCFKVctkeomsrBfgMmNxfL0jnYa6CqCu8/nLXQciE4n4j6x37MWWvxghyEydTh/ur9Y3/5IvzO\n4eZCVaw3CBgHMT96ZzG0e3ejStmxuOyPedXqMQ6Xl3U1RXgbbFNfiCB62ZrdaEqWSXtSAbsOTVUX\nWoO5EERpRjhHYhrl0q1ZkskKV/27YN1yB2FxbrRGHv/j1dG0TVcyDd7bnLWCLF1nd5KteDQYoijK\nAuFahfOxx9loRDvwaTgOvTDgr87O+KxzybN+j1QIzscev768edhg23HRVJVeFHIZ+IyThDifmbZW\nTYswX30jbtrFtGA4MVu9yj38ycYOP93YQ0hBO/L5YrDaz6kTBTfub11Rue/O2lGGqi1MLj5ymxw4\nq3VVAL1kRpSiPKUde8Qiw8tiPh9fTN3nAZqGyx/XHtCKhwzTkM/GpxyHPbwsWjCgbRhlKrqDPWkv\nCilJREZJNTmOOrTj4ZJJ68vokqZR5aGzw8fjFxxHbcZ5SDp3U7yeZ3gFRVG4Z6+f9L7JyV1KSV1v\nTm0dXK280D48TY4QUhCJEFt1yOcczDOZ0ctmpqW5zPFzDy8fMM6XPfw+CX6xQJp2zXdXrlNN31qy\nlRAyo5M9X7sd66ArJTRWPwglYoCfn6Ao6lL1qKT+cPr/prqDob7eNP5XgarsoioHX++XaHuw5nz6\ntvF9S3EFoiAm9mPMt2JK+c3iejlV5IJ+18OZK3Fqurq2DSpyQRgk7K/Rd13BNA1aZwPiMKVcLaZ3\ndF2btgzjKCXPBeNxxO5enShKaF+OiKKEUsnEcUzKaypoUBCqeq2EBM5aAw4PmkghGAzDiUZKEkUp\npqWTZ2LarlMoLrSWZWCaOtWKw9FprxDuayqDUYCua1Nik2U53jjGLa2vQiiKwlazvNCChEI03u55\nKIpCuWQRJ9lS3A9MLBdeI1T66hjqmoqQEMQJlqGTCYE5aU1FkynEcRhPqzNXei5jItSPs5zWwKPh\n3s0s8POzS1zLxFyhWXoTXHhj6o6NpescVKsriVmcZSjAk06X+iTg2jVNXNNcKdSHIjrH0XWapRKK\nAqfeiDPP4+/sH6AqCmXTpGbb2Fqh57r+vf0onGq/roTwjq5TMgzGaYI2mUzshgFCSuI8p2paXARj\noiylZJi8HPWpmTaxyPnLsxfsOGUsTacTBVRcmyQqWkqubpKRUzWWz/VeHFIx1gulK4a11Koz5siV\noigIKemnIV4aTYXvmci5jMdEIqOqF+2aL8eXNM3i95Qjqek2icgYZRGOZvKF18JSDR65m9iawbZV\ntBW9PGLHWm3aOkwDuqnHjlXHVHUqmk0qMkxVXyCBG3OWD7tmg6pewtUdLpIepWvh0ifRBYaiL2Ut\nAvh5OBXYX22/o92gQUy75DKfhloP0wG+8NEVjf/p/YJ75gNsrYSKhqlaDPM+tupQdm0CPynanhNt\nkSAnERGuVsFYEUpdUTcwVrQn7wJFUXG122PGrkNTDBRFQ8icjHAhvkfFwlBWB5J/U+3DbwtuuULg\nj1E5Qip3y/186+vwfUvxNSAl4oa8vt86vEbRIsvFgm4rzwWdi2WfI6dk8uCdLQ4fbi7opy5aA0Qu\nuGwNGXshTqm4CHTaHr2uR7NZxlgxFXd9f3ujkCTNMU2ddx5uEYQxfpCwvVWh0/UwDI3jkx7jcUx/\n4NPpenhehKIoVK+1C/e2a1imzvOjDtWKgzOZTMwm7abtO+rkjlt9+tdag6qqYhg6lqHTnLTwztrD\nhcDrV60e3g3O9+tQdixAToXjtZLNf/38BS8ve/w/f/2Yx6dt/CihWipyGL84bU8rYEJKNsoltqvl\nIvMvub1dsllx17YOr5Z5Nljvnn+9WqOoCuOJ/ku/Rp7ORh5RmtELQ9p+UYnRVZUkL9pxV0J4IeVC\nPqKQEj9Jpl5PNdNiFEX83YNDxknCKI4LOwQh1k50hlnGyXg0Xd6fv3rKKIk5Ho/YdEqMkyLRoBuF\nRHnGYbmoKkVZOo38qVsOuZS0Q5+fbuxhT7ZPUxT+4ugp/sSLy1A16ivIFsChW71TVuJ1CCn5eHgO\nQDf2CbKYqjE75xOZE+Up+dyAxLvuJlXDwVJ1dEVl266yZVVwNAMVhT27hnNNFG+qOrsTsuVlEV42\nqzqex31qRolDe/ZgVjNcNEWjmxT79lW4HGtzNVEJ0NSrS5WtfWuLqyr2UXTGp+PH9NMh4zygmw5f\nqwK7ZW5SnQu/TmSCgYauGDS0bQaTsOyrCcZtY3e6Pqqi4qhzLXnFwFZLaIq+0vjUFwOyO7Yk3zYE\nKalY7BYU+/n37PYuA5BX+8FA8N3z9/o9OyJ3g+3aVDZeT6z+XYWqqVOz0+sYj0K84aI+pd/2FqJ9\npJDkec6w7+OPIwa9Za+YwI/JshwhJGdHPVAU3vtwj/3DDUoliyhKOT/v89M/eoQ7qWqNr7Usnzxu\n8eL5LEpke6c2tWy4qlTt7tSIopT9vQaGofGTHx9Sqzpsb1XJczl1pz+/GNKf8wO78tvSVGWhnegH\nyVI7cZ4ozeO8M6Qz8KnPkTldU9lqlqmVi+nDKx+uWtlZuNH7YfLGET62aVBzi332+KzDDw+32GtW\n+cc/+wjXtuj7wXSddVUhiAv9UntYHKeybZJkOX0/5PFZm2QSsbPqxrVbW64GzUOBtRYPQZLyrNPj\ny8s2jy87CCnZLDlEWcqnrdlxvSKENdtCUWCr5LJbqfD+pMW45boL3zGIoikhg6K69bTXm5JQXdNo\nOiXCLKXlj9l0SiR5fqPZ655bnsb9qIrC39k5oGbZPKzUp871iqLwTq3BTmlWsXRNa1q5qVs2mqJQ\nMUy2HZdRWpxHDcvh7+0/mAruVUWhfIuG6yIa88WgzTi9GylXFYUfV3cZZzFeFnNYatCKRlMfryhP\nqeo2m0aJL71i39taIU4XUk5beVJK6kYJIQVN051WyFZBUxS0SUXt8/EJpqIT5MvrKxXJadSnn/o0\n9BlheRm2CK+939GWq3uqotJO+wgpuGft8X7pIYaqE4mYXXODYTbmLCq26XqmYy5vbolvmdtUjcIi\n4tC6R1kvM84XHyCEFJyFJ6RiubMyyNsLbcd5bBqHN4rov07oik1J++6Ri28eOQqT46MooNzdtPmb\nwveE62uAEILRDfqk7wp0Q1sKcLZL5kKFK00ykEWLsNfxiMLZhUhOKoHeMCTLCk+mP/y77yxUvF48\nvUDXVf7B//kjdEMjSYofxPnZgN/8zavpBfLBw80FgbsQYoEcCSH58stzvvjyjJcviyfn+Yu1pilc\nPdDt7dRoTFzvcyGmxO3B4cZC67BWcWjOidvjJOP8cnXG4lajwnajQn+0PhvztD0kywVhnOKHMVJK\nPn9xwY8e7b6xHQRAlKR8/LLFhwdblCxzSlokkppbtHOllFQdk9+8OkdTVR5uz0rpjmmw36gSZdm0\nXfj0onunqtc8FEVZ254smQbvbjYZRwmuZfLfn78qWp1C8uH2TCPytNMlFwLXNBknyTQv8arSkwvB\ncE6/1XQc9irFw0/b95FS8rN79ygZxlRb9P7GBpamI6Tgy16H3XKZdhjQvyZ2PxoNGcYRYZaxMZd3\n2LCdycRjoVfadQuS9XH3gqcTI9Ungy5Na3HbMykwVI1xGvN0WIjZP+1f4hjGa1WudEXlverGrcRs\nHoqiUNYt3ikXRPVBqTFtWzZNl6blUjZsHrlNhJSchAM+91p0Ex9Xs3gZdDmNBgzSgJNoQDCXjfjM\nvyxsIlKfMC88y0qaRUkrph9/4B5Q00u04mXB+pZZ4yfVB6Qyo5uNCCfLfWDv4Gg3b18MtnziAAAg\nAElEQVQucz4eP+HQ2kadaI9M1aSsuWwaDSSS87iFPVnOUXRKJCJO47OCKMXnePnidfckPl7KVASo\n6jUctcRx/JJUzH4HqqJS1av0sg5+7hUGqpPPbxuHa2N9MpnSSr6D2YMrkIjL72w4NVKiiF+/2WeV\nClJ5vfi1bxrfE663jCzN8QcB0Qoh9jcBKSXhLd99RWRsx8QuLVZeag2XWmPSGjvu4bgW2/t1tnZr\n7OzV2T2Y3ci9UcjZSY84TpcMRI9etDk76bG5XUXXtSmxumgNefbkgvfe3+Hg/saUNNlOQSSu1m00\nihjMVak6nRFjP+Jgv8nhYZPnLy6JJ9OBrYshSZKRJEWV7cWrDpftUeEjNI7v3B62TJ37+6u1FLqm\ncrBTo1lbfGrqDMZ0Bz5CSD59fk6cpFRKFkJCbxTw4YNtoHCdf1O/tijJ2G2UeXXZxzENKhMLigdb\nDbygIHbtkc+ziz6PttdrQf7W/Zn4+P3dzRvbh1cIk5SL0e0PD0JKun7AH98/YK9a4WeP7tMeF7FH\n8z5XP9jZIkwz2mOfjVKJrbnIn09aF+RSLkwsAjzv9xjGEa5pTqcd275PLwz4/06OC0sKVeXDjS3+\n7v4hAIeV2aThFQ7KFapmUVmDYgJxnBSEIMxSzgOPcE4wXzNt7k3aiftuZYlExXnOII74deec9iQA\n+0f1rTtbQFyFUG9YhV/Zl6P2gmBfSMnnw4sF0ToUHmBBlvDFaFY5vNJzPfYW23gXsUeQJ2xZZbat\nCidRD1vV2bNrNIwST8YX7FlVgjyeTiPu23U0ReXxuIWmqLwI2iRzAvt+6vMq6qzUWcUixVYNts0a\nj5xdJJIgKyYbL+Ie3WREkEez60HSZZB6HEUXfBG8oqZVUFCI5ypMV15mmci4bx3QNIo25zvOfWzV\nZt/cI51E8iRzbT0v89DnzE4zmXEUz6YHLdXmA+cj2mmxH1vJySRXssqOuU8mM3zhEYjbz39dMdgx\nHgIwznuMsuV26ve4AxQFqXz0ba/F14bvRfNvERdHHcJxhMgFW4c3i87vguefnVKulVb6N335v1+y\nubfM5k1D4+RFe22uoZSSV49bNK6Fa4Z+zMd/9YLdwyaKUrTehn2fWsOl3RoSjGNOXnbZ2p0JaC3b\noFovEQQJqqpgmjreKCwc6IFyxcK2TVRN5fSkN9E7aTgT0XypZJKlOVGcYRgam5uVaY6kbRvTkGoo\nZGhJnFGvl7Asg3rDRdc1Xrxs07oY8sF7exyf9tEUhbPWgDjJiOOUcsli5EXoukrrsjAlvV7VWwXP\nj3j88pKNa+7012GbBnku6I4CPnq0i6FrjPyIKEmpujbm5Lv+5vEpmzV3YQrxOp6cdmiUHcrlxcGH\nOM1pVkrYE63YPDarxZSdRODHKe/vvb2Jo5P+EF0rMhbNW5IUJDBOEspWYRyrKgqGpmHq2pLZqaIU\nnmS6ujhBtVEqYWjakr1Ew3GwdX2qyXo1GFA2TTZKJTacEmXTXGpNrRILqxP9kKFqWJrGp51L6rbF\niTeiZllkQrBdchfef+Xjdd1l/tPeJbulMo6u4+gGf3vrYPq9uQFftgvyVIjw1QWxu5fGPPN6KEpB\n6q5QNxzasU9p4nslgYvIY8t2p2TPzxLa8ZhcSu6X6gvbqSgKrm4uCNZrhjN1e4/yjJJmUTUK3y5d\n0ajqNpaqY6kGtmbw1L9ARcHVLQ6dJq14yL5dX3CMt1WDhuEWxqUKc8tPOIm6lHUbXdF4HJziqCZn\nSY9hNsbLAvbtTf6395hdawNNUSlrJWzNwlZMqrrLltkglRmddEB10pJ8GZ2SyYzLtINAUNVnbd7j\n+BQv92kadWIZ4WqlaXaipVqUteK9XjZCU1RqWp12ekGQBQzzAZqiYSgGreSMLWMXQzWmQyu26qCj\nY0yW54kBoRgTigCdZS3X1bEwVQdLfTs5ql8FUuakcoimLD54aIr73dZ3fcV1+y77cH1PuN4i3KpD\nue5SqhYneOvFJaqmYlhv1tuvbZTR19zoVpEtKCwb1BuiWhRFIUtzVFVZaB2qmkq96WJaxv/P3pv9\nWpLf1Z6f+MUcsWOPZ86hMrMGl+fh0txuwCDde6WW/IaEBS/mAZq/gCcesPxmJB5AQkLiDeEXIyFB\nS4iGFmoazHDB2K6yqyqHyso887TnIeaIX/RD7BPn7DPk5LSroL2kUmXm3jt2ROwYVny/67sWMpcc\n7Y9I05xWp4brWcymEbOJz+rGaYWrdzxB01RqnoU5NwmdTSMMQ+Ngf0iz4cwd5/vcvLWEaeqMJyGF\nLKoDMk4y/Fl06QGaJBlFUSCEIMsk+wcj3JrJcBSQJDm5lHzn7U06bY+11QbHxxM2NpokcYpp6NiO\nia6rtNsucZzRadcwz2yzH8QcHE847I5pNxfje+IkQxMKUZJRe8oEY5ymOKZBmuUMxgGDccCt9faC\nrcSNleYTyRYwr4wV5EqBzE6rct3xDM820bXTqJ6d3oiGYzENIh4d9rnWabLaXCTR8lxMzvPC0nXs\nucv806AoCrW52/zOcDxvcVoVUVEUhXEY8c7h0Vy/pbA9HjOLy2lMgXIhGukEW6MRmhDVspqWVem8\ndLU0p8ykxE+TK6tL9wc9wiTlvWEXR9N5u3vET69fx9Z0emGAlAVRltGxHWRR8E7/mJv1UtPlZwmG\nWk6JHgRTPN2gY5dVqRPSeH/cY9Uub+7tuoOZCXQhOAhLE9WdYELHtJFFwSSNSWXGHa/D49kAhTL+\nRygKmcyxNb0Sl69ap5W1R7MBWZ7jaAZLlkteFPzLYJMVs1aRrJP/H0YTjqMpdd1CAe5Oj7jhNCtT\n1M2gx1Y44BWnU7bvUBgkPrrQaOslwZMUaIqKKRaNOvvpjEke0tRdTFGSw8fhEYnMaBs13PnkYEvz\nsFWDJaNOXSsjfzRFsGF2eBjsEciwcpDPyEiLDEsYqIpakS2All5nNzpgw1xhkvs0tNPpO0tYpEVa\nRkupDfaSQ1rzmJ+syCgoEIogLzJUpYxv6mddDGGyZm4gFBVN6LT1pcpc9ewNO5AzpMzoZocs6xso\nqOiKiaZcJPkfNRRIMmZoSo1p/h6m+NFF6hRFhPIRccv/CeH6IfBh77jnwfkTMApKg1Gv9WJPOy9y\nQj/TwabA0e6Q1nw6L45SFEXBsg3CIKZ3NMFxTWQuy4gQSyeJUpZXGgsh1oUsMMwy9/DRg0PaSx6O\nY6Kqgn5vhmFoeHWbf/7H+9TrNp5nYxgas1mE7yfUaha6rjIYzNB1rao8DfplSG4QJgwGPo2Ggz7P\ngqy5Jp2OR801sUydtZUGrZaLOV+uqqmMJiEry3VGk6DScvlBTM0941WVS6I4Y3W5Tqd1sYp11Juw\nulzHc0+FvfGcAJ4Vlt/fPMY2dUxdw7VN6q5Fp+FWlbrngSoEWS5L5/78tI2kKKVg3jZ0Hh+WgnHb\n1NkbTKhZBlGS0awtButuHg95fDzA0DR0TTzVg+uq9XmeY/BwMsUxDBqWyfZoTM3QGYWl6L3nB+ia\nSt0yadk25tzWwZkTus3hCFsv44PyM7E6ADXDwJwTq/PIpORur0vTsvCTBENV2ZlOaFqLk4HKfDmO\nrnPk+1yr1avKmC4EvSgkKyQrTo292ZS0yOlYDofBlK3pmHXXIy8kH0yGdCyHbuhjaxpCEUR5hqYo\nlRD/5BxUFUFdN2lbDm3DQhMqspD8YHTEp1trCEWhZdgLWYuxzDmMprSMxapEnGfkRc5gbljanL9u\nKAJTaAsVNChF8oPEZ5gGdObtRKEovDPdAxQ0ReW2u1Tt5wKYZCFhnrJseoyzkGHq0zFqF/b7KA0I\n8pgVs1F9XkFhlkesmS32on4pbZAx0zzEUDT24h5hHiMUgaWaLOkNPM2p7BUSmVFTy2P4YbBNc06q\nIhmTyZw1cxlTGLT0xsL6lITQRBcamtCoa161zGk+Iy2y+etG1Vpsam3ceZVMKIKsSJnlk8qvy3I0\netMBhjAxhYUhTOpa+aDZTw+pq80LthDPgmG2h4JA+zHF2CiKQFNqyCKBQkETFy1rXhby4jEKHsq5\nqdOiSCiKHZS5tqr0KhujKFfbefyw+Anh+iHwYe+4Z4HMJcolbSen7rww2XpRBJOQIEgujeQ5gWFo\neA0HoZau0+Nhqd0wTJ17b+9gWhqrGy3qzbKdubfVo73kLXh5le/XEGIenFu3UVVBFKUMejOu32jj\nzMnKnVdX8TwLRSh0jyc0mi7+NKo8u04I1QkUBXRdw3bMsi04n2wsigJtHjI8nUWY8wgeXVPRNJWZ\nH7OyVGep42GaOqomiOKyQnVWLF8UBb2BTyELHOfyJ1XT0EizvIoYAjjuTxiOQ+rzTMSpHzEOQpaa\nNbojn7prLYy9Z7nkoD/GNvUnEp5HB30sQy+3Yz75ePa4N3UNitLisVmz6U8DXNNgueHyzvYRQZKy\n0qgtfEfTtVlv1QmTtPLlepmIs4w4zTA0taqkRVmOo5fVEM80eDwYUTMN1ure3Ln8dNLxcDolznI8\nszxGWraFrqqMoohxFC+0FcWZfXqCcRwxTWI8w2R53oo8iRMyhHqhBVh6bml4hsmqW6vI1jv9Y2qa\nzs16k1Ec0bEd6vP2Yk03cHWDdae8+UtZ0DJtbE0nzFLcuYeWLlTqxukxiqEwmAaYaulHNU1j4jzD\n0nSEIli3PVKZsxdMKuIEpTZLKArL1sVrRj8JsDWdm06z+szJsRbkKYZQeewP0BWVSRbhqDqqIsgL\nSUO3SWRGXkg2rCaWqjNMfTzNWoif8TQLVzMJshhJwZJRbvdWUBq3npidZoVEn0f6dJMJrmpiqQZ+\nHuOpNtM8pG14TLMQoQg8zaGp16hrDgKBUAQSieCU0HfT4VyUL2ifIVWzPOAoGWDNSdVZbEW7SCmB\nAmteVbsX3Keu1dEUDUuYlQfXCbpptxLjn0BBQVXUqsJl2irD2bgiYEUhGec9LOFSUy+Gzwf5BKGo\nTyVhluK9sFfX82KWP0JXyv1YkFOQoSoO0/wBpvjh5S7nIZTOBbJVQkFRdE6zEjMK+ijK5d5uLwql\n2AEsULSPNOH6CDdy/+Ng671d0rmAu38wxH+GGJcfFbyGjWE9vYV5Ynw6OJ5SyILavA1667VVmu3T\nytewP2N3q8/jD44I/JjwigNZNzSSJEMIheFgRhyfimxHI5/ZrBTKnmi3LjNe7fWm9HpTUGA48un3\np0RRuZyjozFpmqPrKr3+lO2dciosyyTJPCJobbXBwRlneds0cOzLnyZlUTCehcTJ4ph3nKT0hjOS\nNGc8Dbn/+NSpPEwyWnX7xCYIXdeYTCOSJKNdL936s1wynJa//2QWYhk6j/b7PAm319qVpcRVcCwd\nTRNEScZGp852b8RWd8Qnb6zyU6/duNKstOM5F3RfLwNpLomyrMw57JWTfEvuaWKBrqq8vtwhm7dA\nl2suK56Ln6R8/+CQKE1p2qdPue8ed8mlpGXbbNSfbsniaHpVUbqgYzKuriBsT8b0w9Pzs2mYzLKy\nJXW73uLdfimgXnNqzNIEP00r0Xosc/w05W93P2DfnyIUhSTPuTc6FUgnMufQn9GN/Opzh8GUUVIO\nsjyc9tGFiq3qbJxxjZ+lCduzUSWkP49Vq0ZDt9gJRsyy8hyURUFNM1k2a2iKoKlbTNKITEr6iV+a\nnM4F5ycWElBORbZ0F1URhHnCTniaaGAKjazIGSUhO1GPXjLFVg3iPOU4npAXElNoyLm534n4Pchj\nGlr5+9c1h+N4zJrZYtloUBQFx0l5Xv7b+D7DZMpxMmKWn06RbpjLaIqGn4eMs1ORelOr86pzA+eM\nwel2tEecx9wwN5BIDpNjDuLyd9sw1jlIDvkgPHVuP5lClIWkrnm4akloZ/mUYTZAVVRMcbp8XehV\nfmJWpPTT4ydWpST5pYHb5/GyW5BZcfXEtCXWKp2WUAyMOclyxNMDt18mSqf72pm/6wjl5a9DQROu\ncN3/KOEnFa6XgNZqA3WuzxGqwDBLofiHgUbTIYqePu6/t9nDcU1q9dPMxNkkZDIMWDojjBeKwvXb\ny6yuN0nTUkifpXllaAqw9eiYNM3oHk7odMrqzNLc+ysKE2zHIApTdrcHbFxroSgKHzw8pN2uoWoC\n3y91X1km8byyUqaqgiBMGY19Vlbq+EFMUYDjmMz8iAcPjlhbbaBpKptbPVRV4NgmqhAYhkaeS7R5\n5Wv/cIRhaGWbI0wxDY2aa9JqOJdq5BQUigLqNYuVtlcNLbTrDpapU8iC7YMhSy0XTRV0mm5liKqq\ngr//3gestktPK9c2WWl5BFHC7vGIlndxmOH8hfjkCW0aRGhCsNsbYRkadcfCtQw0IVhreTRdG2Ne\n8RtMAwoKBrOAmnX6dDUOIrJcPlX0/rwwNBXH0NFVlbZ7uk0Pjns4us63t3foOM7CawAtx6Zl23im\nuUASD6ZT1rwaDwcDbF2/0mX+BLM04XA2o20/3UXfTxLCLMXSNDzdqKpwAFvTMZ5usD0b0w0DPrVU\n+hnlRcFxMA8z17RKQ+bqpX7qptcgyFJsTWd7NmLd8ciLgp1gzGfW1zGz0xZox3Iqw9RSsK/xeDak\nadinLTkFLE2nYz7ZO8gSGpaqkcicD2Z9lkx3/nkFRzMI8oQCSV6Argi+PdymbTgsmTUc9fScNdXy\nuNEUwSO/RywzVEWQyRxL6Awyn1edVRzVxNVMapqFLyO2wwErRp20yOevWciiIMoTVCF4a7LJslGe\n+87cvmEv6pOTU9dcHM1glgdICjpanUSmaOcqVwKBLjQ+CHdo6w1kIat9Oc6mGIrGOJ/S0Oo4qk1b\nb+HO25GWauEIh5wcV7gcpkdM8jGe6pEVGYfJQVnRQjDMBmiKSlSE2MIhL3Km+YS216juOwoKutCx\n1RpFIZHkjPMuAoGmlN5mSRERyilibqr6snEx8LlEIPfQlNoFAXwsu1V16yxCuUVBQV6Uuq7/VFBM\nTsaPP8oVrp8QrpcMTddeKtnqHYwwbf1STVB3f0gSpeRZTu9ghNdyn/lgMwwN3SwvunGYkOcSxzWp\nn5luFEJUGq3x0C+rU65ZDgLMK1SjgY9uqDiOyep6szRWjDNcz2J3u9RyKIqCaZb7xXFNimLe1uvN\nsCydf/vXR6yuNpjNYmazCM8rtV2bj7vcubNSrqumEkYJNdei5lrcvrXMUXeC65isrTWI4wzT0jBN\nnTjJ+PfvbRLGKa2Gi65r9Ic+aVoaI9pzE9JLJ9mEwNA1TENDm7dcz+u7hCi3R9dUak7ZVjJ0FcPQ\n0FSVV9baOJaBaWhVm0/X1EvJFpT7Yvt4iKVraJpa/YZjP8LUVdp1d6FKtd0d8WCvy2AWVkL53tTH\nsw2SXOKapzfWLJeoQnkqgXlZUBXBNIrxLJMV74qLugJbozEd53R/rHmlVqht2xfagQBhmhLnefXa\n3nTCmusySRIcXWcURTweDlh2L7bjUlkOWFiazmEwI8yyKsh6xXapGQZty2HZPp0GFIpC07R4NBni\nzgngyWumqjFKIv6vnYe8Vm/zve4BQoFlp4apqjQ958pz8ETUb6jqgnYLSjJ22TF5dvjhRKSvKOWf\nz7rDy6LgMJpiqhodw6Wb+Hy+eR1HNdgJhzR1Zx747FfkS1EU8kISyYx+PGWUhiRFxh1nuTKA3Q0H\nTLOQdauFIVSm8xzEulaSXT+P8GVMW/doaA7b0THXrA7TLKQAGrpDQyuHUhzVoqHXaGg1NqMDpnmI\nrpTaNk1o5dTgnIDVNRehCA6S3jxUuyQ4w3TMNXPtQmUTIMhDeukAioK6Xuc9/y63zFtM8gmRDHGE\nS11rUCBp6i0sYWMKi152xDSboCiw5LVPCZeioCoaw6zLNB+Rk+CpbXTF4IPoeyQypKWtoaAgyX8k\nLUNfdsmLGP1cYLYhmiiKYJLdQ1caZAQI9LlQ3r1wLAksBA5CMRFPEbiH+VtoyspHfjDgMvyEcP0Q\n+LB33IeNLM0w7ct1RrZrYrsmpmXgNsonvGc92DT99OIe+jF5LjEtnYd392m0SxF5luUIIZCy4Phg\nhFe30Q1tQW/lz2Ka7RqmuXjhNy0d3dCoNxwMQ+Ot724i81JkH4YpQlEQqsCydVzHYDqJuH6jTZ4X\n82UVjEYB9bpNkmZsbfWQeUGrdfJED8259sv3Y5Ikw7ENhCgtCYIoYX21gWWW2ijH0pnOImzbWJhU\nfBo29/q4jkEBHA+m1cSiPvcWO9mHqiqqG/JlNh5Sliagl1lMKEo5offP722y1vJQNEGeSlzLqJaV\n5ZIky9FUUWqyhMIb106njvzoNG/ROUO4DE19Ktl6d++ITs15oZiZ85jGMa5hXE22KMnMWbJ1grP7\n8zySPC8F+KFP27Zp2za6qjKOS72XoaoEaUYmJb3Ap3FGNG+oKu8PB6zOHeZPyBbAu4MuHaucOExl\nTpilC5OOy5bDnj8lyFIa5ukyZ0nC6/U2KHCn3uI49it912HqE4RJ5Tb/3uiYVOZlteyEcJ0TuR9H\nM+I8w9Eutq7eHR/RNhziPKMfB9R0E1lIpllM7Yw7vKRgnEZs2E268Yw108OaR/eYaims3w6HDJJZ\nlXcoFIW6btPQLKI8ZZD5fLp+HUnBg9lRJaBfMxvlgIDMUBWFmmZVxMgQOrU5+TKExopRisrTIkcT\napldOLqLpqh42hnDWb1OS/dIZMogm2AJE1VR6SUjTKFXmipPc6sMRV1o6EJf0GDlRV7ppzRFQyLL\nCUi9gSscduIdGloDR3XQFZ1ABtwP79HUWujzCUyBYJQOqOstWjXvwjXUFi6aopMXGbpiMJY92to6\ntlrqsnRh/Mj0WYZwL5Cts5BFjqZYpMUIVbHQxcXqFoBQtLnW7OnXP01Z/WhbRzwBH2XC9UJ7VErJ\nV7/6VX75l3+Zr3zlK2xtbS28/pd/+Zd8+ctf5ld+5Vf46le/Ohc2wi/+4i/yla98ha985Sv81m/9\n1ot89f/vUG/Xrpx4E2emyJ42Fbf7qHulAahQBZNRwPH+ECEUVFWQ55KdR13SJCOOEuIovVSIX/Ms\n/OmpM7iUkn63jNKx5/qpMEj41Gdu8Orrq/zj39/D9yOWVuqsrNYxdI12x0PVBJNJWFbC5kL81dUG\nUhYcHIwpFFhbO7XC+O5bW/hBzGAw4/BoTM01mfkx3d6U3f0Br1zvVDYMw7kx6e7+gLff3XnifjqP\nOzeWMPRyZP88Ubv7+OiJn908GBCnpUZsGkR0x1cbKNZsk//xhTcQQjCcBjw6WNR9/fv7O7yzuQ+A\naxncWG4hZcG3399hGsZoqiBMMo7HM4az59MQfvLaalWJexb3+SjNGIXRpa8t11ySvKwoHU1nF0w7\nr0KYprx9cHhlNItrGFxv1Hm1dWrsqigKG3MXeqEo3Go2WXIcNryLUVafXr48+uRTnZXKmDWXxYI7\n/e5sQpCl3K63qBtWtW6ZzPlub5+kkHQjn5yCT7ZWuDvqcW/UZcVxaZ1xpV+zamRSViqf/WCykA8J\nsGZ7LF0ilgf4VHMNTZQ2E+6ckGlCZc2q42cJD6c9+nE5+OJpJgIFR9Ur4lhWlgwSmfHOZJ9Vs0E3\nmjJKTyOTNKGyatf5TL00jlUVwce9dTKZM8mCSrPV1B1aeq1qF16GbjJGSomnlTYYBQU3rBVWzcut\nbFzVpql7aHPRtaaoKChkRc4HwTaDdDH9wVFP920sE96evUsk42pbW3qTW3apE5JIblm38VSPu+H3\nQYG62uBj9pucpSRHyT6r5gY19Uz2oow5TvfKbUr30BWTnBwVHU/tYKse1lP8tso4pUVX9yAfET+D\nmeqzQlVMQGCLDcRLmoD8UVe2ikJSXBGT9J8ZL0S4/vZv/5YkSfjTP/1TfvM3f5Pf+Z3fqV6Loojf\n//3f50/+5E/45je/yWw24+/+7u+I49IR+xvf+Abf+MY3+PrXv/7SNuKjhOlwxrg3/bBX4wI6q/WF\nVmcyF7UHswhFgfUbHTYfHHHzTlk1UVWBbqgcH46JoozVjYsXy+FghpSyItRQEr+N66c3xTyXvP3d\nTaQsL7w/9wtvcm3++mwa8fbbWyRJxo0bnYWJQEVRaLXcuZ2ERd21cByD73xvk4PDMetrDfr9Gbks\ncF2LvYMR793bZTDysUydLMtJkvJCJ+dtQa/uUHMt8md0nk/SjGAeZSSEwngaLYjsP3Fn7eI+mQbV\ne64tNxamA9fai0RgPAuZBovExTI0bq21ub226Bj/8RurLNVrHA6mJHMSJ4TCm9dXMHWNmmVQt002\nWnXeP+zjxy/2hHcwnlZDAk/EE4jUO4dHVazPedf4q2DrOl3fZxrF88W/mCs/wDvdY37QXSTDj8ZD\nAO72u3QDn3F8kTDamkYsT3MGT7RSmZR8r7tPNHeBVxXBz66/wqpTw1A1DoMZWVHwmfYqbdOuhOoA\ngzhAAp5u0tBNJmmMJkoric3Z8Lm2SxMq3rn4H1kUdEyHluFwb3rEpj8s26G6veBan8mcu9Mj/tvy\nx1g2a2zYTQSCRGbshkO2gwFKoVR5imGe8MA/JJIpjmqiXzqBdopU5qRzN/pMZvzr+D4AvXSMLApu\n2EtzP6yccTpbyEF8EG5TU08tIhy1nJ7UFJVb1rULgnRZSLL5d5nC4AveZ1ARFyJ8duJdPLU0U86K\nnDXjRvlAmPWRSPQ5OYllXJqZFjphfkpCDWHS0VaRhaQ2t4JQKTsD+jMSm0COGWWLx6IuLNSXaA1h\niOYzVa2ehqwYksrjp7/xpWBEwcEzvfOFo34+gnghwvWd73yHL37xiwB87nOf45133qleMwyDb37z\nm9hzMWuWZZimyb179wjDkF/7tV/jV3/1V3nrrbdewup/9GDaBqbz4/FZOUGWPv1JwXZNkjjl8f0D\n8kxysH1aQVEUBSEUPv75mwuVsmuvLHHtZodW+zTu5yyKeVTNaG4rkWU53/23D6q/AwyHPmvXmkzG\nAb3jKbWaVT09Oa7Jm29uEAQJUZTiuiamqZOmJ/E+IVmWU/csrs+d+7/wuVdYWVECIssAACAASURB\nVPFYXW3Q6dRQVQWZ57z+6io/9fk73LjWZmW5jlezaMwnLzut0kD2+nqTV6614QkPb0GYVITpqFeS\nmzjJ2D0ccetam9E0pD+6GOB9AqEoFSHKZcH24ZAoTpnNsxXPwjS0BXPUszj/hNlwLW6ttanZBpMg\nqmKCPNukP/XnflsqTdfmp1+7saDjeh7cWW4/1bPL0jWaztVi9V949XbpGG+ZBOkp4QqShOQJodJf\nvPUKo7jMM/yHza1L3zONYyZnyNLbR4tVsaIo+NTyCrcbrYo4FkVBa94OfK3ZxjNMJnFMLwwIs9P1\nO9nngyhgksT4WVJ6bAnBL1y7XbUI80KSzonZulPjjUYHS9Xw0wRZgKsbJHnGB9MBNc3E0w1GScSO\nP+bvDh4hZYE+t4d4Es4Spqvg6SYto2w3tQ23mnyMZca/DjdJ8owoTxGKwFGNSvPlaia9xOft8R51\nzaZjuPzfvXcXlq0rGn4WE8v00orHQ/+w+rOfR0zz8nfxtFKzFcuUG9Yy3XRYkbEwjzlKBqQyq363\njzmvVMsZZTO2o8MqzkcVKh198WFvmI7599nb+PlpJdeXPnvxHgdxSW4SmeKJGoEMyGRKVESEechh\nckAsI8bZoCJok3zMqnmNoewTn5v8UxWN/eQx9ryS1dCWrqz+TPMeWbH4oFOQowmNcXa6r3TFWph6\nPP+ZHxahPCYvEiJ5RJg/G6kpioKiyFB/TFmEitJGKDee6b3/maJ+XogWz2YzarVTjYaqqmRZhqZp\nCCFYWirjRb7xjW8QBAE/+7M/y4MHD/j1X/91vvzlL7O5uclv/MZv8Nd//ddoT3GxbrUunyT7j4Ki\nKDja6rF264dz+d3f7LJ6vV1NQ57F/be3eeMzN6oLwfLy1Rfyk+qSKApUBRxbZ3neqpNpRrtTisyf\nhMkowHZNlpc9wiChkAWqopDJgpWVBm9+YoP93SHLq3X63Slraw2Wluu89Z1NOkvXEKKsZM2mEWma\ncev2Mn/zN9/nv//3TxJFKY8eH/HZz7xCHKfU6zZBkLC87JEkGYahEYYJ43HI/sEQKQt+7mfeqNat\nKAqiOK2E8WexvOwxmgTUa/aVcT3DcWnQWXNNkjzn2lrpNt7p1LAtnQyJoWt0mpe3Elptl8d7fZaX\nPd66v8snX1/HdUxucHXG4WW46jdcxmO/P6HdcNDn545uaxwMp6y4Lo5pMJyFbLQvttV+nAiSFD3T\nue2c6p6Op7PSpLXpXKkru0EZtvwz5issNy7uAycp3fhPfLq+2LLZn0y43+vzv7/+GtM4phcEaKZK\nq+ZiahrHsxm2aS4sb0M2kEXB/3nvLr/0yU+VVVBF4bDwadgOigIN4bDsXPyd4zzjuN+lU1NZtj2S\nPGd7OiJXC171OgyiAL2u82ZrlaZp8XDU5/XmMooCr20s4+g674/6fKK9cmHZJ1ovU9W4Ozxmue5d\n6p4/TkKOwhlvNMrryuZ0gGdb2JpO03QYxD7/rfUxTFXjKJxyw6tTy0wctdSDFkVBo20vCPX/j/Wf\nn29fSlu4+JMYU2hoUr30t/Dapf8WlMflCe4eb7LSbtIvxlx3lnhNXccUOlvBMRtWm9vaKoNkyiTx\nCbKY1+rXeH+6yycbt1BiyS19+dKcxhMs43ErX0VBwVQNgixkWbtBPx5gqw6G0NkND7jjbJDJjFEy\nxtJM7BTWrDWO4y6DeMBKvY4u9GrdR8kQTy/Pm7PnX6f4zILHVl5k+NkU5pW3ul6e224Gplp6jUGB\nogiW8SgKSVokGHPribxIGSb7LJmvkBcZvfiYZevVK7f3eRHlObrikOSQyDEN02MU38PRrmGol19X\nikISZkMc/eV7dH0YeNI98MOEUrxA7f7rX/86n/3sZ/nSl74EwM///M/zD//wD9XrUkp+93d/l8eP\nH/N7v/d72LZNkiRIKbHmYtZf+qVf4g/+4A9YX1+/9DtO0O1+9NpzV0FKSewn2N6ii+7waExr9Ycz\nepuOAtz6orHmZVhe9p5pnx3vD4mjlP7xhE/91O3nIrV3v7/D7TfWsCydYX+Gaek450SCSVLmIyqK\nQpJk7Gz1uXGzPJm3trrcvrOy8J0ylwhV8N3vPKaz5HFz/t6TbU2SjP2DEdevldql0ShA1QQKpVWE\nZemluL87YTINeeO1tepzsiiwTJ3NnT5CwMZqE01TS2NTIa4kX5chlxIFZeEzw2mAa5lAQRhn+GHM\nxnKjrGrJAs99PlflZ/kN//6dR9xZbXFjuXTAlkXBdnfEWqtGlhfUzhDOwSygXXuy3cDLRpimRGlG\n61wlrDvzac5NTqEcBvhhTFkzKfGThIKC5rmw6ijLsC55oMukJEhTDFVlczLkzfYy3+8d8unO6mmq\nQJ7hpyntM8uMshRdlHmOB/6UWOZYqkbTsIjnlaSO5fDt2QH/xV3nIJxQ00z+5/EWN90mCIVPt8rj\n8geDQzShEEvJ59qn18CDYIIQglXr2cf23591sYXOht3gMJqwZLrshePKo+sE28GAVauOKTT+394D\nXGHwem2FcRbxinP6QHAQlZ/1NItYpphCr4KtW/pFAurnMa5qEsuUzeCIuuqgCZW3J4+oaRb/a+vj\nyKJgL+7S0es4qoUsJEIR/OPwbTp6g4/XbpXfHfdZN59+08+KHE0pB1ceho9paB5LeueC+eg4GyOL\nnGk+JZ1Xkm5ZdwhyH0tYSGTlwfV9/99Z06/xyWtvVOefLHIO0x1W9etVdmJeZARyhivKm7pEEskZ\nNbU8F4N8RJCPWDLKbUqLiEiO8dRSR1gUBRkx+jm39VnexRZN1JdgLZEXIbHs4ahlFcnPH2Eq62ji\n6TYq/9HxrPfAH/U6XIYXutJ94QtfqAjWW2+9xRtvvLHw+le/+lXiOOYP//APq9bin/3Zn1Var6Oj\nI2azGcvLP7psp5cJKSVZenUr5AR5Khn3Jxf+/YclWwBe00EIwdaDQ+JzPlsHm73nXp6mqWzcXOLV\nj288UXDfP56QnDMHvXF7CWturtrq1CqyJXPJ0eGYu+/sYBhadfPqd6esbzQxTA3D1Fha8rh/d58o\nSsmynNHQr/Rln//CLV55ZYmiKHj7+9tV6+zgsCRbmlaGT8dxSqddwzA0kjQjmhvPdvsTwvBM8HOS\nVb5kr1xvc/NapyJ6R91JpdE6wYPHpYZha39AECW89d4O77y/X71+QtCiOKU7KIWvUz9m93hEUZT6\nEtvUq1bkWbKVS8nu8YjnQX/iV/vgBO9uH/Fzn7jF8dhnGsb4cUKaZTRciyyX2OfE/X78bDqqF8Hu\naMzQD+jOFtuscZYzjWMGQcD2aFy91zhjrwCwMx4TJFe3VJI8Z3bF636SMAhDGpZVka3DWfmbRFnK\n5ly3lUm5IN7fHA8ZJSGWpvFmu7wGfWZpjXuDHum85WmqGt45A9Xd2YTv98uW1brr0dQNDvwJmign\nVLthQDf0+a+rN9jzJwzjiCjP+Ex7nbSQCzYQ15w6mlD5XHudKE9J8pxdvzQ+vYpsbQfDqpUJ8Ngf\nkEnJbafDdafJTjgkLyRvjfZIZE5dW7yh33Tac2NTyafr11CFiqMaqGd67LIoGGcB3vyzB9GYRGa4\nqol7TiifF5JJFrIfDZhkAftxHygtSB4E+7xZu8mbbnnDF4rCqtFmkobsxX0Okj6zLOAN5yYfc0+N\nMG3x5Fb4Pf8DMpmxEx0gC8lR2uWGuUFHb3OcdgnyEFlIEpmwPZ9ObGhNVHRW9FUc4aKg4Gl1hKJy\nmOyRFuX58Unn87S1ZSbpmKxIOU73OUr3WNEXdWSqouGpzfnEXynwVxDz2Bpw1Caq0E/bohhMsj6T\nuZar1IBdfAjTFBPlJXmRq4pdkS0AV73zwmSrKFKy4vnvMT/BRbyQLcSdO3f41re+xR/90R/xrW99\ni6997Wv80z/9E2+99RaKovC1r30N0zT5i7/4C/78z/8cz/P40pe+xF/91V/xx3/8x/zN3/wNv/3b\nv821a9ee+l0f9ngnwKQ/xR8HuPUnVwlUTVC7otX0PMiz/MpKVnPJu1CNKooCcz4R6Lomb/3LQ9qr\nixEUWZbz1r98gKar6IbKeODT6NQwLf3C9wx7U4QQaJpa2kWY+kJF5yRPUeaS7vF47qslefs7j2l3\naoCC45qVpcGJnYSUBWGQEIQpjmswGYUIVXB4MEKoAts2KAo42B9hWmVMSxSlaJqg0/EqYpikeWWQ\nahgajza7hFFKu+Uym8VlW7tTww/i0jvMPvUc2trt06w7PNw8JpcFa8uLrbdGvWw3eq6JqWs0GjZp\nltM876E1170ZukqjZtOqO2iqwDZ1bFMvQ6ilxDJOn1Y3D/o0a/bCv12Gs2PNszDBMQ0e7PVYqpfH\nVp5LcllgGzrH4xlxmmObOpMw5v7eMXGa0/FOj8Od/oiVxtUVEz9O2BtOaLnPf0HOpMSPS5uPIEkr\n7ZilazTsMmS6dhK5o6o87A+wNK0Kn27N7R0A3j44JEgTWvbZqlJGlGU4+sV9pgDqfLlQEtpjf0bb\ndkhySZLnNC2L/Vn5tGtpGmmeIxSFlbnnViZl+V8h6YchtXmsj6KUQvsl+/R3b1sO6+7pk2uYZ0yS\nhA3X4yAoCdZR5NOq2VhSpWVYLFkuTdMmyDNW7RqmqpEXklBm3HDLB7G9YMKWP6JjOtyoNa+051AV\nwX4wpqabqIrAECpCgXcnB9Q0E1No+FnCqulx3WnyzvgAP4tom4vXpA/8Y9q6wyD1SYqcSRqxbHrV\nNaehOaiKYDPo8YrdQRMqqiJQz1WPEpni5zErRp0cyZrZwhI6b083+ZnWxwEoFLDnbcf7/g6xTFg3\n26Qy439O3mWc+dy0V3kY7tLUaguO8sCC6SlALFM8zaWtN0t/P8XAlwF5kdHRO+hCZzPeZknv0NDK\n/asoCqNsyHb8mCAPcIRTaruKjG5yQEvvoCn6vDpWoFgZRaQxycdsGDfJi4xR3sO9oh1XWmBE7Ccf\nYIkamqJji9Prr6Io2MKbDwJcPd2pKeaHasUgi4ik2Ee7ELsjKQgRyo83pq5C8T5lbM+z6VI/yrYQ\nL9RS/HHiwy4NPi+yeQvrLCnJshyKAuMSXdFl2H98THOpjuNd3oravLvHrY9fTlY7HZf77+yxtH7J\nVGF3wsH2gI9/4RXSJFsIot55dMzajQ7jwQzLNrBsozRchCtzGaUsGA1mDPozVtcbfPuf32d5pcFr\nb25gWjqzaYjjmFWMT5JkDAczvLrD0eGIw4MRP/XTdzg6mnBt7kCfJBlxXIp0d3b6tNs1clmwcWZ7\nev0pmqbSbJRGjqNxgFAUGvNsxtksojuY4VgGrZazIEz3gxjXMQmj5FKd12XYPhhyfbX5XK3HsxjP\nwtI9X4gLET5FUTCahQumqJeVxKdhjGeXJ7EfJRwNp7iWQd2xFpZ5Mh34vG26XMoXCrgGSouIAnRV\nLIj1h0FInGX0goBPrZXtlJ7vs3SJOSlAnGaoatkm3h6PWXHdJ8b0XPh8ntEPQzZqV+s37g16TJOY\n67U66zWPYRSSSomj6ahCIc5zNEVQMwyOghnHoc+nO6eWEncHXTbcGg3TJskz3h8P+GR7hV7oM0oi\nXmt0WFqq0evN2PXHrNk1tHOeW5mU9GIfa26geqtWtqLuT7q4msG67V0gNyeI8rTKNITy+NkJRxiK\nSkaOoZSTldedJt/qfcA1q8Gd2tKlyyqKgq1wgKuZLBslIY9lhjnXT02zqKp0ncDPYt6ebvNTjdsY\nQuPubJc33WsLpCgv5CXkLOOBv8cde5VpHuKpNu/MHqEJlS/UP3bp+o3SCY+jPT5b+9hCq3CQjrCF\nhS50NEUlL3ISmZKTl0HV5yb2ummX5nzKcJpPqav1MtIHFVd16aZHOMKlqbeRhWR1pUG3OyWUAQpg\nzT2wygqWQlYkCEUllFMKSmd8V2080UfuR4FUltcIfd7aDPIDVMXEUMrj6XnXpXTSj1GVj1jbsUiB\nx8AdeIZpzP90LcWf4GqEs4jZmSm92cjneLvH8HD8hE8tYuP2ypVkC2D9CQL8k4nDszjh1F7L5drt\ncsrGOHfjr9Vt7n9/hw/u7uO4JUl6+O4ug3MHbhSl9HtT/un/eY8wiPFnEbNpSBRl/G8//3GEKtjZ\n6jIZB+xu9UtrBT/mB2/v4M9iVteaOI7B7TsrmJbOwcGQ4cCvwoH3dgd4nk2tZnHjRod226WQsmqr\n5blka7tfTUhu7/QJgrgiW3v7Qw57E9pNh9WVekW23n98jJRFFWL9NLKVpnnVMry53uKya9dwEjAL\n4icuB5iHUqsLxOj+9jG5lBQFRPOW7X7/8mNkEkQcj8p1yXLJ0WjKnfUOQZKSS0l/cnq8ibmJ6nk8\nyQ+rmAvGL0Oa5/Sf4uvVtC2CdHGSLUozhKKw5LoV2QIukK1pfLr/TL2M0PGTBM8wGIaLE2NPs6sY\nhlEVoXMVlmyHzy6vsey4FEXB7mxCwzDxs4RcFmRSYs91Xw3DpGlY7M4mPB4PGSdRqR2aV9SmaUIw\nzzW8O+ryWmNRd3jdbSyQrTgvA6Snacya7dE07IpszdIYXVF5PBsgUAizlF58cRpWU1S68amHk6Io\nLJs1LFXHUQ1WLI+6bpHKnC8uvXol2dqPRhxEY5q6XbXCEpmxF55aVZwnW1BON36+/gpRniCLgtft\ndeQ524YTsnUUjxik5fXDEBqf8l7BUk0c1cJUDX66+YkryRaUflsdrbVgIQGl0ekkm5IVGUdJl6Qo\npzATmbAT7Z7u77k3l6d6qIpKKlN2wx0ehR9QVxtkRUZWZBjCxJtXw3aTraoVaCk20/xUAjDO+/hy\nwkQO8LMJeZEhUBGc+p39OKEo6kJgtC3WMEWbqDgmLrpP+OTVSIsuefHyPMJeChQduPZMZOujjp8Q\nrpcMr11D01X6+0NG3Qn1jsf119dZfYEpxe33DwlnF/2CzCsCmaE86dvnNGPd/RGj3rTKFpwMfUaD\n2YIurbXk8an/cou1622UOWH7xOdvUSgQ+OWFa9ifIYSCbRv8Lz/zOkf7IzorDRpzv6wwTNi42Wbj\neocwSNjc7HJ8MELTVN78xDqKAh+8f8h77+zy8MEBr7+xRp4VvPGxNfq9KUIoXLvershVrWah6xq2\nbVSER1UFn//sK7Ra5Q3z3oNDVlZOt1ciicMEIQTjacjO3oDxJFzw3hpPrg59PYEQCqZxejG79+ii\nyall6hjz6t1hb0IQXV7GdiwD61yV8LXrS5UebL1TtjUvazVOgoj9/pRbqy2yvPQ8u95pMPJDFMDQ\nNSbhIum7t98lO7O9uZTc37/6Atyd+nSnpzf3SRhxOC5vlArKpWTzPDYaHo6hz8fLC/JCInlypS2T\nkkEQLvw9k5JhGLHkulxvLB7H93q9K4mjnybEWYahqjweDTn2Z/TDgChb1B+mMmd7OqYXBhz6Mz69\ntMqDUZ9xFGFpGoMoQBZFOYkY+izZDkuWg62XsUA3ao3KfLRt2hjzatDrc7L1b8c7vNc/5jAsb1rb\nsxGpzInzjB1/TC4l++FFnWdNN3ml1uSLK7fLOBkhnuh9VRQF/jyM2lZ1moZN23CJ84x3JgdkxdXk\nNMpT8pPILaGzYpbHX15IDKER5smCVuw8bNXAlzESybdG93jg75eay8ljEpnRSyaM04CO4XEcnxK4\nR8EBQlEYpTM+CPbZDA+I5NWtH0Po3LTXKpf5E1jCxBAGljBp6y0sxcQUBm29haM6yEKSypSj5Hj+\nfotIRrwXvEdGgqs66EKnpnmERUhWJKjzfX3TvF1V0xRFYVnfqL63qS1TUxs4wkNVNBxRRyjiglD/\nx4cCTTmtjJ8QPlusYomLE7BPg6IIVFwS+WRD5x8nCvmd8oHgw2pnvmT8JNrnORCHCf29wVN1Wpqh\nYdoG0+EMp26/8JNPo1Or2nlH231kLp9ItuDy/rVbt7Gc056yEIIsyzFMHaEKgllUWTVkSY57pro2\n6vsIVcF2TPxZhFuzynxFTeXB3X1aLZdarTQTbbZcLEsnzyXtTo2lJY/OksfOdp92x+Nf/vE+rbaL\nW7OIo4yl5TpLSx5SylJPk+UMhwGGoVY6tSzLcV2rGmXPc1lpw46OJzQaDu3WaW6YHyTkWU6alvYN\n37+7g+MYvHZ7pVrGYOzj1Z5cCSkJ1+mFvtN0iZKUzb1BZQmR5acaLW2uJ0vTnOEkwL3kd8pySZqX\n8TyXVZROKmCua+L7MYeDKYau0qmXmppZGBOmWTk4oAqaNQddU8s4H0NnGsaYuka75iy0B4WisFy/\n+ph1TWOhFaipZYKBqZWu/7ax2LJ80vHc9wMmcUyc5XimWRGuLJdMk3hhalAoCk27/B2KoqDr+6Wu\nrn6xHB+mKSu12pVtT4WTClJJ9jyzzLjUVYEmBLmUjOOyAmZrOm3bxjPKc2LVqdGxHbqhz/ujMrev\nbpqMoqj0EzNMLFUlySUrzqkWTlEU1uZ/r80NSW1N585ShzzM2ZyNWLLdKlanFwU0jbJd4+kmcV7G\n5Jzsz6NoSiLzsr2piAWR/TgpiamhariaQVrkdGOfhr7Y/tGE4IbTQhdXk7X9aMwkDcsAacNlNxri\nqCa70ZAVs06UpwR5XJmg3p8d0NJddqI+qiIwhYan2QhFsG42Wbda+HmEITRqms1u1GOYTVk325jC\noJuMqWtOpc86iHvccTZo6d4F+4dEpgjEpcdYURT4MmSUjVk2OvOcQ8FOvI8tLMbZBKEIXNVhmk+x\nhDWXswsG2YBJNuKz3uepz6tZx+khDbVFTa3j51Om+RhHrc3Pv+jK41xXDIQimORd6tpSFVidFSlJ\nES14bJ0gyEdIsktfexEURU4oDzDE032zsiIgKo7QlcutYsL8PqpSIyuGaEoLXfzorCGKIkUW7yCU\ni6bRl0FRNq6+3hQShS3AnFfBSnyUNVw/qXA9B3RTo/EM/h6qps5Jl0l3d/BSvnv5egvvEvPR54HM\nJYapYzkGzXklbjLyOd4flTozYGltsaqwdr1VidWXVuoL7cr/+nNv0Gy7uDUTr1Fe+O+/t8fB3pCH\nDw5pdWoYps6rr68hhILrWVi2geuafOzjGxhzIf3WZh+3ZtHtTllfb2Kdaffdv3/A1lY5IROGKYdH\np2235SUPVQhG49OW18Zqk431Nn4QEycpP/vTr3PrxhJ+EHNwNCrjYFafzdxv93BUtQyjJGU4Drl1\nrRyfz3PJcf+03WqZOqoQqOpFnVaWS7JcEkQJ0ye0IO/tHPP4sDxeigK2ukPqTkk2Hx70CZOUpbrL\nvz/YZTALKjKzXHcZ+iFb3bKacELmnjVW5zxUITiazBaqZCfYHoyYRJfH+gAs1VzW6x51y1yobuVF\nmQV5gjTPuXvUZRJFRGnGu8ddll2XlmMzjeML6z6OY+Jz1aqiKNgajTiczdBVlUmScDCbcKPeqMxN\nT4xX86LgKJjRDQNq53RhcZ4xSxM83eRzyxv0Qh9DqNysNzgOy8qfUMSFqcUkz3k47vMvhzv05u9r\nmw6mpiEpiGWOp5vV73Gz1sRQVWq6wXf7++wGY743OKgc51esGi3jcv1MAQuNO0No3HRaF94ni4Jp\nGnMQTebu8ocX3tMxXEKZsmaWk5KJzMmKnFfdFRzVICty2nqNu9PSNHPFrPPudJeW5uBpFrMsYj8q\n11kXGrMs5K+738NTyweDW/YKN60VojzBEjqGolX2EuPU56a1iiE0hFI6wI+z0xZWNx0SF4tTtf10\nyH58zH7SxREW+3GX46TPKCsrhdfNdQxhYAqTrMg4TI6oqTUaWoNpXrYe14w1Put9vqpk9dMua/oG\npjDRFI3H8UM0jPmxkrETP0YWObKQ7MSPL+xDTdHp6Is62qKQxDIgK1KyImGYnZqOqor2wu7yWREx\nzRcjyRRFpabeuvDe4lxlc5x9H6UQmMrlrWUAS7yOUCwKCmQRXojcSeQBWdG/4tPPB0XRUcVnf/gF\nFWMUNilYAX40GZY/CvykwvUcUBQF7TmCjy3XpNY4LflmSbYQr/O8332W6Xf3Sh8t+xyTvozdZ2mO\nIhS23z/C8WxUraxwZakkTTL0eQVjOg4wTJ3sTBUpzyRxlFJImE1CbOfiwb35qNRHOY7J0kqddqc2\nn1YsSd7h4Yjd7T77O0M++ZkbCEVBNzTSNCOOUpIko9F0KjI3HoekaYZpaqAodNouk2nE9u6A115d\nzMTLcolpaozGAaNxQH0+vTiZhNy83sbQNfJcMplFNOqLJrpZnvNwq0untTjB9+0fbNGoWcyCmJVO\nSbB1TcVzrarCIoRC07t4cywnFxePkdEsJE4zmp6Nc047Ng0iuqMZ4yCi6Zi06y6NeXv2+lJJDNN5\naHWaS+qOhalrLNXdal0mYcQ0jLAMHc8uKztDP+R4PEMVAvPc+pyQNVUIulOfSRjjWYu/a9t1Lh0S\naDo2hqpyOJld+MxZnLd/0IRYEMCXAdY2YZaVmh+lJJmWrtH1A2xdX6hm1QyjmkYECNKUrdEITVXp\nOE5VxRrEER3L5t3eMa+1OtiaRi8MmCYxd5ptNscjVpyyIprmOVvTMcMoYhLHrLk1XN3guleG/47j\niEkcseLU5u03lQejfjW5WFDG7bzaaC8EYgtTUCRFaRGi6QhF4fFkwOZsWLYnVR2hwKpVI8lz1m0P\nfR4kfdXTvKXqBFlCmKWM0vBCxM8JIpkxSHxsVcfVTDqGe2GZhtBYMT3uzg5Ztxoczj27zLkY/x8H\nD2loFtesJvf8fa5bHbajPn4e09JdTKEzyULCPOYwGZEUGXGecdNZQlNUtqNjbLWsAgkUxlkICthq\nOV3ZT8cYio4uVPJCEskEe245UdfcKlOx2nZh4qkuda38HVzVRlVULGGiC424iHnPf8A1cw1Pq6Er\nOofJEQKBJnQiGWKrZUVOFpKy2V38f+y9V5MsV5al9/k5flx76BRXAiig5NT02IwNh8YxGh/4e/nA\nh3mg2ZAc0eyxrq6uYlWjAFwtU4dWrt0PH05k3IybeQWAqkYNDdsMBgNSUc9vFwAAIABJREFURXh4\nuK/Ye+1v4Vguk2qEtGxc4eAJnz8lv6ftx4jCxZMBlmWRNQmu5W3F2k01rc7xREihc0DjWB7SUkjL\n4CGm9RGx/G4YJAuJbXkfjO/RWjOtH+AL83fW1QssJK4YIN7D9ro8P6QVUuspWCCubFMKfATBP7tH\n7b1leWB1TWfrrcf119zh+lFwfce69Kp87ElYFhUnT8/p7P15COCreUpvP77G0LrpZDs/nmIryd6t\nDtI233/0fESyzGh1Q2xb4AcurqdIk4I//v1TWp0Az3dMxyYwN3Fpi+3G4dVyHJvZJMG2JY67e1Go\n64bHD0/4/KeHhJGL2HSBvv7TkdlkXOV0OgGuq/inf3qFZRmejes6FEXFq5cjgsAFy6Isqs3WYsP5\nxYIodHFdm0bD2fmCg/02y2VKkhbcu9vj6fMhypZcjJZbPIRuNPNlaiC8rromtgBC3yEKPZSSO+Ip\nyQqOz2eEgbsVA49fDYmDNwiMm6ppNOP5mryqiPzdN6JjSyLfJfJcaq2JNh3Ay9cwKyoWSUpe1tzu\nmQ6jhq1gAnh2NibwHWwpcW2bdV6Q5iW3u60bfWFJUeLYNlKYrcKrwul8saKs6p0x4k2VldWN8UFV\nbWJv7BtGf/Msw8KIr4vVmqQsGYQhSkoCW+Epw25ree4HNyaVlHQ8j6PlgoMwQlgWkeNwGEb87uyE\nn3b7ZiRqWYTKIXYMYX0vCLdCUFgWx6sFn7U7HIbx9r3caM28yJlkCWfZmruhWem3LItQqe24TlgW\nnm3vXAOqpua8Sng8vuD5cs6nURdhWcTKZVqkzMqUljLixhYCLIu283Fg3HKzSWoLuTNu3DkuQtJW\n/hbF8GQ9pG1713xGszJhUWbc8tr8aXmMxKLnhEzLNT8LD8h0SakbPgnMks0dz3R2bSFxhY0jbGLl\n01MxXRXyWbCPbUkWVYKFYOC0UMLmrJiS6wLbkkS2j21JHEvxPDmhpqatoq3Yele9/WHTlx6+9Lbj\nSK2hLSNc6XKcnxDJiMfpE/p2j0JXaBoCaUTyrJrxLHvKXfceT7JHJNWant0ntlso4XBg3+KgM6DO\nxPb67gkf21Kcla/xLH9HeGltxFvSzAlFm3l9QVcdbsadavv4Q3lz0sTlxuOkeoH/jvGgZVnXxJaJ\n78muebguxRaw4YQF34q/Ja1oR2yZ33vziPevtX4UXN+jfugDd1NVZc2f/us3CPGGu1VX9XsBopPT\nKf3b3RsFy3cp3TQ4/nWG1k0nW9wOrqEdvMAhbvu4nkI5xqsjpcD1FJ1+SBh7PPn6hP6+EYhC3iy2\nwAgu33dwHHungzceLrEscD2HPCmIOz7rdY7jKLr9kCj0ePVyxP5BmyQp8DzFfJaY4OpeSJIWCCFp\nt3xaLZ9OJ+TR4zMG/ZjlMuXFqxGWZRFHHnFkwq19TxEEDo+fXfCTT/fwPEW75eN7ptOQpAVnF3Oi\nyMN9R7fSc81xfbtTpWxJO/Z5djzeYhx67QBbSvKieqdB3JYC37PxXefa95iLqfGWnYwXdCN/5zV8\neTEh8l201pxOl3RCn3WW89XLcw46ZqRqWRaDOCT2Xaq6Ic1LDjrxOzcPA0e9U9B4to2n7Hf+7OVj\nfldW46rIWeUFketQ1DWz1IissjYh0FIIlJRErrMVj5fLAx97UX82nW6jfWZZxkFoOkXPZ1P6QcAg\nCPl6dME8z9nfbEVeZSJdfR59L7gWnVNrzSRP8W3FL7t7O8fqJm/UPw6PSeuKWDlUTcO9fpd/OD7i\nf9y7i20Zv54Ugj0vZN8LyZuKZVXQcjwCW/Ffz59zL2i/8/mXTY3A4tFqyG2/hS8VqyrfGva/WZyx\nKHN6TsBptiCpCuZlyteLM5QQeFLtoCTALEMceDFVUxPYLveDPo3WnOZz9t0WSkhOsxmx7SMtwXE2\nZVqu6aoAJWzstzpySZ2b/29JPOEgLbHxXGWcZGPuuANcqah0jSsUbRUyq5Z01HWLxuWWYK4Lyqa6\n5vOalnOm1ZzYjig3OAhlKQpdEgoDiF7WSwbOHm073oqti+IcaUkW5YxhdcaBfYtcpwgL0ibFlwGl\nLqmchIezr3mcfElH9fGF6RLGso20JLWusDbnz0X5Ak9E5jon/C1tHmBVT8j0ElfcbAWpdcWiPsUX\nbSTOVqBp3VCTv7ejZeNjW+/3BwvLJWvOPsrn9W1rXf8nJB3ED4GQ0BeAgnd0HH8UXN+jfugDd1MJ\nKTj4dI9o46lKlimjozGt/puLR5bk2OqqQVjgeGq7AfiuWoxXzMdLwvb7Iauu7+y82ebjFckqY7Df\nIkkKLo4nKMe+MXsRDGn+1ZMLwtjbdr1gA1H1HIQQOK4RYzvr/lnBxemMuB2wXqb87f/5Ff39FmHk\nIaRgvcxYrTKmkxVB5GEJmM+TzZvA4BtabR/XVUgpsKWgrjWua6OU5GJoAq6llPQ2x3e1zhmPTZfq\n8MDcmKazhE8/GXAxXLI3iFHKxHycns9pxT69bogQgrKskVKwTnK+eXxGVTX4vqId+TtdqbpuePpq\neC0jsW4aJrP1Djy13zYX4IcvL+htWGCvz2d03wHGtSxrg4Z4tyAXwmKdFniOIoo8Hrw8px14ZEXN\nMs046MaEnoOrbELP5XS6pLWh2LcCbyuQbCkIroihoqo4mswZLRN8R70zw/Dq43if2PpQubZNtPn7\njdYUdc3Fas3r6RzXtumHb47RPMtBm5/5NiWFQANPphN+1h9sBc0oTVnlBVXT8Hg65k7U2oGo3lTC\nsphkKRfJeouUEJZFy3GJlHmPFXXNi8WMSDnXhGpeV/hC0fcC8rrm785fMohCfh4MWJUFeV3xbDmh\nbAxp/h/Hx9wJ2nQcj1mR4UmbeZEx8MJtF+rJckzPNcepahqOkjmutLkbvIGivkpm9Dah1W3b51ky\nQiK45Zvont9NXxPZLj0noEET2bs3ACUko2LFN8szfhnfMiNWbbxcse1hW5K+84YHNi3WeNJhVq6o\ntN5mMgI8WB0zzBcceObxPV6fMMrnnOQjPgtukTUlvnRZ1ykXxQxfujiW4jgf4lpqm8d4WefFhFKX\nSEvS0NDohkW1xpcela5I6gx3w+B6kb0mqTIC6XFSnJPWGY5wuOPeRlk2ta63x9W2lKHMq5hZNSGU\nMX1nj0i2OC5e0bX7WJYgCj2azGbfuU0sOzvXP601Z8VrsmZNKFtEsou0JLblMqxe4whvGwHkCB9X\nhFS6YNWMcMVuN11YAl8Yz+zVOJ+anKSZ4Ip3+4U/FPF2WVfFltaaUi+QN1Duv23Z1gHC8newFP8s\npTWQAR4WMyxG8Bao9UfB9T3qhz5w76qrJ7ty1Y7YAjh+ck6rH22/T7n2B8UWgOMrgtj71i1c5Uhc\n3yGOPZKkwBKGtfX239Rak6wyHFfRHUQ7YitNcv7wm6e0uyGOq5hP1khb7IRZSylIVjl+6HJ+NqfV\nCphM1nR7IVIKHj84wfOUyTasG/Ki4vi1EX9FXtFqBwzP5/iBsyXFO67EdRVKSeLYoxV7/PYfntHp\nBHS7IXHsbQWalMZ/lqQF3U64s6F4yfK67FA1jebF0YheJ2SdFASe4u7tLg8enRnz/s7mpkWn5W9v\naC+Ox8YILwV5UVHXZpPyUqRleUm3ZbYEhWXRbQXUm+6S8y26mGVVM5qvCVyHTuTz/z45pt8JsRpI\n8pJGazqhzyrLiTyH16M5ndDD3kBUH5+NOJ0sOezG29f3fL4i2owJxaZTd9COPii26qYhLUqcD+Rq\njtcJ0ySl9Q4PV1ZWXKxNZqKvFL0g4Ha7RcvbvdAHjvpWYktrzShJcKRkXZaGNC/EdvPRkzaPJ2OU\nLei4PrfieMf39a4ygc/Xb0KjLCGvKzxp82Q2NmZyz4ic16s5jpBcpGtK3RAqh0g5fBp16LUCisxs\nGwbK4cCPqHSNsgTn2YrYdpkVGU+XY2whaDsenlRvRLMQuNJGa803iwt+3tq71lm7FFuN1hRNxWdh\nn3WdE9nGJzVwI7pOQMcJGOYreo75IJFWBUld4ElF2VR8Hu6/2fCtMkLbpdQ1L5IRfSfid/MXtG2f\nlu1T6gpPuEzKFQMn3m79pnXBXX+wfYy2JYhVwF1vD41mWMwJpPFb7TsdHGFviPYh02pJy979kGNZ\nFmmd0VUtlGXzLH3N8/w1993b5I3JzfSEhyOMwd+XPi0VE0gfX3p4wqWhMST5akjWmA3PaTVh1Sw5\ncA6JRISwJLalUELRtrtUumBWj+hGbUTu4Qqfk+IlkYi3Vofj8hm3nE+whYNtKS7KVwgkRZNgWw7L\nZkwo3+4oWQjkVlTVuiLTixvjfQCEZb9XbH1MLevHKKvNvP4KT1z6XjWFHqPE97e1WJb6AcRWBjwG\n65NNd8sHWv9debh+3FL8jnX69JzkPTynT355570jxneVAZd++5+TttwxhAebjlNZVLx8ZDaV0nVO\nU2sWs5tBln7g8st/dR9nk5O4f7vD2dF0y8WaTw2gtMhLzo6nDPZa/OTnh3iu4vGDU/7x75/w6ef7\n5HmF5zt0+xHrVc5gL+Lpo1OULfnyD6/wAnf7O20lt4JuOFwRRWaT8X/69z/l6qJaWdbbTEQpBd3O\n7qho+xw2WAowIuqzewP+y98/IstK1pvcxH/3bz7bmuEBFquMo9Mp1pVMuXuH3e3mYb8Tsk7yHc5W\nXlYU5VuMp7phnX4YhHpZWVFyMp6TFRXlZgPvV58c0G+HtAKPXhywSnJWWUE78HCUzZ1ei0YbQGfg\nOhy2YxZpSlq82ey62kmzLIvjyZyL+eqDW4tFVbPMPvz4+2HAnc67L9pKCtrvMdS/rxqtt3mGN1XV\nNESOw34Y8mmnS9s10NVX8xmh4/CLwR5l3VA3DaFSPJt9+y3htDLHMlYOoW1iiQZBwEHw5pwZeAGj\nLOH5asYncQffNu+ZJ4sJ/9frZySb35FVJbMio+cGJHXJo8WY3wxf82Bxwb8b3OPQjxl4IdMiZZiZ\nTceW8qgagxP9defN+nxeVzxa7vLUiqZmVJifO/TMa6K1ptI1aV3S6IafhGZD7SSd82B1vt12/Gp5\nSn2Ft6WBJ+sLAulQbjbVfhoc0KANpkI47LstfhHdJmvM83ueXqCEZFi82R7uqIi0LiiaCguLnooA\nTdsOKXXFs8TwtywsZuV6h9UFEEqfQ9c85rNiTCRD/pfO/8CiXrGqEgLpM68XjErjD7scS9ZNzaic\nIi3JsByj0dx2btO3ByyqOQO1hyvMeRnaMbWuGZbm2mhbNq7w6dsHfD3/I8UGmmpZmtoyx6jSJXv2\nHTMKrEYMy9fsq/tIS5LrBCVc9tWn184nYYnrgdR/4YCXWiegBR37X27+22wWB/LuX/Tv/kXL8sD6\n1ZX/tuAHjEL6LvVjh+s7lh952I79ncTRepFeI71/TNVVzehkRth695jkbXUvpSBq+zS15vd/+5D7\nPz0gfs+4cj5dc/xixN4GD9G90qWbjVdELZ9217C0tN6In37E3kGLTjdEKZveIOLo1Yg4Nt6r5TKj\nvxeTFyVl0ZDlBctFymCw+ynud799xuGtzhbQ6l9hWbmu4uhoiuvanJ3P0cBsnhBHu93AyXQNlvXG\nGO85KMui34txHEmal3hvHXtlS1brDNsWW9/W5YbeZJ7guQZfYVnW1vflOeqaB8yWgtC/WWgsk8yE\nHF/pONpS0ol8Gq2xpUTZEseWO69hXlbsd0IcZbPOCpaZifhpBd72sftKcTJdErgKV9k7I0WAfhQw\nTzMCx7m2efhqPDMdA2XGjdF3FEpX6zI38bvU8XzBw9FoCz19OZvR3jC1LMvaerfAdOQsMD4l25jQ\nn89n/KzXx7UlSkocKflqeMGiyBn4AbMN4PR99XIxR1jWRrQ5/Lez10S2w2EYsy4LFkVG2/VoKZdP\n4100Q0t5/PJwHwrDA/tqNmRZ5lxkKwZuwL/t3+F1Mud/vfU5r9ZGpOR1RUt5+FIxytcGIjo7xbcV\ngW18YWbZwBji397+fJvFpYFpmXLbN6T7Py1O6TsBNQ13/M52vLjvxizrnLQ24imULl1l0A5KSPKm\noq0C3A3C4aoP7Cgb07YDek5EvTGOp3VBuKHTS0tuvVgath0u25K8TIdc5BMC28MVDh0VXdtMBLgo\nJhy6/W0HzLUc0JppveC2e0DVVCgh8YW5BlhA1mRoGmIZb8VVoxseZQ+5591HWQ55k/Eg+Yq+2mPP\nOSCrM46Kl3jCRwmHLwafG3Bz/gitwbE8XuWPCGWMpsGTAaFs4wiPVT0jEDGBbL+XsTWtX+Na0RaU\nqr5jkPTbpXVDrscUzQJ1ZWTpicOd62KuTxGW895txf+/1F9zh+tHwfUdS0jByeMzbNdG3SCehkdj\n8nWBv4GIzsYLvvy7R9z5/IDzlyPa/Q+3jI+fnqMce8fw3jT6vfDTm042IQRCCg7v9UyMy3tEYhh5\nW7G1fS5nc/zA3RFqeVayWqScn8yQtiBZ59RVQ7QRg7PJmqjl4Tg2QeCS5xV37/a5c69HGBpGk9ag\n0dvOXJLmTMZr9vdbNE1DWdYURcV8YTYg9/ZiTk5nZHlltg4D55p4ch2bNC9RtuR8uKQVeyzXOask\n59XxhLpuaG38W6PJygRMu4pW7GNLida7XbPFKiXwXXzP4DK+zbjwas1XGa6SN24z+q5CXelOXn0N\n48Bsdp5OFrw4n3J30N5Gy6yzgrPpknt7HTqhh2O/Mbs/PBkyuBJgHfvujZiHrKyoG010Q9TRhyCn\nf4lqed4OYd4CvE1w9VfDC3r+G8Hx+9MT0qraYiEA+n6ABlZFgb8JyT4IIwa+WWs/T1a0HXf7vOZ5\nhmUZ4aK1Zppn+NKEj385PKfluhwGEb8bnW5o8oa8LyyLaZER2IpVWfAfXj3gi1YfR0pe50uc2mAq\n7kVt+q5P3w3wpOLFakajG24HLRrdoIREbUaIwrLI64rQdjjwYnypeLgYUugaDTtjx3VVIK2b/XaW\nZXGeL+k7IZVuqJqaaZlwy2vz9fKM/U1QtS0kjiXxhM2wWOEJm3G5okETShclJEVjIppGxZKLYsFR\nOia2PfbdNyZ/TzpGUFlyG2W0qlNO8jGR7eFLlxfpOQNnEyatYVIv+Wlwd7u5eFOVTYW32WDUWlNT\n81XymD3VxxMuR7nhXGk0aZMhhaSrOiZ+yZLbbUJhCRzL8LaG5QUOLjUN0rI5K0+YViMiGRNJQ44P\nQ5c0KZFI2rJDYMcEMsYTIY54cyOdVGfYGwiq/ACywbMiVvUQ73uOCq9Wo0uW9XNc+rii8973qk0L\nEHzXcGyt6xt/Vuvyn3+0eEMJ/TWaLmxevx9aN/wouP6MNT2f4UcerUF8o9gCKPOKsBNsTeuu7zDY\nbCnaymZ0PP0gyDRs+TuB15ZlXRNbpy9HRO032yrvO9lePDxDNxovcCiLamcE+XYVRbUVZ/PpGj90\ndsSCUnJLndcalvOUIHIZD5dELY8w9rBtyVd/fEWr7TEarRkMImPGd8zPvHw5JC9Kg5NwbPr9mM6G\nx/Xll69J0xLXVdgbM31elAgh+OyTAWHg4l4GhG+6T0fHU6qq4uRsxv27ffpdw6pqt3yENOPFXifk\nP//9I+7f7hr/mC23AnQ8W5MV1Q4rKwpcqqoxG1wj05F4G2z6MRX6znvRETvfu3kNsyubj6HrEPsO\n4ZUOlGNLupERuFLs0utb/ofRCkle4NqSbnj903ZWVrwYz3ZM7t+nvmuw79Vu1DBZMwiC7fO8Hbfo\nbUzxWmvyukZJyYPxiGWem5unUjvbdB13tyO6LgtsIVgWBaMs4cFkyDeTIb/s7YFlUTS1eQxacxjG\nNGjjr0KTVhWhMnwwXyrarseyyOnGAaq2eLKY0nd9GjSrquTlasrAC7kVxNiW4O+HrxkXCZ9F3a0f\nKrCdTS5gRaM1h36LjuNf2zIc5+uNWLvClWtqvpyfUjUN43xNrRsWVYovHLpOgCNtOsrn0cqMDS/h\no2AE1cCJaSnzt6QlkJbgRTJCWBbP0iFFXZquloquYSbERsCByWR0N34tVypepmcIS9LdcLSEJbjn\n7X0wEse7got4kR0jsNAN5DrHEYpcFyzrNYHwCWyf0/yU2I7xhLsVW41umNUzXOGSNgmrakVp5Xzq\nfYYjHHzhUdOw5xxsifHKt1gnGb4MsYW5FtiWYt0sNhuRDkm9xNYKzw4Zlq+JZYdlM0FZN/tvk2ZB\n2ixwRPBBcfYxVeuCpDnCF4dkjDYjS4llCYrG5D9ayO1jqVhS6vE7afMAZXNBo9cUzSnC8qj1CE2J\nsHwK/QBJe0dcaV1Q6GfY74Gq/sVLayAxAFTrTVLHD60bfhRcf6bSWrMcrwg/EO9TZCXKUVtTumVZ\nW6yC4yrClv9BE/3HjCu11nhXRNjbJ5vhhYFuNGdHY27dH3D2esLwdHaNKn+15pOV6aZ5iqKojVDc\nCLSiqFgtUpJ1Thh7BIGJosmygjwvOT+ZMR4uSdY5x8cTbt3p0x+YmKI8LxmPVkSxh+c6xrPlGTFi\nWdb2b4Shy95ezIOHp0wna375i9sbg7qBmo4nK7TWOI7i5asRk8kaLIhCDyEsWhso6TrJWa4yzs7n\nDPrmk/1P7g+YL1JWSUEQONvjHPjOVmxdjJdM5gnt2Gc0XSGEoN+JSLOCwHeom4YkLa6hI64dx1W6\nY7Z/X6V5SVnXdFoBSVJwPJ4bhMPm2JxOl5xMFlR1Q+y7NFrzf3/5lLv9NlrDdJ3CJr/Q/oiRXlqW\naG7eErSl+LOJLYAvz845iK8zz95V66LYjiVfzeY4UnIQmp/XGw/b8/lsK7jyuuZsvaLWDb5S7IcR\nyyJnURS03TfxQZcsq8sKNlwt3zaC6SCI2PMN6uNWGHO6XnGWrKhp6Hs+zxZTlBCEytnCTn9z8ZqB\nGxAoh69n53Qin1fTGXteiBKCb2ZDTtIlX8Q9srridbLg0I9NFqaQLMqCYb7iePP/AZLK5B1eesPe\nrli514z0Gni+nvCr1iE9N+T/GT9lz43Z9yLOsyVn+ZzQdvGEIm1KQvlmVPu/n/2B+36XwHb5ennM\nosroOSFZXTKrEn4d32XfbdN1ItIm5/eL58TS46yY01EhZVNzlI2IbZ9VnVJRc5SPCaXHcTbmvreH\nKxW1rjnJx3jC4SwfEdsfB9TsqhaVrmirmH2nT1pneNJ0qpImZd8Z4AgXidigG8x2okaTNzmzasae\n2iNpVuypfZRQlLpkXs2IZcysmuIKAzfVbsFynaCBRtek9Zpxec6yntG1BwhLUlMxrI5xLA8sTSjb\npM0KT9z8fJTl4ljeNUyE1ppCr7915I+wJK7oIi0HV3TI9QRpOQjLpmxWCGzWzWMkEQ0Zymq9V2wB\nCDwsHCo9xJV3EHgIfCxLYFt71zpZliV/WLEFQIXFMVx5HD8Kru9RP/SBe7ssy/qg2AJwA2dnA/Da\n73mH2Ko2RuyrX19sgqbf9n1lSc7o1Hi6Xjw4pbffunayLWcJ88mKZJ3zyU8PUUrS7oUMDtuslxnK\nkTdeIPzQgFBXi5SqNPmKQhj46PGrMZ1+RJYWFEVJELjELZ+45dPpRpwcTfji57fp70VGLAiL+WyN\nUjauYyNtgec5+L6z3T48P58TBA7Pnl0wn6fs7bU4P59z+3aXvb0WaiP4HEdux5TrJMdREs9TzOYJ\nB/ttwsClsxl9zuZrvn50Shx5fHK3v/M8hWXhuYrXp1PAwlFyZ+SWZCWtyBjVo8DFUYZVdomHqKqa\nxTonuoG8f7XS3Gz9vS24lknO6XhBJ3rTXcrKiqbR9DohSVLQCd+gK8qq5o/PTrjXb2NZAmWb8efd\nXhvPsSnrmi9fnQEW8Ud0twBcZb9zSzAvK8pNx+imqhoT1VPU1Y3fU23yMS/rII7Iq4qiqpkk6RYd\n8Xo2J3KcrWfqxXRKx/N4NZ/TC8zr6Nn2JtdRcL5aGUCs43CxXuErhSMlthBEjoNn2wgMoLTj+Vux\nBZDVFSfrJV3P33mc58lqm6uopCSpSsZZSt8L6HsBZ8mSw8BwzSyg7/nb7sy8yDj0Y9qutw2M3mvF\nyMoATaUQdBzP/OP6RMql7Xi8Ws/ouj6zIufn7T0kgk/jLn+YmMifBs3tYPcG2WjNtEzxpaJq6p0O\n0bzMOMsW/E3ntgkNtyRt5dHeZB7uudEWiCqF4CxfMnBC/rB4TWi7/Jv2feKNF2zPbSE3Xa3Pw30i\n6fEyGVHqmlGxZFGn/DS8jSsUvnQM4DSfYiGYlmtueV084dC2Q5SwadsGNquEzevsAoGFJxweJ6/p\nqzaPkiMsbbGo18T2u0W+KxySJmVRLZlWcySSvupw4JibbdZkJjvRsjjOj4mlAdbmOqdrdzfxPx5l\nU+BKD4HgcfoQZSmG1Rl7ah9p2cShz5+mf2RdrZhXF4DAlT4H6u62O2VbDm05IGtS0mZJKFusm+kN\nG4qmTCC5usbk0tSkevq9txKVFZFrEzo9rb7CEwMCeQ9NSaNL5Efwsgzg1Ma2uliW3PzzV25KtyRY\nu1DZHwXX96gf+sC9Xcky5dkfXuJHLmVebTf63lVaa3SjrwmsIi9vZGSNz2ZbFtZlNY3GVvLa99vK\npjOIkVLQ2wBK3z7ZXN+hrmpm4xW9vXhHdIwv5vihe62T1jSa+XRtRn/A1394RV3X5HnFfLqmyiv2\nb3U2iImCuO1TlhVZUjIdrzi802W1ysjS0nQVyprxyGzJCSFAw8MHp/iBEVxVVdM0DY5j47qKOPZ4\n+OCUVsun2zW4ifU659HjM/r9CKVsbFsShR7nFwsC3+HWYQd3A3C9rKrWOMrm6HhCK/bwXEXTaEbj\nFVlZkWXlxjBfcDpa0OuE258PN5yz5Srb8YmdjxY4GwL9h8QWmPGjENbWV7Z9XZTNcLYi9JxtN8pV\ntuFsvfUavhrOiDyXbuQzXiVYYLbQiop5kuHYkvk64/ODHsssJ3Sdj+pwva+SwvCsLv1Tb9eDsyGh\no975PS8nM8q63gJSG615Np6yF4VI8cZU/3g0Zi8MzULBxmzv2PbdW7SQAAAgAElEQVRWbIHxV23R\nBWXJXhgyyzL2ghBfKeqm4dV8xrPZlLutNi/mU9ZVuePVAsOe6no+yyInqyo8295s9JlOUqM1GvBt\nm0g5KGE+jNwOWyZQWgimecqyLOi6Pqsy5z+8esTtIKblGFRHrFz+aX6Or20i5ZLVFcsi4+liSmAr\nvp5dUNQVd8I2kXJ5shpjac2kNCyuQz+m43hISxDYu12PWmtG+RoLi+N0QUu5vFpP6ToBnrTpblAR\nF/mSQteABRacpDPKpqF9mdOoNY6w8aUisl0a3Zhzvcq2hHpPKvacmIerU1q2z2kx457Xo6tC5uWa\ni2LOqs45dI3ACKXHWTHjrtcnqTM86WwFtxI2WVMyLhfYls2B00NagtvegOfJCYt6yRf+XQLpbblf\njW743fJr+qqz4/HyhEsoA3qqQ2QHO1BUZSnSJiXTOYfOwSZX8QxlmXGiRiMtyT+ufosvPE6LI5Jm\nxX33U5ImxbFMHmMrCrGzkFyn3Hc/p6LAlyGL2nTBKl0iLZtlPSHRCwbqDsZhVrOuZyjLvXFsuKjP\nDCDiinHdssT3FlsATVNjWyESl0je3dLlhaU+SmxdrQ95shqdUukzpPXuCcn7H+sTzPjz+/PAbqof\nBdf3qB/6wL1dylX4LQ9pS6bnc6J28M5u1fR8xtmLEUVWbon0l/X8T68Zn83oH3Zo6mb7O8KWvyO2\ngPcCTC8rTwvyrKTTDa8dM8936A7ia52suB1sxdZilrBapEgpmE9WFFnJelXQNJrPfnZIXWn2b7Xp\ndENaXSNMhDRgUduWnLweE8YerXaA49jGWCwEutGcn824d7/PrVsd8rzE8xX9foxuNNIWPHlyQVUa\nUn9RVLRaPtOZ2dbqdEL++MfXCGkBmsUyQzk2r16PqRtNUVZ0Ns9Da21E3eZ5Pn81omk0f/Oru1vR\n1DSa33/1mtsHbZQtWawyDvdaVHXDcpXiOm8M7E2jKYoa/4qofn48Zr8XfXDcO56vSbKCwHOo6obR\nbL0FlYLJV+zGPv4NxPa3Lxi2FHiOzcvhjHuDDp3Ix1WK2crgPfbakRkNKptO6PP4bEQn9Fmk+Qcj\net5VrrLfKbYA9uLwxu/RWlNUNf0wYLhKaPvedmw1CIOtqPr98SmOLfmi39+JAbq63fhwNCJynJ2v\n/+7kmEA524BrKQRPpxOKuubXewcIy+JiveLlbMYgCDhbr/CVvfM7vhyds8hyOp7JhfRtxaLIebGY\nMc1T9oIIaQkeTkecJ2uKpuZktdiEZ1vciVpYFpysl/zPh5/Qct5cXC3LYr8dUeY1vq0YZWvO0zU/\naXWZbaJ9QuWQ1iWv1jO+iAfMyoznKyPIYuVS6wYsrhHwhWXI/LVuuBt0sLB4vh5z4O2mCrxMptzx\n2kjLIpQOj1ZDHCnpOyHTIuHJ+oJP/J7xhAobTyr0BhbhvEV1H+YLZlXCZ8GAcbmmrXykkNz3B5RN\nRVLnRJvNRFfYrKuUXFfE9mbU25TkTUkoPULpkTclRVNS6oqiKQlsn58F95FCbsXW5XGMZcjr7Jys\nyWnZ7x9Hp3XKqJyw5/TxxZtNyVCGuMJhUk5Y1Stc6ZI3GaEwqAoN3PXuM1B75DrDES5R6JEmFRUl\noYxY1lNiq8O0HhJYEU/yfyISZmlAILmoXtK3b2MLl0DEW9/X2yUtB9tyqCmwMOf5oj7Bu4GLpXVD\nRXYdJ3Ht+zR5M2VY/5ZYfrrpUn2/rlSjM6x3+MxqvQINwgqwvvPGY/cvJrbgR8H1veqHPnA3leMq\nbMem1Yve68PyI4/OXutGc3zvsEP/sEORlxw/2c1YfPbVEe1BdOOo72o9/eqITj9iPlkxPp/jhS7d\nXnTjMXv56Iz4SgfnaiWrDLnJUxRSmMDp4yntbkh/v4UlLFbzhOUiJW4HHL8coVyTxffk4Smttk+r\nHZJnJa6n+G9/+4jHD0x+YrsTohxJtxexXGWMhguOjsbcudtntcpIkoL79/u4jk3c8gkCl0cPz/jZ\nz25thJtFVdWs1zlK2dS1RuuGP319zGefDLgYLalrY8jOi4rZPCWOzJu52wmII29rPK828Uuep+h2\njEg7O58z6EUMuhG+p3DUG7K+FGIrtrK85GKy4t5h94O+LTDbkr6rthT0q2ILTObg05MJiyQjcJ0b\ntxTLqub52YTDrhHLvcg32YgWPDy+IC8qGgz2wXNsLMxNea8VUTeavKwIPmDwf3g6pBP4N54X36Vm\nacY3F0NansdB693nsGObLMT3Ue0HV7YPwcQDzfMcYcF+GNFoTct12QtCTpdLbsemU9D3A6Rl8WAy\nYi+ITEew0Vsxdztq0feDnXGqK20GfsA0T2k0hMrBlTbPFzN+1dtjWRUUdcP9uI23CaTuujdHqzxc\nj+kJD0dKIuWiLdMxcoRgkmf8Te8WTxdjyqam0g3H6YJ/3bvNwca/ZQu5I7ZeJzPKpiawHXyptp0v\ny7K47be3242rKt90pkKmZYISEk8q7gc9+hvw6bxMueW2+GZ5xrhYs++avzkp1oT2G1juZXVVxHE+\n5a7XI7I9HqxP8CxFpLzNzb4kts1iwHE2ptQ1t70eWVMwLVcoYTOv1vx2/pCOiuipmD+snvDz8B6z\ncsmB02NVp+RNhSvMuTorVzxMnnPb26dlm9Dqq+PT83xETYMAxuWUcTll4PQIpM91M7/BMMS2wUS8\nSJ9TNBl9ZUz7y2pGLFskzYqO3dvZUgykEWXHxQu0Bb4MWTdzPvN+tcFQCELZoqEm2MT+vG8RQFim\nY7qoz1HCvTKevH5zrinImjHuByClmR6zal5w6Pz7G8/FRheYzdqPe39rXZM1L1Cif/PXScCykNbH\n+zHfrr/05vOPgut71A994L5taa05fXZB3DMn5Nsn1/GTM7Opt7mRS1teC7SOu8EHO1oAnX6EkAIv\ncOn0Y1xPvfNki9oBtpKslxmOa1MW1dYflKxyk6PoGwO5+bdFGHuojQAJYw9/s2nX3vC2hBTYtqQq\nK9rdEH9jQF/ME27d7hC3ffK0oKo1fuCwmKe4rsOjb06JYo/lIsPzFWHo8fVXx3i+g+cpBptuXJaV\nJEnOkycX3L3TYzCIODhoE0UeX3x+gO87HOy1zGMRgih0zZhQSRZLg3O4FFvLVcbpxRzLgl473BjR\nDUcsDBxW65wkLYjeeqOcXMyJQ49GG6jqu/IX3y7xjpX9y3I2vKxW4O1sRYJ5sy6XGU/PJvzksL8V\nQ1dFkWtLPj3oUZQVjjLMqZfDmQk3liav8KrYquqGeZpd63h1Q/+9kUPfto5mCz7tdbeP4e1aZjnL\nvMBXNtISpFXJPMso64az1ZLOe6J4Lsd9t1stHCkJrnTXDqOISZriK9OtSqqSn3UH9IOAcZpuWF3m\ntWu05tl8Qt/f9QvNspS8rmi7Riw9no35RW9AVld0XY/DIL72nLKqpGqa7YYewC8PD5guU4M8EYJo\ns8noSptllTFwQ7K6puMF3A/b2JYgst1rHa3Laivv2njxssb5Go3eRvP48k2+qnqrawRwnM7ouRHr\nusTGouuYpIaX6Zjfz1/RtQOOsikajbIkR9mEtvKZFCsGbkwoPbKmQFk2aVOSbbpXL7Mh9/09I1KT\nIbNyuXn+kpYdILDYczooYXPL6VE1FQ+T1xS6QCJY1GtG5YyWHXGaD1nVCeEmA3Fame1AicDCoqEh\nqVNadoS0JG27RaNrnmcviWW0Ey59VpxhYRmxlT3nJ97nOMLjqHyFK1x6zgBlKRoaPOFTNAXKhyLV\n1LriojziU+8XzOspAujZ+whLsqinhGJD26chbRZ4V/xZRZMxrU4J5PWxmyda25zEm8QWXNLmzX2h\nbFZkzQjnhtGjjUfWDAnk4bWvAaTNKcKyER9pyrcssSO2tK52OmbC8q6FW/+11Y+C63vUD33gPlQv\nvz7aifCxLAtuwDdcVtwN38vRAnYCoN9XN3XX3nWyXf7Oi+MJrW7I8fMhYWw2JZfzBK0N9f3y+4Q0\nWYpCWMwmK/zAZTZeEYSu6TitcoNVcGymkzWOpyiLynDDlCRZ57TbIXWjKYuKLKu4OJuzd9hisUxp\ntXw+/WyPPKtYrXPanYB222e1zEjSAt93qOuGLCtpdwxA1bYFi2VGmub85jdP+PTTPS5zCpMkJ0sL\nnr0Y8vpoasj70vDHpDBxQK3IJ80K1kmB6xgfmO85FGWF7zm4m43Aq1XXhvh9MV7gu4rpMkE3MJqv\nicOPb4tfIh4W68zciDaB19NlguconhyP6ESm0xSGLmla0ouC7eNpGk1e1tibjcVL4dQKvK0I6IQ+\nrrJ5cHzBXmv3E2jVNKRFYUChb4n5RZrj3dC1u1isUFJ+lAH/bLFECsFBbIKkVxtRdVV0VnVDjca1\nJc8mExxbMl4nnC5WfNrt0PU/FMZr4SvFPM+2HqzLarTm9WLGIAjxbJuOa46Lten+BOrNaLJoak6W\nS25Fb25gT2cTXq8WPFvM+Hl3gBTmvDldrzhazxGWieB5+/GtyoJSNzvbhGHocjZbYm0e1+PFmL4b\nbDpRhgDvSuMTS+qSo2Sx4XR9e1yA3hjkPanwr6AjLsXWKF/xMp2w55rzoe+Ehr8lJDWaeZlQNDUd\nFRBJl0OvbRYDHGM4d4RNVhf8b2e/4TN/j6qpeJWNadC8SC74IjjElYpYejjCZlqu6KqQtC7QWHy5\nfMkXwW1i5eNtRm3P0hOG5Yyf+Lc5dHtEdkBHxbRsA0ANpc99/xa+dHGFQ2yHFE2Jsmxe5sfccveJ\nbSMUsybnpDhj4PRxNziIq4Irr7ONT8plWa84L86JVEjX7qKEYlHN6Ko+oTTHp9QFjieoMoOvsJBM\nqyFd0SO2e8jNyLXUOa7wmVUjYtnBk7vvNwtrCzp9uy7KBwSi/9GdHoG9Caq+/gHGsiw8sffOMaJt\nhRR6BmjkdxBKWfMIabVv/Nt/rfWj4Poe9UMfODCbg5cm97ffJF7oot7qGrxPUP0526mX3q+qrKiq\nGrmhlE8nay6OpsSd3U/wj/90xGc/vwVAu2e6Y5ZlkWflputmc348Y71MTfdsI+jmkzVRy+fhV8d0\n++bCMjyb47iK3/7dYyxpMTybE7d8PN/h9//wjDQtids+F+dzXjwfouuGz396SOA7xLHP/iaE2g8c\nRqMl81nC/n4LKQXLZcp6nXF+PmexSMmLmjt3uti2JM1KLs7nVHVDUdQMJ0t6nYAsK7GVZLXO+Zf/\n4i79bsQ6uRxD1lyMVwx6Eat1Tl3XNFobsVVUzJYZrcjbEVtHZ1NakY+3gZK2YyOGHGXz6mzKYT++\nJlzeVy9OJ3Rjn7Kq0dqIHs9RnM+WnI2X/OqTgzc5jXXFxWRF5DvM1xl5WbLKcta5eS9MVymeo3Y6\nXuezJWVV4zvqmti6LE8pzuZLOsGbLlLdaOZpxulsuTHb747wvLdE07vKwsKxzVjzMsD60cWIjm+O\nW15VvJhODRnd9wzI07YBi5/vDXZYWTfVNE1ZlyWBUuiNd+tqt+nheEToOLRdj7Qq+e3pMb5ShMoh\nKUpWZUGwYXLZQnArivk/Xjzmk7iDFIJxlvCL7h4txyUpS1quy+PZiI7rcTdqM8tT/svJC37WMY91\nlBnzeuy4TPMUV5oRe6M1KwrKrOIomdPzAl6vZwS2wrcVLccDLLK6ou8ZkVXpZouD+LbliF1/2ts1\nLtfc97pb0Xx5jB+tzolsl7ypOM8W7LsxkW1M67Hyt767vKmIbI9fx/d4llzgSEVS5dz2u9zyDD9M\nWoJvVq95vD7hV/F9fOkwcFr0nZjPggMsCxzx5hrZsUN86TIsZvQ3MNRZuURaAtuSW5N8pWvSJmda\nLWjJkJqGfWd31PU6O+ET7w4AyrJZ1EuUUORNjhKKQAa4wqVsSlzhsqoXdGWHWLbNVqO1SYjBYlIN\nadtdunFre9+RluS4eMZp8RJHuATSvE7uxpR+VjwnkK0tw+uy1s2UmhLnClG+bDIaKlry8FvdB8xr\n8e5rzfs8Ww0luR4ZQ/13EFxKDP67Elvwo+D6XvVDHziAdJWxnK548vvnHH62v/M1+0pnIFtn2B85\ncvpz1NOvjunuxyTLjDwt8EOXMHTJ8hIvcEiTgqqst6T6bt94zo6fD4mucMD80MXbjhMVWVKQJDmu\nqxBSbOnxtzaip64bVvOEuOWTbkKkf/Yv7uD5jiFCNw37B23W64w0KfjX//YzlsuMVifg7HTG8HxJ\nlpfbwOrhcM6rFyMODtoMR0vStOD586EZHX5xyO1bHYajJatVxun5DNex+Ztf32M8XfHFZ/torZnN\nEgb9GFsK4sjj+GzGi9cj7t3uoZRNp+XTNJp/+MNz7t7u0d/46kyMkGC+zLbIB4AXRxM6LX9n208I\nC1sKBt3oW4ktgF7L8HlcZXMxM50jZUu6UcBosaYdetvf2WkHZgQ6mTNfZ7hKkRXVhjIv8JTN0XiO\n76itQPIdheeod17In56NaQce/WhXhAthEXsu/SjY/q7zxQpHCkLX/SixBcaTJSyLo/nCwHWVYhC9\n8QzmpQHpHrbMDcuTNkpKvrkYciuOrv2dB8MRsfumK2ULscU/TLN0G9sDmxHhbMqv9vZZFQXPZlN+\n2d+js8E/PJ1NiJTDebreGSP2XN8IRSkpqpq2a8Z6eV3ycDomr2tix0EKi30/5F7c3rK3yqbBERuR\nhfGHPVtMOUkWFJiN3kWZk9UVnlTcDd+MloqmQgmBIyS/HR9xN2jhScW8yHDFzZiW71quMKPby05L\nXpeMizU/Cfc4TmdYQGA79J2IZZWZxUYNXy2PCKXLpFpjW5JS13ziD1hWGbe9LkpIjrIxAkPJD4TB\nYuy55nlqrZmUK8Pk0jX+FYipsAQCSdJkdJT5cPA2Hb5oSk6LIX3VxpcmULvQJZ7YvZEZ47/Dqk4o\ndcVxcUIsIipM0Pa8mjMrZ3yTfMOBs4+ybHwZICzJi+wpoYzwhIcnfHwRIiyB7yumqzm2UGTNmkPn\nPrfcT8l1imO5DKsjItmm1hUlOaFs0+iGeT3E38TrOCLYEVsApd6Mmb8lc+v7lBlN9r6T2Hq7Gp2g\nqd9pqP9rqR8F1/eoH/rAATieImyZ8c77GFxHj07p7H+3VdnvUr2DlrngeA7+5gW+PNmkLbebf5fA\n1bppWM1TwtijqmryrKSp9fbrsMle3IgT11NUZb3tvEzHK5J1BhtsRRT7ho10MiVu+yglt/DSyWiF\nbQui2Of0ZEpdNxRFies6fPaTvW3uIsAf/vAKPzBcrpOTGb/85R1OT2fcv99nPk8INl2wXjdCa81q\nlTOdrmlqzaAfozV0Nt28N5ysZpvHeClkhuMlrrLZ60fYtuSbx6d02gFSGr7SVTP8waC1I7byoiJJ\ni3d6uFZpTlHWSCH4/cPXKFsS+g5V1VDV9U73rHVFXFmWxV47oqxrnM3/iyOPumxoBR57nYjAc2hv\nxpfrrKCsGg678VYgLZKMrCivZSherX4cfNRoEKBpGlxl883JBRfLNfvv6JjdVG3Po2wahqs1Le/N\nyPXpeMIqL9iPzCjowXBIxzdeqbQsWZclkePQaM2j8Rhf2fSvoCGkEORVxav5jEma0vF8JmlKWlVE\njsPdVov/+PwpjdZ40iatTM6eIyWN1uyFBiFRNPVWqA3ThOP1ksMw4jxZ0/V8krrkq/EFd6IWvx4c\n0HJcHs7G+LaibBoidYlNMGKrbGrGWUqtNS3H5cCP6LYCvhme80Wrx72oQ98zzyOvKy6yFauyoELT\ncjySqqSlTMdvXCQkZYknjW9yXRXbDtJ3rd/OXtJRAa/SKb6wsYU0BPoy4zSb868693iZjknrklWT\nk9QFrrD50/KYe36fA9eIwUo3/H/svcmz5PZ17/nBPOecd66ZLFIkRZq2Wpb6ORyv4/Wie61oa+WN\n/wVvHQ7vbP8J3njjlRSOHqJftNsdtp4tWTJl0SLFqYo13XnIm3MiMQM/9AJ5s+6tW6wqUrRFd+ts\nKuomEokEkMDBOd/z+Z6mU6Z5yJbVxlYMmqpDJDI81WRahEve1nEyYT8eMEgneJrNin6ZTVVS0tIq\njVKVXI3onFtOkRT66ZiG6hGLFEPRCYoQS65QH8fpKZZsYso6MjKWYmLKBit6F13Wl4lZImKaWpOr\nZmUybSsOh+kB82KGX0wZZX0USWZWzPBUD1lSOBD3uTP5CFO2mBcz3EVCpUgqmmwsEzNZkrFkl2ne\nR0KuqruyTVkKCjLkJypDqmS8ULJVlgJfHD1XMP/vHQU+IJD/DScMv4z4dcL1S8SvesedxXngqRDi\nwlPo6HjMfBKw+fL6v+s2Bf5lE+zzJ5umqxeSKVGUxFGKW7M52h1iu+aFhOx8GEZVLbn7wT6NloOi\nKhimhmXpBPOEerO6ccqyRJaLyvswzbEWljtezSKOMmzXwDR0tq60qdUt6o0Ko3F+/1271iHLctIk\nx7R0Gg2HbrfGdBoSxSmWrbO9M2B1pY4/iwijjPW1OjXP4vBoxA9/co/XXt0gijOUBbPJsnQkqeJg\nffqwhxAlq90a7ZZLXlTJWKNm8/6dfTZXm8zmEfe3+3RazgXkw/HplEKUaKpClheVbiTJ0DWV8TRc\nTjHmRXVOGLpKu+7g2gbzKGG/NyErxKUpRaiStKPhDMfUmQQR+kJ3dnYMn6z6nIx9TkYzCiHozwIc\nQ2PkR4zmIe2a81zx+/5wir4wdX5WGIs2YtdzaDv255pgnIQRnmlUhPxz+7HrOhxNZ5haVdmaJQk1\nw6SkpD8PmcUxa4spQyRpOXEIVQXro9NTtup1ClFys9XCUFU8w8DRH9/A0jzHVBQEcL3eICsK3jna\nX+IikiLnznDAplfdyOqGyTxL0WSZKM+p6wYnwZxrtQZdy1nuf1WSMVSVSRKzPRuzZleaTVGWjJIQ\nU1XJRIEuq8yyBEmT2dIrNte96YAH/pAgT2kbDqfxnKBIKcsK7xAXVYIlSxJd0yEoUqZZTJRnHEYz\nGrp5iSifi2KBP7l4vD+YHtE1Lk6Grugekyzio9khmqKiSyq9ZMbD4JTfbt1AXZhUb5hNaqrFmlnH\nVDRuu2uYikYqciQk3p9t85KzhquaSFAlZorGfjzgJJ5Q1xwUZFzFICxibEWnobrMigh7AUd9fDwF\n29EJAH4RUlMdmppHURb00tESfqpJKu9OP6agoK66lcn6IuFSUdAljVE+IRYJ02JGUiQ8iB5RU2vI\nVBosUzZJRcrd6C7zfE5drVcwVBHhKB7XzFuUUkmymFwE2Gpu0Mw3EKIgLVOmxZC4DElEvPRbPIuz\npOs038VVG2iSQVbGBGKCKX/+ST6/OEZQoEkmCp9dsX5WpGIKlF+6UbUsWV/5ZAt+nXD9UvGr3nFP\nRlmWPPj5Nu2Nim4b+hG6qRHNY8wFVuFZcfjgsiH1F43TgzFe86KVxPmTTRSCwK8seExbR1Yq9IMk\nSZzsDcmy4oK9jygE/izCOEMhRCnD3oyNq232t/sYpoamK4wGPoalkyzApitrdVzPwrINPvrFHq5n\n8tEv9igl2Niq/CNPTqa880/3WFtvLD0QAeI44/69EybjEN3QWFtrkOcFjlNV4Q4ORlzZajObRVim\njqIpbKw1sG0D2zao1SxevrWKqioMR3PEwox6NA545+fbeK5JmhZsrNZRFJksLzjuTReVLRnHMjAN\ntSLU1yzyXCDJj22VXNvAMqrWnWlopFlOlgsMXeXD+8esdWrIciXc11SFeZQwncfUHBNDq5KvJ5Ot\neZQw9iNaNZu6Y6IqCp5lsHNS6bzOjuF4Xo32j+Zh1UqbR9xYaVF3LN57dMh6q4YoS1YaHsYLoCrM\nBVj1RS7isyjG1LTPjYs4mc1pWOYy2UryfNkWbNnWUqu14jpsj0cEacYrKx26TtV+PPb9ar+fS6Qk\nSWLFqRL8WZLgGZWt0c5kQnMx1ThPU37eO8LSKqaULMvsTMcYSmVeLUkShqIu7YEeTcekRUHTNNmZ\nTXil2eYonFPTDZqmxU+O9mhbNoM4wtN0BnHIhuNxEs5Zd7ylAP7utM/L9Q6uVrUjXVXnOJ3jSlU7\n1JQrcn0scpq6yWkScMWp4+cp+8EEP0tpmw4gYSrqkkRvq9ql6cQzM/FhWgndn5xcXDUvsvbGacgo\nDVAXvoi33RWMhTG3rRhM8wiJqs2oywpxmWMvwKe5KPjFbJ8P/X324wHfaNziKB7TT2a0tKqyZco6\nUgkbVhNNVnkYHhMWGY5q0tRcCgRNzeEkmRAVCYKSII9xVJOWVmM3PuGquYokSTwID2hrla7zTO8V\ni8oz8SX7ajUYID8G2WpydR7bisU0n2HKBm29RSwS8jJHlzVUSSUqIvbiPTaNDabFGKmUKcqCUATk\nIgMJ1owN9IW+S5VUplKPNBGEYo4u6SCVrGhb7CX3aWpd/GJUTSkqVeIeiIqyX1Mr4r0iaZiyS1BM\nEOTLqlZZCkrEMzVXhuyhSRZFmTIpdjDlxnO5WrNiG1nSURafU5QJsqQ8NeFKxbCy8PmCbetUPETC\n/kq3FX+dcP0S8avecU+GJEnLZAsq4ChI6KaObj3/icT2rKWoXgjBow/3aa1+sTZkrVXdhI52+niL\n6tv5ky2cx8wmIaatL5Oos+isN0jibKnPisOUo/0hoZ+QpZUIfzyYc/XWCqqq8OmHBziewcHOkLIs\ncT0TSa6eIrVzFbL9nQHd1Rpb1zqkSc7B/ojZNOLRgxPqTYe1hWn0WfizGMPU+OAXu2ysN0nTguGw\n0nH1TmdYts76egND17DtiqAeJxnzIKHmVdY3YZjw4ccH3H5pjf3DEY26zTxIePWlVWzboFm3ieIM\nWZY4OJ5U/KZFdW/qRxW5foG4mPgR6kJfdXa8z4emKhgLPlin6V747gCqoiySmsqOR1Vk0iy/0FIM\n4pRSAsfUubt/Ssutqkitms1+f8LGSp0wTJnOYyxDI0oyXMsgSDK2T4esN2u8tNFZWvOUZVnthySl\n7wcYmvrU9qEiSwz8cEl/f1Y8OB0yjRNa9rMnB88iLwTDMAOgLdIAACAASURBVERTFII0JRcFSV5w\nMJ3RXqxDlWVmSUIuKr/DU3/Ow+GIlmlSSpXYfhrHnM4DmpaFKssEaco8SbAXCZij64yiCEfXL+i4\n3u+d0DBMojxnxXFpmhaWqlIIUSU+iynCsiyZJDG2Wu2jhmHStRwO5jMUSUKXFUxVw9MNXN2AsuT+\nbMSq7eBpBqKEWZrg6Tq9aM51r3mhAlWUJS+tdMjigqIU/D9HD1Blmbfb6xiqRtd0eOiP+Fp9BUmS\n2HLqHEWzitWmPU7MKyschZ1gREO3mGYxvdinoVsMkoCWbj9TLA8gI+HnCW3DWZLlNVnBVQ1c1aCp\nVZOTjmKgL5AVnmoyTgPSsiAsUr5Rv8GsiNk0GjR1F0NSicuMNaOBn0eMsjlt3cNUdJKFNu2fJnfY\nMtvosoqjmDRUh1IqMSUdUzGWLdKO3lieWzXFRpGVZbKVi5z9uMdNa+uZ518/HYAk09Gra3ImMhzF\nwZRNemmPeTHHVh0MyeA4PV4gIArW9U0UScZVPebFDFMysRWHQX5C122zM9tGQmLNuIJfzFBQ2TRv\nVBqzsgKeGgvAqi5b2Mrl9p8kgSKpy9ZiVE5JymBp7xMUI/IyQpOfYh4vJjjyGjOxg/UZTKyzOPNU\nPAtFMj+zupWXMxTJ/sJw1FQco0qNXwJ6+m8fv064fon4Ve+454Vu6miGhm4+O9lKk4xf/OMd1q53\nl9UTSZKot59PLX9+SMuE6vzJphsaXsPmcKdCQJz3dsyzgt7RGNPS0XWVLCvQdKWyENIU6k2HetOm\ndzQmSwuu3OgsvBIdOqtVa8da8LqiKGHnQY88F3zywT6trsf2wx6mpbG/M+CNt66Q54KV9QbDwZz7\nd48ZjwP6/RlZVtBs2hi6SpYXhGHKjRtdbNugUXeo1ywsS6csYTia4zgG9bq9hJtCdbOPk4xO24Oy\nMtfutD36w/lSV9YbzGg3XBo1m0II8rzAMqu2o64/nsRzLJ3j0yl3Hp6w3q0jyxJHp9OlnuvOox5R\nktHwns6vSvOCWRgzDxMGk4BWzebR0ZB2/bH2T5Kqtp2qVKP75jlLIkmSaDUc7u31WW1UWjPHrGyG\nFLkSzNtmNW03CSImQcRgFtLybHrTOYamYi+Aq09GfxYwCWPa3kXh/EcHPTqeU1HMRYksS+RC0LSt\nZ9Lmz4egJCsKOq6z8EmU0JQKE3H2u/jZ/kE1IVjzKvp+GPL66iqWrpHmObIk0bJtGpbFOAzxDGPp\nHrAzHuMtRPx+muLq+gUqvavruFo1tNG0LH56fMCa4zFKIiQkGgs9WZClxEVB07TY86d0LYf9+Yym\nYWIoKndGfTbcGpM0pqYbDJMIV9OJ8oy4yOla9lJsXwKebnAwny4rTqfRHMVQICsZJ5Um65bX4qeD\nfbqmi6motA0bQUlNM/hg3KNt2HiawSAJqOuXWzamomEqKo2FNY8uK0udl58lZGVxgRB/FE1QZQVV\nkikoaWgWrvo40RFlyXvTA7asBrqsVhZGCzhmJnI+nB2wbtSoaza6rJKXBfvRkLpqE4gEAE+1GOch\nB/GQw3iIq5j8y+Qeb9Su8VbtRkX8T6fsxD2CPMFWdY4WZtVPtkiBS+3RtKyqT34RLqteohTkZX5h\n+UlWIQ+8BYnelA0MSSctU+aFv8Q/5GWOLmms6xskpBiyQV1tMMnHeHKNoTjFUTx02WQmDxmHU47S\nbTrqGnW1jS7ry/NYlbVlsgUQFGeJVPW7mhdDsjLBlD3GxTGWVFUeFVQUSbsAPB3nO7hK99y6+mRl\niKtUvo6m9PwK1+cJVXKfur6q+pY+t3KlSq1fc7hecBueFr9OuP6dohQlXsvFck32Pj2i3qk0Kl8k\n2UqTjChIlvDU89Wrs5Pt0Z0j6gs+WLPjXTLSTtOcIiuwHQNNVzk9HFNbTO71j6a0uh6yLFFSLrVf\neS6WLcndh6d4dZs8KwjmMbZtkKYZeVawvtFifatFrV7hHzRdZToNabVdZpMAStjcbDEc+Oi6Snel\nxrvvPmI6CUiTnHbboz/wCcOEzc0Wdz89RtdV6nUL266e5CaTENPUePjolJVujW672p+6pjCZhNQ8\nC0NXMXSNk37FUfrFJwfIikzdtfDcqqyuL/RK86CCv3663ePqRhNFVqi5xnKZs6pXq+7Qqn+2we7E\nDzEXOq5WzWYyj9jsPq5gBlFKEKfUnermGSYpxjnEw5mX4mQacjCcVsMGec40rKxsHhwPMDQV1zLI\nikrc7kcJnmXgmDqaqi7F90+Grim0XftSMrayIMLPooRpFOOZBp5pPJXN9VlxxsgCmCcptq5dqsB0\n3UoTBhX6YrNWW2q6gjTl2J/TcarKTXhORG+qKrMkwV6I3tu2fckc21QrobwoBU3TQlnoBK/VGySi\nIMwyHE1j159yrdagF8zJikqTd2d4SsusEoEtr86+PyUtcqZJwqbjEeQppqLi6Aa9cI6pqiQiXyAe\nwNUMHE1nlia0TZtuo3J7OI0CPN1gw6lR000GScA7p7schFPGScTefMJPB/u8Vl8hyFJmWWWEPU1j\noJrMNM+xtaZZzCyLaeiPq45ZWeBnMcexT9uofr8fz07oxY/Bo5qsME6jZQvy7ryHn0UV/FSSl7BU\nQ1ZJRVXZWjXrOIqx0G/t0jFqdAyPsEiYZAHvz/ZYN+oISmxFp6lVGquyLDlOJ6wZDeIiIShiVo0G\np8mEVaPJMJviKiaCElGK5b9PJlyqpOIqNp7qLKte43zKIBtXk6WyVumnFAtTNpcoCVmS2U12aakt\n6loDv/DRJI2aWqOXHaFjkIgIXTaYFGMm2QBZVlnTNzhNT0jLhPXaKl7WRlcMOvo6aRkzKQakZbic\nQry4rTqaZCy/gyoZaJK5SLKUpdVPVsakZYC+SMwkScKROxce1HXZQZF0BBmypD4z2UrEePGdn/1Q\nlJfBc8GnBXPycowqPVuo/5U3s+arnXB9ob0nhOCP//iP+e53v8vv//7vs7u7e+H1H/zgB3znO9/h\nu9/9Lt///vdf6D3/EWP/7iGhH73QsqquUlswrLqbj1uSRV4w6c8+1+eWoiTPimcuc/Wl1eVNfDKc\nMziZXnjdn4TYrrmcbty83iHPcqajgNaqy3hQaWnqDQfHMzBtHVWVOT4YAeB4JkVeYFo6jmvSaDls\nXmnzyutbvPfuI2aTgN1HfWynEtF3ujXmfsztVze59fIq3dUab/7GVbI852//5n1EKWh367z51lVa\nbYfNzSan/RmTSYBlaoRRyv7BiDTNiaKUKEopy5KrVy4CBBVFRlEkhuN5VbmSqwnE9bU6nY7HxmoN\n1zEQQjCaBJycTjnsTdg7HFGWJV+7tYauqRiGwnhWHduiEPz9Tz9dtBuf/ZPpNFw8u7oRz6OEeZhU\nVRpRedUZuop3zvT6s8TunbrDq1srtGsOnmViaAquqTOPE0Z+5aGoyjJBnGAbOkVZMg1iouSzLzSa\nUqEbRFk+9fW6bbLeqBJXUZZ8fNR75nd9WhxPZ5wsdFhPRpCmDOYBWV5wOL14zncch67zOJFddV38\nJOHdw0MUWealdruaCiwEWVHwcFSdh7kQy/dMkphRHKErCi8122x6FZF+xXKWFaGXGi38JOFgPqs8\nGdOEb65t0bUdgjxlnEQ8mo5oGhZRnvGDw22yomCURoiy5EatiaVqnIRzoCLN358OAejHwXJbHs5G\nTJKInfmY/WCGLsncmwy5ajf5zdYmHdOmYzn8VnsTTZaZ5ckyaRCU9CKfcRotj0UuBI6iXWg7Ariq\nQVCkXLOby79tWHU2zQZ13WacVhU+WYJZFrMdDBCUfLN5A0fVCIuUYVJ9l2kWossK1+0OqqSQipwf\nj+/zsr3O3fkBh9GIw3hEP/V5y7uCIWuYskYkUnRZ5Ya1wj+MPqIsq2OSIVg3Wowyn4bq0NBcrltr\nzIqQo7jPQTLgOBlwnI6IxcXzNln8PxM5w2wCQEtrICjRZI1e2gcqYb0h60xzn2k+4zTt01Ca9LJT\n4iLmJO4hSsEoG9FSu+TkKLJCKmJKBKv6FtvxPcqy5F/nP0FQJUL76SPsRfKhSyZxEZKLi9fccd4j\nEnNkSUaRVBJRHS/5nMWPcY4+r8s2rtK5sI6ndUWKMiErgwt/O9un50NGW3oyXtx3A7JyvnhfQSJO\nLy1zFrE4RpQJquRhyJufudyv48uJL5Rw/d3f/R1pmvK9732PP/zDP+TP/uzPlq9lWcaf/umf8pd/\n+Zf81V/9Fd/73vcYDAbPfM9/pAgmAfNxgCgEkR9he5/PiR0qj8WzKEuWN+MXDcPSaXQ+G5RYliWc\n+x3Xmg7NJ5bvrjdotC8+rcmKTFkKTo+nOJ7JdBxwelRd7GRJwq1ZbF5tc7Q/pH8yw7R07n18SBRU\nvK+/+d9/zke/2KXb9VA1lck4ZDSofvittkvveIIoBPWGw+H+iN7JlDQp+PZ/epm33rzObBLQO53y\ns589wrJ0fuc/vcJ8HjMczul2XE77MwYDn9E4oNv12D8YLejzEUmSAfDOu4/44O7hBQp8khbs7A2q\nKl0mODwe8U8/e4Bl6uRCYGjyoj0q4wcxOwcD4jijvdDFybLEWtfjsP84aQ3j6obwycOT5d+EqBKr\nNKvaHuNZxHq7Qnfc3asuepUR9eMn0p2TKtFLspxP9nqMF4bUZ6EqFUyz6dqkecHtjRWudOr8890d\nTqcVLHKl4SDKkkwImq69XN8sismLizeJwTykP7t4MX9ayJLEa+srz13uydAUhVvt1lNfi7OcTAii\nPONWu8X9wYD/4+M77IxG7E+mtOyLlcMgTTEUhR/t7C51X23bRlMU1rwKpfHO4T4PRkOCNOVarY6j\n6zwYj8iFQJRVxeW93jEfDnqkRcHubEJWClZsh4+GPQZRwDCpbpSrtsuq7fIbK+scBT6OpmNKCtM0\noa4ZaIuK3SiJlm2xUVqZUZ+Ec9as6ve0PR2z7Y95ud7h292r1DQdUcI3u5vkUuWduGJ6dM3KTPow\nmvFSrU3HrM43RZJYt2t4atXKHKcRvdhHXbQSn4yX3O4FW6C8LGgZFmVZsmXVK5RKnnA/OMWQVDaM\nOqqscM1uM8kC7gfVuSmoErugSPjEP+RvTz/kFWeNjJwts8P98IS27vG6t8VxOgYkNs32wpMw5r8O\n/pX/vvEKDdVmOzwhFwWmotNLxmRldTzCPKGl1XBVG0qBKqlcMVeWFHpY2KOlg+V5qJ+r4Fw3N3EV\nmw3jopWNq9g4ik1X69DQ6mhofDD/hHExRZXUih2Y+/SyE3RJp613WdM3SMuYV+zXOcr2uWHcRgGi\nIqStrnOaHVIupkHb2urCW/Fx1JUOprSYXC8L5sXoqef95w1ddrHkNqP8U0RZIMqccfHgwjJZGVKQ\nXtBunYUiOSic+W0qOMqNz/wsVXKR+OoK4P+/Fl+opfj973+fb37zm9y+fZu1tTX+/M//nD/4gz8A\n4P79+3z88cf83u/9Hoqi8PDhQ4QQvPfee5/5nmfFr7o0+GRUdPfKC7G9+fQby4uEPw7YvXOI5ZrL\n9uKXEY5j0D+ZMhn4uPXHpevz02bjgU+WFpeE9JqmUm+5iFzQaLkYpobtmjy4e8zqRoMsLYjClEbL\nod12F7qsOrZTTY3N5zGvvrZJveUw7M94/c0ruF514S+FYGWtzvHhGMetpjnDIKHRsHE9i97xlG9+\n6xbNpotl6dQWYn5NU8nzgnbb5drVTvWZKzVkuRLr67pKsrDNURSZNMu4dX2FsoQgiNk7GFKUgpW2\ny81rK2iaQpbnGLqGZWn0B3PmYYbr6Di2wWA8R4hKy9Rc7D9VVVhperRqj1lWB70JzZpNZ4HHABhM\nAuI0YzgNcSydZu0xUqHbeHyxnkcJ9/b7rDQrWr2uqSiyhK2r6KpK3w+QBUuh/V5/zDRIaLgWEnD/\neER/OkeIkqORz1anQZJmjOYhTddiGiXsDsbcOexTd0wORzNcs6LI96ZzNlu1FxLCf5FJJlvXGS88\nDZ8MzzDwDINBELI9HOPqBrc7bZq2xTAM+fnhEbqiUF/orQZRRNdxWPVcLO2iRnISxxiqStOyqs9T\nNdzF+ttW1Zb8x/0ddqcTfqO7yprrMksTSmDNcfHTmDDLudVsVZiDRQsTwE8TbtZbNAyTWZZgKAo/\nPN5FCMGmW8dSNRqGSVLkDOKQVbOqjjUMk2kaY9saL1ttduZj3h8dcbvRYZCE1HWTOM95rVlhKhxN\nJysEjmqwYjoLsKvCceTT1K3KWijyaWgmLeOz29j3/f7CHLtKApu6TVlWk4Yfzo7Q5Ur/dd1uM8pC\nTEXDkFWG6RxbqaCnsUjZCYd8Mj+mppjshAPerl8DSWLdqJOXgk2zyZbVxpA11owGj8IemSjYNFt4\nmokuV9twmvo4qklDc/GLCEPW6Oh1ZkXAbtyjobnEImPT7C4REE+edw11IbmQZIxFMiZKwXZ8QEu7\nPGR0xsU6O0d6aR9PdVnXVxEICqngINmjo3XIRE5dq5hfFfjUws9nbBhbaLJBw/EYh2NW9C1Osj1M\nySYUM+rqk9Wpx58nSfIl4fw0ryrEXxR0akqtheG1/BThfDWxKiETimP0C8wuadlm9It7qJKHIKEy\nsX7S3Nt4Zpuwqqxdnqwsy5JU/BxV3vhC3+3fMr7KLcUvlNrO53Nc9/ENRFEU8jxHVVXm8zneOYaO\n4zjM5/NnvudZ0WzaqJ+T6v1vGt0vJzlqNW1W12qYjnnJv+9FYjYOKsG7efnGtnW1zYNPYrrntjVN\nMrTFdF29Xt24NV0l8GOEEHjndEmKVFHp7/xin0bb5Te+cb1aLi9wXYOV1TqzSVgJ3tsu00mAH6a8\n8uo6V653GA8DfvwPd3n5lXW6XY/jozEP7p3wtTe2+MY3b3J6MsVzDSajOaIU7O8P+e1v3eLgYES/\nP6O7UieYx2xsNqnVTFoth+FwzupqnTBKzn2v6t9u1+PDTw65eqWJZWrsHYxotWyiOCdKM7rtGtev\ndcnyAiFKbjVWidMMU9eo1y2OTqa8/spGVclaqxNEKYosYRoaO4dDrm20+ODuEa/eWsFYVKe6TzkP\nul2PeZiQ5QXN2tNvkPMwwU8TXrm5Srfr0X3KMrMgxl4kSH6U8LWba8iyxKOTIQ3P4r9cfZmiKHhw\nNOJKt45j6szCBNszWOvUyfoTfnv9OtqC63U+bK/Sen2Z4ccJeSFoOhZ7wwmyqdA+Zw11toyj65SU\nTMqEdrsCkRqqys/2DhgnEd9+5TqZKOh2PXIhmEoZa14Fu90ejbnSqNOwTKIsRy5CVjoeuqLw8cd9\nXq53GWUx4zTm7Y11DFXlf+m+ycPRCFPXGYchjm3wRrN6SOp2PV7N1i4YYJ9FNK0GKnZnE16/skrT\ntOmJENvU6XRcTsNgiZfYLBt8Oh7QdhyCssCxLe6O+vzO5nW+1b6G2df4MDzlf7rxCpMkIjQKnLrB\nw8mIr3fW+HbTJC0K6sbjimy36/HxqMc1r8Fvda88c9/v+CO+1blBLsSFIQKAfuzTUT1eW9ng3rSH\nqqtsOk38LKbtuUz8iCCLWTFdumYNL7EqREUJfi9iKM1ZsWvUXZtJEPLI73GSTelaNa45bW46K6xb\njaVxdy03+Wn/Plv1FitGDVezCHKLYTrH1XVumiu8zhVyUdAUNq5qUZTic4FdV8rLDwtRETPNfNbM\n6tcU5hG3apsE+ZztcA9Htlk1V3ij8QqlgN1oF72xtUy6ANrlq0zTMU2jzWG4x2q7RSwi3jbfIipC\nknhEJJ9y1b71wtvaKi1k5GcmNH42ZJ73WbdefeH1no+yFKRCxlhYDuUiZp6d0DBeBqBTvo0kyYR5\nD03W0D4nGyzJTynJMdWLiVWY/AJT/9ZXlsv1tOvzVyG+UMLlui5B8LgtIYRYJk5PvhYEAZ7nPfM9\nz4rxOHzuMv+R4uhhj/ZGc4mGCJPnt3eeFrPRHMPSL/k2drseJ8cTmmsNjo8ny2T1cLtPZ71xqaoV\nRymHOwNu3F5bMsSCecz+boV/UA2VJC1QDQ1/nnB8OCY9Vx3b3e0z6s/Zutbh6GBEcr9HURRcudal\nBPp9H1VTsR2D//u/vs9//h9fxzA0hCjZ2xvS6risrzX43/7Xd3ntjU1M2+DOnUOuXevy9z/4BF1X\n+OY3b1KvO5yezlAVhY8/OaTbucgcisKEnZ0hk2mMKApsXafu2fQHM+Io4Z//5SHra3UUWaYsS8I4\nw3NM5lGCBAyHVeuzN6xsh9qNCl5apILBYE6RFwwHwSUMxJMRpzlZnvPpox63Ni8+Ec+jSm9lyioa\nMv3+Ra1TXlRUetVUGQzn+GGMZxscDGa8stllNApZdz1mk6oF1jJN8rhgGlf/9/2Yn/f3qTsmc+LP\n3MbQT575Hc5vjx8nNJ1nt82jLEOIkjzMKZKCmq4v9+dZHE5ndBwbQ1XRMokszbk/HiBLsDMa0zRN\n0iClZdv0+z5JnvPx4TE7mkYpQcM0uedX8FNdUdAzmXv7lY5nRbUJpjE5JbfsBrNxRLyg0t9stpiH\nEX4Uc5ynqLF0wfQ6OLefsqKgH4XMspifBnO+vX6FwSDgWMyoCY03nFX6fZ+TcI4cPpYBnIymvFRr\n8/HwmJe8Nt9c32IyDPhg3CMrCh7NRxxYY6ZpTE03CcYJ01nEz2Z7XPeaxEVOKCVIEnwyOeWNxipT\nP2SQqERq9aReadXKZXJzFmmaMYh87s373HLa9JMAU1Fp6lXCbyYq+yeV9vG0nDLOI17xVhmnAS1s\n9LwyUZ+GIf/Q/5TXvHVsVWc0Dbhpd5CFxGk0o6N6eOoCIRNlHIZjDFnjwaRH7dzk4avyFe6M9kmU\nnFHmV1ZbioVrWPR9n7vBPpnI+JpzlUkZ8q/+p9y2q6Sy8xQi/YuEKAVFKdNfaAeLsiAvC4Iixyua\n1JU6w9AHSZCWGSvyFqeDKSflmJraoJ/10CWdoJixbki0Wh3++eAnXDde5SF7SJJETdmgKHP6gU8i\nYrIyxlW+2Paej6Dw0aQm/fll3eOs2MeQ6i9AnJeBx+8vyiaH5R663Dy3jA2UF5YDKMucQNzBVb7+\nGeu2yMshWfGPqPIKmry1+PtNAjIge862/ftHt+tdurb+KrbhafGFNFy/+Zu/yQ9/+EMA3n//fW7f\nvr187datW+zu7jKZTEjTlHfffZe33377me/5/1N0NptPrUp93qi13GWy9eDDfYq80uoIIegdjAhm\nEePT2VJXtHmjeynZEqJE01Qc1+T0uNJqiUIQzGJMS6coLhL1syxHUmT2d/rsPqrK5VlSkGcFUZiw\ndbXN4NTnX995RKNlEQYJwby6oZ0cT7l2vbusesiyRHelhmXp+POY3/rGTYpcMB4FeJ5JmuZ87Wvr\nqKrMhx8fcOfOEYOhT7/vM/Mj/uVnj3i4fcoHHx0wHM25ca1L3aumt155aZ1Ox8N1DLqdWmV9ZOv8\n9OfbTGYReSFYX6mjawpxXFHjhSjJsoJ5ENNturgLYbuhq/QGM66sNZ+bbAGYukqWC1RZIS/EUutV\nCMF79w4oqaj1QpQEcUJvXF0Ytk9GDGcB8yhlvV3DswxsU8c1Ddaa1cTo61dXKYRg5IfsnI74h48e\n0pv4zOOE3sTHjxIajoUQgii9fCFM84KhH3I6m1967WlxJtZ+XuiKshTBu4bOo8GI7Ant2Ga9xsls\nziSKsTSNQRBSliWGorDmuIRZTmsxfSjKEkNV+c2NddqOjaEoRHnOzVZrWcVpmCaaIvPRaY/d6YS/\nffSQNC+YxjE/Pzni3mjA0eImVjdMbjSafL2zeiHZ8tOEv999SFLkpEXBNI2ZpjG3ai1eb62gywpd\ny2bD8XijXWmGJEli1b5o73U22WfJCj862aUfVSiDrzdXuV3v8F82bmEoKgfhFE2W6UVzBlGAp2r8\nn/t3GKch/SRYMsPu+0OuOA2cc2DTaRYzTC8/fDb1Cnx83W4xSiOamkVde5wgX7Ga1DSTuMywNZ1E\nVJOJZ6FKMppU4UlecVaZZCE11eKt+hV24zFH8YRH4Sn35sdoskJQxCQipaZa1FRr0cZ7vD2arPB1\n9xqaLLOf9PnX6QM2jQ7GYtKwq9e5aa4RFgmGorNpdHEV66nJ1plY/iyKsmCcTS8tJ0sy+qLtGBYh\nHwd3USUVBQUJGSRwFJuwCLhh3iQuIxzJw1PrRCJEKiEXGXGZMsh63PM/IcpjHsV3EaVApdr2M5yD\nIilov6QfYiYiIjHGUdrLqcUnw5DqZOXlY16WArHAY1xe74yiDHjRW3ssdrHkz9Z4AahSG1N5G1W6\nLKovy69ewvVVji+k4bp58yY/+tGP+Iu/+At+9KMf8Sd/8if8+Mc/5v333+fNN99kc3OTP/qjP+Kv\n//qv+c53vsO3v/3tp76n1Xq+BupX3Yv9MuN0f4iiKuhfckuntVpf4iUsU0O3DQxTw/EsRqezpbE1\nwPH+kCTOsF0Tfxoxn4asbjaXAFSkaiovS3ICP6a98vjpKo4yNq60cD2TetMh8BNUTaHd9Spvwg8P\nMAyN175+lcP9IQ/unbD98JRrN7sUeWUR0l2pc/fOIUKUXLnaYTSYM51G7GwPGA5m1cVbknj11XUM\nQ2N1tU6W5gzHIa5tkqQZN2+sUKtZuI7J+noddyGQn85C5kHK8em0Er03XUxDw9BVbEunLCVWuzXK\nsiTPBWVZomsKzbrNPIz56NNjXr+9jq6pxEnG6XCOJIFt6i+UbJ2FZWg0PIuT0Yz+JCSMU9KsoFmz\nmAUJNcdkGsR8+PCIKM1Yb9dpuhbuIsk60yCcmVHv9yc03IrS/s7dXfwwoVN3uLHSQpFkciGoWSam\nrpJkOR/tn9KtVdY0UZovMRHDeUghCjRFwdKfn/QrsvxCkFSAnj9nxavaFa5hPBVNEecZD4fVKPtW\nvUbdMjFVlVKS+K2tjcojb1GlMNXH8NZ/OTzkG5ublyyJTuZzTE1Fl2Wu1GrkpaBumjQME0fTea27\ncgmB0QvmZKLAUjXSouDBdMSa7TJNYj4e9tlwajRN+bUpZwAAIABJREFUi3dPj/DTlH/u7VcIC3fh\n+1cUPJyOaJoW+/MpRSm44tZ55E+YZykdy+G1tVUG04AfneywH0x4o7lKJgSP/BGeZvDQHxKJjFfr\nK5VFkWayF0yIRE5NNRgkc7as+oWHHVvVcFWDonyMw9gLxkiSxHY4xJJ1TpMZdc1CXwjo4yIjKwse\nhQNedlaq4QvdwVEf60tUWVkyvOq6zYpRW9ogKcgcRGOO4wmBSAiKhLrmUNdssrIgEznvTO6jSyqq\npCyZXTtRj6vWCi/bm6iSwrrZIihidFnFVgxK4H3/Plet1SUD7Lz1z1kcJ/2FLuzxuZqWGQoK/WyI\nqzxOfEfZuEqEZI221kKTVdIyxS9mCASBCJBLlUTEOLJDXEbERUxcxliyRVDOaaltutoaV5qblIlG\nU2tRUKBKKvrCm3GQHWPIFvqCwxUKH5nHU4kvHiUgPVX0fhZSKaNIOsoT2IesnJOUY3T5chWlJEOS\nNLSnvPa0UKUG8HTI84VtkSRKUtLyU1SpGqYRZUAm7iFL3lcKhPpV1nBJZfkZM+JfkfhVlwY/bwgh\nkGWZOEgwn9jpWZqjqPILs7dGvSmNjvdcu6DHn10yPp7Q3mxeem06muPWbT786SNuvLpOFCSsbjUp\nSy5obfK8YNibsXpuHaOBT54VrKxffAoNwwRFlhkNfGqNCpL63rvb/M7/8Br1pkMYxMRxTs0zOTmZ\n0u54eDWTOM44Phzz8iuV9+TPf77NoD/j5s1VNrdafPThHl9/8xqffHKA65rcuNHlJ+884PrVDodH\nY954Ywvb0knTnPk8xvMsjk+nbKw1mE5CkjRnc6O51MYVQnB4NKHbrgT5SZJRlvCDdz7lt9+8xnAa\nsrnWqMCihsZoEhAlWQVGhaV4/nxESUZv6HN947MfGnaOR9zd7fGt168xmkfcWGsxCxNMvbLYSbO8\n8rJ84vielcTFAkJ6PkZ+yP2jAasNl812naIsSdMM1zIvLRsmKZ8cnvKNm1Ub4Mef7vD2jY0ltf0s\nDkZT1hveU+n0lWff88XzaV58Jv8LYBLF7I4nFKJAliVutFqMFnBTS9MueCKefeZHvR4vtdv8t0eP\n+J/PVcQfjcesOg6nYUDdMLgzGOCnCZuex7rrYaraUgA/T1PmWcokjtAVFUfXaJs206QS3buaznu9\nIwxVxdF0NFmhphu4uk5aFPzs5IA3u2vszadsOTVsTWPXn7BiOfhZiq1qZKIgzDOiPOdrzS6Kp/Dw\naIi74Ib9t+NH/Oe1G5iKxmE4xVBUgqxyG7jtddgPp6xaDnXNRJUVHs2HpEXBuuVR1y+2c394us2r\nXoemYbMfTmjpFo5qoMkK0YKrpckV0uE0meMoOraqUwhBgUBBpkDwk9FD/rvGdVr6xWodwIezA65Y\nLf6m9wGDdMZbjatYks40D3m7fh1NVjiKx9wwOxwnE/wi5jWvOsdSkePnESfpmLIsedO7jqDkMB6w\nZXYXWBLBg+CAm/YGSZkRFgndp1S4UpE9NRkry5KkTJcG1QBhEWHIOsdpj5baRJEUIhESFykSJTIy\nURlRUHAc73PduklDbZKJbKnlysuMn/r/wO9u/S4PTneQqbwYj9Jt3nZ/t9qmIiYrUxy1SsCH+TGp\niFjXb37muf9FIxZTijJFk0zickxNufpLra8sBVk5QZWcJbxUiJy43EaTO2jS5fvG86IoJ4CM8hx+\n179nfJVbir8Gn34Jkac5cZigGRp3f/qANErxxwH1J3RGilJNtQgh8MfBJf3VkxGHKaatI72gn50k\nSVy7tXJpn0VhQugnOK5Jd6OBYWlkaY7tmpzsj8izgv2HfRpth8HJDChxaxbjgY8sy3g1C8d7LI7c\n3+6jGxq2bXB6PKXWsHA9C8e1MG2dKExxXZM8FygyHB9NeOVrG+w96uPPIlbX6niehSTB/v6Q6TTi\njTeusLHZIs8LBv05hSh57bVN2m2P7Z0+b339Ks2mw9ZWi37f57Tvk8QZk1lEvWax2q28Ev+vv/0A\nWZW5uvV4qmcw9Dkd+Ni2zsd3j4jTnNVujU7TwTQ1bEvHtQ00VWEwntOo2dQ9C8vUlubUT4amKtSc\nx55kZVly1K8sWvRFNazmmBi6SsOzGU8jBrOA9bbHbm9Mkmd4lnkp2SrLEtPUmM8TPtnr0ak5FxIp\nQ1PZbNcJ04xZFNObBqSZQNeqaccnt7HpWMvK0NVO4zONq83P8Fj85OiUjuc88+kXeGqydj4kqeKG\nbTbq+EnKes1jGISc+HO6bjWhl56BSE/7tG2LNc9DlWU2PO8SVf693jGDMOR2u4MoS15pd/jh3i63\nWy1OgoCGaSJLEidzn14wpyhLNEUmyXOCLONoPuP93hF7/oy2bXO91uQomLHueghKhlHEtj/mZr2F\nIstossyOP2Waxlxx63i6QU03KiDqgjAvSRKuqtGtuzwYDAmylKTIiYucVxsrjJKQVctly2kQFRl1\nzVzaEXmagbWwH2rqNoaiYqraUlCei4I7s1Pebm7gaAb3531ue11M5fEykyyiBAxFJReCkpKW7iAB\nB/GYR8GQruniqSY3zDbjPKR2rv2YFBn91OeWs4KpaDR1m1EyX0wgqlyzOzQ0G1VWGKQ+vWzKFatN\nXgpausvd4IDt8IRR5qNJKrIEh8mAEmjp3rKtKEkSsyJknPt09UaFiHjaObVodT4ZBQXjfIooBbpU\nEeC1BQhVl3QOkkNEKRatPxVd1piKKQYGDbWBLi38JGWbO/GH2LLDdnIPCZl1bZP1xipjf0ZORkdb\nY12/RiJiBAJVVonLAHPRBrRlD0/5/InKi8Q036amXEWVDXTpxSaLoWJvheIYTfKAkrTso0oOodhB\nlClIAnWBs/CLDxYMrrVnrxQoSp+yjJCQkZagWfMrR57/Kle4fp1wfQmRRClxkGC5Jp3NFrql09lo\nPvUHUpYlD97bRdVVnGcQywEsx3ihZEsUggcfHdBerT/1ZBscT2mt1FA1BVmRicOE0I/x6jZe3cay\nDXYfnqKoMmVZQU3zvCCJqtbjkxU2r24vhh4UHM9AN6rW12wWUltM5wVBQpEL1jaadBdtyWbLQZJl\nhn2fvd0+cVKwsdFkbb3BycmUKEz44P19Xrq9RqfjMZ1GpGmOYWhYls79+z0+fXDC6kqNq1faNBoO\nK93a0ptRWrQir24+TraSNCfPChRZxnMtSlGwulLH0FUsU2cepmiawmAU4LkmSZpjGOqFqk4FL+VS\ncvTk8Z3MQ3RNxVxsz9FghmPqeLZBu+5Qd0x2exNe2uxwf79Pq2ajKjJJli+tgybziFEQMZqEOJax\ntAE6iw+2j/l4r8e1lSZrTY+2ZzPwA0xDe2qb8CzBKsuSSRgzDeNKI3Vunc8ytD6j0H+eeNAfYuna\nheROleVK3zUcVVosVaHt2OxPpjRtC0vT+PCkx7Hv89b62oX9f+L7SFRJnSxJ+EnCveGIt1bXqBkG\nSVGwM51gLZKUQRTRsix0pTKOfqnZRpMrntb+bIqja8sK12+srLMzm1AgyAuBrek0TWvB8IJNt8Zx\n4LPueGy5NVYs90Lyt+NPOAimS19GW9VJlIKBX5lGb9g1gjzlutskKQre6R9wzW2QFgXzPGXFrJLZ\nROQXNFt+nqAs/BSh0il1DQdFrh7aukbVvt0LqxatqWg4qr7kcamyvDSinmQhYZ5y1W5iyBqxyJBl\nmeaiurUbDnFVE0WSGWUBohRYik5UpOxHI0KR8HXvCo5q4KoV1b2jeegLEvqaWVWIGqqDIenYqsFt\ndxNXtVg1GjQ1D1VSlsf0XnDATWsDWzHppWMkoCjFU9uKT4uP5vdwFIewCDFlA/Xc+1RZpa21GOVj\nbMXCVmz62YCrxlW2k0dokr6g2Ht4Wo01fRNDNgmKKik/yQ6wDYP703uokoon13mU3KWfHdFU2xiy\ntUy2zkdZCpIyeC4CIhIz8jJBe0qSMsn3UNCWLUTrHIX+8/0GS4JiB11uUIqCDB9NrqHLTRTJoiRD\nkarvYMhrqPKLefkW5QyBv0BJfLmymC8zfp1w/RLxq95xLxKari5hppIkoT7DEkWSJJqrddwFVDOY\nhvQPhtRazx/XHfdnyLKE+oSeSJIl2gsD7KedbJZjMDqdMR0F1Bo2mq5ewEAArF9p4daqqtPO/R6O\nZ1WU+CcqPPc+OaTd9bj/0SFRlDGbRuw9OsVyDOIoJZjHBEFCu+PRaDkVGyvNqxumqmDZOkmScnQ0\n5etvXWV3d8D9eydsbTX59N4xK6sN2m0HVVUYjgL29gboukp/4LO52WR3b4AoBI3m0wnt/b5PlhVY\npsbdByfUPYssKxhOw6q1eDLl5RuVBqEsS0aTkOEkZHO1gaLIWKa2gB1WF7hCCPaPx3iOuTS0/qzj\n6tkmUZxhmdUU5r39U9ba3rLypMgyzgL3oCkKn+z2WG16nE4C6gsdmmVoXN1ooUoyrqVz77Cy8jmD\npa41PQytotVrSuUTmRcCVala1aN5hK1f9vUsgUkQ0fYcDE19oTYhwN5wgq4qn1kZe1pEWUYuyqfq\nvyRJIs5z9idTPMPgeqvJj7Z3CdOEG60mddO8xPDqBwH9sPIlVGSJtBDoqkJJ5ZvopwnrrsdGrcbh\nfMb/y957PUlypVl+v+vXtQqZkbIUgOpGN7q3e6Y5O5wll0sj+cJX/gn85/i+ZuRybbnG4azN9kyr\naTRk6aqsVJGhlWv3ywePjMxEZRUKohcYEscMZgAiw8Pjhovj33e+c95rtcnWOq3QquOZXMPYBFbb\nuo5jmPxqex/XMNj3Q+K8YJjGbDvuOrdS8GQ+pm27NEx7Q3yezyc0rdrO4E+jU0LD5m7YpG25TNKE\nf3/0kPd72zSFjaCuNt32W0hNw9dNWpbDOI04i5f4urnelqJlORyupqRlwbLMsDSdwLBeWbtrv6lS\nzIuEnnUzKX68GHCazpFoPFqeE+o2bcNlWabIdesRatG/L+tomqwqSKqC0HDwdZs7bpfn8ZBxtqJl\n1rrAZZkwLSJCw2VVpvh6fex+OH/OMJ/zjrfDYTzgJB3SMgIexUcoJTZTjk3DX3++TkP3KFSJhoa8\n4mv1JnjSxZMOh+kJUkgKchzN5iQ9w9B0Pl8+RAl4Ej/l09Un3LZuc5i+YM/aI1MZUug40sXQDPIq\no5+dcmDdJTQaaAi6QZtOuU9UrciqlAPzHlLqtPTrJi6lqq9rQgjO8icIBPbaduEse4IvX5UbCMS1\nQOtp8RJ7TXhM4aNfaZN+HR+8+n0ajtyhUAuW1UN04WOsJx01oW/I1leFFB5SNL/XZAt+IFzfCN/1\nwt2Ex394Snv35jJyVVUsxkss9/Vl1uX0sp1o2gZB68tbNlBXsnRTf6Nv180Hm6DIa22WJjUefXxE\ns+NzfjLFckziKMW06pvc4GxG2KorX5PRkjTOcK8447e7AWma8+xJn8UsJs8LOt2AoqjY3W/TP5vV\n/SMFnl/fdD78w3NabZ/JZMVnnx2znKf89b+6T5oWzGYRgW+yWCQkcUaeFxwcdDYRPp1uwHavsalk\nHey3aYQus3mMv96vsqw2bTfXMXHWQeLtpodpSM4Gc/rDGcPhkn/zNz+69tQY+jbN0NnYZyilePR8\nQLe1JsCqNj4NXnMCXftd45Qky/Fdi8kiwrOtTWi1UoonxyN66+2WlWK7HeBY5oZs3fQbCgTdK8HX\nR8MpndDDNvRN0LRrmRwOpjQ8myTLN2HX144AIQgca1Mlels4po6lv74CdhNC236t2H4axQS2xW4Q\noEtJpRSPRqNa/9Tr3WiYGto2J/M573bqyqUpJfthSFaW5GXJMs8QAkLLwjdMkrLk2XTCrh/w7548\nZMcLsHSdw/mc/SBky/X4eHC+yV38aNjH1nV2PB+pSaQmiIqcA69BVOaU6zzHq2v56WSArmmMkoij\n5ZySCtcw+EV7B8PW+afTY+74TYZpxCrPCM26/ezoBg3TJi4L7oe1bcjLaEbbcvH0OqT6OJ7z68Fz\ndp1w02YEiIp6IuyizaaUolQKVzc5jCYE+mWL+zSegYIdJ2RZpLRMh366QBMaxtoZPjQcPp4fU6iK\njuVTqopAt7GlQVzmmJrOH2eHnKZTumZAw3D4aPaCW04HXUj+MHvCHad7KWpXilt2l0mxwpEW58mE\nuMq4bfVIVUa4bh2uypjqSkXL1AyWZcSqTPDkl/s6mZpRTx5qDlJoHKdn9MwuAniWvGCYj2joIcty\nwS/9X6KEop+dc9+pvakqVWBoBmmVsKqW9PNjClWwKhekKsZzXE4Xp/TMXWblmIbRJryhbbgox1Si\nwhAWjubjystKkaOFNwrp69ify4cXgYa+rnYJobEsT28Uw38dFGqJLfewXjFN/f82fiBc3wDf9cLd\nhMZW+Frh+8mTPvPhgvbOzR4tSinGZzOC1uVN9G1vZqZlvEK2qrJicDrFCx0mgwWdreCVNRNCYDsm\nmoBomTI+X2CYkrDpIqUgSwuG5zNePD7n7v0dzk+m2I7FZLQkaLjYX9CavXg6wA8dfvTBPp1uSLPl\n0Vh/nyB00DRBGLo8e3hGnOS89+MdlILDZ0OC0OFH7+8ipYauS2zbYDxeMZ8n7O610A1Jtxvguiaj\n8Qqpge/bm/WWUsM0deIkx1uT2qfPBzQa9RSfWP9z8b2rSnE+nJOlOe/d2yYMHKpKsYxq36P+Wqd2\nNpjhuRbLKEWTgrwoMQ2d8Tyi0/BYrBImswj/DcTrP/zDAw56TTzHqluzjrmpwgkhNmamAJ88O6Pp\nO9difi5wccGYRymdLxioDmYrTENSlhXDeUS4zm3MygIpNBR1O+mm6t/JZM48Tmqd2VuaCV+0sL4t\nmLrElPLa+dN0HM6XEbomOJ7P8UzzWkVNE4K2W9tDWLrOp4Nz2utK1IW4/XixQAiYJDFPZmN+0dvh\n2WxKy64nFi1dZ5LEfDo8516zxbPZmN+fHXMer0iLgtCyQQiaVj05+dl4wLP5hJ+2e0RFXle91oRJ\nCkHDtNn3QlqWw/FqRtN00IXgs+mA2+0mRVrRdepz4ulizIHXYJLGDJIVLcvB0w0KpVgVtfDelrUG\nSWoacZExTFa4hokrayH/WTznd5Mjepa/CbR+sDxn2wo2IeESwYPlOYsixdF0SgVbtr+pZpVK4ekW\ncZWTqrqK1bNCumuy9dnilJ4VEpc5f5g9p2P63PO22Lda/Njf5ZPlEUmZ1XFSVkiouwSGs472ifF0\nm0+WL1kUMaaQJFXJll0HXm+blwapuaqPVf0K8XCk9VZk6/KY0DA1g6RK2LG211OSJoEMGOZD3rHv\n4q6rWIUqMDWTQuVYwsCTPud5H0uzaegtmnqHQhWUoiBXOcKosHIfV/PxtABDmOQqJVPpNTsIW3M3\nrcGrJCquFpQUN7YNvwj9C39Tv++rx8VBncGoKNGETqGWGKJ5bQoyqc6QuN/q+fx9xA+E6xvgu164\nm/CmKcOw7b9CtpRSVGU9vSiE2JCtLM158dkJre2366HfCAFVUVEWJc8+Pead9/duXLOyqDg9HOM3\nHO7e3+b54z7SkLS3QmzXxDB1wmZ9c8+yOsR6706b4As3/CwtePjJEY2Wx1avwWSyYjaNCC9alAL6\nJxN0U2cyXtJoujSaHlITbO82MQ0doQmUqkO4j4/GNJsu7763zYPPTglDh0ajjsQ5P5+hlCCOsw3R\nuoB3pYLYbtWtjtP+bC04r72/dF3yycMT3rmzhaHr2LbB85ej2p05rzgfLXjxcoRtGTR8h0rVOp5e\nO8Cxa1f0i/aksSaHbxKH39vvEK6rVVdd3ldxttFilWXFPEq4t9u5kWzB5QXj//z9Azqhe80Zvh24\n2KaBaegbsiWEwNB1sqLWgpmGvLafcZZjSElRVQwXK5qe89aE69vGBTn47HzAll9Xdj3TZMf3sHWd\nQim2vMuHEaUUx/M5yzxH1zRMWQup/93jR/xqdw/BZWj1vh/waDxmy/WYZRk/7W7R83xGSYyuaZwt\nl7zX6lAqRdNy2PF8JknCvz64S9f1yKuqjvkpCt5ptFgVOYFh1saaleLFYkZ3TfQENbna90LuBC18\nw+TBbMSOE3CczHkxnfJu2GaURLzf3OLRYsS+G9K0nPU6SA5XU0ytrh6eRQuysuAwmvJe2OV+uIVC\n8Xw1ZccJWJUZrjTp2f6mctK1/M165lWFLQ22LB9fNwkNhxfxiKKqatKlaZiaxJMmXcvH0nRsWVeC\ns6ogKlNWZcY0j9ixQgwhWRUpqyrlaTygqbtoSALTZlws2bNahFfI1t+NP+G+t4utmbyI+ti6yS/D\ne2Sq4DgZ0jFDDFF/V1MzOEtHhPqrE5JfhnE+pVAlcRVTUtHQw2vELa4iemaPQPcxZa3XSqsMW7Pp\nmdusyhWP48/Zt24R6g1mxYQn8QPu2vWU4Wn6ghUTkjynUBnLao6p2Qg05uUEhdpYQlyFUhWj4riO\n91GgITe+XV8FN5GtSpXEaoyxbgUuy5coFPoXXN6X5XMUJYYWEFdn6MJnWT3GFG2EEJQqRlEC1Sb6\n500o1RSB3Ajk/7ngB8L1DfBdL9xXRTSPGZ1M8K9UsKK1CemFbusCUpffjGxR32wtx8SwDHZud157\nsJ2fTOnuhAQND01qeIGN49objVZZVJRFhR84hE2P9laAYeqMBwtWy2TTVtR1ye13eqiqFhU7jsnf\n/8dPuPPONlGUMp9GTCcrDFOiScGt2x3iJKN/NiNJC+IopX82o382Q9M1dEPSbvsYhk6r7RGENotF\ngqZpHB+PyYsKqddRMTe1Ug9fjqiU4uXLMYdHY24ftJlMI5IkJ/Bt4jinLCv2dpp1u9Ey8Dyb0Lfp\nND28dRvu9x+9oNcJ2WpflvM1ITZTirWu5/Vkazyr7Sjyoty0IS+wiGoCeEHUV0n2xnidi9/w/l4X\n37FYJVmtWVKKPz47IXTsWr8TJQwXKwK7nrB0TAPb0K/tZ6UUh8Mpbd/FMQ22Qp95nDCLUwL7u5ku\nivOCCoWuaXzaP2eZ5mwHPqau07Rt5kmCudanPRyNkJrGnWZzI1Z3DIO7jWbdJpxN+c3xMbt+wDhN\n2AsCftTp0vM8PhkOaDsOTdveZDQ2LJvfnB7TcVzuNurBloZlk1Ylg3iFrmkIVQc5b7v+pQhdSkCh\nCw1dk2RViSt1DCmZZymuYbLvhQzTiF8dHCALQWBY9d/pBpbUebma0VrbPAzSFc9XE+75LXSh8ens\nHEvq3As6aAj+aXKMpen8KKx1Q9MsoWU6CASKy7biLI+plGJWJNiajq7VhPQ4nuJKg/NsRdf0OIzG\na12WxTxPyFWJsxbVD9MFCsEdt/5sQ9OJq4xRsSIpMz4I9jlKRvSzGT2zwfveHqUqSaqco2TElhly\nx9liWSY8XtXZjb9o3EMKjcN4wK7Vpmn4PI6O6ZhrLRHimr/WmxCVMVGV1AJ5oTPIJ5wkfXpmm/N8\nRKj75FVdNcurgv97+neUVUFHbxOpiExlpFXKaXrMsloRyAYNo8E4H1NSsG3u4UiXXGVIDEoj5b7+\nS0zNomNsU6icUpWEson5muzBi1xDQzORQv9aZOv1UJRkpNUIRYUrt18hWwBS2BgiZFE+wpV7aJjk\naom1dpzXhYciQyDQ3kKHVakZQliIb/W7/PnxA+H6BviuF+6rYnA0xmu41zRcpm1syFaWZMTL5Fs3\nPwUo8gIpBHlx6Q6eZwWrRYztmESrFKnXwdu2YzI8m2E7Boq6XWnZBvEq5Xd//xDHtXB9C8ezrmm4\nACajBYP+nMOn55iWzu5Bh6DhYDsm82lEsxOw1QtJk5yyUMznMVla0Gi6OI7JVq/B7l6LRw/PCEOH\nMHR4eTgiCB0cx8T3bYSAp08HPHnU5y/+4jbuDZq46SwiijLC0GG5StnfaxF4Nk+eD6hU3Uo8O5+B\ngPkiwdDrSamirDg6ndBp+XXIdMOl2/Hpti7Fx48PB3iOdWNr7iaYhsS2DPKyQpd1dStKMl72p+xv\nNVjGGXGW4ztfnmV4ccHQNME8SjgezeiGHpVSZHmFodetwzQvsA0dx3pVJH8BIQRt/3qV0jEN/Bt0\nXn9OFGXF2XJJYFmcL5cUZYWp11OFqzxjFie03Xo/T+dLAstkFMccNBr0lyssvW4nXnyni38fRBGB\nZVKUFaFpca95OR3c87xrejVDk/RXSx6MR+z5PoNoxSRN2PHqvMa4KFhkKUoIjpcLQsvClJLT1ZIn\nsxH7fogpdRSKP43OKKsKU+pMsoTmOgsxNCyagUuVVPx+eMyW4+PoBkerGYu8DhCOqxxXmrwTtDE0\nyYvVlD0n5DxdMS9SerbPnhPSMC/Pu9CotVXzPCGtCtz1RGNW1RO4bdMlrQoWRYIrTRxpEBoOe06D\nj2YnzLOYW26LF9GYhuFgaJKkyilVxSyPiauMtukxSBdYmkHb9OiZIYsyYZbHdM2Q9/09QsMhqwrO\nshmutOiaYd0e1CRxmWFrJl0zZFIsaRoeSZUjRD2FuG91GOYzPGm/Ndm6gCa02j1eaJjC4OPoc+7Z\nd7A1i4qKJ9EzjtITTGFylpzyMHmIUpComKbexNUcFuUSA51pNcbUTELZwJU+83KCL8N1dWyXyox5\nMnuMb4Q4mouqKqTQMTQTITSSKiJX2bX2YqkKJuUp/p/BIkJRklQjfHkLXXt9u1ETBkJodWtR5cTV\nMabWRF9XxpRSSGFvyJZSBeqGYOrL7dV607T6GF3bvr5PSn1vW5PfZ8L1z4u6/jOAJgXccBxeGKJW\nlaIsvzwu5W0xOJ7Q2a2d5vO0IFomcEX/ohRUpeLscFiPk18xL7Vdg/GgNjXt7jSwHZOnD07XlaTX\n++EmcU67U1ejbLd2Yb9ol3Z7Dc77M3LP4sGnx/zlX73D7l6LZ4/7lIWiUBVFURE2XMqi5OysLtMH\noc10uuLjj47Y32+xf9Bmayvkgw8OWCxSGleE40VRkmUlValI1lqu++9ub16zTB0NQRRnWLZBXpaY\n6IynK6SULFfJxjm+Nh8VtBvXq4/v3b4pVvr4hoKUAAAgAElEQVQ64rSemjMNnePBjG7TI/RsVnHG\nZDTH0CXvrC0q2q8Js/4yVJVCcFkVu7t9eUEPnK9XofouLpSaJvBMgyjL2AkuTVYbdm37sN24rPTq\nUrDMcrKyRBOC97e6PBmPCazL75uXJVlZEmc577ba/Ienj5mlMf1oyX9z6861z1ZK8XIxZ8fzOZrP\n2fMDGpbDfzp+QNdxKcuKF4sZO55f68Skzu2gQbImYIeLGYFp4K+nBpVS3G90aJg2n00GvBO2mGYJ\nGjDPU6qVxjxPuB92mWcpcZGzyDPu+PU0Y6kqPp8OeC/sYEmdPad2d9c0gaObnMZzdp26EhQVGY40\nqKj1Xh3L48HiHFcauLpJaFySskwVoGCUrjhL57wfbAOC300OObCbfDg7pmf5RGVGx/SY5wVRmaFr\nkl2zyXEyxddtpkWEq5sMswUNvdZ5rcqUl/GQQHc5SUagYIZkWSbM8iXbVgtHmkRVSscM+GjxnDtO\nj1t2l6wqOEqGBNL5yo7shSpZlhEt44ogXdr8z53/Yf16wXFyxp69i6PZZGVGz9raaA97Zg+B4FH8\nCEGFLkxMzSKUTc7zMzrGFlvGDrN8zOP0c37m/mVtECt0rHUV6bw4Zt+8jL8RaMD1a7iioqO/Gn3z\nNsiq6LXxPgAVJZlavvG8rVRBqRIMzceV9X5YqnftPcvqIZ52d+ObVag5FTmW2L5xmwBC6Fjaz77w\nWRGFeokpfvxW3+8HXOKHCte3hPlogdRl7SQv5Wbq7+jhaT2S36+z5rzQwX7DBONXRZ4V2G49+m6Y\nOlvbjWtrJnUN2zXpbDdodLxNW6uqFMOzGTv7bZodH92Q5FnBYh7zk39x+xXbiKsIQof+6azWJVm1\nc7vtGGiahtQ1wobLeX/GwZ0uRVHi+TaOYzKdrtjZbdY5jUXFhx8e8ld//V4dzaNqS4deL6CqFFJq\nnPWn5HnJzk6D07MprmNubCZWUUq77WE7JtYVbdeDx33u3OowGMzZWWvp9rZbPHxyys9/ekAzdOi2\nfdpNj7Kq+OzRKZ5rk6Q5UmrX2nGzRUy+JnBfRJLmzBZxrS0zdHzHYjhd4tkm55MFZ8M5ZanoNG/W\nqWR5QVlVTJYx7hcqXlef0GzToOHalJX6znRX3waEqEOjh6uIUqnNNOI/Hr6k4dhkVYVcV65C28Y2\ndMIrBKvtXD7ZF1XF3x2+YDfw0aXGyWJOXlUYmuRvDm7xfDbD1Y2Nbu3ZbIKuCXzTYpom/KjdxTdN\nXsynzNKY99tbfDYZ0LRskrLA0DSWecaqyDHWQvbjaE5RVXRsl2mWMM9TfMPk08k5XdtjmEZ4uoGj\nm3XVOKtoWDYN0yYwLHbcYDNxWKkKBBuy9J8HLxhlER3Lw9dNzHXcjSYER9GM43iOLXVWZU5gWJwm\ncw7cV4dy4jLH0CTa+omvUoo/zI7IygJDk/zr7rscRhP2nSZKKZKqoGW62NLA1CTjLOLz1QmLIuG2\n09m0HJ9HQ87SKb60GecL3vV2sKWJoelsmSGfLo7wNBtHN/nd9BHW2mw0qlJC3a2d4auCfjbhlv3l\nDzJXoVCM8xlZlePKV6s7mtBwpU1cpkRVzFF+Qktvc8e+zY7Zo2W0WFZLYhXTlG127F1aehsNDVfz\ncKSLFJJcZSyLGbNixM+2fk6z3OZJ8ik6BtvmAf38EE+r45Z0oaNf0UDlVcph+imOCBgWLwnkV5sK\nnJdnWMJ/baWpJENDYmqX1kGlyjdCfaUUhYqoSDaGpvDqg5Wlda+1B6Vw0LAB9cpnJ9UTBBJN2Ne2\nE5d/xBD7aIQUaoCGjSL9Idrnhn24CT8Qrm+ALMmYns9wA4doHmNYBkVeG21exPoMjsbs3usRtLwv\ndZb/OjAtA1XVuVxCiDcebBdkK0sL+scTokVCp9dA0wTLed129IJLXVdV1VWum56sWh2fo+dDhAaj\nwZKt7cY1R/QgdHBcE8+3SdOCJM42BqZZVnB0NOZnP79VT22Ol7Q7AZZlYFk6o9GKqqrY2a5vKo5j\n0lnrvKDWR7muRVlWTGcxwbrlmeclSimCwOZ8uODOQYdeN+R8MOPdu9vY1pWLZFGiKkWWlbSaLk8P\nh3Ra3jWdmFprsW5qK0ZJjmFIgrVIXtMERVHiWAZFWSE0wa1ek0Wc4ljXL0ZH51Men4yw1hE/9hcI\n3Rd/wzQviLMc1zJ5fDrEt803WoN8nxFYFi8mU1ZpxjRJ+dnONm3XpWnb2DdYQtwETQj2ggDPNAks\niwo4CBr84fSU9zs1mfLXZG0cx2RVhViTkN+fnrDj+fimxdF8zt1Gi/0g5HbQIMqz2uF9rdtaZBnb\nno9rGNwOag2Zs9ZjxUVBWpa8G7Y5TyKkEDQth/NoiW5Jpsto46NVoXgwGxIYVq1bm5wzzRMOV1N6\ntk8/XeJKnXtBG21tdvpkOcKVBlu2T9N0EEDbclnkKbduIFsAjqz3bVGkVOrS/NSTFj8Nt/F0ix27\nbgEWqiIpc6Z5TGDUpqdxmXHL6bBt1bmUQsCf5i8ZZgu6ZsAtp0PHDMiqnNBwcaRJqSosoVNQa8Js\nzWJWxBzGAxKVoSFIqpxpueR979ZXPl40oeFLF3vtE/Yoek5nHcWzKJZMihkNPeSj5adsGW32rT1a\nRpNpMWNZLWjqTXKV1yHbaMzKCafpKSf5Ictywayc0DV6nGXHaEIn1Fvshts8nT5BIjnNDjlLD0Eo\nNCSOfPUBSihBqlY0jC6B1n4tcXodHK3xxvfUWY0GmtDJqgVJNSaqznC02lakJCJTY1y5R6FWKBTa\nW+quMnWOokB+QayvizbaDToxQ9tZC/DHlOocTfgoVpv24/cB32fC9c/zqv29gSCNa2+csBtg2gZS\nSppbIZP+jGgR8+4v7nzJNm5GsSYP8TIhjV9/8MwnK2ajJU8+OeJtYzENU9Lphfz4F7dJ1tueTyKU\nYmMBkaY5Lx73mY1Xr91OWdZBuh/84taGAMRRxqcfvdyQNYDVMmG5jFks4vrzDcl4uGS1SkmznK2t\nkNUq5ZOPX6JUTZxc18K2awIWBDa6Lomi9Nrn67ok9GuR/flgzqOnfbx1RM8vf3YLw5CsopSz4RzT\n0MiLklWU1pNvpxNO+jNeHI0oS4Wmaa8Ymzp2HXydZgWD8fLaa6FvE3o2nz492/y/F2cTBtN6He/t\ndtB1yWJ1fZ+hDsP+1Y/22W4Fr3hwXaCqFElWH1uuZdIN6wv9vV4dNZMX5Wt/l+8Ko1XEOIre+Ddx\nnlOhOFsucdbrfTpfEOf1d02LAqirWK/DLEmYJgmfDQcA7PoBHdflf/2Lv+TxdHztvV3XrQOyUUR5\nzq929zZVzL/a3eeDbm2Cq2saPdenYVrYuk5gWuhaHeL8bD5hlee01hOG2to+4ixeYkqdHcejados\n8pTzZFm3s8uCRZ4yz1OOVnN+0tzaELmTaAFV7cV2uJrys+YOSsDD+YBlXp+P94PupiKWlgVRmaOU\n4jz58oy4Lcuna3m8iMbsO01+0dqnY12/Ic7zpH5A0y3kmowaUqdhOJwlcz5eHLEoEn7VuMu/at/H\n0gyeROcAnGd1tX5VpPzv57+nbQb4uoNSYGqSXzbu8V+3foyJTssI2DIbbBkN/nby4Zfu+014nhyj\n1hIHAeRVfawEuk/P6HCSnqFQrMqYUT7mOD2hUAVdY4txMSHUQxzhcJy/pK13yVXOfxX8DT/zfom9\n1kTdsd/lrvUeu+YB/eSEhuzQM/axNAtTWmhKZ5Af3bh/Qmj4skNcLphW51/rO74JQmgbkbyGgcSm\npV+283Th4a1zFiuVocjfetuWtoOh3ZwHW1TD175P13oY2h5lNULSe+vP+/87fqhwfQMoBXma44YO\nTz98QXu3xfnLEZom+N3/9Sds36Iq1caF/ujRGYalY9zQovoizg6H6HptI6CU2rQovwjbtXB8m852\n40srXBcQQhCtEs5PpiRxRtjyMCyd/smEsOmRxBmf/O453d0mnd7rQ0kbLW9Djh4/PCNPC0bDRW14\nKmC5SBgO5jz45ISw4WIYkjB0am3FdshwsODf/tvf86Mf7RGGDju7TY6Oxty/v42UAsPQCUMXKWvt\nW78/o/GFVmf/fE6z5eLYJju9BkenEwLf5k+fHDMcLjg5n1HkJasop9lwieOM6SJmuUrZ6YXYtkG3\n5dNquNeqRrUr/ZRGUFcXELySVQjQaVya1vbWInx/3eJ9+PIcJRSmoV9771WRu1KKvCivfbbnWUxm\nK0aLS5+tC2ia4A9PjxhMl+y2vz+BsVBHH1m6/sZpTkNKtjwPxzBQ1JYQula/TxOCw+kM1zD48PSM\nbc9/JZB7ntREofbmqm+Wh/MZL2czLF3n3Vab57Ppxr6hv1ryx/4plYL/5+VzftLe4uVyTl6WvJhP\neTwdcbfR4rf9Y2yp83A6oufWYvuoKBjGKxqWzZZTDy3MstrH7Pl8ypbt4psWJRV/e/KcD1o9TCn5\n8U4Pp6wrZbbUaZo2szTm/zh+yJ4bsu34/Hp0yHtBm47lcp6uaBkOt7wmUhPX8gN/PTykQlFrKgVH\nyYxhumLHvpymHWURptColGKYrvD0upL2eDUkrXK6ls8sj5kXCQ8Wfc7TObfdNram4+r18MSiSFBV\nRVoVnKZTdswGbcujn875zfQJ77nbHMZDDFFbjhii1m2mVU7T8DhJx0Rlwu/nT3jH3WFexISGR9vw\nOUlHuNLmPXf/K5nuXqBlNMhUzqKIOM5O2TI6PIifEEif/zT5B86zIV29xePkOctyxY/d97ClTVwl\neNLlLDvD0z32zX3O8mPyKkPXdAI9pGVctv9epE/Iqoy+ekmSZgyLE9rGFrvmHUxp48sGaRVfi/ZJ\nqoi0WjErBnXygb7zlXVqb4tK5VSU6yzEm6wpSjRhsCifYojmNW+w+nVFwRwpbEq1Wmci3ryvSilK\nxkjxhil6pVOos3UlrPzeONB/nytcPxCubwBNarhhfdH3Wz5Sl4RtH03T2L7VxWu4nDzp0+jUr/lN\nF/M1YchfRLAmQaPTKYap39iOPHsx5PxkTGvr8sb7NgdbGmd8+ocX3H5vmxeP+himpCwqTEvHcS10\nQ240Xq1ucGP76pMPX/DJPx3iujbNjk+7G2C7Bp1uSKPpkud1Beb0ZMI77/Y4uN0hCGw++dNLTEvH\n9SyaTRfXtUjTnGbLI03r3ETTlDx63Gc4nJOmJe12TWpMsyagF5YLs3lMGDpYps54siLLSvZ2mvUN\nwdBYxRm399vcuVUHHHdadRD0s8Mhz4/GzBYxP3+/Fph+kSRoQmz0WdpaGH8TrrZbNU1c+2/PsfAs\n48bq2QWSrGA4W238uy5+wywtCNaWENNVcm2ysRt4dBoehpQcj6avkLLvClLT3ki2LlCUFfMkIS0L\nRqsY1zJ5OZ3RcV1ajoOuaRRVtSFUF6iU4my1wjVqp/GyUvzu5GT9mRVJUVsw+OsqFbC5wd9pNHF0\nnYbl0LZtPhqe8/PuNk3L4WS1YNcNGCUxHcdBF7Xfl6vXE7w91+M8XvGbsyN80+R4uWDL8Xi+nLLt\neDxbTAlME083OYuX3O22mSzq+J5clZRVxW9Hx/xVdx/PMBlnMU3dpmt7vIxm/Ly1w2/GR7Qsl2eL\nMZoAKQS6JjGERtNwiIqcsqrwDJP7fpd5kWzyCaOiboUKBHGZoRRkqsSXJgJBoUpC3caUOqG0sNc+\nXVeJwThb8dvpMxzdYpqveBYN+SA8oGE4aAjO8znbVpPPV8fctbc4SSdYQq+vdVaDLbNBXpX82N9H\nCo3Hq1PiIsPVTXpmE0sz6GcTTE2/5pv1NpgXS6bFAk+63HNuUamSaTGna7T57eKf2DG2+JH7Lofp\nS3bM7fU5KKiocKVDS29RqYon0SOepI/4bxv/PQ29ySA/R0NDExofrn5DUsaEeotu0CRLFJUomOZD\npNDJVUpepdjSQRfGZu1ylZJUK3zZRFGxKEd4WvPPMpgSVQM0oWN9Ifswq+ZUKidW5xgiIKvm5NUC\nJUp04dWvVccYwidXE3QRkqsRQpiv9eMSQlCpnKT8CEPsX/s+SlWk1Z/QRANFitRCKjVFE9+PB8Af\nCNc3wHe9cG+DLMnpvxjQ6NZPnZrUsBwT0zLY2m8j1zfbtwmivoqqqhidzdi5XT+FHT48xV4TIgDL\nNTAt8xoZe5uDTTckOwdtDFMijdoo0187ykfLlKpSBA0Hx7Pw/Jtv5o5jcutuj+Ui2WQmSnnpSl6U\nJXleEMU5O3vNzVTg0eGYvYMWul77LB2fTJhOVpiW5OxsxnQa4bq1wD7PFa2muzFVTZK6VH5hgJpn\n5Xo78PTFkJ2tEF2XpGnOgyd9drYaLFYJtl2TOMvUQdVu57NlzHYnoBG6yPX06NlwvtFkwc0VrauY\nL5MbBfUXMHSJaehvzGA0dIlrm9cqORe/YVaUDKYrXLsOpl4lGYPZkpbvYkjJy+GUv/v0GW3fJStL\n7BsyFL+PUCjyskTTBB+e9YmynNC2aF4RxjftV487IQRN28bSdez1P55hcKvRIClLQtPid2cnOLpO\ny663NYojJmlC03LY80M+HQ3Y8X1+vrXNLEuRmuDFbMqeH9B1PNq2s/H7Ol4tOF7OmGUJFXAraNCx\nPfrREkOTTLKEbcejqiosqdO2HZqmzUrkDOYrmqbFyWpBw7Q48Jq0LIcXqymWlGw7AYN0iabqDMyf\nNbc5ieaUSjFMIhZFRs/28Q0LW+q8jKZEZc6+2+DD2SmONHD02ibB1U2kqCObDqMJ/3HwkDtOm8Cw\naJgO/zh+jm/YoBS+YREal+s8z+NaeK4ZlMD7wQ5JkdMyPbaskAfLU247HVqGyyCb40qLhuFyls64\n7XRZlQmhXletJ/lyM9vctUI+Xb4kLXN2rTafR0dsm3V49lc9Rg2hk1cFtmZSUGIInbhK6JgtDqxd\nENDQAzzp8yx5TlKmdYuxWjHJpyyrJcfZMctqzrv2fRzd4VnyhG1jB1e6jIsB03xCU2+zax6QGku2\nOCApY6blFF3TsTUHXzZAqHUskbXet3rqMVcZtuZhSx9D+/NUekzNR15xpk+rKXF5TlydIDUbV9th\nWT6nUEui6gW2tkVFhi48NGEghY0uQtLqDBAY2pstLHJ1iqYC9C8QyDp1oQeiAiJ0rfe9IVvwA+H6\nRviuF+5tIHW5IVtVVTEfLbAck6d/OqTIS+bjFV7D+coXGiEEXuhsCJtpGRsxPoCU8pXK19sebNPh\nguPDEbsHdWj1BVnK0gIpNSzbYHA220T2XMVFdmEcpcRxhmEaRMuUPC8wLZ35LGJ0vqDR8tjfbwOq\n/n+jFX5g0+7UepJnT89pNT1+8sEBDx/0uXevh20btNsepmkghCJOao3Xcpmg6xqua1EUJZqmYVk6\n+npqUWoazbVTvqLWd1mmTrPhIoD//Nun7PYagOJ8PMexTG7ttbGukJSyVNeE9W9CVSlGX6hMfR1E\naUZ/vKDhOxRlxeFgyn6vnjTVpUbTd3DWjvS6puGsszTLqiJKc3aaAd3QJStKpquEsqo2f/99RKUU\nz8YTKhSuYdJ2HZqOTcfzvlJA9gX+/ZPH3Gs1eTye4JkmW25NPqUQpGWJJXXSsuSz0ZCoyDhazmiY\nNi3bJq8qQtPmt/1aI2RLySCOaNkO0zRBAHcbLQLToud4eEbdfvMMk9CyeDobcxot2PFCFkVGpcCU\nOrc6TWQuMKXOSTxnkWc0zZrI6UIwz1Im6Yp+vOKdoCZGn8z6/KTRo2HY9ByPru0hhcayyMjKglte\nk20nQEfw4fSUv2wfXGs9KqUYpxGfL8/5X/Z/gWdYzPKEfjonVwVPVkMyVbIsUyrqiB+ARZFiaJJp\nETPKl2xbIWfZjH+aveCu22XHbmJoOqamMy9jpJAsi5hZHtE0PDJV0M+mPFqdoqra62zbavIiOueW\n3eUdd4eSih2rhaF9tUzOzXdDkaiUUT4lVwWe7hJIDykkjrRp6Q0UiriK+cPyQ3bNHhk5ZVXQz/sY\nQqdttNk3D5iXM3KVs6X3MISJrum40ierUlKVUlLyTusun4w/JtBCPN1n17yNJjTGRZ+eeWtDti6g\nCcm06DMuT8mrCE+2/ywPPl/0vtKFjaU1cLRtFCU5c0wRYIoGhmjVAdbM0UWwifhZlY/RRQNzLbh/\nE3TRvka2CjUir85QZEgtQAgDKZok5R+RYusrDwv8ufAD4foG+K4X7quiKitWsxjHt/n47x/w7i/u\ncPTwhO5uC+1rTJbJK9WR46fnNDr+G0/mtz3YHM/CcU3MddBz/2RCtExpbwWbCtpNZAsgjlJWi4RB\nf4HfdBAopBQkSYHrWnz+6cnG+sEPbB4/7PPrv3/Izm6TO3cvT3TXNTd2EHt7LTzPZD6PsW2DKEqR\nUnLvXu0lk2UFUgp0XfL46Tmd9qUIWNclhqmTJjmmqaMqxWSyYhVn/OMfnjGZrvjlBwfESUZelHiO\nxd5OE+eK+eeDp30C375GuJI0RyleaalOFzEKtQmm/iYwdEnDX4uxNYGpS5oN98bfUKzbnJ8dnTOY\nLdGE4J2dDqau49kmgWPhvCY0+vuCtCgZJzF/Ou1zOJ3xL28foKjbjPa6ojhP042x6QXytSfXF4/9\nbc/DNgyyqgSh+IfjI04W87rSImCZZ+x4AfdbbQ6CBj9pb9G0HZRSfDYasO8H/Hxrh30/ZJzEdB0P\nc20nYes6ltQxtCthw0JgSb2eANQNpCa5EzTp2LW/lkCwUBlPx2O6tsuOExCaNrasycYki7F1nV8P\nXhKYJlITPF9O+VHQ2Wz3wi0e6ozMCoWhSeIyJ1Mlt5zGJk9xs65VwTiPeD/Y5jxdEBo2nm4S6Daa\nECgEUZnxF81bONLctFpd3UTXJL5u0TMD/mn6Aokkqwru2J1N/E9cZPzD5Al/2biDrzucZ3McaVBW\nJbftLR6sjrnr9PjbyUekZY5E8Hezj7nv7HGUjuiaX68CUqmKZ8kR+9YOLSMk0L06c/JKW3JcTMlV\nfa5uGR1MaXLXuk3HbONKF196tGWLhVpSVAUVJfv2AaNiQFzFnGQvsTQDU7N5mT6l528zXA54FH/M\nbeddPBkgkASy8VoHeQ2NeTGgpe9j3zDJ+E1RqpxZ+RTnhiDq2uXeQAoLQ/OJqiMcuYvUTAwRXG8H\nkhOXpxha8FbxPtc+BwcNDyHUtQlGKdo/2ELcsA834QfC9S1D02pdlxCCZjfADR127mx9LbJ1gdU8\nxrQMmt3gS5+c3krDleRUZYXtWuRZyfNHZygFe3fezj/GNHVc36a7HXJ8OCJsevVnKlX7ca0J0p17\nW8RRRllU/OpfvkOW5AThZTvjvD/n2dM+SZyTlyVFXmGaOmHocHg4ZmcnZDJZ4fs2pqlvtFtXydYF\n8nWsjr3WTF1oyFZJyru3txjPIjptn+FkyW8/fM6dgy7Guq25XKWXGq/1+uZFydlwzjJKsS3jmjVE\nccVN/tvGi/MJ3ZZPlhY3vr6MU/baIU3Poek511qRaV6Q5uX31q9rlWVoQrATBPykt0XDspinCR3X\n3fhyAZwsFjTt6/4/x4vFJkvxKixd549np2RFQdfx+Ou9A37cqY0vtz2fnudvhPzLLOX356cUqqLj\nuBzOZ2y7PnFZ1NE/lr3ZvillTXKKnFLVMURRkfNiMaVh2Tybj2laNgrFp+NzjlYz3mt0MKWkny+J\nkoy25ZJV5YZsXeDFagooorLgL9r7GJqGZ1jXiN0FTFmTvrQqOI2XnCRzuraP+YW/1TVJ03RY5gnT\nPKZl1pXdP85e1nojofjr9r3aYFUIzpI55hViB7AoEp7GQ4qqZJSvWFQJO3YDQ5P84+QxZ+kUWxq0\nDJ9Slfx6+gBH1k7vtjR519thx2jyNO4TlSm37S4tMyAtCxZljBAwK1b4N/hpvQ5CCCzNZJCPCfWb\nrQdc6eBIh8PkJZNiSsMIGeZDHkaP6BpdPlp+RM/cZpJPmBRjPvB+jhQSXwZ40qNjdElUiiM87tr3\nyYwlx4sjUBots4ul2TxI/khLbqGvHfJLVVzTwD1J/lg7zwvxrbvN59WKSfGEln7/tVUkIbQrvlwF\nUnPRhCSvZsgr5EgXPrrmIdSF5c/bXyuEEAihb8hWUb2kUgtK+kjx5RWz/1L4gXB9A3zXC/dVsRgv\nGZ2MsTyL/uGAsBN+LbK1nEUgat3X6HS6Cbz+MrzNwRYtE8qiFp9Hy4Ttg9r89AJJnDHsz/DDL78w\ndnshtmMShPXN37IM/MDm7GSMAlptn7DhUhQlcZQRhA7Png5otTwcx0Rogv1bHcajJXfvdvHWNg/D\n4YzFIiGKMnpvmJS8QFVVeJ7NdBaRFyWGoTObRez2GgzHSx48OUPTBK2mgxQa40nEcX/K/k6T/nCB\n71q4V9qzUtNoBg6NwHmFWJlG3cocTVckabHJW/w20A5cGqHz2t/wcDCl6TsYuiTO6kDni5v54WDG\nKs1o+W9/Q/sviSjLAEFWluRVyeFsxjiOKCtF06lbqpVS+Ka5zi68RMO2XyFbUIc2dxwHTQg+HPQx\n1l5Z5tox/oJAx0XOfzp6wSJL107zNnFRcB5HPJoOmaYxO+6r1eMHkyFxUdCwLMpK4RkG4yRhGK9o\n2w62NAkMi47t4hn18SNMjS3NIa1KJkmMb1jkVUlSFZzFS267LXJV8d9t38PQJJ/NBji6gW+8uTpZ\nojhwGptYn5tgSYOW6fL5rI8pJXe8Dr5uMckitu3L86hSFZY0rk0NlqriltMmrnIU8D9u/RRDkxRV\nyXE2ZssIGBUrdqwGhar4m9aPcaTFSTrBEDqfrg6Z5BEdI+B300fklCRVRssIOLC7WJqJK62vPKlo\nasY1snWaDRjnU5p6/X3G+RQpNHasbTKVs2P2SKqUUlXsWDsEus9ZdootHDKV0DY7mJrJMD/H1uqH\nY1tzsDUbqUnaQUiZaJjSpqJkUgy5bd2nICOqFtiax2n+nFC2GOenjMs+d60P8GSTUmV1gPW3iIqC\nZXWCL3ff2LarVE6pYmLVx5E7ACRVH2mLuOIAACAASURBVFO77tumCZOsGpBWJ5ja17d0EARoIkTX\nvpqZ7Z8bPxCub4DveuG+KizHxG95FFlBtIhp9Rpfq58fLRMGx2NavcZryVaW5tdajvB2B5tlm1i2\nQVVVPPv8FC+wMS2D+TQizwqkLnE965Vtvw6jwQLDlBw+H9JoubU/VtPjT79/getb6LrG44dnLOYx\nQcPhvD/Hdkwc1yRsuJimTq8XIjTB40dnjIYLbt/pEoYut29/edUtL0rOzmc0wrqtM53Ftb9XNyDP\n6xbiz396QP98TqXg7q0ut/fbdJsew+mS7a2A1SrD+5IEgNF0xTJK8daROubatPRqlSkvSoaTJa5t\nUlWKSimWcfpGcf1VVJXC91//GxZlRVlV2KbBcL7CWpM/gJbvfC/IVpznm2iVq7ANA1OXDKIV54sV\n277Hj3tbG7H8w9GISRzTXy3Z9t/OSPF8tUJoAtc08U2DPT+s43l0nS/mKDYth/vNNqM04eV8StNy\naFgmL+czftLZ2hCmCyyzjF0voOO4TNOEfrzEkJJt16dtOXi6yWlUTyx6hslHkz4vlzMKWbJt+Ahg\nktU2FhdZire8BmfJkvfDLr8dHrHvNUjKgqNoxoHbYJRGKOqMRENcruE/jA4pK0U/mVOoCu9KW/Aq\n6vYS/G9Hv+c9f4uzZEY/nePpJm3Drc0lhMCSl6HsFxhnS46TKQ3DxtVNTuMpgW5TqIp3vW0OnA7L\nImGWR1RCsW01cKXFJF/haRbzPEZqkp4ZElUZ/1PnF3i6w67dJq1yLM34ymTrJphCxxEWxrraVFFh\nasbadd7hLOtjC4tda5t5MaNrdLE1h1k55Wf+v8CRDuN8hC4MzoszNCBXGU+TB2yZOww5IU1KCnLu\n2PcxhIkmNBzNx9Zqu5FwXcWy/t/27jw6sqs+8Pj37e/Vq02lKm3drd7sxgsmYM+EyYw7LB6G8AcJ\nB8yx8UxzSBj7JASywPGBIXPsf+ZAnAxnMgkxxhACGDBLyBlMzhmYABkMhOOxHWxs7MZ2L2qptUtV\nqv2td/546upWq7S21FLD/fzVLZVUt+qWXv3q3t/9/RQHU7FRUJgJx+i/oAXQVtEUg4y2Z80cqZAW\nEW3S2n4i0aIdT2Eo2SUrXAB+PEtMhK0Nbnhb8ULK4ha/EIKYha6FUneCDLguwU4/cZtx6pkz5EtZ\nqrN1cqW1twG7sVNW57TjSs6emsZJ20sCo4282FRVpTiQ49knTzOwpweUJOF8emKB3tL6P6WNjcxi\nGBo9hTSjp2fJF1xMU2f/oVJSOX62ytxsnXyPi66p7B3upVptke5yAjIII/L5FD09aex1rhxpqkou\nm6JWb9NuhziOQamYxTR0Uo7FE0+fZr7S5Nojg7TbAbWGx2NPnUbXNUqFNLZlrBlsQVI/y3XO532p\nqrK8TlSjzUy5gWloVBttbFOn6QXL2vd0E8UxL52dZXiwsOIcuraJvZgUf6746Xy9RTsIcXdJ/tZk\ntY6t6ytuuc7WG9Q8n5Sp40dR0jxd00ibBnXPx9C0TiPrtZiaxkhlAccw+Pn8HPtz+RVLU1S8FoaW\nnGwMRZw0oZ6Z6pxGrPs+ezPnj9zPtBpYmk4QR8QiZk86S2qxGOnZRg1L1XFNk6rv0QwDDmcLpHWT\n4d4eYl/wxNxZZr0m1+RKlJw0RdvFUJP8qBers0RCoKkqacMkrVtkTRsvCtFVlZl2g4xhdratBuwM\nA06GeujhaAYZw1r1ujJgZ+g1Xeb8OlndIYyTSvCPlU+TNxxszeDp6hi2anbywRaCFq5msTdVQAAl\nK8O4V0kKe+oWtbDNicYUN+YPMmAlqyaxEPSZWVzdRlc1qmGDn9ZPE8Uxr8gdICYmiCIqUZ2cvjW5\nTbqid4ItoBNsAcwF86S1NLqi0RYemqJhqiaeaFMNF2jEDXr1XiIRktYy9OgF5oI5KsEsvWYfKS2N\nZsdM1CdZCOcZ9V+ioBWx1BSaqi17zhVFxVBN6lGZdtzAUMxlSfWXi6aYIDQa0QiW2gtoxLTQL6oC\nr+KgK+lOE+tLF+FFzwIhmtK9C8LlJAOuS7DTT9xm5PtyaLpG/oLVrUa1xcJMDXcd23TndAu2fC9g\nfmoBN+tQryZNmC+s7bXeF9vs5AKKmiShCyFwsza6oWMYOm7aQumyQrGS3lIWJ2XRbvn0FNKY1vnV\nnPm5OrVqm76+HKmURW8pi6qqXYMtgPRi38Vz2m0fXdeYLzcQQnTa+3QzM1tDVZUlOV4L1RYnR2Z5\n7b89gm0Z9ORT9Pa4i8nqNj0bSHw/94luNY5lUOpJU2t69BcyPD8yxYHB7pWcL6YqCsWcu/4LhgKG\nppJ3nV0TbAHkHHvV/Dbb0NmTy/Lz2TliAYVUUntL17Skcnsms+LPXkxXVTKmyVi1SsFOUewSqE3W\n61R9j9lWEz+K+e6Zk7xQnmOvm+VALs+TU+Mcyha4qX+I4+VZinaKII7w4oi8ZdMIfE7XKuRNOzmt\n5rUw1KQ9zny7yZCbJWUkqze2rvPt8ZfIKhZHckX2udlOADjdqqOpKrqiUgu9pKG1mydtWKSNJGg4\nWZtj1m9wVabIVLve6beoKSpeFBIJgaoonUba3SiKQo+ZSmpk2Vkasc+MX2evk2c41dNJhLdUg3YU\nUIvaZHSbOb9Ov5VDU1Xm/DolK0uvmcbVTGIErdhjwMrTiDzSejKucW+e0fYcg3YPU36V69xhQhFx\nKDVAwcxgKDoTfplDzsC65/Ri0WIDa2uNcgte7DPnz1OJKiyEC3iiTY/eg6maZLUcOT2Pq6aYCWaw\nVIsR7xR5PY8nPPzYo88cYiaYJNY9hjhMSktjYhISMOafYNw/xYC5vHNIM6rSjBcwFQdFVbBWaUS9\nGX5coxXPYaqr/12EokEtOk47nsJW+/HFHClt77Lbrec6thGKoqIpOQR1NGVr89c2QwZcl2Cnn7jN\n6PZi1nUN09bXvU23kqnReSzbxHEtsj0upm3Qbnroi4HIel9sqqpimgaaphL4IULA6IlpUq7J4z94\nEU1XVzyluBLLNpibqZHOnA+mUq5FtdJk73AvcSyoVBq4aZuR0zNYltGpz3WhkZFZMhkLUJiaqpJK\nJb0DDUPr9IO82PhEhd5CulPJ/hzbNij2pkktbgOeu9hEUYRjW52aXlttbKpMyjYZ6M0yMVvdUPmI\nlebQC0JeODtDud6iN5uUUbgSeyoaWlKwc08uS9FNoV8wp5tJ+J9vt3ANk325HHXfw9SWzulcO+lr\n2Jdy6XVSDGey3FDs55unX+BVfYMcyvdgqBoCONLT29n2ioXgVLWcJMcLgaVpnKiWGXIzGKrGZLPO\n2UaVqt9m0M0SxhGxAAwFPVbJGEn/vyfnzlKyXQRgL+aWHV+Y5WA6z1S7jq6quLpJJAStKMDRDezF\n/CpncfUpiCNGmhWGU3lqgdfp07iSRujz1MIoad1CAP1WJimlop0vg+JoBmndwtWTvKoe02UuqPPY\n/Ak0VUUsHvX04oBpr8qp1gwlK8uZ9hy9RhpNUamFLVQFamGLopnBFyFp3cInYt6vYStJE+uC0T1Y\nmPTmcBb7JK4kEjHt2MPRbM56k+iKtmSF6xxd0fBin5OtUzzXeI4haw8HnP3ExFSDKv+08F16jSIK\nkNXzgEJWz5FSk7mZD6dx1TT7e/ZRbTaYDs5SMobI6T0MWvvJa32dpPlqNJ9sJSoK9ajMVDhKLEJc\nNbdlAVcgmmiKgYqBoaTW3FJUFRNNcdDVDBoO7XgCW+vfkrEAxMIjaXS9/G9UUcxdEWyBDLguyU4/\ncVtFUZUNB1vdcrRM2yCVPX+Ca/rsPJXZOvnFOmDrfbHphtbZDku5FpZl0NuXxTB19l/Vt2aw5XsB\n42NlcvnzF5czp2ZQdZVMZukqnp0y0XWNublkBcpeLAqbWmEbz7J0yuUm09NVBgZy1OttPD9ctioW\nRTFRFHeKro6Ol0EslpsAJmeqGLqK54fUG96SbcO2FyZ1vLbhRF/LC5hdaOBHET2ZFAuNZPzuOpuX\nXzyHSV/FENs0KOXS9Ga3/tj55VRptTk1P08QxTTDgLSZPC81z2O8WiNjWsu2al+am8OLIibr9SSp\n/oIgrRkECJJk+++fGWEonVlS0ytnWtQCn7Rp0gh8AhFzplblZYUS/3fsNC8v9VNut0CBopO8ns+t\nVvXaSS/GvOVgaTp9jks98Jn3WkRxDAiuyiUlHWbbTX46P8nRAwcZLS9QsByeK09jqir9TgZ7MdDK\nmUmV+bzpJFuJhsnz1RkGnAw9loOuatiaviQ5XkGhaCUdFxqhv2yF64XaDI5mdE46znh1rk6XcHWL\ntG4RLLbtSWlLX4Pn2iQJIXi2dpaMblOJmuy1CxyvT9BrpukxXfJGiqKZoRzUOZzqx1SToDalWdSC\nNnnDxdZMdEUlo6dQgSlvgdmwzsvTwyhKErg1Iw/rgmBJAJZqrrriogCGYqApKq7mMOHPdBLmL9SK\n27RFm0POQa5NvQxN0QhFwM9bP0dDY799gD3WHjw8XNXFUi10RacdtxjxT3GVcy2WapPPpGk0PGph\nhWZcpSnqZNQsoRKiYyw+libWYsK9o6XRSZ4PS3O2LOCqRxNYShpF0dZd40pbbLNTj07h6vsRxJeU\np3VOJBYI4zkgRlVSeNHzCAI0Zf2r0ZfLbg64rryPx1eApPhpfe0briIKI8ZPTjM5MsvI8XFa9TaQ\nbDNeuMqj6xr7XzZ4SfcFSf2w+ZkqtYXVmw+fY1oGA0NL9+uHD5YYHFr+KWdmKulnODjUQ19/jiiM\naXZp6nyO45jYtkG53CCKYvJ5l0LP+W3CZtNjcnKByakqp88kDVYNU8OxDBwnubhMz1bJpm10Q6NY\nSNNXzDBXrjMxVebxnyS1uWzLWNJke6s4lsH1hwbIpx38IKTaaFHIdr8Il2vNNRtRB1HEVKX766np\n+TQ9Hz8MeXFi5Wazu0kYR2SspOjpc1Pnm/06erKq40XLS2I4hkHBcTjY07OsRlfBcehdDJTecPDw\nkhITkLypx0LQDH2aQUA7DLmh1I+tadi6xs/mpnENk147xVx76ev/dK1CI1h68c4aFn4UMttucLpW\nIWMmF9eClSJrWrxYmaNop2iFAX2OS948P/fX5ft4rjJNJGKCOMaPQ2qBzwH3/N/NnNdY9hyMNStU\n/KT5+4Cz/E3uqnRxSYAWixj9gjfprGHTa3YP1Ke9KrN+nRuyeylZGQ6l+rBUg+syeyiaaWIhCOOI\nKX8BVVGZ9haS51UIZvwqRSvLQtjEiwO8OEBFoRI2uT4zjKVqTHjzXe8XIKOn1tze8mKf+bACgKZo\n7LW6r9o4qs2g2Y9AoCkae+whDMXgoHWQrJ4lr+eoRgsU9RJCEfgiuQapisY1zvWM+qdQF98SdUXH\n0hwcNU2/vo9GXGfMO0Gw+DNZvXfJuD2RnCq3lK37MJTTh1EUDT+uUwlforlKM2mARjRKO5xjIfgZ\nmqoT0UTh/AcPIbqXmlmPSNRRiDv1tkIxAbFJKK6Ma85uIQOubSBiQbvRvqTfoekaB67dQ+CHFAZy\nWKnuqyOF/lWai65THAtO/nyCTC5FGMa0W+v7dHBhE+5atYUQgrOjc8RR3Pn6s0+P8v3vPEul0mTs\nzBwApqVTWqPUg+ta3HDDPs6Ol5ckp8exII6htzdNf1+G/ft6abUD5ubqpNMWbspCCMGpM7MEYcT0\nTA3PD6nV21SqLVzX5sc/OcVsuUEUx0xMV5ivNPCDzV+MulEUhXrTZ6HeZmquvmJO03rCPcvQaflB\n1+9FsSCKBaauc6i/gLfFj2M7FF2XoptmttnghoEBJqo1AGabTYpuCtdc/lrfk81i6fqSlS2AH42O\n8NjYKCMLZWLR/dlUFYUBN03DDxbbAZmowHgjOWEYhjFeFJIxTUZrVZ6dnSKMY1phQBiHne3Dc9qL\nwdCr+/byyuIg8+0mZa8FCPrsNNONGl4UcnxhhoxhUrRT1AKP07Uyk60aKd1gvFGl4rcWE+lV9AtW\n9PwoOaF4oWG3h7y5cv7nxaf//Dhizm9Q9puMtsrM+40Vf7ZoZigYLgtBEmymNJNG5NFvZYmF4Hh9\nAl3VOOCU2GsX2OMkOYnn8sAmvDJFM0s7Cvh/lRcYbc9iqDoLYZMDTj8DVnJ7SzXI6htf/UkC5uSa\nEouYFaa5oxJU+Mfy92hFLVpxi0bcYMQ7zUQwgVj8i4tF3Pmd9ajGqfaL7DMPdoIoRVEZsvZjaoun\nIRVBRsuvWPh00DxMTi0iiLt+/1JoikkQtzFZ/eSupSZdPQytQE6/HkcdWtIKqBGfIBYhQgjEWk/i\nRUx1D6Z2oNPM2lSvTpYepQ2RW4rbQFVV3NylLyvHcUzoh+R60yvmLl1sM8upiqJQKGXRNBWv5TNy\nYop0NkkAXet+x0fnkpISCy1SrsX05ALZXApNT34uX3C55vo92I6BaemdnKkwjPAXeyFeLAwj4lhg\nWTo9PS6jo3O0F6vIx7GgstAkl0uSgjVNRSHZIs1mHOJYoKoKewd7sEwdN2XxwktT/OSZM+RzDoN9\neZqez56BHsYnK/SXsqiqQrMVLKnDdamabZ9as02pJ1kh6M12/yTvWMayU3Xn5rBSbyX5TqpCaYXk\nfsvQsYzzjZqfH5umJ22vq4n0TlJVBUNLDmykLbPzOC1NX7adCHCqXEZX1WWrW+0wpNxuk7UsJusN\n+tyVVxiaQcB8u814o0af6zKUypA1Lap+Gz+K6Eu5zLSaXN/bh66q1HyPx6bGyZs2KcPAWTyhqCkq\nrp4U2PUXK+Bbms6816LXTvFsdZrIj8hbqU6LHkvTyZhJLa+kmGpMzrSxNA1bN9AvKGRqqlonsX2z\nWlGy0pQ1bAqmi3PRVqIXBYQiRl88eScQzPsNsosnGJuRR3qxZlbJSlbUJr0KKW3p6UhHM+k1Mxiq\nzrg3jxCw1yliKhq1sEnJzC0prtqNHwdLKsdf7FyzaxWVQARUoipprfv11Ys9YqDfKGFpJm3RZsAc\noKD14uppsnqWCX8CQUQ1qpBbbDqdUl2cxd954TU0FjELUZkevYSm6BjKytufs+Eoea3/kuatG1XR\nSKlFtC55a0tvZ6KrKewV6mKZahFFUfHERNKeR9nYe1QsGsS0URULTcktFlfd2gMCW+EXbkux3W7z\nvve9jzvuuIM777yT+fnlS8af/exnefvb387b3/52Pv7xjwPJEvTRo0c5duwYx44d42Mf+9hm7v6K\n1W54+F73lYpu4igmDKJ1B1tbIZ1zKPXnabd8FuZX/lR8TrEvi2npDAzlOX1yGoGCYV7w5mHqtL2A\nJx47uSRny/dCGvXuq4DtdkC12mJ+vo7vB1RrLTwvYHyigqoqDA6c38r0/bDTCFsIwYsnpzrfU5Rk\nZezaI4O85t8e4cihAWbnaxzaV2KwL4dpaGRcm2zaoe0HW7bK1Wz7lKtNDg71cnZmgYMDBfw1tg0v\ndO7TZxBGRBv8JNqXc9mGXdItpyoKKcMgFgJl8aNyyjBWXAncn8+TsZZfxFKGQca0UFDZk80QxjFP\nTo4vu50fRZytVwFB3rJpBgGmrjPdaiyWY4hIGSY39g12VtEKdopb9h5iXyZHj3V+dSnJ7zKYb7fQ\nVJWi45I2TFwjadXzK32DZCwbQ9Wo+ue3zjVFJWfa5E2bs60a016T6XZz2crcWiUf1mPAzlCy0p1c\nq4u14oB2fP5apCkqe5weFoIWc16tE+RAsh0759cwFZ1m5C1bHWlHPuPteQbMHlRVJaM5QFIhXlNU\nqovbjd0IITjrzaz6WHwRcMabIBABpmrQb65c1bwRNUlrKfbae6hGVQbNQSIRMR/NUwurBHFAK65T\nMIrk9GQbtxotMOqfxIuXX49MxUSI5G/XUd1Vc6mGzKu3rXn8enK4QtFEiJhJ/3u0o2Q3YSF8FiGW\nrrrZ6tC6eileLBIVQrHy9rC0tk29kz/88MMcOXKEL33pS7zlLW/h/vvvX/L90dFRHnnkEb785S/z\n1a9+lR/+8IccP36cM2fOcP311/PQQw/x0EMP8YEPfGBLHsRuNfbCBNEFb7Reyydorz/g0g2dgf2X\nt2WCrmsUB3IUihl611Hh3bTOfxLft7+XQ4f7ll10KvNNrr1+aMmFOuVa9Ba7J1ym0zbFYgZNUwnD\nmHK5ieOYDO8rLFsRm5qu4vshU9NVhICXXbX8+LmqKmQzDifPzKCoCtMzC0zPVLnqQF8nf6rYk8bY\nogR6xzLoK2SYrdRJWQbz9SazK+RgdXN6sky12aaUT2/41F5/PtPpSXglKKRS6xrvSgUziykXW9co\n2Em/wrO1atcVlalmnSM9Ra7qSXJvclZyAMM1TJ6dnyIUy7eCYiEYb9RWHFPJcVGAJ6bPcrI632mV\nc02hjyCOGamV0S8at6oo6KpGLGKmWlUW/BZ+vPXbwJqytKxLJGKaUfKpvxn5zPn1pP/kMoKFsEXO\nOH/aNxQRp5uzuLrFWHuehXBpnpupGkkJCFVj2Orl581x8obLkJ1sJVbDRmf77mKKonDQGVr1sViq\nyfXu1aQ0hzFvkmCV56tg9GCrydwOmUOLP28RxSGe8GhEdQ47RxYfaYwvPPJagSPOy5cEXK0oGbOh\nWvSZy0sr7EZ+XCYmwFWGMRZzyXL6y7ekqXQsPCJRx1A2X95D2mTA9eSTT3L06FEAfv3Xf50f//jH\nS74/MDDApz/9aTQtWXkIwxDLsvjZz37G1NQUx44d48477+TkyZOX/gh2sd7BPEJAuNjXL1fMbMlW\n43abGJ2jWV85qf2cKIp56fnzqwmmaeB5AVG09OJ68HAfJ1+a3lDewKlTMziOSTptc/XVA3h+yMlT\nM1QWmszMnn8T3Le3gGnqHBju7boVBXB6dI5qvcVVB/pIpyxKvVl6e9LUmx6VavLmYVuXtoVzMUPX\nqDU9MikbQ9PozS3Pv5gq15Y9VwAHBwtkU0tPZDbaV97WejexEDwzObX2DdfJ1nWuK/UhFHhi8ixC\nCAa7VKnfl8mhKQonyvMc6eml3G7x9RefY086yxv3X02fnabcTvIQL1xx2pde/UNH1kza9gymMhiL\nK2NPz0ygAcPp/LLXVCRiji/McHP/fq7L9nF1tkg18FbMP9sqx2tTjLeSZHdT0SgZGXL68lIlOSPF\nIbevszImhMBUdW7KH8RSDfbahSWnDOthm/mgRjvyk7IXusU17p4lv9NWza5bhtWwwbiXJF23Io+5\nYGHNx7Hf3oOxwqrdSmIRo6rJKcW8kaxq1aMa094kzzaexlYdmnGTk60XmfKT61kjrhItJpmf9U5t\n6P42QghBO177ca9HStuDplhkjKvQ1K2t+q5gYqr7dk01+SvVmq/cr33ta3zuc59b8rXe3l4ymXNl\nCFxqtaWfAg3DoFAoIITgz/7sz7juuus4ePAgs7Oz3HXXXbzpTW/iiSee4O677+brX//6Fj6c3cXJ\nOFSmkz+mfN+lJ7d3I4Sg1fBIrVBIdDP2rHNVTdNUDl+z9IRks+ljGPqy+lD/6tWHNzSG/ft78f2Q\nEyem2b8/CabCxf6PG034HBrIMT5ZYXJqgZ5cimzWZnJmgULeJb/C6cFLMTFXxTENDg4lbYlWKgdh\n6ssrV3cTxTEzCw3cdVSr3+1UReGGgX5emp1jMJtZliBfbrXI2faGWsC0w5AzlQpDbpYD+ZVrATmG\nwdWFZE68KOIth69BVRROVcsEcczpaoWcZWFpOnvSWcI4puK1O6cQu7E0nV8bGE4CqcoM1/f0c2Pf\nEGfiMs5FTashWXn6lcIgURzjEaN36l1tr2szA53nVFc1shcl4DcijyAOyRsuz1THuCGbrOq81Jxi\n2OntBFnpi4I0TVGpR20MRSNvuDiYVMMmGc0hFBGGqlM0u1/7srpLdrH6vKHqOKyvQvuMP4elmmT1\n9ZUkUBWVvdbSVSpd0XE0lx69iEDwYvM5HNWlqCcnIMUFx1kGzH3rup/NEMSEogVsz/vDVklaRu3+\nxYLdThEbffcC3vve93LXXXfxile8glqtxjve8Q7+4R/+YcltPM/jwx/+MK7rcu+996JpGq1WC03T\nMBcvskePHuXRRx9d9U0nDLsnVkuJwA+ZGptn76HNNyHdbVotn5mZGkEQceBAEU1Tqdfb1GptBgfX\n3zrC80PGzs5z+GDy3JwanSUIIkq9GXRNoVJtMdiXu2JeX1GcNHc2NI0z0xWG+3a+jcZWGC1XyNg2\nURTx2Jkx/sM1Vy87jbiaM+UKKFD1PF7ev75Cj14YMtmosz+XJ4iiJXW7tsJYbQFVURhaYYXs+flp\nXtZT2pLegutVC9qoSlJk9WLtKCCMI9LGxj64xSKmHnrYmtFZFRtrzjJg9/BibYJrc1u/HReLGIXV\nq6WfaowwZA9gaRbT7RmyRibZWhQR+gUrZI2wTi2s0QjqDNp7SBm7J6gIYx99jer60pVlU8keN954\nI9///vd5xStewaOPPspNN9205PtCCN7znvfw6le/mrvuuqvz9Y9//OPk83nuvPNOjh8/zuDg4Jqf\n8Mvl9dWF+mVmZRxmZpJVxlIp0/n3lSqOBZqm4jgm8xck7uu6tuHH5lhm52dcy0SxFUI/ou4F1Bse\nZWP3vb5WmsNKo0XbDxnoydCse8woV/Y8n6NFUG01GalU2GtnKM+tfVjjQkqYtLvp11Lren20woCx\nWpWik2LGX/n2YRzxj6MnuXlweNVVrouVShmsdhIwzrSW/v7JVo0BJ0MRh7nZOmEccbJe5kh2+3M1\nq0E7aQukr/xYWqw/x/QcIQTPNke52k1Wuy0syo0mRXI7di1KU6Da9AEfP1ZYUDx8UaMWVSkZSz+c\naqTJkqbRjmhQo1TKMDY1g7W4LXfWO8mgeWDVavhbrRFNU4+mKBnXoq5QikLqbje8B5ZK3VdfN7XC\n1Wq1+OAHP8jMzAyGYfCxj32MUqnE3/7t3zI8PEwcx7z//e/nla98Zedn3v/+93Po0CHuvvtums0m\nmqZxzz33cPjw6ltNO/3EXWl2bcu5lwAAB7pJREFUw4tNujS/rHMYRvGqPRhX8tOpSYpuaslq0nSj\nQRhHDGW6rzCFcUwYx9i6zlSjToxg0N2aqtmrzd+5gOtCXhRiafJNdbfoLbr8bPwFBswkF02IeEsS\nzzciEgEKKuoq5TKk7nbD9XOlgGtTryLHcfjLv/xLHn74YT7/+c9TKiV1P377t3+bW265hTe84Q08\n88wzndOIDz30EK961avI5XI8+OCDfOELX+Bzn/vcmsGWtD7vfN29G85rWs2xW+7b9O/7j2/+H51/\nb+WY1nLuvm591yeWfe9t735gyVjeeucDl3Vsm/XG//rpnR7CZfXvP/WZNW/zur/59LK5e1lvkYGL\ngqU+1+Wd/+sry37+tV/8FEIIzlQrvOZrn2GqWacv5W5ZsLWWi4MtIQQ3/58HO//erNf+0/9c8zav\n+8Hqf5uv//F/39R9CyF48798ZFM/u5P+y8j7Os/Dn4y8t/NvVVH5xNR/69xuO4MtIQSfm7112dc1\nxZDB1i+g3V0dUVrTO3/1XmjAiz8d3ZLfd+yW+wB48bmzG/7ZC4OthUqTqYnKloxpPU6dmcVbrHHW\nLei69T9/koVqi7fe+QAAx09MXraxXYpflqDr5gc+TUiyyrUaD/h3n/mbJQGDpevLcqH+zUOfos7S\nwOLVX/wULeBsvUrKSHJjfvMbX2K0tjWnxDbjV7+VvFb/9f++n59WNvearPgtPODX1gi6QuDoYtA1\n0V5g1j9fqmSzwRbAb/7ko5v+2Z026p/mT0beC8BsmJyefc+//KfLct9+3ODzc2+/LPcl7Q6b2lK8\nnHZ6afBKsxuWU6VLI+fwyibn78om5+/Kthvmb0u3FCVJkiRJkqT1kwGXJEmSJEnSNpMBlyRJkiRJ\n0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNpMBlyRJ\nkiRJ0jaTAZckSZIkSdI2kwGXJEmSJEnSNtv1vRQlSZIkSZKudHKFS5IkSZIkaZvJgEuSJEmSJGmb\nyYBLkiRJkiRpm8mAS5IkSZIkaZvJgEuSJEmSJGmbyYBLkiRJkiRpm8mA6wr09NNPc+zYsWVf/973\nvsfb3vY2brvtNr761a8CEAQBH/jAB7j99tu54447OHHixOUernSRleYPoNVqcfvtt3fmKY5j7rnn\nHm677TaOHTvGyMjI5Ryq1MVG5i8IAu6++27uuOMObr31Vr773e9ezqFKXWxk/s6Zm5vjNa95jbx+\n7hIbncNPfvKT3Hbbbbz1rW/la1/72uUa5jL6jt2ztCmf+tSneOSRR3AcZ8nXgyDgox/9KH/3d3+H\n4zi84x3v4PWvfz1PPfUUYRjy5S9/mR/96Ef8xV/8BX/1V3+1Q6OXVpo/gGeeeYZ7772Xqampzte+\n853v4Ps+X/nKV3jqqaf40z/9Uz7xiU9cziFLF9jo/D3yyCPk83n+/M//nEqlwlve8hZuueWWyzlk\n6QIbnT9Irq333HMPtm1frmFKq9joHD722GP85Cc/4eGHH6bVavGZz3zmcg53CbnCdYUZHh7uGjCd\nOHGC4eFhcrkcpmly00038fjjj3Pw4EGiKCKOY+r1OrouY+ydtNL8Afi+z1//9V9z6NChzteefPJJ\njh49CsArX/lKnn322csyTqm7jc7fb/zGb/CHf/iHAAgh0DTtsoxT6m6j8wdw3333cfvtt9PX13c5\nhiitYaNz+MMf/pAjR47w+7//+/zu7/4ur33tay/TSJeT775XmDe+8Y2MjY0t+3q9XieTyXT+77ou\n9XqdVCrF2bNnedOb3kS5XOaBBx64nMOVLrLS/AHcdNNNy75Wr9dJp9Od/2uaRhiGMnDeIRudP9d1\ngWQe/+AP/oA/+qM/2tbxSavb6Pz9/d//PYVCgaNHj/Lggw9u9/CkddjoHJbLZcbHx3nggQcYGxvj\n937v9/jWt76FoijbPdRl5ArXL4h0Ok2j0ej8v9FokMlk+OxnP8vNN9/Mt7/9bb7xjW/woQ99CM/z\ndnCk0kZcPK9xHMtg6wozMTHBO9/5Tn7rt36LN7/5zTs9HGkDvv71r/PP//zPHDt2jOeff54PfvCD\nzMzM7PSwpA3I5/PcfPPNmKbJoUOHsCyL+fn5HRmLDLh+QRw+fJiRkREqlQq+7/PEE0/wqle9imw2\n21n5yuVyhGFIFEU7PFppvW688UYeffRRAJ566imOHDmywyOSNmJ2dpbf+Z3f4e677+bWW2/d6eFI\nG/TFL36RL3zhCzz00ENce+213HfffZRKpZ0elrQBN910Ez/4wQ8QQjA1NUWr1SKfz+/IWORH5Svc\nN7/5TZrNJrfddhsf+tCHePe7340Qgre97W309/fzrne9iw9/+MPccccdBEHAH//xH5NKpXZ62NKi\nC+evmze84Q386Ec/4vbbb0cIwUc+8pHLPEJpNWvN3wMPPEC1WuX+++/n/vvvB5KkX5mAvTusNX/S\n7rfWHL7uda/j8ccf59Zbb0UIwT333LNjuZSKEELsyD1LkiRJkiT9kpBbipIkSZIkSdtMBlySJEmS\nJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlySJEmSJEnbTAZckiRJkiRJ20wGXJIkSZIkSdtMBlyS\nJEmSJEnb7P8DWHwd8XsUmLQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price vs pca')\n", + "plt.show()\n", + "\n", + "if simname != \"bm_kaggle\":\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs pca')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['ohlc_price'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs ohlc_price')\n", + " plt.show()\n", + "\n", + "\n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return')\n", + " plt.show()\n", + " \n", + " plt.figure(figsize=(10,5))\n", + " norm = colors.Normalize(df['avg_bo_spread'].values.min(), df['avg_bo_spread'].values.max())\n", + " color = cm.viridis(norm(df['avg_bo_spread'].values))\n", + " plt.scatter(df['avg_bo_spread'].values, df['period_return'].shift().values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + " plt.title('avg_bo_spread vs period_return shift')\n", + " plt.show()\n", + " \n", + " \n", + "\n", + "plt.figure(figsize=(10,5))\n", + "norm = colors.Normalize(df['ohlc_price'].values.min(), df['ohlc_price'].values.max())\n", + "color = cm.viridis(norm(df['ohlc_price'].values))\n", + "plt.scatter(df['ohlc_price'].shift().values, df['pca'].values, lw=0, c=color, cmap=pylab.cm.cool, alpha=0.3, s=1)\n", + "plt.title('ohlc_price - 15min future vs pca')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "# this creates a training dataset for the model\n", + "def create_dataset(dataset, look_back_rows=20):\n", + " dataX, dataY = [], [] # for training\n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the data by 20!\n", + " for i in range(len(dataset)-look_back_rows-1): # \n", + " a = dataset[i:(i+look_back_rows)] # from example 1 to 21\n", + " dataX.append(a)\n", + " dataY.append(dataset[i + look_back_rows]) #get example 1+20, so the next point that is to be forecasted\n", + " return np.array(dataX), np.array(dataY)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAM9CAYAAACITXI7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYFeX7x/H3WVhEQARR3BdQ3NcUl7Sy1Mo2bXFBs0wr\nzW+lqGiauaW5tWmZqW1mlpaVfct+reZXc7fEhVTIDVQQRATZOef3B3UU2Q7q8UB9XtfFdcXMPTP3\n3DNzOg/PM48Gq9VqRURERERERK45o7MTEBERERER+adSg0tERERERMRB1OASERERERFxEDW4RERE\nREREHEQNLhEREREREQcxOzsBEREREREpf3JZ6ewUimUi1NkpAOrhEhERERERcRg1uERERERERBxE\nDS4REREREREH0TtcIiIiIiJSahZLrrNTKJapjHQtlZE0RERERERE/nnU4BIREREREXEQDSkUERER\nEZFSs1pznJ1CuaAeLhEREREREQdRg0tERERERMRBNKRQRERERERKzWot27MUlhXq4RIREREREXEQ\nNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoWTQtvF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUi\nIiIiIlJqVg0ptIt6uERERERERBxEDS4REREREREH0ZBCEREREREpNQ0ptI96uERERERERBxEDS4R\nEREREREH0ZBCEREREREpNatFQwrtoR4uEflH6N69O8HBwbafJk2acMMNNzBs2DD++OMPZ6f3jxUc\nHMyXX35pV6zVauWLL74gMTERgG3bthEcHMzp06cdmWKxYmNjeeCBB2jevDnPPPNMoTEzZ86kTZs2\ntGvXjoSEhKs+Znp6OitXrrzq/YiISPmgBpeI/GMMHz6cTZs2sWnTJjZs2MD7779Pamoqjz76KKmp\nqc5O719v9+7dhIeHk56eDkCbNm3YtGkTVatWdVpOK1eu5NSpU3z55ZdMmTKlwPqoqChWrFhBeHg4\nX375JVWqVLnqY7733nssX778qvcjIiLlg4YUisg/hoeHB/7+/rbfq1WrRnh4OP3792fr1q3cdttt\nTsxOrFZrvt9dXV3zXS9nOH/+PPXr1ycwMLDQ9cnJyQB06dKFWrVqXZNjXl4HEZFyS7MU2kU9XCLy\nj2YymYC8L/eQ9wV64sSJhISE0KFDB4YPH86ff/5pi8/MzGT27NnccsstNG/enI4dOzJx4kRbr8za\ntWvp1asXU6dOpV27dowfP560tDQmTpxI586dadGiBQ899BBbtmyx7TM9PZ358+fTvXt3WrRowYMP\nPphv/YQJE3juueeYOXMmISEhtGnThrCwsGJ75RISEggLC6NDhw60b9+ep59+mvj4eNv6Tz/9lLvu\nuouWLVvSo0cPPvzwQ9u6ws6hsGUAO3fupH///rRs2ZJbb72VBQsWkJmZWWhOxdUuJiaG0NBQAG69\n9VYWLlxYYEihI+p08uRJRo8eTceOHWnTpg0jR47kxIkTAAwePJg1a9awY8cOgoOD2bZtW75t165d\ny8CBAwG47bbbmDBhAgCHDh3iscceo1WrVnTr1o0pU6Zw/vx523YxMTE8/fTThISE0KxZM7p3786y\nZcts+3zttdeIjY21HXPhwoX06NEj37EvXRYTE0NwcDBvvfUWnTp14o477iArK4tTp07x9NNP07Zt\nWzp37szo0aOJi4uz7eP333+nf//+tG7dmpCQEMaNG8e5c+eKrJWIiDiGGlwi8o914sQJFixYgL+/\nP23btsVisfD4448THx/PsmXL+Oijj6hRowYDBw4kKSkJgDlz5vDzzz8zb948vv32W6ZMmcLXX3/N\nJ598Ytvv0aNHSU1N5YsvvuCJJ57g9ddfJyoqiuXLl/PNN9/QpEkTRo0aRVpaGgCjR49m/fr1TJs2\njS+++IJWrVoxbNgw9uzZY9vnunXryM3N5eOPP+bVV1/lp59+4oMPPij0vHJychg6dCgxMTG8/fbb\nfPjhhyQkJPD0008D8O677zJjxgyGDBnCunXreOyxx5g7dy7vvPNOkedQ2LLIyEgee+wxevTowVdf\nfcXMmTP5+eefmTp1aqF5FVe76tWr8+abbwKwZs0ahg4dWmD7a12n1NRUBgwYQHJyMsuXL2fFihWk\npKQwaNAgUlJSWLhwIXfddZdtaGObNm3ybX/nnXfmy3nSpEnExcUxePBgGjVqxOeff2679qNGjbJt\nN2LECLKysvjggw/45ptvuPfee5k3bx6RkZHceeedDB8+nICAgEKPWZyvv/6aDz/8kPnz55OTk8Pg\nwYNxc3Pj448/Zvny5WRnZzNkyBCysrLIzc1lxIgRdOrUif/+97+8/fbb7N27lzlz5th9PBERuTY0\npFBE/jHefPNNli5dCkB2djY5OTk0bdqURYsW4enpya+//srevXvZvn07np6eAEybNo2tW7eyevVq\nnnjiCVq1akXv3r1p164dALVq1eKjjz7i0KFD+Y41cuRIateuDcCxY8eoWLEitWrVwsvLi/DwcHr1\n6oXJZCIqKoqff/6Z5cuXc+ONNwIwefJkIiIiWL58Oa+//joAPj4+TJ48GZPJRP369encuTO///57\noee5ZcsWDh48yA8//GDLYebMmaxdu5aMjAyWLVvGkCFDePDBBwGoV68eJ06cYNmyZTz66KOFnsPf\njZpLl40dO5abbrqJxx57DIC6desybdo0Bg4cyOjRowu8e1Vc7UwmE5UqVQLA19eXihUr5tvWEXX6\n8ssvOX/+PC+//DI+Pj4AvPbaa3Tv3p1169YRGhqKu7s7Li4uhQ5tdHd3z5ezl5cXy5Yto1atWoSH\nh9viXnnlFbp168Zvv/1GkyZN6NOnD71796ZatWoAPPXUU7z11lscPHiQJk2a4OHhgclkKvVwytDQ\nUNvQxzVr1pCens5LL71k68V9+eWXCQkJ4bvvvuPGG28kKSmJKlWqULNmTWrVqsUbb7xBdnZ2qY4p\nIiJXTw0uEfnHCA0NtQ0BM5lM+Pj42BpWAAcOHCA3N5euXbvm2y4zM5Po6GgA7r33XjZt2sTcuXM5\nevQoUVFRHD9+PN/7OwaDId/vjz32GCNHjqRTp060adOGrl27cs899+Dm5mZrqF3ek9GuXTs2bNhg\n+71OnTq2L84AXl5e+YaHXerQoUP4+vraGkYADRo0YOzYsSQmJpKQkFDgeO3bt2fZsmW2GQIvP4fC\nlkVGRnLs2LF8+/r7/aPo6OgCDS57alcUR9Tp8OHD1K9f39bYgryGU2BgYIEGtL0iIyOJjIwstGcq\nOjqaNm3aMGjQIL755hsiIiI4duwYkZGRWCwWLBbLFR3zb5de7wMHDnD27FluuOGGfDHp6elER0dz\n11138eijjzJ9+nQWLlxIly5duOWWW+jVq9dV5SAicimr3uGyixpcIvKPUalSJerWrVvkehcXF3x8\nfFi9enWBdR4eHgBMmjSJH3/8kT59+tCzZ09Gjx7N9OnT88UajUbbO2EAN9xwA7/88otthsSVK1ey\nePFiVq9ejbu7e6G5WCwWzOaLH8GX7u9vRU2ucOl2l3Nzcyt0eW5ubr5tLz+Hwpa5uLhw3333MXz4\n8AL7K6x3xp7aFcURdSpuny4uLnbldTkXFxe6dOnC5MmTC6zz9fXlwoULhIaGkpubS69evQgJCaFV\nq1bccsstpTpOTk7BLzGXXlsXFxeCgoJYtGhRgTgvLy8AwsPDCQ0Ntd2bEydOZPXq1UUOwRQREcfQ\nO1wi8q/RsGFD26QBdevWpW7dutSqVYtXX32VHTt2kJSUxKeffsr06dMJDw/nvvvuo379+pw4caLY\nmeUWLVrE7t276dGjB9OmTeO7777DxcWFDRs2EBQUBORNiX6p3bt329aVVmBgIGfPniU2Nta2LDo6\nmo4dO3Lu3DkCAgIKHG/Xrl34+/vbhsjZIygoiOjoaFut6taty9mzZ5kzZw4XLlzIF2tP7QwGQ7HH\ngmtfpyNHjuSbKOLs2bMcOXKkyFkJS/J3TWrUqGGridFoZNasWZw6dYpNmzYRGRnJihUrGDVqFL16\n9SItLQ2LxVJkHVxcXArU89ixY8Xm0bBhQ2JiYvDx8bHl4efnx+zZszl06BDHjx/nhRdewN/fn9DQ\nUBYvXsycOXPYtm2brZdTRESuDzW4RORfo1OnTrRu3Zpnn32WnTt3cuTIESZPnsxPP/1Eo0aN8PT0\nxNPTkx9//JHjx49z4MABwsLCOHXqFFlZWUXuNzY2lmnTprFt2zZiY2NZt24dKSkptGrVijp16tC7\nd2+mTp3Kpk2biI6OZvbs2ezfv5+HH374is6jc+fONG3alPDwcPbt28cff/zB888/T2BgILVq1WLE\niBF88MEHrFmzhmPHjrF69Wo+/PBDHnnkkWIbPZcbPnw4ERERzJ49m+joaLZv3054eDgpKSkFerjs\nqd3f721FRkaSkpKSb3tH1Omee+7B19eXMWPGsH//fvbv38+YMWPw9vamd+/eV7TPQYMGcf78eSZM\nmMDBgwfZu3cvY8aM4ejRo9SrV4/q1asD8NVXXxEbG8uWLVt49tlnAfLVITk5mT///JPMzExat25N\nYmIi7733HjExMXz00Uds3Lix2DzuvvtuKleuzLPPPsvevXs5dOgQYWFh7Nmzh4YNG1K5cmXWr1/P\n1KlTiY6OJjo6mvXr11OnTh0qV658RecuIlKAJbts/5QRanCJyL+GwWDgjTfeICgoiJEjR9KnTx+O\nHj3K8uXLCQoKwsXFhVdffZX9+/dz1113MXLkSCpVqsTQoUPZt29fkfudPHkyHTt2JCwsjF69evHe\ne+8xe/ZsOnToAMCMGTPo2rUr48aNo2/fvuzZs4fly5eXaoa6SxmNRhYvXkzlypUZPHgwQ4YMoXr1\n6raJJfr378/o0aNZsmQJvXv35t1332XChAkMGzasVMcJDg5myZIl7N69m/vuu49nn32W9u3bFzqM\nzZ7aBQUF0atXL0aPHm3L9VLXuk5ubm4sX74cV1dXBg0axJAhQ/Dy8mLlypV4e3tf0T79/f159913\nSUhI4KGHHmLYsGFUr16dd999F1dXV1q2bMn48eNZunQpd955J9OnT+eee+4hJCSEvXv3AtCrVy9q\n1qzJPffcw4YNG+jYsSP/+c9/WLp0Kb1792bLli22GSeL4u7uzrvvvou7uztDhgxhwIAB5OTk8P77\n7+Pn54eXlxdLly7lxIkTPPTQQzzwwANkZWXx9ttvYzTqf/0iIteTwap/gVFEREREREopJWWKs1Mo\nlpeXfe8RO5omzRARERERkVLTLIX20bgCERERERERB1GDS0RERERExEE0pFBERERERErPoiGF9lAP\nl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlpyGFdlEPl4iIiIiIiIOowSUiIiIiIuIgGlIoIiIi\nIiKlp3/42C7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoGTQtvF/VwiYiI\niIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6GlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJ6\nGlJoF/VwiYiIiIiIOIgaXCIiIiIiIg6iIYUiIiIiIlJqBquGFNpDPVwiIiIiIiIOogaXiIiIiIiI\ng2hIoYiIiIiIlJ4l19kZlAvq4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUmoG\ni6aFt4d6uERERERERBxEDS4REREREREH0ZBCEREREREpPU0Lbxf1cImIiIiIiDiIGlwiIiIiIiIO\noiGFIiIiIiJSepql0C7q4RIREREREXEQNbhEREREREQcREMKSyGXlc5OoVgmQst8jqA8rzUToaxv\nP8DZaZTojh2ryk09v75hoLPTKFbvnR8B5eMz6adODzg7jRJ13/Ip33Xo5+w0StRz+yfl5ln/seOD\nzk6jRLduXcMvXfo6O40S3bR5Lcf7dXB2GsWq88l2ALIWVHRyJsVzDbvAhs73OzuNEt3862fOTsFu\nBs1SaBf1cImIiIiIiDiIGlwiIiIiIiIOoiGFIiIiIiJSehpSaBf1cImIiIiIiDiIGlwiIiIiIvKv\nY7FYmDJlCv369WPw4MEcO3Ys3/p169bRp08f7r//fj766KMrPo6GFIqIiIiIyL/ODz/8QFZWFp98\n8gm///47L730EosXL7atnzt3Lv/973/x8PCgd+/e9O7dm0qVKpX6OGpwiYiIiIhIqZX3aeF37dpF\n165dAWjdujX79u3Ltz44OJiUlBTMZjNWqxWDwXBFx1GDS0RERERE/nVSU1Px9PS0/W4ymcjJycFs\nzmsiNWzYkPvvv58KFSrQo0cPvL29r+g4eodLRERERET+dTw9Pblw4YLtd4vFYmts/fHHH2zYsIEf\nf/yRn376ibNnz7J+/forOo4aXCIiIiIiUnqW3LL9U4K2bduyceNGAH7//XcaNWpkW+fl5YW7uztu\nbm6YTCZ8fX05f/78FZVJQwpFRERERORfp0ePHmzevJn+/ftjtVqZNWsWX331FWlpafTr149+/fox\ncOBAXFxcqFOnDn369Lmi46jBJSIiIiIi/zpGo5Hp06fnWxYYGGj77wEDBjBgwICrPo4aXCIiIiIi\nUmrlfZbC60XvcImIiIiIiDiIGlwiIiIiIiIOoiGFTmK1Wpk0cR1BDf0Z+lhnZ6dTJOV5bTkrT/8u\nbWj0VH+MrmZSDh9n38y3ybmQbnec0c2FZuOHUqlpAzAaSd4Xxf6572DJzMa3XVMaPzsIg8lEdnIK\nkS9/QMrh4w4/J2de86pdWhM86u86nSBiRuH1LCrOXLECLac8jme9GmAwEPP1//jz/a/ytunallZT\nnyT9dIJtP1uGTyc3LcOh5+SMevp1bkvgiFAMLmYuRB8n8sU3yU1LL1WMW1U/blg2i+2Dx5KdnJK3\nzY3taPr8KDIuqeHuEc9fVQ2rdGlDw5EDMLq6kBJ1nP0z3yK3kGteUpxbVT9C3pnJltDxtnz9b2xL\n8xeeIj3uYr47Hn/hivItq8+6X+e2BI4ciNHFhdSoY0S+uLjwa11YjNFIo2eG4BvSCoPJxPGP1hH7\n+ff5tq1+1y3439yBiLFzChy79kN3UuPeW9kWGlaKSoJvp3bUfzIUo6sLF6KOcXD2GwVyLirG6OpK\nUNhwvJoEYTAaOL//MFELlmLJysKjXi0ajR+BycMdq9XKkcUfkrT991LlVhT3Nl3wGTASg4sr2cej\nSHxrJtb0C/liPG68He97BoPVijUzg6T3FpD1ZySGChXxe3Iy5pr1MBgMpP7yDSnrPrgmeV3OUL8X\npq7TMZhcsZ7ZR853IyErpfDYoLsw376U7EXV/zrJyphuexWjf0us2WlY9q/A8ttb1yQv385tafDk\nIIwuZlKjj3FwVsHPpJJi3Kr60XbpbHY+HGZ7xs1enjQc8xge9WthcnPj2PufEfftL9ckZ6fTkEK7\nqIfLCaKjzzB0yAq+Xb/f2akUS3leW87K09XHixZTnuC38Ff43wNhpMfG02hUwRdAi4sLfLQPBpOR\nTQMnsGnAeIxurgQ+ci/mihVoO3c0B19fyeaB4ex/6R1az34Go4tj/5bjzGvu6uNFyxeeYNf4V/nl\n/rGkxcbReFT/UsU1GvEgGXFn2dgvnM0PP0/d+2/Dp0VDACq3bMifH37NptDnbD+Obmw5o54uPt40\nmfQUeyfOY1v/Z0iPjSNwZGipYgLuuIm2b83Azd8v33aVWgRz/KOv2DFknO3namro4uNF8+dHsGfC\ny2x+cDTpsXE0empgqeOq39mNDm9Pxb2qb/58WwZzdOVXbB0Ubvu5knzL6rPu4uNN08kj2TtxPlv7\nPUP6yTiCnip4rYuKqdnnNirUDmBb6Bh2DJ1A7X698W4aBIDZ25Pg8cMJDhuKAUOBY1dqGUzdwfeW\nupYuPt4ETxrFgUnz2DHgP6SfjKP+iMF2x9QZcj8Gk4ldQ8aw8+ExmNxcqfNwXwAahj3O6a9/ZNcj\nYRya9QZNZ4SB6eq/jhm9fPAb8TwJL0/g1OgHyYmLxWfgU/lizNXrUHnQ08TPeprT4YNIXvsOVcLy\nGqk+/Z4k52w8p8cO4PRzj+DVoy+uDVtcdV4FVKiC+fYl5KwbSPa7bbAmH8XUdXrhsT6BmLvNAsPF\n+phungNZF8h+rx05H92MsV5PDA1uv+q0XHy8aTxpFPufm8f2AU+TcTKOBiMHlSqm2u030WbxzAKf\nSY0njyLzTCK7HhnHnqenEvTsUNz8838OyD/bP7LBtXDhQlatWlVg+ahRowosW7VqFQsXLrweaV08\n5sqd9OnbmtvvaHZdj1tayvPaclaeVTq2JPnAn6SdOA3A8c++p8btXUoVl/RbJFHvfA5WK1isnD94\nFPcAfzzqVCc7NZ3EHXlf1C8cO0nOhXRb48FRnHnNL6/TsU9/oMYdJdfz0rgD8z8g8rWVALhV8cHo\naiYnNQ2Ayi0bUeWGZty44kU6LZ2Cb5vGDj8nZ9TTt0MrzkdGkR6TV5/Ytf9HQK+udse4VqlMlW4d\n2DNmVoF9V2oRTOV2zbnh3Tm0XTwDn9ZNripXv5BWJB+Itl3LE599T8DtN5Yqzq1KZare1J7do18q\nsJ1Py0b43tCcju/Ppv3bU6nc5sryLavPum9IS85HRpN+4u/r+F3Ba11MjP9NIZz6789Ycy3kpFwg\n7ofNBNyet67arZ3ISkzi8MIVBY7r6luJ4LHDOLyo4LqSVO7QmpTIKNJjTgFw8vNvqdazq90xyXsO\ncPz9NX/V0ULqoSO4BfgDYDAZMXt5AmDyqIAlK7vU+RXGvVUIWdEHyDl9AoCU7z+j4o35GyLWnGwS\nl7yI5VwiAFl/RmLy8QOTmaT3FnBuxet5eflUweDiiiUt9Zrkdilj3Vuxnt4F56IByN2zFGOTfgUD\nzRUw37mcnF8m5FtsqNYGy4FVYLWAJRvLkW8xNryyqbovVblDq/zXc+3/FXLNi475+zMpIuzF/Kfh\n5UnlDi05unw1AJlnzrJ7+ASyz1/72krZ9a8aUrho0SJnpwDA5Cl3ALB16xEnZ1I85XltOStP92p+\nZMQl2n7PiD+Li6cH5ooV8g01Ki4uYdvei3EBVag34A72zVpK2vFTmD3cqRLSgoRte6nUtAFeDWrh\nVqWyQ8/Jmde8QjVf0u2oZ0lx1lwLraePJODWDpzesJPUYycByE5OIeabTcRt2EnlVsHcsGAM/xs4\nkYz4sw47J2fU072aH5nxF+uTeSYRs2dFTB4VbMNziovJSkhi38R5he47OzmV09/+QsIv26nUsjEt\n54azfXAYmWeurIbu1fzIuDSP+ERcPD0wVayQb7hgcXGZCUnsCV9QZL6n1m8kfsMOfFoF03r+OLaE\njiezlNe8rD7r7lWrkHHJcMnM+ETMnh75r3UxMe5V8+ebGZ+IZ1BdANvQwuq9b85/UKORZtOeIWrR\nCiw5OSXmeDm3qn5kxl+STyH3Z3ExSdv3XNxXNX9q9ruLQ3MWA3B4wVJavT6NWv3uxqWyN5EvvAy5\nllLneDmzXzVyEuNtv+cmxmP08MRQoaJtWGHumVPknjlli6n88LOk79wIuX/VyJKL36hpeIR0J23H\nBnJOHrvqvArwroU1Jebi7ymxGNwqgatXvmGFph4LsUS8g/XMvnybW0/twNh0ALknt4DJDWPD+8By\n9Y1W92pVyIwr/poXF5OVkMT+5wp+JlWoFUBWwjlqD7gb345tMbqYObFqHeknThWILY80S6F9rluD\nKzs7m4kTJxITE0Nubi6PPvooq1aton79+hw5cgSr1corr7yCv78/CxYsYOfOnVgsFh555BHuuOMO\nBg8eTOPGjTl8+DCpqam89tpr1KxZs8jj/fDDD6xfv56MjAwmT55My5Yt6dKlC5s3b2bnzp3MmjUL\nb29vTCYTrVu3vl5lELn+DAWH2QBYL/8fvB1x3o3r03beGI6t/j/ObPoNgF1h82k0sh/BT4dy9rc/\nSNyxH0t26b/glBvGwgcGFKinHXG/T3kT0+zltJs7mobD+nL47c/YNf5V2/qkPQdJijhMlZAWxHz1\nDxnv/7ei6mOxlC6mEJc2xJIj/iB570F8O7Ti1Nc/lz5PwGAs/Nm4/EuyvXGXu7Qhdm7PQZIjDuHX\noSUn/7uhNGmW3We9iLrkv9ZFxxRW1wLndJmgkQM59/sBzm6PwKdt05JzvIzBjnvPnhjP4AY0mxXO\nyc/Wc/bXXRhcXWgyPYw/XlzI2V934dWsEc3nTCQlMirfHxeuiKGIQUuFfCE2uLnjN/IFTH5ViZ/1\nTL51iYte4OzSl6gSNodKDzxG8pqlV5dXwaOXmKex1XCw5GDZ9wF418kXlvvLREw3zcI8eAtcOI3l\n2E8Ya4Rcg7TsuE/tibl8t2YTFWpWI+dCOr89OYkKNQNovXgmaSdOkXrwz6tKWcqP69bg+uSTT/D1\n9WX+/PmkpqbSt29fXF1duf/++5k+fTorV65kyZIldO3alZiYGFatWkVmZiYPPfQQXbrkDXVo2bIl\nkyZN4pVXXuHrr7/m8ccfL/J4NWvWZPr06Rw+fJjx48fz+eef29ZNmzaN119/nfr16/PCCy84/NxF\nrreGTzxA1W7tADBXrEBK1AnbOjd/X7KSU8nNyMy3TUZcIj7Ng4qMq96jE03Dh3Jg3ruc+r9f84IM\nBnLTM9j+5Azbdl1XzyftryFg/xSNnniAqt3aAuBS0YPz0RcnCnAvqp6nE/BpHlhoXJWOLUmJOk5m\nwjly0zM5+X+/EtC9A2ZPD+o+2IPod7+8uCMDWK/gL/RlXcbpM3g3vTgczc3fl+zzKVguqaM9MZcz\ne3pQ8/7bOfb+2osLDYZS93IEPv4g/t1uyNtnxQqkRl285m7+vmQXcc0rNQsqMe7yfGs/0JMj731x\nSb72X/Py8KxnxiVQqdll1zE5Nd91LC4mIy4hX0+am79viY2TgNu7kZWUjP9NIZgquOPm70uHD+ax\n/eFxJeYLefee16X3XhW/Qu/P4mL8b+1Cw7GPE/XyMuK//x8AFRvUweTuxtlfdwGQsv8QaUdO4NW0\nEZnxW+y0UauzAAAgAElEQVTKrSg5CadxDbo4LNjk609uajLWzPzvA5r8quEf/jLZsUeInzYSa3Ze\nvu6tOpJ9PIrcpASsmemkbf4/PEK6X1VOhUqJwVC9/cXfPWtgTT8LOWm2RcZmg8DFA/PgLRhMLnnD\nCwdvIWdtHzCayd04GTKS8mLbj8F67uobLplxCXhfcg+6+he85vbEXC4rIS/P03/9wSc99jTJEZF4\nN22oBte/yHV7hys6Opr27fMeME9PTwIDAzl+/DgdO3YEoG3bthw5coRDhw6xf/9+Bg8ezLBhw8jJ\nySE2NhaApk3z/koVEBBAZmbRNzdgO1bDhg05c+ZMvnUJCQnUr1/fdlyRf5rDSz5lc+hENodOZMuj\nU/Bp3hCP2gEA1Ln/NuI37iywTcLWiCLjArp3oMnYIez4z+yLX8AArFZueDUc7yYN8uJuDcGSk3td\nZim8ng4t+dQ2gcXmR6dQOV+dbiXul10FtjmzdW+RcTV6hNDw8fsBMLqYqd6jI4k795OTlk69B3sQ\n0D3v88s7uC4+zQKJ/zXiepzmdXV2+x4qNW9IhVp59anRpycJG3eUOuZyOWkZ1Lq/F/435/3F27NR\nfbybBHF2a+lmgYt+e41tAovtQydT6ZJrWatvj0KfocRtEXbF5c83ndoP9KLqLR0A8GpUj0pNg0jY\nsqfY7f5WHp71xG1/Xce/jlezT0/O/G+H3TFnNu6g+t235L375OlBtR5dOFPCfbDprsfZPngc2x8e\nR+TsxaTHnra7sQWQtH0P3s0aUaFW3sx4Nfr0JPGynIuLqXJzJ4JGDyNi9HRbYwsgPeYU5ooeeDcP\nBsC9ZjU86tUi9fDVf/HOiNiGW8PmmANqA+DZo2/ecMFLGCt6U23qEtK2/0zia5NtjS0Aj4634f3A\nsLxfzC54dLqNjH3F379XwnL0RwzVO4BP3h+kTK2GYYn+Ol9Mzkc3kfN+e3JWdCJ7bV/ISSdnRSe4\ncBpTq2GYOk/+K+mqmFo8giXyk6vO6+z23/Nfz/t6kvC/yz+TSo65XMapeFL+iCbgzpsBcKlciUot\ngkn5I+qqcy4TLLll+6eMuG49XIGBgezcuZMePXqQmprKoUOHqFWrFvv27SMgIIDdu3cTFBREgwYN\nCAkJYcaMGVgsFt58801q165d6uNFRERw9913c/DgQWrUqJFvXbVq1YiOjiYwMJC9e/dSqVKla3Wa\nImVOVtJ59k5/izYvPYvRxUxaTBwRU98EwLtJA1pMHs7m0InFxjV6qj8Gg4EWk4fb9pu05xAH5r7L\nnucX0WLScAwuZjITktg9rvD3VP4pspLOs2f6EtrNyZuh7UJMHHteyHs3o1KT+rSYPJxNoc8VG3fg\nlZW0eO4xun0yB6vVStyGXRxZ9S1YrewMW0CzcY/Q6IkHsOTk8tvEhbaphf9JspPOEznzDZrPGovR\nxUx6bBwHpi/Eq3EgjSc+yY4h44qMKZbFQsT4uTQaM5T6w/phzc1l3/MvX1UNs5LOs3/GYlq9NAaD\n2Ux67Gn2Tn0DyHuGmk56gq2DwouNKzpfK7+Pm0fjsY8S9PhDWHJz2TPptSvKt6w+69lJ5zkw401a\nzArLu44xceyfvgivxg1o8twItj88rsgYyJtAo0LNADqsmI/RxUzs599z7rcDpa5PaWSfS+bgrEU0\nnTkOg4uZjNjT/DHjdTwbBxI8YSS7HgkrMgag/pN5MywGTxhp22dyxB9EvbyU/c/NIfDZxzC6umDN\nyeXQ3LfIiI276pwt55NIXDyDKmNewmA2k3M6lsQ3puLaoAm+T0zidPggPHvej6lKNTza34xH+5tt\n28bPeIqkFa/iO3wCAfNXgdVK+o5fSFn/8VXnVUD6GXL+70nMd6/EYHLBeu4IOd8Ox1CtDaaeb+Y1\nrIqRu20+5juXYR6S19DJ3TILa9zuq04rO+k8f7z4Bs1eHGu7npF/fSYFTxjBzkfGFhlTkn0T59Iw\nbDg17usFRgNH31lDSmT0Vecs5YfBarVar8eBsrKyeP755zl+/DiZmZkMHjyYtWvX4u3tTXJyMhUq\nVGDu3Ln4+Pjw0ksvsXfvXtLS0rjtttsYNWoUgwcPZurUqQQGBrJq1SoSEhL4z3/+U+ixFi5cyIED\nB7hw4QJZWVlMnTqVxo0b297hioiIYNq0aXh6elKxYkWaNGlS5L4ulcvKa12Wa8pEaJnPEZTntWYi\nlPXtC079XNbcsWNVuann1zcUnPK7LOm98yOgfHwm/dTpAWenUaLuWz7luw6FzJJWxvTc/km5edZ/\n7Pigs9Mo0a1b1/BLl77OTqNEN21ey/F+HZydRrHqfLIdgKwFFZ2cSfFcwy6wofP9zk6jRDf/+pmz\nU7Bb5u6Ozk6hWG5ttzo7BeA69nC5uroyZ07+f5Bw7dq1jBkzhsDAwHzLJ06cWGD7FSsuTus6YEDx\n/8MpqvG0efNmIO9dsM8+Kz83s4iIiIiIlE/lelr4UaNGkZycnG+Zp6cnixcvdlJGIiIiIiL/DoYS\nZo2VPE5tcF3aa3Ulysq/qyUiIiIiIlKY6zZLoYiIiIiIyL9NuR5SKCIiIiIiTlKGpl4vy9TDJSIi\nIiIi4iBqcImIiIiIiDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEip\nGaz6h4/toR4uERERERERB1GDS0RERERExEE0pFBEREREREpPsxTaRT1cIiIiIiIiDqIGl4iIiIiI\niIMYrFar1dlJiIiIiIhI+ZK9uZmzUyiWS5f9zk4B0DtcpZLLSmenUCwToWU+R1Ce15qJUL7r0M/Z\naZSo5/ZPyk09v+3Q39lpFOv27R8D5eMz6fuQh5ydRol6bFvNjx0fdHYaJbp165py86yXl3r+0qWv\ns9Mo0U2b13K8Xwdnp1GsOp9sByBrQUUnZ1I817AL5ebeLDcsmhbeHhpSKCIiIiIi4iBqcImIiIiI\niDiIhhSKiIiIiEjpaUihXdTDJSIiIiIi4iBqcImIiIiIiDiIhhSKiIiIiEipGSy5zk6hXFAPl4iI\niIiIiIOowSUiIiIiIuIgGlIoIiIiIiKlp1kK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERK\nT0MK7aIeLhEREREREQdRg0tERERERMRBNKRQRERERERKT0MK7aIGl5NYrVYmTVxHUEN/hj7W2dnp\nFEl5XlvOyrNKlzY0HDkAo6sLKVHH2T/zLXIvpJc6zq2qHyHvzGRL6Hiyk1MA8L+xLc1feIr0uARb\n3I7HXyA3LcOh5+TMa+7fpQ2NRva31WnvzCWF1rOkOPeqfnR8ZwabQ8Nt9XTxrkiTsY/iWb8mRjdX\n/nz3C06u/5/Dz+l61rNKlzYEjRiI0dWF1Khj7H+x6Pux0DijgeBnh+AX0gqDycSxlV8R8/n3AHjU\nDqDp5BG4VPIiNy2DfdMWkXbsJAA+rZvQ8D+hmNxcyUlNY//0N0k/GW87nl/ntgSOHIjRJe94kS8u\nJjctf15FxhiNNHpmCL5/5XT8o3XE/pVThdoBNJ00EpdKXuSkZXBg+kJbTi1mh+EZVI/c9LznJWnX\nPg6/9j7u1f1pPP5x3KtXITctg2Mr19ld27L4rDuqtn+rftct+N/cgYixc2zLGjzRn2q3dSY3PZPk\nvQc5/Nr7WLKy7aojgG+ndtR/MhSjqwsXoo5xcPYbBXIuKsbo6kpQ2HC8mgRhMBo4v/8wUQuWYsnK\nsm3rXr0qbd+ZR8To6aT+EW13XsVxb9MFnwEjMbi4kn08isS3ZmJNv5AvxuPG2/G+ZzBYrVgzM0h6\nbwFZf0ZiqFARvycnY65ZD4PBQOov35Cy7oNrktflDPV7Yeo6HYPJFeuZfeR8NxKyUgqPDboL8+1L\nyV5U/a+TrIzptlcx+rfEmp2GZf8KLL+9VarjO+NZ92ndhKBRgzD+9flzYMYbZJyMp93bMzG5u9mO\n61GnRqnORcoHpw0pXLt2LfPnz8+3bPTo0WRd8mF0uS5duti9/+7du5OZmZlv2caNG/nkk08KxD70\n0EPExMTYve+rFR19hqFDVvDt+v3X7ZhXQnleW87K08XHi+bPj2DPhJfZ/OBo0mPjaPTUwFLHVb+z\nGx3enop7Vd9821VqGczRlV+xdVC47cfRjS1nXvO8Oj3JbxNe4X8PjiEtNp7gpwaUOq7GnV0JKaSe\nLaaMICP+LL8OnsiOUS/SJGwIbpfFXGvXs54uPl40mzySiIkL+PWhZ0mLjafhyMLvx6LiavXpgUft\nALYMDGPboxOp0/9OvJsGAtB82tPEfPYdW/qPIXrpalq9FAaAW1VfWs0dyx9zl7N10Hjift5G4/HD\nLjmeN00nj2TvxPls7fcM6SfjCHoq9LKcio6p2ec2KtQOYFvoGHYMnUDtfr3xbhoEQLOpzxCz9ju2\nDhjNkWWf0GL2WNs+KzVvxK4RU9j+8Di2PzyOw6+9D0DT50eRvP8QW/uPZveoadQddK9dtS2Lz7oj\na2v29iR4/HCCw4ZiwHDxHHrfTJUu7djx6AS2PzyOzIQkGjzRv8RcL80neNIoDkyax44B/yH9ZBz1\nRwy2O6bOkPsxmEzsGjKGnQ+PweTmSp2H+9q2Nbi60HjKsxjN1+7v3kYvH/xGPE/CyxM4NfpBcuJi\n8Rn4VL4Yc/U6VB70NPGznuZ0+CCS175DlbC8RqpPvyfJORvP6bEDOP3cI3j16ItrwxbXLD+bClUw\n376EnHUDyX63Ddbko5i6Ti881icQc7dZYLj4ddV08xzIukD2e+3I+ehmjPV6Ymhwu92Hd8az7ubv\nS8s54zg4bxnbB4/jzM/baDxuOAC7Hp9se/7/XPoJGafikX+eMvUO1yuvvIKrq6vD9t+tWzf69evn\nsP3ba9XKnfTp25rb72jm7FSKpTyvLWfl6RfSiuQD0aSdOA3Aic++J+D2G0sV51alMlVvas/u0S8V\n2M6nZSN8b2hOx/dn0/7tqVRu08SBZ5PHmde8SkjLAnWqXkg9i4v7u547L6uni3dF/Dq0JGrppwBk\nxp9ly9DnyU5OdeQpXdd6+oW0IjnyYl1i1n5HwO1dSxVX9aYOxH61AWuuhZyUC5z+/leq394NN//K\nVKxXg9Pf/wpA4pbfMbm74RVcn2rdO5L46++kHDwCQOznP3Dwlfdsx/MNacn5yGjS/zpe7NrvCOiV\nP6/iYvxvCuHUf3+25RT3w2YCbu+Km78vFevVIO77zRdzqpCXk3v1qpg8KtA4/HE6fDifJpNHYvb2\nBMCrcQNOfb0BgNy0DJJ2ldwYLqvPuqNqC1Dt1k5kJSZxeOGKfPvzahzImY3byUlNA+DMhm1U7d7R\nrnwBKndoTUpkFOkxpwA4+fm3VOvZ1e6Y5D0HOP7+GrBawWIh9dAR3AL8bds2HDOc09/8ZOs9vBbc\nW4WQFX2AnNMnAEj5/jMq3pi/IWLNySZxyYtYziUCkPVnJCYfPzCZSXpvAedWvA6AyacKBhdXLGnX\n/rPHWPdWrKd3wbm8Xr3cPUsxNinku5m5AuY7l5Pzy4R8iw3V2mA5sAqsFrBkYznyLcaGfew+vjOe\n9ardO5Kw5beLnz9ffM+hV9/Nf7renjQeP5z90xbafS5Sfjh1SOGePXsYOnQoZ8+eZcCAASxZsoT1\n69dz+vRpJkyYgNlspmbNmsTGxrJixQqysrIICwvj5MmT+Pj48Prrr+Pi4lLk/qdMmUJsbCx+fn7M\nmTOHb775hj///JOxY8fyyiuv8L///Y+AgACSkpKu41nD5Cl3ALB165HretzSUp7XlrPydK/mR0Z8\nou33zPhEXDw9MFWskH94WzFxmQlJ7AlfUOj+s5NTObV+I/EbduDTKpjW88exJXQ8mfFnHXZOzrzm\nl9cpw856ZlxWz9/DXy6wb49aAWQmJlEvtDf+nVpjdDVz5MP/knb8lEPP6XrW072aH5lx9t2PRcW5\nV/Mj87J71TOoDu7VqpB5JinvS+5fMs6cxb2qLx61q5ObkUGLmc/gUacGGXEJHHrl/YvHq1qFjEuG\nymXGJ2L29MDkUcE21Ki4GPeqfmTEXZ5TXdyq+hXIKTP+LG5V/TCYTZzdsZeD85aSlXSeRqMfoemk\nEUSEz+P8/sNU730LR5atxsXHG7/ObeyqbVl81h1VW8A2lKt675vzHfP8/sPUHtCbmDXfkn0+lYA7\nb8LNr3KxeV7KraofmfGX5HMmEbNnxXw5FxeTtH3PxX1V86dmv7s4NGcxAAF334bBbOb0Vz9Qd8gD\ndudUErNfNXISL/aO5CbGY/TwxFChom1YYe6ZU+Seufh5UvnhZ0nfuRFyc/IWWHLxGzUNj5DupO3Y\nQM7JY9csPxvvWlhTLhlVlBKLwa0SuHrlG1Zo6rEQS8Q7WM/sy7e59dQOjE0HkHtyC5jcMDa8Dyz2\nDxV1xrPuUacGlvRMms949uLnz6vv5cur7uB78xplf/xp97mUCZZcZ2dQLji1h8tsNrN8+XIWLVrE\n++9f/B/f3LlzefLJJ1mxYgVt27a1LU9LS2P06NGsWrWK1NRUIiMji93/gAED+PDDD6lZsyarV6+2\nLd+7dy87duzg008/Ze7cuVy4cKGYvYiUbwajofAVuZYrirvcnvAFxG/YAcC5PQdJjjiEX4eWpc6z\nvDAYi/jYLFBP++LybWM24VGzGrmp6Wwb/gJ7Jr1O49EP4924/pWmW/YYCq+L9fK6FBdX2L1qsYCh\n8HvYarFgMJvx79ae6CWfsO3hcM7u2EerOReH9hW6z7+2tSemsOfHmlv48r/Xnd8fxd4J88hKPAcW\nC38uXY1fl7YYzGYOTF9ExXo1CflwAU0mjSBh865C93OpMvusO6i2xTn97Ubif9xCmzde4Ia3Z5J2\nNBZLdk7Juf6lqOf30pztifEMbkDrN2dy8rP1nP11F56NGlDjvp4cnle6d47sUsQzU9gXYoObO1VG\nz8YcUIvEJS/mW5e46AVihvXE6FmJSg88du3zpIj775I8ja2GgyUHy76C75Dl/jIRsGIevAXzvR9j\nOfYT5Bb9OkoBTnjWDWYTVbq1J/rtj9k+ZDxnd+6l5UvjLh7O1YWa997G0ffW2n8eUq44tYeradOm\nGAwG/P39yci4OA48OjqaNm3y/prXrl07vvrqKwAqVapErVq1AKhSpQrp6QVfBP6bi4sLrVu3BqBt\n27Zs3ryZFi3yxiIfPXqU5s2bYzQa8fT0pFGjRg45PxFnCXz8Qfy73QCAuWIFUqOO29a5+fuSnZxK\nbkb+dxwzTidQqVlQiXGXMnt6UPuBnhx574uLCw1gzbH/i015EPT4g1Tt1g7Iq2dK1AnbOjd/X7IK\nqVN6IfUsLO5SmQl5ve0xX/8CQFpMHOf2HKRSsyDO/1G2e3CLE/j4Q/h3zbsfTRUrkBpd8H60XH4/\nxiVQqXnB+9GSkUnG6QRc/XzyrcuIP0tGXP7lAO5/rctMOMu5iIO2YXSx636icdijGN3yRklkxiVQ\nqVnDYvMqLiYjLgG3KpXzrcuMTyyQ66XrfFo1xuztScL/dgJgMBjAYsVqsWB0d+XAzDdtxw8eP7yI\n2pb9Z91RtS2O2duTuO82ceyDvHy9mwWRHnO6xFz/lnH6DF5NL8mnih/Z51Py5VxSjP+tXWg49nGi\nXl5G/Pd5E99Uu+NmTB4etFkyGwDXKpVp8sKz/PnGByRu2mF3foXJSTiNa9DFYcEmX39yU5OxZuZ/\nz87kVw3/8JfJjj1C/LSRWLPz8nVv1ZHs41HkJiVgzUwnbfP/4RHS/apyKlRKDIbq7S/+7lkDa/pZ\nyEmzLTI2GwQuHpgHb8FgcskbXjh4Czlr+4DRTO7GyZCR93lpbD8G6zn7e4Wc8axnnkkiee9B2xDF\nk+t+InjMUIxurlgys/Dr1IbUw0fJOKn3t/6pnNrDZSjir5GNGjXit99+A/KGHZYUX5js7GxbD9jO\nnTtp2PDigxMUFERERAQWi4W0tDSioqKuJH2RMiv67TW2l9q3D51MpeYN8agdAECtvj2I37izwDaJ\n2yLsirtUTlo6tR/oRdVbOgDg1agelZoGkbBlT7HblTdRb6/h10ET+HXQBLYOfR6f5kG2OtXpe1uR\n9bQn7lLpJ8+QHPknNXt3A8DVtxI+LRqRfODazGDmLNFvr2br4PFsHTye7Y9NKnif/a/gF83EbXuK\njDuzcSc17+6OwWTE7OlBtR6dOfPLdjLjz5IeG0e1HnmzLPqFtMJqsZAadZz4DdvxaRWMe/W892iq\n3dKB1OjjWDKz8x2vwl/Hq9mnJ2cuy6u4mDMbd1D97lsuyakLZzbuIPPMXzndlpeT7985RR/H5OFO\nozFDbe9t1Rl0D/E/bwWLhQbD+lGrb08AKtSubmuwFqxt2X/WHVXb4ng3bkCLOeMwmEwYTEbqPdyH\n0/9n/2yfSdv34N2sERVq5c2MV6NPTxIvy7m4mCo3dyJo9DAiRk+3NbYAol97hx0DRrHrkTB2PRJG\nVkISkdNeverGFkBGxDbcGjbHHFAbAM8effOGC17CWNGbalOXkLb9ZxJfm2xrbAF4dLwN7wf+mkjG\n7IJHp9vI2Ff8fXElLEd/xFC9A/jkTXRjajUMS/TX+WJyPrqJnPfbk7OiE9lr+0JOOjkrOsGF05ha\nDcPUefJfSVfF1OIRLJEFJ0QrijOe9TO/bMenZTDu1asCUPXmkL8+f/J65nzaNOXszr2lKWOZYbBY\nyvRPWVEmp4UfO3Yszz33HO+88w5eXl6Yr2AWHxcXF1asWMGxY8eoUaMGYWFhtp6yJk2a0K1bNx54\n4AGqVq2Kn5/ftT4FkTIjK+k8+2csptVLYzCYzaTHnmbv1DcA8G7SgKaTnmDroPBi44pksfL7uHk0\nHvsoQY8/hCU3lz2TXrumL4KXNVlJ59k74y1avzQao9lMWmxcvno2n/Q4vw6aUGxccX4bv4Cm44dS\nu+9tGAxGopd/xvnIcjamvxjZSec5MGMxLWf/fZ/FsW/aIiDvS3LTSU+ydfD4YuNi1n5HhVrV6Pjh\nPIwuZmI+/4Gk3/L+wLZ38qs0mfgEDR7tiyUrm4jnXgGrldTDx/hjzjJazx2HwWwiO+VC3rp8eb1J\ni1lhGF3MpMfEsX/6IrwaN6DJcyPY/vC4ImMg76X6CjUD6LBiPkYXM7Gff8+53w4AsO/5V2gy8Unq\nPXo/lqxs9k16GaxWErf8Tsyab7jh7RlgMHIh+jiRs/OGmkUtWkHTF/5D9Ttvxpqby4GZb9LmtcnF\n1rasPuuOrG1Rzm6PwKdtM0JWzgeDkTMbt3P846+L3SZfzueSOThrEU1njsPgYiYj9jR/zHgdz8aB\nBE8Yya5HwoqMAaj/ZN6MdsETRtr2mRzxB1EvL7U7h9KynE8icfEMqox5CYPZTM7pWBLfmIprgyb4\nPjGJ0+GD8Ox5P6Yq1fBofzMe7W+2bRs/4ymSVryK7/AJBMxfBVYr6Tt+IWX9x9c+0fQz5Pzfk5jv\nXonB5IL13BFyvh2OoVobTD3fzGtYFSN323zMdy7DPCSvAZS7ZRbWuN12H94Zz3rq4aP8MXcpLefk\nff7kpFxg76SL7/F61K5O3DX6pwGkbDJYrZe83VdGrFu3jlatWlG3bl3WrFnD7t27mT17trPTIpeV\nzk6hWCZCy3yOoDyvNROhfNfB+bNvlqTn9k/KTT2/7WD/9NHOcPv2vC9BZb2eJkL5PuQhZ6dRoh7b\nVvNjxwednUaJbt26ptw86+Wlnr906VtyoJPdtHktx/t1cHYaxarzyXYAshZUdHImxXMNu1Bu7s3y\nIvfr6s5OoVim3o6ddMpeZbKHq3r16owePZoKFSpgNBqZNWtWoXERERHMmzevwPI77riDgQML/tsj\nIiIiIiJyjZShYXtlWZlscLVv3561a0ueqaVly5asWLGixDgRERERERFnKFP/8LGIiIiIiMg/SZns\n4RIRERERkTJOQwrtoh4uERERERERB1GDS0RERERExEE0pFBEREREREpPQwrtoh4uERERERERB1GD\nS0RERERExEHU4BIREREREXEQvcMlIiIiIiKlZ7E6O4NyQT1cIiIiIiIiDqIGl4iIiIiIiINoSKGI\niIiIiJSepoW3i3q4REREREREHMRgtVr1tpuIiIiIiJRK7hofZ6dQLNOD55ydAqAhhSIiIiIiciU0\npNAuanCVQi4rnZ1CsUyElvkcQXleayZC+W+7UGenUaK7dq0sN/VcV8brec+uvDqW9XqaCOXHjg86\nO40S3bp1Dd+HPOTsNErUY9vqcvOsl5frvrFLH2enUaJumz/nRP/2zk6jWLU/3gFA1oKKTs6keK5h\nF8rNvSn/LHqHS0RERERExEHUwyUiIiIiIqWnf/jYLurhEhERERERcRA1uERERERERBxEQwpFRERE\nRKT0rJql0B7q4RIREREREXEQNbhEREREREQcRA0uERERERERB9E7XCIiIiIiUnqaFt4u6uESERER\nERFxEDW4REREREREHERDCkVEREREpPQ0pNAu6uESERERERFxEDW4REREREREHERDCkVEREREpPQ0\npNAuanA5idVqZdLEdQQ19GfoY52dnU6RlOe15aw8q97Ymsaj+mF0MXM+6gQR05eScyH9iuLazXuW\nzDNJ7Jv7PgB+NzSlyTMDMJpN5GZms3/e+5zb/6fDz6msXPOqN7am6SU1+72Y2hYV1+uHxWTEJ9li\no1b8l9j1v163c4DrV0+/zm0JHDkQo4sLqVHHiHxxMblp6fbFGI00emYIviGtMJhMHP9oHbGff59v\n2+p33YL/zR2IGDvHtqzF7DA8g+qRm54BQNKufRx+7f0Sc63SpQ1BIwZidM3LY/+Lb5FbyLUtMs5o\nIPjZIfj9le+xlV8Rc1m+Ne6+hao3deD3S/Jt+VIYXkF1bfme3bWfQ6+WnC+U3WfdGdf9b7UfupMa\n997KttAwu3L9m2+ndtR7chBGVxcuRB3j0OxFBXIuKsZU0YNGE5/Co24tMBiIW/8zMSs/B8CzcRCB\nz0ywxMoAACAASURBVAzFVMEdg9HIiQ8/J/67X0qVW1Hc23ShUv+nMLi4kn38MGeXzMSafiFfjMeN\n/8/efUdHVa19HP9OS2+kh05CKAFCb6KICAhYaVJCQEAQEZXem4B0Ua+KoIgFERBBX8tFio0OCQKh\nlyAJBNJ7z5T3j9EJIW0SEibxPp+1WIuZeWbO7+wz58zs2fuc9MHx6eFgAENuNkmfrSHv+sUCNW5T\nVqFLiiP509UVkuteigZPoHpkMQqVFYa4c2j3ToDctKJrGz6FuvfH5L3v8/dK1kDV4x2UHoEY8jLR\nn9+M/tT6cmep7PemjY8nHT5byanXl5B2KX9/UWjUtHxrNre/3Ufsb8fKnV9UD1VmSuGuXbtYs2ZN\nhb3erFmzOHDgQIH74uLiWLRoUaHaNWvWsGvXrgpbdmnCw+MYPXIzP+8+/8CWWR6Ss2JZKqeViyMt\nF47j5PR3+H3AdDJvxdLk1cHlqvMb8RSurRubbivUKtosn0jY0o0cGDqHq598R6vFL1f6OlWVbW7l\n4kjrheMImf4Ovw6YTsatWJoW07bF1dnX8yEvNYM/hs0x/XvQna0H1Z4aFycC5k3g7Ow1HBv8Olm3\nY2j4SpDZNbX69cC2jjfHg6YQMnoWdQY/iVNAQwDUTg40njGWxlNHo0BR4DWdmzfi5MsLODFiOidG\nTDers6VxcaTZvAmEzX6LI89PIjMqFv8Jw8pUV7tfT+zqeHN02FSOj5pN3SF9cQrw+zuvPU1njqXJ\n1FHcExeX5v6Ejl/IseAZHAueYXZnq6ru65ba7gDOgY2pF/ysWTnvzdNo7qtcmLuK0KETyb4dTYOX\ng82uqT92KDlxCZwMfp1TL06nZr/eODYztmfAmzOI+GQbf74whbNTl+D72ihsavuUOeO9lI4uuI5f\nQMLbM4meMhBtbBQuQycWqFH71MMl6DXilr9GzKwgUnd9gvuUVQVqHJ8OxrpJq/vOUyxbd9S9N6D9\nfhh5n7bGkHID1SOLi6518UPddRko8r+uqrqthNwM8j5ri/arbijr90Lh27tcUSrzvQmgtNLQ7I1X\nUWgKjm84NW9E+43LcAlsUq7covqpMh2uB8HDw6PIDteDtnVLKP36t6J3n2aWjlIiyVmxLJXTo3ML\nki9cJ+NmDAAR3+ynVp8uZa5zaxeAx0OBROz8xXSfQatjf59XSb0cAYBdLU9yU9Irc3WAqrPN722z\nG9/sp7YZbXt3nWugPwa9noc2zKXbtuU0GtsPlIW/OFamB9Werh0DSb0YTtbNaACidu3F+4lHzK7x\neLQjd378DYNOjzYtg5j9h/HubXzM6/HO5CYkcfW9zQVez8bHE5WdLU1mjqPDl2toOm8CaieHUrO6\ndWxJysVwMv/OcWvXXtOyzK3zfLQDUT/8bsobve8IPr27AuD9+EPkxCdx5T/35vVAZWdL05lj6fTl\nagLmv4zayb7UvFB193VLbHcAK1dnGk97kavvF36sNDU6tCLt4lWyb90B4Pa3P+PZq6vZNeHvfML1\n9z8z5nCrgUKjRpeRgcJKQ+Sn20kODQMgNy6BvORUrD3dypzxXjaBncgNv4A2+iYA6ft2YvdwwY6I\nQZtL4kdL0ScnGJd//SIqFzdQGTsE1gFtsWnZmfT9lfcjtLLe4xiiT0JyOAC6Mx+jbFr4hwHUtqj7\nfoL2j1kF7lZ4tUZ/YSsY9KDPQ//Xzyj9+5UrS2W+NwEaT3uROz/9Tl5KaoHXrPN8H8I3bCP1wtVy\n5a5KDPqq/a+qqHIdrk2bNjFgwAAGDx7M6tWr0el09OzZE61WS2xsLE2bNiUpKYnc3Fz69St5B/vq\nq68YOXIkw4cPJyIiglu3bvH8888DsGfPHp577jlGjx7NmTNnHsSqmcxb0Idnngt8oMssD8lZsSyV\n08bLjezoRNPt7NhENA52qO1tza6zdneh2bRgTs1bB7qCRzCDVoeVqxM9dr9H09eHEv7Fj5W7QlSd\nbW7r5UaWGW1bUp1CrSLu+DmOTVzJoReX4NkpEN/BTzywdYAH1542nu5kx8SbbufEJqB2sENlZ2tW\njY2nG9kxCQUe++eLatS3+/jrk2/Q5+QWWKaVqxOJIWe5tGIDJ0bMQJeVTcDc0kdmbLzcyLlnWRoH\nO1RF7DfF1dl4uZETe29eVwBufbuP6598g65QXmcSQ85yYcVHHBsxA11mNs3mTSg17z9ZquK+bont\njlJJszde59r7m8mJS6SsrD3dC267uATUDvYFMpdao9PTeMEk2m1+l5RT58mMvI0hN4/oH/M7st7P\n9ERla0PauStlzngvlZsXuoQY021dQixKOwcUtvkddl3cHbJPHTbddgmeTNbJA6DToqzhjsvIqSS8\nPx/0uvvOUyyn2hjSbuXfTotCYe0MVo4F16fne+jDNmGIO1fgfsOdEJQBQ0GpBo09Sv/nUDh4lytK\nZb43az7THYVaxe3/y9/e/zi/4F0SjvxZrsyieqpSHa6IiAh2797Ntm3b2LZtGxERERw4cIB27dpx\n+vRpDh48iL+/P0ePHuXo0aN06VL4l7u7tWnThs8//5yxY8eyenX+POS8vDxWrFjBp59+yieffIKN\njU1lr5oQFqNQFD1aYrjny1RxdSigzfJXOf/WZnLik4ssyU1MZX+fVzk8ahEtF76Efd3yffhVN/fb\ntgadnshvf+Pc6i/Q52nRpmcSvuW/eD/WrsKzVgnFjNwZ9HqzahRFPHZvW98r9fw1zs5aTW5CMuj1\nXP/4a9y6tEGhLuUUZkXRH4+FlldSXVHroi8975mZa/7Oa+D6xztw79IahVpVcl6q8L5uge3ecMIw\nkk9fIPFEWOn5inKfmf9xefE7HHlyJGonB+qNer5AXZ3h/ak3ZgjnZy5Dn5t778tUWOaiOk8Kaxvc\nJi1H7V2bxA1LQaXC7bU3Sf5irWn0q/KUnlPZcizotejPfVGoTPfHbMCAOvgo6me3oY/4FXTlbL9K\nem86Nm5ArX69uLTyo/LlEv86VeqiGRcvXqRbt25oNBoA2rVrx9WrV+nVqxd//PEHt27dYvLkyfzy\nyy8olUoGDhxY4uu1a2f80tK6dWtWrcqfo5yYmIizszM1atQwPS7Ev0mj8QPw6toWALW9LWnXbpoe\ns/FwJTclHV12ToHnZEUn4NK8YaE6hwa1sKvpQcDk4QBYuzmjUClRWmu48PYW3Ns3I/q3UABSL90g\n7UoEjg3rkBEZXdmraRGNxw/A+662Tb2PttVl51C778OkXonIfx2FAoO2En9dtqCcmHicm/mbblt7\nuJKXko7+rvYqqSY7Jh5r9xoFHrt7hKEoLi2boHZyIP6g8T2qUChAbyj4hepvfuOex+MR4+eGyt6W\n9PDIErMCZMfE43zXti2QNzoeKzeXAo9lx5Y82uLSqgkaR3viDp7k78DF5oXqsa9bYrt79+5KblIK\nHo92RGVrg7WHKx2+WM2JEdNLfJ4pT3Q8jgGN8pfp7kZealrBzCXU1OjQiozrEeTGJ6HPyiZu/0Hc\nH+0MGC+W0Hjua9jVr83pl2aREx1nVqbS6OJjsG7Y3HRb5eqBLj0FQ052gTqVmxfuM9aijbpB3OKX\nMeTlYOXfArVnLVyCJxtrXNxAqUShsSLpozcrJJ9J2i0UPu3zbzvUxJCVCNpM013KZsNBY4c6+CgK\nlcY4vTD4KNpd/UCpRndgHmQbLzSkbD8FQ3L5LtRUWe9N7z6Pora3pd3Hxrazdnc1jbj+cyz615Cr\nFJqlSo1wNW3alLCwMLRaLQaDgZCQEBo0aECXLl0ICQkhKSmJRx99lPPnz3Pp0iUCA0ueAhMWZvxl\nKzQ0FH///J3Fzc2N1NRUEhONH3xnz56tvJUSwgKurN/JwWFzODhsDodfWEiNFg2xr+MFQL2BjxPz\nx8lCz4k7drbIuuSz1/jlyddMrxe58xfu7D1G2JKNGHR6AheMo0ZL45cOB99a2NevSfK58Ae3sg/Y\n5fU7TRe3OPjCQlzvarP6Ax8nuoi2jT12ttg6R7/aNH55ICgVKK01NHi+J1H7/p1XrEo4fgbn5v7Y\n1jGOitTq14u4gyFm18QdCMHn6cdQqJSoHezw6tmFuAMFn38vlZ0NjaaMNp23VXf4M8YrghXRgQn/\n6GvThSpOjJmLc3N/7P7OUbt/T2IPFl7WP3mLqos7EEqtp7vflfch4v44UXJeWxsaTx1tOm+r3vBn\niPn1WLFfaqrDvm6J7X7oqXGcCDZeJOXi8g/Jioo2u7MFkHTiNE7NGpkuZuHT7wkSDp4wu8ajexfq\njTKel6TQqPHo3oXkP43fNQKWTkdlb8vp8bMrrLMFkB12DKuGzVF71wHAoccAskMLXjxMae+E58IN\nZJ34jYT/zMWQZ+xY5F49y51XniJmVhAxs4JI37+TzKP7Kr6zBehv/ILCpwO4GC8go2r5IvrwnwrU\naL96FO3n7dFu7kzerv6gzUK7uTNkRKNq+SKqh+YZC+08UbV4Af3F7eXKUlnvzavvfMbR5183Xagn\nJz6R8wvf/fd1toTZqtQIV7169WjTpg1Dhw5Fr9fTtm1bevTogUKhwNvbm5o1a6JUKmnQoAGurq6l\nvt6ZM2cYMWIECoWCZcuWYTAYP7DUajULFixgzJgxODs7oy5taokQ1VhuUipn3thA21Wvo9CoybwV\ny+kFHwLg3LQBgfPHcnDYnBLriqPLyiF06lqaTR2OQq1Gn5fHqXkflPor/r9FblIqp97YQLtVr6PU\nqMm4Fcupu9q21fyx/PF32xZXd+XjXbSYMZLHtq80zvfff5zIb3+z5GpVmrykVC4sWUeLZVNRatRk\n3Yrh/OL3cWziS9M5L3NixPRia8B4srptLW86bF6DUqMm6tt9JJ+6UOIyE46e5taO/9LuoyWgUJIR\nHsnF5aVfQtqY40MCl09BoVaTFRXDuTeMOZya+BIwdzzHgmeUWHdr115sa3vR6cvVKDVqbn27n6RT\nF0taLAlHT3Pz6920/2gJCqWS9PBILizbYE7zVtl93RLb/X7lJadwedl7BCydjlKjISsqmstL3sWh\niR+NZr3Cny9MKbYGIPz9T/GfPp62m98Fg4H4g8eJ+vpHnFo0we3hDmRGRtFq/XLT8v5a9wVJJ07f\nV2Z9ahKJ6xfjNnkFCrUGbcwtEj9YhMa3Ka7j5hEzKwj7ngNQuXtj2/4xbNs/Znpu3NIJ6NNT7mv5\nZsuKQ7tnPOqnt6BQaTAk/4X257EovFqj6rXO2LEqge74GtR9N6Ieaez06I4uwxBTvvOhquN7U1RP\nCsM/vRBRKh1bLB2hRCqCqnxGkJwVTUUQP7YNKr3Qwp46uaXatOf3Vbw9nzlpbMeq3p4qgvil0yBL\nxyjV48d2sK/j86UXWljP419Xm329umz3A13Kd3W7B6nr4W+5OaR96YUWVGebsfOT+5Z5V9S0FKup\nGdXmvVldaD+ytnSEEqnH5ZRe9ABU66Gd3NxcxowZU+j+Bg0asHhxMX/TQQghhBBCCCEekGrd4bKy\nsmLz5rL/fQ0hhBBCCCGEeBCq1EUzhBBCCCGEEOLfpFqPcAkhhBBCCCEspOQ/iSf+JiNcQgghhBBC\nCFFJpMMlhBBCCCGEEJVEphQKIYQQQgghyk7+uJRZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIh\nhBBCCCFEmRn0CktHqBZkhEsIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUTZyR8+NouMcAkh\nhBBCCCFEJZEOlxBCCCGEEEJUEoXBYJA/WSaEEEIIIYQok7x3bS0doUSa17MsHQGQc7jKRMcWS0co\nkYqgKp8RJGdFUxHE7vZDLR2jVH1Ctlab9vyp3TBLxyjRk6FfAdXjmLS3w2BLxyhVrxPb+bXzQEvH\nKFX3o99Um339l06DLB2jVI8f28EfXfpbOkapHj28i8jBHSwdo0R1t58AIPctewsnKZnV1Ixqc0wS\n/y4ypVAIIYQQQgghKol0uIQQQgghhBCiksiUQiGEEEIIIUSZGfQKS0eoFmSESwghhBBCCCEqiXS4\nhBBCCCGEEKKSyJRCIYQQQgghRNnJlEKzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKI\nsjPIlEJzyAiXEEIIIYQQQlQS6XAJIYQQQgghRCWRKYVCCCGEEEKIMpM/fGweGeESQgghhBBCiEoi\nHS4hhBBCCCGEqCQypVAIIYQQQghRdnoZuzGHtJIQQgghhBBCVBIZ4bIQg8HA3Nnf09Dfg9FjHrJ0\nnGJJzoplqZweXVrT6JUhKK3UpF2N5NzSj9BmZJldp7TW0GzGaJwDfEGpJOXcNc6v2oQ+Jw/XtgE0\nmTQchUpFXkoaF9d+QdrVyEpfJ0tuc88urWg88Z92uknYkqLbs7g6tb0tgQvG4VC/JigU3PrpINc/\n/wEAt7YBNHl9GEq1Cl1OLufXfEHK+fBKXydLtad7l9b4TxiK0kpD2rVIzi9dj66ItiytztrTjY6b\nlnI0aAZ5KWkAODX1o/GUkahsrVEoldz44v+48/OhMmd0e6gNfi8HodCoyQiP5OKb69BlZpWpxtrT\njXYbl3EieJopn2NTP/wnjUJlY41CpSRi83fE7DlY5nx3q6r7uttDbfCbMAylRkP6tQguvvlh0W1Y\nVI1SSaPXR+LasSUKlYrIr74n6tt9BZ7r89RjeHTrQNi0lab7XFo1peHE4SitrdCmZ3JhyQdk3441\nuy1dO7elwfgglFYaMq5FcHn5B4UyF1ejtLKi4dSxODZtiEKpIPX8Va699TH63Fzs6tem0YyXUdnZ\nYDAY+OvDL0k6cdrsXCWxad0Fl6ETUGisyIu8RsL6pRiyMgrU2D3cG6dngsFgwJCTTdJnb5F7/SIK\nW3vcxs9DXas+CoWC9D/+S9r3X1RIrnspGjyB6pHFKFRWGOLOod07AXLTiq5t+BTq3h+T977P3ytZ\nA1WPd1B6BGLIy0R/fjP6U+vvK899H4eUChpPGoF7J+N79MaWH7i1az8A9g1qETB7HCo7GzAYuPrB\nVhKOnaH+iGfx7pV/rLVycUJtZ8Ov3Ufd17qIqskiI1y7du1izZo1lfb6x48fZ/LkyYXuf/PNN7l9\n+3aB+8LDwwkODq60LEUJD49j9MjN/Lz7/ANdbllJzoplqZxWLo60WPASp2a+zcGBU8mKiqXRxKFl\nqvMb1Q+FSsmhYbM4NHQGSmsr/F54FrW9LW1WTebyf7ZweNhMzq/YRKvlr6PUVO5vOZbc5lYujgQu\nfImTM97hjwHTyIyKocnEIWWqa/TyILJjEjkweCaHR8yn3oAeuLTwR6FW0Xr5q5x982MODpvNtU++\no9Xilyt9nSzVnhoXR5rPf5kzs9ZyeNBksqJiaPTKsDLX+fTtSoePFmHj6VrgeS1XTiH8ox0cGz6T\nPyctp/GkEdjV8S5jRieazn2Fs7NXc3zI62RFxeA3IahMNd59HqXN+iVYe7gVeF6LZdP4a+N2QkZO\n58zkN/F/7QVsa5ct392q6r6ucXEiYN4Ezs5ew7HBr5N1O4aGrxRuw+JqavXrgW0db44HTSFk9Czq\nDH4Sp4CGAKidHGg8YyyNp45GQf7V0qw9XAlcOZ3LqzdyIng6cb8dp8n0sWa3pcbFicZzJ3Jh7mpC\nhr5K1u0YGrwcbHZN3ZEDUKhUnBw5hdARU1BZW1F3RH8A/KeOI/qnXzj5wlSuLPuAgCVTQXX/X8eU\nji64vTyf+LWzuDN5ENqYKFyGvVKgRu1TlxrDXyN22WtEzxxOyq5NuE81dlJdBo9HmxhL9LShRM95\nAcee/bHyb3HfuQqxdUfdewPa74eR92lrDCk3UD2yuOhaFz/UXZeBIr99VN1WQm4GeZ+1RftVN5T1\ne6Hw7V3uOBVxHKrTryd2dXw4MnQax16YQ70hfXEK8AOg6YwxRP3wG8eGz+T8kvUELpuEQmX8AejY\n8JkcGz6T0PFvoMvOJmzuu+VeD4vRK6r2vyrif2pK4dy5c6lZs6alY7B1Syj9+reid59mlo5SIslZ\nsSyV071TICkXrpN5MxqAyJ37qNm7S5nqkk5d5Nqmb8FgAL2B1Ms3sPH2wK6uD3npWSSEGL+oZ0Tc\nRpuRhUsL/0pdJ0tu83vbKeKb/dTsU3p73l13Yc0XXHx3CwDW7i4ordRo0zMxaHX80mciqZcjALCr\n5Ulecnqlr5Ol2tOtY0tSLoSb2ujmzn149364THXW7jXwfLQ9f05eUeA5SisN1zd+Q2LIWQByYhPJ\nTU7D2rNgp6c0rh1aknrxGlm3jMuO2rUH7yceMbvGyr0G7l07cGbKskL5/tq0g6R/8sUlkpeSWuZ8\nd6uq+7prx0BSL4aTdfOf9tlbuA1LqPF4tCN3fvwNg06PNi2DmP2H8e5tfMzr8c7kJiRx9b3NBV7P\ns3sn4o+eIu3yX8bX+24fV9751IxWNKrRoRVpF6+RdesOALe//RmvXo+YXZNy5gKRn+/4ux31pF/5\nC2tvDwAUKiVqRwcAVHa26HPzzM5VEpuWHckNv4A2+iYAaft2Yv9wwY6IQZtHwoY30ScnAJB7/SIq\nFzdQqUn67C2SN//HmMvFHYXGCn1mxR9/lPUexxB9EpKNI/e6Mx+jbDq4cKHaFnXfT9D+MavA3Qqv\n1ugvbAWDHvR56P/6GaV/v3LnqYjjkGe39tz+8XfTezR63xF8+hjfCwqVEs3f21ttb4s+J7fQazd6\nPZj4I6eJP1oxI52i6nkgUwqzs7OZPXs2t2/fJi8vjyeeeML02KZNm/jpp59Qq9W0a9eO6dOnc/Lk\nSVauXIlarcbW1pZ3330Xa2trFi5cSEREBHq9nkmTJtGxY8dilxkREcGYMWNISkpi6NChDBo0iODg\nYBYtWoSjoyPTpk3DYDDg4eHxIJqggHkL+gBw7NhfD3zZZSE5K5alctp4uZEdk2C6nR2biMbBDrW9\nbYGpRiXVxR8/m1/n7U79oX04t+xjMiPvoLazwb1jC+KPn8U5wBdH39pYu9eo1HWy5Da39XIly4z2\nLK3OoNPTavEEvB/vQPTvoaRHGEffDTodVq5OPPLlMjQujpya/V6lr5NF35ux+W2UE5uAxsEOlb1t\ngek8JdXlxCdxZuZbhV5bn5tH1Pe/mW7Xeu5xVHY2pJy7UuaMOXcvOy4BtYM9Kjtb0/Sykmpy45M4\nN3t1kfnu/PCr6XbNZ3ugsrUh9fzVMuW7N2tV3NdtPN3Jjok33c6JTUDtYFewDUuosfEsmDcnNgGH\nhvUATFMLfZ7sVmCZdnVros/KofmSSdjVrUl2TDxX3vms1Kz/sPZ0Iyf2rjxFbPeSapJOnMl/LS8P\nag1+iisrPwTg6lsf0/I/b1B78NNoajhxceFa0OnNzlYctZsX2oT8KZO6hFiUdg4obO1N0wp1cXfQ\nxd0x1dQYMYms0AOg0xrv0Otwm/gGdh27kxnyO9rbEfedqxCn2hjSbuXfTotCYe0MVo4FphWqer6H\nPmwThrhzBZ5uuBOCMmAouttHQWWN0v850Je/01oRx6Gi9in3v9+jF1dtot26+dQb2hcrV2fC5r6L\n4a7tbe9bG89H23Go32vlXgdR9T2QEa5t27ZRq1Yttm/fztq1a7G2tgbg8uXL7N69m23btrFt2zYi\nIiL47bff2L9/P3369OHLL79k6NChpKamsmPHDmrUqMGWLVtYt24dixcXM/z8t7y8PD788EO++uor\nNm7cSGJioumx9evX89RTT7F582Z69OhRqesuhMUpih5SN9z7AW9GnVOTBnT6eCERX+8h7tAptBlZ\nnJy6Bt9Rz9Flywpq9u1KQsh59HnaCotf5SiLPmwWak8z6k4vWMe+Hi9h5eSA/4v9TffnJqbyS9+J\nHBm1kJYLX8K+bvmnmVVlCmUx0z3uaUtz64pTf8SzNBw3iFNTV6HPKeMXs+K2o15ftpoS1At+jgYv\nDiZs+ooif/02W1Xd14vZfgXbsPiaorZ/oXW6h0Ktwr1re8I/2saJkTNIDD1L4IrppWf95/lmbFNz\nahwa+9Jq3VJu79xN4pGTKKw0NF08lUtvvsexfmM5/cp8/KePv6+RzbsCFX2/Xle41NoG98nLUXvX\nJmHDmwUeS3h/Ibde7IXSwRnngWPuP1fhpZeaU9lyLOi16M8VPodM98dswIA6+CjqZ7ehj/gVdOXf\nbyrkOFTUe1SvR2mlIfDNSZxb/CEHnp5AyEuLCJg9tsD2rje4Dzd37CnyXEvx7/FARriuX79O165d\nAahfvz5OTk7Ex8dz/fp1WrZsiUajAaBdu3ZcvXqV8ePHs379ekaOHImXlxeBgYFcuXKFkydPEhYW\nBoBWqyUxMRFXV9cil9mqVSusrKwA8PPz49at/F9Tbty4wfPPPw9AmzZt2Lp1a6WtuxCW4P/SQDy7\ntgWMUxjSrt00PWbt4UpuSjq67JwCz8mOScClecNi63x6diZg5mgurP6UO3uOGIsUCnRZ2ZwYv8T0\nvEe+XkPm31Or/i0avTQQz65tANDY25Eann+hAJvi2jM6HpfmfkXWuXcKJO1aJDnxyeiycri95wje\n3TugtrfFrX0zYn4PBSD18g1Sr0bg2LAOGZH/jjb1GzcIj67tAON7M/1afltae7iSV0xbOjdrWGrd\nvRQaNc0XTMDBtzbHx8wn+05cmfNmR8fhFJA/bc7aw5W81DT0dy3bnJri8gXMm4hdg9qcHDuH7Oiy\n56sO+3pOTDzOze5pn5T0Au1TUk12THyBkTRrD9cCI4pFLjMuiZSzl01TFG9//yuNp4xGaW1lVqc2\nOzoOx7u3qbtbkdu9pBqPx7vgP20c19ZuJHaf8WIo9r51UdlYk3jkJABp56+Q+ddNHAMakRN7tNRc\nJdHGR2PVMH9asMrVA116Coac7AJ1KjcvPGauJS/qL2LfmIAhz5jXpmUn8iKvoUuKx5CTRebhPdh1\n7H5fmYqUdguFT/v82w41MWQlgjbTdJey2XDQ2KEOPopCpTFOLww+inZXP1Cq0R2YB9lJxtr26ZRa\nbwAAIABJREFUUzAkXy9ThIo+DmVHJ2Dt7lLgsZzYBBz86qCysSL+0J8ApJy7Svr1m7g0b0jMrwmg\nVODZvSPHRswuU/6qxGCoOudJVWUPZITLz8+Ps2eN0xRu3rzJ2rVrAfD19SUsLAytVovBYCAkJIQG\nDRrw/fff069fPzZv3oy/vz9ff/01vr6+PPnkk2zevJmPP/6Y3r174+LiUuwyL1y4gFarJTMzk/Dw\ncOrWrVsgz6lTpwBMuYT4N7m64RsOB83mcNBsjo5agEtzf9PFAuoO6EHsgdBCz4k/FlZsnXf3DjSd\nNpKQV5fnfwEDMBho985MnJr6Guse74heq3sgVyl8kK5s+IZDQXM4FDSHw6MWUKNAOz1OzB8nCz0n\n7tjZYutq9uyI/7gBACg1anx6diIh9DwGvZ6WC16iRstGADj41sK+Xk2Sz1X+VQoflH8uYnFs+ExO\njJ6H811tVLt/zyLfmwnHw8yqu1fL5ZNR29tyopydLYDEE2dwbu5vuphFzX69iD8QUuaaojR/cyoq\ne1tOjptbrs4WVI99PeH43+3z9/Jq9etF3MEQs2viDoTg8/RjxnOfHOzw6tmFuFLaN+6PE7gENsbG\nxxMAz24dSQ+PNHsEMenEGZyaNcK2tvHKeDX79SLhnswl1bh360zDyS8SNnmxqbMFkHXrDmp7O5ya\nNwbAppYXdvVrk361bB2GomSHHcfavzlq7zoAOPTsb5wueBelvRNeizaQeeI3Et6dZ+psAdh16oHT\nwBeNN9Qa7Dr3IPtc6ftZWelv/ILCpwO4GH+QUrV8EX34TwVqtF89ivbz9mg3dyZvV3/QZqHd3Bky\nolG1fBHVQ/P+Du2JqsUL6C9uL1OGij4OxR4IpdZd71Hvng8R+3sImTejUTvY4dzCeEy3reWFff1a\npF6+AYCjX120qRnlPj6J6uOBjHANGTKEOXPmMHz4cHQ6HaNGjSIpKYnGjRvTp08fhg4dil6vp23b\ntvTo0YOwsDDmzZuHra0tSqWSxYsX4+Xlxbx58xg+fDjp6ekMGzYMZTHD+QDW1taMHTuW1NRUXn31\n1QKds5dffpnp06fz3//+l9q1az+IJhDCYnKTUjm7eD2tV0xCqVGTeSuGsEXrAHBq6kuLeWM5HDS7\nxLpGrwxBoVDQYl7+Vb6SzlzhwqpPOTP/fVrMHYtCoyYnPok/pxc+n+bfJDcplTOLN9B2pfEKbRm3\nYjiz0HhuhnPTBrSYN5ZDQXNKrLvw9hZazBlD1+0rMRgMxPx+kr+2/gwGA6HT3iJgSjAKtQp9npbT\n894nOzaxpEjVVm5SKueXfEjLFVNQqNVkRUVzdtEHgPG9GTD3JY4Nn1liXXFcAhvj2bUdGRG3ab8x\nfwr61fe/IuHYmRKeWVBeUioXl35A82XTUGrUZEXFcGHxezg28aPJ7PGEjJxebE1JnAMb4/FIezIi\nomi7Yanp/vB1X5J43Px8d6uq+3peUioXlqyjxbKpxva5FcP5xe/j2MSXpnNe5sSI6cXWgPECGra1\nvOmweQ1KjZqob/eRfOpCictMv3qDS6s+JnDldBRqFdq0DM7OXWt2W+Ylp3B52fsELJ2OQqMmOyqa\nS0v+g0MTPxrPmsDJF6YWWwPQYLzxCouNZ00wvWZK2CWurf2Y83NW4jdpDEorDQatjiur1pMdFWN2\ntuLoU5NI+HAJ7lNWoFCr0UZHkfDBIqx8m+L60lyiZw7HodcAVO5e2LXvhl37bqbnxi55haTN7+A6\ndhbea7aCwUBWyB+k7d5237kKyYpDu2c86qe3oFBpMCT/hfbnsSi8WqPqtc7YsSqB7vga1H03oh5p\n7Nzqji7DEPNnueNUxHHo1s692NXyovOWVSjUam59u5+kUxcBOD3jLZpMfcG0vS+s+Jisv7e3XV0f\nsqSz9T9BYTAYDJYOUV3o2GLpCCVSEVTlM4LkrGgqgtjdvvCln6uaPiFbq017/tSu8CWBq5InQ78C\nqscxaW+HIq4+VsX0OrGdXzsPtHSMUnU/+k212dd/6TTI0jFK9fixHfzRpX/phRb26OFdRA7uYOkY\nJaq7/QQAuW/ZWzhJyaymZlSbY1J1kb2kAs4/rEQ280uefvygVOs/fPz+++9z/PjxQvcvW7aMOnXq\nWCCREEIIIYQQQuSr1h2uiRMnMnHiREvHEEIIIYQQQogiVesOlxBCCCGEEMIyDHq5SqE5HshVCoUQ\nQgghhBDif5F0uIQQQgghhBCiksiUQiGEEEIIIUTZyZRCs8gIlxBCCCGEEEJUEulwCSGEEEIIIUQl\nkSmFQgghhBBCiDIzGGRKoTlkhEsIIYQQQgghKol0uIQQQgghhBCikkiHSwghhBBCCCEqiZzDJYQQ\nQgghhCg7vYzdmENaSQghhBBCCCEqiXS4hBBCCCGEEKKSKAwGg8HSIYQQQgghhBDVS8YcH0tHKJH9\nsjuWjgDIOVxlsrv9UEtHKFGfkK3s7TDY0jFK1evEdn5sG2TpGKV66uSWKr/NwbjddWyxdIxSqQiq\nNu2ZdaGHpWOUyDZgP1A9jkk/dxhi6Ril6n1iG78/NMDSMUrV7cjOarOv/9p5oKVjlKr70W9YVO9V\nS8co1aKI91jf5CVLxyjR+EsbANgaOMrCSUo2NOxTfmo3zNIxSvVk6FeWjiAqmEwpFEIIIYQQQvzP\n0ev1LFiwgMGDBxMcHExERESRdfPnz2fNmjXlXo50uIQQQgghhBBlZjAoqvS/0uzfv5/c3Fy2b9/O\n1KlTWbFiRaGabdu2ceXKlftqJ+lwCSGEEEIIIf7nnDx5kkceeQSAVq1ace7cuQKP//nnn5w5c4bB\ng+/vlB3pcAkhhBBCCCH+56Snp+Pg4GC6rVKp0Gq1AMTGxvLBBx+wYMGC+16OXDRDCCGEEEIIUXbV\n/A8fOzg4kJGRYbqt1+tRq43do59//pmkpCTGjRtHXFwc2dnZ+Pr60r9//zIvRzpcQgghhBBCiP85\nbdq04bfffqNv376cPn2aRo0amR4bMWIEI0aMAGDXrl1cv369XJ0tkA6XEEIIIYQQ4n9Qz549OXz4\nMEOGDMFgMLBs2TJ++OEHMjMz7/u8rbtJh0sIIYQQQghRZgZ96VcCrMqUSiWLFy8ucJ+fn1+huvKO\nbJmWc1/PFkIIIYQQQghRLOlwCSGEEEIIIUQlkQ6XEEIIIYQQQlQSOYdLCCGEEEIIUWYGQ/U+h+tB\nkREuIYQQQgghhKgk0uESQgghhBBCiEoiUwqFEEIIIYQQZaeXsRtzSIergnh0aU2jV4agtFKTdjWS\nc0s/QpuRZXad0lpDsxmjcQ7wBaWSlHPXOL9qE/qcPFzbBtBk0nAUKhV5KWlcXPsFaVcjy5XTvUtr\n/CcMRWmlIe1aJOeXrkdXRM7S6qw93ei4aSlHg2aQl5JmXLeH29B84StkxcSb6kLGLUSXmV3mnJ4P\nt6LJxMEoNWpSr90kbPHHRbanOXVtV08iJy6Jc6s+B8CtXQBNXx+KUq1Cl5PH+dWfk3z+epkzQvXZ\n7mVhMBiYO/t7Gvp7MHrMQ5W+vLtVt/Y8EJrFe1+mkJtnwL+ehkUTXXGwy//w+eG3DDZ/n2a6nZ6p\nJzZBx56NNVGr4M0NSVz+Kw9bGwXPdrdn6JOO95XnbtWlLT26tKbRhCGmY83ZpRuKPCYVV6e01hAw\nfTTOAX6gVJBy7hoXVhtz/qPW093w6taeP6euLldG14fa4Dt+OEqNmvTwCC4vW4cuM8usGqWVFf7T\nXsSxaUMUCiWpF65wdc1G9Lm5ODb1o+Hro1HZWINKyc0vvyNmz4FyZSyPB7mvuz3UBr+Xg1Bo1GSE\nR3LxzcJtWGyNUon/ayNx7dQKhUpJ5Fc/cPvbvQC4tGmG/2sjTe/Fq+98Svq1CNNrKjRqWq6ZTdR3\n+4j77ViFrY9/92b0mPE0Kis1MZdu8/2Mr8hJL/xZ12FkV9oNfxgMBhIj4vlh1lYyEtIrLEdR6j7a\nnI5T+qGyUpNwOYrf535BXkbxn8OPLR9J4tXbnNm0DwCFUsHD84fi094fgMgD5zi2ameF56z5SCAt\nXx+I0kpN8pVbHF+4CW0JOTsuGUPKtSguff5zgfvtvFzp+eU8dg9aQG7y/betZ5dWNJ74zzHxJmFL\nij52FlentrclcME4HOrXBIWCWz8d5PrnPwDgHOBLwNRgVDbWKFRKrn/+A1G7D993ZlH1Sbe0Ali5\nONJiwUucmvk2BwdOJSsqlkYTh5apzm9UPxQqJYeGzeLQ0Bkora3we+FZ1Pa2tFk1mcv/2cLhYTM5\nv2ITrZa/jlJT9r6yxsWR5vNf5systRweNJmsqBgavTKszHU+fbvS4aNF2Hi6Fniec2Bjbmz5gWPD\nZ5r+laezZeXiSMuF4zg5/R1+HzCdzFuxNHm18F/7NqfOb8RTuLZubLqtUKtos3wiYUs3cmDoHK5+\n8h2tFr9c5oz/LL86bPeyCA+PY/TIzfy8+3ylLqco1a09E1N0LHwvkTUz3Pi/D3yo7a3m3c3JBWqe\nfsyer9/25uu3vdmy2gt3FxWzxtbAzUXF6k3J2Nko2fUfbzav8OLQn9kcCCn8oV4e1aUtjcea8Zya\n9TYHB00hMyqWxq8UzllSnd+ofijUKg4HzeTwsBmorK3wHfmc8XlO9gTMGkPTaS+AonwndmtcnGgy\ndyLn56zmxNDXyL4dg++E4WbX1HthAAqVitARUwkZMQWltTV1Rxj/gGazN6dzY+N2Ql+YxtkpS/F7\n7QVsa/uUK2dZPch9XePiRNO5r3B29mqOD3mdrKgY/CYEmV1T67me2Nbx4UTQZEJHz6LO4CdxDGiI\nyt6OFsunc+39zZwInsrl1R/RbOkUFH+/F52aN6LdxuU4t2xSoetj5+rAc6uD2D7+E97vvpSkyHh6\nzHqmUJ1P8zo8NLY7n/Rfy7pey0m8EcdjU5+s0Cz3sqnhwGPLRrL3tQ1s67OQ1JvxdJrar8haF19v\nnv5sMr692xW4v9GznXBp4MWOZxbzzXNLqNm+Eb5PtKnQnNY1HOm4ZAwHp3zAT8/MIf1WHK0mDSqy\n1qmBD903zqBur/aFHqv/9EM8/tls7LxqVEguKxdHAhe+xMkZ7/DHgGlkRsXQZOKQMtU1enkQ2TGJ\nHBg8k8Mj5lNvQA9cWhg7r21XTeLKhp0cCppDyGuraDp5OHZ1vCsku6jaqmWHKzg4mPDwcEvHMHHv\nFEjKhetk3owGIHLnPmr27lKmuqRTF7m26VswGEBvIPXyDWy8PbCr60NeehYJIcYPxYyI22gzskw7\nb1m4dWxJyoVw0/Jv7tyHd++Hy1Rn7V4Dz0fb8+fkFYWe5xLYCNd2zen0+XLaf7SIGq2bljkjgEfn\nFiRfuE7GzRgAIr7ZT60+hduztDq3dgF4PBRIxM5fTPcZtDr293mV1MvGX0DtanmSm1K+X8Sqy3Yv\ni61bQunXvxW9+zSr1OUUpbq159HT2TTzt6JeTQ0Ag3o7sPtAJgaDocj6z75NxdVZycAnHAC4GJ7L\nk93sUKkUaDQKHmlrw76jmeXOc7fq0pbuHQMLHWt8ijgmlVSXeOoS4XfnvHIDWx93ALx7dCYnPpnL\n/9lS5mz/qNGhJWkXr5F16w4At3ftwavXI2bXJJ++QMRn3/ydT0/6levYeLujtNJwY9MOkkLDAMiJ\nSyQvORVrT7dyZy2LB7mvu3ZoSerFa2TdMm6/qF178H7iEbNrPB7twJ2ffsOg06NNyyB232G8n+iK\nXR0ftBmZJIWeBSAz4ja6jCycmxt/ZKszqC/XN2wl9fy1Cl0fv65NiAqLJPFGHAChXx6ixbPtCtXd\nOXeT/3RbTE5aNmprNY5eLmQlVcw+Xpw6XQKIPRtBSkQsABe2/UHDpzsWWds8qBuXdh3h+s+hBe5X\nKJWoba1RWalRWmlQalTocrUVmtO7czMSzv1FeqTx8/va179Sr2+nImv9hzzO9e8OErk3pMD9th4u\n1H6sDX+88naF5br3mBjxzX5qFvH9o6S6C2u+4OK7xmOOtbsLSis12vRMlFYarn68i4QT5wDIjk0k\nNzkN23t+vK5uDHpFlf5XVVTLDldVY+PlRnZMgul2dmwiGgc71Pa2ZtfFHz9LZqRxx7Xxdqf+0D5E\n/3KMzMg7qO1scO/YAjAORzv61sbavey/5th4uZEdm7/8nNgENA52qIrKWUxdTnwSZ2a+RcZfUYVe\nPy8lnZvf7OHYyNlc/WArLVdNxbocBxIbLzeyoxNNt0tsz2LqrN1daDYtmFPz1oFOX+B5Bq0OK1cn\neux+j6avDyX8ix/LnNG0/Gqw3cti3oI+PPNcYKUuozjVrT1j4nV4u6lMt73cVKRnGsjIKtzhSkrV\n8cX/pTF9TP7yWjSy5qffM8nTGsjM0vPL0Szik/SFnlse1aUt7z3WZJt5TLq7LuF4GJmRd0w56w3p\nQ/QvxwG4uWs/4Rt3os/OLXO2/GW7k3PXNOmcuATUDvao7GzNqkk6cYasm8Z81t4e1H7+KeJ+PYo+\nN4/oH/N/DPJ5ticqWxtSz10pd9ayeJD7uo2XGzl3f6YU2YbF11jf077ZsQlYe7qRGXkbla0Nrh1a\nAuDY1A973zpYu7sAcH7hOyQc+bPC18fZpwapt5NMt1PvJGPjZIu1g02hWr1WT5NegUw5toR6Hf04\ntaPipjUWxd6nBul3fS6mRydh7WiLxr5wtkNLtnH1++OF7r/87RFyUjMJ/mMlIw6uIjUyjojfwio0\np523K5l35cyMScLK0Q51ETlPLv+SGz8eLXR/Vlwyh6a8T+r12xWWy9bLlSwzjp2l1Rl0elotnkDX\n7StJOHmR9Ijb6HPzuPl/v5ueU6dfd9R2NiSdu1ph+UXVVaXO4Zo4cSIjRoygQ4cOnD17lvfeew8n\nJydu3bqFTqdj1KhR9O3b11T/3nvv4e7uztChQwkPD2fRokVs3ryZp59+mnbt2nH58mV8fX1xc3Mj\nNDQUKysrPvroI7Kzs5k7dy5JScYD5rx582jcuHFxsUpXzFQVwz1f9M2pc2rSgDarpxDx9R7iDp0C\n4OTUNTSaMJjGrwWReOoSCSHn0eeV/dcmhbKYnv49Oc2tu9eZmW+Z/p985jIpYVdw6xDI7R9/L0tM\nFGa2Z3F1KKDN8lc5/9ZmcuKTiyzJTUxlf59XcWpSn04fzuHw9QVk/P3lsgxBzcpp6e1ebVSz9tQX\nPZCFqoifsXbuzaBbB1tqeeUfcqeMcuHtz5IZMiUad1cVnVrZcOZSTrnzFFBN2lKhLOY3v0LHpNLr\nnJo0oPWqqUTu2EvcoQr8kl1cG+n1ZapxaOxL8+UziNq5m4QjJwvU1Q3uR61BTxI2ZQn63PJ3Dqus\nYrZfgTYsoabIY71ejy4zi7MzV+L70jD8JgaTfPoCSSfPVfpxsrjPSH0xn5GX9oZxaW8YbYY8RPDm\nCfyn6+JiR8LvP5sZbV2Ktq88RXZiGp8/PB21tYYnPphA4KgehH26v6JiFtuGZclZKYprv3u3rRl1\npxesQ7X8E9qumoz/i/25+lH+eXB+I5+m/tDenHh1ZYHzTcW/V5XqcA0aNIhvv/2WDh06sGvXLrp2\n7UpkZCRr1qwhPT2d/v3706lT0UPOd8vIyOCpp55i4cKF9O7dm9mzZzN58mSGDx/OtWvX+PHHH+nU\nqRPDhg3jxo0bzJ49m61bt5Ypq/9LA/Hs2hYAtb0taddumh6z9nAlNyUdXXbBL0/ZMQm4NG9YbJ1P\nz84EzBzNhdWfcmfPEWORQoEuK5sT45eYnvfI12vIvGVe58Bv3CA8urYz5Uy/ln9iu7WHK3lF5YyO\nx7lZw1Lr7qZ2sKPOwF789dl3+XcqwKA174Ov0fgBeBXTnjbFtGdWdMH2/KfOoUEt7Gp6EDDZeA6F\ntZszCpUSpbWGC29vwb19M6J/M06hSL10g7QrETg2rGNWh6u6bPfqojq3p4+7inNX8rPFJuhwclBi\na1P4g3jv4UxmjHEpcF9Gpp5JI5xxdjSOkn26K5U6PuU/JFeXtmw4blCZc2YVcUy6u867Z2cCZozh\n4ppPubOnYk9Az4mJx6lZ/nRJKw838lLT0N+VsbQazx5d8J82lqtvbSR23yFTnUKjpsm8V7GvX5tT\n42aTHR1XodmriuzoOJwC8tvH2sO1UBuWVJMdE4/VXSOo1h6uxhFPhQJdZjanXlloeqzj1ndM0xIr\n0mNT+tK4h3FU19rRhphL+aMqjt7OZCVnkJdVsLPsWs8dBw8nIkONF2U69fVRnlo2GBtnW7KSK25q\nYbtXn6Z+d+Mon5WDDQlX8meg2Hu5kJ2cgTbL/I68b8/WHHpzG/o8Hbl5Oq58dxTfJ9rcd4erxYTn\nqNWtNQAaBxuSr+bntPWsQU5KOroy5KwojV4aiGdX4zlqGns7UsPzvycV9/0jOzoel+Z+Rda5dwok\n7VokOfHJ6LJyuL3nCN7dOwCg1KgJXDQexwa1ODJqIVl34qnu5A8fm6dKTSl85JFHOHv2LMnJyYSG\nhnL16lXatzeeJOng4ICfnx83b94s5VWMmjUzzkt3cnLCz8/P9P+cnByuXLnCzp07CQ4OZv78+aSk\npJQ569UN33A4aDaHg2ZzdNQCXJr7m058rDugB7EHQgs9J/5YWLF13t070HTaSEJeXZ7/xQbAYKDd\nOzNxauprrHu8I3qtzuwrgoV/tMN0AYsTo+fhfNfya/fvWWTOhONhZtXdTZuZRZ2BT+D5mPGg4tio\nPs4BDYk/esasnFfW7+TgsDkcHDaHwy8spEaLhtjX8QKg3sDHifnjZKHnxB07W2Rd8tlr/PLka6bX\ni9z5C3f2HiNsyUYMOj2BC8ZRo2UjABx8a2FfvybJ58w7J7C6bPfqojq3Z+dWNoRdySXitvHXyW/2\npNOtQ+HpMKnpeiLvaGnZxLrA/Tv2pLNuayoACck6du3LoM8jduXOU13a8tpHOzgyfBZHhs/i2Oj5\nuDRvmL/8/kXnTDgeVmydV/eONJ36AqGvLavwzhZA4onTODVrZLqYRc3nehF/MMTsGo/HOtFw8hjC\nJi0p0NkCaLZ0Gmp7W/58ac6/trMFkHjiDM7N/bGtbdx+Nfv1Iv7AvW1YfE38gRBqPtUdhUqJ2sEO\nr55diD9wAgwGWq6dg2MT42e8R/fOGLS6AlcprCi/rf0v6/uuZH3flWx87i1qt66Pa30PANoFPcyl\nvWcLPcfB05mB77+AXQ17AAKfa0/s5TsV2tkCCH3vB77pt5Rv+i1l1+CVeLX0xbmeJwABQ7py41fz\nPof/EXchEr+/L6ShVCup91hLYk7/dd85z677jp+fX8jPzy9k7/CluAf64lDX+PntP+gxon47dd/L\nKI8rG77hUNAcDgXN4fCoBdQocEws4ftHMXU1e3bEf9wAwNjB8unZiYRQ4zmvbVa+jsbeliOjF/0r\nOlvCfFVqhEupVNK7d28WLVpEjx49TFMBe/bsSXp6OleuXKF27dqmemtra+LijB9S588XvNJSsdPN\nAF9fX5555hmefvppEhIS2LFjx33lzk1K5ezi9bReMQmlRk3mrRjCFq0DwKmpLy3mjeVw0OwS6xq9\nMgSFQkGLeWNNr5t05goXVn3Kmfnv02LuWBQaNTnxSfw5/a0ic5iT8/ySD2m5YgoKtZqsqGjOLvrA\nlDNg7kscGz6zxLpi6Q2cnr6aJtNG0XDc8+h1Os7Mfdd0yfiy5jzzxgbarnodhUZN5q1YTi/4EADn\npg0InD+Wg8PmlFhXHF1WDqFT19Js6nAUajX6vDxOzfuA7NjEEp9XXM7qsN2ri+rWnq4uKt541ZXp\nqxPIyzNQ21vN0tddOX8tlzc+SOTrt40fxJF38vCooUKjLnhMGjPAibnvJDLgtTsYgPGDnWjub13E\nksquurRlblIqZ5esp9WKySjVajKjYgock5rPHceR4bNKrGs0wZiz+dxxd+W8zMXVn5Yr073yklK5\n9OYHNHtzGgqNmuyoaC4ufg/HJn40nvUyoS9MK7YGoMF440h741n5V0NNOXuJmL0HcX+kPZkRUbRZ\n/6bpsfAPvyTp+OkKyV5V5CWlcnHpBzRfNg2lRk1WVAwX/m7DJrPHEzJyerE1AFHf7sG2thftv3gL\npUZN1Hf7SD51AYDzC9+lyezxKNRqchOSCJu5stLXJyMhnf+bvoXnPxyDykpFUkQ8307eDEDNFnV4\nZuUw1vddSWRIOAfe38sL219Dr9WTFpvCtnEfV2q27MQ0fp/zOT3fHYdKoyb1Zhy/zjTuCx7N6/Ho\nkmC+6be0xNc4smIHD88bwuD/voFBpyfq2CVOb/y5xOeUVU5iGsfmb+LhtyYY/5TCzViOzd0IgGtA\nfTosGsXPzy8s5VUqXm5SKmcWb6DtSuOVVzNuxXBmYf73jxbzxnIoaE6JdRfe3kKLOWPoun0lBoOB\nmN9P8tfWn6nRshFeXduSHnGbzp/kr9ul97YRf6xiz5ETVY/CUFkTicvpzp079OjRgz179uDp6cn8\n+fOJjIwkJyeH4OBg+vXrR3BwMIsWLcLKyopJkyZhZ2dHs2bNOH/+PJs3b6Z79+7s3r0ba2trnn/+\nedauXUvt2rWZMGEC48aNo169esydO5e0tDTS09OZOHEijz/+eKnZdrcvfLniqqRPyFb2dih8+fSq\npteJ7fzYNqj0Qgt76uSWKr/NwbjddZT/KmwPioqgatOeWRd6WDpGiWwDjFN7qnp79gnZys8dCl9S\nuarpfWIbvz80wNIxStXtyM5qs6//2nmgpWOUqvvRb1hU71VLxyjVooj3WN/kJUvHKNH4SxsA2Bo4\nysJJSjY07FN+alf4z+FUNU+GfmXpCGZLfrVh6UUW5PJexV6ltLyq1AgXgI+PT4HRqpUrC/9atXnz\nZtP/d+4s/Mf4fv31V9P/v/76a9P/161bV+T/hRBCCCGEEKIyVKlzuIQQQgghhBDi36TKjXAJIYQQ\nQgghqr6q9MeFqzIZ4RJCCCGEEEKISiIdLiGEEEIIIYSoJNLhEkIIIYQQQohKIudwCSGcSitHAAAg\nAElEQVSEEEIIIcrMYJBzuMwhI1xCCCGEEEIIUUmkwyWEEEIIIYQQlUSmFAohhBBCCCHKTC4Lbx4Z\n4RJCCCGEEEKISiIdLiGEEEIIIYSoJDKlUAghhBBCCFFmBoOM3ZhDWkkIIYQQQgghKol0uIQQQggh\nhBCiksiUQiGEEEIIIUTZyVUKzaIwGAwGS4cQQgghhBBCVC/xYwMsHaFE7h9fsHQEQEa4ykTHFktH\nKJGKoCqfESRnRVMRxO72Qy0do1R9QrZWm/b8qd0wS8co0ZOhXwHV45j0S6dBlo5RqseP7WBfx+ct\nHaNUPY9/XW329eqy3f/o0t/SMUr16OFdRA7uYOkYJaq7/QQAuW/ZWzhJyaymZlSb96b4d5EOlxBC\nCCGEEKLMDAaZUmgOuWiGEEIIIYQQQlQS6XAJIYQQQgghRCWRDpcQQgghhBBCVBI5h0sIIYQQQghR\nZga5LLxZZIRLCCGEEEIIISqJdLiEEEIIIYQQopLIlEIhhBBCCCFEmRkMMnZjDmklIYQQQgghhKgk\n0uESQgghhBBCiEoiUwqFEEIIIYQQZSZXKTSPjHAJIYQQQgghRCWRDpcQQvw/e/cdHUXZ9nH8uy29\n99AJCYEQCEgXKVKUovLQpHepotJ7kd6kPCKKooAgYEUfGyiogHSC1IBAKIEE0nvPlvePhYSQDlmT\n+F6fc3IOu3vtzG/vmdnZe+aeQQghhBDCRGRIoRBCCCGEEKLEDAYZUlgccoZLCCGEEEIIIUxEznCV\nEYPBwJxZ3+Pt48qIkc+WdZwCSc7SVVY5XVs1ovbr/VCaqUm6fodLSz5Cm5JW7DqluYZ600dg7+cF\nSiUJl4IJWrUFfUYWTo39qDNxEAqViqyEJK6s3U7S9Tsm/0xluczdWjXEd8LDdrrLhcX5t2dBdWpr\nSxrMH41NjUqgUBD605/c/PQHAJwb+1HnrQEo1Sp0GZkEvbOdhKAbJv9MpmxP52efodb4ASg1GpKD\nQ7iy9AN0qWnFq1Eqqf3WUJyaB6BQqbiz63vCvt0PgGVVD/zmjEdjb4s2NZ3LizaQGnIv13SrvtqV\nSt07cHLgFABU1la0/nlznjoAl1aN8B43AKWZMUPQ0k3o8lmuBdYpFfhOHIrzg6whO38g9EFWq6oe\n+M0dh8beFl1qOpcWvpc3a98uVOnegeMDphqzWprjN3c8NjUrg7J4x0fL67ZuqnXgIc+Xnse1XTMu\nTF2Z/ZxDw7p4TxiE0twMbXIqlxdvJP1eZLHyAji1bEzNsQNRmmlICQ7h6vKNeTIXVKM0M8N7yihs\n63qjUCpIDLpO8JrN6DMzsapRhdrTx6GyssBgMHDrg8+IO3Wu2LkKY9GoFQ79x6PQmJF1J5iYTUsw\npKXkqrF6rjN2rwwGgwFDRjpx29aQefMKCktrnMfORV25BgqFguRDP5P0/fZSyfU4Rc0XUbVehEJl\nhiHqEtpfx0NmUv613i+h7ryZrPc8H3xIR1Qd16N0bYAhKxV90A70Zzc9cRZTrZu2dWtRe9IwVBYW\nKJRKQj77jvB9f+aa7uPfT+LfS85wlYEbN6IYMXQH+/YGlXWUQknO0lVWOc0cbKk/fwxnZ6zjz95T\nSAuLpPaE/iWqqzW8BwqVkiMDZnKk/3SU5mbUGtYdtbUlz6yaxNV3d3J0wAyCVmyh4fK3UGpMeyyn\nLJe5mYMtDRaM4cz09RzqNZXUsAjqTOhXorra4/qQHhHL4b4zODpkHtV7dcShvg8KtYpGy9/g4tLN\n/DlgFsGffEfDReNM/plM2Z4aBzv85o7n4qx3ONH3LdLuReD9+sBi11Tu0RHLqh6cHDiZ0yNmUrVv\nN+z8vAGo9/ZbhO75lRP9J3Hr4y+ov3xqrunaN/Cl+uDuuZ/z9yH+3BVODZmW/WfMYEu9ueO5MGsN\nx16dSGpYJD7jB+TzeQquq9KjE1ZVPTg+YAonh8+iWr+u2PnVAsB/4ZuEfvMrx/tN5sbmLwlYkfsH\nln0DX2o+lrX6wFfQZ2RyfMBUTo2cY6zz8yqwrcvrtm7KdUBtZ4Pv9FH4ThmBgpyhTeauTjRYOY2r\nqz/m1OBpRP1xkjrTRhWZ9dE8vnMmcHnOak73f4O0exHUHDe42DXVhvZCoVJxZuhkAodMRmVuRrUh\nPQHwmTKa8J9+48ywKVxbthG/xVNA9fQ/x5S2DjiPm0f02pncn9QHbUQYDgNez1Wj9qyG46A3iVz2\nJuEzBpGwZwsuU4ydVIe+Y9HGRhI+tT/hs4dh26knZj71nzpXHpYuqDt/iPb7AWRtbYQh4Taq1ovy\nr3WohbrNMlDktI+q3UrITCFrW2O0u9qhrPECCq/OTxTFlOtmg+VTubn5S04Nmca5SUvxeXMollU9\nsqeb3/dTRWQwKMr1X3nxr+1wffTRR1y4cKGsY+Rr985AevRsSOcu9co6SqEkZ+kqq5wuLRqQcPkm\nqXfDAbjzzX4qdW5Vorq4s1cI3vItGAygN5B49TYWHq5YVfMkKzmNmNPGH+opIffQpqThUN/HpJ+p\nLJf54+0U8vUBKnUpuj0frbv8znau/HcnAOYuDijN1GiTUzFodfzWZQKJV0MAsKrsRlZ8ssk/kynb\n06l5AxKv3CDtQTuE7fkVjxdbF7vGtW1z7v/4BwadHm1SChEHjuLRuTXmrk5Y16hExP6jAMQcP4fK\n0hxb35oAmDnZ4zv1Na6/tyPXvOzr+6Kxs6Hxh4tp9ukqKvd8AQDn5gEkXLmRvbxC9/yKR+fcOYuq\nc2vbjLAfDmZnDd9/DM/ObTB3dcS6RiXC9x/LyWqRO2vdaSO5tuGzXPNSqJSorCxQqJQozTQA6LO0\nBbZ1ed3WTbUOALh3aElmTBzXN+Rezm7tWxB9/CxJV28Zp/fdfq6t31pk1occmzUk6UowaaH3Abj3\n7T7cX2hd7JqE85e58+lXD9pRT/K1W5h7uALG5aq2tQFAZWWJPjOr2LkKYxHQnMwbl9GG3wUgaf83\nWD+XuyNi0GYR8+FS9PExAGTevILKwRlUauK2rSF+x7vGXA4uKDRm6FNL//tHWb0DhvAzEG88c687\nvxll3b55C9WWqLt+gvbQzFxPK9wbob+8Gwx60Gehv7UPpU+PJ8piqnVTaabh5idfEXf6IgAZUbFk\nJSRh4eoMFPz9JP69/rVDCkePHl3WEQo0d34XAE6cuFXGSQonOUtXWeW0cHcmPSIm+3F6ZCwaGyvU\n1pa5hhoVVhd98mJOnYcLNfp34dKyzaTeuY/aygKX5vWJPnkRez8vbL2qYO7iaNLPVJbL3NLdibRi\ntGdRdQadnoaLxuPRoRnhBwNJfjC8zKDTYeZkR+vPlqFxsOXsrA0m/0ymbE8LNxfSI6KzH2dExqC2\nsUJlZZk9bKewGgu33OtlRmQMNt7VMXdzJiMqzviDNvu1WMzdnEm6HkK9hW8R/N4O9NrcHRSDTkf0\nkUBubd2DubMDz2xcYMzg7kzGY/PR2FihsrbMNaywsDoLd2cyIh/PWg0Ld5c8WdOjYrFwcyLp+m38\nF73JtQ07MGh1ubLe3vE/mnzwNm1+/BCVtSVAoUP4yuu2bqp1AMgevuXZrV2ueVpVq4Q+LQP/xROx\nqlaJ9Ihorq3fVmTWh8zdnMmIfCRPVAxqG+tcmQuriTt1Pmda7q5U7vsS11Z+AMD1NZsJeHchVfq+\njMbRjisL1oJOX+xsBVE7u6ONyRkyqYuJRGllg8LSOntYoS7qPrqo+9k1jkMmkhZ4GHQPthO9DucJ\nC7Fq3p7U0wfR3gt56lx52FXBkBSa8zgpDIW5PZjZ5hpWqOq0Af2FLRiiLuV6u+H+aZR+/dHdOw4q\nc5Q+/wH9k3VaTbVu6jOzuP/D79nPV+reEZWlBQlB10GpLPD7Sfx7mbzDlZyczJw5c0hKSiIyMpIu\nXbrw448/8vPPP6NQKFi0aBEtW7bE3d2dhQsXYm1tjbOzM+bm5qxYsSLfaW7YsIGbN28SExNDYmIi\nc+fOpUmTJjz//PN4eXlRq1YtEhMT6dq1K82aNWPWrFncu3ePrKws5s2bh7+/PwsWLCAkJAS9Xs/E\niRNp3ry5qZtCiLKhyP+UuuHxHXwx6uzq1OSZ1ZMJ+fIXoo6cBeDMlHeoPb4vvm8OJPbs38ScDir0\nKHyFV8C1NHnasxh15+a/j2r5JzReNQmf13py/aNvAMiMTeS3rhOw861Biw/mcHRYKCl3wksn/z9N\nWcB6pdcXq0aRz2sGXf7PP3zNe/wA4s9dJvbUBRye8cv1+u2t32T/OyMqlrDv9uPz5tBcQ5Yen14u\nhdXll0mvL3jb0uvxGT+A+LNXiD11EcfHstaZNpKYkxcI/mA3Zk72tP35I9yfb0bEH6fynV653dZN\ntA4URqFW4fJcE86MnUfa3XCqvNqFBityhpAWRVHQ9vtI5uLU2Ph6UW/ZDO59s5fYY2dQmGmou2gK\nfy/dQOyxM9jWq43/ylkkXQnO1Vl/IgWsm+h1eZ5SmFvgPH4BKmc3Ipe9leu1mPcWELt5BS5TVmLf\neyQJX21+ulx5515kTmXAKNBr0V/aDnbVcpXpDs1C1XYZ6sHHISUcfcjvKCs94W+4f2DdrD74P1Tt\n25VzE5eiz8jEe8KgAr+fKiL5j4+Lx+QdrpCQELp168YLL7xAREQEgwcPxs/Pj8DAQAICAjh58iSz\nZ8+mT58+rFq1Ch8fH9atW0dERESh07WwsGD79u1cv36dKVOm8P3333P//n327NmDo6MjM2caT0F/\n/vnnVK5cmXXr1nH79m0OHjzIlStXcHR0ZNmyZcTFxTFo0CB++uknUzeFEP8YnzG9cWvTGAC1tSVJ\nwXezXzN3dSIzIRldekau96RHxODg711gnWenlvjNGMHl1Vu5/4txaBQKBbq0dE6NXZz9vtZfvkNq\naAXtHBSg9pjeuLV5BgCNtRWJN3LOMlgU1J7h0Tj418q3zqVFA5KC75ARHY8uLYN7vxzDo30z1NaW\nODetR8TBQAASr94m8XoItt5VK2yHKyMiGvt6OcPOzF2dyEpIRv9IexVWkx4RnessirmrExmRMaSH\nR2Pm7JBrXg9f8+jchsy4BFzbNkdlaYG5qxPNtq/m1JBpVOnTmajDgWREROM1qi+VXmkPQOXu7Ul+\nZLnmlxMgPSIa+8e2k+ysj2Uyd3UiPTKW9Ii8WS0evObZxZjVrV2z7KwtdqzixODpuLVrzvEBU8Bg\nIDMmHgDnJn65OlwVYVs31TpQ6Dyj4ki4eDV7GNi973/Hd/IIlOZm6DMyi8ycHh6Frd8jeVycyUpM\nypW5qBrXDq3wmTqa4LUfE7nfeLMEa69qqCzMiT12BoCkoGuk3rqLrV9tMiKPF5mrMNrocMy8c4YF\nq5xc0SUnYMhIz1WncnbHdcZassJuEblwPIYsY16LgBZk3QlGFxeNISON1KO/YNW8/VNlyldSKArP\npjmPbSphSIsFbWr2U8p6g0BjhXrwcRQqjXF44eDjaPf0AKUa3eG5kB5nrG06GUP8zSeKYsp1U6FR\n4zfvdaxrViFw1BzS70cBFPr9JP69TH4Nl4uLCwcOHGDq1Kl88MEHaLVaXn31Vb799lsOHDhA+/bt\nUavVREZG4uNjXKEbN25c5HRbtGgBgI+PD9HRxlO9jo6OODrmHt5w8+ZNGjZsCECNGjUYNmwY165d\n4/DhwwwePJg333wTrVZLbGxsaX5sIcrU9Q+/5ujAWRwdOIvjw+fj4O+D1YOLdav16kjk4cA874k+\ncaHAOo/2zag7dSin31ie8wMMwGCgyfoZ2NU1Xsjv0aE5eq3uH7lL4T/p2odfc2TgbI4MnM3R4fNx\nzNVOHYg4dCbPe6JOXCywrlKn5viM7gWAUqPGs1MLYgKDMOj1BMwfg2NAbQBsvCpjXb0S8ZdMf5dC\nU4k5eR57f5/si8Ur93iBqD9PF7sm6vBpPF9+3njdi40V7p1aEXX4NBlRsaSFReDe0XhHRafmARj0\nepJv3OHIS6M5Ndh4NuPK8g9ICwvP/jHjEFCX6oNeAeDOFz+hTTH+yDs1cg72jyyvKj07EflYzkez\n5lcXdTiQyi+3fyTrs0QdOkVG5IOsnYxZnR9mDb7D4W5jODFoOicGT+fysk2khYVzYvB0AJKu3sTj\nwXuUFuYAxF8KzpWnImzrploHChN16BQODXyx8HQDwK1dc5Jv3ClWZwsg7tR57OrVxrKK8c54lXq8\nQMxjmQurcWnXEu9Jr3Fh0qLszhZAWuh91NZW2Pn7AmBR2R2rGlVIvv5kHYZHpV84ibmPP2qPqgDY\ndOppHC74CKW1He5vf0jqqT+I+e/c7M4WgFWLjtj1fs34QK3BqmVH0i/lXX+elv72byg8m4GD8YCU\nKuA19DdyH/TW7mqL9tOmaHe0JGtPT9Cmod3RElLCUQW8hurZuQ9Cu6GqPwz9lS+eKIsp1836y6ag\ntrYicNTc7M4WUOj3k/j3MvkZri1bttCwYUMGDBjAiRMnOHToEC1btmT16tVERESwYIFx/LyHhwfB\nwcF4e3tz/vz5IqYKQUFBdO/enWvXruHu7g6AMp/T+7Vq1eLixYt07NiRu3fvsn79egICAvDw8GDs\n2LGkp6fzwQcf4ODgkOe9QvwbZMYlcnHRJhqtmIhSoyY1NIILb78PgF1dL+rPHcXRgbMKrav9ej8U\nCgX15+bc5Svu/DUur9rK+XnvUX/OKBQaNRnRcfw1bU2ZfM5/SmZcIucXfUjjlcY7tKWERnB+gfHa\nDPu6Nak/dxRHBs4utO7yup3Unz2SNl+sxGAwEHHwDLd27wODgcCpa/CbPBiFWoU+S8u5ue+RHllx\nDwhlxSVyefH71F82BaVGTVpoBEGL3sO2jhd1Z4/j1JBpBdaA8QJ1y8oeNNvxDkqNmrBv9xN/9jIA\nl+ato+6ssdQY3gt9ZhaX5qzNdZ1Ufq6+8wl1Zo6m+a61KNUq7n69D9/JIx5k+IAGyyejUKtJC4vg\n0kJjBrs6XvjNGcuJwdMLrQvd8yuWVdxp8dlqlBo1od8eIO7sFQAuzl1P3Vlj8BreE31mFhdmrysy\n66WFG6kzbSQtu7Y1Dk0E7u09UmB9ed3WTbkOFCT5+m3+XrWZBiunoVCr0CalcHHO2mLlBciKT+Dq\nsvfwWzINhUZNelg4fy9+F5s6tfCdOZ4zw6YUWANQc6zxLna+M8dnTzPhwt8Er91M0OyV1Jo4EqWZ\nBoNWx7VVm0gPK3xUT3HoE+OI+WAxLpNXoFCr0YaHEbPxbcy86uI0Zg7hMwZh80IvVC7uWDVth1XT\ndtnvjVz8OnE71uM0aiYe7+wGg4G004dI2vv5U+fKIy0K7S9jUb+8E4VKgyH+Ftp9o1C4N0L1wvvG\njlUhdCffQd31Y9RDjR0b3fFlGCL+eqIoplo37Rv44tq6CSkh92jy0ZLs+QVv/IzYk0X/xhX/PgqD\noYhv/Kd04sQJlixZgoODA7a2tly/fp2ff/6ZLVu2cOzYMbZvN/4fDxcuXGDJkiVYWVmh0Whwd3dn\nyZIl+U5zw4YNnDp1CqVSSVpaGvPnz8ff359WrVpx9KjxjlUzZ86ka9euNG/enNmzZxMREYFOp2P2\n7Nn4+voyd+5c7t27R3JyMgMGDODVV18t8rPo2Fl6DWMCKgaW+4wgOUubioHsbZr31s/lTZfTuytM\ne/7UJO/twMuTboG7gIrxnfRbiz5lHaNIHU58xf7mRe8Dylqnk19WmG29oiz3Q616lnWMIrU9uoc7\nfZuVdYxCVfvCOMw1c411GScpnNmUlAqzblYUoQOalHWEQlXZVfpnaZ+Eyc9wtWjRgh9//DHP82PH\njmXs2LHZjy9evMimTZtwcnJi3bp1aDSaQqfbtWtX+vfPveN52NkCct1wY82avEfhVq1aVezPIIQQ\nQgghhBBPotzcFt7Z2ZkRI0ZgZWWFra0tK1asYMKECSQkJOSqs7Gxwc+v4t/VRQghhBBCCPHvV246\nXJ07d6Zz59z/Qd97771XRmmEEEIIIYQQhZHbwhePye9SKIQQQgghhBD/X0mHSwghhBBCCCFMpNwM\nKRRCCCGEEEJUHAaDDCksDjnDJYQQQgghhBAmIh0uIYQQQgghhDARGVIohBBCCCGEKDEZUlg8coZL\nCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYvIfHxePnOESQgghhBBCCBORDpcQQgghhBBC\nmIh0uIQQQgghhBDCROQaLiGEEEIIIUSJyW3hi0dhMBgMZR1CCCGEEEIIUbHc6tWyrCMUquY3x8s6\nAiBnuErkpyYDyjpCoboF7mJfs35lHaNInU99zveNB5Z1jCK9cmZnuV/mYFzuaZc7lnWMIln6Hagw\n7aljZ1nHKJQK4/ZT3tuzW+Au/vfMoLKOUaTuf33G8TavlHWMIrU8/H2F2dZ/b9m7rGMUqf3xr1nr\nPb6sYxRpcvD77PAfWdYxCjX40icA5X577/7XZ3wRMKysYxSp7/ltZR1BlDLpcAkhhBBCCCFKzGCQ\n20EUh7SSEEIIIYQQQpiIdLiEEEIIIYQQwkRkSKEQQgghhBCixPRyl8JikTNcQgghhBBCCGEi0uES\nQgghhBBCCBORIYVCCCGEEEKIEjPoZUhhccgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQggh\nRIkZ5C6FxSJnuIQQQgghhBDCRKTDJYQQQgghhBAmIh0uIYQQQgghhDARuYZLCCGEEEIIUWJyDVfx\nyBkuIYQQQgghhDAROcNVStxaNcR3Qj+UZmqSrt/lwuKP0KakFbtObW1Jg/mjsalRCRQKQn/6k5uf\n/mB8T+tnCHh7LGnh0dnTOT5qEbrU9BLndG3ViNrj+6E005AUfIeLSz5El0/Oouos3JxpsWUxRwfO\nICshCQCNnTV1pw7HpmZllOZm3Nz6Hff2/lnijI9ze64hfhP6otSoSQy+y7lFm/Nv20LqXjzwAemR\ncdm1wTt+JGzvsafPZsLl7tzYjzpvDUCpVqHLyCTone0kBN14qryHA9PY8FkCmVkGfKpreHuCEzZW\nOcddfvgjhR3fJ2U/Tk7VExmj45ePK6FWwdIP47h6KwtLCwXd21vTv5vtU+V5XEVrz+IwGAzMmfU9\n3j6ujBj5rMnn91BFbUv35xpS941XUWk0JFy/w7lFH+ebu7C6Gn06Uv0/7VBZaIi/cptzCzejz9I+\ncSaHFk2oNmYISo2a1Bsh3Fj5LrrUtGLXuP+nC24vvYDS3IyUqze4sfJdDFlarOt4U+ONUagszFGo\nlITt3EP0/oNPnPNR5Xlbd372GWqNG4hCoyblxh2uLH0/T3sWVWPu5kyTj5dxavDU7H2Q83ON8Zs3\ngfRH9pV/jZv3RPvK/NRs589zU7ujMlMTfTWMX2d9RmZy3mnX7d6MJq91xGAwoE3P4o9FXxJx6Q5m\nNha8sGIQTl4eKJQKLu85wemP9pdKtkdVbtOARhN7otRoiL8WyvH5W8lKKbgNnl0ygvjgMC5v+wUA\njY0lLRcNw76mJygV3PzfMYK27H3qXKWxbXf+7f3c+/LtPxG69xi2NSsRMHckaisLDAYDlzd8QdTx\ni0+U07N1AA3e7I3STE3CtVBOvf0J2nzar6A6MztrGs8dgoNvNXRpGdz63xGu7z4AgFvTOjSc0g+F\nSkVGQjLnVu0i/trdJ8opKhY5w1UKzBxsabBgDGemr+dQr6mkhkVQZ0K/EtXVHteH9IhYDvedwdEh\n86jeqyMO9X0AcGzgw83PfuLIwNnZf0+yA9E42OI/byxnZ67jzz6TSQ2LxPf1/iWuq9S1Nc0/ehsL\nN6dc76s/fxzpkbEcGzyL0xOWUnfKUMwfqykpMwdbGi0Yzelp6/m91zRSQiOp+0bfEtVZV/ckKzGF\nQwNmZ/+VRmfLlMtdoVbRaPkbXFy6mT8HzCL4k+9ouGjcU+WNTdCxYEMs70x35n8bPanioea/O+Jz\n1bz8vDVfrvPgy3Ue7FztjouDipmjHHF2ULF6SzxWFkr2vOvBjhXuHPkrncOn8+4sn1RFa8/iuHEj\nihFDd7Bvb5DJ5/WoitqWZg62NHp7FKen/pffek4jNSwSv4K29wLqPNs3watfJ46NW87vvWeiMtdQ\na2CXJ86ktrfDe9abXJu3nHODxpN+P5xqY4YWu8apTUs8er3ElUnzOD9kAkpzMzxf7Q6A7+JZhG7Z\nxYWRE7kybSE1JozAoornE2d9qDxv6xoHO+rOeZ2Ls1Zzst9bpIVFUGv8wBLVeHRpyzObFmPu6pzr\nffb1fbmz6wdOD52W/VdanS1LJxteXDmYH17/iG0vLCThTjTPTftPnjrHmm60ntGDPSPe47NXlnNy\n415efn80AK0mvUzy/Xi2d13Czh4raTCgDZ6NapZKvofMHW14dvFwDk18n+9fnkNSaBSNJvXOt9bO\ny5NOn0yl+otNcj3f8I3/kBoRxw895rO332Jq922HS0Ctp8pVGtu2zYN9+cH+c7L/Qh/syxvMGs6d\n7w9xsP8czi3cTNMVb6BQlfwnrrmjLc0WjeTolPfY230WyWGRBLzVp0R1Daf1R5uawb4eszkwaDEe\nrerj2SYAjY0lrda+wbm1X/BLn3mcWbKdlqvHo9RU7HMfBoOiXP+VF9LhKgUuLRqQcPkmqXfDAQj5\n+gCVurQqUd3ld7Zz5b87ATB3cUBppkabnAqAY4PauDSpx3M7ltJy83ycGtV5spzNG5Bw+Ub2/O9+\nsx/Pzs+VqM7cxRG3tk0JnLQi13s0dtY4N2tA8OavAciIjOX4iHlkJSQ/UdaHXFvWJ/7yTVLuRgBw\n++sDVMmnbQurc2rgg0Gv59kP59Du8+XUHtUDlE+/EZpyuRu0On7rMoHEqyEAWFV2Iyv+6dry+Ll0\n6vmYUb2SBoA+nW3YezgVg8GQb/22bxNxslfS+0UbAK7cyKRbOytUKgUajYLWjS3Yfzz1qTI9qqK1\nZ3Hs3hlIj54N6dylnsnn9aiK2pZuLesTF3Qrezu+9dVvVOmS96xgYXVVuz1H8MX+I+4AACAASURB\nVI69ZCWmgMHA+aVbufvTkSfO5NCsEcl/Xyc99D4AEd/txaVT22LXuL74PPc//w5tUjIYDNx8532i\nf/kDhZmG0G2fk3DmPACZUTFkJSRi5uryxFkfKs/bulOzABKvBJMWalznwvb8gseLrYtdY+biiEub\nZpyfvCzPtO3r++LY2J8mW1fyzAeLcWhYt1QyA1R/ri7hF0KID4kC4Pyuw9R9pWmeOl2mlv2zd5IS\nlQhA+MUQrF3sUGpU/LH4Kw6t2AOAjZs9KjM1GUmld9AKoNKz9YgOuk3SnUgArn3xBzW7Nc+31rff\n8wR/d5SQXwJzPX96+W7OvPMlAJYPtv2spKdb/qWxbTsFPNyXz6bdF8uoPeo/2ftyhUqJxtYaALW1\nBbrMrCfK6dHSn9hLt0i+Y5x/8Jd/UK1ryxLVOfnV4PaPxzDoDei1Ou7/eYGqHZtiU82drKQ0Ik9d\nASDp9n20yWk4B3g/UVZRsVTsbnU5YenuRFpETPbj9MhYNDZWqK0tc50uL6rOoNPTcNF4PDo0I/xg\nIMkh9wDISkgi9OcjRBwMxDHAlyZrJvPngFmkR8aWKKeFuzPpkY/OPwaNjRUqa8vcwwULqcuIjuPc\njLV5pm1VxYOMmDhqDOyGa8uGKM3U3PrsR1Lv3C9RxsdZujuTFp7zOQtu24LrFGoVUScvcXn9LpTm\nZrT47zS0yWnc3L3vKbOZdrkbdDrMnOxo/dkyNA62nJ214anyRkTr8HBWZT92d1aRnGogJc2AjVXu\nDmhcoo7t/0vi8zUe2c/Vr23OTwdTaVjHnKwsA78dT0OtLr2jRxWtPYtj7nzjmZUTJ26ZfF6Pqqht\naenunDePbQHbewF1NtU9MQ+6SYv3pmPh6kDs2asErf/8iTOZubmQEZkzRC0jKhq1jTUqK8vsIW6F\n1VhUrYTG0YG6q99G4+JE0oUgQj7YhiEzi8ifcoaTub38IipLS5KDrj5x1ofK87Zu4e5MxiP7l4yo\nmDztWVhNZnQcl2atznfaWQnJhO87RPShU9g3qEODVTM4NXgKGVEl21fmx9bTkaT7OUPZksLjMbe1\nxMzGItewwsSwWBLDcubXbk5vbvx+AX2WDgCDTk+XNcPw6dyI4F/PEXcz4qmzPcrKw4nUR/aFqRFx\nmNlaobG2yDOs8PSyXQB4Ns/bMTXo9LRa8RrVOzXhzm9/kXg7/Klylca2rVApiTpxiaD1u4378nen\nok1J4+auX7iwYhvPbppNrYFdMHeyI3DWexh0+pLn9HAiNSKn/dIiYjGztUJtbZFrWGFhdTEXb1Lj\npWeJPncdlUZNlY6N0Wt1JIWEo7Yyx71lPSKOB+FUryZ2tSpj6WJf4pyi4qkwZ7j27NnDwIED6d+/\nP59++ilDhgyhT58+jB49mszMTPbs2cNbb73FmDFj6NKlC3v2GI8iXbhwgV69ejFkyBAmTZrEzJkz\nAdixYwd9+/alX79+bN++/enCKfNvxjwbezHqzs1/n/0dx2BmZ4PPaz0BODN9PREHjUeg4s5fJe7C\ndVya1y9xTEUB8+exnMWty/UetQqryu7oktM4OWoB5+e8S51JQ7Cr83TDJRSK/Hfyj7dtYXV3vv2D\nS6u3o8/Sok1O5cbOn/F4vkm+9SVi4uUOkBmbyG9dJ3Bs+AICFozBuppHfpMqFn3+B7fJb9TFN7+m\n0K6ZJZXdc47JTB7ugEIB/SaHM2llNC0aWlCqIyEqWHuWaxW1LQs485w3d8F1CrUK1+b+BM7YwKGB\n89DY2VB3Qt4hQcWlUBTQRnp9sWoUajX2TQK4tmAlF0dNRm1rS7VRg3PVVRrYi6oj+vP3zMXoMzOf\nOOtD5XpbL2ide6Q9i1WTj0uzVhN96BQACRf+JuHiVZyaBTxZzscoCljn9AXsF9WWZry04TUcqruy\nf9bOXK/tnbKND5pOx8LBmhZvdC2VfEXlLKrt8nN05sd8+dxbmNtbU3/cK08XrBS27ZBvD3Jx9Y6c\nfflne/F8vglKMw1NVkzg7Nsf8muXNzny2mIC5ozAwr3klzQU+FtCX8zfHHo959Z8DgYDL36xkFbr\n3iDieBD6LB3alHSOTPwvfiNf5sUvF1Hj5VZEnr6S3RmvqPQGZbn+Ky8q1BkuOzs7Nm7cyPvvv8+2\nbdtQKpWMHDmSixeNF0YmJyfzySefcPv2bcaOHUvPnj1ZsGABq1atwsfHh3Xr1hEREUFwcDA///wz\nu3YZj+4MHz6c5557Di8vr2JnqT2mN25tngFAY21F4o072a9ZuDqRmZCMLj0j13vSw6Nx8K+Vb51L\niwYkBd8hIzoeXVoG9345hkf7ZqhtrKjepxM3tv4vZ0IKMGiLdwG49+g+uLVpDIDa2pKk4JyLM80L\nyJkWHo19Pe8i6x6VEW088hf60yEAUkMjiD9/Fft63iT+XbKj+75je+HxSObERzIX1LZp4TE4+Hvn\nW1el63MkXgvJmY5CgUH7ZF9w/9hyt7bEuWm97I524tXbJF4Pwda7Kil3nuxIo6eLikvXcrJFxuiw\ns1FiaZH3C+nXo6lMH+mQ67mUVD0Th9hjb2s8cr51TyJVPZ/uK6Qit2d5U1Hbss7YXni0NebOs727\nORa4vTs+mvuRuvSoOML/CMw+ah7681F8R+W91qa4MiKisPGrnf3YzMUZbWIS+kcyFVaTFR1L7J8n\nss/eRP16kCrDjNekKDRqvGdNxLJGVS6Nm05GeOQT53xUedzWH0oPj8LOzyf7sbmrE1mPtWdxah6n\ntrGicq/OhHy6J+dJhQJ9MfeV+Xn2rZfw6mA8uGlmY0n0tbDs12zcHUiPT0GblreDbOvpyH8+GkfM\njXC+GrgebYZxeFv11nWJvnqPlMgEslIz+PuHQHw6N3rifA8FvN6dKs83BEBjbUn89dDs16zcHMlI\nyD9nQTyfrUf89TDSouLRpmVw6+dTVO/0TIlzlfa2XaVbKxKv3SHx+sN9ORi0OuxqVUFlYU7En+cA\niLt4g6QbYTj61+J+RNFnN/3H96BSW+Ny0NhYkPBI+1m6OZKRkIzusfZLDY/Bub5XvnXmHjacX/cl\nmYkpxnYY3tU49FChQJuawR+v5VyS0eXbZSTfLd2znKJ8Kj9dv2KoWbMmSqUSjUbD5MmTmT17NuHh\n4WgffKHWqWO8tsnT05PMB0cJIyMj8fExfnE3bmz8EX/t2jXu3bvHsGHDGDZsGPHx8YSEhJQoy7UP\nv86+gcXR4fNx9PfBqqrxCG+1Xh2IOHQmz3uiTlwssK5Sp+b4jO4FgFKjxrNTC2ICg9CmplGjTyc8\n2hvHitv5VsehXi0ij10oVs7gj77i2KCZHBs0kxMj5uHg750z/54diTwcmOc9MScvFKvuUWn3oki4\ncpPK3doAYOZkj0P92iRcLvmdy65u+ib75hZ/DluAU31vrKu6A1CjdwfC82nbyBMXC6yzrVUF33G9\nQalAaa6h5qudCNt/osS54J9b7ga9noD5Y3AMMP6Is/GqjHX1SsRfevI7wbVsaMGFa5mE3DPu/L/+\nJZl2zSzy1CUm67lzX0tAHfNcz3/1SzLv7zZelxATr2PP/hS6tLZ64jxQsduzvKmobfn3pm+yL4A/\nPPRtHB/djnt1IPzQX3neE3n8YoF19w6colKn5ijNjdcvebRrTNzlm0+UDSD+9Fls/Hyzb2bh0b0L\nsUdOFrsm5uBRnNu1QmlmBoBT6+ak/B0MQO1FM1BZW3JpfOl1tqB8busPxZ46j72/D5ZVjOtcpR4v\nEH34dIlrHqdNTadKrxdxbWe8Xsmmdk3s6noTe+LcE2c99t8f+eyV5Xz2ynJ2916FZ8OaOFR3BSBg\nQGuCD+TdD1vYW/Hqrklc//UcP0/ckt3ZAvDt2piWD85oqczU+HZ9hrvHn34I6fmN/+On3gv5qfdC\n9g1cikuAF7bV3ACo3bctd38/W6Lp1ejclAbjXgaM236NF5sQfvLvEucq7W3brlYV6oztlb0v9+r7\nAmG/niD5bgQaG0scGxh/61lVccOmZiUSrhbvd92l97/l177z+bXvfA4MXoxzg1rYVDPOv1af57l3\nMG/7hR+/VGBdrT7P4/96DwDMnezw6tmWO3tPgMFA642TcfSrAUCVTk3Ra3Vyl8L/JyrUGS6lUsnf\nf//NgQMH+Oqrr0hLS6Nnz57ZFwLnd4rXw8OD4OBgvL29OX/eeHGyl5cX3t7efPzxxygUCrZt24av\nr+8T58qMS+T8og9pvPItlBo1KaERnF/wAQD2dWtSf+4ojgycXWjd5XU7qT97JG2+WInBYCDi4Blu\n7d4HBgOBU9ZQb9owao/pjV6r4+ysDdm3wS1pzouLN9FwxSSUajWpYRFcfHsjAHZ1vfCfM5pjg2YW\nWleYs9PX4Dd9BFV7dkShUHLjk29IvPLkP3QeZj678EOarHrYZpGcnZ/Ttg3njeLQgNmF1l3bvIf6\n04fy/BcrUahV3Dtwkjvf/vFUuR5mM+lyn7oGv8mDUahV6LO0nJv7Xomv23uUk4OKhW84MW11DFlZ\nBqp4qFnylhNBwZks3BjLl+uMP27u3M/C1VGF5rFrNkb2smPO+lh6vXkfAzC2rx3+Pub5zOnJVLT2\nLM8qaltmxiVy9u2PaLr6zezt+K95mwBwqFuThvNf42D/OYXW3frqAGb2NrTbuQSFUkn837c5v3TX\nE2fSxidwY8V/qb1oJgqNmoywcIKXrsPa15ta0ydwYeTEAmsAwr/bi9rOlvofr0WhVJJy7SY3N27E\n1r8uTq2ak3YnFP+NK7PnF7LpUxJOl+wH8uPK87aeFZfIlSUb8V82FaVGTVpYBJcXbcC2Ti3qzBrL\n6aHTCqwplF7PhemrqD15BDVf64tBp+PSvLVPtK/MT1psMr/O2MHL741CqVGTcCeKfdM+BcDdvxqd\nlg3ks1eW02BAG2wrOeHdKQDvTjnDGb8e8i6Hln1Dh8X9GfLzXDAYCN5/nr+2Pf2+6FHpsUkcm7uV\nNuvGo9KoSLobxdFZnwDgVK86LRcO46feCwudRuDqL2gxfwgvf7sIg8HA3d/PcuWzA0+VqzS27asf\nfUv9GUNp/+WKB/vyU4R8exCAU1PWU3/aYFRmGvRaHeeXbiE1tOQHMTJikzg1/xNavfM6So2a5NBI\nTs7ZDICjXw2aLhjBr33nF1p35ZOfaL50NJ2/WQIKBUGbviM2yDjS58TMTTRdMNy4XkfFc2Tiu0/V\nruWBQV9+7gRYnikMBd22qJzZs2cPN2/e5PXXX2fMmDHZZ7DMzMzo3bs3Wq2WmzdvMnXqVDIyMujS\npQu///47Fy5cYMmSJVhZWaHRaHB3d2fJkiV8/PHHHDhwgMzMTBo0aMC8efNQqVSFZvipyYB/4qM+\nsW6Bu9jXLO+tn8ubzqc+5/vGA4suLGOvnNlZ7pc5GJd72uWOZR2jSJZ+BypMe+rYWXRhGVJh3H7K\ne3t2C9zF/54ZVNYxitT9r8843uYpr1H5B7Q8/H2F2dZ/b5n/rcjLk/bHv2at9/iyjlGkycHvs8N/\nZFnHKNTgS8ZOXXnf3rv/9RlfBAwr6xhF6nt+W1lHKLagLh3KOkKh6u39rawjABXoDFfPnjkXaxd1\nkwtzc3N+//13AC5evMimTZtwcnJi3bp1aDTGYSavvfYar732mukCCyGEEEIIIf7fqzAdrifl7OzM\niBEjsLKywtbWlhUrVhT9JiGEEEIIIUShytN/Llye/es7XJ07d6Zz585lHUMIIYQQQgjx/1CFukuh\nEEIIIYQQQlQk//ozXEIIIYQQQojSJ0MKi0fOcAkhhBBCCCGEiUiHSwghhBBCCCFMRDpcQgghhBBC\nCGEicg2XEEIIIYQQosT0cg1XscgZLiGEEEIIIYQwEelwCSGEEEIIIYSJyJBCIYQQQgghRInJbeGL\nR85wCSGEEEIIIYSJSIdLCCGEEEIIIUxEhhQKIYQQQgghSkyGFBaPnOESQgghhBBCCBNRGAwGQ1mH\nEEIIIYQQQlQsZzt2LusIhWp0YF9ZRwBkSGGJ6NhZ1hEKpWJguc8IkrO0qRjI3qb9yzpGkbqc3l1h\n2vOnJgPKOkahugXuAirGd9JvLfqUdYwidTjxFfubv1rWMYrU6eSXFWZbryjL/VCrnmUdo0htj+7h\nTt9mZR2jUNW+OAVA5hrrMk5SOLMpKRVm3awo5D8+Lh4ZUiiEEEIIIYQQJiIdLiGEEEIIIYQwERlS\nKIQQQgghhCgxuUth8cgZLiGEEEIIIYQwEelwCSGEEEIIIYSJSIdLCCGEEEIIIUxEruESQgghhBBC\nlJhcw1U8coZLCCGEEEIIIUxEOlxCCCGEEEIIYSIypFAIIYQQQghRYnoZUlgscoZLCCGEEEIIIUxE\nOlxCCCGEEEIIYSIypFAIIYQQQghRYnKXwuKRM1xCCCGEEEIIYSLS4RJCCCGEEEIIE5EhhWXEYDAw\nZ9b3ePu4MmLks2Udp0CSs3SVVU7XVo2o/Xo/lGZqkq7f4dKSj9CmpBW7Tmmuod70Edj7eYFSScKl\nYIJWbUGfkYVTYz/qTByEQqUiKyGJK2u3k3T9jsk/U1kuc7dWDfGd8LCd7nJhcf7tWVCd2tqSBvNH\nY1OjEigUhP70Jzc//QEA58Z+1HlrAEq1Cl1GJkHvbCch6IbJP5Mp29P52WeoNX4ASo2G5OAQriz9\nAF1qWvFqlEpqvzUUp+YBKFQq7uz6nrBv9wNgWdUDvznj0djbok1N5/KiDaSG3APAa0w/3Ds+iy4t\ng4SLV7n+30/RZ2Zh7uZM3TnjMHOyR6FUErLz++wMLq0a4T1uAEozY4agpZvQ5bNcC6xTKvCdOBTn\nB1lDdv5A6IOsVlU98Js7Do29LbrUdC4tfC87a60xffHoZMwaf+Eq1/67HX1mFigVeI3ojWvrxqgs\nLYrV1uV1WzfVOvCQ50vP49quGRemrsx+zqFhXbwnDEJpboY2OZXLizeSfi+yWHkBnFo2pubYgSjN\nNKQEh3B1+cY8mQuqUZqZ4T1lFLZ1vVEoFSQGXSd4zWb0mZlY1ahC7enjUFlZYDAYuPXBZ8SdOlfs\nXIWxaNQKh/7jUWjMyLoTTMymJRjSUnLVWD3XGbtXBoPBgCEjnbhta8i8eQWFpTXOY+eirlwDhUJB\n8qGfSfp+e6nkepyi5ouoWi9CoTLDEHUJ7a/jITMp/1rvl1B33kzWe54PPqQjqo7rUbo2wJCVij5o\nB/qzm0oll6nWU8dn6uH9xmAUahX6jEyurd1K4uXgUslc1mRIYfH8o2e4Bg8ezI0buX84nDx5kkmT\nJpX6vPbs2cNvv/1W6tMtDTduRDFi6A727Q0q6yiFkpylq6xymjnYUn/+GM7OWMefvaeQFhZJ7Qn9\nS1RXa3gPFColRwbM5Ej/6SjNzag1rDtqa0ueWTWJq+/u5OiAGQSt2ELD5W+h1Jj2WE5ZLnMzB1sa\nLBjDmenrOdRrKqlhEdSZ0K9EdbXH9SE9IpbDfWdwdMg8qvfqiEN9HxRqFY2Wv8HFpZv5c8Asgj/5\njoaLxpn8M5myPTUOdvjNHc/FWe9wou9bpN2LwPv1gcWuqdyjI5ZVPTg5cDKnR8ykat9u2Pl5A1Dv\n7bcI3fMrJ/pP4tbHX1B/+VQAPLu1w6VVY04Pn8mpIdPIiI7Da4yx7X2nvUbMsb84NXgaZ99YhO+U\nEQ8y2FJv7nguzFrDsVcnkhoWic/4Afl8noLrqvTohFVVD44PmMLJ4bOo1q8rdn61APBf+Cah3/zK\n8X6TubH5SwJWTAGg0kvtcH2uMSeHzeLE4OlkxMRTa6wxa7W+XXF8xo/To+dxfOCDz9apZYFtXV63\ndVOuA2o7G3ynj8J3yggU5PzwM3d1osHKaVxd/TGnBk8j6o+T1Jk2qsisj+bxnTOBy3NWc7r/G6Td\ni6DmuMHFrqk2tBcKlYozQycTOGQyKnMzqg3pCYDPlNGE//QbZ4ZN4dqyjfgtngKqp/85prR1wHnc\nPKLXzuT+pD5oI8JwGPB6rhq1ZzUcB71J5LI3CZ8xiIQ9W3CZYuykOvQdizY2kvCp/QmfPQzbTj0x\n86n/1LnysHRB3flDtN8PIGtrIwwJt1G1XpR/rUMt1G2WgSKnfVTtVkJmClnbGqPd1Q5ljRdQeHV+\n6limWk8VajX+SyZxZfkmTg2exq2t3+C34I2nzisqln/tkMKePXvSoUOHso6Rr907A+nRsyGdu9Qr\n6yiFkpylq6xyurRoQMLlm6TeDQfgzjf7qdS5VYnq4s5eIXjLt2AwgN5A4tXbWHi4YlXNk6zkNGJO\nG3+op4TcQ5uShkN9H5N+prJc5o+3U8jXB6jUpej2fLTu8jvbufLfnQCYuzigNFOjTU7FoNXxW5cJ\nJF4NAcCqshtZ8ckm/0ymbE+n5g1IvHKDtAftELbnVzxebF3sGte2zbn/4x8YdHq0SSlEHDiKR+fW\nmLs6YV2jEhH7jwIQc/wcKktzbH1rYlunFlGHT6FNTgUg6uBJ3Nq3AODC9FXc/WofAObuLhi0egCc\nmweQcOVG9vIK3fMrHp1z5yyqzq1tM8J+OJidNXz/MTw7t8Hc1RHrGpUI338sJ6vFw6xeRB46nZ01\n8o+TuD/fHIBKXdtya+se9BlZGLK0xveevlRgW5fXbd1U6wCAe4eWZMbEcX3DjlzTc2vfgujjZ0m6\ness4ve/2c2391iKzPuTYrCFJV4JJC70PwL1v9+H+Quti1yScv8ydT7960I56kq/dwtzDFQCFSona\n1gYAlZWl8WxmKbAIaE7mjctow+8CkLT/G6yfy90RMWiziPlwKfr4GAAyb15B5eAMKjVx29YQv+Nd\nYy4HFxQaM/Sppf/9o6zeAUP4GYg3HoDXnd+Msm7fvIVqS9RdP0F7aGaupxXujdBf3g0GPeiz0N/a\nh9Knx1PnMtV6atBqOfLyGJKv3QbAsrI7WQn5n80T/14mOwydlZXFrFmzCA0NRafTMXz4cAA2btxI\ndHQ0aWlprF27Ntd7vvrqK3bv3o1er6d9+/a8+eab+U57z549HDhwgJSUFOLi4nj99dd58cUXeeml\nl6hRowYajQYvLy9cXFzo168fixcv5sKFC2RlZfHGG2/QsWNH1qxZQ2BgIHq9nmHDhtGlSxdTNUUe\nc+cb53XixK1/bJ5PQnKWrrLKaeHuTHpETPbj9MhYNDZWqK0tcw01Kqwu+uTFnDoPF2r078KlZZtJ\nvXMftZUFLs3rE33yIvZ+Xth6VcHcxdGkn6ksl7mluxNpxWjPouoMOj0NF43Ho0Mzwg8GkvxgeJlB\np8PMyY7Wny1D42DL2VkbTP6ZTNmeFm4upEdEZz/OiIxBbWOFysoye6hOYTUWbrnXy4zIGGy8q2Pu\n5kxGVJzxB232a7GYuzmTGHSdqv27EfrVPrISk/Ho2hZz5wfrpMEABgPPvP829g3qcPfzH6k+qDsW\n7s5kPDYfjY0VKmvLXMMKC6uzcHcmI/LxrNWwcHfJkzU9KhYLNycSg65TrV837j7I6tm1bfb2Y1XN\nE+uaVagx9D+YOdgBkJlY8A/g8rqtm2odALKHbHl2a5drnlbVKqFPy8B/8USsqlUiPSKaa+u3FZn1\nIXM3ZzIiH8kTFYPaxjpX5sJq4k6dz5mWuyuV+77EtZUfAHB9zWYC3l1Ilb4vo3G048qCtaDTFztb\nQdTO7mhjcoZM6mIiUVrZoLC0zh5WqIu6jy7qfnaN45CJpAUeBp2xQ49eh/OEhVg1b0/q6YNo74U8\nda487KpgSArNeZwUhsLcHsxscw0rVHXagP7CFgxRuQ8yGO6fRunXH92946AyR+nzH9A/fafVlOup\n8XvdnqbbVmHmYMvFueueOm95If/xcfGY7AzXF198gZOTE59//jlbt25l/fr1xMXF0bZtW7Zv306b\nNm3Yt29fdn1MTAybN29m165dfPvtt2RmZpKSklLg9NPS0ti6dStbtmxhxYoVaLVaUlNTGT9+POvW\n5azIBw4cIC4ujq+//prt27dz6dIlDh06RGhoKLt372b79u1s2rSJxMREUzWFEGVLkf+XoeHxHXwx\n6uzq1KTF5gWEfPkLUUfOok1J48yUd/Aa/h9a7VxBpa5tiDkdhP7B0fh/JWX+X5t52rMYdefmv8/+\njmMws7PB57We2c9nxibyW9cJHBu+gIAFY7Cu5vH0ucuKsoD1Sq8vVo0in9cMuvyff/ha+L7DRP52\nnEYbF9DkoyWk3g7Ls07+Nf5tjrw0GqdmAcYnFMVcroXV5ZdJry9429Lrub/3TyJ+P0HjjfNpunkx\nqSE5WRVqFfb+PpydtJzTo+cBUKNvIUOnyuu2bqJ1oDAKtQqXNk258dHnnBo6ndjAizRYMa3orA/f\nX9D2+0jm4tTY+HrR8P0l3PtmL7HHzqAw01B30RT+XrqBEz1Gce71efhMG4u5m3OxsxUSOv/n9bq8\npeYWuExajtqjCjEfLs31Wsx7Cwh97QWUNvbY9x759Lnyzr3InMqAUaDXor+U9xoy3aFZgAH14OOo\nu3+OPuR30GU+fSwTr6eZsQkcfWUMgaPm4Dd3PJZVPZ8ur6hQTHaG68aNGzz7rPHCaxsbG2rVqsXR\no0fx9/cHwMXFhejonKMEd+/excfHBwsL44XBU6dOLXT6TZs2RalU4uLigp2dHbGxsQDUrFkzV92t\nW7do2LAhAPb29kycOJHNmzcTFBTE4MHGsdZarZawsDDs7OxK4ZMLUfZ8xvTGrU1jANTWliQF381+\nzdzVicyEZHTpGbnekx4Rg4O/d4F1np1a4jdjBJdXb+X+L8ahUSgU6NLSOTV2cfb7Wn/5Dqmh4ab6\naGWi9pjeuLV5BgCNtRWJN3JuFGBRUHuGR+PgXyvfOpcWDUgKvkNGdDy6tAzu/XIMj/bNUFtb4ty0\nHhEHAwFIvHqbxOsh2HpXJeVOxWzTjIho7OvlDDszd3UiKyEZ/SPtVVhNekR0rrMo5q5OZETGkB4e\njZmzQ655PXxNbWdDxK9HCNn+HQB29bxJe7BOuj3fgpiT59ClplO1TxfMTBTQ/wAAIABJREFUnO0B\nqNy9PcmPLNf8cgKkR0Rj/9h2kp31sUzmrk6kR8aSHpE3q8WD19R21oT/coTbn+Zkfbj9ZETFEbH/\nKIYsLboHHRuH+j6we2/2dCrCtm6qdaDQeUbFkXDxavbQr3vf/47v5BEozc3QZxT94zw9PApbv0fy\nuDiTlZiUK3NRNa4dWuEzdTTBaz8mcv+fAFh7VUNlYU7ssTMAJAVdI/XWXWz9apMRebzIXIXRRodj\n5p0zLFjl5IouOQFDRnquOpWzO64z1pIVdovIheMxZBnzWgS0IOtOMLq4aAwZaaQe/QWr5u2fKlO+\nkkJReDbNeWxTCUNaLGhTs59S1hsEGivUg4+jUGmMwwsHH0e7pwco1egOz4X0OGNt08kY4m8+dSxT\nracqayucmvgTdeiU8eNfvUVycAg23tVIu5tztlH8u5nsDFetWrUIDDT+aEhOTubatWtUqVKlwPpq\n1apx8+ZNMjONX4RvvvkmERERBdYHBRnHkUdHR5OcnIyzs/HokPKxI05eXl5cvGgcIpGUlMTIkSPx\n8vKiefPm7Nixg08//ZQuXbpQtWrVJ/+wQpQz1z/8mqMDZ3F04CyOD5+Pg78PVlWNZ0mq9epI5OHA\nPO+JPnGhwDqP9s2oO3Uop99YnvMDDMBgoMn6GdjV9TLWdWiOXqv7R+5S+E+69uHXHBk4myMDZ3N0\n+Hwcc7VTByIOncnznqgTFwusq9SpOT6je/F/7N13dBRl28fx77b0RnogFJNACqEKoShFmiI2QHoH\nQZpKb6FXBRSxF8SCKEXQR/RVARuIhAQEQi+hJkI6Cekhu+8fC0tC2i5ks8nzXJ9zOIfsXjPz23tm\nd+beuWcWQKlR49O1NckHT6DTamky/0VqNGkAgINfLezr1uTGcfPfpdBckg8cxTm0Pra326FWz24k\n7o0yuiZxTxQ+Tz+mv+7FwQ6vro+QuCeK3MQUsuPi8eqi/2LPtVUTdFotGTFXcAryo9Fr01GoVChU\nSuoN7cn1X/QHvLV6dcO3j34I5eWvdpCXdAOAyFHhOBdaX769upJwT87CWUuqS9xzkFpPdyqUtS2J\nf0aSm3A7a1d9Vrc7Wc9fwSnYnyavTTNkfWhYT67/8hcACb9F4P1Ee1AoUKhUAKSdLLotVIf3urm2\ngbIk/hmJS+NAbHw8AfDs2IqMmCtGdbYAUiOP4tSwAba++rMQNXt2I/mezGXVuHdsQ8DkF4ievNjQ\n2QLIjr2G2t4Op9BAAGxqeWFXz5eMcw/eYciJPoB1/VDU3vrjGYeuvfTDBQtR2jvhtfBDsiJ/J3nt\nXENnC8CudRecnn9B/4dag12bLuQcL779PCjtpV9R+ISBi/4LKVWTF9DG/Fik5tZXHbj1eUtubWhD\n/vZecCubWxvaQOZ1VE1eQNV27u3QnqgaDUd7avMD5zLbdqrVEhw+DufG+nVu/5AvdnVrkX783ANn\nrgp0OkWV/ldVmO0MV9++fZk3bx4DBgwgNzeXiRMnsn379lLrXV1dGT16NIMHD0ahUPDYY4/h5eVV\nan1SUhLDhg3j5s2bLFiwANXtndG9OnfuzP79+xkwYAAFBQVMmDCB9u3bExkZycCBA8nKyqJLly44\nODg88GsWoirKS03n2OIPaPbqJJQaNVmx8UQvfA8Ap2A/Gs0dzb5Bs8usazChPwqFgkZz797lK/Xo\nWU6u/JSj896hUfhoFBo1uUmp/DP9dYu8zsqSl5rO0cUf8vBr+ju0ZcbGc3SB/toM5+CHaDR3NH8N\nmlNm3ck1G2k0ZxTtN7+GTqcj/o9DXPz6Z9DpODjtdUKm3L59cP4tjsx9h5yEFEu+5AeSn5rOySXv\n0Wj5VJQaNdmx8ZxY/A6OQX4EzxlH5NDppdaA/qJ021rehG1YjVKjJu7bXdw4fBKA4/PWEDx7LPVG\n9Eabl8/x8DdApyMlMhqX5g1ptXE1KJQk7onkyib9Ad3JJe8SNGsMXl+uBuDf/+wmMHDU7Qzv03jF\nFBRqNdlx8RxfpM/gFORHSPhYIobMKLMudvtObH29aP3lKpQaNbHf7ib18CkAjs19k+DZL+I3ohfa\nvHyi56zRZz0QTVKzEFpvXIVCqSThzyguf/0DAOc/3ET9CYNp8/XrKG7fxe5SobNb96qq73VzbgOl\nyTh3idMrP6bxa9NRqFXcupnJsfA3ypymSOYbaZxZ/g4hS6ej0KjJibvO6SVv4RDkT+Cs8RwaPrXU\nGoCHxurvXBc4a7xhnmnRpzn/xsecmPMa/pNGobTSoLtVwNmVH5ATV/oXzMbSpqeS/P4S3Ke8ikKt\n5tb1OJLfXYiVXzCuL4ZzfeZgHLr1RuXuhV3Ljti17GiYNmHJBFI3vInr6Fl4r/4adDqyo/7k5k+b\nHjhXMdmJ3PplLOqnN6JQadDduMitn0ej8GqGqtt7+o5VGQoOrEb95DrUw/QdnYL9y9HF//PAscy5\nnUbPXEWDScNRqNVo8/M5MX8tuYnV93NdmE6h0xW6irea2L59OxcuXCh32GFFK2BjpS7PVCoGVfmM\nIDkrmopB/NSy+K2fq5ruUV9Xm/b8sUXx24FXJT0OfgVUj8+kX1v3sXSMcnWO2MquVn0tHaNcXQ9s\nqTbv9eqy3v98pFf5hRbWYd92rvQLs3SMMtXZrB8ul/e6vYWTlM1qama12Tari78efc7SEcr06F/f\nWToCUMV/+HjhwoXFfrcLqNQ7CgohhBBCCCHE/aryHS4hhBBCCCFE1SO3hTfOf+0PHwshhBBCCCGE\npUmHSwghhBBCCCHMpEoPKRRCCCGEEEJUTbrSfshaFCFnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMK\nhRBCCCGEECbTyV0KjSJnuIQQQgghhBDCTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTHz42jpzhEkII\nIYQQQggzkQ6XEEIIIYQQQpiJDCkUQgghhBBCmKy636VQq9WycOFCzpw5g5WVFUuXLqVu3bqG53/7\n7Tfeffdd1Go1vXv3pm/fvve1HDnDJYQQQgghhPifs3v3bvLy8ti8eTNTp07l1VdfNTyXn5/PihUr\nWL9+PRs2bGDz5s0kJSXd13KkwyWEEEIIIYT4n3Po0CHatWsHQNOmTTl+/LjhuZiYGOrUqYOzszNW\nVlY8/PDDREVF3ddyZEihCVQMsnSEclWHjCA5K1r3qK8tHcEo1aU9exz8ytIRjFId2rNzxFZLRzBK\n1wNbLB3BKNXlvV5d1nuHfdstHcEodTZHWjqCUaymZlo6Qrmqy7YpKkdGRgYODg6Gv1UqFbdu3UKt\nVpORkYGjo6PhOXt7ezIyMu5rOdLhMsFvbZ63dIQyddr/Dbta3d/Y0srU9cAWfm3dx9IxytU5Yis7\nw/pZOka5ukVu5uew/paOUa4nIjdVm/X+n+aDLR2jTM/+8yVAlW/PzhFbKWCjpWOUS8UgFAqNpWOU\nS6fLrzbvddkXVZzOEVurxfEHVI/jpPTkly0do1xObm9ZOoLRqvtt4R0cHMjMvPtFgVarRa1Wl/hc\nZmZmkQ6YKWRIoRBCCCGEEOJ/TvPmzdmzZw8AR44coUGDBobn/P39uXz5Mjdu3CAvL4+DBw/SrFmz\n+1qOnOESQgghhBBC/M/p2rUr+/bto3///uh0OpYvX86OHTvIysqiX79+zJo1i1GjRqHT6ejduzde\nXl73tRzpcAkhhBBCCCFMVt1vC69UKlm8eHGRx/z9/Q3/79SpE506dXrw5TzwHIQQQgghhBBClEg6\nXEIIIYQQQghhJjKkUAghhBBCCGEyLdV7SGFlkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk1X3uxRWFjnDJYQQQgghhBBmIh0uIYQQQgghhDATGVIohBBCCCGEMJlWhhQaRc5wCSGEEEII\nIYSZSIdLCCGEEEIIIcxEOlxCCCGEEEIIYSZyDVcFcWvbHP9xg1Bo1GTGXOHUsvcoyMo2qcba040W\n65YTOWQa+Wk39dM8+jAh8yaScz3JUPfPuHkUZOUYnc39kWYEjBuI0kpDxvnLnFj2AQWZ2cbXKRUE\nThqGW6smKFQqLm/cQey3uwCwq+1NyNxxaJwdKcjK4fiid8i6/C8ALk2Dqf/SIFTWVtzKyOLE4vfI\n/jeh9PYbPxClRr/sU8veL7n9SqpRKmnwyjBcb+e78tX3xN3Od4fPU4/h0TGM6GmvGR5rtGIqDgH1\nKMjWt2XqoeOcW/u50e16p83qjx+A0krDzfNXOLG09LYtq87a041W65eyf9AMw7p3CvYncMowVLbW\nKJRKLn3xH679/JdJ+e7weKQZDcb3Nyz/2NIPS8xZWp3SWkPI9JE4h/iDUkHa8fOcXLUebW6+Ydpa\nT3fEq2NL/pm6qtQc5lrPtrW9CQkfj8bZkVtZOZxc/LZhO7yjdt8nqflsZw4MmgqAyt6Odv/3cZG6\nc29+ZnLbej3alOCX+qLSaEg7d4Uji9dxq4S2LauuXp8u1H2uIyobDTdOXeLIoo/R5t8qd9mWaE+/\nF/vj1aUtBdm5pB07w7m1n6PNy8fa043g8HFYuTqjUCq5vPF7k9vSGDqdjvDZ3xNQ34ORo9qaZRkV\n6dNPP+H48eO8/vqaSlleVXmv38uc+yG1kz1BU0di/5AvKmsrLn62nWs/7dVn7dmFOv2eRHergOxr\nCZxc+oHhM/ZeltgPASg0apq8Ppt/v91Fwu8RRrdpkUxmOP5wDPan/qQRqGysUaiUXN7wHfG/7DU5\nX2Vmrmh/7Uvk3Q/Okpevpb6/I3PnhOJgX/TQ+fc/4/lo3XkUSgVOjmrmzgrF19eOtPQ8Xl11irPn\n0rG1UfF0j1r061PXLDktSW4Lb5z/iTNcffv2JTY2lu3bt/Prr78CMGXKFHr37s3Zs2cZMmQI/fv3\nJy0t7b7mr3FxIjh8Asdmr+JA/1fIjovHf/wgk2q8u3eg+QdLsPZwKzKdc6NArny1g6hh0w3/TOls\naVwcaTh3PNGzX+fvvpPIikug/viBJtX59uyKXW1v9g+cyoERs6nT/0mcQvwBCF30MrHbdrK//xRi\nPt5Ck1f1B7PWnq40WTmN0ys/IWLwDOJ/P0DQjBdKbb+QueM5Nns1Ef1eIfvfeAImFG+/0mpq9eyC\nbW1vDgyaQtTIWdTu1wOnkAAA1E4OBM4YTeDUkSgo+qHgHNqAQ+PmEzl0OpFDp5vc2dK4OBI6bxxH\nZ73Bvj6TyY6Lp8GEktu2rDqfJ9sT9tFCbDxdi0zX5LUpxHy0lYjBM/ln0goCJw3Frra3SRnvLn8s\nh2etYW+fKWTFJRA4YYBJdf4jeqJQq9g3aCb7Bs5AZW2F37Dn9NM52RMyaxTB04aDouwPXnOt54YL\nXyF2+04iBkzm4rrNNFoxrch8nRsHUnfIs0UfC63PjSOnDOs/cuh0Uv85YXzDAlYujjRbOJqoaWv5\ntdd0suISCHmpn0l1Pp1a4Ne/K3+PW8Fvz89CZa3Bf1B3o5Zf2e3p06Mj7o88TNSIWUQOnU5uUip+\nL/YHIHD6CyT//Q+RQ6Zz+KXFBE4daVJbGiMmJpGRwzbw80+mrSdLCAoK4tdfd9K37/OVtsyq9F6/\nd3lm3Q/Nm0BOQgoHhs7k0EtLCJwyAmtPV2x8PAgY25+DY+YTMXg6OdcS8R/Tt5SMltkPOYU2oOW6\n5bg0DjK6Pe/NZK7jj0bLp3Fx3Waihk3n6ORl1H95OLa+pu+DKjNzRUpNzWPxsuO8trwp2za1o1ZN\nW95572yRmpzcAuYvOsbKFU356vO2tH/Uk9VrTgGwZu0Z7GxVbNn4KJ9+3Jq/I5LYu6/kL53Ff7//\niQ7XHb169aJz584A/P3332zbtg0HBwcyMzPZtGkTzs7O9zVf17AmpJ86T3bsdQDitv+C9+PtjK6x\ncq+Be/swjk5ZXmzezo0CqfFwKC0+fY3m7y/BpWmwSdncWjUh7VQMWVf1y43dvhPvJ9qZVOfZIYy4\nHX+gK9By62Ym13f9jc8T7bH2qIF9vZpc3/U3AMn7j6CyscYx8CG8OrUm+e8j3DxzUf96v93NmTWf\nldx+rRqTfiqG7Kt32mZn8fYro8ajQyuu/fC7IV/87n2G7F6d25CXnMq5tzcUmZ+NjycqO1uCZo4h\n7MvVBM8dj9rJwfS2PXm3za5u24X3E4+aVGftXgPPDi35Z/KrRaZRWmm4sO4bUqKOAZCbkELejZtY\ne5q+c3Fv1bjY8n1KyFlWXcrh08Ss/xZ0OtDqSD97CVsfdwC8u7QhN+kGZ97aWG4Wc6xnaw9X7OvV\nJH7XPuD2dmir3w4BrFydCZz2AufeKboNODcKROPkwMMfLiHs85XU6tXNiNYsyrNNI1JPXCTzajwA\nF7f+im/34mddyqqr3eNRzm/4ifz0TNDpOLrsU67+aNyZzMpuT8cgfxL3RHIrIwuAxD8O4NmpNQDR\nM1ZydevPAFh7uaO7pTWyFY339caD9OzVlCe6N6zweVe0CRPG8emnn7NlyzeVtsyq9F4vzJz7IbWT\nPa5hjbmwbiug/6yMHBlOfloGCpUShVqNyt4WFAqU1tZoc/NKzGiJ/RBA7b7diflwE+knz5nUpoZM\nZjr+UFppuLh+K6l39kGJKeSnpd/XPqiyMle0iMgkQoKdqFPbHoDeverw885r6HQ6Q422QIdOpyMj\nQz8iISu7ACtr/aH1qdPpPPlETVQqBRqNkkfaevDr7/FmzSyqrio7pDA/P5/Zs2cTGxtLQUEBI0aM\noFatWixfvhytVouXlxerV6/GxsamxOnXrFnD3r178fb2JjU1FYC3334bd3d3zpw5Q0ZGBuPGjePW\nrVtcunSJ+fPns3jx4vvKauPlRm5CsuHv3MRk1A72qOxsDae/y6rJS0rl+OySh2bkp2Vw/ec/Sfoz\nEufGQTReOZPIIVPJTUwxPlt8oeUmJKNxsENlb1tkOEdZdcWyJyTjEFAHGy93chNT9Tvm23ISU7Dx\ndMWutg8FOTk0WvoKdnVqkhOfxNk1JZ9BsvF0Jyf+7pDJ3IRk1A52RduvjBobTzdy4u/Npz9tf2dI\nh0+PjkWWaeXqRErUMc6s+pi81HQaTB5OSPg4omcaP0TGxsuNnATj2ra0utykVI7OfL3YvLV5+cR9\n/7vh71rPdUZlZ0Pa8bPFak3NmWNkzsJ1yQei79Z5u1O3f3dOrFgHwNXtu/UZe3QoN4s51rO1p1ux\n7TA3IQVrTzdunrtMw0WvcP6dDWhvFR2ipysoIOmvg1z8dDvWbi40f3cBuUmp5b6Gwmy93MiOL9xm\nKWgc7VDb2xYZVlhWnUNdH6xPXKD1OzOw8XAh5fAZTry5yajlV3Z7pp84R+0BPYjd+jP56Rl4P9kB\na7ca+iKdDnQ6mr+3EOfGQVzd9AN1Bxc9q/ig5s7Xn/mLiLhYofM1h5deegWAzp07Vdoyq9J7/d5c\n5toP2fl6k5ucSt2BT+HepilKKw2XNu4g6+o1smPjufzl9zyy5U3yMzK5lZFF1Ki5JWe0wH4I4MT8\ntQDUHfxM+Q1ZUm4zHX9o8/K5tuM3w981n+2CytaG9BP31zGsjMwVLT4+By+vu8eYnh7WZGbeIjOr\nwDCs0M5OzewZIYx68QDOzlZoC3Ss+zAMgNCGzvzfz//SpLELeXlafv89HrX6v2/4XcV/tfbfqcp2\nuDZv3oyrqyurV68mIyODXr16YWVlxdq1a/H392fr1q3ExMTQsGHxbzqPHTtGVFQU33zzDVlZWXTr\nVvSb64ULF7Jr1y7ef/99YmNjmTJlyn13tgBQlnyiUKfVmlZTgsIfKmnRp0k7dgbXsCZc+/H3MqYq\nRFHKcgu0xtcpS/iA0GpLHVKi02pRqNV4tHuYgy/OJ+vqdWr37U6T16YRMWRG8QlKmj/3tl8Zyyrh\nuWKv7x7pJ85zbNbdtr3w8Rba/d/HKNRqdLfKv3YGKHG5ANyzbGPrSlNv6LPU7d+dQ6+sKHIdhbEU\npWx7xXOWX+cU9BDNVk7lytadJP71j8lZSvKg67m09tUVaAkYP5AbR06SEhmNS/OQIs9f+nSb4f+5\niSnEfbcLzw5hpoUvY9nG1inUKjxahRI5ZQ0FuXk0XzyW4Il9OL76S9Oy3JmnGdvz+s97sPZ0pdm7\nC9Bm5xL33a5i15r9M34hGhcnmr01777yi/tXZd/rZtwPKdRq7Gp5cSszm6gx87H19aLlh4vJunoN\njbMjno+1Ys8z48i/cZP6EwfRcP4EjtxzDRVgkf1QhTDj8ccddYc8h2/fHhydvLTUM4QmqYTMFaHQ\nd05FqApFOx9zk3XrY9iy8VF8fe3YtOUyM+ccYePnbZn0UiBr3znDoGH7cXe3JizMjehjNyonvKhy\nqmyHKyYmhrZt9UNuHBwc8Pf357fffsPfXz9mu0+fPqVOe+nSJUJDQ1EqlTg4ONCgQQOzZs25nohT\nSH3D39YeruSn30Sbk2tSzb3UDnbU6v0Elz/ffvdBhaLYN/X38h/TF492LQBQ2duSEXOl6HLTMoot\nNyc+CefQgBLrcq4nYeXmUuS5nIQUcuKLPg5gc/u53KQUbkSfMQwNifv+N4KmjkBprSmWNzc+CeeG\n97TNPRnLqsmJT8LavUaR5wp/M1YSlyZBqJ0cSNp7EACFQgFaXbkf5v5j+uDRXt+2antbMs4Xb9uC\ne9v2ehLODYu37b1191Jo1ITOH4+Dny8HRs0j51pimfWFBYzpg2f7hw05b56/WmT5eSUsP7uEnIXr\nvLu2IWTGKE6t/pRrv+wzOkth966niljP926fhZ/zfqI9ealpeHRohcrWBmsPV8K+WEXk0On49nmC\nxD0HyTV8Y61AW1BQ7msIGtsb7w7NAX3bphdqWxvPGqW0bTI1Qv1LrMtJTOX67wcNZ8Ri/28fgaOf\nKzcHVH57qp0ciN/5F5e/+A4Ap4YBhiE/no+1JvnAEQqycsi/kU7inkgcG9Qz6nX8N1i0aAHPPPM0\nAN9/v4MFCxZVynKr6nu9svZDd0Z7/PvjH/rXFhvPjaOncQ4JwN6vNol7D5Kfmg7A1W9+oc1XxUcU\ngGX2QxXBXMcfoN8HhcydiN1DvhwaPYec68bvgyyVuSJ5edlw/MTdDlJiYi5Ojmpsbe8eOu8/kEST\nxjXw9bUDoE/vOqx56zRpafnk5BTw0oQGODtZAfD5hgvUvl0n/vdU2Wu4/P39OXhQfzCckZHB2bNn\n8fX15dKlSwB89NFH7Nq1q8RpAwICiI6ORqvVkpWVxfnz582aNSXyKM6h9Q0Xk9bs2Y2kPVEm19zr\nVlYOvr0fx6NjKwAcGjyEU3AAKRFHypwu5qMtRAyZQcSQGUSOCsc5tL7hZgu+vbqSsLf4cpMPHC21\nLnHPQWo93QmFSonawQ6vrm1J/DOS3IQUsuPi8eqq7xi7tWqCTqsl4/wVEv6IxKVJIDY+HgB4PRZG\nRsyVEs/Q3Fm27e1l1+rZjcR7MpZVk7gnCp+nHyuU7xESy2lblZ0NDaaMNFy3VWfwM/q7Q5XT4bpz\nE4uIwTOJHDm3eJvtOVjC64s2qu5eTVZMRm1vS6SJnS2A8x9t5e/Bs/h78CwiRs7DJTTAsPw6vbqU\nmrO0Oq9OrQieOpyDLy+/7wMwwCzrOTfx9nbYRb8dut7ZDmOu8NdTY4gcor8hxqkV75Mdd53IodMB\ncGkSbBjGo3ZyoOYznUjY/Xe5r+H0B9v4Y0A4fwwIZ8+whdRoFIB9bS8A6vXuzPU/i58NSNh/rNS6\nf3dHUrNrK8OXEd4dHyb15IUq2Z5OQX40em06CpUKhUpJvaE9uX77rmW1enXDt49+yJ/K3g6Pdi2N\neg3/LRYsWESzZi1o1qxFpXW2oOq+1ytrP5RzLZH00xeo+aR+mKOVqzPOjQJJP3WBm2cu4vFIc1S2\n1vrX9lirUodlW2I/VBHMdfwBELpsKip7Ww6NCa+wzpa5M1ek1mFuHD+RxpWrmQBs++4q7dt5FqkJ\nauDEP4dTSE7RdwT/3BNPTR9bXFys2PbdVT78WH/8mZySy3ffx/J4V59KfQ2VQadTVOl/VUWVPcPV\nt29f5s2bx4ABA8jNzWXixIn4+/szZ84clEolHh4eDB8+vMRpg4ODad++Pc8//zyenp64uZnvLjYA\n+anpnFr6LqHLp6HUqMmOi+fk4rdxDPInaPZYooZNL7WmTFot0TNW0mDKSB56oR+6ggKOz3vDpNuf\n5qemc3LJ+zReMQWFWr/c44veAcApyI+Q8LFEDJlRZl3s9p3Y+nrR+stVKDVqYr/dTeph/V14js19\nk+DZL+I3ohfavHyi56wBnY6Mc5c5/do6mq6cjkKtIv9mpv65UjO+R6PlU/VtExvPicXv4BjkR/Cc\ncUQOnV5qDegvXLat5U3YhtUoNWrivt3FjcMny2yX5P1HiN36f7T4aAkolPpbzq74wOh2BchLTefE\nkvdp8uqdNrvOsYXv6ts22I+Q8BeJGDyzzLrSuDQOxLN9CzIv/0vLdXeHu5575yuSI46anPPYkg9o\n+upklGo1WXHxRXKGho/h78GzyqxrML4/CoWC0PAxhvmmHj3DqVWfmpTFXOv5+Lw1BM8eS70RvdHm\n5XM8/I3Sx4Pcdmb1JwTNGkOrr95AqVZx9ZufSYmMLnOae+WlpnN44Ue0XPUySo2azNgE/pmn345c\ngh+i6fwX+GNAeJl1F7fuxsrZgY4bl6JQKrlx+hJHl31VJdtTPzSzIa02rgaFksQ9kVzZ9OPtLO8S\nNGsMXl+uBuDf/+wmMHCUSe0pHkxVeq8XZu790NEZqwia/gK+vbqCQsGF9d+QfiqG9FMx2Pp40Orz\n19Dm5ZNzPYkTS94rI2Pl7ocqgrmOP5wbB+LRriWZl+N4+MOlhsdj3vuSlAOm7YMqK3NFc3W1Zn54\nKLPCj5Cfr8O3lh0L54dy8lQaS189wVeft6VlCzcGD3qIsROi0GgUODlpWP2afgTE8CF+LFh8jH6D\n9qFDx+hRATQMub+bs4nqT6HTlXNUIgx+a1N5t/e9H532f8OuViU6P3zCAAAgAElEQVTf8rYq6Xpg\nC7+2Ln1IaFXROWIrO8OK3+K7qukWuZmfw/pbOka5nojcVG3W+3+aD7Z0jDI9+4/++q6q3p6dI7ZS\ngGl3tLMEFYNQKIoPd65qdLr8avNel31RxekcsbVaHH9A9ThOSk9+2dIxyuXk9palIxituuwvLa3K\nnuEyxubNm/nhhx+KPT5lyhSaNWtmgURCCCGEEEL8b9BWoWF7VVm17nD169ePfv2q/hkIIYQQQggh\nxP+mKnvTDCGEEEIIIYSo7qr1GS4hhBBCCCGEZeiQIYXGkDNcQgghhBBCCGEm0uESQgghhBBCCDOR\nIYVCCCGEEEIIk8ldCo0jZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiIdLiGEEEIIIYQwE7mGSwghhBBC\nCGEyrc7SCaoHOcMlhBBCCCGEEGYiHS4hhBBCCCGEMBMZUiiEEEIIIYQwmQ65Lbwx5AyXEEIIIYQQ\nQpiJQqfTyeVuQgghhBBCCJNsbjLc0hHK1O/oZ5aOAMiQQpPsDOtn6Qhl6ha5mV9b97F0jHJ1jtjK\nrlZ9LR2jXF0PbOG3Ns9bOka5Ou3/hj/a9rZ0jHJ1/HtbtVnv+9s/Y+kYZWqz53uAKt+eXQ9sQaHQ\nWDpGuXS6fArYaOkY5VIxqNq812VfVHG6HthSLY4/oHocJ9lZ17N0jHJl5V6ydASjaXUypNAYMqRQ\nCCGEEEIIIcxEOlxCCCGEEEIIYSYypFAIIYQQQghhMrkThHHkDJcQQgghhBBCmIl0uIQQQgghhBDC\nTGRIoRBCCCGEEMJkWvnhY6PIGS4hhBBCCCGEMBPpcAkhhBBCCCGEmUiHSwghhBBCCCHMRK7hEkII\nIYQQQphMp5NruIwhZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAm08qQQqPIGS4hhBBC\nCCGEMBPpcAkhhBBCCCGEmciQQiGEEEIIIYTJdJYOUE1Ih6uCuD/SjPrjB6C00nDz/BVOLP2Agsxs\nk+usPd1otX4p+wfNID/tJgAejzYndMEEsuOTDHVRYxZQkJVTYha3ts3xHz8QpUZDxvnLnFr2PgVZ\n2cbVKJU0eGUYrq2aoFCpuPLV98R9uwsA29rehISPR+PsyK2sHE4ufpusy/8C0GjFVBwC6lGQrc+U\neug459Z+jo2PB0EzxmDj405BVg6XN35fZhsGjBuI0kqf6cSy0tuwxDqlgsBJw3C7nf3yxh3E3s5+\nR82nH8OzQxhHpr1meKzxq1NxDKhryJ5y6ARn3/y81JxF2nDcIBQaNZkxVzi17L2S27mMGmtPN1qs\nW07kkGmG9e0Y7E/9SSNQ2VijUCm5vOE74n/ZW26e0ri2bY7f2MEoNWoyYi5zZnnxnKXVKK2sqD/t\nBRyDA1AolKSfPMu51evQ5uXhGOxPwCsjUdlYg0rJ1S+/I/6XPeXmMed6tqvtTcjccWicHSnIyuH4\noncM2+gdtft1x/fZzuwfOA0Ala01IXPH4/BQLVCWf9LfpXUL6rw4FKVGTVbMZWJee6tYe5ZV4/Vc\ndzyf6obS2orMMzHEvPYWuvxb2AcFUO+l0Yb1HrdxO0m7/qiy7en/Yj+8u7alIDuXG9FnOLv2C7R5\n+aBU4DfyeTzaPQzAG2+sZsqUaeW+DlN9+uknHD9+nNdfX1Ph864IOp2O8NnfE1Dfg5Gj2lbKMqva\ne70wc+2X1E4OBE4diX09X5TWVlz6bDvXf9Zn83uxP15d9Nto2rEznFv7uX4bLYOl9kMACo2aZq/P\nIva7XST8dsDotjXn8YdTsD+BU4ahsrVGoVRy6Yv/cO3nv4zOVlk576j5dEe8OoZxeOrK+8pYkie6\nP8aiJTOwtrbi+LHTjHtxJjdvZhSre+aZxwmfPwmdVkdqahrjx83k4oUr1KjhzNq3l9G4STBZmdl8\n8cVWPniv/GMM8d/FbEMKJ06caHRt3759iY2NfaDl7dq1i/j4+Aeax/3SuDgSOm8cR2e9wb4+k8mO\ni6fBhIEm1/k82Z6wjxZi4+laZDrnxoFc2riDiMEzDf9K62xpXJwImTueY7NXE9HvFbL/jSdgwiCj\na2r17IJtbW8ODJpC1MhZ1O7XA6eQAAAaLnyF2O07iRgwmYvrNtNoxd2DKOfQBhwaN5/IodOJHDqd\nc2v1HyYh8yaSduIsEf0n88/ERdQd/Gypbdhw7niiZ7/O330nkRWXQP3xJbdhaXW+PbtiV9ub/QOn\ncmDEbOr0fxKnEH8A1E72BM8cTdDUEXDP9Z0uofU5OHYBEUNmEDFkhlGdLY2LE8HhEzg2exUH+r9C\ndlw8/uOLt3NZNd7dO9D8gyVYe7gVma7R8mlcXLeZqGHTOTp5GfVfHo6tr3e5mUrLGRQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tennDzm\nXc+hi14mdttO9vefQszHW2jy6tQi83VuHMhDQ4pug3UHPYM2N4/9A6cROSocAPuggBLzq52dCJj9\nMmfnreDI4PHkXLtOnReHGV3j2r4N3r2f4tTkeRwdOhGltRU+ffV5ApfMJnb9V0SPmsSp6YuoN3Ek\nNlW0PWs+1RGPRx/mwPDZRAyZQW7yDfzH9gegTr8nqdE8hKgx8wBo06Y1/fr1LfN1mCIoKIhff91J\n377PV9g8K1pMTCIjh23g559OVNoyq9p7/d7lmmu/FDJvAjkJyUQOm8HhlxbTYMoIrD1c8enREfdH\nHiZqxCwih04nNykVvxf7l5PTcvsh59D6hH2yDJcmQUa3650s5jz+aPLaFGI+2krE4Jn8M2kFgZOG\nYlfb9P2RuXOqnewJnvUCwdOKt+2DcHd35YOPVjGw/ziaNurMxYtXWbJsZrE6GxtrPvlsDQP6jaV1\n2JP8+ONuXn9jIQCvrZpPZkYmzZt0pUO7njz+eEe6P9mp4kKKasFsHa533nnHXLMu0RdffEFGRvFv\nHCqDW6smpJ2MIevqdQCubtuF9xOPmlRn7V4Dzw4t+Wfyq8Wmc2ncANcWobT+fAUtP1pIjWbBpWZx\nbdWY9FMxZN9eRtz2nXg/3s7oGo8Orbj2w+/oCrTcuplJ/O59eD/RDmsPV+zr1SR+1z4AkvcfQWVr\njWPgQ9j4eKKysyVo5hjCvlxN8NzxqJ0cAHAM8uPaj38AUJCVQ+qhkg9A3Fo1Ie3U3baJ3b4T7yfa\nmVTn2SGMuB1/GLJf3/U3Pk+0B8C7c1tyk1I5+9aGIvOz8fFAZWdL8MzRtP5yFSHzxqF2si+1fQ1t\nGNaE9FPnyY6904a/FG/nMmqs3Gvg3j6Mo1OWF5lGaaXh4vqtpEYdAyA3MYX8tHSsPYt2yoxVI6wJ\nN0+dJzv2GgD/bv8Fr27tjK65ceQklz/7BnQ60GrJOHsBG293lFYaLq3fSurB6Ls5b5Sf05zr2dqj\nBvb1anJ919/A7W3URr+NAli5OhM8fRRn3/6yyLIUKiUqOxsUKiVKKw0AuvxbJeZ3CWtGxulz5Nxu\nq/jvfsK9awejazwef4xrm77j1s0M0Om4sPo9kn75HYWVhtjPNpF26CgAeYnJ5KelY+XhXiXb0zHI\nj4Q/o7iVkQVAwu8H8HqsFQA1n+zAxU+3o83Vn0no3bsvv/76W5mvwxQTJozj008/Z8uWbypsnhXt\n640H6dmrKU90b1hpy6xq7/XCzLVfUjs54NqyMRfXbTVkixo1h/z0DByD/EncE2nYRhP/OIBnp9Zl\n5rTUfgj0X1TEfLiJtBPnjGjRe7KY6fhDaaXhwrpvSLmzP0pIIe/GzfvaH5n7OMm7Sxtyk25w5q0v\niz33IDp3acc/h6KJOX8JgI8/+pJ+/Yt/caxSqVAoFDg7OQLgYG9HTk4uAM2ah/LVV9+i1WrJz8/n\n559+47meT1ZoTkvS6hRV+l9VUe6Qwu3bt7N7924yMzNJTU1lwoQJ1KhRgzVr1qBSqahduzaLFy9m\nx44dbNu2Da1Wy8svv8y0adPYt28fJ0+eZMmSJahUKqytrVmyZAk1a9ZkzZo17N27F29vb1JTU8vM\n8NRTT1GvXj00Gg2LFy8mPDzcMM3cuXO5du0ap06dYubMmaxatYqZM2eyZcsWQH/27I033uDbb7/l\n8OHDZGVlsWzZMubMmYO3tzdXr16lUaNGLFq06L4b0cbLjZyEZMPfuQnJaBzsUNnbFjkNXlZdblIq\nR2e+XuL889MyuPbTHhL+iMKlSSBNV09n/6AZ5CakFM/i6U5OoaGHuQnJqB3sUNnZGoZvlFVj4+lG\nTnzRjA4BdbH2dCM3MVW/MzY8l4K1pxsKtYqUqGOcWfUxeanpNJg8nJDwcUTPXEX6iXP49HiMi+u2\noHFxwq1ts1LbMDfeuDYsrc7Gy43chHuz1wEwDOnw6VH04NjK1ZmUqGOcWrmOvNQ0AicPp+Hc8Ryd\nsarEnEVyFF5WYjJqB/ui7VxGTV5SKsdnF1+GNi+fazvuHpzWfLYLKlsb0k3cCd/N6U5u4XVdYs7S\na1Ijjxoet/b2wLfvU5x97QO0eflc/+FXw3M+z3bV5zx+tpw85lvPNl7uxbbRnMQUbDxduXnuEqGL\nX+bs2xvQ3SookunShv/Q4v2FtP/hQ1T2tgBkxVwqMb+Vpzu5CYXbKqlYe5ZVY1O7JpoaLgSvWojG\n3ZWb0Se4/P5n6PLySfjx7rAjz6cfR2VrS8aJM1WyPdNPnKNO/x5c3foz+ekZ+DzZAWv3GgDY1fHB\n/iFf6g17DoBx415kwYL7/3y910svvQJA585V9xviufO7AxARcbHSllnV3utFsplpv2Tn601ecip1\nBj6FW5tmKDUarmz8nvir10g/cY7aA3oQe3sb9X6yA9ZuNcppQ8vshwCOzVsL6M+4m8Kcxx/avHzi\nvv/d8Het5zqjsrMhzYR1Xxk5AWK37wagZglt+yB8fWsSe/sLCoC42Gs4Ozvh6OhQZFhhZmYWL08M\n57c/t5GSfAOlSknnx/Rn4Q9GHmHgwJ7s//sg1tZWPPtcd/JvlfylnvjvZdQ1XNnZ2Xz66aekpKTQ\np08flEolW7Zswc3NjTfffJNvv/0WtVqNk5MT77//fpFp586dy7JlywgODmb37t28+uqrjB49mqio\nKL755huysrLo1q1bmcvPyspi/PjxhISEsGrVKlq3bs3AgQO5dOkSs2fP5uuvvyY4OJiFCxei0WhK\nnY+fnx9z584lNjaWS5cu8cknn2Bra0uXLl1ITEzEw8PDmOYoRqEspQddoL2vunsV/oC5cfQMadFn\ncQtrzL8//FG8uJRl6LRao2pKyqgrKPnxO8+lnzjPsVl3Ow8XPt5Cu//7GIVazcnF71D/lWG0+vJ1\nsq8lkLTvEA5+tYvPSFHyyVbdvW1TVl1JGbVlt236ifMcnbm6UPattP/pIxRqVZnTlXatT9F2NqKm\nDHWHPIdv3x4cnbwUbW6eUdMUozBiezCixiHQj9AVM4jb9hPJfx8qUldnSE9q9elB9JQlaPPKyWnO\n9VzG66g/fiA3Dp8iJfIYNZqHFHk+aPookg9Ec/79r7FydabD/32Ea4c2pPy5v3j80nIVaquyahRq\nNc4tmnBmzjK0efkEzJlEndFDuPT2OkNdzUG98Xn+aU5NW1hl2/PaT3ux9nTj4XfnU5CTS9x3u9He\nPiuoUKtwDq3P4ckr6PLXVzz66CO89NJE1q59q+zXIh5MVXuvF2au/ZJahW0tL25lZnNozDxsfb15\n+IPFZF29zvWf92Dt6Uqzdxegzc4l7rtdhm20VBbaDz0Icx9/3FFv6LPU7d+dQ6+sMJy9NkVl5axo\nylLyFBQU/eKuYcNAZoe/TPOmXbl44QrjJgznq00f0Lpld2bNXMaKV+ewP/JHrl9P4Ldf/6J1m+aV\nEV9UIUZ1uFq2bIlSqcTd3R1bW1suX77MpEmTAMjJyaFt27bUrVuXhx56qNi0CQkJBAcHG+bz+uuv\nc+nSJUJDQ1EqlTg4ONCgQYNyM9yZ99mzZ4mIiOCnn34CIC0trczpdIW+nS2cr06dOjg46Ie9eXh4\nkJubW26GwvzH9MGjfQsA1Pa2ZJy/YnjO2sOV/LQMCnKKzjPnehLODQPKrStM7WBH7ee7cfGz7+4+\nqABdKd+O5MYn4dywfrFlaAsto6yanPgkwzfVd57LTUgm53oSVm4uRZZ15zmXJkGonRxI2ntQH0+h\nAK0OnVaL0saKk0vfMyw/cMZow/T+Y/ri0U7fhip7WzJiireh9t42jE/CObR4G2pzcotltPZwJaeE\ns4CFuTQNQuNoT+Le2wcWhbKXJed6Ik4h97Rh+s0ieY2pKYlCoyZk7kTsHvLl0Og55FxPLLO+LLnx\nSTgVWtdWHm7FMpRX49nlEepPG82519eRsOvuxdIKjZqguS9hX8+Xw2Nml5qz3gv9cX9Uv55rPdvJ\nbOs5J774Nmpz+zmf7u3JS03Ds2MYKlsbrD1cab1hJRFDZuDZsRX7B04FnY685BsAODdrXGKHKzc+\nEYeQu59XVu5u3CrWnqXX5CelkLI3wvCtfuLOP/Ad3s/QngGzJ2FbrzbHx80g93pCie1Ze+Td6xks\n1Z5qJ3uu//IXlz7Xfy45NQwg6/bQ2dzEVOJ37TMMy9y6dRvt2z/K2rUlvpxyLVq0gGeeeRqA77/f\nUaFny/6bVIX3elnZzLFfyk3Uj3S5dvvLx+zY69w4ehqnhgFkX0sgfudfXP7i7jZ6Z3h3YVVhP2Sq\nyjr+AP26D50/Hgc/Xw6MmkfONePXfWXmrEjz5k+mx1NdAXB0cuDE8bsjDWrW8iYl5QZZ99zwpUu3\n9uz/+xAXL+hf44fvf8HKVfNwc6uBrZ0t4XNWkJqqP16dMnUsMTGXK+nVmJ9lusLVj1HXcJ04ob/u\nJikpidzcXOrUqcN7773Hhg0bGDt2LK1b68dFK0v4Rt/T05PTp08DEBUVRb169QgICCA6OhqtVktW\nVhbnz58vP+jtefv5+TF8+HA2bNjAm2++yTPP6E+/KxQKdDod1tbWJCcnU1BQQHp6epGbcRTOpyjl\nmz5j3bmINGLwTCJHzsU5tL7hQlLfXl1J2HOw2DTJB6KNqivsVlY2tZ9/HM/HwgBwbFAP55AAkvYf\nLbE++cBRnEPrY3t7GbV6diNxb5TRNYl7ovB5+jEUKiVqBzu8uj5C4p4ochNTyI6Lx6uL/m5brq2a\noNNqyYi5gsrOhgZTRhqu26oz+BkSfo8ArRa/F/rh20t/BtO2to9hx6Zvwy2GG1VEjgov3jb35C6c\nvaS6xD0HqfV0p0LZ25L4Z2SZ7auytSFw6kjDdVt1Bz9D/G8RoC37Rqcpkbfb8PbNLGr27EbSniiT\na0oSumwqKntbDo0Jf6DOlj7DEZwaNjBc4F7zuW4k7b03Z+k1Ho+1JmDyKKInLSlyAAbQcOk01Pa2\n/PNi2Z3CS+s2cXC4/gYr5lzPuQm3t9Gu+m3U7c42ev4Ke3q8SMRg/bZ2cvkHZMddJ2LIDABunrmA\n9+1plDbW+sdKGcp3I+owDiGBhptZeD/bnZS/Dhhdk/zHPtw6PoLSygoA13atyDyt//xrsHgmKntb\njo8vvbMFcHX9V4b/W6o9nYL9afLaNBQqFQqVkoeG9eT6L/rtI+G3CLyfaG84m/LUU08SFVX251xZ\nFixYRLNmLWjWrIV0tspQFd7rpTHXfinnWgLppy8YhuhZuTrj3CiQ9FMxOAX50ei16YZttN7Qnlwv\n4W6vVWE/ZKrKOv4AaLJiMmp7WyJN7GxVds6KtGTxGlqHPUnrsCfp2K4nLcOa4h9QD4AXRg/ixx27\nik1z5PBx2rVrhaen/rrbp5/pxqVLV0lOTmX06EHMWzAFAE9Pd0aM6s+WTf+ptNcjqgajznAlJSUx\nbNgwbt68yYIFC1AqlYwZMwadToe9vT0rV67k2rVrJU67dOlSlixZgk6nQ6VSsXz5cmrXrk379u15\n/vnn8fT0xM3N+Aswx44dS3h4OFu2bCEjI8NwN8RmzZoxY8YM1q9fzyOPPMLzzz9P7dq1qVu3rtHz\nvl95qemcWPI+TV6dgkKtJjvuOscWvguAU7AfIeEvEjF4Zpl1pdLqODJ9FUHTRhAwpi/aggKOhq8t\ndivUO/JT0zm55D0aLZ+KUqMmOzaeE4vfwTHIj+A544gcOr3UGtBfqGxby5uwDatRatTEfbuLG4dP\nAnB83hqCZ4+l3ojeaPPyOR7+Buh0JO8/QuzW/6PFR0tAodTf/nzFBwCcf2cDIQtewufJjugKCji5\n9D2arZ1bSu73abziTtvEc3yRPpNTkB8h4WOJGDKjzLrY7Tux9fWi9ZerUGrUxH67m9TDp8ps3uT9\nR7i65SdafrQEhVJJRswVTi7/sOx1cjvvqaXvErp8mr4N4+I5ufhtHIP8CZo9lqhh00utKYtz40A8\n2rUk83IcD3+41PB4zHtfknKg5E52eTlPL3uXhsumodCoyYm7zqnbOQNnjePg8Gml1gA8NFZ/B7PA\nWeMM80w7dpr4nXtxb9eSrMtxNP9g2d2c739J6oEjZeYx53o+NvdNgme/iN+IXmjz8omes6bINUgl\nOb7oXYKmj6LNkx0MQ39Kux37rRtpxLy6lgaLZ6HQqMmNu875ZWuwDwzAf8ZEokdNKrUG4Pp3P6F2\ncqTRujdQKJVknr3AhXffxTE0GNdHWpF9JZbQd+/eKvryB5+TFnW4yrVnyoFokpqF0HrjKhRKJQl/\nRnH56x8AOP/hJupPGEybr/VDoS9cuMibb8pwQnOrau/1e7OZa78UPXMVgdNHUatnNxRKBZfWb+Xm\nqRgAXJo3pNXG1aBQkrgnkiubfjQiZ+Xvhx6EOY8/XBoH4tm+BZmX/6XlusWGx8+98xXJEabtj8x6\nnGRGiYnJjB0znY1fv4+VlYaLFy7zwkh956l580a898FrtA57kj//2M+baz7k512byMvLJzXlBn17\n60f0rFr5Hp98uoaof35BoVCwbMmbHDoUbbHXJCxDodOVfTSyfft2Lly4wLRpFf87KtXNzrB+lo5Q\npm6Rm/m1dR9LxyhX54it7GpVcbeJNpeuB7bwW5uqe+vpOzrt/4Y/2va2dIxydfx7W7VZ7/vbm3bh\nemVrs0f/e3ZVvT27HtiCQlH6dbVVhU6XTwEbLR2jXCoGVZv3uuyLKk7XA1uqxfEHVI/jJDvrepaO\nUa6s3EuWjmC0j4PHWDpCmUaf+sjSEYAq9MPH0dHRrFpV/K5t3bt3Z+DA4r/VIIQQQgghhBBVXbkd\nrl69elVGDho3bsyGDcV/m0IIIYQQQgghqiuz/fCxEEIIIYQQQvyvqzJDCoUQQgghhBDVh1b3YHf9\n/l8hZ7iEEEIIIYQQwkykwyWEEEIIIYQQZiJDCoUQQgghhBAmK/uXLsUdcoZLCCGEEEIIIcxEOlxC\nCCGEEEIIYSYypFAIIYQQQghhMrlLoXHkDJcQQgghhBBCmIl0uIQQQgghhBDCTGRIoRBCCCGEEMJk\nWksHqCbkDJcQQgghhBBCmIl0uIQQQgghhBDCTBQ6nU5+s0wIIYQQQghhkrcbjLN0hDK9dPZ9S0cA\n5Bouk/zUcoClI5Spe9TX7AzrZ+kY5eoWuZkfHh5k6RjleurQxiq/zkG/3gvYaOkY5VIxqNq0Z/bJ\nLpaOUSbbkN1A9fhM+jmsv6VjlOuJyE380ba3pWOUq+Pf26rNe/23Ns9bOka5Ou3/hoV1X7J0jHIt\nvPw2HwS9aOkYZRp7+kMAvm48wsJJyjYg+lN+bDHQ0jHK1ePgV5aOICqYDCkUQgghhBBCCDORDpcQ\nQgghhBBCmIkMKRRCCCGEEEKYTG4Lbxw5wyWEEEIIIYQQZiIdLiGEEEIIIYQwExlSKIQQQgghhDCZ\nTqewdIRqQc5wCSGEEEIIIYSZSIdLCCGEEEIIIcxEhhQKIYQQQgghTKbVWTpB9SBnuIQQQgghhBDC\nTKTDJYQQQgghhBBmIkMKhRBCCCGEECaTEYXGkTNcQgghhBBCCGEm0uESQgghhBBCCDORIYVCCCGE\nEEIIk2nlh4+NIme4hBBCCCGEEMJM5AxXBfF4pBkNJvRHaaXm5rkrHF/6Ebcys42uU1praDhjJM4h\nfqBUknb8PCdWrkebm4/rwyEETRqMQqUiP+0mp974gpvnrtxXTvdHmlF//ACUVhpunr/CiaUfUFBC\nzvLqrD3daLV+KfsHzSA/7ab+tT3anNAFE8iOTzLURY1ZQEFWjsk5PR9tStDEfig1atLPXyV68ccl\ntqcxdQ+vmkRuYirHV34OgFuLEIJfGYBSraIgN58Tqz7nxokLJmeE6rPeTaHT6Qif/T0B9T0YOaqt\n2ZdXWHVrzz0Hs3n7yzTy8nXUr6th4URXHOzufo+14/dMNnx/0/B3RpaWhOQCfllXE7UKln2YypmL\n+djaKHi2kz0Dejg+UJ7CqktbejzSjAbj+xs+a44t/bDEz6TS6pTWGkKmj8Q5xB+UCtKOn+fkKn3O\nO2o93RGvji35Z+qq+8ro2rY5fmMHo9SoyYi5zJnl71GQlW1UjdLKivrTXsAxOACFQkn6ybOcW70O\nbV4ejsH+BLwyEpWNNaiUXP3yO+J/2XNfGe9HZb7X3do2x3/cIBQaNZkxVzi1rHgbllqjVFL/5WG4\ntm6KQqXkylc7+PfbnQC4NG9I/ZeHGbbFc29+Ssb5y4Z5KjRqmqyeTdx3u0j8PaLCXk/9Tg3pMuNp\nVFZq4k//y/czviI3o/i+LmxYe1oMfhR0OlIuJ7Fj1tdkJmdUWI6S1OkQSqspPVFZqUk+E8cf4V+Q\nn1n6fvixFcNIOfcvR9fvAkChVPDovAH4tKwPwJU9x4lYua3Cc9Zs15gmrzyP0krNjbOxHFiwnltl\n5Gy1ZBRp5+M4/fnPRR6383Kl65dz+anPfPJuPHjbej7SlMCJdz4TrxK9pOTPztLq1Pa2NJ4/Bod6\nNUGhIPbHvVz4fAcAziF+hEwdgsrGGoVKyYXPdxD3074HziNJK/QAACAASURBVCyqPjnDVQGsXBxp\nNP9FDs9cw97np5Idl0CDiQNMqvMf0ROFSslfA2fx14AZKK2t8B/+LGp7W5qvnMyZtzayb+BMTry6\nnqYrXkGpMb2vrHFxJHTeOI7OeoN9fSaTHRdPgwkDTa7zebI9YR8txMbTtch0zo0DubRxBxGDZxr+\n3U9ny8rFkSYLxnBo+pv80Xs6WbEJBL3U777q/Ic+hWuzQMPfCrWK5ismEr10HXsGzOHcJ9/RdPE4\nkzPeWX51WO+miIlJZOSwDfz80wmzLqck1a09U9IKWPB2CqtnuPGfd33w9VazdsONIjVPP2bPljXe\nbFnjzcZVXri7qJg1ugZuLipWrb+BnY2S7W95s+FVL/76J4c9UcV36vejurSl/rNmLIdnrWFvnylk\nxSUQOKF4zrLq/Ef0RKFWsW/QTPYNnIHK2gq/Yc/pp3OyJ2TWKIKnDQfF/Q170bg4ERQ+kRNzVhE5\n4GVy/o3Hb/xgo2vqDu+NQqXi4NCpRA2dgtLamjpDewHQcNl0Lq3bzMHh0zg2ZSn+Lw/H1tfnvnKa\nqjLf6xoXJ4LDJ3Bs9ioO9H+F7Lh4/McPMrqm1nNdsa3tQ+SgyRwcOYva/XrgGBKAyt6ORiumc/6d\nDUQOmcqZVR/RcOkUFLe3RafQBrRYtwLnJkEV+nrsXB14btUgNo/9hHc6LSX1ShJdZj1TrM4ntDZt\nR3fik15v8F63FaRcSuSxqT0qNMu9bGo48NjyYex8+UM2dV9A+tUkWk/tWWKti583T382Gb8nWhR5\nvMGzrXF5yIutzyzmm+eWULNlA/web16hOa1rONJqySj2TnmXH5+ZQ0ZsIk0n9Smx1ukhHzqtm0Gd\nbi2LPVfv6bZ0/mw2dl41KiSXlYsjjRe8yKEZb/Jn72lkxcUTNLG/SXUNxvUhJz6FPf1msm/oPOr2\n7oJLI33n9eGVkzj74Tb+GjSHqJdXEjx5MHa1vSsku6japMNVAdxbNybt5AWyrl4H4Mq2XdR84hGT\n6lIPn+L8+m9BpwOtjvQzl7Dx9sCujg/5GdkkR+l3ipmX/+VWZrbhzWsKt1ZNSDsZY1j+1W278H7i\nUZPqrN1r4NmhJf9MfrXYdC6NG+DaIpTWn6+g5UcLqdEs2OSMAB5tGnHj5AUyr8YDcPmb3dTqXrw9\ny6tzaxGCR9vGXN72q+Ex3a0Cdnd/ifQz+m9A7Wp5kpd2f9+IVZf1boqvNx6kZ6+mPNG9oVmXU5Lq\n1p77j+TQsL4VdWtqAOjzhAM/7clCpyv5JrmffZuOq7OS5x93AOBUTB49OtqhUinQaBS0e9iGXfuz\n7jtPYdWlLd1bNS72WeNTwmdSWXUp/8/efYc3Vb5/HH9nNd0t3UDZhZZSKLOAKCKKCooCsstW9pBV\n9p4iDlAUcKEiLhScXxFUFARKAdmbMkpL994r+f0RKJSuFBra8Ltf1+V1SXIn55M755zkyXnO6dFz\nhN6Z88JVrKq7AODxVHuy45I4/86Wcme7pVqAP6lnL5EZHgnAjW2/4/70Y0bXJB07w7VPv7uZT0fa\nhctYerigtNBw9ZOtJB4+AUB2bAK5SSlo3ZzvOWt5PMht3SnAn5Szl8gMN7x/Edt+x+OZx4yucX08\ngMhfd6PP15GXmk7Mrn14PNMR61rVyUvPIPHwSQAyrt0gPz0TBz/Dj2y1+nTj8savSDl9qUJfT4OO\nPkScCCPhaiwAh7/4l6Yvti5SF3nqOu90WkJ2ahZqrRo7d0cyEytmGy9JrQ6+xJy8RvK1GADOfP0P\nXt3bFlvrF9iJc9v2c3nH4UK3K5RK1FZaVBZqlBYalBoV+Tl5FZrTo30T4k9dIS3M8Pl96du/qNOt\nXbG1Dfs/yeUf9hK281Ch261cHfF8oiX/jH+7wnLdvU+89t0f1Cjm+0dpdWfe+Jyzaw37HK2LI0oL\nNXlpGSgtNFz8cBvxIacAyIpJICcpFau7frw2N7oq/l9V8dBNKdy2bRt//PEH6enpJCYmMn78eCws\nLFi3bh16vZ4mTZqwePFidu7cyZYtW8jLy0OhULBu3TqcnO5tpbd0dyYrOr7g31kxCWhsrVHbWBU6\nDF1aXdzBk7frPFyoO6Arp1Z8SEZYJGprS1zaNiXu4EkcfOtjV98TrUv5f82xdHcmK+b28rNj4tHY\nWqOysSo0hae0uuy4RI7PfLPY589NTiPytz3E/H0IR39vmr8RxIHAGWTHJJQ/Z9Ttx5TazxLqVFZa\nmkwfzMEJq6jTq3Oh59fn5WPhZE/HLcvRONrx3+x3y5Wv0PLN4H0vj3kLugIQHHzFpMspjrn1Mzou\nHw9nVcG/3Z1VpGXoSc/UY2td+GhKYko+n/+Yytdv3v4ls2kjLb/+nUFzHy25uXr+PJCJWl0xJx+b\nSy/v3tdkGblPurMu/uCJQjnr9O/K6ZUfAXB92x8A1Hzu8XJnu71sF7LvmCadHRuP2tYGlbVVwZS4\n0moSQ44X3K71cMWz7/NcWLUBXU4uUb/c/jGo+otdUFlZknLqwj1nLY8Hua1bujuTfednSrE9LLlG\ne1d/s2LicfaqQ0bYDVRWljgF+JMQchy7xg2wqV8LrYsjAKcXrgGgduCLFfp6HKpXI+VGYsG/UyKT\nsLS3QmtrWWRaoS5Ph8/TzXhh1QDycvLY/davFZrlbjbVq5F2x+diWlQiWjsrNDaWRaYV/rv0awA8\n2xc+Anh++37qP9uKwf+sQqFWEb7vDNd2n6AiWXs4kXFHzozoRCzsrFHbWBaZVnhk5RcAuLf1LXR7\nZmwS/05dV6G5rNydyDRi31lWnT5fR/Ml4/B4MoCovw+Tdu0G6PRc//HvgsfU6tkZtbUliacuVuhr\nEFXTQzfgAsjMzGTTpk0kJCTQs2dPFAoF27dvx9nZmQ8//JCoqCiuXr3KBx98gJWVFQsWLODff//l\nhReKTgkwSglTVfT5unLX2fvUo+XqqVz79ndi/z0KwJFpb9BoXD+8JwWScPQc8YdOo8st/69NCmUJ\nX+buymls3d3uHIglHT9P8okLOAc048Yvf5cnJgoj+1lSHQpouXIip9/cTHZcUrElOQkp/NF1IvY+\ndWm3fg77Li8gPSyqXDnN5X03G2bWT10Jf+1RVcy8ge93ptMpwIqa7rd3uVOHO/L2p0n0nxqFi5OK\nds0tOX4u+57zFGImvVQoS5hkUWSfVHadvU89Wrw+jbCtO4n9979yZylRST3S6cpVY+tdH7+VM4j4\n/jfi9x8pVFd7cE9q9nmOE1OXosvJuf/MVU0J71+hHpZSU+y+XqcjPyOTkzNXUX/0QBpMGEzSsTMk\nHjll8v1kSZ+RuhI+I8/tPMG5nSdo2f8RBm8exzsdl5R4JPz+sxnR6zK0Gv88WQmpfPZoEGqthmfe\nG0ez4U9xYtMfFRWzxB6WJ6dJlNS/u99bI+qOLXgf1cqPafX6FBq+0ouLH9w+D67B0O7UHfAsIRNX\nFTrfVDy8HsoBV5s2bVAqlbi4uGBjY0NOTg7OzoZpGiNHjgTA2dmZmTNnYmNjw+XLl2nevHm5ltFw\ndG/cOrYCQG1jReql6wX3aV2dyElOIz+r8JenrOh4HP28Sqyr3qU9vjNHcGb1JiJ/328oUijIz8wi\nZMzSgsc99u0bZIQbNzhoMKoPrh1bF+RMu3T7xHatqxO5xeWMisOhiVeZdXdS21pTq/fTXPn0h9s3\nKkCfZ9wHX6MxL+FeQj8tS+hnZlThft6qs61XE+sarvhOMZxDoXV2QKFSotRqOPP2FlzaNCFqt2EK\nRcq5q6ReuIadVy2jBlzm8r6bC3PuZ3UXFacu3M4WE5+Pva0SK8uiH8Q792Uw42XHQrelZ+iYPMQB\nBzvDUbJN21KoVf3ed8nm0kuvUX3KnTOzmH3SnXUeXdrjO+Nlzr6xicjfK/YE9OzoOOyb3J4uaeHq\nTG5KKro7MpZV4/ZUBxpOH8nFNz8iZte/BXUKjRqfeROxqevJ0VGzyYqKrdDsVUVWVCz2vrf7o3V1\nKtLD0mqyouOwuOMIqtbVyXDEU6EgPyOLo+MXFtzX9qs1BdMSK9ITU7vh/VRTw/LtLIk+d6PgPjsP\nBzKT0snNLDxYdqrjgq2rPWGHDRdlOvrtAZ5f0Q9LBysykypuamHrid2p29kfAAtbS+IvRBTcZ+Pu\nSFZSOnmZxg/k63dpwb/Lv0aXm09Obj4XfjhA/Wda3veAq+m4HtTs1AIAja0lSRdv57Ryq0Z2chr5\n5chZURqN7o1bR8M5ahoba1JCb39PKun7R1ZUHI5+DYqtc2nXjNRLYWTHJZGfmc2N3/fj0TkAAKVG\nTbNFY7CrV5P9wxeSGRmHudPLZeGN8lCew3X6tOHcgri4OHJzDb8cJCUZjnQsW7aMkJAQ3nnnHd5+\n+22WLVuGVqst969NFzd+x77A2ewLnM2B4Qtw9GtYcOJj7ZeeImbP4SKPiQs+UWKdR+cAGk8fyqGJ\nK29/sQHQ62m9Zib2jesb6p5siy4v3+grgoV+sLXgAhYhI+bhcMfyPXt1KTZn/METRtXdKS8jk1q9\nn8HtCcNOxa5RXRx8vYg7cLzUx91yYcP37B04h70D57Bv2EKqNfXCppY7AHV6P0n0P0eKPCY2+GSx\ndUknL/Hnc5MKni/s+z+J3BnMiaUfoc/X0WzBKKr5NwLAtn5NbOrWIOlUqFE5zeV9Nxfm3M/2zS05\ncSGHazcM+5jvfk+jU4BlkbqUNB1hkXn4+2gL3b719zTe/yoFgPikfLbtSqfrY9b3nMdcennpg63s\nHzSL/YNmETxiPo5+XreX36v4nPEHT5RY5965LY2nDePwpBUVPtgCSAg5hn2TRgUXs6jR42ni9h4y\nusb1iXZ4TXmZE5OXFhpsATRZNh21jRX/jZ7z0A62ABJCjuPg1xArT8P7V6Pn08TtubuHJdfE7TlE\njec7o1ApUdta496lA3F7QkCvx/+tOdj5GL74unZujz4vv9BVCivK7rf+x4Zuq9jQbRUf9XgTzxZ1\ncarrCkDrwEc5t/NkkcfYujnQe90wrKvZANCsRxtizkdW6GAL4PC7P/Ndz2V813MZ2/qtwt2/Pg51\n3ADw7d+Rq38Z9zl8S+yZMBrcvJCGUq2kzhP+RB+7/6mnJ9//gR19F7Kj70J2DlqGS7P62NY2fH43\n7PMEEbuP3vcy7sWFjd/xb+Ac/g2cw77hC6hWaJ9YyvePEupqdGlLw1EvAYYBVvUu7Yg/bPhe2nLV\nq2hsrNg/YtFDMdgSxnsoj3DFxcUxdOhQUlNTWbhwIXq9ntGjR6NUKvH19aVNmza0bNmSfv36oVar\nsbe3JyYm5p6Xl5OYwsklG2jx2mSUGjUZ4dGcWPQ+APaN69N03kj2Bc4uta7R+P4oFAqazhtZ8LyJ\nxy9w5vVNHJ+/jqZzR6LQqMmOS+S/oOLPoTIm5+ml6/F/bSoKtZrMiChOLnqvIKfv3NEED5pZal2J\ndHqOBa3GZ/pwvEb1RZefz/G5awsuGV/enMcXb6TV66+i0KjJCI/h2IL1ADg0rkez+SPZO3BOqXUl\nyc/M5vC0t2gybRAKtRpdbi5H571HVjnPM7uV0xzed3Nhbv10clSxeKITQavjyc3V4+mhZtmrTpy+\nlMPi9xL49m3DB3FYZC6u1VRo7jo/6+WX7Jm7JoGXJkWiB8b0s8evobaYJZWfufQyJzGFk0s30Py1\nKSjVajIiogvtk/zmjmL/oFml1jUaZ8jpN3fUHTnPc3b1pnvKdLfcxBTOLX+PJsuno9CoyYqI4uyS\nd7HzaYD3rLEcHja9xBqAemMMR9q9Z92+GmryyXNE79yLy2NtyLgWQcsNywvuC13/BYkHj1VI9qoi\nNzGFs8vew2/FdJQaNZkR0Zy52UOf2WM4NDSoxBqAiO2/Y+XpTpvP30SpURPxwy6Sjp4B4PTCtfjM\nHoNCrSYnPpETM1eZ/PWkx6fxY9AW+q5/GZWFisRrcWyfshmAGk1r8cKqgWzotoqwQ6HsWbeTYd9M\nQpenIzUmma9HfWjSbFkJqfw95zO6rB2FSqMm5Xosf800bAuufnV4fOlgvuu5rNTn2P/aVh6d159+\n/1uMPl9HRPA5jn20o9THlFd2QirB8z/h0TfHGf6UwvUYgucazr108q1LwKLh7Oi7sIxnqXg5iSkc\nX7KRVqsMV15ND4/m+MLb3z+azhvJv4FzSq078/YWms55mY7frEKv1xP99xGufLWDav6NcO/YirRr\nN2j/8e3Xdu7dr4kLrthz5ETVo9CbaiJxJdm2bRuXL19m+vTpFf7cv7UperniqqTroa/YGVD08ulV\nzdMh3/BLq8CyCyvZ80e2VPn3HAzvez73fhW2B0VFoNn0M/PMU5Udo1RWvoapPVW9n10PfcWOgKKX\nVK5qng35mr8feamyY5Sp0/7vzWZb/6t978qOUabOB75jUZ2JlR2jTIuuvcsGn9GVHaNUY85tBOCr\nZsMrOUnpBpzYxK+ti/45nKrmucNfVnYEo62oP6GyI5RqzuWKvbDKvXoopxQKIYQQQgghRFXw0E0p\n7NWrV2VHEEIIIYQQQgjgIRxwCSGEEEIIIUzv4ToxyXRkSqEQQgghhBBCmIgMuIQQQgghhBDCRGRK\noRBCCCGEEKLcdMgfPjaGHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm06uUmgUOcIl\nhBBCCCGEECYiAy4hhBBCCCGEMBEZcAkhhBBCCCGEicg5XEIIIYQQQohy08s5XEaRI1xCCCGEEEII\nYSIy4BJCCCGEEEIIE1Ho9XIwUAghhBBCCFE+C+pMquwIpVpy7Z3KjgDIOVzl8me7PpUdoVRPBm+t\n8hlBcla0J4O38lf73pUdo0ydD3wn/awgnQ98B5jHPmlX276VHaNMXQ5+W+V7CeaxboJh/cxnS2XH\nKJOKQFk/K8iTwVsB89gn7QzoV9kxyvR0yDeVHUFUMJlSKIQQQgghhBAmIke4hBBCCCGEEOUmJyYZ\nR45wCSGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk1X2QHMhBzhEkIIIYQQQggTkQGXEEII\nIYQQQpiITCkUQgghhBBClJtOrlJoFDnCJYQQQgghhBAmIgMuIYQQQgghhDARGXAJIYQQQgghhInI\nOVxCCCGEEEKIcpNTuIwjR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiJTCoUQQgghhBDlptMrKjuCWZAB\n1z1yfqQlDcYNRKnRkHbpGmeXryc/I9O4GqWSRq8OxamtPwqVirAvfyJi+65Cj63+/BO4dgrgxPRV\nRZZdq283arz4JAcDp1XJnPVH98f9qUfIz8wm+eR5Lq79DF1ObpXLaS79dGzeGK8Jg1BqLchLy+DM\n0vfIuhFTds6xgSg0atJDwzi7/P3icxZXo1TScNJQnNo1R6FSEvblz9zYvtOQpWUTGk4aikKlIjc5\nlYtrNpF26VrBcyo0avzfmE3ED7uI3R38UPSyQnt7k9bNmdYfrSBk8HRyk1MNj3m0Fb7zJ5AVFVdQ\n99/Y+eRnZBmfy0z66dKhBV5jB6K0MOQ4vXwD+emZxtcpFXhPHorzzbzXtvxM+M28ansbfKaNwKae\nJyqtBVc+3Ubkb3sBqNnzKWr364Y+L5/MyBjOLNtQ0P8H1U+1vS3e00ZgU9cTpdaCq59uI2rHHuA+\n9p1VfFu/X3q9nrmzf8KroSsjXn6kwp/flOujdS0PfOeNReNgR35GFqcWryPj2o2C51Ro1LR4cxbh\nP+wi5q+DAGgc7Wg8axTWnh4o1KqbhQq8Jg7GvXN7clPSAMgIu8GpeW8XyujZ51k8e3dFl51D+tVw\nzr/xMXk3642lcbTHd+EErDxc0et0nHttI8knLwBg06A23tNGoLaxvnnfB6Sev1zwWI+uHak9oHvB\nv9W21mjdnNj3whhyEpILbveaNKTM12LKnHdz6dCChuMGoLTQkHopjNPLSl4Hiq1TKvCePASXdoZ1\n4OqWnwnf9gcA1Vo1wfvVwShUSnKT0zj39mekXTRsS15j+uHWKQCAlLOhnHntI3TZOeXqgzAPMqXw\nHmgc7fGdN46Ts98guN+rZN6Ixmt8oNE1NXs+hVUtDw4GTuXQiFnU6vcc9r5ewM0P4xkj8Z42AgVF\nfzVwaOZNncEvVtmc1Z/rhEuHVhwaPouQIUFkxyVSf3T/KpfTXPqpdXWi2aogzq/+iJDBQcTuPohP\n0MgyczaeO56Ts1dzsP+rZEZE02Bc0Zwl1dTs0QWrWtUJCZzC4Zs57Xy9UNlY03RlEJfWbSZk8DTO\nr/6AJsumotAYfrex92tE649W4uDv89D0sqJ7C+DR9XFabliK1tW50OMcmnoT9uXPHBoaVPCfsYMt\nc+qnxtGOJvPGcWL2m+zvO5mMiBgajhtYrjrPnl2wruXBgYHTODh8NrX7d8PetwEAfvPHkxWTwMEh\nMzkycSneU4ejdXPCsrorXmP6c3jUAoIHBZEVGUuDUX0feD99548nKyaekKEzODpxCY2mDkfr6nTP\n+86qvq3fr9DQWEYM3cyO306b5PlNvj4unkT49zs50H8qoR9+i/9rt3/Yc/BrSMDHy3G8q4/ek4eR\nfiWc4EFBHBwyEzB8tjo29ebU/LcJGRJEyJCgIgOUai2bUGdwD45OWEzIkCDi9x+l8azR5e6J9/SX\nSTp2luABUzi96F38lk9DqbVAqbWgxdp5XNv8IyFDZ3Dlk+9osnhSocdG/banIN+h4bPIiU/iwhsf\nFxpsAWW+FlPnvJPG0Q6/+WM5Pust9vWZQmZENI3GF78OlFRXq2cXrGtVZ/+A6QQPm0Odm+uA2saK\n5qumcuHdLzgQOIMzqz7Cf8VkFBo1bp0CcG7bjAODZrC//zSUllrq9O9W7j4I82D2A65t27bxxhtv\nPNBlOrVtRsrZUDKvRwEQsW0nHs88ZnSN6+NtifxlN/p8HXmp6UT/sQ+PZw33uT/Znpz4RC6+u7nI\nci2cHPCe/goX1xW9r6rktPNpQOyeEPLSMgCI/fsgbp3bVbmcYB79dOvcjrgDR0k9f8XwfD/s4sKa\nTaXnDPAn5ewlMsNvZfi9aM5SalwfDyDy19s5Y3btw+OZjljXqk5eegaJh08CkHHtBvnpmTj4eQNQ\nq083Lm/8ipTTlx6aXhbJfZ+9tXCphkvHAI5PXVHkuR2aelOtlR+tN62i5fqlODZvbHwuM+qnc1t/\nks+GknEzR/i2nQXLMrbO7fEAIn7+uyBv1K79VH+2I2p7G5wCmnH5o60AZMckEDJiLrnJaShUShRq\nNSobK1AoUGq1Jf6SbKp+qu1tcWrTjCu38sUmcOjlOeSmpN3bvtMMtvX79dWWw/Ts1ZxnuzYxyfOb\ncn3UulbDpm4NonbtByD+wDFUllrsvOsBULtfN0I3fk3y6YuFlhXzTwjXt+4AKDjCaVnDHdtGdakd\n+AIBm1fTdOU0tO4uhR5n51OfhEMnyY5NMDzP3wdxebQVCrUahVpNw1eH0uazVQRsXk3j+eNRWVsV\neZ0KlRKXR1tx48c/AUi7eJXM8Eic2zfHqa0/mRHRxB84CkDc3sOcmvdWib2tM+RFchKTifjhj8LL\n0KhLfC2VkdO5rT/JZ26/t9e/34XHs4+Wq86tUxtu/HLXOtD1MaxrVycvLYOEQ6cAw7aUl56JY9NG\nxPwdQsgrC9Dn5aOyscKimj05JRxxr8r0+qr9X1Vh9gOuymDp5kJW9O1pP9kx8ahtrQvtFEqrsXRz\nJis6vtB9WjfDr90R23dx5ePvin4RUCppsvhVLq3bXLAzrYo5U05fxOWx1mgc7EChwKPb42idq1W5\nnObST+vaNdBlZuO3dDIBn72O37Ip6HLzSs/p7kx2zB3LiY1HbWtTOGcpNVp3F7LveA1ZN3NmhN1A\nZWWJU4A/AHaNG2BTvxZaF0cATi9cQ/z+/0rNZkyfjKl5UL0skvs+e5sTl8ip2avJuBpe5Llzk9MI\n/34Hh4fPJHT9Fpq+NgOtq5Nxucyon5buzmTftSyNrbVhIGRkXZEex8SjdXPC2tOD7PhE6gx8njYf\nLKHtpyux86mHLjuHzPBorn3xEx2+XUPH/22kWsvGXPl0+wPtp7WnBznxidQe+DytPlhKm02vYe9t\nyHdP+04z2Nbv17wFXXmhRzOTPb8p10dLdxeyYxMLfevLik3A0s2wXZ+cv5a4fUeLZIrZfbDgiJBd\no7oApJw6T+KRU4S+/yUhg4NIPnUR/9dnFHpcyplLOLXyw9LDMHip8fwTKC00aBxsqTukB/p8HYeG\nziRkcBA5sQlFjtoCaBzsQaEgNynlduZb62/t6uTEJ9F4zljabHqNFu/OR6FSFdtXjYMdtQd058Lb\nnxa5T+viVOJredA5wfDeZsUYtw6UVGfpXnibz4pJwNLNmfSwSFTWlji3NazD9o0bYFvfs2Bb0ufn\nU6vPM3T86T0sHO2I+TukxJzCvD0U53AdP36cESNGkJCQwIABA/D09GTNmjVotVocHR1ZsWIFZ8+e\n5euvv+bttw2HrTt06MC+ffuYNWsWSUlJJCUlsXHjRhwcHMpeoLL4EwT1Op1RNYpi7tPn64qpvs1r\n3ECSjp0hIeQEji19y85YSTmjduxB6+ZEi/cWosvMJuKHXWV/CZN+lkihVuHyaGuOjJlP5vUoPPt2\npdlrhikYJecs/neUwjlLrlEoinkNOh35GZmcnLmK+qMH0mDCYJKOnSHxyKlyD1oMyzeTXhbJfX+9\nLc2p2asL/j/5xDmST57HKcCfyF93G5HLjPqpKKE/dy+vtLriXotOh0KtxrqmO3npmRwatQArT3fa\nbFxCxvVINA52uD3Rlj0vjCU3KZWGEwJpsmA8x4o5r9NU/VSoVVjdzHdk1HysPD1otWEJGdej7nHf\naQbbelVnwvWR4vpL2fuCW5zb+uO3eCIA8fuPEr//9uAsbMtP1BvxEpbV3ciKNJw3mXTsLJc/3krT\nVUGg03Pjl7/ITU5Fl5uHc4dWaOyscQowfPFXatTkFDrwhwAAIABJREFUJCYXXWgJ6zX5OpRqNc6P\ntOC/8YtIOX0Jl8da4//WHPb1GFukvEaPp4jde7gg252yImM4PnVlsa/lQecEit1ebz2X0XXFbfM6\nHfnpmRyb/gZeY/vRaNIgEo+eJeFw4W3p+tbfub71d7zG9MP/takcHrO4+OUIs/ZQDLjUajUff/wx\nERERjBw5kuzsbL766ivc3d357LPPWL9+PZ06dSrx8e3atWPYsGFGLy87Og6HJg0L/q11dSI3OQ1d\nVrZRNVnRcWhdqhW6785fx4rj8WxHchKTcX28LSorS7SuTgR8vrrULzeVkVNtb0v0zn+59vkPANg3\n8SqYylKVcppLP7NjE0k+eb5g2tKNn/7Ce+oIlFqLEqdDZUXFYu97V4aU1EI5S6vJio7D4q6cWTHx\noFCQn5HF0fELC+5r+9WaMt/fYl+XmfTybvfb25Koba2p+dKzXPts2+0bFQp0ecZ9wa3q/Wwwqi+u\nj7UGQGVjRVpoWKlZAbKi43Dw8yo+b1QcFs6Ohe7LikkoOFp949e/AcgMjybp+DkcfL2wqV+L2L2H\nyU00/CJ+/bvfaf/lm8W/NhP1Mzs2EYDIX27liyLp+DnDfjIyptz7TnPY1qsiBc1QUBOAmi92Ntn6\nmBVd+HYAy5v3laX2gOeoN6QHJ+evpdW6+dh61cbWq27BBVZuvRL9HfsIlbUlSUfPEPnzX4Bh2nyD\nUf3JSzFMqb3w9ibiDxwz1FpZorTQYOdTn8Zzbg9EDg03nDOmtrMhLzW9IHNMTDyarGzSr0UUTCWN\n23sYxZyxWNV0L5Lf/alHuPBW8VOMS3stDypng1F9cO1o2CepbaxIu1R0Hci/ex2IisOhSdF1ID8r\nm6yo+IKjVrfuy765LeVlZnF47JKC+x755i0ywqOxbVgHhUJB6oWrAIT/+Be1+3UttmdVmXE/H4iH\nYkqhr68vCoUCV1dXIiMjsbW1xd3dsGG1adOGixcvFnmM/o5D/PXq1SvX8uIPHsfBryFWtTwAqNnz\naWL3HjK6JnbPIap3fwKFSona1hr3Lh2I3VP48Xf79/lRhAw2/Hp8duV6MiOiyvwluTJy2vvUp+mq\nIBQqFQqVkrpDehL1+94ql9Nc+hn7TwiOzbyxrO4GgFuntqSFhpU6QEgIuZnB05ChRs+nibtrOaXV\nxO05RI3nOxfKGbcnBPR6/N+ag52P4WRw187t0eflF7pymbHMpZd3u9/eliQvIwvPl57BtVNbAGwb\n1cO+sRcJwceMylXV+xn6wbcED55B8OAZhLw8Fwe/hljfzOHZqwsxe4su61be4upi9xymZvc719FH\niP0nhKzIWFLOXaZGt8cBwxdOh6bepJy9TOr5K7h2aInKSguA+xNtST514YH2MysyhpRzl6n+3N35\nQu9p32kO23pVpOcEOn4DMOn6mB2TQGZENO5dDFdWdG7rj16nK/Tlvji1BzxHrd7PEPLyXBIOGc6j\n0+v0NJo6vGB7q/nS06SFXis0JV7r4kTL9xcVTCmtO7w3UTv3AZAQfAzP3l1RqNWgUOAzezQNxg0k\n9dzlggtXhAwJQp+vI37/f9Ts0QUwDI5s6nmS+N8Z4g8cw8rDDTvv+oDhKqXo9UWuTKq2s8Ha04Pk\nE+eL738pr+VB5Qz9YCvBg2YSPGgmISPmFX1v9xwuZh04UWJdzJ7D1Lxjm/fo8ggxfx8CvZ6Wb8/C\nvrEhi/uT7dDn5ZF28Rp2XrVpsmAsSq0FADW6dSTh8KlS1w1hvh6KI1x3TouoVq0aaWlpxMTE4Obm\nRkhICHXr1kWr1RIbGwtAREQEycnJxT7eGLmJKZxZ+j5NV0xDqVGTGR7N6SXrCn6BCRkSVGINGE6u\ntqrpQcDmN1Bq1ERs30XS0TMV0InKz2mYoteEtlveAIWS2D0hhH39a5XLeS8qI2faxauce/1Dmq0K\nQqFWkZeazsm5JZ/8eyvn2WXv4bdiuiFDRDRnlryLnU8DfGaP4dDQoBJrACK2/26YivX5m4acP9zO\neXrhWnxmj0GhVpMTn8iJmcVMx3qIellc7vvpbYl0Ok7MeJ1GU0dQ75V+6PPzOTX/rRIvWV5cLnPp\npyHHepqtnIpCbejPqcWGHPY+9fGdO4bgwTNKrQvfthMrT3fafbEapUZN+PY/SDx6FoDjM1bjE/QK\nnr26gELB5U++I+VsKClnQ7Gq7krbz1ahy8klKyqO00vff+D9PDFzNd5BL1Oz59MolAqufrKV1LOh\nAPe076zq23pVZ+r18eS8NTSePZr6w3uhy8nlxJy3Sz2TX6FW4TW6H7mpGfivml5wu2vHNlx46xP8\n35iJQqUkKyaBU/PXFlonM8JucO3zH2jzyQpQKEk+fo7zb34MwJVN39Nw4mACPn8dhVJJ2sWrXFz7\nebEZzq/+CJ85Y2j77Jugh9OL3iU/PYP89AxOzHwd7xmvoLLUosvN48TsN4r86QIrTw+y45LQ5+cX\n3HZnzvTL14t9LQ865y05iSmcXroe/9duvbdRnFz0nmEdaFwf37mjCR40s9S68O93Yl3TnfZbXkeh\nvmsdmP8OvnNGodSoyY5L4liQ4UJvkb/txdrTg3afrUSfn0/a5XBOL9tY4rohzJtCr69K1/Aov23b\ntnH58mWmT59OdnY2Xbt2ZdmyZaxduxaFQoGDgwMrV67E3t6eiRMnEhcXR4MGDTh69Ci///47s2bN\nolu3bnTs2LHMZf3Zrs8DeEX37sngrVU+I0jOivZk8Fb+at+7smOUqfOB76SfFaTzge8A89gn7Wpb\n/KXXq5IuB7+t8r0E81g3wbB+5rOlsmOUSUWgrJ8V5Mlgw5U3zSHnzoB+lR2jTE+HfFPZEYw2tcar\nlR2hVG/dWFvZEYCH4AhXr169Cv5fq9Xy11+GucuPPFL0jyOuX7++yG2vvfaa6cIJIYQQQggh/l97\nKM7hEkIIIYQQQoiqyOyPcAkhhBBCCCEePLlKoXHkCJcQQgghhBBCmIgMuIQQQgghhBDCRGTAJYQQ\nQgghhBAmIudwCSGEEEIIIcpNZ9Z/XOrBkSNcQgghhBBCCGEiMuASQgghhBBCCBORAZcQQgghhBCi\n3PRV/L97kZWVxcSJExk4cCAjR44kISGh2DqdTscrr7zCV199VeZzyoBLCCGEEEIIIYCvvvqKRo0a\n8eWXX9KjRw/ef//9YuvWrFlDSkqKUc8pAy4hhBBCCCGEAI4cOcJjjz0GQMeOHTlw4ECRmh07dqBQ\nKArqyiJXKRRCCCGEEEKUm7lfpXDr1q189tlnhW5zdnbGzs4OABsbG1JTUwvdf+HCBX755Rfeeecd\n3nvvPaOWIwMuIYQQQgghxP87ffr0oU+fPoVumzBhAunp6QCkp6djb29f6P4ffviB6Ohohg4dSkRE\nBBqNhpo1a9KxY8cSlyMDLiGEEEIIIYQAWrZsyT///EOzZs3Ys2cPrVq1KnT/jBkzCv7/3XffxcXF\npdTBFsg5XEIIIYQQQoh7oNdX7f/uxYABA7h48SIDBgzgm2++YcKECQBs2rSJP//8856eU6HX32sc\nIYQQQgghxP9X49xfrewIpXo/em1lRwBkSmG5/NOhV2VHKNXj+7ZV+YxgyLmnQ8/KjlGmjvu2m00/\nF9WZWNkxyrTo2rtm08+3vMZVdoxSTb1kuERtVe/n4/u28We7PmUXVrIng7eyq23fyo5Rpi4HvzWb\nbd1c+pnPlsqOUSYVgWaxrQNsbzG4kpOUrufRzWazTxIPFxlwCSGEEEIIIcpNV9kBzIScwyWEEEII\nIYQQJiIDLiGEEEIIIYQwERlwCSGEEEIIIYSJyDlcQgghhBBCiHLTybXOjSJHuIQQQgghhBDCRGTA\nJYQQQgghhBAmIlMKhRBCCCGEEOUmMwqNI0e4hBBCCCGEEMJEZMAlhBBCCCGEECYiUwqFEEIIIYQQ\n5SZXKTSOHOESQgghhBBCCBORAZcQQgghhBBCmIhMKRRCCCGEEEKUm16mFBpFjnAJIYQQQgghhInI\nEa4K4tS+FfXGBKK00JB+6RrnV75HfkamUTVKCwu8po3ErrEXCqWClNMXufTmh+hycrCu60mjGWNR\nWVui1+u5sv4LEkOOVamMt1hWd6PlJ6s5MWUJaedC7ynjrQx1xwwqyHBh5bpicxZXo7KxptHs8VjX\n8QSFgujfdhO+ZTsAtj5eNHh1BCorSxRKJde/2E7Mzn/uK2dVf8/L0rBzE56a0R2VhZroczf4acaX\nZKdlFakLGNqR1oMeBb2ehGtx/DzrK9Lj0yo0i7n2s14nPx6d/iIqCzVx5yPYOfsLcorpYeMXA2j9\nylPo9XrysnLZveRbok+FYWFrydOvDcKpvgcKpYIz24I59MGu+85VVfvp/EhLGowbiFKjIe3SNc4u\nX18kV4k1SiWNXh2KU1t/FCoVYV/+RMT2wr2q/vwTuHYK4MT0VYVuV2jU+L85mxvbdxGzO9iorC4d\nWuA1diBKC0OO08s3kJ+eaXydUoH35KE438x7bcvPhN+Vt0b3J3B7PIBjxeRt8eYswn/YRcxfB43K\nW5YHvb2bsn/WtTzwnTcWjYMd+RlZnFq8joxrNwqes7j+aRztaDxrFNaeHijUqnK/nrLo9Xrmzv4J\nr4aujHj5kQp//pKYy2e7+6P+NJnYF6WFhpSL1/lv8YfkpRdd/0qrq9fnSer27IRKqyHx7FWOLv4I\nXW4eLq0b4zelP0q1mvysHE68vpnE05eNymXqfZJldTcCPl3F0VeXknrOkKnpymnYetUlP9PwuhKP\nnOLi2s/K3VNhPuQIVwXQONrjPXcCZ+au5tCAiWTeiKbe2MFG19Qe+hIKlYojQ6dyeMhUVFoLag/p\nBUDDaaOI+vVPjgybxoUV7+G7dBqoyv+2mTIjgMJCg8+CySjV9zeG1zja02juRM7MfZ3DAyaQdSOq\n2Jwl1dQdOYDs2HiODH6Vo68EUaPns9g18QbAd/kMrn38Nf8Nm8rJaUupP2k4lp7V7zlnVX/Py2Lt\nZEuP1YF8M+Zj1nVeRmJYHE/NeqFIXXW/WjwysjMf93qL959eScLVWJ6Y9lyFZjHXflo52fLMqsH8\nPP4DPn16MclhcTwa1KNIXbV6bjw2syfbRqzjixdWcvC93+j+/igAOkzpTlpkEp93W8aWnqtoNrAj\n1VvUu69cVbWfGkd7fOeN4+TsNwju9yqZN6LxGh9odE3Nnk9hVcuDg4FTOTRiFrX6PYe9rxcAantb\nvGeMxHvaCBQoCj2nvV8j2ny0AsdmPuXooR1N5o3jxOw32d93MhkRMTQcN7BcdZ49u2Bdy4MDA6dx\ncPhsavfvhr1vg5t5bWg8cyQ+04ZzV1wc/BoS8PFyHP2Nz1uWB729m7p/fosnEf79Tg70n0roh9/i\n/9q0gucsqX/ek4eRfiWc4EFBHBwyEwAF9cv92ooTGhrLiKGb2fHb6Qp5PmOZy2e7RTU7Wi0excGg\nd/ij5wzSw2NoMqlfuepqdG5Ng/5d+HfMa/zRezYqSwu8Bj2LQq0iYNUEji75hL/6zeX8Rz/SatkY\no3KZcp8EoLTQ0GTxRBSawv1z8GvEkbELCBkSRMiQILMebOmq+H9VxUM74MrOzqZz584PZFnVApqT\nevYSmeGRANzYvgP3px8zuib5+BnCPttqmAir05F24QpaD1cAFColajtbAFTWVuhycqtcRoCGU0cS\n9b+/yE1Ovad8hTNcJOuODG5PdzS6JnTNx1xe9ykAFs7VUGjU5Keno7DQELbpG5IOnwAgJzae3KQU\ntG7O95Gzar/nZWnQ0YeIE2EkXI0F4PAX/9L0xdZF6iJPXeedTkvITs1CrVVj5+5IZmJGhWYx137W\nebQxUSeukXTN0MPjX+6h8QttitTl5+Sxa84W0mNTAIg6eQ0bF3uUGhW7l27ln9e2AWDr5oDKQk12\natGjAOVRVfvp1LYZKWdDybweBUDEtp14PPOY0TWuj7cl8pfd6PN15KWmE/3HPjyeNdzn/mR7cuIT\nufju5iLLrdW3K6EbvyblzEWjszq39Sf5bCgZN3OEb9tZsCxj69weDyDi578L8kbt2k/1Zw37Ko8n\nHyE7LpEL7xTNW7tfN0I3fk3yaePzluVBb++m7J/WtRo2dWsQtWs/APEHjqGy1GLnbfihoqT+xfwT\nwvWtOwDuWG9tyv3aivPVlsP07NWcZ7s2qZDnM5a5fLa7tWtK4unLpIdFA3Bl65/U6lr0KGBpdbWe\nf5SLX/xGbko66PUcW76JsF/2oc/L57dnJpF8/hoA1p5u5CQbd0TWlPskAO/prxD569/kJqcU3GZZ\n3Q2VtRU+M0cR8MUbNJ43DrW9rVF5hfl6aAdcD5LWzZnsmLiCf2fHxqO2tUFlbWVUTWLIcTKvG3aE\nWndXavZ7nti/DB8kF9/8kNqDe9Fu+4c0W7uQi29shPzyj9lNmdGj+1Mo1Gqifv6j3LmK5nQhOya+\njJxl1OTr8F4wmdab15J89DQZYTfQ5+QS9cufBY/xeKELKitLUk9duMecVf89L4tD9Wqk3Egs+HdK\nZBKW9lZobS2L1OrydPg83YypwUup07YBR7caNyXLWObaT7vq1UiNvN3D1KgktHZWWNzVw5SIBK78\nfarg353m9ib0rxPocvMB0Ofr6PrmMIb8bx7hBy+QeDn6vnJV1X5aurmQFX3HMmPiUdtaF8pVWo2l\nmzNZ0fGF7rv1o0nE9l1c+fg7dNm3p0LdcnrBWuL3/2dUxoIc7s5k37Usja01Khsro+ss3Z0L76ti\n4tG6OQEQvn0Xlz/+jvxi8p6cv5a4fUfLlbcsD3p7N2X/LN1dyI5NLHS2flZsApY3e1tS/2J2HyQn\nIRkAu0Z1AdATXu7XVpx5C7ryQo9mFfJc5WEun+3WHk5k3vE+Z8YkoLGzRm1jaXSdbR0PtNXseWRd\nEJ2/WU7j0b3ITTX8GKDPy0frZM+zv6/Fb3J/Ln76q1G5TLlPqvFCZxRqFTd+vP3dA8DCyZ6EQyc5\n99pGQobMID8zC9+5Y43KK8zXQzXgSk9PZ+zYsQQGBrJo0SIAQkJCGDJkCIMHD6ZXr15cuXKFb775\nhlWrDPPl8/Pz6d69O9nZ2fe8XIWy+Dbqdbpy1dh616f5+8u48f1vJOw/gsJCQ+Ml0zi3/F2Ce47k\n2Pj5NAwac09HZUyV0bZRfWr0eJqLqzeUO1OxlIpib74zgzE155esYf9zQ1Hb21JneN9CdbUG9aLO\ny/05PXNFoXnq5WEO73lZFCX0UVfCl+dzO0/weovZ/P32bwzePA6FovjH31sW8+xneXuotrLg+Xdf\nwbGOK7tmbyl032/TPmV9mxlYOtrQbmK3+8xVRft5n9t3cf3Wm+DHCAAUJfTn7uWVVlfca9FVziSX\nB769m7J/JWTRG9lb57b+tHxn3s1/JZZaW9WZzWd7Se9Zvt7oOqVahVs7P0JmvsvuwAVoHGzwndC7\noCY7IYUdz7zKP0MX03LxSGxre5Sdy0T7JDvvetTs+TTnVn1Q5P6U05c4OWs1OfFJoNNx+cNvce7Q\nEsV9TtsUVdtD9e5+/fXXNGrUiClTpnD8+HEOHjzIxYsXWb16Ne7u7mzYsIEdO3YUDL6mT5/O3r17\nadu2LVqt9p6XmxUVi51vw4J/a12cyU1JRZeVbXSN65MdaDh9FJfe+oiYXXsBsKlfG5WlloT9RwBI\nPX2BjCvXsfNtRHbMgSqR0b1rJ1TW1rTYuBIAC5dqNF44mcvvfU78v4fKlREgOyoOO99GpeYsraZa\nQHPSL18jJy4RXWYWsX/sxeXx9oDhJGrvuZOwruvJsdGzyI6KLXe+W8zhPS/OE1O74f1UU0MeO0ui\nz90+ydzOw4HMpHRyMwsPQp3quGDrak/YYcPJvke/PcDzK/ph6WBFZlLFTC00p34+8urz1H/S0EML\nWyviLkQU3Gfr7khWUjp5mUUH8nbVq9Hjg7HEh0axNXANedmGKU11HmtM3PkbpMckk5uRzbmfD9Pw\n2Rb3lO2WqtrP7Og4HJrcsUxXJ3KT0wpv36XUZEXHoXWpVui+O4+A3K8Go/ri+phhmp3Kxoq00LBS\nswJkRcfh4OdVbF1WVBwWzo6F7suKSaiwvGV50Nv7ncur+WJnk/UvK7rw7QCWRva29oDnqDekByfn\nr6XVuvll1ld1VfmzvfHYXng83hIAjY0VKZeuF9xn6VaNnOQ08u9aHzKj4nFq2qDYuqzYJG7sPlJw\nAY3rv+7DZ1RP1LZWuLbxJXK3Yb+UfO4ayRfCsG/oSVpYVKkZTbVP8uj6OGobK1p/uNxwu4sTTRa/\nyqV1m8lLSUNtb0vc3sMAhh8zdHqjfzCoanRyWXijPFRHuK5evUrTpoadvb+/P2q1Gnd3d5YvX86s\nWbM4ePAgeXl52Nra0qZNG/7991+2bdtG7969y3jm0iWGHMe+SSOsbl6AoUbPp4nfe8joGpdO7fGa\n8gonpiwp2NkBZIZHoraxxt7PcNEHy5ruWNf1JO2icVfeeRAZQ9d+wqEBEzgybBpHhk0jJy6Rs4vX\n3NNgy5DhGPZNGhVczKJ6z2eI3xtidI1r5w7UGW44wVahUePauQNJ/50EwHdZECobK46NmX1fgy1D\nhqr/nhdn91v/Y0O3VWzotoqPeryJZ4u6ONU1zNdvHfgo53aeLPIYWzcHeq8bhnU1w7kOzXq0IeZ8\nZIUNtsC8+rl/7S988cJKvnhhJV/1fp3qzevhWMfQQ/+Bj3HpjxNFHmPpYE3fL6dwcecx/jf5k4LB\nFoB3t1a0v3lES2WhxrtbS64fOH/P+aDq9jP+4HEc/BpiVcvwy3PNnk8Te1eu0mpi9xyievcnDOeR\n2Vrj3qUDsXvubV9TnNAPviV48AyCB88g5OW5OPg1xPpmDs9eXYjZW3RZt/IWVxe75zA1u3e+I+8j\nxP4TUuQ5TOVBb++3lgeYtH/ZMQlkRkTj3sVwbo9zW3/0Oh1pl8KKPP+dag94jlq9nyHk5bkkHCr6\n2s1RVf5sP7t+G7v7z2N3/3n8PWQx1Zp6YVPbHYB6vZ8k8u+i03yjD5wqsS7ijxBqPhWAUqsxvI4n\nWpF4+jL6fB0tF43Eyd8wKLKrXxO7utVJOFn2FRVNtU+6uOZTDvR9teCiGNlxCZxeuJa4vYdRWVvS\naOqIgvO2ag96wXDlVDMdcAnjPFRHuBo0aMCxY8d46qmnOHPmDHl5ecyfP59du3Zha2vLzJkz0d+c\n8923b18+/PBDEhMT8fG5vytB5SYlc37FOnyXBaHQqMmKiOLc0new9WmA96xxHBk2rcQagHpjDFe7\n8Z41ruA5k0+c49JbH3J6zioaTH4ZpYUGfV4+F17fQFZE+c/vMGXGimTI8C6+y4JQajRkRkRxfula\nbH0a0GjWeP4bNrXEGoDQdZtoGDSGVpvXgl5P3N6DRHz7C/ZNfXB+NICMsAiab1hZsLwr739+T5cI\nN4f3vCzp8Wn8GLSFvutfRmWhIvFaHNunGE7gr9G0Fi+sGsiGbqsIOxTKnnU7GfbNJHR5OlJjkvl6\nlCned/PrZ2ZCGjtnbqb7upEoNWqSw2LZEWS42pS7X226rAjkixdW0mxgR+xqOOHVxR+vLv4Fj/9u\nyDv8s+J7nlw6gCH/mwd6PZd2Hee/T3ffV66q2s/cxBTOLH2fpiumodSoyQyP5vSSddj51KfxnLGE\nDAkqsQYMJ6tb1fQgYPMbKDVqIrbvIunomfvqVelZ19Ns5VQUajWZEdGcWmzIYe9TH9+5YwgePKPU\nuvBtO7HydKfdF6tRatSEb/+DxKNnTZK3LA96ezd1/07OW0Pj2aOpP7wXupxcTsx5u9S/wKpQq/Aa\n3Y/c1Az8V02/fTtN0PNgryxYkczlsz0nMYX/Fn1I29WTUKpVpIfHcHj+RgAcfevRYsHL7O4/r9S6\ny9/+gYW9LU98uRSFUknSuaucfOsT8jOzCZ66hmZBg1CoVehy8jg0Zz1ZMWVPF62MfVL8gWOEb/0f\nrT9YCgol6aFhnF1ZQVM3RZWl0Osfnr8RnZ2dzYwZM4iJiaF+/focPnyYTp06ERwcjJWVFS4uLjg6\nOrJs2TIAunfvTmBgIP379zfq+f/p0Kvsokr0+L5tVT4jGHLu6dCzsmOUqeO+7WbTz0V1JlZ2jDIt\nuvau2fTzLa9xZRdWoqmX3gfMY5/0Z7s+lR2jTE8Gb2VX275lF1ayLge/NZtt3Vz6mc+WsgsrmYpA\ns9jWAba3GFxGZeXqeXSz2eyTzMVg51crO0KpNsevrewIwEN2hEur1bJ2rXGN1el0WFtb8/zzz5s4\nlRBCCCGEEOL/q4fqHC5jXb9+nZ49e9KtWzdsbeVvHwghhBBCCCFM46E6wmWsWrVq8eOPP1Z2DCGE\nEEIIIcyWXKXQOP8vj3AJIYQQQgghxIMgAy4hhBBCCCGEMJH/l1MKhRBCCCGEEPfn4bnWuWnJES4h\nhBBCCCGEMBEZcAkhhBBCCCGEiciUQiGEEEIIIUS56So7gJmQI1xCCCGEEEIIYSIy4BJCCCGEEEII\nE5EphUIIIYQQQohy08llCo0iR7iEEEIIIYQQwkRkwCWEEEIIIYQQJiIDLiGEEEIIIYQwETmHSwgh\nhBBCCFFucgaXcRR6vZztJoQQQgghhCifPo6TKjtCqbYmvVPZEQA5wlUuYf0CKjtCqWp/E1LlM4Ih\n5/X+bSo7RplqfX3IbPq5wWd0Zcco05hzG82mn5v9Xq7sGKUafOpjwDz2SX+1713ZMcrU+cB37Azo\nV9kxyvR0yDdms63/2a5PZcco05PBW/mnQ6/KjlGmx/dtI58tlR2jVCoCAcjd27iSk5RO89hZs9kn\niYeLDLiEEEIIIYQQ5aaTeXJGkYtmCCGEEEIIIYSJyIBLCCGEEEIIIUxEphQKIYQQQgghyk0v1yk0\nihzhEkIIIYQQQggTkQGXEEIIIYQQQpiITCkUQgghhBBClJtcpdA4coRLCCGEEEIIIUxEBlxCCCGE\nEEIIYSIypVAIIYQQQghRbrrKDmAm5AiXEEJ09aeiAAAgAElEQVQIIYQQQpiIDLiEEEIIIYQQwkRk\nwCWEEEIIIYQQJiLncAkhhBBCCCHKTa+X68IbQ45wCSGEEEIIIYSJyBEuE7Bs0QHHAeNQaCzIDbtE\n/IZl6DPTC9VYP/os9i8MBr0efXYWiZ++Sc7lsyisbHAeMw91zbooFArS/vkfqT99/v8+p0P/8Tdz\nXiRhY3E5u2LXfRDoQZ+TReKnb5B7+WyhGuepr5OfGEvSptUmyWgOvQSo/bgfbaf2RGWhJv58BH/P\n/Zzc9KwS659YOZSEizc4/skuABRKBY/OH0D1Ng0BCNtziuDXv6/QjObUz5odm9Fici+UGg1JF8I5\nsGBTqf18ZNkIki5FcObT3wHQ2FrRfskwHOpVB6WCyz/u5/Qnv1VoxqraT+dHWtJgbCAKjZr00DDO\nLn+f/IzMctVo3Zxp/dEKQgZPJzc5FQC7xg1oOHk4KkstCpWSa5t/IPr3vfeV1aVDCxqOG4DSQkPq\npTBOL9tAfnpmueu0bs60/WQZBwJnFOS1b9wA76lDUVlpUSiVXP38RyJ3/HtfeaFqbOtek4bg3rk9\nuSlpAGSE3eDUvLcL1Xj2eRbP3l3RZeeQfjWc8298TN7NemNpHO3xXTgBKw9X9Dod517bSPLJCwDY\nNKiN97QRqG2sb973AannL5f5nE7tW1FvTCBKCw3pl65xfuV7RdbPkmqUFhZ4TRuJXWMvFEoFKacv\ncunND9Hl5BQ81rK6Gy0/Wc2JKUtIOxdartd7P/R6PXNn/4RXQ1dGvPzIA1vunf45oWfN93py86CR\nJywZpsDWSlFw/4/79Xy+6/aRk7RMiE6EP15XYGsFy7boOX3V8Ed3m9aDeYEKLC0UxSypbPe1H1Iq\naThpKE7tmqNQKQn78mdubN8JgHVdT3xmjUZlZQlA6PtfkHDwOAB+K6Zj27AO+RmG7THxv9NcWvvp\nPeUX5kGOcFUwpZ0jzmPnE/fWLCKn9CEvOgLHgeML1air16baoEnErJhE1MxBJG/7BJdpqwBw7DeG\nvIQYoqYPIGrOMOy69MKiYdP/1zmdxiwg/u2ZRE3tTV5MBI4DJtyVsw6OgZOIXTmJ6FmBpGz7GJep\nrxeqses+GK1P8wrPdyujOfQSwLKaLU+sGMrOSRv5uutCUq7H0W5az2JrHet70P3TKdR/tnWh2xu9\n2A7Heu5sfWEJ3/VYSo02jaj/TMsKy2hO/dRWs+WRpcP5Z/L7/NR9LqnhsbSY0rvYWvv61eny8XTq\nPFO4n80n9iAjOpGfey7gt/5LadSvEy7+DSosY1Xtp8bRnsZzx3Ny9moO9n+VzIhoGowLLFeNR9fH\nablhKVpX50KPa7piOlc++oZDQ4M4PmU5DScNw8rT4z6y2uE3fyzHZ73Fvj5TyIyIptH4geWuq96t\nIwEfLMLSzanQ4/xXTSX0g60ED5rJf5NX4j15CNa17j0vVJ1t3bGpN6fmv03IkCBChgQVGWxVa9mE\nOoN7cHTCYkKGBBG//yiNZ40u34sFvKe/TNKxswQPmMLpRe/it3waSq0FSq0FLdbO49rmHwkZOoMr\nn3xHk8WTynw+jaM93nMncGbuag4NmEjmjWjqjR1sdE3toS+hUKk4MnQqh4dMRaW1oPaQXgWPVVho\n8FkwGaX6wf7uHRoay4ihm9nx2+kHutw7JaTqmb9Jz5pxCn5ZrsTTFd7+vvC0tBcfUfD9QiXfL1Ty\n9VwFLvYwZ6ACFwcFH/yqJ18H3y9UsG2Rguxc+Oh/9zat7X73QzV7dMGqVnVCAqdweMQsavV7Djtf\nLwC8g0YS+ctuDg0N4uzy9/FbNhWFyvC128GvEf+NXcChoUEcGhpk1oMtXRX/r6r4fzngCg8Pp2/f\nviZ5bkv/tuSEniEv6joAqbu+x+bRZwvV6PNyid+4HF1SPAA5l8+icnQGlZrET98kafM7AKgcXVBo\nLNBllO+XvocqZ7N2hXKm7foe6yI5c/g/9u47Oqpq7eP4d1p6IYUkQKgJJRAINTQp0hQ7KgLSFRCw\n0nsHqVawUFQQFQHB9nJBVHoJCUgNPZSQhPTek5nz/jEwENIhY5J7n89aruXMPDPnlz2zz8w+e59D\n/JqFBeYEsGzcCiu/9qT+tb3M80HlaUuAmh0bE332Jkk3owE4/+N+vJ9tW2Ct78CuXNx+hGu7jue5\nX6VWo7W2RGOhRW2hQ63ToM/OLbOMlak9q3doQmzwDVJCje15efNe6j5dcHs27P84V385zM0/8rZn\n0OJNnFixBQBr1yqoLbTkpKSXWcaK2p7O/n4kX7hKRlgkAOHb/8DjiU4lrrFwdcK1sz+nx7+f5zlq\nCx3Xv95KQtBZALJi4slJSsbSLe+grDRc2vqRdD6E9FvGHLe2/YnHk4+Vqs7S1Qm3Lm34Z9ySfHmv\nrfuJ+Lt5o+PJTkx5pLxQMfq6SqfFrkEdag18Dv+Ny2m6eAKW7q55auwb1SM+6CxZMfEARO87hutj\nrVBptai0Wuq/O5Q2G5biv3E5PrPeRGNjnX87GjWuj7Ui4te/AUi9coOMsNu4tG+Oc1s/MsKjiDt6\nEoDYg8c5N/PDYrM7+Tcn5cJVMsJuAxDx8y7ce3UqcU3S6fOEbtgKigIGA6mXr2PpUdX03PrjRxL5\nnz2mWc5/y6bvj9PnxeY82bvJv7rd+x0JhiZ1oLa7cUaqX1cVO44Vfi7Q17vA2QFe6WKsb9VAxRtP\nq1CrVWjUKnxqqoiIe7gsj7ofqtrFn9s79qLoDeSmpBH952E8nugM3Ok/9rYAaG2sMGTnAMaZTY2N\nNQ0nj8J/4wf4zBiL1sHu4f4AUWnIksIypnVxJzcu2nRbHxeN2sYOlbWtaQmPPuY2+pjbphqnIe+R\ncfwA6O98kRn0uLw1D5u23UgP2kduxM3/2ZwaF3f0cVGlylll8DgyThhzqp1cqTJ0AjGL38aux4v5\nXr8sVJa2BLCt5kRqZLzpdmpkApb21uhsrfItNTq04EcAPNs3ynP/pZ+PUO/JVgzevxSVVkPY4fPc\n3HumzDJWpva08XAm/b72TI9KwMLepsD2DHr/BwCqtfXJ9zqK3kDHJSOo3bM1oX//Q/KNyDLLWFHb\n08rdhazoe7+SsmLi0NrZorGxNi3nKaomOzaBc9PyLw82ZOdw+/c9ptvVn++BxtqK5OArj5Q18/4c\n0XHo7GzQ2FrnWS5YVF1WbAKnp3xQYN7w3/aabtd4oTsaGyuSzl1+6LxQMfq6paszCSfOEfL5D6SH\nRlBr4HP4LZtM4NDJpprk81ep+cpTWHm4khkZS/VnHkdtoUPnaEeN53ug6A0EDZ0CgNfoAXi/OZBL\ny9fl2Y7O0QFUKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXfVd8dndXMiKjjXdLujzWVRN\nQuDpe6/lXpUa/Z7h8tIvAPB4tgcqrZbI3/+i9tCCZ8TNZebs3gAEBFz/V7d7v8h48Lhvktfdybhk\nMC0T7B4YTyekKGzYrbBl1r3lgh2b3Pv/iDiFjX8pzBnycMsJH3U/ZOnuSlbUvc9AZnQcLt61Abi0\nYh0tVs2hZv9nsHByIHjWxyh6AxZOjiQcP8Ol5WvJTkim/nvD8Jk+lrNT867MEf9dKt0M14svvkhc\nXBw5OTm0bNmS4GDjtHifPn3YsGED/fr1o3///nz7rfEcg9u3bzNixAgGDx7MiBEjuH373o8KvV7P\npEmTWLNmTdkFVBXSpAZ9/lJLK1zHLUbr4Unc6kV5HotbNYewEb1Q2zni+PLrZZevsuVUF7ITLSSn\ny3vGnPGrF4JGg8s7i0j89kPTkXuzqCxtifGIW0EUQ8kn3lu9+QyZ8SlseGwS33WZgqWjLc2G9yir\niJWsPQv+fJamPe86PHUdWx57F0tHW5qOee5Ro91TUduzJJ/FR/y81h78AnVH9OPMpCUYsrKLf0Ih\nCnuf0Rseqq4wdYY8j/eovpycsAxDVk5pIuZTEfp65u1oTo9fTHpoBACh3/+Gtac7VtXcTDWJpy5w\n7autNF06iTbfLEFRDOQkpWDIycWlYyuqdm6N/7fL8f92OVW7+GNb1zP/hopod7VWi0uHFoT/+idB\nw6dya8tO/D6cjkpX9PHmkrRfSWrsGtaj+ecLidi2k/gjJ7BrUI/qL/TiyvIvi9z+fzNDIav/CmrO\nrQfg8ebgWTX/exx8Q2HIUoUB3VR09Xu4Adej7odUqgK2azCgttDhu3AcFxZ+xpHn3+CfMbNpOGUU\nlm4uJJ+/wtmpy8mOSwSDgevrtuDSsSWqf3l5aVlRFKVC/1dRVLp3t1u3bhw8eBAPDw88PT05cuQI\nlpaW1KpVi127dvHDD8ajyMOHD+exxx7j008/ZfDgwXTp0oWjR4+yYsUKxo0bR25uLhMnTqR169YM\nHDiwmK2WXG5sJBbe96bqNc5V0acmoWTlPaKocXGn6pQPyQm/TvS8sSg5WQBY+bUjJ/Qq+oRYlKwM\n0g//gU3bbmWWr7Ll1MdGYentW6KcrpM/JDf8BjHzx6DkZGFRvylatxpUGTzOWFPFBdRqVDoLEtbk\n/TH5KCp6W7Z++1nqdPMDwMLOirjL4abHbN2rkJmYRm5GyX+M1uvZgkOLfsSQoyc7R8/lX45S74mW\nnPnmrzLJW9Hb0+/N5/F83Hg+oM7WmsQrYabHbNycyEoqXXtW69CExCvhZMQkkpuRxfX/BFK7Z9md\nE1dR2zMzMgaHxvVNty2rOpOTnIIhM6tUNQVR6bQ0nvkWNnU9OTFyOpmRMaXO5zWqL1U7G89p0tpa\nk3o1NG+OpFT0D+TIjIzFsYl3sXUF5fWdPRa7ep4ce30WmbdLnxcqXl+3866FnXcdIncduO9eFUru\nvWWJGhsrEk+eN81KWjg74jWqP7nJqag0ai5/9A1xR08Za62tUFvosG9UD5/pY0yvETTcOAOmtbcl\nN8U4a2tV1Zno6Dh0mVmk3QwnOfgqYFxSqJo+Busa7kVmz4yMwf7+z56rS4Gfz6JqqnbvSP2Jo7j6\n4Tqi/zRetMW9d1c0Nja0WL3Y+Pe6OuEz5z2uffYtcYeCStCqlV81Zzh73wRbdCI42ICNZf7By64g\nhWkD8t//n0CFhd8pzBio4um2DznY4tH3Q5lRsVi4OuV5LDM6Dtt6tdBYWhJ3+AQAycFXSLsehkOT\n+mRXc0Nnb0vsIeMSXpVKBQbloQ7Uicqj0s1w9erViwMHDnDw4EHGjRvH0aNH2bNnD0888QQREREM\nGzaMYcOGkZiYyM2bN7l8+TKrV69m8ODBfPbZZ8TFGWc6Ll26RFxcHOnpZXeuBEDmmWNY1vdF61ET\nALueLxqX5txHbeuA+9zVpAfuJe6TmaYfNgA27Xrg8PII4w2tDpv2Pcg8l3dd/f9WzgAsvO/L2eMl\nMgvI6TZnNRmBe4n7dIYpZ/aVs9x+8xmipg4kaupAUv/aRvrRP8t0sGXMWLHb8vjK3/mpz0J+6rOQ\n7f2W4u5XD8faxiPMjft35sae08W8Ql4x50PxunNyvVqrpvbjfkSdKrvlKRW9PU9/9is7Xp7Hjpfn\nsWvgIlz96mFfy9ieDfp14daek6V6vTpPtqHZmGcBUOu01HmiNZHHLpZZ3oranvGBp3H0rW+6mEX1\nPr2IPRBU6pqC+C6agMbWmhOjZjzUYAswXcQiYNAUAl+biaNvfdOFLDxf7En0gfxtEHfsTInqHuS3\neBxaW2sCH2GwBRWvrysGhQbjh5tmtGq81IvUkJum87XAuOyw5edzTedm1Rn+MpG7DwMQH3AKz5d7\nG4/8q1Q0mvYGXmNfJeXiNdNFOAKHTELRG4g78g81XugJGAd6tnU9SfjnPHFHT2Ht4YZ9w3oAVGnu\nA4pCZkQ0RUkIPI1DkwZYe1YDjJ+9uINBJa5x7doe73EjODNuvmmwBRDyydcEDXiLE8MmcGLYBLJj\nE7gw7+P/mcEWQIcmcDoEbkYZZx8271PoVsA1rZLSFG5FQ/MHriG0+7jCkk0Ka8Y/2mALHn0/FHsg\niOrPdEOlUaO1s8G9Z0diDwSSEXYbjZ0NDk0bAmBdwx3bOjVIvXwdjbUVDca/bjpvq9bA54neGwAy\n4PqvVulmuBo0aMCtW7eIiYlhwoQJrF69mr///pt58+bh7e3NunXrUKlUrF+/noYNG1KvXj1ee+01\nWrZsSUhICEFBxk7SpEkT1qxZQ9++fenUqRONGjUqZsslY0hOIO6LBbiOX4JKqyU3Mpy4z+ZiUc8H\n5zdmEDllEHa9XkLj6o5Nm67YtOlqem70gjdJ2PgxziOn4rFiEygKGUH7Sdn5Y5lkq6w547+cj8u4\nJai0OnKjwoj/bC66ej44j5pJ1NSB2PZ8CY2rB9ZtHse6zeOm58YsHIshNanMMxWUsTK0JUBmfAr7\npm+g5yej0Oi0JN+KYc+UbwCo6lubLgsG81OfhUW+xpElW3lsZn/6/Wceit5AeMBFTq3bVWYZK1t7\nHpn5DZ0/GotGpyHlVgyHp30FgHOT2rSfN4wdL88r8jWOL99Mu9lDePbn+SiKwq09J7nwXdnMFkLF\nbc+chGQuLPwM3/cnotZpyQiP4vz8ldg38qLRtNEEDZ1UaE1RHJs1pGqnNqTdDKfV6nuf5fsvyVxa\n2QnJBC/4Ar8l41FptWSER3J27mcAOPjUo/GMNwgYNKXIusJUadYQt86tSbsZQZt18033X1n1A3EB\nD5cXKkZfT7t2i8sffo3fiimoNGoyo+M5N+sT0wxV4JBJpIdGcPPbX2jz9fugUpN0+iKXPjD2oevf\nbKP+24Px/3YZKrWa1Cs3uPJJwf8kwaXl62g0fTRtn/wAFAieuxJ9Wjr6tHTOTFlGw8kj0FhZYsjJ\n5cy0FaYLGBQmJzGJS++vovHCSah0WjLDI7m44FPsGnnRcOpYTgybUGgNQN3RxpUzDaeONb1m0pmL\nXP1wbYnb77+Vi4OKhcNh3BcKObkKNd1g8Wsqzt1QmLNBYdsc41xAaDS4OoJOm3dQ9fF2BUWBORsU\nwDhoa+ENMweWfg7hUfdD4T//gbWnO22+/QC1Tkv4L3+SePI8AGenLqPBe8NRW+pQcvVcXLqajPAo\nMsKjuLX1P8b9k0pFWkgoF5dU3iWmMkwsGZVSkRY4ltDy5csJCwvjk08+4YMPPuDq1at88cUXrFu3\njr/++ovs7GyaNWvGrFmziIiIYO7cuWRlZZGZmcmMGTOoWrUq48ePZ8uWLRw/fpwFCxawdetWLCws\nitxuaD//f+kvfDi1NgdW+IxgzHmrf5vyjlGsmj8GVZr2/LJR6S+j/G8bfXF1pWnPjb7mOeerrAw+\nZ/xBWtHbs9bmQPa0/3cvCvAwuh39id3+/co7RrF6BW6uNH3973Z9yztGsboHbGV/R/NcTKksdTm8\nHT3fl3eMImkwDjBzDua/KFBFout0odLskyqLJ+3eLL6oHO1KLfqg17+l0s1wAUyaNMn0/xMmTDD9\n/4gRIxgxYkSe2po1a/LVV1/le40tW4yXYW7dujW//vqrmZIKIYQQQggh/pdVygGXEEIIIYQQonwZ\nKt9CuXJR6S6aIYQQQgghhBCVhQy4hBBCCCGEEMJMZEmhEEIIIYQQotQUZElhScgMlxBCCCGEEEKY\niQy4hBBCCCGEEMJMZMAlhBBCCCGEEGYi53AJIYQQQgghSs1Q3gEqCZnhEkIIIYQQQggzkQGXEEII\nIYQQQpiJLCkUQgghhBBClJpBLgtfIjLDJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD\nIksKS0JmuIQQQgghhBDCTFSKIkNTIYQQQgghROl0sXmjvCMUaX/66vKOAMiSwlLJ/sC2vCMUyWJC\nWoXPCJKzrFlMSGNTs+HlHaNYA858U2na89eWg8o7RpGe/+c7oHLsk/a0f7m8YxSr29Gf2O3fr7xj\nFKtX4OZK09f/bte3vGMUq3vAVn5uMbi8YxSrz8mN5Bz0Ke8YRdJ1ugCAnu/LOUnRNAysNJ/NykKR\nqxSWiCwpFEIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQgghhBBClJr8w8clIzNcQgghhBBCCGEmMuAS\nQgghhBBCCDORAZcQQgghhBBCmImcwyWEEEIIIYQoNTmHq2RkhksIIYQQQgghzEQGXEIIIYQQQghh\nJrKkUAghhBBCCFFqiiwpLBGZ4RJCCCGEEEIIM5EBlxBCCCGEEEKYiSwpFEIIIYQQQpSaXKWwZGSG\nSwghhBBCCCHMRAZcQgghhBBCCGEmsqTQDFR1n0DTaT4qjQVKzDlyd4+F7JSCa72fQfvkWnJWVTPe\nYeWEpsfHqKs2Q8lJxxC8EcPJLyVnBc9ZGTLeVb1TM/zefRm1hZbEy2Ecm/M1uWmZhda3XfA6SVfD\nubhhV577bdyd6fndTHb2nU12YmqZZqzo7en+WHN83n4FjU5H0pVQTs1fR25aRqnqnvz7czKjE0y1\nV7/dQdjOI9jXrY7fzNfR2lihKArnV24m5ujZR8pb0dvzLpcOLfEaMxCVTktaSCgXFn2OPj2jVDWW\nbi60Xvc+gYMnkpNU8N/4MFw7tqD+2AGoLXSkXA0leOGX6At4z4urs3Rzoe3XCzk6cHK+fNWf7Yp7\nV39OTlhWJpnLu6979O5MrQHPmm5r7WywdHPm8HOjyY5PMt3v/c4Q3Lu1JyfZ+NrpoRGcm/lRibcD\noKviQOM5b2HtURXFYODiktUknb0MgK1XLRpOeA2trc2dx9aQculaiV7X/TE/mrz9CmoLHclXbvHP\nvLUFtmFRdXX7dqdOn65oLHUkXLjByXnrMOTk4traB99x/VFrtegzszmzbCMJwSXLVZj9ZxQ+3qaQ\nkwsNPGH+MBV21irT478eUfj2z3tLwFIzICoB/lqmws4aFn6vEHwDDAo0rQszB6qwslAVsCXzUxSF\nGdN+w7t+VV57vYPZtuPSoSVeY19FrdORevUmFxZ9UfB+p6AatZoG7w7Fua0fKo2G0B9+I/znP7Gt\n40mT+e+anq9Sq7HzrsWZqcuJ2RdI08UTsPOugz7D+BlJOHGOK59sMNvfaE4GlaG8I1QK/1MzXJcu\nXSIoKAiAbt26kZWVVfYbsXZF++Rqcn97lZxvWqAk3UDTaX7BtVW80HZ+H1T33gZN16WQnUbO+lbk\n/tAVdZ1eqOo9KTkrcs7KkPEOSyd72i54nYPjP2PHc9NJDYuh+Xt9C6x1qFuNbusmU6tXm3yP1Xm2\nA93XT8PG3ansQ1bw9rSoYk+LuSMJmvgJf784ifTwaBq/3a9UdXa1q5GTnMa+ATNM/4XtPAJAs2nD\nCf1tP/sGzODUvLW0WfI2Ks0j7KoreHvepavigM+MNzk7bTnH+r9LRngUXmMHlqrGo3cXWn65AMuq\nLmWczR7fWWM4PfVDDvcdR0Z4FA3efLXUddWe6oz/mrlYuTnneZ7WwRafqSPwmTgcyui3bUXo65E7\nDxA4ZBKBQyYRNHwq2XGJXF7xVZ7BFkCVpg05N+sjU21pB1sADSe+TuKpCwQMGEfw3JX4LpqA2tIC\ntaUFLT6Zyc2NvxI4dDLXv/6JJvPeKdFrWjjZ02reKI5N+pS/+kwmLSyaJu8U0NeLqKverTVe/Xty\naPQS/np5GhorC7wHPYlKq8F/6VucnP81e/rN4NK6X2m1cHSp/+77xacozPpG4eOxKv5vkRrPqvDR\ntrzn1zzfQcW2OWq2zVHz4wwVrg4w/VUVro4q1uxQ0Btg2xwV2+eqyMqBdf8pn/NzQkJieG3oRnbt\nDDbrdnRVHGg8cyxnp60goN+7ZERE4f1m/v1OYTU1+vTAuqYHxwaOJ+i1qdTs9zQOjb1JuxFm+jwH\nDplEXOBpIv84RMy+QAAcfRtwYsxs0+OVdbAlSu5/asC1e/durl69atZtqGt3R4k8AYkhAOhPr0Xt\nk38HjdYa7VNfkbt/ap67Ve4tMJzfBIoBDDkYru9CXb+P5KzAOStDxrs82jch7tx1UkOjALi6ZQ+1\nn2pXYG39/t259stBQncH5bnfumoVPB9vyf43S/+jqCQqenu6tW9KQvB10m4Z2/D61r/x7J3/6GtR\ndc5+9VEMBjqsnk7Xze/TYOQLoDb+0lZp1OjsbY1/oq0V+uycR8pb0dvzLmd/P5IvXCUjLBKA8O1/\n4PFEpxLXWLg64drZn9Pj3y/zbC5t/Ug6H0L6LeN2b237E48nHytVnaWrE25d2vDPuCX5nufRoz1Z\nsYlc+vS7Mstc0fp67SHPk52QRPgvf+W5X6XTYtegDrUGPof/xuU0XTwBS3dX42NaLfXfHUqbDUvx\n37gcn1lvorGxzvfaKo0a18daEfHr3wCkXrlBRthtXNo3x7mtHxnhUcQdPQlA7MHjnJv5YYkyu7Vr\nSkLwNdJC7/XhmgX19SLqaj7zGFe+20lOchooCqcWfUPo/x1GydWz84l3SLp0EwAbTzeykx5tpcCR\nYGhSB2q7G/cl/bqq2HHMOFNUkK93gbMDvNLFWN+qgYo3nlahVqvQqFX41FQREfdIkR7apu+P0+fF\n5jzZu4lZt+PcthnJF0LIuHV3n7I7/36niJqqXdpy+//2ougN5KakEfXXYTyezPv8Kn6NcHu8HReX\nrgHAqpobGhtrGk0Zhf93K/CZORatg51Z/05R/ir8ksLt27ezd+9eMjMziYmJYciQIfz9999cuXKF\nyZMnk56ezoYNG7CwsKBOnTrMnz+f33//nf3795OZmUloaCgjR46kY8eO/Pzzz+h0Opo0MXbguXPn\nEhYWBsCqVatwdHR89MAOnigpYfdup4SjsnQEC/s8S3g0PVdiOPM1Ssy5PE9XbgehbjwAfcRR0Fii\nrv8CGB7tB5fkNHPOypDxDhsPZ9Ij402306MSsLC3QWtrlW+ZzInFxh9/7m0b57k/IyaRQ+NXmSUf\nUOHb09rdhYyoe79CMqPj0dnboLW1zrOssKg6lUZNTMA5gj/ehNrSgnafTiQ3LYNrP/zBmSXr6fDl\ndLwG9sbS2YHj01ah6B9hyUYFb8+7rAf/0DkAACAASURBVNxdyIq+115ZMXFo7WzR2FiblvcUVZMd\nm8C5acvLPNfd7Wbev93oOHR2NmhsrfMsFyyqLis2gdNTPijw9cO2Gwch1Z/uUmaZK1Jf1znaU2vA\nswQOnZLvMUtXZxJOnCPk8x9ID42g1sDn8Fs2mcChk6kz5AUUvYGgO8/zGj0A7zcHcmn5ugde3wFU\nKnISk033ZUbHYenmgtpCR3ZcIj7Tx2BXvza5qWlcXVWyga2Nh3OePpxh6sN527CoOrvaHliec6DD\nqklYVa1C3MnLnPv4RwCUXD2Wzg48vmkBFlXsCZryWYlyFSYyHjzumzx1dzIuGUzLBLsHxqkJKQob\nditsmXVvSrVjk3v/HxGnsPEvhTlDymc54czZvQEICLhu1u1YubmSGRVrup0VHYfWzibvfqeIGis3\nFzKj8vZ5O+/aebbh/c4Qrq3eZHo9C2cH4oPOcmn5WrITkmkwbhiNZ4zhzBTz7L/MTa5SWDKVYoYr\nLS2NtWvXMnLkSDZt2sSqVauYP38+P/30EytXrmTDhg1s2rQJe3t7Nm/eDEBqaiqrV6/miy++YM2a\nNbi7u9OnTx+GDRtGs2bNAHjppZfYuHEjNWrU4PDhw2WUtpCdk0Fv+l+130gw5GI4922+Mv3+aYCC\ndvBRtM//iOHmHtBnl1E2yWmenJUh452k6oKzKoaKtAa7grdnYW344KCoiLqbP+/j7PKNGHJyyU1N\nJ+S7nVR7vDVqCx2tl7zFybmr2d37HQ6NWIDfjNewcncu8LVKpoK3pylEwV9HeT6bJakxg8L6DQ+8\n5yWt+zdUpL5e/YUexBw8Tubt6HyPZd6O5vT4xaSHRgAQ+v1vWHu6Y1XNDZeOrajauTX+3y7H/9vl\nVO3ij21dz/wbKKLd1VotLh1aEP7rnwQNn8qtLTvx+3A6Kl0JjjerCuvDSonr1FoNbu18CZyykr0D\nZ6NztKXxWy+barLik9n1xLvsHzqPlvNGYlfLo/hchTAU8ru3oG6z9QA83hw8q+bPHnxDYchShQHd\nVHT1K58B17+mJP2kiJqC+tn93wWOTRugc7Qn8o9DpvuSg69ydupysuMSwWDg2totuHRsiUpb4edA\nxCOoFO+uj48PAPb29nh5eaFSqXB0dCQjIwNvb2/s7IxTsW3atOHQoUP4+fnRqFEjAKpVq0Z2dsE/\nDnx9fQFwdXUlM7PwE4lLJSUMVbX71sHbVUfJiIfcdNNd6iaDQGeDdvBRVBqdcSnP4KPkbu8Dai36\nAzMh03gyvbrNeJTERzuJVnKaOWcFz9h07AvU6NoCAJ2dFYlXwk2PWbs5kZWUij7DPAO8h1IB27PR\n6Jfw6NISAK2tNclXb5kes3JzIjspFX1m3nNCMyLjcPL1KrDO8+mOJF8OJfnKnddRGY92O3h5orGy\nJOrgKQASzoaQEhKOk68Xt6PieSgVsD0LkhkZg0Pj+qbbllWdyUlOwXBfu5akpqx4jepL1c6tAeN7\nnno1NO92C3jPMyNjcWziXWyduVTUvu7eowOXP/ymwMfsvGth512HyF0H7rtXhZKbi0qj5vJH3xB3\n1NgfNNZWqC102Deqh8/0MabqoOHGGTCtvS25KWkAWFV1Jjo6Dl1mFmk3w0kONp5OEHvwOKrpY7Cu\n4V5gHp8xL5r6uq4Ufd25acF9PTMmkYi9J0wzYrd2HKbRqD5o7ayp2qYxt/eeACDp4k2SLofiUN+T\n1NDIohu0ENWc4ex9E0LRieBgAzaW+QcFu4IUpg3If/9/AhUWfqcwY6CKp9v+lw+2gKyoWBybPLBP\nSUrNs08pqiYzKhZLV6c8j90/C+/eoyORO/fDfcs6q/g1QutgR+zB4wCoVCowKBXswKcoa5VihktV\nyNEjlUpFSEgI6enGHw6BgYHUrVu30OeoVCoM932gC3vdR2G48Teqav5Qxbjz1fiNwBCyI09N7g9d\nyN3QhtyN7cnZ/iLkZpC7sT2kRaLxG4Gmw0xjoY0bmqbDMFzYLDkrcM6KnvHs57+w65U57HplDrsH\nLcS1WT3sahl/bNTv+zjhe0+W2bbKQkVsz4tfbjNd3OLA0Lk4NfXGtqaxDeu81J3I/f/ke0700bOF\n1jl4edJo9EugVqG21FGvXy/CdweQeisKnZ01Ts2MX+42nm7Y1a1uOs/jYVTE9ixIfOBpHH3rY+1p\nPMJfvU8vYg8ElbqmrISs2UrAoCkEDJpC4GszcfStj01N43Y9X+xJ9IHj+Z4Td+xMierMpSL2da29\nLTaeHiSduVTg44pBocH44VhVcwOgxku9SA25SVZMPPEBp/B8ubfxyL9KRaNpb+A19lVSLl7Lc0EC\nRW8g7sg/1HihJ2AcxNnW9SThn/PEHT2FtYcb9g3rAVCluQ8oCpkR+WfbAC58sZ29/Weyt/9M9g2Z\nZ+zDd9qw7svdub0vf1+POnqu0LrwvwKp0cMftaUOgOqPtyIh+BqK3kDLuSNx9jP2dft6NbCvU434\nsyEP1c4AHZrA6RC4GWX8cb95n0K35vnrktIUbkVDc6+89+8+rrBkk8Ka8f8bgy2AuGN39il3+myN\nPr2IORhU4pqYA0FUe/ZxVBo1Wjsb3Ht2JOa+fVKVFo2JP553mbbGxooG418znbdVa9BzRO8NABlw\n/VerFDNchdFoNLz99tsMGTIEtVpNrVq1mDhxIjt27Ciw3tfXl2XLluHl5VXg42UiI4bcP0ajffZ7\nVBodSuJ1cneNROXeAk2vz40/YoqgP7YC7VPr0A41dlj90fdRovLv4CVnBcpZGTLekRWfQsCsr3ns\ng7GodVpSb0UTMMN4PoRz4zr4zx3OrlfmmGXbJVbB2zM7IZmTc9fQZvk7qHVa0sKi+WeW8TLpVXzq\n0nz2CPYNmFFk3aU1P9N0ylC6bVmCSqsh4q9Abv68D4DACR/TdNJgNBY6DLl6Ti/6mvSwgn8clkgF\nb8+7chKSubDwM3zfn4hapyUjPIrz81di38iLRtNGEzR0UqE15padkEzwgi/wWzIelVZLRngkZ+ca\nz7dx8KlH4xlvEDBoSpF1/7aK0tetPT3Iik1E0d9bwnp3hipwyCTSrt3i8odf47diCiqNmszoeM7N\n+gSA699so/7bg/H/dhkqtZrUKze48kn+Za8Al5avo9H00bR98gNQIHjuSvRp6ejT0jkzZRkNJ49A\nY2WJISeXM9NWYCjBxWiyE5L5Z+5a2i5/B7VWQ1pYNMdnrQagSuO6tJj9Onv7zyyy7tqWv7BwsOPx\nHxagUqtJvHiDsx9+jT4ji4DxH9Ns0iBUWg2G7FyCpn+R55+KKC0XBxULh8O4LxRychVqusHi11Sc\nu6EwZ4PCtjnGY+yh0eDqCDpt3kHVx9sVFAXmbFDgznk5Lbxh5sBKcWz+oeQkJHN+wec0fX+CcZ8S\nFkXw/FV5PqOF1YDxAhrWNTzw37gCtU5L+M9/knjyvOn1bWp65Bvcxx09RdjW/9B6zQJQqY3/vMVi\n8/1TMOamIAPFklAphV2+RuST/YFteUcoksWEtAqfESRnWbOYkMamZsPLO0axBpz5ptK0568tB5V3\njCI9/4/xpP+K3p4WE9LY0/7l4gvLWbejP7Hbv4ArN1YwvQI3V5q+/ne7gi9BX5F0D9jKzy0Gl3eM\nYvU5uZGcgz7lHaNIuk4XANDzfTknKZqGgZXms1lZtLSt2H3on7SN5R0BqCRLCoUQQgghhBCiMqrU\nSwqFEEIIIYQQ5UMuC18yMsMlhBBCCCGEEGYiAy4hhBBCCCGEMBNZUiiEEEIIIYQoNYNKrlJYEjLD\nJYQQQgghhBBmIgMuIYQQQgghhDATWVIohBBCCCGEKDWD/MPHJSIzXEIIIYQQQghhJjLgEkIIIYQQ\nQggzkSWFQgghhBBCiFKTJYUlIzNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlNkSWGJ\nyAyXEEIIIYQQQpiJDLiEEEIIIYQQwkxUiqIo5R1CCCGEEEIIUbn42L1c3hGKdCH1p/KOAMg5XKWy\nr8NL5R2hSF2PbOPvdn3LO0axugdsrTQ5d/v3K+8YxeoVuJkdrV8t7xjFevr4D5Xmfd/sN6y8YxSp\n3+n1ABW+PbsHbCU57p3yjlEsB5dPsbGsU94xipWedaPS9PXKsu+s6H0IjP1oT/uK/aO221Hjj9qK\n3p7dA7ai5/vyjlEsDQPLO0KJGVRyDldJyJJCIYQQQgghhDATGXAJIYQQQgghhJnIkkIhhBBCCCFE\nqRnksvAlIjNcQgghhBBCCGEmMuASQgghhBBCCDORJYVCCCGEEEKIUlPQl3eESkFmuIQQQgghhBDC\nTGTAJYQQQgghhBBmIksKhRBCCCGEEKUmVyksGZnhEkIIIYQQQggzkQGXEEIIIYQQQpiJLCkUQggh\nhBBClJosKSwZmeESQgghhBBCCDORAZcQQgghhBBCmIkMuIQQQgghhBDCTOQcrjLi3KEl9UYPQq3T\nkhpyk0vvf44+PaNUNZZuLrRcu5jjQyaQk5QCgNbejvrjX8emricaS0tubthG1K79RWZx6dASr7Gv\notbpSL16kwuLvsiXpdAatZoG7w7Fua0fKo2G0B9+I/znPwGwrulB4xlj0Tnak5ueyfn5K0m/GQFA\nleY+eL81CLWlBbmp6Zxf8BmZEdG0WrMQjZWlabs2tar/q5nvsqrmhv/6pZx8dwEpF6+Z7lfptPh9\nMI2In/8kem9Ake16l2vHFtQfOwC1hY6Uq6EEL/wSfVpGyevUKhq+NwTXdsa8N77/nbDtfwFgW7cG\njaeNQmNjBYrClc82ERdwmjpDnsejVwfTa1tUcUBrY8WebsNLlNmtY3MavtUftYWWlCu3OLNgDbkF\nZC6sTmtrTbPZo7CrUx1UKsJ2HOTaht8BcGxcj8YTBqOxskSlUXNtw++E7zxcbCZzvef2Pl40GDcM\njZUVKrWam9/9QuSug3let+YrT1H9+e4cGzihRO33oGqd/Gj2zsuoLbQkXQ4jcO5X5KZllrjOwsGW\nVjOHUKVhLfQZWVz/9RBXNhk/A25tGtF8Qn9UGg1ZSamcWvYDiZdvlTqjudrXqWUTvN8ejEqrwZCV\nzeUPvyH5/NWHaMX8Dh2O4bMvL5OdY6C+lz0zp/tiZ5v3a2rv/ijWrLuKSq3CwV7LzKm+eHrakJSc\nzZLlF7h8JRlrKw3PPl2Dfn1rl0muBz3Z+3HmLZiMpaUF585eZMwbU0hJSc1X99xzTzBj9nsoBoWE\nhCTGjpnC9WuhODk58snKRTTz8yE9LYNvv93Kl59vKJNsFbGvg3n3m06tmtDw3cGoNGpyklK5+NEG\nUq/cBMB7dD/cuvoDkHwhhPNL1mHIyi4wY3l8DzVdPAE77zroM4z7j4QT57jySdGfBZcOLfEaMxCV\nTktaSCgXFuX/vVFojVpN/XeG4tyuOSqNmtAffifi590A2NTxpNHUN9BYWwEQ8vl3xB87DYDv+xOx\nq18bffqdnP8Ec/WT9cXnLOP2tK3jSZP575qer1KrsfOuxZmpy4nZF/hQ7fmoFEVhxrTf8K5fldde\n71D8E/7LKOjLO0Kl8F8zwxUUFMTFixfLZdu6Kg40mvEWwdOXEzjgHTIjoqg3dlCpatyf7EKLLxZi\nWdUlz/MazXyLrJg4TgybxOl35uL93mtYVnUuMkvjmWM5O20FAf3eJSMiCu83B5a4pkafHljX9ODY\nwPEEvTaVmv2exqGxNwBN5r5L2PbdBAwYx/V1m2m6eCIAllWdabZ0EpeWryNw8CRi9h6j0aSRAJwY\nNZPAIZMIHDKJa2s3k3k7+l/NDKC20NFk3tuodHl/uDn4NqDNuvep0qxRoe2ZP6s9vrPGcHrqhxzu\nO46M8CgavPlqqepq9umJTc1qHBkwkYBh06nd/ykcGnsB4DP5dcJ/30vAoCkEL/iSZu+/h0qj5sa3\nvxIwaAoBg6ZwfPQ89JmZnJnxSYkyW1Sxp9mcNzgx+WP2vzSR9PAoGr3Vv1R1Dcb0JTMqngP9pnB4\nyCxqv9SDKk3rA9Bq2XtcXr2NQwOnE/TOMnzGDcKmpkcx7Wi+97zZ4olcW7uFwCGTODVuEfXfGYr1\nfXkcmzWk9uDnS9R2BbF0ssd//uscnrCKnc9PIzU8Gr93+5aqrvmkAeSmZ7Grz3T+GrQAj45NqdbZ\nD52dNR0/fJtTH27mj76zOLHwW9ovH4taV7pjY+ZqX5VWi+/CcVxY/CWBgydx/ZttNJ7z9kO2ZF4J\nCdnMX3SOpe83Z9uPnahR3ZpVn1/OU5OZpWf2vLMsW9ycHzZ0oPNjbqz46AIAH31yCRtrDVu+f4xv\n1rbjSEAsBw/n3988KldXZ75cs5xX+4+hedPuXL9+iwWLpuSrs7Ky5Kv1HzGg32ja+T/Fjh1/8cGH\ncwFYunw2aalptPTrSZdOfXjiia70fqrbI2eriH0dzLvf1Npa03zpeC6v/I6jAydzfuk6/N5/D5VO\ni1tXf1zaNuPooMkc6T8BtZUltfs/VUjG8vkecvRtwIkxs03fk8UNDnRVHPCZ8SZnpy3nWP93yQiP\nwmts/pyF1dR4oSfWNasROHAcx+/ktL+Ts+Gkkdz+v70EDZ3EhUWf47twPCqN2pTznzGzCRo6iaCh\nk4odbJmrPdNuhJnaKnDIJOICTxP5xyFi9gU+VHs+qpCQGF4bupFdO4PNuh1R+f3XDLi2bdtGdHTZ\nf7mWhJO/HykXrpIRdhuAiO1/4N6rU4lrLFydcO3sz5kJi/I8R2tvh5N/M258tQWArJh4/hk5lZzk\n/EdS73Ju24zkCyFk3IoEIHz7bjye6FTimqpd2nL7//ai6A3kpqQR9ddhPJ7shGVVZ2zrVCfqT+PR\nzLijp9BYW2LfsC5u3doRe/QkKZeuG1/vlz+5/PE3ef8WBzsaTR5J8LyV/1rmuxpOHMHtHfvISUrO\n85o1X+lNyOofST5/pdD2fJBLWz+SzoeQfifHrW1/4vHkY6Wqc+vahoj/22fKG/nnEar1NuZVadTo\n7O2MbWZrXeCR2AbvDib2yClij54qUWbXds1IOn/NlOXmT39RvXfHUtWdX/EtFz75HgBL1yqoLbTk\npqajttBxZe124gLPAZAZHU92YgrWboUfFADzvedqCx3XvtpKQtBZwNhncpJSsLpzIMPC2ZGGE0dw\nZdXGErVdQTza+xJ/7jqpoVEAXN2yl1pPtS9VnXPjOtz4vyMoBgVDrp7bB89Qs0cb7Gq5k5OSQXSg\ncRCRcuM2uakZuPh553v9opirfZXcXA49+wapl28AYF3D3TQb/6gCAmNp7ONArZq2ALz0Yi127b6N\noiimGoNeQVEUUlNzAUjP0GNhafwau3AxmaeerI5Go0KnU9OxQ1X+3htVJtnu171HJ/45cYaQqzcA\nWLvmO/r1zz+A12g0qFQqHB3sAbCztSEzMwuAFi19+eGHnzEYDOTk5LBr5x5e6FPwQKA0KmJfB/Pu\nN21qVSM3NZ34IGOu9JsR5KZlUKVpA6L3BRI4YjZKrh6NrTUWTg5kF/J5LY/vIatqbmhsrGk0ZRT+\n363AZ+ZYtA52Rbals78fyReukhF2N8Mf+XMWUVO1iz+3d9zLGf3nYTye6AwYZ4u09sb+p7WxwpCd\nkydnw8mj8N/4AT4zSpDTzO0JUMWvEW6Pt+Pi0jUP3Z6PatP3x+nzYnOe7N3ErNsRlV+ZLCncvn07\ne/fuJTMzk5iYGIYMGcLff//NlStXmDx5Munp6WzYsAELCwvq1KnD/Pnz+f3334t8To8ePdi5cyfr\n169HrVbTqlUrJk6cyMqVKwkLCyMuLo6IiAimTZuGk5MTBw8eJDg4GG9vb/r27cvhw8aBwbhx4+jf\nvz/h4eHFbu9hWbm7khUVa7qdFROH1s4WjY21afq8qJrs2ASCpy/P97rWnh5kxyZSc8CzOLdriVqn\n5dam38i4dbvwLG6uZN6/neg4tHY2ebMUUWPl5kJmVFyex+y8a2Pp5kJWTALc9+MnKzoeSzcXbGpV\nx5CRhe+C97CpVZ3MqFguf7w+T67ag583DsruW85n7swA1Z/rhkqrIeLXv6kz7MU82w2ebZwhqj3o\nuULbM19Wdxcyo/NuS2dng8bWOs/ymKLqrNzz5s2Mjsf1Tt4Ly76m9eezqD3gKSycHTkz4xMU/b1L\nrtrW88StS2sO9XmnxJmt3Z3JeGB7OjsbtLbWeZYaFVen6A00nz8Wj+7+RO47TurNCDAo3Pp1n+k5\nNft0Q2tjRcK5ogex5nrPDdk53P59j+n+6s/3QGNtRVLwFVCraTLvXa6u2oghN7fE7fcgaw9n0qPi\nTbczouKxsLdBa2uVZ1lhUXVxZ69R55kOxJ66gkanxbNHKwy5elJuRqK1scS9fROijgbj3KQuDl41\nsHZ1LFVGc/YpRa/HwtmRNuuXYVHFnrMzPypVtsJERWXi7m5luu1W1ZK0tFzS0vWmZYU2NlqmTW7M\n628cw9HRAoNeYd1q43Ix3yaO/GdXBH7NqpCdbWDv3ii0WlWZZLufp2d1wsLu7YPDw27j6OiAvb1d\nnmWFaWnpvPPWDPbs30Z8XCJqjZruj78MwPHAU7z6ah+OHjmOpaUFz7/Qm5xH+EzeVRH7Oph3v5kW\nehuNjRUubZsRd+wMDj5e2NXzxNK1CmD8vNbs+wTeo/uRFRNP9J2ZkHwZy+F7yMLZgfigs1xavpbs\nhGQajBtG4xljODMl/++B+9so6/42KvD3RuE1lg/8FsmMjsPlTs5LK9bRYtUcavZ/BgsnB4JnfYyi\nN2Dh5EjC8TOmnPXfG4bP9LGcnbqs8JxmbM+7vN8ZwrXVm0yv9zDt+ahmzu4NQEDAdbNto6KTy8KX\nTJnNcKWlpbF27VpGjhzJpk2bWLVqFfPnz+enn35i5cqVbNiwgU2bNmFvb8/mzZuLfM727dtJTExk\n5cqVrF+/nk2bNhEVFWUaRFlYWLBu3TpmzJjB+vXr8fX1pVOnTkyaNInq1Qs+R6i47T0SVcFf6orB\nULqaB19Wq8G6hju5aRmcHD2D87M/wuud4dg1rFd4FnUJtlNEjaqAxxR9wfebHtNqcO3chpA1PxI4\ndDLxx8/SbMmke5uz0FHj+R7cWF9IO5sps33DutTo08t09KssFNYO6A0lrysor8GA2kJHs0XvcW7+\nFxx4dixBb8yl8bSRWLrdW2Zau19vbm39o8BzMgqlLribKw9kLkndqdmf82ePN7BwsKP+iLwDWK+h\nz9LgjZcIGrcCQ1ZOMZnM857fr/bgF6g38hVOT1yCISsb77GvknjqPPGBZ4rOVgxVCftyUXWnPvgR\nFIUnNs+j40dvE3U0GEOOnty0TA699wmNX3+WJ7bMp86zHYkOuoAhp5Rr5M3cvtnxSRx+7g2Oj5xB\n45ljsa5ZrXT5CtquUvD9mvs+lldDUlj3dQhbvn+Mnb91ZfjQekyZfgpFUXjv7YaoVDBw6FEmTTuF\nv78LWl3ZL+JQF9Juen3e96hJk4ZMm/EOLZv3xKtuW5Yt/YwffvwSgKlTFqEoCkcDd/Dj1tXs+fsQ\nOdkFn1dUynAF3l2ufR3z7jf1aRmcmriCusNeoP33y6j+dGfij5/DkHNvAHtr6x/s7f4a0fuC8Fsy\nvuBtlMP3UHLwVc5OXU52XCIYDFxbuwWXji1RaYs4Fl7Ye5cnZ+E1Be6X7nz/+C4cx4WFn3Hk+Tf4\nZ8xsGk4ZhaWbC8nnr+TJeX1dSXKadx/k2LQBOkd7Iv84ZLrvodpTiH9JmX0KfXx8ALC3t8fLy8u4\nlMLRkYyMDLy9vbGzM07rtmnThkOHDuHn51foc7KysggNDSU+Pp5Ro0YBxsFSaGhonm15eHiQXcyX\n1P3LUYra3qPIiorFoUl9022Lqi7kJKdgyMwqVc2DsmMTAIjcsReAjPBIks5cwKFxfVIv5Z8pursd\nx/u2Y1nVmZyk1HxZCqvJjIrF0tUpz2NZ0XFkRsZi4VIlz7buPpYVk0DS2UumZQERv+2h4fjXUFta\nYMjKxqV9C1Kv3CAzouAln+bK7NG7C1pba1qvNS7VtHR1Ns1wxB48XmCWgniN6kvVzq0B4zK/1Kuh\n+XLoH3gfMyNjcWziXWBdZmSc6ejr/XntvGqisbIg9tA/ACSdu0LqtVtU8fUmak8cqFW4dWtLwJBp\nxWZu8MbLuHVuCYDO1obkkHuZrao6k11I5iq+XgXWubZrRsrVULJiE9FnZBHxxxE8uhlnFtQ6Lc3m\njsa+bg2ODJ9Dxu1YimOu9xyMF0JpPOtNbOt6cnzkDDJvxwDg8WRnshOSqNqlLRprKyyrOuP/7XIC\nh9w7OFAY37F9qN6lhbE97axIuhJmeszazYmspFT0GXn3RemRcbg0rVdgnaWHHac/2kJ2choAjYY/\nZVx6qFKRm57F3hFLTM/r/fP7pN4q3dI4c7WvxtYG59a+xOw3zhKkXLpO6tWb2HnXKnLmvSTc3a04\nF5xouh0Tk4WDvRZr63tfU0ePxeLXzAlPTxsA+r5Ui48+vUhSUg6ZmXrefrMBjg4WAGzYeI2ad+oe\n1azZ43j6mZ4A2DvYEXzukumx6jU8iI9PJP2BiwH06NWZo0dOcP2ase+t/uJbli2fhYuLE9Y21syY\nvpiEhCQAxk8YTUjIzYfKVlH7+r+130SlIjcjk+Nj5pse67D5Q9LDorCrXxuVSkXKnSWwYb/uoVa/\n3gXmLY/vodzkVLQOdqbvI5VKBQalyAOxmZExODR+IMMDvyWKqsmMisXigZyZ0XHY1quFxtKSuMMn\nAEgOvkLa9TAcmtQnu5obOntbYg+VPKc59/EA7j06Erlzf54jNVX8GpW6PYX4t5TZ4b/CjuaqVCpC\nQkJIT08HIDAwkLp16xb5HABPT0+qVavG119/zcaNGxk0aBDNmzcv9Hkqlco0uMrNzSUtLY3s7Gyu\nXr2ap8Yc4gNP4dCkAdaexqO81V/oRezBoFLXPCjzdjQpF0PweKorADonRxybNiTlYuFXBIs7dhpH\n3/qmiwTU6NOLmAe2U1RNzIEgF8S7ZQAAIABJREFUqj37OCqNGq2dDe49OxJzIIismHgywqNw72G8\nAo9zWz8Ug4HUkFBi9gdSpVlDrKq5AeDWtS2pIaGm84+qtGhM/PGz/3rmKx+v5+gr75pOns2KjSd4\nzielGmwBhKzZarpgReBrM3H0rW86UdzzxZ5EH8j/enHHzhRaF33gODXuy+vRswPR+4JIvxWJ1s4G\nx6YNAOP5MbZ1apB86QYA9l61yE1OMw0ginJ59U8cGjidQwOnc3j4bJzuy1Lrpe5E7T+R7zkxAWcL\nravesy31R70EGH90VevZjrjjxpOEWy59F52tNUdem1uiwZaxfczzngM0fX8CWlsbjo+cmaetDj0z\nisDBxs/ChcVfkBEeWaLBFsC5z39md7/Z7O43m78GL8ClmRd2tdwB8Or7OBH7TuZ7TuTRc4XWefV9\nHN83+wBg6exAvRe7ELozABSFTp+Nx6lxHQA8e7bBkKsv9VUKzda+BgM+M8bg2KwhALZ1PbGpXYPk\nEiwrK047fxfOBScRess4CN32yy06d3LLU9OogQP/nIwnLt74o23/gSiqV7OmShULtv1yi9VrjfvG\nuPgsfvktjCd6PvrMG8CC+R/Rzv8p2vk/RddOfWjj3xwv7zoAjBg5kB2//5nvOadOnqNTp7a4ubkC\n8Oxzvbhx4xZxcQmMHDmQWXOMMy1ubq4Mf70/W3789aGyVdS+/m/tN1EUWn40FQcf48EN9+7tUHJz\nSb1yE3vvWjSZPQa1pXEQXv0p4+xXQcrje0hjY0WD8a+ZzjOqNeg549VyixggxAfeyeBpzFC9Ty9i\nDzz4e6PwmtgDQVR/pluenLEHAskIu43GzgaHpsa+fff7J/XydTTWVjQY//q9nAOfLzanOffxcPd3\nRd738mHaUzw6BUOF/q+iMPs8q0aj4e2332bIkCGo1Wpq1arFxIkT2bFjR5HPc3Z2ZtiwYQwePBi9\nXk+NGjXo3bvgI1MAfn5+rFixAk9PT4YMGUK/fv3w9PQscolhWclJSObios9osmgiKp2WzPBILsxf\niX0jLxpOHcPxYRMLrSnOuWnLqD9hJNVfeALUKm58vZWUCyFFZjm/4HOavj8BtU5LRlgUwfNXYd+o\nHj7TxxA4ZFKhNWA8adW6hgf+G1eg1mkJ//lPEk+eN2aZ9RE+00ZTZ/hLGLJzODfjQ1AUUq/c4OKy\ntTRbOgmVVkNuShpnZ3xoymRTsxpRF8snc1nLTkgmeMEX+C0Zj0qrJSM8krNzPwPAwacejWe8QcCg\nKUXWhW3bjU0Nd9p/vwyVVkvYz3+RcNJ4kYRTkz+g0YRhqC10KLl6zi9ZS0a4cXbDplY1Mkow2Coo\n8+n5q2m19F3UOi1pYVGcnvMFAI4+dWk6cySHBk4vsu78R9/TdPrrdN68FEVRiNp3guubduHk1wD3\nzq1IvRlB+6/mmLZ5ceWPxAYUvnTPXO+5Y7OGVO3UmrSbEbRes9C0vauf3bu88aPKik8hcPZXdFzx\npvGfeAiL5tiMtQA4Na5Dmzmvsbvf7CLrLny1g7aLRvHktoWgUhH85S/EBxvPAQiY+iVt5gw3/s0x\niRx679NSZzRnnzozZTkN3huGSqvFkJND8OxPyIqJLypOiTg7WzJ7hi9TZ5wiJ0fBs4YNc2f7cv5C\nEguXBPPDhg60ae3CoIF1Gf1mEDqdCgcHHSuWGmd3hg2ux5z5Z+k38DAKCiNf96ZJ49Kd+1YSMTFx\njB41ie83fYGFhY7r124y4jXj4Klly6Z8/uVS2vk/xf59R/n4o9Xs+vNHsrNzSIhP5JWXjFdvXb7s\nc7765iOC/vkDlUrFogUfc+LEoy11hYrZ1+/mMud+8+ysT2k8fRRqnZas2EROTVoBwO2dB7Hx9KDd\nhsUoej2p18IIXri6wIzl8T0Ud/QUYVv/Q+s1C0ClNl6+ffGXRT4nJyGZCws/w/f9icYM4VGcv/N7\no9G00QQNnVRoDUD4z39g7elOm28/MOb85V7Os1OX0eC94agtjd8/F5euJiM8iozwKG5t/Q+tVhv3\nV2khoVxcUnxOc7anTU2PfKtmHqY9hfi3qBSlsJXz4kH7OrxU3hGK1PXINv5ul//y1BVN94CtlSbn\nbv9+5R2jWL0CN7Ojdf5LLFc0Tx//odK875v9hpV3jCL1O70eoMK3Z/eArSTHlfwCL+XFweVTbCzr\nlHeMYqVn3ag0fb2y7Dsreh8CYz/a0/7l8o5RpG5HfwIqxz5Jz/flHaNYGgYWX1RBeNo/+j9pYU7/\n396dR0VV/38cf84AIrIoguKCqCCWZmqItlhaaibW91uSkJio5bGs1COKOyaikmuYWG5pKqdUTDjH\nXMq00lJzaaOfkQsGilruIYsoML8/PMwXZEBGm9B6Pc7xnLoz87nvz713PnPf9/O+l8zLX9z8TX8D\n3UkoIiIiIiJWK9IfPq6Uf8zf4RIREREREbnTKOESERERERGxEZUUioiIiIiI1e6kJwHeyTTDJSIi\nIiIiYiOa4RIREREREQGuXLnC6NGjOX/+PM7OzsycOZPatWuXes/y5cvZuHEjBoOBIUOG8OSTT1bY\nphIuERERERGxWpHpn/eUwtWrV9O8eXOGDRvGpk2beO+994iKijK/npWVxapVq9i6dSt5eXk899xz\nN024VFIoIiIiIiICfPfddzz22GMAdOrUiT179pR63cnJiQYNGpCXl0deXh4Gg+GmbWqGS0RERERE\n/nXWrVvHypUrSy3z8PDA1dUVAGdnZy5fvlzmc/Xr1+fpp5+msLCQV1999abrUcIlIiIiIiL/OiEh\nIYSEhJRaNnToUHJycgDIycnBzc2t1Os7d+7kzJkzbN++HYBBgwYREBBA69aty12PSgpFRERERMRq\nJoru6H+3IiAggB07dgDXk6t27dqVer1mzZpUr16datWq4ejoiKurK1lZWRW2qRkuERERERERICws\njLFjxxIWFoaDgwNz584F4IMPPsDHx4euXbuye/duQkNDMRqNBAQE0LFjxwrbVMIlIiIiIiLC9Ydi\nzJ8/v8zyl156yfzfw4cPZ/jw4ZVuUwmXiIiIiIhYzcQ/77HwtqB7uERERERERGzEYDKZTFUdhIiI\niIiI3F3quLSv6hAqdDZ7f1WHAKikUEREREREbkGR6daeBPhvo5JCERERERERG1HCJSIiIiIiYiMq\nKRQREREREavd6h8X/rfRDJeIiIiIiIiNKOESERERERGxEZUUioiIiIiI1Uwm/eHjytAMl4iIiIiI\niI0o4bpDxcfHs3r16jLLhw4dWmbZ6tWriY+PL7M8KSmJOXPmlFoWERHB1atXy11vx44dKx1jly5d\nyM/PL7Vs586drF27tsx7Q0NDyczMLLctS7HejnHjxrFz585Sy86ePUt0dHSZ986ZM4ekpKRKtftX\nx3mjvXv3EhERUWb59OnTOXXqVKllaWlphIeH39b6wsPDSUtLu6027nRLliwhJSWlqsOwOUv7srzj\n6XYlJSWxffv2v7zdW1U8vpSMa+TIkTz//PMcPnyY8PBw+vTpw59//mlVu5bG25vFcDs+//xz/vjj\nj9tq425k63HVVvLz8+nSpUtVh/GXyczMJDQ0tKrDqJRDhw6xf//1P2hr6VzkTrN//35+/fXXqg5D\nqpBKCu8yCxYsuK3Px8XF/UWRWNapUyebtn876tSpYzHhuhtMnDixqkO4a73yyitVHcI/TnBwcFWH\nYFHJuHbv3s23337LqVOnyMnJqfRFlZJud7y11qpVq4iOjsbLy+tvXa/I3Wbr1q14enrSvn37qg6l\nUtavX0/Pnj259957qzoUqSJKuKxw7do1xo8fT2ZmJoWFhbz00kusXr2apk2b8ttvv2EymYiLi6NO\nnTrMnTuXAwcOUFRUxMCBAwkKCiI8PJx7772XI0eOkJ2dzTvvvEPDhg3LXd+2bdvYsmULV65cISoq\nitatW9OxY0d27drFgQMHiI2Nxc3NDTs7O9q2bWuxjZ9++omXX36ZCxcuEBYWxuLFi9myZQu///47\n48aNw97enoYNG3Ly5EkSEhK4evUqo0aN4tSpU9SqVYv58+fj4OBQboxvvvkmJ0+exMPDg5kzZ7J5\n82aOHTtGZGQkcXFxfP3119SrV4+LFy9WahsvX76cTZs2YW9vT2BgICNHjqRHjx5s2bKFCxcu0Llz\nZ3bv3o2zszMvvPACycnJ5bb10UcfsWzZMgoLC5k+fTp2dnaMHDmSxMREPvvsMxYuXEjt2rW5du0a\nvr6+Ftu4cuUK48eP59SpU1y7do2nnnqq3FhHjx7Nd999x8yZM7G3t8fJyYl33nkHR0dHJk+eTEZG\nBkVFRYwYMYIHH3yw3LgzMjIYNGgQFy9eJCwsjJCQEMLDw4mOjsbV1ZXIyEhMJhN16tQpt42hQ4fS\nv39/OnTowM8//0x8fDxubm6ljt2ePXua3x8fH4+npydhYWGkpaURHR1NQkIC//nPfwgMDOTQoUP4\n+vri4eHBgQMHqFatGkuWLOHKlStMnDjRvH+joqK45557LMaUnZ3NxIkTuXz5MmfOnCEoKIiNGzey\nefNmDAYDMTExPPzww3h5eTFlyhScnZ3x8PDA0dGRGTNmWGwzPj6eY8eOcf78ebKysoiKiiIwMJAn\nnngCX19f/Pz8yMrKomfPnnTo0KHUvpw0aRKtWrWyat8US0pKYv369RQVFdGjRw+2b99OXl4e7u7u\nLFiwgI0bN7Jjxw6uXLnC8ePHGTx4MMHBwaSkpFjsW0JCAhs3bsRgMNCzZ0/69+9f4fotjUUA7777\nLufOnSMvL4+333671GfWrVvH6tWrKSoqokuXLgwfPrzcvm3bto2cnBwuXrzIG2+8wVNPPcUzzzxD\nkyZNcHBwwNfXF09PT/r06cPUqVNJSUnh2rVrDBs2jG7dulkc/yrTh4YNGxIbG0tRURFeXl7MmTOH\n6tWrW4zT0vhSfBwfOnSI7OxsXnvtNQoKCjhy5AhdunShUaNG5j65u7sTFxeHnZ0djRo1IiYmhk8+\n+cS8X4cPH05kZCS7du3il19+YerUqdjZ2eHo6MjUqVNp0KCBVWNcye0XExNT5ntz+vRpUlNTGTt2\nLLNnz2bs2LEkJiYC12fP3n77bZKTk/nhhx/Izc1l+vTpTJgwgXr16nHixAnuv/9+pkyZUul9Wq1a\nNRYsWIDJZOK+++5jypQpbN26lQ8//JCCggIMBgMLFiygdu3aFfbrr3Ljb5W3tzfz5s3D0dGRWrVq\nERsbS2pqKmvWrDFfOCz+PRw3bhyXLl3i0qVLLF68mJo1a9oszpycHCIjI8nKysLHxweAffv2mbdl\nTk4Oc+fOZd++faSnpzN27FgKCwt57rnn+Pjjj3F0dLRJXMHBwSxduhQ3NzcefPBBEhISuO++++jV\nqxfPPfeceZwtHl9Onz7NpEmTyM/PNx/TxQoLCxk3bhz+/v5/6QWrpKQkvvzyS65cucLZs2fp378/\n27dv58iRI4wZM4bc3FxWrlxJtWrVaNKkifk7eeNY2rFjR5KTk3FwcOC+++4DIDo62jzDvGDBglLH\nwK2ut6LPdOvWjS1btrBixQqMRiPt2rUjMjKS+Ph4MjMzOX/+PKdOnWL8+PG4u7vz9ddfc/DgQZo1\na0ZISAi7du0Crlcd9enTh5MnT950fXeqIj0WvlKUcFlh7dq11K5dmzlz5pCdnU1wcDDVqlXj+eef\nJyYmhg8//JDFixfz2GOPkZmZyerVq8nPzyc0NNRcqte6dWsmTpxIXFwcmzZtqnAwa9iwITExMeYv\nXMnkYsqUKcyfP5+mTZsyefLkctuwt7dn2bJlnDx5stS6Zs2axZAhQ+jcuTOJiYmcPHkSgNzcXCIi\nIvD29iY8PJzU1FRat25dbvthYWG0bduWWbNmkZiYiIuLCwA///wz+/fv5+OPPyY3N5fu3bvfdPtm\nZGSwd+9e1qxZg729PcOGDWPnzp0EBgby448/kpGRgb+/P3v27MHZ2fmm5Y8BAQG88sor7Nixg9mz\nZzNu3Djg+onejBkzSEpKolatWhXugzVr1tCwYUPi4uJIT0/nq6++4vLlyxw6dIgtW7aUivXLL79k\n3759BAUFMWDAAL744guysrL46quvcHd3JzY2losXL9KvXz82bdpU7jqvXbvGwoULKSoq4tlnn6Vr\n167m1xYtWsQzzzxDaGgomzdvtlh2ChASEkJycjIdOnQgKSmJTp06cfz48VLH7kMPPVTh9oPrJxfP\nPPMMkydPpkePHowfP56IiAj69evH0aNH2bhxIw899BB9+/YlPT2d8ePHlxtTRkYGTz/9NN27d+eP\nP/4gPDycli1bcuDAAdq0acPevXuZMGECISEhzJo1C39/f+Li4m5aYlW9enVWrVrFkSNHGDVqFBs2\nbOD06dMkJSXh7u5u3u+W9mVqaqpV+6YkNzc33n33Xd577z3zj+6gQYP4+eefgesJ5rJly0hPT2fI\nkCEEBwczefLkMn07evQomzdv5qOPPgLgpZde4tFHHy33IgCUPxb17t2bZ599lvj4eD799FPzd/f8\n+fMsXbqUDRs24OjoyNy5c8nJycHZ2dli+3l5eXzwwQdcuHCBkJAQunbtSm5uLq+//jotW7Y0lzBv\n27aNixcv8vHHH/Pnn3/ywQcf4ODgYHH8c3Nzq1Qf3nnnHfz8/Fi3bh1paWnmE6qSbja+REdH8/nn\nn7Nw4UIyMzMZOHAgjRo1YtmyZeY+GY1GEhMT8fDwYN68eSQnJ2Nvb4+bmxsLFy4s1V5UVBTTp0+n\nRYsWbNu2jRkzZjB48GCrxriS22/27NkWvzctWrQgOjq6wotcvr6+REVFkZmZSXp6OsuWLcPJyYlu\n3bpx9uzZci/ElNynvXr1wmAwkJycjIeHB0uXLuX3338nPT2dJUuW4OTkxJtvvsk333zDf//73wr7\n9Vcp+Vs1ePBg8vPzWb16NV5eXqxcuZKFCxfy+OOPl/v5hx56iIEDB9o8zjVr1tC8eXMiIiL46aef\n2Lt3L0eOHGH27Nl4eXmxaNEiPv30U8LDwwkODiYyMpKvv/6aBx980GbJFlwvqytO/r29vdm9ezeO\njo74+Pjw6aeflhlf5s+fT3h4OJ07d2bPnj3MmTOHiIgICgoKiIyMJDAwkBdffPEvjzMnJ8d8sXLF\nihUkJiayd+9eVqxYQVpaGsnJybi4uBAbG8vatWupUaOGxbG0V69eeHp6mse4559/nsDAQMaNG8eu\nXbtKXVC81fWW95lVq1YRGBhIfHw869evx8nJidGjR5uTqGrVqvH++++za9culi9fzrJly3jsscfo\n2bMnDRo0sHrbrFq16o5OuKRylHBZIS0tjUceeQQAFxcX/Pz82LVrl/nENSAggC+++AIvLy8OHjxo\nvr+moKDAnNC0bNkSgHr16nHu3LkK11c8Ve7v78/Zs2dLvXbu3DmaNm1qXu/x48ctttGyZUsMBgN1\n6tThypUrpfrywAMPANCuXTs++eQTAGrWrIm3tzcAnp6e5OXllRufg4ODeWYtICCAXbt2cf/99wOQ\nnp5Oq1atMBqNuLi40Lx58wr7CpCamsrjjz9uPtkIDAzkyJEjdO/enR07dpCZmUlERATbt2/HaDTS\nu3fvCtsLDAwE4IEHHmDWrFnm5RcuXKBmzZq4u7ubXy/PsWPHzGWSTZo0wc3NjXPnznHs2DHatGlT\nJtYhQ4awaNEiBgwYgJeXF61bt+bw4cN899135vuICgoKuHDhQrlXjtu2bUu1atUA8PPzK3VfSHp6\nurnGPiAgoNzk5rHHHmP27NlcunTJPNPw6KOPAv87dk+cOFHh9itWfMLr5uaGn5+f+b/z8/M5fPgw\n3377LVu2bAGo8B4ZT09PVq5cydatW3FxcaGgoIDQ0FCSk5M5e/YsXbp0wd7enjNnzuDv7w9cPzY3\nb95cYXzF3z9/f3/zd8rd3d28f4vduC8HDhxIdHS0VfumpKZNm2I0GnFwcGDkyJHUqFGD33//nYKC\nAgBz6Uj9+vXN901a6tvhw4c5deqU+WTxzz//JCMjo8KEq7yxqFWrVsD1bV1yfDlx4gT+/v7m2aLI\nyMgK+9a+fXuMRiOenp64ublx4cIFc59L+u2338xjQM2aNRkxYgRLly61OP7dmHBZ6sMXX3xhPsZC\nQkLKje9WxpeSfXJyciIjI4MRI0YA12eyH3nkERo3blymj3B9v7Vo0cLczty5c28phuK2rfneAJhM\npjJtAPj4+JgvctWpU6fC+1hK9t/Z2ZmrV6/i4eEBwODBgwHw8PBg7NixODs7c+zYsXIrJ2yh5G/V\n6dOn8fHxMZdWtm/fnrfffrtMwlXedrGl9PR0OnfuDECbNm2wt7fHy8uL6dOnU6NGDf744w8CAgJw\ncXGhffv2fPPNNyQlJfH666/bNK7u3buzaNEi6tevT0REBAkJCZhMJp566ilmzpxZZnw5fPgwixcv\n5v3338dkMmFvf/108NChQ7i4uJCbm2uTOIu/R66urvj5+WEwGKhZsyZ5eXk0a9bMfDwXb7s2bdpY\nHEtvVHLsK3muczvrLe8z+fn5HD9+nAsXLpgv2Obk5JjPw4o/V69evQrvmYfSx3BF65O7nx6aYQU/\nPz8OHDgAXL96ffjwYby9vfm///s/AL7//nuaNWuGr6+veUp/5cqVBAUF0ahRI6vXV3wSeOjQoTJX\nRby8vMw3yBdfUbfEYDBYXN68eXN++OEH4Hopx83eb8m1a9dITU0F4MCBA+YTSYBmzZqRkpJCUVER\nubm5HD169KbttWjRgpSUFAoKCjCZTOzfv5+mTZvSsWNH9u/fz8WLF+ncuTMHDx7k119/rXDmDf63\n/W6MzcPDg6ysLPNJZEXbz8/Pz/z6iRMnzGVavr6+FmPdsGEDvXr1IiEhAX9/fxITE/H19eXpp58m\nISGBpUuX0qNHD2rVqlXuOn/55RcKCgrIzc0lLS3NXLZSHE/xfqsobqPRSI8ePYiOjqZbt274+/tb\nPHaLOTo6mpP6gwcPlmqromPC19eXgQMHkpCQwLx58yq8Gr58+XLatm3LnDlz6NGjByaTiYcffpjU\n1FTWr19vPsGuV6+e+XgpeWyWpzjew4cPm0/QjMayQ9uN+3LUqFFW75uSjEYjv/76K9u2bWPevHlM\nmjSJoqIi8w+ope1mqW++vr40a9aMVatWkZCQQHBwcLllmSX7UtH+vJGPjw/Hjh0z//gPHz68wpnD\n4m167tw5srOzzSfmN25XX19f8za9fPkygwYNqvT4V14f0tPTgesPO/n8888txncr40vJPuXn5+Pj\n48N7771HQkICQ4YMMSfulo6dunXrmm94379/P02aNLmlGIrbLu97YzAYMJlMODo6cv78eQoLC8nK\nyip10aVkfNaM1yX7f+3aNQAuXboEwLRp09i3bx/z588nLi6OadOm4ejoWOpk0NZK9sXd3Z3s7GzO\nnDkDXC/Za9KkSalx6uTJk6USVWu2xe3w8/Pjxx9/BP43Vk+aNInY2FhmzJhB3bp1zdstNDSUdevW\ncf78eZvfu9O8eXNOnDhBSkoKnTt3Jjc3l+3bt5c7vvj6+hIZGUlCQgJTpkyhR48ewPULbEuWLGHD\nhg02echDefvJYDCQlpZmTvT27dtnTqItfcZgMFBUVFTq//+O9Rbz9vamfv36LF++nISEBPr162e+\nQFFevMXHRUFBATk5OVy9erXUuPF3HcN/NZOp6I7+d6fQDJcVQkNDmTRpEmFhYeTn5zN06FCSkpJI\nTk5mxYoVODk5MWvWLGrVqsW+ffvo27cvubm5dOvWzXz1xBqZmZn079+fq1evEhMTU+q1mJgYxowZ\ng4uLC87OzlbXrEdGRjJhwgSWL1+Oq6ur+eqWNRwcHEhISCAjI4MGDRowatQo80xZixYt6NSpE717\n96Zu3brmE7aKNG7cmICAAMLCwigqKqJdu3Z069YNg8FAvXr1aNCgAUajkaZNm1ZqBuKnn36if//+\nGAwGYmNjzYOdvb09b775JoMGDaJmzZoV9r1Pnz5MmDCBfv36me8zuXjxIvfccw9BQUFlYk1JSSEq\nKgonJyeMRiMxMTF4eXkRFRVFv379yM7Opm/fvhZP6oo5OjoyePBgsrKyGDZsWKkE4LXXXmP06NFs\n3ry5whNsuF5i0a1bNz777DPq1q1b5tgtuU+CgoIYMWIE+/fvt1jCVZ4hQ4YwceJEEhMTyc7OrvCp\nbk888QTTpk1j8+bNuLq6YmdnZ74vbvfu3ebEcvLkyUyYMIEaNWrg4OBw0wcIpKamMmDAAPLy8krd\nh3CjG/flhAkTuOeee6zaNzdq3LgxTk5O9OnTB7g+y1B8kmiJpb7de++9PPzww4SFhXH16lVat259\n0z6XNxaVp3bt2gwePJh+/fphMBh44oknKlzHuXPnGDBgAJcvX2by5MnY2dlZfF/Xrl3Zs2cPYWFh\nFBYW8sYbb9CpU6dKjX+W+uDn58eECRMwGo3UqVOn3BKxWxlfbuyT0WjklVdewWQy4ezszKxZszh9\n+rTFz06bNo2pU6diMpmws7MjNjaWRo0aWR1DsfK+Nw888ABjxoxh+fLldOzYkd69e9OoUSMaN25c\n6bYr23+TycSrr76K0WikZcuWtG/fnoCAAF544QVzaWVFx7ItGQwGpk2bxrBhw8xX+d966y3c3Nxw\ndXUlJCQEPz+/m46BthAWFsaYMWMICwvD19cXBwcHnnzySV588UWcnJzw9PQ0b7c2bdqQkZFhk9I8\nSzp06EBmZiZGo5H27dtz9OjRcseXsWPHEh0dTX5+vvle3GLVq1dn8uTJjB07lnXr1pkrLmzJzs6O\nYcOG0b9/f4xGIz4+PkRGRpZb4t2qVStmzZplnhH/u9ZbrHbt2gwcOJDw8HAKCwtp2LChxXtVi7Vp\n04Y5c+bg7e1N//79eeGFF/D29q6wxFD+WQymv/MS1j9Q8cMMbvdL/3fbsGEDbdq0oXHjxqxbt47v\nv/+et956q6rDEuHDDz8/kZgcAAADwklEQVQkKCiI2rVrExcXh4ODQ7mJXMmHfdwNrOlbVUlKSjI/\n+Oaf4p/YJ2v82/tfVYqKiggLC2PZsmW3dNFV5G7g5tSyqkOoUFbeL1UdAqAZrio3dOjQMvX7Li4u\nZW7a/qsV13kXz8TExsZafF9KSgqzZ88uszwoKIi+ffvaNMabuXr1KoMGDSqzvGnTpmVmBO80CxYs\nYO/evWWWF185/zfz8PDg5ZdfpkaNGri6ujJjxoxyvyfF90TeLSz1rapER0db/BtsFV2l/butXbuW\njRs3llk+cuTICu+9rCp38ngpf68TJ04wdOhQgoODlWzJP5qJwqoO4a6gGS4REREREbGaq1PF9xxX\ntct5h6o6BEAPzRAREREREbEZlRSKiIiIiIjV7qQnAd7JNMMlIiIiIiJiI0q4REREREREbEQlhSIi\nIiIiYjUTKimsDM1wiYiIiIiI2IgSLhERERERERtRwiUiIiIiImIjuodLRERERESsZjIVVnUIdwXN\ncImIiIiIiNiIEi4REREREREbUUmhiIiIiIhYzWTSY+ErQzNcIiIiIiIiNqKES0RERERExEZUUigi\nIiIiIlYzoZLCytAMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIR\nEREREbERlRSKiIiIiIjV9JTCytEMl4iIiIiIiI0o4RIREREREbERlRSKiIiIiIjVTKbCqg7hrqAZ\nLhERERERERtRwiUiIiIiImIjSrhERERERERsRPdwiYiIiIjILdBj4StDM1wiIiIiIiI2ooRLRERE\nRETERlRSKCIiIiIiVjOZVFJYGZrhEhERERERsRElXCIiIiIiIjaikkIREREREbGaSU8prBTNcImI\niIiIiNiIEi4REREREREbUUmhiIiIiIjcApUUVoZmuERERERERGxECZeIiIiIiIiNqKRQRERERESs\npz98XCma4RIREREREbERJVwiIiIiIiI2ooRLRERERETERnQPl4iIiIiIWM2kx8JXima4RERERERE\nbEQJl4iIiIiIiI2opFBERERERG6BSgorQzNcIiIiIiIiNqKES0RERERExEZUUigiIiIiItYzmao6\ngruCZrhERERERERsRAmXiIiIiIiIjaikUERERERErGZCJYWVoRkuERERERERG1HCJSIiIiIiYiMG\nk0mPFxEREREREbEFzXCJiIiIiIjYiBIuERERERERG1HCJSIiIiIiYiNKuERERERERGxECZeIiIiI\niIiNKOESERERERGxkf8HmZWqmR+I/yUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEeCAYAAAAjC0L/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//H3TCYJqUASCDVAQkAQAUNRlwWU4gK63xWQ\nEiDAyqKI4EqRXkIxIlUFREVQyFcRUNgfolgABUW6AgpIldBrAiG9zPz+yGYgpNwkkEnC9/V8PObx\nSGbO3Pu55945cz/3nHPHZLPZbAIAAACAPJiLOwAAAAAAJR+JAwAAAABDJA4AAAAADJE4AAAAADBE\n4gAAAADAEIkDAAAAAEOW4g4AAAAA+L8iXR8X+D1O6l0EkRQcPQ4AAAAADNHjAAAAADiI1Zpe4Pc4\nlZBL/SQOAAAAgIPYbGnFHUKhkTgAAAAADmKzFbzHoaQgcQAAAAAcxEqPAwAAAAAjDFUCAAAAYIjE\nAQAAAIAhm5XEAQAAAIARehwAAAAAGGGoEgAAAABj1tTijqDQSBwAAAAAB6HHAQAAAIAxJkcDAAAA\nMETiAAAAAMAQQ5UAAAAAGDHR4wAAAADAUClOHMzFHQAAAACAko8eBwAAAMBRSnGPA4kDAAAA4CAm\nJkcDAAAAMGRNL+4ICo3EAQAAAHAQ7qoEAAAAwBg9DgAAAAAMFUGPg9VqVXh4uI4cOSIXFxdNnz5d\nNWrUsL++bt06ffjhhzKbzeratat69epVqPWQOAAAAAAOYiqCHoeNGzcqJSVFK1eu1L59+zRjxgwt\nWrTI/vrMmTO1fv16ubu766mnntJTTz2lsmXLFng9JA4AAACAoxRB4rB37161bNlSktS4cWP9/vvv\nWV6vW7eubt68KYvFIpvNJpPJVKj1kDgAAAAADlIUPQ5xcXHy9PS0/+/k5KS0tDRZLBmn+sHBwera\ntavc3NzUvn17eXt7F2o9/HI0AAAA4CjW9II/DHh6eio+Pv7WKqxWe9Lwxx9/6IcfftCmTZu0efNm\nRUdHa8OGDYUKncQBAAAAcBCTNb3ADyMhISHaunWrJGnfvn2qU6eO/TUvLy+VKVNGrq6ucnJyko+P\nj2JjYwsVO0OVAAAAAEcpgqFK7du317Zt29SzZ0/ZbDZFREToiy++UEJCgnr06KEePXqoV69ecnZ2\nVkBAgDp37lyo9ZhsNpvtHscOAAAAIAfJ+1oU+D2ujbcVQSQFR48DAAAA4Cj8ABwAAAAAIyartbhD\nKDQSBwAAAMBRSnGPA3dVAgAAAGCIHgcAAADAUUpxjwOJAwAAAOAgJhtzHAAAAAAYoccBAAAAgCHu\nqgQAAADAEIkDAAAAACMmhioBAAAAMESPAwAAAABDJA4AAAAADJE4AAAAADDEHAcAAAAARkz0OAAA\nAAAwROIAAAAAwBCJAwAAAABDJA4AAAAADFltxR1BoZE4AAAAAI5SinsczMUdAAAAAICSjx4HAAAA\nwFFKcY8DiQMAAADgKMxxAAAAAGDIRo8DAAAAACP0OAAAAAAwROIAAAAAwBCJAwAAAAAjpXiKA4kD\nAAAA4DD0OAAAAAAwRI8DAAAAAEMkDgAAAAAMld6RSiQOAAAAgKPYrKbiDqHQSBwAAAAAR2GoEgAA\nAABD9DgAAAAAMMJQJQAAAADGSnHiYC7uAAAAAACUfPQ4AAAAAI5iK709DiQOAAAAgIMwxwEAAACA\nMWvpnSlA4gAAAAA4Cj0OAAAAAIzYmOMAAAAAwBBDlQAAAAAYYXI0AAAAAGMkDgAAAACMFMUcB6vV\nqvDwcB05ckQuLi6aPn26atSoka3cxIkTVbZsWY0cObJQ6ym9g6wAAACA0sZqLvjDwMaNG5WSkqKV\nK1dqxIgRmjFjRrYyn376qY4ePXpXoZM4AAAAAA5is5oK/DCyd+9etWzZUpLUuHFj/f7771le/+WX\nX7R//3716NHjrmIncQAAAAAcxGYzFfhhJC4uTp6envb/nZyclJaWJkm6fPmyFi5cqEmTJt117Mxx\nAAAAABylCG7H6unpqfj4+FursFplsWSc5n/99deKiYnR888/rytXrigpKUmBgYHq0qVLgddD4gAA\nAAA4SFHcjjUkJETff/+9OnXqpH379qlOnTr21/r27au+fftKktasWaOTJ08WKmmQSBwAAAAAhymK\nuyq1b99e27ZtU8+ePWWz2RQREaEvvvhCCQkJdz2v4XYmm81mu2dLAwAAAJCr2OE1C/we77mn7nkc\nhUGPAwAAAOAgpfmXo7mrEgAAAABD9DgAAAAADlIUcxwchcQBAAAAcJQiuB2ro5A4AAAAAA5Smuc4\nkDgAAAAADsJQJQAAAACG6HEAAAAAYMhmY44DAAAAACP0OAAAAAAwwhwHAAAAAIaY4wAAAADAEHMc\nAAAAABiixwEAAACAIeY4AAAAADBE4gAAAADAEEOVAAAAABhicjQAAAAAQ6W5x6H0pjwAAAAAHIYe\nBwAAAMBBmBwNAAAAwBCJAwAAAABDpXmOA4kDAAAA4CD0OAAAAAAwxO1YAQAAABiy0uMAAAAAwAhz\nHAAAAAAYYo4DAAAAAEMkDgAAAAAMkTgAAAAAMGTlrkq5S9fHRb2Ku+ak3iU+ztIQo1S64tzQLLS4\nwzDUcfeKUlOfXzbtVdxhGHpqzyclvj6d1FuS9G3zHsUcSd6e3LVSmx97trjDMNRm+2el5rO+6dFu\nxR2GobY7VmtLiy7FHYah1tvW6HSP5sUdhqGAlbuUMsejuMPIk8uI+BLfHkkZbVJpweRoAAAAAIYY\nqgQAAADAEIkDAAAAAEP8ABwAAAAAQ6W5x6H0TusGAAAA4DD0OAAAAAAOUpp7HEgcAAAAAAdhjgMA\nAAAAQ/Q4AAAAADBE4gAAAADAEEOVAAAAABiixwEAAACAIRIHAAAAAIYYqgQAAADAED0ODmKz2TR+\n7DrVDq6g5wb8pbjDyRVx3lvFFWeFFg+rzks9ZXax6Oax0/p9+vtKi0/Mdzmzq7MeHPWcytYPlMxm\n3fj9uA7OXCprcqp8mtTXA6/0kcnJSak3burw3OW6eex0kW9Tce7zii0aq+6QzHo6owPTcq7P3MpZ\nPNzUcNLz8qxZRTKZdPbLH3Vy2ReSJN8m9fXAv3vJbHFSenKKDs5erhsHTxT5NhVXffq1eFjBg0Nl\ndnHWzeOndXD6u0rPoS6NyrlW9NUjS6dre+9RSr1xU5LkXS9IdYf3k5Obq0xms04t/3+68PVPBY7R\n9y8hCnqxt0zOFsWfOK3Dr72j9ITEApVxreirph9EaFfYSHt8XvWCFPzKP+VUxlUmJ7OiIv+jS9/8\nWOD4bldSP+u+fwlR0OBeMjs7K+54lA6/tijnOsypjNmsOv/uJ59HGsnk5KTTn6zTubXfZXlv5aef\nUIXHm+vAyDfsz5VrXE+1h/SR2dVFaXEJOjRtoZLOX853Xfo81kS1BvWW2cVZ8cejdOT1hdlizq2M\n2cVFtUcMlFe92jKZTYo9eEzH5yyWNSVF7jWrqc6oF+XkXkY2m01/Lvpfxezal++48lLm4RYqFzpY\nJmcXpZ4+rmvvTpctMT5LGfe/dpD3/4RJNptsyUmK+WiOUk4elsnNQ76DJshStaZMJpPitnylm+uW\n35O47mSq9Tc5tZwqk5OLbFd+V9q3g6WUmzmXrf20LB0WK3VB5f9uZHk5tXtT5goNZUtNkPVgpKy/\nvntX8dx1O2Q2qe4rfeX3aMYxeurjL3R2zUZJkketqqo/9nk5uZeRbDYdW7hC13bsV82+/1ClJ2+1\ntS7lvGVxL6PNbf55V9viaKW5x8Fc3AHk14kTV/Rcv0h9veFgcYeSJ+K8t4orTpdyXnpo0gv6dfQ8\n/fjsCCWeu6w6Q0ILVC7on51lcjLrp15j9FPoKJldXRTU/x+yeLgpZOYwHXn7Y23rNVoHZyxV49f/\nLbNz0ebxxbnPXcp5qeHkF7R31Jva0nWkEs5d0gNDehaoXJ0XuynpUrS29hitbX0nqkbXdir3ULBM\nFic9/PpQ/fbaYv3Ya6yOL/mPGk99sci3qbjq07mclxpMfFH7x8zVtm7DlHjukuq81KvA5Sp3aqXm\n74erTEWfLO9r9MZwnXh/tXb0Ga1fXnlddV/pK/fqlQoYo7fqjX9Jv42dpZ09/63Ec5cUNLh3gcpU\n6thaIe9Ok2sF3yzveyhipP78YKV293tV+4e9puCX+8utWsHiu11J/aw7l/NW/QmD9dvY2drR499K\nPH9JtV/KXoe5lanauZ3cqlfSzt7Dtfu5Mare4yl5168tSbJ4e6ruqIGqO+I5mXTrBMa1go8avvGq\njsz6QLvCXtWV73fqgVcH5rsunct5q+74ITo0fpZ2hw5V4vlLqvViWL7LBPTrKpOTk/b2G649fYfL\nydVFAX27SJKCRzyvi19u0t7+I3Q0YqHqTxshOd39KYzZq5x8X5yoq3PH6MKwbkq7dE7ler2UpYyl\ncoDK93lZlyNe1sXRfXRjzVL5jchItsr1GKS06Mu6ODJUF8f1l1f7LnIJfuiu48rGzU+WDu8pbV0v\npX74sGw3Tsmp5dScy5YLkqVVhGS6VT9Oj78hpcQr9aMmSvvkcZlrPilTYIdCh3Mv2qHqndvLvXpl\n/Rw6Ujv6j1ONnp3kXT9IklRv1ACd++J77egzWgenvauGEa/I5JRxIWNHn9Ha0We09gyaovSkJB0Y\n/1aht6O42GQq8KOkKDWJw4qP96hzl8bq0PHB4g4lT8R5bxVXnH6PNtSNQyeVcOaiJOn059+pSocW\nBSoX8+thHV+6VrLZJKtNsUdOqUylCnIPqKzUuERd251xwhkfdV5p8Ykq91BwkW5Tce7zO+sp6rON\nqtLRuD5vL3do9nIdfutjSZKrXzmZXSxKi0uQLS1dmzoOUeyRKEmSe9WKSr0eV+TbVFz16ftII904\ndMJeR2c+/06VOvy1QOVc/cqrYutm+mXYjCzvMbs46+QHnyl692+SpOTL0Uq5flOuFbOevBvxad5I\nsYePK/FsxrrPrflGlf7WMt9lXPzKy69Vc+0fHpEtvj+XrlZMZnxXopV6I7bA8d2upH7WfR5pqNjD\nJ5R4JrN+vs1eh3mUqdD6EV1Y/71s6Val3YzXpY3bVKlDxmv+bR9TyrUYHZsfmWV5Fds8qqvbf9XN\nI39mLO8/3+nomx/moxYzlG/eWDcPH1fi2QuSpPNrv5b/ky3zXebG/kM6vWz1f+vRqrijf8q1UgVJ\nksnJLIuXpyTJyd1N1pTUfMeVlzKNHlHKiUNKu3hGknTzu8/l8desJ9S2tFRde+81Wa9fkySlnDws\np3K+kpNFMR/N0fXItzPiKucnk7OLrAn3vv0x12gr28W90vWMntT0/Ytlrtcje0GLmyydlihty5gs\nT5v8H5b10ArJZpWsqbL++bXMwZ0LHc+9aIcqPt5M59f/YD9GL373syp3zDgWTE5mOf93f1s83GRN\nTsm27Dr/DtPVn/fp6vZ70/PkSDabqcAPI1arVZMmTVKPHj0UFhamqKioLK9v3rxZXbt2VY8ePbRq\n1apCx15qhipNmNRRkrRjx5/FHEneiPPeKq44y/j7KunSNfv/SZej5ezpLouHW5YhDHmVu7rzt1vl\nKvmpZmhH/R6xWAmnL8jiXkZ+jzykqzt/U9n6gfIKrCZXv/JFuk3Fuc/d/H2UmI/6NCpnS7eq8dTB\nqtS2uS7+sEdxUeclSbb0dLn4eKvl/0bIuZyXfh07v8i3qViPzcu36ij58jU5e7rLycMtyzCBvMol\nX43R/tFzsi3bmpKqc+u+t/9f9Zm2cnIvoxu/Hy1wjMm3r/vKNVk8PeTk7mYftpJXmZSrMfp97Kwc\n47vwxWb7/1X+0U5ObmUUe/BYgeK7M9aS+FkvU9FPSZeu2v9PvnxNFk/3rHWYR5kyFbPGm3z5mjxr\n15Ak+5Clyk89nmWd7gFVZE1MVoNpr8g9oIqSLl3V0Tc/Mow1k2tFXyVfvi2eHPZ7XmVidu2/tSz/\nCqra42kdfWORJOnYnMVq9PYUVevxdzmX99bhyXOldGu+Y8uNxddfadduDcVKv3ZZZndPmdw87MOV\n0q9cUPqVC/Yy5fu+osQ9W6X0tIwnrOnyHTJF7o+0UcLuH5R2PusJ2z3hXU22m2dv/X/znEyuZSUX\nryzDlZzaz5f1wFLZrvye5e22C7tlrh+q9PPbJSdXmYOfkayFT77uRTuU02fK77/H6OGZS9X0nYmq\nEdpJLj5ldWD8W7Ldtr89AqupYuum+qnzy4XehuJUFEOVNm7cqJSUFK1cuVL79u3TjBkztGhRxucn\nNTVVr7/+uj777DO5ubkpNDRUbdq0kZ+fX4HXk2fiEBYWJpMp541bvrxoxvABJUIux73tzi+qfJTz\nfqCWQmYNV9Sqb3Tlp18lSXtHzFadwT1U9+Xeiv71D13bfVDW1LR7E3tJZM65czNbfeaj3L5J78jp\n9SVqMnOYgv/VRcfe/1ySlBIdq02dhsi7bk09umi8tvU/q/jTF+9N/CWIyZzLF84ddZnfcrmp2fcf\nqtGzo/b++3VZkwt4gpHbfrRaC1YmDzXCnlG17k9p/7DpOV6NzLeS+lnPZf9lrcPcy+S0/7Nt0x1M\nFif5/bWp9g6aqMQzF1Wte0c1nPGqdvV91TheSaZ87NP8lPGsG6gHI0br/OcbFP3zXplcnFVv6gj9\n8dp8Rf+8V14P1lGDN8bq5uHjWZLPQjHlMvDCmp69qGsZ+Q6eLCffiroc8e8sr11bMFnRi2fIb8Qb\nKvvsAN1Yvfju4sq+dsM4zY0GStY0WX9fLnkHZCmWvmWsnFpHyBK2XYq/KGvUZpmrPFL4aO5FO5TT\nMWq1yuzirIavvaLfpy7S1Z9+UdkGwXp4zijdOHTCvr9r9OioM6u/yXEuUmlQFJOj9+7dq5YtM3ps\nGjdurN9/v5U8njhxQgEBASpbtqwkqUmTJtq9e7c6duxY4PXkmThMmTJFkrRw4UK1bdtWTZo00YED\nB/T999/n9TagVAp+4VlVbNVEUkbX6M3jZ+yvuVbwUcqNOKUnJWd5T9KlayrXoHau5Sq3f0z1Rz+n\nQ7M+1IVvfs4oZDIpPTFJuwZNs7+v5arZSjh7f53k1nnhWVVsFSJJcvZwV+yJWxNCy+RWnxevqlyD\noBzL+T3aUDePn1by1etKT0zW+W9+VqU2zWXxcJNvswd16Yc9kqTYI6cUeyxKXrWr3zeJQ9Dz3VSh\nVVNJGcdm3PFbdelawUepudRl2QdrG5a7k8nZogaTBsszsJp2DpiopAtXChxv0sUr8q5/aziOawUf\npcbelPW2deenTG7x1Z8wRO61qmnvwHFKuljw+ErDZz350lWVffCO+rkRl6V+8iqTdOlqlp4N1wo+\nhifZyVdidOO3I/ahT+fXbVbd4c/J7OqSr+Qs6eIVed2+T/18c9zveZWp0LaFgkc+r+NzP9Dl7zIm\nvXsEBsipjKuif94rSbp58KgS/jwjr/p1lHx5u2FceUm7elEutW8NN3TyqaD0uBuyJSdlKefk668K\no+cq9dyfujxlsGypGfGWafSoUk8fV3rMVdmSE5Ww7Ru5P9LmrmLK0c2zMlVudut/zyqyJUZLaQn2\np8wP9pGc3WUJ2y6Tk3PGsKWw7Upb01kyW5S+dYKUFJNRttlw2a6fLFAI97odSrp4Ta5+5bK8lnz5\nmjyDqsupjIuu/vSLJOnG78cUd/KMyjWorUubr0lmkyq2eUQ7+o4tUPwlSVH0OMTFxcnT09P+v5OT\nk9LS0mSxWBQXFycvLy/7ax4eHoqLK9yQujznOAQGBiowMFBXr15Vp06d5O/vr/bt2+vs2bN5vQ0o\nlY6995m29R6rbb3Havs/J6lcg2D7pNCAru10eeuebO+5uuNAruUqtWmueiP7affQ12+dSEiSzaam\nb46Wd73AjHJtH5E1Ld0hd1VypKPvfaafeo/TT73Hads/J6l8lnpqq0tb9mZ7z5Udv+Varkr7RxT8\nfFdJktnZosrtH9W1PQdls1rVaNILKt+ojiTJM7CqPGpU0fXfi/6uSo6SOVl5R5/R2vXcBJW9rY6q\ndWmf47F5beeBfJW7U6PXh8ni4aZdhUwaJCl6136VbRBsn7RcpfOTurp1d4HL5KTBayPk5OGmvc+P\nL1TSIJWOz/q1nf+tn/+ur2rnJ3Xlx935LnNl625V/vsTGXMDPN3l376FrhjU75Utu1SuYV2VqVxR\nklTx8UcUd+J0vnt0Ynbtl/eDdeRWLeNOPlU6P6lrd8ScVxm/xx9T7WH/0oFhU+1JgyQlnr0gi4e7\nvBvUlSSVqeov95rVFHesYCe+OUk6sFOuwQ1kqVRdkuTZvkvGMKTbmD285R/+nhJ2fa9rb02wJw2S\n5P5oO3k/+6+MfyzOcn+snZJ+N/6cFZT11CaZKjeXymVcWHFq9C9ZT3yZpUzaJ62VtqyZ0iIfU+qa\nLlJaotIiH5PiL8qp0b/k9JcJ/w26opwe6i/r4ZUFiuFet0OXt+5R1duO0Urt/6LLP+xWwpmLsni6\nq+xDGW26W1V/edSsqtgjpyRJXkEBSouNL3T7VBIUxRwHT09PxcffuhuY1WqVxWLJ8bX4+PgsiURB\n5HuOw+rVq9WwYUP9+uuvcnZ2LtTKgNIiJSZWv019Vw/PeEVmZ4sSzl7SgfB3JEne9QL10ISB2tZ7\nbJ7l6rzUUyaTSQ9NuHVXkpj9R3Vo5ofaP3GBHho/UCZni5KvxuiXV7OPN7+fpMTEav/U99TkjYw7\nysSfvaT9kzPGXpatV0sPTRion3qPy7PcoXkf66FxA9Rq5Ruy2Wy69MNe/bnia8lm056Rc1R/eJhM\nFidZU9O0b8ICJV2OLs5NLjIpMbE6OG2RGs0YLpPFosRzF/Vb+EJJGcdm/fEvaEef0XmWy025hnVV\nsVVTxUedV7MPbt2x5diCT3Rtx/483plVakysDk9fqAYRI2V2tijx3CUdmjpfXg8E6YGxg7S736u5\nlslL2YZ1VaFlM8VHnVOT96bbnz/xzv8qemf+47tdSf2sp8bE6tC0d/RQxIiM+jl7SQenLpDXA4Gq\nN+5F7er7aq5lpIyJ0m5VK6l55GyZnS06t/Y7Xf/1UJ7rjDt2Sn/MXKyGb7wqk8VJaTfj9dv4ufmu\ny9TrN3QkYoHqT39VJmeLks5d1B/T3pbnA0GqO2aw9vYfkWsZSao1KOOOUHXHDLYv88aBP3R87mId\nHPeGgl4ZILOLs2xp6To6810lnbuU79hyY42N0bVF0+Q3fIZMFovSLp7TtYXhcgmsJ58Xxuvi6D7y\nfLKrnPz85d7scbk3e9z+3svTXlJM5JvyGThGlWavkGw2Je7eopsbPr3ruLJJvKK0bwbJ8vePZXJy\nlu36n0r7eqBM/g/L6cl3MhKEPKTvnC1Lpw9k6ZeRpKVvj5Dt0i+FDudetENnP/9W7lX99djHM2Wy\nWHR27UbF/HpYkrRv1Bw9MKK/fX8fmrFYif/d3+4BlZVYipOGohISEqLvv/9enTp10r59+1SnTh37\na0FBQYqKitL169fl7u6uPXv2aMCAAYVaj8lms9mMCl25ckXvvvuuTp06pdq1a2vQoEEqXz5/EznT\n9XGhAnMkJ/Uu8XGWhhil0hXnhmbZb7lY0nTcvaLU1OeXTbPfiq+keWrPJyW+Pp2UcfL0bfMc7phS\ngjy5a6U2P/ZscYdhqM32z0rNZ33To92KOwxDbXes1pYWXYo7DEOtt63R6R7NizsMQwErdylljkdx\nh5EnlxHxJb49kjLapNLi6+bZb0dupMOuvBNSq9Wq8PBwHT16VDabTRERETp06JASEhLUo0cPbd68\nWQsXLpTNZlPXrl3Vu3fvPJeXmzx7HC5evKhKlSopLi5Offr0kc1mk8lk0vXr1/OdOAAAAADIUBST\no81ms6ZOzfrbHkFBt+YMtmnTRm3a3P38mzwThw8//FBjx47VpEmT7HdXykweuKsSAAAAUDCl+Zej\n80wcxo7NmLEeGRmp6OhonTt3TjVq1JC3t7dDggMAAADuJ0XR4+Ao+Zoc/fnnn2vx4sUKCgrSyZMn\nNXToUHXq1KmoYwMAAADuK3f/04XFJ1+Jw4oVK/T//t//k6urqxISEtSvXz8SBwAAAKCA7vseh3Ll\nytnvBVumTBmGKgEAAACFcN/OcRg+fLhMJpOio6PVpUsXNWrUSIcOHVKZMmUcFR8AAABw37DpPk0c\nevbMfp/Zp59+2v73uXPnVLVq1XsfFQAAAHAfum97HJo3z/vHU8aOHcttWQEAAIB8shr+9HLJla85\nDrnJx49OAwAAAPiv+3aokpHMH4UDAAAAYOy+HaoEAAAA4N4pzQN2GKoEAAAAOIi1FA9VMhek8PXr\n17P8/+ijj97TYAAAAID7mc1mKvCjpMhXj8OuXbs0depUpaenq0OHDqpSpYq6deuml156qajjAwAA\nAO4bpXmOQ756HN566y397//+r/z8/DRo0CCtWLGiqOMCAAAAUIKYbPmYqBAWFqbIyEj17dtXy5cv\nt/8PAAAAIP8+evBfBX5P/4MfFEEkBZevoUoBAQGaM2eOrl+/rvfff19VqlQp6rgAAACA+859P1Rp\nypQpqlKlipo0aSJ3d3dNmzatqOMCAAAA7jvWQjxKinwlDikpKXriiSc0ePBg3bhxQ1euXCnquAAA\nAID7Tmm+q1K+EoeXX35ZBw8e1KxZs+Ts7KxJkyYVdVwAAADAfcdqMxX4UVLkK3FISkpSmzZtdPHi\nRT3//PNKT08v6rgAAACA+46tEI+SIl+To1NTU7Vs2TI9+OCDOn78uBITE4s6LgAAAOC+U5J6EAoq\nXz0Oo0eP1uXLlzV48GDt2LFD48ePL+q4AAAAgPvOfT85OiQkRM2bN9fKlStVqVIlNWzYsKjjKpT5\n8+fn+ON0Q4YMyfbcihUrNH/+/GzPr1mzRrNnz87y3LBhw5SSkpLrelu0aJHvGNu0aaPk5OQsz23d\nulUrV67MVrZ79+46e/ZsrsvKKda7MWbMGG3dujXLc1euXFF4eHi2srNnz9aaNWvytdx7Heeddu7c\nqWHDhmV7/rXXXtP58+ezPHfixAmFhYXd1frCwsJ04sSJu1pGSff+++/rwIEDxR1GkctpX+Z2PN2t\nNWvWaNMkFm/IAAAevElEQVSmTfd8uYWV2b7cHtfw4cPVtWtXHT16VGFhYerZs6du3LhRoOXm1N4a\nxXA3vvvuO126dOmullEaFXW7WpSSk5PVpk2b4g7jnjl79qy6d+9e3GEYOnLkiHbv3i0p53ORkmb3\n7t36448/ijuMIlGaJ0fna6jSnDlzFBUVpZCQEP3nP//Rnj17NGbMmKKO7Z5ZsGDBXb1/3rx59yiS\nnLVq1apIl383KlSokGPiUBrQM1Z4zz//fHGHcN/p0qVLcYeQo9vj+vnnn7Vjxw6dP39e8fHx+b44\ncLu7bW8Lavny5QoPD5e/v79D1wuUNt9++638/PzUrFmz4g4lXz7//HN16tRJDzzwQHGHcs+VpB6E\ngspX4rB79259+umnkqR+/foVKLNOTU3V2LFjdfbsWaWnp+uf//ynVqxYoVq1aunPP/+UzWbTvHnz\nVKFCBc2ZM0d79uyR1WpV//791bFjR4WFhemBBx7QsWPHFBcXp7feektVq1bNdX0bN27Uhg0blJSU\npAkTJqhhw4Zq0aKFtm3bpj179igiIkLe3t5ycnJS48aNc1zG/v379dxzzyk6OlqhoaF67733tGHD\nBl28eFFjxoyRxWJR1apVde7cOUVGRiolJUUjRozQ+fPnVa5cOb399ttydnbONcZJkybp3Llz8vX1\n1RtvvKGvvvpKJ0+e1MiRIzVv3jz9+OOPqlSpkmJiYvJVx0uXLtWXX34pi8Wipk2bavjw4erQoYM2\nbNig6OhotW7dWj///LM8PDzUo0cPrV27NtdlffLJJ1qyZInS09P12muvycnJScOHD9eqVav0zTff\naNGiRfLx8VFqaqoCAwNzXEZSUpLGjh2r8+fPKzU1VX/7299yjfXVV1/V3r179cYbb8hiscjNzU1v\nvfWWXF1dNXnyZEVFRclqteqVV17RI488kmvcUVFRGjBggGJiYhQaGqpu3bopLCxM4eHh8vLy0siR\nI2Wz2VShQoVclzFkyBD17dtXzZs312+//ab58+fL29s7y7HbqVMne/n58+fLz89PoaGhOnHihMLD\nwxUZGam///3vatq0qY4cOaLAwED5+vpqz549cnFx0fvvv6+kpCSNHz/evn8nTJigunXr5hhTXFyc\nxo8fr5s3b+ry5cvq2LGj1q9fr6+++komk0lTp07VY489Jn9/f02ZMkUeHh7y9fWVq6urZsyYkeMy\n58+fr5MnT+ratWuKjY3VhAkT1LRpUz3xxBMKDAxUUFCQYmNj1alTJzVv3jzLvpw4caIaNGhQoH2T\nac2aNfr8889ltVrVoUMHbdq0SYmJiSpfvrwWLFig9evXa8uWLUpKStLp06c1cOBAdenSRQcOHMhx\n2yIjI7V+/XqZTCZ16tRJffv2zXP9ObVFkrRw4UJdvXpViYmJmjt3bpb3rF69WitWrJDValWbNm30\n8ssv57ptGzduVHx8vGJiYvTSSy/pb3/7m55++mnVrFlTzs7OCgwMlJ+fn3r27Klp06bpwIEDSk1N\n1dChQ9WuXbsc27/8bEPVqlUVEREhq9Uqf39/zZ49W2XKlMkxzpzal8zj+MiRI4qLi9OLL76otLQ0\nHTt2TG3atFH16tXt21S+fHnNmzdPTk5Oql69uqZOnaovvvjCvl9ffvlljRw5Utu2bdOhQ4c0bdo0\nOTk5ydXVVdOmTVOVKlUK1MbdXn9Tp07N9rm5cOGCDh8+rNGjR2vWrFkaPXq0Vq1aJSmjN2Pu3Lla\nu3atfv31VyUkJOi1117TuHHjVKlSJZ05c0YPPfSQpkyZku996uLiogULFshms+nBBx/UlClT9O23\n3+rjjz9WWlqaTCaTFixYIB8fnzy3616587uqWrVqevPNN+Xq6qpy5copIiJChw8f1qeffmq/AJb5\nfThmzBhdv35d169f13vvvaeyZcsWaazx8fEaOXKkYmNjFRAQIEnatWuXvT7j4+M1Z84c7dq1S6dO\nndLo0aOVnp6uZ555Rp999plcXV2LJK4uXbpo8eLF8vb21iOPPKLIyEg9+OCD6ty5s5555hl7W5vZ\nxly4cEETJ05UcnKy/bjOlJ6erjFjxig4OPieXXxZs2aNvv/+eyUlJenKlSvq27evNm3apGPHjmnU\nqFFKSEjQsmXL5OLiopo1a9o/k3e2pS1atNDatWvl7OysBx98UJIUHh5u7/FbsGBBlmOgsOvN6z3t\n2rXThg0b9NFHH8lsNqtJkyYaOXKk5s+fr7Nnz+ratWs6f/68xo4dq/Lly+vHH3/UwYMHVbt2bXXr\n1k3btm2TlDEKpGfPnjp37pzh+kqqktSDUFD5ShzS0tJktVplNptls9lkMuV/g1euXCkfHx/Nnj1b\ncXFx6tKli1xcXNS1a1dNnTpVH3/8sd577z21bNlSZ8+e1YoVK5ScnKzu3bvbhwA1bNhQ48eP17x5\n8/Tll1/m+YGsWrWqpk6daj9wbj9JnjJlit5++23VqlVLkydPznUZFotFS5Ys0blz57Ksa+bMmRo0\naJBat26tVatW6dy5c5KkhIQEDRs2TNWqVVNYWJgOHz6c53Cu0NBQNW7cWDNnztSqVavk6ekpSfrt\nt9+0e/duffbZZ0pISNCTTz5pWL9RUVHauXOnPv30U1ksFg0dOlRbt25V06ZNtW/fPkVFRSk4OFjb\nt2+Xh4eH4bCqkJAQPf/889qyZYtmzZpl71lKTU3VjBkztGbNGpUrVy7PffDpp5+qatWqmjdvnk6d\nOqUffvhBN2/e1JEjR7Rhw4YssX7//ffatWuXOnbsqH79+mnz5s2KjY3VDz/8oPLlyysiIkIxMTHq\n06ePvvzyy1zXmZqaqkWLFslqteof//iH2rZta3/t3Xff1dNPP63u3bvrq6++ynE4myR169ZNa9eu\nVfPmzbVmzRq1atVKp0+fznLsPvroo3nWn5TxBfn0009r8uTJ6tChg8aOHathw4apT58+On78uNav\nX69HH31UvXr10qlTpzR27NhcY4qKitJTTz2lJ598UpcuXVJYWJjq16+vPXv2qFGjRtq5c6fGjRun\nbt26aebMmQoODta8efMMh26UKVNGy5cv17FjxzRixAitW7dOFy5c0Jo1a1S+fHn7fs9pXx4+fLhA\n++Z23t7eWrhwod555x37l8eAAQP022+/ScpIlJYsWaJTp05p0KBB6tKliyZPnpxt244fP66vvvpK\nn3zyiSTpn//8p/7617/mmsxKubdFzz77rP7xj39o/vz5+vrrr+2f3WvXrmnx4sVat26dXF1dNWfO\nHMXHx8vDwyPH5ScmJurDDz9UdHS0unXrprZt2yohIUGDBw9W/fr17UMjN27cqJiYGH322We6ceOG\nPvzwQzk7O+fY/nl7e+drG9566y0FBQVp9erVOnHihP3E4HZG7Ut4eLi+++47LVq0SGfPnlX//v1V\nvXp1LVmyxL5NZrNZq1atkq+vr958802tXbtWFotF3t7eWrRoUZblTZgwQa+99prq1aunjRs3asaM\nGRo4cGCB2rjb62/WrFk5fm7q1aun8PDwPC/WBAYGasKECTp79qxOnTqlJUuWyM3NTe3atdOVK1dy\nvaBw+z7t3LmzTCaT1q5dK19fXy1evFgXL17UqVOn9P7778vNzU2TJk3STz/9pP/5n//Jc7vuldu/\nqwYOHKjk5GStWLFC/v7+WrZsmRYtWqTHH3881/c/+uij6t+/v0Ni/fTTT1WnTh0NGzZM+/fv186d\nO3Xs2DHNmjVL/v7+evfdd/X1118rLCxMXbp00ciRI/Xjjz/qkUceKbKkQcoYspOZyFarVk0///yz\nXF1dFRAQoK+//jpbG/P2228rLCxMrVu31vbt2zV79mwNGzZMaWlpGjlypJo2barevXvf0xjj4+Pt\nF90++ugjrVq1Sjt37tRHH32kEydOaO3atfL09FRERIRWrlwpd3f3HNvSzp07y8/Pz97Gde3aVU2b\nNtWYMWO0bdu2LBfGCrve3N6zfPlyNW3aVPPnz9fnn38uNzc3vfrqq/ZkwMXFRR988IG2bdumpUuX\nasmSJWrZsqU6deqkKlWqFLhuli9fXqITB2tJuk1SAeUrcejUqZNCQ0PVqFEjHThwINvBlZcTJ07o\nL3/5iyTJ09NTQUFB2rZtm/0ELCQkRJs3b5a/v78OHjxoH3+elpZmPzGvX7++JKlSpUq6evVqnuvL\n7IILDg7O9kN1V69eVa1atezrPX36dI7LqF+/vkwmkypUqKCkpKQs2/Lwww9Lkpo0aaIvvvhCklS2\nbFlVq1ZNkuTn55fnXaecnZ3tPR0hISHatm2bHnroIUnSqVOn1KBBA5nNZnl6eqpOnTp5bqskHT58\nWI8//rj9S7Np06Y6duyYnnzySW3ZskVnz57VsGHDtGnTJpnNZj377LN5Lq9p06aSpIcfflgzZ860\nPx8dHa2yZcuqfPny9tdzc/LkSfvwq5o1a8rb21tXr17VyZMn1ahRo2yxDho0SO+++6769esnf39/\nNWzYUEePHtXevXvt4+zT0tIUHR2d65W8xo0by8XFRZIUFBSUZdz0qVOn7L1kISEhuZ6kt2zZUrNm\nzdL169ftV37/+te/Srp17J45cybP+suUeeLm7e2toKAg+9/Jyck6evSoduzYoQ0bNkhSnmPI/fz8\ntGzZMn377bfy9PRUWlqaunfvrrVr1+rKlStq06aNLBaLLl++rODgYEkZx+ZXX32VZ3yZn7/g4GD7\nZ6p8+fL2/Zvpzn3Zv39/hYeHF2jf3K5WrVoym81ydnbW8OHD5e7urosXLyotLU2S7F3SlStXts8r\nymnbjh49qvPnz9tPem7cuKGoqKg8E4fc2qIGDRpIyqjr29uXM2fOKDg42H71fuTIkXluW7NmzWQ2\nm+Xn5ydvb29FR0fbt/l2f/75p70NKFu2rF555RUtXrw4x/bvzsQhp23YvHmz/Rjr1q1brvEVpn25\nfZvc3NwUFRWlV155RVJGz+Jf/vIX1ahRI9s2Shn7rV69evblzJkzp1AxZC67IJ8bSbLZbn0z3x5f\nQECA/WJNhQoV8hznffv2e3h4KCUlRb6+vpKkgQMHSpJ8fX01evRoeXh46OTJk7n2ZBeF27+rLly4\noICAAPuQrWbNmmnu3LnZEofc6qWonTp1Sq1bt5YkNWrUSBaLRf7+/nrttdfk7u6uS5cuKSQkRJ6e\nnmrWrJl++uknrVmzRoMHDy7SuJ588km9++67qly5soYNG6bIyEjZbDb97W9/0xtvvJGtjTl69Kje\ne+89ffDBB7LZbLJYMk6jjhw5Ik9PTyUkJNzzGDM/R15eXgoKCpLJZFLZsmWVmJio2rVr24/nzHpr\n1KhRjm3pnW5v+24/17mb9eb2nuTkZJ0+fVrR0dH2C4/x8fH287DM91WqVCnPOaVS1mM4r/WVZKU4\nb8jf5OjnnntO06ZNU0hIiKZOnVqgKxRBQUHas2ePpIyriUePHlW1atX0+++/S5J++eUX1a5dW4GB\ngfZuwmXLlqljx46qXr16gTco82TmyJEj2bJUf39/+0TIzCucOcmtR6VOnTr69ddfJWV0ERuVz0lq\naqoOHz4sSdqzZ4/9hEiSateurQMHDshqtSohIUHHjx83XF69evV04MABpaWlyWazaffu3apVq5Za\ntGih3bt3KyYmRq1bt9bBgwf1xx9/GE5sz6y/O2Pz9fVVbGys/WQor/oLCgqyv37mzBn78I/AwMAc\nY123bp06d+6syMhIBQcHa9WqVQoMDNRTTz2lyMhILV68WB06dFC5cuVyXeehQ4eUlpamhIQEnThx\nwt4VnhlP5n7LK26z2awOHTooPDxc7dq1U3BwcI7HbiZXV1d7cnrw4MEsy8rrmAgMDFT//v0VGRmp\nN998M8+rk0uXLlXjxo01e/ZsdejQQTabTY899pgOHz6szz//3H6iWKlSJfvxcvuxmZvMeI8ePWo/\n0TCbszcHd+7LESNGFHjf3M5sNuuPP/7Qxo0b9eabb2rixImyWq32L4Kc6i2nbQsMDFTt2rW1fPly\nRUZGqkuXLrkO97p9W/Lan3cKCAjQyZMn7V9iL7/8cp49OZl1evXqVcXFxdlPMO+s18DAQHud3rx5\nUwMGDMh3+5fbNpw6dUpSxqT27777Lsf4CtO+3L5NycnJCggI0DvvvKPIyEgNGjTInoDmdOxUrFjR\nPrFx9+7dqlmzZqFiyFx2bp8bk8kkm80mV1dXXbt2Tenp6YqNjc1y8eD2+ArSXt++/ampqZKk69ev\nS5KmT5+uXbt26e2339a8efM0ffp0ubq6ZjmpKWq3b0v58uUVFxeny5cvS8oYBlSzZs0s7dS5c+ey\nJFwFqYu7FRQUpH379km61V5PnDhRERERmjFjhipWrGivu+7du2v16tW6du1akY9vr1Onjs6cOaMD\nBw6odevWSkhI0KZNm3JtYwIDAzVy5EhFRkZqypQp6tChg6SMi0Xvv/++1q1bd88n9Oa2n0wmk06c\nOGFPVnbt2mVPBnN6j8lkktVqzfK/I9abqVq1aqpcubKWLl2qyMhI9enTx55o5xZv5jGRlpam+Ph4\npaSkZGk3HHkM30ul+Qfg8uxxmDNnTradcujQIUkZd9/Ij+7du2vixIkKDQ1VcnKyhgwZojVr1mjt\n2rX66KOP5ObmppkzZ6pcuXLatWuXevXqpYSEBLVr186ezRbE2bNn1bdvX6WkpGjq1KlZXps6dapG\njRolT09PeXh4FHhM58iRIzVu3DgtXbpUXl5e9isNBeHs7KzIyEhFRUWpSpUqGjFihL3nol69emrV\nqpWeffZZVaxY0X7ikZcaNWooJCREoaGhslqtatKkidq1ayeTyaRKlSqpSpUqMpvNqlWrVr6uCO/f\nv199+/aVyWRSRESE/UNrsVg0adIkDRgwQGXLls1z23v27Klx48apT58+9nHYMTExqlu3rjp27Jgt\n1gMHDmjChAlyc3OT2WzW1KlT5e/vrwkTJqhPnz6Ki4tTr169cjw5yeTq6qqBAwcqNjZWQ4cOzXIi\n++KLL+rVV1/VV199leeJopTRdduuXTt98803qlixYrZj9/Z90rFjR73yyivavXt3jkNDcjNo0CCN\nHz9eq1atUlxcXJ53oXniiSc0ffp0ffXVV/Ly8pKTk5N93sjPP/9sT5AmT56scePGyd3dXc7OzoYT\nRQ8fPqx+/fopMTExyxjdO925L8eNG6e6desWaN/cqUaNGnJzc1PPnj0lZVz1zTzZyUlO2/bAAw/o\nscceU2hoqFJSUtSwYUPDbc6tLcqNj4+PBg4cqD59+shkMumJJ57Icx1Xr15Vv379dPPmTU2ePFlO\nTk45lmvbtq22b9+u0NBQpaen66WXXlKrVq3y1f7ltA1BQUEaN26czGazKlSokOuFncK0L3duk9ls\n1vPPPy+bzSYPDw/NnDlTFy5cyPG906dP17Rp02Sz2eTk5KSIiAhVr169wDFkyu1z8/DDD2vUqFFa\nunSpWrRooWeffVbVq1dXjRo18r3s/G6/zWbTCy+8ILPZrPr166tZs2YKCQlRjx497EO28jqWi5LJ\nZNL06dM1dOhQ+1XX119/Xd7e3vLy8lK3bt0UFBRk2AYWldDQUI0aNUqhoaEKDAyUs7Oz2rdvr969\ne8vNzU1+fn72umvUqJGioqLu+ZCf3DRv3lxnz56V2WxWs2bNdPz48VzbmNGjRys8PFzJycn2+WqZ\nypQpo8mTJ2v06NFavXq1vRe8qDg5OWno0KHq27evzGazAgICNHLkyFyHjjZo0EAzZ86091A6ar2Z\nfHx81L9/f4WFhSk9PV1Vq1bNcS5XpkaNGmn27NmqVq2a+vbtqx49eqhatWp5Dl0qLUrz5GiTLY/L\nI5nzA65cuSJXV1d5e3tr7ty5eu655+wTCwsjc9Lq3R68jrZu3To1atRINWrU0OrVq/XLL7/o9ddf\nL+6wAH388cfq2LGjfHx8NG/ePDk7O+eakNw+qbs0KMi2FZc1a9bYb3Bwv7gft6kg/q9vf3GyWq0K\nDQ3VkiVLCnUBESjpZgQW/DtszEnH3rEuN3leMu/cubOkjKuw8+bNU0BAgH0izd0kDndryJAh2ca3\nenp6Zpucd69ljoHMvDIeERGRY7kDBw5o1qxZ2Z7v2LGjevXqVaQxGklJSdGAAQOyPV+rVq1sPTQl\nzYIFC7Rz585sz2deyfy/zNfXV88995zc3d3l5eWlGTNm5Po5yZwzVFrktG3FJTw8PMff8Mjrqpmj\nrVy5UuvXr8/2/PDhw/Ocm1RcSnJ7Ccc7c+aMhgwZoi5dupA04L513/Y4ZOrZs6f9dqxSRo9BZGRk\nkQYGAAAA3G8iCtHjMK409DhkqlKliubOnavGjRvrwIEDqlixYlHHBQAAANx3HHgPhXsuXzMaX3/9\ndfn4+GjLli3y8fFhXD8AAABQCFaZCvwoKfLV4+Dq6uqwH4kBAAAA7lf3/Q/AAQAAALh7pXmoEokD\nAAAA4CAlaehRQZE4AAAAAA5CjwMAAAAAQ6X5dxxIHAAAAAAHYXI0AAAAAEOlOG8gcQAAAAAcxWpj\ncjQAAAAAA0yOBgAAAGCIydEAAAAADJXmHgdzcQcAAAAA/F9hLcSjMJKSkjR06FD16tVLAwcOVHR0\ndM7xWK3617/+pRUrVhguk8QBAAAAcBCrreCPwlixYoXq1KmjTz75RM8884zeeeedHMu9+eabio2N\nzdcySRwAAAAAB7EV4lEYe/fuVcuWLSVJrVq10vbt27OV+frrr2UymezljDDHAQAAACjFVq9erWXL\nlmV5ztfXV15eXpIkDw8P3bx5M8vrR48e1fr16/X2229r4cKF+VoPiQMAAADgIEXxy9HdunVTt27d\nsjw3ZMgQxcfHS5Li4+Pl7e2d5fX//Oc/unTpkvr166dz587J2dlZVatWVatWrXJdD4kDAAAA4CCO\nuqtSSEiItmzZooYNG2rr1q1q0qRJltdHjRpl/3v+/Pny8/PLM2mQmOMAAAAAOIyj7qoUGhqqY8eO\nKTQ0VCtXrtSQIUMkSR9++KE2bdpUqGWabLbSfDdZAAAAoPR4vuK/C/ye9y+/VQSRFBxDlQAAAAAH\nKc1X7EkcAAAAAAcpisnRjkLiAAAAADhIaZ4kQOIAAAAAOEhhJzuXBCQOAAAAgIMwVAkAAACAoVKc\nN5A4AAAAAI5CjwMAAAAAQ0yOBgAAAGCIydEAAAAADFlLcZcDiQMAAADgIKU3bSBxAAAAABymNE+O\nNhd3AAAAAABKPnocAAAAAAexleLBSiQOAAAAgIOU5qFKJA4AAACAg3A7VgAAAACGbNyOFQAAAIAR\nehwAAAAAGKLHAQAAAIAhehwAAAAAGLLS4wAAAADACL/jAAAAAMAQQ5UAAAAAGLLS4wAAAADACHMc\nAAAAABhijgMAAAAAQwxVAgAAAGCIxAEAAACAodI8VMlc3AEAAAAAKPnocQAAAAAchKFKAAAAAAxZ\nTaX3J+BIHAAAAAAHoccBAAAAgCGb6HEAAAAAYIAeBwAAAACGmOMAAAAAwJCVoUoAAAAAjJA4AAAA\nADDE5GgAAAAAhpjjAAAAAMAQQ5UAAAAAGLIpvbhDKDQSBwAAAMBB6HEAAAAAYIjEAQAAAIAhhioB\nAAAAMESPAwAAAIASIykpSa+++qquXbsmDw8PvfHGG/Lx8clSZunSpVq/fr1MJpMGDRqk9u3b57lM\nc1EGDAAAAOAWm6wFfhTGihUrVKdOHX3yySd65pln9M4772R5PTY2VsuXL9enn36qpUuXKiIiwnCZ\nJA4AAACAg1iVXuBHYezdu1ctW7aUJLVq1Urbt2/P8rqbm5uqVKmixMREJSYmymQyGS6ToUoAAACA\ngxS2ByEvq1ev1rJly7I85+vrKy8vL0mSh4eHbt68me19lStX1lNPPaX09HS98MILhushcQAAAAAc\nxGq793dV6tatm7p165bluSFDhig+Pl6SFB8fL29v7yyvb926VZcvX9amTZskSQMGDFBISIgaNmyY\n63oYqgQAAAA4iKPmOISEhGjLli2SMpKEJk2aZHm9bNmyKlOmjFxcXOTq6iovLy/FxsbmuUx6HAAA\nAAAHcdTvOISGhmr06NEKDQ2Vs7Oz5syZI0n68MMPFRAQoLZt2+rnn39W9+7dZTabFRISohYtWuS5\nTJPNZrM5IngAAADg/zpfjybGhe5wLX5vEURScPQ4AAAAAA5SFJOjHYXEAQAAAHAQWxFMjnYUEgcA\nAADAQaz0OAAAAAAwYrOROAAAAAAw4Ki7KhUFEgcAAADAQehxAAAAAGCIuyoBAAAAMMRdlQAAAAAY\nYqgSAAAAAEOleaiSubgDAAAAAFDy0eMAAAAAOAhDlQAAAAAYKs1DlUgcAAAAAAfhrkoAAAAA8oEe\nBwAAAAAGmOMAAAAAwBBzHAAAAADkA4kDAAAAACMMVQIAAABghKFKAAAAAPKBxAEAAACAEZutuCMo\nNBIHAAAAwEFsKr2Jg8lmK8VpDwAAAACHMBd3AAAAAABKPhIHAAAAAIZIHAAAAAAYInEAAAAAYIjE\nAQAAAIAhEgcAAAAAhv4/nFu8rOoxCoYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "dataset = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_dataset(dataset, look_back_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,target_index]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14878, 11)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.shape\n", + "#y.shape\n", + "#X[0].shape\n", + "#X.shape[2]\n", + "#np.reshape(X, (X.shape[0]*10, X.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n", + "0. close_bid 3 (0.816391)\n", + "1. ohlc_price 7 (0.067108)\n", + "2. high_bid 1 (0.064573)\n", + "3. avg_price 5 (0.050164)\n", + "4. low_bid 2 (0.001339)\n", + "5. open_bid 0 (0.000077)\n", + "6. range 6 (0.000056)\n", + "7. momentum 15 (0.000053)\n", + "8. volume 4 (0.000046)\n", + "9. pca 10 (0.000045)\n", + "10. hour 11 (0.000038)\n", + "11. oc_diff 8 (0.000028)\n", + "12. period_return 9 (0.000028)\n", + "13. week 13 (0.000023)\n", + "14. day 12 (0.000023)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2Y1XWd//HX3AACgyDb5LYl3lC4phlCtnEl5uJSZpom\n6ADukOnuXq6V9ZPMm1ZUEMQss7W8yexmtQRzvRTsxhaj2MhMMUw0ajVlXfIiVFRmQGGY8/tjrpkV\nb9thmDP6eTyuy+uac75zznnzduY4PvmeMzWVSqUSAAAAAIpSW+0BAAAAAOh9ohAAAABAgUQhAAAA\ngAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAdpi99947Rx55ZI466qiufz73uc91+/5+85vfZObM\nmT044bZuv/32XHDBBTvs/l/Oo48+mk9+8pO9/rgAQNnqqz0AAPD69u1vfzvDhw/vkft68MEHs3bt\n2h65r5dy6KGH5tBDD91h9/9y/vjHP+bhhx/u9ccFAMpWU6lUKtUeAgB4fdp7771zxx13vGQUeuih\nhzJnzpw89dRT2bp1a5qbmzN58uS0t7dn7ty5uffee9Pa2ppKpZILLrggf/VXf5WpU6dmw4YNef/7\n35+jjz46s2fPzq233pokufPOO7suX3bZZVmxYkX+9Kc/Ze+9984XvvCFXHHFFfnxj3+c9vb2vPnN\nb865556bXXfddZuZbrrpptx222256qqr0tzcnH333Te//OUv88QTT2T69Ol54okn8qtf/SqbNm3K\npZdemr333jvNzc0ZOXJkVq5cmfXr1+eoo47KqaeemiRZvHhxvvKVr2Tr1q1paGjIWWedlf3333+b\n+d72trflvvvuy9q1a3PggQfmmmuuyZVXXpnFixfnueeey6ZNm3LGGWdk4sSJueyyy7JmzZqsW7cu\na9asyfDhw/OlL30pu+66ax5++OHMnDkzTz75ZGpra/PP//zPOfzww7N27drMmjUrjz32WLZs2ZIP\nfehDOfnkk9PW1pbZs2fnnnvuSb9+/fKWt7wlF154YQYPHrzjvzAAgD7BmUIAwA710Y9+NLW1//uK\n9W984xsZOnRoTj311Hz+85/Pvvvumw0bNqSpqSlvfetbU6lU8qc//SkLFixIbW1tvva1r+Xqq6/O\nlVdemVNPPTW33XZbLrzwwtx5552v+Lhr1qzJrbfemvr6+tx88835/e9/n+9973upr6/PggUL8i//\n8i+5+uqrX/U+br755tx777057rjjcsUVV+TMM8/M3Llzc91112X27NlJOs70uf7667Np06Ycd9xx\necc73pERI0bk3HPPzfz587PbbrvljjvuyCmnnJIf/ehHL5qvM2hdc801WbNmTX7xi1/kuuuuy047\n7ZTvf//7+dd//ddMnDgxSXL33Xfn5ptvTkNDQ04++eQsWLAgp556ak477bRMnjw5xx9/fB577LE0\nNzfn4IMPzumnn54TTjghEyZMyHPPPZd//Md/zIgRI/LGN74xv/rVr/KDH/wgNTU1ufjii/O73/0u\nY8aM2Z5/3QDAa4goBADsUC/18rEHH3ww//3f/52zzz6767pnn302DzzwQKZNm5ahQ4dm/vz5efTR\nR3PnnXd26+yV0aNHp76+40edJUuW5L777sukSZOSJO3t7dm0adOr3kdniNltt92SJOPHj0+SjBgx\nIr/61a+6Pq+pqSn9+vVLv379cthhh+XnP/959tprr7znPe/puu24ceMyfPjwrFy58kXzPd+b3/zm\nXHTRRVm0aFFWr17ddcZUp3e/+91paGhIkrz97W/P008/naeeeiqrVq3KsccemyR505velMWLF2fj\nxo2566678vTTT+fLX/5ykmTjxo1ZtWpVDjrooNTV1eXYY4/NQQcdlA984APZf//9/9z1AgCvA6IQ\nANDrtm7dmp133jm33HJL13WPP/54hgwZkp/+9KeZM2dOPvaxj+XQQw/NXnvtlYULF77oPmpqavL8\nV8Fv2bJlm+ODBg3q+ri9vT3/8A//kGnTpiVJNm/enKeffvpV5+zfv/82l/v16/eSn/f8uFOpVFJb\nW5uXeoV+pVJJW1vbi+Z7vvvvvz+nnHJKTjjhhLz3ve/NgQcemPPPP7/r+E477dT1cecOOh+/pqam\n69gf/vCHNDY2plKpZP78+Rk4cGCS5Mknn8yAAQMyePDg3HLLLbnnnnvyy1/+Mp/+9Kczffr0nHDC\nCa+0EgDgdcRvHwMAet2ee+6ZAQMGdEWhxx57LEcccURWrlyZZcuW5W//9m8zbdq0vOMd78jixYuz\ndevWJEldXV1XVBk+fHj++Mc/5oknnkilUsnixYtf9vEOOuig3HjjjWlpaUmSfPnLX85nP/vZHvvz\nLFy4MO3t7Xn66afzwx/+MBMmTMh73vOeLFu2LI8++miS5I477shjjz2Wd77znS+6fV1dXVfUuuuu\nu7LffvvlYx/7WN797nfn9ttv7/rzv5yGhobsu+++ufnmm5N07HPq1Kl59tlnM3r06Hzzm99Mkjzz\nzDOZOnVqbr/99ixZsiQnnHBCDjjggHzyk5/M0UcfnVWrVvXYTgCAvs+ZQgBAr+vfv38uv/zyzJkz\nJ1//+tfT1taWT33qUxk7dmyGDRuWz3zmMznyyCNTV1eXd73rXV1vEH3AAQfk0ksvzcc//vF89atf\nzZQpUzJp0qQ0NjbmkEMOednHO/bYY7N27docd9xxqampyZve9KbMmzevx/48zz77bCZPnpzW1tZM\nmzYt48aNS5Kce+65+cQnPpGtW7dmp512ypVXXpkhQ4a86PZve9vbUldXl8mTJ+fKK6/Mj3/84xx+\n+OHp169fxo0bl6effroraL2cL37xizn//PNz7bXXpqamJnPmzEljY2O+8IUvZPbs2TnyyCOzefPm\nHHHEEfnwhz+crVu3ZunSpTniiCMyaNCgDB06tOs9kgCAMvjtYwAA26G5uTnHH398DjvssGqPAgDw\nf+LlYwAAAAAFcqYQAAAAQIGcKQQAAABQIFEIAAAAoECiEAAAAECB+syvpF+3bkO1R+gTdtllUNav\n31jtMarKDjrYQwd7sINO9tDBHuygkz10sAc76GQPdtDJHjrYgx10amwc8rLHnCnUx9TX11V7hKqz\ngw720MEe7KCTPXSwBzvoZA8d7MEOOtmDHXSyhw72YAd/DlEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolC\nAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKNSHjB27X/bYY49qjwEAAAAUQBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAA\nAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABdquKHTvvfemubn5Rdf/5Cc/yaRJk9LU1JQb\nbrhhex4CAAAAgB2gvrs3vPrqq7Nw4cIMHDhwm+u3bNmSCy+8MDfeeGMGDhyYqVOnZsKECXnDG96w\n3cMCAAAA0DO6fabQiBEjctlll73o+oceeigjRozI0KFD079//4wdOzZ33XXXdg0JAAAAQM/q9plC\nH/jAB/I///M/L7q+paUlQ4YM6bo8ePDgtLS0vOr97bLLoNTX13V3nNeF2tqaJElj45BX+czXPzvo\nYA8d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA928Gq6HYVeTkNDQ1pbW7sut7a2bhOJXs769Rt7\nepTXnPb2Smpra7Ju3YZqj1JVjY1Dit9BYg+d7MEOOtlDB3uwg0720MEe7KCTPdhBJ3voYA920OmV\nwliP//axkSNHZvXq1XnqqaeyefPm3H333TnggAN6+mEAAAAA2A49dqbQokWLsnHjxjQ1NeXMM8/M\nSSedlEqlkkmTJmXXXXftqYcBAAAAoAdsVxR6y1ve0vUr54888siu6ydMmJAJEyZs32QAAAAA7DA9\n/vIxAAAAAPo+UQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAA\nKJAoBAAAAFAgUQgAAACgQKIQAAAAQIHqqz3Aa8Gwy8/rlcepfeapXnu8p07Z8Y8BAAAA9F3OFAIA\nAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq7c5vnDhwnzkIx/JpEmT8t3vfrdHBgUAAACg\n53TrPYUWL16czZs3Z8GCBVmxYkXmzZuXK664ouv45z//+dx6660ZNGhQPvShD+VDH/pQhg4d2mND\nAwAAALB9uhWFli9fnvHjxydJRo8enZUrV25zfO+9986GDRtSX1+fSqWSmpqa7Z8UAAAAgB7TrSjU\n0tKShoaGrst1dXVpa2tLfX3H3b3tbW/LpEmTMnDgwEycODE777zzq97nLrsMSn19XXfG2eG2VHuA\nHaCxcUi1R3hFfX2+3mIPHezBDjrZQwd7sINO9tDBHuygkz3YQSd76GAPdvBquhWFGhoa0tra2nW5\nvb29KwitWrUqP/3pT3P77bdn0KBBOf300/PDH/4wH/zgB1/xPtev39idUXrFsGoPsAOsW7eh2iO8\nrMbGIX16vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bQ6ZXCWLfeaHrMmDFZunRpkmTF\nihUZNWpU17EhQ4Zkp512yoABA1JXV5fhw4fnmWee6c7DAAAAALCDdOtMoYkTJ2bZsmWZMmVKKpVK\n5s6dm0WLFmXjxo1pampKU1NTpk2bln79+mXEiBH5yEc+0tNzAwAAALAduhWFamtrM2vWrG2uGzly\nZNfHU6dOzdSpU7dvMgAAAAB2mG69fAwAAACA1zZRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAF\nqu/Ojdrb23Peeefld7/7Xfr3758LLrggu+++e9fx3/zmN5k3b14qlUoaGxtz8cUXZ8CAAT02NAAA\nAADbp1tnCi1evDibN2/OggULMmPGjMybN6/rWKVSyTnnnJMLL7ww119/fcaPH581a9b02MAAAAAA\nbL9unSm0fPnyjB8/PkkyevTorFy5suvYww8/nGHDhuVb3/pW/uu//ivve9/7stdee/XMtAAAAAD0\niG6dKdTS0pKGhoauy3V1dWlra0uSrF+/Pr/+9a/z93//9/nmN7+ZX/7yl7njjjt6ZloAAAAAekS3\nzhRqaGhIa2tr1+X29vbU13fc1bBhw7L77rtn5MiRSZLx48dn5cqVGTdu3Cve5y67DEp9fV13xtnh\ntlR7gB2gsXFItUd4RX19vt5iDx3swQ462UMHe7CDTvbQwR7soJM92EEne+hgD3bwaroVhcaMGZMl\nS5bk8MMPz4oVKzJq1KiuY7vttltaW1uzevXq7L777rn77rszefLkV73P9es3dmeUXjGs2gPsAOvW\nbaj2CC+rsXFIn56vt9hDB3uwg0720MEe7KCTPXSwBzvoZA920MkeOtiDHXR6pTDWrSg0ceLELFu2\nLFOmTEmlUsncuXOzaNGibNy4MU1NTZkzZ05mzJiRSqWSAw44IIccckh3ZwcAAABgB+hWFKqtrc2s\nWbO2ua7z5WJJMm7cuNx4443bNxkAAAAAO0y33mgaAAAAgNc2UQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC\niUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQPXVHoD/9V//7x+qPQIA\nAABQCGcKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUA\nAAAACiQKAQAAABRIFAIAAAAokCgEAAAAUKBuRaH29vbMnDkzTU1NaW5uzurVq1/y884555x84Qtf\n2K4BAQAAAOh53YpCixcvzubNm7NgwYLMmDEj8+bNe9HnzJ8/P7///e+3e0AAAAAAel63otDy5csz\nfvz4JMno0aOzcuXKbY7fc889uffee9PU1LT9EwIAAADQ4+q7c6OWlpY0NDR0Xa6rq0tbW1vq6+vz\npz/9KV/96lfzla98JT/84Q//7PvcZZdBqa+v6844O9yWag+wAzQ2Dqn2CK+or8/XW+yhgz3YQSd7\n6GAPdtDJHjrYgx10sgc76GQPHezBDl5Nt6JQQ0NDWltbuy63t7envr7jrn70ox9l/fr1+ad/+qes\nW7cuzz77bPbaa68cc8wxr3if69dv7M4ovWJYtQfYAdat21DtEV5WY+OQPj1fb7GHDvZgB53soYM9\n2EEne+hgD3bQyR7soJM9dLAHO+j0SmGsW1FozJgxWbJkSQ4//PCsWLEio0aN6jo2ffr0TJ8+PUly\n00035Q9/+MOrBiEAAAAAele3otDEiROzbNmyTJkyJZVKJXPnzs2iRYuyceNG7yMEAAAA8BrQrShU\nW1ubWbNmbXPdyJEjX/R5zhACAAAA6Ju69dvHAAAAAHhtE4UAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokCgE\nAAAAUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoUAAAAACiQKAQAAABRIFAIAAAAokChE\nnzJ27H7ZY489qj0GAAAAvO6JQtAHiWMAAADsaKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAok\nCgF91tix+2WPPfao9hgAAACvS6IQAAAAQIFEIQAAAIAC1XfnRu3t7TnvvPPyu9/9Lv37988FF1yQ\n3Xffvev4rbfemm9/+9upq6vLqFGjct5556W2Vn8CAAAA6Cu6VWoWL16czZs3Z8GCBZkxY0bmzZvX\ndezZZ5/NpZdemn/7t3/L/Pnz09LSkiVLlvTYwAAAAABsv25FoeXLl2f8+PFJktGjR2flypVdx/r3\n75/58+dn4MCBSZK2trYMGDCgB0YFAAAAoKd0Kwq1tLSkoaGh63JdXV3a2to67rC2Nm94wxuSJNde\ne202btyY9773vT0wKgAAAAA9pVvvKdTQ0JDW1tauy+3t7amvr9/m8sUXX5yHH344l112WWpqal71\nPnfZZVDq6+u6M84Ot6XaA+wAjY1Dqj3CS6qt7fha6avz9RZ76GAP/8sOOthDB3uwg0720MEe7KCT\nPdhBJ3voYA928Gq6FYXGjBmTJUuW5PDDD8+KFSsyatSobY7PnDkz/fv3z+WXX/5nv8H0+vUbuzNK\nrxhW7QF2gHXrNlR7hJfU3l5JbW1Nn52vt9hDB3vo0Ng4pPgdJPbQyR7soJM9dLAHO+hkD3bQyR46\n2IMddHqlMNatKDRx4sQsW7YsU6ZMSaVSydy5c7No0aJs3Lgx++23X2688ca8613vykc/+tEkyfTp\n0zNx4sTuTQ8AAABAj+tWFKqtrc2sWbO2uW7kyJFdH69atWr7pgIAAABgh+rWG00DAAAA8NomCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEA\nAAAUSBQCAAAAKJAoBAAAAFAgUQgAAACgQKIQAAAAQIFEIQAAAIAC1Vd7AF47hl1+3g5/jNpnnuq1\nx0qSp07pnccBAACAvkYUgv+j11scE8YAAADK5OVjAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQ\nKAQAAABQIL99DPg/643fipb4LWwAAAA7kjOFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACiUIAAAAABRKFAAAAAAokCgEAAAAUSBQCAAAAKJAoBAAAAFAgUQgA\nAACgQKIQAAAAQIFEIQAAAIACdSsKtbe3Z+bMmWlqakpzc3NWr169zfGf/OQnmTRpUpqamnLDDTf0\nyKAAAAAA9JxuRaHFixdn8+bNWbBgQWbMmJF58+Z1HduyZUsuvPDCfOMb38i1116bBQsW5PHHH++x\ngQFKMnbsftljjz2qPQYAAPA61K0otHz58owfPz5JMnr06KxcubLr2EMPPZQRI0Zk6NCh6d+/f8aO\nHZu77rqrZ6YFAAAAoEfUd+dGLS0taWho6LpcV1eXtra21NfXp6WlJUOGDOk6Nnjw4LS0tLzqfe6y\ny6DU19d1Z5wd79wvVnuCHtfYnRv1xh6++e9Jkn69tHN76MM7SPr+HnpBbW1NkqSxccirfGYZ7KGD\nPdhBJ3voYA920Mke7KCTPXSwBzt4Nd2KQg0NDWltbe263N7envr6+pc81trauk0kejnr12/sziiv\nO42NQ7IXSrrPAAAOA0lEQVRu3YZqj1E17e2V1NbWFL2DxB462YMdPF/pz4+d7MEOOtlDB3uwg072\nYAed7KGDPdhBp1cKY916+diYMWOydOnSJMmKFSsyatSormMjR47M6tWr89RTT2Xz5s25++67c8AB\nB3TnYQCKt3z5yjzyyCPVHgMAAHgd6taZQhMnTsyyZcsyZcqUVCqVzJ07N4sWLcrGjRvT1NSUM888\nMyeddFIqlUomTZqUXXfdtafnBgAAAGA7dCsK1dbWZtasWdtcN3LkyK6PJ0yYkAkTJmzfZAAAAADs\nMN16+RgAAAAAr22iEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAAAAAKJAoBAAAAFEgUAgAAACiQKAQA\nAABQIFEIAAAAoECiENBnLV++Mo888ki1xwAAAHhdEoUAAAAACiQKAQAAABRIFAIAAAAokCgEAAAA\nUCBRCAAAAKBAohAAAABAgUQhAAAAgAKJQgAAAAAFEoXoU5YvX5lHHnmk2mMAAADA654oBH2QOAYA\nAMCOJgoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiEAAAAECBRCEAAACAAolCAAAAAAUShQAA\nAAAKJAoBAAAAFEgUAgAAAChQfXdu9Oyzz+b000/PE088kcGDB+eiiy7K8OHDt/mcb33rW/n+97+f\nJHnf+96XT3ziE9s/LQAAAAA9oltnCl1//fUZNWpUvvvd7+boo4/O5Zdfvs3xRx99NAsXLsz8+fNz\nww035Oc//3lWrVrVIwMDAAAAsP26FYWWL1+e8ePHJ0kOPvjg3HHHHdsc/8u//Mt8/etfT11dXWpq\natLW1pYBAwZs/7QAAAAA9IiaSqVSeaVP+N73vpdvf/vb21z3F3/xF5k5c2ZGjhyZ9vb2HHLIIVm6\ndOmLblupVPL5z38+ra2tmTVr1isO0ta2NfX1dd34IwAAAADwf/Wq7yl07LHH5thjj93muk984hNp\nbW1NkrS2tmbnnXd+0e2ee+65nH322Rk8eHDOPffcVx1k/fqNf+7Mr2uNjUOybt2Gao9RVXbQwR46\n2IMddLKHDvZgB53soYM92EEne7CDTvbQwR7soFNj45CXPdatl4+NGTMmP/vZz5IkS5cuzdixY7c5\nXqlUcsopp2TvvffOrFmzUlfnDCAAAACAvuRVXz72UjZt2pQzzjgj69atS79+/fLFL34xjY2N+eY3\nv5kRI0akvb09p512WkaPHt11m9NOOy0HHHBAjw4PAAAAQPd0KwoBAAAA8NrWrZePAQAAAPDaJgoB\nAAAAFEgUAgAAACiQKAQAAABQIFEIAAAAoECiUB+wdevWnHXWWZkyZUqmTp2a3//+99UeqSpuuumm\nNDc3p7m5Occdd1ze8Y535Jlnnqn2WFVx7733prm5udpjVNVHPvKRrq+Hs846q9rjVMWWLVty+umn\nZ9q0aZk8eXJuv/32ao9UFe3t7Zk5c2aamprS3Nyc1atXV3ukqrjqqqvS1NSUY445Jt/73veqPU6v\ne/7z4gMPPJDx48d3PUf84Ac/qPJ0ve+JJ57I+973vjz00EPVHqXXPf9rYfXq1Zk6dWqmTZuWc889\nN+3t7VWerve81M8Kc+fOzfXXX1+liapjy5YtmTFjRqZMmZJp06YV+T2RJJs3b86MGTNy3HHH5cQT\nT8wjjzxS7ZF63fO/Jx588MFMnTo1U6ZMyZlnnpm2trYqT9c7nr+D3/72t5k2bVqam5tz0kkn5fHH\nH6/ydL3npZ4fFy1alKampipN1LfVV3sAkiVLliRJ5s+fnzvvvDNf+tKXcsUVV1R5qt53zDHH5Jhj\njkmSnH/++Zk0aVJ23nnnKk/V+66++uosXLgwAwcOrPYoVfPcc8+lUqnk2muvrfYoVbVw4cIMGzYs\nF198cZ566qkcffTROfTQQ6s9Vq9bvHhxNm/enAULFmTFihWZN29ecc+Rd955Z37961/n+uuvz6ZN\nm/KNb3yj2iP1qhc+L95///352Mc+lhNPPLHKk1XHli1bMnPmzOy0007VHqXXvfBr4cILL8ynP/3p\n/M3f/E1mzpyZ22+/PRMnTqzylDveC/fw5JNP5rOf/WweeeSRnHTSSVWernf97Gc/S1tbW+bPn59l\ny5bl0ksvzWWXXVbtsXrdDTfckEGDBuWGG27IH/7wh8yePTvXXHNNtcfqNS/8nrjkkkty2mmn5cAD\nD8yZZ56ZJUuWvO6fG164gzlz5uScc87JPvvsk/nz5+fqq68u4i9aX+r/pR544IHceOONqVQqVZys\n73KmUB/wd3/3d5k9e3aS5I9//GORIeT57rvvvjz44IPFltwRI0YU+cPM861atSqbNm3KiSeemOnT\np2fFihXVHqkqDjvssHzqU59KklQqldTV1VV5oupYvnx5xo8fnyQZPXp0Vq5cWeWJet/Pf/7zjBo1\nKh//+Mdz8skn55BDDqn2SL3qhc+LK1euzE9/+tMcf/zxOfvss9PS0lLF6XrfRRddlClTpuSNb3xj\ntUfpdS/8Wrj//vvz7ne/O0ly8MEH5xe/+EW1RutVL9xDa2trPvnJT+aoo46q4lTVseeee2br1q1p\nb29PS0tL6uvL/DvvBx98MAcffHCSZK+99irujKkXfk9cdtllOfDAA7N58+asW7cuDQ0NVZyud7xw\nB5dcckn22WefJB2vTBkwYEC1RutVL9zD+vXrc8kll+Tss8+u4lR9myjUR9TX1+eMM87I7Nmzc+SR\nR1Z7nKq66qqr8vGPf7zaY1TNBz7wgWJ/oOm000475aSTTso111yT888/P5/5zGeKOe33+QYPHpyG\nhoa0tLTk1FNPzac//elqj1QVLS0t2/wwV1dXV9zXw/r167Ny5cp8+ctf7vqeKOlvu174vLj//vvn\ns5/9bL7zne9kt912y1e/+tUqTte7brrppgwfPrwrlJbmhV8LlUolNTU1STqeMzds2FCt0XrVC/ew\n22675Z3vfGcVJ6qeQYMGZc2aNfngBz+Yc845p9iX3++zzz5ZsmRJKpVKVqxYkbVr12br1q3VHqvX\nvPB7oq6uLmvWrMkRRxyR9evX56//+q+rOF3veOEOOv/i4J577sl1112XE044oUqT9a7n72Hr1q35\n3Oc+l7POOiuDBw+u8mR9lyjUh1x00UW57bbbcs4552Tjxo3VHqcqnnnmmTz88MN5z3veU+1RqKI9\n99wzH/7wh1NTU5M999wzw4YNy7p166o9VlU89thjmT59eo466qhig3FDQ0NaW1u7Lre3txcXTocN\nG5aDDjoo/fv3z1577ZUBAwbkySefrPZYVTNx4sTst99+XR8/8MADVZ6o9/z7v/97fvGLX6S5uTm/\n/e1vc8YZZxT7/JgktbX/+6Nsa2tr8Wdbl+hb3/pWDjrooNx222255ZZbcuaZZ+a5556r9li9btKk\nSWloaMi0adPyH//xH9l3332LPcO405vf/Ob8+Mc/ztSpUzNv3rxqj1MVP/jBD3Luuefma1/7WoYP\nH17tcXrd/fffn9WrV+e8887LaaedlgcffDBz5syp9lh9jijUB9x888256qqrkiQDBw5MTU3NNj/k\nlOSuu+7KuHHjqj0GVXbjjTd2/cd77dq1aWlpSWNjY5Wn6n2PP/54TjzxxJx++umZPHlytcepmjFj\nxmTp0qVJkhUrVmTUqFFVnqj3jR07Nv/5n/+ZSqWStWvXZtOmTRk2bFi1x6qak046Kb/5zW+SJHfc\ncUf23XffKk/Ue77zne/kuuuuy7XXXpt99tknF110UZHPj53e/va3584770ySLF26NO9617uqPBG9\nbeedd86QIUOSJEOHDk1bW1tRZ8h0uu+++zJu3Lhcf/31Oeyww7LbbrtVe6SqOvnkk7vebHvw4MFF\n/r/VLbfc0vXfi1K/Hvbff/98//vfz7XXXptLLrkkb33rW/O5z32u2mP1OWX9VWsf9f73vz9nnXVW\njj/++LS1teXss88u8s0jk+Thhx/OW97ylmqPQZVNnjw5Z511VqZOnZqamprMnTu3uDNDkuTK/9/O\n3aKsGgRQAD43GBRsXzEJ7sEFGMQNGMRksimYFEER/ImCRdyQyd1YRd4vXLhL0AvzPCs4acKZmXO7\n5fl85nq95nq9Jvk7nlfa+dDv93O/3zMajVJVVU6n07cjfVyv18vj8chwOExVVdlut0XfAO92u+z3\n+9Rqtfz8/Pzb5aM8y+Uym80m5/M5nU4ng8Hg25H4sMlkkvV6nfF4nNfrlcVikUaj8e1YH9dut3O5\nXHK73dJsNot/DTGdTrNarVKr1VKv13M4HL4d6aPe73eOx2NarVZms1mSpNvtZj6ffzkZ/6M/VUmj\nBAAAAAAk8X0MAAAAoEhKIQAAAIACKYUAAAAACqQUAgAAACiQUggAAACgQEohAAAAgAIphQAAAAAK\npBQCAAAAKNAvnTbiiIhM3PgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "for f in range(X.shape[1]-1):\n", + " print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + "\n", + " \n", + "# Plot the feature importances coming from the forest of decision trees and their standard deviation\n", + "plt.figure(figsize=(20,10))\n", + "plt.title(\"Feature importances\")\n", + "plt.bar(range(X.shape[1]), importances[indices],\n", + " color=\"salmon\", yerr=std[indices], align=\"center\")\n", + "plt.xticks(range(X.shape[1]), indices)\n", + "plt.xlim([-1, X.shape[1]])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "#df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJDCAYAAABHO5LzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVvP+//HXuk9zrplqks4HClERQhKJREWRConQbztt\nu03abJukr2SLTc52taUktqTSlooKHeRYKkrpMKWapjk1p/u0fn/cM/fM3Zxn7pl75p7n47pc1vqs\nz1rrfd8yK9ar98cwTdMUAAAAAAAAAAAAAAAAgCqzhLoAAAAAAAAAAAAAAAAAoL4jhAMAAAAAAAAA\nAAAAAABUEyEcAAAAAAAAAAAAAAAAoJoI4QAAAAAAAAAAAAAAAADVRAgHAAAAAAAAAAAAAAAAqCZC\nOAAAAAAAAAAAAAAAAEA1EcIBAAAAAAAogdPp1K5du4qNJyUlqUuXLurSpYsef/zxEFRWMcGoc+HC\nhf5rfPLJJ0GuUMrKytL+/fuDfl0AAAAAAIBQIIQDAAAAAABwgnXr1mnIkCFatmxZqEsJW8uWLdPA\ngQO1adOmUJcCAAAAAAAQFLZQFwAAAAAAAFCX/PHHH7r99ttDXUZY+/bbbzV+/PhQlwEAAAAAABBU\nhHAAAAAAAACK8Hg8ZR5v3bq1fv3111qqJrSGDRumYcOGBf265X3HAAAAAAAA9RHLUQEAAAAAAAAA\nAAAAAADVRAgHAAAAAAAAAAAAAAAAqCbDNE0z1EUAAAAAAAAUlZOTo/nz52vlypXavXu3jh8/rvj4\neJ155pkaPHiwBg4cKIul+J8t2rhxo2699VZJ0qJFi9SpUye9++67WrZsmX7//Xc5nU61atVKl156\nqcaOHatmzZoFnN+lS5dSa5ozZ4569eqlpKQkXX755ZKkESNGaPLkyf45Cxcu1COPPCJJ2rRpk1at\nWqU33nhDSUlJ/vpffPFFRURE+M/5448/9M477+irr77SgQMH5HK5lJiYqHPPPVcjR47U2WefXaXv\n8MQ6n3zySX388cdauHChfv31V+Xk5Oikk05Snz59NGbMGLVr167YNYp+nueff17XXHNNwPHc3Fy9\n//77WrFihXbs2KGsrCzFxsaqTZs26t27t2666SY1b968xJpKsmrVKrVu3TpgbOfOnZo3b542btyo\nQ4cOyTRNNW/eXOedd55GjRqlM888s8RrzZgxQy+//LLi4uK0adMmzZo1S/PmzdORI0fUtGlT9erV\nS+np6Vq9erUkaeXKlWrTpk2ptb311lt67rnnJElLlixR586dS50LAAAAAAAaJluoCwAAAAAAAChq\n8+bNuu+++3T48OGA8eTkZH3xxRf64osv9M477+ill14KCHicKCUlRQ8//LB27NgRML5r1y7t2rVL\nH3zwgWbPnl1qiKO63nvvPU2fPj2g/qysrIAAzgcffKCnnnpKeXl5AecmJSUpKSlJixYt0ogRI/SP\nf/xDdru9yrVkZWXp9ttv1/r16wPG9+3bp3nz5umjjz7SSy+9pD59+lT4mn/88YfGjh2r3bt3B4yn\npqYqNTVVmzdv1uzZszV9+nT179+/0jWbpqnp06dr5syZ8nq9Acf27t2rvXv36sMPP9TNN9+sRx55\nRDZb6f+ba/r06Xrrrbf8+4cOHZLVatXQoUP9IZwlS5bonnvuKfUaixcvliR17dqVAA4AAAAAACgR\nIRwAAAAAAFBn7Ny5U2PGjFF2drZiYmJ000036cILL1RcXJwOHDigpUuXauXKlfrhhx90xx13aMGC\nBYqOji7xWn/729+UnJysPn366IYbblDLli2VlJSkWbNmacuWLcrIyNDEiRO1dOlSGYYhydc958iR\nIxo3bpwkXweZUaNGSZLatm1bqc/ywgsv6OSTT9Zf/vIXtWnTRj/99JM6dOjgP75w4UI99thjkqTW\nrVvrlltu0VlnnSWr1arffvtN8+bN0/bt27VgwQK5XC5NnTq10t9ngaVLl0rydfoZPXq0OnXqpMOH\nD2v+/PnauHGjsrOzNXHiRH322WeKjY2t0DX/9re/affu3bJarRozZox69+6txo0b69ixY1qzZo0W\nLFig3NxcTZgwQcuXL1fz5s3VvHlzLVq0SD///LP/s99///3+7jhFQ1VPP/205syZI0lKSEjQbbfd\npp49e8pisWjz5s2aNWuWjhw5orlz5yorK0vPPPNMiXVmZWXprbfe0qmnnqr77rtPzZo104YNG3TJ\nJZfotNNOU3x8vNLS0soM4Wzfvt0f5ho6dGiFvh8AAAAAANDwEMIBAAAAAAB1xoQJE5Sdna0WLVro\nnXfeCQi+dOvWTQMHDtS8efM0efJk7dixQ6+++qoeeuihEq+VnJysP/3pTxo/fnzANfr376/hw4fr\nl19+0W+//abNmzere/fukqTTTz9dcXFx/vmJiYk6/fTTq/RZDMPQzJkz1alTJ0lSz549/ccOHz7s\nX8bqwgsv1KuvvhoQJjr77LM1dOhQf0ho4cKFGjhwoC655JIq1SJJV155paZPny6Hw+Efu+qqqzRu\n3DitXbtWKSkp+vLLLzVw4MByr3XgwAFt2LBBki9Ec/fddwcc79u3rzp16qTJkycrOztbS5cu1dix\nY+VwOHT66acrIyPDP7dly5bFvuPvvvvOH8Dp0KGD5syZExDQ6dmzp4YOHaqxY8dq69at+uijj9Sv\nXz9deeWVxWr1er2Ki4vTnDlz1KRJE0nSueee6z8+aNAgzZ07V7t379bPP/9cYmekjz/+WJJkt9uL\nLckFAAAAAABQoPji6QAAAAAAACHw9ddfa/v27ZKkiRMnltp55uabb9b5558vSZo/f75cLleJ8xIT\nE3X//fcXG3c4HAHdTH755Zfqll6i888/3x/AOdG7776rnJwc2Ww2TZs2rcRuPjabTZMmTfKHggpC\nKVXhcDg0efLkgACO5AsKFXT6kXydiCri6NGj/u127dqVOOeGG27Q8OHD9cADD6hbt26VqnfmzJn+\n7WeffbbEZcfi4+P1r3/9S1arVZIClps60YABA/wBnBMNGzbMv71kyZJixz0ej7+TUN++fUu9DgAA\nAAAAACEcAAAAAABQJ6xevdq/3bt37zLn9u3bV5J0/PhxbdmypcQ5F1xwgWy2kpsAFw34ZGVlVbLS\niinorlOSgs/aqVMnnXTSSaXOi4uL0znnnCNJ+vbbb0sNHJWnW7duSkhIKPFY0RBNenp6ha7Xtm1b\n/3f7zDPPaOXKlcVqi4iI0JQpU3TPPfcEdJ4pj9vt9nfZ6dq1a5kBnrZt2+riiy+WJG3ZskWpqakl\nzuvRo0ep1+jatas6d+4sSfrkk0/k8XgCjq9bt07JycmSWIoKAAAAAACUjeWoAAAAAABAnVDQBUeS\nv9NNRezfv98fVCmqVatWpZ5TtPOM2+2u8L0q4+STTy5x3O12a8eOHZKkX3/9VV26dKnQ9XJycpSS\nkqIWLVpUupayzomIiAiorSISEhI0fPhwzZ8/X4cPH9a9996rmJgY9erVSxdddJF69+6tjh07VrpO\nSTp48KA/GFVWkKlA9+7dtWbNGpmmqZ07d5b4a6e87+z666/X1KlTlZycrA0bNgSEwAqWokpISPCH\nvwAAAAAAAEpCJxwAAAAAAFAnlNbFpDwZGRkljsfExJR6jmEYVbpXZcTGxpY4npGRIa/XW6VrVrRT\nzYnK+i6KMk2zwtf8+9//rjFjxvg74mRlZenzzz/XlClTNHDgQF1xxRV64YUXdOzYsUrVmpaW5t9u\n2rRpufObNWvm3y7t+yntn0WBwYMH+z9H0SWpsrKytHLlSknSoEGDZLfby60HAAAAAAA0XHTCAQAA\nAAAAdUJBF5aEhATNnj27wueVtZxTKJUW9CnabaZPnz568MEHK3zNoktHhZrdbtejjz6qu+66S8uX\nL9cXX3yhb7/9Vrm5uZKkffv26fXXX9e7776rmTNnlrmsVFGVCQJJClg+qrTvvLzQVdOmTdW3b1+t\nWrVKn332mSZNmqTIyEitWLFCOTk5kliKCgAAAAAAlI8QDgAAAAAAqBPi4+MlSdnZ2erSpYsslvBs\n4FvwOSXJ6/Xq9NNPD2E11ZeYmKhbbrlFt9xyi5xOp77//nt9/fXX+uSTT3TgwAFlZGRowoQJ+t//\n/lehf6aNGzf2b6ekpJQ7v+icot9tZQ0bNkyrVq1SVlaW1q5dqyuvvFLLli2TJHXu3Fldu3at8rUB\nAAAAAEDDEJ7/NwsAAAAAANQ7p556qiQpLy9P27dvL3Pu2rVrNWvWLC1fvrzSyx2FmsPh8He02bp1\na0BnnJLMnz9f8+bN0+rVq8udW1u8Xq/279+v9evXB4w7HA5dcMEFevDBB/Xpp5+qR48ekqQ9e/bo\n999/r9C127Rpo+joaEnSTz/9VO78H3/80b/doUOHin6EYvr27asmTZpIkj+MU/D56IIDAAAAAAAq\nghAOAAAAAACoEy6++GL/9rvvvlvqPI/HoyeffFLTpk3Tn//8Z/9yQcFSGx14Cj5rWlqaPvnkk1Ln\n7d27V5MnT9bkyZP11FNPyWarG02N//GPf6h///667bbbtH///hLnFARyCuTl5fm3y/qOrVar/7yt\nW7fq559/LnXu3r17/UGZ0047TU2bNq3U5yjKbrdr8ODBkqTVq1drzZo1cjqdslqt/nEAAAAAAICy\nEMIBAAAAAAB1Qv/+/dWmTRtJ0ocffqjFixeXOG/q1KlKSkqSJF1++eVq1apVUOtwOBz+7ezs7KBe\nu8Ctt94qq9UqSXr66af166+/FpuTk5OjCRMmyOv1SpJGjx5dI7VUxWWXXebfnjp1qkzTLDYnJydH\nq1atkiTFxMQEdKkp7zu+/fbb/dsPP/ywjh49WmxOenq6xo8fL4/HI0kaO3ZsFT5JoGHDhknyhaNe\nfPFFSb7AVGJiYrWvDQAAAAAAwl/d+ONTAAAAAACgwbPZbJo2bZrGjBkjl8ulhx9+WF988YWuueYa\nJSYm6sCBA1qwYIE2bNggSWrcuLEeffTRoNeRkJAgu90ul8ulpUuX6qKLLlKjRo3Url07xcfHB+Ue\n7du31/jx4/Xcc88pLS1NN954o2666SZdcsklcjgc2rFjh/7zn/9oz549kqRu3brp5ptvDsq9g6Ff\nv34666yztGXLFq1atUrXX3+9Ro0apfbt28s0Te3evVtz587Vzp07JUl33HGHoqKi/OcXDbW89957\n6ty5s2w2m04//XRFRUXp/PPP1+jRo/XOO+9o165dGjJkiMaMGaOePXvKMAxt2bJFs2fP1qFDhyRJ\ngwYN0rXXXlvtz3XaaafpjDPO0LZt2/zf/XXXXVft6wIAAAAAgIaBEA4AAAAAAKgzevbsqTfffFPj\nx49XWlqali1bpmXLlhWb16JFC73yyitq3bp10GuwWq3q16+fli9friNHjujOO++U5OtYc/311wft\nPnfddZcMw9ALL7yg3NxczZo1S7NmzSo279xzz9XLL78su90etHtXl8Vi0csvv6w77rhDv/32m7Zu\n3arHHnus2DzDMDRq1Cjdc889AeMtW7ZU165dtXXrVu3cudPf5eftt9/2L0X16KOPym63a/bs2UpJ\nSdHzzz9f4vVvu+02Pfjgg0H7bMOGDdO2bdsk+YJe/fv3D9q1AQAAAABAeCOEAwAAAAAA6pSLLrpI\nq1at0vz587V69Wrt2rVLmZmZio6O1imnnKLLL79cI0eOVGxsbI3V8PTTT6tp06ZatWqVjh07pkaN\nGik1NTXo97nzzjs1YMAAzZs3T+vWrdPBgweVk5Oj+Ph4de3aVUOGDNHVV18ti6XurSjeokULffTR\nR/rwww+1YsUK7dixQ2lpabLb7WrevLl69eql66+/Xt27dy/x/Ndff13PPvus1q1bp4yMDMXHxwcs\nO2WxWDRx4kRde+21evfdd7Vx40YdPnxYFotFLVu2VK9evTR8+HCddtppQf1cAwcO1JQpU/zbRZfO\nAgAAAAAAKIthlrRoNwAAAAAAANAArVmzRuPGjZMkLViwQD169AhxRQAAAAAAoL6oe3+MCgAAAAAA\nAAiRhQsXSpJOOeUUAjgAAAAAAKBSCOEAAAAAAAAAktatW6eVK1dKkkaNGhXiagAAAAAAQH1jC3UB\nAAAAAAAAQKhMmTJFWVlZyszM1Jo1a+R2u9WiRQtdf/31oS4NAAAAAADUM4RwAAAAAAAA0GClpKRo\n2bJl/n273a6nn35aUVFRIawKAAAAAADURyxHBQAAAAAAgAbr3HPPVXx8vKKiotSzZ0/NnDlTvXv3\nDnVZAAAAAACgHjJM0zRDXYQkJSdnhrqECktIiFZqanaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH/H8\nAgA0JImJcaUeoxNOFdhs1lCXAABAreG5BwAIJZ5DAICGhmcfAKA+4vkFAIAPIRwAAAAAAAAAAAAA\nAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAAAAAACoJkI4AAAAAAAAAAAAAAAAQDURwgEA\nAAAAAAAAAAAAAACqiRAOAAAAAAAAAAAAAAAAUE2EcAAAAAAAAAAAAAAAAIBqIoQDAAAAAAAAAAAA\nAACAWrNs2RK99tqMGrv+999/qyeeeKTY+IsvTtehQ4cCxvbu3aP77hsXlPvagnIVAAAAAAAAAAAA\nAAAAoA574IEHa/T6hHAAAAAAAAAAAAAAAAAagJhJjyliyaKgXjNv8HXKmjSl7Dl5uXr66Sd16NAh\nuVwuXXbZ5f5j8+fP1apVn8lqtap797N1zz1/1ubNP+rll/8lm82myMhITZkyTQ5HhP75z6eVlLRf\nXq9Xd911t84559xS77l//3799a/3KT09XUOHXq9Bg67TffeN04QJjyomJlaTJz8m0zTVpEnToH0X\nhHAAAAAAAAAAAAAAAABQYxYt+lAtWrTUk09O1f79+7R+/Vc6fvy4du36TZ9/vkKvvz5LVqtVf//7\nw/r66y/144/fq1+//rrxxpv01VdrlZGRqfXr/6fGjeP1yCOPKz09TffeO05z575f6j09HremTXtB\nXq9HY8bcpN69+/qPzZkzU/37D9CQIUO1atVn+uij/wblcxLCAQAAAAAAAAAAAAAAaACyJk0pt2tN\nTdi3b68uuOAiSVKbNm21ZUucUlJStHfvHnXtepZsNl98pXv3Hvr9910aPfp2zZkzSw88cLcSE5vr\njDPO1K5dv2nz5h+0bdvPknwhm7S0NMXHx5d4zzPOOEt2u12SXR06dNChQwf9x/bv36fBg4dKks46\nq3vQQjiWoFwFAAAAAAAAAAAAAAAAKEG7dh20ffs2SdKBA0l6441X8sfba9u2n+V2u2Wapn788Qe1\nadNOn322TFdfPUgzZryhDh06avHihWrXrr369x+gl19+U9Onv6TLLuuvRo0alXrPnTt/ldvtVk5O\njvbs+V2tWrX2H2vfvqO2bt0sSf66goFOOAAAAAAAAAAAAAAAAKgx1147TFOnTtZ9942Tx+PRiBE3\nKz09TZ06naJ+/frr7rvvkGma6tatuy655FJt27ZVzzwzRVFRUTIMQw8//Hc1a5aoadOm6L77xikr\n67iGDh0ui6X03jMOh0MPPfRnHT9+XGPHjlOjRo39x8aMuUOTJz+mlSs/U8uWrYL2OQ3TNM2gXa0a\nkpMzQ11ChSUmxtWregEAqA6eewCAUOI5BABoaHj2AQDqI55fAICGJDExrtRjdMIBAAAAAAAAAAAA\nAABAvTN79lv67rtNxcYfffSJoHa4qShCOAAAAAAAAAAAAAAAAKh3br/9Lt1++12hLsOv9MWxAAAA\nAAAAAAAAAAAAAFQIIRwAAAAAAAAAAAAAAACgmgjhAAAAAAAAAAAAAAAAANVECAcAAAAAAAAAAABA\ng+P1mqEuAQAQZgjhAAAAAAAAAAAAAGhwPF5TXpMgDgAgeAjhAAAAAAAAAAAAAGhwTNOUx+MNdRkA\ngDBCCAcAAAAAAAAAAABAg2Oavm44AAAEiy3UBQAAAAAAAAAAAABAbfOapkyWowIABFGFOuH89NNP\nGj16dInHcnJyNHLkSO3atcs/9sYbb2jEiBEaNmyYPvjgg+BUCgAAAAAAAAAAAABBRCMcAEAwldsJ\n56233tLixYsVFRVV7NiWLVv0xBNP6PDhw/6xjRs36ocfftD8+fOVk5OjWbNmBbdiAAAAAAAAAAAA\nAKimpv/vNnkcEcp7c2aoSwEAhIlyO+G0bdtWM2bMKPGY0+nUK6+8oo4dO/rHvvrqK3Xu3Fn33nuv\n/vSnP+nSSy8NWrEAAAAAAAAAAAAAEAwxyxar0aIPJI8n1KUAAMJEuZ1wBgwYoKSkpBKP9ezZs9hY\namqqDh48qNdff11JSUm6++679emnn8owjDLvk5AQLZvNWsGyQy8xMS7UJQAAUGt47gEAQonnEACg\noeHZBwCoj+rz8yvRlSm1aBPqMgAAYaDcEE5lxcfHq2PHjnI4HOrYsaMiIiJ07NgxNW3atMzzUlOz\ng11KjUlMjFNycmaoywAAoFbw3AMAhBLPIQBAQ8OzDwBQH9XL55fbrcT8zezn/qWsxyaFshoAQD1S\nVvC03OWoKqtnz5768ssvZZqmDh8+rJycHMXHxwf7NgAAAAAAAAAAAABQNbm5/s3ol54PYSEAgHBS\n6U44S5YsUXZ2tkaMGFHi8csuu0ybNm3SDTfcINM09fjjj8tqrT/LTAEAAAAAAAAAAAAIb5aM9FCX\nAAAIQ4Zpmmaoi5BUr1rU1cuWegAAVBHPPQBAKPEcAgA0NDz7AAD1UX18ftk2blDC4Cv9+8lHMkJY\nDQCgPqnV5agAAAAAAAAAAAAAoC4zXM7AgbrRtwAAUM8RwgEAAAAAAAAAAADQsDgDQzgGy1MBAIKA\nEA4AAAAAAAAAAACABsVwuwL2LSlHQ1QJACCcEMIBAAAAAAAAAAAA0LC43JIkb2JzSZLx85ZQVgMA\nCBOEcAAAAAAAAAAAAAA0KAWdcNxndZMkJdw5JpTlAADCBCEcAAAAAAAAAAAAAA2LyxfC8cbHh7gQ\nAEA4IYQDAAAAAAAAAAAAoGFx+5aj8rTvEOJCAADhhBAOAAAAAAAAAAAAgAbFyO+E4+l0qiTJGxsb\nynIAAGGCEA4AAAAAAAAAAACAhiU/hCO7Xe7Tz5BptYW2HgBAWOBpAgAAAAAAAAAAAKBBMdy+EI5p\ns8u2fZtvLD1NZuP4UJYFAKjn6IQDAAAAAAAAAAAAoGFxuX1/t9v9QxEfvBeiYgAA4YIQDgAAAAAA\nAAAAAIAGxbrnd0mSaWfhEABA8BDCAQAAAAAAAAAAANCgRL09U5JkOXpUru5nS5K8bdqFsiQAQBgg\nhAMAAAAAAAAAAACgQTIy0pU3fIQkyfr9dyGuBgBQ3xHCAQAAAAAAAAAAANAguc/uKTMiUpIU+8Kz\nIa4GAFDfEcIBAAAAAAAAAAAA0HCYpn/T3fM8mY0bh7AYAEA4IYQDAAAAAAAAAAAAoOHIywvY9bRr\nH5o6AABhhxAOAAAAAAAAAAAAgAbDyMqSJDnPv1CSZDZqVHiwSJccAAAqixAOAAAAAAAAAAAAgAbD\nyPaFcLzt2kmSPJ1O9R+LWPxRSGoCAIQHQjgAAAAAAAAAAAAAGgwjfzkqMzKq2DHbxvW1XQ4AIIwQ\nwgEAAAAAAAAAAADQcOTmSpLMyIhih7wtW9d2NQCAMEIIBwAAAAAAAAAAAECDYeT5QjiKiPSPHX9s\nkiTJ27JlCCoCAIQLQjgAAAAAAAAAAAAAGgz/clQRhZ1wzGaJvg2nMxQlAQDCBCEcAAAAAAAAAAAA\nAA2C1zSLLEdV2AnHdDgkSYbLFZK6AADhgRAOAAAAAAAAAAAAgLBn37BOia0T5fhilW+gaCec/BCO\nnHkhqAwAEC4I4QAAAAAAAAAAAAAIa44lixQ/5CpZXE5Fv/GKJMmMiCwywRfIMZwuudzeUJQIAAgD\nhHAAAAAAAAAAAAAAhCe3W2ZKihrfcWvxYwGdcOySJMfKz5Qw+EoZ6Wm1VSEAIIwQwgEAAAAAAAAA\nAAAQNkzT9G83GjNKTc/vXvK8IiEc2X3LUTm+XK2o775R5Nuza7RGAEB4IoQDAAAAAAAAAAAAIGx4\nvKay0o/Lm5eniBXLZc3MkKf5ScXmmY6IErclyXDm1XidAIDwYwt1AQAAAAAAAAAAAAAQLB6vqbZd\n28vbLNE/Zj1yuNg8b+vWhTv5y1EVMPII4QAAKo8QDgAAAAAAAAAAAICw4fV4ZXE6ZTl4oNixY19/\nK+ubryun7+Wynt3TP35iJxzl5lbsXl5TFotRrXoBAOGDEA4AAAAAAAAAAACAsOHNKT1A4zm1s45P\neVZREYGvSc2YmMD9zMwK3ctDCAcAUIQl1AUAAAAAAAAAAAAAQFCkHpPlwP6AIW+jRpIk0/CFZey2\n4q9IzbhGAfvG0aMVup3H661KlQCAMEUnHAAAAAAAAAAAAABhIbFL+2JjziuuUu65veQ+qYUkyWYt\nIYQTGxuwb6Qdq9D9vF6z8kUCAMIWIRwAAAAAAAAAAAAAYSvyw/eV+dq/y54UESHTapXh8UiSLKmp\nFbq215QsO3fI276DZLdXt1QAQD3HclQAAAAAAAAAAAAAwlbutcMqNK8ggCNJ1rSKhXASx92qpr3P\nVdz9f6pSbQCA8EIIBwAAAAAAAAAAAEBYcrdspczXZ1b6PGtaqmSWv9RU7PJPJEmRCz+o9D0AAOGH\nEA4AAAAAAAAAAACAsOO8sLdSf9gmWa2VPtdwuWRkHS97ktdbxcoAAOGKEA4AAAAAAAAAAACAsJM3\nfKRkGBWe7+pxdsC+kVrOklQuV1XKAgCEMUI4AAAAAAAAAAAAAMJO7s23Vmq+q2+/gH3LZ8t9G8eP\nyzhyxD/uye+AY7ic1SsQABB2COEAAAAAAAAAAAAACCvpjzxeqS44kiTTDNhNeORBGWmpanLxeWp2\n5imS2y1J8njy59EJBwBwAkI4AAAAAAAAAAAAAMKK1Wqt9DnZ4+7R8Qt6K33uAv9Y49EjZT14wLfj\n9HW+8Xh9IRz7NxurXygAIKwQwgEAAAAAAAAAAAAQXirbBUeS2by5jn2wRM4rByp71C2SJPvG9YWX\n9Pg64Zg/K8KdAAAgAElEQVSHDsl0ueRYtiQ4tQIAwgYhHAAAAAAAAAAAAADhpQqdcCQpwuE7z927\nT/GDbrcsfxxUu/POUNzokXKf1yvgsJGWKvtfH5B97eoq3RsAUP/ZQl0AAAAAAAAAAAAAAASTp2On\nKp1nye+gY7jdxQ+63LL+sl2SFPX5Ch0/IajTrHM7372/WKFjP2yr0v0BAPUbnXAAAAAAAAAAAAAA\n1HueI8n+beeAgdW6lvXnzcXGDI9bhsvp34996vGSzz2QVK17AwDqL0I4AAAAAAAAAAAAAOq9Fmf6\nut9kn3O+lN/RpqqcV13j3867erBvw+2W5eDBKl3Psm+vHEsWVasmAEDdx3JUAAAAAAAAAAAAAOq3\nlBT/pkVmtS/nuuRSZU59Tq7GCYr6ek3+oEtxD4+v0Pm2TRsV8d/35W7ZSq7hI9Tkkl4ysrN1bPV6\nec7oWu36AAB1EyEcAAAAAAAAAAAAAPWWkXpMzU7v4N+35uUG5bq5d4zzbWz4WpJkST1W4XMTrrnC\nv+2ZM0tGdrYkybbha0I4ABDGWI4KAAAAAAAAAAAAQL0VM+XJgH0jSCGcAmaEQ5IU8b9PqnS+df8+\n/3ajvz0UlJoAAHUTIRwAAAAAAAAAAAAA9VbUO7MD9o3c4IZwIpZ/KkmKfun5oF4XABB+COEAAAAA\nAAAAAAAAqLdcZ3YL2Ddyc4J6fTMmpsJzUzZtDuq9AQD1CyEcAAAAAAAAAAAAAPWW12INHHC7g3r9\n409NrdC8lO+3ytuuvY6u2ajjD07U0e2/K+ORx5V3yaX+OZ74hKDWBgCoWwjhAAAAAAAAAAAAAKg3\nvKbp37ZtWK+IzT8ETjCM4N6vxckB++7WbUqelz9unn66cib+XWbTpsob/5AyZ85Rxouvyt3pFBku\nZ1BrAwDULYRwAAAAAAAAAAAAANQbWTku/3bMc88UnxDkEI6ncxf/dvbd98uSU7nlrszG8cobdYsM\nl0uWrCzp+PFq1WMWCSEBAOoWQjgAAAAAAAAAAAAA6gXH4o/UsX0z2dd/LUly9b64+CRL8F+Bpr/w\nsnIGXK2sxyfLyMmu0jWs+/ZKkmJe+Ge1aiGDAwB1FyEcAAAAAAAAAAAAAPVC4zvHSJLirx0oSfI2\nbVZsjhkdG/T7Om++VcffeU+yWmVkF4Zw0l/9d6WvZdrt1arFFCkcAKirCOEAAAAAAAAAAAAAqJ9c\nTklSxouvKvvGUXJ27KT0/8yrlVtnPvaknDfcWOH5WeMfkiR5Tjm1WvelEw4A1F22UBcAAAAAAAAA\nAAAAAJVmmjKcLt9mQhNlvfyGnC6PHHZrjd42beFSRT43TXm3jZUkHf3oE7kjo1XeXb3tOvg23O5q\n3d8khQMAdRYhHAAAAAAAAAAAAAB13wnhk8STGhcecviWeLLban4hENfFl8h18SX+fWev3vKaZrkh\nHNPqm2F4vdW6PxkcAKi7COEAAAAAAAAAAAAAqPuysko9ZMbESZIMw6itavwsFslmVCD8Y8t/NVvt\nTjjVOh0AUINqPgoKAAAAAAAAAADCHsujAKhpztQ0SZKnbftix8yEhFquppDVYqlY+Ce/E061Qzji\n5y0A1FWEcAAAAAAAAAAAQLU5XdVbXgUAyuKYN0etep4hSfK0bq3UlWuVfef/8x/3No4PVWkVZlrz\nO+F4PdW7DhkcAKizCOEAAAAAAAAAAIBqy3NV76UyAJSl8fj7/NtGVpbc3XrI1beff8yMr/shnILl\nqIxqL0dFCgcA6ipCOAAAAAAAAAAAoNpcbjrhAOHM7ak7/45nznhdkuTucXbhYEREiKqpBGv+q1l3\nNTvhBKEUAEDNsIW6AAAAAAAAAAAAUP95vHXnBT2A4DuanqsWTaJDc/MTOr94OnSUJHlPaqGDr86W\n0SiuXrz0NAs64eTlVu86pHAAoM6iEw4AAAAAAAAAAKgej0eJTz8h6/Ztoa4EQE0wTTmPJEuScp3V\nW0qpSk5cvqlI15u8a4bI7Hd5LRdUNd7WbSVJ1t93V+s6LEcFAHVXfQiFAgAAAAAAAAAQUm6PVzYr\nf661NI5Pl6nx229Ib7+h5CMZoS4HQJBFT/s/9Xz+WeXeMEKJ/10gScq+7U7lXX+jb0JCtGyp2TV2\nfyM3x7+dNvOdgGMWw5DVUj9+Pnsbx/s28vKqdR0yOABQdxHCAQAAAAAAAACgHC43IZwyWa2hrgBA\nDYp5/llJUmR+AEeSov/zb0X/59/+/YRaqCP3umFyDb42YMxqNWSxGLVw9yCIcEiSjGqHcEjhAEBd\nRQgHAAAAAAAAAICyuN2KefZpWQZeJfe554e6mrrJRggHaIiy/vKQJCkm2qGsbGfN3sxiKG/o8GLD\ndlv9CUiajvxltKoZwvGSwQGAOosQDgAAAAAAAAAAZXCsWqHGM56Te8UnSl27MdTl1KoKL8Pl9dZ8\nMQDqnOxHH5ckxSTGKTs5MyQ1WIx60gVHkiJ8IZyIL1aGuJCGwZuUJEuzZlJkZKhLAdCA1J9oKAAA\nAAAAAAAAIWAc971Ytv2yPcSV1D7zm42yvvlG+RNd7povBkDImJbirxRTPltd+4XUd0WW7jMyM6p8\nGZajKp+RmaGTzjlDCVf1C3UpABoYQjgAAAAAAAAAAJSlPnVZCKacHLW8doCaPDZBxrGUMqcazuot\nrQKgbjs2pPgyUN4e54SgkvARNfPNKodpTFPysiZVmazbfcFZ27afQ1wJgIaGEA4AAAAAAAAAAGVp\noCGcqNn/Ltxxe8qe7HTWbDEAQsY4lqKmixYEjKV8vzVE1YQPy949yjmeU6VzPaaprFxXkCsKL7H/\nmBjqEgA0UIRwAAAAAAAAAAAoSwMN4RgZ6YXb5XS6MQjhAGErYvGiYmPeVq1DUEl4iZo3R+06tZA8\n5YQcS2B6Tbnc3hqoKnxYDh0q3D58qIyZABBchHAAAAAAAAAAIEzlOt2hLgH1mLdZM/+2kZdb9mSW\nowLCl81WfKyBhhODIWXjjwH7RQOPFWKa6tq1lVoPvyaIVYUfd5Hl0hpfd3UIKwHQ0BDCAQAAAAAA\nAIAwlZtHCCcoTDPUFYSEGZ9QuJNbTiecPDrhAGErz/fvf1a/K5Q+c45S/vliiAuq37wdOsobEenf\nj5n8eKXOt3+1VobHo5gfNgW7tLBiHDns37bt+i2ElQBoaAjhAAAAAAAAAEAYsn/9pU7t1FyOFZ+G\nupQ6z1teyMbdQMNMlsJXCOV1wjHL65QDoN4qWG7ONWasnIOvk3fM7SGuqP7zJib6t6PmzanUudYd\nv/q3zSosZdVQOL47IaTEdwWglhDCAQAAAAAAAIAwFPXqS5Kk6GenhriSui/7j2TJ6y19QkN9cVfk\ncxt5ZXfCiVi6uHDH5aqpigCEQsFycxERoa0jjFgquwRVPtv33yrukYf8++6U1GCVFF6cxbuzWQ4e\n8P19/z7ZvtlY2xUBaEAI4QAAAAAAAABAOLI7JEmGs+zwRENnHEtRhx6nqNHIYaXPaaidcIqGj3LL\n7nTj2PJT4faqFTVVEYAQ8IfwCOEEjSUjo0rnxV87MGDf+dsuZWSzHOCJHGs+LzbWtOeZinnwz2ra\n80wlDLpCic0bKfqFf4agOgDhjhAOAAAAAAAAAIQh02H3bZTwp8FRyLp/nyQpYnXxF3Z+Deg7dLmL\ndL8p0h2ozE44JyznZeRkB70uAKETOfdtSZLpcIS4kgYuJ6fYz+L2112hFldc3HCXTSyFfd3X/u3U\nV97yb0e/85+AeTFTn1LkCWMAUF2EcAAAAAAAAAAgDEUs+ViSZLh4MVcW02rzb3tKWZKqqsuG1BcF\nn9u25SdZ1q4pcqAwkGP78bvSL3BiSKkBhZaAhsB66A/fBp1wQip2wl9KHI/Z+YuiZ7xQy9XUbe4e\nZ0uSskbeIvPMs8qcG/fgn2X/ck2ZcwCgMgjhAAAAAAAAAEAYMvIDFNZ9e0JbSF1ntfo387JK7vYS\n8/Tk2qomJNweXyebhMv7qMXI6/zjpqdiAS4jNydgP9xDS0BDZdrphBMsWQ9O9G97YuMqdE7U+/NL\nPWakHK12TWElfwlFb68L5OncpVgXp5zhowL2WUYRQDARwgEAAAAAAAAANFyGUbidmVF79y3SZSbU\nPB5Tlr17ig5IkrxFlqaK+PCDUs+37N8vSXK3ONk3sPmnoNcIoA6IIIQTLNkT/659b/9XnvYdZFRk\nKamcnDIPG7llLBkYAuYJyxTWuvxwqBkZKVmtOpp0VMlHMpR8IEXJRzJ0/OXXlfpJYfDGQogJQBAR\nwgEAAAAAAACAMJY7bHioS6jbioRhjGPHauWWMVMmKfHkBBlH68ZLP292lpqe182/bxzP9G0cOOgf\ns+3dI5Xyojju4fG+OflL1kTSUQAIS6bBa8VgsvS/XN6mzWRUoOuY/acfyjzu/7ldBxjHMxX953tk\n3fFryGpwH88P4UREBh6w231/Nwy5z+tVOO5y1VJlABoCnpYAAAAAAAAAEM5Mb6grqNOKvvxs9K9/\nljnX64gIyj2jX3pekmT/blNQrlcdtm+/UdMJDwSMGZmZUk6O4l95IWDcciCpcMc0Zf6+W5Lk7tZd\nkpQxZZpMh0OG01mzRQMIjVB3NwkzEXarTLtdhstV7nfbeMRQ/7YZGVnseF0K4US99rJiF8xT45tD\nFwL2ZGfnF1P8uyoq7b0PJUlmTExNlwSgASGEAwAAAAAAAADhpmh3lzwCEWUq8l3FL/5v4YtQ01RO\n+vGAPx1vRgQnhFMgYAmoWub1+j5nwtX91WjJwoBjRmamjIIXmEVYfvxBMk05Fn+khG6nqXmvHoqY\nP1cR/31fkuS+vL/c3XrImpHOy3qgniv4GREw1qp1CCoJb8bx45Ikyw/fydzze+nziixHlbJtV6nX\nCTmnU44Vn0oq3l2u1paoyspS4j+n+O5ptZU51XPGmZKkiI8/kv3JJySvV2ZGupxHa6czHoDwRAgH\nAAAAAAAAAOo4y+FDsr2/oMLBBiM9zb/tzcurqbKqxOOtY515Tlhiyb5xvSSp0S03qu2pLWWkFX6X\nRinLMVVV3GMTg3q9ysh1lv5ZjMzMEpeeSrhrjCI+XqjGd46R7bBv6alGD9wjS0a6JMl7UgtZ9u2V\nJMU+8lANVA2gtuQ6CwOKnvgE5Z3SRQpyEBGS/efNkqSmV/VT8/O7lzvfednlMmPj5Ox0qiQp9/Ir\n5Y2JkTIyarTOioqd8BfZf8xfOssS+Bra6fKUcEbwOb5Y5d8uKVBalBkdLUmyZKQr/pUXFDn3bTU/\npY1andG+JksEEOYI4QAAAAAAAABAHdf42oFKuO8u2dd8UaH5ltQif4K7Di0NZFu7WpH33R3QXaao\nWvtT8kUYnsCXgpaDByRJESuWS5KsBwuXYDLcJddd3xiHD6vJHbfItnFDycePZ8hwlhzeiv3r/aVe\n14yNk/XIYUlS1Ky3ql8ogJAxft0uZWX5djweyWEPbUENVV6eGg+9xr+bMXOOJOnA5xv09aY9Sn/3\nA5mxjXzhyTogav7cwh2b1b8ZPXWyWrduIiM/tFkZlf29gRkdVbgdWXZwzIwOXIbK+su2St0LAEpC\nCAcAAAAAAAAA6jjbbt/SE5ZDf1RoftQbr/q3jVICL6GQcMMQxf93vhyfryzxeE5e7fwp+QAndHyx\n7N8XuH802b9tuFzBX2YpyN11KiJi6SLFrfifEgZfWeJxx+crZbgKw1tHJ0/zb1tKWfIku8+lQa0R\nQOhY9u1V2yt6K/7agb4Bj1uG1Vr2SQiOE57Ztv9+IMfXX0qSnJ1PkxkbJ0kyDCk6yiGLYchsFCfr\n4UOyr/681sstk6Xw10zMC89Jkmxbf670ZfIq2UHHKPKcdl3Wv+zJtsDlqoou+2X542Cl7gsABSoU\nwvnpp580evToEo/l5ORo5MiR2rUrcP3BlJQU9e3bt9g4AAAAAAAAAKCKDKNC06L+M7Nwp5SOJqFk\nSdpXbMy6c4eaXH+NLHv3yLLnd1leelEqspSW7ftvC7syBNMJIZjY/3tSxtGj/v3Go24IOO743ydB\nvb1ty09BvV6FOIp3BjhyqHDZreg3X5OchS+C7a1blnvJ7DdnB6c2ACFnTdovSbJv/lFGepqs2dmy\n7dwR4qrCU/b/uzdg37H2CzUaPEDN2rdQzG23KGH8PYUHowo7vFgMQ9GRvgCJGRsrS26O4m+8rsId\n82qDJfmIYm8cqshn/s8/lrdzd6Wv4927z9eNqaKK/l6hgr9vKuBYu9q/HbFkUaXOBYACtvImvPXW\nW1q8eLGiivxgL7BlyxY98cQTOnz4cMC4y+XS448/rsjIyOBVCgAAAAAAAAANXUVeJp3QqcVwuiSv\nV163WxaHo4YKK5+RkuLfjntkgnLv+H8Bx6P/+bQiN62X6+47Zf/2G0lSZmy0csfeJduG9UoYMkDO\nvpcp/YOPg1uXp3gnGtv2raXOt27ZLOcVA+WwB6crRMKAy5T8R6pUm10mSniZaVgsOrZijZpc0Ve5\nw25Q3IN/9h8z4xop96weitzyY6mXNJs2lSTl3DFOUTPflPvk8oM7AOom01r4+rCgs5olN6e06agG\n10UXS2+84t8vGvyMXrY4YK7jpx/82zarxR/CKarxmJuUM2as7/cCpinJLNzO//2BYZ4wZirgeLFz\nTLPwHClg3IyIUPZfHpI3sbmi/vZQsXqiVq+SVq/y75/00L1KvnG4VMF3yLbvv1W7q/opd8RNypzx\neoXOMfM7tmXc+5cKzT/25TeyLVuqRlMny1q0G14Ov+YBVE25IZy2bdtqxowZevjhh4sdczqdeuWV\nV4odmzZtmkaOHKk333wzeJUCAAAAAAAAQENnKb+5uZF1wnJBLqcSLusty287lHIgRR6vV9YKXCfY\nIhZ/VPYEb/7LwfTCjiyW5CO+c5f6/jS6oyb+hL+7hEBKGS+b3W6PnG5v0EI4khR3x2hl/ufdoF2v\nXO6Slygz4xN8G3aH7Js2Fh5wOHRwyUrF2Q3ZN6yTbda/FfuJLwyVfeXV8lzWzz/1+FPPKGrmm3K2\nbV9T1QOoabbCn29eAnU1y1a1Z4ndZpHV9AVzjYwM/7iRnaXo12YEpbSK8p7cUjJNxbw3t0LzLclH\n5G3TtvTrmaYs+aHjglBu5IJ3KxzCiViaH17q3r1C8z1dTpOnTVtp6uSAcYMQDoAqKjeEM2DAACUl\nJZV4rGfPnsXGFi5cqCZNmqhPnz6VCuEkJETLVsUHTSgkJsaFugQAAGoNzz0AQCjxHAIANDTFnn1e\nr3+zUW6mVN6zcfH7haee1EI2j1vWX3dKkuJnvy4jPUO2yZNqtfOK12vK0iiw23pis9jAzj75IR1r\nWqp/KGb6NMU894z05muF53mzpZNOKvE+uYePypOZqZhTOlS4tjxH8UBS4ycfK3V+zLo1MvpcrMbX\nXi2X2yubwyajMqGmIv88C0QuW6pIu0eKj6/4daqj4DPfcos01/fSNDExTnI389WjwGBS/KAr5XB6\nFB1pl4YN8v21fLnMvDxFDxkiSTrxV2X0xnWKjrXJZY+Q3Vb7oS8A1dCskX8ztmWib2PGjHL/24z/\ndquCpo2Kjw0aJP34o1Twfnb0aOmddySV8h1bi/yMnTFDuuAC37ZhlPxXsI7t3CldcYWi1n4u49ix\nin9kb06Zv5fJznX5njeS1DjGP17hX18rl0uSGrmyy/89UwFPdLGhGJsUw69pAFVQbginsj788EMZ\nhqH169dr+/btmjhxol577TUlJiaWeV5qanawS6kxiYlxSk7ODHUZAADUCp57AIBQ4jkEAGhoSnr2\nxfzfk/K/GvrrX5V8y51lXiNq/yHFSnL27iPj99+l3DwVxG3sE31dzdNPOU3OQUOCWnupTFOxQwcp\n8pv1KrqYVsqP2+Vt3ca/X/B/kI3k5IDTk5MzVfT/Lpsnn6yjh9OL38ftVmL+y+LkQ2kV6xqUnqZm\nI4ZLkjKnPqeImW/K8dsOaceOUs+xb/pGjW+4Vscfm6TYKZOUd8llyvhvJZbIyslRoqTcHj0V+eN3\n/uHcP92rzKnPVfw61RB9OEUxkrJOaqWC15vJyZkyjrvUTFJeRpYi8sezBg9VdkqWXG6vsoqGac65\nKP/E4r9XK/jn5epxjtzRMcq+9TZ5ZJHnltE184FQJxXtZoF6xOtVzIsv+587md9tViNJmW5DuWX8\ntxn/7VY1Eb/u1okxnKPPvyL7po1qfPONkqTkf86QpUcvqU8feUv4jhM8Xtkk5Q69XpkjxtR80fmM\nkzuomSTLN99U6ry0vX/I1a7kXyvWbVul9xco6/FJksWiyBy3P+RZ3q8vr9dU9DuzC+cPHFriM6o0\nJ77Jzk4/rix+TQMoRVnBwKCHcObNm+ffHj16tCZNmlRuAAcAAAAAAAAAULLoF6dX7oT88EnOuHsU\n9cTfZWRnFZ9SpNtMTTPS0xS17kv/vuucnrJ//52sSfvlatmq3KWxIue+HXg905SysqSYmIBxyx8H\nC+ekpsps2rTc2uxfFdYlm03OXhf6QjgnyHx+huL+en/AmOPLNZKkiLWVWyLLctQXMvK2aiUVCeFE\nLnhXkQtqcUkqSZ527X215HfgMe0O34G8PP8cS36GwmatfJjCvuMX2SVF5X/Oo9dcIzOhSZXrRf3i\ndHkU6Qj6ayjUsIj35yu6yM/dRs9NlSSZtdg9rSExXMWXBzTjE+S85DJlXXKZvNcOlSwWeUffWvpF\nTLMGKyzjtk2q9vPcSC8hSJsv4YpLfN/Jq/9S8v7kwI55ZfF6lXUkVSdN+EvhWGxslerz11nkWQgA\nlVHp3/0sWbJE2dnZGjFiRE3UAwAAAAAAAAAoRcFLUK/XlMVS8ospI9W3JISZkCA5HDJKCNxYd/xa\nc0WewJJyNGDf07ad7N9/JzMtTTl5HsVG+UI43oQEWVKL13pi+EWSrLt3yXNWt4Cx+CFXFd4z9Zg8\nFQjh2H7eXGTHpsynnlHsPN/L5+z7x8vYsF65/5gk9wUXycjJVuzfJ/qnGzk55V6/KJfbK7vNIvv6\nr30DkZE6unWXzP37FDv1KVkc9kpdr7rMJk2VN/g6pbVsJU+X03yDNt8rg4jPV/jnFfwqMyrR0STv\nvF6K2LSx2Lh19y65exLCaSjcHpNuOPWQbevPJY5bDyTVciUNg2kv/Nnv6niK8sbmd7uLiFD6ewtl\nt9Xh8JPNpuxB1yl66aKA4ewHHiwzQGzJKAzhWPb8rvih1yjjtZlyX3BhQCjJum+v/j979xngRNm1\nAfiekr690EGxgYq+KogVC3YFFbD72QuKvtgbir1gbyh2ee0FEVEsiNgLiGDvYgGkbC/pycz3I8kk\ns5lkk2za7t7XH2aeeWbmLAspM2fOKZl2SUqhOC45H7VPz9bWVas1xR8iMaG9vcvHIKLeKaUknEGD\nBuGll0J9hMePHx+3/elwH8JUx4mIiIiIiIiIiIgofUIwCHn5MjQN3xaldrPhnEgii1JRCfmfvyF6\n4pNF7A/NTKldUzaI69fp1oObbAYAqDzxGODoExC4/4HQBkXRzWt9dDbKzjjZ8JiVB++D+lX6tlWx\nN4gFtyul2Bx33qotq5IEucSB1lmPwTR/HpxXTNeSUgBAtdr0O7tSO0dEe0MzKvtWwXHrTQCAwKjR\nUGtrgdpatL88r5O9c8e/x17RFTn+loFaXpH2MU2//Gw4XnreFDR98iUTM3oJx9wXga22BrbfvtCh\nUBrEcCJnR5HKWZRd3olHomnZV1BOOx3KVlvrtqWagOO6dBrKzjoNnpNOy0WISTmfeArS/x0Fy8K3\nAQBN736IwIhtkybhBBsatGX73bdDWrMaZWechMZvOyQIC4JhpaBYkfcTe0wCDgAIHk96P4gB4c+V\nXT4GEfVOrANIRERERERERERE1I1UHHYQhD33g//RxwGbPjHEPuNG2P73OABAqawyTMDR5j54X07j\nNOLfZDMEtt5GW6988WnU3Tcz1G7CH9DGFbMF3sMmAgmScASvN2kih9DaGmrPkU6iRzgBxTvpKHgn\nHRW/vUMrllQTfQDAfsv1qL37DrQ8/hSkVf+EBlOo1JN3Bu1mXBdcnPZhYqsc6MZXrYL1sYdgnv0k\nWt9+r8utQqh4CW2tqL1gCgCgbkNrgaOhVAktzbC+9HzcuGvXMcavi9R1Fgsar78VZQ7jxNpUeCce\niT/2OQRl5fYsBpYGOVrNJ7jRxobvJbEqbrwGLX37wXf0sVDLygAAYlsbhLYOrxWBgH49GNQdW2ht\nQeW4A+A6/6K4cwQ23yK9nwH65F/FYoXQ3MykUSLKCJNwiIiIiIiIiIiIiIqVQSsEwetFxcI30Pzl\nEgS22x7qDz8Au+wKAHDcdZs2T60wrmCy5qOvYHfn96a4+YPFML35BlpfmAtp5e+6babPP4V/190h\n+H3amFJWDgDwHHIorAvmGx4zGAhCNBlf4q6YcAgAoOnl1xDcehuoNTWG81xTpkaTkQyqwMRSOybh\nxCQNCU2NUCsTt1ly3H0HAKD0suiNQlXOb/upTKx+6Q1YBg3O2vFEtwul0y4FAMi//4rAdjtk7diU\nOxndhA4Go8vpJsRRwdjvvctw3HnCqfwd5pDZ1PXKdDZH19svZcry5uvaslpalnCeUl4OsSWUpFn+\n38moO2Q87A8/CAAQXM5QAm3scefN0a2L69ZCGThIW7fNmgnzzz/CfFZ8BaCWV16PG+tMcOOh0Vhr\namD+4zeIb7wBGHSJISJKhkk4REREREREREREREVKbG9LuE1oaUbJRefB+tpctDw/B7599tdPsFgM\n95OHbYZAnm+mBrYfCVxwSWi5slK3rfyIQ1G/pkHXckKu3wAAaHvyGTS5Pag482T4Jx0Jy/x5sLzx\nGgBgwMCqTitsVB55GACgbn2L8Q3kmBZYce2mOuqYpBOTNGT65GP4xh+WfH8AvrH7RqtMqEryyUXA\n2qcaao6OLTQat7yh4uP1BWGzpHk7KbbdXSAAmIo/6ay3E+rrYZ95j/E2uy1nrwUEWM1dv11rkvPT\nYulBb2wAACAASURBVLJT4YTVwFYjIP/4vTYcrKpG48dLUbv1ptpY7SYDdLuaPv1Yt+6463bduu2J\nR+Gcfl10IDbZrwOlX/+0Q1dt0UpCkc8ktacdz2peRJS2InlFJiIiIiIiIiIiIqI47sTtpBy33Ajz\nh4sBANZnn4a8dElKhyx4WwVRf1laCAQAjyfhdNlmRfvTL8B7+CS0znw4o1M6rrrMcFzwebVl1dxJ\nK5AOSTixSUOptqaKbfOiOoq/FZNQlriiQTJqCgkXYhOTcPLO64V4/32Ql3wBefmylHfz+BLf6E5I\njUnZUIo/4YwA+btvEm4TbYWrskLFr/2qa+PGmt7/FHV/ro0OyDJQW5v0OGX/PSvpdtPHH0RXVBWm\nr5fr45gyFS3Pz0HD1z91FrIhNeZ9XnA6MzoGERHAJBwiIiIiIiIiIiKiomV+byEAwH3K6QgOGqLb\nJv/+K8TmZgChFg3JbqACQLBffzS9vjA3gaap/nt9Sypx3Vrdevt/LzTe0W6PGxKamyA9/VTS89kf\nfch4Q0wiDazJbzKrUodKBcFoOyrbg/dD+uJzw/3MC98yPvVeY5OerxgkamnWmebX4n/m1nsfRNsB\n47R1gUk4eWe59WZU33AVKsfvj8oDxyZNfouwPTQTQ3ccDqG1Jb2TxSbeMAmnW4h9HW5a+IFuW3C3\nMXmOhroTzymnI1BTC9f/nRQdFATA4dDGfAeHXv8bPzB+r0yF6esV2rL1qSdh/mCxbrsybDh8++wP\nZcDAzE4Qk4wrOuPbgSarvENEFItJOERERERERERERERFqnTapQAA6bdf0bj0a6x+cDbarpgeN8+0\nbCls99+d9Fi+/Q5EYKedcxJnutQ+feA56lht3fbc0wCAwNbbYNWUi+GeFv8zRvj22Eu3XnrBf1F1\n0bnaumvyFDRdeiXck47SzbM8/GDcsQRvTCWcBO27opP1FYTEpiZt2fTj96g69ACUnn06hJZm/bx/\n/42eQ5ahlJXBO3zruIpAxabxrKlQS0oz2jcwanT8oNUKz9PPofmV1wEAYkNDV8KjDJTN1L9G1A7p\nk3S+P6Cg5OppMDU2QF7+VXonU2Iq4fDGdbcgxrSIC26yqX4j24lREmppGZq+/gnOO++L2+a86378\nPudttN8wAwAQ3GprrPt9NVrPuwRKWbnh8VofeCTxycJJfdYXntHHYDbD2+F9P13KoMFomnoRmufM\n142XH7I/ysYfgNr+lQkr6xERxSruT/lEREREREREREREBMHlBGQZpokT4Dn/Yvh2GBU3R/53jbbc\nOv36uO2qtZMkk3yLSWqJVNnw7b0PvJdcDkhSwt3a7rpfty53aEfhPutcBC6+DO2zHsP6dS1wHzoB\nAFA2/fL4g8W2o7I7kserdJ5IYH3lJZRcfL5+t9poooMQCAA+PwRLJ62vCkyx2hC47obsHjSciKFU\nVQMAxDVrks2mLBP/+Tu9HdrbUTr5FG1VtcVXoUoqph2VoLISTncQaavXet8sqGXlaH34CQBA/bNz\nChkWdRdmc1yyaoR1552AmERXqawM3iuno+H3Vahb24TAViN08/277p74NIvfBQAInuj7d92GVtSv\nrtdVssmU/8qr4d9jL/j23id6zi+/gGVJqIKP/ZFZkL9Zgco9dtKqFRIRdcQkHCIiIiIqOCX2CTki\nIiIiIooT2G4HAIAoCoAgoOXtxaj/7je0GDwt/tfbn8Bz7nnxB7Ekb7eUb/6YRCL5m1CLCbWsDDZz\n4gQcAFCGbITARhsj0K8/3N5AXAUbZeAgbVkUBYjexC13BK9PW1bLjZ/I1+YGAkm3R1hfmwvLnBcB\ntxtCXR3KTzlet130uKFm4UZhrqz7cy3W/fQXhAQ3UzMWbv0V3GxzAIDthWcgrvwju+egxFL59+t0\naskz1hefRenrr2qbIgkaKYttQcVKON2C4HYDAIKbbgYA8E44An/8VQ91v/0LGRb1AGZTktvRkgR0\nSNRTS0sR7NPXcLrj8otRNWJzyD98l80QNdp7XzBx8mDlfntC/vknlB97BKTff8tJHETUvTEJh4iI\niIgKzh/gU3FEREREREZ8O+4EAGi/9qa4bWrfvvAdeUzcuGXr4dpNpNZZj0Xnd9ZuKc88J0arbJjC\nrW6Cg4dAllO4bC1JkNethXD/fbqn641Y3nlLW7Zf8F99MkJMJRylojL5OVNMwgGAsilnoPzk4yD/\n+L3xhCJOwhHsdsj2HCRsRdpvxfy+qnfePvvnIUOdVaMRmhpRvdWmKD1vSmhA1T8sE0nQyOh8SW5m\nUxHxhH7HqtWmDZlTeT0m6kRnSZ2+/Q/SrauOEiiDB2vrTW8ugvOyKwEA8j9/Q9qwPvtBdoxpr7Ep\nzbO++FyOIyGi7ojvnkRERERUUEJDA8wvP69/So6IiIiIiEKCQSgmM2BNnBThH7mjttx68x2QY1od\nKTW12rJqs6GoSBKUSn3ii1LbB2IqFVjC7aoG33Yt5J9+TDrVt8fe2rLj2f/B9NEHMRtDlXBWLf8Z\nsHfSbifNah7m99+D4IpWDwkM3URbNn37TVrHyidRELJaBcd54SVwXjEd3iOONtzesZ0Y5YjPbzwe\nTraR/lwJ0e2C9YVnQ+Md2rMJLmd654tN4uH3/W5BS7SyR98rTEzCoTxwXjoNa199G+03zkDr5HMA\nSYLgjlaxC4waDde55xvu2/TuhzmJyX32uWh6cxHq/tmAxntmoW7lv2hYEf95QxWzXDWOiHoEvnsS\nERERUUGVnfp/6HPBFFjmvlzoUIiIiIiIio7S1gY1SQIOALTdca+27B9/qH6jGHMJuMgq4QCA6/xL\ndOuqOcUYReNL266pF8aNtcx+Vrdu+vRjbVlwuaCaTJD69ev0lKm2o4pVftKx2rJaXaMti22taR+r\nuwpuvAlcF1yiJU51VHJZ/O+Msk+IqfqkEwgAqgr7zdfrhju+7qRbCSc28UZQ2I6qO4gkDcZWwpES\nvNYSZZXJBHm3XeE+cwq8N9wSGuuYDGrwGca7974I/CdHFdUkCYFRowGrFcHjjgdKSqAMHISml+YB\nADyHTgiFmSjBkYh6Nb57EhEREVHBKKoK0xefAQB7KBMRERERdeT3w/rbLwhusmnSacGtR6D55DPh\nvGI6lL4dkklibqCqlhy0GOoi9ymn6wcsKbZpEo0TOgyr/ZSUwDPhCG1V+OP36GGaGhEsr0it2kMn\nlXCc50xFw4dfJNxedJWI8sXg567/Lvr9z7SClXDywTJvrrbs22ssfGP2DK/4YPpgMSwxFaJaW12Q\nly/T7S8429M7YWz1G1bCKSilQ2uxRARPqPJIr32touLidsUNtZ91LgDAdda5qFtVh9bn8v9AX2Cv\nsVizpgmu8y4KDSRKcCSiXo1JOERERERUMMGgCphDF9mFcBl4IiIiIqKeTlFSuyFq/uA9AEBwy607\nneu/7Y5QtZGOYpNwOqmoUxAdn2xPsQ2S/NMPhuOqzbilVNuDj6Jl+g0AAPubr0NeuiR0utZWKKVl\nKZ3Te8ihCPTpi9b7ZhlvP+FkKFtulfgAKd4I72lU2RQ/1rcv6lauKUA0vZf0+6/acstzcwCE/q+J\n69dBrNugm7vpZv1gf0T/71yKSV5LSWziTZqt3Ci7fP7Q33+nyTju+Eo4RIUS284xwn3dTWia+wac\n064OfX5IUGEt18wmSfv8Inh5PZOI4jEJh4iIiIgKJqgoUE2hJBx52dICR0NERERElHvysqUw3X1H\nSnPtt94MAFBSaJWUiCoUdzuqjkk3Rjfd0pEw0UiS4Dt3qrZacs0VoYVAADDFJ4kYHrumBv9+9RO8\nxxxvvN3uSLq/f9TolM7T0/h32sV4Q0kp/KN3hioIrJSSB8HBQwAA6xZ+BMgyzB9/AAAouem6pAl6\nvuGhxDKhPc1KOLEJH0zCKZiSSy9A2RknQ/jqK9iuvDzp70L+4XsoJSWG1auI8i3SwtF5YUyCsSAg\nsPseQBEkFavaQ4WshENE8ZiEQ0REREQFoygq1JKS0EoRfIEmIiIiIsq1yoP3RdWtN0Bc+Uenc9Xy\ncgCAb98DMj+hrhJOcd5YbX7ldW3ZP3rnrh1MlhNvi0n4UcXQPCGYehIOAK1tVf30G7Wx9htnwHnC\nKVorsOZXFxjuqzoc8O6zX8rn6iki/46NyMuWQlBVyBeeD4Rb4VBuRKo1SLbQd2/v+MMBAJbX56H8\n9JMAAL6x+8bt1zpnfmjBm+aNZrajKgq22Y+j/K35qDlob5Q9NgvWZ5/Sbff4AlBUFeZ334a0YT3E\n9vaUK5IR5VLL40+h9eTT4Tr3gkKHYiyS2MzK3kRkgEk4RERERFQw0lfLIK1bG1pJsSQ/EREREVFP\nIAQCnc5Rwk+BK0OGZH4iMSbxpBgr4QDw774H/rnpHqxe/nPyJJosMn/5BVRVBQLBtM4pS6FL6hZH\n9CEC95lT4LrzXu3GtX+3MWie/zZab5wB56XTtHmC34/Ajjtl6Scofk0L3sXvN92bNMlJCCdnVD43\nG6XnnZ2v0HolwdkGABDDD8C0PvR43Bz/yB3jd7SEqj2oaSbhCGo08UZQWAknlzptMxWj9OLzIH+9\nXFuX334Lwe9/gG3WzFyERpQxZZNN4Z5xJxB5eK/IRCp7C0zCISIDTMIhIiIiooIZNCHmid40LhoR\nEREREXV7fn/nc8LtX1RH8jZHScVUwina6pOCAMvpp8AyaEBWjpWqdrcfQjAAVcog8aeTffw77wrv\nmVPguvhyqJHfQcDfq773BHbcCW2HH5l0TnOkygoA66uv5DqkXs06d05oIZKMZ5Ac5T14vG69/bgT\noZpD89O+0eyLeY3jQzc5paT592ta+kVowelE/9OPx4B9dkVg+5EAANfUC7MdHlHGRLGIqzKFExTh\n84aSeomIYjAJh4iIiIiKgxLkl1YiIiIi6jUEt6vTOdLqVQg6SqCWlGZ+oth2VEVaCQcAxAK0P9lk\n45pQYoEspb+zlPo+Sk0tAEAtrwSCvasiiMWU/O/Jv8de+QmENLFJZ60PP6EtN372FYJbj4Dr9MkA\ngIbDj4Lzjnsybrlieyimskov+3efb5leSxEbG7Rl+/13AwA8xx6flZiIerpIgqJYtwH+L7+C6ZOP\noHzzTYGjIqJiwSQcIiIiIsqrRGWSVUVBkE/HEREREVEvIbjdnc4RmxoRqKlNq7pLHCXaEka1FGkl\nnAy033ALWsZNxN/Lf4Fn3GHRDZ38XTWs+DF+MI2EGo2Y+qX11mdeRPPRJ8B9yulQ+oeq/fhHbJv+\nObuhSPsuKh5qVZW27J1wBJpffg0N3/yM4GabAwCcN92G9Wsa0H7fLIiyDIgigmVlEOs2pHUe0/Jl\n0ZWY1yHKvrQvpYRfJ2OTcCKCAwZlISKiXsAcqoRjWrEcA8eNRcXEcei735gCB0VExSI/DXaJiIiI\niMJUVTW8MK6aTAgG1YweQiUiIiIi6m5SqYQjuJxAuIpKxvyB6HKxtqPKgHvyOWg6zosyhwltTzyN\nwKyZKLlmGnz77Jd0P2XgILhG7QT7siXamOXzT9M+v5pGEk5gux3QOmMEyqxmeI45HoLLCe9hE9M+\nZ3ckFXMrkV4mWNsHSllZXNKZf8+99RMFAaLJBJMQrV6j9OsPaUN6STgQY87DSjg5lbASTrilYdz8\n8DUZ6wP3xW+02bIVFlHPJghQLBaIXq9+eMMGqH36FCgoIioWTEMnIiIiorxK+ACcP4Agn44jIiIi\nol6i00o4qgrB6YRgd3TtPP5oC5libkeVCVkSIIWTYdxnn4tff9+gVZpJxvbtiq6fPI0kHACwW8PP\nw5pMcE8+B0q//l2PoRuQpc6TcPzDt8pDJASfD6rJnPJ0XRUjmz3Uui0Nakyyj6AwCSeXEl1Kkdas\nTriPuPZf2Oa9oq2rsoy61fXZDo2oRzNqFyqtXVOASPIv0zZ4RL0Fk3CIiIiIKK8i7ahMMRd7AMD6\n+Scou/3mQoRERERERJR/nSXheDwQFAUo6VoSDmJvnMs9qzC6SdZf3pZSbH2UbjKBEbW6Oq35vbUt\nkymVUqcsh5offp/WPiUVQmwFW4sFgteT3vliE9X4wE1OJWr7nejv3fzRBxBaW7X1ltnPYf3q+rT+\nfRARoFRUxo0JTU0FiCS/VFWFP8DXdaJkeucnfyIiIiIqmMiTEhVnnhK3rfL+O/MdDhERERFRQQiu\nUDsqoaEB8Pvjtkt//QkAEMN/ZnyemGOrsqlLxyo2HZNwxBRbH7n+7yTdunf/A9M+t2/MXnBusz3a\nr7kx7X17k46/IyOuaVdHVzq09aDsEXx+wJTZa4BqsUIIBg1fqxIJbLdDdIXtqHIqUUUKIWD8+7K8\n/SaElhZt3Td2X62qGBGlwSBRWmhtMZjYs6jNTXD++kehwyAqanxXJSIiIqK8UlWWLCUiIuqJFIXv\n70TpENxuwOlEzZZDUTFuv7jtjluuBwDIf67s0nkC/9lOW1Zrarp0rGLT8aaxlGoSzvTrsOaZudq6\n6bNP0z+52Yy1ry2E+5yp6e9LOr59D4Bz4lEAAHH9ugJH07P4A6HkF3X9eogBP5TyioyOo9qsAJBW\nNZzAsGHRFX5GyJlAUEn41+tx6iuurb8x+uCT+f1F0Q1Way5CI+rxTN98HTcmtrcXIJL0yd99A3Hd\n2oz2rdltR2yx9ygonVV1JOrFmIRDRERERHkVVFQEA3wKjoiIqCcRGhtQsdcuML/zVqFDIeo2BLcL\njjtmAABMK5bD5w8iEIyW9g9s8x8AgFKR2U3zCKVff6z8eRXWrm0GhNSSVLqrVCvhqJVVkPYdGx0w\nZ1YdxGxiG6VsESrKQ392k5uX3YLHA8s9dwHr1kJdvhwAEBg5KrNjWcJJGp7UKxUJMdVvBIXXAHJF\nUVR4fYG4cdPid+F46kltfcPMx+A96RQEHSXwbb0NHHfeCgAIDhqct1iJerL2yeeGFrpD5a9AAJX7\njEH1tsM6nxsR095Oqq8DANRsvVm2IyPqMZiEQ0RERER5pSgqbM/MTjYhb7EQERFRdlhffgGWn39E\n+QlHJ50n/fYrhLbWPEVFVHyCzc3asuB2w/7Avdq6/Y4ZMD01W1tXqqoAAO233d3l80p2O2Sp518K\nTrUSTmhu9O9DtWRWBSKVVkuUIkcJACbhZJN91v2ovu0G1G47DH1PCr0/q1XVGR1LtVgAAMFwG72U\nxD580x1uShdIVysJqgDc3vi/34pjJqFszvMAgJbzL0Fg4iRYzBJUiwWK2wP/jjsBAFpnPd6l8xP1\nZp6jjgUABAYNhrL99qHBQHxSXNFJo7UgAJjfeQu1/SogL/lCNy61t8G8kA9hEBnhtwQiIiIiihP7\nBG62BRUV0srEJfWlX3/J2bmJiIgoN1STWVsOJkioFZoaUbXbKFSO3T1fYREVFdPid9FviyHRAbf+\nZnbl3bei5rLzQ/1bAQjO0HbV4ej6uXtJskiqlXA6UktKMtqvNyQ25YtqtwMABJezwJH0HOLff8WN\nZfp6oobbFZnfmJ/6TrGJN3zYJiGPQRWbdMjfrMDQKSdCaGpMOEc0m2GSJYiCAMFkhnXlb9r/ucA2\n23bp/ES9mi9UHUyQJKiyHBrrBpW/hEA0Ccf08YedJkra7wxVbnTcdWvcNvP772U3OKIegt8SiIiI\niEjHcflFKD1vSs6OH1QUBJI86VVy+UU5OzcRERHliDmahOPzK4aJOOKGDQAAyeCmIFGPpigQV6+C\n7dmndcPmxYuM59eFSvxHkhFUe9eTcHpLsoiYYbut1oeeyHIklC7VFk7C8XgKHEnPYf7w/bixSOJF\n2sKVcCqvnQY4U0uU0rWgYiUcQ0JzE6qPPhzyd99kfIx+B49F9SfvwfbYwwnniDG/C2n9WgAx/z5s\ntozPTdTb+Q44GADgOuscQAy1qBS6w+tdTLWeiknjUbX9Vkmna+/RBtXQlPKutU0l6ql6x7cvIiIi\nIkqZ/YlHUfLSczk7fjCowh9MnIQj1tdBUdQul2QmIiKi/FFNJm05qKjGD7ynWfacqKcwL5iP6h22\nhuX1ebpxeeUfxjs0hqoZRG50ZHzTPIaQYXJKbxFkJYiCi1RaETzuAkfSc0hrVseNqWXlGR1LlSRt\nOeWHdmJbsrASjqGaLTZCyecfo3KfMZ1P9nrh+/yLhJvNixYm3Ca0tSU+Lt8fiDLmnXgkVn6wDJ7T\nJgOR18kcVhfPmoA+UUhatzZpGy3z55+GFsKVf2KJzU1ZDY2op2ASDhERERHlVeXD96HPEw8m3C60\ntcEfVKCoTMIhIiLqNmIq4SiqCtNnn6Bilx0g/rtGG+eNVeqtbE8+lt4Ozc0AAHHDegDZqYRDxpwX\nXIz2Qw4rdBgEQI1U42AlnJSYXn0F4mvzks5RqqvjxwYPzuh8gtenLVvnv5raTjHVIIRu0J6l2JVc\ncTEGHrY/zAteN9xuWvEVhLo6iP/8Hb9RNU4KCAzbMpshEvU+ggB5001Cy5Gqg0VeCSeoKLp2VBGi\nQeImAJg+/Ti6vGI5TOGEnMCmmwEAhPDnViLSYxIOERERERnLURLMwLtvTrpd8HpQfdwklNxzR07O\nT0RERNmnytFKOIP23x21R4yD6Y/fYZt5jzZuVL6cqDcwf/JR0u3NL76KplcXwHPM8eGBcBLOX38C\nAIIbD81pfL2Z64qr0fzI7EKHQQAQqYTjZsJmKiomn4LqM05EIEnFBbWkVFsO1vZB88XTENxks4zO\nJ3gzSI6KvRHNSjhdZpk3FwBg+ix0Q1zdsAGWO2/VzanZelNUj9oGpg8W68ZdF15qeEzffgfkIFKi\n3sVqDlfACVfCUYOJK8oUA5cnYFj1RjJK4AMgtLTo1suPnQQAUPr1Dw00sRIOkREm4RARERGRMZ+v\n8zlpElf90/mcxkbYPlyM0ltvzPr5iYiIKPcsv/4cXfFGS5YL7e0FiIao+KmOEgR2GwP/9iNDA+Ek\nHKGtFYHKasBiKWB0PZ9Z5iXyYqBaQ5VwBFbCSYuybFn8oKrC/PprQExCk1S3Af5LL8+89VAGSThC\nbBJOd2jPUgBKeUVqE91uiO2hllKCJ/TZqnzK6Si79SbD6RVHHQ7FUQIAqFvfArUqWhUpMHST6ESR\nr39EXRVp+amKoSQc05LEbeMKzfzCsxi863ZQN2yI2yZ1uGYrff8dyk48FkKrPgkn8tCmWlkF1WyG\n0NSYs3iJujO+wxIRERGRIcGf/SQcx03XZbwv21MREREVr0RtJuxPz47OccYk4fCJeKIoayjJRi0v\nD60feyygqhDr66GWlBQwsN5ByDQpgbJKjVTC8biTVnch6CrMDBy/L6QfvtdtNr8xH+WnnQAp3NIu\nG8TGDG6yxlZaKPL2LIXi22c/AEBgyEZJ54mNDdGVcMsb09fLkx9cUeDfZLO4xKv2O+/TltlGhiiL\nwpVwrIveKXAgiZVPPRumf1ej5qCxAADfLruh+ZVQi7uOD06WH3cELG8vgL1DpXJVlkN/Wq1Q+vSF\nvPIPJuIQGWASDhEREREZy0ElnK6UFvcHeCGWiIioaBmUNO9IcDq1ZXnJ57mMhqhbUcpCyTdqWZk2\n5rj2KkhNjQj27VeosIjyyxaqhAOPGy5vAEEmayYkuPXtHSsP3Fu3Xn7aCXH7tF+XvC10Z5zTr0Og\nskqrrpLK+778zYroisrfp6HI34vfn3xeTCKNbfbjAACxtTXpLqLbBYRvlusO1damLfsOODDFQImo\nU+EknO5EtdsRHDwEAOC481bYHp0FqCqEX36BtG4tgPiWwmL4NUS12RDYfiSk1hbUDNsYpk7arxL1\nNkzCISIiIiJj/uz0MNZVsAl0cmEp0TEUFUE+DUlERFS8ktyMM7+1AHC5IC9bqo1VHnYQn4onClMr\nQu1IlNJybcw+634AgGnl7wWJiSjfVLsdQChh0+cLIhBgJdREYpNaAUCIaf0Y+14bS+1iW7vAttth\n9Te/wb/zLqGBmHMmYv7sk2iMfM83JARCfy/y2n917cPidPyclSRJzX3qGdEVOT4pQIhpLaaUpdgO\ni4g6V2SV9SyvzoHp4w+1daEtPnHPfeYUKAMGauslV16G2r7lqBmzozYWScZpfXS2bl/VakUwpr2d\n+a03shU6UY/AJBwiIiIiioq5kJaNdlTSr79AWbIk5pjGSTjuk09D65TzsPb5eYbbLU8+hppJ43JS\nnYeIiIi6LtnNtfKTjkXtxv1ge+l5/T6//pLrsIgKL0FL1WD/AdEpFZUAgMDonaJVJrRtvEFKvYNS\nUwsAEOrq4A0oCDJpw5DQ3ATzTTfEbwi/1lQevK821PLMi2i77W4AgO+gQ7p8bptZBizhtmExiRwp\nYWUjQ0F39O+xYtz+SSbq/z9UjhltOM0/ZGMENts8OiCb4ub49o05j92WWqBE1LnYZLnwa57XX6D3\nMr8fZZNPRcWk8Vpcpo8+jJ+2866A2ZzSIVWbDc4rpkcHrDatmiMAKOGKOkQUwiQcIiIiItJIK/+I\nrnRWDjkFVbvviP6HxlzgMTimc7c90X7NjfBeewPEsfoy2pELTRVXXATHl59D+uvPLsdEREREOZBC\nW4oIz257AABKLrsoV9EQFY8ESeTeQycAABS7IzooCHBPnqKfmOKNEaLuTkvCWb8eG59zEvrvaZxk\nkEvdoQWW45orUfrC03Hj8rdfx70X+/Y/CJ6TT8O/axqhxCT+ZUoUBaiW0GuSkO4DMkyqihcIwL7o\nbW3V9N03Cad2THaWf/vVeGJ5ORDzvqIatKNSS0q15WAftjwkyhb/yB1jVvyQv/sGgwZWomKfMXmP\nRfojWkmx/PgjIa5ZjfJTjtfNabx3VrQVZApUmx2uKVOj67IE1RF9vbHPuAlCYwOEn3/uQuREPQeT\ncIiIiIhIE9tbXkjjZlqnPKGnuwJbbqUbbrrpdqx75hUg/KVN7FC61XHddN3FOsGTpDwzERERFU4a\nN9esn34U+vOLT3MVDVHREJztxhssFjQs+RqNX/+oG5a//1a3rhpUMSDqkcxmBCoqIa38AxXveic1\nZgAAIABJREFUL4T5r5V5D8HrK/5EEenvv7Tl+nMuhH/TUNWTyv32RO2AKq2aVtMb72rzTKb4RIxM\nCeHKLeb33k0+sWMVMCbhxIm9/tKpNK7PqLE31Q2ScADAu81/4O/bH2rfvqnHQETJORxo3zNcjczv\nh/2u2wEkT7DLFVNMa0Lz+++hrEMCDgBIlZXasvuEkwEA3vGHJzxmcPAQwGLRqt+Ira2AGE0zEF1O\n1Awfipo9RsO84PWu/ghE3V72Pn0RERERUbcnrl+vLQstzdk7bnMTlH79ofTrrxtXdx8Dm0Xfo9x1\n7vmwz7wHAGB/aCak1auiMbUnuIlBREREhRVM/eaQUlMLsb4OACB/9SUCsU+NEvUwgtNpvCEYhDJ0\nk7hh19SLYFkYrYygDNkoV6ERFR25uQlAU3RAVYEOD2rkitDSDPHzL4ED98vL+dIWCKB89x1hjqle\na60sh7LlVsAfv2ljorMdvs22QGD0TjkJw/L2AgBA6QXnwnP8iYknujokmCRozUediPwfSDGJyfTd\nN3DZ7NGBBEk4jW+/j/Z2D9jwkCjLwhUMBb8PvjF7wrJgPgBAXPVPXsNw3Hy9bt309QptWTWbIfh8\nUC0Wbaz9ptvg33V3eA+fBHHtTZB+/QX+vfcBnE7UbhKqpKZsPDQ02RxOEHe54D1sAuTPPoHttbm6\n85WfcjzqNrTm4Ccj6j6YhENEREREmvKTjtWWpVX/IDAqVALcHwhCksS4SjWpijwBLHRsRxUMwiTr\nk3CcV1+vJeEAgOWN16Ibs9Aii4iIiLIvUQW9hi+/BWQZQa8PfXbeDgDQ9M77qB45AgBgffE5tDMJ\nh3owIXwj2rv/gfC3u1DyWagSlBRz0zxWYMfRUC68CK7KGmD1Gnj+e37eYiUqOoEAYMpPNaiyyaei\nZvEieA48GC3nXABxp9wksWRKaGzUJeAAgOpwoO2u+/TfmQGo5eU5i8N92pmwPf5I0jmKqkJu0998\nFf/6C2pdHYTaWt240N4G+HxQq6qzHmvR66T9mdDWiurhQ+HdZXe4p1+b8mF1lXAk41uAsklGabnd\ncBsRdUEkQcUfAJRo8lzku08xaJ67AL7XX4e46+7RQasV3klHAQCUQYOhDBocGi8pQcPXP2kVzgGg\n7Z4HUHrqiXBPmQq1qhrtj86G87a7UH70BF2yD1FvxyQcIiIiIjIW8wXLH1DQ5vKjqsya0aEiTwCr\n4SSatmP+D+rqNQgO39Jwvm/MXjB//EH8hjSesiciIqI8Chg/oa1stDEAIDaNVxk8BM0PP4mKyafk\nPi6iAhPa2wAAwc2HwXX19RBm3ADH3XfAt+feCXYQIN55B9x1bXmMkqhI+Xx5S8IxfRJulfj2m7C+\n/WZhn+B3OiH99SeCW0dv2gZ/j0/cU/r2g1pRGTdu/uG7nIXWfvPtsD3+CJSysoRz/H4FppYW3VjJ\n3beh5O7b4v5eq0ZvB7G+rndWTDCobiP+9adWbcJx03UQ/H5YP3of3n9OTemQ9X+shvTzT9GBJK3I\npJg2MkSUHUJMJZzSaZdq4/6RoxAMtw/MNetLzyfdHhi9E7z/GQmbJbUUAWXAQN26b/+D8OsPq1Bd\nHr1GrFZWoXnhh7DMfRllZ52WftBEPRCTcIiIiIjIkBCThGN+5034RAsw/sDMjuV0Qvrhe+2JOe9x\nJ8AzcjQsHargRLQ++TRqNhscfxw/k3CIiIiKkkGirBq+CB3h23NvCGvXhqZvvwMA/ecNAAgEFcgS\nbwpRz1Ey7RIAgLziKwiCANelV6Jp1G6w7Du2wJERFT/B74MKR17OFRw0GHJspZk8tsLqqOLoCTAt\n/QKNn3yJ4BbDAADmF+JvqiqDQ9+Z26+6FjCZIX33LWxzXoh7b80qQYBn0y1gaqwPrf70I4SKCij9\nQ+1K4HSi+rgjIfTpAwAIDhwEac3qhIeLtKeE0wk48vO7LhpKfIsuwefTlq0vPKstO66fbniI5lMn\nI3jWFLhW/Yuyf/+GWqpPjpKXLslSsESUCtERqjAldGjJ5znuRHhOODk/Qfi8sM6ba7ip8YPPASDl\nBJxETCbj72veCUcAZ52GYHVNl45P1BPwqgYRERERadSYfuHyD9+HFtxu9D/jBGx+2lEZH1dob0PV\n3rtCamkGAEgWMywm4wQcAHEXjjQJWl0QERFRYRm1o1JLSnTrLS+/huZPloa22cItENzumB1UCJ9+\nqqvGR9RdWF56HtL38dUnTCuWAwDEdaEENEgS1D33LNjNfaJi5u/YntDrM56YA6pD/55VyPci09Iv\nAADSnyu1sdYhm8bNCw4MJeG4p14I99nnwnfwOACAUl6R2wAryiG2twHBIGr23BnV/xkOcdG7AADr\na3Nh+/wTWF8L3QBOloAjNDVqy7bHHoK7zZVwbo9k1I4qpgV37E18+e+/QrtUVWHDyWdp4+3Xz4Cy\n8VB4d9gRvqOPCw1ao9UpxHZWVSPKJyXcck/qUL1MzVNVNwBwXXpl3FjbzaFKZMGtts7KORJe0xUE\nBLYY1mm7PaLegEk4RERERKRR7dGe4LannoBQXw+hLbOLNkJrtPx0pB2Vdh65ky+fggDPAQfHDwf8\nBpOJiIio4AxaKiS9CWi3hf50RT8jmN+Yj35HHILSi6ZmOzqinBLWr0fZuZNRNXa30HpDQ9z/ieYF\ni7TlZMnoRL1Z+zU36tYFf/6ScNChepvQmv/2SOK6tTA/87/oQLhyrLBhAza67Zq4+Wp1tW7dd/A4\ntF91LZrfWZzTOIWyMgh+P0wfvq+NVR83KVR1xZf678xx43XacslN16H2sMwq73ZXghJ6n/BMmITm\nyeeGxrweKIqa8AGk9lvugDI19DkpWF0Dc7gaRWxaZ2Cb/6D1hFD7qsCWW+UoeiIyItaFqnuVn3Ss\nNubbaRf4xh2atxiCm22O4MBBUM1muE84GS2zn4Pn9LM63zENZjlxeoFqtUHwerN6PqLuiEk4RERE\nRAQAUFUVCOqfVBCbGiH4ol+cTO+/B+v/noDickFR40snx4q9aBmXyJPCEyBtT78QP8hKOERERMWp\nQzsq14j/oPXpFxNOV62hJBzVGa2EI//wLQDA+rLBZwCiIibWbdCWpZ9/Qs2WQ1Fy1WWQv16ujcfe\nLBdYBYfIUGDnXfQDaSR0dFXHFopie/6TcMonjUf5hf/V1lUxlIQTezMXAFquug4r3/ksvqKWKMI9\n9UIEN9ksp3FGKtdWHDNRN145bj+IG9brxlxT9Im15vcWasuCx63bZvv+62yGWdQCQSVaKUKUIIar\n1wheL7yffYHaAVWG+6mlpZAGDcK/cxagftHH2vtJx38Knjvuxj9vLEbz3AU5+xmIKF6kEk6sltff\ngVpSmtc4Gr9YgfrfVqH9zvu0KmnZlPSzrMmU3yRaoiLFJBwiIiIiAgD4A0pckou49l9Iq/7R1iuO\nnoDSS85HyXXTQ0k7CZQdPQGlJx8fPU6kz3uEKbPew+q//7KkKRERURES/NHPEJ6tt8Xq1xYhuMWw\nxDuYTKGy7O5oqwXVXpJ4PlERsz73lLZs+nIJAMD2+COo3H+vAkVE1H21nzZZWxbymIQDU+Er4ci/\n/apbj7SjCg4erBtXR4yAMDzJe2yOqaWJbyY77pihLStWW9xnAcc14TYpqqol3SqxFX16Q/UEVYV8\ny02Ql38VWhdFiLZQEo7p808xZOIB2lTvQeN0FYvV8L9T/+hdgAEDtPGON8QFQYCw3XZx1ZKIKLfc\nZ0zRrXv33b8wgVgsgM1WkFOrZjMEv5/Xb6nXYxIOEREREQEAFFWFoASh2B3aWMURh6LisIPi5pq+\n+wbJCuFY3n8P5m+jT7FJP/6g295pO6qw4MBBuvXyG65Gbb8KVsQhIiIqMkFP6KbZX6+9hzVvLIYp\nSYnyCNVqhW3FMki//hJaT6FSHlExUgZvpC2rBjc8Wo49MZ/hEHVr7quuhWfUTgDiK6XkUsdKOIVI\nwumo9PKLAABqeaU21n7RZfDvvS9KbIV7z+xY6bZpwbuG81SrVZdsCwDyr7/APP9VwOPRxgLDttSW\nS66+IouRFifTF5+h9r7bUX7q/4UGJAkIVwg0LflcNze48VB4Dx6vrQvt7eFdBIgxiTdGRSnMbH1I\nlHcdkxRdl11ZoEgKx/z5pwAA26OzChwJUWExCYeIiIiIAACWRQsh+P2GNw46UsTEF3Ok776NG7O+\nNlc/kOJNtsYv448FAJY3XktpfyIiIsqP4LpQ+wnJZoEoCjBJnV9yEsM38SrH7gYAKL1mWu4CJMoh\nweXUlm0PPRC33XvP/fkMh6h7czigbL89AKDi4H3T3t3tzeyBDaXDd1ShtSWj42RdIADEtIh2X3al\nccZFHikxD8u4pl6IwI474Z/FS+LmSc1N8B1yaNx4+eknQfrjdwCA5/CJEBsbtG22Jx/LQcTFJZJ8\nHKGKIlSLBQBgfv89AIB/p13Q+MxLcF46De033wb3pKPQeuhE+MJVNTp+zjL6FyGy9SFR/oX/L0cE\nh2yUYGLPZ174TqFDICooJuEQEREREQCgz8nHAACkhvpO51qXfg5x1d+G2xwzbuh0f7VDqe+EZBn1\ny75D2x336oaFhoYEOxAREVG+yd+sQMUboYRbyWqBKAgpVcKJMGo3In8ZfzOPqFgJzc3asimmGiQA\neA4eF9cmhIiSE5yhxDYhEEgrqcb0yUcwv2dclaUzHZtmiAWohGP0QIzQ1grBG6oa49ll93yHZMg7\n8Qht2XnlNQAAddPNDOd2rDAUURVOwDV9uRTOSztUioipktMTRarZaCQJsFp1Q55jjkdw/wMBhwNq\nRSXaZz2G9oee0G7wi2J8+ykiKj5qZVWhQygY88cfAB1f72IEgmxXRT0bk3CIiIiISCcwZCMoJfE9\n3p2XX6Vb7zv6P4b7J+sPrzHJKcejDtkISk2tbkzwx9+sIyIiosIwffhBdMVigSjG3xzqjLxsqW7d\n/MlHWYiMKD/sD8dXv4lom/lIHiMh6iFiEgpaGlpgnXV/0ht5ERUTx6HfyUdnds5AULdaesG5EOo7\nf0Alm7zjDosbE3w+WOfOAQA0P/50XuNJJDBiW3gOnYDWh5/QfleyLKLlgUfQeupkbZ5SUwskSMKJ\ncJ82Gb5xh8J96hnaWOn55+Qm8CIRWz1No+hvRivlFXFT0klwJqLCaznp9EKHUBCx14/t998VP2Hd\nOkBVoX7xBeA0eD0k6iH4rk1EREREOqrFCt/B4+LGXWedi59+Ww//yFFJ9w+MME7O0Z1DTrN/fcek\nHZ8/vf2JiIgoZ1SHPbpiNmf0NHZlx5Yj3p79FDz1IiUlhY6AqNsRAtHqN9tsNxSl11yJsjNPydn5\ngooC62cfAwDWTr9ZG7c99lDOzmkcSOjn9m+3Pfw77QIAKLn4fG2zYLMa7pZ3koS2x/4H74RoRRxZ\nFuE78hh4Z9wO5yVXAACaFn+iq4LrH7Ft3KHcU/4LAPAeOkEbM7+/KFeRFwXB5dKt256eHfe5Rxkw\nIL1jshAOUdGRrJbOJ/VA/l1205Ydd9+hLSuqCrz/Pmq33QJVO/4HAyYciNqh/QsRIlFeMAmHiIiI\niHQEUYBqMkiSsdtRZjdDLS1Lvn9Mv/qEjI6fhCrpk3BYCYeIiKiICNHLS4LNijSL4BgfsgBtQDoS\n16yG5flnAFUtdCjUTbRcF7p5337R5fBvMRytMx8ucERE3VQgvgWVZdE7OTudcOONkJyhSjvKFsO0\nccddt+XsnIbC1Xhanp2DwOZbAAAs77ypbRatRZKEY0CMyQJxXXIFfvh5LZR+/XXf/Vufn6Pbx3n5\nVYAY+gwRSToKraTegqw7MqqE4514pG49sNWI9I7JLByiotH07BwES0rhO/7EQodSEP6RO+rWhc8+\nBQBYrroCtUeHKr5J//yV77CI8i71PgBERERE1Gu0z7gTTtGMmqcfAwA0rPgRAGA2SZ0m4STq3+4f\nOQqmr5aFVtJMwuk43/LS83BddFl6xyAiIqLcEGOe8Sorz86NoHSr5uVAxf57QarbgDaPB55TQuXk\nxXVrYb9wKtzX3IDgsOEFjpCKQkySlvesc7B+8jkQRQHuy6YVMCiibi5onIRRcvRE+I86Bt5JR2Xv\nXG43+s6MPqkv7baLbnP5UYdDqazM3vmSMEVaM8qSLsFVI0l5iSMbKstsoQVRhHvkaCiSDKVvP9St\nqkPN5oMheDzwxN6gjvnZhAS//57C8uLzcWNqVTXWr21C3/7hf2uW9CpoZCMBmoiyI7Df/lj949+w\nW3vpLXizGa5zzoP9gXsBADWHH4T6n/5ExaMPFjgwovzqpa8ARERERKQT+4S3JAMWC4K334nGM8+E\nUlEJtW9fbbNSljwJxz7zHsPxtvsfRtWuI0MrYpoFGWX9x9bgkI3S25+IiIhyJxjUFkVRhIosVI5R\nFQBAIKhAlvJbyFloboJl/jxIdRsAAJbX52lJOPbbZ8C26B2Y1qxC04df5DUuKk7y999qy4IgsCUI\nURYIQcVw3Pb+Ili++7rTJBzp++8QHLFNSueyvPm6tqzYHZBKSvDvqnoMGFwDADB/sDi1oLMk2K8/\n1JJSWBa8ltfzZptJjr531736FlxuP6oBwGJB/T8boKiqrnpOLMHthv3Wm+C6dFqP7LMkdqiE03Zz\nqOKSGJtklfbP3fP+noi6s16bgBPmvOYGeI45HlVjRgMAxJYmw3lKTU0+wyLKq979KkBEREREITE3\nz9RwwosoCsZPeEvJP0IKHUqH+/beBy13zwQGDMw4PLVDEg6c8eWbiYiIqDAEX6hNZMutd4XvGaV2\nI0iprITYZHxBVly/DuZ334Z50SL4Ztye15twNVt0SPaNSVaOtMSUf/oxb/FQcVN545Mo+5K0ARTr\n60Pbk7wvVI3dDXUbUmtraH3uGW1Z8IaquposZtRtaIXQ0AAh4E8x6OxQyisAkwn+nXaF5a038nru\nXDGZJAi+oG4sUQJOhOPOWxEYOQq+fQ/IZWjZ5/HAvGghfAePS/nhI7W2j7bc+sAjQAYtOXtgrhIR\ndXPBYcMRHDgI0prVgNNlPIcPWVIPxiQcIiIiItIl4UBOXuLae8RRsD31ROfHCVMt1i4l4ACAarXp\n1oXGBqiqyr7nRERERSBy01LdaONQJZBUdwzEf25ovW8WyqaeDeu8ubDOmwsAaDj7HCgbD81StJ0w\nuvG7YUN0c8fEYOr1BJ+30CEQ9Tjt06+D5Y3ElWAsc1/OWksq88cfaMtCh++zanV1Nmq7ZcR5xXRY\n3noD7TfOgGKzI9DSVqBIuk4UhYyq2km//QZ0syQcxyXnw/7ic2i75XZ4Tpuc0j5CW/R36z3ymIzO\ny0sjRFSMAjuMgrRmNSwL3zLcrtodeY6IKH/yW8+XiIiIiIpTzMVGIcET6RH+nXdFYOOhUIy+KHk8\n0UP2CbWw8u+2uzbWctd9aH4oQQJPEkqfvrp188o/oP7ya9rHISIiohzwhpMQLJa0dmu/6db4Qx11\nbDYiypxBQrH5t19gXvQOAECtqtbGPR5f3sKi4iWuXw8AaL/sygJHQtRzKEM3QeMlif9PiWtWd3oM\n0+J3UT7uAAhtqVcVUSoqUp6ba8HhW6JuXTPcZ5wN7wknw3PWlEKHlDFRECBLGWSJ+PNbhairLE8+\nBvuLzwEA5O+/022Tli7R/i0qjhL4RmyrbRPr67p87jRSoImI8kapqAQAOG69yXiCyZTHaIjyi0k4\nRERERARBid5wkv9c2el8tabW8KlfISYJp+njJWia9ybcp5+ljfn+72T4Jx6RdnyqQY/gvnvsmPZx\niIiIKPuEcBKOmmYSjveY43XrnqOPM2zdEGl3lRde46om5ccdCbjdUMrKtTHH9dfkKyoqYtKqvwEA\nwc23KHAkRD2L9/yLsOrj5Wg+/1KoHW7SqeGberGUDpXMKo6ZBPPSz2EJV1VLRCkrC/1ps8N1/iVd\njDrLRFErcZJJJZliImUQf6QFZHdRdtmFhuPisi9RNW4/VG82GOa3FkB0tgMmE9ruvA8A4B13WNdP\nzhwcIipCamX8+7V+QqHqzRHlHmvoEhEREREQCKQ1XbVYIAQCQDCIwNxXIe++K9B/AASPOzqnvAKB\nXXdPcpQ0SMlbZBEREVEB+TKrhNNRcOgmhuPWl19AsIutLVMltjRry/4R2yK4xRawzp0DALDPul/3\nmanqsQdQd/MteYmLipfgdAIA1JgELSLqOtkkQx62GfzTrkLLzjuj4piJ8Ew8Eta5L0O1WODx+mG1\nhJJzvP4g1AQ38hK1EVQDAQiyDFWU4NtiOFo++Awo4paD3b0VsyT2/Eo4sQS/H+1uP8rX/o3SE0NV\n/gRVRflJoWVVluE54WS0HXsiTHLXE6zEbv7vg4h6JtVq7WQCk3Co5yreT5VERERElD9BRVt0/feC\nzueHb7KZPvsEteecisDgIWj66nsILld0jsGT7F2xctnPaPcp2HbXrbJ6XCIiIuoawRt6Ul21dHKR\ntROJbpTa772zS8fNlDJkIzinX68l4QgN9YDVpp/kdAIOgxad1GtoSTj8d0CUM/6x++LfNY1wvPU6\nrHNfhv3eO+G44hI0L/4EysZDgbfeArY0/p4o//wj/D//BGX4ltqYuOofVI8cgfYrpkNwuwG7vagT\ncHqCVCr5KLV9INZt0NYFvx9BRYGU5WsLOdHhRrL1pecx9KXnE063fLkEALKSgENEVKxUcycPaShK\n8u1E3Rg/WRIREREREIy2o1JNnX9EjHyJkn/+MfTnqn8AAIKzHQDg22hotiOEqV8fVPHpLiIioqIj\neEPtKFWzuYsHCt2Ian7ldVRMGg8A8I8cBffkc7p23DSUnXmKttx29/1QKyqhVFZCbGqC114Kk7NN\nN19sbYHC5IteLfL5V3WUFDgSop7NZJIR3HoEAED+/TcAgP3B+9Ay5XwMOv24hPvZZ82EfdZMAEDj\nx0sRHDYc5kULAQAlt9wQmsTX8aLQ+P5nCC5fjr4nHhUa8Hnh8yuwWYo/UUVtbip0CERExcei/37Y\n8PVP8C35EvL4cagdUJWwih1RT8AkHCIiIiKCoMQk4djsne8QfhKt5MrL9McJPwnsmXhU9oILM8sS\nRFGAUl6htYpQVbXbl+UmIiLq9rLUjsq311gAgH/Mnlrii/usc+E9bGJXI0xZS2kpyo89Am233AG1\nsgoA0Dz/HVSNGY3Ke29H23En6ebb7pgB55335S0+Kj6shEOUP8H++taEttmPwzb78ZT3LzvzZDQt\nWATpz5W6ccHny0p81DVqnz5Qx47V1i2vvgJ7RQ3Uiy4uYFSdk7/6EtZbbix0GERERUf643dt2XPA\nQVAGDITvoD6Qw9eVBSbhUA9W/CnERERERJR7MZVwPKee0el0obHBeDz8JLBYVpqduGKI4R7yLS/P\n08akH77P+nmIiIgoPYInlISjZpCE4xuzFwBg7fKfENxmW228ef47aLl4GrzjD89KjCnHs8/++Ov3\ntfCcdqY2pvTpoy1Lq/7Wzbc/PRvysqV5i4+KTzQJh5VwiHLOnsIDI0kEBw5C9fZbwv7QTN24/MN3\nXTouZY9kMkWXN6xHza3XQ1y/roARda7yoH1g++h9APGfhTwJEom9hxya87iIiApN3BBtMegLv+7J\nkghEHqhUmIRDPReTcIiIiIhIS8JpmXAU1NKyTqcLMUk7uvE8PAkc2GqEtlw9drecnYeIiIhSFK6E\nE2lXmY6W5+fgj29WQh6kr24QHDYcvksv16rv5ZNk1f8cakWltmz/+IO4+Zb58+LGAEBctxbweLIa\nGxUftT3SjoqVcIiKnWXRQogtLfEbEny/pQIQBHhHbKsfqq8vUDDJqRs2wL9qtW6s9eEndettj85G\n0/x30PjeJ1BqarRxobU1LzESERWS8+rrtGXvoRMAALIck4TDSjjUgzEJh4iIiIi0i46SKcVupYpi\nOCw0NgIA1C4+oZiUbByjEjSOiYiIiHJL8IbbUVmt6e9sNkOurMhuQF0kSx0ulwkCGq+foRtyXnip\ntqzU1MYdQ/x3Daq3HYbaIX1QtucuEBqMqwhSD9DeDlUUM/v3T0QZa33w0U7nBDcemtKxWp6b09Vw\nKIvWL1gMxRJ9TRUibS+LTJ8Rm2HAyK10Y4FttoX34PH6sZ13QXCbbeE6e6o25j14XF5iJCIqpOAm\nm+GvZT/hz+W/atXsxHACjioIgMprudRzMQmHiIiIiCAooSQcMcUkHP/onQ3H5d9/BQAEN9k0O4EZ\n6fhEvN+P2j5l6Nu/AuYFr+fuvERERGTM6w0lISRIlO2M2VRcl6fiknAASNXV2rJSUQHXZVdq60LA\nHz//55+0ZctPP8D0+adZjpKKhehyQnE4ok/0ElFOtTz7Elr2PQjecYfBE36qPhHprz8BAMGNNk44\np+7l1+Efs2c2Q6QuEiUJojemkpzXV7hg0qQ6HGid/Sxa/vc8GpZ8rdvmPvtcrP38a6z7dDk8p5xe\noAiJiPLLMrA/Sgb1i98gCKyEQz1aZldHiIiIiKhnCYSScATZ1MnEENcFF8M+6/64cSFc2lvp1z97\nsXXC9Nkn2nL5Kcej9aHH83ZuSBJ8e42FWl5cT/ATERHllccD1ZJ5FRCjpJeiE1OtxzvpqFB1nCnn\no+rBe6C0O+OmCy6Xbl1sZCWcnkpwOqHa2YqKKF98+x0I55h94LCa4Dl9MqzzX00413PoBFjnvwr3\nKWeg5NpQ8qTzsElw3fsAajcO3RCUy0oQyEvklCqLWdKtF2MlHPGfvw3H1apQ0q7voEPiN8oy5E03\nyWVYRERFJ+F3PVFkEg71aEzCISIiIiKtHRVSvAmmVlTq1v0DBgEAxPXrQtvLy7MXW2dM+sShsrNO\ny9+5AbjO/i+c192U13MSEREVE8HnhWo2FzqMnFLKokk4kYQL9/gJwIP3oHTm3TAtW4q2197UqqHI\n3+qffhec8Yk61DOILieU0rJCh0HUqzisoe+AqhhN1nCN3R/2xQsBAIGqarivvAaeCUd/1VCwAAAg\nAElEQVTAe+zx8I3dD6alX8D89gK47nsQsNm0/VRTz37/6q58O+4E85dLABRnEo7p048LHQIRUfcm\nCIDCdlTUczEJh4iIiIi0JBxVkjqZaEwNt4iS/voT/j59oebxRoTg0t/Uarv9nrycV2xqhOPm6/lk\nOxERkccL1WIpdBS5ZY4m/arhm7diSbT6ifWLTyEdsBeaF34Y2tZQr9td9bjzECQVguB0Qs1jFUgi\niiHHfH8dtgVayiugHHssGkbtjvKS0PuSb5/9AQCtj/0PTfUtqIxJwAkdg7dIilH7Hfeias9wG+wi\nbEdlffG5QodARNS9sR0V9XD8hElEREREEJRwJRwxsyQcwRt+Ms3nAxwlWYoqNe76JkTq7vhHjoLn\npFPzcl5x3Vo4br4eqrf4nsojIiLKJ3nNKgRq+xY6jJwKDN9KW5ZXfAUAEMtKdXNMX68IXUgWBK1F\nZ4T90YfgueCS3AdK+aUoEF1OqHZ7oSMh6p1iHiJxXjINit0BURRg9Qfj58oyyvtUaauNH34B76vz\nIA8bno9IKU1qafQ9VvAXXxKOURvC1htmFCASIqJuiu2oqIfrBk23iYiIiCjntHZUXUzC8Xp1T4rn\nQ7+pZwIAnNOuRvMrb+TtvJG2G7Z5r+TtnERERMVG+uM3CH4/TP+uLnQouWW1aotifR0AQCqNTzy2\nhJ+M71gJRwrvQz1M5DN0D2/HRlSsVCnmGeOSEohiqCWgxWT8vTayHQCCW24F5ZLLtDaCVFxURzTJ\nRf7u2wJGoid+tQzSLz/Dsugd3fgvv2+Ad/KUAkVFRNT9qGA7KurZmIRDRERElAK1p2fmdzUJx+cJ\n/en3AQVqRxHYYjiQx6eQVXMPb7tBRESUgmK6MZZr3j32BgC03f8wAOOn4OU/fof450qYP/0YitUG\n7+575DVGyrPIdwSRl1iJCiLD768R5gTJOlR4amW0apH9/rsLGEmU7ZEHUX3QWFSNGa0b92+/Axy2\n/D6MRETU7bEdFfVw/IZIRERElIIe/5UgGHryQM3wIqbk8QDr10N0OoECJafElqvOiwIlGxERERUT\nVe49N52aX56HFT/8i+AWw0IDBokX9nvvRPVO24VWJAmtc+bnMULKu8jTu0zCISoM/t/r0dwnnFLo\nEHRKrro8bqzlvlloeeblhNWXiIgogV7ejqrHP/BLTMIhIiIiSkVP/2AsKOFKOGlcxGx+YS68I7bV\n1mu32RwAIP36S1ZjM6IYJNyoJfEtIXLKFHPTMVJJiIiIqIdSEn0WkmXj8R5IFASUpPGku+j8f/bu\nOzyKcm0D+P3O9mTTCQjSxI7iUey9i11RVESxYFcUj733w/HYEOzlWLHr0WNFFMtnx4roUekI0hJS\nN1tn5v3+2N3Z3WzJbrItm/t3XV7OvPPOzJOQZHdnnnkeF6AocO8eqobj9+coMiqYUBKOYDsbooLQ\nBw6E7nDAfcqkQodCORDzGb8IPnPrVVVxY/7xJ0HW1xcgGiKiXk4IiD7cjsrrL/zrGuUWk3CIiIiI\n0lDiOTiAqgb/n8GNtMB+B2D97E/jxpW21mxFlVT7JVfGjenVNTk/b2fuw44EAKgrVuT93ERERPmk\nacmScPrWk98OW+L3Su13z0i6j2KzBhcCAWOs1BO8+4zQv6NkNQ6igpCVVVj4wyJ03Fkc7Yoou9zn\nX2Qsiw5XASMBEAhAac39tQ4ioj5DiD77mchx/3QMGVoHsW4dPD610OFQjvATIhEREfUZWh/Oro+m\nJXiCTLiCF7QyrSZjNhXm7WTHOZOx9uJIIk7LpHOhbzQi73FoQ4YCAOqOPBj2mU/n/fxERET5outJ\nLpCGKoC4z7kgj9EUjtmUuOKJXluH5vc/TrhNWINJOEILXmBV/loJ9YM5uQmQ8kpItqMiKjSzw2a8\nFlFpkQMGwHvEUQAA8/yfoXzwfsFisc58xljuuCzYlsr7t9GFCoeIqPdTRF6eetV0HapWXPcEnLdc\nDyElKiefjdYOVkstVfyESERERH1GT3JwSiUz37R4ITYYWAPbyy/EjItQ9RpZGV9eOZVCld4XAkBd\nP2NdverqwsRhswEArGtWoeKSCwsSAxERUT4kvXgZCCaW6IM2zHNEhWHqlGzR/P7HcE08Hf4xh0Dd\nbnv4QlXyAKDljXdDO4Wq54S+V3XbjcSgk4+BaGzMS8yUQ+EPGEwAICoYh7VvVWTrc6zBz9zVYw9D\n3UnHQVu9uiBhVF35dwCA59jj4Tn/QrSddT7WPvF8QWIhIioJQvTsYn2anCePR9mlU3J+nnSJtWuN\nZesnH6HqoeQVVal3YxIOERER9RlJn+BOQ4nk4MD2UjD5pmLK+THjSmsLAEDPMAkHAAI77tzzwLrB\n0hS5cSUL0IoKiDzZTkREVPKWLoHy9FNxb4qE1wMAkH30NVHdbnt47p5utPRsv3s6Vl9+AxoXrUBg\ntz0AANISSsJR1ZhEJqWlOe/xUpaFfx8EL7ESFYqlj7VF7Gtk6MGXMOW77/MeQ33/SmPZtG4tpLMC\nvn/cDtG/f95jISIqGUJA9uBafbqcH85C1fPFU73c8sqLMetDp0+F6ddfChQN5RI/IRIREVGfofUk\nCSeLcRQj0dYGAJCVlV3MjNf6/CvZDqdLQgCmIvhX6as3HImIqO8ZtveOGHDVxbB1umgo1geTYmW/\nfol263NkbR28k6fEVhcMVcIRagBef6QtqGASTu+nsx0VEVFOhavJhZS99mKSiTni88WsmpYvN5bt\nrMJERNRtSnMzbAt/jwyoavYrhapqZLkInrC1vfwCqm65Pm686pTxcWM9eZiYigM/IRIREVGfoffg\nzXaptKMydH6KvTXcjirzJBxZVQ0t6um0wHa574suhIBSDP8mlvgknIBaXH2GiYiIeswf6VNv/iNy\noVRrboayLlhOW+9Xn/ewipXTYYkdMEcq4US/T3A8MD2PUVFOhC+Osx0VEVFOOJ59Mmbd+e6beT1/\n+IGlMN9hR0S28W8/EVGPmRb8AQBwXnoR+o0cAWXpEmNbwnbImfB6I8uBAOByxSVX5lPl5HMSjut1\ndXFjbp/ao3sZVHhMwiEiIqI+g+2oACS5RqSHK+FUVHTvuFFPp7W+9Hr3jpEBRQgIEfxHkYV88jj6\niQoA6OhAxeknAf95rTDxEBER5UA4WReItFYyf/8tNth8GMqn3QUA0OvZkiEZaQkm5YhAAMP33t4Y\nt7/zVqFComwJf0hgJRwiopxwn31eQc+vtLfGrPv3O6BAkRARlSbr++9BV1U4XpgJAKg8YyKUNath\nn3weHLfdBMuXnwMATL//BtsD09O6SN/Y6oHXr0JEJdyIDhfqRwxC5YRxOfk6ekIdvUPcWMDjgxbQ\nEswOKrkHhkuQuespRERERKWhJ+2oSk6nN+p6uys4XO7s3vGibjzEtF/IId9xJ8I57S603/tAXs6X\niPDHPj3Rb9MhEKqKivffQcMxxxYoKiIiouwSgUglHJgtgMeDmkP2j5mj17MSTlKhZGVl9SpYV/4Z\nt1lKCSEERFsrZEUlq6r0ElJKiFA7qoImhRMRlTDvaWei7NGHYsZsL7+Qt+RH808/AADcZ52LtpMn\nwbTlFnk5LxFRqXNPuRRl0++G89Yb4Lz1BmPc8st81G2zeWTiA/eiYV0bavfaGQDQvOMuUHfaOelx\nTfN/Rv1dd6Hfe2/Afe7kyPjChQAA22efAg0NUKI/4+aBXlVtLKsjt0brE8+ibpftggPRFXsAoKMD\nww7ZE/qw4XC9nPhhV1XTYTGzLWIxYxIOERER9Rl6dAlLlwv6+vVQhg1La9+SyS5PclOn8p03AADS\n2b0knPANCAB5uximb7IpFixah5pKe17Ol4j/oINRfsdUY11EV8bRNMDED0NERFQC/LEXKK0ffRiz\nrpvNkFEXFSlWuHqQ8tfKuG3mj+egfbe9UbHgV9TsvydcN0+F57zJcfOo+Gi6hEmG3gMzb4qIKCcS\nJfkma+eRS7Kyigk4RERZ5D7zXJRNvzu9yYGAsai0taScWrv/HsZy2cP3G8v2118xluu32jjNKLNH\nr62FusmmMC9aiNYXX4O+wUCsn/c76v62BYTXEzPXMu9H2JYuBpYuhsvjgfm3X6FuOzrmmntAZRJO\nsWMSDhEREfUJpgV/YIs9dkTb9AfhO/FkVJ8wFpZvv0Hjr4sh03hyu0RScGD5dm5wISoZx3Hfvcay\nLCvv1nGFpnY9KQdM5iJ+6jgQYBIOERGVBBGdhNPcDN1mi9muqCrb8aQSqoQjFi6I21RzwljUAPCN\nOQQA4LzxGibh9BKqpsPKdlRERDnVOcnXPfE0aNuOztv5Ky69CACgDxyUt3MSEfUFcsCAtOfGPAQS\n/SBoBpTly2LWfQcf2v2K8Bkyz/sR5kULoTQ1QR04CPoGAwEA0h58sFR4YivhKCsi1VPrhwW/T95x\nJ6D9vocBkwmO+6fD+d47cL01i59DihiTcIiIiKhPsL/yIgCg4rIp8J14MizffgMAMC9agEA6STgl\nkoVj/exTALGVa6JLfnb7jXvoiQT34Ud3O7busJgK+0FDHbk1XIcdBec7/43bJgJ+48MUERFRrxaV\nhFP+2EMof+yhFJMpjsUCALB9ODvpFNv77xnLpj9+h7Y5n7bPJ8+Kv+DYoL/xb5UOVZORmwCCF7+J\niHKl+d0PYZk+DZ7HnwI6JQLnmn+PvSBnzYKceFpez0tE1Bet/+FX1I3eKm5ctDRHVvRuXqR3lMWs\ntj30b6C8ew+jZqr8tptgnnEPACCw6+7GuLQ7ggudKuGYFy2MO4b91ZegDR4C9zU3wHnL9QCAjvXr\n03q4mAqDnxCJiIioT5BKqPKLpsWMOy+bAmXFn9C6yKIvmXZUORJO6lEc+U06MZsKXPvfbEbLo09h\n/Uefx2/z5be3MBERAR5fYSqzlToRSP6apg0chIa/1ucxmt5HmoPPwFl/+zWt+bV77gRl6ZJchkRR\nTP/7FUO33xKO229Lex8pJWRbG6TPFxxI0vKViIh6Tt1hJ3iefSHvCTgAoG80Av6zzuHfeSKiHGtY\ntgb64CGJN0Zdl5fdrMYumptiB/KUgNOZ//CjIivhhzc9HkDXoTaFko283vgdAThmPh1TJce0fGmu\nwkxLV/dT+jom4RAREVHfoATbAolObw7NCxeg+qhDsMEG1XA8MCPp7r05Bcftjf9w4t9u+5ycK9+V\nX0wFroQDADaLCfrW20DdalTMeKoblkRElH3KmtWovOkalJ88HlCZjJNVKRJLm774LqPqIX1SN9pT\n1hx+UA4CoUQsP3wHAHDeNy3tfQJvvY0RozZC5VmnBQdYBp6IqGRZzGwzTUSUC60zXwIAtF91HVAW\nrFTT9vC/4+YJt9tYdjx0f7fOpSyLJKy0TX+wW8foLvcFFxnL/n33j2wQAtJmh2nlClSNPQwDtxgG\n06+/QISScLzHnwjPoUcY05XGBlQfEtnfeeO1uQ8+hbaOQEHPX+z4CZGIiIj6huibH52q2phWrgAA\nOG++Lvn+vTQLx3nJhRi4R6Rfum/0jgAAXTGho6Ep2W7dJvP8ZJpSRE+jtbz+Nnx77Qt1s82DA34m\n4RAR5VPt6K1Q/e+HUTb7XZi//67Q4ZSUZImlrmtvBJzOPEfTC3WRhKP1HwDvJpvFjCkN6yKtjii3\nMvw+m36Zjw3PPAkAYP35p+Agk3CIiIiIiDLiP+gQNKxrg/eSKyJju+9lLPt23xMAIFztxpht7tdJ\nj2cOvzcHoG04GGuPPB7uKZcGt4Wu/zf8uhi+E0/OzheQJllTi78+/wHNsz6Kq8AjHXaYV66A9asv\nAACWrz6H8AWTcDouvxqup56D9+hjjPmmdWuN5cAOO+Uh+iSkRKDD3fW8PoyfEImIiKhviLr5YX/i\nscx2/exT2P/v42xHlBeOmU/D+ucyIFQq37RoAQDA/v1cDN9qOJQ/l0OvrgYAND3+TM9PaMtvJZxi\nIqtr0Pbqf6FuHayI47z5+gJHRETUt4jo6jdFlKRZEkJJOHpNTcywf78DCxFNr2N747WYdbWuH/SK\nSmPdfckVaP3iW6xd0YCVvy0zxqt32yFfIfZpor2960lRTAlahUn+zSEiIiIi6jHZr5+x3HF18Nqq\n0tbWaVKnp2U1DbKxEc5LpxhDzR9/Afnoo5BRVdQDm28J1NdnP+g0iBEbQR0d//lOaWmJWdcHbBBs\nTwUY7araH4qvDgQA2iabZjfIDJRffxVGbjcCorGxYDEUOybhEBERUZ8go55Otb3+akb71h57BDY8\n9bhsh5RXor0d1lnvwtzWGjNu+fJzaEOGQSt3Qjvy6B6fJ9+VcIqRsmoVAMD29n9RccTBsP33PwWO\niIioD1KCN8TZozw7RKgdlfviy7FiZRMWv/A2Vj37KrRR2xQ4st7BvOCPmPU1M18DLGYAgFpdC++p\nk6AIAcVmg7W2Bt7jxgMALEsWwdRpX8o+tbnZWLa8/V8jeT0ZqSRIuGElHCIiIiKinouuIhp6cEF0\nup5tf2FmzHrZPXeg/8gRsMz70RiT1TUwKQpEIPKwjrbV1jkIOD1mU3qfF5R166AsXQIpBPTauuBg\nssqqgcK1gyp79CEITYPl6y8LFkOx4ydEIiIi6huUqDerURfak1G10rppJ9rbUHXK+Lhx86/zIbxe\nyGxVsLH33Uo4Yd6JpxnL9m++ROVZpyWdS0REuRGuiqOqvbSfZJExLQxW0pNWC+xWM5TddoXpQFbB\n6S6zxw29/wAAgPu0M2IuqgohYHv1JWPdedmUuP0puxwfzDKWqydNRMUFZ6ecL1UtfpBJOERERERE\nWdE24yGsv3MGZKj1sfJlbKJHxcUXQITaS6majvI7/xmz3XXDrcZydMsm/8GH5irkLok0K2dWXH0Z\nrD//BL2yCrBYUs61fjInC5H1jNIpQYoi0vqEOG/ePEycODHhNo/Hg/Hjx2Px4sUAgEAggMsvvxwT\nJkzAuHHjMGdO4X8AiIiIiKIvjFsXdv1EsaaX1k07pb0t4XjZIw8CPi9gz04Fm6wl8/RivuPik52I\niCjPvMEe6oESS6otFOdtNwIAlFAis9NhgZKoGggl5J5yacy6vt12aHtyJjpOOhX+C+OTbDxnn2cs\ni46OnMfXp/l8sP32a8yQ/c3XU+5Sc9apcWOigE+hEhERERGVEt/4k6CfepqRhGNb8FvcnH6jt0LV\n0Ydig8F1cdv8Yw6JLB9yGJqeexXNM1+B7+hjcxd0lnW+lt824yFj2X3O+QAA26x38xpTQl1UEe3L\nukzCeeyxx3DdddfBl+CbOH/+fJx00klYsWKFMfbmm2+iuroazz//PB5//HHceuutcfsRERER5Z2a\n3oVxj9sHx333wvH0EwAA2x3/7GKP3kH5YHbMeseOuxrLor09a8kz0mrNynGIiIh6QoSScEqtsl2h\nhb+vlBnPhMiDberIrWEqc0DbeFO4p90HGSqxHq3jpn+g9cnnAAD68I3yFmdfpDStT7zB70fFicfC\n/vjDgNsNZe2a1AeSpZXAT0RERERUaIk+K0Wzfvk5hBZfpVKvqY1Z1w48COpBY7IaW7b4d9sDAKB2\n+twnOrXW9p0wAR2Tp6DljXcBc+oKOXnl9RQ6gqLVZRLO0KFDcd999yXc5vf78cADD2DEiBHG2MEH\nH4wpU4JP8UgpYUrWp4yIiIgoj4Tfn9Y8+913wHnrDai75lJgzWpU3lUaSThV/7rNWG74cx28Z55j\nrJuam7JWCYftqIiIqBgIrwdi/XpsPHIoHI8+WOhwSoZ0OAodQq+k1/c3lltfeBVKV6XITSb4Dzgo\nuBwq7y2Z5JETojVx+XTnVZfCPucDVFxzBaqPOwp1ozaDaG5KepzA37bNVYhERERERH2T2QzPpLPS\nmuo96hj4tx2NwEYbQ9bFV8cpVq2vv4O1q5rQ+p+3U08UAu4bbkVgtz3gO2psfoJLg+5ydz2nxDoO\npMvc1YQxY8Zg5cqVCbdtv/32cWPl5eUAAJfLhYsuuggXX3xxWoHU1JTBbO49CTv19RWFDoGIiChv\nSuJ1zxJ/s0M740woO2wPcV6k5H//++40lm3zfoiZXwrfB9m/P+qH1EOrjr2JZi4vy8rXV1FfjYoS\n+D5lWyn87BAVEn+HKFOVVgH88h3g9cB53VVwXntloUMqCeW1lSjn72Pm6ivQPG4CzFtshrptNk9z\npwpImw3WJYtQ52tD4J13YTv6SGDAgJyG2ucsin9yFgAcM582li3ffgMA6LfsDwTMmyacX7HbTll/\nD8zXPiIi6o34+kVEWbXvXsATj0XW77sPuPDCuGn2444BTjgBEAL1vbFASE38Ay9J/54euDcAQO68\nS8H/5lbd+Q/gjttixlpdPlQ5Qw/8NjTA95/XYTv3LKCrh1FKTJdJON2xevVqXHDBBZgwYQKOOOKI\ntPZpbu46U6pY1NdXoKGhvdBhEBER5UWpvO6Vt7hQ1mms+aobIKuqgSOPR/2G8RnylRNPjFnvTd8H\nKSWEEKjvvKGtDQ0N7bC6/KiKGg6YLGjtwdcXPk+rT4e/F32fciX6++7bYiTa+D0h6rZSeR2i3Iv+\n29u+rhna0EpUh9b5M9Qz4e9t0y57Q+P3slsWXfsvjBhUCW8G37/aikqYVqyAGDIYNgDqv25H8zc/\n5S7IPsiyqhHVANQtt4L5t19TTx4zBhYAekUFlPbYf8fmjgDULP5u8LWPiIh6I75+EVG2lf04H+Wh\n5TWvvA3T3nuh+pHHYPnlZwBA+13T4d1tD2CTTYHm3t0aqfN1/FR/T2srq6C3taGlQH9zo2ONjlO0\nNKPfZsPQfvNUeM+bjOrDj4Rt7tdo96vwRrVpLhWpkqC6bEeVqcbGRkyaNAmXX345xo0bl+3DExER\nEXWLcLnixmRV6NacxQLfEUfnOaLcUjUJJGhbILxeAIDWqc8sbFlqI2WxZuc4pcTjgc4WEkREeSV8\nXoCtk7ImsMVI6FYbtC1HFjqUXstqVrpuQ9WJ0t4Ws25eugQen5rNsPo84Q1eqJe29N/DSmuCNq5W\nvgcmIiIiIso20dFhLCvOYDpO++NPwXvceDQuXgnvKacHE3D6GOkoA9xFknQkJcTatajvX4l+mw0D\nAFTceA0AwDL3awCA6fffChZeoWSchPPWW2/hpZdeSrr94YcfRltbGx588EFMnDgREydOhDd0s4eI\niIioUEwrlqfc7r740jxFkh+qpkNZ8WfS7dqobWLWpT3BzYTusOSk0GKvpVdXw7JmNXRNT38fJuwQ\nEfWc1wuo6SUrSCnhDyRuSUMhug6tvLzreZSU1ZJ5SXTh88WNBTJ4T0FdE57ghWv/mEOh1vaD65ap\naFz4J9qn3Y/1P/4v4T5KSzOk2Yy2K681xqTSC0veExEREREVucBOuxjLJqsFAKCN2ATtDzwKWVFZ\nqLByTttwcMrt0uGA8BSgy5CUwLJlkFEPISh/rUS/UfGJULb/vGIsmxYtyEt4xSStuySDBw/Gyy+/\nDAAJ20s9++yzxvJ1112H6667LkvhEREREWWJ359yszrqb2h5+Q1UH18CFXGkxMDdtoOli8SjmF1q\narNzarMlK8fp7fSKSijtbVC3HQ3rJx9Brl4DDNkwvX3bXbDOfg/qEUcBtiwlRxER9QHqkKEwhxJQ\nhccDBAJp7Vd1/NHQdQnXa2/mMrxeTeh6n+vfnm0Oa3aSNGpuuxHa1H9m5VgEIJSEow3aEGvnLzSS\npbwnnQLRqRJRmNA0+LfeBr5LrwT+9Y/gmLsAF8CJiIiIiEqc//AjjWXRR6pPescei45rbkw9qbwM\nYn1jfgJC8OElIQSss2ehauIJMdusH32YcJ/Kc88wlk1//ZXT+IpR1ttRERERERUj0UUSDgAE9tkP\nUkn89kgv60VPf6tqTALO+smXoH3a/Sl30QdskJ1zW5iEAwBNX/2AdR9+Dhn6ftg+fD/tfZ233oCa\n889E2bQ7chUeEVFpiqp8I3w+CDW9JBzbpx/D8dknOQqqNEgpk75HovRUlGd+wVjvVx83Vvv4A4CU\nsD/5OJTly7IQWd9mJM84HHHVimSq9/+dEqXVHXbMdmhERERERBT9MIi5tKtPts14CM1nT0b7I09C\nHzY89WRHGUztbXAedlDO4zItXoia3XaAef48WGfPituuLFtiLLc+/wpa/vN23BytPv6zbanjFRQi\nIiIqfboeV/IwsMlmCae2PfMC1GHD8ef7n8du6E0tgjrFGhhzKLwTJqJ90tlofer5hLuYfk9cbj/j\nU5vYjgoAZP/+ENtsA9sHweSbuisvTnvfiqf/DQCwfP9dTmIjIipVIioJx/rf/0C0thYwmhKj6xCs\nhNMjSje+f+7zL0o4bvr6K1RceQlq994F5u+/RdnUW6B7PAnfr6qd2lc5LzwXZRdPzjiWUhVuRyUd\nZfEbTSas+WM5Vi1ZA//o2CQb08oVAIA1q5qwaPE6wFTaNwSIiIiIiAqt1Cuw+8afBPW2qWnNDX9+\ncXz7NWSaVYC7RUrU7ro9LIsXouKCsxNWyC2/fzoAoPWp5+E/YAwCe+wVN0f3eHMXY5FiEg4RERGV\nvPIbr4HS3Bwzpo3ePuFc/0GHoPnbn2EetTWanngOgaHDoQ0Z2iuScIybLJ1itThsgBDw3n4X/Ice\nnnBf78mnZScIC5NwekTTIss+H8rumIqym68vXDxERL2JqkK3BKuNmFeuQMXfI4kGYv36QkVVGqSE\nZBJO3nkuuAgNN/wjbtz07jsAglVcag7ZH+X33oUBwwbA8cgDcXM7J+E4Xnoe5c8/k3a7tlInPMFK\nONLhSLjdVFMDc7kDrW+/D++obSPja9cAABSTCYqJl1eJiIiIiHLOzOvOYbI88hCBnDkzZ+epmHK+\nsSxcLtiffTLp3MAOOxnLvoMPAwA0zfkcuqMMcl0DvB5fzuIsRvyUSERERCWv7JEH48bc512Ych+L\nWYF2+BFo+e5n6PX1gK6nnF9o+odz0PZrqNpPp1jT6ZerdVXiMl1sRxVDr6jscmzOIhYAACAASURB\nVE5Ajfr3imqbJvw+lN91O8ofmJ6L0IiISk8gAN3pNFajW1FWXJq4okiMXpBwWyhC6oDgJaS8EwL+\nc86PG6565L6E08tvui5uTNUS/1w7HnuYP/MAhDf4RKa0J07CARCsAmU2Q997n4TbLGb+bhARERER\n5Vz0w4t9nHRWGMsDrpySs8929hefM5aFqx0ixXlkVMup9gcfRdP/fQNt1DZQPG6ULV+MIcPqEViy\nNCdxFiN+SiQiIqI+SR+wQfqThQKB4r1JIdpaMWDCWGx+QCjbvHPCkLXrxBhpt/cohrZHnkD7gYdA\nHbl1j45Talpfe9NYtnz1Rdx2XUoE1MgHSBGISsLpVL2JiIhSE5oGWe5MuE1pWAevX4Wup3g99/a9\n8shpkzJh2WnKPavFhPXfzYe61agu54rOidjtbai75HyYfv8tOBB1wdR507WoH1CFijNP7dvJOF1U\nwokRddG//fa7jWWrma2oiIiIiIhypfXxp+EedwL0wUMKHUrR0DccHLMuGhtzfk6lpSXptvZLr4y5\nZiCdFdC22DJunn3GvTmJrRgxCYeIiIj6pkwulitKcVfC8UUlbrjag0+rR0nWL1ePyphHOjceUoUw\ndhzWPPIMYOJNiGjqtqONZcunH8VsE2vXwnL7VNgfuj8yGFCNRfPSJRmdy+NTu55ERFTKVBV6eXni\nTcOGw/z0U9BdrqS7C68nV5H1flIG3w9RQehDh0EdtU1acx3nnIGK8ceiYsJxKL/5BlS+9hKqTj4e\nAGD98P24+fY3X4eyfFk2w+1VhCf0e1/W9Xth+/PPGsuB3fYwlhWFCWpERERERLniP3IsOh58jJ9J\no3W6V6GsW5v1U5jmfpP2XDl0WPJtUW3Eap9/EmLduh7F1Vvwp5WIiIj6pGSJKQkJUdRJOMIf6aeq\nLFsWH2uSFlFtz71sLPe0Eg4AKHxCPqHWp18AAMjK6pjxqgnjUDvtXxjwzxtRfttNAGIr4WTK1dG3\n+uoSEXUm1ABkZRU8E0+L2+Z49SUMvPYSVJ13ZvL9C1gJJ2WFnmKg66yEU2DSaosb08vLERixCVw3\nTzXGnK+/AvtHH8D+4ftwPPMEAECsXw8ASZNtRHt7/KDfnzJprVQId7gSTlnXky2Ri8d6bV2uQiIi\nIiIiIkrNF3v9Qlm7JuunkEsjraP8++4ft13rF2k/Jauq47aH+Y45Lmbd/NEHWYiu+DEJh4iIiPqm\nqAzsrkhFKe4y/f5I4oZp2dK4WGVZ4psKgV13j8yxZSEJh08BJySrqgAAoi22ZKdl/jxjuWzGPcEF\nf/eScCrOOR0jtxgI83dzuxckEVFvp+sQUkJYLXDdPQOuW/+ZcJr9q8+SH8NTuEo41rv/Beuc2QU7\nf5dYCafgpM0aN7bq16Vo+fqHhIln0ZSOYDKNnuTCaDgRJVrVicdiwIhB3X5vUtSkDL5n0nWjEk46\n7ajcF18WOUT//jkLj4iIiIiIKBXR6fpFLirhOB+cAQDwHHoEtKj2V3pd8IEEoUWqskt7/EMjYe13\nz4D7pFMic5uasx1qUeIVFCIiIuozZHRFmAyScKAoEFIWbSKOCASMZdNfK+Iq4aTKRDdkpRJOjw9R\nkvTKcBJOW8y4jLqZ6Tv4UACA6c/l3TqH/fXXAAA1hx7Qrf2JiHo9NXTxJ/T67jntTLSfMglN/xdb\nPllPUQmvYJVwXC7U3DkVVSeOK8z508FKOIVniU/CsZWF3r/Zkl/wjFZ1wdkAAGkyoeHnP9Bx5bUA\nAOHuiJ0oJayffQoAsM56B4iqiKMsXVLUFSLTUT+gCjWHHoB+g2qhNARLoadTCcdz9vlYP/EMtN33\ncK5DJCIiIiIiSqrzQwTZroRj/vkn2H77BQAQOPxI6PWRqjf6gIHBhahrBCLVZ0SbDR3T7kfro08G\n929uST63hDAJh4iIiPoMWV4eWTGZ0t8x/IaySJNwYp5Q9nqB7rS0yMKNNcGbcwnJykoAgNLaGrsh\n6mdQhP4NwzeC4g+S/N/UdN/0ngVIRFQCLF9/CQCwffpxcMBmg/vOadC22DJmnqm108WeqAtFwluY\nSjhCDXQ9qdAkWAmnwFJWakkjuVw0NxnLbc++CGwwENLpDG4LVcIRTetRs91IOK+4xJhbdeapqN1x\nG0DXUXb7bajbeVvY77+3m19FcRG6Dku4imCaiUye2++C74QJOYyKiIiIiIgoNfeV16LlzPPR8uqb\nAAD7009k9fjK6tWRFU2DrK41VgM77AQg+CBT6xMz4dlzH/j32LvLY+ojNgYA1E2/I6uxFiteQSEi\nIqI+Q9s86kZcJgkj4ZtORZqEIwKRJBzh9Wb0dLJ/730RGLhhVuJgO6rEjFZfnds5RP88hZ5AL7tj\nKgBADyXuGFQViZjnfoPaW6/PSpxERL2Z/dWX4saUBK/1ovNruaZFthWoHZX5f78W5LyZEJKVcArN\nfcEUrD9pEtqnJrhgGfVv0/zm+wn377f5cGPZf8AYAIAsCyaomz4PtmlzXn81zH+thOPpf8fsa1rf\niJr99kD5PcFzV9x2Uze/isKz//vRxBvS/Pm2WTJI5CciIiIiIsoBWVGJwNTboW49CgBgXrkiuyeI\nulYiq6qhV0cq7XsmnQXdbEb7tPvhP/xIuF57M60q+3pF5Hq3adHC7MZbhJiEQ0RERKUt6mZb22NP\nYd3Pf2D5+59neJDQRfmo5BY5d27Wyzx2mz/yBL3w+TJKwml9+Q0s/+KnrISR6GYnAbAEn06PbhsG\nKSGiEmusX38Fyxefwbx4EQBAHzw09hhJknBMK/+MWfftvW8WAiYi6oUCyavJeE48Oek24Yu0oCpU\nJZzqow+NrOg6ICU8bl9BYklKSlbCKTSnE21T74SsqEy4efVX87Bq/mKou+wK103/SOuQpgV/BA/9\n74chGhpgf+XFpHPN//sl85izyN3S3q39Opqj9nO5UHH1ZVmKiIiIiIiIqLBkbV1kJSpxJuPjeL3w\n/PwrEHo4SbS3BcctFvgPOAiBXXYDAHiPPxHayK3w2y8r4BubWUvtmM+ynR9WLUFd16slIiIi6sXM\n8+cBALT6/tA3GAgBQK2sS71TZ0psOyrR3IT6ww+AtNnQuKIhi9F2T3QlHPh9EIgkHsmu2m4JAbst\nO28JeW8uCYsl+P+odiOiwxU/7bNPjGV1081ibnYJTUWiOkyioyN2vT3+uEREfYKWOFkRAHzHjYfj\nhZmRAVU12vc4r4rckHeePQlNfyxLq7VProgOF6qOOhT1v/wM7977of2VNwoWSwxdZ9vJIuCwmeJe\n+8PERsPCaeOQFRVpHc970ikoe+QBAEDtbtvHbfeNOQS2999LuG/V+GPSOkc2WD/60Fj273dARvvV\nA3Dddjs8p52Jfhsnrv7oO/jQhONERERERETFruOAg1H+4SyIDhdkZVXmBwgEYLntFvR/9H4AQOPi\nlRCu4MMMbQ//GzCboW80Ao3/WwJZFTx+RXl67XyjyX79IC0WiEAAwl9kDx7lAJNwiIiIqKQ5r7wU\nAGBqWGeMWUwZZouEs0tCFWZEe/BNqPAVyZvFqDetwhtbCafxvY+63D1bZfV5cy4xaQ4m4URXwhFN\nTXHzRIc7shxVmQFA0ko4cdWYGgufFEZEVAhCS14FLrDHXmh57S2U3X8vrB/PgWhthawLJuTaX37B\nmGdqb4Nl7tcI7LZHzuONppc7oYSSM22vvwbLLz8HY/v0I7TrenFkuUoJWQxx9HEmRYFv3PEwPz8T\n/iuuitsWJp3OpMfwnHqGsaxtEWnVqrS2xMzz774n2p55ER1L/sTwXYMlzlufeRHmuV+j/P57YxJj\n8qk753VedxXMc7+JaUfX9PGXqN03+DSnf5/9sxYfERERERFRPimVwQozpo8/gnrU2Iz3rzjndNjf\nftNYrzpxHPwHHAQAkOWRz5ayXz9j2Wzq3n0Az/kXoWz63TGV/UsVk3CIiIiopIWztqOZM0zCkVYr\nAEBZ3wh9w8FJn0AuFMu8qHZSumYk4TQdcSyw7XZ5i4PtqJIIV1RQVVScewbUbbeDNij+SWzrB7OM\nZeHtlIQTSJaEsxYA4B13AmxvvAbrn8uCpUe7qoBERFRiZBf9xwN77g3t9VcBAEpzE7S6xFXxbDOm\n5T0JJ7DLrrDN+QAAUHHZlJhtornZSBgqKF0H+DpfFGRlFda/91HKJOpwAnAinrPPS3l83+gdseaV\nt1BWbgeEQNmIofBMPB3W2e/BP+YQ+A8+FO4rrolp+Zpr5nk/oebIMQCAxt+XQjrK0trP+t7bqDo3\nmHRkf/N1AEBg1DZoefYlYNCG0IYMhWnFn5GqhURERERERL1N6F5HzVmnok3XMm4TFZ2AAwBSVaH8\n9VdwOUmVVVOmDzmHjx367MVKOERERES9nPmP3+PHMszU1gcMBBCVhBOV2OOccn7PAsyQ76ixCOx3\nYMxY+T9vjaxokSQci8WE7neCpawJJeEojQ2wfvYp8J9XjE2BkVvDf/AhKL/nTpiXLDbG9dramENI\nNfHTAaK9FQDQcf3NEM1NwZu4Hg+Q4gl4IqJSFNh6FOyvvIiOK65JOkdW1wAItpVMxvHRB8h3Yz+R\nohe68LghUQRJOFIWR0UeAtB1FUOhJ38HqI3YOGY9sN32sPz4vbHuvuoaWBx2499bCAHX3dMBTI/s\n1EXSW7apu+yKxl8WYc0fyzGgNv3fB/8xx0G//mooURUxXXdMA0LJ0G1PPQfLSy/Ae/yJWY+ZiIiI\niIgoHxyvvGgsV54zCQ0JknBMv/8GfPcttJNP6fJ41h++A374DgAgKyoTzunuw7jSFmpjxSQcIiIi\notLgnnKpsZxp2yRZXh5cCLejckVuzzlemNnz4DJg/uM3tHRKwokmYpJwzPAmnUl5IwSk2Qzzb/+L\n26SP2Bjq1n+LG3fdcjv06lqYli+Fbc4H8HT44Eh06NDPonQ6AXtwhvB649pQ6LqEorCCARGVsFCL\nyMDo7ZNO0WuCCY5KiiQcAIDfD4Sq4OVDovaWgVF/g2X+PAiPJ29xpCIkK+H0Jr7Djky+sVO1vPb7\nH0Ht7jsgsN32aH3xNciaWhRjXRjZvz+qazJPSHOfcz6ct91krKvbRf5GqKP+BnVU/PswIiIiIiKi\n3qLllf+i+rijUs6p3WtnAID6yP1Y894nsDnTqy6arBJOd0ln8HhKS0sXM3s/JuEQERFRSdMrq6C0\ntcJz5jndPobwBm+Ald0xFW3Pv2okPnSceQ68Z+evEk7NAXt1fTNO04z2AJJPrBcNoSZuJ9Vx7Q1Q\n1qyJG5d1dei4/S6j0tIGJx2D1m9+jD9uOAmn3Gm0YhFeDzo3iNB0HYrCFlVEVLqEL1RNxmpLOkeW\nhdIZO7f866Tf0P5oXJPHC0KdknA8J54Me6hqmv25Z9Bx0235iyUZKQEmc/Ye5sSX+9Tq2rgxbdPN\nsGrpWljKE6X7FpeuKgAl4rnoEnj22heVN1yNwK67s6ITERERERGVlMDe+xrLXd0PMP/xOwZtMRTr\nVzYG53fRZlgPVRHNFn3wEACA7YnH4DvmuKweu9gwCYeIiIhKmrrdaFg//dh4+r07TKEKJrYPZwMA\nREcw8UHfahT04Rv1PMg0Sbs97kZdHD1SCYc3GYpb2wOPQtt4U4im2IoM6oiNI0+ph26iWZcu7rx7\nUHs79LIyQFEgHZFKONGklFA1CQvf+RNRKfMF//bJFEk4MId6jwfiW/w1nzwJNTOfCG4Pv47mifD7\nIIWACF38ck27H9ZPP4Zp1V8w/fFbXmNJSmclnN6m8b2PoLz9FhxNDXC8MBPt/7oHzceemLCyXm9I\nwOmRbbdD25uzCh0FERERERFRTsmqKkBVYx/M6NQCW/H74f/oE9i22Rp1u25njDe/NRvi4zmwz/kA\n9nk/BAezfB1A23AwAMA29+usHjffxNq1cFx9OfDW60nn8FI8ERERlbbwjTZLDwrrd0pmsb73NgDE\ntfzJOZsNwu+HMnsWhKpCO/Tw+DmaHmwZATAJp8jJ2mBimLr9jsaYZ/zJcM14MDIpumVE5w9QAKzz\n50WOF6qEI70eeHwqHLbgXH9Ah6YnearB54Pu7oDSgyQ1IqKiEE5StaVoIxX+G5qgOpmwWaENHQ7T\nn8uCA1GtJ3NNdHRAq+8P87q1wQFFQfuMh1A97khoW2+TtzhSkmASTi8jt98B/u1GQ9N1rDv7IpRt\ntUXCBBwiIiIiIiIqDUpzM+oH1aL93gfgnTARAGBavixu3obj41sYqzvvArnTzghcdS1M++wKdatR\nWY9P1tdn/ZiFUH7HVDjefiPlHCbhEBERUWnz+yEtlp7dOIpKZjF/+w3s770DAJBl6fVOzRpFgWn5\nMtSdfDwAoGHJKqBTIpDQNMBIuODNsmIWGLVtcEFR0PD1j7DOnoXA+Akxc2RU0o1wd0BWVgFSwjpn\nNvwjt449oD14a836xOMom/sNOl5/GzCbUDvxRLScexFw+GFxMVQdfzSsX32Bxt+XQtbWZfcLJCLK\nI6U5WFVMlidPkA3/TVUaGuK2uY8cC/Xa69FvRLDUcv2IQTmIMjlptaJ51kdG20lZWRnc0EXrrLzR\ndSb39kImRQEUBWKTTQodChEREREREeVI81vvo+aIMcZ6xcUXGEk49peeBwAEthsNy48/pDyOCN1D\nafnkq5zEGdOtwOuFR5iNB0l7E9OK5V3O6X1fFREREVEm/H5Icw+q4ACAiNx0ss2OlLLXhg7v2XEz\n1DlrXWlYBzSsi52ksR1VsfPuuz/WXXsrHP37RwZHbAz/uRfET4762VXmfgOvrRyDjj0kZkpgx50B\nRCrhVMx8Kjj/ykugjtwKZXO/gv3Xn7HqoJWwWYOVdQKqDotZgfWrLwAAVeOPQcvsT7P1JRIR5Z1p\nzWoAgDZsePI5oddR5y3XwzN5CgBAHTIUcLmg77ATpMWEtkeegPWVl/JW9MW0eBHMSxZD+P1QR+9g\njIfbaomAP9mu+SUlmNzbe1nMfE9IRERERERUqtSdd40flBLQdZTNuAcA4J58MarOOCXPkXVijVQv\ntv33P9Bb2oFzzilgQKmZf/weaG2Fus9+MePKn392vW+ugiIiIiLKB1XTYTYlv7EgAqFKOD2hRG46\nlU2/21jWNt+iZ8ftIaWhAY4nH4sd1DUIX/CpeWm3FSAq6oqw2eHYZuuuJwIxH0xqJ4xLOMV7/IkA\nAOmIrcwkWpqBJUsAAEpHB7Tffwe22QqipRnOv0+BdsFkY67lpx8z+RKIiIpPuMWUOfllDmX1qrgx\n4fdDq6yCJfRewjd2HHxjE/+9zQXH9Lvh/MfN8RtCbbXsL8yE6/a747fnmYAEUrzfouKW6r0yERER\nERERlZ7y666E0hipBKzutAvULbeC+bdf4+ZKW/7uI3gmngbHs0+h8sJzUQmg4eyzi6/9tZTAKy+j\nZvJZAICmT76CNnIrwO+H8HlhWroY3l12hz3FIfgpnIiIiHo1TZOpJwTUmESGbklQUab55dd7dsxu\naH36hZh1Zd3a+JuNmgZ4Qq0rQu2JqLh4J56a9lyZRjUj35FHB+d2ao+mbrElyl990VgfdkDwiYiy\ne+5E5TtvoObQA2KPE9DSjouIqOioarDdVKoLN9HbXK7g/30+wGaDohTmgo9I0m7KqIQTak9VcLoO\nVsIhIiIiIiIiKk5tDzwK3xZbGetljz0M++uvGev6gA3QcfnVMfuoQ4YCAGQe7yPIyqrYgfBDVUWk\nfkAV6kMJOABQds8dUFb9hbqNB6Nmtx0gpIS+404pj8EkHCIiIurVtHDrpSSyUQlHmkzxY/36J5iZ\nW/5DDoN/192N9apJJxs9XcOErkNZtwYAgjcjqehIW6oc+VhC6zoxRlZVB//vdKa1r1i4IOG49aH7\n046LiKjYCE2DVOJfr5OpPCuYECn8fiCPT3x1Jnw+AIDe+SJUF+9v8k5KtrkkIiIiIiIiKlK+48aj\n5dMvU87xH34kGta2Guv6JpsCAKQ9/evVPaXX1MYOBAJ5O3d32d98HXXbbgnF54VpbfDei7rlyJT7\n8AoKERER9Wqa3kUlHL8f6Gk7qgRP1Wubbd6zY3aTrK5JPUHT4bz6cgCA/cXn8hARZUJaLAjssVfa\n85VVf6UxKfiWXjorYof/Whk/V9PgmDM74WH633Z9xk8eqFrim8TJxomIckZVEybNRvNOPM1Yts35\nAAAg/D7InlbM6wH/vvsDADpuuCVmXN9wcCHCSU7Xi688NBEREREREREZFCHQ+MsirL3rfgR2iFRq\ncV0X1QZbCLQ+9zLWX3tzJCEmj0k4sjY2CUeoxZWEo8su7jeFaEOHp9zOJBwiIiLqtURjI2pvvhZi\n3brkk/x+SEsPb64lehq9QDfsPJPOih879Ag0/Pi/4Iqmwr/fgQAA9+Qp+QyNUnBPvhgA0Ljgz4wq\nCShrVqc9V5aXx6zbZs+KP15Dit8VAEookz9dATX+d0O0tWLgwGrU96+E5bNPMzoeEVG3qWp8i8bO\nU7bZNnZA1yFUFbAWrhJOYM+98dfCv+A95fTYDWYzAsNHQO0/ADLNC0A5JWVaLRKJiIiIiIiIqHBk\n//7wnTABbQ8+BgBQt9wKnov+HjPHf+DB0Kf83WiRLR35a0cVVwmnyNpROW7/h7G8/M05Sefpw4al\nPA6voBAREVGv5bzhalQ/+Qgqrrwk+aSAClh7Vgkn3CqiGAT23heNC/+MGVP3PxAYtGFwRdMhA/7g\n+PY75js8SqLjhlvw+8J1QKdEma74jjomZt1z0iloWNOScK4s6/rYtpdfiBzrlElx20Vra9xYKokq\n3ih//GEsVx97RLAaFRFRrmlal0k46FwpJ/T6LgvYjgoArFUVCceFzQoEAtB0WfAKY0JKVsIhIiIi\nIiIi6gWsFgX68I3Q/O6HaH3xtaTztE03AwAE8ngfoXMlHASKKwmnctodxnLZLjvCF1XVfv1389F+\n9wy4L7oEev8BKY/DJBwiIiLqtZRQBZxU1TtEoOeVcITH06P9s01WVaP9n3dGBkItIqSiAJqGstde\nDs4zdXEzkvLKZk3dJiUR76mTsGDOXGjDhgNA8OmEqEoE7dPuj0xOo1KC87abAACBTTeH685pWLck\ntt2VcHekH5yqwvn4Q3HVevTVsev2554JxpbP/4io70mjHVVnwh9Ksi1wEk4y0mKFubkJ5q++gKZL\naIkq8+UlkNDfVVbCISIiIiIiIip6ptDnd3WHnaAPHJR0XsffL8e6O6bDdevt+QoN0umMWS+qdlSa\nZiy23zENAOA9b7Ixpg8dBu/E09Bx3U1dPqjEOzNERETUe4Xf56S46W7yuKFZelYJJ7qSh3fzkVj/\n/KsoTDOqCN+xx6Pi6suDy0eHqqWYTJBaJHNc22TTQoRGSdi7kYQDIWAaMQII/4jL2Buw/n33N5bV\nHXdCInpNDZTm5pgx7+lnAEJAOGOrLwi3O2U4UspgNQRdh/2Fmai47XoE3nwNLR/+X3gC+p05MWaf\niisvSV2tKsukw4GWl/8Ldedd8nZOIioCabSjiuMNJeHksfd5JhRXOwCg/pjDsGJlEzQNMBUiDyac\n/MNKOERERERERESlo6wM6smnwmLO38UG2bkleBG1oxIdLgCANmgwvKedAQAIbLs9AMB9wZSMjsUk\nHCIiIioBiZNwLF9/CQCwfv9tj47umnYfag4Ilh1cf83NsAzesEfHywZZXYP2ex+AuvUoyKpqAIAI\nBGD74TsAQKBffyCPvVypa+Zu3jm1WhT4DzgQjiceQ2DPfQAAzW++D+8PP8E8KOpnMUmFAmmLv7ms\nD9ggcYy/zEdgr32SB/PAA6i/5RoAgBY6t3n+PGNz+INKNP/ueyY/XpYp6xth/v03mOf/xCQcor5G\n0zKuhKN0BJNcOj+FVSxEU5Ox7HjpBcjKSuCoo/IfSDjZWbASDhEREREREVEpyWcCDgBom2+Bv664\nEf3nvAPL998VVRcC4Qpe2w7ssqsxJuvr0bC2NeNjMQmHiIiIeq8unsi2vv9eVk6jbrOtsWyyWSGK\n5Elw74SJSbfJsrI8RkK5ZDErcN08Fe1jDoPYZ18AgLrLrujYejSqOs31HHQI0NICx9yvjDFtxMYw\ndW4Z1T+ShNP4yyLIZctQf/gBMP/2a9I4zN9+g5pQAg4AmFaFWllF/T44Hn7AWJYmEzquuRGeCy9O\n+2vtKesHs1B10vGw/+dVeM88N2/nJaLCEz4vZFXnv4qp2V5+MbhvEV3wiRFVBrnfpRcAABqOast/\nHKyEQ0RERERERERZYr70EvhVDyzffwdlfSO0rnfJi3ASjuxUPb4710P4GBMRERH1XuE3P8naUel6\n4vEesJfZup5UBGRZeaFDoCwxKQpgs0Hsu1/MG/5ETym4Zr6E9rdmxYy13/cwWo+bEDOmDxhgLMv+\n/SG22BxAbNUFANCjfrdqDjswcYBRMZXfMdVYblzdnNcEHACQ9mD1J8t3c1F+/VV5PTcRFZbi7sj4\nta/8njsAANbZs7qYWRgiwfsb4WqPaZPZpY4OaAsX9SyQcBwKk3CIiIiIiIiIqGcUISLV/VszrzKT\nK9YPZwPITsVkJuEQERFR79VVBnIOknC0YcOzfsycKGclnFKXrFRo50pN+uAhaLxzBpreeDcy1qkd\nlayohDSbIZrWx4z7A2k8h5Bh+5dckvZI662yRx6EridJ0COi0qLrMLndQDcvksjq6iwHlC3xf8P6\njdgQNTtvm2BurPDfv5ox+2CD3UfH/X3PCCvhEBEREREREVEWha/jCr+vwJFEOG+6FgAgvD2vmMwk\nHCIiIur9klXCSXDzqqf0ysxaXRRMOSvhlDqzKflbeWmO6jorBMpsZmg77BQZczhidxACek1tTCUc\nTdcRUCOJbNqQoQCAlXN/Rdud0yLnqorcvPbvtgcAoPXJ5zL6WrJF71cfs+7qCH6Is73yIsxzPihE\nSESUD2538P/dTcKpqMxiMLln/mtlyu3K6lUoO3UClDWrYV7wR3Bs1aruwTyopQAAIABJREFUnzD0\nPksqvIRERERERERERFkQeuCn8uzTCxxIAlloW84rKERERNRryU5PZMtOyTiyLAfVYDonLxSr8p6X\nTKTi1rniTbTmTkkwZpMCWK1oWNeGhnVtCffRa2qhRFVKsL7+GiovvzhSASEQgHfIcNiGD4FA5Nx6\nVRVUTYeq6RCqGpy6487d/bJ6RB++Ucz6xhv3h1i7FpUXnI2aE48tSExElHuiowMAILuZgOo7/Mhs\nhpM1IpxclKGK885ExfvvoPzGayLH8gSPpSdNXE6BlXCIiIiIiIiIKIusX35uLIvmphQzcyQQSLop\nfJ2pJ5iEQ0RERL1X+GaQLqHrEgG1U+WOzbcEAHhOmZS9c/aSp8BzkoBEvYZ60MFY+6/paP/X3Wnv\nI2trobS1AlqwBVXteWeg3yszYfm/TwAAwt0BxRm6wa0Govarg+X5mRDvvw/L3K+Dg+YCtagSAu0T\nTo0ZqjptQmFiIaK8ER0uAIDsZgKqe/LF2QynIKLb7ylrVgcXohJuhNsNv8uNpnUtEI2NGR1bhCsL\n9pL3QERERERERERU3LTBQ4xl89xv8npu2xuvoX7DOlgffyQyGJWU4z/iqB6fw9z1FCIiIqLipmo6\n/D4/TAsXQlu9GpYxBwY3hJIJ1L9t2/NzbDQC5qVLenycfJFlbEfVlwkh0DH+ZCgOS9r7yIpKCCkh\nOlyQUW3XhMsFXdODFRlCVSZkdU1kR01Fv0snxx7MXLiPGe133Quha3C+OBMAYPn+24LFQkT5IcJl\ngkP9xFPxjj0W9tdfix1MY79CaPriO9TssytEiqezwnx+FVi9CtXffG4kyygLFhjby/55K6p/+A4b\nhtabZ30EdfQO6QXCSjhERERERERElEUdV1+PsofuAwBUTzwB/t32yNt1h/CDpFXXXI6GM84GhICy\nPvjAUmCHneA76pgen4NJOERERNR7hd6UOX6ZhyHD6o3hhrWtwW2hJByZhYSA5i+/R3ubGxU9PlJ+\nsBIOmZQMP7RYQgk7ATW2eoKrHdbbbgm2mgr9XPmOOgbr/1iAunvvgGhtjTuUNKef/JNtJpMCE+8T\nE/UtoSQRmUallvb7HolPwinS5BJt083gmXQ2yh55oMu5A/fYHpY/l8WMWf/3S2T5h+9ittUcvB88\nBx0C9xFjoZ8wPvXBw68JRfp9IiIiIiIiIqJexm5H4/yFqDxhLKz/+yWmPVU+lU27E+5LroCybi0A\nIDB6+6wcl0k4REREVHp8PsBuhwgl4WSlfYLJhLKq4q4u4znpFDieewYAIMuZhNPXmTPMRJHhJBxV\nNRLYAKD89ttgWvVX8Jjz54UOboZ29bXQnn0iYRJOISvhKEJARCURhRlfHxGVHKNdUjpJIlYrPKO2\nhWP+T7kNKkvcF1/WZRKOacmiuAScdDhmvwfH7PeAC89G4/yFkAMGJJ5oVMJhOyoiIiIiIiIiyg45\nYABaP/ky5oHQfKnddkuYVq9C+e23wT35YjhmTAMA6P2TXBvJEK+gEBERUe+V5Gab6OgILoQTCUym\nrJzOlI1knhxyTbvfWGY7KjKZMvx5DSXOCDUAuWxZ5DihBBwAUJqbjWUhBKTNBqWtuJJwAEDdbIu4\nMREIxPT2JaISkmmlluqqrucUCVlXh/WXXhO/we8Hvp0LV2sHqsYe3uPzWL/8LEUQrIRDRERERERE\nRDkiRN7/a3typnH6+sH9YH/zdQCAXt8/K19Scd9JIiIiIkolWRKOO5SEo6rB/xc4IaAQ2I6KlExv\nlhrtqAKonHJeWrtIuwPC50tw8sJ+zPCcNxmNd81A46+Lsf7nP+A76GAAgPB6ChoXEeWI8cRUen/3\nRGVl7mLJAfWKK9F0/sUxY2XT70b9YQdgo00HwrR6VY/P4XjwvuQbw9/eIk9GJiIiIiIiIiJKhzp6\nh4Tjsr4+K8fnFRQiIiIqOcLtDi7owUo4MkuVcHoVVsKhDEmjEo4KZfXqhHPULUfGDthtcXOabrk9\n67FlzGSCPOU0yPp66BsMhHSEktLcTMIhKknhJJx0k0ScFbmLJQcUIdB+5XUxY+V3/jNuXuP0h9M6\nnuvmqVg/fwGaPptrjFnm/Rhs55mI0Y6KlXCIiIiIiIiIqHRJmz0rx2ESDhEREfVeXVTCEUY7qj5Y\nCaecSTiUoXDFKI8H1pV/xm1uu/8RtLz835gxaXfEH6amOifh9YgjGKfwuAscCBHlRIZJItLpzGEw\nuWGxpJFQfHh6bak8502GPmADyE4Vgar22ClxH/bQmGQlHCIiIiIiIiIqQYFtt4Nn7DgEdt41K8fj\nFRQiIiLqtWyz3k04blTCUcNJOH2vEg7bUVGmZKgdVcVlUxJu9x1/IuSAAbGDCZ4M0LNUsjObwr8P\nxt8GIiot4cSRNJNw9Ire1Y4KAMwmBb4xh8SNu8+70FiWZeVoe+SJtI/Z+b2CdflSOGbcE1xxuSC/\n/gaQEkKGk5wyj5uIiIiIiIiIqBi5p1wa/P/E09Ay62O4HnkCsFqzcmwm4RAREVHJCVfCgVEJp++9\n5UlUoYQoFevHcwAAlh+/j9sWblUVJ0E7qmJshRZuR8VKOEQlKsMkHPTCRFUhBNqefA4t+xwYM+6+\n/CoAgG6zAyYTfGPHpTyO1j+STCkT/L12/uNmwO9H2c3Xof+RB8L69puZt/siIiIiIiIiIipyHdfe\niIZ1bei4e0bWr3nwCgoRERGVHNERbkelAgBkX2xHZclOxjb1Hd4TJybdFthjr7SPkzRhp4Ck0Y7K\nU+BIiCgnMkzC6bWvkWYzWv41zVj1jjkE0lmBpjmfY91XP6Z1iJY5n0VWLBY0LlgO1yVXwHPK6cZw\n9YF7ofzpYEUd05JFkXZfLIVDRERERERERNSl4rtCTkRERNRDlWefjlZNj6qE0/faUcHCt3mUGd/x\n4+G89YaYMb22Fu0jNkfgsaeS7OSLHwu1tSom4Uo4mqujwJEQUU6EcnDSTcKx/PBd7mLJsfL+dcay\nuvueAABt1DZI552O98Ax0AdsEDMmq2vgueo6AIDjmScBAJbf/heZYLGyEg4RERERERERUQZ4BYWI\niIh6LXXjTZJuqzrvDFjmfh1c6ZNJOMWXCEHFTSZoz9Ly1my0vv4OZFV1wn2Ezxt/HHPx/ezJsmAl\nnKqLzgX8/gJHQ0RZl2ElHNG0PofB5Jgt0gZQljsz2lV04/2QtFkjlXDSbfdFRERERERERNSHMQmH\niIiIeq9wpZskrJ98BKBvtaPynDIJAKCOSJ6gRJRIuFpMNL2qGlZL8o8Mwts7KuGYli0DAJhbmlF+\n5z8LGwwRZV8oCUem244q1KIOANZ9+3NOQsqZqJZ/srw8rV10I5GyG0k0Qsk4yYmIiIiIiIiIqC9j\nEg4RERH1XuEns7ti6jtveVx33YtVKxoBZ2ZPxxNF39gNk3V1MKVqPxKqhKNXVEb2SXCcQvONPdZY\ntnz9ZQEjIaJcEOF+VOnmiEQlHYphw7MeT74kSp5MRB+0IQBA22hEynlt9z0cN2aePw8iVEFMRlXh\nISIiIiIiIiKixPrOHSkiIiIqPV1UwjEUYVJALlls1kKHQCXAdczxXbZyk1VVAAAt+iZ2EbZ/U0fv\ngLUP/BsAENhx5wJHQ0RZl2GlFnWrrXMYTP5oSRKIWt54F4GRka+x9ann0HzGeei46rqUx/MdNz5u\nzPHcM5ALFgCIrSBERERERERERESJMQmHiIiIei0Ruunm3fpvcdt0Z0VkpQiTAoiKUfuUy4xlUxrJ\na+13zUDzkePgunOaMZZuZYZ8U7bcAgAgPO4CR0JEWRdOwkmzFI77gim5iyUPGhetwPJ3P4U2cquE\n2wO77YHAvvsb6/pGI+C5dSrQVRJNVOUzdeAgY7nutBODC0X6952IiIiIiIiIqJgwCYeIiIh6L01D\nYKONsfbtD+E67Ci4rr3R2OQ74ihjObpVDhElFzj8iMhKGm3ctK22RuO9D0HdfkesvfRarL/vUcj+\n/XMYYfcpZaGbx15vYQMhouzLsBIObDa4J52NjrPOzV1MOSQrqyBGjUo9ye+LWbWYM0tIbnr/4+Bh\n9toncl62oyIiIiIiIiIi6lLf6s1AREREJUOXEtB1QFFgtVnQ9thTsJhNkOXlEB9/DBHVokHfcHDh\nAiXqTcqdkWVLem3Nyu3BjxTN505BXZU9F1FlR6iyz/+zd9/xbdT3/8Bfn7vTsLyTOJu9Z8OmbCh7\nlVXGjw2FsmehhUJL+2UTSluggbIbNrTsMsIqq6wQwk6AJJAdJ96WNe7u8/vjtE7DlmxJd2e/no9H\nHrn73J3ubVmWZd1L748odho7IvKOUkM4AHqvn1qhYqoj4O8/VCOiMQCAMXpMSbe7cNZcCENHMPE7\nQHR3p7Ypy5eXWCURERERERER0cjDTjhERETkSaYpAcMAVAWaqqQ+4R355RnouP9hmA0Z3W/8xYUJ\niEY6s7EptRy+6JKijkn+7Glq8Re/HZGcXkvXna2DiMovGcJRRs5bHMpAgaO4FcJBqd1rWsbAN3lS\nqhua6OpMbRJRdhIjIiIiIiIiIhoIO+EQERGRJ8V1E0KagMi94BbwqfC/964DVRF5m2xpQevUW6Fv\nshm0iZNKOlYtYvoqJ0k18aePwRAO0bBjmtb/JXTCGfYSwUPZ1FzSYQGfCiFE6njt++/SGxliJCIi\nIiIiIiIakLvfKSciIiIqIG6YgGFAFvjUe+TQw6tcEdHwYB53AjBlSsnHqYrLL34np6OK8yIy0bAz\niOmohrvwpZcjsv+B6Lrr/pKOE4n7MBVczGCstXY5SiMiIiIiIiIiGtbYCYeIiIg8SddN65Pvqpp3\ne2y/AwEAxugx1SyLyPMURUBB6Rey3T8dlfVcEXj+Geu5YwRNW0M07DGEk8McNx7d9z88+BvQct8u\nCp9zwRAqIiIiIiIiIiIaGRjCISIiIk/STQkY/VxI1zSs+vRryIaG6hZGNEKpLg+1ZHZ1UJYthVni\ndFtuZpoSits7ERFVkuR0VGWXFXJuvfUfQE2NQ8UQEREREREREXkHQzhERETkSWP+cgOUvnDBTjgA\nhtVFdiK3c30IJLOrQzzuXB0VoE67Hb5wD5SWFshAANFjjnO6JKKqajramoJSMoRTPlnBShEMQjpU\nChERERERERGRlzCEQ0RERN4TjWLc3/8MADDXXMvhYojIEzJCOKK318FCykudOwej/ni5bayVIRwa\nqRjCqRg14IfudBFERERERERERB7g7p7xRERERPno6ctAsrnZwUKIyDMyumaJnh4HCymvpoP3cboE\nIhdhCKecottsl1pWJPvgEBEREREREREVgyEcIiIi8hxhZIRwakIOVkJEniEEYptubi32dDtcTPko\nbW1Ol0CUXzRa/XOyE05Zdb0wI7VsTpjgYCVERERERERERN7BEA4RERF5T2YnHJ/PwUKIyEv6jjoW\nwPAK4fQd+HMAgMyYbguG4VA1RJbQTdehZbUWqN/Ore6JGcIpu+Vvf4TOv9wOfcqWTpdCRERERERE\nROQJDOEQERGR5yirVqWWRbjXwUqIyFPWXBMAoM2d42wdZSQjVrcRY73104PxuEPVEFlqb7oOAOB/\n7ZWqnlf9dvj8bLuFssEGiP2/450ug4iIiIiIiIjIMxjCISIiIs+pvf7q1LKIODDdBRF5krHOugAA\nZfEihyspD/9rryD06ksAALNlXGpc6AzhkEsYZlVPV/PIg1U9HxERERERERERUTaGcIiIiMhzlKVL\nUsvshENExTIbGgEAoqenpOOiMXdO79R4zBGp5fhOO6c3sBMOuYVZ3RAOERERERERERGR0xjCISIi\nIu+JxVKL0f0OdLAQIvIUnwYAELpe9CH1552JUQf8rFIVlUxKmXc8fO6F6RXdnaEhGiEyf74kQzhE\nRERERERERDSyMIRDRERE3qOmX8LEDvq5g4UQkadoVggHxsAhnL7uMAAg+OhDCM3+pJJVlUTPmN7H\nrAkBAKTfD6gq+g61OuNwOipyUuDfT6RXCoTGiIiIiIiIiIiIhiuGcIiIiMhzYrvvCQDovehShysh\nIi+RaiKE0990TbEYak8/BauvMx7Nu2yXcXB5wgTGEKfn0Q0JM1GLbGqG0dSMVd/MBwAIn8/aidNR\nkYOCGSEcwemoiIiIiIiIiIhohGEIh4iIiLxHsV7CxHfaxeFCiMhTkp1w+pmOqu7K3yL09JPW7t98\nnRoXnR1DPr1oWwX52uvFHxCJwPz3v20BIFNKhCOJ+sO9MMeNg6yrBwDIRAiHnXCo2jI7NMlgTXqD\nwanRiIiIiIiIiIhoZGEIh4iIiLzHTFzUS15QJyIqRhEhnJr77s4/fvedQz5906EHYsKxh0H77NOi\n9q+/4CyMO+MkBB+eDsTjqDn5eKy+7kSMOeVYAIDa2WEPPGjJTjgDT7dFzonGhl8wJZLxNUm/L7Us\nIpGq1mG2jK3q+YiIiIiIiIiIiLIxhENERESeI3TrYp9UVIcrISJPURRIISD7CeHoa6yZd1z09Q35\n9NrXXwIA1Llzito/8Pyz1v7fzoX5zLOoe+EZKLEo6l97CdqHHwAA/LNnpfaXviKm2yLHReLDL4Rj\nCxb5A+nlvnBV6+i+8Zaqno+IiIiIiIiIiCgbQzhERETkPcnpLVS+lCGi0ggpEfzgf/k3SgnthwUA\ngPa//N2+ye9PLZsZ00MNqobe3oLb+qIZAaFEZxvtm68w7qyTbfsF//147sEap6PyAl03B97JY4zW\nFTASv5szf1bKEV4rhWxsrOr5iIiIiIiIiIiIsvHKFREREXmPwemoiKgCYrHUornrbrZN+kYbp5aH\nPJ2Qkf940dqK+rNOg/7pZwAAGbDCDP7XX83ZV9aEcm/Al5gGqJ9OP+Q8Y4ghLrfxv/QfbLLDpvA/\ncB8AwNQypqMKV7cTDhERERERERERkdMYwiEiIiLvMawLzJyOiogGy/fGa/DdeD10w+pK0hfVIaIR\nAEB07/0gGxps+4uMYEt8qJ1MCoQwQrf/Fc3P/QsT9t4JAKC0txe+iURAp/eSy9JjiemoBEM4rmaa\nwyuEE3z4nwCA2vvvBgCI5ctS22Q/XZ/6E9cNyGEWViIiIiIiIiIiopGBHx8nIiIizxHshENEQ9R0\n1KEAgJ4jjkZAxjHm+P8H44STAABKextkbZ39gIwuOcngzmBJM//xob//rejbUFauAgCYEyamB5Md\nSOJx+N5/D/omm0LWN+Q5mpw03EI4iFvTnwW++QqQEiIjPFbz8n/QM5ib1E2YEgj4SgzbCjGIsxER\nEREREREREZUPO+EQERGR9+iJEI7KTjhENDRNf7wCo366FULfzUH9762uMr6PPgAUBV1/vyu1n0gE\nDQCg4dHp0N55q+C0UgNp+N2lUL/71j6YNW2P/8H7+70N39tvAgCk358ak4npqHz/exdNB++LpoP3\nG1R9VFnmMOvwIuIZnZc+eB/qoh8hhxKG0XWMOvFohK68bOB9c4phCIeIiIiIiIiIiJzFEA4RERF5\nj5kM4fClDBGVxhg7zrZe9+KzOfvIUAgAEN9mu/RgMoRjGJhwxcVoPuxAtExohujpLuq8osM+tVTT\nPrunt3V1Qs6ebdveeNF5/d6eNn+eVWtmxx7V6g6mfjfX2ufLz4uqjapHnfMN6t58FXF9cAEu1wiH\nEX/nPWtqNT0dUBtzxEHwL1oIkRk0KjF0pM2aifo3ZmDUvXeUq1oiIiIiIiIiIqKq4ZUrIiIi8p5E\n9wmpcjoqIipN9133D7jPyjk/AADMNdZEz8GHAQBE3JqOSoR7bfuq8+cBsRjUl18EIhGEIzryUVpb\n7evdXanlUdtvibE/36foryGTrEuHcGRjIwBA+/bbQruTw0btvC3WO/sERLoGM0mTc7JDQ7U3XYeJ\nh+2LwJOPQejpx7zImLYtRc//M1GIMndOeqXUrkHshENERERERERERA5jCIeIiIg8J3XBj9NREVGJ\n4j/dceCdAoHUYuTwI62FmNXtQ2RNGyVVDY1HHYpRxx+F0K23YPJma8P/3NM5N9lfxxxlZTqgo2+0\nSb+lRffa137++vrUsjFpEgB2wPGCiYfsC5im02UURc6bh/hnX9jG/M8/Y/3/8ouQ3fkf27E99rQW\nMqZyK0bjheeklkV7W0nHEhEREREREREROY0fHyciIiLvSXTCgcaXMkRUOrOmBkpfn22s6677YXT3\nQG68sW1crbECOSI55U6vvROO//VX4X/3bQBWdxAAaDz1BLQuabM/R2V1AzGaR+WtrfuWW9G87x55\nt/UeczzCt9yKlvFN6a9l9Jj08sTJeY8j9wl+8yV6Fy+CudrqTpfSv3gcY7efAgCpx3TNXdOg/bAA\nABB89qmCh0qfD4D1s1NiP5sUZflyGKNGD/JoIiIiIiIiIiKi6mMnHCIiIvKe5HRUCjvhENEg5OlA\nYoyfCP24E2BsubVtXPj81kIsOR2VvRNO3Z+uzHsK38cf2m/HsE/no3R1AlJCN9K19F50KfSs82cK\nXz8VUOx/wpnjJ6SWZSiUe1CJUwERZcqcfk2b+TF8776Nut/9pqhjlWXLrOO+KK0zU3z1NdPnnPtN\nSceaLWNL2p+IiIiIiIiIiKjcGMIhIiIiz0ldzOZ0VEQ0CEo0mjMmx+TvtiETIRwjcYz/kQeLOofv\nsUcg3ns3PZAIw6w44wL07bEnhGGg5u47MGGC1dXGaBmL8G+vyLkdY+Kk9EowaI1NXg0AsHRxm23q\nLPj9Ocf7X3mpqHrJAVnBLFeKpaeSaj5obzQdekDe3cInnZoz5ps9CwBQd/mlJZ3S9+OC1LKyYH5R\nx5hNiZ+jddcr6VxERERERERERETlxhAOEREReU9qOiqGcIioPMxCU974rSl1Gm77C7BoIerumlbU\n7dU+9ADGHLJfeiARwgk21kIkwjS2jiIZHW56TjgltWysvkZ6HyEAAG3vzcSKL7+H5rNPySc1X04d\ngaeeLKpeqj6RJwzmNiIaGXCf2DbbIXbQIbYxfYMNU8u2x/BApH3iKmXVqqIOM8eOg15gijciIiIi\nIiIiIqJq0gbehYiIiMhljMT0KuyEQ0RlIhub8o9nBFtG/2yngscbkyZDXbyo4HaReN5SfH4E//N8\nnhOlwweZz2zGuusB779n3zcYTAV5bPy5IRyRZ+otcgcRi6LmjtsgOjsR/s3vnC4nLxHrPyi0cu4P\nkLV1OVO8hS+8BJASDWf+EvqGGxV/wkQwyRg9BuqqlVBWthZ3nJSpkBoREREREREREZGT2AmHiIiI\nvCfRCUeqzBMT0eB13XlvekUp8KdRxhRPSnt7allfa+3UcnTfA2wBnNjOu+bejp7s4JX/ecucPDm1\nLLo60uMldBHJ1wknOxxBLhKJoO73l6P25hucrqSwSG4Ix6yrh9nYiPbX3oZsagZ8Pvu0aACih/0C\nxnrrAwCUrk7U7bcn6g/Zf8DTJTvvxDfexDr2qy+Lr5UhHCIiIiIiIiIicgGGcIiIiMhzhM5OOEQ0\ndPHtd0D7q29hxavvFNxH+vIEWwDIMS2pZX3KFrZtPddNTS2ryRBB8nlLU9H+4ms5t9d34qmpZaWr\ny6pvyhYQieWiZASG0oXK3DFyBRGLOV3CgLI74Sxb1oFV8xZj1bcLoW/2k36PlTUhAEDNvXehZuaH\nCL73DpTly/o/YSL0IxPTw/m/+iI9BWW/J+PjnIiIiIiIiIiI3IEfHyciIiLvSXZ2YAiHiIbAbGyC\nOWEi+u2fUSCEo2+2OXwffQAACJ9/MWqvvzq1zVht9dTyqN1+itYVXalp9KSqQd9qm9T2vpNORdcl\nl0MZMyZ944lAgTl6TGnPc6oKGQgApgkRjye+yCICDOSI4H13p5brLj6/qp1c9M1/gsgJJw+8Y1Yn\nHLVQx6g8ZCiUM6bNnoXY3vsVPEaEe62FjOnWmnfeFu3vzRz4hOyEQ0RERERERERELlBUCGf27NmY\nOnUqpk+fnrOtr68PJ598Mq655hqss846ME0TV111FebMmQO/34+rr74aa6xRfAt1IiIiogElPxXP\nEA4RDULPFX8E3nsXqKkZcF/py9NdBkDvry9Dzx57Qw34AVVF3/Eno2b6fdbGPLdrRhNdTxKhnsXf\nLoL8eCYCu+0CJeu5rOfaGxG6/FL0Xn8zgo/k/g1WkBBY+d/3YSoqxm27OQDA2GCj4o+nqgo++1Rq\nOfXYqRIpBCLHHFcwZJaU2Qmn+6a/9Ltvx1MvoOnQA9B9w5+tc+T5OQhdeXm/IRx10UIAgDlpUmpM\n++5biO4uyPqGwidnJxwiIiIiIiIiInKJAUM4d911F5599lnU5HkD7fPPP8cf/vAHLF++PDX26quv\nIhaL4bHHHsOnn36K66+/HtOmTStv1URERDSiCV2HVBR+6p2IBqXvvAthnnsBlGKeQ/wFpqNqagL2\n3gfJPjPxnXa2BSnMunooPd3p9ViiM41m/Qnmb2wAfrZ73ts21lkP3Y8lAhpKiWHDtdeBAqDr9n+g\n4ezTYUxerbTjyRHtz8+AbG6uyrnqfn0+/P97F4jFBg7hRCMAgM4r/ojYiaf0u298x52xcOEqBAPW\nbSano8rkm/89tI8/hL71tvnP1xe2jq2zB25ER0f/IRyArwmIiIiIiIiIiMgVBgzhrL766rj11ltx\n6aWX5myLxWK4/fbbbdtmzpyJnXfeGQAwZcoUfPHFF2Usl4iIiAhWJxyNs2oS0eAVFcBB/iABgJxO\nXPGttoFZU4O+8y8GAIjeHtt20d1l3V6JHbwiRxyF2qnXo/svt5d0HPyJDj66XtpxVHXxDTeGvu12\nVTufbLLCPiIeg0Rt/zsnOjipNcH+90tIBnCslfQxfSeeipoH7rFua9HCgiEcGOnpJruvvRH1l1vv\nNdTcchN6/3xr4ROzEw4REREREREREbnEgFev9tlnHyxatCjvtq222ipnrKenB3V1dal1VVWh6zq0\nAS6UNTeHoGnemVKipaXe6RKIiIiqxnW/94SEVFX31UVEw1A9wu8+Uf9HAAAgAElEQVS8j9BO29tG\nW8ZmdeVo2RRoa0NtIIBaIWyhgJaWeuD3vwUANIyqB0p57mqZgh+WdGCNCY0o6RlvlLV3fciH+mHw\nXDmcn+99SpW/vnorWDamITDwYzFghdXqxjShbgg11px4LJAI4TR0tBY+b50VHqtrDAHnn49oRzsC\nN16H0IMPIDT9/oK3L1UFUlWG9eOEiEYePqcREZEX8fcXERFRESGcUtXV1aG3tze1bprmgAEcAGhv\nD5e7lIppaalHa2v3wDsSERENA278vdcUjUNVFKx0WV1ENDz1rbE+Vs8aK/i82G1NO1V3wimo+ee9\nqX1bEpu7wnFES3zu6umJlvw87O+NoxFAT0cv+jz+XOnG30OD1ZJnLF5Ti44qfn31pkAQgLH1Noht\ntAl6Hnq84L6BlZ1oANAVNUt+3ALpr7djRTvEP+5D4+knI/zdfPQWuK1AWzcaAHT36Yi0dsO88DcY\nd+N1AIDWFV0Fp5xq1g3AlFg1TB4nRETD6XcfERGNHPz9RUREI0l/wVOl3Cfbcsst8dZbbwEAPv30\nU6y//vrlPgURERGNcMIwIFVOR0VE1aEq6Qv/kQMORuuMtwY8pue6mwAA8bXXAeLx1Phgnrv82iD+\nbFMTx3A6KlcxGhoRXWc9GIkpoQDkTG1WadpXX1qnXbQQNTNegrLwR/ifexq+12fk7CsiEWshWNx0\nVIXoP9kS+vY7AACU5csL72gY1v+J+0RRMx770Wj/JylyijkiIiIiIiIiIqJKKvkd4Oeeew7hcBhH\nHXVU3u177bUX3n33XRx99NGQUuLaa68dXGXRKER3N+SYMYM7noiIiIYvQ6/6RUsiGrkURcCsrYPS\n24PY3vsCP5ky8EE+H/QJEwHdgAj32sZLpamlh3BSYR/TKPlYqiDDAAJBKN1dqaG+Y0+oagnaV1/Y\n1pv23QNq6woAQNu7H8NYL/1BGhGzgi/SHxjUuVqXdwKmCagqpK5DCgGxfFnhA7JCOAAQ3Xd/BF76\nD0Q0AlkoDJQx/RsREREREREREZGTigrhTJ48GY8/brWoPuigg3K2T58+PbWsKAr+9Kc/DbmwxuOO\nhP+/b2Dl1/MhR48e8u0RERHRMGIYQBHTXRIRlYOmKuh49iX4HrgP0cOPLPo4oWmQhg7R15d5YyWf\nP7MTT/EHWecR7ITjKsIwAE1F9x+vRcMVv0HHA48gvs9+Va2hfcZ/0bzXrqn1ZAAHAHxvvWkP4XR2\nAgBkcHAhHAiRDtRoGmSoFqKnp/D+eUI4MmAFb7SvvkT8pzv2fy4iIiIiIiIiIiKHlX06qnLx//cN\nAICydInDlRAREZHbCF2HVFz7MoaIhiFjs80RmXoL4PcXfYzUNCsEEw6nxwYxHZVvMNNRJYOKDOG4\nQzyOaHfYCpmoGqKnnYHWha2I73cAUOXfZ/pPtkB0r33zbhPxmG1dXTAfAGCOn1iWc8tQCCLj50E3\nTPv5EyEcmRHC8b3/HgCg6ef7QZv5EdDbixzshENERERERERERC7h+qtXmW/QEREREQFIXMTkdFRE\n5G7q8mXQli+z/00ziC5eg+mEw+mo3GXUtlMwacPVIEwDQlOtri2BQXaXKYOu6Y8ifMY5uRticduq\niEQAAObYceU5cW0tRG+iE45pou78s+H795Pp7Xk64ZhrrJlabt7vZ6i94ZrUeuim61Bz841WBoed\ncIiIiIiIiIiIyAVcE8IRPd15x5WOtipXQkRERK5nmpyOiohcLxm+afx5eroh6S89eCEGEy5QrT/1\nhM4QjhuoixdCxOMQhmHr8uIYRUHvFVdh5W13oe3N/6HjsacA5HbCCTz/TGKh+A5Q/TIMaMuXAQCC\n9/4D9Y8/hKYzTrFtB2AL4XTdea/tJvwzXkot1950HepuuBpS2jvqEBEREREREREROcU1IZwxa09C\n6NKLIFassLWSFm0M4RANN6Zp/YwbpgmTreOJaDB0HVJxwUVMIqIiqN1d6ZVBdLUZlGRQ0WAIx3GJ\nbjJJSjjPdEpO8PshjzwKxsabAMGgNZYVwkkaTHgsH3XhjwAA3+szEPjP87k7JDo3yYygrTlpsv02\nFi1E4IF7bGP+hT9CshMOERERERERERG5gGtCOABQe//dGLPputBmzUyNqcuWOlgREVVCMngT103E\n4/zUKhENAqejIiKvqlZQIBFikLpenfNRQer8ebZ132ezHaqkMOnzAQBE5nRUmWF5f5k64SSEbr4J\n/nfeyhlPnV/zFTxWRKNouORC+N57J2sDQzhEREREREREROQ8V4Vwkpr33SO1rCyY72AlRFQJpikB\nKTH6xGNQe+stTpdDRF4Ui0GW+YIgEVG5rfz829zBKgUFkt3CzMxQBTlC6exwuoSBJX+ndnWmx6LR\n9HKZH7f+j963D0gJ/5/+AP/LL1qrdXW2zeFzL8y5jboLzylrTUREREREREREROXgyhBOJmXxIqdL\nIKIyM6UEensReu1lNN/wJ6fLcZ6UUGfNBGL52/8TUS4RjaanziAicik5blzOmDk2d6wiEp1wah+Z\nXp3zUUGis9O2Hj71Vw5VUpix1toAAHXBgtSYiPSV/TwdTz6bd7z+rNPQeNst8L/3NoDcEE7vb36H\nJfc/ZhsTfdn1sRMOERERERERERE5zzUhnOje++YdV+bPR+jGa4He3ipXRESVYpqA0Pmp7CT/c09j\n1D67o+63FztdCpE3SAklGoEMBJyuhIioJF033gJz8mrVOVliyj4lGoFYtao656S8RFYnHH2jjR2q\npDBZV2/9n9H9RkQiAIDIIYeX7Tz6T6bkHQ/+63F7PaFa+w5+P/Sf7WUb4tTVRERERERERETkRq4J\n4XRNfww9V12TM+77cQFqp16P0F9vdqAqIqoEU0qAUyOk+D76EAAQePrfDldC5BHJrlHshENEHhDN\nCA7oO+5ctfPKRCccAIBhVO28lEu2t9vWheKaP8PThIAMBCAjVghHSgkkOs3IUKhsp5GNTYgcdsTA\n+/l8OWOa6sL7jYiIiIiIiIiIKIt73sUSAn1nnYu+407Mu1nW1uYdJyLvkVICcU69lCKs1vnCNB0u\nhMgblPY2AIAMMIRDRO4XzegiYgvGVJrfn1oUkq8xKsEwTUDKgUNOWdNRKSuWV7CqwRPRKGpmzwSk\nhG7I9HRPZQ69xvbcZ+CdMh6/SZoqsOqdj9D2/id5D2GnTSIiIiIiIiIicgP3hHASem76S95x2TK2\nypUQlV9c5wUQAGi65QaM2cJ9bfiJyBuUH38EAJhrre1wJURERUhMCwUAyNPdo1KkLyPEEGc4oRJM\nE2g46Vi0TGi2VvKREo1Tr7OP6XrlixuKWAxx3YToCwMAZLCmrDdvTpg44D62x2+CEALm+hvAWHvd\nvMcIt9+vREREREREREQ0IrguhJP5JnXPlX9Kj7OFOg0DMZ2PYwAY9debnC7BXRKdcCCls3VQRcW6\neyF6up0uY1gQ0QgAdskjIo/IDGdUMYQDf/pcNfffU73zjiCmlAi8+DwAwFjwQ/6denurWFGZ6Dp0\nw4Q6fx4AwCzzB2Li2++A8Nnno+31dwvv5B/EzwrDZkRERERERERE5ALuC+Fk6DvrXHTdea+1wk+1\nkcdpn8/GuF8cBGXJYqdLcZ+RHrJLTkeV+LQxDU8te++CMWtPYtiqDBqPOhQAICIRhyshIipCRghH\nqtWbjiqzk0job3+u2nlHEtNM/04fv/1P4Hv91Zx9hJnnda5LXwvEN58CABCxKCYdsDsazjoNAGBO\nmFDeE6kqev/wfzA23QyRw47Iu0u+TjhERERERERERERe4OoQDlQVUku8UW0whEPe1nDqCaj54D2E\nbrjG6VLcJxZzugLHKEsWI/T3vzldBlVaNAr/998CAERnh8PFeF9yugll2VKHKyEiKoKWEbzR1ML7\nlVs1u+4MknRpGKVYZlb9TUcflruTh8Lm5mqrAwDEDz8g+NXnqXGpVS481n3HvVj45YLcDf7+Qzid\nDz9RmYKIiIiIiIiIiIiGyJUhHH2jjaGPT8wTn/i0qPDQm5dEeSUew4JdnXKI+MgN4TTvsaPTJVAV\niM7O1LJv5kcOVkJERNUmGxvTy03N1TtxBYMT5RLTzYF3cjGzmKlmDetrjGy3Q4WrGbpk2Cb64yL7\nBq2yga5gyyj0br+TfXCAEFlsz32w8pv56Lj+ZkT3OzAx6u1QFxERERERERERDQ+uDOG0v/Ee2md9\naa2oiU+LFvMGJ5GbJaYccmv7eUdFR24IR2lrc7oEqgKR0c2t9ne/cbCSYSb5vEpE5GKx3fdE+LAj\n0fHEM9U9scufI5WlSxCcfr9tui5PkRIt555mG4puvW3ufskPk4wbV4WihigRwpn4y2OzxivfwWnF\ng0+i95zz0wNFPH7lqNGIn3Ja6j0Ddz/iiYiIiIiIiIhopHDnxyOVjGxQ8g0/dsIhz2MIBwAQjeYM\nqT/Mh97S4kAxDhvpj4URxMyYci2+3U8drISIiKpO09B7x92OnDp84qkIPXAPzMYmR87fn8ZD9oc2\nfx46J05AbN/9nS6nZOp336L+BXuwSv3xB+vvVlUFpETD/nsiuv9B1sbMIItbXwPK/IEoWeFOOAAQ\nCAUgRw/t7wHJGA4REREREREREbmAKzvhZJJK4lNtBqfwIY9Lvifs1jfdq0RZtTJnrO6i8xyoxHnB\nB+51ugSqEvlhegoqEY04WMnwYqy/gdMlEBG5Wl+is4gbQy7a/HkAAGVlq8OVDFI8njOkrViO2Pfz\nAQCBxx9BYOZHaPi/31sbFRXS5d2Jgv9+Mu+40raq4uf2aSr8b785uIMT96vgdFREREREREREROQC\nrg/hJFtiQ2cIh7xNJjs8FfiE6YgRyQ0giJ5uBwpxXuiGa5wugapALF+OsWefmh7o7HKumGFCX3c9\nAED49LMcroSIyOV8iQ4meQIjbiH9fqdLGJyMQE332ecjfPqZAICxvzgI/pf+A5Hd/VHNnNLJW2GR\nnK+lUufp6RnUcW4PNxERERERERER0cji+hCOrK0FMPg35IhcQ3A6KgAQZp4Q0gi9T8zmZqdLoCoI\nPv6IbV39/juHKhk+zAmTrAVf5afHICLyMumzAi7CbSGcjHpkMOhgIYMn4umpJkVTE2TI+rvVt3Qx\nGk84GuqXn9v2l6pqC+64UficC/KOV+t71HfCyVU5DxERERERERERUSW5PoRjNo8CACjtbQ5XQjRE\nLn/TvWryhHC0xYscKMR5vu++dboEqgJzwgTbeva0G+YIDaENSbKjmK2rABER5fAluoq6LIQjIn3p\nFc2jgcq+dHfHwIyXYY4da9scuu9u+/6qll526e/+6H4H5Iy1n3UBogcfWp3zH/YLAICReA+gaPw7\ni4iIiIiIiIiIXEQbeBdnJT9RiMw3amlIdMOEpro+fzX8pDrhOFuG4/J1wgEgVqyAzLp4MawZRv5x\n0wQU/nwOJ6LbPt2a2tNtXQxNdHHRdRN+H8MkJUn+/PCiGxFRv2Qy4KK7K4SDcMbfdoVeE7mciKZD\nOOq87xDbY6/+D1AV1//e0rfZDotnvINJe+0EAOi8ZzriBx4MUa26NQ2t734MtdS/Vd19txIRERER\nERER0Qjj/iu9mpUTEpFI0Z8YZFeB/vVFdadLGNEM3UBczx9EGREKhXDcdnGowkR3FwAgutse9g3R\nqAPVUCVlTqdojkp0d8vohqMbI/j5YJCEaUIK4fqLmUREjvMnpqOKuet1Vu0tN6aWM6d18pLMEE73\nX26HufY6iBx6ROEDMru3ufjPVd/mm6VXQjXVC+Akrbc+jLXXre45iYiIiIiIiIiIysj9IZzEp+AC\nL/0HDaccDwDwPfUkRGtr3t21D96H/M1voX70IQBe3MwWfOBejD35mIJBCKocEbMuMNS+8AwaLjrH\n4WqGRlm+DMasWYM7OOPTziuu+L/0+Ai7mO57520AgP/DD2zjIsYQznATfPRBAEDHMy9CabOmVhz9\nkw1Rc+ftAAD5ww9AOOxYfZ5kmpyKioioGD57Jxzt00+gzp3jYEGWmnvvSq/EvBnCQST9ms2YvDoA\noGfqX2CMT09D2bqiCzIQAJDRlcjlMkM3Zn2jg5WUINVx1MXpJiIiIiIiIiIiGjHcH8LR0jNmBV54\nFr7XX0XTr05B0+EH5t29+aC9Mf7+aRh1wJ4AAH3OXKC3tyqlekH9JReg7o0ZUJYtdbqUITOl9FbX\no0j607J1iYvyXjV6s/Uxfp9drSl1SiRkOgCm7L1PeoNHpyIYLNFnhS4iRxwFY/U10xsiDOEMN9q3\ncwEAZmMTogf+PDVed+VlMFa1Yc2dt0Tz/ns6VZ7jBvU8bhqcto2IqBhCQKoqRDwO9PWh8aB9MWqn\nbVwVVhC6N7t0iszpkhMdh2R9A3pu/qt9v0SXQ3PsuKrVNlQdT72A3lNPh771Nk6XQkRERERERERE\n5Dmuv4IlFfsn3dUliwEA2jdfD9jNRZv5EVbbbVvUXXVFzjbf6zPgf+LR8hXqNV7vOmIYqDvqcPhu\nusHpSopme6N+mBjU15T4uW0//lTIDTdMj3v0AkyxsrtyiUQ4ML7Djmh/YUZqPPDqy1Wti6rH2Ghj\nRPe3B0jHb7QmAED76gsHKnJeze1/Q/3xR5d+oGnmvD4gIqL8hGHA99EH8L/7FpTEFErKwh8drSmW\nOd2QRzvhmL3pLnYy44MjsV12z7//+PGe+RssvuPOCF831TuBV4/cr0RERERERERENDK4/121jDc0\nAdjeYFOWL0st117zR7SMbbAf+sXnAICaB+5JjfVFdWifz0bT0Yej8ezTrTd9R+DUTNLjX3PNtNtQ\n++arGDX1WohVq5wupyhKV5fTJZSFrWtFX6TwjgVvwHrsqXW1AIDY7j8DAAhjeIdwzLlzbUEjkXg8\nyIYGyHHpT0bXX2ifqsxT3Z4oLzNUi/DGmwFCIHr4kei++W9Ol+QadX+8AqFXXkTNXdNyN0oJo0CH\nLN+sT6AMw2AjEVElhf7659SyOn+eIzXU/v5y1F5wNpRVK1NjIu7NEI5sbwcAdB1yJMw110pvCATQ\nfdmV6Jhq/31vZOwj+PquzBjCISIiIiIiIiIi9/BcCEedOye9KdE5QFm8CKG/3pxzqO+5Z2zroqcb\nY/bbHc0/2zk1Fnjm3xi97mTUXXC2Z8Ic5RCPezvwoH3zVXp59iwHKxka5ccfoHzxmdNllMQ00xcN\nklMqlSRxUV2oVhcLY401rXF9+E5HFXjkQUzaddt0wCYeRzAxJZnZ0GT9X1efc5zo7ICx2PtTx41k\nUkqIaAQIBq0BIRA5/iT0HXeis4W5TOjG63LGGo4+DI2HHJC78zDvmkVEVCmiuzu93NNT9fPrPb0I\n3XEbQg9Ph9bZAbPJeg0Ej/5dItraAACRk3+Zsy1y4SWIn3ASAKDtjfew7PfXQd96W3ZsISIiIiIi\nIiIiGgG0gXdxWFYL7NC0W1PLgWeegvnSywjG8n8aPvjWG7b1uovPQ/CL2baxhrNPBwDUPDwd6pxv\n0P7Cq1CU4f/mqPjsM2DNNZ0uY9AyW+g3HX0YWle4v8uMMXoM1IxP/cIwMHrrzQDAE/UnGbYQzmCm\no7KOF6r1s51q3x+PD7k2t2o4/ywAQPCxh9F96x2omXYbtO++BQDIxkYAgNnSAqUnfXEsFjcwbv89\noc6fh5ULWwGVU+94UeAf0yAMA2ooZBs3J0x0qCJ3Ujo7csYCb7wGAMi8TKx+8TlG7bFjlaoiIhpe\nMqc+DP77CWhzv6neyaVE7fVX24b0jTaB/3/verYTjtJuhXC0cWPQX5Tc2GRT9K29AeoyAzjshFNe\nDDcREREREREREZGLuD+E04/gow8hWML+srau3+3+mR8h9OsLELlhKuDzDa04lxv/y+PQuqQtd7ov\nj1A6O4d0vCkllCq/WSt6emCGQjBCtfCtbLV3c5DSM28eD7UTjpDWdFTJTjjQrJ+14T4dVSbfxx+m\nlmVDYhq9YE1qTFm+DEZHD7Rv5wKw7meZp1MOuV/jlb+1FkI1tnF9iy0dqMajwmGYNTVQhLAFcOIb\nbOhgUURE3hZ47mkEnnva0RrMsYnpOKNRR+sYrLrnnwIAmE3NA+4b8Fnhc7NlLNQliyFrayta24jj\nkb+jiIiIiIiIiIhoZPBmAmMA8e1+Ct8H/8vdoA785dY/eB/kT3+K6C+OrkBl7qIsWwpz8mpOlzEo\n+uY/SX2aN7b9Dtab94FA0cfLN/8LsdmmkGPGVKpEu3gcSjSC8E93hhkMwvfGDHvnl1ispPqdZBhm\nanlQnXAS01Glulwlg2AOTTEjpYSo9hv3evp7b9ZbIRyZEfwbvdn6GJ25f18EYAjH2wL2yGhsz33Q\ncf/DaDrp/6UHPRTGK4tY4c4HZsb0kLVTr0frpVfC77N3gzLXWKtipRERDWcdV/4fsNlmVTtf8LGH\nEfzX4znj5uprAABE19DC9Y4Ih6GErTC6bGwacHefZv0O63z8aai3/Q2x086saHlERERERERERETk\nnGEVwlk5ZwGUb76G2tGBxuwQTiQCJXMqoH6Ifi4MDiciXHoXE9cw0k3f/e+/h/rzzkD3nfcVdaj6\n1ZdoOepgAEDnI09WpLxsoisx3dSoZihxK2wiMoIYIhqB9EgIp/Hm61LLg+mEAzMR4lGypqPS+2vk\nXxmmlIjrJgK+yk31lO/CkohlBLDqEh26tMI1iEgfOGmBt8R1Ez4tPZ2iDOb2bYvvf6B9IBoFEvs5\n0a2r2pS2VXnHA48/goZzfpUeaFuF4EsvwJTW/SgiEQDw7PQlREROi590MpAIAVeDb+ZHeceNtdYG\nAMi2tqrVUi7qsiUZK8W/jjTW3wDt192Chlp/BaoawYb5ayYiIiIiIiIiIvKWYRXCkc2jYPx0Ryj/\nezdnmzbnayjffZtaN0ePhpL4pH3HE88g+I+/IzjjZet2PBKGGKq+9k549u3frKmLgk/9q/gQzvff\npZYbjzmirGUNaLXV4Xv/PQBA8K470uN9EaChsbq1DNKoW29Or4QH0QknGcJJXrBI/O/EdFTG8hWo\n+9ufYW63PYyfH1qRc4iVWeG/eBxi0cKc/WK77QHfJzPz38ZgOg6RY9TPP4Py6gyYF1yUGpPBmn6O\nsIhoJBXWicYM1ASG1a/oHNrns3PGRFcnfC++YBsLPTwdoYenAwD6Tj0dNff8w9rgQHCPiGhYqGIA\nB4C9+2MGY02ro1ntv59AeNrd3gpSJEL10bXWLf1YD32ZnuGlxw4REREREREREQ17nrjC13fwoah5\n9qnUenTvfRF45SXbPp0PP5FaNse05NyGFAKiswPxCZMQvvZGxHfeBaM32wCiL4z4Trsg+OhD6Z0d\nmhan2mR3j9MlDN4QLr6G/v43AEB8yhaIHnhIuSoaUBQK5FFHY8wdtwEA6m7K6CjjlU4nWV2ihtIJ\nRyano0q8ae5/9inEd9hpSOWVauLm61kLd09Da6VCONGobV395mv45llBsLY33kuNhy/+LWpu/SuU\nPN091O+/g7H+BhWpj8pv1M+sx3HHNtukxmRw4HCn6OmBbGxCX1SH8c0cmGYcyhZTKlan0xqPPdI+\nEIthzLr9T5GozPs+vaLnv6hLRETuoi78Me945t9s/hkvIbb3ftUqaegSfy/Gdt295EMZF6kgT/xB\nRUREREREREREw50nQjjtd9wH2dGJ0FuvAwB6/3hNKoTTfd1UyHfeQWz3PVP7G+uuh7ZfX45RU69N\njZmRKJTOTsTXXgexAw4CAKz8biHikRh8WS3Esy+aD1fKgvlOlzBoIvHGd9ffpqHhvDNLOjbZEr/n\n5r9B3+wnZa+tkGjcKDjtkVcec8EnH7OtD6ZDS6rjjWLdF75PPgYAhO69C73X31zosLJTflhgH5Cy\nIp+iFdGIbd2X0f3D2GTTjA0+9O25D2pffC73NsK9BW8/rhvwZUxlJaWE4KeBXUF+nw6MKO3tA+6v\nzfoEsUmTgffexVpHWb+nWld0Vay+atJmz0LzXrui8+4HEDv4UOjx3LBr04F75YzFtt8R/vfT3e0C\nb7yWWhYjJDBLRDRUKz/5EqN23hZKby+MlrFVP78M1drWOx9+AtoLz9sCxr4PP/BUCCc5rawSKL2v\nKF+nVUDyPuVdS0RERERERERELqA4XUAxFAUQGd0hZG0d2l58Has++gyRU09H9L5/pqe2AQAhEL7g\nEqx66Y3UUPCRB6GEe4GmpvR+Ph989dabwj1XXYO+9Ta0bt8jgYjBSHUfATDx8guhzco//Y3rJYIc\nyUAVgKK/FmPSZACoagAHAHyadd933v1AzjYR8cZ0Q6Kr077eF4ZumEUfH9cNiB6rA5Osq7MGM7rr\nKAvmQ1myuCr/tNmz7MWFB9HVpxiRrE44X35ecFcRKjBlUSy3Ow4AiPY2KA89mJ7iC/wAsJuE/nlv\najk7wJaXtL6Pqx+Vfl4rNIWH1wQfsO6L+t9cDITDWPLWxzn7+D61/0xGdtkd8R12LHyj7IRDRFQU\nOXk1LPjfF1j05H/Q9sW3Ax9QZpGjjkkt9/38MMT23AfhW261/shLKvBax7USQVChlf6ZFmZwKoB3\nKhERERERERERuYgnOuEoQqDmf++k1qXmg7nV1v0eo2kC5pZboevEU9HwwD2oeygRfGhsyru/HDcO\nnZf9ATWnHAMj7I1AxKBomu1Nbt/HH0LfYisHCxqkxBvfUk0/hMUAnSZMU0JRBGRDI4zu7oqWl4+S\neHM4dvChiO10D/zvvJXeGPFG8EsGgvb1SAS9fXE01g081Q4AdPTEUNNhBXlkfb01mBGgG71tdYNR\nmURvL2Rt7cA7lnq7Mfv3NnTXHQCs4F/OvjX5QzgiEsk7XnfFbxF84lH0dKxE3/kXQ0oJWaGOPmSn\nL18BbVz+bgLS54OIxxHI6Hqkr73OgLcpwmH4X3nRPtbZCTlmzNCKdQHZ0AgAUFatRMua45E7aWSu\n7iefQe0ffldwe/TwIwtuIyIiO625EYFdqjvtZ5K+9bap5T4AZD0AACAASURBVJ5/3Jd/p0BxryVd\nI9HRTfp8JR+q8HVa5fC+JSIiIiIiIiIiF/BECCe7ZbccPXrAY9TEJyvVrO4W6rzvCh4TrA8BAOr+\neS86Lrio1DLdT0qIrE+ZZreH94rUNCSZnz71998O3jBNKIoKRPogg8F+9620VBeYBK90wsm+QFLz\n6ENoCscgL798wEN9b72J9c74JbT2VQAAWd9gbTDtnXQiVbywHvzX46ll0dsDifJP0ZCcjkoqCkRm\nx5o8F5sKPS6zp7RK0j79BADg+2w2+gAYJvvgVEPNP/6Ouit+i877HrJ140rx+XI62MR322PA29U+\n+xTq0qX2QcMYSqmuIRsaStq/44lnrOMKBOOWvvI2tCnOhfaIiLxGU51tgKqvux60777NCUn0Xvhr\n1N4yFcZqqztU2eCkpldV80812++xzImUneSdSkRERERERERELuKJEE6OEt5kk6PtHQS0r78qvG+i\ny4dv0Y9Q5s+Dudbag6vPrfK1eTeLn0rITURvr7Wgqui95DLU3nRdwaBCkm5I+FQJ0dUFs7au330r\nTf3xR9v6QLW7hcwKOmnzvseYv1yP1iJCOE1HHGy/rWQnnGSgCkB0r33QPe3uoRdaJHsIp7cyJ4la\nP3ci+2ctX+AmmL8TjtlX4PEhrdCNFAKmlOjtiyMULP0T2TQw3TBTFzCD9/wDABB45l95QzjS54dA\nOgBqBoJ5Ox9lC911B8K//JVtTJiGZ6YYM0wzFYDNUWgcgL7BhtDmfJNa77j7n4jvujsAIHLcidBm\nfgR1wXxo8+el9hGbb1aeoomIRojktKhOaX/rA5ixWM5cyPpmUwBY3RW9RFm00FoYRCec7A+YUBnx\nviUiIiIiIiIiIhdw9t3YQYgecPDAO2XovdQeDoge+PPCOwfSAQNhDo/uA5lE3AoDyIwpbzzTgSWD\n7/VX4fv4Q2tFVdNhjmiekFFC4F+PY9Lm60JZsRzqqpUw1hl4aphK6rnqavtAJAJl2VLUnnwclHnf\nO1NUlSW/b+bk1RyroW/PfVLLmSEc0d6G2ssugbJk8dBPUuCiUt4OHwVCcaKtLf9tJ0I4UATEZ7Nh\nfDPHmo6Kykp0d0E883S6K03yPi50ocdnz7f2/Wzv/KGrfOfKfgx4qBOOrvfz2OsL5x1eMfcHxLfb\nIbVuNjYifvAh6fWJk9D12FNof/tD23EFwz5EROROmgYlFModr7F+PzZc8ZsqFzQ0DeeeAQCQWumf\naeF0VBXA+5SIiIiIiIiIiFzEc1exIr84uqT9lbpaRDbcOLUe3We/gvsmO+EAAGLxgvt5ViKkYtan\npwWp+5233vAGgOBjD9kHkm3g++nq03DmL6G2t6F5p22tgfrSpkYpt/hue2Dll9+j9ze/AwBo33yN\n0ZtvgNALz6Lh7NMdra1f8QI/F4MICujrrg8A6Ln6+vTNZ1yMr4bO6Y+iO/E9qP31+alwRWjq9Qjd\ncyfqy/C9iHT1AEDqe50k/bnTUcX23T/vbdTfeVv+G88Ig4zdaxdssP9OYAan/OovOAfjzzgJwUce\ntAYy7nczzx1uZj2/KCWEHXM6MnkphFPoOXjJEmiff2YbMiavhtZ//BOiqRnSn+4iED3sF/lvI6ML\nV+ynOw65ViIicod8r4fcTvvog/TKIKa4ZV6kAninEhERERERERGRi3gmhGOMGw8AMCdMKPlYNZz+\nBH58h50K75jRCUfpaC/5PG4nYlEAgLna6g5XMjSyrt6+nuyIUET3IqWzwzomXxeSKpMtLTBWXwMA\nEHw0HSwSiRrdSBQK4RQa70+iI5NsHoXWZR1ov+9B9J12xhCqK52qqlASHaL8c76G/8UXIKWE0mF9\nD9SFP/Z3eFF8M14GABhrr4O2J59NjesbbZyzb3z7EkNIee53Kb05xZyb+f73DgBAm/0pgIwGRKtW\nYdy4Rvgfnm7b3xw7zrZe8/qMos8l5s4BAPTsua814KEQTixuPfaklDASgRxlwXy0TNkQgVdfse0r\nQyHInyc606npLgL6hrk/F0ntjz+F1rMvQtddD5S5ciIicorocO/r3kJC0zLC0Xrpv6cVhYGRimEY\nh4iIiIiIiIiIXMAzIZyOV97E8mn3Qd9iq5KPjR13gnUb9z/cfwAlrqcWa6++quTzuF08bE2LY6y7\nHlZd4L0OOEkylBWgUaxOODnTuPQnY0ouJ8lExwzbBYhSvo5qi+ef8kvopYVwIjvtah9QFOgHHOzI\n9yW2/0GpZdHbA+Wxx9JTC8QKT3EGAAiHUX/IAdAef6TgLloiyCP9ARi77IbW5Z1YNfsbmGutXVqh\neTquJG9b7+hOfw3t3ruY5XYyaD0uk9P3+X5cAADw//cNAEDjBWfbD4hGbavxzacUfa7ArJnWuRob\nrf/d/HyQQVm2FJP33xW+t/8Lw5Spqal8H76fd39t7hyIxIUy0ZfuFCSi+advAwB9t58Bf7gKcuzY\nMlZORERO0rfZNr0ymFC3A6Smppb1jTcp+XhOR1UBvE+JiIiIiIiIiMhFPBPCMSdMhH7wIYM6Nnze\nRVg18wvE9z+w3/2MddZNLce33Brq7FlQ5n0/qHO6UV/iQr30B6BP2cLhagZP1tXZB5KdcEroGGEm\nLnA7zRw1GgCgdHelxoSLO1+IQtO0lXjRRIF75kwyW9IX9Ot+fxnGnHc6ahLTDqnLlkJ0deY5yApG\n+F99GcH33kbzOb/Ke9u+12egYe6XAID41omLTELAnDCx5DqVFctt65l11b2R7jLSdPWVJd829U8G\nElNlRCNFPdbVHxaklleceSG6Hnq85HMqyec5Fz8fZKq5+06E5nyFpsMPQuOZp6Jv3g8A+umelUH0\npENkxhprVaxGIiJyH3P8BHTvZU3HKbq6BtjbJTI6uMV328PBQiiFIRwiIiIiIiIiInIRz4RwAMCn\nDbJcRSluCiafD+3THwNgvSE8aq9dMXp774ZVMmmzZmKt/XYGAMiAH5qH26Anu8ekqIlPo2Z0jDDz\ndA3JZGywUbnLGpR802KpPyxA8JabrO39dMEwTYmevip/YjjRCafzxluyxvU8O2fI/n74fGUsamjM\n0WNSy8qqVTnbm362M3zHHQPt4w8BAKGp12PUxutArFo1YGCq6ejDU8s54bEC2v90Q/4NWd1VtC+/\nyLtb3eMPp5YH+jmgIqU64UQAvcBjPeOxkNkZqvdXZ8NMTKdYErX0cKGTfG++nloOPf0vrLfLFMAw\nUH/hOXn3j/zi6NSyCPemlmP77l+5IomIyJVkIhyvdLZDeuG1i6oOvA85g2EcIiIiIiIiIiJyAW3g\nXdxDVOFNNeGz7pKau6ZV/FzVFHj26fSKzw9z190cq2WopN8KcHReN9UayNMJJx43EfAXfoM8tve+\nFauvJAXCKPXX/R+0H3+A/6X/oO2r7/O+oWx+8zXihgJstmGlq0xJdrUQWeEhocf7722T1Q1Dz+g6\n5Ti/v9/N2g8L0PTDApizPoJY2QqRuDjUePhB0LfYMr1jJAIEg4VvKE/gKp/4KaeiVVXhW7wQaF0J\nXyiI2gfusU3ZAwCidcWAt2WaEorKixFDJRPfV9HXV3C6OGXpEhihEMSo0YBuPRd1HXMClOamwZ0z\neYHPKyGczz7NGRNtbTljC79aAN/SJVDXSz8HiJ4eAEB82+158YyIaCSqr7f+7w2jN6KjrsY9YW3y\nCpH1PxERERERERERkXM8FcKpBiVx0VBdstjhSspLX3+D1LIMBICaGuhrrQ309vZzlDslu4/I8ROs\n/xMhHO3rr5DsFRLTjXQIJyu8AACytriuJJUm++kIU/PQP62F3l4gTxeVCbttjwkAOp54BvFdd69I\nfdrjjwEBPwxVg9LQkOqEI0NZgZIBppwR3dZ0M2ZtHboOPgzGeRdVpN7B6jv0CNQ89WS/+4j2tlQA\nBwB8X30B31fpbjSiszMV1si2/J+PF912TPj96DvhFEQEEI2bmHjDVQAA9dGHYfz+j6mQgtLaOuBt\nGaaExg9rD1ny8S66uyBk/hDO6C03AQC0Lu+EMA1Et9gaPTf/FepgP9CvWN84YXojhJPPmE3Wsa3L\nQADBMaOAMaNs48nnh2K7RRER0fCi1Vm/Z43eXsilS4C1Vnd1KLO/1+/kEBc/XoiIiIiIiIiIaOTx\n1HRUVVFoqhGPExlfV/Dpf1kLgUCqs4mnJLpMCM3KkPk++RgAEJp2q7VdSvjeeRtIdFfInBomxS1v\n1BbxJr7S25N72BuvpZbrL7mgrCUlaZ99iuZzTkPzaSdizCnHYtQRB0HErPtShkK2ffPexxlCd9wG\nwPpaOm64BWYiQOUWvdfdNOA+YoDnBqWrs/DGvfYqqR6fpkBVFGiqgLnaagCAxtv/gtFrjIdITJnl\nHyA0BADRmHcDHG5iTpwIAFCWLRuwM40yfx6g6xCqAp+mQhtEJ6Lw4Uemp7rwSCec2PY7FNwWPuQI\n9B1zHDpemJF3e/TAg63/Dz60IrUREZG7yRpr2sfm44/G2ttvVlRHUken3NSs1+9dd9zjXA2Ul3TL\n33hERERERERERDSiMYSTRZ+y5cA7eVFG2EZdMB8AIH1+iFi00BHuZSTCEIkWH9nT9Phf+g9WO+5Q\nNJx7hjVQYPoYVygihCPyhHCajkpfrFaWLilrSUnNe+6SOxiNAABkjT2Eg/gAAZXFi1LLAZ/7WrPI\nUaOHfBvKysKdaRS1tK9ZUxWoqoCmKjDHjkvfTqQP/hkvAVIi8OH7AIC26/9sOza68Wap5Y6eKHTD\nxY9/j5CJwJ/U9QGfTwIvvgBhGKljVKW0X7ORjTZF77S7PRfCkY2NBbfFDzwIPX/9O/TNp+Td3nfu\nhWh75yNEjjmuUuUREZGLyYDVSVDrbAcABB+aDqD/MHFcd+71jegLWzVsva1jNVAWhm+IiIiIiIiI\niMhFGMLJYmy4kdMlVIQw0iGJzrsfsBb8Pk92wklNR6UmLoxnBlmkhDZrJgDA/9IL1ljWRfP4Bu75\nHkutiBBOT24Ix7Y9WuYglZTQPvs07yZ1SSLwU5sdwin8OBKffoLgk4+l1jXVnU87HXfcg6W33GEb\ni48bj9jk1WAGa2zj+bp+NP18P8A0yxZ6UYSAporcrkOmieA/70vXst8BWHnzbVh21sUwGxvTXYnC\nYUz48zUYvct2UOfOKUtNI5WybCkAQFux3Bb6m7dgJbpuu9O2b+r7VWLwKnzOBeg472KsePpF63ZS\nIRxvhKhEX6TgtgHDrYoCY/0NeAGNiGikyp7qMfH7oLsvMQ2qlMDy5VBfedna/N57UD76sKol2kQS\nofSs14fkPL6SICIiIiIiIiIiN9CcLoCqJNGpZPlxv4SSmPJD+gMQsRggpbcufianBUpepM4I4dTc\neXs6lBIIWP9nXcQOX3lVhQssgd8ewjGDNVAi9s4+A4Vwyi3w7FNoOO2kvNuS3V6yO+EUmo5K/eJz\njNp7t3KWVzHxw34BRUrgwjNSY62zvoFhmpi8VrobzarP58IcNx7NO24N7du5tttQFsyH+O/bEAce\nADna6q4T3WGnQdekKgpkqNY+2NeH+st+nV4fNw7GscfDNE3Ipx9NhUTqLzwbwaesqefqLzoXHc+/\nMug6RjqlvS21rH39JQCg98BD4PepiGd9f1MdkbTifr1GDzgYgReeRWy3PRDdeVeoyU/2JzroCNMD\nnXAMA6JtZcHN5uprVLEYIiLympwpP6UEenqw5v57wNhqa9Q9+iAAYBSAtmn3YtSZpwAAWld0VblS\niwhbnXAQYgjHNRJ/ynI6KiIiIiIiIiIicgN3tqSg8ku8uR3ddY/0mM9v/e+1bjiJeqXfCtlkdsKp\n+/3lkJD2/bM64Zjjxle2vhJkh1nM0bnTIome7mqVAwDwvfFawW3JaaWkz2fvQFRgOqpRe+xoW++9\n6JKhF1hBStYb9z5NQdCv2TpGJR8/+lbb5Bxff9mvMf4356H+/DPTP1dFhjEKkbX2EE5mJxZ9nXWh\nKgoURcCnqVYwLfF497/1Zmo/dd53Q6phxMt8fCeXVQUBnwpz0mR0/e4qdJx5HgCg9qbrEtuL64TT\nNe1uLH3hdcR32Q2KEPBpiv14D0xHVX/emfB98bltrPvaG7Hy7unoePxph6oiIiLPyDM9rv9/76Dm\n229SAZykZAAHAOTzzycWJIwq/r6Uiddi7ITjInLgXYiIiIiIiIiIiKqFIZw84ltu5XQJZSdjVjv3\nQG0wPZbowiLyvPHtZiLxtaS6yGQFJ0J3WVMKJT+lmt1JwlVvmGsaOh54BACw6v1ZkGNacveJ2Kd5\nqbnyssrVIyVqHp5ecLO6aKG14Pdj8fdLYTQ0AsjfCUdZ+GPOmLHRJuWp0wXyfdLWnwgwBV59Jd2x\nyTfwlGP9nicrqCV7exDdc28AQGd2wEEoEIkpHURvb3o8+xPmVJLMT+iLqPXzKJIhGSEQPf8iGL88\n3X5QseGrYBDKVunfOSL5uPJQCCf4xKO29VUPPYnIL8+AedDBiO+2R4GjiIiILLK+0T4gBBqPPXLA\n40afa/3ubTz8IDTvuG0lSsslJYLvvmUtDzFoTRXATjhEREREREREROQCDOHk0fGv523rUnr/o3Xq\nxx8BAPz1denB5BvHHrjIaxO3Qjgy2cknq/7MC+bq3Dk526XfX9n6ShTf7wB8+tVSmGuvA7MlN4Qj\nMkI4orsLdXfebttu1tZlHzK4OnQTNXffUdS+0udHIOhH+FdnJw7ODeGM3mrTvMd5Wfd1N6WWY3vt\nCwDoueIq9B13Ys6+gQcfsBaGGMLJvpgge8NAdzekEDAnTc7aF+nOTxnPW/qULYdWwwikZ05jlxEy\nU1YsBwAI2L8vZstY+w0oxXXCAQBFyb1gJJMhHC9MR5VFaWgAkBEoIiIi6kffaWeg46LfpgekWXjn\nDGpvDyAl/O+8hcC8byE6O3J3WrqkTFVatNdmlPX2iIiIiIiIiIiIaPhhCCef2lrIQCC12rDnLlCS\nHUC8SMr/3959B7ZVXn0c/11Jlix5xXacvRghBMoKM+yyoewAAcpMCoWwR14SRkspI5TQEvYuLZQs\n9p4BSiGMsAlJGNmDxHFsx1Pzvn/I1rDkIcuSLPv7+cf3PveR7pEt+bF0j8+Ra95bkqRA//7hcWtT\nEo4vuy7yGu7mSjhNCR2uvFbnWn/+KaYdVUfbxKRTcwsas7RvzDHHk0+EtgsuPC/muOfQw7okBrfX\nL/vLL0aNVb4xL/7knOBzx2iuRuTvYKUVe5IJKRlmFpeEtj1HH6tNn3yphkuuUO2td8TMLbyh6WJS\nkolHgUGDJEn+IUOD9/vgPXJ8Ol+GaUqW6F/hpsUSSr4xCwpC4/b3W/k5olW+zTWSaSrQ6Jbtpx9D\n43l//bMkyfncnOgb5Oaq4cxzw/vJ/p5pSuIxsi1JUsr61zkAIM3sdnmnXBvatS36ocM3df0pfDvH\ni89HHcv99z9VttO2crz4XPIxNik+/aQuuy90oR7wTzMAAAAAAADoOUjCaUXFgu9D27nffaPSMdvL\n+vH/MhhR5xkbNoS2A8NHhLbNLGp3EiVUCSd4obf+4staneq6a7q0sTx6sBsm4diaKmGYdkfMMcen\n88Pbb70ec9xojG0nFggk9kG0/aXn1ee2v8i3W3Qpf9/OY7Tpv59qxYP/jhoPtfRqSuRqmShgVG4K\nbfsjEleyvRJOy6o0/i23Do7l5srXsipN85xhw5M6pZlfoA1L16jquVfan2yxhJLO/IOHJnXeXq22\nVkNHDVXxgWPVf1h0dSqjRXu4SGafPuHtZH/PhH4/d6waQCYFCgvl6RuuBJT1r3MAQLdT86ebtOmD\nT1R9/MlR43kRFSID/fpHHXM2HbO/8GyXxJD7+CPhcxUVtTETGUMVPgAAAAAAAHQDJOG0wuzfX75t\nRkWNlRx/VIaiSU6gslKSVPf7s6M/mLQGf/xGFrQ7iWwNY3iaKuE0VSsy+xRr2YoK1UyfEXO7nK+/\nVOnhvw3tbz5zggKDBqc22E6wNv0sIn8+/gED27xN46GHB2/ijk0K8Pj8CiTwH6FFfzhbxQ/eLbOp\njYwkbb7ocslikX/b0XIddUT0DZqrENmaEgVaVFMquGxSaLtywbfhA47YJKPuZvOM++XdehttejdO\n0l0bH+z79tkv7riZ13qlpo4y8gtinreevfaOM9EIV8JxOqMOBTyxLcMQn3X9OkmJ/Se+JLmPOyG0\nXX/F5CSDaPqdkAVJkkZjowJDhspz0CGSpMCwYRmOCACQjar/PavVY8Y118g/ejs1PvRo63fgCSem\ne30BGdXVkqTcV1+OmlbX2MG/ierq5K8Kt7gqmHJVOJ66uo7dB9KDSjgAAAAAAADoRkjCaYslu789\nzdVQnPf8Q5JkRCRYSIpoR9XBVkIZVNfoUyBgBpNxvMEPziOrLeTarWo88eRgO542bJ52Z7f8D0m7\nLTYJp2USRaTyVeWqeXJ2cMcdWwnH+P57aUN5zHi76uslSb88NkfuP98UHs/NVcDlkiQFHLmhOE1b\n/OeQ9ZefQ9tmQfh511y9qDtzn3aGqj5eIP8OO4bGPPsdIEnyjRrd6u3Mpu9PzLgjt2sCs0dXFwn0\nHxA7x2IJtqmSZAQCUdVYch99sGviyCamKc2bF/qd0fHbde50vh13VuPe+6n8uPHyb/+bzt1JcwjN\nP7vuniQZCMjweGQJ+FX99DPa+MtqmYVUBwAAJM5z+JFx/5b3DxuufFfw7yBLG3/HF/3hbBmVm+SY\nM1POyy6SdcP6mDnW77+Tc9ot8ja3t41g+/xTGR+8L19Do4xFP6hsi4EasM2wuAmxtbf8LZGHhpRr\n+uOtG77PAwAAAAAAQO+T3VkmqWbE+fa00Yqku6mp90herwrmzpQUW6JdWdSOyuP1a1NVvbR4kXJf\nej44aA8ndNisFik/X9UvvNbm/eTYuudT3umwxQ62SLpobjPkGbtPsKKMxSLTbo99TjY2asgR+6vf\nmNYTRlpj1NVKkgrL+sQc85eUSpLMyGo2luBzyPAHk3Dy/vpnFR5/lLz7HyhJ2nztjW0/pixR/dQc\nrXn7I/lHb9fqnFb/I9rRdY+5duoNoe3GsyfECcIIPU8UCEgWi9y/O1aSVHTjdV0WR7bIffxhlZ16\nvPJu+Uurc5wP3y/XZReFv29S9HaCNj//ijbPuK/9ie1pWn9atnrrbuzvvRP8+u3Xwd9JBYXt3AIA\ngFYYhoyINXjTY0+p8tW3Vfn2Bx2+i5K9dlHhxX9U8dz/RN/1pgpJUvERv1X/+/+uQUP7yrJqZdSc\n4t8dqr4nH6uBw/up7wF7hcYta1bLqKiImtt47h86HBPSiCQcAAAAAAAAdAPdMyOhm4isItEs7/Zb\nMhBJ4nLeeE39Tj1O1lUrQmPuo4+NmmNmQRKOaZoyAwHlz3lao7cdqIG/HRs+lhOb3BCqzNKKtv57\ntluIDC/y5+L3h6t5RCSymA5HTBKO4fU0fU28/VBzIok1P04LpZKS4NfI10XT99v2zFyptlaue/4h\nx8f/k/OxhyVJ3kMOjboL0xm/Wky353TKtmPblU1s334dd9zYuLHLwmi4YrJ+/nShNn72jbz77h87\nwWIJJ5CYAZmGJesreiXD/t67wa/vz2t1Tv71U5Q380kVTDxTxuZqFRyyvxzPzI6Zt/GTL6P2q+a+\nGPf+DMNQoasLEq+y4PezJFmX/pLpEAAAPZT/mGPl231PmcUlUeOBvPxWb2NpasPbku3r4Doeamsr\nyf5mOHnf0sZ6ZtlYroLJl3coZgAAAAAAAABoO2Oht8uJ/fbYvvoiA4Ekrs9Zp0qS6p/8lyQpUFKq\nwPAR0ZOa2lEZSVR9SDXnXdPlevwRWdf/GnswXlWVLGh31KaIJKGoJBqPR4avqQ1XRCUa05EbWwkn\niYv2Rm2wEo6csS2Umi+AWCs3hQebknBcb70myxUXx96fK9hSq+H0M5U78yn5Wz4Hs0h7CVyB0r7x\nbxfvuZuEwhFDZLYWi2EJtmCSQpVwav90kxwvv9ClMWSN5pZ7HWjplPvqyzL79Vfut19LLRKqAiWl\nMrfcOmrMe8BvuyzMuLIkCcfvC8ZX+6e/ZjgSAEBvUXv7nSq8+I8J3cb+3w9kFkVXeox8D2Q0tWSN\nJ+/Wv8qyIfz3XFRVSHQPZid7iQIAAAAAAAAp0HtLJHRAoG9ZzJhZmF2tNpr/67NuyvWxB61NP36f\nL40RJabgtr/GT8CRQgkgkUxrlueVRSRX+LYZFR7/5hsVHPe74HZEBaBASamsG9ZHf/Ds6/xFe0t1\nlaT4FWvcRx0TMxZZLSr3xedijgeKiiVJtXfdpx8Wrc3+JKk21Nz3cMyYLy9fdTdP69LzGG0lAxmG\nDLO5HZUpWS0KDB8h75jdZObk9LoLFGZzol4Hq0I5//lozJh3z7GqWLS0K8PqmObXVjdOkrQs/UVF\nf75WkuTbdbcMRwMA6C3cJ5/a4bk1dwVbRLruv1vFRx4cdcz27TehbcPdesth+3/fk3XF8tB+5byP\nOnx+pFl3r3oKAAAAAACAXoEknDYE+g+IGfPtPCYDkXSedfkySVJg0KDYY0uDF5adjz6U1phSKiLJ\nY9Ot06MqhlTN6f7VQPxDhoW2AwMGyr3fAZKksmMPk+P74IUCMy/cKiowZKistTVSUxspSTL8nU+q\nsn/wXvAcTmfMscCAgbE3aKP9l7+gUGZpaWi/IK9n/9dwYPAQff3lUm1YV6mG08+UJK15dZ7MgvQl\n7pmW6Eo4ZlMrqkBpqQyvV0ZdbXTMPT0ppynR0PbLz52+i0C//qELOht/XiXPTruoatrfuyS8tjQn\nEEW2zehucr74PLQd6N8/g5EAAHoVw1D1Xfe3OWXDf55V1Q1/VeNpZ7Q6x2/LCf0tZF21MjTecNoZ\nKl+7SZs+/Cx8yoYGSVLFq2/LP3KbZKJHKvT0v2kBAAAAAACQVUjCaYNZWBQ72I2rxsRjXbNaUvyE\nIvt/gwkXzn8/ntaYuoJ77D5xx82CgtC2f8edtemdiHA8dAAAIABJREFUD0P7vjG7pjyuZDWcd0HU\nvlnWL2ZOoE+4lL5ZGHy8lrffktl0cSDyORqore3Uh9LxKuGYRXFeDxGVcGIO1WyO2nfYW5/bU5T2\n6yPDalXt9Bla+/1S5W47qv0bdSWLJVgBR5Lh9wfbUyncSsyoqIia3uju3q2OkuV45aU2j+f877/t\n3kdkIp9ZWKTqtz+Q+9yJScfW7nmbXoNGQ+vtMTLNzA23rfMPHJzBSAAAPUX52k3afOyJqv7nf9qc\n5xl/WpvHjYMPlveSyyTD0Ob7H4k7J+/pf8vvD1acy535VPB+DzpEtTPul2w2BQbEvn/S4CEdeBTI\nGCrhAAAAAAAAoBvI8t49qeXb/jcxY7Yli6WXXpK9uiEDEXVeZHJKT+A+4+y444FB4QvBlrJSmQXh\nxBHTkgVJIA6H/P0HhFtwWWLz5Mz8/PD0t96UJJX+8Rw1HD9Om+57VLkRSTj9txykmtumq3Hi+QnH\n0RGJtP+y9IIPxXPtTd8Pm005/fqmPwBD4fZFZiD0/AmUBCsSWSo3KTB8RGi6PxBQIGDKYuk5Pxuf\nPyBbUwWc9qrI9Dnx6Pbv0Br7GkzHc9l0NSfhdM+1xrJmtYomniVJ8m21tRSnehYAAAmz2eR+9In2\n51mtWv/kXPU/8+T4xyP+hvbusVerd2N++ZW0x27ybbud7O+9q/rzJ4WPxfmHjMj3Gug+jKbWo0YH\nW5ACAAAAAAAAqUQSThvc405RxXvvy6GA8p+ZJUlyvPyC9PILilMTpFtLJFkiG0RWYGhpzdxXZPvy\nC1m22EpG5abwgTgJLd1S8wX+QEC2r76IOex45SXVT7khOLU+3IbK+cKzMk7+vYytRkTNz7/u/xJP\nwomTZODdaRd5ho2Q+w9/DA+20Y7KR6n+9GvRjqr5OW+WBCvhWCo2Rk/fsF6BviWy5Ocpm9k+/URu\nq03W3XaTd9kKFV9wjur/cU/0JLc7lFwWMM1WE2l82+8g28Lvwvu77p6yuNsSqoRTW9vOzMxwTbs5\ntG2WZiDhDADQ61kOP1ybnpojbbGlSvbZrdV5gaHDovZNw5DR9PfS4KMPUvmydTKqqyRJ/hFbhCca\nhhrOmhCqGrrp3f918SNAV8mdM1OSZNlYnuFIAAAAAAAAAJJw2maxyHPP/XKbUsN9D8k6d7bsFRuV\nn+9Qba0709G1yfbdN8p9ZnZ4ICcnZk7DmefI+eQT6QuqK+XYWz1kP2B/+fbdN9hrLTLxpo3WSd1K\nU4KR0dAgoz62FY3n0CNavemg35+ouqunRI159zsgodPX77pH/AN5edr4ydfKsUV8T23R39NAcYlq\nZtyv3Dv/ppqZzyR0XnQBwyLDbKqEE4ithFN02kkq39DUJszj0Yg9tpdvyFBVfrkwE9F2meJjDpMk\nVXzylYbtvYskyfaHs6LmGPV1MpuScDxev+w54eeub+uRsv38kySp8ZTTpLpj5HzyCdWcdpa8512Y\njocQIzB0qCTJsmpFRs7fGsvKFQoMGSrn7KfDg72gyhUAoHvyHxb7d3HtzdOiB1quU06XFJHIbl25\nQpZNwZadZmlp9H1Nv0u1E85XwO+XZYcduiZoAAAAAAAAAD0aSTjtsEW0IvGfcqoaJOWXFaihvCZz\nQXWA9cclUUk4pi1OEs4FF2dtEo6luV1TK0I/tyxMwgnkF8gqyairlVlcIq1bq/pz/yDXPx+VJDVM\nOC80t2banSqYclXU7e3vvhW1bzQ2JnR+1xefqa6VY1EJOIqtsFQ5738KDB4izxFHJXROdBHDCLej\nCgRkNlfCKQrX7rIu+kH+0dvJcAefF7bVq9IeZqqU7rVLaNu2bGnUMaOhQWZxcDv3P09Ko7cNHat6\n9W3lX36xcl9/Jfj6cjjUcPUUmaYpI0MJJmZhoaTu1Y7K/tbrKjpjvExXdOUk75jWqw8AAJBu8d73\nbPpogYpO+J2sG9bLdDlVf/lVyrv1JknBv7ktFRUyrda4Lai03XbKknqaAAAAAAAAALoBPk/sqVpe\nOLbFJqAEWvynZ1ZpbrnT3jRLxOPOkiSc2tvvlK//ANX933Wq/dNf1Lj7nmq4YnLoeOQFcO+Bv425\nvW+XXaP2cz6d3+HvV8Iivqfrbr5TgcFDUnMedExr7agc4fZthRdMDG74fOmOLjWak47aYTQEq0pZ\nli1V2TWXqezYwyVJDSeNl1lcopp/Pa3166tDLaskZSwBR4pIcPN6MxZDSznvz5MU3QZPkuovvjwT\n4QAAEF+cCqD+kdvIfcI4SZJv5CjVXxZOYne8/qqMTRXy9ymmuhsAAAAAAACApFEJp4cKDBwYPRDn\nw2izqUWNb+CgdITUpXyjt+/YxMhKOFnyobpv9z218ZvFslos8kvyHnRo1HGzT5/Qtn/g4Jjb2996\nI2bM9tUX8rVSrcKybm3UftV/5nY82IgkHO/Z5/ILJdMiKuEYkZVwcnNjp3o8aQ0tZTpaKaY+OC//\nz9dFDZt9y0Lblu70O8LW9GrqLslSjY1yPfpQ3ENmQUGagwEAoHVmnPc9klR/zXXyu71yT54iGYZM\nq1WG3y/nw/fLcHfvVsMAAAAAAAAAsgeVcHooM79AmyaHLza3bBvUzDdocNyS7d2db8+9OjbRkp1P\ncWucuDff97DW3nh7dEUfp1MbrpwaPbGpEop73/3laUq8yfnof62ey/HyC1H73oMO6XigEQkCufbs\nqDTUk5kWi4ymn791xXIZTVVUvHvvG5pjW7RQ9nffkmP20xmJsat1tN1ac1sn21dfRI0Hyvp1eUxd\norsl4fz3v3GH1/3jQSlOkhcAAJlitLJ2mvkFavzbnTLLggm41c+/GpxPAg4AAAAAAACALpSdGQro\nkNyN68M7rfxHqGy27nORt6WuaKGUJS2oOsJ98qlqOHtizHjdZVdHDzRVQnGfcbYaJ5wnScr/659a\nvd9ASbgtWflXPyT0PYu8aJHJ1j1o0pS8ZV36c/Br+YbguN0eNS3nvXeV+/yzoX3HrP+kJ74u5Pb4\nJYXbTDWeNF6b3p+vxn0PCM0pv3Sy6i+9UpJkqdgYnF8X3UrJzM9PR7iJs1hkGobk88ky713Zvvsm\ns/G8807MUMNue8kz7uQMBAMAQOssa1Z3aF5U21pJ/iFDUxEO0qDyzfe0ecddtfGXjv3sAQAAAAAA\ngFQiCacHazznD+Gd1hIrrFYZ/m6ahOP3R+16d9gp8fvI0ko4rXE6Yn+O+c4WCVbNlUGsVnkOPLj9\nO21Kwqq54y5p8JDEAnJ3rAoJ0qQpEcr6ww8xh+r/OCm07Xr4AdkWfhfaL7z0wtTH1sUaXnhJRlWl\nik48WpJkOl3yb7e9ap57WRu++1nrflqlhslTZfv+W0lSwWXBx2jURyfhtExQ6lZyciSvV6WnnqDi\ng/fLbCx33CFJCrjytHrZepWvWK/Nz78se07PSXQEAPQMgaHDOjTPt8uYqP3mxF1kH98uu2rJUy/K\nLCjMdCgAAAAAAAAASTg9melyhXdaS0ax2SSfP/6xTGuq6NKseuazrUxsQw+rzpJja/+Ct7Vyk6Rg\nCzKzXz+ZNps8u+3R6vzmkv2m05l4QE23MR2OxG+LrmcEX+dFE86QJNUfPy50qOHc8zISUio4np2j\nkRefrYKLzpdt+TJJkukMt0Qy+veTrahITodN9RdfLkmyVFUpsHatjBa/V/wDB6Uv8AQZHo8cXy7I\ndBhRvAf8Vo48p+R0yuJwyGblzwgAQOa5DzlMkrT+iqlqPO2Mjt2oRaVQs6ioq8NCGjlIDAYAAAAA\nAEA3wdWznqwjiRE2W1QlHOviRbK/+5bkdsu7Zq0kydhUIds3X6Uqyta1qISj3E4kevSwJJyENCVe\nGT6f7As+k1FVKZmmHI89LMfMp8LzmtuRtdayrA2egw9TxZVTVTnvo66IGMmyRD/fLdXV4Z1O/Hy7\nK9eMOyVJ9vfnhcZatplq5h27T2i735jtYo//tgPVorqLFglEaRPZGtDjbn0eAAAZsvmpOfpu/iLV\nXnZVQn//BwrDlVMCJOFkNXsH/lkBAAAAAAAASAeScHowswNtVkyrLZTsYtTWqGT/PVV02kkquOJi\nDdplW1lWLFfx4b9V8aEHyLJqZapDjhaRhFNz23SZFj5YTYTh9UTt58z/WI5nZqtw6tUqvGySjA0b\nggd8XkmSabMlfhKLRbWXT5Z/5DbJhouu0PKiU0R1mI4k4Xi7a1WsFmyLF0mSDK83NOY98KD4kyNa\n8UVWwQkUFanynf9mVaJe2YA+st/9j7Sf1/LrutC20UgLOgBAN2SxyNm/r1yOxP6erZz9QmjbLCQJ\nJ5vZc/hoAwAAAAAAAN0Dn1T1YKYz2I6qzWQcm1VGU7JL0cnHhYZzn5kdPPzt17KuWC5JsqxbF3Pz\nVDLM4AVz9+FHqnHi+cHWWYhr0wefqPb0s6IHGxqidk2HXYUXnR/aN+qDlUMsVVXBAWvnvr9OB8lR\n3Ya/RaWUiItJZl5e27dtaJDHF5AZWfWkG2lwBys2WZp+H0Vq/N2xch97Qqu3rbvw4pixip9Wybfj\nzl0WXyr4hw6LGSu6+c9SGhNhbAs+U/4lF4b2GyZdkrZzAwCQiHxXTsJtEs0RW4S3i/p0dUhII6sl\nexKrAQAAAAAA0LOR1dCTOZ1a+/b/ZB3Qv/VsK6tNampHlfPFgpjDhi/cqspobIg5nlLNlXCMpuit\nJHu0xj96O3kuuEh6+t8xxxpOGi/nM7PV59Rx0QeaqoLk/e1WSZJl/a+dOreRRZVEejrDHZ2c4T7q\nmNC2WVCoNa9/oNLH7g8l2UVyPXCPNl9wuXz+gHK6YTn/BrdPNquhXHdsOyTf2L3brGhjqalJZWgp\nU3/hxSq49v9ixnPnzlKgT3ouFBZNDCf31U29QZ5Dj0jLeQEASJTVkvj/l5guV2g70L9/V4aDNOM9\nCQAAAAAAALoLknB6uMB228va1n+E2mxRiTYtGdXVoW3LpoquDK19zVU9mpNvSMJpW4tKQe5xp0iS\nfLvvKcVJujAbG6OqnljWrU1tfEi9FgkqniOOitq37rKTam+/M24SjmXdOvWdeqUajz1ROriV1k4Z\n5PEF1OjxyxknGTBn/sdqOH9SBqJKsVxn3OGCqy5NcyBBgf4DMnJeAABSJjfcupN2VNnNQhIOAAAA\nAAAAugmScHo4m9WQpY3S3LYvF8gIBGRs3KhAnz7h1kRN8qb9NbRtXfyDpBbVVFKk4KhDZY4cKUky\nm5NvOvHfrb2J6XBED+TkBL+20o7Msnq13D8vDe17jj42VaEhTSIr4XiGxLYyslosMgsKtfaJ2Rp0\nzvjoY8uWqui/76lo5r9VvmFzymNNiNer7XYbKWttjSpfejP2eHPVrNa0SFCrvf4vXRhc6pjO2CSc\nmml3SmYgzuzUsP30o5yPPyJJCpT2Tdt5AQBICxI3egzeKgIAAAAAAKC7IAmnh2uvLLvh9UoKtqIx\n7Q55Rmwp+/JwYoZl06bwdmVlaoJsGdPmauUu+FRa8GnTicMfjlc985J8CVZjWPO/LxXIzVVu+1Oz\nmllcHH+8ORmnhZIzTg5te0vL5Ntx55TEhTRqej1LUt2Z57Y6zdm3JLS9+b6HVXjR+TILC1MaWjJy\nPv9U1tpgSylr0++nuqunKG/6NEmS+/gT27x93dVT5XzisdC+d+99UhRp1zLjVMJpnHBeWmOwrFsb\nkYRTmtZzAwCQDjWTr5W/X79Mh4Ek0Y4KAAAAAAAA3QX/LwZJUs7H/5N1w3pZ6utVd8XV8Sd5PKkP\npK5OfbceGj1mCbeh8u5/oMxR2yZ0l/7hI2T2gjYqZl5+aLv2zzeHtiPbTPkHDpJnz7Ext/WNGJHS\n2JAehjfcWi7H1XraWWSFFf/Q4U0b7VSTySCjYmN4Z/lySZLpdKnq+VdVNf1uuU84qc3bm/36ybfl\nVpKkTTdNk2+3PVIVapeK/Dk1nHmuKr76If0xuFzh7ZKSNmYCAJCdGidPkffsCZkOA0lqq/orAAAA\nAAAAkE5UwoEkKeeLzyVJtg2/qvKSK1VfWKqSB2fIuv7X0BzD7U55HHm3xmkTY7XGjiXAMCRDveBD\nWcPQyp/WymdKBX3CCTmW6urQdvVzLyv3n4/K/un8qJsGmhMxkN384SQc0+5ofZ7LGbNtlG9IVVRJ\nM2prQ9uFf789uJHrkHef/aR99uvQfVS9/q5qKjYrb6vh2fPbICIJp/bOGRkJwXTlhbYDBUUZiQEA\nAKA9FirhAAAAAAAAoJugEg6imC6XlJ8v93kXyPB5o46lIwnH9ciDsYPttNTqiN7ymayjME95RXlR\nY5GtdwJl/SRrbO6dkZcXM4YsFNGOSo7Wk3BMI/yaMp3BSif2BZ+lLKykmKZyn5sbOxynVVObd1Nc\nIseIoVnVqiCyEk7GRLSzMwsKMhgIAAAAAAAAAAAA0P2RhIMolW++L0my51hkqaiIOma6G1N+fjNO\n4oCZbCUcGVl14T0ZFsOI+S9QzyGHh7bNgsL4lYVIwukRIhPnzDae82bfvpIk7047d49EjzbkTzhT\n9g/eixm3fbkg4fvKsSX3uyTdzPxulvSS23qLMwAAAAAAAAAAAAAk4aAF/5ChkiTDMFT/x4skSTXT\n7pQk5b71hiwrV6T2/AMHxw4mmYQjo/dUwmlN7RWTVXXmRMkwZNpiK+GY+STh9Ag+f2jTqK9rdZpZ\nWKTln3ynqlfellkUp8WQ3x87lgHuyio5X30p/sFe8KIO9OuX6RAAAAAAAAAAAAAAJIAknF6u4awJ\n0QMRFVHqbrpVFd8sVuM5E0Njrhl3pjQey4b18pf2Ve0tt0cMJl+9omV1mN6mYeoNqrntjuBOnKQm\n//At0hwRUiGyEo4RCLQ51z5siORwBKsjtVA2sLjLY0uU8flnGjJqWKvH66+eksZoMsMsLFL5LdO1\ndnYriUhpUnfF1TKvuSajMQAAAAAAAAAAAADZgCScXs79u2NaP2gYCgwcJFkiniammdJ4DK9H/hFb\nyj9sRHjQklwCjaFeUTSjXfbmVjxxKuEEho9IbzBIDW84Cae912q7rZnaSeJJtT7n/D5mrHzD5tB2\noDBOBZ8eqO7Mc+Xea5+MxlA/9U8ypk3LaAwAAAAAAAAAAABANoi9Go/eJScntFlz69/anW7ZtCll\noRg1m2V4vZI9R6bTGRo3k2xHZRjB9lq9naUpmck7NvaCvn+LLdMdDlLASCAJp937qquNWyUnHSzL\nl8lWvj7usdqbp8n84ouoql09mdNhUyCQ2uRHAAAAAAAAAAAAAF2DSji9XURVFLOoT7vTvbuMSVko\nhb8/RZJkn/+RTJcrfCDpJBwScCJ5995Xmx96XHUHHapN8z7SmqdfCFY8Qo/i33pkUrc3amq6KJLE\n5U27ObRdc/vfo441nD9JjQ891mvKW1kMQzYrSzUAAAAAAAAAAACQDTp0Ze+bb77RmWeeGTM+b948\njRs3TuPHj9ecOXMkSV6vV1dddZVOPfVUnX766frll1+6NmJ0KTMyCcfhaP8GKbzwbf/k43Aszogk\nHCO5C9CWXnKxPhHuE05S5ZNz5P/NDjIOPDDT4aCLefbeT56DDu3wfPdhR4S2/X3LJEnG5s2tTU+9\niApdjaedoYZjT1DVsy9nLh4AAAAAAAAAAAAA6IB2sxseeeQRXX/99XK73VHjXq9Xt912mx5//HE9\n+eSTmj17tjZu3KgPPvhAPp9Ps2bN0kUXXaS77rorZcGjC3SwEk7V3BclSUZ9fcpDkhTVjirZSjjN\nbZgQzZET/L7m2Kiy0dN4Dj08oYQ5/1bBqjmNhx4u92lnSAq2h8uUyORA5eaq9tF/ybvfARmLBwAA\nAAAAAAAAAAA6ot2r78OGDdM999wTM/7LL79o2LBhKioqkt1u16677qrPP/9cW2yxhfx+vwKBgGpr\na2WLvJiKbse0hStO+Eds0fq8ggJJktHYmLJY/EOHhXe6sB0V0OvkJPZ7t37yFFVc9n+q/cd9CvQp\nliS5ZtypgvEnSl5vKiJsk2ll3QAAAAAAAAAAAACQfdq90nn44Ydr9erVMeO1tbUqaErMkKS8vDzV\n1tbK5XJpzZo1OvLII1VZWakHH3ywQ4EUF7tks2VPskVZWUH7k7JBv6LQZunQflJrj2twsEWNUz65\nuvixm6YpwzCkgw+SnnhCWrBApcP6h4678nO7/JxAT5bfJ1/5ibxmygpUc+tfVeCyS7v8RpLkeOsN\nSVLu2qXSbrulIsz4/H7p349Lkszjju85v2t7AH4WAIBMYh0CAPQ2rH0AgGzE+gUAQAeScFqTn5+v\nurq60H5dXZ0KCgr0xBNPaN9999VVV12ldevW6eyzz9bLL78sh8PR5v1VVqanzVFXKCsrUHl5TabD\n6BLWGrdKmrY31vtltvK4LPV+lUpq2FStui587PWNXlmtFjlyrCqoqVeupAqrS4E6v8qa5tQ1+lTf\nQ77fQCo1v2ZqGv1qTPA14/b41VjnlrXf0NDvBEmq/naxPMNHdVmM7cm9++9qfpu26dobFeC13y30\npHUPAJB9WIcAAL0Nax8AIBuxfgEAepO2Ek87nYSz1VZbacWKFaqqqpLL5dKCBQs0ceJE/fLLL8rJ\nCbY4Kioqks/nk9/v7+xpkGKRbV/MXGfrE51NxxoauvT87k3VspcUyZFjlXy+YBy2HCkn3CaLdlRA\nYszI108H2WyGpNi2dIXnnZ2216DRovVVYNjwtJwXAAAAAAAAAAAAALpCwkk4L7/8surr6zV+/HhN\nmTJFEydOlGmaGjdunPr3769zzjlH1157rU4//XR5vV5dccUVcrlcqYgdXSHyYr2t9aeDmZsb3Gho\n7LJTOx++X2XXT9HaJ+ZIRx0RvgCf0yIOi6XLzgn0Cp1ImrE2v87sdgVcebLUByud+cakrxVVzoLP\nWgRFAh4AAAAAAAAAAACA7NGhJJwhQ4Zozpw5kqRjjjkmNH7QQQfpoIMOipqbl5enGTNmdGGISKk2\nEm8imc5gIpXrrddU187cjnI+cK8kqeCZp9V41BGSrzkJp0UVDy7EAx3iHzBQ1l/XKTBocFL305yA\nI0lVr72TbFgdljPvbfU5dVzazgcAAAAAAAAAAAAAXYkSI72caetg2xq7PbRpVFd1aQwFr7wgBQKh\nSjgtYzItJOEAHVH1+rtaeesMeffZL6n7qb3hJklS/aRLuyKsDvMedKg2LFyqqof+qY0/r0rruQEA\nAAAAAAAAAAAgWQm3o0IPY+tggothhDcbG2UWJX9q65rVoe38yVdIPl9wh0o4QKcEBg9R1QmnyBnx\neu2MhksuV8Mll3dRVIkxyvrKewLVcAAAAAAAAAAAAABkHyrh9HJmrlOS5C8pbX+uwxHcqK/v8jic\nT/4znITTMunGwtMU6CiLJbkEHAAAAAAAAAAAAABA55Dd0Ns5HFr78VfaOP+Ldqc2/v4sScFKOKlg\nn/9RcCPJKh5Ab2bw+gEAAAAAAAAAAACAjKAdFWTdaktZOnDh3nS6JElGQ9dXwmmTx53e8wFZjMxK\nAAAAAAAAAAAAAMgMrteiQwk4kmTm5ga/1jekMpwYRkN6zwdkM3uOtf1JAAAAAAAAAAAAAIAuRxIO\nOqy5Ek6gti69Jw4E0ns+IIsV5tkzHQIAAAAAAAAAAAAA9Eok4aDDTJdTklRw9/SUnaP+oEND25vv\nfUiS5B5/WsrOBwAAAAAAAAAAAAAA0BVIwkHCHAs+65L7CbW3sljk3XEnVT/2b9XNejZ03H3Kafp5\n2Ub5txrZJecDAAAAAAAAAAAAAABIFZJw0GHuE0/u0Dyvr2PtoxrOnihJ2vzUbFW986E8xxwfM6fA\nmdPxAAEAAAAAAAAAAAAAADKEJBx0mFlSqvpddpNptUqm2cokU/l/mqrCA8bK2LCh7Tu02SRJgZLS\nVqdYLEZnwwUAAAAAAAAAAAAAAEgbknCQEKO0VIbfL2PjxrjHrUt/VuGjD8ixaKEKLz6/1fvxBwJS\noKlijoWnIQAAAAAAAAAAAAAAyG5kPyAhFqtVkmT74fv4E/zhVlTWZUvjz2lslOeLr0nCAQAAAAAA\nAAAAAAAAPYYt0wEgu3h331OON1+T4W6Me9zMyQlt+7YeGXdOwcQzVfb2m+HbGCThAAAAAAAAAAAA\nAACA7Eb2AxLjsEuS8qZOjn/cMMLbuc64U3IjEnAkUQkHAAAAAAAAAAAAAABkPbIfkBCjulqSZFu1\nMvZgXZ0cLz0f3q+tiZniWfdr7O1IwgEAAAAAAAAAAAAAAFmO7AckJqLdVCBgRh3Ku/0W5d98Y3ig\noSHquOtvt2rwTtvE3idJOAAAAAAAAAAAAAAAIMuR/YCENEw4L7RtnTMrtG379BO5Hry3xeSGqESd\nvOnT4t6nmZfXtUECAAAAAAAAAAAAAACkGUk4SIhZ1Ce03ffSP4a28267KWau0dAg5+QrlDPv7Vbv\nr+rk3ysweEjXBgkAAAAAAAAAAAAAAJBmtkwHgOxjOp0ymltN1dZK+fmyf/y/mHn2n3+U/ecfpScf\nV/mGzXHva/Pf75HTMFIZLgAAAAAAAAAAAAAAQMpRCQcJMy3W0Lb113UKBAKdux9XnnJsPAUBAAAA\nAAAAAAAAAED2oxIOEmcNJ+HY33pD1oULO3U3/oEDZbVQBQcAAAAAAAAAAAAAAGQ/ypAgYfWXXB7a\nzr/xOhXNfVqS5NlmlAJ9+rRyo/rYoSnXy6AVFQAAAAAAAAAAAAAA6AFIwkHCGi65Iu64f7c95Ntx\nF0lSoLBI1U88HTpmqdwUM9993ImpCRAAAAAAAAAAAAAAACDNSMJB4iwWuXcaEzPcMOlSNZ50iiTJ\nt/MYeY46Wp6995MkmXV1aQ0RAAAAAAAAAAAAAAAgnWyZDgDZyTvuJDm++TJqzMzPl/uU07TZapXn\n4EODgw578NjmzVFzq158PS1xAgAAAAAAAAAAAAAApAOVcNAp3j32ihkLlPYNVsk5+VSZJaWSJNNq\nlSSVHXWwJKn+iKP1/eJf5R27T/qCBQAAAABhv+nqAAARzklEQVQAAAAAAAAASDGScNAppt0RO+iI\nHXO881bUvuuNV+TMpQATAAAAAAAAAAAAAADoWUjCQefY7aFN98GHqmruix26WfVlV8tu42kHAAAA\nAAAAAAAAAAB6FrIh0ClmRBJO47l/kPeA38ad591x56h9//AtZBhGSmMDAAAAAAAAAAAAAABIN5Jw\n0DkRSTjG5s2tTmu48OKofe/2O4gUHAAAAAAAAAAAAAAA0NOQhINOMXPCSTi2RT+0Os99wklR+77f\n7EAlHAAAAAAAAAAAAAAA0OOQhIPOcYSTcBrOmdj6PItFG6+6VpJUc+fdMgyJHBwAAAAAAAAAAAAA\nANDT2DIdALJTZCWcwNBhbc6tvfhy1R15jFw7bi/DHyAJBwAAAAAAAAAAAAAA9Dgk4aBz7Pb25zRx\n5Npl2WG70D7tqAAAAAAAAAAAAAAAQE9DEg46x2rt8FSbNdz1zDAkUnAAAAAAAAAAAAAAAEBPY2l/\nCtB1DMOgEg4AAAAAAAAAAAAAAOhxqISDTmv87cHyDhme0G0sJOAAAAAAAAAAAAAAAIAeiCQcdFr1\nzOfk9QfkyHQgAAAAAAAAAAAAAAAAGUYSDjrNYjHksFgzHQYAAAAAAAAAAAAAAEDGWTIdAAAAAAAA\nAAAAAAAAAJDtSMIBAAAAAAAAAAAAAAAAkkQSDgAAAAAAAAAAAAAAAJAkknAAAAAAAAAAAAAAAACA\nJJGEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAA\nAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIOAAAAAAAAAAAAAAAA\nkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAAAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAA\nAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgSSTgAAAAAAAAAAAAAAABAkkjCAQAAAAAAAAAAAAAA\nAJJEEg4AAAAAAAAAAAAAAACQJJJwAAAAAAAAAAAAAAAAgCSRhAMAAAAAAAAAAAAAAAAkyTBN08x0\nEAAAAAAAAAAAAAAAAEA2oxIOAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAkkYQDAAAAAAAA\nAAAAAAAAJIkkHAAAAAAAAAAAAAAAACBJJOEAAAAAAAAAAAAAAAAASSIJBwAAAAAAAAAAAAAAAEgS\nSTgAAECSZJpmpkMAAAAAAAAAAAAAshZJOHGYpimv15vpMAAASBu/36/q6urQPgk5AIB0CQQCamxs\nzHQYAACkjd/vV3l5uaTgOggAQDbwer2aP3++amtrMx0KAADdGkk4EUzTVGVlpW666SYtWbIk0+EA\nAJAWzzzzjCZOnKjbb79dL7zwgnw+nwzDyHRYAIBeYNasWZo0aZLuuOMOrVy5MtPhAACQcg0NDbrt\nttt07733SpIsFj6eBQB0f3PnztWECRO0aNEiORyOTIcDAEC3xrs8hf/b3zAMrV69Wq+//roWLFig\nqqqqDEcGAEBqNK99ixYt0rvvvqubbrpJBx98sBYuXKj169dnODoAQE/WvAb99NNPmjdvnqZOnSrT\nNDV79mxJVAQAAPQ8kZVGrVarVq9erdWrV2vevHmSgpVxAADobkzTlGma+uCDDzRnzhzdeuutOuWU\nU1RRURE1BwAAROv1STiVlZWqr68P7X/xxRf63e9+p19++UU//vhjBiMDACA1Ite+Dz/8UMOHD9ew\nYcM0atQofffddyotLc1whACAnipyDfroo4+09dZba/jw4dp77721ePFilZeXy+PxZDhKAAC6TsvP\nHtetW6eioiJNnDhR7733nioqKuTz+TIYIQAAsSorK1VXVyfDMJSfn6/dd99dM2fO1KRJk0IV3crL\ny6mmDQBAHNYbb7zxxkwHkSlPPPGE/v73v2vlypVasmSJxowZI5fLpRNPPFFLlizRihUrNGLECOXn\n52c6VAAAukTz2rd8+XKtXr1a55xzjkaPHi2Xy6Xy8nL9+OOPOuqoozIdJgCgB4pcg1atWqWzzjpL\ne++9t6qqqnTXXXepuLhYCxYs0Pr167XTTjtlOlwAAJIW+dnj4sWLteuuu6q+vl5+v19jxozRv/71\nL73xxhsaO3asioqKuJAJAOgWItevpUuX6sgjj9RTTz2lvn376o477tBWW22lH3/8UevWrdOOO+6Y\n6XABAOh2bJkOIFOWL1+uDz/8UA888IC8Xq+mTp2q4uJijRs3TpJ0wgknaMaMGVq4cKFKSkpkt9sz\nHDEAAMlpufZde+21stlsOuWUU2Sapl577TVtt912kqRvvvlGgwcPVt++fTMcNQCgJ4i3BlmtVp16\n6qkqLi7WvffeK4fDoZkzZ4ZuY5omFyMBAFmr5dp33XXXacCAAerbt6+effZZvffee+rXr58Mw1Cf\nPn1Y8wAA3ULL9euaa67RoEGDNHny5FBlt2222UbvvfeeioqKJPHeDQCAlnptO6qKigpts802ys3N\n1cCBA3XJJZfowQcfDJV/HTBggHbccUe98847Ki8vz3C0AAAkr+Xad/HFF+uRRx6Rz+eTYRjasGGD\n+vTpo6lTp+qZZ57JdLgAgB4k3hr02GOPyefzadWqVfr555+1evVqffDBB3I4HJLEh7gAgKzWcu2b\nNGmS7r33Xnk8Hm233Xa64IILdPfdd2vLLbfUq6++mulwAQCQFLt+XXrppZo+fbqGDx+unJwczZ8/\nX7/++qu+/fZb5ebmSuK9GwAALfWKdlTNFxcNw1AgEJBhGKqvr9ebb76pnXbaSX369NGgQYO0cOHC\nqNLno0aNUllZmUaNGpXhRwAAQGISWfsqKio0YMAATZ48WV6vV4cccoguuOACuVyuTD8MAEAWSmQN\nqq+vl91u11NPPaW5c+dq3LhxOv744zP9EAAASEhH1r7BgwdryZIlamxs1NVXX63+/ftLCn7+uOee\ne2b4EQAAeqOOrl/ff/+96uvrZbVaNXPmTD3zzDM64YQTdOSRR2b6IQAA0C31+CScBx98MPTfJFts\nsUXoD4nS0lL98MMPWrZsmUaOHCmn06nNmzcrLy9Po0aNUiAQkM1m08CBAzP8CAAASEyia5/T6dSY\nMWPkdDp13XXXafTo0Rl+BACAbJXIGlRdXa2cnBwdeOCB2m+//XTKKado2223zfAjAAAgMYmsfZWV\nlSouLtaoUaPk8/lktVr55wcAQEYk+t7NZrPpkEMO0eGHH66TTjqJ924AALShx7aj8ng8uvnmm1Vd\nXa1zzz1XHo9HkmS1WmUYhr7//nuNGDFCa9as0cyZM/Xqq69q1qxZKiwslCRZLD32WwMA6KE6s/bN\nnDlTBQUFkqSJEyfKZrNl8iEAALJUZ9ag2bNnh95/5ebm8h4MAJBVkv3skfdeAIBMSPa9m8Vi4b0b\nAADt6LHv9qxWa6ilxtNPPy2/368VK1bovPPO06233qpFixbpb3/7m/bcc0999dVXmjdvnq688kqN\nHTs206EDANApnVn7rrrqKtY+AEDSeP8FAOhtWPsAANmI9QsAgNQzTNM0Mx1EV5k1a5YMw9D48eO1\ndu1aPfjggxo0aJD69eun/fffX1dccYV23313nXHGGSopKcl0uAAAJI21DwCQKaxBAIDehrUPAJCN\nWL8AAEivHlUz7vPPP9dDDz2khoYGDRo0SHl5eXr77bc1cuRI9e3bV3/+85/1/vvvh8rm+f3+DEcM\nAEByWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA9MrqJJzy8vLQ9k8//aT8/HxtscUWmj59uiTp1FNPVVlZ\nmZYsWSK/3681a9Zor732CvVctlqtGYkbAIDOYu0DAGQKaxAAoLdh7QMAZCPWLwAAMisr21H9+uuv\nuueee1RRUaGDDjpI++yzjwoLC1VeXq7+/fvr2GOP1UMPPaStt95a77zzjubPn6/ly5eroaFBkyZN\n0r777pvphwAAQEJY+wAAmcIaBADobVj7AADZiPULAIDuISuTcO6//355vV6deOKJevHFF1VZWakr\nr7xSeXl5kqR7771XixYt0n333SfTNGUYhr755hvttNNOGY4cAIDOYe0DAGQKaxAAoLdh7QMAZCPW\nLwAAugfrjTfeeGOmg+iIZ599Vv/617+0ZMkSrV69WmeddZaGDh2q/v37a/HixVq5cqV23nlnSdIe\ne+yhadOmadiwYdpqq60kSQMGDMhk+AAAJIy1DwCQKaxBAIDehrUPAJCNWL8AAOh+siIJZ/r06fru\nu+80YcIEvfnmm3r11Vdlt9u1zz77yOl0ymq1auHChdphhx2Um5srSRo9erSGDBmikpKSDEcPAEDi\nWPsAAJnCGgQA6G1Y+wAA2Yj1CwCA7smW6QA6oqamRuPHj9f222+v3//+9+rXr59eeeUVHX300Ro9\nerRKS0vldrvlcrlCJfTGjh2b6bABAOg01j4AQKawBgEAehvWPgBANmL9AgCge7JkOoD2BAIBHXbY\nYdpxxx0lSa+99pr2339/TZo0SbfccouWLVumjz/+WFVVVQoEAjIMI8MRAwCQHNY+AECmsAYBAHob\n1j4AQDZi/QIAoPsyTNM0Mx1ER9XW1uqcc87RAw88oLKyMj3wwAOqrq7Wxo0bdc0116isrCzTIQIA\n0KVY+wAAmcIaBADobVj7AADZiPULAIDuJSvaUTVbv3699t57b9XU1Ojmm2/WyJEjddVVVyknJyfT\noQEAkBKsfQCATGENAgD0Nqx9AIBsxPoFAED3klVJOJ9//rkefvhhLVy4UMcdd5yOPfbYTIcEAEBK\nsfYBADKFNQgA0Nuw9gEAshHrFwAA3UtWtaN69tlnVV5ergkTJshut2c6HAAAUo61DwCQKaxBAIDe\nhrUPAJCNWL8AAOhesioJxzRNGYaR6TAAAEgb1j4AQKawBgEAehvWPgBANmL9AgCge8mqJBwAAAAA\nAAAAAAAAAACgO7JkOgAAAAAAAAAAAAAAAAAg25GEAwAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAA\nAAAgSSThAAAAAAAAAAAAAAAAAEkiCQcAAAAAACCLTZkyRc8991yrx6dOnao1a9akMSIAAAAAAIDe\niSQcAAAAAACAHuzTTz+VaZqZDgMAAAAAAKDHM0w+hQEAAAAAAMgapmlq2rRpev/999WvXz/5/X6d\ndNJJWrFihebPn6/q6moVFxfrnnvu0fPPP6+7775bw4YN03/+8x+tWrVKt912mxobG1VcXKy//OUv\nGjp0aKYfEgAAAAAAQI9AJRwAAAAAAIAs8uabb+qHH37QK6+8ohkzZmjlypXy+/1aunSpZs2apTff\nfFPDhg3Tyy+/rPPPP1/9+vXTww8/rLy8PF1//fW688479fzzz+vcc8/VDTfckOmHAwAAAAAA0GPY\nMh0AAAAAAAAAOu6zzz7TYYcdppycHJWUlGj//feX1WrVNddco7lz52rZsmX6+uuvNWzYsKjbLV++\nXKtWrdKFF14YGqutrU13+AAAAAAAAD0WSTgAAAAAAABZxDAMBQKB0L7NZlNVVZUmTpyoc845R4cf\nfrgsFotadiAPBAIaMmSIXnzxRUmS3+/Xxo0b0xo7AAAAAABAT0Y7KgAAAAAAgCwyduxYvfHGG/J4\nPKqurtaHH34owzC0xx576LTTTtPWW2+tjz76SH6/X5JktVrl9/u15ZZbqrq6WgsWLJAkPfvss7r6\n6qsz+VAAAAAAAAB6FCrhAAAAAAAAZJFDDjlE3333nY4++mj17dtXW221lRobG7V48WIdc8wxysnJ\n0ahRo7R69WpJ0oEHHqjzzz9fjz76qGbMmKFbbrlFbrdb+fn5uv322zP8aAAAAAAAAHoOw2xZmxgA\nAAAAAAAAAAAAAABAQmhHBQAAAAAAAAAAAAAAACSJJBwAAAAAAAAAAAAAAAAgSSThAAAAAAAAAAAA\nAAAAAEkiCQcAAAAAAAAAAAAAAABIEkk4AAAAAAAAAAAAAAAAQJJIwgEAAAAAAAAAAAAAAACSRBIO\nAAAAAAAAAAAAAAAAkCSScAAAAAAAAAAAAAAAAIAk/T9xGUjzVTpaiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VWW+xvHnnPQeUqjSQUGkBimKIEVwLCg4iFKUcRQs\ngIKKF0RFBEXnIigooKAOiIwVBkeUIirg0KVJJ0BIIT05SU7aafcPbo6J6YeEBPh+1mK5s9/9vvvd\nSSBr7Tz+fgaHw+EQAAAAAAAAAAAAAAAAgCplrOkNAAAAAAAAAAAAAAAAAFcigjkAAAAAAAAAAAAA\nAABANSCYAwAAAAAAAAAAAAAAAFQDgjkAAAAAAAAAAAAAAABANSCYAwAAAAAAAAAAAAAAAFQDgjkA\nAAAAAAAAAAAAAABANXCv6Q0AAAAAAADANf369VNsbKy6deumFStWVMs9Dh06pPfff18HDx6UyWRS\nnTp11KNHDz399NPq37+/JGn48OGaOXNmtdy/Io4dO6Y2bdq4PN/hcOjHH3/Uv//9bx06dEgpKSly\nd3dXw4YN1bNnT40ePVpNmzYtd41vv/1WX3/9tY4ePars7GzVrVtXERERGj16tDp06FDuPlJTU/XJ\nJ59o8+bNio6Olpubm6655hoNHDhQo0aNUnBwsMvPCAAAAAAAagbBHAAAAAAAAJTo8OHDGjlypPLy\n8pznEhMT5e5eO14pRUVF6bXXXlNeXp7LwaSMjAxNmjRJ27ZtK3I+Pz9fp06d0qlTp/Svf/1LU6dO\n1ciRI0tcIzc3V08//bR+/vnnIudjY2MVGxur//znP3rmmWc0bty4Uvdx6NAhjRs3TikpKUXOHz9+\nXMePH9eXX36p999/X+3atXPpOQEAAAAAQM2oHW9RAAAAAAAAUOssXbrUGcoZMWKE7rjjDhkMBoWE\nhNTwzi74+9//rujoaHXr1s2l+Q6HQxMmTNCOHTskSTfccINGjhypli1bKjc3V9u3b9fy5ctlNps1\nc+ZM+fv765577im2zvTp052hnJ49e2rUqFEKCwvT4cOHtWTJEiUkJOjtt99WvXr1dO+99xabn5iY\nqLFjxyo1NVUeHh4aM2aM+vTpI5vNpg0bNmjVqlWKj4/X448/rtWrVyssLMyl5wUAAAAAAJcewRwA\nAAAAAACU6NSpU5KkevXq6eWXX5bBYCgyfvz48ZrYlpPdbr+o+evWrXOGcm6//XbNnTu3SDWg7t27\n66677tKIESNkMpn0+uuvq3///vL393des2PHDn377bfONebPn+/8PHXq1EmDBg3S8OHDFRMTo7fe\neku33Xab/Pz8iuxj7ty5Sk1NlSQtXLhQt956q3OsR48e6tq1qyZPnqzExEQtXLhQM2bMuKjnBgAA\nAAAAl46xpjcAAAAAAACA2ik7O1uS1KhRo2KhnCvB119/LUny9vbWjBkzSmzR1apVKz3xxBOSpPT0\ndP3yyy9Fxj/55BNJkpeXl6ZNm1bs8xQWFqYXX3xRkpSSkqI1a9YUGU9KStJ//vMfSVLfvn2LhHIK\n3HHHHbrtttskSV999ZVMJlMlnxQAAAAAANQUgjkAAAAAAAAokcPhkKQSAyuXO4fDod9++02S1KVL\nF9WpU6fUa2+66Sbn8bFjx5zH2dnZ2rZtm6QLLazq1atX4vx+/fopNDRUkvTDDz8UGfvpp59ktVol\nqcQ2VwX++te/SpIsFot+/PHHUq8DAAAAAAC1y5X3VgUAAAAAAFSL0aNHa9euXZWaU1Kro5SUFK1a\ntUq//PKLzp49q5ycHIWEhKhDhw66++67NXDgwHKrs5w8eVIrV67Uzp07FR8fL4fDobp16+rGG2/U\ngw8+qBtuuKHEeQsWLNDChQsVHBysnTt3KiYmRh999JF++eUXJSYmKjg4WJ07d9Zjjz2m9u3bS5LM\nZrM+/vhjrV+/XtHR0TIajWrbtq1GjhypO+64o8x97t+/X59//rl2796txMREubu7q1GjRurVq5dG\njx6thg0bljk/KSlJK1as0M8//6zo6Gh5enqqffv2GjNmjHr16lXmXFft3LlTDz30UJFzu3bt0nXX\nXSdJ6tatm1asWKGYmBj1799fkjR8+HDNnDnTef0333yjqVOnSpJ2796tH3/8UUuWLFFMTIyCg4N1\nww036J133pGXl5ckafv27frqq6+0b98+JSYmysPDQ+Hh4YqIiNC9996r7t27F9nPn78XC+9v/Pjx\nmjBhQrnPmZ+fryeffFIJCQlq0aJFmdcWBJQkKS8vz3l86NAhWSwW5+elLF27dtX69eu1b98+5efn\ny9PTU5Kc4aDy1oiIiJDBYJDD4dCOHTs0dOjQMu8HAAAAAABqB4I5AAAAAACgWri5uRU7t27dOr38\n8svKzMwscj4hIUEbN27Uxo0bdeONN+rdd99VSEhIsfkOh0Nz587VsmXLZLfbi4xFRUUpKipKX3/9\ntUaOHKmpU6eWWell69ateuaZZ5SVleU8l5iYqPXr1+unn37S4sWL1bhxYz366KOKiooqMnfPnj3a\ns2ePTp06pYkTJxZb22q1atasWVq1alWR83l5eTpx4oROnDihTz/9VNOnT9fw4cNL3N+vv/6qCRMm\nyGw2O89lZ2dr69at2rp1qx5//PFSn602+de//qW5c+c6P05KSpLZbHaGcmbOnKmVK1cWmWOxWJxf\nz2+++UaDBw/WG2+8UaWVe7y8vDR27NgKXVs4BFQ4TBUZGek8btq0aZlrNG7cWNIfz9a6desiawQG\nBpb4PV/A399fISEhSklJKXJfAAAAAABQuxHMAQAAAAAAFTJr1ixlZ2eXOu5wOPTyyy/r0KFDkqQp\nU6YUGd+wYYOeffZZ2e12eXh4aNiwYerXr58CAwN1+vRpffbZZzp48KB2796thx56SJ9//rn8/PyK\nrPH6669r+fLlkqQ6depozJgxioiIkNFo1MGDB/XRRx8pMTFRn376qcxms+bMmVPiXrOzs/X000/L\narXq0Ucf1S233KK8vDytXr1a33//vfLz8/Xqq6/KYDAoJiZGI0aM0IABA+Tj46Nff/1VS5YskcVi\n0aJFizRkyBBn6KLA9OnTtXr1akkXKp3cf//9at68ufLy8rRv3z6tWLFCSUlJevnll+Xp6akhQ4YU\nmX/kyBGNGzdOFotFHh4eGjFihPr16ycPDw/t2rVLy5Yt0+LFi2U0Vn2X8htuuEFr1qyRJD322GNK\nSkpSu3btNHv2bEmSr69vpdabN2+eGjRooGeeeUaNGzfWgQMH1Lx5c0nSmjVrnKGcbt266YEHHlDj\nxo2Vl5enY8eO6aOPPlJcXJzWrl2rDh06aPTo0ZL++F4saX9hYWFV8nkokJeXp3/+85/Oj2+55Rbn\ncUJCgvO4vOpHDRo0KDKvIJhTsEbh8dLUr19fKSkpRe4LAAAAAABqN4I5AAAAAACgQsqrCDJv3jxn\nKGfo0KEaM2aMcywrK0svvfSS7Ha7fHx8tHTpUnXt2tU53rFjR91zzz166aWX9NVXX+nkyZOaN2+e\npk+f7rxm7969zlBO8+bNtXz5ctWtW9c5HhERoSFDhuiRRx7R4cOHtXr1avXr108DBw4sttf8/HxZ\nLBZ9/PHH6tmzp/N8nz59FBsbq4MHDzqr5MybN69Iy6ouXbqoTp06eu2112S327V582Y9/PDDzvFN\nmzY5Qznjxo3T5MmTi9y7W7duGjZsmEaPHq1Tp05p5syZuvXWW1WnTh3nNTNnzpTFYpHRaNSiRYuK\nhEEiIiI0aNAgjRgxQmlpaWV9SVzi5+entm3bSpKz3VLhc5VlMBi0bNkytWzZUtKF/Rf4+uuvJUmt\nWrXSsmXLnPeTpBtvvFG33XabBg8eLJPJpC+++MIZzCn4XqyK/ZXnzTffVExMjCSpd+/ezueQJJPJ\n5Dz+c4jsz3x8fJzHGRkZxdYob770RyjqzxWnAAAAAABA7VX1/1sVAAAAAAC46qxZs0aLFy+WJHXu\n3FmvvvpqkfGvvvpK6enpkqQJEyYUCeUUMBqNeuWVV9SsWTNJ0hdffOGcI0nLli1zHr/11ltFQjkF\ngoODNX/+fGcbrQ8//LDUPd92221FQjkFCgd5unXrViSUU6B///7O43PnzhUZW7p0qSSpdevWmjRp\nUon3DgkJ0SuvvCLpQvWeL7/80jl24sQJ7du3T5J03333FQnlFGjRooWef/75Up+tNunWrVuRMEth\nycnJki5UmykcyilQv359TZw4UY8++qhGjRolh8NRrXv9s08++cRZ0cfX11dTp04tMp6fn+88LmjN\nVRpvb+8S5xUclze/8DWF5wMAAAAAgNqNYA4AAAAAALgou3fvdla2adiwod57771iIYtt27ZJktzc\n3DRs2LBS1/L09HSO5+XladeuXZIkq9WqHTt2SJLatWunDh06lLpGkyZN1KtXL0nSoUOHSq0qU1Io\nR5Lq1avnPO7Ro0eJ14SGhjqPC7f3MplM2r9/v3OuwWAodZ8RERHOKikFzyZJv/zyi/P4rrvuKnX+\nnXfeWSTsUVt17Nix1LEWLVpIkrZu3ap58+YpJSWl2DWjRo3S888/r+HDh5f5+axqK1ascLZCMxgM\nmjVrlnO/BQoCYAXXVFThawvWcHU+AAAAAACo3QjmAAAAAAAAl0VFRWn8+PGyWCzy8fHR+++/XyS0\nUuDkyZOSLrSgCgwMLHPNTp06OY9PnDghSYqLi5PZbJZUdtCjQME1DofDee8/a9SoUYnnC4eKSqrK\n8+drCldxOXr0qPPjFStW6Lrrriv1z/XXX+98pujoaOcap0+fdh6X1Z7J29tb1157banjtUWDBg1K\nHXvkkUfk7u4uh8OhxYsXq1evXrrvvvs0d+5cbd++vcYqwyxcuFCzZs1yfi3/53/+R3feeWex6wpa\nS0kXgmRlyc3NdR4Xro5TsEZ58wtfU5HqOgAAAAAAoHYgmAMAAAAAAFxiMpk0btw4paeny2AwaM6c\nOaUGSQpaUoWEhJS7buFgT8G8wi2tSgr+/FlYWFiRfZakoFpNWQpXRKmI0qrzlCcjI8N5XFA1xmg0\nKigoqMx5Fflc1DR/f/9SxyIiIrRw4ULVr19fkmS32/X777/rgw8+0JgxY9S9e3dNmjRJe/bsuSR7\ntVgsmjp1qhYsWCDpQmWaadOmacyYMSVeX/h7qHDlpJLk5OQ4jwt/XQvWKDxemoJ7lPd9AQAAAAAA\nag/3mt4AAAAAAAC4/FgsFk2cOFFnzpyRJI0fP1633357qdcXripTHrvd7jw2Go2Vni9JNpvNeVxa\n2x9396p/LVL4vk888YQGDRpUoXkFzykV3a/D4SizbZGHh4cLu7y0ymu71LdvX/Xq1Utbt27Vpk2b\ntG3bNiUkJEi6EERZt26d1q1bp3Hjxmny5MnVts/MzEyNHz/e2VbM3d1dr732moYOHVrqnIYNGzqP\n4+Pj1aZNm1KvPX/+vPO4cCWmhg0bKi4ursh4aeLj44vNBwAAAAAAtRvBHAAAAAAAUGkzZsxwBhgG\nDRqkp556qszrg4KClJiYqNTU1HLXTk5OLjKv8H+lPyrKlKXwNcHBweVeX1UK79Pb27vMVlSlCQ8P\nl3QhoJSWllZmlaHClYQuZx4eHurXr5/69esnSYqMjNT27du1adMm7dixQw6HQ0uWLFHv3r3VtWvX\nKr9/cnKyHnnkER0/flzShfZS8+fPV58+fcqc17p1a+fxuXPnyry2oF2Zh4eHmjZt6jzfqlUr7dmz\nR2lpacrMzFRAQECJ87Oyspx/f1q2bFn+QwEAAAAAgFqBVlYAAAAAAKBSli5dqq+++kqS1LZtW735\n5pvlVkW57rrrJElnzpwp0rapJAcOHHAet2jRQpLUuHFj+fr6Fhsvzf79+53HzZs3L/f6qnLttdeW\nuIeS5Ofna+HChfryyy+1b98+5/lWrVo5jw8dOlTqfLvdrhMnTlzEbmteenq6fvvtNyUmJhY537Jl\nS40aNUqffPKJpk2b5jz/008/Vfke0tLS9PDDDztDOaGhoVq+fHm5oRzpwve1j4+PJJXbbqtgvFOn\nTkWqNXXq1Ml5vHfv3lLn792711k5qjrCSQAAAAAAoHoQzAEAAAAAABW2adMmzZ07V5IUFhamRYsW\nOYMJZenVq5ekC62eCkI9JcnPz9fXX38t6UIroe7du0uS3Nzc1KNHD0nS4cOH9fvvv5e6RlRUlLZv\n3y5JatOmjUJDQyvwZFWjXr16zioq27Ztc1ZJKcnatWu1YMECTZ8+XV988YXz/MCBA53HBZ+Lkvz8\n88+XdcWcPXv2qHv37nrwwQe1atWqUq8rHJDJy8srMlZeIKw8drtdEydO1KlTpyRJjRo10qpVq9S+\nffsKzff29lbv3r0lSVu2bCm1mtPmzZudYwMGDCgy1r9/f2dLsm+++abUexX8vfHw8NCtt95aof0B\nAAAAAICaRzAHAAAAAABUyOHDh/Xcc8/JbrfL29tb77//vho0aFChuffdd58CAwMlSQsWLChSIaaA\n3W7XzJkzdfbsWUnSvffeW6SN09/+9jfn8ZQpU4q0vCpgMpk0adIk2Ww2SdIjjzxS4eerKgX7tFgs\nmjx5cokVgs6cOaN//OMfki6ES0aPHu0ca9iwoQYNGiRJWr9+fYlhjYSEBM2aNas6tn/JdOjQwRma\nWrlypaKiokq87ttvv3Ue/zkw4+npKUkym80u7eGjjz7Srl27JF1oebZ8+fIibaYqYtSoUZKknJwc\nTZ8+XVartch4cnKyZs+eLelCq7OhQ4cWGQ8MDNTdd98tSdqwYYPWrVtX7B7r1q3Txo0bJUl33333\nJQ2bAQAAAACAi+Ne/iUAAAAAAOBql5CQoMcff1w5OTmSpBdffFFhYWGKjIyUxWJxttj5swYNGig4\nOFgBAQGaNWuWJk6cqOzsbI0ePVrDhw9X3759FRAQoDNnzuizzz5ztqlq1qxZkRZGktStWzeNHj1a\nK1asUGRkpAYPHqyHH35YERERMhgMOnTokD7++GPFx8dLku666y7dc8891fhZKdnQoUO1YcMG/fzz\nzzp48KDuvvtujRkzRh06dFB+fr727t2rf/7zn87AzsMPP6zrr7++yBrTp0/Xzp07lZ6ermnTpmnn\nzp266667FBAQoP3792vp0qVKSkqSr6+vsrOzS9zHggULtHDhQknS+PHjNWHChOp98Ery9PTUk08+\nqddee00mk0nDhg3TqFGj1LFjRwUFBSkxMVHr16/Xd999J+lCW7M77rijyBrh4eE6ffq0jh8/ri+/\n/FJt2rRRUFCQmjRpUu79s7Ky9MEHHzg/HjNmjDIzM3X06NEy5wUFBalhw4bOj7t166bBgwdr7dq1\n2rx5s0aOHKkxY8aoQYMGOnr0qBYtWqSEhARJFwJlBQG1wp577jlt3rxZ6enpevbZZ/Xbb7/ptttu\nkyRt3LhRK1eulMPhUGhoqCZNmlTuswEAAAAAgNqDYA4AAAAAACjXr7/+qsTEROfHL730UoXmvfHG\nG84KIYMGDdLbb7+t6dOnKzs7W59++qk+/fTTYnNuvvlmvfXWW/Lz8ys2Nm3aNHl4eOjjjz9WSkqK\n3n777WLXGAwGjRkzRs8++2xFH69KGQwGvfPOO3rxxRf1n//8R/Hx8ZozZ06J144cOVIvvPBCsfN1\n69bVypUrNXbsWMXGxmrNmjVas2ZNkWuGDx+uhIQE/fzzz9XxGJfEyJEjdfbsWa1YsUImk0nvvfde\nide1atVKH3zwgbPlU4GBAwdq586dslqtmj59uqQLlZbefPPNcu/9ww8/yGQyOT+eP3++5s+fX+68\nIUOGFPt6zpo1S+np6dqyZYv279+vZ555psi4wWDQ+PHj9de//rXENUNDQ7V06VKNHTtWqampWrFi\nhVasWFHsmg8++EB169Ytd48AAAAAAKD2IJgDAAAAAAAumTvvvFPdu3fXp59+qi1btig6Olp5eXmq\nX7++2rZtq6FDh6p3794yGAwlzjcajXrhhRd0zz336LPPPtPOnTuVkJAgo9Gohg0bqnv37ho2bJja\ntGlziZ+sKG9vb82dO1cPPPCAvv76a+3du1dJSUmy2WwKDw9X165dNXz4cEVERJS6RqtWrfTtt9/q\niy++0HfffaeoqCjZ7Xa1bt1aDz74oO655x6NGzfuEj5V1TMYDJo+fbpuv/12ffnll9q/f78SEhJk\ntVpVp04dtWnTRgMHDtSQIUPk7l78NdbIkSOVn5+vL7/8UrGxsfL09Cy1gtCfHTlypMqew8vLSx9+\n+KG+/fZbrV69WkeOHFFWVpaCg4MVERGhhx56qMyvtXShTdf333+vjz/+WJs3b1ZMTIxsNpsaN26s\nfv366W9/+1uR1m4AAAAAAODyYHCUVmsaAAAAAAAAl7W0tDT16NFDL7zwgh555JGa3g4AAAAAAMBV\nx1jTGwAAAAAAAED1OHnypCSpcePGNbwTAAAAAACAqxPBHAAAAAAAgCtQZmam3n77bQUHB+uWW26p\n6e0AAAAAAABclQjmAAAAAAAAXIHWrl2rM2fO6N1335W3t3dNbwcAAAAAAOCqZHA4HI6a3gQAAAAA\nAACqlt1uV0ZGhoKDg2t6KwAAAAAAAFetWh3MsVptSkvLrultAAAAAAAAVEqdOr680wAAAAAAAJcd\n3mm4Jjw8oNSxWt3Kyt3draa3AAAAAAAAUGm80wAAAAAAAJcj3mlUvVodzAEAAAAAAAAAAAAAAAAu\nVwRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAA\nAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAAAAAAAAAAAAAAAA\ngGpAMAcAAAAAAAAAAAAAAAA1at26b7Vo0YJqW/+33/bolVemFjv/zjtzFR8fX+RcVNRZjR8/tkru\n614lqwAAAAAAAAAAAAAAAACXmaeffrZa1yeYAwAAAAAAAAAAAAAAcBXzmzFdXt+ukYwGhdgdVbJm\n3t33yjxjVunjebl6/fVXFR8fL4vFor59+zvHVq36VD/+uEFubm7q2LGznnxyog4e3K+FC+fL3d1d\n3t7emjXrTXl6eukf/3hdMTHRstvteuyxJ9SlS9dS7xkdHa3Jk8fLZDJpyJD7dNdd92r8+LF6/vlp\n8vPz18yZ0+VwOBQSElolnwOJYA4AAAAAAAAAAAAAAAAusTVrvlb9+g316qtvKDr6nLZv36asrCxF\nRp7S5s0btXjxR3Jzc9OLL07Rr79u1f79v6lfvwG6//4R2rZtizIyMrV9+/cKCgrW1Kkvy2RK11NP\njdWnn35R6j1tNqvefHOe7HabHn54hG6+uY9zbPnyZRowYJAGDx6iH3/coNWrv6qS5ySYAwAAAAAA\nAAAAAAAAcBUzz5gl84xZCg8PUGpS5iW557lzUerR4yZJUuPGTXToUIBSUlIUFXVW7dq1l7v7hUhL\nx46ddOZMpEaP/puWL/9ITz/9hMLD6+r6629QZOQpHTy4T0eO/C7pQvAmPT1dwcHBJd7z+uvby8PD\nQ5KHmjdvrvj4OOdYdPQ53X33EElS+/YdqyyYY6ySVQAAAAAAAAAAAAAAAIAKatq0uY4ePSJJio2N\n0ZIl7/3/+WY6cuR3Wa1WORwO7d+/T40bN9WGDet0xx13acGCJWrevIXWrv1GTZs204ABg7Rw4Qea\nO/dd9e07QIGBgaXe8+TJ47JarcrJydHZs2fUqNE1zrFmzVro8OGDkuTcV1WgYg4AAAAAAAAAAAAA\nAAAuqXvuGao33pip8ePHymazafjwkTKZ0tWyZSv16zdATzzxdzkcDnXo0FG9e9+qI0cOa86cWfLx\n8ZHBYNCUKS8qLCxcb745S+PHj5XZnKUhQ4bJaCy9Ro2np6eee26isrKy9MgjYxUYGOQce/jhv2vm\nzOnatGmDGjZsVGXPaXA4HI4qW60aJF2iEkkAAAAAAABVJTw8gHcaAAAAAADgssM7DdeEhweUOkbF\nHAAAAAAAAAAAAAAAAFwRPv74Q+3du7vY+WnTXqnSSjgVRcUcAAAAAACAKsb/XQYAAAAAAC5HvNNw\nTVkVc0pvrAUAAAAAAAAAAAAAAADAZQRzAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRz\nAAAAAAAAAAAAAAAAgGpAMAcAAAAAAAAAAAAAAACoBgRzAABXtAxzvg6dTpHJnF/TWwEAAAAAAAAA\nAABwlXGv6Q0AAFBdMsz5OhiZIqvdrpSMXIUGeqt5g0D5+3jU9NYAAAAAAAAAAAAAXAUI5gAArkiF\nQzkFUjJylZKRq7rBPmpWP1C+3vwYBAAAAAAAAAAAAFB9+I0kAOCKYzLn69CfQjmFJabnKNmUq3p1\nfNS0foC8PflxCAAAAAAAAAAAAKDq8ZtIAMAVpbxQTgG7w6HzqdlKSMtRw1A/Na3vLw93t0u0SwAA\nAAAAAAAAAABXA2NNbwAAgKpSUijH05SmkCP7Sp1jdzgUk5ylHUcSdOZ8hqy2sgM9AAAAAAAAAAAA\nAFBRBHMAAFeEkkI5BptVt0x7TP0mjZR/7Nky59vsDkUlZOrQ6ZRq3ikAAAAAAAAAAACAqwXBHADA\nZc9kztfByORi7auu/fJjhZw8LIPDoWt++aHCa8Umm6tjmwAAAAAAAAAAAACuMgRzAACXtYJQjs3u\nKHI+4Fyk2q1YoNw6YbK7e6jxlvUVXvNMXIby8m1VvVUAAAAAAAAAAAAAVxmCOQCAy1ZpoRzZbLpx\n7otys1i09+kZio+4WcGnj8k/5kyF1rXa7ToZm14NOwYAAAAAAAAAAABwNSGYAwC4LJUaypHUes0K\nhR49oHO33qG4m/orpvcgSdI1laiak2zKVVJ6TpXtFwAAAAAAAAAAAMDVh2AOAOCyY861lBrK8YuN\n0g2fvKO8oDra9+SLkqS4nv0q3c5Kkk7FmGS12atkzwAAAAAAAAAAAACuPgRzAACXFZvdrsNnUksM\n5chuV9d5L8k9L1e/PTVd+cEhkiSLf2Cl21lJUp7VptNxGVW1dQAAAAAAAAAAAABXGYI5AIDLyslo\nk7LzrCVujef9AAAgAElEQVSOtfjuc9U9uFuxN/VXTJ+/FBlzpZ2VJMWlmGXKynNtswAAAAAAAAAA\nAACuagRzAACXjfMpZsWnZZc45psQqw5L/1f5/oH6bcLLksFQZDyuZz/ZPDzUeMsPlb7v8eh02Uuq\n0AMAAAAAAAAAAAAAZSCYAwC4LJhzLToVYyp50OFQxPxX5JGTrf2PT1VuaN1il1j8A5XQ5WYFnz4u\n/+iKt7OSpOw8q6ISMl3ZNgAAAAAAAAAAAICrGMEcAECtZ7PbdfhMqmyOkqvWNNuwWvX3/qrzXW9R\n1G33lLpOQTsrV6rmRCdmyZxrqfQ8AAAAAAAAAAAAAFcvgjkAgFrvRLRJ2XnWEse8UxLVcfEcWXz9\ntPeZGcVaWBVW0M7qmq3rK70Hu8OhE+fSKz0PAAAAAAAAAAAAwNWLYA4AoFY7n2JWQlp2yYMOhyLe\nmSFPc6YOPvq8cuo2LHOti2lnJUmm7HzFJpsrPQ8AAAAAAAAAAADA1YlgDgCg1srKsehUjKnU8cY/\nfaeGO35SYsfuOn3HsAqtGd3n9gtzXWhnJUln4jKUl29zaS4AAAAAAAAAAACAqwvBHABArWSz23Xk\nbKpsDkeJ415pyer83ixZvXy0Z/JrkrFiP9Iupp2VJFntdp2MpaUVAAAAAAAAAAAAgPIRzAEA1Eon\nok3KzrOWOt75vdnyyjTp0COTZG7QuMLrWv0CLqqdlSQlm3KVlJ7j0lwAAAAAAAAAAAAAVw+COQCA\nWud8ilkJadmljjfaukGNt/yg5HZddOqekZVe/2LbWUnSqRiTrDa7y/MBAAAAAAAAAAAAXPkI5gAA\napWsHItOxZhKHXfPNqvze7Nk8/DU7smzKtzCqrCLbWclSXlWm07HZbg8HwAAAAAAAAAAAMCVj2AO\nAKDWsNntOnI2VTaHo9Rr2n62SD6pSTr2wFhlNW7u0n2sfgFKiOh1Ue2sJCk+NVu5+aW32wIAAAAA\nAAAAAABwdSOYAwCoNU5Em5SdV3rQxT/2rK79ZrnM9Rrq2P1/v6h7RfceJOni2lnZHQ6dS8i6qH0A\nAAAAAAAAAAAAuHIRzAEA1AopplwlpGWXeU3HxXNktFp04LEpsnt5V3hto8FQ7JyzndVFBHOkC1Vz\n8vJtF7UGAAAAAAAAAAAAgCsTwRwAQK0Qm2wuc7z+rl/UcOcvSuzYXbG3DKzwum4Gg5rWCyh23tnO\n6syJi2pnZXc4FJ1I1RwAAAAAAAAAAAAAxRHMAQDUuJw8q1Izc0sdN1jy1WnxHDmMRu17cppUQgWc\n0oQGeatRuJ/cjcV/5FVFOytJOp9iVp6FqjkAAAAAAAAAAAAAiiKYAwCocXEpZVfLab3mUwXEnNWp\nux9URvNrK7V2eLCP3N2MahjmV/y+VdTOyuZwKIaqOQAAAAAAAAAAAAD+hGAOAKBG2e0Oxadklzru\nlZqk61e+r7zAYB0ePb5Sa7sZDAoJ9JIkNQr3k/FPlXYKt7MKOHe68psvJC7ZLIuVqjkAAAAAAAAA\nAAAA/kAwBwBQo5LSc2Sx2Usdb//RPHlkm/X7mKdlCQyu1NqhQd5y+/8WVl4ebqpXx6fYNQXtrKqi\nak50YtmVfwAAAAAAAAAAAABcXQjmAABqVGxy6WGWOscOqvmG1Upv0Uan/zKs0muHBxcN4lxT17/Y\nNc52VlvXV3r9P4tNzpLFWnrICAAAAAAAAAAAAMDVhWAOAKDGZOVYlJGdX/Kg3a7O782WJO17cprk\n5laptQu3sSrg5+2h0EDvIueqsp2Vze5QbHLWRa0BAAAAAAAAAAAA4MpBMAcAUGNik0oPsTTdtFah\nxw/qXJ+/KLnDjZVeu3Abq8KuCS9eNaeq2llJUkyiWdYyWnMBAAAAAAAAAAAAuHoQzAEA1Airza7E\ntJwSx9zNWeqwbK6sXt46+NjzLq3/5zZWBeoEeCnAx7PIuapsZ2W12xWbVHp7LgAAAAAAAAAAAABX\nD4I5AIAaEZ+aLZvDUeJY288WyTstWceGP6acug0qvXZJbawKa1yvaNWcqmxnJUkxSVlUzQEAAAAA\nAAAAAABAMAcAUDPOp2SXeN4/5oyuXb1C5nqNdHzYIy6tXVobqwLhQd7y9nQrci669+2SqqadlcVm\nV1wyVXMAAAAAAAAAAACAqx3BHADAJZeWmSdzrqXEsU6L58hotejAuCmye3m7tH5pbawKGAwGNQ4v\nWjUnrmffKmtnJV2ommOzUzUHAAAAAAAAAAAAuJoRzAEAXHJxKSVXk6m/82c12LVFCZ16KPbm21xa\n281Ydhsr571CfeXh9sePwcLtrIJOH3fp3oXlW+2lVgUCAAAAAAAAAAAAcHUgmAMAuKTyLDalmHKL\nnTfm56vT4jmyG920/4mpksHg0vqhgWW3sSrgZjSqYZhfkXNnbr9PktTj9Wflbs506f6FRSdkyW53\nXPQ6AAAAAAAAAAAAAC5PBHMAAJdUfEq27I7iYZXWa5YrIDZKkXc/qIzm17q8fnltrAprFOYnY6EA\nUNxN/XVi6MMKPBepnrMmyWCzurwPScqz2nQ+lao5AAAAAAAAAAAAwNWKYA4A4JJxOBw6X0IbK5/E\n82q7cpHyAoN1+KHxLq/vZjQoNNC7wtd7eripfohvkXMHHntecd37qP7eX9Vp0Rsu76VAdEJmiUEk\nAAAAAAAAAAAAAFc+gjkAgEsmxZSrXIut6EmHQxHvvCKPnGwdfPQ5WQKCXF4/NNBbRmPlWmBdE+6v\nIjPc3LTzf/5Xpmat1WrtZ2q5dqXL+5GkXItNCVTNAQAAAAAAAAAAAK5KBHMAAJdMXAnVcppu+rca\n7N6q+C436eygoRe1fmXaWBXw9XZXaFDRKjtWP39tm7lIuUEh6vT+G6q359eL2te5hCyq5gAAAAAA\nAAAAAABXIYI5AIBLIifPqtTMvCLnvFMS1WnRG7L4+GrvpJmSoXLVbgqrbBurwhrXDSh2Lrt+I/13\nxkI53NzUc9YzCjgX6fLecvKtSkzLcXk+AAAAAAAAAAAAgMsTwRwAwCURl/ynajkOh7osmCnPrAwd\n+vuzyq7X6KLWd6WNVYEgP08F+XkWO5/SrrP2TJ4lj+ws9XrpCXma0lze37mETNnsdpfnAwAAAAAA\nAAAAALj8EMwBAFQ7u92h+NTsIueu+eV7Nfrvj0pq31WRdz1w0feo60Ibq8Iah/uXeP5c/7t1ZMTj\n8j8frZtenSBjfr5L62fnWXX8XPrFbBEAAAAAAAAAAADAZYZgDgCg2iWm58hi+6NajGd6qrq8N0tW\nL2/tnjxLMl7cjyM3o0EhLraxKhAW7CNfL/cSxw4/NEHRtwxS+O971eXdGZLD4dI9EtNzdC4h8yJ2\nCQAAAAAAAAAAAOByUvJvIOGUlpmns/EZcjMaZDQa5GY0ys1okJubQe6Fjo3GCx8bDZIMrrVSKYvB\nIPn7eMjdreayVKkZuUo25apVoyCX28UAuDr9uY1V5/dny8uUpv1jX5C5UdOLXv9i2lgV1riuv45H\nl1DVxmjU7uffkF9CrJpvWK3MJi10/P5HXbrHmfMZ8vfxuOggEQAAAAAAAAAAAIDaj2BOGVJMuTp8\nNlX2ClRG8E5OUMQ7M1Tvt1+V1KGbYnoPUuzNA5QfWKfK9mM0GBTg66HQQG+FBHrL38ejytYuS3au\nRadiM5SamStJMuda1L5FaI2GhABcPjKz85WR/Uf7p4a/blKTn9cppW1HnRwyukrucbFtrArUq+Or\nM+czlG+1Fxuzefvo11ffU/8J96v9sreV2aiZ4m4eUOl7OCQdOZumLteGy9ebH8MAAAAAAAAAAADA\nlczgcLjYj+MSSUqqmZYfiek5OhaVVn4ox+FQ041r1GnRG/I0Zyo7rL58k+MlSXajmxI796iWkI4k\nebm7KSTQS3UCvRUS4FXlQRmL1a6z8Rk6n5Jd7PPg7+2h9i1D5eXhVqX3BHDlOX4uTedTsyVJHpkm\nDXrsLnlmmrRx0WplNml50eu7GQ26+YYGVVbJKzUjV2fOZyozJ7/E8eBTR9R30ihJ0ub5K2Vq2dal\n+/h5e6hz6zBCjgAAAFeo8PCAGnunAQAAAAAA4CreabgmPDyg1DGCOSWIT83W8XNpKu8T452coK7z\nX1aDXVtk8fHVwcem6PSd98s3PlbXbF2vxlt+UMiJ3yVVf0inoJpOSIC3QgK9FODr6fJadodDcclm\nRcVnymIrXjWigLeHmzq0DJWv96Wp3APg8mO12bX993jZ/v9HzY3/mKpmG9fo0N8m6diDY6vkHvWC\nfdS2WUiVrFVYhjlfsUlZSjLlFgsnNty2UTfPnKjssPr6ccHnyg2t69I9woK8dUPz0KrYLgAAAGoZ\nXmIBAAAAAIDLEe80XEMwpxJik7J0MtZU9kV/qpKT0Lmn9kx+Tdn1GhW71Pd8zIWQztb1Cjl+SNIf\nIZ3o3rcrasBgOTxcD9GUxsPNqCA/TwX5eynIz1P+vh4yGsqvJpFiylVknEnZedYK36d9i1AF+lX9\nMwC4/J2Oy9C5xAv/jtfftUW3TB+ntFbX68d3/yWHe9WE+m5oFqKwKmplVZI8i01xyWadTzEXaXF1\n3ecfqsOyt5V8fWf9/I9PXP63vFn9ADWrH1hV2wUAAEAtwUssAAAAAABwOeKdhmsI5lTQuYRMnT6f\nUeY1f66Sc2DsCzpzxzCpAqGXkkI68V176b8vvyubd/X9UlmS3AwGBfh5KsjPU8H+Xgr085Cb8Y/2\nKdm5Fp2KzVBqZq5La1/fLEShQd5VueVa7/czKcrKtsjHy73QHzf5ernL29O9ytrqAJeryFiTopOy\nJEnu5iwNeuxueacla9PCL2Vq2aZK7lHVbazKYnc4lJSWo5gk84U2Vw6Hur/xnJr8vE4n7x2t/U9O\nc3nt6g4XAQAA4NLjJRYAAAAAALgc8U7DNQRzKuDM+QxFJZRxr0pUyakI3/Mx6vLea2qwa4uS2nfV\ntpmLZPXzd3H3fzDm5+v6le8rLzBYJ+8bU/p1BoP8vD0U7O8pm92h+NTsYq1aKnVfg0HXNg5W/RBf\nl9e4nJT3/WKQ5OXhViS00zDMt0gYCrhS2R0OHT+XroS0bOe5Lu/MUMvvPtfhUU/qyEMTquxe1dXG\nqjwFba5S41PUd8L9CoqK1I6p/6vovne6tJ6b0aAu14bLj9aAAAAAVwxeYgEAAAAAgMsR7zRcQzCn\nHKdiTIpJzip1vEiVHF8/HRg7RWf+UrEqOWUxWPLV/c0X1HjLD0q9rr22zP5AlsBgl9fzTklUz9ee\nVtiR/ZKk3c/O1tlBQy9qj5XVokGgmtQr/RvuSpCUnqPDZ1MrPS/Yz0vtW4YQzsEVzWa36/CZVKVm\n5jnPhe/boVtf+JtMzVpr43tfVWn7vpquNGPKytPJn3ZrwIRhMtjs+nHB58po1tqltXw83dXl2nB5\nuPNvBAAAwJWAl1gAAAAAAOByxDsN15QVzLmqf/vncDh0/FxamaGcJpvWatBjd6vBri2K73KT1n+w\nVmfuuP+iQzmS5PDw1M6p/9DZ2+5VyPFDuvX5h+WVluzSWiFHD2jA+GEKO7JfMb0GKt8/UF3enaGQ\nowcuep+Vcfp8hk7Fmi7pPS+lrByLjkWluTQ33ZynQ5GpstntVbwroHawWG3afzKlSCjHLSdbXee9\nJIfRqN3Pzq7SUI6b0aCQwJptoRfk7yVry1ba/ezrcs/L0U0zJ8rdXPrPlLLk5Ft1NCpVtTwvCwAA\nAAAAAAAAAKASrtpgjt3h0NGoNJ1PzS5x3JiXq4i3p6v7Wy/I4LBrzzOvausbS5VTt2GV7sPh5q7d\nz87WqcEjFHzmhPo+O1o+iecrtUbTDat163Oj5Z2WrANjp2j7S/O1Y9rbMtpsumnmRHmnJFbpnssT\nk5Slo2dTL6o1Vm1ksV6oBGK7iOcinIMrVU6eVftOJiszJ7/I+Rs+mS//+Bgd/+vflHZd+yq9Z1ig\nt4zGiw9JXqy6wb6KvWWgjg17RAExZ3Xj3GmSi/9OpGbm6XRcRhXvEAAAAAAAAAAAAEBNcZsxY8aM\nmt5EWbKz88u/qJKsNruOnk1Tkim3xHH/2LPqPfUxNdi9VWmt2uqXNz9WYpebqqRKTokMBsXf2Ftu\nljw12r5ZjX7dqLgefWUJCCp7mtWiTovfVIeP5snq66//vrJQ5wYMlgwGmRs2kdXLR9ds26iwI/sU\n1X+wHG5u1bP/EphzrcrNsyq8BlvMVCWHw6Hfz6QqM8dy4YTNpiY/fSerl3el24/lWmzKyLIovI63\njNX1PQVcQlk5Fh08laJci63I+eBTR3Tj29OVdU0z7Zj2thzu7lV63+b1A+Xr7VGla7rCw92ouBSz\nkjp1V9jve9Vg91ZZvX2U0q6LS+tlZOfLx8td/j41/2wAAABwnZ+fV7W80wAAAAAAAKhOvNNwjZ+f\nV6ljFQrmHDhwQM8//7yGDh1a5PzmzZv13HPP6ZtvvpHD4VC7du2Un5+vKVOmaNmyZfr+++/VsWNH\nBQcH6+jRo3rqqaf0zTffaO/everXr58MFQglVMUX3GK1KS0jT3Ep2TpzPlOn4zJkzrOWeG2jrRt0\ny/Rx8ks8r8g7h2v7S/OVHxx60Xsol8GgxM49ZXd31zW/btI1W9br/I23KD84pMTLPU1p6vXKU2ry\nyzqZmrbSL299rLQ2RatRpFzfSf5x59Rg9xZ5pybpfI++1RcuKoE516rQQG95eVy6QFB1iYzLUGJ6\njqQLgajub72gdivfV4t1X8hgtyulbadKBZ8I5+BKkZ6Vp4ORKbLYileBavfPBQo5eVi7psxRZtNW\nLt/D3WiUt6eb/Hw8FOTrqToB3goL8la9EN8K/Rypbp4ebkpMy5HFLsXfeIua/PSdGm3/UUk3dFV2\n/WtcWjMtI092h0M2m10Gg0Ee7ldtgTsAAIDLFi+xAAAAAADA5Yh3Gq4pK5hjcDjK7rfx4Ycfau3a\ntfLx8dEXX3zhPG+xWHTHHXfoq6++ko+Pjx588EEtWbJEP/zwg44fP67XXntNp0+f1uzZs7Vs2TI9\n9dRTuv/++9WnTx89++yzuvPOO9WvX79yN5+UlFmJR70gJ8+qDHO+0rPyZDLnK7uUEE5hBku+Oiz9\nX127eoWsXj7a+/SMC9VnakDrb/6pTovnKC+ojra8/qHSW7crMh4UeUw3zxgvv4RYxd7UX7umvCmr\nr1+JaxnzctVv0kjVOXVEv42frsjBIy/FIziFBHirQ8tLEGyqRgmp2Tp6Lk2SZMzPU4/Zk9Vo+2al\nXnuDfFIS5ZOSqMxrmum3CS8rsXPPSq0d7Oel9i1D5Gbkl+64/CSl5+hoVFqJbevccsy6+4HesvgH\n6bvlG6UKBNd8vdzVKNxfXu5GeXq4ycPdKC8Pt1rRrqo8Z+MzdDb+ws+r0MP7dOtzDyk/IEgb3/9a\nuWH1Lnp9d6NR/r4e8vf544+vtzvBPgAAgFosPDzApXcaAAAAAAAANYl3Gq4JDw8odazcNECTJk20\nYMGCYucjIyPVpEkTBQUFydPTUxEREdq9e7dOnTql3r17S5JatGihyMhISVLbtm2Vnp4uh8Mhs9ks\n9ypuaZKakaujZ1O1/XC8dh5N0NFzaTqfml2hUI5PYpz6PveQrl29QhlNWmrTwi9qLJQjSSeHPqw9\nk2bKMyNdfab8TaGH9znHrvnle/V7ZoT8EmJ1ePR4/ffld0sN5UiS3ctbv85YoNygEHVaNEdhB3e5\nvC9jfr78o89Uak5qZq5M5ss3TZeRna/j0emSJLecbPV66XE12r5Z8V1u0s//+Kd+WPqdTgwZLf+4\nc+rzwiPqNmeKvNKSK7x+ujlPhyJTZbMXrzYC1GaxyWYdOZtaYihHkhpvWS+PnGydGTS0QqEcSWpS\nL0CNwvwUFuyjQD9P+Xi5XxahHEmqW6htX0q7zjow7gV5p6eo56xnZLBc/L+BVrtd6Vl5iknK0rFz\nadpzPFHbDp7X3uNJOn4uTVkFbfYAAAAAAAAAAAAA1CrlpmMGDRqkmJiYYuezsrIUEPBH4sfPz09Z\nWVlq27atfvrpJw0YMEAHDhxQQkKCbDabmjVrppkzZ2rRokUKCAhQ9+7dK7TBslJFBU5Gp+lMolmS\n5OnlIU8vjwqtLUlh239Wh1cnyTMjXXED79HhKbMlXz+Vf9fqlTxstA4GBan9a5PVe9qj2jdniUL2\nblfL5e/L6uun395YosQ+Ayu2T/8WOvDGIt04YaRunjVJ/132b+U2qER7FYdDdbds1HULX5dfbJT2\n/mOZkm4uv9pRgbRsi1o1u/yq5uRZbDp8Ll1+fl5yz8pQxEvjVOfgHiXccpsOvLZAvp4XSlGdfn6m\nkgffr3Zvvqimm79Vw92/6MQTLyh68ANSBSrh2CSdS85RRJu6cnOjcg5qv8iYdMWn58rf37vUa1pt\n+EYOg0FJQx5QQBnXFfBwN+r61nXldpkEcUoSm5arjP8PIiaM/LviTh5Sw41rdePHb+vo5BnVdt+s\nfLvy7FLzCvy8BAAAwKVVkXcaAAAAAAAAtQ3vNKqWy2Vr/P39ZTabnR+bzWYFBARowIABioyM1IgR\nI9SlSxe1a9dObm5umj17tlauXKnWrVtr5cqVmjNnjl555ZVy71NWiSSrza5jUWlKzsit9P4NNquu\nX75Q169aIpuHh/ZOnKHTd94v2Q1SVuXXqw6ZNw1U1kvvqMfsSbrx6dGSpKyGTfTrjIXKaNa6UvvM\nbNVB7k9OU8SCmer4wlj99PZK2bx9yp0XFHlMnRbPUd0DO2V3u/Dt0mzpOzrdoadUwRYqmVm5CvZx\nV7B/6T3Vahu7w6EDp5JlMufL05Sm7lMfVZ1TRxTV9y7tfv51OfIdUv4fn//MRq0UO+8ztfzuX2r/\n0Xy1e+tF1f/2C+2dOEOmlm3KvV9mVq7STdnq0DKUtlao1VIzcnXwdEqZ1wSci1SdQ3sVH3GzkgLC\nKvRvVeNwf6WmZFXVNmuEl/HC3+UCO8a/ov4njqjpV//U+VY3KLrfXdV279PRNoX6VTyUCgAAgOpH\n2WcAAAAAAHA54p2Gay6qlVVpWrZsqaioKKWnpys/P1979uxR586ddejQIfXs2VOrVq3S7bffrsaN\nG0uSgoKC5O/vL0mqW7euMjIyXL21JCk716rfTiS5FMrxSk1S7/95VNevWqKs+tdo8/xVOn3X8AoH\nTS6luJv6a9vMRbL4+ul811u06d3PL4RyXHD6rgd0+i/DVOfUUXWd95JUSgsaSfJKS1HEvJd125ND\nVffATsV176MNS/6tmF63KfT4QdXdv6NS9z5z/uK+3pfaqRiTTOZ8eack6tbnRqvOqSM6/Ze/ateU\nOXK4l/LLbzc3RQ4eqR+Wfadzff6i0KMHNOCpv6rDB2/JLcdc8pxCTOZ8HYxMoa1VLWS12WW3l/73\n5WqRb7Hp2P+xd9/RcZRXG8Cfme1dW9SbZRV3G3dTTUvoEAKBjxZCCRBIKKYnAUxNaAkECC0QQgkJ\nCR3TwRhwMC64W7YsW1YvK+2utL3NfH8IjI1taXa1siT7+Z3Dsa2d+77vyquVj+bh3gZvv9eVvf8q\nAKDuuNMVr13g2vNIvpEix75z2DFpMOJ/t/0FcaMJM/58K6x1NYO2dzASRzSeHLT1iYiIiIiIiIiI\niIiIiCg9giz3kc74VlNTE+bNm4dXXnkFb7/9NkKhEM4880x8+umneOyxxyDLMk477TScc8458Hg8\nmDdvHsLhMCwWC+6++27k5uZi+fLleOCBB6BWq6HRaHDnnXeiqKj/cUq7S2J5eiLYsM2LxI4BBlmG\n1u+D3tMJvcfd+6t3598bPG7ovZ3Q+rsBAM0HHYVl192DuNmawqdsaAjxGGSNNiPrHH79L+DasBKr\nL74ONWdctNPjYiyGijdewPh/Pg5NKIieknKsuuwmtM84BABgr1mHo3/9M7QfMAef3/f3lPaePNoJ\nh7X/kTZDraUziJomH4ztzZh744UwtzSg5tTzsPqym1MKb+Uu/xLTHrkD5tZGhFx5WH3pDWg69Jh+\nx1vZTFpMGu2EmmOthlwoEkeTO4h2bwiluRaU5O7fLdvWbOmExx/t8xohHsNJZx8OAHjnpc8gaft/\n33JYdJhc7srEEYfcyho3ukOxnT5W8OVHOPiOK+EvLMXHj/4HCdPgvI7GltiR5zAOytpERERElDr+\n32VERERERERENBLxZxrp6atjjqJgzlD64V94Q7sfda092PHQeUs/x6z7b4Kuu+9ODlFrFiKObETs\nTjQffDS2nHR2Rrvk6DQqjMqzQBQHofOODHj8UXT6wkgO8K9M53Hj6F//DAaPG1/c9WRv6EaWUbD4\nY0x5+n6YWxsRtdiw/vzfYOsJZ0JW7Tzx7NCbL0beisX45OGX4Rl3gOJ9rUYtplVlD+jsg83rj2Lt\n1i4YG7di7o0XwehuxYazL8P6869M67UiRiMY9/KTGPvKMxATcXgrxmPtBVf3fs77WE+nVqG8yIac\nrP7HjVHmdXVH0NwZ2CmEohZFzB6fC416/wxMNXYEsKWlu9/rCj//AAfddTVqfno+Vl92k6K1J45y\nwLWPvNab3AHUNu/6eZr0twcw9pVn0D51Dv536yNImMwZ3zvXbsS4UnvG1yUiIiKi9PCHWERERERE\nREQ0EvFnGunZJ4I5SUnCpgYfOnzhnR4vf+ufmPrXuyGpNWibfggiThfCjmxE7Nm9IRyHCxG7CxG7\nMyMdZ/bEYdFhXKkdGrVq0PYAekfqdHjDaPOE0PODrgypsG9aiyPmnYukTo9l196NyjdeQM7qpZBU\natSefDY2nHs54hbbbmtda5biiOvOR8ucI7D4jr+mtO/EMgdctuFzA16SZXQHYvD0RNDVE0EomoC1\nrgZzb7oIem8n1lw0D5vO/GXa61sMGuQ5jMj3tsJ0390wv/UaAMA9cTrWXngNuiZO77PeYdGjssgG\ng07d53U0cImkhLauEJo7gwjHEru9pjjbjPLC3X9d7Mv8oRhWbu6EpODbxSG/vQT5y7/AB0+9pWjs\nnrE9UtgAACAASURBVE6jwpzxuRCG4SjBdETjSSxZ34YffqaEZAIH3nEVCr/6FN2jKvHFXU8gnFOQ\n0b11ahUOnJiX0TWJiIiIKH38IRYRERERERERjUT8mUZ6RnwwJxJLYN1WDwKR+PcPJJOY8tR9qHr9\neUSynFh8+2PwjJuy188nABiVZ0VJrnmv31gOReJo9YTQ4QkjmkimXF/64RuY9cDN2//cMnsuVl9y\nIwLFZX0XyjKOmHcuXOu/wYdPvIHu0WMU72nWazBjbE7KZ82kcDQBjz8Kb08EXn90pw5E9pp1OPTm\ni6Hzd+ObX/8eW04+J+X1NSoRuQ4j8hxGmA2anR5TrVsL7V23w/zphwCA1pmHYt0FV8NXMX6P66kE\nASW5FhTnmiHuI+GF4WTHcVVJqe+3Q1EQMGtcDvTa/ScolUhK+KbGjVB092GlHRk6WnDCeUeja9wU\nLHzoZUXrl+VZUZq3b40IW1XbCV9g15FfQjKBKU/ci8o3X0TY4cLiOx6Ht2piRveeMSZnl/cdIiIi\nIhoa/CEWEREREREREY1E/JlGevoK5qjmz58/f+8dJXUtHX6sru1CJP598EQVDuLAu+eh7KM30F1a\njkX3/wM9Zf13Zsg0rVrExDIn8pzGIen2oFGr4LDoUZhtgsWogSTLiMSSu3Rq2JPu8rGQBQFiPI7l\n19yJ6nMvR8ymYAyKICDicKH003egCfSg+dBjFJ85lpBg0mtg0u+9G8eSJMPrj6K5M4itW9vRvnYz\n4uvXQ79mJVyrvkbBV5+iZOECjH73Pxj/4mPQhENYdu3dqDv+DMV7CACcVj1G51tRVZIFp1UPrWbX\n7klyTi4Sp5+B2OFHQtqyFY6lX6J8wSuw1m9B96iq3X7+ZQC+QBSd3RGY9er9KhQyaBIJ6K+fh9bq\nrVhlLoY/HIeSiKIMIJGQ95mxS0rUNPrg3U3IZHeqXnseOauXYv25V8BXueew2XdEQcDYUjvUqn1r\nPJgsy+jqiez6gCiibdZhiJltKFr8EUo/fgs9JeXwl5RnbG+DTg2bafC6wxERERGRciaTDqEBdLol\nIiIiIiIiIhoK/JlGekwm3R4fG9Ydc9q6gli8smmn8Sn6rg4ccstlsNdWo33qgfjqlocQN1v3+tls\nJi3Gj3JAt5vwxVCKJ5Jo94TR5A7sFGYaKAFAvtMEk0GDzU0+QJbxo1/9FLZtNXj/mQUIFI5SvJZJ\nr8GMMdmDHmaSJBnedz+G4y/3Qd/ZAb23E9pg38m+mMWGFVfNR9Nhxyraw6hTI89hRK7DmPprQZah\n+fwzaO+4Dca1qyCLIrb96CfYcO7lCOUW7rEs32HE6ALroI9N25cZHn4Q5rtvhyyKWPjgi+iaMFVx\nrQBg+n7SlaTdG0J1vVfZxckkjj//R9D6u/H2vz5H0mDqtyQ7y4AJoxwDPOXwE09I+Gp9W5+jv/K/\nWog5f7gOqmgYay6+DjWnXwBk4D3RYdFjcrlzwOsQERER0cDx/y4jIiIiIiIiopGIP9NIz4gdZbWx\n3oO1NR3b/2zbshGH3PIrGDvbsPW40/HNb26FrE7t5rhOrcKofAtEQYDbF4bHH+3z5unuFOeYUZZv\nHdZjhSRZRktnEA3tfsQS0oDWyjLrUFFo2x5EWF/ngbs7jKJF7+HAu+dh63GnY8U1d6a05rhSO3Lt\nxgGdqy8d3hDqt7bj8PN+DGNnOyI2ByLObETsrt7/dvh92JmNiD0bEUc2EkZTnzfHtWoRNpMONpMW\nNrMWFmMGOlPIMjTvvgP93XdAX7sJklqD2pPOwrpfXLnHcINGJWJ0gRX5zv7DD7QzVc0mZB15COI6\nPbSBHgTzivDR46/3/t0r5LTqMWn0vh1+CEcTWLHJjYSk7P0jd/liHPbbi1N6P5hS7oLdsufk6Ei2\ndmvX7rvm7CCrdgMOueVXMHR1YMsJZ2LlFb9L+XvaD6kEAQdPyocoDt/vT0RERET7C/4Qi4iIiIiI\niIhGIv5MIz19BXNGzEycvKWLMOfuedCEQ1hz8bXY9LOLUuouIAoCinPMKMk1QyX2jk3JdRiRSEro\n6o4oCuloVCLGlGTBZRv+Y2xEQUBRthn5TiOa3UE0dgQQT6YW0DFo1SgvsO4ytqeiyAZfIIqmQ34M\nf9EojProTWw49wqEs/MUr13f5kdOliHjXXN6QjFsae5GdzCGMf/9B4yd7ag+85dYd9G8tNYzaNXb\nQzg2kw5G/SB8yQgC4iechPixxyP62n+g/8NdqHr9eRR89SmWz7sL7gNm71IST0rY1OhDuyeMymLb\nXh0NNqIlkzBeeTnEWBTLb34Ajo1rMO7fT2PKE3/Ainl3KV6mqycCXyCKLPO+GSqRZBnV9V7FoRwA\nKPvgvwCAumNPU3S9UafeZ0M5AJCTZeg3mOOrGI9P/vJvHHzr5Shf8G+Y2prw1e//jIRpz9+0+5OU\nZXQHY/v055aIiIiIiIiIiIiIiIhoJFHNnz9//lAfYk86u8Po6Aqi/K2XMPu+mwBBwJLf/gl1x/8s\npVBOTpYBE0c7kJ1l2KXLjSgKMBs0yLEbUZjdO6oJMhCJJbFjRMdi0GJyuRO2PuaCDUeiIMBm1qHA\nZYIgCAiE4uivP5BaFFGWb8XYUnvv5+OHj6tEaDUqdPqjSOiNKFr8ESBLaJ95qOJzxZMSDDp1xsYB\nReNJ1DZ1Y3NzN6LxJDQ9Phx49zwkdXos+f2fIWmV/b0ZtGrk2g0ozjajoigLpXkWuLIMsBi10KjF\njJx1j0QRyQkTET3/QsSjMVgWfYKyD1+HzueBe/IMyJpdu/NE4km0dYWQlGRYTZph3cVpONA/9ThM\n/3weDXOPw8ZzfgX3pOnIX7oIBUs/h2/0WPhLRiteKxRJ7LMdi+pa/ejwhRVfr+32Ysafb0VP8Wis\nu+AaRe/PpXkWWE0Z6Dg1TOm1KjS7g/2+3yZMZtQfdSJsdZuQv+wLFCxZiNbZcwc0olGnUTGYQ0RE\nRDQMcB47EREREREREY1E/JlGekx9ZEkGOWkwQMkkpjx+D6Y9eheiVjs+u/8faD70x4rLLQYtplZm\nY/woB/Ta/judqFUicu1GTBztxEET8zCu1A6XTY9ClwlTq1ww6EZMg6FdqFW9YZvZ43NR5DLvNsAh\nAChwmjB7fA6Kc3Z/zXfyHEY4rXrUH3kiQtn5GP3uf6D1eVI607a2npTHiP2QJMmob/Nj6YZ2tHlD\n2z8+9t9PQxvoQfVZlyq+wa0SBRxQ4UJlURZy7EboNKoBnS1tej3i8+9Ex1sfwj+qAhVvv4wfX/oT\nZK/6ereXS7KMhg4/lm3sgKefDh37M7FuK4z33I6ozY6VV/weACBrtPj6xvuQ1Oow46FbofO4Fa/X\nE4rBnUJ4ZaTw+qNo7EitNV3px29CTMR7u+UoCOWoBAF5jsEbZTccqFUiHFa9omuTBhMWz38Mm39y\nHmz1tTjqyv+DfeOatPf2+qNp1xIRERERERERERERERFRZg3rjjm6M05Hwbuvobu0HIvu/wd6yiqV\n1alVqCzKQlVxFvTa9MIVO3bScVr1GR+5NFRU394sznUYkEzKCIbjAAC7WYcJZU7kO03bR331J8uk\nQ6sviqQoonDJQkhqDdxT5yg+SyIpQ6dRwWJMr2tGhzeEdXUedPZEdupKYehoxex7b0DEmYOlN94L\nWaUsUFWeb1N8I31vEAoLET7rPLg9QeQs+azf7jmJpIx2bxjBSAI2kxZq1fDO3e1VkgTTL86Bdlsd\nll17N7xjJ29/KJblQNxgQtGXH8FaX4uGI09U3JErGI5v70a1L4gnklizpQsJKYXAnCxjxp9vhTbo\nx9Ib/oikvv9Rf3kOI3Ls+3YwBwAgQHl4SxTRNvNQxMw2FC3+CKWfvI2eknL4S8pT3jaeSKLQZYZK\n3Ddel0REREQjFf/vMiIiIiIiIiIaifgzjfSM2I45lo/fR9u0g/DpQy8jlFfY7/UqQUBprgWzxufs\n890YBkqvVWNMiR0zx+ZiUpkTUypcKY+V0mlVKC+0YutxpyOS5UTFW/+EOphap436dj+kFEIASUlC\nhy+MlZvd2FDvRSSe3OWaCS88ClU8hnXnX6l4hJXFoEFh9vAbS6QxG2G8/w9Y8bfegFrF2y/jmEtO\n2WP3HKA3CLC0uh1N7gDkAXYk2lfonnsGhiWL0XzQUWiae9wuj9eecg7aph+M/GVfoPztlxWvG4om\n0NoV6v/CEWJTgw/RxK5fU31xbFwNW30tmg8+CjGbXVFNgWv4fa0NBpdVn3I4pvbU87B4/qOAIGL2\nvTek/J4KADIAb4Bdc4iIiIiIiIiIiIiIiIiGg2HdMaehcjK+OuF8SAo6MGSZdJhS4UR2lqHPEUy0\nM41ahFGf/ogui1ELX0RCJBxDwdJFSBjN6Jw0XXF9UpKhUYuwmvbcNScpSejsjmBbmx81DT50+MKI\n7iaQAwDWuhpM/8vt6CmtwDe/uRVQ0P1HADChzKlo3NlQEAUBtspR2HjkTxAMxZC39PPe7jneLrgn\nz9xt9xxZBjz+KDw9EZiNmqEbyzUMiI0NsP7iHCR0Bnx515NIGM27XiQI6Jg6B6M+fB35yz5H06HH\nKA6ZBEJxFLiMI/59p9kdQFNnMOW68S88CnttNVZfehOCBSX9Xm81ajEqT9l4uZFOEASEIgkEI/GU\n6gJFZRAkCXkrFsNfPBrd5WNT3lstCnDZ+v/eSURERESDh/93GRERERERERGNRPyZRnpGbMec0CGH\nQ1b338VFp1ZhQpl92AYr9nVVxVnYdvJZiJksqHztH1BFFI5u+VZjewBJSdrpY991xlm/zYP/rW3D\nhm0euH1hJPvpADPp7w9BkCSsuWgeoFIWRsl3mvoMBg0HgiCgqiIP/ptuwad/+Re6SytQ8c6/ervn\nrFyyxzp/OI6VNW5sbvIhkZT2eN0+S5ZhuPo3UIWCWHXZzYg4c/Z4acSZgxVX3Q51NILZ994AIaEs\nTBFNJNHUkXqgZThJShK2tvakXKcOBVHy2XsI5hagfdqBimr2l24538nJSi8c03DECQCAkoXvpFXP\njjlEREREREREREREREREw8OwDuYoIQAYW2qHRr3/dgQZagadGsWVhag9+Wzouz0oe//VlOqjiSRa\nOkNph3G+41q7HAVLFsI9aQbaZs1VVKNTqzC6YOR07yjLt8J1xMH45LFXUX3WpTC42zD3pgvhWrN0\njzUygObOIJZVd6DDu++MXVJC+88XYPxiIVpnHIr6H53S7/XNhx2DbT/6CRw16zD+xb8q3qexI4B4\niiOghpOuniiSKYyU+07RovegjoRQd8xPFXWn0qjEtIMqI5XdqoNGlfq32mBBCbrGTEbOyiXQeTtT\nro/EkghHEynXEREREREREREREREREVFmjfhgTnGOBXbLnlsC0d5RlG1G+7kXI6EzYMwrz0CIK29t\nZXC3Qfen+1Dzwhsph3G2k2VMeuZBAMCai68FFI4VGl1ohTqNm+ZDqTDbjDFVedhw4TX4/N5nAQDT\nHrmz3w4v0UQSG+q9WLnZDf9+0HpMbGuF6ZbfIm40YcXV8xW/JlZe/jsEcwsx7l9Pwbl+paKahCSh\nvj0wgNMOrXQDW6Pf/y9kQcC2H5+q6Po8hxGiOLJHfqVKFAS4bPq0ahuOPAGilETR5x+kVe/xs2sO\nERERERERERERERER0VAbWYmEH7AatRiVbxnqY9C3Rk8qR90JZ8DY2YbST97u+2JZhnPdCsy5+xoc\nf97RmPDsQzjkpotRtOi9tPYu+N8ncG1YhaZDfgTPuAMU1TgsOuTajWntN9RysgyYNNoJ79Q52Hrc\nz2Crr0XFGy8pqu0OxrCixo2N9V5E4yO3y0ufZBm6a66EOtCDNRdfj3BOgeLShMmMpTf8EZBlzLrv\nRqhDysZUtXQGEYmNvA4liaQET0/qAQ7rts1wVq9G2/RDFH9+97cxVt/JSfN9pumwYyGLYvrjrPyR\ntOqIiIiIiIiIiIiIiIiIKHNGbDBHJQoYV2qHqLALBg0+o16N8K9+DUmtwdh/Pw0kdw19iLEoRn3w\nGo6+4jQcOe9cFC96Hz2jKrH2gquR1Okw5w/XYdQHr6W0r5BMYNKzf4YkqrD2gmsU1YiCgMqirJT2\nGW7sFh0OqHRh0y/nIWqxYcKLj0Lf1aG4vs0bwtLqdtS3+SGlMcZoOFO/+h+YP/kA7QfMwdYTzki5\nvnPSDGw885cwtzbigMfvUVQjyTLqWv0p7zXUOrsjkFLtUAVsH1lXd9zpiq53WHQw6NQp77MvyDJr\noUtj3GLEmYOOKbPg2rAKxtamlOt9/hjkNP5uiYiIiIiIiIiIiIiIiChzRmwwp6o4a7+9yTuc5U2u\nQstxp8LSXI+iL74fv2Jwt2Hi3x/CieccgZkP/g62rTVoPPQYLHzwBXz0+GvYeNalWHTfc4iZLJj5\n4O9Q/qay7i8AMOrD12Ft3Iq6Y09DoLhMUU1prmWfeP2YDRpUTinHugvnQRMKYvJT96dUn5Rk1LX1\nYGl1e9rjjIYbwe2G+ebrkdAZsOKaOxSPsPqh9eddAW/FeJR98BoKv/xQUU2HN4RAuO+RYsNNhzec\nco0Yi6H04zcRsTnQMudwRTUFzv2zWw4ACIKA7CxDWrUNR5wIACj57N2UaxOSBH9oZL0eiYiIiIiI\niIiIiIiIiPY1IzKYk2s3jtgRRPs6QRCA66+HLIoY96+n4Fq7HHPu6h1XNe7lJwFZRvX/XYJ3n/8I\nS255CJ2TZmwPTnirJuKzB55HxO7CtMfuwph/Pd3vfqpIGBOefxQJnR4bzrtC0RmNOjWKc80Dep7D\nSZZZh/jPz4dnzCSULnwH2auXprxGJJ7EhnovVm52oycUG4RT7j3a666BptuLtRdeg2B+cdrryBot\nvr7pPiS1Okx/6DZF3YhkAFtbetLec2+LJ5LwBaKoeP0FHHHNOZj85L0oWPwxtN3ePusKlnwKXY8P\n9T86BbJG2+8+eo0KTps+U8cekbLt6QVzmg/5EZIazQDGWaU+poyIiIiIiIiIiIiIiIiIMmfEBXMM\nWjUqi2xDfQzqg27sGHiOORlZWzfhiGvPQ/HnveOqls27C++8tBDrLrwG4Zz83db2lFVh4Z9eQCg7\nH5Of/RMm/P0hoI9RLBVvvAhDVwc2//R8RJw5is5XWZS1z41AKyuyY+O82yELAqY+eieERHpdMrqD\nMXxT48bGei+i8V1HkQ13qjdfh/W9t9A5YRpqTzlnwOv5S8qx+pfXQ9fjw/SH5yuq8fgj6A6MjDBE\nhy8Clb8bk/7+EFzrv8GYV5/Dwbf/Bqf87CAcc/GJmPbQbSj5+C0Y25t3qit7778AgLpjT1O0T77T\n1Bva24/ZTFroNamPs4qbrWibeRhs2zbDWleTcr3HH0m5hoiIiIiIiIiIiIiIiIgyZ0TN8hEFAeNG\n2aFWjbg80X5H/t3vEFq5HF2VE1D7k3PROXG64pFCgcJRWPinF3DYjRdi/MtPQh0JYfVlN+9Sr+3x\nYuy/n0bUYsPGMy5StHau3Qi7RZfy8xnuREFAwXFzUXf8zzB6wSuoeOMlbD79F2mv1+YNocMXhiaF\nrzWHVYeyfCu0aYQPBiIpSfD5Ywhu2owJN1yLpEaLZfPuAsTMvE9sOflsjPr4TeR//RnUQT8SJku/\nNe3eMGzm4f86c3vDKHvvv1BHQlj381+jc9JMuNYuh2vdCrg2rEL5u6+g/N1XAACh7Hx0TpwGb8V4\n5H7zP3SOnwp/SXm/e4iCgDwnO5wBvV1zGjsCKdc1HHkiCv/3CUoWLsC6sqqUav2hOBJJid83iYiI\niIiIiIiIiIiIiIbIiArmjMqzwGrsf2wKDT25agx836xFLJZEYVJGniQhKcmQJBnJpIykJCMhSdt/\nn5QkeP1RJKXe7jih3EJ89uALOOymi1D1+gtQh0NYcdXtgOr70MfYfz0NbdCPVZfeqCgsoVGJKC+w\nDtpzHmomvQatv70V0c8/wIQXHkHjEccr7iK0O5IsI5pQ3jWn1dMb5inNtaAo2wxRHLwOKaFIHJ6e\nKDz+CHyBGJwrl+DAu66GrseHVZfciEBxWdprqwQBoihApRKgFkWoRAE9sw6GY9NaODatRce0g/pd\nw+0Lo6LINqw7M0XjSfT0BHHQmy8ioTOg9pRzEbfY4J4yCwAgJBPI2rJxe1Ane90KlCxcgJKFCwAA\ndcedrmgfl00P3V4Oaw1XuXYjmt1BSH10AdudltmHI24womThO1h3wdWKQ45A79dxdyC2V0aJdQei\nEAQBVhO/TxMRERERERERERERERF9Z8QEcxwWHUpy+w9f0PChUaugUSu/IR9PSGjpDKLJHUA8KSHi\nzMFnDz6PQ2/+JUa//yrUkTCW3vBHyGoNjO3NqHjzRQRzC7DlpLMVrT8U3Vz2tvzKEmy5/EaMv/e3\nmPLUffj65gf26v5JScbW1h60doUwusCK7CxDhtbt7Yrj8Ufg6YkiHEv0PiDLqHjzJUx54o+AKGL5\nVbej7oQzFK1ZlG1Grt0AlShAJYpQqQSoRGG3I5e0R88FXngCjo1rFAVz4kkJPn8UDuvghyHS5faG\nkb/4E5g6WlF70lmIW3YeESir1PBWTYS3aiI2n/YLQJZhaayDa91y6Lq9qD/yxH73UAkCyvL33TBc\nqswGDSaWObC+zoNkCuEcSadH88FHY9THb8G5YRW6JkxNaV+vPzrowRxZlrG5qRsJScKMMTns0ENE\nRERERERERERERET0rRFx50yjEjGmxD7Ux6BBplGLKM2zYM6EXJQX2KBTqxCz2rHovr/DPXE6Sj57\nFwfeeTXEWBQTnn8Uqngc686/EpK2/+4MNqMWBS7TXngWQ896xaXwjpmEkoULkL166ZCcIRxLYP02\nD1Zt7kQgHE9rjVAkjqaOANZs6cTitW1YW9eF5s7g9lCOGItixp9+j6l/vRsxmx2f3f+c4lBOeYEN\nFYU2WIxaGPUa6LQqqFXibkM5ABCfNgMA4Kxerfj8bl9Y8bVDocMXRtXrzwMANv/kvP4LBAH+ktGo\nO/4MbDzrUsia/r/uSvMsMOhGTP5zr3BY9ZhS4UppTBwANBzRG4Qq/mxBynt6/JGUa1LV0hVCIBJH\nJJbE5kbfoO9HRERERERERERERERENFKMiGDOuFI7R6HsR1SiiOIcM2ZPyEVVURY0dju+uPsptE07\nCIVffYrDrz8fpR+/Cd/oMdtvVvdFFARUFmfthZMPDzq9Bp6774csCJj66B0QEmkEY5JJFH3+PkZ9\n8Bryln4O25Zq6DxuIKl8tBUA+IJRrNjUgU0NXsTifdcmJQld3RHUNPqwZEMblm7sQG1LNzz+6C6j\nf/RdHTj8up+j7IPX4KmaiI8f/Q+6Jkzr9zyiIGBciR3FOeaUnoecm4tYYREcG9cACjuduH2RlEcW\n7S3haAKqlSvgWv8NWmcdNqDRX3ti1mtQlOLneX9hNWkxtTIbeq3y72sdU+cgYnOg+LP3ICQTKe0X\niiYQjaX2tZuKeELCttae7X9u94XR5gkN2n5EREREREREREREREREI8mwb2VQlG0e1uNgaPCIgoAC\nlwn5TiM6fBasvvdpJG/9DQq/+hQAsPbCeYCq/xvbhdkmmA2awT7usGI97CC0nno2Cl57CZVvvIia\n0y9QXGuvWYdpD8+HY/P6XR6TRRGRLAcijmxE7K7eX7/9fdvMQxAoHLVrDYBWTwgdvjBKcy0oyjZD\nFHs704QicXh6ovD4I/AFYoqCLI7qVTjo9ith8Lix7eiTseKq2yHp+n+PUAkCJpQ50n4/iU+dAdM7\nb8DU1oRgfnG/1yckCd6ewR8hlA63L4zK118AANSc+vNB2aOyyAZxDx2ICDDq1ZhamY21W7oQiPQf\nnpPVGjTNPRYVb/0TOSuXoH3GISnt5w1EkecwpnvcPm1r60E8Ke30sc1NPliNWhj1w/6fGURERERE\nRERERERERESDaljfMbOatLAbhvURaS8QBAG5diNy7UZ0PfMC6uf/HvFYHN4DD4dFq4JWo4JWLe78\n6/bfi1CJI6IxVMaJd96J2McLMP6FR9FwxAmIOHP6vF4d9GPicw+j4q1/QpBlbDv6FLinzILe44be\n09n7q7cTBo8blsZtsNdW71QfM1nw4ZNvIJxTsNv1k5KMra09aOkKwmHRw+OPIJJiF49R77+KaY/c\nDjGZxKpLb8Tmn54PKAh/aFQiJo12wmrqf/zSnsgzZwHvvAHHxjWKgjlA77io4RjM6d68DVMXvYfu\n0nJ0TDso4+vnO4ywmXUZX3dfo9OocEClC+u2euALRvu9vuGIE1Dx1j9RsnBB6sGcnsigBHMC4Tha\nOoO7fDwpyaiu92BqVTYDWkRERERERERERERERLRfG9aplwKXGW63f6iPQcOI02UBHn0YAHDgEJ9l\nuFNlu+C96Vbk/nYepjx1H76++YHdXyjLKFr0Hg544g8weDrRU1SGb66aD/eUWX2vHw7C8G1oJ2fl\nEkx48THMuv9mLLr370AfYahILImWrl1v5PdFSMQx5cl7UfnmS4hZbPjyd39SHCjRa1WYPNo14M4d\n8ekzAQDO6tVoPOIERTVd3RFIkry9Q9BwEIrEkfef5yEmE9h86s8VBZtSoVGJGF1gy+ia+zK1SsTk\ncieq671wd4f7vLZr3AEI5hagcPFHWHHlbYo6RX3HG+g/+JOO2uZu7KnPlT8cR11LD8oL+XogIiIi\nIiIiIiIiIiKi/df+2UqEaD8hXnghAhMPQMnCBche9fUuj5taGnDo7y7BgfdcC62/B+vOvxIfPfFG\nv6EcAEgaTAgUjkLnpBnYcN4VaD7oKOSsXoqqV5/L6HPQ+jw47OaLUfnmS+geVYmPH/2P4lCOWa/B\n1MrsjIzTSUyaDEmthmPjauU1kgRPT2TAe2dSR6sH5Qv+jag1C/VHnZzx9csLbdCo+a0lFaIoYPwo\nOwqcpv4uRMPhJ0ATCiL/60Up7RFLSAiE+x+ZlQq3LwxfP4GfRndg2H0NpCuRlBBPSP1fSERErJK0\nFQAAIABJREFURERERERERERERLQD3j0l2peJIqIP/hmyIGDqY3dCSPTemBdjMYx76XEcc8nJyFv+\nJdqmH4wPnnoL1ef8CpI2jXFPgoDlV9+BiN2Fic89BNuWjRk5vqVhC47+zc+Qs3opmg75MT55+GXF\nY6SyTDocUOmCTqPKyFlgMCA6biKytlRDjMUUl7l9fXdB2dt0/30Fuh4ftp5wZkodV5TIMukGZVzS\n/kAQBFQVZ6Esz9rndd91ayr5bEHKe3j9meuak5QkbGnuVnTtxgYvYvHUxtYNN0lJwrqtHqyr64Ik\n7alHEBEREREREREREREREdGuGMwh2sdJU6cjcPb5sNVvQeUbLyJ79VL86FenYuI//oKY2YKvfvsg\nvrjnaQQLSwe0TyzLgWXX3g1VPI7Zf7weYmxgIQBjezMOu+kimNpbsO7nv8FXtzyEpKGfjiLfyrYZ\nMLncCbUqs29x0vSZUMXjyNpSrbimsyeCpDQ8umz4g1GUvvJ3SCo1ak86K6Nri4KAqmKOLBqo0jwL\nqoqysKcBY91lVegurUD+14ugCfSktLbXn7nONU0dQUQUhm1iCQkbG3wZ23tvk2QZ6+s88AWj6A7G\nUN3gzej6SUlCdb0Xmxq8aGj3o8MXRiAcRyI5PN43iIiIiIiIiIiIiIiIaGAYzCHaD0RvuQ2JLDsm\nPftnHH79+bA01aH25LPx/jPvounw4wFhTzGA1LTNOgy1J50FW30tJj3757TX+W58lbGzHasuuRHV\n516u+IwFThPGj7JDFDPznHaUnDkTAFIaZ5WUZHT1ZK5TyUBE3/8QtvpaNB52LCKu3IyuXZxjhlGv\nyeia+6sClwkTRjkg7u41LwhoOPJEqOIxFC7+OKV1uwOxjHR7icQSaGj3p1Tj8UfQ2BEY8N57myTL\n2LDNA88O3YbcvrDibkH9SUoS1m7xoN0bQqsnhK2tPdiwzYPlmzrw5dpWfLWuDSs3u3cK7YQiiYzs\nTURERERERERERERERHsHgzlE+wHZ4UR4/l0QE3F4K8bhk7/8Gyt/fQsSJktG1t8xPrDml9ejp6gM\nVa/9Azkrv0p5LXUoiEN/fyksTduw8YyLsPn0XyiuLXKZUVWcBSFDQaMfSkyfAQBwblyTUt1wGWfl\neO4pAMDm087P6LoGrRolueaMrrm/c2UZUFWctdvHGg8/HgBQ8uk7Ka2ZlGV0B5WPYduTLS09SMqp\nB3zqWnvgDw18/71FlmVsqveis3vXTkON7gCa3QMLGn0XyrG/8gKOP+8oWOtqdrkmmkiiOxjbKbSz\nqTGzHXuIiIiIiIiIiIiIiIhocDGYQ7SfiJx9Hrr+twLNb36E+JRpGVlTFATkO4yYOTYXlYW9Y4yS\negOW3nQfJJUaM++/GZoe5SNsxFgMB93+Gzhq1qHumJ9i7UXXKq416zUYXWhN+TmkIllWjoTNDkeK\nwRxP99CPswqtWY/crxehc8I0eKsmZnTtyiIbVCK/nWRansOIIteugadgfjG6xk1BzuqvofO4U1rT\n6x9Y9yZfIJp20EySZVTXe4f8a0GpmkYf2vt4rrXN3ejsTu9zkZQkrK3tQsETf8KMh2+Dqb0FrvXf\nKKqNxJSNECMiIiIiIiIiIiIiIqLhgXdSifYjUkUlcrOtmDE2BxPLHLAatWmtoxIEFLnMmD0uF2NK\n7DDq1SjMNm8P53irJmL9eVfA2NmOaY/cASjpriFJmHn/Tchd+RWaDzwSK66+XfH4KlEQMLbUvvvR\nP5kkCIhOnQ5zayO0Po/isqQso2s3XTf2Jt2TjwMAak79eUbXzc4ywGHVZ3RN+t7oQiuyzLpdPt5w\nxIkQJAnFi95PaT2vP/3XoSzLqG0a2AinUDQx4DX2htqmbrR6Qn1eIwOo3uZFT4pdiJKShLU1boz+\nw28x4YVHkdAZAAB6hSGrWDwJKY2ORURERERERERERERERDQ0GMwh2k+5bAZMq8rGlHIX7Lu58b87\nalFEaa4FcybkoqLIBp1WtdPjO4ZzNp15MTrHT0XJovf6H7kjyzjg8XtQsug9uCdOx5LfPghZpVb8\nXEbnW2E2aBRfPxDyzFkAAOfG1SnVdQzlOCuvB663/4NgTj5aDj4qY8uqRREV3/590+AQBQETRtmh\n/8HXWuPcYyGLIkoWpjbOKhCOI55Ir+NKS1cIgUg8rdodtXpC6PD2HXoZSnWtPWjqVDamKinLWFfX\nhXA0oex6ScL6Da0Y99vLUb7g3/CNHosv7/grAMDQpSyYIwOIsmsOERERERERERERERHRiMFgDtF+\nzm7RYUqFC9OqsuGy7b7ziVYtYnS+FXMm5KIs3wqNWrXb64DvwzmySo2lN96LuMGIaY/cAWN78x5r\nxr30OCrffAm+siosvuOvkHTKO7DYzToU5ew67mewJKbPAAA4qlML5nh6okgkh2iEz7N/hzoSRu0p\n56YUeOrPqHwLdJo9vxYoMzRqFSaWOaHaoSNU1O5C+wFz4Ny4BqbWRsVryQC8gdQ6vABAPCFhW2tP\nynV7UtPYje7AwMZqDYaGdj/q2/0p1cQSEtZu7eo38JSUJFSv2obJV52Hoi8/QseUWVj44PPwVYwD\noLxjDsBxVkRERERERERERERERCMJgzlEBACwGrWYWObEzLE5yLUbIQoC9BoVKgttmDM+DyW5FqhV\nyt4yvgvnBPOLsery30ETCmDm/TcDyV1vJo9+51+Y+PwjCOYW4ot7nkbcbFV8Zo1KxNgSu+LrMyEx\nbToAwLlxTUp10lCNs0okYHnuaST0RtQde1rGlrUYNCh0mTK2HvXNbNBgTOnOr/WGI08EABQvXJDS\nWlubu7GluRtef1TxSKRtbT2IZzBYlpAkrKztxIpNbrR7QsNiNFOTO4CtaYaPQtEE1tV5IEm7fx5J\nSULNkmpM/dUZyF67HI2HHYsv7n4aCZMFcbMVSY02xWCOsg49RERERERERERERERENPQYzCGinZj0\nGowrtWP2+FzMGp+LwmwzRFHov/AHvgvnbPvxqWg6+GjkrFmGqlef2/mazz/AtEfuQMTmwOd//Bsi\nzpyU9qgsztplnNZgk7PsiJRVwLFpLSClFlQYinFWmgVvQd/egm0//gnilsyMnRIAVBVnQRBSf11Q\n+nKyDCjJsWz/c/PBRyOp0faOs0oh2BKJJ9HoDmD1lk4sXtuKdXVdaOkM7jHsEQjH0dIZHPD5d8cf\njqG6wYsl69tQ19qDaHxoOsG0dgVR29w9oDW6g73P5YeSkoQtny7H9EtPQ1ZdDWpPPhtLbn4Aklbb\ne4EgIOLIht7bqXgvdswhIiIiIiIiIiIiIiIaORjMIaLd0mlUEAcYvCjMNqOy2I4VV9+BsMOFSc89\nDNuWagBAzsqvMPve65EwGPHFPU8hUDgqpbVz7UbkZBkGdL50JabPgCYUgKVxa0p1Xv/eH2elffwx\nAMDmn5ybsTULs82wGLUZW4+UK8u3wGntHfWWMFnQOnsubPVbYKurSWu9pCSjszuCmiYflmxox7KN\nHbt006lt7sZg97OJJSTUt/vx9YZ2VG/zoDuY+ritdLV7Q6hp9GVkLbcvjC07BHySkoT6tz7FjMtO\nh6m9BWt/cRVWXvF7QLVzoDDszIbe26U47MdgDhERERERERERERER0cjBYA4RDapClwmlE8qw7Np7\nICbimP3HG+Bc/w0Omv9rAMDi2x6Fr3JCSmvqNSpUFmWm+0s65JmzAADO6tUp1UmyDPde7Jqj/mY5\njN8sQ8vsuQgUlQ14PbNeg0llTlQUDt3nfn8nCALGldph1KkBAA1H9I6zKln4TkbWD0biO3XTWbW5\nE75ANCNrKyHJMtp9Yazc7B70MVexeBL1bX5savApCh7ZtlSj9MM34Fy3Ajpv5x67FDW6A2hyB5CU\nJLS8+Bqm/+YcaAM9WH7NHdh49mXAbgKPEUc2xGQCuu5dO+7sDkdZERERERERERERERERjRzqoT4A\nEe37Cl0m4NSTUPv12ah46584Yl5v95avfv8Q3FPnpLSWAGBsqR1q1dDlChMzZgIAHBvXYNuxp6VU\n6/ZFkO80DcaxdqF/8q8AgM2n/nxA6xh1aozKsyDHbszEsWiA1CoRE8sc+KamE62zDkPcaEbxwgVY\ne8E1gJi5r4ukJMMX3HuhnB/qHXMVw5aWbuQ5TMixG2A2aAa+biiGZncQHb6w4tBP2buvYNpf7oAo\nfd+pJm40IVBQgkBBKQKFpQgUlMBf2Pv7LbIM8aWXcMC9N0NWqbD4tkfQeuCRe1w/4sgGAOg9bkTt\nzn7Pw445REREREREREREREREIweDOUS0VxS6TGi57U70rFwCa+NWrLhyPpoP/XHK6xTlmJFl1g3C\nCZVLjJuApF4P58bUOuYAgC8QRTyRhEat6v/iARBbmqF/+w10l1agY+qBaa2h16hQmmdBnsMIYYBj\nzSizjHoNxpXasa5OQtOhP0bZB69hxp9+jxVXzYesGZoxY8b2ZqhDQfSMqtxtV5h0xRISGjr8aOjw\nw6hTIzvLgOys1EI6kiyj0xdGszuI7lAKY7IkCZOeeRBj//MsojY7qv/vEui9nTA318Pc0gBLYx3s\ntdW7lMUNRmjCIcQsNnx5x1/RNWFan9uEdwjmdJeP7fdYsXgSkiwPeNwgERERERERERERERERDT4G\nc4horykozkb9y2/CvWxNvzeqd8es16As3zoIJ0uRWo3oxCmwfbMMqnAQSYPyDjiSLKOze/C75hj+\n/jcIiQQ2//TnKYcktGoRJbkWFDhNEEXe+B+unDY9RuVZsfbCebDV1aDsw9dham/B/259GHHL3h03\npunx4ejLT4PO342QKxdtMw5B28zD0D7tQCRMloztE4omUN/uR327spBOLJ5Ea1cILZ1BRBOpdZlR\nRcKYdd+NKPryI/QUleHLu55AsKBk54skCXqPG5bmephb6rcHdszN9ZC0Oiy79u7eoFI/vuuYY/C4\nFZ1NBhCNJWHQ8Z9xREREREREREREREREwx3v6BDRXpVXVQpjYT60Xb2jZJKSslEyoiBg3Cj7sOkQ\nkZwxE8Lyr+GoWQ/3lFkp1XZ4w4MbzAmHoX/+WUStWag/8iTFZWpRRHGOGUU5JqgyOBKJBk9pngWB\nSBE+e+B5zLr3BhQt/hhHXnXW7kMkg2j8P5+Azt+NrnFTYG6ux+j3X8Xo91+FpFKjc8JUtM08FG0z\nD0N3WVXGuun0FdLp+XZclTuFcVU70nncOOS2K+DYtBYdU2bhf7f+ZfdhJ1FExJWLiCs35feBHe04\nykpxDYM5REREREREREREREREIwLv6BDRXmc1aWE1aVFRZIPbF0GbJwRfINpnzegCK0x65aNrBps0\ncxbwBODYuDrlG/K+QBSxeBJazeCMs9K98SpErxdb/+8SSDq9opribDNKci3QqBnIGWnGlmRhZSSB\nr255GJP/9iDG/PdZHHXV/2Hx/EfT6kyVKlNLAyre+ieCuYX47P7nIalUcNSsQ96yL5C37Atkr12O\nnDXLMPmZP+3UTadj6hzEzZnpgLVjSEejEhFPSmmvZd22GYfcchlM7S3Y9qOfYPnVtw/6eLCwM51g\nTgLA0I71IyIiIiIiIiIiIiIiov4xmENEQ0YlishzGJHnMCIcTaDNE0K7J4RIfOeRM3azDkXZ5iE6\n5e4lps8EADirV6dcKwNwd0dQ6BqErjmyDMMzT0IWRWw58UxFJSa9BuWFe3f0EWWOShQxcbQD39S4\nseaS6+EvLMW0R+7A3BsuwLLr7kHjEScM6v6T/v5niIk41l54DSRtb4DFM24KPOOmYMPPfw2tz4O8\n5V/2/rfiy+3ddAAgUFACb/k4+CrGwVc+Fr7ycYg4cwZ0noGEcnJWLMZBd14NTSiAtb+4ChvPujRj\nHX76ErG7AACGrtQ65hAREREREREREREREdHwx2AOEQ0LBp0aZflWjMqzwOuPos0TQmd3BCpRwNgS\n+1AfbxdSQSFiOXlwbFwNyHLKN+/d3vCgBHPUK5ZBs2Y1mg86CuGcAkU1+Q5jxs9Be5deq8aEMidW\n13ai7oQzEMotxIF3XY05f7gO5pYGVJ992aAETBzVq1C86H10jZmMxsOP3+01sSwHGo4+GQ1Hnwwk\nk7BvXo/8ZV/AtW45smqrUfzFByj+4oPt10fsrt6wTvnY3sBOxTgE8kuAQR6vVrbgFUx75A7IKhWW\n3PzAoAeadhS1OSCLYsqjrIiIiIiIiIiIiIiIiGj4YzCHiIYVQRDgsOrhsOqRSEqIxJLQaQdn5NNA\nxaZOh/mDBTC4WxWHYL7THYwiGk9Cl+FxVoZnngIA1J5yjqLrRUFALoM5+wSbSYsxJVmorveifcbB\n+PTPL+GQWy7DxH/8BeaWhsyPZJJlTHnqfgDAmkuuVxb8UangHTsZ3rGTt69hcLcha0s17LXVyKqt\nRtbWauQv/wL5y7/YXpbU6hA3WZAwGJHQG3t//eHvDUbEDSYkDCaEcvIRKCxFoKAEkrafcU+StH0E\nWNRmx+L5j6FrwtR0PyvpUakQyXKmMcqKiIiIiIiIiIiIiIiIhjsGc4ho2FKrRJgNg9slYyDkmbOA\nDxbAuXENmlIM5sgA3L5wRkd0CR0d0L39BnqKR6PjgDmKarJtemjUw/dzTKnJtRsRiiRQ3+5HT1kV\nPvnLv3HIbVdg1EdvwNjRgv/d8jDi1qyM7FW4+CO41n+D5oOOQuekGektIggI5+QjnJOP1gOP3P5h\nTY8PWVs2wr6lGllbqmFprIM6FIQ6EoKx2wtNOAhB6n9klSwICLvy4P82pBMoLN0e2AkUlECQJMy6\n9wYULf4YPUVl+PKuJxAsKEnvuQyAw6JDxJENa8MWxR24ouyYQ0RERERERERERERENCIwmENElKbk\nzFkAAEf1ajQddmzK9ZkO5hhe+geEWAy1J5+teGxRnjPz47RoaJXlWxGKJuD2hRF1ZOOz+/+BWffd\niKIvP8JRV5+FL+56csDhEyEew6S/PQhJpcaai6/N0Mm/F7dmwT11DtxT9xAwk2WI8RjU4dD2wI46\nHIQ6HII26IeprQnm5gaYW+phbm5A7qolyF21ZOclBAEJgxGaUBAdU2bjf7c+jLjFlvHn0h+dWoVc\nuxFhZzbstRugDgWQMFn6rYvGk5BkGeIgjCgjIiIiIiIiIiIiIiKizGEwh4goTfHJB0BWqeDcuCat\n+u5gDNFMjepKJKB77hnEDUbUH32KohKjTg27pZ8xPzQijS3JQiSahD8cQ1JvwFe/fwiTnnkQY//z\nLI668kx8fs/f4KuakPb65QtegaWlAbUnn41AUVkGT66QIEDS6hDT6hCz2fu9XBUJw9TaCHNzPSzf\nhnXMLfUwtTWj/uhTsOrSGzM75isFOXYD9FoVIo5sAIChyw2/gmCOjN6uOQYd/ylHRERERERERERE\nREQ0nPFuDhFRukwmRKrGwb55PYREHLJak/IS7d4QSnL7vwnfH+3770Ld2oLak85CwqSsC0+ewzjg\nfWl4UokiJo524JsaN6LxJCCKWPvL6xEoKMX0R27HYTdfhM8eeB49ZVUpr60J9GD8i48hbjRh/blX\nDMLpMy+pN6CnrCqt5zvYch1GqEQBgW+DOXqPG/6S0YpqIwzmEBERERERERERERERDXviUB+AiGgk\ni0+bAVUsCtvWmrTqG9oDvcGJATI88yQA9I6xUkAUBOQ7GczZl+k0Kkwsc0C1w6ijuhPOwLJ5d0Hn\n78bcmy6Cuaku5XXH/vtp6Hp8qP6/SxHLcmTyyMOaShQyPjbKpNfAbNBAt0PHHL3Hrbg+Ektk9DxE\nRERERERERERERESUeQzmEBENxKxZAADnxtVplSckCbVN3QM6gmrTRmgXf4GOKbPhL61QVOO06aFR\nZ2CEFg1rFqMW40p3HvVU/+NT8c2vb4He24m5N1wIY1uz4vWM7c2ofO15hLLzsfnU8zJ93GHLbtZh\n5tgcZGcZMrpuzrfriYKARHYuAMCQUjBn4KE+IiIiIiIiIiIiIiIiGlwM5hARDUBi+kwAgCPNYA4A\nuLvD6PSF0643PPsUAKD2FGXdcgCgwGlKez8aWVxZBozOt+70sS0nn43VF18HY2cb5t54AfRdHYrW\nmvjcw1DFY1h7wVWQdPrBOO6wohIFVBZlYUqFC3qtGoWuzH7d5Ni/D/okc/IApNYxJ8pgDhERERER\nERERERER0bDHYA4R0QAkKyqRMFvh3LhmQOtsbu5GIimlXCf4e6B75WWEXHloOfBIRTUGrRp2iy7l\nvWjkKsm1IM++8+iymjMuwvpzL4e5tRFzb7wQWp+nzzWyataj9JO34a0Yh4YjTxrM4w4L33XJ2TGM\nYzVpYTFoM7K+zaSFQaf+/gP53wZzutgxh4iIiIiIiIiIiIiIaF/CYA4R0UCIIiJTpsLStA2aHl/a\ny0TjSWxt6Um5TvfKyxCDQWw58UzIKnX/BQDyncb+L6J9TlVJFmymnUMlG877NTadfgGsDVsw96aL\noPHvYayaLGPK0/cBAFb/8gZA3Hf/+aASBVTt0CXnhwqzM9M1J+cHQSkhN51RVomMnIWIiIiIiIiI\niIiIiIgGz757Z42IaC9Jzvh2nNWmtQNap6UriO5gTHmBLEP/zFNIajSoO+5nikpEQUCug8Gc/ZEo\nCJhY5oBhx7CJIGDNL6/HlhPPRNbWjTj0d5dAHQruUpv/9WfIWb0ULbPnwj11zl489d71XZecgj5G\nVuVkGaBRDeyfT6IgICdr51FgWrMRUYsttVFW8SQkWR7QWYiIiIiIiIiIiIiIiGhwMZhDRDRQs2YB\nAJzVqwe8VE2jT/GNds0Xi6Cp3YymQ49F1O5UVOOw6qDTqAZyRBrBNGoVJpc7d34NCAK++fWt2Hb0\nKXBuXIODb/0VVJHw9w8nE5j89AOQRRFrLr5uCE49+PrrkrMjURSQ7xxY1xyHRQeNeuevQ51WhYgj\nO6VgjgwgynFWREREREREREREREREwxqDOUREAxSfOgMA4Ni4ZsBrBSNxNLYHFF2r/9uTAIDaU85W\nvH7BAAMFNPIZdGocUOHaOZwjilh+7V1oPPQY5KxZhgPvuApirLd7U9l7r8LauBVbjz0d/tKKITr1\n4FHSJeeHClxGCAPYM8du2OVjOk1vMEcb9EOMRhSvFWEwh4iIiIiIiIiIiIiIaFhjMIeIaIBklwuR\n4lFwbloDZGCsTH27H6FIvM9rxKZG6D58D57KCfCMnaJoXb1GBbtFN+Dz0ci3u3COrFLj65vuQ8vs\nuchf/v/s3Xt8nHWd9//3nJKZSSbnySQ9pGegtCC1LFLZG7GiIAsq9rccxdtbbtd1793lsbqrrvhw\n8fZGdm9Xb71x73UX3YcLeFhkReiKKALKghzaAqXnJmnTpE2bZDKnzPlwXb8/0hRKk+aaZJJMJq/n\n48GjyeT6fuczQKYz17yvz+c/9Y57PiPXSFTr7r9XebdXez76p7NeZ7XToY5Wn9avaFJTif/frXW7\ndP7yJktdct7KXeVUc5178gPH4bDb1Fx/5lq3y6FUs3/061DQ8n6ZHMEcAAAAAAAAAACAckYwBwBK\nILvh7aoaiar2WM+09zJMUwf6Imc9xv3978lmGOr+wC2SzVrvjvbmGtksHovKN244x1WlF774TQ1c\ndKmWPP9rve+TH5I7Mqz9N3xcmSb/rNRlt9nkb/DoghXNunRdQCsX1aml3qMLV7Vo4zl++Rs80+pW\nU19TpQtWNOvi81rV2nBm5xqriumw82b+eo8c9jNfflW57Kf+HXuKGGeVzuanVAcAAAAAAAAAAABm\nB8EcACgB85J3SJKa9+0syX7RRFbHgonxf5hOq/qBf1XGV6/eK66xtJ9NUluTtyS1oXKMF84xqt16\n/svfVvD8DfIGTyjV5NfBLf9txmupdbu0enG9Nq0LaN3yJjXXu88Ikvm8VVq3vEm/d16r2hq9shcR\nNGvyVeui1S3asMY/bseaYjXVueWtLq7TjjT+GCtJstlsyvkDkiR3McGcDB1zAAAAAAAAAAAAylnx\nnygBAM5gXPx7kqSm/a/ryHs/VJI9D/fH1FLvPi00IUnVjz0iZ3hYXTfcLqPaWsCgqc6t6irH5Adi\nwRkL57zWFTw1FqngqdF/3v1PuvB7X1ff5e9XwTMzoS6Xw65Ao1eBJo983irL67xul85b1qjl7T4d\nHUzo+HBChXHGyNkktdR71BGoLWp/qxa11KjrWNTy8dXOs4+TK7ROIZjDKCsAAAAAAAAAAICyRjAH\nAEogv/5CGVXVJeuYI0l5w1Dn0YjWr2g+7faq+/5Jps2m7j+4yfJe7c10y8HExgvn5Gt8euXP7yr5\nfdkkNfrcamv2qqXOLbt96oOp3FVOrV5Sr45ArY4OJdQfTChvGLLbbGptGA3keN2u0hX/Fm1NXh0+\nHlPBODMUNB5/o+es4+TMQJskRlkBAAAAAAAAAABUEoI5AFAKVVVKrV2v+t075UinVHCPP66mWMFo\nWsFISi0No/s5X90h985X1H/pu5VsX2Jpj2qXQ8110x/dg8o2Fs7Z2RWckS4s3mqnAo1etTV5S969\nqcrl0MpFdeoI1GownFJTXbXcVTP/Esd5suNP//AEY+feYqIxVqe0tUsqrmNONmfINM2zBn4AAAAA\nAAAAAAAwd+xzXQAAVIrcxotlL+TV0LW3pPt2Ho0qXzAkSVXf/WdJUtcHbrG8vq3Jy4f2sMRT7dTb\nVrfI7SpNcMZht6m9yasNq1t0ydqAlrX5ZnSkmtNh16KWmlkJ5YxZ1FJj6ThvtVN1k4zTsi06GcwZ\nth7MMUzzVJcjAAAAAAAAAAAAlB+COQBQKpdcIklq3v96SbfN5As61B+TLRiU59GfamTxMg28/Z2W\n1trEGCsUpxThnPqaKp27tEGb1rXp3I5G1ddWl7DC8lLrcamhZvLHF2ic/PewqqFOOY+3qFFWkpTO\nEswBAAAAAAAAAAAoV4yyAoASKVw8Gsxp2rez5Hv3Dyd0zpM/kD2bGe2WY7eWq2z0uWd1RDk7AAAg\nAElEQVS1ewgqw1g4Z6KxVjZJDrtdDodNDvvYP3bV11Yp0OiV172w/p9b5K9RJJE56zGTjrGSVFXl\nULrJX9QoK4lgDgAAAAAAAAAAQDlbWJ+cAcAMMpZ2KNvUUvKOOZKkQkHe+/9F+WqPjrz3Q5aX0S0H\nU+WpdmrDOX6ls4VT4Runwyb7yRAO3tBS71a1yzHhSKk6b5U81ZO/5Kp2OZRubFFtf69shbxMh7WX\naRmCOQAAAAAAAAAAAGWLT9YAoFRsNqUv2ijv0HF5B46VdOtFLz6jmoF+HXnPdcrV1llaU+10qLne\nXdI6sLBUuxyqr6lSrcclT7VTLqeDUM447DabFjXXTPjzgIVuOdLJYE5zq2ymqerwsOX7T2fzlo8F\nAAAAAAAAAADA7OLTNQAoodxV75ckrXj8JyXdd83PHpQkdX3wVstrAk1e2W22ktYBYHztzeP/vtlt\nNktjrMbkWlolSZ4ixlml6JgDAAAAAAAAAABQtgjmAEAJGTfdrExdg1b9/N9kz6RLsmfd4YNq3fmS\nBi66VLEV51hexxgrYPZUuRzyj9OhqqG2Wi6nw/I+hdaAJMldRDCHjjkAAAAAAAAAAADli2AOAJSS\nx6PjH75V1bGIlj29tSRbrn70B5Kkrg99xPKaxtpqeaqdJbl/ANYs8teecVugyXq3HGlqwZxszpBp\nmkXdDwAAAAAAAAAAAGYHwRwAKLH8Jz4pw+HUmp/eL03zw3JXLKJlTz2mRGCx+t9xheV17S0107pf\nAMWrr6mSz+M69b3DZlPLOF10zsZsa5dUXDDHME1lcoyzAgAAAAAAAAAAKEcEcwCgxOrXLNfxzdeo\n/kiXWl99YVp7rXji3+XMpNX1wVslh7VxOC6HvegwAIDSWPSmUFxLvVsOe3EvtWyLRoM5niKCOZKU\nyRLMAQAAAAAAAAAAKEcEcwBgBiT/6FOSpHN++q9T36RQ0OqtP1S+2qPDV33Y8rK2Jq/sNtvU7xfA\nlLU2euRyjL68CjR5i15vb2+TJLmHg0WtSxPMAQAAAAAAAAAAKEsEcwBgBtT9l3dqeP3b1f7ys6rt\nOzylPRa9+IxqBvp15MoPKOert7yuvZkxVsBccdjtamvyqsppV4Ovuuj1rla/Ci5XUaOsJII5AAAA\nAAAAAAAA5YpgDgDMALvdpvDH/kiStOZnD0xpjzU/e1CSRsdYWdRQUy2v2zml+wNQGotaatTaMLXO\nVdVVDqUbW4oeZZXO5ou+LwAAAAAAAAAAAMw8gjkAMEO8N2xRonWRlv/qZ3KNRItaW3f4oFp3vqSB\nDZcqtnyN5XXtLcWPzgFQWp5qp5a3+6a01uV0KNPUKnc4KJmm5XV0zAEAAAAAAAAAAChPBHMAYIa4\n3NUavPljcmZSWvGLh4taO9Ytp/NDt1m/P4dd/npPUfcDYGY4HVN/iZVtaZU9n1NVLGJ5DcEcAAAA\nAAAAAACA8kQwBwBmkPP225V3e7Xm0R/IVrA2asYVi6jj6a2Kty3R8UveZfm+Ak1e2e3Fj84BUF7y\nfr8kyV3EOKtMriCziA47AAAAAAAAAAAAmB0EcwBgBrnb/Dpx7RZ5h45r8fO/trRmxRP/Lmcmre4P\n3CI5HJbvq72ZMVZAJSj42yRJnmHrwRzDNJXNGTNVEgAAAAAAAAAAAKaIYA4AzLDcH/8PSdKan94/\n6bG2Ql6rH/uB8tUeHb7qw5bvo76mSjVu15RrBFA+jLaApOI65khSOmutKxcAAAAAAAAAAABmD8Ec\nAJhhtReer8FN71bL3lfVuP/1sx7b/sIzqhk8riPv/YByvnrL99HeXDPdMgGUCbOtXZLkDhcbzCnM\nRDkAAAAAAAAAAACYBoI5ADALEp/4lCRpzSMPnPW4NY8+KEnq/OBHLO/ttNvlb3BPvTgAZcW+6GQw\np+iOOQRzAAAAAAAAAAAAyg3BHACYBd5r3qfYinO09Nkn5A4OjHtM3eGDat35sgY2bNLIstWW9w40\neeSw83QOVIqxYI6HUVYAAAAAAAAAAADzHp/kAsAssNvtCn3sj2Qv5LV664/GPWbNz052y/mQ9W45\nEmOsgErjam+TabPJPUzHHAAAAAAAAAAAgPmOYA4AzJKqj9yqTH2jVv7Hj+VIp07/WSysjqe3Kt62\nRMcveZflPeu8Var1uEpdKoA55KyuUqahmVFWAAAAAAAAAAAAFYBgDgDMEpevRoN/eJuqR6LqeGrr\naT9b8cS/y5lJq+sDt0oOh+U925u9pS4TQBnItPjlCQWLW5MjmAMAAAAAAAAAAFBuCOYAwCyyf/KT\nMpwunfPI/ZJpSpJshbxWPfZD5as96rn6w5b3cthtam30zFSpAOZQrqVVznRSzmTC8hrDNJWhaw4A\nAAAAAAAAAEBZIZgDALOoatlSDV75B6rr7VZgx+8kSe0vPKOawePqee8Hlauts7xXoNErh52ncaAS\n5f0BSZI7NFjUujRdcwAAAAAAAAAAAMoKn+gCwCzLfepPJUlrHvnX0T8ffVCS1PXBW4vahzFWQOUy\nAm2SJHdoqKh16Wx+JsoBAAAAAAAAAADAFBHMAYBZ5t50icIXXqz2bf+pJc8+odadL2tgwyaNLFtt\neQ+fxyWft2oGqwQwl8zAaMccz3CRwZwMHXMAAAAAAAAAAADKCcEcAJgDI//9jyVJl/zd5yRJnR+6\nraj17c01Ja8JQPmwtbdLomMOAAAAAAAAAADAfEcwBwDmgHvL9UoGFsuRyyrevlTHL7nc8lqHzabW\nRs8MVgdgrtmnGMzJ5OiYAwAAAAAAAAAAUE4I5gDAHLC5XAr9109Ikro+eKvkcFhe29rokdPB0zdQ\nyRyLTwZzwsGi1qWzBHMAAAAAAAAAAADKiXOuCwCAhcrx53+m55qX6fjbLilqHWOsgAWgfZEkyTNc\n7CgrgjkAAAAAAAAAAADlhJYLADBHnFUu1V57lbyeKstrat0u1dVYPx7APOV2K1dbV/QoK8M0GWcF\nAAAAAAAAAABQRiwFc3bu3KnbbrvtjNuffvppbdmyRTfeeKMeeughSVI2m9VnPvMZ3XDDDfr4xz+u\nnp4eSdLw8LA+9alP6dZbb9VNN92k3t7e0j0KAJinFvtrdcnagData9P5y5u0pKVWPo9LtgmOb2/2\nzmp9AOZOtqW16GCORNccAAAAAAAAAACAcjLpKKv77rtPjz32mDwez2m353I53XPPPXr44Yfl8Xh0\n8803a/PmzXriiSfk9Xr10EMP6dChQ/rKV76i733ve/ra176m6667Ttdcc41efPFFHTp0SB0dHTP2\nwABgPql2OdTa4FFrw+hzbb5gKJbIKprIKhrPKpbMyiYp0EQwB1gocv5W1fR0yZ7Nyqiy3ikrnc2r\nns5aAAAAAAAAAAAAZWHSYE5HR4fuvfdeffaznz3t9u7ubnV0dKi+vl6StHHjRm3btk1dXV26/PLL\nJUkrV65Ud3e3JOmVV17Rueeeq4997GNavHix7rzzTksF+v2+oh4QAFSK9jd9XTBMpTJ51Xpcc1YP\ngNk1smSxtE1qzsSUblpieZ23xs3rJwAAygR/JwMAAAAAgPmIcxqlNWkw56qrrtLRo0fPuD0ej8vn\ne+M/Rk1NjeLxuNauXatnnnlGV155pXbu3KmBgQEVCgUdO3ZMdXV1+v73v69vf/vbuu+++3THHXdM\nWuDQ0EiRDwkAKlcqnp7rEgDMlsYW+SQVjh7ViK/F8rLjAzH5qixNKwUAADPI7/dxTgMAAAAAAMw7\nnNOYmrOFmab8qU1tba0SicSp7xOJhHw+n7Zs2aLa2lrdcsstevLJJ7Vu3To5HA41NDRo8+bNkqTN\nmzdr9+7dU71rAACAime2jfbNcg8PFbUunc3PRDkAAAAAAAAAAACYgikHc1atWqUjR44oEokom81q\n+/bt2rBhg3bt2qVNmzbpRz/6ka6++motXbpU0uioq9/+9reSpG3btmn16tWleQQAAAAVyN4+Gszx\nhIoN5hRmohwAAAAAAAAAAABMwaSjrN5q69atSiaTuvHGG/X5z39et99+u0zT1JYtWxQIBORyufSt\nb31L3/nOd+Tz+XT33XdLkj73uc/pi1/8on784x+rtrZWX//610v+YAAAACqFvb1NkuQmmAMAAAAA\nAAAAADBv2UzTNOe6iLNhdhkAAFiIHJ0H1XTZxTp09Rbt+PT/KmrtpnVtqnY5ZqgyAABgBfPYAQAA\nAADAfMQ5janx+30T/mzKo6wAAAAwc4xAQJLkDgeLXpuhaw4AAAAAAAAAAEBZIJgDAABQhkxfnQrV\nbnmGixtlJUnpbH4GKgIAAAAAAAAAAECxCOYAAACUI5tNOX+r3KGpBHPomAMAAAAAAAAAAFAOCOYA\nAACUqbw/IHdkWCoUF7QhmAMAAAAAAAAAAFAeCOYAAACUqUJrQDbDUHU0VNQ6gjkAAAAAAAAAAADl\ngWAOAABAmTLb2iRJniLHWaWz+ZkoBwAAAAAAAAAAAEUimAMAAFCu2tslSe4igzkZOuYAAAAAAAAA\nAACUBYI5AAAAZco2FswZLi6YUzBNZXOEcwAAAAAAAAAAAOYawRwAAIAyZQamNspKktJ0zQEAAAAA\nAAAAAJhzBHMAAADKlNEakFT8KCtJStMxBwAAAAAAAAAAYM4RzAEAAChTxsmOOVMK5mTypS4HAAAA\nAAAAAAAARSKYAwAAUKbM5mYZTiejrAAAAAAAAAAAAOYpgjkAAADlym5XvtkvdyhY9FKCOQAAAAAA\nAAAAAHOPYA4AAEAZK/gDo6OsTLOodekso6wAAAAAAAAAAADmGsEcAACAMmYEAnLksnLFY0WtS2cL\nKhjGDFUFAAAAAAAAAAAAKwjmAAAAlDGzrU2SRrvmFMEwTcUSuZkoCQAAAAAAAAAAABYRzAEAAChj\ntvZ2SZKnyGCOJEXimVKXAwAAAAAAAAAAgCIQzAEAAChjRuBkx5zh4oM50US21OUAAAAAAAAAAACg\nCARzAAAAytipYM4UOubEElkZplnqkgAAAAAAAAAAAGARwRwAAIAyZgQCkqY2ysowTY3QNQcAAAAA\nAAAAAGDOEMwBAAAoY9PpmCNJkTjBHAAAAAAAAAAAgLlCMAcAAKCMGS1+SVMP5kQTmVKWAwAAAAAA\nAAAAgCIQzAEAAChnVVXKNzZPaZSVJEUTWRmmWeKiAAAAAAAAAAAAYAXBHAAAgDJXCASm3DGnYJiK\nJ3MlrggAAAAAAAAAAABWEMwBAAAoc2agTa5kQo5UckrrI3HGWQEAAAAAAAAAAMwFgjkAAADlrq1N\nkuQOB6e0PJrIlrIaAAAAAAAAAAAAWEQwBwAAoMwZgZPBnCmOs4rGszJNs5QlAQAAAAAAAAAAwAKC\nOQAAAGXOCAQkSZ4pBnPyhqF4KlfKkgAAAAAAAAAAAGABwRwAAIAyVxjrmDM8tWCOxDgrAAAAAAAA\nAACAuUAwBwAAoMwZrdMbZSVJkXimVOUAAAAAAAAAAADAIoI5AAAAZW66o6wkKRqnYw4AAAAAAAAA\nAMBsI5gDAABQ5ozA9Dvm5AqGEulcqUoCAAAAAAAAAACABQRzAAAAyp3XK8Pnm1YwR5IidM0BAAAA\nAAAAAACYVQRzAAAA5gHDH5jWKCtJisYzJaoGAAAAAAAAAAAAVhDMAQAAmAeMtjZVR8Oy5abe9SZK\nxxwAAAAAAAAAAIBZRTAHAABgHjACAUmSOxKa8h6ZfEHJdL5UJQEAAAAAAAAAAGASBHMAAADmAaO1\nTZLknu44qwTjrAAAAAAAAAAAAGYLwRwAAIB5wAiUJpgTYZwVAAAAAAAAAADArCGYAwAAMA+MjbLy\nDE+zY06cjjkAAAAAAAAAAACzhWAOAADAPPBGx5zBae2TzhWUzuZLURIAAAAAAAAAAAAmQTAHAABg\nHiisOUem3a7Fz/9aMoxp7cU4KwAAAAAAAAAAgNlBMAcAAGAeMNoXKbPlBjUcPjgazpkGxlkBAAAA\nAAAAAADMDoI5AAAA80Ty038l027X+Q/+w7S65tAxBwAAAAAAAAAAYHYQzAEAAJgnCqvWKHn9H067\na04qm1cmVyhhZQAAAAAAAAAAABgPwRwAAIB5JPOXny1J1xzGWQEAAAAAAAAAAMw8gjkAAADzSGHV\nGoWv/fC0u+YwzgoAAAAAAAAAAGDmEcwBAACYZ3J/9blpd82JJgjmAAAAAAAAAAAAzDSCOQAAAPOM\n/dxzdeKqD452zXnuySntkUjnlMsXSlwZAAAAAAAAAAAA3oxgDgAAwDw0csdfyrTbtW4aXXMYZwUA\nAAAAAAAAADCzCOYAAADMQ3UXrVPv5utU39M55a45UYI5AAAAAAAAAAAAM4pgDgAAwDzksNs18Km/\nmFbXnEg8MwOVAQAAAAAAAAAAYAzBHAAAgHmq/m3n68g0uuYk0jnlC1MbgwUAAAAAAAAAAIDJEcwB\nAACYpxp91er66J9MuWuOKbrmAAAAAAAAAAAAzCSCOQAAAPOUzWZTzfrpdc2JxrMzUBkAAAAAAAAA\nAAAkgjkAAADzWmujR/tu/eMpd82JEMwBAAAAAAAAAACYMQRzAAAA5rG6mioVVqyectecRDqnfKG4\nMA8AAAAAAAAAAACsIZgDAAAwzwWapt41xzBNxRJ0zQEAAAAAAAAAAJgJBHMAAADmudYGr+KLl0+5\na06UYA4AAAAAAAAAAMCMIJgDAAAwz3ndTvk8Vdp36x/LsDuK7poTiWdmsDoAAAAAAAAAAICFi2AO\nAABABQg0eRRfvFy97ym+a85IMqdCEUEeAAAAAAAAAAAAWEMwBwAAoAK0Nnhkk7T3luK75himqXS2\nMLMFAgAAAAAAAAAALEAEcwAAACpAlcuhRl+1EouXTalrTjZHxxwAAAAAAAAAAIBSI5gDAABQIQKN\nXkmjXXNMm02rt/7Q8tpsjo45AAAAAAAAAAAApUYwBwAAoEI017vlsNmUWLxM6Sa/vAP9ltdm83TM\nAQAAAAAAAAAAKDWCOQAAABXC6bCrud4tSUo1+eUJDUmmaWktHXMAAAAAAAAAAABKj2AOAABABRkb\nZ5Vu8suRzciVGLG0jmAOAAAAAAAAAABA6RHMAQAAqCCNddVyOexKN/klSe7QkKV1jLICAAAAAAAA\nAAAoPYI5AAAAFcRus8nf4FGq+WQwZ5hgDgAAAAAAAAAAwFwhmAMAAFBhAk1epRtbJEnucNDSGkZZ\nAQAAAAAAAAAAlB7BHAAAgApTX1MlozUgSfJYHGWVKxgyTHMmywIAAAAAAAAAAFhwCOYAAABUIO/y\npZIkt8VgjkTXHAAAAAAAAAAAgFIjmAMAAFCBfKuWSZLcw0UEc/LGTJUDAAAAAAAAAACwIBHMAQAA\nqEDVi9slWR9lJdExBwAAAAAAAAAAoNQI5gAAAFQgu8etjK9e7nDQ8pocHXMAAAAAAAAAAABKimAO\nAABAhco0t8pdVMccgjkAAAAAAAAAAAClRDAHAACgQmVbWlUVj8meSVs6PsMoKwAAAAAAAAAAgJIi\nmAMAAFChcv5WSZI7ZG2cFaOsAAAAAAAAAAAASotgDgAAQIUq+AOSJI/FcVZZOuYAAAAAAAAAAACU\nFMEcAACACjUWzHGHrQVzMnmCOQAAAAAAAAAAAKVEMAcAAKBCGYGTwRyLHXNyOUZZAQAAAAAAAAAA\nlBLBHAAAgApltrVJktzD1oI5BdNUvkA4BwAAAAAAAAAAoFQI5gAAAFSq9nZJksdixxxJytI1BwAA\nAADmJS60AAAAAMqTc64LAAAAwAxpP9kxp5hgTr4gLy8RAQAAAGDeSGfzOtAbUSyZ1RJ/rZa21srp\n4JpcAAAAoFzwqQsAAECFctXXKV/tkTsctLwmm+cKSwAAAACYL44FEzrUH1XBMCVJRwZG1B9MaGlr\nrRb7a+SwE9ABAAAA5hqvygEAACqUy+VQutlfXMecXGEGKwIAAACA8hdP5bTncGiuyzirdDavnV1B\ndR6NnArljMkVDB06HtPLewd1LJiQYZoT7AIAAABgNhDMAQAAqFAOu13pJr/ckZBUsBa4yebomNN9\nLKqRZHauywAAAAAwB3J5Q3sOhzQUTalvMD7X5YzrWDChbfsHFY5nznpcJl9Q59GIXt43oBOhpEwC\nOkBRToSSc10CAACoEARzAAAAKli2pVU2w5A7MmzteDrmaCia0qudQR0LJua6FAAAAACzyDRN7e0J\nKZXNS5IOH4+VVWg/lZm4S87ZpLMF7e8Na/uBIQ1FUjNYIVA5kum8uo5GlS9wARMAAJg+gjkAAAAV\nLNfslyS5w0FLx2fzC/uEUy5vKJ0tyDBNdR6NaF9PSAVjYf87AQAAABaKQ/2x07rQGKapfUfCZfHB\n/LFgQtsPTN4l52wS6Zz29IS048CQItPYB1gIhmNp5Q1Dx4fpmgMAAKaPYA4AAEAFy7cGJEnu0JCl\n4xd6x5x4Knfa9wORlHYcGFIinZtgBQAAAIBKMBBKqm/ozNFVycxo14y5ksrk9doUuuSczUgqq9e6\nguo+FpXBeCtgXMOxtCTp6GCc3xMAADBtBHMAAAAqWN5/MpgzbC2Yk1vgHXPeGsyRRk/Ev3JgSAPM\nlgcAAAAqUiyZ1YG+yIQ/PxFOaiA8++8HhiIpbT8wOGPdbfqG4nr14JCSXIgAnCZfMBRLjI6xy+QL\nnA8AAADTRjAHAACgghlto8Ecj9WOOfmCzAV8Jdh4wRxJKpim9vWGdbAvIqNEV6kCAAAAmHvZXEF7\nDocm7YjR2RdVKpOfpaqk3oER7ekJlaxLzkRGUjntODCk/mBiRu8HmE9CI5nTnhP6BuML+lwJAACY\nPoI5AAAAFcxsbZNkfZSVqYXdNWeiYM6Y/uGEXu0cmtUT8gAAAABmhmGa2tMTUsbCSN+8YWjfkfCM\nj7QxTFMHesM6dDw2o/fzZgXT1MGjEe0+PKxcfmGPNwYkKRRNn/Z9MpNX8C23AQAAFINgDgAAQCVr\nPxnMCQctL8ku0GCOYZhKJ1Jq2rfzrMeNXVEajKRmqTKg/LzWGdSREyPKFxbm8wUAAKgMXUejip4c\nV2NFLJlVz/GRGasnXzC0q3tYx+dobE4wmtb2/UMKj8zM6CxgPjBNU8OxM0M4vQPxOagGAABUCoI5\nAAAAFcze4pfhcFrumCONtnJfiOLpnFY89kO9546b1Lrj+bMemzcM7e4JqXdg5k7KA+Uqly8oksjo\n8ImYXthzQt390QX7vAEAAOav/mBC/cPFj2/qGxyZkeBKKpPXq51BheNzG4rJ5Ava2R1U97HojHcH\nAspRLJlTbpwLEEZSWUJrAABgygjmAAAAVDBXlVPpxmZ5hosI5izQjjnxZE7+XTskSW07fmdpzfHh\nubmSFZhLkfgbV5UXDFN9g3G9uHdAB/sijHkDAADzQjSeUdex6JTWmpL2HwmXdORTLJHVq51DSqTP\nPlp3NvUNxfXqwSEly6gmYDaExumWM6ZvkItzAADA1BDMAQAAqGAup13pJv9oxxyLVzsu1M4X8VRO\njZ17JEktu7dbWpPK5pVZoP++sHBF42eOezBMU/3DCW3bP6h9R8J8gAMAAMpWJlvQnp7QtLrBZPIF\nHeiNlKSewUhKO7uCZXmBxNgY38EwFyRg4RiOThzMCY1kNJK0Pv4OAABgDMEcAACAClblGg3mOHJZ\nueIxS2uyufI7ITwbMgNDqhk4Jklq7NwrR8rayefoHLeaB2Zb5Cz/zxumqYFwUi/vH9Tuw8OKcdIa\nAACUEcMwtfvwcElCMMFYWseG4tPao3dgRHt7QiqU8ciogmmqd2B6jxOYLzLZguKTXGTQO8jvAwAA\nKB7BHAAAgArmsNuVaWqRJLnDQUtrsiVsyT5fmKYp166dkqSCyyV7Ia+m/a9bWhsZp3sIUKnyBcPy\niIVgNK1XDg7ptc6gjpwYUSSekWGU74dOAACg8h3oi2gkVbrOft39McWnsJ9hmjrQG9ah49Yunphr\niXROuTLs6AOUWvAsY6xOHRNJMcIXAAAUzVIwZ+fOnbrtttvOuP3pp5/Wli1bdOONN+qhhx6SJGWz\nWX3mM5/RDTfcoI9//OPq6ek5bc3WrVt14403Tr9yAAAAWJJtaZUkuYeHrB2/ADvmJDN51R/cLUnq\ne9c1kiT/7h2W1kYTBHOwcETjWRUbrYkkMjp8IqbXuoJ6btdxvXpwSN39UQ1H03zAAwAAZs2xobgG\nSjySyTBN7TsSVsGY/DWNaZrKFwylMnnt6h7W8dDcjYdyDw9qybNPWB53bEqKJugUisoXshDMMSX1\n0TUHAAAUyTnZAffdd58ee+wxeTye027P5XK655579PDDD8vj8ejmm2/W5s2b9cQTT8jr9eqhhx7S\noUOH9JWvfEXf+973JEl79+7Vww8/LLOMW3MCAABUmrw/IEnyhCwGcxZgx5x4KqfGzr2SpM4P3abl\nv35ULbu3W1o7evVoQS6nYyZLBMrC2cZYjafjqa069yf/ou1/8T8VPvcCGaapaDKraDKrPo2ezK51\nu1RXU6WG2irV11ar2sXvEgAAKK1oIqvqr35F7zx0QL+769uSzVayvRPpnHYdCsntcqhgmCoYhgoF\nUwXDVP5NXxvlcE7cNLXsyUd10T9+VVWJET3/N/eq/7IrLS2NJrJqqfdMfiAwTxUMQ5ERa+93ToSS\nWt7mUxXvXQAAgEWTdszp6OjQvffee8bt3d3d6ujoUH19vaqqqrRx40Zt27ZNXV1duvzyyyVJK1eu\nVHd3tyQpHA7rG9/4hr7whS+U+CEAAADgbPKto8Ect9VgzgLsmBNP5tTYtVdZX70ia85XdPkaNe/d\nKVveWlv6KOOssEBY7RBlK+R14T//b73j7z6rhkP7te7+M99Tjomnc+ofTmjvkbBe2jtAFyoAAFBS\n2VxBnbsO65yHvqvFLzytpn2vlfw+IvGMToSTGoqmFBrJKJrMKp7OKZ0tKFcwyiKU4w4O6LIvfUqX\n/P1fy5lOSZL8r2+zvJ73PKh0kZGsChZ/Vw3T1NGhxAxXBAAAKsmkHXOuuuoqHQzUnFsAACAASURB\nVD169Izb4/G4fD7fqe9ramoUj8e1du1aPfPMM7ryyiu1c+dODQwMqFAo6M4779Rf//Vfq7q6uqgC\n/X7f5AcBAABgQtFVyyVJdSMh+WrdltY0NdXI4bA09bQi9Hb3q7a/V8Hfu0w+n0fRDe9QfU+nFh/r\nUnTdhknX26qcvG5FxcsXDMkx+fOIKxbR2770Z2rZ9pziHStlVLvVvu0/1RY8psTyVZPeT28woUvb\n6uR1u0pVOjBn+LsBAOaWaZratm9AHc8+IUduNHS/+rlfat8lm+a4sllkmlr0i59q7Te/LFd8RMGL\nL9O+T39Zl/3XaxTY96rl94iy2Rbc+0QsLIMjWeu/D5JGMgU1NNbI5eR3AgBQmTinUVqTBnMmUltb\nq0TijURwIpGQz+fTlVdeqe7ubt1yyy16+9vfrnXr1mnPnj06cuSI7rrrLmUyGXV1denuu+/WnXfe\nOen9DA2NTLVEAAAASIp56yVJ9oEBjcQnn5cuSceOR+WpnvJLxXkn9fyLkqTgyrUaiafVf95F6tCD\n8r78go4uWzvp+p4+Q81eQgSobKFYWrGR1FmPqTt8UO/48p+ptr9X/e94l176/NcUePUFvfN/3qH2\nH35Xr/7531i6r99u69VFa1rk5IMfzGN+v49zGgAwBZlsQdVVpRkP090fVd9gXJu3/kSm3a6cp0aB\np36ul2//K8lR+SNo3MEBbfzW32jRS79VzuPVjj+/S4f+4AbJZlNozTo179+p1OCw8t4aS/t1Hwmp\n0VfchbfAfHGoN6R0rrjR3q/vP6GOQPEfWibTeXndC+ecCwBg/uGcxtScLcw05bOcq1at0pEjRxSJ\nRJTNZrV9+3Zt2LBBu3bt0qZNm/SjH/1IV199tZYuXaoLL7xQP//5z/XAAw/oG9/4hlavXm0plAMA\nAIASaBsdZeWxOMpKkrL5hTPOKp3Ny7d/tyQpvPp8SVJw/UZJUsvuHZb2iKeyo91EgAo22YipRc89\nqffccbNq+3u17+ZP6vm7/kH5Gp+ObXqPEoHFWv7ko3LFIpbuK57Oad+RsMwyGPsAAABm14G+sPb0\nhGQY03sdMBRJqW8wLt+RLjUfeF0nNl6mvne9X+5wsKgRTvOSaWrZrx7RVZ+4Tote+q0GNlyqX/3T\nYzp07Y2SzSZJCl6wUTbDKGq0VySemamKgTkVT+WKDuVI0rGhRFHPValMXrsPD2vHgcFpP8cBAID5\npehI7tatW5VMJnXjjTfq85//vG6//XaZpqktW7YoEAjI5XLpW9/6lr7zne/I5/Pp7rvvnom6AQAA\nYJHT41amrkHuIoI5uSmckJqv4smcGrv2SpLCa9ZJklL+NiUCi0eDOYYh2c+eZzclxRJZNdVZb3sN\nzDcTfhBjGDr/wf+ndQ/+g/LVHr3wxf+jo5df/cbPHQ51fvAjuuif/04rf/ETHbjxE5bubziWVnd/\nTKsX15egegAAMB/EUzmFRkZfc2SyBa1f0aQqV/GdbZLpvA70jgaClz/5M0lSz/uuV6ahWasef0gd\nv3lcQxsuLV3hM8UwZDMKMp3Wu3O6gwO6+JtfUvvLz57RJefNguveLklq2fOKBjdeZmnvaPzsQW1g\nvhqOWusu/FaZfEED4aTam8/edSpfMHRkYGQ0yHPy4oNIPMM5BAAAFhBLwZwlS5booYcekiRdd911\np27fvHmzNm/efNqxTU1N+v73v29pLwAAAMw8l9OudJNfnqETltdkFlDHnHg6pyWde5StrVOifemp\n24cu2Kjlv35Mdb3dii1fM+k+UYI5qGAFw9BIMnfG7c5kQpf83ee0+IWnlAgs1vN3fVvRVeedcdzh\n92/Rugfu1epHf6iDWz5m+cOlo0NxeaudWtRibbwCAACY3/oG3miXH0tm9UrnkC5c2Syv23owpWAY\n2tMTUt4wZCvktezXjylbW6f+TZtlOJxKNfm1+Llf6ZU//aJMV9VMPIyScKSS2vwXt6r+8AFl6hqV\nbmpRurFF6Sb/6NdN/lPfp07etvj5X+uif7xHVYkRDWzYpO2f/oqSgcXj7j8WzPHvstYlVBr9b2KY\npuxvCfkA810oNrVgjiT1DcbV1uSVbZzfC9M0dXw4qZ4TsTM6Ew/H0pxDAABgAWGIJQAAQIWrcjqU\navKrvqdT9kxaRvXkJ36yC6hjTmpwWL5jRzRw0aWnXUUaXD8azGnZvcNSMIe27qhksUTu1JWdY2qO\nHdFld/0P1R/p1sBFl+rFO7+hbH3juOvzNT71vO/DWvPog1r83JM6esU1lu+761hUnmqnGn3V03oM\nxeADJwAAZl86m9fQW7pWpLMFvXIwqHUrmiy/FjjQG1EiPRooDuz4nTyhIXVde5OMqtH1fe+6Wuc8\n8oACr76gE5e8q7QPooQu+s7fquHQfsU6VkmGIe/gcTUcPjjpupzHq+13fFmHr/nDM7rkjLHbbPIE\n/IouX6Om/Ttly+csBacN09RIIqv62tl7XQbMtFy+oFhy6t2gkpnR567WBs9pt4dHMuo+FlU8feYF\nDtJoMGfyMw0AAKBSEMwBAACocKMdc1okSe5QUMn2JZOuWUjBHOeu1yVJkdXnn3Z7cP3FkiT/ru06\ndO1Nk+4zkszJMEzZ7XyYj8oTTZwePAtsf06XfvUzqorHdPD62/T6H31WpuPsby87P/QRrX7sBzrn\nkfuLCuYYpqm9PSFtWOOX1z1zb2FN09RwLK1jQwnl8oY2nNMixyRj7AAAQOkcfdOIlzfLG4Z2HRrW\nmiX1k46LOToU12Akder75U8+IknquerDp27ru+IanfPIA+p45udlG8xZ/OwvtfIXP1F41Vo9/a0f\ny6ga7ezjSKdUHR6WJzQkd3hI7tCQ3KGg3OGg3KEh5WrqtPu/3TFhlxxpNJSzfkWTcnlDQ+s3qr6n\nUw1d+xQ+70JLtUUJ5qDCDMcyOvOZpzh9AyOngjmpTF7d/VEFJxmPlc4WlEjnVFNERzAAADB/EcwB\nAACocC6nXdEmvyTJExqyFMzJLZBRVrl8Qd59uyVJ4TWnB3NGlq5Qur5JLbt2SKY54dWmYwzTVCyZ\nVQMnqVGBIvE3riBd/Owvtemrn5bhcOjlv/yqjrzvekt7JBYvU/+l79biF55W077XFFp7keX7zxUM\n7T48rA1r/HI5SxuWyRcMHR9O6lgwrnT2jVDiwb6o1i4bvwMQAAAordG/jxMT/twwTR3oiyiVKWjl\norpxj4kmsjrUHzv1vWskqkW/e0rRZasUPmf9qdtD571NicBiLfrdU5Y7is4mz2C/Lv7ml5Sv9ujF\nL3z9VChHkgpuj5LtSyy9pxvPWCinqc6tZDqn4+s3avV//Fj+3TssB3Mi8aw6AlO6e6AsDU9jjNWY\nkVROQ5GUYomsjgXHDxmOe9/RNMEcAAAWCC7/AwAAqHBOh12Z5lZJkjs0ZGlNJrcwgjnxVF6NnXsk\nSeFz1p3+Q5tNwQs2yhs8Ie9Av6X9ovGpt78GytXYyIIx5/3bfTJl02/+/n7LoZwxndd/VJK05pEH\niq4jmclrT0/I8knuySTSOR3si+iF3SfU3R89LZQjSQPhpI4FJ/6AEAAAlE5/MKGCMfnf8b2DI9rT\nE1LBOP39SjZX0N7Dp79OWPqbx+XI5dTz3utPD9nbbOq94hq5Ukm1v/xsyR5DKdgKeb3jbz+rqnhM\nr/7JFxRfuqJke785lCNJXrdL4QtHu4S27N5heZ9YIiuzRK/HgLlmmKbCsdKMpd7TE1LfULyo9yul\nCAUBAID5gWAOAADAApBrKS6Yk8svjFFWI8msGjv3KOetVby944yfB9dvlCS17N5uab+3jvsBKsFI\nIqvCyZPLvt5Daurco4GLLyuq482YobddosjKc7Xk2V/KM3Si6PWReEadfZGi140xTVPBSEqvdQW1\nbf+g+ocTpx7beLqPRRVLELgDAGAmGaapY0PWw7BDkZR2dg2fGr87OvYyrMxb3sOs+NUjMu129b7n\nujP26Ds5VnPpbx6fRuWlt/YH35F/9w71vetq9Vy9pWT7vjWUM8a5bJkSre1q2fPKaJdQC/KGoXgq\nV7LagLkUjWeVN+buwqRYIrtgOhYDALDQEcwBAABYAAr+4oI52QVyYigdDMt3rEfh1Wsl+5kvjYfW\nj15B6t9l7QrSaCJbsm4eQLmIvimY0vH0VknSkc1nfsBlic2mzus/KrtR0KrHfjilLY6Hkjo6GLd8\nfC5vKJbIqm8wrpf2DWh3T0iRuLUQnWGa2tMTWjBhRQAA5sJAKHlGqGYysWRWr3QOKZHO6XB/TJG3\nBOTrejrVdGCXTlz8+0qf7B76ZtGV5yq2dKUWvfQbOZPl0SGvZdd2nf/Df1QisEg77vjypKN0rZoo\nlCNJPq9LwXUbVR0Ny9d32PKedApFpQjNcccaU1JohK45AAAsBM65LgAAAAAzrxAISJI8FoM5hmkq\nlzfkclZ2jtu263XZTFPhNevG/Xl01bnKebyWW7sXDFPxVE513qpSlgnMqVMhFtNUxzM/V97tVf+m\nzVPer/fdf6ALvvt1rXr8Ie279VMquD1F79HdH5Wn2qnm+tEPmHJ5Q6lMXqlsfvTPdF6pbEGpTF65\nwvSChplcQXt7wrpwVbNsJfqADAAAvOFoEd1y3iydLeiVg0PjjsBa9uTPJEk9E43dtNnUd8U1WvfA\nt7Xod0+p98oPTKmGUnHFInrH335Wpmx66fN/r1xtXUn2PVsoRzoZzLlgo5Y98x9q2b1dIx0rLe0b\nSWS0RLUlqRGYS5ONknIm4nIl43KmknKmk6N/JhMnv06Mfn/yT9ls2n/Df1eurqGoGkLRtAKN3uk8\nDAAAMA8QzAEAAFgAzEC7JOsdcyQpmy9UdDCnYBjy7n1dkiYM5pgOp4bP36C2Hc+rOjysTGPzpPtG\n41mCOagYpmme6pjTtO811R7v05HN16ngmfqJY6OqWt3X3aR1D/4/Lfv1ozp07U3F1yVp75GQatyu\nkoRvJhOOZ3T4+IhWLirNh2QAAGDUcDStRHrqY5HGC+XYCnkte+oxZX316r/03ROu7T0ZzFn628fn\nNphjmrr4m1+Sd+i4dn/0zzS8bkNJtp0slCNJPm+Vjq57uySpZfcrOnzNDZb2pmMOKkEqk1cyk5/w\n5+f96J+1/vvflK2IrrjphhZ1/n8fK6qO0EhGpmlyEQAAABWOYA4AAMACYK+vU97tlTsUtLwmmzNU\nM/E53HkvkcqrsXOPpImDOZIUXL9RbTueV8ueHTr2+++bdN9oPKOlrVw9isowksqd+sBr2dP/IUnq\n3XzttPftvvYmrf3xfVrzyAM6dM0N446Sm0zBMBVLWvtQyDN4XLXH+zT0tkuKvp8xvYMjqvO61NJQ\nfIcfAAAwvr4ixlNaFdjxvDyhoLquu1lGVfWEx8WXrlB49Vq1bX9erlik6C4XpbLi8Z9oyXNPauiC\ni7Xv5k+WZE8roRxJ8lQ7lVp5jrK+estdQiUpVzCUSOdU43ZNt1RgzgxHJ+6WU3f4oNbdf6/Sjc0a\nfNulynu8J/+peeNrt/fU1850Spfd9adqOvB60XXkCqOjd+trJ36+AgAA8x/BHAAAgAWgymlXqqnF\n8igrabRjTiUbSeW0snOvch6v4ouXTXjc0AUbJUktuywGcxJcPYrKMXY1tC2f09Lf/kLp+iYNbHzn\ntPfNNPnVe8U1Wv7rRxXY8bwGfu+/THvPidgzaV3xlx9V7Ymj+u0939XgxsumvNf+3oje7nbJ6+at\nNAAA0xVLZhVJZEq+7/JfTTLG6k36rrhGjV1f15Lnn9Th9/9hyWuZjO9Ily76zj3K+ur10uf+t+Rw\nTHtPq6GcMbU11Qqev0GLXvqN3MEBpVsCltZF4lmCOZjXJhxjZRja+H+/LHshr+2f/l86ccm7Jt/M\nNJXx1avp4O4p1RKMpQnmACiJXL6gXN6Ql7+jgbJTubMJAAAAcIrLaVe6ya/qaEgqWAvcZHMzOxpm\nriWHI/L1HVJk1dqzdusInXuhDKfL8hWkuYKheGrq7fiBchKNj35YFtjxvKqjYfVdcY1MR2lCKZ3X\n3yZJOueR+0uy30TO+7fvqvbEUUnSxd/8khypxJT3yhuG9vaEVDAq+/kRAIDZMBPdclyxiBa98JSi\ny1YpfM76yWu4/P2SpKW/ebzktUzGns3o0q9+Rs5MWtv+4itKtbZPf88iQznS6Dir4NjFCHtesbwu\nFi99qAqYLfmCMeFFNSt++e9q2fOKjv7++6yFciTJZlP43AtUe7xPVbFw0fWEYvw+AZg+wzS153BY\nXceic10KULRc3lB4JKO+wbj29YS0bf+gnt3Zr51dQfUHE8pVwEXEBHMAAAAWgLFgjs0w5I4MW1qT\nzc3/F7tnY3/9ddlM86xjrCTJqHYrdO4FauzeJ2fS2gf6UU5SowKYpqnIyY45pRxjNSayZp2GLrhY\nbdufk+9IV8n2fbOa/l6d92/3KdXcqoPX36aagX5d8C//Z1p7xtM5HeyNlKhCAAAWplQmr2AkVfJ9\nO37zuBy5nHree71ks016fLJtsYLnX6TWnS+ruojuoqVw4X1fU8Phg+q+9kb1//57p72fTSo6lCNJ\nPq9LwXUngzlFjLOK0CkU81h4JCPDNM+4vSoS0oXf/bpyHq9e/ZMvFLVn6GQYsPFA8V1zEumcUpl8\n0esA4M06+yKKJDIKjWQUmqgrGFAG0tnR9wI9J2LafWhYL+45oed3H9fO7qC6+6MaiKSUSOdkmKbC\n8YwOHo3od7tPzPuQDsEcAACABcDldCjd5JckuS2ecM7mK7cjhGGacu/ZKUmTBnMkaWj9RtkMQ817\nX7O0P+OsUAkS6bzyhiFHKqFFv3ta8UUdCp13YUnv4+D1H9X/z959x0dV5f8ff01PJn3SSEIKJdTQ\ni6BYsLv2dddddXV1i6hfu2t3bauu2MvPtrqWVdd1i32tyAoKAtJJQgqEkF4m03u59/fHQKQk5M5k\nEkg4z8eDByVzzr2EMLn3nvf5fABKP3grrvPuNv2FP6MJBth0+S1s+e0fcBSNofTDt8nasrZf87bb\nvDR3xn+XvyAIgiAcLpo6Xey/JN5/JV99gKTW0HDCmYrHNB77E1SSROHyLwbgjHqW9/1SSj98G3vx\nWDYuui0uc47OT4s6lAORYI61dDJhvYGscuUVc/zBsAgSCENWl73nBetpLz+K3mmn/NLrFLd1280y\nfgoApuotsZ2TWEQXBKEfGtqdtFo83b+va3Eg9xBAFISDxRcIUdfiYGV5K6sq2ymvt1Df5sTs8OFT\nsEFYhr1COhuHYEhHBHMEQRAEQRAOA3qtGm+0wZxhXDHH4wuRXlMBgLV0Up+v7y7tXq5sMd/uEsEc\nYeiz7ar8VLDia7R+LzuPP0PRzvNotMw/HnduAcVLPoyp5PuB5H3/P/JXf0PHtCNoPO4nSHo9P9z0\nILJazezH70Tj698u/e0tDhHCEwRBEIQYBENh2ro8fb8wSqn1tZiqt9A2ZwG+zBzF45qOOQVZrR60\ndlYJ5nbmPH4nYZ2eVXc8jmSIPkyzr+y0RApzkmM7H70WrTFSJTS9rgqt26l4rLgWEoYqi3P/EEz2\npjWUfPUB1rET2X7WhVHPubt9nqkm+oo5gKhuIQhCzMw2LztaHXv9mcsXpM0S/+stQYiWzeWnYoeF\n1ZXtNHQ4FW0GNljNFH/5ATOfuZe0uur9Pi7vmneohXREMEcQBEEQBOEwsLuVFUCiwmBOcBhXzHF5\ng2RsqySUYMQ5clSfr++aNANZpSJbYZUNf0jsHhWGvt0Bs6IBaGPVTaOh9pxfofX7GPXpv+M2rdrv\nY8bzDyJptKy/+q7uQJFl4jRqfvprUloamPy3Z/t1DEmWqay3DOsQoyAIgiAMhBazh/AA7OAu/uoD\ngEgbqyj4MnPomDqXrMoNGNub435ee1KFghyx+FYMDhubFt2KY9S4fs9pNGgZX5TerzmSE/WYy2ah\nkmXFVUJBtPAVhiaHO7DfoqA6EGDmM/chq1Ssu/ZeZI026nl9mTl4skZEKubE8B5ncwUIS8P3OYwg\nCAPD5Q2ydae1x0qE9W1O8b4iHBRhSaK1y83aqg42bjPTafcesFqmKhwis2I9k197ihOvOo+zfnE0\ncx+7nTGfvMvCG39F9qY1vY7tKaTTfIiGdEQwRxAEQRAE4TCg1agJmLIASLCYFY3xD+PFZo/FQWrD\ndmxjJoBG0+frg8mp2EeNx1S1GXVA2a5Qm3hILQxxNpcfg9XMiPUrsIyfgktBiK0n6j6q7Ow49TyC\niUbGfvQ2qlAwpmPsa8K7r5DU3kztuZfgLB6718cqLrkGZ34R4957A9NW5QtPPfEHw1TutIry0IIg\nCIKgUFiSaBqAdpCqcIjirz8ikJJG67yFUY9vPO40AEYu+zzep9ZNFQoy76E/kLNpNc3zT2D7mRf0\ne06NSsXkUSa0mv495k8x6ugsi1QJzS5fp3icTVQKFYagnlpGjfv3q6Q21rH9zAuw9qN9r2V8GQlW\nM4mdbVGPlWQZq0M8RxAEQTl/MEx5XVevgWd/MExTh3uQz0o4nPkCIba32FlV0U51ow2Xr/fnfAZL\nJ8Vfvs+8B2/grJ8fxfE3XMSkd14irb6W9unz2PT7m1l/9R/RBPwcfcfvKPj2yz6PvzukU3uIhnRE\nMEcQBEEQBOEwEcqJ9EdX2soqGJaQhulis2rLZlSShLV0suIxnVNmoQkGyKhVVpZatLMShjKPL0gw\nLFH4zWeoJCnSxioGapWKWeOzKcpJobd4TigphfpTzsNobmekgpvsviS1NDDh3ZfxZuZQ+aur9vt4\nOCGRtTc+gEqSmPP4XYrDdr2xufzU7VMyWhAEQRCAYXstDZGATUO7E38guofcbRYvwXD8d27nrltB\nosVMw8LTkfT6qMc3LzgJSaOl6Jv/xv3c4MdQzsjvvqRj6hxW3/ZIXFqEji9KJylB1+95Uow6uiZN\nR1apyIoimOMNhIb1hg5heNq3ZVRSSwOT/v4iXlMWWy67vl9zW8dNAcBUsyWm8T2FhgRBEHoiSTIV\nOyz4+vg+3NDhFJV+hQFndfop39HF6sp2GjtcvV7v622WXVVxfspZvzyGuY/dQeGyzwkak9h++i9Y\nce//48N/f8/yR16j5ue/YftZF/LtAy8iaXXMf+B6Rn/8juJzOhRDOiKYIwiCIAiCcJgIRxnMAQgG\nh2e5U8OWTQBYSycpHmPetYM0a4uyB9U2t9jpJgxd1j3aWMlqNY3HnhbTPAVZSSQl6Bidn8rUMVkY\ndD1XqKo951fIKhWl7/0tprLve5r+wkNoggE2LrqVkDGpx9eYp85h21kXktqwnYlvP9+v4wE0drgw\n27z9nkcQBEEY+vYs275pm5nQAIRQDgXbmuzUtTpYvbWdinqLopZGsizT1BH/ajkAJV+8D0D9ydG1\nsdotkJpB+6wjydi2leTGHfE8tf1COd/96UXCicZ+zzsyK5mcjP7PA5Bi1BNKSsE2egKm6i1RBZdF\nOythKAlLEi7vHrv3ZZmZ/+9PaAJ+Ni26jVBSSr/mt0yIBHMyqpVt6NlvvKiYIwiCQlUNVhyevr9f\nhyWZ+jbnIJyRcLhxuANsb7azqqKNTdvNmO2+A7ar0tutHHfzJUx65yVSd26jfcY8Nl1+C5+//DGf\nvvk166+7l5YjT9jvWV7HzCP55tG/4U8zMevZ+5n0t2ejfnbYU0jnYNyniWCOIAiCIAjC4SIzE0mj\nJTGKYI7/ECnzGE9ef4jU2goArGOjD+Zkl69V9HpfIBz1DmJBOFTYXX6Sm+vJrN5M+4z5+E3ZUc9h\n0GooHvHjg+2MFAOzx+eQnZa432vd+UW0zDuezOrN/Wovlff9/8hfvYz26fNo6iNMtOU3N+LOzWfC\nu6+Qvq0y5mPuVtVgw+ML9XseQRAEYWjqqWy73R1gY6152F0Ttls8tFo8QKQqUKfNy4ZtZtZWddDa\n5UaSen5Qbrb78Abi/71S77CSv2op9uKxUVXE3FfDcT8BoHDZp/E6tQEL5aQl6RldkBqHM4ww6DQY\ntBrMZTPRBPxk7LpfUsLuFpVChaHD7QvttWg4cvnnjFj7HW2zjqJx13tAf+x+D4q1Yo4/FMapYKFd\nEITDW32bg44oNge1WTx4DtBSSBCUcrgDbNsVxllf20ljp6vPqk0AOpeDY27/LWk7t1N79q8iVXEW\nv0bNzy6LtKDvo5Kkbdxklj75Nq68Qia/9Twzn74XVTi2+4rdIZ2DUe1eBHMEQRAEQRAOEzqdFl9G\n1mFfMcflDZJRW0HIkICzaLTicb7MHFz5RWRWbICwssUVUTVHGKrsrgBFX38CQEOMbaxG5aei1ex9\ny6nTqpk8ysT4wnQ0+9x01/70EgDmPXQTpq2boj6e2u9jxvMPImm0bLj6rj5v6kPGJNZefz9qKcyc\nx+5EFerfQ6qQJFFZbyEsDb/3TUEQBKF3Vqefih2WXsu2u3xBNtR2DpvFEI8vSE2jrcePuXxBqhtt\nfF/RRl2LA98+IZzGAaqWU/jNp2iCwUi1nH60h2qZfwJhvYGi/33a7wp+MHChHINWw6QSE+o4tMLa\nU0qS7scqoRXK21mJFr7CUOLeo1qO1u1k+gt/JqzTs/7qP8alvVwwORXnyBJM1eUQ432BaGclCMKB\ndFg9UVfAkWSZuhbRgluIjX2fME6TwjDObhqvmwV3LSJj21bqTvs5G6+6g3BizxWu9xqnUjF1dCb5\nmZHXuguKWfrU37GOnciYT//J/D9dj9of+/dM20Go+iiCOYIgCIIgCIcJnVaDz5RFgsWs+EFzYBhW\nzHFbHaTWb8M2ZgKyRhvV2M4ps9G7naTV1yp6vXhILQxFXn8IfzBE0dKPCRkSaD7qpKjnSDXqGWHq\nfeEpLzOJWeNzSEnUd/9Z59Q5bLnseozmdhbedDFj338zqkWxCe++TFJ7MzU/vQRn0RhFYzpmHUXd\nqeeRXlfFhHdfUXys3rh8QWoael6sFARBEIaPvdpVbTfTafcesGy7Lxhmw5YNkgAAIABJREFUQ60Z\nxyBXFvH6Q1TssGB1xuehc1iSqKy3Eu7j+3MwLNHQ4WR1ZTsVOyy7dqT6FbVbAEjo6kDj9Sg+r5Iv\nP0BSa2IOE+8WSkqmde6xpDbWkbajpl9zDVQoR61SMbEko9f2oP2RkqiPun0vRK5/giERTBaGBrf3\nx8Bg2evPkGjpZOsFi3AXFMftGJZxU9B5XCQ374xpfJddbPARBKFnDneAqhifOZgdvrhdEwpDk6ex\nhfY2K20Wj6IfVfUWVlW0sSGGMM5uar+PBXf/H1mVG9l5/Jmsu/YeRUFYFTCxOANTagLjCtOZUZpN\ncoIOf0YW3zz6N9pnzKNg5dccc/vv0DntMXw2RDBHEARBEARBGEA6rRqfKRtNMIDOpWyXRGAYVsxR\nbdmCWgrHVOa+u53VFmXtrERZd2Eosrn8ZFRvIaWlgZb5x+/X21mJsQVpfb7GmKBlxrgsinJSUAGo\nVFRdsIhlf/4rgeRUZrzwEPMeuAGtu+/d9UktDUx49xU8WblsveiqqM5106Jb8WTlMuntF0jt5yIc\nQLvNS1PnwFQEEARBEA4iWUb9+qt0/eM/e7WrUioYlti0zUyXfeArIUiyTEO7k7VVHXTavZTXdcVl\nIWZbkz2qv7MMdNq9bNxmZvP2LkVjCr79kjMuWsi558zmlN/8hCMeuonx/3yF3LUr0Nss+70+dUcN\npppy2uYswJeZo/jcetPdzuqb2NtZRUI5N0VCOdPmxi2UAzAqL5X0ZENc5tpXilEXqRKaV0hW5Yao\nqn3YRaVQYYjY/R6WUVPO2I/exjFyFNXn/y6ux7CMnwKAqTq2dlZObwB/DIufgiAMb75AJHAt9aOq\nX11LbAEGYehzfPYVhUdMYdz8MlKuXoT9n+9Rs62dqgZrrz/qWx0xhXF2UwUDHPmn68jZtJqmo07k\nh5sfAo2ycPnYgjSy0hO7f5+WpGfm+GzG5KchJ6fw3Z9eovHYU8kuX8fCmy4mwdwe9fm5vIMfLhfB\nHEEQBEEQhMOEXqfGa8oGUNzOajhWzNFv2QyAbeykqMd27t5BWq5sB6nbFyQ4DD+HwvBmdwUoXhp7\nG6sRGUZSk/R9v5DIru/R+alMG5tFwq6d350z5vHVC+/RWTaLwm+/4MT/O4+07VW9TyLLzHj+QTTB\nAJsW3Rp1kCiUlML6a+9BHQoy54m7Yu5Rvae6FocI5gmCIAwTYUmizeLBecsdZN5yPWNuuwbJ7Y5t\nLlmmot5Cm0V5NZho2V1+1lV3Utfq6K5sE5blfodz2i0eWvtx3n1V2QHIrNjAEYtvIWRIoHPKbBKs\nZoq++ZSprzzOMXf8jrPPP4rTLzyOo/54BZNff5qC776k9IO3AKg/6dyYz21PbXOPIZhojARzYlj4\n+jGU81UklHP/C3EL5WSnJ1KYkxyXuXqSYtQBYJ48E73TTurObYrHikqhw4cky8hxaOV2qHJ7gxAO\nM+upe1DJMuuvvQdJr+zeRSnL+DIATDXlsc8h2lkJgrCHsCRRXmfB389njE5vkHbrwF2HCoceSZZp\nWF9FwXWXgywTMiZTsuRDFtx9FWf+YgFzHrmVvFX/Qx2I77WcKhxi3p9vJm/NclpnH83q2x9XXLm+\nMDuZguz9r3nVKhWFOcnMmZiDKSuVVbc/Tu3ZvyKtvpbjr7+AlIa6qM5RJnLvNJhEMEcQBEEQBOEw\nodNEKuYAJCoN5gyzijmBYJjkXbvWYqmY484vwmvKIqt8reIH9eIhtTDU2O1uCr/5FH9qOm2zF0Q1\nVqNWMSo/NepjpicbmDU+h5xdu2F8mTkse/R1qn7xO1JaGjjhul9S8tm/e/x/l7fqf+StWU779Hk0\nHXNq1McGaJ23kJ0nnImpegul/3kjpjn2JMkylfUWAmKnqyAIwpBldweobrDyfXk7LF7M6DeeQ1ar\n0Xlc5K/8OuZ5JVmmqsFKQ7szjmcLwVCY6gYrG7aZcfdQ1aY/4RyPL0hN48C2akxurueoe65CFQrx\n/V1Pseyxv/Hhe6v57xtfsfLup6m88ApajjgOgPzVy5j09xc58v7rGP3Zv/CnpNE6b2FcziOckEjL\n/BNIbmvCVLU5qrEDGcoxGrSML0yPy1y90Wk1JOg0mMtmApBVsV7xWJu45xk2drQ6aDHHFj481PmD\nYYJhibEfv0PGtkrqTzyLzulHxP04tjETkTRaTNXRvYfsqUsEcwRB2ENNY3RVCw9kR4sDSRq+AUzh\nR8FQmC1VrRTfuIgEWxebLr+F/771NV8//Q+qz7uUYFIyJUs+YsHdV3HW+UfFL6QjScx+/M7u6pEr\n73lGcQg2Oz2RMX1U4U7QaykbnUnZ6CyqrvsjWy67gaSOVhbecCHpNRVRnepgX8MqiyYJgiAIgiAI\nQ55Oq8a+u2JOl9JgzvBaVHZ5g+TUVhLWG3AUj4l+ApUKc9lsCpd/TlJLg6I+9DZ3YK/Sm0o4PQES\nDVq0GpGjFwaXLxAidfV3JNi62HbGL5G1uqjGF+emYNApK0u7L51WzaQSE4WeAA3tLsx2L1t+exPm\nSTOZ+9jtzHnyj2SXr2P9NXcTToj8n1L7fcx4/iEkjZYNV9+lqE91bzZeeTu561ZS9sYztMw/Hlfh\nqJjngsiD/8qdVqaNyUTVj/MSBEEQBo8/GKbd4qHN4sHjj1RQG/v+m0x57UncOXmsvelBjr31N4z6\n4j0aY6gqt6e6VgeBoMTYkX23f+xLa5ebuhYHwfCBQ/W7wzllozPJSFHWDiksSVTWWxVVvImV3mbh\n6DsXYXDYWHvD/bTPOTryAZUKT95IPHkjaV5w8l6vT9++lYztW0mrq6F17jFxrXjRsPAnFC/9mMJv\nPsUycZqiMQMZytGoVUweZRqUe4OUJD3mstkAZG1ZR90Zv1Q0zu0LEpYkNGpx/zKUWZ1+Gjtc6DRq\ncjIS0Wlju64/VLm9QRLM7ZS9/hSB5FQ2//6WATmOZEjAXlJK+vYqVKFg1PdUEPm3kGQZtbiPEITD\nXmuXO65VbnzBME2dLopyU+I2p3DocXmDlO/oYsKTD5BVuYGGhaez7ZxfgUqFZeI0LBOnsfnyWzBV\nbWbkt18wcvnnlCz5iJIlHxE0JtN85PF0nXwm7klzo7vOlmVmPns/JUs+omviNFbc9zySIUHR0LQk\nPROLMhQfKis9kYxUA/XX3shaUxazH7+TqX99jOWLX1M8h3WQK+aIYI4gCIIgCMJhQqfV4DNlAZBg\nNSsaExjkPqsDzW1zklZfi7V0kuLymfsyl82icPnnZJevUxTMibYkptnuZWu9lRnjsklOFA+2hcEV\naWP1MQANJ5wV1VijQcvIOLRXSDHqmTzKhMcXpKHdRfuRx/PVc/9h/gPXU/LVB2TUVvD9XU/hLBrN\nhHdfJqm9marzf4uzKIaw3R4CqRmsv+ZujvzTdcx54i6+eeQ1ZF3/FvlsLj91rQ7G5Pd/0VUQBGEo\nsDh8uLxBEgxajAYtCXrN4AeNw2F0y/+Hf858MPYdjJCRsTj8tFk8WBw+9oyflHz2b2a88BBeUzbL\nFr+Gu6AY8+SZ5GxcRWJHC96c/H6dapPZRTAUZnxxRkyLr5FKNnZsbuXXm9GGc7Y1xW+Hdk80Pi8L\n7r6S5JYGKi+8gh2n/bzPMYF0Ex2zjqJj1lEDck7tM48kkJJG4bJPsY2ZqGhMwYqvKPh+adxDOQDj\nizJISoh+YT8WKYk6OgtH4U/LIKtCWfteiFSCsrsCmFKVLbwIh55gKEzVTmvk12GJHa1Oxg1wlabB\n5vaFmPLqk+g8btZedx/+jMwBO5Zl/JRIeLC+NqY22mFJxub0i/9TgnCYc3mDbGuyx33ehnYXeZnG\nYRfAFCI6bF6qd1rJX/oJpR++hb14LGuvv3//zWx7hnR+f3OPIZ2pu0I6TUefSvusow4c0pFlpr20\nmDH/fRfrmIl8++BfFLebNxq0lI0yoVZHd0+kUasZU5CG69orcH7wJlkVG1AH/Eh6ZZsQ3L4ggWAY\nfYybDKMlgjmCIAiCIAiHCZ1WjXd3xRzFrayGV8UcubwCdTiENYYHY7t1TpkFQFb5OupP+Wmfr3d5\ng4TCkqJFqaZOF9ub7ciAPxAmOXFwHsALQ0tYkggEJQLBMP6QRDAYJhCK/L7756BEMCyRkWJgVF6q\n4q8lR6eVCSu+xjViJF2Tpkd1XmML0uK6o9OYoGNCcQYleSk0ZhpZ/uTfKXvpYcZ+9HdOuObnVF58\nNRPefQVPVi6VF10Zl2M2H30yjUefQuG3X3DKorPZdPkttB5xXL8q8TR2uEg16smOsnKWIAjCUCLL\nMvU7zeTedj2h/CIqL/6/7vdOg1ZDgkGD0aAl0aAdkNBOMBTG7gpgdwfIffR+Rv39ZZz5Rfzwh4fo\nKpsV05yFSz9h9lN3409NZ9niV7sD2fUnn0NWxXqKl3xE1YVX9Pvc221ejOvXMOWdF/HcfhehmbP7\nHBOWJBraXTR2uJBiqGSjNJzTbvHQaonfDu39TyTMEQ/fTGbVZupPPIuKX18b9RQ56YmYUhPY1mQn\nJMVnU4Gs09N49CmM+fSfzH3sdsXjognlqFUq9Do1eq2m+2eDLvJrnVaNXqfBoNWg06kHtWJGilEf\nqRI6eSYFK7+OKoBmd4tgzlBW1WDDH/rx/r+1y01+VtKwuid1eYNM2LgarymbHaf9bECPZR1fBp/+\nk4zq8piCOQAWhwjmCMLhLBSWqKy3DEjVwpAksbPNFZfKjcKhQ5ZldrQ6aehwkrqjhtlP/JGgMYmV\n9zzT9/VpDyGd0auWkPP1f/erpNNbSGfy355l3Htv4Cgaw/I/v0IwWVmre71WzZTRmf0KiiUn6mDh\nQjSvVJG5dROd0+YqHmtz+cnJiF+o/kBEMEcQBEEQBOEwodOqCWTmAJCoMJgTlmXFoZKhQL9lIwDW\n0skxz2EvGUfQmEz2lrWKXi8Djj4eUsuyzLZmO81md/ef+YZZKEqIj/o2B/VtTsWv73L46HL4yElP\npGREKsaEA98CJn75GVqfh4aFF0cVRslMTRiwh8YJei2lI9Mpzk2h6f5HsEyZw4wn7mTaXx4BYNOi\nWwknKtuBo0T7w0+R9dcnSH7jVRbcfRVtM49k0xW34SgpjXnO6gYbSQm6Pj//giAIQ5E/GGbrTitF\nj/+pu+paormNddfdBxoN/lAYfyiM3R3Yb2ysoR1fINQdxLG5/N1tpzIrNlDyziv4U9JIbm1k4U0X\nU3vOxZRfdn13G0Ql8lcsYe4jtxE0JrP84b/iLB7b/bHGY05l+vMPUfLl+1RdsKhf4U0AZJnRT/4J\nQ/UWtCu/Y8P199Fw8rkHHgIxBXL21Fc4J1KNx9avYxyQLDP9xYcpWPk1HdOOYO0Nf4rpczkyO5nU\nJD0ZyQZqmmx0OXxxOb0tv70Rc9lM1GFl1+ShhERa5i3ss1R/epKBMQWpkQDMISjFGAlhmMtmUbDy\na7LK19N4vMJgjmv//+PC0NDU6drv/45MpGLW9NKsg3NSA8BrdWA0t9Ex7QgY4LZrlnFTADBVb2bH\n6efHNEeXw8dYxKK5IByuahtt3de4A6Gly01BdhKJBvGcYjgIhSW27rTS5fChdbs48k/XofV7WXn3\n07hGRtmqfVdIJzjnCNZeeuMB213tDumUvv8Gk95+AVd+EcsWv0og3aToUBqVirJRmXH5OpSOPQ5e\neYHsTaujDOYERDBHEARBEARBiL9wVnQVcwACweERzAmFJZIqtwBgHRd7MAeNBvPkGeT98C0JXR34\ndoWdDsR2gLLue9447Wm4VSsS4qPd4o1pXIfNi9nuIzcjEtAx6PffheIPhsn98kMAGk44U/HcapVq\nUFo16XUaRuenErr6MqrmziT/9utx5+bTdMypcTvGiAwjxcUZuB5+HO+lv0N72y2MWLmM3CvOYfvp\nv6DikmsIpCnvd71bSJKoqLcwc1wWmgFeBBAEQRhMVqefqp1W0r//hvH/eR3nyBKCiUmM/vw/aH1e\n1tzyMLK292oL0YR2NGoVDnckjNNTgFnj9TDn0dsAWHH/84CKOY/fwbj3/0be6m8UV8/JXfsd8x66\nEUlv4NsHX9qv0kEoKYXmo06ieOnHZFZuoGvyzD7nPJDMivWYqrdgHTuJpLYmZj96O6nbKtl8+S0x\nt15VqrdwTliSqKi3DsgO7d1K33uju7T+ynueial9ZKpRT2pSZJxBr2HK6EzaLJ64VM8JpqTRcOLZ\n/ZpjTwl6DWPy0w75CnpajRqjQUtn2Y9VQhuPP0PRWIcngCTJUbcgEA4ulzdIXYujx4/Z3H46rJ5B\nW6waSJIso66vA8CpoCV1fzlKxhIyJGCqKY95Dm8ghMcXxDhIrewEQTh0tHa5abfF9vxHKUmWqWtx\nMHmUsgCFcOjy+IKU77BEglyyzJzHbielqZ6q839L84KT+zf5PpV0Mqq3ULj8871DOolGdF4Pnuw8\nli1+VdGzcgAVMLEko/t6vr+C849EVqvJ2biaykuuUTzO5lLeFri/xBNBQRAEQRCEw4g2MQF/ajoJ\nXcqDOcHQ8AiIuL1BMmorCOt0OPbY9RyLzilzgMiDaiXs7p4v8P2BMBtrzT3u7PUFhsfnXYgfhyeA\nNxD7bilJlmm1eFi9tZ1tzfb9/m+7GpoZ8cN3WMdOxFk0RvG8BdlJg1oJRqtRM2L+DIJL/8eOxc/1\nv1LBLhnJBsYVpXf/PjxhIv73P2LnS2/hyi9i7MfvcNqlp1D6n9dRBaPfEe72BalqsBEKx6fNhiAI\nwsG2s83J5u1m6Ghj7qO3E9bpWHXH4yx75DU6y2ZR9M2nHHn/dagDsT3o3B3YabV4qGt1UNtsp93m\n7bWq4JRXnyClpYGa8y6ja/JMuibP4MsX3qf6Z7/prp4z7YWH0Ph6X+TI2ryGo+69GlRqvrv/eSyT\nZvT4uvpTIhVtSr58P6a/257G//s1ADZeeTtLnv0n9uIxjHv/TY6+/ffo7dZ+z9+X3eEcq/PHf6dt\nTXbcvuCAHbNg+RdM+8sjeDNz+PbBvyguc7+vkdn7V8wbYTIyZ0IOmYdI+xeNWsXovFTmTsg95EM5\nu6Uk6rCNnUjIkEi2wvsdiFxrOj2ias5QEpYibVIOVIGrrsVBOE5t4g4mrz+EsWknAK4ogjmaGO81\nZI0W29hJpNZvQ+ONvSWg2R6fKmCCIAwdLm+QbU32QTlWp91Lh83b70qMwsFjdfpZX2Purq40/l9/\nZeSKJXRMO4Lyy66P78FUKqwTprL58lv49M2vWfLMu1T/7DICKWl4skawbPFf8eQWKJ5ubEEaWWnx\nuz6WU9NwTZhCZtXmqL73evwh/IP0HF4EcwRBEARBEA4jOq0anymbBKtZ8Rh/aOg/hANw292k1ddi\nHzX+gDu3lTBP+XEHqRJOTxBJkvf5swDrazpx9bLo4RcVc4R9dFjjs1tKkmWaOl2sqmxnR6ujOyii\n++B91FKYncefpXgug1ZDcW5KXM4rWhq1mkklJkZmJfd7ruQEHZNHmVDv++BdpcJ47lm0LlnJ5qvu\nAJWK6S8t5pTLzyLv+/9BlA+vOm1eVpa3UVlvweLwIYuHX4IgDEHBUJjN27vY0eZAliTmPno7CbYu\ntvz2JmxjJxFKSuHbB/9C28wjyV/1Pxb88Yp+LUoqkb1hFaUfvo2jaAzll17b/eeSIYHNl9/M0iff\nxlVQzLj33+TkK84hq4eWpKatm1jwxytRSRIr736GzulH9Hq8jmlH4MnOo3DZZwcM+vQlqXkn+d8v\nxTJ+CuayWbgLiln69Ls0H3kCuRtXceLVPyetrjrm+ZXaM5zTZvHQahm4f6/MivUcsfgWQgmJfPvA\ni3hz8mKax6DTkNVL0GV39ZwJRRloD1KlOhWQZzJyxMRcinJThlQVmWSjHlmro2viNNLqa9E5lS8O\n2kQ7qyFlW5O9zzYpvmCYhnbXIJ3RwHF7g6S0RB/MGVeUji7GCsKWcWWopTDp27fGNB7A4hi8XfyC\nIBx8oXAkMDmQVQv3VVlvYeWWNip2WGjtcg9aQEHoP1mWqW2ydVeKzN64mimvPok3M4dVdzzWr+qb\nGpWKpATd/s/JdtsnpPPft76OqmVWYXYyBdn9f563L8/8BahDQbIqNkQ1zjpIVXNEMEcQBEEQBOEw\notOq8Zqy0budqP3Kdl4Nl5ZKUkU56lAQa2k/2ljtYi0tI6zTk71FWTBHkmUce+weNdu9bKw14z9A\nNSJxIyzsSZZlOuMUzNktLMnsbHeyurKdhnYnpk/eQ1apaFz4E8VzjMpPPeit7saOTGN0Xmw77SGy\nsDdldOYB/x4ZpmRSbr2Jr9/8itqzLyKptYkF91zF0bf/jtQdNVEdT5JlOmxeNtd1sXpXOMo7gH3j\nhaFhOOxEFw4PDneAddWdWJyR68hx773BiHUraJ1zNLXnXtL9unCikRX3P0/z/OPJ3bCKY+74PVq3\nc0DOSet2MefxO5DUGtbc8jCS3rDfayyTfqyek9TWxHF/uCRSPWdXYCht+1aOvvNyNH4/q+54jLa5\nxxz4oGo19Sedjc7jpmDFkpjPfdz7f0Mly9T89NfdFeBCxiRW3v0MFRdfTVJ7M8dfdwEjl38e8zGU\n2h3OqW20Ddgxkpt2cNTdV6EKh/n+j09jHzMx5rkKspJ6XyjYZYTJyJyJsVXP0ahUJOg0xBKnSU82\nMGt8DuOLMtDr9m8feqhLMUY2MZjLIm3asirWKx7bW6XQ3kiyLILKB0mHzas4hNfY4Rry16sub4jk\n5kgwJ5pWVqlGPWWjM/t8v+mJZfwUAEzVW6Ieu5vDExAVNwXhMFLbaOszMDkQQpJEp91LdaON7yvb\nWFvVwfYWO1anX1TTOYR12X3dXy8J5nbmPXQTskrN93c9hT8jK+Z5E/VaZozL5ugZBSyYmscRE3OZ\nOjqT0oI0RmYlk5magNGg/fF7o0oFfYTh1SoVOo2aBJ2GPJORMQVpMZ/fgQSOOhqAnE2rohpncw5O\nMGfw6o0LgiAIgiAIB51eq8FnygYg0dKJO6+wzzGBYOwPgcKShCxz0BfuAXSbNgJgLZ3U77kkvR7L\nhKlkla9D53IoKr9vdwVITzbQ1OFie4udvm5rRcWcgSfLMqo4tUEaaDZX4IBBrv4IhiXa11cwq2ID\n7TPmKe4FnWrUM8JkHJBzilZRbgo6rZqaRluf/7f2pFGrmDI6E4O+70Wz5EQdk2eXssV0L9vP+CXT\nX1rMiLXfkXvlubjyi3DlF+EsKMaVX4yroBhXfhGe3PwD7lDyBcPsbHeys91JepKBEZlGstMT0Byk\n3f3CwREKS6zZ2o4xQUeeyUiW+BoQDlFNnS7qWhzdD+fTayqY8uqT+DKy+OEPf96vtaCkN/D9H59i\n7qO3U/S//3LczZey/M+vEEjLiOt5TfvLYpI6Wqm86Eqs48p6fd3u6jlNC05kzmN3Mu79N8lfvYzK\ni65k6l8eRed2submh2lecLKi49afdA6T/v4iJV++T8MJZ0Z93jqHjZIv3sedk0fTMafs/UG1msqL\n/w/b6PHMfeRW5j9wA1svqKL819f2+dC7PwZyd7bB2sXRdy7C4LTzww1/on32gpjn0qhU5GXu38aq\nx+PuCuC2WTxsa7J37yjePU+iQbvHD033rw27AjWSLOPzh/D6w3j9IbyBUORnfxhfILTXdUeiXsvo\n/NQh07KqN8mJOlSAefKPwZzWeQsVjbW7A4qusV3eIG1dHtqtHkoL08kZ4p+zocYXCFHToDyEJ8ky\ndS0OJo8yxXzMsCRhdwUwHaQ2c25fkFHNO5FVKkXPQXbTadUkGrSML0xna0N07QW7gzk15VGN25Mk\ny1gcPnIyDo37LkEQBk5rl5t2W3w3ZMXK5Qvi8gVp7HChVatJT9GTmZqAKTWh+xpJOPgaOyIV7VTB\nAPMfuJ4EWxfr/+8uuib33I5XCVOKgYnFJnTayD2Heo/r5X1Jsow/ELlGDoYlNCoVGo0ajVqFRqOK\n/KxWo9GoYgq4xkJ99AIkjZbsjWuiGmcbpIo5IpgjCIIgCIJwGNFp1fgyI8GcBIXBnGA/wgDbmuzd\nu/AiF+e7LsjVe/xao0KjUqHVqsnJSCTVqI/5eL2RZBljZWSXWjwq5gB0ls0ie8taMis30Db32D5f\nb3X58TeGaelyK5pfkmWCoTA6rbjhHSiddh9NHS4KspLIzkgctJvEWHRYB7YFSNHXHwPQcLzyhcWx\nIwdmd0us8jKT0GnVbK23KlpYVKtUTC4xkZyovLVdokHLjNIsNqsn8e1DLzNizXImvPsyqTu3kddU\nz77NOCSNFveIAlwFxd2hneYFJ/UYfrK5/djcfmqbVOSkJzIiM4m0pPi/HwqHnvo2J4GQRMDlx+by\no21Sk52eQF5mEqnia0A4BITCEtWNNjr3WCjQetzMe+hG1KEga25+GH9GZo9jZa2O1bcsJpSQyOjP\n/s1xf7iY5Q+/qjgE2pcRa5Yx+rN/Yx0zkcoLr1A0xjJpBl+98B5lbzzLuPdeZ+6jtwOw9rr7aDhR\neTtHd0ExnWWzyNm4isSOFrw5+VGd++hP/4XW76XinGt6DXG2HHUiS5/+B0fdezUT33mJtLoqVt/2\nKKGkg9NGMlYan5ej7r6K5NZGKi+6kvrTftav+XJNxu7FAqVGmIxkpBiwOHz7hW8ORK1SYUzQYUzY\n/3ohEtqJLEaEJInstMQh1bKqN1qNGmOCDsvE6UhqDVkKq4RCpCKj0xvs8Z4uGJJot3pot3hwen9s\n59vS6RbBnEEkyzJbd1r3Cqkp0Wn3YnX6yUjZvypZX/zBMOV1FnyBEEdMyj0oG3fc3iApzTvxZI/o\nsbJaT9QqVfe55pqMePwhdrYrr/7mzi8ikJJGRj8q5kCkIoII5gjC8ObyBqltUt46cjCFJAmz3YfZ\n7kOtUlEyIoXCnOQhs9FtuLK7/Nh3VWef9pdHyKrcyM6FZ7D9rAtjnrMwO5nR+amK/20PFNo5WPRp\nqVgnTMW0dSNat1PxfZMvGLmmH+i/y6HzmRIEQRAEQRAGnE6rxrchHjqjAAAgAElEQVSrlGWCxaxo\njL8fFXMse5SBDMsy4ZAM9D5fU6eLjGQDRbkpMT3w643HFyJ9WyWSVoejuDQuc5qnzIZ3XiJryzpF\nwRzbrgXXaPgCIpgzkJzuAA5PAEdDgO0tdvIyk8jPSjrkdv9IskynTVnruVhklq9j/L9fJWRIoGnB\nSYrG5JmMAxKi66+stESmjtVQXtdFsI+S76Uj02LasavTapg2NpPKegttc4/pbneic9pJbmmI/Giu\nJ7mlgZTmnSS3NJC3Znl3aCd3/UpW3vdcr/OHJZlWi4dWi4e5E3IxJojb9uHM4wvSYt47sBmSpO6v\nAaNBywiTkVyT8ZB7bxIOD20WDztaHPtVbZvx3AOktDRQ9fPf0D77qANPotGw7vr7CSUkMu79N1l4\n08UsW/wqntyCfp2bzmFj9hN/RNLqWHPLw8g65d+X9qyeM+W1p2g89jR2nH5+1OdQf9I5ZJevo3jJ\nR1QpDAZBZFdr6YdvETQmUddHSMVRUsqSZ95l3p//QP7qZZxwzS9Ycd9zuApHRX2+B4MqFGTegzeQ\nWb2Z+hPPouKSa/o958hsZdVy9mXQaRRX2lEiEtrRDsvv1SmJOtzGJGxjJmCqKUft9yEZlF032V2B\n7utEWZaxOv20Wjx02X09tsOwuf24vMGowtJC7OrbnNjdgb5f2IPtzXZmjs+OakODyxukvK4L366K\nsC1mN0W5gxsuDIUlgg4niV0dtM+Yp3jcvgHAUXmpeHwhOu0KK1qoVFhKJzNi/Up0DhvB1PRoTrub\nxeknFJYOiUrEgiDEXygsUVlvGRItoyRZpq7VgdnuY0JReo/BZWFwNHZGquUUff0xpR++jb2klHXX\n37dfFVMl1CoV4wvTyT1EqmL3l23OkWRWrCd781pa5yur+giRZ/cDHcwR38kFQRAEQRAOIzqtGq/p\nx4o5SsRaMcflDcbUjsnq8rNpu5n1NZ2YlT7w6oPT7iatrhp7SSmSPj5hgq6J05HVarIq1sdlvp6I\ndlYDy+H58YF0ICSxs93J6sp2ttZbcMT4sHogWOy+qHe0KpWzbgXH3P47NH4/P/zhIUU7SXQaNaPz\n+27fdrCkJemZUZpFwgFCDMW5Kf1amNNq1JSNziR3j93dwZQ0rOOn0LjwdLb+6v/44ZbFLH36H3z0\nr5V88N5qlvy/f+HOySOrfB0ofOC259eoMDxta7Yf8AGsxx+irtXB6sp2ttR10WnzDokHtsLQZ3cH\nWFfdSVWDdb9QTuHSTyj56gMs48oov/Q6ZROqVGy64nYqL7yC5JYGFt54MclNO/p1jjOef4hESycV\nF1+NY9S4mOawTJrBskffoO6MX8Y0vumYUwkZEij58n3F7+0Ahcs+I7Grgx2n/kzR995gajrfPfAi\n1T/7DalNOzjxmvMZ969X0TkPzZ3V3SSJ2U/cRf7qZbTNXsDaG/4U02LBnkwpBrEINAiSjZHPsbls\nFupQMKpWPHa3H48vRF2Lg1WV7WxW8P1r35CqMDBsLj8NUVR82Zerh0DxgVgcPjbWmrtDORBpuxEe\noHub3ri9QZJbGgBwFRQrHqfrIQgzoTidlChCZD+2s6pQPGZfwbDE9uZD/P1eEISY1Tba8PhDvX48\nuXEHcx69nclvPIMqFOz1dYPJ4QmwtrqThnYn8iDen8qyjGPXJrvDmccXosvuI6WhjllP3UPQmMzK\nu58mnBh9sMag0zC9NGvYhHIAPPOPBiBn0+qoxtmcA9/OSgRzBEEQBEEQDiN6rRrfrmBOosJgTiDG\nijkWR/8qfDg8Acp3WFhb1UG71dOvGz25ohJNMBC3NlYAoaRk7CXjIjtIAwNzQ9ifakXCgUmyjMuz\n/wMNSZZpt3lZX9vJuupO2i2eg74IPlA9xvNXfs2Cu69EJUmsvOcZmo49TdG4sSPTDvlKTsYEHTNK\ns0nqYeFuRIaRUXn9DxapVSomlpgoykmhryXGYHIq1nFlmCfPwuC0k9yyU9ExDqWAmBB/Zpt3r8py\nByLJMl0OHxX1FlZVtLGj1YE/IMKbQvz5AiEq6y1sqO3E6d3/PSiptZFZz9xLMNHIqtsfi6pKDSoV\nFZdex+bf3oixs5WFN11C6o6amM6z4LsvKV76MV3jp1J9/m9imiMeQknJNC84iZSWBjKVhrVlmfH/\nfh1Zrab23IsVH0vWaNl8+c2svvURVJLEtJcf5YwLj2PmU/fE/HkcaFNfeYySJR/RNWEqK//4dHRf\nL70YmZ0chzMT+pKyq+KNuWwWQCRYrFCX3ceaqnYaOpyKNxq0Wz2E+qh2KPRPMCRRtdNKf+9sdrY5\nFW3eaTa7Kd9h2W+DQTAs0Woe2Da9+3L5Qt3BHGd+ieJxet3+y2cadSSgr7SSoXVXMCejpn/trHZX\nnRIEYXhpMbt7feZjbG9m9uN3curvz6Dkqw+Y9PYLHHfzpSSY2wf5LHu2u3rOhlozbt/ABYYCwTDt\nFg9b6y2sLG9jfW0nG2o6qW9zDGoo6FDS1OlClmWmP/8gWr+XH258ANfI6KtppiXpmTUu+5CsiN0f\n4TlzCOv05GyMMpjjGvhncCKYIwiCIAiCcBjRadX4MqOsmBOWYrrRsTj9EIedcC5fkK07razZ2kGL\n2Y0kKTsXSZLx+kPY3QHUGyILJfEM5gCEjpiHJuAnfVvsu98ORCy6Dhy3N0i4j69rpzfA1gZr9yL4\nwVgsCIUlLAPwALbwf/9l/v3XIWt0fPfAi7TOU1baNSstgdyMobGLxqDXMH1sFmlJPz5gyEg2MK4o\nthLyvRmdn8rsCTmYFLTfs0ycBoBp6yZFc4tgzvAlSTLbWxwxje2u8LW1nYp6C/Yo2yQKQk/CksSO\nVgdrtnbQ0cvigCoU5IiH/oDO42b9NXfjjqLqwJ6qf/F71l99FwlWMyde/XNmPHMfxtYmxeMN1i5m\nPn0fYb2BH27+M7Lm4LYRqj/5XIBI1RwFsjeuJr2uiqajT46pnVfDCWfyydtL2XT5Lfgyshjz6T85\nZdHZHHvzpeSvWALhQ+P6cdw//8r4f7+Go2gM3z3wYkw7ePeVlKCLqQ2lEL3kRC1qlQpz2UwgumBO\nLEtkYUmmzTK4YY3DhiSR+MwTtH26dK/KNbEKhiV2tPZedUeWZbY326ltsvW6waGxw6X4vj4e3N4g\nyc2RYHx/K+ZApLpA2SgTGgUVwLor5lQrrzrVm5pGG8GQCLAJwnDh9gXZ1kM1LIOlk+nPPchpl53G\nqC/ew1E4mu/vfILGY08lq2I9J195LjnrVsTlHHJ/+JapLy0msaMl5jkcnkilzX5VzwkGu6tPyrKM\n3R1gR6uDddWdrKxoY2uDlXabt7tluUykNePGWjPeA1QbGo4CwTBtFg8j1ixjxPqVtM06iuajT456\nnvzMJKaNzUI/DFtmG9NSME+eSXpdFXq7VfE4fyiMZwBDZgDDrwGuIAiCIAiC0CudVvNjK6suZcEc\nSZYJhqSoLtTDkoR6/TrOu/aXrLj/OdrmHhvT+e7JGwhR02RjZ5uTSdVrSO5qw3LqOXgNiQRCEoFg\n+Mefg9JeO/NmbI3sTrOWTur3eexmSjGgP2YBvPM6WRUbsEyaEbe5d/MHDq+by8Hk6KFaTm92L4Kb\n7T4ml5gwJgzebVSX3ddngChaoz77V3ep2+8eeImuycq+dnUaNaUj4xtqGWg6rZqpYzLZWm/FFwgz\neZQJdT9baPQkKUHH1DFZmO1e6locvZah7toVzMms3EjDiWf3Oa/bFyQUltD2siggDF2NHS68/XyP\nl2SZTpuXTpuXlEQdBdnJ5KQnolbH/2tcGN7aLB52tDj2a1m1r8l/+39kVm9m5/FnKnoPO5DWn/+a\n7aMKKXjiQcZ+8g9Gf/ovGo4/napf/B5n8djeB8oyM5+9jwS7hY1X3IazaHS/ziMeOqYdgSc7j8Ll\nn7Pxyjv6DKCM/89rAFSfd1nMxwympFHzs8uoOfcS8tYso/SDN8ndsIqcTatx5+az7cwL2XHqeQRT\nD8737ZIv3mPaK4/hyRrB8odeJpCaEZd5C7Jib0MpREejVmM0aHFlZOEsKCarYkMk9KUZuMWbFrNb\nVEQaAPr/fkzyA/dSMn4K25/9Z1zmbO1yk5+VRPI+LZ3CksTWnVbMfWws8IfCtHa5KRikf2+3N0h+\ncz0QZTDnAM9AUox6JhRnUFFvOeAcvswcvJk5mKo3Kz5ub/yhMNuabEwsMfV7LkEQDr7Wrr0rNOuc\ndsb/61VK338Trd+LK6+QiouvpmHh6aDR0HTMqXSWzWb6S4s55o7fU3nRVVRedGVM35tTdm5j2kuP\nkLf2WwDGfPIuFZdcTe25FyNro28Zurt6jtnuY3xReo/Vi/elrtuOfulX6L/+Ct2K7winZ1Bzw93U\nzjqOoMLwpn1XKKh0ZNqwasV0IM1mN3IwwLSXHkFWq9m06NaoWsWqVSrGFKQN6+tqY4KWjulHkLtx\nFdmbf4gquGR1BQa0ba54uicIgiAIgnAY0WnVyMZkQglGEqxmxeMCUe7KsjkD5K1YgloKM/LbL6M9\nzQOfi99P8U2LGHHXHyg9Zhopd9+GdWMFHTYvNpcfjz+0X7nsjNoKJI0W+6hxcTuP4twUgnPnAZCl\ntHVBlEQrq4HjjKESidsXZH1NZ7/btEWj3RrfNlal773B7CfvJpCSxrJHXlMcygEYU5CmuGT7oUSj\nVjN5lIlpYzMHPOCSlZbI7Ak5jM1PQ6ve/1i20eMJ6w1kVimrmCMDzihCZMLQ4A+EaWjvfad5LJze\nIFUNVr4Xba6EKNhdftZVd1LVYO0zlJO9YRUT3n0ZV14h66+5O6bjadQq8kxGZpRmM3diLqkXX4Dz\nh42Yn34JT/EYSpZ8xKm/P5P5911DRnXPLT+Kln7CyO++onPKbGrPUd4GakCp1dSfdDY6j5uCFUsO\n+NKUhu3krVmOefJMrBOm9v/YGg2t849n+eLX+OIvH7H9jF9gsFmZ9spjnHHRQmY9efegt7nK+34p\ns568G39KGsv//DLenLy4zKvTqMk1JcZlLkGZFGNkUcJcNgudx0Vafe2AHs/jDw3qdfbhQAqF0fz5\nQQBM1Vuiqk52IDJQ22Tb68/8wTAba7v6DOXs1tjhGrSWwW5fiOTmnchqNe4RIxWP661izm7Z6YmM\nVtAi1zJ+ComWzri0n2nfFcoWBGHoM+/6v6zxupnwzkv85JKTmPiPvxBMSmbdtffw+Suf0HDiWT8G\nb1Qqtp99EUufeAtPTh6T33qOY+74PQZrl+Jj6h1Wpj/3ICcvOoe8td/SPn0eG6+4jbDBwLSXH+XE\nq3+OqXJDzH+n3qrnSLKM1+bA9/GnyDfcQPLsaWTOm0HKHbdg+PorXNl5qLs6mXzrFcy98wqMbc2K\njxmSJLY2WNlabxn2bTHDkkSL2c2Yj/9BatMOtv/kfBwlpYrH6zRqpo3JHNahHIhUtrPOjDyzz9m4\nKqqxNoXtxmMlKuYIgiAIgiAcZrQaFV5TFokKW1lBpEwmicrT4hanj7G7buTiHVpJ216NzuPGNno8\nBpuFce+/ybj336R17jHUnnMx7TOPhD0WxFXhEOl11dhLSpH0fbeaUSI92UBasgEpqZBAzggyKzZE\nSq7GuRKHPw6lxoWeuaxOjr/2QpoXnET1+b9TPC4kSWyp62JUXipFuSkDeIYQDIWx7dGiJrGjlWNv\n+w3OgmLqT/4pLfOOQ9Yp7AMty0x45yWmvP40XlM2yxa/euCKBPswpSQwYgjvPlKpVOi0gxMqUqtU\njMxJJteUyI5WJ61d7u6WDrJOj7V0Mqatm9B4PYraejjcATIUtMkSho66FnvcK2HtFgxHKnw1drjI\nTEtgZHbyXu3cBAEiD3RrGu20W5W1jdHbrRyx+BZktYZVtz9GKCm6CgfpSQZGZBrJTk9As29oUatF\nvuACvL/4BV3/+YDUZ59g5IoljFyxhLaZR1J1wSI6p84BlYqErg5mPPcAoQQjP/zhob2u9w62+pPO\nYdLfX6Tkq/cjCyi9GPefNwCoPu/SuJ+Do6SU9dfey5bLbqDki/cZ+9HbjP7sX4z+7F9UXrCIisuu\nj/sx95W1ZS3zH7wRSafnuwdejOpaoy95mUn7f/0IAyrZqAeLB3PZLEZ98R4nXnM+ksJd+dvP+CWb\nF90a9TFbzG7RrixOgqEwHa/+nenbqvBlZJFgNTPy2y+oOf+3cZnf7g7QbvWQm2HE5Q1SXtcVVass\nXzBMW5eH/AFeHPTu2riT3LITT3Yekl75dZFe1/d7TlFuCh5fiLYDfE+1jJ9CwcqvMVVvoSUrV/Hx\ne1PTaCM9WT9o9zeCIMSfwxMg4PYy9r/vMvGdl0iwdeFPSWPT729m21kXIhl6/15onTCVr577D3Mf\nvY381cs46aqf8v2dT9BVNqvXMapQkDEf/4PJbz2H3mnHlV/EpstvoWX+8aBSsfPEs5jyyuOM/vw/\nnHD9hWz/yfls+e2NBFPSov677a6e02H1ktbWQMp3S8n6fhn5m39A64+EN4OJRpqPPIHWOcfQNmcB\n3px8kht3MPPZ+8lf/Q05G1dR+aurqDnvUsUVfNptXuyeABOLMkhLHp7PUFq7PGC1MPmt5wgkpVBx\nyTVRjR9flD5sPzf78k+bQSjBSM6mNVGNsw1wq3ARzBEEQRAEQTjM6LUafKZskivWowqHkDV9XxJG\nWzHHanFhqoqUak5pqsdg7cKfkRnT+e4rq2IdANU/u4zGY09j5HdfMfbDt8lbs5y8Nctxjiyh9uxf\nsfOkcwgZk0jduR1NwB/XNlbFuwMZKhX+ufNI+eQDklt24iooidsxQARzBkooLGGo2ERm1WbS6rdR\nd9rPo3rYIAN1rQ7c3iDjitIHbJGow+bbaxfp2I/eJqWpnpSmevJXL8OflsHO48+g/uSfYh8z4QAn\nLDPl1SeY8O4ruHPzWbb4Ndz5RYrPQ6NWMa4w+ocxhzudVsO4wnQKspPY3mzHsmvXTdfEaWRVrCej\ntgLz1Dl9zmOPobqTcOiyu/y0D8Iu5z3bXE0dnSkWOYVuXn+Iih0WXL69q3GpggG0Xg9anwedx939\na63Xw5hP/kGipZPNv71RcZWXBJ2GXJORESYjiQYFjx/Vaow//ym+c8+m/MPPyf7L04xYv5IR61fS\nNXEaW3+5iDGfvIPe5WDdtffgziuM5a/fLxq1iuy0RCxO337Xxu6CYjrLZpGzcTXG9mY8uQX7jdfb\nLBQv+RBXflFkEWSABFPSqP3ZpdSeezF5a5Yx4/mHmPjuyzQuPD2qHbXRSqur5qi7r0IVDrPi/mex\nTJwet7nVKtWw39l7KErdVTGnef7xFM5egN5pVzTO2NbM+P+8TvNRJx5wkbAnXQ4fvkCIBL1YtugP\njy/Ilm1mFvz1aWS1mhX3PsvCG35FYRyDOQB1LQ7UKhXVDbb9qtYq0dDhZESmcUBaze7m9gXRetwk\nWsy0zTwyqrF9VczZbVxROt5AqNfrdsu4MgBMNeW0HHViVOfQk2BYorrRRtmo+DxjEQRh8Fl3tnLy\n5WeS0tJAMNFIxa/+j5rzfk0oSdkGsGBqOivue57x//wrU15/iuP+8Gu2/PZGan522X6bBkesWc60\nlxaT2lhH0JjMpstvYdtZF+0VVAykZrDuxgeoP/lcZj19L2M+/ScFK5awadGtNJxwpuKNiGq/j5xN\naxjxw7eM+GE5KS0N3R+zF4+lbc4xtM49BvPkGfttNHMVjmL54lcp+vpjpr20mKl/fYLirz9m3XX3\n0jV5pqLj+wJhNm4zU5SbQsmIFFQD+P1lsMmyTFOni0lvP4/eaWfT5bcQSFfe2jA7PZGstMOn+qQx\n2Uhn2Szy1n5LQlcHvswcReOCYQmXN7hfu854EVe4giAIgiAIhxmtVo0vMxuVLGOwWRRdmAaiCIh4\n/SEMlVvQ+n2EdTo0wSCZFetpWXBSf067W/aWSDDHXDYbWaenceHpNC48nYyacsZ+8BaFyz5l5nMP\nMOW1J6k/+acEkiM3tdbSyXE5flqSfq/qFfL8I+GTD8is2BD3YI4kywSCYfRDsH3QoczpCXYHx7S+\nyIJj1QWLop6n3ebF4w8xeZRpQBYPOvbYdakO+Bn1xXv4U9NZ/tArFP3vE4qXfNRdMco6dhI7Tvkp\nDQtPJ5ia/uMkksSM5x9k7Ed/xzmyhGUPvxp1S4nR+WlicaQfkv4/e2ceHldZt//P7JOZSSaZ7GuT\npnu6l26UspWyyY6AigqyKCryvqK+oj8V3BXcUEARRQVkpyAF2feltNA9S5MmafY022T2feb8/pgk\ntDTLOZOZbnk+19UraXK+z3nSTuac8zz3976NOhZW5jDgDNDU5WRgziIAsvfslCXMcfuEMOd4QZIk\nGjvlbWomk/o2ByfMyRVd1QIG3UFqW+zkv/Ycqx77G3q3A63fh87vQx0ZPzavZ8kq6i8bfzPXZNCS\naTGQYzWSlW5IaCFcq9WQf+mncJ29nqaX3mTav/5M8abXOOnWrwGwf+mJNH/qCsXjTgarWU+BzURu\nZhpajRqHJ8iupoFDIlha1l9EbvVWpr36LHVXfvWQcWZsfARNOETDxV/8OJIglQzFXKFScdKPvsai\ne3/NO7+4L+kOjwCm7g7Wfv869F43H9xyBz3L1yZ1/ByrEYNevIcdbsxpOtQqFeGMzPhrRya22u2s\n+9/PsezO23jlnqfkOzwSF8B39fuYXjRxPJBgdAbdQWr22cl/8wUy9zXQcsaF2OcupnfJKgq2voep\nuwNfofw4p/EIhqPUtNgTrg+EovQO+lPqzOn1RzB3xzeGPcXTFNXqZD6Hq1Uq5lfY2NrQR2CUONHB\nYWHO0DNoMuh3BkYciwQCwbFH2pOPkd7VRuvp57PjhlsUCSxGUKup/8z1DMxbxKpffItF991BTvVW\nPvz2LwinW0lvbWTRvbdT+NE7SGo1TeddQfUXbxr3XAPzl/HKPU8xa8O/mPfQPay8/btUvLSBrTfd\niqe0YtQac2crhUNCnLydW9CE4k1Jo7niTIhKRdsZF9C94mQW3P97Kv/7OKd/80qaz/k0u6+9mVBG\n1oRDSEBrjxuHO8icaVnymgSOAfocfrRNjcx49hE8RWU0XnCl7FqtWs2M4qnVcGc2auldvJLCj94h\nd+cW2k8/T3atwx0UwhyBQCAQCAQCQXLQadX4bbkAGAf65AlzFDjm2F2Bkfiq1jMuZPoLT5KTLGGO\nJJFTsw1fTj6+/IMf6AZnzefD//sVu67/DtP/+ziVGx9h5jMPjnzfMSM5jjnTPhFfFF0Zz6zNqdlG\n65kXJ+UcBxIUwpyk4/KGyGuoBiCq0zHzmYdouPTqhKLO3P4wW+v7qKqwkZlEO9jAJzouS95+CYNz\nkD2XX4tjVhWOWVXsvuabFG55m/KXn6Zw81ssvftnLPrrr+k6cR37zrqU3kUrWHbnbVS8/DSOilm8\n/au/E8zKUTSPTItBdKgniWyrkQyzjm0dcWGOrW6nrLpwNIYvEMZkTM2igODwsd/uw+0fX/yQCoKR\nKHWtDhZWiq7qqUxHr4d9LX0s/MsvmfHco0R1OgK2PALZeXjSTESMJiJpH/8Jp5njnxvNhNMzaD/5\nrIOio9QqFWajjkyLHqtZjzXJkRoZZj2Wi9fTedKJ1L3/ETMfu4+M1kY+uvlnKRGWfBKDTkPBGI4/\nmRYDFYUZNHUdLLTrOOUcltzzC8pfeYa6z91w0DzVoSCVzz5MyJJBy5kXpXz+B+I6ZT09S1ZTsPU9\nCj58m/0rTknq+IbBfk7+3rWk2fvZ/tXvK1r0lktJrrL4NEFyGP49d/uViYTt85bQdO7lVP73cWZt\n+Bf1V1yvqL57wEt5QTpq9fHT5X642G/30dDuIBaNUvXQ3UhqNXVX3gBAx8lnUbD1vaTGWSWDth43\n+VlpKXM18ATCpHe2xj9XKsyR6ZgDcbfMuWVZbG/sP+R74XQr7uJpZO2tSWoEdmOHk0yLAYNYLxAI\njik8/jBFL2wgptaw8yvKXE9Go3/hCl65ZwOrfvkdije9jvXrn6Z3yWrKX9qAOhalZ8kqdtzwPVwV\ns2SNJ+n01F9xPe2nnMuSu39K0ea3OPOGC9lzxfXs+cyXQZLGdsUpn0n38rXsXz66K45cwhmZbPvf\nH9O6/iKW/vE2pr/wJMXvv8bO6/+P1vUXynofdfpCfFTfS1W57bhwkG3v9bDor7ejjkbYef13FEUz\nVhZnTLlrhcmoo3VxfM0+b+dmZcIcT5CSvNQ8fwhhjkAgEAgEAsEUQ69VE8gaEuYM9smqUeKYY3cH\nmVWzHYCGS66i/OVnRoQ6k8Xc1YZxsJ+2U84Z8yEsmJVN3ZVfZc8V11H87ivM/M+/UYeCOCrnTvr8\n6Wn6Qx7mIvPmE00zkTP0MyebYChKumiCSypuX4g59bsJpVtpPvtS5jxxP9Nee5Z951yW0HjhaIxd\nTQNUFmVQnKSNo97Bg6NuKp97FEmlOsglQNLp6VpzBl1rzsBg72PaaxupeGkDpW+9SOlbLxJOM6Hz\n+7DPXsDbP//rwU46MtCoVMwuVVYjGB+dVoO2rBRfTj7ZdTtkL8w7vSEhzDnGiURjNHe5jtj57e4A\nHb2epC0u+QJhXL5wSjvcpzoxScLtDaHTajAZE1++i8UkGtoduGobOPXn38TWUI2zfCbv//DOMbte\nR0OjUpFp1g8JcQxkmHUpi3IcRq1SUZpnIffck2hctIB+ZyDl58u2Gim0mSZ0/CnNs+Dyhuhzfny9\njpjMdKxdT/mrz5Jds+2gCJ9prz2L0Wmn7orriaYdHsGrWqWiojCDklwzjd/8IXlXn8eie2+nZ+mJ\nSNrkXFO0Xg9r/9+XSe9qo/azX6Hx4i8kZdwDyTDpyTAntqkjmDzpJuXCHIDd13yT4vdeZd5D99B+\nyrn4Cg6NdxuLcDRGryO1LirHI/u6XbT2uAEofvcVrC17aTnjwhFX1841Z7D0zh9T+vaLR5UwxxeM\n0Ovwp8z5xesPkz0kzHErFObodcquc9Yh17jRrlf2WQuY9g9HSPIAACAASURBVMZzSY3ADkdj1LcJ\n8bVAcKzh/Wg7FY21dK08VXHz1FgEbbm89au/U/XgXcx7+C9YXngCd/E0dn75u3SvOjUhQaCvoJj3\nfvJnit97hcX3/IKqh+5h+n+fQO9xfeyKYzLTseYM9i9fy/4T1ip2aJ6IgaolvHr3k8x8+kGqHriL\nFb/5HuUvb2DbTbfiLqucsD4ak2jv9RzzwpxBd5C0d9+kaPOb9C5aQdeJ62TXZpoNFGZPvYY7S5oW\nR+UcQpYM8nZsVlTr8ISQJCklomEhzBEIBAKBQCCYYui1GgJDjjlpdpnCHJmOOTFJwuEKkF27DX92\nHu6ySgZnziNrby2agJ+ocXJZtrnVQzFWC5ZNcCRIWh0dp55Lx6nnTuqcBzKtYJQNTa2WwJJlZLz/\nDnrXoCxbVSUEFYiiBPLwd/dg6Wpj/7I17L3kqngc1BP/YN9Zlx7kBqCEmCSxt9OJxx9mZmkm6kk+\nvB0ozLE27SGndjvdy9fiLSwd9figLZeGy66h4dNfwrZnF+UvP03ZG8/Tu2gl7912FxGz8s34isKM\n48by92giM92Afc4iSt59mbS+bll2zi5vaEoupBxPtHS7CUdHuZZGoxRtep38HR/gKSpjcMZcHJVz\niZjTDz12kjR3u7Ba9KSbJrfBHQxF2dU0gEqlSmmH+1QjEo3h8oZwekM4PSFcvtBIVJIt3UhJrlnx\ngnIwFKV6nx3L6y+x/o5b0Htc7DvzYrbf+ENF92QzSzIpzDZN+tqWKEa9lvkV2fgCYWLSxMcPE41J\nRKOx+MdDPpeIxuJ/j8UkstIN5GWZ0Gnl3wfMLsvE2xDGF4yMfK1l/cWUv/os5S8//bEwR5KY9dS/\niGm0NF4o33J+MlhNemaXZY6IOm2rT6D5nMuofP4xKp97jMaLPj/pc6hDQdbcdiNZjXU0n3MZNVf/\nz6THHI2SXHH9O5Kkm3QwoLwunJHJzq98l5W3f5cld/+U937yZ0Wbgp19XiHMkUksJrGnbZBeh3/4\nC4e45QCEMrJSEmeVDNp6PCkR5sRiEv5gBEsCjjlqlQqtAsecYaYXZmB3BQ+JOxycPZ9pbzxHVn11\nUiOw7e4A3QNe8awgEBxDmJ58HCDu/JJMNBpqrv4fepesxtLVSssZFx7kWKMC1GoVWrUajUaFRq1C\nrY5/HA//Oeez5eTTmP63P1Dy1EN4SsrpXr6W7hPWTsoVRy6SVkfDZdfQfsrZLLn75xRvep11N32G\n/z7wsqw1WIcnSOgYdyPv6HKw7N5fI6lU7LjhFtn3VGqVillTtOFOp9Wg0+voW7Cc4k2vYerpxJcv\nTygeicVw+8IpaQ4Qq6wCgUAgEAgEUwytVo3rgCgrOch1zHF6Qhi720mz99N+8tmgUtE/fxnZe3Zh\nq99N36IVCc8bIGdYmFM1sTAn2ViMOnKso29ixVathvffIbtmB92rT0vqeYNh+TFigokJhCJYancB\nYJ+9gEB2Hq2nn0fFy09TuPlNulefPqnxu+0+fIEIVRW2hB/6fYEwnsDHcTeVzz0KQNN5n524WKXC\nPncR9rmL2HbjD+NCowQ2Uq0mPcViIywlZFkMDMyNC3Oy63bSIUeY4zv88UeC5OENhOka8B70NZ3L\nwfQXn6Ry4yOYe7oOqfEUluKonIujck5crDNjXlxUOwlhREySqGsdZNns3ISdTsKRGLuaBwgM3RcM\nOAPkZE5OdDtVCYWjOLwhXJ4QTm8Qjz/MWJoTuzuA3R3AZNBSlGOmwGaacLPQ6Q1R19jLzPt+y5zH\n/05Ub+DDm39Gy9mXKppneUH6URNpeLQ5h2k1aqoqbGyr7yM6tAHbt2gF3rxCSt9+kR1f/T7RNBMF\nH75DRlsTLWdcQCAnP6VzOtAl50DRXLbVyK4v30zZG88z78G7aF13PuF0a+InkiSW//b/kbdzMx0n\nrWfrTbemJGLMqNOI95gjzGTEnG3rzqfipQ0UbX6LovdeVRRt7PaHcHlDwi1pAsKRKNXNdpy+j12N\nRnPLGab95LOPyjgrbyBMr8NPXpJ/372B+LU1vbMVSa3GK3NDDpTFWB2IyaijwGY65N7PPnshALb6\nXUmP/GvsdJKVbsCoF9t9AsHRjs8bpPDlZwhZMuhalfj6oVqlQq9Vo9dp0OvU6LUHfCw/G51WzTKN\nGs2Q8CYuxJmM22UO/PEPDNz5e1CpyJIk0kJRCoMR/MEI/mAUfyj+eSAUPUScmAz8eUW8/+O7mX//\n75n76F8p2PI2bWdMLG6SgD5n4Kh5plGKxx/G+sRDWFv20nz2pTgVOMJPy0+flPvqsY45TUfv4pUU\nb3qN3J1baD3zYtm1Dk9QCHMEAoFAIBAIBJNHp1Xjzx4S5sh1zJEpDrG7A2QPxVb1Vy2Jf5y3hNn8\ng5zqrUkR5oTM6TjLZ05qnESYVjC2e0F05WoAcmq3JV+YE4pMfJBANi5fGFv9sDAnvjja8OkvUfHy\n08x+4v5JC3MgnmO9q2mAxTNzEuqy7DnALUfr9TDttY148wrpXnGysoE0iQmD1CoVs8syhQtGirBa\n9HTPWwwQF+accs6ENd5AmEg0ltDrSXDkaexwjixMZuxrYOYzD1H2+ka0wQARQxpN511B22nnkdbf\nQ2ZjLVmNdWQ21VHy7suUvPvyyDiBzOy4UGdmFXsv/kJCtue+YITGDiezy5S7u0VjMXY3D+A9QDjY\n0ecVm+YKCT36OO1RPe3zTlAsZPAFIzR2OtnX7aLQZqYoxzzqQmv3gJf2HQ2s+vnN5FZvxV08jU0/\n+APOyjmKzldoM1FekKGoZqphNuqYXZZJbetg/AtqNa3rL2Lev+O2/21nXMisp/4JQMOlV6d0Lp90\nyfkk+bOnUfu5G1j0t98w76F72PnV7yV8rtlP/J2yN56nf94SNt9yR8L3HBNRlGM+Yk5NgjhmoxaN\nSjUiPlOESsXWm27lzBsuZMk9P6d36YlETPI3xTr7vUKYMw6+QJjdzXb8Bz4vjuGWM0zXmnXE7rzt\nqIuzAmjb706BMCf+b2PpbMWbX6zI1UGJg9onqShMp3fQTyT28TqKo3IOMbUGW311wuOORTQmsafN\nweIZyYnEEQgEqSP48iukDfTS9KkriOkNsuvS9FpmlWaOiG8m8x41KYbuy1QqFWkG7aguy5IkEQhF\n8QUidPR5GPQEkzqF1nXnM/fRv1K06Q1ZwhyAvkH/MSvM6W7uYtm//kg4zUS1AodKi1FHaX5yoqyP\nVcxGLb2LVwKQt+MDxcKcsvzkOxkLYY5AIBAIBALBFEOvVRMY2syTG2UVicWIxSTUE9ibDrqCzKrZ\nDsBA1dKDPmYPfT1RDIP9pHe20r18bcoW/8fCYtSRO84iYeSE5Uhq9aR/xtEIiCirpOL2higbWgy1\nz54PgKt8Jt0rTqZwy9vY6nZgn7t40ufxBMJUN9tZWJk94e/NJzkwxmraa/9BG/BR99kvH7bXfXlB\n+lHnSnA8oVGriS5cTEyjxbZnp+w6lzd0zOeiT0X6HX4cTi9Fm95g5n8eIm/nFgA8BSU0XnAlLWdd\nfJBrRftpn4p/IklDQp24SCezqY6sxjoKtr4X//PRO7zxu38nFBHZbfeRlWFUtPkVkyRq9g3iOqAj\nH8DhDeL2hSYdjzVV0Lz9JsU3XUcxMHdaJY0Xfp7WdRcQTVMW3xGNSXT0e+jo9xwUcxWTJBo7nERe\neYV1v/wORqed9rVn8dHNP1McaWhLNzBzitqeKyUvy4TLG6aj3wNAy5Awp/zlZ3BWzCZ/+yZ6Fq9S\n1N2qhLFccj5JblYaH112NZXPP8aMZx+m6bzP4CmtUHy+/A/fYcHff4cvJ5/3f3Sn7E2lomwzoUiU\nQXeQqIxMMo1KJaJZjgJUKhWWNN1BjixK8JRWUH/5dcz795+peuBP7LzhFtm1fQ4/M4oz0GmP3eiJ\nVDHoDlKzz36Q8APGd8uBozvOyhMI0+/0j+lSmwhefxit14PRMcD+Gcregyez6a3TaijNs7Bvv2vk\na1FjGq7ymWQ21aGKhJG0yX3ecniCdPR5KMmd2puwAsHRjuXJxwBolSkoGabAZiIrXb6Q50hyoGgn\n22qk3+mnuct1UPzrZHCXVeIpKqNg67uoQyFi+omfRZ3eIMFwFMMRjLOSJElxA1wwFCXnnt9jcA6y\n+0vfJDjkgD8RKmBWaeaUF7ibjDo6p80gYLWRt2MLSJLs5hinJx4tnex/Q9FuJxAIBAKBQDDF0GnV\nhDIyiWm0GAf7ZdcFJxCIBMNRPIEwOTXbiBjScEyfHf96VjbuknJyardDNHGRSU71kBPP/BMSHiNR\nyiboMJDSMwjMnoetfjfqUGKL1mMx0b+7QBkubxBb/W68eYUHPdDWXxbvGJ39xP1JO5fDG6S21Y6k\noMPY5Q193PUqSVRufISYVsc+hdEjiZKepqc0TyzmphprbiaO6bPJ2lsr+z3jk4IIwdFPtH8A6be/\n4ZyrzmTNT24ib+cWepas5t0f380L/3iRvZ++euwoGZUKf24B3atPo+7zX2PTrX/ivw++yjMbNtN8\n9qVkNdZxwu9/GF9YSoCGNgd+BQuj9a2D2N2BUb/X2ecd9euCTyBJ6H/2EwA6V68jvbONZX/8Medd\neRoL7/015u72hIa1uwPsah5gS10PO+p7sd55Oyd/7zr0Xjfbv/p9PvjB7xWLcixGHfPKbVN+IVcJ\n04szsA45e3iLyuibv4z8HR+w6K+/BqDh0qtScl6rSc8Js3MpzbNMuNCvVqkoKrGx6/pvo45GWHTf\nHYrPZ+lsYdUvvkVMq+P92+6SvTmQYdIzqzST+RXZrFlQyKLKHErzLFjGEQLn20xHrhtccBCTFV/W\nffYreIrKmPnMg2Q21squi0kS3QO+SZ37eKR7wMvu5oFDRDkTueUM037y2QCUvvNiKqeZEK37PUkd\nz+MPY+lqBcBdPE1RrX6S7z8leeZDNoDtsxegDQbIaG2c1Nhjsa/LhS8gHHcFgqOV4ICdvLdfwl1U\nxsA8ZQ1heVnHrktpjjWNE+bkUVlkRTupOK0hVCq6Vp2Gzucld9eHskok4oLfI4XLG2JLXS9d/V5i\nMgTqw/Rt282Mpx/Em1+k6HmiOMciXAeJO+agVtO3aAWm/v0j9wRyiEoSbm/y1+HE041AIBAIBALB\nFEOvVYM67pojN8oKIBwZP87K7gqgczuxtuzFPmfhQR1g/VVL0fk8WFv2JjzvnOqt8bHmL014jEQw\nGbTjuuUME125Ck04RGZjTVLPLzdGTDAxMUki2tKK0THA4KwFB32vb+Fy7LPmU/zeq1g6W5J2zn5n\ngIZ2h+zjD3TLydn9EdbWJjpOWp9QZI1SRITV4SMz3YB97iI04RDW5j2yalwpWBAQpA7jQ/9CVVrK\nvHvvwOB00HTeFbx430be/vVQZF6CDlhhSwbbvvEj+uctoeyN55mVoJgwEouxp3VwJGJrPBo7nPSM\ns4jZ6/ATEiLSCVG/+jKWHR/ReeI63v/xXTz/4KvUfP7rxHR6Zj/1T865+ixOvPXr5G17X7HgSuv1\nYNi9g0XfvJr5D9yFP6eAN377II0Xf0FxXJZBp2HB9GwRnacQtUrFvHIbhiFnj5Yhm/T87R/gKp3O\n/uUK4yhlnK+yyMrimTmKXO4Ks030nnwWvQuXU/TBG/HXm0y0Xg9rbr0RvdfNR9/8CYOz5suqUwEz\nSz4WIapVKrLSDVQWWTlhTh6r5xUwuzSTXGvaQZs1JbnCLedoId00OWePmN7Atht/hCoWY+mdP1bU\nrNHV71Ukcj/eae5yUd/uGPX6PeyW03r6+aO65QzTtWYdMbWGkrdfSuFME8PtD2F3jS4ETgRvIIyl\nM74J5ylSJsyZrFOTRq2movDgOMhhx1Zb/e5JjT0WUUmivm1Q/M4IBEcp0Sc3oA0G4m45Cu7RrWb9\nqJFRxxJqlYrSPAsr5+VRlG1msqtOXUMx9EUfvC675kgKc1r2u/CHIjR0ONhc20N7r4dIdPz13kg0\nRv7tP0UdCbPrum/Ldqk06jSUFyY/gulYxDwU+zwSZ7V9s6J6h0cIcwQCgUAgEAgEk0SrUaMCAtm5\ncWGOzEWbiTbd7O4g2XU7AOivWnLQ9/rnLwMgp2ar8gkPkVO9lahOh332gokPTiJl+emyhAqxVasB\nyElynFVMkoRrTpLw+sNk7tkFgH3OJ15HKhX1l12DSpKY9dQ/k3rebruP5i7XhMdJknTQQkHlxkcA\naDr/s0mdz1iU5VuwpIkIq8NBuknH4FCHXHadvDgrlzecyikJkoiqpwfzD24hqtez48vf5bmH32Db\nTbfhnjYjKeNLOj3v/+hOfDn5LLz/d+R/9G5C4zh9IVr3u8c9pq3HPRLPMxYxSaKzX7jmjIskof/5\nTwGo+eI3AAhk51H7xRt57qHX2Pzd27HPXkDxptc55ZZrOfPL5zP9uUfR+D92itB6PWTuraHkzf8y\n5+G/sPyO73Ha/36O8y8/iYsvXs4ZN15Gwdb36F5xMq/8+SnscxcpnqZWrWbB9GwMehEbkwgGnYa5\n5VmoVSo6Tj6biCEu7G645CpQ0B2s06ixGHXY0g3kZ5kozbMwo8jK3GlZLKrMYcWcPE6cXyDLJeeT\naNRqSvLS2fmV7yKpVCy699fyRBKxGCtu/y4ZbU00XHIVbQriFwqzzeM6rhj0GgqzzVRV2DhxQQGL\nZ+QwqyRTxGoeRUxWmAPQc8Ia2k49l+z6XUz/7+Oy6wLhKAPO5Ak1jlViMYmaFjttvWNct4fccmJq\nDbVXfnXcsYbjrGwN1Zi6O1Iw28kx0b2JXELhKKFIjPRhYY5Cx5xkOHblZ6WRfsDz1fBahm0oWjkV\nOH0halsHiX7SUUkgEBxx0jckHmN1vKDTaphVmskJc/KwJRDNpdeqsaUbcC8+gVC6laJNb8he13Z6\nQwRDh3991eUNYXcHR/4ejERp6nKyubaHlv2uMRth3S+8StG7r9BftZSOIbc7OcwsyRRNFkPotBr0\nWvWIMCd3pzJhzqAnOPFBCjm2JXYCgUAgEAgEAsWoVCq0GjV+Wy62+t3o3E7CGZkT1gXHccyRJAmH\nO8jsIVFKf9XBrjbDQp2c6m00XXCl4jlrfV6ymuoYmLtYdodAMkjTa2XbxYZXrAIgp2YbDZddk9R5\nHOkc5OMFly+MbU+8O9E+e+Eh3+88aT2eghLKX36Gmi98g2BWdtLO3dbrRqdVjxsT5fCECEbiiwQG\nex8l772Kc9qMEWFbMlGrVJiNWixpupE/6cLm9rChVqmILFsOQPaenTTyhQlrIrFY3I5fiKeOesy/\n+zVqn5e67/yMvetTE0MXtOXy/q1/4rSbP8+qX3yLV//0OF6FG04QF95kpRvItBx6be0e8NLcPbGo\ncPjYafnpqNXCcWs0Ys8+S3rtLtpPORvnUNTnMJJOT9u682lbdz62up3M+M+/KX37RZb98ccs+Pvv\ncE2rxNLVjtExcOi4ag2+gmK6Z8zDU1yGffYC2k4/X5EIZBi1SkVVhU28x0ySTIuBisIMmrok9l70\neQq2vkvrGReMebwKsFoM5GamYUs3YNBrUh4hVpRjpm3WfFrOvJiKlzZQ8eJT7PvU5ePWzHvoboo3\nvU7PklXsuv7bss+l0xzqGDEeapWKTMvo70mCI0eaQYtGrSKqIHphNHZ+5bsUbnmbBff/ns41Z8iO\nQuvs95Ijw8H0eCUUjlK9zz5urGnJuy9jbdlLy/qLZN0PtJ98NgVb36P0nRepv/y6ZE530jh9IQbd\nQbIS2LA9EO9QpNOwY47iKCvd5Dc1VSoV04us7GyKR4i7ps0gqjeQ1ZA6YQ7EXSH8gQhVFbZj3mVD\nIDheiDTvI3f7ZnoXLsdXUCy7Tq1SyXLxPtYwG3UsrMyh3+mnucuFb5SY5TS9FotJh8U4tG5l0o2s\njbbsd9G9/GSmvb4Ra/MenJVzZZ231+E/7PHtLftdqENBtD4voUzbyNfD0Rgt+92093ooyjZTkmcZ\n+flikQj5v/ghADtuuEW2w1JuZhrZVmPyf4hjGJNRh6O4HH92Hnk7t8SFXDL/PV3eELGYlNR1DnFV\nFggEAoFAIJiC6HUaAkPROGn2PlnCnHBk7K4Cty9MOBoju2Ybkkp1SFayp7icgNWWsJuMrW4Hqljs\nsMdYleVbZG+OxEpKCRUUkV2zXdFNvhxCoSgcPw0yRwy3N0RRw24klYrBmVWHfF/SaGm49GqW3v0z\nKjc+TO2Qq0GyaOpyoteqyR+j26l38GNnhIoXn0IdCcfdcib5WtKq1R8LcEzxjyajNuUbf4LxMc6Z\nRTAjE5tMxxwAty8kNs2PcjTNjRgf/Cfu4ml0nH85BFLXkTc4ewFb//fHrLjje6y57eu8fudjREzK\nol8koK51kBNm5x3UGd7v8CuK4QtFYvQM+ijMFtEzhxCLYfr1z5HUamq+cOO4h9rnLmLL3EXs/PJ3\nqHz+caY//yi2PbsPEN9Mw1NUFv9YXIY3vxiVTo9eq0an1cS740dZ1JbDrNLMSW+CCuKU5llw+UJU\nX3sz1dfefMj3DxTj5FqN6A+z+FqnVVOYY6b66v+h9K0Xmf/PO2k/9Rwi5tEt74vefYWqh+7BU1DC\nB//vd0ga+cvJ04sykuI6ITiyqFQq0tP0OLyT6xoOZOex+5pvsvSun7Lo3tvZ8r07ZNUNeoL4AuEp\n6aLkC4TZ1TxAYLwO/1iMeQ8OueV87gZZ43atWUfsztsoefulo06YA3HXnEkLc/xxt0lLV2tcyJpf\npKhelyS3gax0A7Z0I3Z3AEmrY3DGPGx7dqEJ+IkaU7fZ7gmE2dbQx7xym7i+CwRHAw//G1DulpOd\nYTyu3U9yrGnYMox09XnjjUimj5vHxvu5czPT6Fp9GtNe30jRptdlC3P6DrMwx+kNYXf4OP1bXyS7\nfhd+Wy6Oyjk4ZsxjsHIujso5eAtLae/z0NnvpcAWd8tUP/BP8hvraDnjAgZlOsfrNGpmFlsnPnCK\nYTHqcHiC9C5eybTXNpLR2oirfKas2pgk4fSGknodFcIcgUAgEAgEgimITqMmMNShaBzsl3VDGgqP\n7ZhjdwdQRcLY6nfjrJh16MK+SkX//KWUvPcqab1d+POULYrl1GwDoC8FziFjYdRpxhRQjEV4+UrM\nG5/G0tWKp7g8aXMJiCirpOBy+7E11OAqqxxz87rlzIupeuBPzHj2Yeovvy7pi6X17Q60GvUhHSyx\nmESfY8imPxql8vnHiRhNtK4bu8t+InKtaUwvyhBdkkcpmRlGBuYuomjzWxgG+wkOiSXHw+UNHbXC\nh5gkEQhGMRmn9uvN9MufoYpE2P2lbyJpdUBq379b119EZmMds55+gBW//i7v3/pHxW4pwXCU+vZB\n5lfEXcIcniC1rYMo9UXo7PMeta/PI0no8SfJbdxDyxkX4C6rlFUTtOVS+4WvU3flV8k0adEbDeh1\nmvgfrZp8nYZSnXpEkHMgLl+I/QM+egf9RGTGWFQUZBxXFvlHA7NLM/H6wyPdv0dajPNJSnMtdPXn\nU/eZ61nwzzuZ+8i97L7uUCecjJa9rLjjFiKGNN6/7S5CGVmyz5Fh0ov3hOOIdJNu0sIcgKZPXUH5\nK88w7Y3naDnrYnqXniirrrPfy8ySiZtJAKKxGH2OAN5AmMqiY3eDatAdpGaffcL38pJ3X8ba2ijb\nLQeG4qyWrqbgo3cxdXfgKyxJxpSThsMbxOkJYp2Ee5ZnSJiT3tmKt6B46L5MPskUFVYWZzC4J4AE\n2GfPJ6d2O5lNexj4RAR4sglHY+xuHmB6UQYluYfXIUIgEByAJJHx9ONEDEY61p6lqDRfpov3sYxa\npaJEoVjGbNThOvFUYlodRZveoO7zX5dV5/KF8Acjh22drHW/i8rnHyO7fhfuknI0wSCFH75D4Yfv\njBwTNplxTJ+Do3IujhlzaSyr5MTf/IKIwUj1l74p+1zTizKO+DPG0cjwGlXv4lVMe20jeTs2yxbm\nQHx9RAhzBAKBQCAQCASTQqc7QJgz0CerJjSOOMTuCpLZWIc2GKB/3uiLS/1Vyyh571VyqrfRfroy\nYU7u7q1DTjypXbg6kNL8dMWOIrETT4SNT5NTvS2pwpygEOZMmkg0hnZvPdqAD/s43SbRNBNNF3yO\nef/+M+Uvb0goem08YpJEbYudhTNysB4QHWV3BUYW3Qu3vIWpr5um864gYk5sAdVi1DFnWiaaBOJM\nBIcHS5qO/nmLKdr8FrY9u+heffqENU7v2BEGh4O4+CaCPxjFH4zgC0YIhOIfg6EoEjC9MIOy/NFd\nF453tNu3YvzPBgZmL6Rz7Zko+VfQadSoVBCNSkQlZZKYXV/+DtZ9DRRveo15D91D7RfHd2UZjX5n\ngM5+L1aznupmOzGFc4B4Z3YyoieOJ2KRCBm//WXcxeDKrymuz7WZmVdum/jAA8gw6ckw6ZlRbKXP\n6Wf/gI9Bz9ib6YU2E9MKpubvbCrRatTMr7DR2Okk23p0iHEOxKDXkJeZRsOlVzP9v48z8+kHaP7U\nFXgLS0eO0bkcrLntRnR+H+//4A+HxLCNhwqYWXLsCiIEh1KUYyZDZuxpJBqjfizXNY2GrTfdyhnf\nuJylf/oJL9/7H1lRxfvtPioKM8btnnd6Q+wf8NLr8I/EbqlQMb1Ifpza0UL3gJe9Hc6Jr8cJuOUM\n0772LAo+eveojLMCaO1xs3ASwhxvIIzO48LgHMQ+a77i+k8KXyeD2aijwGai2+5jcFb8WTSrYXfK\nhTkQv39v7HTi8YWZVZopYkcFgiPB5s2Y21toPe08RWs8Oo0am4glGpOskjx6Fy6nYNv7pPXtx59b\nIKuuz+E/LGsWTm8Ib1sXa/95JyFzOm/89kGCWTnonYNkNtWR2bSHzMY6sprqyKndTm711oPqaz7/\nddk/U6bFIATxY2AeFuYsWglA3o4PaLzo87LrHe4gFCZvPkKYIxAIBAKBQDAF0WnU+LOHhDl2mcKc\nyOideuFIDLcvxIwhV5uBqtHjpoZjqHKqt9J++nmybDLuSQAAIABJREFU56qKhLHt2YmzfCbh9MOz\nwG/QaihMoHM8smIVANk122g565KkzSc4nnW5QBZuX9zRCRhXmAPQeMGVzH7ifmY99S+aPvUZ0CR3\nIy0qSVQ3D7B4Zg7mIUv+Hod/5PuVGx8FoOm8zyY0vk6jpqrCJkQ5xwChZcvhH5Bdt1OWMMcXjBCO\nxA5bLIiqr4/0Sy+g4cqv0LL27BHxzXjs63ZhNuqmXq65JGH+6a0A7L7uW4oi6HQaNSvm5h20ARSJ\nxojGpLhQJxYjFpOIxiQiMQmPL0xbr/vjU2u0fPD/fscZN15G1UN345g+m66T1iv+EZo6nWg1Ktku\nK6PR2ecRwpwD8D/wb/Jbm2g++1LZLgYHMpkFY7VaRX6WifwsE4FQhB67n26796A4FFu6gZml8hwo\nBMoxGXUsrJzYDe1IUZZvYf+gj93XfotVv/w2C+/7DZt+dCcAqmiEVb/8NpauNmo/+xU6T1bW3V2Y\nbSbdJE/EITg2SDNoFXWXt+53j+n66ZhZxd4LP8+spx9gzqP3yRKURmMSPYN+inMO3nQKhqP02H3s\nt/tGHKoOpK3XjcmoPaZcwZq7XAdd58cjEbecYY72OCu7OxiPNUkgxlWSJHyBCBldbQAJNc3odcm9\n3y4vzKB30I99TvxZ1FZfndTxJ2L/YPx3pKrChuEoEooKBFMB9b8fBKB1vbIYq9zMNBFBPg65mWl0\nrzqNgm3vU7j5TZrP+4ysusMlzGnd72LB/b9D73Gx7es/GHFJDlmz6F164kGugZqAH+u+hhHBjjoc\nov6ya2SdR61SMVs8043JcBSqr6AYT0EJubs/gmhU9lqv2x+ON3smKVJOrNQKBAKBQCAQTEH0Bzjm\npMkV5oyxsDrojlsy59RsB6B/DGGOY8ZcIgYjObXbFc01a29t3IlnjHFTQWm+JaFOssjcKqIm88i/\nRbIQjjmTx+UNHSDMWTjuscGsbFrWX4Slu52S915JyXzC0Ri7mgYIhCJEojHszniMlbmrjcKP3qG/\naqmizvRhVMC8cpuIrzpG0KxYjqRSkV23U3aN6zC65hifeRLDnhoKHvsXARmiHAAJqGsdxBc4dHPs\neEb3xmvo332b7uVr6Vu0QlHtjGLrIV3ZWo0ag06Dyagl3aTHajFgyzCSl5lGeWE6+k+Is0LWLN77\n8d1EDGmsuOMWMlr2Kv4ZYpI0pghXLgOuAP5RNkanIuFAiJw//YaYVkfdlV9VXJ9rTUtoM3I0jHot\n0wrSWTWvgEWVOeRnmbCa9Mwrt4nF/imMyagjx2qk/dRzGZi7iJJ3XyZn14cALPj77ynY+h5dK0+l\n5qqbFI2r06ipKDz2HEoEyWWiCKKaq27Cl5PPnMf+iqVj38ffkCTUoSB65yCm/Z1k7GvAVreDvK3v\nEd3wNLpN7xGTJPocfnY3D/BBzX6au12jinKGaWh34BzHOexIIkkS/mAEuytAZ5+HXU0DskU5k3HL\ngY/jrGwN1Zi72xXXHw7aez0J1fmDEaKShKWzFQC3QtGSWqVK2gbcMAadhtJ8C56iaYQsGdjqdyV1\nfDm4fCG21fcdcRdOgWBKEQiQ8d//4Lfl0rNktaLSY0lUeiSwpOkYPPkMAIo2vS67zu0Pp/yZ1ekN\nweYPqHhpA4OVc2k+74pxj48a07DPXUTzeZ9h2//cxkff/gXRtLH//406DZkWA0XZZuZNyxJrgOOg\n06oxDK239C1agd7tJLN5j+z6mCQldR1O/E8JBAKBQCAQTEF0GjWBIaW+cbBfVs1Ym3V2VxAkiZya\nbfiz8/Dljx5TJWl12OcsJHfXh+g8LsIWeQv2OUNOPP0LTpB1/GTRa9UUZif48KvVElx6AhnvvoXe\nNUgoIyspcxKOOZPH7QtRWb+bqE6Ps2LiLOGGS69i+n8fZ/YT98czwFOwcRkMR9nVNEBhtnkkumb6\n848B0CSz0+eTVBZZhVvFMURGYS6ussq4aExmx47LFzpsbjS6Z58BIKd2u6L3tEgsRvW+AZbOyk36\npsZRSSyG5ae3IqlU7L7mZkWltnQD+QoXXNUqFQU28yEbd87ps/nwO79g9c++yZrbbuTVPz5GOOPw\nds5JQGeflxkiwgbf3/5BUWcrjed/Fl9+seL6svzEogwnIivdIK4TghHK8tLpdwbYccP3WPc/n2Hx\nX35FwyVXMfvJ+3GVVLD5lttBoQPf9KKMw+bsJjh6ybTo6Rn0jfn9iMnMjq9+nxN/+j+c/r+fI6o3\novV70fp9qGPjP/u8/tf/MFA+S/ZcYpJE9T47S2flHpGNK0mSCITiMaD+4UjQUPzzQCiaUHwkTM4t\nZ5jhOKuSd45O15w+h5+KwnSMemX/b54hgbilsyX+d4X/ProU3b+W5lno7vcxOLOK/O2bFK2LJItg\nJMrOxn5mllhF7IlAcBjQvvQCOreLpsuuUeTGnKbXyo6QnMqY58zEMX02eTs+QOP3Ek2T977WO+hP\naZxva+cgS//0UwC23/hDJI3y+w+jToPRoMU05FqYpteQZtSSpteKWEKFmIxagp4ovYtXUfHSBvJ2\nbMYxs0p2/aAniC0jOetw4ilJIBAIBAKBYAqi02kIZGUD8qOsYpJEeBRxzqA7iLm7HeNgf9zVZhwB\nQ3/VUlSSRHbtDtlzzdm9daQ2lWjUKqxmPZXF1klFAMVWxTtgsmvk/4wTEYrEkBJcsBXE8Qy6sO5r\nwDFjLpJu4sUNT0kFXatPx1a/m5zdH6ZsXr5ghKYuJwDqUJCKlzYQtGbFxUAKKcgyUZKXmo1cQWpI\nM2hxVi1BG/BhbW2UVXO4HHPUPfvRb/kAAFUsRsGH7yqq9wUj7GkdTMXUjjoMG55AW7Ob1nXn46yc\nI7tOo1IxsyQx4UxhtonRrrYdJ59N3We/gqWrjVW//Daq6OF3r+m2e4lEJ+e8c6zjc3kpvPf3RHV6\n6j77FcX12RlGEQMkOCxkmPVkmg3Y5y6i9bTzyGqsZcUdtxA2WeIuXGZlGxYZJr3Y6BUAYDVPLADs\nPGk9+868GEmlJqbT4csvwj5nIfuXraHjpPW0rL+Ixgs+x54rrqP6qptovOBzABS//Izi+YSjMar3\n2Q/79ckbCPPOrm421/Wwq3mAvZ1OOvo9DLgC+IKRhEU5k3XLGaZrzTpiGi0lb7+U8BipJCZJdPZ5\nFdd5/WEA0occcxQLc1IkLtSo1ZQXpo9EK2c1HN44q2FikkR9u4OGdkfir0GBQCALzcMPAdB6hrIY\nq3xbWiqmc9yRm2mka9VpaMJhCra+J7uu74A4+WTj9IbIevRfZDXVse/MixmoWqKo3mTQsmZ+Aauq\nClg8I4dZpZmU5lnIyUzDbNQJUU4CmIfirHoXrwQgb+dmRfUOd/KcF4VjjkAgEAgEAsEURKdRI+n0\nBK1ZGAfkCXMAwpHoQYtUHn+YYCRKwbCrzQQPG/3zlwFxF5z9K06e+ISSRE7NVrz5RfjzCmXPcyL0\nWjWWND2WNB0Wkw6LUYfJmJxb48iKVQDk1G6je/VpSRlzOF5EZMEnhj8YwVRfgzoawT5rgey6+suu\npfj915j9xP30L1QWTZMIJW+/iMHlYM8V1xHTK9uQTU/TM0tkSh+TBJcug/8+ga1up6z4MpcvhCRJ\nqFIcP6N/fiMqSaL5nMuY/sITFG55i7Z15ysao98VYF+36/iONAkGMf/yp0R1Omq+qCzupbwwI+HO\n/TSDlqx0I3Z34JDvVV91E9bmPRRtfosFf/89u778nbEHkiTU4TDaQNylIGi1ETVObhE4GpPoHvBR\nOoWFgoF7/4a5p4uGi79IICdfcX0quzcFgk9SmmfBsS/I7mtvpvj9V9GEgnzw/d/gKa1QNI4KmCnc\nsgRDmIxaDFoNwcg47jcqFR99+xeyx1SHQpS9/hxlbzzPrmu/pch5AOIimdoWOwumZ6f8PmqYve3O\nlAgfit9/ddJuOTAUZ7VkFQUfvYu5ux1vYWkSZ5kcuga8TCtIV+TC6A3EhTmWzlZiGi0+hWsJqXT9\nKrCZaF+wBB4FW/1uepeemLJzTUTXgBeDTiPuOwSCFKHq6yP97dcZnDEPV4V8pzeA/CwRYyWHdJOe\nzpPXw8N/oWjTG3SedKasOk8gjC8QxmRMTnTwgXTVNrPqH3cSMqez+9pvKarVadTMr8g+JOpaMDnM\nafF1l0B2Hq6SCnJ2f4QqEkbSyvj/j8XI/s8TpAX78H/vB8Q0GkLhKKFwLP4xEiMUOfjvZ+WOfV0V\nwhyBQCAQCASCKYheF19o8ttyMfd0ya4LhmOYDnButLviG4LZNdsB6K9aNm79wNxFSCoV2UNCnolI\nb2/G4HKw/4S1suc4GtkZRjJMetJNOsxpupQKXCInLEdSq0f+TZJFMBQVwpwEcftC8aggGOlOlMNA\n1RL65y2haPNbpLc24p42I1VTBGDGxkeQVCqazh0/e/qTGLQa5lfYRNfMMYpqVVzMl71nJ/s+dfmE\nx0djEt5ABEta8heQDkS/Md6NXvv5r5G/9V0KPnwHVTSi2IK5tceNJU1Hbubx2fGX9sD9aNrbaLjk\nKnwF8uOK0tN0lOROzlWiKNs0qjAHtZrNt9zBum9cwewn78fS2YpKiqH1+9AGfPGPPu/I5+oDXHWC\nGZls+b9fyxPPjkNnv4eSXPNh2/hMJh5/mD6HH18gQmm+hQyFzjWDfQ5K/3EXEUMaez5zveLz29IN\nis8pEEyGbKsRi1GHJ6+Qd37+VzShED0nrFE8TmG2WTg9CQ7CatHTm8SO9JheT8fas5j+whPk7vqQ\nviWrFI9hdwdp6nQdlsjF7gEvDm/yOqwPZOaGBwDYc8Xk46eO9jiraEyiq99LWb588YjH/7Ewx1tY\novj+VZ9CYY5KpcJ62knAx7HdR5I+R2rjXASCqYx+w+OoolFa1l+kqM5q0h+R6MVjFd2KE/Dbcinc\n/KbsiHCAXoef8oLkrqs4vSFK//gr9F43277+A4JDbvVyUKtUzCu3Ja1xVPAxBwqwehevZMZzj5K1\ntwb73MXj1mW07GXpH39MbnXczX+vzkbj2ZdOai4iykogEAgEAoFgCjKcmR6w5aLzedAE5C2Yhj7R\n8WgfsnLMqdlGxGjCWTm+20PEnI6zYjbZe3ahCk8cx5IzdOM77LSTCDqNmqoKG9MK0rFlGFMubpEs\n6QTnVmGr3406lLzImWB4nG5Twbi4fGFse4aEOXPkC3MA6i+7BoDZT/4j6fM6kMzGWrLrdrJ/+Vp8\nhSWy69QqFfMqbBj0QrR1rGJaNJ+wyUx23U7ZNc4Ux1mp+vrQb3qP/nlL8OcW0L3yVPQeV8KCwz2t\ngyMbJMcTKreLtN/eTthsURRXpFapmFWaOWnRSrZ17GtaxJzO+7fdRdCaRfGm1yj64A3ydm4mo2Uv\neucgMa0WX24B9tnzRyJD2k49F63fy9offIWqf/whvqiZIIFQlH7nKKKhoxSPP0xzl4stdT18VN9L\na4+bPqefbQ19VO8bGOm8nwhJkoj85a+Y+ntovOhKglk5iucyTcHGo0CQLErz4w5X/QuXJyTK0WnU\nTC86jt3RBAlhtUwcZ6WU1nXnATDt9Y0Jj9HR76GzX3k8khLCkSjNXa6UjJ3ZUENu9Va6T1iLu6xy\n0uONxFm99WISZpcaOvu8sp2HItEYgVAUncuBwe3EnYCjUKqdCqwzpuEtqyCneusRiR09EE8gjD94\nZOcgEByv6B55mJhGS/up5yqqy7MJtxwl5GaZ6Vp1GgaXg+y6HbLr+hzJf151vPwGFS9tYLByLs3n\nKWu6m1liJSs9+fdOAjAfIHbqXRwXduftGDvOShPwM//vv2P9Vy8ht3ornavXETEYmfOvP8reQxkL\nIcwRCAQCgUAgmIIMWzMHhjaMjIP9supC4djI55FoDJc3hM7txNrayMCchbI60frnL0UTCpLVWDvh\nsTnV20ZqEiXHakR9mDv2oytXoQmHyGysSdqYQpiTOG5vCFvDbkKWDDxFyhZmu1afjruknGmvbcQ4\n0JuiGULlxkcBaDz/s4rqZhRbsZpFd/qxjM6gxzl3ERltTeg88jZw3CkW5hheeA5VLEbH2rgNdPfK\nUwDiHWgJEJUkavbZCUdiEx98DJF29x/R2AfYc/l1hKxZsuuKc5PjKqFSqSjMHnvR1l02necffI2N\nD7/J009v4ckXdvP0xu1sfOI9XnjgFV659z+88YdHeOeXf2PTj/7I5u//ltf/8AieghLmPXIvp9xy\nLQa7/LjLT9LR50m49nDg9oVo7nKxuTYuxmnrdeMbZWOq3xngoz291LUOTrhx1d3Rz/SH/kLYZB4R\ndioh02JIyUa2QDAReZlpGCch8p1elKEoZkYwNci0JP8etX/+CfhyCyl552XUocTdaJo6nSPur6mg\nuctFOJqa+56Zz8TdcvZe8sWkjDccZ2XbW4O5uz0pYyabYCRKj90n61hvIH6ttnS1ASh+/oPURlkN\nE15zMjqfl8y9E6+LpJpjSUwtEBwraGprSKvdzf7laxW7puQdp26zqSLDrKf/pHUAFG16XXadNxBO\nagOR0+mj8vYfAbD9xh8qcmsrzbVQmD05R13B2Gg16pGmpr5FKwDI2/HBqMcWbH6Ts64/n7mP3Yc/\nJ593fvpn3v/xXey95CrSBnqZ8cxDk5qLeGISCAQCgUAgmIKoVCp0GjWB7FwAjDI33g50zHF4gsQk\naaQbYaBqiawx+qviIpth0c145FRvJZRuxTWJTsAjEZ8SXbkakPczyiUYEsKcRIhJEoGePtI7W7HP\nmg9qhY9AajX1l34JdSTMzGceTMkctV43Za8/hze/SFFsW1G2maIc8eB+PBBYcgIAtj27ZB2fascc\n/bPxGKthYU7vopVEDEYKt7yV8Jj+UITaFjuSzG7nox1VTw9pf74Lvy2XvRd9QXZdml5LeRLjAgpt\nZsaTnkaNaQRy8omY02UtDDpmVvHqPU/ReeI68nZuZv3XLiFn15aE5ub0hnD7UvtaVYIkSQeJcbY2\n9NHW68YfmrhLXAJ6Bn18uKeXhnbHqGLZSDSG5t6/YBzsZ+/FXySUIV+sNYxwyxEcKVQqFaW5loRq\nrSa92EgQjIrZqBtxak0aajVtp52Lzueh8IM3Ex4mJknUtgzik+mIpgSnJ0i3TBGJUowDvZS9+QKu\nskp6lil3txqL9rVnAVDyzktJGzPZdPTJcznyDm2ypne2AuBJyDEn9dtm0ilx4XvezrE79g8X/c7k\nRc4JBII4hscfBlAcY2XLMByW96DjjtNOI2JIo2jTG4rK+pIYuRn981/Iaqpj31mXyF4jB8jOMArn\nycPAsGtOyJqFY/pscmq2H+R0n9a3n9U/uYm1P/wqaf091F1xPS/dt5H9K08FYM/l1xJMtzLnsfvQ\nuwYTnof47RYIBAKBQCCYoui0avy2IWHOgExhzgGOOXbXcIxVPNpkWHAzEcOxVBOJVoz9PVj2d8TH\nVSqmGEKnUZN5BGxAwyvitpg5Cca+jIZwzEkMrz9MZn01AIOzlcVYDdO6/kICmdlUbnwUrdedzOkB\nUP7Kf9AG/TSfe4XsLGyrWc+MEmvS5yI4QqxcCSA7zsofihCOpOY9QWUfQP/e2wzMWYg/rwiAmMFI\n75LVWFubJtVJPegJpizW4XBj/u2vUPt91HzhRqJp8q3GZ5VmoknwmjYaBr2G7Axj0sYDCFsyeP/W\nP7Hzy/+HwTHIqf/3JeY88leIKe/8l7uJliwkScIfjDDoDtLZ76Wp00l18wBb6np4Z1e3IjHOaMQk\nia4BL1tqe2jqdB70e9je1M3MR+8jZMmg4dKrFY9tNeuFdbngiFKQbVIsolCBuB8RjEtmSuKsLgAm\nF2cFEInF2N1sT+o9VUySaOhwJm28T1K58RHUkXBcFJxEV9hjIc7KGwgzIMPZZTh+0jIkzEkkykp/\nGDbFo2viDRl5OxMTQCcTlzdESKw3CATJIxLB8MRjhNKtdA9t6sslP0vEWCVCdoGNnmUnktGxD0v7\nPtl1yRLmeFo7qbj3t4QsGey+5mbZdRajjrnTsiYdcy2YGLNRN/J576IVaEJBbHt2oIpGmLnhX5x1\n3acoefcV+uYv45U/b6D62puJGj9u9o2Y06n73A3ovW7mPHpfwvMQwhyBQCAQCASCKYpeqyEwJMxJ\nk+mYc+Ci5aB7SJhTvRVJpWJg7iJZY/hzC/DmFZJTuw3GcU7Iqd4KHHsxVgCx4hLChcVk124f92dU\ngnDMSQyXL4ytPu5CYk9QmBPTG2i9/EvofB5mPPtIMqcHkkTlc48S0+rYd/alskqMOg1V5bYj8toW\npAbdiXExn02mMAdS55pjeOF5VNEoHUOd08N0DS0oFm5O3DUHoL3PIzuKQAnRWIw+h5/aFjubqvfT\n1uMmliJ3Hk3TXowP/hN3STktZ18iu64gy5QS4UVKnCpUKho+/SXe/O0D+G25LPjH71lz69fQuRyK\nhulz+FMqLPUFwoeIbzbX9bCzqZ+9HQ7a+zz0uwL4gpGkvh6ikkR7n4fNtb207Hfh9oUw/+0vGFwO\n6j/9JcIW5R2Pwi1HcKTRqNWUKHTNKcpJTjSf4PjFmoI4K1fFLBwVsyj48G107smJYPyhCDX7BpN2\njejo9YwIQ5KNOhig8vn4Rm/rGRckdexjIc4KoL134pjM4VgSy4hjTrni8xwWx5z8fLzlM8ip3oYq\nkprXjOy5IOKsBIJkonv7TbR9vbSdcg4xvfzroE6jJtua3KaLqYLVrKf3pDMAKPpAvmuOLxhJisur\n4bYfoPe6qb76JtnRZXqtmvnTbSIO9jBhMn7sINy7OL4GV7nxUdZ943IW/+VXxLQ6Prz5Z7z5mwdw\nlc8cdYym8z+HN7+IGf95CFNPZ0LzEP/bAoFAIBAIBFMUnVY9IsyRHWU15JjjC0TwhyKowiFs9btx\nVswiYpa/odRftQyDcxBLR8uYx+TUxB11+oYcdhLhSMRYDRNesRKj046lsyUp4wnHnMRwe+OvUUhc\nmAPgu+paoukZzNzwLzSB5Fnd5u7cQkZbEx1rz5T18K5RqaiqsKHXyXPWERwbqHNz8ZZMI7t+l2xX\nEpc3NQv4uuEYq5POPOjr+1ecDEDh5jcnfY76dgeuJCx+HSjGeX/3fmpa7PQ6/AQjUZq7XXxY10t/\nEq2phzH98meoolF2X/NN2bnxOo2ayuLU2FPbMgwYU/SeMFC1lFfu2cD+ZWso2vwW6792CVkyI9dg\nyGGmPzWuOR5/mO17+1MmvpFDJBajZb+bXduamPnkPwhmZNKoINpsmAyTHluSnY8EgkQoyjFTkmOh\nLC+dioIMZhRbmV2aybxyGwunZ7NkRg7LZuWyYk4+q6sKqCwWbjmC8UmFYw5A2+nnoQmHkxK95PAG\nqW9zTDpu0x+M0Lr/YHdNVSQ8afHQMGWvP4fBOUjTuZcf1MGdLNpPPhuAkrePXtcchzc44T2k1x93\nxUvvaiWq0+HLLVB8nsMVI+NZuQZtwIdtyOH1SCLirASC5GF8LB5j1br+QkV1uZlpogFrEkTOPBtJ\npaJo0+uK6vockxMmBt96h6Lnn2JwxlyaPvUZWTVqlYqqimyMennrCYLJc6BjTv+CE5DUasreeoGs\nxjr2nXkxL97/Ai1nXzqua39Mr6f6qpvQhMNUPXBXQvMQwhyBQCAQCASCKUpcmJMDgHGwX1bNsDhk\n0B1/aMlqrEMTCtI/T352LnzsgjPsijMaubu3EtUbGJxZpWjsYY5UjNUw0VWrgeTFWYUisUkvFk9F\nXN4gtvrd+HIKCGTnJTxOdlk+/uu+jNH5/9m77/i66vqP469z7l65M7nJzU6a1XQ3nbRAgVIEmTJU\nRJShgijTAaIICPpTZIiiAoLiBJS9R6EUWlq6d5u2adomaXZyk9zc3Pn7I0lJ24w726T9Ph+PPpTk\nnO85aW/uPed7Pt/3p4X8t/6XmJMLhyl/5lEAKs+/PKJdctNNYmX6cap7ynTUHe0HV/eOxJ2ExByp\nrRXN0g9pKSrHk5F16PmlptNaWEbqhpUouuMrtAiFw2yuaqGpvRu3x0ePLxhxQcVQxTjBQfbv9gXY\ntKeFdTubDq6ejpdyzSq0r7xIc+kkak5aGPF+47LMqJTJKZ6RJCkhqTkpejXjMs0oDpsM9llsLP3F\nn9n09RvQNx7gtFu+xriX/hFxIlxtUxehUGI/v9xdPtbvbMIfjL69VjIU/++vqDvdbLv0GgL66P8t\nRFqOMFqolDLjsswUuFLITTeRlWokw24gzaLDlqLFbNRg0qvRa5VoVArx8EgYkUGrRJnAFo799i44\nB+gtVkmE+lYPm6paCMTxubKzpv2Q6xEp4GfBrVdw9jcWoWuoje8Ew2GKX3yGkELJrvO+Gt9YQ6iZ\n29fO6qP4i50GIwUDqN2tcY8zXGqO1xcg0FfkbqzdS1d6dsStggdK1jXb4Xx97axSNxz7dlZtnb64\nXv+CIPSSOtyo33iNjsxcWkojSxbv57Qeu8WFxwNrQRbNZVNwbFmLuj3yz5uGtjgSfQMBzHfcBsCa\nG34a8WdOSY4Fs0HM7R1NAxNz/MYU9p56Dq3jxvPBA39j1W334zNbIxpn74Iv0lZQQu57L5NStSPq\n8xCFOYIgCIIgCCcolVKmuz8xpznCVlbBEKFwmJa+Nlb2vqKTpihTbfq370/FOZyyqwNz1XaaSycR\nVsV2o3Ks2lj188/sLcyxD/EzRisUDh9MLBIiEwiGCO/fj7a1iZbS2NNyUvRqdBol3m99l6BWR8nz\nTyH54y+KSF+5hNRNq6mdvYCWCIrbtCpF1C0mhLEjXDETAHuE7aw6PL6Ep4Oo33oDKRA4oo1Vv7pZ\np6Dw+3GuWR73sXr8QTZVtbBmRyPLtxzgo/W1fLKxjlXbGtiwq4mt1a3sqm1nf0Mn9a0eGlo9ERXj\nDKats4fV2xvYvrcVXzzpY+EwhnvvAmDDNbdChJ8xNpMWp1Uf+3EjkG7Xx/WZp5AkynKtZKUaqShN\nw2I4rLBVoWDr177LR798Ep/BxNTH7mPWL2+HzroJAAAgAElEQVSD4Mh/n/5giLrmxKXmtHb0sH7X\nsSnKUXi7MdTtw755LZlL36HwlX9S/tdHKHrhb3itjpgelpp0KhFZLwjCcUuSpKS0s+pOc9E4sYK0\nDZ/FX/TSp9ntZV1lU0wthBvbuml2H7rivvQ/j2Pfuh51RzvTHr0nrhbHaes+xbynkv0nL6I7hgSY\nSPhTLAlrZ6Xo9mDbspbCV/7F9Id+xuk3XMKF503n/Ivnxn1/3NTWTXdPYNDv9aflqN2tqDva6czM\njXp8WZKOWmIO83sTKdPWrTg6xxtGKBw+4jUsCEL0NK+8hNzjZc/CCyK+XwTQqhWYk5Qyd6JIMahp\nOOl0pFCIjJWRt+D2+oKxJ/o+/mdMlVupWnRRRPN60LsoI9nzA8KRlAr5kKThlT/+Ne899j+aJs2M\nbiCFgo1X3YIUDjPxqQejP4+o9xAEQRAEQRCOCyqlTFBnwK/To4uwlRVAjy9IW19hjmNL76Rac3l0\niTnu3HH4DKYhC3Mcm9cihcM0lU+LatyBjmUbK4Dg+HKCBmPCEnOg90G2Ri1aGEXKPbCNVXHshTlp\nfauWwnY7nZdfifkvfyL3/Vd7I05jFQwy6S8PEpZlNn7zpoh2yU03IctiZfrxSp7b2+Pavm0d1Wde\nMOL2wXCYrm5/QhOU1K/2trGqmT94EkzdrFMZ/68/kbHiQ2pPOiNhx+3nD4Z6iy2S8EwgDNS1eGhs\n85LjNJKVZoy6kEX1wXuoP1lK7axTIp68UUgSRVnJb/WiUSmwp2hpjLENQWGmGZ2md4pIp1EypchB\nTWMnu2vdhxRANUyby7t/fIG5995IzodvsO+UL0T0WqisaafLG6DAlYJSEfvDrha3l81VLREXZcVK\n11BL0Uv/QNd4AF1LI9rWJrQtTag8Q6/SX/ed22NqLZIj0nIEQTjOmQ3qpDzwrz7tXFI3riLng9fZ\nftm1CRmz0+tnzY5GJhTYIr7GCgRD7Kw5tF2VZecWxv/zT3gc6XRlZOFasYSsJW+y/9SzYzqvohee\nAWDHhV+Paf9I7Tv5LNJXfUzWkrfYfunVEe2jdrdh2bUV666tWHb2/jHV7EEa8FkdVKnoSs8mZd9u\ncha/RnMc9/lhYH9jJ0VZliO+1+XtTUjsT6DsiKEwRxXHdUq0NC4n7XlF2LesRfb5CKmPbXpCU5tX\nPCwWhDhpnvs3AHtPPzeq/cTvXvwkScK76AvwxAO4ln9A9cKR51X6NbZ2kxLl3IrU0ID5gfvxGVPY\neNUtEe2TatGRn5GcFtfCyPRaFd54Fmv1OTBjPg2TZ+JasQTHhpVRFfeIwhxBEARBEIQTlLpvFZjX\nloo2isKcxv6UgnAYx+a1eBxOPGmu6A4uyzSPn0LGZ0vRtDbRY3Uc8u3+gp2miRXRjdvnWLexAkCh\nwDetgpSlH6J2t+JLiSwSczhefxBx+xa5Do8f2/YNALSUxFaYIwFpA4q8At+7kdDf/kLps0/0roCK\nIRodIPf9VzHvqaRq0UW484tH3N6oVZFuExM1x7NQ+USCag22rRsi3sfd5UtYYY7kbkf94Qe0FZTS\nmZk36DYtJRPxmm29q89CoWF7b49WgVCI3XVu6po9FLpScERQxBkKhwm3t2P56R2EJSniSTeAvIyU\ngwUvyeZyGGIqzHGkaHE5jmy/lJlqxJaiZfveNtq6eg5+3etwsuqme1j07fMpeP25iIu0apu7aHF7\nKcmxYo3hM7qxrZut1a0Hk6KkYIAFt3yNHrONZXf9jrAiMX/PSk8XJ99+LSn7dgMQliR6zDa60jPx\n2lLxWh14bQ66B/x/T1omnvTMqI9l1KqOeSGxIAhCslmSlACw/+RFTH3sF+Qsfi1hhTkAPYEg6yqb\nKMuz4jCP/B6950DHwZbPALLPx8xf/xg5GGDVLb+gMyOLRd8+n6mP3U/9tLn4U44sKBmOsWYPrhUf\n0jR+Cq2lk6L+eaJRM/d0pj/ycyY99SCTYlgFDuAzmGicWEFbYSltheNpG1eGO6cAJInzLp2Ha/kH\nrL3hp1ElSRzuQLOHvHTTES2nuroPLcyJJTHnqKXl0PsQua1iDub/VmLbviHm+Y9EaXF7CYZCKMbg\nNb4gjAaKyh2ol39Cw+RZeJzR3RuIwpzEME6ZSIcrh/RVHyP7egipI7sGaWzrpjAz8gU1fn8Q9Y9+\niKqzgzU3/JQeq33EfUw6NaU50V0DCIll0Cpp6UjAQJLEhqtv5YzvX8akJ3/L4kf+E/F1jSjMEQRB\nEARBOEH1T2J1ZuSQsWop6Ss+5MCsU0fc70BLb+9dQ90+tK1N7DvlrJgm1ZomTCfjs6U4Nq+hZt6Z\nh3zPsXEVYVmmuWxK1OPCsW9j1S80ew4s/RD75nXUzVkQ93i+GGLVT2Ruj4+c7RsJSxKtxeUxjWE1\naVAPiDoNuTJpu/AybM//g6yP32H/KV+IekzZ18OEv/2OoErN5ituiGifvAwT0ih4TQtJpFLRPWEy\nlnWrUHR7COpGnphzd/nITE3M4dXvvIXs97F//plDbyTLHJh5MnnvvoR15xZaiyck5uDHQLcvwKY9\nLZgNarRqJcFQiGAwTDAUJhQKEwiGCIZ6/zvs9zHvzu+gqtzOjguviKiYDsBsVJOVemTBS7JYTRp0\naiXdvsHbOwxGrZQpzh56cnCo9Bx3fjFN46eSvvpj9HX78WRkRXQ8rz/I+l1NuOyGqNJzDrR42L63\nlYE5OZmfvHew9dukx3/D+utuj2isYYXDVDx4Jyn7dlN5/uVs+/K36DFbCStV8Y89iBynaE8oCMLx\nz6hXoZAlgqHEpp35TWYOzDiZzGXvk1K1I+LP50gEw2E2V7VQmGketpVsZ7efmsZD09TG/+MPmPdU\nsuuLl1FfcRIAm6/4LpP+8iCTn/gNq269L6pzGffSPwCoTHJaDoAp00nbD3+C9sP38XgDhCL4Nwvo\n9LQVlNA2roy2wjK60rOGnB+om3kyue+/iqVyC20x3p9B779PbZOH3PRDU+e6vL3XQKYxUpgD4Jk1\nD/77DKnrVxzzwpxgOEyruyeiwnVBEAbo7kb7p99jeOS3AFRFma6colej14rH9YlgMWmoP+l0xj3/\nNKnrV1I/Y35E+3n9Qdq7fJgNwy986vEHqdnbSPpPf4DrvZdpHVfGrnMuG3F8rVrBhAKbKHw8xgy6\nxN3Xt5ZOYv+8M8n6+B0yP3n3iGcbQxGvAEEQBEEQhBNU/4TTxqtvJqhSM/PXP0bXUDfifp6+fu6O\nTX2pNuNji6Hub1PVP04/2dfbfqgtv4SAIbYHVqNl9bl/Zm9rGsfm1QkZrycBcZsnEre7G2vlZjqy\nCwgYYmsVMthrKXTLLYRlmbJ/Pw4xtFMZ98q/0DfWUXnB1+hOyxhxe7NBHdFqXWHsC1TMRAqFsFZu\nimj79lj7oA9C/UpvG6v98xcNu11tXwFnxorIe7YfTVLAT+raT5F9kf3dtHf5qG/10NTupbWzB7fH\nR6fXj9cfxB8MEQqFmP7Iz0lfs4zaWaey4Vs/jGhchSwxodBx1AvqMuzRrbQsybYeUnw4lMxUIxWl\naYekHuz64mVI4TAFbz4f9XnWNnexalsDrR09I25b09TFtsOKcgiHKXn+KcKSRGdGNsUvPkPuuy9F\nfR6HK/rf38j+6C0aJ0xn/bd/hNeelrSiHL1GOWquVwRBEJJJlqQRH3TFqvq03lYhuYtfTfjYYWBn\nTTuV+9sID3LNHw6H2bGv7ZDPJ9vWdZQ+9ySd6Vmsv/YHB7++40vfoK2glPy3XyB13YqIz0HV6Sb/\n7RfxpGZQM2/wVqOJoNcomZhvZ1Khg+DNt9L18hv433iLrU88y5Lf/HXYP5/c8xibv3EjNfPOpCsj\ne9hFOzVze1P2Mpe9F/c572/sJBgKHfzvUDh8cK4irlZWR7kwJ3DSPMKSRNr6lUf1uENpak9CT1lB\nOE6FQiH8/34W0+zpmH55Lz6VllU33c3e074Y1ThOq7gnSBRJkuhe2LuAzrV8cVT7NrYOnT7b3RNg\nx742NixZT9GVF5H73ss0l0zi43v+OGKStkalYHKhA00E991CciW6AG7jN28iJCuY+NRDSMHIFkiJ\nwhxBEARBEIQTVP+EU3thGeuuuwNNRzuz778FKeCPaP+D7aZi7A/fUjKRkFKFffPaQ75urdyEwu+j\nacL0mMZVKeSYWmQkQ2B6BWFZxnHYzxirRPTBPVF09wTQVu9C5emKuY2VLEmDPjQNF46j+cxzseze\nRvrK6IoTVJ1uyv79Z3zGFLZFGLlf4Io8TlcY26RZswAOpoCMxOsL4kvA+4LU2YF68Xu0546jI6dg\n2G3rp59ESKEkY8WHcR830cy7t3P69y/j1B99k5NvvxpVpzvuMcv++Rj5b79AS1E5n97x24jaJcmS\nRHmeLWFtxqKRYddHnBjnshuwm7URj63TKJkyzkFRphmFJLF//iJ8JjP5b/0PyR99kVh/es6OfW0E\ngqFBt9lb30Hl/rYjvu7Y+Bm27RupmXs6S+9/HJ8xhekP34V1W+St4I4Yc8NnTHryAbptDj79yYNJ\nK8jpl+sUSWiCIJw4zIbk3J/VzT4Vv95IzuLXe9tsJkFNUxebqlqO+KyqbfbgHlAkrfB2M/M3t0M4\nzGe33U9Q93lqXlipYtUt9xKWZaY//DPknsiKH/Lf+h9Kr4ed5381YS0bB1IpZMZlmqkoTTvimkCp\nkBmfZ6Msx4pCTszn1YGKkwiq1FE/LB2MPxjiQMvnD1E93sDBdpfGmmqCKjXdjvSox1Urj+6DU116\nKm0Fpdi3rEP2jVywPBJlVye6htqY9292ew/+PQqCcKRQOEyL20vNW0tQnHE6rhuvRdVUz7ZLr+bN\nv75F1dmXRpUqLksSaaIwJ6HUJ8/DZzLj+vSDqBbTNbYdWZjT2e1n654WVm6tp+ejpZz23Yux7dhE\n1ZkX8uFvn8HrcA5/LkqZyYX2o9beWhieIcGFOZ3Z+VR94WJM+/eQ99YLEe0jCnMEQRAEQRBOUANX\ngu0+51L2nno2ji3rmPD0wxHtb9+yhoBWT3thSUzHD2m0tBaNx7pzC4puz8GvOzb1pss0TYit4Mdh\n1o6aB11howlfWTnWHZsiTm8YjmhlFbkOT2/yEkBLSWztduwp2iHbrPhuuQ2Asn//Oaob/ZJnn0Td\n0c62L1+LP2Xk3tIOszZpK4yF0SdQMQOIvDAHettZxUv93jvIvp4R03IAAgYjjZMqsO3YhLa5Ie5j\nJ4IU8FP2jz9wxg2XYN25FXdOIakbV3HqrVfEdY6577zEhGd+T5czk4/v/WNE7cUkoDTHgi0l8oKX\nRFIpFTgiKLbRa5QUZqbEdIz+9Byd2cSehRegbWsmM44HbEOl51TVudldN3hxVcnzTwGw/ZKr6MzM\n49PbH0AOBph7z/fRtDRGfQ7a5gZm338LAJ/+5CG89rSox4iGTq0UE/CCIJxQLMbkXM+G1Br2zz8T\nfWPdwfvIZGh2e1lX2URP3/2Yzx+kqvbQz6gJTz+Maf8eKi/8Ok2TZhwxRmvxBCovuAJT7V7G//OP\nIx5TCgYY99LfCWh07D7r4sT8IH1kSSLTYWBmmZOsVOOwRb1Om56KkjRSElBwHNQZaJg6G0vVDvR1\n++Meb39D58E0o67uvgVG4TDG2r10urIhhpYhRzsxx6BT0Th5Jgq/L6p7gKHMvv8WFn3r/EPmWKLh\nD4Zo70xcKqcgHA/6i3G2721l7YfrUV//baZ8/Vwcm1azf95C3n7iNTZec1tMSc02kwbVUS4IPN5Z\nrAbqZ52Cvqkey84tEe/XEwjS3tl7T+ru8rFpdzOrtjdQ39ZN3hvPceoPvoG6vZW1193BqlvvI6Qe\nvuhYpZCZVOhAr03ugg8hcgpZRqtO7O/blq9dT0Cjo/zvv0fhHTp1qZ8ozBEEQRAEQThByZKEqr/o\nQJJYfePddGTmUvr8U2R8+sGw+6rcbZird9FcOimulXtN5dORg4GDBRQwsDAntsSc0dYWIjhrDgq/\nD2vl5rjHEok5kXN7/Nj6khNaSibFNEbqMA9NVVMm0zDvDBxb1uHY+FlE42mb6il+8Rk8DieV539t\nxO0loCAjtgfnwtgUynDhS3dh27Y+4oKvRLSzUh1sYxVZT+y6vnZW6Ss/ivvY8TLv2sbp37uMCc/8\nHq/FxtJf/Jm3//wyO8/7KpaqHZx201cw7quKety01Z9Q8dBP8ZnMLL3vcXpsqRHtNy7TTJo1unZS\nieZyGIb9vixJlOZY4+pvr9MoyUkzsvvsSwEoeO3ZmMeCI9NzdtW0U13fMei2puqduFYsoal8Gi3j\npwJQP2M+G6+6GX1TPXPvuTGqYlgp4Gf2fbega2liw7W30TSxIq6fJRI5TuOoKSIWBEE4GkwGNYok\nve/1twzJfT/x7awG6vT6WbOjkQ6Pj1017QQGJPSkrl9J8YvP4M7KZ+M3bxpyjE1Xfo8up4uS55/C\nvHv7sMdzffI+hoY69iw8P6KC/kjZTFoqSlIpyrJEXISi0yiZUuToTXuL8/g1c04HIHP5+3GOBN2+\nwMHWS53e3sIcdXsr6q4OOl15MY15tAtzlAqZtum9LbBT10fe5mww+voaMj5bisrTiblq+NfXcAZL\njRCEE5XHG2DF5no2ba3B/PsHOePKs8h/50XaCkr58Nd/ZfnPfkeXKyfm8dNsx/be8XgkSxKdZ5wF\ngGv58PPbh6uu72TdzibWVDbS5PYi+X1M/d3dVDx8F369gY9++SQ7L7xixFQkhSwxsdCOUSeKckYb\nQ4ILpbz2NHZc9HV0LY0Uvfj3EbcXhTmCIAiCIAgnsIGTTgGDkeV3PkRQpWbGb24fNv7YvnUdEHuq\nTb/+/Q+ubgyFcGxeS2dGdkyr1UdTG6t+gdlzALD3tf6Kh88fPLgiUBheR1dvYk5QpaI9P/pUJ6Us\n4xgh8aLzezcDUPavP0c0Zvnff4/C18Pmr3+PkGbkRIt0m16srDkBBaZXoGtpQh9hBH3ciTldXWje\nfwd3Vj7uvKKIdqmbdQoArmPYzuqQlJxdW6ladBHvPP4KB2aeDAoFa797Jxu/cSOG+lpOu/mrUbU4\nMu/eztx7byQsS3zy89+P2N6rX67TRGaqMdYfKWEsRg36YaKyc50mUhKQxJVq0eHNH0fD5Jk4132K\nsWZP3GPWNnexfPMB9jV2DrlNyX+fBnrTcgbafsnVfel/a5ny2H0RH3PSEw+Qumk1+045i8qLrozp\nvPUaJRajJqI/DrMWp5iAFwThBCNLEqYkpUA2TJpJtz2NrKVvJySldDg9gSDrKpuoH1C4oPR0MeOB\nOwjLMp/94JfDXucHdQZWf//nyMEAFQ/9FIJDL7wofvEZAHZecEVCzl2vUTKpwM6kQntM9xiyJJGf\nkcKUcQ60qthXm9fNPhUgIe2sAPY19F4zdHUHADDVVAPQmZkb03hHuzAHoGfWXMKyTNq6+Apzct99\n+eD/t+7cGvM4ze2RtVoThONdjy/Ihp2NpL7/Gmddcw4T//oIAa2OVTffw7t/+C+NU2bFNX4k805C\nbJSLFhFSqnB9Gt1nTUuHl7a+1BxNazOn/Ogqxr32H9oKSnjv0edpnDp7xDEUksSkAntCkuaExNPH\n2M5quGuf7ZdeTU+KhdJnn0Dtbh12HFGYIwiCIAiCcAI7fNKpvbCMddfdgaajndn334oU8A+6n2Pz\nWgCax8dZmNO30t3RV7SSUr0Tdac75rSc0dTGqp9/Zu9NW//fWTzCgM8fGnG7E10oHKarvRPL7u20\nFZQRUkd/M+wwa5Hl4V9LhlPn0Th1NulrlmEdkPo0GNPeXeS//QLunEKqF54/4vEVkkSeSMs5IYVm\n9E7u2SKMsu/w+AnFUbCnXvwecnd3b1pOhO+fnZl5dGTl4VyzPOkPwAZzSEqO1c7SX/yZVbfeh984\n4HdGktj21e+w6uZ7UHe6OfUH38D52dIRx9Y1HmDend9G5eli5Q9+FXF6istuIH8U/c667IOn5qTo\n1eQ4E1M8JMsSTpv+89Sc159PyLjB0NCvZ21zA7nvv4o7K5/a2QsO/aYkseqWX9BaWEbhG89R8Np/\nRjxW1pI3exMOcgr57JZfRPw7MJDToqOiJI0p4xwR/ZmQbx+2ZYggCMLxKlntrFAo2LvgHNSdbtI/\nS36aX/Cw665JT/wGQ30N2y67lpayySPuXz9jPtULvoht+0bGvfLPQbexbt+IY/Ma6mbMj7hAeDhO\ni46K0rSEtNo0GzVUlKbhjDGp1mtPo7l0Eo6Nq1G52+I+H7fHR3tnz8FWVsa+wpyOGAtz1MegMEeb\nZqe1sAz7tg0RtcEYVDhM3rsvEe67xrDsir0wpycQpD0B7XIjFQ6HCYbEPIcwuvgDITbsbqbk9/cz\n575b0LY0su2ya3jz6beo+sIloIi/HU66TT/ivJMQmxSXg8Yps7Du3IquoS7q/S2Vmznjhkt6F3Cc\nfBaLH/oXnoysEfeTJYnyfBtm4+haNCp8LpbEnDSLjtnl6UwrSsVlN6A8LH04YDCx9avfQeXppPTf\njw87lijMEQRBEARBOIENthps9zmX9q04X8eEpx8edD/H5jWEZZnmCCYeh+Oz2HBnF/Qm8ASDA9pY\nxVbwc6zbhwwm5MrE78rCvmVtxK1phiPaWY2sq9tPys6tyMEALaUTYxojbZg2Vv1kSaLxut6o+tL/\nDH/jNfGph5BCITZedXNE7d8yU41o4liJKoxd/ukzALBHWJgTCofp7B68iDIS6ldeBGD/yYui2q92\n1qkovR5SN0TWyi0RpICf8X8/NCXn7Sde7U3JGULVFy7hk7seRQqHmPez68l57+Uht1V2dTDvzm+j\nb6pn/TW3sf/UsyM6r1SLjqIsc9Q/TzI5bfojij8UskRZrjWhBawuu56akxbiNdvIe+cFZF9PwsYe\nTNFLf0cO+Nlx8TdgkFZcQa2OZT9/lB6zlal/uA/HxlVDjmWq3smM396JX6dn2c9+R1A3fAuwweQ6\nTZTl2cSEuiAIQgTMhuQ9pOpvZ5Wz+LWkHWMwzlUfU/j6s7TlF7Pl8usj3m/9d35Mj8nMxKcfQV9f\nc8T3+1shVF4YW5LbQFqVgqJsS0KLQpUKmbI8G2U5VvQaJVq1IqI//Q+yauecjhwKkrFySULOZ3ed\nm55A731yf4LfWErMMWhVNE6ehRzw984bxMCxaTXGun3sO/VsgioVljgScwCajmI7qz0HOvhsawP1\nrZ6jdkxBGE4wFGLT7mbU61ZT9OIzdGTl8fYTr7Hx6lsJGBKzyEEhSWQnaMGEcCRZkuhYsBAA16fR\ntbPKXvwap918ObqmA2z85s18+pMHCepGnm+WJYnxedaEFMEKyWOIMjFHp1ZSnN3bUjTFoKY428Kc\nCU7KcqxYBhRg7friV+hyuoYsuu4nCnMEQRAEQRBOYGrlIA/+JYnVN95NR2Yupc8/RcZhNzCSv7dF\nUHtecUJuSJvKp6LydGHeswPHpt7knMYJkSUUDKRSyMlbhRmnwKzZaNtbEtLmo0cU5ozI7fFj60uw\naS2eEPX+amXkLdGMZy2kuXQSWZ+8h6l656Db2DevJXPZ+zSNn0rtnNNGHFOlkBOWaCGMPYFJkwkr\nldi3RVaYA3G0s+ruRv3uW3S6cmgvKI1q17pZpwKQcZTaWfWn5JT//fd4rQ4+uu9xVt16HwGDacR9\n6+acxpL/e4qATs+sX/+Y4uefOmIbye9j7j03Yqnawc5zv8KOw9okDcVq1CS82CURVEqZtMNWso/L\nNKMbpsVVLPRaFSlWE3sWXYjG3Ubmx+8mdPyBlJ4uCl57Fq/VQfUZQyePeZyZLL/zYQiHmXPvTYOu\nkFR2dTL37u+j9Hr47Nb7o04jkCWJshzrqEpJEgRBGO1SDKqkJYa1FZbhzinE9ekHKLs6knKMw6k6\n3VQ8eCchhZKVP/xVVCmdPVY767/9Y5ReD9MeveeQBRza5gayl7xJe24h9dPnxn2exdkWlIrkPAZy\n2vTMLHMye3x6RH+Kc3ofbNXM7b0nylyWmHZWA9NdTLXxtrI6+osjjDoVDVNmApC6fmVMY+S901ts\nv/sLl+DOLcK8Z8eQCciRaDpK7aya2rupru/A6w+ytbqVtTsa42/VKwhxCIXDbNnTirvDw/Tf/Rwp\nHGbVTXfT5cpJ6HFcDoNYjJVs5/QW7Q5XmCMF/OgaD2DdsYmMTz9gyh/uY/avfkBIqeLjex5j21e+\nFVGqqgSU5lhwmGNLkxOOHr1WSaRXo/0JSIdfRylkGadNz5RxDmaVOclLN6E26Nh05Y0o/MN/9orC\nHEEQBEEQhBPYUKvBAgYjy+98mKBKzczf3I6uofbg96w7t6Dw9dBUPjUh59DftsqxaQ2pm1bjNdvo\nzMqLepzR2MaqXyCB7ax6fKIwZyQdXT5s2zcA0FIyKer9Uy26iF9LOq2K/VfdAEDZYKk54TAT//Jb\nADZcc2tEN/Q5TlPSJs+FMUCnw18+EcvOLRG3iYp18lr9wfsoPJ6o2lj1a5owDb/e2FuYk4A0sKHo\nGmqZ8of7DkvJeYX6GfOjGqe5fBofPPgPPA4nk5/4DZP+/H/QH5kfDlPx8F041y6ndvYC1l7/k4j+\nPkw6FeX5tlHblijD8XkCjMOsJWOI9lbxcjk+b2dVGEH7qFjlv/E86q4OKs+/nJB6+OLJxskzWXfd\n7Wjbmjnp5zcg9wx4uBQOM+O3PyFlfxXbv/QNaqJMi1IpZCYV2nHaRl9KnyAIwmimkGVM+ujbB0RE\nkqg+7Yso/D6yklgkOtCUx+5H31TPlsuvo72wLOr9qxeeT/3UOWSs/IjsD984+PXCV/6FHAxQeeHX\nY2qxOJDLbhhVK/cdKVpUCpmOnEI6XDmkr/o44Wl7xpq9BNUauu1pUe8rS9IxSczRaZS0TqwgJCtI\ni6EwR9HtIeujt+hyumicNIPWcWUo/H5M+6piPqduXyCuVM6IjtETYFv1oe3M2j0+1lQ2srW6Vcx9\nCMfE9r1tNLu9FL7yL6w7t7Jn4QU0TRONr54AACAASURBVJqZ0GMoZEksxjoKTGXjaCssJW3dCor/\n+zQTn/gNM379I+b/+GrO/NZ5nHfJXC4+exJfvHwBZ9xwCfN+dj1FL/8Dd1Y+7z36HAf6FiNFojjb\nMipT3IUjKWQZrTqyBUuFmWaMuuGvXXUaJXnpKcwuT8d67TfoLBr+mlDM9gqCIAiCIJzAhpt0ai8s\nZe31P0Hd0c6c+245uNqqv7ikqTy2dlOH6x8n54PX0DfW9baximECcjTfAPn7C3P6WnXFQyTmjMzt\n6U118uuNdMRQ5BXta0l13rm05xWR/cEbGOr2HfK9jE8/JHXTamrmnEZzXxHacLQqBZmO5Dw8F8aO\nYMUMFH4/ll2RRdDHXJjzyksA7J8fXWECQFip4kDFPIwH9mPatzum4w/HtHc3FQ/cwdlXLqLo5X/Q\n7XBGlZIzGHdeEYsf/hfunEJK/vdXZv76x0h+H+P//gfy3n2JlpKJfHr7A6AYeeWiXqNkUqF9VBfR\nmQ1qjFoVaqVMSV/0cjI4LDp82XkcmDaX1E2rh0wPi4cU8FP84jMENDp2f/GyiPbZdd5XqVp0Edad\nW6h46GcHC8iK//dXsj5+h8aJFWy8+paozkOnVjK1KPWQyGpBEAQhckltZ7Wgr53V+68m7Rj9XMve\nJ++9l2kpnsC2L18b2yCSxOobf05Ao2XKY/ejdrci93gpfP1ZelIsVJ9+XlznqFMrKcwcXclusiyR\natGBJFE79wyUXg9pa5cn7gDhMMbaajpdOYO2vByJUnHsiq21diutReXYtm9E0d0V1b5ZH7+DqtvD\nnoUXgCzTNq73oaB155a4zqmpPXntrIKhEJurWgj0F8ofpr7Vw8qt9ew54CY4xDaCkGg7a9qpb/Wg\nbapnwl8focdkZv21P0j4cTIdxmOSznWikSWJ9gWLkAN+Jj/+a0qff4q8914hfc0ydE319KRYaZg8\ni70LzmHHRVey/prbWPGjX/P+o8/RmZ0f8XGKMs1JWwQjJEck7azSLLqo52etZh3+h3437DaJzTAW\nBEEQBEEQxpSRVoNVnX0JaRtWkvPB60x86mE2fOsH2Df3tptqTlBiTpcrB6/VgWPLOgCaykcuXjjc\naG5jBRAcX05YqUzIw2tRmDO8QDCEv7kF0/491E+dHfWErFatwGyI7rVkt+rZefl1TL/vFkqe/wtr\nvv/z3m8Eg0x86reEZZlN37wporHyMlKQ5dGZviEcPf7pM9D95XFs29bTUjZ5xO29/iA9/mB0Udg9\nPajffoMuZyatReUxnWfdrFPI/ugtMj79kI6cwpjGOJylcjOl/3mCrI/fQQqHcWcXsO3L17J3wTmE\nlZGtsreZNITCvatwD3/P7E5z8cGDf+ekn11P7uJXMVdtx1K1g870LD6+57GIesdrlAomFtjHxGRq\nhsOAVqVI6rnKkkS6Xc/ucy4jfc0yCl9/jnXX35HQY2R/+Cb6xjoqz/8avhRrZDtJEmu+dxcpe3eR\nu/hV2saV0VJczsQnf0u3LZXlP3kw4tcU9BY6Tci3jYl/d0EQhNHKYlSztyE5Y3sysmgqn0ba+hVo\nm+rxOpxJOY66vZXpD99FUKVm5Q9+GdVnyeG6XDlsvuIGJj/5AJMe/w3N5VPRuNvY+pVvE9LEnnQj\nASU5FhQxFKckW7pNT21zFzVzT6Pkv0+RuWxxVKkEw9G0NaPydNERYxurQVt9HyUGnYrGKTOxb9+A\nY/Na6ivmRbxv3ju9xfb9rT7bCscDYNm5leqFF8R8Tk1tXvLSk1PctWNfO53e4RN5guEwew50cKDZ\nQ74rBecoXowljH176zvY39gJwJQ//hJVt4fPbr4Xn8WW0OMoZZnsNJGWc7R0f/dGVlrT8esMeO2p\neK2peG2OERNYI1WQkUJmqvj3HGv0WhW4h27ZqNcoKY5xcVNg5qxhvz/6rswEQRAEQRCEo2bEiSdJ\nYvWNd9ORmUvJf58iY/kHODavxeNw4klzJeYkJOmQtlhNE6JP4hnNbawAUCgIZrjQN9TFPZSIcx6e\nu8uHdccmILY2VmmW6Cf7ZEkieNFFdLpyyHv7BbTNvU8b8t57GXP1LvYsvAB3XtGI4xi1KpxW0Y9a\n6C3MAbBvXR/xPlurW3F7Ik/OUS9ZjKKrszctJ8b3z7oZJxOWJFwrPoxp/4EcG1cx745vsfC7F5O9\n9G1ax41n2c8e4e0nXqV64QURPfTSKBVMyLcxqdDBlHEO5pSnM39SBhUlaUzIs1GQkUKGTY/elc6K\n3/6N2lmnYqnaQY/JzNL7HqfH6hjxGCqFzMRCOzrN2Fjn5LLrsZuT38LCZTdQO2cB3TYHue+9jMKb\nwBXW4TAl/32KsCyz46Iro9o1pFaz7Ge/o9uWyqQnH2Du3d8HSWL5nQ/RY0uNeBynRcfkQocoyhEE\nQYhTikGd1BaQ1ad9ESkcJmdAa6iECoWY/shdaNua2fSNG+nIHRf3kJVfupLWcWXkv/MiE55+hJBC\nyc5zvxLXmJmpxlGb7pZiUGPQqmgum4LXbCNjxQeftxeNk7GmGoDOGAtzlMegjVU/g05Fw+Teh3lp\n61dEvJ/+QA1p61fQOLGCLlcOAG0FxYQlKeL0zaF0ev109wTiGmMwNU1d1Ld6It7e6w+ytbqVNTsa\nY04KFYTh1DV3sbvODUD6yiVkL32bpvJp7Fl0UcKPlZVmOCYt805U1gw7+xddSO28hbSUTcGTnhlX\nUY5KIeNI0VKQkcK0olRynLGl+QrHlkE39HyOLEmMz7MlLR1Z/PYLgiAIgiCcwCK5GQzoDSy/82GC\nKjWzf3kb2rbm3vZTCZxQ7W9nFdDoDsYuR2M0t7HqF8rMQtfSiBSMb2JLJOYMr9ntxbZ9IwAtxROi\n3j8txsKYDGcK2y+9GoXfT/H//orc46X8b48SVGvYfMUNEY2Rn5EyugvMhKMmlJdP0O4gbf3KiAsc\n2jp7WLOjkU1VzXSNsPoUQHWwjdWZMZ+nz2KjuWwy9s1rUbnboh8gHCZ95UecesvXWHDrFWSsWkrD\n5Jl8dP+TvP/756mZd2bEqVdOq56K0jQc5kN/hxWyjFGnwmHRkeM0UZJjZco4BzOn5yP/77803/t/\nHPjPy+SfXMH4XCsl2RbGZZrJT08hJ81EpsNAulVPqlmHzaRhQr5txB7jo8nRek/RaZRYrUaqFn0J\ndaebrI/eStjYztXLsOzezr75i/BkZEW9v9eexrK7HiWkUKDpaGfDtbdF1FqwX166ibI8m0gzEwRB\nSAClQsagTd7n6P6TzyKkUJKzOAntrEIhKh76KVkfv0vjhOlRF4sOJaxQsuqmewnLMtq2ZvadfFZc\naT96jZKCjNHVwupwTqsOFArqZp+KrqUJ2/YNCRnXFGdhjvoYPiw36lQ0lU8lpFCSum5lxPvlvtd7\nTb/nzAsPfi2oM9CZmYtl17aDrTxj1dQ+dKJALNxdPnbVtMe2r8fHmspGmhN8TsKJramtmx37eu9l\nFd5upj16LyGFktXfvyumlnjDUSlkskS6ylElyxKZDiN6jRJlDP+eGpUCp0VHUZaFipI0TpqYwYQC\nOzlOEylRpm0Lo8dw16KFmeakzvmMjSVegiAIgiAIQlJEukqjvbCUtdf/hIpH7gKguTz6VJvhNPU9\nIGsumxx1FPhob2PVL5SZhRQKoW1uoDuOtCGfP0goHE7qStOxyusLUNfsIXdbX2FOaXSJOUatKuab\nL61aifuiy/D84zEKX3uWsEKBvukA2y69mu60jBH3txg0RyXVQhgjJImer16B/tGHKH32CTZf+f2I\nd21q99Lc7iXNqicv3TR4sovPh+atN/CkZkT9e3K4upmn4NiyjvTVn7BvwTkR75e+cgkTnn4Ea99K\n3tpZp7Lty9+Kuk2iRqmgKNt8REFOJBRqNaFvX4ceGP3lnaNfht1A1dmXUPafxyl8/VmqBzwgikfJ\n838BYPslV8c8RkvZZD6+90+Y9lWx67yvRrSPLEmUZFtw2sSrQxAEIZEsRjUd3clJvfCZrRyomIdr\nxYeY9u5KWKvN/qKc/LdfoKWonE/u/gMoEpei1lZczvZLr6H4v0+z4+JvxDyOBJTmWEd9ManTpqeq\nzk3tnNPIf/sFXMsW01I2Je5x+xNzYm1ldSxTLAxaJUGdgZaSCdi2bUTZ1UnAMMID/FCIvHdeIqDV\ns+/kRYd8q7WwjJwlb2I4sJ+ujOyYz6uprTthbXf8gSBb9rQQirtYqFvcOwsJ0dbZw5bqVvpfkWX/\n+hOG+hq2XXo17vzihB8vO82YtBQOYWgFrhQKXL0Fq8FQCJ8/hC8Qwu8P0hMI4fMHe/8EQgQCIfRa\nJRajhhSDeswk5QrR0WuUSMDhn0ZpFh2ZDkNSjy3eAQRBEARBEE5g0Uw8VZ19CdWnnUtYlqmfNifu\nYytkCaNWRapFR8q82Ry47mZ2X3NT1OOkWnRjImUklNm7yj/edlZheotzhCPtre8kFAph276ebnta\n1CtNY03L6ZeeYWXHxd9E6fVQ+uyT+IwpbLvs2oj27Z8kEIR+XTf/gEB6BiXP/QVD30OGSIWB+lYP\nn21rYMe+tiOStlQfL0Hhbmf/vIVxp5/VzToVgIwVSyLaXuVuY+b//ZD5d34HS9V29i44h3f+9BKf\n3PvHqItyhkrJEY4Nu1lLMDOHAzPmY9+6HvOubXGPadm5Befa5TRMnkVbcXlcYzVMm8uu8y+P6DUv\nSxITC+yiKEcQBCEJzHEsqohkccLe074IQM77CUrNOawo56Nf/QW/yZyQoSV6C/SLMs0YH/gVDRt2\noJ05I+bxstPGxgp+jUqB1aSlftpcAhotmcsXJ2Tcz1tZ5cW0/4itvpNIqZDRqZU0Tp6FHAri2Lx6\nxH0cm1ZjPLCf/fPPJKg79EFifxKxZWd87azaPb6EpPaGw2G27GnFm4CxWtw9cY8hCJ3dfjbt/rxQ\nLGVPJSXPP0WX08WWy69P+PFUCpnM1OQ+8BdGppBldBolZoMaR18RRn5GCiU5ViYW2JlanEpJjhWn\nTS+Kco5jsiwd8e+r1ygpzrYk/9hJP4IgCIIgCIIwasmSFHmUpySx8oe/4o2/vRPxykOF9HnxTa7T\nREm2hanjHMwpT2f+JBcVpWmU59nIz7SguPtu8i8+K+rK9FTL2HggG3RlAqBvPBD3WD3+UNxjHG+6\newIcaPGga6pH19JES8nEqMeI97VkT9FSc96X6UnpvZHb+uVvRTRpn2rWjYkJdOEoMxrx3PtLFH4f\nUx+7L6YY+lA4TG1zFyu31LOrph1/oHciXN3fxuqwlbWxaC8oweNIJ/2zj0Zs1ZexfDGLvnUuue+/\nSkvJRN7544usuP0B2gtKojqmRqlgYr6dslzrMV3ZLBxKliTS7Xp2nfNlAApefzbuMYuffxqA7Zdc\nFfdY0SjKMmM1aY7qMQVBEE4UFqOGWMqCbSYNs8Y7cY7Qxrh2zmn4dXpyF78WdxufZBTlDCzGmV2e\nzpQiB5mpRjRqJQqHndJcK+NzrVG33DBqVeRlmOI6t6Mp3a4nqNVRP20uKXt3YazZE/eYxtq9BDQ6\nvLbUmPZXHuPrSqNORcPkmQCkRdDOKu/dI9tY9WsrHA/0FjnHKxHtrKrqOmjtTExBTU8gSIcnOalb\nwokhGAqxcVczgVDf3FooxLTf3Y0cDLD2u3cS1CW+OD/HaUKR4NZYgiDETq/9vDBHliTG59mOSqKV\neBcQBEEQBEE4walVUVwSyjIeZ2bEm+emmz4vvslIIcNuwGzUoFENvhJNIcsUZVmYmG9HFcHF8Fhp\nYwUQyupPzKmNe6we3/APv09E1Qc6CIXDWLf3tbEqia49j1kff0StJEmkZTlYd90d7Ju/iJ3nXz7i\nMcfnWinLs8Z1XOH41XPehXTOmU/GZ0txxbGSOBgOs6+xkxVbGqje14z69dfotqXSnICWAUgSdbNP\nQdPRjm3r+kE36U/JmXfXd1F3tLPh6ltY/PC/YooHT+9LyRHx9aNThl1P/cz5eBzp5C5+FUV3V8xj\n6etryF7yJu15RRyYMT+BZzm87DQjGXaxmlUQBCFZlAoZgza69rF6jZLxeTY0KgVluVYmFzrQD3Ht\nHtTqqDlpIYb6Goqff2rEwuEhJbAoZ8hinCHui9OseipKUzFHWLwvSxKludYx1e7YkaJFpZCpnXMa\nAK5lcabmhMOYaqrpzMyJORFSPQoKc5rHTyWkVJG6fsWw2yq6u8he8hZdzkwaJ1Yc8f3WvsSc/rax\n8Whu745r/6b2bvY2dMR9HgOJ1BwhHg2t3fQEPk9vynv3JVI3rWb/SWdQN3tBwo+nUSpwOUQSpyCM\nJgOvRcdlmjHqors2jZUozBEEQRAEQTjBRVIAE6toJ1z72c1aZpSmYTMN/+B1rLSxAgi6+gpzRGJO\nwnm8fupbPQDYDhbmTIhqjHjbWPXLsBnYd/q5fPrThwlpjnz9ypJEulXP9OJUphankmbVj6kJdOEo\nkyS8v3mQkFLFlD/ej8Ib36R4IBTC+9qbKNtb2T//TEjQir3avnZWrhUfHvG9w1Ny3n3sBbZfdi1h\nRXSFcP0pOaUiJWdU06qVWK1Gdp99MSpPFzkfvB7zWEUvPIMcCrL94qvibrkWKYdZS0GGaC0oCIKQ\nbBZj5KlkKoXMxAL7IauYrSYNFSVp5KWbBr2Wrrzo6/j1BiY/+QALv3MBzlWfRHeCCSzKKXRFVoxz\nOK1ayZRxDvLTU0a8X8h1mo7aA6VEkWWJVIuO2tkLCMsymcvej2s8bUsjSq+HTlduzGMc68Icg1ZJ\nUKujuXQS1l1bUXW6h9w26+N3UXo97Fl4waDX9D6LDY/DGXcrK4C2Th+BYGxzEN09AbZVt8V9Dodr\ndsef4iOcuOqaPQf/v7q9lUlP/IaAVs+66+5IyvFynEaRliMIo0x/Yo7TosMVZXp/PMQ7gSAIgiAI\nwglOFU1iTpQGxkJGS61SMKnQzrhM85ATkWOljRV8npijS0Rhji/+vuzHk+oDHfSH1PcX5rQWR16Y\nI5G415JGrRg0yUOjVJCfnsKccieluVZM+rGR9CQce+HiEuq/fi2G+lpKn30irrH0B2qoePBOQrKC\nPQuPjLyPVePkWQTVGjJWLDn4NZW7jZm/OjIlpyN3XNTjmw1qKkpTRUrOGJFh11N11sWEZAUFrz8X\n0xiqjnYK3vwvHoeTvQvOTvAZDs6oVVGWax0zBb+CIAhjmTnC1FNZkijPtw2abCnLEnnpKVSUpGE9\nrNCnbdx43nz6LXadfSkpe3dz8h3XcNJPv4NxX9XIBx1YlFM8Ia6iHJ1aSXZa5MU4h5Mkidx0E1PG\nOdCpB7+3NunUZDuNMY1/rKXb9fgsNprGT8W+ZS2a1uaYxzLWVAPQkRl7Yc6xLv429BVXNUyZhRQK\n4di4esht897pbWNVvfD8IbdpKyxD19KIprUprvMKhcM0x9DOKhgKsbmq5fN2QQnU4fEdbNMrCNHo\n7PbjHtAKbdKTD6Bxt7Hp69+jOy0j4cfTqhQijVMQRiGDVoVeo6Qo23JUjysKcwRBEARBEE5wyUrM\nkSUJrTq2CciBslKNTCtOPSJ9Zyy1sQIImy2E9Ab0DXVxj9XjFxNQ/Tq7/TS09aWIhELYdmzEnZWP\n3xh54oHVpEEd42T5YFwDJl3621XNKneSm25CpUzccYQTR+jHt+NJTafkuScx9D10iJayq5N5P7sO\nbXsL666/nbbi8oSdX1Cro37qbMx7KtEfqMG17H3OuvZcchfHl5ID4LTqmTzOIX53xhB7ipZwhou6\n2adiq9yMdcemqMcoeP05lF4PlRdcQViV/M96jVLBhAKbWMkqCIJwlER6H1eUZR4xXUevVTJ5nIOy\nXOshiSc9Vgdrbrqbdx97gYbJM3GtWMKib53H5D/ej8o9RILH4UU5v3wy5qIcAFtK5MlAw0kxqJle\nkkq69dBWKL0trCxjNoEzRa/GoFVRO+c0pHCYjEHSFyPVX5jTOYYLc3QaJUpZpnHSTADShmhnpT9Q\nQ9r6FTRMmkFXRvaQ47X1tbOy7NoW97k1xtDOase+djq9/riPPZgwop2VEJu65s9b7To2riL/7Rdo\nKyhl54VfS8rxcpwmZHlsvkcLwvGsv02qMomdBAYjZhwEQRAEQRBOcMl62KnXKBO26tyoUzG9OJXM\nAdGSY6mNFQCSRNCVib5RFOYk0sC0HNP+KlSeLlpKJ0Y1Rpo1sb2+rSYN2alG0a5KSBi1xcyem3+K\nwu9n6mP3QTg88k4DBYPM/uWtmPdUUnn+5ew67/KEn2NdXzur+Xd+m5N+fgOqzvhScgDy0k2U5VrF\n788YI0kSGXY9u865DICC15+Nan/Z56PopWfw6w3sPufSZJziocfrS2PQDpFEIAiCICSeSqkYse1x\ndpoxqpQBp1XPzDInLruBgVcO7YWlLPn1X/nkrkfxOF0Uv/h3vvDNsyh8+Z9IgQFFAwkuygFGbM0c\nDaVCpjTXyvhcK8q+QtK8dFPM7aNHC6dVR+3c0wBwLV8c8zim2vgKcySSNzcSDYNOSfP4KQRValLX\nrxx0m9z3etNy9pw5fAJma2FfYU4C2lm1unsIDpN8Ew6HD7aY3lXbzrqdTQfbTSeLaGclRCsYClHf\n0ltkJvl9TPvdzwlLEqtv/HlMi0hGolUrSLcndr5JEITEkGXpmLQBFYU5giAIgiAIJ7hk9VGPp43V\nYGRZoijLwsR8O2qlPKbaWPULZ2Whcbeh8Ea/2mwg0cqqV4fHd8jKvbR1vSsKW0onRzyGLEk4Etwe\nR5IkCjPNol2VkFCaL19K/dQ5ZHy2NOqHFpMf/zUZKz/iQMU81n/nx0k5v7qZpwCQsncXzSWT4krJ\nkSWJshwreemRJ18Jo0uGzUDD9JPocmaSs/h1lF0dEe+bs/hVdC1N7D77UgIGUxLPsldpjoUUg3i/\nFgRBONrMw7z3OsxaCjKivw5QKmSKsy1MLUrFOLBgRZKoPekM3n78VdZf+wPkYJBpf/gFZ37nQpyr\nPk5KUY4sSVhMif98SbPqqShNJSvVSHba2GxhNZDTpqcrMw93TiHONctivlc21uwFYm9ldazTcvoZ\ndSpCag3N46dg2b3tyHSnUIi8d14ioNWzf/6Zw47VNm48ANZdW+I+r2A4TGtfQk0oFMbt8VHb1MWO\nfW2s2dHIxxvqWLmtga3Vrexr6KStM/lpNq0dPYSjXbAgnNAa27wHW6sV/+9vmKt3sfucS2kpi3wO\nKRp56SlikYkgCIcYHVcbgiAIgiAIwjGjUo2Nwpx+drOWipK0MdXGql8wMwsAXeOBuMbxBYKExAQU\new4c+qDXtex9AGpnL4h4DHuK9qjHlgpCLFKMGipvu5uQUsWUP94f8UOL/Nefo/jFZ3DnFLL8Jw8m\nZSUgQHdaBuu+82PWXv8TPnj4nzGn5KgUMpML7ThtYmXhWKZRK7Bb9ew++1KUPd3kvv/qsNvLPh+m\nvbvJWP4Bpc89SUihpPKCK5J+nnnppoSnpgmCIAiRGep+zqhVUZZrjSsdtb/1U0m25ZCFKCG1mh2X\nXMWbT7/FrrMvxbS/ipPvuJazrvpCQotyoPfnS1aLRK1aybhM89hKkB2CRqXAlqKlZs5pKHu8ONcs\ni2kcY201fp2eHqsjpv3VoyAtBzi4er9h8kykcJjUDZ8d8n3HplUYD+xn//wzCeqGT5TyOF34TOaE\nJOYA7K5zs2pbAx9vrGPNjkZ27G+jtrkLt8dH8BjMT/iDIdxdvqN+XGHs6m9jpa/bz/h/PobXYmfj\nN29OyrH0GiVO69hbUCgIQnKJnF5BEARBEIQTnCpJRQn6JEZqq1WjY9IsWqG+whx9Yx2d2fkxjxMG\nfP7gCd12w93lOyS6WtXRTtr6lbQUldOdlhHxOGliokQYQywVk9jxpSspffZJSv/zOJu/ceOw26eu\n/ZRpv7+XnhQLH9/7x6Snj1RedGVc++s1SiYW2NFpTtz3tuOJy25g+6ILKX/mUQpef5aqsy7GcGA/\nxppqjLXVff+7F1NNNfrGOqQB7RGqFl0U1Xt5LJwWnUhlEgRBOIbMRs0RX9MoFUwosCWkoKW3taKB\nVIuO6voOahq7Di5u6LHaWXPT3ew69ytM+dOvSFu/IqFFOZDYNlbHO6dNT+3c0yh79glcyxdTO/f0\n6AYIhzHW7KUjKw9iLFZSjpLEnP7WZI2TZwG/J239SmrnLTz4/bx3ImtjBYAk0VZQStr6FSg9XQT0\nkbeGG4ynJxDX/snQ7O4Z9L1EEA7X5fXT3lfINfnx/0PZ42X1Tfck7D3/cLnppuOieFIQhMQSs12C\nIAiCIAgnuGRFNuvFg9Uj9Cfm6Bvq4h6rxze6CnPcXT4a2ropdKUclcmHPQfch/x3xsqPkIMBak46\nI+IxlLKMPUVMmAtjR6pFx6qvf5ec91+j5Pm/sGfhBXQNEddv3F/F3HtvBEli2V2P0pWRfZTPNjoW\ng4byfNuoaSMgxM9q0iClp1Nz0hlkf/QWF507BWmQ1dTdtlSayqfR6cqhIzOPzqzcqJLPYpGiV1OS\nY03qMQRBEIThaVQKdGol3b7eh/2yJFGeb0v4PY5SIVPoMuOyG9hd6z6kFW57YSlLfv00lsotdOQU\nENQmrmjfliKKBSLlSNFSOX4K3TYHGZ9+CMEgKCJfjKNtbkDZ001njG2sYPS0sjLolEhAS8kkgmoN\nqRtWHvyeoruL7I/epsuZSePEiojGayvsLcwx795G84TpSTrrY6fF7aXAJQqthZHVNXsA0DbVk7l8\nMS3FE9h72heTciyDVkWaRSwCEwThSKNnJl8QBEEQBEE4JpIR2SwhCnMGE3JlAqCPs5UVQI8/GPcY\nidTa0cP+xk68PQHK8qxJi20HaO/soaXj0J71B9tYRbG60p6iQZbFCiZh7JAlibTsVNZ958fM/cVN\nTH3sPj7+xZ+PWBmscrcx76fXoe50s/K2X9IU4cT9seK06inJsSCLFYXHFUmScNkNbLvsGsx7Kukx\nWz8vvnHl0JmZS6cre8Q2DImmrcA8MAAAIABJREFUVSmYkG8T7/+CIAijgMWoprultzCnNMdCiiF5\n7Yp1GiXl+TZaO3rYVdNOp9ff+w1Joq24PKHH0qoVSU2QPd7IskSqzUDdrAUUvPk89q3roioiMdVU\nA8RVmKMeJYU5CllGp1HiAZrKp+Jc+ynqthZ8FhtZS99F6fWw/eJvQoT3263jygCw7tx6XBbmdHr9\neH2BUbVoSRh9QqEw9S29hTk5i19DCoWoWnRRzAlbI8kTaTmCIAwhok/v9evXc8UVR/b2Xrx4MV/6\n0pe47LLLeO655wDw+XzceuutXHrppVx11VXs2bMHgK1bt/LVr36VK664gquvvpqmpqbE/RSCIAiC\nIAhCzFSqxE9AadVK8cBrEKGs/sSc2rjH8vpGWWFOZ2+hTJPby7rKpqQWDlXVdRzy33KPl4zPltLh\nysGdOy7icexmkZYjjD0ZdgN1Jy/iwLS5ZHy29GBRWj8p4GfuvTdhqqlm22XXUH3mBXEdz2xQk2bR\nYU/RYjFoMOlU6DVKNCoFSlkm3nf6vHQTZblWUZRznEq36XEXT+DtJ1/jw9/+nVW3/j97dx4fV1nv\nD/xzzpl9n8k6mexp0qYbbaF0ZWkBAUHRC4jg9brggtcrelUQF/QKsqmAuCII6k8UBERZZJWCbIVS\nWrovadJm3zNLttnOmd8faUPTTJJzZibJ0H7er1dfr2bmnOc8SZr0zDPf5/u5Cfs+/nm0nn4uglXz\nZrwoRxIFLKzMed9GYhIRHW+ORNCUF9qR77bMyDXddiNOnpuHuSWuaSvGYIyVdoU5FrSuGdlk4Tvm\n/nYqttZDAID+tApzsufewGoeKerqOmkFACBv+9sAgPIX/g4AOHSO+vv7QNVIYY6rfk8mp5hVekOR\nqQ+iE1p3cBgxWQESCZS/8A/Iej2azzh/Wq5lN+uRx245RDSBKctI7733XjzxxBMwm8f+IonFYrjl\nllvw6KOPwmw24/LLL8f69evx7LPPwmKx4OGHH0ZDQwNuvPFG3Hfffbjppptw/fXXo7a2Fg899BDu\nvfdefPvb3562T4yIiIiI1BEFATpRRFxRMjam1cTdSsnI3pGOOeYMdMyJxjL3/UqXoiQQOpzVDQD9\nwzFs2d+NRZU5sJkzu1PU3x9BYHDswlvB1o3QhYdGYqxUvrkvCgI8jLGi9yGjXkKey4ytX/4ezv3i\nRVhy9y3oPHnNSPRCIoFlv7gR+dveQuvqs7DjM/+b8nUkURiJfcidunBCVhQoSgJxOQFZOfxHVpL/\n/aiPc5wmFMzQm3A0Owx6CTlOE7oDw1MfPM3MBh3m+JwZ/3+JiIhS57KNFACXF85sFI0gCPDmWJHn\nMqOpcwAt3QNQksQtpooxVto5LAbUrTgNcZMFRW+8iO2fv0b1aztbWxOA9Drm6LKkYw4A2Ex6dGMY\n3YcLc/K3vQV/9QLkb9uErpNOxZC3WPVY/aWVkA1GuA4cv4U5faEwfCpes9CJ60iMlevAbjgbD6Bl\n7QcQc7gyfh2LUYd5ZYzLJaKJTfmOSWlpKX7xi1/g2muvHfN4fX09SktL4XQ6AQAnn3wy3n77bRw4\ncACnn346AKCyshL19fUAgDvuuAP5+fkAAFmWYTTy5pSIiIgoW5gMEgbCmSv0YNvuCVgskD05GYmy\nCsfiGZhQZgQHo+MWsiMxGVvrujG/zJPRzjSH2kPjHnsvxups1eM4rAbopOxZfCXSwpdvw5aSCuy7\n+NOo/eu9mPfQPdj16a+i+rE/ovKZR+CfU4u3vvVj1S3uj+WxG1FT4lLdEl4SRUgioGdNJiVRlGOd\nlcIcURDgshngcZjgsZtgYdEwEVHWMRlm901MnSSissiBXKcJW+q6MzLmyP8/fO8jFXmFLnScshbF\nrz0Pe1M9+lV2Q7UdibIqKk352vpsKsw5XETcN3ch4kYz8rdtQsSVAwA4dM5HNY2VkHQIVtTAVb8X\nQiyKhH764uJmS6A/AkVJsGszJTUUjiNwuMNz+QuPAwAOnXNRxq+T7zKjpsTFdSYimtSUqxLnnnsu\nWlpaxj0+MDAAu90++rHVasXAwABqa2vx0ksv4eyzz8a2bdvQ2dkJWZZHi3K2bNmCBx54AH/+859V\nTTAvzz71QURERESUFl8wjLbuwYyNV1zkRF6eLWPjHU8SpaWw7N0Lu9WYVp61yWzImntl/3Acdlvy\n4pvGnkGYbUaUZWAXbJd/CIoojr2WLMP35suIeHIRXb4CdpWFCNXlnqz5+hFplQegKxRFyxe+hvKX\n/4l5j9wPIS8f8+75McK5+Xj3p/fBkufRPK5OEjC3zIOSAv5sZAp/z4x8DTqDEQyGY9N+LYtJh1yX\nGbmH49ckLowTEZEKeXlAZygypgtoqnKcJngLnRmY1YnH7jRj//pzUfza86h85xU0LFio6jxnezPi\nFhsMxT4YUnyN7S1wZE1HVZvDjEPdgwBMCJx0CnI3vYo5/3wIcbMFwfM+BLtF2zwH5y2EZ98OeLua\n0T93wfRMepaJBj3y3IwPovH2NfbBbjNBiMdQ9vI/EXV5MLjuHNh1mdlQKAgCasvdKJ3hzm9EM4Vr\nGpmV8nYhm82GwcH33rwZHByE3W7H2Wefjfr6elxxxRVYtmwZFixYAEkayed8+umn8Zvf/Ab33HMP\nPB51i4Td3f2pTpGIiIiIVJIjcfQPhDM2Xngwgm5krhX48cRR6IXx3a0It3em1To3Eo5mzb3yoWY/\n+ocmXsTetKMNbe0hVPkcENIoRtqyrwv9w2Pf2M3dsRnGQC/qP/ixSedwLFGWs+brR5QKu1FEiyxi\n6xe+hdU3fhW1d92AuNGE1/7vV/Bb3IDG3+keuxE1PidMIl+HZ0penp1fy8MKnEa0RmPo649kNCpk\nwq44cRl9fZkrOCYiouOfRS+iNQOvifMdRv7/n4bAmvVQRAk5Lz+Hbf/x2XHPC/EY7M0H4T6wG64D\ne+Bq2AvboToEKueh/5jIYy36g0OQI9NfRKxWeDiKmKygbeFy5G56Fca+Hhz8wEcRUCTN9/ldZTUo\nAWDYuQ39vqrpmfAsqzvUA8QzH01E729KIoE99T2IyQq8G1+CIdCHuo98EqGwDEBOe3yTQcL8cg/M\nksDf+3Rc4ppGaiYrZkq5MKeqqgqNjY0IBAKwWCzYvHkzrrzySuzYsQOrVq3Cd77zHezYsQNtbW0A\ngMcffxx//etf8ac//QkuF/+DJCIiIsomNktmo6cYFzExxTeSB2/pbkcwjcKcaFyBkkhATKPQJRPi\nsjKuWCaZlp4BhKNx1Ja7IaUQr9MTGE56nfdirM5SPZbFqIPZyH+j9P6W5zKjoTWE1rXnoP2U0+Dd\n/Co2XXMr/DXqdhYfIYkCqoqcKMq1TtNMiQC33Qi33Yi4rKA3FEZ3YBh9odSKdMwGHTwOIzx2E1x2\nQ0r/pxARER2rwG1GQ2sQcpoFpB4HY6zSkVNRhJ5FJyN/2yZYWxthCvTBVb9n5M+BPXAeqoMUe29D\nRkIQ0O8rR91HPpnWdbMpygoArCY9AoMRdJ906uhjhz7wkZTGClTVAgBcB/YA52ZkelmnL5R6URYd\nv3qCYcRkBQBQ/sI/AGQuxirHYcK8UnfW/e4gouymeTX6ySefxNDQEC677DJcd911uPLKK5FIJHDx\nxRejoKAAer0ed911F+6++27Y7XbcdNNNkGUZN910E7xeL77yla8AAJYvX46rr746458QEREREWl3\nJMM8E4x6iZnKk5CLDhfmdHUgeHiBLFWRqDzrBSbBgajqN1Z7QmG8W9eDhRU5MBokTdc51JFkh0Yi\nAd8bLyJmtqBryUrVY+VkSYtyonSIggBvrgWHOvrxxv/9EpauVgwUV2gaw2M3oqbEBZOBhWo0M3SS\niAK3BQVui+oinZGuOMbRYhwW/xIR0XTQSSJyXWZ0+odSHsOkl2A1ZXbTy4km12FC55qzkL9tEz74\nmfPGPCfr9QiW1yBQNQ+BObUIVM1HoLIGsjm9AnMByLo1DJt5pDDHX7MAEYcLUZsDPQtPSWmsYEUN\nEqIIV/2eDM8yewxH4xgKx2Dhzx8dpb1npIOmPhSA962XECybg8Cc+WmNKQoCygvtKGX8MxGlQNVq\nRnFxMR5++GEAwIc+9KHRx9evX4/169ePOdbj8eAPf/jDuDE2bdqUxjSJiIiIaDrpJBFmgw7D0Xja\nY1nYiWRSSvF7HXPSFY3NfmGOf0DbzrT+4Ri21HWjJM8GSRIgSSJ0ogBJFCCKAiRRHHlcFEYXR7v8\nQxgIj++W4zy4H7b2ZjSfcR4Ug0H1HHKcLMyh40NRjhVNnQNQDAZNRTmSKGCOzwlvDrvk0OyZrEjH\nqJfYFYeIiGacN8eSVmGOhxsA0iaKAsIfvQT+5x9HzGJFoKp25M+cWoRKK5HQZb7wQq8T04pcng5W\n88jr/ISkw0t3/BmywQikeD8km8wIlVSMFOYoSsrjZLveUISFOTRqOBIfXa8q+fczkGIxNJ5zEZDG\nz7pRJ2F+uRtOGzujEVFq+K4JEREREQEYibPKRGEOdwhObrRjTgYKc8IxGc60R0lPoF97y+j85x6H\n+eA+7Pjs16dcFJEEARP14yl6418AgNbVZ6u+tl4S4bSqL+IhymYGvYQ8DTu7jToJ3lwLinKsMOi1\nda0imk5HF+lkQ0wjERGdmFw2IyxGHYYiqb0u9tj5Zm0meKrL8K9f/23GrqfXZd99sfWorsb9pZVp\njxeomg9nYz1s7U0Y8JWnPV426g2FUZJvm+1pUJZo733vNXL5vx5HQhTReNaHUx7PbTOitszN19FE\nlJbjszSWiIiIiDSzZyjOysyIiUkpPh8AwNzVkfZYkaic9hjpiMXlpJ1sJuM4uB+n/vQ7mPfX38H7\n5stTHi8nEhPGm/jeeBGKTo/2U09XfX2P3Zh1uyGJ0uHLm7rrjcNiQG2ZGysWFKC80MHFRMpqLMoh\nIqLZVOixpHSeKAhwsTAnIxwWA2wzuOFHr8u+t8lsJj0yeUcUmDMSo+06cPzGWYUGo4jLymxPg7KA\nkkigs2+kMMfWchA5e7ahc+kqhHPyUxqvJN+GxVU5fB1NRGnLvjsOIiIiIpoVtgwV5jDKanJKoRcJ\nUcxIx5xIbHYLc/wDUU3HC7EoTv3xdRDjMSQEAQv/+PORVtopsHS2wn1gD7qWrEDcqj7bmzFWdLxx\nWAxwWMZ3gRIFAQUuM5ZV52FZTR4K3BYWPBARERFNodCT2j2Tw2oYjeKl9BXlWjNamDKZbCzMEUUh\no7HVgap5AI7vwhwlkYA/hY6+dPzpC4YRiY+sl5W98DgA4NA5H0lpLKfFgKoiJzd4EVFGZN8dBxER\nERHNCrslM4U5VnbMmZxOB7mg8LgozNEaY1X74G/hrt+Dg+f+B5rWXQhXw174XnshpWsXvfEiAG0x\nVqIgwONgYQ4df47ummPUSSgvtGPF/ALUlnvgYHQbERERkWoGvQSPQ3vnG8ZYZVZRrhUrFxSi0uuY\n9s0/hiwszAEyt3kKAPxVIx1z3PXHb2EOAPSFwrM9BcoCbUdirBQFZS8+gZjZgrbVZ2keRwBQXeLK\n7OSI6ISWnXccRERERDTj9DoJpjTbsuolka1dVVCKS2Du6QLk9AprZjvKKjCgvjDHvX8nav/yWwzm\ne/HuVd/G7k/+NxRRwoI//SKlr4PvcGFO26p1qs/hLlY6XuW5zMhxmMbEVRn5u5iIiIgoJV7P1FGh\nx+IGgMwz6iWUFthxam0BllbnweuxQCdm/vVcNnbMATJbmBNzuDCY7x3pmDNBVPTxoC/EjjknunA0\nDn//SIFW3va3Ye1qR8vp50E2mTWPVZRrzejPIRFRdt5xEBEREdGssKXZNYcxVuooPh9EOQ6Tvyet\ncWazY04kKmMoEld1rBiNYPlProOoyNj8jZsQt9ow4CtH4zkXwdlYj5J/P6Pp2oaQH3k7NqO39iRN\nGeG5XCyn45QoCFhUmcO4KiIiIqIM8DiMMOrUFzkb9RLfvJ1mTqsBc0vdWLWwALWlbrhsmetQpNfw\nvZ5JVlNm/00FqubDFOiFqa87o+Nmk0hcRv+QtshtOr609w7hSOlZ2b+OxFhdpHkcg05EhdeRwZkR\nEbEwh4iIiIiOYjenF3liYYyVKkpRMQCkHWcVjStQlNnZ7ebX0C1nwR9/DmdjPQ58+Ap0LV01+vju\nK74ERdJhwZ9+CUFWV+QDAN43X4agKGjV2Io4x8nCHCIiIiIimpwgCCjMsag+njFWM0cSRRR4LFgy\nJxcragtQVmBPv/PvCdAxBwACc0birFwHdmd03GzDrjknrkQigY6+kRgraXgIxa8+h8GCIvQsPEXz\nWJVFTnZcJqKM428VIiIiIhplNadXWGPJ8I6u45VcfLgwpyu9whxg9rrmBPrVLXbl7NqKuY/+HgNF\npdh+5TfGPDfkLcbB8y+GvbURZf96QvW1fa+PxFi1rjlb9TkWow5mdnQiIiIiIiIVCj3qC3Pc7Mw5\nK8xGHSq8DpwyLx/p9Iw0ZGlhjtEgQZ/BwgD/4cIc94E9GRszG/WGwprPicZk7Gn0T8NsaCb1hSKj\na2S+1/8F/fAQGs/6MKAxAs9pMWj6P4CISK3svOMgIiIiolmRdsccFj6o8l7HnI60x5qtwhw1HXOk\n4SEs/8l1AIBN19wC2Tx+YWPP5VdB1hsw/4FfQ4hN3XJaCg+jYMvrCJVWYaC4QvV82S2HiIiIiIjU\nMht1quKSREFgx5xZppPEtGKfsrVjDgBYNXbNyXeZUehOXlAQqDrcMad+b9rzymb9Q1HE4urXSQbD\nMWzZ341O/xCCGjoDU/Zp7x0c/fuRGKtGjTFWAoDqElcmp0VENCp77ziIiIiIaMYZDVJau8UYZaWO\ncrhjjjnNKCsAiERnvjBnKBxXVRC06P47YG9rwv6LP4PeBcuSHjOcV4iGCy6DtbMVFc/9fcoxC955\nHbpIWHOMVS53sRIRERERkQZeFXFWdouecSdZwGFNfZNRtnbMAbTFWZUV2DG/3IMqnwO6JB1ChvMK\nEXG44Ko/vjvmJAD0qoyz6guFsXV/D8KH1zeOxCDR+084Gh/tlmTu7kDB1o3omb8EA75yTeMU5Voz\nHiNHRHRE9t5xEBEREdGssKXYNUcSBEYFqSQXvb+jrNR0y8nb+iaqH/8zQqVV2Pnpqyc9ds/HP4+4\n0YTav9wNMTr52L7X/wVAW4yVXhLTWqglIiIiIqITT57TPGWUkMfODQDZINXXewKQ1YVVagoEREHA\nvFI3KrwOAIBeJ6G80D7+QEFAoKoWtvZm6Ab7Mz3VrKImzqqtZxA7D/Yhriijj3UFhiEf9TG9f9S3\nhZA4/PfSDU9CSCTQePZHNI1h0ImjP0dERNMhe+84iIiIiGhW2C2p7Qxhtxz1Ejk5UIymjERZhWeh\nY05gisIc3eAAlt/+HSiihE3X3ALFMHlr94gnDwc+fAUsPR2o/OfDEx4nyHEUvfUyhnIL4K9eoHq+\nHocJgiCoPp6IiIiIiEgUBeS7zZMe43EwxiobOCypFeboJDGrXytap1hn0UsiFlfloNAztrtTUZ41\nabyXf86ROKvju2uOPxSBkkgkfS6RSKC+NYj9LYFxx8hKAl3+4ZmYImVQXyiM7sDh71sigfIXHoes\n16P5jPM0jVNZ5MzqQj0iev/jbxgiIiIiGiPVlq0WdstRTxAgF/ky0jEnqqFjzmA4hs4MtGYO9E9e\nmHPSPbfB2tWOvZd/Af65i1SNue9jn0PMbEHtQ/dACidfCMvd8Q4M/UG0rVoPJGnNPZEcJ3exEhER\nERGRdt4c64TPGXUS7CkWhFBmWUy6KbsbJWPQS9Mwm8yxmvQQJygcMht0WFqdB5dtfHGYKAiY43OO\nezwwZz4AwH3g+C7MiSsKQoPRcY/LioJdh/rQ3D0w4bmMs3p/kRUFdS3B0Y/ddbvgaKpH28r1iNnH\n/wxMxGk1jCtwIyLKNBbmEBEREdEYKRfmJNmNRRNTfD6YAr1TRjdNRU2UVWgwip0He/H23i7saw5g\nOBJP+XoDwzHE5IlbOxdu+jcqn3kU/qpa7L7iKtXjRp1u1H3kkzD5e1D15INJjxmNsVp9lupxRUGA\nx85drEREREREpJ3NrId9gtfIbr7OyCqpxFmlUswzk0QxeWS402rAsprcSTsXu+1G5B6zSSVQdbhj\nTpYU5ghyHKfeei1O+el3Mj72sXFWkZiMd+t60ROcPOYqOBjFUDj1NROaWU2dAxiOvvf9KnvhcQBA\n4zkXqR5DAFBd7Mr01IiIxsnuuw4iIiIimnFmow46Dd1IjmCUlTaJ4hIAgDnNOKvJoqz8/RG8e6AH\nW+q6RxeflEQCh9pDKV/PP0m3HH0ogFPuuB6KTo+3r7kFCb22hdH9l3wGUasd8x7+HXRDg2OfTCTg\ne+NFRK12dJ90quoxHVYDWxETEREREVHKCifomsMYq+ySSpyVXp/9rxVtx6y1FLjMOKkqF3rd1N1+\nqoqcYzru9PvKEDeasybK6qS7b0XZhidR8fzfYW1tzOjYfaH31i4GhmPYur8b/cPju+gkw6457w+D\n4Riau97rfiTEoih96SmEnR50nLJW9Ti+XFvKmxSJiLTI/rsOIiIiIppxNov2F6QszNFGLvIBACxp\nFubEZAWKMjYXvScwjC37u7GtvgeBgfGFNJ2BYQwMx1K6XrLxjlj665th7uvGrk9+GcHKuZrHjtmd\n2H/xp2AM+jHn8QfGPOc6sBuW7na0rzgTCZ36f5+5DsZYERERERFR6grcZkjHxAkJANx2vtbIJsdj\nxxwAsB5VMFBWYEdtuQeimDze6lhmow4l+bb3HpAkBCtr4GisT7t7b7qqnvgLqh//M2Lmkfig0pef\nzuj4g+EYwtE4+kJhvFvXg7CGGPBO/xASicTUB5JmDW2hcWtYqaprDkI56vvkfftVGEMBNK2/UPW6\nkUEnotxrz8h8iIimkv13HUREREQ04yZq1T0RUUjeXpkmpviKAQCW7vb0BpJlxLp6kEgk0Nk3hLf3\ndmHnoT6EhibfCdbQFpz0+WSURGLCwhzfa8+jbMOT6J27GPs+dqXmsY+o++inELE7MfeR+6EfeK+z\nj++NFwFoi7ECgBwnF8uJiIiIiCh1OklEnss85jGHxQC9jm+vZBO7RQ915SrvMbwfOuaY9RAFAbWl\nblR4HZrPLy2wwah/r7uOv6oWoiLDeaguk9PUpGDz61jy65sRduVgw88ehKw3oHTDU0CGi2H2Nwew\n82Af4srEcdzJRGLymI47x4OD7SHEJ4klnwmRmIzmrn7safSnXfjU0TeEwODY71HZC/8AoC3GqrLI\nyS7LRDRj+NuGiIiIiMbR2jHHZJDGtEemqclHCnO60ivMWfDAr+BdPh97nngJe5r8GAyr64TT1x+Z\nNJYqmf6hGOQkO5uEWBRLf3kjZINxJMJKSr1IK261Yd/HroRhIITqx/44+rjv9X9B1hvQsVx9O2KL\nUceCMSIiIiIiSps3xzLmYw87c2YdnSTCatK2lqEmDmq22S16LK7KQYHHMvXBSUiiiMqi9wp6AnNq\nAYx0pZ0N9qZ6rPrR15CQJLz+f79AqKIGbSvXwdHcAGfD3oxeq68/MqajihbHU5xVY0c/Gjv7x8Q+\nzYbuwDASALqDw6hvSz1iPRaXUd86drOZIeRH0Vv/RrC8GoGqWlXjOK0GFKb4c0VElAoW5hARERHR\nOFo75jDGSrsjHXPMaUZZFWx5A1Ikgvl33ah5d1mDxoWQwASFPEVvvgxzXw/qL7gM/aWVmsZM5sCH\nP4GwKwc1j/0RhpAf1tZGOA/VoXPZashmq+px2C2HiIiIiIgywWkzwnJU0b/bYZzF2dBE7Bo3Gb0f\nuh7pdRJctvT+vRW4LXAejvoKzJkPAHAd2JP23LQyBP1Ye/2XoB8awOav/wh985cCAJrXfRAAUPrS\nP2d8ThPpDYURi6uPv8pWnf4hHOwYWftp6RpAJDp7n1N3YHj07y3dA2jpTq1QqKEthNgx3X9KXn4G\nYjyGQ+d8BFCxcVAAUF3sSun6RESpyv67DiIiIiKacWajDpKGDjgWo7bFLwIUnw9Aeh1zBDkOZ8M+\nAEDezndQ/O9nNJ3fPxxFl1/9LjD/BDFWFc88CgA4eP4lmq4/Edlswd7LPgf90CBqHvk9fBs3ANAe\nY5XLXaxERERERJQhRzorGHQiHBbDLM+GknFYtX1f9CdQhM0cnxMCgGB5NRRRgivD3WmmIsSiWH3D\n1bC1N2P3FVeh6awPjT7XfuoZiFlsKH3paUBj7NR0URIJdPqHpz5wGq6bKf7+CPY1BUY/lhMJHGxP\nvVNNOiIxGaHBsZHr9a3BMcU6agQHImhP0s2o7IXHkRBFNK2/UNU4vlwbbBo3JRIRpevEuesgIiIi\nItUEQdD0AtXKjjmaJWx2yA4nLN2pF+bYmxqgi4TRuWQlZL0eJ93zE0jD2totH2zvV7XwoyiJcYso\nAGDuakfhO6+ht/YkhMqrNV17MvUXfhzDOfmo/scDKHvhH0iIItpXrlN9vl4SNS/KEhERERERTaTQ\nY4EoCHDbuQEgWzk1vgY06E+ct8jslpHYHsVgRKisCq76fYA8Q91TEgmc/PMfIm/HZjSfdi52/ddX\nxjytGIxoOe0DsHS3I3fXlpmZkwodvTMfZ7V1fw+CE2yK0mIwHMOug33j1ns6/UMYGFYXgZ5JR2Ks\njpYAsLfRj2CStaZklEQCdS3BcY87Du5Hzr7t6Fi2BuGc/CnHkQQB5V67qmsSEWXSiXPXQURERESa\n2DS0gDazMCclcpEPljSirNx1uwAALad9APsv+SwsPR2Y9/DvNI0xHI2jvWdwyuOCg9GkBTzlzz8G\nIZFAw3mZ6ZZzhGI0Yc/lX4QuMgzXwf3omb8UEXeO6vM9DhMEDV2fiIiIiIiIJmPQS/A4jPAwxipr\nWUx6TV1wDO+DKKtMqixyQCeKCFTVQhcZhr21cUauW/PI/ah47jH01SzE29fcAojjv+5NZ47EWZVk\nUZzVQDiG/iF1RSOZEBonevEvAAAgAElEQVSMon84im31vWhTsU4zkUhMxo76XsSTdB9KYKRTzUyb\nqDOOnEhgZ0MvhiPxKcdo6RrAQHh8UVHVkw8CABou+JiqubgdRuhOoG5ZRJQ9+JuHiIiIiJLS0jHH\nYmRhTioSxSXQDw1AN9if0vme/TsBAP7qBdjz8c9jOCcfcx++D5b2Fk3jNHb2Iy5P3i46kGzHlqKg\n4rnHEDNb0Hzm+ZquqcbB8y7BYL4XANC6+mxN5+Y4uYuViIiIiIgyqyjHCo+dhTnZzK4yZkwATrg3\n5/U6CeVeOwJzagEArvo9035N78YNWHzf7RjKLcDrP/wVZJM56XHdS1Yg7M5FySvPQojPfEeXibTP\nYNecnmAYwEhnmP0tAexvDmiOtorLCnY29CIcm7gbkn8ggt7D15oJkZg8aVecmKxge30vYvGJ5zwc\niaOxY/zamW5oEGUvPoGh3EK0rzxT1Xxyncn/DRIRTbcT666DiIiIiFRTu5hl0ksn3GJWpii+YgCA\npSu1OCt33S4okg7ByrmQzVZs/9w3IcWiOOneH2saJxpX0NI9MOkx/v7xhTn5WzfC2tmG5jPOh2y2\narqmGorBgHf/+7vwz5mP5nUfVH2eKAhcLCciIiIioozzOEzQ66TZngZNQm2clU4ST8guq0W5VoTn\nLwIAuA7sntZrOev3YOUt10A2mPD6D381acxQQtKh+YzzYQwFULDljWmdlxbdgWEoirbimFT1BMd2\nlWnrHcS2Az2ITlJkczQlkcDuQ370q4iqamgPIaGx6CdVE3XLOdpwNI4dDX2Qk3T5AYADrUHISeZb\n+uIT0A8PoeGDlyIhTb1pUBQE5Di4kYuIZgffQSEiIiKipCwmHUQVi1QWxlilTC4+XJjTrb0wR5Dj\ncDbsQ7C8GophpAilaf2F6Jm/FMWvvYD8rRs1jdfcNTDhYk9cVpK2b6589lEAwMHzMxtjdbS21Wfh\nX7/+m6qc8COcVgOLxYiIiIiIiE5AdpWx3PoTLMbqCFEQkHv6SgCA+8D0dcwx9XZh7fX/DV14CG99\n6zYEqhdMeU7T4Q05pRmIs7K0t2DJr26COY34cGCkm8uxBTPTYTAcw1CSOKfgYBRb9neritSqaw6g\nr19dJ5zBcAwdfTPTDUhNYQ4AhIai2NPoH1cw1B0YRm8oyeeVSKDqqYegSDrV61JOq+GE/dknotnH\n3z5ERERElJQoCLCqKLqxmNRHXtFYSpEPAGDp0r5QZG9qgC4Shr96/nsPCgK2fvm7SAgClvz6Zk3t\nn2UlgcbO5JFawYEojt2XZAj64Xv9RQTL5qBv3kma5z+dGGNFRERERER0YnKo7JhjOIE7HzmL8jDs\nKx2JspqGriliJIzV//cVWHo6sP2zX0fb2nNUndc37yQMFBbD9/qLkMLpFcOc/IsfovrxB7D6hqsh\nRqcuapnMTBSw9AQmLqgJx2S8W9eDTv/E82js6Ee7xnkeau+fsENNpkwVY3WsnmAY9a2h0Y/jsoID\nrcGkx+bs3grXwf1oXXO26s1cuS7GWBHR7GFhDhERERFNyGaeuujGYmTHnFQdibIyp9Axx7N/JwDA\nf8yus0D1Ahw87xI4Gw+g6smHNI3Z3juE4SQ7tPwD42Osyl58AmI8hoPnXQxkWftvtiUmIiIiIiI6\nMekkEVYVG4j0+hP77bHE4sUwhgJpd5QZP3ACy3/6HeTs245DZ1+EfZd9Tv25goCmdRdAFx6C982X\nUp5C/taNKNz8GmS9AZ59O7DkNzenPBYwEu0djo5fK8mkqbryyIkE9jT6Ud8aHNdRptM/hIMdoQnO\nnFgkLqO5a/JY83Sp7ZZztJaeAbQcntehjn5EJujuXPXEgwCA+gs/rnrsXG7kIqJZdGLfeRARERHR\npGyWqXeaqemqQ8nJvtSjrNx1uwAA/pqF457b8ZmvIWq1Y8GffglDoE/1mEoigYPt4xdzAv3HFOYk\nEqh45lEoOj0az75I28SnmdWkh5nFYkRERERERCcsh4o4K/0JHn+srFoNAKh98LcZHbfqyQdR+u9n\n0LNgGd752g2aN/I0r7sAQBpxVoqCRb+7HQDwyq33wV9Vi6p//hVlz/89tfEAJAB09k1fnNVwJI7+\nYXUdj5u7B7CjoRex+EinG39/BPuaAilfu7lzYMLCl0xIpTAHAOrbgjjUEUJrd/LCIaO/F8WvPYdQ\nSSW6TzpV1ZhOiwFG/YnbKYuIZt+JfedBRERERJOyq+mYw8KclCneIiQEAZYUdqi563ZBkXQIVtSM\ney7q8mDXf/0PDAMhLPzjzzWN2xUYHpNdHovLGAiPXSDy7N0OZ+MBtK45C1GnW/Pcp4tRJ6G80D7b\n0yAiIiIiIqJZpCbOSq87sd8eG/705xBbsAhV//wrfK89n5ExHQf346Tf3oaIw4WN37sTikFdrNjR\nQuXVCFTOhfftV6HvTx5hNJniV5+Dp24Xms44Hz2LTsHG79+FqM2Bk3/+Qzjr92ge74j2vsGUz51K\nb3DiGKtk+voj2LK/G12BYew62AcljTgyOZHAoSQbtDJBa4zV0RIY6ZYz0WdW/txjkGKxkW45Kou/\nGHtORLPtxL7zICIiIqJJ2cx6iJO8wNVLIvQncC572gwGyHn5sHRp65gjyHE4G/YhWF4NxWBMekz9\nhy5HsKwKlU8/DNeB3ZrGP7prjn9g/CJKxbOPjhx37iWaxp0ueklEpdeBU+fnI4954URERERERCc0\nNYU5hhO8MAcmE/p/ez8Ukxmn3HE9zF1taQ0nhYex8uZvQIpF8fY3bkY4Jz/lsZrWXQAxHkOxxoIh\nIR7Dot//DIqkw85PfxUAMOgtwaZrb4UUjWD1D69OqdgHAMJRGf5juwlnSPcUMVbJDEfj2H2oD3FF\nSfv6HX1DGFDZsUeLVLvlTEmWUfXPvyJuNKPxHPVdnLleRESz7QS/8yAiIiKiyYiiAMsksUDslpM+\nxVcMc08HoGExxd7UAF0kDH/1/AmPSej0ePeqb0NIJLDk1zcDGnZQ9fVHRhecjo2xkoYHUfLy0xgs\nKELnslWqx5wOkiigrMCOFfMLUFpghyTy5Q0REREREdGJzmrSQzfF60M9I20g18zF4E23wTAQwopb\nrwXk1CONTrrnNjgbD6Duok+gfdW6tObVfOYHAQClG7TFWVU+/QhsbU1ouOBjGPSVjT7evnIddn/i\nS7B1tGDFbddqWn85WkffUErnTSYakxFKsatMpiQANLRlvmvOdBXmFG5+FdbOVjStvwAxm0PVOTbG\nnhNRFuDKNRERERFNyjZJnJXVNHXUFU0u4SuGFIvBGOxTfY5n/04AgL96waTHdZ28Bq2rz0LezndQ\n8vLTmubV0Dayi+zYHWEl/34W+uEhHPrAfwCzVAgjCgJK8mxYOb8AFV4HdBJf1hAREREREdF7HNbJ\n1yv0fB0JAAj/56cwdMFFyNv5DmofvDulMXyvPY+qp/6KQEUNtn/+mrTnNFTgQ8+CZcjbvgmm3i5V\n50jDg5j/wK8RN1mw+xNfGvf8rv/8MjpOXgPvpldQ+5fUPs+ewDDicvodao7WGwpPGNc0k/r6wxnt\nCJROjNVUqp56CABGYqxUynUxxoqIZh/vPIiIiIhoUjbLxItZk3XTIXVkXzEAaIqzctftAgD4axZO\neey2L34Lst6Axff+BNKw+t1d/cMxNHX2YzgaH/N4xbOPIiEIOHjuR1WPdSyLUYeTa/JQW+pGcZ4N\nLptxyt2MwEhBTlGOFStqC1DlczJGjYiIiIiIiJKyWyaPs9Kf6FFWRwgChu78OaJeHxY88Gvk7HxH\n0+nmrnaccuf3ETea8OZ3bp8wblurpnUXQEgkVG8yqvnbH2EK9GLfJZ9BxJ07/gBJwlvf/gkG871Y\n8KdfomDza5rnJCcS6PJntgtMdyCc0fHSUd8aREJDt+XJJOuWY2+qx7Kf/QBGf2/K41raW+Dd9Ap6\n5y1GYIrNakfLdTLGiohmH+88iIiIiGhS9kk65jDKKn2KzwcAsHRrK8xRJB2CFTVTHjvoLcG+Sz4D\nS08n5j10j6a5HWwf28rY3ngAubvfRcfJazGcX6RprKPNLXHBbjGgwGPBHJ8TS+bkYu1iL1bUFmBh\nuQdlBXbkOEwwHm4tLgAocJmxfF4+akpcMBpYkENEREREREQTc1onL8wxsDBnVMLlxuBv7wMArLj1\nGuj7g+pOlGWsuO1aGPqDePeqb6O/bE7G5tR8+nlQRAmlL00dZ2UI9GHuI/ch7PRg/yWfmfC4qMON\njdffBUWnw4pbvglLR6vmeWUyziouKwgMZK5LTboGwjF0ZqjwKFlhztxH7kfV0w9j5c1fhyDHk5w1\ntcqnH4aQSKD+Q5erPsds0E3aDZyIaKbwzoOIiIiIJmVlYc60kn0lANR3zBHkOFz1exEsr1a9E23v\nx7+AodwCzH3097C2N6ue27H7pCqe/RsA4OB5F6se41jFuTY4bcnnbTbqkOsyo8LrwKLKHKxaUIg1\nCwtxam0Bass9zAMnIiIiIiIiVRxTFOawY85Y8ZWr4b/6m7B2tePkn/0AUNE5pfbB3yJvx2a0rD0H\nBz94aUbnE3V50LlsNTz7d8LWemjSY+f/5W7oh4ew+z//G3GLddJj/XMXYeuXvwdjfxCrbvwqxKi2\nwpjQUBSD4ZimcybSGwpDyVCHmkw52B6CrKQX15U0xkqW4X3zZQBA/rZNWPj7n2keV4xGUfnso4jY\nnWg+43zV5+U6GWNFRNmBdx5ERERENCmdJCaNrJIEASYDCyXSdaRjjrm7Q9XxjsZ6SNEI/NXzVV9D\nNluw/fPXQIpFcdJvb0tpnmI0ivJ/PY6I0422VetSGsNkkFBRZNd0jl4nsSCHiIiIiIiINJloLQMA\n9JIIQRBmeEbZT772OoSWnoqSV59DxbOPTnpszq4tWPDArzCU58Xmr90ATMPXs2n9BQCAkkm65ljb\nm1H11EMY8JagQWVx0MHzL8XBc/8DnrpdWPqrH2meV0dvZrrm9ARnKMZKllH64pOwdE7dISgSk9HS\nNZjW5ZJ1y8nZux2mYB+azzgP/b4yzHv4Pvhee17TuL7Xnocx6Mehcy/WFJmW62KMFRFlBxbmEBER\nEdGUkrV8ZbeczFB8xQAAi8rCHHfdLgCAv2ahpus0n/lBdC88Gb43XkTF0w9rmySAojc3jCyAnPMR\nJPST7zycyNwSNySRL0GIiIiIiIho+k0UZ8VuORPQ6TB8z32I2hxY8uubYW+qT3qYfiCEFbd8EwDw\n1nU/RszhmpbptK0+G7LBiNIN/5ywg8+CP/wcYjyGnZ/+qvq1CkHAlv+5Hv45tah85lGUH+4OrFZH\n3xDicnpdZRQlgb4ZKMwRo1GsvPkbWHHbtVjzgy8DsjzlOU1d/RhKoytQssIc75svAQAa138Yb3z/\n54gbzVj+0+/A1nxQ9bhznnwQAFB/wcdUn2PUSVPG2hERzRTefRARERHRlJIX5jCfOROUvHwk9HpY\nutpUHT9amFO9QNuFBAFbvvJ9ROxOnPKzH2Dh/XcCGtoTpxtj5fVY4Lar39FERERERERElA67Jfkb\n8gadNMMzef8Qy8rQccud0EXCWHnzN8dHPSUSOPlnP4C1qx27r/gSehadMm1ziVusaFu5Do6Wg3DV\n7xn3vOvAbpS99BT8c+ZrijYCAMVowsbr70LU7sSyX9wA1+G1FjVisoJDHf2arnesvlAY8jTHWOkG\n+3Had7+AklefQ9xkgathHyqef2zK82Qlge31vYhEpy7iOVbSGCuMbPaKG03oWroSoYoabP76jdAP\nDWL1DVdDGp66Q4+zYR9yd21BxylrMegrUz2fHMZYEVEWYWEOEREREU0p2WLWRC2hSSNRRLywSFPH\nHEXSIVhRo/lSoYoabLjrQfQXlaL2oXuw8uZvQIxMvUPL0tmKgndeR8/8pegvrdJ8XaNeQpXPqfk8\nIiIiIiIiolQ52DEnJebLLkXrRy6Hq2EvFv/u9jHPlT/7N5S88ix6FizDnk9cNe1zaVo3EmdVumF8\nnNWi++4AAGz/3DeAFLrzDnpL8Na3boMYj2H1DV+FPhRQfW5bzyAGhlPvKjPdMVbGvm6c+c1PIX/b\nW2hdfRae/+0/EDdZsPD3d0E3ODDl+eGYjO0NvYjFtXUGStYtx9raCGdjPTqXrYZsGomVal53Aeou\n+k84Gw/glDu/P2FHpCOqnjrcLefCj2uaTy4Lc4goi/Dug4iIiIimlKxjjpVRVhmjFBfD1NcNITZ+\nV9HRBDkOV/1eBMurNeVpH22guAIb7noI3QtPRskrz+LMaz8No7930nPKn/s7hEQi5W45NcUu6CS+\n9CAiIiIiIqKZYzXpoEtSsMHCnKkpP/4JQqVVqP7Hn0ZjiOxN9Vj665sRtTnw1nU/RkKa/nWhjuWn\nI2q1o+Tlf47p+pu/5Q0UvvM6OpatRtey1amPf+oZ2P2JL8Ha2Yp5f71X9XlKIoEDLcGUrqkkEugN\nTV9hjq31ENZ/7Qq46/eg/oLL8Mb1d2HQW4K9l30OpkAv5j10j6pxBsMx7Gjohayh23Kywpyiw/9+\n2lauG/P4ti9cg575S1D68tOY848HJhxTNziA0hefxFCeF+0rzlA9F50owsXOzUSURXj3QURERERT\n0utEmPRjWz1bWJiTMQlfMYREAube7kmPczTWQ4pG4K/RGGN1jKjTjVduvR+N6z+EnD3bcNbVl8He\neCD5wbKM8ucfQ8xsQfMZ52m+VqHbwtbBRERERERENOMEQYDdMn6jEQtzpmZyOdByx92Q9QYsv/27\nsLS3YOXN34QuMozNX7sBQwW+GZmHYjCgde05sPR0Infn5sMPKqPdcnZc+fW0r9H1ua9AMZpQ+M7r\nms4LDEbQ2Tek+XrBgShisrZONGq59+/Euq99AraOFuz65P9gy9U/AKSR9bx9l3wGQ3le1Dz2R1ja\nW1SNFxqKYtdBPxQVsVuR6EQxVi8hIQhoX3nmmMcTegM2fu9nCLtycNI9P0bOri1Jxy178Qnoh4fQ\n8MFLNRWD5ThNEAVB9fFERNONdx9EREREpIrtqMUsURBgYpRVxii+YgCApbt90uPchzPP/dXpFeYA\nI4tbm751G3Z98n9g7WzF+q9dgfytG8cdV7B1I6xd7Wg+8wLIZqumaxh1jLAiIiIiIiKi2ZMszsrA\nwhxVck47FXv/+zoYg3584EsfhathLxrOvxStp587o/NoWn8hAKD0pacBAMWvPAtP3S40rbsAgTTX\nRzx2I+bPK0J8xSq4GvZN2VH4WA1tIcQ1Ftkk6yqTCQWbX8eZ3/wUjP0BvHP1D7D7k18GjipMUYwm\nbP/cNyDFolh83+2TjDRWX38Y+5qmjvnqDo7/vPShAHJ3vIO+eYsRceeOez6cW4A3v3sHkEhg1Y1f\ng7HvmA1riQSqnnoIiqRDw/mXqJ4zAORxkxgRZRnefRARERGRKnbze4tZZqOOu04ySD5SmNM1c4U5\nAABBwO5PfhlvXXsbpGgYp33nCyh/5tExh1Qc/jiVGKvqYid3IhIREREREdGscVjGF+bwdao6oiDA\nePX/oG3lOuiHBhAqqcS7V1034/PoWnwqhj25KH7lWUjDQ1j0h7ug6PTY+emvpjWux27EwoociKKA\n6OkjEUl5297SNEYkLuNQR7+mc3qDmY+xKtnwFNZefxUEOY6N37sTDRd+POlxzWd+EL21J6HklWeR\ns/Md1eN3+odwoHXy6K5kBUfet1+FqMhoW7l+4vNOOhU7Pvu/MPd1Y9VNX4cQj40+l7NrC5yH6tC6\n9mxEPHmq5ysJAtwOxlgRUXbh3QcRERERqWIzv9cxx8JuORml+EZaQJu7OyY9zr1/JxRJh2BFTUav\n33T2h/HKrfcjZrFi+Z3XY+F9dwCKAkOgD76NGxAsr0bfvMWaxsxzmZHrMmd0nkRERERERERaJOuY\no9dJSY6kZJx2E5p+dCf2XPZ5vH7DryCbLTM/CUlC8xkfhLE/iJU3fwO2tibUX3AZBr0lKQ/psZtG\ni3IAIHbaSGFOwdY3NY/V1jOIgeHY1AcCCA1GEYnLSZ8zd7Wh+m9/QOGmV2Dq7VJ9/epH/4CVt16D\nuMmMV275HVrXfmDigwVhtLhqyW9uART13X5augfQ1Jm8CGniGKsNAIC2VesmHXv/pZ9Fy9pzkLdj\nMxbdf+fo43OefBAAcOBDl6ueJwC4HUZIIt8CJ6LswndUiIiIiEiVo6OsLCbeRmaS7BtZTLJ0tU14\njCDH4WrYh2B5NRRD5nf99Cw6BRt+/hDWfu8q1P71XtjamxGonAsxHhtpF6yhQ5JeElFTzAgrIiIi\nIiIiml16nQiLUYehSHzMY6Re6fwybPrCNxHTGNmUSU3rLkDN3/8fit56GTGzBXuuuCrlsUaKcjyj\nRTkAEF+8BLLDmTTieypKIoG6lgCWVk/d0SVZ3BMAiNEo1n7/y3A17B19LOzOhb+qFoE5h/9UzcOA\ntxQ4UnCiKFh03+2Y98j9GPbk4ZVbfoeQio1cfbVL0LjuQpS99BTKXnwCjed8RN0nCqChPQS9ToQ3\nZ2zUebLPS4hFUfj2qxjwliBUNmfygQUBb3/jZjgOHcDcR3+P3nknoWfRKSh+9XkEy6rQs2i56jkC\nQJ6TG8WIKPvwHRUiIiIiUsWol2DUSYjEZRbmZNiRjjmWSTrmOBrrIUUj8NdkKMYqiQFfOTbc9SBW\n//BqlLzyLEpeeRayXo+msz6kaZw5xU7uQCQiIiIiIqKs4LAYxhTmGFiYo4leJ6Hc60BdS2DW5uCf\nuwgDRaWwtTVh36WfRcSdk9I4yYpyAACShNia02B75ilY2lsw5C3WNG5wMIrOviEUeCbvKDRRjNWC\n//dzuBr2omXtOQiW18BVvwfuA3vg3fwqvJtfHT0uZrEiUDkPgapamPq6UfLqcwgVV+DVW+7FUIFP\n9Xx3XPm/KH79BSy6/060rP2Apk5I+5sD0EvimC7JyWKs8ra/Df3QIA6ee7GqzV5xqw0bv38XzvrK\nZVh++3fQcvp5EOMx1F94uabNYqIgIMdpUn08EdFM4TsqRERERKSazaJHJCQzyirDEg4nFKt10sIc\nd90uAIC/evoKcwAg6nDjlVvuwyl3fg9lLz6J1rUfQNThVn1+rtOEAvcstLYmIiIiIiIiSsJuNaDD\nPzT6sY6FOZoVuM1oaAtCVhKzMwFBwK7//DJKX3oK+y/+dEpDTFiUc1js9DNheuYpFLy7EQe9l2oe\nv6EthBynCTop+b+vgeHYmAKxI3K3b8LcR+7HQFEpNl1zC2Tze91oDCE/XPV74TqwZ+RPwx7k7t6K\nvJ3vAAB65y3GazfejahT/boNAAznF2HfpZ/F/D//BnMfuQ+7/+srqs9NANjd6MdinQiXzThJjNVL\nAIC2VetVjx0qr8bmr9+Ilbd8ExXPPYa40YzGsz+s+nwAcNkME34PiIhmE99RISIiIiLVbGY9ekNh\ndszJNEFAvKgYlo72CQ9x798JYPoLcwBAMRiw6drbcOgDH0VfzSLV5+klEdXFrmmcGREREREREZE2\nTqth9O96SYSoofsGjdBJIvJdZrT3DU198DRpOvvDaNJYpHHEVEU5wEhhDgDkb30TB8/XXpgTics4\n1N6PORNEeyfrlqMb7MepP74OEAS8de2tY4pygJHNU11LV6Fr6arRx6TwMByH6mDu7ULnyWsgm1KL\nbdr7sStR8cyjmPvI/Th43iUYzveqPldJJLCzoQ9LqnMRGIiMPyCRQNHGDYjaHOhZuEzTvJrXXQDP\n3m2o+fuf0HjWhxC32jWdn8MYKyLKUiwZJCIiIiLVbGY9TAYJksjbyExTfMUw9AchDQ8mfd5dtwuK\npENQRV54RggCupauQtxqU31Klc8Jo54RVkRERERERJQ9rCYdpMMFGXp2y0lZYY516oOmmdNq0Lzu\noKYoBwDkOdWI5Rcif+ubgKKkNL/WngEMDMeSPpcs7mnZL2+Etasdu6+4Cn3zl6q6hmwywz9vMdrW\nnJ1yUQ4AyGYrdnz269BFwlh0/52az48rCrbX96C9d3yxlrNhH6xd7WhffjoSOr3msbd//hq8de2t\n2PHZ/9V0noCRTs5ERNmIdyBEREREpJrNrIfFqP0FNU0tUVICAEnjrAQ5DlfDPgQrqqEYjDM9tSlZ\njDrMLXGhcIosdSIiIiIiIqKZJggC7JaRrjkszEmd02qA1TR7a0ImvYQlc3KxakEh1iwsxOLKHFR6\nHch3mWEx6pCs7EZtUQ4AQBAQWXs6TME+OA/VpTTHBIC6lsC4x4cjcQyExxbsFP/7GZS9+CT65i7C\nniuuSul66Wo8+8Poq16Asg1Pwr13u+bzo3EFg+HxhUhFGzcAANpWrUtpXgmdHk1nX4SYQ1tXZodF\ne+EWEdFM4R0IEREREalmNurGtICmzFGKfAAAS9f4whxHYz2kaGRGYqy0sJn0mF/uwfJ5+fBmwc45\nIiIiIiIiomSOrGUYdHzTPh2zuSHHm2OFIBzpfCTB4zChtMCO+eUenFpbgLWLvVhanYfqYhe8Hgu8\nHov6opzDlHXrAQD5WzemPM/gYBSdx0R+9RwTY2Xu7sDJP/8h4kYz3vrWbSl1lckIUcS2q64DACy5\n+xYgkcjIsEVvvgRF0qFj+WkZGU+tXBdjrIgoe7Ewh4iIiIg0yXfzRe50kH3FAABzd/u459z7dwJA\nRgpzJEH9gtREnFYDFlXk4JR5+ch3mUcXxoiIiIiIiIiykd0yUvjAjjnpKfSYIc7CGoAoCCjMmbwo\nSBJFOK0G+HKtmFvqxtxSt6aiHACInX4mAKAgjcIcAGhoCyEuvxeH1RM8KsZKUbD8p9+GoT+IbV/8\nFgaKK9K6Vrp6Fp2C5tPORe7ud1Hy8tNpj2fq6YRn/050L16OuNWegRmqxxgrIspmvAMhIiIiIk3M\nRt1sT+G4pBwuzLEkK8yp2wUgM4U5NSUurFpQiPnlHhTn2mA365O2e07GYzdiyZxcLK3OQw4XO4iI\niIiIiOh94kjHHAtS78cAACAASURBVBbmpEevk2ZlPcDjMM5IRJHiLcJweRVyd2yGEB8f0aRWJC7j\nUHv/yN9jMkKD0dHnqv/xJxRsfRNtK85EwwUfS3vOmbDjc9+ArNdj0X23Q4yEpz5hEkVvvgwAaFu1\nPgMzU89m0nPNkoiyGu9AiIiIiIiygOI7HGXVPT7Kyl23C4pOj2DF3LSvY7foYdRLyHeZMafYiZPn\n5mPNIi8WV+agrMAOp9UwZvebACDPZcbJNXlYXJULl82Y9hyIiIiIiIiIZpJeJ8Fs0LEwJwO8sxBn\nVTSD8dnhNadDPzwEz74daY3T2jOAgeEYeoNhHAmIchzcj0X33YGw04PNX78RyJIOxIPeEtR99L9g\n7WpHzd/+kNZYRW9uAAC0rVyXgZmpl+viBjIiym68AyEiIiIiygKy93BhTlfbmMeFeAyuhn0Ils+B\nYjCkdQ2dKMJiGp9brpNEeBwmVHgdWFqdh7WLvFg6JxdzipxYPi8fC8o9sFvSuzYRERERERHRbHJY\nDTCwMCdtbrsRphnoXnOE2aCDxzFzRReJ9SOdXvLTjLNKAKhrCYzGWInRKFbcdi2kWBSbv34jIu7c\ndKeaUXsuvwphVw5qH7oXpt6ulMaQhgeRv/VNBCrnYqjQl+EZTi7XaZ7R6xERacU7ECIiIiKibGA2\nI+7JHdcxx9FYDykayUiMlc0yvignGVEU4LQZUZxvS1rIQ0RERERERPR+47AaoNfNXEHJ8UoQBBTm\nzFzXHO8MXgsAlNNOR0IUUbAlvcIcAAgORtHXHwEALPjjXXA17EPD+ZeifYZjntSIW23Y+amroQsP\nYdF9t6c0RsE7b0CKRWe8W47HboLNzPUrIspuLMwhIiIiIsoSis8Hc3cHkEiMPuau2wUAGSnMsass\nzCEiIiIiIiI63jgsekZZZUihx4KZCGESBQGFMxydlXC5MTB3IXL2boc0PJSRMXO3b8LcR3+P/qJS\nvHvVtzIy5nQ4eN7F8M+Zj/J/PYGKpx/WfH7Rmy8BANpmqPAox2HC0uo8LK7KmZHrERGlg3cgRERE\nRERZQikugS4ShiEUGH0ss4U5jKMiIiIiIiKiE5PVrIfJwI45mWAy6OC2G6f9OjlOEwwzGJt1xNCa\n0yHGY8jd+U7aY+kHQjj1x9chIYjY9K3bIJutaY8pCcL0/FuWJLxx/V2IOFxY9ssfIWfXFvXnyjKK\n3noZw568jKxhTUQAkO8y45S5+VhUmQOnlWtdRPT+wMIcIiIiIqIsofhG8rct3e2jj7nrdkHR6RGs\nmJv2+Ha29SUiIiIiIqITlCgI0El8WyxTCnPSLzCZStEMXCMZZd1IFFPB1jfTHmvpL38Ea1c79lxx\nFfpql6Q0hl4Skes0oarIiWU1eViz2IvFldPTJWbIW4yN370TUBSsvuGrI52dVcjZuw3GoH8kxkrM\n/M+ZKAjweiw4tbYA88s9jK4iovcd3oEQEREREWUJxVcCALB0jRTmCPEYXPV7ESyfA8WQ3g4gvSTC\nbNSlPUciIiIiIiIiolynCfppLHSyGGemK08y0po1kPUG5G/dmNY4xS8/jbINT6J37mLsueKLqs8z\nGSQUuC2YW+LCqfPysWaRFwsrclCSb4PDYoAoCLCY9HBZp+fr0710JbZ98VqY/D1YfcPVEKORKc8p\n2rgBANC2al1G5yIJAorzbFhRW4C5pW6ubRHR+xZ/exERERERZYkjHXOO7EZyNNZDikUZY0VERERE\nREREWUUUBBR4LGjpHpiW8b2z1C0HAATL/2/v3sPsrMu70X/XWnM+z2RyJiGZEJCDCCEvgVcbLYWC\n11Uu3WqFYGMRLrFstza8CgRJCJZEQDy8iG1F3LVujsK2CrRF3y0ewgYMUApbg0qBEJDQQJDEJOQw\nmVn7D0sk5DCZZNbMJPl8/mKt9fye5/eEi2fCPd913w1Z89bj0vHog6lZ82o2t7b3+xyljRtyzNeu\nzJbaujw09+qUq/ru8HLI+NaMbK1P7W6OqRrX2ZDV6/sOzeyJp947O+1P/TKT/p/v5bj/uSAPX3hl\nUijsfC8P/jhbauvz0jEnDMj1q4rFjB/ZmINGNqa6ygg6YN+nYw4AAAwTPeMPSvKHUVbt/7E0SQYo\nmKPFLwAAADBwxo5oqMh5i4VCxnTUV+Tcu2v9iX+UJBn1+JI9Wj/ln29L/W9X5T/e95dZN35Sn8e3\nNdXmoJFNux3KSZLOtvrKdS0qFPJvf315Xjns6Ez64Z2Z+t3/a6eHNv1mWVqefyYrp/339NbW7fWl\nG2qrctxhIzN5bItQDrDfEMwBAIBhovf1YM5LbwrmHHrUXp+7RcccAAAAYAA11lWntQL1hpGtdUMe\nyNjyrnclSUb9+8/6vba0YX3e8u0b0t3QlF+//+zdWtM1tqXf1ykWChlToXBUkvTW1OaBBV/Jho7O\nHP31a3Y62mvcz36SZGDGWDXX1+TYqZ1GVgH7HcEcAAAYJnpHj0m5VErDf42yan9yaXqrqrNm0qF7\nfe4mHXMAAACAAVaJYMi4zqEbY/W66uP/W7obmjJ6J2GUXZn6vZtSu+bVPPn+s9Pd0tbn8Z2tdWlp\n3LOA07gKj/za2Dk6D87/SlIs5oSFF6Txxee338ODP0q5UMiLM965V9fqaK7N2w4ZMeShLIBKEMwB\nAIDholTKltFj0/DSiyls6U7bM7/KmkmHpLdm7759VltdSm21ogYAAAAwsEa116dULAzY+RrrqtPa\nVDtg59tTtfW1eeWYGWla8VwaVr6w2+uq1q/NYf/3N7OpuTVPvu/DfR5fSDJ5D7rlvK6+tiodzZX9\n83rlyGPz6Cfmp3btmvz3y/+PlDas3/pZze9eTefSR/PK4W/LpvbOPb7G6Lb6HNU1IlWVGs0FMMQ8\n3QAAYBjpHT8+da+8lNZlT6bUvTmvTj1yr8/ZrFsOAAAAUAGlYjGj2uoH7HxjKziaqb/WnfiOJP0b\nZ3Xod76VmrVr8us/PzdbGpv7PH5Ue0Ma6/aubjN2ALvmNNdXp30Hwahl7/7zPHX6rLQtezL/7QuX\nJuVykmTMQ4tT6O3NihNO2uNrThjZlMMndaRYGLiAF8BwI5gDAADDSO9BE1Ls7cnYJT9JkgEJ5rRU\nYN47AAAAQDJwwZBSoZAxHcMnmNM984+TZLfHWdX87tUc+k/fysbWjjz1nrP6PL5YKGTSmL7DO30Z\n0VqX2gEa/zRlfGuOnNyR5vrta0mPnX9JXn7r9Ey47wd5y63XJ0nG/ewnSZIVJ/7xnl1vXGumjG/d\n4/0C7CsEcwAAYBgpjz8oSTL+/nuTJK8eetRen7OpXsccAAAAoDJaGmvStJddX5JkZFv9sBplVPPW\nI7OhY2RGPbZka4eYXTn0jm+m+rV1+dUZH01Pfd9hpTEdDamvrdrrfRYLhYwZgE5DnS11aWuqTVWp\nmKOndKThTXsrV1XnwXn/M6+NHJujvvWVjP9//1fGPHJf1o2bmLUTp/R7z4dPbM+EUU17vW+AfcHw\n+ekGAACkZ/z4JEn7079Mb1V11kw6dK/P2axjDgAAAFBBA9HpZlznwI1kGghNDTV5+dgTUvfqqrQ8\n+x+7PLb21Vcy9Xs3ZUPHyDx9+pl9nrtUKOTgAeiW87qxIxqyN4OgioVCusa1bH1dXVXK0VNGpLZ6\n2048m9pH5P7Lr0tPTW1OWPg/Uv3a+qw44Y+TfoyhKhUKOWpyR0YPo+5IAJUmmAMAAMNI7/gJW/95\nzaRD0luzd6Ga+pqqVFf5az8AAABQOaM76lPsRzjjzZrqqtPSOLy+WFQsFrLm+HckSUY99rNdHnvY\n7d9I1aYN+eVZH0tvbV2f5x4/smm70MveqKupSkdL39fdmTEdDWl4U9ejupqqHD1lRKrf1MVo9dQj\n88gFV6TY25MkWXHiSbt9nepSMW87pHOv9gqwL1KhBwCAYaT3vzrmJMmrU4/c6/O1NBhjBQAAAFRW\ndVUpI1r3PGwxdph1y3nd5ne8M0ky+tEHd3pM3Ssv5ZC7b81rI8dm2Wl/3uc5q4rFioxwGruH46xK\nxUIm7aR7T2NddY7qGpHSm0JXz5/0Z/n/zvkfWTHjnVl11LTduk5dTSnHTh057AJYAINh7wcXAgAA\nA6Zn/EFb//nVqUft9fmajLECAAAABsHYjoa8vHpDv9eVioWMbq+vwI72Xt0hk7J2/MEZ+fOHU+jZ\nknJp+1+tvuW2r6e0eVOe+NBf7Vbn4wmjmirS3XhES11qq0vZ1N3Tr3UTRzWnZhfde1oba3LEpI4s\nffa36S2Xt77/6zM/ml/no32ev5Bk7IjGTB7bnOqqgesSBLAv0TEHAACGkXJ7R3rrfl+MevVQHXMA\nAACAfUNHS13qavofvBjd3pCq0vD8lWVzQ01eOvaEVL+2Pu2//vl2n9e/tCJd/3p71o2dkGf/9H/r\n83w1VcUcNKoy3YEKhUK/u+bUVpd2az8jWuty2IS2fu+po7k2098yKodOaBPKAQ5ow/OnHAAAHKgK\nhWwZf1B6q6qzZtKhe3eqJE2COQAAAMAgGdvR/9DJno5gGgz1tVX57XFvT5KM/vefbff5ETd/LaXu\n7jzxF/97ylV912Amjm5OqVi5X8+O7WhMoe/Dtpo8tmW39zO6oyFTxrXu1rENtVV56+QROXpKZxrr\n1KYAjLICAIBhZs3Cq/PUL57drfbHu9JYV13RYg8AAADAG43rbEx1VTHrNnRn3YburN/QnZ43jD96\ns+b6mjQP8zHcG9/+jpQLhYz69wfzyw+dv/X9xhefz6T/9d387qDJWX7S6X2ep666lHGdlemW87ra\nmlJGtNZl1ZqNfR7bVFfd7xFiE0Y1ZfOWnjz/0rodfl5dKubgMc0Z19mYYqE/ESGA/ZtgDgAADDd/\ncnJWdK5IdlG42h1N9b6RBAAAAAye6qriNuGTcrmcDZu2ZO2G7qx7rXtrYKe7pzdJMq5z+HbLeV3D\n2NFZPeXwjPjlYylt3JCe/xpBfsRNf5diz5Y8MfvjSanvMU0Hj2kelLDKuBGNuxXMmTK+NYU92M+U\nca3ZsqU3L/72ta3vFf9rjNakMS2prvIlMYA3E8wBAIBhqL25Nq/8ru8iyq40Nw7vb5wBAAAA+7dC\noZCGuuo01FVndPsf3t+4eUvWbehOe3Pt0G1uNzU31GTlsSek/akn0vmLR7Ny+tvT/NwzOfjeu7Jm\n0tQ8/85393mOhtqqjOkYnBBSe3Nt6mpK2bi5Z6fHdDTX7dWf/aET2tLd05tVazamo7k2U8a3GlkF\nsAsiiwAAMAz1t5XwjjQ3KIgAAAAAw09dTVU6W+v3iRHcLY3VefnYE5Mkox57MElyxE1/m0Jvb37x\n4U8ku3EPk8a27FF3mj1RKBQybsTOR2YVkkwZ37LX1zji4I68bUpnjp7SKZQD0Ifh/9MOAAAOQJ2t\n9anai+JUsVAwygoAAABgL5WKxWw4bkZ6q6oz+tEH07LsyUz46T159ZAjsuLtJ/e5vrm+OqPa9v4L\nWP0xpqNhp2OzxnQ0DEiQplgs7BMdjwCGA8EcAAAYhorFQka21e3x+sa6qkGZWw4AAACwv2vsbMuq\nI45J29O/zDF/f2UK5XJ+8ZefSHaj9jJ57N51p9kTNdWljGjdvq5UKhQyaQj2A3CgE8wBAIBham9m\njzc31AzgTgAAAAAOXC2NNXnpmBNSKJcz+rGf5ZXD35b/PP6dfa5ra6xNR8uef/Fqb+xonNWE0U2p\nrS4NwW4ADmyCOQAAMEy1NtWmvqZqj9Y2NxhjBQAAADAQWhqq89KxJ259/Yu//GSf3XKKhUImjxu6\n7jTtzbVpqP1DXam2qpQJo5qGbD8ABzLBHAAAGMZGd+zZDHIdcwAAAAAGRkNdddYecXReGzk2/zn9\nHduEdHakulTM0VNGpLVxaOszY9/QNWfS2OaUin41DDAU9uzrtwAAwKAY3d6QZ/9zbb/WlAqFNNb5\nqz4AAADAQGlqacz3/89/SW+ptMtuOc311Tlyckfq9rAL8kAa01GfZS/+LvW1VXs1Mh2AvTP0PxEA\nAICdqq+tSmtjTdas37zba5oaqlPoo50yAAAAALuvpbE6v127687Go9vqc+jEtmHTmaa6qpSRrXUZ\n1d6gVgQwhARzAABgmBvT0dCvYI4xVgAAAAADq2UX9ZZCksljWzJxdPPgbWg3dY1rTW1Naai3AXBA\nGx5xTQAAYKdGttWn1I9vNTU3VFdwNwAAAAAHnpbGHQdzqorFvLVrxLAM5SQRygEYBgRzAABgmKsq\nFTOitW63j2+u1zEHAAAAYCBVlYppqN12GEljXXWOO2xkOlp2v24DwIFHMAcAAPYBYzoaduu4qmIx\nDXUm1gIAAAAMtDeOs+psrcuxUztTX6sOA8CuCeYAAMA+oL25NrVVfbceNsYKAAAAoDJeH2d18Ojm\nHDV5RKpKftUKQN/8tAAAgH1AoVDIqPb6Po9rbjDGCgAAAKAS2ppqctSkjkwe2zLUWwFgHyKYAwAA\n+4jRuzHOSsccAAAAgMpoqKtOZ1vfX5wCgDcSzAEAgH1EU311mup2HbwRzAEAAAAAgOFDMAcAAPYh\nY3bRNaemqpi6mqpB3A0AAAAAALArgjkAALAPGdVen2KhsMPPmhtqBnk3AAAAAADArgjmAADAPqSm\nupT25todfmaMFQAAAAAADC+COQAAsI8ZvZNxVs31OuYAAAAAAMBwIpgDAAD7mM6WulQVt/+rvI45\nAAAAAAAwvAjmAADAPqZYLGRUe/0279VVl1JTXRqiHQEAAAAAADuyW8Gcxx9/PLNnz97u/R/96Ed5\n//vfnzPOOCO33357kmTz5s351Kc+lQ9+8IM555xz8uyzzyZJli9fnlmzZuWss87KggUL0tvbO3B3\nAQAAB5g3j7NqbjDGCgAAAAAAhps+gzk33HBD5s2bl02bNm3zfnd3d6688sr8wz/8Q2688cZ8+9vf\nzqpVq3L77benoaEht99+e+bNm5crrrgiSXLllVdmzpw5ueWWW1Iul3PvvfdW5o4AAOAA0NpYk/qa\nqq2vjbECAAAAAIDhp6qvAyZOnJjrrrsuF1100TbvP/3005k4cWJaW1uTJMcdd1wefvjhPPXUU5k5\nc2aSpKurK08//XSSZOnSpTn++OOTJDNnzsz999+fU045pc8NjhzZ3L87AgCAA8RbpvTkqedXJ0km\nTWjPiNb6PlYAMJjUNAAAAIB9kZrGwOozmHPqqafmN7/5zXbvr1u3Ls3Nf/iX0djYmHXr1uXwww/P\nj3/845x88sl5/PHHs3LlyvT09KRcLqdQKGw9du3atbu1wZdf3r3jAADgQFOTctau25gk2bxhc17e\nvGWIdwTA60aObFbTAAAAAPY5ahp7Zldhpj6DOTvT1NSU9evXb329fv36NDc35+STT87TTz+ds846\nK9OmTcuRRx6ZUqmUYrG4zbEtLS17emkAACBJfW1V2hprs3lLT6pKfU6pBQAAAAAABtkeV++nTJmS\n5cuXZ/Xq1dm8eXMeeeSRHHvssfn5z3+eE088MbfeemtOO+20TJgwIUlyxBFHZMmSJUmSxYsXZ/r0\n6QNzBwAAcAAb3VGf5vrqod4GAAAAAACwA/3umHP33XfntddeyxlnnJG5c+fm3HPPTblczvvf//6M\nHj061dXVufbaa/O1r30tzc3NWbRoUZLk4osvzvz58/OlL30pXV1dOfXUUwf8ZgAA4EAzsq0+5fJQ\n7wIAAAAAANiRQrk8vMv4ZpcBAMCu9ZbLKRYKQ70NAN7APHYAAABgX6SmsWdGjmze6Wd7PMoKAAAY\nHoRyAAAAAABgeBLMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAA\nAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAA\nAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDM\nAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACAChDMAQAAAAAAAACA\nCiiUy+XyUG8CAAAAAAAAAAD2NzrmAAAAAAAAAABABQjmAAAAAAAAAABABQjmAAAAAAAAAABABQjm\nAMNWb29vLrvsspxxxhmZPXt2li9fnldeeSXnn39+PvShD+XMM8/Mc8891+eaJFm+fHlmzZqVs846\nKwsWLEhvb+9Q3BIwCB5//PHMnj07SfLLX/4yZ511VmbPnp1zzz03q1at2uZYzwwg2f658cEPfjCz\nZs3KJZdcst1//54bAMDuUNMA9oSaBtAf6hkA+w7BHGDY+uEPf5jNmzfn29/+dj71qU/lqquuyjXX\nXJPTTz89N998c+bMmZNnnnmmzzVJcuWVV2bOnDm55ZZbUi6Xc++99w7FLQEVdsMNN2TevHnZtGlT\nkmTRokWZP39+brzxxpxyyim54YYbtjneMwN483Pjq1/9aj7+8Y/n1ltvzebNm/OTn/xkm+M9NwCA\n3aGmAfSXmgbQH+oZAPsWwRxg2Pq3f/u3/NEf/VGS5JhjjskvfvGLPProo1m5cmXOPvvs3H333Tn+\n+OOTJBdddFFWrFixwzVJsnTp0q3Hzpw5Mw888MAQ3BFQaRMnTsx111239fWXvvSlHH744UmSnp6e\n1NbWJvHMAP7gzc+Nww8/PKtXr065XM769etTVVWVxHMDAOgfNQ2gv9Q0gP5QzwDYtwjmAMPWunXr\n0tTUtPV1qVTK8uXL09LSkn/8x3/M2LFjt35T5POf/3zGjRu3wzVbtmxJuVxOoVBIkjQ2Nmbt2rWD\nezPAoDj11FO3/k9nkowaNSpJ8uijj+amm27K2WefncQzA/iDNz83Jk2alEWLFuXd7353XnnllcyY\nMSOJ5wYA0D9qGkB/qWkA/aGeAbBvqer7kIHT29ubyy+/PL/+9a9TU1OThQsXJknmzp2bQqGQqVOn\nZsGCBSkWi7tcc/DBB2f58uW7XAfs+5qamrJ+/fqtr3t7e9PZ2ZmTTjopSXLSSSfly1/+cp9rqqqq\ntnk+rF+/Pi0tLRXePTBc/Ou//mv+/u//Pl//+tfT0dGxzWeeGcCbLVq0KDfffHOmTp2am2++OVdd\ndVUWLFiw9XPPDThwqWkA/aGmAQwENQ1gd6lnALuipjH0BvVPaEfzC/uaXWjmIRy4pk2blsWLFydJ\nHnvssRx66KE57rjj8tOf/jRJ8vDDD+eQQw7pc02SHHHEEVmyZEmSZPHixZk+ffpg3QYwhO68887c\ndNNNufHGGzNhwoTtPvfMAN6stbV16zfIRo0ald/97nfbfO65AQcuNQ2gP9Q0gL2lpgH0h3oGsCtq\nGkNvUIM5O5pfuLPZhWYeAqecckpqampy5pln5sorr8wll1ySiy++OHfeeWfOPPPM3Hffffmrv/qr\nJH94ZuxoTZJcfPHFue6663LGGWeku7s7p5566lDeGjAIenp6smjRoqxfvz6f+MQnMnv27HzlK19J\n4pkB7NzChQtzwQUX5C/+4i9yyy235IILLkjiuQGoaQD9o6YB7A01DaC/1DOAXVHTGHqDOspqZ/ML\ndzS78POf//wu15h5CPu/YrGYv/mbv9nu/W9+85vbvff6MyPJDtdMnjw5N91008BuEBiWDjrooNx+\n++1JkoceemiHx3hmAG/0xufG9OnTc9ttt213jOcGoKYB9IeaBrAn1DSA/lDPAHaXmsbQG9SOOTua\nX9jX7EIzDwEAAIChpqYBAAAA7IvUNIbeoAZzdjS/sK/ZhWYeAgAAAENNTQMAAADYF6lpDL1CuVwu\nD9bFent7c/nll+fJJ59MuVzO5z73uRSLxcyfPz/d3d3p6urKwoULUyqVctFFF2XOnDkZM2bMdmum\nTJmSZcuW7XAdAAAAwEBT0wAAAAD2RWoaQ29QgzkAAAAAAAAAAHCgGNRRVgAAAAAAAAAAcKAQzAEA\nAAAAAAAAgAqoqvQFuru785nPfCYvvPBCNm/enPPPPz9jxozJggULUlNTk8MPPzyXXnppisVtM0Jz\n587N0qVL09bWli1btqS9vT2XXHJJJkyYUOktAwAAAKSnpyfz5s3LsmXLUigU8tnPfja1tbWZO3du\nCoVCpk6dmgULFqhpAAAAAMPGjuoZhx56aJLkc5/7XCZPnpxZs2Ztt049o3IqHsy566670tbWlmuu\nuSarV6/Oe9/73nR0dGTevHmZNm1avvzlL+fuu+/Oe97znu3WXnjhhZk5c2aS5JFHHsmcOXPyne98\np9JbBgAAAMiPf/zjJMltt92WJUuW5Mtf/nLK5XLmzJmTGTNm5LLLLsu9996bU045Zbu1ahoAAADA\nUNhRPWPRokW56KKL8uyzz+bcc8/d6Vr1jMqoeDDntNNOy6mnnpokKZfLKZVKWblyZaZNm5YkmTZt\nWu69994dBnPeaPr06amurs7y5ctTU1OT+fPnZ9OmTamtrc0VV1yRsWPH5u/+7u/ywx/+MD09PZk1\na1bOPPPMSt8eAAAAsJ86+eST8653vStJsmLFirS0tOSBBx7I8ccfnySZOXNm7r///h0Gc95ITQMA\nAAAYLDuqZ6xfvz6f+MQnsnjx4t0+j3rGwCn2fcjeaWxsTFNTU9atW5dPfvKTmTNnTiZMmJCHHnoo\nye/TWhs2bNitc40YMSKvvvpqrr766syePTs33nhjzj333HzhC1/IE088kcWLF+eOO+7IHXfckWef\nfTblcrmStwYAAADs56qqqnLxxRfniiuuyOmnn55yuZxCoZDk9zWPtWvX7tZ51DQAAACAwfLmesaE\nCRPytre9rd/nUc8YGBXvmJMkL774Yj7+8Y/nrLPOyumnn54jjzwyixYtyt/+7d9m+vTpqampyfe/\n//3cfPPNXfIrcwAAB2BJREFUSZKLL754h+dZsWJFxowZkyeffDLXX399vvGNb6RcLqeqqirLli3L\n0UcfnVKplFKplLlz5w7GrQEAAAD7uauvvjqf/vSn88EPfjCbNm3a+v769evT0tKipgEAAAAMO2+s\nZ/zLv/xLGhoatvlcPWPwVDyYs2rVqpxzzjm57LLLcuKJJyZJfvrTn+YLX/hC2tvbc8UVV2TmzJl5\n5zvfmdNOO22n57n//vtTV1eXMWPGpKurK+ecc06mTZuWp59+Og8//HC6urpy6623pre3Nz09PTnv\nvPNy/fXXp6amptK3CAAAAOyHvve972XlypX52Mc+lvr6+hQKhRx11FFZsmRJZsyYkcWLF+eEE07I\naaedpqYBAAAADAs7qmcUi9sPU1LPGDyFcoV7CS1cuDD33HNPurq6tr73kY98JNdee23q6+szY8aM\nXHDBBdutmzt3bpYuXZq2trYUi8U0NjZmwYIFGT16dJ5//vlcfvnl2bRpUzZu3JhLL700xx57bK6/\n/vr86Ec/Sm9vb2bNmpX3ve99lbw1AAAAYD/22muv5ZJLLsmqVauyZcuWfPSjH82UKVMyf/78dHd3\np6urKwsXLkypVNpmnZoGAAAAMFR2VM84+eSTkyTXXXddOjs7M2vWrO3WqWdUTsWDOQAAAAAAAAAA\ncCDavl8RAAAAAAAAAACw1wRzAAAAAAAAAACgAgRzAAAAAAAAAACgAqoG+4Ld3d35zGc+kxdeeCGb\nN2/O+eefn0MOOSRz585NoVDI1KlTs2DBghSLv88M/fa3v82sWbNy1113pba2NuVyOTNnzsykSZOS\nJMccc0w+9alPDfZtAAAAAAAAAADALg16MOeuu+5KW1tbrrnmmqxevTrvfe9785a3vCVz5szJjBkz\nctlll+Xee+/NKaeckvvuuy9f/OIX8/LLL29d/9xzz+XII4/M1772tcHeOgAAAAAAAAAA7LZBH2V1\n2mmn5a//+q+TJOVyOaVSKUuXLs3xxx+fJJk5c2YeeOCB32+uWMw3v/nNtLW1bV2/dOnSrFy5MrNn\nz85HP/rRPPPMM4N9CwAAAAAAAAAA0KdBD+Y0Njamqakp69atyyc/+cnMmTMn5XI5hUJh6+dr165N\nkrz97W9Pe3v7NutHjhyZ8847LzfeeGM+9rGP5cILLxzsWwAAAAAAAAAAgD4NejAnSV588cV8+MMf\nznve856cfvrpKRb/sI3169enpaVlp2uPOuqo/Mmf/EmSZPr06XnppZdSLpcrvmcAAAAAAAAAAOiP\nQQ/mrFq1Kuecc04uvPDCfOADH0iSHHHEEVmyZEmSZPHixZk+ffpO13/1q1/Nt771rSTJr371q4wd\nO3Zrtx0AAAAAAAAAABguCuVBbjezcOHC3HPPPenq6tr63qWXXpqFCxemu7s7XV1dWbhwYUql0tbP\nTzrppNxzzz2pra3NmjVrcuGFF+a1115LqVTKZZddlilTpgzmLQAAAAAAAAAAQJ8GPZgDAAAAAAAA\nAAAHgkEfZQUAAAAAAAAAAAcCwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwAAAAAAAAAAKgAwRwA\nAAAAAAAAAKgAwRwAAACA/dDcuXPzT//0Tzv9/JJLLskLL7wwiDsCAAAAOPAI5gAAAAAcgJYsWZJy\nuTzU2wAAAADYrxXKKjAAAAAA+7xyuZyrrroqP/nJTzJq1Kj09PTkAx/4QJYvX54HH3wwa9asSXt7\ne6677rp897vfzVe+8pVMnDgxN998c55//vlceeWV2bhxY9rb2/PZz342EyZMGOpbAgAAANjn6ZgD\nAAAAsB/4wQ9+kCeeeCL//M//nGuvvTbPPfdcenp68swzz+S2227LD37wg0ycODF33313zjvvvIwa\nNSpf//rX09jYmHnz5uWLX/xivvvd7+YjH/lI5s+fP9S3AwAAALBfqBrqDQAAAACw9x566KH86Z/+\naaqrq9PR0ZGZM2emVCrl4osvzh133JFly5blsccey8SJE7dZ9+yzz+b555/P+eefv/W9devWDfb2\nAQAAAPZLgjkAAAAA+4FCoZDe3t6tr6uqqrJ69eqce+65Ofvss3PqqaemWCzmzVPNe3t7c9BBB+XO\nO+9MkvT09GTVqlWDuncAAACA/ZVRVgAAAAD7gRNPPDHf//73s3nz5qxZsyb33XdfCoVCjj/++Mya\nNSuHHHJI7r///vT09CRJSqVSenp60tXVlTVr1uSRRx5JknznO9/Jpz/96aG8FQAAAID9ho45AAAA\nAPuBk08+OT//+c/zZ3/2Z+ns7MyUKVOycePG/OpXv8rpp5+e6urqHHbYYfnNb36TJHnXu96V8847\nL9/4xjdy7bXXZtGiRdm0aVOamppy9dVXD/HdAAAAAOwfCuU39y8GAAAAAAAAAAD2mlFWAAAAAAAA\nAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAAAAAAAABQAYI5AAAA\nAAAAAABQAYI5AAAAAAAAAABQAf8/+TJBU5zSnn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# Scale and create datasets\n", + "target_index = df.columns.tolist().index('close_bid')\n", + "high_index = df.columns.tolist().index('high_bid')\n", + "low_index = df.columns.tolist().index('low_bid')\n", + "dataset = df.values.astype('float32')\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "dataset = scaler.fit_transform(dataset)\n", + "\n", + "# Create y_scaler to inverse it later\n", + "y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + "t_y = df['close_bid'].values.astype('float32')\n", + "t_y = np.reshape(t_y, (-1, 1))\n", + "y_scaler = y_scaler.fit(t_y)\n", + " \n", + "# Set look_back to 20 which is 5 hours (15min*20)\n", + "X, y = create_dataset(dataset, look_back_rows=20)\n", + "y = y[:,target_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 98% training / 1% development / 1% test sets\n", + "train_size = int(len(X) * 0.99)\n", + "trainX = X[:train_size]\n", + "trainY = y[:train_size]\n", + "testX = X[train_size:]\n", + "testY = y[train_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_9 (LSTM) (None, 20, 20) 2960 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 20, 20) 3280 \n", + "_________________________________________________________________\n", + "lstm_11 (LSTM) (None, 20, 10) 1240 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 20, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_12 (LSTM) (None, 4) 240 \n", + "_________________________________________________________________\n", + "dense_5 (Dense) (None, 4) 20 \n", + "_________________________________________________________________\n", + "dense_6 (Dense) (None, 1) 5 \n", + "=================================================================\n", + "Total params: 7,745\n", + "Trainable params: 7,745\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "\n", + "# create a small LSTM network\n", + "model = Sequential()\n", + "model.add(LSTM(20, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(4, return_sequences=False))\n", + "model.add(Dense(4, kernel_initializer='uniform', activation='relu'))\n", + "model.add(Dense(1, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.26399, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.26399 to 0.17870, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.17870 to 0.07720, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.07720 to 0.02238, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error improved from 0.02238 to 0.01324, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error improved from 0.01324 to 0.01135, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.01135 to 0.00217, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00217 to 0.00062, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00062 to 0.00048, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error improved from 0.00048 to 0.00037, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00012: val_mean_squared_error improved from 0.00037 to 0.00028, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00013: val_mean_squared_error improved from 0.00028 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "Epoch 00016: val_mean_squared_error improved from 0.00020 to 0.00020, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00017: val_mean_squared_error improved from 0.00020 to 0.00018, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error improved from 0.00018 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error improved from 0.00016 to 0.00016, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error improved from 0.00016 to 0.00015, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error improved from 0.00015 to 0.00014, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "Epoch 00034: val_mean_squared_error improved from 0.00014 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00035: val_mean_squared_error improved from 0.00013 to 0.00013, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error improved from 0.00013 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00011 to 0.00011, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error improved from 0.00011 to 0.00010, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error improved from 0.00010 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00009 to 0.00009, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error improved from 0.00009 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error did not improve\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error improved from 0.00006 to 0.00006, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error did not improve\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n", + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00118: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00126: val_mean_squared_error improved from 0.00005 to 0.00005, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00175: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error did not improve\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Wall time: 8min 11s\n" + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training.\n", + "#simname = \"15_min_replication_1\"\n", + "from keras.callbacks import ModelCheckpoint\n", + "checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time history = model.fit(trainX, trainY, epochs=200, batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 200\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmYpGV99+9vVVcv1dOzMTMsCiI7KBoERNRBHyWKC7Io\ni0Q2IRr/xpjHJQmo8CAicgQxJBiMII5CJKjjCgJucLiMijIRBXFgQGNEZBtn66W6u7rq/6JnSkdm\nYJbuvgfqPF/dXXXfVb+eoy9fcHy8rlKz2WwGAAAAAAAAAACYcuWiBwAAAAAAAAAAgHYl3gEAAAAA\nAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAA\nAJ5A7rvvvuy1117Za6+9cvbZZxc9DgAAAABbSLwDAAAAAAAAAAAFEe8AAAAAAAAAAEBBxDsAAAAA\nAAAAAFAQ8Q4AAAAAAAAAABREvAMAAAAAAAAAAAWpFD0AAAAAABNr6dKl+cxnPpNbbrklDzzwQJrN\nZrbddts897nPzQknnJB99913g8/W6/V89atfzfXXX58777wzK1euzLRp0/KUpzwlBx98cE444YTs\nvPPOE/4sAAAAQLsqNZvNZtFDAAAAALBx7rvvvhx66KFJkuOPPz7nnntu671ms5mLLrooV1xxRRqN\nxnqfL5VKecMb3pAzzzwzlcq6/7+u1atX581vfnP++7//e4Pf39HRkfe+9715wxveMGHPAgAAALQz\nO+8AAAAAPEmcf/75ufLKK5Mks2fPzqmnnpoDDjgg5XI5P//5z/PJT34yDz30UP7zP/8zAwMDueCC\nC9Z5/kMf+lArvjnmmGPyspe9LHPmzMnKlSvz4x//OFdddVUGBwdz3nnn5YADDsjee+89Ic8CAAAA\ntDPxDgAAAMCTwOLFi1vhzi677JIrr7wy2267bev9Aw44IEcffXROO+20/OIXv8iXvvSlvPSlL83L\nX/7yJMnIyEiuvfbaJMmxxx6b8847b53Pnz9/fg444IC8+c1vTqPRyOc///mcddZZW/wsAAAAQLsT\n7wAAAAA8CVxxxRWt63/+539eJ9xZa9asWbn44ovzile8ImNjY7n88stb8c6qVasyMjKSJNl5553X\n+x0vfvGLc9JJJ2XmzJl59rOf3Xp9S54FAAAAaHfiHQAAAIAnuHq9nh/96EdJkmc+85mPGcc87WlP\ny/z58/Od73wnt99+e5YvX57Zs2dnzpw5mTVrVlasWJGPf/zjmTt3bl75ylemp6dnneff9773Peoz\nt+RZAAAAgHZXLnoAAAAAALbM/fffn4GBgSTJX/zFXzzu/WvvaTabWbp0aZKkVCrlr//6r5Mkq1ev\nzhlnnJGDDjoop512Wi6//PL88pe/TLPZXO/nbcmzAAAAAO3OzjsAAAAAT3ArVqxoXc+ZM+dx7587\nd27reuXKla3rN73pTWk0Grn00ktTq9UyPDycRYsWZdGiRfnwhz+cbbfdNocddlhOPfXU7Ljjjut8\n5pY8CwAAANDO7LwDAAAA8AS3qbvajI2Nta5LpdI67/3N3/xNvvvd7+aDH/xgDj300EybNq313kMP\nPZSrrroqr3rVq3LTTTc96nO35FkAAACAdmXnHQAAAIAnuJkzZ7auly1b9rj3/+k9s2bNWu/nHXPM\nMTnmmGNSr9dz++23Z9GiRbnxxhuzdOnSDA8P54wzzshNN92Uvr6+CXsWAAAAoB3ZeQcAAADgCW6n\nnXZKb29vkuRnP/vZ495/2223ta532WWX1vUDDzyQH/zgB6nX663XKpVKnvOc5+Rtb3tbrr322hx2\n2GFJxo/bWrx48YQ8CwAAANDOxDsAAAAAT3AdHR05+OCDkyS/+MUvcscdd2zw3t/85jf54Q9/mCTZ\ne++9M2fOnCTJpZdemhe/+MV54xvfmJ/85CfrfbZUKuWQQw5p/TwyMrLFzwIAAAC0O/EOAAAAwJPA\nG9/4xtb1P/7jP+aRRx551D0rV67MO97xjoyNjSVJTjvttNZ7L3nJS1rXH/nIRzI8PPyo5xuNRq6/\n/vokSblczjOe8YwtfhYAAACg3VWKHgAAAACALXfQQQflpJNOylVXXZV77703RxxxRE455ZQccMAB\nKZVKuf3227NgwYI88MADSZLDDz88Rx55ZOv5ffbZJ4cddli+/vWv5+c//3mOOOKInHzyydl1113T\n2dmZ++67L9dcc01++tOfJkmOPvroPPWpT93iZwEAAADaXanZbDaLHgIAAACAjXPffffl0EMPTZIc\nf/zxOffcc1vvNRqNXHjhhVmwYEE29J98SqVSTj311LzrXe9KZ2fnOu+tXr06b3nLW3Lrrbc+5gwv\nf/nLc9FFF6Wrq2tCngUAAABoZ+IdAAAAgCeQx4p31lqyZEmuvvrq3HLLLXnwwQdTLpfzlKc8Jc97\n3vNy7LHHZu+9997g5zcajVx33XW5/vrr88tf/jLLli1LR0dH5s6dm/333z9HHnlk5s+fP+HPAgAA\nALQr8Q4AAAAAAAAAABSkXPQAAAAAAAAAAADQrsQ7AAAAAAAAAABQEPEOAAAAAAAAAAAURLwDAAAA\nAAAAAAAFEe8AAAAAAAAAAEBBKkUPsKUefnh10SPwZ2bP7s3y5YNFjwFMMWsf2pO1D+3J2of2ZO1D\ne7L2oT1Z+9CerH1oT9b+1Jk3b/oG37PzDhOuUukoegSgANY+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWfvQnqz9rYN4BwAAAAAAAAAACiLeAQAAAAAAAACAgoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgH\nAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAAAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi\n3gEAAAAAAAAAgIKIdwAAAAAAAAAAoCDiHQAAAAAAAAAAKIh4BwAAAAAAAAAACiLeAQAAAAAAAACA\ngoh3AAAAAAAAAACgIOIdAAAAAAAAAAAoiHgHAAAAAAAAAAAKIt4BAAAAAAAAAICCiHcAAAAAAAAA\nAKAg4h0AAAAAAAAAACiIeAcAAAAAAAAAAAoi3gEAAAAAAAAAgIKId5hQt/x+cd5xw/tTq9eKHgUA\nAAAAAAAAYKsn3mFC/Xb17/K7VQ/k4aFlRY8CAAAAAAAAALDVE+8woaqVniTJ4OhQwZMAAAAAAAAA\nAGz9xDtMqN7O3iTJUH3T45177lk60eNskre97c2ZP//AvPSlLyh0DgAAAAAAAACgfYh3mFCtnXfq\ntY1+pr+/Pxdf/OGcfvqJkzUWAAAAAAAAAMBWqVL0ADy5VCvVJMlgfXCjn7nkko/ka1/76mSNBAAA\nAAAAAACw1RLvMKF618Q7Q5uw806j0ZiscTbJRz96WdEjAAAAAAAAAABtxrFZTKjezrXxzlDBkwAA\nAAAAAAAAbP3EO0yoaqUnSTI4Kt4BAAAAAAAAAHg8js1iQv3x2KzHj3euuOLjWbDg8nVemz//wCTJ\nfvvtn49+9LJ88IPn5IYbrsvuu++ZT3ziylx++cdy443XZfXq1ZkzZ15e8pJD89a3vr31/PDwcL7+\n9evzwx8uytKld2XlyhWp1+uZPn1Gdtllt7zwhfPzmtccnWq1+qh53va2N+e22/47XV1duemmH6x3\nrre//Z057ri/yne+c1OuvfbLufvuu7J69arMnr1N9t//wBx33AnZc8+9N+0fDQAAAAAAAABoW+Id\nJlR3R3fKpXIG67UJ/+wPfODsfPvb32j9/Pvf/y49PT2tn++6a0nOPPNdeeihBx/17B/+sCx/+MOy\nLF7843zxiwtzySX/kXnztt3kGcbGGnn/+9+Xb37zxnVef+ihB3PjjV/LN75xQ9797jNzxBFHb/Jn\nAwAAAAAAAADtR7zDhCqVSpnWWc3gRuy8c9RRr8uLXvR/8olP/EcWLfpekmTBgs8kSarV3nXu/dWv\n7sk999ydZz3rL3LSSW9MT09PFi36Xl71qiOSJCtXrsg73vG3WbVqZTo6OvKqV70mL3jB/MyePSer\nV6/M0qV353OfuzorVqzIfff9bz760Yvz/vefv8m/3zXXXJVly5bl6U/fJccd91fZbbc9snr1qtxw\nw7X59re/mUajkYsvvjAHHfT8bL/99pv8+QAAAAAAAABAexHvMOF6u3ozNPL48c6cOXMzZ87czJgx\ns/XaHnvstd57G41GnvrUHXPxxf+e7u7x3Xb23//A1vuf/ezVWbVqZZLkb//273PccX+1zvPPf/78\nvPKVh+ekk45Lf39/vve976Rer6dS2bQlsGzZshxwwEH553/+l3R3d7deP/jgF2T69Bn58pe/kJGR\nkXzrWzfmxBNP3aTPBgAAAAAAAADaT7noAXjymdZZzdBG7LyzqV75ysNb4c6fe+SRhzN37rzMmTMn\nr33tceu9Z968bfOc5xyQJBkZGW7FPpvq//7fd68T7qx15JGvbV3fc8/SzfpsAAAAAAAAAKC92Hln\nI33upnvykyUPFT3GlHru3tvmuJfuvsnPTevqzUhjNPVGPZXyxP2JPfOZz9rge+95z/9LMr5DT7m8\n4SZtm23mtK5HRkY3eYZ587bNLrvsut73nvrUHVvXg4ODm/zZAAAAAAAAAED7Ee8w4aZ19iZJhuq1\nTO/qm7DP3W677R73nrXhTr1ezwMP/D733/+7/Pa3v8m9996TX/zi9tx77z2te5vNxibPsP32O2zw\nvWq1t3U9Nja2yZ8NAAAAAAAAALQf8c5GOu6lu2/WLjTtqLermiQZrA9NaLzT2/vYn1Wr1fLFL34+\n3/rWjbn33nvWG9CUy+U0Gpse7az1p4HOnyuVSq3rZrO52d8BAAAAAAAAALQP8Q4Trq9rPHAZHB2a\n0M/9kzbmUe6//3d55zvflvvu+23rtc7Ozuy009Oy8867ZK+99s5++x2Qr3/9+nzpS5+f0LkAAAAA\nAAAAADaXeIcJ19s5vvPOUH1i453Hcs45722FO3/5l4flmGOOz957PyOVyrp/4l/5yhembCYAAAAA\nAAAAgMcj3mHCTesc33lnquKdJUvuzJ133pEk2X//A3POOR/c4L0PPvjAlMwEAAAAAAAAALAxykUP\nwJPPtLXHZm1kvFN6rPOwNsKfHpW11177bPC+3//+/tx++89aP4+NjW3R9wIAAAAAAAAAbCnxDhNu\nWteaY7NGaxt1f1dXV+t6cHBwk79v5sxZretbb70l9Xr9UfcsW/ZIzjrrjIyOjrZeGxkZ2eTvAgAA\nAAAAAACYSI7NYsKtPTZrY3femTNnbuv6ssv+Pa94xatTLpez5557b9Tzz372fpkzZ26WLXskS5fe\nnb//+/8vr33tcdl++x2yatXK3Hbbf+drX/tKVqxYsc5zAwP9G/kbAQAAAAAAAABMDvEOE25Tj82a\nP/9F+dSnPpGxsbEsXPjZLFz42Wy33fb5wheu26jnu7u7c9ZZ5+af/ukdGR4ezs9+9tP87Gc/fdR9\nO+30tBx++JH52McuSZL8+te/yrOe9Rcb+VsBAAAAAAAAAEy8SYt3Go1GzjnnnNx1113p6urKeeed\nl5133rn1/nXXXZdPf/rT6ejoyJ577plzzjkn5XI5Rx99dPr6+pIkO+64Yz70oQ9N1ohMkmmda47N\n2sh4Z4899soFF1yUT3/6k7n33nvSaIylUqmkVtu4Y7eS5MADD8qCBZ/Jf/3Xf+bWW3+SRx55KMn4\nkVq77LJrXvKSv8xhh70yY2NjWbDg8tRqtdx00zdzxBFHb/ovCAAAAAAAAAAwQUrNZrM5GR/8jW98\nIzfddFMuuOCC3Hbbbfn4xz+ej33sY0mSWq2Www8/PNdee22q1Wre+c535tWvfnXmz5+f448/Pl/+\n8pc3+nsefnj1ZIzPFpi5TU9OXPj27D17j/zdc95U9DjAFJk3b7r/TYY2ZO1De7L2oT1Z+9CerH1o\nT9Y+tCdrH9qTtT915s2bvsH3ypP1pYsXL84hhxySJNlvv/1yxx13tN7r6urKNddck2p1fIeWer2e\n7u7uLFmyJENDQznttNNy8skn57bbbpus8ZhEXR2d6SxXMlTf+J1zAAAAAAAAAADa0aQdm9Xf3986\n/ipJOjo6Uq/XU6lUUi6XM3fu3CTJVVddlcHBwbzwhS/M3XffndNPPz3HHnts/ud//idvetObcuON\nN6ZS2fCYs2f3plLpmKxfg800ras3I83hxyzHgCcfax7ak7UP7cnah/Zk7UN7svahPVn70J6sfWhP\n1n7xJi3e6evry8DAQOvnRqOxToTTaDRy4YUX5te//nUuueSSlEql7LLLLtl5551b17NmzcrDDz+c\nHXbYYYPfs3z54GT9CmymefOmp7vck9XDA7bXgjZiSz1oT9Y+tCdrH9qTtQ/tydqH9mTtQ3uy9qE9\nWftTp5Bjs/bff/9897vfTZLcdttt2XPPPdd5/+yzz87w8HAuvfTS1vFZCxcuzAUXXJAkefDBB9Pf\n35958+ZN1ohMot5KNYP1oTSbzaJHAQAAAAAAAADYak3azjsve9nLsmjRorz+9a9Ps9nM+eefn2uv\nvTaDg4PZd999s3Dhwhx44IE55ZRTkiQnn3xyjjnmmJx55pk54YQTUiqVcv755z/mkVlsvaqdPWk0\nGxlpjKa7o6vocQAAAAAAAAAAtkqTVsaUy+Wce+6567y22267ta6XLFmy3ucuuuiiyRqJKTLWaKa3\nMr6b0uDooHgHAAAAAAAAAGADJu3YLNrTtxffl5P+3w3pTHeSZKheK3giAAAAAAAAAICtl3iHCfWH\n1bWsHhxNfbQjSTJYHyp4IgAAAAAAAACArZd4hwk1u298x51mffxEtiHxDgAAAAAAAADABol3mFCz\n1sQ79eHxeGdwVLwDAAAAAAAAALAh4h0m1Ozp4/HOyPD4n9ZQvVbkOAAAAAAAAAAAWzXxDhNq7c47\ntaHxP63B+mCR4wAAAAAAAAAAbNXEO0yomX1dSZLBgfGf7bwDAAAAAAAAALBh4h0mVKWjnFl93env\nbyZJButDBU8EAAAAAAAAALD1Eu8w4baZ2ZNVq8avh0bFOwAAAAAAAAAAGyLeYcJtM6Mnw7VSEjvv\nAAAAAAAAAAA8FvEOE27OzJ4k5XSVuzJUrxU9DgAAAAAAAADAVku8w4SbM7OaJOkq99h5BwAAAAAA\nAADgMYh3mHDbzOhJklSaXRkS7wAAAAAAAAAAbJB4hwk3fmxWUm52pVYfTqPZKHgiAAAAAAAAAICt\nk3iHCbc23mnWK2mmmVq9tlHP3XPP0skca4v8/vf3Z3BwoOgxAAAAAAAAAIAnGfEOE27tsVmNeiVJ\nMvg48U5/f38uvvjDOf30Eyd9tk01MjKSBQsuz4knHpuVK1cWPQ4AAAAAAAAA8CRTKXoAnnxmTOtK\npaOU0eGOpCsZqg895v2XXPKRfO1rX52i6TbN1VdfmSuu+HjRYwAAAAAAAAAAT1J23mHClUqlzOrr\nzkht/M9rcPSx451GozEVY22WsbGxokcAAAAAAAAAAJ7ExDtMill93akNjf95Pd7OOwAAAAAAAAAA\n7Uq8w6SYNb07jfr4qWyD9VrB0wAAAAAAAAAAbJ0qRQ/Ak9Osvq40H+hMkgzWB9d7zxVXfDwLFly+\nzmvz5x+YJNlvv/3z0Y9ets57t9zyw1x//Vdzxx23Z/nyP6Srqzs77rhTnv/8F+Z1rzs+s2bN2uA8\nDz/8UL74xc/nllt+mN/+9n9Tr49mxoyZ2W23PfLCFx6Sww8/It3dPa37r7/+2px//vvX+Yxjjz0i\nSbL99jtk4cJrN/JfAgAAAAAAAABgw8Q7TIrZ07uTsfE/r6Et3HlnaGgoH/jA2fnud29e5/WRkZEs\nWXJnliy5M5/73NU566wPZP78Fz3q+cWLf5L3vOfdGRgYWOf1ZcseybJlj+THP/5h/uu/rspHPvLR\nPO1pO2/RrAAAAAAAAAAAm0K8w6SY1dedZn3NzjujQ+u956ijXpcXvej/5BOf+I8sWvS9JMmCBZ9J\nklSrvUmSRqORM854ZxYv/kmS5AUvOCSHHfaq7LDDDhkcHMzixT/Jl770+fT39+e97/2HXHTRJTnw\nwINa37F69eqcddYZGRgYyKxZs/OGN5ySffZ5Rrq6uvLggw/ka1/7an70ox/kgQd+n/e//335xCeu\nTKlUyvz5L8qCBZ/Jl7/8hXzlK19Mklx44cWZO3deKpXOyflHAwAAAAAAAADajniHSTG770933ll/\nvDNnztzMmTM3M2bMbL22xx57rXPPwoXXtMKdd7/7zBx11OvWef/AAw/K4Ycfmbe+9fQsW7Ys55//\n/nzuc19JpTL+3d///neyatXKJMn551+YZz97v9azz3jGvnnJS/4yZ511Rm6++Vu5665f5q67lmTv\nvffJjBkzM2PGzGyzzZzW/U9/+q7ZYYenbO4/CQAAAAAAAADAo5SLHoAnp1nT/7jzzobincfTaDRy\nzTXjO/EcfPALHhXurPXUp+6Yt7zl75IkDz30YL7znZta7y1b9kjreqednrbe508++Y056qhj8ta3\n/n2mT5++WbMCAAAAAAAAAGwOO+9spC/ec11++tDtRY8xpZ6z7bPy2t0P36xnZ/V1JY2OpFnK4GbG\nO/feuzQPPfRgkuS5z33eY9578MEvaF3feutPcuihL0+S7Lzz01uvv+c9/5C3v/2d2WefZ67z7B57\n7JV3v/uMzZoRAAAAAAAAAGBLiHeYFD1dlVS7Kyk1OjNYr23WZ9x9912t60su+Zdccsm/bNRz99//\nu9b1858/P7vttkfuvXdpbr/9Z3nTm07J3Lnz8tznPi8HHnhQnvvc561zNBYAAAAAAAAAwFQS72yk\n1+5++GbvQtOuZvV1Z0W9kqHRzdt5Z+XKFZv13OrVq1rXlUolF130b7nggg/kRz/6QZLkkUcezg03\nXJcbbrgupVIp++zzzLziFa/Oa15zVDo7OzfrOwEAAAAAAAAANod4h0kze3p3/lCvbPaxWWNjY63r\nd73rjOy777M26rnu7u51fp47d14+/OF/y69+dU9uvvnb+eEPF+Xuu5ek0Wik2WzmzjvvyJ133pGv\nfOWL+dd//VhmzZq1WfMCAAAAAAAAAGwq8Q6TZlZfd5qjnRltrMpoo57O8qb9uU2fPqN1PW1aX/bY\nY68tmmfXXXfPrrvuntNP/5usWrUqP/3prfnRj36Qm2/+Vvr7+3PvvUvzsY/9W8488+wt+h4AAAAA\nAAAAgI1VLnoAnrxmT+9OxsaDnVq9tsnP77rrbq3rO++8/THvXb58eT75yctyww3XZenSu1uvj46O\n5le/ujdLlvxynftnzJiRF7/4pfmnf3pfPvWp/0pf3/QkyQ9+8P1NnhMAAAAAAAAAYHOJd5g0s/q6\n06x3JkkGRwc3eF+pVFrv6/vs88zMmDEzSfLNb96Y/v7+DX7GF77w2Xzyk5flgx88J9///ndar594\n4rE5+eTj8973/sMGn91++x2yyy67JklGRobXea9ctkQAAAAAAAAAgMmjTGDSzOrrTnNsTbzzGDvv\ndHV1ta4HB/8Y+XR2duZ1rzsuSbJy5cp84ANnZWRk5FHP//znt+Xqq69KknR3d+c1rzm69d4LXnBI\nkuTBBx/INdf853q//ze/+Z/cffeSJMneez9znfc6Oztb10NDGw6QAAAAAAAAAAA2R6XoAXjymjW9\nK6mP/4kN1Yc2eN+cOXNb15dd9u95xStenXK5nD333DsnnnhqFi36Xu6+e0kWLfpe3vjGv8qxx56Q\n3XffM/39q3PrrT/Ol770+daOOW95y99l7tw/ft4JJ5yYG264Nv39/fn3f//X3H77z/LSl7482223\nfQYG+vPLX/4iCxdek+Hh4ZTL5ZxyymkbnO1Tn7oir3/9G9JoNLPvvs+akH8jAAAAAAAAAKC9lZrN\nZrPoIbbEww+vLnoE/sy8edPz8MOr84dVtfzTwmvS9fQ788Zn/lUO3G6/9d6/dOld+eu/PjljY2Ot\n17bbbvt84QvXJUlWrlyRs88+M4sX/2SD39nR0ZHTT/+bnHzyaY96b/Hin+S97/3H9Pdv+G+lp6cn\n73rXGXnlKw9f5/VHHnkkJ5zw2nV23alUKvnmN7+3zq48wB/XPtBerH1oT9Y+tCdrH9qTtQ/tydqH\n9mTtQ3uy9qfOvHnTN/ienXeYNDOmbdzOO3vssVcuuOCifPrTn8y9996TRmMslUoltVotPT09mTlz\nVv71Xz+W73//u/nGN27IL35xe5YvX54k2W677bL//gfmta89Lrvttvt6P/+AA56bq69emC99aWF+\n/OMf5X//9zcZHBzItGl92X77HfK85z0/Rx31umy33faPenbu3Lm5+OJLc9lll+auu+7MyMhIttlm\nTh588IHsuONOE/CvBAAAAAAAAAC0MzvvMOH+tMz7+wVfSH3nW3Lkrq/My5/+koInAyaTKhfak7UP\n7cnah/Zk7UN7svahPVn70J6sfWhP1v7Ueaydd8pTOAdtaHrXtCTJQH3wce4EAAAAAAAAAGg/4h0m\n1czqeLyzeli8AwAAAAAAAADw58Q7TKrZvePxzqraQMGTAAAAAAAAAABsfcQ7TKo5feNnttl5BwAA\nAAAAAADg0cQ7TKo506el2ShnsD5U9CgAAAAAAAAAAFsd8Q6Tavb07qTemdpYrehRAAAAAAAAAAC2\nOuIdJtXsvu40xyoZaQwXPQoAAAAAAAAAwFZHvMOkmjW9O816Z+oZTrPZLHocAAAAAAAAAICtiniH\nSTWtp5JSozMpNTPSGC16HAAAAAAAAACArYp4h0lVKpXSWepOkgyODhY8DQAAAAAAAADA1kW8w6Tr\n6ehJkgyMDBU8CQAAAAAAAADA1kW8w6TrrVSTJA/3ry54EgAAAAAAAACArYt4h0nX19WbJFnWv6rg\nSQAAAAAAAAAAti7iHSbd9O7xeOcPA/0FTwIAAAAAAAAAsHUR7zDpZvVOS5KsqIl3AAAAAAAAAAD+\nlHiHSTend3qSZNXwYMGTAAAAAAAAAABsXcQ7TLo508fjnYGRoYInAQAAAAAAAADYuoh3mHTbTp+R\nJBmsi3civ82KAAAgAElEQVQAAAAAAAAAAP6UeIdJN6valyQZHqsVPAkAAAAAAAAAwNZFvMOk6+no\nTpKMNocLngQAAAAAAAAAYOsi3mHSdZQ7UmpU0iiNZGR0rOhxAAAAAAAAAAC2GuIdpkRnupPKaFb0\n230HAAAAAAAAAGAt8Q5ToqvcnVJHPctXi3cAAAAAAAAAANYS7zAlejqqKVXq+cPqWtGjAAAAAAAA\nAABsNcQ7TInezmqS5OHVqwueBAAAAAAAAABg6yHeYUpM7+5NkvxhQLwDAAAAAAAAALCWeIcpMbNn\nWpJk+WB/wZMAAAAAAAAAAGw9xDtMiZnV8Xhn5dBAwZMAAAAAAAAAAGw9xDtMiWmd48dmrR4ZLHgS\nAAAAAAAAAICth3iHKdFbqSZJBkaH0mw2C54GAAAAAAAAAGDrIN5hSlQrPUmSRmkkA7V6wdMAAAAA\nAAAAAGwdxDtMieqanXfSUc+K/uFihwEAAAAAAAAA2EqId5gSvZ3j8U6pMpoVq8U7AAAAAAAAAACJ\neIcp0tvaeWc0y+28AwAAAAAAAACQRLzDFKlWepIkpUrdzjsAAAAAAAAAAGuId5gS3R3dKaWUdIxm\nRf9I0eMAAAAAAAAAAGwVxDtMiVKplGqlmlJHPcvtvAMAAAAAAAAAkES8wxTq7aymVBnNin7xDgAA\nAAAAAABAIt5hCvVWqilV6lku3gEAAAAAAAAASCLeYQr1VqpJeSyrBmsZazSKHgcAAAAAAAAAoHDi\nHaZMtdKTJGmWR7NqYLTgaQAAAAAAAAAAiifeYcr0dlaTJKXKaJavdnQWAAAAAAAAAIB4hylTrYzH\nO+moZ0W/eAcAAAAAAAAAQLzDlFkb79h5BwAAAAAAAABgnHiHKdO7Nt6x8w4AAAAAAAAAQBLxDlOo\nt9IzftExmhV23gEAAAAAAAAAEO8wdaqdfzw2y847AAAAAAAAAADiHabQ2mOzOrsbWd4/UvA0AAAA\nAAAAAADFq0zWBzcajZxzzjm566670tXVlfPOOy8777xz6/3rrrsun/70p9PR0ZE999wz55xzTpI8\n5jM8sVXXxDvdPY2s+L2ddwAAAAAAAAAAJm3nnW9961sZGRnJZz/72bzrXe/KBRdc0HqvVqvl4osv\nzpVXXplrrrkm/f39ufnmmx/zGZ74etccm1XpGsvgcD3Do2MFTwQAAAAAAAAAUKxJi3cWL16cQw45\nJEmy33775Y477mi919XVlWuuuSbV6njMUa/X093d/ZjP8MRX7ehJkpQ760mSFf123wEAAAAAAAAA\n2tukxTv9/f3p6+tr/dzR0ZF6fTzaKJfLmTt3bpLkqquuyuDgYF74whc+5jM88XV2dKazXEmpYzRJ\nsmK1eAcAAAAAAAAAaG+Vyfrgvr6+DAwMtH5uNBqpVCrr/HzhhRfm17/+dS655JKUSqXHfWZ9Zs/u\nTaXSMfG/AFtk3rzp6329r2ta6vXxeGesVN7gfcATkzUN7cnah/Zk7UN7svahPVn70J6sfWhP1j60\nJ2u/eJMW7+y///65+eab86pXvSq33XZb9txzz3XeP/vss9PV1ZVLL7005XJ5o55Zn+XLBydlfjbf\nvHnT8/DDq9f7Xne5O0ON8ff+9/6VeXinmVM5GjCJHmvtA09e1j60J2sf2pO1D+3J2of2ZO1De7L2\noT1Z+1PnsSKpSYt3Xvayl2XRokV5/etfn2azmfPPPz/XXnttBgcHs++++2bhwoU58MADc8oppyRJ\nTj755PU+w5NLtVLNQ41HkjSz3LFZAAAAAAAAAECbm7R4p1wu59xzz13ntd122611vWTJkvU+9+fP\n8OTS21lNI42kPJYV/eIdAAAAAAAAAKC9lYsegPZSrfQkScqVepaLdwAAAAAAAACANifeYUr1VqpJ\nkukzSlnh2CwAAAAAAAAAoM2Jd5hSa+OdvmnNrOgfSbPZLHgiAAAAAAAAAIDiiHeYUtXO8XinOi2p\njzUyUKsXPBEAAAAAAAAAQHHEO0ypaqUnSdJTbSRJljs6CwAAAAAAAABoY+IdplRvpTdJ0tU9Hu+s\n6BfvAAAAAAAAAADtS7zDlFq7805H5/hxWSv7R4ocBwAAAAAAAACgUOIdplRvpTp+0TGaJOkfGi1w\nGgAAAAAAAACAYol3mFK9nePxzlhpPNoZqIl3AAAAAAAAAID2Jd5hSlUra+Od8eOy7LwDAAAAAAAA\nALQz8Q5TqlrpSZLUm8NJkgHxDgAAAAAAAADQxsQ7TKlyqZyejp4MN2pJ7LwDAAAAAAAAALQ38Q5T\nrlrpydBYLdXujvQP1YseBwAAAAAAAACgMOIdplxvZzVD9aFM6+nMQM3OOwAAAAAAAABA+xLvMOV6\nK9UM1WuZVq04NgsAAAAAAAAAaGviHaZctVJNkvT2JqP1RoZHxwqeCAAAAAAAAACgGOIdply10pMk\n6ak2kiQDdt8BAAAAAAAAANqUeIcp19s5vvNOV894vOPoLAAAAAAAAACgXYl3mHJrj83q7B4/LsvO\nOwAAAAAAAABAuxLvMOV618Q7HZ31JEl/rV7kOAAAAAAAAAAAhRHvMOXWxjvltfGOnXcAAAAAAAAA\ngDYl3mHKVSs9SZJSh3gHAAAAAAAAAGhv4h2mXG9nb5KkWR5JkgyIdwAAAAAAAACANiXeYcqt3Xln\nrDwe7dh5BwAAAAAAAABoV+IdplxvpZokGYuddwAAAAAAAACA9ibeYcpV18Q7w2O1dJRL6a+JdwAA\nAAAAAACA9iTeYcp1d3SlXCpnaGwo03oq6R+qFz0SAAAAAAAAAEAhxDtMuVKplGqlJ4P1WqZVOx2b\nBQAAAAAAAAC0LfEOheitVDM0Opi+amcGaqNpNJtFjwQAAAAAAAAAMOXEOxSiWqlmsF5LX7UzzWYy\nWHN0FgAAAAAAAADQfsQ7FKK3Us1oYzTV6vifoKOzAAAAAAAAAIB2JN6hENXOapKkp6eRJOmviXcA\nAAAAAAAAgPYj3qEQvZWeJEnXmnjHzjsAAAAAAAAAQDsS71CIamV8551K11iSpF+8AwAAAAAAAAC0\nIfEOhehdE+90dNaTJP1D9SLHAQAAAAAAAAAohHiHQqzdeadcWRvv2HkHAAAAAAAAAGg/4h0K0VPp\nHr9YE+8MiHcAAAAAAAAAgDYk3qEQ1UrP+EV5TbxTE+8AAAAAAAAAAO1HvEMhejrGd95plhybBQAA\nAAAAAAC0L/EOhehec2zWSHM43Z0d4h0AAAAAAAAAoC2JdyhET8f4sVm1+nD6qpUMiHcAAAAAAAAA\ngDYk3qEQ1craeKeWadXO9A/VC54IAAAAAAAAAGDqiXcoRE/H+LFZtbHh9FU7Mzw6ltF6o+CpAAAA\nAAAAAACmlniHQlTKlZRL5TXHZnUmSfodnQUAAAAAAAAAtBnxDoUolUqpdvSkNjZ+bFaSDNTEOwAA\nAAAAAABAexHvUJieSvf4zjs9a+IdO+8AAAAAAAAAAG1GvENheio9qY0Nt3becWwWAAAAAAAAANBu\nxDsUprujO7V6LdN6OpKIdwAAAAAAAACA9iPeoTA9le4000xPz/jP4h0AAAAAAAAAoN2IdyhMtWO8\n2unsbiZJBobqRY4DAAAAAAAAADDlxDsUpqfSnSSpdI4lsfMOAAAAAAAAANB+xDsUprtjPN4pr4l3\nBmriHQAAAAAAAACgvYh3KExPZfzYrGa5nlLJzjsAAAAAAAAAQPsR71CY6pqdd0bGRjKtp1O8AwAA\nAAAAAAC0HfEOhemujMc7tXot06qdGRDvAAAAAAAAAABtRrxDYXo6xo/Nqo0Np69ayUCtnmazWfBU\nAAAAAAAAAABTR7xDYXoqa+Kdei19PZ0ZazQzNDxW8FQAAAAAAAAAAFNHvENhqmuPzRobTl+1M0nS\nX3N0FgAAAAAAAADQPsQ7FKa7Y028Ux/OtDXxzsCQeAcAAAAAAAAAaB/iHQrT07Hm2KyxWmvnHfEO\nAAAAAAAAANBOxDsUpnVs1p/svNMv3gEAAAAAAAAA2oh4h8K0js0aG27tvCPeAQAAAAAAAADaiXiH\nwnSUO9JZ7kytXktfTyWJeAcAAAAAAAAAaC/iHQrVU+lObazWOjZrYKhe8EQAAAAAAAAAAFNHvEOh\nqh09qdX/eGzWQM3OOwAAAAAAAABA+xDvUKjxnXf+GO84NgsAAAAAAAAAaCfiHQrV3dGdkbGRVCql\ndFbK4h0AAAAAAAAAoK2IdyhUT6UnSVpHZ4l3AAAAAAAAAIB2It6hUD0da+KdsVqm9XRmoCbeAQAA\nAAAAAADah3iHQlUr3UnW7rxTydDwWOpjjYKnAgAAAAAAAACYGuIdCtXdsSbeGRs/NitJBmr1IkcC\nAAAAAAAAAJgy4h0K1VNZc2xWvfbHeGfI0VkAAAAAAAAAQHsQ71Consofd96Ztibe6RfvAAAAAAAA\nAABtQrxDoaoda3feGc60HjvvAAAAAAAAAADtRbxDobpbO+/88dgsO+8AAAAAAAAAAO1CvEOhejrW\nxDv1P4l3auIdAAAAAAAAAKA9iHcoVLWy5tissWE77/z/7N19sOQFfef7Tz+c7j7n9HliGGAQRUCJ\n60Mkoq5mY65hg240WaVEwZvC2shNpbK5KetuYl29qVLjA1KVWLmVrNe72UqyCbtbhcUmMaxGVtSU\nNyQxyu4oRNBEFnziYRjmPJ/unn64f5wHmDADM8P06e7Tr1cV5Uw/nPOlip9/vev7BQAAAAAAAADG\njniHgarubN5pZnqynCRZE+8AAAAAAAAAAGNCvMNA1cpPPpu1ttEe5EgAAAAAAAAAALtGvMNA1UqP\nn82arjmbBQAAAAAAAACMF/EOA1UtVVJIIY12M8ViIVPVclYb4h0AAAAAAAAAYDyIdxioQqGQaqma\nRqeRJKlPTti8AwAAAAAAAACMDfEOA1crV9NoN5Mk05MTWds4ml6vN+CpAAAAAAAAAAD6T7zDwNXK\ntWM277Q7vTSPdgY8FQAAAAAAAABA/4l3GLjJUjXNrc079clykjidBQAAAAAAAACMBfEOA1ctVdPu\ndXK028705ESSZG2jPeCpAAAAAAAAAAD6r9yvH9ztdvOBD3wg3/zmN1OpVPLhD384F1544TGf2djY\nyM/93M/lIx/5SC655JIkyVVXXZV6vZ4kueCCC/LRj360XyMyJGrlWpKk0W6kvhXvrDZs3gEAAAAA\nAAAA9r6+xTu33357Wq1Wbr755hw8eDA33nhjPvGJT+y8f9ddd+X9739/Hn744Z3Xms1mer1ebrrp\npn6NxRCqlatJkka7mena9uYd8Q4AAAAAAAAAsPf17WzWnXfemde85jVJkssuuyx33333Me+3Wq18\n/OMfz8UXX7zz2r333puNjY28853vzDve8Y4cPHiwX+MxRCZLW5t3Os3HN++IdwAAAAAAAACAMdC3\nzTurq6s756+SpFQqpd1up1ze/JWXX375k75Tq9Vy/fXX561vfWvuv//+/PzP/3w++9nP7nzneBYW\nplIul878vwDPyP79Myf92YWHNj9bqxfzrPNmkyS9YvGUfgYwHDy3MJ48+zCePPswnjz7MJ48+zCe\nPPswnjz7MJ48+4PXt3inXq9nbW1t5+/dbvcpI5wkueiii3LhhRemUCjkoosuyvz8fA4dOpQDBw6c\n8DtHjqyfsZk5M/bvn8mhQysn/flus5AkeejwY5ltTydJHn509ZR+BjB4p/rsA3uDZx/Gk2cfxpNn\nH8aTZx/Gk2cfxpNnH8aTZ3/3PFUk1bezWS972cvypS99KUly8ODBXHrppU/7nVtuuSU33nhjkuTh\nhx/O6upq9u/f368RGRK18tbZrHYz05Obgdeas1kAAAAAAAAAwBjo2+adK6+8MnfccUeuvfba9Hq9\n3HDDDbn11luzvr6ea6655rjfufrqq/Pe9743b3/721MoFHLDDTc87bYeRt9kqZokaXSaqU9OJEnW\nGu1BjgQAAAAAAAAAsCv6VsYUi8V88IMfPOa1Sy655Emfu+mmm3b+XKlU8rGPfaxfIzGkquWteKfd\nSHWilFKxkFWbdwAAAAAAAACAMdC3s1lwsmqlrbNZnWYKhULqkxPiHQAAAAAAAABgLIh3GLhaeSve\naTeSJPXJiayJdwAAAAAAAACAMSDeYeAmt89mdZpJkunJiaw32ul2e4McCwAAAAAAAACg78Q7DFy1\ntBXvtDfjnfrkRHpJ1hq27wAAAAAAAAAAe5t4h4F78tmscpJkrdEe2EwAAAAAAAAAALtBvMPATRTL\nKRdKx5zNSpLVDZt3AAAAAAAAAIC9TbzDUKiWqzvxTr0m3gEAAAAAAAAAxoN4h6FQK9V2zmZtb95Z\nE+8AAAAAAAAAAHuceIehUCtX02hvbd5xNgsAAAAAAAAAGBPiHYZCrVRLs9NMr9cT7wAAAAAAAAAA\nY0O8w1ColavppZdmp+VsFgAAAAAAAAAwNsQ7DIVaqZokaXQaj2/eabQHORIAAAAAAAAAQN+JdxgK\ntXItSdJoNzNdKyexeQcAAAAAAAAA2PvEOwyFWnlz806z00y5VEytUsqqeAcAAAAAAAAA2OPEOwyF\n7bNZG+1GkqQ+OSHeAQAAAAAAAAD2PPEOQ2HnbFanmSSZnpxwNgsAAAAAAAAA2PPEOwyFWmkr3nnC\n5p1Wu5vW0c4gxwIAAAAAAAAA6CvxDkOhVt48m7W9eac+OZEkTmcBAAAAAAAAAHuaeIehUCttxTvt\nrXinthnvrDXaA5sJAAAAAAAAAKDfxDsMhVr52LNZ05PlJDbvAAAAAAAAAAB7m3iHobCzeWfrbNb0\n1tmsNfEOAAAAAAAAALCHiXcYCpM7m3e2zmZtxTs27wAAAAAAAAAAe9lJxTtf//rX8wd/8AdptVp5\n5zvfmVe96lW57bbb+j0bY6S6s3ln82yWeAcAAAAAAAAAGAcnFe98+MMfzotf/OLcdtttqdVq+ZM/\n+ZP87u/+br9nY4zUylvxTlu8AwAAAAAAAACMj5OKd7rdbl7xilfkL/7iL/K6170uBw4cSKfT6fds\njJFioZhKqZJGZ/Ns1vRWvLMm3gEAAAAAAAAA9rCTincmJyfz+7//+/nyl7+cn/iJn8gf/uEfZnp6\nut+zMWYmS9U025vxTr22Fe802oMcCQAAAAAAAACgr04q3vnN3/zNrK+v57d/+7czNzeXRx55JB/7\n2Mf6PRtjplquZqOzeTZrslpKsVBwNgsAAAAAAAAA2NPKJ/OhhYWF/ORP/mRe8IIX5NZbb023202x\neFLdD5y0WqmWI42lJEmhUMj0ZFm8AwAAAAAAAADsaSdV4Lz73e/Obbfdlq997Wv5nd/5ndTr9bzn\nPe/p92yMmVq5lqPdo+l0O0mS+uSEeAcAAAAAAAAA2NNOKt753ve+l3e961257bbbcvXVV+eXfumX\nsrS01O/ZGDO1UjVJ0uw0kyTTkxNZaxxNt9cb5FgAAAAAAAAAAH1zUvFOp9PJY489ls9//vN57Wtf\nm0OHDqXRaPR7NsZMrbwZ72y0N+Odem0ivV6y0WwPciwAAAAAAAAAgL4pn8yHrr/++rztbW/LFVdc\nkUsvvTSvf/3r8653vavfszFmaqVakqTR2QzD6pMTSZK1jaOZrk0MbC4AAAAAAAAAgH45qXjnZ37m\nZ/L6178+999/f+655558+tOfTrl8Ul+Fk7a9eaexvXlnK95Z3WjnnIWBjQUAAAAAAAAA0DcnVeDc\nddddede73pX5+fl0u908+uij+fjHP56XvvSl/Z6PMVIrbcU7nc14Z3py8z/P1Y2jA5sJAAAAAAAA\nAKCfTire+chHPpLf+q3f2ol1Dh48mA996EO55ZZb+joc46VW3jqb1d48mzX9hLNZAAAAAAAAAAB7\nUfFkPrS+vn7Mlp3LLrsszWazb0Mxnh7fvLMZ79Rr22ezxDsAAAAAAAAAwN50UvHO3Nxcbr/99p2/\nf+5zn8v8/HzfhmI8Pb55ZzMMq0+KdwAAAAAAAACAve2kzmZ96EMfyrvf/e782q/9WpLk2c9+dn7j\nN36jr4Mxfh7fvPOP4p2GeAcAAAAAAAAA2JueMt657rrrUigUkiS1Wi0XXHBBer1eJicn8/73vz9/\n9Ed/tCtDMh5q5a14p715Nmt6K95Zs3kHAAAAAAAAANijnjLe+eVf/uXdmgOOczZr8z9P8Q4AAAAA\nAAAAsFc9Zbzzyle+crfmgNRKm/FOc+ts1kS5lMpEMasb7UGOBQAAAAAAAADQN8VBDwDbts9mbXQa\nO6/VJyeyavMOAAAAAAAAALBHiXcYGpXiRAop7JzNSpJ6bSKrDfEOAAAAAAAAALA3iXcYGoVCIbVy\nLY3245t3picn0mx10u50BzgZAAAAAAAAAEB/iHcYKrVSNc3OEzbvTE4kidNZAAAAAAAAAMCeJN5h\nqNTK1WPPZm3FO2viHQAAAAAAAABgDxLvMFRqpVo2Oo30er0km2ezEpt3AAAAAAAAAIC9SbzDUKmV\nq+n2ujnabSdJ6rVykmR1oz3IsQAAAAAAAAAA+kK8w1CplWtJkmZn83TW9uadtYbNOwAAAAAAAADA\n3iPeYajUStUkyUa7kSSpO5sFAAAAAAAAAOxh4h2GSq28Ge80Ov8o3lkX7wAAAAAAAAAAe494h6FS\nK22ezWq0N89mzdUrSZKltebAZgIAAAAAAAAA6BfxDkNle/NOs7MZ68zXN/9+ZEW8AwAAAAAAAADs\nPeIdhkqttBnrbLQ3z2aVS8XMTE1kcbU1yLEAAAAAAAAAAPpCvMNQqZWPPZuVbG7fWVy1eQcAAAAA\nAAAA2HvEOwyV7c07jU5j57X5ejWNVicbzfagxgIAAAAAAAAA6AvxDkNle/NO8wmbdxZmKkli+w4A\nAAAAAAAAsOeIdxgq25t3NjrHns1KksXV1kBmAgAAAAAAAADoF/EOQ2V7806jfezZrCRZXLF5BwAA\nAAAAAADYW8Q7DJVaeTPUaTxx887M9uYd8Q4AAAAAAAAAsLeIdxgq22ezmu3HQ52Frc07R2zeAQAA\nAAAAAAD2GPEOQ6VcLKdcLGej84SzWTbvAAAAAAAAAAB7lHiHoVMrVdN4wuadmamJFAuFLK62BjgV\nAAAAAAAAAMCZJ95h6NTKtTTaj2/eKRYKmatXnM0CAAAAAAAAAPYc8Q5Dp1aqptk5NtRZmKlmcbWZ\nXq83oKkAAAAAAAAAAM488Q5Dp1auptFpptvr7rw2X6+m0+1ldePoACcDAAAAAAAAADizxDsMnVqp\nliRpdlo7r83XK0nidBYAAAAAAAAAsKeIdxg6tXI1SY45nbUws/na4mrruN8BAAAAAAAAABhF4h2G\nTq20Geo02o2d1+br2/GOzTsAAAAAAAAAwN4h3mHo1MqbZ7M22o+HOjvxjrNZAAAAAAAAAMAeIt5h\n6NRKm/FOo/OEzTszNu8AAAAAAAAAAHuPeIehUytvhjrNJ2zeWahXkiRHbN4BAAAAAAAAAPYQ8Q5D\np1bajHc2Oo+HOpPVcioTxSyutgY1FgAAAAAAAADAGSfeYejUyltns9qPn80qFAqZr1edzQIAAAAA\nAAAA9hTxDkNn+2xWo31sqDNfr2Z5rZV2pzuIsQAAAAAAAAAAzjjxDkNn+2xWs3NsvLMwU00vyfKa\n01kAAAAAAAAAwN4g3mHobJ/N2ug0jnl9vl5JkiyuincAAAAAAAAAgL1BvMPQ2d6802j/43hn8/Uj\nK80nfQcAAAAAAAAAYBSJdxg625t3Gu0nn81KksVV8Q4AAAAAAAAAsDeIdxg61dLmeaxm59hIZ3vz\njngHAAAAAAAAANgrxDsMnWKhmGqpcpyzWZtRz6KzWQAAAAAAAADAHiHeYSjVSrVs2LwDAAAAAAAA\nAOxx4h2GUq1ce9LmncpEKdO1chZXWwOaCgAAAAAAAADgzBLvMJRqpWqanSdv2JmfqeaIs1kAAAAA\nAAAAwB4h3mEo1crVHO220+62j3l9vl7NerOd5tHOgCYDAAAAAAAAADhz+hbvdLvdvO9978s111yT\n6667Lg888MCTPrOxsZFrr7023/72t0/6O4yHWrmWJGn8o+078/VKkmRx1fYdAAAAAAAAAGD09S3e\nuf3229NqtXLzzTfnV37lV3LjjTce8/5dd92Vn/3Zn813v/vdk/4O46NWqiZJGu1jI52Fmc3XF53O\nAgAAAAAAAAD2gL7FO3feeWde85rXJEkuu+yy3H333ce832q18vGPfzwXX3zxSX+H8VErb0Y6zSdt\n3tmKd1Zbuz4TAAAAAAAAAMCZVu7XD15dXU29Xt/5e6lUSrvdTrm8+Ssvv/zyU/4O46NW2jybtdFu\nHPP6drxzxOYdAAAAAAAAAGAP6FsVU6/Xs7a2tvP3brf7tBHO6XxnYWEq5XLpmQ3LGbd//8wz+v6+\nR2eTJNXp4jE/66KNdpKk1e09498BnHmeSxhPnn0YT559GE+efRhPnn0YT559GE+efRhPnv3B61u8\n87KXvSxf/OIX84Y3vCEHDx7MpZde2pfvHDmyfibG5Qzav38mhw6tPKOf0WkUkiQPP3Ykhyae8LPa\nnSTJDx5Zeca/AzizzsSzD4wezz6MJ88+jCfPPownzz6MJ88+jCfPPownz/7ueapIqm/xzpVXXpk7\n7rgj1157bXq9Xm644YbceuutWV9fzzXXXHPS32E81cqb57Ga7WPPY81OT6RQSBadzQIAAAAAAAAA\n9oC+xTvFYjEf/OAHj3ntkksuedLnbrrppqf8DuOpVtqMdzY6jWNeLxWLmZ2uZHG1NYixAAAAAAAA\nAADOqOKgB4DjqZVrSZJG+8kbdubr1SyuNtPr9XZ7LAAAAAAAAACAM0q8w1DaPpvV+Eebd5JkoV5N\nq93NerO922MBAAAAAAAAAJxR4h2G0vbZrObxNu/MbL63uPLk9wAAAAAAAAAARol4h6G0fTZro3O8\ns1mVJMmRVfEOAAAAAAAAADDaxDsMpVppM95ptI9/NitJFldauzoTAAAAAAAAAMCZJt5hKE0UyykW\nig69pG4AACAASURBVGkeb/PO9tksm3cAAAAAAAAAgBEn3mEoFQqF1ErVNNrHO5u1Ge84mwUAAAAA\nAAAAjDrxDkOrVq5l43hns7Y376yIdwAAAAAAAACA0SbeYWjVStU0jnM2a7pWTrlUyOJqawBTAQAA\nAAAAAACcOeIdhlatXE2z00yv1zvm9UKhkPl6NYvOZgEAAAAAAAAAI068w9CqlWrp9ro52j36pPfm\nZ6pZWm2l2+0d55sAAAAAAAAAAKNBvMPQqpWrSZKN9pM37MzXq+n2ellZdzoLAAAAAAAAABhd4h2G\nVq1US5I0Oo0nvbdQ3wx7jjidBQAAAAAAAACMMPEOQ2t7807zeJt3ZipJksUVm3cAAAAAAAAAgNEl\n3mFo1Uqb8c7xNu/Mb23eWbR5BwAAAAAAAAAYYeIdhlatvHk2a+M4m3d2zmatiHcAAAAAAAAAgNEl\n3mFobZ/NarSPs3lnxuYdAAAAAAAAAGD0iXcYWttns5qdJwc68/VKkuSIeAcAAAAAAAAAGGHiHYbW\n9tmsxnHOZtUq5UxWS1lcae32WAAAAAAAAAAAZ4x4h6FVK23GOxudJ5/NSpL5etXZLAAAAAAAAABg\npIl3GFq18ubZrONt3kk2453VjaM52u7u5lgAAAAAAAAAAGeMeIehVSttxjvNzonjnSRZsn0HAAAA\nAAAAABhR4h2GVq28eTar0T7B2ayZSpJkcbW1azMBAAAAAAAAAJxJ4h2G1vbmnY0TbN5Z2Nq8c8Tm\nHQAAAAAAAABgRIl3GFqlYikTxYkTb97ZincWV8Q7AAAAAAAAAMBoEu8w1Gqlapon2LwzP7MV79i8\nAwAAAAAAAACMKPEOQ61Wrp5w846zWQAAAAAAAADAqBPvMNRq5Vo2TrB5Z65eSeJsFgAAAAAAAAAw\nusQ7DLVaqZpWp5Vur/uk98qlYmamJnJktTWAyQAAAAAAAAAAnjnxDkOtVt48jdU8wfadhXo1i85m\nAQAAAAAAAAAjSrzDUKuVakmSRvv4gc78TDXNVicbzfZujgUAAAAAAAAAcEaIdxhqtfJmvLPRbhz3\n/fn65mYe23cAAAAAAAAAgFEk3mGo1UpPfTZrvl5JkiyuiHcAAAAAAAAAgNEj3mGo1cqb8c5Tnc1K\nksXV1q7NBAAAAAAAAABwpoh3GGq10tbZrM7xz2YtbJ3NOuJsFgAAAAAAAAAwgsQ7DLWn3byzFe84\nmwUAAAAAAAAAjCLxDkOtVtqMc5qdpzubJd4BAAAAAAAAAEaPeIehVitvns1qtI9/NmtmaiKlYsHZ\nLAAAAAAAAABgJIl3GGrbZ7PW2xvHfb9YKGSuXsniSms3xwIAAAAAAAAAOCPEOwy1mYmZJMlKa/WE\nn5mvV7O42ky319utsQAAAAAAAAAAzgjxDkNttroZ7yy1Vk74mYV6NZ1uL6sbR3drLAAAAAAAAACA\nM0K8w1CbKJYzPTGVpebyCT8zX988rbW40tytsQAAAAAAAAAAzgjxDkNvrjKb5dZTxDszlSTJ4qp4\nBwAAAAAAAAAYLeIdht5cdTYb7UZandZx39/ZvLN6/PcBAAAAAAAAAIaVeIehN1uZSZIsNVeO+/78\njLNZAAAAAAAAAMBoEu8w9Oaqs0mSpROczlrY2rxzxNksAAAAAAAAAGDEiHcYenOVrXinefx4Z+ds\nls07AAAAAAAAAMCIEe8w9Garm2ezllvHP5s1WS2lMlHM4mprN8cCAAAAAAAAAHjGxDsMvfnqU2/e\nKRQKWahXnc0CAAAAAAAAAEaOeIehN7t9Nqt1/Hgn2TydtbLWSrvT3a2xAAAAAAAAAACeMfEOQ2+u\nsnk260Sbd5JkfqaaXpLlNaezAAAAAAAAAIDRId5h6E2UJjJVnsxSa+WEn1moV5PE6SwAAAAAAAAA\nYKSIdxgJc9XZLD/V5p16JUmyuGLzDgAAAAAAAAAwOsQ7jIS5ymzW2xtpdY4e9/35mc3NO4s27wAA\nAAAAAAAAI0S8w0iYq84mSZZPcDprvi7eAQAAAAAAAABGj3iHkTBbmUmSLJ3gdNbO5p0V8Q4AAAAA\nAAAAMDrEO4yE7c07S63jxzsL9UoKSb7/6NouTgUAAAAAAAAA8MyIdxgJO/HOCTbvTJRLeckl+3L/\nQyv51ncXd3M0AAAAAAAAAIDTJt5hJGyfzVpurZzwMz/96ucmSf7rX92/CxMBAAAAAAAAADxz4h1G\nwvzTbN5JkuddMJcXPGc+d//Px3L/Qyf+HAAAAAAAAADAsBDvMBJmK08f7yTJG3/0uUmST//VA/0e\nCQAAAAAAAADgGRPvMBIqpYlMlief8mxWkrzwwoVcdGAmd37rUL7/6NouTQcAAAAAAAAAcHrEO4yM\nucrM027eKRQK+elXPzdJ8pm/vr/vMwEAAAAAAAAAPBPiHUbGbHU2a+31HO22n/JzL33+2XnW/ul8\n+RuP5JHFjV2aDgAAAAAAAADg1Il3GBlzldkkyfLTbN8pFgp546svTLfXy2f/5oHdGA0AAAAAAAAA\n4LSIdxgZc9WZJMlSa+VpP/vKF5ybcxYm85d3PZgjK81+jwYAAAAAAAAAcFrEO4yMuerJbd5JkmKx\nkDe86sK0O73c9rff6fdoAAAAAAAAAACnRbzDyJirbG7eWWw9fbyTJD/64vOyMFPNXxz8flbWW/0c\nDQAAAAAAAADgtIh3GBlz1bkkyXLz6c9mJUm5VMy/+KfPSetoN5/76vf6ORoAAAAAAAAAwGkR7zAy\nZrc27yydxNmsbT/+0vMzMzWRz9/5vaw32v0aDQAAAAAAAADgtIh3GBlz1dkkydJJns1KkupEKa97\nxbOz0Wzni//D9h0AAAAAAAAAYLiIdxgZ1VIltVIty62TO5u17Sd+5IJMVsv5b1/5bppHO32aDgAA\nAAAAAADg1Il3GClz1ZlTOpuVJFO1cv755RdkZf1ovnTwB32aDAAAAAAAAADg1Il3GClzldmsHl1L\nu9s+pe9d+fILUpko5rN/+520O90+TQcAAAAAAAAAcGrEO4yU2epMkpzy6ayZqUpee9mzcmSlmb+6\n+6F+jAYAAAAAAAAAcMrEO4yUuepskmSpeWrxTpK8/pXPSblUyGf++oF0urbvAAAAAAAAAACDJ95h\npMxVtuKd1vIpf3dhppofe8mBPLK4ka/c88iZHg0AAAAAAAAA4JSVBz0AnIrtzTvLzVOPd5Lkp151\nYb70tQfze5++J//pc99KqVRMqVjY/KdUTHnnz4WUisWUS4WUy8VMlIqZKG//U9r5e2XrtdnpSl75\nT87NRFkPBwAAAAAAAACcPPEOI2WuMpMkWWqd+tmsJNk/P5mrfvyifOWeR9Lp9tLu9tLpdNPp9tJq\nt3f+3On20un00u31Tvpnf/M7i/m5N7wghULhtGYDAAAAAAAAAMaPeIeRMru1eWfpNDfvJMkbX/3c\nvPHVzz2pz3a7vRztdHO0vflP+wl/fuLrf/L/3Ze/vOvBXPys2bz2smed9mwAAAAAAAAAwHgR7zBS\nHt+8c/rxzqkoFgupFkupTpSe8nPnnz2VX/+Dr+Q/f+5bec45M7n4/NldmQ8AAAAAAAAAGG3FQQ8A\np6JWrqVaqjyjzTv9cPbcZH7hTS9Kp9PL//Ond2V5vTXokQAAAAAAAACAESDeYeTMVWez3FwZ9BhP\n8uKL9uXNP35xHltu5t996u/S7fYGPRIAAAAAAAAAMOTEO4ycucpsVo6uptPtDHqUJ3njqy/MZc87\nO/c8cCR//KX7Bj0OAAAAAAAAADDkxDuMnLnqbJJkuTV823eKhUL+t5/+JzlnYTKf+ZsHcuc3Dw16\nJAAAAAAAAABgiIl3GDmzlZkkwxnvJMlUbSL/+1UvSaVczO99+ht56LH1QY8EAAAAAAAAAAypvsU7\n3W4373vf+3LNNdfkuuuuywMPPHDM+1/4whfylre8Jddcc00++clP7rx+1VVX5brrrst1112X9773\nvf0ajxG2vXlnsbk84ElO7IJz6vlXP/WCNFqd/Ns/viuNVnvQIwEAAAAAAAAAQ6jcrx98++23p9Vq\n5eabb87Bgwdz44035hOf+ESS5OjRo/noRz+aW265JZOTk3n729+eK664IjMzM+n1ernpppv6NRZ7\nwFxl+2zW8MY7SfKqF52X+36wnNvv/F7+w5/fm1/4ly9KoVAY9FgAAAAAAAAAwBDp2+adO++8M695\nzWuSJJdddlnuvvvunfe+/e1v5znPeU7m5uZSqVRy+eWX5ytf+UruvffebGxs5J3vfGfe8Y535ODB\ng/0ajxE2V908m7U0xJt3tr3tiufleRfM5W/veSSf++r3Bj0OAAAAAAAAADBk+hbvrK6upl6v7/y9\nVCql3W7vvDczM7Pz3vT0dFZXV1Or1XL99dfn937v9/Lrv/7r+dVf/dWd78C27c07S82VAU/y9Mql\nYn7xTS/O3HQln/zCP+Sb3zky6JEAAAAAAAAAgCHSt7NZ9Xo9a2trO3/vdrspl8vHfW9tbS0zMzO5\n6KKLcuGFF6ZQKOSiiy7K/Px8Dh06lAMHDpzw9ywsTKVcLvXrX4PTtH//zNN/6DRNz2/+d7SR9b7+\nnjNl//6ZvPdfvTL/1yfuyL+79Rv5v/+P/yX75iYHPRb0xSg8k8CZ59mH8eTZh/Hk2Yfx5NmH8eTZ\nh/Hk2Yfx5NkfvL7FOy972cvyxS9+MW94wxty8ODBXHrppTvvXXLJJXnggQeyuLiYqampfPWrX831\n11+fW265Jd/61rfygQ98IA8//HBWV1ezf//+p/w9R46s9+tfgdO0f/9MDh3q31acXq+XSqmSR1ce\n6+vvOZPOmankra+9JDd/4R9y83+7N2997fMGPRKccf1+9oHh5NmH8eTZh/Hk2Yfx5NmH8eTZh/Hk\n2Yfx5NnfPU8VSfUt3rnyyitzxx135Nprr02v18sNN9yQW2+9Nevr67nmmmvynve8J9dff316vV7e\n8pa35Nxzz83VV1+d9773vXn729+eQqGQG264YWdbD2wrFAqZq8xkqTVa/wfyz15yIDd/4R/y/UNr\nT/9hAAAAAAAAAGAs9K2MKRaL+eAHP3jMa5dccsnOn6+44opcccUVx7xfqVTysY99rF8jsYfMVmZz\n39L96XQ7KRVH42xafXIiM1MTeeiwbVEAAAAAAAAAwKbioAeA0zFfnU0vvawcXR30KKfkwFlTObS0\nkaPtzqBHAQAAAAAAAACGgHiHkTRb3bwFt9RcHvAkp+bA2dPp9ZKHHtsY9CgAAAAAAAAAwBAQ7zCS\n5iqzSZLl1sqAJzk1B86aSpI8eHhtwJMAAAAAAAAAAMNAvMNImqtuxjuLI7h5J0kePLw+4EkAAAAA\nAAAAgGEg3mEk7WzeGbV4Z5/NOwAAAAAAAADA48Q7jKS56kySZGnEzmadNVtLZaJo8w4AAAAAAAAA\nkES8w4jaPpu1NGKbd4qFQs47ayoPPbaebq836HEAAAAAAAAAgAET7zCSaqVaJooTWW6NVryTJAf2\nTedou5vDS41BjwIAAAAAAAAADJh4h5FUKBQyV5kZuc07SXJg31SSOJ0FAAAAAAAAAIh3GF1z1dks\nt1bT7XUHPcopObBvOkny4OG1AU8CAAAAAAAAAAyaeIeRNVudTS+9rLRGK4KxeQcAAAAAAAAA2Cbe\nYWTNV2aTJEutpQFPcmrOXZhKoWDzDgAAAAAAAAAg3mGEzVZnkiTLzZUBT3JqJsrF7J+ftHkHAAAA\nAAAAABDvMLrmtjfvNJcHPMmpO3DWVFY3jmZlvTXoUQAAAAAAAACAARLvMLLmqttns0Yw3jl7Okls\n3wEAAAAAAACAMSfeYWTNVjbPZo3q5p0kefDw2oAnAQAAAAAAAAAGSbzDyJrf2byzMuBJTp3NOwAA\nAAAAAABAIt5hhE2WJ1MulrPcHMF4Z9/25h3xDgAAAAAAAACMM/EOI6tQKGSuMpul1uidzZquTWR2\nuuJsFgAAAAAAAACMOfEOI22uOpPl1kq6ve6gRzll5++byuGlRlpHO4MeBQAAAAAAAAAYEPEOI22u\nMptur5vVo6O3wea8fdPpJXnoMaezAAAAAAAAAGBciXcYabPV2STJUnNlwJOcugP7ppIkDx4W7wAA\nAAAAAADAuBLvMNLmK9vxztKAJzl1j8c7o7c1CAAAAAAAAAA4M8Q7jLTZ6kySZLk1ept3zt83ncTm\nHQAAAAAAAAAYZ+IdRtpcZXTPZi3MVFOdKNm8AwAAAAAAAABjTLzDSJurbsU7reUBT3LqCoVCzts3\nlYce20i32xv0OAAAAAAAAADAAIh3GGk7Z7OaoxfvJMmBfVNpd7p5dGlj0KMAAAAAAAAAAAMg3mGk\nTZenUi6UsjiCm3eS5MC+6STJg4fXBzwJAAAAAAAAADAI4h1GWqFQyGx1NsvNlUGPcloOnDWVRLwD\nAAAAAAAAAONKvMPIm6vMZqm1nG6vO+hRTtmBs7c376wNeBIAAAAAAAAAYBDEO4y8uepMur1u1o6O\n3vaacxcmUywUbN4BAAAAAAAAgDEl3mHkzVZmkyTLrdE7nVUuFbN/YTIPHl5Lr9cb9DgAAAAAAAAA\nwC4T7zDy5qqb8c5ic3nAk5yeA2dNZa3Rzsr60UGPAgAAAAAAAADsMvEOI2+uMpMkWR7VeOfsqSTJ\ng4fXBjwJAAAAAAAAALDbxDuMvO3NO0ut0Yx3zt83nSR58PD6gCcBAAAAAAAAAHabeIeRtxPvNFcG\nPMnpOW/f9uYd8Q4AAAAAAAAAjBvxDiNvrjLam3cOnLW9ecfZLAAAAAAAAAAYN+IdRt70xFRKhVKW\nm6MZ70zVypmrV8Q7AAAAAAAAADCGxDuMvEKhkNnKTJZao3k2K0nO3zedw8vNNFudQY8CAAAAAAAA\nAOwi8Q57wlx1NsvN5fR6vUGPclrO2zeVJHnosfUBTwIAAAAAAAAA7CbxDnvCXGUm7V4na+3RjF/O\n3zedJE5nAQAAAAAAAMCYEe+wJ8xVZ5MkS83lAU9yerY37/zg8GjGRwAAAAAAAADA6RHvsCfMVjbj\nneXmyoAnOT3bm3cesnkHAAAAAAAAAMaKeIc9YWfzTms0N+/M1yupVUp50OYdAAAAAAAAABgr4h32\nhLnqTJLRPZtVKBRyYN9UHj6ynk63O+hxAAAAAAAAAIBdIt5hT5irbG/eGc2zWUly3lnTaXd6eXSx\nMehRAAAAAAAAAIBdIt5hT9g5mzWim3eS5Pyzp5LE6SwAAAAAAAAAGCPiHfaE6Ymp1Cemc+9jf5+l\n5mhu3zmwbzpJ8uDhtQFPAgAAAAAAAADsFvEOe0KxUMwbL3pdGp1GPvXtzwx6nNNyYJ/NOwAAAAAA\nAAAwbsQ77Bk/9qx/mmfXz8+XH7oz3168f9DjnLL985MpFQs27wAAAAAAAADAGBHvsGcUC8W87Yeu\nSpJ88lt/mm6vO+CJTk25VMw5C5N58PB6er3eoMcBAAAAAAAAAHaBeIc95eK5C/Oq816e763+IH/5\n/b8Z9Din7MC+6aw321leaw16FAAAAAAAAABgF4h32HPe9LyfymS5lj+777astFYHPc4pObBvKkny\n4OH1AU8CAAAAAAAAAOwG8Q57zmxlJm+86HXZaG/kz77954Me55Q8Hu+sDXgSAAAAAAAAAGA3iHfY\nk378Wa/O+dPn5a8e/EruX/7OoMc5aQf2TSexeQcAAAAAAAAAxoV4hz2pVCzlbZe+OUly8zf/NN1e\nd8ATnZzzzrJ5BwAAAAAAAADGiXiHPev5Cxfn5edelu+sfC9//YOvDHqckzJZLWdhppof2LwDAAAA\nAAAAAGNBvMOedtXz3phqqZJP3ffnWTs6GkHMgX1TObLSzEazPehRAAAAAAAAAIA+E++wp81X5/KG\ni67M2tH13HrfbYMe56QcOGs6SfLQY6MRGwEAAAAAAAAAp0+8w573Exf8WM6bOid/+f2/yXdWvjfo\ncZ7WgbOnkiQPOZ0FAAAAAAAAAHteedADQL+ViqW89dI35XcO/vt88pufyr+5/BdTLDx1t/bI+qF8\n/dFv5Lsr30+7206720mn19n5c7vXTmfrf9vdTsrFUl534RV51XmXp1AoPKN5D5y1Ge/84PDaM/o5\nAAAAAAAAAMDwE+8wFl5w1vPzI+f8cP7HI1/Plx/673n1gZcf83631839y9/NXY9+I18/9Hd5aP2R\nE/6sUqGUcrGUcqGcUrGUcrGcI42l/Md7PpmvHborb/+hqzNXnTntWQ+cvXk267uPrJ72zwAAAAAA\nAAAARoN4h7Hxluf9dP7u0XvyqX/4TF569otSLpbzzSN/n68f+kbuOvyNrLQ2Y5mJ4kR++OwX5SVn\nvzCXLlySWqmacrGUUrGccqF03M06hzeO5D/e88nc9eg9uW/xY7nmh67K5ee+9LTmnJuu5Nnn1HPX\nfYfz4OG1HNg3/Yz+vQEAAAAAAACA4SXeYWws1ObzL577z/Nn9302v3nnx/NY40iOdo8mSWYm6vnR\nA6/IS85+YV5w1vNTKVVO6Wfvm1zIL//Iz+dL3//r/Ok/fCa//3f/KV87dHfe9kNvTn3i1OKbQqGQ\nN/3YRfm3f3xX/uyO+/ML//JFp/R9AAAAAAAAAGB0iHcYK1c858fz5Yf+ex5efyTnTp2THz77hfnh\n/S/Mc2efk2Kh+Ix+drFQzGsv+Gd54VmX5o++8cnc+cjX8veL9+V/fcFb8pKzX3hKP+tHnn92nnNu\nPX/7jYfz06++MM/aX39GswEAAAAAAAAAw0m8w1iZKJbzq5f/66y3N3L25L6+/I5zpvbn31z+i/n8\nd76U/3rfbfl/v/4f8qoDL8/Vz/+ZTJYnT+pnFAqFvPnHLs5v/5ev51N33J9//eYX92VWAAAAAAAA\nAGCwntmqERhBUxNTfQt3thULxVx54Wvzf77iXXl2/fz8zYNfzUe+/Fu597G/P+mf8dLn7ctzz5vJ\nV+99JN99ZLWP0wIAAAAAAAAAgyLegT46v35e3v3yX84bnvuTWWot53cO/vvc8f0vn9R3C4VC3vya\ni5Mkn/rL/9nPMfn/27vXMCuqe8/jv1W1dzcNzR3xSKABUQiaIKIGPYpnYoajjxMDUY+KUYz6PBON\nidGMMWjGOyKGRPPEqImaFzOYRDKIF05iMseYPOQoJ1EJGuTijbRHgoyCCN3Y3XtXrXlRl1371t1A\nN9Xs/n6wrXvVqtq1LtX7X6sBAAAAAAAAAAAAAEgJwTtAL3MdV//t8H/Wt477mhoyDVrx5q+0q2N3\nt7b99OEjNGnMEK15/X01v9e9bQAAAAAAAAAAAAAAwMGD4B3gAGkaMlafP/yf1ea16am3nunWNsYY\nzZk1URK97wAAAAAAAAAAAAAAUIsI3gEOoFljTtQnGg/Tf2x9SZs/au7WNkdPGKEjxg7V2jc/0Oat\nu3o5hQAAAAAAAAAAAAAA4EAieAc4gFzH1XmT50qSfvn6k/Kt3+U2xhh98RR63wEAAAAAAAAAAAAA\noBYRvAMcYEcMm6gTDj1W7+zeotV/f7Fb23xy/HBNGTdMr761XW/9/aNeTiEAAAAAAAAAAAAAADhQ\nCN4BUjD3iDNV79bpqbefUWtuT5frG2M0d1bY+84f6X0HAAAAAAAAAAAAAIBaQfAOkIJh9UN15sTZ\nas3t0b++/dtubTOlabimjh+udZt36I13d/ZyCgEAAAAAAAAAAAAAwIFA8A6Qkv8y9mQdOvAQ/XHL\nf+g/d2/p1jZzTgl633mS3ncAAAAAAAAAAAAAAKgJBO8AKck4Gf3LkXNkZfXL15+UtbbLbSaPG6aj\nJ47QhuYPtemdDw9AKgEAAAAAAAAAAAAAQG8ieAdI0dSRkzX9kE/p7Y+a9ef31nRrm7lh7ztP/Tu9\n7wAAAAAAAAAAAAAAcLAjeAdI2dlHnKWsk9ETb/1KH+fbulx/0ieG6tOHj9TGd3ZqQzO97wAAAAAA\nAAAAAAAAcDAjeAdI2ciG4Tp9/Gna3dGiZzY/261t5s4Ket958o9vd+vPbQEAAAAAAAAAAAAAgL6J\n4B2gD/ivTf+kUQNG6Pfv/ru2tm7rcv2Jhw3R9CNG6Y13P9L6v9H7DgAAAAAAAAAAAAAAByuCd4A+\nIOtmde7kL8i3vv7P6091qzedOacEve/8r99s1L+99J/a2dLe28kEAAAAAAAAAAAAAAA9jOAdoI/4\n1MipOmrkFG368E395f2/drn++H8YrNM/M07bd7XpF8++of/xo+f13Z+v0R/WbtHuPR0HIMUAAAAA\nAAAAAAAAAGB/ZdJOAICAMUb/cuQXdOeOe7TijX/V0SM/qXq3rtNtzj/tSJ3xmSa9tOl9/WnDNm18\nZ6c2vrNTj/72dR01cbhmTj1Uxx55iAYOIKsDAAAAAAAAAAAAANAX8Y0+0IeMHniITms6Vf+3+fd6\n+K//WzP/4ThNHTlZjdlBVbcZ2livzx03Vp87bqx27GrTnzf8P/15wzate3uH1r29Qxl3oz59+EhN\nP2KUhg+p15CBdRoyqE6NDVllXDrfAgAAAAAAAAAAAAAgTQTvAH3MGRM+p/XbN2nDjte1YcfrMjIa\nP2Scjho5RUePnKKmwWPlmMpBNyOGDNAZM5t0xswmbftwTxzI85c3PtBf3vigbP1BAzIaMqhOgwfW\nacjArAYPqtPghqzqs66yGUd1WVd1GUfZjKu6rFMYzzjKZh1lXUeuY+SGw4zryHWNHGN6+zIBAAAA\nAAAAAAAAAFATei14x/d93Xrrrdq0aZPq6uq0cOFCjR8/Pl7+3HPP6f7771cmk9E555yj8847r8tt\ngP6g3q3Tt0+4Wltatuq17Zu0fvsmbd7VrL/teke/3vxvaswO0tQRk3XUyCk6asQUNdZV7pXn0OED\nddY/TtBZ/zhB777foje3fKTdrR3atSen3Xs6tCsc39Xaofe275HtwXNwjJHrGmVcI9cJAnoypUE+\nRcNgmWOMHMfImGAfxiiYlpHjBH9azDFGjpGMY+TIyDgK5yXWj7cP1y3bb7X5iX2V7jfaLpxvs25i\nbAAAG6hJREFUnEJanGjcKaxvEgFM1nZ+dbtKT+n8eN0q5wwAAAAAAAAAAAAAOHj0WvDOs88+q46O\nDi1btkxr167V4sWL9eCDD0qScrmc7rrrLi1fvlwNDQ2aN2+eTjvtNK1Zs6bqNkB/4hhH4wZ/QuMG\nf0JnTDhNe3Ifa+OHb2j99k1av32jXtz2F7247S8yMho+YJgyxpXjuMoYV65xg4CZeDyY72RcucMc\nZYZnNMRxNDxc5hpXjhx5nlE+Z5XLS9Y3stbI94ysb+T7Rr4veflgPO9Jfl7y/GBdz5N8X7LhMO8b\n+Z6V51n5vlXes/I9qzbry+sI5nmeL89aeX53wob2IyClaPemyjIjGRvMMFbG2KLpovHkfmxif8lx\nmXDfpvgYkmy8XmKdOC0V9pvch+NLxpdx/Hhcji9jfMnxCtPWkcIfY91g3Hdl5MTLjHWD05aVcRSe\ntx/MC8/ZOOG1CNMRbC/JuDLWhPNMOB4EYvl+uLYJloYHCc/MhPOCfUtWchQcV1bW8WVkw1P2ZYwN\ntjMmSHeQuOAjMUF6CnsNljnWFNZTtK5TWMtE6StcYxNeh2jCRLdElOpoG9l4O5ucb6KzC69jYiMT\nj4bnZTxZ+bLGl+QXxk1hPDizjBy55T/GlStXxriJY4bHUZzQ6ucQr2KK1otOyhir4J8vq+S4L1Vc\nllgeTdvCuo6cMN0ZuXLj88qYrByF96SJUx6nv5NJyZg4IM6Exyx8JjZMh4qG4ckl5trwTrQKwwDl\nGCceN3Kq9nCWvI4V01glgK5qKVZlQbX19yZAr9qq1dNSvsRaK195eTanvM3LU055m1M+mqe8BtS7\n6mi3ck1GGWXkmvBHhWHWycoJ79tusVZ526EO264O21Y89INhzrbLVUb1zgDVmQGqi4amXnXOANU7\nA5Q1dUWfpWe98Fxyytlc8bhysrJhveiG5+Eqo2xYp2bC+UFeTOYF3/rxvWVtNN8P1rBW1vhx/oiX\n2eh+LeSX+NpFdXh8HaPjB+cS7MGL9+1bX758+dYL0+PJSEHeC8sNxyTLkOLP2re+crZN7X6b2vyP\n1eZ/rPZwGI13+O3Kmrrw2tarzqkPrr0TXm9TmHaMG+Ws4FhV78UKC/Y6T1S7iarkxe4fcu/S3en6\ne3PMyvlQ4X2W/Jw960nGhp+vE9+bTnTdy3a9d+2p6mVIsOCDlpx27tzT6UmZMP02Tr8nzwb1hpc4\njygPuSZqz2bkFI13P0C5q3R3195cri7itMN1rPI2H5Shfj4oU60nSXHelkxYL5q4biq0YQrzjTGS\nrTK/i3NIzqt0TSpvk2jrFDYuH+2BIPK93UN0f1lZBf8F/4wpBNBHLYLCMcqvW6HN1POB8D2xz0p7\nsMl6xMa1UMk1sUHZ74Rlg7P/ackbRzs+3NP1ip3poevcE3vpsU+8B3a0t+VU1f30kfc5+tKLJT2V\nlB7ZTQplZU/sqK6lXbv2dPRaWg7k/bI3h9qLp6+qS3zry/M9+fLDF7Kc8Pmze+2b4JnMl+/74fOM\nH7afvPCZIrFulVfzHGOUcRLPOOHvA5N14F6e1n599vv+ce/7UdMqkvb1uPtVJ/TgptbaLl9KlPpW\nmb8/4t831cj51ALf+vKsLyPF5RYA7Avf+rLWBu0wyhL0Yb0WvPPyyy9r1qxZkqTp06dr3bp18bK3\n3npLTU1NGjp0qCTpuOOO04svvqi1a9dW3QbozwZmGzRj9DTNGD1N1lptadkaBPLs2KT3P96uj/2c\n/Fzw8J63njzfq/rA3iPc8CfdXaCH2ZIh+i5rTfc/qGQ7NPkLl5LtjSmf19usleS7QcCaSR7chulO\nzDPRL1AOYNqsCYPparQxb6udVxTl5cu4Xtf7aenm4aJrGh2jLGgxnGckuflE8OC+s1aSFzZ3HS8M\nHDx4WdszecD6JgzsdMLrnevVvBWXWTYMUIjzVjfta9oqBfCWBNWWbdKNdHV9b0YBoV0mqsI6yXIv\nCIbcl/s2/oytI/lGNrz2ldNuE+koTXtpeku3r7BtvG4wr0fu2ej+8Z3CfbT3e+nGOsn7pFIgVek8\nU/2eigOuvXD8wJQ/hTZCJ+Vs6bLu7LNbEutVPN1O9lMpv5YF1wd5ovDj93jZFTeVOq2vSuYnllcM\n1LcqzieJNk4hTybmJ9tAJjlM5s99y1uFsiEYWr8wfuDsY16o0eaYpAqXZF+/6Y3yRcmLKMmfite/\ntI7sIj2Vyr2obg/LGhuXOaXlTeV7vZDmTs5vP6/TXpdl1cr3KE+HaTal1zc5ndxHN8vkquVIUdRk\n8nrZkrIkeaFKy67S61Bh37Z8m+L67gCL75dCHVBeJ4Tjla5ZxevZjWu9V23VQhqCl6uS6eu8rqra\nTk7Wdb3YhihuMzrdzCdd1fcl6+yXPvD8tt+n0nvn0P1n5irPJxXag5XvgSpt3mrlR8XtEuuWtulU\nIV9HhW3cbgnrFls8r+sPKPl8VVqWlObXQnka5I2ojWSkMK8UpUGmsP+ScllGMsllReVOtTLKFNcl\nif0G10eFZYmyuqjOjT+HxHRcPtmya6DwhcrgVBJ1eXR+pdd+XzNEZ2VL/Fn4RWWnws+n9D4vKrei\ntMafj5M47+7kj8p5w5Tm24rJ72z/1fJM6YEqPAvEm5TU55XyUoU8XFZ/FyW3lhvUVZQ+T3X6wraU\nvO8rjktd3M9dJWg/64SK6Zek4KXs8vZ+aRs0mchK7VOVjJcOK6W/MK+4zVNh3UrXp7M2ftX7tsI6\nybKj4njJZ11Wp5QM97Y92C3p5EHXDtD/nPXfNXrokFSOj73Xa8E7LS0tamxsjKdd11U+n1cmk1FL\nS4sGDx4cLxs0aJBaWlo63aaa4cMHKpMhBKCvOeSQwV2vhH02evQQHXv4lE7Xid7syftBME/eesr7\neXnRdLTMRtN55cO3eKL18ol1g/mJfVhPnu/H0e++H7zxE70F5NvCW0H71STpzqvM1TaVCkFMtjAe\nvZkbjVuFf+rLuIlh9Ge8iufF21hbYah4Wjbok0FW8uWHw+T8rpcH+/PjVGecjLJuVnVOVhk3Uxi6\nGWWcbDjMyPN95fyccl6+MPRyyvnFQxO+8eUaV47jyC0ad+WaQu8jvk181omhH94D0Y9NXP3C287R\ndOGzcR2n/NiOWzhuuDy6PtZa+TbotcKXjaOkg/mJ3i1KpuP15MuLugUqYorGKt1t1d926rqxZaLH\nPRt8foVzLPR8lTGZxDV3gx4w/LzyfvD55b3g7fycF83LK+/n4nsuPpYpZJdkmm2nKS1e4oQ9zkTR\n545xwh4cnHhZcn7yjcHCeGG9qDzJh2nO+3nlbE55PxefY97PyVfQE07UW1Oy5yYjhZHwJj63Qs9B\nRVsp6jmp0AtR4k36CttFV8izfnBvxb1ahNMq3Nu9YT+Kt/0/dsndXvomXaEHjKyyTjYc1ikTjxeG\nRiboTcIPe+fxw54lynqYyMfHiv9FZWZiWlLQq4sb9J5T7wY96gxwG8KeXYLxOqdeOT+nDq9NbX6b\n2v2P1e63qd0rjHf4bWrz2mSkQtpNcB5Zk1XGqQuGJquMk5WRI8/m5Vsv7hXDKxoGP758Rb00FXpv\nSLxBKyNjnKJ1nHjdxDoy8Ta+fHk2X3RcPxwm50kK86CbyH9uIU8metaJ3sj1rBf2eOLF+4ymJane\naSj/MQNU7zRogDNQ9U6DsqZOeduhdtuuDj/oASkXjdu2cF4w7oc9qxT3NhSNB9OlbwlH9u4xtvpT\nf/kdXbLM2rKl1bcvrS3Kl1RbXn27StsW5gdlX1imJspho0Q5m+yJyQY9u/kK38J2gx56wlpTvvWK\n929Kj2yK0lp+VpXWrbTcJKajGsjE5xDkAFflvZ6F+SDsnceXF6fbkycbzovOqfck7wZbdq8Ur2HL\ntkhOu6Yu0XteJsynUU9YUQ97TsmebNkwebxkbyqFdUqWVRq3pfsuP4+isQr5s/qLAZXzTNV9V91P\n8jjBOkEp6RbKUhXfL8lhtL7CsdL/l/6ysfR6xOMmXGZKr1XpdoltquwzOV1Im5NouSTzS3GLRUXj\nleapk2XFeTRIQVgeOH5hXMXjB8x+tX/27Zed1bbqLCk90QtO916o6fwX4JWmqz2zBGnOVMkjhenk\nXoryZoVTrngOiS+UCvd7oidO2aJpxdPJ+zb60rPyvVz9TLuZxm5uX75taWlVvjyo3aJzSLTrbMl1\ntiXXOtlLqKlcXiTLnvKyJsqn0ZVyEnndFPWOW35+0YOiLTrn4uXJ9lJ5+debujpCfD/bqF5wVHxf\nOzJ+ocwLLn/pNe2i/C/6bHxVv68KqUqOGevIKJNIa9hjsQ3a50GPeU7x8aPeOZP5xVhZYwv3mHVk\nvOjcC/WgbKE+7N41top6zQ16BfWKx40vm+msPqhUDnW3jNuf8jSdL7nK9PiXd/uj2jNE9bnVlxU/\nB1VvryU+8WSwQYUtS/dZtE70q5pkeWmNFLb3gvs6Gkb79YP87BTuYRmveFm1Uyo596J8pahX8aCX\ncuMX0hTsxo/3bxUElsTjxpdVXsnnnTgvxmWxpERdFyj8jre0vC9uMyb2Ge+vEOBnZMLZxc8OUZmS\nLE+Cyx7WV/H5uorrLz+ZxmQ5FPWqHZZPUa/p+9Rm7LysKC7Tsole44PyT3GZr7jsSvZgLuPLuuFn\nYkrL7715Pq+yzFaZr8rtxaLPNdFmKl5W8uxioznJtlDpvqs8x3VyjLL8aNTVx1GjKuUpI1m3eH78\nLBjd91H7yxbaFd1qG/VmnVFo8xXagI6C1+STy6Sye8aU3pOJtp+RCm3NZNs1uX5xOorEt2O1c+/q\nmpQfo+heNpXXKZtnE/WJDcsTP9F2il40iNp7cQBjWHY4UT2zn8/I+/VCas9nUmN9DRs5QIcM7973\n9ny/n75eC95pbGxUa2trPO37fhyEU7qstbVVgwcP7nSbaj7c3+6a0eMOOWSw3n9/d9rJQBkjKStH\nWTmSsqWLnfAH2EfkfaB/Iu8D/RN5H+ifyPtA/0TeB/on8j7QP5H3gRqTV7fyNHn/wOksSKrXvqqf\nMWOGVq1aJUlau3atJk+eHC+bNGmSmpubtXPnTnV0dOill17Sscce2+k2AAAAAAAAAAAAAAAAQK3p\ntZ53Zs+ereeff14XXHCBrLVatGiRVq5cqT179uj888/XggULdPnll8taq3POOUeHHnpoxW0AAAAA\nAAAAAAAAAACAWmWsrfAH7Q8idN/U99CtFtA/kfeB/om8D/RP5H2gfyLvA/0TeR/on8j7QP9E3gf6\nJ/L+gZPKn80CAAAAAAAAAAAAAAAA0DmCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAAAAAApITg\nHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEgJwTsAAAAAAAAA\nAAAAAABASgjeAQAAAAAAAAAAAAAAAFJC8A4AAAAAAAAAAAAAAACQEoJ3AAAAAAAAAAAAAAAAgJQQ\nvAMAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAA\nAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAAAAAAAAAAAAUkLwDgAAAAAAAAAAAAAAAJAS\ngncAAAAAAAAAAAAAAACAlBC8AwAAAAAAAAAAAAAAAKSE4B0AAAAAAAAAAAAAAAAgJcZaa9NOBAAA\nAAAAAAAAAAAAANAf0fMOAAAAAAAAAAAAAAAAkBKCdwAAAAAAAAAAAAAAAICUELwDAAAAAAAAAAAA\nAAAApITgHQAAAAAAAAAAAAAAACAlBO8AAAAAAAAAAAAAAAAAKSF4BwAAAAAAAAAAAAAAAEhJJu0E\noHb4vq9bb71VmzZtUl1dnRYuXKjx48ennSwAvSCXy+nGG2/Uli1b1NHRoSuvvFKHHXaYvvKVr2jC\nhAmSpHnz5unMM89MN6EAetwXv/hFNTY2SpLGjh2rK664QgsWLJAxRkceeaRuueUWOQ7x4UAtWbFi\nhZ544glJUnt7uzZs2KBly5ZR7wM17JVXXtH3vvc9LV26VM3NzRXr+l/+8pd67LHHlMlkdOWVV+qz\nn/1s2skGsJ+SeX/Dhg2644475Lqu6urqdPfdd2vUqFFauHCh1qxZo0GDBkmSHnjgAQ0ePDjllAPY\nV8l8v379+optfOp8oPYk8/61116rDz74QJK0ZcsWHXPMMbr33nup84EaUuk7vSOOOIJn/T6I4B30\nmGeffVYdHR1atmyZ1q5dq8WLF+vBBx9MO1kAesHTTz+tYcOGacmSJdq5c6fmzp2rq666Spdeeqku\nu+yytJMHoJe0t7fLWqulS5fG86644gpdc801mjlzpm6++Wb97ne/0+zZs1NMJYCedvbZZ+vss8+W\nJN12220655xz9Nprr1HvAzXq4Ycf1tNPP62GhgZJ0l133VVW10+fPl1Lly7V448/rvb2dl144YU6\n+eSTVVdXl3LqAeyr0rx/55136qabbtLUqVP12GOP6eGHH9YNN9yg1157TY888ohGjBiRcooB7K/S\nfF+pjf/+++9T5wM1pjTv33vvvZKkjz76SPPnz9cNN9wgSdT5QA2p9J3eJz/5SZ71+yBei0aPefnl\nlzVr1ixJ0vTp07Vu3bqUUwSgt5xxxhn6xje+IUmy1sp1Xa1bt05/+MMf9KUvfUk33nijWlpaUk4l\ngJ62ceNGffzxx7rssss0f/58rV27Vq+99po+85nPSJJOPfVUvfDCCymnEkBv+etf/6o333xT559/\nPvU+UMOampp03333xdOV6vpXX31Vxx57rOrq6jR48GA1NTVp48aNaSUZQA8ozfv33HOPpk6dKkny\nPE/19fXyfV/Nzc26+eabdcEFF2j58uVpJRdADyjN95Xa+NT5QO0pzfuR++67TxdddJFGjx5NnQ/U\nmErf6fGs3zcRvIMe09LSEv8ZDUlyXVf5fD7FFAHoLYMGDVJjY6NaWlp09dVX65prrtG0adN0/fXX\n62c/+5nGjRun+++/P+1kAuhhAwYM0OWXX66f/vSnuu2223TdddfJWitjjKSgbNi9e3fKqQTQW37y\nk5/oqquukiTqfaCGnX766cpkCh01V6rrW1pairrMHzRoEEF8wEGuNO+PHj1akrRmzRo9+uij+vKX\nv6w9e/booosu0pIlS/TII4/o5z//Ob/MBw5ipfm+UhufOh+oPaV5X5K2b9+u1atXx73uUucDtaXS\nd3o86/dNBO+gxzQ2Nqq1tTWe9n2/rAEAoHZs3bpV8+fP15w5c3TWWWdp9uzZ+tSnPiVJmj17ttav\nX59yCgH0tIkTJ+oLX/iCjDGaOHGihg0bpu3bt8fLW1tbNWTIkBRTCKC37Nq1S5s3b9aJJ54oSdT7\nQD/iOIVfHUV1fenzf2tra9Ev+ADUhl//+te65ZZb9NBDD2nEiBFqaGjQ/Pnz1dDQoMbGRp144ol8\nkQfUkEptfOp8oH/4zW9+o89//vNyXVeSqPOBGlT6nR7P+n0TwTvoMTNmzNCqVaskSWvXrtXkyZNT\nThGA3vLBBx/osssu07e+9S2de+65kqTLL79cr776qiRp9erVOvroo9NMIoBesHz5ci1evFiStG3b\nNrW0tOjkk0/Wn/70J0nSqlWrdPzxx6eZRAC95MUXX9RJJ50UT1PvA/3HUUcdVVbXT5s2TS+//LLa\n29u1e/duvfXWW/wOAKgxTz31lB599FEtXbpU48aNkyT97W9/07x58+R5nnK5nNasWUMbAKghldr4\n1PlA/7B69Wqdeuqp8TR1PlBbKn2nx7N+30S3KOgxs2fP1vPPP68LLrhA1lotWrQo7SQB6CU//vGP\ntWvXLj3wwAN64IEHJEkLFizQokWLlM1mNWrUKN1xxx0ppxJATzv33HN1ww03aN68eTLGaNGiRRo+\nfLhuuukm3XPPPTr88MN1+umnp51MAL1g8+bNGjt2bDx966236o477qDeB/qBb3/722V1veu6uvji\ni3XhhRfKWqtrr71W9fX1aScVQA/xPE933nmnDjvsMH3961+XJJ1wwgm6+uqrNWfOHJ133nnKZrOa\nM2eOjjzyyJRTC6CnVGrjNzY2UucD/cDmzZvjYF1JmjRpEnU+UEMqfaf3ne98RwsXLuRZv48x1lqb\ndiIAAAAAAAAAAAAAAACA/og/mwUAAAAAAAAAAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAA\nAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnBOwAAAAAAAAAAAAAAAEBKCN4BAAAAAADAXlmxYoUW\nLFiQdjIAAAAAAABqAsE7AAAAAAAAAAAAAAAAQEoyaScAAAAAAAAAveOhhx7SM888I8/zdMopp2je\nvHn66le/qnHjxqm5uVljxozRkiVLNGzYMP3+97/XD37wA/m+r3Hjxun222/XqFGj9MILL2jx4sWy\n1mrMmDH6/ve/L0lqbm7WxRdfrL///e866aSTtHDhwpTPFgAAAAAA4OBEzzsAAAAAAAA1aNWqVVq3\nbp2WL1+uJ598Utu2bdPKlSv1+uuv65JLLtGvfvUrTZo0ST/60Y+0fft23Xzzzbr//vu1cuVKzZgx\nQ7fffrs6Ojp03XXX6e6779bKlSs1ZcoUPfHEE5KkrVu36r777tMzzzyjVatW6Y033kj5jAEAAAAA\nAA5O9LwDAAAAAABQg1avXq1XX31VZ599tiSpra1N1lpNmDBBM2fOlCTNnTtX1113nU4++WRNmzZN\nY8eOlSSdf/75euihh7Rp0yYdeuihmjp1qiTpm9/8piRpxYoVOv744zVs2DBJUlNTkz788MMDfYoA\nAAAAAAA1geAdAAAAAACAGuR5ni655BJdeumlkqRdu3bpvffe07XXXhuvY62V67ryfb9oW2ut8vm8\nstls0fzdu3ertbVVkpTJFH6tZIyRtba3TgUAAAAAAKCm8WezAAAAAAAAatCJJ56op556Sq2trcrn\n87rqqqu0bt06bd68WRs2bJAkPf744zr11FN1zDHH6JVXXtG7774rSVq2bJlmzpypiRMnaseOHXrz\nzTclSY888oh+8YtfpHZOAAAAAAAAtYiedwAAAAAAAGrQaaedpo0bN+q8886T53maNWuWTjjhBA0d\nOlQ//OEP9c4772jKlClauHChBg4cqNtvv11f+9rXlMvlNGbMGN15552qr6/XkiVLdP311yuXy6mp\nqUnf/e539dvf/jbt0wMAAAAAAKgZxtKnMQAAAAAAQL/w7rvvav78+XruuefSTgoAAAAAAABC/Nks\nAAAAAAAAAAAAAAAAICX0vAMAAAAAAAAAAAAAAACkhJ53AAAAAAAAAAAAAAAAgJQQvAMAAAAAAAAA\nAAAAAACkhOAdAAAAAAAAAAAAAAAAICUE7wAAAAAAAAAAAAAAAAApIXgHAAAAAAAAAAAAAAAASAnB\nOwAAAAAAAAAAAAAAAEBK/j8f2/XossdQIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOkAAAJoCAYAAAA5hyfyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX6//HPJJNMSA9JaNKR5oIiIixdEL8CgiKISBFU\nWCvqsoKLuijIirK66gosyk8FQUB6F1hKBAQEQVqkhCItBBJCJm1In98fMWczpBCSmYRl3q+/Ts5z\nznPuMzPPXtfqx/sx2e12uwAAAAAAAAAAAAAAAAC4jEdFFwAAAAAAAAAAAAAAAADc6gjpAAAAAAAA\nAAAAAAAAAC5GSAcAAAAAAAAAAAAAAABwMUI6AAAAAAAAAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABc\njJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAACrA0qVL1bhxYzVu3Fhr1qyp6HJKJa/+4cOHu+wZGRkZ\nOnnypMvmBwAAAAAAKC+EdAAAAAAAAHBT2rFjhx5++GF9//33FV0KAAAAAABAmZkrugAAAAAAAADg\nWjExMXr66acrugwAAAAAAACnoZMOAAAAAAAAbjrZ2dkVXQIAAAAAAIBTEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBi5oouAAAAAAAAOEfjxo0lSePGjdPgwYO1cuVKLVq0SFFRUcrMzFTN\nmjX18MMPa9iwYfL29pYk7d69W998840OHDggq9WqKlWqqFOnTnrxxRdVpUqVIp919epVzZ8/Xxs3\nbtSpU6eUkpKi4OBgNWvWTL1791aPHj3k4VH8fxv0ww8/aP369dq3b5/i4+Nls9nk7++vmjVrqm3b\nthoyZIiqVatW4L4pU6Zo6tSpCggI0J49exQXF6eZM2cqIiJCMTExMpvNatCggXr06KFBgwYZ7+oq\ne/bs0apVq/TLL78oNjZWKSkp8vPzU9WqVdW6dWsNGjRIDRo0uO48V65c0eeff65Nmzbp0qVLCg4O\nVosWLdS/f3917ty5yPvS0tK0cOFCbdiwQVFRUUpNTZW/v79q1aql9u3ba9CgQcV+l9nZ2Vq/fr1W\nrVqlQ4cOyWq1ys/PT3Xr1lXnzp01ePBgBQUF3dBnsmvXLg0dOlSS9Nprr+nZZ58t9Lp169bp1Vdf\nlSS9//776tu3r6T//pbzTJ06VVOnTpUkzZ49W23atHEYt1qt+vbbb/XDDz/o7Nmzunr1qkJDQ3XX\nXXepb9++xX5+zmK327V27VqtWrVKkZGRSkhIkJ+fnxo0aKD7779fTzzxhPz8/Aq9N+9933jjDd13\n332aOHGi9u7dK7PZrNq1a2v06NFq166dunbtqujoaA0dOlTPPfecJk6cqG3btslut6tmzZp69tln\n1bt3b2PejIwMLV++XOvXr9eRI0eUlJSkgIAA3X777erWrZsGDBggHx+fMtUEAAAAAABKjpAOAAAA\nAAC3mMzMTL3wwguKiIhwOB8VFaWPPvpIO3bs0FdffaVp06Zp2rRpstvtxjXR0dGaP3++Nm3apMWL\nF6tq1aoF5j948KBGjhypS5cuOZyPi4tTRESEIiIiNGfOHH322WeFhkMSEhI0cuRI7dmzp8CY1WqV\n1WpVZGSk5s6dq3//+99q27Ztke+6Z88evfTSS7JarQ7n9+/fr/3792vp0qWaPXu2goODi5yjtNLS\n0vT6669r/fr1BcYSExOVmJioqKgofffdd3r//ff18MMPFznXqVOn9P777ysuLs44FxcXpw0bNmjD\nhg3q1auXJk+eLLPZ8R/lxMTE6JlnntGpU6cczickJCghIUEHDx7UzJkz9c9//lPdunUr8Nzo6GiN\nGjVKBw4ccDhvtVqNz3DWrFn66KOP1KlTpxJ9LuVty5YtGj16tJKSkhzOx8TEKCYmRuvWrVPXrl31\n4Ycfyt/f3yU1xMfHa+TIkfrll18czlutVu3du1d79+7VrFmz9Nlnn+nuu+8ucp6LFy9q4MCBunLl\ninHu8OHDql27tsN1KSkpGjx4sE6fPm2ci4qKclivR48e1Z///Gf99ttvDvdeuXJFu3fv1u7duzVz\n5kxNmTJFzZs3L3NNAAAAAADg+gjpAAAAAABwi/niiy+UkJCg5s2ba+jQoapZs6aOHz+ujz/+WFar\nVTt27NDzzz+vLVu2qH79+ho+fLgaNmyo2NhYzZgxQwcPHlRsbKw++eQTffDBBw5zHz9+XMOGDZPN\nZpOfn58GDRqktm3bKiAgQNHR0Vq9erU2btyoffv2afjw4VqwYIF8fX0d5njllVeMgE67du306KOP\nqkaNGsrMzNSZM2f07bff6vjx47LZbBo7dqw2b94sT0/PAu+ZlpamF198UampqRo4cKDuv/9++fv7\n6/Dhw/r8888VGxurY8eO6ZNPPtGECROc/jm/8847RkCnWbNmGjhwoGrXri0PDw+dO3dOCxYs0L59\n+5SVlaV33nlHHTt2VEhISKFz5YWlOnXqpAEDBigsLExHjhzRF198oZiYGK1evVrBwcEaN26cw31j\nx47VqVOn5OnpqWHDhql9+/YKCgrSlStXtGXLFi1YsEBpaWkaM2aM1q9f7xCaunLlip555hkj6HHP\nPfdowIABqlu3rqxWqzZu3KglS5YoMTFRzz//vL788sty65yyfPlyxcbGGh14BgwYoIEDB0qSQzhk\n586deuGFF5Sdna3Q0FANHjxYrVq1ko+Pj06fPq3Fixdr9+7d2rx5s0aOHKmvvvqq0N9SWdhsNg0d\nOlQnTpyQyWRS79699eCDD6pKlSqyWq3aunWrFi5cqNjYWD3zzDNauHChGjZsWOhc33zzjex2u0aM\nGKEuXbro8uXLOnLkiGrWrFng88nJydFjjz2mPn36KDk5WTt27FDr1q0lSadPn9bTTz9tBGu6dOmi\nPn36qEaNGoqNjdXq1au1du1axcTEaOjQoVqwYIEaNWpUppoAAAAAAMD1EdIBAAAAAOAWk5CQoPbt\n2+vzzz83tnpq2bKlqlWrZoQetmzZoubNm2v27NkOIZqOHTvqwQcf1MWLFxURESG73S6TyWSMjxkz\nRjabTdWqVdOcOXMcAhN33nmnevTooblz5+rdd99VVFSU/v3vf2v06NHGNTt27NDu3bslSQ888ICm\nTJniMH/btm3Vv39/DRw4UAcOHNDFixe1b98+tWrVqsB7ZmZmKiUlRZ9//rlDl5e7775bnTp1Uu/e\nvXX16lWtXr1af/vb3+Tl5VXWj9Zw+vRprVixQpJ011136dtvv3XYVqtVq1Z69NFH9corr2j9+vWy\n2WzaunWrHnnkkULnywtBjBkzxjjXokULPfjggxo8eLBOnTqluXPn6vHHHze2IYqOjtZPP/0kSXr5\n5Zf1wgsvOMzZuXNnNWjQQO+++65sNptWr16tZ555xhj/+OOPjYDOk08+qbfeesvhu+jcubO6d++u\n5557TpmZmRozZow2btyoSpUqleGTK5mmTZsqICDA+Ds8PFxNmzZ1uCYvfJSdna1GjRrpm2++UeXK\nlY3xu+66S4888og+/PBDffnll9q5c6cWLlxohH2c5ZNPPtGJEydkNps1depUdenSxWG8U6dOeuSR\nR/Tkk0/KZrPprbfe0sKFCwudKycnR88//7xGjRplnOvevXuh1/Xq1Uvvvfeeca5r167G8YQJE4yA\nztixY/X000873N+tWzd17txZY8eOlc1m0+jRo7VixQqH7/9GawIAAAAAANdX/ObwAAAAAADgf9Jf\n//pXh9CIlBsWyB+wGDNmTIEuNz4+Pmrfvr2k/249lWf79u06cuSIMX9R290MHjzY6Ogxf/58ZWZm\nGmO//fabatWqJS8vL40cObLQUICnp6d69uxp/B0bG1vkez7wwAOFbsNUq1Yto+tLSkqKzp8/X+Qc\npXH8+HHVqVNHFotFzz33XIHPOk/+La6u3R4sv8aNG+svf/lLgfOVK1c2ugDZ7XYtWLDAGLt8+bJx\nXKdOnULnfeyxx9S/f3+9+uqruvPOO43zV65c0bJly4xnv/HGG4V+F+3bt9fzzz9vPC/vnpvBypUr\nje3B3nvvPYeATn6jRo0yPp/Zs2c7tYakpCQtWrRIktS/f/8CAZ08zZs314gRIyRJBw4cKLC9WH4l\nDREVdd2RI0e0Y8cOSdJ9991XIKCT59FHH1Xfvn0lSceOHdPWrVvLXBMAAAAAACgeIR0AAAAAAG4x\noaGhRreV/Ewmk7Hdkbe3t+65554i789js9mM4x9++ME4zgvyFKVz586ScgMyhw4dMs4PHjxYGzdu\n1MGDB9WkSZMi7w8PDzeOMzIyiryuQ4cORY7lDxGlpqYWW++NeuCBB7R+/XodOHDAoYPJtcLCwozj\n4t7jscceK3IbptatW+u2226TlBuUylO7dm2ZzblNkj/44ANt3LjRIRAlSRaLRX//+9/14osvOnQj\n+umnn5SVlSUpN1xS3BZQ+QMaxQU5ylve7zEgIMAhgHQts9ls/F5PnTpVbFjqRu3evVtXr16VdP01\nkT9MtnPnzkKvqVq1qqpVq3bd55rNZjVv3rzQsW3bthnHAwYMKHae/N9t/vtKUxMAAAAAALg+trsC\nAAAAAOAWkxfoKExex5eQkBAj4FHUNVJu95Y8eV10JBmdckri3LlzatmypcM5Dw8PY/7Y2FidO3dO\np0+f1okTJ3To0CGHTiM5OTlFzl3cu+bvEpSdnV3iem9E/u4zly9f1rlz53TmzBmdPHlSkZGR2rdv\nnzGe/7O81l133VXsc5o2baro6GidPn1a6enpslgsCgkJUf/+/TV//nxdunRJL730kvz8/NSmTRu1\na9dO7du3V/369QudLyoqqsTPDg0NVa1atXTu3DmH+ypa3u8xOTm50FBaUc6dO6eqVas6pYbDhw8b\nxyNHjryhGgpTvXr1Et0fEhIii8VS6Njx48eN4xYtWhQ7zx133CEvLy9lZmbq2LFjZaoJAAAAAABc\nHyEdAAAAAABuMX5+fte9pqiATnESEhJKU46SkpIc/rbb7Vq7dq0WLlyoAwcOOHTryZMX4rmea7fr\nyi9/gKa4gExZbNu2TfPmzdPPP/+s5OTkAuMlfY+itmrKExISYhwnJiYaHZHeeusteXt7a+7cucrK\nylJqaqo2b96szZs3S8rtttOzZ08NGzbM4Rn5tzHL3zmpKGFhYTp37pwSExNL9D7lwVm/x5upBn9/\n/xLdX9waz/tuPTw8HH43hTGbzQoODlZcXFyR321JawIAAAAAANdHSAcAAAAAgFtMcVsXlUXe9kgh\nISGaOXNmie/L37UkPT1dr7zyisPWWSaTSTVr1lT9+vXVtGlTtWzZUlarVa+//rrTanc2u92ucePG\nadGiRQ7nq1evrvr166tx48a6++67FRAQoKeeesopz8uTv9ORl5eX3nzzTf3pT3/S+vXrFRERoT17\n9igtLU2SdPbsWX3++eeaN2+evvrqK2NbqBsNLeV1Iipp6KikiuuSdD15v8fGjRtr8uTJJb6vZs2a\npX7mtfJ3aJo2bVqxnZ3yK2vwJX8A7Vo3+t3mfQfO/m4BAAAAAEBBhHQAAAAAAECJBAcHS5JsNpsa\nN25cqn+p/9lnnxkBnWbNmumll15S69atC4QWli5dWuZ6XWn+/PlGQKdu3bp65ZVX1L59e+MzyrNr\n164SzZeYmKhatWoVOR4fHy8pt/NJQEBAgfHw8HANGTJEQ4YMUUZGhn755Rdt375da9asUXR0tJKS\nkjRmzBitXbtWHh4eDnXGx8dfN1yS9/ygoKASvU9JuxilpKSUaL7C5HWASU9PV9OmTUs9T1nk/zwq\nV65cYXXkl1dTTk6OEhISiu3SlJmZaXT1Kel3CwAAAAAASo//RAYAAAAAAJRIw4YNJeV2wzly5Eix\n127dulVff/211q9frytXrkjK7Try3XffSZICAwP1zTffqGvXroV2Fblw4YKTq3euefPmScrtWvTl\nl1/qoYceKhDQkaSYmJgSzXfixIkix+x2uyIjIyXldo3J65SUk5Ojc+fOaefOnQ7Xe3t7649//KNe\ne+01rVu3Ti1atJAknT59Wr/99psxT56DBw8WW1tsbKyio6MlSfXr1y/R++Tv5nT16tUiryvL95z3\nezxz5ozxGyvKmjVr9M0332jjxo2Fbq9W1hok6cCBA8Ve+9tvv2n69OlauXKlTp8+7bQarpX/u71e\nTb/++qsyMzMllfy7BQAAAAAApUdIBwAAAAAAlEiHDh2M47yQSmGys7M1YcIETZ48Wa+88ooR0rhy\n5YrROaV27dpFbvmTmZmpdevWOcx3szlz5oyk3LBRcR1wVq1aZRznbc9UmO+//77IsR9++EFxcXGS\npI4dOxrnx40bp27duumpp57SuXPnCr03L7CTJz09XZLUpk0beXl5SZIWLVpU7LZTecEqSWrXrl2R\n1+UXGBhoHOcFfAqzdevWIseu16kp7/dot9sdarxWcnKyxo0bp0mTJmnMmDHFbhV1o9q2bSuzObdR\n9aJFi4zAS2GmT5+uTz/9VGPGjNH+/fudVsO18q/TBQsWFHvt/PnzjeP27du7rCYAAAAAAJCLkA4A\nAAAAACiRbt26GYGUJUuWaOXKlYVe9/777+v8+fOSpPvvv9/YSikgIMAINJw4caLQLioZGRl65513\ndPz4cYdzN5uQkBBJUkJCgg4dOlRg3G6367PPPtOPP/5onCvuPbZs2aKFCxcWOB8TE6N3331XkmSx\nWDRo0CBjrEuXLsbx+++/X+i2UlevXtWmTZskSX5+fqpXr54kKTQ0VL1795YkHT16VP/4xz8KrWvH\njh2aMWOGpNztnB599NEi3yG/2rVrq1KlSpKkjRs3FtpRaNasWfr111+LnMPb29s4Lqz7Tf/+/Y2g\n1/Tp0wt0FJJyuw2NHTtWqampkqTHHnvMqMsZwsPD1atXL0nSyZMnNXHixEK/h7Vr1xqBrfDwcHXv\n3t1pNVzrjjvuUOvWrSVJERERmj17dqHXLV++XMuXL5eU20Xnvvvuc1lNAAAAAAAgl7miCwAAAAAA\nAP8bzGazJk+erGHDhikzM1Ovv/66IiIi9NBDDyk8PFzR0dFasGCBfvrpJ0lSUFCQ3nzzTeN+Hx8f\ndenSRRs2bFBaWpqefPJJjRgxQo0aNVJGRoaOHj2qhQsX6tSpUw7PTU5OLtf3LIkePXpo1qxZkqTn\nnntOI0aMULNmzWQymXT8+HEtXbq0QHgnr4tQYSpVqqRx48Zp37596tmzp/z9/bV//37NmDHD2Mpp\n7Nixqlq1qnFP165d1bx5cx06dEibNm1Sv379NHDgQNWtW1d2u12nTp3St99+awSehg8f7hBQ+etf\n/6pdu3YpOjpaM2fO1KFDhzRgwADVrVtXVqtVGzdu1JIlS5SVlSWTyaTJkycrKCioRJ+PxWJRjx49\ntHTpUtlsNg0ePFgvvPCCGjZsqMuXL2vFihX6z3/+o9q1a+vs2bOFzhESEiIvLy9lZmZq9erVateu\nnQIDA1WnTh0FBwcrMDBQEydO1KhRo5SRkaERI0aoX79+uv/++xUYGKjTp09rzpw5RhCoZs2aevnl\nl0tU/43I+xxjYmK0YMECHT16VIMGDVK9evUUHx+vzZs3a9myZcrJyZHJZNL48ePl4+Pj9Drye++9\n99SvXz8lJSXpvffe086dO9WnTx9Vr15dcXFxWrNmjdG9yWKx6JNPPjECdAAAAAAAwHX4f98AAAAA\nAKDE7rnnHs2YMUOjRo2S1WrV999/X+hWTdWqVdO0adNUs2ZNh/Pjxo3TkSNHdP78eZ0/f17jx48v\ncK+/v7/eeOMNvf3228rOznboqnOzePnll7Vnzx5FRkYqPj5ekydPLnCNl5eXXnvtNc2cOVOXLl0q\n9j0mTpyoCRMmaOnSpVq6dKnDmKenp0aPHu3QRUfK3Q5q6tSpGj58uE6cOKFff/1Vf/vb3wrMbTKZ\nNHDgQL344osO54ODg/Xtt9/qpZde0uHDh7Vnzx7t2bOnwP2VK1fWP/7xD4ettkpizJgxioyMVFRU\nlKKjowvUVq9ePU2dOlUPPfRQofd7enqqa9euWr9+vWJjYzVixAhJ0qRJk9SvXz9JUs+ePZWVlaW3\n335bV69e1YIFCwrd4qlhw4aaPn26wzZczlK5cmXjczx69KgOHDigAwcOFLjOx8dH48ePV7du3Zxe\nw7Vq166tOXPm6KWXXtL58+e1efNmbd68ucB1tWrV0ieffKImTZq4vCYAAAAAAEBIBwAAAAAA3KB2\n7dpp06ZNmj9/vn744QedPHlSycnJ8vX11e233677779fTzzxhLEVUX5Vq1bVsmXL9PXXX2vTpk06\ne/assrKy5O/vr3r16qlDhw4aMGCAwsPDtXTpUu3du1dbt26VzWaTr69vBbxt4fz9/TVv3jzNmTNH\na9eu1alTp5Seni4/Pz/VqlVLbdq00aBBg1SrVi0dPnxYK1eu1MGDBxUdHW1s/5XfnXfeqeXLl+vf\n//63fvzxR125ckWhoaFq27atnn76aTVu3LjQOqpVq6Zly5ZpyZIl2rBhg6KiomS1WuXl5aUqVaqo\nTZs26tevn+66665C769Ro4YWL16s1atXa+3atYqMjJTValVwcLBq166t7t2765FHHilxB538Kleu\nrMWLF2v+/Plas2aNTp48Kbvdrjp16qhHjx4aNmyYsrOzi51j0qRJCg0N1aZNm3TlyhUFBgYqISHB\n4ZqHH35Y7dq109y5c7Vt2zadPXtWqamp8vf3V5MmTdSjRw/17dvXYfssZ6tZs6aWLl2q1atXa926\ndYqMjFRCQoLMZrNq1aql9u3ba/DgwcZ2ceWhSZMmWrt2rRYtWqQNGzbo2LFjSk5OVmhoqOrVq6de\nvXrpoYcecur2XwAAAAAAoHgme2EbZQMAAAAAAAAAAAAAAABwGo+KLgAAAAAAAAAAAAAAAAC41RHS\nAQAAAAAAAAAAAAAAAFzMXNEFAAAAAAAAlIfU1FSdPXu2zPPUrl1bfn5+TqgIFeXEiRPKzMws0xxB\nQUGqUaOGkyoCAAAAAADuwGS32+0VXQQAAAAAAICr7dq1S0OHDi3zPLNnz1abNm2cUBEqSteuXRUd\nHV2mOR599FF98MEHTqoIAAAAAAC4A7a7AgAAAAAAAAAAAAAAAFzsf6aTTlxcckWXgEKEhPgqIcFW\n0WUAKGesfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNrv/yEhwcUOUYnHZSJ2exZ0SUAqACs\nfcA9sfYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr/+ZASAcAAAAAAAAAAAAAAABwMUI6AAAAAAAA\nAAAAAAAAgIsR0gEAAAAAAAAAAAAAAABcjJAOAAAAAAAAAAAAAAAA4GKEdAAAAAAAAAAAAAAAAAAX\nI6QDAAAAAAAAAAAAAAAAuBghHQAAAAAAAAAAAAAAAMDFCOkAAAAAAAAAAAAAAAAALkZIBwAAAAAA\nAAAAAAAAAHAxQjoAAAAAAAAAAAAAAACAixHSAQAAAAAAAAAAAAAAAFyMkA4AAAAAAAAAAAAAAADg\nYoR0AAAAAAAAAAAAAAAAABcjpAMAAAAAAAAAAAAAAAC4GCEdAAAAAAAAAAAAAAAAwMUI6QAAAAAA\nAAAAAAAAAAAuRkgHAAAAAAAAAAAAAAAAcDFCOgAAAAAAAAAAAAAAAICLEdIBAAAAAAAAAAAAAAAA\nXIyQDgAAAAAAAAAAAAAAAOBihHQAAAAAAAAAAAAAAAAAFyOkAwAAAAAAAAAAAAAAALgYIR2USlpW\nmt796SNtPb2roksBAAAAAAAAAAAAAAC46RHSQanYsq7qki1W+2IiK7oUAAAAAAAAAAAAAACAmx4h\nHZRKkHegTDIp3pZQ0aUAAAAAAAAAAAAAAADc9AjpoFQ8PTwVZAksdUjnxInjTq7oxowc+aw6dGil\nrl3bVWgdAAAAAAAAAAAAAADAPRDSQamFWIJ05apVOfacEt+TkpKiTz/9SMOHD3FhZQAAAAAAAAAA\nAAAAADcXs6smzsnJ0fjx43Xs2DF5e3vr73//u+rUqWOMz5o1S4sWLVLlypUlSRMmTFD9+vVdVQ5c\nINgnWL8lnVVyRoqCLIElumfKlI+1Zs1KF1cGAAAAAAAAAAAAAABwc3FZSGfjxo3KyMjQggULtH//\nfn3wwQeaPn26MR4ZGanJkyerWbNmrioBLhZiCZIkJaRbSxzSyckpedcdV5o6dUZFlwAAAAAAAAAA\nAAAAANyIy7a72rt3rzp27ChJatGihSIjIx3Gf/31V82YMUMDBw7UF1984aoy4EIhPsGSpIS0xAqu\nBAAAAAAAAAAAAAAA4ObmspBOSkqK/P39jb89PT2VlZVl/P3QQw9p/Pjx+uabb7R3715FRES4qhS4\nSHC+TjoAAAAAAAAAAAAAAAAomsu2u/L391dqaqrxd05Ojszm3MfZ7XYNGzZMAQEBkqTOnTvr8OHD\n6tKlS5HzhYT4ymz2dFW5KIX6HjWkSCndZFN4eECx106ZMkVTp051ONehQytJUuvWrTVnzhyNHTtW\ny5YtU5MmTbR48WL961//0vLly5WYmKgqVaqoe/fuGjNmjHF/enq6VqxYoS1btujIkSNKSEhQZmam\ngoKC1LBhQ9133316/PHH5evrW6CeJ598Urt375a3t7cOHTrkMNa4cWNJ0htvvKGnnnpK//nPf7Ro\n0SIdPnxYiYmJCgsLU5s2bTRs2DDdcccdpfrsgFvB9dY9gFsTax9wP6x7wD2x9gH3xNoH3BNrH3BP\nrH3APbH2K57LQjotW7ZURESEevbsqf3796tRo0bGWEpKinr16qXvv/9evr6+2rVrl/r161fsfAkJ\nNleVitJK95IkRVvjFBeXXOylqanpRY5lZGQpLi5ZaWmZkqSsrBy9+upftGnTf4xrzp8/r5wcD+M5\nx44d1RtvvKbY2EsF5rt8+bIuX76snTt3as6cuZoy5XOFh1cp8Mw8RdWelHRVI0e+qg0b1jmcj4mJ\n0fLly7Vy5UqNHv2GHn740WLfHbgVhYcHXHfdA7j1sPYB98O6B9wTax9wT6x9wD2x9gH3xNoH3BNr\nv/wUF4ZtYlc0AAAgAElEQVRyWUjngQce0Pbt2/XEE0/Ibrdr0qRJWrVqlWw2mwYMGKBRo0Zp6NCh\n8vb2Vtu2bdW5c2dXlQIXCfQOkKfJQ9a062931adPP3XqdJ++/PJzbd++TZI0c+ZcSVKlSo6dbk6d\nOqETJ6LUvPldevLJp+Xj46Pt27epZ8+HJUmJiVaNGvWSkpIS5enpqZ49e6tduw4KCQlVcnKijh+P\n0sKF82S1WnX+/FlNnfqpJkyYdMPv9913cxQfH6+6devp8ccHqUGDhkpOTtLatau0adMG5eTk6NNP\nP1Tr1m1VrVq1G54fAAAAAAAAAAAAAAC4D5eFdDw8PPTuu+86nGvQoIFx3KdPH/Xp08dVj0c58DB5\nqHKlYCWkJ1732tDQMIWGhikwMMg417Bh40KvzcnJ0W231dSnn06TxeIjSWrZspUxvmDBPCUl5T7z\npZde1eOPD3K4v23bDurRo5eefPJxpaSkaNu2LcrKyjK2Wyup+Ph43XNPa/3jH5/IYrEY5//4x3YK\nCAjU8uVLlJGRoY0b12nIkKduaG4AAAAAAAAAAAAAAOBePCq6APxvC/UNUWJ6krJzsp06b48evYyA\nzrUuX45TWFi4QkND1bfv44VeEx5eRXfffY8kKSMj3Qj13Kg//3m0Q0AnzyOP9DWOT5w4Xqq5AQAA\nAAAAAAAAAACA+3BZJ53/VQs3n9DPR2MruoxydW+TKnq86+2lujfUN0R22ZWUkawQn2Cn1fSHPzQv\ncuzNN9+RlNtxx8Oj6JxZ5cqhxnFGRuYN1xAeXkX16tUvdOy222oaxzab7YbnBgAAAAAAAAAAAAAA\n7oWQDsok1LeyJCkh3erUkE7VqlWve01eQCcrK0sXL8bowoVonTt3RidPntCvvx7SyZMnjGvt9pwb\nrqFatepFjlWq5GscZ2c7t4sQAAAAAAAAAAAAAAC49RDSucbjXW8vdVcZdxRaKTeYk5BmlYKcN6+v\nr3+x42lpaVq6dJE2blynkydPFBqU8fDwUE7OjYdz8uQP4lzLZDIZx3a7vdTPAAAAAAAAAAAAAAAA\n7oGQDsok1DdEkpSQnujUefNlYAq4cCFaf/nLSJ0/f8445+XlpVq1aqtOnXpq3LiJWrS4R+vXf69l\nyxY5tS4AAAAAAAAAAAAAAIDSIKSDMgnLC+mkWcvtmePHv2UEdLp1e1CPPTZATZrcIbPZ8ee8YsWS\ncqsJAAAAAAAAAAAAAACgOIR0UCau6qRTlKNHD+vw4UhJUsuWrTR+/HtFXnvp0sVyqQkAAAAAAAAA\nAAAAAOB6PCq6APxvC7QEyOxhljWtZCEdU3H7WJVA/i2uGjduWuR1MTEXdOjQAePv7OzsMj0XAAAA\nAAAAAAAAAACgLAjpoExMJpOCLUFKSC/Zdlfe3t7Gsc1mu+HnBQUFG8d79uxSVlZWgWvi4y9r3Lix\nyszMNM5lZGTc8LMAAAAAAAAAAAAAAACche2uUGYhliCdsP6mrJwsmT2K/0mFhoYZxzNmTFP37g/J\nw8NDjRo1KdGz7ryzhUJDwxQff1nHj0fp1VdfUN++j6tatepKSkrU/v2/aM2aFbJaHUNDqakpN/5i\nAAAAAAAAAAAAAAAATkJIB2UW4hMsu+yypicprFLlYq/t0KGTZs36UtnZ2Vq8eIEWL16gqlWracmS\n1SV6lsVi0bhx7+qvfx2l9PR0HTiwTwcO7CtwXa1atdWr1yOaPn2KJOm3306pefO7bvzlAAAAAAAA\nAAAAAAAAnIDtrlBmwZYgSVJC2vW3vGrYsLE++OCfatbsTlWq5CuLxSKz2ay0tLQSP69Vq9aaOXOu\nevfuo+rVb5OXl5e8vLwUFhaue+9to9dff0uzZs3To48+Jh8fH0nS5s0bSvdyAAAAAAAAAAAAAAAA\nTmCy2+32ii6iJOLikiu6BBQiPDxAS/b9RwuilmnYHU+odbWWFV0SgHIQHh7A/y4Dboi1D7gf1j3g\nnlj7gHti7QPuibUPuCfWPuCeWPvlJzw8oMgxOumgzEJ8cjvpWNMSK7gSAAAAAAAAAAAAAACAmxMh\nHZRZiCVYkpSQfv3trgAAAAAAAAAAAAAAANwRIR2UWYhPXkiHTjoAAAAAAAAAAAAAAACFIaSDMvM1\nV5K3h5esaXTSAQAAAAAAAAAAAAAAKAwhHZSZyWRSiE8wnXQAAAAAAAAAAAAAAACKQEgHThFiCVZK\nZqoysjMruhQAAAAAAAAAAAAAAICbDiEdOEWwJUiSZE1nyysAAAAAAAAAAAAAAIBrEdKBU4T45IZ0\nEtLY8goAAAAAAAAAAAAAAOBahHTgFCGWYElSAp10AAAAAAAAAAAAAAAACiCkA6cI9vk9pEMnHQAA\nAAAAAAAAAAAAgAII6cApQiy5211Z6aQDAAAAAAAAAAAAAABQACEdOEVIXieddDrpAAAAAAAAAAAA\nAAAAXIuQDpyiktlHPp4+Skijkw4AAAAAAAAAAAAAAMC1COnAaUJ8guikAwAAAAAAAAAAAAAAUAhC\nOnCaYEuQrmZdVVpWekWXAgAAAAAAAAAAAAAAcFMhpAOnCbEES5Ks6Wx5BQAAAAAAAAAAAAAAkB8h\nHThNiE+QJCkhjS2vAAAAAAAAAAAAAAAA8iOkA6fJ66STQCcdAAAAAAAAAAAAAAAAB4R04DQhPnkh\nHTrpAAAAAAAAAAAAAAAA5EdIB04TYsnd7sqaRicdAAAAAAAAAAAAAACA/AjpwGlupJPOiRPHXV1O\nqcXEXJDNllrRZQAAAAAAAAAAAAAAgFsIIR04jbent/zMvkooppNOSkqKPv30Iw0fPqQcKyuZjIwM\nzZz5/zRkSH8lJrJlFwAAAAAAAAAAAAAAcB5zRReAW0uwT5AuX42X3W6XyWQqMD5lysdas2ZlBVR2\nffPmzdZXX31R0WUAAAAAAAAAAAAAAIBbEJ104FQhliClZ2foalZaoeM5OTnlXFHJZWdnV3QJAAAA\nAAAAAAAAAADgFkVIB04V7BMsSUpIL3rLKwAAAAAAAAAAAAAAAHdDSAdOFWL5PaSTRkgHAAAAAAAA\nAAAAAAAgj7miC8CtJcQSJEmypic6nP/qqy80c+b/czjXoUMrSVKLFi01deoMh7Fdu3bq++9XKjLy\nkBISrsjb26KaNWupbdv26tdvgIKDg4usIS4uVkuXLtKuXTt17txZZWVlKjAwSA0aNFT79h3Vq9fD\nslh8jOu//36VJk2a4DBH//4PS5KqVauuxYtX3eCnAAAAAAAAAAAAAAAA4IiQDpwqxNjuKvE6Vxbu\n6tWrmjjxbW3dGuFwPiMjQ0ePHtbRo4e1cOE8jRs3UR06dCpw/969P+vNN0crNTXV4Xx8/GXFx1/W\n7t07NX/+HH388VTVrl2nVDUCAAAAAAAAAAAAAADcKEI6cKqitrvq06efOnW6T19++bm2b98mSZo5\nc64kqVIlX0lSTk6Oxo79i/bu/VmS1K5dRz34YE9Vr15dNptNe/f+rGXLFiklJUVvvTVG//znFLVq\n1dp4RnJyssaNG6vU1FQFB4do8OBhatr0Dnl7e+vSpYtas2alfvpphy5ejNGECX/Tl1/OlslkUocO\nnTRz5lwtX75EK1YslSR9+OGnCgsLl9ns5doPDAAAAAAAAAAAAAAAuAVCOnCqYEugpIKddEJDwxQa\nGqbAwCDjXMOGjR2uWbz4OyOgM3r0G+rTp5/DeKtWrdWr1yN68cXhio+P16RJE7Rw4QqZzbk/4x9/\n3KKkpNznTpr0oe68s4Vx7x13NFOXLt00btxYRURs1LFjR3Ts2FE1adJUgYFBCgwMUuXKocb1devW\nV/XqNcr6cQAAAAAAAAAAAAAAAEiSPCq6ANxavDy95O/lJ+s1nXSuJycnR999l9tZ549/bFcgoJPn\ntttq6vnnX5YkxcZe0pYtm42x+PjLxnGtWrULvX/o0KfVp89jevHFVxUQEHBDNQIAAAAAAAAAAAAA\nAJQWnXSusfTEau2LPVTRZZSru6s0V9/bezltvhCfYF1MvSS73S6TyVSie06ePK7Y2EuSpHvvbVPs\ntX/8YzvjeM+en3X//f8nSapTp65x/s03x+iVV/6ipk3/4HBvw4aNNXr02BLVBAAAAAAAAAAAAAAA\n4CyEdOB0IZZgnUuOVmqmTf7efiW6JyrqmHE8ZconmjLlkxLdd+FCtHHctm0HNWjQUCdPHtehQwf0\npz8NU1hYuO69t41atWqte+9t47ClFQAAAAAAAAAAAAAAQHkhpHONvrf3cmpXGXcU4hMkSUpIt5Y4\npJOYeGPbY+VJTk4yjs1ms/75z8/0wQcT9dNPOyRJly/Hae3a1Vq7drVMJpOaNv2Dund/SL1795GX\nl1epngkAAAAAAAAAAAAAAHCjCOnA6UIswZIka3qiagXcVqJ7srOzjePXXhurZs2al+g+i8Xi8HdY\nWLg++ugznTp1QhERm7Rz53ZFRR1VTk6O7Ha7Dh+O1OHDkVqxYqn+9a/pCg4OLuFbAQAAAAAAAAAA\nAAAAlB4hHThdiOX3TjppJe+OExAQaBz7+fmrYcPGZaqhfv3bVb/+7Ro+/DklJSVp3749+umnHYqI\n2KiUlBSdPHlc06d/pjfeeLtMzwEAAAAAAAAAAAAAACgJj4ouALeeYJ/c7jQJ6Yklvqd+/QbG8eHD\nh4q9NiEhQV9/PUNr167W8eNRxvnMzEydOnVSR48ecbg+MDBQnTt31V//+jfNmjVf/v4BkqQdO34s\ncX0AAAAAAAAAAAAAAABlQUgHTpe33VVhnXRMJlOh9zRt+gcFBuZ24NmwYZ1SUlKKnH/JkgX6+usZ\neu+98frxxy3G+SFD+mvo0AF6660xRd5brVp11atXX5KUkZHuMObhwXIAAAAAAAAAAAAAAACuQSoB\nThdsCZRJJiWkFwzpeHt7G8c2m8049vLyUr9+j0uSEhMTNXHiOGVkZBS4/+DB/Zo3b44kyWKxqHfv\nR42xdu06SpIuXbqo7777ttDazpw5raioo5KkJk3+4DDm5eVlHF+9ahMAAAAAAAAAAAAAAICzmCu6\nANx6PD08Fejtr4S0gttdhYaGGcczZkxT9+4PycPDQ40aNdGQIU9p+/Ztioo6qu3bt+nppwepf/+B\nuv32RkpJSdaePbu1bNkiowPO88+/rLCw/843cOAQrV27SikpKZo27V86dOiAunb9P1WtWk2pqSk6\ncuRXLV78ndLT0+Xh4aFhw54psrZZs77SE08MVk6OXc2aNXf2RwQAAAAAAAAAAAAAANyMyW632yu6\niJKIi0uu6BJQiPDwgEK/m3/smaLzyRf06X3vycP034ZNx48f04gRQ5WdnW2cq1q1mpYsWS1JSky0\n6u2339DevT8X+UxPT08NH/6chg59psDY3r0/6623XldKStG/Fx8fH7322lj16NHL4fzly5c1cGBf\nhy46ZrNZGzZsc+iyA6DotQ/g1sbaB9wP6x5wT6x9wD2x9gH3xNoH3BNrH3BPrP3yEx4eUOSY5/jx\n48eXXymlZ7MV3PoIFc/Pz1Lod3M4PkoxqRfV8ba28jFbjPOhoWFq0qSpYmIuKDk5WZ6eHvL3D1Dv\n3n1kNpvl4+OjHj16qVGjJsrJyZHNZlNmZqY8Pc2qUeM2delyv8aOfVtdutxfaD01atymnj17y8en\nkjIzM5WWlqbs7CwFBASqTp166tmzt956a7xatGhZ4F5fX1/dc8+9v9eWaNTbsWNnBQYGOekTA24N\nRa19ALc21j7gflj3gHti7QPuibUPuCfWPuCeWPuAe2Ltlx8/P0uRY3TSQZkUlbZbfHylIs79qNdb\nvaw6gbUqoDIArkTSFnBPrH3A/bDuAffE2gfcE2sfcE+sfcA9sfYB98TaLz/FddLxKHIEKEZOjl0r\nf/xNZy4mFToeYgmWJCWkJ5ZnWQAAAAAAAAAAAAAAADclQjoolYTkdC3/8TctjThR6HiIz+8hnTRr\neZYFAAAAAAAAAAAAAABwUyKkg1IJDvCW2dOks5cKb4cVYgmSJCWkE9IBAAAAAAAAAAAAAAAgpINS\n8fTwUNXKvjp/KVl2u73AePDvIR1rGttdAQAAAAAAAAAAAAAAENJBqdUI9VNaRrauJKUXGAuyBMrD\n5EEnHQAAAAAAAAAAAAAAABHSQRnUCPOTJF2ITy0w5mHyUJB3oBLopAMAAAAAAAAAAAAAAEBIB6Vn\nhHQuFwzpSFKIT5ASM5KUY88pz7IAAAAAAAAAAAAAAABuOoR0UGo1Qn0lFRPSsQQrx56jpIzk8iwL\nAAAAAAAAAAAAAADgpkNIB6VWtbKvPDxMiom3FToe7BMkSUpIs5ZnWQAAAAAAAAAAAAAAADcdQjoo\nNbOnh6qH+unC5VTZ7fYC4yGWYElSQnpieZcGAAAAAAAAAAAAAABwUyGkgzKpXS1AtvQsJaZmFBgL\nsdBJBwAAAAAAAAAAAAAAQCKkgzKqVTVAknThcmqBsRCfvE46hHQAAAAAAAAAAAAAAIB7I6SDMiku\npBOct91VGttdAQAAAAAAAAAAAAAA90ZIB2VSq4q/JCkm3lZgLMDbT54mTzrpAAAAAAAAAAAAAAAA\nt0dIB2VyWxV/mVR4Jx0Pk4eCLUGy0kkHAAAAAAAAAAAAAAC4OUI6KBMfb7PCgn10Ib5gSEeSQnyC\nlJSRrOyc7HKuDAAAAAAAAAAAAAAA4OZBSAdlViPUT8m2TCXZMgqMhViCZZdd1vSkCqgMAAAAAAAA\nAAAAAADg5kBIB2VWI8xPkhRTyJZXIT7BkqSEdGu51gQAAAAAAAAAAAAAAHAzIaSDMjNCOvG2AmPB\nliBJkjWNkA4AAAAAAAAAAAAAAHBfhHRQZtVDc0M6FwrrpPN7SCchPbFcawIAAAAAAAAAAAAAALiZ\nENJBmVUP9ZUkXYhnuysAAAAAAAAAAAAAAIDCENJBmVWymFU50FJEJ53fQzppdNIBAAAAAAAAAAAA\nAADui5AOnKJGqJ+sKRmypWU5nPfz8pXZw6zE9KQKqgwAAAAAAAAAAAAAAKDiEdKBU9QI85MkxVyz\n5ZXJZJKfuZJsWbaKKAsAAAAAAAAAAAAAAOCmQEgHTlE91FeSCt3yytfLV7bMq+VdEgAAAAAAAAAA\nAAAAwE2DkA6cIq+TzoX4QkI6Zl/Zsq4qx55T3mUBAAAAAAAAAAAAAADcFAjpwCmqh/4e0rlccFsr\nPy9f2WVXWlZaeZcFAAAAAAAAAAAAAABwUyCkA6fwr+SlID9vxRTWScerkiQplS2vAAAAAAAAAAAA\nAACAmyKkA6epEeany4lpSs/IdjjvZ/aVJNmyCnbZAQAAAAAAAAAAAAAAcAeEdOA01UNzwzgxVxy7\n6fh65Z5PzSSkAwAAAAAAAAAAAAAA3BMhHThNjTA/SdKFy44hHb/ft7uyEdIBAAAAAAAAAAAAAABu\nipAOnKZGaF5IxzGM4/v7dlepWVfLvSYAAAAAAAAAAAAAAICbASEdOE1eJ52Y+Gs76eSGdOikAwAA\nAAAAAAAAAAAA3BUhHThNgK+X/Ct5Fdjuyvf37a5SswjpAAAAAAAAAAAAAAAA9+SykE5OTo7efvtt\nDRgwQE8++aTOnDlT6HXjxo3TRx995KoyUI5MJpOqh/oq1npVmVnZxvm87a5smWx3BQAAAAAAAAAA\nAAAA3JPLQjobN25URkaGFixYoNdee00ffPBBgWu+++47RUVFuaoEVIAaYX6y26WLV/4byPH7vZOO\njU46AAAAAAAAAAAAAADATbkspLN371517NhRktSiRQtFRkY6jP/yyy86cOCABgwY4KoSUAFqhPpJ\nksOWVz6ePvIweSiVTjoAAAAAAAAAAAAAAMBNuSykk5KSIn9/f+NvT09PZWVlSZJiY2M1bdo0vf32\n2656PCpIjbDckE5M/H9DOiaTSb7mSrJl0kkHAAAAAAAAAAAAAAC4J7OrJvb391dq6n+DGjk5OTKb\ncx+3bt06JSQk6Nlnn1VcXJzS0tJUv3599e3bt8j5QkJ8ZTZ7uqpclEF4eIBx3Nw79zuOT85wOB/g\n4ydbZprDOQD/21jPgHti7QPuh3UPuCfWPuCeWPuAe2LtA+6JtQ+4J9Z+xXNZSKdly5aKiIhQz549\ntX//fjVq1MgYGzp0qIYOHSpJWrp0qU6dOlVsQEeSEhLownIzCg8PUFxcsvG33W6Xj7enfruQ6HDe\nx+Sj2PR4xcYmyWQyVUSpAJzo2rUPwD2w9gH3w7oH3BNrH3BPrH3APbH2AffE2gfcE2u//BQXhnJZ\nSOeBBx7Q9u3b9cQTT8hut2vSpElatWqVbDabBgwY4KrHooKZTCbVCPPTmYvJysrOkdkzd0c1Xy9f\nZduzlZ6dIR+zpYKrxP9n7+6D3L7re9G/pZX2QdKu7fVDEicOD3mAMwSS8hAokB6SJpw2lIY2FwLN\nEChcCkPTFoahTYeSaZMUGBigtLQzMH2ahHChodycC5feMnmCwuFkgNOEeoCeUiBxcGLHdmzvSmuv\ndqX7x9ob0lAjx9Zq5d/rNeNZ6aeftO8d6/vfez4fAAAAAAAAAGBl9a2kUy6Xc9111z3m2hlnnPG4\n+37aBB2Gz+b19Xx/+/7sfGQumzfUkyS1Si1J0lpoKekAAAAAAAAAAIVTHnQATjyHizkP7m4uX6tX\nJ5IkzfbcQDIBAAAAAAAAAAySkg7H3eYNS1Nztu96tKRTqx6apNNuDSQTAAAAAAAAAMAgKelw3G1e\nvzRJZ/vuRws59UPrrpoLSjoAAAAAAAAAQPEo6XDcTa8Zz2i1/B8m6SytuzJJBwAAAAAAAAAoIiUd\njrtyqZRTput5cHcrnU43SVJfXnc1N8hoAAAAAAAAAAADoaRDX2zeUMvCYie79i2VcmrWXQEAAAAA\nAAAABaakQ19s3lBPkmzftVTKqVt3BQAAAAAAAAAUmJIOfbF5/aGSzu5mkqRWPTxJx7orAAAAAAAA\nAKB4lHToi1OWJ+kcKulUTNIBAAAAAAAAAIpLSYe+2Lh2PJWR0nJJp1wqZ6IynpZJOgAAAAAAAABA\nASnp0Bcj5XJOnq7lwd2tdLvdJEmtUkvTJB0AAAAAAAAAoICUdOibzRvqOdhezJ79B5Mk9eqEdVcA\nAAAAAAAAQCEp6dA3m9fXkyTbdy+tvKpVapnvtNNebA8yFgAAAAAAAADAilPSoW9O2XCopLNrqaRT\nr9aSJK2FuYFlAgAAAAAAAAAYBCUd+mbz+qVSzuGSTu1QSadp5RUAAAAAAAAAUDBKOvTNSdO1lEul\nPLh7qZRTr0wkMUkHAAAAAAAAACgeJR36pjJSzknTE9m+q5lut2uSDgAAAAAAAABQWEo69NXm9fW0\nDi5kX3N+uaTTUtIBAAAAAAAAAApGSYe+OmXDUjFn+67m8rqr5oKSDgAAAAAAAABQLEo69NXm9fUk\nSyWdRyfpzA0yEgAAAAAAAADAilPSoa82b1gq6Ty4u5X6oZKOSToAAAAAAAAAQNEo6dBXJ0/XUsqh\nSTqVw5N0lHQAAAAAAAAAgGJR0qGvRqsjWdMYze79B1KrTiSx7goAAAAAAAAAKB4lHfpu/dR4Hpk5\nmJGMZLRcte4KAAAAAAAAACgcJR36bt3UeBY73exrzqdWrZmkAwAAAAAAAAAUjpIOfbd+aixJsmf/\ngdSrtbRM0gEAAAAAAAAACkZJh76bnhpPkuyZOZhaZSJzCwey2FkccCoAAAAAAAAAgJWjpEPfTU8u\nlXR271uapJMkcwsHBhkJAAAAAAAAAGBFKenQd+vXHFp3NXMgtcpSSadp5RUAAAAAAAAAUCBKOvTd\n4Uk6e/YfXJ6k02or6QAAAAAAAAAAxaGkQ99N1qqpjJSzZ/+B1KoTSZKmkg4AAAAAAAAAUCBKOvRd\nqVTK9NRY9uw/kPqhdVethbkBpwIAAAAAAAAAWDlKOqyI9VPj2d9qZ6y8tPrKJB0AAAAAAAAAoEiU\ndFgR01NjSZKFdiVJ0lLSAQAAAAAAAAAKREmHFTE9uTRBpz239JVrWncFAAAAAAAAABSIkg4rYv2a\npZLO3NxIEpN0AAAAAAAAAIBiUdJhRUxPLq27mp1det5cUNIBAAAAAAAAAIpDSYcVMT21NEln38xi\nKqWRtNrWXQEAAAAAAAAAxaGkw4qYnlqapPPI/oOZqE5YdwUAAAAAAAAAFIqSDitifLSS+ngle2YO\npl6ppbVgkg4AAAAAAAAAUBxKOqyY6anx7N5/ILVqLc12K51uZ9CRAAAAAAAAAABWhJIOK2Z6ciwH\n5xczVh5PN90cXDw46EgAAAAAAAAAACtCSYcVM71mPEky0h1LkjTbVl4BAAAAAAAAAMWgpMOKmZ5c\nKudksZokabVbA0wDAAAAAAAAALBylHRYMeunlibpdNuVJElzQUkHAAAAAAAAACgGJR1WzPShkk77\n4FJJxyQdAAAAAAAAAKAolHRYMdNTS+uuDswtfe2a7blBxgEAAAAAAAAAWDFKOqyYtY2xlErJXLOU\nJGlZdwUAAAAAAAAAFISSDiumMlLO2sZY9s8sPW9adwUAAAAAAAAAFISSDitqemosM/uXHresuwIA\nAAAAAAAACkJJhxU1PTmexXYlSdK07goAAAAAAAAAKAglHVbU+qnxZLGSUkppWXcFAAAAAAAAABSE\nkg4rat3UWJJSRktjaS5YdwUAAAAAAAAAFIOSDitq/dR4kqSSMZN0AAAAAAAAAIDCUNJhRR0u6ZQ6\no2m1W+l2uwNOBAAAAAAAAADQf0o6rKildVdJd6Gahe5i2p32gBMBAAAAAAAAAPSfkg4ranKimmql\nnIX5SpKkaeUVAAAAAAAAAFAASjqsqFKplOnJscwfWPrqtRbmBpwIAAAAAAAAAKD/lHRYcdNT45k/\nMJLEJB0AAAAAAAAAoBiUdFhx01Nj6S5UkyQtJR0AAAAAAAAAoACUdFhx66fGk0MlneaCkg4AAAAA\nAAAAcOJT0mHFTU+N/9gknbkBpwEAAAAAAAAA6D8lHVbc9NRYsnhoko51VwAAAAAAAABAASjpsOLW\n/+UcdpsAACAASURBVPgkHeuuAAAAAAAAAIACUNJhxU1Pjqe7MJokaVp3BQAAAAAAAAAUgJIOK25s\ndCS1yniSpGXdFQAAAAAAAABQAEo6DMT6qVq6i5U0rbsCAAAAAAAAAApASYeBWD81nu5CNc15JR0A\nAAAAAAAA4MSnpMNATE+NJQtVk3QAAAAAAAAAgEJQ0mEgpg9N0ml32ml3FgYdBwAAAAAAAACgr5R0\nGIjpqbF0F6pJklZ7bsBpAAAAAAAAAAD6S0mHgZieHE8Wl0o6c1ZeAQAAAAAAAAAnOCUdBmL9oXVX\nSdI0SQcAAAAAAAAAOMEp6TAQaydHlyfptEzSAQAAAAAAAABOcEo6DMRIuZyJkYkkSbOtpAMAAAAA\nAAAAnNiUdBiYqbF6kmR2XkkHAAAAAAAAADixKekwMGsnGkmSR1ozA04CAAAAAAAAANBfSjoMzHRt\nMknyyNzsgJMAAAAAAAAAAPSXkg4Ds6GxVNLZd0BJBwAAAAAAAAA4sSnpMDAnr1mTJGm2WwNOAgAA\nAAAAAADQX0o6DMymNZPpLpbTWpgbdBQAAAAAAAAAgL6qDDoAxTU9NZYsVjOfA4OOAgAAAAAAAADQ\nVybpMDCNiWqyOJqFHBx0FAAAAAAAAACAvlLSYWBKpVIqGUt3pJ1OtzPoOAAAAAAAAAAAfaOkw0CN\nlceTJPvmZgecBAAAAAAAAACgf5R0GKiJkYkkyfZ9+wacBAAAAAAAAACgf3oq6ezZs6ffOSioxmgt\nSbJDSQcAAAAAAAAAOIH1VNK58sor+52DgpoarydJds3uH3ASAAAAAAAAAID+qfRy09Of/vTceuut\nedaznpXx8fHl65s3b+5bMIphemIyaSV7mjODjgIAAAAAAAAA0Dc9lXTuvffe3HvvvY+5ViqVcvvt\nt/clFMWxvjGZ7E72HZgddBQAAAAAAAAAgL7pqaRzxx13HPUHdzqd/OEf/mH+9V//NaOjo7nhhhvy\npCc9afn1f/zHf8zHP/7xlEqlvPzlL8/rXve6o/4dDL9Nk2uSJDPzrQEnAQAAAAAAAADon3IvN+3Z\nsydve9vb8vznPz/Pfe5zc/XVV2fXrl1HfM9tt92W+fn5fPrTn8473vGOvO9971t+bXFxMR/84Afz\nt3/7t/n0pz+dT37yk9mzZ8+x/SUMpbUTjSRJs62kAwAAAAAAAACcuHoq6Vx77bV55jOfmdtvvz13\n3HFHzj333LzrXe864nu++c1v5oILLkiSnHfeedm6devyayMjI/nCF76QycnJ7N27N51OJ6Ojo8fw\nZzCsapVakuRg50C63e6A0wAAAAAAAAAA9EdPJZ1t27bljW98YxqNRqampvKmN70p27dvP+J7Zmdn\n02g0lp+PjIxkYWFh+XmlUskXv/jFXHbZZTn//PMzMTHxBP8Ehlm9uvT/3inPp3lg4afcDQAAAAAA\nAAAwnCq93FQqlfLggw/mlFNOSZJs3749lcqR39poNNJsNpefdzqdx73npS99aS6++OJcc801ufXW\nW3P55Zf/p5+3bl0tlcpIL3FZYRs3Tj7h93a7jZRSTkba6Y6MHNNnASvLeYVicvaheJx7KCZnH4rJ\n2YdicvahmJx9KCZnf/B6Kun8zu/8Tq644oqce+656Xa7uffee3P99dcf8T3Pfvazc+edd+bSSy/N\nPffck7PPPnv5tdnZ2bzlLW/JX//1X2d0dDQTExMpl4881OeRR1q9RGWFbdw4mYcfnjmmz6hmLIuV\ndv79vj2ZHO1puBMwYMfj7APDx9mH4nHuoZicfSgmZx+KydmHYnL2oZic/ZVzpDJUTyWdU045Jbfe\nemu+9a1vpdPp5I/+6I+yfv36I77nkksuyVe/+tW8+tWvTrfbzXve85587nOfS6vVyhVXXJGXv/zl\nufLKK1OpVPK0pz0tv/zLv3x0fxUnjImRiRyszGb3/gODjgIAAAAAAAAA0Bc9lXTe/va35x/+4R/y\nkpe8pOcPLpfLue666x5z7Ywzzlh+fMUVV+SKK67o+fM4cdWqtexdeCS7988NOgoAAAAAAAAAQF/0\nVNI588wz89GPfjTnnntuxsfHl68/73nP61swimNyrJbSgW52zcwOOgoAAAAAAAAAQF/0VNLZu3dv\n7r777tx9993L10qlUm688ca+BaM41ozXk33J7qb9dwAAAAAAAADAiamnks6ll16a17zmNf3OQkE1\nqvUkyd6Wkg4AAAAAAAAAcGIq93LTzTff3O8cFFitOpEk2T/fSqfTHXAaAAAAAAAAAIDjr6dJOief\nfHKuuuqqnHvuuRkbG1u+fvXVV/ctGMVRq9aWHozMZ+/swUxPjQ82EAAAAAAAAADAcdZTSee8887r\ndw4KrF45XNJpZ89+JR0AAAAAAAAA4MTTU0nn6quvTqvVyv3335+zzz47Bw4cSK1W63c2CuLwJJ1S\npZ09MweSrBlsIAAAAAAAAACA46zcy01f+9rXctlll+Wtb31rdu3alYsuuihf+cpX+p2NgqhXJ5Ye\nVNrZvf/AYMMAAAAAAAAAAPRBTyWdD33oQ/nkJz+ZqampbNq0KZ/4xCfy/ve/v9/ZKIha5ccm6ew/\nOOA0AAAAAAAAAADHX08lnU6nk40bNy4/P/PMM/sWiOKpH153NdLOHpN0AAAAAAAAAIATUKWXm04+\n+eTceeedKZVK2b9/f26++eZs3ry539koiInKeEoppVxdyO49SjoAAAAAAAAAwImnp0k61113XT73\nuc/lwQcfzCWXXJLvfOc7ue666/qdjYIol8qZqIxnZHTBuisAAAAAAAAA4ITU0ySd9evX50Mf+tBP\nfO3d7353rr/++uMaiuKpVWs5WG1ldq6d/a35TNVGBx0JAAAAAAAAAOC46WmSzpFs3br1eOSg4OqV\nWrrl+STJtp2zA04DAAAAAAAAAHB8HXNJB46HWnUinSwmpcVs26GkAwAAAAAAAACcWJR0WBVqlYml\nB5V2tu2cGWwYAAAAAAAAAIDjTEmHVaFerSVJxsYXrbsCAAAAAAAAAE44x1zS6Xa7xyMHBVc7VNLZ\nuGEkD+5upb3QGXAiAAAAAAAAAIDj55hLOi984QuPRw4Krn5o3dX6dSNZ7HSzfVdzwIkAAAAAAAAA\nAI6fnko6P/rRj/Lrv/7reelLX5qdO3fmqquuygMPPJAk+d3f/d2+BqQYDk/SmZpaen7/zpkBpgEA\nAAAAAAAAOL56Kulce+21eeMb35h6vZ6NGzfml37pl/J7v/d7/c5GgdQPlXQm6kvr07btmB1kHAAA\nAAAAAACA46qnks4jjzySF7/4xel2uymVSnnVq16V2VklCo6fWmWppDM61kkpybadvl8AAAAAAAAA\nwImjp5LO+Ph4HnrooZRKpSTJN77xjYyOjvY1GMVSr04kSQ525nLSdC3375xNt9sdcCoAAAAAAAAA\ngOOj0stN11xzTd785jfn/vvvz2WXXZZ9+/blIx/5SL+zUSC1Q+uumgtz2bKpkYe+uzO79x/IhjUT\nA04GAAAAAAAAAHDseirpPOlJT8pnPvOZ/PCHP8zi4mKe+tSn5uGHH+53NgqkVlkq47TarZxxUiNf\n/+7ObNsxq6QDAAAAAAAAAJwQjrju6sEHH8z27dtz5ZVXZteuXanX65mamsqOHTvyxje+caUyUgCV\nciVjI6NptVvZsqmRJNm2c3bAqQAAAAAAAAAAjo8jTtL50z/909x9993ZuXNnrrzyykffVKnkJS95\nSb+zUTC1Su3QuqvJJMn9SjoAAAAAAAAAwAniiCWd9773vUmSj3/84/mN3/iNFQlEcdWrtTw8tytr\nG6NpTFSzbefMoCMBAAAAAAAAABwXRyzpHDY/P5+PfvSjj7t+9dVXH/dAFFetWsvB2fksdhdz+kmN\nfPuHj2Tu4EImxnr6mgIAAAAAAAAArFrlo31Du93OHXfckd27d/cjDwVWr9aSJM12K1s2NZIk26y8\nAgAAAAAAAABOAD2NKPmPE3N+8zd/M294wxv6EojialTrSZZKOqdvmkyyVNI5e8vaQcYCAAAAAAAA\nADhmRz1JJ0mazWa2b99+vLNQcI9O0mlmy0mHJ+nMDDISAAAAAAAAAMBx0dMknYsuuiilUilJ0u12\ns3//fpN0OO5+fN3VU9bXUhkp5f4d1l0BAAAAAAAAAMOvp5LOTTfdtPy4VCplamoqjUajb6Eopnrl\n0ZJOZaScUzc08sDDzSx2OhkpP6GhTwAAAAAAAAAAq8IRSzq33nrrEd/8ile84riGodgOT9KZbTeT\nJFs2NXLfjpk8tGcup26oDzIaAAAAAAAAAMAxOWJJ5+677z7im5V0OJ4ao0tFnGa7lSTZclIj+Zdk\n244ZJR0AAAAAAAAAYKgdsaTz3ve+d/lxu93OD37wgywuLuass85KpdLTpizoWb3y2JLO6ZuWVqpt\n2zmbFzxjYLEAAAAAAAAAAI5ZT02brVu35rd/+7ezdu3adDqd7Nq1K3/+53+ec889t9/5KJDD666a\nC4+uu0qS+3fODiwTAAAAAAAAAMDx0FNJ54YbbsiHP/zh5VLOPffck+uvvz6f+cxn+hqOYpmojKdc\nKmd2fmmSTm28mvVT49mmpAMAAAAAAAAADLlyLze1Wq3HTM0577zzcvDgwb6FophKpVLqldryJJ0k\nOf2kRvY357Nv1vcNAAAAAAAAABhePZV01qxZk9tuu235+W233Za1a9f2LRTFVa/W0my3lp8fXnll\nmg4AAAAAAAAAMMx6Wnd1/fXX553vfGfe9a53pdvt5vTTT8/73//+fmejgOrVWna0Hk6n20m5VM6W\nTZNJkvt3zuacp64fcDoAAAAAAAAAgCemp5LOk5/85Nxyyy1ptVrpdDpJkkaj0ddgFFO9Wk833bQW\n5tKo1rPlJJN0AAAAAAAAAIDh19O6qzvvvDMf+MAH0u1288pXvjI///M/n5tvvrnf2SigRrWWJMsr\nrzasGc/E2Eju3zEzyFgAAAAAAAAAAMekp5LORz/60fzqr/5qvvCFL+RZz3pW7rjjjvz93/99v7NR\nQPVqPcmjJZ1yqZQtGxt5aE8r8+3FQUYDAAAAAAAAAHjCeirpJMkZZ5yRu+66KxdddFHq9Xra7XY/\nc1FQ9eVJOs3la1s2TabbTX60q/mfvQ0AAAAAAAAAYFXrqaSzYcOGXH/99dm6dWsuuOCCvO9978vm\nzZv7nY0COlzSmT00SSdJtpzUSBIrrwAAAAAAAACAodVTSeeDH/xgnvnMZ+amm25KrVbLli1b8sEP\nfrDf2SigR9dd/fgknaWSzradswPJBAAAAAAAAABwrCq93NRoNDI1NZVPfvKTqVQqeeELX5hGo9Hv\nbBTQo+uuHp2kc+qGesqlUu5X0gEAAAAAAAAAhlTPk3T+8i//Mqeeemo2bdqUj3zkI/nYxz7W72wU\nUOMnlHRGqyM5eX0tD+ycTafbHVQ0AAAAAAAAAIAnrKdJOnfddVc++9nPplqtJkmuuOKKXH755Xnz\nm9/c13AUz09ad5Ukp29qZPuuZnbtncumdbVBRAMAAAAAAAAAeMJ6mqSzZs2aNJuPliba7bZ1V/RF\nrTKR5LGTdJJky6al79s2K68AAAAAAAAAgCF0xEk6v//7v58k6XQ6ueyyy3LRRRdlZGQkX/7yl/PU\npz51RQJSLCPlkUxUJh5f0jlpqaRz/47ZPOdpmwYRDQAAAAAAAADgCTtiSef8889/zM/DnvGMZ/Qv\nEYVXr9Yet+5qy6bJJCbpAAAAAAAAAADD6YglnV/5lV9Zfrx3797Mzc2l2+1mcXExDzzwQN/DUUz1\nai0PHNibbrebUqmUJFlTH82a+mi27ZwZcDoAAAAAAAAAgKN3xJLOYR/60Idy8803Z2FhIevWrcuO\nHTtyzjnn5JZbbul3PgqoUa1nsbuYg4sHM14ZX76+5aRGtn5/T5oH2qmPVweYEAAAAAAAAADg6JR7\nuenzn/98vvSlL+XSSy/NjTfemL/5m7/J9PR0v7NRUPVqLUnSbLcec33LpkaSZNsOK68AAAAAAAAA\ngOHSU0ln06ZNaTQaOeuss/Ld7343L3jBC7Jr165+Z6Og/rOSzumbJpMk9+9U0gEAAAAAAAAAhktP\n664ajUZuvfXWPOMZz8gnPvGJbNq0Kfv37+93NgqqXqknSWbbzcdcX56ks3NmxTMBAAAAAAAAAByL\nnibp/PEf/3H27NmT5z//+Tn11FNz7bXX5m1ve1u/s1FQjdGfPEnn5OlaRitl664AAAAAAAAAgKHT\n0ySdk046KW94wxuSJNdcc81jXnvzm9+cj33sY8c/GYVVry5N0vmPJZ1yuZRTN9azbedsFhY7qYz0\n1DEDAAAAAAAAABi4Y2457Nix43jkgGX1yuFJOs3HvbZl02QWFrt5cHfrca8BAAAAAAAAAKxWx1zS\nKZVKxyMHLKtXD5V0Fh5fxNmyqZEk2bZzZkUzAQAAAAAAAAAcC/uCWHUao0vrrmbnHz9J5/STlko6\n9++YXdFMAAAAAAAAAADHQkmHVefRdVePn6Rz2sbDk3SUdAAAAAAAAACA4XHMJZ1ut3s8csCy6kg1\no+XqT1x3NTFWyaa1E9m2c9Z3DwAAAAAAAAAYGsdc0nnFK15xPHLAY9Sr9Z84SSdJtmxqZHaunYf3\nzq1wKgAAAAAAAACAJ6bSy03/9E//lA9/+MPZv39/ut1uut1uSqVSbr/99rz+9a/vc0SKqF6tZefc\nrp/42nlnbcg3//fD+fzX7ssbLv0vK5wMAAAAAAAAAODo9VTSueGGG3LNNdfkrLPOSqlU6ncmSKNa\nzwOz29PuLKRafuzX9GefcXL+v7vvz1f/5cH8t+dtyakbGwNKCQAAAAAAAADQm57WXa1bty4XXnhh\nTjvttJx66qnL/6Bf6tVakqTZbj7utXK5lMtfcka63eTvv/T9lY4GAAAAAAAAAHDUepqk85znPCfv\nfe97c8EFF2RsbGz5+vOe97y+BaPYHi3ptLJ2bM3jXj/3jPU5+7Q1ued7u/JvD+zNWaetXemIAAAA\nAAAAAAA966mk861vfStJ8u1vf3v5WqlUyo033tifVBTekSbpJEvfv//jwjPznpu+mVvu+vf8/pXP\ntooNAAAAAAAAAFi1eirp3HTTTf3OAY9Rr9aTJLPt1n96z5mnrsnPnLUh//xvu3LP93blZ87auFLx\nAAAAAAAAAACOSk8lnW984xv5q7/6q7RarXS73XQ6nWzfvj133HFHv/NRUD++7upILv+vZ+Se7+3K\n33/p+zn3jA0pl03TAQAAAAAAAABWn3IvN/3BH/xBLr744iwuLubKK6/Mk570pFx88cX9zkaBHZ6k\n89NKOps31HPBs07J9l3NfHXrgysRDQAAAAAAAADgqPVU0hkfH8/ll1+e888/P1NTU7nhhhvy9a9/\nvd/ZKLDG8iSd5k+997IXPzXVSjm3/tMPMt9e7Hc0AAAAAAAAAICj1lNJZ2xsLHv37s1TnvKU3Hvv\nvSmVSmm1jjzhBI5Fr5N0kmTd5Fgufu5peWTmYG7/Xw/0OxoAAAAAAAAAwFHrqaTz+te/Pm9/+9tz\n4YUX5tZbb83LXvaynHPOOf3ORoHVj2KSTpJc+oInpT5eyf/7P+5L80C7n9EAAAAAAAAAAI5apZeb\nfvEXfzG/8Au/kFKplM9+9rP54Q9/mKc//en9zkaBjY+MpVwq9zRJJ0nq49W87GefnL+783v5wtfu\nyysvPLPPCQEAAAAAAAAAetfTJJ19+/bl3e9+d6666qocPHgwN910U2ZmZvqdjQIrlUqpV2uZ7XGS\nTpL8/HNOzfTUWG775gPZs/9AH9MBAAAAAAAAABydnko67373u/PMZz4ze/fuTb1ez6ZNm/LOd76z\n39kouEa13vMknSSpVkZy2YufkvZCJ//9Kz/oYzIAAAAAAAAAgKPTU0nngQceyBVXXJFyuZzR0dG8\n/e1vz0MPPdTvbBRcvVrL3MKBdLqdnt/zonNOyakb6vnKvzyYH+3qfQoPAAAAAAAAAEA/9VTSGRkZ\nyczMTEqlUpLkhz/8Ycrlnt4KT1i9Wk833bTacz2/p1wu5fL/eka63eSzX/r3PqYDAAAAAAAAAOhd\nT02b3/qt38prX/vabN++PW9961vza7/2a3nb297W72wUXL1SS5LMto9uIs65Z67PWaetyT//2658\n74F9/YgGAAAAAAAAAHBUeirpnHPOObn44otz2mmn5cEHH8wll1ySrVu39jsbBdcYrSdJmu3WUb2v\nVCrllS85M0lyy13fS7fbPe7ZAAAAAAAAAACORqWXm970pjflaU97Wi688MJ+54Fl9erSJJ3mUU7S\nSZIzT1uTnzlrQ/7533blrR/6ctbUR7OmMXro51jWNkYzVR/N2sbY0rX6aJKkvdhJe2Hp38JiN+2F\nxeVrC4vdLCx0cuZpa7Jx7cRx/VsBAAAAAAAAgBNbTyWdJHnPe97TzxzwOIfXXR3tJJ3Drrzk7IyM\nlLPzkVb2zc7nez/al+MxVGfTuonc8H8+P5WRngZRAQAAAAAAAAD0VtK5+OKLc8stt+QFL3hBRkZG\nlq9v3ry5b8Hg8CSd2ScwSSdJpqfG89ZXnLP8vNPpZqY1n33N+eydnc++2YPZ15zPvtn57GvNp5Sk\nWimnWimnMrL0szpSTuXQz2qlnO/c90j+1/9+OHf+849yyXO3HI8/EwAAAAAAAAAogJ5KOjMzM/n4\nxz+edevWLV8rlUq5/fbb+xYMGqP1JE98ks5/VC6XsqYxljWNsZx+0hP7jOf9l035zn178v985Qd5\n0TknpzZePS7ZAAAAAAAAAIATW08lnS9+8Yv52te+lvHx8X7ngWXHuu6qH6Zqo3nZzz45n7nr3/P5\nr92XV1145qAjAQAAAAAAAABDoNzLTVu2bMm+ffuO6oM7nU6uvfbaXHHFFXnta1+b++677zGvf/7z\nn88rX/nKvPrVr861116bTqdzVJ/Pia9ePTRJZ2H1lHSS5OLnnJbpqbHc9o0Hsmvv3KDjAAAAAAAA\nAABDoKeSTqlUyste9rK85jWvyVVXXbX870huu+22zM/P59Of/nTe8Y535H3ve9/yawcOHMif/Mmf\n5MYbb8ynPvWpzM7O5s477zy2v4QTTq06kVJKmZ1vDjrKY4xWR3L5z52RhcVOPvvl7w86DgAAAAAA\nAAAwBHpad/WWt7zlqD/4m9/8Zi644IIkyXnnnZetW7cuvzY6OppPfepTmZiYSJIsLCxkbGzsqH8H\nJ7ZyqZxaZWLVTdJJkuc/46R88evb8j+/vSOXPG9LnnLK1KAjAQAAAAAAAACrWE8lnfPPP/+oP3h2\ndjaNRmP5+cjISBYWFlKpVFIul7Nhw4YkyU033ZRWq5UXvehFR/07OPHVq7U026trkk6SlEulvOqi\nM/OB/+uf83d3fC+/+2s/k1KpNOhYAAAAAAAAAMAq1VNJ54loNBppNh8tV3Q6nVQqlcc8/8AHPpAf\n/OAH+bM/+7OfWnBYt66WSmWkX3E5Bhs3Tvbts9fUJrN7z55s2NBYdSWYjRsnc9e92/P1b+/ID3Y2\n8/xzThl0JFhR/Tz7wOrl7EPxOPdQTM4+FJOzD8Xk7EMxOftQTM7+4PWtpPPsZz87d955Zy699NLc\nc889Ofvssx/z+rXXXpvR0dH8xV/8Rcrl8k/9vEceWX0rj1g6xA8/PNO3zx/LWBa7nWx7aFcmKuN9\n+z1P1GUvfHK++Z2d+cv/vjWnb6ilMvLTv8twIuj32QdWJ2cfise5h2Jy9qGYnH0oJmcfisnZh2Jy\n9lfOkcpQfSvpXHLJJfnqV7+aV7/61el2u3nPe96Tz33uc2m1WjnnnHPymc98Js997nPzute9Lkly\n1VVX5ZJLLulXHIZUvVpPkjTbzVVZ0tm8oZ6fO/eU3HXP9vzTvdtz4bNPG3QkAAAAAAAAAGAV6ltJ\np1wu57rrrnvMtTPOOGP58Xe/+91+/WpOIPVqLUnSbLeyYWL9gNP8ZJe9+Cn52rd35Nav/CAveMbJ\nmRjr27ECAAAAAAAAAIaU3Tysaocn6cy2V++6szWNsVz6/NMz02rnC//zvkHHAQAAAAAAAABWISUd\nVrVHJ+k0B5zkyF56/ulZ2xjNF7++LXv2Hxh0HAAAAAAAAABglVHSYVX78XVXq9lYdSS/8nNPTXuh\nk//7y98fdBwAAAAAAAAAYJVR0mFVaxxad7XaJ+kkyYvOOSWnbWzkf2x9KPc9NDPoOAAAAAAAAADA\nKqKkw6o2LJN0kqRcLuVVF52RbpK/u/N76Xa7g44EAAAAAAAAAKwSSjqsasNU0kmSc56yPuc8ZTrf\nue+R/Mv39ww6DgAAAAAAAACwSijpsKrVD627mh2CdVeHverCM1MqJZ/90r8POgoAAAAAAAAAsEoo\n6bCqVcuVjI2MDs0knSQ5bVMjZ526JvfvnM3CYmfQcQAAAAAAAACAVUBJh1WvXq0PVUknSdZNjSdJ\n9jfnB5wEAAAAAAAAAFgNlHRY9erVWppDtO4qSdY2RpMkj8weHHASAAAAAAAAAGA1UNJh1atXapnv\ntDO/2B50lJ6tbYwlSfbOmKQDAAAAAAAAACjpMAQao/UkGappOsslHZN0AAAAAAAAAIAo6TAE6tVa\nkqTZbg04Se8Or7tS0gEAAAAAAAAAEiUdhkC9MoQlnUmTdAAAAAAAAACARynpsOrVq0vrrmaHct3V\n/ICTAAAAAAAAAACrgZIOq15jCNddjVVHUhurmKQDAAAAAAAAACRR0mEIHJ6kM0wlnWRp5dXeGSUd\nAAAAAAAAAEBJhyFQPzxJZ2F41l0lydrGaJoHFtJeWBx0FAAAAAAAAABgwJR0WPUOl3Rm54dskk5j\nLEmyd3Z+wEkAAAAAAAAAgEFT0mHVW153NXSTdA6XdKy8AgAAAAAAAICiU9Jh1RsbGU2lNJJme9gm\n6YwmMUkHAAAAAAAAAFDSYQiUSqXUq7UhLOkcmqQzY5IOAAAAAAAAABSdkg5DoV6tp9kesnVX0Coa\nKAAAIABJREFUk9ZdAQAAAAAAAABLlHQYCvVqLXMLB7LYWRx0lJ49uu5KSQcAAAAAAAAAik5Jh6FQ\nr9aTJK2FuQEn6d2a+uFJOvMDTgIAAAAAAAAADJqSDkOhXq0lyVCtvKpWymlMVE3SAQAAAAAAAACU\ndBgOh0s6s+3WgJMcnbWNMSUdAAAAAAAAAEBJh+HQOLTuapgm6STJ2snRzB1czIH5hUFHAQAAAAAA\nAAAGSEmHofDouqvhm6STJPtm5wecBAAAAAAAAAAYJCUdhsKwl3SsvAIAAAAAAACAYlPSYSjUl9dd\nDVdJZ11jNEnyiJIOAAAAAAAAABSakg5DoXFoks5suzngJEdneZLOjHVXAAAAAAAAAFBkSjoMhWGd\npLN20rorAAAAAAAAAEBJhyExURlPKaU0h3WSjpIOAAAAAAAAABSakg5DoVwqp1adGLpJOlP1akpJ\n9s5adwUAAAAAAAAARaakw9CoV2uZHbJJOiPlcqbqoybpAAAAAAAAAEDBKekwNBrVeloLc+l2u4OO\nclTWNsayd/bg0OUGAAAAAAAAAI4fJR2GRr1aS6fbydzCgUFHOSprG6OZb3cyd3Bx0FEAAAAAAAAA\ngAFR0mFo1Cv1JEmz3RpwkqOzdnIsSay8AgAAAAAAAIACU9JhaNSrtSTJbLs54CRHZ21DSQcAAAAA\nAAAAik5Jh6HRqB6epDNsJZ3RJEo6AAAAAAAAAFBkSjoMjcOTdIZu3dXyJJ35AScBAAAAAAAAAAZF\nSYehsVzSWRjSks6MSToAAAAAAAAAUFRKOgyN5ZLO/JCtu5o8PElHSQcAAAAAAAAAikpJh6FRr9aT\nJLNDNklnslZNuVSy7goAAAAAAAAACkxJh6FxuKTTbA9XSadcKmVNY9QkHQAAAAAAAAAoMCUdhka9\nOpFk+Eo6SbK2MZa9swfT7XYHHQUAAAAAAAAAGAAlHYZGpVzJ+MhYmu3moKMctbWN0SwsdtM8sDDo\nKAAAAAAAAADAACjpMFTq1fpwTtKZHEuS7J2x8goAAAAAAAAAikhJh6FSr9aGdJLOoZLOrJIOAAAA\nAAAAABSRkg5DpV6tpd1ZyPzi/KCjHJW1jdEkySNKOgAAAAAAAABQSEo6DJV6tZYkmR2yaTrrlifp\nDFe5CAAAAAAAAAA4PpR0GCqNaj1J0my3Bpzk6Fh3BQAAAAAAAADFpqTDUDk8SWfoSjqTh0o6M0o6\nAAAAAAAAAFBESjoMlfryJJ3hWndVH6+kMlKy7goAAAAAAAAACkpJh6FyeJLO7JBN0imVSlnbGLPu\nCgAAAAAAAAAKSkmHodIY0kk6SbK2MZZ9s/PpdLuDjgIAAAAAAAAArDAlHYbK4Uk6zSGbpJMkaxuj\n6XS7mWm1Bx0FAAAAAAAAAFhhSjoMleEu6YwlSfbOWHkFAAAAAAAAAEWjpMNQqR9adzU7jOuuJg+V\ndGaVdAAAAAAAAACgaJR0GCqj5Wqq5cqQTtIZTaKkAwAAAAAAAABFpKTDUCmVSqlX60Na0jk8SWd+\nwEkAAAAAAAAAgJWmpMPQqVdrQ17SMUkHAAAAAAAAAIpGSYehU6/UcmDxQBY7i4OOclSWSzozSjoA\nAAAAAAAAUDRKOgyd+mg9STI7ZNN0JsZGMlotW3cFAAAAAAAAAAWkpMPQmRptJEn2HNgz4CRHp1Qq\nZW1jzLorAAAAAAAAACggJR2Gztlrz0iSbN31nQEnOXprG2PZ35zPYqcz6CgAAAAAAAAAwApS0mHo\nPH367FTKlXxr17cHHeWorW2Mpptkf7M96CgAAAAAAAAAwApS0mHojFfG8vR1Z2Z786E83No96DhH\nZW1jLEn+f/buMziu/D7z/XNCR3QjEIEkMpgwjMPJQZpkzYykUQ62gq8taX293q3yeu9W3fWt2jd2\neW2Xa/eFvbvWWk67VlwrWFma0WiCJmhGM9JEksOMDAYEooFuoNMJ98XpbgAkB0xogCS+n6rmOX1w\n+vSvwznd7H7692fIKwAAAAAAAAAAAAAA1hhCOrgm7WnaKUl6c+LAKldyaSohnTQhHQAAAAAAAAAA\nAAAA1hJCOrgm7WraIUPGtRfSSYYl0UkHAAAAAAAAAAAAAIC1hpAOrkl1kaS6azt1PDWgTGF2tcu5\naA2lTjpTmcIqVwIAAAAAAAAAAAAAAFYSIR1cs/Y075AvX/snD652KRetMtwVnXQAAAAAAAAAAAAA\nAFhTCOngmrWnaack6c2Jt1a5kotXl2C4KwAAAAAAAAAAAAAA1iJCOrhmbahp0fp4sw5OHlbBLa52\nORclGrYVi1hKpRnuCgAAAAAAAAAAAACAtYSQDq5pe5p2quAVdXjq6GqXctHqExE66QAAAAAAAAAA\nAAAAsMYQ0sE1bU/zDknSm+MHVrmSi1efiCiTLaroeKtdCgAAAAAAAAAAAAAAWCGEdHBN667tVDKc\n0L6Jg/L8ayP0Up8IS5Km6aYDAAAAAAAAAAAAAMCaQUgH1zTTMLW7cYfSxYz6p4dWu5yLUp+ISJJS\nmcIqVwIAAAAAAAAAAAAAAFYKIR1c8ypDXk1cG0NezYd06KQDAAAAAAAAAAAAAMBaQUgH17zehq0K\nm6FrJ6STDEI6U4R0AAAAAAAAAAAAAABYMwjp4JoXtkLa0dirsbkJnZodW+1yLqg+EZZEJx0AAAAA\nAAAAAAAAANYSQjq4Luxp2ilJenP86u+mUxnuKl1Y5UoAAAAAAAAAAAAAAMBKIaSD68LOphtkGuY1\nMeQVnXQAAAAAAAAAAAAAAFh7COngupAI1WhzXbcGZoY1nU+vdjlLCtmWaqI2IR0AAAAAAAAAAAAA\nANYQQjq4buxp3ilfvvZPvLXapVxQfTKiVIbhrgAAAAAAAAAAAAAAWCsI6eC6sadppyRdI0NeRZTN\nO8oX3NUuBQAAAAAAAAAAAAAArABCOrhuNMXWqbVmgw5NHVPOubqHkqpPhCVJqdmru04AAAAAAAAA\nAAAAALA8COngurKneaccz9HBM0dWu5Ql1ScikqRUmpAOAAAAAAAAAAAAAABrASEdXFduvEaGvKqE\ndDKFVa4EAAAAAAAAAAAAAACsBLtaG/Y8T3/8x3+sw4cPKxwO60//9E/V1dW1aJ1sNqvPfe5z+rM/\n+zNt3ry5WqVgDelItqk+Uqf9Ewfleq4s07qoy/m+r4JXVM7JBSc3r5yTL01zypfO5928tjf2akt9\nzxXVOR/SoZMOAAAAAAAAAAAAAABrQdVCOk888YQKhYK+/vWv6/XXX9df/MVf6G/+5m8qf9+3b5/+\n6I/+SKdPn65WCViDDMPQnqYdenb0RR2f7te2hi1Lru/5nn5+4iX94PhPNOvMXdR1/GzkBf2n2/+D\nGmMNl11nfTIsiZAOAAAAAAAAAAAAAABrRdVCOq+88oruueceSdLevXu1f//+RX8vFAr6/Oc/rz/8\nwz+sVglYo/Y07dSzoy/qzfG3lgzpnJ4d09cO/4uOpfoVs6Pa2XiDolZEUTuiiBVR1I5WzkdL50fT\nJ/W9vkf1pYP/rH9/0+/JNC5vxLgGhrsCAAAAAAAAAAAAAGBNqVpIJ5PJKJFIVM5bliXHcWTbwVXe\ncsst1bpqrHFbGzYpakX15sQBfWzrB2QYxqK/u56rnw49o0cHnpDjOdrbvEu/se3DqovUXnDbO9b1\najA9rNfH9+uJoWf0cNcDl1VjbU2pk06aTjoAAAAAAAAAAAAAAKwFVQvpJBIJzc7OVs57nlcJ6FyO\nhoa4bNtajtKwzJqbk6tdwjlubtulF4Z+pWx4Rl317ZXlx88M6guvfkWDqRHVR2v1r27+hO7suPmS\ntv377/iM/t/H/rN+2P+47t58k3oaOi6rxvpEROls8aq8/4CLwXMXWJvY94G1h/0eWJvY94G1iX0f\nWJvY94G1iX0fWJvY91df1UI6N998s55++mk98sgjev3117Vt27Yr2t7U1NwyVYbl1Nyc1Ph4erXL\nOEdvcpte0K/0syMv65GeOhXcgn7Y/7ieGnpOvnzdvfE2fWTL+xQPxS+r/t/s/XV9/o1/1F8+/w/6\n/2779wpboUveRm08pNNTWY2NzZzT7Qe42l2t+z6A6mLfB9Ye9ntgbWLfB9Ym9n1gbWLfB9Ym9n1g\nbWLfXzlLhaGqFtJ56KGH9POf/1yf/OQn5fu+/vzP/1w/+MEPNDc3p0984hPVulpAkrSzsVeWYenN\nibe0qa5b/+fQv2gid0ZN0XX69A0fV++6LVe0/R2Nvbqv/W49M/KCvnv8x/qNbR+65G3UJyMaGsso\nV3AVi1RtVwQAAAAAAAAAAAAAAFeBqiUDTNPUn/zJnyxatnnz5nPW+/KXv1ytErCGxeyYtjVs1sEz\nR/Q/Xv97GTL0rs579f6ehxW2wstyHR/e/IgOnzmmZ0Z+rl2NN2hHY+8lXb4+EZEkpTJ5QjoAAAAA\nAAAAAAAAAFznzNUuAKiWm1tulCS1JTbqP976+/rolvcvW0BHksJWWJ/Z+UlZhqWvHPyGMsXZS7p8\nfSKoJZXOL1tNAAAAAAAAAAAAAADg6kT7Dly37tp4q1oT69WRaJNlWlW5js5ku97f87C+1/eo/s+h\nf9H/veu3ZBjGRV22PlnupFOoSm0AAAAAAAAAAAAAAODqQScdXLcMw1B3bWfVAjplD3bdp811PXp9\nfL9+ceqVi77cwuGuAAAAAAAAAAAAAADA9Y2QDnCFTMPUZ3Z8QlErom8e+a4mspMXdbmGUkhnipAO\nAAAAAAAAAAAAAADXPUI6wDJojK3Tb2z7sPJuQV986+vyfO+Cl6lPhCUx3BUAAAAAAAAAAAAAAGsB\nIR1gmdy+4Wbd1LJHfdMDenzwZxdcPxkPyzQMhrsCAAAAAAAAAAAAAGANIKQDLBPDMPSp3o+qLlyr\nH/U/rsGZ4SXXN01DdYmwUmlCOgAAAAAAAAAAAAAAXO8I6QDLqCYU12/v+IQ839NXDn7zguvXJ8JK\nZQryfX8FqgMAAAAAAAAAAAAAAKuFkA6wzG5Yt1W7GrfrxOwpTeVSS65bn4jIcT3N5pwVqg4AAAAA\nAAAAAAAAAKwGQjpAFWyu75Yk9c8MLbleY11UknRqcq7aJQEAAAAAAAAAAAAAgFVESAeogp7aTknS\nwPTSIZ1t7fWSpMPDU1WvCQAAAAAAAAAAAAAArB5COkAVdNZ2yJBxwU462zqCkM6hoaWHxQIAAAAA\nAAAAAAAAANc2QjpAFUSssNoSGzWcHpHjOW+7Xm1NWG1NNTo6kpLjeitYIQAAAAAAAAAAAAAAWEmE\ndIAq6anrUtFzNJo5ueR62zrrVSh6GjiVXqHKAAAAAAAAAAAAAADASiOkA1RJT22nJKl/eukhr27o\nbJAkHR6aqnpNAAAAAAAAAAAAAABgdRDSAaqku64U0pkZXHK93o56SdLhoVTVawIAAAAAAAAAAAAA\nAKuDkA5QJS2xJtXYcQ1coJNObU1YrU01OjoyLcf1Vqg6AAAAAAAAAAAAAACwkgjpAFViGIa66zo1\nkTujdCGz5Lq9nfXKF10NnkqvUHUAAAAAAAAAAAAAAGAlEdIBqqintjTk1fTFDXl1aGiq6jUBAAAA\nAAAAAAAAAICVR0gHqKLuulJIZ2bpIa96OxskSYeHUlWvCQAAAAAAAAAAAAAArDxCOkAVddd2yJBx\nwU46dTVhbWyM6+jotBzXW6HqAAAAAAAAAAAAAADASiGkA1RRzI5pQ02LBtMjcj13yXVv6GxQvuBq\n8HR6haoDAAAAAAAAAAAAAAArhZAOUGU9tZ0quAWdnD295Hq9nfWSGPIKAAAAAAAAAAAAAIDrESEd\noMq66zolSf0zQ0uu19sRhHQODU1VvSYAAAAAAAAAAAAAALCyCOkAVdZT2yVJ6p8eXHK9ukREGxvj\nOjoyLcf1VqI0AAAAAAAAAAAAAACwQgjpAFW2oaZFUSuqgQt00pGk3s4G5QuuBk+nV6AyAAAAAAAA\nAAAAAACwUgjpAFVmGqa6azt0em5cs8W5Jde9oTMY8urIUGolSgMAAAAAAAAAAAAAACuEkA6wAnrq\nOiVJAzPDS67X2xGEdA4R0gEAAAAAAAAAAAAA4LpCSAdYAd21QUinf3pwyfXqEhFtWBfXkZGUXM9b\nidIAAAAAAAAAAAAAAMAKIKQDrIDuSiedoQuue0NnvfIFV4OnMtUuCwAAAAAAAAAAAAAArBBCOsAK\nSIRq1BJr0sDMkDx/6Q45vZ0NkqTDQ1MrURoAAAAAAAAAAAAAAFgBhHSAFdJT16Wsk9PY3PiS6/V2\n1kuSDg+nVqIsAAAAAAAAAAAAAACwAgjpACukuzYY8qpveukhr+oTEW1YF9eR4ZRcb+muOwAAAAAA\nAAAAAAAA4NpASAdYIT11QUhnYGbwguv2dtYrV3A1dDpT7bIAAAAAAAAAAAAAAMAKIKQDrJDWmg0K\nmyH1X6CTjjQ/5NWhoalqlwUAAAAAAAAAAAAAAFYAIR1ghVimpa7aDp2cPa2ck1ty3d6OBknS4aHU\nSpQGAAAAAAAAAAAAAACqjJAOsIK6azvly9fAzPCS6zUkI1q/Lq4jwym5nrdC1QEAAAAAAAAAAAAA\ngGohpAOsoJ66TknSwMyFh7y6obNeuYKrodOZapcFAAAAAAAAAAAAAACqjJAOsIK6a7skSf3TFw7p\n9HbUS2LIKwAAAAAAAAAAAAAArgeEdIAVVBdJqjHaoIGZIfm+v+S6vZ0NkqRDQ1MrURoAAAAAAAAA\nAAAAAKgiQjrACuuu7VSmOKvx7OSS6zUkI1rfENPRkZRcz1uh6gAAAAAAAAAAAAAAQDUQ0gFWWE9d\nMOTVwMxFDHnV2aBs3tXQ6Uy1ywIAAAAAAAAAAAAAAFVESAdYYT11nZKk/ukLh3Ru6KyXJB0eSlW1\nJgAAAAAAAAAAAAAAUF2EdIAV1p5olW3a6p8ZvOC6vZ0NkqTDQ1PVLgsAAAAAAAAAAAAAAFQRIR1g\nhdmmrY5Em0YzJ1VwC0uu25CMqKUhpiMjKXmev0IVAgAAAAAAAAAAAACA5UZIB1gFPXWd8nxPQ+nR\nC657Q2e9snlXQ2PpFagMAAAAAAAAAAAAAABUAyEdYBX01HVJkvqnL37Iq0ODqarWBAAAAAAAAAAA\nAAAAqoeQDrAKemo7JUn9M0MXXLe3o16SdHhoqqo1AQAAAAAAAAAAAACA6iGkA6yC+kid6sK16p8e\nlO/7S667rjaqloaYjoxMy/OWXhcAAAAAAAAAAAAAAFydCOkAq8AwDPXUdWmmkNZU/sLDWPV21Cub\ndzRwKr0C1QEAAAAAAAAAAAAAgOVGSAdYJT11pSGvpi885NXerU2SpH969KCyeaeqdQEAAAAAAAAA\nAAAAgOVHSAdYJd21pZDOzOAF171pa7N+7eY2jYzP6m+/f4BhrwAAAAAAAAAAAAAAuMYQ0gFWSWey\nXaZhauAiOulI0qce3KqdPev05vFJfePpY1WuDgAAAAAAAAAAAAAALCdCOsAqCVshtSdaNZweVdG7\n8BBWlmnq335ol1qbavT4L4f1s9dGV6BKAAAAAAAAAAAAAACwHAjpAKtoa8MmOb6rX51+/aLWj0dt\n/cHH9ygRC+krjx/RgYEzVa4QAAAAAAAAAAAAAAAsB0I6wCp6oP2dsk1bj/Y/IeciuulIUkt9TL//\n0d0yTel/fme/Tk7OVrlKAAAAAAAAAAAAAABwpQjpAKuoIVqve1rv1GTujF48+auLvty2jnp99r03\nKJt39N+++aYy2WIVqwQAAAAAAAAAAAAAAFeKkA6wyh7qekAhM6THBp5U0b34sM3duzbq/Xd3aSyV\n1V9/e58c16tilQAAAAAAAAAAAAAA4EoQ0gFWWV0kqfvb36FUflrPn3jpki774Xs26dbeZh0ZTulL\njx2W7/tVqhIAAAAAAAAAAAAAAFwJQjrAVeDBrvsUtSL6ycBTyruFi76caRj6nffvUPeGpJ7fd1KP\nvTRUxSoBAAAAAAAAAAAAAMDlIqQDXAUSoRo90HGP0sWMnh154ZIuGwlZ+oOP71FDMqJv/ey4Xjk8\nXqUqAQAAAAAAAAAAAADA5SKkA1wlfq3jHsXsmH46+DNlndwlXbY+EdEffGyPQiFTf//DA3r54Gk5\nrlelSgEAAAAAAAAAAAAAwKUipANcJeKhmB7svE+zzpyeHn7uki/ftSGp3/vAThUdT1/43gH94d+8\noO8+16epdL4K1QIAAAAAAAAAAAAAgEtBSAe4itzf/g4lQjV6cug5zRbnLvnyN21r1n/+nTv0rpvb\nlS+6+v7PB/Qf/+cL+utv79OB/jPyfL8KVQMAAAAAAAAAAAAAgAuxV7sAAPOidkQPdz2gbx/7oZ4c\nelYf3PyeS95Ga1ONfvPhbfrY/Zv00lun9fRro3r1yLhePTKuloaY7t/bpnfu2ahELFSFWwAAAAAA\nAAAAAAAAAM6HkA5wlbmn7S49OfSMnh55Xg90vFPJcOKythMN27pvb5vuvbFVfSdn9LNXR/XyoTF9\n4+lj+vazfbp9e4tu3tastuYaNdfFZJrGMt8SAAAAAAAAAAAAAABQRkgHuMqErZDe3f0ufePId/X4\n4NP62NYPXNH2DMPQ5tY6bW6t0yfetVXPv3lSP3t9VC/sP6UX9p+SJIVsUxsb42prSqituUZtTcFp\nXV1UpkF4BwAAAAAAAAAAAACAK0VIB7gK3d16u346+DM9N/qi3tV5r+ojdcuy3UQspPfc0amHb+/Q\n4aGU+k5M68TErEYnZnVyck5DpzOL1o+ELLU21WjDurga6yJaVxvVumRUjbXBfCzCIQQAAAAAAAAA\nAAAAgIvBN+zAVShk2nqk50F99dC39JOBp/WJ3g8v6/ZNw9D2rgZt72qoLPM8X+OprEZLoZ3R8YxO\nTMxqeCyt/pMz591OPGJrXW0ptFMX1bpkRI210dKyqOqTYVmmuay1AwAAAAAAAAAAAABwLSKkA1yl\n7thwi34y+LR+fuIlPdh5nxpjDRe+0BUwTUPr18W1fl1cN29rrix3XE+pdF6TMzmdmSlPc5qcyevM\nTE7j01mNjGfOu03DkBqS5Q488wGehmREkZClkG0GJ8uszNsLzlumIYPhtgAAAAAAAAAAAAAA1wFC\nOsBVyjItva/nIX3xrX/WYwNP6De3//qq1GFbpprqY2qqj533777vK5t3zhvgKZ/vG53RMd+/5Os2\nDUPxqK1kPKRkLKREPKxkPKRELDifjIeViIfml8XDioSsK73JAAAAAAAAAAAAAAAsO0I6wFXs1vV7\n9ZOBp/SLU6/ooa771RJvvvCFVphhGIpHQ4pHQ2pvSZx3HdfzNJ0pVII8qUxeBcdT0fFUdNzS1FPR\n9ebnHU8Fx9VczlF6rqhTk3O6mJhP2DaD4E7s3ABPMhZSTSykaNhSNGwpFraD+UgwtS2G5gIAAAAA\nAAAAAAAAVAchHeAqZhqm3rfpYf3j/q/ox/1P6LM7P7XaJV0WyzSDIa9qo9qiusvahuf5ms0VlZ4r\nKpMtKj1XUDpbVGauvKyg9FyxsuzkmVkVTnuXdB22ZQbhnUgQ4KmJhVQTLU9DqonZwTQaUiJmKx4N\nKRa25Hr+4tCR66lYnA8dFRxPjuspEQtpXTKi+mREDYmIwnT9AQBcRQpuQX+//8tqjjXq41s/KNMg\nvAoAAAAAAAAAwHIipANc5fY271JbYqN+dfp1mYap1sQGtdVsVGtig2rDSRmGsdolrgjTNIJuOPHw\nRV8mX3SVKYd6SiGeuZyjXMFRruAqmw+mi+eD6elUVvmxTBVvkVQTtdVQCu2sS0ZUn4ioIRlRIhZW\nPGorHrEVK08jliyTL0sBrD0vnHhZY3MT+uDm9xAaqbJ/OfoDvTV5WJJUcIv69A0f4z4HAAAAAAAA\nAGAZEdIBrnKmYerXt35Qf7vvi3rp1CuL/pYI1ai1ZoNaE8GpLbFRG2s2KGJdfJDlehYJWYrUWWqs\ni17W5R3X01zO0WyuqNmso0yuqNlsUbM5pzQtKpt3FbINhSxLoZCpkGUqZAensG3KLs3bpql0tqip\ndE5T6bxS6bzOpIPhv0bGZy/69sQiVtDBJ2LJNk05nifH9eW6wdRxPbleMHVcX67nyTAM1deEVZeI\nqD4RVn0iorrSdH55RLGItWZCXwCuDa+OvamvHvqWpGB4xQ9tfu8qV3T9em1sn54/8ZLaEhtlGZZe\nPPlL2aatT2z7MK8NAAAAAAAAAAAsE0I6wDVga8Nm/Zd7/ljjcxManT2lE5lTOjF7SqOZkzqa6tOR\n1PHKuoYMbahp0aa6LvXUdWtTbada4s18wXYZbMtUbU1YtTXVDT3lCo6m0vnKaTbnaK4UAJrLl6YL\nzs/MFnRq0pHn+7JMQ5ZlyDZN2ZYhywqm0XBIVmmZ6/mani1obDglf8nbG1zeMgyZZnCyTEOmEUyN\nBedrE2GFLTPo+FPq9lMTDSkenZ/Go7bCtlnajnnO9srnDUM8PwGcYyg9oi+99XVFrLASoRo9Pvi0\nOpJturllz2qXdt05k5vSVw99SyEzpH+189NKhpP6b6/9rZ4bfVG2aeljWz7AcRoAAAAAAAAAgGVA\nSAe4RpiGqfU1LVpf07LoC8q8W9DJUmDnRCaYDs4M6+Tsaf38xMuSpJpQXD21XaXgTpe6ajvotnMV\niYZtbWy0tbGx5qIv4/u+fEnmJXxp6rie0nNFpTJ5pTJ5TWcKpflgmp4ryvU8eZ4vz5dcz5fnefI8\nqeh6cou+PC/ozjM6kZG/VOLnEpVDO6ZpVEJCC4M85allGoqELIVDlsK2qUjYUti2SstMhUPBfLmb\nkW0Zsi1TlmkqZJdCTKYhu9TdyC6vc858ECbiS2lgXtEtrth1TefT+ts3vyjHc/Svd/+2mmKN+q+v\n/LW+fPAb2hBvUWtiw2Vv2/d9nZob0/p4M0M5SXI9V/904J+VdbL69A0f04aa9ZKkf7f3d/VXr/2t\nnh5+XiEzpA9ueg/HRAAAAAAAAAAArhAhHeAaF7HC6q7tVHdtZ2WZ67kanT2p/ukh9U29bLDnAAAg\nAElEQVQPqH96UPsnD2r/5EFJQeCnPbFRWxs2a3fjDm2q65JlWqt1E3AZDMPQpX5ValumGpIRNSQj\nV3z9jY0JDY9Olbr+BJ1/ZnOO5vJOZYiwubwjxwlCP65fDvi8zfSsv5+9TtHxlPN8OY6nguPKcZcx\nIfQ2DKkS3Cl3AjIW/NHQfAcgo3ReMmRbQZAoEg4CQ283H7LNxUGks8JJZqWjUdAhq3Kd5StUuYZS\nSUZwvdGIpWjYVjQcBJmW80t11/NUKHoqFF3li64KRU95x5XvS9GQpWjYUjQSXLdtEX64Xni+px/1\n/1Q/GXhKD2y6W+/veG9Vg55Fz9Hf7/uSUvlpfXDTe7Sneack6be2/4b+cf9X9Hf7vqg/vPUPFA/F\nLnnbrufqywe/qV+eflUdyTZ9bMsHtLVh03LfhPPyfV9ncimFLFu14eSKXOfFeGzwKR2f7tdNzbt1\n98bbK8uT4YT+YO+/1l+99jd6fPBphUxbj/Q8tIqVAgAAAAAAAABw7TN8fzl7IVTP+Hh6tUvAeTQ3\nJ3lsrhHT+Rn1Tw+qr3QaTo/I8V1JUtyOaUdjr3Y37dCOddsUD8VXuVpciOM58n1fISu0Kte/2vv+\necMiRbd0vhzk8eS4fmXqup6KZ827rl+aLl43mC6e98qvlqUuRvIlX36lo5BfWui4vvJFV/mCu+Tw\nYivBMBQEZ0qhnfK8YUieF9Tu+X5w8oIQwcJ5x/Uq9+/bhqOsomT4krM4tBEMu7b4eiOhUmjICIJH\nC/NDZ4eeygGtCwW5LDPollTpnGSbCpXOh6xyh6Ty3+eXL+y0tHiZWdmGbZ9//WCYtrXRUSTvFvSl\nt76u18f3yTRMeb6nlniTPrfz0+pMti/79fm+ry8f/IZeOvWKbl2/V5/d8alF9/X3jj+qxwef1s7G\nG/Rv9nz2kjrh5N2C/mH/l/XW5GE1ROo1lU9JkvY279ZHtjyipljjst4W13M1kjmhvulBHZ8eUF9q\nQNOFGVmGpYc679O7u9+l8Codw8uOpfr1V69+QfWROv2n2/+f877+T+VS+stXv6DJ3Bl9aPN79XDX\nA6tQKVbTar/mA1gd7PvA2sS+D6xN7PvA2sS+D6xN7Psrp7n57X+sS0gHV4Qd+dpVcIs6MnVM+yYP\nav/EQaXy05KCLjub67q1u2mHdjdtV0u8eZUrxUJFt6hnR1/UTwaeUtF3dPfG2/RAxz1qiq1b0TrY\n9y/M94MOQOXATr7oKltwdHz6uF5P/UpZd07b47eoPbxFnq9K8GR+qLEgMON6/nwwSCqFg4Ltz19X\nEBjKFzzlCo5yBbd0cpTNu4uWOa63qE5DCroEGaWuPUapi48RdBKK2MFQYguHGbPCRc1FRjVtD2ra\nHJUvqdXbpabsjSoUtOj6F85fyTuOszsNBd2HJM+Xik4QpHK9lXlLYxhBZ6pKtyNDi7sfGaX7sbTM\n8+cfz3Me5wXLLMuYDwedFTRaODWM0mNeel5U5v1gu8F8UKtlBXXY5oLOTVZ5+Lj5ZQu7RAUTQ3ll\ndND4qTLGhOr8jbrBeEBjobfUX3xdhkxtD9+l3ujN8/VZ80Gmyv1x1n1hmKXH0ghCWq7nz4friq7e\nmHlZr2aeVb3ZolvtD8l1TBWKrhzPL23L10HzcU0ZI+rSTdps3V56zqryvAjbVmkovPnnrWvm9P0T\n39TJ7Ki21W3Vb/V+WmPZ0/rBwI81kB6SZVi6t/UderjzAcVC0eAeMOafdxdjrjhXCcL2TQ9ocGZY\nBW9+iLBkOKFNdd0amhnRVD6lplijPtn7EW1ft+2Kno+u515WN7y54pz+/OW/Uio/rf9w87/V5vru\nt113MntGf/nqFzSVT+njWz+oBzreeQUV41qznK/5BbeoQ2eOqDnepI2lodXWgmOpfp3JTWlr/SY1\nROtXuxzgovB+H1ib2PevPulCRoMzw3J8V67nyvVdub4nz3flel7pvCvP8xSyQrpjw838+A6XjH0f\nWJvY94G1iX1/5RDSQdWwI18ffN/XSOak9k+8pX0TBzWYHq78rSXepF2N29XbsEVb6nsUtaOrWOnq\nKLgFzRbnlCnOabY4q9niXOVU8AraEG9Re7JVG+ItVRs2zPM9vXzqVf2w73FN5VOK2VFFrIhS+WkZ\nMrS3eZfe1Xmfeuo6L7yxZcC+f2lyTk6/OPWKnh15QafnxiUFIQhfvjqSbfrQpvfqhnVbV6Q7Szmk\nUw5JXOx1ZgqzemNiv14b26fDU8fk+cF2OpNtmi1mNZk7o8boOn2q96Pa3nhu6KDcmccvhYzKnYiC\nv2nBNFhqGqUgiVUOdFy4Ts/zS92SvCC44wQdk4qlqeME3ZHKoZ7igr877vmW+SqWOgidb1vndiCa\n70RU7lDk+zpPiMeodOOxSkOamYYhx/Pnaz9nurJv14yaaUW2viojnJcz1q7i4A7JD7rWmHXjCvfs\nkxEuyJ1uVKFvt1S88tcGs25c4W2vSMWIcgfuevttWgVFdr4oM5pV/uhN8qaW/qLfCGcV7v2VzNis\nnIlWFft3VW6L5Mtad0p2x2GZkZz8YljFka1yx9tVTixZphEMH1ca0i1SmpqRvJzohHLhcc2apzVn\nTM1fqS/F/AYl/BbVuC2Ku82yvYR8Typ6BZ0Ov66p6GHJ8BWd7VT8zB55hfA5zy/LXNzFaf7kKVcz\nonT8qPKhSdUVu9VRvF0xK6GQZQaBL3txcCoIlknllNcvZn+skeIx7YrdqV3xOxd1uCp32Vo47GDa\nmdLPc99W3p/TdutetRo7ZBpSPGIrGrEVj9iKRWxFI1awLBwsC4eWd9i9hXzfV8HxlMsHwy3mCq6y\n+SCcmM07ypbCgfPDCOqssJ9ZWRayTIXPGaIwWLacw/f5/vwwjuXH2lgYQiwFJhcOfWgYhjLFWYXN\n8Kp0X1qO1/xTs6f1/OhLeunUK5pzsjJk6N72u/X+nocva+i6a4XjOfre8Uf11PBzlWUtsSZta9hc\nOm1RMpxYxQqBt8f7fWBtYt+/ekxkJ/Xk0LN68eQvVfSci75cIlSjD295n+7YcPMldR7F2sa+D6xN\n7PvA2sS+v3II6aBq2JGvT9P5tA5MHtS+iYM6dOZIpROAaZjqru1Qb8NW9TZsUU9dp2zTXuVql4fn\nezqRORUMSTI9oJOzp0tBnNmL/jDENm211mxQR7JV7Yk2dSRb1ZbYqLAVvvCF34bv+zoweUjfO/6o\nTsyekm3auq/9br2769cUtSJ6ZewNPTX0rIYzJyRJm+q69a7Oe7WnacdFfRgzU0hrcGZYgzMjOpOb\nUmtigzbVdasj2abQEo/tle77qfy0jk316WiqT0dT/fJ8Vx3JNnUm29WZbFdHsu26+NJubG5cz4y8\noF+c/JVybl62Yenm9Tfq/vZ3KGbH9KP+x/Wr069LkrbVb9YHN793xYJWFyNdyOiN8SCYcyR1fEEw\np103t+zRTS271RRrVMEt6Mf9T+jJ4Wfl+Z5uW3+TPrb1A3zxuIym82m9MXZA+ybeUtSO6o6W27Sp\nrnu+C1IpcFUOXpUjEeUhw1y31Jmp1HHIKYcvztOB6K3UAT164vtyfVf3r39Qt6wLutX4vpRMxjQ+\nmVG6kNZT4z/WcK5PESOm2xMPab3dUwpCeQtCS+cOo7YwyGSZhiIhSwUrpRfy35YvVw83fkJt8bYg\nMFHq5GRZpvxyCMr3NZY9ra8O/JMMGfqNjs+oIdRUun1BsKo8TNtEflwvzn1POc2q1dut1uItKhaD\nIenK74A935cnR1PRQ5qKH5BvOAoX67Uuc5Mi+fUqukGHqqw/o3x4XE5sQqo5IzOardxnvmvJm62T\nl26Ql6mXl6mX3KXDFEZ8RuHuAzIT05Jryzy1XeF0j0KWpVCpG9E5Q+9ZGbkNgzIbh2WEikHorRAN\nAkaOHQSMxjolLR2KsZqHFe45IHemQYVDt19w/UrN0Ywi21+WESqo0LdL7sSFhzwzDUORsKkgAlTa\nTrlj04LwTmkkvMoZQ1rQ2encQGGh6Cqbd+WtwH9lys/TSNhSyDZLtQX7nbRgn6vchuDfReG/BaG7\ni6/Yl1k3IXv9kMy6cckJyxjfJGOyW5YRWhT6WxzyMd7mb5K5oIOWaRpBiMsMwlyWdXYgLAgy1dVF\nNZvJV27r+RgLHqsyV65GC8fUV9inCSd4nxIx4uoM9+pUsV9pL6WIEdeN8XeqJ7Jdhlm+9+aHQ1w0\npOFZQxOWA2wh2yoFH+fv//nn2PzjYxjn+ZuMyuN29m1zPU+O488HNB13QbgqONYUXU+2ZQYBtbCl\nWMRWLByE087kUvpfB76qgZkhrY83666Nt+lYql/HUv3KubnK9awLNasl1K46v1XRQovcol3p5FWp\nv9yVbMF5yzRUEwspGQsrGQ8pGQ+ptiaseMReM0MyLuT7vnJuXtP5GU3nM6oNJ7Q+3iTTvPQvJ8th\nOtf15XilMJ1pqCZqy7qM7VWL53sazZzS8VS/+mcG1RRdp4e6HlDUjizL9vm/PrA2se9fmQOTh/TY\nwJOyzZBuat6tvS27VBt++w/mz2c4fUI/HXxar469KV++GqMNumPjrYrZUVmGJcswg6lpySzPG6Ys\n09Jw+oR+MvCkCl5RPbVd+kTvh9WRbKvSrcX1ZK3t+77vq+g5qz4ENeZ5vqcnh57VgclD+uDm92hT\nXfdql7QmrLV9H2tD0XP05vgBbanvUV2kdrXLuSqx768cQjqoGnbk61/RLer49IAOTx3T4aljGpoZ\nqXS/CJshba7vUW/DFvWu26K2mo3KujllCrNKFzLKFMvTBfOFWc06c5XtG+Uv7SpfKhuVL0xMGYrZ\nMdWEapQIx5UIJZQIxZUI1agmVKNkOJjWhOKX/OugvFvQwPSQ+qYHdHx6QP3TQ4u+MIlYYSVCCdWE\n4gtONZX5hB2ct0xLJ2ZPaTR9QsOZEzqZOSXHdxfdvpZ4cym406qOZJvak61KhGouWGPf9KC+e+zH\nOj7dL0OG7th4i97X85DWRRsWref7vo5MHdeTw8F/ZCSpOdaoX+u4R3duvLUSEso6WQ3NjGowHYRy\nBmeGNZVPnfe6bdNWZ7Jdm+q6tKmuSz11XYs+WLrUfT+Vn9bRqT4dTR3X0VSfxuYmFt3XtmEvel6U\nb0Nnsl2dte3qTLapI9mmmH31B3c839PBM0f1s5Hn9dbkYUlSXTipe9ru0jva7jjnA7rh9An9oO+x\nymN3Y9NOfWDze1Z8GBDf9zWenQieG+lhDc4Ma2BmuBLM6artCII5zbvV+DbDqw2nT+hrh76lofSI\nauy4PrL1/bpzwy2r8mXhXHFOb00e1r7Jg3pr8rAs09Luxh3a07xDvQ1br4kPYlL5ab0+vl+vj+3T\nsVS//LO+2l8fb9E7W2/X7RtvuahjyoX4vq8f9/9UPx54QlEros/t/LR2NW1ftM7Cfd/3fT0z8oK+\nc/xHcjxH97bdrY9sed8l37ezxTn9l1/9D01kJ/XZHZ/SbRtuuqjLvXL6df2vA19TS6xJf3jbvzvn\n+NA3PagvvPG/NevM6cObH9FDXfdfcJvT+Rl9v+8xvXTyFfnytatxu8JWSMdS/ZopzB/zYnZMPcku\ndSa61BrtUIPdIkPnHwJt4bBZhmHMD2tmmTJNXz8/8ZK+d/wx5dycemq79KkbPqq2xMbKdXm+pwOT\nh/Ts6Is6OHlEvnwlQjW6c8NtumP9bUrYtXrx1Mt6fPinyrk5bYhu1IMb3qum8IYgNOXNd4LyfWnK\nmdCPJ74qy7D0yLrfUtwMjknlYfOC7k9nhTsWhD5Szri+e/Jryns53d/0bnVFdqhYUKmDjaNspZvN\nfEeb+VBUqXvW/OzbDN+nSoutt+u8FQlbioWDzj2xsK1YZD4gEY3YioUtRSP24iHnSqG18vmFnYIc\ntzQ8YdGtDMFWHqqwcioEoQwtqLGccSvfhkr9kkLljka2VZk/3xB2voJAnV+qpaicpsPHNR09KsfO\nBNsqNMixM/LNogw3osjUVoVSPfJcqxIomL99WnT7ViLItJARzchqHpHdNCojFAS93elGOWMd8lIt\nQScrw5O9oV92a58My5WbrldxYIf87Op/eFJ+xbqSe82qH1N40z7JLiqc6VBj+jbJtZWeKyg9l1c+\nNCWr9ozM2kmZiSkZVvBa6/uSl6mXO94ud3Kj5F96h0bLNJSIhUrBnbBqYiH5XtB1qhw0KjiLg0fl\n80al25RZGhZxfohE0zRll5bNB6rmw0/SgrBdOQBVmT83hLfwrUH5fcJSYT3J11zopPJGRkVl5RhZ\nOWZOrpmVZ+UlOyeZi4f09B1b3lytNFcnI1cnM1cvs5gIhoAsdeqTtDgM6QYB1rd7/OMRW4lYSDWx\nkBKLTsHyaMQO7tPifGC04ATT8vGlUPq7Vxqz0tdZxzpfpWNLUIVpBCE6w/TkRs4oHx5XLjSuOXtc\nnlFcVF9UCe0I3afWcLfCdhAsLB97wiFzUajtQurr40ql5i64nqHgeXJ297aQHTyPytPleD9YHtLT\nPeuYPn/eO+dYWD5fvmz5te7sYULLw4hWhhy1zcpQr7ZtKmybCttWZRhMz/c1l3OUyRaVmSsG00Wn\ngjJZR77vl4bfDC4fXjBf7thWvp7wovUWr3Op96Hv+yvyHvzsx6T8mlMOVF4tfN+vvJbniq5s01Q8\nGgQsr/R+cj1X6WJGdeHay97Wwk57bilIX+7st9L/l7raP+c7MnVcmeKsdjbeoMh5fhDleX5w3HWC\n14R4xL7i56Lv+8rmXc3liwqHrPNu8+TsaX376A/11pnDla65UnCM3FLfo5ta9mhv8663/aKo/LnO\nT4d+poNnjkiS2hIb9VDn/bq5Zc8ldW2eyqX0L8d+qNfG3ix1L7xL7+95d+WHUJ7nK1dwFA3bFz20\n79WsUHRl22bldR2X52rf95fTydnT+uaR7+loqk/3t79Dj/Q8pNga6Bzv+77G5sbVHG+66rpsTeVS\n+uJb/6yjqT5JwbHzwc779L5NDy/5I1JcubW072NtGJgZ0pcPflOnZk8rbIX1YOd9elfHvcv2Y5br\nBfv+yiGkg6phR1575opZHU316fDUUR0+c0yn5sYueRtRK1LpylD6mLTyZVf5KzlfwReT5YDAUgwZ\nilgRRe2IonZUUSsSnMrz9vz56fyMjk8PaCRzYtG218ebtamuW5vqurW5vlstsabL+jDM8Rydmh3T\ncOaERtKjGk6f0GjmhHJuftF6DZF6tSdb1ZFoVXuyTe2JVq2L1sswDJ2aHdP3+x7TG+P7JUm7m7br\ng5veq9bEhgte/8nZ03pq6Dm9fPpVOZ6jGjuubQ2bdWL2VGWYpbJkOKGuZIe6atvVVduhxug6jWRO\nqG96QH3TgxrNnFx0HzXFGoPATm2nmhvqNTOTrTx2wUuJX/liwZcv1/c0kj6hY6k+jWXnQzlRK6LN\n9T3aWr9JWxs2qSPRJtMwNZmb0lB6RMPpUQ3NjGgoPaI5J7uo5qboOrXUNGt9vFktsWa1xJu0Pt6s\nukjtiv8H0/d9zRbnlMpPK5Wf1lR+WlO5lF4be7NyezfVdem+9ndob/OuC3adOjrVp+/3Paq+6cEg\nlLXhFj3S85AaYw1LXu5ypfLTlS5KgzPD59zfhgx113Zob8tu3dS856Lr8HxPz4y8oO/3PaaCW9C2\n+s361A0fVUu8uSq3o6z8YcO+yYPaP3FQx6cHKs/f+kidHM9RpjgrKQgYbm/s1e6mHdrduF2J8JUH\nXJbLRHayEszpnxmqLO+p7dLell3a27xLqfyMnh/9hV4b3yfHc2Sbtm5q3q13tt2pzXXdl3XsKrhF\nffng1/Xq2JtqjK7Tv9nz2fMec873uj+aOan/feBrOjl7Whtr1utzOz+9KGSyFNdz9fk3/lGHp47p\n4a4H9KHN772kur9z7Ed6YugZ7Wrcrt/b85nKcWD/xEH9w/6vyPVdffqGj+uujbde0naHZkb0raM/\n0PHpfklSbTipLfU92lK/SVvqe7SxZv2yHnOm8zP61tHv69WxN2Uapn6t4x7d23aXXjn9hp478Qud\nyQVDaW2q69I9bXfpppY953xQNVNI69tHf6Rfnn5Vhgzd03aXPrDp3Yu6khXdov7rK3+t0cxJ/e7u\n39be5l2XVe9QekT//bW/U9bJKWyFtXNdr/Y079Suxu3XRRe01TKcHtWzIy/ol6dfV9ErKmTaunX9\nTbq3/S51Jts1V8zq6eHn9NTw88q5OSVDCT3Udb/uabtzya59i75AXRBQKn8J6JSm5S8GFwYVHNdX\nPBHRzPTi12P/rO0XvaKG88d0dG6fThWCYVOjZkybYzu1JbZbtXbDomBWeSbjTuuV9DMaLhyTIUNb\nozdqV/xOhY3gQ3L37GEMK8MZ+iq6roqlTjeuOx9yqdzmSn0LzpcDEW8XrloQmKh8Ub+wk8+C8+Wg\nleN686G0QkEj1itKxQ9Knqnw6T0qjrcpl/dkmlIyHq4EaIJpWDVRU4XIpKZ1QqedYZ3KjcqXr6gZ\n1c76G7Wn7mbVhRrOCRU4rq9MtqD0XLF0Ks0vWJbNn9sN0jKNIKxhBYGN+fngmOacp/vawudLEHbQ\ngvd88/ezSuEHLVjmL1jpsj54MDxZTaOyN/Yt6mA2fyWGDCcq04vI9mKyvahsReVYc8rbZ+RY6cUt\nnjxbVj4I7RjZOlm5BtlurUKWNR8wMYNQTDlcYlumPN/XbCl8kc4WNZstLttQlAuDTUHXJF+yHBmR\nrIxwVoqnpMQZmTXTMsz56/SycXmZhkoXN6vphOwN/TJMX87ERhWHtkvO5Xf0XG62VQqsVm7nfGBr\nUTfA8rCLZ4UNy+dXm2Uasm1ThQVd+VaCaZT2XXvp9x9+bEpeY5/82pOS4QfByIUnzzxnmeHZkmtL\nni25oeD8wmWeLTkh+bka+a4tzzs3lPN2NYdCC0JiZx13bMtY0HXx/N0Xy8e+cuD5fCFia0EXuaLj\nKVdwlSs4QSCnFMopFNzzHoMs01AsYqsmaiseDakmaqsmFlI8GiwLWWYQ4vO8oLvWgi6HWW9Wk9YR\nnYkckWtmZbkxRQpNCheaFMo3yyrUyveMc25T+fV24ZC7b3c8KXdNK9eVWFBjuWYpCEuXb3d5+M9c\n+faXlvm+X+r8Vgo3Lwg7RyPzy5oaa5ROBz9gmg9OlifzoUrflwrlsGcxCH6WQ58Fx1OxOH9+4fOk\n8hp81uvI2a/RwaL5MwUzrana15SLBt35DM9WKNMqI9Uhd6YheE/gnNslVJKiYSsIWEZDqonZpWnp\nvoyGFI1YypZDd6XT7ILj/WzOOWe7kXAQ1onFXRWbDisTPyYZvur9Nu0Iv0M14bjG/T6NFo9pvHii\ncrn2eKd2rdupPU271FLTIMdz9cqpfXru5PM6lQvWa7bb1WPtVbzQqmze0WzOUdHxSh0ESx0Pz+ow\nWO4uaBqqXOZUYVCD9osqWGkZbkShsR0qjG1UNu9VHsfaeFh1NWHVJSKlaVj1C+brasJBWGxh18bS\n8KwLh2a9XOX3qcH+vnjoaMfxND1bCE6ZgqZn85rOFJSaLWg6k68szxddGaVheGsWPM7B/lLan0uP\nt+sFAcv5HxUEw+YunGbzwfYq79tiISXi5fdvYSXL7+XiIUXDduV5Wgnflm5P6Wk9/0PHcgCz1DE2\nFLq4YFHlxwSFxT8eMIxzfwRwdsfJS3lsVvozft/39erYG3p04El1Jtv1wc3vUX2kbtHfy0OQF0rH\nFVNSuBRgDNuXPqxy1snp0f4n9PTI8/J8TzE7pqyTVW04qY9seZ9uW39T6fNqvxKwzheD41zYNhUJ\nW4qG7Uu+b68GJ2dP6+uHv6OjqT611mzQ+zY9rBubdl4Vt+O1sX362qFvac7Jak/TTt3depu+deT7\nmsidUWvNBn1mxyfVnmxddBnXC35UU37PfiUhPddzdTTVpwOThxQyQ9rR2Kue2s5LCkdey66X7/e8\n0n/qr4fw6cXKOXmdyU2pKdZ4TfwYtdoKblE/6n9cTw49K1++bm7Zo6OpPqULGdWGk3p/z8O6c+Ot\na2bfvpDrZd+/FhDSQdWwIyOVn9aRqeM6fOaYxrMTlQ43iVBCyXBCiVDNOdNLeSHMu4Wg+05xVpkF\np9nC4vNZJ6eck1fODabugm42Z7MMS53Jdm2u7y4Fc7qqOiyP53uazE5pODOqkfSJynRhVwZJqrHj\naok3a2BmSL589dR26cNbHtGW+p5Lvs6ZQlrPjryoZ0df0GxxTlErqs7adnUlg0BOV227GiL1S/5n\nLOfkNZQe1vHUoPpmgm5DWec8X45cQNSKakt9t7Y2bNbW+k1qT7Re1HPA931N5s5oaEFoZzRzshK0\nWChshtQcb1JLvFnrY01aF21QwSsq7+ZLz4u8ck6uMi0vz7sF2aaliBVR2AorYoUr0/n5iMJmSFkn\np6l8qhTKmVEqPy3nPEOh2YalW9bv1X3td6urtuOS7ivf97V/8qC+f/yxYHgzw9IdG2/VumiDQqat\nkGnLNkML5oNTyAzJNi0V3ELpNga3Ob/gdudLy7JOTicyJzV91vOvOdYYPDeS7eqq7VRHsvWKhmo7\nk5vS1w9/R/snD8k2bb23+0E92HnvorCS67nKujnlnJyyC055Ny/LsBS2QgqZocr07HnLMNU3Paj9\nkwe1b+ItjWcnJc0HjHY1bdeuxu1qS2yUL1/900N6c+KA3pw4UOnmZMjQprpu7WneoT1NO9USbzrv\n4+L5nlzfk+u7cv3gQ+7gS6bSB5MyZBimDC08H+xf5cclv+hxWTw/W5zTwTNHNFIaus6Qoa31m7S3\nZbdubN656MOqskxxVi+ffEXPn3ipEsLbEG/RO9ru0B0bblFNKH5Rj1UqP62/e/NLGkwPa3Ndt353\n92+/7THx7V73C25R3zn2Iz07+oJs09bOdb1qijWqKdao5nijmmONaojUn7Pvf+PId/XMyAva07RT\nv7v7ty45+OL5nj7/+j/q0NRRPdL9oN636WG9dPIVfeXQN2UZpn5n1/+l3U07Lm89ByYAACAASURB\nVGmbZb7vazA9rLgdV3OscUU+vDoweVhfP/wdTebOVJaFzZBu23Cz7mm7Sx1nfTB1PofPHNPXj3xH\np+fGlQwn9LEtH9Ct6/fKMAx948j39MzIz/XOtjv1qd6PXlGtp+fG9cKJl/XG+P7KvmcZlrY1bNaN\nzTu1p2nnJbWUDfaDWVmmJdsoH9vs6/4/z47n6LWxfXp29AX1TQ9KCgKp97TfpTs33nreLllzxTk9\nNfycnh5+Xjk3r9pwUg913a93tt5ZlQ9m3m6/z7sFHZg8pFfH3tSBiYOV4VG31W/WO9vu0J7mXRf9\nq8eDk0f0jaPf1djchJKhhD685RH9/+3deZRcdZ03/vddat9639d09sQQQiAJSwQ06iAIAg+LIzjK\nc87oODo6j+Ogc9wAGRxmdM446LjMc87vh+OIwyIiKo4CE4EQICH73unu9L5WV9d+1+ePe+t2VaeT\ndCdd6ZB+v84pblV307ldVd97b93v+34+V9Ssu+Cu8DydaGYc/3f/T3E81olKXznuW32PM2ZzH7ln\nsh0ZTUfxat92vNq33TnmWVG2FJvrN2F1xYpZPSeabiCZ0axqJrkT2BfAScv8EFUu3D013KMZKrYP\n7MTvu19CNDsOWZCxoWY92kpaEPGEEHaHEPaE4Jd9p31OMloGPYl+dMd7nVt/crCgOl3A5UdbpBVt\nJS1os9u+nilcnavKkUipSGQmJ3UzWR0uWXQqp3jyqqTk7rtkAXEthmh2HGPZcYxnxjGWGbceZ8YR\nzUSd8ZQjCiLqg3VoDTWjJdSMhkAT/FLACdrlJvr7kgP474HnMZTth0f0YV1gM+rlZfYk12TYbSb8\nfjdSKeWMP2eFACfbw+m63RYuP9CgGVD16avZ5Cbl8ydq8yu6nSqckZssPim0Md3PCwIEEQUBoamt\nQnNDQ80PGUypNqWoutMCz+uSrJZz/ukqK7mcikuSKFgVlXLVlezfk6uyNLXiUu57WU0v+Lnc99Rp\nXj8TBtRgL7KRY9C9VrBXVIIQdA8gGDAFAxAMQNCd+ybsr4kzez8AAAwJnmQj/Mk2eLQySKJ40msl\niYITRJl8LvUpz6sBzVQgeNIws37AsPb1k63+rADA5HE2TgqZnonHJcHrluwJVQlel1VhL9e+Ure3\nj6mMhmRGdZYzCd8JgRjk6i5IZf0QRNNqexovg+ifgOCevDjH1GUgWQokSyEkyyFmSiFBgiyLVqtJ\n2QoFFiydaosCsoqOZGYyJJLMqIXBMFGDGBqDqXlgJsOYrn2pLIl2O0brObYCPPqMtwMXBFGDXNcO\nuaYTgmhCnygDkqUQy/usICMAQfXBm2xCMNsKv1lib2utfUMqo9nPoYpE2qrwOBMCAL9XLhjPAa8M\nRTWs1yWjIOY7CrX8ECCrMDJ+qCeWwxivxEmvhSsDqWwAUukgxFDUqWamx0sguBSI3pS1/YtWQ+1v\nhZksmaMnD3b1wk7Ide0QJB1yphyVifUIi5VIZtSCoMtZ/xOAXTU092jK96d8aTJ4XLj/n9W/mQsY\nBd0I+d1QVN2qbpY5+yCtxyXB75Xh88gwDBPxlIJkZso5H1GD6I9DCMQgBiYgSKrV9jgZgZGIAPrs\nzqGcVEVNFu12y9Y+IKNo0KUMRG8KgicFwZt07kMwAUOCaYjWdjT/vinCNCSIpgQJLkiGGxI8kE0P\nZMEDt+CFR/DCJbmcoI/f70Y2q555pWfBMOFUC51siW0iLY5iLLQTimck74clyCNLYAwtgqoCqnrm\nNsG5Y63cMZbHfpxf6Sp3SWHC04mxwC7oUhqyHkR5fB082RqMefcjEToIiAaEZBn0E6uQjZ/+Qi5J\nFPL2MbKzz/G6rW3t1IC7Ybcczw/CA7lxY1fiFaxqlWLePtCQ0hBEDZIWLggyTh5HWX9hbreYq3op\nSVbVSFkUIYgaRn17Mew+AAgm/EY5UsIYIJgIohxt4hWolpohy6JTTTPXCjkXVi+sljj5tVyVYAhw\nQpenqpJrYjKArWrW8WJay+KV0T/gcHIPJMi4NLAZza7V0DQDE5k0DiivYlA8BJgiIvFVkEYXI5Ux\nkMpaQdx8LrvqYX4lRJddkdAlSxAEOwxoV1vUoSDtHkDK04O0tw+mOOXY23ShxKxHldSMOk8LSr0R\nu4KvFWp12++zXOXRXKVOWcp7DkXruVHzjyPtYyFF06GqecebuuEcpzrHQgLs98TkMREEIJPVC45d\nrOMZ+1ghPfl1wAqUWpUZCz+b5Co1elwSSiI+6Kpm/Zy78HNL/v+Xu4DhVMfds634ON172cx7H+Vf\nWJPKaHZAczKwGcsPbCYVTCQVGIbpHJ+H7IticiHLgNeFuNyDw5mdmNCieFfJWqwvuwJ++9xprhI2\n8j4nANZnal2f8jlHKwxu64Zh70Mmg95+jxWmPlPAfjY0e//QOzGI1wZex57obihGFgIElLhLUemt\nQpW3EtX+KtT4a1Dtr4DH5S54T872fIBhmtbnGDv47gRGFR2aXrhtzy1zF/bkHrsk0XodfNbrEbQD\n8XNRAc+wL+w6OtaB/2p/CiOZUZS4S/EndTei1tOEiWwKb42+jr3xN6FDQ1AowyJsgE+tRTZrOGF2\ntywiHHA7t0jAjbB/8nHAe/G1Fefc/vnDkA4VDQcyXahUQ3PCGGktay/T8Mk+NIca4LoA0sWxbBw9\nTnDHqrwznB5Fjb8KH2r7E6ypWHnOO39FVzGhxFHmLTnniS7DNDCYGsaJiR74AjISiSxgBxGsNga5\nq+oEp41Zpb8CjaH6OZ1kS6lpDKdHMJgaxlBqGEOpEQylhjGYHoGin3kiAbAmvb2yF27JDc3QoOgK\nsrpy2nBXjgABIXcQJZ4ISj0RROxliTeCEk8YdYHac67MYpgG3hrchV8dfwGjdgWNuRRxh9ESbkST\nHdhqDjU4H0rmkmmaeHt4L35+5BeIKwmUekrgltzIaGmktcxJE1DnwiO5saJsGVZXrMCq8mUntRWb\naiA5hL0jB7BnZD86YiecybqgK2CVmzd1J5Qzk4pec0ESJCwvW4K1lauxpmLVjN9Hpmni2PhxvNK3\nHbuG9kIzdciijMWRVsiiDEkQIQh2KyZBnLzZ7Zn2jR7CeDaGjbXrcdeyW087qX6m/f7ekQP4z0NP\nI6ZMnPQ9URBR7i21gju+cgDA1t5tqAvU4P9c9hfwnmV56YSaxD+8+S8YzUSxoeYybB/YAZ/sw6fW\nfBxtJS1n9Tvnk6IreKHzRbTHOnFJ5WpsrL1s1q3+VEPDH078D37b+QeohoZlpYuxpnIV/uvIs6gN\nVOOL6z87Z2EO0zTRnxzE7uH92D2yD93xXud7reEmXFK5Gm0lLUipaUwocecWy8YLHp9q+y1AcEKJ\nrrxgYrmvDDWBKtQGalAXqEa1v2reS9capoGUmrbbfKaQUlNIaenJpZZG0r6fVq3HsewEMrp1UmVl\n+TJsrt+EleXLZrTfTKopvHhiK17qeQVZXUHEHcKW5uuwoeayvLEvnPM+OH/cO8Gcwd3YP3rI2Y5X\n+SpwadUabKhZh+pA1Vn9O6qh4aUTf8RvOn8PxVCxKNKM9zdfjwpfGSKeyKxL0Cu6mne8YB0rRDPj\nVts5QbJOQgsSJEGCOOWxLEqo9JWjLliLukDNGStE7R89jP//wM+QUJNYV7UGH1l++zmXzFcNDbuH\n9mJr7za0xzoBWJUYr6nfiCvrrpg2TGmaJjJ6Fik1haSWQlJNIaNlEfGEUO4tR9gdvOBPLKmGhtf7\n38QLnXY4R5Rxdd0GbGm+dtrA6tlQdAW9iX6ciPeiI9aF9linU7EMAFyijJZwE9oiLWgraUVrpPmc\nXk9FV9A10YOOmBV8Px7rQlKdvo1UwOVHmacEpd5SlHpLUOqJoCFUh9Zw04z3k4Zp4OWeV/Hc8Reg\n6AqWly7B3ctvRYW9752p+fqsrxma1ULrHEKaiq5iMDWE/uQg+pODSKpJNIYa0BZpQU2g6h0VADyd\nhJrEq73bsbV3G8azMQgQsLpiBa5vvBpLStpmNN5N04RiqFaw3w73p/MubshdDJPSUtg9vN8JEjcG\n63B1/Uasr1474/fmeDZmHX8PH8CR6DFopg4BAip8ZagN1KA+WOMsK30Vp30PTNe60jBMKyTnls7q\npL9pWq0B84M7ueolgmiiPXkIO8feRF/aOtap8FbgqtpNuLxqHQJuLwQBGFOiVkvt8Q60xzoK2jzL\ngoSmcANaw81oiTShNdyEUu/MwxiaoaNjrBd7Rw7i8PhR9KV6YMD6nBKWS7AivAprytagIVwDr8dq\n5XWqNk9WxSGrTWkmr2VpJqvB7XUhHs8UhCnzFgWlbmR5MljgskMGuYnShDGB9vhhdCY6Ue2vwrvK\nVk2eG5jsiHhS28Tc0jRN7BjchV8c/zUmlDhKPSW4dcmNuLTyXdbktWmgfbwTbwzswM6hPU714uZQ\nI66oXYf1VWun/TylagZSGRWJXHgnrSKj6PDlBXKCPhf8nlO3gto/eghPHf0VBlND8MlefKD5PVhf\ncQUUxXTCXxlFK6jEkbsl1AQGjeMYEzqQlIYgQECZ3oZmcS0qvRXweQsrO+WWbll0wo+qZjiVBjXN\ntCd4re/phgmfR5qsION1weeREFNiePror/D28F6n6uYVNZeiNlANr+xFRtGcSc/xvCo1sWTWqVBk\nGCdXZ3Qm5k4RuDnVrIMoFk5E50/25iZKJUlExD9Z0ScS9KDEvh/yu0/5+uTGshNws0NaueCy32NN\ntOcCOblJd0ksHC+qrqI73oejYyfQGetGb7IXY8rISW2o83nNMIJmJUKoQghVCKIckmBtyxTNqvwx\n2QZTsy4eM9NQzDQUpKEJGUi+NERvCnAnYbiSMMVpKiNChgAJBjQYOPuAlamLgO6CqblgZn3Qx6ug\nR6uLV4lPzsLVcBRSZY8VmohWQ+9dDlckCtQeAmQFgupHaHwNgmoTPLJUsF0x7ApeWbtCWjYv8Go9\nt9b4yCf44nA1H4AUjsI0RGh9i6D1tyLXVlaWBLj9WQgNB2CEBgBTQDC5GBXZS+CXffDa4YTc65dR\nNGRUq1JZVtGRVrNQvENAaAhiKGo9j2M10MerrOp0gNVmdUpLWWCyklz+ODKgQSgZgFDeAzE0Zj1P\niQi0wSYY0RoIpmwHjAHADhnbIZnCIKsJsXQIrqaDED0ZGFkv1K6VMMarIHgTkOvbrbCp/fvV3sUw\nYhWYLmhXDII/Bnfbboi+FIxkCEr7JTAzJ3++ESPDcLfus0KwyRL4BtcjKJbYLStlaIZhh13s198O\nOucCMAWhVDkLqXQIUukQxPAoBDuobGa9MMarYcaqYUCDGBmGWDIC0TN5oaqRDEGPVcCIVcJIlFjV\nCOeCpEAMRyH64k6FzHP53S5ZdLb9AjDZzlszTllVcK4IApxwfH4IH3n3i/Hvy5Lo7BskUUA8bVWV\nTaZV698TDEjlfZBrOiH6rXbipi5BkHSYugRtqBHaQAugFqflnVsW7X27y26XKUwGkHI/lHue8v4/\nTc+1ap2slmiGh6ygeMS6UM5UPNBj5RA8aYj+BAS58Dy7aQgwMwEY6SDMdBBGogRmMgIJbkiSWBjs\ny1uq2mQoR1Hzt6kmhMAEpNAYxFAUEEyYqgum5gFUN0zNDdNe5h7nwvhTCQKcY65coMrjlgqPc+yl\ndaGJdbzjXHxif1+Hau1Xqq2L3vTBZqg9S6xKoPlcGbjqjzn7Hz1WBrV7OczUzC4ulEQBIb8LPrvl\n6WRrcNEJQOW3C5fEU4wD+46dSyuovGctT1EVGrnjZsFpE567nwvwCfYFE9evq8eShjN/xuDc/vnD\nkA4VDQcy0dxSdKu9xYU+gXIhjn3TNBFTJuxJuBjckrug1ZlX8sAjeeCR3Kc84asbOrK6gqyetYI7\nhoKspkAxFPhkL0o8EUTc4fNW2UEzNHROdEPRFaiGBs2+qYbqPM6/75bcTos3z5S2bx7ZA6/ktb93\nflsfpNQUftH+G7w1+DZcdkDKL3vhlX3wyV74JC98shde2Vp6JDd007D+Nl2FkrdUdNX+m62v1QVr\n8K6KlWgraT3rPtUTShz7Rg7ZFXaGIQr5E7eifZWwBMn5uhV6sa7yMGHAhGka9tK+YXKZe108+a9N\nwWtkLRtCdbMOY0yVUJJ4feAtvNq3vWBS4HQECLhl8Q14T+PmM257ZjL2TdNEQk1iOD2KkfQohlMj\nGE6PWffTIwXVsIKuAP5m/WdQ4Sub0bqeSne8D/+04zGohoqIO4y/XPu/Z9Qi8GI3kh7FE0d+gQOj\nhwEAsijji+s/M+N2ZGdjNB3FnpH92D28D8fGO057EluAgLA7iLA7hJAnhKArAMM07G2blrdUoRk6\nVHuZ1bMntUMEgHJvKWoC1ajNu/ll/2RjTXtMOh+C88apkauUZejQ7KVu6tDsZe7rqq4goaacIE7C\nruyXVJNIqqnT/r35JEGCX/Yh4PJjVcVyXFO3CZX+2U2g5yTUJP5wYite7nn1lGGnyXDeZFjPJcp2\nNZIwItMt3WGEPSGUlfvxP4ffws7B3dg3eghqXjBnXdUaXFq1BvXB2jk7dhnLRJ1JpHxeyYOIxwrE\nlngiebcwZFG2gjjpYQwmhzGUHkE0Mz7j1+NMSjwR1AVqUBessZe1qPFXQhRE/Lrjv/HbrhchCxJu\nW3ITrqnfNOfHcT3xPvyxdxveGHwbiq5AEiSsLF8KwAprJdW0E8w5XbDULblR4S1DpV3prMJX5lQ9\nK/eWQhREZHUFGT3jVH/Lr1SZqwqnmidPFk3HJcoo85SgzFeKMm8pwu7QKcMRqq7itf438buulzCe\njcElyri6fiO2NF07q6pcZyuaGUe7M7Heib7EgPP+ESCgyl9hHQd6woi4w9bSE0aJ/TjsCTvHIdHM\nOI7HuqxQTqwL3Ynegtel3FuKlnATqvwVKPWWoMxjB3K8JXN6jDaajuJnR57GgdHDcIku3Ljofbiu\n4eoZH8fO5fG+aZrI6llMKAk7qDkx/VKZQFJNQYBgP78RJxhvBeIjeUH5MEzTxEBqGP3JAfQnBzGQ\nHEJ/cgAj6bFTjn+/7MOiSLPd5rgVTaGGGQdXFV3BhBJHXEnAa382ONdA3tnoSwzg5Z5X8cbATqiG\nCo/kxpW1V+DdDVed9b5kJgzTwKGxo3ilbzv2jhyAYRrwSG6r4l/dxpNaUVivzxB2D1uVLLsmup3v\nNQTr0BRqwHB6BH3JgZOCa7IgoTpQNWXbW3PGarCnWu+h1Ag6J0447X4NGM74nRzPEedx0BWAIAiI\nZeN4pe91vNL7OiaUOAQIWFW+HNc2XIVlZYvPGPiaUOI4Pt6JY7EOtI93oDveV/DeLPFE0BJuQmuk\nCS3hJjSF6guqmcaVBA6NHcWBscM4OHoEcdWaXBIgoCnUgOVlSzCaGcOe4f1OcLYhWIf11Wuxvnrt\nrEJAOWc79k3TxIl4D/aMHMCe4f3oSw6c9DOlnhKsrVzthLhP9fydmOjBfx19FsdjXXCJMrY0XYst\nzdeestKroqvYM7IfbwzsxMGxIzBMA6IgYlnpYtQFa1Djr0ZNwLqyfKbVRqf7+/qTg3jm2PM4MHYY\nAgRcVb8BN7a+76wrMyeUJARBOOt1Ohv51Qtzyr1lqAtWoy5Q64y3an/lafcXqq5OVre2j4dV5yIc\nIe+/AATBuS9AgFf2oCFY77R8LxbN0HAi3otj48dxbLwDx2OdUHUVsl2J2GVXKZ6sTjx5UUAsG0Nv\ncqBg/+0WXWgM1aMp3ICmkHWxk1f24US8G50T3eiMnUBXvBtpLeP8P7IgoSFUj7pANTJ61nmucrfT\nHrfZFaMrfRWoKliWI+wOOc9d7vNT7ryJOuW8SVrLFlw8kMwtp9zP6Lk2dwJaQs1YWboSK0tXnnVI\n2rTbzlgV1jS8OrAN/939ErJ6FrWBGty+5CYsL1vi/Hxay+CFzhfxUvcfoZk62iKt+F9LP4TGUP2s\n/l3DrjCY1tP4befv8Urf6zBg4F3lK3FL240F5x6sUMHkdmj/6CH8/MizGEmPIuQO4sNtH8QVNesK\n3qemaWIwNYT9o4dxYPQwjo0fh2Zf8CeLslNxO3cR1rqqNVhTseq0oX/DNHAk2o7tAzuwa2ivsz1v\ni7TAI3lxcOwwTJgIugLYVHs5rqnfiPJTnEOx1m8E/3XkWRyKHoEkSLi65ipcU7MZImToeq4qnYHB\n1CBeG/4jjiUPAQCq3fW4NHwVquRGq0piXgtkzbAmxCfvT37NRGHo0glc2k9yLospClY1j15hD46b\nb8KEgTbXWqz2XQmP7MqrzmNVtfLb7SghKfhl1/PYMbQLLtGFWxbfgM31m067DzZMAyPpMQwkhtAd\n78fB6CGncj0A1AVqsKZiFS6pWoXGYH3eeDKRVXSkMip6JgZxePwI2uPH0JfpdgJxMtwImzXwm2Xw\nGmXw6CWQtaDVDtR+frW8KkquvEpZoqwj4xpGXOpHDH2Io/C8nVvwokZuRa3chkqxAQLkyXag9oS9\n150Lc9rtG/MDna5Tb7etFnKGFW5TJ6s5+gIeDA3HnccFwR7n56wQlDElHK3nBTbzg9P5rW2Rdz/3\nnshlLHPPu2i/gUxo0OQ4FDkGRYo5Sxe8KJfq0eBtQnO4GRWhoBPM8Xmmn0dJKim8eGIbXul7DQnN\nOoZrdC9Fg7kGohpEn3kQPdgLRUhCMEVUmUtRa7wLHtOqXGXYKQpJsqqN5SpH5R4XVJUSBWRVu8JR\nNlepUUM6V+nI/loqo52yVaww5YEkWtUQPV4dZvkJKOEO6LJ1PjWgV6HWXIVauQ1uWXLecxk9hYQ5\nioQZRUqIIi1GkRVjMIS88I4JyGoEcrYcUqYMQqrMChfqKAy9uyS43SIk3wQ0/wiy7iEk5cHC3zUD\nsuCCXwzChxK49TAkNQgjHYCS8iOdEJ0Wo6c6c5NrNTy17bhLEqH7hxErfROanIRbD6MhcyVKhBrn\n+7Is2lXOZPjcVlXNFMbwxvjL6EwdhwABl1ZegpsWfQBBKeRUZJpIqdYyqWAipTj3Y0kFGUV3tqG5\n8X4yExB1O6B0/uf4brqyBR/evOiMP3chzu9drBjSoaLhQCZamDj2iS5spmlCNVTopmEFiEzTug8D\numEv7e/5ZN+MJ0DnYuyntQxG0mMYTY+iLliDKn/lOf2+nL0jB/B6/w7cuvhGlPtK5+R3XgxM08Su\n4X14oetFXNdwNTbUXnbe/u2EksTekQPoSw4gZIdxwu4QIp4wwu4QAi7/WVczSKhJZzK2P5mrljCA\nuJKY47/i9ARYEysBVwBBVwBBdwBB+3HA5Ydf9sPv8jmBHL/sg9/lh1t0zfmkREJJ4qXuP6I70QfD\nNApa9Zkw7BN7ur00oOgKYko8b0JleqIgOhMIVf4KrKuc+2DOdI5G23F0/HhBm8nxbOyUFUjyRdxh\nVPkrUO2vtFph+itR5a9Audc6mZ1rXagbxrT3FV3FUGoYfckB9CUG0JccwHg2VvBviIKIgMuPuJJA\nubcM/3v1R9EUbijKc5GT1tLYPrATf+zZhoHUEIDJ96Df5UNADiDgst5jAZcfAdkPj+RGTInbQUkr\nPJmdJsyVmz4rzvWNFkmQUOqJoMxbat9KUOYtRVpL4w/df7TDOS5cU78R7226FhHP6aviFVNKTaNj\nogvt4504Nt6BgeQgktrp33sBlx+yIBW0FJUECY2heicU0hppmrOKQDNhmibeGtyFJ4/+Egk1icZQ\nPW5oeS8EQXCC6VndCqVn9SwUY/K+4AIM1bTaqwoyZFFyWq3mf00SJWQ1KzxptS5NI6VlkLGXafvr\nZ6pM6JO9CLutkKBuGs6YP12lSwHCSe/ZgMtvBzVr8gKbPnRNdFtBrFgnRuw2jUCuFXI9FpW0oDnU\n4FQiLbjZ1d9ylTryeSUvSrxWcKg0FyLyljhLWZCtCVNDsUPnmj2Bqtihc80JoZowCsLeTgA8b9mX\nGMCh6FEA1sT6tY1XYVPt+nMOes/WeDaG1/rewKt9bzjbx5ZwE66u34hKX7nVYnZ4v9MSUxRELC5Z\nhDUVVovZ/GM10zQxoSTQl+xHf2IAvckB9Ces/frUypteyYu6oPX65od38ttDTihxa7J8wpo4nzpp\nbgXxBajTtC7O/5mIJ4xYdgK6qcMne7Gp9nJsrr/ynIJQGS2L7ngPOiZOoDN2AscnugqOXURBREOw\nFvXBOvQlBnAi3uO8x0PuIFaWLcPKsqVYXra0oEpMVlewd3g/3hrahf2jh53x1hZpxeU1a3Fp5ZoZ\nV+mczfG+Zmg4Em3HnpED2DtywHkvyKKM5aWLsaZiFZaVLUFPog+7h/dh78gB57UIugK4pHIVLqlc\njaWli+ESZcSVBJ47/lu81vcmTJhYW/ku3Lr4g6ecjJ5OLBvHjsG3sX1gp9NKOF/QFbDaQAQqUeOv\nQnWgCmXe0pOqPk5MqfoYVxLO9mhZ6WLctuSmogbfi0k1NOwc3I3ueC96kwPom6atuCRIdtXKaoiC\n6IRxkmoScTU54yrGpxNw+dEUarCCL6EGNIXqUeYtPevjS0VX0BE74YRyOiZOFBznVvkqEHAFoNkX\nOuUuBlDzLhDIjTeXKFthQjuQ0xRqmFEltvxQYOdENzonTqA30V+wD/TJXutzgytgfYZwB5zHQVcA\n5b4yVPkrEHGHz+sFfIYvgxcPb8fu4X1OG17Aqk61tnI1LqlajepZfnbPtXR/6uhzGE6PIuDy48bW\n9+OquitOGQIbTo3imWO/wu6R/RAgYFPtetzU9oEzVkt2/g7TwPaBnXj22K8RVxOo8lXg9qU3Y1X5\nshn9/6qu4vcntuKFrhehGioWRVpw6+IPYkJJ4MDoIRwYO1JQgbEhWIeV5cuwqnw5WsNNGEmP4u3h\nvdg5tAe9iX4Ak4GdS6vW4JKKlU4l64HkELYP7MAbAzud7We5twwbatbhiprLnP3NSHoMr/S+jtf6\n33DCzKsrlmNz/ZVYXrbEeV+quorfnXgZv+t6CZpdUffOpbecsdJpd7wPodJ2EwAAHQZJREFUz3f8\nDntHDgAAlpQswgdb34cqf2XeNrBwe5i/jXRLblT4ylDpq3AqJ1farc/zj0/GszH8fweewJHoMUTc\nIdyz8k6sKFs6o9cFAHYO7cHPDj+NpJrCstLFuGfFHfC7/BhKDWMgOYTB1BAGUsMYTA5hKDXshKeA\nyVb3udbcs92XZ3UFR6PtdjjrEEbyWpQD1jbDqgZYa99qUBeohVtyoyPWhSPRYzgcbUdXvNvZHsiC\nhNZIM5aWtqEuUIPD0XbsHt7nVKb2SG6sKl+OtZWrsap8+VlXnz6T2Z7nK6jCaFdezDgXeGSgGErB\nxY+SmHfRoyg5XxcEASPpUafy5UBycNqgfUD2I61PfpYQBREt4UYsLWnDktI2LIo0F4R4o5lxvNTz\nCl7t3Y6MnoVHcuOqug24rvFqlHkLzxWqhoY3Bnbgd10vYyQ9ClEQcVnVWryv+do5u/AvrWXQm+hH\nX6IfvQkr/BnIfV53+a3P7vLkZ3i/7IdbcqE73ov/6XkNbw2+DdXQ4BJduKLmUmyuv/KkYPzpmKaJ\naHYcvYl+50KSzonugv1j0BVAa6QJi8ItaAjVYSA1hCPRdhwb70A67wK5Sl85lpa2YUlJG5aULoJX\n8iChJhFXEvYyiYSSQFxNWPfVBBJKAqOZ6LQX2gVkP6rsczWlrjKE5BKE3AEEPD6E3H6EPNb5jan7\ni4yWwTPtv8Yrva9DgID3Nr0bN7RumVXF8INjR/DMsefRm+iHLMpYWbYMtYFq1ASqrJu/6pTh8Hyq\nrqI3PoATcatLRk+iD/2pASiGYl+cZ52XCbgC1n1X0HkcdAXgl33OZ+pcVWdnKUqQBQmyKELMVcu2\n6uIDEApaxhlOmR4g5J/Z+UbO750/DOlQ0XAgEy1MHPtECxPHPl3opoZ3snoWYq4po5Br0Sg4/d4n\n7wt2i6jCD8SSYH0oFu0Pxy7JZZ9A9yPoCsLv8r2j26ZY7ZEymMjGEVPimMhOIGZXs8h9zRQ0tIUW\nYV31JagL1Mx7tT9FVxGzQzuxbAzRbAyaoaHSV46qQCWqfBVFOYGZVFPoSwygPzlgT2gNYCg1jGWl\ni3HXslvP2BJrLpmmifFszKnMNpv34NRqZ9ZtDCNp60Szz6n4NlmJzzelIp8syJjJ2yCrKxjLjGM0\nM4axzDjGMlGMZaLThuncogvXNGzCe5vePeNJmPNN1VVrfGQnEFMmrGV2AuN5j7N6Fk2hBiyKNKM1\n0jyrKi3FlFCSePrYr7B9YMd5+zfdogs+2Qefy2dXUPQi5Ao61YjCnpBdtcQKcE53EtQwDSTVFKLZ\ncYxnrNBO1A7vjGdiMGA4FdTqAtWoCVQj5DpzW7dYdgLHY11oj3WgfbwTPXa4cToCBARdAYTt9Qy7\nQwi6A8hoWWt9MuMYz8amPfFcLEtKFuG6xqvxroqV874P0g0dB8YO45Xe17F/9HDBxIpbcmNV2TKs\nqVyFVeXLZ10txDANjKaj6Ev2oy8xaC8HMJQeOen1CrtDqPZXYtTezuSr8legOdSElkgjWsKNqA/W\nQRYkpLV0wfjNje1xZ2zHEHD5cXXdRlxRs64obTVN08RYZhydE11OcKc73gvN1CEKItoiLVhZtgwr\nypehPlgzo9c7oSaxa2gv3hrc5VQ1FAUR9cFauEWXVT1EkiHbVURcU5bhkB/xRNpuX2RVC9VN3Qn/\nWu1YDCSUJA6NHXHCawHZj9UVK7CmYiWWly2d9vnSDA1Ho8exa3gvdo/sd/YHXsmL5WWLcTh6DGkt\ng9pANW5f8qGCKhtnI6EmMZgctiduhzCYHMZAagijp6m2NZVTedAOml9Rc9mctCa/0EwocSeYnFv2\nJwqDci5RRtAVdEIlAZcfIVfQDpr44RYnt+O55zfX1sG5DyChJnAi3ovuiZ6TJroDLj8ag1a1mtpA\nNQQI0waqjbz7GT2Lzlg3TsR7nCCVAAF1wRosLmnF4pJFaIu0njH8m2t7rRoq3OKpKzDPlqKrGMuM\nwSf7EXT5z1tl5tnK/6wfy05Y7YyH9+HIeLuzza0NVGNV+XIEXQF4JDc8kgduyT3t/bgSxzPHnseh\n6FGIgojN9ZtwQ+uWGe8LDo0dxVNHn0NfcgBeyYMPtLwH66rWIK4mpoToEnnBOqsyn2pocIsu/EnL\ne3Fd0zVnVXV5NB3FU8eew+7hfQVf98k+LC9bglVly7CyfNlpL3gaTA3j7aG9eHtojxMalAQJy0oX\nI6mm0BW3Ksx5JS/WVa3BhtrLsCjSfMptvaKr2Dm0G1t7tjn/b6WvHJvrN6HcV4anjz2PkfQoIu4Q\nbltyE9ZVXTKrbVXXRDd+1fE7pxLvmQRcfoTcISi6csoqpgGX3w7vlOHg6BEktRTeVbESH13+v2Yc\nHs0Xy8bx00NPYt/oQUiCNG2Y2yO57TBmlbX0V6KtpPWsq55NJ64k0Jvod259iX70JwcLgkFA4QUv\noiCiOdSApaWLsXSacAlgHft0TXRj1/A+7Bra62wjZVHGirIlWFOxGmXekoL2zZOVv0WnjbNoT+bD\n2Raf/NrkpoWDJW50Dw471YEnb3mPtRRSatqpsFqMCzuCroAdkiisjhxyB5HRMmiPdeFotB1Hxttx\nYmIyxCwJkhXaKW3DWGYcbw6+DcM0EHaHcF3D1bi6fuMZP6vrho63h/bgha6XnEqAl1Sswnua3o1y\nX6lz/CSfpvtB7ri1N9GHnrz3xuiU/dxM5FflqvCWYXPDldhUu94J+J0r3dCd0M7xWCc6Jk6cdPyc\n+7eXlLbZwZxFZ1WhEZg8B2G1IreOxYZSwxhMDWMkPXbGizk8khs+2br4zSd7MZqJYjwbQ22gGves\nuAPN4cazWi/DNPDGwE483/HfJ/39AgSUeUud0E6t33pv6qaOnngfuhO96In3oT85WLAdEgUR1f5K\nlHpKkNLSSChWFe5ctbq5Itpj3ukEYG8PZFHGB1u34IqadWf8HTzHf/4wpENFw4FMtDBx7BMtTBz7\nRAsPxz3NNVVXMZadDO0ouor11Wvn9MQ5Te+IXaHKc4oJtfxlTVUJBodi0Mz8lqu63YJQg2bo0EwN\nuqE7LUutm3XyVD7LNqTzIasr6IydQG+iD17Zh7A76FR9C7oCM5pQzWhZJzgYtUNE0ew4dFO3TuxL\nrryAxMn3JVGCCHEyTCoIEPPu55Z+2YcKX/FaWp2L0XQU2/rfRFJNYVX5MiwrXQxXEUJqqqFhMDnk\nhAn6kwPoTQwgmh1H0BVAS7gRLWG7fVS44by2EpoLub+v3Fd2zu3Uoplx7BjajR2DuzCQHIKaVylk\nLlR4y7CmcpXVfjjSMqvwgWEaOB7rwu7hfdg1vA9jmSh8shcfbH0fNtdvKmqQQdVVDKdHneBONBtF\nwBWwwziT1R/DnhC8kveiC+TMlGEaGMuMW2FFd6AobbNTasoK7MR7cSLegxPTBHdmQhRENIbqsbik\nFUtKFmFRpOUdN/bn26mO+ZNqCntHDmDX8D4cHDviTBzP1IqypbhtyU2oDVTPep10Q8erfW/gVx0v\nnLGapiiIzthtCNbihtYtZz2hnO/A6GG82rcd1f4qrCxfhtZw01ltn4ZSI3h7aA/eHtqD7kQfBAhY\nUb4UG2ouw5qKVbMOdXdNdON/el7DjqHdzmsiCiKubbgKN7RuOaf9x/FYF17ufgUGzMnt4ZRtY9AV\nKDjWUw0NY+kxDNvVO4ftducj6VGMpqPQTR0u0YXbltyIq+s2ntN21TRNbOt/Cy91/xFBdxA1/kpU\n25UvagJV570KVY5u6BhKjxQEdxJqCosizVhWuhhtJa2zel1M00RfcgC7hvZi1/C+adtIni9eyYuA\nyzflQg7rAo78Czy8sgce0W0FfHOtxE0dhqFDt1uM51qKG6aBMm8pagNVqA3UzOqzYFrLoH28A0fH\nj+NItB3d8V7n+KbGX4X3NL0bl9dcOuuAnmEa2DdyEL/terGgTWuOAMFpjZh/HC8KIobTIydVrA26\nAmgI1qEuWGMva+ESZaQ0K/yUUtN2AMpqYZ1Uk0hp1jLiCePquo1YWb7svITyx7MxHI91oTfehyp/\nJZaULjqp8lAxaIaGkfQYBlPDiGbG7aqs6ckqrWraqdSaq9AqCSK2NF+L97e856xCmFOZpom4msBA\nchD9ySEMJIes+6nB01brdoky6oK1aAzWoSFUj8ZQnV1B6+TtuWpoSOa1CM3dUmoKet74sELJeY+n\nfM84RTVo3RlXJm5o3YIr6y4/49/Nc33nz7yEdAzDwNe//nUcPnwYbrcbDz30EJqbm53vv/jii3js\nsccgyzJuu+023HHHHaf9fXyzXJg4kIkWJo59ooWJY59o4eG4J1qYOPbpnUbRVbhOc4UzwamGo9hh\nO0VXoRlWG7Zc259g2I2JWAaiIObd7OL6eY9dohtl3pI5eb5N08Rgahhhd+i8VqajC1MuuDOUGobg\nXCUu5rVJKbwviy7UBqqLUu1qIZnJft9q2ddrt8vMIqurTutMxW6jaS0V6KaBjbWXYXX5inPeTqTU\nFH5/YivGMtGCynb5oRG//M6pcDqWiUK2q3Sdq4SSxLb+NzGYGsZ1jVdfkG34coE/r+wpaE9JszOU\nGsb+0cNIa2mnrXXhpL3hhF904+QKQ9ONQwECgn4fZN1d0IIp174710L5Qq0AlpPW0mgf74Qsylha\n2nbO2wLTNHEk2o63BnfZLYEnj5vU3H1Dhapb91VTQ4W3zAnj5Nqehd0hHpfOsVxr9/P1nkyqKSe0\nk2s53hiqR0OwDtX+ygt+bJwOP++fP/MS0vnd736HF198EY888gh27dqFH/zgB/j+978PAFBVFTfc\ncAOefPJJ+Hw+3H333fjBD36AioqKU/4+vlkuTBzIRAsTxz7RwsSxT7TwcNwTLUwc+0QLE8c+0cLE\nsU+0MHHsEy1MHPvnz+lCOkWLF+/YsQPXXHMNAGDt2rXYt2+yf2d7ezuampoQiUTgdrtx2WWX4c03\n3yzWqhARERERERERERERERERERERzauihXQSiQSCwck+gpIkQdM053uh0GRyKBAIIJE4dW83IiIi\nIiIiIiIiIiIiIiIiIqJ3MrlYvzgYDCKZTDqPDcOALMvTfi+ZTBaEdqZTWuqHLL9z+7tdzE5XqomI\nLl4c+0QLE8c+0cLDcU+0MHHsEy1MHPtECxPHPtHCxLFPtDBx7M+/ooV01q1bh5deegk33HADdu3a\nhaVLlzrfa2trQ1dXF8bHx+H3+/HWW2/hvvvuO+3vi0ZTxVpVOgfsW0e0MHHsEy1MHPtECw/HPdHC\nxLFPtDBx7BMtTBz7RAsTxz7RwsSxf/6cLgxVtJDOli1b8Oqrr+Kuu+6CaZp4+OGH8dxzzyGVSuHO\nO+/E/fffj/vuuw+maeK2225DdXV1sVaFiIiIiIiIiIiIiIiIiIiIiGheFS2kI4oiHnjggYKvtbW1\nOfevv/56XH/99cX654mIiIiIiIiIiIiIiIiIiIiILhjifK8AEREREREREREREREREREREdHFjiEd\nIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIi\nIioyhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiI\niIiIiIiIqMgY0iEiIiIiIiIiIiIiIiIiIiIiKjKGdIiIiIiIiIiIiIiIiIiIiIiIiowhHSIiIiIi\nIiIiIiIiIiIiIiKiImNIh4iIiIiIiIiIiIiIiIiIiIioyBjSISIiIiIiIiIiIiIiIiIiIiIqMoZ0\niIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIiIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiI\niKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiIiIiIiIpMME3TnO+VICIiIiIi\nIiIiIiIiIiIiIiK6mLGSDhERERERERERERERERERERFRkTGkQ0RERERERERERERERERERERUZAzp\nEBEREREREREREREREREREREVGUM6RERERERERERERERERERERERFxpAOERERERERERERERERERER\nEVGRMaRDRERERERERERERERERERERFRk8nyvAL3zGIaBr3/96zh8+DDcbjceeughNDc3z/dqEVER\nqKqKL3/5y+jt7YWiKPjUpz6F2tpa/Pmf/zlaWloAAHfffTduuOGG+V1RIppzH/7whxEMBgEADQ0N\n+OQnP4n7778fgiBgyZIl+NrXvgZRZN6b6GLy9NNP45lnngEAZLNZHDx4EE888QT3+0QXsd27d+Mf\n//Ef8fjjj6Orq2vaff3Pf/5z/OxnP4Msy/jUpz6F6667br5Xm4jOUf7YP3jwIB588EFIkgS3241v\nfetbqKiowEMPPYSdO3ciEAgAAL73ve8hFArN85oT0bnIH/sHDhyY9jif+32ii0/+2P/85z+PkZER\nAEBvby8uueQSfOc73+F+n+giMt283uLFi/l5/wLDkA7N2u9//3soioInnngCu3btwiOPPILvf//7\n871aRFQEv/zlL1FSUoJHH30U4+PjuOWWW/DpT38aH//4x/GJT3xivlePiIokm83CNE08/vjjztc+\n+clP4nOf+xw2bNiAr371q/jDH/6ALVu2zONaEtFcu/XWW3HrrbcCAL7xjW/gtttuw/79+7nfJ7pI\n/ehHP8Ivf/lL+Hw+AMDf//3fn7SvX7t2LR5//HE89dRTyGaz+MhHPoKrrroKbrd7nteeiM7W1LH/\nzW9+E1/5ylewYsUK/OxnP8OPfvQjfOlLX8L+/fvx4x//GGVlZfO8xkQ0F6aO/emO84eHh7nfJ7rI\nTB373/nOdwAAsVgM9957L770pS8BAPf7RBeR6eb1li9fzs/7Fxhe/kyztmPHDlxzzTUAgLVr12Lf\nvn3zvEZEVCwf+MAH8Fd/9VcAANM0IUkS9u3bh5dffhl/+qd/ii9/+ctIJBLzvJZENNcOHTqEdDqN\nT3ziE7j33nuxa9cu7N+/H1dccQUAYPPmzXjttdfmeS2JqFj27t2LY8eO4c477+R+n+gi1tTUhO9+\n97vO4+n29Xv27MGll14Kt9uNUCiEpqYmHDp0aL5WmYjmwNSx/+1vfxsrVqwAAOi6Do/HA8Mw0NXV\nha9+9au466678OSTT87X6hLRHJk69qc7zud+n+jiM3Xs53z3u9/FRz/6UVRVVXG/T3SRmW5ej5/3\nLzwM6dCsJRIJp/0FAEiSBE3T5nGNiKhYAoEAgsEgEokEPvvZz+Jzn/sc1qxZgy9+8Yv4j//4DzQ2\nNuKxxx6b79Ukojnm9Xpx33334d///d/xjW98A1/4whdgmiYEQQBgbRvi8fg8ryURFcsPfvADfPrT\nnwYA7veJLmLvf//7IcuTBZan29cnEomCMveBQIBhPaJ3uKljv6qqCgCwc+dO/OQnP8Gf/dmfIZVK\n4aMf/SgeffRR/PjHP8ZPf/pTnrAneoebOvanO87nfp/o4jN17APA6Ogotm3b5lTS5X6f6OIy3bwe\nP+9feBjSoVkLBoNIJpPOY8MwTtrJE9HFo7+/H/feey9uvvlm3HTTTdiyZQtWr14NANiyZQsOHDgw\nz2tIRHOttbUVH/rQhyAIAlpbW1FSUoLR0VHn+8lkEuFweB7XkIiKZWJiAh0dHdi4cSMAcL9PtICI\n4uQpoty+furn/2QyWXASj4guDr/+9a/xta99DT/84Q9RVlYGn8+He++9Fz6fD8FgEBs3buRkHdFF\nZrrjfO73iRaG3/72t7jxxhshSRIAcL9PdBGaOq/Hz/sXHoZ0aNbWrVuHrVu3AgB27dqFpUuXzvMa\nEVGxjIyM4BOf+AT+5m/+BrfffjsA4L777sOePXsAANu2bcOqVavmcxWJqAiefPJJPPLIIwCAwcFB\nJBIJXHXVVdi+fTsAYOvWrVi/fv18riIRFcmbb76JTZs2OY+53ydaOFauXHnSvn7NmjXYsWMHstks\n4vE42tvbeQ6A6CLz7LPP4ic/+Qkef/xxNDY2AgA6Oztx9913Q9d1qKqKnTt38hiA6CIz3XE+9/tE\nC8O2bduwefNm5zH3+0QXl+nm9fh5/8LD8ic0a1u2bMGrr76Ku+66C6Zp4uGHH57vVSKiIvm3f/s3\nTExM4Hvf+x6+973vAQDuv/9+PPzww3C5XKioqMCDDz44z2tJRHPt9ttvx5e+9CXcfffdEAQBDz/8\nMEpLS/GVr3wF3/72t7Fo0SK8//3vn+/VJKIi6OjoQENDg/P461//Oh588EHu94kWgL/92789aV8v\nSRLuuecefOQjH4Fpmvj85z8Pj8cz36tKRHNE13V885vfRG1tLT7zmc8AAC6//HJ89rOfxc0334w7\n7rgDLpcLN998M5YsWTLPa0tEc2m64/xgMMj9PtEC0NHR4QRzAaCtrY37faKLyHTzen/3d3+Hhx56\niJ/3LyCCaZrmfK8EEREREREREREREREREREREdHFjO2uiIiIiIiIiIiIiIiIiIiIiIiKjCEdIiIi\nIiIiIiIiIiIiIiIiIqIiY0iHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioy\nhnSIiIiIiIiIiIiIiIiIiIiIiIqMIR0iIiIiIiIiIjqlp59+Gvfff/98rwYRERERERER0TseQzpE\nREREREREREREREREREREREUmz/cKEBERERERERHRufvhD3+I3/zmN9B1HVdffTXuvvtu/MVf/AUa\nGxvR1dWFuro6PProoygpKcFLL72Ef/7nf4ZhGGhsbMQDDzyAiooKvPbaa3jkkUdgmibq6urwT//0\nTwCArq4u3HPPPejr68OmTZvw0EMPzfNfS0RERERERET0zsNKOkRERERERERE73Bbt27Fvn378OST\nT+IXv/gFBgcH8dxzz+HIkSP42Mc+hueffx5tbW3413/9V4yOjuKrX/0qHnvsMTz33HNYt24dHnjg\nASiKgi984Qv41re+heeeew7Lli3DM888AwDo7+/Hd7/7XfzmN7/B1q1bcfTo0Xn+i4mIiIiIiIiI\n3nlYSYeIiIiIiIiI6B1u27Zt2LNnD2699VYAQCaTgWmaaGlpwYYNGwAAt9xyC77whS/gqquuwpo1\na9DQ0AAAuPPOO/HDH/4Qhw8fRnV1NVasWAEA+Ou//msAwNNPP43169ejpKQEANDU1IRoNHq+/0Qi\nIiIiIiIionc8hnSIiIiIiIiIiN7hdF3Hxz72MXz84x8HAExMTGBgYACf//znnZ8xTROSJMEwjIL/\n1zRNaJoGl8tV8PV4PI5kMgkAkOXJU0iCIMA0zWL9KUREREREREREFy22uyIiIiIiIiIieofbuHEj\nnn32WSSTSWiahk9/+tPYt28fOjo6cPDgQQDAU089hc2bN+OSSy7B7t270dPTAwB44oknsGHDBrS2\ntmJsbAzHjh0DAPz4xz/Gf/7nf87b30REREREREREdLFhJR0iIiIiIiIione466+/HocOHcIdd9wB\nXddxzTXX4PLLL0ckEsG//Mu/4MSJE1i2bBkeeugh+P1+PPDAA/jLv/xLqKqKuro6fPOb34TH48Gj\njz6KL37xi1BVFU1NTfiHf/gHvPDCC/P95xERERERERERXRQEk/WJiYiIiIiIiIguOj09Pbj33nvx\n4osvzveqEBERERERERER2O6KiIiIiIiIiIiIiIiIiIiIiKjoWEmHiIiIiIiIiIiIiIiIiIiIiKjI\nWEmHiIiIiIiIiIiIiIiIiIiIiKjIGNIhIiIiIiIiIiIiIiIiIiIiIioyhnSIiIiIiIiIiIiIiIiI\niIiIiIqMIR0iIiIiIiIiIiIiIiIiIiIioiJjSIeIiIiIiIiIiIiIiIiIiIiIqMgY0iEiIiIiIiIi\nIiIiIiIiIiIiKrL/B8QZwLn1LW59AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACO8AAAJoCAYAAAA0mVe1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmAV2W9P/D3rDAwA8iieEXNBdHSMkVNQSvJvGZ6lXLf\nbpndm5VWVmo3zaXU6mYmaWop7itSuZsaaWKuv9xSFlETcQERkGFmmPX3B/HNiRlkmeHLdV6vv873\nnPOc8zmH8/gHvP08JW1tbW0BAAAAAAAAAADWuNJiFwAAAAAAAAAAAD2V8A4AAAAAAAAAABSJ8A4A\nAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAAAAAABSJ8A4AAAAAPcLEiRMz\nYsSIjBgxIo888kixywEAAABIIrwDAAAAAAAAAABFI7wDAAAAAAAAAABFIrwDAAAAAAAAAABFIrwD\nAAAAAAAAAABFIrwDAAAAAAAAAABFUl7sAgAAAIA1Y8SIEUmSU045JYcddlhuueWW3HTTTZk2bVqa\nmpoybNiw7LvvvjnqqKNSWVmZJHn00UdzxRVX5Kmnnsr8+fOz7rrrZrfddsuxxx6bddddt9N71dfX\n57rrrsu9996bF198MbW1tRkwYEC23nrr7LPPPtlrr71SWrr8/6foT3/6U+6+++789a9/zdy5c1NX\nV5fq6uoMGzYsO++8cw4//PAMHTp0mXHjxo3LL3/5y9TU1OTxxx/PnDlzMn78+EyaNCmvv/56ysvL\ns9lmm2WvvfbKoYceWnjW7vDMM8/khhtuyGOPPZbXX389paWlGThwYLbddtt85jOfyZgxY1JSUtLp\n+L/85S+55ppr8re//S1z587NeuutlzFjxuTLX/5yysvLs8MOOyRJzj777IwdO7Yw7qSTTspvf/vb\nJMmDDz6YIUOGdHj9//qv/8qf/vSnJMnUqVM7PGfmzJm56aab8uijj2bmzJlZsGBBKisrM3DgwHzk\nIx/J2LFjM2rUqGXGvfrqqxkzZkyS5IILLsiQIUNy9tln57nnnkvv3r2z2Wab5Qc/+EG23HLLwpjV\n/W7a2trypz/9Kdddd12mTZuWt99+O+uvv3723HPPHHPMMZ2O62qr+hyPPPJIjjzyyCTJ7373u8ye\nPTs///nPM2PGjPTt2zcjRozIT37ykzQ1Na30u507d26uu+663H///Xn55ZdTX1+fgQMH5sMf/nD2\n2WeffPrTn+7wW1zRmtZbb73ueJUAAADQIwjvAAAAQA/T1NSUr3zlK5k0aVK7/dOmTcv//u//5qGH\nHsqll16aCy64IBdccEHa2toK58yaNSvXXXdd7rvvvkyYMKHDf7B/+umn87WvfS1vvvlmu/1z5szJ\npEmTMmnSpFx11VU5//zzOwwAzZs3L1/72tfy+OOPL3Ns/vz5mT9/fp599tlcc801ufDCC7Pzzjt3\n+qyPP/54vvrVr2b+/Pnt9j/55JN58sknM3HixFx55ZUZMGBAp9dYVb/+9a/zs5/9rN37S5a8w1mz\nZuX222/PLrvskgsuuCB9+vRpd05zc3NOP/303Hjjje32v/LKKxk/fnzuuOOOjBs3rstr/lcXX3xx\nzj///DQ3N7fb39TUlEWLFmXmzJm57bbbcsghh+S0007r9DrPPfdcLr300jQ0NCRJFi9enClTpmTD\nDTcsnLO6301DQ0NOOOGE3Hvvve32v/zyy7n44otzyy23ZP/991/ZV7DSVvc5lrr//vvzi1/8Iq2t\nrUmSxsbGzJo1K+uuu25mzZpVOG9F3u0dd9yRU089NQsXLmx3jzfffDP33HNP7rnnnuywww45//zz\nM3DgwFWqCQAAAFh1wjsAAADQw1x88cWZN29ettlmmxx55JEZNmxYpk+fnnPPPTfz58/PQw89lP/+\n7//O/fffn0033TRHH310hg8fntmzZ+eSSy7J008/Xei+cc4557S79vTp03PUUUelrq4uffv2zaGH\nHpqdd945NTU1mTVrVm677bbce++9+etf/5qjjz46N9xwwzLBleOOO64Q3Nlll12y//7759/+7d/S\n1NSUv//977n66qszffr01NXV5aSTTsof//jHlJWVLfOcDQ0NOfbYY7No0aIccsghGTNmTKqrq/Pc\nc8/loosuyuzZszN16tT8/Oc/z+mnn96l7/ixxx4rBHe23HLLHHXUUdlkk03S2tqaF198MZdffnle\neOGFPPTQQzn//PNz0kkntRv/4x//uBDc2WCDDfLlL385W265ZebMmZPrr78+Dz74YI4//vgurflf\n3XzzzTn33HOTJEOHDs3hhx+eD37wg+nbt29ee+21TJo0KbfddltaW1tz3XXXZcyYMdl11107vNav\nfvWrVFRU5IQTTsjIkSPzyiuv5O23307fvn2TdM13893vfrcQ3BkxYkS++MUvZpNNNsmbb76Z66+/\nPpMnT85FF13UjW+sa55jqV/84hepqanJ8ccfn6222irTpk1LZWXlMt1x3uvd/uEPf8gJJ5yQ1tbW\nVFRU5IADDsjuu++efv365cUXX8y1116bp59+Oo899liOPPLI3HDDDYWxq1oTAAAAsHJK2v71f/8C\nAAAA3peWLpuVJKNGjcpFF13Ubsmo+++/P1/+8pcLv7fZZptceeWV7cIFDQ0N2XPPPfPGG29kwIAB\nefjhh9v9w/1+++2X559/PkOHDs1VV12VjTbaaJk6rrnmmpxxxhlJkmOOOSbf/va3C8ceeuihfOEL\nX0iS7LHHHhk3btwywYCWlpYccsgheeqppwrXGzlyZOH40mWzkqSsrCwXXXRRdtttt3bXmDlzZvbZ\nZ5/U19enuro6Dz/8cCoqKt7rFa6wk08+ORMnTsyAAQNy7733pqampt3x2tra7L///nnllVdSU1OT\nRx55pBBAmjJlSsaOHZuWlpZsvvnmueaaa5bpDPSjH/0oV155ZeF3Vy+b1dbWlk984hN544030q9f\nv0ycOLFdJ5elrr766px55plJks9//vP50Y9+VDj27mWzkuTMM8/MgQce2GEdq/vdTJ48OV/84heT\nJDvvvHMuueSSZZZD++EPf5irrrqq8PvKK6/MTjvt1GE9q2p1n+PdS1QlyWWXXfaeS5Ilnb/b2tra\njBkzJvPnz09VVVV+85vftJsrSdLa2ppTTjklEyZMSJIcccQR+f73v7/SNQEAAACrbvmLywMAAADv\nSyeeeOIy4YbddtstVVVVhd/f+c53lukK0rt378I/3C9dwmqpyZMn5/nnny9cv6PgQpIcdthh2XHH\nHZMk1113XZqamgrHXnrppWy44YapqKjI1772tQ47epSVleUzn/lM4ffs2bM7fc499thjmeBOkmy4\n4YbZZZddkiwJOLz66qudXmNVzJkzJ0kyaNCgZYI7SVJdXZ1vfOMb+cIXvpBvfvObWbx4ceHYxIkT\n09LSkiQ57bTTOlzS68QTT8zw4cO7tOZ3mzVrVvr375+ampqMHTu2w+BOkuy7776F7X9dJurdevfu\nnf3226/DY13x3dxwww1JlnwbZ5111jLf9tJrb7zxxp3WuLq64jnebaONNlqhkMzy3u2ECRMKc/Tr\nX//6MsGdJCktLc0PfvCDfOADH0iS3HjjjcssM7eyNQEAAAArR3gHAAAAephBgwa168KzVElJSdZd\nd90kSWVlZbbffvtOxy9VV1dX2F7awSXJe/4D/8c//vEkS4IzzzzzTGH/YYcdlnvvvTdPP/10ttxy\ny07Hv7uTTGNjY6fnjR49utNj7w5XLFq0aLn1rqxNN900STJjxox8//vfz6xZs5Y5Z++9985JJ52U\nww47rF1Iaul7XH/99bPDDjt0eP3y8vIccMABXVrzuw0bNiy33HJLHn/88Zx44omdnldTU5PevXsn\nWf6fwwc/+MEOAzXJ6n83zc3NmTx5cpJku+22y7/92791OLaioqJd2KirdcX3/24f+chHVui+y3u3\nDz74YJIloablfS+VlZWF44sXL86jjz66WjUBAAAAK6e82AUAAAAAa9YGG2zQ6bGlIYB11lkn5eUd\n/7XBu4MC716Ne2nXkSSFziIrYubMmdluu+3a7SstLS1cf/bs2Zk5c2ZefvnlvPDCC3nmmWcKS2Yl\nS5b96czynvXdgZmlnW66ymGHHZYJEyZk0aJFuemmm3LTTTdl+PDh2WWXXbLLLrtkxx13XKar0dI6\nZs6cmSTLDS8lyUc/+tEurbkzS/8samtrM3PmzLzyyiuZMWNGnn/++TzxxBNpaGhI0v5b+Ffrr79+\np8dW97uZPXt2amtrk7z3O9tmm21W+Porqyu//2T572xFz5s+fXqSZJNNNkm/fv2We51tt922sD1t\n2rR8+tOfXuWaAAAAgJUjvAMAAAA9TN++fd/znM6CO8szb968VSkn77zzTrvfbW1tufPOO3PjjTfm\nqaeeatfdZ6mlgZL30lFAZql3L8m1vODJqth4441z6aWX5nvf+15efPHFJEuCFNOnT88VV1yRysrK\njBo1KgcffHA+8YlPFMbNmzevEEZaZ511lnuP9dZbr0tr7siMGTMyfvz4PPDAAx0ui9XRsmYdqa6u\n7vTY6n43b731VmFfR0uMvdvgwYNX6V4roqu+/6WW985W9Lyly18NHDjwPa/z7o5anS2btaI1AQAA\nACtHeAcAAAB6mLKysm65bnNzc5IloZPx48ev8Lh3h1AWL16c4447rt0SRCUlJRk2bFg23XTTbLXV\nVtluu+0yf/78fPe73+2y2rvDRz/60dx+++155JFHcs899+TPf/5zXnnllSRLlpiaNGlSJk2alH33\n3Tc//vGPU1pausKhpGTJMlCra3ldi26++eaceuqphT/XZEk4ZtNNN83w4cPzkY98JKNGjcpee+3V\nYcBqRa3ud7OiAaJk1UJpK6orvv93W5nn6szKhNLe/S109h12RU0AAADAsoR3AAAAgC6xtOtJXV1d\nRowYsVJBlKXOP//8QnBn6623zle/+tXsuOOOy3T8mDhx4mrXuyaUlpZm5513zs4775wkefXVV/OX\nv/wlkyZNyv3335/m5ubccsstGTVqVPbbb7/069cvZWVlaWlpydy5c5d77QULFnR6bEW7Ci1cuLDD\n/VOnTi0Ed/r27Zuvf/3r2WOPPTJs2LB257W2thaWzVpVq/vdrLvuuoXtt99+e7nnLu+dra6u+P67\nWv/+/TN79uz3fC9J+w5G/fv3786yAAAAgH9R/L9FAAAAAN4Xhg8fnmRJ95znn39+uec+8MADueyy\ny3L33XcXggUtLS25/vrrkyT9+vXLFVdckd13373DpXpee+21Lq6+a9XW1ubpp5/OzJkz2+0fNmxY\nDjjggFx44YU5//zzC/uXBpbKy8szYsSIJMnf/va35XbGWd47fnd3peWFa15//fUO999www2FTjKn\nnnpqvvCFLywT3EmSN954Y7k1rojV/W4GDx5cCM4888wzyx3/XtdfHav7HN1h6bf00ksvdbo811JP\nPfVUYXvTTTfttpoAAACAZQnvAAAAAF1i9OjRhe1rr7220/NaWlpy+umn58c//nGOO+641NfXJ1nS\nNaW2tjZJstFGG3UY2kmSpqam3HXXXe2utzZ5/fXXs/322+eAAw7IuHHjOj1v1113LXRnWbx4cWH/\nJz7xiSRLOqFMmjSp0/G///3vOz1WU1NT2J41a1aH50ydOjVvvPFGh8f+/ve/F7Y/9KEPdXqfW265\npbD97uW1VsbqfjdlZWUZM2ZMkuTpp5/O1KlTOxzf1tbWrt6utrrP0Z01tbS0ZMKECZ2e19jYmJtv\nvjnJkgDZTjvt1G01AQAAAMsS3gEAAAC6xKc+9alsuOGGSZKbb76506DE2WefnVdffTVJMmbMmGyw\nwQZJlgROysuXrPD9wgsvdNhdp7GxMT/4wQ8yffr0dvvWJuuvv3623HLLJMmdd96Zv/71rx2ed/vt\ntxe61myzzTaF/YccckiqqqqSJGeccUaH4ZsJEyYUuvV0ZGnHlSS5+uqrlzm+aNGinH766Z2OX2ed\ndQrbDzzwQIfn3H///bngggsKv1f1z2F1v5skOeKIIwrdhk488cQOu8xcfPHFefbZZ1epxhXRFc/R\n1T73uc+lX79+SZJx48Z1+C22trbmjDPOyMsvv5wk2W+//TJw4MBuqwkAAABYVnmxCwAAAADeH8rL\ny/PjH/84Rx11VJqamvLd7343kyZNyt57750hQ4Zk1qxZueGGG/Lwww8nSfr375/vfe97hfG9e/fO\nJz/5ydxzzz1paGjIEUcckS996UvZYost0tjYmClTpuTGG2/Miy++2O6+CxcuXKPPuSKOP/74fOUr\nX0ljY2P+8z//MwcffHB23HHHDB48OG+99VYeeOCBQqeTgQMH5tBDDy2MXXfddXPqqafm5JNPzhtv\nvJGxY8fmmGOOyXbbbZf6+vrcfvvtmThx4nLvv/vuu6dfv3555513cu+99+bYY4/NgQcemH79+uX5\n55/PlVdemZdffjkbbbRRXnnllWXG77XXXrn11luTJD//+c8zZ86cjBo1KtXV1Zk1a1buvvvu3HPP\nPWlrayuMWdo1aWWt7neTJFtttVW+9KUv5eKLL87zzz+f/fbbL8ccc0w++MEPZt68eZk4cWLuvvvu\n9OnTJ3V1datU55p4jq5WU1OTH/7whznuuONSV1eXI444IgcddFA++clPpqamJi+99FKuvfbawpJZ\nH/jAB7q9JgAAAGBZwjsAAABAl9l+++1zySWX5Jvf/Gbmz5+fO+64I3fccccy5w0dOjQXXHBBhg0b\n1m7/Kaeckueffz6vvvpqXn311Zx22mnLjK2urs7JJ5+cU089NS0tLe268Kwtdt9993znO9/Jueee\nm4aGhlx++eW5/PLLlzlv6NChufDCCzNgwIB2+8eOHZuGhoacddZZmT9/fn7605+2O15TU5PPf/7z\nGT9+fIf379evX84+++x84xvfSFNTU+67777cd9997c459NBDs9lmm+XMM89cZvyYMWNy0EEH5YYb\nbkhTU1PGjx/f4b3Gjh2bBQsW5L777susWbNSX19f6Bq0Mlb3u0mSb37zm2lubs6ll16aWbNmLfPt\nDBgwICeeeGJOPvnkla5vRXXFc3S1PffcM+eee26+//3vp66uLldffXWH3ZhGjRqVn/zkJ+nbt2+3\n1wQAAAC0J7wDAAAAdKlddtkl9913X6677rr86U9/yowZM7Jw4cL06dMnm2++ecaMGZODDz441dXV\ny4xdb7318tvf/jaXXXZZ7rvvvrzyyitpbm5OdXV1Ntlkk4wePToHHXRQhgwZkokTJ+aJJ57IAw88\nkLq6uvTp06cIT9u5L33pSxk9enSuu+66PPHEE3nttdeyePHiDBgwIJtttlnGjBmTAw88sNOwy6GH\nHpqPfexjueyyyzJ58uTMmTMnAwcOzCc+8Yl85StfKXRL6cynPvWp3H777bn00kszefLkzJ49OzU1\nNdlmm21y6KGH5uMf/3iHIY6lzjjjjHzsYx/LhAkT8re//S0LFy5Mr169MnTo0Hz4wx/OAQcckJEj\nR+amm27Kfffdl6amptxzzz3Zd999V+l9rc53kyQlJSX57ne/mz333DNXXHFFnnrqqcyePTuDBg3K\nbrvtlmOPPTZz5sxZpdrW5HN0h7333js77bRTrr766jzwwAOZOXNmFi9enKFDh2arrbbK2LFjs9tu\nu6WkpGSN1QQAAAD8U0nbu/sbAwAAAPB/wl133ZXjjz8+SXL22Wdn7NixRa4IAAAAgFVRWuwCAAAA\nAAAAAACgpxLeAQAAAAAAAACAIikvdgEAAAAAa4NFixbllVdeWe3rbLTRRunbt28XVER3a2xszIwZ\nM1b7Ouuvv34GDBjQBRUBAAAAPZHwDgAAAECSZ599NkceeeRqX+fKK6/MTjvt1AUV0d1mz56d/fbb\nb7Wvc/bZZ2fs2LFdUBEAAADQE1k2CwAAAAAAAAAAiqSkra2trdhFrI45cxYWuwT+xTrr9Mm8eXXF\nLgNYw8x96JnMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo/pvEOXKy8vK3YJQBGY+9Az\nmfvQM5n70DOZ+9AzmfvQM5n70DOZ+9AzmftrB+EdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEd\nAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAo\nEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAA\nAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAAAAAAAAAoEuEdAAAA\nAAAAAAAoEuEdutQjrz+Rb955ehqaG4pdCgAAAAAAAADAWk94hy41c+GszHrnjcypn1vsUgAAAAAA\nAAAA1nrCO3SpqvLeSZK6pvoiVwIAAAAAAAAAsPYT3qFL9anokySpb1758M4LL0zv6nJWyte+9uWM\nHj0yu+++S1HrAAAAAAAAAAB6DuEdulSh805zwwqPqa2tzXnn/W+OPvrw7ioLAAAAAAAAAGCtVF7s\nAnh/qSqvSpLUNdet8Jhx487N7bff0l0lAQAAAAAAAACstYR36FJ9/hHeqV+Jzjutra3dVc5K+eUv\nLyl2CQAAAAAAAABAD2PZLLpUn4ql4Z36IlcCAAAAAAAAALD2E96hS1WV906S1DUJ7wAAAAAAAAAA\nvBfLZtGl/rls1nuHdy699OKMH//rdvtGjx6ZJNl22+3yy19ekh/96LTceedt2XzzLfKb31yZX//6\nV7nrrtuycOHCDBo0JJ/85Jgce+xxhfGLFy/O3Xffkb/8ZXKmT5+aBQvmp7m5OTU1/bLJJptl1KjR\n2Wef/VNVVbVMPV/72pfz5JP/L5WVlfnjHx/qsK7jjvtWDjzw0Nx//x9z662/y7RpU7Nw4TtZZ52B\n2W67kTnwwEOyxRZbrtxLAwAAAAAAAAB6LOEdulSvsl4pLSlNXXNDl1/7zDNPzX33/aHw+/XXZ6V3\n796F31OnTsnJJ5+Q2bPfXGbs22/Pzdtvz80TTzyaiRMnZNy4izJkyLorXUNLS2tOP/37ueeeu9rt\nnz37zdx11+35wx/uzLe/fXL23Xf/lb42AAAAAAAAANDzCO/QpUpKStK3oip1K9B5Z7/9PpfddvtE\nfvObizJ58p+TJOPHX5Mkqarq0+7cF198IS+8MC3bbPORHHHEF9K7d+9MnvznfOYz+yZJFiyYn29+\n86t5550FKSsry2c+s0922WV01llnUBYuXJDp06flxhuvzfz58/Pqq6/kl788L6efftZKP9/111+V\nuXPn5gMf2CQHHnhoNttseBYufCd33nlr7rvvnrS2tua8836aHXfcOUOHDl3p6wMAAAAAAAAAPYvw\nDl2uT2Wf1De+d3hn0KDBGTRocPr161/YN3z4iA7PbW1tzQYbDMt5512QXr2WdNvZbruRheM33HBt\n3nlnQZLkq189PgceeGi78TvvPDp77fXZHHHEgamtrc2f/3x/mpubU16+clNg7ty52X77HfOTn/w8\nvXr1Kuz/2Md2SU1Nv/zudzensbEx9957Vw4//D9X6toAAAAAAAAAQM9TWuwCeP/pW1GV+hXovLOy\n9trrs4Xgzr966605GTx4SAYNGpSxYw/s8JwhQ9bNRz+6fZKksXFxIeyzsr7xjW+3C+4s9R//Mbaw\n/cIL01fp2gAAAAAAAABAz6Lzzgq68Y8v5LEps4tdxhq1w5br5sDdN1/pcX0r+6SxtSnNrc0pL+26\nT+xDH9qm02Pf+94Pkizp0FNa2nkmbeDAQYXtxsamla5hyJB1s8kmm3Z4bIMNhhW26+rqVvraAAAA\nAAAAAEDPI7xDl+tb0SdJUt/ckJrK6i677nrrrfee5ywN7jQ3N+eNN17Pa6/NysyZf8+MGS/kb397\nJjNmvFA4t62tdaVrGDp0/U6PVVX1KWy3tLSs9LUBAAAAAAAAgJ5HeGcFHbj75qvUhaYn6lNZlSSp\na67v0vBOnz7Lv1ZDQ0MmTrwp9957V2bMeKHDAE1paWlaW1c+tLPUuwM6/6qkpKSw3dbWtsr3AAAA\nAAAAAAB6DuEdulx15ZKAS11TfZde913ZmGW89tqsfOtbX8urr84s7KuoqMiGG26UjTfeJCNGbJlt\nt90+d999R37725u6tC4AAAAAAAAAgFUlvEOX61OxpPNOfXPXhneW57TT/qcQ3PnUp/bM5z9/ULbc\n8oMpL2//if/+9zevsZoAAAAAAAAAAN6L8A5drm/Fks47ayq8M2XKc3nuuWeTJNttNzKnnfajTs99\n88031khNAAAAAAAAAAArorTYBfD+03fpslkrGN4pWd56WCvg3UtljRixVafnvf76a3nmmacKv1ta\nWlbrvgAAAAAAAAAAq0t4hy7Xt/Ify2Y1NazQ+ZWVlYXturq6lb5f//4DCtuPP/5Impublzln7ty3\ncsopJ6Wpqamwr7GxcaXvBQAAAAAAAADQlSybRZdbumzWinbeGTRocGH7kksuyL//+94pLS3NFlts\nuULjP/zhbTNo0ODMnftWpk+fluOP/0rGjj0wQ4eun3feWZAnn/x/uf3232f+/Pntxi1aVLuCTwQA\nAAAAAAAA0D2Ed+hyK7ts1ujRu+Xyy3+TlpaWTJhwQyZMuCHrrTc0N9982wqN79WrV0455YyceOI3\ns3jx4jz11F/z1FN/Xea8DTfcKJ/97H/kV78alyR56aUXs802H1nBpwIAAAAAAAAA6HrdFt5pbW3N\naaedlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlpKS0uz//77p7q6OkkybNiw\nnH322d1VIt2kb8U/ls1awfDO8OEjcs45P8sVV1yWGTNeSGtrS8rLy9PQsGLLbiXJyJE7Zvz4a3Ld\ndVfn8ceoAuYZAAAgAElEQVQfy1tvzU6yZEmtTTbZNJ/85Key5557paWlJePH/zoNDQ354x/vyb77\n7r/yDwgAAAAAAAAA0EVK2tra2rrjwn/4wx/yxz/+Meecc06efPLJXHzxxfnVr36VJGloaMhnP/vZ\n3Hrrramqqsq3vvWt7L333hk9enQOOuig/O53v1vh+8yZs7A7ymc19B/YO4dPOC5brjM8X//oMcUu\nB1hDhgyp8d9k6IHMfeiZzH3omcx96JnMfeiZzH3omcx96JnM/TVnyJCaTo+VdtdNn3jiiey6665J\nkm233TbPPvts4VhlZWWuv/76VFUt6dDS3NycXr16ZcqUKamvr88Xv/jFHHnkkXnyySe7qzy6UWVZ\nRSpKy1PfvOKdcwAAAAAAAAAAeqJuWzartra2sPxVkpSVlaW5uTnl5eUpLS3N4MGDkyRXXXVV6urq\nMmrUqEybNi1HH310DjjggLz88ss55phjctddd6W8vPMy11mnT8rLy7rrMVhFfSv7pLFt8XKTY8D7\njzkPPZO5Dz2TuQ89k7kPPZO5Dz2TuQ89k7kPPZO5X3zdFt6prq7OokWLCr9bW1vbhXBaW1vz05/+\nNC+99FLGjRuXkpKSbLLJJtl4440L2wMGDMicOXOy/vrrd3qfefPquusRWEVDhtSkV2nvLFy8SHst\n6EG01IOeydyHnsnch57J3IeeydyHnsnch57J3Ieeydxfc4qybNZ2222XBx54IEny5JNPZosttmh3\n/NRTT83ixYtz4YUXFpbPmjBhQs4555wkyZtvvpna2toMGTKku0qkG/Upr0pdc33a2tqKXQoAAAAA\nAAAAwFqr2zrv7LHHHpk8eXIOPvjgtLW15ayzzsqtt96aurq6bL311pkwYUJGjhyZo446Kkly5JFH\n5vOf/3xOPvnkHHLIISkpKclZZ5213CWzWHtVVfROa1trGlub0qusstjlAAAAAAAAAACslbotGVNa\nWpozzjij3b7NNtussD1lypQOx/3sZz/rrpJYQ1pa29KnfEk3pbqmOuEdAAAAAAAAAIBOdNuyWfRM\n9z3xao74wZ2pSK8kSX1zQ5ErAgAAAAAAAABYewnv0KXeXtiQhXVNaW4qS5LUNdcXuSIAAAAAAAAA\ngLWX8A5dap3qJR132pqXrMhWL7wDAAAAAAAAANAp4R261IB/hHeaFy8J79Q1Ce8AAAAAAAAAAHRG\neIcutU7NkvBO4+Iln1Z9c0MxywEAAAAAAAAAWKsJ79Cllnbeaahf8mnVNdcVsxwAAAAAAAAAgLWa\n8A5dqn91ZZKkbtGS3zrvAAAAAAAAAAB0TniHLlVeVpoB1b1SW9uWJKlrri9yRQAAAAAAAAAAay/h\nHbrcwP698847S7brm4R3AAAAAAAAAAA6I7xDlxvYr3cWN5Qk0XkHAAAAAAAAAGB5hHfocoP6905S\nmsrSytQ3NxS7HAAAAAAAAACAtZbwDl1uUP+qJEllaW+ddwAAAAAAAAAAlkN4hy43sF/vJEl5W2Xq\nhXcAAAAAAAAAADolvEOXW7JsVlLaVpmG5sVpbWstckUAAAAAAAAAAGsn4R263NLwTltzedrSlobm\nhhUa98IL07uzrNXy+uuvpa5uUbHLAAAAAAAAAADeZ4R36HJLl81qbS5PktS9R3intrY25533vzn6\n6MO7vbaV1djYmPHjf53DDz8gCxYsKHY5AAAAAAAAAMD7THmxC+D9p1/fypSXlaRpcVlSmdQ31y/3\n/HHjzs3tt9+yhqpbOddee2UuvfTiYpcBAAAAAAAAALxP6bxDlyspKcmA6l5pbFjyedU1LT+809ra\nuibKWiUtLS3FLgEAAAAAAAAAeB8T3qFbDKjulYb6JZ/Xe3XeAQAAAAAAAADoqYR36BYDanqltXnJ\nqmx1zQ1FrgYAAAAAAAAAYO1UXuwCeH8aUF2ZtjcqkiR1zXUdnnPppRdn/Phft9s3evTIJMm2226X\nX/7yknbHHnnkL7njjlvy7LPPZN68t1NZ2SvDhm2YnXcelc997qAMGDCg03rmzJmdiRNvyiOP/CUz\nZ76S5uam9OvXP5ttNjyjRu2az3523/Tq1btw/h133Jqzzjq93TUOOGDfJMnQoetnwoRbV/BNAAAA\nAAAAAAB0TniHbrFOTa+kZcnnVb+anXfq6+tz5pmn5oEHJrXb39jYmClTnsuUKc/lxhuvzSmnnJnR\no3dbZvwTTzyW733v21m0aFG7/XPnvpW5c9/Ko4/+Jdddd1XOPfeX2WijjVerVgAAAAAAAACAlSG8\nQ7cYUN0rbc3/6LzTVN/hOfvt97nsttsn8pvfXJTJk/+cJBk//pokSVVVnyRJa2trTjrpW3niiceS\nJLvssmv23PMzWX/99VNXV5cnnngsv/3tTamtrc3//M938rOfjcvIkTsW7rFw4cKccspJWbRoUQYM\nWCeHHXZUttrqg6msrMybb76R22+/JQ8//FDeeOP1nH769/Ob31yZkpKSjB69W8aPvya/+93N+f3v\nJyZJfvrT8zJ48JCUl1d0z0sDAAAAAAAAAHoc4R26xTrV7+6803F4Z9CgwRk0aHD69etf2Dd8+Ih2\n50yYcH0huPPtb5+c/fb7XLvjI0fumM9+9j9y7LFHZ+7cuTnrrNNz442/T3n5kns/+OD9eeedBUmS\ns876aT784W0LYz/4wa3zyU9+KqecclImTbo3U6c+n6lTp2TLLbdKv379069f/wwcOKhw/gc+sGnW\nX//fVvWVAAAAAAAAAAAso7TYBfD+NKDmn513OgvvvJfW1tZcf/2STjwf+9guywR3ltpgg2H57//+\nepJk9uw3c//9fywcmzv3rcL2hhtu1OH4I4/8Qvbb7/M59tjjU1NTs0q1AgAAAAAAAACsCp13VtDE\nF27LX2c/U+wy1qiPrrtNxm7+2VUaO6C6MmktS9pKUreK4Z0ZM6Zn9uw3kyQ77LDTcs/92Md2KWw/\n/vhjGTPm00mSjTf+QGH/9773nRx33Ley1VYfajd2+PAR+fa3T1qlGgEAAAAAAAAAVofwDt2id2V5\nqnqVp6S1InXNDat0jWnTpha2x437ecaN+/kKjXvttVmF7Z13Hp3NNhueGTOm55lnnsoxxxyVwYOH\nZIcddsrIkTtmhx12arc0FgAAAAAAAADAmiS8s4LGbv7ZVe5C01MNqO6V+c3lqW9atc47CxbMX6Vx\nCxe+U9guLy/Pz352fs4558w8/PBDSZK33pqTO++8LXfeeVtKSkqy1VYfyr//+97ZZ5/9UlFRsUr3\nBAAAAAAAAABYFcI7dJt1anrl7ebyVV42q6WlpbB9wgknZeutt1mhcb169Wr3e/DgIfnf/z0/L774\nQiZNui9/+cvkTJs2Ja2trWlra8tzzz2b5557Nr///cT84he/yoABA1apXgAAAAAAAACAlSW8Q7cZ\nUN0rbU0VaWp9J02tzakoXbnPraamX2G7b9/qDB8+YrXq2XTTzbPpppvn6KP/K++8807++tfH8/DD\nD2XSpHtTW1ubGTOm51e/Oj8nn3zqat0HAAAAAAAAAGBFlRa7AN6/1qnplbQsCew0NDes9PhNN92s\nsP3cc88s99x58+blsssuyZ133pbp06cV9jc1NeXFF2dkypTn253fr1+/fPzju+fEE7+fyy+/LtXV\nNUmShx56cKXrBAAAAAAAAABYVcI7dJsB1b3S1lyRJKlrquv0vJKSkg73b7XVh9KvX/8kyT333JXa\n2tpOr3HzzTfksssuyY9+dFoefPD+wv7DDz8gRx55UP7nf77T6dihQ9fPJptsmiRpbFzc7lhpqSkC\nAAAAAAAAAHQfyQS6zYDqXmlr+Ud4ZzmddyorKwvbdXX/DPlUVFTkc587MEmyYMGCnHnmKWlsbFxm\n/NNPP5lrr70qSdKrV6/ss8/+hWO77LJrkuTNN9/I9ddf3eH9//73lzNt2pQkyZZbfqjdsYqKisJ2\nfX3nASQAAAAAAAAAgFVRXuwCeP8aUFOZNC/5xOqb6zs9b9CgwYXtSy65IP/+73untLQ0W2yxZQ4/\n/D8zefKfM23alEye/Od84QuH5oADDsnmm2+R2tqFefzxR/Pb395U6Jjz3//99Qwe/M/rHXLI4bnz\nzltTW1ubCy74RZ555qnsvvuns956Q7NoUW2ef/5vmTDh+ixevDilpaU56qgvdlrb5ZdfmoMPPiyt\nrW3ZeuttuuQdAQAAAAAAAAA9W0lbW1tbsYtYHXPmLCx2CfyLIUNqMmfOwrz9TkNOnHB9Kj/wXL7w\noUMzcr1tOzx/+vSp+dKXjkxLS0th33rrDc3NN9+WJFmwYH5OPfXkPPHEY53es6ysLEcf/V858sgv\nLnPsiScey//8z3dTW9v5t9K7d++ccMJJ2Wuvz7bb/9Zbb+WQQ8a267pTXl6ee+75c7uuPMA/5z7Q\ns5j70DOZ+9AzmfvQM5n70DOZ+9AzmfvQM5n7a86QITWdHtN5h27Tr++Kdd4ZPnxEzjnnZ7niissy\nY8YLaW1tSXl5eRoaGtK7d+/07z8gv/jFr/Lggw/kD3+4M3/72zOZN29ekmS99dbLdtuNzNixB2az\nzTbv8Prbb79Drr12Qn772wl59NGH88orf09d3aL07VudoUPXz0477Zz99vtc1ltv6DJjBw8enPPO\nuzCXXHJhpk59Lo2NjRk4cFDefPONDBu2YRe8JQAAAAAAAACgJ9N5hy737mTe8eNvTvPGj+Q/Nt0r\nn/7AJ4tcGdCdpHKhZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL315zldd4pXYN10APVVPZNkixq\nrnuPMwEAAAAAAAAAeh7hHbpV/6ol4Z2Fi4V3AAAAAAAAAAD+lfAO3WqdPkvCO+80LCpyJQAAAAAA\nAAAAax/hHbrVoOola7bpvAMAAAAAAAAAsCzhHbrVoJq+aWstTV1zfbFLAQAAAAAAAABY6wjv0K3W\nqemVNFekoaWh2KUAAAAAAAAAAKx1hHfoVutU90pbS3kaWxcXuxQAAAAAAAAAgLWO8A7dakBNr7Q1\nV6Q5i9PW1lbscgAAAAAAAAAA1irCO3Srvr3LU9JakZS0pbG1qdjlAAAAAAAAAACsVYR36FYlJSWp\nKOmVJKlrqityNQAAAAAAAAAAaxfhHbpd77LeSZJFjfVFrgQAAAAAAAAAYO0ivEO361NelSSZU7uw\nyJUAAAAAAAAAAKxdhHfodtWVfZIkc2vfKXIlAAAAAAAAAABrF+Edul1NryXhnbcX1Ra5EgAAAAAA\nAACAtYvwDt1uQJ++SZL5DcI7AAAAAAAAAADvJrxDtxvUpyZJ8s7iuiJXAgAAAAAAAACwdhHeodsN\nqlkS3lnUWF/kSgAAAAAAAAAA1i7CO3S7dWv6JUnqmoV3AAAAAAAAAADeTXiHbjegqjpJsrilociV\nAAAAAAAAAACsXYR36Ha9y3olSZraFhe5EgAAAAAAAACAtYvwDt2urLQsJa3laS1pTGNTS7HLAQAA\nAAAAAABYawjvsEZUpFdS3pT5tbrvAAAAAAAAAAAsJbzDGlFZ2islZc2Zt1B4BwAAAAAAAABgKeEd\n1ojeZVUpKW/O2wsbil0KAAAAAAAAAMBaQ3iHNaJPRVWSZM7ChUWuBAAAAAAAAABg7SG8wxpR06tP\nkuTtRcI7AAAAAAAAAABLCe+wRvTv3TdJMq+utsiVAAAAAAAAAACsPYR3WCP6Vy0J7yyoX1TkSgAA\nAAAAAAAA1h7CO6wRfSuWLJu1sLGuyJUAAAAAAAAAAKw9hHdYI/qUVyVJFjXVp62trcjVAAAAAAAA\nAACsHYR3WCOqynsnSVpLGrOoobnI1QAAAAAAAAAArB2Ed1gjqv7ReSdlzZlfu7i4xQAAAAAAAAAA\nrCWEd1gj+lQsCe+UlDdl/kLhHQAAAAAAAACARHiHNaRPofNOU+bpvAMAAAAAAAAAkER4hzWkqrx3\nkqSkvFnnHQAAAAAAAACAfxDeYY3oVdYrJSlJypoyv7ax2OUAAAAAAAAAAKwVhHdYI0pKSlJVXpWS\nsubM03kHAAAAAAAAACCJ8A5rUJ+KqpSUN2V+rfAOAAAAAAAAAEAivMMa1Ke8KiXlzZknvAMAAAAA\nAAAAkER4hzWoT3lVUtqSd+oa0tLaWuxyAAAAAAAAAACKTniHNaaqvHeSpK20Ke8saipyNQAAAAAA\nAAAAxSe8wxrTp6IqSVJS3pR5Cy2dBQAAAAAAAAAgvMMaU1W+JLyTsubMrxXeAQAAAAAAAAAQ3mGN\nWRre0XkHAAAAAAAAAGAJ4R3WmD5Lwzs67wAAAAAAAAAAJBHeYQ3qU957yUZZU+brvAMAAAAAAAAA\nILzDmlNV8c9ls3TeAQAAAAAAAAAQ3mENWrpsVkWv1syrbSxyNQAAAAAAAAAAxVfeXRdubW3Naaed\nlqlTp6aysjI//OEPs/HGGxeO33bbbbniiitSVlaWLbbYIqeddlqSLHcM/7dV/SO806t3a+a/rvMO\nAAAAAAAAAEC3dd65995709jYmBtuuCEnnHBCzjnnnMKxhoaGnHfeebnyyitz/fXXp7a2NpMmTVru\nGP7v6/OPZbPKK1tSt7g5i5tailwRAAAAAAAAAEBxdVt454knnsiuu+6aJNl2223z7LPPFo5VVlbm\n+uuvT1XVkjBHc3NzevXqtdwx/N9XVdY7SVJa0ZwkmV+r+w4AAAAAAAAA0LN1W3intrY21dXVhd9l\nZWVpbl4S2igtLc3gwYOTJFdddVXq6uoyatSo5Y7h/76KsopUlJanpKwpSTJ/ofAOAAAAAAAAANCz\nlXfXhaurq7No0aLC79bW1pSXl7f7/dOf/jQvvfRSxo0bl5KSkvcc05F11umT8vKyrn8AVsuQITUd\n7q+u7Jvm5iXhnZaS0k7PA/5vMqehZzL3oWcy96FnMvehZzL3oWcy96FnMvehZzL3i6/bwjvbbbdd\nJk2alM985jN58skns8UWW7Q7fuqpp6aysjIXXnhhSktLV2hMR+bNq+uW+ll1Q4bUZM6chR0e61Xa\nK/WtS4698tqCzNmw/5osDehGy5v7wPuXuQ89k7kPPZO5Dz2TuQ89k7kPPZO5Dz2Tub/mLC8k1W3h\nnT322COTJ0/OwQcfnLa2tpx11lm59dZbU1dXl6233joTJkzIyJEjc9RRRyVJjjzyyA7H8P5SVV6V\n2a1vJWnLPMtmAQAAAAAAAAA9XLeFd0pLS3PGGWe027fZZpsVtqdMmdLhuH8dw/tLn4qqtKY1KW3J\n/FrhHQAAAAAAAACgZystdgH0LFXlvZMkpeXNmSe8AwAAAAAAAAD0cMI7rFF9yquSJDX9SjLfslkA\nAAAAAAAAQA8nvMMatTS8U923LfNrG9PW1lbkigAAAAAAAAAAikd4hzWqqmJJeKeqb9Lc0ppFDc1F\nrggAAAAAAAAAoHiEd1ijqsp7J0l6V7UmSeZZOgsAAAAAAID/z979B0le0Peff/WPmf70zsz+iIJK\nUAKikgsETiJKSlLgwZ1C6gJqghRZy+hRsSxMgpYpqYgaJGCs0uQPjZVUmbuCmCqM8bgyiYkBvMQk\nfPkilUW5+OOCATUsIMfO7szsdM/2j/ujZwY27EIvTE/PzOfxqKJq59Pds2+qtv971vsNACUm3mFd\nbatvS5JMNgbxzuy8eAcAAAAAAAAAKC/xDutqZfNObWJwLmv//NI4xwEAAAAAAAAAGCvxDutqW705\n+EPtUJJkfvHQGKcBAAAAAAAAABgv8Q7ratvEIN7pVgbRzkJLvAMAAAAAAAAAlJd4h3XVrK/EO4Nz\nWTbvAAAAAAAAAABlJt5hXTXrRZKk028nSRbEOwAAAAAAAABAiYl3WFfVSjVFrUi710pi8w4AAAAA\nAAAAUG7iHdZds15ksdtKs1HL/GJn3OMAAAAAAAAAAIyNeId1t22imcXOYqaKiSy0bN4BAAAAAAAA\nAMpLvMO621ZvZrHTylSz7mwWAAAAAAAAAFBq4h3WXbPeTJJs25Yc6vTSPtQd80QAAAAAAAAAAOMh\n3mHdNetFkqRo9pIkC7bvAAAAAAAAAAAlJd5h3W2bGGzemSwG8Y7TWQAAAAAAAABAWYl3WHcrZ7Mm\nGoNzWTbvAAAAAAAAAABlJd5h3W1bjndqE50kyXyrM85xAAAAAAAAAADGRrzDuluJd6or8Y7NOwAA\nAAAAAABASYl3WHfNepEkqdTEOwAAAAAAAABAuYl3WHfbJrYlSfrVpSTJgngHAAAAAAAAACgp8Q7r\nbmXzTrc6iHZs3gEAAAAAAAAAykq8w7rbVm8mSbqxeQcAAAAAAAAAKDfxDuuuuRzvtLut1KqVzLfE\nOwAAAAAAAABAOYl3WHeN2mSqlWoWu4uZKuqZX+yMeyQAAAAAAAAAgLEQ77DuKpVKmvUiBzutTDUn\nnM0CAAAAAAAAAEpLvMNYbKs3s3joYKabE1loHUqv3x/3SAAAAAAAAAAA6068w1g0680c7LQy3ZxI\nv58cbDmdBQAAAAAAAACUj3iHsdhWb+ZQ71CazcE/QaezAAAAAAAAAIAyEu8wFs2JZpKkKHpJkvmW\neAcAAAAAAAAAKB/xDmOxrV4kSSaX4x2bdwAAAAAAAACAMhLvMBbN+mDzTn2ymySZF+8AAAAAAAAA\nACUk3mEsti3HO7WJTpJkfrEzznEAAAAAAAAAAMZCvMNYrGzeqdZX4h2bdwAAAAAAAACA8hHvMBZF\nvTH4w3K8syDeAQAAAAAAAABKSLzDWDTrxeAP1eV4pyXeAQAAAAAAAADKR7zDWBS1weadfsXZLAAA\nAAAAAACgvMQ7jEVj+WzWUr+dxkRNvAMAAAAAAAAAlJJ4h7EoaoOzWa1OO9PNehbEOwAAAAAAAABA\nCYl3GItmfSXeaWWqOZH5xc6YJwIAAAAAAAAAWH/iHcaiqA3OZrW67Uw3J9I+1M2hTm/MUwEAAAAA\nAAAArC/xDmNRr9ZTrVSXz2ZNJEnmnc4CAAAAAAAAAEpGvMNYVCqVNGtFWt3B2awkWWiJdwAAAAAA\nAACAchHvMDZFvTHYvFMsxzs27wAAAAAAAAAAJSPeYWyKepFWt726ecfZLAAAAAAAAACgbMQ7jE2j\n1kir08pUUUsi3gEAAAAAAAAAyke8w9gU9Ub66acoBj+LdwAAAAAAAACAshHvMDbN2qDamWj0kyQL\ni51xjgMAAAAAAAAAsO7EO4xNUW8kSeoT3SQ27wAAAAAAAAAA5SPeYWwatUG8U12OdxZa4h0AAAAA\nAAAAoFzEO4xNUR+czepXO6lUbN4BAAAAAAAAAMpHvMPYNJc37yx1lzJVTIh3AAAAAAAAAIDSEe8w\nNo36IN5pdVqZak5kQbwDAAAAAAAAAJSMeIexKWqDs1mtbjvTzXoWWp30+/0xTwUAAAAAAAAAsH7E\nO4xNUV+OdzqtTBcT6fb6WWx3xzwVAAAAAAAAAMD6Ee8wNs2Vs1nddqabE0mS+ZbTWQAAAAAAAABA\neYh3GJtGbTne6bQztRzvLCyKdwAAAAAAAACA8hDvMDZFbflsVre1unlHvAMAAAAAAAAAlIl4h7FZ\nPZv1lM078+IdAAAAAAAAAKBExDuMzerZrG57dfOOeAcAAAAAAAAAKBPxDmNTq9YyUZ1Iq9PKdFFP\nIt4BAAAAAAAAAMpFvMNYFfVGWt3W6tmshcXOmCcCAAAAAAAAAFg/4h3Gqlkr0uo8eTZroWXzDgAA\nAAAAAABQHuIdxmqweefJeMfZLAAAAAAAAACgTMQ7jFWj1shSdyn1eiUT9ap4BwAAAAAAAAAoFfEO\nY1XUiyRZPZ0l3gEAAAAAAAAAykS8w1gVteV4p9vKVDGRhZZ4BwAAAAAAAAAoD/EOY9WsN5KsbN6p\nZ7HdTafbG/NUAAAAAAAAAADrQ7zDWDVqy/FOd3A2K0kWWp1xjgQAAAAAAAAAsG7EO4xVUV8+m9Vp\nPRnvLDqdBQAAAAAAAACUg3iHsSrqT27emVqOd+bFOwAAAAAAAABASQwV7zzxxBOjnoOSatZWNu+0\nM1XYvAMAAAAAAAAAlMtQ8c6VV1456jkoqcbq5p0nz2bZvAMAAAAAAAAAlEV9mDeddtppue222/Kz\nP/uzKYpi9fkJJ5wwssEoh6K2HO90WvmJlXinJd4BAAAAAAAAAMphqHjnvvvuy3333XfYs0qlkjvu\nuGMkQ1Eezfry2axu2+YdAAAAAAAAAKB0hop37rzzzlHPQUk1VjfvtDPVHPxzXBDvAAAAAAAAAAAl\nUR3mTU888UR+67d+K6997Wvzcz/3c7n66qvz+OOPj3o2SqCoP3k2a2XzzsJiZ5wjAQAAAAAAAACs\nm6HinQ9/+MM544wzcscdd+TOO+/MmWeemd/5nd8Z9WyUQFF78mzWVOFsFgAAAAAAAABQLkPFOz/8\n4Q/zrne9K9PT09m+fXuuuuqqPPzww6OejRJo1CZTSSWtTjvVaiXbGvXMt8Q7AAAAAAAAAEA5DBXv\nVCqV7N27d/Xnhx9+OPV6fWRDUR6VSiWNWiOtbitJMt2csHkHAAAAAAAAACiNoQqc3/zN38zll1+e\nM888M/1+P/fdd18+9rGPjXo2SqKoN9LqtJMkU82JPPFYK/1+P5VKZcyTAQAAAAAAAACM1lDxzkte\n8pLcdttt+eY3v5ler5ff/d3fzQte8IJRz0ZJFPUic0tzSQabdzrdftqHuikmbXcCAAAAAAAAALa2\noeqIa665Jl/5yldy/vnnj3gcyqhZa+TxzuNJkunm4J/k/OIh8Q4AAAAAAAAAsOUNVUeceuqp+fSn\nP50zzzwzRVGsPn/Na14zssEoj0atkU6/m0O9TqaaE0mShcVOXrhjzIMBAAAAAAAAAIzYUPHO7Oxs\n7r777tx9992rzyqVSm6++eajfqbX6+WjH/1ovvvd72ZycjI33HBDTjrppMPes7i4mF/7tV/L7/3e\n7+XlL395kuSyyy7L9PR0kuTEE0/MTTfddMz/U2wuRX0QhLU6rUwvxzvzrUPjHAkAAAAAAAAAYF0M\nFTahQqYAACAASURBVO9cfPHFueKKK47pF99+++1ZWlrKrbfemj179uTjH/94PvvZz66+/q1vfSsf\n+chH8uijj64+a7fb6ff7ueWWW47p72JzK+qNJEmr085UsbJ5R7wDAAAAAAAAAGx91WHe9PnPf/6Y\nf/G9996b8847L0ly1lln5f777z/s9aWlpXzmM5/JKaecsvrsO9/5ThYXF/POd74zb3/727Nnz55j\n/nvZfJq15c073faTm3fEOwAAAAAAAABACQy1eefFL35x3v72t+fMM89Mo9FYfX711Vcf9TPz8/Or\n56+SpFarpdPppF4f/JVnn3320z5TFEXe9a535Zd/+Zfz4IMP5qqrrsrf/u3frn7mSHbt2pZ6vTbM\n/wbr6LjjZoZ+765HBu8tpqv5yRdvT5L0q9Vj+h3AxuB7C+Xkuw/l5LsP5eS7D+Xkuw/l5LsP5eS7\nD+Xkuz9+Q8U7Z5111jH/4unp6SwsLKz+3Ov1njHCSZKTTz45J510UiqVSk4++eTs3LkzP/7xj/OS\nl7zkqJ/Zt+/gMc/GaB133Ex+/OO5od/fa1eSJI/8f09ke2cqSfLo4/PH9DuA8TvW7z6wNfjuQzn5\n7kM5+e5DOfnuQzn57kM5+e5DOfnur59niqSGineuvvrqHDx4MD/4wQ/yyle+Mq1WK9u2bXvGz7z6\n1a/O1772tVx88cXZs2dPXvnKVz7r3/PFL34x3/ve9/LRj340jz76aObn53PccccNMyKbWFFfPpvV\naeclzcE/yQVnswAAAAAAAACAEqgO86a77rorv/RLv5T3vOc9efzxx/OGN7wh//RP//SMn7nooosy\nOTmZt73tbbnpppty7bXX5stf/nJuvfXWo37mrW99a+bm5nLFFVfkmmuuyY033vis23rY/Jq1wSm2\nVred6eZEkmSh1RnnSAAAAAAAAAAA62KoMuZTn/pU/vzP/zxXXXVVjj/++PzZn/1Z3ve+9+X1r3/9\nUT9TrVZz/fXXH/bs5S9/+dPed8stt6z+eXJyMp/85CeHnZ0tolFfjnc6rTQmaqlVK5m3eQcAAAAA\nAAAAKIGhNu/0er3DzledeuqpIxuI8ilqy2ezuu1UKpVMNyfEOwAAAAAAAABAKQy1eefFL35xvva1\nr6VSqeTAgQP5/Oc/nxNOOGHUs1ESRX053um0kiTTzYnMzrfHORIAAAAAAAAAwLoYavPO9ddfny9/\n+cvZu3dvLrroonz7299+2kkseK6aK2ezuoNgZ6o5kYOtTnq9/jjHAgAAAAAAAAAYuaE277zgBS/I\npz71qSO+dt111+VjH/vYmg5FuTRqy/FOZxDvTDcn0k+y0DqUmW2TY5wMAAAAAAAAAGC0htq880zu\nv//+tZiDEnv62axBU7bQ6oxtJgAAAAAAAACA9fC84x14viaq9dQrtcPOZiXJ/OKhcY4FAAAAAAAA\nADBy4h02hEa9sRrvTBfiHQAAAAAAAACgHMQ7bAhFrVg9m7WyeWdBvAMAAAAAAAAAbHHPO97p9/tr\nMQclV9QbaXWWN+84mwUAAAAAAAAAlMTzjnd+/ud/fi3moOSKWpF2t51+vy/eAQAAAAAAAABKo/5M\nL+7evTuVSuWor99888357d/+7TUfivIp6o3000+7u+RsFgAAAAAAAABQGs8Y77z3ve9NknzhC19I\nURS59NJLU6/X81d/9Vdpt9vrMiDlUNQaSZJWt5XpZjNJMt/qjHMkAAAAAAAAAICRe8Z455xzzkmS\n/P7v/37+8i//cvX5WWedlTe/+c2jnYxSKepFkqTVaeeFxUwSm3cAAAAAAAAAgK2vOsyb2u12/uM/\n/mP15+9+97vpdGxFYe0U9cHmnXa3nXqtmmKylnnxDgAAAAAAAACwxT3j5p0VH/zgB7N79+686EUv\nSq/XyxNPPJFPfvKTo56NElk5m7XYaSVJppsT4h0AAAAAAAAAYMsbKt55/etfnzvvvDPf+973UqlU\n8qpXvSr1+lAfhaGsns3qtpMkU82J7H18YZwjAQAAAAAAAACM3FBns/bv35/rr78+n/jEJ3LCCSfk\nuuuuy/79+0c9GyVS1Jbjnads3lnq9LJ0qDvOsQAAAAAAAAAARmqoeOe6667LGWeckdnZ2UxNTeX4\n44/PBz7wgVHPRokU9cHZrJXNO9PNiSRxOgsAAAAAAAAA2NKGind+9KMf5fLLL0+1Ws3k5GSuueaa\nPPLII6OejRIpasvxTmc53ikG8c5CqzO2mQAAAAAAAAAARm2oeKdWq2Vubi6VSiVJ8uCDD6ZaHeqj\nMJSifvjZrKlmPYnNOwAAAAAAAADA1lYf5k2/8Ru/kd27d2fv3r15z3vekz179uTGG28c9WyUyOrm\nneWzWVPLZ7MWxDsAAAAAAAAAwBY2VLxz3HHH5U//9E/zzW9+M91uN9dff31e+MIXjno2SqS5unln\n+WzWcrxj8w4AAAAAAAAAsJUNFe9cc801+cpXvpLzzz9/xONQVo3VzTuDs1niHQAAAAAAAACgDIaK\nd0499dR8+tOfzplnnpmiKFafv+Y1rxnZYJRLUV+OdzriHQAAAAAAAACgPIaKd2ZnZ3P33Xfn7rvv\nXn1WqVRy8803j2wwyqVaqWayNplWd3A2a2o53lkQ7wAAAAAAAAAAW9hQ8c4tt9wy6jkgzVoj7c4g\n3pkuluOdVmecIwEAAAAAAAAAjNRQ8c43vvGNfO5zn8vBgwfT7/fT6/Xy8MMP58477xz1fJRIo97I\n4vLZrGajlmql4mwWAAAAAAAAALClVYd504c+9KFceOGF6Xa7ufLKK3PSSSflwgsvHPVslExRK9Ja\n3rxTqVQy1ayLdwAAAAAAAACALW2oeKcoirzlLW/JOeeck+3bt+eGG27IPffcM+rZKJmiXuRQ71C6\nvW6SZLo5Id4BAAAAAAAAALa0oeKdRqOR2dnZnHzyybnvvvtSqVRy8ODBUc9GyRS1RpKk3R1s35lq\nTmShdSi9fn+cYwEAAAAAAAAAjMxQ8c473vGOXHPNNbngggty22235ZJLLsnpp58+6tkomaI+iHcW\nl09nTRcT6feTxXZnnGMBAAAAAAAAAIxMfZg3velNb8ob3/jGVCqVfOlLX8qDDz6Yn/7pnx71bJRM\nUSuSJK1uK8ngbFaSLCweylQxMba5AAAAAAAAAABGZah459prrz3i85tuumlNh6HcVjbvtFY27yzH\nO/OLnRy/a2xjAQAAAAAAAACMzFDxzjnnnLP6506nkzvuuCOnnHLKyIainIracrzTHcQ7U83BP8/5\nxUNjmwkAAAAAAAAAYJSGincuu+yyw35+61vfmiuuuGIkA1FeRX35bFZncDZr6ilnswAAAAAAAAAA\ntqLqc/nQAw88kMcee2ytZ6Hknty8M4h3pouVs1niHQAAAAAAAABgaxpq885pp52WSqWSfr+fJPmJ\nn/iJvO997xvpYJTPk5t3BmezppviHQAAAAAAAABgaxsq3vnOd74z6jngKZt3/ku80xLvAAAAAAAA\nAABb01Dxzqc//elnfP3qq69ek2Eot6K+HO90BmezppbjnQWbdwAAAAAAAACALao6zJv27t2bv/u7\nv8vExESazWa+/vWv51//9V9HPRsl8/SzWYO2TLwDAAAAAAAAAGxVQ23eeeCBB3Lrrbdm27ZtSZLd\nu3dn9+7dNu6wporaIN5pL5/NmqjXMjlRzfxiZ5xjAQAAAAAAAACMzFCbd/bt25dKpbL689LSUg4e\nPDiyoSinlbNZi93W6rPp5kTmbd4BAAAAAAAAALaooTbvvPWtb82b3/zmnH/++en1evmHf/iHvPvd\n7x71bJTMZHUilVRWz2YlyXQxkUdnF8c4FQAAAAAAAADA6AwV71x11VV57Wtfm3vuuSdFUeSP/uiP\ncsopp4x6NkqmUqmkqBdpdZ7cvDPVnEj7sfl0ur3Ua0MtigIAAAAAAAAA2DSGqiFmZ2czPz+fd73r\nXZmbm8sf/uEf5t///d9HPRslVNQaaXefsnmnOZEkTmcBAAAAAAAAAFvSUPHO+9///nz/+9/PXXfd\nla9+9at5wxvekI985COjno0SKuqNw89mLcc7C+IdAAAAAAAAAGALGire2b9/f371V381t99+ey69\n9NJceumlWVxcHPVslFBRK7LYbaXf7ycZnM1KbN4BAAAAAAAAALamoeKdXq+X+++/P7fffnsuuOCC\nfPvb30632x31bJRQUW+k1+/lUK+TJJku6kmS+cXOOMcCAAAAAAAAABiJ+jBv+sAHPpBPfOITeec7\n35mXvvSl+ZVf+ZVce+21o56NEirqRZKk3W1nsjaxunlnoWXzDgAAAAAAAACw9QwV75x77rk599xz\nV3/+whe+sPrnX//1X88f//Efr/1klFJRayRJFjutzExOZ9rZLAAAAAAAAABgCxvqbNYzefTRR9di\nDkgyOJuVJK1uK0mejHcOincAAAAAAAAAgK3necc7lUplLeaAJElRG5zNanXaSZId05NJkv0L7bHN\nBAAAAAAAAAAwKs873oG1tLJ5p90dxDo7pwc/75sT7wAAAAAAAAAAW494hw2lqA1incXO4GxWvVbN\nzLaJzM4vjXMsAAAAAAAAAICReN7xTr/fX4s5IElS1A8/m5UMtu/Mztu8AwAAAAAAAABsPc873rn0\n0kvXYg5I8uTmnVa3tfps53QjraVuFtudcY0FAAAAAAAAADAS9WHe9PWvfz1/8Ad/kAMHDqTf76ff\n76dSqeSOO+7IO97xjhGPSJmsbN5pP2Xzzq6ZySTJ7Hw7zcZQ/2QBAAAAAAAAADaFoUqIG264IR/8\n4Afzile8IpVKZdQzUWIrm3cWu4efzUqS2fmlvOQFU2OZCwAAAAAAAABgFIaKd3bt2pULLrhg1LPA\n6uadVufws1lJMjvXPuJnAAAAAAAAAAA2q6HinbPPPjs33XRTzjvvvDQajdXnr3nNa0Y2GOVU1Af/\nvlpP3bwzs7J5R7wDAAAAAAAAAGwtQ8U73/zmN5Mk//Zv/7b6rFKp5Oabbx7NVJTWytmsdufJUGfX\n8uadfTbvAAAAAAAAAABbzFDxzi233DLqOSBJUq/WU6/Ws9h9ytksm3cAAAAAAAAAgC1qqHjnG9/4\nRj73uc/l4MGD6ff76fV6efjhh3PnnXeOej5KqKg10nrK5p2ZbROpViqZnV8a41QAAAAAAAAAAGuv\nOsybPvShD+XCCy9Mt9vNlVdemZNOOikXXnjhqGejpIp6kVbnyc071UolO6Ynnc0CAAAAAAAAALac\noeKdoijylre8Jeecc062b9+eG264Iffcc8+oZ6Okiloj7e7hoc6umUZm59vp9/tjmgoAAAAAAAAA\nYO0NFe80Go3Mzs7m5JNPzn333ZdKpZKDBw+OejZKqqg30uq20+v3Vp/tnG6k2+tnfvHQGCcDAAAA\nAAAAAFhbQ8U773jHO3LNNdfkggsuyG233ZZLLrkkp59++qhno6SKWpEkaXeXVp/tnJ5MEqezAAAA\nAAAAAIAtpT7Mm970pjfljW98YyqVSr70pS/lwQcfzGmnnTbq2Sipot5IkrS77TTrg5Bn18zg2ez8\nUl72orGNBgAAAAAAAACwpobavLN///5cd911efvb3552u51bbrklc3Nzo56Nkipqg1Cn1WmtPts5\nvRLv2LwDAAAAAAAAAGwdQ8U71113Xc4444zMzs5mamoqxx9/fD7wgQ+MejZKqljetrPYeTLUWY13\nnM0CAAAAAAAAALaQoeKdH/3oR7n88stTrVYzOTmZa665Jo888sioZ6Okitog3ml1n7J5Z8bmHQAA\nAAAAAABg6xkq3qnVapmbm0ulUkmSPPjgg6lWh/ooHLOiPgh12k/ZvLNrejJJss/mHQAAAAAAAABg\nC6kP86b3vve92b17d/bu3Zv3vOc92bNnT2688cZRz0ZJFbVBvLPYfTLUaTbqmZyoZnZ+aVxjAQAA\nAAAAAACsuaHW55x++um58MILc+KJJ2bv3r256KKLcv/99496NkqqqC+fzeo8eTarUqlk53TD2SwA\nAAAAAAAAYEsZavPOVVddlVe96lW54IILRj0PrJ7NanUOD3V2Tjfy//5wNp1uL/Was20AAAAAAAAA\nwOY3VLyTxJks1s3K2ax29/B4Z9dMI/0kBxaW8hPbizFMBgAAAAAAAACwtoaKdy688ML8xV/8RV73\nutelVqutPj/hhBNGNhjltXI2a7HbOuz5zunJJMnsvHgHAAAAAAAAANgahop35ubm8id/8ifZtWvX\n6rNKpZI77rhjZINRXiubd1qd/xrvDJ7vm2s/7TMAAAAAAAAAAJvRUPHOV7/61dx1110pCttOGL2V\nzTutztPPZiXJ7Lx4BwAAAAAAAADYGqrDvOmlL31p9u/fP+pZIEnSqA3OY7W7h0c6K5t3xDsAAAAA\nAAAAwFYx1OadSqWSSy65JK94xSsyMTGx+vzmm28e2WCUV7VSTaM2eYSzWYOoZ9bZLAAAAAAAAABg\nixgq3nn3u9896jngMEWtyKLNOwAAAAAAAADAFjdUvHPOOeeMeg44TFEvsnBo4bBnkxO1TBX1zM4v\njWkqAAAAAAAAAIC1VR33AHAkRa2RdvfpG3Z2zjSyz9ksAAAAAAAAAGCLEO+wIRX1Rg71Oun0Ooc9\n3zndyMF2J+1D3TFNBgAAAAAAAACwdkYW7/R6vXz4wx/O5Zdfnt27d+ehhx562nsWFxfztre9LQ88\n8MDQn6EcinqRJGn9l+07O6cnkySz87bvAAAAAAAAAACb38jindtvvz1LS0u59dZb8/73vz8f//jH\nD3v9W9/6Vq688sr88Ic/HPozlEdRayRJWp3DI51dM4Pns05nAQAAAAAAAABbwMjinXvvvTfnnXde\nkuSss87K/ffff9jrS0tL+cxnPpNTTjll6M9QHkV9EOm0n7Z5ZznemV9a95kAAAAAAAAAANZafVS/\neH5+PtPT06s/12q1dDqd1OuDv/Lss88+5s9QHkVtcDZrsdM67PlKvLPP5h0AAAAAAAAAYAsYWRUz\nPT2dhYWF1Z97vd6zRjjP5TO7dm1LvV57fsOy5o47buZ5ff4Fj29PkjSmqof9rpMXO0mSpV7/ef8d\nwNrzvYRy8t2HcvLdh3Ly3Ydy8t2HcvLdh3Ly3Ydy8t0fv5HFO69+9avzta99LRdffHH27NmTV77y\nlSP5zL59B9diXNbQccfN5Mc/nntev6PbqiRJHn1iX3488ZTf1ekmSR5+bO55/x3A2lqL7z6w+fju\nQzn57kM5+e5DOfnuQzn57kM5+e5DOfnur59niqRGFu9cdNFF+ed//ue87W1vS7/fz4033pgvf/nL\nOXjwYC6//PKhP0M5FfXBeax25/DzWNunJlKpJLPOZgEAAAAAAAAAW8DI4p1qtZrrr7/+sGcvf/nL\nn/a+W2655Rk/QzkVtUG8s9htHfa8Vq1m+9RkZueXxjEWAAAAAAAAAMCaqo57ADiSol4kSVqdp2/Y\n2TndyOx8O/1+f73HAgAAAAAAAABYU+IdNqSVs1mt/7J5J0l2TTey1OnlYLuz3mMBAAAAAAAAAKwp\n8Q4b0srZrPaRNu/MDF6bnXv6awAAAAAAAAAAm4l4hw1p5WzWYvdIZ7MmkyT75sU7AAAAAAAAAMDm\nJt5hQypqg3in1Tny2awkmZ1bWteZAAAAAAAAAADWmniHDWmiWk+1Uk37SJt3Vs5m2bwDAAAAAAAA\nAGxy4h02pEqlkqLWSKtzpLNZg3jH2SwAAAAAAAAAYLMT77BhFfUii0c6m7WyeWdOvAMAAAAAAAAA\nbG7iHTasotZI6whns6aKeuq1Smbnl8YwFQAAAAAAAADA2hHvsGEV9Uba3Xb6/f5hzyuVSnZONzLr\nbBYAAAAAAAAAsMmJd9iwilqRXr+XQ71DT3tt50wj++eX0uv1j/BJAAAAAAAAAIDNQbzDhlXUG0mS\nxc7TN+zsnG6k1+9n7qDTWQAAAAAAAADA5iXeYcMqakWSpNVtPe21XdODsGef01kAAAAAAAAAwCYm\n3mHDWtm80z7S5p2ZySTJ7JzNOwAAAAAAAADA5iXeYcMqaoN450ibd3Yub96ZtXkHAAAAAAAAANjE\nxDtsWEV9cDZr8Qibd1bPZs2JdwAAAAAAAACAzUu8w4a1cjar1TnC5p0Zm3cAAAAAAAAAgM1PvMOG\ntXI2q919eqCzc3oySbJPvAMAAAAAAAAAbGLiHTaslbNZrSOczSom62k2apmdW1rvsQAAAAAAAAAA\n1ox4hw2rqA3incXu089mJcnO6YazWQAAAAAAAADApibeYcMq6oOzWUfavJMM4p35xUM51Omt51gA\nAAAAAAAAAGtGvMOGVdQG8U67e/R4J0n2274DAAAAAAAAAGxS4h02rKI+OJvV6hzlbNbMZJJkdn5p\n3WYCAAAAAAAAAFhL4h02rJXNO4tH2byza3nzzj6bdwAAAAAAAACATUq8w4ZVq9YyUZ04+uad5Xhn\ndk68AwAAAAAAAABsTuIdNrSi1kj7KJt3ds4sxzs27wAAAAAAAAAAm5R4hw2tqDeOunnH2SwAAAAA\nAAAAYLMT77ChFfUii0fZvLNjejKJs1kAAAAAAAAAwOYl3mFDK2qNLHWX0uv3nvZavVbNzLaJ7Jtf\nGsNkAAAAAAAAAADPn3iHDa2oD05jtY+yfWfXdCOzzmYBAAAAAAAAAJuUeIcNragVSZJW58iBzs6Z\nRtpL3Sy2O+s5FgAAAAAAAADAmhDvsKEV9UG8s9hpHfH1ndODzTy27wAAAAAAAAAAm5F4hw2tqD3z\n2ayd05NJktk58Q4AAAAAAAAAsPmId9jQivog3nmms1lJMju/tG4zAQAAAAAAAACsFfEOG1pRWz6b\n1T3y2axdy2ez9jmbBQAAAAAAAABsQuIdNrRn3byzHO84mwUAAAAAAAAAbEbiHTa0ojaIc9rdZzub\nJd4BAAAAAAAAADYf8Q4bWlEfnM1qdY58Nmtm20Rq1YqzWQAAAAAAAADApiTeYUNbOZt1sLN4xNer\nlUp2TE9mdm5pPccCAAAAAAAAAFgT4h02tJmJmSTJ3NL8Ud+zc7qR2fl2ev3+eo0FAAAAAAAAALAm\nxDtsaNsbg3hn/9LcUd+za7qRbq+f+cVD6zUWAAAAAAAAAMCaEO+woU1U65ma2Jb97QNHfc/O6cFp\nrdm59nqNBQAAAAAAAACwJsQ7bHg7JrfnwNIzxDszk0mS2XnxDgAAAAAAAACwuYh32PB2NLZnsdPK\nUnfpiK+vbt6ZP/LrAAAAAAAAAAAblXiHDW/75EySZH977oiv75xxNgsAAAAAAAAA2JzEO2x4Oxrb\nkyT7j3I6a9fy5p19zmYBAAAAAAAAAJuMeIcNb8fkcrzTPnK8s3o2y+YdAAAAAAAAAGCTEe+w4W1v\nDM5mHVg68tmsZqOWyYlqZueX1nMsAAAAAAAAAIDnTbzDhrez8cybdyqVSnZNN5zNAgAAAAAAAAA2\nHfEOG972lbNZS0eOd5LB6ay5haV0ur31GgsAAAAAAAAA4HkT77Dh7ZgcnM062uadJNk500g/yYEF\np7MAAAAAAAAAgM1DvMOGN1GbyLZ6M/uX5o76nl3TjSRxOgsAAAAAAAAA2FTEO2wKOxrbc+CZNu9M\nTyZJZuds3gEAAAAAAAAANg/xDpvCjsntOdhZzFL30BFf3zkz2Lwza/MOAAAAAAAAALCJiHfYFHY0\ntidJDhzldNbOafEOAAAAAAAAALD5iHfYFLZPziRJ9h/ldNbq5p058Q4AAAAAAAAAsHmId9gUVjbv\n7F86cryza3oylST/+fjCOk4FAAAAAAAAAPD8iHfYFFbjnaNs3pmo13LGy1+QBx+Zy/d+OLueowEA\nAAAAAAAAPGfiHTaFlbNZB5bmjvqeXzz3p5Ikf/UvD67DRAAAAAAAAAAAz594h01h57Ns3kmSU0/c\nkdNetjP3/8cTefCRo78PAAAAAAAAAGCjEO+wKWyffPZ4J0ku+fmfSpL89b88NOqRAAAAAAAAAACe\nN/EOm8JkbSLNevMZz2Ylyf9w0q6c/JKZ3Pu9H+c/H19Yp+kAAAAAAAAAAJ4b8Q6bxo7JmWfdvFOp\nVPKL5/5UkuRv7npw5DMBAAAAAAAAADwf4h02je2N7VnoHMyhXucZ33fmK16YnzxuKnf/22N5bHZx\nnaYDAAAAAAAAADh24h02jR2T25MkB55l+061Uskl556UXr+fv/1vD63HaAAAAAAAAAAAz4l4h01j\nR2MmSbJ/ae5Z33vOaS/K8bua+adv7c2+ufaoRwMAAAAAAAAAeE7EO2waOxrDbd5Jkmq1kotfd1I6\n3X7+7r//YNSjAQAAAAAAAAA8J+IdNo0dk4PNO7NLzx7vJMnPn/7i7Jpp5P/e85+ZO7g0ytEAAAAA\nAAAAAJ4T8Q6bxo7GjiTJgfazn81Kknqtmje+9mVZOtTL33/jR6McDQAAAAAAAADgORHvsGlsX968\ns3+Is1krfuHMEzKzbSJ33PujHGx1RjUaAAAAAAAAAMBzIt5h09jR2J4k2T/k2awkaUzU8j+/5qVZ\nbHfytX+1fQcAAAAAAAAA2FjEO2wajdpkilqRA0vDnc1accH/eGKajXq+es8P0z7UHdF0AAAAAAAA\nAADHTrzDprKjMXNMZ7OSZFtRz/909omZO3go/7jn4RFNBgAAAAAAAABw7MQ7bCo7Jrdn/tBCOr3O\nMX3uop87MZMT1fztf/9BOt3eiKYDAAAAAAAAADg24h02le2NmSQ55tNZM9smc/5ZP5l9c+38y/2P\njGI0AAAAAAAAAIBjJt5hU9nR2J4k2d8+tngnSf6Xc16Weq2Sv7nroXR7tu8AAAAAAAAAAOMn3mFT\n2TG5HO8sHTjmz+6aaeT1Z7wkj80u5p5vP7bWowEAAAAAAAAAHLP6uAeAY7GyeedA+9jjnSR50+tO\nyj/etzef++tv5/N//73UatXUqpXBf7Vq6qt/rqRWraZeq6Rer2aiVs1EfeW/2urPk8vPtk9NTNs1\nGQAAIABJREFU5pyfflEm6no4AAAAAAAAAGB44h02lR2TM0mS/UvHfjYrSY7b2cxlv3By7vn2Y+n2\n+un0+ul2e+n2+lnqdFb/3O310+320+v3h/7d3/3BbH7t4tNSqVSe02wAAAAAAAAAQPmId9hUti9v\n3tn/HDfvJMkl5/5ULjn3p4Z6b6/Xz6FuL4c6g/86T/nzU5//n1//fv7pW3tzyk9uz/ln/eRzng0A\nAAAAAAAAKBfxDpvKk5t3nnu8cyyq1Uoa1VoaE7VnfN8JL9yW3/3f78mf//338rLjZ3LKCdvXZT4A\nAAAAAAAAYHOrjnsAOBZFvUijNvm8Nu+Mwgt3NPPrv/Qz6Xb7+aPbvpUDB5fGPRIAAAAAAAAAsAmI\nd9h0djS250B7btxjPM3pJ78gl/7CKXniQDt//H/9P+n1+uMeCQAAAAAAAADY4MQ7bDo7Jrdn7tB8\nur3uuEd5mkvOPSlnnfrCfPuhffnSP35/3OMAAAAAAAAAABuceIdNZ0dje5LkwNLG275TrVTyv/3i\nT+f4Xc38zX97KPd+98fjHgkAAAAAAAAA2MDEO2w62ydnkmzMeCdJthUTufqyMzJZr+Zzf/1veeSJ\ng+MeCQAAAAAAAADYoEYW7/R6vXz4wx/O5Zdfnt27d+ehhx467PU777wzb3nLW3L55ZfnC1/4wurz\nyy67LLt3787u3btz7bXXjmo8NrGVzTuz7QNjnuToTjx+Ou9402lpLXXz6S99K62lzrhHAgAAAAAA\nAAA2oPqofvHtt9+epaWl3HrrrdmzZ08+/vGP57Of/WyS5NChQ7npppvyxS9+Mc1mM1dccUXe8IY3\nZGZmJv1+P7fccsuoxmIL2DG5cjZr48Y7SfK6n3lxvv/wgdx+74/yf3zlO/n1//VnUqlUxj0WAAAA\nAAAAALCBjGzzzr333pvzzjsvSXLWWWfl/vvvX33tgQceyMte9rLs2LEjk5OTOfvss3PPPffkO9/5\nThYXF/P/t3fncZLV9d3oP6eql9l6dpZBGBhWQUXEBYzik5CH6DUqKATEKEZ53RuNidFcYsDnuiNq\njJpXjJq43Ne9DyYRLy5IovGJ0bxIkBgVR2RfHQQHhAFmpnuY6e6qc/+opat7umfvqenu9xvHOvv5\nnlPn9/ud0/WtX73xjW/MRRddlLVr105XeMxgS/obP5u18QDueafl/DOPzbGHL8l/3far/MuPHuh2\nOAAAAAAAAADAAWbakncGBwezaNGi9ni1Ws3o6Gh73sDAQHvewoULMzg4mHnz5uXiiy/OF77whbzv\nfe/LJZdc0l4HWlo972zctrnLkexcT7WSN5/99CxZ2Jcvf/fu3HH/490OCQAAAAAAAAA4gEzbz2Yt\nWrQoQ0ND7fF6vZ6enp5J5w0NDWVgYCBr1qzJkUcemaIosmbNmixdujSPPPJIVq1aNeV+li1bkJ6e\n6nQdBnvooIMGdr7QHlq4tHEdPZkt07qffeWggwZy2e89L+/8zPX522tvzV++/b9lxZL53Q4LpsVM\nKJPAvqfsw9yk7MPcpOzD3KTsw9yk7MPcpOzD3KTsd9+0Je+ceuqp+d73vpeXvvSlWbt2bY4//vj2\nvGOOOSbr1q3LE088kQULFuRHP/pRLr744lx99dW588478973vjcPP/xwBgcHc9BBB+1wP48/vmW6\nDoE9dNBBA3nkkenrFacsy/RV+/Lo5semdT/70sEDffmdXz8mV3337lz1v27P7/z6sd0OCfa56S77\nwIFJ2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ2d9/dpQkNW3JO2eddVauv/76vPrVr05Zlrniiity\n7bXXZsuWLbngggty6aWX5uKLL05Zljn33HNzyCGH5Lzzzstll12WCy+8MEVR5Iorrmj31gMtRVFk\nSd9ANg7PrArkBc9Ylau+e3cefGRo5wsDAAAAAAAAAHPCtGXGVCqVvP/97x837ZhjjmkPn3nmmTnz\nzDPHze/r68vHPvax6QqJWWRx3+Lcu/HnqdVrqVZmxs+mLZrfm4EFvXlog96iAAAAAAAAAICGSrcD\ngD2xtH9xypTZPDLY7VB2y6rlC/LIxiczMlrrdigAAAAAAAAAwAFA8g4z0uL+xm/Bbdy2qcuR7J5V\nKxemLJOHHnuy26EAAAAAAAAAAAcAyTvMSEv6FidJNg1v7nIku2fV8gVJkvUbhrocCQAAAAAAAABw\nIJC8w4y0pL+RvPPEDOx5J0nWb9jS5UgAAAAAAAAAgAOB5B1mpHbPOzMteWeFnncAAAAAAAAAgDGS\nd5iRlvQPJEk2zrCfzVq+eF76eit63gEAAAAAAAAAkkjeYYZq/WzWxhnW806lKHLo8gV56LEtqZdl\nt8MBAAAAAAAAALpM8g4z0rzqvPRWerNpeGYl7yTJqhULMzJaz4aNW7sdCgAAAAAAAADQZZJ3mJGK\nosiSvoEZ1/NOkqxasSBJ/HQWAAAAAAAAACB5h5lrSf/ibBoeTL2sdzuU3bJqxcIkyfoNQ12OBAAA\nAAAAAADoNsk7zFiL+xenTJnNwzMrCUbPOwAAAAAAAABAi+QdZqylfYuTJBuHN3Y5kt1zyLIFKQo9\n7wAAAAAAAAAAkneYwRb3DyRJNm3b3OVIdk9vTyUHLZ2v5x0AAAAAAAAAQPIOM9eSVs872zZ1OZLd\nt2r5ggw+OZLNW4a7HQoAAAAAAAAA0EWSd5ixlvS3fjZrBibvrFyYJHrfAQAAAAAAAIA5TvIOM9bi\nvsbPZs3UnneSZP2GoS5HAgAAAAAAAAB0k+QdZqyl7Z53Nnc5kt2n5x0AAAAAAAAAIJG8www2v2d+\neio92bRtBibvrGj1vCN5BwAAAAAAAADmMsk7zFhFUWRJ3+JsHJ55P5u1cF5vFi/s87NZAAAAAAAA\nADDHSd5hRlvSP5BNw5tTL+vdDmW3HbZiQTZs3JrhkVq3QwEAAAAAAAAAukTyDjPakr7FqZf1DI7M\nvB5sDl2xMGWShx7z01kAAAAAAAAAMFdJ3mFGW9y/OEmycdvmLkey+1atWJAkWb9B8g4AAAAAAAAA\nzFWSd5jRlva1knc2djmS3TeWvDPzeg0CAAAAAAAAAPYNyTvMaIv7B5Ikm4ZnXs87h61YmETPOwAA\nAAAAAAAwl0neYUZb0jdzfzZr2UB/+nuret4BAAAAAAAAgDlM8g4z2pL+ZvLO8KYuR7L7iqLIoSsW\n5KHHnky9XnY7HAAAAAAAAACgCyTvMKO1fzZr28xL3kmSVSsWZLRWz6Mbn+x2KAAAAAAAAABAF0je\nYUZb2LMgPUU1T8zAnneSZNWKhUmS9Ru2dDkSAAAAAAAAAKAbJO8woxVFkcX9i7Np2+Zuh7JHVi1f\nkETyDgAAAAAAAADMVZJ3mPGW9C3OxuFNqZf1boey21atbPW8M9TlSAAAAAAAAACAbpC8w4y3pH8g\n9bKeoZGZ13vNIcvmp1IUet4BAAAAAAAAgDlK8g4z3uK+xUmSTcMz76ezeqqVHLRsftZvGEpZlt0O\nBwAAAAAAAADYzyTvMOMt6W8k7zyxbVOXI9kzq5YvyNDW0WzeMtLtUAAAAAAAAACA/UzyDjPekr6B\nJMmmmZq8s3JBkmT9hqEuRwIAAAAAAAAA7G+Sd5jxWj3vbByemck7h61YmCRZv2FLlyMBAAAAAAAA\nAPY3yTvMeO3knW2buxzJnjl0RavnHck7AAAAAAAAADDXSN5hxlvSN7N73lm1vNXzjp/NAgAAAAAA\nAIC5RvIOM97C3gWpFtVs2jYzk3cWzOvJkkV9kncAAAAAAAAAYA6SvMOMVxRFFvcNZOPwzPzZrCQ5\nbMXCbNi0LduGa90OBQAAAAAAAADYjyTvMCss6V+cTds2pSzLboeyRw5dsSBJ8tBjW7ocCQAAAAAA\nAACwP0neYVZY0jeQ0bKWodGZmfxy2IqFSeKnswAAAAAAAABgjpG8w6ywpH9xkmTjtk1djmTPtHre\n+eWGmZl8BAAAAAAAAADsGck7zAqL+xrJO5u2be5yJHum1fPOQ3reAQAAAAAAAIA5RfIOs0K7553h\nmdnzztJFfZnXV816Pe8AAAAAAAAAwJwieYdZYUn/QJKZ+7NZRVFk1YoFefjxLanV690OBwAAAAAA\nAADYTyTvMCss6Wv1vDMzfzYrSQ5dvjCjtTKPPrG126EAAAAAAAAAAPuJ5B1mhfbPZs3QnneS5LCV\nC5LET2cBAAAAAAAAwBwieYdZYWHvgizqXZjbH7srG7fNzN53Vq1YmCRZv2Goy5EAAAAAAAAAAPuL\n5B1mhUpRyW+v+a1srW3NNfd8s9vh7JFVK/S8AwAAAAAAAABzjeQdZo0XPuW0HLHosPzgoR/nnid+\n3u1wdttBS+enWin0vAMAAAAAAAAAc4jkHWaNSlHJ+Se8Mkny5Tu/nnpZ73JEu6enWsnBy+Zn/YYt\nKcuy2+EAAAAAAAAAAPuB5B1mlaOXHJnTD31OHhj8Zf7jwf/sdji7bdWKhdmybTSbhoa7HQoAAAAA\nAAAAsB9I3mHWOfvY/y3ze+blG/d+O5uHB7sdzm5ZtWJBkmT9hi1djgQAAAAAAAAA2B8k7zDrLO4b\nyG+v+a08OfpkvnHPt7odzm4ZS94Z6nIkAAAAAAAAAMD+IHmHWelFT3l+Dlt4aL6//of5+ab7ux3O\nLlu1YmESPe8AAAAAAAAAwFwheYdZqVqp5vzjz0mSXHXH11Mv612OaNcculzPOwAAAAAAAAAwl0je\nYdY6btnRec4hp+T+zQ/khl/+sNvh7JL5/T1ZNtCfX+p5BwAAAAAAAADmBMk7zGqvPPa301/tyzX3\nfitDIzMjIWbVigV5fPO2PLlttNuhAAAAAAAAAADTTPIOs9rS/iV56ZqzMjSyJdfe++1uh7NLVi1f\nmCR56LGZkWwEAAAAAAAAAOw5yTvMer9x+Atz6IKD8x8P/mfu3/xAt8PZqVUrFyRJHvLTWQAAAAAA\nAAAw6/V0OwCYbtVKNb9z/Nn55NrP5ct3XJM/efabUyl2nLf2qy2P5KZHb80vNj+Y0fpoRuu11Mpa\ne3i0HE2t+Tpar6WnUs1vHXlmTj/02SmKYq/iXbW8kbzzyw1De7UdAAAAAAAAAODAJ3mHOeGpy4/L\nsw4+OT/51U35wUM35vmrnjNufr2s5+ebfpGfPXprbnrkljy05VdTbqtaVNNTqaan6Em1Uk1PpSeP\nb92YL9725fz0kZ/lwhPOy5L+gT2OddXKxs9m/eJXg3u8DQAAAAAAAABgZpC8w5xx7rEvyy2P3pZr\n7v5mnrnyaemp9OSOx+/KTY/cmp9tuDWbhxvJMr2V3py88ml5xsqTcvyyYzKv2p+eSjXVSk96iuqk\nPetsePLxfPG2L+dnj96We5/4WC444ZV59iHP3KM4lyzsyxEHL8rP7t2Q9RuGsmrFwr06bgAAAAAA\nAADgwCV5hzlj2byleclRv5lv3PvP+YsffyqPbX08I/WRJMlA76L82qrn5hkrT8pTlx+Xvmrfbm17\nxfxl+aNn/e+57sEb8vW7v5n/+5a/y08fuTnnn3BOFvXuXvJNURQ5+4Vr8tdf/Vm+cf3P8/uveNpu\nrQ8AAAAAAAAAzBySd5hTzlz9ovzgoRvz8JZf5ZAFB+fklSfl5INOylGLV6dSVPZq25Wikl8//AU5\nafnx+Z+3fjk//tVPc9cT9+Y1Tz03z1h50m5t61nHrczqQxblv259OC97/pF5ykGL9io2AAAAAAAA\nAODAJHmHOaW30pNLnv0H2TL6ZFbOXzEt+zh4wUH5k2e/Of96/3X5x3u/nb+56f/J6auek/OOe3nm\n98zfpW0URZFzXnh0/uorN+Wa63+ePzjn6dMSKwAAAAAAAADQXXvX1QjMQAt6F0xb4k5LpajkrCN/\nPX/23D/OEYsOy3+u/1E++INP5PbH7trlbTzz2BU56tCB/Oj2X+UXvxqcxmgBAAAAAAAAgG6RvAPT\n6LBFh+ZPn/NHeelR/z0bhzflk2s/l+sf/MEurVsURc454+gkyTX/cd90hgkAAAAAAAAAdInkHZhm\n1Uo1v330b+VPn/2Hmd8zP1+9+5+yaXjzLq37jKOX55jDFufGOx/Juod2bR0AAAAAAAAAYOaQvAP7\nyerFh+dlR/9Wtta25pp7vrVL6xRFkbPPWJNE7zsAAAAAAAAAMBtJ3oH96IzDTs9TFq3Kf67/Ue7b\nuG6X1nnaUctz7OFLsvbuR3Pf+k3THCEAAAAAAAAAsD9J3oH9qFqp5vzjz0mSfPnOr6de1ne6TlEU\neeUL9b4DAAAAAAAAALOR5B3Yz45duibPPeRZuX/zg7nhlz/cpXWeeuSynHDE0tx0z4bc88uN0xwh\nAAAAAAAAALC/SN6BLjjn2Jemv9qXa+79VoZGtux0+aIocs4Zzd53/l3vOwAAAAAAAAAwW0jegS5Y\n2r8kL11zVoZGtuQf7/32Lq1zwuplOfHIZbn5vsdy1wNPTHOEAAAAAAAAAMD+IHkHuuTXD39BDllw\nUP79wf/MLzY/uEvrnP3CRu87X9f7DgAAAAAAAADMCpJ3oEt6Kj35nePOTpkyX77z6ynLcqfrHH/E\n0jxtzfLctu7x3HH/4/shSgAAAAAAAABgOknegS46ccXxOeWgp+fejevyXw/duEvrnNPsfeea/9D7\nDgAAAAAAAADMdJJ3oMtedezL01vpydfu+ac8Obp1p8sf85QlecbRK3L7/U/ktnV63wEAAAAAAACA\nmUzyDnTZivnL8uIjz8zm4cF8677v7NI655zR6H3n6/9+7y793BYAAAAAAAAAcGCSvAMHgP+++r9l\n5bzl+d4D/5H1Qw/vdPk1qxbnlGNX5q4HNubWn+t9BwAAAAAAAABmKsk7cADorfbmvONfkXpZz/93\n5zW71JvO2S9s9L7z//7z7fmXH/0iTwxum+4wAQAAAAAAAIB9TPIOHCCevuLEnLTihNzx+N35ySM/\n2+nyRx46kBc/74hs2LQ1//Cdu/J//vX1+fO/vzH/tvbBbN4yvB8iBgAAAAAAAAD2Vk+3AwAaiqLI\n7xz3inzwsY/nq3f9Y5624qnpr/btcJ0LzjwuL3ne6vzojkfyg9sezu33P5Hb738iX/z2nTlpzbKc\nduIhedZxB2XBPEUdAAAAAAAAAA5EPtGHA8jBCw7KmatflP+17nv53M/+Z0479Nk5ccXxWdS7cMp1\nlizqz28++/D85rMPz2Obtua/bvtV/uu2h3PzvY/l5nsfS0/19jzj6BU55diVWba4P4sX9GXxwr4s\nmt+bnqrOtwAAAAAAAACgmyTvwAHmJUf9Zm7dcEdue+zO3PbYnSlS5MjFR+SkFSfkaStOyOqBw1Mp\nJk+6Wb54Xl5y2uq85LTVefjxLe1Enp/c9Wh+ctej2y2/cF5PFi/sy8CCvixe0JuBhX0ZmN+b/t5q\nensq6eutpq+nkt6eavp6K2PDPZX09lbSW62kWilSbb72VCupVotUimK6TxMAAAAAAAAAzArTlrxT\nr9fz3ve+N3fccUf6+vpy+eWX58gjj2zP/+53v5tPfepT6enpybnnnpvzzz9/p+vAXNBf7cufPfet\neXBwfW7ZcEdu3XBH7tu0Lj/fdH++ed+/ZFHvwpy4/PictOKEnLT8hCzqm7xXnkOWLcjLf+2ovPzX\njsoDjwzm7gc3ZvPQcDZtGcnmLcPZ1BzeNDSchzZsSbkPj6FSFKlWi/RUi1QrjYSenolJPuNeG/Mq\nRZFKpUhRNLZRFGmMp0il0vhpsUpRpFIkRaVIJUWKSprTOpZvr99cdrvtTjW9Y1sTt9tarzm9qIzF\nUmkNV8aWLzoSmMpyx2d3Z/FMnN5edopjBgAAAAAAAGDmmLbkne985zsZHh7OVVddlbVr1+bDH/5w\nPvOZzyRJRkZG8qEPfShXX3115s+fnwsvvDBnnnlmbrzxxinXgbmkUlRyxMBTcsTAU/KSo87MlpEn\nc/vjd+XWDXfk1g2354cP/yQ/fPgnKVJk2byl6SmqqVSq6SmqqRbVRsJMe7gxvdJTTXVpJT3LerK4\nUsmy5rxqUU0lldRqRUZHyoyMJmW9SFkWqdeKlPUi9XqRej2pjTaGR2tJfTSp1RvL1mpJvZ6UzdfR\nepF6rUytVqZeLzNaK1Ovldla1lMbbkyr1eqplWVq9V1JG9qLhJRxmy+mmFckRdmYUJQpinLc+Ljh\nzu2UHdvrHE7R3HYxfh9JyvZyHcu0Y5lku53bqNSTop6iUm8Pp1JPUdSTSm1svKwkzX9FWW0M16sp\nUmnPK8pq47BTpqikedz1xrTmMReV5rloxtFYP0lRTVEWzWlFc7iRiFWvN5cuGnObO2keWdGc1th2\nUiaVNPabMmWlniJl85DrKYqysV5RNOJuBNd4S4pGPGNbbcyrlMXYcmktWxlbqmjFN3aOi+Z5aI0U\nrUuiFXVrnZTt9crO6UXr6JrnsWOloj3YPK6iljL1lEU9SX1suBgbbhxZTyqpbv+vqKaaaoqi2rHP\n5n7SDnTqY2gvUoxbrnVQRVGm8V89ZTqH68mk8zrmt8bLsWUrqTTj7kk11fZx9RS9qaR5TRbtyNvx\n72A0KYp2QlzR3OfYe1I248i41+bBdUwtm1dimWYaYCpFpT1cpDJlD2ed53HSGKdIoJuyFptixlTL\n706C3lSLTh3L9nPKskw9o6mVIxktR1PLSEbLkYy2pmU08/qrGd5Wplr0pCc9qRbNfxl77a30ptK8\nbndJWWa0HM5wuS3D5dbxr/XG60i5LdX0pL8yL33FvPS1Xov+9FXmpb8yL71F37j3slbWmscykpFy\nZPxwRlKmbLaL1eZxVNOT3mab2tOc3iiLnWWhXtbb11ZZtqbXG0uUZcqi3i4f7Xll63odKy/tc9dq\nw9vnsbX/xrE0tlBrb7te1lNPPfWy1oynliJplL1mvVEpOuuQ8e91vaxnpNyabfWt2Vp/MlvrT2Zb\n87U1PFzflt6ir3lu+9NX6W+c+0rzfBdj45Wi2ipZjX1NeS1OMmO3y8RUF9EUZXHXd7l7ce9w+d3Z\n5+TlMM3rrPN9rpW1pCib72+lfW1WWud9u03v3v3U1HVIY8ajgyN54oktOzyoohl/2Y6/llrZaDdq\nHcfRKkPVonU/25PKuOFdT1DeWdy7andO107ytJvLlBktRxt1aH20UaeWtSRpl+2kaLaLRbttGruH\nGZteFEVSTjF9J8fQOW2yczL5Oh33OmMrbz+4D5LId3cLreurTJnG/xr/FcVYAn3rjmBsH9uft7F7\npn2fCL8vtjnZFsrOdqRst0ITzknZqPsrzbqhsvexjBaVPPb4lp0vuCP76Dzvi63ss3d8H2xod+up\nKbdzgHyf40D6Ysm+CmWfbKYLdeW+2FDf4LZs2jI8bbHsz+tld3a1G09fU86pl/XU6rXUU29+IavS\nfP7ctfubxjNZPfV6vfk8U2/eP9WazxQdy07x1bxKUaSn0vGM0/x7YGcbuJuHtVfv/Z6/3Xu+125V\nSXu6371qE/bhqmVZ7vRLicmBVefvjfbfm2bJ8cwG9bKeWllPkbTrLYA9US/rKcuycR+mLuEANm3J\nOz/+8Y9zxhlnJElOOeWU3Hzzze1599xzT1avXp0lS5YkSZ797Gfnhz/8YdauXTvlOjCXLeidn1MP\nPjmnHnxyyrLMg4PrG4k8j92RR57ckCfrI6mPNB7eR8taavXalA/s+0S1+a+7m2AfKye8cuAqy2LX\n36jO+9DOP7hMWL8otp823coySb3aSFgrOndeNuPumFa0/oCyH2Mri2Yy3Sy9mS+nOq5Wllc9RbW2\n8+0M7uLuWue0tY/tkhab04ok1dGO5ME9V5ZJas3b3UqtmTg4c5XlvikDZb1oJnZWmud7ZFrLVrvO\nKpsJCu2ytYv2NLbJEngnJNVut8ouxLXza7OVELrToCZZprPeayRD7sl1236Py0pSL1I2z/3ksZcd\ncUyMfWK8E9efZN32so1p++SabV0/9crYdbT7W9mFZTqvk8kSqSZOK6a+ptoJ17Xm8P6pf8buEXZQ\nz06ctyvb3CUdy016uDvYzmTldbvk+kaZGPtX3+d1V/tWaYft1YTpHfMnTdQvM76cdNzjjJXJjumd\n90BF52tn+dyzsjVWNzRey/rY8P6zh2Vhlt6OJZnklOzpJ72tcjHhiyid/yY9/xPbyJ3EM1m912rb\nm3VN2a5zJtY3k1/rYzHv4Pj28jztdl02Vf3eKtPNmIuJ57dzvHMbu1gnT1mPjMua7Dxf5YS6pPNE\nTay7Jp6HSbZdbr/O+PZuP2tfL2NtwPZtQnN4snM26fnchXO9W/eqYzE0vlzVGd+O26op75M727pp\nvIcYf89Y2cVysrP2fsIye+UAeH7b60OZvmPY9WfmKZ5PJrkfnPwamOKed6r6Y9L1OpadeE+XScp1\nq7Jt37c025Zy/LSdv0Gdz1cT65KJ5XWsPm2UjdY9UpE0y8q4GFKMbX9CvZwiKTrnjat3pqqjivFt\nScd2G+cnY/M66upxbW77fegYb9dP5XbnIM0vVDYOpaMtbx3fxHO/pwViR3VL+72oj6s703x/Jl7n\n4+qtVqzt96fScdy7Uj4mLxvFxHI7afg72v5UZWbijiZ5FmivMqE9n6wsTVKGt2u/x4U7m2+opzDx\neWqHX9hOOq/7SYeTnVzPOwtoL9uESeNPksaXsre/3594D9oZ5GT3p5kwPPF1svjHpo2/55lk2cnO\nz47u8ae8bidZprPumHR4wnu9XZsy4XV37wd3SXfKYLWcl//rjP8jBy9Z3JX9s/umLXlncHAwixYt\nao9Xq9WMjo6mp6cng4ODGRgYaM9buHBhBgcHd7jOVJYtW5CeHikAB5qDDhrY+ULssYMPXpxnHX3C\nDpdpfbNntN5I5hktaxmtj6bWGm/NK1vjoxltfountdxox7KN6R3bKGup1evt7Pd6vfGNn9a3gOrl\n2LeC9uqWZFe+yjzVqslYElM5Ntz6Zm5ruEzzp76Kasdr62e8xk9rr1OWk7ymPZ6y0SdNduOdAAAS\n60lEQVRDyqSeevO1c/rO5ze2V29H3VPpSW+1N32V3vRUe8Zeqz3pqfQ2X3tSq9czUh/JSG107LU2\nkpH6+Nei+Y2valFNpVJJddxwNdVirPeRetnxXne81pvXQOtf2XH2x77t3Bofe2+qlcr2+65Ux/bb\nnN86P2VZpl42eq2op2xnSTemd/RuMWG8vVzqqbW6BRqnGDc02dU29beddn6zVbQe98rG+zd2jGM9\nX/UUPR3nvNroAaM+mtF64/0brTW+nT9Sa00bzWh9pH3NtfdVjBWXzpjLHUY6fk6l2eNMK/u8UlSa\nPThU2vM6p3d+Y3BseGy5Vn0y2ox5tD6akXIko/WR9jGO1kdST6MnnFZvTZ09NxVJMxO+aB/bWM9B\n49ZKq+eksV6IOr5JP8l6rTNUK+uNa6vdq0VzPGPX9nTYi+pt7/c94Wqf+E26sR4wetNb6W2+9qWn\nPTz2WqRo9CZRb/bOU2/2LLFdDxOj7X21/2vVmR3jSRq9ulQbvef0Vxs96syrzm/27NIY7qv0Z6Q+\nkuHa1mytb822+pPZVt+abbWx4eH61mytbU2RjMVeNI6jt+hNT6Wv8Vr0pqfSmyKV1MrR1Mtau1eM\n2rjXxr966mn10jTWe0PHN2hTpCgq45aptJftWCZFe5166qmVo+P2W2++dk5L0iyD1Y7yVx0rkx09\n67S+kVsra80eT2rtbbbGk6S/Mn/7f8W89FfmZ15lQfor89Nb9GW0HM62cluG640ekEZaw+XW5rTG\ncL3Zs8r43oZaw43xid8Sbtm9x9ipn/q3v6InzCvL7eZOvf7E1mL7OVPNn3q9ydYdm96o+5p1akc9\nXKSjnu3sials9OxWT/Nb2NVGDz3NVjP1sjZ++8XEPRfjYt3+qCZbdrL5Rcd4qwUq2sfQKAHVbN/r\nWbMcNHvnqafWjruWWsrmtNYxTZ/Oq6Hc7loZv0S53Rqd49Wir6P3vJ5mOW31hNXqYa8yYUvldq+d\n++vsTWVsmQnzJhsuJ257++MYNzRJ+Zz6iwGTl5kptz3ldjr301imUUtWx+rSjL9eOl9by6c5NPH/\nJ/6xceL5aA8XzXnFxHM1cb2OdabYZuf4WGyVjjuXzvIy/o4l44Ynm5YdzBtfRhsRNOuDSn1sOOOH\n95u9uv/Zsz92TrXWjkLZF73g7NoXanb8B/DJxqd6ZmnE3DNFGRkb79zKuLI5ySFPegwdHyiNXe8d\nPXGmHDee9njnddv60HPya3nqI93FGHdx/e3XnVhbbT+/0bq1jqHjvq6ccJ7LCee6s5fQYvL6orPu\n2b6uaZXT1pmqdJT1YlzvuNsfX+tBsRx3zOPnd94vbV//Taed7aF9PZetdqGS8dd1JUV9rM5rnP6J\n53Qn9f+496aeqa+rsag6h4qykiI9HbE2eywuG/fnjR7zKuP33+qds7O8FGXKohy7xspKilrr2Mfa\nwZRj7eGuneMyrV5zG72C1sYPF/WUPTtqDyarh3a1jtub+rQ7H3JtZ59/eLc3pnqGmHrq1PPGPwdN\nfb/W8Y53JhtMsubEbY5bpvWnms76siyS5v1e47puvba2W2+U58rYNZyiNn7eVIc04djHlau0ehVv\n9FJe1Mdiamym3t5+mUZiSXu4qKfMaDqfd9plsV0XJ+lo6xrG/sY7sb4ff8/Ysc329sYS/IoUzcnj\nnx1adUpnfdI47c32qn281bTbr3pnjJ31UKtX7Wb91Oo1fY/uGXdcV4yv03o7eo1v1H9p1/lp112d\nPZinqKesNt+TYmL9vTvP51PMK6eYnsnvF8e9rx33TOPnTXh2KVtTOu+FJm57iue4Hexju/JYZGdv\nxyw1WZkqkrI6fnr7WbB13bfuv8qx+4pdujeazjZj7J5v7B6wksbX5DvnJdtdM8XEa7Lj3q9Ixu41\nO+9dO5cfH8c47ctxqmPf2TnZfh/jruVi8mW2m1Z2tCdlsz6pd9w7tb5o0LrfaycwNuuOSqud2ctn\n5L36Quq+L6RFWc/SFfNy0LJd+9ze5/vdN23JO4sWLcrQ0FB7vF6vt5NwJs4bGhrKwMDADteZyuN7\n210z+9xBBw3kkUc2dzsMtlMk6U0lvakk6Z04u9L8B3tI2Ye5SdmHuUnZh7lJ2Ye5SdmHuUnZh7lJ\n2YdZZjS7VKaV/f1nR0lS0/ZR/amnnprrrrsuSbJ27docf/zx7XnHHHNM1q1blyeeeCLDw8P50Y9+\nlGc961k7XAcAAAAAAAAAAGabaet556yzzsr111+fV7/61SnLMldccUWuvfbabNmyJRdccEEuvfTS\nXHzxxSnLMueee24OOeSQSdcBAAAAAAAAAIDZqijLSX7QfgbRfdOBR7daMDcp+zA3KfswNyn7MDcp\n+zA3KfswNyn7MDcp+zA3Kfv7T1d+NgsAAAAAAAAAANgxyTsAAAAAAAAAANAlkncAAAAAAAAAAKBL\nJO8AAAAAAAAAAECXSN4BAAAAAAAAAIAukbwDAAAAAAAAAABdInkHAAAAAAAAAAC6RPIOAAAAAAAA\nAAB0ieQdAAAAAAAAAADoEsk7AAAAAAAAAADQJZJ3AAAAAAAAAACgSyTvAAAAAAAAAABAl0jeAQAA\nAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInkHQAAAAAAAAAA6BLJ\nOwAAAAAAAAAA0CWSdwAAAAAAAAAAoEsk7wAAAAAAAAAAQJcUZVmW3Q4CAAAAAAAAAADmIj3vAAAA\nAAAAAABAl0jeAQAAAAAAAACALpG8AwAAAAAAAAAAXSJ5BwAAAAAAAAAAukTyDgAAAAAAAAAAdInk\nHQAAAAAAAAAA6JKebgfA7FGv1/Pe9743d9xxR/r6+nL55ZfnyCOP7HZYwDQYGRnJO9/5zjz44IMZ\nHh7Om9/85qxatSq///u/n6OOOipJcuGFF+alL31pdwMF9rlXvvKVWbRoUZLk8MMPz5ve9KZceuml\nKYoixx13XN7znvekUpEfDrPJV7/61Xzta19Lkmzbti233XZbrrrqKu0+zGI//elP8xd/8Re58sor\ns27duknb+i9/+cv50pe+lJ6enrz5zW/Ob/zGb3Q7bGAvdZb92267LR/4wAdSrVbT19eXj3zkI1m5\ncmUuv/zy3HjjjVm4cGGS5NOf/nQGBga6HDmwpzrL/a233jrpPb42H2afzrL/9re/PY8++miS5MEH\nH8wzn/nMfOITn9Dmwywy2Wd6xx57rGf9A5DkHfaZ73znOxkeHs5VV12VtWvX5sMf/nA+85nPdDss\nYBp84xvfyNKlS/PRj340TzzxRM4555y85S1vyRve8Ia88Y1v7HZ4wDTZtm1byrLMlVde2Z72pje9\nKW9729ty2mmn5d3vfnf+9V//NWeddVYXowT2tVe96lV51atelSR53/vel3PPPTe33HKLdh9mqc99\n7nP5xje+kfnz5ydJPvShD23X1p9yyim58sor85WvfCXbtm3La17zmrzgBS9IX19fl6MH9tTEsv/B\nD34w73rXu3LiiSfmS1/6Uj73uc/lsssuyy233JLPf/7zWb58eZcjBvbWxHI/2T3+I488os2HWWZi\n2f/EJz6RJNm4cWMuuuiiXHbZZUmizYdZZLLP9J761Kd61j8A+Vo0+8yPf/zjnHHGGUmSU045JTff\nfHOXIwKmy0te8pL88R//cZKkLMtUq9XcfPPN+bd/+7f87u/+bt75zndmcHCwy1EC+9rtt9+eJ598\nMm984xtz0UUXZe3atbnlllvyvOc9L0nyohe9KN///ve7HCUwXX72s5/l7rvvzgUXXKDdh1ls9erV\n+eQnP9ken6ytv+mmm/KsZz0rfX19GRgYyOrVq3P77bd3K2RgH5hY9j/+8Y/nxBNPTJLUarX09/en\nXq9n3bp1efe7351Xv/rVufrqq7sVLrAPTCz3k93ja/Nh9plY9ls++clP5rWvfW0OPvhgbT7MMpN9\npudZ/8AkeYd9ZnBwsP0zGklSrVYzOjraxYiA6bJw4cIsWrQog4ODeetb35q3ve1tOfnkk/OOd7wj\nf/d3f5cjjjgin/rUp7odJrCPzZs3LxdffHG+8IUv5H3ve18uueSSlGWZoiiSNOqGzZs3dzlKYLr8\n7d/+bd7ylrckiXYfZrEXv/jF6ekZ66h5srZ+cHBwXJf5CxculMQHM9zEsn/wwQcnSW688cZ88Ytf\nzO/93u9ly5Ytee1rX5uPfvSj+fznP5+///u/98d8mMEmlvvJ7vG1+TD7TCz7SbJhw4bccMMN7V53\ntfkwu0z2mZ5n/QOT5B32mUWLFmVoaKg9Xq/Xt7sBAGaP9evX56KLLsrZZ5+dl7/85TnrrLPy9Kc/\nPUly1lln5dZbb+1yhMC+tmbNmrziFa9IURRZs2ZNli5dmg0bNrTnDw0NZfHixV2MEJgumzZtyn33\n3ZfTTz89SbT7MIdUKmN/Omq19ROf/4eGhsb9gQ+YHb75zW/mPe95Tz772c9m+fLlmT9/fi666KLM\nnz8/ixYtyumnn+6DPJhFJrvH1+bD3PDP//zPednLXpZqtZok2nyYhSZ+pudZ/8AkeYd95tRTT811\n112XJFm7dm2OP/74LkcETJdHH300b3zjG/Onf/qnOe+885IkF198cW666aYkyQ033JCnPe1p3QwR\nmAZXX311PvzhDydJHn744QwODuYFL3hBfvCDHyRJrrvuujznOc/pZojANPnhD3+Y5z//+e1x7T7M\nHSeddNJ2bf3JJ5+cH//4x9m2bVs2b96ce+65x98AYJa55ppr8sUvfjFXXnlljjjiiCTJz3/+81x4\n4YWp1WoZGRnJjTfe6B4AZpHJ7vG1+TA33HDDDXnRi17UHtfmw+wy2Wd6nvUPTLpFYZ8566yzcv31\n1+fVr351yrLMFVdc0e2QgGnyN3/zN9m0aVM+/elP59Of/nSS5NJLL80VV1yR3t7erFy5Mh/4wAe6\nHCWwr5133nm57LLLcuGFF6YoilxxxRVZtmxZ3vWud+XjH/94jj766Lz4xS/udpjANLjvvvty+OGH\nt8ff+9735gMf+IB2H+aAP/uzP9uura9Wq3nd616X17zmNSnLMm9/+9vT39/f7VCBfaRWq+WDH/xg\nVq1alT/6oz9Kkjz3uc/NW9/61px99tk5//zz09vbm7PPPjvHHXdcl6MF9pXJ7vEXLVqkzYc54L77\n7msn6ybJMccco82HWWSyz/T+x//4H7n88ss96x9girIsy24HAQAAAAAAAAAAc5GfzQIAAAAAAAAA\ngC6RvAMAAAAAAAAAAF0ieQcAAAAAAAAAALpE8g4AAAAAAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAA\n7JavfvWrufTSS7sdBgAAAMCsIHkHAAAAAAAAAAC6pKfbAQAAAAAwPT772c/mW9/6Vmq1Wl74whfm\nwgsvzB/8wR/kiCOOyLp163LYYYflox/9aJYuXZrvfe97+cu//MvU6/UcccQRef/735+VK1fm+9//\nfj784Q+nLMscdthh+djHPpYkWbduXV73utfll7/8ZZ7//Ofn8ssv7/LRAgAAAMxMet4BAAAAmIWu\nu+663Hzzzbn66qvz9a9/PQ8//HCuvfba3HnnnXn961+ff/qnf8oxxxyTv/7rv86GDRvy7ne/O5/6\n1Kdy7bXX5tRTT8373//+DA8P55JLLslHPvKRXHvttTnhhBPyta99LUmyfv36fPKTn8y3vvWtXHfd\ndbnrrru6fMQAAAAAM5OedwAAAABmoRtuuCE33XRTXvWqVyVJtm7dmrIsc9RRR+W0005Lkpxzzjm5\n5JJL8oIXvCAnn3xyDj/88CTJBRdckM9+9rO54447csghh+TEE09MkvzJn/xJkuSrX/1qnvOc52Tp\n0qVJktWrV+fxxx/f34cIAAAAMCtI3gEAAACYhWq1Wl7/+tfnDW94Q5Jk06ZNeeihh/L2t7+9vUxZ\nlqlWq6nX6+PWLcsyo6Oj6e3tHTd98+bNGRoaSpL09Iz9WakoipRlOV2HAgAAADCr+dksAAAAgFno\n9NNPzzXXXJOhoaGMjo7mLW95S26++ebcd999ue2225IkX/nKV/KiF70oz3zmM/PTn/40DzzwQJLk\nqquuymmnnZY1a9bksccey913350k+fznP59/+Id/6NoxAQAAAMxGet4BAAAAmIXOPPPM3H777Tn/\n/PNTq9Vyxhln5LnPfW6WLFmSv/qrv8r999+fE044IZdffnkWLFiQ97///fnDP/zDjIyM5LDDDssH\nP/jB9Pf356Mf/Wje8Y53ZGRkJKtXr86f//mf59vf/na3Dw8AAABg1ihKfRoDAAAAzAkPPPBALrro\nonz3u9/tdigAAAAANPnZLAAAAAAAAAAA6BI97wAAAAAAAAAAQJfoeQcAAAAAAAAAALpE8g4AAAAA\nAAAAAHSJ5B0AAAAAAAAAAOgSyTsAAAAAAAAAANAlkncAAAAAAAAAAKBLJO8AAAAAAAAAAECX/P/F\nN2YK5ZjUdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss'])\n", + "print(\"epoch\", epoch)\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k])\n", + " plt.plot(history.history['val_' + k])\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0034859505006226755" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error did not improve\n", + "Epoch 00001: val_mean_squared_error did not improve\n", + "lr changed to 0.0005904900433961303\n", + "Epoch 00002: val_mean_squared_error did not improve\n", + "Epoch 00003: val_mean_squared_error did not improve\n", + "lr changed to 0.0005314410547725857\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "lr changed to 0.00047829695977270604\n", + "Epoch 00006: val_mean_squared_error did not improve\n", + "Epoch 00007: val_mean_squared_error did not improve\n", + "lr changed to 0.0004304672533180565\n", + "Epoch 00008: val_mean_squared_error did not improve\n", + "Epoch 00009: val_mean_squared_error did not improve\n", + "lr changed to 0.00038742052274756136\n", + "Epoch 00010: val_mean_squared_error did not improve\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "lr changed to 0.0003486784757114947\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "lr changed to 0.00031381062290165574\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error did not improve\n", + "lr changed to 0.0002824295632308349\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "lr changed to 0.00025418660952709616\n", + "Epoch 00018: val_mean_squared_error did not improve\n", + "Epoch 00019: val_mean_squared_error did not improve\n", + "lr changed to 0.00022876793809700757\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "lr changed to 0.00020589114428730683\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error did not improve\n", + "lr changed to 0.00018530203378759326\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "lr changed to 0.00016677183302817866\n", + "Epoch 00026: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "Epoch 00027: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to bm_kaggle.weights.best.hdf5\n", + "lr changed to 0.00015009464841568844\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "lr changed to 0.0001350851875031367\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "lr changed to 0.00012157666351413355\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error did not improve\n", + "lr changed to 0.00010941899454337544\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "lr changed to 9.847709443420172e-05\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error did not improve\n", + "lr changed to 8.862938630045391e-05\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "lr changed to 7.976644701557234e-05\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "lr changed to 7.178980231401511e-05\n", + "Epoch 00042: val_mean_squared_error did not improve\n", + "Epoch 00043: val_mean_squared_error did not improve\n", + "lr changed to 6.461082011810504e-05\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error did not improve\n", + "lr changed to 5.8149741380475466e-05\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "lr changed to 5.233476658759173e-05\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error did not improve\n", + "lr changed to 4.7101289601414466e-05\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "lr changed to 4.239116096869111e-05\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "lr changed to 3.815204618149437e-05\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "lr changed to 3.4336842873017304e-05\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "lr changed to 3.0903160222806036e-05\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "lr changed to 2.7812844200525434e-05\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error did not improve\n", + "lr changed to 2.5031560107890984e-05\n", + "Epoch 00062: val_mean_squared_error did not improve\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "lr changed to 2.2528404588229024e-05\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n" + ] + } + ], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "history = model.fit(trainX, trainY, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3GcnJHmRvkjACJGyQEQcuHIgbtI66WrX1\n1jraqq1eOxy3VmuvvVrroHUV3FtcKEjYKySBQAYGsvceJ2fcPwJHIgFZ4SQnr+fjwSPnnN/v+zuf\nk8DnnId5+/kanE6nUwAAAAAAAAAAAAAAAAAGHaO7CwAAAAAAAAAAAAAAAABwdAj/AAAAAAAAAAAA\nAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAAAACAQYrw\nDwAAAAAAAAAAAAAAADBIEf4BAAAAAAAYYkpLSzV69GiNHj1aDzzwgLvLAQAAAAAAwDEg/AMAAAAA\nAAAAAAAAAAAMUoR/AAAAAAAAAAAAAAAAgEGK8A8AAAAAAAAAAAAAAAAwSBH+AQAAAAAAAAAAAAAA\nAAYpwj8AAAAAAAAAAAAAAADAIGV2dwEAAAAAAAAYeAoKCvTqq69q7dq1qqyslNPpVGRkpKZNm6Yr\nr7xS6enpB11rs9n0/vvv6+OPP9a2bdvU1NQkf39/xcbGasaMGbryyiuVlJR03NcCAAAAAAAMRQan\n0+l0dxEAAAAAAAA4cUpLS3XGGWdIkhYuXKg//OEPrmNOp1OPP/64XnjhBTkcjj7XGwwGXXXVVbr3\n3ntlNvf+f8taWlr005/+VJs2bTro85tMJv32t7/VVVddddzWAgAAAAAADFVM/gEAAAAAAIDLww8/\nrJdeekmSFBoaquuuu05TpkyR0WjU1q1b9eKLL6q6ulqvvPKK2tra9Oijj/Za/8gjj7jCO5dddpnO\nOusshYWFqampSevWrdPLL7+s9vZ2/elPf9KUKVOUlpZ2XNYCAAAAAAAMVYR/AAAAAAAAIEnauHGj\nK/iTnJysl156SZGRka7jU6ZM0cUXX6wbbrhBeXl5euedd3T66afr7LPPliRZrVZ98MEHkqTLL79c\nf/rTn3pdPzMzU1OmTNFPf/pTORwOvfHGG7r//vuPeS0AAAAAAMBQRvgHAAAAAAAAkqQXXnjBdfvP\nf/5zr+DPPiEhIXryySd1zjnnyG6367nnnnOFf5qbm2W1WiVJSUlJfT7HqaeeqmuuuUbBwcEaP368\n6/FjWQsAAAAAADCUEf4BAAAAAACAbDab1qxZI0kaN27cIcM1iYmJyszM1PLly5WTk6OGhgaFhoYq\nLCxMISEhamxs1LPPPqvw8HCde+658vHx6bX+d7/73QHXPJa1AAAAAAAAQ5nR3QUAAAAAAADA/crL\ny9XW1iZJmjBhwg+ev+8cp9OpgoICSZLBYNBNN90kSWppadE999yj6dOn64YbbtBzzz2n7du3y+l0\n9nm9Y1kLAAAAAAAwlDH5BwAAAAAAAGpsbHTdDgsL+8Hzw8PDXbebmppct3/yk5/I4XDo6aefVmdn\np7q6upSVlaWsrCz95S9/UWRkpObOnavrrrtO8fHxva55LGsBAAAAAACGKib/AAAAAAAA4Iin6tjt\ndtdtg8HQ69jNN9+sFStW6KGHHtIZZ5whf39/17Hq6mq9/PLLOu+887Rs2bIDrnssawEAAAAAAIYi\nJv8AAAAAAABAwcHBrtt1dXU/eP7+54SEhPR5vcsuu0yXXXaZbDabcnJylJWVpaVLl6qgoEBdXV26\n5557tGzZMgUEBBy3tQAAAAAAAEMNk38AAAAAAACghIQE+fn5SZKys7N/8PwtW7a4bicnJ7tuV1ZW\natWqVbLZbK7HzGazJk2apNtuu00ffPCB5s6dK6lnu7CNGzcel7UAAAAAAABDFeEfAAAAAAAAyGQy\nacaMGZKkvLw85ebmHvTckpISrV69WpKUlpamsLAwSdLTTz+tU089Vddff73Wr1/f51qDwaCTTz7Z\ndd9qtR7zWgAAAAAAgKGM8A8AAAAAAAAkSddff73r9q9//WvV1tYecE5TU5PuuOMO2e12SdINN9zg\nOjZnzhzX7SeeeEJdXV0HrHc4HPr4448lSUajUWPHjj3mtQAAAAAAAEOZ2d0FAAAAAAAAYGCYPn26\nrrnmGr388ssqKirS/Pnz9eMf/1hTpkyRwWBQTk6OFi1apMrKSknSvHnzdOGFF7rWjxkzRnPnztWn\nn36qrVu3av78+br22muVkpIiLy8vlZaWavHixdq8ebMk6eKLL1ZcXNwxrwUAAAAAABjKDE6n0+nu\nIgAAAAAAAHDilJaW6owzzpAkLVy4UH/4wx9cxxwOhx577DEtWrRIB/vPRgaDQdddd53uuusueXl5\n9TrW0tKiW265RRs2bDhkDWeffbYef/xxeXt7H5e1AAAAAAAAQxXhHwAAAAAAgCHmUOGfffLz8/Xa\na69p7dq1qqqqktFoVGxsrE466SRdfvnlSktLO+j1HQ6HPvzwQ3388cfavn276urqZDKZFB4ersmT\nJ+vCCy9UZmbmcV8LAAAAAAAwFBH+AQAAAAAAAAAAAAAAAAYpo7sLAAAAAAAAAAAAAAAAAHB0CP8A\nAAAAAAAAAAAAAAAAgxThHwAAAAAAAAAAAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAA\nAAAAAIBByuzuAgaCmpoWd5eA7wkN9VNDQ7u7ywCA447+BsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0N\nQEREYJ+PM/kHA5LZbHJ3CQDQL+hvADwV/Q2AJ6PHAfBU9DcAnor+BsBT0d8AHAzhHwAAAAAAAAAA\nAAAAAGCQIvwDAAAAAAAAAAAAAAAADFKEfwAAAAAAAAAAAAAAAIBBivAPAAAAAAAAAAAAAAAAMEgR\n/gEAAAAAAAAAAAAAAAAGKcI/AAAAAAAAAAAAAAAAwCBF+AcAAAAAAAAAAAAAAAAYpAj/AAAAAAAA\nAAAAAAAAAINUv4V/HA6HHnjgAS1cuFDXXHONSkpKeh1ftmyZLr30Ui1cuFCvv/76IdeUlJToyiuv\n1I9+9CP993//txwOh+s69fX1mjt3rrq6uiRJLS0tuuWWW3T11Vdr4cKF2rx5c3+9RAAAAAAAAAAA\nAAAAAMCt+i3888UXX8hqtWrJkiW666679Oijj7qOdXd365FHHtGLL76ol19+WUuWLFFtbe1B1zzy\nyCP65S9/qddee01Op1NffvmlJOmbb77RDTfcoJqaGte1Fy1apBkzZuiVV17RI488oj/84Q/99RIB\nAAAAAAAAAAAAAAAAt+q38M/GjRt18sknS5ImTpyo3Nxc17GioiIlJiYqODhY3t7emjJlitavX3/Q\nNXl5eZo+fbok6ZRTTtGqVat6ijcatWjRIoWEhLiufd111+mKK66QJNntdlkslv56iQAAAAAAAAAA\nAAAAAIBbmfvrwq2trQoICHDdN5lMstlsMpvNam1tVWBgoOuYv7+/WltbD7rG6XTKYDC4zm1paZEk\nzZ49+4DnDQoKkiTV1NToV7/6le67774frDU01E9ms+noXij6TURE4A+fBACDEP0NgKeivwHwZPQ4\nAJ6K/gbAU9HfAHgq+huAvvRb+CcgIEBtbW2u+w6HQ2azuc9jbW1tCgwMPOgao9HY69x9AZ+D2bFj\nh+688079+te/dk0MOpSGhvbDfl04MSIiAlVT0+LuMgDguKO/AfBU9DcAnoweB8BT0d8AeCr6GwBP\nRX8DcLAAYL9t+zV58mStWLFCkrRlyxaNGjXKdSw1NVUlJSVqbGyU1WrVhg0bNGnSpIOuGTt2rNau\nXStJWrFihaZOnXrQ5y0sLNTtt9+uxx9/XKeeemp/vTwAAAAAAAAAAAAAAADA7fpt8s9ZZ52lrKws\nXXHFFXI6nXr44Yf1wQcfqL29XQsXLtQ999yjG2+8UU6nU5deeqmioqL6XCNJv/nNb3T//ffriSee\nUEpKiubOnXvQ53388cdltVr10EMPSeqZMvTMM8/018sEAAAAAAAAAAAAAAAA3MbgdDqd7i7C3RiN\nNvAwsg6Ap6K/AfBU9DcAnoweB8BT0d8AeCr6GwBPRX8DcMK3/QIAAAAAAAAAAAAAAADQvwj/AAAA\nAAAAAAAAAAAAAIMU4R8AAAAAAAAAAAAAAABgkCL8AwAAAAAAAAAAAAAAAAxShH8AAAAAAAAAAAAA\nAACAQYrwDwAAAAAAAAAAAAAAADBIEf7BgPPhqm91x5PL1dTa5e5SAAAAAAAAAAAAAAAABjTCPxhw\nLN4mFe5p1JNvbFVHl83d5QAAAAAAAAAAAAAAAAxYhH8w4Jw5JV5zZySppKpFz7ybK5vd4e6SAAAA\nAAAAAAAAAAAABiTCPxhwDAaDbr1kvManhil3V73+vTRfTqfzsNYWFhb0c3WHdtttP1Vm5lSdfvos\nt9YBAAAAAAAAAAAAAACGBsI/GJBMJqNuvTBdyTGBysqp1Lvf7Drk+a2trXryyb/oxhuvPkEVAgAA\nAAAAAAAAAAAAuB/hHwxYFm+Tbr9sgiJDfPXBqm/19Zayg5771FNP6M03F8tut5/ACgEAAAAAAAAA\nAAAAANzL7O4CgEMJ8vfWHQsn6KGXNurlT3coJMCiiSPCDzjP4XC4oboD/f3v/3R3CQAAAAAAAAAA\nAAAAYAhh8g8GvKhQP91++Xh5mYz6x3u5Ki5vdndJAAAAAAAAAAAAAAAAAwLhHwwKqbHBuuWidHXb\nHHryjWxVNbS7uyQAAAAAAAAAAAAAAAC3Y9svDBoTR4Trmrmj9dLSHfrrkmzdd80UvbF4kRYteq7X\neZmZU3vOnzhZf//7P/XQQw/qk08+1IgRo/T88y/pueee0dKlH6qlpUVhYRGaM+cM/exnv3Ct7+rq\n0qeffqzVq7NUULBDTU2NstlsCgwMUnJyqmbPztQFF1wsX1/fA2q87bafasuWTfL29tayZav6rOsX\nv7hTCxb8SMuXL9MHH7yrnTt3qKWlWaGhwzR58lQtWHClRo1KO97fPgAAAAAAAAAAAAAA4IEI/2BQ\nOW1inOqbu/Thqm/1tzezFWV3HtH6P/7xAX355Weu+xUVZfLx8XHd37EjX/fee5eqq6sOWFtfX6f6\n+jpt3LhOb7/9pp566h+KiIg84tdgtzv0+9//Tp9/vrTX49XVVVq69CN99tknuvvuezV//sVHfG0A\nAAAAAAAAAAAAADC0EP7BoHPxyclqaOlUVk6lvKLH6vkXXtGiF59VVtY3kqRFi16VJPn6+vVaV1xc\nqMLCncrImKBrrrlePj4+ysr6RuedN1+S1NTUqDvu+Lmam5tkMpl03nkXaNasTIWGhqmlpUkFBTv1\n+uuvqbGxUaWlu/X3vz+p3//+4SOuf/Hil1VXV6fhw5O1YMGPlJo6Ui0tzXr3vXe18ptlcjgc+utf\nH9P06TMVHR19jN8tAAAAAAAAAAAAAADgyQj/YNAxGAz68Tlpamq1KndXvdYUS4GBQa7jI0eO7nOd\nw+FQXFy8nnzy/2Sx9Ez7mTx5quv4kiWvqbm5SZL085/frgULftRr/cyZmTr33Hm65poFam1t1Tff\nLJfNZpPZfGT/jOrq6jRlynT9+c9/lcVikSRtLqhRa+Q8BSe1q6lkjbq7rfrz06/o9p/drKTowCO6\nPgAAAAAAAAAAAAAAGDqM7i4AOBpmk1G3XpSupKhArcguV2lN62GtO/fcea7gz/fV1tYoPDxCYWFh\nuuSSBX2eExERqUmTpkiSrNYuV1joSP3yl3fLYrHI7nDoja8L9dRbOeq2O3Tlgu+ed3t+vn7/r/V6\ncNE6fbWpVO2dtqN6LgAAAAAAAAAAAAAA4LmY/HMCvb6sUOvzq91dxgk1LS1SC04f0S/X9rWY9cvL\nx+uhlzcqd8vhhX/Gjcs46LH77vtvST0TgozGg+fihg0Lc922WrsPs9rvREREKjk5RY2tXfrHe3na\nuadRkaG++tlF6QoPNOofj/WclxRh0dgR4dpaVKeXP9upJV8ValpapE6ZEKsRccEyGAxH/NwAAAAA\nAAAAAAAAAMCzEP7BoBYcYNEdCybo5pWHN8QqKirqB8/ZF/yx2WyqrKxQeXmZ9uwpUVFRofLyclRU\nVOg61+l0HHHN0dExyi9p0D/ez1Nzm1VTRkXo+vPGyM/HLKfT6TrP38ekX1w2Xg0tXcrKqdCK7HJl\n5VQqK6dSseH+OmV8jGamRyvQz/uIawAAAAAAAAAAAAAAAJ6B8M8JtOD0Ef02BWcoiwnz15ikUGWV\n9NzfVdGs5JigPs/18ws45LU6Ozv19ttv6IsvlqqoqFB2u/2Ac4xGoxyOIw/97NPaZdBjizfLaDDo\nitNH6KxpCa4pPvtP89kXBAoNtGjerOE6b2aS8ksatCK7XJt21mjxskK9ubxIk0dF6JQJsUpLCpWR\naUAAAAAAAAAAAAAAAAwphH/gEYL8v5t+87c3snXftVMVGeJ7wHmHysaUl5fpzjtvU2npHtdjXl5e\nSkhIVFJSskaPTtPEiVP06acf65133jjqWqsa2pURYNGtF6ZrRHzwYa8zGgwaO3yYxg4fppZ2q1bn\nVmp5drnWba/Wuu3Vigjx0cnjY5U5PkYhAZajrg8AAAAAAAAAAAAAAAwehH/gcZrbu/XXJVt03zVT\njmhLrAcf/K0r+HPmmXN12WULlZY2VmZz738m77331hHXtKui2XU7wNdL/339NAUdw3ZdgX7eOnt6\nos6alqDCsiatyC7X+u3VentFsd79ZpfGp4bplImxykgZJpPx8LZEAwAAAAAAAAAAAAAAgw/hH3ic\nc2ck6pM1u/W/b27V3VdOOqw1+fnbtG1briRp8uSpevDBhw56blVV5WHX4nQ69fXmMv3nywLXY8Oj\nA48p+LM/g8GgkfEhGhkfoivPGKW123qmAW0prNWWwlqFBlo0OyNGp4yPUXgfk5AAAAAAAAAAAAAA\nAMDgRvgHHsGw335el56aqoaWLq3Jq9I/38+T0+n8wfX7b/U1evSYg55XUVGunJxs13273X7Qczut\nNr306Q6tyatSgK/X/tX+YD1Hw8/HrDmT4zVncrxKKlu0PLtca/Iq9eGqb/XRqm81NnmYTpkQq0kj\nw2U2MQ0IAAAAAAAAAAAAAABPQPgHHsHb+7tJOp0dHbrhvDFqarVqc0GtVN58iJU9goNDXLc3bFgr\nm812wHZfdXW1uv/+e9Td3e16zGq19nk9p1P64783qKKuXamxQbr1onTNf+NIX9XRS4oO1LXRo7Vw\nzgitz6/Wiuxy5e2qV96uegX6eWl2eoxOnhCjmDD/E1cUAAAAAAAAAAAAAAA47gj/wCOEhYW7bv/z\nn/+nc845X3PTvdXSHqANW9p/cP348RMVFhauurpaFRTs1O2336pLLlmg6OgYNTc3acuWTfroo/fU\n2NjYa11bW2uf17PZHaqoa9eZU+O1YM4It03asXiblDk+RpnjY1RW26Zvssu1KrdSS9ft1tJ1uzUq\nPlinTIzV1NGR8vYyuaVGuIfT6VR1Q4dCAiyyePOzBwAAAAAAAAAAAIDBivAPPEJm5in617+el91u\n15tvLtGbby5RVFS0nv/XW7r+6x8ONlgsFt1//x/0m9/coa6uLmVnb1Z29uYDzktISNS8eRfqmWee\nkiTt2lWsjIwJkqRum0NVDR2uc2+9KF3T0iKP0ys8dnHh/rrijJG69NRUbS6o0fIt5dpe0qCdpU16\n9fMCzRwXpQkjwpUQGaBgf+9eW6nBc9Q3d2p1XqVW5Vaqoq5dZpNRaUkhmpAarvGpYYoI8XV3iQAA\nAAAAAAAAAACAI0D4Bx5h5MjRevTRx/Xvf7+ooqJCORx2mc1m+Xo5NW74MC3f1XPejt2NmrXflKD9\nTZ06XYsWvar//OcVbdiwXrW11ZJ6tgRLTk7RnDlnau7cc2W327Vo0XPq7OzUsmWfa/78i1Xb2KFn\n3stVY0uXJMlsMg6o4M/+vMxGTR8TpeljolTd2KFvssu1MqdCyzaVadmmMklSgK+XEiIDlBAZoPiI\nnq+x4X7yMjMhZjDqstq1aWeNsnIrtP3bBjnV83d00shw1TR2Kre4XrnF9Xr1cyk23F/jU8M0ITVM\nqXHBbptaBQAAAAAAAAAAAAA4PAan0+l0dxHuVlPT4u4S8D0REYHH9eeyY3eDHl+yRWaTUfdcNVmJ\nUYHH7drZhbV6/sNtauu0aVZ6tK6ZO1qWQbaFlt3hUN6uehWXN6u0pk17qltU09jZ6xyjwaDoMD/F\nR/j3CgaFBlqYEjQAOZxO7dzdqFW5lVq/o1pdVrskaURcsGZlRGt6WqT8fLwkSXVNndpaXKethbXa\nXtIgq80hSfKzmJWeMkwTUsOVnjJMgX7ebns9nuR49zcAGCjobwA8GT0OgKeivwHwVPQ3AJ6K/gYg\nIqLvrAPhHxH+GYj6441rfX61/vFuroL8vfXba6coPPjYtjeyOxx695td+mh1icwmo646a6ROmRDr\nMUGYji6bymrbtKe6VaXVrdpT0/O1c2+IZB9/H7NrOlB85L4pQf6DLgDlKaoa2rUqp1Kr8ypV29QT\n4AoLsmhmeoxmp0crapjfIddbu+3K392g7KKeMFBdc880K4OklLgg1/ZgCZEBHvN3/UTjgzkAT0V/\nA+DJ6HEAPBX9DYCnor8B8FT0NwCEfw6BBjnw9Ncb12fr92jxlwWKCfPTvVdPUYCv11Fdp6nNqmff\ny1X+7kZFhPjoZxdlKCn6+E0TGqgcTqfqmjp7wkD7BYKqGzq0fyMxGKSoUD9XGCghIkDxkf4KC/Ih\nMNIP2jttWp9fpazcShWWNkmSLF4mTU2L0Oz0GI1KDJHxKL7vTqdTZbVt2lpUp+zCWhWWNWnfO0Zo\noEUTUsM0PjVcY4aHEvY6AnwwB+Cp6G8APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgB57+fONa/GWB\nPlu/RyPjg3X3FRPlZT6y0MLOPY165r1cNbVaNWlkuG48f4xr+6ShqtPaMyWotLpVpdU924btqWlT\nR5et13m+FrMSIvwVv9+UoPjwAFm8CY4cKYfDqbxv65WVU6HNBbXqtjlkkJSWFKrZGdGaMiryuH9f\nWzu6lVtcp61FdcoprlNbZ8/P18tsVFpiqManhmlCapjCQ45tqpan44M5AE9FfwPgyehxADwV/Q2A\np6K/AfBU9DcAhH8OgQY58PTnG5fD6dQ/38/Tuu3VmjI6QrdemC6j8YenojidTi1dt1tvfV0sSbrs\ntFTNnZ7AJJuDcDqdqm/u6jUhqLSmVZX17dq/6xgkRYT6amR88DFNqRkqSmtatSq3Z1uvplarJClq\nmJ9mp0dr5rhohQX7nJA67A6HisqatbWoTluLalVa0+Y6Fhfu3xMEGhGu1LggmYzGE1LTYMEHcwCe\niv4GwJPR4wB4KvobAE9FfwPgqehvAAj/HAINcuDp7zeubptDTyzZoh17GnXmlHhdeebIQ4Z42ju7\n9cJH27W5oFbBAd669cJ0jUoI6bf6PFlXt13le6cE7dkbCNpT3eqaIhMe7KPZGTGanR7NBJm9Wtqt\nWrOtSqtyKlVS1fPvws9i1vSxUZqdHq2U2CC3h9BqmzqUU1Sn7KI6bS9pULfNIUny9zErPSVM41PD\nlJESdtRb7XkSPpgD8FT0NwCejB4HwFPR3wB4KvobAE9FfwNA+OcQaJADz4l442rv7NYjr2xSWW2b\nFswZoXNOSuzzvJLKFj39bo5qGjuVlhiimy9MV7C/d7/WNtQ4nE4V7GnUyq0VWr+jWtbunuBIWmKI\nZmfEaOro47+F1UBnszuUXVinVbkV2lpUJ7vDKaPBoIyUYZqdEaMJI8KOeMu6E6Wr2678kgZl750K\nVN/cJUkyGKTUuGBNSA3T+NRwxUf4uz205A58MAfgqehvADwZPQ6Ap6K/AfBU9DcAnor+BoDwzyHQ\nIAeeE/XGVd/cqYde3qiGli79dP5YzRgb7TrmdDq1Irtcr35eIJvdoXmzknRRZsphbRGGo9fRZdPG\nHTVamVOhnXsaJUkWb5OmpUUqMyNGI+ODPTYw4nQ69W1li1blVGrt9iq1dnRLkhIiAzQ7PVonjYse\ndMEzp9Opspo2ZRfVKruoTkVlTa5t34wGg/x8zPL39VKAj1l+Pl7y9zXL38dL/j57v7ruf3fbz8cs\ns2nwbiXGB3MAnor+BsCT0eMAeCr6GwBPRX8D4KnobwAI/xwCDXLgOZFvXKXVrXrk1Y2ydjt058KJ\nGpMUqi6rXS9/tkOrcivl72PWTfPGasKI8BNSD75T3dCuVbmVysqpVF1zpyQpMsRXszOiNSs9RmHB\nPm6u8PhoaOnSmrxKZeVWqry2TZIU5OelGeOiNSs9WolRfTfwwai1o1s5xXXKKa5TTWOH2jttauvo\nVlunTXbH4b8dWbxN3wWG9gaI/HvdNn/vfk9oyMfb5PbwGB/MAXgq+hsAT0aPA+Cp6G8APBX9DYCn\nor8BIPxzCDTIgedEv3FtL2nQE0u2yNvLqBvOG6N3V+5SWU2bkmMCdetF6QoP9j1hteBADqdTO0oa\ntDKnUht3VMtqc8ggaczwUM3OiNHkURGyeA3MLbD60mm16duKFu2qaNa2kgZt+7ZeTqdkNhk0cUS4\nZmXEKD152KCebnOknE6nurrtauuwqa2zJwzUEwrqVnunTa2d3WrrsKm917Geczut9sN+HpPRIH8f\ns0ICLUqMDFRiVIASowKVEBkgX4u5H1/hd/hgDsBT0d8AeDJ6HABPRX8D4KnobwA8Ff0NAOGfQ6BB\nDjzueONas61S/3x/m+v+6ZPjtPD0kfIyD50AxmDQ0WXT+vxqZeVUqKC0SZLkazFpWlqUMjNilBoX\n5PbJLvuzOxwqq2nTropmFZc3q7iiWeW1bdq/86bGBmlWRoympUUqwNfLfcUOUja7Q+1d+wWCOvYP\nDPXcdgWKOrvV2mFTfXOnum0O1zUMkiJDfZUY1RMISooKVGJUoIL6YZs1PpgD8FT0NwCejB4HwFPR\n3wB4KvobAE9FfwNwsPDPiRlzAAwCM8ZGq6W9W0vX7tblc1I1Y2y0u0tCH3wtZp0yIVanTIhVVX27\nsnIrlJXrgoKdAAAgAElEQVRTqRXZ5VqRXa6oYX7KzIjWzHHRGhZ0YrcFczqdqm/uUnFFs3aVN6u4\nvEnfVrXI2v1dyMTby6iRccFKiQ1WcmyQUmODTnidnsZsMirIz1tBfocf1LE7HKqsa9fuqlaVVLVo\nd1WLdle1an1+tdbnV7vOCwnw3hsIClTS3ilB4cE+Aypg9kOcTqc6umxqaOlSV7dDw6MDZTQOnvoB\nAAAAAAAAAAAAHBqTf8Tkn4GI1CqOhMPh1PaSBmXlVGjjzhp12xwyGKRxw4dpdkaMJo0Ml3c/bAvW\n3tmtXZUtKi7fG/apaFZzm9V13GCQ4sL9lRwTpJTYICXHBCkuwl8mI9OkBiKn06m6pk6VVLXuDQO1\naHd1qxpaunqd52cxu7YL2/c1JszvsH+ux7O/OZxOtbZ3q6GlS/UtnWps6VJ9S5cavvenq/u7rdEm\nj4rQzfPHMdUMwHHH5zcAnoweB8BT0d8AeCr6GwBPRX8DwOQfAB7LaDRoXPIwjUsepvZOm9blVykr\np0K5u+qVu6tevhazThoTqdnjY5QSc3TbgtnsDu2pbnVt37WrolkVde29zgkNtGjK6Ail7A37JEYF\nytdCmx0sDAaDwkN8FR7iqymjI1yPN7dbXZOB9n3dsbtR+bsbXed4mY2Kj/BXQuR3E4LiIwNkOYbQ\nmd3hUFOr1RXg6Qn1dPYK9TS2dslmP3iGN8DXS1GhvgoJtGhYoEWlNW3atLNGT729VbddnNEvoTgA\nAAAAAAAAAAAAJxaTf8Tkn4GI1CqOh4q6NmXlVGpVboUaW3sm8sSE+Wl2RoxmjotWaKClz3VOp1M1\njR0q3hf0KW9WSVWrbPbvtu/y8TYpOSao11Sfg10PnqfTalNpdVuvLcPKalt7BXEMBil6mJ+S9m4b\ntm9KUHLiMJVXNPYK9Rw4sadTTW1WHewd2mCQQgIsCgnoCfWEfv9PkI9CA7zlZe4d7rF22/X0u7na\nWlSntMQQ/del4wmoAThu+PwGwJPR4wB4KvobAE9FfwPgqehvAA42+Yfwjwj/DES8ceF4cjic2vZt\nvVbmVGjTzlrZ7D3bgqUnh2l2RrRGJYRod1XvqT6tHd2u9UaDQfGR/kqJDVZyTKBSYoMVM8xPRuOR\nTxCC57LZHSqvbdtvQlDPtmGdVnuv8/x9zGrrtB30OmaT4btQT5CPQgMODPcEB3gf9fZxNrtDz76f\np407apQaG6RfLpggfx+vo7oWAOyPz28APBk9DoCnor8B8FT0NwCeiv4GgPDPIdAgBx7euNBf2jq7\ntW57tVZurdCuiuY+zwkP9lFKbJBSYoKUvHf7rmPZvglDl2PvFKl9gaCSqhY1t3fL32LeG+6xKDRw\nv4BPkEWBvl5HtTXdkbA7HHrxo3ytzqtUYmSA7rxiooL8vPv1OQF4Pj6/AfBk9DgAnor+BsBT0d8A\neCr6G4CDhX/Y6wPAkOLv46U5k+I0Z1KcymrblJVTocq6diVEBri27wryJwSB48NoMCgq1E9RoX6a\nlhYpaWB8MDcZjbpx3hhZvE36enOZ/ufVTbr7iklsXQcAAAAAAAAAAAAMQoR/AAxZceH+WjBnhLvL\nANzCaDDomrNHydts1Gfr9+jRVzfqV1dMUniIr7tLAwAAAAAAAAAAAHAEjO4uAAAAuIfBYNDC00do\n/uzhqmns1KOvbVJlfbu7ywIAAAAAAAAAAABwBJj8AwDAEGYwGHTRySmyeJn0xtdFevTVTbp74UTF\nRwa4u7Tjwul0asOOGpVUtsjhdMrhcMru2O/r3se+f3//c5zOvtcc+hy5bgf4mnXS2ChlZsQoLsIz\nvq8AAAAAAAAAAAAYOAj/wKMUFhZoxIiR7i6jTxUV5QoODpafn7+7SwGAA5w7I0neXia9+vlO/c9r\nm3TnwolKjglyd1nHpKGlS/9emq+tRXXHfC2DQTIZDTIaDT1fDT2397/v7WX87pz9jlfVt+vTdXv0\n6bo9So4JVGZGjKaPjZK/j9dxeJUAAAAAAAAAAAAY6gj/wCO0trbq+ef/oXfeeUPLl691dzm9WK1W\nvfrqv/XKK//SK6+8QfgHwIB1xpR4WbxMWvTJdj32n8365eUTNCohxN1lHTGn06k1eVV69fOdau+y\naezwUM2bOVzeXiZXOMdoNMjYK9Bj7OOxfecZZDAYjrqebptD2YW1WplToZziOu2qaNF/vizU5FHh\nysyI0djhw2Q0Hv31AQAAAAAAAAAAMLQR/oFHeOqpJ/TRR++7u4w+vfbaS3rhhWfdXQYAHJbM8THy\n9jLquQ+26YnXt+i/Lh2vccOHubusw9bUZtVLS/O1uaBWFi+Trpk7WqdNjD2m8M6x8jIbNTUtUlPT\nItXQ0qXVeZVaubVC67ZXa932aoUGWjQrPVqZGTGKGubntjoBAAAAAAAAAAAwOBH+gUdwOBzuLuGg\n7Ha7u0sAgCMyfUyUvM0mPf1ujv72xlb97KJ0TRwZ7u6yftC67VV65bOdau3o1uiEEF1//hhFhvi6\nu6xeQgMtOm9Gks49KVHF5c1amVOhddur9NHqEn20ukQj4oOVmRGjaWmR8rXwMQ0AAAAAAAAAAAA/\njN8qAQCAA0wcGa7bL5+gp97aqv97J0c/uWCspo+JcndZfWppt+qVz3ZqfX61vM1GXXnmSJ0xJV5G\nN077+SEGg0GpccFKjQvWFWeM1KadNcrKqdD2bxtUWNqk177YqamjI5WZEaNRiSED+rUAAAAAAAAA\nAADAvQj/AACAPo0bPkx3Lpiov72ZrWffz5O126HM8THuLquXTTtr9NLSfDW3d2tEXLBuOH+MogfZ\n1lkWL5NmjovWzHHRqm3q0KrcSmXlVGhVbqVW5VYqPNhHmRkxmpUerfABNskIAAAAAAAAAAAA7mdw\nOp1OdxfhbjU1Le4uAd8TERF4WD+XF154VosWPdfnsYkTJ+vvf/9nr8fWrl2tjz9+X7m5OWpoqJe3\nt0Xx8QmaOXO2Lr10oUJCQg76XDU11Xr77Te0du1q7dmzWzZbt4KCgpWaOlKzZ5+sefPmy2LxcZ3/\n8ccf6OGHf9/ntaKjY/Tmmx/84OsD4HkOt78NJLsqmvXEki1q67Tp6rNH6fTJ8e4uSW2d3Xrt851a\nnVcls8moS05J0dnTEmQ0esaEHIfTqYI9jVq5tULrd1TL2t2zveWYpFBlZsRo8ugIWbxMbq4S6G0w\n9jcAOFz0OACeiv4GwFPR3wB4KvobgIiIwD4fZ/IPhoSOjg798Y8PaMWKr3o9brValZ+/Tfn52/T6\n66/p/vv/qMzMUw5Yv3Hjet13391qa2vr9XhdXa3q6mq1bt1q/ec/L+uJJ/6uxMSkfn0tAHCiJccE\n6Tc/mqy/LNmiVz7bqa5uu849yX29bmtRrRZ9kq+mVquSYwJ14/ljFRvu77Z6+oPRYNDoxFCNTgzV\nj84apQ07qpW1tULbSxq0vaRBvp+bNC0tSpkZMUqNC5KBbcEGjPZOmyrq2mR3OOVwOGV37v3qcMq5\n96vD6fzu+N77rtuO793+/rl7r+n83v19x30tZs0cG6W0pFD+XgAAAAAAAAAAMEQw+UdM/hmIDje1\nWldXq/r6Oj3//D+UlfWNJGnRolclSb6+foqPT5DD4dAdd/xcGzeulyTNmnWy5s49TzExMWpvb9fG\njev1zjtvqLW1VSaTSY8//pSmTp3ueo6WlhYtXHiRmpubFBISqquu+rHGjBkrb29vVVVV6qOP3tea\nNaskSaNHj9Hzz78kg8Gg5uYmVVVV6t1339J7770tSXrssScVHh4hs9lLyckpx/V7BmBwGMyp/Mr6\ndj32n81qaOnS/NnDdWFm8gkNF7R32rR4WYFWbq2QyWjQhZnJOndGokxG4wmrwd2qGtqVlVOhrJxK\nNbR0SZKih/lpdka0ZqXHKDTQ4uYKh7ac4jo9/+E2tbR3u7sURQ3z06kTYpU5PkYBvl4n5DkHc38D\ngB9CjwPgqehvADwV/Q2Ap6K/AWDyDzxSWFi4wsLCFRQU7Hps5MjRvc55883FruDP3Xffq4suurTX\n8alTp2vevAv1s5/dqLq6Oj388O/1+uvvyWzu+eexcuVyNTc3SZIefvgxjR8/0bV27Nh0zZlzpu6/\n/x599dUX2rFju3bsyFda2hgFBQUrKChYw4aFuc4fPjxFMTGxx/ebAAAnSPQwP9171WQ9tniz3s/6\nVl3ddi2YM+KEBIDydtVr0SfbVd/cpcSoAN10/ljFRwb0+/MONFGhfrrklFRdlJmi7SUNWplToY07\navTW8mK9vaJY6clhyhwfo4kjwuVlHjqhKHez2R16e0Wxlq7dLbPJoNMnx8nPxyyjwSCj0SCTce/X\n790/4Ph+jx/w2EEe33fNfX8q69q1fEuZ1ufX6PWvCvX2imJNTYvQaRPjNDI+mGlAAAAAAAAAAAB4\nIMI/8GgOh0OLF/dMApoxY9YBwZ994uLidcst/6WHHnpQ1dVVWr58mc4442xJPdOF9klISOxz/bXX\nXq/g4BDFxsYpMLDvpB0AeILwEF/dc9UU/WXxZn26bo+6uh26+uxRMvZToKCjy6Y3virU11vKZTIa\nNH/2cM2bNVxm09AOthiNBo1LHqZxycPU3tmttdurtXJrhXKK65RTXCd/H7NOGhulmenRSogIkLeX\nyd0le6yaxg49+36eisubFRXqq1suTFdStPs+CwT5eWtUQoiuPLNbWTkV+npLudbkVWlNXpViw/11\n6sRYzU6Plp/PiZkGBAAAAAAAAAAA+h/hnxPo7cIPtbk6x91lnFCTIjN0yYh5bnv+oqICVVdXSZKm\nTTvpkOfOmDHLdXvDhvWu8E9S0nDX4/fd9yv94hd3asyYcb3Wjhw5Wnfffc9xqhoABrbQQIt+c9Vk\nPbF4i77eXKYuq103nJ923Lffyi9p0Isfb1dtU6fiIvx10/lj3RqqGKj8fLw0Z1Kc5kyKU1lNq7Jy\nKrUqr1LLNpVp2aYySVJIgLciQ3wVEeq731c/RYb6nrAtoTzRhvxqLfokXx1dNs0cF6Wrzx4tX8vA\n+Hgd4OuludMTdfa0BO3Y3aivt5Rp444a/eeLAr31dZGmjYnUaZPilBITxDQgAAAAAAAAAAAGuYHx\n2wmgn+zcucN1+6mn/qqnnvrrYa0rLy9z3Z45M1OpqSNVVFSgnJxs/eQnP1Z4eISmTTtJU6dO17Rp\nJ/Xa2gsAhoIgP2/96keT9NfXs7U6r1LdNrt+On/ccZnI09Vt15tfF+nLjaUyGKTzZyZp/uxktrE6\nDHERAVpw+ghdelqKcorrtbWwVlUNHapu6FBBWZN2ljYdsMbPYnaFgiJDfRUR8t3tkEBLv011Gsys\n3XYtXlaorzeXydvLqBvOG6PZGdEDMkRjMBiUlhSqtKRQNbdZtTKnQsu3lCkrp1JZOZVKiAzQaZPi\nNGNs1IAJLgEAAAAAAAAAgCPDf+E/gS4ZMc+tU3CGoqamxqNa19LS7LptNpv1+OP/q0cf/aPWrFkl\nSaqtrdEnn3yoTz75UAaDQWPGjNM555yvCy64SF5eTFAAMDT4+3jproUT9b9vbtWGHTWyvp2jn12U\nfkxbTBWUNuqFj7aruqFDMWF+uvH8sUqJDTqOVQ8NJqNRE0eEa+KIcNdjNrtDtU2dqm7oUE1jx3df\nGztUVtOmksqWA65jNhkVEeLTKxC0LyAUHuw7JANZFXVteubdPJXWtCo+wl+3XJiu2HB/d5d1WIL8\nvXXejCSdc1Kitn1br+Wby7W5oFYvf7pDry8r1IxxUTptYhwTtgAAAAAAAAAAGGQI/8Cj2e121+27\n7rpH6ekZh7XOYrH0uh8eHqG//OV/VVxcqK+++lKrV2dp5858ORwOOZ1ObduWq23bcvXee2/rb397\nRiEhIcf1dQDAQOVrMeuXCybo/97J0daiOj35RrZ+cdl4+Xgf2UeMbptd76zYpU/X7ZYkzZ2eoItP\nTjmmIBF6M5uMih7mp+hhfgccczidamzpcoWCqht7B4Qq6toPWGOQNCzI0hMM2jcxKNSvZ1uxEF/5\n+XjWx0yn06msnEq98vkOWbsdmjMpTgtPHzEo/44aDQalJ4cpPTlMDS1dWrm1XCuyy7V8S8+f4dGB\nOm1SnE4aEyWL9+B7fQAAAAAAAAAADDWe9VsZ4HsCA7+bFuHvH6CRI0cf0/VSUkYoJWWEbrzxZjU3\nN2vz5g1as2aVvvrqC7W2tqqoqEDPPPO/uvfeB461dAAYNCxeJv3XJeP17Pt52rSzRo8v2aI7Lp8g\nP5/Dm4RWXN6sFz7apoq6dkWG+urG88doZDwhyhPJaDBoWJCPhgX5aHRi6AHHWzu6eweD9gsI5e9u\nVP7uAyftBfp5aea4aJ17UqKCAywHHB9MOrpseuWzHVqdVyVfi1k/u2ispqZFurus4yI00KILZifr\n/JnDlVNcp+VbypVdVKt/fZKvJcsKNHNctE6bGKf4yAB3lwoAAAAAAAAAAA6C8A88WkpKquv2tm05\nOvvscw56bkNDg9555w3FxMRqxIhRGjlylCSpu7tbe/bsltVqVVraGNf5QUFBOvXU03Xqqafrxz++\nUddd9yO1trZo1aqV/feCAGCA8jIbdetF4/TCR9u1Jq9Kf/7PZt21cKIC/bwPuqbb5tD7Wbv08ZoS\nOZ3SmVPidempqUwaGYACfL0U4Oul5JgDt2CzdttV09TZEwhqaFf13q3Edle16rP1e/T15jKdNilO\n585IUrD/wf8+DFQllS36x3u5qmroUEpskG6eP04RIb7uLuu4MxoNmjAiXBNGhKu+uVMrsnumAS3b\nVKZlm8o0Ii5Yp06M1bS0yEE57QgAAAAAAAAAAE9G+AcewWAw9Pn4mDHjFBQUrObmJn3++VLddNOt\nCgjo+/9cf+utJfrXv56XJN14482u8M/VV1+usrJSRUVF6623PuxzbXR0jJKTU5STky2rtavXMaPR\neLQvCwAGFZPRqJvmjZXFy6TlW8r1P69t1t1XTFRIH1NfSipb9MJH21Ra06bwYB/dcN4YpSUdOHEG\nA5+3l0lx4f6KC/fv9Xi3zaGVORX6cNW3PSGgLWU6fVK8zjkpUUGDIATkdDr15cZSvf5VoWx2p845\nKVGXnJIis8nz39eHBfnoopNTdMHs4courNPXW8qUV1yvwrImLf6yQLPSY3TapFjFhPn/8MUAAAAA\nAAAAAEC/8/zfXmBI8Pb+7peI7e3trtteXl669NIFkqSmpib98Y/3y2q1HrB+69Yteu21lyVJFotF\nF1xwsevYrFknS5Kqqiq1ePErfT5/Scm32rkzX5KUljau1zEvr++2venoaBcAeDKjwaBr547WWVMT\nVF7bpkdf2aTapg7XcZvdofdW7tKfXtqg0po2nTYpTr+/YTrBHw/kZTZqzqQ4PXrzTF199ij5+3hp\n6brd+vU/VumNrwrV0n7g+/FA0drRrb+/naPXviiQj7dZv7x8ghbMGTEkgj/7MxmNmjwqQncumKhH\nb5mp82cmyWQy6vMNe/Tb59bqf17dpLXbqtRtc7i7VAAAAAAAAAAAhjTTgw8++KC7i3C39gH8y6eh\nyt/fckQ/lx078rV580ZJPQGbkJBQ1dfXKSwsXOPGZWjNmlWqq6vVnj279fXXX8pkMslms6u4uEjv\nvvuWnnzyMdfEnttuu0PTpk13XTslJVUfffS+rFar1q9fq6KiAkkGtbe3a9euYn3xxaf6y18eVltb\nm4xGo+6553eKiYl1rS8rK9U333wtqSeAFBUVraqqKkVGRh37NwrAoHOk/W0wMhgMSk8eJodT2lxQ\nq407azQhNVyNLV168s1srdterZAAi35+cYbOmpogL/PQClQMNSajQckxQTp9cpyC/S36tqJZubvq\n9dWmMnVa7UqIDJBlAG0jVVjapMeXbFZxRYvSEkN01xWTNDw60N1luZ2/j5fGDh+mM6fGKz4yQG0d\n3crf3aiNO2r09eYytXR0Kz4qUAPnJwkAx9dQ+AwHYGiivwHwVPQ3AJ6K/gbA3//AHTckyeB0Op0n\nuJYBp6amxd0l4HsiIgKP6OdSULBDN910rex2u+ux/bfpampq1AMP3KuNG9cf9Bomk0k33nizrr32\nhgOObdy4Xr/97a/V2nrwmnx8fHTXXffo3HPn9Xq8trZWV155Sa+pP2azWZ9//k2vqUAAhoYj7W+D\n3Uerv9Vby4sV4Oulji6b7A6nMsfH6IrTR8rPh91Hh6Jum13Lt5TrozUlamq1yuJt0plT4jV3eqIC\nfN33vuhwOvXJmhK9s2KXnHLqwtnJmjdruIzGvrcWhVRV367lW8q1MqdCrR3dMhikOZPidOmpqfK1\n8O8bgGcZap/hAAwd9DcAnor+BsBT0d8ARET0/T8sM/lHTP4ZiI40tRoWFq60tDGqqChXS0uLTCaj\nAgICdcEFF8lsNsvHx0fnnjtPo0alyeFwqL29Xd3d3TKZzIqNjdOcOWfonnse0Jw5Z/R5/djYOJ13\n3gXy8fFVd3e3Ojs7ZbfbFBgYpKSkZJ133gX67W8f1MSJkw9Y6+fnpylTpu2trclV78knn6qgoOCj\n+wYBGLSGWip/VEKI/H3M2rizRkH+3rpl/jide1IS036GMJPRqJTYYJ0+KU6Bft7aVdGsnOJ6fbW5\nTF3ddiVEBsr7BE8Camqz6um3c7Q8u0LBAd66/bLxmp0RI4OB4M+hBPh6aVxyzzSg2DB/VTd2KLuw\nTmu3VSku3F+Rob7uLhHwKCWVLXo/61utzqtUU5tVZpNBgX7e9KoTZKh9hgMwdNDfAHgq+hsAT0V/\nA8Dkn0MgHTnwkFoF4KmGan8rq2lVaKAP035wAGu3XV9vLtPHa3eruc0qX4tJZ05J0NnTE+Tv0/+T\ngPK+rddzH2xTc5tV41PDdOP5YxTo593vz+uJQkL99OJ7Ofp49W45nPumfI2Q3wn4OQKeqtvm0IYd\n1Vq2qVRFZc0HHPe1mDUyPnjvnxAlxwQRsO0nQ/UzHADPR38D4KnobwA8Ff0NwMEm/xD+EeGfgYg3\nLgCeiv4G9K2r266vNpVp6doSNbd3y9di0llTE3T2tIR+CY/YHQ69+80ufby6REajQZedlqqzpyUw\nQeMY7OtvJf/P3p1Gt3XYd97/AQQBkgDBFdwlipv2XbItS5Fly3GS2tlaJ3HTdDKTttP2RXvOvOmZ\nvphp+5ynp9M+PXnZp5NJO5l22nniNk0TO4lTx5ZkybslkZKoheImUtwJkAAIYgfu8wIgRFkStZgU\niavv5xwKy8UFL0ngfy+An/7/iTl972eXNTwVUpnLrm9+dpP2dHhWe/OAvDITjOpE16hOdo0pGE7I\nImlHW5WO7m1UTUWJeq/7dXXEr97rAU35I7n1bAVWtdaXqmNduTqaytXeWEbwdplwDAfArKhvAMyK\n+gbArKhvAAj/LIECufaw4wJgVtQ3YGmxeErHO0f12gdDmgsnVOyw6TOPrdNz+9ct2wfYvkBU33n1\novpGAvKUF+l3v7RdLfXuZbnvR9ni+pZMpfXaB8N69Z1BJVOGnthaq1/7dAddlYAlGIahK0OzOnZ2\nVJ29XqUNQ84imz61s17P7MmEfm7HH4qpdySgq9f96r3u1/WpkBZe5Fss0jqPSx3ryrVxXbk6mspU\n7rp9W2AsjWM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JhpP6vjZUb32wbBCkYRKHDZ9\n5vFMCKjY8eAhoM6r0/qfP7us+WhSj2+p0Tc/u5muGMvkdvVt1Duv7/3ssgbGgiotKdQ3ntuoxzbX\n0GEJWCQSS+rd7gkdOzuicV9YkrS+1qVn9zbp8a21chQW3Nf9haNJ9Y9lw0AjAQ2MBZVMpXPLa8qL\n1bGuTBubMoGgmopinpP3gGM4AGZFfQNgVtQ3AGZFfQNA+GcJFMi1hx0XALOivgH3JxpP6s0zI/r5\nB8OajyblLLLpM4+v16f3Nd1XCCiRTOufjvfpzTMjKrRZ9Wuf7tBTuxr4wHsZ3am+pdOGfnH6un54\nckCJZFp7Oqr17z67ie4jecIwDM2FE/IFo5oJRuULROULxuQLRpVIpnVga632b65Roc262puad0a9\n8zp2dkTvdk8oFk+pwGrRY1tqdHRvk9oa3MtWnxLJtK5NBHNhoN6RgCKxZG6522lXR9ONMFBTjVMF\nVv6eH8cxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+ABxOJZUJA//bhjRDQZx9fr2fvIQQ0\nORPWX/+4W8OTITVUO/W7X9qmJo/rIW35o+Nu9W1yNqz/9bMr6rnuV4nDpq9/ukMHt9cRwFplyVRa\nM3Mx+QKLwz2Z895gTDPZkM9S3CWFOrK7UU/vaVRFKaGupSRTaXX1enXs7IiuDPslSRWlDj29p1FP\n7WpQmXPlR+OlDUOj0/PZMJBfV6/75Q/Fc8uL7AVqayzTxqYybVxXrpZ6t+z32X3IjDiGA2BW1DcA\nZkV9A2BW1DcAhH+WQIFce9hxATAr6hvwyURiSb1xZkSvZ0NAruJCffbxdXp2X5OK7LeGgN67OKG/\n/7cexeIpHd5Zr197buN9j9DBvbmX+pY2DL3VOap/OtGvWDyl7a2V+vef3ayqsqKHtJWPFsMwFIkl\n5Q1ENZPt1nNzB5+oAqG47vSC0FVcqKqyIlW5i1TpdqjaXaRKd1HuumgipRNnR3Xy3JjCsaQKrBbt\n2+TRp/etU1vj8nWuMYNAKKa3zo3pROdoLmizpblCR/c2aXdH1ap22jEMQ95ANBcG6h0J5MaPSVKB\n1aIN9aXa2FSuLc0V2rKh4pHsDMQxHACzor4BMCvqGwCzor4BIPyzBArk2sOOC4BZUd+A5RGOJvXG\nmet6/cPrCscyIaBfemK9ju5tksNeoFg8pX/8xVW9fWFcRfYCffNzm3Rga91qb7ap3U998wYi+vuf\n96h7cEYOe4G+9ky7juxukJWwyH1JG4b8c9lQTzbM48t261m4LhpP3XbdAqtFFaUOVWXDPJXuIlWX\nZT0bJosAACAASURBVEI+VdmQz70G5WLxlN67NKE3z4xodHpektRcV6pP72vS41tqVGh7NAN3hmGo\ndySgY2dHdKZnWqm0oSJ7gQ5tr9czexvVUO1c7U28o2A4rt7rgWwYyK+hiZDS2bcOyl12HdpRr8M7\n61VTUbLKW/rwcAwHwKyobwDMivoGwKyobwAI/yyBArn2sOMCYFbUN2B5haMJ/eL0iF7/6LoisaRK\nSwr17N4mfXB5UuO+sJrrSvW7X9qm2kfoA+rVcr/1zTAMvXNhQt9/s1fhWFKb15frP/zS5kcqTPAg\n0mlDvSN+nb4yrdNXpxRYNK5psWKHTVULQZ6yolu69pQ57bJalzdsZRiGeob9euPMiDp7p2UYme5B\nR3Y36Jk9jap0PxodnmLxlN6/NKFjZ0d1fSokSWqodurZvY06sK3urqMK16JoPKn+saDOXp3W+xcn\nFYklJUmb15fr8K4G7dvoMf1oMI7hAJgV9Q2AWVHfAJgV9Q0A4Z8lUCDXHnZcAMyK+gasjHA0odc/\nuq5fnL6uSCzT6eS5/ev0lafbVGh79MbTrIYHrW+zczH9w+s96uz1ym6z6leeatWn969b9mBKPkul\n07o67NfpnmmduTqt4Hwm8OMssmnLhkp5yjOBnoWvSneRSopWN2DiDUR0vHNUJ7vGNB9NymqxaO8m\njz69r0kdTWWmHAk2ORPW8c5RnTo/rkgs+zNvrNbRvU3atL7cND9zLJHS2Z5pnTw3pp7rfklSicOm\nA9tq9dSuBq2vvf2bD/mOYzgAZkV9A2BW1DcAZkV9A0D4ZwkUyLWHHRcAs6K+AStrPprQya4xNdW4\ntKO1arU355HySeqbYRj66MqU/uH1qwpFEmprcOtbz29Z02ORVloylVbPsF+ne6Z09uq05sIJSZlO\nOns3erR/s0eb11fIVrC2w23xRErvX5rUm2dGcl1w1te49Oy+Jj2xtTbvu8Wk04bO9/t07OyIugdn\nJElup11HdjXoyO4G03c7mpwJ69T5cb1zYVyBbCitubZUT+2q1xNba1VSVLjKW7h8OIYDYFbUNwBm\nRX0DYFbUNwCEf5ZAgVx72HEBMCvqGwCzWo76FgzH9X9+cVUfXp6SrcCiLx5q0eeeWL/mAy7LJZlK\n6/LQrD66MqXOq9Oaj2ZGK7lLCrV3U40e2+TRxvXlKrDm3+/DMAz1jgT0xunrOnvVq7RhyFVcqMO7\n6nV0T5OqyvIrJDMXjuvU+XGd6ByVNxCVJLU3lenZvU3at8nzyDxmF6TSaZ3v9+nUuXGd7/cpbRgq\ntFm1f1ONntpVr43r8r/zEcdwAMyK+gbArKhvAMyK+gaA8M8SKJBrDzsuAGZFfQNgVstZ3zqvTuvv\nX+9RIBTX+lqXfuP5LaYdJZRIpnXx2ozOXJlSZ69X4Vgm8FPmsmv/xhrt3+xRR1O5qcagzQSjOt45\nqre6xhSKJGSxSHs7PHp239ocj5U2DHkDUY1Nz2vUG9LwZEidvV4lU2nZC606sLVOR/c2mvYxer/8\noZjeuTCuU+fHNTUbkSTVVhTrUzvrdWhHvcpdjlXewgfDMRwAs6K+ATAr6hsAs6K+ASD8swQK5NrD\njguAWVHfAJjVcte3+WhCL7/Zp7cvjKvAatHzB5r1+YMbVGjL/44q8URKFwdndLpnSl19XkViKUlS\nRalD+zZ5tH9TjdqbymRdYyGY5ZZIpvTBpSm9cea6hiczI8GaPE49u69JB7bVyfGQR4KlDUO+QFSj\n3nmNeec1Op05HffNK55M33TbmopiHd3TqEM76+U00Wir5WQYhq5e9+vkuTGd7plWIpmW1WLRzrYq\nHd5Vr51tVXnVxYpjOABmRX0DYFbUNwBmRX0DQPhnCRTItYcdFwCzor4BMKuVqm/dAz793c+vyBeM\nqaHaqW89v1ltDWXL/n1WWiyR0oV+n073TOlcv0+xeCbwU+Uu0v7NmcBPS4Pb9IGf2zEMQ32jAb15\nZkRneqaVShtyFtl0eGeDju5tVHV58bJ+v7RhaGZxyCf7Ne6bVzxxc8jHVmBVfVWJGqudaqh25k49\nFcWP5N/qQYWjCX1waVInz41raDJTJ8pcdh3aXq/Du+pVW1Gyylt4dxzDATAr6hsAs6K+ATAr6hsA\nwj9LoECuPey4AJgV9Q2AWa1kfYvEkvrBW/06fnZUFov02cfW68uHW2R/yJ1h7lc0ntT5fp9O90zr\nfL83FyypLivSY5trtH9zjTbUla65MVeraXYulh0JNqq5cGYk2O72aj27r0lbmivu63dlGIZ8wWgu\n4DOW+worlkjddFtbgUV1lU41ej4W8ikvyqvuNPlgaGJOp86P6b2Lk4pkx9xtWleup3Y1aN8mz5p9\nXnMMB8CsqG8AzIr6BsCsqG8ACP8sgQK59rDjAmBW1DcAZvUw6lvP8Ky+99oVTc1GVFtRrG89v0Ub\n15Wv6Pe8X5FYUuf6vTpzZVoXBny5cVE1FcWZwM+mGq2vdRH4uYtEMq2PrkzqjdMjujaReVw1VGdG\ngh3cVieH/UZAxDAMzQRjGvPdGNU16p3XmG8+12FpQSbkU3JTwKeh2qmaimJCPg9ZPJHSmavTOnVu\nTFeG/ZKkYodNB7bV6qmdDWquu/2bGKuFYzgAZkV9A1bOyFRILx/vU99IQAe21eqFJ5tVXba8XS1x\nZ9Q3AGZFfQNA+GcJFMi1hx0XALOivgEwq4dV32KJlH50akCvf3RdhiEd3duoF4+0qdhhW/HvfSfh\naFLn+rz66MqUugdnlExlAj/1VSXavynT4afJ4yTw8wAMw9DAWFBvnhnRR1emlEobuYBIIpnOdfOJ\nfizkU2C1qK6qRA1VN0I+jR5CPmvV5GxYb58f19sXxhUIxSVJ62tdOryzQQe21cpZVLjKW/jwj+EW\nxtONz4RVX1my7OPv1rq0YWgunJCzyCZbgbmes2nDUCAUly8YlS8QlS8YlTdw4/zsXFT2wgJVuByq\nKHWovNShcpfjpssVLoeKHQXsV7AseI0KLL/AfFw/OjWgk+fGZBiSq7hQoUhCBVaLDu2o1+efbH7k\n9u2rgfoGwKyobwAI/yyBArn2sOMCYFbUNwBm9bDrW/9YQN/72RWNeedV5S7S5vXlMiQZhmTIkIzM\nB6ySlM4uyCzLBEoMI3uavb90duHCdbnli9fJnmrRdem0NDIdUiqduadGjzMT+NnkUaPH9dB+H48C\nfyimE52jOtE1puB8JiBSYLWodlEnn8ZFnXzMFhh4FKTSaV0YmNGpc2M61+dT2jBUaLNq3yaPDu2o\n17oal0qLC1cl8LBSNe6W8XTTmdNx343xdAVWi47ubdIXDm2Qq3j1g1Ar7fK1Gb18vE/DkyFJkrPI\npnKXQ26nXWUuu8qcdpU5HSpz2uXOXi53OeQssq2JMEwyldbMXCwT5skGehafzsxFlUzd/q24YodN\nlW6H4omUZufiuTDp7TgKC1Tust8UCPr4aZnLTi3EXT3MYzjDMHR9KqRzfV519fmUSqW1taVSO1oq\n1d5UrkIbj1fkt3gipV+cvq6fvDekWDylhmqnXjrarq0bKvThpSm98u41Tc6EsyGgOr3w5AZ5CAGt\nGN6DA2BW1DcAhH+WQIFce9hxATAr6hsAs1qN+pZIpvXqu9f02vtDufDNSrFk/7FmP1i2WCyyWDLX\n11aWaP8mj/ZvrlF9lXNFtwOZD9Z7RwJyO+2qJeRjWoFQTO90T+jUuTFNzkZy1zvsBfKUFctTXiRP\nebGqyzKnC+fthQVL3OuD+6Q1bmE83ah3YTRdKNO5yhdecjxdTUWxPrg0qWl/VM4im75wcIOO7msy\n5eN+dDqkfz7Rr/P9PknStg0VShuZ7gmBUEzz0eSS6xdYLZmA0MKXyy53NiRU7soEhhbCQo5P8DiJ\nJVK3DfV4s+f9czHdaY/kdtpV5S5SVVmRqrOnVYtOS4pudLEzDEPz0aRm52Lyh2KZ07mYZhed94di\nCoYTd9xWi6RSp/1G1yCXPRcMyoWGSh0qcayN4BRWx0ofwyVTaV0ZntW5Xp+6+qblC8YkZZ6zFosl\nF3JzFBZoS3OFtrdWantrlWoIRCCPGIahDy5P6l9O9MsXjKm0pFBfPtyqp3bV39R1Mp3O3O7Vd65p\nIhsCenJ7nT5/cAOP+RXAe3AAzIr6BoDwzxIokGsPOy4AZkV9A2BWq1nfQpGEIrFkNoyTDeUsCudo\n0fkb1y/cLnM+E+yRtPh6iyW3DoDVYRiGrl73q7PXq2l/JPMViN4SmFlQ5rLnwkHVZcXZYFAmIFTu\ncshqfbDn873WOMMwNDuXCfmMTs/f6Ojjm79lmxfG0+VG0y3qXLX4g8JEMq03z4zoJ+9eUziWVE15\nsb7ydJv2bfKYoj75QzH96NSgTp3PjEbZvL5cX32mXS317ptul0imNReOyx+KKzAfU2A+rmAongkH\nzWevy15OJO/cMUeSiuwFi0JCjkVhoUxIyFlkU2A+fnO4J3saitw+bGO1WFRR6rgp0FO96HxlqWNF\nwmnJVFr+UEz+ufgtwaDZbFjIPxdTfInfid1mVXm2Y1Cl26Hqsszzp8qd+Rkq3UV0ZDGxlTiGC0US\nutDvU2efV90Dvtx4zhKHTTvaqrS7vVo7WitVUGDV1et+XRjwqXtgRhMz4dx91FYUa3trlXa0VmrT\n+opPFNoDVlLviF/ff7NPg+NB2Qoseu6xdXrhwIabAp0fl04b+vDypF5995rGfWFZLRYd3F6nzx9s\nVk1FyUPcenPjPTgAZkV9A0D4ZwkUyLWHHRcAs6K+ATAr6huAh8UwDM1FEvL6o5r2R+QNZENB2csz\nwVhu7N9itgKLqtzZjkELoaBFAaGSojuP1Pp4jVsI+SyEe0a98xrPhnwisduEfBaNp2uodqrRc2vI\n525CkYReeXtQxztHlUob6mgq00tHO9Ta4L77ymtQNJ7Uzz8Y1r99eF2xREr1VSX66jPt2tVW9YlC\nTYZhKBJLKTAfU3AhGBSKyz8f+1hYKK65+fgdu/R8XKHNqkp3kardHw/4ZEIy5aX2+/p7PkyGYSgc\nu10XoXjmdKGL0BK/j3KXPffzVpfd2r1opbpuYeUt1zHc5ExYnb1edfV51Tvi10IZ9pQXaXe7R7s7\nqtXRVLZk57Jpf0TdgzPqHvDp0tBsLjRpK7Bq07oybW+t0vbWKjVUlZgi/Ij8NuWP6Acn+nX6ypQk\n6fEtNXrxSNt9jfFKpw19dGVKr7wzmAsBPbm9Vp8/uEG1hIA+MV6jAjAr6hsAwj9LoECuPey4AJgV\n9Q2AWVHfAKwVqXRaM8FYNhgUvdExyB+VNxDR3B3GJJU4bNlgUHaUWHakWIW7SGmrVZf7pjXmy3by\n8YYVid08hqrAalHtopDP4k4+yzmma2ImrB+c6NfZq9OSpCe21urFI62qLsuPcSGpdFpvnx/Xj04N\nKjAfl9tp15c/1aLDHxuN8rC2JRROKDB/o6NQcD6u+UgyM6JrUcjHXVJo+rBBMpWWfy6WG2HmDWSe\nMwtjze4UrJMyI82qF3U7ygSEbgSF6Nqydj3oMVw6bahvNKCuPq+6er25rj0WSa2Nbu1ur9buDs8D\nB3WSqbT6RgK5MNDwVCi3rNLt0PaWTFegLc2VS3ZYwcOTNgyFwgnNzsU0MxfNdB+bi2kmeON8VVmR\nntxWp70bPSp25OffLRxN6ifvXdMbp68rmTLU2uDWrz7bofbGsge+z3Ta0OmeKb3yzjWNeedltVh0\nYFutvnBwg2orCQE9KF6jAjAr6hsAwj9LoECuPey4AJgV9Q2AWVHfAOSLSCwp3+JQUCCaCwp5/ZEl\nxyNJmZBPTUXxoi4+LjVUO1W7zCGfu+kZntX3j/VpaGJOtgKrnnus6a5jRlaTYRg63+/TP5/o15h3\nXvZCqz73+Hp99vH1efsB8KMmlU7LPxfPBoOyz5lAZhzawoi0VPr2bzOWlhQuCgYV3xiLlr2Ox8Dq\nuZ9juEgsqYuDM+rq8+p8vy83Bs9eaNW2DZXa3V6tne3VKnPal307/aGYLg7O6MKATxcHZzQfzQQw\nrRaL2hvd2RFhVVpX65LV5EG91ZA2DAXn49kwT0yzi8M92YCPPxRTMnXnjxpcxYU3HjM2q/Zu9Ojg\n9jpt2VCxZjunLZZKp/VW15h+dGpQoUhCVW6HvvJ0ux7fUrNs4dC0Yej0lSm9+s41jXrnZbFIB7bW\n6QuHNqiOENB94zUqHoaJmbC6er0yDEMHttWpotSx2puERwD1DQDhnyVQINcedlwAzIr6BsCsqG8A\nzMDIfrg57Y9qOjtObCYYU0NNqcpLbGqsdqq2suShhnyWkjYMfXBxUv9ysl8zwZhcxYX68uEWPbWr\nYc1soyQNTczp5WO9ujLsl8UiHd5Zry99qpUPR0wmnTbkD8UWdQ1aCAZFct2E7hQMcBUXqtxlV5Hd\nJoe9QEWFBSqyF8iR/Sqy21RUuHA+u6wwe/3C7bLLCX7cn7sdw80Eo5nuPn1eXRmazf0Ny1z2THef\n9mptaa54qKPf0mlDgxNBdQ9kugINjAdzY8bcJYXalu0KtLWlUu6S5Q8imU06bSgwH8916JmZuxHu\nmZmLaTaYGQ14p3CfRZnHQ0VpkSpLHaoodajC7VBlaZEqSh2qLHWovNQhW4FVU7NhvXdxUu91T2jK\nH5EklTntemJrrQ5ur9P62tt/iLGaDMPQhQGfXj7Wp3FfWEX2Ar3wZLOe279uxR73acPQ2Z5p/fid\nQY1OL4SAMuPA6qucK/I9zYjXqFgJ6bShgbGgOnun1bmo852UCaTuaq/Skd2N2t5SKauVYxKsDOob\nAMI/S6BArj3suACYFfUNgFlR3wCY2VqvcfFESr84fV0/fW9I0XhK9VUl+uoz7drVVrWqo6p8gah+\neLJf712clCTtaK3SV59pU5PHtWrbhNWz0Dlk8TixhZFi3kBUgfm4YvHUHUeL3SvH4pBQ4Y3w0MdD\nRUUL1xcuChTZbw4UFdsLZCuwmnrk28frm2EYGpqcU1dvJvAzPHlj3Na6Gld2nFe1mutK10zQKhRJ\n6NK1TFeg7oEZBebjkjKhlA31pdkRYVVqaSjNiw4zy80wDPlDcY16QxrzhuULRG8K9wRC8Ts+76wW\ni8pL7ZlAz+JwT2km3FPpdsjttN934NQwDPWPBfVu94Q+ujyZ6+TU5HHqye11OrB1bXTPGJkK6eVj\nvbp4bVYWi3RkV4O+dLh1Rbpb3c5CCOiVdwY1kg0BPbE1Mw6MENDdrfXjN+SPWCKlS9dm1Nnr1fk+\nr4Lhmzvf7enwKJntDjY0kXnMVbmL9NTuBh3eWa9y1+rXM5gL9Q0A4Z8lUCDXHnZcAMyK+gbArKhv\nAMwsX2pcYD6uH789qLe6RmUY0pbmCr10tP2hd1IIRxP66XtD+sXpESVTaa2vcemrR9u1bUPlQ90O\n5B/DMJRMpRWNpxSNpxSLpxRNpBSNJzPn4ynFEqmbl8eTuesWbhNNpBSLJ3PXfZI3PwuslkxAyHFz\nt6EbgaFFlwsLVOSwLepMdPPtFzoUraUwkcdTqrFxvy4Pzaqrz6dzfV7NzsUkZX72zc0V2t1erV3t\nVaouK17lrb07wzA0Mj2v7gGfLgz41DsSyHWsKXHYtHVDhba3VmlLc4Wq3EWm68oQDMc1Oj2vMe+8\nRqdDGvXOa3R6XuFY8pbbFlgtKnctdOm50alncecet7NwxQNTiWRa5/t9erd7XOf7fUqlDVks0tbm\nCj25vU57N3pUZH+4owEDoZj+9dSgTp0fk2FI21sq9bWj7asWXk0bhjqvTuuVd67p+lRIFkmPZ0NA\nDdWEgO4kX47fsDYF5uM61+dVV69Xl67N5EYDu532XBB26206312bCOpE55g+uDSpWCKlAqtFu9ur\ndWRPg7ZuqFwzwVnkt0epviVTaQVCmdGjwXBcG+pKVekuWu3NAlYd4Z8lPCoFMp88SjsuAI8W6hsA\ns6K+ATCzfKtxo9Mh/dPxfl0Y8Mki6eCOOv3KU20r3kUhmUrreOeoXn3nmkKRhCpKHfqVp1r15PY6\nPujAqjEMQ/FkOhcUWhwgyoWFFgWIorGUoonkLQGjaPxG6CiZSj/w9likW8aZFRRYZLFkuqxYLRZZ\nrRZZLZLFarnlOmv2OovFIqtVi85nl+fOW2Sx3nqfi9eXpOveeZ29MqVYIiVJchbZtLOtWns6qrWt\npVLFjocbulhukVhSV4Zn1T2Q6QzkDURzywqsFlW5i1RdXqTqsiJVlxVnzxfLU1Ykt9O+poJai4Wj\niVywZ3RR0Gcu241igcUi1VaUqNHjVGO1Uw3VTnnKi1VZ6lCp077manMoktBHlyf1bveE+seCkjLd\nvPZu9Ojg9jptaa5Y0cBWPJHS6x9d10/fH1IsnlJDtVMvHW3XjtaqFfue9yNtGOrq9eqVtwc1nA0B\nPbalRl841KJGQkC3yLfjN6wuwzA0MRNWZ69Xnb3TGhgN5sLDDdVO7enIjLpsaXDfU+2MxJJ6/9Kk\n3uoc1fBUpotedVmRjuxu0Kd2Njy0DmIwJ7PUt0QyLX8olu1GmO1KGMxcnp2LamYupmAofkuQf12N\nS7uy42c31K+dbpTAw0T4ZwlmKJBmY5YdFwB8HPUNgFlR3wCYWb7WuIuDM3r5WK9Gpudlt1n12cfX\n65cOrF/2DgqGYehMz7R+8Fa/pmYjKrIX6IUnm/Xc/nW3/G9owAySqXQmLBS70Zno40GhWDylSPzm\nrkWZ65O57kQLt0ul00qnM8+l1XijtraiWHs6PNrVXqX2pjLTjsYyDEOTsxFdGPBpYCworz+i6UBU\nweyYsI+z26yqWhQK8pQVZ0JC2YCQs8i24uGgaDypMW9Yo97QjY4+3vlcd6bFPOVFaqx2qdGTCfk0\nVjtVX1WiQlt+1uHJmbDeuzihd7sncqGtcpddB7bV6eC2OjXVLF8XnrRh6INLk/qXt/o1E4yptKRQ\nXz7cqqd21a/J54ORDQH9+J1BDU8uCgEd3KBGRmvmrOTxWyKZ1lw4rmA4ruB8XMH5xI3z4bgssuQ6\njRHyWLvSaUN9owF1ZQM/k7MRSZngZEdTeSbw01Gt2oqSB/4ehmFocHxOJ7pG9eHlScUTaRVYLdrT\nUa0jexozoUaCC7hP+fD6NJFMaWYuptngzeGehbGjs8FoboTe7dgKLLkxoxXuTGfCEodNPcN+XRme\nVTKVOWouc9q1s61Ku9urtXVDpRz2/DzuAe4X4Z8lrPUC+SjKhx0XADwI6hsAs6K+ATCzfK5x6bSh\nty+M619PDigwH1eZ065ffqpVn9pRvyzdE/pGAnr5eK/6R4MqsFr09O5GfeFTG+Qu4YMu4EEYhqG0\nYSidVvbUyF6XeT4vXJc2DBmGFl2WjIXld1rfMG7cJrt8a7tHRWsv2/BQxRIp+QJReQMRTfuj8gWi\nmg5E5PVnrpuP3joyS5KKHQWqchfLkw0DLQSDPNmw0P0ELRPJlMZ94Vs6+SzuVLSgotSR6+STC/tU\nOU37YZdhGOodCei9ixP68PKUItkRZutrXHpye50ObK1VmevBO9v1jvj1/Tf7NDgelK3Aqucea9IL\nBzaopGjtd70yDENdfV698vY1DU3OySJp/+YafeHQhlUbUbaW3M/xm2EYiiVStwZ55uMfO59QcD5+\n21F6d9JcV6odrVXa2VqllobSNRkoe5TE4il1D86oq29a5/p8CkUy4QNHYYG2t1Rqd0e1drZVqXQF\njmXD0aTevzShE51jGpnOdAOqKS/Wkd0NOrSjXm6CYrhHq/36NJZIZYI8wUx3nplsqGc2GM2Fexae\nW7dTaLOqcmHUaGmRKrMjSCsWRpC6HSotLrxjyDoSS+rStRmd6/PpfL83FyKyFVi1pblCu9urtKu9\nmvFgMDXCP0vI1zfwzGy1d1wAsFKobwDMivoGwMzMUOOi8aR+/sGwfv7BsOLJtJo8Lr10tF3bWiof\n6P4mZ8P6wYl+nemZliTt3ejRV55uU13lg//PaAAPnxnq20oLR5PyBiLyBqKZL//C+UznoFg8ddv1\nXMWF2UBQJhjkyZ53l9g1ORvOdfIZ8c5rajasj79L73baswEfpxo8TjVVu9RQXaKSosKH8FOvTYlk\nSuf6fHq3e0IXBnxKpQ1ZLNK2lkod3FanPRs9ctxjx7kpf0Q/ON6n09n92ONbavSVI22qLi9eyR9h\nRRiGoXN9Pv34nUENTWSez/s3efTFQy3L2iEp31RVuTQ0MntriOd23Xrm44onlx7paJHkKimU22mX\nu8S+6LTwxuXsdZF4Mjdu8Op1v1LpzBPcWWTT1g2V2tFapR2tlZ8ouIZ7FwjF1NXnVVevV5eGZpXI\n/q3LXHbtbs+MutzSXPHQOqUZhqGBsaBOdI3qo8tTiicz3YD2bvTo6d0N2txcsWbHTq62WCKlnuFZ\nXRiYUc/wrFzFhWquK9WGOrc21JXKU1H8SHRSepjHb4FQTANjQQ2MB9U/GtD1qdAdg9GSZC+0qjIb\n6MmFe3JBH4cq3UXL2j0xbRgaHAuqq8+rc31ejUzP55atXxgP1lGt5jrGg8FcHnr4J51O60/+5E/U\n09Mju92uP/3TP1Vzc3Nu+bFjx/RXf/VXstlsevHFF/W1r33tjusMDQ3pD//wD2WxWNTR0aE//uM/\nljWbjp6ZmdHXv/51vfLKK3I4HIpGo/qDP/gD+Xw+OZ1O/cVf/IUqK5d+I4sXuGsPbzwAMCvqGwCz\nor4BMDMz1bjZuZh+eLJf716YkCFpe2ulXnqm/Z7HhMyF43r1nWs63jmqVNpQa4NbX3umXRvXla/s\nhgNYEWaqb6vBMAyFIombgkHT2WBQpnNQVMnU0oECZ5EtG/BxqbHaqabs2K6V6DphJsFwXB9dntK7\n3RMaHA9Kkhz2Au3f5NHBbXXadIdROuFoQj95d0hvnLmuZMpQW4NbLz3bofbGsof9Iyw7wzB0vt+n\nH789qGvZENC+TR699Ex7XoaaHpTXH9H3XrtyU+jmTgqslo+FeQpvCvHcOF8oV0nhA3XticSSbi6m\nJQAAIABJREFUujI0qwsDPl0Y8MkXvDG2b32tKxsEqlJbo5uuQMvEMAyNeefV1edVZ69XA2PB3LJG\njzMb+PFoQ/3qhwHC0YTe7Z7QW11jGvVmQgu1FcU6srtRh3bUPfL7AsMwNDET1oWBGXUP+HRl2J/b\nr9ptViWS6ZtGphY7bGqudWXCQPWlaq4rVU15senCVCt1/BZLpDQ0MZcL+wyOBW6qWZJUW1mi6rKi\n7EiuTJgnF+wpdajYsfJjUZfi9Ud0rt+nrj6vej42HmxXe5V2tTEeDObw0MM/r7/+uo4dO6Y///M/\nV1dXl77zne/or//6ryVJiURCzz//vH7wgx+ouLhYX//61/Wd73xHZ8+eve06v/u7v6tvfetbeuKJ\nJ/RHf/RHOnz4sJ577jmdOnVK3/72tzU8PKz33ntPDodD3/ve9xQKhfT7v//7+ulPf6rOzk79l//y\nX5bcVl7grj288QDArKhvAMyK+gbAzMxY44Yn5/TysT5dHpqVxSId2dWgLx1uVdkdxg0kkim9cXpE\nP3lvSJFYUp7yIn3l6Xbt3+Qx3ZvpwKPEjPVtLUkbhoLzcXn92VFigaiC83F5yoszXX08TpU57dTR\nT2jcN6/3Lk7ove5J+YKZUWkVpQ49ua1OT26vU2O1U8lUWm91jenHbw8qFEmoyl2krz7Tpsc215ju\n928Yhi4M+PTjt69pcDyoYkeBfv0zm/TktrrV3rQV9+HlSf3dz3sUiSXV2lCmMmcmzFNaYleZ89aA\nT8lD/pDaMAyN+cK60J8JAvWO+HMfTJc4bNraUqkdrZXa3lKlilK6At2PVDqtvpGAOnszHX6m/BFJ\nktVi0cZ1Zdqd7f5RU7E2u1QahqG+0YDe6hrTR1emlEimZSuwaN+mGj29u0Eb15WbrlbdSTSe1JUh\nfy4wt3gEZpPHmQvMtTeVKZFMa3hyTtcm5jQ0kTmdnAnfEgjaUFea7RCU+fLkeSBoOY7f0oahyZlw\nJuiT/bo+FVJ6UWygtKRQrfVutTaWqbXBrZY6d16MxVwQiSV1cXBG5/q8Otd/Y8xfoS0zHmxXe7V2\ntVUxHgx56aGHf/7bf/tv2rlzp1544QVJ0uHDh3Xq1ClJ0pUrV/SXf/mX+tu//VtJ0p/92Z9pz549\n6urquu06hw8f1smTJ2WxWPTGG2/onXfe0R//8R/rnXfe0datW/Xiiy/qtddek8Ph0O/93u/pt37r\nt7R7927Nzc3pV3/1V/XTn/50yW3lBe7awxsPAMyK+gbArKhvAMzMrDXOMAyd6/fpn4/3adwXlsNe\noBcONOszj62TPTs2JW0Y+uDipH54sl++YEzOIpu+cKhFz+xpVKGN/50O5Duz1jc8mtKGod7rfr3b\nPaHTPVOKxDIj2ZprSxVPpjTuC6vIXqDPH9yg5/Y3PbQRP6vFMAy92z2hf/jFVcXiKR3YWqtf/8ym\nvPrg9l7F4in94xtX9fb5cdkLrfrGcxv1y0c3yusNrfamLSkaT+ryUGaE0YV+Xy68Jknraly58WBt\njWWyFXDc9XH+UEzdAzPqHvTp4uBMbhSRw16gHS2V2tPh0Y62KrmK82tcYiiS0HvdEzrRNapxX1iS\nVF9VoiO7GnRwR33e/Tx3s9Cp6UJ2VN7iUFyxw6ZtGyq0PRv4uZdQXCSWzAWCri0KBC1W4rDlwkDN\neRgIepDjt2A4rsGxoPrHMh19BsbnFIndGN9lK7Cqudal1oZM0Ke1wa3qsqK8+Z3cTTptaGA8qHN9\nXnX1eTW6eDxYrUu726u1q53xYMgfdwr/rNhRXigUkst1o2V0QUGBksmkbDabQqGQSktvbJDT6VQo\nFLrjOoZh5IqL0+nU3FymoB06dOi233fhvhffFgAAAAAAADdYLBbtbq/W9pZKnTw3ph+dGtQPTw7o\neOeoXjzSqnKXQ/98vF9Dk3OyFVj0ucfX64WDzXIWmesDBwCAOVgtFm1aX6FN6yv0jec2qqvPq3e7\nJ9Q9MCNDhp7e06gvf6pF7jt0uTMbi8WiQzvq1dFUpu++eknvX5pU70hA//ELW001rnNoYk7feeWi\nJmbCWl/r0u98cZvqq5x58YF1kd2mPR0e7enw3BhvlO0K1HPdr+tTIf3s/SEVOwq0dUNlruPJo9oV\nKJlKq380kAuJXJ+6Ee6qdDv02JZa7emo1ub1FXkdUncVF+q5x9bp0/ub1DsS0ImuUZ2+Mq3vH+vT\nD94a0P7NHj29u1EdTWV58Ti/nUgsqUvXMuPwugd9mrnDOLzWBvd9B9+KHbbcvmBBOHojEDQ0Oadr\n40FdHprV5aHZ3G2cRTatr812B6p3q7muVJ48Db8sdERaGN81MBbQtD96021qK4q1u70qF/ZZV+My\ndcjQarWovbFM7Y1levFIm7z+iLr6vDrX59WVYb+GJ0N65Z1rKnPZtautSrvas+PBCs0dFIb5rFj4\nx+VyaX7+RmounU7LZrPddtn8/LxKS0vvuI510ZzT+fl5ud3ue/q+d7vtgoqKEtlMnvLPR3dKrAFA\nvqO+ATAr6hsAMzN7jXuprkyff6pd//zmVb1yakB/85PLuWVH9jTp3z2/RbWVa3NMAoBPxuz1DY+u\nxoZyvfBUuwKhmFJp45Ed6+HxlOrb/8mjl9+4qpd/0aP/5/+c1Vef3ahf/cymvP6g1zAMvXJqQP/r\nJ5eUTKX15SNt+ubzW27q6JRv9a2mxq2dmzPj2aKxpM73e3Xm8qTOXJnSmZ5pnemZliRtqHdr3+Ya\n7dtcqy0tlXn9d7ybqdmwzl6Z0tmeKXVdnc51KrEVWLV7o0f7Ntdo76YarastzcuQxt3U1Lh1aO86\nBefjOnZ6WD9/b0jvX5zU+xcnta62VJ870Kxn9q9TacnaDjUahqFr48HMY/nKpC4PziiVznT3cRUX\n6vDuxtzfsmKFanXzugodXnR5PpLQwGhAvdf96h/xq2/Ef0sgyFVcqPamcrU1laljXYXamspUW1my\nJh5rC/XNMAyN++Z1dWhWPcOz6hma1eBYINc9Scr8HHs312jT+gptzH49KkHYO/F4SrWlo0ZflxSO\nJtR5dVofXpzQ6cuTOnluXCfPjctus2pnh0ePb6vT41trVVVWLCnzO08bmW5ChmEonTaUzp6m0oYM\nQ7nLuWU3XdZN6yxeZmSXpRYtM9KG6qqcaq6/e+YBWLHwz969e3X8+HE9//zz6urq0saNG3PL2tra\nNDQ0JL/fr5KSEp0+fVq/+Zu/KYvFctt1tm7dqg8++EBPPPGETp48qQMHDiz5fd966y3t3LlTJ0+e\n1L59++66rbOz4bveBg8XLYcBmBX1DYBZUd8AmNmjVONeeGK9ntjk0b+eGlQoktCXD7eopd4tpVKP\nzO8AeJQ8SvUNmJ5OrPYmrKrn9jZqQ41T3331kl5+46o+vDih3/7iVtVW5F+4Nzgf19/+9LIuDPjk\nLinUb35+h3a0Vsm/6LMeM9S3Fo9TLZ5WvXi4JdMVaGBG3QM+XRn269p4UP9yvE9F9oWuQJnOQPke\nckskU7p6PZDtCDOjMe+NhgE15cU6uK1O21srtXl9hRz2G0GvtT7ibTkc2lqrg1tqdPW6Xye6xnSm\nZ0rf/XG3vvvjbpU4bCpz2VXmtKvc5ciez5yWO+0qy15X4rA9tOBKOJrQxYXuPgM++UNxSZJF0ob6\nUm1vqdKOtiq11rtltWa2KRlLPNRaXVfmUF1ZrQ5vr81uc1JDk3MampjTtYmgrk3Mqat3Wl2907l1\nnEWZkWGV7iIVWC2yWiyyZk8LrBZZrLrp+o/fJndd7rJuWv/m+7KoYGHdRfdlKSxQ5+VJDYwFNTge\nVChy43dWYLVoXY0rN7qrraFMNRU3jzSLhWOaDt/otgRpY32pNtaX6teOtmtgLJjrCnT68qROX57U\n/6vM7zZtZAI6q6Gtwa2n9zTqsc01uTHdeHTdKeBsMYyVeYim02n9yZ/8ia5evSrDMPRnf/ZnunTp\nksLhsF566SUdO3ZMf/VXfyXDMPTiiy/qG9/4xm3XaWtr0+DgoP7rf/2vSiQSam1t1Z/+6Z+qoODG\ng/ro0aN67bXX5HA4FIlE9J//83/W9PS0CgsL9e1vf1sej2fJbc33A0AzMsOBOQDcDvUNgFlR3wCY\nGTUOgFlR34BHTzia1D/+okfvXZyUo7BAv/Zchz61o35NdLK4F92DPv3NTy4rOB/X9pZK/ebnt6rs\nNh0szFzfYomUeoZndaE/M/5qyh/JLauvKlGTx6XayhLVVRartrJEtRUlchWv3bGtk7NhdWdHeV0Z\nnlU8kZYk2W1WbW6u0I7WKm1vrczLoNpKCobjevfChLoHfQqE4vKHYpqPJpdcp9BmVZnTfvtw0KLg\nkLvEngvk3Ku0Yej6ZEjnBzKj6wZGg0obN7r7bM8G1La1VMq9xjsVLRaOJjJhoIVQ0PjcTc+51VZd\nVpQN+mTGdzXXum7qgIZPZjo7Hqx7YEbhWCIT2LJYZLHopkCXRTcuW6wWWS3K3i4b8Mqdv/0yqzV7\nn5bb38eV4Vld6PfJUCaAdmhHvZ7Z00h33kfYQw//5BOzHgDmMzMfmAN4tFHfAJgV9Q2AmVHjAJgV\n9Q14dL1/cUL/+/UeRWIp7d9co29+dtOaDogkU2n98K0B/fzDYRVYLfrK02167rF1st4htPQo1bfJ\nmXAucHH1uj8XnlnMVVyo2spi1VWUZINBmdOaimI5HnIHiVg8pSvDs5nAz6BPU7M3h5d2tFZpR2uV\nNq4rI8RwnxLJtILzcfnnYwqG4vLPxxUIxeQPxTPXh2IKzGfOL4zduh2LRSotuTkYVObKhoMWwkMu\nh+w2a+5v2T04o+B8PLd+a4NbO7LdfZrrSu/4XM1H4WhCoUhCaUNKpT823ik7+umWy8aNkU+pdDq7\nTiY0dcf7WDT66cZtpMryYtWWFamlwX3b8CPMadof0clzYzp1bkzBcKbb05bmCj2zp1G7O6pNPQIS\ntyL8s4RH5QAwnzxKB+YAHi3UNwBmRX0DYGbUOABmRX0DHm1ef0Tf/ckl9Y4EVFHq0H/8/FZtbq5Y\n7c26xeRMWP/9lYsamphTbUWxfudL27Shzr3kOo9qfUsbhvxzMU3OhDUxG8mczoQ1ORuR1x+5beCj\n0u1Q7UIoqKI4Fw6qKitalg+TDcPQmC+s7uz4p57rASVTmYDSwtiy7a2V2t5Sqeqy4k/8/XB3acNQ\nKJJQIHQjHBSYj2U6CM3HFQzFssGhuGKJ1D3dp9tp146WSm3PdvdZy2HCfPeo1jdkJFNpnemZ1onO\nUfVc90uSylx2PbWzQUd2N+T9+EfcG8I/S6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wCk04Z++v6Q\nfnxqUIZh6HMH1uuXD7euiQ4ChmHo3e4J/cPrVxVLpPSpHfX6tec6VGS33XVd6tutkqm0fIFoJgy0\nKBw0ORvWTDB2y+0LrBZVlxfnAkGLw0HlpY4lO7lEYkldujar7sFM4Me36P7X17i0vbVKO1or1dZY\ntiYea7izSCx5U9egxUGhcDSZ6fDTWqV1tS5TdfdZy6hvWDDqndeJzlG92z2hSCwpi0Xa3V6tp/c0\naltLJc9JEyP8swQK5NrDjguAWVHfAJgV9Q2AmVHjAJgV9Q3Agv6xgL77yiVN+SNqri3Vb39xq+qr\nnKu2PeFoUv/79R59cGlSxY4CffOzm/XE1tp7Xp/6dn9iiZSmFncKmglrYjasyZmIQpHELbe3F1pz\n3YJqK4pVV1miylKHBsaD6h6YUd9oINdlyFlk07aWSm1vqdL21kqVuxwP+8cDTIX6ho+LxVP64PKk\njneOamgi89jwlBfp6d2NOrSzXu4SxsOZDeGfJVAg1x52XADMivoGwKyobwDMjBoHwKyobwAWi8SS\n+v/e7NXb58dlL7Tq68926KldDbI85M4B/aMBfeeVi/IGomprcOu3v7hNnvL7GwdFfVs+oUhCk7PZ\nQNBMtltQNhwUT6Rvub1F0oZ6t3a0ZkZAtda7ZbXSfQJYLtQ3LGVwPKjjnaP68NKk4sm0bAUW7d9U\no6f3NKqjqeyh79OxMgj/LIECufaw4wJgVtQ3AGZFfQNgZtQ4AGZFfQNwOx9dmdLfvXZF4VhSezqq\n9R9+abNKH0LXgHTa0M/eH9KPsiPIXjjYrC8eanmgsVDUt5VnGIb8oXguCOQLRNVY7dTWlkq6TAAr\niPqGezEfTejd7gmd6BzVuC8sSWr0OPX07kYd3F6nYsfdR2hi7SL8swQK5NrDjguAWVHfAJgV9Q2A\nmVHjAJgV9Q3AncwEo/qbn1zSlWG/ylx2/dYLW7WtpXLFvt/sXEzfffWirgz7VVHq0G99fqu2NFc8\n8P1R3wCYFfUN98MwDPUM+3Wia1RneqaVShtyFBboia21emZPo5rrbh8iwdpG+GcJFMi1hx0XALOi\nvgEwK+obADOjxgEwK+obgKWk04b+7cNh/fDkgFJpQ595bJ1ePNKmQtv9d+JZSmfvtL73sysKRRLa\n01Gtbz2/Ra7iwk90n9Q3AGZFfcODCszH9fb5MZ3oHJMvGJUktTa49fTuRj2+pUb2woJV3kLcK8I/\nS6BArj3suACYFfUNgFlR3wCYGTUOgFlR3wDci2sTQX3nlUuanAmryePS73xxqxo9rk98v/FESv90\nvE/Hzo6q0GbVS0fb9cyeRlkslk9839Q3AGZFfcMnlU4bujDg04nOUZ3v98mQ5Cyy6dCOeh3Z3aD6\nKudqbyLugvDPEiiQaw87LgBmRX0DYFbUNwBmRo0DYFbUNwD3KhZP6eVjvTrRNaZCm1Vfe6ZdR/c+\neFBndDqk//7KRY1Oz6ux2qnf+dI2NS1DoGgB9Q2AWVHfsJy8gYje6hrTqXNjCoYTkqQtzRV6Zk+j\ndndUy1awvN3+sDzuFP6xPeTtAAAAAAAAAAAAQB5x2Av0zc9t1o7WKn3vtSv6x19c1YUBn37j+S1y\nO+33fD+GYehE15i+/2avEsm0ntnbqJeeaWfUCAAAq6C6rFgvHmnTlz7VorNXp3Wic1SXh2Z1eWhW\nZU67PvPYOn3uifXL0pUPK4/wDwAAAAAAAAAAAO5qz0aPNtS79T9/eknn+336o7/9QL/xwlbtbKu6\n67qhSELf+9lldfZ65Syy6Xe+uE17N3oewlYDAICl2AqsenxLrR7fUqsx77xOdI3qnQsT+vHbgzq6\nr0kOQrp5gbFfYuzXWkTLOgBmRX0DYFbUNwBmRo0DYFbUNwAPKm0YeuOj6/rBW/1Kpgw9u69JX326\n7Y4dfHqGZ/U/Xr2k2bmYNq8v1299fqsq3UUrtn3UNwBmRX3DwxJLpBSNJVXmcqz2puBjGPsFAAAA\nAAAAAACAT8xqsegzj6/X5uYK/Y9XL+nNMyO6MjSr3/7iNq2rceVul0qn9crb1/STd6/JYrHol59q\n1QsHmmW1Mj4EAIC1zFFYQMefPGNd7Q0AAAAAAAAAAABA/llfW6o/+vf79ezeJo165/V//91Hev2j\n60obhrz+iP7iHzv16rvXVFVWpD/89b36wsENBH8AAABWAJ1/AAAAAAAAAAAA8EDshQX6xmc2antr\npb73s8v6/pu9OtMzpZHpeUViST2+pUbf/OxmlRTxkRQAAMBKofMPAAAAAAAAAAAAPpFd7dX6v37z\nCe1orVLvSEDptKHfeH6LfueL2wj+AAAArDCOtgAAAAAAAAAAAPCJlTnt+k9f3amuPq8aPS7VlBev\n9iYBAAA8Egj/AAAAAAAAAAAAYFlYLBbt6fCs9mYAAAA8Uhj7BQAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8A\nAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAA\nAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8\nAwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAA\nAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQp\nwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAA\nAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABA\nniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAA\nAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAA\nAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAA\nAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAAAABAniL8AwAAAAAAAAAAAAAAAOQpwj8AAAAAAAAAAAAA\nAABAniL8AwAAAAAAAAAAAAAAAOQpwj//P3t3HxznYd8H/rsLEMQ7SJEAKYoE+CLSL7HeKEdJr3Uu\ndl6UetLO9dxRMs3lbiZu08l0HCeXycSdJmMncaNM07qdJr5cm7F7rVOP5EuTpk6m1cV2EjdO6+qN\nerEtkSIJECRFAnzBO/G6e38AC1uWSIIkFstdfj5/kdjd5/ktRT3ELr77+wIAAAAAAAAAQJ0S/gEA\nAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhT\nwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAA\nAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAA\nAAAAAACgTgn/AAAAAAAAAABAnRL+AQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTw\nDwAAAAAAAAAA1CnhHwAAAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAA\nQJ0S/gEAAAAAAAAAgDol/AMAAAAAAAAAAHVK+AcAAAAAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAA\nAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAAAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwD\nAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAAAAAAAADUqeZqHbhUKuVjH/tYXn311bS0tOTjH/94\nBgYGVm//0pe+lE9+8pNpbm7OBz7wgTz22GNXfczQ0FA+8pGPpFAo5ODBg/noRz+aYrGYz33uc3ni\niSfS3Nycn/qpn8p73/veTE5O5md/9mczMzOTlpaW/MZv/EZ6e3ur9TQBAAAAAAAAAKBmqrb55wtf\n+ELm5+fz5JNP5ud+7ufy67/+66u3LSws5PHHH8+nP/3pfOYzn8mTTz6ZCxcuXPUxjz/+eH7mZ34m\nn/3sZ1Mul/PFL34xo6Oj+cxnPpMnnngin/rUp/KJT3wi8/Pz+f3f//0cOnQon/3sZ/P+978/n/rU\np6r1FAEAAAAAAAAAoKaqtvnn2WefzXve854kyYMPPpiXX3559bbjx4+nv78/PT09SZKHH344Tz/9\ndI4cOfKWj/na176WRx55JEnyPd/zPfnKV76SYrGYhx56KC0tLWlpaUl/f39eeeWVHDp0KCdOnEiS\nTE1Npbm5ak8RAAAAAAAAAABqqmrJmKmpqXR2dq7+vqmpKYuLi2lubs7U1FS6urpWb+vo6MjU1NRV\nH1Mul1MoFFbvOzk5edVj3HXXXfnKV76S97///RkfH8+///f//rqzbt3anubmpvV42qyj3t6u698J\noA65vgGNyvUNaGSucUCjcn0DGpXrG9CoXN+At1K18E9nZ2emp6dXf18qlVa38Hz7bdPT0+nq6rrq\nY4rF4hvu293dfdVj/NZv/Vb+7t/9u/nRH/3RvPLKK/nQhz6Uz3/+89ec9fLlmVt+vqyv3t6ujI5O\n1noMgHXn+gY0Ktc3oJG5xgGNyvUNaFSub0Cjcn0DrhYALL7lV9fB4cOH8+UvfzlJcuTIkRw6dGj1\ntgMHDmRoaChjY2OZn5/PM888k4ceeuiqj3nnO9+Zr371q0mSL3/5y3n3u9+d+++/P88++2zm5uYy\nOTmZ48eP59ChQ+nu7l7dCLRt27Y3BIQAAAAAAAAAAKCRFMrlcrkaBy6VSvnYxz6Wo0ePplwu59d+\n7dfy9a9/PTMzM/mRH/mRfOlLX8onP/nJlMvlfOADH8iP/diPveVjDhw4kJMnT+aXfumXsrCwkP37\n9+fjH/94mpqa8rnPfS5PPvlkyuVy/v7f//t59NFHc/78+fziL/5iZmZmsri4mJ/+6Z/OX/2rf/Wa\ns0pH3n6kVoFG5foGNCrXN6CRucYBjcr1DWhUrm9Ao3J9A662+adq4Z964gJ5+/EPF9CoXN+ARuX6\nBjQy1zigUbm+AY3K9Q1oVK5vwIbXfgEAAAAAAAAAANUl/AMAAAAAAAAAAHVK+AcAAACL/VsDAAAg\nAElEQVQAAAAAAOqU8A8AAAAAAAAAANQp4R8AAAAAAAAAAKhTwj8AAAAAAAAAAFCnhH8AAAAAAAAA\nAKBOCf8AAAAAAAAAAECdEv4BAAAAAAAAAIA6JfwDAAAAAAAAAAB1SvgHAAAAAAAAAADqlPAPAAAA\nAAAAAADUKeEfAAAAAAAAAACoU8I/AAAAAAAAAABQp4R/AAAAAAAAAACgTgn/AAAAAAAAAABAnRL+\nAQAAAAAAAACAOiX8AwAAAAAAAAAAdUr4BwAAAAAAAAAA6pTwDwAAAAAAAAAA1Kk1hX9efPHF/Jt/\n828yPz+fn/iJn8h3f/d356mnnqr2bAAAAAAAAAAAwDWsKfzz8Y9/PO9617vy1FNPpbW1NX/wB3+Q\nf/2v/3W1ZwMAAAAAAAAAAK5hTeGfUqmU7/zO78yf/dmf5Qd/8Adz9913Z2lpqdqzAQAAAAAAAAAA\n17Cm8E9bW1s+/elP56tf/Wre+9735t/+23+bjo6Oas8GAAAAAAAAAABcw5rCP//0n/7TzMzM5F/+\ny3+Znp6ejIyM5J/9s39W7dkAAAAAAAAAAIBraF7LnbZu3Zrv//7vz9vf/vZ8/vOfT6lUSrG4ptwQ\nAAAAAAAAAABQJWtK8Pz8z/98nnrqqbzwwgv5zd/8zXR2duYjH/lItWcDAAAAAAAAAACuYU3hn9On\nT+fDH/5wnnrqqfztv/238w/+wT/I+Ph4tWcDAAAAAAAAAACuYU3hn6WlpVy6dClf/OIX873f+70Z\nHR3N7OxstWcDAAAAAAAAAACuoXktd/rgBz+Yxx57LO973/ty6NChPProo/nwhz9c7dkAAAAAAAAA\nAIBrWFP452/8jb+RRx99NIODg/nGN76RP/7jP05z85oeCgAAAAAAAAAAVMmaEjwvvfRSPvzhD2fL\nli0plUq5cOFCPvnJT+aBBx6o9nwAAAAAAAAAAMBVrCn884//8T/OP//n/3w17HPkyJH86q/+an7v\n936vqsMBAAAAAAAAAABXV1zLnWZmZt6w5efBBx/M3Nxc1YYCAAAAAAAAAACub03hn56ennzhC19Y\n/f2f/MmfZMuWLVUbCgAAAAAAAAAAuL411X796q/+an7+538+/+gf/aMkyZ49e/Ibv/EbVR0MAAAA\nAAAAAAC4tmuGf378x388hUIhSdLa2prdu3enXC6nra0tH/3oR/Pv/t2/25AhAQAAAAAAAACAN7tm\n+OdDH/rQRs0BAAAAAAAAAADcoGuGfx555JGNmgMAAAAAAAAAALhBxVoPAAAAAAAAAAAA3BzhHwAA\nAAAAAAAAqFPCPwAAAAAAAAAAUKeEfwAAAAAAAAAAoE4J/wAAAAAAAAAAQJ0S/gEAAAAAAAAAgDol\n/AMAAAAAAAAAAHVK+AcA7gDlcjlDE8MplUu1HgUAAAAAAABYR8I/AHAHePniN/JPnvnNPH3u+VqP\nAgAAAAAAAKwj4R8AuAMcvXw8STI8dabGkwAAAAAAAADrSfgHAO4AQxOnkyQjMxdqPAkAAAAAAACw\nnoR/AKDBlcql1Y0/o8I/AAAAAAAA0FCEfwCgwZ2bHsn80nyS5MLspSyVlmo8EQAAAAAAALBehH8A\noMENTS5XfjUVmlIql3Jx9nKNJwIAAAAAAADWi/APADS4UxPDSZLv2Pb2JMnIzGgtxwEAAAAAAADW\nkfAPADS4oYnTaSo05cHedyVJRq9crPFEAAAAAAAAwHoR/gGABrZYWsyZqbO5p/Pu7OrcmSQZmblQ\n46kAAAAAAACA9SL8AwAN7MzU61ksL2Wge09627YlSUavCP8AAAAAAABAoxD+AYAGNjRxOknS37U7\nrc2t6W7pysjMaI2nAgAAAAAAANaL8A8ANLChyeEkyUD37iRJb9v2XJody0JpsZZjAQAAAAAAAOtE\n+AcAGtipidNpKW7Kzva+JMmO9u0pp5yLVy7WeDIAAAAAAABgPQj/AECDmluaz+vT57On6540FZuS\nJL3t25MkIzMXajkaAAAAAAAAsE6EfwCgQQ1Pnkk55Qx071n9Wl/bSvjnivAPAAAAAAAANALhHwBo\nUKcmhpMkA127V79m8w8AAAAAAAA0FuEfAGhQQ5OnkyT937L5p7dtW5JkVPgHAAAAAAAAGoLwDwA0\nqKGJ4bQ1t60GfpKkpaklWzdvUfsFAAAAAAAADUL4BwAa0MzCTEavXMxA1+4UCoU33Nbbvj1jc+OZ\nX5qv0XQAAAAAAADAehH+AYAGdGryTJKkv3v3m27rq1R/Xbm4oTMBAAAAAAAA60/4BwAa0NDEcJJk\noHvPm27rbd+eJBmZUf0FAAAAAAAA9U74BwAa0NDk6STJQNebN//saO9NkowK/wAAAAAAAEDdE/4B\ngAY0NDGc7paubNnc86bbettWNv9cEf4BAAAAAACAeif8AwANZnxuMmNz4xno3p1CofCm27e33ZVC\nChmZGa3BdAAAAAAAAMB6Ev4BgAZzanI4SdL/FpVfSdJcbM5drVtt/gEAAAAAAIAGIPwDAA1maGI5\n/DPQveeq9+lr357J+alcWZzdqLEAAAAAAACAKhD+AYAGMzR5Okky0HXt8E+SjNr+AwAAAAAAAHVN\n+AcAGki5XM6pidPZ1ro1nS0dV71fb9tK+GdG+AcAAAAAAADqmfAPADSQS7OXM7Uwnf5rVH4l39z8\nMyL8AwAAAAAAAHVN+AcAGsg3K792X/N+lc0/I2q/AAAAAAAAoK4J/wBAAxmaGE6SDHRfO/yzrXVr\nioWi2i8AAAAAAACoc8I/ANBAhiaGU0ghe66z+aep2JTtbXfZ/AMAAAAAAAB1TvgHABpEqVzK8OSZ\n9LX3pq259br372vbnumFmUwvzGzAdAAAAAAAAEA1CP8AQIMYmbmQ2aW561Z+VfS2b199HAAAAAAA\nAFCfhH8AoEEMTQwnSQa69qzp/n1tvUmSUdVfAAAAAAAAULeEfwCgQQxNnk6SNW/+6bP5BwAAAAAA\nAOqe8A8ANIhTE8MpFoq5p3PXmu7f21YJ/4xWcywAAAAAAACgioR/AKABLJWWcnrqbHZ17ExL06Y1\nPWZra0+ai81qvwAAAAAAAKCOCf8AQAM4O30uC6XFNVd+JUmxUExv27aMzFxMuVyu4nQAAAAAAABA\ntQj/AEADGJoYTpIMdO25ocf1tW3P7NJsphamqzEWAAAAAAAAUGXCPwDQAE5Nnk6S9HffWPint317\nkmRkRvUXAAAAAAAA1CPhHwBoAEMTp7Op2JxdHTtu6HF9bZXwz2g1xgIAAAAAAACqTPgHAOrc/NJC\nzk6fy+7Oe9JUbLqhx65u/rli8w8AAAAAAADUI+EfIKVyKU+++h/zwujLtR4FuAmnp86mVC5loHv3\nDT+2byX8M6r2CwAAAAAAAOqS8A+Q18ZO5stn/jJPDf5prUcBbsLQxHCSpL/rxsM/PS3daWlqsfkH\nAAAAAAAA6pTwD5DnR15MkgxPncn80nyNpwFu1NDE6STJQPeeG35soVBIb9u2jM5cSLlcXu/RAAAA\nAAAAgCoT/oE7XKlcyvOjL63+uhIiAOrHqcnhtDa1rlZ43ai+tu2ZLy1kfH5inScDAAAAAAAAqk34\nB+5wr42dzOT8VLZs7kmSnBwfqvFEwI24sjib8zOj6e+6J8XCzf2z3tfemyQZmVH9BQAAAAAAAPVG\n+AfucJXKr7+5/4eSJCcmBms4DXCjhidvvvKrondlY9Co8A8AAAAAAADUHeEfuINVKr86N3Xk3Tse\nzLbWrTkxPpRyuVzr0YA1qlT19Xfvvulj9LUth3/OXxldl5kAAAAAAACAjSP8A3ewSuXXA73vSlOx\nKft6BjK9MJORK7Z/QL0YmhhOkgx03fzmn77VzT8X12UmAAAAAAAAYOMI/8Ad7LmVyq/DffcnSfb3\n7E2SnBgfqtVIwA0amjydzk0duat1y00fo3NTR9qaWwX/AAAAAAAAoA4J/8AdqlQu5chK5dfBLfuT\nJPt6+pMkJ8cHazgZsFaT81O5NHs5/d27UygUbvo4hUIhvW3bc+HKxZTKpXWcEAAAAAAAAKg24R+4\nQ1Uqvx5cqfxKkns67k5LcZPNP1An1qPyq6KvfXsWS4u5PDt+y8cCAAAAAAAANo7wD9yhKpVfD61U\nfiVJU7Epe7v78/r0+cwsXKnVaMAanZo8nSQZ6N59y8fqbdueJBm5MnrLxwIAAAAAAAA2jvAP3IFK\n5VKOjLyx8qtif89AkuTkxKlajAbcgKGJSvhnfTb/JMnozIVbPhYAAAAAAACwcYR/4A702tiJTC68\nsfKrYl8l/DM+WIPJgLUql8sZmhzO1s1b0t3SdcvHq4R/Rq4I/wAAAAAAAEA9Ef6BO9BzIy8leWPl\nV0Ul/HNifGhDZ6qV89Mj+W+vP5NyuVzrUeCGjM2NZ3J+al0qv5Kkr83mHwAAAAAAAKhHzdU6cKlU\nysc+9rG8+uqraWlpycc//vEMDAys3v6lL30pn/zkJ9Pc3JwPfOADeeyxx676mKGhoXzkIx9JoVDI\nwYMH89GPfjTFYjGf+9zn8sQTT6S5uTk/9VM/lfe+971ZWlrK448/npdffjnz8/P50Ic+lPe+973V\neppQd65V+ZUkHZvas7O9L4MTp7JUWnrTZqBG8x9e+6N87eIr2dnel309/bUeB9ZsaGI4SdLftT7h\nn/ZN7enY1J4R4R8AAAAAAACoK1Xb/POFL3wh8/PzefLJJ/NzP/dz+fVf//XV2xYWFvL444/n05/+\ndD7zmc/kySefzIULF676mMcffzw/8zM/k89+9rMpl8v54he/mNHR0XzmM5/JE088kU996lP5xCc+\nkfn5+fzhH/5hFhcX88QTT+S3f/u3MzR0Z2wvgbW6VuVXxf6egcwtzefs9PkNnm5jLZWW8trYiSTJ\ncyMv1HgauDFDk6eTJAPde9btmH1t23Nh9lKWSkvrdkwAAAAAAACguqoW/nn22Wfznve8J0ny4IMP\n5uWXX1697fjx4+nv709PT09aWlry8MMP5+mnn77qY772ta/lkUceSZJ8z/d8T/7yL/8yL774Yh56\n6KG0tLSkq6sr/f39eeWVV/IXf/EX2bFjR37yJ38yv/iLv5j3ve991XqKUJeuVflVsa9nb5Lk5Pjg\nBkxUO6cmz2RuaT5J8vzIS6q/qCvrvfknSfrae1Mql3Jx9vK6HRMAAAAANtITr/5BPv3ck7UeAwBg\nQ1Ut/DM1NZXOzs7V3zc1NWVxcXH1tq6urtXbOjo6MjU1ddXHlMvlFAqF1ftOTk5e9RiXL1/OqVOn\n8q/+1b/K3/t7fy//8B/+w2o9Rag716v8qtjfs1zRd2K8sTdnHbt8PEnStakzl+fGMjhxqsYTwdqU\ny+Wcmjydvrbtad/Utm7H7W3bniQZvaL6CwAAAID6c2XxSv7izH/Pnxz/r1lYWqj1OAAAG6a5Wgfu\n7OzM9PT06u9LpVKam5vf8rbp6el0dXVd9THFYvEN9+3u7r7qMbZs2ZLv/d7vTaFQyCOPPJLBwcHr\nzrp1a3uam9+6/oja6e3tuv6duCEvn381kwtT+f4D78nOHVuuer9t2zvS+XxHhqZONfR/h8GvL4eb\n/rcH/1Z+++nP5BuTr+SRe99V46m4E9zq/1evT47kyuJsHt5137r+P3rvld3JyWSmONnQ/+8D1ePa\nATQy1zigUbm+AY3kubODKaecpdJSpprHcmj71T8EC1CvfP8GvJWqhX8OHz6cP/3TP8373//+HDly\nJIcOHVq97cCBAxkaGsrY2Fja29vzzDPP5IMf/GAKhcJbPuad73xnvvrVr+a7vuu78uUvfznf/d3f\nnfvvvz//4l/8i8zNzWV+fj7Hjx/PoUOH8vDDD+fP//zP8+ijj+aVV17J3Xfffd1ZL1+eqdYfAzep\nt7cro6OTtR6j4fzpsa8mSd7Z9Y7r/vnu7dqTly++ktdOn0nP5u6NGG9DLZWW8o3R17KzvS9v73hH\n2prb8pWhZ/JD9/xAioWqLUWDdbm+PX/ulSTJjs071/VauXmxI0lyYuRMRre6BgM3xvdvQCNzjQMa\nlesb0GieHnp59dfPn3olW8u9NZwGYP35/g24WgCwauGfH/iBH8hXvvKV/OiP/mjK5XJ+7dd+LZ//\n/OczMzOTH/mRH8lHPvKRfPCDH0y5XM4HPvCB7Nix4y0fkyS/8Au/kF/6pV/KJz7xiezfvz+PPvpo\nmpqa8uM//uP5O3/n76RcLudnf/Zns3nz5jz22GP56Ec/msceeyzlcjm//Mu/XK2nCHXlWyu/7t2y\n77r339ezNy9ffCUnx4fyYN99GzDhxhqaPJ35pfkc2nogzcXmPLD9O/Lfzz2TwYlT2d+zt9bjwTUN\nTQ4nSQa69qzrcfvUfgEAAABQx167fHL114Pjp5L1ffsMAOC2VbXwT7FYzK/8yq+84WsHDhxY/fX7\n3ve+vO9977vuY5Jk3759+d3f/d03ff2xxx7LY4899oavtbS05PHHH7+V0aEhvTZ2IpMLU/lru74r\nTcXr19zt7xlIkpxo0PDP0cvHkyQHty5flw7vuD///dwzee78i8I/De7/PfqHGZo4nf/z4Z+q2y1P\nQxOnU0ghu7t2retxW5tb093SlZEZ4R8AAAAA6suVxdmcmjyd/T0DGZ29mMGJU7UeCQBgw9TnTz2B\nG/bsyItJksN9D6zp/gPde1IsFHNifKiaY9XMsUr4Z8ty5/Pbtt6b9ua2PD/6UkrlUi1Ho4rK5XKe\nPvd8Tk4M5dXLr9V6nJuyVFrK8OSZ3N2xI5ubWtb9+L1t23Np9nIWSovrfmwAoH6VyqXMLy3UegwA\nALiqE+ODKaecg1sO5OBde3Nx9nIm56dqPRYAwIYQ/oE7QKlcygsjL6+58itJNje1ZHfn3RmePN1w\nIYDF0mKOjw9mV8fOdLV0Jsly9VfvuzI2N56T4z4R0qhGr1zM9OJMkuR/nHuuxtPcnHMzI1koLWSg\nuzo7i/vat6ecci5euViV4wMA9ek/Hf8v+cW//MeZXpip9SgAAPCWjl0+kWT5A5/3blt+H9z2HwDg\nTiH8A3eASuXXg333ranyq2Jfz94slpe3jDSSwYnhLJQWViu/Kg733Z8keW7khVqMxQYYmhhe/fWR\n0ZcztzRfw2luztDE6STJQPfuqhy/r317kqj+AgDe4OuXXs30wszqBk0AALjdHBs7kWKhmH09Azm0\nEv7xQU8A4E4h/AN3gNXKr977b+hx+3sGkiyvS20klR9YHFqp/Kp429Z709HcnudHXlT91aAqn/R5\n29Z7M780nxdGX67xRDduaHI5wDTQVaXNP20r4Z8rwj8AwLL5pYW8Pn0+SXJ0TPgHAIDbz+zibE5N\nns5A1+60Nm/OgbuW39u2+QcAuFMI/0CDWyot3XDlV0Ul/HNyfKgao9XM0bETKaSQe7e+MfzTVGzK\nA73fkfH5yZxosOfMsqGJ4RQLxfyv9/5wkvqs/jo1MZzmQlN2de6syvF7Vzb/jNr8AwCsODv9+mo4\n/qjNPwAA3IZOjA+lVC6tbnvvaGnPzva+DE0M+6AnAHBHEP6BBvfa2MmbqvxKkq2bt2TL5p6cGB9K\nuVyu0oQba6G0mJPjg9nVuTOdmzredPvhvgeSqP5qRIulxQxPnc3uzruzu2tXBrr35JVLxzI+N1Hr\n0dZsobSYM1Pnck/XrjQXm6tyjt62bUnUfgEA31SpAS4Winl9+nwm56dqPBEAALzRsbETSZJ7v2Xb\n+97u/swuzeXc9EitxgIA2DDCP9Dgnhu9ucqvJCkUCtnXM5CJ+clcnL283qPVxOD4UBZKizm05cBb\n3n5o64F0bGrPkZGXfCKkwZyZej2LpcUMdPcnSR7ZeTjllPP0+edrPNnanZk6m6XyUga6dlftHC1N\nLdmyuUftFwCwqhL+eaj3viTf/MEKAADcLo5dPpFioZgDK9vsk2Rvz54kyeDEcK3GAgDYMMI/0MCW\nSks5MvJSujZ13nDlV0Wl+uvE+OA6TlY7R1d+UFFZ//rtmopNebD3XRmfn8zxscENnIxqq7zIH+he\nftH/7r4HUywU66r6a2jidJKkf+U5VEtfe2/G5sYzvzRf1fMAAPVhePJMmovNec89fyWJ6i8AAG4v\nc0vzGZoczp6ue9La3Lr69b3dy+9tD04M1Wo0AIANI/wDDey1sZOZWpjOA33vuuHKr4pK+OfkeGO8\nQDp2+XgKKeTgNcJQ36z+enGjxmIDDK2Ef/atBGc6WzryHdvenjNTr+fM1Ou1HG3NKs+hmpt/kqRv\npfpr9MrFqp4HALj9LZYWc3bqXO7puDv7ewbS0tSSY8I/AADcRk6MD6ZULr1p2/uujh1pKW6y+QcA\nuCMI/0ADq1R+Pdx345VfFbs7d2VTsTknGiD8M7+0kJPjQ9ndeXfaN7Vf9X4Ht+xP56aOPD/6ouqv\nBjI4cSqtTa3pa+9d/dojOw8nSd1s/zk1eTotTS3Z2dFX1fP0tm9PkozMqP4CgDvd69MjWSwvZU/X\nrjQVm3KgZ2/OzYxkfG6y1qMBAECS5cqvJG/aft9UbEp/9+6cnTqX2cW5WowGALBhhH+gQb2x8mv/\nTR+nudic/q49OTP1emYXZ9dxwo03ODGUxfLSVSu/KpqKTXmg912ZnJ/Ka2MnN2g6qmlm4UrOz4xm\noHt3ioVv/tN337Z3pK25NU+fe/62D3rNLs7l3PRI+rvuecNzqIa+tuXwz6jwDwDc8YYnl2tH93Td\nkySrn6Y+Nmb7DwAAt4djYydSSCEH3mLb+97u/pRTzqmV72sBABqV8A80qG+t/LrVoMD+noGUU677\n9ahHV+oJDl0n/JMkh1e2Jan+agxDkyt1WSuVXxWbmjblcN/9GZ+fWP37cbsanjyTcsoZ6Npz/Tvf\nosp2pJErwj8AcKcbnjyTJOlfqR2tBOlVfwEAcDuYX5rP0MRw9nTdk7bm1jfdvre7P8nyVnAAgEYm\n/AMN6rmRF5LcWuVXxf6egSTJyTqv/jp6efkTIN++/vWtVKq/joy8dNtvhOH6hlaCa5UX+9/qkZ0P\nJ7n9q7++GWDaXfVzbW+7K4UU1H4BABmePJNioZi7O3cmSfq77snmppYctfkHAIDbwInxoSyVl3Jw\n61tvv9/XsxL+GRf+AQAam/APNKCl0lKOjL58y5VfFftWwj8n6jj8M780n8GJUyufAGm77v2bik15\nsO++TC5M5bWxExswIdU0uBr+efPWnP09A9nWujXPj76UuaX5jR5tzU5NLK8m7t+AzT/Nxebc1bo1\nI1dGq34uAOD2tVRayump17OrY2c2FZuTLH+ffGDLvozMXMjY3HiNJwQA4E53bOW924NXeR98y+ae\nbNnck5MTp1IulzdyNACADSX8Aw2oUvn1YN99t1z5lSRdLZ3pa9uekxNDdbsF53qfAHkrla1Jz6r+\nqmvlcjmDE6eydfOW9GzuftPtxUIx37nzcOaX5vPC6Ms1mHBthiaG09Hcnu1td23I+frat2dyfipX\nFmc35HwAwO3n/MxoFkoL2dN1zxu+fmhLpfpLSB4AgNo6trLt/UDP1be97+3uz8T8ZC7PjW3gZAAA\nG0v4BxpQpfLrcN9963bMfT0DubI4m3PTI+t2zI107PJyLUHlBxVrce+W/ena1JkjIy9lqbRUrdGo\nsstzY5mcn8rAW2z9qXhk5+Ekt2/119TCdC7MXkp/9+4UCoUNOWdf+/YkyegV1V8AcKcanjyTJG8O\n/2xd/p766GXVXwAA1M780kKGJk5ld9eutG+6+rb3yjbwynZwAIBGJPwDDWa9K78q9q9Uf52s0+qv\no2PHUywUc2DL1T8B8u2KhWIe7LsvUwvTq+tjqT/Xqvyq2NHem4HuPXnl0rGMz01s1GhrNjyx/IO3\nga7dG3bO3raV8M+M8A8A3KmuFv7Z3bkrrU2tOTom/AMAQO0MTgxlsbx01cqvir3d/cv3Hz+1EWMB\nANSE8A80mGNjJ9a18qtif8/eJMv1WfVmdnEugxPD2dN1T9qaW2/osYdXqr+eV/1VtwYnll/UXyv8\nkyxv/ymnnGfOH9mIsW7I0ORygKn/Os9hPVU2/4zMXNywcwIAt5dTk2dSSCG7O+9+w9ebik25d8u+\nXLhyMZdnVScAAFAbR1dqaK8X/unv3p1ioZiTE8I/AEDjEv6BBlMJqaxn5VeS7OzoS2tTa05MDK7r\ncTfCyfGhlMqlG6r8qrh3y750tXTmyOjLqr/q1OD4cAopZM91tua8u+/BFAvFfPXcsxs02doNTZxO\nkgx0b/zmn5Eroxt2TgDg9lEql3J66kx2dvSlpanlTber/gIAoNZeGzuRQgq59zrb3jc3tWRXx84M\nT572Hi8A0LCEf6CBVKvyK1muwNrX05+RmQuZmp9e12NXW6WO4ODWGw//FAvFPNR7v+qvOrVUWsrw\n5Onc3bEjrc2br3nfzpaOfMe2t+XM1Os5M/X6Bk24NkMTw+lp6c6WzT0bds5trVtTLBTVfgHAHWr0\nysXMLc2/qfKr4uDW5dcbqr8AAKiFhaWFnJw4lXs67077pvbr3n9vT38WSou33ft+AADrRfgHGki1\nKr8q9vUMJElOTtRX9dfRy8dTLBRzYKW67EZVtig9N/LCOk7FRnh9+nzmSwurvd7X88jOh5Mk/+Pc\nc9Uc64aMzY1nfH4i/Ru49SdZrvPY3nZXRq4I/wDAnWh48kySXDX8s7tzV9qa23LssoA8AAAbb3Di\nVBZLi6uh9OupvD84qPoLAGhQwj/QQKpV+VWxfyX8c2K8fsI/s4uzOTV5OgNde667+eVqDmzZl+6W\nLtVfdWhoYjhJsrd7z5ruf9+2d6StuTVPn3s+pXKpmqOt2WrlV9fansN66mvbnumFmUwvzGz4uQGA\n2loN/3S+dfinWCjm4Jb9uTh7KRevXN7I0QAAIEdXtrQf3LK2be/7Vt4fHFx5vxAAoNEI/0CDqGbl\nV8Xe7v4UUsiJ8cGqHL8ajo8PplQurfkTIG+lWCjmob77Mr0wk6OX1RrUk8oneZA2X+kAACAASURB\nVPb2rG3zz6amTXmo9/6Mz0/cNv+tT628ITGwwZt/kqS3fXuSZET1FwDccSrhn91du656H9VfAADU\nymuXT6SQQu7dsm9N9+9r701bc2vdbbUHAFgr4R9oENWu/EqStubW7OrcmaGJ4brZgFMJcBzaurZP\ngFzN4b4HkiTPrWxXoj4MTgynpbgpO9v71vyYR3YeTnL7VH8NTS5v/tno2q9kefNPkoyq/gKAO0q5\nXM7w5Jn0tW1PW3PrVe93aOVT1sduk9A0AAB3hoXSYk5ODGVX5850bGpf02OKhWIGuvZkZOaCLdcA\nQEMS/oEG8c3Kr/urep59PQNZKC3m9NTZqp5nvRy7fCJNhabs79l7S8fZ3zOQnpauvKD6q27MLs7l\n9enz6e/enaZi05ofd2DL3tzVujXPj76UuaX5Kk54feVyOacmTmd7613p3NSx4efva+9NYvMPANxp\nLs5ezszilezpeuvKr4pdnTvT0dyeo5ePp1wub9B0AADc6YYmhrNQWszBG9yAv29lO7jqLwCgEQn/\nQANYrfxq6VzzmtObtb97IElyYvz2X496ZfFKTk2ezkD3nmxuarmlYy1Xf92f6cWZvHr5tXWakGoa\nnjydcsoZWOnzXqtioZhHdjyU+aX5vDD6cpWmW5uLs5cyvThzw89hvfTa/AMAd6RK5df1wj/FQjH3\nbt2fy3NjuTh7aSNGAwCA1c2TB29w2/ve7kr459S6zwQAUGvCP9AAViu/eqtX+VVR2aBzYnywqudZ\nD6+NnUw55Vuu/Kp4aGWrkuqv+lD5BE/lRf2NuF2qv4ZWnkMtKr+SZGtrT5qLzRmZGa3J+QGA2lhr\n+Cf5ZvXX0csnqjoTAABUHBtb/t7z3p4b+yBs5QN2wj8AQCMS/oEG8NwGVX4lyfa2u9K1qbMuNv8c\nW/kBROUHErdqufqrOy+MvpzF0uK6HJPq+Wb458a35uzo6MtA1568culYxucm1nu0NRuaOJ0kGeiq\nTfinWChme9u2jMxcVOUBAHeQGwr/bK2Ef45XdSYAAEiSxdJiTowPZVfHznS2dNzQY7taOrO9bVuG\nxoe91wUANBzhH6hzS6WlvLBBlV9JUigUsr9nIGNz47k8O1b1892Ko2PH01xoyr6egXU5XrFQzOG+\n+zOzeKUhqr8a/QXu4MSpdLd0ZevmLTf1+EfuPpxyynnm/JF1nmzthiaHU0hhTT94q5YdbdszuzSb\nqYXpms0AAGyccrmcU5Ons611azo2tV/3/nd37Ejnpo4cGzve8N9fAgBQe0MTp7NQWsjBrftv6vF7\nu/dkenFGzT0A0HCEf6DOVSq/HtqAyq+KSpjmdq7+mlm4ktOTZ7O3pz8tTZvW7biHdzRG9de56fP5\nhf/6y/nKma/WepSqGJsbz9jceAa696RQKNzUMd7d92CKhWLNqr9K5VJOTZ7Jjo6+tDa31mSGJOlt\n354kGZnxhggA3AnG5ycytTC95vBxoVDIwS37MzY3ntErF6s8HQAAd7pjY8sbJw/e5Lb3fd3L722f\nHFf9BQA0FuEfqHOVEMpDG1D5VbG/Z2+S2/sF0mtjJ1JO+aZfBF7N3u7+bNnckxdGv1bX1V//4bU/\nyvTiTL5ao2BLtQ3dQuVXRWdLR75j29tyeupszk6dW6/R1uz8zGjml+ZrVvlV0de2Ev7xaSgAuCOc\nWqkdvZHNg5Xqr2OqvwAAqLJjl08kyU1vwd/bs/x+4eDK+4cAAI1C+Afq2EZXflX0d92TpkJTTowP\nbdg5b9TRlU+AVH4QsV4q1V9XFq/klUvH1vXYG+UbF4/m6xdfTZKcnBjK7OJcjSdaf4Or4Z/+WzrO\nIzsfTpKabP+pBJgGbiHAtB6+uflntKZzAAAbY3jyTJKbC/9UvgcHAIBqWCwt5sT4YO7u2JGuls6b\nOsY9nbvSXGjK4MTt+8FWAICbIfwDdawWlV9JsqlpU/q77snw1JnML81v2HlvxLHLJ9JcbM6+Wwx/\nvJXKlqV6rP4qlUv5/df+KIUU8q5t70ipXMprYydqPda6q4R/+m9xa859296RtubWPH3++ZTKpfUY\nbc2GVj51P9Bd480/K+GfUbVfAHBHGJ668fDPjva+dLV05tjl4ymXy9UaDQCAO9ypydOZLy3k4Jb9\nN32MTcXm7Om6J6enzmZ+aWEdpwMAqC3hH6hjtaj8qtjXM5BSubQaULidTC/M5MzU69nX3Z9NTZvW\n/fh7u/dk6+YtefHC17JQZ9Vf/+3s0zk7fS7fffe7833970mSvHK5PjcYXU2pXMqpieHsaO9L+6a2\nWzrWpqZNeaj3/ozNjefoBtdYDE0Op6nQlHs6d23oeb9dT0t3Woqb1H4BwB1iePJstmzuSXdL15of\nUygUcmjLgYzPT9oWCABA1VQqvw7e4rb3vd39KZVLOb0SfAcAaATCP1CnalX5VbG/Z2+S5ORtWP11\nbOxEyimve+VXRbFQzEN99+XK4mxeuXS0KueohtnF2Xz+xFNpaWrJD+//wezr2ZtNxU159dJrtR5t\nXZ2fGc3s0lz2rlNd1iM7DyfZ2OqvxdJizkyeza7OndlUbN6w876VQqGQ3vbtGZ254JP8ANDgJuYn\nMzY3nj1dNx4+Prha/dV4WyUBALg9HFv5XvNW3w/f27O8Lf7kuOovAKBxCP9AnapV5VfFvpUXSCcm\nBjf83NdzbGVDy6Gt91btHIf7HkiSPD/yUtXOsd7+ZOjPMrkwlR/s/95s2dyTTcXm3LtlX85On8v4\n3EStx1s3lcqv9Qr/HNiyN3e1bs2R0Zc2rObu7NS5LJaXMnCLtWXrpa9te+ZLCxmfb5y/JwDAmw1P\nnk2S7Olce+VXxaGV6oVjG7wtEQCAO8NSaSnHxwezs73vhrZUvpW93cvvbQ9OCP8AAI1D+AfqVC0r\nv5Jky+aebGvdmhPjQ7fdNpCjl49nU7E5A+sU/ngrleqvF0bro/rr0uzlfHH4y9myuSff1/89q19/\n+10HkySvXm6c7T+VF+3r9d+/WCjmkR0PZW5pPi+Mfm1djnk9Q5PLAaZq/h2+Eb3t25MkIzOqvwCg\nkQ1PLlf67um68fBPX3tvelq6cnTs+G33+gAAgPp3avJ05pfmc+/W/bd8rG2tW9O5qWP1Q4QAAI1A\n+Ae+TalcqvUI11Xryq+KfT0DmV6YyciV2ycQMDk/lbPT57K/Z29V65IKhUIO77g/s0v1Uf31n47/\nlyyUFvM39/9QWppaVr/+9q3L4Z9XLh2r1WjrbmhiOM3F5tzTefe6HXOjq79OTSz/4O12Cf/0tfcm\nSUaFfwCgoQ1Pnklyc+GfQqGQg1sPZHJ+KudnRtZ7NNgw5XI5gxOn6uK9AQC4k1QqvyobJ29FoVDI\nvp7+XJq9nPG5yVs+HgDA7UD4B77FX559Oh/5i1/Jyxe+UetRrqnWlV8V+3v2JklOjA/VbIZv99rY\nySTJoa0Hqn6uwytbl549/2LVz3UrBidO5enzz2dP1z35zp0PveG2XZ0707mpI69cOtYQn9CeX1rI\nmanXs6dzV5rXMfy1o6MvA1178o1LRzfkDYGhydPZVNyUne19VT/XWvS1rWz+uY2CfgDA+huePJOu\nTZ3Zsrnnph5/aMvy9+BHVX9Rx545fyS/8cxv5QtDf17rUQCAb3Hs8nL4594t6/O+r+ovAKDRCP/A\niiuLs/mPx/840wsz+Z2XP5NXL92+NUiVyq/DNar8qtjfM5AkOTk+WNM5vlXlBw0H1+lF4LUMdO3J\nXa1b89KFr2VhaaHq57sZ5XI5v3/sj5IkH7j3h98UFisWinn7XQczPj+Rcw3wCe3TU2dSKpdWX7yv\np0d2Hk455Tx7/vl1P/a3ml+az+vT57On6540FZuqeq616lP7BWv2zPkjeWrwS1kqLdV6FIAbMr0w\nk4uzl7On654UCoWbOsbBrcI/1L+nV77f//9O/WmmF2ZqPA0AkCxvwj8+fjI72nvTs7lrXY4p/AMA\nNBrhH1jxp8P/NdMLM3mg911JuZz/+6X/57baaFPxrZVfB2pY+ZUkuzp2pqWp5bb6czo6djwtxU0Z\n6N5d9XMVCoUc7rs/s0tz+cZtWv11ZPTlHB8fzAPbv2P1hzHf7m0NVP1V6emuRl3WwzseSLFQrHr1\n1/Dk2ZTKpQ35O7xWnZs60trUavMPXMf80nw++8rv5T+d+C/5zSO/k8n5qVqPBLBmt1L5VdHbti1b\nNvfk2NiJhtgqyZ1nZmEmr1w6lmKhmCuLs/mToT+r9UgAQJLhqTOZW5rPvetQ+VUx0L0nhRQyOC78\nAwA0BuEfSDK1MJ0vnvpyOjd15H9/x4/kJ971Y1ksLeb/euFTGZ48W+vx3uB2qfxKkqZiU/Z29+f1\n6fOZWbhS01mSZHJ+Kuemz2d/z951rXy6lsr2pco2ptvJQmkx//G1P06xUMz/cu/7r3q/t991b5IG\nCf+svFivxuafrpbOvPOut2V46mzOTp1b9+NXDE0uB5j6u26f8E+hUEhf+/ZcuHIxpXKp1uPAbevF\nC1/P3NJ8ulu6cmzsRP7JM795230fAXA16xH+KRQKObjlQKYWpvP69Pn1Gg02zAsXvp6l8lIeHXhv\ntmzuyZ+d/krG5yZqPRYA3PEqlV+H1jH809bcmh0dfRmaHPZ+FwDQEIR/IMmfDP1ZZpfm8kN7vy+t\nzZvzQO+78uPveCyzi3P5rSO/k3PTt08d0nMjLySpfeVXxWr1122wHrVSL3DoKhtuqqG/a3e2td6V\nFy98LfO3WfXXl0//ZS7MXsr/fM//lL723qve767Wrelr355jY8frvqZmaGI4HZvas73trqoc/5Gd\nh5Okqtt/hqq4vehW9LVvz2JpMZdnx2s9Cty2nj63XBPy0w/9ZH543w/m0uzlfOLZT96WAVGAb7ce\n4Z/km9+Lq/6iHj2/8m/2Izsfzl/f+31ZKC3kPw9+scZTAQDHxpbDP/duXb/wT5Ls6+7P3NK84DoA\n0BCEf7jjjc2N589PfyVbN2/JX9v1Xatff2Tn4fzo2/5Wpham85tHficXrlyq4ZTLliu/vnZbVH5V\nrIZ/xgdrO0i++SJwI8M/leqvuaX5fOPSqxt23uuZmp/Ofx78Qtqb2/LX933/de//9q2HMrc0f1uE\nuG7W5PxULsxeWl7ZWyhU5Rz3bX9nWpta8/T556v2iaBTE6fT1tya3rZtVTn+zept254kGVX9BW9p\nan46X7/0avZ07srdHTvy1/d9f37yvv8jhUIhn3r5d/P5E0/5JCFwWxuePJO25rZsa916S8epfC9+\nbEz4h/pSqfza07krfe3b81fu/s70tm3LV85+NReuXKz1eAD8/+zdd3hb93n3//fBIkGCBLj3HqK2\nRE1vW5ElD3nHSWrXSZPG2bN10j6/J+31+zW/tk+z2sZ22szGaewkdbwl25L31t4SKe69B0iQAEiM\n8/xBQpYdSiIpAOeAvF/X5UuxCHy/txRLxDnn/t4fsWgFggEanS1kWtNxxNnDunbx9OG7lhi+JyqE\nEEIIESLNP2LRe7HlVXxBPzeVbMVsNH/ga1fmbeaO8ptxTozw4yM/wzmh7cSL9yO/Vmke+RVSMh2v\n1DTSqnElU6eLLUZL1OOS9Bj99XzLy3j8Xm4s2UqiOeGirw9Ff52J4eiv0MSc4qTITcyxGM1UZ67E\nOTFydtxwOLl9Hvo8AxQm5evmz3hIZsJU80+fu1/jSoTQp8N9xwmqQdZnrz37c6szlvPAuq+Qbk3j\nxZZX+NmJR/D4vRpWKYQQM/P4vfR5BihIyrvkJuq0+BRS4hzUDzdJ06OIKaHIr7XT13dGg5EdJdsI\nqkF2Nr2kcXVCCCHE4tUx1oU34KU8jJFfISXTB1tbRqT5RwghhBCxT19PFoWIsgHPIO907SPTms6m\n7HUzvmZr4TXcVLyVQe8QPz7yc1yTY1Gu8n3vR36t1KyGD0swJ5CdmEXLaJumkVEjE6P0uvsot5dg\nNBijundBUh7p8akcHziti+iv3vE+3up8jwxrGlfnXTar91SmlKGgUDscu80/LaHmH3thRPcJRX/t\n6zkU9rXbXB2A/iK/4JzmH5n8I8SMDvQeQUFhfdaaD/x8ri2bb6//KlUpFZwYqOEHhx6mzy1/joQQ\n+tLh6gKg8BIjv2BqMmZlShnjfjddYz2XvJ4Q0RKK/Fp7TsR2ddZq8mw5HOw9QudYt1alCSGEEIta\naNp7RZgjvwByErOwGC1n7ysKIYQQQsQyaf4Ri9rzzS8TVIPcXLrtgg0jN5Vcz0cKrqbX3cdDR3+B\n2+eJYpVTAsEAR/tP6iryK6Q0uYiJwCRdGmYjaxH5FaIoCtVZq5kMTHJaB9FfTzU+T1ANcnv5zZgM\nplm9x2qyUpxcQMtoe8xOpQhN/imK4OQfgDJHCSlxDo72n2AyMBnWtdtGp5t/ojy9ajYyQ7Ff0rQg\nxJ8Y9AzRNNJChaN0xhHkieYEvrT6M2wpuIqe8V6+d/BBagbrNKhUCCFm1j7WCUw1tYfD+9Ff4Z+U\nKEQkfDjyK8SgGLi19AZUVJ5r2q1hhUIIIcTiFZq+XRGByT8GxUBRUj7d4714Y/SeqBBCCCFEiDT/\niEWra6yH/T2HybPlnI1tOh9FUbij/GauzN1Ex1gXPzn2S7z+iShVOqXO2ci4z62ryK+Q0unxqM0j\nLZrVUDfcCETmBMhsnI3+6j2myf4hdcMNnBg4TbmjhNXpy+f03qrUCoJqkPrp38tYoqoqraPtpFvT\nsFkSI7qXQTGwMbuaicAkx/pPhXXtVtd0A5MOJ/8kmBNINCfI5B8hZnCg9ygAG86J/Powo8HIXRW3\ncN/Sj+ELTPLwsV/yStubqKoarTKFEOK82l3hbf6pcEw1/9TF4OdKsTh9OPLrXMvTqii1F3Ni4LQu\n4q6FEEKIxSSoBmkcaSbdmkZKvCMiexQnF6Ki0jp9KE8IIYQQIlbpq4NAiCja1bwHFZVbSrfPqplG\nURQ+vuQONmStpXm0jZ+eeARfFCOeQiPI9RT5FRJq/tHyRmj9cCPxxjgKbOF5YDFX+bZcMqxpnBis\nCfs0mNkKqkGeqN8JwJ3lO1AUZU7vX5JSAUDtcEPYa4u0fs8g4343xVFqmglFf+3vORzWdVtHO0gy\n22acHKIHmdZ0BjxDmkb8CaE3qqpyoPcIJsXImoyLf4/enLOeb1R/kWSLjScbdvLfNf8T1c8TQggx\nk3ZXJ3FGCxnWtLCsl2ZNIS0+lXpnE0E1GJY1hYikmSK/QhRF4bayGwF4tvEFadwVQgghoqhjrAuP\n3xuRqT8hxfZCAFpG2yK2hxBCCCFENEjzj1iUWkfbOdp/kpLkIlakLZ31+wyKgfuWfozV6cupG27g\nFyd/G5WH4KHIr2RLku4ivwAyEzJINCVo1vzjnBihzzNAuaPkgvFtkaQoCmszVzEZmOTUoDbRX/t6\nDtMx1sXG7Op5TY4psRdiMVo4M1QfgeoiK3RxXpxcGJX9shMzKUoqoGaojpEJV1jWHJ10MTzhpCg5\nf86NW9GSkZBOUA0y6B3WuhQhdKNjrJue8V5WpC8lwWyd1XtK7IV8e8PXKE4uZF/PIf718H/inBiJ\ncKVCCDGzycAkPeN95NvywjphtDKlDI/fQ+dYd9jWFCISzhf5da5yRwnL0pZQ72yidjj2rpeEEEKI\nWNUQwcivkNBhwmZp/hFCCCFEjJPmH7EoPde0G4Bby26Y80N2o8HIp1fcy9LUSk4O1vDI6d9H/DRr\nKPJrTcZK3UV+wVTjS4m9iEHvECMTo1Hf//3Ir7Ko732u6szVABzui37010RgkucaX8BsMHNr6Q3z\nWsNkMFHhKKXH3cew1xnmCiOrdTT6cVkbs6tRUTnUeyQs64V+DYU6jPwKybRmANAv0V9CnHWgd2oC\n2Ias80d+zcQRZ+cbaz/Ppux1tLra+ZcDP6ZZokSEEBroGOtGRaUwTJFfIaEHNBL9JfTuQpFf5wpd\nZz3b+KJM/xExT1VV9nUf4n+/84/89tiTWpcjhBDnVeecbv5JiVzzjyPOTkqcg5bRNvkeL4QQQoiY\npr8uAiEirH64kZqhOqpSKqicZ7OI2WDicys/SZm9mEN9x3is9omINgDpOfIrJBT9pcWDy/rpBwqV\nDm2bf/JtOWRa0zk5EP3or5dbX2dk0sVHCq++pPzrqtSp6K8zMRb91TLajkExUGDLjdqe67JWY1AM\nYYv+apvOFS9Kyg/LepGQmTAVBdLnluYfIWAqbvFQ7zGspniWp1XN+f1mo5n7ln6MuypuwTU5xr8d\n/k/e6zoQgUqFEOL82l2dABSEufkndK0lzT9C7y4U+XWugqQ8qjNX0ebq4Gj/yWiUJkRE9LsHeejo\nL/hNzR9wToywu/4NvH6v1mUJIcSfCKpBGp3NpMWnkhqfEtG9ipMLcE2OMRRjByKFEEIIIc4lzT9i\nUVFVlWenp/7cUrb9ktayGC18cfWnKUzK473uAzxR/1xETgboPfIrJNT8o0X0V52zCaspnvyk6DV+\nzERRFKozVzEZ9HFysDZq+zonRni57Q2SLUlcX3jtJa1VlTLV/FMbQ9Ff/qCfDlcn+bYczEZz1PZN\nsthYlrqE9rEuusZ6Lnm9Vtd084+OJ/9kTMcgSPOPEFManM04J0ZYm7Fy3n//KIrCloKr+Mqaz2Ix\nWvht7eP8se7ZqMSKCiEERK75JyXeQYY1jQZnc8QnpQoxX7OJ/DrXjtLtGBQDzzXtlu/VIuYEggF2\nt7zKP+7/IbXD9SxLW8JVeZcxEZjkcN8JrcsTQog/0TnWg9vviWjkV0ixvRCAllGZyCuEEEKI2CXN\nP2JROTVYS9NIC6vTl1OcXHjJ61lNVr685rPkJmbzesc77JxuLAonvUd+hRQlF2BQDFFv/hn2Ohnw\nDFLuKNHF7091Vij663jU9nyucTeTQR+3lG4n3hR3SWvlJGaRbEmidrg+Zsbcdo5141cDFIXhz/Rc\nbcyuBrjk6T+qqtI62k5qfApJFls4SouITOvUAxGJ/RJiyoGeqdi/Ddlzi/yaSVVqBd9e/zVyErN4\nreNtHjr2S8Z845e8rhBCXEy7qxOzwUxWQkbY165wlOENeM82GAmhN7ON/ArJSshgc/Z6et19YZsA\nKkQ0NI+08n8O/DvPNr1IvCmezyy/hy+t+gzbiq5FQWFv90GtSxRCiD/REIXIr5DQs4KW0faI7yWE\nEEIIESnaPykXIkqCapDnmnajoLCj9NKm/pzLZk7kK2vuJ8Oaxoutr7Kn5bWwrQ3nRn7N7makVixG\nC/m2HNpdHfgCvqjtW6eTyK+Q3MRsshIyODlQw0QUor/aXZ3s6zlEni2HzTnrL3k9RVFYklKBa3KM\nrvFLn2YTDaGL8mINJuasTF9GvDGeA71HLulE+5DXyZhvXNeRXwDxpniSLUky+UcIwBf0c6T/BI44\nO+VhOoWYkZDGA+u+zKr05dQNN/D9Aw+GZbKYEEKcjy/op2u8h3xbDkaDMezrS/SX0LvZRn6d66aS\nrZgMJnY1v4Qv6I9UaUKEhcfv4Q9nnuKHh35C13gPV+Ru5O83PcC6rDUoikJqfAorspbQONIs13lC\nCN2pn/4MGY3JP4VJeRgUA80jbRHfSwghhBAiUqT5RywaR/pO0DHWxfqsteTassO6tj0uia+u+Rwp\ncQ6eaXqB1zveCcu6H4z8Kg7LmpFUYi/GrwZoH4veyd465/RFYIo+mn8URWFt5ip8QR8nB2oiupeq\nqjxZvxMVlTvLd4Rt8lFVajkAZ2Ik+qtldOqiXIvmH4vRTHXmSpwTI9QPN817nVbXVANTYbK+m38A\nMqzpDHmH8cuDDrHInRqsxeP3sC5rdVgnz8Wb4rl/5X3cWLyVAe8Q3z/0EEf7T4ZtfSGEOFf3WA9B\nNRj2yK+Q0Cnteuf8PycJESlzjfwKSYl3cHXeZQxPOHm7c28EKxRi/lRV5WjfCb6794e82fkeWQkZ\nfLP6i9xT9VESzAkfeO21xZcBsK/nkBalCiHEjIJqkAZnM6nxKaRZUyO+n8VoIc+WQ/tYp9zzEkII\nIUTMkuYfsSgEggF2Ne/BoBi4ueT6iOyRZk3ha2vvJ8li4/G6Z3gvDCOTYyXyK6TUXgQQ1eiv+uFG\nEkxW8mw5UdvzYkJTmiId/XVi4DR1zkZWpFVRlVoRtnVDa9UMx0bzT+toO/HGeDIjEFUxG+GI/mob\n7QCgKCn6DUxzlZmQjorKgGdI61KE0NTZyK+s6rCvbVAM7CjdxmdX3Aeqys9P/Ibnm1+6pAljQggx\nkzbX1GeQSDX/OOLsZCak0+hsJhAMRGQPIeZrrpFf59pWdB1xRgsvtryC1z8RgeqEmL9hr5OfnniE\nn5/8b8Z94+wo2cbfbvwG5Y6SGV+/MX8N8cZ49nUfks+bQgjd6B7vZdzvjsrUn5Di5EL8QT+dY91R\n21MIIYQQIpz0300gRBjs7zlMr7ufy3M2kJGQFrF9MhMy+Oqa+0k0JfBozeOX3PxxuDc2Ir9Cot38\nM+gZYtA7TIWjVFfNUVPRX5mcGqyJ2I3gQDDAU427MCgG7ii/OaxrO+LsZCdk0jDcpPuTLm6fm153\nP0XJ+Zr9N1DmKCElzsGR/uNMzjPqrXU0NPknMg/ewinTOnUqus/dr3ElQmjH4/dwcrCG7MQs8iPY\nfLo2cyUPrP8KafEp7Gp+iV+e/K08YBRChFW7a2piZ6Saf2AqntcbmKDNFb3poELMxnwiv0KSLDY+\nUnA1Y75xXmt/O9ylCTEvQTXIa+1v8919P+DEwGkqHKX8Pxu/yY0lWzEbTOd9X5zJwrqsVQxPOCWm\nUQihG6EJ29Fs/ilJLgSgeVSiv4QQQggRm/TztFyICPEF/exqfgmTwcSNJVsjvl+eLYcvr/lL4owW\n/uvUY/OOfgoEAxwbiJ3IL4CUOAeOODtNIy2oqhrx/eqm4wP0EvkVoigK1Zmr8AX9nBqMTPTXW517\n6XMPcGXuJrITs8K+flVqBZNBH81RnOI0H63Tp9WLpy/OtWBQDGzMrmYidLYvSQAAIABJREFUMMnx\n/lNzfn9QDdLm6iQrIQOryRqBCsMrFInQ5xnQuBIhtHOk7yT+oJ8NWWtRFCWie+XZcvj2+q9R6Sjj\naP9JfnjoYQY8gxHdUwixeLS7ujApRnIi8HkypHL6s3q9Ux4oC/2Yb+TXubYUXk2iOYGX295gzDce\n5gqFmJt2Vxc/OPgwf6x/FqNi5N6qu/n62s+TlZg5q/dvzlkPwN4wTLEWQohwCH12jOZ93+LkqYnc\nLSPtUdtTCCGEECKcpPlHLHjvdO5jeMLJNXmX44izR2XPouQCvrDq0xgVI784+d/zOjkVivxamxkb\nkV8w1fRSYi/CNTnGoDfykUD107+vlTpr/oHIRn+5fW6eb36JeGM8N0Uoxi4U/VU73BCR9cMldDFe\nlKxtXFYo+mtf79yjv/rdA3gDXgpjIPILIGP64Ui/W5p/xOJ1oHcq8mt91pqo7GezJPKVNZ/lmvzL\n6Rrv4XsHHuTMkL7/fhZC6F8gGKBzvJtcWzamC0yEuFTljqnP6jJNQujJpUR+hVhN8Wwv2oI34OWl\n1tfDV5wQczARmOSphl187+CPaXW1syFrLX+/+VtcnrthTk3qJclFZCakc7T/BB6/J4IVCyHExQXV\nIA3OZlLiHKTFp0Rt34yEdKwmKy2j+j4MKYQQQghxPrHRUSDEPE0EJnmx5RXijBa2FV0X1b0rUkr5\n3MpPElRV/uP4f815gkoo8mttRmxEfoVEK/pLVVXqhhtJNCdE9KTyfOXasslOzOLUYC1evzesa7/Q\n8grjfjc3FG8hyWIL69ohoSi12qH6iKwfLq2uqTG8xRo3/2QnZlKYlE/tUD2jk645vTc0vagoOT8S\npYVdhnUqOrFPJo+IRco5MUL9cCOl9iLSralR29doMPKxytu5p+ouvIEJHjr2C15vfycqk/aEEAtT\nj7sPf9Af0cgvAHtcEtkJmTSOtBAIBiK6lxCzdSmRX+e6Ou8yHHF23uh4B+fESDhKE2LWTg2e4R/3\n/ZCX294gJc7BV1Z/lr9Y/mfzuk+gKAqbs9fjC/rP3o8SQgit9Iz3MeYbpyKlNOLTds9lUAwUJxfQ\n7xmUqX5CCCGEiEnS/CMWtNfb38blG+MjBVdjsyRGff9laUv4zIp78Qf9PHzsV7S7umb1vliM/AoJ\nNf9EOi5q0DvE8ITzbJOKHlVnrMQX9M87+m0mfe4B3uh4l7T4FK7NvyJs635YvCme4uRCWkfbcfv0\neepPVVVaRtpJiXNgj0vWuhw2ZlcTVIMc7D06p/e1jupjetFsWYwWHHF2+tz9WpcihCYO9h5FRWVD\n1lpN9r8idxPfqP48ieYEHq9/hkdr/4gv6NekFiFEbGtzdQJEvPkHpiZ1TgYmzzY9C6GlcER+hZiN\nZm4q2Yov6OeFllfCVKEQFzY66eK/Tj3GT479kuGJEa4vvJbvbPorlqZVXtK6G7OrUVDY2yPRX0II\nbdU7m4Cpw4nRVpxcCLx/v04IIYQQIpbo84m5EGHg9nl4qe0NEk0JbCm8WrM61mSs4L6lH8Pr9/LQ\n0Z/TM9530ffUDcde5FdIvi0Xs8EU8ck/odiAaOY+z9XaCER/PdP4AgE1wG1lN2E2msO27kyqUitQ\nUalz6jOiYcjrxOUb03zqT8j6rDUYFAP7e+YW/dU62oFBMZBvy4lQZeGXaU3HOTHCZGBS61KEiLqD\nPUcwKAaqM1drVkOpvZi/Wf81CpPyeK/7AP9++KeMTIxqVo8QIja1R7H5J/SZXaK/hB6EI/LrXJuz\n15NpTefdrv30u2U6poicoBrkna59/MPeH3Cw9yhFyQX8zfqvcXv5TViMlktePyXeQVVqBU0jrfTO\n4t6VEEJESn3ovq8j+vd9S+xTzT/NI21R31sIIYQQ4lLFVleBEHPwStsbePweri+6FqspXtNaNmZX\n8/EldzDmG+fBoz9nwDN0wdeHmkViLfILwGQwUZhUQOdYd9jjrs5VNzx1AqRSg4vA2cq1ZZOTmMWp\noTNh+b1ocDZztP8EJclFVIfpRvWFVKVUAHBGp9FfLaNTF+F6mZiTZLGxLLWSdlcn3eO9s3pPIBig\nY6yTnMSssNysjZbQCel+if4Si0zPeC/tY10sS63UZKLguVLiHXyz+ktsyFpL82gr3zv4oJxMFELM\nSbtrqgE5NzHyDcihU9v10vwjdCBckV8hRoORHaXbCKpBdjbvDsuaQnxYz3gf/37kpzxW+wSqGuTu\nytt4YN2XyU/KDes+m3PWA7C351BY1xVCiNlSVZV6ZxOOOHtUo7ZDQvcZQ/cdhRBCCCFiiTT/iAVp\ndNLFqx1vY7ckcU3+5VqXA8BVeZu5o/xmnBMjPHjkZzgnRmZ8XSjyyx6DkV8hpfYiVFRaIvQQcuoi\nsBGbOZGcxKyI7BEu1Zmr8Af9nLjE6K+gGuSJ+ucAuKtiR1TyrouTC4g3xlGr0+af0EPu0DhePdiY\nXQ0w6+k/XeO9+IJ+ipL00cA0Wxmh5h/3gMaVCBFdB6Zj/bSK/Powi9HMp5Z9gjvKb2ZkYpQfHf4P\n9nXLgxohxMUF1SAdri6yEzKxRHiaJEw1SecmZtM40oJfogqFhsIZ+XWutZmryLflcqj3GJ1j3WFb\nVwhf0M+upj388/5/pcHZzOqMFXxn019zbf4VEZkUvSp9OVZTPPt7DhNUg2FfXwghLqbH3ceYb5wK\nR2lU7n9+mM2cSIY1jZbRdvl7UAghhBAxR5p/xIK0p+U1JgOT3FC8VVfTNLYWXsONxVsZ8A7x4JGf\n45oc+5PXhCK/1sRg5FdIqb0IgOYIRX/1ewZwToxQkVKmyUXgXFSHKfrrYO9R2lwdrMtcTcn072+k\nGQ1GKlJK6fMMMOgZjsqec9Ey2oaCEpWoitlamb6ceGM8B3qOzOoGQZtrqoGpKDk/0qWFVaZ16kFJ\nnzT/iEVEVVUO9hzBYrSwMmO51uWcpSgKWwuv4YurP4PZYOI3NX/gp8cfYcirv7+3hRD60efuZzLo\ni+rnqIqUUnxBX8QOCAgxG+GO/AoxKAZuLbsBFZVnG18M69pi8aofbuSf9/8rz7e8jM1i43MrP8nn\nVn6SlHhHxPa0GM2sy1yNc2JEtweBhBALW/30tPfQ5EgtFCcX4fF75NCbEEIIIWJObHYWCHEBQ95h\n3up8j7T4VC7P3aB1OX/i5pLr2VJwFT3uPh4++gvcPs8Hvh7LkV8hoeaUpgg1/9SfjfzS7iJwtrIT\ns8hNzOb0YC2eeUZ/TQYmeabxBUwGE7eV3RjmCi+sKqUSgDPD+rrpFwgGaHN1kmvLJt4Up3U5Z1mM\nZtZmrmR4wkmDs+mir28d7QD0E102W6FT0n0euQkiFo/m0TYGvEOsTl9BnI4ai0OWpy3h2+u/Srmj\nhOMDp/juvh/yctsbBIIBrUsTQuhQm6sTgMKk6DUgh+J6JfpLaCnckV/nWpa6hDJ7CScHa2gaaQn7\n+mLxGPe5ebTmcf7tyE/pcw9wTf7lfGfTX7M6Y0VU9t+cM3UvbW/3wajsJ4QQ56p3Tn1WrEjRsPnH\nHor+kqZ1IYQQQsQWaf4RC84LzS/jVwPcXHI9JoNJ63L+hKIo3Fm+gytyN9E+1sV/HP8VXv8EMB35\n1R/bkV8wNdY/05pO82hrRMaj1k1fBFamlIV97UiozlyFXw1wYuD0vN7/avtbOCdGuC7/StKinHVd\nlVoOoLsTf93jvfiCPl3GZW2ajv7aN4vor7bRdswGE7mJ2ZEuK6zSrGkoKDL5R5yX2+fhtzWP0+Hq\n0rqUsDnQcwSADdn6iPyaSWZCBt9Y+wXuW/oxzAYTTzXs4l8O/jhik/iEELGrfbr5J5qTf8qnH+DU\nzaJBWohIiFTkV4iiKGcPazzb+CKqqoZ9D7GwqarKgZ4jfHfvD3i3+wB5thz+et2X+Vjl7VhN8VGr\nozi5gKyETI4NnMLtc0dtXyGEUFWVemcTdksSGdbwf6+erZLkQmDqEJAQQgghRCyR5h+xoPS6+9nb\nc4jsxCxdP5xTFIVPLLmD9VlraBpp5acnHsEX8E1FfvljO/IrpMRehMfvpWe8L6zrqqpK3XAjSRYb\nWQmZYV07Utaejf46Nuf3jky42NP6GjZzItuLrwt3aReVlZCJ3ZLMmeEGXeVct0xffIdO4uhJmaOE\nlDgHR/tOMBmYPO/rfAEfneM95NtyMRqMUazw0pkNJlLjU+iXyT/iPF5rf4v3ug/w2JknFsSDr0Aw\nwOG+YySZbVSllGtdzgUpisLmnPX8/eZvcXnOBjrHuvnhoZ/wu9on5OGNEOKsdlcnCgp5tpyo7Wkz\nJ5Jny6F5pAVf0B+1fYUIiVTk17nKHMWsSKui3tlEzVBdxPYRC8+AZ4iHj/2SX5/+Hd7ABLeX3cTf\nrP8aJfbCqNeiKAqX5azHH/RzaB73MYQQYr563f24JseoSClDURTN6siz5WAymM7efxRCCCGEiBWx\n3V0gxIfsatpDUA1yS8k23TfPGBQDn1z6cValL6duuIFfnvotB3qnpgpUZ67WuLpLVzod/RXuaQN9\n7n5GJ11UOrS9CJyL7MRM8mw51AzW4fF7Lv6Gc+xq3s1EYJIdpduwmqwRqvD8FEWhKrWCMd84nWM9\nUd//fFqnx+4WJ0f/RujFGBQDG7Or8QYmOH6BaU8dY10E1SCFydGL2winzIR0Ridd846zEwvXZGCS\nNzrfBab+rF7oz0GsqBmqY8w3TnXW6php1rOZE7l36d18s/qLZCdm8nbXPv5h7w/Y33N4QTRkCSHm\nL6gGaXd1kZmQEfX41EpHGb6gnxaZSCY0EMnIr3PtKL0BgGebXtTVAQqhT0E1yEutr/P/7/shNUN1\nLE2t5Dub/orri67V9HPnhuy1KCjs7T6kWQ1CiMWnfnpCZLlDu8gvAJPBRIEtj86x7gse7BNCCCGE\n0Bt9d0cIMQcdri4O9R2jMCkvajnol8poMPKZFfdSlVLBiYEa9vUcwm5JOts4E8tK7cUANIX5xn7d\n2dzn2Ij8CglFfx3vn/1D8M6xbt7tOkB2YhaX52yMYHUXVpVaAcCZYf1Ef7WMtmMxWshJzNK6lBlt\nnI7+2n+B6K/W0Q4AXUaXzUZo/LJM/xEf9l73QcZ9btZlrkZBYWfT7ph/8BVqzt2Qpd+pgudT7ijh\nbzd8ndvKbsQbmOCR07/nwaM/p9fdr3VpQgiNDHiG8Aa8FCTlRn3v0Gd4if4S0RbpyK9zFSTlsi5z\nNe2uTo72n4zoXiK2qarK43XP8HTj88QZLXxq2Sf48uq/JN2apnVpOOLsLE2rpGW0jZ7xXq3LEUIs\nEvXDU/d9KzVu/gEosRcSVIO0TcflCiGEEELEAmn+EQvGc027Abi19MaYmQgDU/E5n1v1Kcqmm2UW\nQuQXTE27iTfG0zTaEtZ160IXgTHW/PN+9NfxWb1eVVWerN+Jisqd5TdreuJvScpU80/tkD6af7x+\nL93jvRQm5en2z0p2YiaFSfnUDNUxOuma8TWtrqnpRUUxPPkHoN8tzT/ifYFggFfa3sRsMHF35W1s\nzK6ma7yHw72xGxfg9U9wvP8U6dY0ipNjs1nPZDCxreg6vrPpr1meVsWZ4Qb+ad+P2NX8Er6AT+vy\nhBBR1j79AKMgKS/qe1c4SlBQzj7YESJaohH5da4dpVPTiHc27SYQDERlTxF7djbv4c3O98iz5fB3\nmx5gY3a1ru5nXZazAUCm/wghokJVVRqcTSRZbGQmZGhdztnrf4n+EkIIIUQs0edTUyHmqGmkhZOD\nNVQ4Ss9OKYklcUYLX1z9aW4tvYHtRVu0LicsDIqBEnshfe4BxibHw7KmqqrUDzdhtySRaY3sac1w\ny0rIIN+WS81QHW7fxaO/Tg+doXa4nqWplSxLXRKFCs/PHpdEbmI2Dc5mXTwkbnN1oqLqMvLrXBuz\nqwmqQQ72Hp3x622jHcQb43RxQ2M+Qs0/fe5BjSsRenK0/wSD3iE252wgyWLjppLrMSpGdjbvidkH\nX8cHTjEZ9LEha42uHsbMR7o1lS+u+jSfXXEfieZEnm9+iX/a/6+6ae4UQkRHqPmnMCn6DcgJ5gTy\nbTk0j7QyqYPPlWLxiFbkV0hmQgaX5Wyg193PvgtMAxWL1yttb/JiyyukW9P48urPYrMkal3Sn1iZ\ntpQEk5X9PYdi9rO8ECJ29HkGGJl0Ueko08W1d3Hy1GT+lhFp/hFCCCFE7JDmHxHzVFXl2cYXAbil\n9AZdXBzMh9VkZXvxFuxxyVqXEjah+LLm0fBEf/W4+3D5xqhI0cdF4FytzVxFQA1wfODUBV8XCAZ4\nsn4nCgp3lN+si19rVWoFvqAv7DFu89E6GpqYo+8JHOuz1mBQDDNGf3n9Xnrd/RToeHrRxUjsl/gw\nVVV5qe0NFBS2FFwFTDWbXJG7kX7PIHt7Dmpc4fzEcuTXTBRFYW3mSv5+8wNcV3Al/Z5BHjz6c359\n6nfnnVQmhFhYQs0/+bbox37BVPSXXw3QEqZrBCEuJpqRX+e6qWQrZoOJ52XSnviQd7sO8GTDTuyW\nZL625n7scUlalzQjs9HM+qw1jEy6qBmq07ocIcQC1zA8FQtbroPIL4DUeAdJFhst0/chhRBCCCFi\nQWw+cRTiHGeGG6h3NrE8rYoyR7HW5YhzlE5HmYWrYeT93OfYivwKqc5cCVw8+uudrv30uPu4PHcD\nebacaJR2UUtSygGoHdZ+OkRo3G6Jzif/JFlsLEutpN3VSfd47we+FppepPcGpgtJi0/BoBjoc/dr\nXYrQibrhRtpdnazJWPGBB2vbi7dMP/h6OeYefLkmx6gdqqcwKY+sxEytywmreFM8H624lW9v+CqF\nSfkc6D3CP+z9AW917iWoBrUuTwgRIaqq0j7WSbo1jQSzVZMaQvG9dRL9JaIk2pFfIY44O1fnX87w\nhJO3uvZGdW+hX0f6TvBY7R9JNCfw1bX3k2ZN1bqkC9qcsx6AvT0S/SWEiKw65/R93xR9NP8oikJx\nciHDE06cEyNalyOEEEIIMSvS/CNi2gen/mzXuBrxYUXJBSgoNI20hGW90AOCipTYbP7JTMigwJZL\n7VA9bp97xtd4/B52Ne8hzmjh5hL9/Ddd7ijFqBh1EQ3TMtpOsiUJR5xd61IuamN2NcCfTP+JlelF\nF2I0GEmPT6VPJv+IaS+1vQ7A9UXXfuDnQw++nBMjvN21L/qFXYJDfccIqsEFM/VnJoVJ+Xxr/Vf4\nWOXtqKrK7888yY8O/YQOV5fWpcUM1+QYHv/FIz2F0IPhCSfjPjcFSXma1VDuKEFBkeYfETXRjvw6\n17bC64g3xrG75VW8fm/U9xf6UjNUx69PPYbFaObLq/+SnMQsrUu6qMKkfHISszjRf4rx89zHEEKI\nS6WqKvXDTSSZbWQl6OfgTejgoUz/EUIIIUSskOYfEdOOD5yi1dVOdeYqTW9gi5lZTfHk2rJpHW2/\n5Hz4oBqk3tmEI85OhjUtTBVGX3XmagJqgGMDp2f8+u6W1xjzjbOt6Dpdjf6ON8VRYi+k3dWp6Q0/\n58QIzomRqcYyHcShXczK9OXEG+M50HPkA5M0Wl0dwNSN1FiWmZDOuM993mY2sXh0uLqoGaqjwlE6\nY1PbBx98TWhQ4fwc7DmKgsK6rDValxJRBsXANfmX8/ebH2Bd5mqaR9v4l4M/5sn6nTH1/5cWRiZG\n+e6+H/Cdd/6ZV9vevOTPO0JEWtt05FehTbtrJ6vJSkFSHi2j7UwGJjWrQywOWkV+hdgsiXyk8GrG\nfOO82v5W1PcX+tE00srPjj8CisIXVv1FzBwEURSFzTnr8asBDvYe1bocIcQC1e8ZZGRylPKUUl3d\n7ysONf+MtGlciRBCCCHE7Ji0LkCI+QqqQZ5r2o2Cwo6SbVqXI86j1F5M51g3HWNdl3Rzq2e8jzHf\nOBuyqnV1EThXazNX8UzTCxzuO8Zl0+OzQwY9Q7zW/hYpcQ62FFytUYXnV5VSSYOzmTPDDVRrcGoW\n3p+YU6zzyK8Qi9HM2syVvNd9gAZnE5XT8Wlto+0kmhNIi0/RuMJLk5GQDoPQ5xmg2Bwb/5+IyHi5\n7U0AthZeM+PXbZZEthRcxfMtL/N6xzvcULwlmuXNy4BnkObRVqpSKrDHJWtdTlTY45L5zIp72Ty4\nnj/UPc0r7W9yqO8YH6u8jdUZK7QuT3dUVeUPZ55i3OfGbDDxRMNO3u7az0crbmFZ2hKtyxNiRu3T\nzT9aH5yoTCmjzdVB00grVakVmtYiFjatIr/OtaXgKt7oeJdX2t7k6rzLsVkSNavlQnrG+/hj/bN0\nj/diVAwoiuEDPxpQMChGDIqCQTHM8E/o6x987UxrKYqCUTFOv+79NTITMliTsSKmr/ln0jnWzU+O\n/Qq/GuD+FfedvS6MFRuyqnmm8QX2dh/kmvzLtS5HCLEA1U9HflU49BH5FVKUnI+CQsuoNP8IIYQQ\nIjZI84+IWQd7j9I93stlORvIStTPOFDxQaX2It7qfI+mkdZLav4JxQJUxmjkV0hGQhqFSXnUDtUz\n7nOTaE44+7VnGl/Arwa4tewGLEazhlXOrCq1nJ3NuzkzVK9Z80/L2eaf2DglCVPRX+91H2Bfz2Eq\nU8oZ9boY9A6zLHVJzN/UzrROnZ7ucw/ETEOWCL9BzzCH+o6Sm5jN8rSq875uS+HVvNHxLi+3vcHV\neZeRYLZGscq5O9AzdbJ5ffbCjfw6n2VpS/jfG/+K3a2v8lLr6/zsxG9Ymb6MuytuI80a202L4XS4\n7zjHBk5R7ijh/hWfZFfzHt7q3MvDx37JyvSl3Fl+iyZTJoS4EL00/1Q4Snm57Q3qhhul+UdElJaR\nXyHxpni2F2/hifrn2NP2GneW79Cslpn4g372tL7G7pZX8asBUuIcBFWVYNDHBEGCanDq39XA9I9T\nP6eiRqSejdnV3LPkLsw6vCaejz73AA8e/Tkev4dPLv04qzKWa13SnNnjkliWuoSTgzV0jfWQa8vW\nuiQhZi2oBvH6J/D4PVhN8SSccx9O6Ef9cDOgv+afeFM8OYlZtLo6CAQDGA1GrUsSQgghhLggaf4R\nMSkQDLCraQ9GxciNxVu1LkdcQKm9CICmkRauK7hy3uvUORdG8w9M3Xhuc3VyrP8Ul+duAKZGgB/q\nO0ZhUj7rdRovU5iUj9UUT+1QvWY1hJp/ipJjJy6r3FFCSpyDo30n+Hjl7XQO9wCx9Ws4n4yE95t/\nxOL1WsdbBNUgWwuvuWBDm9UUz/VF1/J04/O80vYGt5TdEMUq50ZVVQ70HsFsMLFmkU68sRjN3FK6\nnQ1Za/n9mSc5MXCaM0P13Fy6jevyr1z0Nz3HJsf5n7qnMRvM3Ft1NzZLIh9fcgdX5G7ij/XPcmKg\nhprBOrYUXs32oi3Em+K0LlkIYKr5JyXOofnkkXJHCQbFcPaUtxCRoHXk17muyt3Mq21v8WbHu2wp\nuApHnF3TekIanS08duYJesZ7sVuS+fiS22c97S+oBlGnm4ECahCV6R9VlYAamP4xeLZZ6Ow/H2go\nev/n/UE/L7S8wv6ew/S6+/ncyk/q5vdpvpwTIzx09Oe4Jse4u+I2NuWs07qkeducs56TgzXs7T7I\nnRX6amATC5uqqviCPtx+D26fB4/fi9vvnv7Rg8fnmfqaf+proX/3+D24/V68fu/ZZkWbOZG/2/wA\nNrM+J7AtVqqqUu9sxGZOJCcxS+ty/kRxcgFd4z10j/eSn5SrdTlCCCGEEBckzT8iJr3bfYAB7xDX\n5F8hJ9B1Li0+lSSLjaaR1nmvEVSDNAw3kRLniPmYJIDqzFU80zgV/XV57gZUVeXJ+ucAuKviFgyK\nQeMKZ2Y0GKl0lHFs4BQDnkHSrWlR3T+oBmkbbScrIROrSd8TQ85lUAxsyF7LntbXOD5wmnHFBXBJ\nk7D0ItOaAUC/R5p/Fiu3z807XftxxNlZl7X6oq+/Jv9yXm1/i1c73ubagitJstiiUOXctY910uvu\nY23mKqymeK3L0VR2YiZfX/t59vcc5smGnTzVsIt93Yf4s6o7KbUXa12eZh6vf4Yx3zh3lu/4wAPl\n/KRcvr728xzuO85TDbvY0/oa+7oPcXv5TWzIWhvzE99EbBuZGGV00sXqdO2nTsSb4ilMyqdltB2v\nf0Ia5ERE6CHyK8RsNHNTyfU8Wvs4zze/zD1Vd2laj8fv4ZnGF3mr8z0UFK7Ou4xby26Y03WWQTGA\nAkaMhGtGz5KUch478wT7ew7zvQMP8vlVn4rZ66Yx3zgPHv0Fg95hbi65nmsLrtC6pEuyMn0pieYE\n9vce5rayGxd9I7iYu0AwgHNiBJdvDI/Pe07DTqipx3O2oeeDP+8loAbmtFec0YLVZCUlzo41MZsE\nczwT/knqnI3sbnmVuypuidCvUszHoHcI58QIazJW6vJ6qdheyLvdB2gZbZPmHyGEEELonjT/iJgz\nGfDxQvPLWAxmthdt0boccRGKolBqL+ZY/0mGvU5S4h1zXqNrrIdxv5sV6Ut1eRE4V+nWNAqT8jkz\n3MCYb5wzQw00j7axJmMl5Y4Srcu7oKrUCo4NnKJ2qJ4r86Lb/NPr7scbmGB1DN783ZRdzZ7W19jf\nc5j4uKlb44VJsffr+LCUeDsmg0km/yxib3buZTIwyc0l12MyXPxjpcVo4cbij/CHuqfZ3foqH624\nNQpVzt2BniMAbMhafJFfM1EUhU0561iRvpRnGp/nna79/PDQT7gidxO3ld34gQjLxeDEwGkO9h6l\nOLlwxqmGiqKwLms1K9OX8lLr67zU9jqPnP49b3a8x92Vt8bsQ0wR+/QS+RVS4SilZbSNppEWlqUt\n0bocsQDpIfLrXJuyq3m57XXe6z7A1sKryUzI0KSOY/0n+cOZpxmZHCU7MYt7q+7STUOv2Wjmk0s/\nTp4th6cbnudHh/+De6s+ysbsaq1LmxOv38tPjv6KnvFeriu4ckFMrDYZTKzPWssbHe9weugMK9OX\naV2S0BlVVRn3uxn0DDHgGZr60Tv9o2eQoQknQTU4q7WMipEEk5XeniHoAAAgAElEQVREcwLp1rSp\nuC6TFavZSoJp6h+rKR6ryUqC+f1/TzAlYDXFz9ic5gv6+e7e7/Nmx7tck38F6dbUcP8WiHmqG24C\n9Bf5FRKKuW8ZbefKvM0aVyOEEEIIcWHS/CNizpud7zIyOcq2ouuwxyVpXY6YhVJ7Ecf6T9I00sK6\n+LlHWi2kyK+Q6sxVtLk6ONR7jFfa3sCoGLm97Caty7qoJakVANQON0T9grdlpA2YGrcba7ITsyhM\nyqNmqA6rKQ5HnH1B/P1lUAykW9Pocw+gquqCaM4Ts+cL+Hi9/W2spniuyN006/ddnruRl9ve4K2O\n9/hIwdXzagqNpKAa5FDvURJMVpbLw+gPSDQncE/VR9mUvZ7fn3mSd7r2caz/JHdV3LJoGqXcPg+/\nq30Sk2Lk3qqPXnBan8Vo4ebSbWzOWc9TDbs40n+C7x98iMty1nNr2Y26nXwlFi69Nf9UppTxUtvr\n1DubpPlHhJ2eIr9CjAYjO0q388uTv2Vn0x4+s+LeqO7vnBjhf+qe4Vj/SUyKkZtLruf6ouswz6KB\nO5oURWFr4TXkJGbzX6ce5ZHTv6drrIdby27Q7ZTcc/kCPn56/BFaXe1szl7PneU7Fsx10uacdbzR\n8Q57uw9K888i5Qv4GPIOM+D9YIPPgGeQQc8w3oB3xvclmW0UJeWTZk3FbknGarJiNcef08gz1cQT\navIxG8xh/3NjNpi4pfQGfn36dzzX9CKfXn5PWNcX89fgnG7+SdFn809OYhZxRgvNo21alyKEEEII\ncVH6usIX4iI8fi97Wl/Daorn+sJrtC5HzFKpvQiAppFW1mXNvfmn/uwJkIXV/PN04/M81bALX9DH\nloKryEiI7iSd+ci0ppMS56BuqIGgGozqzdcWVzvw/ombWLMxex1t9c8y7vOwOl2fNzTmI9OaTs94\nL2O+cXmQvcjs6zmEyzfGtqLr5hSNZTKYuLHken5b8z+80PIy91R9NIJVzl3dcCMjky6uyN04q2lG\ni1GZo5i/3fB1Xm1/i13NL/HI6d/zXtcBvnTZn2MmUevyIuqphp2MTI6yo2Q7ubbsWb0nzZrKZ1fe\nR91wA4/XPcu73Qc40n+Cm4q3ck3+FRKbIaKmTWfNP6X2YgyKgbrhRq1LEQuQniK/zrUmYwUFSXkc\n6jvG9a7rKIhCfEhQDfJO1z6ebngBb8BLmb2Ye6ruIjsxK+J7X4rlaUv41rqv8J8nfs1Lba/TNd7D\np5f/ma4joAPBAL869Rh1zkZWZ6zgnqq7YqJhabYKbHnk2XI4MVDD2OQ4NsvC/ty3GAXVIKOTrhkm\n9wydjWaaicVgJs2aSrq1hPT4tOn/nUpafCpp1lTijJYo/0pmti5rNa+0v8nB3qN8pOBqCpPztS5J\nMHUNnmhKIEen35cMioGipALqnU14/B5dfx8SQgghhJAnGiKmvNr+FuM+N7eUbidhkUVMxLICWx4m\nxUjTSOuc3xtUg9Q7m6ZvGKREoDptpFlTKUoqoNXVTqIpgRuLP6J1SbOiKApVqRW8132ADldXVG+U\ntI60YTKYZv2wVW/WZ63hyYadBNUghTE4veh8Qiep+9wD0vyziATVIK+0vYlJMXJt/hVzfv/GrLW8\n1Po673UfZGvhtbo5kQ9woFciv2bDaDByfdG1VGeu4n/qnuHkYA0P7P5H7l9xHyvSl2pdXkTUDNXx\nbvcB8m25bCu6ds7vr0wp5283fJ23uvayq2kPTzTs5O2u/dxdcStL0yrDX7AQH9Lu6iTZkoQ9Llnr\nUgCIN8Wd/Tzs9XuJn0MjqRAXo7fIrxCDYuDW0ht4+Ngv2dn0Il9c/ZmI7tcz3stjtU/QONJCvDGe\nTyy5kytyN8ZMQ0pWYibfWvdVfnXqUU4N1vL9gw/z+VWfIkujyLQLCapBHq39I8cHTrEkpZxPL/uz\nBdfgqygKm7PX8UTDTg70Hpkx/lTo30Rgkn73AIPT03tCjT2hH/1B/5+8R0EhJd5BhaOUdGsaafFT\nzT3p1qnmniSzLSYmXBkUA3eU3cyPj/6Mpxqf52tr7o+JuheyQc8QwxNOVmes0PX3pmJ7IXXORlpH\nO6ianoouhBBCCKFH0vwjYsaYb5xX297EZk7k2ny5wRBLzEYzBUn5tLramQhMzunET8dYFx6/h9UZ\nyyNYoTY2ZK+l1dXOTSXXx1QzW1VKOe91H6B2uD5qzT+TAR+d4z0UJRXE7CSOJIuNpamVnBqspWgB\nnS7LtE43/3gGKHMUa1uMiJrjA6fp8wxwec6GeT1Enoq92MYvT/6WXc17dDNy3RfwcbTvJClxDsoc\nJVqXExPSrKl8YdVfcKz/JL+u+T2/Pv07vr3+q2Tq8KHcpfD6J3is9gkMioE/X3r3vB/mGQ1TDXPr\nM9ews3kPb3fu5aFjv2Bl+jLuKr8lJqYAitjkmhxjeMLJ8rQqrUv5gMqUMppHW2kcadFdbSJ2uX0e\n3UV+nWtpaiUVjlJODtbS6GyJyGdoX9DPntbX2NPyKn41wJqMldxdeSuOOHvY94q0BLOVL63+DE83\nPM8r7W/y/YMP8ZfL79VV46yqqjxR/xz7eg5RnFzI51Z+CrPRrHVZEbEhu5qnGp9nX/dBaf6JQe2u\nLn585Ke4/Z4/+VqiKYHcxCzSrGmkT0/sCU3vSY13xOy9mA9bklrOsrQlnB48w+mhOol61lhdKPLL\noe8J2aEp5C2jbdL8I4QQQghdWxif2sWi8FLr63gDE3y0dDvxpjityxFzVGovonm0lbbRdipSZh/f\nFYr8qlxAkV8h1+RfTlFyPiXJRVqXMidLpi9ya4fq2VZ0XVT2bHd1ElSDFMf4xJw7y3ewNLuMJSnl\nWpcSNhnTD1T63QMaVyKiRVVVXmp9HYCPXEIE55qMFeTbcjnUe4ztRVt0MdXrxGAN3oCXq/I26/rU\nod4oisKazJV8PtHIQ/t+zc9O/IYH1n1lQX1ee7bpBYa8w2wv2hKWyCSbJZFPLLmDK3M38Xj9M5wY\nOE3N4Bm2FF7N9qItC+r3TuhDh6sLgEKdRH6FVKaUsbv1VeqGG6X5R4TN8YFTuoz8ClEUhVvLbuSH\nhx7mmcYX+Gb1F8I6eaLR2cJjtX+kx92HI87Oxypvj/nDNAbFwJ0VO8iz5fBY7R95+NgvubP8Zq4r\nuEoXUzueb36J1zveIScxiy+t/syC/j6eZLGxIm0pxwdO0eHqIj8K0XUiPHwBH4+c/h1uv4fLczaS\nlZgx3eSTRro1ZVFFGd1edhM1g3U83bCLpakVcu2noYbh2Gv+EUIIIYTQM/lkK2KCc2KENzreISXO\nwZW5m7QuR8xDiX2qwWWu0V91w43A1IOBhcagGCi1F+viZuVcJFls5NlyaBxpYTLgi8qerdMX17He\n/JOdmMnHVuxYUDeW3o/96te4EhEtjSMttIy2sTJ9GdmJmfNex6AYuKV0OyoqO5t2h7HC+TvYMx35\nlS2RX/NxdfEmrsm/gu7xXh6tfRxVVbUuKSwanM280fEuWQmZYY/pzE/K5Rtrv8Bnlt9DkiWJPa2v\n8Q97v8/+nsML5vdP6EO7qxMgLM1r4VRqL8KoGM9+5hciHA7rNPLrXKX2IlamL6VxpJnTQ2fCsqbH\n7+F3Z57kR4d/Qq+7n6vzLuc7m/465ht/zrUpZx3fqP4CSRYbTzTs5Lc1j+ObIaIoml5rf5vnW14m\nPT6Vr6z5LIkxNNV3vjbnrANgb89BjSsRc/FM0wt0j/dyTf7l3Lv0o2wtvIY1mSspSMpdVI0/AHm2\nHDZlr6NrvId9PYe1LmdRq3c2kmCy6uIw0IXY45JIjU+heaRNrtOEEEIIoWsL5+mjWNBebHkVX9DP\nTSVbF+zo5IWuxD51QmIuzT+BYIAGZzPp1jRS4h2RKk3MQ1VqBf6gn8aR5qjs1zLaDkDR9EkboR92\nSzIWg5k+j0z+WSxebnsdgOsLr73ktZanVVFqL+LYwCnNT9C5fW5ODdaSm5hNni1H01pi2V3lOyiz\nF3O47zivtL+pdTmXbDLg49Gax1FQ+POld0fkc6iiKKzLWsPfb36AG4u34va7eeT07/nR4Z/QNtoR\n9v3E4tQ2ps/mH4vRQnFyAe2uTjwzRJAIMVehyK98nUZ+neuW0htQUHi28UWCavCS1jraf5Lv7v0h\nb3fuJTsxi79a90U+vuR2rKb4MFWrHyX2Iv5mw9coTMpnb89B/v3wTxmZcGlSy97ug/yx/lnsliS+\nuvb+mIxVm48VaUuxmRM50HMEv8bNV2J2aobqeK39bbISMrm97Caty9GFHaXbMBtM7GzaHbWDbeKD\nBj3DDHqHKXeUxsQhueLkAsZ84wx6h7UuRQghhBDivPT/qUosegOeQd7p2kemNZ1N2eu0LkfMkyPO\nTlp8Cs2jrbM+IdEx1oU34F2QkV+xriplKvrrzFBDVPZrGW0n0ZxAujU1KvuJ2VMUhYyEdPo9g3L6\naRHoHu/lxEANpfYiyhzFl7yeoijcUnoDAM81ajv950j/CfxqgA1ZMvXnUhgNRv5yxX3YLUk83fA8\ntUP1Wpd0SZ5vfok+zwDXFlxBqT2yMZ0Wo4Udpdv4u00PsCZjJU0jrXzv4IM8WvNHXJNjEd1bLHzt\nrk4SzQmkxOmvob4ypQwVlQZndJrKxcIWivyq1vHUn5A8Ww7rslbTMdbFkb4T81rDOTHCz078hp+f\n+A3jvnF2lGzjf234OqX24vAWqzOOODvfrP4i67PW0DzayvcO/pjW6QMj0XKs/ySP1v6RBJOVr6y5\nn3RrWlT315LRYGRD9lrGfOOcGqzVuhxxEeM+N/99+n8wKAb+YvknsBgtWpekCynxDq4ruArnxAiv\nt7+tdTmLUoNzOvIrRd+RXyFno7/mONVeCCGEECKapPlH6N6u5pcIqkFuLt2G0WDUuhxxCUrsRYz7\n3LOeELKQI79iXbmjBJNipHaoLuJ7uSbHGPQOUZRcEHMRaYtFpjWdycAkI5OjWpciIuzltjcA2BqG\nqT8hlSllVKVUUDtcr2nsy4HpyK91WWs0q2GhsMcl8dmVn8SgGPjVqUcZ9MTmycjW0XZebnuD9PjU\ns01q0ZBmTeX+lffxtTWfIzsxk3e79/P/7f0er7a/RSAYiFodYuFw+zwMeAYpsOXp8rNUxXSjv0R/\niXCIhcivc+0o2Y5BMbCzefec/o4PqkHe6nyP7+79Icf6T1JmL+F/bfwmN5ZsxWQwRbBi/bAYzfzF\nsj/jtrIbGZkY5V8P/wcHe49GZe/aoXp+dfJRTAYTX1r9l7qPq4mEzdnrAdjbfUjjSsSFqKrK7888\nycjkKDeXbKMwKV/rknRlW9G1JJoT2N36GmOT41qXs+jUh5p/HLHR/BOaat8S5WZTIYQQQoi5kOYf\noWtdYz0c6DlCni0nJk7uiQsLnT6cbfRXfYydAFlMLEYLpfZi2se6In6DJHSCs1giv3QrYzpSoc8t\n0V8LmXNihAM9R8hKyGBl+tKwrn1L2XYAnmt6UZMJUsNeJw3OZsrsJaRZU6K+/0JUai/i7spbGfe5\n+cXJ38TcKH1/0M9vax5HReXepR8lToMT0ktSy/lfG77B3ZW3AQpP1D/HP+3/V2qi0HgrFpYOnUZ+\nhZTYizApxrOf/YWYr1iK/ArJSEjj8tyN9LkH2NtzcFbv6Rnv5d8O/ye/P/MUigL3LLmLb1R/nuzE\nzAhXqz+KorCt6Do+v+pTGBUj/3XqMZ5pfOGSY9QupHmkjZ+eeASAz6/81NmHwYtNflIuBbZcTg7W\nyIRCHTvQe4TDfccptRezreharcvRHavJyo3FW/EGvLzY8orW5Sw69cONWE3WmIndzrflYVAMmkeW\nCyGEEEJciDT/CF3b1bwHFZVbSrfHRPavuLBQXEbzSMtFXxsIBmh0NpOZkI4jzh7hysR8VKVOR38N\nRzbSJXRRXZxcENF9xPxlWqcervRL88+C9nr7OwTUAB8pvDrs35OLkwtZlb6cppFWTaIDDvYeRUVl\nQ7ZEfoXTlbmb2ZyznjZXJ38481RMRQPubnmVrvEerszdRGVKuWZ1GA1Grs2/gv9387e5Mm8zve5+\nHjr6C356/BEGPIOa1SViS5tL380/FqOZEnsRHa4u3D631uWIGBZLkV/nurH4I5gNZp5vfhnfBZpl\nfUE/u5r28E/7/43GkRbWZqzk7zY9wBV5mxb9/ZKV6cv41vqvkGFNY0/ra/zsxCN4/N6w79M11sN/\nHPsVvoCPTy+/5+w18WK1KWc9QTXIgZ7DWpciZjDoGeYPZ54mzmjhU8s+sej/njifq/I2kx6fypud\n79Hvls/X0TLsdTLgHaLcURwz/21ajGbybbm0uzrxBf1alyOEEEIIMaPY+GQlFqXW0XaO9p+kJLmI\nFWnhnTAgtJGbmI3FaJnV5J82VyfewASVDon80qvQjc7aoYaI7hMap1skzT+6lZmQATDrSD8Rezx+\nD2917iXZksTGrOqI7LGjdBsKCs817Y7oae2ZHOg9glExxtzDQr1TFIVPVN5BYVI+e3sO8lbnXq1L\nmpXOsW5ebH0VR5yd28tv1rocAGyWRP5syZ38zYavU2Yv4fjAKb679wc82/giXv+E1uUJnWufbv7R\nc9RHhaMUFZV6Z7PWpYgYFmuRXyGOODvX5l+Bc2KENzvfm/E1Dc5m/s/+f+P5lpdJstj4/MpP8dmV\n92GPS45ytfqVnZjFt9Z/laqUCk4M1PCDQw+HdTLpgGeQh47+nHG/m3uX3s2azJVhWztWbchai1Ex\n8l73wZhq8l4MgmqQ/675A96Al7srbiPdmqp1SbplMpi4tewGAmqA55pe1LqcReP9yK/Yuu9bnFyI\nXw3QOdaldSlCCCGEEDOS5h+hW881/V/27ju+zeps/P9H05Is2Zb33jPOdnZCEjKAsFcYCWFTZsto\n++vT3e/TFto+paWFUsqGsBIgrDADWWQ7TjzjvfeUt2Vr/f7wgJSELMu3JJ/368UrJtJ935djWTr3\nOde5rs8BuDzhImQymcTRCONBIVcQ6xNNY18z/ZaB731uaWc5AElG97oJnEyiDBHolFqKTKVOm+hz\nOBxUd9cSqA1Ar/J2yjWEczfaVkFU/vFce+oPYraZOT9yCSqFyinXiNCHkREyg7reBrJb851yjRNp\n6G2ivreRKQEpeKt0E3bdyUKlUHHXtA3oVd68U/ohFadR/U9KNruN1wo3Y3fYuTHlarRKjdQhHSfK\nEM7Ds+/h9vR16NV6Pq/ezu8P/lWSilmC+6jtaUCr1Lj0wl/yyJh/9B5AEM6UO7b8+rZVMcvQKDR8\nXr39uIo1A9YB3izewt+P/Jvm/laWRiziV/N/zPSgdAmjdV3eKh33zbid86OW0NTXzP8dfpKijnOv\nVNs12M2TR5+ja6iHa5IuY2HYnHGI1v3p1d5MC0yjoa+J2pEWk4Jr+KpmN6WdFcwMmsoC8Xo9pVnB\n04kxRJHVkjPWel5wrlLTaPJPvMSRnJnRquSVXaL1lyAIgiAIrkkk/wguqaClhMKOElKNSWMTwYJn\nGGv9dYr+yCWmkeQfN9sBMpnIZXKSjYl0mE20Oqn1SOtAG/3WAdHyy8XpVd5oFBqaReUfj2S1W9lR\nuwcvhZolEQuceq1L4i5ALpOzteILbHabU681KrP5KABzQ2ZOyPUmI3+NkdvT12N32Hk+byNdg91S\nh3RS22u/pqannnmhs5ka6JqVJ2UyGRkhM/nNgp9yUexKuod6eDrnRV49tok+0TJJ+C9m6yAt/a1E\n6sNdekNFrE80Krly7B5AEM6Uu7b8GqVXebMqehl9ln62134NQHZrPr8/8Dh76g8Q5h3CIxn3cX3K\nlS6XmOpqFHIF1yZdzvrUtQzahvhXzgvsqN1z1htW+iz9PJX9PG3mDtbErmRF1HnjHLF7G00sOdCY\nJXEkwqjangY+qvgcH7WBG1OucenPf1chl8m5MvFiAN4r+1hUspoApZ3laBQaIg3hUodyRuJ8owGo\nOsW8tiAIgiAIglRE8o/gchwOB2/lfgDAZQkXShyNMN7Gkn++Z+e/zW6jvKuKEF0wvl6GCYpMOBvf\ntP46992UJzLa8ivWJ9op5xfGh0wmI1gXQNtA+4S3axKcL7M5m66hbhaHz0en0jr1WsG6QBaGzaG5\nv4VDI0k5zmR32DncnI2XQs20wClOv95kluKfyJWJF9M11MPz+a9htVulDuk7mvta2Fr5BQa1nmuT\nLpc6nFPyUqi5LP5C/mfug0QbIjjYlMUfDj5OzgRWzhJcX11vAw4cRBkipA7le6kUKuJ8YqjvbaTX\n0id1OIIbcteWX992ftQSDCo922t285/cV3gu71X6LH1cGjf8Xj96Ly2cnkXhc3lw1t14K3W8U/oh\nbxS9g+UMxx9m6yBP57xIQ18TyyIXc0ncBU6K1n1N8U/BoNJzuOnoGf/7CuPPYrPwyrE3sTls3JR2\nHXq1qKB8upKNCUwNSKO0s0JU1XSyzsEuWgfaSfSLRS5zr+WpIG0g3krd2HylIAiCIAiCq3Gv0ZUw\nKRS0F1HcXsGMwHSx4O+B4kZ+phVd1Sd9TnVPHUO2IVH1yQ2kGoeTf4pNzk7+EZV/XF2wLgir3YrJ\n3CV1KMI4sjvsfFmzC7lMPmG7nNfErkIpU/BJ5TanLyBUdFXTYTYxM2gaaoXaqdcSYGXUUjKCZ1DR\nVcWWsq1Sh3Mcu8POa0XvYLVbuT75KrdqARehD+MnGQ9wRfwa+i39PJv3Ki/mv07PUK/UoQkuoLZn\nuA2Lqyf/wDetv8o6KyWORHA37t7ya5RG6cWFsSsw2wbJbSsg0S+OX8x7mDVxK1HKlVKH55YS/GL5\n2dwfEWWIYF9jJv88+izdQz2ndazFbuW5vFep6q5hXuhsrk26TFRQOQGFXMG80Nn0WfvJbyuUOpxJ\n74OKT2nsa2ZpxCLSA1KkDsftXJGwBhky3iv/ZMIq0U5GYy2/3HDeVyaTEeMbRdtAu7jfEgSGN3E3\n9jWLimmCIAguRCT/CC4nqyUHGTIujRdVfzyRTqUj1DuEqu6ak95Ij5b7F8k/ri9Q60+Axkixqdwp\nFV+qu2uRy+RE6t2rDPBkFKQdXmhpFa2/PEpBexFNfc3MCZmJUeM3Idc0avw4L3IhHWYT+xoOOfVa\n37T8muXU6wjDZDIZ69PWEu4dyq66fRx0ofYQu+v2U9FVxaygacwKniZ1OGdMIVdwQez5/HzeQ8T5\nRJPVksMfDj5OVnOOmISb5EaTf6LdIPlndAFItP4SzpS7t/z6tiURCzg/cgnrU9fy4Ky7CfEOljok\nt2fU+PHI7HvHEpD/kvnk2HvjydjsNl4ueIMiUynTAqdwU+pat6tOMZG+af11WOJIJreijlJ21O4h\nRBfMVSMtrIQzE64PZWHYXJr6mjnY5Dr3Kp6mtHMk+ccvXuJIzs7oZuVqUf1HmMTaBtr5qPwzfr3v\nMf5w8HFeL3pHVIMXBEFwEeLOVXA5l8ZdwP9b8Qjh+lCpQxGcJN4nhkHbEA19zSd8vHRkwt9dbwIn\nE5lMRqp/EgPWAWp66sb13Ba7lbqeeiL1YagUqnE9tzD+RndZt/SL5B9P8mXNLgBWRS+b0OteGLMC\ntULNZ1VfMWQbcso1rHYrR5tzMaj1Itl0Ankp1Nw17Wa0Sg1vFr877p8dZ6NtoIMPKj7FW6njupQr\npQ7nnIR6h/BIxn1cnXgpg7ZBXix4nefzN9I1eHpVDgTPU9tTj1qhJlgXJHUopxTjE4VKrhq7FxCE\n0+UJLb9GqeRKrk2+nEXhc0WyyThSK9Tclr6Oy+IvwjTYyeNZT5PVnHPC59oddt4ofpfs1nyS/OK5\nI309CrligiN2L+H6UKINkRzrKBZjDon0WfrZWLgZuUzOrVNuEFVNz8El8atRyVVsrfiCQSfdi052\npZ3laBRebrvRbzT5p7K7RuJIBGFiWWwWDjdn88+jz/Lb/X/ms+rtDNqGCNQGsL8xk1ePbRZV0wRB\nEFyAmEkQXE6A1p/UoESpwxCcKN43BoDKrqrvPGa1WynvqiLMOwSDWj/BkQlnI2Wk9VdRx/i2/mro\nbcTqsIn2f25itPJPy0CrxJEI46Wyq5qyzkqmBKQQoQ+b0Gsb1HrOj1xC91APu+r2OeUahR0l9Fn7\nmRM8UyzoTLBgXSC3TrlxpJ3GRnqH+iSLxeFw8GbRuwzZhrg2+XJ81AbJYhkvcpmcldFL+cW8h0nw\njSO7NZ8/HnycQ01HRBWgSWbIZqGpv4VIfbhbJBGo5EoSfGNp6GsSbRSE0+YpLb8E55PJZFwUu4K7\np92CXCbjxYLX+aji8+N2qTscDt4r+5gDjYeJNkRyz/RbxUaU07QgbA52h53M5iNShzLpOBwONhW/\nR+dgF5fErSbaJ1LqkNyan5cvK6POo2uomx21X0sdjsfpGuympb+NeL9Yt70Pj/WJAqCqSyT/CJND\nfW8jb5d8wC/2/oGXCt6g2FRGgm8cN6ddz2NLfsXP5vyIOJ9oMpuP8PKxN0UCkCAIgsRcfwZQEASP\nM5r8U9FV/Z3HqrprsdgtogqDG0kxJiJDNu7JP6M7aGJGbqoF1za62NIqKv94jNGqP6ujl0ty/VXR\nS9EqtWyr3smAdWDcz5/ZNNLyK1S0/JLC1MA0Lo5bTYfZxEsFb0g2ObS/MZMiUylTA1I9rv1bsC6I\nh2bfzdrkK7A4rLxy7C2eyX2ZzsEuqUMTJkhDXyN2h50oN2j5NWq09ddoOwhBOBVPavklTIzpQen8\nJOMBAjX+fFb1Fc/lbcRsNQPwWdV2ttd+TagumPtn3IFGqZE4WvcxJ2QmSpmCA42HRbLxBMtsPkpW\nSw7xvjGS3bt5mlUxy9GrvNlWvVMkJI+z0TFesp/7zvt6q3QE6wKp7qkVbY4Ej2W2mtlbf5C/HH6S\nRw/9nZ11e1HIFKyOXs5v5v+ERzLuZX5YBmqFGp1KywMz7yTBN44jLbm8kP8aFrtV6m9BEARh0hLJ\nP4IgTLhgXRDeSt0Jk3++afnlvjeBk41e7U2kIZyKrupxLSvJqMEAACAASURBVIk82jtbVP5xD94q\nHd4qHS0DIvnHEzT3t5LTWkC0IVKyFow6lY5V0cvos/azvWZ8d1yarWZy244RrA0k2iB2xkplTexK\npgWmUWQq5aOKzyf8+p2DXbxbuhWNQsMNKVcjk8kmPAZnk8vkLI9czC/nPUKKMZH89kJ+f+Bx9jUc\nEgtzk0BtTz2AWyX/JBuHP3NE6y/hdHlSyy9h4oTrQ/np3B+S7JdAblsBf836F1srvmBr5ef4a4w8\nMPNO9GpvqcN0K94qHdOC0mnsa3aJtq6TRfuAiU3F7+OlUHPLlBvctpKKq9EqNayJW4XZNsinVV9K\nHY5HGU3+SZRonmG8xPnEMGA109Ivql8LnsPhcFDRVcXGws38fO8feKP4XWq660gPSOWuaTfzx8W/\n5MrEiwnxDv7OsRqlhvtn3kGyMZGctgKey3sVi80iwXchCIIgiOQfQRAmnEwmI843hnZzB12D3cc9\nVjJyEyjVYrNwdlKNSdgcNso6K8ftnFXdNWiVGlG+340EawNpG+gQ5V09wPaa3ThwsDpmuaQJEcsj\nF2NQ6dle+/W4tobKaS3AYrcwJ3SWRyZ8uAu5TM4tU24gWBvItpqdYwu4E2G43dcWzDYzVydeglHj\nN2HXlkKg1p8fzryLG1OuBhy8XvQOT2U/T/uASerQBCeq6R5O/ol2o+SfGEMUaoV67J5AEL6PaPkl\nnAu9ypsHZt7JsshFNPY182nVlxjUen448y6PHxc4y4LQDAAONB6WOJLJwe6ws7FwE2abmbVJVxCo\nDZA6JI+yJHw+QdoAvq4/IBI8xlGpqQIvhdqtxqcnMtr6q3Jk46IguLOeoV6+qtnNHw4+zuNZT3Og\n8TAGlTeXxl3I7xf9nPtm3M7MoKmnTDD1Uqi5d/ptTPFPoaC9iGdyX2ZoHDcKC4IgCKdHJP8IgiCJ\n0dZfld+q/mOxW6nsqiJCHyZ22bmZVP8kAIrHqfVXv6Wflv42YgxRyGXio8pdBOkCsTvstJvFYrI7\n6x7q4UBTFoEaf2YGTZU0Fo3SiwtjV2C2DfJFzY5xO29m80jLLw9r8+SOtEotd027GbVCzcbCzTT2\nNU/IdQ83Z5PfXkiyMZFF4fMm5JpSk8lkLIlYwK/m/5gp/ikUmUr546HH2V23X5Sr91C1vfUo5UpC\ndd/dmemqFHIFCb6xNPU10z3UI3U4gosTLb+Ec6WQK7gu+UrWp15Lgm8sD8y4UySSnYM0/2R81QYO\nN2eL3f4T4Kua3ZR2VjAjaCoLwuZIHY7HUcqVXJ6wBrvDzofln0kdjkfoHuqhub+FeN9Yt69SNVql\nvOoEVe0FwR3YHXaOtRfzfN5Gfrn3j2wp20rbQDsZwTP44cy7+N3Cn7EmbuUZJ0SrFSp+MP2WsSrP\nT+e8iNk66KTvQhAEQTgRp62o2u12fvOb33D99dezYcMGqquPHwht376da665huuvv57Nmzd/7zHV\n1dXceOONrFu3jt/+9rfY7cOT05s3b+bqq6/muuuuY8eO4xeEysvLycjIYHBQfLAIgisaTf75duuv\nqq4aLHarqPrjhhJ8Y1HJlRSZxif5p7p7uEx4zMhOGsE9BGuHJ8pbResvt7ardi9Wu5WV0UtdIvlu\nSfh8/Lx82V23j87BrnM+X/dQD0UdpcT4RInFHRcRrg9lQ9p1DNmGeDb3FQasA069Xs9QL2+XfoBa\nrmJ96jWTrvqTUePHfTNuZ0PadchlCjaVvMc/jz5La3+71KEJ48hqt9LQ20SEd5jbLa4kj7T/Fa2/\nhFMRLb+E8bIofB6PZNxHpCFc6lDcmkKuYF5oBv3WAXLbjkkdjker62ngo4rP8VEbWJcy+cazE2VW\n0DRifaI52pp33OZF4eyUmoYrO46O9dxZhD4MlVxJlaj8I7iZDrOJjyu38Zt9f+JfOS9wtDWPYF0g\n1yRdxh8X/4rbp64n1T/pnOYDVXIld07dwMygaZR2VvCvnOedPs8jCIIgfMNpKzpffvklQ0NDbNq0\niR//+Mf86U9/GnvMYrHw2GOP8eKLL7Jx40Y2bdpEW1vbSY957LHHeOihh3jjjTdwOBx89dVXtLa2\nsnHjRt566y1eeOEF/va3vzE0NFxCrre3lz//+c+o1WpnfXuCIJyjGJ/hii7fTv4p6Rye4E82uv9N\n4GSjUqhI8I2jvrdxXHZpj948x4rkH7cymkjR0i+Sf9yV2TrI7vr96FXeLrN7VKVQcXHsKix2K59V\nbT/n82U15+DAIar+uJjZwdNZFb2MloE2Xjn2llMr0WwueZ8+Sz+XJ6yZtO0RZDIZC8Lm8Kv5jzAt\ncAqlnRX88dDf2F77tagC5CEa+5qxOWxEueFCdtLIvYBo/SV8H9HySxBc0/ywkdZfTa7f+svhcEgd\nwlmx2Cy8fOxNbA4bN6WtFZWznUgmk3FV4iUAvFf2idu+ZlxF2cjYLtHo/ps+FXIFUYZIGvqaGBRt\njQQXZ7VbOdKSy7+yX+A3+/7EJ5Xb6LP2syhsHj/JeIBfznuEFVHnjevniVKu5Pb0dcwJmUlFVzVP\nHn2efkv/uJ1fEARBODmnJf9kZWVx3nnnATBz5kzy8/PHHisvLyc6OhpfX1/UajUZGRlkZmae9JiC\nggLmzRsux7906VL27dtHbm4us2bNQq1WYzAYiI6OpqioCIfDwa9//WseeeQRtFqts749QRDOkVqh\nJlIfTm1P3Vg56FJTOTJkJIrKP27pm9ZfZed8rqruGgBiRsroCu4hSCcq/7i7/Y2Z9FsHWBa5CLXC\ndZKoF4TNIUgbwN6Gg7QNdJzTuTKbjyJDxuzgGeMUnTBeLo+/iBRjInlthXw+DoleJ5Ldms+Rllzi\nfWNYFrnIKddwJ35evtw97RZum3IjaoWKd0s/4u9H/k1TX4vUoQnnqLanHoBoQ6TEkZy5aEMEXgq1\nqPwjfC/R8ksQXFOYdwgxPlEUtpeMS9VOZxiyWXi54C1+vuf3YxXE3MmHFZ/R2NfM0oiFpAekSh2O\nx0v0i2N6YDrlXZXkiYpW56SkswK1XEWMG45PTyTOJxq7w07NSPVyQXA1TX3NbCndyi/3/pEX8l/j\nWEcxsT5RrE+9lscW/4r1adcS5xvttOpxCrmCW6bcwPzQDKp7avnn0WfpHepzyrUEwRM5HA76LP3U\n9jSQ21pAZVeNSEQWTovSWSfu7e1Fr9eP/b9CocBqtaJUKunt7cVgMIw95u3tTW9v70mPcTgcYx9A\n3t7e9PT0nPQcTz31FMuWLSM1Vdz8CIKri/eNoaanjtreeqL0EVR21xChD8NbpZM6NOEspPgnQjkU\nmUqZG3r2FTUcDgfV3bUYvfzw9TKc+gDBZYy2/RKVf9yTzW7jq5rdqOUqlrpYUoRCruCSuAt4+dib\nfFK5jZunXH9W52npb6W6u5Y0/2Tx/uKCFHIFt6ev50+Z/+Djym1EGSKYGpg2bufvt/Szqfg9lHIl\n61PXukRbO1cgk8mYEzqLFP8kNpW8z9GWXB7LfIJL4lazMmqp27WMEoaNJv9EGSIkjuTMKeQKEvzi\nONZeTOdgF35evlKHNGnZ7DYcOFDKnTZ1dNaOipZfguCyFobNobq7lkNNR7gg5nypwzlO52AX/8l9\nhZqe4cX6F/JfozBsLtcmX4GXC21+OJmijlK2135NiC5orCKN4HxXJKwhv72Q98s/JT0gVYyPz0LP\nUC9Nfc2kGpM85t8v1jcaaoc3MCZ5QDUjwTMM2oY40pLLvoZDVHRVAeCt0rEi6jwWhs0lXB86ofHI\nZXJuSluLUq5gb8Mh/nH0P/xw1l34qMWcnCDY7Da6h3poN5swmTvpMJvoGBz509yJyWz6TnW5OJ8Y\nVscsZ1pgmpjXFE7KaTM4er2evr5vsjjtdjtKpfKEj/X19WEwGE56jFwuP+65Pj4+Jz3Hhx9+SGho\nKO+++y6tra3cfvvtvP76698bq9GoQ6n0jEGnJwkKEgMATzdzIJWddXtptjbhLVNjtVuZEZ4mfvZu\nKiAwBUOON6Wd5QQG6s9610BLXzs9ll4WRM722NeCp35fYMBX40P7YLsHf4+e6+uqQ5gGO7kocTlx\n4RM7GXA6Lgpcwlf1uzjUfITrZ11CpE/YGZ9jZ/4uAFYkLhSvUSc513/XIAz8THsPv/7qr7xa+BaP\nrf4fQg3B4xLb0wffo3uoh3XTr2RarGgx+t+CMPDziHs5UHuEF7Le4oPyT8k3HePeuRuI9nO/BJLJ\nrjG7EYVMzvTYRFQKldThnLHZkVM41l5Ms62RpCDX2R0+mT47zNZBfr/jCZr62rhn7k3MjXCdinl9\nQ/0UmkqJ9YskPSZO6nAEwSOM5/vbBb6Lebf0Iw63HGVdxmVOqyhwpsraq/hr1jOYzF0sj13IJSkr\n+NfBV9jXmElVbw0PLryDOKPrth7vHerj9f1vo5DJeWjxHUT4T872tVIICjKwom0xX5Z/TX5vHqsS\nzpM6JLdTXlsKwMzIiZ/3ddb1MnRpvJAPDYMNk2qMKLgeh8NBeUc12yv2srfmMANWMwDTQ9JYEb+Y\nuRHTJb8n/FHQrRiO6PisbCdP5TzHr89/EH+tn6QxeQLx3uPazNZB2vo7aOsz0dbfTlt/B619HSN/\n10H7QCd2h/2Ex3qrtIQaggnUGQnSBRCgM1LUVkZWQx7P5r1ChCGUy1JXc17MXMl/vwXX47Tkn9mz\nZ7Njxw4uvvhisrOzSU5OHnssISGB6upqOjs70el0HD58mDvuuAOZTHbCY6ZMmcLBgweZP38+u3fv\nZsGCBUyfPp0nnniCwcFBhoaGKC8vJzk5mW3bto1dZ8WKFbz44ounjNVkEr0mXU1QkIHW1h6pwxCc\nLFAWAkBeQwntXcPloCO9IsXP3o0l+SVwpCWXguoKQrzPbrH2SHMhAGGaMI98LXj6+1ugVwAVXVU0\nNptccpe4cGIOh4MtBZ8hQ8bCoAUu+xpdE72aZ/NeYePh97hz2oYzOtbhcLCr4iAquYp4TYLLfo/u\nbLze3wz4c0PK1Wws3Myfdv2bn8x54Jx3Yhe0F7Ozaj9RhggW+M8XP//vkaBJ4hfzHuGdkg/JbD7K\nz754jDWxq7ggZrnH7NL1dDa7jarOOsK8Q+nsMANmqUM6Y+Gq4YSfrJp8UnSuUdXX08dw32Z32Hk2\n71VKO6oA+L89z7A0YiFXJV6K2gUmFg80HsZmtzHdf+qk+ZkIgjM54/1temA6WS05ZJYXEOcbM67n\nPhtZzdlsLNyM1W7jqsRLWBm1FJlFxkMz7+PD8k/ZXvs1v9z2Z65IWMPyqCUut5Pa4XDwUsEbdAx0\ncmnchfjY/MX73wRbEbqc3VUHeSv3I1J0aWiUXlKH5FayagqA4THeRL52nTl+cziU+KoNlLRWit9H\nQTJ2h523irewt+EQMNzae3nkYhaEzSVQ6w/gMveEl0atwTJo56va3fx62195cNbdGDUiAehsTab7\nU1fkcDjotfQdV6Wn47+q9/RZTpx7IEOGr5cPsT5R+GuMGL388NcY8dcM/2nU+KFVar5z3KLAhVwU\n2cRXNbs51HyEZzI38mbOB6yIPo/F4fNPeIzg2U6WAOi0VbnVq1ezd+9ebrjhBhwOB48++igfffQR\n/f39XH/99fzP//wPd9xxBw6Hg2uuuYaQkJATHgPws5/9jF//+tf87W9/Iz4+ngsvvBCFQsGGDRtY\nt24dDoeDhx9+GC8vMegWBHdi1Pjh5+VLRVcVvUO9yJCR6CfKpLqzVGMSR1pyKTSVnnXyT1V3DQAx\nBtfdcSecXLAukPKuStoGOgg9y9eAMPGKOkqp720kI3jG2OSAK5oeOIUYnyiOtuZR01NHtOH0q0HU\n9NTRMtBGRvAMNOJmyOUtGGkXsbt+P68Xvs1t6evOetf4gNXMm0XvDpebTl0rElhOg17lza3pN5IR\nMoM3i7awtfJzslvzuCltrVu2kZpsmvtbsditbv2zitSHo1FoKDGVSx3KpLSlbCt5bcdIMSZyVeIl\nvHpsE7vr91PSWcHt6euI0J959b3xJFp+CYLrWxA2h6yWHA40HpY0+cfusPNJ5TY+rfoKjcKLO6dv\nOK6trEqu5Jqky0j1T2bjsU28W7aVwo5SNky5zqVakmQ2HyWrJYd43xguiFkudTiTkq+XgVVRS/mk\n6ku21+7m4rjVUofkVkpNFajkKmJ8XKei47mSyWTE+kST01aAydwpkhiECedwONhSupW9DYeI0Idx\nRcIa0vyTXS6BdZRMJuOqxEtQyZV8Vr2dvx/5Nz+adbdLz0MKwiiTuZMddXuo72mkY3C4TZfFbj3h\nc1VyFf4aP6INkf+V2DP8tZ+X71nPTYbrQ9kw5Toujb+AHbV72NNwgPfKPuazqq84L2IhyyOX4Ovl\nOmNYQRpOS/6Ry+X87//+73F/l5DwTXn9FStWsGLFilMeAxAXF8drr732nb+/7rrruO66604aw/bt\n2880bEEQJli8bwxHWnLpHeojyhCOTqWVOiThHKT6JwFQ3FHG8sjFZ3WO6u5aZMiI9qAJgckkWBsI\nQOtAm0j+cSPbanYCsCpmmbSBnIJMJuPy+It4Mvs5Pqr4nPtn3HHax2Y2HQVgbugsZ4UnjLNrki6j\nrreBrJYcYnyiWBm99KzO80H5p5gGO1kTu5JIQ/g4R+nZpgVOIWF+HFvKtrK/MZO/HH6SC2LO56LY\nlahEdTeXVdtTD+DWyT8KuYJEvzjy2wvFYsoE21W3jx21ewjVBXPn1A3oVFp+OueHvF/+Mbvq9vGX\nw09yVeIlLItYJEkrn37LAIUdpUTqwwnWBU749QVBOD2p/kn4efmS1ZLDNUmXS1I1bNA2xKvHNpHd\nmkeAxp97pt9KuP7E7Y3TA1L4xfyHefXYJo51FPPoob9zc9r1TAlImeCov6vDbGJzyft4KdTcMuUG\nkcguoZXRS/m6/gDbanaxJGKBSyWIubLeoT4a+ppIMSZ6XIXoWN/h5J+q7loxXhUm3MeV29hRt4dQ\n7xB+NPMH6NXeUod0SjKZjMsSLkIpV7K18gueOPIMP5r1AzGuF1yWydzJ59U72NdwCJvDBgxvmAvz\nDsE4mtQzluAzXLVHr/J2+r2yUePH1UmXclHsCnbXH2Bn7R6+qN7B9prdzA/LYGX0MkJ0QU6NQXBd\nit/97ne/kzoIqfX3D0kdgvBfvL29xM9lkuga7OZYRzEAc0JmkRaQfIojBFemU2k51HSExr5mVkUv\nPeOdBja7jbdLPyTUO5jzo5Y4KUppefr7W/dQL0dacokyRBDvGyt1OMJpqOmp44PyT0kxJnJBzPlS\nh3NKARp/SjsrKDaVkWJMxF9jPOUxdoedjUWbUcmU3JBylcvugnJ34/3+JpfJmRKQwuHmbHLbjpHo\nF0vAGe4IKzGVs7nkfcK8Q7gl/UYU4md/xlQKFdOD0on3iaHEVE5+eyE5rflE+0Ti5+UrdXjCCRxo\nPExVdw1rYle69SJE91APhR0lRBkiJK80A54/hgPIbyvk1WOb0Ku8eXD2Pfh6+QDDyVjpAalEGyI4\n1l5M9kgFvlT/pHNuy3imslpyyG7NZ3nkYhL94ib02oLgqZzx/iaTyei19FFsKiPcO4TwCX4fN5k7\neSr7OUo6y0nyi+eHM+865TjSS+HFnJCZaJUa8tsKOdiUhdlqJsmYINkYcrQNY3N/KzekXE2Kf6Ik\ncQjDlHIlaoWa3LYChmyW46pICSd3rL2YIy25LAybS5JxYiu+O3v8ZnPYOdiUhb/GSJq/mNMWJs5X\nNbv5qOIzAjT+PDT7bnzcrNJHkjEelVxJdms+2S25pAekuUXykiuZDPenUjKZO/mw/FM2Fm6mqruG\nAK0/1yRdxq3pN3JR7EqWRCwgI2QGUwJSiPONIdQ7BF8vH7wU6gndJKNSqEj0i2Np5CKMGj8a+pop\nNpWxu24/9b1NBGiNYu7Og3l7n7gjlpj9FgRBUvHfKv+cbEz4nmcK7iLVPwmzzUx1T90ZH9vQ14zF\nbiHWR7T8clejOzVa+9skjkQ4XV9W7wJgdfRyaQM5TTKZjMsTLgLgo4rPcDgcpzym2FRGz1Avs0Km\ne9xOQ0/n5+XLnVM3APBC/uuYzJ2nfeyQbYjXi95Bhoyb0taKSjXnKC0gmV/Of4TzIhbS2NfMXw//\ni/fKPsZmt0kdmvBfanrqkSFziYSZczG6OCRaf02Mup4GXix4HaVcwT3Tbz1h+f1pgVP4xbyHSTUm\nkd9exKOH/k5hR8mExilafgmC+1gQmgHAgaasCb1uZVc1fz78T2p7G1gcPo8HZt552guKcpmcldFL\n+cmc+wnWBbK99msez/oXzf2tTo76xLbXfk1pZwUzAtNZGDZHkhiE4y0On0ewLpC9DQdp7muROhy3\nUNpZATDhiT8TIdoQiQwZlV01UociTCJ76w+ypWwrvmoffjTrLrdd2L8g5nyuSbqMrqEenjjyDA29\nTVKHJAiYzJ1sKn6f3+3/M7vr9+Pn5ctNadfxm/k/YUHYnAnf/HK61AoV50Us4LcLfsodU28iyhBO\ndmse/3f4KZ448gwF7cWnNYcueAaR/CMIgqQi9eGo5CpkyEgQOzc9QqpxuPVX0VksBFR1D98sx4jk\nH7cVpA0AoGWgXeJIhNPRNtDBkZZcIvRhY2373EG8byxTA1Ip66ykqKP0lM8fa/kVIlp+uaMEv1iu\nTbqcXksfz+a9isVmOa3jPqr4nLaBdlZEn0esT7STo5wctEoNN6RcxYOzfoC/xsiXNbv4V84L9FsG\npA5NGGF32KnrrSfUOxi1i05Kna5IfThapZZSkfzjdJ2DXfw79yUGbUPcPOUG4r61QeO/+Xr5cP/M\nO7gq8RL6LP08lf08W8q2YrVbnR6naPklCO4lxDuYOJ8YijpKzyiB+1wcajrCE0f/Q+9QH9cmXc6N\nKdecVfJ/tCGSn815kAVhc6jtqedPmf9gf0PmhC6a1Pc28lH5ZxjUem5MvUaSVovCdynkCq5IuBi7\nw84HFZ9JHY5bKO2sQCVXeuRcn0bpRbg+lNqeOrEpQpgQh5uzebN4C94qHT+cdReBI/Ow7mpF1Hlc\nn3wVPZZenjj6zFgLa0GYaJ2DXWwuGU362Tec9JO6lt8s+CkLw+a4TdtVuUzO7ODp/H9zfsSPZv6A\nNP9kSjsreDrnBR7LfIJDTUfE59UkIJJ/BEGQlEKu4MKYFayOWY5WqZE6HGEcpBgTkCGjqKPsjI+t\n7q4FEIu0bkytUOPn5Ssq/7iJ7bW7ceBgVfQyt5tMvjR+uPrPh6eo/jNks5DTmo+/xnhctTnBvSyN\nWMj80AxqeurYVPL+KRdeKruq2VG7hyBtAJfGXTBBUU4eycZEfjHvYaYFplFsKuNvR56mfcAkdVgC\nw5X3Bm1DRBkipA7lnMllcpL84mkzd9BhFq8vZzFbB3km5yU6B7u4ImENs0+joo5cJmdV9DJ+knE/\nwdpAvqrZzV+z/uX0Cgi5bQXYHLbTilEQBNewMGwODhwcbDri1OvYHXY+KP+UV469hUqu5L4Zt3N+\n1JJzusfRKL3YkHYdt6evQ46c14re5qWCNyYk6dlis/BywZtYHTZuSl2LQa13+jWF0zcjMJ143xhy\nWvOp6KqSOhyX1mfpp6G3iTifGI+txBrrE8WQ3UJDX7PUoQgeLq/tGK8cewsvhRcPzLiTMO8QqUMa\nF0sjF7I+dS39lgH+cfTZsc3BgjARhpN+PuC3+//Mrrp9+Hr5sn406Sd8rtsk/fw3mUxGin8iD8y8\nk/+Z+xBzQmbS0NvEK8fe4ncH/sLO2r0M2kTbOE8lkn8EQZDcmriVXJGwRuowhHGiU+mINkRS2V2N\n2Wo+o2OrumtQK9Qec/MyWQVrAzENdjIkBpAurXeoj30NmRi9/MgIniF1OGcsyhDOrODp1PTUkdNW\ncNLn5bUdw2wbZE7ITOQyMfR1VzKZjBtSribKEMH+xkz2NBw86XMtdiuvFb6NAwfrU9e6ffUTV6VR\nevGDabewPHLxcBuwrKfGkngF6YzulPSE5B/4pi2waP3lHHaHnZePvUFtbwOLwuaecQvQaJ9Ifjb3\nQRaGzR2rjLHPiZUxRMsvQXA/s0Omo5IrOdh42GnvDWarmefyNvJF9Q6CtAH8JOMBpgSkjNv5M0Jm\n8ot5DxHnE0NWSw6PZT7h9ISPDys+o6GvifMiFjI1MM2p1xLOnEwm46rESwB4r+xj0Ubje5R1VuDA\n4ZEtv0bF+gxvMqrqrpY4EsGTlZjKeD7/NRQyBffOuI1on0ipQxpXi8LncvOU6zFbzTx59DmRWCk4\n3fFJP3vxVfuwPnUtv13wUxa5cdLPiUQZwrktfR2/W/gzlkUuomeol7dLP+DX+x7l44ov6B3qkzpE\nYZyJFRBBEARh3KX6J2F32CnrrDztY8xWM019LcQYIsUCvZsLGmnD0Cpaf7m03fX7sNgtrIxe6rY3\nNJfGXYAMGVsrPsfusJ/wOZnNouWXp1ArVNw19Wa8VTreLvmAyq4TT65+VvUVTf0tLI1Y6NGTzK5A\nLpOzNvkKrk26nJ6hXp448gw5rSdPxhOcr6Z3JPlH7xnJP0l+w7/DpaYKiSPxTFvKtpLXVkiKMZEb\nUq4+qwoZGqUXN6Wt5fb09SjkCl4vepsXCl6n39I/rrGKll+C4J60Si0zgqbSMtBGxUnGbueifcDE\n41lPk9tWQLIxkZ/O+SGh3sHjfp0ArT8Pz76HNbErMZk7+fuRZ/i08suT3oOci6KOUrbXfk2wLpCr\nRxJMBNcT7xvLzKCpVHRVf+9mlMmutHN4DDc6pvNEsSPtzKq6xEYIwTkqu2p4JvdlHA4HP5h2M4l+\ncVKH5BTzQmdzW/o6huwWnsx+XrR/Fpyia7Cbt49L+jGwPvVaj0z6+W+BWn+uS76S3y/6OWtiV4ED\nPqn6kl/te5TNJR/QPtAhdYjCOBGrq4IgCMK4S/VPBIYnrU5XTU89Dhwe2QN8shldkBGtv1zXkG2I\nXXX70Cm1LAybK3U4Zy3UO5j5oRk09jVzuDn7O4/3BTz9PAAAIABJREFUWfo51l5MhD6McH2oBBEK\n4y1Aa+T29PXYHXaey9tI12DPcY/X9jTwRfUOjF5+oqrgBDo/agk/mHYzAM/lvcqO2j0SRzR51fY0\nABBpCJc4kvERrg/FW6WjpFNM/I63XXX72FG7h1DvEO6cuuGcJzkzQmbw87kPE+8by9GWXB499MQZ\nbQQ4FdHySxDc1+j9xoHGw+N63vLOKv5y+J809DWxNGIhD8y4A2+Vblyv8W0KuYJL4y/kwVl346M2\nsLXyC/5x9D+YzJ3jdo1+Sz8bCzcjl8m5dcqNooKli7s8YQ1ymZwPyj/BZrdJHY5LKjVVoJQrifWJ\nljoUpwn1Dkaj8KJStCoSnKC+t5Gnc15gyGbhtvR141rZzhVlhMzgzqk3YbPb+FfOi2e0tiAI36dr\nsJt3Sj7kt/v/xM66vfioDaxLvYbfLPgpi8LneXTSz38zqPVcGn8Bv1/8C65Nuhy9yptddXv53YG/\n8FLBG9SNzCsJ7ksk/wiCIAjjLs43FpVcRZHp9Afoo/18RfKP+wvWDif/tAyI5B9XdaDxML2WPpZG\nLESj9JI6nHNycdwqFDIFH1d88Z0J1yMtudgcNlH1x8Ok+idxRcIauoa6eSH/tbGfu81u4/XCzdgd\ndtanXotGqZE40sllelA6D8++F4NazzulH7K55AOn7IYXTs7hcFDbU0+wLhCth7z+5TI5SX7xdJhN\ntIldaOMmv62Qt0s+wKDSc+/029CptONy3gCtkYdm3c3FcavpHOziiSPPsPUEn89nQ7T8EgT3lWxM\nwOjlx5GWnHFrDb2/8TD/OPof+q0DXJ98JdenXDVhizZJxnh+Me9hZgZNpayzkkcP/Z3slrxxOfdb\nxe/ROdjFxbGrxdyIGwjRBbEkfD4t/W3sbTgkdTiSsNgsNPW1UNBexO66fWwp28pzeRv5U+Y/+Onu\n31LX20CcTzQqhUrqUJ1GLpMT4xNFc38L/ZYBqcMRPEhLfytPZj9Hv3WAm9LWMit4mtQhTYgZQVP5\nwbSbceDg37kvkd9WKHVIghvrGuzmndLhpJ8ddXswqA2sS7mG3y74KYvD56OUK6UOUTJeCjXnRy3h\n/y38GbdMuYFQXTCHm7N5LPMJnsp+nhJTmWht6qYm76taEARBcBqVXEmiXxyFHSV0DXbj6+VzymOq\nu4fL48Z58G6gyWK08k+LqPzjkuwOO1/V7EYpV7IsarHU4ZyzAK0/i8Pns7t+H/sbM1kSsWDsscym\no8iQMSdkpoQRCs6wKnoZ1d21HG3NY0vZVtYmX8G2ml3U9jawIGwOaQHJUoc4KUX7RPKTjAf4d+6L\n7KrbS4e5g1unrHP7JEN30W42MWAdYIq/Z73+k/wSyG7Np9RUTqDWX+pw3F5dTwMvFryOUq7g7um3\njvu/qUKu4JK41aQak3j52Jt8WvUlxaZSbp1yIwFneS3R8ksQ3JtcJmd+6Gw+q95Odms+80Jnn/W5\n7A4775d9wle1u9Eptdwx9SZS/ZPGMdrT463ScefUDextOMg7pR/xXP5GFofP59qky866Wk9m01Gy\nWnKI84nhgpjl4xuw4DRr4lZxsCmLTyq3MS90lsdtQLDZbXQOdtFu7qBtwES7uYP2gY6xP7uGek54\nnEquIkBjJM43hlXRyyY46okX6xNNsamM6p5a0jxsLC5Io8Ns4p9Hn6NnqJe1yVewIGyO1CFNqKmB\nadwz/Vb+k/sKz+a9yh1T1zMjaKrUYXkEh8PBoG0Is82M2TrIgNV8gq/Nw19bBzHbvvu13WEn1DuE\nKH04kYZwIvXhhOiCXKp6TtdgD1/W7OTr+v1Y7FaMXn6siV3J/LCMSZ3wcyIKuYJ5obOZGzKLYx3F\nbKveSWFHCYUdJcQYolgVs4yZQVORy0Q9GXchXuGCIAiCU6T6J1HYUUJRRynzwzJO+fyq7lp81Ab8\nvHwnIDrBmQK0AciQieQfF5Xdmk+buYMl4fPxURukDmdcXBS7gv2NmXxa9RXzQzNQKVS0D5go76ok\nyS8eo8ZP6hCFcSaTybgpbS2N/S3srNuLVqllW/UOfNUGrkm8VOrwJrUArZEfZ9zH83mvkddWyBNH\nn+He6bedViKwcG5qe+oBiDJESBzJ+Eo2JgBQ0lnOwnD3bVXpCjoHu/h37ksM2oa4Y+pNxPk6L+k+\nwS+Wn899iLeKt5DVksOjh57gxtSrzyohV7T8EgT3Nz9sDp9Vb+dA4+GzTv4ZsJp5ueAN8tuLCNEF\ncc/0WwnWBY1zpKdPJpOxJGIBCX5xvFTwBnsbDlLeWclt6evOuP1mh9nEppL38FKouWXKDS61eCZ8\nPx+1gdXRy9la+QVf1uzm0vgLpA7pjDgcDrqHekaSezpoHzDRYe6gzWyifaAD02DnCat5ymVyjF5+\nJBsTCdQYCdD6E6DxH/vTR61HJpNJ8B1JY3RMVdVVI5J/hHPWPdTDk9nPYRrs5LL4i1ge6f4b985G\nmn8y9824nX/nvsTz+a9xW/o6cT8wwmwdpLyjg4aOdsy2wZMk65gx2wZP+LWDM6/mIpfJ0So0aJQa\nFDI5JaYySkxlY4+r5ErC9WEjCUERROrDidCHoZ7gym8nSvq5KHYFC8LmiKSfU5DJZKQHpJIekEpl\nVw1f1uwkp7WAF/JfI1Ifzk/nPCD+Dd2E+CkJgiAITpFqHN59V2wqO2XyT+dgF52DXUwPTJ9UkwOe\nSiVX4q8x0irafrkch8PBtuodyJCxMnqp1OGMG18vH5ZFLuLLml18Xb+fFdFLyWrOBhAtvzyYRqnh\nB9Nu5i+ZT/Jp1ZcAXJ9yNTqVTuLIBK1Sy30zbuet4i3sa8zk/w4/xb0zbiNCHyZ1aB6tpqcO8Lzk\nnzDvEPQqb0pM5TgcDjFWPEtm6yDP5LxE52AXVyZcPCET5zqVltvS15EWkMLmkvd5qeANjrUXc13y\nFWdUGUG0/BIE9xesCyTBN5YSUzntAyYCtMYzOr5toJ1/575MU18zaf7J3J6+ftxaFp6rMO8Qfprx\nAO+Xf8LOur38X9ZTXJVwCcsiF53WZ5bdYefVY5sYsJpZn3otQbqACYhaGE8ropeyu34/X9Xs4ryI\nBS6X9D5gHaB1oJ32b1XuaTN/k+hjsVtPeJyv2kCsT9RxST2BWiMBGn/8vHxFktq3xI5UMa/qrpE4\nksnL7rDTM9SHXqVz69dmv6Wfp7Kfp6W/jdXRy7kw5nypQ5JUsjGBB2bcydM5L/Bi/utYp1jPqYKg\nOxuyDZHfXsSR5hzy24uw2C2ndZwMGRqlBo3CC6OXLxrvEDRKr7FEnuGvtWiUXmiUGrQjz9UqRx5X\nDP+dSq48blwzYDVT39tIbU89dT0N1PbWU9tTP9bdYfTaId7BYxWCovQRRBrC8XbCvF33UA/bqnfy\ndf0BLHYLRi8/LoxdwUKR9HNW4nyjuWvazTT3t/JVzW46B7uQIeZi3IV4xQuCIAhOEa4PxaDSU9RR\ncsqFmqqRQaHoae85gnWBFHaUYLaaPa7stTsr7SynpqeemUFTJd0l6wyrY5azp/4An1fvYFH4PDKb\nj6KUKSZNT/TJKkQXxK3pN/Cf3FeYEzKTGUHpUockjFDIFaxLvZZAbQAfVnzG37Ke5s6pG0RLNify\n1Mo/MpmMJL94jrbmUWwqI8WYKBKAzpDdYeflY29Q29vAorB5E9p+QyaTsTBsDgm+MbxU8AYHm7Ko\n6KritvR1pzX2Fy2/BMFzLAibQ3lXFYeaslgTt+q0jys1lfNc/kb6LP2cH7mEqxIvcbmFXZVCxdrk\nK0j1T+K1wrd5u/QDCjtKuCltLQa1/nuP3V77NaWdFcwITGdhmKhw5468FGouiVvNm8Vb+LhyG+tS\nr5E6JCx2K7mtBexvzKSoo/SEVR50Si2h3iEjyT1GAr+V5OOvMU54tQZ3ZlDrCdAYqeyuEcnqTmS1\nW2k3m2gbaKd1oJ22kf9aBzpoH2jHYrcSoDFyXfKVTA1MkzrcM2a2DvJ0zovU9zayJGIBVySsEa8l\nhiuK/nDWXTyV/QKvHtuE1W5j0SSpCGuxWSjoKOZIcw55bccYGkn4CdEFMSsiHblVNZKsM5LEM5as\n4zWWuOOlUDvldaRVakj0iyPRL+6beO1Wmvqaqe1poK63ntqeBup7G2jqayaz+ejY84xefkQZIkYS\ngsKJMkTg5+V7VnF2D/XwZfUudtfv/1bSz/ksCJuLSiT9nLMQXZBLjGuEMyNe+YIgCIJTyGVyUvwT\nOdycTVN/C2HeISd97mhGeKxI/vEYQdpACimhdaDd4xYh3dm2ml0ArIpeLm0gTqBXebMieimfVG7j\njaJ3aehrYkZguqgCMwlMC5zCHxf/8pQLK8LEk8lkXBi7ggCtPxsLN/N07ovckHIVi8PnSx2ax3E4\nHNT21BOgMTplF53UZgZP42hrHk9mP0eUPpwlEQuYEzJTJBifpi2lW8lrKyTVmMQNKVdJsogQrAvi\nxxn3s7XiC7bV7OSvWf/isvgLWRW9DLlMftLjRMsvQfAcs4On83bJBxxoPMxFsStP671ob/1B3ip5\nD4B1KdewOMK1xxDTAqfwi3kP8+qxTeS3F/LYob9z85QbSPVPOuHz63sb+aj8MwxqPTemXiMWed3Y\nwrC5bK/dw76GQ6yIWkLo98yBOVN9byP7Gg6R2XSUPms/MFyVJsYn8jsVfLRK16ie5SlifaLJasmh\nbaBDVPA6B2armdaBjm8l9nyT5NNh7jxhIptWqSHUOwQftYHCjhL+nfsSM4KmsjbpcrdpA2+xWXg2\n7xUqu2uYGzKL65OvFJ8J3xLrE82PZt3FU9nP83rR29gcVs6LWCh1WE5hsVsp6ighayThx2wbBCBI\nG0BG8Axmh8wg3DuU4GAfWlt7JI72eCq5kihDxMhawHCClt1hp22gfSQhqGGsUlBuWwG5bQVjx3qr\ndER+q0JQlCGcYF3QSe8Ve4Z62Vazk911w0k/fl6+I+29RNKPIIjfAEEQBMFpUoxJHG7Opqij9HuT\nf6q6apAhI8YncgKjE5xpdGd2S3+rSP5xEfW9jRxrLybRL26sH72nWRF1Hrvq9pLVkgPAnFDR8muy\ncLXS+sLx5oTMxOjlx3/yXuaNondpG+jgsvgLv3fBXzgznYNd9Fr6jtt150nmhMzEW6VjT/0BctuO\n8WbxFraUbWVu6GzOC19ApCFc6hBd1s66veyo20Oodwh3TrtJ0moZSrmSKxMvJtU/iVePvcUH5Z9S\n2FHKLVOux8/L94THiJZfguA5NEoNM4OncajpCGWdlSQZ40/6XJvdxntlH7Ojbg/eKh13Td1AkjFh\nAqM9e75ePtw/8w6+qtnNhxWf8VT286yKXsal8Rcc13bCYrPwcsGbWB02bko9dYUgwbUp5AquTFjD\nf/Je4f3yT7ln+q0Tdu1+ywCHm7PZ33iImpFKkAaVnpXRS1kYNvd75+OE8RPrO5z8U9VdI5J/vofD\n4aDX0kfrQBut/d9U7hlN8Omx9J7wOF+1gXjfGAK1AQSN/BeoCyBQG4C3UjeWKNPQ28RbxVvIac2n\nsKOES+JWc37kEperGPdtNruNFwpep9hUxvTAdDakXSfulU8g2hDJg7Pu5smjz/FW8XtY7TbOj1oi\ndVjjwmq3UtRRypGWXHLbChiwmgEI0Bg5L2Ihs0OmE6WPcMuEMLlMTrAuiGBdEBkhM8b+vmuwezgR\nqLdhLDGo2FRGsals7DkquYoIfdhxFYJ81AZ21u1ld90+hkaSfi6MWcHCcJH0IwijxG+CIAiC4DSp\n/okAFHWUnnQwbnfYqempI0QXJHYdeZBvkn/aJY5EGPXlWNWfiWv1MdG0Sg0XxJzPe2Ufo1FomBbg\nfmWeBcFTJfjF8pOM+/l3zkt8Ub2D9oEONqRdh0q0ExgX37T88txE6jT/ZNL8k+kc7GJ/QyZ7Gw6x\np/4Ae+oPEOsTzZKIBWQET0etUEsdqsvIbyvknZIPMaj03Df9NpcZa6f6J/HzeQ/zetHb5LUV8uih\nv7M+de13WjeKll+C4HkWhM7hUNMRDjQdPmnyT79lgBcLXqewo4RQ7xDunX4rgVr3WkiXy+SsjllO\nsjGBFwveYFvNTopNZdyWvm7s/ezDis9o6GtiScQCt2xPI3zXtMApJPjGkdd2jLLOSqcmZdsddso6\nK9jXkEl2ax4WuxUZMqYGpLEofC5TA9JcOtnBE8X6DG+yquyuYe4k34hkd9jpMHeeoD3X8J+DtqHv\nHCOXyfHXGIk0hBOoDSBQ6z+S5BNIoNb/tMf44fpQHpp9Dwcas3i//GPeK/uYg41Z3Jh6NfG+seP8\nnZ47u8POq4WbyGs7RooxkdvT14nf3e8RoQ/jodl388+jz/JO6YdY7VZWxyyXOqyzYrPbKDGVk9WS\nQ05rPv3WAWC4JdaisHnMDplOjCHKLRN+Toevlw++Xj7HjYEGrAPU9TR+UyGot4Ganjqqumu+c7yf\nly9XxZzPwvB5IulHEP6L+I0QBEEQnMZfYyRYF0hpZzk2u+2ENy9NfS2YbYPEiJZfHiVIOzyh2TrQ\nJnEkAoDJ3Mnh5mxCvUNID0iVOhynWhqxiJzWfNL8k0VSgSC4mGBdED+ecz/P5r5CVksOpsFO7p52\nK3q1t9Shub1vkn88v9qen5cva+JWcWHsCgrai9hTf4CC9mKqumt4t/Qj5ofOZknEgkm/y722p4EX\nCl5HKVdwz4xbCdD6Sx3ScQxqPXdPu5Wv6/ezpWwrz+a9wtKIhVyVeCnqkc9v0fJLEDxPkjEef42R\nIy25rE26Ao3S67jHW/pbeSb3ZZr7W0kPSOW29HVo3bjFY4xPFD+f+yCbSz7gYFMWf8p8guuTr8LP\ny5fttV8TrAvk6sRLpQ5TGCcymYyrEi/hr1lP8V7Zx/wk4/5xX7Q1mTs50JjFgcZM2swdAARrA1kY\nNpd5YbNPWklPcL4ofTgKmeKEi9STQUNvE4ebs8lpK6C1vw2bw/ad56jlqrHKPYEj/wVpAwjSBWD0\n8hu3pBe5TM6i8LlMD5rCB2WfsK8xk8eznmZR2DyuSFyDXuUa958Oh4NNJe9zuDmbOJ8YfjDtFjGP\ndRpCvUN4aPY9/OPos7xf/glHW/OI8A4lzDuEMO9QwvQh+Kp9XDJpxu6wU2qqIKslh+zWPPosw+0Z\nfdU+nB+ZweyQGcT6RE3ayk9apZYkY/xxCeIWu5XGvibqeoYrBLUNtDM1MI1FIulHEE5K/GYIgiAI\nTpVqTGZ3/T4qu2tOuOupursW+GaHjOAZAjRG5DI5Lf0i+ccVbK/9GrvDzqroZR5/A6lWqPhxxv1S\nhyEIwknoVd78cOZdvFb0Noebs/lr1lPcN+N2gnVBUofm1mrGkn8mT/sruUzOtMApTAucQvuAiX2N\nh9jfcIiddXvZWbeXBN84zotYwMzgaZNuUrBzsItncl9iyDbEnVM3uOw4WyaTsTRyEYl+8bxU8Aa7\n6/dT0lnB7enriNCHiZZfguCB5DI580Mz+LTqS7Jb81gQNmfssaKOUl7If41+6wAro5dyZcLFHnHv\nolFquHnK9aT5J/NW8RZeLdyESq5ELpNz65Qb8RIV6zxKnG80s4Knc7Qll6OteeOSwGqxW8lrO8b+\nhkwKO0pw4EAtVzE/NINF4fNI8I11yUXuyUalUBGpD6eupwGLzTIpkjjaBjrIas7mcHM2DX1NwHCC\nT5QhYqxyzzdJPoH4qPUT+lrVq7xZn7aWBWFzeat4C/saD5HbVsCVCRezIGyOpL83DoeD98s/YU/9\nASL0Ydw34/bvJMQKJxesC+Lh2ffycsGbVPfUjq0vjNIqtSPJQMP/hY8kBRlUE/sahOGEn/LOSo60\n5HK0JW+stZ1BrWdpxCIyQmYQ7xvjEWMeZ1D9/+3dd3xb9b3/8beWLdmyLXnv2I5HpnESOzsBApRV\nNpfRXwOFll4oHdDSW9rSlkJugY5fB+1tGYX+mgJlFkjbkEISCNl7OIkdJ3G894j3ks7vDzsmuQkl\nQGxZyuv5eOQRWdKRPueB80XnnLc+H7NVqWHJSg3gLsfAmXZ2nQEDAIy6CZGZWlO1XkXNJacM/xz7\nRkwanX8CisVsUbQ9UvXdDb4u5azX1d+lddWbFBEUroK4PF+XAwCyWWy6ddJNirZH6q2yVfr51t/p\ny7m3juhohEBX0V4lV3CEwoPCfF2KT0Q53Loi42Jdlnah9jTu0/tVG1XUUqJDR0sVWvKGZifka37i\nrLMiZNYz0Ks/7HpWrb1HdfX4yzQtdqqvS/pIic54fTv/a3r90D/0XuV6/XTr47o8/SJGfgEBanbC\nYPhnY83W4fDPmsr1ernkTZlk0ucn3qA5x4WCAkVB/DSlR6Tqmb3Pq6ytQp9N/wwdkAPUlRmXaFdD\nod48tFy50ZNk/YQh5KqOGm2o2aLNtduHu0Okh6dqTkKBpsed49ddsQJVWkSqytorVNlRrfSIcb4u\nZ0S09bVre91uba3bqdK2MkmSxWTR1OhJKojL05ToSWMu1Djelab7C76h1ZVr9Y/St/WXope1oWar\nbsq5RonOeJ/UtKJsld4pf09xITH6Wt4dCrGNjfG8/iTaEan78u/WgHdA9V2NqumsVU1nnWo661Td\nWavSo2U6fPTICduE2kKGOwQlDoeD4s94N2Kv4VXp0fLBDj/1u3W0r13SYCDt2LjqTFcGgR8AI4Lw\nDwBgRGW7x8skk4pbSvRZfeakx8vaKmQ1W5XkTPBBdRhJMSHRqm8qUld/l0JsIb4u56z1ftVG9Xr6\ndGnahZ/4pCMAnGlmk1lXjL9EUY4ovVD8qh7f8aQ+P/EGFcRP83Vpfudob7uO9rVpavREX5ficxaz\nRXmxU5UXO1X1XY1aX71ZG2q2aGX5Gq0sX6Mcd6bmJ83WOdGTz9hYgbHEa3j17N7nVdFRrXmJM3Vh\n6rm+Lum0BVlsuiH7ak2MzNbS/S/pjUPLJYmRX0AAinZEKcuVoZLWw6rvatDqirVaU7VBTluovjz1\nVo13pfm6xBET7YjSt6Z/RVWdNUpxBv6ozrNVbEi0FiTN0XuV67S2epPOS5532tt2D3Rra91Obaje\nqrL2wU4WTluoLkhZqNkJ+T4LKuD0pIWn6D1JR9oqAir809XfrV0Nhdpat1PFLQdlyJBJJmW7M1UQ\nl6e8mClj/ryfxWzRhannakbsOXq55E3taijUI1t+pQtSFurS9AtHNbD0bsU6LTu8Qu5gl76Wd4fC\ngpyj9t6ByGq2KtEZf9L62O/pV11Xw3Ag6Fgo6FDrER1sLT3huWE252AQyBl/XLeguI/1e20Yho60\nVWh7/S5tr9+t1t6jkqRQa4jmJszUjLhzlOXKCMjjUABjC1eAAAAjymF1KC08RUfaKtQ90C2H9YNv\nMvR5+lTVWatxYSl88A1AsSHR2tsk1Xc3Ks02NsdNBLp+T7/erVwnu8Wu+UmzfF0OAJxkbmKBIu0u\nPbVnqf607wU19TTr4nGLGF3wMVR2DI384iLiCWJDonV15mW6POMz2tVQqLVVG1XcclDFLQcVFuTU\n3ISZmpc4U1GOSF+Xesa8WrJMhU37NcGdpRuzr/HLf0dToyfpezPv1dJ9L6msvUL5dC0EAtKshHyV\ntB7Wz7f+Tp0DXUpyJug/p35BUQ63r0sbcRazhdEVZ4FL0y7QppqtWl76jmbFz/i3XXoMw1BJ62Ft\nqNmiHfV71O/tl0kmTYmaoDmJMzUlagJf5PETx0atlh4t0/kp831czafT5+lXYdN+ba3dob1NRRow\nPJIG9zE/Lk/TY3MVERzu4yo/PrfdpS9PvUV7GvfppQNv6O3yd7W1bqduyL5KuTGTR/z9N9Rs1csl\nbyg8KExfn/Zlue2uEX/Ps5XNYlNyWKKS/9do7D5Pn2q76lXTcSwUNNgx6EDrIR1oPXTCcyOCwpQw\nNDLsWJeghNC44TXdMAyVt1dqe/1uba/freaeFkmSw2rX7Ph8TY87RxPcmVz3ADCq+NQIABhxEyKz\nVNpWrpKWwyccSFW0V8treJUWQavrQBTrGBzRUN/VOHwCBKNrc912tfW166LU804I3gHAWDIhMkvf\nmvEV/c+uZ7Ts8Ao1dDfpcznXcYLsNFW0D4V/wgj/nIrNbFV+XJ7y4/JU21mntdWbtKlmm1aUrdK/\nylZrYlS2FiTO1uSoCX79O/duxTq9W7lOCaFx+tLUz/v1vriCI/S1aXfI4/X49X4A+HDTYqbqpQOv\nq3OgS7nRk3XrpJtktwb7uizgjAkLcuqicedr2eG39E7Zu7pi/CUnPae196g21mzThpotauxukiTF\nOKI0J6FAsxJmyBUcMdpl41OKcUQp1BaiI20Vvi7lE/F4PSpqKdGW2p3a3VioXk+fJCk+NE4FcXma\nEZunmJAoH1d5ZkyNnqQcd6aWH1mpd8rf0xN7/p+mRk/Sf2RdNWJB1B31e/Tc/pcVYnXoq3lfYrSt\njwRZgpQalnxSELdnoFd1XfWqPhYIGgoHFbWUqKil5ITnuoNdig+NVUN30/D6bbcEa2b8dE2PzdWE\nyGzZCG0C8BFWHwDAiMtxZ2n5kZUqaik5IfxzpK1ckpQWRvgnEMWEfBD+wejzGl69U/6eLCaLzks5\n/TbjAOALic54fTv/a/rD7me1sWarWnpa9aUpixViI7j4UY6Ff1LD6SLwUeJD43R91pW6MuNS7ajf\nrferNmpfU7H2NRXLFRyhuYmD3YD87WLbnsZ9eqXkTYUFOXVX7m0BE/gl+AMELrs1WLdOukltvW2a\nnzRbZpPZ1yUBZ9yilPlaU7leKyve14LkOXIFR2jAO6A9jfu1oWaL9jUVy5Ahm9mmWfEzNCehQJmu\ndL/s3IdBJpNJaeGp2ttUpPa+Dr8Y5+Q1vDrUekRb63dqR/1udfZ3SZIi7W6dmzxP+XF5SgyND8jf\nyyBLkK4af6lmxk/Xi8V/057GfSpuLtFl6RdpUcqCM/pZdF9TsZ7d+7yCLDbdnfdFJTkTzthr48yw\nW4M1LjxF48JPvE7RPdCj2uNHh3UMdgra33wIiaDIAAAdQ0lEQVRAQZag4U5YkyJzZLPYfFQ9AHyA\n8A8AYMSlR6QqyBKkouaDJ9xfNvRNmLQIusIEomOdfxq6Cf+MtuqOWr1buU71XY2anZDvdxcxAZyd\nIoLDdM/0O/WnvS9od+Ne/WL7/+grubefFSNAPo2K9iqF2ZyKCPK/tvu+EmSxaVbCDM1KmKGqjhqt\nrdqozbXb9c/St/XWkZWaEjVR85Nma2Jk1pi/IF3RXqVn9j4vq9mqO3O/EFBjzAAEtryYKb4uARhR\nQZYgfTbjYj1X9LJePvCmIu0uba7dro7+TkmD45PmJORrRlzevx0LBv+SPhT+OdJWrqnRk3xdzikZ\nhqHKjmptqduhbXW71Np7VJIUZnPq3OS5yo+bpvTw1IAM/JxKQmicvjHtP7W5drteO/h3vX7on9pU\nu0035VyrTFf6p379g62lenLPn2U2mXRn7m10R/czDqtd6RHjlB4x7oT7u/q7ZTNbCfwAGHMI/wAA\nRpzVbFWWK0N7m4rU0tM6PM/4SFu5nLZQRdm5SBGI3HaXrGYrnX9GSfdAj7bV7dT6mi3DwbqIoHBd\nPG6RjysDgNMXbAnSHVMX67WDf9fqirX62bbHdVfubSd9+w6DOvo71dTTokmROWfNyfkzLcmZoBtz\nrtFV4y/TtvqdWlu1Ubsb92p3415F2d2alzhLcxILFKMwX5d6kpaeVv1+17Pq9/Tri1M+z4UEAADG\nmNkJM7SqYo12NuyRJDltoVqUskBzEgqU6Iz3cXUYCcc+jx05OvbCP3VdDdpat1Pb6naqrqtBkmS3\n2DU7Pl/58XnKdo0/azsvmkwmzUqYoSnRE/XGoeVaV71Jv9z+e81OyNc14y+XMyj0E71ueVulfr/r\nWXkMj/5z6q3Kdo8/w5XDV+hSDGCsIvwDABgVEyKztLepSEUtBzUnIV/tfR1q6mnR5KgJXKwKUGaT\nWdGOKDV0N8owDP47jwDDMHSwtVQbarZoe/1u9Xv7ZZJJk6MmaG5CgaZET5SVGdMA/IzZZNb1WVcq\n2hGlVw68qV9u/4Num/w5nXPc6FAMqmyvliSlhCX5uBL/Z7cGa17iLM1LnKWytgqtrdqkrXU79Obh\nt/T30n9pYkymMpzpynFnKjUs2ecXRnoGevWH3X/S0b42XZN5uabFTvVpPQAA4GRmk1mLJ96g9yrX\na2r0JE3lGD3gHfvSQmlbuY8rGdTS06pt9bu0rW6nyofGBdvMVk2LzVV+XJ4mM6roBKG2EH1uwnWa\nk5CvF4pf08aardrTsE9XZV6qOQkFH6sraE1nnX6762n1enp12+SbNSV64ghWDgDAID5pAgBGxQR3\nliSpqPmA5iTk68jQQTDf5A9ssY5o1XbWqaO/0y9mnfuL1t6j2lyzXRtqtqh+aKxatCNKcxIKNCt+\n+nB3LQDwZ+clz1OU3a1nCp/TU3v+rGuzPqvzk+cTJj1OxdAJfMI/Z9a48BSNC0/RtVmXa0vtDm2o\n2ap99SXaW39Ay7RCdotdWe4MTXBnKScyU/EhsaP6e+k1vHp273Oq7KjWvMRZuiBl4ai9NwAA+HjG\nhafolkk3+roMjJIQm0NxIbE6fLRMf9r7giwmiyxmi6xmy+Bt07HbVlnMZllNFlnMVllMZlnM1qGf\nj3/ecbeP3X/cNlaz9YP3MFlkNpnVOdClHfV7tK1upw62lsqQIbPJrElROcqPzVNuzGRGzX2E9Ihx\n+k7+1/Ve1Xr9/fAKPV/0qjbWbNVNOdcqyZnwkds3djfp8R1PqbO/S5+bcJ1mxOWNQtUAABD+AQCM\nkoTQOIUHham4+aAMwxgeS8R4gsAWExIlSarvaiT88yl5vB4VNu3X+uot2tdcLK/hlc1sVUHcdM1N\nLFCmK/1jfQMJAPzB1OhJunfGXfrDrmf1askyNXY36fqsK1nvhhD+GVkOq0MLk+dqYfJc2cNNWn9w\nl4qbS1TcclB7GvdpT+M+SVJEUJiyh4JAE9yZIx7CfaVkmQqbijQxMls3Zl9NIA4AAGAMyY2epLfL\n39WWuh2+LkXjI9KVH5enabFTOS/3MVnMFi1KWaBpMVP1asky7WjYo0e3/FrnJ8/XZekXyW4NPuV2\nrb1H9ZsdT+loX5uuy/ys5iXOGuXKAQBnM8I/AIBRYTKZlOPO0pa67arurNWRofDPuPBkH1eGkRTn\niJEk1Xc3arwrzbfF+Knaznqtr9mszTXb1d7fIUlKDUvW3MQC5cflyWFlxjSAwJYalqz78r+q3+96\nVu9VrldTd4tum/y5Dz3ZejapaK9SiNWhKLvb16UEvLBgp6bH5mp6bK4kqam7RcUtB1XcUqLi5oPa\nUrddW+q2S5JiQ6KV487SBHemst3jFWILOWN1rK5Yq/cq1ykhNE5fnPJ/fD5+DAAAACe6avyluiB1\noQa8A/IYHg14PfIYHnm8Hg0M/T14/4A8hveD28fuP+45J2/jkccYkMfr1YBxbJvjb3tk1mCXnxlx\n5yiS44RPzW136UtTF2tvU5FeKn5dKyvWaFv9Lv1H9lU6J3ryCUH8jr5OPb7jKTX1NOuytAu1KJUO\nnQCA0UX4BwAwaiZEZmpL3Xbtbz6gI20VinFEyWkL9XVZGEExIdGSpIauRh9X4l96Bnq0vX63NtRs\n0eGjZZKkUGuIzk+erzmJBafVYhgAAkmk3a1vzviK/lj4FxU27devtv9eX5h8s+JD43xdms90D/So\nvrtROe5MOr/4QJTDrbmOAs1NLJBhGKrprFPRUBCopPWQ3q/aoPerNsgkk1LCkpTjztSEyCxlRKQp\nyGL7RO+5p3GfXi1ZprAgp+7KvZ0AMAAAwBhkMpnoshOAJkdN0PdnfUsrylbp7bJ39dSeP2tK1AT9\nR/bVinZEqnugW7/d9bRqu+q1KGWBLku/yNclAwDOQoR/AACjZkJkliRpXfUmdQ90a3JUjo8rwkiL\nHQr/1Hf7JvxjGIZaeltlGJLbHjGmx8QYhqHDR8u0oWaLttXvUp+nTyaZNDEyW3MSCpQbM1k2Mx/d\nAJy9HFa77sq9TS8e+JvWVW/Wkk3/V3kxU3Rx2gVKCUv0dXmjrrK9WhIjv8YCk8mkRGe8Ep3xWpSy\nQB6vR2XtFSpuPqiilhKVHi1XeXul3i5/V1azVRnh45QTmaUcd6ZSw5JOq3tPRXuVntn7vKxmq+7K\nvU1RDr7FDQAAAIymIItNV2RcrJlx0/TXA6+rsKlIxZt+oUvSLtC+piJVtFdpbkKBrs38LF/QAAD4\nBFeQAACjxhUcofiQWNV21UuS0sJTfVwRRlpEULiCzDbVdzWM+Ht19XerurNW1R01quqsVXVHrWo6\na9U90CNJsposinJEKcYRpZiQKMU4ogdvO6IVaXf5bGzG0d52ba7dpg01W1U39G8jyu7W7NRzNTsh\nnxbNAHAci9mim3Ou0+SoiXrryErtaNijHQ17NCVqoi5JW6T0iHG+LnHUVLRXSiL8MxZZzBZlRKQp\nIyJNl6ZfqF5Pnw62lg6PCDvQekgHWg9pmQZDbVmu8UOdgTIVFxJ70oWClp5W/X7Xs+r39OtLUxdr\nXHiKb3YMAAAAgOJCY/X1vDu0pW6HXiv5u5YdfkuSND02VzdPuI7gDwDAZwj/AABG1YTIrOPCP1y4\nCHQmk0kxIdFq6G6SYRhn5OB3wDuguq4GVXXUqLqjdijwU6uW3tYT31smxYbEaEJktiwmsxq6mlTf\n3TgYsGk68TXNJrOi7O7BQFBIlKKPhYQc0YpyRJ7xjjser0f7mou1vnqLCpv2y2t4ZTVblR+XpzkJ\nBcp2jx/TXYoAwJdMJpPOiZms3OhJ2t98QG8dWanCpv0qbNqvHHemLkm7QFmujIA/4VpO5x+/EWwJ\n0uSonOGulx19nTrQekhFzSUqbjmo3Y17tbtxr6TB4HROZKZy3IN/HFa7/rD7Tzra16ZrMi9XXswU\nX+4KAAAAAA0el86Mn64pURO1/Mg76vcO6PqsKzifBwDwKcI/AIBRNSEyS+9WrpPFZFGy8+wb0XE2\ninVEq6qjRkf72uQKjjjt7QzDUHNPq6o7Twz51HbVy2t4T3huRFCYJkZmKzF0cORGkjNB8SGxslls\nJ71uZ3+XGrob1dDVNPh3d5MauprU2N2kfc3FUvOJzzfJJLfdNRQGilJMyAcdg6IdkQqyBJ32PtV1\nNWhD9RZtqt2mtr52SVKKM1FzEmcqPy5PobaQ034tADjbmUwmTYrK0aSoHJW0HNZbR1aqqGUwTJER\nMU6XpF2gSZE5ARsCquioUrAlSDGOKF+Xgo/JGRSq6bG5mh6bK0lq6m5WcctBFTWX6EDLIW2u3a7N\ntdslSQ6rQ90D3ZqfOEsXpCz0ZdkAAAAA/pcQm0PXZV3h6zIAAJBE+AcAMMqyXBmyma1KdiadMpiB\nwBMTEi1Jauhq/NDwz0eN7DomyBKk1LDkE0I+iaHxcgaFnnY9obYQhdpSTzl2rnugR43dTUOBoKFg\n0FBQqLjloIpbDp60jSs44oNgkCNa0cMjxSJlt9rV6+nT9vrd2lC9RYeOlkoavJC3MGmu5iYW0LEB\nAM6ALHeGstwZOtJWrreOrNKexn36n13PKCUsSZekXaDc6EkB9Q3MXk+f6jrrlRGRFlD7dbaKckRq\nrmOm5ibOlGEYqu6sVfFQV6CS1sOaEjVRN2RfHbBBNgAAAAAAAHx6hH8AAKPKbrXrnul3KtR6+mEN\n+LdYx2D4p76rUekR4z72yK6k0HglOhOU5IxXpN09ohc5HVa7UsKSThnI6fX0nSIYNHj7YGupSloP\nn7RNmM2pPm+fej19kqQcd6bmJhQoN2aKggi/AcAZlxaeqjtzv6DK9mqtKFulHfV79NSePyshNE4X\nj1uk6bG5spgtvi7zU6vqqJEhQ6nhBEgDjclkUpIzQUnOBC1KXXjGxqYCAAAAAAAgsBH+AQCMulN1\nXEHgOtb55/VD/9RfD/zt347sSnImKNEZ/6Eju3wp2BI0fDHuf+v39Kupp/m4QNAHI8WCFaxFcXma\nnVCgaEekDyoHgLNPcliivjjl86rtrNe/ylZrS90O/WnfC/pH6b/0mXGLNDN+mqxm/z0crmivkiSl\nOAn/BDqCPwAAAAAAADgd/nu2EwAA+IUkZ4KctlD1efuHR3YdC/kkOuPltPl/Fyibxab40DjFh8b5\nuhQAwHHiQ2N1y6QbdVn6RXq7bLU21mzVc0Uv65+lb+uicedpbkLBmAubno7y9kpJYnQkAAAAAAAA\nAEmEfwAAwAhzWO36ybwHZDKZRnRkFwAAHybaEambJ1ynS9Iu0MryNVpbvUkvHXhdbx1ZqQtSF2p+\n4mzZrcG+LvO0VbRXyWa2KS4kxtelAAAAAAAAABgDCP8AAIARZzFbfF0CAABy2126PvtKXZy2SKsq\n3td7lev0t4P/0L/KVmtRygItTJqrEJvD12X+W/2eftV01mlcWDL/fwUAAAAAAAAgifAPAAAAAOAs\nExbk1FXjL9WFqefq3cp1erdirZYdXqG3y97TeclzdX7KAjmDxuZYyurOWnkNLyO/AAAAAAAAAAwj\n/AMAAAAAOCuF2kJ0efpFuiBlgd6v2qiV5Wv0Vtkqrap4X/OTZuvC1HMVERzu6zJPUNFeJUmEfwAA\nAAAAAAAMI/wDAAAAADir2a12XTTuPJ2bPFfrqjfrnfL3tKrifa2p2qC5CQW6MPU8RTncvi5T0vHh\nn2QfVwIAAAAAAABgrCD8AwAAAACApCBLkM5Pma/5SbO1uWabVpSt1pqqDVpbvUkz46fr4nHnKzYk\nxqc1VrRXy2qyKCE01qd1AAAAAAAAABg7CP8AAAAAAHAcm9mqeUmzNDshX1vrdmpF2WptrNmqTTXb\nNCPuHOVGT1ak3SW33aXwoDCZTeZRqcvj9aiqs0aJznhZzRzOAwAAAAAAABjE2UIAAAAAAE7BYrZo\nVsIMFcRP086GQr11ZKW21u3U1rqdw88xm8xyB0fIbXfJHeyW2x4xGAwKHgwHRdpdclgdZ6Sems46\nDXgHlBKWdEZeDwAAAAAAAEBgIPwDAAAAAMC/YTaZNT02V9NipupAyyFVd9aqpbdVLT2Df5p7WnWo\n9YgMlZ5ye7vFrki7Sy57hCKDXXLb3UMBoQi57W65gsNPq5NPRXuVJBH+AQAAAAAAAHACwj8AAAAA\nAJwGk8mknMhM5URmnvTYgHdAR3vb1NzTOhwMaj4uINTS26rqztpTv65MCg8KG+weZHcNBYROvO20\nhaqig/APAAAAAAAAgJMR/gEAAAAA4FOymq2KckQqyhH5oc/pHuhWS89RtfQOdgs61jWodejn8vZK\nHWkrP+W2NrNVhga7ECWGJozQXgAAAAAAAADwR4R/AAAAAAAYBQ6rQw6nQ4nO+FM+7jW8autrPy4g\n1KLWnqNDHYRa1NzTqomR2Qqy2Ea5cgAAAAAAAABjGeEfAAAAAADGALPJLFdwhFzBEUpXqq/LAQAA\nAAAAAOAnzL4uAAAAAAAAAAAAAAAAAMAnQ/gHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/\nRfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAA\nAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA\n8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAA\nAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAA\nAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAA\nAAAAAAAAAAAAAAA/RfgHAAAAAAAAAAAAAAAA8FOEfwAAAAAAAAAAAAAAAAA/ZTIMw/B1EQAAAAAA\nAAAAAAAAAAA+Pjr/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAA\nAH6K8A8AAAAAAAAAAAAAAADgpwj/AAAAAAAAAAAAAAAAAH6K8A8AAAAAAAAAAAAAAADgp6y+LgA4\nntfr1YMPPqji4mIFBQVpyZIlGjdunK/LAoBPZdeuXfr5z3+upUuXqqysTPfff79MJpOysrL0ox/9\nSGYzWVwA/qW/v1/f+973VFVVpb6+Pt11113KzMxkfQPg9zwejx544AGVlpbKZDLpxz/+sYKDg1nf\nAASMpqYmXXvttXrmmWdktVpZ3wAEjGuuuUZOp1OSlJycrDvvvJM1DkBAeOKJJ7Rq1Sr19/fr5ptv\n1syZM1nfAJwSKwHGlHfeeUd9fX168cUX9a1vfUuPPvqor0sCgE/lqaee0gMPPKDe3l5J0iOPPKJ7\n7rlHzz//vAzD0MqVK31cIQB8fG+++aZcLpeef/55Pf3003r44YdZ3wAEhNWrV0uS/vrXv+qee+7R\nL3/5S9Y3AAGjv79fP/zhD2W32yVxfAogcPT29sowDC1dulRLly7VI488whoHICBs2rRJO3bs0Asv\nvKClS5eqtraW9Q3AhyL8gzFl27ZtWrBggSQpLy9PhYWFPq4IAD6d1NRUPf7448M/7927VzNnzpQk\nLVy4UOvXr/dVaQDwiV1yySX6xje+IUkyDEMWi4X1DUBAuPDCC/Xwww9LkqqrqxUeHs76BiBgPPbY\nY7rpppsUGxsrieNTAIGjqKhI3d3duv3223XLLbdo586drHEAAsLatWuVnZ2tu+++W3feeafOO+88\n1jcAH4rwD8aUjo6O4dackmSxWDQwMODDigDg07n44otltX4wZdMwDJlMJklSaGio2tvbfVUaAHxi\noaGhcjqd6ujo0Ne//nXdc889rG8AAobVatV3vvMdPfzww7riiitY3wAEhNdee02RkZHDX7qTOD4F\nEDjsdru++MUv6o9//KN+/OMf67777mONAxAQWlpaVFhYqF//+tesbwA+EuEfjClOp1OdnZ3DP3u9\n3hMumgOAvzt+9m5nZ6fCw8N9WA0AfHI1NTW65ZZbdNVVV+mKK65gfQMQUB577DGtWLFCP/jBD4bH\nt0qsbwD816uvvqr169dr8eLF2r9/v77zne+oubl5+HHWNwD+LD09XVdeeaVMJpPS09PlcrnU1NQ0\n/DhrHAB/5XK5NH/+fAUFBSkjI0PBwcEnhH1Y3wAcj/APxpTp06drzZo1kqSdO3cqOzvbxxUBwJk1\nadIkbdq0SZK0Zs0a5efn+7giAPj4Ghsbdfvtt+vb3/62rr/+ekmsbwACw+uvv64nnnhCkuRwOGQy\nmTRlyhTWNwB+77nnntNf/vIXLV26VBMnTtRjjz2mhQsXsr4BCAivvPKKHn30UUlSXV2dOjo6NG/e\nPNY4AH5vxowZev/992UYhurq6tTd3a05c+awvgE4JZNhGIaviwCO8Xq9evDBB3XgwAEZhqGf/OQn\nGj9+vK/LAoBPpbKyUt/85jf10ksvqbS0VD/4wQ/U39+vjIwMLVmyRBaLxdclAsDHsmTJEi1fvlwZ\nGRnD933/+9/XkiVLWN8A+LWuri5997vfVWNjowYGBnTHHXdo/PjxfH4DEFAWL16sBx98UGazmfUN\nQEDo6+vTd7/7XVVXV8tkMum+++6T2+1mjQMQEH76059q06ZNMgxD9957r5KTk1nfAJwS4R8AAAAA\nAAAAAAAAAADATzH2CwAAAAAAAAAAAAAAAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAA\nAPBThH8AAAAAAAAAAAAAAAAAP0X4BwAAAAAAAAAAAAAAAPBThH8AAAAAAAAw6l577TXdf//9vi4D\nAAAAAADA7xH+AQAAAAAAAAAAAAAAAPyU1dcFAAAAAAAAYOx68skntXz5cnk8Hs2fP18333yzvvKV\nryglJUVlZWVKTEzUz372M7lcLq1evVq/+tWv5PV6lZKSooceekjR0dFav369Hn30URmGocTERP3i\nF7+QJJWVlWnx4sWqrq7WnDlztGTJEh/vLQAAAAAAgP+h8w8AAAAAAABOac2aNSosLNQrr7yi119/\nXXV1dVq2bJkOHDigW2+9Vf/4xz80fvx4/fa3v1VTU5N++MMf6ne/+52WLVum6dOn66GHHlJfX5/u\nu+8+PfbYY1q2bJlycnL0t7/9TZJUU1Ojxx9/XMuXL9eaNWtUUlLi4z0GAAAAAADwP3T+AQAAAAAA\nwClt2LBBu3fv1rXXXitJ6unpkWEYSktL06xZsyRJV199te677z7NmzdPubm5Sk5OliTdeOONevLJ\nJ1VcXKy4uDhNnDhRkvTNb35TkvTaa68pPz9fLpdLkpSamqqWlpbR3kUAAAAAAAC/R/gHAAAAAAAA\np+TxeHTrrbfqtttukyS1tbWptrZW99577/BzDMOQxWKR1+s9YVvDMDQwMCCbzXbC/e3t7ers7JQk\nWa0fnJoymUwyDGOkdgUAAAAAACBgMfYLAAAAAAAApzR79my98cYb6uzs1MDAgO6++24VFhaqtLRU\n+/fvlyS9+uqrWrhwoc455xzt2rVLlZWVkqQXX3xRs2bNUnp6upqbm3Xw4EFJ0tNPP60XXnjBZ/sE\nAAAAAAAQaOj8AwAAAAAAgFNatGiRioqKdMMNN8jj8WjBggUqKChQRESEfvOb36i8vFw5OTlasmSJ\nQkJC9NBDD+mrX/2q+vv7lZiYqP/+7/9WcHCwfvazn+m//uu/1N/fr9TUVP30pz/VihUrfL17AAAA\nAAAAAcFk0E8ZAAAAAAAAp6myslK33HKLVq1a5etSAAAAAAAAIMZ+AQAAAAAAAAAAAAAAAH6Lzj8A\nAAAAAAAAAAAAAACAn6LzDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAA\nAAAAAOCnCP8AAAAAAAAAAAAAAAAAforwDwAAAAAAAAAAAAAAAOCnCP8AAAAAAAAAAAAAAAAAfur/\nA6FZTqEsfzMdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACPQAAAJoCAYAAADr1y2qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fW9x/H3yd6TDCAEwkpAloBsQRAvoOIEKaDgal1I\nayutVmm1XrW2vdWrOOpVEVCQISqCgCxBmYIQVkISQggJIftkj7PuHyHHRBIIkJBw8no+HjzyO7/x\nPd8z8jmn6dvP12Cz2WwCAAAAAAAAAAAAAAAA0CI4NfcEAAAAAAAAAAAAAAAAAPyMQA8AAAAAAAAA\nAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAAAGhB\nCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAgBZu5cqVio6OVnR0tNasWdPc07kk1fN/6KGHmuw+Kisr\ndfz48SYbHwAAAAAA4Eoh0AMAAAAAAICr3o4dO3Tbbbfpm2++ae6pAAAAAAAAXDaX5p4AAAAAAAAA\ncDkyMjL0wAMPNPc0AAAAAAAAGg0degAAAAAAAHBVs1gszT0FAAAAAACARkWgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALYhLc08AAAAAAABcedHR0ZKkuXPnavr06Vq1apWWL1+uhIQEmUwm\nRURE6LbbbtPMmTPl5uYmSdqzZ48WLFig2NhYGY1GhYaGauTIkXr88ccVGhpa732VlZVpyZIl2rhx\no5KTk1VcXKyAgAD16tVLEydO1IQJE+TkdP7/5ui7777T+vXrtX//fuXm5qq0tFQ+Pj6KiIjQ0KFD\nde+99yo8PPyc69566y3NmzdPvr6+2rt3r7KzszV//nxt2bJFGRkZcnFxUZcuXTRhwgRNmzbN/lib\nyt69e/X111/rp59+UlZWloqLi+Xt7a2wsDANGjRI06ZNU5cuXS44Tl5ent577z1t2rRJmZmZCggI\nUL9+/TR58mSNGjWq3uvKy8u1bNkybdiwQQkJCSopKZGPj486dOig4cOHa9q0aed9LS0Wi9avX6+v\nv/5ahw4dktFolLe3tzp16qRRo0Zp+vTp8vf3v6jnZPfu3ZoxY4Yk6Q9/+IN+85vf1HneunXr9Nvf\n/laS9Oqrr+quu+6S9PN7udq8efM0b948SdLChQs1ePDgWseNRqM++eQTfffdd0pNTVVZWZmCg4PV\nt29f3XXXXed9/hqLzWbT2rVr9fXXX+vw4cPKz8+Xt7e3unTpohtvvFG/+tWv5O3tXee11Y/32Wef\n1Q033KCXXnpJ+/btk4uLiyIjI/X0009r2LBhGjNmjNLT0zVjxgw98sgjeumll/T999/LZrMpIiJC\nv/nNbzRx4kT7uJWVlfryyy+1fv16xcXFqbCwUL6+vuratavGjh2rKVOmyMPD47LmBAAAAAAAGo5A\nDwAAAAAArZjJZNJjjz2mLVu21NqfkJCgf/3rX9qxY4c+/PBDvf3223r77bdls9ns56Snp2vJkiXa\ntGmTVqxYobCwsHPGP3jwoGbNmqXMzMxa+7Ozs7VlyxZt2bJFixYt0ptvvllnkCQ/P1+zZs3S3r17\nzzlmNBplNBp1+PBhffrpp3rnnXc0dOjQeh/r3r179cQTT8hoNNbaf+DAAR04cEArV67UwoULFRAQ\nUO8Yl6q8vFx//OMftX79+nOOFRQUqKCgQAkJCfrss8/06quv6rbbbqt3rOTkZL366qvKzs6278vO\nztaGDRu0YcMG3XrrrXrttdfk4lL7zz4ZGRl68MEHlZycXGt/fn6+8vPzdfDgQc2fP1//8z//o7Fj\nx55zv+np6XrqqacUGxtba7/RaLQ/hx9//LH+9a9/aeTIkQ16Xq60rVu36umnn1ZhYWGt/RkZGcrI\nyNC6des0ZswY/fOf/5SPj0+TzCE3N1ezZs3STz/9VGu/0WjUvn37tG/fPn388cd68803de2119Y7\nzpkzZzR16lTl5eXZ9x09elSRkZG1zisuLtb06dOVkpJi35eQkFDr9zU+Pl6/+93vdOLEiVrX5uXl\nac+ePdqzZ4/mz5+vt956S717977sOQEAAAAAgAsj0AMAAAAAQCv2n//8R/n5+erdu7dmzJihiIgI\nJSYm6t///reMRqN27NihRx99VFu3blXnzp310EMPqVu3bsrKytL777+vgwcPKisrS6+//rr+/ve/\n1xo7MTFRM2fOVGlpqby9vTVt2jQNHTpUvr6+Sk9P1+rVq7Vx40bt379fDz30kJYuXSovL69aY8ye\nPdse5hk2bJjuvPNOtWvXTiaTSSdPntQnn3yixMRElZaW6plnntHmzZvl7Ox8zuMsLy/X448/rpKS\nEk2dOlU33nijfHx8dPToUb333nvKysrSsWPH9Prrr+vFF19s9Of5r3/9qz3M06tXL02dOlWRkZFy\ncnLSqVOntHTpUu3fv19ms1l//etfdf311yswMLDOsaqDVSNHjtSUKVPUpk0bxcXF6T//+Y8yMjK0\nevVqBQQEaO7cubWue+aZZ5ScnCxnZ2fNnDlTw4cPl7+/v/Ly8rR161YtXbpU5eXlmjNnjtavX18r\nYJWXl6cHH3zQHgoZMGCApkyZok6dOsloNGrjxo36/PPPVVBQoEcffVQffPDBFevI8uWXXyorK8ve\n2WfKlCmaOnWqJNUKkuzcuVOPPfaYLBaLgoODNX36dA0cOFAeHh5KSUnRihUrtGfPHm3evFmzZs3S\nhx9+WOd76XKUlpZqxowZSkpKksFg0MSJEzVu3DiFhobKaDRq27ZtWrZsmbKysvTggw9q2bJl6tat\nW51jLViwQDabTQ8//LBGjx6tnJwcxcXFKSIi4pznx2q1atKkSbrjjjtUVFSkHTt2aNCgQZKklJQU\nPfDAA/YQzujRo3XHHXeoXbt2ysrK0urVq7V27VplZGRoxowZWrp0qbp3735ZcwIAAAAAABdGoAcA\nAAAAgFYsPz9fw4cP13vvvWdfbqp///4KDw+3ByS2bt2q3r17a+HChbUCN9dff73GjRunM2fOaMuW\nLbLZbDIYDPbjc+bMUWlpqcLDw7Vo0aJa4Yo+ffpowoQJ+vTTT/W3v/1NCQkJeuedd/T000/bz9mx\nY4f27NkjSbrpppv01ltv1Rp/6NChmjx5sqZOnarY2FidOXNG+/fv18CBA895nCaTScXFxXrvvfdq\ndY+59tprNXLkSE2cOFFlZWVavXq1nn/+ebm6ul7uU2uXkpKir776SpLUt29fffLJJ7WW9ho4cKDu\nvPNOzZ49W+vXr1dpaam2bdum22+/vc7xqgMTc+bMse/r16+fxo0bp+nTpys5OVmffvqp7rnnHvtS\nSOnp6dq1a5ck6cknn9Rjjz1Wa8xRo0apS5cu+tvf/qbS0lKtXr1aDz74oP34v//9b3uY57777tNz\nzz1X67UYNWqUxo8fr0ceeUQmk0lz5szRxo0b5enpeRnPXMP06NFDvr6+9tshISHq0aNHrXOqg0oW\ni0Xdu3fXggULFBQUZD/et29f3X777frnP/+pDz74QDt37tSyZcvswaDG8vrrryspKUkuLi6aN2+e\nRo8eXev4yJEjdfvtt+u+++5TaWmpnnvuOS1btqzOsaxWqx599FE99dRT9n3jx4+v87xbb71VL7/8\nsn3fmDFj7NsvvviiPczzzDPP6IEHHqh1/dixYzVq1Cg988wzKi0t1dNPP62vvvqq1ut/sXMCAAAA\nAAAXdv4F6gEAAAAAgMP705/+VCtgIlUFC2qGMebMmXNO9xwPDw8NHz5c0s/LX1Xbvn274uLi7OPX\nt+TO9OnT7Z1ClixZIpPJZD924sQJdejQQa6urpo1a1adAQJnZ2fdfPPN9ttZWVn1Ps6bbrqpzqWg\nOnToYO8mU1xcrLS0tHrHuBSJiYnq2LGj3N3d9cgjj5zzXFeruczWL5coqyk6Olq///3vz9kfFBRk\n7y5ks9m0dOlS+7GcnBz7dseOHescd9KkSZo8ebJ++9vfqk+fPvb9eXl5+uKLL+z3/eyzz9b5Wgwf\nPlyPPvqo/f6qr2kJVq1aZV+i7OWXX64V5qnpqaeesj8/CxcubNQ5FBYWavny5ZKkyZMnnxPmqda7\nd289/PDDkqTY2NhzljirqaGBo/rOi4uL044dOyRJN9xwwzlhnmp33nmn7rrrLknSsWPHtG3btsue\nEwAAAAAAOD8CPQAAAAAAtGLBwcH2Li41GQwG+5JLbm5uGjBgQL3XVystLbVvf/fdd/bt6tBPfUaN\nGiWpKkxz6NAh+/7p06dr48aNOnjwoGJiYuq9PiQkxL5dWVlZ73kjRoyo91jNwFFJScl553uxbrrp\nJq1fv16xsbG1OqP8Ups2bezb53sckyZNqncpqEGDBql9+/aSqkJV1SIjI+XiUtWo+e9//7s2btxY\nKzwlSe7u7vrv//5vPf7447W6HO3atUtms1lSVRDlfMtQ1QxznC/0caVVvx99fX1rhZV+ycXFxf5+\nTU5OPm+w6mLt2bNHZWVlki78O1EzeLZz5846zwkLC1N4ePgF79fFxUW9e/eu89j3339v354yZcp5\nx6n52ta87lLmBAAAAAAALowltwAAAAAAaMWqwx91qe4kExgYaA+D1HeOVNUVplp1dx5J9g48DXHq\n1Cn179+/1j4nJyf7+FlZWTp16pRSUlKUlJSkQ4cO1epgYrVa6x37fI+1Zvchi8XS4PlejJpdbXJy\ncnTq1CmdPHlSx48f1+HDh7V//3778ZrP5S/17dv3vPfTo0cPpaenKyUlRRUVFXJ3d1dgYKAmT56s\nJUuWKDMzU0888YS8vb01ePBgDRs2TMOHD1fnzp3rHC8hIaHB9x0cHKwOHTro1KlTta5rbtXvx6Ki\nojoDbPU5deqUwsLCGmUOR48etW/PmjXrouZQl7Zt2zbo+sDAQLm7u9d5LDEx0b7dr1+/847Ts2dP\nubq6ymQy6dixY5c1JwAAAAAAcGEEegAAAAAAaMW8vb0veE59YZ7zyc/Pv5TpqLCwsNZtm82mtWvX\natmyZYqNja3VBahadeDnQn65ZFhNNcM25wvTXI7vv/9eixcv1o8//qiioqJzjjf0cdS3XFS1wMBA\n+3ZBQYG909Jzzz0nNzc3ffrppzKbzSopKdHmzZu1efNmSVVdfG6++WbNnDmz1n3UXEqtZkem+rRp\n00anTp1SQUFBgx7PldBY78eWNAcfH58GXX++3/Hq19bJyanW+6YuLi4uCggIUHZ2dr2vbUPnBAAA\nAAAALoxADwAAAAAArdj5lk+6HNVLNAUGBmr+/PkNvq5mN5SKigrNnj271vJdBoNBERER6ty5s3r0\n6KH+/fvLaDTqj3/8Y6PNvbHZbDbNnTtXy5cvr7W/bdu26ty5s6Kjo3XttdfK19dX999/f6PcX7Wa\nHZRcXV315z//Wb/+9a+1fv16bdmyRXv37lV5ebkkKTU1Ve+9954WL16sDz/80L401cUGnKo7HDU0\noNRQ5+u+dCHV78fo6Gi99tprDb4uIiLiku/zl2p2fnr77bfP2zGqpssNydQMq/3Sxb621a9BY7+2\nAAAAAADgXAR6AAAAAABAowsICJAklZaWKjo6+pICAG+++aY9zNOrVy898cQTGjRo0DkBh5UrV172\nfJvSkiVL7GGeTp06afbs2Ro+fLj9Oaq2e/fuBo1XUFCgDh061Hs8NzdXUlVHFV9f33OOh4SE6N57\n79W9996ryspK/fTTT9q+fbvWrFmj9PR0FRYWas6cOVq7dq2cnJxqzTM3N/eCQZTq+/f392/Q42lo\nd6Ti4uIGjVeX6s4yFRUV6tGjxyWPczlqPh9BQUHNNo+aqudktVqVn59/3u5PJpPJ3i2ooa8tAAAA\nAAC4dPznNAAAAAAAoNF169ZNUlWXnbi4uPOeu23bNn300Udav3698vLyJFV1M/nss88kSX5+flqw\nYIHGjBlTZ7eS06dPN/LsG9fixYslVXVD+uCDD3TLLbecE+aRpIyMjAaNl5SUVO8xm82mw4cPS6rq\nRlPdgclqterUqVPauXNnrfPd3Nw0ZMgQ/eEPf9C6devUr18/SVJKSopOnDhhH6fawYMHzzu3rKws\npaenS5I6d+7coMdTs0tUWVlZveddzutc/X48efKk/T1WnzVr1mjBggXauHFjnUu8Xe4cJCk2Nva8\n5544cULvvvuuVq1apZSUlEabwy/VfG0vNKcjR47IZDJJavhrCwAAAAAALh2BHgAAAAAA0OhGjBhh\n364OtNTFYrHoxRdf1GuvvabZs2fbAx15eXn2jiyRkZH1LjtkMpm0bt26WuO1NCdPnpRUFUw6X2ed\nr7/+2r5dvURUXb755pt6j3333XfKzs6WJF1//fX2/XPnztXYsWN1//3369SpU3VeWx3uqVZRUSFJ\nGjx4sFxdXSVJy5cvP+/SV9UhLEkaNmxYvefV5OfnZ9+uDgPVZdu2bfUeu1AHqOr3o81mqzXHXyoq\nKtLcuXP1yiuvaM6cOeddrupiDR06VC4uVc2yly9fbg/H1OXdd9/VG2+8oTlz5ujAgQONNodfqvl7\nunTp0vOeu2TJEvv28OHDm2xOAAAAAACgCoEeAAAAAADQ6MaOHWsPr3z++edatWpVnee9+uqrSktL\nkyTdeOON9uWcfH197eGHpKSkOruzVFZW6q9//asSExNr7WtpAgMDJUn5+fk6dOjQOcdtNpvefPNN\n/fDDD/Z953scW7du1bJly87Zn5GRob/97W+SJHd3d02bNs1+bPTo0fbtV199tc6lrcrKyrRp0yZJ\nkre3t6KioiRJwcHBmjhxoiQpPj5e//jHP+qc144dO/T+++9LqlpS6s4776z3MdQUGRkpT09PSdLG\njRvr7FT08ccf68iRI/WO4ebmZt+uq6vO5MmT7aGwd99995xORVJVF6NnnnlGJSUlkqRJkybZ59UY\nQkJCdOutt0qSjh8/rpdeeqnO12Ht2rX2cFdISIjGjx/faHP4pZ49e2rQoEGSpC1btmjhwoV1nvfl\nl1/qyy+/lFTVneeGG25osjkBAAAAAIAqLs09AQAAAAAA4HhcXFz02muvaebMmTKZTPrjH/+oLVu2\n6JZbblFISIjS09O1dOlS7dq1S5Lk7++vP//5z/brPTw8NHr0aG3YsEHl5eW677779PDDD6t79+6q\nrKxUfHy8li1bpuTk5Fr3W1RUdEUfZ0NMmDBBH3/8sSTpkUce0cMPP6xevXrJYDAoMTFRK1euPCfo\nU92dqC6enp6aO3eu9u/fr5tvvlk+Pj46cOCA3n//fftyUs8884zCwsLs14wZM0a9e/fWoUOHtGnT\nJt19992aOnWqOnXqJJvNpuTkZH3yySf2cNRDDz1UK8zypz/9Sbt371Z6errmz5+vQ4cOacqUKerU\nqZOMRqM2btyozz//XGazWQaDQa+99pr8/f0b9Py4u7trwoQJWrlypUpLSzV9+nQ99thj6tatm3Jy\ncvTVV1/p22+/VWRkpFJTU+scIzAwUK6urjKZTFq9erWGDRsmPz8/dezYUQEBAfLz89NLL72kp556\nSpWVlXr44Yd1991368Ybb5Sfn59SUlK0aNEie2goIiJCTz75ZIPmfzGqn8eMjAwtXbpU8fHxmjZt\nmqKiopSbm6vNmzfriy++kNVqlcFg0AsvvCAPD49Gn0dNL7/8su6++24VFhbq5Zdf1s6dO3XHHXeo\nbdu2ys7O1po1a+xdodzd3fX666/bw3YAAAAAAKDp8L++AQAAAABAkxgwYIDef/99PfXUUzIajfrm\nm2/qXC4qPDxcb7/9tiIiImrtnzt3ruLi4pSWlqa0tDS98MIL51zr4+OjZ599Vn/5y19ksVhqdetp\nKZ588knt3btXhw8fVm5url577bVzznF1ddUf/vAHzZ8/X5mZmed9HC+99JJefPFFrVy5UitXrqx1\nzNnZWU8//XSt7jxS1ZJU8+bN00MPPaSkpCQdOXJEzz///DljGwwGTZ06VY8//nit/QEBAfrkk0/0\nxBNP6OjRo9q7d6/27t17zvVBQUH6xz/+UWu5r4aYM2eODh8+rISEBKWnp58zt6ioKM2bN0+33HJL\nndc7OztrzJgxWr9+vbKysvTwww9Lkl555RXdfffdkqSbb75ZZrNZf/nLX1RWVqalS5fWucxUt27d\n9O6779ZaCqyxBAUF2Z/H+Ph4xcbGKjY29pzzPDw89MILL2js2LGNPodfioyM1KJFi/TEE08oLS1N\nmzdv1ubNm885r0OHDnr99dcVExPT5HMCAAAAAAAEegAAAAAAQBMaNmyYNm3apCVLlui7777T8ePH\nVVRUJC8vL3Xt2lU33nijfvWrX9mXQ6opLCxMX3zxhT766CNt2rRJqampMpvN8vHxUVRUlEaMGKEp\nU6YoJCREK1eu1L59+7Rt2zaVlpbKy8urGR5t3Xx8fLR48WItWrRIa9euVXJysioqKuTt7a0OHTpo\n8ODBmjZtmjp06KCjR49q1apVOnjwoNLT0+1LkNXUp08fffnll3rnnXf0ww8/KC8vT8HBwRo6dKge\neOABRUdH1zmP8PBwffHFF/r888+1YcMGJSQkyGg0ytXVVaGhoRo8eLDuvvtu9e3bt87r27VrpxUr\nVmj16tVau3atDh8+LKPRqICAAEVGRmr8+PG6/fbbG9yZp6agoCCtWLFCS5Ys0Zo1a3T8+HHZbDZ1\n7NhREyZM0MyZM2WxWM47xiuvvKLg4GBt2rRJeXl58vPzU35+fq1zbrvtNg0bNkyffvqpvv/+e6Wm\npqqkpEQ+Pj6KiYnRhAkTdNddd9VawquxRUREaOXKlVq9erXWrVunw4cPKz8/Xy4uLurQoYOGDx+u\n6dOn25esuxJiYmK0du1aLV++XBs2bNCxY8dUVFSk4OBgRUVF6dZbb9Utt9zSqEuQAQAAAACA8zPY\n6lqsGwAAAAAAAAAAAAAAAECzcGruCQAAAAAAAAAAAAAAAAD4GYEeAAAAAAAAAAAAAAAAoAVxae4J\nAAAAAAAAtDQlJSVKTU297HEiIyPl7e3dCDNCc0lKSpLJZLqsMfz9/dWuXbtGmhEAAAAAAGgNDDab\nzdbckwAAAAAAAGhJdu/erRkzZlz2OAsXLtTgwYMbYUZoLmPGjFF6evpljXHnnXfq73//eyPNCAAA\nAAAAtAYsuQUAAAAAAAAAAAAAAAC0IA7ZoSc7u6i5p4A6BAZ6KT+/tLmnAQCNjvoGwFFR3wA4Kuob\nAEdGjQPgqKhvABwV9Q1o3UJCfOs9RoceXDEuLs7NPQUAaBLUNwCOivoGwFFR3wA4MmocAEdFfQPg\nqKhvAOpDoAcAAAAAAAAAAAAAAABoQQj0AAAAAAAAAAAAAAAAAC0IgR4AAAAAAAAAAAAAAACgBSHQ\nAwAAAAAAAAAAAAAAALQgBHoAAAAAAAAAAAAAAACAFoRADwAAAAAAAAAAAAAAANCCEOgBAAAAAAAA\nAAAAAAAAWhACPQAAAAAAAAAAAAAAAEALQqAHAAAAAAAAAAAAAAAAaEEI9AAAAAAAAAAAAAAAAAAt\nCIEeAAAAAAAAAAAAAAAAoAUh0AMAAAAAAAAAAAAAAAC0IAR6AAAAAAAAAAAAAAAAgBaEQA8AAAAA\nAAAAAAAAAADQghDoAQAAAAAAAAAAAAAAAFoQAj0AAAAAAAAAAAAAAABAC0KgBwAAAAAAAAAAAAAA\nAGhBCPQAAAAAAAAAAAAAAAAALQiBHgAAAAAAAAAAAAAAAKAFIdADAAAAAAAAAAAAAAAAtCAEegAA\nAAAAAAAAAAAAAIAWhEAPAAAAAAAAAAAAAAAA0IK4NPcE0Dq88+Vhubk56/5x0XJxJkcGAAAAAAAA\nAAAAAABQH5IVuCJcnQ3acTBDi9Yfk81ma+7pAAAAAAAAAAAAAAAAtFgEenBFzBgXo64R/vr+YIa+\n2XWyuacDAAAAAAAAAAAAAADQYhHowRXh7uasuQ8NUZCfuz7fmqw9cZkNvjYpKbEJZ3Zhs2b9RiNG\nDNSYMcOadR4AAAAAAAAAAAAAAKB1INCDKybIz0O/m9RXHm7O+mB1nJLSC857fnFxsd5441966KF7\nr9AMAQAAAAAAAAAAAAAAmh+BHlxREaE+evyOXrJabXpzxUFlGcvqPfett/6tFSs+k8ViuYIzBAAA\nAAAAAAAAAAAAaF4EenDF9eocrHvHdVdxmUlvLItVSbmpzvOsVusVnlnd5s17Xz/8sFebN+9o7qkA\nAAAAAAAAAAAAAIBWgEAPmsUN/dpr/OBInckr1dsrD8lsaRnhHQAAAAAAAAAAAAAAgOZGoAfNZtIN\nXTQgOkTxqUYtWBsvm83W3FMCAAAAAAAAAAAAAABodi7NPQG0Xk4Ggx6+tafyCvdr++EzCg301MTh\nUfrww/9o/vz/q3XuiBEDJUn9+vXXvHnv6+WXX9DatavVtWt3ffDBQv3f/72rdetWq6ioSMHBIRo9\n+kY9/vhs+/UVFRVav/4b7dy5XYmJx1RQYJTZbJavr5+iorpo+PARmjjxTnl6ep4zz1mzfqMDB36S\nm5vbOctuVc9r9uzf6557pmnr1s36+usvlZBwTEVFhQoMDFL//gN1zz1T1b17TGM/hQAAAAAAAAAA\nAAAAwAER6EGzcnd11uxJffTfC/bqi+9PKCTw3EDNhbz00l+0adO39tsZGeny8PCw3z52LF7PPvsH\nZWVlnnNtXl6u8vJytW/fHq1cuUJvvfWeQkJCL3oOFotVL774vDZsWFdrf1ZWptatW6Nvv12rp59+\nVrfddudFjw0AAAAAAAAAAAAAAFoXAj1odv7ebvrd5D565ZN9+mhNnH49/ibNH3mDPvjgPW3f/r0k\naf78TyVJnp5eta5NTk5SUlKCevfuq/vue0AeHh7avv173XzzbZKkggKjnnrqCRUWFsjZ2Vk33zxR\nw4aNUGBgsIqKCpSYmKBlyxbLaDQqLS1V8+a9oRdffOWiH8Nnny1Sbm6uOnWK0j33TFOXLt1UVFSo\ntWu/1qZNG2S1WvXGG//UoEFDFR4efpnPGAAAAAAAAAAAAAAAcGQEetAitA/x0eN39tYby2K1aHO6\nnpsxQH59BFGRAAAgAElEQVR+/vbj3bpF13md1WpV+/YReuONt+XuXtWVp3//gfbjS5cuVmFhgSTp\niSd+q3vumVbr+qFDR2jChFt13333qLi4WN9/v1Vms1kuLhf3q5Gbm6sBAwbpH/94Xe7u7vb9Q4YM\nk6+vn7788nNVVlZq48Z1uvfe+y9qbAAAAAAAAAAAAAAA0Lo4NfcEgGrXdArSfeOiVVxm0hvLYmUy\nWxt03YQJt9rDPL+Uk5OtNm1CFBwcrLvuuqfOc0JCQnXttQMkSZWVFfYA0MX63e+erhXmqXb77XfZ\nt5OSEi9pbAAAAAAAAAAAAAAA0HrQoecyLNucpB/js5p7GlfUdTGhumdM1yYbf2TfdsrKL9M3u06q\nNDW/Qddcc03veo/9+c9/lVTVycfJqf78WlBQsH27stLUwNn+LCQkVFFRnes81r59hH27tLT0oscG\nAAAAAAAAAAAAAACtC4EetDh3jeqsLGOZVh+obND5YWFhFzynOsxjNpt15kyGTp9O16lTJ3X8eJKO\nHDmk48eT7OfabA3rDFRTeHjbeo95enrZty0Wy0WPDQAAAAAAAAAAAAAAWhcCPZfhnjFdm7RbTWvl\nZDDo4Vt6aOsqVxU24HwvL5/zHi8vL9fKlcu1ceM6HT+eVGeoxsnJSVbrxQd5qtUM7dR0OqdEh5Jz\n7bdtNtsl3wcAAAAAAAAAAAAAAGgdCPSgRXJzdVaPjkFKT6i6vfPwGQ3tFV7nuQZD/eOcPp2u3/9+\nltLSTtn3ubq6qkOHSHXsGKXo6Bj16zdA69d/oy++WN5o8zeZrVqzM0Vrdp6UxfpziOdMXqlOZBSq\nU7ivDOebOAAAAAAAAAAAAAAAaLUI9KDFcnVxsm9/9E2cgvzcFR0ZeFFjvPDCc/Ywz9ix4zRp0hTF\nxPSUi0vtt/5XX31++RM+K+GUUQvWxSsjt1SBvu4aPzhSL66uOpZTUKaXFuxVG38PXdcjVNfFhKpj\nGOEeAAAAAAAAAAAAAADwMwI9uGrMW3lIf75vgNoGezfo/Pj4ozp69LAkqX//gXrhhZfrPTcz88xl\nz6+03KwVW4/ru/3pMkga3b+9Jo3qIk93F7149pyOYb66rmeY9iflaO2uVK3dlaqQAA9dFxOm62JC\nFRnmQ7gHlyw9u1gnM4vUt2sbeXu4Nvd0AAAAAAAAAAAAAACXiEAPWqyawZaZ42P00Tdx+t/lB/Xc\njAENur7mMlvR0T3qPS8j47QOHYq137ZYLBc918LSSj3/wS4ZiyvVro237h8fo64R/uec5+vlpt/c\ndo0qTRYdPpGnH+OzdCAxR9/sOqlvdp1UaKCnroup6tzTIZRwDy4sr7Bcu+MytetIpk5lFUuSfL1c\nNfmGrhrWO1xOvIcAAAAAAAAAAAAA4KpDoActlpubm327f1d/ZQ3rpNU7UvTWykOyWm0XvN7fP8C+\nvXfvbpnN5nOW2srNzdHcuc/IZDLZ91VWVl70XFMzi9Spi0l3jIjShCEday0XVhc3V2f17x6i/t1D\nVGmy6FByblW4JylHa3ae1JqdJxUW6Hl2Wa4wRYR4E+6BXUm5SXvjs7TrSKYSThllk+TsZFC/rm3U\nto2XNu1L00ffxGlb7Gnd+1/dFRnm29xTBgAAAAAAAAAAAABcBAI9aLGCg9vYt99//22NG3ezjgWX\nKzFNMqcZL3h9nz79FBzcRrm5OUpMTNBvf/uY7rrrHoWHt1VhYYEOHPhJa9Z8JaOx9lglJcUXHNtq\ns2nbgdP2294eLnrhgUFq16Zhy4HV5ObqrAHRoRoQHaoKk0WHjleFe2KP52j1jpNaveOkwoO87J17\n2hPuaZVMZotik3K188gZHUrOldlSFWrrHuGvIdeEa2BMqHw8q5bZurF/hD7blKi9x7L14sc/akz/\nCN15fZS8WIYLAAAAAAAAAAAAAK4KBHrQYo0YMVIff/yBLBaLVqxYqhUrliosLFwD7nxRPxwov+D1\n7u7umjv3b/rTn55SRUWFYmP3KzZ2/znndegQqVtvvV3vvvuWJOnEiWT17t233nEzcku0YG28EtIK\n7Pui2vpdUpjnnDm7OmtgTKgGxoSqotKig8m5+jEuUweP5+rrHSn6ekeK2gbXDPf4XPZ9ouWyWm2K\nS83XriNn9FNCtsoqqpaDax/irSE9wzS4Z5ja+Huec12Qn4cev7O3Dp/I1acbErVpX5p+jMvU5NFd\nNaxXOIEwAAAAAAAAAAAAAGjhCPSgxerWLVp///v/aMGCj3T8eJKsVotcXFz065u7ae+3zipswBgD\nBw7S/PmfasmST7R374/KycmSVLUcV1RUZ40ePVbjxk2QxWLR/Pn/p/Lycm3evEG33XbnOWPZJK3a\nfkKrd6TIbLGpf/cQJdiPNn5Awt3N2R7cqai0KPZ4jn6Mz9LB47latT1Fq7anqF0bb113NgDUvhEC\nRWh+NptNKWeKtPtopnbHZaqguGoJuCA/d91wbXsN7RmuiNCGBbl6RQXrbw8G6tsfU/X19hR9uKZ6\nGa5odWjgGAAAAAAAAAAAAACAK89gs9lszT2JxpadXdTcU0AdQkJ8G+21OZNXqpcX7lV5pUW/v6ev\nenQKapRx65OUXqAFa+OVnlMifx833XtTtAZEhzTpfdanvNKs2KSqZbkOJefKZLZKktqfDfdc1yNU\nbYMJ91xtsvJLtetIpnYdzdSZvFJJVUu5DYwJ1ZCeYerWIUBOl9FZJ7egXJ9tStS+hGw5GQwaM6C9\n7hjRWV4e5DobQ2PWNwBoSahvABwV9Q2AI6PGAXBU1DcAjor6BrRuISG+9R4j0IMrprE/jI6l5utf\nnx2Qu6uz/nzfgEZZ8uqXyirM+nzrcW35KV02STdc216TRnVpMSGIsgpzVeeeuCwdSs6T2VIV7okI\n8a5auis6VMH+HnJ1cbqsMAiaRkFJpX6MqwrxJJ+u6jnl6uKkfl3baMg1YerdOVguzk6Nep+HknP1\n6YYEZeWXyc/bTVNGd9WQa8JYhusy8WUbgKOivgFwVNQ3AI6MGgfAUVHfADgq6hvQuhHoQYvQFB9G\nOw+f0f+tPqo2/h56fsZA+Xm7NdrYBxJztOjbY8ovqlDbYC/NHB+j7h0CGm38xlZWYVZsUo69c4/Z\nUvtX28XZIFcXZ7m5OMnVxUlurs5yrd52cZKbi7N929XVWa7OTnJzrT5e85iTXJ2d5eZ69nb1mK5O\nZ6/5eVxCROcqqzBrf2K2dh3J1NGUfFltNhkMUs9OQRrSM0z9u4fI071pA2Mms1Xr9qRqzY4UVZqt\n6h7hr3v/K7rBS3nhXHzZBuCoqG8AHBX1DYAjo8YBcFTUNwCOivoGtG4EetAiNNWH0Vc/nNBXP5xQ\nl3Z+mjP1Wrm5Ol/WeAXFFfp0Y6L2xmfJ2cmgW4Z21C1DO8nVpXE7pTSl0vKqcM/B5FyVlJtkMllV\nabbKZLbIZK7etqrSbJHJZFVTFYHwIC/FdAxUj46Bio4MkJ9X4wWuriZmi1WHk/O06+gZHUjMUeXZ\nZdKi2vpqSM9wDeoRKn8f9ys+rxxjmZZsStT+xBw5GQwaOzBCt4+IavJAkSPiyzYAR0V9A+CoqG8A\nHBk1DoCjor4BcFTUN6B1I9CDFqGpPoxsNps+WH1UO49kamBMqB69/ZpL6gxjs9n0/cEMLducpNIK\ns7q099P942PUPsSxu5bYbDaZLbZaYZ/q8E+lqSr4Yw//VB8zWeyhoOpj9pCQySKTxaqKSotSs4pV\nUWmx31dEiHdVwCeyKuDj5eHajI+8aVltNiWlFWjX0Uz9GJepknKzJCks0FNDrgnXkJ5hCgvyauZZ\nVjl4PEeLNyQqy1gmf5+qZbgG92QZrovBl20Ajor6BsBRUd8AODJqHABHRX0D4Kiob0Drdr5AD20Y\ncNUzGAy6f0IP5RZWaG98llYGeGrSDV0uaowzeaVasDZex04Z5eHmrHv/q7tuuLZ9q1gyymAwyNXF\n0CQdiMwWq06eKVLcyXzFp+YrMa1Aadkl2rg3TQaDFBnmqx4dAxUTGajuHfzl4Xb1liSbzabCkkql\n5ZQo/mS+dh3JVG5huSTJz9tNYwdGaOg14eoU7tvigjJ9urRRj46BWrs7VWt2ntT7Xx/VttjTmn5T\nd4cPtF3NzBarjqbk60xeqW7o1+6yu5MBAAAAAAAAAAAAaDno0IMrpqnTpcVlJr28aJ8y80p1/4QY\njezb7oLXmC1WrdudqlXbU2S2WHVttzaaflN3Bfl5NNk8WzOT2ark0wVVAZ+T+Tp+ulAWa1UJcnYy\nqFPbnwM+Xdv7t9iAQmm5Sek5JUrPLlFadrHSs0uUnlOi4jKT/RwPN2cN6B6iIdeEK6ZjgJydro4l\n27KNZVqyMVEHknLk7GTQTQM7aOLwTizDdQFXKj1vtdl0PL2681OW/T0X1dZPT97dWwHNsHQbAMfG\nfx0EwFFR3wA4MmocAEdFfQPgqKhvQOvGkltoEa7Eh1FmfqleXrhPpeVmPXVPX10TFVTvucdPF2jB\n2nilZZfI39tN02/qrgHRIS2ue4ojqzBZlJRWoPjUfMWdzFdKRpGsZ0uSi7NBXdv7KyYyUDEdA9W5\nnZ9cnK9sKKbSZFFGbqk9tJOWU/Uzv6ii1nkGSSGBnmrfxlsRIT6KDPNV785BLTaQ1BAHknK0eEOC\ncgrKFeDjpl/d2E3XxYTy+1GPpq5vaVnF2nU0U7uP/tz5ydfLVYNiwlRSYdKuI5kK9HXX7Lv7qGN4\n/R/6AHCx+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfqwygxzah/LtkvVxcn/fneAecsGVRW\nYdYX25K1aV+abJJG9m2nyaO7yNvDtcnnhvMrqzAr4ZTRHvA5lVms6gLl5uqkbhEBiokMUI+OQeoY\n7tNoXW/MFquy8stqddtJzy5WVn6ZflkgA33d7cGd9iHeah/irbbB3nK/isM79ak0WezLcJktVvXo\nGKjpN3VXuzbezT21Fqcp6luOsUy74zK162im0rNLJP3c+WnwNWHq0TFQzk5OstlsWrcnVSu2HJer\ni5MeurWnrosJbdS5AGi9+GMCAEdFfQPgyKhxABwV9Q2Ao6K+Aa0bgR60CFfyw2jX0TN6f9VRBft5\n6PkZA+R/dhma2KQcLfr2mPIKKxQW5KX7x0crOjLwiswJF6+4zKRjqVUBn/iT+UrPKbEf83R3VveI\nAMV0DFSPjoGKCPWR0wW6x1htNuUVlCstu0TpZ7vtpGWX6ExeicyW2qXQ28NF7UN8FBHirfYhPmrf\npiq80xqDX1n5pVq8MVEHj+fK2cmg/7quahkuD7fmWYarvNKsHGO5sgvKqn4ay5RTUC5vDxd1jfBX\n14gAtQ32uuD7oTE1Vn0rLKnUj/FZ2n00U0npBZKqulX16dJGQ3qGqU+X4Ho7Px1IzNF/vj6iikqL\nbh8RpduGd6KjEoDLxh8TADgq6hsAR0aNA+CoqG8AHBX1DWjdCPSgRbjSH0Zf70jRF9uSFdXWV4/d\n3ksrth7XnrgsOTsZNGFIR00c1lGuLo7XVcWRFZRU6tjZ7j3xJ/OVmV9mP+bt4WJfniumY6B8PFyU\nllNS1XEnu7iq605OiSoqLbXGdHN1OhvW8VHE2Z/tQ7zl7+1GGKIGm82mA0k5WrIxUTkF5Qr0ddev\nbuymgU2wTJ3ZYlVeUYVyzgZ1so1lZ/+VK6egTEWlpguO4e3hoi7t/dW1vb+6RfirU1u/Ju2idDn1\nrazCrP2J2dp1NFNHT+TLarPJICmmY6CG9AzTgOgQeTUwSJaWVaw3Pz+onIJyXRcTqgdv6eGQ3aMA\nXDn8MQGAo6K+AXBk1DgAjor6BsBRUd+A1o1AD1qEK/1hZLPZ9NE3cdp+6IwMkmySOrfz0/3jYxQR\n6nOhy3EVyCssty/PFX8yX7mFFfWe6+xkUHiw1y+Wy/JRG3+PK9rJ5WpXYbLom50ntXb3SZktNvXs\nVLUMV9vghi/DZbPZVFhqUo6xTNkFZ4M6Z0M7OQXlyiuskLWOjyZnJ4Pa+HuoTYCnQgI8FWLf9lAb\nf08ZiyuUlFagxLQCJaUblW0sr3VtZJivukX8HPKp7tzVGC62vpnMVh1KztXuo5k6kJQjk9kqSYpq\n66vBPcN1XUyoAn0vbX6FpZV6Z+UhJaQVqGO4r2bf3eeSxwIA/pgAwFFR3wA4MmocAEdFfQPgqKhv\nQOtGoActQnN8GJktVv3vioNKSi/Q3SM7a0z/CDk5Ed5wRDabTdkF5Yo/G+6pMFl+XjKrjbfCgrzk\n4uzU3NN0GJn5pVq8IVGHkquW4Ro3KFITh3WSu1tVN5iay2JVB3bs3XYKylRpstY5boCPW1VIx//n\noE5IgIdCAjwV4ON+Ub+/BcUVSkqvDvgU6OSZIlmsP3/ktfH3qAr4RASoW3t/tQvxvuRwV0Pqm9Vq\n07HUfO06mql9x7JVWmGWJIUHeWlIzzAN7hmmsCCvS7r/XzJbrFq4/ph+OJghfx83zb67j6La+jXK\n2ABaF/6YAMBRUd8AODJqHABHRX0D4Kiob0DrRqAHLUJzfRhZbTZZLFaW1wIamc1m0/7EHC3ZmKDc\nwgoF+rorwMf9vMtiebo7nw3reKqNPbBTFdoJ9vOQWxMuD1VpsuhERqE95HM8vUAl5eYac3NRl/Z+\n6ta+KuTTua2fPaB0IfXVN5vNppQzRdp9NFO74zJVUFwpSQr0ddfgHlUhnsgwnyZZ3s1ms+nbH09p\n2ZYkuTg76cGbe2hwz7BGv5/mUFxm0uaf0mQyWxXo617jn4d8vVzpugU0Iv6YAMBRUd8AODJqHABH\nRX0D4Kiob0Drdr5Aj8sVnAfQLJwMBjkR5gEancFgUP/uIbomKkhrdqZo3e5TKiqtVLCfhzqG+Z7t\ntONRK7zj7eHSJOGVhnBzdVZ0ZKCiIwMlVYX9MnJLlZRmVNLZLj6Hk/N0ODlPUlXtiAzzUVf7Ml0B\nDV66KiO3pCrEczRTmfllkiRvDxeN6tdOQ3qGqVuHgCYPnRgMVZ2T2gZ76b2vjug/q44oPadEd1wf\nddUGXixWq77bf1pffp9cK4xVk7OTQQE+7r8I+tT45+OuAF93OnYBAAAAAAAAAACgRaNDD64Y0qWA\nYzOZrXJ2MlzVy9oVllQqKb1ASWkFSkw3KiWj9jJdwX7Vy3RVhXwiQnzk5GRQSIivEpJztCcuU7uO\nZurkmapa5+bipH7d2mhIz3D16hzUbCGS9JwSvbkiVtnGcg3oHqKHb+3Z4O5DLcWRlDx9tjFR6Tkl\n8nR31sRhUYpq66v84grlF/38z1hUobyiChUUV8p6nq84fl6uCvT1sAd9AnzdFVTzp4+7PN3JPQN8\nfwPgqKhvABwZNQ6Ao6K+AXBU1DegdWPJLbQIfBgBuNqYzBadyCiyh3yS0gtUXPbzcmKe7s7q3M5f\nTk5OOnw8RzZVdfbp1TlIg3uG6dpubeTh1jJCIUWllXrni8M6dsqoyFAfzZ7UR0F+Hs09rQvKzC/V\n0k1JOpCUI4Ok6/u2010jO8vP2+2811mtNhWUVMpYXKG8woqqn0XlMhbVDgBVmq31juHh5lxHlx8P\nBfq4q20bL4UGeDZbxym0HharVQaDodk6a/H9DYCjor4BcGTUOACOivoGwFFR34DWjUAPWgQ+jABc\n7Ww2m87klSrxbLgnKa1AZ/JKJUndI/w1uGeYBsSEys/r/GGT5mK2WPXJtwnaFntaft5uevKu3urS\n3r+5p1WnsgqzVu9I0bc/npLFalP3DgGaemM3dQyv/0vNxbLZbCqtMCu/sOIXnX7KlV9UefZnRb3L\newX4uCkmMlDRkQGKjgxUWCABH1wem82mvMIKHT9doOTThUrOKNTJM0XycnfRlBu7anCPsCv+HuP7\nGwBHRX0D4MiocQAcFfUNgKOivgGtG4EetAh8GAFwREWllQoM9Ja5wnThk1sAm82mjfvS9NmmRDk7\nOemBCTEa2iu8uadlZ7XZtP1ghj7flqzCkkoF+3loypiuGhAd0mxhmQqTRcbiCnvwJ6+wXCczi3Us\nNV9FpT+/7v7VAZ8OAYqODFB4kBcBH5xXWYVZKWeKlFwd4DldqIKSSvtxg0Fq38ZHmfmlMpmt6hUV\npHvHRSs0wPOKzZHvbwAcFfUNgCOjxgFwVNQ3AI6K+ga0bgR60CLwYQTAUV2N9e1wcq7e/eqIyirM\nunlIR901qnOzLelTLTHNqMUbE3XyTJHcXJ10y5COGjcoUm6uzs06r/rYbDadzi1VQmq+4lONOpaa\nr8KaAR9vN3v3nhgCPq2e1WrT6dySs8GdqgBPek6Jan4TD/R1V+d2flX/2vqpU7if3N2clWUs06L1\nx3TkRJ5cXZx02/BOGjcoUi7OTk0+76uxvgFAQ1DfADgyahwAR0V9A+CoqG9A60agBy0CH0YAHNXV\nWt8yckv0vysOKiu/TNd2a6NfT+wpDzeXKz6P3IJyLf8uSXvisiRJQ68J092juijIz+OKz+VyVC/J\nVh3uOZZqrNVtxc/bTdEdAhQTGaDukYFqF0zAx5EVFFfYl806nl6gE2eKVFFpsR93c3VSp/Cq8E6X\ndn7q3M5fgb7u9Y5ns9m0Jy5LSzYlqrCkUu1DvDVzXIy6RjTtsnlXa30DgAuhvgFwZNQ4AI6K+gbA\nUVHfgNaNQA9ahEv9MEpKSlTXrt2aYEaXLyPjtPz9/eXl5d3cUwHQjK7mL9vFZSa9++VhxZ3MV0SI\nj2ZP6q02/ldmOZ8Kk0Vrd53Uut2pqjRbFdXWV1PHdlfX9k0bULhSqgM+x04ZdSzVqPjUfBUU1wj4\neLmq+9klumIiA9SujTcBn6tUpcmik5lF9mWzkk8XKrewvNY5bYO91KWdv70DT/sQbzk7XXyHnZJy\nkz7/7ri+O3BaknRDv3a6+4Yu8vZwbZTH8ktXc30DgPOhvgFwZNQ4AI6K+gbAUVHfgNaNQA9ahIv9\nMCouLtYHH7ynL75Yrq1bdzfhzC5eZWWlPv10gT755GN98slytW3brrmnBKAZXe1fts0Wq5ZsTNSW\n/eny9XLVrLt6q1tEQJPdX3WnkeXfJSmvsEL+Pm6aNKqLhvYKb/Zlv5qSzWZTVn6Z4lPz7SGf/KIK\n+3EfT1dFRwYoJjJQ0WcDPo78fFytbDabMvPLlHy6QMfPhnfSsoplsf78ldrXy1Wd255dOqu9v6LC\n/eTl0bjdrxLTjFq47pjSc0rk5+2mqTd206AeoY0eCrva6xsA1If6BsCRUeMAOCrqGwBHRX0DWrfz\nBXqu/LoaQAO99da/tWbNquaeRp0WL16oDz/8T3NPAwAahYuzk+4bF632Id5avCFR/1i8XzPHx2hE\nn7aNfl8pZwq1eGOiktIK5OLspFuGdtQtQzs2y1JfV5rBYFBYkJfCgrw0ql/7qoCPsUzHzi7RFZ9q\n1L5j2dp3LFvS2YBPhwB1PxvyaR9CwKc5WK22swGsfCVnFOrE6UKVlJvtx12cDeoU7quos513Orfz\nV4i/R5N3W+oWEaC/PnCd1u9J1artKfrPqiPafihD946LVmjAlemyBQAAAAAAAAAAmo7j/79nuGpZ\nrdbmnkK9LBZLc08BABrdmP4RCgvy0rtfHNZH38TpdE6JJt3QRU5Olx9MKCiu0Odbk7X9UIZskgZ0\nD9HkMV1bdfDAYDAoLNBLYYFeGtm3nWw2m7ILynXsZFW459ipfO1LyNa+hKqAj7eHi7p3CFBUWz95\nurvIw81ZHm4u8nB3loerc+3bbs6XtJwTfpaZX6rthzK04/AZ5RX+3EkpNMBTvTsH28M7HUJ95OrS\nPM91VSiuk66LCdWibxN0+ESe5n6wW7cN76RxgyLl4sx7AAAAAAAAAACAqxWBHgAAYHdNpyA9P3Og\n/nfFQa3bk6qM3BL95rZr5Ol+aV8ZTGarNu49pa93pKi80qKIEB9NHdtNPToGNvLMr34Gg0GhAZ4K\nDfDU9WcDPjkF5YpPzVdCqlHxqUbtT8zR/sScBo3n6uIkDzdnubvWDvp4uFWHgeq6XbXtfnbb8+x+\n91YSECqrMOvH+CxtP5ShxLQCSZKHm7NG9m2ra7uFKKqdn/y83Jp5lucKDfTS7+/pq91xmfpsY6I+\n35qsXUczNXN8jLq292/u6QEAAAAAAAAAgEtAoAcAANQSHuSl52cM0HtfHlbs8Vy9smifnpzU56K6\n6dhsNh1IzNHSzUnKMpbJx9NV943rqpF927aKYEhjMBgMCgnwVEiAp67v006SlGMs0+ncEpVXWqr+\nVZirfprO3q40q7zi7M9KiyrO7s8tLFN5hUW2/2fvvqMjy+sz4T+Vc1YlxVZqtVrqnLsn9AQwYbBZ\nj20YMwZsvMd47d19MX73Ndj4xQfvmD02ToAxNn4xZteMhwGM08wA090TOk3nUWhJ3WrlUCWpcg73\nvn/cUkk1LamTYun5nKNzb926t+qqSvWrW7pPfb8PsD9qpRwGnQqtdTbsaqpAe739voNe64kgiugd\nCuLNjklc6vMjkxUgA7B9iw3Hdnixd6sTGpVirXfzjmQyGQ5v92BHgwMvnurHa1fH8UffvoRH91Th\n5x5tgF6rWutdJCIiIiIiIiIiIiKieyATRfFBzu2sS1NT0bXeBVqA02m6q+fm7/7u6/jmN/92wet2\n796Lr3zlb0qWnT9/Fv/xH/+Czs4OBIMBqNUaVFfX4MiRY3j66Q/BarUuel9TU358//vfxfnzZzEy\nMoxcLguz2YLGxmYcO/Ywnnrqp6HRaIvr/8d//Cuee+4PFrwtj8eLF1/81zv+fkRUfu52fNto8oKA\n51+9iVcvjcKoU+E3/lM7WmrvXFlndCqG51+9ge7BIBRyGR7fW42ffmgLDAwUrClRFJHJClLYJ5sv\nCf4Uwz/pucvzr5udD0TTiMQzAACFXIatNVbsaqrA7iYHXDb9Gv+G98YfSuJMxwROd0xiJpICILXT\nOrbDg6PtXjgs2jvcwvp2YzSEb73ci/HpOCwGNZ55shkHtrkgk91bC71yHd+IiDi+EVE54xhHROWK\n418oWHMAACAASURBVBsRlSuOb0Sbm9NpWvS6jf+1atq0kskkvvCF38frr58sWZ7JZNDT042enm68\n8MI/4nOf+wIeeuiR27a/dOkCPvvZ30Y8Hi9ZPjMzjZmZabz11ll85zvfxp/+6VdQW1u3or8LEdF6\npJDL8ZF3bUVVhQH/58d9+JPnr+KXfqoFj+yqXHD9WDKLf37jFk5dGYcgimhvsOOZJ5rhdRhWec9p\nITKZDJpC+6z7bcIkiCKGfVFcuzmDazencX0oiOtDQTz/6g14HXrsaqrArkYHmqot67ISUyqTw8We\nKbzZMYG+kRAAQKNW4KGdXjy0w4vmass9B17Wq+ZqKz7/ywfw8vlh/OuZQfz1D7vwZscEfundLXDe\nQ7UtIiIiIiIiIiIiIiJaG6zQQ6vmbtOlMzPTCARm8I1v/DVOn34DAPDNb/4fAIBOp0d1dQ0EQcCn\nPvUbuHTpAgDg6NGH8VM/9T54vV4kEglcunQBP/jBdxGLxaBQKPClL30Z+/cfLN5HNBrFhz70QUQi\nYVitNnzkIx9Da+t2qNVq+HyT+Pd//xecO3cGANDS0opvfOMfIJPJEImE4fNN4p//+Xv44Q+/DwD4\n4z/+c1RUOKFUqlBf37CsjxkRbQybIT1/fSiIv/pBB+KpHN59oAY//1hjMbCRyws4dWUMP3xzAPFU\nDm67Hs880YSdjRVrvNe00oLRNDpuzeDqjWl0DwaQyQkAAINWiR0NDuxscmBHg2NNqzMJoogbIyG8\n+fYELvZOIZ3NAwBa62w4tsODfVtd0KjXf0utB+ELJvC/X+lF12AQaqUcP/NQPd51oAZKxZ1DV5th\nfCOizYnjGxGVM45xRFSuOL4RUbni+Ea0ubFCD20oDkcFHI4KmM1z9QOam1tK1nnxxeeLYZ7f/u3P\n4IMffLrk+v37D+Kpp34G/+W/fAIzMzN47rk/wAsv/BBKpfQn/+abryESCQMAnnvuj7Fz5+7ittu3\nt+Oxx57E5z73Ozh58ifo7b2O3t4ebNvWCrPZArPZArvdUVx/y5YGeL0LV6sgIioXrXU2/N7H9uMv\nX3wbP7owgvGZOD750+0YmIjgO6/ewPh0HDqNEh9+vAmP76u+q6AAbXw2kwaP7KrEI7sqkcnm0TMc\nlKr39E/jXLcP57p9kMtkaK62SNV7mhyrVrFpOpTE6c5JnO6YwHRYaqlVYdHivTtqcbTdg4pNVKXG\nbdPjtz60G+e7fXj+1Rv47ql+nO2axMfesw2NVfdbr4mIiIiIiIiIiIiIiFYSAz204QiCgOeflyr2\nHD589LYwz6yqqmp88pP/Ff/zf34efr8Pr712Ak888W4AUhWgWTU1tQtu/9GP/jIsFisqK6tgMi2e\niiMi2izcNj1+95f246//pROdtwL4f/76DOKpHGQAju+uxAcfaYBZr17r3aQ1olYpsLOxAjsbK/Cs\nuBUj/hiu9UutufpGQugdCeGFkzfhtumKrbmaa6zLGv5KZ/K42OvH6Y4J9AwXWmqpFDi2wyO11Kqx\nQl4mLbXulUwmw+E2D9obHHjxVD9evzaO5759Ccf3VOHpRxugX8MqSkREREREREREREREdDsGeh7A\n92/+G674O9Z6N1bVHtcO/GzTU2u6D/39N+D3+wAABw4cWnLdw4ePFucvXrxQDPTU1W0pLv/sZ/9v\n/Lf/9ltobW0r2ba5uQW//du/s0x7TURUHvRaJf77z+3ECyf68eOLI2ipseKZJ5tR62bwkebIZDLU\nuk2odZvwgaNbEI5n0FEI93QOBvCjCyP40YUR6DQKtNc7sLupAjsaHTDq7j1UIooiboyG8WbHBC70\n+JHOSC21WmqseGinF/tanNCqecg7y6hT4ePv3Yaj7R78wyu9OHllDJf7pvDMk804sM0F2SYNPBER\nERERERERERERrTc8u0EbTl9fb3H+y1/+M3z5y392V9uNj48V548ceQiNjc3o77+Bjo5r+M//+WOo\nqHDiwIFD2L//IA4cOFTSVouIiOYo5HI882Qz3nekDma9igEAuiOLQY2Hdnrx0E4vsjkBvSOF1lw3\np3Ghx48LPX7IZEBjlQW7C9V7KisMS/5tzYRTONM5gdMdk/CHkgAAh1mLnzpQg6M7vHBtopZa92Nr\njRWf/+UDePn8MP7l9CD++oddONM5iWfftXVTtSMjIiIiIiIiIiIiIlqvGOh5AD/b9NSaV6vZjMLh\n0H1tF41GivNKpRJf+tJf4otf/ALOnTsDAJiensJLL/0bXnrp3yCTydDa2ob3vOf9+MAHPgiVim0o\niIjeyWJgey26dyqlHO31DrTXO/CLTzZjfDpebM11cyyMm6NhvHiqHxUWLXY1VWB3UwW21lihUsqR\nzuZxuW8KpzsmcH0wCBGAWiXH0XYPju3woqV287bUuh9KhRxPHd2CA60ufPuVXrzdP4PfGzqPn3m4\nHu/aX7Os7dCIiIiIiIiIiIiIiOjeMNBDG04+ny/Of/rTv4P29h13tZ1Goym5XFHhxJ/8yV/i1q2b\nOHnyVZw9exp9fT0QBAGiKKK7uxPd3Z344Q+/j7/4i6/BarUu6+9BRES02clkMlQ5jahyGvG+w3WI\nJjLovBXA1ZvT6ByYwauXRvHqpVFo1Ao0VZrRPx5BqtBSa2u1Bcd2eLF/mws6DQ9pH4TbpsenP7Qb\n57p9eP7VG/juyX6c7fThY+9pgdPJdnpERERERERERERERGuBZz9owzGZzMV5g8GI5uaWB7q9hoYm\nNDQ04ROf+DVEIhFcuXIR586dwcmTP0EsFkN//w187Wt/ic985vcfdNeJiIhoCSa9GkfaPTjS7kEu\nL+DGaBjXbk7j6s1pdA0GYTdr8OT+Ghzb4YHbpl/r3S0rMpkMR9o82NHgwIunbuL1axN47tuX8O4b\n0zjW5ka107jWu1j2YsksznRO4s23x5HJCaj3mgs/JtS6TdCoFGu9i7QC0tk8hiajUCrkcNt1MGhZ\nGZSIiIiIiIiIiIgkDPTQhtPQ0Fic7+7uwLvf/Z5F1w0Gg/jBD74Lr7cSTU1b0dy8FQCQzWYxMjKM\nTCaDbdtai+ubzWY8+ujjePTRx/Gxj30CH//4LyIWi+LMmTdX7hciIiKi2ygVcrTW2dBaZ8OHn2hG\nOJ6BSa9iS60VZtSp8PH3tuJouxfferkHr5wbwivnhlDrMuJouweHtrthMWrufEN0V0RRxK3xCE5d\nGcNbPX5kcwKUChnUSgXOd/twvtsHAJDLZKhyGooBn3qvGVVOAxRytkXbaBKpLG6MhtE3EkLfaAiD\nE1HkBbF4vVGngtuug9umh9umg9uuh9umh8umYzUyIiIiIiIiIiKiTYb/EaR1S7bICbvW1jaYzRZE\nImH8+Mcv41d/9ddhNC78rfHvfe+f8Pd//w0AwCc+8WvFQM+zz/48xsZG4XZ78L3v/duC23o8XtTX\nN6Cj4xoymXTJdXKePCEiIlpVFoN6rXdhU9laY8Uf/MpB3PLF8fKZAXTcmsHzJ27ihZP9aKu340i7\nG3uanawac5+S6RzOd/tw6soYhv0xAIDLqsPxPVU4tsMDo04FfzCJgYkIbk1EMDgRxZAvihF/DK9f\nk25DrZSj1m2aC/lUmuGy6hY9hqa1EY5ncGMkhN6REG6MhDDij2E2viOXyVDnMaK52gpRBHzBBHyB\nBAYnougfi9x2W2aDGh6bDi57Iexj08Ntl8I+fC0SERERERERERGVHwZ6aN1Sq+dO3CUSCej1UmsN\nlUqFp5/+BXzzm3+LcDiML3zhc/jCF/5XyfoA8PbbV/GP//htAIBGo8EHPvCfitcdPfowvvvd78Dn\nm8Tzz/9vfPjDz952/0NDg+jr6wEAbNvWVnKdSjVXCj+ZTDzgb0pERES0/igVchzbVYmtlSZEEhlc\nuO7Hmc4JdNyaQcetGWjVCuxvceFouwdba62snnQXRvwxnLwyhrNdk0hn8pDLZNi31Ynje6vQWmcr\neQzddimscbjNAwDI5QWMT8cLAZ8Ibo1HcWs8gptj4eI2Bq0SW+ZV8an3mmFlRaVVNR1OStV3RkLo\nHQnDF5j7rKBUyLG1xormGitaaqxorDJDq779I3kuL2AmkoIvkCyGfHzBJHyBBG6MhdE3Gr5tG5tJ\nU1LRx10I/risWqiUDPsQERERERERERFtRAz00LrlcFQU5//mb76K97zn/ZDL5di6dRueffbjOH36\nDfT19eD06Tfwy7/8i/j5n38GTU1bEYtFcfHiW/jBD75brKzzyU/+V1RUzN3eM888i5de+lfEYjF8\n9at/gY6Oa3j88XfD7fYgHo/h+vUuvPji80in05DL5fjYx35l0X37+7//O3z4wx+BIIhob9+xwo8K\nERER0eoz69V4Yl81nthXjYmZOM50TuJc1yTe7JjAmx0TcJg1ONzmwdF2D7wOw1rv7rqSyeZxoceP\nU1fHilVXbCYN3nuoFg/vrITNdHeBG6VCqshT6zYBu6sAAOlsHsO+KAbGIxiYlKZdAwF0DQSK29lM\nmpJWXVs8Zui1/Bi4HERRxMRMAn2joWKIJxCZq+ypVSvQ3mBHS40VzdVW1HvNUCnvXOlTqZAXQjl6\nAI6S67I5AdPh5O1hn2ACPcMh9AyHStaXAbCbtXNtvOxzrbwqLFooFaw8SkREREREREREtF7JRFEU\n77zaxjI1FV3rXaAFOJ2me3pubtzoxa/+6keRz+eLy+a3yAqHQ/j93/8MLl26sOhtKBQKfOITv4aP\nfvRXbrvu0qUL+N3f/R+IxRbfJ61Wi09/+nfw3vc+VbJ8enoazzzzsyXVeZRKJX784zdKqvcQ0eZw\nr+MbEdFGsdT4Jogi+oZDONM1iYs9fqQy0jFbvdeEI20eHNzuhlm/eVulTQYSOHVlDKc7JhBP5SAD\n0N7gwGN7qrCj0Q7FCrVwjSWzGJyIYGAigoGJKAYmIgjHMyXreOz6kio+tW4jq7jcBUEQMeKPFdtn\n9Y2GEE1ki9cbdSpsrbEWfiyocRlX7HleSCabhz+ULKnoMxv2Cccyt60vl8lQYdHCZdfBMxv2KQR/\nHGYt5PLyrrrF4zciKmcc44ioXHF8I6JyxfGNaHNzOk2LXsdAD62a+3kzOnv2TXzrW/8f+vtvQhDy\nqKhw4lvfeh5arba4zptvvo4f/egldHV1IBgMAgDcbjf27t2Pn/3ZX0BjY9Oitx8IzOAHP3gRb711\nDsPDQ0gk4jAYjPB4vDh06Ag++MGn4XZ7Fty2q6sTf/M3f4Xe3m5kMhnY7Q78+Z//Faqra+7pdySi\njY8H20RUru52fEtn87h6YxpnOifRNRCAIIpQyGXY0eDA0XYPdjU5NkVgJJcXcOXGNE5dGcP1Iem4\n1KxX4eFdlXhkVyWcVt2q75MoighG0yUBn8HJCJLpudC8Qi5DtdOIeq9UAchp08Fp0cJu3twVXLI5\nAYOTkUL7rBD6x8Ilj5vNpEFLMcBjhdehh2ydtp5LpnPwF8I9vmAS/kLYZzKQQCyZvW19pUIGp1UH\nz2wLr3kVfqxG9br9Pe8Fj9+IqJxxjCOicsXxjYjKFcc3os2NgR5aF/hmRETliuMbEZWr+xnfwrE0\nznf7cKZrEsO+GABAp1HiYKsLR9o8aK62lEUYYL7pcBKvXxvH69cmEClUw9lWa8XxPVXYu9W57kIx\ngijCF0iUhHyGfTHk8kLJejIZYDdp4bRqUWHVwWnVwWnVwmmR5k16VVk9l6lMDv3jEfQNS+2zbk1E\nkM3NPSZuux5bqy3YWmNFS40VDou2LH7/RCpbrOgzGUjAXwj6+IJJJNO529bXqBRwFdp2uW2loR+j\nbuP8TfD4jYjKGcc4IipXHN+IqFxxfCPa3BjooXWBb0ZEVK44vhFRuXrQ8W10KoaznZM42zWJUKHl\nj9OqxZE2D460e+C26ZdrV1edIIjouDWDk1fG0NE/AxGAXqPEsR1eHN9TCa/DsNa7eE9yeQGjUzGM\nTcUxFUpiOpzCVCiJqVCy+Ny9k0alQEUh4FNh1UqBH4uuGADSqNa+KpMgikikcogmMogls4glsogm\ns/PmM4glsgjFMhjxxyAUPh7LAFS7jHMttKotsBg1a/vLrDJRFBFNZKWqPoFCdZ9AApOBJPzBBDI5\n4bZt9BplsXWXx6aHa7ayj00PvVa5Br/F4nj8RkTljGMcEZUrjm9EVK44vhFtbgz00LrANyMiKlcc\n34ioXC3X+CYIIq4PB3GmYxKX+6aQzkptixqrzDja7sWBbS4YdaoHvp/VEI6l8frbE3j96hhmImkA\nQEOlGcd3V+FAq2tdhFiWWzaXLwR85kI+8wM/qUx+we3MBnWxok+FVWrj5bRK4R+7SQu5/N4quYii\niGQ6j1gyI4VyElIwJ1qYxpKZefPS8ngqi7v5xKtUyFDnNmFrjRXNNVY0V1tg0G6Mv8m1IIgiQtG0\nVNmnEPSZDf34g0nkhdsfdLNeVajqM9fCy+vQw+PQQyFf/SpWPH6jlZTN5THsi+HWRASDExGMTydg\n0quKY+D8ICTHGloJHOOIqFxxfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlaiXGt1Qmh8t9UzjbOYnu\nwSBESGGKXY0VONLuwc5Gx7prUSWKIq4PBXHqyhiu3JhGXhChUSlwuM2N47urUOdZ/ANXuRNFEfFU\nrhjueWfYJxBJLxjuUMhlcFi080I+OlgMaqmaTrGCjlRVZ354Z6HbeicZAINOBZNeBaNO+pHm1fPm\nVTDqVTDppOU6jWLDtIpa7/KCgJlIGv5CC6/5oZ/pcOq2gJVSIUe104Batwl1biNq3SZUO43QqFc2\nHMfjN1oueUHA+LTUxnBwIoJbExGMTcVLxiulQoZcfuHxS6dRlgQeKwqVzpxWHSosWqiU5RcUpZXH\nMY6IyhXHNyIqVxzfiDY3BnpoXeCbERGVK45vRFSuVnp8C0bTONc9iTOdkxibigMADFolDm5341Cr\nG1aTBiqFHCqlHCqFHEqlbFUrecSSWZzumMCpq+PwBRIAgGqnAY/tqcLhNg90mvXVQmg9ygsCgpE0\npsILV/eJJrJ3vA29RjkvfDMbxFHDWAjmmArLpLCOGnqN8p6r/9DqyOUFTIWS8AWSmAwkMD4Tx7Av\nelv4QSYDPHY9at0m1LqkkE+t2wiTXr1s+8LjN7ofoihiKpTEwEQUAxMRDExEMOSLIpOda0GnVMhR\n5zZii9eMBq8ZW7wmuO16pDNStbPp2QBkYX52TFyojR0AWIzqQktDKexTYdXCZdWhwqKDzaTheEcL\n4hhHtHJiySyu9E0hlc3j8Hb3sh6f0J1xfCOicsXxjWhzY6CH1gW+GRFRueL4RkTlarXGN1EUMeKP\n4UznJM51+xCJZxZdVy6TQaWUQ6mYnc4FfuZffue0eL1SVggHyUumqnmXBUHEhR4/3rruRy4vQKmQ\n48A2Fx7bW4XGSjMruSyjVCaH6VAKU+EkIvEMDNr5FXTUMGiV665iEy2/XF7A+HQcw74Yhn1RDPtj\nGPFHkUyXtnOzmTTzAj5SRR+HRXtfr8nVPn7L5vIIxTIIxdKIJbNoqLTAYtg8JwCHfVGcujIGXzAJ\nq1EDu1kDu0kDm0kLm0m6bNSp1t34Go6lMTARLbbOGpiIIJ7KFa+XyYCqCkMxvFPvNaPKabjncUsU\nRUQS2UXDPoFIGsIC/76bX+2solDRx2nVFav7rMfHlFYHP6NuHtmcgNGpGJxW3YZpYbsRxZJZXO6b\nwoUeP3qGgsUgskopx5E2N57cV4Nql3GN93Jz4PhGROWK4xvR5sZAD60LfDMionLF8Y2IytVajG95\nQUD3YBBv35xBKptDNicgmxOQy4vI5vKFqYBcXlqezQsll++mJdPdctt0OL6nCsd2eHmChGiVCaKI\n6VBSCvn4oxj2xTDkiyIcKw386TVK1BZaddW4jKhzm+Bx6O8YqFiu8S2VySFcCOqEYhmEY2mE4oVp\nYXk4lkEinSvZTiGXYe9WJ47vqcK2WmtZhi5yeQGX+6Zw4tIo+kbDd1xfqZDDXgj32Aphn9l5u0kL\nm1kD0woGVBKpHAYnI4XWWVKIJxhNl6zjtGpRXwju1HvNqHObVrw9HCA9lsFouqTKWXEaSiKySLUz\njVoBp0ULi0ENg04Fg1YFg04Jg1YKTs6/LF3PEGW54GfU8iYIInpHQjjXNYlLvVPF9xiHWYs6jxR4\nlaYmWIyaNd7bjWt+iOf6YLAYrNziMeHANhcUchlevTyKqVAKANBaZ8OT+6uxq7GC1dNWEMc3IipX\nHN+INjcGemhd4JsREZUrjm9EVK424vgmiCJyCwZ+xEI46O5CQc3VFrTW2cryJDvRRhaOZzDii2LI\nFy1W9PEFkyXrKBVyVDsNxaBPrduEGqexJHix1PgmiiKS6VxJQGc2mFOcFpalM/kFb2OWQauE1aiB\nxaguTjUqBS72+DFaaDXosetxfE8VjrZ7yiI8GI6l8drVcZy8OlYMYLXX2/H43mq0brEhEs8gEEkh\nGE0jGE0jEEkjEJUuB6LpJau0KRVy2Ezq28I+dpMGNrMUAjLpVZDfYezO5vIY9sWKbbMGJqKYLLRW\nnGU2qIsts6Sped0+P6lMrtDOS6p4Nh2aDf1I1X7u9Hc6n0atgFFbGvJ5ZxhICgSVrqNWrXywie7e\nRjyGo6WJooghXxTnunx467oPocL4ajNpsKPBgWA0jaHJyG0BP4tRjTq3FO6ZDfnYzRoe4y5iyRBP\nqwv7W1xwWnXF9QVBxLX+afzk4iiuDwUBSOHPJ/bV4KEdXui1bNG73Di+EVG54vhGtLmtSaBHEAR8\n/vOfR29vL9RqNf7wD/8QdXV1xetPnDiBr371q1AqlXj66afxC7/wC4tu86lPfQrT09MAgLGxMeza\ntQt/9md/tuh9c8Bbn/hmRETlaq3Gt0Q2iYHIMNocLat+30S0OfD4jYg2gmQ6h9GpWLGKz4gvhrHp\nGHL5uX93yAC47XrUuqUqPlvrHZj0RxesrBOOZZDJCYvenwyASa+CZTaoY9DAalLDYtDAalTDYtTA\nalDDYlRDpVw45CCKIvrHIjh5ZQwXeqT2fiqlHAe3uXB8bxUavBurvd/s7/Pq5VFc7PEjL4jQaRQ4\ntsOLx/dWw2PX3/Vt5fICQoVwz2zQJxiRLgejKSn0E8tgsX9mKRUyqa2XSQO7WVuo9qOBUinH8GQU\nAxNRjE7FSiq66TQKbPHMhXfqvWbYTOVzwjuTzSOeyiGeyiKezErzs9PCslhxWRbxpLQ8dQ9BIJVS\nXhr+KcxbDGo4zFrYzVo4LFo4zBpo1TzBvdJ4DFc+fIEEznf7cK7bVwwe6jVK7N/mwuHtbmytsRar\nwYiiiFAsI4VeJ6Xw65AvikCktNqYUadCnduIWs9c0Mdp1d0xDFmuFgvx1HtN2L/t9hDPYkb9Mfzk\n0gjOdvmQzQnQqBV4aIcXT+6rhvse3gdpaRzfiKhccXwj2tzWJNDzox/9CCdOnMAXv/hFXL16FV//\n+tfxta99DQCQzWbxvve9Dy+++CJ0Oh2eeeYZfP3rX8fly5cX3QYAwuEwPvrRj+Jv//Zv4XK5Fr1v\nDnjrE9+MiKhcrdX49i/9L+OVoRP47MFPocroXfX7J6Lyx+M3ItqocnkB49PxkpZdI/4okunFAwoy\nGWAxzA/kSAGdkgo7BjXMBvWytiWKJjI43TGJU1fH4C9UG6p1GXF8TxUOt7nXdfghk83jfLcPr14e\nxbAvBgCoqjDg8X3VOLKC+57LCwjF0gtX+YlIwZ/wIqEfpUKOWrex0DbLhHqvGW67ftOeyF5KLi8g\nUQz95BC7LRD0jvlCECiRyi0auAKkylXFkE8h6GM3a4rzZoN6XT8feUFANJFFOJZBOD5XtStSuByK\nZ5DJ5NFQaUbrFjtaaq0w69Wruo9rcQwnCCLGZ+JQyGVwWnVs3/YAQrE03rrux/nuSQxMSM+jSinH\n7qYKHG5zo73eAZXy7h/fSCKDYV8UQ5NRDPliGJ6Mwh8qrW6n0yhQ65qr4lPrMcFr15dt66hoIoMr\nN6Zx4boP14dC9x3iWey2X782jhOXxxCMpiEDsKPRgXftr8H2LawA+qD4GZWIytVmGt9EUcTETAJ9\nIyFMhZPYUe/A1lrruv4MQLTSlgr0rNh/hS5duoSHH34YALB79250dnYWr+vv70dtbS0sFgsAYN++\nfbhw4QKuXr266DYA8OUvfxnPPvvskmEeIiKizcKX8AMAAqkgAz1ERERE80ihDandFiAdJwmiiOlQ\nEsO+GOJZATJBkCrqFCrrmPTqNTlxadKr8Z5DtXj3wRpcHwri1JUxXOmbxj+80osXTt7EkTYPju+p\nQo3LuOr7tpipUBInr4zhjWvjiKdykMtk2NfixBN7q9FSa13xk5VKhRwVFh0qLIufbM3lBYRjmUIr\nL6ntVK3bhCqngUGDu6RUyGEuhNjuhSCISKSloE8oJoWspiMpBCIpzIRTmImkMBlMYNgfW3B7hVw2\nF/Apqe4jBX/sZi00y9ziSxRFpDJ5hGcrdcUzhaBOuhDUyRSviyaySwaWZDJAIZdj2B/DqavjAIAa\nlxGtdTa01tmwtcYKnWb9BvXuVi4vYHAiir7REPpGQrgxGkYynQMgPYcumw5ehwFehx4eux5ehwEe\nu54tiBaRSOVwqc+Pc10+9AwHIYqAXCZDe4Mdh7e7safZed9/N2a9Gu31DrTXO+bdX7ZY2W6oEPbp\nGwmhdyRUXEetkqPGZSxp2VVZsXHH0Ggig8t9U7jY41/2EM98Jr0a7z+yBT91sBaX+6bw44sjeLt/\nBm/3z6CywoAn91XjSLtn2cexzSAYTUOhUUEURQajiIg2EEEQMeKPoW8kVDzeiCXn2oS+dG4YDrMG\nh9s8ONrugddhWMO9JVp/VuwTVCwWg9E4988mhUKBXC4HpVKJWCwGk2kuZWQwGBCLxZbcZmZmBmfP\nnsVnPvOZldplIiKiDSWQkvqzx7KJNd4TIiIiovVPLpPBZdPDZdOvy28/ymUytG2xo22LHcFoBzHO\nJQAAIABJREFUGm++PY7Xro3j5JUxnLwyhsYqMx7bU4UD21yLtvJaSYIoonsggBOXx3Dt5jREAGa9\nCk8drcPx3VWwm7Wrvk9LUSrkUgjEogVgWevd2VTkchmMOhWMOtWibWZEUUQ8lcNMuBD0Kf6ki8Gf\nnuHQgtsCUtu7YoUfs9TKa37wx6RXQSaTIS8IiMSzxUo67wzsSEEd6XImu3irPQDQqhWwGNTw2PVS\ny71Caz2LQVOYSpW9TDoVBFHE0GQU3UNB9AwFcWM0jBF/DD+6MAK5TIZ6rwmtW2xorbWhqdqyJq/p\ne5XO5HFzPIwbhRMxt8YjJe0JXTYd9m6tAERgIpDAxIz0805Wo1oK9zj08BaCPl6Hvqza3N2tbC6P\nazdncL7bh2v9M8jlpcezqcqCQ9vdOLDNdc+Burul16qwrc6GbXW24rJUJodRf7wY8BnyRTE4EUX/\nWKS4jlIhQ5XTWAz41LqNcFp1MOpU6/Jb9UuFeA5sc2N/ixMVyxDiWYhSIcfBVjcOtroxMBHBjy+O\n4MJ1P/7hlV5877V+PLKrEo/vrS68T9Fi8oKAqzdmcPLKKLoHpf+DadUKuO3SGOK26+G26+C1G+Cy\n6coiMElrLy8I6BsJI58X4LLpYDdrN2yYkWgtzAa/e0eC6BsJ4+ZYqKRart2swZEGN5prrLCbNLjY\nM4WLvX78+9kh/PvZIWzxmHCk3YNDre4VOxYi2khW7OjGaDQiHo8XLwuCAKVSueB18XgcJpNpyW1e\nfvllPPXUU1Ao7vwB12bTQ7kBPghvRkuViyIi2sjWYnwLZsLSjDrH8ZWIVgzHFyIqV+t5fHM6Tdja\nUIGPfaAdl3r8eOnsIC71+NA/FsE/nbiJJw7U4r1HtqDSufJVe+LJLF69MIx/Pz2A8WnpfzYtdTY8\ndawex3ZVboggAq1f9Utcl83lMR1KwR9MYCqYxFQoianifAIT03EMTS4czFMr5dBqlIgmMhCXKKcj\nlwFWkwY1bhNsJi1sJg1s5sLUpIXNrCku197jSWKvx4LDu6sBSO3prg8G8PbNaVy7MYUbIyH0j0fw\nb2eGoFLK0brFjp3NFdjV7ERztRWKZThp+KBjXDSRQfetGXTemkH3wAxujoYhCNKDKZMBdR4z2hsc\n2N7gQFuD47ZQnyiKCEXTGPXHMOqPFqZS+8PrQ0FcHwqWrK9VK1DlMqLGZUK1y4jqwtRbYYC6jCqZ\n5AURHTen8NrlMZzpGEciJVU1qnGbcHxvNR7ZUwXPGn4rvabKhiPzLmeyeQxNRnBzNIz+0RD6x8IY\nHI9Ir71rc+sp5DJYTZria8hu1sJqkoJ2xWUmadlKP5/hWBrnOifw5rVxvH1zuvh3u7XWimM7q3Bs\nV+WiYcOV4nSacHBnFQKRFP7jzABePjuIl84P45W3hnFkRyU+8HADttfbN12obSnBSAqvnB/Cy2cH\nMRNOAQDaGhwwG9QYn4phfJH3ALtZgyqnCZVOA6qcRlS5jKhyGuG26xnIoCUJgojrgwG8dmUUp6+N\nIxLPFK+Ty2Vw2/RSGLXCIP04DPBUGOBxGFhxi5bNev6MupRUJofeoSC6bs2g69YMeoaCyGTnAjxV\nTgPaGirQ1uBAe4MDrne8Dz9xuB6pTA5vdU3i5KVRXO71Y/AnN/BPJ25ib4sLj++rwUFWt6NNTCaK\nS32svX+vvPIKTp48iS9+8Yu4evUqvvKVr+Ab3/gGACCbzeL9738/XnjhBej1enz4wx/G1772NVy9\nenXRbX7zN38Tv/7rv462trY73vd6+5YdSdbjNyCJiJbDWoxv6XwGv/Xa7wEA3lV7HB9set+q3j8R\nbQ48fiOicrURx7epUBKvXxvHG9fGEUlI5clb62x4bE8VdjdXLPtJqtGpGE5cHsPZzkmks3koFXIc\n2u7C43urUe81L+t9Ed0PURQRTWSlyj7FSj/pYrWfVCYPi0ENq1FqGybNS5V1zIV5o061Jq32kukc\n+kZCxWDLyLz2Y1q1Ai01VrQWqqdUu4z3XPnkfsa4YDRdbIPQNxrC2NTcly4Vchm2eEzYWmNFc40V\nzdUWGLSqe7r9+dKZPCYDCUwE4picmavmMxlIFKvUzJLJAKdFJ51EdcxV9PE6DDDq7n8fVpMoihiY\niOJc9yQuXPcjXDhJbDdrcKjVjcNtHlQ7DRsmzJHLC1KYwhfFiC+GYDSNUKEKViiWue05fCeDVll8\nDb6z0pXVoIbZKLXC1GuUd/2YzFbiudDjR09JJR4zDmxzrWglnvuRzeVxvtuPn1wcKbYfrHOb8OT+\nahxsdUOl3JzBE1EU0TcSwskrY7jUO4W8IEKjVuBouweP76lCldNYHN8EQUSg0MLRF0hiciZRmE9g\nJpy6rTWiQi5DhVUHj00Ht10KZnhsUoUfq1G9YV5/tLxEUcTgZBRvXffhret+BKNpAFIVyv3bXDDr\n1fCHkvAHk/CHkiUhn/lsJg1cVh2cNh3cNh2cVh1cNh1cVraapLu3kT6jJlI53ByTWmf1jYQwOBFF\nfjb4DaDKaURLjRVba63YWm2Bxai5p9sPxzM43+3D2c5JDPmkx0SnUWBfiwvH2j1orrGuy8qARA9i\nqUDfigV6BEHA5z//efT19UEURTz33HPo7u5GIpHAhz70IZw4cQJf/epXIYoinn76aXzkIx9ZcJvG\nxkYAwPvf/3585zvfgdl8538abZQBb7PZSG9GRET3Yi3Gt8m4D184/yUAwBHvATzb+vOrev9EtDnw\n+I2IytVGHt9yeQGX+6Zw6spYsSWRxaDGw7sq8eiuygdq3ZEXBFzpm8aJy6PF23aYNXhsbzUe3umF\nSc9y50QrIZLIoHe4EPAZDMAXTBavM+qk1kjb62xorbPBZdPd8cTzncY4URThDybROxLCjRHpZMx0\noQIGIFU4aqyyYGuNdBKmodICjXrlvxEtCCJmIikp3DMTx3hhOhFIIFoIMs5n1KkK4R49PHYDKixa\nGLRK6LUqGHRKGLQqaNWKNTtRPzETx/luH851++AvPKcGrRIHWt04vN2NpmpL2Z2MEkURyXQO4bgU\n7iltcZeWlhVa38UL1YkWo1TIS0J5JQGgwvywL7phQjwLmQ2w/OTiKC7fmIIoAmaDGsd3V+KxPVX3\nfAJ0o0qmczjbNYmTl8cwVqgGWOU04PE9VTjc5ilpo3U3x3CZbB7+kBTy8QWlsOBkQAr+xJK3jyUa\ntaIQ7tHBY9fDU2jl5bHrV7SFlyiKyAsi8nkROUGQpnkBOUFEPi8gV7icz4tQKGRw2XQPFKakOWPT\n0vj81vW58VmnUWJfixOHWt3YVmeFQn57sC6ZzmGqEPCZCiXhK0z9wQQCkfRtQTJAeq+Swj1SyMdp\n1cFt08Np08FcaBFKBKzvz6iReKYY+u4bCWHEFyv+vctlMmzxSsHvrcsQ/H6nsek4znZO4lz3JAIR\nKXTnMGtwuM2Do+0eeNewsiHRclqTQM9aWq8D3ma3nt+MiIgexFqMb10zvfira38HANhRsR2f3Pnx\nVb1/ItocePxGROWqXMa3iZk4Tl4Zw5mOSSTSOchkwK7GChzfU4n2esddVx6JxDN47do4Tl0ZK34z\nefsWG57YW41dTRVrUsGEaDMLRFLF6j3Xh4LF1yUgVXVprZWq97TW2W5rdQXcPsYJgojRqVjhREwY\nfSOhkioDeo2yUH1HCvHUuU3rrjVNLJktVPORAj6z8/5Q8g5t1WTQa5XQa5UwaKWQj36RqaG4nrTs\nfsJAwWga57t9ON/tK36jXK2SY2+zE4e2u9FWb193j+1ayeYEROKZYnWf2aDPbAAoVJiPxDPFb/0v\nphji2eZEhWV9h3gWMx1K4sTlMbx+bRyJdA4KuQwHW91414FqbPGUZ2W80akYTl4ew5muSaQzeSjk\nMuxrceLxvdVorrYs+Pp70GO4WDJbCPfMD/ok4Asmkc3dXl3KYlAXwz1GnaoYsMkJwtz8bPhGKL2c\nL4RzpPXmAjrzAzv3yqhTScEjmx6u2fCRTQqIrEbwciPzh5K4cN2H891+jE5JlbHUKjl2N1Xg0HY3\n2usdD1QdK5sTMB0uVPMpVPSZnU6HkguOYxq1ohj0KZ3qYTNryi70SUtbT59RA5FUsfpO30gIEzOJ\n4nVKhRyNlWYpwFNrRWOlGVr1yleiEkQRvcMhnO2cxMVeP1IZqaXXFo8JR9o9ONTqhtnAL6DQxsVA\nD60L6+nNiIhoOa3F+PbG2Dk83/t9AECDpQ6f3vcbq3r/RLQ58PiNiMpVuY1v6WweF677cerqGG6N\nRwAAFRYtHt1diYd2VsKywD82RVHErYkITlwaxYUeP3J5EVq1AsfavXhsbxUqK/hNR6L1QBRF+ILJ\nYvWenuFQSYUJt12P1kIFn5ZaK0x6Naw2Ay52jBe/RX1jNIxkeq4aisWoRkuNFc3VVrTUWFHpNGzY\nk4bZnAB/UGrZFYimkUhlEU/l5k1ziM9bdi8n0BVyGXQaJQy628M+7wwHRRNSa4je4RDEwrZt9XYc\n3u7G7uaKVTnRVa4EUUQ8mZVCPiXhnwzsZg32tWzcEM9C0pk8znRO4CeXRosnUJuqLXjX/hrs3Vqx\nYNWQjWS20uCJy2PoG5GqAdpMGhzfU4VHdnrvWJVopY7hBFFq4eULJEuCPpOLtPBaigyAUimHUiGD\nQi5NlQo5FIrCfGFZ8bJCDoVcms4tl0Mpn91OhkxWgC8oBY8WC4fYTBop3GPXw22brTQkVYTZrEHC\nYDSNiz1+nL/uKx4jK+Qy7Ghw4NB2N3Y3VaxaBbpAJAVfKImpksBPAv5QEpns7WEyjVqBxkozmqos\naK62oqHSvKIVo2jtzY5v80/bl7zSxfmz89ZZYIASF9lQFBdaCoSi6ZIAz/zKjRq1As2zlRtrrKj3\nmte8NWQ6m8fVG9M42zWJzlsBCKIIuUyG9gY7jrZ7sLupAmoVQ460sTDQQ+tCuf3DlIho1lqMbz/s\nfwk/GjoJAHDpKvD/Hvkfq3r/RLQ58PiNiMpVOY9vQ5NRnLo6hnNdPqSz0rfd92514vieKmyrtSKX\nF/DWdT9evTSKwUnpMfA69HhiXzWOvKOtBRGtP4IoYtQfK1bv6R0JIV34hjIAeOx6BKJpZLJzy1w2\nHbZWSxV4WmqscFrv3LarHImiiExOKIZ8imGf5DsCQOls6TpJ6bo7VYkBgOZqCw5vd2P/NhfbFNID\nEUQR3QMB/PjiKDpuzQCQKnQ9vrcaj+yqhFG3sVovBSIpnLo6jtevjRcrhLVtseGxvdXY1eS466DS\nWhzDZXN5+IJJpNJ5KJVSIEehmA3gFObnBXdWurJhLi9gJpwqtBNLFioMSQGkhdo+yWSA06KDq1DZ\nx10I+nhsetjN2rKrxBhLZnGx14+35oUsZTJge50NB1vd2NviXFety0RRRDieKWnj5Q8mMOKPlVRF\nkcmAaqcRTdUWKeRTZYHDot2U7+flIBLPYGAiUviJYmAismBLwLVg0EqVG1tqrGiusaLWbVzXYdJw\nXApVn+2cLFZH1GkU2NfiwrF2D5prrBs2uE6bCwM9tC6U8z9MiWhzW4vx7e+7voMLvivQKrSQy2T4\n40f+YFXvn4g2Bx6/EVG52gzjWzKdw9muSZy8MoaxqTgAqZJHPJlFLJmFTAbsaXbiib1V2FZn48kA\nog0qlxcwOBktVvC5NRFBZYURDV6T1Ear2gqbaemKF3RnoigikxVKgkCJVA6xwlQul2FPc0VZVYqh\n9WNiJo5XL43idMdkMazrdehR4zKixmVCjduIGpcR5nUWIhNEEdeHgjh5eQxXbkxBFKUWfw/t9OL4\nnip47Pp7vs3NcAz3IDLZPPyhZLGN2PyWYvNbLc5SKuRw2XRw23SFij764rzZoN4wx4fJdA5Xb0zj\n/HUfugYCxQBmU7UFh1qlkOVCFSvXu1gyi5tjYdwcDePmaAgDk9GS1nBWoxpNVRY0VVvRVGVBrdu4\naasxrWfJdA7DvihuTUQwMC4FeGYiqZJ1KixauB0G5AqB7MVeeou9Jucvli2wsGSrknWlCwatEs3V\nUhUeb8XGrdw4Nh3H2c5JnOueRCAitax1mDU43ObB0XYPvI7Vr0IriiJSmfy8ILkUFI+nsnBadWiu\ntkClZDUhYqCH1gkebBNRuVqL8e1PL/0VboWHUG+pw63wIP7y+B9BIeeBHxEtLx6/EVG52kzjmyiK\n6B+L4OSVMVzo8UOrVuDR3ZU4vrsKDot2rXePiFbAZhrjiDaTRCqLN96ewMUeP0amYre16bEa1VLA\nx2VEbSHk47bpV70CSzyVxekOKVTsC0gVRmrdRjy+txqHtruheYA2KBzf7l8ilSu07UrAN6+yz2Qg\nWdKWcZZGrYDHpofLpoPNpIHVqIHFqIbVqIHVqIbFoIFOo1iz0E8mm0fHrRmc7/bhWv9MMehS6zbi\n0HY3Dm5zl92xbi4vYMgXlQI+haBPeF5QS62Uo95rLlbxaayybLhqXhtdLi9gxB/D4EQEtyYiGJyI\nYnw6XlI5y6RXod5rLv5s8Zpg1qs5vi0jQRTROxzC2c5JXOz1I1WoZrnFY8KRdg8OtbphvseQnyCI\nSKTnqjuWhHOS2WLIe35g526qPKqVcrTU2tBeb0dbvR1eh37DhClpeTHQQ+sC34yIqFytxfj2e6ef\nAwBsMdfgylQH/uihz8GsXvwNn4jofvD4jYjK1WYd3zLZPORyGb+5S1TmNusYR7SZCIIIfyiJEX8M\nI/4ohn0xjPhjCEbTJeuplXJUOY2Faj5zPyvRYnNoMoqTV0ZxrsuHTE6AUiHHwVYXHttbhQaveVlO\nUHJ8W36iKCKazMIXSGAykIB/XmUffzCJTE5YdFu1Sg6rYS7oYzGqYStMLUZNMfyj1yiX5fnP5QV0\nDwbx1nUfLvdNFU/Se+x6KcTT6lqTChxrRRRFTIdTuDkaxo1CwGdsKlYSHvE69GiulsI9zdVWuG1r\n23ZTFEXEUzmE4xlE4hmE42lE4llECpfjqSyMOhWsRo0UJDNpYDNKU5Neta4qxwiiCF8gIbXNGo9i\nYDKCYV8UufzcM6BRKbDFY5LCO5Vm1HtMi7ZK4/i2MtLZPK7emMbZrkl03gpAEEXIZTK0N9hxeLsb\nGrViLqAzP6xTDOcU2rMuEHxcjFwmg0GnhF6rglGrhEGngkGrhEGrgkGngl6rhE6txOhUDF0DAYxN\nx4vb2s2aQrjHge1bbOuqRSCtLAZ6aF3gmxERlavVHt/yQh7//dRn0WCpQ6XRizfGzuJ3D/4WKo2e\nVdsHItocePxGROWK4xsRlTOOcUSbVyyZxYgvWgj6xDDsj2F8On5bdQCnVYsalwm180I+i51kXko2\nl8eFHj9OXh5D/3gEgNQ65rG9VXhohxemZW4DxvFtdQmiiHAsg1AsjVAsPW8+M3c5nkYknsFSZxpV\nSjkshnnVfQrT0qo/Ghi0twd/BFHEjZEQznf7cLF3CrFkFgDgMGtxcLsLh1rdqHEZWdGiIJHK4da4\nVMHnxmgYt8YjSBfaOAGAUadCU5WlGPKp95oeuN2PIIqIJ7OFgE6mGM4JJ2bns4XgTgbRRHbJaiVL\nUchlxb+X2ZCP1aguVpCana5EYFEURQSjaSm8MxHFwEQEg5MRJNNzj61CLkO1y1iovGNCg9cMr8Nw\n11XSOL6tvHA8g/PdPpztnMSQ786PtVopLwnj6AvhHKNWBYOuNKBj1BbW06mgVd9b9bJAJIWugQA6\nBwLoHgwgnpLCQzIZ0OA1o63ejvZ6B+orTVDI+eWccsVAD60LfDMionK12uPbTDKA3z/7RRxw70GF\nzo6XBl/F/7Xn19Bsa1y1fSCizYHHb0RUrji+EVE54xhHRPPl8gImZhIYnhf0GfHHisGIWTqNshju\nqXUZUeM2oqrCsODJ/qlQEqeujOGNtycQS2YhA7Cj0YHH91ahvd6xYm2+OL6tT4IgIpKYC/uE3zGd\nDQRF4lkIS5ySVCpksBjmQj86tQJdgwGEYlJbKbNBjQPbpBBPY9XyVH0qd3lBwKg/LrXoGgvj5mgI\nM5G5Sl5KhQx1HhOaqixoqrKiqdoCi0ENQRQRS2YRic0P5swL68wL7cTuIqSjVslh1qthMahhNsxN\nzQY1zPq5ZQadCtFERvq7iaYRjKXnpoX5UCyz5P1p1Aop8DMv7DO/0s9sFamlqpbGU9m58M54BAOT\nEYRjmZJ1PHY96r1z1XdqXcYHCkdxfFtdY9NxXLs5XaymYyyEcwxaqbKOQauE+gFaRN4vQRAxOBlF\n58AMugYC6B+LFMdNnUaJ7XU2tDXY0V5vR4VFt+r7RytnqUDP8scUiYiIaEUFUkEAgF1rg0EllZGN\nZuNLbUJERERERERERJuQUiEvBnVmiaKIUCyDEb8U8plt2XVjJIS+kVBxPblMBo9DX6zkYzVqcP66\nDx39MxAhVft47+FaHN9dBaeVJxY3K7lcVqyysxRBkNp7haJphOPzwz6l4Z/BySjyglTxSa9R4uGd\nXhza7kZLrZXVKe6RQi5HnceEOo8JT+yrBiBVA7lZaNF1cyyMgfEo+scieAUjAKTXdSKVWzJ8BUjt\npMwGFbZ4TYuHdQqXteq7Px1t1KmWbJ0miCJiiSyCUSnkEywGfaS/oWA0jWA0jclAYsn7MetVxbCP\n1aiB2aDGdCiJgYkIfMFkybo2kwZ7tzqLAZ4tHhP0bIW0oVVVGFBVsf5a9MnlMjRUmtFQacZPH6tH\nIpXD9aEgugYD6Lw1g0t9U7jUNwUAcNv1aK+Xwj0ttdZ7ep3RxsJnloiIaIMJpKR/rNi1VmgV0gfl\nOAM9RERERERERER0F2QyGWwmqUXNzsaK4vJ0Jo/R6bkqPiO+GEampLZd57p9xfUaK814bG8VDmxz\nPXC7Hto85HIZLIWAB7B4JYLZwEY0mYXLqoNKyRDPcrKbtTho1uJgqxuA9Lq/NREphnz8oSQ8dn1J\nIGe2ko40r4L5HkM6y0kukxX3rW6Jv6NsTigGxRaq9BOMpjEZTGDYHyvZTq9Rom2LDVu8ZjR4zdji\nNcNmWjqsRrRS9Fol9rU4sa/FCVEU4Q8m0TkQQNdAANeHgnj10ihevTQKhVyG5moL2hscaNtiR43b\nCDmrmJUNBnqIiIg2mPkVemZLy8YyS3/jgIiIiIiIiIiIaCkatQKNlRY0VlqKywRRxHQoiWFfDFPh\nJLbX2VHnWfwkOtGDmh/YoJWnUSvQWmdDa51trXdlWamUclRYdahYonqYKIpIpvMIxdIIx9KwmbVw\n2XQMQtC6JJPJ4Lbr4bbr8cS+auTyAvrHwugcCKDzVgA9wyH0DIfwIvph1qvQVm8v/DgKQUraqBjo\nISIi2mDmB3qygtTvPJaNLbUJERERERERERHRPZPLZHDZ9HDZ9Gu9K0REy0omk0GvVUKvVaJyHbZf\nIlqKUiFHS60NLbU2PP1oIyKJDLoHAsUKPme7fDjbJVXXq3UZ0VZoz9VUbWXlsw2GgR4iIqINZn7L\nrXhWqswTY8stIiIiIiIiIiIiIiKiTcesV+NwmweH2zwQRRGjU3F0DsygayCAvpEQhv0xvHR+GGqV\nHE/uq8HPHW9c612mu8RADxER0QYTSAVhVBmgVqgBSOU/Z4M9REREREREREREREREtDnJZDLUuIyo\ncRnx3kN1SGfz6B0OoWsggO7BAAKR1FrvIt0DBnqIiIg2EEEUEEiHUGnwAADUChXUCjViGbbcIiIi\nIiIiIiIiIiIiojkalQI7Gx3Y2ehY612h+8AGaURERBtINBNHTsjBrrUVl5lUBsRYoYeIiIiIiIiI\niIiIiIiobDDQQ0REtIEEUkEAgF1rLS4zqAyIZeNrtUtEREREREREREREREREtMwY6CEiItpA5gI9\ncxV6jCoDskIW6XxmrXaLiIiIiIiIiIiIiIiIiJYRAz1EREQbyIKBHrUBABDLsEoPERERERERERER\nERERUTlgoIeIiGgDCaRCAG6v0AMAcbbdIiIiIiIiIiIiIiIiIioLDPQQERFtILMVehxaa3GZoRDo\niTLQQ0RERERERERERERERFQWGOghIiLaQAKpIDQKNXRKXXGZiRV6iIiIiIiIiIiIiIiIiMoKAz1E\nREQbSCAVgl1rg0wmKy4zqKVAT4yBHiIiIiIiIiIiIiIiIqKywEAPERHRBpHMJZHKp2DX2kqWG2cr\n9GQY6CEiIiIiIiIiIiIiIiIqBwz0EBERbRCBVAgAFg30RFmhh4iIiIiIiIiIiIiIiKgsMNBDRES0\nQQRSQQCAXWstWV6s0MNADxEREREREREREREREVFZYKCHiIhog5gpBnpKK/ToVTrIIEOMgR4iIiIi\nIiIiIiIiIiKissBADxER0QYRWCTQI5fJoVfpEMsw0ENERERERERERERERERUDhjoISIi2iACqRCA\n21tuAYBRZWSFHiIiIiIiIiIiIiIiIqIywUAPERHRBhFIBaGUKWBWm267zqjSI55NQBCFNdgzIiIi\nIiIiIiIiIiIiIlpODPQQERFtEIFUEFatFXLZ7W/fRpUBIkQkcsk12DMiIiIiIiIiIiIiIiIiWk4M\n9BAREW0A2XwW0UwMdq1tweuNagMAIJ5h2y0iIiIiIiIiIiIiIiKijY6BHiIiog0gkA4BAOxa64LX\nG1RSoCeWTazaPhERERERERERERERERHRymCgh4iIaAMIpIIAsHiFnmKgJ7Zq+0RERERERET/P3t3\nHuTqYZd7/nm1qyW1pJb6LH2623bsOIuv7UBIYKikKmNuwp0MVHLJgMO4kiG4gAJSBRRTJAyQIjZz\nkyEkqaQ8BQGGhITkErbrGdeFGm5ihztQwTchFTteshAvvZ2lta+v1nf+0Puqz9Z91N16Jb3q7+ev\n45b06udzTveRXj3v8wMAAAAAwB0EegAA8IDRAz2s3AIAAAAAAAAAAAC8jkAPAAAeUDAHK7cy+6zc\niocGgZ56m5VbAAAAAAAAAAAAgNcR6AEAwANGbeipsnILAAAAAAAAAAAA8DwCPQAAeEBf2uY4AAAg\nAElEQVTBLMqQoVQ4ed3bnUBPvUNDDwAAAAAAAAAAAOB1BHoAAPCAgllSMryogC9w3dtjdqCn1qlP\nciwAAAAAAAAAAAAALiDQAwDAjOv1eyq1ylqKpPa9T9gfUsAXUK1NoAcAAAAAAAAAAADwOgI9AADM\nuHK7or7V11Ikve99DMNQPBijoQcAAAAAAAAAAACYAwR6AACYcQWzJEkHBnokKR6MqU6gBwAAAAAA\nAAAAAPA8Aj0AAMy4glmUJKXD+6/ckgaBHrPXUqffncRYAAAAAAAAAAAAAFxCoAcAgBm319Bzg0BP\nKCZJtPQAAAAAAAAAAAAAHkegBwCAGec09Nxo5VYsOAj01NoEegAAAAAAAAAAAAAvI9ADAMCMGzXQ\nEw8uSJJqNPQAAAAAAAAAAAAAnkagBwCAGVcwS4oFFhQJhA+8XzwYl0SgBwAAAAAAAAAAAPA6Aj0A\nAMwwy7JUMItaiqRueN94yF65RaAHAAAAAAAAAAAA8DQCPQAAzLBap65Ov3PDdVvS3sqteptADwAA\nAAAAAAAAAOBlBHoAAJhhBbMoSSMFemJBGnoAAAAAAAAAAACAeUCgBwCAGVYwS5I02sqtYFwSgR4A\nAAAAAAAAAADA6wj0AAAwww7T0OOs3Kp1Gq7OBAAAAAAAAAAAAMBdBHoAAJhhhwn0+H1+RQMR1do1\nt8cCAAAAAAAAAAAA4CICPQAAzLC9lVs3DvRIUjwYU52VWwAAAAAAAAAAAICnEegBAGCGFcyiQr6g\nYvY6rRuJB2OqdRqyLMvlyQAAAAAAAAAAAAC4hUAPAAAzrGAWtRRJyzCMke4fC8bUs3oye6bLkwEA\nAAAAAAAAAABwC4EeAABmlNk11eg2R163JUnxUEySVGs33BoLAAAAAAAAAAAAgMsI9AAAMKMKZkmS\ntBRJjfyYeNAO9HTqrswEAAAAAAAAAAAAwH0EegAAmFEFsyhJh2voGQZ6aq7MBAAAAAAAAAAAAMB9\nBHoAAJhRxwv0sHILAAAAAAAAAAAA8CoCPQAAzKi9lVuHCPSEBoGeOiu3AAAAAAAAAAAAAM8i0AMA\nwIzaa+hJjfyYmNPQ0ybQAwAAAAAAAAAAAHgVgR4AAGZUwSzKZ/iUDC+O/Ji9lVsEegAAAAAAAAAA\nAACvItADAMCMKpglpcNJ+YzR/7km0AMAAAAAAAAAAAB4H4EeAABmULffVaVd1VIkfajHRQMR+Qwf\nK7cAAAAAAAAAAAAADyPQAwDADCqaZVmyDh3oMQxD8WBMdRp6AAAAAAAAAAAAAM8i0AMAwAwqmEVJ\n0lIkdejHxoMxVm4BAAAAAAAAAAAAHkagBwCAGbQX6DlcQ48kxYILanSb6vV74x4LAAAAAAAAAAAA\nwAQQ6AEAYAYdJ9ATD8UlSfVuY6wzAQAAAAAAAAAAAJgMAj3AHKu0q+pb/WmPAeAICmZJ0tFXbklS\nrc3aLQAAAAAAAAAAAMCLCPQAc2qjsqX/7R9/R49f+Nq0RwFwBE5DTzp8lEDPgiSp1iHQAwAAAAAA\nAAAAAHgRgR5gTn2r+K+yZOmFysa0RwFwBAWzqMVQQkF/8NCPjTkNPQR6AAAAAAAAAAAAAE8i0APM\nqc3qtiQp3yxMeRIAh9W3+iq2ylqKpI/0+IQd6KkT6AEAAAAAAAAAAAA8iUAPMKc2qluSpLxJoAfw\nmkq7qp7V01Lk8Ou2JCkWsht62o1xjgUAAAAAAAAAAABgQgj0AHOo2W1qt5mXJBWaRfWt/pQnAnAY\nBbMoSUdu6IkPV27VxjYTAAAAAAAAAAAAgMkh0APMoc3qzvDXXauncqsyxWkAHFahOa5ADyu3AAAA\nAAAA4H19qy/LsqY9BgAAwEQR6AHmkLNuKxtZkiTl7bYPAN5QMEuSdPSVW3agp95h5RYAAAAAAAC8\nrdVr6zf/6X/X55/6f6Y9CgAAwEQR6AHm0GZ1W5L0PafukiTlm4VpjgPgkPKt4zX0hPxBhfwh1dqs\n3AIAAAAAAIC3XWxcUrld1bO73532KAAAABNFoAeYQxvVLUUDEb0sfZskKdfMT3kiAIdRMI8X6JGk\nRDCmGg09AAAAAAAA8LicfcFqvsGFqwAA4GQh0APMmWbX1KVGTqvxFWWirNwCvKhglhQNRBUNRI58\njFgwplqnPsapAAAAAAAAgMnLNQYXrOabJfWt/pSnAQAAmBwCPcCc2aruSJLWE6taiqRkyBhewQBg\n9lmWpYJZ1FIkdazjxIMxdfodtXrtMU0GAAAAAAAATN6u3UDf6/dUbXMBGwAAODkI9ABzZrO6JUla\nT5xTwBdQKpxU3iTQA3hFvdtQu9c+1rotSYqHYpKkGic5AAAAAAAA4GG5y85vF1u00QMAgJODQA8w\nZzbshp61xVVJUja6pHKrok6/O82xAIyoYK/IG0dDjyTVWbsFAAAAAAAAD8vZDT2SVDTLU5wEAABg\nsgj0AHNms7qliD+s5WhGkpSJLMmSNQwJAJhtRbMkScdu6InZgZ4qgR4AAAAAAAB4VLffHZ4vk6Ri\nq3TAvQEAAOYLgR5gjpjdli42drWaWJHPGHx7Z6NLkqR8k7VbgBcUxhToSdDQAwAAAAAAAI/Lm0VZ\nsnRm4ZQkXRHuAQAAmHcEeoA5slXbkSVL64nV4dcyTqDHJNADeMG4Vm7FQoNAT41ADwAAAAAAADwq\nZ1+o+tL0rZKkYouVWwAA4OQg0APMkc3qtiRpLXFu+LVMxGnoYeUW4AV7gZ7jNfTE7YaeWptADwAA\nAAAAALwp18xLkm5ZXJff8KlEQw8AADhBCPQAc8QJ9KxfHuiJDkIBORp6AE8omEUFfQElgvFjHWcY\n6KGhBwAAAAAAAB7lBHpOLWS1tJCmoQcAAJwoBHqAObJR3VLIH9KpheXh1xZDCQV8AeXtNz4nwSef\n/pz+z6//X9MeAziSgllSOpKSYRjHOo4T6KkT6AEAAAAAAIBH7drntbPRjLILaZVbFfX6vSlPBQAA\nMBkEeoA50eq1daF+SWvxFfmMvW9tn+FTJrJ0YlZuWZalp3LP6pnCt9TsNqc9DnAorV5btU5dS+Hj\nrduSpIVgVIYMVVm5BQAAAAAAAI/KNwuK+MOKB2PKRNOyZKncrkx7LAAAgIkg0APMie3aeVmytHbZ\nui1HJppWvdtQs2tOYbLJqnXqMnstSdJ27cKUpwEOp2gOgndLkeMHenyGT7HgAg09AAAAAAAA8CTL\nspRr5pWJLskwDGUWBufMiiZrtwAAwMlAoAeYExvVLUnSemL1mtuykSVJg6sZ5t1uMzf89WZ1e4qT\nAIeXN0uSxhPokaRYMKYagR4AAAAAAAB4UKVdVbvf0XI0I0l7gZ5WaZpjAQAATAyBHmBObFYG4ZXr\nN/QMAj058wQEehr54a+3ajtTnAQ4vMKwoSc1luPFgwuqdxrqW/2xHA8AAAAAAACYlJx9gWrWDvRk\nhw09BHoAAMDJQKAHmBObtW0FfUGdiZ265rbMCW3o2aoS6Dkp/u/v/p3+afvxaY9xbIUxrtySpHgo\nLkuWGt3mWI4HAAAAAAAATEquObh4Mzts6Bmc56ahBwAAnBQEeoA50O51dL5+UavxFfmMa7+ts3ZD\nT/4kNPTYb/KSoYTO1y+q2+9OeSK4rdPr6O9ffEx/98IXpz3KsY090BNckCTV26zdAgAAAAAAgLfs\nDgM9g/Pbw5VbZnlqMwEAAEwSgR5gDmzXzqtv9bW+eO26LemkNfTkFTD8uiPzCvWsns7XL017JLis\n3K5IGlyZU/N4cKVgluQzfEqFF8dyvFgwJkmqdrz9+wIAAAAAAICTx2noWbYbehKhmIK+AA09AADg\nxCDQA8yBzeqWJGktsXrd2xeCUUUDUeXs9o95lmvklYlmhuGmrRprt+ZdqVUZ/nqztj3FSY6vYBaV\nDC3K7/OP5XhxO9BTJ9ADAAAAAAAAj8k1C/IZPqXDKUmSYRhKh1MqmgR6AADAyUCgB5gDm9VBiGE9\ncf2GHknKRtLKNwuyLGtSY01cvdNQvdvQcnRJq/EVSdJW1dsBD9xYqbVXsbtZ8e6fd6/fU7lVGdu6\nLWkv0FMj0AMAAK7j+fKGvlt6YdpjAAAAANeVa+a1FElfcfFbKpJSrVNXp9eZ4mQAAACTQaAHmAMb\n1W0FfQGdWTi1730y0Yw6/Y4q7doEJ5usvQrWrM7Fz8qQQUPPCXB5oGfDww09xVZZlqzxBnpCdkNP\nuzG2YwIAgPnx6Wf+XH/81GemPQYAAABwDbNrqtqpKRtZuuLrS3ZbT/Gyc4IAAADzikAP4HGdXkc7\n9Qs6F185cE1PJjoICeTNwqRGm7jdRk6SlF3IKOQP6dTCsraq5+e6lQhXN/RsTXGS4ynYK/EykdTY\njuk09FQ78xvkAwAAR2NZlgpmUZV2VY1Oc9rjAAAAAFfINQfnsbMLmSu+no4kJUmlFmu3AADA/CPQ\nA3jcTv2C+lb/wHVbkoZXMuSbcxzouayhR5LWEisye+Zch5gglVoVSdJK7IxyZkGNjjfbaJxAjxsr\nt+oe/T0BAADuaXSb6lo9SXtNlwAAAMCsyNnndJejVwV6nIYek4YeAAAw/wj0AB63UR2sGFpLrB54\nv0zUDvTMcbhlL9AzeJO3Gl+RJG1VWbs1z8qtsnyGT6/I3C5Jnl2z5kagJ2YHemqd+tiOCQAA5kPZ\nDkVL0m4zN8VJAAAAgGs5ofPsVYGeVMRZuUVDDwAAmH8EegCP26wOVgyt3aChJ2M39OTmuqEnJ5/h\nU8YORKwmBoGeTY8GPDCaUquixVBCNyXWJO2F3LymYA5OQiyNceVW2B9SwBdQrU2gBwAAXKncvjzQ\nQ0MPAAAAZovzGtVpnnekw4OVW0WTQA8AAJh/BHoAj9uobivgC2gldvrA+zkhl7leudXIaymSlt/n\nl0RDz0nQt/oqtcpKhZNat1uqNj0a6HFOQqTHGOgxDEPxYIyGHgAAcI0rGnoaBHoAAAAwW3INp6Hn\nqkCPfe6sQEMPAAA4AQj0AB7W7Xe1U7ugc7GzwxDLfoL+oJKhxbldudXsmqp2alfsVE6E4kqFk55d\nwYQbq3Xq6lt9pcJJZaNLigYi2rBbq7ymYBYVD8YU8ofGetx4MKY6gR4AAHCVSqs6/DUrtwAAADBr\ncmZBiWBckUDkiq9HAxFF/BGVzPKUJgMAAJgcAj2Ah+3UL6hn9bS2ePC6LUcmuqRiq6xev+fyZJPn\n7FRejmav+Ppq/KxKrbKq7do0xoLLSq3BG/dUeFGGYWg1vqJLjZyaXXPKkx1O3+qr0CppyW7SGqd4\nMCaz11Kn3x37sQEAgHeV7JVbhgxWbgEAAGCm9Po9FcyispddvHm5dCSpIg09AADgBCDQA3jYZmWw\nWmg9PmKgJ7KkvtWfyzc7zocQywtXvslbTQx+b2jpmU/OqoiUvTvbWbu1XTs/tZmOotquq9vvuhPo\nCcUkiZYeAABwhYr9OmolfkaVdlVmtzXliQAAAICBYqukvtW/Zt2WIx1Oqdk1ZXrsoj4AAIDDItAD\neJizWmjUhp5sdBAWyDXnb+3WbmOwJmD5qqs2VuMrkqStKoGeeeQ09CTDi5KkNTvA5bW1WwWzKEla\nsneAj1MsOAj01NoEegAAwJ5yuyKf4dMtyZsk7TVeAgAAANPmXLx5UEOPJBVbrN0CAADzjUAP4GGb\n1R0FDL9WYmdGun/GfgOUN+cv0LP/yi070ENDz1wqXdPQMwj0bFa3pzbTUewFetxYubUgSarR0AMA\nAC5TblWVCMZ1emFZkli7BQAAgJnhXJB69cWbjnR4cFFc0Zy/JnoAAIDLEegBPKrX72m7fl4r8TMK\n+AIjPSZrhwXyzaKbo03FbjMvQ4YyV9WwZqJpRfwRGnrmVMkcXIWTsht6lheyCvtD2iDQMxQPxiUR\n6AEAAHssy1KlXVEyvDj8kGS3mZvyVAAAAMCAc/Hm1ed6HWm75brYItADAADmG4EewKN26hfV7XeH\nK4ZG4bwBmseGnt1mXulISsGrwk0+w6dz8bO62NhVu9ee0nRwi7Nyy2no8Rk+rcZXdLF+SS0P/XkX\n7KuJXAn0hOyVWwR6AACArdltqtPvKhlODBsudxs09AAAAGA27LWx36ihh5VbAABgvhHoATxqs7ol\nSVpLrI78mFQ4Kb/hH1aWzot2r61Sq7zvTuW1xIosWdquXZjwZHBbqV3RQiCqkD80/Np6YtX+8z4/\nxckOx2noydhXF43TcOVWm0APAAAYKLerkqRkaFGZ6JIMGTT0AAAAYGbkmgWFfEEthhLXvT0dGVzc\nR0MPAACYd64Fevr9vt73vvfp3nvv1Tve8Q69+OKLV9z+6KOP6m1ve5vuvfde/cVf/MWBj8nn8/r5\nn/953XfffXr729+ujY0Nt8YGPGPTXim0foiGHp/h01IkpfycBXputFN5Nb4iSdqqsXZr3pRb5WE7\nj8NprdqwQ29eUDCLivjDigaiYz+2s3KrTkMPAACwlVsVSdJieFFBX0DpSEq7TRp6AAAAMH2WZSnX\nzCsbzcgwjOveJ2U39JRo6AEAAHPOtUDPF77wBbXbbX3+85/Xr/7qr+qDH/zg8LZOp6MPfOAD+pM/\n+RN95jOf0ec//3nlcrl9H/OhD31IP/qjP6rPfvaz+uVf/mU999xzbo0NeMZGdVs+w6eV2JlDPS4T\nWVK1U/PUOqIbca4m3jfQYwc8tuwQFOaD2W2p2TWVDC9e8XUn0LPpoT/vglnSUiS970mK44gFWbkF\nAACu5AR6UqHB66jlaEalVlntXmeaYwEAAACqdeoyey1lokv73ifkDyoejNHQAwAA5t5IgZ5C4fBt\nHv/yL/+i17/+9ZKkV73qVXrqqaeGt333u9/V+vq6ksmkQqGQXv3qV+srX/nKvo/52te+posXL+qn\nfuqn9Mgjj+i1r33toecB5kmv39N2bUcrsTMK+oOHeqzzRmieWnqcq4mXF7LXvf1s7JT8hl9bHlrB\nhBsrtwZX4Fzd0HN6YVlBX9AzgZ5GpymzZ2rJhXVbEiu3AADAtcptp6FnsMLACcbnaOkBAADAlDmv\nSfe7eNORDidVMEuyLGsSYwEAAEzFSIGe++6779AHrtVqisfjw//2+/3qdrvD2xKJvd2nsVhMtVpt\n38dsb29rcXFRn/rUp3T27Fn90R/90aHnAebJhcYldfrdQ63bcmQjdqDHnKNAT+Pghp6AL6CzsdPa\nrp1X3+pPcjS4qORcWX5VoMfv82s1flbn6xfV8cBV5gWzKElaiqRdOb7f51c0EKWhBwAADFVaVUka\nNh06wXjWbgEAAGDacvaFqNkbBHpSkZQ6/Y7q3cYkxgIAAJiKwCh3evnLX66HH35Yd911lyKRyPDr\nKysr+z4mHo+rXt/78LDf7ysQCFz3tnq9rkQise9jUqmU7rnnHknSPffco49+9KMHzptOLygQ8I/y\nv4YJW15O3PhOuKGna4P2qleu3Hro39NbmivSc5Lpr8/Nn0f56UG16svXblIkEL7ufW7L3qStF3bU\niTS0unh2kuPBJc/WB2vj1rKnrvm7fPupW/R8ZUONYEW3ZW6eyDxH/X56sW1KktYyZ1z7nkxG4mp2\nm3PzPQ9gsvjZAcyf5ncGH3q85OyK0tGEbm2tSv8qNX21E/U9f5L+XwGcPPyMA+BVjUs1SdJtZ1av\n+7PM+dpKalnfyElGtKPlND/zAHgfr98AXM9IgZ4nnnhCTzzxxBVfMwxDX/ziF/d9zPd+7/fqscce\n05vf/GZ9/etf1+233z687dZbb9WLL76oUqmkhYUFffWrX9X9998vwzCu+5hXv/rV+od/+Ae99a1v\n1Ve+8hXddtttB85bLJLInkXLywnt7lanPcZceHrnXyVJKWUP/Xsa6gzW77yYO6/d9Hz8eWyXLykZ\nWlS12FZV7eveJxtcliQ9+eJ3FD4Tv+594C2buxclSf52+Jrvg2zglCTpyc1vK9k/+GqecTjOz7fn\nLw5WwYV7Udd+RkZ9Ue22Crp0qSLDMFx5DgDziddvwHzarRRkyFC7Ku3Wqgp3YpKk53PbJ+Z7np9v\nAOYZP+MAeNmLuR1JUqB97bmyy3++RazBee7nLuwo1nVnlT0ATAqv34CT7aBA30iBnkcfffTQT/rG\nN75R//RP/6S3v/3tsixL/+E//Ac98sgjajQauvfee/Xe975X999/vyzL0tve9jadPn36uo+RpPe8\n5z36zd/8Tf35n/+54vG4PvzhDx96HmCebFS25TN8Ohc/fNNMxlm51SyOe6yp6PS7Kpol3Zq6+cD7\nrcYHjWJbtR29Rt8zgcngtlK7LElKXrVyS9JwHd1mdXuiMx2F2yu3JCkWjKln9WT2TEUDUdeeBwAA\neEO5VdFiKC6fMdjCnY0O3iPkGqzcAgAAwHTlmnkZMpS5wbmydHgQ4imapUmMBQAAMBUjBXoKhYIe\neOABffnLX1av19MP/MAP6Ld/+7eVzWb3fYzP59MDDzxwxdduvfXW4a/vueee4Rqtgx4jSefOndMn\nP/nJUUYF5l7f6murtqOzsdMK+YOHfnwsuKCwP6S8WXBhusnLNwuyZGk5uv/PI0laTQzCT1vVnUmM\nhQkomYNATyq8eM1tZ2OnFTD82iDQI0mKhwZX3dfaDQI9AACccJZlqdyu6kzs1PBrIX9IqXBSu83c\nFCcDAAAApFyzoHQkpYDv4I+v0hE70NMqT2IsAACAqfCNcqf3ve99uvPOO/XFL35Rjz76qO6++279\nxm/8htuzAbiOC/VL6vQ7WrMbSA7LMAxlIkvKNfOyLGvM002e86HDcvTgtUrRQFTZyJK2ajtz8f8N\nqdSqKGD4FQ/GrrnN7/NrJX5WO7UL6va7U5hudAWzpIDhVyLk3io45/eo1qm59hwAAMAbml1TnX5H\nydCVoejlaEYFs6TOjL92AgAAwPxq9zoqtyvK3uBcr0RDDwAAOBlGCvRsbm7q/vvvVzwe1+Lion7m\nZ35GOzu0XADT4KwQOmqgR5Iy0SW1em3VO41xjTU1u83BWoDlhYMbeiRpNbGiWqeuEldtzIVSq6xk\nOCnDMK57+3rinHpWT+frFyc82eEUzKLSkdRw5YUb9gI9ddeeAwAAeEOlXZEkJcNX7uZejmZkyVKh\nOR9NngAAAPCenH2uNxtZuuF9U+FFGTJUbBHoAQAA82ukTw8Nw9D58+eH/72zs6NAYKRtXQDGbKO6\nJUlaT6we+RjZ6OAN0Tys3XLe5N2ooUeSVuODENRWjUCi1/X6PVXa1euu23I4oTfne2YWtXsdVTs1\nV9dtSZcHerwf4gMAAMdTatmBnmsaegYBeScwDwAAAEzaYc71+n1+LYYSKppcvAkAAObXSKmcX/ql\nX9K9996ru+++W5Zl6YknntCDDz7o9mwArmOzui1DhlbjZ498jIx9hUOuWdBNi2vjGm0qdhv2VRuj\nBHoSg9+zreqO7sy+0tW54K5qpyZLllLh5L73cUJvm9XZDXA5VxA5O7/dEg8NAj11GnoAADjxKu2q\nJGnxqmB0dmHweppADwAAAKYlZ1+A6rw2vZF0JKXN6rb6Vt/V9msAAIBpGSnQc/bsWT388MN68skn\n1e/39f73v1+ZzGgvqACMT9/qa7O2o7Ox0wr5Q0c+zjw19Ow2c0oE44oGIje8r9PYQkOP9zlr05IH\nNPScjZ+Rz/DNdENPwSxKkusNPTGnoadNoAcAgJOubDf0XN10uNfQk5v4TAAAAIB0uJVbkpQOJ/VC\nZUPVdu3A84QAAABeNVKg51d+5Vf0d3/3d3rDG97g8jgADnKpsat2rz0MphzV5Q09Xtbr95Q3i7p5\nxJahZGhR8WBMWzPc2ILRlOwq3YMaeoK+gFZiZ7RdO69evye/zz+p8UY2qUDP3sotAj0AAJx05fYg\n0LMYSlzx9WU79O80YAIAAACT5rRFjtLGLu21XhdbJQI9AABgLo0U6Lntttv00EMP6e6771YksteC\n8ZrXvMa1wQBca6O6LUnHDvQ44YG8xwM9BbOkvtUf+Q2eYRhaja/om8XvqNltKhqIujwh3FIaXlm+\nf6BHktYT57RV29GFxiWdO8aaOrcUzMHKrYzbK7cI9AAAAJvT0HP1Bx6RQESJUJyGHgAAAExNvllQ\nLLCgheBo523T9rnBolnWzeR5AADAHBop0FMqlfT444/r8ccfH37NMAx9+tOfdm0wANfatAM964nV\nYx0nEggrEYx7fuWW82HD8oiBHklaTQwCPVvV83pp+iVujQaXOSu3bhToWUuck85/RRvV7RkN9Eym\noScaiMhn+Fi5BQAAVG5VZchQIhi/5rblaFYvVDZmtt0QAAAA86tv9ZVvFnQuvjLyY1KXNfQAAADM\no5ECPW9+85v1kz/5k27PAuAGNqpbMmRoNTH6m5r9ZKJL2qxuq2/15TN8Y5hu8pwK1uVoduTHrNlv\nCLdqOwR6PGyvoefgS2/W7PDbZnVb/93Z73N9rsMqmEUZMm4YTDouwzAUD8ZUp6EHAIATr9KuKBGK\nXzewsxzN6LnyCyqYJS0vjB6aBwAAAI6r1Cqra/WUtVfBjiIdtgM9JoEeAAAwn0b6FP+zn/2s23MA\nuIG+1ddWdUenF5YV9oeOfbxMJK2e1RtW7nvRsKHnEB82OGGoreqOKzNhMsp2Q8+NdmOfi5+Vz/Bp\ns7o1ibEOrWAO9nsHfCPla48lHoyxcgsAgBPOsiyVWxUlQ4nr3u4E5Vm7BQAAgEnL2RdvZg/Rxp6O\n2Cu37HOFAAAA82akTxDPnDmjd77znbr77rsVDoeHX3/3u9/t2mAArrTbzMvstYaNI8eVsa90yDXz\nStvVpF6z2zh8Q8+phWUFfUFt1rbdGgsTUGqVFQ/GbhiECfmDOrNwSlvVnZlro+r1eyq1yrp5cW0i\nzxcLLminfoEVGgAAnGBmr6V2v7NvKNoJyjtNmAAAAMCk5JoFSYcL9CyGEvIZPpVo6AEAAHNqpE82\nX/WqV+m1r33tFWEeAJO1WRk0jKwvnhvL8Zzq0pxZHMvxpmG3mddCIKpYcGHkx2QpyZoAACAASURB\nVPgMn87Fz+pC/ZK6/a6L08EtlmWp1CqPvKZqLXFO7X5Hlxq7Lk92OOV2RX2rr6VIeiLPFw/FJUn1\nbmMizwcAAGaP0865GNon0BN1Aj009AAAAGCynFD58iFWbvkMn9LhJA09AABgbo3U0PPud79bjUZD\nGxsbuv3222WaphYWRv8AHcDxbVQHjTLr42roiQzeGOXtKx+8pm/1lW/mdS6+cujHrsbP6oXKhs7X\nL2otMZ6AFCan2TXV7ncOFeh5/MK/aKO6rTOx0y5PN7qCfeXQxAI9wZgkqdaua3GfNRsAAGC+VdqD\nQM++DT1OoKdBQw8AAAAm6ygrtyQpFU7pufILtFIDAIC5NFJDz5e//GW95S1v0S/8wi8ol8vpnnvu\n0T/+4z+6PRuAy2xUt2TI0Gr87FiO5zT05E1vBnqKZlldqzdcC3AYq3aIZ6u6M+6xMAEl+4qb1D4f\nRF3NCcFtVmdrzVrBbsdamtDKu7jdZFXr1CfyfAAAYPaUWk6g5/rh3oXggmLBBVZuAQAAYOJyzbwC\nvsC+4fP9pCNJWbJUtsPrAAAA82SkQM9HPvIRfe5zn9Pi4qJOnTqlP/uzP9Pv/u7vuj0bAFvf6muz\nuqNTC1lFApGxHDMdTsmQMdxN7DXOGoDlQ16xIUmrdqvPZo1Ajxc5qyJGbeg5Fz8rQ8YMB3om1dAz\nWLlFoAcAgJOr0q5KkpL7rNySpOVoVvlmXn2rP6mxAAAAAOWaBWUiS/IZI31sNZQODy6WK5qs3QIA\nAPNnpFdG/X5fy8vLw/++7bbbXBsIwLVyzYLMnjnW9VB+n1/pSMqzK7f2dipnD/3Yc/EzMmTQ0ONR\nTkNPcsRATyQQ1qmFZW1Wt2fqg6nJB3oGDT11Aj0AAJxY5dbBK7ekQWC+a/X4QAQAAAAT0+g01Og2\ntWy3yh9GOuIEeorjHgsAAGDqRgr0nDlzRo899pgMw1ClUtHv//7va2Vlxe3ZANg2q1uSNNZAjyRl\nI0sqtyvq9DpjPe4kODuVj7JyK+QP6fTCsrZrOzMV8MBoDrtyS5LWE+dk9lrDvzezoGCWJE0u0BML\nxSRJtTaBHgAATion0LMYuv7KLWmvAdNpxAQAAADc5ly8mTlCG3vavuiv2CKQDgAA5s9IgZ4HHnhA\njzzyiM6fP683vvGNevbZZ/XAAw+4PRsA24a9Kmg9sTrW42bsKx4KHrx64TgNPZK0mliR2Wsp3/Te\n//tJtxfoGa2hR9oLw23M0NqtgllULLigsD80kedj5RYAACi3KzJkHBzoWRi8vt6doSA0AAAA5tvw\n4s2jBHqchp5WaawzAQAAzIKRAj2ZTEYf+chH9M///M96/PHH9fGPf1ynTp2SJP3Wb/2WqwMCkDbt\nEMJaYrzNWJnIINCT82Kgp5FTxB9WPBg70uNX44Pfy60aa7e8pmRfWX6YQM+6HejZnJFAj2VZKpil\nibXzSHsrtwj0AABwclVaVcWDMfl9/n3vQ0MPAAAAJi3XLEiSskdZuRV2Vm7R0AMAAObPSIGegzz1\n1FPjmAPAPizL0mZ1W6eiWUUD0bEeOxMdhAnyHrv61rIs7TbzWo5mZBjGkY7hNLZszUjAA6Mrt8oK\n+YKKBiIjP2bVDsPNSqCn1qmr0+9MNNATC7JyCwCAk67Urih5g7WlTgNmruGt9wgAAADwruM09MSC\nCwr6AjT0AACAuXTsQA8Ad+XNghrd5jCAMk7OFQ85szD2Y7up3K6o0+8oe4Q3eA4aeryr1KooFU4e\nKswVDUS1HM1os7oty7JcnG40zpq7JbsSeBJC/qBC/pDqNPQAAHAimV1T7V5bi+H9121Jgw9EooEI\nK7cAAAAwMc5rz6XI4Rt6DMNQOpxS0STQAwAA5g+BHmDGbQzXbY0/0JOJDAIx+aa3Vm7t2lcLLy9k\nj3yMeCimVDipzSqBHi/p9Luqdmo3vLL8etYTq2p0m8rPwIq5/DDQM7mGHklKBGOqdRoTfU4AADAb\nys7a0tDBr6MMw9ByNKPdZl59qz+J0QAAAHDC5ZoFpcJJhfzBIz0+FUkNGrF7nTFPBgAAMF0EeoAZ\n56wIWk+sjv3Yi6G4gr6g8h5r6Nk9RgXr5VbjKyq3K6q2a+MYCxNQcT6ICicP/VgnFLdR3RrrTEdR\nmFKgJxaMqdapzURLEQAAmKxyuypJWhwhGL0czarT76hiPwYAAABwS6ffValVHrbJH8VSeNCCXWyV\nxzUWAADATDh2oIcPBQF3bVQG4QM3GnoMw1Amklau6bVAT07SGAI9CXvtFi09nlEaQ6DHCclNk1MB\nPMmVW5IUD8bU6XfV7nO1EgAAJ43T0JO8QUOPtPc6e7eRc3UmAAAAoNAsyJKlbOTo53rTkcG5wlKL\ntVsAAGC+HDvQ84M/+IPjmAPAdViWpc3qtrKRJS0Eo648Rya6pGa3qUan6crx3TBs6DnGyi1JWovb\ngZ4agR6vKNlX2Xg90FNwAj3hyTb0xEMxSVKtXZ/o8wIAgOkrt+1ATzhxw/tm7dfZzutuAAAAwC3O\na87sMS7eTDsNPSYNPQAAYL6MFOjZ3t7Wu971Lr3pTW/SpUuX9M53vlNbW4PWkF/7tV9zdUDgJCuY\nJdW7Da0tjn/dlsOpMvXS2q1cI6egL6jF0I0/jDiI09AzCwEPjKY8DPTc+Mryq8WCC8pE0tqsbk+9\nXa5gFhXyBRULLkz0eeNBO9DTYc0cAAAnzbChZ6SVW3ZDD4EeAAAAuCxnn5dePsbKrVTEWblFQw8A\nAJgvIwV63ve+9+n+++9XLBbT8vKyfuRHfkTvec973J4NOPE2q4Pg3LoL67YcmYgd6PHI2i3LsrTb\nzGs5mpHPOF7JWCaypIg/oq3a+TFNB7eVhh9EHb6hR5LWEquqderDpp9pKZhFLUXSMgxjos8bGwZ6\nGhN9XgAAMH2VdlXSqCu37IYeVm4BAADAZTmnoWfhOA09g3OFTis2AADAvBjp0/BisajXve51sixL\nhmHoJ37iJ1SrcXU/4LYNuzlmPeFeQ0/GvvIh55GGnlqnLrPXGl41fByGYWg1cVaXGrtq9dpjmA5u\nKx2joUfaW7u1YYflpsHsmmp0m1qKTHbdliQl7EBPvcPKLQAAThqnoWeUlsvFUFwhf4iGHgAAALhu\nGOiJHCPQQ0MPAACYUyMFeiKRiC5cuDBsEvjqV7+qUCjk6mAA9kIHzmooN3itoWe3ObhK+DhXbFxu\nLX5Olizt0NLjCaVWWYaMI69bc9quprlmzblSaMk+0TBJsZDT0EOgBwCAk6bcrigejMnv89/wvoZh\naDma0W4zN/VVpQAAAJhvu82CIv7IsVbTRwMRRfwRlczptnIDAACMW2CUO733ve/Vz/3cz2ljY0Nv\nectbVC6X9bGPfczt2YATzbIsbVa3lYmkFbdbNdyQjQ5aQrzS0LPbGFyx4awBOK5zdlhqs7qjW5I3\njeWYcE+pVdFiKDHSB1HXszYTgZ6iJE2locf5WVJrE+gBAOCkqbSqw3bOUSxHs9qunVe1UztymBoA\nAAA4iGVZyjfzOrNw6tir6dORJA09AABg7owU6Lnpppv0V3/1V3rhhRfU6/X0kpe8RLu7u27PBpxo\npVZZtU5dt6Ve4urzRANRxQILyjeLrj7PuDi1/+NYuSVJa/FBoGertjOW48E9lmWp3K7oXOzskY+R\nCMWVCieH6+ymYSYCPTT0AABwopjdlsxeS8nQ6GtLndfbu408gR4AAAC4otyuqNPvKjuGc73pcErn\n6xdldk1FApExTAcAADB9B67cOn/+vHZ2dnTfffcpl8spFotpcXFRFy9e1P333z+pGYETyVm35awI\nclMmmlbBLHiiTt9ZuTWuhp4zsVPyG/65CPQ8X97Q+//5d3Whfmnao7ii3mmo2+8qFR79g6jrWU+s\nqtKuqtyqjGmyw9lbuTW9QE+dQA8AACdKpT143ZM8xOuoYaDHfv0NAAAAjFuuOWiNH0ugJ5KUJBVb\nrN0CAADz48CGno9//ON6/PHHdenSJd133317DwoE9IY3vMHt2YATzWkQWZtEoCeypI3qtirt6qFO\n8k/DbjOvgOEfvkE7roAvoJXYae3UzqvX7x15ldMs+P+2v6xLjZy+WfiOzsROTXucsXPejCfDx/uz\nX0us6Mnc09qobunO8CvHMdqh7DX0pCb+3AvBqAwZqrJyCwCAE8UJMicP0bSzvOAEevKuzAQAAAA4\nrzWzh1gNu590eHCurWiWdDZ2+tjHAwAAmAUHBno+8IEPSJL+8A//UD/7sz87kYEADGzagZ71xKrr\nz5Wx3zDlmoWZD/TkGnllohn5jAMLxg7lXGJFm7UdXWrmPPtmr9fv6an8s5KknDmfH7qU7UDPOBp6\npMH32J3Z6QR6fIZvKt9rPsOnWHCBhh4AAE6Ycrsq6bANPYNGzN0GDT0AAABwR34Y6BlHQ48d6GmV\njn0sAACAWXFgoMfRbrf10EMPXfP1d7/73WMfCIBkWZY2qltKh1OKh2KuP18mMgj05M2CbtXNrj/f\nUdU7DdW7Dd2SXB/rcVfjK5IGAQ+vBnqer2yo3mlI2quqnTelYaDnuA09g9arzep01qwVzKLS4dRY\nQ2mHEQvGVCPQAwDAieI09CweItCTDC8q4AvQ0AMAAADXOK81l8cR6Bk29LByCwAAzI9Df5rY6XT0\n6KOPKp/npB7glnK7omq7pvVF99t5pL1K0/yMB0Fywzd42bEe1wl4bNWmE/AYhyd3nx7+etb/HI+q\nZH8QddxATzK8qMVQQhvVrXGMdSidflfldnUq67Yc8eCC6p2G+lZ/ajMAAIDJKrcPv3LLZ/iUjWa0\n28zJsiy3RgMAAMAJlmsW5DN8xz7fJ0npyOAYNPQAAIB5MlJDz9VNPL/4i7+on/7pn3ZlIAB767bW\n4ucm8nzDlVvmbAdBnLr/7MLxr9i43Ln4WUnS1pQaW47Lsiw9mXtaIX9I6XBKObMgy7JkGMa0Rxur\nca3ckqT1xDk9lf+mqu2aEqH4sY83qqI5OKGwFElP7DmvFg/FZclSo9tUPOh+AxgAAJg+p6HnsCs/\nl6MZXahfVL3b4HUDAAAAxi7XzCsTScvv8x/7WCm7oadEQw8AAJgjR9r3Ua/XtbPjzQ++AS/YqAya\nQ9YXJxPoWYqkZciY+WaXXZcaeqKBiLLRjLZqO568+vhiY1e7zbxeuXS7zsZOqd1rz+VKpdLwg6jj\nX7HjtDJt2OG5SSmYRUlTDvQEFyRJ9fb8/R0BAADXV2lVJUmLh2jokfZWH+w2aOiFt/X6vWG4HgAA\nzIZm11StU1d2DOu2JCnkDyoejKnQKo7leAAAALNgpIaee+65Z9j0YFmWKpUKDT2Ai5yQgRM6cFvQ\nF1AyvKicZwI9423okaTV+Iq+vvsNlVplpae4DukonswN1m3dlb1D27XzkgZXt0yyeWYSSq2yIv6I\nIoHwsY+1lhiss9usbuuOzMuOfbxRFWagoSdmX11f7dR1empTAACASSq3K4oHYwr4RjoFMOQE6Xeb\nOd2SXHdjNGAi/svGP+g/P//3+vXX/LJW4memPQ4AAJCG56LHea43HU7qQmN3LtvLAQDAyTTS2bzP\nfOYzw18bhqHFxUXF4/P1QTEwSzarW0qFk4e+gvY4MpElPVd+Qb1+bywVp27YbebkM3zKuBCGWEsM\nAj1btR3PBXq+kXtGhgzdkXm5Wr2WpMEb4luSN015svEqtcpKRY7fziMNVm5Je+vtJmWvoWd6f8cS\ndqCnPoctTgAA4PrKreqRXn8s26tunWA94FX/WnpOfauvJ3NPE+gBAGBG5OzXmJno0tiOmYqktFnb\nYWUsAACYGwcGeh5++OEDH/zWt751rMMAkMqtisrtqu7MvnKiz5uNLum75edVMEvDE/ezZreR19KY\ndipfbTW+ImkQ8Jj07/1xVNpVPV/e0K2pmxUPxZSxr2iZ9balw2r3Omp0m1q3m3WOKxVOKh6MabO6\nNZbjjWoWVm45DT3zuJYNcEun35Xf8MlnHGlbLQBMVavXltkzlQwvHvqxw4YeVm7B43ZqFyRJT+e/\nqX938w9NeRoAACDtBXrG29AzCLEXzTKBHgAAMBcODPQ8/vjjBz6YQA8wfk5jyPqE1m05nNabvFmY\nyUBPs2uq2qlpNbHiyvGd427ZK6u84qncN2XJGoaQsvYVLTlzvj50KbXKkgZBnHEwDENriXN6tvBt\n1TsNxYILYznujTiBnmm2QMVDdqCnTaAHGEWv39Nvf/n/0ErsjH7+7ncR6gHgOeVWRZKUDB0+0JMO\nJ+U3/Mo1c+MeC5iYeqehcnvwffB8eUO1Tp0P+AAAmAFOoCc7zkCP3e5dapW05tJ5ZAAAgEk6MNDz\ngQ98YPjrTqej559/Xr1eTy996UsVCIy0rQvAIW3YjSHjaiIZlVNtOngj9dKJPvco9q7YyLpy/GRo\nUfFgTFvVHVeO75Ync09Lku6yAz1LkbQMGcrPWUNPeRjoOfwHUftxAj2b1W29fGkyf+cLZknJUEJB\n3/T+DY3T0AMcyoXGJZVaZZVaZX3hxX/Qm27+76c9EgAcyjDQc4TXUX6fX5lompVb8LQd+6KNsD+k\nVq+tb+a/re878z1TngoAADgN45nI+FZu7TX0lMZ2TAAAgGka6RLjp556Sj/8wz+s9773vfr1X/91\nveENb9ATTzzh9mzAibRhN/SsTbyhZ/DGKW83iMwa50MEt9qDnMaWvFlQo9N05TnGrd1r65uF7+jM\nwimdWliWJAV9AaXCyblbuVW0Az3JMTX0SHuhOacVy219q69SqzzVdVvSXqCn3mlMdQ7AK7Yva257\n5Pn/Vy9UNqY4DQAcXsVuJlkMJ470+OVoVrVO3TOvkYGr7dQvSpJet/IDkqSn8t+a5jgAAMC228wr\nEYorEgiP7ZhOK7ZzLhEAAMDrRgr0/M7v/I4++tGP6m/+5m/08MMP66GHHtKDDz7o9mzAibRZ3VYy\nlDjSFbTH4axqmtVml1xj/DuVr7YaH9Swbte80dLzzcJ31Ol3dNfyHVd8PRNNq9Qqq9vvTmmy8XOu\nLHdqc8fBCc1NKtBTaVfVs3pTXbclSTE70FPt1KY6B+AVTqDnf7j538qyLH3y6f8os2tOeSoAGJ3z\nOip1hJVb0t7r7xwtPfAop6HnNWe+V8lQQs8WvqW+1Z/yVAAAnGy9fk/FVmns53pp6AEAAPNmpEBP\no9HQ3XffPfzvV73qVWq1Wq4NBZxU1XZNpVZZaxNetyUNKvgDhl85czYDPbvNnCT3Vm5J0mr8rCRp\n0yOBnm/knpEk3Wmv23JkIxlZslSY0baloygNG3rGF3TLRNJaCESHa+7c5vx5TLuhJ+wPKeALqN6m\noQcYhRPouWftdXrjTW9QrpnX57/98JSnAoDRldtVSdLiEV9HOa+/ndfjgNfs1C/IZ/h0JnZKd2Re\nrlqnrhcrk3kPAAAArq9gltS3+sqOOdCTCi/KkKFii0APAACYDyMFepLJpL7whS8M//sLX/iCUqnp\nNgwA88gJFqxPeN2WJPkMn5Yi6Zlt6Nlt5mXIUCY6vp3KV1u1f9+3qrMf6OlbfX0j96wSwbhuXly7\n4janbWme1m6VnCvLx7hyy1mzttvMq9l1f4VEoTkbgR7DMBQPxlTr1Kc6B+AV27XzSodTWggu6Edu\neZNuSqzpv134mv7bha9NezQAGEm5NQj0JI/a0GOvvN2loQceZFmWdmoXdWphWUFfQHdkXyFJejr/\nzSlPBgDAyea0P2Yj4z3X6/f5tRhKqGiycgsAAMyHkQI9Dz74oD7xiU/o+7//+/Xa175Wf/AHf6D3\nv//9bs8GnDjO6p+1KQR6JCkTXVKtU5fZnb0Grt1mXulISkFfwLXnOLWQVcgX1JYHGnpeqGyq2qnp\nzuwr5DOu/FGemcNAT7lVlt/wK26vixqXvbVb7v+ZF+yq36Upr9ySZAd6WLkF3Ei1XVOlXdU5u8HN\n7/PrXXf8zwr7Q/r8t/4T62cAeEK5PQhGL4YTR3q8swZht8HPPHhPwSzJ7JlaiZ2WJL0sfZv8hp9A\nDwAAU+aExcfd0CNJ6UhKpVaZFZsAAGAujBToufnmm/WXf/mXeuyxx/Too4/qU5/6lF7ykpe4PRtw\n4mzYgZ71xcmv3JIGK4gkKT9ja7favbZKrbIrb/Au5zN8Ohc/q/P1i+r0u64+13E9ufu0JOmu5Tuu\nuc35fZq1P8fjKLUqWgwlrgkvHdf6MNCzPdbjXk++NRsNPdIg0NPqtdXpdaY9CjDTnHVbzkpGadBU\nce/t/15mr6VPPv0f1ev3pjUeAIyk0qooFlw4cjB+KZKWz/CxcguetFMf/Fu+Ehv8Wx4NRHRr6hZt\nVLdUsdfRAQCAycuZg0CP0wY5TulwUj2rp2qbi9kAAID3jfTJ6GOPPaYPfehDsixLP/7jP64f+qEf\n0mc/+1m3ZwNOnI3KlhKh+JHr8I9rGASZsWYXp2lm2eVAjySdS6yob/V1vn7B9ec6jm/knlHQF9TL\n0rddc9u8rdzqW32V25WxrttyrE0w0FMwZyjQExo0HdW7jSlPAsw2J9CzclmgR5K+/+yr9ZrT36MX\nKhv6z8//l2mMBgAjK7crx3p/EfAFtBROsXILnnS+dlGStBI/M/zaHZmXSZKeyX9rKjMBAIC985Zu\nNfRIUrFVGvuxAQAAJm2kQM9DDz2kH/uxH9Pf/u3f6q677tKjjz6qv/7rv3Z7NuBEqbXrKrZKWk+s\nyjCMqczgrGrK28GDWeFcDTyJQM9afEWStFU97/pzHdWlxq4uNC7pFUu3K+QPXXN7IhhXyBdUfk4+\ndKm2a+pbfaUi4w/0ZKMZRfzhYTuWmwpmSdFAVNFAxPXnupGYvbqs2q5PeRJgtl2vocdx78v+vTKR\nJf39i4/p28V/nfRoADCSdq+tZtdUMny8CwaWF7KqtKszuZoXOMi23dBz7rJAz7/JvFySWLsFAMAU\n5Zp5hfwhJYLxsR87bV8UWDTLYz82AADApI28u+TWW2/Vl770Jd1zzz2KxWLqdFjTAYyT0xDiNIZM\ng7NyKzdjQRDnauDlhazrz7WasAM9NfcDHkf1ZO4ZSdKd2Vde93bDMJSJLmm3WZBlWZMczRWl1uDN\nd+qYH0Rdj8/waS1xTpcau65+QGVZlgpmUUv2FULTFg8uSJLqHQI9wEG2a+cV9AWv++9PNBDRu+74\nSRmGoT995vOq8f0EYAaVW4OVQouhxLGO4wTrZ+19AnAjO7ULCvlDV7Rknl44pUwkrWcL32Z1JuYS\nf68BzDrLsrTbzCsbWXLlwtYUDT0AAGCOjBToyWazevDBB/XUU0/p9a9/vT74wQ9qZWXF7dmAE2Wj\nuiVJWp9moGfY0DNbq5p2G5Nr6FmJnZUhQ1vVHdef66ie3H1GhgzdmX3FvvfJRpdk9kw1us0JTuaO\nUqsiSa6s3JIGITpLlrZq7v2Z17sNtXvtmVi3JUlx++onAgjA/nr9ni7UL2oldkY+4/ovmW9J3qT/\n8ZY3qdQq63PP/tVchCgBzJdye/A66tgNPfbrcNZuwUt6/Z4uNnav+bfcMAzdkXm5ml1Tz5VfnOKE\nwPg9lXtW/+t/fZ/+6wuPT3sUANhXrVNXu9d27VxvOmwHekwCPQAAwPtGCvR8+MMf1p133qnPfOYz\nWlhY0Nramj784Q+7PRtwojgrf9YTq1ObIRZYUMQfUb45ayu3Bh8cuLFT+Wohf1CnY6e0VdtR3+q7\n/nyHVWvX9Vz5Bd2SXFcitH8lbTYyP1dRl52GntD4G3qkvVasTRfXbhXsNXYzE+gJDVZuEegB9nex\nsauu1btiRcf1vOmmN+ilqZfoidzT+sedf57QdAAwmrIdjE4e83WU01TmrMIFvOBiY1c9q6eV2Olr\nbruDtVuYQ9u18/rk059Tu9/R188/Pe1xAGBfbp/rTUfslVstVm4BAADvGynQE4/Htbi4qM997nP6\nvd/7Pd1yyy2Kx8e/2xQ4yTarW4oHY661kIxisKoprZw5W6uadpt5JUOLCvtDE3m+tfiKWr22cs3Z\naiqSpKfyz8qSpbuydxx4v722pdkKZx2F8+Y76dL3xvpEAj2DK4JmbeVWrU2gB9iP09p1Ln5wK6XP\n8Ol/eeXbFQss6K+/84h2ahcmMR4AjKTSHqzcGltDT8P7YXGcHDv1wb/JK/Gz19x2e/pWBXwBAj2Y\nG5V2VX/w5Kdk9lryGT69WNqa9kgAsK/cMNCz5MrxF0MJ+QyfSjT0AACAOTByQ88f//Ef69y5czp1\n6pQ+9rGP6ROf+ITbswEnRr3TUN4sai1xzpW9wYeRjSyp3WvPTHNHp99V0SxpecH9dh7HamLw4a2b\nK5iO6hu5ZyRJd2ZfeeD9nDfE89HQM7iy3Lm6ZtxOLSwr5A+drIYee+VWfUa+z4FZ5ARzbtTQI0np\nSEr3veJ/Uqff1Sef/pw6vY7b4wHASIYNPeHEsY6TiSzJkEFDDzzF+bd8JXbtv+Uhf0i3p27VTv0C\n6zjgeZ1eR3/45KdVMIv6kVvepJsX17VdvchrUgAzy+2GHp/hUyqcpKEHAADMhZECPV/60pf0p3/6\np3rHO96hd77znfr0pz+tRx55xO3ZgBNjcwbWbTkywyDIbLTT5JsFWbK0HM1O7DlX7TaGrepsBXo6\nvY6eKXxbpxayOhM7deB9M5HZ+nM8jpLT0OPSyi2f4dNqfEXn6xfV7rVdeQ4n0JOZkUBPLMjKLeBG\n9hp6rr2q/3ruXv43et25H9BO/YL+03f/1s3RAGBk5fYg0LN4zNdRQX9QqXBy+OEL4AU79fOSpJV9\nwrms3cI8sCxLf/bNv9TzlRf1fadfpX938w9pNX5Wfauv8/WL0x4PAK4rb5+vdCvQI0np/5+9Ow+P\n467TRf9W9b7vWluyvEq2bCckIQkECI4dEhKWkBBCFmfhDNvcYQbOnBlgzsC9c4aBuZdz+APuXBiY\nQ0JMErKQyQJJWBJCSFjihNiSJUuWF60tyb3ve9X9o7vadmJJLalW6ft5DMcXtAAAIABJREFUHj8E\nW131syW1uqve3/s1uZEsplDlqpKdgxBCCCFEDk0FelwuF7LZMzf9yuUyjdwiREST6VoVsjD6R0lC\nECRaUEcQRGiYCUj4Bu/NGoEelTX0jMaPo1QtLdnOA5xp6ImuiUBPCjaDFQadQbJzdDk6wYPHTGZW\nkuOfGbmljkAPjdwiZGkzmVl4TG5Y698vzbhpywfQZmvFb6dfaTSqEUKIkhoNPcbVNfQAQMDqR6KY\nRIkaH4hGhDJzcBjtcBjPf/1qh68XADAUHZVzWYSI6rnx5/Ha/CFsdG7AHX03g2EY1V7TIIQQQTgf\nBQNG0tH0HrMLPPhGwJ0QQgghRKsWDfR8+ctfxpe//GVwHIcPf/jD+Kd/+id87Wtfw4033gi3W7oX\nW4SIieM51dcMT9YberpU0NCjtiCIsAs4YJWvocdutMFtcmFawhFMKzFQvzm829+/5McadUY4jY41\nMnIrCbdJmnFbAiFMJ9XYrVghDgNrgL3ejKM0HauDRW+hhh5CFpAuZZAqpZtu5xEYdUZ8ov826Fk9\nfnz00caNdEIIUUqylIZVbxElGC0E7NfC60uy9hUqBUQLcXTaFv5Z3mL1o8Xqx0h8DGWuIuPqCBHH\n6/OH8bNTv4TX7MGndt/ZeK7vdNS+7qcl2rBCCCGrFclH4TW7oWf1kp3DY6rdv4rRaE1CCCGEaNyi\nr5guvfTSc/5X0N+/9M1kQtTioZHHMRgZxpcu/RvJQwErNZWegU1vlXRXQrOEkVtqaegJ5yMA5G3o\nAYAuRwcGI0eRKqXhFGFH82pxPIcjkWHYDTZscm1o6jF+ixfjqSlUuSp0rE7iFUojXymgUC3CZZJm\n3JagS4ZAj9fsBsMwkhx/JewGK7IU6CHkvIS2ruUGeoTHfGTz9Xh07EncP/ww/o8L/wtYpqlSTEII\nEV2ymIJbpNdRwuvxcD664AgjQtQiVB811G5vXfTj+n19+M3UyziROIU+71Y5lkaIKMZTkzhw9GGY\ndEZ8Zvfd51y36LC1gWEY1Y0RJ4QQAChVS0iV0uj1bJH0PJ76dfYEBXoIIYQQonGL3l34yEc+0vi1\nZ88eXH755bjssstwySWXoK2NLuAR9StzFbx++hDS5QweHn0CPM8rvaS3yJXziOSj6HJ0quJmv68+\nEiiajyu8kppwrrYDWMqZyufTqKhWyQWwyfQ0kqU0dvq2N31j2Gf2geM5xItJiVcnnWR97W6jtGG8\nNmsLDKy+0ZYlpmK1hGw5p5pxWwK7wYZMOafK50VClLaaQA8AXBl8J3b6tmMkPobnJ18Sc2mEENK0\nUrWMfCUPl1GkQE+9MVMI3BOiZrOZOQBAxyINPUAt0AMAQ9ERyddEiFjihQT+feBHqHBVfKL/9re8\nZjXqjOiwt2ImM0vv9wghqhOpt8JLfa3XU9/Yq+XrooQQQgghwBKBHsG3vvUt7N27F9deey1uu+02\nvO9978O3vvUtqddGyKodj59EsVoCAwYDkSG8ER5UeklvITSCdDuVH7cF1C78OIx21VTph/MROAx2\nWPRmWc8brDe2qGXm/GC4Nm5rV2BH049R2/i0lUjUx9W4zdIGenSsDp32DoSyc6LX7ccKtXCcGhq4\nzmY32lDlqyhUC0ovhRDVEQI9wRUGehiGwR3bb4bL6MBTJ5/DRGpKzOURQkhTUqXa6yixmg7Pbugh\nRO1msrVAT+cSbVJb3JtgZA0U6CGaUagU8d2Be5EqpXHT1g9ip3/7eT9ugyeIQrU2eo4QQtREeC0p\nXLeUitDQEy9SQw8hhBBCtK2pQM/PfvYz/Pa3v8V1112H+++/H/feey+8XmlfcBEihoFILQRxa++N\nMLB6PDL6BLLlnMKrOtdUphboEUb+qIHf7EWsmADHc4quo8pVES3EZW/nAdTX0DMQGYae1WO7d1vT\njxHGp0UK2r3pkhAaeiQeuQXUvgc5nkOofiNfLGcCPepq6LEZbACATEldz4mEqMFMZhYG1tBoo1gJ\nh9GOO3d8HBzP4d6hB1GoUHiOECKvZDENAKKNjxVek0dy2n1tSdaPUGYWDBi02xYfuWVg9ej1bsV8\nLtxohyVErTiew33DD2EmM4t3dVyG9wavWPBje9y1TWMzKtmkRAghgkhenjZ2j6ke6ClQQw8hhBBC\ntK2pQE9LSwvsdju2bt2KkZERXH755YhEqGabqBvP8xiMDMOit+Dy9ktw3carkS5n8PjYz5Re2jkm\nU9MAgG4VBXp8Fm9tVJPCb3hihVqoKGCVP9DjM3tg0ZtV0dATyUcRys6hz7MFJp2x6cf5zfVAz1po\n6DFJ29ADnPkenBJ57FasPqtbbYEeuxDoKWcUXgkh6lLlqpjLzqPD1tb0iMOF9Hm3Yl/3lQjno3jk\n2JMirZAQQpqTFLmhx6QzwmV00sgtono8zyOUnYPf4oWxifdPjbFbMWrpIer25IlnMRgZRq9nCz62\n7YZFx7YLgR61bFIihBCBcJ0yIHGgx2awwsDqqaGHEEIIIZrX1F0Ku92OJ554Av39/Xj66adx6NAh\npFIpqddGyKrMZGYRLybQ7+uFjtVhb9d70GXvwB/nXsPR2DGll9cwlZ6BVW+Bz6ye1ishCBItKBsE\nEW4WSP0G73wYhkHQ3oHTuQgKlaLs5z+b0DS129+/rMethZFbyUZDj/SBni7JAj21hh5hZ5BanAn0\nZBVeCSHqMp8Lo8JXlxzR0awPbroG3Y4g/jT3Ol6be0OUYxJCSDOSRXEDPQAQsPoQKyREH1FKiJhS\npTSy5Rw6bM39LO/39QIAjd0iqvb70Kv49eRv0WL14y923gEdq1v04zc0GnrEbaAlhJDVisg0coth\nGHhMbsQLFOghhBBCiLY1Fej5l3/5F8RiMVx22WXo7OzEV7/6VXz+85+Xem2ErMpgPQSxy78DAKBj\ndbh9+81gGRYPjfwUxWpJyeUBAPKVPE7nI+hydC66s0pujVFNCgdBhJnKAcvKR56sRtDRAR613Z1K\nGgzXvpZ3+rcv63EukxN6Rqf453E14vVAj5g3ohbSbmuFntFhUqJAj3obemjkFiFnE5rZOuujF1dL\nz+pxT/+tMOqMeGj0PzX9nEwI0ZZUqTZyy2UUMdBj8YMHjxg9lxEVC2Vq7986mgznes0edNjaMBY/\ngZIKrhMQ8mbH4ifw0OjjsOmt+Ozue2A1WJd8jNvshMNgV0XrMCGEnC2Sj8JmsMKit0h+LrfZjUw5\ni3K1LPm5CCGEEEKk0lSgp7W1FZ/4xCcAAF/60pfw1FNP4frrrwcAfPrTn5ZudYSswmDkKFiGxQ5v\nb+P3uhyd2Nv1HkQLcfzs5C8UXF2NUH3cpaJxWwAabUGqaehRYOQWAATrN3OnRQ54LEe2nMPx5Cn0\nOLuXHWphGRY+ixeRQlSi1UkvWUzCwOph0y99wXK19KweHfY2hDKzqHJV0Y4bKyTAMizcMoSSlsNu\nrAd6SjRyi5CzCTcBxWroAYAWawC3bLsBhWoB9w09JOpzDCGELORMQ49DtGMKzZlC8J4QNRI2ZHTY\n25t+TL+vD2WugmPxE1Iti5AVOZ2L4D8GD4ABg0/u2o8Wa6CpxzEMg057O6KFOPKVvMSrJISQ5nA8\nh2ghDr9MbeyeeuO3sGGQEEIIIUSLmgr0LGZ+fl6MdRAiqkQxiYn0FLa4N8FqODftf93Gq9Fi8eM3\nUy9jPDWp0AprhCaQbrUFelQyqimcU7ihRwj0KLijbSg6Ao7nGk1Ty+WzeJEt55CvFERemTwSxRRc\nJpdsDVZdjk5U+CpCWfF+tsUKcbiMziUr0eVmqzf0ZKmhh5BznGnoaf4mYDMua7sYF7dcgFOpCTwz\n/mtRj00IIecjBHqcYjb0WGuvyynQQ9Ss0dDT5Mgt4OyxW6OSrImQlciVc/jewL3IVnL4eO+N2OrZ\nvKzHBx21axozGWVbhwkhRBAvJFHlq42QuNS8ZjcAIFGksVuEEEII0a5VB3rUNCaIEMFQZAQAsPs8\nIQijzoDb+m4CDx4PHH0MFa4i9/IaJtPTAIAuR1CxNZyPx+QCy7AqaOiJwqq3wNZEnbQU2mwt0DM6\nTKeVmzk/UB8dd76v5Wb4zbU3yEqHs1aiylWRLmVkbbYRvhenRGplqnJVJIsp1Y3bAs4euZVVeCWE\nqEsoMwuPyd3UKIPlYBgGt/bdCJ/Zg1+Mv4AxagAghEgsWUrBorfAqDOIdswzDT0R0Y5JiNhC2Vno\nWf2ybhZucvXAojdjKHoUPM9LuDpCmlPlqviPIz/GfC6Mfd1X4p0db1/2MYSAutAOTQghSovUQ+Hy\nNfTUAj3xAjX0EEIIIUS7Vh3oIUSNhBDELv/28/75Vs9mXNFxGULZOfxq4kUZV3auqfQMLHqzbLsS\nmqVjdfCY3IqGQDieQzQfVaydB6iNYGq3tSKUFXcEU7PKXAVHo6Pwm71ot7Wu6Bg+Sy1IElE4nLUS\nqVIaPHi46/W4chDassQK9MSLSfDgVR7ooZFbhAjSpQySpbTo7TwCi96Cu/tvA8MwuG/4J9SQRQiR\nVKqYXvbI1qUIN1+EJk1C1IbjOcxm59FubVlWQ6aO1aHPuw3RQhzzubCEKyRkaTzP45FjT2A0fhy7\n/Dvw4c3vX9FxhNbhGQVbhwkh5GyNQI/ZK8v53PWGnliBGnoIIYQQol0U6CFrTqlawmh8DO221kXT\n/h/Zch1cRieeG38ecyKO12lWoVLA6VwEQXuHKpuufBYvkqU0StWyIudPFJOo8FUErMqGnYKOTpS5\niiIXdcfiJ1CoFrErsGPFXyPC90BEg2MRhPnWYt+IWkyHrQ0sw2Kq3p61WrFCHADgq19AUBOL3gyW\nYZEpUaCAEMFMptbIJlWgBwA2uTbgup6rkSgm8eDIY9QCQAiRRLlaRraSg8voEPW4Fr0ZDoOdGnqI\naoXzUZS5CtrtzY/bEvT7+gDUxh4ToqQXp1/By6E/odPejrt33AqWWdnl21ZrAHpWr+gYcUIIOVtY\n9oae2ibBOI3cIoQQQoiGrTrQQzchiNqMxMZQ5irYtcSIIoveglt6P4IKX8UDI4+B4zmZVlgznZkF\nDx7dKhu3JfDXG0ViCjW7CLt+lW4vEna0KXEBbLAxbqt/xccQdrxoceRWoh7okbOhx6AzoN3WiumM\nOK1MQqBHjQ09DMPAbrAhSyO3CGmQI9ADANf07MEW90YcCh/BK6E/SXouQsj6lCqlAUgTjA5YfYgW\n4oo0WBKylNnMHIBaUH+5dnh7AVCghyjrSOQofjr2NJxGBz67+x6Y9aYVH0vH6uqtw/P0nE0IUQWh\nQVyuDZye+gY7CvQQQgghRMtWHei54YYbxFgHIaIZjBwFgCUDPQBwQaAfb2vZjZPJCbw08wepl3aO\nyXoDiDDiR218jWYXhQI99V2/So7cAoCgox7okXnmPM/zGIgMw6q3YLOrZ8XH8VlqgR6lPo+rkSym\nAMgb6AGALkcnylxZlFYmNQd6gNrYrTQFeghpkCvQwzIs7t5xK6x6Cx4bexqzCjQFEkLWtmSp9jrK\nZZQg0GPxg+M5Gl1AVGkmWw/0rOBnucvkQLejE8cTp1CoFMReGiFLmsnM4t6hB6FndfjM7rsbN6JX\nI2jvQEWh1mFCCHmzSD4KA6uHU+QWyYVY9GaYdWYkCklZzkcIIYQQIoWmAj2/+93vcOONN2Lfvn3Y\nu3cvrrrqKuzduxcAcPfdd0u5PkKWheM5DEaHYTfY0OPsauoxH9v2YVj1Fjx14tnGzXc5TKVnAABd\nTnU39ERl/Dc5m1DBqvTILeGm7pTMDT1TmRkkikn0+7ZDx+pWfByL3gy7wYaoQk1Lq6FEQw+ARmuW\n8D26GsKNLq8KR24BgM1gRb6Sp92ahNTNZGZhYA1osUofJvWY3bi976Moc2XcO/QgygqNuCSErE3J\nooQNPfXgP43dImoUqjf0dK5g5BZQG7tV5asYjR8Xc1mELCldyuB7A/ehUC1i//ZbsKHJa1pLEa5p\nCMF1QghRCs/ziOSj8Jm9Kx4luBIes4saegghhBCiaU29cvra176Gz33uc7jvvvtw//3348CBA7j/\n/vulXhshyzaZnka6lMFO//am3xg4jQ7cuPWDKFZLeGj0cdnGyE2mZ2DWmRQfKbUQodlFqVFNjUCP\nwg09Fr0ZAYsPM+mQrCMGB8L1cVuBpZumluKzeBHNx2QfK7daZwI94t+IWkxXvTVLnEBPLRDnUWtD\nj9EOAMhWcgqvhBDlVbkq5rLz6LC1yXZx8cKWXbii4zLMZGbx5IlnZTknIWR9EJoOpdj9fCbQExX9\n2ISsVig7C6vesuJ2qn5fHwAau0XkVa6W8e8DP0KsEMcHNr4PF7deINqxlRwjTgghZ8tV8shXCvDL\nfC3cY3IjXylQ+x4hhBBCNKupuxUejwd79uxBMBhEZ2dn4xchajMohCCaGLd1tsvbLkafZyuGo6M4\nOP+GFEs7R7Fawnz2NIKODll3JCxHY1STQs0u4VwEZp0JdoNNkfOfLWjvQLaSk3U3x2BkGHpGhx3e\nbas+lt/sRYWvNm7saEWymAIDRpJREYsJ2tvBgGmMxVuNWCEOh8EOo84gwsrEJ3x/ZUo0douQ+VwY\nFb664h39K3XT1g+i1dqC30y/jCP1saGEELJajZFbUjT01FvMqKGHqE2pWkY4F0W7rQ0Mw6zoGBuc\nXbAZrBiKjsq6oYOsXzzP48cjj+JUagKXtF6Ia3v2inp8aughhKhFpLF5U+ZAj7nW/B0v0tgtQggh\nhGhTU0mCiy++GN/4xjfw8ssv4+DBg41fhKjNYPQo9KwefcsMQTAMg1v7boKRNeCxsaeQLmUkWmHN\ndDoEHnxjtI8aOQx2GFmDIg09PM8jnI/Cb/Gt+EKsmIL1xpbptDw72qL5OKYzIWz1bIZZb1718Rrh\nLIXallYqXkzCbrStauTYShh1RrTZWjCVCa2q1YjjOcQLCXhV2s4DAHaDFQCQKVOghxBh13JnfRez\nXEw6Iz7Rfxv0jA4Hjj6iufAlIUSdhOcSKYLRjYaeHDX0EHWZy86DB7+qcC7LsNjh7UWimEQoOyfi\n6gg5v+fGX8Br84ew0bkBd/TdLPo1EKvBAp/ZI9v1DEIIWYjQ7ihcp5SLx+QGAMQLNHaLEEIIIdrU\nVKBnYGAAw8PD+Pd//3d8+9vfxre//W185zvfkXpthCxLNB/DTGYWvZ4tMOmMy3683+LFBzddg2w5\nh8fGnpJghWcIo3yE0T5qxDBMbVSTAg09yVIKZa6smnFkwfqOtimZKqoHo0LTVL8ox/Mr3La0EjzP\nI1lMwmNyKXL+LkcnStUSTudWvvM8XcqgwlfhNbtFXJm47IbayC0K9BAChDK1m3ZyN/QAQNDRgRu2\nXI9MOYsDRx/R3IhEQoj6pEppAIDLJP7ILavBCpveSiO3iOoIAZyOVf4sb4zditDYLSKt1+cP42en\nfgGv2YNP774LBomaXTvtHUiXM0gW05IcnxBCmqFUQ4+7fl1OzuZ1QgghhBAx6Zv5oAMHDki9DkJW\nbbA+pmKXf/uKj/HernfhtdOH8dr8Iby99W3YuYpjLUYY5dOt4kAPAPjMXsxm55Er52CtN3nIQdjt\nK9T5K00IXs3ItKNNGB23mq/ls/nNtTfKUQ3ddMlV8ihzFbgUCvR0O4J4de7PmErPoM3WsqJjxApx\nANBEQ0+WAj2EnNXQ067I+d8bvALDsVEMR0fxwtTvsK/7SkXWQQhZG5LFFCx6M4wr2OjQDL/Vh5l0\nrc1QrSOEyfojhHM7bKv7Wb7dtw0MGByJHsX7evaIsTRC3mIiNYUDRx+GWWfCZ3ffA4fRLtm5gvZ2\nDESGMJ0JwWXqlew8hBCyGKE53C9zoMfbaOihkVuEEEII0aamrry99tpr+OxnP4u77roLd955J+64\n4w5cddVVUq+NkGUZjNRCEDt9Kw9BsAyL2/s+CpZh8ZPR/0ShUhBreeeYSs/AqDOixRqQ5PhiUWpU\nU1ihHRsLcRodcBjssjT05Ct5HEucQLejEx6Rml38Ghy5lajPtXYr2NADnGnTWgktBHpsRhsAIFOi\nQA8hocwsPCa3rAHWszEMgzu33wKH0Y6nTjyHydS0IusghKwNyVIKTgnGbQkCFh8qfJVujBBVOdPQ\n07qq49gNNvQ4u3EyOYFcOSfG0gg5R7yQwPcG7kOFq+Ke/ttW3Sq1lE5HbaTsjEytw4QQcj6RfBQM\nGPhkvk7mMdeuLVJDDyGEEEK0qqlAzz/+4z9i3759qFaruP3227Fhwwbs27dP6rUR0rR8pYCxxEl0\niRCC6LS345oNexAvJvDkiedEWuEZpWoJs9l5dNk7VL+b1V9/gyX3qKZwvjbmSC2BHoZhEHR0IFaI\nS35Bdyg6Co7nsMu/Q7Rjuk0usAyryPi0lUoUUwAAt0m6G1GLCdrbwYBptGmtRKw+m5tGbhGifulS\nBslSWrF2HoHDaMdd2z+OKl/FvUMPolApKroeQog2lbkKsuUcXBK+jgpYak2awut2QtRACOda9JZV\nH6vf1wcePI7GjomwMkLOKFSK+O7AvUiV0rhp6wcla4Y+W9BeC/RMy9Q6TAgh5xPOR+EyOSUbL7gQ\nd6OhhwI9hBBCCNGmptIEZrMZN910Ey699FI4nU587Wtfw8GDB6VeGyFNOxo7hipfFS0EcU3PXrRZ\nW/C7mT/gRGJclGMKZjKz4MGj2xEU9bhSEBp6oko19Khk5BZw1gWwzKyk5xGapnb7+0U7po7VwWty\na6yhp/YmW6mRW2a9GS1WP6bqoyRWQgsNPcLILQr0kPVupv7crnSgB6iN+djb9R6czkfw2NhTSi+H\nEKJBqWIaAOAyOiQ7hxC8D2topCtZ2zLlLJKltGhNJ/3+2liioeioKMcjBAA4nsN9ww9hJjOLd3Ve\njvcGr5DlvD6zB2adufGalxBC5FaulpEsphTZvGnUGWA32KihhxBCCCGa1VSgx2QyIZFIYOPGjTh8\n+DAYhkEuR7XDRD0GwrUQxC6RdjYZWD1u3/5RAMADI4+hXC2LclwAmKyP8BFG+qiZMNM4Wg8myCWS\ni8DAGuCU8CbEcgUdwo62lY9gWkqVq2IoOgKv2SP6TWW/xYdUKY1StSTqcaWidEMPUPseLVQLiOZX\n9vWvjUAPjdwiBFBXoAcAPrT5WnQ5OvGH2YN4ff6w0sshhGhMslR7HSVpQ4+VGnqIuoQy9XFbNnEC\nPUF7B5xGB4aiIysO+BPyZk+eeBaDkWH0erbgY1s/DIZhZDkvwzDotLdjPhdGScTrW4QQ0qxoIQ4e\nfONas9w8JhfihSR4nlfk/IQQQgghq9FUoOfuu+/GF77wBezZswdPPPEErr/+euzcuVPqtRHSlCpX\nxXB0BG6TC1128UIym1w9eE/wHZjPncZzEy+IdlxhhI8WAj3CTGM5G3p4nkc4H0XA4lPVSLIuGRp6\nxhInka8UsMu/Q/QLe0LbklZaepLFJIDaG26lCN+jKx27FSskYNaZYTWsvvJfKgadASadEVlq6CHr\nnNoCPXpWj3t23Aoja8BDoz+VvSmPEKJtqXowWo6GnkiOGnqIOoSy9UCPSA09LMNih68XmXIWUxJu\n6iDrx+9DB/Hryd+i1RrAX+y8AzpWJ+v5g4528OAxW/9eIYQQOUXqrY5KBXrcZjfKXBnZCm1SJ4QQ\nQoj2NHW3/P3vfz9++MMfwm634/HHH8c3v/lNfPOb35R6bYQ05WRyAtlKDjv920UPQXxo07XwmNz4\n5cRvRKsmnkrPwMAa0GZrEeV4UjLrzbAZrIgU5LtQnylnUagWFalgXUzA6oeRNUh6MXegMW5LnNFx\nZ/ML49MK2rgpLDT0KDVyCwC664GelX7OY4UEvGa3mEuShN1gQ6ZMFzTI+jaTmYWB1aNFRaMeW20t\nuHnbDchXCrh36CFUuIrSSyKEaESyVB+5JWFDj91gg1lnppFbRDWEhh4xw7n9vj4AwJHoiGjHJOvT\nWPwEHhr9KWx6Kz6z+x5Y66OP5dQYI54OyX5uQggJNwI9XkXO7zHVrs/FC0lFzk8IIYQQshpNBXqS\nySS+8pWv4M4770SxWMSBAweQTqelXhshTRmMSheCMOvNuLXvRnA8hweOPrbqqu1ytYzZ7DyC9g5V\ntc8sxmf2IpaPy1Yz3niDZ1VXoIdlWHTaOzCXOy3qCDYBz/MYjAzDojdjq3uT6McXdsBopaEnUUzC\npDPCojcrtoagfeWBnlw5j0K1oIlAj81gQ6acodphsm5VuSrmsvNot7Wp7mfzO9ovwcUtF+BUagKP\nH/+50sshhGhEsh6MdhqlC/QwDIOA1YdwPkrjiIgqhDJzYBkWrdaAaMfc7t0KlmExRIEesgqncxH8\nYPAAGDD45K79igXIhbCblK3DhBCyEKGhR6kNnB5zbcNgophQ5PyEEEIIIavR1F2Lr3zlK9i1axcS\niQRsNhtaWlrwd3/3d1KvjZCmDEaGYdQZsc29WZLj9/v68PbWt2EiPYXfTL28qmPNZGfB8Ry6neof\ntyXwW7yo8FWkSvKE+MK5CAAgYFFPS4Ig6OgAx3OYzc6LfuxQdg6xQhw7vL2SVG/7zfWGHo0EepLF\nFNwKtvMAgNVggd/iw1R6Ztlhl1ghDgDw1sfWqZndaEOZq6DEiR9UI0QL5nNhVPgqgioZt3U2hmFw\nW99H0WZrxW+nX8Grc39WekmEEA1IloSmQ+kCPUDthkyZK8v2PoGQhfB8bYxQizUAPasX7bgWvQWb\nXT2YTE0jXcqIdlyyfuTKOXxv4F5kKznc2nsjtnqkuW7VDCG8Pp2hhh5CiPyEDYZKjdw609BDgR5C\nCCGEaE9TgZ7p6WnccsstYFkWRqMRX/jCFzA3RzOXifLms6dxOhfBdu82GHQGyc7z0a0fgt1gw9Mn\nf9HYUbASk6la00eXIyjW0iTnqwdB5Gp2CSu8Y2MxXUJFtQQXwAbCQwCA3YF+0Y8NAL56pa2c49NW\nqlwtI1POKjpuS9Dl6ES2kkNsmW/4NRXoMdgAAJlSVuGVEKIMYaTesuwxAAAgAElEQVRmhwoDPQBg\n1pvwqV13wqwz48GRn2KKxiQQQpaQLMoV6KkF8IVAPiFKiRXiKFSL6LS1iX7sfl8fePAYjo6Kfmyy\ntlW5Kv7jyI8xnwtjX/eVeEfH2xVdj1FnQIs1gFBmlprVCCGyi+SjsOgtsCkwchAAPPUG7XiRRm4R\nQgghRHuaCvTodDqk02kwDAMAGB8fB8uqayQBWZ8Go0cBALt82yU9j91ow0e3fghlroyHRh5f8Wga\nYXRPt0M7DT1CEESuZpdwXt0NPQAkuZk6EBkGy7DY4e0V/dgAYNVbYNGbNTFyS9hV7lFBoEf4Xp1K\nTy/rcUIASAsjtxqBnjLtOibrkxDoUWNDj6DVGsBdO25BmSvjB4P3I1vOKb0kQoiKpUppmHVmmHRG\nSc8jBPDDq9jwQIgYQtnahrMOuzSBHgA0dossC8/zeOTYExiNH8dufz8+vPn9Si8JQO31bqFaRDQf\nV3ophJB1hOM5RAox+OvXmJUgXGOkhh5CCCGEaFFTqZzPfe5z2L9/P0KhEP7yL/8St912Gz7/+c9L\nvTZCljQYGQYDBjv90gZ6AOCS1gvR7+vDSHwMf5x9bUXHmEpPw8Dq0WZtEXl10hFGNUUK8jX06Bld\nY7axmkhVUZ0oJjGZnsY292ZYDRZRjy1gGAZ+sxeRfGzFgTS5JGTaVd6MrkagZ2ZZj9NSQ4+tEeih\ngABZn4Tn9E4VB3qAWoPbtT17ES3EcN/QQ7SzmhCyoGQxBZfJIfl5AtZ6Qw8FeojCQpl6oEeChp52\nWys8JjeOxo6hylVFPz5Zm16d+zNeDv0JnfZ23LXj42AZdWyKDNZbh2do7BYhREbJYgoVrqLYuC0A\ncJtcYMAgXqRADyGEEEK0p6l3lDt37sS+ffsQDAYxOzuLq6++GkeOHJF6bYQsKlPO4kRiHD3ObjiM\ndsnPxzAMPt77EZh0Rvz0+M+QLKaX9fgyV0EoO49Oewd0rE6iVYrPZ6kFEuRq6InkovBZvKq54HU2\no86AVmsAM5mQqDdSByPDAIBd/h2iHfN8fBYfylwZqZK6m1gS9fpbtwoaeoRAz+QaDvQ46oGebJlG\nbpH1KZSZhcfkhlWh6u/luH7j1djh7cVwbBTPnPqV0sshhKhQhavURpcapQ9GNxp6aOQWUdiZhh7x\nw7kMw6Df34dcJY/x1JToxydrT5Wr4uenfgU9q8end90Ns96k9JIaghKOESeEkIUIbeEBBQM9OlYH\np9GBeIFGbhFCCCFEe5q6Y/7JT34SoVAIe/bswd69exEIBKReFyFLGo6OggeP3RKHIM7mNXvw4c3X\nIV/J49FjTyzrsaHMLKp8VVPjtoDa35kBg6gMDT3Zcg7ZSk7RN3hLCdo7UKyWEBFxJ/JAWJ5Aj1Bt\nGy2oexf1mUCP8g09doMNXrMHk+npZTUbxQoJ6BmdLGHD1bIZ6w09Kg96ESKFdCmDZCmt+nYeAcuw\nuLv/VvjMXjw7/jwGwkNKL4kQojKpUm3TgVOGhh6n0QEja6CGHqK4UGYOJp1RsnG3O2nsFlmGg/Nv\nIFqI4Z3tlzY2SKlFp6P2mne6PnKWEELkIFxDFVrgleIxu5EoJqntlhBCCCGa03QFxte//nX81V/9\n1Tm/CFHSgNBqEpAv0AMA7+68HJtcPXgjPIhD4eabqoSRPV2OoFRLk4Se1cNtcskyY114gxew+CU/\n10oFHbUdbVNpcXa0FSoFHIsfR6e9XfKLfUKgJyJT29JKqamhB6i19GTKWSRLqaYfEyvE4TG7Vdk0\n9WZ2GrlF1rGZ+s0MrQR6AMBmsOJTu+6EgTXgR8MPYz4XVnpJhBAVEVpE5RhdyjAMAlY/wvmI6ke6\nkrWrwlUwlzvdGI8shW2eLdAzOgr0kCVxPIdfjL8AHaPD+za8V+nlvIXT6IDT6Gi8BiaEEDk0Aj0K\nb+D0mFyo8lWkaUMbIYQQQjSmqasd+/btw6OPPoqpqSmEQqHGL0KUUuEqOBodhd/sRZu1RdZzswyL\n2/s+Cj2jwyOj/4lcOd/U4yYbgR5tNfQAtbFbiWISZa4i6XmEun6/Vd0NPYB4FdXDsWOo8FXs9veL\ncrzF+Oo7YeQan7ZSiWItOCPHjahmCK1ak6nppj6+VC0jXc5oYtwWcHagh0ZukfVHi4EeoBYuva3v\nJhSqBXx/8H4UKkWll0QIUQkhgCzHyC2gNjqhWC0hXaYbI0QZ87kwOJ5Dh61NsnOYdEZs9WzGdCbU\n2HxAyPm8Pn8Yp/MRXN5+CTwSNUatVqe9HbFCHDna0EEIkUmk3vqueKCn/rwcLyYUXQchhBBCyHI1\nFehJp9P4+te/jrvuugt33HEH7rjjDuzfv1/qtRGyoLHESRSqRewK7ADDMLKfv83Wgmt79iFZSuM/\nj/+8qcdMpaehZ/XosLVKvDrx+cxe8OARL0jb0hPWUEOPWIGewXrTlByj47TS0JMsJsEyLJxG6UdF\nNEMI4QktW0sRvk8o0EOI+mk10AMAl7ZdhCuDV2AuO48HRh6ldgxCCAAgJXMwWnjdHs7R2C2ijNnM\nHACgwy5doAcA+utjt4ajo5Keh2gXx3N4bvx5sAyL923Yo/RyFiRsUqKWHkKIXML5KHSMDh6zsk3c\nnnoTeLxA4VxCCCGEaEtTgZ5f/vKX+MMf/oAXXnih8ev555+Xem2ELEgIQezyyTtu62xXb7gSHbY2\n/H72VRyLH1/0YytcBaHMHDpt7dCxOplWKB6fRWh2kSvQo96GHrvBBo/JjWkRRm5VuSqGIiNwm1yy\nNDd5zR4wYBApqPuGS6KYgtPoUM24KuFzM9lkoCdWqO308ap0R+abWQ0WMGCQKVGghywumo/j0WNP\nolApKL0U0cxkZmFg9WixqjdIupgbt1yPza4e/Pn0AJ6feknp5RBCVCApBHpkCkYLr9vD+Ygs5yPk\nzWaytUBPp+SBnl4AoLFbZEGHwkcwlzuNS1svamymUaNgPcg+TYEeQohMIvkofGaP4tf53NTQQwgh\nhBCNaupVVFdXF5JJSi4TdeB5HoORo7Dozdji3qjYOvSsHndsvxkMGDww8lOUqqUFP3Y2O48KX0WX\nU3vjtgDAXx/VJFSkSiWcj4BlWPhU3mwSdHQgVUojWUyv6jgnk+PIVnLY5ZenaUrP6uE2uVTd0MPx\nHJLFFNwmZXftnM1pdMBtcjXd0BPTWEMPy7CwGazIUkMPWcJvZ17Bi9Ov4OD8IaWXIooqV8Vcdh7t\ntjbFLyyulJ7V47/svAMuowNPHH8Go7HFA8aEkLUvWaq9PnXK1dBjFQI96g6Mk7UrJDT02KRt22ux\nBhCw+DASG0NF4lHURHuEdh4GDK7pUW87DyB+6zAhhCwmX8kjW84pPm4LADymeqCnQIEeQgghhGhL\nU3cvGIbB9ddfj1tvvRV33nln4xchSghl5xArxLHD26t4280GZxf2dL0LkXwUPz/1qwU/bjI9DQDo\ntmsz0HOmoUfqQE8UXrNH8c/rUoSK6tVeABuQcdyWwG/xIllMoVwty3bO5ciWc6jyVbhlugnVrC5H\nB5KlVFMhLq0FegDAZrDRyC2ypPHkFABgJDam8ErEMZ8Lo8JXG7uUtcplcuIvdu0HwzD44dADdHGS\nkHVO/oYeYeQWNfQQZYSyc3AaHbAbbZKfq9/Xh0K1iJPJccnPRbRlMDKMmcwsLmm9EC3WgNLLWVTA\n4oeB1WNGhNZhQghZirCpUBWBnvrIr3iRNq4TQgghRFv0zXzQZz7zGanXQUjTBhUIQSzmA5uuweHw\nEJ6ffAkXt1yAbmfwLR8jjOrRbEOPRfqGnkKlgHQpg6C3Q7JziKWrvqNtJh1qVK8vF8/zGIgMw6wz\nYatns5jLW5Tf4sNY4iRihThabS2ynbdZQu2tS0UNPQDQ5QhiMHIUU+lpuEzbF/3YaGPklnYCPXaD\nFadzYXA8p9mmEiKtKlfFVD2ceix+fE18rczUxwx0aDzQAwCbXD346NYP4ZFjT+AHgwfwhYs+A4PO\noPSyCCEKSJZSMOmMMOvNspzPZXJCz+qpoYcoIl8pIFaIo8+zVZbz9fv68OL0KzgSHcE2zxZZzknU\nj+d5PFtv57m25yqll7MkHatDh60dM5kQqlxV9RuqCCHaJrxGDKhgFKHT6ADLsEjQJhhCCCGEaExT\nd2IuvfTS8/4iRAkDkWGwDIsdKwxSiM2kM+K2vpvAg8ePRx5Flau+5WOm0jPQMzp02NoUWOHqOY0O\n6Fm9pA094fqxhV2+aiY09ExlmhvBdD6z2XlE8lFs9/XCwDaVrRTFmXBWXLZzLoewq9yjskBPt6MW\nxptqYhdjrBAHA0Z1f4fF2I128OCRq+SVXgpRqVB2HiWu1uyVq+SbHkGnZkKgR+sNPYL3dL4Dl7Vd\njIn0FB4de1Lp5RBCFJIspuCSsemQZVj4LT6E8xHwPC/beQkBgNlsfdyWXZ732Vvdm2BgDRiKjspy\nPqINQ9ERTKVn8LaWXWiztSq9nKZ02ttR4auYy51WeimEkDUuUg/0+FTQ0MMyLNwmFzX0EEIIIURz\ntL21mqw7yWIaE6kpbHFthNVgVXo5DX3erbi8/RLMZGbx68nfnvNnVa6KmcwsOuxt0MsY3BATy7Dw\nmT2IStjQE87XavoDVuXf4C3Fa/bAoresauSWUk1TPrMwPk2du6gT9TfVct6IakZXI9AzveTHxgpx\nuExOTe10tNefT7MlGrtFzm88NQEAjR3wo7HjSi5HFEKgp3ONBHoYhsHHe29E0N6BV0Kv4pWZPym9\nJEKIzKpcFZlyFi6jvK+jAhYf8pUCspWcrOclJJSpB3pk2jhj0BnQ69mCuey85OOoiTYI7TwAcG3P\nXoVX07yg0Dpcfz1MCCFSiTQaetRxvddjciNZTJ13Qy4hhBBCiFpRoIdoypFoLQSxy7/4yBsl3LTl\nA3AY7Xhm/NeYz57Z5TSbnUeFqzQCAVrlM3uRLedQqBQkOX4kp643eIthGAZBezvCuSgKleKKjiE0\nTfX7+kRe3eIaDT0qvQCdqDf0uFXWbuMyOuEw2hvj8xZS5apIllKaGrcFADaDDQCQLlOgh5zfeHIK\nAHBNzx4AwEh8TMnliGImE4LH5FZVQHi1jDoDPrnrTlj1Fjxy7AmMpyaVXhIhREapUhqA/MFo4fV7\nOKfOwDhZu0IyN/QAaLx/o5YeAtReE4+nJnFBYKemQuLCWqebaKAlhJDVEK4/+lUwcgsAPGYXePBI\nllJKL4UQQgghpGkU6CGaMhg5CgDY5e9XeCVvZTVY8bFtN6DCVfDAyE/B8RwANAIAXY6gkstbNV/9\njVdUolFNjYYeDYzcAmo72njwCGWXv6MtWUxjPDWJza4e2GS+keyv33CJSNi2tBpCQ49bZQ09DMOg\ny9GJeDGBzCItNoliChzPwWt2y7i61XPUAz1ZCvSQBYynJmHWmbDFvQmd9nacSI6jVC0rvawVS5cy\nSJbSmrrx0iy/xYt7+m9Dlefwg8EDSJcySi+JECIT4caE0+iQ9bzC63fh9Twhcgll5sCAQbuMY476\n66O/h6Ijsp1zNapcFU8cfwZPnXgOh8NDjfdbZPV4nsezp34NALi25yqFV7M8wmtgaughhEgtko/C\nZXTAqDMqvRQAtYYeAIgVEgqvhBBCCCGkedqc/0PWpVK1jJHYGNqsLaody/S2wC5c4O/H4cgQXgn9\nCe/ufAem6oGebs039NQaRyL5qCQ3QMP5KBgwjeCQ2nXZhRFMIWxy9SzrsUcUGrcFAHaDDUadsVF5\nqzaJghDoUVdDDwB0O4IYjo5iKj2D7b5t5/2YeLF2QUCrDT0ZCvSQ88hX8pjPhbHVsxksw6LPsxUz\nmVmcTI6jz7tV6eWtyFobt/VmO3y9+MCma/D0yefwwyMP4K8u/AtNjQFUg2K1BCNrAMMwSi+FkKYl\niwo19NTfm4VV+vqSrE08zyOUmYPf4pX1JqHP4kWbrRWj8eMoV8sw6AyynXslfnbql/jV5Ivn/J7L\n6ESPswvdzi5scAaxwRFcU42FchlLnMSJ5Dh2+vrQrbENXBa9GX6zF9OZEHiep9c7hBBJVLgKYoUE\nNro2KL2UBk99A16CAj2EEEII0RAK9BDNGI2PocyVsUuBEESzGIbBx3pvwLHECTxx/Bns9G3HVHoa\nLMOiQ+M3DRsNPRKNagrno3CbXDCw2nhaEmbOr6SieiAijI6Tv2mKYRj4zV5E8zFVXrhLlFKw6C2q\n2blzNmFs3mKBnli9wUprgR67sR7oWaR9iKxfE6lp8ODR4+wCAPR5t+L5qZcwEhujQI+KvW/DezGZ\nmsLhyBCePPksbtzyAaWXpBnxQgL/44/fxNtadmP/9o+p7mclIQtJ1keXuoxyj9yqN/TQyC0io2Qp\nhWwlhy2eTbKfu9/Xi+cnX8KxxMlGY48ajcaO41cTL8Jv9uLmbR/GdCaEidQ0JlKTOBwZwuHIUONj\nWyx+dDuD6HF2Y4MziKC9E0aVh5WU9uz48wCAa3v2KbySlel0dOBw+AiSpZQqN9QQQrQvVoiDB98Y\nz6oGnvrzXZwa6wghhBCiIdq4c04IgMFGCEK9gR6g1izykS3X48GRn+Ino49jOjOLDlubZoIqCxFm\nHUckGLlVqpaQKCaxzbNF9GNLpc3aAj2jw3RmZlmPK1ZLGI2Pod3WqljTlN/iQyg7h2wlB3u9mUUt\nksVko/5WbYRWpsn09IIfcybQo86/w0Ls1NBDFnEqOQkA6HF2AwA2uzdCz+gwEh9Tclmrsh4CPSzD\nYv+OWzD72rfx/ORL2ODowsWtFyi9LE04FD6CElfGn+ZeR4vVj2t79iq9JEKakqqP3JK7ocdjckHH\n6BChkVtERqHMHACgw9Ym+7l3+vrw/ORLGIqOqDbQkyln8aPhn4BhGNyz8zb0OLux07+98eeJYhIT\nqSmMp6YwmZrGRHoKr80fwmvzhwDUXkd02NrqDT5d2ODsQrutlRr/6k4kxnEsfhzbvduw0dWt9HJW\nJGhvx+HwEUynQxToIYRIIlLfFOpXURu70NAjNGwTQgghhGiBthMGZN3geA6DkaOwG2yauFjyzvZL\n8drcIRyJjgDQ/rgtAPCbpWvoEd7gqWnHxlJ0rA7t9jaEsvOoctWmL2yOxI6hzFWwW4F2HoHPUmuP\nieZjqgr0FKsl5CsF9DjlvQnVLK/ZDZvB2hijdz6abeipfx1kyzmFV0LUaDx1bqDHpDNio2sDjidO\nIVPKNhqetGQmMwsDq0eL1a/0UiRl0ZvxqV134f957Tv48cijaLe1osMu/41PrRFC5C6jE0+f/AXa\nrC24sGWXwqsiZGlnGnocsp5Xx+rgs3ho5BaRVShbD/Qo8HNtk6sHZp0JQ5Gj4Ld+SHVNbjzP48Gj\njyFZSuFDm65tvIY7m9vkgjvgwgWBnQBq11zC+Sgm6gGf8dQUpjMzmM6E8ApeBQAYWAO6HB3Y4Oxq\nhHwCFp/q/v5yeHb81wCg6dBvp73WOjyTmT0n7EWI2pW5CgqVAvKVAgrVAgIWPyx6s9LLIucRqb82\n9Kvoeq+wiTBeoIYeQgghhGgHBXqIJkylZ5AqpXFZ28VgGVbp5SyJYRjc2ncTvv7qt1DmKujS2Dz1\n87EarLDozYgUxA/0hOu7ebUU6AGALnsHptIzmM+Fm76QPBBWvmnKb679O0fyUWyoj9BRg0S97lat\nuwMZhkGXvRMj8THkyjlYDda3fEysPoNba4EeWz3Qky5nFF4JURue5zGemoTX7IHLdOYGcZ93K8YS\nJ3EscQIXtexWcIXLV+WqmMvOo8PeronXFKvVbmvF/u0fw/8+8mP8YPB+/P3bPweL3qL0slQrV85j\nLHES3Y4gbu/7KP7Xn/8//Gj4J/BZvI3Ri4SoVbKUBiB/Qw9QG7s1lBtBrpyH1UDPMUR6QkNPpwIN\nPXpWjz7vVhwKH8HpfASt1oDsa1jMy6E/4nBkCNvcm3H1hvc29RiWYdFqDaDVGsClbRcBqL1mCmXn\nMJGaqo3qStcafU4mJxqPs+ot6HYE0ePsQrezCxucQdW+nxPLeGoSR2PHsM29GVvcG5VezooF64Ge\n6czyx4gTshJVrop8tYBCpXhOICdfqf/eef+79itfLTb+u8JXzznuVvcmfP6izyj0tyKLCasw0GMz\nWGFg9dTQQwghhBBNoUAP0YSB+k7p3Soft3W2FqsfH9nyATxx4hn0ebUzSmoxPrMXp3Nh8Dwv6i48\n4Q1eQGNNCZ2ODmC2FjhrJtDD8RyORI/CaXRgg1O5kFdjfJoEbUurkWwEetTZ0AMA3c4gRuJjmEqH\n0Hue7+tYIQ6bwQqTzqjA6lbOpDPCwOqRLVFDDzlXtBBHppzFRZ7N5/x+r2crnsYvMBIb01ygZz4X\nRoWvIriGx2292UUtuzHZ/V78avJF/Gj4YXxq153rIsy0EsPREXA8h93+fgQdHbh7x8fx/cH78b2B\n+/D3l/z1OcE2QtQmWUzBqDPCrMAudSGYH8lH0W3Q/mYGon6h7Bz0rF6x95D9vj4cCh/BUHREVYGe\n2ew8fjr2NGx6K+7cccuqft7rWB26HJ3ocnTiXfVMa6lawlQ6hInUJCbS05hITWEkPnbOKFaX0XlO\nwGezayOMOsNq/2qq8dz48wCA92/UbjsPUGugtegtjVG0hKxEopjEQHgYyVLqrJDO+QM7Za68onOY\ndEaYdWbYDTb4LT6YdSZY9GaY9WYci5/A8cSpBTddEWVFVdjIzjAMPCY34gUK9BBCCCFEOyjQQzRh\nMDIMPaNDn3eb0ktZliuD78S7Oy9fMzfNfBYvpjMhpMsZOEWs8g/ntNrQU7uqOZ0J4TJcvOTHn0xO\nIFPO4oqOSxX9mlBroEeou3WpeEen0M4wlZl5S6CH53nECgm02VqUWNqqMAwDm8GGTDmr9FKIyrx5\n3Jag29EJi96M0djY+R6masJNi451FOgBgA9uugYT6WkMRobxi/HfaP4mlFQaIfJALUR+QWAnPrTp\nWjx18jl8f/BH+PzbPg3DGropSdaWZCkFt1GZYHTAUgtVhPMRdCsYXCfrA8dzmMvOo93aotj7qh2+\nXgDAUGQEV3W9W5E1vFm5Wsa9Qw+izFVwT/9t8Jjdop/DqDNis7sHm909jd/LlnOYPKvBZyI1hcOR\nIRyODAEAOmxt+G+X/JXmNj2cz1R6BoORo9jk6sFW9+alH6BiDMMgaG/H8cQpFKulNfH5IfJIlzJ4\n4/QgXj99CCcS4+DBn/fjDKweZr0ZFp0ZHpO7/t8mmOthHIvefE44p/bfFpj19d/TmWHWmxZ9nn/m\n1K/w81O/wmj8BN5GI3JVJ5yPwqQzNsa8q4Xb7MbpeATlapne2xFCCCFEEyjQQ1Qvmo9jJjOLHd5e\nmPUmpZezbGslzAMAfnMtCBLNx8QN9KiwgrUZnfY2MGAwnW6uonqw0TTVL+WyluStfx6lGJ+2Gsli\nCgDgUXOgpx7imkxNv+XPMuUsylxZc+O2BHaDrTH+jhDBePL8gR4dq8M292Ycjgwhko9q6vlbCPSs\np4YeoPY5+0T/bfi/D34bPz/1S3Q7g+iv34wkNRWugqHoKHxmDzrOGuHyvg17MJs9jYPzf8YDI4/h\nrh0fF7WpkBAxVLkqMqUsWt3KNIUErLWfA8LrekKkFM5FUOYqioZz3SYXgvYOHE+cRKFSVMW1iidO\nPIOZzCze1Xk5LgjslO28NoMV233bsN1X24DF8zwSxSQm0tM4OPdnHAofweNjT+PWvptkW5NUhHae\n63r2rYnXAp32dowlTiKUmcNGV/fSDyDrVq6cx+HIEF6fP4TR+HFwPAcA2OLeiItbLkC7rRVmvQUW\nvakRztGz0t926PNuw89P/Qoj8TEK9KgMz/OIFGIIWHyqe74UrjvGi0m0aKwtnhBCCCHrEwV6iOod\niR4FAOzS0LittcpnORPo2ejaINpxI/koXEan5naEmfVmBCw+TGdCTY0hG4gMwcgasM2j7Ag2o84A\nl9HZqL5Vi0RJ/Q09fosXFr0ZU5mZt/xZrBAHUKsu1yK7wYbpTIh2KJFzjKcmwTJso53qbH3erTgc\nGcJo7Dj8ndoL9HSus0APADiMdnxy135868/fxX1DD+KLb/9rTYWxpDaWOIlCtYB3tF9yzs90hmFw\ne99NiOQjODj/Btptrbim5yoFV0rIW6XLGfDg4VKsoace6MlRoIdIL5SdB4Cmxh5Lqd/Xh+lMCMfi\nx7E7oOymjSORo3hx+hW0WVtw05YPKLoWhmHgMbvhMbvR7+3FN1//f/Fy6E/Y4evDBQr/O61GKDOH\nQ+Ej2ODsQp93q9LLEUXQ3gGg1jpMgR7yZsVqCYORYbw+fxjD0RFU+CoAYIOjCxe3XoCLWnZL0gS2\nHBscQZh1ZoxosDl2rUuVMihVS6p8vylct0sUExToIYQQQogmSFYdwnEcvvrVr+KWW27B/v37MTEx\ncc6fv/DCC7jppptwyy234JFHHln0McPDw3j3u9+N/fv3Y//+/XjmmWekWjZRIaHVZJd/u8IrIb56\n84iYzS5lroJYIdHY1as1nY4O5Cp5xJaYvTyfPY3TuQi2+3phVEFYwmfxIl5MoMpVlV5KQ6Le0OM2\nKXMjqhkMw6DL3onTuQjylcI5fxZtBHo02tBjrFUgZys5hVdC1KLCVTCVCSFobz/v81Zv/UbG0bi2\nLp7OZELwmNywGqxKL0URG5xduGXbR5Cr5PH9wftRqpaUXpJqnHnN+dYQuUFnwKd23wWPyY2nTj6H\nw+Ejci+PkEUJTYcuhV5Hec0esAxLbX9EFiFhfKZN2UDPTn8fAGAoOqLoOpLFNA4cfQR6Rod7+m+D\nUUUbZQw6A+7ecSsMrB4PjDzaeK7SIqGd5/09e1XXNrFSnY5awF0IvBNS5io4HB7CD488gC/97p9w\n79CDGIgMocUawAc3XYv/6/Iv4u/f/jns7X6P4mEeoN4c69mMSD6qurHy6120ILSxexVeyVt5TLWv\n3XghqfBKCCGEEEKaI1mg59e//jVKpRIefvhh/O3f/i3+9dqgyDwAACAASURBVF//tfFn5XIZ3/jG\nN/DDH/4QBw4cwMMPP4xIJLLgY4aGhnDPPffgwIEDOHDgAK677jqplk1UJl8p4Fj8BLrsHap4o7je\n+c9q6BFLLB8DDx4BizZ3RJy9o20xA4vcJFSC3+IFx3OIFxcPIskpUUxCz+hUN1v7zbqctaaSN49a\ni2k80GOr/7unS1mFV0LUYiYziwpXecu4LUGLxQ+PyY1jsTOV62qXLmWQLKXRqfCOfqW9s+PtuKLj\nMsxkZvHQ6OPgeV7pJSmO53kMhIdh0Vuwxb3xvB/jNDrw6d13w8gacN/wT5oeuUmIHJQO9OhZPbwm\nN43cIrIIZecAKN/Q0+Pshk1vxVB0VLGfpRzP4cDRh5EpZ3HDlusRdHQoso7FdNjbcMOW65Et53Dg\n6COaed14trnsafz59AC67B3Y6Vs7m83ara1gGZZe06xzVa6K4egoDgw/gi+//D/w/cEf4fXTh+Ey\nOXFtz17890v/K/77Zf8V1/ZcpcrNeEJj1ii19KiK0NoYUGFDj7t+j2GpzZmEEEIIIWohWaDn9ddf\nx7vf/W4AwIUXXogjR87sYj1x4gS6u7vhcrlgNBpx8cUX4+DBgws+5siRI3jxxRdx++234x/+4R+Q\nyWSkWjZRmaOxY6jyVexUSQhivfOaa4GeSD24IAbhor8a3+A1o6t+wXQ6/dYRTGcbiAyDAYOdvj45\nlrUkv/C5VNEOpkQhCZfJqfrdjt32WqDnzWO3hAsB2h25VWsryZYp0ENqTiUnAWDBQA/DMOj1bkG2\nklsy1KgWZ8Ztqe9ml9xu3vZhbHB24dW5P+O3M79XejmKm86EEC8m0O/rhY7VLfhxXY4O3NV/K0rV\nEr43cB9SpbSMqyRkYclSLdDjNDoUW0PA6keqlEahUlRsDWR9CGXmYNVbFBsxJ2AZFtt92xAvJjBb\nHwMmt99MvYyjsWPY4evFe4NXKLKGZlzZ+U70+/pwNHYML06/ovRylu0XEy+AB49rN+5T/fvV5TDo\nDGiztmAmO6vJoBVZOY7nMBY/iZ+M/if+4ZWv4d8O/2/8ce41mHQm7O1+D754yV/j/7z87/HBTdco\nHp5cSl99rL3WmmPXukj9eq/frL7rvR6TCwBUtcmREEIIIWQxeqkOnMlkYLfbG/9fp9OhUqlAr9cj\nk8nA4ThzodFmsyGTySz4mN27d+Pmm2/Gzp078d3vfhf/9m//hi9+8YsLntvjsUKvX/hCPFFOILC8\nC8xjJ2tvxq7cegkCXuUuTpMzPGYXEqX4sj+XC8nHawG9zW1B0Y4ppwvs24DDwOlyeMH1JwspnEpO\noNe/CZs622Ve4fltzHQC40BRn1XFv3uVqyJVTmObb5Mq1rOYC0zbgGHgdGn+nLVmudpN3W2dXXCY\n7As9XLXakz7gFMBaqqr/HBB5zJ6ohV8u6ulDwHn+r4lLc7vwx9nXMF2cwsWb1L9b+U+xWiB1e4f6\nn2vk8KUrP4sv/vLreHzsaewKbkFfYMt5P249/Fu9OH8cAPCuTZcs+fe9OvAOpJHATwafwr1HH8BX\n93xeFeM0yfpWma+FaDa0tCr2PdvlbattyDAXEPBoo31zPTy/rTXFSgnhfBR9gS1oaVF+VO/lPRfi\ntflDGC+cwgUbt8p67lPxKTx58lm4zE584V2fgMus/L/HYv7mXffgvz33z3jyxLO4fNNubHAHlV5S\nU+bSp3Fw/g10uTqwd/tlYBnJ9kaKrpnnuM3+boQm5sBZimh1tMiwKqIUnudxIjaB30++ht9PvY5Y\nvhZmcJkcuGbLlbii+xJs82/S1Nc4APj9dvgGPRhLnIDPZwPLamv9a1X6RC1svi3YjYBd/Ndbq3kN\nZ3PrgVeBHJ+h14KEENWh5yVCyPlIFuix2+3IZs/s8uc4Dnq9/rx/ls1m4XA4FnzM1VdfDaezdmHi\n6quvxj//8z8veu54PCfmX4WIJBBwIBxufhczx3N4fWYQLqMT9opnWY8l0vGY3BhPTWFuPrHoDvZm\nnQrXWk5MZZtGP8csHEY7TkQmFlz/H0KvgQeP7e4+1fwdjZVaG8up0yGEncqvKVFMgud52Fm7av6N\nFqLjLTDpjBg763MeCDgwmwrDqDMin+RQYNT9dzgfvlj7GR2KRBG2aG/9RHyjp0/AqrdAV7AgXDz/\n10S7vnYj5vWpI3in/x1yLm9FRudOAQAcnFv1zzXy0OOeHbfjO4d+gP/58vfxpbf/zVvG9Sz39ZtW\n/XHiDegYHYKG7qb+vu/yX4ETrVM4OP8Gvv3yfbhz+y1rasc+0Z5QLAIA4PMGxb5nHag9fxwLTcJW\ncSmyhuVYL89va81Eaqo2stkYUMXnL2joBgMGr04elvW1ULFawrcO/gBVroo7em9GKc0gnFb+32Nx\nDG7vvRnfHbgX33r5P/D3l/y1JgKxDx39GXiex9XBPYhGtNNm2uxznN8QAAAMTI5B32KRellEAaHM\nHF6bP4TX5w8hUqi1NFv0Fryj/e24uPUCbHNvblzf09LX+Nm2ubbgD7MH8capUXQ7tREWXOtmEvO1\ncFjWgHBe3J9PYryGM+vMmE9FVfFaghBCBPQelZD1bbFAn2SR9YsuuggvvfQSAODQoUPYtm1b4882\nb96MiYmJ/5+9+w6P4z7vRf+d2d4reicIohHsVu8mLUuy3GSruVC2EiuJc05uTsrNc3Nz006Se3MS\n5zlJHDsukVzULMmSLduSrWJ1URKbAKISJEB0YHexve/O3D92ZylZLCi7+5vZfT9/6RGJ3VciCe7M\nvL/vF4FAAKlUCocPH8bu3bvP+zX33nsvBgcHAQBvvvkm+vv7SzU2kZHTwTOIpmMYcPfSAxIZcemd\nEEQB/mSwKK8ndSq7FVq5BQDN5kb4kwFE0+deJhz0jgAABmRUHec2SPVp8qjcCuR/P/3mg2Q54jke\nzeYmLEdXkMymCv9+NRGAU+9Q7PcrqXIrQpVbBLnfB564D23Wlgue0LRqLWg01eNUcArpbLqME27M\nQmQRGl6NWqMykiPKYZujE5/svBmhVBjfOfFDZIQM65HKzp8IYDaygG2OThjU+jV9Dcdx+FzPZ9Bu\nbcXbS0fx3MxLpR2SkIsI5Su3bDq2lVsA4Il7mc1AKt9CvtpKLhUwFq0ZbdYWnApOI56Jl+19H5/4\nKZZjHtzQcjX6XN1le9/N2u7uxTVNV2AxuoynTv2c9TgX5Yuv4q2lI6gz1mJ37QDrcUqiOV9FOx9W\nRoUuWZuVmBfPTL2A//nWP+Pv3v4afnnmRYRSYeyr24Xf2XEP/uGqv8Dnez+LXue2ohzWY02q3Rpb\npdotufDEfXDq7LL9/eXQ26hyixBCCCGKUbKEngMHDuD111/HnXfeCVEU8fd///d4+umnEYvFcMcd\nd+DP/uzPcO+990IURdx2222oq6s759cAwF/91V/hb//2b6HRaOB2uy+a0EMqw5AMlyAI4Movgvji\nq4WlkM3wxL0wa0xrfoAmRy2WJoyuTmAuvIBu5/vrSlLZNEZXJ1BnrEWdsYbRhB9k1Vqg5tXwxeWy\n0JN7CGXXyf80NwC0WptwKjiF+cgCttjaEUvHEc/E0WFrZT3ahpk1uZqwKC30EOROvwNAu/Xiv6d7\nnF1YmF3C6eCZD3wPlJOskMVidBmN5gbFxciX2g0tV+NMaBZHVt7Fjyd/htu3fZL1SGW10cVbjUqD\nrwwcxD8e/lf89NSzqDfWYkcNHTwgbASTIWh5DfQqdp+pa/IL+tLCPiGlsBDJVYI2yWShBwD6Xd2Y\nDs1gdPUk9tTuKPn7HV0ZxBuLb6PF3IiPd95U8vcrtk9tvQUTgVN4ee4N9Dm7sd0t39rWX535NQRR\nwEfbb6jYz49N5lwt+Fz+zxZRLn8igCMr7+LI8nHMhHNp2GpejZ0127G3die2u3uhU2kZT1ka3c5c\n5eGo/yQ+0n4942lIIpNEOBVBk6O8VZTr4dDZsRhdRiKTgF7B96QJIYQQUh1KttDD8zz+5m/+5n3/\nrrOzs/DPN9xwA2644YaLfg0A9Pf345FHHinNoES2hryj0PIabHPI9+FgNXLr8ws9RUh2yQpZ+BJ+\ntFlaNv1aLDUXboB9cKFn3H8SaSGNHTJbTOM5Hi69Uz4LPYlcQo9dAQk9ANBibgIAzITnscXWDm80\n9//RqXewHGtTTBoTACBMCz0EwFRwBgDQbr349+ceZxdenH0VY/6Tsl7oWY55kBGzhe/Z5CyO4/C5\n3s9iMbqMl+feQJulBZc27GU9VtlIS+Qb+bvaprPgd3bcg68d+Q/cP/Iw/njvVwsPxggpp2AqDKvO\nyjQp0KV3ggNHCT2kpBYiSwCABpOcFnp68POp5zDsGyv5Qs9qwo+Hxp6AltfgS/13Q8OX7LZeyWhV\nGnyp7y78r8P/hh+OPob/69I/hFXLLl3sfPyJAN5cPIwagwt7a3eyHqdkLFozbFor5mmhR7GCyRDu\nH34IJwOnAeTu9/Q5u7G3bid21vTDoK78KjWL1oxmcyNOB6aQyqagrdDFJaWQ7hkX4yBoqTj0uQOF\n/mQQDbTQQwghhBCZq8zjJUTxlmMeLMdW0OPcpohO9Wry3oSezVpNBCCIAmqMyq3bAoBmS265Yy7y\nwYjqQU/+IWGNvBZ6gNyFdTQTQyxdvmj48zlbuaWMhJ6W/K/5bCh36s0Ty/15cOmUu9AjVW5FU7TQ\nQ4DpkLTQc/GEnk5bB1ScSvbx5tJDikZatjgnnUqL3x74AgxqPR4efwKz+VO9lS6eiWPCfwotliY4\n9PYNvUaLpQkH++5EKpvCN969H+FUpMhTEnJhWSGLcCoCm5btYrRGpYFdZ4MnTgk9pHQWoktw6Oyy\nSnhtsTTBojFjxDcOQRRK9j6CKOCB4UcQz8TxmW0fR52ptmTvVWrNlkZ8ovMmhNMR/HD0MYiiyHqk\nD3hu5iVkxSxubLtBtpUxxdJkabhgjTiRtxdmXsHJwGlssbXjzu5P4x+u/At8dde9uKxhX1Us80i6\nnVuREbM4FZhmPUrV8+Y/C7oN8r3f69Dlrv38CardIoQQQoj80UIPkSWq25IvVz6hx1uEhB7p9G6N\njC/w1qLG4IJWpcXcb3TOC6KAId8IzBrTmh6Kl5t0UqYYaUubJVVuORSy0FNvqoWG12A2kl/oieZu\nVjg3+DBYDlS8Cga1ARFK6Kl6oijiTGgWNQYXzFrTRX++Xq1Dh60Vs+F5WT8EkBZ6KKHn/GqNNTjY\ndyfSQgbfHvq+rH89i2XEN4GsmN30Z85dtQP4WMeN8CcD+NbQ95EWMkWakJCLC6cjECHCpmOfcFFj\ndCOQDCKVTbMehVSgSCqKUCosq7otIJ+G4epGKBU+5yGPYvnl9Is4FZzCrpoBXNFwScnep1yua7kK\nPY4uDPvG8Mr8m6zHeZ9gMoTXF96GS+/AJfV7WI9Tcs3mRgDAfAl//5LSEEURR1cGoVfp8d93fwVX\nN122pmu4StTr2AYAGPVPMJ6ESMvdcr7fa8/fv/MnaaGHEEIIIfJHCz1Elk54R8GBw3Z3D+tRyG9w\n6G3gOb4oCT1nL/Dcm34tlniOR7O5AUuxFaTf8/DiTGgW4VQEA+4+8Jz8vt1K9WleGdRuBQsJPcqo\n3Mr9mjdiMbqMdDYNbz6hx2lQbkIPkEvpoYUeshL3IpaJr2sRscfRBREiJvynSjjZ5kgLPVSHdGED\n7j7c1L4fvoQf9w8/BEEoXdKAHAx6hwEAO9z9m36tj7bfgH11u3A6OI2Hx56QZdoAqUyhZBiAPD5H\nSQ9uvJTSQ0pgISrftL1+V+7exbB3vCSvfzo4jV9MPw+Hzo7P9dzGtF6vWHiOxxf6bodJY8STkz8r\n1KnJwfMzLyMjZPCRtusrPp0HeE+NeJgWepRmOjQLfzKAHTV9iqzgK6ZOewfUvBrjq5OsR6l60n1G\nl4wXepyFhJ4g40kIIYQQQi5Ofk+YSdWLpmM4FZxGu7VFlj3q1Y7neDh19uIm9Ci8cgvInWgTRAEL\n0bM3IQdlnjTlktEDl0AqCLPGBLWCbkC1WpsgiALmo4vwRvMLPXqlL/SYEElH6SF0lZsOrr1uS9Lt\n7AIAjPnlW7s1H1mAQ2eHMV8vR87v5o796Hf1YHR1Aj8afpr1OCWTFbIY9o3DobMXJbmJ4zh8ruez\naLO04K2lI3h+5uUiTEnIxQVTuaRD1pVbwNmFHqrdIqWwEFkGADSa5JXQAwC9zi7wHI9h31jRXzue\nieOB4YchiiIO9t1ZUZ9l7DobPtfzGaSFDB4YeVgWCXfhVASvzh+CXWfDpQ37WI9TFlJCz1x+AZ4o\nx9GVdwEAe2p3MJ6EPa1Kgy22dsxFFqgClzFv4QCnk/Ek5+fQ5xLCqXKLEEIIIUpACz1EdoZ9YxBE\nAdtlugRBch3I4VQEqWxqU6/jiVVGQg/w3htgZ0+0DXpHoOHV6M0/6Jabs5VbfqZziKKIQDIEu0Lq\ntiQt5iYAwGx4Hp7YKlScSvFLiGatCYIoIJFNsB6FMDQdyi/02FrW/DVtlmboVTqMr8pzoSeciiAo\nw4oOueI5Hvf03Qm33okfjzxbSDeqNJOBKcQzceyo6Sta0oFWpcF9Ow7CrrPhJ6eewaBnuCivS8iF\nBPPVpbJI6DHmPtdLi/uEFNPZhB75/X1u1BjRYW3DdGgGkVTxEi9FUcQj40/Cl/DjxvYb0OXYUrTX\nloudNdtxZeOlmI8s4qennmE9Dl6YeQVpIY0DbddVTeJJjdENDa8paWUcKT5RFHFsZQh6lR49zm2s\nx5GFXkfu/ptcr0urhTfug1ljgl6tZz3Kedl1VLlFCCGEEOWghR4iO0P5VJMdtNAjW658rdBmF0G8\ncR+MagNMFXDCsNmSX+jJR1SvxLxYii6jx9kFrUrLcrTzcuXTZFgn9MQzCaSyKdhl8BBqPVosuYWe\nmdA8vNFVOHQ2WVarrYdJYwIARFIxxpMQlqZDM1BzKjTlFxXXQsWr0OXohCfuK0olY7Gdrdta+39T\ntTNqjPjU1lsAAG8uvsN4mtIYKlGSnk1nxX07DkLNq/HAyMMVuxBF5ENa6JHDYjEl9JBSWogsged4\n1BlrWI9yTttdPRAhYnR1omiv+fbSURxePo4Oaxtubt9ftNeVm9u6bkWt0Y0XZ18t6v+/9Yqko3hl\n/g3YtBZc2XAJsznKjed4NJkbsBRdQUYGKUlkbaZDM/AnA9hZ0181y2cX01NIjqXaLVayQha+hL/w\nmVCutCoNzBoTLfQQQgghRBGU/eSRVJyMkMGIbwIuvQMNpjrW45DzcOlzyS6bWQQRRAHeuK8i0nmA\nXOw7z/GFE21nF9P6WY51QXq1HmaNifnD90Ay11dtU1hCT4OpDmpejanQGfgTQTj0dtYjbZpZWuhJ\nUzx1tUpl05iLLKLF0rTum8LSzdNxGd48XSgs9MjvRL+cbXf3wqIz452lYxX3cEcURQx6h6FX6dFl\nL37aQaulGV/suwPJbArfHHyAYv9JSQVTYQCQxXK0W6p0jdFCDykuqd64zlgj25refncPABStdmsl\n5sWjE09Cr9Lhnv67oOJVRXldOdKptPhS393gOR4/GHm0qClH6/Hr2deQzKawv/VaaFQaJjOw0mRu\nQFbMYim6wnoUskZHVwYBUN3WezVbGmFSGzG2epKqxBnxJ4MQRAEuGddtSRw6G/yJIP1eIYQQQojs\n0UIPkZXJwBQS2QQG3MWrPiDFJ12U+eIbT+gJJIPIiFnUGOV9YmOtNCoN6o21mIssQhAFDHqHwYHD\ndncv69EuyG1wwZfwQxAFZjNIp8odClvoUfEqNJkasBhdBgA484lHSnZ2oYfNDXTC3lxkHoIooN3a\nuu6v7cnHm4/JMN58jhJ6NkTNq3FN26WIpKM44R1lPU5RLUSX4Ev40e/qLtmD4T21O3BLxwGsJvz4\n1tD3ka6wpSgiH2cTetgv9OhUWti0VqrcIkW3mgggmU2h0STf5dxGUz3sOhtGVsc3fX2VETJ4YPhh\nJLMp3Nn96UJdciVrtTbj1i03IpgK48Gxx8v+gDWWjuOl2ddh0ZhxVdNlZX1vOZBqxClZUBkEUcCx\nlSEY1PrCwQqSS5va5twKfzKAlZiH9ThVSTr8KfeEHgCw6+1IC2lEM5RSTQghhBB5o4UeIiulqj4g\nxSUl9PgSG0928cSUc4G3Vk3mRqSyKUyHZnEqMI12a6ssqg8uxG1wIitmCyk5LCg1oQcAWqxNhX+u\nrIUeuplRraaDMwCAdmvLur+2zlgDu86Gcf8k0yXBc1mILELDq1FrrIxUuHK6vuNyAJVXuzXoKU/F\n603t+7G3didOB6fxyNiP6fQnKYlQKgQNr4FBrWc9CgCgxujCaiJAS2ykqKS0vUZzA+NJzo/jOPS7\nuhFNx3AmNLup1/r51HM4E57FpfV78aH63UWaUP72t16LbfZODHqH8frCW2V975fnXkcim8CHW6+R\nbW12KTVbcn+2pNRhIm/ToVn4kwHscPfLNrWMlV4H1W6xJC30uBVwv9ehyyVt+xPs7okSQgghhKwF\nLfQQ2RBFEUPeEehVemy1d7Aeh1yAu5DQs4mFnvyp3Uqp3AKAFkvuRNsvp1+ACLHkDwmLwV2oT2NX\nuxXInyqXQ03EerWaK2yhR5tf6KFqmKo1Fcov9NjWn9DDcRy6HVsRSUcxH1kq9mgblhWyWIwuoyFf\njUjWp9XehFZLM4Z940yXP4tt0DsMnuPR5+op6ftwHIfP996OVkszDi0dxguzr5T0/Uh1CiZDsGkt\nskk4rTG4IULEKuNaV1JZFvKpmHKvz+x3bb52a3x1Es+deQluvRO3b/tEsUZTBJ7j8cW+O2BUG/D4\nyafLVv8UzyTw4uyrMKmNuLoK03mAXMIUB66QbEnk7ejKuwCobutcup3yTY6tBtL9RUUs9OhzBwsD\nyQDjSQghhBBCLoyeahDZWIwul7z6gBSHWWOCVqWFdzMJPVIEa4VUbgFnI6pP5G/e7qiR/0KPK3+B\nvZnlrM2SLpztSkzosbx3ocfOcJLikBJ6opTQU7WmQ7Mwa0yFJLb1kuLex/3yuXm6HPMgI2bRLOMT\n/XJ3ecM+iBDx9tJR1qMURSAZxEx4Dl32LTBqDCV/P61Kg/t2HIRNa8VTk78oJFISUgyCKCCUisAm\no8VoKYFT+rxPSDEUEnpkXLkFAN2OrVBxqg0v9ERSUXxv5BFwHIcvbb8bepkkb5WTQ2/HXT23IS2k\n8cDIw8iUIe3r1bk3EcvEcUPr1VX5/xwA9Go93AYn5sMLlCgoc2frtgxUt3UOboMTboMLE/5TyApZ\n1uNUHU8hoUf+VZFnE3pooYcQQggh8kYLPUQ2BvMPN7a7exlPQi6G4zi49U744qsbvtFTWOipoISe\n5nxCD5B7kFFnrGU4zdq4DblUmc0sZ22WkhN6Gsz1UHEqAJWR0GMqVG5FGU9CWAilwlhN+NFubd1w\nykO3YysAeZ2GnFdARYfc7avbBTWvxpuL71TEAx5poWaHu79s72nX2XDfjoNQ82rcP/wQFmSUYkWU\nLZyKQIQIq4w+R9Xk6w1poYcU00J0CTqVFg6ZL9Hr1bnE4ZnwPIL565y1EkURD449jmAqhFs7bkS7\ndf2JiZViT+0OXNawD7Phefzs9K9K+l7JbAovzL4Cg9qAa5uvKOl7yV2zuRHRTKyiUhkr0XRoBoFk\nEDupbuu8epxdSGQTOBOeYz1K1fHFfdDwGti08vlsej7SZwo/fc8jhBBCiMzRQg+RjRPeEfAcX4io\nJvLmMjiQyCYRzWwsycMT80Kn0hYSQSqBSWMsnO7Y4e6XTe3Bhbj0uRPUXoYPXILJILS8BgZ16VMS\nik3Dq9FkroeKV8n+4cJamAsLPVS5VY2mg/m6rU08PLLprGgw1WEyMIV0GU5Tr4W00EMJPRtn1Bix\nq2Y7VmJeTIXOsB5n06Ql8oEyV2O2WVvwhd7bkcym8M3B+xGmekNSBMFUfjFaRg9Nzib0eBlPQipF\nRshgOeZBo0LqM6V7GiO+8XV93avzhzDoHcY2eyf2t11bitEU5bNdH4fb4MLzMy9jwj9Zsvd5df5N\nRNJRXNd8pSKvSYupKZ86PBdZYDwJuZCjy4MAgD11VLd1Pj0OqXZrgvEk1UUURXjiq3AbnIq4J+rI\nJ4VTQg8hhBBC5E7+d0JIVQilwpgOzaLT1g6Txsh6HLIGbv3Gq5pyF3g+1BjcirjAWw+pgqncDwk3\nyqG3ged4xpVbIdh1NsX+Xri75zP4kyt/B5oKOBlnUOvBczwiKarcqkbToVkAQLutZVOv0+PoQlpI\nYyooj8UPaaGniRZ6NuWyhn0AgDcX3mE8yeYkMglMrE6iydwAl6H8yWp763bi5vb98CX8+PbQD8pS\nI0Iqm5QAYtVZGE9yllta6IlRQg8pjuWYB4IooNEs77otibTQs57arYXIEn48+TRMaiMO9t+piMWl\nUtOr9bin7y5wHIfvjTxaklrgVDaN52dehl6lw/UtVxX99ZWm2ZL7vCx9fibyI4gCjnmGYFQbCumo\n5IO6HZ3gwMkqObYaRNMxJLIJRdRtAbkUVQ4c/Ela6CGEEEKIvNEdAiILJ7xjECEqZgmCAK78xZkv\n4V/31wZTIaSFdOH0biW5peMAPrX1FnTa21mPsiY8x8Old8DLaKEnI2QQTkdgk1FNxHq1WJqwp3E7\n6zGKguM4mDUmRKlyqypNhXIJPW2WTS70OHOnIcdlcvN0PrIIh84OIy0Mb0q3YyscOjuOrLyLZDbF\nepwNG109iYyYxQ6Gnzlv6tiP3bU7cCo4hUfGn6yIGjPCTigZBgBZ1RoY1HpYNGZK6CFFI9UUNpqU\nsZxbZ6yBW+/E6OpJZIXsRX9+OpvG/cMPIS1k8Lnez8CeTwwgQIetFTe3H0AgGcTDY08U/e/MNxbe\nRjgVwTXNV9DhMuQqtwBgLkwJPXI1FczVbe2oobqtCzFqjGi1NmMqNINEJsF6nKoh1a26FXK/V8Wr\nYNVaKKGHEEIIIbJHCz1EFoYK1Qe9jCcha+XS5061h6sdcAAAIABJREFUb6SqSTqtW2N0F3UmOWi2\nNGJ/67WKOlHpNrgQTkeQyCTL/t7B/EMoumktH2aNCWFa6Kk6gihgJjSLOmMtjJrNVQ1stXeA53iM\n+tkv9ERSUQRTITQp5ES/nPEcj8sa9iGZTeHYyiDrcTZs0DsMIFeNyQrP8fhi7+1otTThzcV38OLs\nq8xmIcoXyFduyW05usbogi/hX9MyAyEXsxDNL/Qo5O9zjuPQ7+5BIpvA6eD0RX/+k6d+gYXoEq5q\nugw7ayrjoEAx3dh+PTpt7TjmGcKhpSNFe920kMFzMy9By2twQ8vVRXtdJbPrbDCqDZTQI2NHV94F\nAOyp3cl4EvnrcXRBEAWcDJxmPUrV8ClsoQcAHHo7AskQBFFgPQohhBBCyHkp54kzqVipbBqjqxOo\nM9ai1ljDehyyRoWEng0ku0gnNioxoUeJzqYtlT+lJ5AMAqCFHjkxaYyIZ+L0AK7KLEVXkMgm0WFt\n3fRr6dV6dFhbMROaQ6wE1QjrMRfJnS5uyp82JptTqN1aVGbtVlbIYtg7BrvOVqjIZEWr0uK+HffA\nprXgycmf44R3lOk8RLlCUuWWVj6VWwBQY3BDEAWs0olnUgQL+eWCRpMyFnqA99ZujV/w553wjuLl\nuddRb6rDbVs/Vo7RFIfneBzsuxN6lR6PTTyFlVhx0r8OLb6DQDKIq5svh0VrLsprKh3HcWg2N8IT\n9zE58EMuTBAFHFvJ1W31UN3WRUnJsVS7VT6e/D1iJd3vdehsyIpZhFMR1qMQQgghhJwXLfQQ5ib8\nk0gLaUrnURiXfuOVW1L8vpIu8CqZW7/x5azNkhZ65HaqvJqZ8zezoxm2ixikvKZDswCAdtvm6rYk\n3c4uiBAxwfg0pPQAkBJ6isNtcGKbvROTgamiPUwrp9PBaUQzMQy4+8BxHOtxYNfZcN+Oe6DmVbh/\n+KFCpQwh6xHMJ/TYZfZZSvqcT7VbpBjmI0uwai0wa02sR1mzLnsnNLwaw76x8/6cYDKEH4z+CGpe\njS/33w2tSlvGCZXFZXDiru5PIZlN4Xsjj2z68EFGyOCX07+Ghlfjwy3XFmnKytBkaYAIsZCMReTj\ndPAMgqkQdtZsh4pXsR5H9jpsbdDyGoz5J1mPUjWkFHfpPqMSOPR2AIA/SUvohBBCCJEvWughzA0W\n6rb6GE9C1kOv1sGsMW1oCUS6wKvEyi0lkhJ6vAwSeoL5hR4HJfTIhlmTe1ASSVHtVjWZDs0AANqL\nkNAD5OLNAWCc8WnIucJCDyX0FIuU0vPW4mHGk6yfHD9ztllb8IXe25HIJvHNwQfoey9Zt2AyDDWv\nhkG9ubrEYju70LP+el5C3iueicOfDCgqnQcAtCoNtjm2YiG6hNVzHIIRRAHfH3kUkXQUn+y8GU3m\nBgZTKsu++t34UN0eTIdm8Ivp5zf1Wm8vHYU/GcCVjZfCppNXwhlrzfnPzXPhBcaTkN90NF97u6d2\nB+NJlEHDq7HVvgVL0eXCYTJSWp64Dxw4OA0KWujJ34/0J+j3CCGEEELkixZ6CFOCKOCEdxQmjRFb\nbG2sxyHr5DI4sZrwr7tn2BP3QcNrZFcNUK3c0kIPk4Se3KlyGy30yIZZYwQARNL0ULmaTIdmoOE1\nRXtY1m5tgU6lxZif7ULPQmQRGl5NiXBFtLt2AHqVDoeWjqz773+WRFHEoHcEOpUW2xydrMd5n711\nu3BT+374Eqv49onvIyNkWI9EFCSYDMGmtcoideq9pMV9Sughm7UQWQYANCowbe9CtVsvzr6KMf9J\n9Lt6cF3zleUeTbHu6P4EXHoHfjn9IiYDUxt6jayQxS+nX4SaU+FA23XFHbACSIvw8xFa6JETQRRw\nfGUQJrUR3VS3tWZUu1VevsQq7DobNLya9ShrZqeEHkI+YDIwhZ+d/hXSdG+CEEJkgxZ6CFOz4XkE\nUyFsd/WC5+i3o9K49U5kxCyC+aWMtRBFEZ6YDzUGF/2ay4Rbn3vQ7WNwglo6JSW3mohqZtbkKrdo\noad6JDJJLESW0GppKlp0u4pXocveiZWY95yn0sshK2SxGF1Gg6meIumLSKvSYm/dLgSSQUXdGF+M\nLsMb96HP2S3LG8w3d+zH7poBTAam8Oj4UxBFkfVIRAEEUUA4HZFlukQhoSdGCT1kc6Tan0YFJtj0\nu7oB4AO1WzOhOfz01LOwaM34Qu/tslvIkzOD2oCDfXcBAB4YfhixdHzdr3F4+Ti8iVVc3ngJ7HSw\n5AMaTLVQcapC0iWRh1zdVhg7a/rp2mYdzi70UO1WqaWyaQSSQcUdpnHo8gs9CVroIQTIfU7612Pf\nwjPTzysymZkQQioVPU0nTA15RwEA2929jCchG+HaQLJLJB1FIptQ3AVeJTNqDDCqDYwSeoLgwFFa\nk4wUEnqo9qVqzIbnIEJEu604dVsS6ebpOKObp8sxDzJiliosSuDyfO3Wm4vvMJ5k7YbydVs7avoZ\nT3JuPMfji313oMXShDcW38ZLc6+zHokoQCQdhSAKsGnltxht1BhhUhupcots2kIkt9DTpLDKLQBw\nG1yoM9ZifPVk4YRzIpPE/cMPIStmcbD3Tli0ZsZTKk+nvR0fbf8w/MkAHp14cl1fK4gCnj3zAniO\nx4HW60ozoMKpeTXqTbVYiCwqKo2x0h1deRcAsKd2J+NJlKXRVA+L1oxx/0lamC8xXyJ3T9GtoLot\nAHDo85VbVMtGCF6cfRX3Dz8EDa+BmlPhhZlX6LMAIYTIBC30EKaGvCNQcyr0ObexHoVsgEvvAHD2\nom0tpJv6biMt9MiJ2+CEL7Fa9hscgWQIVq2ZTpjJiElrAgBEKaGnakyHZgEA7dbSLPSwqt2az58q\npoWe4mu3tqLeWItBzzCi6RjrcdZk0DsCnuML9SdypFVpcd/AQVi1Fjw5+XPMhOdYj0RkTkrJtMo0\n6dBtdMEX99FNYLIpC9FFcOBQb6plPcqG9Lu6kRLSmAycBgA8cfKnWIl78eGWa9DrovsgG3VT+4fR\nYW3F4eXjeHvp6Jq/7ujKIFZiXlxWvw8ug6OEEypbs7kRKSENT4xqE+VAEAUcWxmCSWOUXXWs3HEc\nhx5HF0KpcCHxjZSGV7rfq7ADnFatBTzHI0AJPaSKiaKIpyZ/gSdOPg2r1oI/3PM7uKR+L1biXrzr\nGWY9HiGEENBCD2HInwhgLrKALkcn9Go963HIBkgXab51JLtIN4RqDO6SzEQ2xqV3Ii1kEEqFy/ae\noigimArBno+3JfJAlVvVZzo0AwDoKPJCT72xFjatBWOrJ5k8zJUWepppoafoOI7DZQ37kBGzeGf5\nGOtxLiqYDGM6NINOWztM+RQyuXLo7fhi7x3Iilk8MPwIUtkU65GIjEkLPXYZJvQAudqtjJiFP0En\nnsnGiKKIhcgSagwuaFVa1uNsiLRIOuwbw9GVQbyx+A5azI24tfOjjCdTNhWvwsG+u6BTafHo+FNr\nSpsVRAHPTufSeW5sv74MUyqXtBBPtVvycCowjVAqjF012+kw1AacTY5VTl2wEknfh5W20MNzPOw6\nGyX0kKqVFbL4weiP8NzMS6g1uvHHe7+KZksj9rdeAw4cnjvzEiWcEUKIDNBCD2FGqj4YcPcxnoRs\nlEufr9zaQEIPVW7Ji3TBXc7arWg6hoyQgV2mp8qrVaFyixZ6qsZUcAY2rQV2na2or8txHLqdXYik\no1iMLhf1tdeCEnpK65L6veA5HocU0Kl+QuZ1W7+p17UN1zdfheXYCp6c/AXrcYiMBVNSQo88q0ul\nBX5PnBIeyMYEUyHEMnE0mpVXtyXptHdAp9Li2MoQHhp7HFpegy/13w0Nr2Y9muLVGF24fdsnkcgm\n8L2RR5AVshf8+e96hrEYXcaH6nYr7oFzuTWbGwGc/TxN2Dq6MggA2F27g/EkyiQt9IwySo6tFoVE\ndoVVbgGAQ2dHMBm66N8jhFSaZDaFbw49gLeWjqDN2oL/sef34Mr/Ga4z1WJHTT/OhGcLSZOEEELY\noYUewsyQdxQAMODuZTwJ2Sin3g4O3PoSeuKU0CNH0od1KSK3HAL50y+2Ii8RkM0xa3KVW5EULfRU\nA38igGAqhHZrKziOK/rr9zjytVsMTkPORxbh0NlhlHkii1LZdBb0u3owG57HbHiB9TgXNCgt9Cho\nifzjnTehwVSHV+bfwIn8Z2ZCflMomUtWtMl0OVpa4PeU8fMlqSzzkVw9SqNJuQs9Gl6NHkcXAskg\n4pkEPrvtE6hTaH2YHF1avxd7anfgdHAavzrz6/P+PFEU8cz08+DA4cY2Sue5mCaLlNAj78941UAQ\nBRzzDObqtuxUt7URdp0N9cZaTPpPIy1kWI9TsbwKPsDp0NsgQkQgn35JSDWIpKL438f+EyO+cfS5\nuvEHu++DRWt+38850HotAOC5mZdZjEgIIeQ9aKGHMJHIJDDhn0STuQFOPfWWK5WKV8Gus8GX8K/5\nazxxH1ScCg49LXHIiXSCZj1pS5slLfRQQo+8aFQa6FRaRCmhpypMh2YBAO224tZtSbqdWwEAY2U+\nDRlJRRFMhdCk4BP9SnB5wz4AwKHFdxhPcn7JbArj/pNoNNUr6jS+VqXBPX13Qc2p8MOxxxBORViP\nRGQokE/oscm1cstICT1kcxaj+YUehaftbc8fYtpdM4DLGz7EeJrKwnEc7ur+NBw6O34x/TymgmfO\n+fOGvCOYjyxib91OWqhaA7PGBLvORgk9MnAqMIVwKoJdNQNUt7UJPc4upIQ0ps/zPYJsnje+CqPa\noMgDNQ6dHQDgTwYYT0JIefjiq/jno1/HmdAsLq3fi98ZuAe6c9Tbdtja0GnrwLBvjD4TEEIIY7TQ\nQ5gYWz2JjJhV1Elpcm5ugxPBZGjNp1y8MR/cBid4jr79yIlbn3vIuZ60pc06u9BDy11yY9aYEKaF\nnqowHZoBALRbS7PQ897TkJkynoY8W7fVWLb3rEbbXb2waMx4Z/mYbE+7jq1OIC1kFFnx2mxpxK2d\nH0U4FcGDY49Tbz35AKUk9HhjlNBDNmZBSuhR+ILupfV7cbDvTnyh746SJCJWO6PGiIN9d0AURTww\n/DASmcT7fjyXzvMCAODGthtYjKhIzeYGBJJBSm5lTKrb2kN1W5si1W6xSI6tBoIowJdYVdQBivdy\n6HMLPYEELfSQyjcXXsA/Hfk6VmJeHGi9Dl/ovf2CC6MH2nIpPS/MvFKuEQkhhJwDPVEnTEjVB0p8\nuELez2VwQoSI1TWk9ETTMUQzMUXGr1Y6qT6tvJVbuVPltNAjPyaNCdF0lB4eV4Hp0Aw4cGi1NJfs\nPbrzpyGngjMle4/fNJ+vB6CEntJS8SpcUr8H0XQMQ/nPdnIz6MnXbdUo8zPnDS1XY5u9E0PeEbyx\n8DbrcYjMBJMhqHk1jGoD61HOyawxQa/SU+UW2bCFyCI0vFrx14/S35fnOvlMiqPL0YkDbdfBm1jF\njyZ+8r4fG1mdwEx4DrtrBhS/HFZOzfnFeKrdYidXtzUEs8aELvsW1uMoWpd9C3iOx5h/kvUoFSmY\nDCEjZArp30rjyN+X9OcPHhJSqSb8p/AvR7+JUCqMz3R9HJ/cevNFl837XT2oN9XhneVja3r+Qwgh\npDRooYeUnSAKGPaNwaa1oMXSxHocsklufb6qaQ3JLmf7lN0lnYmsn4pXwaG3r6s+bbOCVLklW2at\nCWkhg5SQZj0KKaGskMVMaA4Npjro1bqSvU9v/jTkeBlrt+bzJ/opoaf0LivUbh1mPMkHCaKAE75R\n2LSWki6tlRLP8fhi3x0wqA14/ORPsRLzsB6JyEgwFYJNa5Ft4gfHcagxuuCJ+yCIAutxiMJkhSwW\nYyuoN9VRuitZk1s6DqDV0oy3lo7gyPJxAPl0nqnnAQAfbf8wy/EUp8lCCz2sTRbqtrZT3dYm6dV6\ndFhbcSY0i1g6xnqciiMtbys9oYcqt0glO7oyiK8f/w7SQhpf6r8b17dctaav4zke+1uvhSAK+PXs\nayWekhBCyPnQXRFSdlPBGUTSUWx399KNuQrgyp++WEtVkyfmBQC4jcq8wKt0br0TgWQQ6Wx5ljik\nhB4bJfTIjlljAgCKV69wC9FlpIR0yeq2JFul05BljDefjyxUxIl+JWg016PN2oIR33ihSlEuTgfP\n5D9z9in6M6dDb8dd3Z9CSkjjgZFHkBWyrEciMiCIAkKpMKxaeS9G1xhcSAtphFJh1qMQhfHEfcgI\nGTSaKFGFrI2aV+Oe/rug5TV4ePxJrCb8GPdPYip0BgPuPjRbaNF7PZrNDQDOVtmS8pPqtnZT3VZR\ndDu7IELEhP8U61EqjnTIU6nX3w5dfqEnIa/rWUKK5eW5N/BfJx6Emlfj93Z+Gfvqdq3r6z9Utwt2\nnQ2vLbxFS5GEEMKIcu9sE8UaorqtiuLKJ/T4EmtY6KGEHlmTonHLldITSAahV+lLmgxCNqaw0JOO\nMJ6ElNJ0KFeB1WEr7UKPQa1Hu7UF06FZxDPxkr4XkD/RH11Gg6meTrKWyeUN+yBCxFuLR1iP8j6D\n3mEAwI4K+My5t24XLqnfgzOhWTwz/QLrcYgMRNMxCKIAm8yTDqXP/dJiPyFrtRDNpe1RRRJZjzpj\nDT6z7eOIZ+L43sgjeGY6l85zE6XzrJvb4IJWpcVcmBJ6WMgKWRxfobqtYpKSY6l2q/i8Ck/oMWmM\n0PBqSughFUcURTx96ln8aOIpmDUm/MGe+9CT/164HmpejetbrkIqm8Ir84dKMCkhhJCLoYUeUnZD\n3hFoeA26Hev/8EDkx72ehJ7CQo8yL/AqnSv/6yJdiJdaIBmkui2ZOrvQQ6cuKpm00FPqhB4A6HZI\npyFPl/y9lmMeZMQsmvKniknp7a3dBQ2vxqHFwxBFkfU4BUPeEWh5DbodW1mPUhS3b/sEnHoHnp1+\nAaeD06zHIYydTTq0MJ7kwqTP/Z4yfb4klWNBqs800d/nZH2uaLgEO2u2YzIwhcnAFPpc3WiztrAe\nS3F4jkeTqQFLsRWkhQzrcarOZGAK4XQEu2oH6JBCkbRZWqBX6TC2OsF6lIpzdqHHyXiSjeE4Dg6d\nHf4ELfSQypEVsnhw7HE8e+ZFuA0u/NHer26qivzKxkthUOvx0uxrZUv3J4QQchYt9JCyWol5sRRb\nQY+zC1qVhvU4pAisWgs0vHrNCT08x8Old5RhMrJe0oW3dw2/lpuVyqYRy8Rhp7otWZIWeqJpqtyq\nZNOhWehUWtSbakv+XtIJoHF/6Wu3pFoAWugpH6PGgF01A1iJe3FKJosmS9EVrMS86HV1Q1MhnzkN\nagMO9t0JAHhg+BEkMgnGExGWQqn8Qo/cK7eM+YQeWugh6yQl9DSY6xhPQpSG4zjc3XNb4fvjTe37\nGU+kXE2WBgiigKXoMutRqs5RT65uay/VbRWNilehy9EJT9y3pkOJZO08cR/UnErR9/jsejsi6Sgt\nKpCKkMqm8K2h7+PNxXfQamnCH+/9KmqMmztgbVDrcXXT5QinI3hrSV7pzIQQUg1ooYeU1YlC3VYv\n40lIsXAcB6feWehLvhBP3Aun3kGni2RqPWlLmxVI5nqplXyxX8lM2nxCT4oqtypVPBPHcnQFbZYW\n8FzpPw62W1ugVWkxtlr6eHNa6GHjsoZ9AIBDi4cZT5IjVbxWQt3We221d+BA23XwJVbx2Mmfsh6H\nMBTMJ/RYZZ52WEjoocotsk4LkUWY1EbZL60ReTJrTPj9Xb+Fe7d/HltsbazHUaxmcyMAYC7/+ZqU\nh1S3ZdGYsZXqtoqqp1C7VfqDJtXEF1+Fy+Asy72FUnHk70/68/crCVGqSDqKfz32bZzwjaLH0YU/\n2H0fLFpzUV77uuYroeZUeH7mZQiiUJTXJIQQsjbK/ZRFFGkw/3Blu6uyHq5UO5fBgVgmjngmft6f\nk8gkEE5FqG5Lxlz6fEJPGRZ6goWFHrpBL0dUuVX5zoTmIEJEu630dVtArm+7y74Fy7GVksdYSws9\nzbTQU1bbHJ1w6h04svIuEpkk63Ew6B0GBw7bXZW3RH5LxwG0WJpwaPEwjq0MsR6HMBJMhgEANq28\nK7esWgu0vIYSesi6JLMpeOOraDTXg+M41uMQhWo012MPpZtsivR5ej68wHiS6nIycBqRdBS7agcU\nvSAhR72O/ELPKi30FEssHUc0E4Nb4fd7nXo7ACCQpNotolyrCT++duQbmAqdwb66XfjdnV+CXq0v\n2uvbdFZcUr8XnrgP73qGi/a6hBBCLo6uCkjZRFJRnApOo83aAptO3jeeyfq4C4sg/vP+HE9+SaTG\n4C7LTGT9zBoTdCrtmurTNiuQP1Vuo4QeWTq70EOVW5VqOjQDAGi3lmehB3hv7VZpU3rmI4tw6Oww\naowlfR/yfjzH47L6vUhlUzi2Msh0lnAqgqngDLbY2mHOJ45VEjWvxj19d0HDa/Dw2BOF1DtSXYJS\n5ZbMl6M5jkON0Q1P3AtRFFmPQxRiKboMESIazfWsRyGkqjWaG8CBw1yEFnrKSfosTQtpxVdrrIFd\nZ8O4f5LSJYrEm1/allK/lcqhyy30rJb4ABIhpTIfWcQ/Hf46lmMruKHlahzsuxNqXl3099nfeg04\ncHjuzEt0fUcIIWVECz2kbI4vDkMQhYqrPiCAS6pqusAiiCeei9nfbF8rKR2O4+A2uOCN+0r+gTxA\nCT2yRgs9lY/JQk8ZTkNGUlEEUyE00QNAJqTarTcZ124NeUchQsSOmsr9zFlvqsWnt34M0UwMPxj5\nET2QqEIhaTlaAXVENQYXktkUwmmq8iRrsxBZAgA0mujvc0JY0qm0qDG6MBdZpId2ZZIVsjjuOQGL\n1oyt9g7W41QcjuPQ4+xCNB2jRbUi8RQWepR9v9eeT+jxJ+iwBFGek/7T+Jej30AwFcKntt6C27pu\nLVnCW52pFjtq+nEmPIvJwOmSvAchhJAPooUeUjaHF3KVAAO00FNxzib0nD9K3xvL/RhVbsmbW+9E\nMpsq+SLH2YUeSuiRI6PGAA4cIila6KlEoihiOjgLh85e1sS8BlMdLFozxvwnS/ZAQKrbajI3luT1\nyYW5DE50O7biVHAKKzEPszmG8hWvlb5EfnXTZeh39WDMfxIvz73BehxSZoFUCCpOBZMC0sikhE5P\njGq3yNosRPMLPVSfSQhzzeZGxDNx+KmGpiykuq3dNVS3VSpUu1VcvkIiu7Lv9zry9yfpex1RmuOe\nE/j3d7+DZDaFg313Yn/rtSV/zwP593hu5uWSvxchlSyQDCKdTbMegygEXRmQssgKWRxfHIZT76BT\ndhWokNBzwcqtfEIPVW7JmvRr6Y2XtnZLqtyy62mhR454jodJY0SUEnoqki/hRzgdQbutfOk8QP40\npKML4VQEi9HlkrzHfP6UJSX0sCOl9BxaPMLk/VPZFEZXJ1BvrEWtsYbJDOXCcRw+3/tZmDUmPHXq\nF4VEC1IdQskwrFoLOI5jPcpFSQ94pOsBQi5G+n7WYKpjPAkhRFqUnwtTmkk5HKW6rZLrdtJCTzFV\nSkKPQ0rooYUeoiCvzr+J7wz9ADzH43d3fAmX1O8py/t22NrQaevAsG+scLCOEHJxyWwKJ7yj+NHE\nU/jrN/8Rf/763+Ffjn4TiUyC9WhEAWihh5TFZGAKsXQcA+5eRdx0Juvj0q+lcssHDlxhYYTIk3QB\n7rtA2lIxBJNBqDhVodqJyI9JY6LKrQp1tm6rpezvXbh56i/NzdP5/ANASuhhZ1fNAAxqPQ4tHmZS\nAzXun0RaSFdNIqRVa8Hnej6DjJDBAyMPIy1kWI9EykAQBQRTIcVUl0qVu54Sf74klWM+ugin3gGD\nWs96FEKqXnM+KYse2JVerm5rCBatGZ1Ut1UyFq0ZTeYGnApOI0Wn4jdNSmuX7g0rlUGth16lR4Aq\nt4gCiKKIn53+FR4ZfxImjRH/x+770OfqLusMB9pyKT3PU0oPIecliiLmI4t47sxL+N/HvoU/feUv\n8Y3B+/Hy3BsIpkJoMjfgTHgW/zn4PUrqIRelZj0AqQ5S9UG1PFypNkaNAQa1oRCzei6euA92nQ0a\nnr7tyJlbSui5wHJWMQSSIVi1FoqQljGzxoiVmAeCKNCvU4WRFno6rG1lf+8ex1YAwPjqSdzQcnXR\nX38+sgANr1Z83LeSaVUa7K3bhdfmD2F0dQL9rp6yvv+gZxgAsKOmv6zvy9KOmn5c2XgpXl94C0+f\nfhaf3vox1iOREoumYxBEAValLPQUKrcooYdcXDgVQTgVwXZXL+tRCCEAmi35hJ6I/BN6crUFmcIi\nqdJMBE4hmo7hmqYr6Bq8xHqcXZiPLOJUcAq9zm2sx1E0b2IVNq0VWpWG9Sib5tDbKKGHyF5WyOLR\niafw+sJbcOmd+P1d9zJJJ+539aDeVIfDy8dx65Yb4dQ7yj4DIXIUSUcxtnoSo74JjK6OI5gKF36s\nxdKEXuc29Dm3ocPWBg4c/mv4QRz3nMB3hx/Eb2//AlS8iuH0RM7oyTopizH/SRjUenTZt7AehZSI\n2+DEUnQZoih+IIUplU0hkAxiW/5BLpGvQtpSCSu3pFPlbZbyp4OQtTNrzRAhIpaJU5JShZkOzoLn\neLRYmsr+3g69HXXGGkwETiMrZIt6kZIVsliMLqPR3EAXP4xd3rAPr80fwpuLh8u60COIAoa8o7Bo\nzEwSqFi6retWnPSfwoszr6Lf2YNuJ33mqmSh/A0hm1YZCz02nRVqXk0JPWRNpLqtRqrPJEQWbFor\nzBoT5mSe0JPOpvG1I/+BaDqOv7jsj2DXKa/e+xjVbZVNj6MLL8y8grHVk7TQswkZIQN/IoAttnbW\noxSFQ2fHYnQZiUwCekoJJDKUyqZx//BDGPQOo9nciN/beS9sOguTWXiOx4HWa/GD0R/h17Ov4bau\nW5nMQQhrWSGL6dAsRlfHMbI6gZnQHESIAACzxoQP1e1Gn6sbPc4uWLUf/PN6T//d+Ma7/4Uh7wge\nHHscn+/9LC12k3OihR5SFlc0fAi1DgfUlM49tbpcAAAgAElEQVRSsVx6J2bD8wilwrD9xmlhb345\nhBIT5M+V36b3lnChJ5yKQBAFxdREVCuzxggAiKSitNBTQTJCBrOReTSZG5idoOtxduHluTcwFZrB\n1iJGyS/HPMiIWTTlawEIO22WFjSY6jDkGUYkXb7vIdOhWYTTEVzR8KGqu/jVqbS4p/8u/NORr+P7\no4/izy/5Qxjz38dJ5QkkQwDA7ObtevEcD7fBBU/ce87lf0LeayGar8800UIPIXLAcRyazA0Y908i\nnknItgrv1YVD8CX8AIAnTj6Ne7d/nvFE65Or2zoBq9aCTns763Eq3lZ7B9ScCuOrpamCrha+hB8i\nxELat9I59LlFQH8yiAaZfq8j1SuajuGbgw/gdHAa2xxb8ZWBLzL/O3lf3S48ffqXeG3hLdzU/mG6\nB0GqxmrCj1HfBEZWJzDuP4l4JgEgd++j096OXmc3+lzb0GxuvOj9SQ2vxlcGDuLfjn8bby0dgUGt\nx2e6Pk73TcgHVNedbsLMDa3X4PotV7Aeg5SQy5BbBPGdo6rJE8/F69NCj/xpVBrYdbaSVm4Fkrk+\naiWemKsmpvwD+Eg6yngSUkzzkUVkhAzara3MZuh2dAFA0W+eLuRPDdNCD3scx+Gyhn3IiFkcXjpe\ntveV6raqteK1zdqCm9sPIJAM4uHxH0MURdYjkRIJSQs9CknoAXLXAfFMAtFMjPUoVU0QBfzzkf/A\nQ2OPsx7lvM4m9NDf54TIRbM5V7sl/fmUm3gmgV9Ovwi9So9WSxOOrgxi1DfBeqx1mfDn6rZ21w5U\n3WI6C1qVFlvsHZiNLCCcirAeR7G8+fTFSrnf69DZAQD+BNVuEXnxJwL42tFv4HRwGntrd+L3dn6Z\n+TIPAKh5Na5vuQqpbAqvzB9iPQ4hJZPKpjHiG8fjJ3+Kvz30T/iLN/4BD40/geOeIRjVRlzVdBm+\nMvBF/OPVf4U/3PO7+Gj7DWi1NK/5M51ercPv7vwSGkx1eGnudTwz/XyJ/4uIEtEVAiGkKNz5qqZz\nJbtI8fo1RndZZyIb49I74U8EkBEyJXl96VS5XU8LPXJmyS/0RGmhp6JMhWYAgGkd0TbHFnDgMOYv\n7kLPHC30yMol9XvAczzeXHynbO855B2Bhtegx9lVtveUm4+0XYcttjYcXRnEO8vHWI9DSiSYyn2W\nsioo7VB60OOJUe0WS2OrJ3E6OI3XF97GiG+c9TjntBBdAs/xqKVrR0JkQ/p8PRdZYDzJub0w8woi\n6SgOtF2Lu3s+Cw4cHp14EulsmvVoa3a0ULe1k/Ek1aPHkauoHfdPMp5EuaR7wO4KWeix6/MLPUla\n6CHysRhdxj8d+TqWosu4vvkq3NN/FzQyasG4svFSGNR6vDT7mqL+3iXkQkRRxGJ0GS/OvIJ/P/4d\n/Omrf4mvv/td/Hr2Nawm/Nju6sFnuz6Bv7zsT/DXl/+fuKv709hZs31Ti3ZmjQm/v+u34NI78fOp\n5/DS7OtF/C8ilYAWegghReHKX7z54v4P/Jinwk5sVDq3wQkRIlZLdCIlKCX0KOhUeTUqJPSkaKGn\nkkwHZwEAHQwTegxqA9qtLZgOzRYiSYthPkoLPXJi1Vow4OrFXGQBs+H5kr/fSsyDpdgKep3boFVp\nS/5+cqXiVTjYdyd0Ki0eHX8KvhJWaBJ2gskwACiqvrTGkFvOkJI7CRtvLR0p/PNjEz9BukQL/Bsl\niAIWokuoN9ZSXTchMtJsySX0zMtwoSeUCuOF2Vdg0ZpxfcvVaLE04rqWK+GJ+/CrM79mPd6aZIUs\n3vWcgE1rwRZbG+txqoZ0CIBqtzZOSuiplIUeZyGhJ8h4EkJyTgWm8bUj/4FAMohPdN6E27pulV2K\nm0Gtx9VNlyOcjuDQe641CFGaWDqOoyuDeHD0cfzfb/w9/udb/4wnJn+G0dUJ1Bjc2N96Lf7brt/G\nP17z1/jdnV/GdS1XotZYU9RqLLvOhv+267dh1Vrw2Mmf4K1F+jNFzpLXd39CiGK59eev3PLGKusC\nr9JJ3deleggoJfTYqHJL1sxaqtyqRGdCMzCoDcwT07qdXRBEAZOB00V7zfnwIuw6G0zU2S0blzXs\nAwC8uXi45O816B0BUL11W+/lNrjw2W2fRCKbwPdGHoUgCqxHIkVWSOjRWhhPsnY1xnxCT5wSeliJ\nZ+J413MCtQY3rm2+AitxL16ceYX1WO+zmvAjlU2h0VzPehRCyHvUGWug5lSYCy+yHuUDnp1+Aals\nCje374cuv9T9sY6PwK6z4Vdnfo2VmIfxhBc37p9ENBPDrtodsntQW8laLE0wqY0YXT1JVbUb5Cks\n9DgZT1IcjnySOFVuETkY9o3h345/C4lsEl/ovR0fabu+qIsDxXRd85VQcyq8MPMy3X8gipIWMvjV\nmV/jn498HX/66l/huyd+iDcW30Y6m8be2p34fO/t+Lsr/xx/fun/wKe23oIeZ1fJE7JqjC78/q7f\ngkFtwA/HHsOgZ7ik70eUg64SCCFF4cwv9HjPcZPeE/fCprUWbq4QeXNJ9WnnWM4qhoCU0EMLPbJm\n1tBCT6WJpKNYiXvRbm1hfqNYijcfK9JpyEgqimAqhGZK55GVflcPLFozDi8dK3kKxKBnBBw4DLh7\nS/o+SnFZ/V7srhnAqeAUnjvzEutxSJGFkiGoOJWiFhgLCT1UucXM0ZVBpIUMLm3Yi4913AiLxoxn\npl/AauKDCauszEeWAACNJlroIURO1Lwa9aY6LEQXkRWyrMcp8MZ9eG3+LbgNLlzZeGnh3+vVetzW\ndSsyYhaPjj8l+2WNs3VbOxhPUl14jsc2Ryf8yQBWKEFwQ7xxH/QqXeH+kdLZdVS5ReQhI2Tww9HH\nAAD3DRwsHJaSK5vOikvq98IT9+FdWj4gCiGIAr4/8gh+cuoZTAVn0GFrxS0dB/An+34f/+/V/w++\nvP1zuLxhH5NnWE3mBvzezi9Dzanw3eEHMeE/VfYZiPzQQg8hpCg0Kg1sWit8v3FDOC1ksJoIFE7l\nEvlzF+rTSrvQY1NQTUQ1ooWeynMmlKvbare2MJ4EaLe1QctrMOafLMrrzUekuq3GorweKQ4Vr8Il\n9XsQzcQwlE/QKYVIKorTwWl02Fph0ZpL9j5KwnEc7uz5NGxaK3429SvMhOZYj0SKKJAMwaq1MF/O\nXA+HzgYVp4KXHpgx89biEXDgcEn9Hhg1Bnxy681IC2k8cfJp1qMVLEbzCz2U0EOI7DSbG5EWMrKq\nTvzZ6V8hK2Zxa8dHoOJV7/ux3TUD6HN2Y8x/EkdX3mU04cWdrduyUt0WA1S7tXGiKMIbX4Xb4JJt\nash6aVUamDUmWughzB1dGUQoFcbVTZdju0IOLe1vvQYcODx35iXZL9ISAgBPTv4cR1cG0WnrwP93\n9V/ij/Z+FTd3HEC7tVUW91q22NrwlYGDEEUR/zn4QOG+Pqle7H9XEkIqhsvghD8ReN+JrdX4KkSI\nhVO5RP6kqNxzpS0VQyAZgkljhFalKcnrk+Iw0UJPxZkOzgAA2q2tjCcBNLwaW+1bsBRdLiz5bcZ8\nZAEA0EQPAGXn8oYPAQDeXHinZO9xwjcKESJ2uPtL9h5KZNaY8IW+2yGIAh4YeRipbIr1SKQIRFFE\nKBVW3GK0ilfBZXBQ5RYjnpgPp4LT6HJ0FpJVL6nfgy22dhz3nMCIb5zxhDkLlNBDiGw1WXJJmHMR\nedRuzYUXcHj5OFrMjdhTt/MDP85xHG7f9kloeDWeOPk04pkEgykvbsw/iVgmjt21A7J4eFRtepzb\nABQvObaahFJhpIV04VBgpXDobPAngrSQQJgRRREvzb4ODhyubb6C9ThrVmeqxY6afpwJz2IycJr1\nOIRc0Aszr+DF2VdRb6zFfTsOyjb9uNe1Dff034VkNoWvv/tdLEWXWY9EGKIrBUJI0bgNTogQ33eS\nQbppX1NhF3iVzKq1QMOrS1a5FUwGqW5LAXQqLTS8GtFUjPUopEimCwk97Bd6gPeehtx8So9U0UEJ\nPfLTYKpDh7UVo6sT8CdKc9JRSv8ZcPeV5PWVrNe5Dde3XIXlmAdPTv6c9TikCKLpGLJiFjathfUo\n61ZjcCOSjiKWjrMepeq8tXQEQK6OT8JzPO7Y9klw4PDYxE9KXo24FvPRJehVusLSESFEPprzn7Pn\nZbLQ89PTz0KEiI933nTeRZgaows3tt2AYCqMn53+ZZknXBspPWhP7QeXkkjpuQ1OuPVOjPtPyapO\nTgmk+73SocBKYdfbkRbSiGboXhhhYyo0gzPhWQy4+xS3MHeg9VoAwHMzLzOehJDzO7x8HD+e/Bls\nWiu+uute2S7zSPbU7sDdPbchmo7h345/B764fCqzSXnRQg8hpGhceinZ5ewiSGGhx0gJPUrBcRxc\nBtf7fh2LJZFJIJFNKu5UeTXiOA4mjQmRdIT1KKQIRFHEmdAs3AYXzFp59NsXFnqKULs1H1mAhlfT\n8qhMXdawDyJEvLV0tOivnc6mMbI6gVqjG/Wm2qK/fiX4xJab0Giqxyvzb+KEd5T1OGSTgqkQAGVW\nl0rfo0uVAknOTRAFvL10BFqVFjtrtr/vx5otjbim+QqsxL14ceYVRhPmpIUMVmIeNJjqK6a6g5BK\n0mzOJ/SEFxhPApz0n8awbwxd9i3ozSesnM/+tutQa3Tj5bk3MBOWVwVpRshg0DMMu86GDps8Dl1U\nox5nFxLZhOx+f8idt7DQU1nX4A6dHQDgT2w+SZiQjXhp9jUAwHXNVzKeZP06bG3otHVg2DcmmwVg\nQt5rwn8KPxh5FHqVHl/dda9iDpJc0XgJPrX1FgSSQfz78W8jlAqzHokwQAs9hJCiceVPZfjet9CT\n61enh6zK4tY7Ec/EEUsX90RKIJl7CGXXUkKPEpg1JqrcqhCeuBfRTAzt1hbWoxQ0mOpg0Zgxtjqx\nqTjrrJDFYnQZDaZ6qHhVESckxbK3bic0vAaHFt8penT5uH8SqWyK0nkuQKPS4J7+u6DmVPjh6GMI\np2hRU8mC+c9SVq0SF3pyC/7S9QEpj1OBKfgSfuyuGYBerfvAj3+s4yOwaMx4ZvoFrCbYnfZbjq5A\nEAU0Un0mIbJk1Bjh0NkLVbesiKKIn5x6BgDwic6bL7oAqOHVuGPbpyBCxCNjT0IQhXKMuSbjUt1W\nDdVtsUS1WxsjHQKstPu9Dn3ufmUgWZp0WUIuJJAM4phnCI2memxzdLIeZ0MOtOVSep6nlB4iM/OR\nRXxr6HsQAXxl4Itoyi+rK8X+1mvxkbbrsRL34uvHv0vJx1WIrhYIIUXjzm+0vreqyROrzBMblU5a\nzip2Sk8gmTvhYlfgqfJqZNaYkMymkM6mWY9CNmkqOANAPnVbQK7qo9u5FcFUGEuxlQ2/znLMg4yY\nVdyFWDUxqA3YXTsAT9yHU8Hpor72YL5ua4e7v6ivW2mazA34eOdNCKcjeHDssaIvVpHyCeZPYtl0\nCqzcMuauBzyU0FNWh6S6rYa95/xxo8aAT269GWnh/2fvvqPbuu88778vGgECLGDvvalLlKxiFcuW\nJVfZlpO4JOMkTmInmdSZ59mdfXJmd5+ZZ3cy2dmdlJk0p0zsZGLHHnfZli3JKlbvEiWSIin23kCw\nAUR9/mCxFVsSSQG8APh9nZNzcg6Aiy8tErj3dz+/79fNy7U757K0q7SPjI/PlECPEKErKyYdu2tI\n1XBwRW8lDYNNLEtePO2uNmUJxaxKXU7TUAuH2o4HucLpO9N1AYDy1KUqVzK/lVgLUVCokkDPjER+\nhx4J9Ii5d7D1KD6/j83Z68O2Y+WixDLSzKmc6jqn6mYBIT7K5hzgZ+d/i8Pj5IkFj1CaUKR2SbPy\nQMHdbMhYQ+twO7+48G+4vC61SxJzSAI9QoiAuVaHHovejElnVKssMQuTM7A/Gs4KhA8DPdKhJxxM\njmaS2eHhr3GwBQitQA9AqXV87NbN7IZsn2jjK4Ge0LYufRUAR9tPBuyYPr+Pit5KLHozBXG5ATtu\npLo9ewMl1iIqeqs43B46N7PEzEx26AnnkVuTgX8RfGNeF2e7L5BgtFIUX3DN561OK6cgLo9zPRVU\n9l2ewwo/1D48HujJNEugR4hQlWXJAKBVpS49Pr+PN+p3oaDwQMFdM3rtw0XbMWqNvFH/TkiMKfD4\nPJzvHR+3FWrXaPONWR9NTkwWDYNNOD1japcTNnodfWgUDdYIW9+zGicCPWMyckvMLZfXzaH2Y5h1\n0dySukLtcmZNo2jYmnMbPr+PfRPjw4RQ06jbwU/P/4aBMTs7iu7jlrTw/ftSFIVHS3ewMmUZV+yN\n/Ori7/H4PGqXJeaIBHqEEAETHxWHVtHSN5G+9vq89DltU+31RfhIMn48nBUIUyO3jJF1wR+pzPrx\nQM+QS8ZuhbvGwWZ0ipasmAy1S7lK2cSOiMu22Qd6WiXQExaK4gtINCZwpvs8To8zIMdsHmpl0DXE\n4sQFMqZgGjSKhs8veASTzsTLtW/SNdqjdkliFgZd4TtyK8FoRaNoZOTWHDrfc5Exr4vVaeXX/ZzU\nKBoeLXkIBYWXal7HrcKi4GSHnnTp0CNEyMqcDPQMqRPoOdF5ho6RLtamryLNnDqj18ZFxbC98C4c\nHiev1L4VpAqnr7q/FofHQXnKUjmPDQFlCcX4/D7qBurVLiVs9Dr6STBaI27s9WRASTr0iLl2qusc\nI+5R1meuwaA1qF3OTVmVupz4qDgOtR9n1C2bRIV63F43z1Q8S8dIF5uz1rMle5PaJd00jaLh8wsf\nZWFiKZV9l3mu8k8hNVJWBI9cMQghAkajaEgwxk+1Xe13DuDz+6ba64vwMdkytzfAIxHs0qEnrMRM\nBHpG3BLoCWcur5vW4XayYjLRa3Rql3OVBKOVFFMStbZ6vD7vrI7RNiKBnnCgUTSsTV+Jy+fmTHdF\nQI55oWdi3FbywoAcbz6wGuN5vPRhXD43z156YdZ/d0I9kx16wnF8qU6jIyEqXkZuzaHjHePjttak\nld/wuVkxGWzKupVuRy/vNx8Mdmkf0z7cSZwhBsvE+acQIvRMduhpmwjUzyW3183O+vfQaXTcl791\nVsfYlLmOnJhMTnadocZWF+AKZ+ZM9/i4rRUpMm4rFExuNLmZzrHzidPjZMg9PNV9MZLER8WhoNAv\ngR4xh/x+P/tbD6FRNGzKXKd2OTdNp9Fxe/YGXF4XB9uOqV2OmKd8fh/PVf2J2oF6ViQv4VPF28N2\nlN2f02l0PLX4CQri8jjdfZ4/1byG3+9XuywRZBLoEUIEVKIxgWH3CE7P2NTu20i8wIt0k+PTeoPU\noSccx0TMR5MdeoYl0BPWWofb8Pl95MVmq13KJypLKMbpHaNpqGVWr28b6iA+Kg6zPjrAlYlAW5O2\nCgWFox2BGbtV0VuJXqOjLKEkIMebL1amLmN1WjlNQy283bhH7XLEDNnHhtAomrD9zEuOTmLQNSQj\nLeaAzTnAZVsdBXG5pEQnT+s19+dvI0Zv4Z3GvfRPdF2dC6NuB7axATIknCtESEs0WYnSGlQZufVB\n21FsYwPclnnr1EicmdIoGh4rfRgFhRcuv6baiAKPz8OF3ktYo+JD9hptvsmPy8Og0VN9E51j55PJ\ntcKkCFzv1Wq0xBpiGBiTQI+YO3UD9bQNd7AsefGsv+NCzfqMNZh0Rva3HMLldatdjpiHXq17izPd\nFyiMy+cLCx+LuI6IBq2Bry99kkxLOofajvFm/btqlySCLLJ+g4UQqpsMgvQ7bVPdXWTkVviJ0hqI\nMVjodQY60GNHp9Fh1oXnTaj5xmKYCPTIyK2w1mhvBiAvNkflSj5ZaUIxMLvdkMOuEeyuQbLkBmBY\nSDRZKbUWUW9vpGuk+6aO1evoo32kk1JrMVFh3o5aDY+UPESi0cq7je9zZaBR7XLEDNhdg8QaYsJ2\nMSo5SF0gxced6DyDHz9r0lZO+zXRehMPFd2L2+fm5dqdQazuapPjtjLMMm5LiFCmUTRkWjLoGu3B\nPYc35xweJ7ua3seoNbIt7/abOlZubDYbM9fRNdrNHhW6kcHkuC0nK1KWhO33eaTRa3QUxRfQMdLF\nwERnaXFtk+dxSRNrwJHGaoxnYGxQRpiIObOv9TAAt2dtULmSwDHpjGzMXMeQe5jjnafVLkfMM3ub\nD/J+ywekmVP52tIvoNfq1S4pKKL1Jr65/CskmxJ5t+l99jQfULskEURy1SCECKjJi7k+Z/9UO30Z\nuRWekowJ9DttAb2AHRizE2+IjZj2hpHOMrH7Xzr0hLfGwfHON6Ea6CmJL0BBmVWgZ7Ldv+zoDx/r\n0lcBcOwmF3Qu9E6M20qScVuzYdIZ+fzCxwB4tvIFHB6nyhWJ6fD7/QyODRJnCN9Oh5OBHhm7FVx+\nv5/jnafRaXSUpyyb0WtXp5VTEJfHuZ4KqvpqglTh1TomAz0WCfQIEeqyLOn4/D46Rrrm7D33Nh9g\nxD3K1tzbAjKWb3vBXcQYLOxq3BPwrsTTMTluq1zGbYWU0omxW5f71R3HFg4mN/9FYoceAGtUHF6/\nlyHXsNqliHmgz9HPhZ5L5MRkUhCXq3Y5AbU5az06Rcve5gMSkBNz5lTXOV6p20mcIZZvLPsS0WHa\n3Xi6Yg0xfGv5U8RHxfFq3VscaT+hdkkiSCTQI4QIqETjh6OaPhy5JR16wlGiKQGf34fNGZjdSV7f\n+MVwvDEuIMcTwWfRWwAYkUBPWGscbMaiN4fs7rlofTQ5sVk0DDbjnGGooG1kPNAjHXrCx9LkxZh0\nJo53nMLr8876OBd6LgGwWAI9s1YUn8+23Nvpc/bzHzVvqF2OmIZRjwOP3xvWo0uTo8evCyavE0Rw\nNA620DXaw7KkRUTrTTN6rUbR8GjJQygovFj7Gu45GEnTPiwdeoQIF1mWDABaJ4L1wTboGmJvywfE\nGCzcnr0xIMeM1pv4VNF23D4PL9W8ht/vD8hxp8N91bit0NxwMV8tmBjjK2O3bmxqA2ekBnomRh7Z\nZOyWmAMH2o7gx8/mrA0RtwE2LiqWNekr6XH0cX5iDUeIYKqx1fH7yj9h1Br5xvIvk2C0ql3SnEg0\nJfDN5V/BrI/mj9Uvc7a7Qu2SRBBIoEcIEVBTHXoc/fSM9hGtM2GO8BRspJrcadPnDMwO6kHXEH78\nxEdJoCdcmCd2Pw5JoCdsDbqG6HPayIvNDumFgTJrMT6/j7qBhhm9rm1o/EZCpgR6woZBq2dV6nLs\nriGq+mfX+WHEPcoVeyN5sTnERcUEuML55d78O8mJyeRY56mp3eIidNnHBgGIDePf+6kOPaPSoSeY\nJtvar0mf/ritj8qKyWBT1q10j/by/hyMpGkb7kRBIc2cGvT3EkLcnMyY8fPu1uH2OXm/XY17cXld\n3Jt3Z0DHrK5KXU6ptYiLfdWc7527m4zV/TU4PE7KU5aG9PXZfJRhTiNGb+Fyf+2chrzCUe/EeVxi\nhN4otU6sWwZqg6MQ1zLmdXGk/SQxBgvlqTPrqhkutmRvQkFhd9N++WwVQdU23MEvLzyHH3h6yefn\n3VpxujmVbyz7Mgatnt9d+uOs11xF6JJAjxAioCY79PQ4+uh19El3njCW9JFuS4EwOYc8nHeVzzeT\nI7dGXBLoCVeN9mYgdMdtTSqbaG8+092QbSMd6DU6+a4JM5Njt452nJrV6y/1VePz+2TcVgDoNDq+\nsPBx9Bo9z1e/PPVdLUKT3TUe6IkP45FbicYEFBTp0BNEbp+H013niDXEUGYtnvVx7s/fRozewjuN\ne+l32gJY4dX8fj/tI50kRydi0OqD9j5CiMDIMKehoNA2B4GeXkcfh9qOk2RKZH3GmoAeW1EUHi15\nCJ2i5aWa13F6xgJ6/GuZDFCvkHFbIUdRFEoTirC7huZ0pFw46nX0EaO3YNQZ1S4lKOKlQ4+YIyc6\nT+PwONiYsRa9Rqd2OUGRak5hafIimoZaqBuoV7scEaFszgF+dv63OL1OPr/gkakxmvNNbmw2X1v6\nRVAUnql4jgZ7k9oliQCSQI8QIqDM+miitAbq7Y14/F6SoyOz/ep8MNltKXCBnombUNKhJ2xoNVpM\nOhPD0qEnbDUOtgChH+jJj81Fr9Fzub9u2q/x+rx0jHSRbk5Dq9EGsToRaDkxWWSY06jorWR4FoHB\nyXFbSyTQExBp5hQ+VXw/ox4Hv698UWbbh7BI6NCj1+qJj4qbGtUgAq+it5JRj4Nb0lbc1PdjtN7E\nQ0X34va5ebl2ZwArvNrAmB2Hx0GGeX7toBQiXBm0BlKik2kb7gj6Tvud9e/h9XvZnr8tKOf7qeYU\n7szdzMCYnbcbdgf8+H/O7fNwoadyYtxWdtDfT8xcmYzduiGvz0v/2MBUV+9IZI2aCPQ4JdAjgsfv\n97O/5TBaRcuGzHVqlxNUW3NuA+C95v3qFiIi0qh7lJ+e/w0DY3Z2FN3HqrQVapekqhJrEV9a9Dk8\nPg8/O/9b2uZoTK4IPgn0CCECSlEUkkyJjHocQOTOU54PJi/OewN0w2Vy178EesKLRR8tgZ4w1jg4\n3qEnN8QXjPVaPUXx+bSPdGIfG5rWa7pGe/D4PPOuhWokUBSFdemr8Pq9nOw6O6PXun0eKvsvk2RK\nJF1GswTMhoy1LE4so9pWy/7Ww2qXI65hcOLzMS6MO/QAJEcnMTBmx+V1q11KRDreMT5ua23aqps+\n1uq0cgricjnXU0FVX3BadrePdAKQYUkLyvGFEIGXZUnH4XEGtXtX61A7p7rOkW3JCOoYkrty7yDJ\nmMC+1kNBv+FR3V+D0+ukPFXGbYWqMutE59h+CfRci21sAJ/fF9mBHuPEyC3pXiqCqLq/ls7RbspT\nlkX8KPH8uFwK4/Kp7Lss4QIRUG6vm19WPEvHSBe3Z21gS/YmtUsKCcuSF/EXZZ9h1OPgX8/9OmD3\n94S6JNAjhAi4ybFbgIxBCWNxUbFoFS29zsCO3IqXkVthxaI3M+wekTnHYcjn99E02EpqdArRepPa\n5dxQWcL4WJDL09wN2T6xCCCBnvB0Sy1RoaAAACAASURBVFo5GkXD0Y6TM/p8qbFdYczrYmnSQrkR\nEkCKovC5BZ/Bojfz+pV3ZDdqiBqYGLkV7uNLkwMcGhcfGnQNUdl/mZyYzIAEZDSKhkdKdqCg8GLt\na7h9ngBUebX24fFAT6ZZAj1ChIssSwYArUEcu/VG/S78+Hmg8B40SvCWrw1aPY+UPoTP7+OFy68E\ntVPh6a7xcVvlMm4rZFmN8aRGp1A7UI8nCN954a5tuINX694CPuzqHYliDTFoFA0Dck0kgmh/6yEA\nbs9er3Ilc2Nr7niXnj3NB1SuREzy+DzU2Op4re5tvn/iR/z9sf/N0faTeH1etUubFp/fx7NVf6Ju\noIEVKUt5uPh+WSf8iDXpK/l08QMMuob4ydlfTd2bE+FLAj1CiIBLNFmn/r+M3ApfGkVDotFKX8BG\nbkmHnnBkMZjx+X04vU61SxEz1DXag9PrDJt27qXWiUDPNMdutUqgJ6zFGCwsTVpI23AHLcNt035d\nRW8lAEtl3FbAxRpieKjwXjw+D7sa96pdjvgEg2ORFeiRsVuBd6rzLD6/jzUB6M4zKTsmg01Zt9I9\n2sv7zQcDdtxJkx160qVDjxBhIzNmMtATnF32tbZ6LvVVUxxfwIKJEUjBtCixjOXJS6i3N3Gs41RQ\n3sPtdVPRe4kEo5XcmPC4PpuvyhKKcXldNNib1S4lJPj9fmptV/jZ+d/yDyd+yLmei6SbU1mfsVrt\n0oJGo2iIj4qTDj0iaLpHe7jYV01+bG7Id9QOlEWJZaSbUznVdS6oHf7E9XWP9nKg9Qi/uPBv/KcP\n/l9+fPYZdjfvp3O0mz5nP3+ofmnqsz6UN/f6/X5eqd3J2e4LFMXn84UFjwY1AB6ubs/ewL15d9Ln\n7Oen537DiHtU7ZLETdCpXYAQIvJ8tENPJLdgnQ8STQl099fg9Dgx6ow3dSz72CAKStiPiZhvzHoz\nAEOuEUy60O/yIj40uQCZF5ujciXTk2lJw6I3U22rxe/333BXRduIBHrC3dr0VZzrucjR9lPklGbd\n8Pl+v5+K3krMumgK4vKCX+A8tDqtnN3N+znScZKtuZvlPC7E2F2DaBQNlonv5nCVHD3ewbPH0aty\nJZHnWOdptIqWVanLA3rc+/O3cabrPLsa93JL2goSjNYbv2ia2oc70Wv0MqpZiDCSNXH+3TYU+A49\nfr+f16+8A8CDhffO2U7rTxdvp6r/Mq/Vvc3SpEVYDIH9rq3qr8HpHWND5lrZPR7iFiQUc6D1MNW2\nWoqtBWqXoxqf38eF3kp2N+2fGuVdGJfH1tzNLEosi/gbp9aoeOrtjXh9XrQardrliAizv/UIMH+6\n88B4UO7OnNv4fdWL7Gs5xKeKt6td0rzg9DipsV2hqr+Gyv6aq7rkpkYnszChlAWJJRTHFzDiHuXt\nhj0c7TjJryqeIzc2m4cK76FkYhxlKNnbcpB9rYdIM6fy1SVfQK/Vq11SyLo3fyujHgf7Ww/zs/O/\n5VvLn8Koi1K7LDELEugRQgTcZNvVKK2BGL1F5WrEzZi8kdfntN30TfOBMTsWg1kuhMPM5E3DEfcI\nICP0wsnkolteXHjs9tEoGkqtRZzuPk/XaA9p5pTrPr9tqIP4qDjM+ug5qlAE2sKEUmINMZzsOsvD\nRffd8AK8ZaiNgTE7q9PK5bskSLQaLfflb+W3l/7I2w17+PzCR9UuSXyEfWxoagRAOJMOPcHRMtRO\n23AHy4JwIzpab+Khonv5fdWLvFy7k6eWPBGQ43p9XjpHu8kwp4b977UQ80msIYYYvSUoHXou9FbS\nMNjEsuTF5MfN3cYEqzGe+/O38XLdTl678jZ/seAzAT3+mW4ZtxUuiuIL0Cgaqvtr2V5wl9rlzDm3\nz8PJzjPsaT5A12gPAEuSFrItd/O82lRhNcbht/sZGBu8qhO9EDfL4XFyrOMk8VFxLE9eonY5c2pV\n6nLerH+XQ+3HuSdvC9GynhdwPr+PtuFOqvouU9l/mXp7E17/+Agto9bIsuTFLEwoYUFC6cc+2wxa\nA59b8Gm25GxiZ/27nO2p4Mdnn2FBQgkPFNxNTuyNN+LNhVNd53i17i3io+L45rIvy+/RDSiKwqeK\ntzPqcXCi8wy/qniOry17Er1G4iHhRv7FhBABN9mhJ9mUJDuPwtxkOKvX0XdTgR6/38/AmJ00c2qg\nShNzZDLQM+weUbkSMVONg83oNToyzeHTwaY0YTzQU22rvW6gZ9g1gt01yOLEsjmsTgSaVqNlTdpK\ndjfv50LvJVbeoKPEhd5LACxNWjQX5c1bK1KWktm0jxOdZ9iWu1m+u0OE3+/H7hokwxz+Y4kmA+O9\noxLoCaTjneNjYtakrwzK8VenlXO4/Tjneiqo6qthQeLNj8HpcfTi8XnICKNzFSHE+I2BTEs61bZa\nHB5HwDq5+vw+3qjfhYLCAyoEKW7LWs+xztMc7TjJuvRbKIzPC8hxx8dtVZJotJITExo3w8S1mXRG\n8mJzaLA3Mep2EK2fH52KHR4nh9qOsa/lEHbXIFpFy9r0VWzNuW1eXg9Yo+IBsI0NSKBHBNSxjlOM\neV1sy71j3m1U0ml03J69gVfr3uJg21HuztuidkkRYcg1TFV/zdT/hlzDACgoZMdkjgd4EkvJj82Z\n1u9cmjmFryx5gqbBFt64smvquOUpS7m/4C5So5OD/SNd0+X+Op6r/BNGrZG/XPYlrMZ41WoJJxpF\nw1+UfQaHx0lFbyW/u/RHvrToc/PuMyjcyRYoIUTAJZsSiTPEUBSfr3Yp4iYlGScDPf03dZxRjwO3\nz0N8lIzbCjdTgR6XBHrCyZjXRftwJzkxWWF1cl5mLQbGL9Cup21iN3CGjNsKe2vTVwFwtOPUDZ97\nobcSnaJlQUJxsMua1zSKhvvzt+HHz86G3WqXIyY4PA48Pg9xEXAuFaU1EGeIlZFbAeT1eTnZeRaz\nPppFQQq7ahQNj5TsQEHhxdrXcPs8N33MtuFOADIs4R9UE2K+yYrJAD78Ow6E451n6BzpYm36KlUC\nBFqNlsdKHwbghcuv4PV5A3LcyolxW+Upy2TTW5goSyjGj5+agStqlxJ09rFBXqt7m789/A+8duVt\nnF4nW7I38Xfr/oYnFjwyL8M8wNRN4gHngMqViEji8/vY33oYnUbHhow1apejivUZazDpjOxvOYzL\n61a7nLDk9XmptdXzxpVd/ODkj/l/Dv1/PFv5Aic6zwCwJm0lX1z4ON/f8F/5m1u+zfbCuymKz5/x\n+nBubDbfWvEU31r+FLkx2ZzpvsD/OP5/+GP1ywyM2YPxo11X23AHz1Q8B8BXl37+pqdJzDdajZYv\nL/ocxfEFnOu5yPOXX8Hv96tdlpgB6dAjhAg4vVbP3637L2F1E1l8ssTJHdQ3GeiZPMmLj5LUdLiZ\nHNkgHXrCS/NgK3785MXOXZv6QEg0JZBkSqTGduW6s+rbRsYDPVly8Rb20swpFMTlUt1fi805cM3d\nNX2OftqGO1iYWIpRZ5zjKuefJUkLyY3N5mz3BVqG2siOyVS7pHlvYGwQgDhDjMqVBEZydCJXBhpx\n+zzS6jkAKvsvM+we4bas9eiC+N8zOyaDTVnrONB6hPebD3JX3h03dbyOkYlATwR0nhJivpm8idI6\n1B6QzVxur5u36t9Dp9FxX/7Wmz7ebBXE5bI+YzWH20+wr/UQd+bcdtPHPNN9HpBxW+GkzFrM2w27\nqe6vZXnyYrXLCYru0R72NB/geMdpPH4vMXoLW3PvZlPmWhlfAlij4gCwqXDTWkSuS33V9Dr6WJd+\nS8BH5IYLk87Ixsx1vNe0j+Odp9mYuVbtksJCr6Ofqv7LVPXVcNlWh9M7BoBW0VIcX8CCxBIWJpSS\naUkPeHi4LKGYUmsR53ou8mb9Lg63H+dE52k2Z21ga+5mzHPwndHvtPHTc7/B6XXy5KLPUmItCvp7\nRiK9Vs9Xl36Rn5z9JUc7ThIXFTsvx4uGK1k5E0IEhV6rV7sEEQBJE21l+5w3G+gZvwklHXrCz2SH\nnhH3qMqViJloHGwGIC8uvAI9MH6heKjtGM1DreTH5X7ic9qGxgM9shsjMqxNX0W9vYljHae5J/+T\nWy5X9FYBsDRp4VyWNm8pisL2grv413O/Zmf9e3x92ZNqlzTvDbqGACKiQw+Mj+atG2ig39FP6nVG\nLIrpOdZxGoC1acEZt/VR9+ffxemu8+xq3MstaStIMM5+DEW7dOgRImxlWSY79LQH5HgftB3FNjbA\nluxNqo9PeLDwXs73XOKtht2sTFl2U/W4psZtJUhAOozkxWZj1EZxub9W7VICrmmwhfea9nO+5yJ+\n/CSZErkzZxNr0lZhkLXcKZN/97Yx6dAjAmd/y2EAbs/eoHIl6tqctYH3mw+yt/kA6zNWo1FkkMyf\nG/O6qLVdobK/hqr+y3SPftjdNsmUyOqElSxMLKE4vhCjLiro9SiKwoqUJSxNWsjxztO81bCb3c37\nOdR+jK05m9mcvYEorSEo7z3qHuWn53+L3TXIjqL7WJW6PCjvM1+YdEa+sewr/PjsL6mx1QES6AkX\nEugRQghxTSadCbMu+qY79NgndrTETexwEeHDPBHoGXIPq1yJmImpQE9stsqVzFyZdTzQU91fd+1A\nz0gHeo2OZFPSHFcngqE8ZRn/UfMGxzpOclfe7Z+4mHOh9xIw3jlGzI0yazFF8flc7Kuiwd50zb9H\nMTfsUx16IiXQM94FssfRJ4GemzTiHuVibyXp5tQ5uVkcrTexo+g+fl/1Ii/X7uSpJU/M+lhtI52Y\n9dHERkjnKSHmk9ToZHQaHa0BCPQ4PE52Nb2PUWtkW97tAaju5pj10TxUdB9/qHqRl2rf4Okln5/1\nsar6LzPmdbEpc6mM2wojWo2WYmshFb2V9DlsJJpmH14NBX6/n8r+GnY37aN2oB6AnJhMtubezvLk\nxXIz/RNYJzqM25zSoUcERsdIF9W2WorjC+b95rS4qBjWpK/kcPsJzvdcYkXKErVLCgm9jj6OVh/j\nZPMFrgw04PGPj/40aA0sSVrAwoRSFiSUkhydqFqNWo2WWzNWsyp1BQfbjvBe4z7eqN/F/tbD3JN3\nJ+szVgd0aofb6+YXF56lc6SL27M3sCV7U8COPZ9ZDGb+yy3fwY+M3AonEugRQghxXYmmBNpHOvH5\nfbO+yP9w5FZk3ISaTz7s0CMjt8JJ42ALsYaYqUWocFJiLURBodpW84ndWrw+Lx0jXWSYU2W0Y4Qw\n6YysSFnK8c7TXBlooNhaeNXjo24HtQP15MRkES/B0Dkz3qXnbn545ue8Wf8u317xtNolzWt213ig\nJzYqMoIPydHjgcweR5/KlYS/013n8Pi9rElbOWc3i1enlXO4/Tjneiqo6qthQWLJjI8x5nXR5+in\nKD5fbnILEYa0Gi0Z5lTaR7quOyp3OvY2H2DEPcr2grumrj/VtjZtJUfbT3K+5yIVvZWzDpWf6b4A\nQHmqjNsKN2XWYip6K6m21bDetEbtcmbF6/NypvsCu5v30zY83uW2zFrM1tzNlFqL5Pv3Osz6aPQa\nnXToUZHX56VpqIWmwVZWpCwJ+7WA/S2HANg8z7vzTNqSvYkj7SfZ3bSf5cmL5/Xnkd/v50DrEV69\n8hYenwcY74S4IKGEhYmlFMTlBnWs8mwYtHruzLmN9Rmr2dN8kPebD/KnmlfZ23KQ7fnbKE9ddtNh\nUZ/fx7OVL3DF3sCKlKU8XHT/vP49CTRZUw8/ofUpIIQQIuQkmRJoHmpl0DU064unDwM94X3xNR+Z\ndEY0ioZhl4zcChcDY3YGxuwsS1oUlhc6Zn002TGZNNibcXrGPtY6ttvRi8fnIXOizb+IDOvSV3G8\n8zRHO059LNBT2VeNz+9jadIilaqbv4ri81mQUEJVfw01tjqZU66iqQ49ERKO/rBDT+8Nnilu5Fjn\naRQUVqeVz9l7ahQNj5Ts4Acnf8yLta/xPetfo5/hInPHSCd+/GTM8x3KQoSzTEsGzUNtdDt6STen\nzuoYg64h9rZ8QIzBwu3ZGwNc4ewpisJjpTv4/skf8VLN65RaizDMcJSEy+vmQm8lScYEsi0ybivc\nlCUUA3C5v471GeEV6HF5XRzpOMn7zQfpc9pQUFiZsow7c28jJyZL7fLCgqIoWKPisTkl0DNXfH4f\nrcPt1NiucNlWR91AAy6vC4CTnWf5v1b+ZdjegB5xj3K88wyJRquMEZ+Qak5hafIizvdcpHagnpI/\nWweaL4Zcw/yh6iUu9lVh1kfzpfJHyYsqIC5MNvKYdCa2F9zFbVm3sqtxL4fajvNvlc/zXvN+Hiy8\nh4UJpbNam/b7/bxc+yZneyoois/nCwselW5yYt6TQI8QQojrSpq44dLr6L+JQM/4TSjp0BN+FEXB\nojczLCO3wkajfXLcVo7KlcxeWUIxzUOtXLE3sCix7KrH2obG2/rP9xbFkaYovoAkUyJnuy/wmZIH\nMemMU49d6K0EYGmyLHypYXvBXVT11/Bm/bv8dXlhWAYFI4HdNQREzsityfPLnlHp0HMzOke6aRps\nYWFC6ZyHvbJjMtiUtY4DrUfY1/zBjMfktA93AZBpTgtGeUKIOTB5Pt461D7rQM+uxr24vC52FN5L\n1AwDM8GWYUljS/Ymdjfv553GvTxYeM+MXl/ZfxmX10V51jI5fwpDqdHJxEfFcdlWd1Mdq+fSsHuE\ng61HONB6hGH3CHqNjk2Z69iSs2nq3EtMX7wxnm5bL26vG71Wr3Y5Ecfv99M52s1lWx01tivU2q4w\n6nFMPZ4anUyJtQibc4CLfVW83bCb7YV3q1jx7B1pP4Hb52ZT1q1h8VkyV7bm3Mb5novsbt4/LwM9\n1f21PFf5AnbXEKXWIj6/8FGKs7Lo6RlSu7QZizXE8EjJQ9yRvZGd9bs51XWWn53/LUXx+TxYeA8F\ncXkzOt7eloPsbz1MujmVry75gnwGC4EEeoQQQtxAkjEBGJ/jWhSfP6tjDIzZidIaMGqNN36yCDkW\nvRnbmMwNDxcNgxOBnrhslSuZvVJrEe817aO6v/bjgZ6RTkACPZFGURTWpq1iZ8O7nOk+P7UL1uPz\ncKnvMolGKxly01cVubHZLEtaxPneS1zqq2Zx0gK1S5qX7GODKCjEGCxqlxIQJp2RGL1FOvTcpOOd\npwFYk75Slfe/P/8uTned553GPaxKW06C0Trt17aPjI/+SLfIZ7sQ4SpromNm23AHt7Bixq/vdfRx\nqO04SabEkO2Ack/+nZzqOsfe5oOsSSsnbQbBpTNd5wEoT5FxW+FIURTKrMUc6zxF63B7SHe26XPY\neL/lIEfaT+DyuYnWmbg7bwubs9ZHzLmjGqwTmxptY3ZSJsbFitnz+/30OvqpGaib6sIz5Ppw82CC\n0cqy5MWUWAspsRZObSp1eJx8/8SPeLdpHwsSS2e9Nq0Wr8/LgdYjGDR6bk2/Re1yQkp+XC6FcflU\n9l2mbbhj3qzzeXwe3qx/lz3NB9AoGh4qvJctOZsiIuyVZErki4seY2vubbxxZRcX+6r4P6d/xpKk\nhTxQcDcZ07j2O9V5llfr3iI+Ko5vLPsy0froOahciNAngR4hhBDXlWiaDPT0z/oY9rFB4qPiZFda\nmLLozbSPdOL1ecO2ve180jjYjIIS0guON1IYl4deo+Oyre5jj7UOS4eeSLU2fSVvNbzH0fZTUzd1\nagfqcXqdrE1fKd8hKrqvYBsXeivZWf8uixLL5N9CBYNjg8QaLBGxyDcpOTqRxsEWOb+YJZ/fx4nO\nM5h0RtVGEkbrTewouo/fV73Iy7U7eWrJE9N+bfvweEA3Y5ZdPYQQ6pvq0DNxfj5TO+vfw+v3sj1/\nW8h+D0RpDXym5EGeqXiWFy6/yndWfHVa50Eur5uKviqSTYlTwScRfsoSxgM9l/vrQvL6um24g91N\nBzjdfQ6f30d8VBzbszdya8aaj42uFjOXYIwHwOYckEDPLA2M2bnc/2GAxzb24QizWEMMq1KXU2ot\nosRaRNLE+vOfM+mMfGHhY/zwzM95tvIFvrf6u5h0prn6EW7ahd5KbGMDbMxcJ8GET7AtdzM/v9DA\nnuYDfGHhY2qXE3Tdoz3826XnaR5qJdmUyJOLPktubPhuyLyWTEs6X1/2JFcGGnn9yttU9FZysbeK\n1Wnl3Je/dep+05+73F/Hc1UvYtQa+ctlX8I68TkshJBAjxBCiBuYvKDqc84u0OP2uhl2j5AhN9/D\nltlgBmDEM0qsITxm+M5XXp+X5sFW0s2pGHXh2xFLr9VTGJdPta2WQdfQVb93bUMdxEfFYZaFkIhj\nNcZTllBMVX8NnSPdpJlTqJgct6XSzWoxLtOSzsrUZZzqOse5nousSFmidknzit/vx+4aIt2conYp\nAZVhSafe3sQrdTv5dPEDEhSbocu2OgbG7KzPWI1BxRbkq9PKOdx+nHM9FVT11bAgsWRar2sf7iTR\naA3r8xUh5rtovYlEo3VWgZ7WoXZOdZ0j25JBeeqyIFQXOMuSF7EkaSEVvZWc6Dwzra5olX3VuLwu\nVqQsle+3MFaaUASMj0XZmrtZ3WI+on24k9euvM2lvmoA0s2pbM3ZzMrUZeg0crsnUKxRE4Gej4RQ\nxPUNuYapHaifGKNVR/foh904zbpolicvocRaSKm1kNTolGl/PhbG53F33h2807iXF2teD6vgx/7W\nQwBszrpV5UpC08LEUtLNqZzqOsf2grtm1PEznPj9fo53nuZPNa/h8rpYk7aSR0oejPhrocL4PP6q\n/Otc6qvmjfpdHO88zamuc2zMXMvdeVuu6iLXNtzBMxXPoQBfXfp52cgpxJ+RMzwhhBDXZY2KR6No\nZt2hx+4aBCA+KjaQZYk5ZNGPB3qGXSMS6AlxHSNduHxu8mJz1C7lppUlFFNtq6Wmv45VaeMt/Idd\nI9hdgyz+szFcInKsS19FVX8NxzpO8WDhPVzoqcSkM4VdW+1IdG/+Vs50X2Bnw3ssS14UUZ1iQp3D\n48TtcxNriKxzqe35d3FloIH9rYcxaA08UHC33PScgeMdE+O20lapWodG0fBIyQ5+cPLHvFj7Gt+z\n/jX6G9xMHHINM+QeZkmcjPATItxlWjK40HsJ+9gQcVHTv1Z8o34Xfvw8UHhPWJxTfKb4QS731/JK\n3U6WJC24YZeFM90XAChPCe2wkri+WEMMmZZ06uwNuLxuVQO0MH5D+FD7MV6ufRO3z0NhXB5bczez\nKLEsLP6Owk38VIceGUF/LQ6Pg7qBhokAzxXahjumHovSGlicWEbJRAeeTEvaTf2e3pN3J5X9NZzo\nPMPixDJWpi4PxI8QVC1D7dQNNLAgoWRGIxvnE42i4c6c2/h91Yu83/IBny5+QO2SAs7hcfB89Suc\n7j6PUWvkyYWPT61zzgeKorA4aQELE0s53XWenfXvsr/1MEc6TrIlexNbcjbh8Dj46bnf4PQ6eXLR\nZymxFqldthAhRwI9Qgghrkur0WKNiqfP0Ter1w+MTQZ64gJZlphDU4Ee94jKlYgbaRxsBiAvLvzb\ntZYmFMEVqLZ9GOiZXBySjl+Ra2nSIqJ1Jo53nmZFyhJsYwOsSl0esmMY5pPU6GTWpK3kaMdJTnWd\nY3VaudolzRuDE+HouAgLR1sMZr61/Gl+dObnvNe0D4PGwD35W9QuKyw4PE7O9Vwk2ZRIQVyu2uWQ\nHZPBpqx1HGg9wr7mD9iWd/t1nz/1fW6W73Mhwl2WJZ0LvZdoG24nLqp0Wq+ptdVzqa+a4vgCFiRM\nr6uX2hJNVu7Jv5PXr7zD6/W7eLz04Ws+1+V1UdFbSYopiSy5bgl7ZdZi2oY7qLc3UpZQrFodI+5R\n/lj9H5zruYhZF82Tiz7LsuTFqtUzH1gn1jGlQ8+Hxrwu6gcapwI8zUOt+PEDoNfopsZnlVoLyYnJ\nCuh1vFaj5YsLH+P7J3/M85dfpSAuL+TH8XzYnWe9ypWEtlWpy3mz/l0Ot5/gnrw7I6ojd729id9d\n+iN9Thv5sTl8cdFnrzleLtJpFA23pK1gRcoSjrSf4O3GPbzTuIeDbUcwaY3YXYM8XHQ/q8IgrCeE\nGiTQI4QQ4oaSTAlcttXh8rowaA0zeu3A2PhOFgn0hC8J9ISPhslATwR06MmyZGDWRVPdX4vf70dR\nFNpGOiYek4XxSKXX6lmVuoKDbUd4qeZ1QMZthZJ78rZwovMMbzXsZmXKMglazZHJcHRcBHbJi4uK\n4dsrnuafz/ycnQ3vYtDq2ZKzSe2yQt7Z7grcPjdr0laGTFej+/Pv4nTXed5p3MOqtOXXbZffMdIF\nQIYlba7KE0IESWZMBgCtw+0sTLxxoMfv9/P6lXcAeLDw3pD5DJuOO7I3crzzDIfbjrMufdU1r7ku\n9lXj8rll3FaEKE0oZm/LQar7a1UL9NQNNPC7S89jGxugOL6ALyx8LOSDDJFg8r/xfA/0jLpH2d96\nmOr+OhoHm/H6vcD4zfmCuNypAE9ebA76IHexSolO5tPF2/lj9cs8W/kC317xdMh2pxpyDXOq6xwp\npqRpfT/OZzqNjtuzN/Bq3Vt80HaUu/PCf5OHz+/j3cZ9vN24G7/fz915W7g3705ZQ2H833tT1q2s\nSV/FvpYP2N10gF53P3dkb5S1ACGuIzS/7YQQQoSUyeR4n9M249d+GOiJrF3l84llYmfEsEsCPaGu\ncbCFKK2B9Aho5atRNJQkFGEbG6DbMT53vW1oPNAjc5Qj27qM8fExDYPNaBWtLH6FkERTAusz1tDr\n6ONYxym1y5k3Bl1DQOR16JlkNcbznRVPE2eI5ZW6nXzQdlTtkkLe8c7xv79Q6pQVrTfxUNF9uHxu\nXqnded3ntk916JFAjxDhLssyHuj56JiV67nQW0nDYBPLkheTHxdemxB0Gh2PlezAj58Xql/B6/N+\n4vPOTo3bWjqX5YkgKY7PR6doqbbVzvl7+/w+3m7YzY/O/IKBMTv352/j2yueljDPHDHpjBi1Rgbm\n8citIdcwPzzzC95q2E29vZFMJLiXWwAAIABJREFUSzpbczbzjWVf5p82/h1/vfIvub9gG8XWwqCH\neSbdmr6aZUmLqB2oZ2/zwTl5z9k41HYcj8/DbVnrQzZ0FErWZ6zBpDOyv+UwLq9b7XJuis05wI/P\n/pKdDe8Sa4jhOyueZnvBXRLm+TNRWgN3523h7279G7657CvsKLpP7ZKECGnyTSKEEOKGEo3jgZ7e\nWYzdssvIrbBnNox36BmRDj0hzeFx0jXSTU5MVsQsFpRNzEy+3D++eNo20oFeoyPZlKRmWSLIsi2Z\nU6GtEmshJp1R5YrER92Vdzt6jY63G/fgDvOFtnAxeS4VqYEegCRTIt9e8TQWvZkXLr8qgbHr6HX0\nUzfQQHF8AYkh1q59TVo5BXG5nO2poKqv5prPaxvpRKtoSY1OnsPqhBDBkGi0YtQaaR1qv+FzfX4f\nb9TvQkHhgYK75qC6wCu2FrAmbSUtw+0c/IQA6pjXxcXeKlKik2QTQoQwaA0UxOXROtQ+p5ucJm8I\nv9Wwm/ioOL5b/jXuyb8zYq71w4XVGDdvO/QMjNn54Zlf0D7SycbMdfyvjf+dv7nl2zxUdC8LE0sx\n6qJUqUtRFD5b9mliDTG8Wf8uLUNtqtRxPV6flw/ajmDUGlmbvlLtcsKCSWdkY+Y6htzDHO88rXY5\ns3auu4J/OPFD6gYaWJa8mO+t/iuKrYVqlxXSLHozCxJL5PtNiBuQvxAhhBA3NNWhxzH7Dj2RfBMq\n0ln0FkBGboW6psEW/PjJj8tVu5SAmWxpXm2rw+vz0jHSRbo5VXa1RDhFUbg1YzUAy5IXq1yN+HPx\nUXFsyrqVgTE7h9qPq13OvGB3TY7ciuxzqTRzCt9e8TTROhN/qHqJ013n1S4pJE0ucK9JX6VyJR+n\nUTQ8UrIDBYUXa1/D7fN87Dk+v4+OkS5So5Pl+1yICKAoCpmWdLpGe264o/545xk6R7pYm76KtDDu\nKLqj6D6idSZ21r87td4x6dLEuK3yZBm3FUlKE4rx4+fyHHXpOd9zke+f+BF1Aw0sT17C91Z/l6L4\n/Dl5b3E1a1Q8Do8Tp8epdilzqt9p40dnfkHXaDdbsjfxaMlDRE907w4FFoOZJxY8gtfv5XeXnsfl\ndald0lXOdl/A7hpiXcYqjLJBado2Z21Ap2jZ23wAn9+ndjkz4vK6+GP1y/zq4u9x+zw8XvowTy1+\nAnMI/d0IIcKbBHqEEELcUJIpEYBe58w79AyM2dEoGmINMYEuS8yRqZFbEugJaY2DLQDkxWarXEng\nJJkSSTQmUGOro3O0G4/PQ+ZEW38R2TZlruOby77C+olgjwgt23JuJ0pr4N2m9xkLscXTSDTZoSc2\nKvLPpTIt6Xxz+VeI0hr4XeXzVPRWql1SSPH7/ZzoOI1Bo2dFiAYes2My2JS1ju7RXvY1f/Cxx/sc\nNlxeFxkWGbclRKTIiknHj5+Okc5rPsftdfNW/XvoNDruy986h9UFXozBwoOF9+D0jvFy7ZtXPXZm\nctxW6jI1ShNBsmByo0l/XVDfx+V186fLr/JMxXO4fC4eL32Yryz+i5AKUsw3VuN4t3Hb2PwZu9Xr\n6OdHZ35Bj6OPu3PvYEfRfSEZUFyYWMrmrPV0jnbzat3bapdzlX2th1FQuC1zvdqlhJW4qBjWpK+k\nx9HHD8/8nP0thz8WnA1FrUPt/OPJn3C4/TiZlnT+5pZvsyFzbUj+3QghwpcEeoQQQtzQZDv/Xkf/\njF87MDZIrCFG2iaGMYt+fOTWXLaXFjPXONgEQF5sjsqVBFZZQjEOj5OjHScBpHX9PKFRNNJyN4RZ\nDGbuyN7IkGuYA62H1S4n4tnHhlBQiJnomBfpcmOz+fqyL6FTtPy64vdU9V97dNN8c8XeSK+zn+Up\nS0J6t+/9+Xdh0Zt5p3EP/c6rO3y2j3QAkGmW73MhIkXWROC+dfjaY7c+aDuKbWyA2zJvxWqMn6vS\ngubWjNXkx+ZwpvvC1IjByXFbqdHJZJgltBhJsmMyidaZqLbV4vf7g/IeHSNd/NOpf+Fg21EyzGn8\n51VyQzgUWKPGP69szvkxdqtrtIcfnvk5fU4b9+ffxfbCu0P6d/DBwntJN6dysO0IF3ur1C4HgAZ7\nM42DzSxOKiM5OlHtcsLOvflbKY4voMHezEu1r/O3h/+B/3P6Z+xrORRyf4d+v599LYf4p1P/Qtdo\nN5uz1vOfVn6T9DDuQiiECF2yQi6EEOKGzLpojFojfTMM9Pj8Puxjg8RHxQWpMjEX9Fo9UVoDI9Kh\nJ2T5/X4a7S1Yo+Ijbrzd5NitI+0nAAn0CBEq7sjehElnYnfTfhweh9rlRDS7a5AYg2VejScqis/n\nq0u/CIrCLy88S62tXu2SQsLxjlMArElbqXIl1xetN/FQ0X24fG5eqd151WPtw10ApFtkoVuISDF5\nft461PGJjzs8DnY1vY9Ra2Rb3u1zWVrQaBQNj5Y+jILCn2pexe11c7G3CrfPzYoUGbcVaTSKhhJr\nEf1OGz2O3oAe2+/3c6jtGD84+RPaRzrZlLmO/7TqW9LJLkTETwQQbWOhFSQIhvbhTn545ucMjNnZ\nUXQf9+RvUbukGzJo9Xxx4ePoFC1/qHqJIdew2iWxv/UQMD4+SsxcfFQc3y3/Gv9j/ff4TMmDFMXn\n02Bv4j9q3+Bvj/wD//vUT9nbfJA+h+3GBwuiIdcwP7/wb/xH7RsYdUa+vvRJPlPyIHqtXtW6hBCR\nSwI9QgghbkhRFJJMCfQ6+ma0G2nEPYrX7yU+wgIG85FFb2ZIAj0hq99pY8g9HFHjtiaVxBeioEyN\n9ZFAjxChIVpvYmvObYx6HLz/CWN1RGD4/X4GxwYjLqw5HWUJxTy1+Am8fi8/v/BbGgeb1S5JVS6v\nizPdF7BGxVNiLVS7nBtak1ZOQVwuZ3sqruqyNNmhJ0M69AgRMdLNaWgUDW3X6NCzt/kgI+5Rtube\nNtX9NRJkx2SwOXs9PY4+3mvax9nJcVspS1WuTARDWRDGbo26R/nNxT/w/OVX0Gt0PLXk8zxaugOD\n3BAOGQnzpENPy1A7Pz77S4Zcw3ym5EHuzLlN7ZKmLSsmg+2FdzPkHubfq18KWhet6RgYs3Om+wLp\n5lRKrUWq1REJ4qPi2Jy1nu+Wf43/uf5vebRkByXWIhoHm3mlbif/7ej3+V+n/oXdTftnNVHgZlT1\n1fA/T/wzl/qqKbMW873Vf8XipAVzWoMQYv6RQI8QQohpSTQl4PK5GXJPf7fD5JzbOOnQE/bMejMj\n7hFVL4zFtU3e5MyLi6xxWzA+2icrZryNf3xUHGZ9tMoVCSEm3Za1nhi9hfdbPmBYQp9B4fQ6cfnc\nxBli1C5FFYuTFvDkos/i8rr513O/oXXo2uNcIt35nks4vWOsTisPi3GEGkXDIyU7UFB4seY13D4P\nML7726g1khABI3eEEOMMWj0p0cm0DXfg8/uuemzQNcTelg+IMVi4PXujShUGz/3524iPiuO9pn1c\n7KsiNTpFxm1FqAWTgR5bbUCOd2WgkX848SPO9lRQGJfP91b/FcuTFwfk2CJwrMbx9Uyb065yJcHT\nNNjCj8/+khH3KJ8t+xSbs9arXdKM3ZG9kVJrERW9VRxqP65aHYfajuHz+9ictV46tQVQXFQMm7LW\n8Z0VT/P9Df+Vx0sfpsxaTMtQG69deZv/fvQf+cHJH/Ne4z66RwPbRe2jPD4Pr9Tu5F/P/5pRt4Md\nRffxjeVfnpebb4QQcy/0V4GEEEKEhCRjAsCMxm5NBnqkQ0/4sxjMuH0eXD632qWIT9A42AJAXmzk\nBXoAyqzji6dZ0p1HiJBi1EWxLe92nN4x9jQdULuciGQfGwKY14uE5SlLeWLBIzg9Tv7l3K/oHOlS\nuyRVHO88DYx3vgkX2TEZbMpaR/doL/uaP8Dt89Dt6CXDkio3OYSIMFmWdJzeMfqdV4/A2NW4F5fX\nxb15dxKlNahUXfAYdUY+Vbwdj9+L2+ehXMZtRawkUyKJxgRqbHV4fd5ZH8fn9/FOw56p0Ub35m/l\nOyuexipB15AUHxXZI7euDDTyk7PP4PQ4eWLBI6zPWKN2SbOiUTQ8seARonUmXq59k66R7jmvwe11\n80HbMaJ1JlaH0fl6uIkxWNiQuZZvrXiK76//r3yu7NMsTCildbiD1+vf4e+O/S++f+JH7GrcS9do\nT8Det2u0h/99+qfsbTlIiimJ/3vlN7gz57aw2GghhIgM8mkjhBBiWpJM44GembSx/DDQIx16wt1k\na/ThEJhHLT6uwd6MRtGQE5OpdilBsSixFIDcCBwpJkS425ixlvioOPa3Hp4Kn4jAsY8NAhBrmL+B\nHoA16St5tHQHw+4RfnL2GXpG+9QuaU4NjNmp7q8lPzaHVHOK2uXMyP35d2HRm3mncQ/V/TX4/D7p\nXiFEBMqyjHfU/GgntV5HH4fajpNkSgzbm8TTsSJ5CQsTS1FQWJm6TO1yRBCVJRTj8DhpHmqb1ett\nzgF+cvYZdja8R3xUHN8t/xr35W9Fq9EGuFIRKAatHoveHJGBnhrbFf71/K9x+dw8ueizrElfqXZJ\nN8VqjOfxsk/h9rn5XeXzeCa6Q86V093nGXaPsD5jDYYIDLCGIovBzK0Zq/nG8i/zjxv+G3+x4BEW\nJZbRMdLFm/Xv8vfH/on/efyfeadhz6w3hfj9fo62n+QfT/6YlqE21qav4m9u+Q45sVkB/mmEEOL6\ndGoXIIQQIjwkmhKBmQZ6xm9CSaAn/E0FetwjJE6Eu0Ro8Pg8tAy3kWlOi9hFg2JrId9d8TW5YBYi\nBOm1eu7O28ILl1/h3ab3eaTkQbVLiih21/i5VFzU/By59VEbM9fi9rl5ufZNfnLuGf6q/GskGK1q\nlzUnTnSewY+fNemr1C5lxqL1Jh4quo8/VL3IH6peAiBDOu4JEXGmAj3DHSxPWQLAzvr38Pq9bM/f\nFtGBBUVR+MriJ+gZ7SXdnKp2OSKIyhKKOdx+fDxkO8Nx1+d7LvHvVS8x4hllWfJiPlf2aRknHSas\nUXF0jvbg9/sjpgNXZd9lnql4Fp/fz1cWP8Gy5EVqlxQQ5SlLuZS2imOdp3i7YQ8PFN49J+/r9/vZ\n33IIBYVNWevm5D3F1cz6aNalr2Jd+ipG3Q4qeis523OBqr4adja8x86G90gzp1KevIQVKUtJN9+4\nY+io28Hzl1/mTPcFTDojX1r0WVamLp+jn0gIIa4mgR4hhBDTMtWhxzn9HdEycityfBjoGVW5EvHn\n2oY78Pg85M5wQTHcFFsL1C5BCHEN69JXsbtpP4fbjnFnzqZ5E7KYC5MdeuLmeYeeSXdkb8TldfFm\n/bv85Owz/FX51yN+HJnf7+d4x2l0Gh0rU8Kz88OatHKOtB+n3t4EQIbc8BYi4mTGjAf1WofHO/S0\nDrVzqusc2ZYMyudB15oorYGsmAy1yxBBVmItREGh2lbDPflbpvUat9fNq1fe4kDrEfQaHY+V7mBD\nxtqICYbMB/HGeFqG2xnxjE6tjYWzit5Kfl3xexRF4atLv8CixDK1SwqoT5c8QO1APe817WNhYilF\n8flBf88r9kZahttZnrxEroVDQLTexJr0laxJX4nD4+RibxVnuy9wqf8ybzfu4e3GPaRGp7AiZQkr\nkpeQaUn/2GfylYFGflf5PP1OGwVxuXxx4eOywVUIoSoZuSWEEGJaEoxWFBT6ZtChxy4deiKGjNwK\nXY2DLQDkx0Z2oEcIEbp0Gh335W/F4/fyTsNetcuJKIOu8TFmkR5amYm787ZwV+4d9Dj6+Mm5XzEU\n4ecmzUOtdI52szRpIdF6k9rlzIpG0fBIyQ4UxhfKpUOPEJEn1hBDrCGGtuEOAN6o34UfPw8U3oNG\nkeVnERksejPZMZk02JtxesZu+PzOkS7+6fS/cqD1COnmVP7zqm+zMXOdhHnCjDUqHgCb065yJTfv\nbHcFz1Q8h0bR8LWlT0ZcmAfApDPyxUWPAfBs5Qs4PI6gv+f+lkMA3J69IejvJWbGpDNyS9oKnl76\nBX6w4b/xpUWfZXnyEvqdNnY17uX7J3/E3x/7J16/8g4tQ214fV7ebtjND8/8HJtzgHvy7uS7K74m\nYR4hhOqkQ48QQohp0Wt0xEXFznDklh2TzhSxY4DmE7NhPNAz4h5RuRLx5xoHmwHIk0CPEEJFt6St\n4N2mfRzrPMXW3M2kRCepXVJEmOrQI4Geq2wvuAuX18W+1kP89Nyv+faKr4Zt2OVGjnWcBmBN2kqV\nK7k52TEZPFx8P/1Om4wYESJCZVrSqeqv4ULPJS71VVMcX8CChBK1yxIioMoSimkeaqVuoJ7FSQs+\n8Tl+v58jHSd4qeYN3D43GzLX8qmi+2VtLExZjeObFAfGBsgO405cJzvP8lzVnzBo9Hx92ZfmpHON\nWgri8rg7bwvvNO7hT5df44uLHg/ae/U7bZzvvUS2JYPCuLygvY+4eUadkZWpy1mZupwxr4tLfdWc\n7b7Axd4q3mvax3tN+zBqjTi9TqxR8Xxx0eMR/XcihAgvskVCCCHEtCWZEhgYs+P2eab1/IExu4zb\nihAycit0NdqbMemMcvNcCKEqjaLh/oJt+Pw+3m7YrXY5EcPuGkRBIUZvUbuUkKIoCp8q3s76jDW0\nDLfzs/O/welxql1WwLl9Hk53nSPWEBMRN8XvyN7Ip4sfULsMIUSQZFnGb3T/ofolAB4svFc6kYiI\nU2YtBqDaVvuJj4+6Hfzm0r/zx+qX0Wl0fGXxEzxe+rCEecLYhx16BlSuZPaOtJ/k2coXiNIa+Oby\np+ZFSOGevC3kxeZwsusspzrPBu19DrYexef3cVv2BvnOCyNRWgPlKUv58uK/4Acb/ztPLX6CVanL\n0Wm0rExZxvdWf3de/J0IIcKHdOgRQggxbUnGROpowOa0kRKdfN3njnldODxO6RoSIT4M9ET2WItw\nM+IepdvRS5m1WFrZCyFUtzx5MZmWdE51nWNb7u1kWNLULinsDY4NYTGY0Wq0apcSchRF4bHSHbi8\nbk52neEXF37HXy77UkTdMLvU+/+3d+fRURZm+8ev2TPJJJNksgFJCAkkJOyLgrKoqFVftb5Va6W+\nYsXW4lK32lartlZp1W621da1aotVUVzRWlxQqaIoaICQDQgkbAGyTfbMZGZ+fyRE+QnKkuSZTL6f\nczgnZDIz1xySh8nM9dx3iVo6W3Vyxmy+BwCEvfTudXot/lZNSB6rEW5eC0DkyY7Pks1sU1ndpi9d\nVuHdqsc3PK269nrluLP0vTFzlRiVYEBK9KaEqO5CT8fAXLm1YvuHWlz+omJs0bp64veVGZtudKR+\nYTFbdEnBhbrrkz/pmfIXlR2f1es/j76ATx/sXCWXLUZTUyb06m2j/9gtdk1MGaeJKeOMjgIAB8U7\nPwCAQ5bUvS/2UNZuNXT/ohvvcPdpJvQPJvSEp62N2yRJWbxYDiAMmE1mnZ19mkIK6bUtbxgdJyI0\n+BrltjPt8GDMJrMuzv+2JiaP08aGCj28/p+HPElyIPiounvd1pCBvW4LwOCQ3r2KxiSTvpl9msFp\ngL5hM1s1Mn6EdrZU96xGDYaC+s/Wt3Xvpw+qvr1B/5N1iq6d9EPKPBEioft1zYE4oWd51QotLn9R\nsTaXrpu0YNCUefZJiU7St0d9U22d7fpn8WIFQ8Fevf2Pqz9Va2ebZg2bLpvF1qu3DQDAF1HoAQAc\nMs9hFHq8PYUe3oSKBNE2p0wyqdnXYnQUfMHWxipJ0ggmYQEIE2M9+cqKy1Th3iJVNW43Os6A1t7Z\nLl/AJzfPpb6SxWzRpWPmaqxntErqyvV40b8UCAaMjnXUmnzN2lBbqgzXUA3rnnoBAOEsJTpZOe4R\nOnX4iUqLSTU6DtBnRid2r92q26iGDq/u++wRLa1Ypjh7rK6ddLnOzP4Gk/UiSLzDLZNMqhtghZ5l\nW5fr+U2vym2P03WTFwza6anHDTlGE5LHamNDhd6qeq/XbjcUCund7R/IbDJr5rDpvXa7AAAcCIUe\nAMAhS3J6JEk17bVf+7UN3WcquZnQExHMJrNibNFq9lPoCSf7Cj3D4zIMTgIAXUwmk87uPit/6ZZl\nBqcZ2Pad9e22xxqcJPxZzVZ9f+zFyksYqbU1G/SP4md6/Qzc/vbJ7s8UDAU1bchUo6MAwCExm8y6\nYcoVOifnDKOjAH1qdEJXoefd7R/oNx/fq/KGzRqfNEY3H3udRiXkGJwOvc1itijOHquGjoFR6AmF\nQnq14g29UvEfJTjidf3kK5QWk2J0LMOYTCZ9d/R5cttj9WrFG6pq6p2TTsrqN2lXy25NThnPdHoA\nQJ+j0AMAOGT7Vm7VHsrKrXYm9ESaGFuMWij0hI1QKKRK7zYlRSUq1u4yOg4A9MhLGKlR8dkqri3T\n5oatRscZsLy+JkliQs8hslls+uH47ynbnaU1e9bqqdLnB3SpZ9WuNTKbzJqaOtHoKAAA4AuGutIU\na3Opqmm7OgI+fSf3f3X5uHk9q8oReRKi4tXQ0Rj2zy1DoZBe3vy6Xt/6lpKiEnX95CuUHO0xOpbh\nXLYYXZz/HQVCAT2x4Wn5Ar6jvs13t78vSTopY+ZR3xYAAF+HQg8A4JDF2lyym22HtHKrwbev0MNZ\nCpHCZYtRi7817F/AGCz2ttWopbNVWW7WbQEIL11Tek6XJC2t+I9CoZDBiQamfRN64uwUeg6Vw2LX\nlRMuVWZsuj7c9YmWbHxlQH7/7Wjepe3NOzXGM5rSLgAAYcZsMmtO5iyNis/WT6f+SLPTj5fJZDI6\nFvpQgsOtQCigJl+z0VEOKhQKacnGV/Rm1btKjU7W9VOukMeZYHSssJHvydVJ6TO1u3WvXtz02lHd\n1t7WWhXVlCorLlNZcbwmBwDoexR6AACHzGQyyeNMVE1b3de+ObJv5RaFnsjhsscopJBaO9uMjgJJ\nWxu3SRIvHgAISznxWSrw5GljQ4XK6jcZHWdA8vr2rS+l0HM4nFanrpp4mYbGpOm97Sv18ubXB1yp\n56NdqyVJ09OmGJwEAAAcyDeGn6TrJi/QMNcQo6OgHyRExUuS6sN07VYwFNTTZS/o3e0faGhMmq6b\nvIDXYw/gnJwzNDQmTSt2fKiimpIjvp33dnygkEI6KX1GL6YDAODgKPQAAA5LkjNR7YH2ry11NHR4\nZTVZGDkcQVy2aElSs4+1W+Fga2OVJAo9AMLX2SNOkyQtrVg24AoV4WDfhB63I9bgJAOPyxajH036\ngVKjk/Vm1bt6fetbRkc6ZIFgQJ/s/kwx1miNSco3Og4AAMCgl9Bdjqlv9xqc5MuCoaCeLHlOH+xc\npQzXUF076YeKs/P7w4HYLDZ9b8xcWU0WPVny3BFNXGrvbNeHO1fLbY/TpJTxfZASAIAvo9ADADgs\nSVFdu5dr2mq/8uu8HY1yO+IYOxxBYrrLWc1+Cj3hYKt3m6wmi9JjhxodBQAOKDMuXROTx2prY5WK\nao/8DMjBqtHXJElys3LriMTZY/WjiT+QJypRr215U29VvWd0pENSUleuJl+zpqROlM1sNToOAADA\noBcfphN6AsGAntjwtFZVr9HwuAxdM+lyueycWPlVhrmG6JycM9Tkb9aTJc8e9oknH1WvUXugXbOG\nHSeL2dJHKQEA2B+FHgDAYfE4EyVJNW11B/2aQDCgRl+T3Ix3jSix3YWeFgo9hvMH/NrevFPDYofy\nZh+AsHbmiG/IJJOWVixTMBQ0Os6A4u1olEkmzrA9CglR8bpm0uWKd7j14qbXtGL7SqMjfa2PqtdI\nkqYPYd0WAABAOEhwdBd62sOn0OMPdurvRU9qzZ61ynFn6UcTf6Do7sna+GonZszU6IRRKqot1fs7\nPzrk6wVDQb237QNZzVbNHDatDxMCALA/Cj0AgMOS1F3oqf2KQk+Tv1nBUFDxDs4ojyQ9E3pYuWW4\nbc07FQgFWLcFIOwNdaVpaupE7WjepcK9RUbHGVC8vka5bDGc+XmUkpyJumbS5Yq1u7S4/CV9uPMT\noyMdVKu/Vev3blBadIoyY9ONjgMAAABJCVHdK7c6wmPllj/g1yPr/6m1NRuUmzBSV038vpzWKKNj\nDRhmk1kXF1ygGGu0nt/4qqpb9hzS9Ypry7SnrUZTUycq1u7q45QAAHyOQg8A4LB4oron9LQffOVW\nQ/cvuPFM6Iko+8b2snLLeFsbqyRJIyj0ABgA/mfEqTKbzHq14g2m9BwGb0ej4hxM5+kNqdHJumbi\n5YqxRutfpUu0Zneh0ZEOaM2eteoMBTRtyBTW1gIAAISJOHuszCazdjZXq6S2XDubq9Xibz3sdU29\noSPg04PrntCG2lIVJObpivGXymGx93uOgS7e4dbc0efJH/TrieKn1Rns/NrrvLv9A0nSiekz+zoe\nAAD76bMdDcFgULfffrvKyspkt9u1cOFCDR8+vOfy5cuX669//ausVqvOO+88XXDBBV97naVLl+rJ\nJ5/U4sWL+yo2AOBrfD6hp/6gX9PQ0SiJQk+kcdko9ISLrd6uQg8TegAMBCnRSZqeNlUrd32sT6o/\n0zRWCX2t9s52dQR8cjPtsNcMdaXp6onf158/e1hPFD8jT0KcsuzZRsfaz6pda2SSScemTTY6CgAA\nALqZTWalOJNU3bpH9699tOfzVrNVbnuc3I6uP/Ff+PiLn4+yOHqlrN3e2a6/rX1cm71bND5pjOaP\nvYg17EdhUso4TR8yVR/tWq3Xtrypc3LOOOjXVrfsUUlduUbGj1BG7NB+TAkAQB8Wet566y35fD4t\nXrxYhYWFuvvuu/XAAw9Ikvx+v+666y4tWbJETqdTc+fO1Zw5c/Tpp58e9DrFxcVasmSJIa1nAMDn\n7Ba74uyxqmk7lAk9vAkVSSj0hI+tjdvkssX0FOwAINydMeJkfVy9Rq9teVNTUifIygvPX8nra5Ik\nue08l+pNmXHpumrifN1X+KjuXfmoTsk8QSdnzFa0zWl0NO1u2aMtjVXKT8ylFA8AABBmFoy/VBsb\nNsvb0agGX6O8HZ//2eLo3bwLAAAgAElEQVStVEgHf9/KbrF/qewTv+9jh7u7/BMr+1dM2mn1t+lv\na/+uLY1VmpQyXpcWzGU1by/49qhvalN9hd6sfFcFibkalZBzwK97r3s6z0lM5wEAGKDPXkVds2aN\nZs2aJUmaOHGiioqKei7bvHmzMjMz5XZ3vUg1ZcoUffLJJyosLDzgderr6/XHP/5RP//5z3Xbbbf1\nVWQAwCFKciZqa+M2BYKBA/7y6O2e0OPmzYiIEkOhJyw0+ZpV216nMZ7RrOMAMGAkRiVoxrDpem/7\nB/pw12rNGjbd6EhhrXHfcyk7K7d6W7Y7S1eMv1RPFD+l/2x9W+9tX6mTM2brpIwZirJGGZZrVfWn\nkqRpaUywAgAACDfJ0R4lR3sOeFkwFFSTr7mr4ONrVMMXyj7eL5R/9rTVfOV9OK3OA076iXPE6o3K\nd7StaYeOTZus/xv9bco8vSTKGqVLxszVvZ8+oH8UL9bPj73+S2X/Vn+bPqpeowRHvMYlFRiUFAAw\nmPVZoae5uVkul6vn7xaLRZ2dnbJarWpublZs7OcvTMbExKi5ufmA1/H5fLrlllt08803y+FwHNJ9\nJyREy2rlCU04Sk7mBWkgEgyLT1WFt1LmmE4lu+K/dHnb5q7CR86QoUp2DY6f+8FwfAuFXLJZbOoI\ntQ+KxxuuKndskSSNGTKSfwf0C77P0Fsucp2tD3d9rDeqluuscSfKbrEZHSlslbX6JUnDPCn8DPaB\n5OSJmpKdr2Ub39PLpW/o1S3L9N6O93VO/mk6beQJclgPfnZ0XwiGglr90WdyWqN0cv70fr9/AJGJ\n/z8ARKpwPL6lyi1p2Fd+TWegUw0djapv86q+zau6toaej+vbG1TX/XF1y+4DXn9O9gxdPuW7MpvN\nffAIBq/k5LE6t/0MLdnwml6ufFXXHDd/v8uXlq6SL+DTBWPPVFrql18HB3pTOB7fABivzwo9LpdL\nLS2fn8EfDAZltVoPeFlLS4tiY2MPeJ3S0lJVVlbq9ttvV0dHhzZt2qRf//rXuuWWWw563/X1rX3w\niHC0kpNjtXdvk9ExAPQCl6lr/UPZjiqZEr9cttzt7VrH1dli0d62yP+5H0zHtxhrtBpaGwfN4w1H\n67aVSZJSLGn8O6DPDabjG/qDWScMm6E3q97Vi2vf1JyMWUYHClvba/ZIksx+Oz+DfSQ5OVbHJx2n\nSdMn6d1t7+utqhV6cu0LeqXkTZ02fI5mDJsmWz+thiut26ja1nodP+QYNdZ3SOrol/sFELl4Dgcg\nUg3845tN8UpSvCNJIxySDtAP8Qf88vqa9pvwE2116pi0SaqtZWp2X5idPFNr4tbr/apPNNI1Usek\nTZLUVbz/d9ly2c02TYibMMC/9xDuBv7xDcDR+KpCX59VeSdPnqwVK1ZIkgoLC5Wbm9tzWU5Ojior\nK9XQ0CCfz6fVq1dr0qRJB7zO+PHj9dprr2nRokX64x//qJEjR35lmQcA0Pc8zkRJUm1b3QEvb/B5\n5bLF9NubIOg/LlsMK7cMtrVxmyRpeFyGwUkA4PCdMvwERVkcWrZ1udo7KS0cTM/6UnucwUkin9Ma\npTNGnKI7j79Jpw+fo/ZAh57b+LJu//Aevb/jIwWCgT7PsKp6jSRp2pCpfX5fAAAACG82i01JzkTl\nxGdpcsp4nZQxU9OGTJHZxGSevmIxW3RJwVzZLXY9U/aiatvqJUnra4pV216vY9MmK9oWbXBKAMBg\n1WfPAE499VTZ7XZdeOGFuuuuu3TzzTdr6dKlWrx4sWw2m2666SZddtlluvDCC3XeeecpNTX1gNcB\nAISfpKiuQk9N+5cLPaFQSA0djYp3uPs7FvqByxajjoBP/oDf6CiDUjAU1NbGbUqNTv7STm8AGAhc\nthjNyZilZn+L3tv+gdFxwpbX113ocTBuu79E26J1ds7puuO4m3Ry5my1+Fv0dNkL+tVHv9NHu1b3\nWbGnvbNdhXvWKykqUTnurD65DwAAAABfLTnao2+POkftgXb9o/gZBUNBvbPtfUnSiRkzDU4HABjM\n+mx0gtls1h133LHf53Jycno+njNnjubMmfO11/mi9PR0Pfvss70bFABw2JK+YkJPe6BdvoBP8Q7O\nKI9ELnuMJKnZ36IEC3uj+9vu1r1qD7RrQtwYo6MAwBGbkzlL721fqTer3tOsYcdRUDyAxo6uMdtx\ndgo9/S3W7tK5I8/SyRmztazyHX2w4yMtKnlWyyqX68wR39DklPG9enb0Z3uL5Av6deyQKTKZTL12\nuwAAAAAOz3FDpmpDbYkK9xbpyZLntLGhQqMTRmlITKrR0QAAgxgz+gAAh83tiJPVZFHNAQo9DftW\nRDChJyLF2PYVeloNTjI4bfVWSZKyWLcFYABzWp06ZfgJauts0/JtK4yOE5a8vka5bDGysr7UMG5H\nnC7IPUe/PO6nmjF0mmra6vT4hqd018d/UuHeIoVCoV65n1W7VkuSpqVN6ZXbAwAAAHBkTCaT5o4+\nT257XM9a3BMzZhicCgAw2FHoAQAcNrPJLI8zUTXttV+6rKHdK0lM6IlQsd2FnhZ/i8FJBp9AMKDC\nvUWSpCx3psFpAODonJA+Q7F2l5Zv+6+afM1Gxwk73o4muXkuFRYSoxL03dHn6ZfTf6JpaVO0q2W3\nHln/T92z+i8qqik5qmJPbVudNjZUaGT8iJ4JmAAAAACM47LF6OKCCyRJyU6PxnhGG5wIADDYUegB\nABwRjzNRLf5WtXW27ff5ho59hR7WMUWingk9vPnarzoCPj1S9E8V1ZYoMzZdw2KGGB0JAI6Kw2LX\nacPnqCPg05tV7xodJ6x0BHxqD7SzbivMJDk9mlfwHd067ceakjJB25p26IF1j+sPa/6q0rqNR1Ts\n+bj6U0nS9LSpvR0XAAAAwBHKT8zVlRMu0+XjLunVdbsAABwJ/icCAByRpKius4hr2ur3+/y+lVtM\n6IlMLjsrt/pbk69Zf/70Ia2vKdHohFG6ZtLlspgtRscCgKM2c9h0JTjitWL7yp5CMCRvz/pSnkuF\no7SYFM0fe5F+fuz1mpA8Vlsaq3Rf4SP682cPaVPDlkO+nVAopFXVa2Q32zQpZVwfJgYAAABwuMZ4\n8jTUlWZ0DAAAKPQAAI6Mp3stQG3b/mu3Gnz7JvS4+z0T+p5r34QeVm71iz2te/X71fersmmbpqdN\n1ZUT5stpjTI6FgD0CpvZqjOyTpY/2KllW98xOk7Y6Cn02Cn0hLNhriG6fNw8/XTqj1TgydPGhgrd\n++kDur/wUVU2bvva61d4K7W3rVYTkscpiv/bAQAAAAAAcABWowMAAAamJKdHklTTXrff5709K7d4\nEyoSUejpPxXeSj247nG1+Ft1RtYpOnPEqTKZTEbHAoBeNX3IVL1R9a4+2LlKp2TO7ikMD2aNPib0\nDCTD4zJ01YTLVOHdqqUVb6ikrlwldeUal1Sgs0Z8Q+mxQw94vVXVqyVJ04dM6c+4AAAAAAAAGECY\n0AMAOCL7Vm7Vtu1f6Glo98pmtslpdRoRC30shkJPvyjcW6S/fPaQ2jrbddHo83VW9jco8wCISBaz\nRWeOOFWBUECvb33b6Dhh4fMJPbEGJ8HhyHZn6dpJl+vaSZcr252l9TXFuuuTP+nRoie1q2X3fl/r\nC/i1Zvc6xTvcyk3IMSgxAAAAAAAAwh0TegAAR2TfGfQ1/3+hp6NR8Y44ygcRymWLliS1+Cj09JV3\nt32gJRtfkc1i04Jx8zTGM9roSADQp6amTtSyyne0qnqNZg2bruFxGUZHMpTX1ySJCT0DVW7CSN0w\nOUcldeVaWrFMn+1Zp8I96zU1dZL+Z8QpSolO0rqaDWoPtGt2+nEymzjPCgAAAAAAAAdGoQcAcESc\n1ii5bDGqaa/t+VxnsFNN/malxaQYmAx9yWK2yGl1MqGnDwRDQb20+d96u2qFYu0uXTlhvjJj042O\nBQB9zmwy67yRZ+lvax/Tg+ue0E+mXq3EqASjYxlm34SeODuFnoHKZDKpwJOn/MRcra8p1qtb3tAn\nuz/Vmj2Fmp42Rbtb90qSpqexbgsAAAAAAAAHx6lgAIAj5olKVF1bvYKhoCTJ29F1Rnm8w21kLPQx\nly2aQk8v8wf8emLD03q7aoVSo1P0kylXU+YBMKgUePJ03qiz1ehr0gNrH1dbZ5vRkQyzb0JPnIOV\nWwOdyWTS+OQxuumYa3XZ2P9TsjNJK3d9os3ercqKy1QqJXgAAAAAAAB8BQo9AIAjluRMVGco0HMm\nudfnlUShJ9K5bDFq9rcoFAoZHSUitPhbdf/aR7Vmz1rluEfox1Ou7FlpBwCDyUkZM3VC+gztbKnW\no+ufVCAYMDqSIbwdjYqxRctmZqBupDCbzJqcMl63TrtBlxRcqJHxI3TmiFONjgUAAAAAAIAwxyuE\nAIAjtq90UNNWp4SoeNW3dxV63A5WREQylz1GwVBQ7YF2Oa1Oo+MMaLVt9frb2r+runWPJqeM17z8\n78hmsRkdCwAMc/6os1XXXqf1NSV6puwFfXf0+TKZTEbH6leNvkYlOOKNjoE+YDaZdWzaZB2bNtno\nKAAAAAAAABgAmNADADhiSfsKPe11kiRvBxN6BoMYW4wkqcnH2q2jUdW0Xb9fc7+qW/fo5IzZunTM\ndynzABj0zCazLh1zkTJjh2nlrk/0RuU7RkfqV76AT22d7ZSjAQAAAAAAAFDoAQAcuaQojySptq1W\nktTQvXqLQk9kc3UXelr8FHqO1IbaMt376YNq8jXr/FHf1LmjzpLZxNMyAJAkh8WuBeMvVYIjXq9U\n/Eerqz8zOlK/8XY0SZLcdgo9AAAAAAAAwGDHO0cAgCOW9IWVW5LU0DOhhzehItm+Qk8zhZ4jsnLn\nJ3pw3eMKhYL6/tj/00kZM42OBABhx+2I05UT5ivKEqVFJc9qU8MWoyP1C6+vqxwd54g1OAkAAAAA\nAAAAo1HoAQAcsXiHW2aT+QuFnkaZZFKcnTehIllPoYeVW4clFArptYo39K/S5+S0RumaSZdrYso4\no2MBQNga6krT98f9n4IK6eF1/9Ce1r1GR+pz3u5ph0zoAQAAAAAAAEChBwBwxCxmixId8app71q5\n5e3wKs7uksVsMTgZ+pLLzoSewxUIBvRk6XP699a35IlK1I+nXKVsd5bRsQAg7OUn5mpu3rlq6WzV\n39Y+FvFl0n0TetxMOwQAAAAAAAAGPQo9AICjkuT0qMnXrI6ATw2+RrkdbqMjoY/tm9DT4m81OMnA\n0N7ZrgfWPa6Pdq1WZmy6bpx6lVKjk42OBQADxvFDj9Vpw+dob1utHlr/hPwBv9GR+kxjR5Mkyc3K\nLQAAAAAAAGDQo9ADADgqHmeiJKmqcZs6g52Kp9AT8WK6Cz1N/maDk4S/hg6v7v30QZXUlWusJ1/X\nTV7ASjoAOAJnZX9DU1ImqMJbqUUlzyoYChodqU/0TOhh5RYAAAAAAAAw6FmNDgAAGNiSugs9mxq2\nShKFnkHg8wk9/bv2pCPg08b6zSquK9fG+s2Kd7g1LqlA45LylRAV369ZDsXO5mr9be1jqu9o0Mxh\n03XBqHNYRwcAR8hsMuvi/AtU3+HVmj1r5XEm6pycM4yO1eu8HV2FHsqfAAAAAAAAACj0AACOSpLT\nI0na7N0iSYp3cEZ5pHNao2Q2mdXs69uVW6FQSLtadqu4rkwlteXa1FChzlBAkmQzW7WzpVrFdWVa\nXP6iMlxDu8o9yQXKcA2TyWTq02xfp7x+sx5e/w+1dbbrnOwzdOrwEw3PBAADnc1i0w/HXaI/rPmr\n3qh8R0lRiZoxbJrRsXqV19ekGGu0bBab0VEAAAAAAAAAGIxCDwDgqCRFdU3oqfBulcSEnsHAZDLJ\nZYtRcx+s3Gr1t6q0fpNKastUXFeuhg5vz2XprqEq8OSpIDFXI9zD5e1o0vraYhXVlKi8frO2Ne/U\nv7e+pXiHW2OT8jU+qUC58Tn9/qbo6t2FWlS8WCFJlxRcqGPTJvfr/QNAJHPZY3TFhPn6/Zr79Uz5\ni0qMSlC+J9foWL3G29FIORoAAAAAAACAJAo9AICj5OleudUR8EmS3LwJNSi4bDGq/0LZ5kgFQ0FV\nNW1XSW25iuvKtMVbpZBCkqQYW7Smpk5UQWKeRifmyu3Yf/2Ix5mgE9Nn6MT0GWrrbFdJXbnW1xRr\nQ02p3t/xkd7f8ZHsFrvyE3M1zpOvsUn5irW7jjrzwYRCIb1V9Z5e2vxvRVmidPm4ecpLHNln9wcA\ng1VKdJJ+OO57+kvhw3q0aJFumHKlhrmGGB3rqPkCfrV1tml4bLrRUQAAAAAAAACEAQo9AICjEm11\nymmNUltnuyQm9AwWLluMdrZUKxAMyGK2HNZ1vR1NKq3rKvCU1JWrxd+1usskk0a4M1WQmKcCT54y\nYofJbDIf0m06rVGanDJek1PGKxAMqMJbqfW1xVpfU6y1e4u0dm9Rz+2P83St5kqLTum1NVjBUFDP\nlb+iFTtWKt7h1pUT5kfEm8sAEK5y4rM0L/8CPbbhKT2w9nHdOPWqAf8cpNHXKIlyNAAAAAAAAIAu\nFHoAAEfFZDIpKSpR25p3ShJrIgaJGHuMJKnZ3/qlyTn/v85gpyq8lSqpK1dxbZm2d3+vSF0FsOOH\nHKN8T55GJ4xUtC36qLNZzBaNSsjWqIRsnTvyLO1u2aP1tSVaX1OszQ1bVeGt1MsVryspKlHjkgs0\nPqlAOe4Rh11M2scX8OnxDU9rXc0GDY1J05UT5ishKv6oHwcA4KtNSZ2o2rZ6vVzxuh5c+7ium3yF\noqwOo2MdMW9HkyQKPQAAAAAAAAC6UOgBABw1j9Ojbc07FWWJUpQ1yug46AcuW1ehp8XfcsBCT01b\nnUrqylRcW66y+o09K9msJotGJ4xSvidXBYl5GhKT2mtTcg4mNSZFqTEpOiXzBDX7W7ShplTra0tU\nUlumd7a9r3e2vS+n1akxnjyNSypQQWKeom3OQ7rtJl+zHlz3hLY2VikvYaR+MO5iOa2Hdl0AwNE7\ndfiJ2ttWq5W7PtbjG57SD8dfcsjT3cKNt3tCT5z9q4uyAAAAAAAAAAYHCj0AgKOW5EyUxHSewWRf\noafZ3yKpa0rNxoYKFdeWqbiuTHtaa3q+NsWZpHxPngoSczUqIUcOi92QzFJX7mlDpmjakCnyBzu1\nqb5C62uLtW5vsVbvLtTq3YUym8waGZ+tcUn5Gp9UoCSn54C3tae1Rn9b+3ftbavVsWmTddHo82U1\n89QKAPqTyWTShXnfUn1Hg4pqS/Rc+Su6IPecPi+L9gVvByu3AAAAAAAAAHyOd50AAEft80KP2+Ak\n6C/7Cj3v7/hIy7Yu1ybvFnUGOyVJdou9Z9JNgSf3oIUYo9nMVuV7cpXvydW3R52jnS3VWre3WOtr\nilVev0nl9Zv0/MalGhKTqnFJBRqXVKCsuAyZTWZt8VbpwXWPq9nfotOHz9FZ2acNyDePASASWMwW\nXTb2Iv1xzQNasWOlkp2JmpM52+hYh62n0GOn0AMAAAAAAACAQg8AoBd4oroKPZxRPnjE2l2SpDV7\n1kqShrmG9BR4st1ZA25Sjclk0jDXEA1zDdEZI06Wt6NRRTUlWldTrLL6jXqj8h29UfmOYm0u5SWO\n1Nq9G9QZ7NTcvHM1c9h0o+MDwKDntDp15YT5+t3q+/TCpteU6EzUxOSxRsc6LI2+Jkk8nwIAAAAA\nAADQZWC92wYACEtZcZnKisvUhOQxRkdBPxmXlK/Th89RUnSS8hNHRdx0JrcjTjOGTdOMYdPkC/hU\nWrdR62tKtL62azWX3WzTgvHf09ikfKOjAgC6JUTFa8GES3Xvpw/qiQ1P67rJP1RWXKbRsQ7Z5xN6\nYg1OAgAAAAAAACAcUOgBABy1aJtTP5l6tdEx0I/sFrvOzjnd6Bj9wm6xa3zyGI1PHqNgKKhtTTsU\nbY1WcnR4rhIDgMEsMzZd88d8Vw+t+4ceXPuEbpx6dc9q0HDn9TUq2uqUzWIzOgoAAAAAAACAMGA2\nOgAAAMBAYTaZNTwugzIPAISxcUkF+nbuOWryN+uBtY+p1d9qdKRD4u1oVBzrtgAAAAAAAAB0o9AD\nAAAAAIgoJ6QfrzkZs1TdukePrF+kzmCn0ZG+kj/gV2tnm+LtFHoAAAAAAAAAdKHQAwAAAACION8a\neaYmJI9VecNmPVX6vEKhkNGRDsrra5IkxTliDU4CAAAAAAAAIFxQ6AEAAAAARByzyazvFVyo4bEZ\nWlW9Rq9vfcvoSAfV6GuUJLmZ0AMAAAAAAACgG4UeAAAAAEBEslvsWjDhe/JEJei1LW/q4+pPjY50\nQA0d3YUeB4UeAAAAAAAAAF0o9AAAAAAAIlacPVZXTJgvpzVKT5Y8p431m42O9CWNHd0rt+ys3AIA\nAAAAAADQhUIPAAAAACCiDYlJ1Q/GzlNIIT20/p+qbtljdKT9eH1M6AEAAAAAAACwPwo9AAAAAICI\nl5c4UheNPl9tnW3629rH1ORrNjpSD+++lVt2Cj0AAAAAAAAAulDoAQAAAAAMCtOHTNUZWaeotr1O\nD617Qr6A3+hIkqRGX9fKLbeDlVsAAAAAAAAAulDoAQAAAAAMGmeOOFXHpE7WlsYq/aP4GQVDQaMj\nydvRKKc1SnaL3egoAAAAAAAAAMIEhR4AAAAAwKBhMpl0Uf75GhWfrcK96/XS5n8bHUleXyPrtgAA\nAAAAAADsh0IPAAAAAGBQsZmtunzcPKVGJ+vtqhX6744PDcviD3aqxd+qOAeFHgAAAAAAAACfo9AD\nAAAAABh0om3RunLCfLlsMVpc9pKeKl2itXs3qL2zo19zNHY0SRITegAAAAAAAADsx2p0AAAAAAAA\njJDk9GjB+O/pofX/0Ac7P9YHOz+W1WTRyPhsjfHkaYxntFKik2Uymfosg9fXKElyO2L77D4AAAAA\nAAAADDwUegAAAAAAg9YI93D9Zsat2tq4TRtqSrShtlSl9RtVWr9Rz296VUlRiRqTNFpjPPkaFZ8t\nu8XWq/ff2LGv0MOEHgAAAAAAAACfo9ADAAAAABjUzCazst3Dle0errNzTldDh1fFteVd5Z66cr23\nfaXe275SNrNNeQk5GuMZrTGe0fI4E4/6vhv2TeixM6EHAAAAAAAAwOco9AAAAAAA8AXxDreOH3qM\njh96jDqDnarwVmpDbak21JaqqPuPJKVFp2iMZ7TGJo1WtjtLVvPh/4rd2NEkSXI73L36GAAAAAAA\nAAAMbBR6AAAAAAA4CKvZqtyEHOUm5OhbI89UbVudNtSWaUNtqcrqN+ntbSv09rYVirI4NDpxlMZ4\nRqvAk6f4QyzoeLtXbsUxoQcAAAAAAADAF1DoAQAAAADgEHmciZqdfpxmpx8nf8CvjQ0VPZN7CvcW\nqXBvkSQp3TW0Z3pPVlymzCbzAW/Pu2/lliOu3x4DAAAAAAAAgPBHoQcAAAAAgCNgs9hU4MlTgSdP\n39Y52t26t2s1V02pNjVUaHvzTi2rXK4Ya7TyPbka4xmt/MRcxdpdPbfh7WhUlCVKDovdwEcCAAAA\nAAAAINxQ6AEAAAAAoBekRicrNTpZczJmqb2zQ+X1m3qm96zeXajVuwtlkknD4zI0xpOnMZ7R8voa\nmc4DAAAAAAAA4Eso9AAAAAAA0MuirA6NTx6j8cljFAqFtKtld9f0ntpSbfZu1dbGKr225U1J0rCY\nIQanBQAAAAAAABBuKPQAAAAAANCHTCaThrrSNNSVplOHn6hWf5tK6zdqQ02pNjZs1rjkAqMjAgAA\nAAAAAAgzFHoAAAAAAOhH0TanJqeM1+SU8UZHAQAAAAAAABCmzEYHAAAAAAAAAAAAAAAAAPA5Cj0A\nAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAA\nAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQ\nAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAA\nAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQR\nCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAA\nAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABAGKHQAwAAAAAAAAAAAAAAAIQRCj0AAAAAAAAAAAAAAABA\nGKHQAwAAAAAAAAAAAAAAAIQRUygUChkdAgAAAAAAAAAAAAAAAEAXJvQAAAAAAAAAAAAAAAAAYYRC\nDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAAAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGKPQAAAAAAAAA\nAAAAAAAAYYRCDwAAAAAAAAAAAAAAABBGrEYHQOQLBoO6/fbbVVZWJrvdroULF2r48OFGxwKAo7J2\n7Vr9/ve/16JFi1RZWambbrpJJpNJo0aN0i9/+UuZzXRmAQwsfr9fP//5z7Vjxw75fD5dccUVGjly\nJMc3AANeIBDQrbfeqi1btshkMulXv/qVHA4HxzcAEaO2tlbnnnuuHnvsMVmtVo5vACLGt771Lblc\nLklSenq6FixYwDEOQER46KGHtHz5cvn9fs2dO1fHHnssxzcAB8SRAH3urbfeks/n0+LFi/XjH/9Y\nd999t9GRAOCoPPLII7r11lvV0dEhSbrrrrt03XXX6amnnlIoFNLbb79tcEIAOHyvvPKK4uPj9dRT\nT+nRRx/VnXfeyfENQER45513JEnPPPOMrrvuOt17770c3wBEDL/fr1/84heKioqSxO+nACJHR0eH\nQqGQFi1apEWLFumuu+7iGAcgIqxatUqfffaZnn76aS1atEjV1dUc3wAcFIUe9Lk1a9Zo1qxZkqSJ\nEyeqqKjI4EQAcC+M3toAAAcESURBVHQyMzN133339fx9w4YNOvbYYyVJs2fP1sqVK42KBgBH7PTT\nT9e1114rSQqFQrJYLBzfAESEU045RXfeeackaefOnYqLi+P4BiBi3HPPPbrwwguVkpIiid9PAUSO\n0tJStbW1af78+Zo3b54KCws5xgGICO+//75yc3N11VVXacGCBTrxxBM5vgE4KAo96HPNzc09YzEl\nyWKxqLOz08BEAHB0TjvtNFmtn2+tDIVCMplMkqSYmBg1NTUZFQ0AjlhMTIxcLpeam5t1zTXX6Lrr\nruP4BiBiWK1W/exnP9Odd96ps88+m+MbgIjwwgsvKDExsedEOonfTwFEjqioKF122WX6+9//rl/9\n6le68cYbOcYBiAj19fUqKirSn//8Z45vAL4WhR70OZfLpZaWlp6/B4PB/d4IB4CB7ou7bFtaWhQX\nF2dgGgA4crt27dK8efN0zjnn6Oyzz+b4BiCi3HPPPVq2bJluu+22ntWpEsc3AAPX888/r5UrV+ri\niy9WSUmJfvazn6murq7nco5vAAayESNG6Jvf/KZMJpNGjBih+Ph41dbW9lzOMQ7AQBUfH6+ZM2fK\nbrcrOztbDodjvwIPxzcAX0ShB31u8uTJWrFihSSpsLBQubm5BicCgN5VUFCgVatWSZJWrFihqVOn\nGpwIAA5fTU2N5s+fr5/85Cc6//zzJXF8AxAZXnrpJT300EOSJKfTKZPJpLFjx3J8AzDg/etf/9KT\nTz6pRYsWKT8/X/fcc49mz57N8Q1ARFiyZInuvvtuSdLu3bvV3NysGTNmcIwDMOBNmTJF//3vfxUK\nhbR79261tbXpuOOO4/gG4IBMoVAoZHQIRLZgMKjbb79d5eXlCoVC+s1vfqOcnByjYwHAUdm+fbtu\nuOEGPfvss9qyZYtuu+02+f1+ZWdna+HChbJYLEZHBIDDsnDhQr3++uvKzs7u+dwtt9yihQsXcnwD\nMKC1trbq5ptvVk1NjTo7O/WDH/xAOTk5PH8DEFEuvvhi3X777TKbzRzfAEQEn8+nm2++WTt37pTJ\nZNKNN96ohIQEjnEAIsJvf/tbrVq1SqFQSNdff73S09M5vgE4IAo9AAAAAAAAAAAAAAAAQBhh5RYA\nAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAAAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAAAAA\nAAAAAGGEQg8AAAAAAAAAAAAAAAAQRij0AAAAAAAAoFe88MILuummm4yOAQAAAAAAMOBR6AEAAAAA\nAAAAAAAAAADCiNXoAAAAAAAAAOhfDz/8sF5//XUFAgHNnDlTc+fO1ZVXXqmMjAxVVlZq6NCh+t3v\nfqf4+Hi98847+tOf/qRgMKiMjAzdcccdSkpK0sqVK3X33XcrFApp6NCh+sMf/iBJqqys1MUXX6yd\nO3fquOOO08KFCw1+tAAAAAAAAAMPE3oAAAAAAAAGkRUrVqioqEhLlizRSy+9pN27d2vp0qUqLy/X\nJZdcotdee005OTm6//77VVtbq1/84hf661//qqVLl2ry5Mm644475PP5dOONN+qee+7R0qVLlZeX\npxdffFGStGvXLt133316/fXXtWLFCm3cuNHgRwwAAAAAADDwMKEHAAAAAABgEPnwww+1bt06nXvu\nuZKk9vZ2hUIhZWVladq0aZKk//3f/9WNN96oGTNmaPz48UpPT5ckfec739HDDz+ssrIypaamKj8/\nX5J0ww03SJJeeOEFTZ06VfHx8ZKkzMxM1dfX9/dDBAAAAAAAGPAo9AAAAAAAAAwigUBAl1xyiS69\n9FJJUmNjo6qrq3X99df3fE0oFJLFYlEwGNzvuqFQSJ2dnbLZbPt9vqmpSS0tLZIkq/Xzl5tMJpNC\noVBfPRQAAAAAAICIxcotAAAAAACAQWT69Ol6+eWX1dLSos7OTl111VUqKirSli1bVFJSIkl6/vnn\nNXv2bE2YMEFr167V9u3bJUmLFy/WtGnTNGLECNXV1WnTpk2SpEcffVRPP/20YY8JAAAAAAAg0jCh\nBwAAAAAAYBCZM2eOSktLdcEFFygQCGjWrFk65phj5Ha79Ze//EVVVVXKy8vTwoULFR0drTvuuENX\nX321/H6/hg4dql//+tdyOBz63e9+p5/+9Kfy+/3KzMzUb3/7Wy1btszohwcAAAAAABARTCHmHgMA\nAAAAAAxq27dv17x587R8+XKjowAAAAAAAECs3AIAAAAAAAAAAAAAAADCChN6AAAAAAAAAAAAAAAA\ngDDChB4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAA\nAAAAAAAAAAAAAMIIhR4AAAAAAAAAAAAAAAAgjFDoAQAAAAAAAAAAAAAAAMLI/wN+hAwRaafF+AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAJoCAYAAAATN9ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7JpOeSa8QAiF0CSAgColYUPnaWEQFRdG1\n7uq6ltW1/da+iq4r7op9VRRBqqgoNkAECUoTQgKhJZQQ0ntvM78/QsbEFBJImGR4v66LKzPnPOfM\n50wOn5lLbp/HYLVarQIAAAAAAAAAAAAAAADQ7RjtXQAAAAAAAAAAAAAAAACAE0P4BwAAAAAAAAAA\nAAAAAOimCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAAAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOE\nfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAA0EbLli3TwIEDNXDgQG3cuNHe5QAAAAAAABD+AQAAAAAA\nAAAAAAAAALorwj8AAAAAAAAAAAAAAABAN0X4BwAAAAAAAAAAAAAAAOimCP8AAAAAAAAAAAAAAAAA\n3RThHwAAAAAAAAAAAAAAAKCbMtm7AAAAAAAA0H0MHDhQkvTEE0/ohhtu0PLly7VkyRLt3btX1dXV\nCg8P16RJk3TzzTfLxcVFkrRp0yZ99NFHio+PV0FBgYKDgzV+/HjdfffdCg4ObvG1ysvLtWDBAq1a\ntUopKSkqKSmRr6+vhg4dqiuvvFKXXnqpjMbW/7+mH3/8Ud999522bdum3NxclZWVycvLS+Hh4Ro7\ndqxuvPFGhYaGNjlu9uzZev3112U2m7VlyxZlZ2drzpw5WrNmjdLT02UymRQVFaVLL71U06dPt11r\nZ0hISNCiRYu0efNmpaeny2g0yt/fXyNGjNBll12mCRMmyGAwtHj8zz//rPnz52vnzp3Kzc1VSEiI\nJkyYoDvvvFMmk0lnnXWWJGnmzJmaMmWK7bhHH31Un332mSRp/fr1CgoKavb8f/rTn/Tjjz9Kkvbs\n2dPsmNTUVC1ZskSbNm1SamqqCgsL5eLiIn9/fw0fPlxTpkxRTExMk+OOHDmiCRMmSJLeeOMNBQUF\naebMmdq1a5fc3NwUFRWlp556SoMGDbIdc7L3jdVq1Y8//qgFCxZo7969ysvLU1hYmCZOnKg77rij\nxeM62olex8aNG3XTTTdJkj7//HNlZWXp1VdfVXJysjw9PTVw4ED961//UnV1dbvf29zcXC1YsEBr\n167VwYMHVV5eLn9/fw0bNkxXXnmlLrnkkmbvxbbWFBIS0hlvJQAAAAAADo/wDwAAAAAAaLfq6mrd\nddddWrNmTaPte/fu1b///W9t2LBB77//vt544w298cYbslqttjFpaWlasGCBVq9eraVLlzb7D/47\nduzQPffco8zMzEbbs7OztWbNGq1Zs0Yff/yxXnvttWYDRPn5+brnnnu0ZcuWJvsKCgpUUFCgxMRE\nzZ8/X2+++abGjh3b4rVu2bJFf/nLX1RQUNBo+/bt27V9+3YtW7ZMc+fOla+vb4vnOFH/+9//9Mor\nrzR6/6S69zAtLU0rVqzQuHHj9MYbb8jDw6PRmJqaGj3zzDNavHhxo+2HDx/WnDlz9PXXX2v27Nkd\nXvPvvfPOO3rttddUU1PTaHt1dbVKS0uVmpqqr776Stdff72efvrpFs+za9cuvf/++6qoqJAkVVZW\navfu3erVq5dtzMneNxUVFXrwwQe1atWqRtsPHjyod955R8uXL9dVV13V3reg3U72OuqtXbtW//3v\nf2WxWCRJVVVVSktLU3BwsNLS0mzj2vLefv3113ryySdVXFzc6DUyMzO1cuVKrVy5UmeddZZee+01\n+fv7n1BNAAAAAADgxBD+AQAAAAAA7fbOO+8oPz9f0dHRuummmxQeHq59+/Zp1qxZKigo0IYNG/Tn\nP/9Za9euVd++fXXbbbepf//+ysrK0rvvvqsdO3bYZv948cUXG5173759uvnmm1VWViZPT09Nnz5d\nY8eOldlsVlpamr766iutWrVK27Zt02233aZFixY1Cb7ce++9tuDPuHHjdNVVV6lHjx6qrq7WoUOH\nNG/ePO3bt09lZWV69NFH9cMPP8jJyanJdVZUVOjuu+9WaWmprr/+ek2YMEFeXl7atWuX3n77bWVl\nZWnPnj169dVX9cwzz3Toe7x582Zb8GfQoEG6+eabFRkZKYvFopSUFH344Yfav3+/NmzYoNdee02P\nPvpoo+NfeuklW/CnZ8+euvPOOzVo0CBlZ2dr4cKFWr9+ve67774Orfn3Pv30U82aNUuSFBoaqhtv\nvFFDhgyRp6enjh49qjVr1uirr76SxWLRggULNGHCBJ177rnNnuutt96Ss7OzHnzwQY0ePVqHDx9W\nXl6ePD09JXXMffPwww/bgj8DBw7UrbfeqsjISGVmZmrhwoWKi4vT22+/3YnvWMdcR73//ve/MpvN\nuu+++zR48GDt3btXLi4uTWbnOd57+/333+vBBx+UxWKRs7Ozrr32Wl144YXy9vZWSkqKPvnkE+3Y\nsUObN2/WTTfdpEWLFtmOPdGaAAAAAABA2xmsv/9fxwAAAAAAAFpQv+yXJMXExOjtt99utOTV2rVr\ndeedd9qeR0dHa+7cuY3CCRUVFZo4caIyMjLk6+urX375pdE//E+ePFlJSUkKDQ3Vxx9/rIiIiCZ1\nzJ8/X88++6wk6Y477tBDDz1k27dhwwbdcsstkqSLL75Ys2fPbhIsqK2t1fXXX6/4+Hjb+UaPHm3b\nX7/slyQ5OTnp7bff1vjx4xudIzU1VVdeeaXKy8vl5eWlX375Rc7Ozsd7C9vsscce07Jly+Tr66tV\nq1bJbDY32l9SUqKrrrpKhw8fltls1saNG20Bpt27d2vKlCmqra1Vv379NH/+/CYzEz3//POaO3eu\n7XlHL/tltVp1/vnnKyMjQ97e3lq2bFmjmWTqzZs3T88995wk6ZprrtHzzz9v29dw2S9Jeu655zR1\n6tRm6zjZ+yYuLk633nqrJGns2LF69913myzn9s9//lMff/yx7fncuXN19tlnN1vPiTrZ62i4xJYk\nffDBB8ddUk1q+b0tKSnRhAkTVFBQIHd3d7333nuN/q5IksVi0RNPPKGlS5dKkmbMmKF//OMf7a4J\nAAAAAACcmJYXOAcAAAAAAGjFI4880iQcMX78eLm7u9ue//3vf28yK4mbm5vtH/7rl+CqFxcXp6Sk\nJNv5mws+SNINN9ygMWPGSJIWLFig6upq274DBw6oV69ecnZ21j333NPsjCJOTk667LLLbM+zsrJa\nvM6LL764SfBHknr16qVx48ZJqgtIHDlypMVznIjs7GxJUkBAQJPgjyR5eXnp/vvv1y233KIHHnhA\nlZWVtn3Lli1TbW2tJOnpp59udkmyRx55RP379+/QmhtKS0uTj4+PzGazpkyZ0mzwR5ImTZpke/z7\nZa4acnNz0+TJk5vd1xH3zaJFiyTV3RsvvPBCk3u7/ty9e/duscaT1RHX0VBERESbQjatvbdLly61\n/R3961//2iT4I0lGo1FPPfWU+vTpI0lavHhxk2Xy2lsTAAAAAABoO8I/AAAAAACg3QICAhrNAlTP\nYDAoODhYkuTi4qJRo0a1eHy9srIy2+P6GWQkHTcgcN5550mqC94kJCTYtt9www1atWqVduzYoUGD\nBrV4fMOZbKqqqlocFxsb2+K+huGM0tLSVuttr759+0qSkpOT9Y9//ENpaWlNxlx++eV69NFHdcMN\nNzQKWdW/j2FhYTrrrLOaPb/JZNK1117boTU3FB4eruXLl2vLli165JFHWhxnNpvl5uYmqfXfw5Ah\nQ5oN5Egnf9/U1NQoLi5OkjRy5Ej16NGj2WOdnZ0bhZU6Wkfc/w0NHz68Ta/b2nu7fv16SXWhqNbu\nFxcXF9v+yspKbdq06aRqAgAAAAAAbWeydwEAAAAAAKD76dmzZ4v76kMEfn5+Mpma/08PDYMGDVck\nr5/1RJJtZpO2SE1N1ciRIxttMxqNtvNnZWUpNTVVBw8e1P79+5WQkGBb8kuqW7aoJa1da8PATf1M\nOx3lhhtu0NKlS1VaWqolS5ZoyZIl6t+/v8aNG6dx48ZpzJgxTWZVqq8jNTVVkloNP0nSmWee2aE1\nt6T+d1FSUqLU1FQdPnxYycnJSkpK0tatW1VRUSGp8b3we2FhYS3uO9n7JisrSyUlJZKO/55FR0e3\n+fzt1ZH3v9T6e9bWcfv27ZMkRUZGytvbu9XzjBgxwvZ47969uuSSS064JgAAAAAA0HaEfwAAAAAA\nQLt5enoed0xLwZ/W5Ofnn0g5KioqavTcarXqm2++0eLFixUfH99odqF69YGU42kuYFOv4ZJirQVX\nTkTv3r31/vvv6/HHH1dKSoqkuiDGvn379NFHH8nFxUUxMTG67rrrdP7559uOy8/Pt4WZ/Pz8Wn2N\nkJCQDq25OcnJyZozZ47WrVvX7LJezS3L1hwvL68W953sfZOTk2Pb1twSaQ0FBgae0Gu1RUfd//Va\ne8/aOq5++S5/f//jnqfhjF4tLfvV1poAAAAAAEDbEf4BAAAAAADt5uTk1CnnrampkVQXWpkzZ06b\nj2sYYqmsrNS9997baAklg8Gg8PBw9e3bV4MHD9bIkSNVUFCghx9+uMNq7wxnnnmmVqxYoY0bN2rl\nypX66aefdPjwYUl1S2StWbNGa9as0aRJk/TSSy/JaDS2OdQk1S1jdbJamzXp008/1ZNPPmn7vUp1\n4Zq+ffuqf//+Gj58uGJiYnTppZc2G9Bqq5O9b9oaQJJOLNTWVh1x/zfUnutqSXtCbQ3vhZbuw46o\nCQAAAAAANEb4BwAAAAAAdBn1s66UlZVp4MCB7Qqy1HvttddswZ+hQ4fqL3/5i8aMGdNkxpFly5ad\ndL2ngtFo1NixYzV27FhJ0pEjR/Tzzz9rzZo1Wrt2rWpqarR8+XLFxMRo8uTJ8vb2lpOTk2pra5Wb\nm9vquQsLC1vc19ZZjYqLi5vdvmfPHlvwx9PTU3/961918cUXKzw8vNE4i8ViW/brRJ3sfRMcHGx7\nnJeX1+rY1t6zk9UR939H8/HxUVZW1nHfF6nxDEo+Pj6dWRYAAAAAAGjA/v8FAQAAAAAA4Jj+/ftL\nqpu9JykpqdWx69at0wcffKDvvvvOFkyora3VwoULJUne3t766KOPdOGFFza71NDRo0c7uPqOVVJS\noh07dig1NbXR9vDwcF177bV688039dprr9m21weeTCaTBg4cKEnauXNnqzPztPYeN5zdqbVwTnp6\nerPbFy1aZJvJ5sknn9Qtt9zSJPgjSRkZGa3W2BYne98EBgbagjcJCQmtHn+885+Mk72OzlB/Lx04\ncKDF5cXqxcfH2x737du302oCAAAAAACNEf4BAAAAAABdRmxsrO3xJ5980uK42tpaPfPMM3rppZd0\n7733qry8XFLdrC0lJSWSpIiIiGZDP5JUXV2tb7/9ttH5upL09HSNGjVK1157rWbPnt3iuHPPPdc2\nO0xlZaVt+/nnny+pbiaWNWvWtHj8F1980eI+s9lse5yWltbsmD179igjI6PZfYcOHbI9PuOMM1p8\nneXLl9seN1werD1O9r5xcnLShAkTJEk7duzQnj17mj3earU2qrejnex1dGZNtbW1Wrp0aYvjqqqq\n9Omnn0qqC6CdffbZnVYTAAAAAABojPAPAAAAAADoMi666CL16tVLkvTpp5+2GLSYOXOmjhw5Ikma\nMGGCevbsKakusGIy1a1yvn///mZn96mqqtJTTz2lffv2NdrWlYSFhWnQoEGSpG+++Ubbtm1rdtyK\nFStss+ZER0fbtl9//fVyd3eXJD377LPNhneWLl1qmy2oOfUzvkjSvHnzmuwvLS3VM8880+Lxfn5+\ntsfr1q1rdszatWv1xhtv2J6f6O/hZO8bSZoxY4ZttqNHHnmk2Vlu3nnnHSUmJp5QjW3REdfR0a6+\n+mp5e3tLkmbPnt3svWixWPTss8/q4MGDkqTJkyfL39+/02oCAAAAAACNmexdAAAAAAAAQD2TyaSX\nXnpJN998s6qrq/Xwww9rzZo1uvzyyxUUFKS0tDQtWrRIv/zyiyTJx8dHjz/+uO14Nzc3XXDBBVq5\ncqUqKio0Y8YM3X777RowYICqqqq0e/duLV68WCkpKY1et7i4+JReZ1vcd999uuuuu1RVVaU//vGP\nuu666zRmzBgFBgYqJydH69ats8204u/vr+nTp9uODQ4O1pNPPqnHHntMGRkZmjJliu644w6NHDlS\n5eXlWrFihZYtW9bq61944YXy9vZWUVGRVq1apbvvvltTp06Vt7e3kpKSNHfuXB08eFARERE6fPhw\nk+MvvfRSffnll5KkV199VdnZ2YqJiZGXl5fS0tL03XffaeXKlbJarbZj6mdtaq+TvW8kafDgwbr9\n9tv1zjvvKCkpSZMnT9Ydd9yhIUOGKD8/X8uWLdN3330nDw8PlZWVnVCdp+I6OprZbNY///lP3Xvv\nvSorK9OMGTM0bdo0XXDBBTKbzTpw4IA++eQT25Jfffr06fSaAAAAAABAY4R/AAAAAABAlzJq1Ci9\n++67euCBB1RQUKCvv/5aX3/9dZNxoaGheuONNxQeHt5o+xNPPKGkpCQdOXJER44c0dNPP93kWC8v\nLz322GN68sknVVtb22gWoK7iwgsv1N///nfNmjVLFRUV+vDDD/Xhhx82GRcaGqo333xTvr6+jbZP\nmTJFFRUVeuGFF1RQUKCXX3650X6z2axrrrlGc+bMafb1vb29NXPmTN1///2qrq7W6tWrtXr16kZj\npk+frqioKD333HNNjp8wYYKmTZumRYsWqbq6WnPmzGn2taZMmaLCwkKtXr1aaWlpKi8vt81a1B4n\ne99I0gMPPKCamhq9//77SktLa3Lv+Pr66pFHHtFjjz3W7vraqiOuo6NNnDhRs2bN0j/+8Q+VlZVp\n3rx5zc4GFRMTo3/961/y9PTs9JoAAAAAAMBvCP8AAAAAAIAuZ9y4cVq9erUWLFigH3/8UcnJySou\nLpaHh4f69eunCRMm6LrrrpOXl1eTY0NCQvTZZ5/pgw8+0OrVq3X48GHV1NTIy8tLkZGRio2N1bRp\n0xQUFKRly5Zp69atWrduncrKyuTh4WGHq23Z7bffrtjYWC1YsEBbt27V0aNHVVlZKV9fX0VFRWnC\nhAmaOnVqi2GZ6dOn65xzztEHH3yguLg4ZWdny9/fX+eff77uuusu22wtLbnooou0YsUKvf/++4qL\ni1NWVpbMZrOio6M1ffp0nXfeec2GQOo9++yzOuecc7R06VLt3LlTxcXFcnV1VWhoqIYNG6Zrr71W\no0eP1pIlS7R69WpVV1dr5cqVmjRp0gm9Xydz30iSwWDQww8/rIkTJ+qjjz5SfHy8srKyFBAQoPHj\nx+vuu+9Wdnb2CdV2Kq+jM1x++eU6++yzNW/ePK1bt06pqamqrKxUaGioBg8erClTpmj8+PEyGAyn\nrCYAAAAAAFDHYG04tzIAAAAAAABOG99++63uu+8+SdLMmTM1ZcoUO1cEAAAAAACA9jLauwAAAAAA\nAAAAAAAAAAAAJ4bwDwAAAAAAAAAAAAAAANBNmexdAAAAAAAAgKMoLS3V4cOHT/o8ERER8vT07ICK\n0NmqqqqUnJx80ucJCwuTr69vB1QEAAAAAABON4R/AAAAAAAAOkhiYqJuuummkz7P3LlzdfbZZ3dA\nRehsWVlZmjx58kmfZ+bMmZoyZUoHVAQAAAAAAE43LPsFAAAAAAAAAAAAAAAAdFMGq9VqtXcR9pad\nXWzvEvA7fn4eys8vs3cZANDh6G8AHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAEBZmb3c7MP+iSTCYn\ne5cAAJ2C/gbAUdHfADgyehwAR0V/A+Co6G8AHBX9DUBLCP8AAAAAAAAAAAAAAAAA3RThHwAAAAAA\nAAAAAAAAAKCbIvwDAAAAAAAAAAAAAAAAdFOEfwAAAAAAAAAAAAAAAIBuivAPAAAAAAAAAAAAAAAA\n0E0R/gEAAAAAAAAAAAAAAAC6KcI/AAAAAAAAAAAAAAAAQDdF+AcAAAAAAAAAAAAAAADopjot/GOx\nWPTkk09q2rRpmjFjhg4dOtRo/w8//KCrr75a06ZN0+LFi1s95tChQ7r++us1ffp0PfXUU7JYLLbz\n5OXlaeLEiaqsrJQkFRcX689//rNuvPFGTZs2Tdu2beusSwQAAAAAAAAAAAAAAADsqtPCP6tWrVJV\nVZUWLVqkBx98UC+++KJtX3V1tWbOnKkPPvhAH3/8sRYtWqScnJwWj5k5c6buv/9+ffLJJ7JarVq9\nerUk6aefftKtt96q7Oxs27nnzJmjc845R/PmzdPMmTP17LPPdtYlAgAAAAAAAAAAAAAAAHbVaeGf\nrVu36txzz5UkjRgxQomJibZ9ycnJioiIkI+Pj1xcXDRq1Cht3ry5xWN27typMWPGSJLGjx+vDRs2\n1BVvNGrOnDny9fW1nfuPf/yjrrvuOklSbW2tXF1dO+sSAQAAAAAAAAAAAAAAALsyddaJS0pK5OXl\nZXvu5OSkmpoamUwmlZSUyGw22/Z5enqqpKSkxWOsVqsMBoNtbHFxsSQpJiamyet6e3tLkrKzs/X3\nv/9djz/++HFr9fPzkMnkdGIXik4TFGQ+/iAA6IbobwAcFf0NgCOjxwFwVPQ3AI6K/gbAUdHfADSn\n08I/Xl5eKi0ttT23WCwymUzN7istLZXZbG7xGKPR2GhsfcCnJXv27NHf/vY3Pfzww7YZg1qTn1/W\n5uvCqREUZFZ2drG9ywCADkd/A+Co6G8AHBk9DoCjor8BcFT0NwCOiv4GoKUAYKct+zVy5EitW7dO\nkrR9+3YNGDDAti8qKkqHDh1SQUGBqqqqtGXLFp155pktHjNkyBBt3LhRkrRu3TqNHj26xdfdv3+/\n7rvvPr3yyis677zzOuvyAAAAAAAAAAAAAAAAALvrtJl/Lr74YsXFxem6666T1WrVCy+8oC+//FJl\nZWWaNm2aHn30Ud12222yWq26+uqrFRIS0uwxkvTII4/oiSee0KxZs9S3b19NnDixxdd95ZVXVFVV\npeeff15S3SxDb731VmddJgAAAAAAAAAAAAAAAGA3BqvVarV3EfbG1GhdD1PWAXBU9DcAjor+BsCR\n0eMAOCr6GwBHRX8D4KjobwBO+bJfAAAAAAAAAAAAAAAAADoX4R8AAAAAAAAAAAAAAACgmyL8AwAA\nAAAAAAAAAAAAAHRThH8AAAAAAAAAAAAAAACAborwDwAAAAAAAAAAAAAAANBNEf4BAAAAAAAAAAAA\nAAAAuinCP+hyvtpwUA/8Z60KSyrtXQoAAAAAAAAAAAAAAECXRvgHXY6ri5P2pxboP0t2qLyyxt7l\nAAAAAAAAAAAAAAAAdFmEf9DlXDQqXBPP6a1DmcV66/NE1dRa7F0SAAAAAAAAAAAAAABAl0T4B12O\nwWDQXVOGaVhUgBIP5Omjb3fLarW26dj9+/d1cnWtu+eeOxUbO1oXXjjOrnUAAAAAAAAAAAAAAIDT\nA+EfdElOTkbd9YehigwzKy4hQ5//dKDV8SUlJfrPf/6t22678RRVCAAAAAAAAAAAAAAAYH+Ef9Bl\nubo46b5rhivY111fbjioH7entTh29uxZWrp0oWpra09hhQAAAAAAAAAAAAAAAPZlsncBQGu8PV30\nwLThen7uVn383R75erlqRL/AJuMsFosdqmvq9dfftXcJAAAAAAAAAAAAAADgNMLMP+jyQvw8dN+1\nw+TsZNTbXyQq5WiRvUsCAAAAAAAAAAAAAADoEgj/oFuI6uGjP08equoai/6zJF6Z+WX2LgkAAAAA\nAAAAAAAAAMDuWPYL3caIfoGaMXGg5n67R68uitfjM0ZpycI5mjPnf43GxcaOrhs/YqRef/1dPf/8\n0/rmm6/Ur98AvffeXP3vf2/p22+/UnFxsQICgnTBBRN099332o6vrKzUd999rZ9/jtO+fXtUWFig\nmpoamc3eioyMUkxMrK688iq5u7s3qfGee+7U9u2/ysXFRT/8sKHZuu6992+aOnW61q79QV9++bn2\n7t2j4uIi+fn5a+TI0Zo69XoNGDCoo98+AAAAAAAAAAAAAADggAj/oFs5f0RP5RVV6qsNB/XfpfEK\nqbW26/jnnntSq1d/b3uenp4mNzc32/M9e3brscceVFZWZpNj8/JylZeXq61bN2nZsqWaPfttBQUF\nt/saamsteuaZf2jlym8bbc/KytS3367Q999/o4ceekyTJl3V7nMDAAAAAAAAAAAAAIDTC+EfdDtX\nnRup/OIKxSVkyDl0iN57f57mfPCO4uJ+kiTNmTNfkuTu7tHouJSU/dq/f6+io4drxoxb5Obmpri4\nn3TZZZMkSYWFBXrggb+oqKhQTk5OuuyyKzVuXKz8/AJUXFyoffv2avHiT1RQUKAjRw7r9df/o2ee\neaHd9S9c+LFyc3PVp0+kpk6drqio/iouLtLnX3yu9T/9IIvFoldffVljxoxVaGjoSb5bAAAAAAAA\nAAAAAADAkRH+QbdjMBh08/8NUmFJlRIP5OmXFMls9rbt799/YLPHWSwW9ewZrv/85w25utbN9jNy\n5Gjb/kWLPlFRUaEk6S9/uU9Tp05vdPzYsbG69NIrNGPGVJWUlOinn9aqpqZGJlP7/hrl5uZq1Kgx\n+te/XpWrq6skadu+bJUEXyGf3mUqPPSLqqur9K835+m+u/+k3qHmdp0fAAAAAAAAAAAAAACcPoz2\nLgA4ESYno+6aPFS9Q8xaF39UR7JL2nTcpZdeYQv+/F5OTrYCA4MUEBCgKVOmNjsmKChYZ545SpJU\nVVVpCwu11/33PyRXV1fVWixa8uN+zf40QdW1Fl0/9bfXTdq9W898uFlPz9mkNb8eUVlFzQm9FgAA\nAAAAAAAAAAAAcFzM/HMKLf5hvzbvzrJ3GafUWYOCNfXCfp1ybndXk+6/dpie/3irEre3LfxzxhnR\nLe57/PGnJNXNEGQ0tpyL8/cPsD2uqqpuY7W/CQoKVmRkXxWUVOrtL3Zqb2qBgv3cdffkoQo0G/X2\ny3XjegcVre1KAAAgAElEQVS5aki/QO1IztXH3+/VojX7ddagYI0f3kP9evrIYDC0+7UBAAAAAAAA\nAAAAAIBjIfyDbs3Hy1UPTB2uP61v2yRWISEhxx1TH/ypqalRRka6jh5NU2rqISUn79fOnQlKTt5v\nG2u1Wtpdc2homHYfytfby3eqqLRKowYE6ZbLBsvDzSSr1Wob5+nmpHuvGab84krFJaRrXfxRxSVk\nKC4hQz0CPTV+WJjGDg2V2cOl3TUAAAAAAAAAAAAAAADHQPjnFJp6Yb9OmwXndBYW4KnBvf0Ud6ju\n+YH0IkWGeTc71sPDq9VzVVRUaNmyJVq16lslJ+9XbW1tkzFGo1EWS/tDP/VKKg16eeE2GQ0GXXdh\nP118Vi/bLD4NZ/OpDwL5mV11xbg+umxsb+0+lK918Uf1695sLfxhv5auTdbIAUEaP7yHBvX2k5HZ\ngAAAAAAAAAAAAAAAOK0Q/oFD8Pb8bfab/y6J1+M3jVawr3uTca1lY44eTdPf/naPjhxJtW1zdnZW\nr14R6t07UgMHDtKIEaP03Xdf67PPlpxwrZn5ZYr2ctVdfxiqfuE+bT7OaDBoSB9/Denjr+KyKv2c\nmKG18Ue1KSlLm5KyFOTrpnOH9VDssDD5ermecH0AAAAAAAAAAAAAAKD7IPwDh1NUVq1XF23X4zNG\ntWtJrKef/n+24M9FF03UNddM06BBQ2QyNf5r8sUXn7a7pgPpRbbHXu7OeuqWs+R9Est1mT1cdMmY\nCF18Vi/tTyvUuvij2pyUpWXrUvT5Twc0LCpA40f0UHRffzkZ27YkGgAAAAAAAAAAAAAA6H4I/8Dh\nXHpOhL755bBeW7pDD11/ZpuO2b17l3btSpQkjRw5Wk8//XyLYzMzM9pci9Vq1Y/b0rRg9T7btj6h\n5pMK/jRkMBjUP9xX/cN9df2EAdq4q242oO37c7R9f478zK6KiQ7T+GFhCmxmJiQAAAAAAAAAAAAA\nANC9Ef6BQzA0WM/r6vOilF9cqV92Zurd5TtltVqPe3zDpb4GDhzc4rj09KNKSIi3Pa+trW1xbEVV\njeZ+t0e/7MyUl7tzw2qPW8+J8HAz6YKR4bpgZLgOZRRrbfxR/bIzQ19tOKgVGw5qSKS/xg/voTP7\nB8rkxGxAAAAAAAAAAAAAAAA4AsI/cAguLr/NpFNRXq5bLxuswpIqbduXIx0tauXIOj4+vrbHW7Zs\nVE1NTZPlvnJzc/TEE4+qurratq2qqqrZ81mt0nMfbVF6bpmienjrrslDNWlJe6/qxPUONeum0IGa\ndkE/bd6dpXXxR7XzQJ52HsiT2cNZMUPDdO7wMIUFeJ66ogAAAAAAAAAAAAAAQIcj/AOHEBAQaHv8\n7rtv6P/+73JNHOqi4jIvbdledtzjhw0boYCAQOXm5mjfvr267767NGXKVIWGhqmoqFDbt/+qFSu+\nUEFBQaPjSktLmj1fTa1F6bllumh0uKZe0M9uM+24ujgpdliYYoeFKS2nVD/FH9WGxAx9u+mwvt10\nWAPCfTR+RA+NHhgsF2cnu9QI+7BarcrKL5evl6tcXfjdAwAAAAAAAAAAAEB3RfgHDiE2drw+/PA9\n1dbWaunSRVq6dJFCQkL13oef6pYfjx9scHV11RNPPKtHHnlAlZWVio/fpvj4bU3G9eoVoSuu+IPe\nemu2JOnAgRRFRw+XJFXXWJSZX24be9fkoTprUHAHXeHJ6xnoqesm9NfV50Vp275srd1+VEmH8rX3\nSKHmr9ynsWeEaHi/QPUK9pKPp0ujpdTgOPKKKvTzzgxtSMxQem6ZTE5GDertq+FRgRoWFaAgX3d7\nlwgAAAAAAAAAAAAAaAfCP3AI/fsP1IsvvqKPPvpAycn7ZbHUymQyyd3ZqjP6+Gvtgbpxew4XaFyD\nWYIaGj16jObMma8FC+Zpy5bNysnJklS3JFhkZF9dcMFFmjjxUtXW1mrOnP+poqJCP/ywUpMmXaWc\ngnK99UWiCoorJUkmJ2OXCv405GwyaszgEI0ZHKKsgnL9FH9U6xPS9cOvafrh1zRJkpe7s3oFe6lX\nsJfCg+p+9gj0kLOJGWK6o8qqWv26N1txielKOpgvq+ru0TP7Byq7oEKJKXlKTMnT/JVSj0BPDYsK\n0PCoAEX19LHbrFUAAAAAAAAAAAAAgLYxWK1Wq72LsLfs7GJ7l4DfCQoyd+jvZc/hfL2yaLtMTkY9\nesNIRYSYO+zc8ftz9N5Xu1RaUaNxQ0M1Y+JAuXazJbRqLRbtPJCnlKNFOpJdqtSsYmUXVDQaYzQY\nFBrgofAgz0bBID+zK7MEdUEWq1V7DxdoQ2KGNu/JUmVVrSSpX08fjYsO1ZhBwfJwc5Yk5RZWaEdK\nrnbsz1HSoXxV1VgkSR6uJg3t66/hUYEa2tdfZg8Xu12PI+no/gYAXQX9DYAjo8cBcFT0NwCOiv4G\nwFHR3wAEBTWfdSD8I8I/XVFnfHBt3p2ltz9PlLeni/7fTaMU6HNyyxvVWiz6/KcDWvHzIZmcjLrh\n4v4aP7yHwwRhyitrlJZTqtSsEh3JKlFqdt3PimMhknqebibb7EDhwfWzBHl2uwCUo8jML9OGhAz9\nvDNDOYV1Aa4Ab1eNHRqmmKGhCvH3aPX4qupa7T6cr/jkujBQblHdbFYGSX17etuWB+sV7OUw9/qp\nxhdzAI6K/gbAkdHjADgq+hsAR0V/A+Co6G8ACP+0ggbZ9XTWB9f3m1O1cPU+hQV46LEbR8nL3fmE\nzlNYWqV3vkjU7sMFCvJ1092To9U7tONmE+qqLFarcgsr6sJADQJBWfnlathIDAYpxM/DFgbqFeSl\n8GBPBXi7ERjpBGUVNdq8O1NxiRnaf6RQkuTq7KTRg4IUMzRMAyJ8ZTyB991qtSotp1Q7knMVvz9H\n+9MKVf+J4Wd21fCoAA2LCtTgPn6EvdqBL+YAHBX9DYAjo8cBcFT0NwCOiv4GwFHR3wAQ/mkFDbLr\n6cwProWr9+n7zanqH+6jh64bIWdT+0ILe1ML9NYXiSosqdKZ/QN12+WDbcsnna4qqupmCTqSVaIj\nWXXLhqVml6q8sqbROHdXk3oFeSq8wSxB4YFecnUhONJeFotVOw/mKS4hXdv25ai6xiKDpEG9/RQT\nHapRA4I7/H0tKa9WYkqudiTnKiElV6UVdb9fZ5NRgyL8NCwqQMOjAhToe3Kzajk6vpgDcFT0NwCO\njB4HwFHR3wA4KvobAEdFfwNA+KcVNMiupzM/uCxWq95dvlObkrI0amCQ7vrDUBmNx58VxWq16ttN\nh/XpjymSpGvOj9LEMb2YyaYFVqtVeUWVjWYIOpJdooy8MjXsOgZJQX7u6h/uc1Kz1JwujmSXaENi\n3bJehSVVkqQQfw/FDA3V2DNCFeDjdkrqqLVYlJxWpB3JudqRnKMj2aW2fT0DPeuCQP0CFdXTW05G\n4ympqbvgizkAR0V/A+DI6HEAHBX9DYCjor8BcFT0NwCEf1pBg+x6OvuDq7rGolmLtmtPaoEuGhWu\n6y/q32qIp6yiWu+vSNK2fTny8XLRXX8YqgG9fDutPkdWWV2ro8dmCUo9FghKzSqxzSIT6OOmmOgw\nxQwNZQaZY4rLqvTLrkxtSMjQocy6vxceriaNGRKimKGh6tvD2+4htJzCciUk5yo+OVdJh/JVXWOR\nJHm6mTS0b4CGRQUoum/ACS+150j4Yg7AUdHfADgyehwAR0V/A+Co6G8AHBX9DQDhn1bQILueU/HB\nVVZRrZnzflVaTqmmXtBP/3d2RLPjDmUU683PE5RdUKFBEb760x+GysfTpVNrO91YrFbtSy3Q+h3p\n2rwnS1XVdcGRQRG+iokO0+iBHb+EVVdXU2tR/P5cbUhM147kXNVarDIaDIru66+Y6DAN7xfQ7iXr\nTpXK6lrtPpSv+GOzAuUVVUqSDAYpqqePhkcFaFhUoMKDPO0eWrIHvpgDcFT0NwCOjB4HwFHR3wA4\nKvobAEdFfwNA+KcVNMiu51R9cOUVVej5j7cqv7hSd04aonOGhNr2Wa1WrYs/qvkr96mm1qIrxvXW\n5Ni+bVoiDCeuvLJGW/dka31CuvamFkiSXF2cdNagYMVGh6l/uI/DBkasVqsOZhRrQ0KGNiZlqqS8\nWpLUK9hLMUNDdfYZod0ueGa1WpWWXar45BzFJ+cqOa3Qtuyb0WCQh5tJnu7O8nIzycPNWZ7uJnm6\nOcvT7dhP2/PfHnu4mWRy6r5LifHFHICjor8BcGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n8oPr\nSFaJZs7fqqpqi/42bYQG9/ZTZVWtPv5+jzYkZsjTzaTbrxii4f0CT0k9+E1Wfpk2JGYoLiFDuUUV\nkqRgX3fFRIdq3NAwBfi42bnCjpFfXKlfdmYoLjFDR3NKJUneHs4654xQjRsaqoiQ5ht4d1RSXq2E\nlFwlpOQqu6BcZRU1Ki2vVmlFjWotbf84cnVx+i0wdCxA5Nnosel3z+tCQ24uTnYPj/HFHICjor8B\ncGT0OACOiv4GwFHR3wA4KvobAMI/raBBdj2n+oMr6VC+Zi3aLhdno269bLA+X39Aadmligwz667J\nQxXo437KakFTFqtVew7la31ChrbuyVJVjUUGSYP7+CkmOkwjBwTJ1blrLoHVnIqqGh1ML9aB9CLt\nOpSvXQfzZLVKJieDRvQL1LjoMA2N9O/Ws9u0l9VqVWV1rUrLa1RaURcGqgsFVausokYlFdUqLa9R\nWaN9dWMrqmrb/DpORoM83UzyNbsqItisiBAvRYSY1SvYS+6upk68wt/wxRyAo6K/AXBk9DgAjor+\nBsBR0d8AOCr6GwDCP62gQXY99vjg+mVXht5dvsv2/MKRPTXtwv5yNp0+AYzuoLyyRpt3ZykuIV37\njhRKktxdnXTWoBDFRocpqqe33Wd2aajWYlFadqkOpBcp5WiRUtKLdDSnVA07b1QPb42LDtNZg4Ll\n5e5sv2K7qZpai8oqGwSCyhsGhuoe2wJFFdUqKa9RXlGFqmsstnMYJAX7uSsipC4Q1DvErIgQs7w7\nYZk1vpgDcFT0NwCOjB4HwFHR3wA4KvobAEdFfwPQUvjn1ExzAHQD5wwJVXFZtb7deFjXXhClc4aE\n2rskNMPd1aTxw3to/PAeyswrU1xiuuISMrQu/qjWxR9ViL+HYqNDNfaMUPl7n9plwaxWq/KKKpWS\nXqQDR4uUcrRQBzOLVVX9W8jExdmo/j191LeHjyJ7eCuqh/cpr9PRmJyM8vZwkbdH24M6tRaLMnLL\ndDizRIcyi3U4s1iHM0u0eXeWNu/Oso3z9XI5Fggyq/exWYICfdy6VMDseKxWq8ora5RfXKnKaov6\nhJplNHaf+gEAAAAAAAAAAAC0jpl/xMw/XRGpVbSHxWJV0qF8xSWka+vebFXXWGQwSGf08VdMdJjO\n7B8ol05YFqysoloHMoqVcvRY2Ce9SEWlVbb9BoPUM9BTkWHe6tvDW5Fh3uoZ5CknI7NJdUVWq1W5\nhRU6lFlyLAxUrMNZJcovrmw0zsPVZFsurP5nWIBHm3+vHdnfLFarSsqqlV9cqbziChUUVyqvuFL5\nv/tTWf3b0mgjBwTpT5POYFYzAB2O728AHBk9DoCjor8BcFT0NwCOiv4GgJl/ADgso9GgMyL9dUak\nv8oqarRpd6biEtKVeCBPiQfy5O5q0tmDgxUzLEx9w05sWbCaWotSs0psy3cdSC9Sem5ZozF+ZleN\nGhikvsfCPhEhZrm70ma7C4PBoEBfdwX6umvUwCDb9qKyKtvMQPU/9xwu0O7DBbYxziajwoM81Sv4\ntxmCwoO95HoSobNai0WFJVW2AE9dqKeiUainoKRSNbUtZ3i93J0V4ucuX7Or/M2uOpJdql/3Zmv2\nsh2656roTgnFAQAAAAAAAAAAADi1mPlHzPzTFZFaRUdIzy1VXEKGNiSmq6CkbkaesAAPxUSHaewZ\nofIzuzZ7nNVqVXZBuVLqgz5Hi3Qos0Q1tb8t3+Xm4qTIMO9Gs/q0dD44noqqGh3JKm20ZFhaTkmj\nII7BIIX6e6j3sWXD6mcJiozw19H0gkahnqYz9lSosLRKLX1CGwySr5erfL3qQj1+v//j7SY/Lxc5\nmxqHe6qqa/Xm54nakZyrQRG++uvVwwioAegwfH8D4MjocQAcFf0NgKOivwFwVPQ3AC3N/EP4R4R/\nuiI+uNCRLBardh3M0/qEdP26N0c1tXXLgg2NDFBMdKgG9PLV4czGs/qUlFfbjjcaDAoP9lTfHj6K\nDDOrbw8fhfl7yGhs/wxCcFw1tRYdzSltMENQ3bJhFVW1jcZ5uplUWlHT4nlMTobfQj3ebvLzahru\n8fFyOeHl42pqLXpn+U5t3ZOtqB7eun/qcHm6OZ/QuQCgIb6/AXBk9DgAjor+BsBR0d8AOCr6GwDC\nP62gQXY9fHChs5RWVGtTUpbW70jXgfSiZscE+ripbw9v9Q3zVuSx5btOZvkmnL4sx2aRqg8EHcos\nVlFZtTxdTcfCPa7yMzcI+Hi7yuzufEJL07VHrcWiD1bs1s87MxQR7KW/XTdC3h4unfqaABwf398A\nODJ6HABHRX8D4KjobwAcFf0NQEvhH9b6AHBa8XRz1gVn9tQFZ/ZUWk6p4hLSlZFbpl7BXrblu7w9\nCUGgYxgNBoX4eSjEz0NnDQqW1DW+mDsZjbrtisFydXHSj9vS9NL8X/XQdWeydB0AAAAAAAAAAADQ\nDRH+AXDa6hnoqakX9LN3GYBdGA0GzbhkgFxMRn2/OVUvzt+qv193pgJ93e1dGgAAAAAAAAAAAIB2\nMNq7AAAAYB8Gg0HTLuynSTF9lF1QoRc/+VUZeWX2LgsAAAAAAAAAAABAOzDzDwAApzGDwaDJ5/aV\nq7OTlvyYrBfn/6qHpo1QeLCXvUvrEFarVVv2ZOtQRrEsVqssFqtqLQ1+Htv2++cNx1itzR/T+hjZ\nHnu5m3T2kBDFRoepZ5BjvK8AAAAAAAAAAADoOgj/wKHs379P/fr1t3cZzUpPPyofHx95eHjauxQA\naOLSc3rLxdlJ81fu1Uuf/Kq/TRuhyDBve5d1UvKLK/XRt7u1Izn3pM9lMEhORoOMRkPdT0Pd44bP\nXZyNv41psD8zr0zfbUrVd5tSFRlmVmx0mMYMCZGnm3MHXCUAAAAAAAAAAABOd4R/4BBKSkr03ntv\n67PPlmjt2o32LqeRqqoqzZ//kebN+1Dz5i0h/AOgy5owKlyuzk6a802SXl6wTfdfO1wDevnau6x2\ns1qt+mVnpuav3KuyyhoN6eOnK8b2kYuzky2cYzQaZGwU6DE2s61+nEEGg+GE66musSh+f47WJ6Qr\nISVXB9KLtWD1fo0cEKjY6DAN6eMvo/HEzw8AAAAAAAAAAIDTG+EfOITZs2dpxYrl9i6jWZ98Mlfv\nv/+OvcsAgDaJHRYmF2ej/vflLs1avF1/vXqYzujjb++y2qywtEpzv92tbfty5OrspBkTB+r8ET1O\nKrxzspxNRo0eFKzRg4KVX1ypn3dmaP2OdG1KytKmpCz5mV01bmioYqPDFOLvYbc6AQAAAAAAAAAA\n0D0R/oFDsFgs9i6hRbW1tfYuAQDaZczgELmYnPTm5wn675IdunvyUI3oH2jvso5rU1Km5n2/VyXl\n1RrYy1e3XD5Ywb7u9i6rET+zqy47p7cuPTtCKUeLtD4hXZuSMrXi50Na8fMh9Qv3UWx0mM4aFCx3\nV76mAQAAAAAAAAAA4Pj4VyUAANDEiP6Buu/a4Zr96Q698VmC7rhyiMYMDrF3Wc0qLqvSvO/3avPu\nLLmYjLr+ov6aMCpcRjvO9nM8BoNBUT19FNXTR9dN6K9f92YrLiFdSQfztf9IoT5ZtVejBwYrNjpM\nAyJ8u/S1AAAAAAAAAAAAwL4I/wAAgGad0cdff5s6Qv9dGq93lu9UVbVFscPC7F1WI7/uzdbcb3er\nqKxa/Xr66NbLByu0my2d5erspLFnhGrsGaHKKSzXhsQMxSWka0NihjYkZijQx02x0WEaNzRUgV1s\nJiMAAAAAAAAAAADYn8FqtVrtXYS9ZWcX27sE/E5QkLlNv5f3339Hc+b8r9l9I0aM1Ouvv9to28aN\nP+vrr5crMTFB+fl5cnFxVXh4L40dG6Orr54mX1/fFl8rOztLy5Yt0caNPys19bBqaqrl7e2jqKj+\niok5V1dcMUmurm628V9//aVeeOGZZs8VGhqmpUu/PO71AXA8be1vXcmB9CLNWrRdpRU1uvGSAbpw\nZLi9S1JpRbU+WblXP+/MlMnJqCnj++qSs3rJaHSMGXIsVqv2pRZo/Y50bd6TparquuUtB/f2U2x0\nmEYODJKrs5OdqwQa6479DQDaih4HwFHR3wA4KvobAEdFfwMQFGRudjsz/+C0UF5erueee1Lr1q1p\ntL2qqkq7d+/S7t27tHjxJ3riiecUGzu+yfFbt27W448/pNLS0kbbc3NzlJubo02bftaCBR9r1qzX\nFRHRu1OvBQBOtcgwbz0yfaT+vWi75n2/V5XVtbr0bPv1uh3JOZrzzW4VllQpMsys2y4foh6Bnnar\npzMYDQYNjPDTwAg/Tb94gLbsyVLcjnQlHcpX0qF8ua900lmDQhQbHaaont4ysCxYl1FWUaP03FLV\nWqyyWKyqtR77abHKeuynxWr9bf+x57bHlt89/v3YY+e0/u55/X53V5PGDgnRoN5+3BcAAAAAAAAA\nAJwmmPlHzPzTFbU1tZqbm6O8vFy9997biov7SZI0Z858SZK7u4fCw3vJYrHogQf+oq1bN0uSxo07\nVxMnXqawsDCVlZVp69bN+uyzJSopKZGTk5NeeWW2Ro8eY3uN4uJiTZs2WUVFhfL19dMNN9yswYOH\nyMXFRZmZGVqxYrl++WWDJGngwMF67725MhgMKioqVGZmhj7//FN98cUySdLLL/9HgYFBMpmcFRnZ\nt0PfMwDdQ3dO5WfklenlBduUX1ypSTF99IfYyFMaLiirqNHCH/Zp/Y50ORkN+kNspC49J0JORuMp\nq8HeMvPLFJeQrriEDOUXV0qSQv09FBMdqnFDw+RndrVzhae3hJRcvffVLhWXVdu7FIX4e+i84T0U\nOyxMXu7Op+Q1u3N/A4DjoccBcFT0NwCOiv4GwFHR3wAw8w8cUkBAoAICAuXt7WPb1r//wEZjli5d\naAv+PPTQY5o8+epG+0ePHqMrrviD7r77NuXm5uqFF57R4sVfyGSq++uxfv1aFRUVSpJeeOFlDRs2\nwnbskCFDdcEFF+mJJx7VmjWrtGdPkvbs2a1BgwbL29tH3t4+8vcPsI3v06evwsJ6dOybAACnSKi/\nhx67YaReXrhNy+MOqrK6VlMv6HdKAkA7D+RpzjdJyiuqVESIl26/fIjCg706/XW7mhA/D00ZH6XJ\nsX2VdChf6xPStXVPtj5dm6Jl61I0NDJAscPCNKJfoJxNp08oyt5qai1ati5F3248LJOTQReO7CkP\nN5OMBoOMRoOcjMd+/u55k/0NtjfZ1sL2+nPW/8nILdPa7WnavDtbi9fs17J1KRo9KEjnj+ip/uE+\nzAYEAAAAAAAAAIADIvwDh2axWLRwYd1MQOecM65J8Kdez57h+vOf/6rnn39aWVmZWrv2B02YcImk\nutmF6vXqFdHs8TfddIt8fHzVo0dPmc3NJ+0AwBEE+rrr0RtG6d8Lt+m7TamqrLboxksGyNhJgYLy\nyhotWbNfP24/KiejQZNi+uiKcX1kcjq9gy1Go0FnRPrrjEh/lVVUa2NSltbvSFdCSq4SUnLl6WbS\n2UNCNHbo/2fvvsPbSsw7339RiEKAABvYKYpNlZKoNmrWqEyzp9gTj+1xyTqbjLP27k327q43G+8m\ncXyf+PE6m/huNrlerx+v42ziJJ54XGY843GmqI7ajCRSIiWRYhN7A0gARG/n/gEQJFU4kkYkwcP3\n8zwUwHNwwEMSeM8h8NP7llDpsGLI0i31LqvWuDvId1+5QveQl+I8M1/6WANVJUt3LmDLNrCmMpfP\nPBrlVMswx5qHOHtllLNXRikrtHCgsYx9DSVkmxanG5AQQgghhBBCCCGEEEIIIRaehH8W0U87X6Vp\nrGWpd2NRbS3axMfrnl6yr9/V1cHY2CgAO3fumve2u3fvTV8/f/69dPinqmp1evl/+S+/x7/9t/+B\n9es3ztm2vn4t//E/fuUB7bUQQmS2vBwjv/+5bfy/P2rmWNMg4Uic33pq3QMfv9XWO8lf//IaTk+I\ncoeFLzy1YUlDFZkq25TFoa3lHNpazuC4j1MtI5y+MsKRi4McuTgIQK7VQFGuGUeeedZlNkV55kUb\nCaVG59vG+MHrbQTDMfZsLObXH1+L2ZgZp9dWcxZPPLSKx3dW0t7n5ljzIBfax/nHtzr4ybEudq4v\n4uDWcmpKbdINSAghhBBCCCGEEEIIIYRY5jLj3QkhFsj16+3p63/1V/+dv/qr/35X2w0NDaav79nz\nIWpr6+nq6qCl5RK//du/QWGhg507d7Fjx0Ps3LlrzmgvIYRYCWzZBn7vs1v57/90iTNXRojG4vyr\nj258IB15wtE4Lx3r4u0LA2g08NSeKj66r1rGWN2FcoeVTx2u47mDNbR0T3C508noZJCxySAdgx6u\nD3hu2SbbqE+HgoryzDhyZ67n5hgXrKvTchaJxvnRkU6ONQ1iyNLyW0+uZ9+mkowM0Wg0GtZV5bGu\nKg+vP8I7LcMcbx7kVMsIp1pGqCyycnBrObs3FGdMcEkIIYQQQgghhBBCCCGEEPdGXuFfRB+ve3pJ\nu+CsRB6P+762m5rypq/r9Xq+9a2/5Jvf/BPOnj0NgNM5zuuvv8rrr7+KRqNh/fqNfPjDT/HMM8+S\nlSUdFIQQK4PFlMWXn2/kL1+6zPn2cSI/beHfPNvwgUZMdQy4+f5r1xibDFJakM0LT22gpsz2APd6\nZdBptTTWFdJYV5heFosncHpCjE0GGXcHZy7dQQbH/fSOTN1yP3qdFkeuaU4gaDogVGg3r8hA1rDL\nz+SlUIIAACAASURBVHd+foWBcR8VDgtf+lgDZYWWpd6tu2KzGHhydxUf3rWKqzcmON40RFOHk7/7\n53b+6UgnuzcWc7CxXDpsCSGEEEIIIYQQQgghhBDLjIR/hKrF4/H09S9/+Ss0NGy6q+2MRuOczwsL\nHfz5n/8l3d2dHD36NmfOnOL69TYSiQSKonD1aitXr7by8ss/5X/8j++Qm5v7QL8PIYTIVGajnn/3\nqS18+2ctXO5y8Rc/vsS//cRmTIZ7O8WIxuL87EQP//xuHwBPPFTJr+2v+UBBIjGXXqelJD+bkvzs\nW9YlFAX3VDgdChpzzw0IDbsCt2yjAfJtxmQwaLpjUF52cqxYrplsk7pOMxVF4VTLCD98s51INMGh\nreU8f7huWT5GtRoNDdUFNFQXMDkV5p3LQ5y4NMTx5uTH6pIcDm4tZ9f6YoyG5ff9CSGEEEIIIYQQ\nQgghhBArjbrelRHiJjk5M90iLBYr9fVrP9D91dTUUVNTxwsvfBGv10tT03nOnj3N0aNv4fP56Orq\n4Dvf+Uv+83/+6gfddSGEWDaMWTp+9+Ob+e4rV7h4fZxvvdjMv//kFrJNd9cJrXvIy/dfu8qwK0BR\nnpkXnlpPfYWEKBeTVqMh32Yi32Zi7aq8W9b7gtG5waBZAaG2Pjdtfbd22svJzmLPxhI+smsVdqvx\nlvXLSTAc44dvtHPmyihmo55/8+wGdqwrWurdeiDycow8s6+ap/aspqXbxfHmIS51Ofmb19t48UgH\nezaWcLCxnIoi61LvqhBCCCGEEEIIIYQQQggh7kDCP0LVampq09evXm3h8cc/fMfbTk5O8rOf/ZjS\n0jLq6tZQX78GgGg0Sn9/H5FIhHXr1qdvb7PZOHDgMAcOHOY3fuMF/uW//Cw+3xSnT7+zcN+QEEJk\nqCy9ln/97Ea+/9o1zl4Z5b/9YxNffr6RnGzDHbeJxhK8cqqHX57tRVHg0e0VPHegVjqNZCCrOQur\nOYvq0ltHsEWiccY9oWQgaDLAWGqUWN+ojzfe6+dY0yAHt5bzkd1V2C13fjxkqt6RKf7Xy62MTgap\nKbPxxY9uxJFrXurdeuC0Wg1b6grZUlfIhDfEiUvJbkBHLg5y5OIgdeV2DjSWsXNd0bLsdiSEEEII\nIYQQQgghhBBCqJmEf4QqaDSa2y5fv34jNpsdr9fDm2/+ii984V9jtd7+f67/5Ccv8jd/878BeOGF\nL6bDP7/+659kcHCA4uISfvKTV2+7bUlJKdXVNbS0XCISCc9Zp9Vq7/fbEkKIZUWn1fKFpzdgzNJx\nvHmIP/2HJv7jpxvJvU3Xl96RKb7/2lUGxv0U2k381pPrWVd1a8cZkfkMWTrKCy2UF1rmLI/GErzT\nMsyrp28kQ0DNgxzeWsGHd63CtgxCQIqi8PaFAf7paCexuMKHd63i4w/XoNep/7iebzPx7P4antm3\nmkudLo41D3Kle4LOQQ8/eruDvQ2lHNxaRmmB5f3vTAghhBBCCCGEEEIIIYQQC079716IFcFgmHkT\nMRAIpK9nZWXx3HOfAsDj8fAnf/JHRCKRW7a/fLmZf/iHvwPAaDTyzDO/ll63d+9+AEZHR/jRj354\n26/f23uD69fbAFi3buOcdVlZM2NvgsEAQgihZlqNhs8/sZbHdlQy5PTzzR9exOkJptfH4glefqeH\nr//teQbG/RzcWs7/81sPSfBHhbL0Wg5tLeebX9zDrz++Bospi1+928d/+l+n+fHRTqYCtx6PM4Uv\nGOX/+2kL//BWByaDnn/3yS186lDdigj+zKbTatm2xsF/+FQj3/zSHp7aU4VOp+XN8/38wffO8ad/\nf5FzV0eJxhJLvatCCCGEEEIIIYQQQgghxIqm+9rXvva1pd6JpRbI4DefViqLxXhPv5f29jaami4A\nyYBNbm4eExMuCgoK2bhxE2fPnsblctLf38exY2+j0+mIxeJ0d3fx85//hL/4iz9Ld+z5nd/59+zc\n+VD6vmtqannttVeIRCK89945uro6AA2BQICenm7eeuuf+fM//wZ+vx+tVstXvvKHlJaWpbcfHBzg\n5MljQDKAVFxcwujoKEVFxR/8ByWEWHbutb4tRxqNhobqfBIKNHU4uXB9nC21hbinwvzFS5d499oY\nuVYj/9evbeKxHZVk6VdWoGKl0Wk1VJfaOLytHLvFyI1hL609Exy9OEgoEqeyyIoxg8ZIdQ54+NaL\nTXQPT7FuVS5f/vRWVpfkLPVuLTmLKYsNq/N5dEcFFUVW/MEobX1uLrSPc6xpkKlglIriHDLnNymE\nEA/WSjiHE0KsTFLfhBBqJfVNCKFWUt+EEBbLrRM3ADSKoiiLvC8ZZ3x8aql3QdzE4ci5p99LR0c7\nX/jC54nH4+lls8d0eTxuvvrV/8yFC+/d8T50Oh0vvPBFPv/537pl3YUL7/EHf/Cf8PnuvE8mk4kv\nf/krfOQjT89Z7nQ6+cxnPj6n649er+fNN0/O6QokhFgZ7rW+LXevnbnBT453YzVnEQzHiCcUPrS5\nlE8frifbJNNHV6JoLM7x5iFeO9uLxxfBaNDx6PYKnnhoFVbz0h0XE4rC62d7+dmJHhQUPravmqf3\nrkarvf1oUQGjEwGONw/xTsswvmAUjQYObS3nuQO1mI3y/BZCqMtKO4cTQqwcUt+EEGol9U0IoVZS\n34QQDsft/8OydP5BOv9kontNrRYUFLJu3XqGh4eYmppCp9NitebwzDPPotfrMZlMfOQjT7NmzToS\niQSBQIBoNIpOp6esrJxDhx7hK1/5KocOPXLb+y8rK+fJJ5/BZDITjUYJhULE4zFycmxUVVXz5JPP\n8Ad/8DUaG7fdsm12djbbt+9M7Zsnvb/79x/AZrPf3w9ICLFsrbRU/prKXCwmPReuj2OzGPjSRzfy\nkV1V0u1nBdNptdSU2Tm8tZycbAM9w15auic42jRIOBqnsigHwyJ3AvL4I/zPn7Zw/NIwdquB//sT\nm9m3qRSNRoI/87Gas9hYnewGVFZgYcwd5FKni3NXRykvtFCUZ17qXRRCVXpHpnjl1A3OXBnB44+g\n12nIyTZIrVokK+0cTgixckh9E0KoldQ3IYRaSX0TQkjnn3lIOjLzSGpVCKFWK7W+DY77yMsxSbcf\ncYtINM6xpkF+ea4Prz+C2ajj0e2VPP5QJRbTwncCunJjgu/94ipef4TNtQW88NR6crINC/511Sg3\nL5u/frmFX57pI6FMd/mqI3sRfo9CqFU0luB8+xhHLg7QNei9Zb3ZqKe+wp76yKW61CYB2wWyUs/h\nhBDqJ/VNCKFWUt+EEGol9U0IcafOPxL+QcI/mUgOXEIItZL6JsTthaNxjl4c5FfnevEGopiNOh7b\nUcnjOysXJDwSTyT4+ckefnmmF61WwycO1vL4zkrpoPEBTNe33pEpfvDLa/SN+bBbDXz+ibVsrXcs\n9e4JsaxMeEMcax7kRPMQ3kAUDbCptoDD28opysumo9/N9QE3Hf0extzB9HZ6nZaa0hzqK3Opr8il\nrtwuwdsHRM7hhBBqJfVNCKFWUt+EEGol9U0IIeGfeUiBzDxy4BJCqJXUNyHmF47EOdo0yOvnepkK\nRDEb9Ty+s5LHdlQ+sDewXZ4Q3/3FFToHPDhyTXzpYw1Ul9oeyH2vZLPrWyye4PVzffziVA+xuMKu\nDcV89tF66aokxDwURaGtd5IjFwdp6nCSUBQsJj0f2lzKoa3J0M/tuH1hOgY8XO9309Hvpn/Mx/Qf\n+RoNVDqs1FfmsqYyl/oKO7nW27cFFvOTczghhFpJfRNCqJXUNyGEWkl9E0JI+GceUiAzjxy4hBBq\nJfVNiLsTisQ4enGQ18/14QtGyTbqefyhZAjIbLz/EFDT9XH++pfX8IdiPLS+iM8/sU66Yjwgt6tv\ng04/P/jlNbqHvORkZ/G5x9awc12RdFgSYpZgOMbp1hGOXBxg2BUAYFWxlUe2VfDQhmKMWbp7ur9A\nKEbXUCoMNOChe8hLLJ5Iry/KNVNfaWdNRTIQVJRnlufkXZBzOCGEWkl9E0KoldQ3IYRaSX0TQkj4\nZx5SIDOPHLiEEGol9U2IexOKxHj7wgC/OteHPxTDYtLz+EOreHR7xT2FgKKxBP90tJO3LwyQpdfy\n2UfreXhLmbzh/QDdqb4lEgpvnu/npye6icYSbK0v5F88sVa6jywTiqIwFYji8oaY8IZweUK4vGFc\n3hDRWILdG4rZsa6ILL12qXd12Rl0+jlycYDTrSOEI3F0Wg071xdxeFsFtWW2B1aforEEN0a86TBQ\nx4CHYDiWXm+zGKivmAkDVRRZ0Gnl93kzOYcTQqiV1DchhFpJfRNCqJXUNyGEhH/mIQUy88iBSwih\nVlLfhLg/wXAyBPTP786EgJ54aBWP3EUIaHQiwHdebqVv1EdZoYUvfWwjFQ7rIu35yvF+9W10MsDf\n/LKN9n432UY9n3m0nr0NJRLAWmKxeIKJqTAuz+xwT/K60xtmIhXymY8tO4sDjeUc3FpOXo6EuuYT\niydo7nBy5OIAbX1uAPJyjBzcWs7DW8qwWxZ+NF5CURgc96fCQG6u97tx+yLp9SaDjtpyO2sq7Kyp\nzKW61IbhHrsPqZGcwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CfDDBcIy3Lgzw\nRioEZDVn8cRDlTyyvQKT4dYQ0JkrI/ztP7cTjsTZv7mUzz625p5H6Ii7czf1LaEoHG8a5J+OdRGO\nxGmoyec3nlhHgd20SHu5siiKQjAcw+kJMZHq1jO3g08Ijy/Cnf4gtJqzKLCbKLCZyLcZKbSZyLeZ\n0stC0TjHLg5y4tIQgXAMnVbD9rUOHt1eSW35g+tcowYeX5jjl4Y41jSYDtqsr8rj8LYKGusLlrTT\njqIoOD2hdBioY8CTHj8GoNNqWF2aw5qKXNZX5bF+dd6K7Awk53BCCLWS+iaEUCupb0IItZL6JoSQ\n8M88pEBmHjlwCSHUSuqbEA9GIBTjrQv9vPFuP4FwMgT0kV2rOLytAqNBRzgS5+/fvM47LcOYDDo+\n/+G17N5QstS7rWr3Ut+cniB/+6t2WnsmMBp0fOpQHQcay9BKWOSeJBQF91Qq1JMK87hS3Xqml4Ui\n8dtuq9NqyMsxUpAK8+TbTBTakyGfglTI526DcuFInDNXR3j7wgCD434AqkpyeHR7BQ+tLyJLvzID\nd4qi0DHg4cjFAS60jxNPKJgMOvY1lHJoWzllhZal3sU78gYidPR7UmEgN70jPhKplw5yrQb2bSpl\n/+ZSivKyl3hPF4+cwwkh1ErqmxBCraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CPFiBUJQ3zw/w\nxnv9BMMxcrKzeGRbBeeujTLsClBVksOXPraR4hX0BvVSudf6pigKp1pG+NHbHQTCMdatyuVffmTd\nigoT3I9EQqFjwM35tnHOXx/DM2tc02xmo56C6SCP3XRL1x67xYBW+2DDVoqi0N7n5q0LAzR1jKMo\nye5BBxrLOLS1nHzbyujwFI7EOXt1hCMXB+kf8wFQVmjhkW3l7N5Y8r6jCjNRKBKja8jLxevjnL0y\nSjAcA2Ddqlz2bylj+xqH6keDyTmcEEKtpL4JIdRK6psQQq2kvgkhJPwzDymQmUcOXEIItZL6JsTC\nCISivPFeP2+e7ycYTnY6eWxHJZ84WEuWfuWNp1kK91vfJqfC/PCNdpo6nBj0Wj7+cA2P7qh84MGU\n5SyeSHC9z8359nEuXB/H608GfiwmPetX5+PITQZ6pj/ybSayTUsbMHF6ghxtGuRE8xD+UAytRsO2\ntQ4e3V5BfYVdlSPBRicCHG0a5OTlYYLh1Pe8ppDD2ypYuypXNd9zOBrnYvs4Jy4N0d7vBiDbqGf3\nxmIe3lLGquLbv/iw3Mk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+ibEwvKHopxo\nHqKiyMqmmoKl3p0V5YPUN0VReK9tjB++cR1fMEptmY3ffHJ9Ro9FWmixeIL2Pjfn28e4eH2cqUAU\nSHbS2bbGwY51DtatykOvy+xwWyQa5+zVUd6+MJDugrOqyMoj2yvYtaF42XeLSSQULne5OHJxgNae\nCQBsFgMHtpRxoLFM9d2ORicCnLw8zKmWYTypUFpVcQ4Pbyll14Zisk1ZS7yHD46cwwkh1ErqmxBC\nraS+CSHUSuqbEELCP/OQApl55MAlhFArqW9CCLV6EPXNG4jwD29e591rY+h1Gj66r5oP71qV8QGX\nByUWT3Ctd5L32sZouj6OP5QcrWTLzmLb2iJ2rnWwZlUuOu3y+3koikLHgIe3zvdz8bqThKJgNWex\nf0sph7dWUGBfXiGZqUCEk5eHOdY0iNMTAqCuws4j2yrYvtaxYh6z0+KJBJe7XJy8NMzlLhcJRSFL\nr2XH2iIe3lLKmsrl3/lIzuGEEGol9U0IoVZS34QQaiX1TQgh4Z95SIHMPHLgEkKoldQ3IYRaPcj6\n1nR9nL99ox2PL8KqYiu/9eR61Y4SisYSXLkxwYW2MZo6nATCycCP3Wpgx5oidqxzUF+Rq6oxaBPe\nEEebBjnePIQvGEWjgW31Dh7ZnpnjsRKKgtMTYmjcz6DTR9+oj6YOJ7F4AkOWlt0bSji8rVy1j9F7\n5faFOdUyzMnLw4xNBgEozjPzoc2l7NtUSq7VuMR7eH/kHE4IoVZS34QQaiX1TQihVlLfhBAS/pmH\nFMjMIwcuIYRaSX0TQqjVg65v/lCUF9/u5J2WYXRaDU/uruLpvavJ0i//jiqRaJwrPROcbx+judNJ\nMBwHIC/HyPa1DnasLaKuwo42w0IwD1o0Fufc1THeutBP32hyJFiFw8Ij2yvYvbEE4yKPBEsoCi5P\niEGnnyGnn8Hx5OWwy08klphz26I8M4e3lrNvcykWFY22epAUReF6v5sTl4Y43z5ONJZAq9GwubaA\n/VtK2VxbsKy6WMk5nBBCraS+CSHUSuqbEEKtpL4JIST8Mw8pkJlHDlxCCLWS+iaEUKuFqm+t3S7+\nz6/acHnDlBVa+M0n11FbZn/gX2ehhaNxWrpcnG8f41KXi3AkGfgpsJnYsS4Z+Kkus6k+8HM7iqLQ\nOejh7QsDXGgfJ55QsJj07N9cxuFt5RTmmh/o10soChOzQz6pj2GXn0h0bshHr9NSWpBNeaGFskJL\n+tKRZ16Rv6v7FQhFOXd1lBOXhukdTdYJu9XAvoZS9m8ppTgve4n38P3JOZwQQq2kvgkh1ErqmxBC\nraS+CSEk/DMPKZCZRw5cQgi1kvomhFCrhaxvwXCMl453cfTiIBoNPLFzFc/ur8awyJ1h7lUoEuNy\nl4vz7eNc7nKmgyWFdhM71xWxY10Rq0tyMm7M1VKanAqnRoINMhVIjgRrrCvkke0VrK/Ku6eflaIo\nuLyhdMBnKP0RIByNz7mtXqehJN9CueOmkE+uaVl1p1kOekemOHl5iDNXRgmmxtytrczl4S1lbF/r\nyNjntZzDCSHUSuqbEEKtpL4JIdRK6psQQsI/85ACmXnkwCWEUCupb0IItVqM+tbeN8kPXm9jbDJI\ncZ6Z33xyPWsqcxf0a96rYDjGpS4nF9rGael2pcdFFeWZk4GftUWsKrZK4Od9RGMJ3msb5a3zA9wY\nST6uygqTI8H2bizBaJgJiCiKwoQ3zJBrZlTXoNPPkMuf7rA0LRnyyZ4T8CkrtFCUZ5aQzyKLRONc\nuD7OyUtDtPW5ATAb9ezeWMzDm8uoKrn9ixhLRc7hhBBqJfVNiIUzMObjxaOddA542L2xmKf2VFFo\nf7BdLcWdSX0TQqiV1DchhIR/5iEFMvPIgUsIoVZS34QQarVY9S0cjfPzk9288V4/igKHt5Xz3IFa\nzEb9gn/tOwmEYlzqdPJe2xitPRPE4snAT2lBNjvWJjv8VDgsEvi5D4qi0D3k5e0LA7zXNkY8oaQD\nItFYIt3NJ3RTyEen1VBSkE1ZwUzIp9whIZ9MNToZ4J3Lw7zTMozHFwFgVbGV/ZvL2L2xGIspa4n3\ncPHP4abH0w1PBCjNz37g4+8yXUJRmApEsZj06HXqes4mFAWPL4LLG8LlCeHyhnB6Zq5PToUwZOnI\nsxrJyzGSm2Mk12qc83me1YjZqJPjingg5G9UIR48jz/Cz092c+LSEIoCVnMWvmAUnVbDvk2lPL2n\nasUd25eC1DchhFpJfRNCSPhnHlIgM48cuIQQaiX1TQihVotd37qGPPzgl20MOf0U2EysW5WLAigK\nKCigJN9gBUikViTXJQMlipK6TN1fIrVyell6/extUpfMWpZIwMC4j3gieU/lDksy8LPWQbnDumg/\nj5XA7QtzrGmQY81DeP3JgIhOq6F4Vief8lmdfNQWGFgJ4okELd0TnLw0xKVOFwlFIUuvZftaB/s2\nlVJZZCXHnLUkgYeFqnG3jKcbT14Ou2bG0+m0Gg5vq+CZfauxmpc+CLXQrt2Y4MWjnfSN+gCwmPTk\nWo3YLAbsVgN2iwG7xYjdYsCW+jzXasRi0mdEGCYWTzAxFU6GeVKBntmXE1MhYvHbvxRnNurJtxmJ\nRONMTkXSYdLbMWbpyLUa5gSCbr60Ww1SC8X7WsxzOEVR6B/zcanTSXOni3g8wYbqfDZV51NXkUuW\nXh6vYnmLROO8eb6fV8/0Eo7EKSu08PzhOjaszuPdq2O8cvoGoxOBVAiohKf2rMYhIaAFI6/BCSHU\nSuqbEELCP/OQApl55MAlhFArqW9CCLVaivoWjSX4xekbvH62Nx2+WSia1D/a1BvLGo0GjSa5vDg/\nmx1rHexYV0RpgWVB90Mk31jvGPBgsxgolpCPanl8YU61jnDy0hCjk8H0cqNBh8NuxpFrwpFrptCe\nvJy+bsjSzXOv9++D1rjp8XSDzunRdL5k5ypXYN7xdEV5Zs5dHWXcHcJi0vPM3tUc3l6hysf94LiP\nHx/r4nKXC4CNq/NIKMnuCR5fGH8oNu/2Oq0mGRCa/rAasKVCQrnWZGBoOixk/ACPk3A0fttQjzN1\n3T0V5k5HJJvFQIHNRIHdRGHqsmDWZbZppoudoij4QzEmp8K4feHk5VSYyVnX3b4w3kD0jvuqAXIs\nhpmuQVZDOhiUDg3lGMk2ZkZwSiyNhT6Hi8UTtPVNcqnDRXPnOC5vGEg+ZzUaTTrkZszSsb4qj4aa\nfBpqCiiSQIRYRhRF4dy1UX5yrAuXN0xOdhbP7q/h4S2lc7pOJhLJ2/3i1A1GUiGgPQ0lPL13tTzm\nF4C8BieEUCupb0IICf/MQwpk5pEDlxBCraS+CSHUainrmy8YJRiOpcI4qVDOrHAOs67PLJ++XfJ6\nMtgDzF6u0aS3EUIsDUVRuN7vpqnDybg7mPzwhG4JzEyzWw3pcFCh3ZwKBiUDQrlWI1rt/T2f77bG\nKYrC5FQy5DM47p/p6OPy37LP0+Pp0qPpZnWumv1GYTSW4O0LA7x6+gaBcIyiXDOfOFjL9rUOVdQn\nty/Mz0/2cPJycjTKulW5fPJQHdWltjm3i8YSTAUiuH0RPP4wHn8Ery+SDAf5U8tSn0djd+6YA2Ay\n6GaFhIyzwkLJkJDFpMfjj8wN96QufcHbh220Gg15OcY5gZ7CWdfzc4wLEk6LxRO4fWHcU5FbgkGT\nqbCQeypMZJ6fiUGvJTfVMSjfZqTQnnz+FNiS30O+zSQdWVRsIc7hfMEoLV0umjqdtHa70uM5s416\nNtUW0FhXyKaafHQ6Ldf73bR0u2jtnmBkIpC+j+I8Mw01BWyqyWftqrwPFNoTYiF1DLj50dud9Ax7\n0es0PLazkqd2r54T6LxZIqHw7rVRfnH6BsOuAFqNhr0NJTy9t4qivOxF3Ht1k9fghBBqJfVNCCHh\nn3lIgcw8cuASQqiV1DchhFpJfRNCLBZFUZgKRnG6Q4y7gzg9qVBQ6vMJbzg99m82vU5DgS3VMWg6\nFDQrIJRtuvNIrZtr3HTIZzrcM+j0M5wK+QTDtwn5zBpPV1Zoodxxa8jn/fiCUV55p4ejTYPEEwr1\nFXaeP1xPTZnt/TfOQKFIjF+d6+Of3+0nHI1TWpDNJw/VsaW24AOFmhRFIRiO4/GH8U4Hg3wR3P7w\nTWGhCFP+yB279NwsS68l32ai0HZzwCcZksnNMdzT73MxKYpCIHy7LkKR5OV0F6F5fh65VkP6+y20\n39q9aKG6bomF96DO4UYnAjR1OGnudNIx4Ga6DDtyTTTWOWisL6S+wj5v57Jxd5DWnglau11c7Z1M\nhyb1Oi1rK+001BTQUFNAWUG2KsKPYnkbcwd56VgX59vGAHhofRHPHai9pzFeiYTCe21jvHKqJx0C\n2tNQzNN7V1MsIaAPTP5GFUKoldQ3IYSEf+YhBTLzyIFLCKFWUt+EEGol9U0IkSniiQQT3nAqGBSa\n6RjkDuH0BJm6w5ikbKM+FQxKjRJLjRTLs5lIaLVc6xxnyJXq5OMMEAzPHUOl02oonhXymd3J50GO\n6RqZCPDSsS4uXh8HYNeGYp47UEOhfXmMC4knErxzeZifn+zB449gsxh49kPV7L9pNMpi7YsvEMXj\nn+ko5PVH8AdjyRFds0I+tuws1YcNYvEE7qlweoSZ05N8zkyPNbtTsA6SI80KZ3U7SgaEZoJC0rUl\nc93vOVwiodA56KG500lzhzPdtUcD1JTbaKwrpLHecd9BnVg8QeeAJx0G6hvzpdfl24w0VCe7Aq2v\nyp+3w4pYPAlFwReIMjkVZmIqlOw+NhVmwjtzvcBuYs/GEratcWA2Ls/fWyAU49UzN3jrfD+xuEJN\nmY1PP1JPXbn9vu8zkVA43z7GK6duMOT0o9Vo2L2xmGf2rqY4X0JA90v+RhVCqJXUNyGEhH/mIQUy\n88iBSwihVlLfhBBqJfVNCLFcBMMxXLNDQZ5QOijkdAfnHY8EyZBPUZ55VhcfK2WFFoofcMjn/bT3\nTfKjI530jkyh12l5bGfF+44ZWUqKonC5y8WPj3Ux5PRjyNLy4YdW8cRDq5btG8ArTTyRwD0V8r3i\ntgAAIABJREFUSQWDUs8ZT3Ic2vSItHji9i8z5mRnzQoGmWfGoqWWyWNg6dzLOVwwHONKzwTNnU4u\nd7nSY/AMWVo2rs6nsa6QzXWF2C2GB76fbl+YKz0TtHS7uNIzgT+UDGBqNRrqym2pEWEFVBZb0ao8\nqLcUEoqC1x9JhXnCTM4O96QCPm5fmFj8zm81WM1ZM48ZvZZtaxzsbShh/eq8jO2cNls8keB48xA/\nP9mDLxilwGbkEwfreGh90QMLhyYUhfNtY/zi1A0GnX40Gti9oYRn9q2mREJA90z+RhWLYWQiQHOH\nE0VR2L2xhLwc41LvklgBpL4JIST8Mw8pkJlHDlxCCLWS+iaEUCupb0IINVBSb26Ou0OMp8aJTXjD\nlBXlkJutp7zQQnF+9qKGfOaTUBTOXRnlJye6mPCGsZqzeHZ/NQ9vKcuYfQToHZnixSMdtPW50Whg\n/+ZSPvahGnlzRGUSCQW3Lzyra9B0MCiY7iZ0p2CA1ZxFrtWAyaDHaNBhytJhMugwpj5MBj2mrOnr\nqXVZqeXTt0utl+DHvXm/c7gJbyjZ3afTSVvvZPp3aLcakt196gpZX5W3qKPfEgmFnhEvrd3JrkDd\nw970mDFbdhYbU12BNlTnY8t+8EEktUkkFDz+SLpDz8TUTLhnYirMpDc5GvBO4T4NycdDXo6J/Bwj\neTlG8mxG8nNM5OUYyc8xkptjRK/TMjYZ4MyVUc60jjDmDgJgtxjYtaGYvQ0lrCq+/ZsYS0lRFFq6\nXbx4pJNhVwCTQcdTe6p4bEflgj3uE4rCxfZxXj7Vw+D4dAgoOQ6stMCyIF9TjeRvVLEQEgmF7iEv\nTR3jNM3qfAfJQOqWugIONJbTUJ2PVivnJGJhSH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQapbp\nNS4SjfPm+X5eO9NLKBKntCCbTx6qY0ttwZKOqnJ5Qvz0RBdnrowCsKmmgE8eqqXCYV2yfRJLZ7pz\nyOxxYtMjxZyeEB5/hHAkfsfRYnfLODsklDUTHro5VGSaXp41K1BkmBsoMht06HVaVY98u7m+KYpC\n7+gUzR3JwE/f6My4rcoia2qcVyFVJTkZE7TyBaNcvZHsCtTaPYHHHwGSoZTVpTmpEWEFVJflLIsO\nMw+aoii4fREGnT6GnAFcntCccI/HF7nj806r0ZCbY0gGemaHe3KS4Z58mxGbxXDPgVNFUega8nK6\ndYT3ro2mOzlVOCzsaShh94bM6J4xMObjxSMdXLkxiUYDB7aU8bH9NQvS3ep2pkNAr5zqYSAVAtq1\nITkOTEJA7y/Tz9/E8hGOxrl6Y4KmDieXO514A3M7322tdxBLdQfrHUk+5gpsJh5uLGP/5lJyrUtf\nz4S6SH0TQkj4Zx5SIDOPHLiEEGol9U0IoVZS34QQarZcapzHH+Hld3o43jyIosD6qjyeP1y36J0U\nAqEor53p5c3zA8TiCVYVWfnk4To2rs5f1P0Qy4+iKMTiCUKROKFInHAkTigaJxSJJa9H4oSj8bnr\nI7H0sunbhKJxwpFYetkHefFTp9UkA0LGud2GZgJDsz7P0mEy6md1Jpp7++kORZkUJnI4chgadnOt\nd5LmTheXOp1MToWB5Pe+riqPxrpCttQVUGg3L/Hevj9FURgY99Pa7aKl20XHgCfdsSbbqGfD6jwa\nagpYX5VHgc2kuq4M3kCEwXE/Q04/g+M+Bp1+Bsf9BMKxW26r02rItU536Znp1DO7c4/NkrXggalo\nLMHlLhenW4e53OUinlDQaGBDVR57GkrYtsaBybC4owE9vjA/O9nDyctDKAo0VOfzqcN1SxZeTSgK\nTdfHeeXUDfrHfGiAh1IhoLJCCQHdyXI5fxOZyeOPcKnTSXOHk6s3JtKjgW0WQzoIu+E2ne9ujHg5\n1jTEuaujhKNxdFoNjXWFHNhaxobV+RkTnBXL20qqb7F4Ao8vOXrUG4iwuiSHfJtpqXdLiCUn4Z95\nrJQCuZyspAOXEGJlkfomhFArqW9CCDVbbjVucNzHPx3toqXbhQbYu6mEjz9cu+BdFGLxBEebBvnF\nqRv4glHycox8/OEa9jSUyBsdYskoikIklkgHhWYHiNJhoVkBolA4TigauyVgFIrMhI5i8cR9748G\nbhlnptNp0GiSXVa0Gg1arQatBjRazS3LtKllGo0GrZZZ11Pr09c1aLS33ufs7QH6nX4uto0RjsYB\nsJj0bK4tZGt9IRur8zEbFzd08aAFwzHa+iZp7U52BnJ6Qul1Oq2GApuJwlwThXYThXZz6roZh92E\nzWLIqKDWbIFQNB3sGZwV9JlKdaOYptFAcV425Q4L5YUWygotOHLN5OcYybEYMq42+4JR3rs2yunW\nEbqGvECym9e2NQ72NpSwvipvQQNbkWicN97r57WzvYQjccoKLTx/uI5NNQUL9jXvRUJRaO5w8so7\nPfSlQkA71xfxzL5qyiUEdIvldv4mlpaiKIxMBGjqcNLUMU73oDcdHi4rtLC1PjnqsrrMdle1MxiO\ncfbqKMebBukbS3bRK7SbONBYxoc2ly1aBzGhTmqpb9FYArcvnOpGmOpK6E1+PjkVYmIqjNcXuSXI\nX1lkZUtq/Ozq0szpRinEYpLwzzzUUCDVRi0HLiGEuJnUNyGEWkl9E0Ko2XKtcVd6JnjxSAcD434M\nei1PPLSKj+xe9cA7KCiKwoX2cV463sXYZBCTQcdTe6p4bEflLf8bWgg1iMUTybBQeKYz0c1BoXAk\nTjAyt2tRcnks3Z1o+nbxRIJEIvlcWooXaovzzGytd7ClroC6CrtqR2MpisLoZJCWbhfdQ16c7iDj\nnhDe1Jiwmxn0WgpmhYIcdnMyJJQKCFlM+gUPB4UiMYacAQadvpmOPk5/ujvTbI5cE+WFVsodyZBP\neaGF0oJssvTLsw6PTgQ4c2WE060j6dBWrtXA7o0l7N1YQkXRg+vCk1AUzl0d5SfHu5jwhsnJzuLZ\n/TU8vKU0I58PSioE9PKpHvpGZ4WA9q6mXEZrpi3k+Vs0lmAqEMEbiOD1R/D6ozPXAxE0aNKdxiTk\nkbkSCYXOQQ/NqcDP6GQQSAYn6ytyk4Gf+kKK87Lv+2soikLP8BTHmgd599ookWgCnVbD1vpCDmwt\nT4YaJbgg7tFy+Ps0GoszMRVm0js33DM9dnTSG0qP0LsdvU6THjOaZ0t2Jsw26mnvc9PWN0ksnjxr\ntlsMbK4toLGukA2r8zEalud5jxD3SsI/88j0ArkSLYcDlxBC3A+pb0IItZL6JoRQs+Vc4xIJhXda\nhvnZiW48/gh2i4Ffe7iGD20qfSDdEzoHPLx4tIOuQS86rYaDjeU886HV2LLljS4h7oeiKCQUhUSC\n1KWSWpZ8Pk8vSygKisKsz0GZXn+n7RVl5jap9RvqHJgyL9uwqMLROC5PCKcnyLg7hMsTYtwTxOlO\nLvOHbh2ZBWA26iiwmXGkwkDTwSBHKix0L0HLaCzOsCtwSyef2Z2KpuXlGNOdfNJhnwKLat/sUhSF\njgEPZ66M8O61MYKpEWariqzsaShh94Zi7Nb772zXMeDmR2930jPsRa/T8tjOCp7avZpsU+Z3vVIU\nheZOJ6+8c4Pe0Sk0wI51RTyzb/WSjSjLJPdy/qYoCuFo/NYgjz9y0/UoXn/ktqP07qSqJIdNNQVs\nrimguiwnIwNlK0k4Eqe1Z4LmznEudbrwBZPhA2OWjobqfBrrC9lcW0DOApzLBkIxzl4d4VjTEAPj\nyW5ARblmDjSWsW9TKTYJiom7tNR/n4aj8WSQx5vszjORCvVMekPpcM/0c+t2svRa8qdHjeaYyE+N\nIM2bHkFqM5JjzrpjyDoYjnH1xgSXOl1c7nKmQ0R6nZb1VXk01hWwpa5QxoMJVZPwzzyW6wt4arbU\nBy4hhFgoUt+EEGol9U0IoWZqqHGhSIxfnevjV+f6iMQSVDisPH+4jo3V+fd1f6OTAV461sWF9nEA\ntq1x8ImDtZTk3///jBZCLD411LeFFgjFcHqCOD2h5Id7+nqyc1A4Er/tdlZzVioQlAwGOVLXbdkG\nRicD6U4+A04/Y5MBbn6V3mYxpAI+FsocFioKrZQVZpNtylqE7zozRWNxLnW6ON06Qku3i3hCQaOB\njdX57N1YwtY1Dox32XFuzB3kpaOdnE8dxx5aX8QnDtRSmGteyG9hQSiKwqVOFy+f6qF3JPl83rHW\nwUf3VT/QDknLTUGBld6ByVtDPLfr1uOPEInNP9JRA1izs7BZDNiyDbMus2Y+Ty0LRmLpcYPX+93E\nE8knuMWkZ8PqfDbVFLCpJv8DBdfE3fP4wjR3OmnucHK1d5Jo6ndttxporEuOulxflbdondIURaF7\nyMux5kHeuzZGJJbsBrRtjYODjWWsq8rL2LGTSy0cjdPeN0lL9wTtfZNYzVlUleSwusTG6pIcHHnm\nFdFJaTHP3zy+MN1DXrqHvXQNeugf890xGA1gyNKSnwr0pMM96aCPkXyb6YF2T0woCj1DXpo7nVzq\ndDIw7k+vWzU9Hqy+kKoSGQ8m1GXRwz+JRIKvfe1rtLe3YzAY+PrXv05VVVV6/ZEjR/j2t7+NXq/n\nueee41Of+tQdt+nt7eUrX/kKGo2G+vp6/viP/xhtKh09MTHBZz7zGV555RWMRiOhUIjf+73fw+Vy\nYbFY+NM//VPy8+d/IUv+wM088sKDEEKtpL4JIdRK6psQQs3UVOMmp8L89EQXp1tGUICGmnyeP1R3\n12NCpgIRfnHqBkebBoknFGrKbHzqUB1rKnMXdseFEAtCTfVtKSiKgi8YnRMMGk8Fg5Kdg0LE4vMH\nCiwmfSrgY6W80EJFamzXQnSdUBNvIMJ718Y43TpCz7AXAKNBx461DvZuLGHtHUbpBEJRXj3dy1sX\n+onFFWrLbDz/SD115fbF/hYeOEVRuNzl4uV3eriRCgFtX+vg+UN1yzLUdL+c7iA/eL1tTujmTnRa\nzU1hnqw5IZ6Z61lYs7Puq2tPMByjrXeSlm4XLd0uXN6ZsX2riq2pIFABteU26Qr0gCiKwpDTT3On\nk6YOJ91D3vS6coclFfhxsLp06cMAgVCU060jHG8eYtCZDC0U55k50FjOvk0lK/5YoCgKIxMBWron\naO120dbnTh9XDXot0VhizshUs1FPVbE1GQYqzaGqJIeiXLPqwlQLdf4WjsbpHZlKh316hjxzahZA\ncX42hXZTaiRXMsyTDvbkGDEbF34s6nyc7iCXulw0dzppv2k82Ja6ArbUyngwoQ6LHv554403OHLk\nCN/85jdpbm7mu9/9Lt/5zncAiEajPPnkk7z00kuYzWY+85nP8N3vfpeLFy/edpsvfelL/OZv/ia7\ndu3iq1/9Kvv37+exxx7j5MmTfOtb36Kvr48zZ85gNBr5wQ9+gM/n43d/93d57bXXaGpq4g//8A/n\n3Vf5AzfzyAsPQgi1kvomhFArqW9CCDVTY43rG53ixSOdXOudRKOBA1vK+Nj+Gux3GDcQjcV56/wA\nr57pJRiO4cg18YmDdexY61Ddi+lCrCRqrG+ZJKEoeP0RnO7UKDFPCK8/giPXnOzq47Bgtxikjn5A\nwy4/Z66McKZ1FJc3OSotL8fIno0l7GkoobzQQiye4HjzEC+/04MvGKXAZuKTh2rZua5IdT9/RVFo\n6Xbx8js36Bn2Yjbq+PXH17JnY8lS79qCe/faKP/nV+0EwzFqyuzYLckwT062Abvl1oBP9iK/Sa0o\nCkOuAC1dySBQx4A7/cZ0tlHPhup8NtXk01BdQF6OdAW6F/FEgs4BD00dyQ4/Y+4gAFqNhjWVdhpT\n3T+K8jKzS6WiKHQOejjePMR7bWNEYwn0Og3b1xZxsLGMNZW5qqtVdxKKxGjrdacDc7NHYFY4LOnA\nXF2FnWgsQd/oFDdGpugdSV6OTgRuCQStLslJdQhKfjiWeSDoQZy/JRSF0YlAMuiT+ugf85GYFRvI\nyc6iptRGTbmdmjIb1SW2ZTEWc1owHONKzwSXOp1c6poZ85elT44H21JXyJbaAhkPJpalRQ///Nf/\n+l/ZvHkzTz31FAD79+/n5MmTALS1tfFnf/ZnfP/73wfgG9/4Blu3bqW5ufm22+zfv58TJ06g0Wh4\n6623OHXqFH/8x3/MqVOn2LBhA8899xyvv/46RqOR3/md3+ELX/gCjY2NTE1N8elPf5rXXntt3n2V\nP3Azj7zwIIRQK6lvQgi1kvomhFAztdY4RVG41OXix0c7GXYFMBp0PLW7isd3VmJIjU1JKArnrozy\n0xNduLxhLCY9z+yr5tDWcrL08r/ThVju1FrfxMqUUBQ6+t2cbh3hfPsYwXByJFtVcQ6RWJxhVwCT\nQcfTe1fz2I6KRRvxs1QUReF06wg/fPM64Uic3RuK+fXH1y6rN27vVjgS5+/fus47l4cxZGn53GNr\n+LXDa3A6fUu9a/MKRWJc602OMGrpcqXDawCVRdb0eLDacjt6nZx33cztC9PaPUFrj4srPRPpUURG\ng45N1flsrXewqbYAq3l5jUv0BaOcaR3hWPMgw64AAKUF2RzYUsbeTaXL7vt5P9OdmlpSo/Jmh+LM\nRj0bV+fRkAr83E0oLhiOpQNBN2YFgmbLNurTYaCqZRgIup/zN28gQs+Ql66hZEef7uEpguGZ8V16\nnZaqYis1ZcmgT02ZjUK7adn8TN5PIqHQPezlUqeT5k4ng7PHgxVbaawrZEudjAcTy8edwj8Ldpbn\n8/mwWmdaRut0OmKxGHq9Hp/PR07OzA5ZLBZ8Pt8dt1EUJV1cLBYLU1PJgrZv377bft3p+559WyGE\nEEIIIYQQQggxQ6PR0FhXSEN1PicuDfHzkz389EQ3R5sGee5ADblWIz8+2kXv6BR6nYYPP7SKp/ZW\nYTGp6w0HIYQQ6qDVaFi7Ko+1q/L43GNraO50crp1hNbuCRQUDm4t59kPVWO7Q5c7tdFoNOzbVEp9\nhZ3v/eIqZ6+O0jHg4bef2aCqcZ29I1N895UrjEwEWFVs5Ysf3UhpgWVZvGFtMujZWu9ga71jZrxR\nqitQe7+b/jEfvzzbi9moY8Pq/HTHk5XaFSgWT9A16EmHRPrHZsJd+TYjO9cXs7W+kHWr8pZ1SN1q\nzuKxnZU8uqOCjgEPx5oHOd82zo+OdPLS8W52rHNwsLGc+gr7snic304wHOPqjeQ4vNYeFxN3GIdX\nU2a75+Cb2ahPHwumBUIzgaDe0SluDHu51jvJtd7J9G0sJj2rilPdgUptVJXk4Fim4ZfpjkjT47u6\nhzyMu0NzblOcZ6axriAd9qkssqo6ZKjVaqgrt1NXbue5A7U43UGaO51c6nTS1uemb9THK6duYLca\n2FJbwJa61HiwLHUHhYX6LFj4x2q14vfPpOYSiQR6vf626/x+Pzk5OXfcRjtrzqnf78dms93V132/\n207Ly8tGr/KU/3J0p8SaEEIsd1LfhBBqJfVNCKFmaq9xz5fYefrhOn789nVeOdnN/371Wnrdga0V\n/Isn11Ocn5ljEoQQH4za65tYucrLcnnq4To8vjDxhLJix3o4HDl86985ePGt67z4Zjv/7R8u8slH\n1vDpx9cu6zd6FUXhlZPd/M2rV4nFEzx7oJbPP7l+Tken5VbfiopsbF6XHM8WCse43OXkwrVRLrSN\ncaF9nAvt4wCsLrWxfV0R29cVs746f1n/Ht/P2GSAi21jXGwfo/n6eLpTiV6npXGNg+3riti2tojK\n4pxlGdJ4P0VFNvZtq8Trj3DkfB+/OtPL2SujnL0ySmVxDh/eXcWhHZXkZGd2qFFRFG4Me5OP5bZR\nrvVMEE8ku/tYzVnsbyxP/y7zFqhWV1XmsX/W5/5glO5BDx39broG3HQOuG8JBFnNWdRV5FJbYae+\nMo/aCjvF+dkZ8Vibrm+KojDs8nO9d5L2vknaeyfpGfKkuydB8vvYtq6ItavyWJP6WClB2DtxOHJY\nX1/EZ4BAKErT9XHevTLC+WujnLg0zIlLwxj0WjbXO3hoYwkPbSimwG4Gkj/zhJLsJqQoComEQiJ1\nGU8oKArpz9Pr5nzOnG1mr1NS6+Kz1ikJhZICC1Wl7595EGLBwj/btm3j6NGjPPnkkzQ3N7NmzZr0\nutraWnp7e3G73WRnZ3P+/HleeOEFNBrNbbfZsGED586dY9euXZw4cYLdu3fP+3WPHz/O5s2bOXHi\nBNu3b3/ffZ2cDLzvbcTikpbDQgi1kvomhFArqW9CCDVbSTXuqV2r2LXWwc9O9uALRnl2fzXVpTaI\nx1fMz0CIlWQl1TchxsejS70LS+qxbeWsLrLwvV9c5cW3rvPulRH+1Uc3UJy3/MK9Xn+E7792jZZu\nF7bsLF54ehObagpwz3qvRw31rdphodpRw3P7q5NdgbonaO120dbn5sawl58c7cRkmO4KlOwMtNxD\nbtFYnOv9nlRHmAmGnDMNA4pyzezdWEJDTT7rVuVhNMwEvTJ9xNuDsG9DMXvXF3G9382x5iEutI/x\nvZdb+d7LrWQb9ditBuwWA7lWY+p68jLXYsCeWpZt1C9acCUQinJlurtPtwu3LwKABlhdmkNDdQGb\naguoKbWh1Sb3KRaOLmqtLrEbKbEXs7+hOLXPMXpHp+gdmeLGiJcbI1M0d4zT3DGe3sZiSo4My7eZ\n0Gk1aDUatKlLnVaDRsuc5TffJr0s/Tlztp97Xxp009vOui9Nlo6ma6N0D3npGfbiC878zHRaDZVF\n1vTortoyO0V5c0eahQNhxgMz3ZYErCnNYU1pDp89XEf3kDfdFej8tVHOXxvlf5L82SaUZEBnKdSW\n2Ti4tZyd64rSY7rFynWngLNGURbmIZpIJPja177G9evXURSFb3zjG1y9epVAIMDzzz/PkSNH+Pa3\nv42iKDz33HN87nOfu+02tbW19PT08Ed/9EdEo1Fqamr4+te/jk4386A+fPgwr7/+OkajkWAwyO//\n/u8zPj5OVlYW3/rWt3A4HPPu63I/AVQjNZyYCyHE7Uh9E0KoldQ3IYSaSY0TQqiV1DchVp5AKMbf\nv9nOmSujGLN0fPaxej60qTQjOlncjdYeF//71Wt4/REaqvN54ekN2G/TwULN9S0cjdPeN0lLV3L8\n1Zg7mF5XWpBNhcNKcX42JflmivOzKc7LxmrO3LGto5MBWlOjvNr6JolEEwAY9FrWVeWxqaaAhpr8\nZRlUW0jeQITTLSO09rjw+CK4fWH8odi822TptdgthtuHg2YFh2zZhnQg524lFIX+UR+Xu5Oj67oH\nvSSUme4+DamA2sbqfGwZ3qlotkAomgwDTYeChqfmPOeWWqHdlAr6JMd3VRVb53RAEx/MeGo8WGv3\nBIFwNBnY0mjQaJgT6NIw87lGq0GrIXW7VMArff3267Ta1H1qbn8fbX2TtHS5UEgG0PZtKuXQ1nLp\nzruCLXr4ZzlR6wngcqbmE3MhxMom9U0IoVZS34QQaiY1TgihVlLfhFi5zl4Z4e/eaCcYjrNjXRGf\nf2JtRgdEYvEEPz3eza/e7UOn1fCJg7U8trMS7R1CSyupvo1OBNKBi+v97nR4ZjarOYvifDMledmp\nYFDysijPjHGRO0iEI3Ha+iaTgZ8eF2OTc8NLm2oK2FRTwJpKu4QY7lE0lsDrj+D2h/H6Irj9ETy+\nMG5fJLncF8bjT16fHrt1OxoN5GTPDQbZralw0HR4yGrEoNemf5etPRN4/ZH09jVlNjaluvtUleTc\n8bm6HAVCUXzBKAkF4ombxjulRj/d8rkyM/IpnkiktkmGpu54H7NGP83cBvJzzRTbTVSX2W4bfhTq\nNO4OcuLSECcvDeENJLs9ra/K49DWchrrC1U9AlLcSsI/81gpJ4DLyUo6MRdCrCxS34QQaiX1TQih\nZlLjhBBqJfVNiJXN6Q7yvVev0jHgIS/HyG8/vYF1VXlLvVu3GJ0I8L9euULvyBTFeWa++LGNrC6x\nzbvNSq1vCUXBPRVmdCLAyGQweTkRYHQyiNMdvG3gI99mpHg6FJRnToeDCuymB/JmsqIoDLkCtKbG\nP7X3e4jFkwGl6bFlDTX5NFTnU2g3f+CvJ95fQlHwBaN4fDPhII8/nOwg5I/g9YVTwaEI4Wj8ru7T\nZjGwqTqfhlR3n0wOEy53K7W+iaRYPMGF9nGONQ3S3u8GwG418PDmMg40li378Y/i7kj4Zx5SIDOP\nHLiEEGol9U0IoVZS34QQaiY1TgihVlLfhBCJhMJrZ3t5+WQPiqLw4d2r+LX9NRnRQUBRFE63jvDD\nN64Tjsb50KZSPvtYPSaD/n23lfp2q1g8gcsTSoaBZoWDRicDTHjDt9xep9VQmGtOB4Jmh4Nyc4zz\ndnIJhmNcvTFJa08y8OOadf+riqw01BSwqSaf2nJ7RjzWxJ0Fw7E5XYNmB4UCoViyw09NAZXFVlV1\n98lkUt/EtEGnn2NNg5xuHSEYjqHRQGNdIQe3lrOxOl+ekyom4Z95SIHMPHLgEkKoldQ3IYRaSX0T\nQqiZ1DghhFpJfRNCTOsa8vC9V64y5g5SVZzDv/roBkoLLEu2P4FQjL97o51zV0cxG3V8/ol17NpQ\nfNfbS327N+FonLHZnYImAoxMBhidCOILRm+5vSFLm+4WVJxnpiQ/m/wcI93DXlq7J+gc9KS7DFlM\nejZW59NQXUBDTT65VuNif3tCqIrUN3GzcCTOuWujHG0apHck+dhw5Jo42FjOvs2l2LJlPJzaSPhn\nHlIgM48cuIQQaiX1TQihVlLfhBBqJjVOCKFWUt+EELMFwzH+8e0O3rk8jCFLy2ceqefhLf8/e/ce\nXXd9n4n63ZIsS7YlY2zJ4JuwDQ4QLgYS07RJihloLvRk0pCBhNQ5nJA0bSeZhnalJWuATEgmtFkz\ntKsrM2l6DukpNFlAmxxacprTDJArSSk3mzjBXHyR71g21s2yLUt7nz9sqaHB8ratbXlvP89arCX9\nbnrlxF/J0ru/nzkpnOCdA9Zu6cmX/+Gn2dmzL4vntOa33vX6tJ12dOOgrG/jp3/vgbwQbemsAAAg\nAElEQVS8+1Ah6JVDuwUdKgcNHij+wvWFJGed2ZoLFx0cAbXozNbU1dl9AsaL9Y2xrN/Wm+88syX/\n8rOXMzhUTEN9IW94XXuuuGRuzpk3/YR/TacylH/GYIE8+fjCBdQq6xtQq6xvQC2zxgG1yvoGvJYn\n1uzIX39rTQb2D+WSc2blxnecm5YTsGtAsVjKP/5zZx48NILsml/uyLt+ZeExjYWyvlVeqVRKd//g\naBFoV8++zJ01NecvPN0uE1BB1jfKsWffgfxo9fZ895kt2bZrIEkyt21qrlg6N798wRlpnnzkEZqc\nvJR/xmCBPPn4wgXUKusbUKusb0Ats8YBtcr6BhzOK7378n9982dZs7E706c15sPXnJ/XLzy9Yh9v\nd9/+/J8P/TRrNnZnRsvkfPjXz895HTOO+XnWN6BWWd84GqVSKc9v7M53V27JU893ZbhYyuRJ9bn8\n/NlZfsncdJzx2iUSTm7KP2OwQJ58fOECapX1DahV1jegllnjgFplfQPGUiyW8k//sjHf+P66DBdL\n+bU3zs+1v7o4kxqOfieesTzzYlf+6h/XpH/vgVxyzqz8H+88L9OaJx3XM61vQK2yvnGsevYM5ofP\nbs13n9maXb37kiSL5rTmiqVzs+y89jROqp/ghJRL+WcMFsiTjy9cQK2yvgG1yvoG1DJrHFCrrG9A\nOTZs782X/+FnefmVgcxrm5aPvuv8zG2bdtzPHTwwnAe+81IefXpLJjXU5forz87yS+amUCgc97Ot\nb0Ctsr5xvIrFUn6yble++8yWPLt2V0pJpjY15FcuPDO/unROzpw5daIjcgTKP2OwQJ58fOECapX1\nDahV1jegllnjgFplfQPKtX9wOPc/+mK+u3JrJjXU5brlZ+fKS4+9qLOlqz9/8Q8/zZauPZk7a2o+\n+u9fn3njUCgaYX0DapX1jfG0s2dvvrdya36wamt6Bw4kSc7rmJHll8zN0nNmpaF+fHf7Y3wcrvzT\ncIJzAAAAAAAAUEUmN9bng28/Nxcumpm/+taafPV/vZCfrNuVD73zvLRObSz7OaVSKd9duTX3PfJi\nDgwVs/zSubl++dlGjQDABJg1vTnX/uri/Ps3L8zTL3Tlu89syXOdu/Nc5+5Mn9qYX3vj/Lz98gXj\nsisflaf8AwAAAAAAwBFdsqQtZ53Zmq/8vz/Ls2t35fa7H8+Hrjk/Fy2eecR7+/ceyF/943N55sWd\nmdrUkI++6/W5dEnbCUgNAIylob4uy86bnWXnzc7WnXvy3ZVb8thPtufvf7g+V142L5OVdKuCsV8x\n9utkZMs6oFZZ34BaZX0Dapk1DqhV1jfgWBVLpTz8xKb83ffWZmi4lH932bz8hysWH3YHn+c37s5f\nPvSz7O7bn3MXnJYP//r5Ob21qWL5rG9ArbK+caLsPzCcffuHMn3a5ImOwr9h7BcAAAAAAADHra5Q\nyK8tW5BzO2bkLx/6WR55anPWdO7Ob73r9ZnfPm30uuFiMf/www355o82pFAo5DfeuijX/FJH6uqM\nDwGAk9nkSfV2/KkydRMdAAAAAAAAgOqzYHZLbv/f35B/d+m8bNm5J5/96yfy7Sc2pVgqZWf33vzJ\nV5/JQz/akJnTm3LLb16a/+2Xz1L8AQCoADv/AAAAAAAAcEwaJ9XnA7+2JBcsOj1/9Y/P5b5HXsxT\nz+/I5q492bt/KMvOa88H33ZupjT5lRQAQKXY+QcAAAAAAIDjcvHZs/KZmy7PhYtm5sXNPSkWS/nQ\nO8/LR9/1esUfAIAK890WAAAAAAAAx2361MZ84j9clJUv7czctmlpP615oiMBAJwSlH8AAAAAAAAY\nF4VCIZec0zbRMQAATinGfgEAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK+QcAAAAA\nAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAAAKBKKf8A\nAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAAAAAAAABU\nKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+AQAAAAAA\nAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAAqFLKPwAA\nAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAAAAAAAFVK\n+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8AAAAAAAAA\nAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACqlPIPAAAA\nAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAAAABAlVL+\nAQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAAAAAAAAAA\nqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJVS/gEAAAAAAAAAgCql/AMAAAAA\nAAAAAFVK+QcAAAAAAAAAAKqU8g8AAAAAAAAAAFQp5R8AAAAAAAAAAKhSyj8AAAAAAAAAAFCllH8A\nAAAAAAAAAKBKKf8AAAAAAAAAAECVUv4BAAAAAAAAAIAqpfwDAAAAAAAAAABVSvkHAAAAAAAAAACq\nlPIPAAAAAAAAAABUKeUfAAAAAAAAAACoUso/AAAAAAAAAABQpZR/AAAAAAAAAACgSin/AAAAAAAA\nAABAlVL+AQAAAAAAAACAKqX8AwAAAAAAAAAAVUr5BwAAAAAAAAAAqpTyDwAAAAAAAAAAVCnlHwAA\nAAAAAAAAqFLKPwAAAAAAAAAAUKWUfwAAAAAAAAAAoEop/wAAAAAAAAAAQJUqq/zzyiuvVDoHAAAA\nAAAAAABwlMoq/3zgAx+odA4AAAAAAAAAAOAoNZRz0bnnnpsHH3wwF110UZqamkaPz5kzp2LBAAAA\nAAAAAACAsZVV/lm1alVWrVr1qmOFQiGPPPJIRUIBAAAAAAAAAABHVlb559FHH610DgAAAAAAAAAA\n4CjVlXPRK6+8kk984hO5/PLL84Y3vCEf+9jHsnPnzkpnAwAAAAAAAAAAxlBW+ef222/PhRdemEce\neSSPPvpoLr744vzn//yfK50NAAAAAAAAAAAYQ1nln02bNuWmm27KtGnT0tramo985CPZunVrpbMB\nAAAAAAAAAABjKKv8UygUsm3bttH3t27dmoaGhoqFAgAAAAAAAAAAjqysBs/v/d7v5frrr8/FF1+c\nUqmUVatW5bOf/WylswEAAAAAAAAAAGMoq/xz5pln5sEHH8yzzz6bYrGYz3zmM5k5c2alswEAAAAA\nAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlqaho9/sY3\nvrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjKKv+8853v\nzPvf//5KZwEAAAAAAAAAAI5CXTkXffWrXz3qBxeLxdx+++25/vrrs2LFinR2dr7q/KOPPpprr702\n119/fR544IEx7+ns7Mz73//+3HDDDfn0pz+dYrGYJHnggQfynve8J9ddd12+853vJEn6+vry4Q9/\nODfccENuvPHGdHV1HXV2AAAAAAAAAACoBmXt/HPGGWfkgx/8YC6++OJMnjx59PjHPvaxw97z8MMP\nZ3BwMPfff39WrlyZP/7jP86XvvSlJMmBAwdy55135u/+7u/S3Nyc97///bnyyivz9NNPv+Y9d955\nZz7xiU/k8ssvz+23355HHnkkS5cuzb333puvf/3r2b9/f2644Yb8yq/8Sr7xjW9kyZIl+cM//MM8\n8MADufvuu3PLLbcc5x8TAAAAAAAAAACcfMoq/yxduvSoH/zUU0/lLW95y+j9q1evHj23du3aLFiw\nINOnT0+SXHbZZXniiSeycuXK17znpz/9aZYtW5Ykeetb35rHHnssdXV1ueSSS9LY2JjGxsYsWLAg\na9asyZIlS7Ju3bokSX9/fxoayvoUAQAAAAAAAACg6pTVjPnYxz6WgYGBbNy4MUuWLMm+ffsyZcqU\nMe/p7+/PtGnTRt+vr6/P0NBQGhoa0t/fn5aWltFzU6dOTX9//2HvKZVKKRQKo9f29fUd9hmnn356\nHnvssbzzne9MT09PWSPLZsyYkoaG+nL+KDiB2tpajnwRQBWyvgG1yvoG1DJrHFCrrG9ArbK+AbXK\n+ga8lrLKPz/+8Y9z++23Z3h4OPfdd1/e9a535b/9t/+WN7/5zYe9Z9q0admzZ8/o+8VicXQXnn97\nbs+ePWlpaTnsPXV1da+6trW19bDP+OIXv5gPf/jDed/73pc1a9bk4x//eB566KExP7/duwfK+WPg\nBGpra0lXV99ExwAYd9Y3oFZZ34BaZo0DapX1DahV1jegVlnfgMMVAOte8+i/cdddd+VrX/taWltb\n097enr/5m7/JF77whTHvufTSS/P9738/SbJy5cosWbJk9NzixYvT2dmZ7u7uDA4O5sknn8wll1xy\n2HvOP//8PP7440mS73//+3nDG96Qiy66KE899VT279+fvr6+rF27NkuWLElra+vojkAzZ858VUEI\nAAAAAAAAAABqSVk7/xSLxbS1tY2+f/bZZx/xnquvvjqPPfZY3ve+96VUKuXzn/98HnrooQwMDOT6\n66/PLbfckptuuimlUinXXnttZs+e/Zr3JMkf/dEf5bbbbstdd92VRYsW5W1ve1vq6+uzYsWK3HDD\nDSmVSrn55pszefLk/N7v/V5uvfXWfO1rX8vQ0FA++9nPHuMfDQAAAAAAAAAAnNwKpVKpdKSL/uN/\n/I9573vfmz//8z/PX//1X+erX/1qVq1alb/4i784ERkrztZoJx9b1gG1yvoG1CrrG1DLrHFArbK+\nAbXK+gbUKusbcFxjv+6444489NBD2bZtW66++uo899xzueOOO8Y1IAAAAAAAAAAAcHTKGvs1c+bM\n3HXXXa957rbbbjNaCwAAAAAAAAAAJkBZO/+MZfXq1eORAwAAAAAAAAAAOErHXf4BAAAAAAAAAAAm\nhvIPAAAAAAAAAABUKeUfAAAAAAAAAACoUsdd/imVSuORAwAAAAAAAAAAOErHXf755V/+5fHIAQAA\nAAAAAAAAHKWGsU6uWLEihULhsOfvueee/OEf/uG4hwIAAAAAAAAAAI5szPLPxz/+8STJAw88kKam\nprz73e9OQ0NDvvnNb2b//v0nJCAAAAAAAAAAAPDaxiz/LFu2LEnyJ3/yJ/n6178+enzp0qV5z3ve\nU9lkAAAAAAAAAADAmOrKuWj//v1Zv3796PvPP/98hoaGKhYKAAAAAAAAAAA4sjF3/hlxyy23ZMWK\nFZk9e3aKxWJeeeWV/Pf//t8rnQ0AAAAAAAAAABhDWeWfN7/5zXn00UfzwgsvpFAo5HWve10aGsq6\nFQAAAAAAAAAAqJCyxn719PTkjjvuyBe+8IXMmTMnt912W3p6eiqdDQAAAAAAAAAAGENZ5Z/bbrst\nF154Ybq7uzN16tS0t7fnk5/8ZKWzAQAAAAAAAAAAYyir/LN58+Zcf/31qaurS2NjY26++eZs3769\n0tkAAAAAAAAAAIAxlFX+qa+vT19fXwqFQpJkw4YNqasr61YAAAAAAAAAAKBCGsq56D/9p/+UFStW\nZNu2bfnd3/3drFy5Mp///OcrnQ0AAAAAAAAAABhDWeWftra2fOUrX8mzzz6b4eHh3HHHHZk1a1al\nswEAAAAAAAAAAGMoq/xz880351vf+lauuOKKCscBAAAAAAAAAADKVVb55+yzz84Xv/jFXHzxxWlq\naho9/sY3vrFiwQAAAAAAAAAAgLGVVf7p7u7O448/nscff3z0WKFQyD333FOxYAAAAAAAAAAAwNjK\nKv/ce++9lc4BAAAAAAAAAAAcpbLKP08++WTuvvvuDAwMpFQqpVgsZuvWrXn00UcrnQ8AAAAAAAAA\nADiMunIuuvXWW3PVVVdleHg4H/jAB9LR0ZGrrrqq0tkAAAAAAAAAAIAxlFX+aWpqyrXXXptly5al\ntbU1n/vc5/LEE09UOhsAAAAAAAAAADCGsso/kydPTnd3dxYuXJhVq1alUChkYGCg0tkAAAAAAAAA\nAIAxlFX+ufHGG3PzzTdn+fLlefDBB3PNNdfkggsuqHQ2AAAAAAAAAABgDA3lXPSOd7wjb3/721Mo\nFPKNb3wjGzZsyHnnnVfpbAAAAAAAAAAAwBjKKv986lOfes3jd95557iGAQAAAAAAAAAAyldW+WfZ\nsmWjbw8NDeWRRx7JokWLKhYKAAAAAAAAAAA4srLKP7/xG7/xqvff+9735v3vf39FAgEAAAAAAAAA\nAOWpO5ab1q5dmx07dox3FgAAAAAAAAAA4CiUtfPPueeem0KhkFKplCQ5/fTT8/u///sVDQYAAAAA\nAAAAAIytrPLPmjVrKp0DAAAAAAAAAAA4SmWVf774xS+Oef5jH/vYuIQBAAAAAAAAAADKV1fORdu2\nbcs//dM/ZdKkSWlubs4PfvCDPPPMM5XOBgAAAAAAAAAAjKGsnX/Wrl2b+++/P1OmTEmSrFixIitW\nrLDjDwAAAAAAAAAATKCydv7ZvXt3CoXC6PuDg4MZGBioWCgAAAAAAAAAAODIytr5573vfW/e8573\n5IorrkixWMz3vve9/PZv/3alswEAAAAAAAAAAGMoq/zzkY98JJdffnmeeOKJNDU15X/+z/+ZRYsW\nVTobAAAAAAAAAAAwhrLGfnV3d6e/vz833XRT+vr68md/9md56aWXKp0NAAAAAAAAAAAYQ1nlnz/4\ngz/IunXr8uMf/zjf/va3c+WVV+bTn/50pbMBAAAAAAAAAABjKKv809PTk9/8zd/Mww8/nHe/+915\n97vfnb1791Y6GwAAAAAAAAAAMIayyj/FYjGrV6/Oww8/nOXLl+e5557L8PBwpbMBAAAAAAAAAABj\naCjnok9+8pP5whe+kA996EOZP39+rrvuunzqU5+qdDYAYJyUSqVs7Nuc+S1zU1coq/sLAAAAAAAA\nVIGyyj9vetOb8qY3vWn0/QceeGD07Y9+9KP58pe/PP7JAIBxs3rXc/mLZ//vfPC863P5mZdNdBwA\nAAAAAABgnBz3S/9ffvnl8cgBAFTQC7vXJkk29W+Z4CQAAAAAAADAeDru8k+hUBiPHABABXX2bk6S\n7BjYOcFJAAAAAAAAgPF03OUfAODkViwVR3f86VL+AQAAAAAAgJqi/AMANW77nh0ZHB5Mkuzc90qG\ni8MTnAgAAAAAAAAYL8dd/imVSuORAwCokM6+gyO/6gv1KZaK2bVv9wQnAgAAAAAAAMbLcZd/3v3u\nd49HDgCgQjb2bkqSvH7muUmSHQNdExkHAAAAAAAAGEcN5Vz0gx/8IH/6p3+a3t7elEqllEqlFAqF\nPPLII7nxxhsrHBEAOB6dvZtTX6jP0rYL8uzOn6Zr766JjgQAAAAAAACMk7LKP5/73Odyyy235Jxz\nzkmhUKh0JgBgnAwVh7Klf2vmTjszc6adkSTZMbBzglMBAAAAAAAA46Ws8s+MGTOyfPnySmcBAMbZ\nlv5tGSoNp6N1ftqaZyZJuvYq/wAAAAAAAECtKKv8c9lll+XOO+/MW97ylkyePHn0+Bvf+MaKBQMA\njl9n7+YkyYKWeWlqaEprY0t2DHRNcCoAAAAAAABgvJRV/nn22WeTJD/72c9GjxUKhdxzzz2VSQUA\njIvOvk1Jko7WeUmStuZZWdezIQeKQ5lUV9a3AQAAAAAAAMBJrKzf+t17772VzgEAVMDG3s1prJuU\nM6a0J0lmT5mVtT3rs2vvrpwxdfYEpwMAAAAAAACOV1nlnyeffDJ33313BgYGUiqVUiwWs3Xr1jz6\n6KOVzgcAHKP9w4PZtuflLJrekfq6+iRJ25RZSZIdAzuVfwAAAAAAAKAG1JVz0a233pqrrroqw8PD\n+cAHPpCOjo5cddVVlc4GAByHTX1bUkopHa3zR4+1Nx8q/+zdOVGxAAAAAAAAgHFUVvmnqakp1157\nbZYtW5bW1tZ87nOfyxNPPFHpbADAcdjYuylJ0tEyb/TYz+/8AwAAAAAAAFS/sso/kydPTnd3dxYu\nXJhVq1alUChkYGCg0tkAgOPQ2bc5SbLg53b+aWuemSTpUv4BAAAAAACAmlBW+efGG2/MzTffnOXL\nl+fBBx/MNddckwsuuKDS2QCA49DZuynNDc2jhZ8kaaxvzIzJpxn7BQAAAAAAADWioZyL3vGOd+Tt\nb397CoVCvvGNb2TDhg0599xzK50NADhGAwcG0rV3V86dcU4KhcKrzrVNmZUXdr+UweHBNNY3TlBC\nAAAAAAAAYDyUtfNPT09Pbrvttnzwgx/M/v37c++996avr6/S2QCAY7Sxb0uSZEHrvF841z4y+mvv\nrhOaCQAAAAAAABh/ZZV/brvttlx44YXp7u7O1KlT097enk9+8pOVzgYAHKPO3k1Jko7W+b9wrm3K\nrCTJjgGjvwAAAAAAAKDalVX+2bx5c66//vrU1dWlsbExN998c7Zv317pbADAMers25wk6Wj5xZ1/\nZk9pS5J0Kf8AAAAAAABA1Sur/FNfX5++vr4UCoUkyYYNG1JXV9atAMAE6OzdlNbGlpw2efovnGtr\nPrTzz17lHwAAAAAAAKh2DeVc9PGPfzwrVqzItm3b8ru/+7tZuXJlPv/5z1c6GwBwDHr296V7f08u\nnHXeaHH3581qPj2FFLJjoGsC0gEAAAAAAADjqaztey644IJcddVVmTdvXrZt25arr746q1evrnQ2\nAOAYbOzblCRZ8Bojv5Kkoa4hpzfNsPMPAAAAAAAA1ICydv75yEc+kte97nVZvnx5pfMAAMeps/dg\n+aejdf5hr2mfMivPvfJC9g7tS3ND04mKBgAAAAAAAIyzsso/SYz5AoAq0dm3OUnS0XLk8k/X3p2H\n3SEIAAAAAAAAOPmVNfbrqquuyt/+7d9m06ZN2bp16+h/AMDJpVQqZWPv5sxsmpFpjVMPe11b86wk\nSdeA0V8AAAAAAABQzcra+aevry9/+Zd/mRkzZoweKxQKeeSRRyoWDAA4eq/s253+A3tyzozFY17X\nPuVg+WeH8g8AAAAAAABUtbLKP9/+9rfz4x//OE1NTZXOAwAch38d+TX2KK+RnX927FX+AQAAAAAA\ngGpW1tiv+fPnp6enp9JZAIDj1Nm7KUnS0Tp2+Wdm04zUFeqM/QIAAAAAAIAqV9bOP4VCIddcc03O\nOeecTJo0afT4PffcU7FgAMDR6+zdlEIKmX+EnX/q6+ozq/l0O/8AAAAAAABAlSur/PPbv/3blc4B\nABynYqmYTX1b0j6lLc0NRx7V2d48K6sH1mTPgYFMnTTlBCQEAAAAAAAAxltZ5Z9ly5ZVOgcAcJx2\nDOzMvuH9uegII79GtE2Zlew6eN/C6QsqnA4AAAAAAACohLqJDgAAjI/O3k1Jko6W+WVd397cliTp\nMvoLAAAAAAAAqpbyDwDUiM6+zUmSjjJ3/mmfMivJwZ1/AAAAAAAAgOqk/AMANWJj76bUFeoyd9qc\nsq5vax4p/3RVMhYAAAAAAABQQco/AFADhovD2dy/NXOmnpHG+kll3TOjaXoa6hqM/QIAAAAAAIAq\npvwDADVg657tOVAcKnvkV5LUFerS1jwzOwZ2pVQqVTAdAAAAAAAAUCnKPwBQAzp7NyVJOlrmH9V9\n7c2zsm94X/oP7KlELAAAAAAAAKDClH8AoAZs7NucJFnQenTln7Yps5IkOwaM/gIAAAAAAIBqpPwD\nADWgs3dzJtU1ZM7U2Ud1X3vzSPmnqxKxAAAAAAAAgApT/gGAKjc4fCBb92zPvGlzU19Xf1T3ju78\ns9fOPwAAAAAAAFCNlH+AFEvF3P/8g1nVtXqiowDHYHP/1hRLxXS0zjvqe9sPlX+6jP0CAAAAAACA\nqqT8A+Sl7vX5/pYf5Z82fGeiowDHoLN3U5JkQcvRl3+mN7amsb7Rzj8AAAAAAABQpZR/gDyz49kk\nyab+LRkcHpzgNMDR6uzdnCTpaJ1/1PcWCoW0Nc9M18DOlEql8Y4GAAAAAAAAVJjyD5ziiqVinun6\nyejbIyUCoHps7NuUpvqm0RFeR6u9eVYGiwfSM9g7zskAAAAAAACASlP+gVPcS93r0zfYn9MmT0+S\nrO/pnOBEwNHYO7QvLw90ZUHL3NQVju3LevuUtiTJjgGjvwAAAAAAAKDaKP/AKW5k5Ne7Fr09SbKu\nd8MEpgGO1qa+Yx/5NaLt0I5BXco/AAAAAAAAUHWUf+AUNjLya9qkqXnD7KWZ2TQj63o6UyqVJjoa\nUKaRUX0LWucd8zPamw+Wf17e2zUumQAAAAAAAIATR/kHTmEjI78ubrsg9XX1WTi9I3sODGTHXrt/\nQLXo7N2UJOloOfadf9pHd/7ZNS6ZAAAAAAAAgBNH+QdOYU8fGvl1aftFSZJF089Kkqzr6ZyoSMBR\n6uzbnGmTpub0ptOO+RnTJk1Nc0OT4h8AAAAAAABUIeUfOEUVS8WsPDTy65zTFiVJFk5fkCRZ37Nh\nApMB5eob7M8r+3ZnQeu8FAqFY35OoVBIW/Os7Ny7K8VScRwTAgAAAAAAAJWm/AOnqJGRX0sPjfxK\nkrlTz0xj3SQ7/0CVGI+RXyPap8zKUHEou/f1HPezAAAAAAAAgBNH+QdOUSMjvy45NPIrSerr6nNW\n64Js2/NyBg7snahoQJk29m1OknS0zjvuZ7U1z0qS7NjbddzPAgAAAAAAAE4c5fE1akMAACAASURB\nVB84BRVLxazc8eqRXyMWTe9Ikqzv3TgR0YCj0Nk7Uv4Zn51/kqRrYOdxPwsAAAAAAAA4cZR/4BT0\nUve69B149civEQtHyj89GyYgGVCuUqmUzr5NmTH5tLQ2thz380bKPzv2Kv8AAAAAAABANVH+gVPQ\n0zt+kuTVI79GjJR/1vV0ntBME+XlPTvy421PplQqTXQUOCrd+3vSN9g/LiO/kqS92c4/AAAAAAAA\nUI0aKvXgYrGY//Jf/kuef/75NDY25nOf+1w6OjpGzz/66KP5H//jf6ShoSHXXnttrrvuusPe09nZ\nmVtuuSWFQiHnnHNOPv3pT6euri4PPPBA7rvvvjQ0NOR3fud3snz58gwPD+fOO+/M6tWrMzg4mI9/\n/ONZvnx5pT5NqDpjjfxKkqmTpuSMKe3Z0Lsxw8XhX9gZqNZ8/aVv5qe71uSMKe1ZOH3BRMeBsnX2\nbkqSLGgZn/LPlElTMnXSlOxQ/gEAAAAAAICqUrGdfx5++OEMDg7m/vvvzx/8wR/kj//4j0fPHThw\nIHfeeWe+8pWv5N57783999+fnTt3HvaeO++8M5/4xCfyta99LaVSKY888ki6urpy77335r777svd\nd9+du+66K4ODg/n7v//7DA0N5b777suXvvSldHaeGruXQLnGGvk1YtH0juwfHszWPS+f4HQn1nBx\nOC91r0uSPL1j1QSngaPT2bc5SdLROn/cntnePCs7972S4eLwuD0TAAAAAAAAqKyKlX+eeuqpvOUt\nb0mSLF26NKtXrx49t3bt2ixYsCDTp09PY2NjLrvssjzxxBOHveenP/1pli1bliR561vfmh/96Ed5\n9tlnc8kll6SxsTEtLS1ZsGBB1qxZkx/+8IeZPXt2fuu3fiu33nprrrzyykp9ilCVxhr5NWLh9LOS\nJOt7NpyARBNnY9+W7B8eTJI8s+MnRn9RVcZ7558kaZ/SlmKpmF37do/bMwEAAADgRLrv+f8nX3n6\n/omOAQBwQlWs/NPf359p06aNvl9fX5+hoaHRcy0tLaPnpk6dmv7+/sPeUyqVUigURq/t6+s77DN2\n796djRs35stf/nI+8pGP5FOf+lSlPkWoOkca+TVi0fSDI/rW9dT2zlkv7l6bJGmZNC2793dnQ+/G\nCU4E5SmVStnYtzntzbMyZVLzuD23rXlWkqRrr9FfAAAAAFSfvUN788Mt/5z/tfYHOTB8YKLjAACc\nMA2VevC0adOyZ8+e0feLxWIaGhpe89yePXvS0tJy2Hvq6upedW1ra+thn3HaaafliiuuSKFQyLJl\ny7Jhw4YjZp0xY0oaGl57/BETp62t5cgXcVRWv/x8+g7056rFb8kZs0877HUzZ03NtGemprN/Y03/\n77DhZwfLTb+59DfypSfuzXN9a7Ls7AsmOBWnguP9e7Wtb0f2Du3LZXMuHNe/o2fvnZesTwbq+mr6\n7z5QOdYOoJZZ44BaZX0DasnTWzeklFKGi8Ppb+jOklmHfxEsQLXy/RvwWipW/rn00kvzne98J+98\n5zuzcuXKLFmyZPTc4sWL09nZme7u7kyZMiVPPvlkbrrpphQKhde85/zzz8/jjz+eyy+/PN///vfz\nS7/0S7nooovyZ3/2Z9m/f38GBwezdu3aLFmyJJdddlm+973v5W1ve1vWrFmTM88884hZd+8eqNQf\nA8eora0lXV19Ex2j5nznxceTJOe3nHfEP9+zWuZn9a41eWnzlkyf3Hoi4p1Qw8XhPNf1Us6Y0p5z\np56X5obmPNb5ZN4+9+rUFSq2KRqMy/r2zPY1SZLZk88Y17Vy8tDUJMm6HVvSNcMaDBwd378Btcwa\nB9Qq6xtQa57oXD369jMb12RGqW0C0wCMP9+/AYcrAFas/HP11Vfnsccey/ve976USqV8/vOfz0MP\nPZSBgYFcf/31ueWWW3LTTTelVCrl2muvzezZs1/zniT5oz/6o9x222256667smjRorztbW9LfX19\nVqxYkRtuuCGlUik333xzJk+enOuuuy6f/vSnc91116VUKuUzn/lMpT5FqCo/P/Lr7NMWHvH6hdPP\nyupda7K+pzNL2y88AQlPrM6+zRkcHsySGYvTUNeQi2e9Pv+8/cls6N2YRdPPmuh4MKbOvk1Jko6W\n+eP63HZjvwAAAACoYi/tXj/69oaejcn4/vgMAOCkVbHyT11dXe64445XHVu8ePHo21deeWWuvPLK\nI96TJAsXLszf/M3f/MLx6667Ltddd92rjjU2NubOO+88nuhQk17qXpe+A/1585zLU1935DF3i6Z3\nJEnW1Wj554Xda5Mk58w4uC5dOvui/PP2J/P0y88q/9S4v33h79PZuzm/f9nvVO0uT529m1NIIfNa\n5ozrc5samtLa2JIdA8o/AAAAAFSXvUP7srFvcxZN70jXvl3Z0LtxoiMBAJww1flbT+CoPbXj2STJ\npe0Xl3V9R+v81BXqsq6ns5KxJsyLI+Wf0w7OfH7djLMzpaE5z3T9JMVScSKjUUGlUilPbH8m63s7\n8/zulyY6zjEZLg5nU9+WnDl1dibXN47789uaZ+WVfbtzoDg07s8GAKpXsVTM4PCBiY4BAACHta5n\nQ0op5ZzTFuec08/Krn270zfYP9GxAABOCOUfOAUUS8Ws2rG67JFfSTK5vjHzpp2ZTX2ba64EMFQc\nytqeDZkz9Yy0NE5LkoOjv9ouSPf+nqzv8YqQWtW1d1f2DA0kSf5l+9MTnObYbB/YkQPFA+lorcye\nxe1TZqWUUnbt3VWR5wMA1ekf1v5/ufVH/zV7DgxMdBQAAHhNL+5el+TgCz7Pnnnw5+B2/wEAThXK\nP3AKGBn5tbT9wrJGfo1YOP2sDJUO7jJSSzb0bsqB4oHRkV8jLm2/KEny9I5VExGLE6Czd9Po2yu7\nVmf/8OAEpjk2nb2bkyQdrfMq8vz2KbOSxOgvAOBVfvbK89lzYGB0B00AADjZvNi9LnWFuiyc3pEl\nh8o/XugJAJwqlH/gFDA68qvtoqO6b9H0jiQHt0utJSO/sFhyaOTXiNfNODtTG6bkmR3PGv1Vo0Ze\n6fO6GWdncHgwq7pWT3Cio9fZd7DA1NFSoZ1/mg+Vf/Yq/wAABw0OH8i2PS8nSV7oVv4BAODks29o\nXzb2bU5Hy7w0NUzO4tMP/mzbzj8AwKlC+Qdq3HBx+KhHfo0YKf+s7+msRLQJ80L3uhRSyNkzXl3+\nqa+rz8Vtr0/PYF/W1djnzEGdvZtSV6jLe87+9STVOfprY++mNBTqM2faGRV5ftuhnX+67PwDAByy\ndc+20XL8C3b+AQDgJLSupzPFUnF0t/epjVNyxpT2dPZu8kJPAOCUoPwDNe6l7vXHNPIrSWZMPi2n\nTZ6edT2dKZVKFUp4Yh0oDmV9z4bMmXZGpk2a+gvnL22/OInRX7VoqDiUTf1bM2/amZnXMicdrfOz\n5pUX07O/d6Kjle1AcShb+rdnbsucNNQ1VORjtDXPTGLsFwDwr0bGANcV6rJtz8vpG+yf4EQAAPBq\nL3avS5Kc/XO7vZ/VuiD7hvdn+54dExULAOCEUf6BGvd017GN/EqSQqGQhdM70jvYl137do93tAmx\noaczB4pDWXLa4tc8v2TG4kydNCUrd/zEK0JqzJb+bRkqDqWjdUGSZNkZl6aUUp54+ZkJTla+Lf1b\nM1waTkfLvIp9jMb6xpw2ebqxXwDAqJHyzyVtFyb511+sAADAyeLF3etSV6jL4kO72SfJWdPnJ0k2\n9G6aqFgAACeM8g/UsOHicFbu+ElaJk076pFfI0ZGf63r2TCOySbOC4d+UTGy/eu/VV9Xn6VtF6Rn\nsC9ruzecwGRU2sg/8jtaD/6j/w3tS1NXqKuq0V+dvZuTJAsOfQ6V0j6lLd37ezI4PFjRjwMAVIdN\nfVvSUNeQt8x9UxKjvwAAOLnsHx5MZ9+mzG+Zm6aGptHjZ7Ue/Nn2ht7OiYoGAHDCKP9ADXupe336\nD+zJxe0XHPXIrxEj5Z/1PbXxD6QXd69NIYWcM0YZ6l9Hfz17omJxAnQeKv8sPFScmdY4Na+feW62\n9G/Llv5tExmtbCOfQyV3/kmS9kOjv7r27qroxwEATn5DxaFs7d+euVPPzKLpHWmsb8yLyj8AAJxE\n1vVsSLFU/IXd3udMnZ3Gukl2/gEATgnKP1DDRkZ+XdZ+9CO/RsybNieT6hqyrgbKP4PDB7K+pzPz\npp2ZKZOmHPa6c05blGmTpuaZrmeN/qohG3o3pqm+Ke1T2kaPLTvj0iSpmt1/NvZtTmN9Y86Y2l7R\nj9M2ZVaSZMeA0V8AcKrbtmdHhkrDmd8yJ/V19Vk8/axsH9iRnv19Ex0NAACSHBz5leQXdr+vr6vP\ngtZ52dq/PfuG9k9ENACAE0b5B2rUq0d+LTrm5zTUNWRBy/xs6d+WfUP7xjHhibehtzNDpeHDjvwa\nUV9Xn4vbLkjfYH9e6l5/gtJRSQMH9ublga50tM5LXeFfv/RdOPO8NDc05Yntz5z0Ra99Q/uzfc+O\nLGiZ+6rPoRLamw+Wf7qUfwDglLep7+DY0fktc5Nk9NXUL3bb/QcAgJPDi93rUkghi19jt/ezWhek\nlFI2Hvq+FgCgVin/QI36+ZFfx1sUWDS9I6WUqn571BcOjSdYcoTyT5Jcemi3JKO/akNn36FxWYdG\nfo2YVD8pl7ZflJ7B3tH/f5ysNvVtSSmldLTMP/LFx2lkd6Qde5V/AOBUt6lvS5JkwaGxoyNFeqO/\nAAA4GQwOD6azd1Pmt8xNc0PTL5w/q3VBkoO7ggMA1DLlH6hRT+9YleT4Rn6NWDS9I0myvspHf72w\n++ArQP7t9q+vZWT018odPznpd4ThyDoPFddG/rH/85adcVmSk3/0178WmOZV/GPNaj49hRSM/QIA\nsqlvS+oKdTlz2hlJkgUtczO5vjEv2PkHAICTwLqezgyXhnPOjNfe/X7h9EPlnx7lHwCgtin/QA0a\nLg5nZdfq4x75NWLhofLPuiou/wwOD2ZD78ZDrwBpPuL19XX1Wdp+YfoO9Oel7nUnICGVtGG0/POL\nu+Ysmt6RmU0z8kzXT7J/ePBERyvbxt6DWxMvOAE7/zTUNeT0phnZsber4h8LADh5DReHs7l/W+ZM\nPSOT6hqSHPw+efFpC7NjYGe69/dMcEIAAE51Lx762e05h/k5+GmTp+e0ydOzvndjSqXSiYwGAHBC\n/f/s3XeUW+d5Lvpnow3qAJiC6Zg+JCW2GRZRsqxm9WrZsZ0TLzsnjksclzTHybrHJ2vd5OTkxrGT\nE8t24shO4sRx4mNLtrqo3iX2YRPJwRRgML2hd2Dv+wewRyNpSE4BsIGZ57eWFpdmgO97SZEi9t7v\n9z5s/iHagOTIr92OHeuO/AIAi84Mh6EGI0FP2U7BudwJkOXIU5OOMfqrrEmSBHdwFPYKG6wVle/7\nvkpQYV99H5KZJE7OnlGgwpXxBL0waYyoMVQVZT+HsQahZBixdLwo+xEREVHpmY7OIiWm0GJpetfX\ne2xy9Beb5ImIiIhIWa7ctPdO68WnvbdVOhFMhuBL+ItYGREREVFxsfmHaAOSI7/6HDvytma7tRWx\ndBxTkZm8rVlMLl82lkB+ULESXbYOWLRm9M+cRkbMFKo0KjBfwo9QMozWZab+yPbX9wEo3eivcCqC\nufgCnJXNEAShKHs6jDUAgNkYo7+IiIg2K29oHADe3/xjz36mHvAx+ouIiIiIlJPMpOAJjqLZ0gij\n9uLT3uVp4PJ0cCIiIqKNiM0/RBtMviO/ZB256K+RMo3+GvAPQSWo0Gm7+AmQ91IJKux27EA4FVkc\nH0vl51KRX7I6Yy1aK1twfsGFQCJYrNJWzBvMPnhrtTQXbc9aQ675J8rmHyIios3qYs0/zeZG6NV6\nDPjZ/ENEREREynEHPUhLmYtGfsnaKp3Z1wdGi1EWERERkSLY/EO0wbj8w3mN/JJ1WNsAZOOzyk08\nnYA76EWLpQkGjX5V7+3LRX+dYPRX2XIHsxf1l2r+AbLTfyRIODrdX4yyVsUTyjYwOS/zc8gnefLP\nTHS+aHsSERFRaRkNjUOAgGZzw7u+rlap0WVrx1xsHr44oxOIiIiISBkDuRjayzX/OCuboRJUGAmy\n+YeIiIg2Ljb/EG0wcpNKPiO/AKDe5IBercdw0J3XdYthJOCBKImrivySddnaYdGZ0T97htFfZcod\n8EKAgJbLTM3Z69gNlaDCoaljRaps5TzBMQBAa2XxJ//MxGaLticRERGVDlESMRYeR73JAZ1a977v\nM/qLiIiIiJQ26B+GAAFdl5n2XqHWodFUD29ojPd4iYiIaMNi8w/RBlKoyC8gG4HVbnViJjqHcDKS\n17ULTY4j6LavvvlHJajQW7uT0V9lKiNm4A2NocFUB72m4pKvNetMuLJ6C8bDkxgPTxapwpXxBL2w\n6iphq7AWbc9qvR0qQcXYLyIiok1qNjaPRCb5vsgvWbc9e73B6C8iIiIiUkIqk8JIcBRN5gYYtcbL\nvr7N6kRKTJfcfT8iIiKifGHzD9EGUqjIL1m7tRUAMBIsr+ivAd8QVIIKnbnostWSpygdnzmZx6qo\nGCYj00iKqcVc78vZX78HAHB46nghy1oVfyKAQDIIZxGn/gDZOI8aQxVmYmz+ISIi2oy8oXEAuGjz\nT7O5EQaNAS4fG+SJiIiIqPjcwVGkxfRiU/rlyPcH3Yz+IiIiog2KzT9EG0ihIr9kHbnmn+FA+TT/\nxNNxjIbG0Gppuezkl4vptLWjUmdh9FcZ8gS9AIC2ypYVvX5H9TYYNHocmToBURILWdqKLUZ+WVb2\nc8gnh6EGkVQUkVS06HsTERGRshabf8zLN/+oBBW6bR2Yjy9gPuYrZmlERERERBjITWnvtq1s2nt7\n7v6gO3e/kIiIiGijYfMP0QZRyMgvWVulEwIEDAfcBVm/EIYCboiSuOITIMtRCSr0OnYgkopiwMdY\ng3Iin+Rps65s8o9WrUVv7U4EksGS+W89mrsh0VrkyT8AUGusAQDMMPqLiIho05Gbf5otjRd9DaO/\niIiIiEgpg75hCBDQZWtf0esdxloYNPqym2pPREREtFJs/iHaIAod+QUABo0ejeZ6eILespmAIzdw\n9NhXdgLkYvocuwAAx3PTlag8uINe6FRa1BsdK37P/vo+AKUT/eUJZSf/FDv2C8hO/gGAWUZ/ERER\nbSqSJMEbGofDUAODRn/R1/XkTlm7SqRpmoiIiIg2h5SYxkjQg0ZzPUxa44reoxJUaLW0YCY6xynX\nREREtCGx+Ydog3gn8mtnQfdpt7YiJaYxFp4o6D754vINQy2o0WFtW9c6HdZWWHUWnGT0V9mIpxOY\njEzDWdkMtUq94vd12tpQpbfjxOxpJDLJAlZ4eZIkYTQ4hhp9FcxaU9H3dxhrAXDyDxER0WYzH/ch\nmo6hxbJ85Jes0VwPk8aIAd8QJEkqUnVEREREtNl5gl6kxDS6VzkBvz03HZzRX0RERLQRsfmHaANY\njPzSmVc85nStOipbAQDDgdIfjxpLxzAaGkNrZQsq1Lp1rZWN/tqJSDqKC77BPFVIheQNjUGChNZc\nnvdKqQQV9tf1IplJ4uTsmQJVtzLz8QVE0tFV/xzypZaTf4iIiDYlOfLrcs0/KkGFLnsHfAk/5uML\nxSiNiIiIiGhx8mT3Kqe9t1XKzT+jea+JiIiISGls/iHaABYjv2oLF/klkyfoDAfcBd0nHwb9I5Ag\nrTvyS9abm6rE6K/yIJ/gkS/qV6NUor88uZ+DEpFfAGDXW6FRaTATnVVkfyIiIlLGSpt/gHeivwZ8\nwwWtiYiIiIhI5vJnP3t2WVd3EFY+YMfmHyIiItqI2PxDtAEcL1LkFwDUGKpg0ZrLYvKPK/cAQn4g\nsV7Z6K9KnJw9g7SYzsuaVDjvNP+sfmpOncmBVksLzi+4EEgE813ainmCYwCAVosyzT8qQYUaQzVm\novOM8iAiItpEVtX8Y5ebf4YKWhMREREREQCkxTSGAx40muph1plW9V6LzowaQzU8AS/vdREREdGG\nw+YfojKXETM4WaTILwAQBAEd1lb4EwH44v6C77ceA/4haAQ12q2teVlPJajQ59iJaDq2IaK/NvoF\nrjs4ikqdBfYK25rev7+hDxIkHJ3uz3NlK+cJeSFAWNGDt0KpM9QgnokjnIooVgMREREVjyRJGA2N\noVpvh0lrvOzrG0x1MGtNcPmHNvznSyIiIiJSnic4hpSYQre9Y03vb6tsQSQdZcw9ERERbThs/iEq\nc3LkV28RIr9kcjNNKUd/RVMxjIUm0GZ1QqfW5m3dvrqNEf01FZnGn7z6/+L18UNKl1IQ/kQA/kQA\nrZUtEARhTWvsdeyGSlApFv0lSiJGQ+OoMzmg1+gVqQEAao01AICZKG+IEBERbQaBZBDhVGTFzceC\nIKDb1gF/IoDZ2HyBqyMiIiKizc7lz06c7F7jtPf2yuy97ZEAo7+IiIhoY2HzD1GZk5tQeosQ+SXr\nsLYBKO0LpEH/MCRIa74IvJi2SidsFVacnD1b1tFfDw0+jkg6ikMKNbYUmmcdkV8ys86EK6u3YCw8\ngYnwVL5KW7Hp6CySmaRikV8yhyHX/MPTUERERJvCaC52dDWTB+XoLxejv4iIiIiowFy+YQBY8xT8\nNmv2fqE7d/+QiIiIaKNg8w9RGSt25JfMaWmCWlBjOOAp2p6rNZA7ASI/iMgXOforlo7h/IIrr2sX\ny7n5Abw9fwEAMBL0IJ5OKFxR/rkXm3+c61pnf/0eAFBk+o/cwNS6jgamfHhn8s+sonUQERFRcXhD\n4wDW1vwjfwYnIiIiIiqEtJjGcMCNBlMdLDrzmtZoMjdCI6jhDpbuwVYiIiKitWDzD1EZUyLyCwC0\nai2cliZ4w+NIZpJF23c1XL5haFQatK+z+WM58pSlcoz+EiURDw8+DgECtldvgyiJGPQPK11W3snN\nP851Ts3ZUb0NBo0eR6ZPQJTEfJS2Yp7cqfvWSoUn/+Saf2YZ+0VERLQpeMOrb/6pMzpg0Znh8g1B\nkqRClUZEREREm9xoaAxJMYVuW8ea19CqNGixNGEsPIFkJpXH6oiIiIiUxeYfojKmROSXrN3aClES\nFxsUSkkkFcV4eBLtlU5o1dq8r99W2QJ7hQ2n5s4iVWbRX29OHMFEZAoHGvbiQ84PAgDO+8pzgtHF\niJKI0aAXdUYHjFrDutbSqrXord0JfyKAgSLHWHhCXqgFNZrMjUXd972sukroVFrGfhEREW0S3tAE\nbBVWVOosK36PIAjosXUikAxxWiARERERFYwc+dW9zmnvbZVOiJKIsVzjOxEREdFGwOYfojKlVOSX\nrMPaBgAYKcHoL5d/GBKkvEd+yVSCCr2OHYil4zi/MFCQPQohno7jseGD0Kl1uLvjVrRb26BVaXFh\nYVDp0vJqOjqLeCaBtjzFZe2v7wNQ3OivtJjGeGgCjeZ6aFWaou27HEEQUGuswWx0jif5iYiINrhg\nMgR/IoAWy+qbj7sXo7823lRJIiIiIioNrtxnzfXeD2+zZqfFjwQY/UVEREQbB5t/iMqUUpFfsvbc\nBdJw0F30vS/HlZvQ0mPvKtgefY5dAIATM6cLtke+Pet5CaFUGLc6b4CtwgqtSoMuWzsmIlMIJIJK\nl5c3cuRXvpp/Om1tqNLb0T97umgxdxPhKaSlDFrXGVuWLw5DDZJiCoHkxvl9QkRERO/nDU0AAFrM\nK4/8kvXkohdcRZ6WSERERESbQ0bMYCjgRr3Rsaoplctpq8ze23YH2fxDREREGwebf4jKlJKRXwBg\nq7CiWm/HcMBTctNABnxD0Ko0aM1T88dy5Oivk7PlEf21EPfhee8rsFVY8SHndYtf31rVDQC44Ns4\n03/ki/Z8/fdXCSrsr+tFIpPEydmzeVnzcjyhbANTIX8Pr0atsQYAMBNl9BcREdFG5g1lI31bLKtv\n/nEYa2HVWTDgHyq56wMiIiIiKn+joTEkM0l02TvWvVa13g6z1rR4iJCIiIhoI2DzD9F7iJKodAmX\npXTkl6zd2opIKoqZWOk0BISSYUxEptBhbStoXJIgCOir24l4pjyivx4dehopMY17O26HTq1b/PpW\ne7b55/yCS6nS8s4T9EKj0qDJ3JC3NYsd/TUazD54K5XmH4exFgAwy+YfIiKiDc0bGgewtuYfQRDQ\nbe9EKBnGdHQm36URFY0kSXAHR8vi3gAREdFmIkd+yRMn10MQBLRbnViI+xBIhNa9HhEREVEpYPMP\n0RJvTBzBn7725zgzd07pUi5J6cgvWYe1DQAwHPAoVsN7DfpHAAA99s6C79WXm7p0bPpUwfdaD3dw\nFEemT6DF0oR99b3v+l6juR5mrQnnF1wb4oR2MpPCeHgSLeZGaPLY/FVncqDV0oJzCwNFuSHgCY1B\nq9Ki3ugo+F4r4TDkJv+UUKMfERER5Z83NA6L1gxbhXVN7++xZT+DDzD6i8rY0el+/M3R7+I5z8tK\nl0JERERLuHzZ5p8uW37u+zL6i4iIiDYaNv8Q5cTScfxq6AlEUlE8eObfcWGhdGOQ5MivPoUiv2Qd\n1lYAwEjArWgdS8kPGrrzdBF4Ka2WFlTp7Tg9dxapTKrg+62FJEl42PU4AOCjXXe/r1lMJaiwtaob\ngWQQUxvghPZYeByiJC5evOfT/vo+SJBwbPpE3tdeKplJYjIyjRZLE9QqdUH3WikHY7+IVuzodD8O\nul9ARswoXQoR0apEUlHMx31osTRBEIQ1rdFtZ/MPlb8juc/7z4y+iEgqqnA1REREBGQn4Q8FRlBn\nrIW1wpKXNdn8Q0RERBsNm3+Icl70vopIKopdtdsBScI/nv7XkppoI1sa+dWpYOQXADSa6qFT60rq\n12nAPwSdSovWyuaC7yUIAvocOxHPJHCuRKO/+mfPYCjgxq6aKxcfxrzXlg0U/SXndBciLmtP3S6o\nBFXBo7+8oQmIkliU38MrZdaaoFfrOfmH6DKSmSR+ev4XeHT4aTzQ/yBCjwtROwAAIABJREFUybDS\nJRERrdh6Ir9ktYZq2CqscPmHN8RUSdp8oqkozi+4oBJUiKXjeNbzktIlEREREQBveByJTBJdeYj8\nkrVWtkCAAHeAzT9ERES0MbD5hwhAOBXB86OvwKw14dPbPoHPbP8k0mIa3z/5I3hDE0qX9y6lEvkF\nAGqVGm2VTkxGphFNxRStBQBCyTCmItPosLblNfLpUuTpS/I0plKSEtP41eATUAkqfLjrzou+bmtV\nF4AN0vyTu1gvxOQfi86MK6q2wBuewER4Ku/ryzyhbAOT01I6zT+CIMBhrMFcbB6iJCpdDlHJOjX3\nNhKZJCp1Frj8w/jm0QdK7nMEEdHF5KP5RxAEdNs6EU5FMBmZzldpREVzcu5tZKQMbmu9EbYKK14a\nex2BRFDpsoiIiDY9OfKrJ4/NPwaNHnUmBzwhL+93ERER0YbA5h8iAM96XkI8k8DtbR+CXlOBXbXb\n8altH0c8ncB3+x/EVKR04pCOz5wEoHzkl2wx+qsExqPK8QI9F5lwUwhOSzOq9VU4NXcWyRKL/npl\n7A3MxRdwfdM1cBhrL/q6Kr0dDmMNXP6hso+p8QS9MGmNqDFUFWT9/fV9AFDQ6T+eAk4vWg+HsQZp\nMQ1fPKB0KUQl68hUNibkq72fx93tt2Ih7sPfHvteSTaIEhG9Vz6af4B3Posz+ovK0Ync39n76/fg\njrYPISWm8JT7eYWrIiIiIpc/2/zTZc9f8w8AtFc6kcgk2bhOREREGwKbf2jT8ycCeHnsddgrbLi2\n8arFr++v78Ovb7kf4VQED/Q/iLnYgoJVZmUjv86WROSXbLH5J+BWthC8cxFYzOYfOforkUni3MKF\nou17OeFkBE+5n4NRY8Ad7Tdf9vVb7T1IZJIl0cS1VqFkGHPxhezIXkEoyB47aq6AXq3HkekTBTsR\nNBocg0GjR62huiDrr1WtoQYAMMvoL6JlhZMRvL1wAS3mRjSY6nBH+834/I7fhCAI+NGZn+Cx4YM8\nSUhEJc0bGodBY0C13r6udeTP4i4/m3+ovMiRXy3mRjiMNbi6YR9qDdV4feIQ5mLzSpdHRES0aWXE\nDIb8bjgMNbBVWPO6dlvu8J27jO+JEhEREcnY/EOb3tPuF5AS07iz/WZo1dp3fe/apgO4v+su+BMB\nfOfEP8GfUHbixTuRXzsVj/yStefilYYDHoUryZ4u1ql1RY9LKsXoryfdzyGWjuOO9pth0hov+3o5\n+utCGUd/yRNz2iyFm5ijU2vR59gBfyKwOG44n6KpGGZic3Bamkvmz7jMYcw2/8xEZxWuhKg0HZ85\nBVESsbe+d/Fru2qvxNf2fBk1hmo87X4e/3T6x4il4wpWSUS0vFg6jpnYHFosTetuoq7W22GvsMHl\nG2bTI5UVOfKrN3d9p1apcXf7rRAlEY8PP6twdURERJvXWHgC8UwcXXmM/JK15w62ugNs/iEiIqLy\nV1pPFomKbC42j9cnDsFhqMFV9XuWfc3NzutxZ9vNmI8v4DsnHkQoGS5yle94J/Jrh2I1vJdRa0S9\nqQ7u4KiikVGBRBDT0Rl0WduhVqmLuneLpQk1+iqcmnu7JKK/piMzeHX8TdQaqnFd09Urek+PvRMC\nBJz3lW/zj1tu/rE6C7qPHP11aOpY3tceDY0BKL3IL2BJ8w8n/xAt68j0CQgQsLdu97u+3miux9f3\nfgVb7d04PXcO3zr2PcxE+eeIiErLWGgCAOBcZ+QXkJ2M2WPvRCQdxUR4at3rERWLHPnVuyRiu69u\nF5rMDTg6fQLj4UmlSiMiItrU5Gnv3XmO/AKABlMddGrd4n1FIiIionLG5h/a1J4ceQ6iJOKujlsv\n2TByZ/st+FDLdZiOzuC7/T9ENBUrYpVZGTGD/tkzJRX5JeuobEUik8SEgtnISkR+yQRBQF/dLiQz\nSbxdAtFfvxx6EqIk4sNdd0Gj0qzoPQaNAW2VLXAHvWU7lUKe/NNawMk/ANBpa4e9wob+2dNIZpJ5\nXXs0mGv+KfL0qpVwyLFfbFogep/52AKGA2502zqWHUFu0hrxu7s+g5taPoipyDS+efQBnJsfUKBS\nIqLlecPjALJN7fnwTvRX/iclEhXCeyO/ZCpBhXs7bocECY8NH1SwQiIios1Lnr7dXYDJPypBhVZL\nMyYj04iX6T1RIiIiIhmbf2jTmghP4fDUcTSZGxZjmy5GEATc33UXrm28CmPhCXz/5I8QTyeKVGnW\ngH8IkVS0pCK/ZB258agjAbdiNQz4hgAU5gTISixGf02fVGR/2YBvEKfn3kaXrR27aq5c1Xu3VnVD\nlES4cr+W5USSJHiCXtQYqmHWmQq6l0pQYX99HxKZJE7Ons3r2p5QroGpBCf/GLVGmLRGTv4hWsaR\n6X4AwL4lkV/vpVap8dHue/CpbR9HKpPE907+CM+PvgJJkopVJhHRRXlD+W3+6bZlm38GyvBzJW1O\n7438WurK6q3osLbh9NzbJRF3TUREtJmIkoihwAhqDNWw620F2aOt0gkJEjy5Q3lERERE5aq0OgiI\niuiJkWcgQcI9HbetqJlGEAR8Ysv92FfXi5HgKH5w+sdIFTHiSR5BXkqRXzK5+UfJG6Eu3xD06gq0\nmPPzwGK1ms2NqDVU4/T8ubxPg1kpURLxkOtxAMBHuu6GIAirev8WezcA4LxvMO+1FdpsbB6RdBRt\nRWqakaO/Dk8dz+u6nuAYLFrzspNDSoHDUIO52IKiEX9EpUaSJByZPgGNoMbu2sv/HX2gYS9+v++L\nqNSZ8fDg4/j3c/+3qJ8niIiW4w2No0KtQ62hOi/rVRvsqNZXweUfhiiJeVmTqJCWi/ySCYKA+zrv\nAAA8OvQUG3eJiIiKaCw8gVg6XpCpP7I2qxMA4A6OFmwPIiIiomJg8w9tSp6gF/2zZ9Be2Yrt1dtW\n/D6VoMKntn0cu2quxIBvED8885OiPASXI78qdZaSi/wCAIexFiaNUbHmH38igJnYHLps7ZeMbysk\nQRDQ69iJZCaJs/PKRH8dmjqOsfAE9tf3rWlyTLvVCZ1ahwsLrgJUV1jyxXlbpbMo+9WbHGi1tODc\nwgACiVBe1gwmQ/Al/GitbF5141ax1BprIEoi5uM+pUshKhlj4UlMRaaxvWYbjFrDit7TbnXi6/u+\nirZKJw5NHcPfHf9H+BOBAldKRLS8ZCaJqcgMms1NeZ0w2mPvRCwdw3h4Mm9rEhXCxSK/luqyteOK\n6i1w+Ydx3ld+10tERETlarCAkV8y+TDhCJt/iIiIqMyx+Yc2pceGDwIA7u28fdUP2dUqNX5r+yex\nraoHZ+bP4cdv/1fBT7PKkV+7a3eUXOQXkG18abe2Yj6+gEAiWPT934n86iz63kv1OXYBAI7PFD/6\nK5FJ4rGhp6BVaXFvx+1rWkOj0qDb1oGp6Ax8cX+eKywsT7D4cVn76/sgQcKx6RN5WU/+OThLMPJL\n5jDUAgBmGf1FtOjIdHYC2L66i0d+LcdWYcXv934BV9XvgSfkxV8f+Q5GGCVCRAoYC09CggRnniK/\nZPIDGkZ/Uam7VOTXUvJ11qNDT3P6D5U9SZJwaPIY/sfrf4mfnHxY6XKIiC5qwJ9r/rEXrvnHVmGF\nvcIGd3CUf8cTERFRWSu9LgKiAnP5hnBuYQBb7d3oWWOziFalwed3fBqd1jYcmzmJn55/qKANQKUc\n+SWTo7+UeHDpyj1Q6LEp2/zTbG6Aw1CDM3PFj/56zvMSAskQPuS8bl3511urstFfF8os+ssd9EIl\nqNBibizannvqdkElqPIW/TWayxVvtTTnZb1CcBizUSAzUTb/EAHZuMVj0ydh0OhxZfXWVb9fq9bi\nU9s+jo9234NQMoz/c/wf8ebEkQJUSkR0cd7QOACgJc/NP/K1Fpt/qNRdKvJrqRZLE/ocOzEaGkP/\n7JlilEZUELPReXy3/4f4t3M/gz8RwEHXy4in40qXRUT0PqIkYsg/gmp9Far09oLu1VbZglAyjIUy\nOxBJREREtBSbf2hTkSQJj+am/tzTedu61tKpdfjirt+C09KENyeP4CHXYwU5GVDqkV8yuflHieiv\nAf8wDBo9mi3Fa/xYjiAI6HPsRFJM4cz8+aLt608E8Nzoy6jUWXCL84Z1rbXVnm3+OV9G0V9pMY2x\n0DiazQ3QqrVF29eiM+OKqi3whicwEZ5a93qeUK75p4Qn/9TmYhDY/EOUNegfgT8RQG/tjjX//0cQ\nBNzU8kF8efdnoVPr8JPzP8cvBh4tSqwoERFQuOYfu96GWkM1Bv0jBZ+USrRWK4n8WurujtugElR4\nbPgg/66mspMRMzjofgF/efjbOO9z4YrqLfhg09VIZJI4PnNa6fKIiN5nPDyFaDpW0MgvWZvVCQBw\nBzmRl4iIiMoXm39oUzk7fx7DATd21VyJtkrnutczaAz40u7PotFUj5fGXsfjucaifCr1yC9Za2UL\nVIKq6M0/vrgfc7F5dNnaS+LXp69Ojv46VbQ9Hxs6iKSYwj0dt0GvqVjXWg2mOlTqLDjvc5XNmNvx\n8CTSUgatefgzvVr76/sAYN3TfyRJgifoRZXeDovOnI/SCsJhyD4QYewXUdaRqWzs37761UV+LWdr\nVTe+vveraDDV4cWx1/Ddkz9COBVZ97pERJfjDY1Dq9Kizlib97W7bZ2IZ+KLDUZEpWalkV+yOmMt\nDtTvxXR0Jm8TQImKYSTgwf935O/x6PDT0Gv0+MyVv4Hf3fkZ3Np6AwQIeGvyqNIlEhG9z2ARIr9k\n8rMCd9Bb8L2IiIiICkX5J+VERSJKIh4bPggBAu7uWN/Un6XMWhO+vPtzqDVU42nPC3jG/WLe1gaW\nRn6t7GakUnRqHZrNDfCGxpDKpIq270CJRH7JGk31qDPW4szcOSSKEP3lDY3j0NQxNJkbcKBh77rX\nEwQBW+zdCCXDmIisf5pNMcgX5W0KTMzZUXMF9Go9jkyfWNeJ9oW4H+FUpKQjvwBAr9GjUmfh5B8i\nACkxjROzp2GrsKIrT6cQa43V+NqeL2FnzZUY8A3ib448kJfJYkREF5MS05iITKHZ3AC1Sp339Rn9\nRaVupZFfS93ZfjM0Kg2eGHkWKTFdqNKI8iKWjuFnF36Jbx/7PiYiU/hA43782VVfw5663RAEAVV6\nO7bXbcFQYITXeURUcly5z5DFmPzjtDRBJagwEhgt+F5EREREhcLmH9o0Tsycxlh4AnvretFors/r\n2tYKC76y+/OwV9jwyPBTeGns9bys++7Ir7a8rFlI7dY2pKUMvOHinewd8OcuAu2l0fwjCAJ6HTuR\nElM4M3euoHtJkoSHXY9DgoSPdN2dt8lHW6u6AAAXyiT6yx3MXpQr0fyjU2vR59gBfyIAl294zet4\nQtkGJmdlaTf/AECtoQYLcR/SfNBBm9zZ+fOIpWPYU7crr5Pn9Bo9PrfjU7ij7WbMxRfwN8e+i/7Z\nM3lbn4hoqcnwFERJzHvkl0w+pe3yr/1zElGhrDbyS2bX23Bd09XwJfx4bfytAlZItHaSJKF/5jT+\n4q1v45XxN1FnrMUf9H0Rv7H112DUGt/12hvargYAHJo6pkSpRETLEiURg/4RVOntqDZUFXw/nVqH\nJnMDvOFx3vMiIiKissXmH9oUMmIGT4w8A5Wgwl3ttxRkj2qDHV/t/RwsOjN+PvAI3szDyORyifyS\ndVhbAaCo0V8u3xCMGgOazA1F2/Ny5ClNhY7+Oj33Ngb8Q9hevRVbq7rztq681jlfeTT/eIJe6NV6\nOAoQVbES+Yj+Gg2OAQBaLcVvYFoth7EGEiTMxRaULoVIUYuRX3V9eV9bJahwd8et+Oz2TwGShAdP\n/xueHHl2XRPGiIiWMxrKfgYpVPOPrcIKh7EGQ/4RZMRMQfYgWqvVRn4tdWvrjahQ6/C0+3nE04kC\nVEe0dr64Hz84/WM8eObfEUlFcHf7rfjT/b+PLlv7sq/f37wberUehyaP8fMmEZWMycg0IuloUab+\nyNoqnUiLaYyHJ4u2JxEREVE+lX43AVEeHJ46junoLK5p2IdaY3XB9nEYa/GV3Z+DSWPEf5z7+bqb\nP45Pl0fkl6zYzT/zsQXMx33otnWUVHNUNvrLgbPz5wp2IzgjZvDLoSegElS4v+uuvK5tq7Ci3ujA\noG+45E+6RFNRTEdn0VrZrNjvgU5bO+wVNpyYPYXkGqPePEF58k9hHrzlk8OQPRU9E51VuBIi5cTS\nMZyZP4d6Ux2aC9h82uvYga/t/TKq9XY8MfIsfnTmJ3zASER55Q1lJ3YWqvkHyMbzxjMJjIaKNx2U\naCXWEvkls+jM+FDLdQinInjR+1q+SyNaE1ES8aL3NfzFoW/h9Nzb6LZ14P/Z/we4o/1maFWai76v\nQqPDnrqd8CX8jGkkopIhT9guZvNPe6UTADASZPQXERERlafSeVpOVCApMY0nRp6FRqXBHe03F3y/\nJnMDvrT7t1Gh1uFfzv50zdFPGTGDk3PlE/kFAPYKG2wVVgwH3JAkqeD7DeTiA0ol8ksmCAL6HDuR\nEtM4O1+Y6K9Xx9/CTHQO1zZehXpTXd7X31rVjaSYwkgRpzithSd3Wr0td3GuBJWgwv76PiQySZya\nPbvq94uSiNHQOOqMtTBoDAWoML/kSISZ2JzClRAp58TMGaTFNPbV9UIQhILu1WRuwNf3fhU9tk70\nz57Bt499D3Ox+YLuSUSbhzc0AY2gRkMBPk/KenKf1V1+PlCm0rHWyK+lbnJeB5PWiOdGX0Y4Fclz\nhUSr4w1N4FtHv4dfuB6FWlDjk1s/ht/r/QLqTI4Vvf9Aw14AwFt5mGJNRJQP8mfHYt73bavMTuR2\nB7xF25OIiIgon9j8Qxve6+OH4Ev4cX3TNbBVWIuyZ2tlC35n529BLajxwzP/vqaTU3LkV6+jPCK/\ngGzTS7u1FaFkGPPxwkcCuXK/rj0l1vwDFDb6K5qK4smRZ6FX63FngWLs5Oiv877BgqyfL/LFeGul\nsnFZcvTXoenVR3/NRucQz8ThLIPILwCozT0cmY2y+Yc2ryPT2civvXW7i7KfWWfCl3d/Ftc3X4OJ\nyBS+eeQBXFgo7f8/E1Hpy4gZjEcm0Wiuh+YSEyHWq8uW/azOaRJUStYT+SUzaPS4rfUmxDNxPOt5\nKX/FEa1CIpPELwefwDePfgeekBf76nrxZwf+GNc07ltVk3p7ZSscxhr0z55GLB0rYMVERJcnSiIG\n/SOwV9hQrbcXbd9aYw0MGgPcwdI+DElERER0MeXRUUC0RolMEk+7n0eFWodbW28s6t7d9g58fsen\nIUoS/uHUv6x6gooc+dVbWx6RX7JiRX9JkoQB3xBMWmNBTyqvVaO5HvWmOpydP494Op7XtZ9yP49I\nOorb226CRWfO69oyOUrt/IKrIOvniyeUHcPbpnDzT73JAaelGecXXAgmQ6t6rzy9qLWyuRCl5V2t\nIRudOMPJI7RJ+RMBuHxD6LC2osZQVbR91So1Pt7zYfzG1o8inknguyd/iJe8rxdl0h4RbUxT0Rmk\nxXRBI78AwFphQb3RgaGAGxkxU9C9iFZqPZFfS13XdDVsFVa8PPY6/IlAPkojWrGz8xfwl4e+jedG\nX4a9woYv7/os/vuV/21N9wkEQcCB+r1IienF+1FEREqZiswgnIqg295R8Gm7S6kEFdoqWzAbm+dU\nPyIiIipLbP6hDe0l72sIpcL4UMt1MOtMRd//iuot+Mz2TyItpvG9k/8Mb2hiRe8rx8gvmdz8U+i4\nqPn4AnwJ/2KTSinqq92BlJhec/Tbcmaic3h57A1U6+24ofkDeVv3vfQaPdoqnfAEvYimSvPUnyRJ\ncAe8sFfYYK2oVLoc7K/vgyiJODrdv6r3eYKlMb1opXRqHWwVVsxEZ5UuhUgRR6f7IUHCvrpeRfb/\nQONV+P2+L8CkNeLnrkfwH+d/gZSYVqQWIipvo6FxACh48w+QndSZzCQXm56JlJSPyC+ZVq3Fne03\nIyWm8ZT7+TxVSHRpwWQI/3L2p/j+yR/BlwjgFucN+MZVf4ht1T3rWnd/fR8ECHhritFfRKQsl38Y\nQPZwYrG1VToBvHO/joiIiKiclOYTc6I8iKZieHb0ZZg0RtzkvE6xOnbXbsentn0c8XQc3+1/EFOR\nmcu+Z8BXfpFfsmZzI7QqTcEn/8ixAcXMfV6t3gJEfz0y9BQyUgb3dd4JrVqbt3WXs7WqGxIkDPhL\nM6JhIe5HKBVWfOqPbG/dbqgEFQ5PrS76yxMcg0pQodncUKDK8s9hqIE/EUAyk1S6FKKiOzp1AipB\nhT7HLsVq6LC24U/2fhVOSxPenDyCvz/+AwQSQcXqIaLy5C1i84/8mZ3RX1QK8hH5tdSB+r1wGGrw\nxsRhzEY5HZMKR5REvD5xCH/+1rdwdLofrZUt+JO9X8WHu+6ETq1b9/p2vQ1bq7oxHPBgegX3roiI\nCsUl3/e1Ff++b7s12/wzEhgt+t5ERERE61VeXQVEq/D86MuIpWO4pfUGGDR6RWvZX9+HT2y5H+FU\nBA/0P4i52MIlXy83i5Rb5BcAaFQaOC0tGA9P5j3uaqkBX/YESI8CF4Er1WiuR4OpDmcXLuTl12LQ\nP4L+2dNor2xFX55uVF/KVns3AOBCiUZ/uYPZi/BSmZhj0ZlxRVUPvKFxTEamV/SejJjBWHgcDaa6\nvNysLRb5hPQso79ok5mKTMMbnsAVVT2KTBRcyq634Q/6fhf76noxEvTgm0cf4MlEIloVbyjbgNxo\nKnwDsnxq28XmHyoB+Yr8kqlVatzdcStEScTjIwfzsibRe01FZvD3J36An55/CJIk4mM99+Fre76E\nZktjXvc50LAXAPDW1LG8rktEtFKSJMHlH4atwlrUqG2ZfJ9Rvu9IREREVE7Y/EMbUjAZwgtjr8Gq\ns+D65muULgcA8MGmA7i/6y74EwE8cOKf4E8Eln2dHPllLcPIL1mHtRUSJLgL9BAyexE4BLPWhAZT\nXUH2yJc+x06kxTROrzP6S5REPOR6DADw0e67i5J33VbZAr26AudLtPlHfsgtj+MtBfvr+wBgxdN/\nJiLTSIlptFpKo4FppWrl5p/onMKVEBXXkVysn1KRX++lU2vxm1f8Ou7vuguBRBB/e/wfcGiSD2qI\n6PJEScRYaAL1Rgd0BZ4mCWSbpBtN9RgKuJFmVCEpKJ+RX0v1Onai2dyIY9MnMR6ezNu6RCkxjSeG\nn8FfHf47DPpHsKt2O75x1R/hhuYPFGRS9M6aK2HQ6HF46jhEScz7+kRElzMVnUE4FUG3raMo9z/f\ny6w1odZQDXfQy/8PEhERUdlh8w9tSM+4X0Qyk8TtbTeX1DSNm53X4462mzEXX8ADJx5EKBl+32vk\nyK/dZRj5JeuwtgIARgoU/TUbm4M/EUC3vVORi8DV6MtT9NfR6X6Mhsawx7EL7blf30JTq9Totndg\nJjaH+ZivKHuuhjs4CgFCUaIqVmpHzZXQq/U4MnViRTcIRkPZBqbWyuZCl5ZXDkP2QckMm39oE5Ek\nCUenTkCn1mFH7ZVKl7NIEATc7LweX9z1GWhVGvzbuZ/hB6d+jIV46f1/m4hKx0x0FkkxVdTPUd32\nDqTEVMEOCBCtRL4jv2QqQYV7O2+HBAmPDj2d17Vp83L5hvBXh/8OT7qfg1lnxud3fBqf3/Fp2PW2\ngu2pU2uxx7EL/kSgZA8CEdHG5spNe5cnRyqhrbIVsXSMh96IiIio7JRnZwHRJSzEfXh1/E1U66tw\nTeM+pct5n7vab8FNLR/EVHQG3+v/IaKp2Lu+X86RXzK5OWW4QM0/rsXIL+UuAleq3lSHRlM93p4/\nj9gao7+SmSQeGXoKGpUG93XekecKL22rvQcAcMFXWjf9MmIGo6FxNJrroddUKF3OIp1ai17HDvgS\nfgz6hy/7ek9wDEDpRJetlHxKeibGmyC0eYwERzEXX8Cumu2oKKHGYtmV1Vvw9b1fQZetHafmzuIv\nDn0bz42+jIyYUbo0IipBo6FxAIDTUrwGZDmul9FfpKR8R34tdUXVFnRa23Fm/hyGA+68r0+bRyQV\nxX+c+zn+z4kfYCY6h+ubr8E3rvoj7KrdXpT9DzRk76W9NXm0KPsRES3l8mc/K3bbFWz+scrRX2xa\nJyIiovLC5h/acJ4aeQ5pKYO72m+BRqVRupz3EQQBH+m6Gx9ovAre8AT+4dQ/I55OAMhFfs2Wd+QX\nkB3r7zDUYCToKch41IHcRWCPvTPvaxdCn2Mn0lIGp+feXtP7X/C+Cn8igBubr0V1kbOut1Z1AUDJ\nnfibjEwjJaZKMi7rqlz016EVRH+NBr3QqjRoNNUXuqy8qjZUQ4DAyT90UdFUDD8593OMhSaULiVv\njkydAADsqy+NyK/lOIy1+P3e38Gntn0cWpUGvxx8An999DsFm8RHROXLm2v+Kebkn67cA5yBFTRI\nExVCoSK/ZIIgLB7WeHToaUiSlPc9aGOTJAlHpk7gL976Ft6YPIImcwP+aM+X8PGeD8Og0RetjrbK\nFtQZHTg5dxbRVLRo+xIRSZIEl38YVp0FtYb8/129Uu2VTgDZQ0BERERE5YTNP7ShTEdn8dbUMdSb\n6kr64ZwgCPj1Lfdjb91uDAc8+MHpHyOVSWUjv9LlHfkla7e2IpaOYyoyk9d1JUnCgG8IFp0ZdUZH\nXtculN7F6K+Tq35vIBHCM54XYdaacFvbjfku7bLqjA5YdZW44BssqZxrd+7iWz6JU0o6be2wV9jQ\nP3MayUzyoq9LZVIYj0yh2dwItUpdxArXT6vSoEpvxywn/9BFvOh9FW9OHsFPLzy0IR58ZcQMjs+c\nhEVrxlZ7l9LlXJIgCDjQsBd/duCPcU3DPoyHJ/HtY9/Hf55/iA9viGiRNzQOAQKazA1F29OsNaHJ\n3ICRgBspMV20fYlkhYr8WqrT1obt1Vvh8g/j3MJAwfahjWcutoDvnfwR/vXt/0Q8k8CHO+/En+z9\nKtqtzqLXIggCrm7Yi7SYxrE13McgIlqr6egsQskwuu2dEARBsTpAz4fgAAAgAElEQVSazA3QqDSL\n9x+JiIiIykV5dxcQvccTw89AlETc035ryTfPqAQVPr3tE9hZcyUGfIP40dmf4Mh0dqpAn2OXwtWt\nX0cu+ivf0wZmorMIJkPosSl7Ebga9SYHmswNODc/gFg6dvk3LPHEyEEkMknc3XErDBpDgSq8OEEQ\nsLWqG+FUBOPhqaLvfzGe3Njdtsri3wi9HJWgwv76PsQzCZy6xLSnsfAEREmEs7J4cRv55DDWIJgM\nrTnOjjauZCaJl8ffAJD9s3qpPwfl4tzCAMKpCPrqdpVNs55Za8Int30Mf9D3RdSbHHht4hD+/K1v\n4fDU8Q3RkEVEaydKIryhCTiMtUWPT+2xdSIlpuHmRDJSQCEjv5a6u+N2AMCjw0+X1AEKKk2iJOJZ\nz0v4X4e+jXMLA9hW1YNvXPWHuKX1BkU/d+6r74UAAW9NHlOsBiLafFy5CZFdNuUivwBAo9KgxdyE\n8fDkJQ/2EREREZWa0u6OIFqFsdAEjs2chNPSVLQc9PVSq9T4zPZPYqu9G6fnzuHQ1DFYdZbFxply\n1mFtAwAM5/nG/sBi7nN5RH7J5OivU7Mrfwg+Hp7EGxNHUG+qwzUN+wtY3aVtreoGAFzwlU70lzvo\nhU6tQ4OpTulSlrU/F/11+BLRX57gGACUZHTZSsjjlzn9h97rzcmjiKSi2OPYBQECHh8+WPYPvuTm\n3H11pTtV8GK6bO34032/h/s670A8k8CP3/4vPND/IKajs0qXRkQKmYstIJ6Jo8XSWPS95c/wjP6i\nYit05NdSLZZG7HHsgjc0jv7ZMwXdi8qbJEn4+cAj+NXQk6hQ6/CbV/w6vrTrt1FjqFa6NNgqrNhW\n3QN3cBRTkWmlyyGiTcLly9737VG4+QcA2q1OiJKI0VxcLhEREVE5YPMPbRiPDR8EANzbcUfZTIQB\nsvE5n9/5m+jMNctshMgvIDvtRq/WYzjozuu6A/JFYJk1/7wT/XVqRa+XJAkPux6HBAkf6bpL0RN/\nW+zZ5p/zC6XR/BNPxzEZmYbT0lSyf1bqTQ44Lc04tzCAYDK07Gs8oez0otYynvwDALNRNv/QOzJi\nBs+PvgKtSoOP9dyH/fV9mIhM4fh0+cYFxNMJnJo9ixpDNdoqy7NZT6PS4NbWG/GNq/4IV1ZvxQXf\nIP73ob/FEyPPIpVJKV0eERWZN/cAo8XSVPS9u23tECAsPtghKpZiRH4tdXdHdhrx48MHkREzRdmT\nys/jI8/glfE30WRuwP+86mvYX99XUvezrm7YBwCc/kNERSFJEgb9w7DozHAYa5UuZ/H6n9FfRERE\nVE5K86kp0SoNB9w4M38O3baOxSkl5aRCrcMXd/0W7u24Hbe13qR0OXmhElRotzoxE51DOBnJy5qS\nJMHlG4ZVZ4HDUNjTmvlWZ6xFs7kR5xYGEE1dPvrr7YULOO9zYVtVD66o2lKECi/OWmFBo6keg/6R\nknhIPBoahwSpJCO/ltpf3wdREnF0un/Z748Gx6BXV5TEDY21kJt/ZqLzCldCpaR/9jTm4ws40LAP\nFp0Zd7bfArWgxuMjz5Ttg69Tc2eRFFPYV7e7pB7GrEWNoQpf3Plb+Oz2T8GkNeHJkWfxvw//Xck0\ndxJRccjNP05L8RuQjVojms0NGAl4kCyBz5W0eRQr8kvmMNbi6oZ9mI7O4tAlpoHS5vX86Ct42v08\nagzV+NKuz8KsMyld0vvsqN4Go8aAw1PHyvazPBGVj5nYHALJEHpsnSVx7d1WmZ3M7w6w+YeIiIjK\nB5t/qOxJkoRHh54GANzTcXtJXByshUFjwG1tN8FaUal0KXkjx5eNBPMT/TUVnUEoFUa3vTQuAler\n17ETGSmDU3NnL/m6jJjBw67HIUDA/V13lcTPdWtVN1JiKu8xbmvhCcoTc0p7Asfeut1QCaplo7/i\n6Timo7NoKeHpRZfD2C96L0mS8OzoyxAg4KaWDwLINpt8oHE/ZmPzeGvqqMIVrk05R34tRxAE9Dp2\n4M8OfA03tlyL2dg8Huh/EP969j8vOqmMiDYWufmn2Vz82C8gG/2VljJw5+kagehyihn5tdSd7TdD\nq9LgSU7ao/d4Y+IIHh58HFZdJb66+3OwVliULmlZWrUWe+t2I5AM4dzCgNLlENEGN+jLxsJ2lUDk\nFwBU6W2w6Mxw5+5DEhEREZWD8nziSLTEBd8gXP5hXFm9FZ22NqXLoSU6clFm+WoYeSf3ubwiv2R9\njh0ALh/99frEYUxFZ3BN4z40mRuKUdplbbF3AQDO+5SfDiGP220v8ck/Fp0ZV1T1wBsax2Rk+l3f\nk6cXlXoD06VU6+1QCSrMRGeVLoVKxIBvCN7QOHbXbn/Xg7Xb2m7KPfh6ruwefIWSYZxfcMFpaUKd\nyaF0OXml1+jxa9334uv7vgKnpRlHpk/gz9/6Fl4dfwuiJCpdHhEViCRJ8IbHUWOohlFrUKQGOb53\ngNFfVCTFjvyS2SqsuK75GvgSfrw68VZR96bSdWLmNH56/hcwaY34Su/nUG2oUrqkSzrQsBcA8NYU\no7+IqLAG/Ln7vvbSaP4RBAFtlU74En74EwGlyyEiIiJaETb/UFl799Sf2xSuht6rtbIFAgQMB9x5\nWU9+QNBtL8/mH4exFi3mRpxfcCGaii77mlg6hidGnkGFWoe72kvn93SXrQNqQV0S0TDuoBeVOgts\nFValS7ms/fV9APC+6T/lMr3oUtQqNWr0VZjh5B/KeXb0JQDALa03vOvr8oMvfyKA1yYOFb+wdTg2\ncxKiJG6YqT/LcVqa8cd7v4yP93wYkiThvy48jL899n2MhSaULq1shJJhxNKXj/QkKgW+hB+RVBQt\nlibFauiytUOAwOYfKppiR34tdavzRujVFTjofgHxdLzo+1NpObcwgH89+1Po1Fp8addvo8FUp3RJ\nl+W0NKPBVIfTs2cRuch9DCKi9ZIkCS7fMCxaM+qMpXPwRj54yOk/REREVC7Y/ENl7dTcWXhCXvQ5\ndip6A5uWZ9Do0WiuhyfoXXc+vCiJcPmHYauwotZQnacKi6/PsQsZKYOTc28v+/2D7hcRTkVwa+uN\nJTX6W6+pQLvVCW9oXNEbfv5EAP5EINtYVgJxaJezo+ZK6NV6HJk68a5JGp7QGIDsjdRy5jDWIJKK\nXrSZjTaPsdAEzi0MoNvWsWxT27sffCUUqHBtjk71Q4CAPXW7lS6loFSCCtc3X4M/O/A17HHswkhw\nFH999Dt42PV4Wf33UkIgEcRfHPoWvvH6X+GF0VfW/XmHqNBGc5FfTrNy104GjQEtlia4g14kM0nF\n6qDNQanIL5lZZ8KHnNchnIrgBe+rRd+fSsdwwIN/OvVjQBDwOzv/e9kcBBEEAQca9iItZXB0ul/p\ncohog5qNzSOQDKLL3lFS9/va5OafwKjClRARERGtjEbpAojWSpREPDZ8EAIE3N1+q9Ll0EV0WNsw\nHp7EWHhiXTe3piIzCKci2FfXV1IXgavV69iJR4afwvGZk7g6Nz5bNh9bwIveV2GvsOGmlusUqvDi\nttp7MOgfwQXfIPoUODULvDMxp63EI79kOrUWvY4deHPyCAb9w+jJxaeNBr0waY2o1tsVrnB9ao01\nwDwwE5tDm7Y8/ptQYTw3+goA4Gbn9ct+36wz4aaWD+JJ93N4aex13N52UzHLW5O52DxGgh5stXfD\nWlGpdDlFYa2oxGe2fxIH5vfiZwO/wvPeV3Bs5iQ+3nMfdtVuV7q8kiNJEn524ZeIpKLQqjR4aPBx\nvDZxGL/WfQ+uqN6idHlEy/Lmmn+UPjjRY+/EaGgMwwEPtlZ1K1oLbWxKRX4tdVPLB/Hy2Bt4fvQV\nXNd0Dcw6k2K1XMpUZAa/cD2Kycg01IIKgqB6148qCFAJaqgEASpBtcw/8vff/drl1hIEAWpBnXvd\nO2s4jLXYXbu9rK/5lzMensT3T/4z0lIGn9v+qcXrwnKxr64Pjww9hbcmj+L65muULoeINiBXLvKr\n21YakV+y1spmCBDgDrL5h4iIiMoDm3+obB2d7sdkZBpXN+xDnal0xoHSu3VYW/Hq+JsYDnjW1fwj\nxwL0lGnkl6zWWA2npQnnF1yIpKIwaY2L33tk6CmkpQzu7bwdOrVWwSqXt7WqC4+PHMSFBZdizT/u\nxeaf8jglCWSjv96cPIJDU8fRY+9CMB7CfNyHK6q2lP1NbYche3p6JjpXNg1ZlH/zMR+OzfSj0VSP\nK6u3XvR1Nzmvw8tjb+C50ZdxXdPVMGoNRaxy9Y5MZU82763fuJFfF3NF9Rb8j/1/iIOeF/Cs5yX8\n0+l/w46aK/Cx7vtQbSjvpsV8Oj5zCifnzqLL1o7Pbf80nhh5Bq+Ov4XvnfwRdtRsw0e67lFkygTR\npZRK80+3rQPPjb6MAd8Qm3+ooJSM/JLpNXrc1nYTHnI9hmdGX8RHuu5WrJblpMU0nvG8iIPuF5CW\nMrBX2CBKEkQxhQREiJKY/Xcpk/sx+zUJUkHq2V/fh9/Y8lFoS/CaeC1monN4oP9BxNIxfHrbJ7Cz\n9kqlS1o1a4UFV1RtwZn5c5gIT6HRXK90SUQrJkoi4ukEYukYDBo9jEvuw1HpcPlGAJRe849eo0eD\nqQ6e0BgyYgZqlVrpkoiIiIguic0/VJYyYgZPDD8DtaDGHW03K10OXUKHtRUAMBxw48aWa9e8zoB/\nYzT/ANkbz6OhcZycPYtrGvcByI4APzZzEk5LM/aWaLyM09IMg0aP8wsuxWqQm39aK8snLqvL1g57\nhQ39M6fxiZ4PY9w3BaC8fg4XU2t8p/mHNq8Xx16FKIm42Xn9JRvaDBo9bmm9Ab8aehLPj76Mezpv\nL2KVqyNJEo5Mn4BWpcHuTTrxRqfW4p6O27Cvrhf/deFhnJ57GxcWXLir41bc2Hztpr/pGU5G8H8H\nfgWtSotPbv0YzDoTPrHlfnyg8Sr8wvUoTs+dw7n5AdzkvA63td4EvaZC6ZKJAGSbf+wVNsUnj3TZ\n2qESVIunvIkKQenIr6U+2HgAL4y+ilfG3sBNLR+ErcKqaD2yIb8bP73wEKYi07DqKvGJLR9e8bQ/\nURIh5ZqBMpIICbkfJQkZKZP7UVxsFlr8510NRe98PS2m8ZT7eRyeOo7p6Cw+v+PTJfPrtFb+RADf\n7X8QoWQYH+u+D1c17FG6pDU70LAXZ+bP4a3Jo/hId2k1sNHGJkkSUmIK0XQM0VQMsXQc0XQ092MM\nsVQs+7109nvyv8fSMUTTccTT8cVmRbPWhP954Gswa0tzAttmJUkSXP4hmLUmNJjqlC7nfdoqWzAR\nmcJkZBrNlkalyyEiIiK6JDb/UFl6Y/II5uILuL75AzyBXuKq9VWw6MwYDnjWvIYoiRj0DcNeYSv7\nmCQA6HPsxCND2eivaxr3QZIkPOx6DADw0e57oBJUCle4PLVKjR5bJ07OncVcbB41huqi7i9KIkaD\nXtQZHTBoSntiyFIqQYV99b14xvMiTs29jYgQAoB1TcIqFQ5DLQBgNsbmn80qmori9YnDsFVYsadu\n12Vff33zNXjB+ypeGHsNN7RcC4vOXIQqV88bHsd0dAa9jp0waPRKl6OoepMDv9f7BRyeOo6HBx/H\nLwefwKHJY/hvWz+CDmub0uUp5ueuRxBORfCRrrvf9UC52dKI3+v9Ao7PnMIvB5/AM54XcWjyGD7c\ndSf21fWW/cQ3Km+BRBDBZAi7apSfOqHX6OG0NMMd9CKeTrBBjgqiFCK/ZFq1Fne234L/OP9zPDny\nHH5j60cVrSeWjuGRoafx6vibECDguqarcW/n7au6zlIJKkAA1FAjXzN6tti78NMLD+Hw1HF888gD\n+MLO3yzb66ZwKoIH+n+I+bgPd7XfghtaPqB0Seuyo2YbTFojDk8fx32dd2z6RnBavYyYgT8RQCgV\nRiwVX9KwIzf1xBYbet799TgyUmZVe1WodTBoDLBXWGEw1cOo1SORTmLAP4SD7hfw0e57CvSzpLWY\njy/Anwhgd+2OkrxearM68cbkEbiDo2z+ISIiopLH5h8qO8lMCk+NPAedSovbWm9Suhy6DEEQ0GFt\nw8nZM/DF/bDrbateYyI8hUg6iu0120ryInC1agzVcFqaccE3iHAqggsLgxgJjmJ37Q502dqVLu+S\ntlZ14+TcWZxfcOHapuI2/0xHZxHPJLCrDG/+XlXfh2c8L+Lw1HHoK7K3xp2W8vt5vJddb4VGpeHk\nn03slfG3kMwkcVf7LdCoLv+xUqfW4Y62D+FnA7/CQc8L+LXue4tQ5eodmToBANhXt/kiv5YjCAKu\natiD7TXb8MjQk3h94jC+fez7+EDjVbiv8453RVhuBqfn3sbR6X60VTqXnWooCAL21O3CjppteNbz\nEp4dfQk/fvu/8MrYm/hYz71l+xCTyl+pRH7Jum0dcAdHMRxw44rqLUqXQxtQKUR+LXVVfR+eG30J\nb04ewc3O6+Aw1ipSx8nZM/jZhV8hkAyi3lSHT279aMk09GrVWnx62yfQZG7ArwafxN8e/wd8cuuv\nYX99n9KlrUo8Hcf3+/8ZU5Fp3Nhy7YaYWK1RabC3rhcvj72OtxcuYEfNFUqXRCVGkiRE0lHMxxYw\nF1vI/hjP/Ribx0LCD1ESV7SWWlDj/2fvvuOrrM//j7/us5KTc05O9t47zEDYICBLUZyIAxx1VWu1\njq/+7LLt92tbu2xtq611VUUcuBUVRUCQnTACCQnZe+95krN+fyTBBZLAObnPOfk8H48+tJ7c9/0O\nCefc4/pcl49Ki07tQ5A2cHBcl0qLVq3FRzX4P63KG61Ki4/6q//vo/JBq/I+ZXGa2Wbh0X1/Zmf1\nHhZFzSdIG+DoPwLhLBW2lQKuN/Jr2PCY+/LOKhZEzpE5jSAIgiAIwvcTxT+C29lZs4eOgU5WxJ6P\n0csgdxxhBBKMseQ05VLaUU6m9+hHWnnSyK9h00OmUNlVzcGGHLZW7kApKbk88SK5Y51RakAyAAVt\nxWN+wVveUQkMttt1N2G6UGIMkeS3FqJVeeHnZfSI9y+FpCBIG0hjbzN2u90jivOEkTNbzXxRtQut\nypv5EbNHvN28iFl8XrmDL6v3sjR64VkVhTqTzW7jYMMRfFRaJoqH0d+gU/uwNu0qZofN4PUT77C7\ndj85TbmsTr5k3BRK9Zr7eK3gHVSSknVpV31vtz6NUsPFCSuYEz6Dd4s/4nDTMf6c/SRzw2dwaeJK\nl+18JXguVyv+SfFPZEvlFxS1l4riH8HhXGnk1zClQsmqhAt4PvcVNpV+xi2T1o3p8dv7O9hY+D45\nTbmoJCUXxy9neez5qEdQwD2WJEliWcwiwnVh/DdvAy8df53a7nouTbzQZbvkfp3ZauY/R1+ioquK\nOWEzuDJplcdcJ80Jz2RH9W721WWL4p9xymw102pqo9n0zQKf5r4WWvraMFlNp9zOoNYTa4giUBuA\nUeOLVqVFq/b+WiHPYBHPcJGPWqF2+N8btULFJQkX8uLx1/iwdDM3T1zr0P0LZ6+4faj4x981i3/C\ndaF4KTWUdVbKHUUQBEEQBOGMXOsKXxDOoM9i4rOK7WhV3iyPWSR3HGGEEoyxAJR2VJAZOvrin6KT\nK0A8q/jnvZKPebf4I8w2M0uizyPYZ2w76ZyNEG0Q/l5+FLYWY7PbxvTma3lXFfDViht3Myssk8qi\nD+gx9zE1yDVvaJyNEG0Q9T0NdJt7xIPscWZ//UG6zN2siD1/VKOxVAoVK+OX80r+Rj4p/5y1aVc5\nMeXoFbaV0DHQxfyIWSPqZjQeJfrF8dOZ97Kt6ks+KtvCS8dfZ29tFnfNvR41OrnjOdW7xZvoGOhk\nVfwFROjDRrRNoDaA2ybfQGFbMW8WfsCeuiwONx3jorhlLIqaL8ZmCGOm0sWKfxKMcSgkBYVtJXJH\nETyQK438+rqM4ElEGyI52JjD8q7ziR6D8SE2u43dtft5r/gTTFYTicY41qatJkwX6vRjn4uJgak8\nlHk3Tx97kS2VX1DbU8/NE69z6RHQVpuVF/JepbC9hKnBk1ibttotCpZGKlofSaQ+nGPN+XQP9KDX\nePZ533hks9voHOg6Reee1pOjmU5Fo1ATqA0gSBtPkHfg0L8HEOgdQKA2AC+lZoy/k1PLDJ3K1qqd\nZDccYWn0QmJ8o+SOJDB4Da5T+RDuop9LCklBrCGaovZS+ix9Lv05JAiCIAiCIJ5oCG5lW9WX9Jh7\nuSThAnzG2YgJdxatj0QlKSntqBj1tja7jaL20qEbBv5OSCePQG0AsYZoKrqq0Kl8WBm3VO5IIyJJ\nEmkByeyty6K6q3ZMb5RUdFSiUqhG/LDV1cwIzeCd4k3Y7DZi3LB70ekMr6Ru7G0WxT/jiM1uY2vl\nTlSSksVR80e9/azQaWyp+IK9ddksi1nsMivyAbIaxMivkVAqlCyPXcz0kClsLHyf3JZ8Hvz0d9w+\n6QYmBaXLHc8p8lsL2VOXRZQ+ghWxi0e9fYp/Ej+deS9f1u7jo9LPeLt4E7tqD7Am+VLSA1McH1gQ\nvqWqqwZfjQGjl6/cUQDwVnmdPB82WUx4j6KQVBDOxNVGfg1TSAouTbiQp3KeZ1PpZn409RanHq++\np4FXC96mpKMcb6U316ZeyfyIWW5TkBKqC+GhzHt4IW8DeS0F/Dn7Ke6YchOhMo1M+z42u40NBW9x\ntDmPVP8kbp5wnccV+EqSxJywTN4u3kRWw+FTjj8VXF+/dYCm3mZahrr3DBf2DP/TYrN8ZxsJCX9v\nP5L9EgjSBhLoPVjcE6QdLO4xqPVu0eFKISm4IvFi/nHkGd4t+ZifZNzuFrk9WUtfK2397UwNnuTS\nn01xxhgK20uo6KwmbagruiAIgiAIgisSxT+C2+g297Ctcid6tY7FUeIGgztRK9VEG6Ko6Kqi3zow\nqhU/1d219Fn6mBo80YkJ5TEzbBoVXVVcFL/crYrZ0vyT2FuXRUFb0ZgV/wxYzdT01BNriHbbThwG\njZ70gBTyWgqI9aDVZSHaoeKfvmYS/eLkDSOMmaPNx2nsa2Ze+Myzeog8OPZiBc/nvsJHZZ+5TMt1\ns9XMkcZc/L38SPSLlzuOWwjUBnDnlB+Q05TLi/mv8+Lx1/h/M+4hxAUfyp0Lk6WfVwveRiEpuD59\nzVk/zFMqBgvmZoRksKnsM3bV7OPJnOeYHDSB1UmXuEUXQME9dQ1009bfzsTANLmjfEOKfyJlnRWU\ndJS7XDbBffWa+1xu5NfXpQekkOyXQG5LASXt5U45hzbbLHxWsZ3PyrdhsVvJCJ7MmpRL8fMyOvxY\nzuaj1nLX1Ft4r/hjtlbt5M/ZT3LrxHUuVThrt9t5u+hD9tcfJM43hh9Ovgm1Ui13LKeYGTadd0s+\nZn9dtij+cUNVXbX84/B/6LX0fec1ncqHCF0ogdpAgoY69gx37wnw9nPbezHflhqQxITAVI63nOB4\na6EY9SyzwuGRX36u3SF7uAt5eWelKP4RBEEQBMGlecZZuzAubKn4ApO1n6sSLsBb5SV3HGGUEoyx\nlHVWUNlZRbL/yMd3DY/8SvGgkV/DFkXNI9Y3injfWLmjjErq0EVuQWsRK2LPH5NjVnXVYLPbiHPz\njjlXJq0iPSyRVP8kuaM4TPDQA5Wm3maZkwhjxW63s6XiCwCWnsMIzozgSUTpIzjYkMMFsUtcoqvX\nsZZ8TFYT50XOcelVh65GkiQyQiZzh07Jk/tf5JljL/Ng5t0edb72QekntJrauCB2iUNGJuk1Oq5N\nvYIFEbN5s+h9jjUfJ7/lBEtiFnJB7BKP+rMTXEN1Vy0AMS4y8mtYin8in1Zso7CtRBT/CA5ztDnP\nJUd+DZMkiUsTV/L4wad4v+QT7p9+p0M7T5S0l/NqwVvU9zbi52Xk6pTL3X4xjUJScGXyKiL14bxa\n8BZP5TzPlUkXc370eS7RtePjsi18Ub2bcF0od029xaM/xw0aPZMC0znanEd1Vy1RYzC6TnAMs9XM\nS8dfo9fSx7zwWYTqgoeKfAIJ0vqPq1FGlydeRH5LIe8Vf0R6QLK49pNRcZv7Ff8IgiAIgiC4MnFm\nK7iF9v4OdlTvxt/LjwURs+WOI5yFeONggctoR38VtpUAgw8GPI1CUpBgjHOJm5WjYdDoidSHU9JR\nzoDVPCbHrBi6uHb34p8wXQhXT1rlUTeWvhr71SRzEmGslHSUU95ZyeSgCYTpQs56PwpJwSUJF2DH\nzqbSTx2Y8Oxl1w+N/AoTI7/OxsK42SyKmk9dTwMbCt7EbrfLHckhitvL2FG9h1CfEIeP6YwyRHDf\ntDu5ZeJaDBoDn1Vs5//2/ZkD9Yc85s9PcA1VXTUADilec6QEYyxKSXnynF8QHOGQi478+roEYyyT\ng9Ip6SjjeOsJh+yzz9LHayfe4a+H/kVDbxMLI+fxy9n/4/aFP183OzyT+6bfiUGj5+3iTbyS/ybm\nU4woGkvbq3bxcfnnBHkHcHfGbejcqKvv2ZoTngnAvvpsmZMIo/F+6SfU9TSwKGoe69KvYlnMIjJC\nJhNtiBhXhT8AkfpwZodlUttTz/76Q3LHGdeK2kvwUWldYjHQ9zF6GQjw9qeso1JcpwmCIAiC4NI8\n5+mj4NE2l2/DbLNwUfwyj22d7OnijYMrJEZT/GO1WSluLyNIG4i/t5+zoglnIS0gGYvNQklH2Zgc\nr7yzCoDYoZU2guswanzRKNQ09onOP+PF55VfALA8ZvE572tiYBoJxlhymvNkX0HXa+4lr6WACF0Y\nkfpwWbO4s9VJq0g0xnGo8Shbq3bKHeecDVjNbMh/EwmJ69PXOOU8VJIkMkMz+NWcB1kZt4xeSy8v\nHX+dvx76F5Wd1Q4/njA+VXa7ZvGPRqkhzjeaqq4a+k4xgkQQRmt45FeUi478+rpLEi5EQuKDks3Y\n7LZz2teRplwe3fc4u2r2EaYL5YHMH3FN6uVoVd4OSus64o2xPDzzJ8QYothXn83fD/2Hjv4uWbLs\nq8vmraIPMGoM3DPtdrccq3Y2JgWmo1fryKo/jEXm4ithZBjiarkAACAASURBVPJbC9letYtQnxAu\nT7xI7jguYVXCCtQKFZtKPx2zhW3CN7X0tdFiaiPJL8EtFsnF+UbTbe6hxdQmdxRBEARBEITTcv2z\nKmHca+5rYXftfkK0QcwOy5Q7jnCW/LyMBHr7U9ZZMeIVEtXdtZisJo8c+eXu0vwHR3+daC0ek+OV\nd1ahU/sQpA0Yk+MJIydJEsE+QTT1tYjVT+NAXU8Dx5rzSTDGkugXd877kySJSxIuBODDEnm7/xxu\nOobFbmVmqOj6cy6UCiW3TroBo8bAe8UfU9BaJHekc/Jx2RYa+5pZHD2fBKNzx3RqlBpWJazgkdkP\nkhE8mdKOCv6U/U825L9F10C3U48teL6qrhp0ah/8vVyvoD7FPxE7dorbx6aoXPBswyO/prtw159h\nkfpwMkOnUt1dy+HGY2e1j/b+Dp459jLPHnuZHnMPq+JX8LOZ95JgjHNsWBfj52Xk/uk/YkZoBmWd\nFfwp+x9UDC0YGSs5TblsKHgLH5WWuzNuJ0gbOKbHl5NSoWRm2DS6zT3ktRTIHUc4gx5zL+uPb0Qh\nKfjBxGvRKDVyR3IJ/t5+nB99Hu39HXxRtUvuOONScfvQyC9/1x75Nezk6K9RdrUXBEEQBEEYS6L4\nR3B5H5VtwWa3cXHCCpQKpdxxhHMQb4ylx9w74g4hnjzyy90l+cWjkpQUtBY6/VhdA920mFqJ9Y12\nuxFp40WINogB6wAdA51yRxGc7PPKHQAsc0DXn2Ep/omk+SdT0FYk69iXrKGRX5mhGbJl8BRGLwO3\nTb4RhaTghbwNtPS558rIis4qPq/cQZB3wMkitbEQqA3g9sk38JOMHxKmC2FP3QH+d9+f2Fb1JVab\ndcxyCJ6j19xHc18L0fpIlzyXSh4q9BejvwRHcIeRX1+3Kv4CFJKCTWWfjuo93ma38WXNXh7d9zg5\nTbkkGuP52az7WRm/DJVC5cTErkOjVPODCddxWeJKOvo7+duhf5PdcGRMjl3QWsQLuRtQKVTcNfVW\nlx9X4wxzwmYAsK/uoMxJhO9jt9t5/cQ7dAx0cnH8CmIMUXJHcikrYhejU/vwacV2ugd65I4z7hQN\nF//4uUfxz3BX+/IxLjYVBEEQBEEYDVH8I7i02u56suoPE6kPd4uVe8L3G159ONLRX0VutgJkPNEo\nNSQY46jqrnX6DZLhFZxxYuSXywoeGqnQ2CtGf3my9v4OsuoPE+oTzOSgdIfu+5LECwD4sHSzLB2k\n2kztFLeXkWiMJ1DrP+bH90QJxljWpFxKj7mX53JfdrtW+habhVfy38SOnXXpV+Elwwrp1IAkfjbz\nPtakXAZIvF30Ib8/8Dfyx6DwVvAs1S468mtYvDEWlaQ8ee4vCGfLnUZ+DQv2CWRexCwae5vZV589\nom3qexp44tDTvH7iXSQJ1qau5r7pdxCmC3FyWtcjSRIrYs/njik3oZSU/DfvVd4v+eScx6h9n7KO\nSv5z7CUA7ph808mHweNNlCGCaH0EuS35okOhC8tqOMyhxqMkGONYEbtY7jguR6vSsjJuGSaric3l\nW+WOM+4UtZWgVWndZux2lD4ShaSQfWS5IAiCIAjC9xHFP4JL+6jsM+zYuSThAreY/St8v+FxGWUd\n5Wf8WqvNSkl7GSE+Qfh5GZ2cTDgbaQFDo7/anDvSZfiiOs432qnHEc5eiHbw4UqTKP7xaF9U7cZq\nt7I0ZqHDP5PjfGOYEjSR0o4KWUYHZDccwY6dmWFi5JcjLYiYw5zwGVR21fDGiXfdajTgp+XbqO2p\nZ0HEbFL8k2TLoVQoWRw1n9/M+X8siJxDQ28TTx55jv8cfYnmvhbZcgnupbLLtYt/NEo18cZYqrtq\n6TX3yh1HcGPuNPLr61bGLUWtUPNx2eeYv6dY1myz8FHpZ/z+wBOUdJQzLXgyj8x+kPmRs8f9/ZLJ\nQRN4aMbdBGsD+axiO88ce4k+i8nhx6ntruffOS9gtpq5eeLak9fE49Xs8BnY7Day6g/JHUU4hZa+\nNt448R5eSg03Tbh23L9PnM55kXMI8g5gZ81emnrF+fVYaTO102xqJckvzm1+NzVKNVH6CKq6ajDb\nLHLHEQRBEARBOCX3OLMSxqWKziqONOUS7xvLpEDHdhgQ5BGhC0Oj1Iyo809lVw0maz8pfmLkl6sa\nvtFZ0Frs1OMMt9ONFcU/LivEJxhgxCP9BPfTZ+njy5p9+GoMzAqd7pRjrEpYgYTEh6WfOnW19qlk\nNRxGKSnd7mGhq5MkiWtTriDGEMW++my+rNknd6QRqemuY3PFNvy8jFyedLHccQDQa3Rcl3olD8+8\nl0RjPEeb83h031/4oGQzJku/3PEEF1c1VPzjyqM+kv0SsGOnqL1M7iiCG3O3kV/D/LyMLI6aT3t/\nBztr9p7ya4rby/jDgSf4uPxzDBo9d0y+idsm34DRy3eM07quMF0oD824hzT/ZI415/OXg085tDNp\nc18LTx55lh5LL+vS15ARMtlh+3ZXM0OnoZSU7K3Ldqsi7/HAZrexPv8NTFYTa5IvI0gbIHckl6VS\nqLg08UKsdisflm6WO8648dXIL/e67xvnG4PFbqWmu1buKIIgCIIgCKckin8El/Vh6acAXJp4IZIk\nyZxGcASlQkmcbwx1PQ30mvu+92uL2ksASPZ3r4vA8STaEImPSktBW5HTbvTZ7XYqOqsI0gaiV+uc\ncgzh3A2PVRCdfzzXrpr9mKwmzo9agFqpdsoxIvXhZIZOpbq7liNNuU45xqnUdtdT013HhMBUdGqf\nMTvueKFWqrl98g3o1TreKvqA0hF0/5OT1WbllfyN2Ow2rku9Eq3KW+5I3xBtiOD+6Xdyy8S16DV6\nPq3YxqP7/yJLxyzBfVR11aJVebv0g7+UoXP+4WsAQRgtdxz59XXLYhfhrfTm04pt3+hY02fp47UT\n7/C3Q/+mobeJhZHz+OXs/2FK8EQZ07oundqHu6bewvnRC6jvaeDP2f+koPXcO9V29Hfyz8PP0jHQ\nxerkS5gbPsMBad2fXqNjclA6tT31VA2NmBRcw9bKnRS1l5IRPIk54vf1jKaFTCHWEM3BxpyTo+cF\n5ypqGy7+SZA5yegMdyUv6xCjvwRBEARBcE2i+EdwSXmNheS3FpLmn3zyRrDgGU6O/jrDfOTCtqHi\nHzdbATKeKCQFKf5JtJraaHLS6JGmvmZ6LX1i5JeL06t1eCu9aRCdfzySxWZhe9UuvJQaFkTOceqx\nLo5fgUJSsKn0M6w2q1OPNSyr4TAAM0MzxuR441GAtz+3TFyHzW7juWPr6ejvlDvSaW2r+pLKrhpm\nhU1nUpBrdp6UJInM0Ax+NechLoxbSudAF//KeYGXj79BjxiZJHyLydJPY28TUfoIl15QEecbg1qh\nOnkNIAij5a4jv4bp1TqWxSyix9zLtqovATjSlMuj+x5nV80+wnWhPJB5F9ekXu5yhamuRqlQclXy\npaxLW0O/dYCncp5ne9Wus16w0mPu5ckjz9FsamVl3FKWRJ/n4MTubbiwZF/dQZmTCMOqumr5sPRT\nfDUGrktd7dKf/65CISm4POkiAN4t/kh0shoDRe0leCu9iTJEyB1lVOKNMQCUn+G+tiAIgiAIglxE\n8Y/gcux2O68ffR+ASxIvkDmN4Ggni3++Z+W/1WalpKOcUJ8QjF6GMUomnI2vRn+d+2rKUxke+RXn\nG+OU/QuOIUkSIT6BNPe1jPm4JsH5shqO0DHQyfyI2fiotU49VohPEHPDZ9DQ28iBoaIcZ7LZbWQ3\nHMFLqWFy0ASnH288Sw1I4vKki+gY6OK53Few2CxyR/qOhp5GNpV9hkGj56rkS+WOc0ZeSg2XJFzA\nT2feS4whkv31B/nt/sfJGcPOWYLrq+6uxY6daEOk3FG+l1qpJt43lpruOrrNPXLHEdyQu478+rrz\noxdgUOvZVrmT/xx9iWePvUyPuYdV8YPv9cPX0sLIzIuYyb3T7kCn8uGtog94teAtzKM8/zBZ+vlX\nzgvU9tSzKGo+F8evcFJa9zUhIBWDWk92/eFR//kKjme2mnnp+GtY7VauT78avUZ0UB6pFP9EJgWm\nU9ReKrpqOll7fwdNfS0k+cWhkNzr8VSwNgidyufk/UpBEARBEARX415nV8K4kNdSwImWUqYGTRQP\n/D1Q/NDPtLSj4rRfU9FVzYB1QHR9cgNp/oPFPyfanF38Izr/uLoQn2AsNgttpg65owgOZLPb+Lxy\nBwpJMWarnFfGLUMlKfm4bIvTHyCUdlTQamojI3gyGqXGqccSYGn0QjJDplLaUc47xZvkjvMNNruN\nVwrewmKzcE3KFW41Ai5SH86DmXdzWcJKes29PHPsZV7I3UDXQLfc0QQXUNU1OIbF1Yt/4KvRX8Xt\nZTInEdyNu4/8Guat8uKCuCWYrP0cbc4jyS+en8+6n5XxS1EpVHLHc0uJfnE8PPMnRBsi2VOXxT8O\nP0PnQNeItjXbLDx77GXKOyuZFTadq5IvER1UTkGpUDIrbDo9ll5ym/PljjPuvV/6CXU9DSyMnMfE\nwFS547idyxJXIiHxbsnHY9aJdjw6OfLLDe/7SpJErDGa5r4Wcb0lCAwu4q7raRAd0wRBEFyIKP4R\nXM7BxhwkJFYliK4/nshH7UOYLpTyzsrTXkgPt/sXxT+uL0gbQKC3PyfaSpzS8aWiswqFpCBK715t\ngMejYO3gg5YmMfrLo+S1FFDf08CM0Az8vf3G5Jj+3n6cFzWXVlMbe2oPOPVYX438mubU4wiDJEli\nXfoaInRh7Kjew34XGg+xs3ovpR3lTAuezLSQyXLHGTWlQsmKuPP52az7iPeN4WBjDr/d/zgHG3LE\nTbhxbrj4J8YNin+GHwCJ0V/CaLn7yK+vWxA5h/OjFrAubQ33TruDUF2I3JHcnr+3Hw9M/9HJAuQ/\nZf3z5Hvj6VhtVl7Me5WCtiImB03g+rQ1btedYix9NforW+Yk41tBaxHbq3YR6hPCFUMjrITRidCH\nMTd8JvU9Deyvd51rFU9T1D5U/OOXIHOSszO8WLlCdP8RxrHmvhY+LNnMI3se47f7H2dDwVuiG7wg\nCIKLEFeugstZFb+C/13yABH6MLmjCE6S4BtLv3WA2p6GU75eNHTD310vAscTSZJIC0imz9JHZVe1\nQ/dttlmo7qohSh+OWql26L4FxxteZd3YK4p/PMnnlTsAWBazaEyPe0HsEjRKDZvLtzJgHXDKMSw2\nC4cbjmLQ6EWx6RjyUmq4ffKNaFXevHbibYd/dpyN5r5W3i/9BJ3Kh6tTL5c7zjkJ04XyQOZdXJm0\nin5rPy/kbeC53PV09I+sy4Hgeaq6atAoNYT4BMsd5YxifaNRK9QnrwUEYaQ8YeTXMLVCxVUplzIv\nYqYoNnEgjVLDzRPXcknChbT1t/P4wX9xsCHnlF9rs9t49cTbHGnKJdkvgVsnrkOpUI5xYvcSoQ8j\nxhDF8dYT4pxDJj3mXtbnb0QhKfjBhGtFV9NzcHHCctQKNZtKP6PfSdei411RewneSi+3Xeg3XPxT\n1lkpcxJBGFtmq5nshiP84/Az/HrvH9lcsY1+6wBB2kD21mXx8vGNomuaIAiCCxB3EgSXE6gNIC04\nSe4YghMlGGMBKOso/85rFpuFko5ywnWhGDT6MU4mnI3UodFfBa2OHf1V212HxW4V4//cxHDnn8a+\nJpmTCI5S1lFBcXsZEwJTidSHj+mxDRo950ctoHOgix3Ve5xyjPzWQnosvcwIyRAPdMZYiE8QP5hw\n3dA4jfV0D/TIlsVut/NawdsMWAe4KuVSfDUG2bI4ikJSsDRmIT+fdT+JxniONOXyu/2Pc6D+kOgC\nNM4MWM3U9zYSpY9wiyICtUJFojGO2p56MUZBGDFPGfklOJ8kSVwYt4Q7Jt+EQpJ4IW8DH5Z++o1V\n6na7nXeLP2JfXTYxhijunPIDsRBlhOaEz8Bmt5HVcEjuKOOO3W7njRPv0t7fwcXxy4nxjZI7klvz\n8zKyNPo8OgY62V71pdxxPE5HfyeNvc0k+MW57XV4nG80AOUdovhHGB9quut4s/B9fr77t/w371VO\ntBWTaIznxvRreGzBL3l4xk+I940hq+EQLx5/TRQACYIgyMz17wAKguBxhot/SjsqvvNaeWcVZptZ\ndGFwI6n+SUhIDi/+GV5BEzt0US24tuGHLU2i84/HGO76szxmsSzHXxazEK1Ky5aKL+iz9Dl8/1n1\nQyO/wsTILzlMCkrnovjltJra+G/eq7LdHNpbl0VBWxGTAtM8bvxbiE8w902/gzUpl2G2W3jp+Os8\nffRF2vs75I4mjJHanjpsdhvRbjDya9jw6K/hcRCCcCaeNPJLGBtTgifyYObdBHkHsLl8K88eW4/J\nYgJgc/k2tlV9SZhPCD+eeiveKm+Z07qPGaEZqCQl++qyRbHxGMtqOMzBxhwSjLGyXbt5mmWxi9Gr\ndWyp+EIUJDvY8Dleip/73vfVqX0I8QmioqtKjDkSPJbJYmJ3zX7+lP1Pfn/gb3xRvRulpGR5zGJ+\nNftBHsj8EbPDM9EoNfiotdydcRuJxngONR7l+dxXMNsscn8LgiAI45Yo/hEEYcyF+ASjU/mcsvjn\nq5Ff7nsRON7oNTqiDBGUdlQ4tCXy8Oxs0fnHPejUPujUPjT2ieIfT9DQ20ROUx4xhijZRjD6qH1Y\nFrOIHksv2yodu+LSZDFxtPk4IdogYgxiZaxcVsYtZXJQOgVtRXxY+umYH7+9v4O3izbhrfTm2tQr\nkSRpzDM4m0JSsDhqPr+Y9QCp/knktuTz6L7H2VN7QDyYGwequmoA3Kr4J8V/8DNHjP4SRsqTRn4J\nYydCH8ZDM+8hxS+Ro815/OXgU2wq/YxNZZ8S4O3P3Rm3odfo5I7pVnRqHyYHT6Sup8ElxrqOFy19\nbbxx4j28lBpumnCt23ZScTValTcr45dhsvbzSfnncsfxKMPFP0ky3WdwlHjfWPosJhp7RfdrwXPY\n7XZKO8pZn7+Rn+3+La+eeJvKzmomBqZx++Qb+d38X3B50kWE6kK+s623ypsfZ9xKin8SOc15PHvs\nZcxWswzfhSAIgiCKfwRBGHOSJBFvjKXF1EpHf+c3XiscugiU62GzcHbS/JOx2q0Ut5c5bJ/lnZVo\nVd6ifb8bCdEG0dzXKtq7eoBtlTuxY2d57GJZCyIWR83HoNazrepLh46GymnKw2wzMyNsmkcWfLgL\nhaTgpgnXEqINYkvlFycf4I6FwXFf72Cymrgy6WL8vf3G7NhyCNIGcE/G7VyXeiVgZ0PBWzx55Dla\n+trkjiY4UWXnYPFPjBsV/8QaotEoNSevCQTh+4iRX8K50Kt13J1xG4ui5lHX08An5Z9j0Oi5J+N2\njz8vcJY5YZkA7KvLljnJ+GCz21if/wYmq4k1yZcRpA2UO5JHWRAxm2BtIF/W7BMFHg5U1FaKl1Lj\nVuenpzI8+qtsaOGiILizroFutlbu5Lf7H+fxg/9iX102BrWOVfEX8Oi8n3HX1FvICJ50xgJTL6WG\nH025mQkBqeS1FPD00RcZcOBCYUEQBGFkRPGPIAiyGB79Vfa17j9mm4WyjnIi9eFilZ2bSQtIBuCE\ng0Z/9Zp7aextJtYQjUISH1XuItgnCJvdRotJPEx2Z50DXeyrP0iQdwAZwZNkzeKt8uKCuCWYrP18\nVrndYfvNahga+eVhY57ckVal5fbJN6JRalifv5G6noYxOW52wxFyW/JJ8U9iXsSsMTmm3CRJYkHk\nHH45+3+YEJBKQVsRvzvwODur94p29R6qqrsGlUJFmM93V2a6KqVCSaIxjvqeBjoHuuSOI7g4MfJL\nOFdKhZKrUy5nXdpVJBrjuHvqbaKQ7BykB6Rg1BjIbjgiVvuPga2VOylqL2Vq8CTmhM+QO47HUSlU\nXJq4Epvdxgclm+WO4xE6B7po6G0kwRjn9l2qhruUl5+iq70guAOb3cbxlhM8d2w9v9j9O94p3kRz\nXwuZIVO5J+N2fjP3YVbGLx11QbRGqeaHU2462eX5XzkvYLL0O+m7EARBEE7FaU9UbTYbv/rVr7jm\nmmu44YYbqKj45onQtm3bWL16Nddccw0bN2783m0qKiq47rrrWLt2Lb/+9a+x2QZvTm/cuJErr7yS\nq6++mu3bv/lAqKSkhMzMTPr7xQeLILii4eKfr4/+Ku+oxGyziK4/bijRGIdaoaKgzTHFPxWdg23C\nY4dW0gjuIUQ7eKO8SYz+cms7qnZjsVlYGrPQJYrvFkTMxs/LyM7qPbT3d5zz/joHuihoLSLWN1o8\n3HEREfowbki/mgHrAM8cfYk+S59Tj9c10M2bRe+jUahZl7Z63HV/8vf2466pt3BD+tUoJCVvFL7L\nPw4/Q1Nvi9zRBAey2CzUdtcTqQt3u4crKUPjf8XoL+FMxMgvwVHmRczigcy7iDJEyB3FrSkVSmaF\nZdJr6eNo83G543i06q5aPiz9FF+NgbWp4+98dqxMC55MnG8Mh5uOfWPxonB2itoGOzsOn+u5s0h9\nOGqFinLR+UdwM62mNj4q28Kv9vyBp3Ke53DTMUJ8glidfAm/m/9Lbpm0jrSA5HO6H6hWqLht0g1k\nBE+mqL2Up3Kec/p9HkEQBOErTnui8/nnnzMwMMAbb7zB//zP//CHP/zh5Gtms5nHHnuMF154gfXr\n1/PGG2/Q3Nx82m0ee+wx7rvvPl599VXsdjtbt26lqamJ9evX8/rrr/P888/z17/+lYGBwRZy3d3d\n/PGPf0Sj0Tjr2xME4RzF+g52dPl68U9h++AN/hR/978IHG/USjWJxnhquuscskp7+OI5ThT/uJXh\nQorGXlH8465Mln521uxFr9a5zOpRtVLNRXHLMNssbC7fds77O9iQgx276PrjYqaHTGFZzCIa+5p5\n6fjrTu1Es7HwPXrMvVyauHLcjkeQJIk54TP45ewHmBw0gaL2Un534K9sq/pSdAHyEHU9DVjtVqLd\n8EF28tC1gBj9JXwfMfJLEFzT7PCh0V/1rj/6y263yx3hrJitZl48/hpWu5Xr09eIztlOJEkSVyRd\nDMC7xR+77e+MqygeOrdL8nf/RZ9KhZJoQxS1PfX0i7FGgouz2CwcajzKU0ee51d7/sDHZVvosfQy\nL3wWD2bezS9mPcCS6PMc+nmiUqi4ZeJaZoRmUNpRwT8PP0evuddh+xcEQRBOz2nFPwcPHuS8884D\nICMjg9zc3JOvlZSUEBMTg9FoRKPRkJmZSVZW1mm3ycvLY9aswXb8CxcuZM+ePRw9epRp06ah0Wgw\nGAzExMRQUFCA3W7nkUce4YEHHkCr1Trr2xME4RxplBqi9BFUdVWfbAdd1FaChESS6Pzjlr4a/VV8\nzvsq76wEIHaoja7gHoJ9ROcfd7e3LoteSx+LouahUbpOEfWc8BkEawPZXbuf5r7Wc9pXVsNhJCSm\nh0x1UDrBUS5NuJBU/ySONefzqQMKvU7lSFMuhxqPkmCMZVHUPKccw534eRm5Y/JN3DzhOjRKNW8X\nfcjfDv2b+p5GuaMJ56iqqwaAGEOUzElGL8YQiZdSIzr/CN9LjPwSBNcUrgsl1jea/JZCh3TtdIYB\nq5kX817nZ7sePdlBzJ18ULqZup4GFkbOZWJgmtxxPF6SXzxTgiZS0lHGMdHR6pwUtpeiUaiJdcPz\n01OJ943BZrdROdS9XBBcTX1PA+8UbeIXu3/H87mvcLz1BHG+0axLu4rH5v+SdelXEW+McVr3OKVC\nyU0TrmV2WCYVXVX84/AzdA/0OOVYguCJ7HY7PeZeqrpqOdqUR1lHpShEFkZE5awdd3d3o9frT/5/\npVKJxWJBpVLR3d2NwWA4+ZpOp6O7u/u029jt9pMfQDqdjq6urtPu48knn2TRokWkpYmLH0FwdQnG\nWCq7qqnqriFaH0lZZyWR+nB0ah+5owlnITUgCUqgoK2ImWFn31HDbrdT0VmFv5cfRi/DmTcQXMbw\n2C/R+cc9WW1WtlbuRKNQs9DFiiKUCiUXx6/gxeOv8XHZFm6ccM1Z7aext4mKzirSA1LE+4sLUiqU\n3DJxHX/I+jsflW0h2hDJpKB0h+2/19zLGyfeRaVQsS5tjUuMtXMFkiQxI2waqQHJvFH4Hocbj/JY\n1hNcHL+cpdEL3W5klDBouPgn2hApc5LRUyqUJPrFc7zlBO39Hfh5GeWONG5ZbVbs2FEpnHbr6Kwd\nFiO/BMFlzQ2fQUVnFQfqD7Ei9ny543xDe38H/zn6EpVdgw/rn899hfzwmVyVchleLrT44XQKWovY\nVvUloT7BJzvSCM53WeJKclvyea/kEyYGponz47PQNdBNfU8Daf7JHvPnF2eMgarBBYzJHtDNSPAM\n/dYBDjUeZU/tAUo7ygHQqX1YEn0ec8NnEqEPG9M8CknB9elrUCmU7K49wN8P/4d7pt2Or0bckxME\nq81K50AXLaY22kzttJraaO0f+qepnTZT23e6y8X7xrI8djGTg9LFfU3htJx2B0ev19PT81UVp81m\nQ6VSnfK1np4eDAbDabdRKBTf+FpfX9/T7uODDz4gLCyMt99+m6amJm655RY2bNjwvVn9/X1QqTzj\npNOTBAeLEwBPl9GXxhfVu2mw1KOTNFhsFqZGpIufvZsKDErFkKOjqL2EoCD9Wa8aaOxpocvczZyo\n6R77u+Cp3xcYMHr70tLf4sHfo+f6svwAbf3tXJi0mPiIsb0ZMBIXBi1ga80ODjQc4pppFxPlGz7q\nfXyRuwOAJUlzxe+ok5zrn2swBh7W3skjW//Cy/mv89jynxJmCHFItn/tf5fOgS7WTrmcyXFixOi3\nBWPgZ5E/Yl/VIZ4/+Drvl3xCbttxfjTzBmL83K+AZLyrO1KHUlIwJS4JtVItd5xRmx41geMtJ2iw\n1pEc7Dqrw8fTZ4fJ0s+j25+gvqeZO2dez8xI1+mY1zPQS35bEXF+UUyMjZc7jiB4BEe+v60wzuft\nog/JbjzM2sxLnNZRYLSKW8r5y8GnaTN1sDhuLhenR2o6cgAAIABJREFULuGp/S+xpy6L8u5K7p17\nK/H+rjt6vHughw1730QpKbhv/q1EBozP8bVyCA42sKR5Pp+XfElu9zGWJZ4ndyS3U1JVBEBG1Njf\n93XW8TJ90nk+F2r7a8fVOaLgeux2OyWtFWwr3c3uymz6LCYApoSmsyRhPjMjp8h+TfiT4B9gOOTD\n5uIveDLnWR45/14CtH6yZvIE4r3HtZks/TT3ttLc00ZzbwvNva009bQO/bdWWvrasdltp9xWp9YS\nZgghyMefYJ9AAn38KWgu5mDtMZ459hKRhjAuSVvOebEzZf/7LbgepxX/TJ8+ne3bt3PRRRdx5MgR\nUlJSTr6WmJhIRUUF7e3t+Pj4kJ2dza233ookSafcZsKECezfv5/Zs2ezc+dO5syZw5QpU3jiiSfo\n7+9nYGCAkpISUlJS2LJly8njLFmyhBdeeOGMWdvaxKxJVxMcbKCpqUvuGIKTBUmhAByrLaSlY7Ad\ndJRXlPjZu7Fkv0QONR4lr6KUUN3ZPaw91JAPQLh3uEf+Lnj6+1uQVyClHeXUNbS55Cpx4dTsdjvv\n5G1GQmJu8ByX/R1dGbOcZ469xPrsd7lt8g2j2tZut7OjdD9qhZoE70SX/R7dmaPe3wwEcG3qlazP\n38gfdvybB2fcfc4rsfNaTvBF+V6iDZHMCZgtfv7fI9E7mZ/PeoC3Cj8gq+EwD3/2GCvjlrEidrHH\nrNL1dFablfL2asJ1YbS3mgCT3JFGLUI9WPBzsDKXVB/X6Orr6edwX2ez23jm2MsUtZYD8OddT7Mw\nci5XJK1C4wI3FvfVZWO1WZkSMGnc/EwEwZmc8f42JWgiBxtzyCrJI94Y69B9n42DDUdYn78Ri83K\nFUkXszR6IZJZ4r6Mu/ig5BO2VX3JL7b8kcsSV7I4eoHLraS22+38N+9VWvvaWRV/Ab7WAPH+N8aW\nhC1mZ/l+Xj/6Iak+6XirvOSO5FYOVuYBg+d4Y/m768zzN7tdhVFjoLCpTPx9FGRjs9t4/cQ77K49\nAAyO9l4cNZ854TMJ0gYAuMw14arolZj7bWyt2skjW/7CvdPuwN9bFACdrfF0feqK7HY73eaeb3Tp\naf1W954e86lrDyQkjF6+xPlGE+Dtj7+XHwHe/gR4D/7T39sPrcr7O9vNC5rLhVH1bK3cyYGGQzyd\ntZ7Xct5nScx5zI+YfcptBM92ugJApz2VW758Obt37+baa6/Fbrfz+9//ng8//JDe3l6uueYafvrT\nn3Lrrbdit9tZvXo1oaGhp9wG4OGHH+aRRx7hr3/9KwkJCVxwwQUolUpuuOEG1q5di91u5/7778fL\nS5x0C4I78ff2w8/LSGlHOd0D3UhIJPmJNqnuLM0/mUONR8lvKzrr4p/yzkoAYg2uu+JOOL0QnyBK\nOspo7msl7Cx/B4SxV9BaRE13HZkhU0/eHHBFU4ImEOsbzeGmY1R2VRNjGHk3iMquahr7mskMmYq3\nuBhyeXOGxkXsrNnLhvw3uXni2rNeNd5nMfFawduD7abT1ogClhHQq3X8YOJ1ZIZO5bWCd9hU9ilH\nmo5xffoatxwjNd409DZhtlnc+mcVpY/AW+lNYVuJ3FHGpXeKN3Gs+Tip/klckXQxLx9/g501eyls\nL+WWiWuJ1I+++54jiZFfguD65oTP4GBjDvvqsmUt/rHZbXxctoVPyrfirfTitik3fGOsrFqhYnXy\nJaQFpLD++Bu8XbyJ/NYibphwtUuNJMlqOMzBxhwSjLGsiF0sd5xxyehlYFn0Qj4u/5xtVTu5KH65\n3JHcSlFbKWqFmlhf1+noeK4kSSLON4ac5jzaTO2iiEEYc3a7nXeKNrG79gCR+nAuS1xJekCKyxWw\nDpMkiSuSLkatULG5Yht/O/RvfjLtDpe+DykIw9pM7Wyv3kVNVx2t/YNjusw2yym/Vq1QE+DtR4wh\n6luFPYP/7udlPOt7kxH6MG6YcDWrElawvWoXu2r38W7xR2wu38p5kXNZHLUAo5frnMMK8nBa8Y9C\noeD//u//vvHfEhO/aq+/ZMkSlixZcsZtAOLj43nllVe+89+vvvpqrr766tNm2LZt22hjC4IwxhKM\nsRxqPEr3QA/Rhgh81Fq5IwnnIC0gGYATrcUsjpp/Vvuo6KxCQiLGg24IjCch2iAAmvqaRfGPG9lS\n+QUAy2IXyRvkDCRJ4tKEC/nnkWf5sPRTfjz11hFvm1V/GICZYdOcFU9wsNXJl1DdXcvBxhxifaNZ\nGrPwrPbzfskntPW3szJuKVGGCAen9GyTgyaQODued4o3sbcuiz9l/5MVsedzYdxS1KK7m8uq6qoB\ncOviH6VCSZJfPLkt+eJhyhjbUb2H7VW7CPMJ4bZJN+Cj1vLQjHt4r+QjdlTv4U/Z/+SKpItZFDlP\nllE+veY+8luLiNJHEOITNObHFwRhZNICkvHzMnKwMYfVyZfK0jWs3zrAy8ff4EjTMQK9A7hzyg+I\n0J96vPHEwFR+Pvt+Xj7+BsdbT/D7A3/jxvRrmBCYOsapv6vV1MbGwvfwUmq4acK1opBdRktjFvJl\nzT62VO5gQeQclyoQc2XdAz3U9tST6p/kcR2i44yDxT/lnVXifFUYcx+VbWF79S7CdKH8JOOH6DU6\nuSOdkSRJXJJ4ISqFik1ln/HEoaf5ybQfivN6wWW1mdr5tGI7e2oPYLVbgcEFc+G6UPyHi3pOFvgM\ndu3Rq3VOv1b29/bjyuRVXBi3hJ01+/iiahefVWxnW+VOZodnsjRmEaE+wU7NILgu5W9+85vfyB1C\nbr29A3JHEL5Fp/MSP5dxoqO/k+OtJwCYETqN9MCUM2whuDIftZYD9Yeo62lgWczCUa80sNqsvFn0\nAWG6EM6PXuCklPLy9Pe3zoFuDjUeJdoQSYIxTu44wghUdlXzfsknpPonsSL2fLnjnFGgdwBF7aWc\naCsm1T+JAG//M25js9tYX7ARtaTi2tQrXHYVlLtz9PubQlIwITCV7IYjHG0+TpJfHIGjXBFW2FbC\nxsL3CNeFctPE61CKn/2oqZVqpgRPJME3lsK2EnJb8slpyiXGNwo/L6Pc8YRT2FeXTXlnJSvjlrr1\nQ4jOgS7yWwuJNkTK3mkGPP8cDiC3OZ+Xj7+BXq3j3ul3YvTyBQaLsSYGphFjiOR4ywmODHXgSwtI\nPuexjKN1sDGHI025LI6aT5Jf/JgeWxA8lTPe3yRJotvcw4m2YiJ0oUSM8ft4m6mdJ488S2F7Ccl+\nCdyTcfsZzyO9lF7MCM1Aq/Imtzmf/fUHMVlMJPsnynYOOTyGsaG3iWtTryQ1IEmWHMIglUKFRqnh\naHMeA1bzN7pICad3vOUEhxqPMjd8Jsn+Y9vx3dnnb1a7jf31Bwnw9ic9QNzTFsbO1sqdfFi6mUDv\nAO6bfge+btbpI9k/AbVCxZGmXI40HmViYLpbFC+5kvFwfSqnNlM7H5R8wvr8jZR3VhKoDWB18iX8\nYOJ1XBi3lAWRc8gMncqEwFTijbGE6UIxevnipdSM6SIZtVJNkl88C6Pm4e/tR21PAyfaitlZvZea\n7noCtf7i3p0H0+lOPRFL3P0WBEFWCV9r/5zin/g9Xym4i7SAZExWExVd1aPetranAbPNTJyvGPnl\nroZXajT1NsucRBipzyt2ALA8ZrG8QUZIkiQuTbwQgA9LN2O328+4zYm2YroGupkWOsXjVhp6Oj8v\nI7dNugGA53M30GZqH/G2A9YBNhS8hYTE9elrRKeac5QemMIvZj/AeZFzqetp4C/ZT/Fu8UdYbVa5\nownfUtlVg4TkEgUz52L44ZAY/TU2qrtqeSFvAyqFkjun/OCU7fcnB03g57PuJ80/mdyWAn5/4G/k\ntxaOaU4x8ksQ3MecsEwA9tUfHNPjlnVU8Mfsf1DVXcv8iFncnXHbiB8oKiQFS2MW8uCMHxPiE8S2\nqi95/OBTNPQ2OTn1qW2r+pKi9lKmBk1kbvgMWTII3zQ/YhYhPkHsrt1PQ0+j3HHcQlF7KcCYF/6M\nhRhDFBISZR2VckcRxpHdNft5p3gTRo0vP5l2u9s+2F8Rez6rky+hY6CLJw49TW13vdyRBIE2Uztv\nnHiP3+z9Iztr9uLnZeT69Kv51ewHmRM+Y8wXv4yURqnmvMg5/HrOQ9w66XqiDREcaTrGn7Of5IlD\nT5PXcmJE99AFzyCKfwRBkFWUPgK1Qo2ERKJYuekR0vwHR38VnMWDgPLOwYvlWFH847aCtYEANPa1\nyJxEGInmvlYONR4lUh9+cmyfO0gwxjEpMI3i9jIKWovO+PUnR36FipFf7ijRL46rki+l29zDM8de\nxmw1j2i7D0s/pbmvhSUx5xHnG+PklOODVuXNtalXcO+0HxLg7c/nlTt4Kud5es19ckcThtjsNqq7\nawjThaBx0ZtSIxWlj0Cr0lIkin+crr2/g38f/S/91gFunHAt8V9boPFtRi9ffpxxK1ckXUyPuZcn\njzzHO8WbsNgsTs8pRn4JgnsJ1YUQ7xtLQWvRqAq4z8WB+kM8cfg/dA/0cFXypVyXuvqsiv9jDFE8\nPONe5oTPoKqrhj9k/Z29tVlj+tCkpruOD0s2Y9DouS5ttSyjFoXvUiqUXJZ4ETa7jfdLN8sdxy0U\ntZeiVqg88l6ft8qLCH0YVV3VYlGEMCayG47w2ol30Kl9uGfa7QQN3Yd1V0uiz+OalCvoMnfzxOGn\nT46wFoSx1t7fwcbC4aKfPYNFP2lr+NWch5gbPsNtxq4qJAXTQ6bw/2b8hJ9k/JD0gBSK2kv5V87z\nPJb1BAfqD4nPq3FAFP8IgiArpULJBbFLWB67GK3KW+44ggOk+iciIVHQWjzqbSs6qwDEQ1o3plFq\n8PMyis4/bmJb1U7s2FkWs8jtbiavShjs/vPBGbr/DFjN5DTlEuDt/41uc4J7WRg5l9lhmVR2VfNG\n4XtnfPBS1lHB9qpdBGsDWRW/YoxSjh8p/kn8fNb9TA5K50RbMX899C9a+trkjiUw2Hmv3zpAtCFS\n7ijnTCEpSPZLoNnUSqtJ/H45i8nSz9M5/6W9v4PLElcyfQQddRSSgmUxi3gw88eEaIPYWrmTvxx8\nyukdEI4252G1W0eUURAE1zA3fAZ27OyvP+TU49jsNt4v+YSXjr+OWqHirqm3cH70gnO6xvFWeXFD\n+tXcMnEtChS8UvAm/817dUyKns1WMy/mvYbFbuX6tDUYNHqnH1MYualBE0kwxpLTlEtpR7nccVxa\nj7mX2u564n1jPbYTa5xvNAM2M7U9DXJHETzcsebjvHT8dbyUXtw99TbCdaFyR3KIhVFzWZe2hl5z\nH38//MzJxcGCMBYGi37e59d7/8iO6j0YvYysGy76iZjpNkU/3yZJEqkBSdydcRs/nXkfM0IzqO2u\n56Xjr/ObfX/ii6rd9FvF2DhPJYp/BEGQ3cr4pVyWuFLuGIKD+Kh9iDFEUdZZgcliGtW25Z2VaJQa\nj7l4Ga9CtEG09bczIE4gXVr3QA97arPw9/IjM2Sq3HFGLdoQwbSQKVR2VZPTnHfarzvWfByTtZ8Z\noRkoJHHq664kSeLa1CuJNkSyty6LXbX7T/u1ZpuFV/LfxI6ddWlr3L77iavyVnnxw8k3sThq/uAY\nsINPniziFeQzvFLSE4p/4KuxwGL0l3PY7DZePP4qVd21zAufOeoRoDG+UTw8817mhs882RljjxM7\nY4iRX4LgfqaHTkGtULG/Lttp7w0mi4lnj63ns4rtBGsDeTDzbiYEpjps/5mhGfx81n3E+8ZysDGH\nx7KecHrBxwelm6ntqee8yLlMCkp36rGE0ZMkiSuSLgbg3eKPxBiN71HcXoodu0eO/BoW5zu4yKi8\ns0LmJIInK2wr5rncV1BKSn409WZifKPkjuRQ8yJmcuOEazBZTPzz8LOisFJwum8W/ezGqPFlXdoa\nfj3nIea5cdHPqUQbIrh54lp+M/dhFkXNo2ugmzeL3ueRPb/no9LP6B7okTui4GDiCYggCILgcGkB\nydjsNorby0a8jclior6nkVhDlHhA7+aCh8YwNInRXy5tZ80ezDYzS2MWuu0Fzar4FUhIbCr9FJvd\ndsqvyWoQI788hUap5vZJN6JT+/Bm4fuUdZz65urm8q3U9zayMHKuR99kdgUKScGalMu4KvlSuga6\neeLQ0+Q0nb4YT3C+yu6h4h+9ZxT/JPsN/h0uaiuVOYlneqd4E8ea80n1T+La1CvPqkOGt8qL69PX\ncMvEdSgVSjYUvMnzeRvoNfc6NKsY+SUI7kmr0jI1eBKNfc2Unubc7Vy09LXx+MF/cbQ5jxT/JB6a\ncQ9huhCHHydQG8D90+9kZdxS2kzt/O3Q03xS9vlpr0HORUFrEduqviTEJ4grhwpMBNeTYIwjI3gS\npR0V37sYZbwrah88hxs+p/NEcUPjzMo7xEIIwTnKOip5+uiL2O12fjj5RpL84uWO5BSzwqZz88S1\nDNjM/PPIc2L8s+AUHf2dvPmNoh8D69Ku8siin28L0gZwdcrlPDrvZ6yMWwZ2+Lj8c3655/dsLHyf\nlr5WuSMKDiKergqCIAgOlxaQBAzetBqpyq4a7Ng9cgb4eDP8QEaM/nJdA9YBdlTvwUelZW74TLnj\nnLUwXQizwzKp62kgu+HId17vMfdyvOUEkfpwIvRhMiQUHC1Q688tE9dhs9t49th6Ovq7vvF6VVct\nn1Vsx9/LT3QVHEPnRy/gh5NvBODZYy+zvWqXzInGr6quWgCiDBEyJ3GMCH0YOrUPhe3ixq+j7aje\nw/aqXYTpQrlt0g3nfJMzM3QqP5t5PwnGOA43HuX3B54Y1UKAMxEjvwTBfQ1fb+yry3bofkvay/lT\n9j+o7alnYeRc7p56Kzq1j0OP8XVKhZJVCRdw77Q78NUY2FT2GX8//B/aTO0OO0avuZf1+RtRSAp+\nMOE60cHSxV2auBKFpOD9ko+x2qxyx3FJRW2lqBQq4nxj5I7iNGG6ELyVXpSJUUWCE9R01/GvnOcZ\nsJq5eeJah3a2c0WZoVO5bdL1WG1Wnsp5YVTPFgTh+3T0d/JW4Qf8eu8f+KJ6N74aA2vTVvOrOQ8x\nL2KWRxf9fJtBo2dVwgoenf9zrkq+FL1ax47q3fxm35/4b96rVA/dVxLclyj+EQRBEBwu3hiHWqGm\noG3kJ+jD83xF8Y/7C9EOFv809oniH1e1ry6bbnMPCyPn4q3ykjvOObkofhlKSclHpZ9954brocaj\nWO1W0fXHw6QFJHNZ4ko6Bjp5PveVkz93q83KhvyN2Ow21qVdhbfKW+ak48uU4IncP/1HGDR63ir6\ngI2F7ztlNbxwena7naquGkJ8gtB6yO+/QlKQ7JdAq6mNZrEKzWFym/N5s/B9DGo9P5pyMz5qrUP2\nG6j1575pd3BR/HLa+zt44tDTbDrF5/PZECO/BMF9pfgn4u/lx6HGHIeNht5bl83fD/+HXksf16Rc\nzjWpV4zZQ5tk/wR+Put+MoInUdxexu8P/I0jjcccsu/XT7xLe38HF8UtF/dG3ECoTzALImbT2NvM\n7toDcseRhdlqpr6nkbyWAnZW7+Gd4k08e2w9f8j6Ow/t/DXV3bXE+8agVqrljuo0CklBrG80Db2N\n9Jr75I4jeJDG3ib+eeRZei19XJ++hmkhk+WONCamBk/ih5NvxI6dfx/9L7nN+XJHEtxYR38nbxUN\nFv1sr96FQWNgbepqfj3nIeZHzEalUMkdUTZeSg3nRy/gf+c+zE0TriXMJ4TshiM8lvUETx55jsK2\nYjHa1E2N399qQRAEwWnUChVJfvHktxbS0d+J0cv3jNtUdA62x4334NVA48Vw559G0fnHJdnsNrZW\n7kSlULEoer7ccc5ZoDaA+RGz2Vmzh711WSyInHPytaz6w0hIzAjNkDGh4AzLYhb9//buO76t+t7/\n+FvLlmx5yHvvmeEsO4skQICyy54ts6VldNCW3rb3tr0d3BY6fu0ttJRRoKVsCCNQoEAIIXs6sZ14\nJY733ntJvz/smOQmQIDYspTX8/Hww4qtY32UyN8cnfM+n48qu6q1q7lAq8pf0xUZF+ntqvdV3VOn\nxdG5yg7NcHeJJ6WEwDjdteAbemDPo3q/ZoPaBtp044xrPT5k6ClaB9rVP9KvGSHe9fpPD05VfnOh\nytr3K8wW4u5yPF5Nd50eLXpSZqNJX8+58YT/nZqMJp2ffJayHOl6fO/TeuPgOyppL9ONM65R6Gd8\nLEZ+AZ7NaDBqUdR8vVm5RvnNhVoYNf8z/yyny6mXy/+ld6vXyc9s01dmfVlZIeknsNrj42/x01dn\nXacNdVv0QtlqPVz4hE6JWaTL0y/8zN16tjXs0o6m3UoOTNQXEk87sQVj0pybfKa2NOzQvyre1sKo\neV53AcKoc1Qdg51qHWhTS3+7Wgfa1NrfNvG5c6j7mNtZjBaFWh1KDkrUmQmnTnHVUy8pMEEl7eWq\n7K5Wtpfti8M92gba9addD6t7qEdXZFykxdG57i5pSs0Ky9atOTfqwT1/10MF/9BXZn1Jc8Jnubss\nr+ByuTQ4OqSB0QENjAyqf2TgGLcHxm6PDGpg9OjbTpdTUf6RirfHKC4gRnH2GEX6hU+r7jmdg916\np2qtPqjdpGHniBy+wTo36Qwtil5wUgd+jsVkNGlh1HzlRc7T3rYSvV25VvvaSrWvrVSJAfE6M/FU\nzQ2fJaOBfjKeglc4AGBSZIWka19bqYrbyrQoesEn3v9gV7UCfQIU7Bs0BdVhMoXaQmWQgfDPNJXf\nXKiWgTYti1mkQJ8Ad5dzQpyTtFKb6rfpjYPvalHUAllMFrX2t2t/Z4XSg1PksAa7u0ScYAaDQV/O\nvkL1fU1aW7NBNrNNb1e+pyCfAF2WdoG7yzuphdoc+t6C2/VIwT9V0LJPf9z1V92Wc9NxBYHx+VR3\n10qS4gNi3VzJiZXhSJUklXbs15IYzx1VOR10DHbqgT2PaXB0SF+Z9WUlB01e6D41OEk/yrtTz5Ss\n0o6m3frV1j/qmqxLP1Mgl5FfgOdbFJ2rNyvXaHP99s8c/ukfGdDjRU+psLVYkX7hujXnRkX4hZ/g\nSo+fwWDQstjFSg1O1mNFT2lD3Rbt76jQTTOv/dTjN9sG2vVs6UvyNfnohhlXT6uTZ/h4gT4BOivh\nNL1W8W+9U7VOF6R8wd0lfSoul0tdQ93j4Z42tfa3q22gTS0D7Wrtb1P7YMcxu3kaDUY5fIOV4UhT\nmNWhUFuIQq0hE58DfewyGAxueEbucWif6mBnFeEffG5dQ926L/9htQ926MKUc3RanOdfuPdZZIdk\n6PY5N+uBPY/pkcJ/6qaZ1/J+YNzAyKD2t7Wprq1VA6ODHxHWGdDA6OAxb7v06bu5GA1G2UxWWc1W\nmQxGlbaXq7S9fOL7FqNZMfbo8UBQrOLsMYq1R8tniju/HSv0c07SSi2OziX08wkMBoNmhmZpZmiW\nKjqr9E7VWu1uLtLfCv+pOHuMvp/7Df4OPQT/SgCASZHlGLv6rqS9/BPDPx2DneoY7FRO2MyT6uCA\nt7IYzQqxOtTM2K9px+Vy6e3K92SQQWckrHB3OSdMkG+gTo1bqneq3tcHtZu0MmGFdjTmSxIjv7yY\n1WzV12Zfr99su09vHHxHknRV5qXys/i5uTLYzDbdPudmPVOyShvrt+m32+/XbXNuUqw92t2lebWq\n7hpJ3hf+ifaPlN3ir9L2/XK5XOwrfkYDI4P66+7H1DHYqYtTz5uSA+d+FptumnmtskMz9Vzpy3qs\n6CntbS3RlRkXfarOCIz8AjxfhF+YUoOSVNq+X6397Qq1OT7V9i39rXpgz+Nq6G1UdkiGbp75pRM2\nsvDzivaP1PcXfEMv7/+X1tZs0G933K9LUs/XqXFLj+v/LKfLqX/sfVb9IwP6UtblCvcLnYKqcSKt\nTFihdbWb9G7V+1oeu3jahd77R/rV3N+q1sM697QMfBj0GXaOHHO7IJ8AJQXGHxHqCbM5FGoNUbBv\nECG1wySNdzE/2FXl5kpOXk6XU91DvbJb/Dz6tdk33Kf78x9RU1+Lzko4TWcnnu7uktwqw5Gqb8z5\nqv6y+296tPBJjcwY+VwdBD3Z0OiQCluLtbNxtwpbizXsHD6u7QwyyGq2ymrylcM3SFb/SFnNvhNB\nnrHbNlnNvrKarbKN39dmHv++aexrFqP5iP2a/pEB1fbUq7q7VjXddaruqVV1d+3EdIdDjx3pHzHR\nISjeHqu4gBj5T8Jxu66hbr1duVYf1G7WsHNYDt9gnZ20UksI/XwmyUEJumX29Wrsa9a7VevUMdgp\ngzgW4yl4xQMAJkWMPUoBFruK20o/8UTNwfGdQmbae48IvzDtayvVwMiA17W99mRlHftV1V2rueGz\n3HqV7GQ4K/E0ra/drLcq39PSmIXa1rhLZoPppJmJfrKK9AvXjTOv1oN7/q7cyLmaEz7T3SVhnMlo\n0rVZlyvMFqpXD7yp/7fjL/rqrOsYyTaJvLXzj8FgUHpwinY1F6ikvVyZjjQCQJ+S0+XU43ufUnVP\nnZZGL5zS8RsGg0FLonOVGpSox4qe0paGHTrQeVA3zbz2uPb9GfkFeI/F0bna33lQWxt26NzkM497\nu7L2/Xq48An1Dvfp9LhluiTt/Gl3YtdisuiKjIuUFZKuf+57Xs+XvaJ9baX6cvYVCvCxf+y2a6o/\nUFnHAc0Jm6kl0XS480S+Jh+dn3yWni5Zpdcr3ta1WZe5uyQNO0e0p7lIm+q3qbit7JhdHvzMNkX5\nR46HexwKOyzkE2J1THm3Bk8W4GNXqNWhiq4qwuqTaMQ5otaBdrX0t6q5v1Ut4x/N/W1q7W/VsHNE\noVaHrsy4WLPCst1d7qc2MDKov+x+VLU99VoWu1gXpZ7La0ljHUW/Oe8W3Z//N/1j77MacY5q6UnS\nEXZ4dFhFbSXa2bhbBS17NTQe+In0C9e82JkyjljGwzrjIZ6JsI7vRHDH1+QzKa8jm9mqtOBkpQUn\nf1ivc0QNvY2q7q5TTU+tqrvrVNtTp4beRm15s/4EAAAgAElEQVRr3DVxP4dvsOIDYscDQTGKD4hV\nsG/QZ6qza6hb71S+r3W1mw4L/ZyuxdF5shD6+dwi/cKnxX4NPh1e+QCASWE0GJUZkqbtjflq6GtS\ntH/kR973UCI8ifCP1wi3hWmfStXc3+p1JyE92dtV70uSzkw4zb2FTAK7xV8rE1boXxVv66niF1XX\n26A5YTPpAnMSmB02Q/9zyn994okVTD2DwaCzk1Yq1BaiJ/Y9p7/seVRXZ16iU2IWubs0r+NyuVTd\nXatQq2NSrqJzt7kRs7WruUD35T+seHuMlsUuVm7kXALGx2lV2WsqaNmnLEe6rs68xC0nESL8wvW9\nBXfotQP/1ttVa/W7HX/WhSln68yEU2U0GD9yO0Z+Ad5jfkSOni99RZvrt+ucpDOOay3aULtFz5S+\nJEm6NvMynRI7vfchZofN0H8u/I7+sfdZFbbu06+3/kHXz7haWSHpx7x/bU+9Vu9/UwE+dl2TdRkn\neT3Ykug8raler411W7UyfpmiPuYY2GSq7anXxrqt2tawS70jfZLGutIkBsYd1cHHZp4e3bO8RVJg\ngnY07VZLfxsdvD6HgZEBNfe3HRbs+TDk0zbQccwgm81sVZR/pAJ9ArSvrVQP7HlMc8Jn6Yr0L3rM\nGPjh0WE9VPB3VXRVKS9ynq7KuJj/Ew6TFJigb827RffnP6Ini5/XqGtEy2OXuLusSTHsHFFxW6l2\njAd+BkYHJUnhtlAtiJij+ZFzFOMfpYiIQDU3d7u52iNZjGbFB8SOnwsYC2g5XU619LeOB4LqJjoF\n7Wkp0p6Woolt/S1+ijusQ1B8QIwi/MI/8r1i91CP3q5aq3U1Y6GfYN+g8fFehH4AfgMAAJMm05Gu\n7Y35Km4r+9jwz8HOKhlkUGJg3BRWh8l06Mrspr5mwj/TRG1Pvfa2ligtOHliHr23WRm/XO/XbNCO\npt2SpNwoRn6dLKZba30cKTdyrhy+wXqw4HE9VfyiWvrbdGHK2R97wh+fTsdgp3qGe4+46s6b5EbO\nlb/FT+trN2tPy149XbJKq8pfU17UfC2PWay4gBh3lzhtra3ZoPdq1ivKP1Jfnf1lt3bLMBvNujjt\nPGWFpOsfe5/RK/vf0L62Mt0w4yoF+wYdcxtGfgHew2q2am7EbG1t2KnyjgqlO1I+8r6jzlG9VP66\n3qtZL3+Ln26ZdZ3SHalTWO1nF+QbqDvmfkXvVq3Tqwfe1P35j+jMhFN1QcoXjhg7MTw6rMeLntaI\na1RfzvrkDkGY3kxGky5OPVcPFvxdL+9/Q7fm3Dhlj9033K/tjfnaVL9VVeOdIAMsdp2RsEJLovM+\n9ngcTpykoLHwz8GuKsI/H8PlcqlnuFfN/S1q7vuwc8+hgE/3cM8xtwvyCVBKUKLCbKEKH/8I8wtV\nmC1U/ma/iaBMXU+DnilZpd3NhdrXVqrzk8/S6XHLpl3HuMONOkf1t6InVdJerpywmbou+0reKx9D\nQkCcvj3v67pv18N6puQljThHdXr8MneXdUKMOEdU3FamnU17tKelSP0jA5KkUKtDy2OXaH5kjuLt\nsR4ZCDMajIrwC1eEX7gWRM6Z+HrnYNdYEKinbiIYVNJerpL28on7WIwWxdqjj+gQFOgToLU1G7Su\nZqOGxkM/Zyeu1JIYQj/AIfwmAAAmTVZImiSpuK3sI3fGnS6nqrprFOkXzlVHXuTD8E+rmyvBIe9M\ndP2ZulEfU81mtuoLiafrpfLXZTVZNTvU89o8A94qNThJdy24Qw/sfkz/rnxPrf1tui77SlkYJ3BC\nfDjyy3uD1NkhGcoOyVDHYKc21W3ThrqtWl+7WetrNyspMEHLYhdrQUSOfEw+7i512ihs2acXSl9V\ngMWu23Numjb72lkh6frRwu/oyeLnVdCyT7/a+gd9KeuKo0Y3MvIL8D6Lo3K1tWGnNjds/8jwT99w\nvx4telL72koV5R+p23JuVJjNs06kGw1GnZV4mjIcqXq06Cm9XbVWJe3lumnmtRPr2asH3lRdb4OW\nxS72yPE0ONrssBlKDUpWQctelXdUTGoo2+lyqrzjgDbWbVN+c4GGnSMyyKBZodlaGpOnWaHZ0zrs\n4I2SAscusqroqlLeSX4hktPlVNtAxzHGc419HhwdOmobo8GoEKtDcQExCrOFKswWMh7yCVOYLeS4\n9/Fj7FG6c/6t2ly/Qy/vf10vlb+uLfU7dE3WpUoJSjrBz/Tzc7qc+se+Z1XQsleZjjTdPPNafnc/\nRqw9WnfO/7r+tOshvVD2qkacIzor8TR3l/WZjDpHVdq+Xzuadmt3c6H6RvoljY3EWhq9UPMjc5QY\nEO+RgZ/jEeQbqCDfwCP2gfpH+lXTXf9hh6CeOlV11+hgV9VR2wf7BumSxNO1JGYhoR/g/+A3AgAw\naUKsDkX4hamsY79GnaPHfPPS0NukgdFBJTLyy6uE28YOaDb3t7i5EkhS+0CHtjfmK8o/UjNDs9xd\nzqRaEbtUu5sLlR2SQagAmGYi/ML1vdw79NCev2tH0261D3bo67NvlN3H392lebwPwz/e320v2DdI\n5yafqbOTVqqotVjrazerqLVEB7uq9GLZai2Kmq9lsYtP+qvcq7vr9LeiJ2U2mnTrnBsVagtxd0lH\nCPCx6+uzb9QHtZu0qvw1PVTwd62IXaJL0i6Qz/j/34z8ArxPuiNFIVaHdjbt0RXpF8lq9j3i+019\nzfrrnsfV2NesmaFZumnmtbJ58IjHxMB4/Sjv23qu9BVtadihe7b9UVdlXKJg3yCtqf5AEX5hujTt\nAneXiRPEYDDokrTz9bsd9+ul8td114I7TvhJ2/aBDm2u36HN9dvUMtAmSYqwhWlJdJ4WRs//yE56\nmHzx9hiZDKZjnqQ+GdT1NGh7Y752txSpua9Fo67Ro+7jY7RMdO4JG/8It4Uq3C9UDt/gExZ6MRqM\nWhqTp5zwGXql/F/aWL9Nv9/xFy2NXqiL0s6V3TI93n+6XC49W/qytjfmKzkwUV+bfQPHsY5DlH+k\n7px/q/5310N6ef+/tKu5QLH+UYr2j1S0f5Si7ZEK8gmclqEZp8upsvYD2tG0W/nNBeodHhvPGOQT\nqNPjFmh+5BwlBcaftJ2fbGab0h0pRwTEh50jqu9tUE33WIeglv5WzQrL1lJCP8BH4jcDADCpshwZ\nWle7URVdVce86qmyq1rSh1fIwDuEWh0yGoxq6iP8Mx2sqf5ATpdTZyac6vVvIH1MFn1vwR3uLgPA\nR7Bb/PXNubfon8XPa3tjvn63437dPudmRfiFu7s0j1Y1Ef45ecZfGQ1GzQ6bodlhM9Ta366N9Vu1\nqW6r1tZs0NqaDUoNStby2MWaGzH7pDso2DHYqb/ueUxDo0P66qzrpu1+tsFg0Iq4pUoLTtFjRU9p\nXe0mlXYc0M0zr1WsPZqRX4AXMhqMWhS1QG8cfEf5zQVaHJ078b3itjL9rfCf6hvp1xkJK3Rx6nle\n8d7Farbq+hlXKTskQ8+UrNI/9j0ri9Eso8GoG2dcI1861nmV5KAEzYvI0a6mPdrVXHBCAqzDzhEV\ntOzVprpt2tdWKpdc8jFatChqgZbGLFRqUNK0PMl9srGYLIqzx6imu07Do8MnRYijpb9NOxrztb0x\nX3W9DZLGAj7xAbETnXs+DPmEKdDHPqWvVbvFX1/KvkKLo/P0TMkqbazfqj0tRbo49Twtjs516++N\ny+XSy/v/pfW1mxVrj9btc24+KhCLjxbhF67vzL9Njxc9rcru6onzC4fYzLbxMNDYR8x4KCjAMrWv\nQWks8LO/o0I7m/ZoV1PBxGi7AB+7VsQu1YLIOUoJSvSKfZ7JYDGalRAQpwQv7nIMnGgn1xEwAMCU\nywpJ07rajSpuKztm+OfQFTFJdP7xKiajSWHWEDX1N7u7lJNe33CfNtRtUZBPoPIi57q7HACQxWTR\nDTOuVpg1RG9WrtHvtv9ZX8u5YVJHI3i76u5aBfsGKdAnwN2luEWozaELU87WeUlnqqBlrz6o3azi\n9jLt76yQf9krWhydq2Uxi06KkNnAyKD+uvsxdQx26uLU8zQvYra7S/pEMfYofT/3m3p5/+t6v2aj\nfrP9Pp2ffBYjvwAvtTh6LPyzuX77RPhnXc1GPV/2qgwy6MvZV2rJYaEgb5EXNU/JQQl6tOgpVXZV\n64LkL9AB2Ut9MeUc7W4u1Kv731BO2AyZP2MIubanXpvqt2lrw86J7hDJgQlaEp2n+ZFzPLorlrdK\nCkpQZXe1anrqlByU6O5yJkXXULd2Nu7R9sZ8VXRVSpJMBpNmh81QXuRczQqbMe1CjanBSfph3rf1\nXs16vV7xtv5Z/Lw21W/X1ZmXKMYe5Zaa3qpco3eq3lekX7i+OfcW+Vmmx3heTxJmC9FduXdoxDmi\npr4W1fc2qL63UfW9jarrbVBFZ6UOdB48Yht/i99Eh6CYiXBQ1AnvRux0OVXRWTXW4adpjzqHuiWN\nBdIOjatOC04h8ANgUhD+AQBMqgxHqgwyqKS9TBfoC0d9v7KrWmajWbH2aDdUh8kU7hemptZi9Q33\nyc/i5+5yTlof1G7W4OiQzk068zMfdASAE81oMOrC1HMUagvV0yUv6r5dD+nL2VcqL2qeu0vzOJ2D\n3eoc6tLssGx3l+J2JqNJcyNma27EbDX1tWhj3VZtqt+md6vW6d2qdcp0pGlZ7GLNCZt5wsYKTCdO\nl1OPFT2l6p46nRKzUGcmnOruko6bj8miKzMuVnZIhp7Y95xe2f+GJDHyC/BCYbZQpQenqKzjgJr6\nmvVe9Xqtq90ku8VfX5t9g1KDk9xd4qQJs4Xqe/NvV21vveLt3j+q82QV4Rem5bFL9H7NBq2v26LT\n4k457m37R/q1vTFfm+q2q7J7rJOF3eKvM+JXaHF0rtuCCjg+SYHxel/Swa5qrwr/9A33a3dzobY3\n5qukvVwuuWSQQRmONOVFztXc8FnT/rifyWjSmQmnakHEHD1f9qp2Nxfq19v+qDPiV+jc5DOnNLC0\ntnqDVh94Sw7fYH1z7i0K8LFP2WN7I7PRrBh71FHr4/DosBr7micCQYdCQfs7Dqq8o+KI+wZY7GNB\nIHvUYd2CIj/V69rlculgV7V2Nu3WzqY96hjslCT5m/20NHqhFkTOUXpwile+DwUwvXAGCAAwqWxm\nm5IC43Wwq1r9I/2ymT+8kmFodEi1vQ1KDIhnx9cLRfiFqahVaupvUZJleo6b8HbDo8NaW7NBVpNV\ny2IXubscADjK0pg8hViD9XDBE3p879NqHWjT2YkrGV3wKdT0jI/84iTiESL8wnRx2nk6P+UL2t1c\nqPW1m1XSXq6S9nIF+Ni1NHqhTolZqFBbiLtLPWFeLFutwtZ9ynKk66qMSzzy92h22Az958Lv6Im9\nz6myu1q5dC0EvNKi6FyVdRzQ77b/Wb0jfYq1R+vrs29UqM3h7tImncloYnTFSeDcpDO0pX673qh4\nR4uiFnxslx6Xy6WyjgPaVL9Nu5oKNOwclkEGzQrN0pKYhZoVmsWFPB7i0KjVis5KnR6/zM3VfD5D\no8MqbN2n7Q27VNRarBHXqKSx55gbOVfzI3IU5Bvo5io/PYc1WF+bfb0KWvbqudJX9HbVWm1vzNeV\nGRcpJ3zmpD/+pvrter7sFQX6BOhb874mhzV40h/zZGUxWRQXEKO4/zMae2h0SA19TarvORQKGusY\nVNqxX6Ud+4+4b5BPgKLHR4Yd6hIU7R85saa7XC5VdddoZ9Me7Wzao7aBdkmSzWzV4qhczY+coyxH\nGuc9AEwp9hoBAJMuKyRdFV1VKms/cMQbqeruOjldTiUF0eraG0XYxkY0NPW1TBwAwdTa2rhTXUPd\nOivhtCOCdwAwnWSFpOt7C27XX3Y/qtUH3lJzf6uuzbyMA2THqbp7PPwTQPjnWCxGs3Ij5yo3cq4a\nehu1vm6LttTv0FuVa/TvyveUHZqh5TGLNTM0y6Nfc2urN2htzQZF+0fqq7O/7NHPJdg3SN+cd4tG\nnaMe/TwAfLR54bP1XOnL6h3pU07YTN0w42pZzb7uLgs4YQJ87Dor8XStPvCm3qlcqwtTzznqPh2D\nndpcv0Ob6reppb9VkhRuC9WS6Dwtil6gYN+gqS4bn1O4LVT+Fj8d7Kp2dymfyahzVMXtZdrWkK89\nLYUaHB2SJEX5Ryovcq4WRMxVuF+om6s8MWaHzVCmI01vHHxX71S9rwcL/q7ZYTN0RfpFkxZE3dVU\noCf3PS8/s03fmPtVRtu6iY/JRwkBcUcFcQdGBtXY16S6Q4Gg8XBQcXuZitvLjrivwzdYUf4Rau5v\nnVi/rSZfLYyar/kROcoKyZCF0CYAN2H1AQBMukxHut44+K6K28uOCP8c7KqSJCUFEP7xRuF+H4Z/\nMPWcLqfeqXpfJoNJp8Uff5txAHCHGHuUvp/7Tf11z2PaXL9d7QMd+uqs6+RnIbj4SQ6FfxIC6SLw\nSaL8I3V5+hf1xZRztatpjz6o3ay9rSXa21qiYN8gLY0Z6wbkaSfbClr26oWyVxXgY9dtOTd5TeCX\n4A/gvaxmX90w42p1DXZpWexiGQ1Gd5cEnHAr45dpXc1GvVv9gZbHLVGwb5BGnCMqaNmnTfXbtLe1\nRC65ZDFatChqgZZE5yktONkjO/dhjMFgUFJggopai9U91OMR45ycLqf2dxzU9qZ87Wrao97hPklS\niNWhU+NOUW7kXMX4R3nl69LH5KOLUs/Vwqj5erbkJRW07FVJW5nOSz5LK+OXn9B90b2tJXqs6Cn5\nmCy6Y+5XFGuPPmE/GyeG1eyrxMB4JQYeeZ6if2RADYePDusZ6xS0r61UPiafiU5YM0IyZTFZ3FQ9\nAHyI8A8AYNIlByXIx+Sj4rbyI75eOX4lTFIQXWG80aHOP839hH+mWl1Pg9bWbFBTX4sWR+d63ElM\nACenIN8A3Tn/Vj1e9LT2tBTp9zv/ottzbj4pRoB8HtXdtQqw2BXk43lt993Fx2TRougFWhS9QLU9\n9Vpfu1lbG3bqXxVv682D72pWaLaWxS5Wdkj6tD8hXd1dq0eLnpLZaNatOTd61RgzAN5tbvgsd5cA\nTCofk48uSDlbTxY/r+dLX1WINVhbG3aqZ7hX0tj4pCXRuVoQOfdjx4LBsySPh38OdlVpdtgMd5dz\nTC6XSzU9ddrWuEs7GnerY7BTkhRgsevUuKXKjZyn5MAErwz8HEu0f6S+Pe/r2tqwU6vKX9PL+/+l\nLQ07dHXmpUoLTv7cP7+8o0IPFfxDRoNBt+bcRHd0D2MzW5UclKjkoMQjvt433C+L0UzgB8C0Q/gH\nADDpzEaz0oNTVNRarPaBjol5xge7qmS3+CvUykkKb+SwBstsNNP5Z4r0jwxoR2O+NtZvmwjWBfkE\n6uzElW6uDACOn6/JR7fMvk6ryl/Te9Xr9dsd9+m2nJuOuvoOY3qGe9U60K4ZIZknzcH5Ey3WHq2r\nMi/RRannaUdTvtbXbtaeliLtaSlSqNWhU2IWaUlMnsIV4O5Sj9I+0KEHdj+m4dFhfWXWlzmRAADA\nNLM4eoHWVK9TfnOBJMlu8dfK+OVaEp2nGHuUm6vDZDi0P3awc/qFfxr7mrW9MV87GvPV2NcsSbKa\nrFoclavcqLnKCE49aTsvGgwGLYpeoFlh2Xpl/xvaULdFf9j5gBZH5+qS1PNl9/H/TD+3qqtGD+x+\nTKOuUX199g3KcKSe4MrhLnQpBjBdEf4BAEyJrJB0FbUWq7i9XEuic9U91KPWgXbNDM3iZJWXMhqM\nCrOFqrm/RS6Xi3/nSeByuVTeUaFN9du0s2mPhp3DMsigmaFZWhqdp1lh2TIzYxqAhzEajLo8/YsK\ns4XqhdJX9Yedf9VNM6/VnMNGh2JMTXedJCk+INbNlXg+q9lXp8Qs0ikxi1TZVa31tVu0vXGXXj3w\npl6r+Leyw9OUYk9WpiNNCQFxbj8xMjAyqL/ueVydQ126JO18zYuY7dZ6AADA0YwGo67LvlLv12zU\n7LAZms17dK936KKFiq4qN1cypn2gQzuadmtHY76qxscFW4xmzYvIUW7kXM1kVNER/C1+ujbrMi2J\nztXTJau0uX67Cpr36qK0c7UkOu9TdQWt723U/bsf0eDooG6aeY1mhWVPYuUAAIxhTxMAMCWyHOmS\npOK2Ui2JztXB8TfBXMnv3SJsYWrobVTPcK9HzDr3FB2Dndpav1Ob6repaXysWpgtVEui87Qoav5E\ndy0A8GSnxZ2iUKtDjxY+qYcL/qFL0y/Q6XHLCJMepnr8AD7hnxMrMTBeiYHxujT9fG1r2KVN9du1\nt6lMRU2lWq23ZDVZle5IUZYjXZkhaYryi5jS16XT5dRjRU+qpqdOp8Qs0hnxK6bssQEAwKeTGBiv\n62dc5e4yMEX8LDZF+kXoQGelHi96WiaDSSajSWajaey24dBts0xGo8wGk0xGs0wGo0xG8/ifD7/f\nYbcPff2wbcxG84ePYTDJaDCqd6RPu5oKtKMxX+UdFXLJJaPBqBmhmcqNmKuc8JmMmvsEyUGJ+kHu\nt/R+7Ua9duAtPVX8ojbXb9fVmZcq1h79idu39Lfqvl0Pq3e4T9dmXaYFkXOnoGoAAAj/AACmSLR/\npAJ9AlTSVi6XyzUxlojxBN4t3C9UktTU10L453MadY6qsHWfNtZt0962EjldTlmMZuVFztfSmDyl\nBSd/qiuQAMATzA6boe8suE1/3f2YXixbrZb+Vl2e/kXWu3GEfyaXzWzTirilWhG3VNZAgzaW71ZJ\nW5lK2stV0LJXBS17JUlBPgHKGA8CZTnSJj2E+0LZahW2Fis7JENXZVxMIA4AAGAayQmbober1mpb\n4y53l6LUoGTlRs7VvIjZHJf7lExGk1bGL9e88Nl6sWy1djUX6J5t/6vT45bpvOSzZDX7HnO7jsFO\n/WnXw+oc6tJlaRfolJhFU1w5AOBkRvgHADAlDAaDMh3p2ta4U3W9DTo4Hv5JDIxzc2WYTJG2cElS\nU3+LUoOT3FuMh2robdLG+q3aWr9T3cM9kqSEgDgtjclTbuRc2czMmAbg3RIC4nRX7jf0wO7H9H7N\nRrX2t+ummdd+5MHWk0l1d638zDaFWh3uLsXrBfjaNT8iR/MjciRJrf3tKmkvV0l7mUrayrWtcae2\nNe6UJEX4hSnTka4sR5oyHKnys/idsDreq16v92s2KNo/Ul+Z9SW3jx8DAADAkS5KPVdnJKzQiHNE\no65RjThHNeoa1ahzVCPjn8e+PqJRl/PD24e+fth9jt5mVKOuEY06nRpxHdrm8NujMmqsy8+CyDkK\n4X3C5+awBuurs69TUWuxnit5We9Wr9OOpt26IuMizQmbeUQQv2eoV/ftelitA206L+lMrUygQycA\nYGoR/gEATJmskDRta9ypfW2lOthVrXBbqOwWf3eXhUkU7hcmSWrua3FzJZ5lYGRAO5v2aFP9Nh3o\nrJQk+Zv9dHrcMi2JyTuuFsMA4E1CrA59d8Ht+lvhP1XYuk9/3PmAbpx5jaL8I91dmtv0jwyoqb9F\nmY40Or+4QajNoaW2PC2NyZPL5VJ9b6OKx4NAZR379UHtJn1Qu0kGGRQfEKtMR5qyQtKVEpQkH5Pl\nMz1mQctevVi2WgE+dt2WczMBYAAAgGnIYDDQZccLzQzN0n8t+p7eqlyjtyvX6uGCf2hWaJauyLhY\nYbYQ9Y/06/7dj6ihr0kr45frvOSz3F0yAOAkRPgHADBlskLSJUkb6raof6RfM0Mz3VwRJlvEePin\nqd894R+Xy6X2wQ65XJLDGjStx8S4XC4d6KzUpvpt2tG0W0OjQzLIoOyQDC2JzlNO+ExZjOy6ATh5\n2cxW3ZZzk54tfUkb6rbq7i3/T3PDZ+nspDMUHxDj7vKmXE13nSRGfk0HBoNBMfYoxdijtDJ+uUad\no6rsrlZJW7mK28tU0Vmlqu4avV21VmajWSmBicoMSVemI00JAbHH1b2nurtWjxY9JbPRrNtyblKo\njau4AQAAgKnkY7LowpSztTBynp4pfVmFrcUq2fJ7nZN0hva2Fqu6u1ZLo/N0adoFXKABAHALziAB\nAKZMsG+Qovwi1NDXJElKCkxwc0WYbEE+gfIxWtTU1zzpj9U33K+63gbV9dSrtrdBdT0Nqu9tUP/I\ngCTJbDAp1BaqcFuowv1CFW4LG7ttC1OINdhtYzM6B7u1tWGHNtVvV+P470ao1aHFCadqcXQuLZoB\n4DAmo0nXZF6mmaHZevPgu9rVXKBdzQWaFZqtc5JWKjko0d0lTpnq7hpJhH+mI5PRpJSgJKUEJenc\n5DM1ODqk8o6KiRFhpR37VdqxX6s1FmpLD04d7wyUpki/iKNOFLQPdOiB3Y9peHRYX519nRID493z\nxAAAAAAo0j9C35p7i7Y17tKqste0+sCbkqT5ETm6Jusygj8AALch/AMAmFJZIemHhX84ceHtDAaD\nwv3C1NzfKpfLdULe/I44R9TY16zannrV9TSMB34a1D7YceRjy6AIv3BlhWTIZDCqua9VTf0tYwGb\n1iN/ptFgVKjVMRYI8gtV2KGQkC1MobaQE95xZ9Q5qr1tJdpYt02FrfvkdDllNpqVGzlXS6LzlOFI\nndZdigDAnQwGg+aEz1RO2AztayvVmwffVWHrPhW27lOmI03nJJ2h9OAUrz/gWkXnH4/ha/LRzNDM\nia6XPUO9Ku3Yr+K2MpW0l2tPS5H2tBRJGgtOZ4akKdMx9mEzW/XXPY+rc6hLl6Sdr7nhs9z5VAAA\nAABo7H3pwqj5mhWarTcOvqNh54guT7+Q43kAALci/AMAmFJZIelaW7NBJoNJcfaTb0THySjCFqba\nnnp1DnUp2DfouLdzuVxqG+hQXe+RIZ+GviY5Xc4j7hvkE6DskAzF+I+N3Ii1RyvKL0IWk+Won9s7\n3Kfm/hY197WOfe5vVXNfq1r6W7W3rURqO/L+BhnksAaPh4FCFe73YcegMFuIfEw+x/2cGvuatalu\nm7Y07FDXULckKd4eoyUxC5UbOVf+Fv6bJWAAABElSURBVL/j/lkAcLIzGAyaEZqpGaGZKms/oDcP\nvqvi9rEwRUpQos5JOkMzQjK9NgRU3VMrX5OPwm2h7i4Fn5Ldx1/zI3I0PyJHktTa36aS9nIVt5Wp\ntH2/tjbs1NaGnZIkm9mm/pF+LYtZpDPiV7izbAAAAAD/h5/FpsvSL3R3GQAASCL8AwCYYunBKbIY\nzYqzxx4zmAHvE+4XJklq7mv5yPDPJ43sOsTH5KOEgLgjQj4x/lGy+/gfdz3+Fj/5WxKOOXauf2RA\nLf2t44Gg8WDQeFCopL1cJe3lR20T7Bv0YTDIFqawiZFiIbKarRocHdLOpj3aVLdN+zsrJI2dyFsR\nu1RLY/Lo2AAAJ0C6I0XpjhQd7KrSmwfXqKBlr/6y+1HFB8TqnKQzlBM2w6uuwBwcHVJjb5NSgpK8\n6nmdrEJtIVpqW6ilMQvlcrlU19ugkvGuQGUdBzQrNFtXZlzstUE2AAAAAAAAfH6EfwAAU8pqturO\n+bfK33z8YQ14tgjbWPinqa9FyUGJn3pkV6x/lGLs0Yq1RynE6pjUk5w2s1XxAbHHDOQMjg4dIxg0\ndru8o0JlHQeO2ibAYteQc0iDo0OSpExHmpZG5yknfJZ8CL8BwAmXFJigW3NuVE13nd6qXKNdTQV6\nuOAfivaP1NmJKzU/Ikcmo8ndZX5utT31csmlhEACpN7GYDAo1h6tWHu0ViasOGFjUwEAAAAAAODd\nCP8AAKbcsTquwHsd6vzz8v5/6ZnSlz52ZFesPVox9qiPHNnlTr4mn4mTcf/X8OiwWgfaDgsEfThS\nzFe+Whk5V4uj8xRmC3FD5QBw8okLiNFXZn1ZDb1N+nfle9rWuEuP731ar1f8W19IXKmFUfNkNnru\n2+Hq7lpJUryd8I+3I/gDAAAAAACA4+G5RzsBAIBHiLVHy27x15BzeGJk16GQT4w9SnaL53eBspgs\nivKPVJR/pLtLAQAcJso/QtfPuErnJZ+ltyvf0+b67Xqy+Hn9q+JtnZV4mpZG5027sOnxqOqukSRG\nRwIAAAAAAACQRPgHAABMMpvZql+d8mMZDIZJHdkFAMBHCbOF6Jqsy3RO0hl6t2qd1tdt0XOlL+vN\ng+/qjIQVWhazWFazr7vLPG7V3bWyGC2K9At3dykAAAAAAAAApgHCPwAAYNKZjCZ3lwAAgBzWYF2e\n8UWdnbRSa6o/0Ps1G/RS+ev6d+V7Whm/XCtil8rPYnN3mR9reHRY9b2NSgyI4/9XAAAAAAAAAJII\n/wAAAAAATjIBPnZdlHquzkw4VWtrNmht9XqtPvCW3q58X6fFLdXp8ctl95meYynrehvkdDkZ+QUA\nAAAAAABgAuEfAAAAAMBJyd/ip/OTz9IZ8cv1Qe1mvVu1Tm9WrtGa6g+0LHaxzkw4VUG+ge4u8wjV\n3bWSRPgHAAAAAAAAwATCPwAAAACAk5rVbNVZiafp1Lil2lC3Ve9Uva811R9oXe0mLY3O05kJpynU\n5nB3mZIOD//EubkSAAAAAAAAANMF4R8AAAAAACT5mHx0evwyLYtdrK31O/RW5XtaV7tJ6+u2aGHU\nfJ2deLoi/MLdWmN1d53MBpOi/SPcWgcAAAAAAACA6YPwDwAAAAAAh7EYzToldpEWR+dqe2O+3qp8\nT5vrt2tL/Q4tiJyjnLCZCrEGy2ENVqBPgIwG45TUNeocVW1vvWLsUTIbeTsPAAAAAAAAYAxHCwEA\nAAAAOAaT0aRF0QuUFzVP+c2FevPgu9remK/tjfkT9zEajHL4BslhDZbD1yGHNWgsGOQ7Fg4KsQbL\nZradkHrqexs14hxRfEDsCfl5AAAAAAAAALwD4R8AAAAAAD6G0WDU/IgczQufrdL2/arrbVD7YIfa\nB8Y+2gY6tL/joFyqOOb2VpNVIdZgBVuDFOIbLIfVMR4QCpLD6lCwb+BxdfKp7q6VJMI/AAAAAAAA\nAI5A+AcAAAAAgONgMBiUGZKmzJC0o7434hxR52CX2gY6JoJBbYcFhNoHO1TX23DsnyuDAn0CxroH\nWYPHA0JH3rZb/FXdQ/gHAAAAAAAAwNEI/wAAAAAA8DmZjWaF2kIUagv5yPv0j/SrfaBT7YNj3YIO\ndQ3qGP9zVXeNDnZVHXNbi9Esl8a6EMX4R0/SswAAAAAAAADgiQj/AAAAAAAwBWxmm2x2m2LsUcf8\nvtPlVNdQ92EBoXZ1DHSOdxBqV9tAh7JDMuRjskxx5QAAAAAAAACmM8I/AAAAAABMA0aDUcG+QQr2\nDVKyEtxdDgAAAAAAAAAPYXR3AQAAAAAAAAAAAAAAAAA+G8I/AAAAAAAAAAAAAAAAgIci/AMAAAAA\nAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAA\ngIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAA\nAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAA\nAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMA\nAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAA\nAAAAgIci/AMAAAAAAAAAAAAAAAB4KMI/AAAAAAAAAAAAAAAAgIci/AMAAAAAAAAAAAAAAAB4KIPL\n5XK5uwgAAAAAAAAAAAAAAAAAnx6dfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAA\nAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAAAAAA8FCEfwAAAAAAAAAAAAAAAAAPRfgHAAAAAAAAAAAA\nAAAA8FBmdxcAHM7pdOpnP/uZSkpK5OPjo7vvvluJiYnuLgsAPpfdu3frd7/7nZ544glVVlbqhz/8\noQwGg9LT0/Xf//3fMhrJ4gLwLMPDw/rP//xP1dbWamhoSLfddpvS0tJY3wB4vNHRUf34xz9WRUWF\nDAaDfv7zn8vX15f1DYDXaG1t1aWXXqpHH31UZrOZ9Q2A17jkkktkt9slSXFxcbr11ltZ4wB4hQcf\nfFBr1qzR8PCwrrnmGi1cuJD1DcAxsRJgWnnnnXc0NDSkZ599Vt/73vd0zz33uLskAPhcHn74Yf34\nxz/W4OCgJOnXv/617rzzTj311FNyuVx699133VwhAHx6r776qoKDg/XUU0/pkUce0S9/+UvWNwBe\n4b333pMkPfPMM7rzzjv1hz/8gfUNgNcYHh7WT3/6U1mtVkm8PwXgPQYHB+VyufTEE0/oiSee0K9/\n/WvWOABeYcuWLdq1a5eefvppPfHEE2poaGB9A/CRCP9gWtmxY4eWL18uSZo7d64KCwvdXBEAfD4J\nCQm67777Jv5cVFSkhQsXSpJWrFihjRs3uqs0APjMzjnnHH3729+WJLlcLplMJtY3AF7hzDPP1C9/\n+UtJUl1dnQIDA1nfAHiNe++9V1dffbUiIiIk8f4UgPcoLi5Wf3+/br75Zl1//fXKz89njQPgFdav\nX6+MjAzdcccduvXWW3XaaaexvgH4SIR/MK309PRMtOaUJJPJpJGRETdWBACfz9lnny2z+cMpmy6X\nSwaDQZLk7++v7u5ud5UGAJ+Zv7+/7Ha7enp69K1vfUt33nkn6xsAr2E2m/WDH/xAv/zlL3XhhRey\nvgHwCqtWrVJISMjERXcS708BeA+r1aqvfOUr+tvf/qaf//znuuuuu1jjAHiF9vZ2FRYW6n//939Z\n3wB8IsI/mFbsdrt6e3sn/ux0Oo84aQ4Anu7w2bu9vb0KDAx0YzUA8NnV19fr+uuv10UXXaQLL7yQ\n9Q2AV7n33nv11ltv6Sc/+cnE+FaJ9Q2A53rxxRe1ceNGXXfdddq3b59+8IMfqK2tbeL7rG8APFly\ncrK++MUvymAwKDk5WcHBwWptbZ34PmscAE8VHBysZcuWycfHRykpKfL19T0i7MP6BuBwhH8wrcyf\nP1/r1q2TJOXn5ysjI8PNFQHAiTVjxgxt2bJFkrRu3Trl5ua6uSIA+PRaWlp088036/vf/74uv/xy\nSaxvALzDyy+/rAcffFCSZLPZZDAYNGvWLNY3AB7vySef1D//+U898cQTys7O1r333qsVK1awvgHw\nCi+88ILuueceSVJjY6N6enp0yimnsMYB8HgLFizQBx98IJfLpcbGRvX392vJkiWsbwCOyeByuVzu\nLgI4xOl06mc/+5lKS0vlcrn0q1/9Sqmpqe4uCwA+l5qaGn33u9/Vc889p4qKCv3kJz/R8PCwUlJS\ndPfdd8tkMrm7RAD4VO6++2698cYbSklJmfjaf/3Xf+nuu+9mfQPg0fr6+vSjH/1ILS0tGhkZ0S23\n3KLU1FT23wB4leuuu04/+9nPZDQaWd8AeIWhoSH96Ec/Ul1dnQwGg+666y45HA7WOABe4Te/+Y22\nbNkil8ul73znO4qLi2N9A3BMhH8AAAAAAAAAAAAAAAAAD8XYLwAAAAAAAAAAAAAAAMBDEf4BAAAA\nAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAAAMBDEf4BAAAAAAAAAAAAAAAAPBThHwAAAAAAAAAAAAAA\nAMBDEf4BAAAAAADAlFu1apV++MMfursMAAAAAAAAj0f4BwAAAAAAAAAAAAAAAPBQZncXAAAAAAAA\ngOnroYce0htvvKHR0VEtW7ZM11xzjW6//XbFx8ersrJSMTEx+u1vf6vg4GC99957+uMf/yin06n4\n+Hj94he/UFhYmDZu3Kh77rlHLpdLMTEx+v3vfy9Jqqys1HXXXae6ujotWbJEd999t5ufLQAAAAAA\ngOeh8w8AAAAAAACOad26dSosLNQLL7ygl19+WY2NjVq9erVKS0t1ww036PXXX1dqaqruv/9+tba2\n6qc//an+/Oc/a/Xq1Zo/f75+8YtfaGhoSHfddZfuvfderV69WpmZmXrppZckSfX19brvvvv0xhtv\naN26dSorK3PzMwYAAAAAAPA8dP4BAAAAAADAMW3atEl79uzRpZdeKkkaGBiQy+VSUlKSFi1aJEm6\n+OKLddddd+mUU05RTk6O4uLiJElXXXWVHnroIZWUlCgyMlLZ2dmSpO9+97uSpFWrVik3N1fBwcGS\npISEBLW3t0/1UwQAAAAAAPB4hH8AAAAAAABwTKOjo7rhhht00003SZK6urrU0NCg73znOxP3cblc\nMplMcjqdR2zrcrk0MjIii8VyxNe7u7vV29srSTKbPzw0ZTAY5HK5JuupAAAAAAAAeC3GfgEAAAAA\nAOCYFi9erFdeeUW9vb0aGRnRHXfcocLCQlVUVGjfvn2SpBdffFErVqzQnDlztHv3btXU1EiSnn32\nWS1atEjJyclqa2tTeXm5JOmRRx7R008/7bbnBAAAAAAA4G3o/AMAAAAAAIBjWrlypYqLi3XllVdq\ndHRUy5cvV15enoKCgvSnP/1JVVVVyszM1N133y0/Pz/94he/0De+8Q0NDw8rJiZG//M//yNfX1/9\n9re/1X/8x39oeHhYCQkJ+s1vfqO33nrL3U8PAAAAAADAKxhc9FMGAAAAAADAcaqpqdH111+vNWvW\nuLsUAAAAAAAAiLFfAAAAAAAAAAAAAAAAgMei8w8AAAAAAAAAAAAAAADgoej8AwAAAAAAAAAAAAAA\nAHgowj8AAAAAAAAAAAAAAACAhyL8AwAAAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAhyL8AwAA\nAAAAAAAAAAAAAHgowj8AAAAAAAAAAAAAAACAh/r/siyjDnpideMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "epoch = len(history.history['loss']) # get epoch length from any of the columns\n", + "for k in list(history.history.keys()):\n", + " if 'val' not in k:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(history.history[k]) # this is for train\n", + " plt.plot(history.history['val_' + k]) # this is for test\n", + " plt.title(k, fontsize=30)\n", + " plt.ylabel(k)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0035122722055874436" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(history.history['val_mean_absolute_error'])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is not small enough. The model is still not an usable model in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visually compare the delta between the prediction and actual (scaled values)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAJMCAYAAABkexbrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8leX9//HXmdl7QiaEvUEBRYaKiii4wIraClWL9Wtb\nbdVf1W9rreKotv3W1tVWK25ciAU3iuw9AgESCIHsvXdyzrl/f4REMZBFQkLyfj4efUhy7vu6Pydc\nxuad6/pcJsMwDEREREREREREpE8xd3cBIiIiIiIiIiJy5ikUEhERERERERHpgxQKiYiIiIiIiIj0\nQQqFRERERERERET6IIVCIiIiIiIiIiJ9kEIhEREREREREZE+SKGQiIiItElGRgbDhw/n6quvbvrf\nVVddxQcffHDaY99xxx0sX74cgKuvvpqysrJTXlteXs4tt9zS7md8/vnn/OQnP2nz9Vu3bmXOnDnt\nfk5P9/777/PWW291+P6MjAzGjx/fiRWJiIhId7F2dwEiIiJy9nB3d+fjjz9u+jg3N5c5c+YwatQo\nhg0b1inP+P74J1NaWsq+ffs65Vl90c6dOxk8eHB3lyEiIiI9gEIhERER6bCwsDBiYmI4duwYBw4c\n4IMPPqC6uhpvb2/eeOMN3n//fd555x1cLhf+/v78/ve/Jy4ujtzcXB544AHy8vLo378/hYWFTWMO\nHTqUzZs3ExgYyD//+U8++ugjrFYrMTExPPXUUzz44IPU1NRw9dVXs3z5co4dO8bjjz9OSUkJTqeT\nn/zkJ8yfPx+AZ599lpUrV+Lv709MTMwp38cHH3zAq6++itlsJiAggD/96U8nvF5eXs4f//hHEhMT\nMZlMTJs2jd/85jdYrVb+/ve/89VXX2Gz2QgICODJJ58kNDSUI0eOnLKuRhs2bOBPf/oTK1euBKCs\nrIyZM2eyevVqPvnkE5YtW4bNZsPNzY1HH32UQYMGnXB/QUEBDz/8MIWFheTn5xMREcHf/vY3goKC\nOHr0KA8//DBFRUWYzWbuvPNObDYb33zzDRs3bsTd3Z2ioiKKi4t5+OGHAfjHP/7R9PGePXt45pln\nqKurIz8/nylTpvDEE090fLKIiIhIj6NQSERERDps9+7dpKWlMXbsWDZv3kxycjLffPMN3t7ebNu2\njRUrVvDWW2/h4eHBhg0b+OUvf8mnn37Ko48+ytixY7nnnntITU3lmmuuaTb2119/zfLly3nvvffw\n8/PjySef5M033+TJJ59k7ty5fPzxxzgcDn71q1/x9NNPM3LkSMrLy7nhhhsYNGgQBQUFfPnll6xY\nsQJ3d3fuuuuuk76HxMRE/vznP/PRRx/Rr18/li5dyosvvsiVV17ZdM2SJUvw9/dn5cqV1NfXc+ed\nd/Kf//yHuXPn8tprr7F582bsdjv/+c9/2Lt3LxdeeOEp6xo3blzTuBdccAGVlZXs27eP0aNHs2rV\nKmbMmIG3tzdPPPEE33zzDaGhoaxYsYKdO3c2C4U++eQTxo0bx+LFizEMg8WLF/Pxxx9z66238pvf\n/Ib58+dz8803k52dzU9+8hNWrFjBxRdfzODBg7n55pv5xz/+ccq/29dff51f/epXTJ48mcrKSmbO\nnElCQgL+/v7tnSYiIiLSQykUEhERkTZrXKED4HQ6CQgI4JlnnqFfv35Awyofb29vAL799ltSU1NZ\nsGBB0/2lpaWUlJSwadMmfvvb3wIQExPD5MmTmz1r8+bNXH755fj5+QHw4IMPAg09bRodO3aMtLQ0\nHnrooRNqPHDgAEeOHOHSSy9tqmfevHm88cYbJ33O1KlTm97DokWLgIaeQo3WrVvHO++8g8lkwm63\ns2DBAl577TVuv/12hg0bxrXXXsv06dOZPn06559/PsnJyaes6/uhkMlkYv78+Xz00UeMHj2a5cuX\nc//992OxWLj88stZsGABF154IRdccAFz585tVvvChQvZsWMHr776KseOHePw4cOMHTuWkpISEhMT\nuf766wHo168fq1evbnZ/S5566inWrVvHSy+9REpKCjU1NVRVVSkUEhER6UUUComIiEib/bCn0A95\neno2/dnlcnH11Vdz//33N32cl5eHn58fJpMJwzCarrVam/9fEovFgslkavq4rKysWQNqp9OJr6/v\nCTUVFBTg4+PDM888c8IzLBbLSWv+4XNqamrIzMw84RqXy9XsY4fDgdls5s0332Tfvn1s3ryZJ554\ngsmTJ3P99defsq4fmjdvHtdccw3XX3895eXlTQHZn//8Zw4dOsSmTZv497//zQcffMCLL754wr3P\nPPMMe/fuZd68eUyePBmHw4FhGE1fz++/r5SUFPr373/C/T/8e6ivr2/6880338ywYcOYNm0as2fP\nJj4+/oRrRURE5Oyn08dERESkS1xwwQV88skn5OXlAfDOO++wcOFCAKZNm8a7774LQFZW1gmrchpN\nmTKFr776ioqKCqCh383SpUuxWq04nU4Mw2DAgAG4ubk1hS/Z2dnMmTOHhIQEpk2bxueff05ZWRku\nl+uUYdbkyZPZvHlzU53Lli3jmWeeOeGaqVOn8tZbb2EYBnV1dbz33ntMmTKFxMRE5syZQ1xcHHfc\ncQeLFi0iKSmpxbp+KCwsjLFjx/Lwww839RwqKipixowZ+Pv7s2jRIu655x6SkpKa3bthwwYWLlzI\nNddcQ1BQEJs2bcLpdOLt7c3IkSNZsWJF0/NvvPFGysvLsVgsOBwOAAICAti/fz+GYVBVVcWGDRuA\nhhVdCQkJ3HfffVx22WXk5uaSlpbWLBwTERGRs5tWComIiEiXmDZtGj/72c+49dZbMZlMeHt789xz\nz2EymfjDH/7Agw8+yOzZswkPDz/pyWUzZswgOTmZG2+8EYBBgwbx2GOP4eHhwYgRI5g9ezbvvPMO\nL7zwAo8//jgvv/wyDoeDu+++m3POOQeApKQk5s2bh6+vL8OGDaO4uLjZc4YOHcr999/P7bffDkBI\nSAhPPPEEx44da7rmd7/7HUuWLGHu3LnU19czbdo0fv7zn2O325k9ezbz5s3D09MTd3d3fve732G3\n21us64euv/567r777qaVQIGBgdx5550sWrQId3d3LBYLS5YsaXbfXXfdxdNPP80LL7yAxWJhwoQJ\npKWlAfCXv/yFP/7xj7zxxhuYTCYef/xxQkJCmD59Oo899hgAN910E+vXr+eyyy4jLCyM8ePHYxgG\nfn5+LF68mGuvvRZ/f38CAgKYMGECqampREVFtXUKiIiISA9nMrQOWERERERERESkz9H2MRERERER\nERGRPkihkIiIiIiIiIhIH6RQSERERERERESkD1IoJCIiIiIiIiLSBykUEhERERERERHpg3rMkfQO\nh5Pi4qruLkN6oYAAT80t6XSaV9JVNLekq2huSVfR3JKuorklXaWvza2QEJ9TvtZjVgpZrZbuLkF6\nKc0t6QqaV9JVNLekq2huSVfR3JKuorklXUVz6zs9JhQSEREREREREZEzR6GQiIiIiIiIiEgfpFBI\nRERERERERKQPUigkIiIiIiIiItIHKRQSEREREREREemDFAqJiIiIiIiIiPRBCoVERERERERERPog\nhUJd7A9/eJBdu3awZcsmPv54+Smv+/jj5TgcjjaNuWLFB7zyyj87q0QRERERERER6YOs3V1AX3He\neVNafP2NN17l8suvxGrVX4mIiIiIiIiIdD0lEC349NOVrF//LVVVVZSUlPDTn97OK6/8k6ioGGw2\nK/ff/7889dSjlJaWAnDPPfcTFzeIDz98j1WrVhAUFExxcXHTWKmpx7jzzl+ydOnLrF+/FqfTyTXX\nzMNqtVBUVMgjjzzEk0/+hZdeeo74+N24XC5uuOFmLr74EuLj9/Dss3/Gx8cXi8XCyJGjuvNLIyIi\nIiIiIiJnubMmFHrvm2S2J+Z16pgTh4Xyo4sHtXhNdXU1//d/z1NSUszPfrYQl8vFokW3MWTIMF54\n4e+cc84krr12PunpaTzxxB95/PGnef/9Zbz++jLMZjO33fbjE8Y7dCiRrVs38a9/LcXlcvHSS8/x\ni1/cw9Klr/DII0+wefNGsrMzefHFV6itreWOO37KxImT+ctfnmTJkqeJjo7hz39+slO/DiIiIiIi\nIiLS95w1oVB3GTduAmazmcDAIHx8fElNPUp0dCwAKSnJ7Nq1g6+//hKA8vIyMjMzGDBgIHa7HYDh\nw0eeMF5aWirDh4/EYrFgsVj45S9/fcLrKSnJJCUl8otfLAbA4XCQk5NFUVER0dExAIwePZaMjPSu\nfNsiIiIiIiIi0sudNaHQjy4e1Oqqnq6QlJQIQFFRIZWVlQQEBGIymQCIiYnlsstGcNlll1NcXMTK\nlSuIjIzm6NEUamtrsFptHDqUxGWXzW4aLyYmlhUrPsTlcuFyubjvvl/x9NN/w2QyYxgGMTGxjB9/\nLr/97f/icrlYuvRlIiIiCQkJ4dixo8TGDuDgwQP4+Pic8a+FiIiIiIiIiPQeZ00o1F2Kigq5++47\nqaio4N57f3vC1q1bbrmVp556jP/+dzlVVZXceutiAgIC+PGPF/Lzn9+Kv38AHh4eJ4w3ePBQJk8+\nnzvvvA2Xy8W1187Hbrczduw47rvvV/zjH/9k9+6d/M//3E51dRXTp1+Ep6cX99//EEuW/AEvLy88\nPT0VComIiIiIiIjIaTEZhmF0dxGN8vPLu7uEE3y/ObScvUJCfHrc3JKzn+aVdBXNLekqmlvSVTS3\npKtobklX6WtzKyTk1ItKzGewDhERERERERER6SG0fawFV1wxt7tLEBERERERERHpElopJCIiIiIi\nIiLSBykUEhERERERERHpgxQKiYiIiIiIiIj0QQqFRERERERERET6IIVCneDIkWT27NnV7vsef/wR\ntmzZ1AUViYiIiIiIiIi0TKFQJ/j22685diylu8sQERERERERkT5kU9Y2Ht/6VyrqKjt0v46kb0Fl\nZQVPPbWEiopyCgryue66HzFkyDD+/ve/4HK5CAkJ5de/vp/PPluF1WpjyJBhPPzwg7z11ge4ubnx\n4ov/ICYmllmzruCZZ54gLy+XwsICLrhgOosX/093vz0REREREREROUsZhsHqtHXkVuWxLXcXF0dN\na/cYrYZCLpeLRx55hKSkJOx2O0uWLCEmJqbZdb///e/x8/Pjvvvuo66ujgcffJD09HS8vb15+OGH\niY2NbXdx37c8eRW78/ad1hg/ND50NNcNmnPK1zMyMrjkksuYMeNiCgry+cUvFuPu7sEjjzxObOwA\nVq1aQVFREbNnzyEoKIgRI0addJy8vFxGjhzNAw/8ntraWq677gqFQiIiIiIiIiLSYVmVOeRW5QGw\nNXvnSUOhiup6QloYo9VQaPXq1dTV1fHuu++yZ88ennrqKV588cUTrlm2bBmHDh1i4sSJALz33nt4\nenry3nvvkZKSwmOPPcYrr7zSjrfWMwQGBvLee2+zdu0aPD29cDgcFBUVEhs7AIA5c64BYMOGtSe9\n3zAMAHx9fTl4cD+7du3Ay8uLurr6M/MGRERERERERKRX2pkbD4CXzZOMiiwyK7KJ8O7X9HpmQSVL\nXt/BB0+eejFMq6HQzp07mTatIW0aN24cCQkJJ7y+a9cu4uPjueGGG0hJaeirk5yczPTp0wEYOHAg\nR44caedba+66QXNaXNXTFZYte5NRo8Zw7bXz2bVrB5s3byA4OJj09DSioqJ5882lREXFYDabcbka\nAiC73U5hYQH9+vUnOfkQsbED+PTTVXh7+/D//t//kpGRzn//+1FTYCQiIiIiIiIi0h6GYbAzLx67\nxc78wVfx2oFlbMnewbzBcwGod7j413/3U1vnbHGcVkOhiooKvL29mz62WCw4HA6sVit5eXk8//zz\nPPfcc3z22WdN1wwfPpw1a9ZwySWXEB8fT25uLk6nE4vF0uKzQkJ8WivnjLriilksWbKEdeu+xsfH\nB7vdxpIlj/GnPz2O2WwmJCSEu+66g02bNvH0008zduwI7rhjMQ888GsiIiIIDg7Ex8edKVMmcu+9\n93LPPT/HbrcTExODYVTj7m7Dz8+jx73v3khfY+kKmlfSVTS3pKtobklX0dySrqK5JV3lbJ9bKUVp\nFFQXckH0uVw2YgofJq9kZ348PzvvBixmCy9/nEB6XgWzzmve/uf7Wg2FvL29qaz8rou1y+XCam24\n7fPPP6e4uJjFixeTn59PTU0NAwcOZN68eRw5coSbbrqJCRMmMHLkyFYDIYD8/PJWrzmT4uJG8uqr\n7zT7/LPP/rPpz6WltYwceQ6vvfZu0z0zZsxqds8rr7zV7HP33vu/QM97371NSIiPvsbS6TSvpKto\nbklX0dySrqK5JV1Fc0u6Sm+YW18nbwZgpN8ISopqmBAylnWZm1iXtBOjLJSP1x0hPNCTa6bEtjhO\nq6HQhAkTWLNmDVdccQV79uxhyJAhTa/dcsst3HLLLQAsX76clJQUrrvuOnbv3s3555/PQw89xL59\n+8jKyjqNtyoiIiIiIiIiItCwdWxXXjzuFndGBA4F4Lx+57AucxMbMraTuH4gFrOJO64aiZu95QU6\nrYZCl156KRs3bmTBggUYhsETTzzBypUrqaqq4oYbbjjpPTExMTz77LO89NJL+Pj48Pjjj3fgbYqI\niIiIiIiIyPcdK0unsKaYSeETsFlsAET7RBLuGUpC4QGqasL40YzhxIS3vkWu1VDIbDbz6KOPnvC5\nuLi4Ztddd911TX8ODAxk6dKlrT5cRERERERERETabldew6ljE0LHNH3OZDIR5BpEjimPqMGlXDYp\nqk1jmbukQhERERERERER6VQuw8WuvL14WD0YHvhde5+MvAr2bHMHAzz65WI2mdo0nkIhERERERER\nEZGzwNHSNEpqSxkbMhKruWHzV129k3+u3I+jxk6ERyzplenkVua1aTyFQiIiIiIiIiIiZ4GdTVvH\nxjZ97v01R8jMr+Si8RFcOvB8ALbm7GrTeAqFRERERERERER6OJfhYk/eXrxsngwLGARAfHIBX+/K\noH+wFz+6eBBjQ0bibnFjW84uXIar1TEVComIiIiIiIiI9HBHSo5SWlfOuJBRWMwWKqrrefWzRKwW\nE4vnjsDNZsFusTMhdAzFtSUcKj7S6pgKhUREREREREREerideXuB77aOvfllEmWVdVw7bSDRYd8d\nPz+537kAbM3Z2eqYCoVERERERERERHowp8vJ7ry9eNu8GOw/kG0Hc9l2MI+4CF9mTYo+4do4v1iC\n3QPZk7ePGkdNi+MqFBIRERERERER6cEOl6RQUV/J+NAxVFQ5eOOLJOxWM7dfOQKz+cTj500mE5P6\nnUOdq57d+QktjqtQSERERERERESkB9vVeOpYyBiWfpZIZY2D6y8aRFig50mvnxx+DgBbs3e0OK5C\nIRERERERERGRHsrpcrInLwFfuw856e7EHylkeEwAF02IOOU9wR6BDPIfwOGSlBbHVigkIiIiIiIi\nItJDJRYnU+moYrjfCN79Jhl3u4WfXjEMs8nU4n2Tw89tdWyFQiIiIiIiIiIiPVTj1rHUJB+qa53c\nOHMwwX4erd43IXQ0fnafFq9RKCQiIiIiIiIi0gMVVBcRn78fD5M3R5MtjIkLYuqYfm26193qzmNT\nHmrxGmtnFCkiIiIiIiIiIp3DZbhYk76BVSlfUOeqx5U1BC93G4tmD8PUyrax77OYLS2+rlBIRERE\nRERERKSHyCjP4u3ED0ktT8fb5oVXwTlkZfix6Kqh+Hu7deqzFAqJiIiIiIiIiHSzOmc9nx1bzeq0\ntbgMFxPDJhBZN5G3N6Zy7tAQJo8I6/RnKhQSEREREREREelGh4uP8Hbih+RVFxDoHsCNQ69jgHcc\nD/5rC3abmQUzB3fJcxUKiYiIiIiIiIh0k2/TN/L+4Y8xYeKiqKnMGTALd6sbH649QlllHddMHUCg\nr3uXPFuhkIiIiIiIiIhIN3AZLr5M/QYPqzt3jb2dAX7RABSUVPPFtnQCfNyYNTm6y56vI+lFRERE\nRERERLrBoeIjlNaVMyF0bFMgBPD+t0dwOF3MvzAON1vLJ4idDoVCIiIiIiIiIiLdYHvubgAmho1v\n+tyh9BK2J+YxsL9vlzSX/j6FQiIiIiIiIiIiZ1i9s549eQkEuPkT5x8LgMsweOfrwwDcOHMwZpOp\nS2tQKCQiIiIiIiIicoYlFCZS46zh3LBxmE0N8czmhBxSc8o5b0QYcRF+XV6DQiERERERERERkTOs\naetYeMPWsZo6Bx+sPYLdamb+hXFnpAaFQiIiIiIiIiIiZ1BVfRX7Cw7SzyuM/l7hAHy6JY3Sijou\nnxzdZUfQ/5BCIRERERERERGRM2h3/j4chpOJYeMxmUwUltbwxbY0/L3tzJ4cc8bqUCgkIiIiIiIi\nInIG7cjZA8C5x08d+2DtEeodx4+gt3fdEfQ/pFBIREREREREROQMKakt5XBJCnF+sQR5BJCcUcrW\nA7kM6OfDeSPDz2gtCoVERERERERERM6QHbl7MDA4N2w8hmHw7pqGI+gXnIEj6H9IoZCIiIiIiIiI\nyBmyI2c3ZpOZCaFjiE8u5EhmGROGhDA40v+M16JQSERERERERETkDMipzCW9IosRgUPxtHmyfN0R\nTCa4dvrAbqlHoZCIiIiIiIiIyBmwPWc3ABPDx7P1QC4Z+ZVMGRlORLBXt9SjUEhEREREREREpIsZ\nhsH23D3YLXaGBwxjxfoULGYTV08d0G01KRQSEREREREREeliR8vSKKwpYmzwKLbtLyS/pIYLx0UQ\n7O/RbTUpFBIRERERERER6WKNW8fGBY/hvxuPYreZmXNBbLfWpFBIRERERERERKQLOV1OduXF423z\nIjPFg9KKOi49Nwo/L3u31qVQSERERERERESkCyUWH6aivpKxQaP5fGs6Xu5WZk+O7u6yFAqJiIiI\niIiIiHSlxq1jtfnhVNY4mH1eDJ7utm6uSqGQiIiIiIiIiEiXqXHUEl+wn0C3ALbtqMPPy87McyK7\nuyxAoZCIiIiIiIiISJf5b8pn1Dnr8KoeQG29i7kXxOJms3R3WYBCIRERERERERGRLpFQcJC1GZsI\ndQ8lZU8wwX7uTB/bv7vLaqJQSERERERERESkk5XXVfDmwfexmiwElpyHw2Hm2mkDsVp6ThTTcyoR\nEREREREREekFDMPgzYPvUV5fwUX9LmHPvjoiQryYPCKsu0s7gUIhEREREREREZFOtD5zMwmFiQwL\nGEx5WgSGAXOnxGI2m7q7tBMoFBIRERERERER6SQ5lbksT16Fl9WT+XHXsWlfLoG+bpwzNKS7S2tG\noZCIiIiIiIiISCeodzl4df871Lsc3DR8PvEHK6mtdzJzQiQWc8+LYHpeRSIiIiIiIiIiZ6FVKV+Q\nUZHFlH6TGBM0km92ZWC3mpnWg04c+z6FQiIiIiIiIiIipympKJmv09YR4hHEvMFz2X24gILSGqaM\nCsfbw9bd5Z2UQiERERERERERkdNQWV/F6wffxWQy8dORN+FudeOrHekAzDw3qpurOzWFQiIiIiIi\nIiIip+HDwyspqS3lygGXEuMbRVpuOYfSSxg5IJCIYK/uLu+UFAqJiIiIiIiIiHRQcU0J23N3098r\nnMtiLgJoWiV06bmR3VlaqxQKiYiIiIiIiIh00LrMzbgMFxdFTcNsMlNaWcfWA7mEBXoyamBQd5fX\nIoVCIiIiIiIiIiIdUOesY2PmVrxtXkwMGwfA2t2ZOJwGl5wTidlk6uYKW6ZQSERERERERESkA7bn\n7KbSUcUF/Sdjs9iod7hYszsTDzcrF4wO7+7yWqVQSEREREREziq1zjrqnHXdXYaI9HGGYfBtxkbM\nJjPTI88HYHtiLqWVdUwb0w93u7WbK2xdz69QRERERET6PJfhIrkkhU1ZO9iTv5cgjyB+N+k3mHr4\n1gwR6b0OFR8hqzKHc0LH4u/mh2EYfLUjA5MJZp7TsxtMN1IoJCIiIiIiPVZxTQlbsneyJXs7BTVF\nAFhMFnIqc0kvzyTa9+z4wUtEep81GRsAuChqKgDJmaWk5pQzYUgIIf4e3VlamykUEhERERGRHsUw\nDPbkJ7ApaxsHiw5hYGA325gcfg5T+k+ivK6ClxPeIL5gv0IhEekW+VWFJBQcJMY3igF+MQB8tf3s\nOIb++xQKiYiIiIhIj7IrL57/7H8bgAG+0ZzffyITQsfiYXUHGnoK2cxW9ubvZ+7AWd1Zqoj0UWsz\nN2JgcFFkwyqhwtIadh0qICrUmyFR/t1cXdspFBIRERERkR7lWFnDb9vvGL2QMSEjm73uZrEzLHAw\n+woOkldVQKhn8JkuUUT6sBpHDZuzduBn92F86GgAvtmVgcswuPTcqLOq15lOHxMRERERkR4lsyIb\ngCEBcae8ZkzwKAD2Fuw/IzWJiDTakr2TGmcN0yKmYDVbcThdrN+bjbeHjckjQru7vHZRKCQiIiIi\nIj2GYRhkVmQT7B6I+/HtYiczOng4JkzszVcoJCJnjstwsTZjI1azlakRkwHYc7iAiup6powKx2a1\ndHOF7aNQSEREREREeoyyunIq6iuJ8O7X4nU+dm8G+sWQUppKeV1Fm8cvqC4iueTo6ZYpIn3UgcIk\n8qoLODdsHD52bwA27GtY3Th1TMvft3oihUIiIiIiItJjNG4day0UAhgTMhIDg30FB9s0tstw8dye\nf/N/u17k06NfYRjGadUqIn3PmvTjx9AfbzBdXF7LvpRCBvTzJTLEuztL6xCFQiIiIiIi0mO0KxQK\nbmhCvbcgoU1jx+fvJ7+6EBMmPjn6FcuSluMyXB0vVkT6lOzKXBKLDzPYfyCRPv2BhlVChgHTxp59\nq4RAoZCIiIiIiPQgjaFQ/zaEQqGewfT3Cudg0WFqHLUtXmsYBl+lfYsJE3ePX0ykd382ZG3l5X1v\nUOes75TaRaR3+zZjIwAXRjWsEnIZBhv2ZmG3mpk0LKw7S+swhUIiIiIiItJjZFZkY7fYCfYIbNP1\nY0JG4nA5SCw61OJ1ySVHSS1LZ0zwCAYHxHHPhJ8zNGAQ8QX7+ceef1NZX9UZ5YtIL1VeV8G27J0E\nuQcwJngln73ZAAAgAElEQVQEAIfSSsgvqeHcYaF4ulu7ucKOUSgkIiIiIiI9Qr3LQU5VHhFe4ZhN\nbftRZezxLWTxrRxNvzrtWwAuiZkBgIfVnf8Zeyvnho0jpfQYf935AkU1xR0vXkR6reKaEv62+5/U\nueq5KGpa0/en9XsbVjZOOwsbTDdSKCQiIiIiIj1CbmUeLsPVpn5CjaJ8IvB38yOh4CBOl/Ok12RX\n5pJQmMhAv1gG+sU2fd5qtrJwxAIujppGTlUef9n5AlkVOaf7NkSkF8mqyOHPO58npzKXi6KmMiNy\nCgBVNQ52JuURGuDBkCj/bq6y4xQKiYiIiIhIj9CeJtONTCYTY4JHUuWoPuVR86vT1gJwSfSMZq+Z\nTWbmDZ7LtYOupKS2lL/ueoGjpWkdqF5EepvkkqP8ddeLlNSWcu2gK5k3aG7TKqGtB3Opc7iYNqYf\nJpOpmyvtOIVCIiIiIiLSI7SnyfT3jQ1pPIWs+RayktpStufsJswzhNHBw085xiXRM1g4YgE1jlpe\nSXiTqvrqdtUgIr3LnvwE/rHn39Q6a1k4YgGXRM84IfzZsDcLkwmmjDp7t46BQiEREREREekhvlsp\nFN6u+wb7D8TD6k58/n4MwzjhtW/TN+I0nMyMnt5qn6JJ4RO4PHYmxbUlvHvoo/YVLyK9xvrMzby8\n7w3MJjN3jvkpk8InnPB6Rl4FR7PLGT0wiAAft26qsnMoFBIRERERkR4hsyKbIPcAPKwe7brPYrYw\nKmg4xbUlZFRkNX2+2lHD+swt+Ni9mRQ2oYURvjM7diYDfKPZkbuHbTm72lWHiJzdDMNgVcoXLEv6\nCC+bJ/eMv4MRQUObXdcbGkw3UigkIiIiIiLdrqyunPL6CiK8+3fo/jHHt5DF53+3hWxj1lZqnDVc\nFDkVm8XWpnEsZgsLR9yIm8XOu0krKKwu6lA9InL2+fjIZ3x27GuC3QO595y7iPGNanZNvcPF5v05\n+HjaGDsouBuq7FzW7i5ARERERERa9m36Ro6VpXPLiB+1+aj2s01mece2jjUaETgEq8nC3oL9zBl4\nGQ6XgzXpG7Bb7EyLOK/pOpfLoKCshpLyWkoqaimpqDv+z1pKymupqHYwckAAVw64kuVHP+K1A8u4\nZ8LPe+3XXUQaOF1O1mVuwt/Nj3vPvQtfu89Jr4tPLqCiup5Zk6KwWs7+7wsKhUREREREerAt2Tt4\n//DHAMyOvZgwr9BurqhrZFY2hkIdWynkbnVnaOBg9hcmUlBdSHLJUUpqS7koaiqeNk8cThebEnJY\ntekYBaU1pxzHZjWTkV+BdSeEjY/lSOkxvkxdw+WxMztUl4icHTIqsqh11nFu2PhTBkIA6/Y2bFGd\nOqZj36t6GoVCIiIiIiI9VFJRMm8lftD0cXp5Zu8NhTrYZPr7xgaPZH9hIvH5+9mcvR2zycz0flNZ\nszuTTzcfo7CsFqvFxMRhoYT4e+Dvbcff2w1/Hzf8ve34eTU0jN2UkM2nW1LJ3D0Q99HZrDzyJUHm\nKCZGD+mMtyoiPdDhkhSgoXH9qRSV1bA/pYi4/r5EBHudqdK6lEIhEREREZEeKLsyl38nvI4ZE1cM\nmMWqo1+QVpHJuYzv7tK6RGZFNnazjWCPoA6PMSp4BKak5Xxx7BsqHVVE2Ybyp9cOUlxei81q5pJz\nI5k9OabV04JmjItg6ph+bE/MY8XuesrC1/OfhLfZvOMqrpoyiNhw3w7XKCI9U/LxUGiQ/4BTXrNx\nXzYGMLUXNJhu1Goo5HK5eOSRR0hKSsJut7NkyRJiYmKaXff73/8ePz8/7rvvPurr63nggQfIzMzE\nbDbz2GOPERcX1yVvQERERESktymtLeeF+P9Q7ahh0YgbGRU8nFVHvyC9PKv1m89CDpeDnMo8onwi\nTqt3j5+bDwN8o0kpSwXg8K4gbPUNvT8unxSNn3fbj462mM2cNyKcScPn8K8dNewr387+sg3ELy1h\n9nkxXDNtQK/oJyIi4DJcJJccI8g9kAB3/1NcY7B+bzZ2m5lJw8POcIVdp9XvYqtXr6auro53332X\ne++9l6eeeqrZNcuWLePQoUNNH69duxaHw8GyZcu46667+Nvf/ta5VYuIiIiI9FK1zjpe2vsqRTXF\nzB04i4nh4/GwuhPqEUx6eSaGYXR3iZ0utyofp+E8ra1jjXyd0QAYZcFcPmYUT985hRsuHtyuQOj7\nzCYTt51zLZHe/bGGZuAfWcSnW1J5/PWdZBdWnna9ItL9sitzqXZUt7h1LCmthILSGiYOC8XDrfds\numo1FNq5cyfTpk0DYNy4cSQkJJzw+q5du4iPj+eGG25o+tyAAQNwOp24XC4qKiqwWnvPF0xERERE\npKu4DBev7n+btPIMzu83kVkxFze9FuUTQbWjmqKa4m6ssGt810/o9Bq3GobBsf1+OIvCuXPyj7j+\nokH4etlPuz6b2cpPR96IzWzFHJ3AlNEhpOaW88dXt7Nmd+8M6kT6ksPFrW8dW3+8wfS0XtJgulGr\naU1FRQXe3t5NH1ssFhwOB1arlby8PJ5//nmee+45Pvvss6ZrPD09yczMZPbs2RQXF/PSSy+1qZiQ\nkFN3+BY5HZpb0hU0r6SraG5JV9Hcaps6Zz02sxWTyXTGn/3qrvfYV3CA0WHD+OXUhVjNlqbXhoUP\nZGdePKXmIoaFNG/n0J1Od24VZRYAMDJy4GmNtTMxl+w8BxdGzuHiMaNPq6YfCgnxYWbhVD5P/pbr\n5oQxfXwsz72/hze+SCIpvZRf/mgc/q30KpL20/etBg6X84TvB3L6vj+30g+lAzA5bjQh3s3nXEV1\nPbuS8ukf7MWU8ZHd8t+HrtJqKOTt7U1l5XfLIl0uV9PKn88//5zi4mIWL15Mfn4+NTU1DBw4kKSk\nJKZOncq9995LdnY2CxcuZOXKlbi5tfxNMj+//DTfjkhzISE+mlvS6TSvpKtobklX0dxqm8Siwzy3\n52VsZiuBHoEEuQcQ5B5IkMfxf7oH0M8rDJvF1unPXpO+gc8Or6G/VzgLh95IcWHVCa8HmoMB2J+R\nzEC3QZ3+/I7qjLmVnJ8GgGe932mN9e6XSQDMGNOvS+Z7qK2hj8jetMNcGHUBj/x0Iq98cpBtB3K4\n6+mvufXK4YyJC+705/ZV+r7VsHrws6Or+SJ1DRf0n8R1g+diM2snzun6/twyDIP9uYfwd/PDVOVG\nfnXzObdmVwZ1DhfnjwyjoKDiTJd72loKV1udTRMmTGDNmjVcccUV7NmzhyFDvjuG8ZZbbuGWW24B\nYPny5aSkpHDdddfx/PPPY7M1/IfSz88Ph8OB0+k83fchIiIiItKljpWlY2DgY/ehtLaMnMrcZtfE\n+Ebx/879Zac+Nz4/gQ8Pr8TP7sOdY3+Kh9Wj2TWRPg1bFtIqMjv12T1BZkU2ge4BeNqav++2Ssst\n52BqMcNjAogJ75rVJdG+kQ3PKs8AINDXnXsXjOOr7el8uPYIf3t/LzdfOoSZ50R2yfOlb6moq2Tp\ngXc4WHQIEybWZW4mtSyD20b9mCCPgO4ur9fIrcqnvL6Cc8PGnXIF0Lq92ZhNJi4Y3XtOHWvUaih0\n6aWXsnHjRhYsWIBhGDzxxBOsXLmSqqqqE/oIfd+iRYt46KGHuOmmm6ivr+fXv/41np6enV68iIiI\niEhnKqsrA+Bno28hyqc/VfXVFNYUU1RTRGFNMWvTN5JWlkGdsx57J60WOlaWxqv738FmsfHzsT8l\n0P3kP+x527wIcPMnvayhh01v2b5QXldBWV05o4OHn9Y4X2xrWG00a1J0Z5R1UmGeIdgtdtLLvwvm\nzCYTsyZFMzwmgKff3s1/Nx5l2ph+2G3a6iMdd7Q0lZcT3qSktpRRQcNYMPQ6VqZ8wdacnfxp+7Ms\nHLmAkUHDurvMXuG7o+hP3mQ6Lbec1Jxyxg0Kxr+DDet7slZDIbPZzKOPPnrC5052vPx1113X9Gcv\nLy+effbZTihPREREROTMKa1t2Dbg59aw0sTT5oGnzYOo46t0civz2JC1lbyq/KaVO6ejoLqIl+KX\n4nA5+PmYRUT7tLzCJNongviC/ZTWleHv5nfaz+8JOqPJdFFZDdsO5tE/2IvRAwM7q7RmzCYzUd79\nSSlNpc5Zh93yXRPr6DAfLhwfwadbUtlyIJfpY3tXM1o5MwzD4NuMjSxPXoVhGFw18HIujbkQs8nM\nT4b/iDi/WN47/DEvxP+Hy2NncuWASzGbTn1+lGEYZOZX4u1p65WBRmc4fDwUGnyKJtMb9jZ8j5o6\npvetEoI2hEIiIiIiIn1FWV05Jkx427xO+nq4V0NPmZzK3NMOharqq3gh/j+U11dww5BrGNWGlTJR\nx0Oh9PLMXhMKZVQ0nOgT4d3xH7hW78jA6TKYNTGqy1dQRftEcqT0GBkVWQz0iz3htZnnRPLFtjS+\n2JbG1DH9MPeS1VxyZtQ4angr8QN25e3Fx+bNT0fexNDA7/qHmUwmLoiYTJRvBC/ve5PPj33NsdI0\nFo28ER+7d7PxyqvqeP3zJHYeygcgxN+dwZH+DIr0Y3CkP/2CPPv8HDUMg+SSo3jbvAjzDG32er3D\nxeb9Ofh62hgTF9QNFXY9hUIiIiIiIseV1Zbha/c+5W/e+zWGQlV5p/WcepeDf+17ndyqPGZGT2d6\n5JQ23RflEwFAenkmo4NHnFYNPUVWRQ4AEV7hHbq/utbB2vhMfL3snDeyY2O0R+PfQVpZZrNQKMDH\njUnDw9i8P4eElEI1nZY2y6rI4eWEN8itymegXyy3jbr5lMFvtE8kD0z8Fa8ffJd9BQd5avuz3Dbq\n5hPmY3xyAa9+lkhZZR1xEb54udtIzihlU0IOmxIa/p3zcrcSF+HH6IFBzBjXH6vl1CuOeqvCmiJK\naksZFzL6pIHy7sP5VNY4uHxSdK/9+igUEhERERGh4TfGZXXlhHk1/21xo/Djr2VXdjwUMgyDtw5+\nwOGSFMaFjOaauCvafO93oVBWh5/f02RUZGEz2wjx7FiAsi4+i+paJ7Mnx2Czdv0PbT9sNv1DsyZF\nsXl/Dl9sS1coJG1SVlfO33f/i/L6Ci6OmsY1cVdgaeX4eU+bJ4tHL2R16lr+m/I5z+95hT+e/wBW\n3Fj2dTLr4rOwWkxcf1EcsyZGYzabcBkG2QWVHM4o5XBGKcmZJew9UsjeI4Vs2JvNbXOGExnSfMVR\nb3a45CgAg06xdWx9L986BgqFREREREQAqHHWUueqx9d+6pOr/Oy+uFvcT3oqWVt9cvQrtufuYoBv\nNAtHLGixH0iz57v54mv3OaHR8dnM6XKSU5lHpHf/dn0dGjmcLr7akY7dZubC8RFdUGFzJ2s2/X3R\nYT4MjwngYGoxabnlRId1zUlo0jsYhsGbB9+nvL6Ca+Ku4NKYC9t8r9lk5rLYi7CYLSxPXsWHB77i\nwJZQ8ktqiAzx5mdzRxAV6v29601EhHgTEeLd9O9LcXkty9ceYWNCDn98dTtXTR3AFedFYzH3zlUx\nP5Tc1E+oeZPpwtIaDhwtIi7Cl/7BJ99S3Bv0jb9pEREREZFWlNU2nDzm10IoZDKZCPcKJa+6AKfL\n2e5nbM7ewWfHVhPsHsgdYxZ16ASzKJ8IimtLqKirbPe9PU1uVT5Ow9nhfkI7kvIoKqtl2uj+eHt0\nzmlwrWlsNp1dmUuds+6k18yaFAXAF9vSz0hNcvZan7mZ/YWJDAsYzMzo6R0a4/zwSdhwZ2veNgrK\ny5l9XjS/X3juCYHQqQT4uHHbnBHcPX8M3p42PlqXwpLXd5KRX9GhWs42ycUpeFg96O/dfOvpxn3Z\nGMC0Mb27abxCIRERERERGrZwAC2uFIKGLWQuw0V+dUG7xk8sOszbiR/gZfXkf8bddtLGsG3RtIWs\n4uxfLXQ6TaYNw+CLremYTHDpxJZPbets0T6RGBhkHD857YdGDQyiX5An2w7mUlxee0Zrk7NHdmUu\ny5NX4WX15CcjftSh1XL1Dif/eP8AVenRmKwOLry0nusvHNTurZRjBwWz5PbJTBkVTmpOOY8u3c6q\nTcdwulztrulsUVxTQkFNEXF+sc2+9i7DYMO+bNxsFiYOO/WW4t5AoZCIiIiICFDaGAq5+bZ4XVOz\n6Xb2Ffr4yKcALB6zkDDPkA5U2OD7zabPdk1NpjsQCiWmlZCaW86EISGEBnh2dmkt+q7Z9Mn7CplN\nJi6bGIXTZfD1zpNfI31bvcvB0v3vUO9ycNPw+R06TdDlMvjXfw+QlF7CCO/xeFo92Fe2gxpHTYdq\n8nK3cfucEfxq/hi8PGwsX5fC46/vJLeoqkPj9XTJx/sJDQ5ovnUsMbWYgtIaJg4LxcOtd3fdUSgk\nIiIiIkLbto8BhHu2v9l0vbOejIpsYnwiT9nQtK2ivHtPKPTdSqH2nxr2xbY0AC6fFN2pNbVFa82m\nAaaMCsfH08a3uzOpqXOcqdLkLLEq5QsyKrKY0m8i40JGtft+wzB4a/Uhdh7KZ1i0P3ddPZ6Lo6ZR\n6ahifeaW06pt3PdWDR3LKecv7+6horr+tMbsiRr7CZ3se/KG4w2mp43tvQ2mGykUEhEREREByuoa\nemj4urW2fazxWPq2N5vOqszBZbiawoTTEejuj5fVs8eHQlkVOaxOW9ti76OsimwC3PzxtLVvpU9m\nQSV7jxQyKNKPuIj2r7A4Xa01mwawWS1cPCGSqloHG/flnMHqpKdLKkrm67R1hHgEMW/wVR0a45PN\nqazZlUlkiDe/uG4MNquZGZEX4G5x5+u0dafsd9VWjauG5k6JpaC0hhc+2ofD2bu2kiWXHMVusTcF\n7Y0qa+rZkZRPeKAng7rh+8uZplBIRERERAQorWtYKeRrb3n7WKC7PzazrV3bx1KPbzOK8jn9UMhk\nMhHlE0F+dSHVjurTHq+z5VXl8+r+t3li2//xUfInPLb1z+zI2Y1hGCdcV15XQWldeYe2jn15fJXQ\nrIlnfpUQtK3ZNMBF4yOwWsx8uT0Nl8s45XXSd1TWV/H6wXcxmUwsGnkj7la3do+xYW82y9elEOTr\nxq9/NBZP94btTZ42Dy6MnEJ5fQUbsrZ2Sr1XTxvAhCEhJKaV8M7XhztlzJ6gtKaMnKo84vxisZgt\nJ7y2ZX8uDqeLaWP6YTKZuqnCM0ehkIiIiIgIUFbbtkbTZpOZcM8QcqvycBlt+815+vFtRtE+nXNs\nemNPm4zyrFavzSjPYnXa2g6dltYehdVFvHnwfR7b+hd25O6hv3c4l0ZfSK2zjlcPvMOLe1+lqKa4\n6frM402a2xsKlVfVsXl/LqH+HowfHNyp76E9Wms2DeDrZWfKqHDyS2rYfbh9jcml9zEMg3cSP6Sk\ntpQrYi8l1rf9oebeIwUs/SwRL3crv/7ROAJ8TgyVLoqaht1iZ3XqWuqdp7/ly2wycfuc4USGeLNm\nVyZrdvfsFYptdTA/GTj11jGzycSUUe3f1no2UigkIiIiIkLD6WMeVvc2HRMf7hVGvctxQsjRkrTy\nTGxmW1M/otMV6dNwRHJrW8gMw+DNg+/xUfInrDr6Zac8+4eKqkpYlvQRf9zyDJuztxPqEcxto37M\nAxPv5ppBV/C/k37D0IBB7C9MZMnWv/BtxkZchousDoZC6/dm43C6uPicSMzm7vstfmvNphs1HU+/\nPa3La5KebUvOTnbn7yPOL5ZZsRe1+/6UrDJeWJGAxWLi7vlj6R/s1ewab7sX0yPOp7SujM3ZOzqj\nbNztVn41bzTeHjbe/uoQialt+77Xkx3Ib1j1NMj/xCbTabnlpOaWMyYuCD/v9q/iOhspFBIRERER\noWH7WGtbxxqFezU2m269r1C9s56syhwivfs126bQUU2BRCsrhZKKk0k/3sz5y9Q1xOcndMrzG32S\n8iW//OT3rM/cTIC7PwtHLOB/J/+GCaFjmo54DvEM4pfjfsaPh12PxWTh/UMf89edL5JQmAi0LxRy\nuQzW7MrAbjMzdXT3/ha/Lc2mAfoFeTEmLojkjFKOZJWeidKkByqoLuL9Qytwt7izcMSCdh8/n1NU\nxd/ej6fe4eLnV49kUOSpe91cHDUdm9nKl6lrcLg6p8l5sL8Hd13b0BD7hRUJ5Jf0vK2r7XEwPxmr\n2UqMb9QJn1/fhxpMN1IoJCIiIiJ9nsPloLK+qtWTxxqFt+NY+sYm053RT6hRiEcQbhY76RUtrxRa\nnbYWgJuHXY/NbOP1A++RV5XfKTUcKEzi02Or8XXz4eZh83l48n1MCp9w0h92TSYT5/efyO8m38eE\n0DEcLUslqTgZm9lKiEdQm5+5J7mAwrJapowMx9O99RVdXaktzaYbzZrY8IPnl9vSu7osOQ2GYfD5\nsa/ZV3Cg08f+/NjX1DrruH7IVQR5BLbr3qKyGv56/ASwn8wayvjBIS1e7+fmwwX9J1NcW8K2nF2n\nU/YJhkYH8OPLhlBRXc/fP9xLde3ZeapeVX0VaSWZDPCNxmb+7rj5gtJq1sdn4edtZ/TAtn9fOtsp\nFBIRERGRPq+8jSePNWrcBtaWUKixyXRnnDzWyGwyE+kdQW5l3ikbHWeUZ3Gw6BCD/Qcypf9Ebho2\njxpnDf/e9wa1p3kykctw8VHyJ5gw8dtpdzKl/6Q2rYLyc/PhtlE/5o7RCwlyD2BU0PB2rZ76emfD\n1/Liczrva9lRbW02DTAsJoDoUG92JOVRVFZzhiqU9kooPMjKlC94J3F5p/bgKqktZXvOLkI9g5kU\nPqFd9x7NLuOx13ZQUFrDVRfEcuG4tvUluyR6BlaThS9S13Tqe5kxLoKZEyLJzK/k5VUHcBlnXwP1\nI6XHMDCabR17Z/Vh6hwu5s+Iw2rpO1FJ33mnIiIiIiKn8N3JY20LhUI8grCYLGS34Vj6zm4y3Sja\nJwIDo6lh8w+tTlsHNPxwCDApfALTI6aQVZnD24kfNDsNrD02Z28nqzKHyeHnEBsQ1foNPzAmZCSP\nTnmQ20b9uM33ZBVUcjC1mGHR/kSGeLf7mV2hLc2moWGl1IzxERgG7Ehs+6l1cua4DBcrU74AGr4f\nHChK6rSxv03fiMNwcknUjHZtG9uZlMef3tpFWWUdC2YO5uqpzZsin0qAuz/n9TuXgupCdubFN3u9\ntLaM7Tm7eevg+7x36OM2N80HuGHmIIbHBLD7cAEfrj1y1p2sd7gkBTixyfTeIwXsPlzAkEi/PtNg\nupFCIRERERHp8xpPHvNza1tPIYvZQqhnMLmVea2GK53dZLpRY1+hk21fKqopZmfeHvp5hTEiaGjT\n5+cNnsMA32h25O5hbeamDj23xlHLqpQvsZttzI2b1bHij2vPcc9f72oI12b2gFVCjb7r7dRyXyGA\nc4aEYDLB9iSFQj3R7rx9ZFZkE+PTEHJuytreKePWOGrYkLUFH7t3m1cJGYbBZ1tSef6jBEwmE7+c\nN4bLJka1+3j0y2Iuwmwy8/mxbyivq2BP3j7eTVrBY1v+zEMbl7D0wDtsyt7O2oyNHCtreyN0q8XM\nndeMItTfg8+2pHHfCxt5/9tksgoq21Vfd0kuPorFZGagXwwAdfVO3vrqEGaTiR/PGtonjqH/PoVC\nIiIiItLnlda17Tj67wv3DKXGWUtJ7ambB3dFk+lGLYVCa9I34DJczIw+cWWC1WzltlE/xsfmzYeH\nV5JSeqzdz12dtpayunJmRs/A3+3UzW47U1WNg037cgjwcWNcNx5D/0NNzaZbOYEMGo6nHxYdwJHM\nMm0h62GcLiefHP0Ss8nMopE3EuUTQULhQUpry0577I1Z26h21HBh5FRsbTjZ0OF0sfSzRN7/9ggB\nPm48+OMJHZ7zQR6BTAqfQG5VHg9seJR/J7zBusxNFNWWMCJwKNfEXcH8wVcBsDO3+Wqilnh72Ljv\nxnFcOD6C2noXn21J43cvb2XJ6ztYsyuDypr6DtXc1WocNaRXZBIXGIvdYgfg0y2p5JfUcOnEyB6z\nCvFMsrZ+iYiIiIhI71ZW277tY3C82XT+PnKq8ghw9z/pNV3RZLpRmGcINrO1WShUVV/Fxqyt+Nl9\nmRg2rtl9Ae7+3DrqJv6++9+8vO9NHph0d5vfd0ltKavT1uJr92nalnYmbEzIprbeyZXnx2Ax95zf\na7en2TTAxGGhHEwtZkdiHpdNiu7i6qSttuXuJrcqnwv6TyLUM5gp/Sby7qEVbM3eyWUdODq+kdPl\n5Jv09dgtdqZHnNfq9ZU19Ty/fB+JaSXEhPnwq/ljCPA5vWPRZ8fO5GhpKn52X4YEDGJIQBwxvpFY\njzdYdrqcfPb/2bvv8LbP897/b0ySIMG9N8UtkqL2smVbsi0vObblOLYTx5l2mibtr02TtOlxezJ6\nmvYkHacnaeP8kjiJk3oksR3vJdmWZO3FvfcGSYAEB4j5PX9QpCRLJAEQHCLv13Xluhzi+33wQAZp\n4eZzf+6WdzlnKuf+3Lt9am+LjQjh0dvyeWhPDucbBzhS0UNVi5nmbivPHGhkQ24sxVnRpMaHkRwT\nSpA+sIVxf9SaG/AoHgrjcgAwWcZ5/Xg7kWF6Pnad9+15K4kUhYQQQgghxKpndfjWPgYXx9L3jpko\njM676jXtC5QnBJMtbClhyXSMdOH0uKan6BzuOo7d7eCOzFumP/h9VF5UDvdk38FLTa/zi8rf8mfr\nH/PqJNMrTW/h9Dh5YM3HCNbO78OqtzyKwsGzXWg1Km5Yn7woz+mtqbDp5uE2HG7H9MmDmWzMi+Pp\nt+s4JUWheanvGOJUjYm0hDAyE42kxIX6XSx0eVy80fIOWpWGOzJvAWBzwgZeaHyVoz0nuTXjJr/b\niU73nWfIPszutOsx6AyzXts9MMaPXqig1zzOhtxYHr+7KCBFlNiQGP5++zdmfFyj1lAaV8zRnpM0\nDbWSG7Vmxms/6kTPGY73nOYLJY+wtTCBrYUJWEbsHK/q5UhFD6dqTZy6kKGlAuIiQ0iJCyUlLozU\nuFAyk8KJjwyZ70v0mmm8n/+u/QNqlZrtaRtRXAq/facBl9vDQzfnEhK0Ossjq/NVCyGEEEIIcQl/\n2uQE9V0AACAASURBVMeSLoyl7xmbOWy6fQEmj10qzZhCq7WdnrFe0o2pOD0u3u/8kGBNMNenbJv1\n3lvSb6TV2s75/kp+W/t7Hs7fP2t7S8dINyd6z5AcmsiOpC2Bfikzqm4102ceZ2dxIuGG2YsuSyHd\nmErTcCudoz3TGSUzmWohq2mzMDg8QUxE8CLtcuWwO908+XIVlhH79Nf0WjXpiUayEsPJSjaSdaHY\n4E0x52j3SQYnLOxOvX76xJ9BF8KG+HWc7D1L41AzuVHZPu9TURTebf8AtUrN7tRdVzw+anNS22ah\nus1CTauZPosNgNu3pfPxm7JRL2KuzcaEdRztOclZU5nXRSG3x83LzW8yZB/mhYZXeXTtgwBEGYO4\nY3sGt29Lp71vlJZeK139Y3T1j9LZP8a5hslA5yl3bEvnvhvWLPi0rxHHKD8u+wVjrnE+VfBxsqMz\nePNIMxXNg6zNjGJLQWAz364lUhQSQgghhBCrntU+glalwaD1/rfW8SGxqFDNOpZ+MmRaG/CQ6Slp\nxsmTMx0jXaQbUznVexarY4Rb0m8kZI7XolKpeKTwEwzazJzoPUPPWC9fKP40sSHRV1yrKAovNr6K\ngsL+nH0+tZjM14HTyy9g+lKXhk3PVRSCS1rI6kzcJqeFfPb2yXYsI3ZuWp9MeqKR1h4rzd0jNHdZ\naey8mO91/bokPndHwayFIYfbwZutB9CrdVe0ie1M2srJ3rN82H3Kq6KQoigMDk8wYnOiKNA82kj3\nWC8FxiLMgyoGlSFsdhd1HUPUtFpo7xthKqI+WK+hNDuGnSVJS1KcyIvMJkwXyjlTBR/P/ZhXpwYr\nB2sZsg+jQsWJ3jNsSlhP0SWh9iqVioxEIxmJFwvtiqJgHXfS2T9Kl2mUg+e6eONEO3UdQ3zpY0XE\nLdCpIYfbyZPlv2LANshtGXvYmbyVCbuLZw7Uo1Gr+NSteasuXPpSUhQSQgghhBCrntUxglFv9OmD\ngU6jIzYkmt4ZxtJPhUxnGFMDHjI95WLYdDcexcO77R+gUWnYnXa9V/eHaIP52qav8Hz9SxzrOcU/\nn/o/fGbtQxTHFl52XdVgLXWWRgqj8yiMuXqr3EIwDdkobxpkTXI4WUnet/YtJl/CpgE25k+2kJ2u\nlaKQr4ZG7bx+vJ1wg44HdudMtvusn/wesDvdtPeN0NJt5UhFL0fKe0iOCeX2bTP/GR/qOsawY4S9\nGbuvOCWYE5lFfEgs5/vLGXd+7Ir2r+ExBy09Vlp7rLT0jNDSY2XUdjFcWV9wEk04nD8Wwbnxs5fd\nq1GryEuLpDAzirWZ0WQmGhf8pMxsNGoN6+NLONJ1nIahZgqic+e853DXMQAeXfsgT9c8zzO1f+CJ\nbV8jWDvz6TeVSkVEqJ6I0GiKMqPZVZrMb96u41hVH99+6iSfub2ArYUJAXtdAB7Fw69rnqPF2sbm\nhPXsW7MXgOfercdstXPXjgySYkID+pzXGikKCSGEEEKIVU1RFKyOkekCiy8SQxOoGKhmxDGKUX/5\n1JqFDJmekhSaiFqlpmOki8qBGvrG+9meuNmnqWB6jY5HCh9gTUQmz9e/yH+VP8VtGXvYt2YvapUa\nt8fNi42voULF/px9C/Zarub9s10owM0bl+cpIfA9bDrcIC1kM1EUhabhVo52n6RyoIZPb9hPiXHd\n9OMvHGrG7nTz4M05V+S/BOk05KZGkpsayZbCBL77q1P87v1GUuNDKc6KueK5bK4J3m57jxBtMLde\nJTRdpVKxM3krLzW9zqm+89yYupOugTFePtJCc/cwg1b7ZdfHRgRTmBFFlDGIMdUAZzETRQrr15Uw\nVWvWadSsSQ4nNzVyWYQuX2pTfClHuo5z1lQ+Z1Gof3yQGnM9ayIyL0w36+fN1gP8selNHsy/1+vn\nDAnS8tjdRazNjObpt+v4yR+rqG618PAtuQTpAvPn83LTm5wzlZMdkcUjhZ9ArVLTPTDGi+83EhMe\nzL6dmQF5nmuZFIWEEEIIIcSqNuYcx624ifAhT2hKoiGeCqrpHeu7oii0kCHTU3RqLcmhiXSN9vB2\n2/sA3Jx+g19r7UzeQpoxhZ9VPs1bbQdpsbbzuaKHKeuvpHfcxHXJW0kOSwzg7mdnd7o5XN5NuEHH\n5mWc96FWqUkNS6bFy7BpgC2Fq6OFzOlxoVGp52w3HLZbOdFzhmM9pzDZLubNHGw+SknpZFGovW+E\nD8t7SI0L5YZ1sweORxmD+Or+Ev75t2d58o9V/N1nNhMfdflJn/c6DjPmHGdf1m0zhkBvTdzEy81v\ncrT7JFm6En747HlGbU6MBh3rsmPISpo8wZaZZLws7+rnlSfABI+sv5OCaN/ziJZCTmQW4Xoj5/sr\neDDv3llPNx7pPg7ArgsT1W7PvJnzpgoOdR1lU0IpOZG+TfG6riSJNcnh/OSPVRwq66axa5g/uado\n3uPhD3cd553294k3xPL4ukfRqbUoisJv3q7D7VH4ZACLT9cyKQoJIYQQQohVbWrymDHI96LQVNh0\n77jpityRhQ6ZnpJmTKFztJsWaxvFMQXzKtykGZP5681/zm9qnqdsoIp/OvnvuBUPeo2eu7JuC+Cu\n53aiuo+xCRf7dmai0y6fMfRXk2FMpdnLsGmYnEL2m7fqObWCW8h6x0x8/9S/AxATHEV0cBQxIdHE\nBkcTExJNTHAUQ/Zhjnafotpch0fxoFNr2ZKwgR1JW3i15S0azC2MO8cJ0Ybw3MFGFODBPbmo1XO3\neWYnR/Dp2/J56vVa/u8fKvjbT2+aPl005hznQPthwnSh7E67bsY1IoKMlMQUUjZQxQ9eep9xWyif\nvaOAXeuSZmw1HbANcs5UQWpYMvlROb7/wS0RtUrNhvgSPug8Sp2lkbWX5ANdyul2cqznFGG6UDbE\nTxbsdGotnyp8gH8985/8tuZ3fGvrX6KfJbT+apJiQnni0U08/14TB8508r1fneYzt+ezszjJr9dT\nNVjH8/UvEaYL5U/XfYEw3WSL2IEzndS2D7G5MIH1ubF+rb3SSFFICCGEEEKsasMOK4B/J4UujKXv\nuUrY9EKHTE9JCL5YBNqd6t8poUsZdCE8VvIo77Z/wMvNb+JRPOzL2kuEH0UzfymKwoEznahVKnZv\nWLiTVoHia9h0uEFPQUYk1a0WBoZtxEYs3ljuxVJrbsDlcRETHM2oc4y+8f4Zr003prAjaSubE9Zj\n0E3+WTQPt9I83EatpRHVcBI1bRbWZcdQlHVlEPpMdq1Lpr1vlANnOvn5azX86X3FqFUq3ml7nwn3\nBPuz9s2agQOQayihjCoc4a18dsf97JrjlNLBjsMoKNyafuM1F168Mb6UDzqPcsZUNmNR6Fx/BWPO\ncW5Nvwmd+mI5YU1EBjelXcd7HUd4o/Vd7sm+w+fn12k1fOrWPNZmRPGL12v42as1uNwKN5TO/mf+\nUZ0j3fy88mnUKjVfWvdZ4gyT7YOna008824D4aF6vrx/HSq32+c9rkRSFBJCCCGEEKua1T55UihC\n73uQcYIhDoDej4ylnwqZTl/AkGkAl9vDiTMTEA2e0Qh+/UI/D98cRcmaKzNUfKFSqbg14ybWRGRS\nY67n5qtkriykI+U9dJhG2VwQT5QxaFGf2x9Tp8E6rN7lCgFsLoinutXC6dr+WcOQr1VT7ZNfLv0c\nSaEJ2FwTmCcsDNjMmCcsDNrMqNVqtiZsJNV45Yf+tTH5vNryNlUDtVQfHkOtUvHAbt9P3jy4J4eu\n/lHO1vfz6oet3Lgllvc7PyRCH86ulB2z3tvWO8IfXrWiFAQRktjHtqLZT5aMOsY42n2K6OCo6VM0\n15I1ERlEBkVQ1l/Fw/kutOorywWHu46hQsX1KduueOzuNbdT3l/Nu+0fsCG+hHQ/89Q25MXxzcgQ\nfvDMOX71Ri0qYJeXhSFFUfhF1W+xux18ofiR6SJtTZuFn75SRZBew18+UEp8tIH+/hG/9rfSLO9z\nmEIIIYQQQiywqfaxcD9OwgRrg4kKirxiLP1UyLS/H4q89cyBBpob1cSOlbI+aA99Zhv/9nwZ//67\nMnrN4/NePzsyk31r9vrcCuIvm93Fz16t5qk3agnSa7hr+9ynbpaDqbDpqUKINzbmxaFWqThdd+Up\ns5WgfaQTvUY/XTgN0QaTEpZEaVwRu9Ou5+N5H2N/zr6rFoRg8vSVUR9KWV8tfZZxbtyQTEqs71Oi\ntBo1X763mJjwYF460sJz5W/j9Di5I+vmWd/Xbb0j/PDZc9gmPBRHrsepODhnqpj1uQ51HcXpcbIn\nbdeCFoMXylQLmc1lo9bccMXjXaM9NA+3URidR2zIlYXnII2eTxbcj0fx8Jua3+H2+H8SJy0+jG88\nvIHQEB2/fKOWw2XdXt3Xbxugb7yf9XElbIy/mEf1oxfKURT4s/0lZCQu3qnHa4EUhYQQQgghxKo2\n1T720ZHU3koMjWfYYcXmsk1/bTFCpg+c6eS9s12kxhn5m70P8qXbdvDtz22lID2S8qZB/u5nJ3j+\nYCPjE64F20MgtfRY+c4vT3G0spesJCPf/tyWa+bD21TYdM9YHw63w6t7plrImrutDAzb5r7hGmJ3\nO+gdM5EWljxnyPRM1Co1hbH52JRRQsInuOd638KLL2U06Pmz+0vQa1WcH6hAp9axPXHzjNe39lr5\nwTPnGJ9w8fm7CvlE6W4APuw+edXrh+zDPFf3Im+2HsSgDWFH0ha/97rUNsWXAnDGVHbFY4cujKGf\nCpi+moLoXHYmbaFrtId32t+f116uKAyVz10YqrM0Tu8DoH9oslA+YXfz2N1rKcz0vv1wtZD2MSGE\nEEIIsapNt48F+d4+BpNh0zXmenrHTGRdaFVov9BGtFAh05Utg5PZGAYdf/7xkukA3akPUWfq+nnu\nYCNvnmznaGUP+2/M5vqSJK8CehebR1F460Q7Lxxqxu1RuGNbOvfdsAat5tr6/bWvYdMAWwLUQmaZ\nGEKn0U2H6S61rtFuFJR5n5QbM0UCsHad67LpXv5ITzBy3954Xh4Yxz2UzFOv1xMWosNo0GM06DBe\n+Ge7082Tf6zC5nDxxX1r2VE8mdlVEJVLraWBvjETCReyxKyOEd5ue4/DXcdxeVzEhsTwUN59BGuX\nf8vjTDLD04kKiqS8vwqn24nuwmmqCdcEp3rPEhUUSXFs4axr3Jezj6rBWt5oeZf1ccUkXgjk90da\nfBhff2g9P3z2PL98vXaydW3dzOHTdZYmAPKjsrGOO/jX584zPObg4Vty2Vro/z5WMikKCSGEEEKI\nVc3qGEGFCqPOv/HHU0HSPZcWhUY6FyxkuntgjP96qQq1WsVX7193RUixSqVic0E867JjeOtkO68d\nb+OXb9Ty9qkO9t+whg25scsmAHdo1M7PXq2mutVCRJieL+5bS9E1+pt8X8OmYbKF7OkLU8j8LQqN\nOsf4Xyf/jQxjKn+24TG/1gi0qaJo2jxOyvWaxzl3RkFfCu7QwLTYKeG9MAAT/bEcH+yb8TqVismC\nUNHFEPedyVuotTRwrOc0t2TcyLttH/BB54c4PE6igiK5M+sWtiVuuibbxi6lUqnYmLCOA+2HqDbX\nURpXDMDJ3nPY3Q5uTd895+kvgy6EB/P389OKX/Fi42t8ufTz89pTeoKRrz+0nh88c46nXq9BpZoc\nY/9RHsVDvaWRqKBIjJpIfvjsefosNu7cnsGtm9PmtYeVTIpCQgghhBBiVRt2WAnVGfz+MDf1W/Cp\nsOmFDJketTn5j9+XY7O7eOzuteSkRMx4rV6n4e7rsriuJIk/HmnhSEUPP3qhguzkcD5+Uzb56VEB\n3ZuvyhoH+PlrNYzanJRmx/C5uwrnfRpkKWVcOBXWMtzGTakzjzm/lNGgpzAjkqpWCwNDNmIjfZ9C\n9l7HEWwuG+0jnSiKsiwKftPtk/M4Kfe79xpx24OI0sbRNNyCw+1Ar5nf+6O8vxq1Ss0PPnUvbqeW\nEZuD0XEnI+NORsYdjNicjNmcrM+NY1325Zk56+KKCdUaONx1nMNdx5hw24nQh3Nf5j52Jm+5aijz\ntWpTfCkH2g9x1lROaVwxiqJwuOsYapWanclbvVqjNK6IrPB0qgbrGLCZiQ2ZX7E3PcHINx7ewA+e\nOccvXqvBoyhsX5uIVqOafs93j/Yy5hynKKGA/3qpipaeEa4rSeT+G9fM67lXupXzzhVCCCGEEMIP\nVvsoMSH+F0imxtL3jk+eZrgYMh3YPCGX28OPX6jANGRj386My04xzCY6PJjP3VnIbVvTefFQM2fq\n+/nn/z5H8ZpoPn5jNukJi5vb4/Z4eOlwC68da0OrUfOpW/PYszFlWRQz5iPBEE9kUAQ1g/W4PW6v\nC4KbC+KparVwus73FrJxp433Oz6c/GeXjVHnGEa9fyfeAumjIdO+aumxcq5hgLVZ0WQnreXdjg9o\nGGqhaIYx6d6wTAzRNtJBQVQukYbJP6OYiNnH0V9Kp9ayLWkTBzsOY9SFcdeavVyfvH3RQtgXU7ox\nldjgaMoHqnG4HXSMdNM91suG+HVE+BDIf33Kdlqs7XzYfcKvEfVX7CvByNcf2sAPnz3HU6/X8tTr\ntahVKoL0GoL1GohrhliorFAz2GpmXXYMn7m94Jr/2bLQrq1GXSGEEEIIIQLI4XYw4Z7wO2QaIFRn\nwKgPmz4pdDFkOnB5Qoqi8PRbddR1DLEpP457d/n+m+/k2FC+sr+EJx7dTEF6JJXNZr791CmefLmK\n8qZB+izjuD2egO35aobHHPzLs+d57Vgb8ZEhPPHoJm7elLoiPrSpVCqKYwoYc43TYm33+r6pKWSn\nan1vkfqg8ygT7glCdQYA+sb7fV4j0AIRMn3w7OT30IO35LP2QiGoxlw3r31VDFQDsC6uyO817l5z\nG4+VPMp3dv4Ne9J2rciCEEy1kJXicDuoHKzl8IWA6RtmCZi+mo3xpRi0IRztPonTE5jA+4xEI9/8\n5Ea2FsZTlBXNmuRwYsKD0WpU2PWTP4MHu8Ioyoziy/cUX3PZZEtBTgoJIYQQQohVa/hCyPR8ikIA\nSYYEGoaasbsdAQ+Z9igKfzzcwuHyHjISjHzxrrWo51FEWZMczjce3kBVq5nfv9/Eieo+TlRPfpjS\nqFXERASTEGUgISqE+KgQUuLCyE+LnHdIdUPnEP/1UiVDow425MbyhbsKMQSvrA/VJbFrOdJ9gsqB\nGnIivZuW5W8L2YRrgvc6DhOqNXBH5i38vuFlTOP9Xj/vQplvyPTYhJOTNSbiI0NYnxdHb78OvVpH\nzWA95Pq/r7L+KgDWxa71ew29Rs/6Cxk7K93G+NLJEO3OYzQPt5JgiCc3MtunNfQaHduTNnOw4zBl\npgo2J24IyN7S4sP4k3su//fg9rj5xuHXiQyK44mv3TGvn5GrjRSFhBBCCCHEqmV1BKYolBgaT/1Q\nE33jpoCGTA+POfjZq9VUtZiJDg/iz+4vIUg//5wilUpFcVYMazOjqWwepLV3hD6zDdPQOH1mGxXN\ng1Rccn1sRDB7NqayqzSJUB8LOYqi8M6pDn73fhMeReGBm7K5fVv6ijgd9FF5UTno1DoqBqq5N+dO\nr+/bUpjgcwvZ4a7jjLnG2Ze1dzrQeTmcFJpvyPSHFb04XR5u3JCMWq1Cp9aSF5VN5WAt5gkL0cG+\nt3qOO23UDzWRbkwhKjjSr32tNqlhScQbYqkfmpzmtStlu1/fs7tStnOw4zCHuo4HrCh0NW0jndjd\nDvKicqQg5CMpCgkhhBBCiFVr2GEF/B9HP2UqbLrzQvZGIEKma1rN/PSVaobHHKzLjuHzCxDErFap\nWJcdy7rs2Mu+Pj7hpM9io88yTm2bheNVfTz/XiMvHW5mR3EiN29MJTV+7uwam93FU6/XcLqun/BQ\nPX/ysSIKMpY24Hoh6TU6CqJzqBiooX98kDhDzNw3MTWFrI7D5d3s3Zo254dah9vBgfZDBGuCuTH1\nOjzKZNvfsigKzSNkWlEU3j/XhVaj5vpLpksVRudTOVhLzWA916Vs83ndqsFaPIqHdbGr45RPIKhU\nKjbFl/JG6wF0ah3bEjf5tU68IY6CqFxqLQ10j/aSHOZdFpqv6syNAORH5SzI+iuZFIWEEEIIIcSq\nZQ1U+9iFsOkzfWXzDpl2ezy8fKSVV4+2olar+MTuHK8KBYFkCNaRlaQjKymc7WsT+fhNORwp7+Hg\n2U4+ON/NB+e7KUiP5OZNqaxXq+notTI24WLM5mRswsX4hJMxm4tzDf30WWzkpUbwJ/cWExkWtGiv\nYamUxKylYqCGisFq9hh2eXVPWIiOrYUJHKvqpbJ58Ioi3Ud92H2SEecot2fswaCbbDcL1RowLZOi\nkL8h07VtFnrN4+woSsB4SQF0bUweNEC12b+iUNnAZOtY6TzyhFajzQnreavtPbYlbZp+n/ljV8p2\nai0NHO46zoP59wZwhxfVWRpQoSI3SiaN+UqKQkIIIYQQYtUKVPtYgmHypFCdZfK31Wl+5qlYRuw8\n+XIV9R1DxEYE86V7ishOnnns/GIJC9Fx+7Z09m5Jo6xpgANnOqlutVDbPgQvVs567+1b09l/45pV\nE/haHFsIdVAxUMOeNO+KQgC3bU3jWFUvb53smLUo5PS4eKftffQaPbsvWT/eEEfbSIdPk88CbSpk\nek1Ehl8h0++dm2w9u2nD5UXVuJBYYoKjqbM0+Pz6nB4X1YO1xIbEkHThRJ/wTmJoAv9z+zeICJrf\nz6CS2LVE6MM52XuGe7LvIFgb2OKww+2kZbiN1LAkwnShAV17NZCikBBCCCGEWLUuto/NrygUrg/D\noA1h3GUD8OukUHnTAD97tYZRm5NN+XF87o6CZRfErFar2JAbx4bcOLoHxjhU1o1LAa0KDMFaQoN1\nhAZrCQ3RYQjWEhUWRHS492O/V4KIoHDSjak0DjVjc9kI0Xp3wiI9wUhhRhQ1bRba+0ZIT7j6e/J4\nzymGHVZuSb+RMP3FD8AJhjharG0M2AZJCJ1/npU/5hMyPTRq51zDAKlxoeSkXF6EUKlUFMbkcaTr\nOK3WDrIjM71et97SiN3t4PrYohWZY7XQYkO8a4GcjUat4brkrbze+i6n+85xvY9TzObSPNyKS3GT\nJ61jfpGikBBCCCGEWLUuto/NL1NIpVKRGBpP83AbOrXWpxMJXQNjvPBBE+caBtBq1DyyN4/dG1KW\n/QfY5NhQHro5l7g4I/39I0u9nWWlOLaQ9pFOqgfr2ZRQ6vV9t21No6bNwlsnO3js7iunZLk9bt5u\nex+dWsuetBsue2yqXatvvH/JikLzCZk+VNaN26PM+N5fGz1ZFKox1/lUFJqeOiatY0vqupRtvNl2\nkMNdx7kueVtAf75NndDMj5aikD9WxxlOIYQQQgghrsLqGEGv0QeknSHxQgtZSliyV+0tg8MT/OK1\nGv7+5yc41zBATkoETzy6iT0bU5d9QUjMriS2EJhsIfNF8ZoYkmIMnKzpwzJiv+Lxk71nMU9YuC55\n2xWn2+JDLxaFloq/IdNuj4cPzncTpNewvejqQcSTU6XUVA/We72uR/FQPlBFmC6UNREZPu1JBFZk\nUAQlsWvpHO2m1doe0LXrLI2oVWqyI7ICuu5qIUUhIYQQQgixag07rETMM09oylTY9FytYyPjDp49\n0MC3fnqcIxU9JMeE8mf3l/CtRzbO2DIkri1pYSlEBkVQPViL2+P2+j61SsVtW9NxexTePdNx2WNu\nj5u32g6iVWm4Jf3GK+6dOim0lGHTHSNdfoVMlzcNYhmxs6MokZCgqzezhGiDWRORQftIJ6OOMa/W\nbbV2MOIYpSR2rV8ZRyKwdl1oGzvcdTxga9pcNtqtnWSGpwc8q2i1kO8MIYQQQgixKnkUD6OOsXm3\njk0piM4jRBtMadzVx15POFy88mELf/PkMd4+1UFEqJ4v3FXIdz6/lQ25cXI6aAVRqVQUxxQw5hqn\nxcdTETuKEgg36PjgXDcTDtf018+Yyui3DbI9aTNRwZFX3BcbEoNapV6yk0J2t4OesT7SwpJ9LsBM\nBUzv3jB7QbUwOh8FhVpLg1frlvfL1LHlJD8qh7iQGM6Yyhh1elfYm0uDpRkFhfyo7ICstxpJUUgI\nIYQQQqxKI45RFBTC5xkyPSU5LJEf3vBdCqJzr3yucQf/6+kzvHi4BY1azcM35/KPj2/nupIk1Gop\nBq1EJbGTmUCVXrSQuT1uflPzO35a/iv+2PIa2aVmJkK6efVcBRMuOx7Fw1utB1Gr1OzN2H3VNXRq\nLTHBUUtWFPI3ZNo0ZKOq2UxOSgRp8WGzXrs2Jg+AGi9byMoGKtGrdeRHXfk9KRafWqXm+pTtuDwu\njvecDsia9ZYmYLLgJPwjQdNCCCGEEGJVmp48FqD2sZmMTzj51+fK6Oof44bSZB7ckzNji4xYOfKi\nctCpdVQMVHNvzp2zXvtu+wcc6zl12deC8uC9sbO8dwhCtCHYXDa2J24mJiR6xnUSDHFUDtYy5hwn\nVGcIyOvwlr8h0x+c60Jh7lNCAKlhyYTpQqkx16Eoyqyn63rHTJjGB1gfV4xes7ym+K1m25M280rz\nWxzpOs6etF3zbuurszSiU+vIlMwov8lJISGEEEIIsSpNTR6LCFD72NXY7C7+7fky2vpGuKE0mc/c\nni8FoVVCr9FREJ1D77iJ/vHBGa/rHTPxeuu7hOuNfHv7X/ONzV/l80WfItW1GZcpjZSgTIz6UGKC\no7g98+ZZnzPesHRh0/6ETDtdHg6X9xAWomNzwdw5RGqVmsLoPIYdI3SP9c567VTr2LpYaR1bTsJ0\noWyKL6XfNjg9Ncxf1gvvg+yITHRq+bnqLykKCSGEEEKIVcnqmCwKGQPUPvZRdqeb//uHcpq6rewo\nSuDR2/IlN2iVKYmZbCGrGKy+6uMexcNva3+Hy+Piwfz7iDPEkBmezqaEUj676S6crUUozVv5n9u/\nyXd3fos4Q8ysz5ewhEUhf0KmT9eZGLU5ub4kCZ127ol9AIXRky1k1YN1s15XNlCFWqWm+MIkiH2f\n6gAAIABJREFUOLF8BCpwerp1TEbRz4sUhYQQQgghxKo0PH1SKPBFIafLw49fqKC2fYhN+XF8/q5C\nyQ5ahYpiC4CZR9Mf6jxG83AbG+LXsf4jAeVJMaGUZsfQ1GWlsWvYq+dbqglkDj9Dpt+/EDB944Zk\nr+8pvJArVG2eOVdoyD5Mq7WdnMg1i95GJ+aWGZ5OalgyFQPV8xpPX2eePGkkeULzI0UhIYQQQgix\nKk2dFAoPcFHI5fbwkz9WUtliZl12DF/6WBEatfy1ezWKDIog3ZhC41AzNpftsscGbWb+2PwGoVoD\nn8i756r337Y1HYC3Tnr3wTneEA9ceVJIURRft+6TTj9CpjtNozR0DlOUFU1ClPeFm3C9kbSwZBqH\nmvll1TMc7T7FoM182TUVA5Mns0qldWxZUqlU3Jl1K4qi8H/O/ZSqOU59zaTe0kiINtjnHCtxOWm8\nE0IIIYQQq5J1Kmg6KHCZQh6Pws9ereZcwwCFGVF85b5itBopCK1mxbFraR/ponqwnk0JpcBkkeaZ\nuhdwuB08VHjfjIXJ/PRIMhKMnK3vxzRkIz4yZNbnCteHEawJvqwodKism2cPNKDXqok0BhFtDCbS\nGERUmJ4oYzBRxiDWJIfPK+vKn5Dp9857N4b+am5Ov5HfN7zMqb5znOo7B0BMcDT5UdnkRmVzpq8M\nuDgBTiw/pXFFPFbyaZ6q+m9+Uv4UjxQ8wLakTV7fP2gzMzBhZl1s0bzDqlc7KQoJIYQQQohVadg+\nglqlDlh7iUdR+OUbtZysMZGTGsGf37/O65wUsXKVxBbyess7VAzUTBeFjveeocZcz9rofLYmbpzx\nXpVKxW1b0/jpK9W8e6qDT96aN+tzqVQqEkLj6BrpxqN4qGw286s3awnWawgJ0tJrHqe9b/SK+xKj\nDXzn81v8fr/6GjJtd7o5XtVLZJie0pzZc5KuZkviBjYnrKdnrI96SxP1lkbqh5o52nOKoxemuKWF\nJRMTEuXz2mLxlMYV89X1j/GT8l/y65rnsDpGuCX9Rq+y1+pkFH3ASFFICCGEEEKsSlbHCEZdWMB+\ny1zWMMCRih4yE438xcdLCdJLQUhAWlgKEfpwqgdrcXvcjDrH+UPDKwRp9DxcsH/OD8CbC+L53ftN\nHC7v4fZt6USHB896fYIhjjZrB+UdHTz5UitajZqvfWI92SkRKIrCuN2FZcTO0Igd84idssYBzjUM\n8M7pTu7c7t9Yb19Dpk/XmrDZ3dy8Kc3v1kqVSkVyWCLJYYnclHYdHsVD50g39UNNtAy3sSNpi1/r\nisWVE5nF1zZ+mR+X/ZyXml5n2G5lf+6+OX8u11kaAMiLyl6Mba5ocs5KCCGEEEKsOoqiYHVYiQjg\n5LHqNgsAD92ciyFYfvcqJqlUKopjCxlzjdNibef5+hexuWzcm30n0cFzn2TRatTcuT0Du9PN9359\nmpYe66zXTxVmnjp4GofTzeN3ryU7JWJ6L6HBOlLjwiheE8MNpcl84a5CwkJ0vHq0leExh8+vz5+Q\n6UNl3QDsWpfk8/PNRK1Skx6eyi3pN/JYyaMydewakhyWyNc3fYWk0ATe6zzCU1X/jdPjmvF6RVGo\ntzRh1IeRFJqwiDtdmaQoJIQQQgghVh2bawKnx0W4PnB5QvUdQ+i0arKSAremWBlKLhQofl//R873\nV5IdkcX1F8Zye2PPxhQe2pODddTBP//2LKdrTTNeG6mNBsDGEA/uyWFTfvysaxuCddy3K4sJh5sX\nDzV7vacpvoZMdw+MTQZMZ0YRN0dGklg9ooIj+drGL5MdkclZUzn/ef7n9I33M2gzX/G/hqEmrI4R\n8qNyvGo1E7OTX2EIIYQQQohVJ9CTx8YmnHSaRslPj0Snld+7isvlR+WiU+voGO1Gq9byqcKP+9S2\nqFKp2Ls1nfhoA0++XMV/vlTJfTesYd+OjMs+FLvcHg4eG4IYSE1VceuWNK/Wv2F9MgfPdnG4vJs9\nG1NIT/D++8LXkOnD5RdOCZV6P4ZerA4GnYGvrn+MX1Y/Q1l/Jd89/oNZr5fWscCQopAQQgghhFh1\nLk4eC0xRqKFjGAXIS4sMyHpiZdFrdBRE51AxUMNdWbd6nb3zUetzYvnbRzbxH78v48VDzfQOjvHZ\nOwrRadUoisKv36yjsdlFSDQYoxxen6LQqNU8eHMO//pcGc8dbOTrD633+l5fQqZdbg8fVvQSFqJj\nQ65/fwZiZdNrdHyx+BEOtB+iZ6xvxuuCtcFsil+/iDtbuaQoJIQQQgghVh2rfeqkUGBaveo7hgDI\nl6KQmME92XeSE7mG3anXz2udtPgwnvjMFn70h3KOVfXRPzTBV/eX8P75rgtB55E4g6Mw2frnXuwS\nxVkxrMuOobxpkPONA14XbXwJmT7XMMCozcneLWlyok7MSK1Sc2vGTUu9jVVDvhOFEEIIIcSyY3c7\nMI0PLNj6w1PtYwE6KVTXMYRGrWLNhUBfIT4qKTSBW9JvRKOe/1S6iFA93/zkBratTaCxa5i//8VJ\nXjrcQmxEMP/fA6UkhMZhdYxgc034tO6De3JQq1Q8d7ARl9sz5/W+hkxPBUzfIK1jQiwbUhQSQggh\nhBDLhsPt5ED7If7+6Pf57vEfTLemBNrwVPtYADKFJhwu2npHyEwyEqSTMfRicei0Gh6/ey33Xp+F\ndcyBIUjLXzxQSkSonkTDZLi0ady300JJMaHs3piCyWLjwJm5v/c6R3u8DpkeGLJR3WImJzWC5NhQ\nn/YlhFg40j4mhBBCCCGWnNPj4mj3Sd5qPcCwYwStWouCwoddJ0gv8G6qkS+s9lEgMO1jTV1WPIoi\neUJi0alUKj52fRaFmVEYDXoSow0AxF9o5eodM5ER7l3Y9JR7rs/ieFUvL3/Yys7iRIwG/YzXtlsn\nC0fehEwfLu9BAW5YJ6eEhFhO5KSQEEIIIYRYMm6Pmw+7T/CdY/+b5+tfwuaaYG/Gbv5h598SGRTB\n6b4y7G5HwJ93Kmg6XB8277XqJE9ILLHc1MjpghAwne/j60khgLAQHR+7Lgub3cVLR1pmvdbbkGmP\nR+FIRQ8hQRq2FMT7vCchxMKRk0JCCCGEEGJJnDNV8FLT6wzYBtGptexJ28XejN0YLxRqdiRt5o3W\nA5wzlbM9aXNAn3vYMYJBG4JOo5v3WvUdQ6iAnBQpConlISF0sijU50dRCGD3xhQOnuvig3Pd7NmQ\nQkrclcVTp8dFnaWRIC9CpiuaB7GM2LlpQwpBemmxFGI5kZNCQgghhBBi0ZnG+/l55W+wTAxxQ8pO\nvr3jr7k/9+7pghDAjqQtqFBxtPtkwJ9/xD5CeND8W8ecLjfN3VbSEsIwBMvvW8XyEKEPJ0ij97so\npNWoeXBPDh5F4bmDjVe95kjXcYbsw1yfsn3OkOmLAdNJfu1HCLFwpCgkhBBCCCEWXeVgLQoKn8i7\nhwfz7yUy6MqpXTEh0eRH5dA03ErvmClgz+30uBhzjRMegJDp5m4rLreH/LSoAOxMiMBQqVTEG+Lo\ntw3gUeaeInY1pdkxrM2MorLFzInqvsses7sdvNV6kGBNEHvTd8+6ztConbLGQdITwshMnH8hVggR\nWFIUEkIIIYQQi656sA6A4tjCWa/bmbwVgKM9gTstZLVPjqMPxOSx+gt5QhIyLZabBEMcTo8Ly8SQ\nX/erVCo+eUseQXoNP3+tmrp2y/Rj73ccYcQ5yu60XYTpZ58k9mFFDx5FkTH0QixTUhQSQgghhBB+\nURSFo90nGbIP+3Sf3e2gwdJEaljyVU8IXWpdXBGhOgMnes7g8rjms91pVsdkUSgQJ4WmikK5abO/\nDiEW21TOj78tZADJsaF8dX8JigL/8YcKOk2jjDttvNP+AQZtCDen75r1fkVROFzWg16rZvvaBL/3\nIYRYOFIUEkIIIYQQfukY6eK3tb/n9w2v+HRfvaURl+KmKKZgzmt1ai1bEzcy6hyjcqDG361eZnry\nWND8ikIut4fGLivJsaGEzzK2W4ilEIiiEEBRZjRf2FeIze7iX58/zysNB7C5bNyacRMh2pBZ761t\nH8I0ZGNzQTyG4PmHugshAk+KQkIIIYQQwi/9tkEAKgdqmHDZvb6vcrAWwKuiEMDOpMkWsg+9bCEb\nsJl5reWdGU8wDU+3j80v36S9bxS70y2tY2JZijdMjn6fb1EIYPvaRB7ak8PQxCiHuo8SpgvjxtTr\n5rzv8HTAtLSOCbFcSVFICCGEEEL4xTwxmTHi9DipHPTuFI+iKFQN1BKiDSEzPM2re5LDEskKT6dm\nsH7OfJQJ1wT/VfYLXm95h+8d/xcOdx2/Img3UO1jF/OEpHVMLD/xhlggMEUhgL1b08nd2A9qFxpT\nLnhmHi2vKAp17RZO1/WTGG0gN1W+R4RYrqQoJIQQQggh/GK+pEBztq/Mq3t6xvqw2IdYG52HRj3z\nh8qP2pG8BQWFYz2nZrxGURR+U/t7esdNFEbnoVLBs3Uv8O9nn6TvkullU+1jEfNsH5sqCsnkMbEc\nBWn0RAVFYgpQUcgyMUSvugadJ5Texjh+8lIlbs/lBdexCSfvnO7giZ+d4J//+xwut4e9W9JQqVQB\n2YMQIvCkKCSEEEIIIfxinjADEBUUSZW5DptrYs57qnxsHZuyKb4UvUbPsZ7TM47Yfq/jMOdM5WRH\nZPLldZ/jiW1/RWlcMU3DLfzjqX/nzdYDuDyuS04K+d8+5lEU6juGiI8MIcoY5Pc6QiykBEMcQ/Zh\nn9o7ZzL1/fPxgtspyoylrGmQX71Zh6IoNHUP8/PXqvmrH33IM+82YLLY2FoYzzcf3sCN66V1TIjl\nTLvUGxBCCCGEENcm88QQwZogdiZv4bWWd6gYqGZr4sZZ75kqCq2NyffpuYK1wWyOL+VozynqLI0U\nRudd9niDpZkXm14nXG/kC8WPoFFriAyK4PGSRzlvquD5+pd4pfktzvSVMeG2o1VrCdEG+/aCL9Fp\nGmXc7mJjXpzfawix0OINcdRaGjDZ+kk3pvq9zoBtkKM9p4g3xLIjeTOb7lX438+c40h5DzWtZgat\nk0WnuMhgblyfwvUlSYSHSvi6ENcCOSkkhBBCCCF8pigK5gkL0cFRbIwvBeDMHC1kNtcETcOtZBjT\nMOrDfH7OncmTgdNHuy8PnB62W/lF1W8B+ELxI0QEXX4CaH18CU9s+zrXJW+je6wX84SFCL1xXi0t\nF/OEJGRaLF9TE8hMY/NrIXut5R08ioe7svaiUWsICdLylw+UEh8VgmXEwaa8OL72YCnf/9IO7tye\nIQUhIa4hclJICCGEEEL4zOayMeG2Ex0cRWJoPClhSdSY6xl3jmPQGa56T525AY/iocjHU0JTMsPT\nSQxNoKy/ilHHGGH6UNweNz+r/A1Wxwj35+wjJzLrqvcadCF8suB+tiSs5/n6P5IVke7XHqZMF4XS\npSgklq+E0PmPpe8Z6+NU7zlSwpLYGL9u+uvhoXq+/bktuNwKYSEybl6Ia5WcFBJCCCGEED4bvBAy\nHR08GbK8Mb4Ut+KmbKB6xnum84RifcsTmqJSqbguaQtuxc3J3jMAvNj0Gs3DrWyMX8futF1zrpEb\nlc3/2PY1Plnwcb/2AJOnpOo7hogyBhEX4X8LmhALbeqk0HyKQq82v42Cwr6svahVl398DNZrpSAk\nxDVOikJCCCGEEMJnUyHT0cGTJ2U2XWghm2kKmaIoVA3WEqYLnVe2ydbETWhUGj7sOcXpvvO813GE\nREM8nyp4YNEmHPWax7GOO8lLi5SpSmJZiwyKQKfW+V0U6hzp5nx/BRnhaZTErg3w7oQQy8Gc7WMe\nj4dvf/vb1NXVodfr+Yd/+AcyMjKuuO7v/u7viIiI4Otf/zovvPACL774IgB2u52amho+/PBDwsP9\nn/AghBBCCCGWD/NHTgrFGWJIN6ZQa2lg1DlGmC70sus7R3sYdoywNXHjFacNfBGmD6U0roizpnJ+\nXf0cQRo9j5U8SrB28SaAXRxFL61jYnlTq9TEG2IxjffjUTw+f++dMU0Wefdm7JYCqBAr1Jw/Fd59\n910cDgfPPfccf/VXf8U//dM/XXHNs88+S319/fT/379/P08//TRPP/00RUVFPPHEE1IQEkIIIYRY\nQcwTFgBiQqKmv7YxvhSP4qGsv/KK6/0dRX81O5MmA6fdiptPFz5IYmj8vNf0hYRMi2tJgiEOh8fJ\nsN3q871Vg7Vo1dorpv0JIVaOOYtCZ86cYdeuyf7s9evXU1l5+X/kz549S1lZGQ8++OAV91ZUVNDY\n2HjVx4QQQgghxLVrqig0dVIImA6hPdtXfsX1VYO1qFAF5MNlfnQOmxPWc2/2nWyIL5n3er6q7xgi\nLERHUszVA7WFWE6mcoV6x0w+3TdkH6ZrtIfcyDUEaWSamBAr1ZztY6Ojo4SFXRwZqtFocLlcaLVa\nTCYTP/7xj/nRj37EG2+8ccW9Tz75JF/5yle83kxcnNHra4Xwhby3xEKQ95VYKPLeEgslkO8tq8uK\nTqNjTXLSdFtJHEZy6zKpszSiNypEBE+eFB+1j9FibSMvdg2ZyQkBef5vxn8pIOv4qs88zqDVzo6S\nJOLj5ST8FPm5tXyVOgt4o/UArbYWbojb5PV95U2TrWPbMkqX9N+vvLfEQpH31qQ5i0JhYWGMjY1N\n/3+Px4NWO3nbm2++icVi4fHHH6e/v5+JiQnWrFnD/v37sVqttLS0sH37dq83098/4sdLEGJ2cXFG\neW+JgJP3lVgo8t4SCyXQ7y3T6CBRQREMDIxe9vV10cU0mFt5t+Y4N6TuAOB033kURSEvPPeaf38f\nq+gBIDM+7Jp/LYEiP7eWt0RNCsGaYI62n+X2lL1eZwOdaJssCmUEZS7Zv195b4mFstreW7MVwOZs\nH9u4cSOHDh0C4Pz58+TlXTzy++ijj/LCCy/w9NNP8/jjj7Nv3z72798PwKlTp9ixY8d89y6EEEII\nIZYZu9vBqHOM6KCoKx7bMNVCZro4hSyQeUJLTfKExLVGp9ZSEluIecJC+0inV/e4PC5qzQ3EhcQQ\nf6H9TAixMs1ZFLr11lvR6/U89NBDfP/73+db3/oWr7zyCs8999ys97W0tJCa6v+4USGEEEIIsTxd\nLWR6SlRwJGsiMmkcamHYbsWjeKgerCNCbyQ1LGmxtxpwde1DhARpSIsPm/tiIZaJ9Reyt85fJQT+\napqHW5lw21dEIVcIMbs528fUajXf/e53L/tadnb2FddNnRCa8sUvfnGeWxNCCCGEEMvR1UKmL7Up\nvpTm4VbOmSrIikhn1DnGjqQt1/xIa9OQDdOQjQ25sajV1/ZrEavL2ug89God500VfGzN7XN+L1au\noNN9QojZzXlSSAghhBBCiEvNVRTaEF+CChVnTGUr6sNlVfMgAMVrYpZ4J0L4Rq/RUxRTgMk2QPdY\n75zXVw3WoVPryI1cswi7E0IsJSkKCSGEEEIIn5gnJnN1ZioKRQSFkxOZRfNwKyd7zqBWqSmIzlnM\nLS6IyhYzAMVZ0Uu8EyF8N91CZqqY9bpBm5nesT7yo3LQaXSLsTUhxBKSopAQQgghhPDJxZNCM4ct\nb4wvBWBgwkx2RCYh2pBF2dtCcbk91LRZSIgKIS7y2n4tYnUqjilAq9Zyrn/2olDVYB2wMk73CSHm\nJkUhIYQQQgjhk0GbBbVKTYQ+fMZrplrIYGV8uGzqGmbC4aY4S1rHxLUpWBtMYXQePWN99I2ZZrzu\n4rTA/MXamhBiCUlRSAghhBBC+MQ8YSEqKAKNWjPjNUZ9GPlRky1jK6EoNNU6ViStY+IatiFusoXs\n3AxTyJxuJ3WWRhJDE4gJkfe6EKuBFIWEEEIIIYTXXB4XVsfIjHlCl/pkwf08XvIZksMSF2FnC6uy\nxYxGraIgY+aWOSGWu5LYQtQqNednaCFrGGrG6XHKKSEhVhEpCgkhhBBCCK9ZJoZRULwqCsWERFMa\nV7QIu1pY1nEH7b0j5KZGEKzXLvV2hPCbQWegICqXjpEuBmzmKx6fah0rXgGn+4QQ3pGikBBCCCGE\n8Jo3IdMrTXWLGQVpHRMrw/r4YoCrnhaqGqwlWBPEmojMRd6VEGKpSFFICCGEEEJ47WJRaO6TQgvF\n6XLz4qFmDpV141GUBX++i6PoJWRaXPvWxRahQnXFaHrTeD/9tkHyo3PRquVEnBCrhXy3CyGEEEII\nrw0ucVFocHiCH71YQVvvCABHK3v57B0FJEYbFuT5FEWhqsVMuEFHWkLYgjyHEIvJqA8jN3IN9UNN\nWCaGiLpw6u/iKHrJExJiNZGTQkIIIYQQwmtLeVKops3Cd355irbeEXYWJ7IhN5b6jiH+/ucnee1Y\nKy63J+DP2WEaZXjMQVFWNGqVKuDrC7EU1sdPTiEr66+a/trFUfSSJyTEaiJFISGEEEII4bWpolDU\nImYKKYrCWyfb+Zdnz2Ozu/j03jy+cFchX91fwp/eW4whWMsfPmjmH359evoEUaBUSeuYWIFK4y60\nkF3IFbK7HTRYmkgJSyIyKGKJdyeEWEzSPiaEEEIIIbxmnhgiQm9Et0iZI3aHm6feqOFkjYmIUD1/\nel8xuakXC1KbC+IpyIji+YONHKno4Xu/Os1t29K457os9DrNvJ9/Kk9IQqbFShIZFEFWRAaNQy1Y\nHSO0WTtwKW45JSTEKiRFISGEEEII4RWP4sFiHyLDmLooz2eyjPOjFyrp7B8lJyWCL99bTJQx6Irr\nwkJ0fP6uQratTeBXb9byxvF2ztb189X9JaTE+Z8DZHe4aegcIj0hjPBQ/XxeihDLzoa4YpqHWynr\nr6JztBuQ1jEhViNpHxNCCCGEEF4ZtlvxKJ5FyRNq6hrme786TWf/KLs3pPDNT264akHoUkVZ0Xzv\nC9u4dXMafRYb3//NWeraLX7vobbdgsutSOuYWJFK4yZzhc6bKqgaqCVEG0JWePoS70oIsdikKCSE\nEEIIIbyymJPHnj3YwNiEi8/dUcCnb8tHq/Hur61Beg0P35LLF/cVYne6+ZfnznOq1uTXHi6OopfW\nMbHyxIREkWFMo9bSgMU+xNroPDTq+bdcCiGuLVIUEkIIIYQQXlmsyWMtPVaauqysy45hV2myX2vs\nLE7iLx4oRaNR85OXKnnndIfPa1S2mAnSa8hJleBdsTKtjy+e/mdpHRNidZKikBBCCCGE8Ip5YgiA\n6AWePDZVwLll8/yyi4qyovmbT24kPFTPM+828Px7jXgUxat7B4Zs9JnHKUyP8vqUkhDXmvUXWsgA\n1sbkL+FOhBBLRf4LJ4QQQgghvLIYJ4WGRu2cqjGRFGOgKHP+bVsZiUb+x6c3kRht4M0T7fz/r1Tj\ndHnmvE+mjonVIN4Qy7rYIjbFl2LU+x/KLoS4dsn0MSGEEEII4ZXFKAq9d7YLt0fhls1pqFSqgKwZ\nGxnC3356E//x+3JOVPdhHXPwlftKMATP/Ffh6TyhNVIUEivbl9Z9Zqm3IIRYQnJSSAghhBBCeMU8\nYSFUZyBYO/sUMH85XW7eP9+FIUjLzqLEgK4dFqLj6w+tZ0NuLDVtFr73q1M0dg1f9VqX20NNm5m4\nyGASogwB3YcQQgixnEhRSAghhBBCzElRFMwTQwt6SuhkjYmRcSc3rE8mSB/4KUh6nYav3FfC7dvS\nMVlsfP83Z3j+YCMOp/uy65q7rdjsbhlFL4QQYsWTopAQQgghhJjTqHMMp8e5YEUhRVF453QHKhXs\n2ZiyIM8BoFar+MTuHP76UxuJiwjhzZPtfOeXp2jqvnhqSEbRCyGEWC2kKCSEEEIIIeZ0MU9oYSaP\nNXQO0943ysa8OGIjQhbkOS6VlxbJdz6/lVs2pdIzOM4/Pn2G373fiNPlpqplEI1aRUHGwp2KEkII\nIZYDCZoWQgghhBBzGlzgkOmpMfS3bk5bkPWvJkiv4ZO35rEpP45fvF7DG8fbOd8wQO/gOLlpkYQE\nyV+VhRBCrGxyUkgIIYQQQsxp6qRQzAIUhQaGbZyt7yc9IYzc1IiArz+X/PQovvP5rezZmELP4DgK\n0jomhBBidZBffwghhBBCiDkt5Dj6g2e7UJTJU0KBGkPvq2C9lkf25rMpP54T1b3csD55SfYhhBBC\nLCYpCgkhhBBCiDktVFHI7nBz6Hw34QYdWwsTArq2PwozoiiULCEhhBCrhLSPCSGEEEKIOZknhgjS\n6DFoAxsCfbSql3G7i5s2pKDTyl9NhRBCiMUk/+UVQgghhBBzMk9YiA6OCmh7l6IovHu6A41axe4N\nCzeGXgghhBBXJ0UhIYQQQggxK5vLhs01EfDWsapWMz2D42wtjCciLCigawshhBBiblIUEkIIIYQQ\nszJPDAGBnzz27ulOAG5ZxDH0QgghhLhIikJCCCGEEGJWgzYzENiQ6aFRO+VNg2SnhJOVFB6wdYUQ\nQgjhPSkKCSGEEEKIWU2dFIoOjgzYmo2dwwBsyI0L2JpCCCGE8I0UhYQQQgghxKwWYhx9Y9dkUSgn\nJSJgawohhBDCN1IUEkIIIYQQs1qoopBGrSIz0RiwNYUQQgjhGykKCSGEEEKIWZknhtCqtRj1YQFZ\nz+F009Y7QnqCEb1OE5A1hRBCCOE7KQoJIYQQQohZDU6YiQ6KRK0KzF8dW3tHcHsUaR0TQgghlpgU\nhYQQQgghxIwcbgejzrGAto41TeUJpUpRSAghhFhKUhQSQgghhBAzWpDJYxeKQtnJMopeCCGEWEpS\nFBJCCCGEEDMKdMi0oig0dg0THR5EdHhwQNYUQgghhH+kKCSEEEIIIWYU6KJQ/5CNkXGn5AkJIf4f\ne3ceXedZ2Pv+9+55b01bs2TZli1Z8jw7cwIkEAIhARKSJgGOy9DS0pZz7j3lwO26hzaHwwn09NLb\nsw4UuG0phYYECklIIHEhA5A4ieN5tmVNtjWPW9Kep/f+ocExnvd+JW1J389aWpre/bzPtvey5Z+f\n5/cAyAGEQgAAALikc9vHrAmFpraOEQoBADDrCIUAAABwSYPRIUlWhkKjksRKIQAAcgDQPA3MAAAg\nAElEQVShEAAAAC5pIDIku2GX321NKXRzx4hcDpuWVORbMh4AAMgcoRAAAAAuyjRNdYd6VOkrl91m\nz3q8SCypzv6gllcXymHnx1AAAGYbfxsDAADgooaiAcVScVXnVVoyXmvXqExJKxazdQwAgFxAKAQA\nAICL6g71SJKq86osGY+SaQAAcguhEAAAAC6qO9QrSarOt2al0FQotMiafiIAAJAdQiEAAABc1GQo\ntMiC7WNp01Rr14gqS3wq8LmyHg8AAGSPUAgAAAAX1RXqkdPmUJm3NPuxBkKKxFJaUcMqIQAAcgWh\nEAAAAC6QNtPqCfWp0lchm5H9j4yTW8dW0CcEAEDOIBQCAADABQYjw0qkE5aVTLd0EAoBAJBrCIUA\nAABwga6Jk8es6BOSxlcKed0OVZflWTIeAADIHqEQAAAALmDlyWOj4bh6hyOqrymUzTCyHg8AAFiD\nUAgAAAAX6J5YKWTF9rEW+oQAAMhJhEIAAAC4QHeoVy6bUyUef9ZjTZZM1xMKAQCQUwiFAAAAcJ5U\nOqXeUJ+q86osOXmspXNUhiHVVXMcPQAAuYRQCAAAAOfpjwwqaaZUbUHJdDKVVlv3qBaX58vrdlgw\nOwAAYBVCIQAAAJzHypLps31BJZJp+oQAAMhBhEIAAAA4T5eFJdPNHZRMAwCQqwiFAAAAcJ7JlUKL\nLNg+NlUyvZhQCACAXEMoBAAAgPN0h3rlsXvkd2cf5DR3jqgwz6XyIo8FMwMAAFYiFAIAAMCUZDqp\nvnC/qvMqZRhGVmMNjUY1PBbTipqirMcCAADWIxQCAADAlL7wgNJmWossKJme2jpWw1H0AADkIkIh\nAAAATLG0ZLqTkmkAAHIZoRAAAACmTB1Hb0HJdEdfUJK0tLIg67EAAID1CIUAAAAw5VwolP1KoZ6h\nsEoLPXI77VmPBQAArEcoBAAAgCndwR7lOXwqdOVnNU4kllQgGFdVqc+imQEAAKsRCgEAAECSFE8l\n1B8ZVJUFJ4/1DIUlSdUlhEIAAOQqQiEAAABIknrDfTJlalG+NVvHJLFSCACAHEYoBAAAAEnWlkx3\nD7JSCACAXEcoBAAAAEnnQqFFFoRC51YK5WU9FgAAmB6EQgAAAJAkdQV7JFl08thgSG6XXf58V9Zj\nAQCA6UEoBAAAAEnjK4UKnPnKd2W3uiedNtU7HFFViS/rwmoAADB9CIUAAACgaDKmweiQqi0omR4c\njSqRTNMnBABAjiMUAgAAgHrDfZKsKZnm5DEAAOYGx5UuSKfTevTRR3Xy5Em5XC595StfUW1t7QXX\nfelLX1JRUZE+//nPS5K+853v6OWXX1YikdAjjzyiBx980PrZAwAAwBJdFpZMT548VsVKIQAActoV\nVwq9+OKLisfj+tGPfqQ///M/19e+9rULrnnyySfV1NQ09fmuXbu0f/9+PfHEE/rBD36gnp4ea2cN\nAAAAS3VbWTI9sVKompPHAADIaVdcKbR3717ddtttkqRNmzbpyJEj531/3759OnjwoB566CG1trZK\nkl577TU1NjbqT//0TxUMBvWFL3xhGqYOAAAAq0weR2/J9rHBkAxJlcXerMcCAADT54qhUDAYVH5+\n/tTndrtdyWRSDodDfX19+uY3v6lvfOMbeuGFF6auGR4eVldXl7797W+ro6NDn/3sZ7Vjxw5OnwAA\nAMhRXaEe+d1F8jmzD3K6h8IqLfLI5bRbMDMAADBdrhgK5efnKxQKTX2eTqflcIw/bMeOHRoeHtZn\nPvMZ9ff3KxqNqq6uTn6/X3V1dXK5XKqrq5Pb7dbQ0JBKS0sve6/y8oIsnw5wcby2MB14XWG68NrC\ndLnUayscjygQG9HGqtVZv/7C0YRGgnFtWVnBa3kB4fca04XXFqYLr61xVwyFtmzZoldeeUV33323\nDhw4oMbGxqnvbd++Xdu3b5ckPfXUU2ptbdX999+vV155Rd///vf1yU9+Un19fYpEIvL7/VecTH//\nWBZPBbi48vICXluwHK8rTBdeW5gul3tttY6cliSVOsuyfv21dY9KkkoKXLyWFwj+3MJ04bWF6bLQ\nXluXC8CuGArdeeed2rlzpx5++GGZpqnHHntMzz33nMLhsB566KGLPub222/X7t279cADD8g0Tf3l\nX/6l7HaWDwMAAOQiK0umuwfHV5hXc/IYAAA574qhkM1m05e//OXzvlZfX3/Bdffff/95n1MuDQAA\nMDdYWjI9cfJYFSePAQCQ8654JD0AAADmt67Q5EqhiqzH6h6cCIVYKQQAQM4jFAIAAFjgukO9KvEU\ny+PwZD1Wz1BYHpdd/nyXBTMDAADTiVAIAABgAQsmQhqNj1mydSydNtU7FFFViU+GYVgwOwAAMJ0I\nhQAAABawnlCfJGv6hAZGo0qm0qouZesYAABzAaEQAADAAjYUHZYklXlLsh6rZ+LkMfqEAACYGwiF\nAAAAFrBAbESS5HcXZT1Wz0TJdDUnjwEAMCcQCgEAACxg50Ihf9ZjdQ9x8hgAAHMJoRAAAMACFoiN\nSpL87sKsx+oZDMuQVFnizXosAAAw/QiFAAAAFrBAdEQOw658Z/ZbvrqHwiot8sjpsFswMwAAMN0I\nhQAAABawQCwgv7so6yPkw9GERkNx+oQAAJhDCIUAAADmgK5gj7pDvZaOmUqnNBoPyu/JvmSaPiEA\nAOYeQiEAAIAcl0qn9L/2f0ffPPBPMk3TsnFH42MyZVp88hihEAAAcwWhEAAAQI5rCrQomAhpOBZQ\nX2TAsnGHrTyOnpVCAADMOYRCAAAAOe5A3+Gpj08Nt1g2bsDKUIiVQgAAzDmEQgAAADksbaZ1sP+o\nnDanJKlpGkKhYgtCoe6hsLxuuwrzXFmPBQAAZgahEAAAQA5rCbRpLBHU9VVbVOgq0KlAq2W9QoHo\neChUlGUolEqn1TccVlVJXtanmAEAgJlDKAQAAJDD9vcfkSRtrlivBn+dRuNj6gv3WzL21EqhLE8f\nGxiJKpky6RMCAGCOIRQCAADIUeNbx47I5/Cq0V+vhuJ6SePF01YYjo3IZthU6CrIahz6hAAAmJsI\nhQAAAHLU6dGzCsRGtKFsrew2uxonQqFTw62WjD8SG1Ghq0A2I7sfCbsHOXkMAIC5iFAIAAAgR+3v\nHz91bFPFOklShbdMRa4CNQVasu4VSptpBWKjlh5Hz0ohAADmFkIhAACAHGSapg70HZbH7taqkkZJ\nkmEYaiiu11g8qN5wX1bjBxMhpcyURcfRh2QYUkUxoRAAAHMJoRAAAEAOOhvs1GB0WOvKVstpc0x9\nvdE/0SuU5RayyZPHrDiOvmcorPIir5wOfrQEAGAu4W9uAACAHHSgb+LUsfL15329obhOUvZl05Mn\njxW5C7MaJxRNaDScUBVbxwAAmHMIhQAAAHKMaZo60H9YLptTa0pXnve9cm+Z/O4inRrOrldo6jj6\nLFcK9VAyDQDAnEUoBAAAkGO6Q73qDfdrTekqueyu875nGIYa/HUKJkLqDvVmfI/hiVDI7/FnN9fJ\nUIiVQgAAzDmEQgAAADlm8tSxzeXrLvr9yS1kpwKZ9wpNrhTKtmh66uQxVgoBADDnEAoBAADkmAN9\nh+WwObS2bPVFv9/oXyFJahrOvFcoEBuVlH2nUPdgSJJUVZqX1TgAAGDmEQoBAADkkL5wv7pCPVpd\n0iCvw3PRa8q8JfK7i9QcaFXaTGd0n0AsoHxn3nknm2WiZygsn9uhQp8zq3EAAMDMIxQCAADIIZOn\njm36nVPH3s4wDDUW1yuYCKkn1HfN9zBNU4HoSNYl06l0Wn3DEVWV+mQYRlZjAQCAmUcoBAAAkEP2\n9x+WzbBpQ9may17X4K+XlNkWskgyong6Ib8nu1CobziiVNrk5DEAAOYoQiEAAIAcMRgZ0pmxDq0s\nXiGf8/JBS+NU2fS1h0Ln+oSyC4WOtg1JklbUZDcOAACYHYRCAAAAOeJA/+TWsYufOvZ2pZ4SFbv9\nOjV87b1Ck8fRZ7t97EDzgCRp44qyrMYBAACzg1AIAAAgRxzoPyxDhjZeRSg02SsUSobVHeq9pvsE\nYgFJ2R1HH44mdfJMQLVVBSoucGc8DgAAmD2EQgAAADkgEBtR68hprfAvV4Er/6oe01CcWa/Q5Pax\nbEKhI22DSqVNbWaVEAAAcxahEAAAQA44PHBMkrSp4tKnjv2uRv9Er9C1hkLR8e1j2YRCbB0DAGDu\nIxQCAADIAaeGWyVJa0oar/oxpd4SlXiKdSpwbb1CgdhkKFR4bZOckEqndbhlUMUFbi2tvLpVTQAA\nIPcQCgEAAMwy0zR1KtCqQleByr3XtvKm0V+vcDKizmDPVT8mEBuR1+GRx+G51qlKkpo7RhSKJrVp\nRZkMw8hoDAAAMPsIhQAAAGZZf2RAo/ExNfjrrjlkabiKo+kTybQiseTU54HYSFbH0U9uHdvUwNYx\nAADmMkIhAACAWdYcaJMkrfAvv+bHNvgvXza992Sf/su3Xtd/+vqvlUylFUvFFU5GsjqO/sCpAbmd\ndq1a6s94DAAAMPscsz0BAACAhe5UYLxPaMVEcfS1KPUWq9RTouZAm9JmWjZj/P/8RkJxPf6rJu05\n0SdJGg3FdbhlUIsWjz8u05Lp7sGQeocj2tpYLqfDntEYAAAgN7BSCAAAYJY1B9qU5/SpKq8io8c3\nFNcpkoyoM9gt0zT1xtEe/dd/eFN7TvRpRU2R/vhDayVJrx7qzvrkMbaOAQAwf7BSCAAAYBYNRoY1\nFB3WxrK1U6t8rlWjv15vdu/RwZ4mPXVgQAdbBuVy2vTIexr07i2LZbMZ+uWeDh1qGdSGbRFJmZ88\nduDUgAxJ6+tLM3o8AADIHawUAgAAmEXNk1vHiq9969ik+qJlkqQXDu/XwZZBra4t1pc/fYPu3LZE\nNtt4cfV7rluqtGnq8NlOSZmtFBoLx9XcOaL6xUUq9Lkyni8AAMgNhEIAAACzKJuS6UlnOlIy426Z\neUPaflejPv/wJlX4vedd884ti+WwG2obGO8YKvZce0n0oZZBmaa0aQVbxwAAmA8IhQAAAGZRc6BV\nHrtHi/MXZTzGoZZBpcaKZTjjWr3SfdFj7QvzXNrcUK5wOigps5VCByf7hAiFAACYFwiFAAAAZslI\nbFR9kQHV+5dl3CckScfah+WIjAc1LRMrjy7m1g3VMlxRGaZdPof3ktddTCKZ1uG2IVX4vaou9WU8\nVwAAkDsIhQAAAGbJVJ9QFlvH+gIRDYxEtaywVpLUEmi/5LVrl5XI5o7JjLsVT6av6T4nzw4rFk9p\nU0PZRVciAQCAuYdQCAAAYJZM9gk1+DMvmT7ePiRJ2rx4ubwOj5pHLr1SKK2U5IgpFfNo38n+a7rP\ngVPjW8c2snUMAIB5g1AIAABgljQH2uSyObWkoCbjMY6fHpYkrV1eqrqiZRqIDGokNnrRaye/bsY9\neu1w91XfwzRNHWgekM/tUMPia+8iAgAAuYlQCAAAYBYE4yF1hXq0vKhWDpsjozHSpqnjp4flz3ep\nqsQ3dTR9y0j7Ra8PTIRCxZ4iHT89rP5A5Kruc7YvqKHRmDbUl8ph58dHAADmC/5WBwAAmAUtI9lv\nHevsD2ksnNDq2hIZhqH6iW6iS5VNB2IBSVJjVZUkaedVrhY60MzWMQAA5iNCIQAAgFlwyoKS6ck+\noTXLiiVJtQWL5TDslwyFhmMjkqQNS2rkdtm183CP0qZ5xfscbB6Q3WZofV1JxnMFAAC5h1AIAABg\nFjQH2uQw7KotXJrxGMcm+oRW146HQk67U7WFS9QR7FYkGb3g+sBEKFSeV6zrV1VocDSqExNjXMrw\nWExt3WNqXOKXz+PMeK4AACD3EAoBAADMsEgyoo6xLtUWLpXLnlnQkkyldfJsQJUlPpUUeqa+Xu9f\nLlOm2kZOX/CYyU4hv7tIt26oliS9dujyW8gOtYxvHdvE1jEAAOYdQiEAAIAZ1hJolylTDVlsHWvr\nHlUsnpraOjbpcmXTgeiIbIZNBa58ragpUmWJT3ub+hWOJi64Np5I6Ve7z+rp345vc9vYQCgEAMB8\nQygEAAAww5onOn9WZFEyfbx9fNvXmtrzQ6G6omUyZFy0VygQG1GRq1A2wybDMHTbhmolkmntOt43\ndU08kdIvd5/VF7/9hp546ZRiybQevL1eFX5vxnMFAAC5KbPzTwEAAJCx5kCrbIZNy4tqMx7j2Olh\nGZJWLj0/FPI5vVqUX6X20TNKppNTx92n02mNxEdVW7Bk6tqb1lbpp79p0WuHunTzuir9Zn+nXth1\nRiOhuNwuuz5wU63ee90SFfhcGc8TAADkLkIhAACAGRRLxXV6rENLCmrkcbgzGyOeUkvniJZWFSjf\ne2EnUX3RMnUGu3V2rHMqeBqJjSltpuX3FE1dV1zg1vq6Uh1qGdQXvvW6xsKJqTDoruuXXnRsAAAw\nf7B9DAAAYAa1jZxW2kyrIYutY6c6AkqlzQu2jk2qn+gqan7bFrLB8Ph2s2J30XnXvnPjIklSIpnW\nPTfX6m8+e7M+8s56AiEAABYAVgoBAADMoObAeHHziixKpqeOol92iVDobWXTd058bSgSkDR+8tjb\nbWoo0xc/ulk15fkEQQAALDCEQgAAADOoOdAmQ4bqi7IIhdqH5LAbaljsv+j3iz1+lXqK1RpoV9pM\ny2bY3hYKFZ53rWEYF/QSAQCAhYHtYwAAADMkkUqobfSMavKr5XNmdppXMJLQ2d6gVtQUye20X/K6\nuqLlCiXD6g33Szq3fczvvniQBAAAFh5CIQAAgBlyeqxDyXQyq61jJ04Py5S0+hJ9QpNW+JdJOtcr\nNHiJ7WMAAGDhIhQCAACYIef6hDIvmT7XJ1Ry2esmy6ZbAu2SpKHwsAwZKnIXZHxvAAAwvxAKAQAA\nzJBTw9mXTB9vH5LHZdfy6suHO1W+CuU5fWoZGV8pNBQJKN+VJ4eNSkkAADCOUAgAAGAGJNNJtY6e\nVpWvQgWu/IzGGBqNqnc4olVLi2W3Xf7HOMMwVFe0TEPRYQ1HAxqMBC44jh4AACxshEIAAAAzoHWk\nXfFUXCtLGjIe41j7xNaxK/QJTZpckXRw4KgSqQQl0wAA4DyEQgAAADPg2GCTJGlNSWPGYxw/PSRJ\nWr3s6kKh+qJlkqS9vQclXXgcPQAAWNgIhQAAAGbA8aEmOQy7GorrM3q8aZo61j6swjyXasryruox\nSwpq5LQ51TrSLomTxwAAwPkIhQAAAKbZSGxMHcEu1fuXy213ZTRG12BYI6G4VtcWyzCMq3qMw+bQ\nssIlU58TCgEAgLcjFAIAAJhmJ4bGt46tzmbrWPvE1rGr7BOa9PaTzoo9hEIAAOAcQiEAAIBpdmzo\npCRpTenKjMc4fnq8ZHrNVfYJTaovOhcKFbFSCAAAvA2hEADMsHA0oUQyNdvTADBD0mZaJ4ZOqchV\nqEV5VRmOYarpbEDlfo/KirzX9NjlRUtlaHy7GdvHAADA2zlmewIAsFB0D4b01G9atbepX5LkddtV\n4HWpIM+pQp9LBT6XCnxONSwu0ob6slmeLQCrdIx1KZgI6caqbVfdBfS7egbDCkWTGf3Z4HF41FBc\nr7HEaMZ9RgAAYH4iFAKAaTY0GtWzO9v06qFumaZUW1mgPK9Do6GExiJxDXRFlTbN8x5zx5YaPfzu\nBjnsLOgE5rrJrWOrSzPvE2rpGpEk1ddkdqT8Z9ZvV0mpT5GRdMZzAAAA8w+hEABMk2AkoeffPK2X\n9nYokUyrutSnj7yzXpsbys5bLZA2TYWjSY2F4xoajenJl0/p5X2dOtMb1Gc/vE7FBe5ZfBYAsnVs\nsEmGDK0qach4jJbOUUlS/aLMtn95HR7lu/IU0VjGcwAAAPMPoRAAWCyWSOnFPWf1wptnFI4lVVzg\n1odvW65b1lXLZrtw64jNMJTvdSrf61R1aZ7+63/Ypu/tOKFdx3r13763W5/90FqtXHptxbIAckMk\nGVXb6GktLVysfGdexuO0dI3I7bRrcUXmYwAAAPwuQiEAsFDvcFh/9+OD6h2OKM/j0O/dvkJ3bKmR\ny2m/6jHcLrs+c+8a1VUX6kcvN+tvnjigh+5YofdsW5xxHwmA2dE03Ky0mdaaLI6iD0eT6uoPaeVS\nv+w2tpQCAADrXDEUSqfTevTRR3Xy5Em5XC595StfUW1t7QXXfelLX1JRUZE+//nPS5Luu+8+5efn\nS5IWL16sr371qxZPHQByS0vXiP7Xvx1SMJLQe7Yt1odvXS6fx5nRWIZh6M7rlmhpZb6+9bOjeuKl\nU2rrHtXvv2+V3K6rD5gAzK5jg9kfRd/WPSpTUl2GW8cAAAAu5Yqh0Isvvqh4PK4f/ehHOnDggL72\nta/pW9/61nnXPPnkk2pqatJ1110nSYrFYjJNUz/4wQ+mZ9YAkGP2n+rXd352VIlUWtvvWql3ba6x\nZNyVS4v1V5+4Tn//zGG9eaxXHf1B/eG9a7WkIt+S8QFMH9M0dXyoSV6HR7UFSzIeJ9uSaQAAgEu5\n4hrkvXv36rbbbpMkbdq0SUeOHDnv+/v27dPBgwf10EMPTX3txIkTikQi+tSnPqXt27frwIEDFk8b\nAHLHK/s79Y2nDkuG9LmPbLAsEJpUXODWFz+6RXdsqVFHf0iP/vNb+pcdJzQSilt6HwDW6osMaDA6\nrJXFDbLbMl/hl23JNAAAwKVccaVQMBic2gYmSXa7XclkUg6HQ319ffrmN7+pb3zjG3rhhRemrvF4\nPPr0pz+tBx98UO3t7frDP/xD7dixQw4HFUYA5rZ4KqHXOt/QkYPH5DI8Gh60qbU9KV9FgT7+zk1a\ntXR6VvA47DZ9/L0rtXFFmZ586ZR+c6BLu4716p6bl+nObYvldLClDMg1xwebJCmrPqG0aaq1a0QV\nfq8K81xWTQ0AAEDSVYRC+fn5CoVCU5+n0+mpcGfHjh0aHh7WZz7zGfX39ysajaqurk733HOPamtr\nZRiGli9fLr/fr/7+flVXV1/2XuXlBVk+HeDieG0hW4lUQi+3vq6njr+g4cjIed9z1UppSd9v3y21\nSwWuPN227Ab9/qYHLC+GvqO8QO/ctlQ73jytx3ec0E9+3aJXD3XrE/es0S0bFlFEPU/wZ9b80Hy8\nRZJ0a8MWleVl9nt6tndMoWhS162psuR1wWsL04XXFqYLry1MF15b464YCm3ZskWvvPKK7r77bh04\ncECNjef+t2v79u3avn27JOmpp55Sa2ur7r//fv3whz9UU1OTHn30UfX29ioYDKq8vPyKk+nvH8vi\nqQAXV15ewGsLGUulU9rVs1fPt72o4VhALptTd9S8U2eOVupw64AW19h0161lCqdHNRgd1mBkSB3B\nLj3f9LKqnFXaWrlpWuZ1fWOZ1i29Qc/ubNdLezv019/fo4bFRXrkPQ1aVkXvyFzGn1nzQyKd1NHe\nk6ryVcgMO9Ufzuz3dM+RbklSTakv69cFry1MF15bmC68tjBdFtpr63IB2BVDoTvvvFM7d+7Uww8/\nLNM09dhjj+m5555TOBw+r0fo7R544AH9xV/8hR555BEZhqHHHnuMrWMA5pS0mdbunv16vv1FDUQG\n5bQ5dMeS23RL5a36h6eb1dY9qk0rFumPPrRW7t85br4vPKDH3vpb/bjpZ1pZ3KB8V960zNHncerh\ndzfo9s01+vErzdp/akCP/WCf/uLjW7S8mmAImE0tgTbF0wmtLs1865h0rmR6RQ19QgAAwHpXTGps\nNpu+/OUvn/e1+vr6C667//77pz52uVz6+te/bsH0AGDm9Yb69E9HH1dnsFt2w6531Nysu5bdLlvS\nq//nyQPq6A/q3dct0SO3r5DNduF2rQpfme6pu0tPN/9CPzn1rD6x9pFpnW9liU+f+8gG7T3Zr79/\n+rC++fRh/eUnrlOhj/4RYLYcH5rsE8r8KHpJaukckcth0+KK6QmXAQDAwnbF08cAYCHZ13dI/3PP\n/1ZnsFs3VG3VX934BT208sMy4x597fF96ugP6vYtNfqPv7f5ooHQpNsX36ragiXa3btfRwaOz8jc\nt64s133vqNPQaEzf+dlRpdLpGbkvgAsdGzwpp82hFf66jMeIxJLq7A9pWXWh7DZ+ZAMAANbjJwwA\n0Hh30E9OPat/OvKvSsvUJ9d+VNvXPKRSb7EGAhF97fG96hkK633XL9XH72y8bCAkSXabXR9b/YBs\nhk1PnHxKkWR0Rp7H3TfVanNDmY6fHtZPf9M6I/cEcL5AbERdoR6t8NfJZXdmPE5r96hMSfU1bAcF\nAADTg1AIwIIXiI3o7/Z/W6+cfU1Vvgp9YdvntG2iILpnKKyvPr5P/YGoPnjLMj14e/1Vn/BVk1+t\nu2rvUCA2op+1vDCdT2GKzTD0B/esUWWJTzt2ndHuE30zcl8A5xwfOiVJWp3FUfSS1No50Se0iD4h\nAAAwPQiFACxoJ4ZO6atv/Z1aR05ra8VG/Zdtn1N1XqUkqaM/qK89vk/DYzE9+K56ffi2ums+8v2u\nZXeoOq9Sr3a+oVPDM7Nyx+t26M/uXy+3y67v/uK4OvuDM3JfAOOOD56UJK0pzbJPqGtUklRHyTQA\nAJgmhEIAFqS0mdaO9pf0jQP/qEgyqgcbP6RPrv2oPA63JOl0z5j+5w/3azQU18fubNT7b6zN6D5O\nm0MfW/WgDBn64YmfKJ5KWPk0LqmmLE+fvnu1YomUvvHUYYWjyRm5L7DQpc20Tgydkt9dpCpfRcbj\nmKapls4RlRV5VJRHaTwAAJgehEIAFqQXT/9Gz7X+u/zuIv2fW/5Y71p8iwzDkGmaeu1Qt772+D6F\nIgl98v2r9O6ti7O61/Kipbp9ya3qiwzo+bZfWfQMrmzbqgq9/4al6h2O6B9/fkxp05yxewML1Zmx\nDoWSYa0pabzmlYVv1zMUViia5Ch6AAAwrQiFACw48VRcL539rXwOr7543X/U8qLxVUDhaELfefao\nvvv8cdls0mc/vE63bVxkyT3vqbtLZZ4SvXjmNzo9etaSMa/G/e+s0+raYh1oHoEwM24AACAASURB\nVNAvXm+fsfsCC9WJoWZJ0uost461TmwdqycUAgAA04hQCMCC82b3XgUTIb2j5iYVuPIlSU1nA/qr\n776lt473aUVNkf7bJ6/XtlWZb/34XW67Sx9d9YBMmXr8xE+USqcsG/ty7Dab/uhDa1Va6NYzr7bp\naNvQjNwXWKgmQ9+6osy2nE5qmSiZ5uQxAAAwnQiFACwoaTOtl87+Vg6bQ+9ccotS6bSeebVVf/3D\nfRoai+mDtyzTFz+2WWV+r+X3XlmyQjdXX6/OYLd+efrXlo9/KYU+l/7kvvWSIT358im2kQHT6MxY\nh4pcBfK7s1vh09w5KpfDpsXl+RbNDAAA4EKEQgAWlAP9RzQQGdQNVVsVDzv014/v17M721VS4NYX\nP7pFH76tTnbb9P3ReN+KD6jIVagd7S+qO9Q7bff5XcurC3Xjmip19oe072T/jN0XWEhG42MKxEa0\npCC7HrJILKnOgaCWVRXIYedHNQAAMH0csz0BALBSNJ7UaCiu0VBCI6G4wrGEorGUIrGkwvGE9qV3\nSIZ05ki5/uqFtxSJpXTdqgr9/vtWyudxTvv8fE6vHl55n75z+F/0+PGf6D9v/axsxtX9o880TbWM\ntKu2YLGc9muf6723LNObx3r07M52bVlZLlsWJbgALnRmtEOStLSgJqtx2rpHZZr0CQEAgOlHKARg\nzkinTQ2ORtU7HFbfcES9QxENjEQ0Go5rNBTXSCiueCJ9ycfbCobkXj2g1FClmpqT8rkd+tTdq3XL\n+qqsTgm6VhvK12prxUbt7Tuo33S8rtuX3HpVj/t52y+1o/0lva/2Dt1b/75rvm9ViU83rKnUm0d7\ntb9pQFtXll/zGAAu7exYpyRpaWF2K4VaKJkGAAAzhFAIQE5Jp00NjUbVOxx5W/gTVu9wRP2BiFLp\nC/tw7DZDBT6nqkp8KsxzqcjnUmHe+Fuexymv2y6v26EX+n6i1qD0J7d8UCs/WCeX0zajYdDbPdj4\nIZ0YPqVnW17Q+rI1KvOWXPb617t2a0f7S5KkN3v26gN1773qFUZvd+/Ny7TraK+e29mmLY1ls/b8\ngfnozEQotCTLlUJTJdOLKJkGAADTi1AIwLQwTVOxREqhSFKhaELReErxZErxRFrxREqxxMTHyZTG\nwonx8Gc4rP5ARMnUhcFPnsehpZUFqizxqsLvVWWJT5XFPpX5Pcr3Oq+4Faor2KPW1mbVFy3ThuqG\n6XraV63Ala8HGj6ofzn2pJ448VP92aY/uGRAc3yoSU+c/KnyHD7VFi7RsaGTOjncrNUljdd83+rS\nPF2/plK7jvXqwKkBbW5ktRBgFStKpk3TVGvXqMqKPCrKd1s4OwAAgAsRCgG4JqZpKhRNqj8Q0cBI\nVAOBiPpHogqMxRSKJhSKJhWMJBSKJC66qudy8jwOLakoUGWxVxXF48FPRbFXlcU+5Xuz6/t56cxv\nJUnvWfrOrMax0nWVm7Wn94CODp7Qm917dNOi6y64pjPYrX88/K+yydBnNvy+JOnY0Ent6t6bUSgk\nja8WeutYr362s02bGlgtBFhhsmR6XenqrMbpHY4oGElo7fLLrx4EAACwAqEQgAtE48mJwCeq/pGI\nBgJRDYxE1D/xPhpPXfRxhiHleZzK8zhUXuRRnnf84zyPU26XXW6nXS6nXS6nTW7H+Mdup01ej8OS\n4OdSArER7e7dr0pfhdaVZfcPNisZhqFHVt6vr+z6un7a/HOtKV2pIve57SKB2Ii+dfCfFU1F9cm1\nH9UK/3KZpqkyb6kO9B9RJBmV1+G55vsuKsvTdasr9NbxPh1sHtSmhjIrnxawIFlVMs3WMQAAMJMI\nhYB5YnIFTyiSUDiWVDSWVCQ+fupWZOLjaDypZNJUMp1WMplWMmUqlR5/n0ylNRZOaGAkorFw4qL3\ncLvsKi/yqKzIqzK/R+Vve19c6JbX7cjJE61eOfuaUmZK71n6jox6eKZTscevD6+4W0+efFo/bnpG\nf7h+uyQpmozp24e+p+FYQB+qe7+2VW6SNB4k3Vi1VT9v+6X29x3WzRdZXXQ17r15mXYf79PPdrZp\n44pSVgsBWaJkGgAAzEWEQsAcEYunNDQW1dBoTEOjUQ2ORjU0FtPwxPuh0ZhiiYuv4LlaDruh0kKP\nllYWjIc/fq/Kijwqn3if73XOufAgkozotc5dKnQV6LqqLbM9nYu6ZdEN2tN7QAf6j2hf3yFtLFur\nfz76uM6OdeqWRdfrztp3nXf99VVb9PO2X2pXz56MQ6Ga8nxtW1Wh3Sf6dKhlUBtXsFoIyIaVJdNO\nh01LKvKtmBYAAMBlEQoB0yCdNieKlM8VKseSKcXjKcWSaSWSaZmmqbRpyjTHV/mk05r6WjCSmAp/\nxgOfqELR5CXvl+91qrLYq5JCjwp8TnndDvncDnncDnld4ydved0OuV12Oe02ORw2OeyGHLaJ9w6b\nHDabnE5bTq70ycZrnbsUTUV1V+3tctpy8488m2HTx1Y9oMfe+n/145PP6OjgCR0ZPKHVJY16qPG+\nC4K4Um+JGvx1OhVo1UBk6Ionl13Kvbcs0+4TfXp2Z5s21LNaCMiGFSXTkVhSHf1BragpksOeW6sa\nAQDA/JSb/0ICclQyldZoKK5AMK6RYEyBYGz849DE+2BcgWBMo+G4zGvrWL4kt8uukgK3llcXqqTQ\nrZICj4oL3Sop9Ki00KPiArfcTrs1N5tnkumkXjn7mtx2l26tuXG2p3NZFb5yfWD5e/VMy/N6s3uP\nFuVV6dPrPi677eK/tzdUb9OpQKt29ezVB5bfmdE9F5fna9vKcu052a/DrUPaUF+azVMAFiyrSqbb\nu0dlmmwdAwAAM4dQCPNG2jQVjiY1Fo5rLJwYfx9JyO1xamQkqkQqrVTqXH9OKmUqZZoyDMkmQ4Yx\n3tcy/n58zGAkMRH0jAc/l+rameRy2OTPd2tFTZF8bsdEkfJEsfLbSpZdDrts591v/L1t4n2ex6nS\nQo9KJnp6WMGRmd29BzQSH9UdS26Tz+md7elc0R1LbtORweMajgb0Jxs/ddkS6c3l6/Tjk09rV/de\nvX/ZuzPuSvrgLcu152S/nt3ZpvV1JbzWgAxYVTLd2j3RJ0TJNAAAmCE5Ewo98t1HZTMM2W2TbzbZ\n7OMfO2yG7HbbxLYXQw67TXabTfzbJXeZpqlUeuItZU4cTW5OfG/imrd/ovMDEpshSecCmtREkJNM\nTZYkn1+QPPm9aeGUbCWSs8KmkqmtVzY5HbaprVhOu23idWlIb3tdmpKiE29XdO6XSApNvHVb+1QW\nmjNjHbIZNt2x5LbZnspVsdvs+k+b/0imaV5yhdAkj8OjTRXr9VbPPrUE2tVQXJfRPRdX5GtrY7n2\nNvXraNuQ1tWxWgi4VlaVTLdOlEzXLWKlEAAAmBk5Ewql8nqVknTBOgxTUmriDZhkm3h72yt4ujdQ\nJSfepky+LuPTfGNk5R01N6vY45/taVw1m2E7L1i8nBuqtuqtnn3a1bM341BIGu8W2tvUr5/tbNPa\n5awWAq6VFSXTpmmqtWtUxQVuFRe4rZoaAADAZeVMKPT9j/ydBgaC4wW98aTC0aTC8fFjtYORpMYi\nCY0GYxqNJDQajGs0EtdoMK6xSFyplCmbzRh/MybeJlYcTa4+mvr87W+GoVTaVGKiDHiyGDieTM/2\nL8cl2QxDDruRk3OcLDf2uR3yehzKm3jv8zjkcTlktxnnVgPJOG/7lGlKqfTktq70+MfpySPTTeW5\nHcr3uVTgcyrf61CBz6UCr0t5Xqecjstvmykry9fAQHCGfhWQSwxJLrtrtqcxbRqL61Xs9mt/3yH9\nXuOHMn6uSysLtLmhTPtPDejY6WGtXZZZcTWwUFlRMj08FtNIKK4tjeUWzgwAAODyciYU8jjcctvj\nkl3yOt3y583eXNKmqXgipWg8pVAkoWAkoWAkqVB08uPxt2QqLZfDJqfdLqdjYhvRxFYip8M2/r23\nv9ltcjrGrzUMTW19muy6SSQnPk+mFUukFI4lFTnvLaVILKlEKi2P0y6Pyy63a/y9x+WQ+3e+5nY6\nJr438TWnXU6nXebEiVfptHneCVhp01Qimf6dk7ImTs5KpJRKmfK67fJ5nPJ5HMrzOMY/ngiCbLbc\nXF0w9doC5hmbYdP1VVv076df1oH+I7q+akvGY917yzLtPzWg53a2EwoB18CqkunJrWPLqwusmBYA\nAMBVyZlQKJfYDEMe1/jqFn8+S7gB5K4bJkKhXd17swqFllUVakN9qQ61DOrkmWGtXFps4SyB+cuq\nkum2bvqEAADAzMvsuBoAQE6ozKvQ8sJanRxu1nA0kNVY9968TJL03Ovt2U8MWCCsKplu6x6VIWlZ\nFSuFAADAzCEUAoA57obqrTJlanfP/qzGqa8p0pplxTrWPqyWzhGLZgfMb1aUTKfTptp6xlRdliev\nm0XcAABg5hAKAcAct7Vioxw2h97s2SvTNLMai9VCwLWxomS6azCkWDyluupCC2cGAABwZYRCADDH\n+ZxebShbo95wn06Pnc1qrJVLi9W4uEiHWgZ1umfMohkC89NkyfSSguy2jk2VTC8iFAIAADOLUAgA\n5oEbqrZKknZ17816rHtvWS6J1ULAlVheMs1KIQAAMMMIhQBgHlhd0qhCV4H29B5QIp3Maqw1y4pV\nt6hQ+5r61dEXtGiGwPxjWcl016icDptqyvOsmBYAAMBVIxQCgHnAbrPrusrNCicjOjJwPKuxDMPQ\nPRPdQj9/oz3ruQHzlRUl07FESh39IdVWFshh58cyAAAws/jpAwDmiRuqJ7aQ9ezJeqyN9aVaWpmv\n3cf71D0Yyno8YD6yomT6dM+Y0qap5WwdAwAAs4BQCADmiZr8ai3JX6Sjgyc1Gs+uJNowDN178zKZ\nkn7++mlrJgjMI1aVTE/1CVEyDQAAZgGhEADMIzdUb1PaTGtPz/6sx9rcWK6asjztOtar9v4BpdIp\nC2YIzA9WlUxz8hgAAJhNhEIAMI9sq9wkm2HTmz3Zn0JmMwx94OZape1Rff3Q3+pHTU9bMENgfrCs\nZLp7VPlep8qLPFZMCwAA4JoQCgHAPFLgyte60tXqDHarY6wr6/GuX1Wp4sUBpY2k3uzeq7H41Z1G\nFowktK+pXz98sUlf/t5ufftnR3SmN7stbUAusaJkejQU18BIVHWLCmUYhlVTAwAAuGqO2Z4AAMBa\nN1Rv1aGBo9rVs1eLCxZlNZbNZqh08Yg641LKTOm/P/e0ltk3q7LYqwq/V5UlPlUUe+V02NR0NqCT\nZwI6cXpYZ/uCMifHMAy194zpreN92lBfqg/cVKuGxf7snygwi6womW6d6BOiZBoAAMwWQiEAmGfW\nla5SntOn3T379eH6u2W32TMeK55KqD95Vm4zXzEzoqCvWXsOLpJ06VUNDrtNK5f6tWppsVYu9atu\nUaFOngno52+c1qGWQR1qGVTjEr/uualWa5eXsEICc85kyfS60tVZjdPWRSgEAABmF6EQAMwzDptD\n2yo36Tcdr+vY0EmtL1uT8VhNw82KpxN6T+3NCiXCeqN7t/7oYxXym4vVOxxR33BEfcNhRWJJ1dcU\nadXSYtXXFMrpOD+IWldXqnV1pWo6G9Dzb46HQ397NqDaygLde8sybWksz/ZpAzPGqpJpTh4DAACz\njVAIAOahG6q26jcdr2tX996sQqHDg8clSevL1shpc+iN7t3aP7xHf7xhvVYuLb7m8RqX+NW4xK/T\nPWN6/s3T2nOiT9946rA+95H12txAMIS5wYqSadM01dY9qgq/V/lep1VTAwAAuCYUTQPAPLS0YLGq\n8ip1eOCYQolwRmOYpqkjA8flc3i1vHCpaguXaGnBYh0ZOKGh6HBW86utKtBnP7xO//f2bTIk/fz1\ndpmmecXHAbnAipLpvuGIQtEkR9EDAIBZRSgEAPOQYRi6sWqrkmZKe3sPZjRGR7BLgdiI1paumuol\nuq3mJpkytbNzlyXzrFtUqC2N5WrrHtOx09kFTcBMsbJkuo4+IQAAMIsIhQBgnrquarMMGdrVszej\nxx8ZmNw6dq5Md1vlRnkdXu3sfkvJdNKSed59U60k6fk3TlsyHjCdxuJBBWIjWa0SkqTWyZJpVgoB\nAIBZRCgEAPOU312kVSUNah89o95Q3zU//vDAcdkMm1aXrJz6msvu0o1VWzUWD+pg/1FL5rm8ulBr\nlhXr+OnhqX8oA7mqK9gjSarJX5TVOG3do7LbDNVW5lsxLQAAgIwQCgHAPHZj9TZJ0pvXuFpoJDaq\n02NntaJouXxO73nfu63mRknSq51vWDNJSR+4aZkk6RdvtFs25kIUiSWVpptpWnWGuiVJi/KrMh4j\nmUrrTO+YFlfkX3BSHwAAwEzi9DEAmMc2lK2V1+HRWz37dG/dXbIZV/d/AUcGL9w6Nqkyr0KNxSvU\nNNysnlCvqvIqs57nqqV+1S0q1P5TA+rsD6qmnNUT1+rZnW165tU2GYaU73Uq3+tUgdepAp9L+b7x\nzzfUl6phsX+2pzqnnVspVJ3xGGf7gkqmTPqEAADArGOlEADMYy67U1sqNigQG9HJ4earftyRgROS\npHWXOM7+3GqhN7OfpMaLsT9w40S30JtnLBlzIenoC+q5ne0q8Dm1oqZI+V6nxsIJneoY0d6mfv3m\nQJd+8cZpffVf9+kHvzypaNyaPqiFqCvYI4dhV4W3LOMxJrdJ1tEnBAAAZhkrhQBgnruhapt2dr2l\nXd17tbqk8YrXJ1IJnRhqUqWvQhW+i//Dd2PZWhW5CrSrZ68+WP9+ue2urOe5saFMNWV52nWsV/fd\ntlxlfu+VHwSl06a+t+OEUmlTn/7Aam2oLzvve6FoQmPhhPoDEf3br1v0yr5OHW4Z1CfvXq3VtcWz\nOPO5J22m1RXqUWVexdSJfJlomzh5bDkrhQAAwCxjpRAAzHN1RbUq95bqQP8RRZLRK15/crhZ8XRC\n68pWXfIau82umxddr0gyqj29+y2Zp80wdPeNtUqbpna8xWqhq/Xyvg61do3qhjWV5wVCkmSzGSrw\nubSoLE8bV5Tprz6xTXffWKvB0aj+5on9rBq6RgORQSXSiay2jknjK4W8bruqSn0WzQwAACAzhEIA\nMM8ZhqEbqrYqkU5ob++BK15/eLJPqPTiW8cm3bLoBhky9GrnmzItKje+fk2Fyoo8evVQt0ZCcUvG\nnM+GRqP66W9bledx6JF3N1zxeqfDrgfeVa//un2bFpXl6ZV9nfrLf3pLx08Pz8Bs577JPqFFeZmX\nTIejCfUMhbWsqlA2w7BqagAAABkhFAKABeCG6q1y2hx6puV59YcHL3mdaZo6MnBcPodXdUW1lx2z\n2OPX+rI1OjvWqdNjZy2Zp91m0/tvWKpEMq1f7bZmzPnKNE394N9PKhZP6aE7GlSYd/Vb+JZXF150\n1VAimZ7GGc99ncHJk8cyXynU1j0miT4hAACQGwiFAGABKPEU6+GV9yuSjOofjnxf8dTFV+F0BLsV\niI1obemqq+pMeUfNTZKkVzusKZyWpFs3VKswz6VX9ncoHE1YNu58s/tEnw62DGp1bbFuWX/tK1cu\ntmroX3950rJVX/NRV2jy5LHMVwq10icEAAByCKEQACwQN1Zv062LblBnsFtPnnz6ov/4PzJwTJK0\n7iJH0V/MypIVKvOWam/fAYUTYUvm6XTY9d7rligSS+nlfZ2WjDnfBCMJ/fBXTXI6bNr+vpUystiG\ntLy6UF/6/W2qrSrQq4e6+TW/jK5gj/IcPhW5Mg902jh5DAAA5BBCIQBYQB5o/JBqC5ZoV89evdZ1\n4eqewwPHZTNsWlOy8qrGsxk23VS9TYl0UkcHT1o2z9s318jrduhXe84qlkhZNu588eNXmjUaTuhD\nty5XZXH2ZcVup12fu3+9Cn1OPfHiKTqGLiKWiqs/MqhF+VUZh3Cmaaq1e1TFBW75890WzxAAAODa\nEQoBwALitDn0B+s/rjynT//W9KzaRs6d8jUSG9XpsbNaUbRcPufVHwe/rnR8VdHRwROWzdPrdujd\nW2s0Fk7otUPdlo07Hxw/PazXDnVrSUW+3nvdEsvGLSn06E/uWy/DkL71zBH1ByKWjT0f9IR6ZcrM\nqk+oLxDRaCiu+poiC2cGAACQOUIhAFhgSjzF+uTajyptpvWPR36gsXhQknRk8tSxq9w6Nqkmv1pF\nrkIdGzqptGldUfF7ti2Ry2HTi3s76LmZEE+k9C87TsgwpE+8f5Ucdmv/Gm9c4tfH3tuoYCSh//3T\nwxxX/zadEyeP1WRx8ljT2YAkaeUSvyVzAgAAyBahEAAsQKtLGnVP3V0KxEb0z0d/qLSZ1pGB8ZU+\nV9snNMkwDK0tXaVQIqzTo9adGFboc2lDfal6h8LqGghZNu5c9tzr7eobjujObUumraj4XZtqdPvm\nGnX0B/XdXxwnkJvQZcHJY5OhUCOhEAAAyBGEQgCwQL239l1aX7ZaJ4eb9XTzL3RiqEmVvnJV+Mqv\neay1ZaskydJeIUna0jg+l71N/ZaOO9ckU2n95Nctev6N0yor8ui+2+qm9X6PvKdBjUv82nOyXz9/\n4/S03muu6Jw4eaw6rzLjMZrOBuRzO1RTnmfVtAAAALJCKAQAC5TNsGn76odV5i3Vy2dfVTyduOZV\nQpNWFq+Q3bBb2iskSRvqy2S3Gdp3cuGGQj1DYT32g716/s3TKvN79Kf3rZfbZZ/WezrsNv3Jh9ep\ntNCtp3/bqv2nFu6vvzReEN0V7FaZp0QeR2YF0UOjUfUHompc4pcti9PiAAAArEQoBAALmM/p1WfW\nb5fT5pQkrS9dk9E4XodH9f7lOjPWodH4mHXz8zi0ZlmJzvQFF1zxsWma+u3BLj36z2+pvWdMt6yr\n0qOfvF61VQUzcv/CPJf+7P4Ncjls+ofnjqlzAW/hG40HFUyEVJPN1rEOto4BAIDcQygEAAtcTX61\n/mDdx3XHkttU71+W8ThrS8ePsT9m8RayrSvHt5DtW0BbyIKRhP7+mSP63gsnZLfZ9McfWqtP37NG\nXrdjRudRW1WgT31gtaLxlL71zBElU9YVic8lXaHJPqFsSqZHJBEKAQCA3EIoBADQurLV+kjDvbIZ\nmf+1sK50slfI2i1km1aUyTAWTq/QoeZ+/dV339Lek/1qXFykL3/qel2/OvMem2xdv7pS79i4SF0D\nIb2yv3PW5jGbOi0omT51NiCX06allflWTQsAACBrM/tfjgCAeavSV6FST7GODzUplU7JbrOm96Yw\nz6XGxX41nQ0oEIzJn59Zp0uua+se1Ut7O/TG0R4ZMnT/O+p09421stlmv3/m/nfWafeJPv3s1Tbd\nuKZSBT7XbE9pRnVleRz9WDiuzoGQ1iwrlsPO/8cBAIDcwU8mAABLTB5NH0lG1TZ6xtKxt6wslylp\n/6kBS8edbclUWm8e7dH/+P4e/fd/2aPXj/RocUW+/uI/bNE9Ny/LiUBIkgp9Ln3o1uUKx5J65tW2\na3psJBlVKBGeppnNjK5Qj5w2h8p9ZRk9/lQHW8cAAEBuIhQCAFhm7TRtIds6cTT9vpN9lo47W4bH\nYnrm1VZ9/u9f1//33DG1do1qQ32p/vPvbdQ3Pn+H6hcVzfYUL3DHlhpVl/r06wOdOtsXvOrHffPA\nP+nLb/6NhqOBaZzd9EmlU+oO9aoqrzLj7ZVNZ8ef+0pCIQAAkGMIhQAAlmksrpfD5rA8FCop9Gh5\ndYFOnAkoGElYOvZMSqbS+u4vjusL33pdz+5sVyKZ1nuvW6Kv/tGN+j8e3Kh1daU5szrodznsNj38\n7gaZpvTEi00yTfOKj4ml4mofPaNgIqR/OPIDJdLJGZiptfojg0qmk6rJy7xP6OTZgBx2Q8urCy2c\nGQAAQPYIhQAAlnHZXWr016sz2G35ypAtjeVKpU0dbJ67W8he2d+p1w53q6LYq+13rdTf/uktevjd\nDaoo9s321K7K+rpSbawv1Ykzgas6De7sWKdMmXLZXTo9elY/PfXcDMzSWl2h8T6hTE8ei8SSOtM7\npuXVhXI5renZAgAAsAqhEADAUpNbyKw/mr5C0tw9mj4SS+rnr7fL47Lr//rYFr1rc43crrkXEjz0\n7gbZbYZ+9HKz4onUZa89M9YhSXqw4YOqya/Wq51vaFf33pmYpmXOnTyWWSjU0jki06RPCAAA5CZC\nIQCApdaUrpRkfa9QVYlPNWV5OtI2pGj8/2/vzuOrLO/8/7/us2U92fd9IxAIiIAsCrh0qNraaq0t\nDBZr25n+2vqdLuP067d1dJyZ6tRf58d0frXaUTvTFms37bS1arV2cKOKghAIEEL2kH1PTtaz3N8/\nDgmyhGwnOYG8n3+Zc+77uq8D14PEd67r87n4jiH9cV89fQNublibdVF370qJC2fLmkzae4Z46d36\nC15b2+t/vyAml78q3kGYLZSfHX+W+r7GuZhqQIx1HptmO/rjqickIiIi85hCIRERCaik8ASSwhMo\n6zoR8BoyqwoTcXt8lFZ1BnTc2dY3MMJL79ThDLez5YrMYE9nxm66MoeocDvPv1VDV9/wuNfV9Z0k\nzBZKYph/TdxRtBW3z8OTh3/CwEXSkazB1USkPYIoh3Na95fXd2MYkJ8+/4qHi4iIiCgUEhGRgFsW\nt4Rh7wiV3VNrXz6R1Yv9Xcj2X2RHyF54u5bBYS83bcghLMQW7OnMWHiojVuvzmfE7eOZVyvOe82A\ne5DWgXaynBkYhr949orEZdyQfR3tQ538+Ogv8Jm+uZz2lA15hugY6pz2LqERt5fqpl6ykp2XxN+7\niIiIXHoUComISMDNVmv6zKRIEqJDKalox+2Z34HCqM7eIf60v4H4qBCuuTw92NMJmI3LU8lOdvLW\nkRYqGnrOeb++rwGA7Kgzd0Z9OO+DLIldRGnHMV6q2T0nc52upv4WYPr1hKqbevF4TR0dExERkXlL\noZCIiARcQUwuDoudIwEuNm0YBqsXJzI04uVY7cVxhOx3e6rxeH3cvDEP/JQNjgAAIABJREFUu+3S\n+bZrsRhs37II8Leo953Vor62z19PKMuZceZ9hoXPLNtObEgMz1e/HPCC5IE0VmR6mu3oR+sJqci0\niIiIzFeXzk+nIiIyb9itdhbHFdAy0Er7YEdAx15d6O9Ctv/4/D9C1tTRzxuHmkiND+fK4untNpnP\nFmXEsG5pMtVNfew53HTGe3W9/s5j2VEZ59wX6Yjgr5fvwGpY+NGRn9ExOD8DvtF29OnT3Cl04lQo\ntChD9YRERERkflIoJCIis+L0EbLA7gTJS48iOsLBgRPteH3z+wjZf79RjWnCrZvzsViMYE9nVnzi\nmnwcdgvPvFpJ/5B77PXavpNE2iOIDTn/LpnsqEw+UXgz/Z4BHjv0Xwy4B+dqypPW6GrGwCA1InnK\n93q8PioaeklPiLiou82JiIjIpU2hkIiIzIqlcbNTV8hiGFxemIhr0M2J+nNr2cwXNc297CtrJTc1\nilWFCcGezqyJiwrlI1fm0Dfg5jev+wuL94246BzqIjsqc6zI9PlsTF/PtRkbaepv4YnSXXgC3K1u\nJkzTpMHVRGJYPA7r1EOduhYXw26vjo6JiIjIvDZhKOTz+bj//vvZunUrO3bsoLa29rzX3Xffffzr\nv/7rGa91dHRw9dVXU1lZGZjZiojIRSM+LJbUiGTKuyoY8bonvmEKVhfO/y5kz75WBcBtV+ddMBi5\nFFy/NovkuHD+58BJ6lr6qOvzHx07u57Q+dy66CZWJCyjvKuCn5X9GvOs2kTB0jPSy4BnkLRpdh4r\nHz06lqmjYyIiIjJ/TRgKvfLKK4yMjPCLX/yCu+++m29/+9vnXPPzn/+c8vLyM15zu93cf//9hIaG\nBm62IiJyUVkWvwS3z8OJ7sD+cmBxVgzhITbeK287p8DxfHCstosj1Z0sy4mlKCcuIGP6TB/PV/+R\n8q7594sWm9XC7VsWYZrw1B/Lqe31F5k+Xz2hs1kMC3cu+0uynBm83byPP9T8z2xPd1IaXP56QtPt\nPDYaChVmaKeQiIiIzF8ThkL79+9n06ZNAKxcuZLS0tIz3n/vvfcoKSlh69atZ7z+8MMPs23bNpKS\nkgI4XRERuZjMVmt6m9XCykUJdPUN81Zpc0DHninTNHn2NX9wc+vV+QEbt7a3nheq/8hzVS8FbMxA\nKs6NZ3VhIhUnezjY4P/8Wc7MCe7yC7E6+MKKzxAXGsvvq1/ineb3AP+fpccbnLpRjac6j6VHTD0U\n8pkmJ052kxgTSlyUfjkmIiIi85dtogtcLheRkZFjX1utVjweDzabjdbWVr7//e/zyCOP8OKLL45d\n8+tf/5q4uDg2bdrE448/PjszFxGReS8/OgeHxU5Fd3XAx77m8nTeOdbKD58/xnvlbXzqg4uJdYYE\n/DlTdeBEO1WNvaxZnEhualTAxi1pOwJAXW89bq8bu9UesLEDZdsHFnG4qp2G/gaiI6KJDnFO+t7o\nECdfuuyz/H/7v89Tx35Fd6fBG38eobG9n/joUNISIkiJCyc1PpzU+AhS4sOJmsUCzqd3Ck39+Fhj\nWz/9Qx5WLrp0a0mJiIjIpWHCUCgyMpL+/v6xr30+Hzab/7Y//OEPdHV18fnPf562tjaGhobIy8vj\n2WefxTAM3nrrLY4dO8Y999zDY489RmJi4gWflZg4+R8eRaZCa0tmg9bV5OTFZXG8owpnrINQW+BC\nm8REJ99Li+aRX5Vw4EQ7x+u7ufPDS7l+fU7QOn2ZpskLP9mPxYDP3rx82mvkfPcdfde/28pjeumx\ndlCUuGhGc50NiYlOPnJdOi90D+PwpE358ycmOvn00B38x8En+c3JX+HuX09hViYtXQMcquzgUGXH\nGdc7wx1svCyNW67JJy0hcpxRp6d1uJUQq4OirGwsxtT6crxz3F/ras3SlHn378R8m49cOrS2ZLZo\nbcls0drymzAUWrVqFbt37+ZDH/oQBw8epLCwcOy9O+64gzvuuAPw7w6qqqri1ltv5dZbbx27ZseO\nHTzwwAMTBkIAbW190/kMIheUmOjU2pKA07qavLSwNMrMSg5UH6cgJjegY4cY8LVPrOCNkkZ+ubuS\nR589xB/31vLpG5aQlhAR0GdNxtGaTqoae7hiSRKhlul9Xzvf2mrub6Whr5kwWyiDniH21RwlgenV\nupltKWnD0A1NdXYOHGkiI2lyYY1r0M3v3qxm94EGiF2GI/8wiatK+eK6a4lyOHENumnuHKCpo5/m\njgGaOgaoae7lxbdq+MNbNaxenMiN67MDsjvL6/NysqeJDGcaHe39E99wlv3HWgBIjQmdV/9O6N8t\nmS1aWzJbtLZktiy0tXWhAGzCUGjLli3s2bOHbdu2YZomDz30EM899xwDAwPn1BESERE5W06Uv65M\nTW9dwEMh8Leov3plOpcVJPDTP5az/3gbD/zXO9y0IYcPbcjGZp3aLo+Z+MPeOgBuWJcV0HEPtfuP\njl2ffR2/qXyByp7AH8cLlMb+BgC8riieevk499y+6oLd1zxeH68dbOQ3b1TRP+QhKSaMrVffQKMt\nmRdqXmHn/ke5PGkFi2MLyEvJpiD9dDcvr8/H/uNtvPh2HfuOt7HveBtLsmK4YV02y/Pipt31rWWg\nDa/pnVY9IdM0Ka/vJibSQWJM2LSeLyIiIjJXJgyFLBYL//RP/3TGa/n55xbOfP/uoPfbtWvXNKcm\nIiKXguwof0Ay2pFqtsREhnDXx5ZzoLyNXS8f5zdvVvNOWSt33rCEgozZbwte3+qitLqTxZkxAa0l\nBHCo7QgWw8KGtCv4c+M7VHXX4jN9Uz7WNBdqT7WjL07J5VB5D28fbWHDsjPDFdM0qW91UVLZwVul\nzTR3DhAWYuWT1xbwgdUZ2G0WVppb6PcM8kbDW7xcu5uXa3djM6zkRmdTGJtPYWwBOVGZrC1K5ool\nSZTVdvHi3jpKqzspq+smPTGCD2/IZl1R8pTDodEi09OpJ9TaNUhP/whri5KmHUqJiIiIzJUJQyER\nEZGZiA+NJdIeMeuh0KjLCxNZnBXLs69VsvtAA//y1H6uXZXOx6/OJyxk9r7tvfyOf5fQ9QHeJdQz\n3Et1bx2LYvKItEeQF5PD2037aHQ1k+FMC+izZso0Tep6T5IQGsft1xVzrGovv/yfClYWJGC1GJTV\ndVFS0UFJZTudvcOAf6fXNSvTuGVTHlERpwtHG4bBJwtv5qN511PRXU15dyXlXZVUdFdzoruK56v/\niMPqYFvhx1iXupqinDiKcuKoa+njpXfq2Hu0lcd/d5Sy2i4+9cHFU9ox1tDvLzKdPo129MdHW9Fn\nqhW9iIiIzH8KhUREZFYZhkF2VCZHOsroG3HhdAS2IPD5hIfa2HH9YtYtTebHfyjjf95r4MCJdj71\nwUIuXzRxjbsL6R7u4fsHf8hH829gecJSALr6hnn7aAup8eGsyI8PxEcYc7j9KACXJRYDUBCdy9tN\n+6joqZ53oVDHUCf9ngGWxC0iMSaMD63P5rdvVvOtn+yjo2eIEY+/vXxEqI31S5NZURBPcW48kWHj\nd1ILtYVSnFBEcUIRAP3uAU50V1HeVcE7zQd4uuwZkiMSyTm1Iy0r2clff2QZN2/K49H/PszrJU00\ndw7ypY8VT7pbWVVPDQYGGZHpU/4zePdUPaGlOXFTvldERERkrs2/feciInLJyT5VV2iudgsB/Gfp\nT9nT+wIPfGYtH70qh97+Eb737GEe/U0pPa7haY/7TtN7NPY382bD22OvvbKvHq/P5Pq1WVgCfGSo\n5FQ9oRWnAqj8mBwAqrprJj2Gz/Tx3fd+wCMHn6R1oC2g83u/2l7/0bGsqAwAblyXRVJsGE0dAyTE\nhHHjuiz+z+2r+O6XN/L5jy5j/dKUCwZC5xNhD2dlYjGfLLyFzxXfjtf08eThp+gbcZ1xXVJMGN+4\nfTVrFidSXt/Nt368j5OtrnFGPW3E66amp44MZxrh9qnVBGrrHuRITReLMqJJiQuf0r0iIiIiwaBQ\nSEREZt3pYtNzEwrV9tazv7WE/S0lmIaHWzbl8cBnriA/PYp9Za3c+8ReXi9pxDTNKY99oO0QAOVd\nlbh9HgaHPbx6sIGoCAcbliUH9HMMeoYo76wgIzKN+DD/zpPEsAScjkgquqsnPf/K7hpOdFdxrLOc\nh975N16u3Y3X5w3oXAFq+/x/v9lOfyjksFu579Nr+H+/uIFv/dU6PnFtAYWZMVgtgfnxoyiukJvy\nrqdruJv/OvI0PtN3xvshDitfuKWYmzfm0t4zxINP7efAiQuHYtU9tXhML4ti8qY8nzcONQKw+bL5\ntYNLREREZDwKhUREZNZlO+d2p9Du+jcBMDFpcJ2qD5MYyTc+tZpPfbAQn2nyoxfLeObVyimN2zHY\nSV2fv7vWiM9NZXc1b5Q0MjjsPVUg2RrQz3G04zge0zu2Swj8x/Hyo3PpGemlY6hrUuMcbDsMwHWZ\nmwi1hvLbyhf5zr7vUXeqKHSg1PWexMAg03n62FVEqJ2E6NnrwvXB7GtYnrCU410VPFf10jnvWwyD\nmzfm8qVbijF9Jo88e5jn36oZN1A70e1fE4Wx5zbVuBCvz8cbh5oIC7GxZknSlD+HiIiISDAoFBIR\nkVkX6YggITSO2t76ae3OmYqe4V7eaz2Egf8YV/2pEAf8AcF1qzL41l+tIzkunBf31rHncNOkxz7Y\nVgqcru9zpP04L++rx2G3cO3lU68/M5HRVvQrTj1vVEFMLgCV3RO3pveZPg62lRJuC+OW/A9x3/q/\nY33qGupdjXxn3yP8puIFRrwjM56rz/RR39dAcngiobbQGY83WRbDwh1FW0kIi+fl2t2UtB0573Vr\nliTxjU+tJsYZwrOvVfHE74/i9py7W6q8qwoDY+zPeLIOVXTQ4xphw7JkQuyBDQdFREREZotCIRER\nmRPZUZn0ewZoH+yc1ee80fA2XtPLpvT1wJmh0Ki4qFC+ctsKwkNs/PgPZVQ09Exq7INthzEw+HjB\nR7BZbBxoPkpn7zCblqdNuTbORDw+D0c6yogLjSXjrNbo+dE5AFT2TBwK1faepHu4h+UJS7FarETY\nw9lR9En+ZuVfExsSwx/rXuXBd/6N450VM5pv60A7Q97hsXpCcyncHsbnl9+B3WLnJ0d/MW7dpOwU\nJ/d/eg35aVG8faSFHz5/7Iz3R7wj1PTWkelMJ8w2td1Nr5Xo6JiIiIhcfBQKiYjInMgZKzZdN2vP\ncPs8vNnwNmG2MD6afwN2i41617mhEEBKXDhfvKUYnw8eefYQHT1DFxy7e7iHqp5aCmJyiQ+LpSA6\nly5PO4ZjiC1rMwP+WU50VzHoGeKyhGUYZxWvTo9MJcTqoGISxaZHj45dnrT8jNeXxC3i3nV/ywcy\nN9Mx2Mn/f/BxXq7ZPe2dXKNHA0ePCs619MhUti/5OEPeIZ44vIvhcXY/RUeG8L+3X05+WhTvHGvl\nQPnpAKmqpxav6WVR7NTqCXX2DnG4qoPcVCdZyc4ZfQ4RERGRuaRQSERE5kT2qZbhNX2zV1dof8tB\n+twurkpbS5gtjLTIVBpdzXh8nvNevyw3jm0fKKB3wM33nj3E8Mj4xZdHj46tPBWuxBv+HTF5i0dI\nigl8zZxDbaNHx5ad857VYiU3KpuWgdZzum69n2maHGg9TIjVwZLYRee8H2J1cOuim/j6mv9FbEgM\nv616kV+d+N05BZsnY7Q+UTB2Co1am7KKzelX0tjfzNNlz4wbcNltVj7zoSJsVoNdLx9nYMgNwImu\nU/WEYqZWT+jNQ02YpnYJiYiIyMVHoZCIiMyJTGcaFsMya8WmTdPk1fo3MTDYnH6l/5mRaXhNL039\nLePe94HVGVy9Mo26VhdPPn8U3zhBwsFW/46blafq+9RV+oMgZ1J3ID8G4K/Pc6j9KBG28LGjYmcb\nrXlT1VMz7jgnXY10DHVSHF+E3Tr+8bbsqEzuXv0l0iJSeO3kHv7zyNO4ve4pzbm29yQWw0JGZHCD\nkY8vuoncqCz2tRzktYY/j3tdWkIEH7kql27XCL/c7T86V97tryeUP4V6Qj6fyRuHGgmxW1lbFNju\ncyIiIiKzTaGQiIjMCYfVQWpEMvV9DbPSDr2yp4Z6VyOXJRYTHxYLMNYF63x1hUYZhsHtWwpZnBnD\n/uNt/O7Nc+v09I24qOiuJjcqm5iQaE62uSg/4cXqDePkUM20dtZcSH1fA93DPRQnFGG1nL9ocX5M\nDuBvNz+esSDrrKNj5xMbGsPXVn2RgphcDrQe4vslP2TQMzip+Xp9Xk66GkiNSMZxgfBpLtgsNj5X\n/Cki7RH8+sTv6RnuHffaG9dlkZEYyeslTZRUNVPbW0+WM4OwKRTKPlLTSUfvMOuWJhEWYgvERxAR\nERGZMwqFRERkzuREZeL2eWjsbw742KNt6K/N3Dj22ulQqPGC99qsFr70sWISokP53Z4a3jl25s6i\nQ21HMDHH6vK89E4dYJAfVUC/eyDgrd0vdHRsVE5UFhbDQsUFik0faCvFbrGzLH7JpJ4bbg/jf132\nV6xMXM6J7ip27n+M7uGJi3A39bfg9nmCVk/obLGhMXw4dwte08u7LQfGvc5mtfDZDy/BMOAnb/oL\nlE+1Ff3rB/1r6+qVge8+JyIiIjLbFAqJiMicyT5VbLomwEfIOga7KGkrJTMy7YzjVmkRKVgMywV3\nCo1yhjv4ym0rCHFY+c/nj1Fa3UHFyR72lbXySuW7AJSXhrLzlwd5+0gLKXHhXJXjD4mOdZQH9POU\ntB/BbrFRFFc47jUOq4MsZwb1fQ3nLarc1N9Cy0ArS+MXE2J1TPrZdqudzxXfPlab51/3fZ/mCxy/\ng/lRT+hsq5NXYjOs7G3af8Hi2TkpUdywNos+iz+onEqR6R7XMAcr2slMiiQnRQWmRURE5OKjUEhE\nROZMzqli03UBDoXeaHgLE5OrMzee0anLbrWTGpHMSVfjpI54pSdG8v98dBluj4+dvyjhoaf28+hz\nB2gZqcfXH8W7h1yUVnXisFu5dXMeRXGFGBgc7QxcKNTU10pTfwtL4gonDHPyY3LwmT5qes7t6HZ2\nDaSpsBgWPll4Mx/Ju4Gu4W527n+MY53l44YrY53H5lEoFGEPpzhhKY39zeN2oBt188ZcQmO7MU0D\ny0DcpJ/x5uEmvD6TzZelndMhTkRERORioMPvIiIyZ1LCk3BY7AHdKTTsHWFP414i7RGsSbrsnPcz\nnek0uJpoGWgjNWLiQsArCxL44i3FlFS0ExXhoCekigNDJldmXs6Wq9YTHekg1HH622dOVCY1vXUM\nuAcJt8+8C9m7DSUAXJYw/tGxUfnRufyJ16nsqWZxXMEZ7x1oO4zNsLI8oWha8zAMgxtyriM6JIqn\ny57hkYNPkhKexIa0K1ibsooox+mdMXV9J7EZVtIiUqb1rNmyPnU1B9sO83bTfrKc4wdWPsODGdaN\n6Yripy9V8w93JmC3Xfj3Zj7T5I2SJhw2CxuWqcC0iIiIXJy0U0hEROaM1WIl05lBU38LQ57hgIz5\nTvN7DHgG2ZS+/rwdtiZTbPpsa5Yk8bmblvKJawvwRPrv21K4luS48DMCIYCiuEJ8po/jXRUz+BSn\nvdtQgoFB8STCnNGjcmcXm24b6KDB1cSSuEWE2WYWVG1IXcPfrvoiq5Muo32wg/+ueJ579zzI44d+\nzOH2owx7R2hwNZPuTMNmmV+/a1oat5hIewT7Wg7g8XnGva6qpwYfPjLCsmls7+f5t2omHPt4bRet\n3YOsWZJEeGhwi2uLiIiITJdCIRERmVM5UZmYmFMKacZjmiavntyD1bCyKX3Dea/JmkYoNGrIM8Sx\nzhOkRaSQHJ543muWxi8G4Fjn8SmPf7a+ERfl7VXkRefgdEROeH2kI4KU8CSqemvP6Oh2sG306NjE\nXccmIzc6m88W385DG+/jE4tuJjUimZL2I/zg0I+4d8+DeE0v2RfYiRMsVouVK1Iup989wJGOsnGv\nO9FdBcCHl68iLiqE59+qpb7VdcGxXyvxF5jefFla4CYsIiIiMscUComIyJwaLTZd2zfzI2RlXSdo\n7m9hVdIKokOizntNemQaBsa0QqHSjjI8Ps8FW7pnR2USbgvjaMf4NXcm63D7UUxMLrtA17Gz5cfk\nMuId4aTrdIe1A62HsRgWlicundF8zhZhD+eazKv45tqvcc8VX2Zz+gbA/5kXTbFr11xZl7IGgL1N\n+8e9pryrEothYUlCPndcvxivz+TJ3x+lpKKdweFzdxj1DYzwXnkbqfHhLMqInrW5i4iIiMy2+bXP\nW0RELnk5AexA9up52tCfLcTqICk8kfo+f7FpizH534eMFmu+/AI7biyGhcVxizjQeoiWgVZSJlG3\naDyl7ccAWJ4w+TCnICaXPY17qeypITsqk86hLmr76lkSu4hIe8S05zKRLGcGWYsz+FjBTTT3t4wd\n05tvMp1ppEemUtpRhmukn0jHmX8mQ54h6vpOku3MINQWwor8EK5ansKew838+zOHsBgG2SlOlmTH\nUJQVS0FGNG+VNuPxqsC0iIiIXPwUComIyJyKC40l0h4x1rFquloH2ijtKCM3Knts99F4Mp1ptAy0\n0j7YSVJ4wqTGH/GOcKSjjKTwhAkLVC+NW8yB1kMc7Syfdijk9Xk53lVJcmTipOcI768rVM11mZs4\n2FYKwMqkqXcdmw6H1T6vWtGfz7qU1fy64vfsaznINZlXnfFeZU8tPtN3xk6nz9xYxPplKZTVdlFW\n10VNUx/VTb28+HYdVouBzWrBZjW4snh+FdYWERERmSodHxMRkTllGAY5p3a09I70TXuc0fBjU/r6\nCa+dTrHpox3HGfG5WZm4fMLdIEVxiwA41jH91vS1fScZ8g6xPHnJlO6LC40lJiSayu4aTNPkYOth\nDAxWJMxNKHQxuCLlciyGhb3N+85570RXJQCFMadDIYvFYFlOHB+/Op97d6zhe1/dxN9+8jJuXJ9F\nVrKTEY+XK4tTcYY75uwziIiIiMwG7RQSEZE5lx2VSWlHGbW99VM6KvV+ozuNCidRy+b9xaZXJ5/b\ntv58DrRNfHRsVGxoDKkRyZzormLE68Zxni5oEynr9AdKK6YYChmGQX50DvtbS6jorqaqp5a86Byi\nQ5wT37xARDmcLI0rpLSjjEZXM2mRp3f4lHf76wnlxeSMe3+ow0ZxXjzFefEAuD0+bFYdGxMREZGL\nn3YKiYjInMuOygKY0RGymt56ohxOYkImLvSbEekPhd5fjPlC3D4Ppe1lxIfGTrpWTlFcIW6fm8ru\n6kldf7ayzhP+VvTJi6d8b0FMLgD/XfE8JiaXX6Aw9kK1LvVUwenm0wWnBz1D1Pc1kBOVSYh18rt+\n7DaLagmJiIjIJUGhkIiIzLnsUzVopltsunu4h+7hHrKjMif1P+fh9jASQuOo72uYVIew450nGPIO\nTero2KjR1vRHp9GafsgzRHVvHVlRGecUQp6M/FOh0GhHt5WJOjp2tuXxRYTbwni3+T28Pi/gr8Pk\nM30sipmfndNEREREZptCIRERmXOR9ggSQuOo7a2fVhv32t6TwOlOZpOR6UzH5e6ne7hnwmsPnOo6\ndqFW9GcriM7FbrFzrHPqdYVOdFfhM30UxS6a8r0AqRHJhNlCAciJyiI2NGZa41zK7FY7q5NX0jPS\nR1lXBeD/c4fJHUEUERERuRQpFBIRkaDIjspkwDNI22DHlO8dPXY2Udex9xs9BlY3QbFp10g/+1tL\niAuNnVLoZLfaWRSTR1N/C11D3ZO+D/xHxwCWxE0vFLIYFvJOdSHTLqHxrUtZDcDeJn/B6fKuSqyG\nlbzo7GBOS0RERCRoFAqJiEhQjAYu06krNBYKOSffCj1jkh3IXm/4M26fm2szN2IxpvZtcvQI2VR3\nC5V1nsBhsZMzg3BiXcoqEsPiuSLl8mmPcanLicokOTyRkvYjdA51jdUTckyhnpCIiIjIpUShkIiI\nBMV0i037TB+1fSdJCk8g3B4+6fsynWnAhUOhEa+b107+mXBbGFemrp3SvMBfbBrg6BRCoa6hbpoH\nWimIzcNumX5T0NXJK3lgwz2TKry9UBmGwbqU1Xh8Hn5Z/ltMTBbp6JiIiIgsYAqFREQkKDKdaVgM\ny5SLTbcNdjDoGSTbOfmjXcBYp7ILhUJvN+3D5e5nU/oGQm0hUxofIDk8kdiQGMo6T4wVM57IaH2b\n6dYTkqlZm7IKA4PD7UcBWBSTF+QZiYiIiASPQiEREQkKh9VBWkQK9a6GSQcoML16QqMynWn0jPTS\nM9x3zns+08ef6l/HZli5OuOqKY8N/p0oK5OKGfQMcqDt8KTuKTu1q2jJqV1GMrtiQ2NYHFsAgE31\nhERERGSBUygkIiJBkx2VicfnocHVNOl7RncWTaUI9KjMSH9doZOuc3cLHWwrpX2wg3Wpq4kOcU55\n7FGb06/EwODV+jcnvNY0TY53VhDtcJIakTztZ8rUrEv1F5zOjspSPSERERFZ0BQKiYhI0BTE5AJT\nq8FT21uPxbCQEZk25edljlNs2jRNXql7DQODD2RunvK475cUnsCy+CVU99ZR01t3wWsb+5vpc7tY\nHLcIwzBm9FyZvJWJy1mddBl/kTWzv2sRERGRi51CIRERCZql8YsxMChtPzap6z0+Dyf7GsiITMVu\ntU/5eeOFQhXd1dT21rMiYSnJEUlTHvds12ZuBGD3BLuFRruULVE9oTnlsNr5bPHtrEhcFuypiIiI\niASVQiEREQmaSHsEedE51PTW0TfimvD6BlcTHtM71rlsqmJCoom0R5wTCr1S9yoAf5F99bTGPdvi\n2AJSIpJ5r/UQ3cM9415X1nnCf31cQUCeKyIiIiIyFQqFREQkqJYnFGFiUtpRNuG1MykyDf5C0JnO\ndDqGuhhwDwDQ1N9CaUcZedHZ5EXnTGvc8z3nmoyr8Jk+3mx4+7zXuL1uKrqrSY1IVht5EREREQkK\nhUIiIhJUyxOKACZ1hGwmRaZHnT5C1gjAK3WvAfAXWddMe8zzWZcC7JftAAALtUlEQVSyinBbGG80\nvI3b6z7n/aqeWtw+N0vidHRMRERERIJDoZCIiARVcngSCWHxHOs8jtvnueC1tb31hFpDSA5PnPbz\nxkIhVwPdwz2823yA5PDEsXAqUBxWB1elrcPl7mdfa8k575d1+Y+OqZ6QiIiIiASLQiEREQkqwzBY\nnlDEsHeEiq6qca8b9AzSMtBGljMDizH9b1+jbenr+xp4tX4PXtPLBzI3z2jM8WzO2IDFsPBq/ZuY\npnnGe2WdJ7AaVgpi8gL+XBERERGRyVAoJCIiQbc8fikAhzuOjntNXW8DJua06wmNSgiLI8wWSmV3\nDW80vI3TEcnalFUzGnM8caGxXJawjJOuRiq6q8ded7n7qe9rIDc6i1BbyKw8W0RERERkIgqFREQk\n6PJjcgi1hlLafuycHTWjagNQTwj8O5MyItPoGu5myDvENRkbp9XefrKuOdWe/tWTp9vTl3dVYmKy\nJLZw1p4rIiIiIjIRhUIiIhJ0NouNpfGFdAx10dTfct5ravpm1nns/UbrCjmsDjanr5/xeBeSH51D\nZmQaJW1H6BjsAqCssxxARaZFREREJKgUComIyLywPOHUEbL28x8hq+2tJ9rhDEj79tHdRlelrSXc\nHj7j8S7EMAyuydyIicnrDX/GNE3KOk8QZgsjOypjVp8tIiIiInIhCoVERGReWBq/GAODw+dpTd89\n3EP3cA/ZUVkYhjHjZ61MXM4dRVv5aN4NMx5rMlYnr8Rpj2RP4zs09jfTMdTF4tj8WSluLSIiIiIy\nWfppVERE5oVIewR50dnU9NbRN+I6473a3pNAYI6OAVgtVtalrsZhdQRkvInYLTY2pq9n0DPIU8d+\nBejomIiIiIgEn0IhERGZN5YnLMXE5EhH2RmvB6rIdDBtSt+A1bBS1+cPuBbHKhQSERERkeBSKCQi\nIvPG8oQigHOOkI2GQlnOi7cGT3SIk1VJlwEQHxpLYlh8kGckIiIiIgudQiEREZk3ksOTSAiL51jn\ncdw+DwA+00dtXz1J4QmE28OCPMOZuS5zIwYGxQlLA1IbSURERERkJhQKiYjIvGEYBsvjixj2jlDR\nXQVA20A7g54hsp1ZQZ7dzGVFZfD36/6WW/JvDPZUREREREQUComIyPxSfNYRsppLoJ7Q+6VEJM9Z\ngWsRERERkQtRKCQiIvNKQUwuodZQStuPYpomtX3+UChQncdERERERMRPoZCIiMwrNouNpfGFdAx1\n0dTfQk1vPVbDSkZkarCnJiIiIiJySVEoJCIi805xvP8I2cG2wzT0NZIemYrdag/yrERERERELi0K\nhUREZN5ZlrAEA4NX6/fgMb2XTD0hEREREZH5RKGQiIjMO5H2CPKis+n3DACqJyQiIiIiMhsUComI\nyLy0PGHp2H9rp5CIiIiISOApFBIRkXlptDV9qDWEpPDEIM9GREREROTSYwv2BERERM4nJTyJ5QlL\nSQiNw2LodxgiIiIiIoGmUEhEROYlwzD4woo7gz0NEREREZFLln71KiIiIiIiIiKyACkUEhERERER\nERFZgBQKiYiIiIiIiIgsQAqFREREREREREQWIIVCIiIiIiIiIiILkEIhEREREREREZEFSKGQiIiI\niIiIiMgCpFBIRERERERERGQBUigkIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVE\nRERERERERBYghUIiIiIiIiIiIguQQiERERERERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFS\nKCQiIiIiIiIisgApFBIRERERERERWYAUComIiIiIiIiILEAKhUREREREREREFiCFQiIiIiIiIiIi\nC5BCIRERERERERGRBUihkIiIiIiIiIjIAmSYpmkGexIiIiIiIiIiIjK3tFNIRERERERERGQBUigk\nIiIiIiIiIrIAKRQSEREREREREVmAFAqJiIiIiIiIiCxACoVERERERERERBYghUIiIiIiIiIiIgtQ\nUEMhn8/H/fffz9atW9mxYwe1tbXBnI5c5NxuN1//+tfZvn07t912G3/605+ora3lL//yL9m+fTv/\n8A//gM/nC/Y05SLW0dHB1VdfTWVlpdaWBMx//Md/sHXrVm699VZ+9atfaW1JQLjdbu6++262bdvG\n9u3b9e+WBERJSQk7duwAGHc9/fKXv+TWW2/lk5/8JLt37w7mdOUi8f51dezYMbZv386OHTv43Oc+\nR3t7O6B1JdPz/rU16rnnnmPr1q1jX2ttBTkUeuWVVxgZGeEXv/gFd999N9/+9reDOR25yP3ud78j\nJiaGp59+mieffJJ//ud/5l/+5V/46le/ytNPP41pmvzpT38K9jTlIuV2u7n//vsJDQ0F0NqSgNi7\ndy8HDhzgZz/7Gbt27aK5uVlrSwLitddew+Px8POf/5y77rqL7373u1pbMiNPPPEEf//3f8/w8DBw\n/u+DbW1t7Nq1i5///Of88Ic/ZOfOnYyMjAR55jKfnb2uHnzwQe677z527drFli1beOKJJ7SuZFrO\nXlsAR48e5ZlnnsE0TQCtrVOCGgrt37+fTZs2AbBy5UpKS0uDOR25yN1www185StfAcA0TaxWK0eO\nHGHt2rUAbN68mT//+c/BnKJcxB5++GG2bdtGUlISgNaWBMSbb75JYWEhd911F1/4whe45pprtLYk\nIHJzc/F6vfh8PlwuFzabTWtLZiQrK4vvfe97Y1+fbz0dOnSIyy+/HIfDgdPpJCsri7KysmBNWS4C\nZ6+rnTt3UlRUBIDX6yUkJETrSqbl7LXV1dXFzp07+eY3vzn2mtaWX1BDIZfLRWRk5NjXVqsVj8cT\nxBnJxSwiIoLIyEhcLhdf/vKX+epXv4ppmhiGMfZ+X19fkGcpF6Nf//rXxMXFjYXYgNaWBERXVxel\npaX8+7//O//4j//I3/3d32ltSUCEh4fT0NDAjTfeyH333ceOHTu0tmRGrr/+emw229jX51tPLpcL\np9M5dk1ERAQul2vO5yoXj7PX1egv39577z2eeuop7rzzTq0rmZb3ry2v18u9997LN77xDSIiIsau\n0drys018yeyJjIykv79/7Gufz3fGPwoiU9XU1MRdd93F9u3b+chHPsJ3vvOdsff6+/uJiooK4uzk\nYvXss89iGAZvvfUWx44d45577qGzs3Psfa0tma6YmBjy8vJwOBzk5eUREhJCc3Pz2PtaWzJdP/rR\nj9i4cSN33303TU1NfPrTn8btdo+9r7UlM2WxnP7d8uh6Ovtn+/7+/jP+h0tkMl544QUee+wxHn/8\nceLi4rSuZMaOHDlCbW0tDzzwAMPDw1RUVPDggw+yfv16rS2CvFNo1apVvP766wAcPHiQwsLCYE5H\nLnLt7e189rOf5etf/zq33XYbAEuXLmXv3r0AvP7666xZsyaYU5SL1E9/+lOeeuopdu3aRVFREQ8/\n/DCbN2/W2pIZW716NW+88QamadLS0sLg4CAbNmzQ2pIZi4qKGvvBNjo6Go/Ho++JElDnW08rVqxg\n//79DA8P09fXR2VlpX6+lyn57W9/O/YzV2ZmJoDWlczYihUreP7559m1axc7d+6koKCAe++9V2vr\nlKBuy9myZQt79uxh27ZtmKbJQw89FMzpyEXuBz/4Ab29vTz66KM8+uijANx7771861vfYufOneTl\n5XH99dcHeZZyqbjnnnu47777tLZkRq699lreffddbrvtNkzT5P777ycjI0NrS2bszjvv5Jvf/Cbb\nt2/H7Xbzta99jeLiYq0tCZjzfR+0Wq3s2LGD7du3Y5omX/va1wgJCQn2VOUi4fV6efDBB0lNTeVv\n/uZvALjiiiv48pe/rHUlsyIxMVFrCzDM0dLbIiIiIiIiIiKyYAT1+JiIiIiIiIiIiASHQiERERER\nERERkQVIoZCIiIiIiIiIyAKkUEhEREREREREZAFSKCQiIiIiIiIisgApFBIRERERERERWYAUComI\niIiIiIiILEAKhUREREREREREFqD/CyM3fMbHfs4CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAJaCAYAAADpktlZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcU/W9//H3yTpLMivDLojCiKAoLrhQVOq1aKt1qVKl\nxbq0VWtrwUeraG3xikWrrddK1Xp7/d326m0pD5d77XLvraVFWxeKG5sOKLKvs08ySzJJvr8/ZhJA\nYBjmZCbJyev5FzNJTj45k8y8+X6/5/O1jDFGAAAA6DNXpgsAAADIdQQqAAAAmwhUAAAANhGoAAAA\nbCJQAQAA2ESgAgAAsIlABcfYtm2bjj/+eF166aW69NJLdckll+iKK67Qf/3Xf6Xu89Of/nS/rw/m\nZz/7mf785z8f9LZ9H3/cccepoaHhiGpctWqVfvCDH0iSVq9erdtuu+2IHt8X8Xhct9xyi2bMmKFn\nn322x/vedNNNeuGFFyRJl156qVpaWg54/AsvvKDzzjtPN954Y7/Xnq1CoZCuvfZaW8eYN2+enn76\n6T4/vjfv5Ww1efJkbdu2rVefgX0/M0fivvvu06JFi/paInDEPJkuAEingoIC/fd//3fq6+3bt+u6\n665TYWGhZsyYoW9/+9uHPcby5cs1duzYg97Wm8f35KOPPtLu3bslSSeeeKIee+wxW8frjd27d+vv\nf/+73nvvPbnd7l4/Lnked+zYsd/jr732Ws2dO1eXXnppf5Wc9Zqbm7V69eqM1mD3vZgNevMZ2Pcz\nA2QzAhUcbcSIEbrtttv09NNPa8aMGZo3b57GjRunG2+8UY899phefvlleb1elZeX64EHHtDLL7+s\nNWvW6KGHHpLb7dbSpUvV1NSkrVu36rzzzlN9fX3q8ZL06KOPavXq1UokEpozZ46mT5+uF154Qf/3\nf/+np556SpJSX99777167LHHFAqFdNddd+myyy7TggUL9Pvf/16hUEj//M//rJqaGlmWpWnTpun2\n22+Xx+PRiSeeqK9//et67bXXtGfPHl177bW67rrrDnitb731lh566CG1t7fL6/Vqzpw5OuWUU/TV\nr35VsVhMV1xxhRYtWqRRo0alHrN7927NmzdPe/bs0fDhw1VfX5+67bjjjtOyZcv2e/zIkSO1evVq\nbdu2TY2NjZo1a5Z+/OMfa8WKFYrH45owYYLuueceBQIBffrTn9akSZO0bt063X777Zo0aZLuu+8+\n7dy5U52dnfrc5z6nm2++Wdu2bdN1112nc889VytXrlRzc7Pmzp2rz372s4rFYnr44Ye1bNkyud1u\nTZ48WfPnz5fP59OTTz6pP/3pT0okEhoxYoTmz5+vIUOG6E9/+pOefPJJWZYlt9utO+64Q6effrqW\nLl2qxYsX6xe/+MUB5+65557Tb3/7W3V2dqq5uVlf+9rXNGvWLEnSU089pRdffFEej0ejR4/Wgw8+\nqLvuuksdHR269NJL9cILL2jChAl64403VFFRkTp3b7zxhsrKyrRw4UKtXLlSra2tMsbo/vvv16mn\nnnrI9+y8efPk9/u1evVq1dXV6aKLLlJFRYX++te/qra2Vvfff7/OOuus/d7Lh3qPHOq9+NRTT+mt\nt97Sgw8+qEQiIalrdHLGjBn71bJ8+XI99NBDGjJkiLZu3aqCggI9+OCDOvbYYzVv3rz9Phvf/va3\nD/leeOutt7RgwQJZlqUTTzwx9ZzLly9PfQZaW1t1//3365133pHb7dY//dM/6ZprrtnvM/PAAw/o\nL3/5i5588kl1dnaqoKBAd955pyZPnqxwOKzvfe97qqmp0eDBg+V2u3s8z0DaGcAhtm7dak4++eQD\nvr9+/Xpz0kknGWOMufPOO82//du/mR07dphTTjnFRCIRY4wxTz/9tHn55ZeNMcZ8+ctfNv/zP/+T\nuv9XvvKV1LGSjzfGmOrqavPUU08ZY4xZt26dmTJliqmvrzfPP/+8+frXv556zL5f7/vvN99803zu\nc58zxhhzxx13mAULFphEImEikYi54YYbUseurq42zzzzjDHGmNWrV5sTTjjBdHR07PcaGxoazFln\nnWXee++91GueMmWK2bJlyyHPizHGfOMb3zD/8i//YowxZtOmTebkk082zz//fOp56+vrD3j8vudn\n0aJF5sEHHzSJRMIYY8xPfvITM3/+fGOMMdOnTzc/+9nPUo+bPXu2Wbp0qTHGmI6ODjN79mzzhz/8\nwWzdutVUV1ebv/zlL8YYY/73f//XnHfeecYYY371q1+ZL33pS6a9vd3E43Hz7W9/27z44ovmxRdf\nNHPmzDGdnZ3GGGMWL15svvrVrxpjjDn//PPNu+++a4wx5m9/+5tZtGjRQV97UjgcNjNnzjQNDQ3G\nGGPefffd1Ov985//bD7zmc+YpqYmY4wxCxcuNE888cQB5yR5rj759TvvvGO+9a1vmXg8bowx5qmn\nnjI33XSTMWb/99K+7rzzTnPVVVeZaDRq9uzZY6qrq81//Md/GGOM+eUvf2muv/76Ax5/qPdIT+/F\na6+91vz+9783xhjzwQcfmHvvvfeAWt58800zfvx4s2LFCmOMMb/+9a/N5Zdfnnr+fT8bh3ovRCIR\nc/bZZ5vXX3/dGGPM7373O1NdXW22bt2632dg4cKFZu7cuSYWi5lIJGK+9KUvmTfffHO/mjdu3Ggu\nvvji1M9q/fr1ZurUqaa1tdX88Ic/NHfccYdJJBKmvr7enHPOOeaxxx474DUB/YURKjieZVkqKCjY\n73tDhgzR+PHjdfnll+ucc87ROeeco7POOuugj+/pf7nXXHONJKm6ulrHHnus3n333T7V+Oqrr+o3\nv/mNLMuSz+fT1VdfrV/96lf6+te/Lkk6//zzJUkTJ05UNBpVW1ub/H5/6vGrVq3SqFGjdNJJJ0mS\nxo0bp1NOOUX/+Mc/dMYZZxzyeV9//XXdeeedkqTRo0f3eN+DWbZsmUKhkF5//XVJUmdnpyorK1O3\nn3baaZKktrY2rVixQs3NzfrpT3+a+l5NTY0mTZokr9erc889V5I0YcIENTU1peq79NJLUz+/Rx99\nVFLXdNfq1av1hS98QZKUSCTU3t4uSfrc5z6nb37zmzr33HM1depUfe1rX+vxNRQXF+vnP/+5Xnnl\nFW3atEk1NTVqa2uTJL3xxhu68MILVVpaKkm66667JHWt1+uNyZMnq7S0VIsXL9bWrVu1fPlyFRcX\nH/Zx06dPl9frVVVVlYqKijRt2jRJ0qhRo1Ln5pMO9h7pyUUXXaT77rtPf/nLX3T22Wfr9ttvP+j9\nxo8fn/o5fuELX9B9992nxsZGSft/Ng71Xli/fr08Hk/q83XxxRcfdE3U66+/rrvuuktut1tutzu1\n3i+5pk9SagRu3xFay7K0ZcsWvfHGG7r77rtlWZYqKip0wQUX9Pj6gXQjUMHxVq9ererq6v2+53K5\n9Oyzz2r16tV64403tHDhQp1xxhm65557Dnh8UVHRIY/tcu29rsMYI4/HI8uyZPbZIrOzs/OwNSan\nQPb9OhaLpb5OhifLslLP1dPjk/fZ9xgH88laPZ4j+5WQSCR09913p8JQa2urIpFI6vbkuUskEjLG\naPHixSosLJQkNTQ0yO/3q7GxUV6vN3Uuk6/xYPXU1dUpkUgokUjoq1/9ampaLhqNqrm5WZI0d+5c\nXXnllfr73/+uF154Qf/6r/+qF154Yb+f1b527dqlL37xi5o5c6ZOPfVUXXjhhfrrX/8qSXK73fvV\n09LSopaWlh7PSTQaTf172bJl+uEPf6jrr79e559/vo455hi99NJLPT5eknw+335f9+bncrD3SE/v\nxauvvlrTp0/Xa6+9pr/97W/62c9+ppdeeknBYHC/435y3Z0xJvW9fT8bh3ov7Ny584D368FeT/Kz\nk7Rz584D/iOUSCR01llnpYJ18n6DBw9O1XaouoH+xlV+cLSNGzfqiSee0A033LDf92tqanTxxRfr\n2GOP1U033aTrrrtO69atk9T1i/hwQSTpxRdflCStXbtWmzdv1kknnaSKigp9+OGHikQiisViqT/O\nPR37U5/6lP7zP/9TxhhFo1EtWbJEZ599dq9f50knnaSNGzdq1apVkqQPP/xQK1as0JQpU3p83LRp\n0/Tb3/5WUtfi8+XLl/f6OfetOxqNKpFI6Pvf/74eeeSRA+4XCAR08skn69///d8ldQWTa665RkuX\nLu3x+GeddZZ+//vfp45/77336g9/+IM+9alP6bnnnlM4HJbUdcXbHXfcoVgspk9/+tNqa2vTNddc\no/nz52vDhg09/jzXrFmjiooKfeMb39C0adNSP694PK6zzz5bL7/8cup5Fi1apF/+8pfyeDyKx+Op\nP+AVFRWpReovv/xy6tivvfaapk+frlmzZunEE0/Un//8Z8Xj8d6eXtt6ei9effXV+uCDD3TFFVdo\nwYIFamlpSYXSfdXU1KimpkaS9Nvf/lannHKKSkpKDrjfod4L1dXVMsbolVdekSQtXbr0oM9z1lln\n6cUXX1QikVA0GtVtt92mFStW7PeZOfPMM/Xaa69pw4YNkqRXXnlFn//85xWJRDRt2jQ999xzSiQS\nam5uPux7C0g3RqjgKMmFwlLX6JHf79ftt9+u8847b7/7jR8/XhdddJG+8IUvqKioSAUFBanRqenT\np+tHP/pRr0aWtm7dqssuu0yWZemRRx5RWVmZpk6dqtNPP10XXXSRqqqqdMYZZ6TC2uTJk/Xoo4/q\n1ltv3e+y+3vuuUf333+/LrnkEnV2dmratGm6+eabe/26Kyoq9NOf/lQLFixQR0eHLMvSAw88oDFj\nxvQ4PTV//nzddddduuiiizR06FCNHz++188pSd/4xjf0ox/9SJdffrni8biOP/54zZs376D3/fGP\nf6wFCxbokksuUTQa1cUXX6zPf/7zPdZ39dVXa/v27briiitkjNGUKVM0e/ZsuVwu7d69WzNnzpRl\nWRo2bJgefPBBeTwe3X333frOd76TGvFYuHChfD7fIRelT506Vc8995wuvPBCFRYWatKkSaqoqNDm\nzZt17rnn6qOPPkpN7Y4dO1YLFixQYWGhJkyYoIsuuki/+c1vdM899+i+++5TSUmJzj77bFVVVaXq\n/853vqNLLrlEbrdbp512Wmoh/UDo6b34ne98RwsXLtSjjz4ql8ulb37zmxo5cuQBxxg0aJAeffRR\nbd++XRUVFXrooYcO+lyHei94vV49/vjjuvfee/XII4/o+OOP329aOOmb3/ymfvjDH+rSSy9VPB7X\nZz/7WX3mM5/Rli1bUp+Zxx9/XPfdd59uv/321Ijwk08+qaKiIn3rW9/S/PnzU4v4PzkqDfQ3y3xy\nLBYAAO1/FR6AnjHlBwAAYBMjVAAAADYxQgUAAGATgQoAAMAmAhUAAIBNGW2bUFsbyuTTZ1x5eZEa\nG3vuZoze43ymF+czvTif6cX5TC/OZ+9UVQUPeRsjVBnk8dDJN504n+nF+Uwvzmd6cT7Ti/NpH4EK\nAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAA\ngE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACb\nCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgkyfTBQDIrGXvbT/o94OBAoXCHb0+znknj0hX\nSQCQcxihAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIA\nALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABg\nk6enGzs7O3X33Xdr+/btikajuuWWWzRs2DDddNNNOvrooyVJ11xzjT772c9qyZIlWrx4sTwej265\n5RZNnz59IOoHAADIuB4D1UsvvaSysjI9/PDDampq0mWXXaZbb71V119/vW644YbU/Wpra/XMM8/o\n+eefVyQS0axZszR16lT5fL5+fwEAAACZ1mOguvDCCzVjxgxJkjFGbrdba9as0caNG7V06VKNHj1a\nd999t1atWqXJkyfL5/PJ5/Np1KhRqqmp0aRJkwbkRQAAAGRSj4GquLhYkhQOh3Xbbbdpzpw5ikaj\nuuqqq3TCCSfoySef1OOPP67x48crGAzu97hwOHzYJy8vL5LH47b5EnJbVVXw8HdCr3E+j1wwUNCn\n2z6Jc394nKP04nymF+fTnh4DlSTt3LlTt956q2bNmqVLLrlELS0tKikpkSRdcMEFWrBggU477TS1\ntramHtPa2rpfwDqUxsY2G6XnvqqqoGprQ5kuwzE4n30TCncc9PvBQMEhbzsYzn3PeH+mF+czvTif\nvdNT6OzxKr+6ujrdcMMN+u53v6srr7xSknTjjTdq1apVkqQ33nhDEydO1KRJk/T2228rEokoFApp\nw4YNqq6uTuNLAAAAyF49jlD9/Oc/V0tLi5544gk98cQTkqR58+Zp4cKF8nq9GjRokBYsWKBAIKDZ\ns2dr1qxZMsZo7ty58vv9A/ICAAAAMs0yxphMPXm+Dy8yxJpenM++Wfbe9oN+/0in/M47eUS6SnIk\n3p/pxflML85n7/R5yg8AAACHR6ACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGo\nAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEA\nANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACw\niUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOB\nCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUA\nAIBNBCoAAACbCFQAAAA2EagAAABsIlABAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAA\nmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYR\nqAAAAGwiUAEAANhEoAIAALCJQAUAAGATgQoAAMAmAhUAAIBNBCoAAACbCFQAAAA2EagAAABsIlAB\nAADYRKACAACwiUAFAABgE4EKAADAJgIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAA\nsIlABQAAYBOBCgAAwCYCFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAEAANhEoAIAALCJQAUAAGCT\np6cbOzs7dffdd2v79u2KRqO65ZZbNHbsWM2bN0+WZWncuHGaP3++XC6XlixZosWLF8vj8eiWW27R\n9OnTB+o1AAAAZFSPgeqll15SWVmZHn74YTU1Nemyyy7T+PHjNWfOHJ1xxhn6wQ9+oKVLl+rkk0/W\nM888o+eff16RSESzZs3S1KlT5fP5Bup1AAAAZEyPgerCCy/UjBkzJEnGGLndbq1du1ZTpkyRJJ1z\nzjl67bXX5HK5NHnyZPl8Pvl8Po0aNUo1NTWaNGlS/78CAACADOsxUBUXF0uSwuGwbrvtNs2ZM0c/\n+tGPZFlW6vZQKKRwOKxgMLjf48Lh8GGfvLy8SB6P2079Oa+qKnj4O6HXOJ9HLhgo6NNtn8S5PzzO\nUXpxPtOL82lPj4FKknbu3Klbb71Vs2bN0iWXXKKHH344dVtra6tKSkoUCATU2tq63/f3DViH0tjY\n1seynaGqKqja2lCmy3AMzmffhMIdB/1+MFBwyNsOhnPfM96f6cX5TC/OZ+/0FDp7vMqvrq5ON9xw\ng7773e/qyiuvlCRNmDBBy5cvlyS9+uqrOu200zRp0iS9/fbbikQiCoVC2rBhg6qrq9P4EgAAALJX\njyNUP//5z9XS0qInnnhCTzzxhCTpe9/7nu6//3498sgjOuaYYzRjxgy53W7Nnj1bs2bNkjFGc+fO\nld/vH5AXAAAAkGmWMcZk6snzfXiRIdb04nz2zbL3th/0+0c65XfeySPSVZIj8f5ML85nenE+e6fP\nU34AAAA4PAIVAACATQQqAAAAmwhUAAAANhGoAAAAbCJQAQAA2ESgAgAAsIlABQAAYBOBCgAAwCYC\nFQAAgE0EKgAAAJsIVAAAADYRqAAAAGwiUAE4KGOMEsZkugwAyAkEKgAHSCSM/vDaRr34yseKxROZ\nLgcAsh6BCsABVtTs0eZdIbV2xLRldyjT5QBA1iNQAdhPzeZGrdvSpLKAX5K0fmtzhisCgOxHoAKQ\nsqOuVStq9qjA59bnzzlGwyqLtKexXU3hSKZLA4CsRqACIElqDkf0yns7ZMnS9MkjFCzyqfqoMknS\nh4xSAUCPCFQAJElv1dSqM5bQ2ScOUVV5oSRp5OCACnxubdjRzOJ0AOgBgQqAjDHa09SukiKvjhle\nmvq+22Vp7IhSRTsTLE4HgB4QqACopbVTnbGEBpUVHnDbuKO6AhaL0wHg0AhUAFTX3C5JqiwpOOC2\nYJGPxekAcBgEKgCqb+6QJA0qOzBQSWJxOgAcBoEKgOqaO2RZUkXQf9Db912cznY0AHAgAhWQ5+IJ\no4aWiMqDfrndB/+V4HZZGj6oWNHOhMJtnQNcIQBkPwIVkOeaQhEljNGg0oNP9yWVdY9eNYZYRwUA\nn0SgAvJcckH6oNIDr/DbV3n3VjQsTAeAAxGogDxX170gvfIwI1TlQZ8kRqgA4GAIVECeq2/ukMdt\nqTTg6/F+hX6PfF6XmghUAHAAAhWQx9ojMTWFo6osKZDLsnq8r2VZKg/4FWrrZBsaAPgEAhWQxzbv\n6tpO5nDTfUllQb+MpOZwtB+rAoDcQ6AC8tjGXS2SdNAtZw4muTCddVQAsD8CFZDHNu7oDlRHMEIl\ncaUfAHwSgQrIYxt3hlTgc6u4wNOr+5dxpR8AHBSBCshTza1R1bd0qLK0QNZhFqQn+Txd4YtABQD7\nI1ABeWrjziOb7ksqD/rVEY2rIxrrj7IAICcRqIA8tamPgYotaADgQAQqIE9tOsKWCUmpLWhCtE4A\ngCQCFZCndje2K1DoVYGvdwvSk1IjVFzpBwApBCogDyWMUX1zu6rKjmx0SpJKi31yWWILGgDYB4EK\nyENNoYhicaOqXjb03JfLZamk2KemcETGmH6oDgByD4EKyEO1Te2SpEGlRx6opK4r/WJxo3B7ZzrL\nAoCcRaAC8lBdc4ck9WnKT+JKPwD4JAIVkIeSI1R9mfKT9r3Sj0AFABKBCshLtU1dI1S93RT5k/Ze\n6UfrBACQCFRAXqptbpfLslTRHYyOVHGBR16PixEqAOhGoALyUG1TuypK/PK4+/YrwLIslQX8ammN\nKp7gSj8AIFABeSbaGVdzONrn9VNJwSKvjKS2Dq70AwACFZBn7F7hlxQo9EoSrRMAQAQqIO/Y7UGV\nlApUbQQqACBQAXlm7whVmgIVI1QAQKAC8o3dHlRJgSICFQAkEaiAPJOa8rO5hqrI75FlEagAQCJQ\nAXmntqlDfp9bwe4pu75yuSwVF3gJVAAgAhWQV4wxqm1uV1VpoSzLsn28QKFX7ZG44vFEGqoDgNxF\noALySKi9U5Fo3HbLhKS9C9NjaTkeAOQqAhWQR+qa0nOFX1Kg0COJdVQAQKAC8ki6rvBL4ko/AOhC\noALyyN6mnumZ8iumFxUASCJQAXmlrjnNI1TdgaqVQAUgzxGogDxS272GKl0jVEV+j1z0ogIAAhWQ\nT2qb2lUa8MnndafleJZlqbiQXlQAQKAC8kQsnlBDSyRt031JgUKvOqJxRaLxtB4XAHIJgQrIEw2h\niBLGqKo0/YFKkupaOtJ6XADIJQQqIE/sbZmQnvVTSalA1X18AMhHBCogT9SluQdVUipQNTNCBSB/\nEaiAPFGb5i7pScnmnsmWDACQjwhUQJ5IBp50tUxIYoQKAAhUQN6ob+6Q22WpLOBP63ELfG65XVZq\nn0AAyEcEKiBPNIYjKgv45HJZaT2uZVkKFHqZ8gOQ1whUQB5IJIyaQlGVBdM7OpUUKPSqtSOm9kis\nX44PANmOQAXkgZa2qBLGqDyY3vVTScWsowKQ5whUQB5oDEUkSeVpXj+VFCj0SKIXFYD8RaAC8kAq\nUPXXlF+RTxIjVADyF4EKyAP9Hqi6R6hqWZgOIE8RqIA80P+BqmsNVT0jVADyFIEKyAP9Haj8Xrf8\nXjdTfgDyFoEKyAONoa6gk+6mnkmWZWlQWYHqmttljOmX5wCAbEagAvJAYziqYJFXXk//feQrSwrU\nHomrPRLvt+cAgGxFoAIczhijxlBHv7VMSKronk5sCDHtByD/EKgAh2uPxBTtTPTb+qmk8pKupqHJ\n9VoAkE8IVIDDNfTzgvSk1AhVCyNUAPIPgQpwuKYBD1SMUAHIPwQqwOGSI1T9tTFyUgVTfgDyGIEK\ncLjkCFVFP22MnFTGonQAeYxABThcY3hgRqj8XrcChV5GqADkJQIV4HCpLun93DZB6lpH1dASobkn\ngLxDoAIcrjEUkd/nVqHf3e/PVR70K9IZV1sk1u/PBQDZhEAFOFxjKKLygF+WZfX7c6UWpnOlH4A8\nQ6ACHKwzFle4vbPfWyYklbMwHUCe6lWgWrlypWbPni1Jev/99zVt2jTNnj1bs2fP1h//+EdJ0pIl\nS3TFFVdo5syZ+utf/9p/FQPotcYB6kGVVFGSDFSMUAHIL57D3eEXv/iFXnrpJRUWFkqS1q5dq+uv\nv1433HBD6j61tbV65pln9PzzzysSiWjWrFmaOnWqfD5f/1UO4LAGPFB1t2aguSeAfHPYEapRo0Zp\n0aJFqa/XrFmjZcuW6Utf+pLuvvtuhcNhrVq1SpMnT5bP51MwGNSoUaNUU1PTr4UDOLyBDlTl3SNU\njWw/AyDPHHaEasaMGdq2bVvq60mTJumqq67SCSecoCeffFKPP/64xo8fr2AwmLpPcXGxwuHwYZ+8\nvLxIHk9adbg1AAAgAElEQVT/X3mUzaqqgoe/E3qN87m/TrNLknT0iLJDnptg4NANP3u67ZOqqoIq\nLSuSJIUjMX4WB8E5SS/OZ3pxPu05bKD6pAsuuEAlJSWpfy9YsECnnXaaWltbU/dpbW3dL2AdSmNj\n25E+vaNUVQVVWxvKdBmOwfk80NadLZIkl0kc8tyEwgcfTQoGCg5528Ekjx8o9GpXfRs/i0/g/Zle\nnM/04nz2Tk+h84iv8rvxxhu1atUqSdIbb7yhiRMnatKkSXr77bcViUQUCoW0YcMGVVdX971iAGmR\n7JI+EE09kypK/Gps6aC5J4C8csQjVPfee68WLFggr9erQYMGacGCBQoEApo9e7ZmzZolY4zmzp0r\nv3/gfoEDOLimUERul6Vg8cBdIFIRLNCW3WG1dsQUKPQO2PMCQCb1KlCNHDlSS5YskSRNnDhRixcv\nPuA+M2fO1MyZM9NbHQBbGkIRlQV8cg1AU8+k5ML0hpYOAhWAvEFjT8ChEgmj5nBU5cHeLyxPh4ru\nKwrZJBlAPiFQAQ7V3BpVwhiVDVDLhKTk9jM09wSQTwhUgEM1dS9IrxjoQBXcO+UHAPmCQAU4VLJb\nedkAXuEnSeXJDZIZoQKQRwhUgEOlRqhKBjhQBRihApB/CFSAQzWEugLNQI9QeT0ulRR5GaECkFcI\nVIBDNYUys4ZK6pr2awhFaO4JIG8QqACHSo4QlQ7wCJXUFeI6YwmF2zsH/LkBIBMIVIBDNYWjChR6\n5fUM/Me8IsjCdAD5hUAFOFRTODLg66eS9nZLJ1AByA8EKsCB2iMxdUTjKgsO3B5++0r1ogpxpR+A\n/ECgAhyouTUqaeCv8EuqoBcVgDxDoAIcKHmFX8am/OiWDiDPEKgAB0o29SwPZGbKrzzolyVGqADk\nDwIV4EBN4cxO+XncLpUU+1iUDiBveDJdAIC+Wfbe9kPetvrjeknShp3Nam6LDlRJ+ykP+rWttlXG\nGFmWlZEaAGCgMEIFOFB7JCZJKvJn7v9MFSUFisUTCtHcE0AeIFABDtTWHagKfJkLVMmF6Y1M+wHI\nAwQqwIHaIzEV+t1yuTI31VZRQi8qAPmDQAU4jDFGbR0xFWZwuk/au/0MC9MB5AMCFeAwnbGE4gmT\n0fVT0j69qBihApAHCFSAwyTXT2V8hKp7yo9eVADyAYEKcJi2ju4r/AoyG6jKAl3NPZnyA5APCFSA\nw7RnyQiVx+1SScCnRqb8AOQBAhXgMNnQgyqpIligxlBECWMyXQoA9CsCFeAwqTVUGZ7yk6SKoF+x\nuFGojeaeAJyNQAU4THtH9oxQlacWpjPtB8DZCFSAw7RFYrIsqcDnznQp9KICkDcIVIDDtEfiKvR7\nsmJD4lS39BZGqAA4G4EKcJBkl/RsmO6T9o5Q0YsKgNMRqAAHiXQmlDAm4y0TkvZ2SydQAXA2AhXg\nIKmWCVlwhZ8klQV9siypkSk/AA5HoAIcJNklPVtGqNwul8oCfkaoADgegQpwkGxq6plUHvTT3BOA\n4xGoAAfJlo2R91UR9CueMAq1RjNdCgD0GwIV4CDZtoZKksqTvaiY9gPgYAQqwEGybQ2VtG8vKgIV\nAOciUAEO0h6JyWVZ8nuz56NdUZIcoeJKPwDOlT2/dQHY1haJqaggO7qkJyV7UTUyQgXAwQhUgEMY\nY9QeianQn/k9/PZVkWruyQgVAOciUAEO0RGNy5jsapkgSWUBv1yWxaJ0AI5GoAIcItUyIYuu8JMk\nl8tSacDHlB8ARyNQAQ7R3pF9TT2TKkr8agpHlEjQ3BOAMxGoAIfIxqaeSeXBAsUTRs009wTgUAQq\nwCGysalnUnJheiPrqAA4FIEKcIhsbOqZlOpF1cKVfgCciUAFOEQ2boyctLd1AiNUAJyJQAU4RGtH\nTB63Ja8n+z7W5SXJKT9GqAA4U/b95gXQJ+2RmIr82dUlPakiuUEyrRMAOBSBCnCAeCKhjmhcRQXe\nTJdyUKXFPrldFovSATgWgQpwgOSC9Gy8wk/qau5ZFvCx/QwAxyJQAQ7QlsUtE5LKSwrUFIoqnkhk\nuhQASDsCFeAAbVncJT2psqRACWPUFKK5JwDnIVABDpDtU35SV6CSpHp6UQFwIAIV4AB7A1V2LkqX\npMru1gkEKgBORKACHKAti5t6JlWWdo9QNROoADgPgQpwgLaOTlmWVOB3Z7qUQ2LKD4CTEagAB2jr\niKnQ75ErC5t6JlUQqAA4GIEKyHHGGLV1d0nPZoV+j4oLPEz5AXAkAhWQ4zqicRkjFWfxFX5JlSUF\nqm/pkDEm06UAQFoRqIAclwtX+CVVlhYo2plQuL0z06UAQFoRqIAcl7zCrzBHRqgk1lEBcB4CFZDj\nWju6RnuKs3wNlbTPwvRmNkkG4CwEKiDHtedAl/SkQaWMUAFwJgIVkONyYduZJJp7AnAqAhWQ41pz\noEt6EmuoADgVgQrIce0dMfm9brnd2f9xDhZ55fW4CFQAHCf7fwMD6FFrR2dOTPdJkmVZqigpYMoP\ngOMQqIAcFo3FFYubnAlUkjSoxK9we6ci0XimSwGAtCFQATkstSA9B9ZPJVVypR8AByJQATksl67w\nS0ouTG8gUAFwEAIVkMNyMVAlm3vWEagAOAiBCshhbamWCdm/j1/SIHpRAXAgAhWQw9q6t53JpREq\nelEBcCICFZDDklN+xTkUqMqCflmW1MAIFQAHIVABOawtEpPHbcnryZ2PssftUlnAzwgVAEfJnd/C\nAA7Q1hFTod8jy7IyXcoRqSwtUGMoqngikelSACAtCFRAjoonEuqIxlVckDsL0pMGlRQoYYwaQ5FM\nlwIAaUGgAnJUe0dXp/FcWpCelGzu2dBCoALgDAQqIEe1Rbqu8CvMoS7pScleVLROAOAUBCogR7Xm\n4BV+SZU09wTgMAQqIEe152CX9KRKmnsCcBgCFZCjWnM4UA1iPz8ADkOgAnJULm47k+T3uRUo9NKL\nCoBjEKiAHNXa3inLkgr87kyX0icVJX7VN3fIGJPpUgDANgIVkKNaOzpVXOCVK8eaeiZVlRUqGkuo\npTWa6VIAwDYCFZCDOmNxtUfiChTm3nRf0uCyQknSnqb2DFcCAPYRqIAcVN/dELO4MPcWpCdVlXcH\nqkYCFYDcR6ACclCy3UAuj1BVdY9Q1TJCBcABCFRADkpeHZfLgYopPwBOQqACclBdc1cIycWNkZMq\nSvxyuyzVMuUHwAF6tQBj5cqV+vGPf6xnnnlGmzdv1rx582RZlsaNG6f58+fL5XJpyZIlWrx4sTwe\nj2655RZNnz69v2sH8lY2Tvkte2/7ET+mqMCj7XWtqceed/KIdJcFAAPisCNUv/jFL3TPPfcoEula\nBPvAAw9ozpw5+vWvfy1jjJYuXara2lo988wzWrx4sZ5++mk98sgjika5FBroL3XNHbKUm13S9xUs\n8qojGldnLJHpUgDAlsMGqlGjRmnRokWpr9euXaspU6ZIks455xy9/vrrWrVqlSZPniyfz6dgMKhR\no0appqam/6oG8lx9S4eKCjxyuXKzB1VSsMgnSQq18R8wALntsIFqxowZ8nj2/i/YGCOru5FgcXGx\nQqGQwuGwgsFg6j7FxcUKh8P9UC6AWDyhxlBExVk03ddXwe7XEGrrzHAlAGDPEc8XuFx7M1hra6tK\nSkoUCATU2tq63/f3DViHUl5eJI8nN7fNSJeqqsOfJ/RePpzPXfWtMkYqCxYoGCjo1+fq7+NXVRZL\nqlU0bhQMFDj+5+f01zfQOJ/pxfm054gD1YQJE7R8+XKdccYZevXVV3XmmWdq0qRJevTRRxWJRBSN\nRrVhwwZVV1cf9liNjW19KtopqqqCqq0NZboMx8iX87l+c6Mkye91KRTuv82Fg4GCfj2+JHm6Zyzr\nm9oUCnc4+ueXL+/PgcL5TC/OZ+/0FDqPOFDdeeed+v73v69HHnlExxxzjGbMmCG3263Zs2dr1qxZ\nMsZo7ty58vv9tooGcHCpK/xyfEG6tPcqRab8AOS6Xv1GHjlypJYsWSJJGjNmjJ599tkD7jNz5kzN\nnDkzvdUBOECqB5UD1lB5PS4V+t0EKgA5j8aeQI5xQpf0fQUKfWrt6FQiYTJdCgD0GYEKyDHJKb9c\n3hh5X8Eir4yRwu2MUgHIXQQqIMfUNXeoNOCT2+WMj2+wiHVUAHKfM34jA3kikTBqDEU0qLR/2xkM\npFRzz3aaewLIXQQqIIc0hSOKJ4wqS5wUqLpGqMKMUAHIYQQqIIfUda+fGlRamOFK0ocpPwBOQKAC\nckhyQXqlg6b8/F63vG4X+/kByGkEKiCHJHtQOWkNlWVZChR5FW7vlDG0TgCQmwhUQA5J9qBy0hoq\nqWvaLxY3amlllApAbiJQATmkzoFTftLedVR7mtozXAkA9A2BCsgh9c0dChZ55fe6M11KWgULu1on\n7GkkUAHITQQqIEckjFF9S4ej1k8lBbpHqGoZoQKQowhUQI5oaY0qFndWD6okpvwA5DoCFZAjnLp+\nSpKKC7yyLKmWKT8AOYpABeSIegc29UxyuSwFCr2MUAHIWQQqIEcke1A5ccpPkkqKfAq1daqtg47p\nAHIPgQrIEfUtEUnOauq5r9JA15V+O+rbMlwJABw5AhWQI+q6p8OcuIZKkkqLuwLVzrrWDFcCAEeO\nQAXkiF0NbSot9qnQ78l0Kf2ipHuEaicjVAByEIEKyAHRzrjqmzs0tKIo06X0m9JivyRpRz0jVABy\nD4EKyAG7G9tlJA2rdG6gKvC5FSzyahcjVAByEIEKyAG7GrpChpNHqCRpWGWxapvb1RmLZ7oUADgi\nBCogB+zsngYb6uARKkkaXlkkY6RdDfSjApBbCFRADkiNUFUWZ7iS/jWs+/XtZB0VgBxDoAJywK76\nNnncLg1yaFPPpGGDukbgdtA6AUCOIVABWc4Yo50NbRpSXiiXy8p0Of1qeGqEioXpAHILgQrIck3h\nqCLRuOPXT0lSedAvv9fNlB+AnEOgArJcvlzhJ0mWZWloZZF2NbQrkTCZLgcAeo1ABWS5fApUUteV\nfrF4IrUZNADkAgIVkOWS01/DHH6FX1LydbJJMoBcQqACsly+jVDROgFALiJQAVluV32bSop9Kipw\n5qbInzS8u3XCzjpGqADkDgIVkMWSmyIPy5PRKUmqKiuU22UxQgUgpxCogCy2p3tT5HxomZDkcbs0\nuLxQO+rbZAxX+gHIDQQqIIvl2/qppOGVxWqPxNTcGs10KQDQKwQqIIvtvcIvvwJVckRuJ1vQAMgR\nBCogi+XzCJUk7WxgYTqA3ECgArLYroY2edyWBpUWZrqUATWMK/0A5BgCFZCljDHa1dCmweVFjt8U\n+ZOGVSSbezLlByA3EKiALNXcGlV7JJ5XLROS/D63Kkv8tE4AkDMIVECW2tW99Uo+tUzY14iqgJrC\nUYXbOzNdCgAcFoEKyFL5uiA96ajBAUnS5t2hDFcCAIeXH3tZIO8te297Wo5z3skj0nKc3tiZ5yNU\no4cEJUlbd4c18eiKDFcDAD1jhArIUjvqwpKUl2uoJGnUkK4Rqi2MUAHIAQQqIAsZY7RpV0iDywtV\nVODNdDkZMaisUAU+N1N+AHICgQrIQnua2tXaEdMxw0oyXUrGuCxLowYHtKuhTZHOeKbLAYAeEaiA\nLLRxR4sk6eg8DlSSNGpIUMZI22rDmS4FAHpEoAKy0Mc7uwJVPo9QSV2BSpK27CZQAchuBCogC23c\n2dI15dW9MDtfsTAdQK4gUAFZJhZPaPOusEYOLpbP6850ORk1fFCx3C6LQAUg6xGogCyzvbZVsXgi\n76f7JMnjdmlEVbG21bYqnkhkuhwAOCQCFZBlkuunxhCoJHWto+qMJVJb8QBANiJQAVlmYzJQDSdQ\nSXs7prMwHUA2I1ABWWbjzhb5vW4NryzOdClZgT39AOQCAhWQRdojMe2obdXRQ4NyuaxMl5MVjhoc\nkCWu9AOQ3QhUQBbZsjskI6b79lXo92hweaG27gnLGJPpcgDgoAhUQBahoefBjRoSVGtHTPUtHZku\nBQAOikAFZJG9W84EM1xJdtnb4JOF6QCyE4EKyCIbd7aopMirypKCTJeSVfZuQcM6KgDZiUAFZInm\n1qjqWyIaM6xElsWC9H2xpx+AbEegArIE/acOrbTYp9KAj9YJALIWgQrIEsn1UyxIP7gxQ0vUGIqo\nMRTJdCkAcAACFZAl1m1plCXpaALVQY0dWSpJ+mh7c4YrAYADEaiALNAUjujDbc0aN7JUgUJvpsvJ\nSmNHdAWqD7c1ZbgSADgQgQrIAu+sr5WRdOr4wZkuJWsdPTQot8vSR9sYoQKQfQhUQBZ4q2aPJOnU\n6qoMV5K9fF63jh4a1JbdYUWi8UyXAwD7IVABGdbSGtW6rU0aO6JUFfSf6tHYkaVKGJO6IhIAsgWB\nCsiwd9bXyhjptOMYnTqcsSPKJEkfsjAdQJYhUAEZ9ta67um+41g/dTipK/1YRwUgyxCogAwKtUVV\ns7lJY4aVqLKU6b7DKS32aXBZoTZsb1bCmEyXAwApBCogg979sE4JY3TaeKb7emvsyFK1RWLaUdea\n6VIAIIVABWRQ8uq+05ju6zWm/QBkI0+mCwCyUUtrVKs/rldDS0SVJQWqKi/UkPJCGWPStnFxuL1T\nH2xu1OihQVWVFablmPlg3Ii9HdPPmzwiw9UAQBcCFbCPUFtUqzbU6+MdLTJGsiypMRRJbXfy91U7\ndf1nj9fxo8ttP9d7H9YpnjBc3XeEhg0qVpHfwwgVgKxCoAK6fbCpUW+t2yNjpNKATycdW6lRQ4Jq\nCke0p6ldexratWV3WD/+zbu66MzRumzaGHncfZs1jycSWvr2NklM9x0pl2Xp2BGlWv1xvZpboyot\n9mW6JAAgUAGStLuhTW/V7FGB363Txg/W6KFBubqn9ipKClRRUqDxo8p11OCA/vWltfrjm5v1/qYG\n3fT5iRpSUXTEz/enf2zV5t0hnTVxaJ8en+/GjuwKVB9ta6LdBICswKJ05L2OaEyvrtwpWdK5Jw/X\nmGElqTD1SccOL9W910/R1BOGatOukO795Qq9u772iJ5vZ32rXvzbRpUU+3TNP41Lx0vIO+NSGyUz\n7QcgOxCokNeMMXpt1S61R2I6edwgDS4//GhRod+jGy+eoK9fMkHGGC16YbV+9/ommV70RUoYo3//\nnxrF4gl9+YJqBQq96XgZeWfM8JKujZLpmA4gSxCokNfWbmrU9rpWDR9UpBPGVBzRY8+cOFR3f/lU\nVZb49eKrH+upl9Yq0tnzpr1/eXubPtrWrNOOq9Jp45mq6iu/161RQ4LavCuk9kgs0+UAAIEK+au2\nqV3vrq9Vod+tqScO61M7hFFDgvr+V07X2JGl+scHe/TD/3hL731Ud9DRqj1N7XrulQ0qLvDoS585\nLh0vIa9NHFOueMKoZktjpksBABalIz8ZY7Tig64r+qZNGq5Cf98/CiXFPn336sn6zZ/Xa9l7O/TY\nc6s0siqgz501WsePLtfKDXV6e12t3t/UoFjc6CszxnNlWhqcMKZSv399s9ZsbNDkcbSeAJBZBCrk\npd0N7apr7tBRgwMaWmn/Kjuvx6VrLxyvT586Un98c7OWv79bT720dr/7HDU4oE9NGqYzJw6x/XyQ\njhleogKfW2s+rs90KQBAoEJ+WrOxQZJ0wjFHtm7qcEZWBfT1SybqsmnH6P+Wb9HO+ladeEylTjmu\nSkN6seAdvedxuzTh6Aq9s75WuxvbOL8AMopAhbzT0NKhHXWtGlJe2G9bvgwuK9TsGayT6m8njOkK\nVGs+btCQUwlUADKHRenIO2u7R6cmpnl0CgMveWVm8mcKAJlCoEJeCbd1atOukMoCPo0YVJzpcmDT\noLJCDa0o0gebGxWLJzJdDoA8RqBCXlm7qUHGdK2d6kubBGSfE8ZUKNIZp2s6gIwiUCFvdERj+mhb\ns4oLPDp6aEmmy0GaJC8sWLORq/0AZA6BCnlj3ZYmxRNGE8ZUyOVidMopjjuqXB63pbUfs44KQOYQ\nqJAXjDHasL1FHrelsd0b68IZ/D63qo8q05Y9YTWHI5kuB0CeIlAhL9Q2tSvc3qlRQ4LyenjbO80J\nYyol7e0vBgADrc99qC6//HIFAgFJ0siRI3XzzTdr3rx5sixL48aN0/z58+Vy8YcL2eHjHSFJXd21\n4TwnjKnQkr92tU+YeuKwTJcDIA/1KVBFIhEZY/TMM8+kvnfzzTdrzpw5OuOMM/SDH/xAS5cu1QUX\nXJC2QoG+isUT2rwrpAKfW0MraP7oRCOqilUW8GnNxgbFEwm5+c8cgAHWp0BVU1Oj9vZ23XDDDYrF\nYrr99tu1du1aTZkyRZJ0zjnn6LXXXiNQISus2digSGdcx48uZzF6llv23vY+P3ZweZHWb23Skr9+\npGvOr05jVQBweH0KVAUFBbrxxht11VVXadOmTfra174mY0yqr09xcbFCoVBaCwX66s21uyRJY5ju\nc7Sjhwa1fmuTNu/idw+AgdenQDVmzBiNHj1almVpzJgxKisr09q1a1O3t7a2qqTk8H+8ysuL5PG4\n+1KCY1RVBTNdgqN88ny2dXTqvY/qVRbw6+jhpbabeWbTzysYKHDEc6RLcbFfhat2asvusCoqiuV2\nZ9+0Xza9f5yA85lenE97+hSonnvuOa1fv1733nuvdu/erXA4rKlTp2r58uU644wz9Oqrr+rMM888\n7HEaG9v68vSOUVUVVG0t/5tOl4Odz9dW71S0M67jR5cp3Gr/kvps+nmFwh39evxgoKDfnyPdRg0J\naN2WJv3tna2aeHR27dXI5z29OJ/pxfnsnZ5CZ5/+C3fllVcqFArpmmuu0dy5c7Vw4UJ973vf06JF\ni/TFL35RnZ2dmjFjRp8LBtLlzfd3S5LGDGO6Lx8cPbTrl92KD/ZkuBIA+aZPI1Q+n08/+clPDvj+\ns88+a7sgIF2awxG9v6lBxwwvUUmxL9PlYABUlReq0O/WO+tr9eXPVMuThdN+AJyJ3zZwrOUf7JEx\n0pkThmS6FAwQl2Vp1JCgwu2dqtnSmOlyAOQRAhUc6611e2RZ0unHE6jyCdN+ADKBQAVHammNasO2\nZo0dUapSpvvyyuDyQpUGfHpnfa1i8USmywGQJwhUcKSVH9XJSJo8rirTpWCAWZal048brNaOmD7Y\nzLQfgIFBoIIjvfthnSRp8rhBGa4EmXD68YMlMe0HYOAQqOA4kc643t/UoGGVRRrC3n156dgRpSoP\n+vX2+lpFOuOZLgdAHuhT2wQgm72/sUHRWCKrp/vs7FmHw3t15Q6NrCrW6o8b9Oyf1unYEaV9Os55\nJ49Ic2UAnIoRKjgO032QpLEju0LU+q1NGa4EQD4gUMFREgmjlRvqVFrsYzPkPBcs8mn4oCLVNnWo\nMWR/2yEA6AmBCo7y0fZmhdo6ddLYQXLZ3AgZua/6qDJJ0oeMUgHoZwQqOMq7H9ZKkk6pZroP0siq\ngAr9bm3Y0UJPKgD9ikAFxzDG6N0P6+T3unX86PJMl4Ms4HJZGjuiVJ2xhDbvCmW6HAAORqCCY2zd\nHdKexnadcEyFvB53pstBlhjXPe3H4nQA/YlABcdYvnaXJK7uw/4ChV6NGFTM4nQA/YpABcdY8f5u\nWZY06VgCFfY37ihaKADoXwQqOEKoLaqazQ0aO6JUgUJvpstBlulanO7RxztaFKVzOoB+QKCCI6z5\nuEHGSJOOrcx0KchCLpel40eXqTOW0LotjFIBSD8CFRxh5Yau7ugnMd2HQ6geVSavx6UPNjfSQgFA\n2hGokPPiiYTWfNygqvJCjagqznQ5yFI+j1vjR5WpIxrXR9uaM10OAIdhc2RkvcNtJLy7oU1tkZiO\nGVGqV1buyGgtyG7HH12u9zc1au3GBlUfVSaXi276ANKDESrkvG21rZKk0cPYuw89K/B5NO6oUrV2\nxLRxZ0umywHgIAQq5LzttWG5XZZGVAUyXQpywMSjK2RZ0uqPG5QwJtPlAHAIAhVyWritU03hqIZW\nFsnr4e2Mwysu9OrY4aVqaY1q6+5wpssB4BD8BUJO21bb9QdxJIvRcQQmjqmQJK3+uF6GUSoAaUCg\nQk7b3r1+iuk+HInSgE9jhgXV0BLRxztYSwXAPgIVclZnLKGdDW0qC/jojo4jNrm6Sm6XpXfX16kz\nRl8qAPYQqJCzdjW0KZEwGsnoFPogUOjVhKPL1RaJae3GhkyXAyDHEaiQs7Z3r58aMZj1U+ibE46p\nVKHfrbUbG9Ta0ZnpcgDkMAIVcpIxRlv3tMrvdauqtDDT5SBHeT0uTR5XpXjC6N31dZkuB0AOI1Ah\nJzW0RNQeiWlEVTHdrmHLsSNKVFHi18c7WlTb1J7pcgDkKAIVctLWPV3TfUcNZv0U7LEsS6ePHyxJ\nWvHBHpp9AugTAhVy0tY9YbksS8MHsX4K9g2pKNLRw4Kqa+7Qmo9ZoA7gyBGokHPC7Z1qDEXojo60\nOuP4ISrye7TyozrVMfUH4Ajx1wg5Z1tquo/RKaSP3+fWpyYNkzHS31btpDcVgCNCoELO2bvdDOun\nkF5DK4s0cUy5Qm2dWlGzJ9PlAMghBCrklGgsrl31baoo8auY7ujoByePG6SKEr8+2tast9cRqgD0\nDoEKOWVnXZsShtEp9B+3y6VPTRomt8vS//vjB9q8K5TpkgDkAAIVcgrtEjAQygJ+nX3iUHVE4vrJ\nb9/T9rrWTJcEIMsRqJAzEgmjbbVhFfk9qijxZ7ocONyYYSX6ykXjFW7v1I8Xv6s9jW2ZLglAFiNQ\nIWfUNrUr2pnQyMEBWRbd0dH/zjlpuK4+f5yaw1E9/Jv31NDSkemSAGQpAhVyBtN9yITPnH6ULps2\nRvUtHXrwP9/Rhh3NmS4JQBYiUCEnGGO0eVdIXo9LQyvZDBkD65Kzj+4KVc0deuCZd/S71zcpkWCL\nGgB7EaiQE+qaOtTaEdOowQG5XbxtMbAsy9Lnp47Rd6+ZrNKATy+++rEe+s27qm9mChBAF/4yISds\n3DUqgnQAABjcSURBVNUiSTp6WDDDlSCfjR9drn++YYpOra7S+q1Nuutf39Qv/6dGO+u5ChDId55M\nFwAcTqJ7us/ndWlYJdvNILMChV594/IT9PqaXfrda5v06sodenXlDp10bKWmnzJSx48uk9fjznSZ\nAAYYgQpZb09ju9ojcY0dWSqXi6v7kHmWZWnqicN01sShevfDOv3fP7Zo5YZ6rdxQL5/XpQmjKzTp\n2EpNHFOhQaUFXJUK5AECFbLepp1dnaqPHsp0H7KLy2Xp1OOqdOpxVdqwvVkravZo1YZ6vfdRnd77\nqE6SVBbwaeyIUp103BANLfNr9JCgPG5WWwBOQ6BCVosnEtqyO6QCn1tDK4oyXQ5wSMeOKNWxI0p1\n9fnjtKexTas21Gvd1iZ9tK1Zb62r1VvraiVJXo9LY4YGdezIUo39/+3deXCT550H8O8r6dV92pJ8\nyzYGAjYQ7gABmhQIaeolWwilJcv+sU0m6W7T6THTdDqlzQyZlP2jx7QwzbRNurM7mSG0TZspzULI\nEgIUYgMJh20MxCc+JZ86ret99w/ZCk4wJbZsyfb3M6PB9vu+0vP+eGz99JzD15j16jSXnogmigkV\nZbT61gEMReKYX2Rldx9NG06bHptX6rF5ZRFkWUbP4BDc3jA+qO9GQ9sgbrYP4kbbx+tZ5WTpMbfA\njLkFFswttCIvWw8FuwmJphUmVJTRquu6AXB2H01fgiDAYdWhfJ4TFS4rACAUjqGx04uGtkF81D6I\nho5B/P1qF/5+tQsAoNeoUFZgQWmeCYUOIwocBjhtOi4ZQpTBmFBRxorFJXxwwwOdRgmnjYt50syh\n06hQUZKFipIsAIl9Kjt6AviofTD5uNrYi6uNvclrVEoBedkGFDgMKLAbUOAwotBuQJZFy9YsogzA\nhIoyVl1zHwJDMSwotvINg2Y0hUJAodOIQqcRDy0rAAB4AxG0un1o9wQSjx4/2nsCyS2YRmjUykSC\nZTdgboEFy+Y7YNSJ6bgNolmNCRVlrHO1w919ueY0l4Ro6pkNaiwqzcai0uzkzyRZRs9ACO2eANp6\nAmj3JJKsli4fGju8OH2lE/997DoWFNuwaoETK+5zwKBlckU0FZhQUUbyBiK4UO9GXrYeDqs23cUh\nyggKQYDTpofTpsey+Y7kz2NxCV29QVxt7MX5ejdqm/pQ29SHQ/93E4+udmHLqiLoNPxzTzSZ+BtG\nGen0lQ7EJRkPLyvgoohE/4BKqUh2GX5hTTHcAyFU13Xj+IVb+MuZJrxzsQ2Va4vx8PICruJONEk4\nZYQyjiTJOPlhB9SiAusW5aW7OETTjtOqQ+W6Eux/Zi2+tKEUcUnCoRMfYe8r1Wjs8Ka7eEQzEhMq\nyjhXGnvR6x3CmvJc6LVsRCUaL51GhX96sBT/+ew6bFlZBE9/CC/9z0X89WwzJElOd/GIZhS+W1HG\nefeDdgDA55cXpLkkNNudvNSesucyGbXw+YdS9nyfVZ5dj82rCvH3K13486lGnL3aiQeX5I17RuBD\nS/n7SXQ7tlBRRnEPhFDT2IuyAjNcOVzMkyiV8rINqHywBK4cI7r7Q/jb2RZ09wXTXSyiGYEJFWWU\n9z5shwzg4WX89Es0GbRqJT63NB8PlOcgEovj+PlbuNk2kO5iEU17TKgoY0RjcZy+0gmjTsSqBc50\nF4doxhIEAfe5rNiysggqlQLnarpxod4NSea4KqLxYkJFGeN8vRv+UBQbluRxajfRFMjN1uOxNcWw\nGNSoa+7Hux+0IxKLp7tYRNMSEyrKCLG4hL+ebYFCEPA5dvcRTRmzQY0vrHEh365HuyeAo++3wheM\npLtYRNMOEyrKCKcvd6C7L4iNS/PhtHIjZKKppBaV+PzyQiwotmLAH8Fb51o5WJ3oM2JCRWkXCsfw\n5pkmaNRKPL6+NN3FIZqVFAoBqxfmYM1tg9Vv3BqAzHFVRPeECRWl3f9WtcIbjOILD7hgMajTXRyi\nWW3+bYPV36/txunLnYhEOa6K6B9hQkVp1e8L4+3qVliMamxd5Up3cYgIicHqletK4LBq0dzlw5Gz\nLfD0h9JdLKKMxoSK0uovpxsRiUn40oY50Kg5s48oUxh1IraudmFJWTb8oSiOVrfiw5s9iMakdBeN\nKCMxoaK0afP4ceZqJwrsBqxfzE2QiTKNQiFg6Tw7HlldBJ1GhasNvfjzqUZcb+1HLM7Eiuh2TKgo\nLcKROH53pA6yDOx8uAwKhZDuIhHRGHKz9Hh8fSmWlGUjFpdQVefG3t9V4cyVToTCsXQXjygjcHNk\n+pRUbQg71uapsizjlbeuobXbj43352HxnOyUvB4RTR5RpcDSeXbc57LiSkMvbtwawKtvXcN/Ha1H\nocOA0jwz8u0GiKqp+Zx++2bT3KiZMgETKppyfz3bjAv1bswrtOBfHrkPgsDWKaLpQqdR4YHyHJSX\n2NDU4UVTpw+t3X60dvshADAb1cg2a5Ft1sJqUsOoE2HQimyFphmPCRVNqYvXPfjL6SZkmzX4jy8t\nhkrJXmei6cikV2PJXDsWl2VjwB9GU6cP7v4Q+rxDGPRH0NjhTZ4rCIBBK8KoG37oE/9aDGpYjWoo\n+XeAZgAmVDRlmjq9+N2ROqhFBZ7bsQRmrjlFNO0JggCbSQubSQsAkGQZvkAEvd4wvIEI/KEofMEo\n/KEouu6w+rogAGa9GjaTBnaLFjlZetjMGijYck3TDBMqmnSSJONYdSveONWIuCTj3/95EVw5pnQX\ni4gmgUIQYDFqYDFqPnUsFpcQCEWTSdZgIII+bxgDvjAGAxE0d/kAJMZrOW065GcbUOg0wKTnhy/K\nfEyoaFJ5BkJ45UgdbrQNwmxQ498eW4AlZfZ0F4uI0kClVNwx2ZJlGf5QFJ6BELr6QujuC6LdE0C7\nJ4Dz9YDVqEahwwhXjhHZFi3HXVJGYkJFKSdJMtwDIbx+4iZOXupAOBLHivsc+Net9/GTJhF9iiAI\nMOnVMOnVmJNvAQAEhqJo9wTQ5vajszeImqY+1DT1wagTUZJnQsUcO9RKMLmijMGEigAkPiH6QlH0\nDAyh3eNHOCohHI0jFpMgKAQohERTvkIhDP/78R+yaExCNCYhEpPgC0TQ0RNAZHg1Zb1GhacqF2Jt\nRS7/8BHRPTNoRcwvsmJ+kRWxuITO3iCaO7245fajprEPNY19sBjUKMkz4b4iK/KyDekuMs1yTKhm\noXAkjla3D02dPtzq9qGrL4iuviACQ6lZoM+gVaE034zH1hRjgcsKUcUtZYho/FRKBYqcRhQ5jYjF\npUTLlSeA5k4vLn/Ui8sf9cLlNGJ1eQ5WL3DCbtWlu8g0CzGhmuGiMQltHj+aOxPrxTR3edHeE4As\nf3yOUiHAYdVhXqEVTpsOnoEQNKISarUSolKALCdm7kiSDEnG8L+J74HEAFK1qISoUkCnVsFsECEI\nAhfsJKKUUykVKM41YdFcB/oGgrjl9sMXiKCmqQ9/PNmAP55sQFm+GasX5mDVQiesdxgcTzQZmFDN\nIIOBCNrcftxy+9Hm8aPN7UdHbwCx+MfZk1pUYG6BBSW5ZpTmmVCca4LDqhu1HlSqVkonIppMokqB\nOflmPLS0AP5QFB/c8KD6WjeutfSjocOLQyduorwkC+sqcrFsvh1aNd/yaPKwdk1DkWgcnb3BRNI0\nnDjdcvvhDUZHnadWJZrJS3LNKMkzoTTPjLxsPZQKLqJHRDOLUSdi4/352Hh/PgYDEVyod+NcbRdq\nm/pQ29QHjajE8vl2rF2Ui/LiLK7cTiknyPLtnT9Ty+PxpeulM4LDYUrG4E6tQiNTift9YfT7Emu1\n9Psj8AUi+OR/mlEnwmrSwGbSIGv4X6NenFWL492+txdNHOOZWoxnat1rPL2BxKrtjR1e+EOJD506\njRKleWbMyTcjy6xNnptJewJOdU/B3eKZSXFJN4dj7DUU2UKVQSRJRq93CO7+UPIRjsZHnSOqFHDY\ndLAaNbCZ1IkkyqiBWuTAbyKiTzIb1Fg6z47752bDMzCExo5BNHf5UNfcj7rmfmSZNSjLt6A0n4sN\n08QwoUozXzCCq429OHWpY9RyA0Bitlye3YQskyaZOOm1Ki4/QET0GQmCAKdNB6dNh1ULnWj3BNDQ\n7kWbx4/z9W5cvO5GQ7sXDy7Ow+I5WRwaQZ8ZE6o0GIrE8MENDy5cv4rLNz3J7juDVoWSPBNysvRw\nWnUw6MS0lpOIaCZSKhRw5ZjgyjEhFI6hqcOLj9oHcfG6Bxeve2AxqLF2US7WVuSi0GHgh1i6J0yo\npogkyahv7cfZmi5cvO5JduWV5ZuxbL4D4WgcVqOav7hERFNIp1GhvDQLC0tsKM0z48yVTlTVdeNo\nVSuOVrUiL1uPVQucWL0wB/l2Lh5KY+Og9EnW3hPA2ZpOvF/bjX5fGABgt2ixblEuvrixDOJw+LlU\nwcRx0G9qMZ6pxXim1mTEc2TwdTQm4fJHPai61o0rDb2IDg/FcNp0WFhsw8JiGxa4bDAbxreVliTL\nGPRH4BkIjXp4AxH4QzH4Q1F4AxFIw+8PI5+zVUpFYo1AMbH2n0ZUQj28DqBaHDk2/LVKCYVCGF5z\nUIYMIBaXEY3FEztbRKXhXS7iiaEmgoBAKJr4PiohGpcgDL+mw6qDRlTCatLAadUhZ7jrNCdLP2rJ\nndmAg9KnmDcQQdW1bpyt6ULL8O7pOo0KG+/Px7pFuZhXaIEgCHDYjbMiqSQimk5ElQIrFzixcoET\noXAMlxt6cKHeg2stfXjvUgfeu9QBAMg2a5GTlUgscmx6GHUqqJQKKBUClAoFhqIx+IJR+INR+EJR\n9HmHhpOnIcTi0h1fWy0qYNSJiVnaCgG4PSGKSRiKxOENRjCZTSGCkIgBZCAWl9AzeOfEVa1SoDTP\njLmFFpQVWDCv0AKDdvYOVWFClSIjv3TVdW5cbexFXJKhEATcX5aNdYvzsHRuNrdgISKaZnQaFdaU\n52JNeS7ikoSWLj+utfShvqUfbT2B5GzBe2XUiShyGuCw6pIPu0ULu1UHm1GdfJ+4W6+FLMuIxWWE\no3FEookWpZGvwzEJkUgckVgcw5tZYGQgiUqpgFpUQFQpIKoSrVuiSgG1SgGrRYdoJAZRlUgIbx9+\nsn5xHiLROHq9Ybj7g3D3h9DVF0RTpw83bg3g+q2BxOsIQEmuCeUlWSgvtmFuoWVWve8xoZqA4FAM\nNU29OH/NjSuNHzcLF+easK4iFw+U54y7SZiIiDKLUpFYmX1OvhlfXFsCIDHJyN0fQnd/CKFwDPG4\nhFhcRkySoBGVMOnVMOlEmPQibCYt9NqJv+0KggBRJSRakVI0eeluXagqpQIqpQJ6rYgip3HUseBQ\nDE2dXtxsG0D98Ar1TZ0+/O1cC0SVAvMLLVhYkoXyEhtcTtOMXlA1pQmVJEl44YUXcP36dajVarz4\n4osoLi5O5UukVSwuoaXLh9qmPtQ09aGxw5vs487L1if2jlrg5MBFIqJZQqtWJWcMzkZ6rQoVpVmo\nKM0CNiQSzBu3BpItd7XDDyAxk31hsS2ZYDmtuhk1ESulCdU777yDSCSC119/HZcuXcL+/fvx61//\nOpUvMSVkWYYvGIV7IITOngCau31o7vThltuf7PcWBGBOvhkVJVlYucCJAjun1hIR0eymVauwpMyO\nJWV2AIk9Zq+19KGuuR/Xmvtw4boHF657ACS6P105RricJhTlGJGXrYfdooNhmq63mNKE6uLFi9iw\nYQMAYOnSpaipqUnl049LZ28AgaFYcjZDNCYhEhuZ3SAhEo3DF4zCG4wkHv4I3AMhDEVGr1CuVAgo\ndBpRmmdGebENC0tss3rwHRER0T9iMaiTY9BkWYZ7IJRIrlr60dLlveMYNJ1GBYdFC4tRA5M+0V1q\n1InQqlXD478UEEfGgykT48E0aiUKHIa0breW0oTK7/fDaPy4f1WpVCIWi0GlSs9QrYvXPTj456uf\n6RqNqITDqoXDqkOOTQ+nTYfiXBMKHcZEfzURERF9ZoIgIMeWmBH58LLEEhXBoRhuuRM9QO7+EHoG\nEzMhu/qDaHX7P9PzP/FQGR5bk75hRinNdIxGIwKBQPJ7SZLumkzdbT2HVHjUYcKj6+dM6mtM1EgM\ndm5ZkOaSEBFRpphN7wnFRbZ0FyElUtrksnz5cpw6dQoAcOnSJcyfPz+VT09ERESUkVK6UvrILL8b\nN25AlmW89NJLKCsrS9XTExEREWWktG49Q0RERDQTcJQ1ERER0QQxoSIiIiKaICZURERERBPEhGoS\nDA0N4bnnnsPu3bvx9NNPo6+v71PnHD58GNu3b8eXv/xlvPvuu6OOHT9+HN/97neT31+6dAk7d+7E\nV77yFRw4cGDSy59pxhvPsa47fvw4Nm/ejD179mDPnj2orq6e0vtJF0mS8KMf/Qi7du3Cnj170NLS\nMur4iRMnsGPHDuzatQuHDx++6zUtLS346le/it27d+PHP/4xJEma8vtJt1TGs66uDhs2bEjWybfe\nemvK7yfdxhPPEZcvX8aePXuS37N+pjaerJ/3SKaUe/XVV+Vf/vKXsizL8pEjR+R9+/aNOu52u+XK\nyko5HA7LXq83+bUsy/K+ffvkrVu3yt/61reS52/btk1uaWmRJUmSn3rqKbm2tnbqbiYDjDeeY133\ns5/9TD569OjU3kQGOHbsmPz888/LsizLH374ofzss88mj0UiEXnz5s3ywMCAHA6H5e3bt8sej2fM\na5555hn5/fffl2VZlvfu3Su//fbbU3w36ZfKeB4+fFh+5ZVXpv4mMsh44inLsvyb3/xGrqyslHfu\n3Jk8n/UztfFk/bw3bKGaBLdvwbNx40acO3du1PErV65g2bJlUKvVMJlMcLlcqK+vB5BYy+uFF15I\nnuv3+xGJROByuSAIAtavX4+zZ89O2b1kgvHGc6zramtr8ac//Qm7d+/G/v37EYvFpvaG0uRuW0M1\nNDTA5XLBYrFArVZjxYoVOH/+/JjX1NbWYvXq1QASsZ1tdRJIbTxrampw8uRJPPnkk/jBD34Av/+z\nrRA9E4wnngDgcrnwq1/9atRzsX6mNp6sn/eGCdUE/eEPf0BlZeWoh8/ng8mUWAHdYDDA5/ONusbv\n9yePj5wzUkEfe+yxUZtCfnI7nzs930ySynje/vPbr3vwwQexd+9evPbaawgGgzh06NAU3V16jbU1\n1MixsWJ4p2tkWU7W05leJ8eSynguWbIE3/ve9/Daa6+hqKgIBw8enLobyRDjiScAbN269VM7crB+\npjaerJ/3Jj2b7M0gO3fuxM6dO0f97Bvf+EZyC55AIACz2Tzq+Ce36AkEAqMq9z8695PPN5OkMp63\n//z263bs2JH8etOmTTh27Nik3U8mudvWUPcSw9uvUSgUo86dyXVyLKmM55YtW5Ix3LJlC/bt2zdF\nd5E5xhPPsbB+pjaerJ/3hi1Uk2D58uV47733AACnTp3CihUrRh1fsmQJLl68iHA4DJ/Ph4aGhjG3\n6TEajRBFEa2trZBlGWfOnMHKlSsn/R4yyXjjeafrZFnGtm3b0NXVBQA4d+4cKioqpvaG0uRuW0OV\nlZWhpaUFAwMDiEQiuHDhApYtWzbmNeXl5aiqqgKQiO1sq5NAauP5ta99DVeuXAEwu+rk7cYTz7Gw\nfqY2nqyf94YrpU+CUCiE559/Hh6PB6Io4qc//SkcDgd+//vfw+VyYdOmTTh8+DBef/11yLKMZ555\nBlu3bk1eX1VVhUOHDuHnP/85gMQvw0svvYR4PI7169fj29/+drpuLS3GG8+xrjtz5gx+8YtfQKvV\noqysDD/84Q8himK6b3PS3WlrqLq6OgSDQezatQsnTpzAwYMHIcsyduzYgSeffHLM7aSampqwd+9e\nRKNRzJkzBy+++CKUSmW6b3FKpTKetbW12LdvH0RRhN1ux759+0Z118wG44nniLa2NnznO99JzlZj\n/UxtPFk/7w0TKiIiIqIJYpcfERER0QQxoSIiIiKaICZURERERBPEhIqIiIhogphQEREREU0QEyoi\nmhG+//3v4+WXX8bTTz8NAOjo6MCjjz6K7du3w+fzYfv27Xj88cfR1NSU5pIS0UzEhIqIZgyn04nf\n/va3AIDq6mpUVFTgjTfeQH19PdRqNd58802UlpamuZRENBNxHSoimpZkWcb+/ftx8uRJOJ1OxONx\nPPHEEzhw4AAOHjyIr3/96wgGg9i0aRMuXLiAnp4ePPDAA3j55ZfTXXQimoG4lx8RTUvHjh1DXV0d\njhw5Ap/Ph23btiWPLVy4EN/85jdRXV2Nn/zkJ6iqqsKBAweYTBHRpGGXHxFNS9XV1XjkkUcgiiKy\nsrKwcePGdBeJiGYxJlRENC0JggBJkpLfq1RscCei9GFCRUTT0tq1a3H06FFEIhEMDg7i9OnT6S4S\nEc1i/EhHRNPS5s2bcfXqVVRWVsJut6OsrCzdRSKiWYyz/IiIiIgmiF1+RERERBPEhIqIiIhogphQ\nEREREU0QEyoiIiKiCWJCRURERDRBTKiIiIiIJogJFREREdEEMaEiIiIimqD/ByGdJ8mPqkEAAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.47740581385e-05\n", + "MAE : 0.00256412901334\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean 0.000289\n", + "std 0.003846\n", + "min -0.009856\n", + "25% -0.001409\n", + "50% 0.000065\n", + "75% 0.001438\n", + "max 0.015438\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "\n", + "# Benchmark\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + "pred = model.predict(testX) # predict on testset\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['actual'] = testY\n", + "predictions = predictions.astype(float)\n", + "\n", + "predictions.plot(figsize=(20,10))\n", + "plt.title(\"Predicted close vs actual\")\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences: actual minus predicted')\n", + "plt.show()\n", + "# if predicted minus actual is positive, this is \n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + "predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compare the unscaled values and see if the prediction falls within the Low and High\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJuCAYAAAAe1Z9iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjXX/x/H3WWY3M8xi30sUkZL1lpsUWcKUQrc2qbuS\nSinUHTeitCmKqO6KklsmUf2ikiyRNSNrxjDGzJh9P+fMWa7fHzJ304wZmjMz5PV8PDyYc32vz/d7\nXXPO4zHHec/nazIMwxAAAAAAAAAAAAAAAAAArzJX9wIAAAAAAAAAAAAAAACAvyKCOQAAAAAAAAAA\nAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKCOQAAAAAAAAAAAAAAAEAlIJgDAAAAAAAAAAAAAAAAVAKC\nOQAAAAAAAAAAAAAAAEAlIJgDAAAAAMBFICEhQZdffrkGDRpU9Ofmm2/Wp59+WuHaDzzwgKKjoyVJ\ngwYNUk5OzhnH5ubm6s477yz6urzxVS0jI0Nt27bVc889d1bj/3g9f8aECRP07rvvlnosLy9Po0aN\nkt1uL3NcddqzZ4969epV4vGEhAS1b9++1HOWLFmiBQsWlFn3p59+0oABA7yyxj87z/l4z5955hn9\n+OOPf/r8F154QT/99JMXVwQAAAAAAMpire4FAAAAAACAquHv76/PP/+86OuTJ09qwIABatOmjVq1\nauWVOX5fvzTZ2dnas2fPWY+vasuXL9f111+vL7/8UuPGjVPNmjXLHP/H6/G2l19+WUOHDpW/v3+l\nzVEdhg8fXt1LuGA9//zzFTr/4Ycf1ogRI7Rs2bK/3PMKAAAAAIDzER1zAAAAAAC4SNWpU0dNmjTR\n0aNHFR0drREjRmjIkCEaOXKkJGnZsmWKiorS4MGDdffddys2NlbSqUDPPffco/79+2v06NFKTU0t\nqtmyZUtlZGRIkt5++2317dtXAwYM0MMPP6zc3FxNnDhRdrtdgwYNktvtLjb+zTffVL9+/TRw4ECN\nHTu2qO7IkSP1yiuv6I477lCvXr00fvx4eTyeYtcSFxenTp06qbCwUJLkdrt13XXX6fDhw1qzZo2G\nDBmiqKgoDR06VNu2bSv1fng8Hi1dulRDhgxRhw4dtHTp0mLHz/V6fn8/PB6Ppk+frqFDh6pfv366\n6aabtGPHjjK/P0lJSVq3bp169+5d4tj27dt12223aeDAgYqKitL69evldrvVuXNnHTt2TJK0YMEC\n9ezZs+ice+65Rz/88EOxOgUFBXrqqad02223qU+fPoqKitKRI0fKve8ff/yx+vTpo1tuuUUff/zx\nGa/B7Xbrueee05AhQ3T99ddr9erVkqQ5c+Zo6tSpkqSYmBhFRUVp4MCBevjhhzVkyJCiji4FBQV6\n/PHHNWjQIPXt21fbt28vMUdZ93b79u269dZbFRUVpaioqKL5/6igoEBjx47VoEGDNHLkSMXFxZUY\nc6bvrSStXbtWQ4cO1eDBgzVs2DDt2rWrxPkJCQnq0aOH7r33XvXp00cpKSnauXNn0esuKipK33//\nfdF9mzlzpm644QZFRUVpypQpRa/LkSNH6uuvv5Ykffvttxo8eLAGDhyo4cOHKyYmpuj+TpgwQaNG\njVLfvn01YsQInTx5UpIUHBys9u3bl3h+AwAAAACAykEwBwAAAACAi9SuXbsUHx+vdu3aSZIOHz6s\nRYsWadGiRdq6datWrFihjz76SCtWrNB9992nRx55RJI0depUtWvXTl9++aWeffbZUkMM3333naKj\no7V06VJ98cUXatiwoRYvXqyZM2cWde6xWCxF45cvX64NGzbo008/1apVq9SiRQtNmDCh6Hh8fLwW\nLVqklStXasuWLdq6dWux+Zo1a6YWLVpo7dq1kqSNGzeqQYMGuvTSSzVr1ixNnjxZ0dHRevTRR8+4\njc+GDRtks9nUtWtXDR48WB999JGcTuefup4/2r17t1JSUrR06VJ99dVXGjJkiBYuXFjm9+e7775T\n586dZbUWb3icmZmpsWPH6plnntGqVav04osvavz48UpMTFTPnj21YcOGoutxOp2Ki4tTbm6u9u/f\nry5duhSrtX79eoWEhOi///2vVq9erTZt2uijjz4q877v379fc+fO1eLFi7V8+XL5+Pic8RocDoe6\ndeumzz77TBMmTNBLL71U7LjL5dIjjzyiRx99VKtWrdLIkSO1f//+ouPJycm6++679fnnn2vYsGGa\nM2fOOd3bOXPm6J577lF0dLRmzJihLVu2lLrOpKSkonkGDBigp5566ozX9EdHjx7Va6+9pgULFmjF\nihWaNm2aHnnkERUUFJQYm5ycrIceekirV6+Wn5+fJk6cqFmzZumzzz7TvHnzNGXKFCUmJmrZsmXa\nu3evvvjiC33yySc6fvx4iVqxsbGaPHmy5syZo1WrVmns2LF66KGHlJeXJ+lUKOn111/X119/rZCQ\nkGJBnF69eumbb74562sEAAAAAAB/HltZAQAAAABwkTjd2UU61ZGjVq1aeumll1SvXj1JpzqA1KhR\nQ5K0bt06HTt2TMOGDSs6Pzs7W1lZWfrxxx/19NNPS5KaNGmiTp06lZhr8+bN6tu3r0JDQyVJEydO\nlHSqa0hp1q9fr6ioKAUGBkqS7rzzTs2fP7+oA07Pnj1lNptVo0YNNWnSRNnZ2SVqDB06VJ999pn6\n9u2r6OhoDR06VJLUv39/jRkzRj169FC3bt00evToUtewZMkSDRw4UFarVddff70mT56sr7/+WgMH\nDjzn6/mj9u3bKzQ0tChk8dNPPykoKKjMc44cOaLGjRuXeDwmJkaNGzcuClS1aNFCV199tbZu3aob\nbrhBn3zyiQYPHqyUlBQNGDBAP/74o0JDQ9W9e3f5+voWq9W3b181atRIixYt0rFjx7R161a1b9++\n6Hhp933fvn3q1q2bIiMjJUm33367Nm7cWOo1+Pj4qE+fPpKkVq1aKT09vdjxQ4cOSZJ69OghSerc\nubNatGhRdLxRo0ZF19mqVSstX768xBxl3dubbrpJU6dO1dq1a9W1a1eNGzeu1HW2bNlSV199tSRp\nyJAhmjJlinJzc0sd+0ebNm1SSkqK7r777qLHTCaT4uPjS2wRZ7VaddVVV0mSfv75Z6Wmpurhhx8u\ndt7Bgwf1ww8/aNCgQfLz85N06h4vWrSoWK0tW7aoc+fOatSokSSpS5cuCgsL0y+//CJJ6tixY9Hr\n+Yorrij2mmnUqFGpgToAAAAAAOB9BHMAAAAAALhInO7scianQzHSqe2BBg0apPHjxxd9nZKSotDQ\nUJlMJhmGUTT2jx1dJMlischkMhV9nZOTo5ycnDPO/ft6p+dzuVzF1n7aH+c/rW/fvpo5c6ZiY2O1\nbds2vfDCC5Kkxx9/XLfeeqs2btyo6OhoLViwQNHR0TKb/9dI+MSJE/rhhx+0d+9erVmzRtKpbi4f\nfPCBBg4ceM7XI6koVCSdCjo9//zzuueee3T99derefPmWrlyZZnnm83mElt2nb43f2QYhlwul7p1\n66Znn31WP/zwgzp16qSuXbtqyZIlCggIUL9+/Uqc9/HHH+u///2v7rjjDg0cOFA1a9YsFjYq7b7/\n8f6X1Sno9910fn//fn/uH7+Xv6/3x/NL+76XdW+HDRumnj17atOmTdqwYYPmzp2rlStXKjg4uFiN\n3z8XTs9V2vP6tN9/bz0ej7p06aLZs2cXPZaUlKTatWuXOM/X17eortvt1iWXXKJly5YVHT958qTC\nwsIUHR1d5vqkkq+Z04+dft2U9ZrxeDyl1gQAAAAAAN7HO3AAAAAAAFBCt27d9OWXXyolJUXSqW4y\nd911lySpe/fuRdviJCYmlro1VNeuXfXNN98UbaszZ84cvf/++7JarXK73SVCBX/7298UHR1dtP3P\nokWLdO2115bo8FIWPz8/9e/fXxMmTNCNN96ogIAAuVwu9erVSwUFBRo+fLgmT56s2NjYYqEfSVq6\ndKmuueYabdiwQWvXrtXatWsVHR2tffv2aceOHWd9PWFhYdqzZ48kFdsqaNOmTerZs6dGjBihK6+8\nUt9++63cbneZ19O0adNStzBq166d4uLiFBMTI0n69ddftW3bNnXs2FF+fn669tprNXfuXHXr1k0d\nO3bUzz//rO3bt6t79+4lam3cuFFDhgzR0KFD1axZM61du7bcdXXt2lWbNm1ScnKyJOmzzz4rc3xZ\nLrnkEvn6+mr9+vWSTnUDOnToUKkhnjMp694OGzZM+/fvV1RUlKZNm6acnJxSuy0dPHiwaAut08+F\ngICAYmPO9L3t3LmzNm3apNjYWEnSDz/8oJtvvlkOh6PMdV911VU6duyYtm3bJknav3+/+vTpo5SU\nFPXo0UMrV65UYWGhXC5Xqff49LynnyObN29WUlJSUYehshw/flzNmzcvdxwAAAAAAKg4OuYAAAAA\nAIASunfvrtGjR+vee++VyWRSjRo1NHfuXJlMJk2ePFkTJ07UTTfdpLp165bYrkc6tTXR4cOHNXz4\ncEnSpZdeqmnTpikgIEBXXHGFbrrpJi1ZsqRo/K233qqkpCQNHTpUHo9HTZo00csvv3zO6x46dKgW\nL16sKVOmSDrVzWfSpEl68sknZbVaZTKZNGPGjGKBn8LCQn366aeaMWNGsVpNmzZV//799cEHH+iN\nN944q+t59tlnNXXqVIWEhKhr165F2z0NGzZMTz75ZFH3nQ4dOmjNmjWldr85rXfv3nrnnXfkdruL\ndZEJCwvT66+/rmnTpslut8tkMmnmzJlq1qyZJOmGG27QmjVr1LlzZ/n7+6tVq1YKDQ0t2hbp9+69\n914999xzio6OlsViUevWrYu2lzqTli1bavz48brrrrsUFBSktm3bljm+LFarVXPmzNHkyZP16quv\nqmnTpoqIiJC/v79sNttZ1Sjr3j755JOaMWOGZs+eLbPZrDFjxqhhw4YlajRv3lxz587V8ePHFR4e\nXtRt6ffO9L1t0aKFpk6dqnHjxskwDFmtVs2bN69YB6rShIWF6Y033tCsWbPkcDhkGIZmzZqlBg0a\nKCoqSnFxcRo8eLACAwPVsGHDEkGhSy+9VJMnT9aYMWPkdrvl7++v+fPnl+gGVJoNGzaob9++5Y4D\nAAAAAAAVZzJK63sLAAAAAACAavevf/1LXbp0KXUbqr+KF198UaNGjVJERISSkpI0aNAgffvttwoJ\nCanupVWbjRs3Kj09XYMGDZIkTZ8+XX5+fkVby1VEbm6uhg8fruXLl5ca1gIAAAAAAN5FMAcAAAAA\nAOA8lZOTo7Fjx2r+/Pny9/ev7uVUisWLF+uTTz6R1WqVYRh6+OGHdeONN1b3sqrVyZMnNWHCBKWn\np8vtdqtVq1aaMmXKWXXDKc/MmTPVo0cPde3a1QsrBQAAAAAA5SGYAwAAAAAAAAAAAAAAAFQCc3Uv\nAAAAAAAAAAAAAAAAAPgrIpgDAAAAAAAAAAAAAAAAVAJrdS+gLC6XW5mZBdW9DAAAAAAXgVq1Ann/\nAQAAAAAAAAA4Z5GRwWc8dl53zLFaLdW9BAAAAAAXCd5/AAAAAAAAAAC87bwO5gAAAAAAAAAAAAAA\nAAAXKoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMA\nAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAAAAAAQCUgmAMAAAAAAAAAAAAAAABUAoI5AAAAAAAAAAAA\nAAAAQCUgmAMAAAAAAAAAAAAAAIBq9dVXqzRv3pxKq79z53ZNnjyxxOOvv/6KkpOTiz127NhRjRlz\nv1fmtXqlCgAAAAAAAAAAAAAAAHCBefTRJyq1PsEcAAAAAAAAAAAAAACAi1jQlGflt2qFV2s6Bg5W\n/pTpZz7usGvGjH8rOTlZTqdTPXteX3RsyZLF+u67NbJYLGrXrr0eemisYmJ+1ty5s2W1WuXv76/p\n01+Ur6+fXnpphhISjsvj8Wj06Ad19dUdzjjn8ePHNW7cGGVnZ2vIkFs0YMBgjRlzv8aPn6SgoBqa\nOvVZGYahsLBwr90HgjkAAAAAAAAAAAAAAACoUitWLFfduvX173/P1PHj8dq8eaPy8vIUG3tYa9d+\no/nz35PFYtEzzzylTZs26Oefd6pXr9667bYR2rhxvXJycrV58/8pNLSmJk58TtnZWXr44fu1ePF/\nzzin2+3Siy++Jo/HrbvuGqFu3XoUHfvww3fVu3cf3XzzEH333Rp99tmnXrlOgjkAAAAAAAAAAAAA\nAAAXsfwp08vsblMZ4uOPqXPnrpKkRo0aa8+eYKWnp+vYsaNq3fpKWa2nIi3t2l2luLhYjRx5jz78\n8D09+uiDioysrSuuaKPY2MOKidmlfft+kXQqeJOVlaWaNWuWOucVV1wpHx8fST5q1qyZkpMTi44d\nPx6vgQOHSJKuvLKd14I5Zq9UAQAAAAAAAAAAAAAAAM5SkybNtH//PknSiRMJevvtN397vKn27ftF\nLpdLhmHo5593qVGjJlqz5iv16zdAc+a8rWbNmmvlymg1adJUvXv30dy5C/TKK2+oZ8/eCgkJOeOc\nv/56UC6XSzabTUePxqlBg4ZFx5o2ba69e2MkqWhd3kDHHAAAAAAAAAAAAAAAAFSpQYOiNHPmVI0Z\nc7/cbrduv/0OZWdn6ZJLLlWvXr314IOjZBiG2rZtp+uu+7v27durF16YroCAAJlMJj311DOKiIjU\niy9O15gx9ys/P09DhgyV2XzmHjW+vr568smxysvL07333q+QkNCiY3fdNUpTpz6rb79do/r1G3jt\nOk2GYRheq1YJUlNzq3sJAAAAAC4CkZHBvP8AAAAAAAAAAJyzyMjgMx6jYw4AAAAAAAAAAAAAAAD+\nEv7zn4XasWNbiccnTZrs1U44Z4uOOQAAAAAgOuYAAAAAAAAAAP6csjrmnHljLQAAAAAAAAAAAAAA\nAAB/GsEcAAAAAAAAAAAAAAAAoBIQzAEAAAAAAAAAAAAAAAAqAcEcAAAAAAAAAAAAAAAAoBIQzAEA\nAAAAAAAAAAAAAMAFafLkidq5c7u2bPlRn38efcZxn38eLZfLdVY1V6z4VO+++7ZX1mf1ShUAAAAA\nAAAAAAAAAACgAmwOl/bGZcjHapa/r0X+vlb5+Vrk72uRn49Ffr4WmU2mUs/t3LlrmbUXLfqP+vbt\nL6u1aqMyBHMAAAAAAAAAAAAAAAAuYlOm+GnVKu9GSAYOdGnKFEeZY776apU2bFingoICZWVl6bob\nh+rLFYsVUbu+LBarBg1/SJ99NEcF+bmSpAG3jlaTppfopw1facuG1aoVFq68nGzlFhRqxecrlJgY\nr4ceHKv3339HGzb8ILfbrcGDb5HValFGRrqmTJmkmTNf0fz5c7V79y55PB7dfvsd6tWrt3bv/lmv\nv/6ygoNDZLFY1Lp1G6/cB4I5AAAAAAAAAAAAAAAAqBY2m02vvfamduw9pimTHpJhePT3vrerfqPm\nWr3iAzVv2U6dut+ktJRERS9+QyPum6C1q1fokUlvyGQ26a0Xxyk2MUdZGTnKTCvQpq27tGXLj1qw\n4H15PB7Nnz9XY8Y8pvfff1dTpszQ5s2blJR0QvPmvSuHw6EHHrhH117bSa+8MlPTp89S48ZN9PLL\nM712fQRzAAAAAAAAAAAAAAAALmJTpjjK7W5TWa666mql5TiU7/ZVQGANpZ48rog6DSRJJxOP6cih\nGO3ZsVGSZCvIVUZakmrXaySrj48kqWGTFkW1XB6PdsQcUFjd5srMK1REaIAeeeTxYvMdOXJYBw8e\n0Jgx9586x+VScnKiMjIy1LhxE0nSlVe2U0LCca9cn9krVQAAAAAAAAAAAAAAAIBztH//fh2Kz1Je\nTpYc9gIF1QiVyWSSJEXUaaCuPW/WfY89r2GjxqvdtX9XeGR9pSQdl7PQIY/HraSEuGL1Ius2VPzR\nXxUTm6Yd+5M15pEHVVhYKJPJLMMw1KRJU7Vv30Fz5y7QG2/MV69evdWgQUNFRkbq6NG439a0z2vX\nR8ccAAAAAAAAAAAAAAAAVDnDMHQi6aQWzH5Gdlu+Bt7+T638ZF7R8b/3GarPPp6rbZvWyGEvUK9+\nwxQUHKrrbrxFC159WoE1QuXj61esZr2GzdXi8qu18NUJMgyPOna/Sb8m5qlNm3Z68smxmjPnbe3a\ntUMPPXSfbLYCXXddTwUGBmn8+EmaPn2ygoKCFBgYqODgYK9co8kwDMMrlSpJampudS8BAAAAwEUg\nMjKY9x8AAAAAAAAAUIX+s3ipDsXGqs+guyp9LrPJpPrhQWpSt4Z8rBav1o6MPHOIh445AAAAAAAA\nAAAAAAAAqFKpWTZl5jmqbD6PYSghLU/JGQVqXKeGGkbWkNlsqvR56ZgDAAAAAKJjDgAAAAAAAABU\nFZvDpR0HU+XyeKptDf4+FjWtF6I6tQJkMlUsoFNWxxxzhSoDAAAAAAAAAAAAAAAAZ8ljGNp3NLNa\nQzmSZHe6dSA+UzsOpiojx15p8xDMAQAAAAAAAAAAAAAAQJU4ciJHubbC6l5GkTy7UzFH0nXgWGal\n1CeYAwAAAAAAAAAAAAAAgEqXlmVTQlpedS+jVMmZBTp8ItvrdQnmAAAAAAAAAAAAAAAAoFLZHC4d\nPJ5V3csoVaPvv1Tvh6KUs3Wn4k/merX2WQVzdu/erZEjR5Z6zGazadiwYYqNjS3znH379ql79+4a\nOXKkRo4cqa+++qoCywYAAAAAAAAAAAAAAMCFwGMY2n8sU063p7qXUkJw/BF1ePVZ1Tq8X93+/YiO\n/5qgpPR8r9W3ljdg4cKFWrlypQICAkoc27NnjyZPnqyTJ0+We87evXt1zz336N577/XCsgEAAAAA\nAAAAAAAAAHAhOJKYo5yCwupeRgnmwkJ1euFJWR12nWzfRXV2bVbHWRP045S58rGYFVGzZFbmjxyO\ncuYor0Djxo01Z86cUo8VFhbqzTffVPPmzcs955dfftG6det0xx13aNKkScrLOz/3DAMAAAAAAAAA\nAAAAAIB3pGXblJB6fmZE2rz/umod3q+4PlFaP2Ohkq/uqvpbvlerJW9r37FMZeWVnbrZudOs3r0D\nyxxTbsecPn36KCEhodRj11xzzVmf07ZtWw0dOlRt2rTRvHnz9Oabb+rpp58ub3pFRgaXOwYAAAAA\nvIH3HwAAAAAAAADgPTaHSzFHMxVcw7+6l1JC+LaNavnpe8pv1FSHx09VcGCQ9k6fo9B7Bqr1h3Nk\nb3e1joX0VJ3aIQoJ8i12rs0mTZ4svfKK5Clnd65ygznecsMNNygkJKTo39OmTTur81JTcytzWQAA\nAAAg6VQoh/cfAAAAAAAAAOAdHsPQz7+mnZdbWPlmZ6rNv8fJY7Fq81OzlOWxSHl2yRqoTf96XT0f\nH6ErJz+qb99crnX5Dl3VIkIBfqciNlu3mvXYY/46fNiiJk08mj3bLunMXXPK3crKW0aNGqWYmBhJ\n0ubNm9W6deuqmhoAAAAAAAAAAAAAAABVKC4x57wM5cgw1OHVfykgI1W/3DVWmS2vLHY487I22jXm\nX/LLzVbXqWPlzM9XTGy6snPceu45Pw0cGKjYWLPuv79Q69blq1s3d5nTnXPHnFWrVqmgoEC33377\nOZ03ZcoUTZs2TT4+PoqIiDjrjjkAAAAAAAAAAAAAAAC4cKRn23U8Na+6l1Gq5l/+Vw02f6eUdh11\ncOi9pY6Ju2mowg7EqPn/faqr507Tohte0QN3BCrxhK+aNz/VJadz57IDOaeZDMMwvHkB3kYreQAA\nAABVga2sAAAAAAAAAKDi0rJtOhifJafbU91LKSE4Pla9H75VHl8/rZm/QrbIumccay50qONjo/Xy\n4Ts0R2Mlk3TLsBzNet6kGjVMxcZGRgafsc45d8wBAAAAAAAAAAAAAAAAfs/p8ujwiWydzCyo7qWU\nylxYqE4zx8vqsOvHp14sM5QjSXv219KYnHVKVqBa6YAefOyE6t3UQEdT/dU6KEwmk6nM808jmAMA\nAAAAAAAAAAAAAIA/LT3brkPHs+Rwnd32TtWhzfuzVSt2v470vUUnut94xnF2m0mL36mtNatqyWQ2\nNLzHbr27vouMRaH6pstypSlMh45nqWXjWmc1r9lbFwAAAAAAAAAAAAAAAICLh8vt0YFjmdoTl35e\nh3Jq79iklp/+R7kNmujnByeecdyeXYF64v5mWrOqlho2cej52cc05Bk/Hb77nwpMS1bnGU/I5HYp\nKaNARxJzzmpuOuYAAAAAAAAAAAAAAADgnFwIXXIkyTc7Ux1fmiiPxaqfJr4sd0BQiTG2ArMWLYzU\nt1/WktlsKGp4mm65I10+voYk6cDt9ynsQIwabP5Obd5/XXtGPaH4lFz5Ws1qWLtGmfMTzAEAAAAA\nAAAAAAAAAMBZcbk9OpyQreTMgupeSvkMQx1efVYBGamKGTVOmZe1KTHkwC8BmjurnlKSfdW4mV0P\nPZGk5pc5ig8ym7X1qZnqPWaoWi19Rxktr9SJv92ow4nZ8vExKzIy+IxLYCsrAAAAAAAAAAAAAAAA\nlCs9265tB1IujFCOpOZf/lcNNq9VSrtOOjh0VLFjLqf08buRmvxEY6Wm+GjI8DS9MPdoyVDO6fFB\nwfrxuTfk8gvQtS9PUnD8EUnSwfisMtdAMAcAAAAAAAAAAAAAAABn5HJ7dDA+U3vi0uVwnt9bV50W\nHB+rdm+/oMLgUG196gXJ/L+IzPGjvpo0tqlWLA1X7bpOTX0lXsPvSZPVp+yaOc0u0/Zx0+RTkK+u\nU8fKWpAvj2GUeQ7BHAAAAAAAAAAAAAAAAJQqI+dUl5ykjAujS44kmQsL1WnmeFkddm1/fKpskXUl\nSR6P9NVntTTh4aY6GuuvXjdlada8o2rZ2nbWtY/37K9DQ+5USHysOrz6rFROMMdaoSsBAAAAAAAA\nAAAAAADAX47L7VHsiewLKpBzWpv3Z6tW7H4duelWnfjbjZKk9FSr3nq5nvbsClJIqEuPPZ6oa7vm\n/an6MaOfVK1f96rR+q+V0aqtdOOLZxxrMoxyojvVLDU1t7qXAAAAAOAiEBkZzPsPAAAAAAAAANCp\nUM72Aylj8w+7AAAgAElEQVSyXyDbVv1e7R2b1GPifcpt2FTfvLlc7oBAbfo+WO/Mqav8PIuu7pSn\nf45LUs1aFbs2v4xU3fDQLfLLypDZ7TrjODrmAAAAAAAAAAAAAAAAoEhiWv4FGcrxzc5Ux5cmymP1\n0ZYJLyvbVUPvzayjjd+Hys/Po/sfTdL1/bJlMlV8LkdYpDb/a7b+/uRdZY4jmAMAAAAAAAAAAAAA\nAABJkscwdCItv7qXce4MQx1efVYBGamKue8Jbci/Vm89UE/paT5qcblNjzyVqLoNnF6dMr311dr1\n8DO6powxBHMAAAAAAAAAAAAAAAAgSUrNsslxAXXLsebnqu62DWq0/ms12LxWx9pep0npE/XlO+Ey\nmw3ddmeqhgxPl8VSOfMfGTCMYA4AAAAAAAAAAAAAAADKl5CSV91LKFdgUoLqb/le9bd8r8iYbTK7\nXZKkjXX6646MpYqPCVL9hg6NeTpJl7a0V+taCeYAAAAAAAAAAAAAAABAWXkO5dq8u92TV3g8Cju4\nR/V+C+PUjDtUdCjjsjY60amn5jtGaUF0W7lcJvW5OVP/uC9Ffv5GNS76FII5AAAAAAAAAAAAAAAA\nUELq+dMtx2K3qfauLaq/Za3qb1kn/8w0SZLbx1eJnXooqVNPJXfpKWvDxlr4Rm0tXxaoiAiPHp2Q\nrJZts6t59f9DMAcAAAAAAAAAAAAAAOAiZ3O4lJ5dvds+WWz5arzuK9Xf/L3q7PxRlkKHJMkeGqa4\nPlFK7NJLGR26qWadMIWH+qup018P3B+oTZusatPGrQ8/tKl+/SD9muBUUkZBtV7LaQRzAAAAAAAA\nAAAAAAAALnIJqXmqzo2fTM5C9ZgwSuH7d0uSsptcqsQuvZTY+e+yt71a4WFBqhPirxZBvjKZTDp4\n0Kx//CNAx46Z1a+fU2++aVdQkCSZ1LJxLdUI9FXsiWx5jOrdzopgDgAAAAAAAAAAAAAAwEXM5fYo\nOb16O8xc+d5rCt+/Wwl/u1F77ntC1hYtFB7qrxah/grwKx5v+e47i+6/P0C5uSY9/rhDTz9dKLO5\neL0GEUEKDvDR3qMZcjjdVXglxRHMAQAAAAAAAAAAAAAAuIglpuXLXY2dZept/l4tl7+vnEbNlTX7\nLbWrHyEfq7nEOMOQ3n7bR1Om+MnHR5o3z6ZbbnGdsW5IkK+uuSxS+45mKivfUZmXcEYEcwAAAAAA\nAAAAAAAAAC5SHsPQibT8aps/ICVRHV+eKLevnxLfWKg6jWuXOq6wUJowwU+LF/uqdm2PPvjApmuu\n8ZRb39fHoraXhuvIiRwlpOV5e/nlIpgDAAAAAAAAAAAAAABwkUrNslXbVk8ml1Ndnh8n39xsHZz0\ngsK7XVvquPR0k+6911+bN1t15ZVuLVpkU/36Z9/hx2wy6dKGoQoO8tGh+Kwq7Q5Usu8PAAAAAAAA\nAAAAAAAALgoJKVXfRea0Nv+ZrfD9u3Wi90CFjHmg1DEHDpjVp0+gNm+2asAAp1auLDinUM7v1akV\nqPaXRcrf11KRZZ8TgjkAAAAAAAAAAAAAAAAXoaw8h3JtzmqZu+5P69Rq2XvKbdhUhbPfkNVaMizz\nzTcW9esXqPh4s8aNc+idd+wKCqrYvDUCfHTNZbUVFuxXsUJniWAOAAAAAAAAAAAAAADARSghtXq6\n5QSkJKnjrAly+/jqxOsLVaN2eLHjhiG99ZaP/vGPALlc0oIFNk2YUCizl1IuPlazrmweriZ1gr1T\nsAzWSp8BAAAAAAAAAAAAAAAA5xWbw6X0bHuVz2tyOdV5xhPyy83WwaefV3j3TsWOOxzSU0/5a8kS\nH9Wp49GHH9rUvr3H++swmdSsXoiCA3x0ID5LLo/355DomAMAAAAAAAAAAAAAAHDRSUjNk1EN87b5\n4A1F7NulEz37KeTRh4odS0sz6dZbA7RkiY/atXNrzZqCSgnl/F5EzQBdfVmEAnwrp7cNwRwAAAAA\nAAAAAAAAAICLiMvtUXJ6QZXPW3frerVa+o7y6jeR4403ZbVaio7FxZnUr1+gfvrJqptvdurzzwtU\nr17VRIcC/X3UrH5IpdQmmAMAAAAAAAAAAAAAAHARSUzLl9uo2n45AanJ6vjSBLl9fJTw+gIF1wkv\nOhYTY1b//oE6etSsxx5zaOFCuwIDq3R5igj1l5+PpfyB54hgDgAAAAAAAAAAAAAAwEXCYxg6kZZf\npXOa3C51mvmk/LIzdfixfym8R5eiYz/8YNGgQYFKTzdp5ky7Jk0qlMlUpcuTJJlNJtUPD/J+Xa9X\nBAAAAAAAAAAAAAAAwHkpNcsmh9NdpXO2/nCuIn/ZocQefRX82CNFjy9fbtWIEQFyOqV33rFr1Chn\nla7rj+qFB8rs5VQQwRwAAAAAAAAAAAAAAICLREJKXpXOV2f7Rl2+5G3l1Wskxxtvyee37aLmzfPR\ngw8GyN9fWrrUpoEDXVW6rtL4+lgUGerv1ZpWr1YDAAAAAAAAAAAAAADAeSkrz6FcW9V1pfFPT1HH\nF5+W28dHx2cvVES9CHk80tSpfnrrLV/VqePRJ5/Y1Lq1p8rWVJ76kTV0MsvmtXoEcwAAAAAAAAAA\nAAAAAC4CCalV1y3H5Hap08wn5Z+doUPjJiuiZ1cVFkqPPuqv5ct9dOmlbi1dalOjRkaVrelshAb5\nKjjAx2sBJrayAgAAAAAAAAAAAAAA+IuzOVxKz7ZX2XxXLHpTtWO2Kan7jarxxGPKy5P+8Y8ALV/u\no2uuceuLLwrOu1DOafUjgrxWi2AOAAAAAAAAAAAAAADAX1xCap6qKgZTe+ePunzJ28qv21C2ufOU\nlWVVVFSg1q2z6oYbXPr00wKFhVXRYv6EOrUC5WPxTqSGYA4AAAAAAAAAAAAAAMBfmMvtUXJ6QZXM\n5Z+eok4vPCXDYlX8a28rzV5b/fsH6uefLRo+3Kn337cpyHsNaSqF2WxS3fBA79TyShUAAAAAAAAA\nAAAAAACclxLT8uU2Kr9fTs1De3XdhHvln5Wuw49MVGJkD/XvH6ijR816/HGHZs+2y8en0pfhFfXD\ng2TyQh2rF2oAAAAAAAAAAAAAAADgPOQxDJ1Iy6/UOUzOQl3x0Ty1+mShzB63jkTdqZ0dn9R9gwJV\nUCDNnGnXqFHOSl2DtwX4WRUe4q+0HHuF6hDMAQAAAAAAAAAAAAAA+ItKzbLJ4XRXWv2av+7VtS9P\nUs24Q8qvXU87n3he23xv1YQ7a8hkkt55x66BA12VNn9lqh8RRDAHAAAAAAAAAAAAAAAApUtIyauU\nuiZnoa74eL5aLVkgs8et2H63KWb0eG3Z1kKzZgQrONjQhx/a1K1b5YWCKltYiL8C/awqcPz5YBHB\nHAAAAAAAAAAAAAAAgL+grDyHcm3e30Kq5uF9p7rkHDmogsh62jZumlKu6aZdmyI0a0aoatf2aOlS\nm1q39nh97qpWPyJIh09k/+nzCeYAAAAAAAAAAAAAAACch/JsTiWm5ctqMctqMcny299Ws1lW6+//\nbZLFbC5xfkKqd7vlmJyFunzJ27p8yQKZ3S4duWmodt//lFxBNbR3Z6hmTQ9XzZqGli2z6fLLL/xQ\njiTVDQtUXFKO3B7jT51PMAcAAAAAAAAAAFzwPIYht9sjl9uQ0+2R223I5fb89ufUv4se83jUtG6I\nagT4VPeyAQAAynT4RLay8hxnNdZsMsliNhUL8WSf5blnIzR2vzq+NEk1jxxQQWQ9bX98mk526CZJ\n+nVvoF6YXFe+vtLixQV/mVCOJFktZtWpFajE9Pw/d76X1wMAAAAAAAAAAFBpHE630rPtysixq8Dh\nKgrbuI1z+w3m7LxCtb0kXMGBvpW0UgAAgIrJyLGfdShHOhVU9vwWUvYmk7NQl3+yUJd/PP+3Ljm3\n/tYlJ1iSdOyIn154rqHcbun9923q2PGvE8o5rUFkEMEcAAAAAAAAAADw15Rncyo92660bLtybYVe\nqel0e7T7cLraXhKukCDCOQAA4PxiGIaOJOZU9zIUGntAHV+aeKpLTkRdbR83TSc7/K3o+MkkH73w\nbGPl5pr11ls2XX+9uxpXW3mC/H1Us4bfOQWlTiOYAwAAAAAAAAAAzisew1BWrkPpOXalZ9tld1bO\nBzwuj0e7Y9PUtnm4Qmv4VcocAAAAf0ZyRoHy7M5qm9/kcuryJQv+1yWn7y3a/cDTRV1yJCkrw6KZ\nkxorPc2i55+369ZbXdW23qrQICKIYA4AAAAAAAAAALgwOV0eZeTYlZZjV2aOQy5P1WyB4PYYiolN\nV5vm4aoVTDgHAABUP7fHo6PJudU2v8VuU/dJoxX5y45TXXIen6qT13YvNqYg36yZzzRW4gkfjRvn\n0OjR1RciqioRof7y97Gcc2icYA4AAAAAAAAAAKgWTpdbyRk2pWfblZ3vkFFN63Abhn45kq7WzcIU\nFuJfTasAAAA4JSElX45K6hhYHpPLqS7TH1PkLzuU8LcbtO2J54t1yZGkQodJs55rqLhYP915Z6Ge\nfto7W42e70wmk+qFByku+dy2GDNX0noAAAAAAAAAAADKdCghW7GJ2cqqxlDOaW7D0C9xGUrPtlfz\nSgAAwMXM6XLreEpe9Uzu8ajDq8+q3tb1SurQXVsmvlwilON2S7Nn1Ne+PYEaONCpF190yGSqnuVW\nh/oRgTKf4wUTzAEAAAAAAAAAAFUut6BQqVm26l5GMR7D0N6jGUo7z9YFAAAuHkeTc6tsS89iDENt\nF76kpt+uVHqrttr8r9kyfHz/OEQLZtfV9s3B6t7dpbfesstiqfqlVicfq0WRNQPO6RyCOQAAAAAA\nAAAAoMrFJZ3bFgBVxWMY2ncsUymZBdW9FAAAcJEpsLuUlF49P4O0XPauWi5/XzmNL9HG6fPlDggs\nMeajdyP1/eqaatfOrQ8+sMnPrxoWeh5oEBF0TuOtlbQOAAAAAAAAAACAUmXmOpSR66jyeX2zMlTz\nyAGFHv1VaVe0V2artqWO8xiG9h/LlGFIdcJKfigFAABQGeKScuQxqn6Dz6ZfL1fbd15RQWQ9rZ+x\nUIUhtUqMWbksTCv/G65LLnFryRKbatSo8mWeN0KCfBUc4KtcW+FZjSeYAwAAAAAAAAA4LzmcbjkK\n3QoJ8i1/MC4old0tx+RyKvh4nGoeOajQuIOn/j5yQAEZaUVjHMGhWv3OF3LUiii1hiHpQHymPIah\neuHn9lvRAAAA5yo7v1Cp2VW/nWa9zWvVYfZzcoTU1PqZ78hWu16JMevWhGrxwtqqU9etZctsioio\n+vDQ+aZBZJAOxBPMAQAAAAAAAABcwA4dz1JOfqGuahGhIH+f6l4OvCQty6acgrP7EONsFHXBOXLo\n1N9xhxQSf1gWp7PYuPza9ZTYuaeyml0mn4J8tfh8sdrPna4t/5p9xtqGpIPHs+Qxzn3LAgAAgHNx\nJDG7yueMiNmmLs+Pk9vXXxumv63cxs1LjNm+uYbmv1pXoaEefbrMroYNCeVIUu2aAYo9kS2n21Pu\nWII5AAAAAAAAAHABcns8crkMuTweudyGXC5P0b/d7t8ec3t++2PIYxi6snmYLGZzdS/9rCSl5ys9\nxy5JiolNV/sWEfL35b+0L3SGYSguObfihdxuXfvKJNXZ+WOxLjiS5PLzV3bzVspq3lLZzVqe+rt5\nSzlrhPxvkMejWof3qdGG1Tq+frVOXNenzOl+TciS4THUsHbl79lgGIYKnR7ZC12y/9Y1yl7olr3Q\npeBAXzWpGyyzyVTp6wAAAFUnLcum7HzvBZfPRmjsAXWb/LBMHo82TXmz1C0+98UE6LXp9eXra2jJ\nEptatiw/hHKxMJtNqhcepPiU8n+25V0MAAAAAAAAAFwgYhOzlZxeILfnVNDmXCWlF6hhZOUHCyrK\n5nDp8In//caww+kuCuf4WC3VuDJU1MlMm/LtzvIHlqPOzh/V9NuVstcML+qCk31JK2U1a6m8+o0l\nSznPE7NZ256Yrhv/OURXz52m1HYdVRhaq8xTDidmy2MYalwnuEJr9xhGsbCNw+mW3eGW3Xnq60Kn\n54yv74xch7JyHbq8aS2CagAA/EV4DENHKnmbzz8KSjqu7s+Mlm9+rrZMfFknO3QrMeZorJ9efK6h\nDMOk994rUIcOhHL+qH5EoI6n5Kq8d2b81AYAAAAAAAAAF4Ck9HwdT8mrUI2ElDzVjwg677ttHIzP\nkttT/L+3CxwuxcRmqN2l4bJaLoyuPyjOYxg66qUPnZqtjpYkbZw2T5ktr/xTNfIaNtMvd41Vu4Uv\n6ap5M7V1wqxyzzmSlCOPYahBRNDvulL9rzuV2/1bFyvXb4+doYtVRTaAyC4o1PYDqbqscU3VrhlQ\ngUoAAOB8kJReoAKHq8rm88tM03UT71NARpp2PThJx3v2LzEmM92imc82lN1m1uw38tW7N9tXlcbf\n16rwUH+lZdvLHEcwBwAAAAAAAADOc9l5Dv2akF3+wHLYnW6lZNpUNyzQC6uqHAkpecrKd5R6LNdW\nqH1HM9Smefh5Hy5CSYlp+bI73RWu45udqQY/fqfspi2UeVmbCtU6FHWXGq5frSZrV+l4j5uU1KVn\nueccTc7VUW9sx1UBLo9H+45mKCs8SJc0CLlgtqgDAADFudweHUuuum451vxcdZ90v2okxmvfiH/q\n8JCRJcY4C016eWpDZab7aNxTeRp+O6GcsjSIqFFuMIef1AAAAAAAAADgPGYvdGnv0Yw/tXVVaeJP\nVm+goCwFdme5bfwzch06cCxThpfuB6rGqQ+dvPPca7z2C5ldTsX1iZIqGtCyWLT9iely+/jomtcn\nyyevcj8Ys9htsuZ77zWYmJ6vnYfSlGer+PZgAACg6h1PyVOhq2q2iDIXOtRtyhjVit2v2H63ae9d\nY0uMMQxp4Zw6+nV/gPrfbNfTT/Azd3lqBfspyN+nzDEEcwAAAAAAAADgPOX2ePTLkQyv/md9gcOl\ntCyb1+p5i8cwtP9Y5lkFkFKybDp8ouIdhFB1ElLz5HR74XlsGGq2erk8FquOXX9zxetJymnaQvvu\neEgBGalq9/aLXqlZmoDUZN34wCDdfNvfdO1LE1Xz0F6v1M23O7XzUKpOpOV7pR4AAKgaDqdbCRXc\nqvasud3qNPNJ1d69VQl/u0E7H3mu1IDz15/X0rrVNdXmSpfemuOscAb6YlE/IqjM4wRzAAAAAAAA\nAOA8dSA+S3l273fCiK+qDwDOQfzJXOWeQ9ePE2n5XuvAgsrldLl13EvPuZqH96nmkYNK7NJThTXD\nvFJTkg7eNkqZl16uZqujVWf7Rq/VPc0/PUU9nrpbNZKOqzA4VE2/WaEbxtyqno8NV6Pvv5TJWVih\n+h7D0K8JWdoblyFnFf3WPQAAqJijSTlyV0UXSMPQNW/8Ww03fauUdp3004SXJIulxLBfdgXqg7dr\nKzLSo8WL7AoIqPyl/VXUqVX2zSKYAwAAAAAAAADnoaPJOUqtpM42OQWFysx1VErtPyOnoFDxJ889\nuBGXnEOXkAvAsZN5cnu886FTs9XRkqSjNw7xSr3TDKuPtj3xvDwWqzq89pys+d4Lr/lmZei6Cfcq\n+MQx7b99tL74eJ3WP79ASR2vU/j+3eo880n1H3m9rlj0pvwyUis0V2q2TTsOpig77/x5fQMAgJLy\n7U4lZxRUyVyt339dzf9vmTIvvVybpsyVx9evxJiUJB+99nwDWczSe+/ZVb8+W1idC6ul7OiNZcqU\nKVOqZil/TkFBxVLiAAAAAHA2goL8eP8BAADOG6lZNv2aULlbNTldbtUJC6zUOc6Gx2MoJjb9T2/X\nlZljV6C/j4L8fby8MniDvdClA/FZ8sZHO+ZChzq+NFGFNYK165HnJLN3f/fYERYps9ul+lu+l29+\njpI6/b3CNX1ystRjwijVjDukQ0Pu1J7R4yWzWfkNmii+10Ad6zVAhsWisIO/qN72jWqxYrFC4mNl\nC4+ULaJuqVtMlMflMXQyo0AmmRQa5CsTe1AAAHDeORifpQKHq1LnMDvsavXJArX+6C3l1m+sH2a9\nL2dIzRLj7DaTXnimiZKTfPTSSw7161e56/qrCgoqGXg6jY45AAAAAAAAAHAeybM5deBYZqXPk5Hr\nUO55EEw+kpRToQ8lDEkHjmWeVx2A8D/HknPl8dIWDfV//E6+eTk6dsNgGRarV2r+0b4R/1R20xa6\n5Iulity1pUK1rPm5uu6Z+1Urdr9iB9yu3f+cUCJok9+giXb/c4K++Ph77Rg7WbkNGqvx91/q+sdG\n6PoxQ9VkzQqZC8/9uW3oVEep3YfT5Sh0V+g6AACAd2XmOpSeY6+0+oEnT+jKd17WgBF/V5sP58gW\nFqH1M9+Vo1ZEibGGR/pgbmPFHvbVvfcWauRI72+jC8lkGFWxadmfl5rKHsEAAAAAKl9kZDDvPwAA\nQLUrdLq181Cq7M6q+SA9smaAWjcNq5K5SpOV59DPh9O8UstiNumqSyMUHOjrlXqouAK7U9sOpHil\nW44kdZ94n+ru2KT/e/cr5TVq5qWqJdU6uEfXPzpM+bXra83bn8sdcO6dpSy2fF03cbQi9u1S3I1D\ntH3c9LPr8GMYivz5J7X4fLH+n737DnOqTPs4/k2bJJPpvQADDAwdBBVBVMCGqODay1qwru6urLhi\nV1zLur7WtbtWlCI2pIiISBFQREDpMJTpvSQz6e2c948RpAzDTJIZUO/PdXEBSc5znmSSk0ye37nv\nrNVL0SgK3vhE9px7GbvPvwJ3akab52LQaenVJYGUeHObtxVCCCFE5K3bUYPdHeGAfAufIXaNvwpP\nctohm+g0GpbNz+al/8Zw8skBPv7YjUGKUIYsNTX2sNdJMEcIIYQQQgghkGCOEEIIIY4+RVXZsKuW\nBmfHVbHRAEP7pGM2tk/1kZYEggprd1TjiWA1D4NOy+CeqUSbOv7+iENtLqijtiEyZ4Obq8s575oz\nqes7mKXPT4/ImC0Z8Paz9J71FvkXXsOG2+5v07Y6j5tTHrqVtA1rKB59Hj/c/RTodG2eQ3RlGbnz\nZ9Lty08w2htQtDpKRo5lw633NHvG+5H075pESoKEc4QQQoijqcrqYlsEq2Pq3C5yvplLjznTiS/a\nBUB9z37suuBqSkaNRYlqvr2S0aCjYmc6t94SR+fOCl995SIl5ZiOjhzzJJgjhBBCCCGEEEcgwRwh\nhBBCHG07iq1U1Ls6fL+ZSdH06pLY4fttr/tritIxuGcqRkPbgxAichqdPtbvrInYeH2mvUr/91/i\nxzsfp/CciyM27uFofV7OuvVCYssKWfrcNOr6DWn1diOm/I2MdasoPeVsVj/wbNhtt7ReD12WzKfn\nnGkk7NmBNy6B9X9/iNKRYw9pjdWSeEsUg3umhjUXIYQQQoROUVXWbKuKSDDdUl5Mj7kz6PrVZ0Q5\n7Sg6PaWnjWHnBX+mvs9xLX5GiDUbMPhTuWBcLKoK8+a5GDBACXtOf3QSzBFCCCGEEEKII5BgjhBC\nCCGOptIaB7vKGo7KvrUaDSf1Te/QIEtdg4dNBXXtNn6MycCgHikY9K1oHSTaxc+7arE5vJEZTFEY\nO2EMJls98z78lkC0JTLjHkHylp8YfeefcWTnsOi12ShGU4u31/h9nPzYHWStXkr5SaP47uH/ohoi\n2FpNUegxZzoD3nkOvddD6Slns/72h/EmJrd6iOPzUqXdmxBCCHGUlFQ72F0exmd+VSV93Xf0mDON\nzDXL0agqnsQUdp93GXvOu7zZdlUHS4k3kRGXxLljYygs1PLWW27Gjw+EPiexT0vBHPmtRAghhBBC\nCCGEEEIIIY6i+kYPu49SKAeaztwtrXZ02P78gSD5JbZ23YfD42dzQR1BRc78PRrqGz2RC+UAqRt/\nJKaylJKR53RYKAegrt9gdv7pGmJLC+n3/kst3lYTDDDsyclkrV5K5ZCT+f6hFyIbygHQatl14TUs\nev1zavofT6eVixhzyzg6fbuw1UOU1TgjOychhPgd8fqCbNpTR31jZNowCrG/QFChuCq0kwL1Lie5\nc6Yz5sbzOO3+m8j6YRn1vQbwwz3/x/xp37D12ttbFcrpnBpDr05J3HZrNIWFWiZN8koop4NIo10h\nhBBCCCGEEEIIIYQ4SlyeANuKrBztsubldU66pMd2SIWZ/NIGvIHwy/cfSWODk6JdPrrnZbf7vsSB\nCioiW4my21efNo075qKIjtsam6+/g6wfltHr0/coPXUM1t4DD71RMMiJ/3cfnVYuonrgiXz3yMso\nUcaI7D/gB49bi8ejxePWYjQpqFk5LHvmfXp+/gH9332B4Y9PouS0r1j/94fwJSS1OF61zU33rDii\npNWbEOIYFwgq6LQaNG1o2ReOynoXu0obCCgKPn+QpLiWq6QJ0Va7yxrwB9seGte5XZx965+wVJYS\nNBgoOvMCdl7wZ6y9BrR6DK1GQ4/seLJSLDz8sJHly/WMGRPgnnt8bZ6PCI0Ec4QQQgghhBBCCCGE\nEOIoCAQVNhfUhfQFfaQFFZXyWic5GYcvvx4JVVYXNTZ3u+6DYJCui+fQb+qLaINBypetITYzpX33\nKfaptrmxuyO3yKN32um0YhH27Bzq+g2J2LitFTSZWTvpMUZNvo4Tn72fxa98hhK1XyUcReGEFx4m\nZ+l8avsex8rHXiNoMh8yjqpCdaWB7ZvNVFca9oVt3K6mwI33l+CN2930d9P1GgL+Q8NyCUkB8vq6\n6dV3EsfddQGXf3YHnb9dSOqGNayfOIWyU88+7P1RVJWKOle7v9aFECJU6i/HqYKKRowGHd0y40iO\nb7+QjNffVMmvbr8qOXa3n2qbm7SEQ4/nQoSivtFDRb0rpG17zJ2OpbIUz2VX4nj4MaLT0hioqgSC\nKoGg8ssflWBQIaCoBAIKAeXXy/xBhaxkC0lxJmbN0vP661Hk5QV59VU3Wumv1GEkmCOEEEIIIYQQ\nQgghhBAdTFVVthZacXmPndLxpTUOOqVZ0LXTN/Ref5Bdpe3YsktVyfhxBQPfeob4wp37Lna9OxXL\nvSetEw8AACAASURBVHei1XbMGfd/ZIqqUljRGNExuyxdgM7npfDsi6CDqiYcrGbQUHaNu5Ie82bS\nZ8ZrbJnwj6YrVJXBLz9Gt68+oz6vPyue+B9Bc1OrrWAQinYb2b4lmu1bzOzYbMZab2hxPwaDgsms\nYDKrJCb7MZlVTKa9lymYzQqNDTp2bDWzZmUsa1bG8gFp3KP/jn7pxZxR8xmnPLaU7sNXU3rn7fji\nE5vdT3mtk87pMWiP0uMphBCHY3f52FnaQKOrKeDpDypsKqgjIcZIblYcsdGRbRG4f5WcgxVWNJIS\nb5JjpQhbIKiE3MZV73TQ66O3UeLjcTzxFGp8AgAajQaDXtOmapfr12u56y4T8fEq77/vJlYyuh1K\ngjlCCCGEEEIIIYQQQgjRwfaUN1Jv9xz5hh3IH1SorHORnRrTLuPvKLa2W3WghPwtDHzrGdJ/Xo2q\n0VAw5iJ2jb+KM/5xJZ1nT2P7dTfRPTu+XfYtflVV74p42KzrV5+harUUnnVBRMdtq003/pPMNcvp\n/eGblJ1yFrbcPgx64yl6zP8QW/defPXQ22zLT2f7ZjPbN0eTv82M1/PrYllikp/hIxvp1ddN565e\nzNG/BG72C97oW7lio6pQV6NnxxYzO7aayd9qZtPuHDYod/Icd8L30O3yAvL6eek8KoG8vm66dPWi\n/aV7lTcQpMbqJj0puh0eKSGEaLtAUKGgopHyWmez7T1tDi/r8mtISzDTLTMOszG8Je7mquQczOUN\nUFnnIivFEta+hNhT3ojHH1ob156zp2K0N+C8/+F9oZxQVFVpmDDBjN8PU6e66d79aDfS/eORYI4Q\nQgghhBBCCCGEEEJ0oPpGDyU1jqM9jWaVVDvITLFE/Ozwslon9XZvRMcEiK4opf97/yVn6XwAKoae\nxsYb/0ljtzwASk85iy7LFuD+ZimNl5xLXITPtBe/UhSVwkp7RMeMK9xJ8o6NVAw9DU9KekTHbqtA\ntIW1dzzKyPtu4sRnHmBT/3PZONfBf2PfYZHmUvZcZ0FRfn3ddMrx0rufi9793fTu5yY1w49GA3qt\nFo2GsEJqGg2kpAVISbMzYnTTY+5xa9i1w0z+ZiOlS+vZUpLOV5uSYFPTNuboIL36uhl2qp0TR9gp\nrXFKMEcIcUyoqnexu7wBX+DIx8Vqm5vaBg9ZKRZy0mPbVC1k//3tKmto1XG4qMpOepK53aoJit8/\nm8NLeZ0zpG0NjTZ6ffIewaRkXDfdGvIcvF6YMMFMZaWWKVM8nH56aCEhER4J5gghhBBCCCGEEEII\nIUQHqrG5j/YUDsvjj3wlDZvDy56yyLawMjTa6DPzDXrMnY7O78faoy8bbp5MzeBhB9xu9/lX0GXZ\nArrP/5AtQ09mSK9UaUnRDLc3QEWdC40GTFE6TFF6TFE6jAZdq1uAldU68YZ4NvjhdF00G4CCMRdH\ndNxQVR8/go1n/pk7F0/gmz1nNl1oB51bpWdvN71+CeH06uciNq75Bd+umbEEgkrEQ0wms0r/41z0\nP84FV2uwFK4m8T9vsnVPEiuiTmep+Vx+XpvIz2tjePPFDPoPdnL5pXDxn1QSm+94JYQQ7crp8bOz\npAGbs23BXUVVKa1xUFnnokt6DJ1SY1r1XuX1B9lZYqO2hSo5zW1TVuOkS7r0/BFtF1QUdhSH1sIK\noNen72FwOXDcfR/EhFbRUlXh7rtNrFun4+KL/fz1r/6Q5yPCI8EcIYQQQgghhBBCCCGE6EDWdqgc\nE0nF1Y6IBXNKqh0UVDSiqJEpl6/1eenx+TT6fPg/ohyNONOz2XTDJEpGjoVmzmavHXACDTk96LTy\na36uqKAo3kS3zLiIzOX3wOUJUFxlp9rmPuzPyKjXYYzSNQV19oZ2DL9eptdpCQQViqsiGzTRBPzk\nfD0Hb3wi5cNGNXub5DgT0UY91VY33kD7n/3t9Wi4svxVthLHMMOP5F2YRO5JenLzPEQZj/wcjzEZ\nyEqxEAwqFFc5Iva6aI6za3ecrzzOCZ++x4SpN6Cr87H81Nt4M28K338bx4a1MWxYCw8/oHLaaUEu\nuMDP2LEBEkLvkiGEEK0SVJrCiWU1zrCOgwFFYc8v7a+6ZsaRnmhGc5jwbZXVxa7S1lXJOVhJtYOs\nFAt6nVTNEW1TUGHH7QutxWeUrZ6esz8gkJaOe8KNIc/h7bcNzJxpYNCgIM8950Hy6UePBHOEEEII\nIYQQQgghhBCig7g8fjwRrioSaU6Pn9oGNynx5pDH2HuGcHWkqgMpCjnfzKX/ey8SXVOBLzaen/9y\nD7vHXYUS1UJ7Ko2G3eOuYMjLj9Nt4afkJ91KaoKZGLMhMvP6jXJ6/BRXNgVyjrQk6g0E8QaCNLqa\nv96g06LTasJqzdSczB+WY2qoJ//Ca1ENh/6M9VoteZ0TMBp0dM+Kw2r3UlXvorbBQ7AdAi9+n4Zn\nH81m69YYhp9s5R/3GtGa/EDrzzzPzY5Hq9Gg1etITzRTUX+YBzVSdDryL7uRimGjOOk/kxm54jU0\nY4/ngstHUFVhYPW3cWxck8iSJXqWLNFz112/hnTOOUdCOkKIyKuxudld1hDRz0Ief5DtxVZKqx10\nz4ojKc607zqfP0h+qY3ahtZXyTmYP6hQUu2QYK9okwanj7IwWtf2/ugt9B4X9imPQnRogfkVK3Q8\n9JCR1FSFqVPdmEP/aC8iQKOq7RjJjoCamsim7IUQQgghhBCiOampsfL7hxBCCCHaXVmNg50htnXS\n+nwMf/wOjNY6/JYY/DFxTX9bYvf98cXs/XcMfktc079jYvGbLaDTtXpf8dFRDM5LDWmebm+ALQX1\nODyRKZWftm4Vg958hoQ92wkaoth54TVsv/xm/LHxrdpe73Qw7sqReOPiWTD1a2JjTAzO+2O2tLK7\nfBRXOahpOHbbqe014uG/krV6KV+9MYfGbnmHXN+zUwLZKZZDLg8EFWobPFTWu2hweI8YPGqNYBCe\nfzybNatiGTzUweQppejbmO1KTTDTr2vSvv87PX5+3F4dgdm1TmL+Zs78+6WUDxvNqkdf3Xd5l7RY\nNN545s0zMGeOnk2bmo4TBoPKqFFBxo1rqqQT37qXmxBCNMvtDbCztIF6e+gBmdbQu5zkrV1Kt1WL\n8BtNbBsxltIhI5oNeLaFTqNhaN90jIbWf5YSf1yKorJ2RzUub2jVckx11Zx73dkoySnY1vwMRmOb\nxygq0nD22RYcDvjsMzcnnXRsnxjwe5Gaevi2d1IxRwghhBBCCCGEEEIIITpIOG2sknZsJGv1UlSN\nBk0I51v6o2PYdsUt7Lji5iPetsHlw+bwkhDTtoWAugYP24qsBJTwq6fE797GwLeeJWPdKlSNhsIz\nL2DzhIm407LaNE7AEkPRGePI/WIWmWu+pWL4aEqqHORkHP6L89+bRqePoio7dY3tuyAaKaa6ajLW\nfEt9z37NhnLiLVHNhnIA9DotGUnRZCRF4/UFqbK6qLK6cYYYFFMUeOXpTNasiqX/cU7++VBZm0M5\nOo2G3KwDKy1YTAaSYo3Ud1BrO2tef+p6DyTzh2VEV5TiyuwEQEWdk2H9Ypg4UWXiRB979mj2hXS+\n/rrpj8Ggcs45AZ57ziMBHSFEmyiKSnG1vV3b92mCAdJ+Wk3O13PI/m4xeu+v73XDFs7DG5dA8ejz\nKDpjPNZeAwill09QVSmqtJPXWUqJiSMrrLSHHMoB6DPzDXQ+L67J94YUynE44NprzVitGp591iOh\nnGOEBHOEEEIIIYQQQgghhBCiAyiqis3hC3n7xPzNAPxw79OUjTgTg9OOwWHH4LQT5bBjcNkxOBox\nOB1N1zn3u85pJzF/C70+eYf8SyagtiJZUFzlaFMwp7CykcLK8CsQmqvL6f/ei+R8MxeNqlJ/0qms\nnTCJhtw+IY+5+/wryP1iFrnzZ1IxfDRFVXZSEkxYTL/vllY2h5eiSjtWR8eEPyIl55u5aJUghWMu\nOuQ6rUbT6oVRY5SOLumxdEmPxe7yUVXvptrmwhdoXXBMVeGtF9NZuSSevL4u7v5XKVHGti8sd0mP\nxRR16HJMp9SYDgvmAOwa/2dO+r97yJ0/k003TwaaWrRUW91kJjcFnbp3V/nHP3z84x9NIZ25cw3M\nnq1n3jwDFRVaPvrIRUxMh01ZCPEb5vT42VZojVgFvYPF795Ozjdz6bJkHub6WgDsWV0oOnM8xWeM\nx+BoJGfxHLosXUDPOdPpOWc69k5dKTzzAorPGIcrPbtN+6usd9E5LQazUZbXjwVFlXY6pVnQabVH\neyoHaHT5KKkO/fNwdFUZ3Rd8jK9zDp7Lr2rz9ooCEyea2LZNx/XX+7jmmvZ5/Ym2kyOHEEIIIYQQ\nQgghhBBCdAC70xdWJZnE/C0A1Of1R4ky4o0y4k1MafX2x73yBD3nTCPtp9VUnXjqEW9fb/fgcPuJ\nMbccXgkEFbYXWakNsxqLwd5A7w//R8/Pp6Hz+/D17Y9rymPYh59GY5gtfxpye1Pb9zgy1q7cVy1k\nR7GNwT1T0PwOW1rVN3ooqrLT4Aw9CHbUqCpdF35G0BBF8ejzDrm6c1pMSIGq2OgoYqOj6J4dh7XR\nS6XVRY3t8C29VBWmvp7G4gWJdOvh4b7HSzGZ2x7KMUXp6JzWfJIlKc5EjMnQbovWBys97RwGvfEU\n3Rd+ytZr/k7QZAagrMa5L5izv+7dVe64w8fEiT7+9jcTn35q4LrrzEyf7sZk6pApCyF+o8prnewu\nayAY4So5prpquiyZT87iOSQU5APgi41n1/lXUHTmeOr7HHdARRxbz35svHky6eu/I2fxXLK/+4YB\n7/2XAe/9l5oBJ1B45gWUnjaGgOXIVfQUVaWwopE++7UlPFhdnYaaGg1ZWQqxsSEV5xGtEFQUiqvt\nBBWV7gdVpDuaFFUlv9gWVhvNPjNeRxvw47nnfjC0/fPO889HMX++geHDAzz++G8rmP17J8EcIYQQ\nQgghhBBCCCGE6ADhVi1J2rkZnyUWZ1aXkLYvGXUuPedMo8uyBa0K5gAUV9np28IClNPjZ0tBfVjl\n+rU+H7lzZ9B35utE2RvwZmTheOBhfJdcDjod0UB6YjSVVlfI+4CmqjkpW38md8EsNt34z1/OaHbQ\nJf2329IqEFQIBlUCikIgqOL1BSitcdLo+g0Gcn6RvPVn4koLKB59Hv7YA/smRRv15IT589JqNCTH\nm0iON7G7vIGSakezt/vo/RQWzE6iU46XB54swRITWqguNyserfbwK7PZqRZ2lNhCGrutlKgo9px7\nKX1nvkHnZQsoPOdiABweP1a7l8TY5itkabXw4osenE5YuNDALbeYePttTyjrhUKI37lAUGFHia3F\n4GNb6dwuslctJmfxHNJ/Xo1GUVD0BkpHnEnRGeOpHDoSJSrqsNuregOVQ0dSOXQkeqedTisWkfPN\nXNI2rCF101qGvPI45cNHU3jmBVQdP6LFqoLVNjedDwotV1Vp+OILPfPn6/nuOx2K0nTMt1hUsrMV\nMjNVsrJUMjMVsrNVsrL2XqYQHy/hnVDUNXoJKiqlNQ7SEs1HDJF3lKJKe1hhW0tZEV2/mo2new+8\nF1/W5u2//FLPU08Z6dRJkffpY5AEc4QQQgghhBBCCCGEEKIDWBtDD+bonXZiSwupGjws5BWcuj6D\ncKVmkr1qMev+8a8WF7H2qrG5cXsDzbZtqLa52VFsJaiEeF6wotB52QIGvPsClqoy/JZYqic/hObv\nfwez+YCb5mTEUm1zo4Rx5n3paedw3Ov/odvCT9lyze0oUVEUVtpJiTcTbTo2vir3+oPY7F78AWVf\n2Caw37+DwV8uCyoEFTWsx+NY1fWrTwEoaKaNVV7nhBZDLm3VPTMOlydA3UHVnj6flcSn01NIz/Lx\n4H9KiIsPhjR+YoyR1ARzi7dJT4ymoKKx1e21wrXnvMvpPestesyZ3tQq7JfjSVmt47DBHGg6af9/\n//Nw9dUaFi40cPvt8OqrHo6xDiJCiKOoweljW2E9Hn9ox8yDpWxaS7cvP6bTysXoPU3h3Nq+x1F0\nxnhKR56DLy6xzWMGLLEUnnMxhedcTHRV2S/Vd+bSeflCOi9fiCc+ieLTz2P3+Vfi6NztkO1VoKCi\nkRRzCl98oWfePD2rV+tQ1aZj6QknBOnTJ0hlpZbycg3l5Vry8w//vhUdvX9QR6VnT4UxYwLk5SkS\n2GlB9S9hbUVVyS85NiogOtz+w4Z9W6vv9FfRKkE89z4AOl2btt2+Xctf/2rCbFaZOtVNSsrv7zPi\nb12rftvYsGEDzzzzDB988MEh17ndbq6//nqeeOIJcnNzj7jNvHnzmDZtGrNmzQpz6kIIIYQQQggh\nhBBCCPHbEAgq2N2hn0GbuHMrANa8/qFPQqulZORYen3yDhlrV1B+8hlH3EQFSqod5HVO+PUyVWVP\neSMlNaEvPqT+tJpBbz5N4q6tBA0Giq64EcMD92NIT2329majnoykaMrrnCHvU4kyUjDmInp//A6d\nVnxF8RnjUFSVHSVWjutx9BZ0HG4/dQ0eahvcYT1Hfg90bhedl3+JMy2T6uOGHXBdZlI0CTGHD46E\nQqPR0CcnkfX5NfuqPi2cm8CMt9NITvXz8FPFJCWHVg1Kq9HQs1P8kW+n1ZCVYqGw0h7SftrKnZZJ\n+cln0GnlIpK3/kxdv8EA1DV4DhvC28tkgqlT3Vx2WTSffWYgJkbl6ae9sngsxB+cqqoUVzkoqrJH\nJDBqcDQy6PX/0G3RbAAcGZ0oOnMCxWeMw5HdNezx93KlZ7P9yr+w/YpbSMzfTM7iuXRZ9gV5sz+g\n+5efsuLx16gdOHTf7Wur9axeEcsPK2LZsTUaAI1G5aSTgowbF+C88wJkZR16/10uqKxsCumUl2uo\nqNBSVtb0d9P/Neza9WsI4/HHjeTmKowd6+fccwMMGaJICHI/gaBC/X5h90aXj7JaJ51Sm28b2REU\nVWVHsTWs539s8W5yvpmHO68v/vEXtmlbqxWuvdaM06nhzTfdDBjQMWFf0TZHDOa8+eabzJ07F7P5\n0FT3pk2bmDJlClVVVa3aZuvWrXzyySeov8MUvxBCCCGEEEIIIYQQQhyOze4N68v6xPzNANT3DCOY\nAxSPOpden7xD52ULWhXMAaisd5GTEYvRoMMfCLK10BpyW664gnwGvvUMmT+uaJrP6edju+sBMo7v\ne8RgTE56LJX1rrAexz3nXU7vj98hd/6HFJ8xDmg6w78jF3QUVcVm91Lb4KG+0ROxygK/B51WLMLg\ndpF/8fXsvwoZpdfSPevIIZdQ6HVaBnRPZn1+DV9/Gcs7L2cQnxjgoaeKSU0PvUVbVoqFaFPrekhk\np1gornJ0WAWkXRf8mU4rF9Fj7vR9wRwVKKt10iO75cfZYoEZM1xceGE0778fRUwMTJki4Rwh/qi8\n/iDbiqzYwmzXuVfGmm85/oWHia6twjdgEOX3/ou1KXmo7XmQ0Wiw9hqAtdcANvzlbros+YITXniY\nUx/4Cx9PfJ8F1pGsXhHLrh1N694arcqgIW6uvEzDeecFSE9v+dgdHQ3du6t0737493uPByoqNKxb\np2PBAj1Lluh5+WUjL79sJCND4ZxzApx7boARI4J/+PZENc1UUCyoaCQl3oQp6uhUQCypcoQdru73\nwctoVBXP/Q/QliRWIAC33GKmsFDLHXd4ueCC0D+7iPZ1xGdnly5deOmll7j77rsPuc7n8/HKK68c\ncl1z21itVp577jnuv/9+HnrooVZPMDX1t9vfVwghhBBCCPHbIr9/CCGEEKK91Dh8xMaYQt4+rWAb\nAP7Bx4c1TnDwEJydupK1eikJOoWgObpV27kCKrFxUWzJryGAps1zMFZX0PPN58le8AkaVaVuyHAK\n7nyQ3PGn0yW29WPZfQpFlY1t2vcB8vKoGTaS1NXLyawswNGjDwC1dh+9uptaHaRoK38gSI3VTbXV\nRa3NTSDYtKBkMBowGP/gK2z76bG4qTpC7YVXHPAcG9QzlcwUS7vue9HXFl5/zkBsXJAnX6yiW64O\naFsbib2iDDpO6J+FQd/6hbVergClYbbAaC3Pyadi75ZHp2+/Yvekh/GmpAHg9CkkJlnQ61qed2oq\nLFkCp50Gr74aRWZmFA8+2BEzF0IcS6qtLvKLrARD+FxwML2jkd4vPkGn+R+h6A0EHvkXUfffR1eD\nAV2VnS176iI06yMxsW34n/lgy5l8t1DL+qeHAKDVqQw+0c0po52cfJqLhCSFIb3TSEuMXKi3c2cY\nOhRuuw3cbli8GGbPhrlztbz3XhTvvRdFQgKcfz5ceCGMGdMUlvyjKaxxNvt8q7H7GdK77e3NwuVw\n+ah31Yf1GojdubWpldrAwSRee2Wb2tbedRcsX970vHj2WSNabWSrC4rIOWIwZ8yYMZSWljZ73fHH\nH9+qbYLBIA888AD33XcfRmPbngw1NR1TvlEIIYQQQgjxx5aaGiu/fwghhBCi3RSUWPe1yglF7NaN\neOMSqI5JBocnrLkUnTqGvjPfIGbJV5SOHNuqbTbne9kEIVX06DH7Awa+/Sw6n5eGrj3ZeNNdBM86\nm15dEgl4/NR4Wn+GcaxRi8vpJRhGZZEdYy9rCuZ8NJX1Ex/Zd/mqn0o5rkdKyOMezOUJUNfooa7B\nQ4PTi9SRb1lMWSFJP6+h6rhhVMem7HueJ8eZ0KtKu35W/+orHbfdYsZsVrn/3yWkpHuwh5GR6dU5\nAZu1bW3XYqK02MN8bbdF/rgrOf7Ff5H6yQdsu/pv+y7fvKOK7FZWj/rwQw3jx0fz0ENaNBoPt9zy\nx27FJsQfhaKq7ClrpLQ2MmHC9LUrOeG5h4iuraShRx88r/0P7aBBYPMAHkxaSImJoiCcYG4rWOt0\nfDo9hW++TCAY7IxOqzCGr7hE8wlZ/zwJ55mn7Lut3QHrNldwQu+0dpvPsGFNf554An74oamSzoIF\neqZN0zJtGphMKqNGNVXSOfvsAElJ7TaVY4bXH6SozNbsZyq7w4NJB6kJh3YBai+qqvLTzloaXb6w\nxhnw+rMAOO99EHsbXlcffaTn2WfN9OwZ5IUXXNR1VH5NHFZLJ312SEe6LVu2UFRUxCOPPMKdd97J\nrl27eOKJJzpi10IIIYQQQgghhBBCCHFUeXyBsEI5hkYbMRUlWPP6t+kM2sMpGXUuAJ2XLWj1NkFV\nDSmUY6qtYtAbT+E3W/jxzsf55vXPibtoPP26JR+xKkdzjAYdWWFWTqkYOhJXaiZdvpmH3vnr4ofN\n4aW8tm1hiv2pqkqDw8vu8gbWbKtizfYqdpc3YJNQTqt0XfQ5AIVjLtp3mU6joWen9mlhtdfy5Tpu\nusmMwQAzZ3o4ZVh4yyZx0VFkJrf9OWoxGUiK7biz3IvOGIc/Oobc+bPQBH4N1JS14TWQlaXy8ccu\n0tMVHnzQxIwZR6eFiBCi47g8AX7Kr4lIKEfvdHD88w9x2v03Y7LWsn3CRBq/XtYUyjlITkZsu7Wc\ndNi1TH87ldsn5LJofiJpGX5uvbOCNz/exb3/V8WEqBmc8+xtdPp24YHbefxUWV3tMqf96fUwYkSQ\nJ57wsn69k6+/djJpkpecHIWFCw1MnGimX78YLr/czIYNHbL0f9TU2NwtfqbaVdpAIKh02HxKa5xh\nh3ISd2wi+/slNB53IsoZZ7Z6u59+0vLPf5qIi1N5/303cXFhTUN0gA55dQ4cOJAvvviCDz74gOee\ne44ePXrwwAMPdMSuhRBCCCGEEEIIIYQQ4qiy2r1hbZ+4cwsA9T37EW+JQhtmOKexWx4NOT3IXPPt\nAcGU9pD7xSy0SpDN1/+D2j9dwZC+GWEHa7qkx6DThvEY6HTsOfdSDG4XOd/MPeCq3eUNeHytD1EF\nggo1Njfbi6x8t7mSn3bVUlLtCCuI9YcUDNJ10Wx8llhKTzlr38VdM+MwRbVf2OOHH3Rcd50ZVYWp\nU90MGxakZ+cE4i1RIY/ZIzv0IFF7LTo3J2i2UDDmQsz1NWSvWrzvcpc3QH1j6yv3dOum8vHHbpKS\nFO6808ScORLOESJS3N4ANTY3BRWNbC6oY31+DTU291GbT2W9i3X51djd4VfHSlu3ijG3jKf7l59g\n696bb1/7hOjHHsFkOXy1kx7Z8aRHsBqK16Ph8w+TuP26XObMSsYSE+SWOyp49s09nH5OAzGxCjWD\nhvLtk28SNBoZ9u9/0nnJ/APGKKywhxRcDpVGA4MGKdx3n48VK1x8/72Dhx7yctxxCkuX6jn77Ggm\nTTJSXR1+kPtYVG1t+fnvDQTZU96+lZX2cnkCFFSEv6/+U18EwHv/w60O4FdVabjuOjN+P/zvf25y\ncyUC/lvQ5mDOvHnzmDVrVnvMRQghhBBCCCGEEEIIIX53wg3mJOU3BXOsef1JTTCTHG8Ke04lo85F\n5/eR9f03YY91OFqfj+5ffIQvJg7/JZczOC8Fi8kQ9rgGvS7sAMOesZeg6PTkzv8Q9ltQCyoq+SW2\nFrf1+oKU1TrZuLuO7zZXsqWwnkqrC38HnqF91CkKcQX55M6dzrAnJjF2whhOnvI3un75CUZrbZuH\ny1i3CnNdNSWjz0UxNj2/Y80GOqWGF+JqyYYNWq66yozPB2+95WbUqCAAWo2G/t2SMBl0bR4zIzGa\nuDBCPUlxJmIi8Bpprd3jrgSgx5zpB1xeWtO2wF7v3gqzZrmJjobbbjOxeHHbHzsh/sgCQYUGp4+y\nWif5JTZ+yq9hxcZyfthWxZbCeoqq7NQ2eGh0+dhSWM9P+TU0OMOr0tHW+W0rrGd7sZWgEl4AQO90\nMOSFKYy87yZM9TVsufpvfPvax3Q751TMxiMH+3rlJJIUG97noIAfvpqbwO0TcpnxThoaDVx9czUv\nvbeHM89tQH/QNOr6DeHbJ9/Gb7Zw0lN30/Wrz/Zd5/YFqAij2l64cnNVbr/dx5dfuvj0Uxe9eytM\nnx7FsGEWXn7ZgDe8j6DHFLc30KrqNOV1Thoc7XvHVVVlR4k17FBW8uZ1ZKxdiW3oCBg1slXbcU0Y\nIQAAIABJREFUeL1w/fVmKiu1PPigl9NPD4Y1B9FxNKragTG+ELRn31ghhBBCCCGE2Cs1NVZ+/xBC\nCCFEu1i1qSKs0MbwRyfSaeXXzJ++lL4jBqAoKj/tanv4YX8xZYWMvX4sFUNPY+Xjb4Q11uF0XjKf\nYf+ZTOEVN2J58fmIjh0IKqzeUkVACf1xHfbEJDovX8iS56ZR1//4A67r1TnhgHZEdpePukYPdQ2e\nVlUK0AQDqLrfT+UQTTBAwu7tpGxcS+qmtaRsXovR3rDven90DAZXU5hD1Wio7z2Q8mGnUz58NI05\nPY54Bviwx+6g84qvWPzSR1h7DUADDMlLJTY69JBLS3bt0nD++dFYrRreeMPDn/50aIUjh9vPT/k1\nBFu5hKLXahnaJ42oEAI9+6uoc7LjCOGwSDr1/pvJWLuSRa/NpiG3977Lh/ZOI7qNIaHVq3VcfnlT\nBaKZM92MGCGLhUIczOsLYnf5cHj8ONx+nO4A7jZUattfSryJ7pnxRJva5/3G7Q1QXueksi4y4dO0\n9d9xwnMPYqmuwNYtjx8nP4mzV38G9Ughxtz6401QUdiwq67NLYQUBVYtjeOj91OoqojCaFI476J6\nxl9aT7TlyPcvYecWTrv3Roz2BtZNfIQ9518OgFGvY2jfNHTao99GKhCADz4w8NRTUdTXa+nWTeHR\nRz2cfXYwEt1Qj6qiSjsFla2rUGMxGTi+V2rYVSYPp7TGwa6yhiPfsCWqysjJ15G28UcqZi9EP+Lk\n1mzCnXcamT49iosu8vPaa57f/M/19yY1Nfaw1/1+fjMQQgghhBBCCCGEEEKIY4zd5Qt7MSsxfzOe\nxBR8aRnEmA1oNBpizYawWkk4srti7dGX9HXfEdVoxReXGNYcm9Nj7nRUjQb/DTdFfGy9TkvntJhW\nL9A0Z/f5V9J5+UJy5314SDBnd1kjOp0Wm91LXaMHr7+VAQNFYchLj9J10Wx2XHYj2664ZV8FmN8S\njd9HUv4WUjf+SMqmtaRsXY/B9WtFAGd6NhUnjaJm4InUDDgBZ1YXYsqLyPx+GVmrl5CyeT3J2zYw\n4N3ncWR2pnzYaMqHn05t/yGo+gMXX6MarGR/v4SGrj2x5vUHmlo6tVcop6pKwxVXRFNfr+XZZ5sP\n5QDEmA30yUlkc2F9q8bNyYgNO5QDkJ4YTUFFI75Ax1Rg2jX+KjLWrqTH3Bmsm/TovstLa5zkdU5o\n01jDhgV5910311xj5uqrzXz6qYshQ/5AlaSEaEEgqFBYaaesxkGkKibUNniob/SSkRRN1wgdg6Cp\n0l9ZrYO6Bk9E5qp3ORn45tPkfjELRatj659vY+tVt6IzmhiUm9ymUA6ATqtlQPdkft5Vi9Nz5M9C\nqgrrf7Dw4XupFO0xodOrnHNBPRddVUdCYusDhLae/Vj+9FROu+cGjn/xEbQBP7v+dDXeQJDSaic5\nGYdfkO8oej1cf72fCy/088wzRt5+28A110QzalSAxx7z0qvXb/eYXN2GNm5Oj5+SKke7/ExcngAF\nEWiXlfbzatI2/kjdyaNbFcoBeOcdA9OnRzFwYJDnn5dQzm+NVMwRQgghhBBCCKRijhBCCCHaR3GV\nnT0VoX95b7TWMf7yUyg/aSRbn3+XQT1SAKiqd7Gt2BrW3PI+eptBbz3D2kmPUjD20rDGOlhC/hbO\n+vslVJ00EubObZczlgNBhR+2VoUefFJVxtw8jpjyYuZPX4o3MTm8Cakqg19+jB7zZqJqNGhUFUdG\nJ376+4NUDm1de4KjRlVJ2byOtJ9/IHXjjyRt34De69l3dWOnbtQOOIGaASdQM/AE3GlZLQ5naLSR\n+eMKslYvIePHFftCPb6YOCpPPJXyYaOpPPFU/DFx9Jj9PoNfe5Kf/3IPOy+egClKx4m926fygN0O\nF1wQzebNOiZP9jJ58pGrLbTmDP1oo54TeqdF7HleWNlIYWUH/W4SDDL2+nMwWWuZP2MZ/th4AHQa\nDcP7Z6DXtf3nMH++nptuMhEXB59/7qJv36OzEBwIKiHNX4hIq7a62F3WiDfQflWkdFoNXdJi6ZRm\nCen4GVQUKuvdlNc6WxV2aa3Un1Zz4nMPYKkqp6FrT9bc9SS2vH7otBoG5aaE1f7P6wvy084aPC2E\nZ7dtMjPjnVR2bIlGo1E59YxGLru2lrSM0O9jbNEuRt5zPeb6WjbcPJn8S29Ar9VyUt90DPrQjzlu\nb1NQtDUtvVprxw4tDz9sZOlSPTqdyvXX+5k82Uti5PPY7crh9rN2R3WbttFqNJzQKy2iFaVqbW52\nlNjCryClqoyedBUpW3+mZN5iTCcNPeImK1fquPRSM4mJKl9/7SI7+5iOePxhtVQxR/fII4880nFT\naTtXG8uQCSGEEEIIIUQoLBaj/P4hhBBCiIgrrLTj8YW+EJe6aS05S+ZTPPp8dKNHkRBjBCDapKey\nzkVQCf1LeXdKOnmz30fndVN01p9CHqc5/d/7L4m7t1F+/6NE9+sT0bH30mqbQhBWhze0ATQaNIpC\n1g/L8MYlHFI1p01UlYH/+z/yPp+GrXsvlrz4IapOR8baVXT9Zh4Ju7dT2/c4Apajfzb9wTR+Hye8\nMIXBr/6btI1rsFSV0dilOyUjzyH/0hv46a8PsOOKW6gYPpqG7r1adR8Uo4mG7r0oPe0cdlw8gZoB\nJ+CPicVSVUbqlvV0WrmIvE/eI3XTj2SuWYHe42bN5P8QNJnpm5OEpY0tlFrD54NrrzXz4496rrnG\nxyOP+Fp1pnlCjBGnJ4DLc/hWM31yEtvc9qklFpOeshpnxKpqtEirRRsIkLXmWzwJydT3PQ4AFTDo\ndcSHsGiel6fQubPC7NkGvvhCz9ixgQ5fBHZ6/KzPryEx1hSxKiJCtJXL42droZWSGkdY79fQ1FIw\nacdG3Emp0EzwRlXB5vBSVedGp9Xsq7B3JG5vgKIqO9uLbNQ2uPFHsFpXl2/mMeJft6N3udh2xS2s\nufdp3GmZ6DQaBuYmE//LZ5pQ6XVakuKMVFvdKAfVodiz08jrz2cy89006moMnDDczp0PlnHW+Q1Y\nYsK7j76EJMqHjSZ71WI6r1yEotNT/ctniKTY1lfJc3n81Ng8lFY72F3WQFGVnbJaJ41OPwa9NiIB\nnZQUlUsuCTB4cJD16/V8842e6dOjiI5WGThQae6pdEwqrXHS4Gzbd3Yq4HQHyEiODnv/iqKys7SB\n3RWNhzzXQpHx47f0mfUWVSPPxjBp0hFvv2iRjptvNhMMwowZnqMWeBVHZrEc/rgmFXOEEEIIIYQQ\nAqmYI4QQQojICyoKqzZVhvUFfp9pr9L//ZdY+eirpF51CUlxvy74RKKqxug7riR5+0bmzVyONzEl\nrLH2imq0cv5Vo3Enp2Fb8zNGY+RDFnsFFYU1W6tDrkKgd9oZd8VIvAlJLHjvK9CFtoDf790X6Dvz\nDRq75LLs6an7qu/EFeQz5KVHSd28joDRzNarbyP/outQDe3TpqmtDI02Tn7sH6RtWEN9z35s+/Nt\n1PQ/Hn9c21oYtZqqEr9nB1nfLyFr9VKS8jcDUHrKWXz/8IukJ5jp0zUp4rtVFPjb30x8+qmBMWMC\nvPuuG30b1juDisLPO2ubbR+XEm+if7cwqy01Y0exlYp6V8THbY6h0ca4q0bhTk7jy3cX7lv0N0Xp\nOKlPeqsW95vz9tsG7rvPRHa2wsKFLtLTO2Y5yh8Isj6/FrcvgDlKz/G9UqVyjuhQQUWhuMpBSbUj\nIov4Oo+bYU9MIuuH5ew+73LWT5zCkZKF0UY93bPiSIk3N3t9faOH0hon9XZPs9eHK/vbrxj2738S\nMEez4ok3qO87GGiqYjKgezKJseGFcvbX6PKxYVctLhd8tzyOxV8ksHN70/3uN8jJlTfUkNcn8vfT\nUlHCyLsnYKkqZ+ufb2P7dRMZ2jcDY1TznyUcbj82h5cGp48Gh/eILQujjXqyUixkJEVH5Bjm88Fb\nbxl49lkjdruG3r2DPP64l9NOa79KTpGyektli5WRWtKrcwKZyZaQ9+30+NlWaMURqUpSqsqZf7uE\nhN3bKJy/lJgThxz2psEgPP10FM89Z8RkUnnxxcO34BTHBqmYI4QQQgghhBBHIBVzhBBCCBFpNruX\nSmt4C+t5n75HXGkBG2+5m2552fuqxEDTgk1ZbXhVNfRuN5k/foszIxtrr4FhzXWv3DkzyPxxBSU3\nTsQy+rSIjHk4Wo0GjQbq7aFVzVGijFiqykj/eTX1vQfg6NS1zWP0mf4a/aa9ij2rC8ufnoo3KXXf\ndd7EZArPvhBnRidSN64h+/sldFr5NY1dcnFldAppzpESU1bIqHuuJ2nnFkpHnMmqf71KY/deKMbW\nn+3fZhoN3qQUageeSMG5l7Hn3Muw5vVn1wV/RhsTQ//uyejaIUDx2GNRTJ0axfHHB/ngAzfGNq4H\nazWafVUZ9q96odVo6N8tOazWJYdjNuopr3VGfNzmKEYT0ZWlv7wOBuLI7gpAIKgSazaEXA1oyBAF\nnQ6+/NJAfr6Wiy8OtKpKUTgUVWVzQT2OX0JUgaCC0xMgPTH8iglCtEZtg5vNBfXUNXoiUvXK0Gjj\n1Af+QvrPqwkaDCRv34g3IfGI79n+oEK1zY3N7iPapMcYpSMQVCivc7K92EpprRO3r30W+DO/X8rw\nJyYRNBpZ8eTb+ypxNR0zkw4IGUfCnl0Gpr2bwNOPp/L98jisdXoGD3Vy498quey6OlJS2+d++mPj\nKRtxJlmrl5L93TdovB7KB55ESoIZRVWxu/xU29yUVNnZWdpAaY2DersXlyew771E77QTW1JA0o6N\nZKxbRXRVGY1dezaNH1Sot3spq3Xi9QUxG3UY9KFXANPp4MQTFa66yo/dDkuX6vnooyg2bdIyaFDw\nmG1v1eDwUhrG+2Gj00dGUnRIny/Ka51sLaiPaBu6rFWLyZv9PpVnnI9p4t8PezurFW64wcyMGVF0\n6aLw0UduRo489kNUf3RSMUcIIYQQQgghjkAq5gghhBAi0naXNVBS4whrjPOvHImq0fDt7FUc3yvt\nkOu3FVmpCiP8Y6qr5vyrRlHbbwjLnpsWzlSbBIOcO2EMRlsdxas3EZudHv6YR6AoKmu2VYV8JnXC\nrq2c9deLKT9pJKsee71N2+Z9/A6D3nwaZ3o2S5/9AHda5mFva7A30P/dF8j9YhYaVaXo9HFsuGXy\nAUGejpKy8UdO/tftGO0NbL/sRjbdcGezrVE6UrhntB/Om28aeOABE7m5CvPnu0hODn1JpMHZVJVh\nbwWMnPRYumXGRWqqh9i4u67dqlkcbO/roOLEU1n5xP9+vdxi5LieoVfTUhS44gozy5bpefJJDzfe\nGKGKA4eRX2KjvO7QBdxuGXHkZBx7reTE74fbG2B3WQO1jZF7zZprKjn1/puJL9pF8ejz2Hzt7Zx+\nx1VE2Rv49sm3qBk8rNVjJcQYsbt8YbfUOpL0tSsZMeWvqFo9K/79P2oHnAA0hXL65iSSktB8BZ+2\ncrth3jw9779vYM2aphJoqalBTjvLyuljbaSmd1xVEVNtFaPunkBsaSE7L7yW4slTaHD5CQYVjLZ6\noqvLia4qx1JVRnR1OZaq8n2XRTkP/R5q1cMvUn7KWc3uKzHGSHaqheQ4U8jVzPbatEnLgw8a+f77\npscvK0uhb1+FPn2Cv/yt0KOHQtRRLvJ3uON6W6QlmOnbhop8gaDCjhIbNTZ3WPs9RDDI2bf+ibiS\nPexasIKEIQOavdnGjVpuuMFMcbGWM84I8Oqr7mM2OCUO1FLFHAnmCCGEEEIIIQQSzBFCCCFE5K3d\nXh1W2XtTXTXjrhxJ2fAzKHrlXXp2OrS9kN3lY11+TTjTZOTk60jbsIb505a0GCxpjczvl3LKlL9S\nPO5yzG+/GdZYbVFe6yS/1Bby9qdPvJykHZtYMPVrXBnZrdomd850hrzyOK6UDJY++wGuzNZVwEnc\nsYkhLz1KUv5m/NExbJ7wD3aPuwJV14beSmHI+fpzTnj+YVBV1k2cQuHYSzpkvy1JiDFyXI/ItFLb\n37x5em66yURqqsoXX7jIyQl/OaSizsmOEhsmg44T+6Sha8dAU32jh4176tpt/IONnvRnUrasZ8G7\nC3Fm5+y7/IReacSYQ29JV1mpYdSoaFwuDYsXu8jLa7l9S6jKap3sPMxxQAMM6J4c8UodIjT+QJAG\nhw+b04eiqMRbooiPicIU1THHwUhSVJWSKgfFVXaCEVxyjS3ew6n334SluoL8C69hw1/uBa2W5C3r\nGTV5An5zNN+89BHOrC4R22e4Ujes4dQHbgFVZeXjr1M9eDjQ9Prr0zWJtAiEcnbu1PL++wZmzTJg\ns2nQaFRGjQpy7bV+zj47QLXNwc6yhrD301bG+hpG3nM98UW7qe/ZD73bRXRNBXpv80Etf7QFV1oW\nzvQsXGlZuNKz8MXGM/iVJwgYTSx6Yw6elMOHm01ROrKSLWQmW8Kq2qaqTe+VM2YY2LpVS2XlgWMZ\nDCo9eij7gjr9+gXp00chM1Nt9wpo0PT6+n5zJf5g+O8bA1v5HtDg9LGtsD7kwHdLOi/9gmFP3kXJ\nORdinPpes+GqmTP13H23CZ8P7rrLxz//6Tva2WnRBi0Fc35773BCCCGEEEIIIYQQQghxjPP5g2GF\ncgAS87cAYM3rR7yl+dOVY6OjiLdE0eAMvSVnychzSduwhs7fLiT/kutDHgegx9zpAHhuuJnInBPf\nOhnJ0ZRUO0Juy7H7/CtJ3r6R7gs+YvMNk454+24LPmLIK4/jTkph+f+90+pQDoC11wC++e+HdF/w\nEQPefYHBrz5B10Wfsf72h6nvc1xI828VRaHf1BfpO/MNfDFxfPfQf9tUbaG9aDUa8poJnYXr++91\n/PWvJqKjYeZMd0RCOQCZyRacngBxlqh2DeUAJMWZiDEZwj6WtNau8VeRsmU9PebNZMOt9+67vKzG\nQa8uoZ+qn5Gh8swzXm64wcxtt5n48ktXxCsw2BxedrewGK/SVGFsSF4qZqMsjXU0rz9Ig8OLzeGj\nwenDedBzem81DFOUjgSLkfiYKOItRqJNx/bPymr3srPUhssb2eosids3cuqDf8HYaGPT9ZPYfsXN\n7E1B1PUbwrqJUzjxuQcZMeWvLHnhQwKWmIjuPxTJW9ZzykO3oVEUVj3y8gGhnN5dEsMK5Xi9MH9+\nU3WcvdVdUlIUJk70cfXVfrp2/fX4np0agy+gUFTVsSdeeZNSWfb0+5z60K0k7diENy6hqW3lL8Gb\n/QM4zvRs/DFxNJds0QQCHP/Sowx9+l6+ffLtw1az8/iC7KlopKjSTlqimezUmJAClBoNjB8fYPz4\npudwfT1s26Zj2zYt27Zp2bp1778PbKGVkKDSp09TSKdXL4W0NJXkZJWUFIXkZJWEhGbvXpvZ7N6I\nhHIA8kttnNj78IFaVVUprnJQVGXfVxkvkuIKd9L/vf+i6PQ477wH00EPkNcL999v5IMPooiPV3n3\nXTdnnimtq35PpGKOEEIIIYQQQiAVc4QQQggRWVVWF9uKrGGN0ff9l+g37VW+feJ/dL/uUoxRumZv\nV21zs7WwPuT9RDVYGXf5qdh69uWblz4KeZyYkgLG3ngutQNOIPD14nYPLRysst7F9uLQHnOt18P5\nV41C1er4YvpSlBZSAzlff86Jz9yPLy6Bpc+8jz2nR6hTxmitY+Bbz9D1688B2DP2UjbdOAlfXGT7\nFWi9HoY+cx+dly/EkdWFlY++hr1L94juI1S5WfF0TovsovK2bVrGjYvG5YIZM9yMGhXZhS1VVcNu\nIdJaeyv0dASN38d515yBzutl/oxlBM3RQFN4ani/dAz65o9BrXXHHUZmzIhi4kQvDz4YepjwYG5v\ngPX5Na1avI0xGRicl9Lhx6c/Grc3QIPTR4PDS4PTF3JwxajXNYV0YozEW6LCqty0vx9/1DJ3roGk\nJJWMDIX0dJW0NJX09KZwwZGeHl5/kN1lDVRHus0NkL52FSc/OhGdz8O6fzxCwdhLm73doNf+Td7s\nDyg/aRSrHnkZdOG9PsORuH0jI++9AZ3Xy/cPvUD5yWcATT+/vM4JJMe3vVKVwwEFBVo+/dTArFl6\n6uqafiinnhrguuv8nHNOoMWAXyTaH4VEVdF5PQRNIQaRVJWTH/k72d8vYcNNd5F/2Y2t3tRk0DUl\nodooc9mX5Cz4hKpJ92EePpS46AMfWEWBoiIN27bp2LpVuy+0s2ePFkVpfod6vUpS0t6wTtPfe//s\n/X9Kikp6ukK3boevvhNuy9aDdU6NITc7/pDLvf4g24qs2BzeiO1rL1NdNf3ef4luX32GRlHYdfmN\nxL74HNr97nRpqYYbbzTz0086+vcP8s477gMCZ+K3QyrmCCGEEEIIIYQQQgghRAeyNob/xX5S/mYA\n3H0HHjaUA5ASb8Jk0IVcct8Xn0j1kOFkrF2Jpbw45LYYPebNBKD+6htIPAqL3umJZoqr7CEtACtG\nE4VjLqLXJ++SveprSkaf1+ztOi1bwInPPoA/Jo7l/3knrFAOgDcxmR8nP0nBmIsY8tKjdP/yYzqt\nXEThmeMpOuMCbD37hn3KudFay4gpfyN5+0Zq+h/Pd1Newhcf2eBPqBJjjBEP5ZSVabjySjONjRpe\neSXyoRzg/9m77+ioqrWP498zfSaTTCa9QxJI6F2lqUhR4drAfu0FOzbsDUXRK3a9FtRXvdgbKIKi\nUqSLgvQWIEB6TybT63n/GIoIIcnMJCDuz1pZE5hz9tlh2iH7d56n3UI5AMlmA7vKG/H42qb905/J\nag2FYy6m+0evk7VgNrv+dREQbCVSUGKhe8e4sMZ/6ik3y5ereO01DcOH+xk8OPzHxucPsGlXXYsr\nKthcXrYXW+jS4dh4DRwrai0uthbVo1Iq9n5Jf7lVoNz3vUJCpdr7dwoJtUqBxxvAYt9bEcfmjlgL\nGLfPT1WDc38ARq1UYDJq9lfVMerVrX49fvKJinvv1eH1Nh0o2BfSSU4O7L098OdYs5c6Tw26qMhW\nyYFgm5sTn3sQWZJY/ugrlA0Z2eS262+4j5g9O0lb+Qs9P3iZDddNjPh8WsK0cwunPDQelcvJrw8+\nvz+Uk2I2kJtuarLNks0GxcUKiosliosVFBUFvy8pCd7uC+IAxMcHuPVWD1dc4SEnp2VhhbzMWHLS\nYkL+uYqrbKFV3ZGk0EM5e/dfddeTxG1bT88PXqGq70AaOndv0a6hvO4S1/xKvycnovD7iL/iV9Zf\ndzebLr6WeJOe+Bgd5mgtCoVEdrZMdraPMWMO7Ot0QkGBgu3bFdTUSNTWBr9qaiRqahTU1kqUlirY\nsuXIr9Hs7ABjx3oZN853UKtDfyBAjSWy4beSahtJZj3Rfwof7Xv/i1Rlnn1Udhv5X/4feV9/gMrt\nwtIhlw3XTcQw9lxMf3rfWrxYyY036qitVXDRRV6mTnVhMER0KsIxQlTMEQRBEARBEARBQFTMEQRB\nEAQhslZsrMDtC2NhUpY5++KT8Wu1rP5uOV2bWRAvqrRSWN4Y8uE6/DSTE59/iA3X3MnWS29s9f4q\nh52z/j0Mn05P9aqN6I3t2cjqgKp6B5tDrFRkLN3N6GtGU92jP7+8+NEh96ctm8egJ+/Er9Oz6Nn3\nqM/vGe50DyL5vHSe+SFdPn8HbWOwQkpjVi67R55L0fCzcCaltnrMmF0FDH3sZqIqy9gz4mxW3fXU\nEasBtSe1UsGALklo1ZGr8mCxwNlnG9i6Vcmjj7qZMCFyVVmOpj0VVnZVhP76bg1dbRX/unwEjVk5\n/PzWNwcFwzKTjOSmHVppoDVWrQpWM0pNlVm40I4pvOHYuKuWGour1ft1zoglPSEqvIMfR1Zvq8Lq\nbJ+WaZGUaNLTtaP5oMoTTfH74ckntbzxhgazWeb5511ERclUVkpUVCiorJT2fh343uM5/LgKhczp\nZ9dz0ZU1GKMjs5jfaeaH9H3zabwGI0snv05NrxOb3UdttTDi9ouJLt3DyvunUjTi7IjMBUCWwW5V\nUFerwtKgwu+TkOVgWzj2rizrK8vo8d7LKB0OCsZeSXXvk1ApFKTGG4g2aIPby1BVJe0P3uwL49TV\nHT6wo9XKZGYGyMyUycgIMHSonzFjfGi1EfvRWqy02sb2I7TIa0tJq5dx6oPXY83oyM+vf72/glkk\nRe/ZwfA7/43K7WLjVRPI+/p/6BpqKT/xFH6f+DRuczxKScIcoyU+RkeCSRdS5TSPB+rq9gV2DgR4\namslduxQMG+eCqcz+Frr3t3P2LE+xo71oo12hFURsinRejX98hKRgcKyRkqqbREdX/J5yfn+C7p9\n+AY6Sx3OuEQ2XTWB3aePRaXRcFK3ZFRKBbIMr72m4emnNSiVMGWKm6uu8kakBZhw9BypYo4I5giC\nIAiCIAiCICCCOYIgCIIgRI7d5eX3rVVhjaGvKuesy4dTMvR0at7+X7MLyF5fgF83VeAP8de9alsj\nZ188FGvm3sX4Vsr57lP6vzaZwvF3ET3liZDmECmrtlZhc4W2wHzyg9eTsnoZP077lsbsvP1/n/Lb\nIoY8PoGASs3iZ96ltnvfSE33EJLXQ8qqpXSYN4u0Xxeg9HqRJYnqXieye9S5lA49HZ+h+UBB8qql\nDHrqTtQOOxuvnMCWy24Ou/pOJPXoGEdCbOQCXC4XXHyxnhUrVIwf7+Gpp9zH0o8bFq/Pz4pNlQTa\naTnnpCl3k7XoBxY+P52aXiccdF8kAi1Tp2p4/nkt55/v5c03Wx+q2WdXeWNoFS0Itufq0ymBmKhj\nI6h2NFU3ONnUBovfbU1ltyL5/cRlpdKlg/mIlXNsNrjlFh1z56rp1MnPRx85m628IsvQ0ACVlQoq\nKiTKymHtZieVlRJrfjNSUaYh2uTj0muqGX6GBUWoGUNZpvsHr9Dt02k44xJYMuUdLLldWrx7dFEh\nw++4BKXHzcIXPqS+S68jbh8IgNWipL5ORUOdivo6FfW1e2/3ft9Qp6KhTonXG/nqdzrn2UhNAAAg\nAElEQVTdwcGbrKx9fw7+XWJi863E2lNVvYOtRQ3t9v77Z72mPUv+1x9QOPpCVt81OaJja+uqGXHH\nJURVlu0PdWnrqjlx6gOk/LEcZ1wCv90/laq+g/bvIwExBg3xJh3xJh1Rusi0lrPZ4McfVcycqWbh\nQuX+albde7k46eQGBp5iJdYc2ep3GYlGLDZ3ZAOJskz60p/p+d6LRJfuwas3sO2i6ykYdxV+vYHE\nWD2d0kxoNUoaG2HCBB0//KAmNTXAe+856d+/7SvjCW1PBHMEQRAEQRAEQRCaIYI5giAIgiBESkm1\njR1hXmGdtvRnhky+nfXX3k30pIcx6ptf/NhWVE95nSPkYw6edBvpK+Yz953vWteiSZY5/YaziS4t\nonDJH5hyO4Q8h0ioaXCyMcRF5rRl8xjyxAR2nH0payY8BkDSmhUMfeQmZIWCJVOmtaiKQaSorRYy\nFv9Ih/mzSNy4GgCfVkfZ4BHsHnkuVf0GIStVh+yX892n9H19CrJSye/3PN1ka66jJS0+irzM2IiN\nFwjA+PE6vvtOzdlne3n7bRfKyBXiOSaE+/pujfiNqxl+9+UUn3Imvz7y0kH3SUDPnHjiYnQhj+/z\nBSsbrV6t5K23nIwb1/qWQOFUx9pHq1bSPy8RTQSrNv3dyLLMqm3V2EMMM7aLQABjeRGmnduI3bUN\nU+E2Ygu3ElVZhtdg5Me3Z2HKz22yPVlpqcTll+vZtEnJKaf4ePddJ7GtfPvxBwKs31GLxRGswuX1\nSHz/jZmvP47H5VSS3cnFtbdWkt+9dW13JL+Pfq8G2xha07JY8sy72FMzWzc5IPn3JZz86E24YuOZ\n9/pXuOKT9t/n88LShSYWzDVRXaGmoV6F3990iEmplIk1+4iN92GO82GO9xFr9qFW711OlkBrbSB3\n9mdoHFZKB4+gsVd/Es3BoIYkHciA7vs+MVE+KHjzdwtN1jW62LS7Dn+gfZfUFR4Pw++4BPPOLSx7\n7FXKho6KyLhKp4Nh915FXMHGYHD38lsO3BkIkPfV+/R8/2WkgJ+tF49n05W3IasOPQ/Va1TEm3Sk\nxhsiFtKpr4fZs9XMmKFi+XIlsiwhKWR69nEw5LRGThpqxRB17AVY4jeupvc7zxG/ZR0BpYrCf13E\n5stuwW2OR69R0TnDtP9zc+tWBddco2fnTgVDh/qYNs1FYuIxHdcQWkEEcwRBEARBEARBEJohgjmC\nIAiCIETKhsJaahtDrwIB0OP9l+n66TSWPvs+eVePO2IlgH1sTi+rtoVeqSdz4RwGPnMPmy6/hc1X\nTmjxfolrVzLsvqspHXEWmk8/Cfn4kRRqWxbJ72PMFaNQO6zM/mQRsTu3cPJD45ECfpY98SaVA4a0\nwWxbJqq8mKz5s+gwbxbRZUUAuMwJFJ32L3aPOhdLThcIBOj99lTyZk7HZYpj2RP/pa5b21X3CYVB\nq6J/fiLKCJVEkGV45BEt77yjYdAgH59/7kQXembkmBWJSlwtJsuMunkcMbu3M+ej+bgSkg+6W6mQ\n6Ns5sUWBwaYUFkoMHx6FSgW//GInI6PlS1VWh4e122tCrhD2Z7FGLb1z41v0Hns8qqx3sCXMgJOh\nvATT7u14jdF4o6Lx7L316aNobekTld2GaXcBsTu3BgM4u7Zh2rUdlevgUJorNh5Hchpx2zZQdOpo\nVj784mEDf3/8oeDKK/VUVSm4+moPU6a4UbfyaRuQZTbtqjvs53pdrYqP301kyfxgT7aTR1i47Ppq\n4uKbD5spPG4GPj2R9OXzqe/UlSVT3sZtTmjd5P6k81cf0OftZ6nL78nC56fjCOhZMDeW776Ko7Za\njUIhE5/owxzvJTbOHwzd7A3emON8xO79c7TJf8SHTV9VxmkTrySqspR14+/FMv5WOmXEolYdQ2Vu\n2kCj3cOGwlq8/vYNhUQX7WTkrRfg12j5+a1vcCamhDeg38/gyXeQvmI+u04fy6qJUw5bTc+8dT0D\nn7kHY3kxtV178+sDz+NIzTjskGqlgv75ieg0hwaFQ1Vea2fFWhu/Lo5m2cIYtm8NVthTqQP0PcHO\n0OGN9D/JhkZ7dGMO0UWF9HzvRdKXzwegZOjpbLj2TmwZ2SgkiQ7J0WQmGVEogq3gZsxQMXGiDodD\n4rbb3Dz0kAdV5P7ZhGOACOYIgiAIgiAIgiA0QwRzBEEQhH86r8+PPyBH9Jfq/0QBWWbZhvKwr6re\n11Jp0Y9r6NY3t8X7rdtRQ73NHdIxlU4751w0FEdiKj/+35wWtz0aNPl2Mpb+TMGH32I+47SQjh1p\ntRYXG3bVhrRv14/eoMf019h25iXkLJqF0uNh+aRXKR94bPxsyDJxW9fR4edvyVz0A1prsDqTpWNn\n3DGxJK3/HUuHXJZOfqvJRbSjRSFJ9MsLL9DxV//9r5rJk3V06eJn1ixHqyth/J2s31lLnTW80F9L\nZf/wJQNeeozNl93MpqtuP+R+rVpJv86JaDWhV5v5+GM1d92lY/BgH19/7WxRlSO3188fBdW4vZFr\na5KZaCQ33RSx8f4uZFnm961VONytr1i0j+TzMubK0zHUVBw6viThNRj3B3aCoZ0YvFFGvFF7b40x\nqBx2YguDQRxjRclBYwSUKhqzcrDk5NOQnY8lpwsNufnBAEsgwPA7LyV+63oWPv8/anqdSEaikU57\nH8tvvlFx++06PB546ik3113nDalSy5Y99VTWH7la1dZNet5/PZldO3To9H7Ov6yWMefVo9Yc/lxA\nZbcyZNKtJK3/nareJ7Hs8f/iizK2fnJ/JssMeOFhTD/9wlPZr/Fu7cVYG1VotQFGjGngrPPrSEgK\n/bEG0NVWMWziFUSXFbHlmjvgwYci2pLwWOdweVm/sxZXBN9/WiJn9mf0f/UJqnqfxKL//B/hlITr\n/eYz5M2cTmXfgSx5ahqyuul2fiq7jf6vPk7Wwjl4DUZW3TWZklNHH3Zbo05N37yEiIVu/3o+W1mu\nZtkvMSxbGE3x7mD6Vqf3M2K0hbMvqCMuIbzndmtp66rp/tHrZH//FYqAn5ru/Vg3/p79Yei4aB2d\nM0zotcH/Vy1frmTKFC2//64kKkrm1VddnH12+85ZaB8imCMIgiAIgiAIgtAMEcwRBEEQ/smqGpxs\nL24gPkbXZCsIoWUabG7W7qgJbxBZ5pwLBuGNNrF17go6pDT9C96/qrE42bgrtDZOAAOn3EXmorn8\n9OYMLLldm91eX1XGv64chSWnC87Fy1Cpjp2WMGsKqve3HWmNwmUuvn7Cyx/0ZSAr6XqqguxxqeTm\nuVAcOz8eAJLXQ+pvi+kw71vSVi5C4fNS0W8wKx59GV9Uy5837SU3zURmUpiLz3vJMnzxhYoJE/Sk\npQX4/nsHaWnH9HJH2OoaXawvDC1w1lpKl5Oz/j2MgErNnI8WENAcunhr1Knp0zkBlTK0hVhZhquv\n1vHDD2oee8zFbbcducpVICCzdkcNjSG8rpvTrWMcSf+ggAEEK1JsK24Ia4yMRT8waMrdVAwYSl3n\n7mjsVtR2K2rb3tu9XxqbFbXDdsSx3CYzDTn5NOR0CQZxcvKxZuYe9rm3j3nbBkZOuIiG7DzmvfE1\nslJFZmI0Mz9NYOpULUajzDvvOBkxIrQgxc5SC8XVR573PgE/LJhr4tP3E7E2qkhN93D1zZX0PdF+\n0HbaumpOeegGYgu3UjL0dFY+MJWARhvS/P6srkbFnC9MzP82CodsIEbj4PSLHJx5bj0xpvCDJNr6\nWobdcyUxxYXsueY21FOeRH0Mfea3F7fHz/rC2vZt/ybLDH58Aukr5rP+urvZdvH4kIbpNPND+r75\nNJYOuSx86RO8xpgWHbvDz9/Q77UnUbmdFI6+gLU3PYhfbzhk00STnu7ZcSHN7c/cXj+/bqqgqU/0\nol0alv0Sw+KfTdTWqFGqZE4dZeHci2pJTW/jx0WW6fLZ23T99G1ULgfWjI6sv24iZYNHgCShUyvp\nlG7aH1hbt07B009rWbgwGNAZPdrLpElucnKO7/OVfzIRzBEEQRAEQRAEQWiGCOYIgiAI/0Ren5/t\nJRaqGpxAsJrFiV2TRNWcMOwqb2RPZXjnFIbyEv511SiKTh2N673pmKNbvmAnyzK/banC6QntKtz0\npT8xePIdbL34ejZcN7HZ7fe13Nr+2HPE3nZjSMdsK/VWN+t2tjwkVVWu5qP/S+TXxcGFqu5sZIvU\njYAcDB1ERfvp2cdO7wF2eve3h115INLUjQ3EFWykqs9JyKrIVaSJlLhoLb1yQ2/Tss/OnRIzZ6r5\n9lsV27YpMZlkZs1y0LVr+7YXOVr2VFipsThDatXWWr3enkr+V+/z6wPPUTz8rMNuExetpUdOPIoQ\nW0HV1kqceqqB+nqJuXMd9OzZ9OO4dU89Fc1ULgmVUiHRPy8Rg+7Ye+20hYAs89uWSlye8AIbw+6+\nnMSNq/nhve+xZWQfeWO/H7XT/qfQTiNqu42ASo0lJx9XXGKLK7X92YAXHib7xxn8cdsjbDnjct58\nMYVlC01kZQX48ENnyO8NRZVWCssbW72fzargi+kJ/PSdmUBAot9JNq6+qZKUdC+GylJOve8ajOXF\n7DzrYv649dGwqp8AlJWomfVFPIvmmfD7JOLMbu71PMMt9hdZ/8SzlA8Kv9qbprGeU++9mthdBdRe\nezOBZ/4T0mN1vPD6AmwsrA0p/BsqjaWe0288F62lngWvfEp9Xo9W7Z+6YgFDHr8NlzmeBa98hiM5\nvVX7G4t3MfDpiZh3bqExM4dfH34RS07+Idt1TImmY0oLAj9HUFJtY0eppdntfF5YssDEN5/HUV6i\nRVLIDDrZynmX1NIxN7Tqkc3Z1/bVFRvPpitvY9eZ5yOr1CgkiYxEIx1SjCgVCgoKFDz7rIbvvgt+\nppx8so+HH3bTr98/41zln0wEcwRBEARBEARBEJohgjmCIAjCP011g5PtJQ14fAf/gjgjwUinjGO/\npYfL46PW4kKpVJASd+hVu0fLHwXVYVdzyFg8l0FP3cX6G+4lafLDrW4LUFJlY0dZ8wsah6Nwuzjn\n4qF4omP5fvrPR1x4U3jcnHXZaRAIUL5qE1Hm8BZi2kJVvQOrw4vd5cXm9B7yfAdw2BXM/CyeOTPM\n+LwKOndxctX1pfROKaZan87GtVGsX21g3Woj1ZUHFu3TMtz06h8M6XTv7UCnP6Z/1X5UqZUKBnRJ\nQqsObQG6qEjim2+CYZwNG4JjaLUyI0f6uPNOD717//MWutwePzWNLmotLhpsbgJtsNQTVVbE6GvO\npLZrbxa+/GmT26XGGcjPCr3a2oIFSi65xEBenp+ff3agP0zhmuIqGztDfF9rKYNWRb+8xJArAP2d\nlNbY2V4SXrUc086tnH7zWCoGDGXJ0+9EaGatp62vYfQ1oymXUhmVtpqC7dHkd3fw2uuN9OkWFdKY\nkagmVLRLy/tvJLFpXRQqdYCzxtbx4sZxZG9eEmwRd+WEsMIthdu1fPNZPCuXRiPLEqnpHs69qJaT\nRzSSuGcjp919ObJCwYJXPqOxY+fWH0CWiS7eRcKGVXT67hNiC7dhv/p6HM++8I8O5ezjDwTYvLue\n2sb2aS8IkPTHck594Dqs6R34+Y2v8etb9vw2F2xk2MQrAfjlhemtDvXso/B46Pl/z5M380P8ag3r\nbryPnWf/+5DnQ7gVyFp7Lh3ww2/Lopn5WTy7dgTbXPU90cbYS2vp0t0Z8jz+SuHxcMb1/8JQU8nc\n/5uDPTUTgFijlrwMEwadmuJiieef1/L556pgMK+fn4cecnPKKe3b/kw4ekQwRxAEQRAEQRAEoRki\nmCMIgiD8U/y1Ss5fKSWJgd2Tj8n2BI0OD7WW4EK0bW8LAa1KyUndk0Ou1hBJPn+AZRvKmyy931I9\n332eLl/8H7+9+jHZl5wd0jxWbKrAHwhtJidMvZ+O82Yx/5XPqOvau8ntsuZ9y0lTH2D3v28g6uXn\nQzpWe/N4/dicwZBOo93HzK90TH83DkuDivhEL5ddX8WQYdbDrjnKMpSXqlm/Ooq1q4xsWmfA7Qou\n4CtVMl26O+jVLxjU6djJTSvzVMe1HtlxJJhat0hXUSExa5aKmTPVrF4dfD9SqWROO83Peed5OfNM\nH9HHXreuo8LnD1BvdQffHxtdeP2RCyoNefQm0lYu4uf/fkVDXvcmt8tJjSErOfQH5KGHtLz7robr\nr/fw9NMHVzqoa3SxobA27PfWlohUK5ZjWSAgs3JLJW5veAvF/V96jJwfvmTp5DcoHxisyqKQJJQK\nCZVSgUopodx7q1Yq9n8fvE+BShG8v7jKSp01vOoW8js/cu+X51FEB04ZaeHGOytQa2Q6pZvISGxd\n+7yaBiebdtdF5Pkmy/DrkmimT0uitlpNGqXc3elTXLedj1YHWm0AjVZGs/dWrZaPmHmRZdi0zsC3\nn8exbnXw58ru5GLsJbWcOMR6ULvFfW3GbKmZzH/tczwxzYTn/H5Mu7eTuP53EjesImHDKnSWA60x\nnVdcg+25lxAfbgcEZJmCooY2q+R1OL3efo78r96j8MzzWX33U81ub6gsZcTtl6BtqGXZ4/+lfNDw\nsOeQ+utCTnjhYbSWekoHjWDVxCcPen4pJYm+eYkY9a2vQOZ0+1i5pTKkeckyrFsVxcxP49myMRja\n79rTwdhLa+nd3x52nqzzjP/R563/UDD2Stbd/CBalZKc9BiSzQaqqiReeUXD//6nxuOR6NLFzwMP\neBg92idybP8wIpgjCIIgCIIgCILQDBHMEQRBEP4JahqcFBymSs5fdUiOJjv16Fc/CQTk4GLz3qoQ\nbt/hFxG7d4wjMYwrcyOleu9iXrhOue8aktf+ym+LN5PdJSOkMXaUWCipsYW0b8pvizj5kZv2Lzw0\nZfiEi4kr2MD2eSsx9+wS0rGOlkWLlDz2mJYtW5QYDDI33+Lk4sut+GXv/uBOc+EGnxcKtuhZuyqK\n9aujKNx+4DkYbfLRraeD7n0c9OjtID3L849dmEmLjyIvM7ZF29bUSMyereKbb1SsWKFEliUUCpmh\nQ/2MHetjzBgv5tALs/wjyLJMo92zv5qOwx1ey7Xk35dwysM3sOuMcayaOOWI24ZTJcHphNNPN7Bt\nm5LPPnMwfHjw/d7h8vJHQQ2+QPtVRepmLaXzy09hv/dBfAMHtdtx20tL28Qcidpq4ax/D8NlTmDx\np/Pp1TkJlUpqdYU3CFbAW7W1OuTHeNUKI6/+JxWXU8lTPMwJr/fH0rnb/vvzMmJJS2hZZRGLzc26\nnbURr0Cl2FPO2ptW8Jz/btzomtxOkuT9QR2tVj44uKORsTYq2b0zuH/33nbGXlJLz36OJj9fun/w\nCt0+eYuq3iex+Jl3DmpzKPm8mLdvJmHDqmAQZ9MfaGwHWnc5EpKp7X0C2tOGoRp2Kv68Q9sWCUE7\nSy0UV4d2ztVaktfDiDsuwbxjC8sffYXSk09vclu1rZHT7roM054drLnlYXacd3nE5qGrreKk/9xH\n0rqVOBJSWPTse9gyD7Sz06mV9MtLRNPKSnl7Kqzsqmh9C7m/2rpRz8zP4lnz25EDbC2ltjUy+qrT\nkQIB5v7vRxJzMumYGo3dpuCNNzRMm6bB4ZDIygpw331uzj/fF26XOuFvSgRzBEEQBEEQBEEQmiGC\nOYIgCMLxzOsLsKOkgcomquT8lVqpYGD35JAW2MLl9fmp2Vv1ob7Rjb8Fv740G7X07pTQDrM7soLi\nBspq7eENEghw7vkDcZkTKF7wa8iL3A6Xj9+2hnbFseT1cM4lp+DXaJn98cLDXh1v3rqekbdfTMXg\n4UgzZx4TFYtaYscOiccf1/HTTyokSebSS708+KCH5ORDn2e7KxrZXdHy88PGBiXr1xhYvzqK9X9E\nUVdzYAHUFOujW28H3XsHgzqpGcdOUEcCks0G0hOjKK22R/TK/yidmn55CUd8L7FY4PvvVXzzjZrF\ni5X4/cF/mIEDfZx7ro+zz/aRlHRML2Mc0xwu3/5wo8Xubn0VkECAM68djaG6gu+n/4wrPqnJTRWS\nRO/ceExGbUhz3bBBwZlnGjCbZeb+1IhbtlFe62jXUE7s9k2c8sB1aK0W3P86h8b3P2q3Y7cHfyDA\nys2VzQZ0m9P5qw/o8/azrLv+HpT33kOyObyWkmU1dgpa2VpLlmHO12Y+fCcJtUbm4QsW8tjHI6np\n3o+FL350UHudLlnmZtte2pxe1m5vgxCYLHPyg9eT8sdyvhn/Bp97L8DhUOBxK3C7JDweCbdLgdcj\n4XYrcLsUeDzSwfe7FciB4M9zwmAr511cS+euLWihFAgw6Mk7yFg2jx1nXULxsDEkblhF4vrfid+8\nFpX7wHmhLS2L6p4D9n6dAB060DM3Ab1WFdl/j+NUUaWVwvLwAyUtEV1UyMhbzyeg0fLTmzNxJqUe\nso3k9XDyIzeSvOZXCsZewbqbH4r8RPx+un46jR7TX8OWmsmClz/FbY7ff7cpSkPvTgmtOkf8fWsV\n9r1VMSNh1w4t33wez6+L97Z8y3Bz3sV1nDzcgqoVBX32VbNcf/1EvHfcTUJ0NO++q+G11zRYLBJJ\nSQHuvtvD5Zd70WgiNn3hb0gEcwRBEARBEARBEJohgjmCIAjC8aqmwcn2EkuT1Waa0inNREZS69o/\nhMrh8lFjcVJrcdHo8ITUPuLELskYdEd38Wjl5kqcnvCqUxhLdzP6mtHsGX42yg+no23llcZ/tqGw\nltrGFizcHUb/lx4l54evWPj8dGp6nXDI/SdMfYCO876l4K1PMI87K+Q5tpf6enj+eS3vv6/G55MY\nPNjHk0+66dmz6QXYQEDm961VIT2msgyVZWo2rjOwaZ2BTeuiaKg78Pw0x3kPCuokp3mPSlAnLlpL\nTprpoHYTFpub7SWW/e3iQqWQJPo10crC44H581V8+aWKn35S4fEEf/h+/fyce66Xc87xkZ5+TC9d\n/C1tK6qnvK71wavsOV8w4JVJFJ96Jr8+/NIRt1UrFfTLSwx5Mf+5FySee9bICYOt3DOptF1fF+at\n6znlofGo7VZ8UdGo/F5qNhdCVMuqrfwdRCQ8EAgw+poz0ddWMe/LJfQdmI8UgQdq7Y4aGmwta2kl\nyzB9WhJzZsRhjvdy/xMl5OS5GTT5djKW/szK+6dSNOJAK0gJ6NLB3GSAyOn2sXZ7TavPlVqi4w9f\nccJLj1J+4iksffItQnlSyzL4fSDLCtSa1gWHlE47w+/8N7G7Cg76e0uHXGr2hnCqew7AlZC8/75Y\no5buHeNQq0TbqtaoqHNQUNwQ8YpLh7Pvfbmq94ks+s97HFSeRZYZ8OIjZP84g9JBI1j+2CscrnyL\nUiGRaNKTHGfA5fGxrbh14bh9uk1/je4fvUFtl1788tz/CGgPVIVKjTOQn9WyUnc2p5dV26pCmkNz\nykrUfPt5PIvnm/D7JOISvGRkeVCpZZRK+aBblUpGpQq2z1SqZPTuRrrM+h8KvZqiy68hPjaO99/X\nUFWlIDZW5rbbPFx3ned4+qgQwnCkYI6IOQqCIAiCIAiCIAiCIAjCcai1VXL+qrjaRlpiVJtXQvF4\n/fxREHoLi33Kau10SjdFaFat53T7wg7lAJgLNgFg7dqT5DBCOQDpCVEhB3OKh40h54evyPzl+0OC\nOZqGOjIXfY81oyNR/zojrDm2Na8XPvhAzXPPaWlokOjYMcCkSS7GjPE1uzaqUEh0zjCxvrC21ceV\nJEhJ95KSbmHkGAuyDOUlmv1Bnc3rDCxbaGLZwuBzNj7hQFCnSw8HsWY/ekOgzUIJRp2anLQY4mIO\nbaliMmrpl59IabWd3RWN+AOhLTDmpMYcFMqRZVizRsEXX6j55hsVdXXBBd8uXfyMG+fjvPO8dOwo\nwjhtKTnOEFIwZ9foC+j480wyF81lz4hzKB94WpPbev0BNhTW0rdzAmpVy97DfP4AlXUOSmvs9B/m\no/vcTH5fHs2CuSZGjA6v5VJLxW9aw8kPj0flcvLbvf8hpriQrp9OQ7NgHp6zz22XObQ1nz9AcVX4\n7XZSVi3BWF7MrjPGkZqXGZFQDkB+Ziyrtla1qFLe9zPNzJkRR0YHN488U0xcQvDzd90N95P622J6\nvfMcZYOG4zMEV8plYFtRAwpJOqT1pcfrZ/3O2jYJ5eirK+gz7Vm8BiOr73gipFAOBHeL0ivp0zmB\nqnoneyqtLQ5/+PVRLHviDfq8+Qz2lDSqe55ATY/+eGLjDrt9apyBzpmxf5tKeMeSlDgDaqWCLXvq\n27zS164xF5KyagkZy+aR/+V7bLtk/P77un7yFtk/zqAuvycrH5h6UChHAszRWpLjDCSYdPsr2smy\nhrIaO1Zn60O5m6+4DWN5MR3mf8dJz97Pikde2l9tsbzOQZRO3aKwf1V9aP9naYm0DC83T6zgwitq\nmP11HPN/iGX9Hy1N0sQDj4MdmBb8G4NB5q673NxyiwfT0fvvh/A3IyrmCIIgCIIgCIIgICrmCIIg\nCMeXGouT7cWtr5LzV/mZsaTGt+3ln1t214UcHvqzo9l+C0Jrw3E4vaY9S/7XH7D2na9IP/f0sMf7\nbUslDnfrA0OS38dZlw4DWWb2Z4uQlQeu8ezy6dv0fP8ldkychOn+iWHPsS3YbMH2SC+/rGHHDiUx\nMTJ33+3muuu8aFvZZWfT7jqqI/Ac/TNZhtKivUGdtQY2rzdgbTz4OlqFQiYq2o8x2o/RGCDKGPw+\nKjoQvN37Z+Of/hxj8hMT629y7VenVpKdGkNyMy1d9nF7/Owos7T654+L1tIrN9herrhY4quv1Hzx\nhZqdO4Ovz4SEAOef7+Oii7z06NF2ASThUL9uqsDlbf1nQ8yuAkbdcj6uuETmvvsdfv2RPxtMURp6\n5yagUDT94DpcPspq7FTUHdyuqqZKxT03ZuP3SUx9axep6ZFra3I4Cet/4+RHbkbhcbPywecoOXU0\nsQWbGHXbBbjGXYj1rf9r0+O3lz0VVnZVhN9qZ+jDN5D6+xIWT5tJ/nnDIxrgKL6AIjEAACAASURB\nVKm2saP0yGGs35YZeWFyOrFmH1Ne3UNC0sGfcd2m/5fuH73O1ouvZ8N1B39GKSSJ7h3jiDcFQ4k+\nf4B1O2pCCiM0S5YZ+uhNpP62mFV3TWbX6AtDHkohSfTpnECMIdgjx+n2saPUEnL4tik5qTFkJTdd\n7UFoGZ8/QGW9k7Iae0TbMv2VprGe0288D21DHQte/oT6/J5kzf+Ok569D3tyGvNf/Ry3OfhZbNSp\nSY4zkGTWN1mNsd7qZt3OmpDmovB4OPmh60la/zvbLriW9Tfcu/8+CeiZE3/YMPCfhfr5FIpAAPw+\nCb8ffF4Jn1/C55Xw7731+ST8PtDt3kOf5ydRn5LLpolTyEyKxe+HE0/0izabwmGJVlaCIAiCIAiC\nIAjNEMEcQRAE4XgRaquSwzFoVZzQJSliV8P/VTgLAIfTHkGipkQqvDFs4hUkbPqDjSsLSOmQFPZ4\npTV2tocYGOr73yfpNOsTFj3zLlX9hwDBwM6YK09HY7VQvHIjxtSEsOcYKW43LFyoZMYMNT/+qMLp\nlFAqZa680su993pISAjtV+Fuj5/ftlaGXDmmJQIBKNmjZeNaA4XbddisSmxWBXarEptNic2qxO9r\n2evQFOsjJ89FTmcXuXkucvJcJCUGyEo2kpFoPGJQoil1jS52lFpaFPJSKxXkpyfx01wtX3yhZvny\nYOBIp5MZPdrHhRd6GTbMj0rU8z8qCssaKaoK7f893d9/mW6fTqNg7JWsu/nBZrdPitXTreOhVTlq\nLS5Ka+zUWZsOFSxbGM0rz6TTKd/J5Jf2tNnzJemP5QyZdCsKv58VD79I2ZCRwTtkmTFXjUJvt1K7\neSetTvQdY7y+ACs3V4ZdxSOqdA+jrx1Nbdc+lHw5h/TEyLe8XLO9Govdc9j7dmzT8fg9WUgSPPHC\nHnI6H9r6Sulycsb1/0JfV8OP78zClt7xoPsVkkSP7DhijVrWF9a2uH1Wa2XN+5aTpj5AZd9BLP7P\n/4VcLQegaxNtuGoanOwotYQdZlBKEl06mA+pJiSEr97qprTGRq3FFVKr1uYkrVnBKQ9chy0ti7U3\nP8jgJybg1+hY8PIneHLzSTIHW1Udrq3k4WzcVUuNJbTAl9pqYfgdlxJTsovVEx6j8OxL99+nUgTb\nHDbVdtZic7NmR+T+TxARsswpD1xH8poVLHrmXTIvPY/oveE4QWiKaGUlCIIgCIIgCIIgCIIgCP8A\nPn8gYqEcAIfbR43F1SYLNQFZDjkw0pSyGsdRCebIskyDNQILe34/sTs205iZgzHJHP54QEqcnt3l\njXj9rV+MLRo2hk6zPiHrl+/3B3NSVyzEUF1O0XmXHROhHL8fVqxQMmOGiu++U2OxBBc+c3MDjBvn\n4YILvGRnh7cUptUo6ZgSw86ytmupo1BAVrabrOzDP49kGdwuCZtViX1vUMduVewP7dhtCmxWJfW1\nKnbv1LHmNyNrfjuwYJ6UFKBPnwC9evnp08dP794BkpNb/u8SF6NjgFFLcZWNokrrYVvN+P2wbnUU\n61cksmC+Fpcr+FgMHhysjHPWWT5iYlr5DyNEXJJZH3IwZ8tlN5O5eC6dv/2IouFnUZ/f84jbVzU4\n0ZU1kpMWg88foKI22K6qJW3/hpxmZfVKC0sXmJj2Uio3Tywn0gXRUn5bzOAnJgCwbNKrVJw07MCd\nkkTJkFHkf/0BmiW/4Bl5bLfta05JtS0irXVyZ3+GJMvsGXsFGW30eZufaWb1tkNbWlVVqHn20Qy8\nXon7Hi85bCgHwK/Ts+7GBxj85B30fus/LHvyrYPuD8gym3bVEW3Q0GBvm1COtq6avm8+g09nYNVd\nT4YVyslKij5sKAcgIVaPOUbLngobJdW2Fre3OmiuKiXdc+L2V+MRIsscrcUcrcXp9lFWa6ei1hHS\nOVlTqvoOYtsF19Dly/c4+ZGbCChVbJ06jezTTsIcrW11uD43zURdozuk55I32sTSKdMYfvsl9Hv9\nKRzJaVSceCoAvkCAjbtq6ZeXiEp56Jt5ZRu2sQpV8uplJK9ZQcWAoShGjhKhHCFsIpgjCIIgCIIg\nCIIgCIIgCMcJWxu0YiiqtLVJMKekyhZSi6UjsTo9NDo87b64ZHV6I7LIEl26G7XTQUN+zxZf2dwc\npUJBSpyB4mpbq/et7dYXR0IK6cvm8ceESQQ0GjrN+gQA13XjOVrX1csyrFun4Ouv1Xz7rYqKiuAC\nT0pKgH//28v553vp2TOy7ZHSE6OorHNga8OWFEciSaDTy+j0vkPathxOY4OSuvIYqkpi2LRRxbp1\nSn76ScVPPx1YEkhJCdCnj59evYK33bsHUCqDlYdcLgmX68D3B/7OjNVmorjSRUOjH69HwuOWaGxU\n8vvyaCz1wfE7dfJz4YU+zj/fS1bWMV20/x/HqFdj1KlDei4HNFpW3/EEw+67mgEvPca8/36BrDry\ne1VRlRWHy0u91X3YQNeRjL+9ksoyDYt+NqHTB7j21sqIva5TVyxg0FN3gqRg2eOvUzlgyCHblA7d\nG8yZPetvHczx+vyUhPAZ8FdKp4PsH2fgMieguGBcSNW3WsKgU9Ex9eAwpN2m4JlHMrA0qLj2tgr6\nD7QfcYzSoaOo7DOQtJWLSFn5y8GhK8Avy20WykGW6ffaZDRWC3/c9giOlPSQh0qI0ZGdeuTWUkqF\ngpy0GFLi9BSUWFpVAcioU9MjJw6dRiwXtzW9VkVumomOKdFU1TsprbZH5JxCKUkU3XIvGRt+w7h1\nI40vvkrqhWeFNc/0hKiQzhsB7KmZLJv8BsPuvYpBT93Nwhc/pKFTNyAY+N+8u56eOXEHBYYCshzx\nlqFh8/vp9e7zyJLEpuvvIT9NJIuF8Il3WkEQBEEQBEEQBEEQBEE4TrRFMMfq9FBvdWOOjlwbD5fH\nx56KtmkhWV5jJyarfYM59Y2RWdwzF2wEwNWzN4e/Nj406YlRlFTbWt9CQaGg+NQzyf/6A5JXL8OW\nnkXy2l+p7nMSphP6RnCGLbNjh8SMGWpmzFBTWBgM48TGylxxhYdx43wMHOhHqWybYyskic4ZpmOv\nzcJhxBq19M+L2Xtlt2/vF1RVSaxfr2DdOiXr1gVv585VM3duKEc5tFJGjMnPtde6uegiH337RjYY\nJURWklmPrTy0z4vqPiex64xxZP84g84zplNw0XXN7lPTGFpbFL0hwINPFfPEfVn8OMuM3uDn39eG\n/xpMX/wjA5+5h4BKzdIn36S6z0mH3a62ax+ccQlofpgDz7/C37X/WlGlLSKt+LIWzkZja2TrFbeS\nmhobgZk1LSMxiuoGJ40ODz4vPP9EOqVFWv41ro4zz2lBtT1JYu0tDzHqprH0efMZfuo7mICmfc4N\nMhbPJWPZPKp7DmDnWZc2v0MTonRqunQwt7jiiUGnpk+nBCrrHRSWNuL2Hbm9VXyMjq4dzIetXiK0\nHaVCQWp8FKnxUTTY3JTW2Km1uFpUoUanVmLUq4na+2XUqdFrlUiShGvOXLyFO/H1Dv/8rENKNBV1\noVf2qevam5UPTGXQk3cy9JGbmP/q5ziTUoP3WV0UljWSm27av32D1R3RKkKR0GH+LGILt7F71HmY\nBp+AVt1GJ5jCP8rf8yxCEARBEARBEARBEARBEIRD2NsgmANQVGmNaDBnR6ml1ZUTWqqq3kluuqld\nF5rqW3F1+pHEFWwCINCnX0TG20enUZFg0lNtaf3VyMXDxpD/9QdkLvoBrzF41X79FddhbqNKCX+1\nZ4/EnDkqZsxQs359cFFEr5cZO9bLuHFeTjvNTzuttWIyakkxG6ioj1y7uEjrmmUmOe7wsa6kJJmR\nI/2MHHlgsbayMhjWWbtWydatChQK0GpBp5PR6UCr3Xd78N/p9cFbtUamweHA6rJz9sgY4kyRqfQk\ntK1ks4Fd5Y2tD+vttX78PaT++gvdP/wvpSefjj01M6Lz+zNjTICHnylm0t0d+OazBPT6AGMvrQt5\nvMwFszlx6gP4dTqWPDWN2h79m95YoaB08Eg6zf4M9YpleE8+NeTjHi1ur5+ymiNXl2kRWabTrE8I\nKFW4r7oWZaT7iv2FJEnkZ8Wyams1015OYdO6KE4cYuWK8VUtHqOxY2d2nPtv8mZ+SOcZ/2PbJePb\ncMZBmoY6+v73KXxaHb/f/RSh9l9TKxX0yI4L6Vwm2WwgPkbH7nIrpTWHD+VmJBjJTY9pdZsjIbJi\njVpijVrcHj9ltXbKaux4/QGUkoRBp8aoVwUDOHu/jvR8kKNjIhLKAVApFXRMjQmr5Wzp0NNZN/4+\n+rz9LEMfvYmFL36MLyrYYrO42kaUXk3K3vOVqmOsjZXC7aLHB6/g12jZfv1d9Exq/za5wvFJBHME\nQRAEQRAEQRAEQRAE4Thhc0a2NdQ+9TZ3xFpE1Vpc1FhCq57QEn5ZpqLOQUaisc2OcdDxAgEa7Z6I\njGUu2EhAoUTdv09Exvuz9MSokII59Xk9sKVmkr58PrIEjoQU9OefF/H57VNSIrF0qZJly1QsX66k\nuDi4CKVSyYwa5WPcOC9nnOHD2D4P7yFy02OobXQdc1d2A2SnxDQZymlKcrLMqFF+Ro06cmWFI9Ph\n82tE1YW/Ea1GicmobVXLmz/zxJhZe/ODDPzPvfR79QmWPP0ObVkiKdbs59Fni3js7g58+n4SekOA\nM89t/YJxh5++4YQXHsJrMLLk6Xeo69q72X1KTz6dTrM/Qztn1t8ymFNUaY1IEDZh42piC7dRcupo\nkrrnRmBmzYvSqZn3bSqLfo4hN9/JhPvLULSyaMXmK24ja8Ecun3yFntGnoMrIbltJrtX3zemoLPU\nsfaG+7GndwhpDIUk0a1jHHpt6Eu4KqWCThkmkuP0bC+x0OgInqdIQKd0E+ntdI4ktIxWoyQ7NYYO\nydG4PP79VXCOprR4A2U1duxhtNvafv5VGMuL6PTdpwx66k6WPvnm/vaHBcUN6LUqovXqkM5P21Ln\nmR9iqKlky8XjSe2T3+ZBROGfQzyTBEEQBEEQBEEQBEEQBOE4IMsyjjB+ed6c4kpb2GP4AwG2l4Z+\n9W1LRaQ6QAtZbJ4WtR9ojuT3EbtzC40dO2OMi4nAzA4Wa9Ri1IVQzUSSKB42BpXLgdrpoOLCy9EZ\ndBGbV3m5xJdfqrjzTi0nnBBFv35Gbr9dz+efq7HZJMaM8fLccy42bLDz8cdOzj//6IVyANSq4OLZ\nsSYxVk+HlOijdnwRyvn7STbrw9q/+LR/UTFgKCmrl5G1YHaEZtW0hCQfjz5bhMns473XU/jlp9a9\nDrO//4ITXngIjzGGRc++36JQDkB1zwG4o02oZ8+CwLEXyDsSl8dHeW1kKnx1mvUxAI1XX99ur/cv\nv1Qx7fUYklO93D+5BK2u9Z+1XmMMG669C5XLQa93X2iDWR6QtmweWb98T23X3mwfe0XI4+SmxUSs\nSmG0QUO/vETyM2PRaZT0zIkXoZxjmEIhYdCpjnooB4JVq3LTwjzf2dtSruykU0lZvYx+r02GvefM\nAVlm8646ymrsEWm1Fymahjq6fvY27phYyq65lWRzJJvLCv904mxZEARBEARBEARBEARBEI4DTrev\nzdpDAdRYnGEHf4oqbbg84VTmaBmH20e9NTLtpZpTF6HjRBcVonK7sHXr1WZX5mYkhbYYV3zqaAD8\najXy1deGNYfKSokZM1RMnKhl4MAoevc2cuutej75REN9vcSZZ3p58kkXCxbY2bLFxgcfuLjqKi/x\n8cfOok1qvCEi1aMiJVqvpktW7NGehvA3kxirRxHO4q8ksXrCJHxaHX3eegZNY33kJteE1HQvj/6n\nGGO0nzdfTOXXJS0Lo+XO+pgBL0/CExPLoqkf0JDXvcXHlFVqygaPQFVViWrV76FO/ajYU2GNSHBU\nV1NJ+tJ5NOTkE3v6aRGYWfOWL1dy5506YmJkpk+3ExcXeihq9xnjqMvrQYcF3xG/cXUEZ3mAurGB\nfq89gV+t4feJU0DZytI+e6XFR7VJcCY1PoqB3VKIi4lcsFY4/sXF6IiLDu85IytV/PrQC9R36krO\nD1+R//m7++9z+/zsKLOEO82I6vbJW6gdNjZfdgsd8jOO9nSE44wI5giCIAiCIAiCIAiCIAjCccDm\nbLtqOQAyUFwVetUch8sX1v6tVVbbPlVzGiIUzIkr2AiAp1fk21jtkxJnYFD3FHrlxJOTGkNyrB6j\nTt3s4rwlO4/C0Rey/Zo7iMlu3SKFLMOCBUruvVfL4MEGevY0ctNNej78UENVlcSoUT4ef9zFvHl2\ntm2zMX26ixtv9NKjR4BjtXOAJEl0zjBx9K9nB41KQffsONFmQWg1lVJBfJiL9I7UDDZdOQGtpZ5e\nbz8XoZkdTOF2gf9AoDMr281DTxej1QZ45Zk01v4edcT9O3/1Af3++xQucwK/PPc/LLldWj2H0iEj\nAVDP/rbV+x4tTrePyvrItIfJ+f4LFH4fdZddi1odenulltq+XcFVVwUrOr3/vpO+vZVkhhgsBUCh\nYM2tDwPQ9/UpBz2fIqXPtGfR19Ww6YrbsGaF1uorNkpLpwxThGcmCOHplB4TXogT8OujWPrkWzgS\nUuj13otkLpwTodlFVlTpHnK/+xRbaibWy6/GFHXshLCF40Pbf4IKgiAIgiAIgiAIgiAIgtDmbE5f\nmx+jst5Jx5QYtJrWXwm+vaQhIlfut1StxYXb60erDu2q9ZZwe/3YItQ+zLw3mEP//hEZrylatRKt\nWnnQVfMBWcbh8mFzerE7vdj2fnn9eysUSBKr75pMp/SWLxjKMvz4o5IXXtCybl3wMTAYZIYP9zFk\niJ+hQ3307BlA9Tf9DXW0QUNaQhSl7dg27a8UkkT37Hh0mr/pP6Jw1CWb9VRbwgtvbB93JVkLZpP9\n00z2jDiH6r4DIzI3hdtF72nPkjvncyRZxqs34I2KwWuM5rSoaPI6DuWybVN54dFk3hn2Kr1zKvBE\nxeCNMuI1Bm+TVy+nx/TXcMYn8cvUD7BlZoc0l8p+Q/AaolB/9y3OJ6bAMdBmpjm7I1QtR/J6yJ3z\nBR5jDNorL4vAzI6sulri0kv1WCwSr77q5OSTgyGaDinR1FpcIX/m1nXtw+5R59Hx52/I+eFLCs+6\nJGJzTvltMR1//oa6zt0puPCakMbQaZR0zzaHHYAQhEgz6NSkxhvCPt9xxSexZMo0ht/1b054/iEc\niSnU9mjbc97W6vn+yyj8PjZedzfZHRKO9nSE45A4YxcEQRAEQRAEQRAEQRCE44A9QgGRIwnIMsXV\ntlYFNACq6h3U29qntdQ+AVmmotZBh5SWtToJRaSq5QCYCzYRUKnR9u0dsTFbSiFJGPVqjHr1QX/v\n9vr3B3XsLh8pcYZmxwoE4PvvVbz4ooaNG5VIksw553i5/nov/fv7UaubHeJvIzs1hpoGF25f27dn\nO5zOGSZxNbcQljiTDrVScSCEFwJZqWL1XZMZcfvF9H9lEj9N+5aANrxKPDG7tzPw6YmYdm/HmpaF\nMzEFtc2K2m5FX1tFTNFOzg/8gYECzuVbbl1wA/MXjOAEVh0ylj0plUVTP8CelhXyfAIaDeUnDSNr\n4RxUG9fj69n+79Ot4XB5qap3RGSsjKU/o6uvofSy8WhMMREZsylOJ1x5pZ6iIgUTJ7q55JIDgWOF\nJJGXFcuagmpCjRutv+5u0pf9TI/3X6b4lDPxxoTfAlBlt9L/5UkEVGpWTZyCrGz9sqtSIdEjOx61\nqu2CxIIQjo4p0VTWOfEFQv+sAGjMzmPFI68w9JEbGTLpVha8+hm29I6RmWSY4rasI3PxXGrzeyGd\nf4EIPQttQjyrBEEQBEEQBEEQBEEQBOE40NatrPYpr7XTITkataplrXN8/gA7SxvbeFaHV1ZrJyvZ\niNRGV6DXRSiYI3k9xBZupTEnH42x+fBLezlcdZ2mBAIwe7aKF17QsGVLMJAzbpyXO+/00KVLeAs5\nxyqVUkFOegxb9tS3+7EzEo2kxh+5hY8gNEchSSTG6sNu/Vef14Pt511B3oz/0e2Tt9h4zZ2hDSTL\nZH//JX3eegaV28WOsy9l3Q33HRr0kWVUTgdqu5X7Fq3jmXf6M1K3hDcv/ZQuhl2o7VbUtkYkGbaf\ndxnOpLSwfj6AkiGjyFo4B+mbmXCMB3N2VVhDDq/8VadvP0aWJBQ33RihEQ8vEIBbb9WxerWSCy/0\nct99nkO2iTFoyEyKpqjKGtIx3HGJbL78Vnq/PZUe019jzW2Phjtter3zPIaaCjZdcRuWnPyQxuia\nZT4kGCsIxxK1SkmHlGh2llnCHqtywBD+uGMSA156jKEP38iCVz7DYzJHYJZhkGV6vRNsx7jlpvvJ\nbcNQv/DPJhrPCoIgCIIgCIIgCIIgCMLfnNcXwO1tn6od/oBMWSvK2e8utx61iiJur59ai6vNxo9U\nxRzTnh0ovR6cPY7txd7D8fth5kwVp55q4Prr9WzbpuCCC7wsXergrbdcx20oZ59ks4FYo7ZdjxkX\nrSU3rW0rVwj/HMlmfUTG2XjVBOxJqeR/8X/E7Cpo9f5qq4WBT93FgFcmEdBoWTbpNdZMeOzw1Xck\nCZ8hCmdiCr0viOamiZU0OnXc+s0VLO1/FVsvvZEN4+9l/Q33RiSUA1Bxwsn4NVo0s7+LyHhtxeb0\nUt0QXnuyfWK3byJh8xrqBw9DlZ8XkTGbMnmyltmz1Qwe7OPFF11NdgvrmBKNQRt6zYHt515GY0Y2\nubM/w7Rza8jjACStWUHu91/QkJPPlkvGhzRGdkoMCbGReQ0KQltKT4wK67X3Z7tGX8iWS24guqyI\nIZNuRdNQF5FxQ5W2YgGJG1dTOmg4MWcOR6UU8QmhbYhnliAIgiAIgiAIgiAIgiD8zbVXtZx9Sqpt\n+FtQzt7m9FJaY2uHGTUt3EoQTbE5vRELHJkLNgLg79M3IuO1B58PvvpKxSmnGLjxRj07dii45BIv\ny5fbeeMNF507H9+BnD/LyzChaKOqTH9l0Kro1jGuzapACf88JqMWnTr8Fjp+fRR/3D4Jhd/HgJce\nDab2Wih+0x+MunksmUt+pLrnAH56cyZlQ0a2eP9hp1u45pZKGupUPHl/FjVVkW8W4dcbqBgwFMOu\n7Ujbwgt0tKXdFZGrUNdp1icA+G68KWJjHs7776t54w0NnTr5+eADJ9ojZB0VCon8LDOhvgPKag1r\nb3kYKRBgwMuPkblwDvGb1qCrqQyW7WkhpdPOgBcfJaBQ8vvdU5DVrW8rmBSrb9N2m4IQSQpJIic1\ncqHgjVffQdGwMSRsXsNZl53GCc89SGzBpoiN31KS30fPd/+fvfsOk6o+2zj+PWd62d5ggaV36SAo\nRGNXLCGa2I29d14LRmOLvSaWGAtq1Nh7jUbRWAFBqdJ732UXdnfKTn//WEWRBXZ3zja4P9e115o5\nZ57zGyBzZubc8zz3kjRtLLng6nqNbRVpLI2yEhERERERERERaeOCzRzMiSWSrCsP0bHAv8P9Fq3a\nbNk4jcaqqI4QjsTxWPQt35+sszDwk/PjhQhzxHDLajaVeBxee83O/fe7WLrUxG5PcdJJUS65JErX\nri39t90yvG4HHQv8jR6vUl9202SPrnn6JrdYrjDHa8m/3/V77svKfQ+j5H8f0P29F1ly1Ek7vkMi\nQd8XH6Pfsw9jkGLuKRfxw4nnga3hQaHDxm0iHDZ58akCbrumhEeeLCMrO8H6TaFGPpptrR5zMB2+\n/oTk669jXPPnOvdZscJg4kQn4TD4/ZCRkcLv/+mH7f63s+G5jm1UBqNstKhLnLNqEyWfvke4Y2eM\ngw+xpGZdPv7YxjXXuMjPT/L882Gys3d+nyyfkw4FflaXNS74u2H4aFaPOZiOX37EqNuv2HJ7wuEg\nXNCeYGExoaJiQoXFBIuKCRV1IFhYTLigiJS9duTUgCfvx7dhDfOOP4fNvfo3eA0ZHge9S+rxYEVa\nkfxsD9l+F5sDFnSMNE2mXnk75X0H0+Ptf9Plv2/S5b9vsrHfYBb/7mRWjzmoUYG3hur6wWtkrl7G\nksOPo93eQxV8liZlpFKpVv1uqaysad/MiIiIiIiIABQUZOj9h4iItFnzV2yy9OJjfbgdNvbsV7Td\nTiHryoMsWLW5Wde0PZ0K/HTvkGVZvRXrq1lmYVeCAy84hswVi6lYvg4cDsvqWikWq+2Qc//9LpYv\nN3E4Uhx/fIxLLonSuXOr/oi5WSSSSb6dV0pNE42UM4AB3fLIzaxjrI9ImoI1Mb6dX2pJLVdFGYee\ndQRGMsGHj79LuKBdnfu5N25g5J1XUThzKqH8dky55m42Dqh/ONEAPC47Po8Dv9uBz2PH73Fwz11e\nHnjARb9+CV59LcC81etJWHQZzBGo4qhjxxDs1ouaL7/ZaltFBdx/v4unnnIQjTb8wq7TmSIjI0VG\nBhx/fIzLLotiNiCDl0yl+G5BGYEaa4K6vV6eyKAn7qHi+ltIXHSJJTV/bf58k8MO85JIwOuvhxg+\nvP4daxLJJNPmlxGOxht1bCMeo+i7r/GtX413w1p8pWtrf29Yi3vTxjrvkzJNwrmFhArbk//D91SV\ndOe//3iNpLNh4wxddhtDexXgcqbfqUqkuQXCMaYvKLU2eJ9MUjT9K3q+9Rztp34OQDi3gKWHH8eS\nw48lkltg5dG2sIeCHHb6odjDIaa8/hm9hvdpkuPI7qWgYPud0BTMERERERERQcEcERFp26YvKKW6\nmbvmAPQpyamz5XssnmDqvFJiidYxzshhM9mrfztMM/1vwa7cUM3SddaFcsxohN+PG0F17/5EP/3c\nsrpWisXg8MO9zJhhw+lMceKJtYGcjh1b9UfLzW7j5jBzllc0Se0exVl0LNxxhyqRdEybX2pZqKPr\nB68w/P7rWbP3AXx940PbbG//zaeMuPfPuKo2s2bvA/h2/C3EMrffPcRumvg8dnxuB35P7Y/PY8dW\nR3IllYIJE1w89ZSTYcMSXHPTepJO697njfnzObSf9gXrvv4ee4/uhMPwWJt+JwAAIABJREFU+ONO\nHnjASVWVQUlJkgkTIuyxR5JAAAIB48efrf+7unrr24NBg+pqWL/epLra4IgjYjz4YA0+X/3WZWlg\nNJFg7GmH4K6sYNOs+aSyc6yp+wvl5QaHHuplxQqTxx4LM25cwwM2mwMRZiyuO0STDjMawftTUGdL\nYGdN7e+ydXjK1pOyO1jz4ltEhjS8053LYeJ2aqCJtF0LVm5iXUXTfCHAv2Y53d9+nq4fvoEjFCBp\nd7Bqn0NZ/LuTqOg7yNJj9XvmIfo/9zA//Oki/LfebHl3Tdk97SiYo39hIiIiIiIiIiIibVgylSJY\n07hvjKdr5YbqOoM5S9dWtZpQDtSO3irdHK5zrQ2xuixgaSgHIGvZQsx4jMiAwbTW5vkvveRgxgwb\nBx8c5667aiguViCnLvnZHvIy3ZRXWTNK5iftc70K5UiTK8r1ElhbaUmtZYccQ+eP36bD159Q/OV/\nWTvmIKA28DDwiXvp+eazJBxOpl98PUuPOB7q6LxmGgbtcr10LPDhdde/k5hhwO23RwgEDF55xcGx\nRxUzeESQA8duZsiegcZMydrKmjEH0n7aF0RefYNXu0zgjjtcrF1rkp2d4uabazj99BiuhjVQ2Up5\nucEZZ7h5910HK1eaPPNMeKfPuaGaOCs2WBc+aj/1c3wb1lB1wilNEsqJRuHMM92sWGEyfnykUaEc\ngGy/iyE9C9hYGaa8soZQxJrXQkmni0DHrgQ6dgXAZhoUZHkoyvWS8jsJJhIQieD2+VAPM9kddWmf\nSenmMImk9a8HAx26MPP8PzPntEvp8t+36PH283Se9A6dJ71DRe8BLPrdSaze5zCSac7/c5eX0vvV\np6jJySdw7kUUKJQjzcB244033tjSi9iRUCja0ksQEREREZHdgM/n0vsPERFpk0KROGs2Blvk2LFE\nEr/bsdVF08pglEVrrLm4a6VoLEn7vHq2HqjDuvIgi1Zb/7iKv5lE8dT/EfjTGRiDB1teP12RCJx1\nlodoFF55JUz79grl7Eim18n68pBlIx6yvE76dc3F2M7IOBGruJ021pQFrClmGJT3HUzXD16hcNa3\nLD3sD/jWr2GfP59Dh28mUdm5O5/fPpH1I3+7TSjHZhh0yPfTr0suRbleHPaGJ2kMAw49NE6nTkk2\nbDD5bpqbrz7L5LMPswgFbRS1j+L1NS48Gsprx7LX1nH6d1fxzLvtiEbh/POjPPFEmDFjktjTvLbr\n9cIxx8TZsMHg448dvPGGnVGjEjt87p27vKLRI53qMuQft+Jft4rgA4+QKiyyrC783NHo3XcdHH54\njLvuitSVy6o3t9NGboabDgV+CrO9uJ12UkmIpDlW0AByM9x0aZ9B75JsCnO8eFz22udi04Q0QwEi\nbZndZmIAmwKRJjtGyuFkU+8BLDnyBDbuMRRHMEDhzKl0/Opjur3/Co5gNdUduxL3Ni64PPCxu8if\nN4M5511N8ZEHWtJVUwRqP1/eHo2yEhERERERQaOsRESk7dqwKcS8FZta7PiZXidDexUAkEqlmL6g\nzLJxKFYb1quADG/DL6atrwixYOUmy8IWvzT83mvp+uHrbPz0G1L9+zfBEdLz5JMOJkxwc+65Uf76\n16a7ALMrsWqkjNthY2ivApyONFt8iNTTjMUb2Wzhhda+zz3MHs88RNmA4eQsnIs9EmbJ2GOZed4E\nEm7PVvvaDIPifB+dCv2W/5v/7KsoTzxp8sUnmYRDNgwzxZBGdNFZusjFv58oZPb3PgySHD22kmtv\ncTTJWL9UCh591MGNN7pwOuHvf6/h97/fNnyzrjzIglWbLTuuf9UyDjtzLOERowi895FldX8ycaKD\na65x079/gnffDdV7VFdDxeJJKqpq2FhVQ0VVTb07e/jdDopyvRTmeHDpuVdku5LJFFPnbaAmzRCc\nw2bWOxTjXbeKLm89T8l7r+AM1L7OStoal4Y0E3GqOnVj6buf0aH99kcpijTUjkZZKZgjIiIiIiKC\ngjkiItJ2LVlbyapSi7ocNNKg7vnkZLhYXRpgsUWjUJpC+1wvvUsaNpaj9MfgU1N9iHrQeePIWLuS\niqVrSLvVgsXCYRg50kdVlcG33wYpKGjVHyW3GslUilmLy6kORxs95sFmGAzumd+oIJlIY1kd8jCj\nUQ664GgyVy4h6stg+uU3s3qfQ7fax26adCjw0bHA16juOPWRTKb4Zu56qgMpvv5fJp+8n82i+bXB\noNz8GPsfWsn+h24mv7DurjOl6x28+HQ+X07KAmCvTgt5ZNUf8V/1BzKvuKxJ1vyTjz+2cc45HgIB\ng//7vwhXXhnFNGu3xeIJps4rtXR05OB/3EbPN5+l6vGnifzuaMvqAvzvfzaOP95DTk6KDz8M0alT\n85xTkqkUm6sjlFfVUF5Zs02QwGW3UZjroSjHi99T/7FpIru70k0hfmjglwM8TjvZfidZfhdZPiee\nxoyQCoVwv/Yyrjdfh5owiWSSRCJFMpkikaz9vbNnl5TNxqKzx9P9uMMx1ZVQLKRgjoiIiIiIyE4o\nmCMiIm3VrCXlVFTXtOgacjNc9C7JYeq8DY0OIjQHm2Gw1x7tsNvMeu2/cXOYH1ZsItlEH6HaasKM\nGzeCwMChRD76pEmOkY5HH3Xwl7+4ufjiCH/5i0Z+NkYsnqQmGicSTVATS1ATTfz8v6OJ7V5Q79cl\nl8JsT53bRJpKPJHk6znrLX3Oy1y2kG7vv8zCY04n1K7DltsdNpOOBX46FPjq/ZycjiVrKln1i1Fd\ny5e4+Pj97J+76BgpBo8IctDhP3fRCVSZvP5CPv95O5t4zKRrjxpOOquUkZ2WcsRJ+1E6ZBTJD/6D\nzWza9c+fb3LyyR5WrjQ58sgYDz5Yg9cL85ZXsGFz2LLj2ENBjjjxtxh+H5u+/wEc1oVUli41OOQQ\nH6EQvP56mJEj0+uykY5AOFYb0InGKcj2kJPh0rhAkUb6fmEZlTsYC+9zO8jyObeEcZqjE1UqlSIc\niROoiRMMxwiEYwTDsW1CeQO75ZGb6W7y9cjuZUfBnNb1FQwRERERERERERFpkGC45cdGVVRHmLus\notlDOd4Na/CtX0PZwBFQj4tqiVSK9RUhOhb4d7pvRVVNk4ZyALKWzsdMJogPGtxkx2isYBD+/ncn\nfn+KCy9UKKexHHYTh91Jhrfu7Ylkkppogkg0QfjH3y6nTaEcaRF2m0lelpsyC8MeVV17MePC67b8\nb6e9NpBTnN88gZyfFOf7tgrmdOke4ayLN3DyWaV883kmH7+fzfdT/Xw/1U9OXoyhewaZ/EUGwYCN\ngqIYx5+2ntH7VWGaEKYd5X0Gkj/zW+YvW0NB905NuvY+fZJ8+GGI00938847DlauNHng4c1sCFn3\n9wRQ8snbOEIBghddYmkop7ISTj7ZQ2WlwQMPtGwoB8DvcagzjohFunfI4rtFZQAY1P7/K8vvItvn\nJMvvbLJOaDtiGAZetwOv2wG/eD0ViycJ1tQGdRKJlEI50uwUzBEREREREREREWmjYvEEkXjLXuD6\nSdUOvi1riVQK/5rlFMyeRv7saRTM+hZf6ToAfjjpfOaeekm9yqwr33kwZ1N1hDnLKpo0lAOQu3Au\nAMbwYU16nMZ48kknGzeajB8fITe3pVez67KZJj63ic+ti8TSOhTleCwN5vzE5bDRqdBP+zxvk3eY\nqYvHZSc3w0VFdWSr292eFPsdUsl+h1SyfImLTz7I5vOPM/nkg2x8GQn+dM4GDj5qM07n1ueD1WMO\nJm/+LJJvvwOXX9Dk68/LS/Hqq2GuusrF8887+f3vsrjypmq697KoY14qRY+3/03K4SB8yunW1AQS\nCTj3XA+LF9s4//woxx9f97gwEWmbMn1OenfKxuWwkelzNmvgsqEcdpNsv4tsv6ullyK7KQVzRERE\nRERERERE2qhAeBe+wJVMkrliMQWzv90SxvFUbNyyOZKZzerRB5KzeB79/v0IlV16snrfw3ZaNlgT\nY1N1hJyMuj+UrwxEmLO0vMlDOQA5C+cAkBo6vMmP1RCBADz8sIOsrBTnn69uOSK7k9xMNw6bud0x\naw1lAN2Lsygu8GG28Lig4jzfNsGcX+rSPcKZF23gpDNLWTTfQ9ceNfgz6v5zWDPmIAY9cQ95n7xP\n6Pxz8Lqb/nKb0wn33x8hv12IB+/P4vrxJVx45Tr23jf9kcwFM6eStWIJNUf/gVRRkQWrrXXTTS4m\nTbJzwAFxrr9++3/2ItJ2tc/ztfQSRNoEBXNERERERERERETaqEArGGNlFSMRJ2vJgtogzqxp5M+Z\nhqu6csv2cG4BK387lrIBw9k4YDhVJd3BNMlcvoj9LzuBEff8mUBxCZt79t/psdaWB+sM5lQFo8xa\nWk6iGUI5ADmL5hD3+kh079Esx6uvxx5zUlFhMmFChKysll6NiDQn0zAoyPawtjxoSa0+nXNazWi2\nvCw3boeNmtiOO825PSkGDAntcJ9gcQmbu/Wh8Ptv+H7Fejr37mjlUrcrEI7ym0PL8OZU8/fbi/nb\nrR1YvWIjfzxlY30mOtYtlaLnG88AED7jXMvW+vzzdv75Tyc9eyZ49NEwtuafaCMiItJqKJgjIiIi\nIiIiIiLSRgV3gWBO5rKFDJx4L/lzpuMI/XwhOFjUgXUjf0vZwBGUDRhOsLiEuq46VnXpyZSr72b0\njRcy+oaL+Pihl4nkFuzwmOWVNURiCVyOn68SVoeizFpSTiLZPKEcWzhI5sqlBIePghYY67I9lZXw\nyCNOcnOTnHOOuuWI7I6KctIP5piGQb8uOeRntY5QDoBhGLTP87FsfZUl9VaPOZA9npmP8Z8PSPU6\nC6OJOwKlUikWrqokBQwdGeSWv63gzus78upz+axZ5eSC/1uHy93Ac1gyyeBHbqfDN5OIDRlKfMSe\nlqx18mQbV17pJjs7xbPPhsnMtKSsiIhIm9V63vGJiIiIiIiIiIhIg7T1jjlGLMqo28bTfurnhHML\nWXrYH5ly1Z28+9wnvP/sx3x71R0sP/QYgh061xnK+cm6vfZj9umX4924nr1vvgQzuuNASTKVYn35\nz90QAuEYs5aUE09aM7qlPnIWz8NIpUgMGdpsx6yPRx5xUllpcOGFMfz+ll6NiLSELL8Lt7Px7U1M\nw2CPrrmtKpTzk3Z5XstGaq0ZczAARf/7DxVVTT+maU1ZkOrwz+e3Tl2i3PbACvrsEeKb/2Vy4xUl\nlJfV//v4RizKyDuupOdbzxHr3Zeqp5/f4bm2vlatMjjjDDfJJEycGKZbt+YJvIqIiLRmCuaIiIiI\niIiIiIi0QclUilAk3tLLSEuvN54ha8USlhxxHB8++T7TL7+ZlQceRbiwuMG1Fhx3Fiv2O4L8H2Yw\n9IEbYSfjqNaVB0mlUoRqYsxaspFYovlCOQA5C+cAYAwb1qzH3ZHycoPHHnOSn5/kjDPULUdkd1aU\n423U/WyGwYBueeRmui1ekTVcDht5WdasrapzD6o7dqHdt19QurbckprbUxONs2zdtp1+MrMT/OWO\nVfz2kM0sWejhsjO68cJT+QQDO778ZwsHGXP9BZR89j7RESOpfPsDku0bfu79tUAATjnFw8aNJrfe\nGuE3v9nx2DAREZHdhYI5IiIiIiIiIiIibVCoJk5yJ+GT1sxTupZ+z/6DmqxcZp9+efoFDYNp4/9K\nRe8BdP3oDXq+/q8d7l4TS7C6LMjMxeVE480bygHIWTgXgNigIc1+7O15+GEHgYDBpZdG8flaejUi\n0pKKchre7cZmGgzonkdOhqsJVmSd4jyLnuAMg9VjDsYeqcHxyX+JxZsuhLJodSWJ7ZzzHc4U549f\nz3mXr8PrS/DGC/lcdGp33nwpl0jNth1wnJsr+O1Vp9Nu+lfUHHQIla+8RSonN+01JpNw4YVufvjB\nxqmnRjnjjLbd1U9ERMRKCuaIiIiIiIiIiIi0QUGLx1j1fe5hDjpvHM7KTZbW3Z7Bj9yOPRJm1tlX\nEsvIsqRm0uXmqxseJJxbwKDH76Zo2pc73H/J2koiTXghdUdyF80hnpFJsmu3Fjn+r5WWGjz5pJN2\n7ZKceqoupors7rxuBxkeR733t5smA7vnk+1v3aEcgJwMF15X/Uc+7cjqH8dZFX/5XzZsCltS89dK\nN4Uor6rZ4T6GAfsfVskDTy/l5LNKAXh+YiEXn9adD9/OJv7j07p3wxr2G38yuQtmEzr2BKqffh68\njeuO9Gt33eXkgw8cjB4d57bbmn60l4iISFuiYI6IiIiIiIiIiEgbFLAymJNK0e2D18heuoDh9/1l\np2Og0tVuymd0/OpjyvYYxoqDfmdp7Zr8Ir668SGSNjujbh2Pf9UyS+v/xBGoqm0P0Aj2YDUZq5cT\nHTi49mpqK/Dgg05CIYPLL4/ibp0TaESkmRXWc5yVw2YysEceWT5nE6/IOsX51nTN2dyzH8GiYoon\nf0rpOuuDrfFEksVrKuu9v8ud4qhjK3j4mSUcfeJGwiGTiQ+147IzuzH1hTD7XHYKmauXUX3BJQQf\n/Cc46h++2pE33rBz330uOndOMnFi2KqyIiIiuwwFc0RERERERERERNqgYI11wRzf2pV4y9YB0OGb\nT+j23kuW1f41M1LDkIdvJWna+O7i65skmLKpz0CmXf5XnMFqxtxwAY7q+l/U3BlXRRl73nEV444e\nyZEn7Muw+66j/TeTsNXUv1NCzqIfAEgNGWrZutKxbp3B00876NQpyUknqVuOiNQqzPGws2doh81k\nYPc8Mr1tJ5QD0C7Xi82K849hsGb0QThCAbyTv6Q6FE2/5i8sWVPZqHGLXl+S40/byIP/WsJh4yrY\nVGbjnqeGsFf5Rzx/7IuEb7jFkvNvMglff23j0kvd+P0pnnsuTG76U7FERER2OQrmiIiIiIiIiIiI\ntEFWdswpnDEFgHknnEs0I4tBj95JxsolltX/pT4vPY5//WoWHf0nqrr2apJjAKw88CjmH3smGauX\nM+r2KzAS8bTqGYk4Pd58jsPOGEvnSe9QVdIdkkm6/ec1xtxwIb/7w16Mvv4Cun7wCq6Ksh3Wylk4\nB4B4Kwnm/O1vTiIRg/Hjozjb1rV1EWlCLodth6OpnHaTQT3yyWhjoRwAu82kMMdjSa3VYw4CoMOX\nH7GuPGRJTYDNgQjrKtKrl52T4JphLzPP1o/TeIp5Rj9Oevk4xo718sUXtgbVisVgzhyTF1+0c+21\nLo46ykOPHn7GjfMSicCjj4bp3btxneRERER2ddYM0RQREREREREREZFmE4klGvUN+u0pnFkbzFl+\n4O/Y1LMfe998KaNuu4JPHniJpIVJDf+a5fR56XFC+UX8cPKFW27P8DiotnI0149mn345mSsWUzzl\nfwx8/B5mnjehUXVy581g6IM3k7N4HlF/JtMvvp6lY4+t3bZgFsXffErx5EkUT/6U4smfAlDeeyBr\n99qPtXvtT1WXnlt1Jshd9GMwZ9CQNB9h+latMnjuOQdduiQ59lh1yxGRrRXletkUiGxzu8tuY1CP\nPLzutjuzqDjfl3bwBaC83xDCufl0+GYSs8ur6dEhC9NMrxtNMpli4arNaa+t83/fZPi915FyOLjr\nX17O6h7mjjucvPuug2OO8bLPPnGuvTbCkCFbv6YIBmHuXJPZs23MmVP7e/58k2j058dlmil69Eiy\nxx5Jxo2LcdBBibTXKyIisqtSMEdERERERERERKSNCVoZYkmlKJwxhXBeIYGOXQh06srSw/5Atw9e\nZY+n7mfWuVdbdpwhD92CLRZjxnnXEPf6AOiY76d7h0yWrq1iVVnAmmP9xGZjyoR7OODS4+n1+r+o\n7NKT5YceU++7O6s2MWDi/XT74BUAlh80jllnXUEkJ2/LPhX9hlDRbwhzzhyPb+3K2nDON5+SP3sa\neQtmMeDpvxMsKmbtqP1Zu9d+lA0YTs7CucRzckl2KrH28TbC/fc7icUMrriiBkfbvb4uIk0kP8uN\nzTBIpFJbbnM5bAzqno/X3bYvMWV4nWR4nFSH0xw/ZZqs3fsAur/7ElkzvqWscx5FOd60Sq7YUE0o\nkl6nt16vPMmgx+8mmpFFxTMvYhs9ml4kefLJGmbMiHLbbS4++8zO55/bGTs2xrBhyR9DOCZLlpik\nUj+HcFyuFP36JRkwIMEee9T+7ts3ic+X1hJFRER2G0Yq9YtXU61QWVl1Sy9BRERERER2AwUFGXr/\nISIibcbKDdUsXVdlSa3M5Ys45JyjWHHAkUy9+i4AbOEQB114DBmrl/P5bU+wYfjotI/T8fP/sNct\nl7N++Bi+uPUxMAxyM1wM6JaH8WM3mXXlQRatriRp8UeWvjUrOPCS47CHQ3x299OU99/JCKlkki4f\nvs7AiffiqtpMZecefHfx9WwcOKLex3RUV9Ju2pcUfzOJdt9+gTNY+zoj5vXjCAWo+e0BVL/8RjoP\nK23LlhnsvbePbt2SfP55CFvDppqIyG7ih+UVlG4OA+B21oZyPK62Hcr5yfqKEPNXbkq7TuF3X7Pv\nhDNZfNSJLPi/myjI9uB22nA77bgcNtxOW7276IRqYkxbUNb4c2EqxYAn7qHPK08Szi9i0wuv4xg0\noM5dv/rKxi23uJg+/ecTQEZGigEDEgwYkGSPPWp/9+yZVHhTRERkJwoKMra7bdd45SQiIiIiIiIi\nIrIbsbJjTuGM2jFWpYNGbrkt4fEyecI9HHDZCYy4ZwIf/fMtotm5jT6GPRRk8CO3k3A4+e7C68Aw\n8Lrs9O2cuyWUA9A+z4fbaWfusgriSetGdQU7dOab6+7nN9eczd43XcLHD71MuLC4zn2zlsxn6IM3\nkf/DDOJuLzPPuYpF404mZW/YFclYRhar9jucVfsdjhGPkT97eu24q28+xREKEN93PyseWlruvddF\nImFw5ZVRhXJEZLsKczyUbg7jcdoZ1CMPt3PXubRUkO1myRqTWCK9c07ZwBFEM7Lo8NXHfH/Btayo\no9uNy27D5awN6bh+DO24HT/fZreZACxYtbnRoRwjHmP4/dfT5b9vUt2pK5teehNPj67b3X/06ATv\nvx/iiy9sVFYaDBiQoHPn1C+nL4qIiIgFdp1XTyIiIiIiIiIiIruJYE164y1+qXDGZABKB4/a6vbN\nvfoz+7RLGfTEPYy47zq+uulhGnulrt+zD+EpL2XuyRcS7NAZu2myR9dcHHZzm31zMlwM7ZXP7KUV\nhKPWPc7SIXsx87wJDPnHrYy+4SI+ve85Ep6fR43YgwH6P/MAPd/6N0YyyarfHMLM8yYQLmi309qm\nYeCwmdhsBnabid1mYLOZP99mmtg7H0J03GGsNgx8lRtxd6w7GNRcFi0yefVVO337JjjqKOv+nEVk\n15Ob6SbL56Rfl1xcjl0rxWczTYpyvaxOc5Riyu5gzV770/WjN8idP5OKfkO22ScSTxCJJ6gK1V3D\nYTNx2M1Gj7Cy1YQZdet4iqd8RkXvAVS98Cq+ju13ej/DgH32STTqmCIiIlI/CuaIiIiIiIiIiIi0\nIclUqtEX7baRSFAwexqBdh0JteuwzeaFfziddtO/pHjyp3R790WWHnlCgw+RtXQBPd94lkBxCfOP\nOwsD6NclB697+x1ovG4HQ3vlM2dpBZWhaIOPuT2Lf3cSWcsW0u2DVxhx77VMvvY+ADp99j6DHr0T\nT0UZ1cUlfH/RX9gwfMwOa3UvzqIox4PdbmI2NLCU3amxD8Ey99zjJJk0uOqqKOa2+SgRkS1Mw2Bw\nj/ytOpztSorzfGkHcwDWjDmIrh+9QccvP64zmLMzsUSy0Z17jESc31x7DgWzp7Fh2GiC//o3GYWN\n73QnIiIi1lIwR0REREREREREpA0J1cQbPeLi17KXzsdZXcnq0QfWvYNpMvXKOzj43N8x+NE7KRs4\ngurOPep/gGSSoQ/chJlM8P0F15J0uelenEVupnund3XYbQzqkc+ClZvYsDlc/2PuiGHw3UXXkbFq\nKZ0+/w81OflkrlxM0feTSThdzPnTxSw49kySTtcOy7gdNjoU+BoeyGkl5s0zefNNOwMHJhg7Vt1y\nRGTndtVQDoDXbSfH72JTIJJWnQ1D9ybm8dLhy4+YdfYVje4y1xg93vo3BbOnsXbvAwg++QzZuRnN\ndmwRERHZOX0XQkREREREREREpA0JhGOW1SqcMQWAskEjt7tPTX4R08bfgi0aYdTtV2JG69/Bpst/\n3yT/h+9ZPeZg1u+5D+1yvHQq9Nf7/qZp0LdLLl3aWXeBMeVw8vX1DxAsKqbnW89R9P1k1u25Dx8+\n/g7zTr5gp6EcgE5FGW02lANw111OUimDq6+ONOd1YxGRVqs435d2jaTTxbqRv8W/fjVZS+dbsKr6\ncW/cQP9/PUAkI4vQ3x9WKEdERKQVUjBHRERERERERESkDbE2mDMZgNLB2w/mAKwdfSBLxh5L9tL5\nDHjyvnrVdlZtYuDjdxN3e5lx3gQyvU56dcpu1Dq7tMukb+ccy8Iw0excvrz5EdbsfQBf3fAgX/71\nnwTb12+8lNtho32e15J1tITZs03ee8/BsGEJDjww0dLLERFpFfKy3LgctrTrrBlzEABd//Na2rXq\na9Cjd+IIh1h7+Z/J6lzcbMcVERGR+lMwR0REREREREREpA2xKphjxGMUzJ5OVadu1OQV7nT/mede\nTVXHrvR6/V8UTftqp/vv8eTfcFVtZu4pF5Ls0JH+XXMxzcYHa4pyvAzqnofDZs1HmlVde/H1jQ+x\ndvSBDRo30ta75dx5Z21HIHXLERH5mWkYloQu1478LdXFJfR4+3ny5ky3YGU7Vjj9K0r+9wEVfQfh\nOe/sJj+eiIiINI6COSIiIiIiIiIiIm1I0KJgTs7COdhrQjvtlvOThMfLlD/fQ9LuYMQ9E3Burtju\nvrnzZtDtg1eo7NyDpUf/iT265lrSiSDL72JorwK8LnvatRrD1ca75UyfbvLRR3ZGjYqz777qliMi\n8kvt83xpBy+TLjffXnkHGAZ73n0NtnDQotVty4xGGfrQX0mZJuXvH4/WAAAgAElEQVS33oPN3jLn\nRhEREdk5BXNERERERERERETaiEgsQSyRtKRW4YwpAJQOHlXv+2zu0Y/Zp1+Gp2IjI+69FlKpbfYx\nEnGGPngzRirFd5fcQK9uBWR4nZasGcDjsjO0VwHZfpdlNeurZBfpljNhQlTdckREfsXlsJGX6U67\nTnn/Icz/45n4161i0GN3W7CyuvV+ZSIZa1aw4uhTyB5Tv5CtiIiItAwFc0RERERERERERNoIq7rl\nwM/BnLKBIxp0v4XHnMaGIXtRPOUzur/zwjbbu7/zIjmL57H8oHH4DtyPwhzrO8zYbSYDu+fRPrf5\nute4HLZmPZ7VJk2y8dlndn7zmzh7761uOSIidSnO91lS54dTLmJzt950f+8l2k393JKav+Rbt4q+\nLzxKODef5HXXW15fRERErKVgjoiIiIiIiIiISBsRsCiYY0Yj5M/9js3d+hDNymngnU2mXnUHkcxs\nBj12F5nLF23Z5C4vZY+n/07Un8nqy6+la/tMS9Zb5zIMg94lOXQq8DfZMX6ppNCPabbNNjPRKFx3\nnQvTTHHzzZGWXo6ISKuVk+GyZFxi0ulk6pV3kLQ7GH7fdTiqNluwuh+lUgx5+BZs0QjLLvsLGcUF\n1tUWERGRJqFgjoiIiIiIiIiISBthVTAnb95MbLEopYMbN/qiJq+QaeNrLwqOvONKzGht2GPg4/fg\nCAVYeO4VdB/S05K17kzX4kwyPI4mPYbLYaN9njVdFFrCxIkOFi+2ceqpMfr3t2YUmojIrqrYouf7\nyu59mHvKRXgqyhj68C2W1AQo/voT2k/9nNLBo/CfdrJldUVERKTpKJgjIiIiIiIiIiLSRgRr4pbU\nKZwxGaDRwRyAtXsfwJLDjyN76QIGTLyXghlT6DzpHTb1HkDmxedjtzXPR4+mYdCncw6m0XTdbNpy\nt5wNGwzuvttFTk6Kq69WtxwRkZ0pyvVis+icsuDYMyjvO4iST9+j4/8+SLueLRxiyD9uI2l3sPaG\n2/G4mzaYKiIiItZQMEdERERERERERKQNSCZThGqs6ZhTOGMKSdNG2YARadWZee7VVHXqRq83nmXk\nHVeQMgyq7rwfj9dlyTrry+d2NNnYrLbeLee221wEAgYTJkTIzW3p1YiItH4Ou0lhjseSWimbnalX\n3UHc5WHoAzfhLi9Nq16/5x/BW7aOxcedSdGoIZasUURERJqegjkiIiIiIiIiIiJtQLAmRsqCOrZw\nkNz5s9jUsz9xnz+tWgm3hynX3E3S7sBTsZGNJ5yGd+89LVhlw3Us8JHtsz4Q1KkNd8v57juTF15w\n0K9fgj/9yZpQl4jI7qBTod+yTmyBDl2Ydfb/4aquZPj9f4FU487mGSsW0+vVpwkWFVMz/spm60wn\nIiIi6dNZW0REREREREREpA0IhK0JVuTP+Q4zEU9rjNUvbe7Rj2/H30LFvgdh3HSTJTUbwzAMepdk\nY7MwROOy2yhuo91ykkm49lo3ALfdFsFma+EFiYi0IV63w9Ln/yVHnMD6oXvTfurndP3Pqw0vkEox\n9MGbMRNx5l92A+065lu2NhEREWl6CuaIiIiIiIiIiIi0AcFw3JI6hTOnAKQVzDEAv9tBx3w//bvk\n0umyc0i88hqprGxL1thYHpedHh2yLKvXqajtdst5+WU706fbGDcuxt57J1p6OSIibU7ndhk4rOpK\nY5pM+79bifoyGPTPO/CuW92gu5d88g6Fs75lzV774//j7zEs6uYjIiIizUPBHBERERERERERkTYg\nUGNNx5zCGVNI2h2U9x9a7/uYhkGm10mnQj8DuuYxekB7hvcppEfHLAqyPTjsracdS/s8H3mZ7rTr\ntOVuOdXV8Ne/uvB4UtxwQ6SllyMi0iY57CadizIsqxcuaMf3F16LIxxiz7snQKJ+oUlHoIpBj91F\n3OVmxZU3kWvBOU5ERESal4I5IiIiIiIiIiIibUDQglFWjupKchb/QHnfQSTcnu3uZxoG2T4XnYsy\nGNQ9n9ED2jG0VwHdi7PIy3Jjt6qDQBPp1Sl7h10OUilYusjFO6/m8sMsT53XRttyt5x773VRVmZy\nySVROnRItfRyRETarOICH16X3bJ6Kw84itVjDqJgznR6vfFMve7T/18P4N5czvyTzqfD8H6WrUVE\nRESaj3WvJkRERERERERERKRJ1ETjxBLJtOsUzJ6GkUxSOqjuMVYlhRnkZbrI8DrbbCgFwOWw0bNT\nNj8sr9jq9spNNr6YlMlnH2WxctnPHQf8GQmGjgwwfFSAQcODZGcabbZbzuLFBo8/7qCkJMkFF0Rb\nejkiIm2aaRh0K85kzrKKne9cH4bB9EtuJH/Od+zx1N9YP3wMVV16bnf37IVz6fHOC1R17Erg3Iso\ncjusWYeIiIg0KwVzREREREREREREWrlgOG5JncIZUwAoHbxtMMflsNGtONOS47QGhdkeNmZ7WFsW\n5rupfj77KIvvp/pJJAxsthR7jq5m2KgAixe4mfaNn88/zuLzj7OwO5LsOTLK746EQw+N07592+k4\nk0rBdde5icUMbrqpBs/2myKJiEg95Wd5yPG72BSwZjRgNDuX6ZfdxOgbL2LPuybwyQMvkrLXEbhJ\nJBj24E0YySSzLr2Bbp3yLDm+iIiIND8Fc0RERERERERERFq5gAVjrAAKZk4h7nJT0WfQNtvyMt11\n3KPtmjPH5PkX2vHyyzaqKms/Bu3ao4Z9D6pkzH5VZGbXzq/a75BKzrp4A8sWuZg2OYPp32Tw9Zdu\nvv4Srr4aBg1KcMghcQ49NE7//kmMVtxI6L//tTFpkp3f/CbO2LHWhLlERAS6d8hi+oJSrIpqrt37\nAJYd/Hu6fvQGfZ//Jz/86eJt9un2wavkLpjNyv0Oxzf2YBz21j1GUkRERLavXmfxmTNncsopp9S5\nLRwOc/zxx7NkyZId3mfx4sWccMIJHH/88UyYMIF4XG8MRURERERERERE6iNQk34wx7WpnOxlC9nY\nfyhJp3Ob7btCMKe83OCxxxzsv7+X/ff38cTjLmymydjfV3DXI8u48x/LGfv7TVtCOT8xDOjWK8Kx\nf9rIa29VMH16gNtvr2GffeLMnWty110u9t/fx7BhPq65xsVnn9mItrIpUZFIbbccmy3FrbdGWnWA\nSESkrfF7HLTL9Vpac8b51xAsbE/f5x8lZ8Hsrba5NpUz4Kn7iXl9LLz4zxTnt83xiiIiIlJrp8Gc\nxx9/nOuuu45IZNsWfbNnz+akk05i1apVO73Pfffdx/jx43nxxRcB+PTTT9Ndu4iIiIiIiIiIyG4h\naEHHnIJZUwEoG7TtGCubYZCdsW1Ypy2IxeDDD22cdpqbgQN9XHedm/nzTQ49NMbTT4eZPTvIn68L\n0qX7zkeQuOw22ud76dQpxZlnxnj11TDz5wd47LEwRx8do6rKYOJEJ8ce66VvXz9XXuli3rzW0cHg\n0UedLF9ucuaZMfr0Sbb0ckREdjld22diM61LPcZ9GXx7xe2YyQR73jUBM1KzZduAiffirK5kzqmX\n0nFAT0ylLUVERNq0nb5rLCkp4cEHH6xzWzQa5eGHH6Zbt247vc+DDz7IiBEjiEajlJWV4ff701i2\niIiIiIiIiIjI7iGRTBKOpN99unDGFABKB28bzMnOqO0s09ZMmmRj8GAfp5zi5f33HfTsmeSvf61h\n5swgzzxTw9ixcZxO6Facicdp32m9ToX+bf4cMjNh3Lg4//xnDfPmBXjttRDnnBMlIyPFv/7lZN99\nffz+9x7eecdOSzUJX7/e4L77nOTlJbnyyp0HkEREpOGcDhudizIsrVk2eCSLxp1C5qqlDHjyfgDy\nZ0+j60dvsKl7XypOOI28rLbf0U5ERGR3t9N3o4cccgirV6+uc9uwYcPqfR+bzcaaNWs4/fTT8fv9\n9OnTp14LLCiw9kWOiIiIiIjI9uj9h4iItEabqyP4/elflGs3eypxr5/4kGFk2Lf+WLBnl7w2dx78\n+ms4/XRIpeCSS+C002DwYBuGYatz/9FeF1N/WE8qVXc9l9PGwD5F2Gw7DigdfXTtTzwO77wDDz0E\nkybZ+eorOx07wnnnwdlnQ2Fhmg+wAcaPh1AI/vY3gx492tbfo4hIW5Kb5ycQtSYw+5Nll1xD++++\notcbz1C574H0efhWABZMuJU9h3Umw9s2O9qJiIjIz3b+NRELdejQgY8++ohXXnmFO+64gzvvvHOn\n9ykrq26GlYmIiIiIyO6uoCBD7z9ERKRVWlcepDpQs/Mdd8BTth7fymWsHflbqmriwNYXFI14ok2d\nB+fNMznqKC/RKDz7bJgDD0wAsHHjju+X5bGzqjRQ57ai4iwqKoINWseYMbU/CxaYPPWUg5decnDd\ndQY335ziyCPjnHlmlGHDkjTlBJIpU2w895yXgQMTHHlkiLKypjuWiIhAfoaTH8rrPpc0jsHkK25n\n/8tOZOiVZ2KLxVh62B9JDB1OTTBCTVCd0ERERNqCHX3Zpdn605533nksX74cAJ/Ph9kGW+OKiIiI\niIiIiIg0t0A4lnaNgpnbH2OV4XHgctbdZaY1WrXK4LjjPFRWGvz97zVbQjn10bVdJn63Y5vbXXYb\n7fO9jV5T795J7rgjwqxZAW6/vYbOnZO89pqDsWN9HHywlxdftBMON7r8diUScO21LgBuvTWCre38\nNYqItFmF2R6yfNZ2sdnUZyDzTzgHWyxGJDObeWf9H13aqQOaiIjIrqLBHXPeeecdQqEQxx13XIPu\nd8455zBhwgQcDgcej4dbbrmloYcWERERERERERHZ7VgRzCmcsf1gTm5m+mOymsvGjQbHHutl/XqT\nm26q4dhjGzZKxDQN+nTO4buFZSR/MdOqY6EfmwVfJMzIgDPPjHHGGTG++MLGxIkOPvzQziWXeLjx\nxiQnnhjjtNNilJRsZ55WAz3/vINZs2z84Q8xRo6sf0BJRETS071DFt8ttLZF2Q8nnoeRTLJ+2N60\n69UJp0NpSxERkV2FkUptb6py69CWWuiKiIiIiEjbpVFWIiLSWn05ax3xZLLxBVIpxp5yAPZwiLdf\n+Rp+FUAZ2quATK+13/xvCoEAHH20lxkzbFx8cYS//CXa6For1lezbH0VAE67ych+RZYEc+qyerXB\nv/7l4LnnHJSXmxhGikMOifPHP8bZf/84Pl/j6lZWwqhRPsJhg8mTg7Rr16o/5hUR2eXMW7GJDZtC\nltd1O23s2acI02zCOYgiIiJiuVYxykpEREREREREREQaJhyJpxfKAXzrV+MrXUfZoJHbhHJcdlub\nCOVEInDqqR5mzLBx4olRrruu8aEcgJIi/5bH3akwo8lCOQAdO6a49too338f5MEHwwwenOQ//3Fw\n5pke+vb186c/uXnxRTubNjWs7t13uygvNxk/PqpQjohIC+jWPhObYX14pltxlkI5IiIiuxgFc0RE\nRERERERERFqpoCVjrCYD2xtj5Uq7flNLJODCC9188YWdQw+Ncc89EdK9DmoYBn1KcnA7bRTne61Z\n6E643XDccXE+/DDEJ58EGT8+QufOtSGdSy7x0K+fn2OO8fDkkw7Wr9/xA5w/32TiRAdduiQ599z0\nQkoiItI4LqeNTkV+S2u2z/VSmO2xtKaIiIi0PHtLL0BERERERERERETqFqyJp12jcMYUAEoHj9pm\nW16mO+36TSmVgj//2cXbbzsYNSrOo4/WYLfoE02v287QngVN2i1newYMSDJgQJQJE6IsXmzw/vsO\n3n/fzhdf1P5MmADDhiUYOzbO4YfH6Nbt5444qRRce62LRMLgllvCuFp/tkpEZJfVqdDPuvIQkVgi\nrTpel52eHbPJydCTuoiIyK7ISKVSrbrPaVlZdUsvQUREREREdgMFBRl6/yEiIq3O3GUVlFWGG18g\nleLI4/chZcC7L3zOL1vNmIbB6AHtWiSYUl933+3k7rtd9OuX4K23QmRltfSKmtbatQYffGDn/fft\nfP21jUSi9u+rb98Ehx0W5/DD46xYYXLGGR723z/OCy+E0+4eJCIi6dlQEWLeygbOI/yRzTDo3C6D\njoV+TD2hi4iItGkFBRnb3aZgjoiIiIiICArmiIhI6zTlhw2Eo43vmpOxYjGHnn0kK/Y7gqnX3L3V\nttwMNwO756W7xCbz5JMOJkxwU1KS5L33QhQVteqPMS1XUQEffWTnvfccfPaZjUik9oKtaaYwTfj8\n8yA9euxefyYiIq3V9AVlVIcbNlowP8tNjw5ZuJ0abiEiIrIr2FEwR2d7ERERERERERGRViiRTKYV\nygEonPnTGKuR22zLy2q9Y6zeesvONde4yM9P8vLLu18oByA3F44/Ps7xx8cJBGDSpNpOOp99ZuPs\ns2MK5YiItCI9OmTy/eKN9drX7bTRs0N2qz4Pi4iIiLUUzBEREREREREREWmFguH0QjkAhTN+CuaM\n2mZbXqYr7fpN4X//s3HBBW58PnjppTDduimA4vfDUUfFOeqo9P9NiIiI9bL8LgqyPZRt3v74SdMw\n6FTop6TI36rHSIqIiIj1FMwRERERERERERFphQLhWHoFkkkKZ04lWNSBUPuOW23yux2tcnTG99+b\nnHqqB8OAZ58NM2BAsqWXJCIiUi/d2mdSXllDMrVtoDQ3w0WPDtl43a3v3CsiIiJNT68ARERERERE\nREREWqF0gznZS+fjrK5kzd4HbLOtNY7PWLzY4MQTPdTUwBNP1DB6dKKllyQiIlJvHpedjgV+VpZW\nb7nN5bDRvUMWhdmeFlyZiIiItDQFc0RERERERERERFqhYJrBnIIZUwEoHTRym215ma0rmLNuncGx\nx3opLze5994ajjhCI5tERKTtKSnys74iSDyRokO+j87tMrDbNLZKRERkd6dgjoiIiIiIiIiISCsU\nqEkvmFM4czIApYO3DuY47SaZPmdata20eTMcd5yH1atNrrkmwimnpDnCS0REpIXYbSa9O+Xgctrw\nexwtvRwRERFpJRTMERERERERERERaWXCkTiJZKrR9zfiMQpmfUtVx67U5Bdtta21dcu56SYX8+fb\nOPvsKJddFm3p5YiIiKSlNY6LFBERkZal/nkiIiIiIiIiIiKtTLpjrHIWzcURDlE2eM9ttrWmYM6a\nNQYvv+ygR48EN98cwTBaekUiIiIiIiIi1lIwR0REREREREREpJVJe4zVjCkAlA4etdXtpmGQneFK\nq7aVHnnESSxmcMklUWy2ll6NiIiIiIiIiPUUzBEREREREREREWllAml2zNkSzBm4dcecbL8Tu611\nfCS4caPBs8866NgxyTHHxFt6OSIiIiIiIiJNonW8CxcREREREREREZEt0gnmmNEo+XO/Y3O33kSz\nc7fa1prGWD32mINw2ODCC6M4HC29GhEREREREZGmYW/pBYiIiIiIiIiIiOzukskU1aEomwNRKoMR\naqKJRtfKnT8DWzRC6aCR22zLy2odwZyqKpg40Ul+fpITT0yvO5CIiIiIiIhIa6ZgjoiIiIiIiIiI\nSDNLJJNUBWNsDkSoDESpCkVJplKW1N4yxmrw1sEcv9uB29k6Pg586ikn1dUGl14axeNp6dWIiIiI\niIiINJ3W8U5cRERERERERERkFxZPJKkMRNkcrA3iBMIxy4I4v1Y4Ywop02TjgOFb3Z7bSsZYhULw\n6KMOMjNTnH56tKWXIyIiIiIiItKkFMwRERERERERERGxWCqVoryyZstoqkA4RtPEcLZmC4fImz+L\nTT37E/NnbrWttYyxev55Bxs3mowfHyEjo6VXIyIiIiIiItK0FMwRERERERERERGxWCAcY87yimY/\nbv7c7zHjsW3GWDlsJpleR7Ov59eiUXj4YSdeb4qzz4619HJEREREREREmpzZ0gsQERERERERERHZ\n1VSHWiZ0UjhzMgClg0ZtdXtephvDMFpiSVt57TU7a9aYnHJKjLy85ughJCIiIiIiItKyFMwRERER\nERERERGxWHUo2iLHbfftlyTtDjb2H7LV7a1hjFUiAQ884MLhSHH++S3z5yMiIiIiIiLS3BTMERER\nERERERERsVgg3PwdczKXLyJ76XzWDx9DwuPdcrtpGORkuJp9Pb/23nt2liwxOe64GMXF6pYjIiIi\nIiIiuwcFc0RERERERERERCyUTKUI1sSb/bglk94FYMUBR251e7bfid3Wsh8DplJw//1OTDPFRRep\nW46IiIiIiIjsPhTMERERERERERERsVAgHCOZauaOMMkkJZ++S8zrY+2o/bbalJvZ8mOsPvnExty5\nNsaNi9Otm7rliIiIiIiIyO5DwRwRERERERERERELBULNP8Yqf+53+DasZfWYg0m6tg7i5LVwMKe2\nW07tKK2LL1a3HBEREREREdm9KJgjIiIiIiIiIiJioepQ84dPfhpjtXL/I7a63ed24HHZm309vzR5\nso1vv7VxyCFx+vdPtuhaRERERERERJqbgjkiIiIiIiIiIiIWCoSbt2OOEYvS6fP/EM4toHTQyK22\ntXS3HIC//c0JwKWXRlp4JSIiIiIiIiLNT8EcERERERERERERiySTKYI18WY9Zvtvv8BZXcnK/Q4H\nm22rbXmZrmZdy6/NnGny6ad2xoyJM3y4uuWIiIiIiIjI7kfBHBEREREREREREYsEamIkU6lmPWbJ\nJ+8AsPKAI7e63WEzyfQ5m3Utv/b3v//ULef/2bvvMKnqs//jnzN1e1+WulRBOkoHC2IUCyomKtZo\nNBoxah6fGI3tieZJniQaTeyJXcHYor8oiB1BsYBI36VJXWDZwtbp5ZzfH6sossDulN1F3q/rmmuW\nOed8v/dgrjA785n7bvvxXgAAAAAAdAQEcwAAAAAAAIAEafS17Rgrh7dRXT//UA3FfVXXd+Bex/Ky\nUmQYRpvW813r19v05psOHX10VMcdF223OgAAAAAAaE8EcwAAAAAAAIAE8fjatjNM94/flT0c0tYT\nz5C+F8LJz05p01q+74EHXLIsQ7/6Vej7pQEAAAAAcNggmAMAAAAAAAAkSFt3zCmeN0eStO2EqXs9\nbjMM5WW627SW79q2zdCrrzp05JFRTZkSabc6AAAAAABobwRzAAAAAAAAgAQwTUu+YNuFUFKqK9Rp\nxSJVDRkpX+duex3LSnfJYW+/t/4eftilaNTQ9deHZOMdSAAAAADAYYxfiwEAAAAAAIAE8ATCMi2r\nzfYr/vBNGZalbZPP2OdYQVb7jbGqqDD0r385VVxsato0uuUAAAAAAA5vBHMAAAAAAACABGjrMVY9\nP5gt0+FU2XFT9jmWn91+wZx//tOpYNDQddeF5HC0WxkAAAAAAHQIBHMAAAAAAACABPD4Qm22V9bm\n9crZtFblo49TOCtnr2NpbodS3e2TiKmrk55+2qWiIlPTp7dtUAkAAAAAgI6IYA4AAAAAAACQAG3Z\nMad43hxJ0rYTp+5zrD275Tz5pEter6Frrgkppf3KAAAAAACgwyCYAwAAAAAAAMTJNC35gpG22kzF\nH85ROC1DO8dO2udwflb7JGI8Humxx1zKzbV0ySV0ywEAAAAAQCKYAwAAAAAAAMTN4w/LtKw22atg\n9ZdKryzX9mNPluneO4STmepSToa7Ter4vlmznKqtNXTllSFlZLRLCQAAAAAAdDgEcwAAAAAAAIA4\nNfrbrkNMzw9mS5K2Tj5jn2NHdM9uszq+KxiUHnnEpfR0S1dcEWqXGgAAAAAA6IgI5gAAAAAAAABx\n8vjaJoxiC4XU/eN35M/vpKpho/c61jk3TVnprjap4/teftmpXbtsuuyysHJz26UEAAAAAAA6JII5\nAAAAAAAAQJwafW3TMafz4gVyeRq07YSpkt2+53GHzaY+XbPapIbmvPCCUzabpauvplsOAAAAAADf\nRTAHAAAAAAAAiINpWvIFI22yV895cyRJW0+cuvfjnTPlctqbuyTpdu40tGSJXRMmRFVUZLVLDQAA\nAAAAdFQEcwAAAAAAAIA4ePxhmVbyAylOT4O6LPpQ9T37qb7PkXseT3M71K0wPen778/cuQ5J0tSp\nbRNOAgAAAADgUEIwBwAAAAAAAIhDo79txlh1+/hd2cNhbZt8hmQYex7v1y1btu/8ua3NmeOQYVg6\n/XSCOQAAAAAAfB/BHAAAAAAAACAOHl+oTfbpOW+2JGnb5NP3PFaQnaK8rJQ22b85lZWGPvvMrtGj\nGWMFAAAAAEBzCOYAAAAAAAAAcWj0Jb9jTmpluQpXfqGqISPlK+omSbIZhvp2zU763gfy1lsOWZah\nM86gWw4AAAAAAM0hmAMAAAAAAADEyDQt+YLJD6UUz39ThmVp64ln7nmsR6cMpbodSd/7QObMadqf\nMVYAAAAAADSPYA4AAAAAAAAQI48/LNNK/gin4nlzZDqc2n7syZKkFKddxUUZSd/3QGpqpIUL7Trq\nqKi6d2eMFQAAAAAAzSGYAwAAAAAAAMSo0RdK+h5Zm9crZ9M6lY85TuGsHElSn27Zstva9629d95x\nKBo1NHUq3XIAAAAAANgfgjkAAAAAAABAjDz+cNL36DlvtiTtGWOVk+FWp5zUpO97MHPmOCVJU6cm\n/+8AAAAAAIBDFcEcAAAAAAAAIEaNviSHUkxTxfPeVCg9U+Vjj5chqV+37OTu2QINDdKCBXYNHhxV\n796MsQIAAAAAYH8I5gAAAAAAAAAxiJqmvIHkBnMKVi9RWlW5th97skyXW90KMpSR6kzqni3x7rsO\nhUKMsQIAAAAA4GAI5gAAAAAAAAAx8PojSnavmJ4fNI2x2jb5DDntNvXqkpnkHVtmzhyHJOmMMwjm\nAAAAAABwIARzAAAAAAAAgBg0+kJJXd8WCqr7R+/IV9BZVcNGq3eXLDns7f92nscjzZvnUP/+UfXv\nb7Z3OQAAAAAAdGjt/5s8AAAAAAAAcAhq9CV3jFWXxQvk8jZq2wmnKTPdrS75aUndr6XmzXMoEGCM\nFQAAAAAALUEwBwAAAAAAAIiBx5/cYE7xN2OsTjxT/brnyNPyBdUAACAASURBVDCMpO7XUt+MsSKY\nAwAAAADAwRHMAQAAAAAAAFopapryBpIXzHE21qvL4gWq73WEUkYepex0V9L2ag2/X3rvPYd69TI1\neDBjrAAAAAAAOBiCOQAAAAAAAEArefwRWUlcv/vH78geDqvsR2eqT9esJO7UOvPnO+T1Gpo6NawO\n0sAHAAAAAIAOjWAOAAAAAAAA0EqNvlBS1y+eN0eSZJ43XW6nPal7tcY3Y6zOOIMxVgAAAAAAtATB\nHAAAAAAAAKCVPL7kjbFKrdypTiu/0O4RY1Q0fEDS9mmtUEh65x2Hunc3NWIEY6wAAAAAAGgJgjkA\nAAAAAABAK3n8yQvmFH/4piQpfM502TrQvKiPP7arocHQ6adHGGMFAAAAAEALEcwBAAAAAAAAWiFq\nmvIGkhfM6TH/LZlOlxznnZO0PWLxzRir009njBUAAAAAAC1FMAcAAAAAAABoBY8/IitJazs9Dcrd\nuEah0WNl5eQmaZfWi0Skt95yqKjI1Jgx0fYuBwAAAACAQwbBHAAAAAAAAKAVGn2hpK2dX7pckhQd\nOzZpe8Tis8/sqqmx6bTTIrLxjiIAAAAAAC3maO8CAAAAAAAAgESxLEuhsKlAOKpAKKJIxFS3woyE\n7uHxJW+MVX7pMklSZMy4pO0Ri9mzm95GnDqVMVYAAAAAALQGwRwAAAAAAAAcMkzLUjAUVSAUVfDr\n8E0wFJU/FFXw68dMa+9BUy6nXYU5qQmrodGfzGBOU8ec8MjRSdujtUxTmjvXofx8U+PHM8YKAAAA\nAIDWIJgDAAAAAACADm1HtVeVtT4FQlGFwlFZB79kL5vLG5SfnSKbYcRdS9Q05QskJ5hjRCPKX7tS\nof5HysrJTcoesVi82K7KSpsuvjgkB+8mAgAAAADQKkyEBgAAAAAAQIdVWefXhu11qveGFIwhlCNJ\nvmBE5dXehNTj8YVjqqElsjetkyPgU3TM2CTtEJs5cxhjBQAAAABArAjmAAAAAAAAoEOq94a0dmtt\nzNfb/T6N/dON6j5/rrZWNCoSNeOuKZljrApKlkmSwmPGJW2P1rIs6c03HcrOtnTMMYyxAgAAAACg\ntQjmAAAAAAAAoMPxByNavWm3TCv2/jRDn7pPxR++qZEP/l5WXZ3KKj1x19XoS14wJ7+0KZgT6UAd\nc5Yts2nHDpumTInI5WrvagAAAAAAOPQQzAEAAAAAAECHEo6YWrVpt8JxdLjptPRTHfH684o6XXI1\n1qv/K09pe6VHwXB8XV88Se6YE8nLV7R336Tt0VqzZzslSVOnJu95AwAAAADwQ0YwBwAAAAAAAB2G\naVpavXm3fMFIzGs4PQ0a/dfbZNodWvCXp+TPK1T/156TY3eltpQ3xLxu1DTlCyQnoJJaWa60qnKF\nR4+VDCMpe7SWZUlz5jiUnm5p0iTGWAEAAAAAEAuCOQAAAAAAAOgw1m2rVb03FNcaIx75o9Kqd6n0\noqu1e8hIlV78SzmCfg361z+0q8YXc9cbjy+s2AdrHdg3Y6yiY8cnaYfWW73apq1bbTr55IhSUtq7\nGgAAAAAADk0EcwAAAAAAANAhbC5vUEWdP641ui18V73ef0M1/Ydo7flXNa17yo/V2LVYfea+orTy\nMm2OsWtOYzLHWJUul6SmjjkdxJw5DknS1Kmxdy8CAAAAAOBwRzAHAAAAAAAA7a58t1dbKxrjWsNd\nW62R99+pqMutxTf9WZbDKUmyHE6VXHq9bJGwBj/3oHY3BFTbGGz1+o2+5AVz8kuWynS6FBk+Iml7\ntNacOQ6lplqaPJlgDgAAAAAAsSKYAwAAAAAAgHZV2xjUhu318S1iWRr59zvlrq/VqstvUGNx370O\nlx1/qmr7DlTxvDnK3rROm3a2fr9GX3wjtvbH7vcpZ+NaBYcOV0eZGbVunU0bNtg1eXJE6entXQ0A\nAAAAAIcugjkAAAAAAABoNx5/WCWba2RaVlzr9HzvP+r22QeqHD5GG6Zdsu8JNptWXX6DDMvSkKf/\nrkZ/WBW1vhavH4ma8geT0zkmb90q2cyozLHjkrJ+LGbPZowVAAAAAACJQDAHAAAAAAAA7SIYjmr1\npt2KmGZc66RV7NBRj/yfwmnp+uLG/5Nszb/lVTHqGFUOG62ui+Yrf/WX2lzeINNsWSDI6w8rvujQ\n/uWXLpMkRcZ0nGDOnDkOuVyWTj6ZYA4AAAAAAPEgmAMAAAAAAIA2FzVNrd60W4FwNL6FTFOj/3qb\nnD6Pls+4Vb6ibvs/1zC06vIbJEnDnrxPgWBEO6q9Ldqm0ReOr84DKChZKkkKjx6btD1aY9MmQ6Wl\ndk2aFFVmZntXAwAAAADAoY1gDgAAAAAAANqUZVlas6VWjf74wy79Xn9enVYs0s5xJ2jLyWcf9Pya\nQUdpx/jJKihZqs6LF2hbRaPCkYN37ElErc0yTeWvWaFgcS9ZnTolZ49WmjPHKUmaOjV5YSQAAAAA\nAA4XBHMAAAAAAADQpr7aUa/qhkDc62Ru26RhT96rYHaultzwe8kwWnTd6st+JcswNPTpvyscjmhb\nReNBr2n0heItt1lZ2zbK5WnoMN1ypKYxVg6HpSlTGGMFAAAAAEC8WhTMWbFihS655JJmj/n9fp1/\n/vnauHHjAa9Zs2aNLrzwQl1yySW64oorVF1dHUfZAAAAAAAAOBRtr/S0eHzUgRjRiEbfc4vsoaC+\nvP5OBXMLWnxtQ+/+2nrimcrZtE495s/VjmqvAqH9h1AiUVP+YHJCKvmlyyRJ1rjxSVm/tcrKDC1f\nbtcxx0SVm9ve1QAAAAAAcOg7aDDn8ccf1+23365gMLjPsVWrVumiiy5SWVnZQa/54x//qDvuuEMz\nZ87USSedpMcffzwB5QMAAAAAAOBQUV3n18ad9QlZ68gXH1f+upXaeuIZ2nHsya2+vuSn18l0ODXk\n2QdkhYLavLNhv+d6/WFZ8RR7AAUlTcGc8JhxSdqhdd580yFJmjqVbjkAAAAAACTCQYM5xcXFevDB\nB5s9FgqF9PDDD6tPnz4Hvea+++7TwIEDJUnRaFRutzvWmgEAAAAAAHCIafSFtGZrbUICLjkbSjRo\n1iPyFRRp2S9vj2kNX+du2jj1fGWUl6nPW/9WRZ1/v+OqGn3heMo9oPzSZYpkZik64Mik7dEas2c7\nZbNZOvVUgjkAAAAAACSC42AnTJkyRdu3b2/22MiRI1t8TadOnSRJS5cu1axZs/T888+3qMDCwswW\nnQcAAAAA8eL3DwBInk2ry5WWHv8XtWzBoMb99VbZohGV3H6PUjp3UkqMa5X9/Hr1fudVDf7Xo9p9\n9vmq9obVp2f+PuftrAsoMyPWXfbPVVOtzB1bFTzxJBUWZSd8/dbauVP64gvp+OOlQYMy2rscAAAA\nAAB+EA4azEmkuXPn6tFHH9Vjjz2mvLy8Fl1TVdWY5KoAAAAAoCmUw+8fAJActY1BbStPzAirYY/d\no8zN6/XVGRdoy6DRkicQ+2KuDK37yWUaPOsRdZ71uNZe8Atlu+3Ky9o7hLO9vF6+YOI7yHRdskiS\nFDx6tBo6wL9Bzz3nlJSiU04JqKoqeV2CAAAAAAD4oTnQlz4POsoqUV5//XXNmjVLM2fOVI8ePdpq\nWwAAAAAAALSzLbsaErJOwaol6v/q02rsWqyVP78xIWuu/8nPFMzK0YCXn5SzoU6bdjbIsr4duBWJ\nmvInIZQjSfklSyVJ5rjxSVm/NYJB6amnnDIMS6edxhgrAAAAAAASpdXBnNmzZ+ull15q1TXRaFR/\n/OMf5fV6dd111+mSSy7RAw880NqtAQAAAAAAcIipbQyq3huKex2Hz6vR99wiGYYW3/RnRVPTElCd\nFEnP0JrzfyGXt1FHvvyEPIGwdtX49hz3+MOyDnB9PApKl8uy2xU+qvlx8W3p7393acMGuy6/PKwu\nXZL1jAEAAAAAOPwY1ne/AtQB0UoeAAAAQFtglBUAJMfyDdWq8wbjXufov/9Ofee+rDXnX6XVl9+Q\ngMq+ZQsFdeplp8jdUKu5z7wjq0tXjRnYSXabTdsrPfpqZ2LGcO29Z0jTzh6t4BED5J3/ScLXb421\na2068cQ0FRZaWrjQq4yMdi0HAAAAAIBDTocYZQUAAAAAAIDDS21jMCGhnM6LF6jv3JdV12eASi/+\nZQIq25vpcqvkp9fKHgpq0KxHFAxHtb3SK0lq9MXf7ac5OV+VyB4OKTx6bFLWb6loVLrhhhSFw4bu\nvjtAKAcAAAAAgAQjmAMAAAAAAICk2Lor/k5kTk+DRt13h0yHU4tv+otMlysBle1r60lnqaFHH/V+\n+1VlbN+sskqPwpGoGv3hpOxXULJMkmSNH5+U9VvqmWec+vJLu6ZNC+vkk6PtWgsAAAAAAD9EBHMA\nAAAAAACQcInqltP/1WeUWlOl0guvVn2fAQmorHmW3aHVP/uVbGZUQ559QBHT1MYdDfIFI0nZL7+0\nKZgTHTMuKeu3xI4dhv7wB7dyciz94Q/x/7cCAAAAAAD7IpgDAAAAAACAhEtEtxxXfa2OeO1ZBXLy\ntf4nl8Vf1EHsmHiSagYMVY8FbytnQ4l21fqSs5FlqaBkmYJFXWR275GcPQ5egm6+OUVer6G77gqo\nUyerXeoAAAAAAOCHjmAOAAAAAAAAEqrOk5huOQNeeVJOv09rLrhK0dS0BFR2EIahVZffIEka+vTf\nk7ZNenmZUup2K3D06KTtcTCvv+7Qu+86dOyxEZ1/fnK6AgEAAAAAAMnR3gUAAAAAAADgh2VLArrl\nuGuq1O/15+UrKNKm06cnoKqWqTxqvCqOGq/OSxaqcPkiVY0Y2+JrIxGpdGWalnyWqS8/T1fvI4K6\n4bYdstv3Pq+gZKkkKTpufCJLb7HaWunWW91KSbF0zz0BGUa7lAEAAAAAwGGBYA4AAAAAAAASps4T\nVJ0n/m45A198XI5gQCt+cbNMlzsBlbXcqstvUNF1n2noU/dp3v0v6kDJFb/PpuVL0vXFpxlatjhD\nXk9TCsdms1RV4dILTxXq4iur9romv3S5JMkY3z7BnDvvTFF1tU133BFUnz6MsAIAAAAAIJkI5gAA\nAAAAACBhEtEtJ7WyXH3efFHeom7aPOXHCaiqdWoHDFXZsVPU4+N31PXTD7Rz4o/2Ol5XY9eSzzL0\nxWeZWrUsTZFw07T4/MKwjj2xXqMneNSrb0B3/FdPvfFKvnr1C+iYE779eykoWapoSqoig4e26fOS\npI8+suuFF5waMiSqGTNCbb4/AAAAAACHG4I5AAAAAAAASIiEdct54Z+yh8MqvfgaWU5XAiprvdWX\n/UrdPnlfQ565XzvHT9bOHSla/GmGvvg0U1+tTZFlNXXR6dknoNETPBo9oVG9+gb3aq5z0107dMt1\nPfWP+7qoW4+QevcLyulpUNbWr+QZNU5yOtv0Ofl80o03pshms/S3vwXk4J1BAAAAAACSjl+/AQAA\nAAAAkBCJ6JaTVr5dvd9+VY3demrrj85MQFWx8fTorQ/GztAHn3XTCxd11rbdeZIkw2Zp0DCfRo33\naPR4jzp1Ce93ja49Qrru5nLd/bvuuufO7vrzQ1t0xIYVMixLodHj2uqp7PHXv7q0ZYtN11wT0vDh\nZpvvDwAAAADA4YhgDgAAAAAAAOJWn6BuOYOef0S2aEQll1wry95+b11Vljt18ZK/KyS7Umv8GjOh\nQaMmeHT0WK+ysqMtXmfUeI/O+2mVXn6uUH/7Y1c9P2iFJMmYMD5ZpTdr1SqbHn3UpeJiUzfdFP9/\nJwAAAAAA0DK29i4AAAAAAAAAh77NCeiWk1G2Wb3ef131Pfup7PhTE1BV7P71dKFCYbtuOeJpVVv5\n+tuJz2jSyQ2tCuV848cX7taYiY0qWZGuh987VpJkjhmb6JL3KxKRbrghRdGoob/+NaC0tDbbGgAA\nAACAwx7BHAAAAAAAAMQlUd1yBs96WIZpquTS6yS7PQGVxeartSn6dH6W+vb3a+JvuyjVFtSgWQ9L\nZmzjn2w26Ze/KVf34oAer56uxwt/IysnN8FV798//+nUypV2TZ8e1qRJrQ8WAQAAAACA2BHMAQAA\nAAAAQFy2JKBbTtbm9eoxf65q+w3UjoknJaCq2FiWNPOxTpKkS66qlK9HL22dPFU5m9er2yfvx7xu\napqp//3ZfOWoVtft/oOWL2+bt+W2bDF0991uFRSYuuuuQJvsCQAAAAAAvkUwBwAAAAAAADGr9wRV\nm4huOTMfkmFZWn3p9ZJhJKCy2HzxaYbWrE7TqPGNGjTML0lac+HVsmw2DXr+kZi75kjSsOpP9IIu\nUMhy6rLLUlVZmdznaVnSjTemyO839Ic/BJWXl9TtAAAAAABAMwjmAAAAAAAAIGaJ6JaTs75E3Re+\np91HDtOuMccnoKrYRCLS8090ks1m6eKfV+153NO9t7adcLpyNq1Tt09j75pTULpMp+gd3X51uXbu\ntOmKK1IUCiWi8ua99JJDH33k0IknRnT22ZHkbQQAAAAAAPaLYA4AAAAAAABikqhuOUOee0CStPqy\nX7Vrt5z35+aofIdLPzq9Tl177J2YKb1wRlPXnFmxd83JL1mqUE6+rv1dhs48M6xFixy64w53Ikrf\nR1WVod/9LkVpaZbuvjvQnn+tAAAAAAAc1gjmAAAAAAAAICZbK+LvlpNXukxdFn+kymGjVXnU+ARU\nFRuf16ZXZhYoNS2qcy+u3ue4p0dvbZvU1DWn66cftHr91KpdSq8sl2fEKBk2Q/ffH9DAgVE9/bRL\ns2Y5E/EU9nLHHW7V1hq67bagevSwEr4+AAAAAABoGYI5AAAAAAAAaLV6b0g1jQnolvNsU7eckkuv\nb9duOf95MV+N9Q5Nm75b2bnRZs9Zc+HVsmw2DY6ha05+6TJJUnj0GElSerr07LN+5eZa+u1v3fri\ni8S9Tff++3a99ppTI0dGdfnl4YStCwAAAAAAWo9gDgAAAAAAAFpt666GuNcoXLFYRcs+166RE1U9\ndFQCqopNdaVDb/6/XOUXhHX6j2v3e15jcZ+vu+asVdfP5rVqj2+COcbECXse69XL0mOP+RWJSJdf\nnqpdu+IPJnk80m9+kyKHw9K99wZkt8e9JAAAAAAAiAPBHAAAAAAAALRKQrrlWJYGf90tZ/Wl1yeg\nqti9+EyhwiGbzv9ZlVzuA499WnPh1bIMQ4NmPSJZLR8RVVCyTFGnU8bRI/d6/Pjjo/qf/wmqosKm\nn/0sVcEY/lojEWnFCpsee8ypCy9M1Y4dNl13XUiDBrWuqw8AAAAAAEg8R3sXAAAAAAAAgENLIrrl\nFH35iQpXf6md405Q7ZHDElBVbDZtcOuj97PVq29Ax5548Of1Tdecnh/OUddPP9DOiT866DV2v085\nX61R4+DhUkrKPsdnzAhr5cqm8VO33OLWvfcGDzjVy+eTli61a9Eiuz7/3K4lS+zyer+9YPToqG64\nIXTQugAAAAAAQPIRzAEAAAAAAECLNSSoW86QPd1yrktAVTGXoZmPdZIkXXJVpWwt7C295qKrVTz/\nTQ2a9Yh2TjhRB0zRSMpbv1o2M6rA0aObbV9tGNJ99wW0YYNNs2a5NGyYqcsuC+85XlMjLVrk0KJF\nTWGcFStsikS+3fOII6IaO/bbW8+e1sFKAgAAAAAAbYRgDgAAAAAAAFpsSwK65XT5/EPlrVulsmOn\nqL7vwARUFZtli9NVsiJdR43xaOhRvhZf11jcV2WTTlPxh2+q62fzmsI5B5BfukySZI6fsN+58mlp\n0jPP+HXyyWm69Va3vF5p0yabFi2ya/16+57z7HZLw4ebGjMmqnHjohozJqqCgpaP1AIAAAAAAG2L\nYA4AAAAAAABaJCHdckxTQ559UJZhqOSn1yamsBhEo9LMxzvJsFm6+OeVrb6+9KIZ6jF/rgbNelg7\nx08+YNecgpKlkiTHxAkHXLNHD0tPPBHQOeek6q67mkZepaVZOu64iMaObQriHH10VOnprS4XAAAA\nAAC0E4I5AAAAAAAAaJGtFY1xr9F94bvK2bRWWyefocae/RJQVWw+fDtbO7a5deKpderRK9Tq6xuL\n+6rs+FNVPH+uunz+ocrHT27+RNNU/poV8nYrloqKDrruxIlRzZrl18aNNo0ZE9XgwaaczlaXBwAA\nAAAAOogWTs4GAAAAAADA4czjD2t3QyC+RaJRDX7uIZk2u0ovuSYxhcXA77PppecK5U4xdd5Pq2Je\np/SiGbIMQ4NnPiRZzY+TyizbJFdjvbwjRrV43RNPjOqqq8IaMYJQDgAAAAAAhzqCOQAAAAAAADio\nsgR0yyn+8E1lbduoLSdPk6dbr/iLitEbr+Spvtahs87brdz8aMzrNPbsp7LjTlHuV2vU5fP5zZ5T\nULpMkhQePS7mfQAAAAAAwKGLYA4AAAAAAAAOyB+MqLLOH9caRiSswbMelulwas1FMxJUWevVVDs0\n+995ys0La+pPauJeb81BuubklzQFc4wJE+LeCwAAAAAAHHoI5gAAAAAAAOCAyio9an5QU8v1fO91\nZezcpk2nniNfUbcWX2czDBVkpSjFaY+zgiYvPVugUNCm6ZdWKyU13mclNfQ64uuuOaXNds0pKF2m\ncHqGnMOGxL0XAAAAAAA49DjauwAAAAAAAAB0XKFwVBU1vrjWsIVCGvT8I4o6XVpzwS9adE1OultF\neakqzEmVw9703bI6T1AVNT5V1QUUMc1W17F1k1vz381Wj14BTTq5vtXX78+ai2aox0dva9Csh1U+\nbpJkGJIkV12NMrdv0e6xx0k2vh8HAAAAAMDhiGAOAAAAAAAA9mtHtVfRZkY0tUa/12cpvbJc6398\nqQIFRfs9L83tUFFumoryUpXi2vdtq5wMt3Iy3OrX3dTu+oAqav2qbQzKbGF9s54olGUZuuTKKtkS\n04BHUlPXnO3HTVGPBW+ry6L5Kh93giQpf81ySZJ/1Bi5E7cdAAAAAAA4hBDMAQAAAAAAQLMiUVM7\nqrxxrZGyu1KDZj2sYGa2Si+8ep/jTrtNnXJTVZSbpqx0V4vWtNts6pSbpk65aQqFo6qs86uixqdG\nf3i/1yxfkq4VSzI07Givho+K7zk1p/TCGeqx4G0NmvmwysdOkgxDBSVLJUnW2HEJ3w8AAAAAABwa\nCOYAAAAAAACgWTurvTGNjPquoU/eJ6ffpy+v/53CWTmSJJthKD87RUW5qcrLSpHt69FPsXA57epe\nmKHuhRnyBsKqqPGrotanYDi65xwzKs16vFCGYeniKysVx3b71dC7v8qOO0U9PnpbnRcv0K6xk5Rf\nulyWzSbHuLGJ3xAAAAAAABwSCOYAAAAAAABgH6Zpxd0tJ690mXq9/7pq+w7UplPPVXa6S0W5aeqU\nmyqH3ZagSr+VnuJUn65O9e6SqTpPSBU1PlXV+/XhO1natjlFk06uU6++wYTv+43Si2aox0dva/DM\nh1V51ATlrVulhr5HypGTnbQ9AQAAAABAx0YwBwAAAAAAAPvYVeNTMBI9+In7Y5o66uE/SpKW/fI2\n9emeq+KizARVd2CGYSg3063cTLe6NmbrqmfT5XKbmn5pdVL3bejdX2XHTlGPj9/RwBf+IXs4JM+I\nUWrZgC4AAAAAAPBDlPivJgEAAAAHYFpWe5cAAAAOwrIslVV64lqj9zuvKm9DibaeMFU1Q0aqKDct\nQdW1zuOPpWh3tUPTL2pQfmEk6fuVXnyNJGngv/4hSQqPGZf0PQEAAAAAQMdFxxwAAAAkTTAcldcf\nlscfbroPROQPRmS3GcrJcCs7w6WcDLfSUxwyDKO9ywUAAF+rqvPLH4o9xOL0NGjoU39TJCVNK6+8\nUTkZbrld9gRW2DK7dxt68EGXCgpM3XmbTbvq07WjOr7xXAfT0Lu/th9zsrovfFeSZBs/Pqn7AQAA\nAACAjo1gDgAAAOJmWpZ8gci3AZyvb+GoKUmyLGlHmUsly9O1ZlWaAgGbXG5Tbrclt9tUSmpE2Vk2\nZWfalJdtV062TenpUmqqpdTUb+/T0y117WopJaWdnzAAAD9w2yri65YzaOZDctfXauXl/61AQZF6\n57VPt5wnnnDK5zN0661BZWYayszMkcth1+ZdDUndt/Tia9R94bvyFxTJ3a93UvcCAAAAAAAdG8Ec\nAAAAHJBlWYpELUWipqJm030kYsoXjMjrD8sbiMgXjOw1osqypF07nSpZnqnVK9JVujJNdTWJeemZ\nmWlp2rSwzjsvojFjoqLRDgAAiVXTEJAnEI75+qzN69Xv9X+psWuxNvz4UtkNQwU5bZ+q9XikJ590\nKS/P1EUXfft8enbOlNNh04btdUrWgM36PgP0xX//QY6iTupuY5I8AAAAAACHM4I5AAAAhyHTtLS7\nISB/MLJX2Cby9c/Rr4M44a/DOAdjWVLlLqdKlqdp9Yo0la5MU021c8/xnLyIJp5Qr8HDfRoy3Kec\nvIiCAVvTLWgoGLQpFDT2fSzwzTGbrKhDkZBDS79I1cyZLs2c6VLv3qamTw/rvPPC6t49WR+tAQBw\neImrW45lacSjf5LNjGr5jFtkulwqykmVvR3CKc8/71RdnaGbbgopPX3vY10L0uV02LRma+1e4eJE\n2nLKT9SjMCMpawMAAAAAgEMHwRwAAIDDSJ0nqIoan6rqAoqYZlxrVVc6tHp5mkpWpKtkRZqqK78N\n4mRlRzT++AYNHubT4OE+de0R2qezTUpqVFK01fv+d2aqdm8v1IsvOjV3rkN//rNbf/mLS8ccE9X0\n6WGdfnpknw/fAABAy9R7Q6rzBmO+vtvC91S0/HOVjzlOu8ZOkiR1bocxVqGQ9OijLqWlWbr88lCz\n5xTmpMpht6lkc03cr4v2JzPdlZR1AQAAAADAoYNgDgAAwA+cLxBRRa1PFbU+BUKtD8J8l6fRpvnv\nZOuDt3K0o8y95/GMzKjGHNOoIcO9Gjzcp+499w3iJEp1o1/9BtXr0Ucz1NgovfGGUy+95NDHHzfd\nbr7Z0plnRjR9eljjxkXF9AgAAFqurKIx5mvtAb+GsKtRCwAAIABJREFU//PPMh1OLZ9xiyTJ7bQr\nJ6PtwymvvebQzp02/eIXIeXl7f+83Ey3hvfL16pNuxWKJD6ck5XmPPhJAAAAAADgB82wrCT1602Q\nqqrY3xACAAA4XIUjUVXW+lVR61eDr/lvibfGlo1uvf1GrhbOy1IoaJPTZWr4yKYQzuDhPhX3DrZp\nAMZmGBreN1/ZGd+GgzZtMvTyy0698opTZWVNxRQXmzrvvKZRV716deiXvegACgsz+f0DwGHNGwjr\ni7WVMV8/6LmHNHjWw1o7/edadcWvJUk9OmWob9fsRJXYIqYpHXtsmjZvtumLL7zq1u3grwH8wYhW\nbtwtfyiSkBpSXQ51zktTz86ZCVkPAAAAAAB0bIWF+38PgGAOAADAD4RpWtrdEFBFjU81jUGZcb7M\ni4Slzz/O0jtv5GhdadMIiqIuIZ00tU4nTKlTZlZyRj60lNth19EDCuV22vd63DSlTz+166WXnJo9\n2yGfr6l1z/jxEZ19dkSTJkUI6aBZBHMAHO7WbK1VRa0vpmvTdu3QKT8/XaGMLL391FuKpDXNlRx9\nZCelp7Rt15i33nLo0ktTdf75YT3wQKDF1wXDUa3auFueQDimfZ12mwpzUlWUm7pXeBgAAAAAAPzw\nEcwBAAD4Aav3BFVR61dVnV/haPxhmd1VDr33Zo4+eCtH9bUOGYalEaO8mnJWrUaM8nao0VDZ6S4N\n71cg237mZnk80pw5Dr30klOffPLtFNeePU0dd1xEkyZFdcwxEeXmtlXF6MgI5gA4nAVCES1eUxlz\nsHf8769X94XvadHNd2vbiWdIkjJTnRo5oFMiyzwoy5JOOy1NX35p18KFXvXv37rXRpGoqdWbalTn\nDbbofJthKC/LraLcNOVnpchmS9IsTwAAAAAA0KERzAEAAEiylRt3KxI1leKyy+2yK8XlUIrzm5/t\ncthjT7NETVOBUFTBUFT+r++DoYgCoaj8oYhCkZZ/4JRWsUMFq5aocNUS5a9ZIUkKZWQplJahj0LH\n6JldZ+qDipGKWnZluf06fUSJzjhmozoVS+H0TIUyMhXOyJLp6jjfAu9emKF+3Q4+ImPbNkPvv+/Q\nggV2LVzoUGNj0wdnhmFpxAhTxx8f0fHHRzVqVFTujvP00IYI5gA4nH21vV7bqz0xXdtp6ac6/rdX\nqHrQUfrwb89LXwdm+3XNVvdOGYks86A+/dSuadPSdMopYT33XMu75XyXaVoq3Vqj6vr9X5+V5lJR\nbqo65abK6bDv9zwAAAAAAHB4IJgDAACQROW7vVpXVnfAc5x2m9xOu1LcdqU4Hd8J8NjlctgVijQF\nbgLhqAKhqAKhSNOfQ9HYu+BYljJ2blXhyi/2hHHSK3buORxOTVO9PU8ves/SI9Y1WqNBkqQRWqZr\n9ZAu0AtKk7/ZpaNOl7ZNnqrlM27dM6qiPQ3qmatOuWktPj8SkZYvt2nBgqagzpIldkUiTR8ipqVZ\nGjcuuieoM3Cgqf005MEPDMEcAIercCSqz0sqFI3hLSIjEtbJV5+tzLJNev+hV1R3xGBJTZ1kxg0q\nksvZtqGV889P1bx5Ds2d69WoUbF3ErQsS+vL6lRe8+1orxSXXUW5aSrKTVNaiuMAVwMAAAAAgMMN\nwRwAAIAkiURNLV5T0aquNUljmsra+pUKVy1R4aqmME5qTfWew8GsHFUPGamqYaO1vGiSXlw6Sgve\nz1HAb5fDYWrimEqddcwGDSvaJre3QU6vR85v7j1N9y5vg5yeRmWUlylj5zY1duupz2+9d8+HcO3F\nbhg6qn+hMlKdMV3v8TR9w37BAoc++siudeu+/RCxsNDUccdFNXVqRKedFiGk8wNGMAfA4WpzeYO2\nVsT2/39HvPasRvzjz9p4+nQt/dWdex7Pz0rR0D75CaqwZVavtmny5HRNmBDRf/7TfLi4tTaXNygU\njqooL005GbTUAwAAAAAAzSOYAwAAkCRf7ajX9qrYxj7EzbKUs3GNClcsVuGqJSpY/aXcDd927vHn\nFahq6GhVDx2lqmGj1VDcV+vXpumNf+fri08yZFmG8gvCOmlqnSafWqec3GiLtzbCIQ155n4d+cpT\nMh1Orfz5r7Xh7J+qPVMraW6Hju5fGNfYsG+UlxtasODboE5VVdOaEydG9Kc/BXXkkR0giIWEI5gD\n4HAUiZpaVFoRU4c+d+1unfqzU2TZ7XrrqbcUys7dc6y13ewS4eqrU/Taa069+KJPkye3/HUNAAAA\nAABAvAjmAAAAJIEvENaSdVUy2/jlVFr5dvX84A31/OANZe7Yuudxb1FXVQ0draqvgzjersWSYciM\nSks+z9DsV/K0rrTpA7J+AwI698J6DRtTK3scEyaKlnyiMXffrJS63Sofc5wW3/gnhXLy4n2KMSvI\nTtGQ3on9dr5lNX0D/557XHr7baccDktXXhnWb34TVEZGQrdCOyOYA+BwVFbp0cad9TFdO+re29T7\nnde09NrbtfHMi/Y87rDZNGFIZ9lsbRfY3bLF0Lhx6Ro40NS8eT463AEAAAAAgDZFMAcAACAJVm6s\nVk1jsE32cnoa1P2jt9Xz/TdUuPpLSVLEnaKd4yerfMzxqh46Ur6ibk3n2m1KcTlkmA598E6mXno+\nU9u2OiRJP/pRWNdeG9b48VEZhrS+rE47d3vjqs1dW60xd/9Wnb/8RP68Qi26+W5VHTUuvicch96d\ns9Sz8/5fAMfj3XftuvXWFG3bZlPnzqbuuiuoadMYb/VDQTAHwOHGtCwtKqlQMNL67jK5a1fqR9dP\nV13v/nr/kVdl2R17jnXJS9OA4twDXJ14N93k1jPPuPSPf/j14x9H2nRvAAAAAAAAgjkAAAAJVl3n\n1+otNUndw4iE1fmLher5wRvq+tk82cMhWYahqmFjtO2ks1R30mnK6JSvVLdDKS67Ulx2uV121dbY\n9fTTTj31lFO7d9vkclk699ywrr46rAED9h5TYVqWVm+qUU1jIL5iTVP9//20hj79dxlmVGunX6mS\nn14ry+GMb90YGJKG9slXXlZKUtb3+6WHHnLpgQdcCgYNHXNM03ir7//d4tBDMAfA4aZ8t1fryuoO\nfuL3maYm/9cFyl+7Uh/+9VlVDxuz1+ER/QqUk+FOUJUHV1lpaNSodHXqZOnzz71yOA5+DQAAAAAA\nQCIdKJjDWxUAAACtZJqWvopx5MNBWZZy169Wz/ffUI/5c5VS3xT+aSjuq4pTz5b37HOVdkQfdU93\nqqfNttelmzYZevRRl156yalAwFBOjqX/+q+grrgirKKi5rPYNsPQoF65Wr6hWp5AOPa6bTatP+8K\nVQ0brXF/ulEDX3xMnVYs0ue33Ctf526xrxsDS9KarbUaOaBQKa7Ev9xNTZV+85uQzj03rNtvT9G7\n7zp0wgl2XXVVWDfeyHgrAMChwbIslVV6Yrq25/uvK3/tSm07/tR9QjkpTnubhnIk6Yknml77/PKX\nQUI5AAAAAACgw6FjDgAAQCtt3dWozbsaErpmauVO9fxgtnq+/4ayyjZJkkK5+ao9dZpC0y+Qa8wo\n2ey2Zq9dvNimRx5x6a23HLIsQ8XFpq6+OqTzzw+3OCQSDEW1dEOVguHWj7L4PofXo5EP3KniD99U\nKD1TX97we20/7pS4122tzFSXjjqiQDZbcudMvfOOXbfd9u14q9//PqizzmK81aGIjjkADieVdX6V\nxtD9z+Ft1KmXnyaHz6O3n5wrf6cuex3vWZSp3l2yElXmQTU2SkcdlSGXy9KXX3qVmtpmWwMAAAAA\nAOxBxxwAAIAECYQi2laRuA/u03ds1cj771TR8s8lSabLLc/pZyl8wUWKnHCibE6nmhvIVF1taM4c\nh156yakvv7RLkkaMiOqXvwzp9NMjrf62uNtl19A++Vq2oUpRM77cdiQ9Q4t+e492jZyoox/8X43/\nww3adOqnWj7jFkVT2u7TskZ/SBu212lAcW5S95kyJarjjvPqwQddevBBl666KlUzZzaNt+rfn/FW\nAICOqSzG1zODnn9UKbXVWn3p9fuEciSpKDct3tJa5bnnnGpoMHTrrSFCOQAAAAAAoEOiYw4AAEAr\nlGypUVWdPyFrpe3aoRN+fYnSqsoVGj9RwfMuUPCMs2RlZTd7fm2tNHeuU//5j0MLF9oVjTa1ZDn5\n5IiuuSak8eOjcXdpqWkIaPXmGpkJeomYUbZZ4/7v18rduEYNxX312W33qaF3/4Ss3VIDeuSoS356\nm+y1ebOh229P0XvvOeRwWPrFL8L69a8Zb3WooGMOgMNFTUNAKzftbvV1Gds3a8qVZ8pX2FnvPDFH\npmvvkVVZaS4d3b8wUWUeVDAojRqVLq/X0LJlHmU3/xIKAAAAAAAg6Q7UMaf5eQgAAADYR21jMGGh\nnNSqXTr+psuUVlUuz+13qf71txS46Kf7hHIaG6WXX3boootSNWRIhm64IUULFjg0fLipu+4KaNky\nj2bN8mvChPhDOZKUl5Wift0S96mWp0dvzbv/BW2Ydomytm3Uj649V33f+JfUhtnwDdvr1eALtcle\nvXtbev55v2bO9KlrV0sPP+zSxInpmj2bRpUAgI5jW6Unpuv6v/asbNGIVv381/uEciSpKLdtW9a8\n8opTFRU2XXppmFAOAAAAAADosOiYAwAA0AKmZWnpuip5AuG413LXVOmEG3+qzO1b5L3xt/LddOte\nx71e6b33HPrPfxz64AOHgsGmxM2QIVFNmxbRmWeG1atXcl/CbdxZr7IYP7Tbny6ffajR994qd0Od\ntk/8kZbc8L8KZ+UkdI/9SXHaNXJAoZwOe5vsJ0l+v/TAAy499JBLwaCh//mfgK69Nv7//SB56JgD\n4HDQ4A1p6YaqVl/n9DRo6gWTFMzO0dxn35Pse/+bajMMjR9c1Gb/1kaj0sSJ6dq+3dCSJV517tyh\n394CAAAAAAA/cAfqmMNXdwEAAFpgZ7U3IaEcV12Njr/5Z8rcvkW+626Q7ze3SJICAemDD5rCOO+9\n55DP1xTGGTAgqrPOimjatLD69Wu7D5z6ds1WIBRNWIcgSSoff4Le/cd/NPYvN6n7J+8rb32JFv32\nblUPHZWwPfYnEI6qdEuthvXNl5GI1kItkJoq3XxzSGefHdF556Xq979Pkddr6KabQgnpbgQAQCy2\nVcYWQOz53n/kCPpVesaMfUI5kpSX5W7TAOzcuQ5t2mTTxReHCOUAAAAAAIAOjY45AAAABxGORLWo\ntFIR05TUNIUpEjYUDBgKBGwKBmwKBg1FwobCYZvC4W9+3vve9ATV4/V/y15TJ89RE+QZP1mhkKHq\nakPvv++Qx9OU1ujTx9S0aWGddVZEAwea7fa8TdPSiq+qVZ/oMVDRqAa++JgGz3xIklRy8TVac8HV\nzX7Il0gOr0edc1PUb1DPpO7TnG3bDP3kJ2nautWmGTNCuvPOIOGcDoiOOQB+6HyBsBavrWz9haap\nU644TWmV5Zrzr/kKZefuc8rgXnkqzGmbUVaWJU2ZkqYVK2z69FOv+vbt0G9tAQAAAACAwwAdcwAA\nACSFw1JdnaH6+qb7b2719YZqaw01NBjyeiWfz5DP9829odr6qDyeXnsFcUwz1lTFr5vuln19+1qP\nHqYuu6ypu8qQIWaHCG3YbIaG9MnT0vXV8ociiVvYbteai2aocsRYjf3TjRry3EMqWva5Fv32HvkL\nOydun2+28/vU/7VnNeDlJxROz9LaF+eqx7B+Cd/nQIqLLb3xhk/nnJOqRx91yeeT/vKXoGy2Ni0D\nAHCY21YR25jKoqWfKnPHVm0++exmQzlOu0352SnxltdiH39s1/Lldp1xRphQDgAAAAAA6PDomAMA\nAA4ppik1NEi1tU2BmuYCNt8P3nxz83pbn3ax2y253KZSUky5Uyy5U8ymm7vp5+8+7nRZcjotOZxf\n3zssOZ2mXApo2KuPqWD7Wum4CYpeO0PuFJtcLksul5SWZql3b6tDhHGa4wtEtGxDlcLRxHfvcTbW\na9Tf7lD3he8pmJmtJb/+o3ZOODEhaxvRiHq9+/80+NkHlVpTpUhKmhwBn6qGjtL2515V9277frCY\nbFVVhs47L1UlJXade25Y998fkIOofIdBxxwAP2SBUESL11TKjOFtoIl3zFDXRfP13kP/Vl3/wfsc\n75qfrv49chJRZoucc06qPvrIoXff9WrEiPbrLggAAAAAAPCNA3XMIZgDAABiZllSMCgFAlIwaMjv\nlwIBY8+fIxHtuYXDUjhsKBpt+rnpMUPhsL7zWNOfAwF9L2jzbbimoUGyrJYnWDIzLeXkfHvLzraU\nm9t0n5OjvR7PzraUnt4UlGm6SSVbqtTgj32Ukz3g1zF3XK1OKxbLP+0n8jz6RNJHNiVDvSeoFRt3\nx/Rh3kFZlvq8+bJG/ONPsoeC2nDWRVp55W9kutwxr9dl0XwNffJeZW/dqIg7VevPuUzrzrlco++9\nVd0Xvqd1P7lM4f/7s4py0xL7XFqgrk664II0ffll0zf9H300IJerzctAMwjmAPgh+2p7vbZXt75j\nTnp5mU69bIpqjhymefe/2Ow5Rx1RqOz0tvnHbMUKm046KV3HHhvRq6/622RPAAAAAACAg2GUFQAA\nkNQUgGlslOrrm8Y2fXOrr9d3fjb2nOP1NoVsAgFDwaDk9+/950CgdSGZWKWlNYVmunY1NWjQN+Ea\nfR2uaf6Wnd10PJ5uJP+fvfuOj6LO/zj+mu0lvUDovQmCiHqWU89ez3p2zysqigXrz/M8e7tTz9M7\n7HqevXdsZ8EueiBIkSaEXtLbZvvO/P5YAoQkkGyyIcD7+XjMY2dnvvOdb5LdTbLz3s93XWWwXaEc\nWzTKvrdcmgzlHP1rAg8+tl2GcgCyM9wM65vD/OVVHd+5YVB87GmUjxzL3ndexZC3n6dwznS+u+5e\n6voOalNXuQvnMPrxe+g2exqWzUbxUafw0zmXEM7vBsC0q+4ka/kShr3+FN8PH03lH84mL6vzpt4A\nyMmBV18NctZZXiZPdhIKGfz73yG83k4dhoiI7ERi8QRrK+pTOnbQ5JcwLIvFx53V7H6vy9FpoRyA\nSZOS55o4MfW/0UREREREREREOpMq5oiIiGxHwmEaBWc2DdPU1m4ermkauAkEUgvReDwWHk9rbpPr\nbnfy1uEAhwOcTtZP69T4/sZ11k/9lFz3eJLVbBqCN+4UC6e0RzxhMm1+KZF4IqXjjViUfW+7nJ7f\nfUbokMMJPP0CO0JZlOXr6li6rjZt/dvDIcY8eheD3nuZuNvLzIuuY9mRJ7O1eb78a1cy6sn76PvF\nBwCs2fsgZp97JXX9Bjdpm7liCYdceiqGBZ9NepmBh+5DVideUGwQDMIf/uDls88c7L9/nKefDpGR\n0enDkE2oYo6I7KiWratl2bq2v77ZwyGOPesgTLuD956bgtnM3zL9izLpX5TVEcPcquJig3328TN6\ntMlHHwW77DSgIiIiIiIiIrLzUcUcERGRNorHIRCAurpkmKWuDgIBg3DYIBpNTt8UjW5cj8WM9duS\nUzhFo6xfNrZJJJLTOCUSYJpsWE8kjM3ub7o/eUwwmBxLJNK2qw+GYZGVlQy49Otnkp1tkZW1cVtm\nprV+G+u3W43aZGQkQzE740WP5SV1qYdyEnF+8bdrkqGcXx5I4D/P7RChHIB+RZmEo3HWVgbT0n/C\n42XGZTdTMnYf9rj/Rva87wa6z/iWHy6/hbi/6R+1rtoqRjz/CIMnv4gtHqNy2K7MOv9qykfv1eI5\n6voOYtpVd7Lv7Zez9y2X8kW31xg1dgB+jzMtX1NLfD545pkQ48d7+OADJ6ed5uOFF4JkZ3fqMERE\nZAeXME1Wl6VWLafPZ+/hqqth3pkXNhvKATp1WsgHH3RhWQaXXhrdKf8+FREREREREZHtkyrmiIjI\nDsOyIBRqCNOwPlDTsGwM2TQEbhq2N7TbNIATDHbOO/2GYWG3s2Gx2RrWrU3Wwetlk8CMtT5U03Tb\n5gEbvz/Zp7RNMBxj+sIyzFT+TEok2OueP9NvymRCe+1D4JU3kwmMHYhpWcwtrqCyLpLW8/hKVvOL\nv/4fBfNmEijqzfd//juVI8YAYIuEGfLWswx/6XFc9XUEevRhzh+vYNUBR7Y6STb6sXsY9tqTrN73\nEH64/SHGDi3E4+r83HosBpde6uGNN5yMHp3g5ZdD5Od36T/Rd1iqmCMiO6JVpQEWr6lp+4GWxaEX\nnUz20kW8/+wnhAqLmjTJ9rsYO6SwA0a5dSUlBuPG+enVy+Lbb+u319lBRURERERERGQHpYo5IiKS\nMstKTp9UX29QX9/4Nhg0iMeTF5VjMYjHjfW3rN++cX/D/URi433LaryYptFkW3OLaSbP3zSAk6ww\nkwqfz8LvT4ZdevQwycy0yMiwyMiAzExr/f3kFEsuF7jd4HIlq8k4neB2J7c3bGtYT94m9zscNArb\n2O07ZyWa7cHi1bWphXJMk3H/vCkZyhm7B/UvvbbDhXIAbIbByAF5rCkPsqo0kHJloa0Jdu/F5/c+\nwy7PPsiIFx/loCvPZu7vJhLOK2TUU//EV76OSFYOMyf8meJjTm/xk/wtmXPuFeT+PJde335KxXOP\nMvt3Exg7pACno3Ov9Dmd8OCDYXw+i+eec3HiiV5efTVE9+4K54iISPuYlsXKskBKx+bPm0nukvms\n3P+IZkM50LnVch591Ek0anDJJRGFckRERERERERku6KKOSIiO5CGKY8ah2iaBmpaWt94bONjTLNr\npkfs9mSQprkQTUOQJiOj4f7GfX5/03YORVVlvfKaEHOXVrb9QMti7AO3MXjyi4RGjqb+rXexsnM6\nfoBdjGlarK2oZ2VpgHAsPQEdgO6zvucXd/8Jd1kJAAmXm0UnnsPC084jlpGVcr/uqgoOvfhkvJVl\nfHnn44T2+xVjBufjsHd+qSnLghtucPPYYy4GDDB5/fUgvXt36T/VdziqmCMiO5q1FfUsXFmd0rG/\nuPMq+n7+Pp/9/elmp4i0GQb7jirqlN+ZtbWw224Z+P0W06fX43an/ZQiIiIiIiIiIm2y3VbM+e8r\nNVSW1OJxmckKBC4Lj9vC5TSTty4Lj8vC7TZxOlR1QETaLpGAYNhGKGwQWn8bDNsIhWwEQw3bbAQ3\n2d+wrX6T/Q3bI1GDhAlmInmbWH9rmslKMQnTwDTX3yZo1AZr/YuYYWEYydc0AzauN2zfZBvr1zd+\nHe1/U9zvS+D3mfi9JoU9zQ3rfl9y8Xk33vd6LFxOC4fDwrl+cTjA6bCw29dvc9Jov92e3O+wWxi2\nhq8zOW3Txq81ua3R/U2+DzYb+L3J87f7tb9+/SJCMmSyekkF3mi8zccOfePpZChn6C7Uv/72ThHK\nAbDZDHoVZtCjwE9JZZDlJXWEox0X0PE47fQs8NNj1PHUHXsg1g3XErE5+eq4PxLq1qPd/Udy85l6\nw/0cdNU57P3Xq/n4wdeY5zAYNTAfWyf/cWkYcNttEXw+i/vvd3PccT5eey3IwIEK54iISNtZlsXK\n0tSq5XgqSun91UfU9B9C+a57NtsmP9vTaUHWZ55xEggYXH55VKEcEREREREREdnudOmKOW29FuIh\nhIcwbiJ4COMjSAYB/NS3eskggI8gBhYmtg2LhdHofirbW9PWTgInMVxEcRJrtN7ctk3XPYTxEsJL\nCBdRumpOycQggZ04DiwM7CQ2LF11zKlIYCOGkyguorjW/7ScwPrAwWaLDbPZ7ZvudxDHSQwH8Q79\nXsWxE8bTZIngbnZ7W9oksG/4KoAtfIWNl4bvU8Njw4bZ6LGy+f3Nt8VwEsTX4lKPnyA+onTcu7oG\nJm4iTcbV3NLS+Nvy/dn0vg2TDALtXryEsNFlfy2IdHmhgUOon/whVmHhth7KNmNaFqVVIVaU1BGM\ntD3g1CDH76ZXoZ+CbA9GM38UzimuoKI23J6hNjJw8ouMm3QrlUNH8dk/nqOgWw679M/rsP7b6v77\nXdx5p5vu3U1eey3EsGHmNhvLzkQVc0RkR1JWHeKnZSlUAQR2efZBRj77AD9MvIniY09vts2oAXkU\nZHvbM8RWicVgzz39VFcbzJoVIDs77acUEREREREREWmz7bZizmP7P0tptY1owknYdBJOOImYTiLr\nb8MJJ1HTQTjhIrLh1knEdBBK+CmL57Es4SaU2Pk+TmVg4rVH8dqjeOyxDetee6TZ7TbDJG7aiVt2\nEpaNuGVbf99GwrJvWI9vtp6wbMn264/d2nEJKxlAaokNE7th4rAlkrdG8nbzxWFL4DBM3LYYLlsc\ntz22YX3j/Xhymz2Gy0g0amM3TOKWnZhpJ2o6Nixxq/H9mOlo1CbWcLu+XWxDWzvxTY6Lmo4tfp0d\nwW4kcBoJnLY4TltyPfl9SSTv2+KNtsVMx/rnkavRcydsOklY9rSOtStwGnF8jgheewSfPUquoxav\nvRzf+vs+RyS57kg+R3zrnyvJ7cnnjn99m823N6y7bbHtpHKXE8hdvzQW7fSxiHRtFslPm1tWMnBi\nWcmqOhu2YWGZyX1kZ+P4y3U7dSgHktNaFOX56J7rpaw6xIqSAIFwrFXH2g2DbrleehVmkOF1brHt\nwJ5ZVNaGOyxKWHzs6eQvmE3/j99i7IN38MMVt+JaVcPg3tvm6t/ll0fx+Syuv97DCSd4eeWVELvu\nqnCOiIi03oqS1KrlGLEoA997iZgvg+WH/LrZNk67jbwsT3uG12rvvONgzRob558fVShHRERERERE\nRLZLXTqYc/6Xv+2AT6xGSSSihEJQX28QDEIwmLxN3m+6LRRKHmmzsWFqlU1vG2+3muxrbbvN+zYM\nMM3kp8GSi7HJOsTjBtEoxOMQjRrE4xv3RaPJfeEwhEIG4TCEw07CYSehkEFNCErCBuFgst/2sNmS\nU9U4HMmxOxzgcCenp3E4wG4HnyM5dU3Dto1tTRwOc8N2SE7BY5rJ23g8Oa2PaTrWr2+6JKcCiicg\nHN/4fYiGIRLpnDSEYVi43cmxu1zJKXpcLvDYzJpQAAAgAElEQVRudt/hMHG5zE3uW7hcye8NgGUl\nl03Xkxd7G9/ftJ1pbvyZJxLJn2M8bicWs6/fntwfj0MoxsZt6x8zLhd4PBYuP7jdkO1Jfi1ut4Xb\nHcfjaVjf9DZ5TMO2ZJvk17pp+8br1vo2yW12e+NpiJLfx60vDd+bTR8fDeumufHx0LCv8a2Bw2Hh\n84HPlxyrc8P1Xef6xd+hj43Y+kVEdk4NUUzFJjYyDINuuT665foorw6xvKSOulDzr5Qel51eBRkU\n5flwOloXbPV7nBTl+VhbGeyoAfPDxJvILl7IwA9epWL4aJYd9RucDhv9ilpOuafT+PExfD646io3\nJ5/s45VXguy2mx5lIiKydVV1EepCqcXue33zCd7Kchad+FsS3ub/b+qe6+uUKR8tCx5+2IXNZnH+\n+foYgYiIiIiIiIhsn7p0MKej2O2QkQEZGQ2fqd65p2lJJCAUgnC4IcADlmVgt1sbgjUbb5tus3XO\nFPJtYlkNAaWGxSAS2RhYikaT4Z2G9UQiGdRoWBpCNZuvb37fvuMXlulSDGNjgKupLT2Pd+7nuIhI\nV1OQ46Ugx0tlbZjl6+qoCSYvrOVmJKerys9qfrqqrenfI4vSqhCJDpqZ1XR7mHrjPzn0klPY/YHb\nqBk0nKWMwumw0bOgYwOdrXX22TFcLouJEz2cfLKPl14KsueeCueIiMiWrShJ/UNOg995AYAlvz6j\nxTbd8tI/hRXA1Kl2Zs+2c+yxMfr31/95IiIiIiIiIrJ92imCOdJY06ASbO9BBsNIVmhxuRq2KIQl\nIiLS1eRlecjL8lBVF8HttOHzbHm6qq1xO+307pbB8nZcfNxcfY8+fP+nu/nlDReyz60T+eTB1/kZ\ncDpsFOZ0zkXIzZ16ahyXK8yECR5OPdXHCy+E2GefxDYZi4iIdH11wShVgUhKx2YvmU/h3B9Yt8cv\nCfQe0Gwbn9tBls/V7L6O9vDDyfNMmKBqOSIiIiIiIiKy/eqCtU9EREREZEeWm+ludyinQZ9uGbha\nOf1Va63b6wB++u3F+EvX8ou/Xo2VSDB/eRWl1aEOPU9rhCJxFq6oYuQe5dxxdyWRCJx2mpd33o9T\nWRumtj5KMBwnGktgmgoki4gIrCgJpHxsQ7Wcxced2WKbojxfyv23xZIlBv/9r4M99kioWpyIiIiI\niIiIbNdUMUdEREREtlsOu41+RVn8vKq6Q/udf+YE8hbOoef3XzDymUn89IfLmbeskrrCDAb2zEpp\n6q22qqwNM395FbFE8mLkwF3ruerGIPfe1osJ47P5v5tWs9ue9Y2OsRkGDruBw27DYbfRLcdL724Z\naR+riIh0DcFwnPKa1IKkztpq+k55l0BRb9bueUCzbeyG0WnTOz7yiKrliIiIiIiIiMiOQRVzRERE\nRGS71iPfh8/dwXlzm43/XXMXgR592OXFR+n57acArCwLMHtJBbF4eqeSWlFSx5ziig2hnAbj9q7n\nT7esAuDum3sxfWrj0I1pWUTjJsFInNpglOK1tdQGdUFTRGRnsbK0LuUJnQd89CaOSJglvz4jOQd2\nM4ryfTjs6X8rqaLC4OWXnfTta3L00fG0n09EREREREREJJ0UzBERERGR7ZrNMBjYI6vD+41lZvPt\njf8i7vaw193XkrFqKQBVgQg/LCyjLg2Bl3jC5KellRSvrW3xwuqYPYL8+bZV2G1w7629+O6rzBb7\nMy2LBcurNM2ViMhOIBJNUFKV4rSLpsmgyS+ScLlZesRJzTYxgN6FnVOF7emnnYTDBuPHR1vKCImI\niIiIiIiIbDcUzBERERGR7V5Bjpdsv6vD+60ZNJwfLrsFZzDAvrdMxB4KAhCOJZj5cznrKoMddq5g\nOMaMRWWUtWIKklFjg1x350qcLpP77+jJ11NaDiYFI3GK19Z22DhFRKRrWlUWwLRSC2IWTf+KjLUr\nWX7wscSycpptk5/twdvRFeqaEQ7Dv//tJCvL4swzY2k/n4iIiIiIiIhIuimYIyIiIiI7hIE9s9PS\n74pDj+Pn488ie/li9rjvBlh/0dO0LBasqGLRyuqUL4Q2KK8OMWNROcFI66frGLFriOv/thKP12TS\nXT34/KOWwzmrygJU1UXaNUYREem6YnGTNRX1KR8/+O3nAVhy3JkttunTSdVy3nzTQVmZjXPOiZLR\nOacUEREREREREUkrBXNEREREZIeQ7XdRmO1NS9+zxl9D+S5j6fv5+wx+69lG+9ZU1DPr53IisUSb\n+7Usi6Vra5m7rJK4abb5+KEjwtx41wp8GSYP39uDT95vOZy0cGUV8UTbzyEiIl3fmvJ6EilOW+hf\nvZwe076ifOTuVA/epdk2mV4X2Rnu9gyxVSwLHnnEhcNhcd55qpYjIiIiIiIiIjsGBXNEREREZIcx\noEcWNsPo8H4tp4upN9xPOLeAMY/dQ8Gc6Y321wSjzFhYRk2g9VVpYnGTOcWVLC+pa9fYBg6NcNPd\nK8jISvDY/T348O3mpyAJRxMsWV3TrnOJiEjXkzBNVpUFUj5+8OQXAVi8hWo5vbv5U+6/LT77zM78\n+XaOPz5Oz57tq0YnIiIiIiIiItJVtCqYM2vWLH772982uy8UCnH66aezZMmSVh1z55138uKLL6Yw\nVBERERGRLfN5HPTI96Wl73B+N6b+5V6wLPa+4wo8FaWN9kfiCWYtqWjVxdFAKMaMRWVU1oU7ZGz9\nB0W4+Z4VZOfGefLBIia/loctGiFv3swNU28BrK0MUlHTMecUEZGuYW1FkFiKFdHsoSD9//sGobwC\nVv3ysGbbuJ12CnPSU5Fuc4884gJgwoRop5xPRERERERERKQzbDWY8/jjj3P99dcTiTT99O+cOXM4\n66yzWLly5VaPqays5LzzzmPKlCkdMGwRERERkeb1L8rEYUtPYcjy0Xsx+/yr8VaWs8/tV2DEGl84\nNC2LxatrmL+8ikQLU1OVVAWZuaiMUDTeoWPr0z/KLX9fQW5+jGcf68a0i6ZzyOVnMvzFRxu1W7iy\nili87dNutVY8DhUVxqZ5IBERSRPTslhVmnq1nL5T3sVVX0fx0adhOV3NtulV4E9LNbrNzZtn4/PP\nHey3X5zRozX1ooiIiIiIiIjsOBxba9C3b18mTZrENddc02RfNBrlwQcfbLKvuWPq6+u59NJL+fLL\nL9s0wMLCzDa1FxEREREZnYCfV1anpe9151zA2sU/0ePTd9njqftYcMVNTdoEYyZLSuoZO7QQn8cJ\ngGlaLFxexaqKED6/Oy1jGzYC/v5wCX8Zn81dK87FpIJfPzUZm3c64SMPJCPLxO22KK2LstvQbimd\no74eVqxILsuXJ5dN11evhkQCuneHfffduOy+O3g8HfwFp4H+/xCR7cnqsgBOtxOn29n2gy2LYe++\ngGl3UHrKb8nMaPoi7bAbjB5ehNOR/pnQn346eXvttQ69FouIiIiIiIjIDmWrwZwjjjiCVatWNbtv\n3LhxrT6mT58+9OnTp83BnLKyuja1FxERERHxOw2ikRiRWHoqw0ydeDOHLJ5P/1efYt2gkaw8+Ngm\nbeoCYcrKA4zol0uG18m8ZVVU1zetQtnRcp11fM7xHMWr3MM13MM18DDJBXA6TfyZJnm5cfLzDHJy\nLLKzrQ23ubnJW48H1q41WL3axsqVBqtW2Vi92qCiovmLs4ZhUVRksfvuyb7mzLHx5ps23nwzud/l\nshg92mSPPRLsuWeCvfZK0L171yqrU1iYqf8/RGS7MmtBKfXhWErHFsyeRuaShaw48CjKvdkQaDrV\nYe+CDKqr6ts7zK0qKTF4/nk/gweb7LlnkLKytJ9SRERERERERKRDbemDRlsN5oiIiIiIbG/sNhv9\nizJZmKaqOQmvn29vnMShl57CHvfdQG3/IdQMHNakXSxhMqe4AofdRizROdNy7PrkfQyunsGTpzzB\nU/mXkVi4jozPp1JpL2DJ8AOpiWVQH7BTXm5j+TIbiUTrpifxeCx69bIYNSpOnz4mvXpZ9O5t0rt3\n8rZnTwvnJgUbLAtWrzaYNs2+YZk508b06XYeeSTZpm/fxkGdESNMHPoPRUSkVcqrQymHcgAGv/MC\nAIuPP6vZ/QbQq9Cfcv9t8eSTTqJRgwsuiJGm2ShFRERERERERLYZve0tIiIiIjukojwfq8vqCbTj\nouWWBPoM4H//9zf2u+VS9r11Ip888CqxjKwm7SzotFBO3ryZDHr3JWr7DqLid6dzjKsKcNNvXBV7\n/X0CgYo+TLn/RSK5+QDkZrgZ2L2A6mqD6mqDmpqNt6EQdO9ubQjhFBRYGK3L8ABgGKwP7cQ58cQ4\nkJwGa9Yse6OwzhtvOHnjjWSix+ezGDcuwY03RhgzpnO+ZyIi26tVZalXsvGUl9Dr64+pHjicipG7\nN9smP9uD153+t42CQXjqKRd5eSannJKe39kiIiIiIiIiIttSm99hmTx5MsFgkNNOOy0d4xERERER\n6RCGYTCwZxaziyvSdo41+x3K/NPHM+Klx9jr7mv55uYH2FYf9TdiUfa4/yYMy2L65bdgulwb9i0/\n/ET861Yx8rmH2O/mi/n87qcw3R6qAhFqc+rp08dPnz7pn1bK74d9902w777JKcYsC5YsSVbVmT49\nGdT56isHJ59s59VXg4wdq3COiEhzQpF4u6ZHHPTey9jMBIuPP5OWUpd9CjNS7r8tXn7ZSVWVwZVX\nRvH5OuWUIiIiIiIiIiKdyrAsK/3vwLdDWVndth6CiIiIiGzHZi0upyqQ+sXLrUokOOC68+k+cypz\nfzeR+WdNSN+5tmD4i4+y63/uZ8kxpzHjspubNrAs9rznWvp/8g6rfnk4U6+/D2w27IbBHsO7dUpV\nhNZ44w0HF13kISODTg/nFBZm6v8PEdkuLF1by/KS1F6vbNEox5x9MLZ4jHdf+JyEx9ukTabXxbhh\nhe0c5daZJuy7r59VqwxmzKinW7cu/RaViIiIiIiIiEiLCgszW9ynmbtFREREZIc2sGfT6aU6lN3O\nd9fdS323Hox8ZhLdp3+d3vM1I2P1MnZ57iFCeQXMOffK5hsZBj9cfhulo/ek99cfMfqJewFIWBYL\nllfRVfL6J50U56GHwgQCcMopPmbO1L8sIiKbsiyLdZXBlI/v9c3HeKorWHrkyc2GcgB6d/On3H9b\nfPSRneJiG7/5TUyhHBERERERERHZYeldbhERERHZoWX6XHTPaf7CY0eJZucy9YZ/Yjoc/OKvV+Nb\ntzqt52vEshh3/83YY1FmXnQ9sYyWg0imy8W3N02its9Ahr32JIPeeQGAmmCUlaWBzhrxVimcIyLS\nsqq6CJFYIuXj+//3DQCKjz6l2f1up53CNP/ebPDww8lpFy+8MNYp5xMRERERERER2Rb0DreIiIiI\n7PAG9MzCZhhpPUfVsF2ZeckNuOtq2PfWidgi4bSer0G/j9+i26zvWbP3Qaze//Ctto9lZvPV7Y8S\nzsln7EN3UPT95wAsW1dHINR1LowqnCMi0ry17aiW4y1dS/eZUykfuTuB3gOabdOrwJ/235kAP/5o\nY+pUBwcdFGf48M6btlBEREREREREpLM5tvUARERERETSzeNy0KvAz8qy9FaFWXrUKeTNn8XAD19n\n9wduY/qVt0MaL266qyoY8+hdxLw+ZlxyQ6vPFezRm69vfYhf/d/v2OeOq/jsH89SPXgXFiyvYvdh\nhZ1yQbY1TjopDoS56CIPp5zi49VXg4wdq4u30rnef9/BAw+4sCzweCy83sa3Pl/j+x4P+HzJW6/X\nIiMDdtstgb9zZgaSHVwsnqCiJvXgZ79P38GwLJYddnyz++02g54FnfNgfeSRZLWcCROinXI+ERER\nEREREZFtRcEcEREREdkp9CvKJBxLUFkbJmFaaTvPzEtuIGfJAgb89w0qho9h6TGnpu1cYx69C3dd\nDTMnXEeoW482HVs1fDTf/+lu9r3tMn55/YV8+q+XCXTrwfJ1dQzo0fJ0WJ1N4RzZViIRuPVWN48/\n7sJms3A4IBpNLbTm8Vj86ldxjj46zuGHx8nL6+DByk6jpCqEaaX4O8yy6P/xWyRcblYeeFSzTXrk\n+XHY01+hbNUqg7ffdjBiRIIDD0x9Wi4RERERERERke2BgjkiIiIislNw2G2M7J+HaVlU10WoqA1T\nURMmHOvYC4Kmy83UG//JoRf/hrEP3U71oOFUDR/doecA6D79a/pNmUzlsF1ZfNyZKfWx5peHMWv8\nNez26F3sf/0FTLnveVaUQH6Whyy/q4NHnDqFc6SzFRcbjB/vZfZsO0OHJnj88TAjRpgkEhAKQThs\nbLgNhyEYTN42t62szMYnn9j58EMnH37oxG632HffBEcfHeeoo+L07Jm+oKDseNZVpD6NVd78H8lc\ntYzlBx1L3J/ZZL8B9CrsnGo5TzzhIpEwmDAhms7CciIiIiIiIiIiXYJhWal+1KpzlJXVbeshiIiI\niMgOLBCKUVETprwmTF2o46bT6PbDNxxw3fmE8rvzyYOvEcnN77C+7aEgR4w/Dm/ZOj558DVqBg1P\nvTPLYreH7mDI28+zbvd9+fr2R/D6vYwbVojdlv6qCW3xxhsOLrrIQ0YGaQnnFBZm6v8P4e23HVxx\nhYdAwOCMM2LceWe4Q6ahWrLE4L33nHzwgYMffrBv2D52bDKkc/TRcYYMUeBMWlYXjPLDorKUj9/9\n/psY9P4rfHnnE5TssV+T/QXZHkYN6LjfVS2pq4PddsvA67X44Yd63O60n1JEREREREREJO0KC5t+\nEKpB13qnXURERESkk2V4nfQrymTcsEL2GVnE0N455Gd5sLXzI/yl4/Zj7u8vw1e+jn1uuwx3ZeoX\nUze3y3MP4i9ZzaJT/tC+UA6AYfDjhX9mzd4HUTTjW3b/1y0EwzGWret6AZWTTorz0ENhAgE45RQf\nM2fq3xnpOKEQXH21m/PP92Ka8MADIf75z44J5QAMGmQxcWKUDz4IMmtWgL/9LcwBB8SZM8fGHXe4\n2W8/P/vt5+OOO1zMnGmja3+ERraFdZWpV8uxRcL0+eIDggXdKRm7d7Nt+hRmpNx/W7zwgpO6OoNz\nz40plCMiIiIiIiIiOwVVzBERERERaUbCNKmqXT/lVW2YaDyFShamyT63X0Hvrz8i5stg7u8vY8mv\nT8eypz6jbM7ieRxyyakEu/fko0ffJuHxptzXpuyheg666hxyF89jzh+uYNGZF/CLEd1xu+xbP7iT\npatyjirm7LwWLzY47zwv8+bZ2WWX5NRVnVW9proaPvrIwXvvOfj8cwehUDIU2LOnydFHxznvvCgD\nB3bpf9ulE5imxdSf1hFLpPa47PPZe+z916uZf/p45v7xiib7M70uxg0rbO8wtyoeh1/8wk95ucHM\nmQHy8tJ+ShERERERERGRTqGKOSIiIiIibWS32SjI8TKsby77jCyif1HLf1S3yGZj6l/+wQ8Tb8Ky\n2Rj70B0ccump5M3/MbVBJRKMu+9GbGaCHybe1GGhHICE18/Xtz1MsLAHu/7nPnpNeZdl62o7rP+O\npMo50pFeecXBoYf6mTfPzjnnJCvadOaUUjk5cOqpcZ5+Osz8+QH+858Qp5wSo77e4IknXOy/v59b\nb3URCHTakKQLKq8JpRzKAej/8VsALDvshGb39+7WQaWhtuK99xysXGnj9NNjCuWIiIiIiIiIyE5D\n72CLiIiIiGyFYRj0L8piYI+sth9st1N87Ol8+O/3WXbYCeQuns8hl53BuPtuxFVb1aauhrz9HHk/\n/8SyQ4+jdNx+bR/LVoTzu/HV7Y8Q82Ww59//TOR/0wmG4x1+no6gcI60V309TJzo4ZJLvNhs8Nhj\nIf7+9wjejsu7tZnPB8ccE+fBB8PMmxfg8cdDFBVZPPCAm7339vPyyw7MzssMSRfSnmmsPOUldJ/x\nLRUjxhDoM6Dpfqedwpz0P/AtCx5+2IVhWFxwQTTt5xMRERERERER6Sr07rWIiIiISCv17Z7J4J7Z\nKR0byc1n2v/9lc/ufZaa/kMY+MGrHPnHo+n/wWu05kq7r2Q1o576F5GsHGaN/1NKY2iN2gFD+e66\ne7HHYoz9580sXd228FBnUjhHUrVggY0jj/Tx0ktORo9O8Mkn9ZxwQtcKoTmdcPzxcb7+up5rrolQ\nV2dw6aVejjlGj/WdTTgap6oukvLx/T59B8M0WXbYic3u71ngx2YYKfffWt99Z2fGDDtHHBHX9Gwi\nIiIiIiIislPRu3kiIiIiIm3Qu1sGQ3rnpHx8+a578PFDrzNr/DXYo1H2vO8GDrryLLKXLGj5IMti\n7AO34QgHmTX+T0Rztj7/hwE47an9ub9urwNYcdAx5C2cQ+aLz1IX7LqVDTYP58yZo39xpGWWBc8/\n7+SII3wsXGjn/POjvPdesEuHBLxeuPrqKN98U8/xx8f44Qc7Rxzh57LLPJSWpj9MIdteSWWIlB+h\nlkX/j94i4XSx8ldHNdlttxn0LOicaazuvtsFwMSJXfd3ioiIiIiIiIhIOuhdaxERERGRNupV4GdY\nnxxSvSRuOZws+s0f+PDf77Fy/yMomPcjh118MmMevhNHfaBJ+95ffkjP77+gZLe9WX7Y8VvsO9Pr\nZHDPbPYeWcTgXqlV9wGYNf4aYj4/u/7nPlb9VJxyP52hIZxTVwfjx3sJpj7ji+zAAgG46CIPV1zh\nweWCp54KcccdEdzubT2y1und2+Lxx8O89VaQXXZJ8OKLTvbZx89DDzmJdqGcQ10wSn04tq2HsUNZ\nW1mf8rF5C2aTtbKY1fseQiyj6XSMPfL8OFIMcbbFV1/Z+eYbB4ceGmePPTQfm4iIiIiIiIjsXOw3\n33zzzdt6EFsS7MKfzhURERGRnVemz4XH5aCiJpxyH3F/BqsOPJKKEbuRP+9Hek77iv4fv0Uovxu1\n/YeAYeCsq2H/GyZgmAm+uv1RYllNq/W4nXZ6FvgZ2juH/kVZZPldOOw2fG4Ha8rrMa2211qI+/zE\n3V56f/MJZnk59YcdjdftSPlrTbcRI0xqaw0+/thBKGRw8MGJNvfh97v1/8cOKBCAyZMdTJjg5Ztv\nHIwbl+DVV4PbbTigTx+Ls8+O0a2bxbffOvjwQyfvvONgwACTAQM6v/KPaVpU1UVYWRpg0apqVpYF\nWFNez+qyeuqCMaLxBIYBLocNoxOmS9rRVNVFWF2eejBn+IuPkrdoLrPGX0N9r36N9hnAiH65OB3p\nDeZYFlx8sYfVq2088kiIoqKuW6FKRERERERERCRVfn/LnwA0LCuFd+k7UVlZ3bYegoiIiIhIi0qr\ngixYUZ1S+GVTtmiEYa88wYgXH8Mei1Ky297MvOQGhr7+FAM/eJU5f7iCBWeM39DebjMozPbSPc9H\nToarxQveS9bUsLK0aRWe1jAScQ655FRyl8zn+wdfYuApR6fUT2cJheDgg/0UFxu8/XaIvfduWzin\nsDBT/3/sIOrr4ZNPHLz1loNPP3UQDiefHxddFOUvf4ngdG7jAXaQykq46y43Tz/txDQNjjgizi23\nhNM+NVcsnqCiNkJ5TYiquggJc+vnc9hsZGe4yPa7yMlwk+FzYlNQZ6vmL6ukpDqU0rG2aIRfn34A\nCbeHd5+bAnZ7o/0F2R5GDcjviGFu0ZQpdk4/3ceRR8Z45pnUw6wiIiIiIiIiIl1ZYWFmi/sUzBER\nERERaaey6hDzl1e1O5wD4F+zgrEP3UGP/32J6XBii8eo6T+Ejx96HRxOcjPddM/1UZDjwW7bepWD\nUCTO9/NLUh5P3vwfOeSyM6jpP4Q1731GQWHTqVC6kunTbRx7rI8+fSw++6yejIzWH6tgzvYtFIJP\nP3Xw9tsOPv7YQTCYDH0MGZLg+OPjnHhinCFDts8qOVvz0082/vIXN99+68DlsrjwwiiXXx5t0+N/\na4LhGOU1YSpqw9TWR2nvq53dMMhaH9LJznCR5XNhsymos6l4wmTq3HUkUvzd0vuLD9jnjitZcOq5\nzDnv6ib7xw4uIDsjvXO5WRYcdZSPGTPsTJlSz6hRO+ZzUEREREREREREwRwRERERkTSrqAnz07LK\nDgnnYFn0/OYTxj78VzyVZXz/wIu499+Pbrle3E771o/fzOwlFVTWpV6lYNx9NzLwg1eZf9G15N/0\n5y4/Hc1tt7mYNMnNH/4Q5a67Iq0+TsGc7U8kAp99Zuett5z8978O6uuTj80BA0xOOCHG8cfHGTHC\npIs/ZDuEZcE77zi4+WY3q1fbKCoyuffeMIcd1vZp3ZL9WdTUR6lYH8YJRuIdPOLGbIZBls/F0D7Z\n+Dw7SEmjdlpTXs+iVdUpH//L6y+gx/++5MPHJ1PXb3CjfZleF+OGFbZ3iFv10Ud2zj7bx69/HePf\n/1a1HBERERERERHZcSmYIyIiIiLSCSprw/y0tDLl6gabcjvsdPdCD8J4B/VvV1/lNSHmLq1M+XhX\nbRVH/vFobLEoi9//ioKRQ9o1nnSLROCww3wsWGDntdeCHHDA1oMJpVVBBvTNo74dASbpHNEofPll\nMozzwQcO6uqSqZu+fU2OPz7GCSfEGTVq5wjjNCcYhAcecDFpkotoFK67LsrEidE2fT/KqkMsWllN\nLNH51U08Lju7DynElUIIcUczY1EZtcFoSsd6Kko59qyDqBwyiimTXm6yf3jfXIryfO0d4hZZFhx6\nqI+5c2188UWQ4cNVLUdEREREREREdlxbCuZsvfa9iIiIiIi0Sl6Wh1ED87GnmAiwGwbdc7yMHpjP\n3iO7M3BQUbtDOQD5WR487bjIHc3KZfZ5V+MMBcm++XpMs0tn+3G7YdKkMHa7xeWXe6jbSta/Phxj\nwYpqvv9pHYFQrHMGKa1mmrB4scFrrzm4/HI3o0ZlcOaZPl55xUl2tsVFF0X573/rmTatnhtuiLLr\nrjtvKAfA54Nrrony3ntBeva0uOMONxde6CEYbN3x0Vhim4VyAMLRBHOXVpIwd+4QR304lnIoB6Dv\np5MxTJNlh5/QZJ/dMCjI9rRneK3y/jMWm98AACAASURBVPsO5syxc+KJcYVyRERERERERGSnpoo5\nIiIiIiIdrCYQYXZxBYlWBFgMICfDTfc8HwXZHhz29GTnl6+rY+m62tQ7ME0OuvJsCubNZPGjL5B9\n4rEdN7g0uesuF/fe6+ass6Lcd1/zU1qZpsWMRWUEwjEyMzyEglFGDcwjJ8PdyaMVSIZwli0z+PFH\nO7Nm2Zk1y8bs2XYCgY1Jm6Iik+OPj3PccTHGjTOx6eMmLSotNfjDH7xMm2Zn9OgETz8dolevLb8u\n/bSskrLqUCeNsGWF2V526Z/b5afOS5clq2tYWRZI7WDL4vDxx5GxZjmTX/ySWFZOo92FOV5G9s/r\ngFG2zDThoIN8LFxo4+uv6xk8uEu/9SQiIiIiIiIi0m6aykpEREREpJPV1keZvaSCeAtVH/weJ91z\nvXTP9eF2pX/KlmgswXfzSjDb8ed/9pIFHHbxydT36EPd19/j8Kd3GpT2ikbhyCN9zJ1r54UXghx6\naNMprRavqmFVefLid2aGh7pAGJthsEu/XApyvJ095J2KZSVDOMkAzsYQTm3txiCGYVgMGWIyZozJ\nmDEJdt89we67K4zTFpEIXHutm+efd1FYaPKf/4TYa6/mX5fKqkP8tCz1ae9IJPjljRMwnS5mjb+G\n+p59U+8L6FOYwaBe2e3qY3tkWhbf/bSOaDy1KjO5i+Zy6CWnsPKAI/nu+vua7B/VPy/tr29vv+3g\n/PO9nHpqjAce0BSBIiIiIiIiIrLj21Iwx9GJ4xARERER2Wlk+V2MGZzP7CUVG6aEcTlsdMv10T3X\nS6bP1anjcTntFGR7KG1HJYyaQcP5+fizGfrmM9Tccw/cfFMHjrDjuVzwwANhDjvMx5VXevjyy3py\nNikcUVkb3hDK2ZRpWfy0rJKhfXLoke/vxBHv+JYsMXjhBSc//mhn9mw7NTWNQziDBpkcdlgyhLPb\nbiajRiXIyNiGA94BuN3wj39EGDnS5IYb3Jx0ko+77w5z5pnxRu1i8QQ/r6pu17l6Tp1Cj2lfAVA0\n7SsWnD6eBaedh+lKrQLVyrIAHreDXgU71/OwsiaccigHoP9HbwI0O42Vw2YjLyu901glEnDPPS7s\ndosrr2y+WpmIiIiIiIiIyM5EFXNERERERNIoEIqxsjRAtxwvuVlubNtwWpbqQIQfF5e3qw9HfYAj\nzz0aV10N5V98h23w4A4aXfrcf7+LO+9085vfxHjooWTlhmgswfSFpY0ufjdUzNnUgKIs+hW1/EkH\nab1vv7VzzjneDRVxBg402W23BKNHJ0M4u+6aIFPf6rT64gs755/vpbra4IILotx0UwTH+o/rzF9W\nSUk7p7A68Opz6DZ7GrPPu4ohbzyDt7KMQM++zLj4ekr23D+lPg1g1IB88rPTGybpSuYUV1BRm1qV\nGVs0yrFnHIDpdPLe859h2Rt/HqtHno9hfXM7Ypgteu01Bxdd5N3iNIIiIiIiIiIiIjuaLVXMUQFw\nEREREZE0yvA6GdEvl/xszzYN5QDkZLjxe5zt6iPuz+DHC6/FHoviuvrK5HxEXdwll0QZOzbBa685\nef/95EXqhSurW1WRYum6Whavqkn3EHd477zj4NRTvQSD8Pe/h1m8uI7vvqvnkUfCXHRRjH33VSin\nMxx4YIIPP6xn2LAEjz7q4owzvFRVQUVNuN2hnOwl8+k2exrrdt+Xhaeex4f/fp9FJ56Db91qDvjL\nePa59TK8pWvb3K8FzFtWSV0w2q7xbS8isQSVKYZyAHp8/znuuhpWHHxck1AOQLfc9E5BGI/D3//u\nxum0uOKKneNnJiIiIiIiIiKyNQrmiIiIiIjsRHrkt/+i7KoDj6Jk7D7kfvs5xttvtX9QaeZwwKRJ\nYdxui6uvdjN3UX2bqlGsKg8wf1kl5nYQQuqKnnjCyfnne3A64YUXQpxzToysrG09qp3XwIEW778f\n5PDD43zxhYMjj/Tx6df17e53yFvPAfDzib8FkiG+WRP+zCcPvkb5LmPp/fVHHHnesQx99UmMeKxN\nfScsi7nFlYSj8a033s6VVAZpzyvNhmmsDju+yT63w05ORnqnUXztNQfFxTbOPDNG3756zRQRERER\nERERAQVzRERERER2KkV5PuztrdxjGMy49AYSTieZ118LgUDHDC6Nhg41ufbaCOXlNq7/S9vDSSXV\nIeYWV5Awt15lR5IsC26/3cV113koKLB4++0gv/pVYlsPS4DMTHj66RCXXRZh6VI7/3dxH2Z870+5\nP1d1JX2nvEtdz76s2/OARvtqBg3ns388x7QrbyfhcjHm8Xs4bMJJFMye1qZzROIJ5hZXEk/s2M/B\ndZXBlI91V5VTNO0rKoeMpHbA0Cb7C3O8GGms3BaLJavluFwWl1+uajkiIiIiIiIiIg0UzBERERER\n2Yk47Da65Xrb3U+g9wAWnnIu7tK1uO76aweMLP3Gj4+yy64hvv0ii2+/aPu8SZV1EWYtriAWV7hk\na2IxuPRSD//6l5uBA03eey/I6NE7dqBie2O3w4RLa5n459XE4wZ33dibt17OS2l2uoHvv4I9FmXx\n8WeDrZm3GWw2lh15Mh8++T5Ljj6VrBVLOOjqc9jz7mtxV5W3+jyBcIx5O3D1qppAhGAk9apAfT99\nF5uZYNnhJza7vyNe+7fkpZecrFhh45xzYvTqtWP+jEREREREREREUqFgjoiIiIjITqZnQeqVMTY1\n/4wLCBT1JvOJh7EvmN8hfabT8pJaLrhyDS63yb8ndae6yt7mPmqDUWb+XL5TTKmTqkAAzj7byyuv\nONl99wTvvhukf39dpO9q4gmTRSur+eVBddz6jxXk5sd54d/dmPS3HkQjra+qYsRjDJ78IjGfv8VA\nSINoVi4zLr+FKfe/SNXgEfT/5G2O/OPRDHrnBUi0LvBWWRfh55XVrR7f9qQ91XKwLAZ89Aamw8nK\ng45ustvrcpDlT980VpEI/OMfLjwei8suU7UcEREREREREZFNKZgjIiIiIrKTyfS5yPK1/wKt6fbw\n40XXYUvE8V59OSmV2ugklbVhVpUH6NErxlnnllFX6+Cx+4tSGnIwEmfmz+XUh2MdP9A2CEXirK2o\n36Zj2FxpqcGJJ/r47DMHhx4a5/XXgxQUdNzjonhNLbX1289F/4RpsnRtLdFY16uyVLymlvD6cQ0a\nGuZvDyxj6C5Bvv4sm5uu6ktFmaNV/fT+6iO8FaUsPeIk4v6MVh1TOWIMn0x6lRmXXA/A7g/cxiET\nTyN34ZxWHb+2MsiKkrpWtd1eJEyT0upQysfnLJ5H9rKfWbP3QUSzcpvsT3e1nOefd7J6tY3f/z5G\n9+5d93eBiIiIiIiIiMi2YL/55ptv3taD2JJgcPt501VEREREZHthGAblNeF29xPoPYCcJQvI++5L\nEv0HkBi5aweMrmNFYwlmF1eQMJMXiwcNDTN/jpdZ0zMo6hml38AIAG6Xg2grK+EkTIuyqhDZGW48\nrrZX3ukIy9fVsXRdLbX1MXIy3Djs2/ZzF8XFBied5GPhQjtnnhnl4YfDeDwd139JVZAla2pYWxmk\noiaCzWbgczswjNZXd+lMkViCOcWVlFaHKK0Oke134d5Gj5XNVdVFWLy6ptE2j9di/4NrqSx3MPN/\nmXz9WRZDhoco7L7l58Qe992At6KU/11zF7GsnNYPwmajatholh1+Ap6qcnpM/5oBH76Gt7yEqqEj\nifu2XNmrKhDB53bg9zpbf84urLQqRFk7gjnDX36C/AWzmX3uVQT6DGiyf2ifHFyO9Dz+QiE47zwv\npglPPBHG3zFF2UREREREREREtit+v7vFfaqYIyIiIiKyE+qW48XZQUGOHyf8mbjbi++mv2BUV3VI\nnx1p4cpqonFzw32bDSZctQ6PN8GTD3ansrx1lUE2F0uYzF5cTkUHBJzafO64uaFaTmVdmGkLSts3\nDU47/fijjWOP9bFsmY0rr4xw330RHKl9W5tlmhZL19RuuF8XirJgRRVTf1rH0rW1RKJdqyJNIBRj\n5qIyatd/0CQSS/Dj4nLWlG/7CkcJMzmFVXOcLosJV63j9xNKqKuxc+s1fXn/zdwWK0vlzZ9F/oLZ\nrN3rQOp79UtpPJG8Qv73p7v5/J6nqe07kIEfvMpRvz+SXZ6ZhCO45e/XghXV1AQiKZ23q2lP9Ssj\nFqXvlMmEc/JZt+cvm+zP8Djxe9IXYHr2WSfr1tk499wohYWqliMiIiIiIiIisjlVzBERERER2QkZ\nhkEsbm4IDrRHLCMLy26jxzefYgQCRA87ogNG2DFWlQVY3UwYwp9hkpmV4Luvsli13MUvD67F7W59\nxZwGFlBeE6Yo39epFWtWlQao3CSQYFoW5TVh6oKdXz1nyhQ7Z5zho67O4K67IlxySYyOLmKzqqye\nspqm1URMy6KmPsqa8noC4Rhuhw2PqwMTQSmorA0zp7iSaMJstN0CKmrDRKIJ8jI926zST/HqWirr\nWg6TGQYMGRFml9FBZnyfwfdfZ1G6zsmYcfVNwla7PnEvOcsWMePSG6jv0add4woW9aL4mFMJFhRR\nMG8mPf/3BQP++wZxr4/qgcPA1rTaiwVU1IQpyPbidGy/nzsKhuMUr63desMW9Jw6hQEfvcmSY06j\nZK8DmuzvXZhBdkbLn9hqj2AQzj3Xi2HA44+H8fnSchoRERERERERkS5PFXNERERERKSJngUdN9/I\nopN+R23fQXie+jeOH2d0WL/tEQjFKF7T8sXuQ46uYcweAX6cnsGUD7NTPo9pWawsDaR8fJvPZ1qs\nLm/+fBW1YabN77zqOS+95ODss5NT2Dz5ZJjf/z7W4eeIxU1WlNRtsY1pWZRVh5i5uJzpC0pZW1FP\nwmwcjCGU+jRBrbW6LMCc4grim597E2srg/y4uHybVPmpqY+2+NjZ3C6jQ/ztwWUMHhbiy0+yueGK\nfpSu21h1xVNRSp8vP6Sm32BKx+7TIeOz7A6WHnMq7z/1IXPPuQRHKMi4f93C4eOPp+c3n9Bc6Z5Y\nwmROcQWxeNeqmtQW7X2+9v/4bQCWH3ZCs/u75Xrb1f+WPPmkk7IyGxdcECU/X9VyRERERERERESa\no2COiIiIiMhOyut2kJfZMVUULKeLGZfcgGFZZFxzBSS27UVy07RYsLwKs6U5eEhWBrnwinX4/Ame\nebQbq5anXmllbXk9kVjnfM0lVcFGU3NtLm6aLFhRxZziirSNybLgn/90MXGil4wMePXVEEcf3bZq\nQ621oqSOWKLlr3dzgXCMhSur+e6nEpasqSEcjeN9aBIFg3vjmPZ9WsZoWRaLV9Xw8+oaWhNNqA1G\n+WFRKVV1nTcNk2laLFxR1arxNcgvjHPLvSs4+Khqli3xcO3F/Zn9Q7IkyqDJL2JLxPn5hN/S0SWS\nEl4/88++mPef+pDFx55OxpoV7HfLpRx05dnkzZvZpH0oGmducSX14RjxNjxWugLLsiipSj2Y466q\noMf/vqBq8AhqBg5rsj/b70pbFalAAB54wEVWlsWFF6rasYiIiIiIiIhISzSVlYiIiIjITsxuMyit\n7phKIsGi3mSsXkHe1C9I9OtPYtToDuk3FYtX11BR2/J0PQ18fpOcvARTv8hi8utZ/PCdn+oqB16f\nSU5uotV5g4awQ16WJ/VBt9L85VWtCqqEInFKKoO4nXYyvM6ttm+tRAKuu87Nv/7lplcvkzfeCDFm\nTHrCEKFInAUrqtsUJmlgWha19VHqpv3IsGsvxhaLYV+5kshpZ3ToGOMJk3nLqtocrkiYySo/NptB\ntt/VoWNqTvHa2lY9JzZnt8Me+wTIzY8xbWoGX3ySjcsW45y3L8FyuZh29Z1Yjo57fG0q4fWz7he/\nYtUBR+ItL6FoxrcM/PB1spf+TPXgEUSzcjBNWLbEzccfZPDW2wZffBNj6vQYc+ZFWbwsytqyGHX1\ncSziYFjYDLDbus5nlCprI6ypaDrdXmsN/OBVekz7kgWnjadyxJgm+/t2yyArTY+vhx5y8dFHTi67\nLMrBB2+/FYtERERERERERDrClqayMixrCx8h7QLKyrZcslxERERERFJnWRbfzSvpsMoq3tI1HH3O\n4SSGDaP686kdXkmjNSpqwsxZWtHq9pYFn3+UzdQvcpgz00MikRxzfmGMcb8IsMc+AUaOCeJ0bflf\nJ7th8ItduuNy2ts1/i0prw4xd1llm48ryPIwpE8O7naOLZGAiy/28MYbTkaMSPDSSyF69Ejfv5Tz\nl1VS0p7gWCLBwZefSf7C2dR374W/ZDU/P/sWmYf9qkPCGeH1lVoC4fZN4dUtx8uwvjlpC4zUBqPM\nXFSWUsBpU4vme/jHbb2oLHfyG17l2hM/p3jCpR0yxtbIn/sDYx6/h9D8cv5rHMmbPf/I13V7UFPb\nuuCJx5sgM8skMytBTo5Jdo5JXp5FXh4M7G+w794GQ4ea2NP3FG4knjD5aWklVYHUKycdOuEkspf9\nzOQXvyCak9don80w2Gdkd5yOjv+Camthjz0yAPjhhwCZmR1+ChERERERERGR7UphYctvkKSnnrGI\niIiIiGwXDMOgZ76fpetqO6S/ULeerPp/9u47PKoybQP4feZMn8lMJjOTMumVJPRelK6CivopuwoW\ndC1rw7arghV73V27a28rdlQUGyrSpBN6CyUkkN6TKZn+/RFBAimTmROw3L/r4sLlvO9z3pTJtTPz\n5H7GTELK4q+hWLoY3rHjJakbKo/Xj50l9d3aIwjA+EmNOHuqG5WVHmxcq8O6VXpsWKvHwgUmLFxg\ngkodQP8hDgwZYcegYXYYoo9tZPIHgyipsiMr0SjVh3OMA9X2sPbVNLWgcWcVshKNiIvRhlUjEABu\nuaW1KWfYMB/mznXB2HMfKpqdnsiacgDkfPYOzLs2o2T8mdhz9kWYcMuFMPzncaxIyEO8WYtEiw4a\nVXhPi5ucHmzbVwe3L/KmtqoGF5wtPvROjwn7PB0JBIMoDDN16Gg5eS147PkivHlZEz5p+StWrzkd\nt55diYTEyBqTuuJyyrBtkxabC07HFvtfUApVa0xVKWBDGcZmHkDGObGwpgqwN4tobvr1j71JRHPz\nL383iWhuFHGwRIl9u9tvgtLrgxg40I8hQ/wYNMiPQYMCsFqlbT4LBIMor3WiuKKp07F0XTHu3QHT\n3h0oHTXxmKYcAIjWK3ukKQcAXn5ZiYYGAXfd5WZTDhERERERERFRF5iYQ0RERET0J+f2+rF6eyUC\nEj01MO3cjFNuvAAtE05F8wfzJKkZqs17a1HX3P1xPQAQpVej2f7rXr8f2LVNg3Uro7BupR4VZa2p\nHIIQRE6eC4NHtKbpJKZ4DgcD9WRqTqPDgw27qyOuYzGqkZ3UvfScYBCYPVuFN99UYuBAPz75xNnj\nb8Zv3FODhgiSRPQHi3DaNefCq9Hhu9cWwGM0YfTsKxBfsAKL/vMuavsMBgCYDWokWnTdGkNW0+DC\njuJ6+CV+Oi2XyZCXaoLZKN1ItKLyJhRXSve82rJ5LU6+9XJcbfsYb5b9HzRaP26cXYbBI8Ifx3Q0\nvx/YW6jG5vU6bCnQoXCH5nCSlUodQO/+TvTr34Qz7Z/gzAX3Q9NUB1eMFXunTIM9MRXOWBsccTa0\nxFiBDlKIPG6hTfNOWakSe3aqsXuHBqUH2sYOp6YGMHhwa7PO4MF+9O4dgDLM6VDVDS4UlTfB6faF\nV+AI/f/7KHI+ewc/3/c8ykZNPOZ6booJ8WE24nWmoQEYPFgPpTKItWsd0OslvwURERERERER0e9O\nZ4k5bMwhIiIiIiJs21+H6gjTSY407h8Xw7p1PeqWrYG/V65kdTtTWuPA7oMNYe8/ujHnSMEgUHZA\nifWr9Fi/So+d2zUIBlobBeISPK1NOiPsyO3rRHqCHpk9kJqztagWNY3hNR0dTSHKMDDbAq1a0eXa\nYBB44AEVXnhBifx8Pz77zAmTSZJjdKi748iOEQhg3K0zYN26Hivv+g8Ojj0dAGDeVoAJt1yEyoEj\nsfTxN9ps0arksFl0iI/RQi52PFKqpLIZ+8qlSZjqSFp8FNLiDRHXsbu8KCislqzpDgBGPnAjkpZ/\nj0X/eRefVYzHy0/Hw+uR4S8X1+AvF9d01AfTIY9HQFWFAhWlSjTWaLBpoxJbNmjhsLc2jgmyIDKz\nW9BvkAP9BjuQk+eC/IhvW7nDjl4fv46ceW9B7m77+PArFHBZE+CItcEZZzvcsOOMS4Qj1gaXNQ5B\n+bGPAXuzDPt3a1FZYkThDg02bBDR0PDrWD6VKoh+/VqbdQYP9mP4cD/i4zv/HDc6PNhX2ohGp6d7\nn6AOCD4vpkwfBwBY8P7iYz4OURAwsk98p9/L4Xr0USWeekqFOXNacP31PZuWRERERERERET0e8HG\nHCIiIiIi6lR9sxub9tZIVi9x+UKMeuAm2C+6FK6nnpOsbkc8Xj/W7KiCLxD+WJjOGnOO1tQoto68\nWqnHpvU6uJytTQRanR8Dhzow/a8iTjs1gOjosI/ThrPFh7U7KyUZR3SI1ahB7/Rjx98c7cknlXjy\nSRWysvyYP98l+VifowWDQazbVQ1HS/hv+GfOn4tBLzyEgyefipX3PIPDkUbAr6k5T81Fbe9Bx+wV\nZQLiY1rHXB3ZuBQIBrH7QAPK65xhn6s7zAY18lJNYTdWBIJBbCisRrNLusYJbUUpzrjsNDRk9MIP\nL8wDBAFFe1T41/2JqK5UYtBwO26YVQadvu3j0N0ioLJcgYoy5S9/FKgsU6K8VInaajmCQaHN+th4\nT2sjziAn+gxwQG/o+nGtqq9BzK4t0FaWQVdZBm1VWet/V5VBXd/+z7agTAZXTCyccTbU5vbDzul/\nh8fQtutMrRSRFm+Ao16HdetErF/f+mf7dtnhFB9BCGLcOD8uvtiLSZN8bdJ0nC0+7CtvlKyp7hDb\nih9x0n0zUXjuJdh07Z3HXLdGa9A7revHd3fV1AgYOlQHrbY1LUcrfSAPEREREREREdHvEhtziIiI\niIioS2t2VEoyXgUA4Pfj9L9Nhqa+GvUbdiBosUhTtwM7iutRWR9Zw0R3GnOO5PUI2L5Zg/WrW0de\n1VS1NnOIYhAjR/px2mk+nHaaDxkZ4T/1KjzQgLJa6UYFZSz4EOq6aqgfvA8GnarDdS+8oMD996uR\nkhLAl186kZDQ808fy2sd2HUg/OQjbflBTLr6HPgVCnz36pdwx1jbXD+UmlMxaBSWPfZ6p7ViolSw\nWXQw6pTYtr8+otFa4VDJRSgV4TXm+ANB6R7Pv+j3ypPo9ckbWHProyg+7f8O/3tzkwzPPJKIzQU6\nJCR6MO60BlRWKFFZ1pqEU1vTfjJTjMWLeJsX2VlA33wR6ekB9O7jQ5WzAi1ev2TnlrlboK0q/6Vh\np/Rww86hJh5NbSWEQABuQzQ2X/FP7J903jEjsKI0CmTYjDBFtT5eHA5g82YR69aJ+OYbOdata23O\ns1gCOP98Hy64oAWivhEVdU5JE4sAAMEgJtw0Deadm7Hwpc/RmNHrmCV90mJgidZIeluvF5g+XYOl\nS+V4+OEWXHUV03KIiIiIiIiIiA5hYw4REREREXXpYLUde0obJauX9dn/MPC/j6Dhn3fAO+sOyeoe\nrcHuxsY9kaf9hNOYo7A3YfDTc1Ax5GTsnzwVwSBQUqRCwSo9dmwyYeMG+eG1OTmtTTqTJvkxZIgf\nohjaPTxeP1Ztr5Tszf3YDSsxdtblAIBNj70M2+XT2133xhsKzJ6ths0WwPz5TqSm9vxTR38ggDXb\nq+D2hdmUEQxizKzLEbdxFVbf/jhKTjm73WVjZl2OuA0rseip91Dbe2CXZWWCENbn37B/N4Y8dQ8a\n07JRNmICqgaOgF8tbbPE8SK6nJhy0XgE5Ap89e4iBI6MhQEQ8APvv2XF/A/Nh/9NEIIwW32It3l+\n+eNt/TvRg7gEL7QaIC/VdEwDSUWdEztL6o/LxwUAgteD7Plzkf+/56FwOVGTPwAFN8xBY+axY/hi\notTIsBmg17RtNtq5U4a5cxX46GM56utam3ry+jgx8YwGDD+5GSq1dI8f288/4KT7b8CB0ZOw6p6n\nj7kul8kwqk88ZDKhnd3hmz1bhTfeUGLSJB/eessV8s8wIiIiIiIiIqI/AzbmEBERERFRl3z+AFZu\nrYBfoqcIcqcDZ140HlCp0LhxO6BWS1L3SIFgEOsjHHt0SHcbc2TuFoy540pYt66HR2/AgvcWt2m6\nSLbqoZdH4/vv5Vi4UMSSJXK4XK1vlJvNAUyc6MekST5MmOCDTtfxfYrKm1BcKc3zIrmjGZP+fg7U\ntVWAIMBpjUf5jysQbW07c+uDD+S48UYNLJYAvvjCiays4/O0sbiiGUUVTWHvT//6Iwx5eg7Kho/F\nzw/8t80IqyOZt67HhH9cjIrBJ2HZo6+Ffb/OCF4PTrnhAkTv23n433wqNSoHjULZiPEoHzEOblPP\nJklJKWPBBxj87P3YdvF12D7jhg7X7d6hRkO9HAmJHsQmeKFUtv+9o5KL6JMRgyit8phrUowzC4em\nugL9X34cyUu/RVAmw+5zLsK2GTfCp9O3WScAiDNpkZ5ggEopHj5zRZ0Tu4vtWL5Ugx+/icaWDa0P\nbK3Oj9ETmzDx9AakZUaYuuT3Y9LV50B/cD++e/VL2JPTj1mSEKNFrxRTO5vD9+abCsyapUZenh9f\nfeWEXt/1HiIiIiIiIiKiP5POGnPE++67777jd5Tuczo9J/oIRERERER/CjKZgBaPD3aXNG+GBxRK\nKJsbELf+ZzhtycCAAZLUPdKBKjuqGlyS1FIp5fB4Qhv9I/h9GPXgzYgvWIEWYwxUzQ2w21LQkJV3\neI3D5UV2qhYDBwRx7rk+XH21B0OG+KHTBVFUJMOaNXJ88YUC772ngMkURH5+4OjpOfAHAthRXC9Z\nWs7gZ+6Ddcs6bL/4ejRk5cO2ZglqPYBm4vjDaz7/XI6ZM9WIjgY+/dSFXr2OT1OOx+vH9uI6hPuh\naqrKcdJ9MxFQqLD84Vfg03X8UN//sgAAIABJREFURNgVa4Nl63rEF6xExeCT4LImhHnqjvV55zkk\nL/sORZPOQ8EN98BtjIG6oRbWrQVIXPUTcua9hfh1y6BqqIMnygC3MabDRqITLhjEsCfvgMJhx5pZ\nT8Cn7biTzGz1ITHZA0N0x6lQerUCA7Is0KrbH3ElCAJUcplkj+1Q+XR6HBwzGbV5A2HevgG2tcuQ\n9v3ncJlj0ZSW3ebrY2/xorzGAX8gCJ8/gO3F9SivcyIoBJCc5sHYU5sw5pRGaDQBHChWYetGHb7/\nyoT1q3QIBgUkJHqg6KBpqTOpP8xHxjefoGjyVBRPOq/dNRkJBmhU8navhWPpUhHXXquG2RzEp5+6\nYLV2vYeIiIiIiIiI6M9Gp1N1eI2JOUREREREdFiz04P1hdWS1dNUleOMGafCmZ4F14o1kjYetHh8\nWLujSrKEn5ATc4JBDPn3XUhf+BkqBo1CwQ334vQrzkB9Vj5+fP7jNkuTrXpkJhqPKREIAJs2yfDl\nl3K88YYSTqeAvn39ePhhN0aM+HWMU2m1HbslGi92aPxNXXZvLHrmfYhuNyZfcToUDjv2ffczTPnZ\n+PZbEZdfroFGA8yb58SAAQFJ7h2KwgMNKKt1hLc5GMTJd1+NhLXLsPaWB7H/9L90ucWyZR3G//MS\nVAw5GcseeTW8+3YgZsdGTLjlIjitCVj48vw2jSy60mLYVv0E26qfYNmyHrJA69fbHp+EspHjUTZi\nAmr6DkZQ3n7TyokQt+5njLnzShRPOAtrZj8RUS2zQY28VBPkoqzLtQWF1Wg6Qb+sI/O40euj15H3\nwSsQPW5UDhiBDTPvQXNKRrdr+f3AhjV6LPrWiILVegQCAlSqAEaObcKpZzYgOy+0pC6Zx43Jl58O\ndX0tvnnrO7is8cesUclFjOgdB0Gin7X79gmYPFkHpxOYN8+F4cPDHDNHRERERERERPQHx8QcIiIi\nIiIKiUohorbRDY9PmjdffbooGEr2wrphFRr6DYGYlSlJXQDYWVIPR0toCTehCDUxp+/r/0b2F++h\nrldfLH/oZbjNVkTv3o64TatRPnwcWsyxh9c6XF7YLFqIR0XhCAKQkBDE2LF+nH++FzU1AhYvluP9\n9xXYtUuGAQP8MBiC2F5cD58/8sYjVX0tRt91NYSAH8sefQ1ukwUBpRJuYwySl34Hd/FBLLWcj7/9\nTQuFAvjgAxeGDDl+TTnOFh8KDzYg3I809Yf5yP34DVQOHIlN18wOqQHMGWeDZct6xBesQMWQk9tt\ncgiH2OLCmDuvgrK5ET/f9xzsSW1HDXkN0ajLH4Di087FnrMvRGN6LwTkckQXFSJ2yzqk/TAfWZ+/\ni+iiXZD5vHDEJyGoOLFNOgNffBhRpcVY94+H0GKJC7tOklWP3JToYx4PHdGo5Kioc4Z9v0gERTlq\n+g1FyfgzoS8rRvz6n5Hx9ccQPW7U5vXvVuOUTAbYkj04aXwzJpzeCL3Bj4pSJbZt0mHRt9FobhLR\ne4Czw4ShQ7Lmz0XKkm+x+7xLUTpmUrtrEmJ0MBulGRvY0ACcd54O5eUyPPVUCyZPZlMOERERERER\nEVFHOkvMYWMOERERERG1IQhAbVNoCQ6hcFoTkPHNJ3CXVwLTL5SkZm1jC/ZXSJuuGUpjTs7Hb6DP\n/55HU1I6ljz+BrxRrWk4Hr0BqYu+hOD3o2zUxMPrDzWaxER1/EZ5VBRw5pk+jB/vw86dIhYvluPt\ntxWobfAjLrkREQenBIMY/vjtiNmzHZuvuhXlIyccvtSYnoP49T9j11oBU7+4AhBkePddF0466fi+\nAV94oAGOlvBGqKlrq3DyvdchKBOx7JFX4Y0yhLzXEZeI9IWfQVNThZKJZ4V1/6P1f/lxJKxdhsKp\nl6HozAs6XRtQqdGY0QulYyZh19TLUN1vKLw6A3RVZbBuLUDS8oXIXPABVI31sNtSDn+/HU/6g0UY\n+OIjqMkfgB0XXxdWDZkgICspGmnxUd1KclEr5WhyeODynLiGEG+UESXjp6AhMxfWrethW70YKYu+\nhD0hBfbk9K4LHEWjDSCvrwuTz6lHbh8n9u1Wo2C1HutX6dG7nxMGY/sfq9xhx6iHbkZQlGPlPU/B\nr9K0uy4r0QiVsosOnxD4fMCMGRps3Cji+us9mDlTmhGHRERERERERER/VGzMISIiIiKikGnVcpTX\nOBGQaERUiyUOsRtWwVqwEpXjz4DKFlkyiT8QwJaiWkmSZI7UVWNO6sLPMfj5B+C0xGHJk2+1SQ5x\nJCQj9ccvYd6xCXvPmo6A6tdGHIez/dSco9lsQVx4oRcZGQGsXStiyWIVfloYjSiDHynp7rCngKX+\nMB95H76Kqn5DUXDjnLZpMoKAVeJIXL7idnj9Il5/w4WJpxzfaceNDg/2loU5risYxLDHZ8O0byc2\nXjMbVYNP6tZ2Z1wirJvXIX7DClQMGR1xak5swQoMeuEhNKVkYtXdTyEoykPfLIpwJCSjYtgY7D53\nBkpPPhXuKCOi9+1CfMEKZM1/F6bd2+A2RMORkCzpWLjO5P/vRZh3bcamq25DU1p2t/fLZTL0To9B\nnEkb1v21ajnKa09Mas5hgoDmlAzsO+OvQDCI+HU/I3XRlzDt3o7avAHw6kNvBjuiJOISvBh3WiOa\nG0VsWBOFxd8ZER3jQ1rmsY/33A9eQcLapdh+0bWoHDK63Zoapbzd0XnhuOsuFT7/XIHTTvPhqada\nEGLIERERERERERHRnxYbc4iIiIiIKGQyQYDXH0CTQ7r/L+7RRSFlyTdobnJCfvZZ3UrNOFpxRbOk\niT6HdNaYk7DqJwx/9DZ49QYseeJN2JPS2i4QBMi8HtjWLkVLjAV1eQMOXwolNeeIMsjPD+Ds8+yo\nbXZi60YtVi0zoGC1DkmpHlhiuze6S1NVhpPvvQ4BhQLLHnntmMSV/XtVuOfR/nB5lPgA03BSfgnk\nI4Z36x6R2rG/Dm5veIkoyYu/Rv77L6Oq31BsuP7usJpVHPE2pC/8HJrayohScxT2Joy54yqI7hYs\ne+hluGITwq4FQYDbZEH1wBHYc87FaE7OgKamEnEbVyPtxy+QvPhrAEBzSiYCCmX49+mC3NGMYU/M\ngjs6BgU33QfIupfEolaI6J9tgbGTFyW6olKIcLb4JB1bF66gQoGqQSNxcPRpMJTs/WW81UcIyuWo\nzR8Y1vefXA4MHuFAUqobBWv0WLnUgLKDSvQb5IBC2frTQ9lQhxGP/ANevQGr73gSwQ6+5okWHUxR\n4X+uD3nrLQWeeEKFvDw/3n/fBbU0k7GIiIiIiIiIiP7Q2JhDRERERETdEqVRoqJWutSc5sQ0pC76\nEjFb1uPgOdOgjQkv1cHZ4sPOknr0RKZLR4055q3rW0cliSKWPvIqGrJ7t7u/OSkd2Z//D/qyEuw9\n+8I2b9KHmppzSHFVIzJymzDmlEY01ovYtF6Pn76LRmmJEpm9XNDpA10XCQQw6sGbYDiwDwUz70X1\nwBFtLh8sUeKB21PgsIu46fo9mLl9FvRrVsA17WIIel1I54xUdYMLB6rtYe1VNtRh9L3XAgCWPfwK\nvEZTWHVaU3PWIr5gZUSpOYOfngPr1vXYfvF1ODDhzLBqtCcoimjM6IWi0/+K8mFjIfO6YdlWgMRV\ni5H1xVyoa6thtyXDYwjv4+9M5oIPkLjqJ+y84CrU9B/Wrb0GrRL9syzQqLqRGtQBnVqB8lpnjzzu\nw+GJjkHxqf+H5qQ0xG5ei8QVP8JtNKE+t1/YNZNTPRg1rhl7dqmxca0eK5ZEITvXBbPVhz5vPo3Y\nLeuw+Yp/orbP4A5r5CRHQymPbIzVsmUirrlGDbM5iE8/dcFqjagcEREREREREdGfBhtziIiIiIio\nW0SZAEEQUN/slqbgLw0pttWLURdUQDVxfFipOTuK6+B090xyRnuNOYaiQoy940qIHg9WzHkO1QNG\ndLAb8Ks1iDpYhLhNq1HddwicCUmHrwUBCBBCSrNwtHixp7R1tJNWF8Dw0Xb0H2xHSZEKm9br8f1X\n0fB6BGT1ckGu6LhO1vy5yPryfZQNH4dNl98Gl0uEvVmGhno5DuxX4Yk5SWisV+CqGysx7mwX/Co1\nklb8AGdVLYQpU7o8Z6QCwSC276+D1x9Ck1E7hvz7Lph3bcHmK/+JiuHjIjqLMy4Rad+Hn5pjW/49\n+r35NOqye2PtbY92O1kmVC2WOJSddCr2nfFXeHVRiC4qRNyGlciePxfmHZvg0Rtgt6VIM+bK78fw\nJ2ZB9LixevaT8Ks1IW+1RmvQN90MuVya+UcKuQxurx/NLq8k9SQhCGhKz8GBcWcgZdECJK74EVUD\nR0aUlKTTBzDmlEYEAkDBaj0WL4yG1t2IGZ9fhxZrPNbe+gggtv+9pVcrkBbf/ZFaR9q3T8D552vh\n8wHvvdeC3r3De2wSEREREREREf0ZddaYIwSDEv0KbA+prm4+0UcgIiIiIvpTCgSCWLOjEi1hjhk6\nmtzpwJkXjUdAocSuRWthS7J0a39VvRPbi+slOUt7ovRqNNt/HZGlrSjFhJunQ1NXjdW3P46SU87u\nsoZ52wZMuOVCHBg9CavuebrNNVEmYER+HBRdJFrsLK5HRb3zmH8PBIDliwyY+7oV9bUKmMxejBjd\nDK9HQEuLDC0uGdwtMrS0yOBp8kEorYVd0KNJYYLH0/49Z1xdiSlTWz+ngs+LU689D4aSvaj+ehGE\nwR0nc0ihtNqO3b80IHWXbfn3OOmBG1GTPwA//fvdDpsVumPsrTMQu3ktfnj2w24ln6jqa3Ha38+G\nwmnH9//9FM0pmRGfJVSCz4vEn39A1vy5sG5dDwCw21Kw56zp2D/pPHj14TdqJKxchJPnXI99k6di\n/T8eCn1fjBa9UqRP73F7/VizvRL+HngJw6hVQiYTUG8PrxHRumkNxsy6HO7oGHz/4jy4YyKPmdm6\nQYvnHk9AfZ0Cp2Ihbr5uNxz/N7HD9RkJBqTERYV9v8ZG4PTTtdizR8Szz7owbdqJHx1GRERERERE\nRPR7YrV2/NoME3OIiIiIiKhdgiBAoZChprGl68UhCCiUUDY3IL5gBcoN8dCNHAJZiMkePn8AW/fV\nwR/oud8rODIxR1Vfi3G3XwpdVRk2XjMbRWdeEFINlzUeiSt+hHXLOhSd/hf4tL+OhAoGu07NcXv9\nKDzQ0O7IHkEAUjPcOPXMBohyYMsGHXZt02Lfbg1KitQoO6hCVYUSjQ0igs1uKIIeqMwqmGwy2JI8\nSE7zID2rBdl5LuT2cWLK1DpMPP2IxhiZiKbkDKR//zkCW7bCd8ml0iSvtMPnD2BbUV1Yo9IUTQ0Y\nc/c1EPw+LH/4FXhMZknO9GtqThVKJoSYmhMMYvjjtyNmz3ZsvupWlI+c0OayWimid5oZcSYNdGoF\nlHIZAAF+f1CasUwyEU1p2dg/6TyUjpoIwe+DZdsG2NYsQdbnc2Hdug7GokKo62sRFAR4ogwhp/kM\nev4B6CsOYu2tj8JtCq2JzqRXIS8tJqw0rK7IRRl8gQCaHNK+RhClUaBflgUGnRLltY6wajjjE1sT\np37+HjG7tqB44lkRpybFJnhxZq+NcC4sxHeYjK92D0JKuhvxtvZTg3qlREMuhpdQ5PMBl12mQUGB\nHNdd58HMmb+hZCIiIiIiIiIiot8JJuYQEREREVHY1u+qkmyEjKaqHGfMOBVNqZnY8/kipCaEluix\np7QRB6vtkpyhI4cSc+ROB8bedilidm/Djml/x9bLb+lWnYwFH2Lws/dh64yZ2HHx9W2udZWas7es\nEQeqQvs4G+tFVFcpoNYEoFYHDv/d5+OX0PetZ1A8fgrW3PFkt84OACMevBnJy75DzdP/RfDCi7q9\nPxRF5U0orgzvud7QJ2Yj7Yf52Hz5P7Br2lWSnutwas5zH6G+V98u16d+/zmGPXkHqvoNxZIn3jo8\nsg0AYqJUyEuNgaKdcU6BQBCOFi8cLT7YXV7YXV44XN6wx3odSdlUj/Rv5yH9m08QVVrc5ppfoUBT\nahYa03uhIaMXGjJy0ZjRCx5j24QbQ1EhJl19Dqr6D8OSJ98O6b56tQIDsi1hN4eEwusLYPX2SvgC\n0oxY0qsV6J9lOfw12lVSj/K6Y9OqQhIMYsRDtyB52XcoPO9SbLpmdsTnG3XfTNhW/IibJi/Hiz+M\ngt8n4Ky/1GL636rbjLEzapUYmBN+Ss+dd6rw2mtKnHaaD2+/7ZIigIqIiIiIiIiI6E+ns8QcNuYQ\nEREREVGn6pvd2LS3RrJ6wx+9FSk/fYXlj7+JjEvObbdx4Uh2lxfrd1VJkzDSiSi9Go66Jpx8z9WI\n27CqdYTPLQ92OzVGdDlw1vSx8Gr1+Pp/PyAoyttcT4mNQobt2IYknz+AVdsiazqI3rMdE2+4AO7o\nGHz3yhfwRhm7XUNbWYpJV06BXx+F5rUbEdSHPx6nPZGMJIpfvRij77kWddm9sejZD4753EbKunE1\nxt1+GcqGj8XPD77U6VpNVRkm/f0cIBjAwpe/gDM+8fC1lNgopCdEdTs5xu3xtzbptHgPN+w43eGP\nFFI0N8JYtAvR+wph3LcT0ft2wbh/N0RP25FNLnMsGjJ6ofGXZh3bykVIWfw1fp7zHMpOOqXL+6jk\nIgbmWKBWSvv1aE9xRTOKKpoirqNVyTEgywKl4tculEjHZcmdDky88QIYSvZi5Z3/xsFxZ4R9vpgd\nGzHxpumoyR+In56ai3171HjmkUSUlyqRmePCTXeUIT6xtWEyO9GIRKs+rPu8/bYCt92mRm6uH199\n5USUtA93IiIiIiIiIqI/DY6yIiIiIiKisGlUcjQ5vHB5wm8QOJIzNgEZ33wMRWMdSiachRiDutP1\n24rq0OL1S3LvzqhEAQMfuAW21UtQOmoi1t7+WFjjaIIKJTTVFYjbuAr1mXloTslsc93u8sJm1kKU\ntW1IKq1xoLYp/LFhMo8bo++6Gpr6Gqy852k0peeEVcerN0AI+GFbtRgetxeB8RPDPlN79hxsDCuB\nSe5oxui7robo8WDZwy/DHRN+QkhHnHGJiN20GvEFK1E+bCxaLHHtLwwEMOrBm2A4sA8FN9yL6oEj\nALQmIuWnxiDJqg9rnJNclEGrlsOoV8EarUGiVQ9TlBqBQBAut7/bzWkBlRrOuETU5fZD+cgJKDrj\nfOy44CocGH8mqvsMhj0xDV6dHur6OsTs2Q7LtgIkLV8I4/7dsMcnYcPMe9qkALVHFAT0yzJDp1Z0\nuk4qUVoFKmtdEY210yjlGJBtgUrR9vEtF2UIBINoDHNcVkChRNWAEUj9/nMkrvwJZSMnwB0dxqi1\nYBDDHp8FXWUZVs9+Es64RJjMfow7rRF1NXJsXKvH4u+NMEb7YTQG0D/HAHkXDY7tWbZMxDXXqGEy\nBfHppy7Exnb/qERERERERERE1IqjrIiIiIiIKCJSp9aM+8fFsG5dj4WvLUD+5JOgUrbfAFNe68Cu\nAw0S3bUTwSCGv/QwUj6bi6p+Q7HskVcRUHb8RKorh0YBVQwahWWPvX7M9aNTcwLBIFZvr4Q7ggak\nvq8+idyP38CeKdOw4cY5YdcBAJm7BZOvnAJNbRUalq6CPys7onpA6xiiXQfqUdMYXvPRwOcfRNYX\n72HbJTOx/ZLru94QJuuGVRg3628oGz4OPz/433bXZH3+Lga++HDrmgdeBAQBWpUcfdJjoO2hBhW3\n14+yGgfKax3w+KQZ5XQkZVM9jPsKYSzaBUPxXhwcOxlVA0d2ukcA0CfdDLOx8+Y6qZXWOLD7YHg/\nF9RKEQOyOk738flbx2VFMlYscdlCjHrwJjQnpuKH5z+GT9e9GJq4dcsx5s6rUD5sDJY/9PIx15f+\nYMBrz8WhxdX6c1MUg7DZgkhKCiApKYjk5Na/ExMDSE4OIDExCI2mbY19+wRMnqyDwwHMm+fCiBE9\n3/xIRERERERERPRH1lliTs/nTBMRERER0e+eXqNAfIwW5XVOSeoVnncprFvXI2ve29g/oC96pZiO\nWeP1BbCvLPKRNaHI/98LSPlsLhoycvHz/S9E1JQDAE3pOajuMxjxBSugL90Pe2Jam+ulNXYkx+qg\nkLe+sV5d74qoKce8dT16ffIm7LYUbL7qtkiODqA1aWXj1bNw0gM3QnXH7XB+9Gm3R3odqdHuxo7i\n+rCTj6KK9yBjwYdoTkzFjmlXhX2OUFQPGI7qPoNhW70YpsKtqM/p0+a6/mAR+r7+b7gN0Vh3ywOA\nIMBiVCM3xQS52P3UklCpFCLSEwxIjY9CdYMLpdUONEmYMOsxmFo/9gHDQ96TlWg87k05AJBg1uJg\nlb3bKV4qhYj+mZ2P3JKLMqTFR2F3aWPY5ysdfRp2nn8Fcj96HcOeuAMr5jzbZfLQYYEA+r7xFABg\ny99uaXfJmFOakJPvwqJvjWhp0qOmSoGDBwWsWiUiGGz/cWqxBJCc3Nqsk5QUxPffy9HQIOCZZ9iU\nQ0RERERERETU03ruVUMiIiIiIvpDSYs3QIygOeNIZSMnwJ6QjNQf5qO+qBTOlmPfYN9X1hhRakWo\nogu3ofe7L8BpS8HSR17pdrpFR/aeNR0AkPHVR8dc8weCOFjtOPy/D1TZw76P6HJg2JN3AIKANbc9\nCr9GG3atI5WddAoqB46EbsmPUC78NqwawWAQ+yuasHFPTUTjyPq//ARkAT82/X0Wggpl2HVCIgiH\nE3ny332x7SW/D8OemA25uwUFN86BJ8aK9HgD+qSbe7Qp50gyQUCcSYtBOVYMyrEizqSFTKLHZXck\nWfVItOqP+32B1s9BWkL3HqcqeWtTjkbV9e8nJVh00IawrjNb/3YzqvoPR+LKH5H74Wsh70ta9h1M\ne7ajePwUNGbmdrgu3ubFxVfU4o3X3fj6ayc2b3bgwAE71qyx49NPnXj2WRduu82N6dO9GD3ah6go\nYNs2GRYsUOCll5TYu1eGa6/1YPp0aUYUEhERERERERFRx9iYQ0REREREIVEpRSTFSvRGvChi97kz\nIHo9SP/yfRRVtE3GaXJ4JEvn6UrOvLcAANtuexDuGKtkdUtPOhUt0Wakf/cpZO5jxzcdrLbD6wug\nrqkF9hZv2Pfp/8qT0JcfwK6/Xo7a3oMiOXJbgoAN19+FgCiH5s7bgZbujaBye/zYtKcW+yuaIxqB\nFr9mKRLWLUPlwBEoHzEugkqhqxowojU1Z9VPiC7cdvjfe334Gsw7N6N4/BRUjj8DfTPMSI2XppEr\nHAatEnmpJozIj0N6vAEqRfsj4aRmMaqRecQothMhzqSFPsSxYQpRhn5ZZmjVoTXbyAQB6QmRfXxB\nUY5Vd/4bTks8+rz9DGLX/9zlHsHnRZ+3nkFAlGPbpTd0ud5sVLdpCFMqgbS0IE4+2Y9p03y47TYP\nnnmmBfPmubB6tQMlJXZs2WLH11878OWXTsyZ447oYyQiIiIiIiIiotCwMYeIiIiIiEKWHKuHQqJk\nkKJJ58Kji0LWF++htqoBzb+M5QkGg9h9sEGSe3RFU12B5KXfojEtG7XDRktaO6BUomjyVCibG5G8\n5NjEmdbUHHtEaTnxa5Yi86sP0ZCeg22XdP1Gfnc1p2RizzkXQXmgGNqXng95X02DC+t2VaHBEdkb\n/4LPi/6vPIGgTIZNV8+OaJxW924sYPvF1wEA8ue2puYY9+5A73dfhMsci8Jb78egHCtiDMd/jFN7\nlAoRqfFRGJ4fh/y0GBh1PZcqdKgZSDgBKT1HC6V5RiHK0D/LAl2ITTyHWKM1MGoj+zy6TWasvOdp\nBEQRIx69FdrK0k7Xp333GaJKi7HvjL/CYUvpdK1aISKlm42SMhkQFxfEkCEBDB/uD3m6FhERERER\nERERRYYvwxARERERUcjkogxpEiWE+DU67Dvjr1A31CLlp69QVN6amlNa40CzK/wEme7I+mIuZH4f\nCqde1iNNH/vOOB9BQUDmgvfbvX6wyo56e3jNK4qmBgz5z90IyBVYc/vjCCh7phlj2yXXoyXaDM1T\nT0JW1nljQSDQ2lS1dX+dJGPIMr7+CIaSvSiaNBWNGb0irtcdVQNHoqb3ICSuXISY7Rsw/PFZkPm8\n2HPvk+g7ODOkkUjHm0wQEButwcBsKwbnWGGN1kDK72q1UkSf9BiIv5GODrNR3WkTklwmQ99MM/Sa\n7jXlHJKRaAz3aIfV5fXHxmvvgqqpASMfvBkyT/uPd7HFhd7vvgCfSo0dF17Tac2EGC2G5MYiKsLG\nISIiIiIiIiIiOj5+G6+mERERERHR70aCRQetRE0Je865GAGZiOxP30ZdUwsq653YX94sSe2uiC4H\nMr76CC3RZpSMP7NH7uGMT0T5sDEw79yM6N3bjrnuD4Y55CkQwJCn50BTV41tl8xEY2ZuhCftmE8X\nhS1X/AMylwva++/pcJ2zxYuCwmqU1jgkua+iuRG933keXq0OWy+7UZKa3SII2HbJ9QCAMXdeBeP+\n3ai+YAbip5/7m2lM6UyUVoneaTEYmhuLOJM24gYdhShDvwwzlMdpXFaoMjpIzREFAX0zYmCIoHnF\nqFPCYow8FWnfmeejaNJ5iCncioEvPNTumqwv5kJTW4Xd585Aizm23TUqhYh+GWb0SjG1GWFFRERE\nRERERES/bXwlh4iIiIiIukUmCCGNkAmFKzYBB8dORnRRIWI3rMSO4nr4ApEnrYQibeHnUNqbsOfs\n6QgoVT12n71nTQcAZC74QJqCwSAGP3MfkpYvRHWfwdh1/uXS1O3E/lP/D7W9+kHz2SdQrPz5mOvl\ntQ6s31UNe4t0SUd5770EVVMDdky/Gm6TRbK63VE1cCRq8gdC4XTAm5IGPPrYCTlHJLRqBfJSTRiW\nF4eEGC1kYSRDyQQB+Wkx0HZzHNTxYNSrYD5qpJgoCOiTYYZRH/njOiPBGNbnrA1BQMHMe1CflY+M\nbz5B+jcft7msaG5E7gevwhNlxK7zr2i3REKMFkNzY38z49OIiIiIiIiIiCh0bMwhIiIiIqJus0Zr\nYJRojErh1MsAADnz3pIZ8fQoAAAgAElEQVSkXkj8fuR89g78CiX2Tpneo7eqGHwyHHGJSFn0FeSO\nCNOAgkEMePERZHzzMeoz8/Dz/S8gKB6HkUoyGTZcfxcAQHfHrYDPBwDw+QPYvr8Ouw40hJ/+0w59\n6X5kz58LR1widp87Q7K63SYIKP7H3fDm5sH+0muAXn/izhIhjUqOXikmDMuLRaJF161mk17J0TBF\n9VzzWqTSEwyHE4FkgoDe6TGSnVerliM+RhtxnYBKjRX3Pgt3lBEDn38Qpl1bDl/r9fEbUNqbsPOC\nK+HVt216VClE9E1nSg4RERERERER0e8ZX9UhIiIiIqKwZNikSc2pz+mD6j6DkbB2GaKK90hSsyu2\nVT9BX1aC4lPOgSc6JuIxP50SRew98wLI3S6kfT8//DrBIPq+9i9kz38XjalZWPrY6/BGGaU7Zxfq\nc/uhaNJ5UGzfBvU7b6LJ4cG6XVWoanBJfq9+r/wLMp8Xm6+6tUfTjDqjEGXISzUh5exT0bB0NXxD\nhp2Qc0hNrZQjOykaw/PjkGzVQ+yiQSctPgpxEjSm9CS9RoHYaM0vyT4myVNl0uKjIMoi/ynhjE/E\n6jv+BZnPh5EP3gRlYz3UtVXI/uwduMyx2HP2RW3Wx5taU3LMEozTIiIiIiIiIiKiE4eNOURERERE\nFBajXgWLRG8YF553KQAg59N3JKnXlZxP3/7lvq1pLJmJRiTHRfXY/fZPOg8BuaJ1nFWYyTL5/3se\nuR+/geakNCx54k14jCaJT9m1LZffAq9WD83DD2Dvj6vR4vFLfg/rxtVIXPkjqvsMxsHRkySvHwqL\nUY2hubGIM/22G1IioVKIyEw0YkTvOKTEtt94Em/SIi1emga8npaWYEBuqgkWo0by2kqFiJRYaX4+\nVA45Gdtm3ABdVTlGPPJP5L/7IuTuFmy7+Hr41a1nV8lbU3JyU5mSQ0RERERERET0R8BXeIiIiIiI\nKGwZCcZujcTpSNnICbAnJCP1h/lQNtRJcLKOmQq3wrplHcqHjEZzahZUchE2sw69M8xIsvTMqCK3\nyYwDoyfBULIX1s1ru70/9/1X0PvdF2FPSMbiJ96C22TpgVN2zW2yoGDm3ZA3N+LkO66Epqpc2hv4\n/Rjw0mMAgE3XzAYk+N7qjkMpOX3SzVAqxON67xNFIReRYTNgRH480uKjoPilESRar0JOSvQJPl3o\nNCo5YqOlb8o5JClWB5Vcmu+JHdOvRtmI8YjbsBKZX32IZlsK9k86F8AvKTl5TMkhIiIiIiIiIvoj\nYWMOERERERGFTauWI16KMTeiiN3nzoDo9SD3w1cjr9eJ7Hm/pOVMbU3pSY7TQ/ZLWkhWkhHJ1p5p\nztl71jQAQOaC97u1L3veW+j75lNwxCZgyRNvosUS1xPHC1nJKedg85X/hLa6HGPuvArKpnrJaqcv\n/BTR+3Zi/ynnoD6nj2R1Q2ExqDHkD56S0xmFXIa0eAOG58chK9GIPukxkjTd/VGIMhnSEiRK1ZLJ\nsOb2x2C3pQAAtl52E5RqNVNyiIiIiIiIiIj+oPhqDxERERERRSQtvv0xON217/S/wG5LQc5n7yB6\n9zYJTnYsTVU5kpd+i8a0bFQNGnU4LedImYlGpPbAWKva3oPQmJaNxOU/QFVXHdKezC/ew4CXH4fL\nHIslj78JZ1zi4WuiTDicbnK87frrFdj1l7/BULIXJ999DUSXM+KacqcDfd56Fj6VBlsuv0WCU4ZG\nIcqQl2JCnwwzVH+SlJzOyEUZkqx6Noe0Iz5GC71aIUktr96AxU++jRX3PAPv/03FkFym5BARERER\nERER/VHxlTYiIiIiIoqIUiEiJTbyRpaASo31N86BEAhgyFP3QvD7JDhdW1lfzIXM70Ph1MsAQWiT\nlnOk9AQD0uMN0t5cELDnrOmQ+X3I+OaTLpenfTsPg55/EC3RZix5/E04ElPbXI8zaZGfFoMTkmki\nCNh85a3Yf8o5MO/cjFEP3gTB64moZO4Hr0BdX4OdF1xx3FKBzIdScqRIfaI/PEEQkJ4g4c+FxCSY\nZkxDXloMFHK+PENERERERERE9EfFV36IiIiIiChiSbE6qOSRp41UDRqF/aecA9Oe7cj67F0JTvYr\n0eVAxlcfocVkQcn4KVDJRSSYO27ISI2PQoaUb8IDKJl4NrwaLTK+/hjw+ztcl7xoAYY8dQ/cUUYs\nefwNNKdkHLMmyaqDKUolbaNAd8hkWPePB1E2fCzi1y3H0H/dBQQCYZXSVpQiZ95bcFriUfiXyyU+\n6LHkMhlyU0zoy5Qc6iazUY1ovSqiGgpRhqxEI4bmxcJi1Eh0MiIiIiIiIiIi+q1iYw4REREREUVM\nlMmQliDN+KdNV8+C2xCNPm8/C21FqSQ1ASBt4edQOpqx56xpCCiVSI7VQ5R1/pQoJS4KWTajZGfw\naXUomXgWtNXlSFizpN01iUu/w7AnZsOr1WPpY6+jKT3nmDXRehW0v4zUSYmLguUEjcAJyhVYdddT\nqMkfiNSfFmDAS48BwWC36/R7/V8QvR5sufwW+NU926hgNqgxNC8W8UzJoTBl2sJrhhMFAalxURie\nH4ckqx4y4YTkXRERERERERER0XHGxhwiIiIiIpJEfIwWul+aRSLhMZqw8ZrZkLtdGPTc/WE1ehzD\n70fOZ+/Ar1Bi75TprWk5ltAaM5Ji9chOio78DL/YO2U6ACDzyw+OuZaw8ieMePRW+FUqLHvkFTRk\n927/TBZdm/+dm2KCViWX7Izd4VdrsPzB/6IxLRvZn/8PuR+80q395m0FSF7yLep69UXJhCk9dEqm\n5JB0orRKxEWH3kAmAEiI0WJYXhzSEwyQi3wphoiIiIiIiIjoz+TEvHJLRERERER/OIIgICPBgC1F\ntRHXKpl4NtK+n4+EtcuQtOQbHBx3RkT1bKt+gr6sBPtO/ys80THICiEt50iJFh1kAlB4oAGRtgk1\nZvRCTe9BSFi3DLqyEjhsKQCAuHXLMfKhmxCQK7D8oZdRlzeg3f1qhQjzUQk5clGG3ukxKNhVDb8U\njUzd5I0yYukjr2LCLRei75tPw200oeiM87veGAi0puwA2HjNHUAnXxNrtAbp8YbOlnRKLsrYEEGS\nSUswoLqxBYEuHm8xUWpk2AzQayJvWiQiIiIiIiIiot8nvipJRERERESSMRvViNarIi8kCFh/033w\nK1UY+OIjUDQ3RlQuZ95bAIDC82Z0Ky3nSAlmHXJTTJBi+MzeKdMAABlffQgAsG5ag5PumwlAwM8P\nvICavkM63Guz6CC0MwJHp1agV6pJgtOFp8USh6WPvga30YTBz96PxOULu9yTsmgBYnZtQcnY01Hb\ne2C7axSiDPlpMeidFgOtWg61Mrw/bMohKWlUciQelVx1pCiNAv0zLeiXaWZTDhERERERERHRnxxf\nmSQiIiIiIkll2AyS1HHYUrDtkuuhbqhFv9f+FXYdU+FWWLeuR/nQ0WhOzUJSN9NyjhQXo0VeWgxk\n7TTGdMfB0ZPgNpqQ/t2niN2wEiffcy2EQAAr5jyHqoEjO9wnEwQkmDtuKoqN1iDJqo/obJGwJ6Vj\n2cOvwKdSY/ijt8K6cXWHa0WXE33f+A/8CiW2XPnPdtdYozUYlheL2G6MDSI6XlLioqA4quFLrRSR\nl2rC4F6xMEVJ0KRIRERERERERES/e2zMISIiIiIiSRm0SsRJ1EhROPUyNGT0QsY3n8CyeU1YNbLn\nvd1a67xLoZTLYAsjLedIsdEa5KeaImrOCSiVKJo8FaqmBoy540rIPG6svOs/qBg2pst7K+Rip2sy\nbAZE605cQ0B9Th+smPMchCBw0n3XI3rP9nbX9frkTWhrKlE49TI44xLbXDsyJaerj5foRFHIZUiJ\ni2r9b1GGTJsRw/LiEGeK7GcMERERERERERH9sbAxh4iIiIiIJJeWYIg4VQYAgnIF1t38AIKCgMFP\n3weZx92t/ZqqciQv/RaNadmoGjQKybFRYaflHMkSrUHvCJNz9p5xAYK/7F89+wmUnXRKl3ts1o5H\n5xwiEwTkp5mgOoENLVWDRmH1rMchdzkx+s6/Q1da3Oa6uqYSvT56HS0mC3ZO+3uba0zJod+TRIsO\n6fEGDM+PQ3KsXpKfe0RERERERERE9MfCxhwiIiIiIpKcRiVHoqXrJpJQ1Of2w55zLobhYBFyP3il\nW3uzvpgLmd+HwqmXQakQI07LOZLZqEaf9BiIYb4R70xIwsq7nsLSR1/DwXFndLneoFXCoFWGVFup\nEJGfHvnIrUgcHHs6CmbeA3VDLcbceRXUtVWHr/V94ynI3S5suewm+LSt3ycKUYb8VBNTcuh3RSYT\nkBofBbnIl1eIiIiIiIiIiKh9fOWIiIiIiIh6REpcFBQSvVm99bKb4LTEI++DVxFVvCekPaLLgYyv\nPkKLyYKS8VMkS8s5UoxBjT4ZZoTb/lI6ZhKqBo4MaW13G52MOiUybYZwjiWZfWdNx7ZLZkJffgCj\n77oaCnsTTIVbkfbDfNRn5mH/aecCAKxGDYbmxiKWI4CIiIiIiIiIiIjoD4aNOURERERE1CMUchmS\nY/WS1PJpdSi44V7IfF4MeXoOEAh0uSf9u8+gdDRjz1nTIdeqJU3LOZIpSoUEszTpQB1RymWwhjHa\nKdGqR9wJbnbZfvF12HPWdETv24mT7r0OA158BACw6epZUCgVyEs1oXd6DJQKpuQQERERERERERHR\nH09IjTmbNm3CJZdc0u41l8uFadOmYe/evZ3uKS4uxvTp03HhhRdizpw5CITwQjoREREREf2+JVn1\nUEvUcFE+cjwOjJ4Ey7YCZHz9ceeL/X5kf/YO/Aol9k6Z1iNpOUfKsBmglPdc/QSzDjJZeLk8OclG\n6NUKiU/UDYKADdfdhQNjJ8O6dT0s2zegdNREBMeOxdDc2BPeOERERERERERERETUk7p85fjVV1/F\n3XffDbfbfcy1LVu24KKLLsKBAwe63PPoo4/i5ptvxnvvvYdgMIgff/xRguMTEREREdFvmUwmID1B\nunFKG6+7Ex5dFPq99i+oa6s6XGdb9RP05QdQfMo5CJotPZaWc4hclCHDZuyR2gIAWwSJPKJMht7p\nMZD3YGNS14cQsea2x1Ex5GR4dVFwzHkQfdLNTMkhIiIiIiIiIiKiP7wuX5lNSUnBc8891+41j8eD\nF154ARkZGV3u2bZtG4YNGwYAGDNmDFasWBHumYmIiIiI6HckLkaLKI00iS0t5lhsueKfUDjth0ci\ntSdn3lsAgMLzZiA5Vt+jaTmHxMdoEa1TSV7XYtRApYysgUWjkiMv1STRicITVCqx57/vorpgG0wD\n+5zQsxAREREREREREREdL/KuFkyaNAkHDx5s99rgwYND3hMMBiEIrdHrOp0Ozc3NIR3Qao0KaR0R\nEREREf12DVXKsXZ7pSS1qs+/BPWLFyB52Xeo2rAM1aNPbXPdsH0TrFvXo3rkOCgH9MOAvHiIYmiN\nOZE+/xipU+HnzeUIBoMR1TlS316xMBs1EdexWqMgquTYe7BRglN1T6xJi5xUE/QSNWgRERERERER\nERER/V502ZgjFdkRv6HqcDhgMIQWZ19dHVoDDxERERER/bYpBKCuuUWSWmtm3otTr5uKvCfvRUmv\nQfBpfx31lD/3VQDA9rMvhlEtR12dI6SaVmuUJM8/jBoRB6rsEdcBAJ1agYDHJ9nzIqNKlPTr0BWD\nVokMmwHRehVc9ha47MfnvkRERERERERERETHU2e/9Nnzee6/yM/Px+rVqwEAS5cuxZAhQ47XrYmI\niIiI6Dcgw2aAIFGtprRs7LzgSmhrKtDnrWcO/7umqhxJS75FY1o26oeejESrrpMqPSMtPgpqRWSj\npw6xWaQ9vyAIyEs1QR3haKyuaJRy5KfFYFCOFdF66cd7EREREREREREREf1edLsx58svv8SHH37Y\n7RvNmjULzz33HC644AJ4vV5MmjSp2zWIiIiIiOj3S69RID5GK1m9HdOvRnNSGrLmvwvTzs0AgKwv\n5kIW8KNw6mVIjouCKDtuv4twmCiTITPRGHEduUyGOFPkI6yOppDL0DstBiqJmofa1BZlyEo0Ymhe\nLGKjpT87ERERERERERER0e+NEAwGgyf6EJ3hKCsiIiIioj8Ot8ePNTsq4ZfoaYhl8xqMv/VSNGT0\nwuIn38YZM05FQKnCwvd+wrCByd1qzJFqlNUhW/bVorYp/NFNSRY9spIib/DpjMvtQ4PdjUa7B40O\nD1weX1h1REFAolWPlDg95OLxb4YiIiIiIiIiIiIiOpE6G2UlP47nICIiIiKiPzmVUkRSrB7FldI0\nwNT0G4Z9k6ci49t5GHv736B0NGPr1MuQmBRzQtJyjpSVaER9sxuBMJuQbBbp0oU6olHJoVHJkWBu\nHZnl9vjR4Ght1Gmwu+F0d96oIwCIM2mRnmCAqofHYxERERERERERERH9HrExh4iIiIiIjqvkWD3K\nahzw+gOS1Nt85a2wrVoM094d8CuUKDnnQgy06P6/vXuPsbI6/wX+3XsPM1yGYUAYhDrUA1irvZlK\n4LRNLVJEGyV6UltBS2O1NSWNFVMrjIrYCKJV26hNWi+1JnhrWi+IUUygVaBaevHYU2mN5xRFqv1Z\nEUEZggN79vmjcRoQRX9lz2Xz+fy33/ddk2eF5GXtle9ez3752/+JAQ11+eDIwXnuv15/32OHDW7I\nwP79qlDVu2uoL2Vk/cCMHPqvUNDOXeVs2dbRFdRp37Ezb8WMhg3un7Gjm9I4oPvrBAAAAADoKwRz\nAACAblVXKubQgwfn/764db/8vZ1NzXlqdlv+5+IL8vy0/5WRHxrTa9optbY05uXXtu/z5Jk9je4F\nwaIk6VdXyojmARnRPCBJsqvcma3bOlIsFjJ0cEMPVwcAAAAA0PsJ5gAAAN1u1PBBeXFT+/sOrLyT\njceemPaDD8n28R/OhF4SakmSYrGQ8R8Ykv+z/tX3PKZ/fSkHNfWvYlX/fXWlYg4a0jtrAwAAAADo\njXrHz0gBAIADSrFQyKGjmvbr39x8xCcyesyIXnNazluGNfXvOnHmvRh90KAUCoUqVgQAAAAAQHfp\nXTvWAADAAaOleUCGDKzfb3+vX6nYa1pA7Wn8B4akVNx32KZUKGTUQb1zDgAAAAAAvH+COQAAQI8Z\nO3r/nJozfEj/fHzcQb3utJy3NPQr5dCD9z3XlqED0q+ud84BAAAAAID3r66nCwAAAA5cQxobMnxI\n/2zauuN9jy0kGd48IB8cOTiNA/rt/+L2sw+MGJSXN2/Pth073/GZ3nriDwAAAAAA/z2COQAAQI8a\nO2pINr/+Zjorlff0fLFQyIjmAfngyMYM7N/7AzlvKRYKOeyQIfnf/2/TXu8PGVifwfuxtRcAAAAA\nAD1PMAcAAOhRA/vX5eBhA/PSq+3v+lyxUMjIoQMyZuTgDGjom19lhjQ2ZNSwgfnH5u1vuzd6hNNy\nAAAAAABqTd/czQYAAGrKoQcPzsuvbU+58+2n5hQLhYw6aGBaWxrTv77vf4UZO7opm7buyM5yZ9e1\nhrpSRjQP6MGqAAAAAACohmJPFwAAAFDfr5QxLYN3u1YqFNI6ojGTjhyZww5prolQTpL0qyvlf4xq\n2u3awQcNTLFQ6KGKAAAAAAColtrY2QYAAPq8Q1oG5aVN7Sl3VjJ6+KC0tgxKv7pST5dVFaMOGpj/\n2rw9r2/vSLFQyOjh2lgBAAAAANQiwRwAAKBXKBWL+cjYYRlQX5d+dbV9uGehUMhhhwzJk8++koOG\n9E9Dv9oMIAEAAAAAHOgEcwAAgF6jaWB9T5fQbQYPrM/o4YMyonlAT5cCAAAAAECVCOYAAAD0kLGj\nm1Iq1vbpQAAAAAAABzI7wAAAAD1EKAcAAAAAoLbZBQYAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQ\nzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAA\ngCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAA\nAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEAAAAAAAAAgCoQzAEA\nAAAAAAAAgCoQzAEAAAAAAAAAgCooVCqVSk8XAQAAAAAAAAAAtcaJOQAAAAAAAAAAUAWCOQAAAAAA\nAAAAUAWCOQAAAAAAAAAAUAWCOb3cn/70p8yaNStJ8te//jWnn356Zs2albPPPjubNm3a7dnOzs5c\neumlOe200zJr1qxs2LAhSbJhw4bMnDkzp59+ehYsWJDOzs5unwdArdrzPf3lL385M2fOTFtb29ve\nt97TAADwL3tbG7/66quZPXt2zjjjjMyYMSMvvPDCPsck1tMA1WR/GqB3sz8N0DcI5vRiN998cy65\n5JK8+eabSZJFixZl/vz5WbJkSY477rjcfPPNuz2/YsWKdHR05Oc//3m+853v5Morr0ySLF68OHPm\nzMmdd96ZSqWSlStXdvtcAGrRnu/pH/3oR/nWt76Vu+66Kx0dHXn00Ud3e957GgAA/mVva+Orr746\n06dPzx133JE5c+Zk/fr1+xyTWE8DVIv9aYDezf40QN8hmNOLjRkzJjfccEPX5x/84Ac54ogjkiTl\ncjkNDQ1JkgsvvDAvvfRS/vjHP+azn/1skuSoo47K008/nSRZt25dJk6cmCQ55phj8vjjj3fnNABq\n1p7v6SOOOCJbtmxJpVJJe3t76urqknhPAwDAnva2Nn7yySfz8ssv58wzz8yyZcu61sjW0wA9w/40\nQO9mfxqg7xDM6cWOP/74rv80k6SlpSVJ8uSTT+b222/PmWeemST5/ve/n9GjR2fbtm1pbGzser5U\nKmXXrl2pVCopFApJkkGDBuWNN97ovkkA1LA939OHHnpoFi1alC984Qt59dVXM2nSpCTe0wAAsKe9\nrY03bNiQpqam3HbbbRk1alTXSQzW0wA9w/40QO9mfxqg7xDM6WMeeuihLFiwIDfddFOGDRu2273G\nxsa0t7d3fe7s7ExdXV2KxX//M7e3t6epqanb6gU4kCxatCh33HFHli9fnlNOOaXrKNC3eE8DdJ+9\n9U3fV890vdYBus/e1sbDhw/PlClTkiRTpkzp+gXvu42xngboXvanAXov+9MAvZdgTh+ydOnS3H77\n7VmyZElaW1vfdv+Tn/xkVq1alSR56qmn8qEPfShJcuSRR2bt2rVJklWrVmXChAndVzTAAWTIkCFd\nvzhoaWnJ66+/vtt972mA7rO3vun76pmu1zpA99nb2vjoo4/OY489liT5/e9/n/Hjx+9zTGI9DdBd\n7E8D9G72pwF6L8GcPqJcLmfRokVpb2/Pueeem1mzZuX6669P8u/ekMcdd1zq6+szY8aMLF68OG1t\nbUmSuXPn5oYbbshpp52WnTt35vjjj+/JqQDUrIULF+b888/PV77yldx55505//zzk3hPA/SEvfVN\nf6ee6XqtA3S/va2N586dm6VLl2bGjBlZvXp1vvnNbyaxngboDexPA/R+9qcBeq9CpVKp9HQRAAAA\n+9PFF1+cadOm5XOf+1ySZPLkydm1a1fWrFmTJHniiSdyzz335JprrnnXMStWrMjkyZPfdRwAAAAA\nALwTJ+YAAAA1Z2990/fVM12vdQAAAAAA9jfBHAAAoObsrW/6vnqm67UOAAAAAMD+ppUVAABQczo7\nO3PZZZfl2WefTaVSyRVXXJFisZj58+dn586dGTt2bBYuXJhSqZQLL7wwc+bMycEHH/y2MePGjctz\nzz2313EAAAAAALAvgjkAAAAAAAAAAFAFWlkBAAAAAAAAAEAVCOYAAAAAAAAAAEAVCOYAAAB9Xrlc\nTltbW2bMmJGZM2fm2Wef7bp3xRVX5K677trruHnz5mXChAnp6OjourZu3bocfvjhWbt2bdXrBgAA\nAACgtgnmAAAAfd6vf/3rJMndd9+dOXPm5Ic//GE2b96cr3/96/nVr371rmNHjBiRVatWdX1etmxZ\nWltbq1ovAAAAAAAHBsEcAACgz5s6dWouv/zyJMlLL72UpqamtLe359xzz83JJ5/8rmNPPPHEPPjg\ng0mSzs7OrFu3Lh/72MeSJNu2bct5552Xs846KyeddFLuvPPOvPHGG5k6dWrK5XKS5Oqrr85DDz1U\nxdkBAAAAANBXCeYAAAA1oa6uLnPnzs3ll1+e6dOnp7W1NZ/4xCf2Oe7jH/941q9fn+3bt+e3v/1t\nJk2a1HVvw4YNOfHEE3Prrbfmpz/9aW677bYMHjw4Rx99dNasWZNyuZxVq1Zl6tSp1ZwaAAAAAAB9\nlGAOAABQM6666qo88sgjmT9/frZv3/62+8uXL8+sWbMya9asPP30013XP//5z2flypVZtmzZbifs\nDB8+PCtWrMgFF1yQH//4x9m1a1eS5Etf+lLuvfferFq1Kp/+9KdTX19f/ckBAAAAANDnCOYAAAB9\n3v33358bb7wxSTJgwIAUCoUUi2//unPCCSdkyZIlWbJkST760Y92XT/ppJNy//3355VXXklra2vX\n9VtvvTVHHXVUrrnmmpxwwgmpVCpJkgkTJmTjxo355S9/mVNPPbXKswMAAAAAoK+q6+kCAAAA/lPT\npk1LW1tbzjjjjOzatSsXXXRR+vfv/57Hjxs3Lq+99lq++MUv7nb92GOPzcKFC/PQQw9l8ODBKZVK\n6ejoSH19faZPn57ly5fnsMMO29/TAQAAAACgRhQqb/3kEwAAgPfslltuSXNzsxNzAAAAAAB4R07M\nAQAAeJ/mzZuXf/7zn/nJT37S06UAAAAAANCLOTEHAAAAAAAAAACqoNjTBQAAAAAAAAAAQC3SygoA\nAKhZO3fuzEUXXeoahOsAAAUqSURBVJQXX3wxHR0dmT17dsaPH5958+alUCjksMMOy4IFC1Is/us3\nC5s3b87MmTPzwAMPpKGhIeVyOYsXL87TTz+djo6OnHvuuTn22GN7eFYAAAAAAPQVgjkAAEDNeuCB\nB9Lc3Jyrr746W7ZsySmnnJIPf/jDmTNnTiZNmpRLL700K1euzHHHHZfVq1fn2muvzSuvvNI1funS\npdm1a1fuvvvuvPzyy3n44Yd7cDYAAAAAAPQ1WlkBAAA164QTTsh5552XJKlUKimVSlm3bl0mTpyY\nJDnmmGPy+OOPJ0mKxWJ+9rOfpbm5uWv8mjVrMnLkyJxzzjm55JJLMmXKlO6fBAAAAAAAfZZgDgAA\nULMGDRqUxsbGbNu2Ld/+9rczZ86cVCqVFAqFrvtvvPFGkuQzn/lMhg4dutv41157LS+88EJuvPHG\nfOMb30hbW1u3zwEAAAAAgL5LMAcAAKhp//jHP/LVr341J598cqZPn55i8d9fg9rb29PU1PSOY5ub\nmzN58uQUCoVMnDgxzz//fDdUDAAAAABArRDMAQAAatamTZty1lln5bvf/W5OPfXUJMmRRx6ZtWvX\nJklWrVqVCRMmvOP4o48+Oo899liS5JlnnsmoUaOqXzQAAAAAADWjUKlUKj1dBAAAQDUsXLgwDz/8\ncMaOHdt17eKLL87ChQuzc+fOjB07NgsXLkypVOq6P2XKlDz88MNpaGhIR0dHFixYkL/97W+pVCq5\n7LLL8pGPfKQnpgIAAAAAQB8kmAMAAAAAAAAAAFWglRUAAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4A\nAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAAAAAAAAAFSBYA4AAABADZo3b17uvffed7zf1taWF198\nsRsrAgAAADjwCOYAAAAAHIDWrl2bSqXS02UAAAAA1LRCxQ4MAAAAQJ9XqVRy5ZVX5tFHH01LS0vK\n5XJOPfXUbNiwIU888US2bt2aoUOH5oYbbsh9992X66+/PmPGjMkdd9yRjRs3ZvHixdmxY0eGDh2a\n733ve2ltbe3pKQEAAAD0eU7MAQAAAKgBjzzySP7yl7/kwQcfzHXXXZcXXngh5XI569evz913351H\nHnkkY8aMybJly3LOOeekpaUlN910UwYNGpRLLrkk1157be6777587Wtfy/z583t6OgAAAAA1oa6n\nCwAAAADgP/e73/0u06ZNS79+/TJs2LAcc8wxKZVKmTt3bn7xi1/kueeey1NPPZUxY8bsNu7555/P\nxo0bM3v27K5r27Zt6+7yAQAAAGqSYA4AAABADSgUCuns7Oz6XFdXly1btuTss8/OmWeemeOPPz7F\nYjF7djXv7OzMIYcckqVLlyZJyuVyNm3a1K21AwAAANQqrawAAAAAasCnPvWpLF++PB0dHdm6dWtW\nr16dQqGQiRMnZubMmRk/fnx+85vfpFwuJ0lKpVLK5XLGjh2brVu35g9/+EOS5J577skFF1zQk1MB\nAAAAqBlOzAEAAACoAVOnTs2f//znnHTSSRk+fHjGjRuXHTt25Jlnnsn06dPTr1+/HH744fn73/+e\nJJk8eXLOOeec3HLLLbnuuuuyaNGivPnmm2lsbMxVV13Vw7MBAAAAqA2Fyp7nFwMAAAAAAAAAAP8x\nrawAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAA\nAKAKBHMAAAAAAAAAAKAKBHMAAAAAAAAAAKAK/j9FTXzeTL/yawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAJaCAYAAAAcbFLpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VNW9///33HKdyT1yFQUlomgUUBARFG9UqxVtyynx\nUO8X6lHBnwqlICpFi1aK0KK9eGwPVpGK7Wlrzzm1VESBWuVXBWxBRS4CEXLPTJKZSTLr+0eYASQk\nJMyePUlez8ejj0czs/fM2msm8c1aa3+WwxhjBAAAgLhy2t0AAACA7oiQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhaSzu7du3X66afr2muv1bXXXqtrrrlG119/vX73u9/FjnnmmWcO+7k1\nP/7xj/WXv/yl1ecOPf+0005TZWVlh9q4ceNGPfzww5KkTZs26d577+3Q+Z3R3NysqVOnasKECXrx\nxRfbPPbOO+/Ua6+9Jkm69tprVVtbe8T5r732mi6++GLdeuutlrfdKq+99pruvPPODp/X1nejK/jN\nb36jX//6150+f/fu3Ro2bFgcW3S4YcOGaffu3Za9/qEee+wxLVmyRJJ0++2369NPP23z+FtuuSX2\n+34sxwPHw213A4DWpKWl6b//+79jP+/Zs0c33XST0tPTNWHCBN13333tvsa7776rU089tdXnjuX8\ntnz66afat2+fJOmss87S4sWLj+v1jsW+ffv0zjvv6IMPPpDL5Trm86L9uHfv3sPO//a3v63p06fr\n2muvtarJSaut70ZXsGHDBg0ePNjuZiSdn//85+0es3bt2g4dDxwPQha6hH79+unee+/V888/rwkT\nJmjmzJkaPHiwbr31Vi1evFhvvPGGPB6PcnNz9cQTT+iNN97Q5s2b9eSTT8rlcmnVqlWqrq7W559/\nrosvvlgVFRWx8yVp0aJF2rRpkyKRiKZNm6bx48frtdde0//93//ppz/9qSTFfn7kkUe0ePFi+f1+\nffe739XEiRM1b948/fGPf5Tf79ejjz6qLVu2yOFwaOzYsbr//vvldrt11lln6Y477tDatWu1f/9+\nffvb39ZNN910xLW+//77evLJJ9XQ0CCPx6Np06Zp+PDhuu2229TU1KTrr79eS5Ys0YABA2Ln7Nu3\nTzNnztT+/fvVt29fVVRUxJ477bTTtHr16sPO79+/vzZt2qTdu3erqqpKJSUl+uEPf6j33ntPzc3N\nOuOMMzR79mx5vV5dcsklKi4u1tatW3X//feruLhYjz32mEpLS9XY2KivfvWruuuuu7R7927ddNNN\nuuiii/Thhx+qpqZG06dP11VXXaWmpiY99dRTWr16tVwul4YNG6a5c+cqJSVFzz77rP785z8rEomo\nX79+mjt3rnr16qU///nPevbZZ+VwOORyufTQQw/pvPPOO6K/ysrKdOutt2r//v3q16+f5s2bp8LC\nQvn9fs2fP18ff/yxGhsbNXr0aD300EN65ZVXYt+NTz/9VL/5zW/01ltvSZJuvfVW5efn68knn1Q4\nHNbYsWP1xhtvqKysTPPnz1d1dbWam5s1ZcoUfeMb35Ak/fWvf9Wzzz6rxsZGpaWlacaMGRo2bJiW\nLFmiPXv2qKysTHv27FFeXp5+9KMfqVevXoe1v7y8XA8//LAqKipUVlamfv36adGiRcrPz9f27dv1\n8MMPq7KyUk6nU1OnTpXH49Ff//pXrV27VmlpaaqsrFRVVVVsZHXJkiWxnz/44AM99dRTCofDKisr\n0wUXXKDHH3+8zd+15557Tn/5y18UCoXU0NCgGTNm6PLLL2/zet5//33NmzdPDodDZ511liKRSKuv\nfckll+iyyy7T+++/L7/fr5tvvlklJSV69913NX/+fGVkZKi+vl6vvvqq3nnnnVb7NRAI6Hvf+562\nbNmiE044QS6XSyNGjIi9/jPPPKOzzjpLr776ql544QU5nU7l5uZqwYIFsX8M3XjjjfrZz36mG264\nIXb8K6+8omXLlsnpdKqgoEBz5szRwIEDNXPmTHm9Xm3dulVffPGFBg0apIULFyozM7PNfgQkSQZI\nMp9//rk555xzjnj8448/NmeffbYxxpgZM2aYX/ziF2bv3r1m+PDhJhQKGWOMef75580bb7xhjDHm\n3//9383//M//xI6/8cYbY68VPd8YY4qKisxPf/pTY4wxW7duNSNHjjQVFRVm5cqV5o477oidc+jP\nh/7/v/3tb+arX/2qMcaYhx56yMybN89EIhETCoXMLbfcEnvtoqIis2zZMmOMMZs2bTJnnnmmCQaD\nh11jZWWlGT16tPnggw9i1zxy5Eiza9euo/aLMcZ85zvfMT/60Y+MMcbs2LHDnHPOOWblypWx962o\nqDji/EP7Z8mSJeYHP/iBiUQixhhjnn76aTN37lxjjDHjx483P/7xj2PnTZkyxaxatcoYY0wwGDRT\npkwxr7/+uvn8889NUVGR+etf/2qMMeZ///d/zcUXX2yMMeZXv/qVueGGG0xDQ4Npbm429913n/nt\nb39rfvvb35pp06aZxsZGY4wxy5cvN7fddpsxxphLL73U/OMf/zDGGPP222+bJUuWHHHdK1euNOec\nc47ZsWNHrN333XefMcaYmTNnmv/6r/8yxhjT1NRkHnjgAfOzn/3siGu/5JJLzNatW01DQ4MZP368\nGTdunDHGmNWrV5vbbrvNNDY2mquuusps3rzZGGNMbW2tufLKK80//vEPs337dnP11VebysrK2Oc1\nZswYU1dXZxYvXmwuvfRS4/f7jTHG3HnnneaZZ5454hp++ctfxr4jkUjE3Hbbbeb55583xhgzceJE\n8+KLLxpjjNm7d2/s9Q79/i5evNg8+uijsdc79Ofp06ebv/3tb8YYYwKBgBk1apTZtGnTUb9Lu3fv\nNlOmTDENDQ3GGGP++Mc/mquvvjr2uq1dTygUMhdccIFZt26dMcaYP/zhD6aoqMh8/vnnR7z++PHj\nzZw5c0wkEjGlpaVm1KhRZsuWLeZvf/ubGTJkiNm9e7cxxrTZr/PnzzcPPfSQiUQipqKiwowbN84s\nXrw49vobN240//rXv8yoUaPM3r17jTHGvPDCC2bOnDnGmIO/D4cev27dOnPZZZfFHl+5cqW58sor\nTSQSMTNmzDD/9m//ZkKhkAmHw2bixInm1VdfPeLagNYwkoUuw+FwKC0t7bDHevXqpSFDhui6667T\nuHHjNG7cOI0ePbrV86P/2m3N5MmTJUlFRUU65ZRT9I9//KNTbVyzZo1efvllORwOpaSk6Fvf+pZ+\n9atf6Y477pAkXXrppZKkoUOHKhwOq76+XqmpqbHzN27cqAEDBujss8+WJA0ePFjDhw/X3//+d40a\nNeqo77tu3TrNmDFDknTSSSe1eWxrVq9eLb/fr3Xr1kmSGhsblZ+fH3v+3HPPlSTV19frvffeU01N\njZ555pnYY1u2bFFxcbE8Ho8uuugiSdIZZ5yh6urqWPuuvfba2Oe3aNEiSS3Ttps2bdLXv/51SVIk\nElFDQ4Mk6atf/ar+4z/+QxdddJHGjBmj22+/vdW2X3DBBTrppJMkSd/4xjdiI0yrV6/Wpk2b9Oqr\nr0qSgsFgq+dffvnlWrNmjYqKijRq1Cht3bpVn3zyiVatWqUrrrhCO3bs0K5duzRr1qzYOcFgUP/8\n5z9ljNH+/fsPG5F0OBzatWuXJGnkyJHyer2x/qipqTni/W+88Ua9//77euGFF7Rjxw598sknOvvs\ns1VdXa0tW7bom9/8piSpT58+HV5H9oMf/EBr1qzRc889p88++0zBYFD19fXKyclp9fh+/fppwYIF\n+sMf/qCdO3fqww8/VF1dXez51q7n448/ltvtjv3eXX311bFRtdaUlJTI4XCod+/eGjt2rNauXauh\nQ4eqT58+6tevnyTFRntb69f169dr1qxZcjgcysvL0+WXX37Ee6xfv14XXnih+vTpI0mtjhgf6u23\n39ZVV12lvLw8SdL111+v+fPnx9aVjR07VikpKZJa/ka09jkCrSFkocvYtGmTioqKDnvM6XTqxRdf\n1KZNm7R+/Xo9/vjjGjVqlGbPnn3E+RkZGUd9bafz4D0gxhi53W45HA6ZQ7b2bGxsbLeNX54miUQi\nampqiv0cDVQOhyP2Xm2dHz3m0NdozZfb6nZ37Fc7Eolo1qxZsYBUV1enUCgUez7ad5FIRMYYLV++\nXOnp6ZKkyspKpaamqqqqSh6PJ9aX0WtsrT3l5eWKRCKKRCK67bbbVFJSIkkKh8Ox/4BNnz5d3/jG\nN/TOO+/otdde089+9jO99tprh31Wkg5bnxb97KJtfeaZZ3TKKadIkmpraw9rU9Tll1+uRYsWaf/+\n/RozZozy8/P1zjvvaM2aNZo2bZrKysqUlZV12BrB8vJy+Xw+rVixQqNHj46FRkkqLS3VCSecoDfe\neOOwfxR8+TOKeuqpp7Rx40Z9/etf16hRo9TU1HTYdRza5s8++0x9+/Y97Py2vqc33HCDhgwZorFj\nx+rKK6/Uhx9+2Goboj766CN95zvf0U033aQxY8bovPPO06OPPhp7vrXrae262vr+HfpcJBKJfZ6H\n/n5GIpGj9qt0+O9Na+sTXS7XYf0WDAa1Z8+e2Hfhy1rrk0N/747lcwRaw92F6BK2b9+upUuX6pZb\nbjns8S1btujqq6/WKaecojvvvFM33XSTtm7dKqnlD2174STqt7/9raSW/8js3LlTZ599tvLy8vTJ\nJ58oFAqpqalJb775Zuz4o732hRdeqF//+tcyxigcDmvFihW64IILjvk6zz77bG3fvl0bN26UJH3y\nySd67733NHLkyDbPGzt2rF555RVJLQvc33333WN+z0PbHQ6HFYlENGfOHC1cuPCI47xer8455xy9\n8MILklqCy+TJk7Vq1ao2X3/06NH64x//GHv9Rx55RK+//rouvPBCvfrqqwoEApJa7vp86KGH1NTU\npEsuuUT19fWaPHmy5s6dq23btrXa5++++6727t0rSXr55Zc1bty42DX98pe/jH0WU6dOjd2Veejn\nN2zYMO3atUurV6/WBRdcoDFjxuhXv/qVTj75ZOXl5WngwIFKTU2NhazS0lJdffXV2rx5s84//3yt\nXbtW27ZtkyS99dZb+trXvnZYQG3PO++8oxtvvFETJ05Ufn6+1q1bp+bmZnm9Xg0dOjR2F2xpaakm\nT54sv99/WPtzc3P10UcfyRij+vp6vfPOO5Kkmpoabd68WQ888ICuuOIK7du3T7t27TrqeilJeu+9\n93TmmWfq5ptv1siRI7Vq1So1Nze32f6ioiIZY2Lr2latWtXmSE/0evbu3au1a9fGPq9DtdWvY8eO\n1auvvqpIJKKamppWv3ujRo3S+vXrtX//fknS8uXL9dRTT0lq/Xf3wgsv1J/+9KfYXYcrV65UTk5O\nbIQU6CxGspCUgsFg7K43p9Op1NRU3X///br44osPO27IkCG68sor9fWvf10ZGRlKS0uLjWKNHz9e\nCxYsOKYRqM8//1wTJ06Uw+HQwoULlZOTE/uX/JVXXqnCwsLYVJLU8h/mRYsW6e6779a3v/3t2OvM\nnj1b3//+93XNNdeosbFRY8eO1V133XXM152Xl6dnnnlG8+bNUzAYlMPh0BNPPKGBAwe2eUv83Llz\n9d3vfldXXnmlevfurSFDhhzze0rSd77zHS1YsEDXXXedmpubdfrpp2vmzJmtHvvDH/5Q8+bN0zXX\nXKNwOKyrr75aX/va19ps37e+9S3t2bNH119/vYwxGjlypKZMmSKn06l9+/Zp0qRJcjgc6tOnj37w\ngx/I7XZr1qxZeuCBB2Kjio8//nhsyuZQRUVFmjVrlsrLyzVo0CA99thjkqTvfe97mj9/fuyzuOCC\nC3TbbbdJOvy7cd111+miiy7Spk2blJeXpxEjRqimpkZXXHGFJCklJUVLly7V/Pnz9Ytf/EJNTU26\n7777YtPPjz32mO6///7Y6NOzzz7b5qjpl91999168skntXTpUrlcLg0fPjw23fj000/r0Ucf1bJl\ny+RwODR//nwVFhZq3LhxmjdvnqSW6be3335bV1xxhXr16qVhw4bJGKPs7Gzdcccduu6665STk6Pc\n3FwNHz5cO3fu1IknnthqW66++mr9+c9/1lVXXSWPx6PRo0erpqYmFoJb4/F49JOf/ESPPPKIFi5c\nqNNPP/2wqeYv2717t66//noFg0HNnj1bgwYNUllZ2WHHDB48+Kj9es8992ju3Lm68sorlZeXd8To\nttRys8eDDz4Y+7wLCwtjC/4vv/xylZSUaOnSpbHjx4wZo5tuukk33nijIpGI8vLy9NOf/vSIUVOg\noxyGcU8AQAIcevcf0BMQ0wEAACzASBYAAIAFGMkCAACwACELAADAAoQsAAAACyRlCYeyMr/dTTgm\nubkZqqqqt7sZPQ79bh/63j70vT3od/t0pb4vLPS1+jgjWcfB7T6y0jCsR7/bh763D31vD/rdPt2h\n7wlZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAW\nIGQBAABYoN29C5ubmzV79mxt375dDodDjz76qFJTUzVz5kw5HA4NHjxYc+fOldPp1IoVK7R8+XK5\n3W5NnTpV48ePVzAY1IMPPqiKigplZmZqwYIFysvLS8S1AQAA2Kbdkaw333xTkrR8+XJNmzZNP/rR\nj/TEE09o2rRpeumll2SM0apVq1RWVqZly5Zp+fLlev7557Vw4UKFw2G9/PLLKioq0ksvvaSJEydq\n6dKlll8UAACA3dodybrssst08cUXS5L27t2rrKwsrVu3TiNHjpQkjRs3TmvXrpXT6dSwYcOUkpKi\nlJQUDRgwQFu2bNGGDRt02223xY4lZAEAgJ7gmNZkud1uzZgxQ/PmzdM111wjY4wcDockKTMzU36/\nX4FAQD6fL3ZOZmamAoHAYY9HjwUAAOju2h3JilqwYIEeeOABTZo0SaFQKPZ4XV2dsrKy5PV6VVdX\nd9jjPp/vsMejx7YnNzdDbrerI9dhm8JCX/sHIe7od/vQ9/ah7+1Bv9unq/d9uyHrd7/7nfbt26c7\n77xT6enpcjgcOvPMM/Xuu+9q1KhRWrNmjc4//3wVFxdr0aJFCoVCCofD2rZtm4qKijR8+HC99dZb\nKi4u1po1azRixIh2G1VVVR+Xi7NaYaFPZWWMzCUa/W4f+t4+9L096Hf7dKW+P1oYdBhjTFsn1tfX\n67vf/a7Ky8vV1NSk22+/XaeccormzJmjxsZGDRo0SN///vflcrm0YsUKvfLKKzLG6M4779SECRPU\n0NCgGTNmqKysTB6PR08//bQKCwvbbGxX6tSu0tbuhH63D31vH/reHvS7fbpS33c6ZNmhK3VqV2lr\nd0K/24e+tw99bw/63T5dqe+PFrIoRgoAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACA\nBY654jsAIH5Wf7CnQ8f7vGnyB4JHPH7xOf3i1SQAccZIFgAAgAUIWQAAABYgZAEAAFiAkAUAAGAB\nQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUI\nWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBk\nAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAF\nAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYA\nAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAA\nABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAA\nWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABg\nAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAXcbT3Z2NioWbNmac+ePQqHw5o6dar69Omj\nO++8UyeffLIkafLkybrqqqu0YsUKLV++XG63W1OnTtX48eMVDAb14IMPqqKiQpmZmVqwYIHy8vIS\ncV0AAAC2ajNk/f73v1dOTo6eeuopVVdXa+LEibr77rt1880365ZbbokdV1ZWpmXLlmnlypUKhUIq\nKSnRmDFj9PLLL6uoqEj33HOPXn/9dS1dulSzZ8+2/KIAAADs1uZ04Ve+8hXdd999kiRjjFwulzZv\n3qzVq1frhhtu0KxZsxQIBLRx40YNGzZMKSkp8vl8GjBggLZs2aINGzZo7NixkqRx48Zp/fr11l8R\nAABAEmhzJCszM1OSFAgEdO+992ratGkKh8P65je/qTPPPFPPPvusfvKTn2jIkCHy+XyHnRcIBBQI\nBGKPZ2Zmyu/3W3gpAAAAyaPNkCVJpaWluvvuu1VSUqJrrrlGtbW1ysrKkiRdfvnlmjdvns4991zV\n1dXFzqmrq5PP55PX6409XldXFzuvPbm5GXK7XZ25noQrLPS1fxDijn63D30fHz5vWlzO4fOwHn1s\nn67e922GrPLyct1yyy16+OGHNXr0aEnSrbfeqjlz5qi4uFjr16/X0KFDVVxcrEWLFikUCikcDmvb\ntm0qKirS8OHD9dZbb6m4uFhr1qzRiBEjjqlRVVX1x39lCVBY6FNZGaNziUa/24e+jx9/INih433e\ntFbP4fOwFt95+3Slvj9aGGwzZD333HOqra3V0qVLtXTpUknSzJkz9fjjj8vj8aigoEDz5s2T1+vV\nlClTVFJSImOMpk+frtTUVE2ePFkzZszQ5MmT5fF49PTTT8f/ygAAAJKQwxhj7G7El3Wl5NpV2tqd\n0O/2oe/jZ/UHezp0/NFGsi4+p1+8moRW8J23T1fq+6ONZFGMFAAAwAKELAAAAAsQsgAAACxAyAIA\nALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAA\nwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAA\nCxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAs\nQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAA\nIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKE\nLAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAEhiDaEm\nGWPsbgaATiBkAUCSKq9p0KtvbtO7/9xH0AK6IEIWACSprTurZSR9/HmNPvyk3O7mAOggQhYAJKFQ\nY7N2fOFXZppb6akurdu4V7v3B+xuFoAOIGQBQBLavrdWzRGj0wbkaPzwfnI6HXr7w1JV+UN2Nw3A\nMSJkAUCSMcbo48+r5XRIp/TLVkF2ui49b4AamyP664bdagg12d1EAMeAkAUASaa8JqjqQFgn9vIp\nPdUtSRp8Yo6KT8lXXbBJW3ZW2dxCAMeCkAUASebjz6slSYP7Zx/2+Bkn50qSymqCCW8TgI4jZAFA\nEgk3NmtHqV/edI/65Gcc9lyKx6WszBRV1AQp6QB0AYQsAEgin5W2LHgffGK2HA7HEc8XZKepsSmi\n2rqwDa0D0BGELABIEsYYffJ5jRwO6dR+2a0ek5+dJqll3RaA5EbIAoAkUeUPqcof0okneGML3r+s\ngJAFdBmELABIEhW1LcGpX0HmUY/J86XK6ZAqCFlA0iNkAUCSqPa3rLPK8aUe9RiXy6lcX6oqa0Nq\njrD4HUhmhCwASBLRau453qOHLEnKz05XxBiqvwNJjpAFAEmiOhCSN90jj7vtP80H12U1JKJZADqJ\nkAUASaAh1KRguLnNqcKoaMhiXRaQ3AhZAJAEolN/ud6Udo/N8qbI7XJwhyGQ5AhZAJAEqgMH1mMd\nw0iW0+FQfnaaagJhNosGkhghCwCSQGwk6xhClnRwynDnF37L2gTg+BCyACAJVAfCcjocyspof7pQ\nkgqy0yVJ20trrWwWgONAyAIAmxljVBMIKdubIqfzyP0KWxPdXuczQhaQtAhZAGAzf32jmprNMU8V\nSlJmmltpKS7tIGQBSav1zbEOaGxs1KxZs7Rnzx6Fw2FNnTpVp556qmbOnCmHw6HBgwdr7ty5cjqd\nWrFihZYvXy63262pU6dq/PjxCgaDevDBB1VRUaHMzEwtWLBAeXl5ibo2AOgSYovej+HOwiiHw6GC\n7DTtLqs7MAp27AENQGK0OZL1+9//Xjk5OXrppZf0i1/8QvPmzdMTTzyhadOm6aWXXpIxRqtWrVJZ\nWZmWLVum5cuX6/nnn9fChQsVDof18ssvq6ioSC+99JImTpyopUuXJuq6AKDL6Oii96jolOH2Uha/\nA8mozZD1la98Rffdd5+kljUDLpdLH330kUaOHClJGjdunNatW6eNGzdq2LBhSklJkc/n04ABA7Rl\nyxZt2LBBY8eOjR27fv16iy8HALqeav+xl284VOwOw32ELCAZtRmyMjMz5fV6FQgEdO+992ratGky\nxsjhcMSe9/v9CgQC8vl8h50XCAQOezx6LADgcFWBsDxupzJS21zBcYSszJbpxbJqttcBklG7v9Gl\npaW6++67VVJSomuuuUZPPfVU7Lm6ujplZWXJ6/Wqrq7usMd9Pt9hj0ePPRa5uRlyu10dvRZbFBb6\n2j8IcUe/24e+jw+ft2UUqqk5In9dWL3zM5XlSz+mc6IyMlLldEjVdWE+FwvRt/bp6n3fZsgqLy/X\nLbfcooeMB80RAAAgAElEQVQfflijR4+WJJ1xxhl69913NWrUKK1Zs0bnn3++iouLtWjRIoVCIYXD\nYW3btk1FRUUaPny43nrrLRUXF2vNmjUaMWLEMTWqqqr++K8sAQoLfSorY3Qu0eh3+9D38eMPtGyJ\nU1ETlJHky/DEHmuNz5vW6vN5WWnaWxbgc7EI33n7dKW+P1oYbDNkPffcc6qtrdXSpUtji9a/973v\n6fvf/74WLlyoQYMGacKECXK5XJoyZYpKSkpkjNH06dOVmpqqyZMna8aMGZo8ebI8Ho+efvrp+F8Z\nAHRh0TsLc33HfmfhoQqy07RlV7Uam5rl6SIzAEBP4TDGGLsb8WVdKbl2lbZ2J/S7fej7+Fn9wR5J\n0vtb9uufO6o0YdSJ6pWbcdTjjzaStX1vrd7eWKr5t49Sn/xMy9rbU/Gdt09X6vujjWRRjBQAbBQr\n39DJOleFOS3ruFj8DiQfQhYA2Kg6EFJGmlspns5N9RXktCyGL6s++nouAPYgZAGATYLhZjWEmjtc\nhPRQjGQByYuQBQA2qYltp0PIArojQhYA2CTQ0CippXxDZ/nSPUr1uFRew3QhkGwIWQBgk2jI8qZ3\nPmQ5HA4V5qSprLpBSXizONCjEbIAwCbxCFlSy5RhMNysumBTPJoFIE4IWQBgk2jIykzv2J6FX1aQ\nzbosIBkRsgDAJoH6RmWkuuVyHt+f4sJYGQdCFpBMCFkAYINIxKg+1KTM45wqlLjDEEhWhCwAsEFd\nsFHGHN+dhVEFsZDFHYZAMiFkAYAN6hpaFqnHYySrIJvpQiAZEbIAwAb+ON1ZKEmpHpeyvSkqryFk\nAcmEkAUANqiLhazju7MwqjA7XRU1ITVHInF5PQDHj5AFADaIV42sqMKcNEWMUWVtKC6vB+D4EbIA\nwAaBhkY5JGWmxStktSx+L2ddFpA0CFkAYINAfaMy0txyOh1xeb1YQVL2MASSBiELABKssSmi+lBT\n3KYKJQqSAsmIkAUACVbpbxltim/IoiApkGwIWQCQYOUHioZ641CINCrHlyq3y0FBUiCJELIAIMGi\n9aziOZLldDiUn51OrSwgiRCyACDBymviP10otazL8tc3qiHUFNfXBdA5hCwASLBoyIrHljqHKjxw\nh2E5dxgCSYGQBQAJVl7dIIdDykiLT7X3KGplAcmFkAUACVZeE1RmmkdOR3xqZEVFyzjsJ2QBSYGQ\nBQAJFG5sVk1dOK53FkblZbWELLbWAZIDIQsAEqii1ppF75KU50uVJFUFCFlAMiBkAUACRetYWRGy\nfJkpcjkdqvYTsoBkQMgCgASqsKBGVpTT4VCON0VVfu4uBJIBIQsAEqgsViMrvncWRuX4UlUdCCti\njCWvD+DYEbIAIIEOFiJNseT1c72pao4Y+evClrw+gGNHyAKABCqvbpDb5VR6qsuS18/1tdxhyOJ3\nwH6ELABIoPKaoPKz0+SIc42sqNzoHYaUcQBsR8gCgAQJhpsUaGhUQXaaZe+RSxkHIGkQsgAgQaLr\nsQoTEbIo4wDYjpAFAAlSeaAQabQyuxUIWUDyIGQBQIJEt7vJy0q17D1yvIQsIFkQsgAgQSoPBJ88\nn3UjWR63U950DyELSAKELABIkKoD04W5Fo5kSS17GFb5QzIUJAVsRcgCgAQ5OJJlbcjK8aUq1Nis\nhlCzpe8DoG2ELABIkEp/SL4MjzxuawqRRuVRxgFICoQsAEgAY4yqaoOxu/+slBO7w5CNogE7EbIA\nIAHqgk0KN0UsXfQeRRkHIDkQsgAgASoTtOhdOhiyqglZgK0IWQCQAFUJWvQuSbnUygKSAiELABIg\ndmehhdXeo3IPTEkSsgB7EbIAIAFiW+okYCQrPdWlVI+LkAXYjJAFAAkQDTy5CRjJcjgcyvWlUsIB\nsBkhCwASILbw3Wv9SJbUsvjdX9+oxqZIQt4PwJEIWQCQAFX+kLIyPPK4E/NnN3aHIaNZgG0IWQBg\nMWOMKv2hhEwVRlErC7AfIQsALBZoaJm2S8Si96gcyjgAtiNkAYDFDtbIStxIVh4jWYDtCFkAYLHK\n2uidhQkcySJkAbYjZAGAxaIbNSdyujA2ksXCd8A2hCwAsFgiq71H+TJT5HI6YgEPQOIRsgDAYrEa\nWQkcyXI6HMrxprBJNGAjQhYAWCxW7T2BIUtqWZdVHQgrYkxC3xdAC0IWAFissjakrMwUuV2J/ZOb\n601Vc8TIXxdO6PsCaEHIAgALRQuRJnLRe1TugZIRlUwZArYgZAGAhfwNjWpqjiR00XtUbGsdQhZg\nC0IWAFioqtae9ViHvidlHAB7ELIAwEKV0RpZCSxEGsX+hYC9CFkAYKFKG0eycrwpkqRqRrIAWxCy\nAMBCduxbGJV9YJPo6gB3FwJ2IGQBgIXsnC5M9biUkepmJAuwCSELACxUWRuSQ1KON/EhSzpQkJQ1\nWYAtCFkAYKEqf1BZ3sQXIo3K8aaoLtikxqZmW94f6MkIWQBgkYgxqrKpEGlUDuuyANsQsgDAIoH6\nRjU1G1sWvUcdDFlMGQKJ5ra7AQDQXUUXvedauOh99Qd72ny+rKZBkrR28xfaU17X6jEXn9Mv7u0C\nwEgWAFgmWiPLzpGsjNSWf0s3BJtsawPQUxGyAMAisRpZNpRviIqGrPoQIQtINEIWAFiksvbAdKGN\nC9/T0w6MZBGygIQjZAGAReys9h6VnuqSJNUzXQgkHCELACxSWRuUwyFlH9hD0A4up1OpHhcjWYAN\nCFkAYJFKf0jZmfYVIo3KSHOzJguwASELACwQK0SaZd9UYVR6qluNTRE1NkXsbgrQoxCyAMAC/rqw\nmiPG1kXvUbEyDoxmAQlFyAIAC1QmwaL3qOgdhkwZAol1TCHrww8/1JQpUyRJ//znPzV27FhNmTJF\nU6ZM0Z/+9CdJ0ooVK3T99ddr0qRJevPNNyVJwWBQ99xzj0pKSnT77bersrLSossAgOQSK0RqY42s\nqIwDdxhSkBRIrHa31fn5z3+u3//+90pPT5ckffTRR7r55pt1yy23xI4pKyvTsmXLtHLlSoVCIZWU\nlGjMmDF6+eWXVVRUpHvuuUevv/66li5dqtmzZ1t3NQCQJGJb6iTBdGE6BUkBW7Q7kjVgwAAtWbIk\n9vPmzZu1evVq3XDDDZo1a5YCgYA2btyoYcOGKSUlRT6fTwMGDNCWLVu0YcMGjR07VpI0btw4rV+/\n3rorAYAkcrDau/3ThazJAuzRbsiaMGGC3O6DA17FxcV66KGH9Otf/1onnniifvKTnygQCMjn88WO\nyczMVCAQOOzxzMxM+f1+Cy4BAJJPtNp7XjKMZEXXZDFdCCRUu9OFX3b55ZcrKysr9v/nzZunc889\nV3V1B3d3r6urk8/nk9frjT1eV1cXO689ubkZcrtdHW2aLQoLfe0fhLij3+1D3x+bQLBJTod06sn5\ncrVSJ8vn7fgIV2fOkaSMjJagF26KtPoafKZto3/s09X7vsMh69Zbb9WcOXNUXFys9evXa+jQoSou\nLtaiRYsUCoUUDoe1bds2FRUVafjw4XrrrbdUXFysNWvWaMSIEcf0HlVV9R2+EDsUFvpUVsboXKLR\n7/ah74/dvop6ZXtTVVlZ1+rz/kCwQ6/n86Z1+JxDpaW45K8Pt/oafKZHx3fePl2p748WBjscsh55\n5BHNmzdPHo9HBQUFmjdvnrxer6ZMmaKSkhIZYzR9+nSlpqZq8uTJmjFjhiZPniyPx6Onn376uC8E\nAJJdJGJUHQjp5N7J86/wjDS3auvCMsbI4XDY3RygRzimkNW/f3+tWLFCkjR06FAtX778iGMmTZqk\nSZMmHfZYenq6Fi9eHIdmAkDXUVt/oBBpEix6j0pPdauyNqTGpohSPF1jOQbQ1VGMFADiLFYjKwkW\nvUdlUMYBSDhCFgDEWZU/ee4sjEqnjAOQcIQsAIizg9Xek2e6MIMyDkDCEbIAIM6Sqdp7FAVJgcQj\nZAFAnCVTtfcottYBEo+QBQBxVlkbktPhUHZmit1NiYlOF7JJNJA4hCwAiLMqf1A5vhQ5nclTjyo1\nxSWHg5EsIJEIWQAQR5GIUZU/nFTrsSTJ6XAoPcWthlCz3U0BegxCFgDEUU1dWBFjlOdLnvVYUelp\nbtWHmmSMsbspQI9AyAKAOIreWZiXlVwjWVLLHYaRiFG4MWJ3U4AegZAFAHFUdaBGVm4yjmRxhyGQ\nUIQsAIijSn/ybakTFbvDkJAFJAQhCwDiqLL2QCHSJJwujI1kUcYBSAhCFgDEUawQaRJOF7JJNJBY\nhCwAiKNKf1AuZ3IVIo1i/0IgsQhZABBHlbUh5XiTqxBpFCNZQGIRsgAgTpojEdUEwspNoj0LD5Xi\nccrldKg+2Gh3U4AegZAFAHFSE4gWIk2+Re+S5HA4lJHmZroQSBBCFgDESWUSL3qPykh1KxhuVnOE\nqu+A1QhZABAnFTUt5Rvys5M4ZFErC0gYQhYAxEm0RlYybqkTlZHmkcQdhkAiELIAIE7KD4Ss/CRd\n+C4dcochi98ByxGyACBOotOFBV1gupAyDoD1CFkAECcVtUGlp7piU3LJiIKkQOIQsgAgTiprg8pL\n4qlCiZAFJBIhCwDioD7YqIZQc1Kvx5Kk9BS3HGK6EEgEQhYAxEF5FyjfIElOp0NpqRQkBRKBkAUA\ncVBx4M7CgiQfyZIUq/puDAVJASsRsgAgDiprD1R77wIhKzPNrYgxCjU2290UoFsjZAFAHHSFau9R\n6aksfgcSgZAFAHHQFQqRRnGHIZAYhCwAiIOKmqBcToeyvSl2N6VdmYQsICEIWQAQBy01slLldDjs\nbkq7MlJbiqXWUcYBsBQhCwCOU2NTs2rqwl1iqlA6dLqQ/QsBKxGyAOA4Re8s7AqL3iXWZAGJQsgC\ngOPUlRa9S5Lb5VSK20nVd8BihCwAOE6VNV0rZEkHC5ICsA4hCwCOU7Tae1eZLpRaQlZjU0SNTRG7\nmwJ0W4QsADhOXakQaVT0DkNGswDrELIA4DhFR7LyfF0oZEUXv4e4wxCwCiELAI5TRW1Q2d4Uedxd\n508qdxgC1us6fxEAIAlFjFFlbahLLXqXCFlAIhCyAOA41ATCao6YrheyoptEU8YBsAwhCwCOQ1dc\n9C4xkgUkAiELAI5DRRcrRBqV6nHJ6XQQsgALEbIA4Dh01ZDlcDiUkerm7kLAQoQsADgOXXW6UGqZ\nMmwINaupmYKkgBUIWQBwHLrqSJZ0cF1WbV3Y5pYA3RMhCwCOQ0VtUOmp7lhg6UqidxhW+UM2twTo\nnghZANBJxhhV1ASVn5Vqd1M6JRoMCVmANQhZANBJ9aEmBcPNXXKqUJIy01r2LyRkAdYgZAFAJ3Xl\nRe/SwZGs6LoyAPFFyAKATiqrbpAkFWSn29ySzvGmt4xkEbIAaxCyAKCT9h8IWSfkds2QlZbiksvp\nUHkNIQuwAiELADqprOpAyMrpmiHL4XAoM90Tm/YEEF+ELADopOhIVmEXDVmSlJnmVqChUaFws91N\nAbodQhYAdNL+qgZlZ6YoNcVld1M6Lbouq5x1WUDcEbIAoBOamiOqrA2psIuux4qKLX6vabC5JUD3\n0/VKFAOAjVZ/sEeS5K8PK2KMIhETe6wryoyFLEaygHhjJAsAOsFf3yhJ8mV4bG7J8fGmt/xbmzsM\ngfgjZAFAJ/jrWzZV7uohK5NaWYBlCFkA0Amxkaz0FJtbcnzSU93UygIsQsgCgE6IhixvFx/Jcjoc\nystKZU0WYAFCFgB0gr8+LLfLobQuXL4hqiA7XTV1YTU2USsLiCdCFgB0kDFGgYZG+TJS5HA47G7O\nccvPatnguqI2ZHNLgO6FkAUAHRQMN6up2XT5Re9RBdkHQhZThkBcEbIAoIO6y52FUfkHQlY5BUmB\nuCJkAUAHdZc7C6MOThcykgXEEyELADqou9xZGFUQG8kiZAHxRMgCgA4KNHSPau9ROb5UORysyQLi\njZAFAB3krw/L4ZAy07pHyHK7nMrzpTKSBcQZIQsAOshf3yhvukdOZ9cv3xCVn5Wm6kBITc0Ru5sC\ndBuELADogMamiILhZnnTu8coVlR+drqMkSr91MoC4oWQBQAdcLB8Q/e4szAqn1pZQNwRsgCgA2Ll\nG7rJoveoAmplAXFHyAKADvB3szsLoxjJAuKPkAUAHRDoptOFBVmELCDeCFkA0AGxQqTdbOF7HlXf\ngbgjZAFAB/jrG5WW4pLH3b3+fHrcTmV7U6iVBcRR9/orAQAWamqOqC7Y2O3WY0UVZKepyh9SJGLs\nbgrQLRxTyPrwww81ZcoUSdLOnTs1efJklZSUaO7cuYpEWgrXrVixQtdff70mTZqkN998U5IUDAZ1\nzz33qKSkRLfffrsqKystugwAsF5lbVDGdL/1WFH5WWlqjhhVB6iVBcRDuyHr5z//uWbPnq1QqOWX\n7oknntC0adP00ksvyRijVatWqaysTMuWLdPy5cv1/PPPa+HChQqHw3r55ZdVVFSkl156SRMnTtTS\npUstvyAAsMoXlS3lDbK67UhWuiQ2igbipd2QNWDAAC1ZsiT280cffaSRI0dKksaNG6d169Zp48aN\nGjZsmFJSUuTz+TRgwABt2bJFGzZs0NixY2PHrl+/3qLLAADrlVbUSZKyvak2t8QalHEA4qvdkDVh\nwgS53e7Yz8YYORwt+3VlZmbK7/crEAjI5/PFjsnMzFQgEDjs8eixANBVxUJWZvecLowWJC2rpiAp\nEA/u9g85nNN5MJfV1dUpKytLXq9XdXV1hz3u8/kOezx67LHIzc2Q2+3qaNNsUVjoa/8gxB39bp+e\n3PdlNSE5HFLfE3xyuRJ/35DPm2bJ60Y/0zMO/H2vqmvs0Z/zl9EX9unqfd/hkHXGGWfo3Xff1ahR\no7RmzRqdf/75Ki4u1qJFixQKhRQOh7Vt2zYVFRVp+PDheuutt1RcXKw1a9ZoxIgRx/QeVVX1Hb4Q\nOxQW+lRWxuhcotHv9unJfW+M0a4vauVN96i+IZzw9/d50+QPWDONF/1MHREjt8upHaU1PfZz/rKe\n/J23W1fq+6OFwQ6HrBkzZmjOnDlauHChBg0apAkTJsjlcmnKlCkqKSmRMUbTp09XamqqJk+erBkz\nZmjy5MnyeDx6+umnj/tCAMAO/vpG1QWb1P8Er91NsYzT6VCvvHR9UVl/2NIQAJ1zTCGrf//+WrFi\nhSRp4MCBevHFF484ZtKkSZo0adJhj6Wnp2vx4sVxaCYA2Ku7r8eK6p2XoT1ldaoOhJXr654L/IFE\noRgpAByDvRUtyxhyvN07ZPXJz5AkfVFR186RANpDyAKAY1Ba3nNGsiTpi8qusTYWSGaELAA4BqUH\nQkdWNx/J6p2XKeng9QLoPEIWAByD0oo65fpSldJFyst0Vmwkq4KQBRwvQhYAtCMYblJlbSgWQLqz\njDS3sjNTmC4E4oCQBQDtKD0wqtM3P9PmliRG77wMVdQEFW5strspQJdGyAKAdkTLN/Qp6P4jWZLU\nOz9DRtL+KrbXAY4HIQsA2hEdyerTQ0ay+hyYFmXxO3B8CFkA0I69B8o39M3vOSNZErWygONFyAKA\ndpRW1Csj1a2sbl4jK4paWUB8ELIAoA1NzRHtr2pQn4KMHrOXX0F2utwuR2yaFEDnELIAoA37qxoU\nMabHrMeSDmwUnZsR2ygaQOcQsgCgDbE7C3vIeqyo3nkZCoabVVMXtrspQJdFyAKANuztYXcWRh1c\n/M6UIdBZhCwAaEN0JKun3FkY1ZsyDsBxI2QBQBtKy+vldjlVkJ1ud1MSipEs4PgRsgDgKCLGqLSy\nTr3zMuR09ow7C6P6UMYBOG6ELAA4israoMKNEfXtIdvpHCojzaOsDI++qKQgKdBZhCwAOIrdZQfW\nYxX0rEXvUb3zM1VeHVRjExtFA51ByAKAo9i1zy9JGtDLZ3NL7NE7r2Wj6H1sFA10itvuBgBAstq1\nLyBJGnCC1+aW2CO2vU5FvfoXJq4PVn+wJy6vc/E5/eLyOkBnMZIFAEexa59f3nSPcn2pdjfFFtG1\naHvKWZcFdAYhCwBaUR9sVHlNUCf18vaYPQu/7KQD06Q7SmttbgnQNRGyAKAVsanCHroeS5KyvanK\nz0rV9tJa9jAEOoGQBQCt6OmL3qMG9slSbX2jKmqDdjcF6HIIWQDQip2xkayeueg9amDfLEnS9lK/\nzS0Buh5CFgC0Ytd+v1I8TvXK7XmFSA81sHc0ZLEuC+goQhYAfEljU7NKy+t14gneHredzped1Nsn\nh6TtewlZQEcRsgDgS3aX1SliTI9fjyVJ6alu9S3I1I4v/IpEWPwOdAQhCwC+JLro/SRClqSWxe+h\nxmbtraBeFtARhCwA+JJo+YYTe2il9y+LLX5nyhDoEEIWAHzJrn1+OR0O9S/smRtDf9mgPix+BzqD\nkAUAh4hEjD4vC6hvQYY8bpfdzUkK/Qoz5XY59RkhC+gQQhYAHGJfVb3CjREWvR/C7XLqpF5e7d5f\np3Bjs93NAboMQhYAHGInld5bNbBPliLGaNf+gN1NAboMQhYAHCK2ZyGL3g/D4neg4whZAHCIg3sW\nErIOxeJ3oOMIWQBwgDFGu/YFVJCdpow0j93NSSon5KYrI9XN4negAwhZAHBAlT+kQEMjRUhb4XA4\nNLBvlvZXNSjQ0Gh3c4AugZAFAAd8dmC90Um9CVmtGXhgynAHo1nAMSFkAcABn+6pkSQN7p9tc0uS\n06ADi9+37Kq2uSVA10DIAoADPtldI5fToZMPjNjgcKeflKsUj1Mbtu6XMWwWDbSHkAUAkkKNzdq1\nz68BvXxK9VDpvTWpHpeKB+VrX1WD9pSxWTTQHkIWAKhlnVFzxDBV2I5zh5wgSXp/636bWwIkP0IW\nAKhlqlCSTu1HyGpL8Sn58ridem8LIQtoDyELAMSi92OVluLWWYPyVVpRrz3lTBkCbSFkAejxIsZo\n254aFeakKdubandzkt65pxVKkjYwmgW0iZAFoMcrrahXXbBJp/bLsbspXcLZpxbI7XKwLgtoByEL\nQI/36e6Wuk9MFR6b9FS3zhyYr91ldSqtYMoQOBpCFoAe71MWvXfYiOiU4dYym1sCJC+33Q0AALt9\nsqdG6alu9S3MtLspXcawwQVyOVumDK++4OS4vW5Tc0Rl1Q3aX9Xyv5q6sE48wauhA3OVlsJ/stC1\n8I0F0KPV1IW1v6pBZw7Kk9PhsLs5XUZGmkdDB+Zp47YK7a+q1wm5Gcf1esYYrf7HHv1m9TYFw82x\nx51Ohz7aXqmtu6o0ZECuziBsoQvhmwqgR9sWLd3AVGGHjTitUBu3VegvG3ar5LKiTr+Ovz6sF/60\nRR98Wq7MNLeKTszWCbkZOiE3XWkpLn3yeY02b6/Q5u2V2rKrShcP66e+BYw6IvmxJgtAjxZbj9Wf\nOws7atTpvdQrN12r3t8dC6sd9c8dlXr4P/+uDz4t1+kn5eqxW0fp/KG9NahvlrzpHrldTp1+cq6u\nGzdI5w05QZGI9PaHpaoPNsb5aoD4I2QB6NE+2VMtp8OhQWwK3WEpHpduvup0GUn/+ad/qbGpud1z\noowx+uO6HXp6+QcK1Dfq6xcN0v/3b+co19d6nbJo2Dp3SKFCjc1a82GpIhE2qUZyI2QB6LEam5q1\n8wu/BvTyKjWFTaE7o+jEHF06vL9KK+r1+7U7jumccGOzfvr7j/Tams+Um5Wq7/77CH119MlyOttf\nE3fagByd1Mur/VUN+nBbxXG2HrAWIQtAj7VtT62amo1OpT7Wcfn6xYOUn5Wm//nbLu38wt/msVX+\nkJ749f+vv/9rv07tl605N56nQX2PfRTR4XBo9Jm95U33aNO2Cu1lax8kMUIWgB5r8/ZKSdKZA/Ns\nbknXlpbi1k1XDVHEGP3nn/6lpubIEcc0NUf09od79dgv39POL/y68Kw+enDyMGVnpnT4/VI8Lo07\np4+cDumdjaVqCDXF4zKAuOPuQgA91ubtFXK7HDrtxFy7m9LlDT05T2OL++jtjaV64CdrNbyoUMNP\nK9QpfbO1dlOp/vfvu1RZG5LL6dC3LjlVl593ohzHUTKjIDtdw4sK9f7WMm3cVqFRZ/SK49UA8UHI\nAtAj1dSFtWtfQKeflMt6rDj51qWD5XE79d6W/Vr9wV6t/mBv7LkUj1NXnHeiJowccNTF7R015KRc\n/WtnlT7dXaOzT82nfhaSDt9IAD3SR9tbFk2fOYipwnhJT3Xr3684TSWXFemT3dXasLVMn+6p0ZmD\n8nXZuf2VldHxqcG2OJ0OnXFynt7bsl9bdlbrnMEFcX194HgRsgD0SNH1WGcNzLe5Jd2P0+nQaQNy\nddoA66dhT+2frY3bKrRlV5WGDsyTx81SYyQPvo0AepyIMdr8WaVyvCnqx36FXZrH7dRpA3IUbozE\nCssCyYKQBaDH2bXPr0BDo4YOzDuuxddIDkNOypHL6dBHOyopUIqkQsgC0ONs/ixauoGpwu4gLcWt\nwf2zVR9s0vbSWrubA8QQsgD0OJs/q5BD0lDqY3UbZ5ycJ4dD+mh7pYxhNAvJgZAFoEdpCDVp295a\nndynZQNidA/eDI9O7u1TdSCsPVSBR5IgZAHoUf61s0rNEUOV927o9JNbPtNte5gyRHIgZAHoUTZ/\n1lIf66xBrMfqbvKzUpWVmaLd+wMKNzXb3RyAkAWg5zDGaPP2SqWnujWwr8/u5iDOHA6HBvXxqTli\ntOuLgN3NAQhZAHqOLyrrVV4T1Bkn58rl5M9fdzSwb5YkcZchkgIV3wH0GL9ZvU2SlJbi0uoP9tjc\nGljBl5Giguw0fVFRr+pASDne+OyTCHQG/5QD0GPsKK2V0+HQiSd47W4KLDSob5aMpL//c5/dTUEP\nR8gC0CPsLa9TdSCsvoWZSvG47G4OLHRSb58cDmk9IQs2I2QB6BHe37JfknRybxa8d3fpqW71LcjU\nzi/8Kq2gZhbsQ8gC0CO8t2W/nE6H+p/AhtA9wcA+LQvg13/EaBbsQ8gC0O3tKQtoT3md+hVkKsXN\nVE6MsRcAACAASURBVGFPcOIJXqV6XHr3n1+wzQ5sQ8gC0O29x1Rhj+NxOzWsqEBl1UFt20s5B9iD\nkAWgWzPG6L0t++VxO9Wfuwp7lFGn95J0cD0ekGiELADd2p7yOpVW1Kt4UL48bv7k9SRnnJyrVI9L\nH3xSzpQhbNHpYqTXXXedvN6WfxX2799fd911l2bOnCmHw6HBgwdr7ty5cjqdWrFihZYvXy63262p\nU6dq/PjxcWs8ALTnvX+1jGKcd/oJqg812dwaJJLH7dKZg/K0YWuZ9pbXqV8hI5lIrE6FrFAoJGOM\nli1bFnvsrrvu0rRp0zRq1Cg9/PDDWrVqlc455xwtW7ZMK1euVCgUUklJicaMGaOUlJS4XQAAHE10\nqjDF7VTxKfn6G3WTepxhgwu0Yev/a+/Og+Oq7nyBf2/vq7pb6ta+S95tecGxDV7GjD045DF4xhs4\nCc4LSwHvkaT4IwWkhoR6AYdUPfJSARLmhUleajKpsEwyIbwKkLwANghkvMi2ZGuxLGtfWkurV/V2\nz/ujbWENlrFltW4v30+VynZ336vfPX19+9v3nnuOGyfaRxiyaN7N6tx5S0sLQqEQ7r33Xhw4cACN\njY1obm7GunXrAABbtmxBfX09Tp06hdWrV0On08FqtaK8vBwtLS1zugFERDPpHvJjcCyIupo8GHSc\nRSwb1dU4oZIknGgfUboUykKzOuoYDAbcd9992Lt3Ly5cuIAHHngAQghIkgQAMJvN8Pl88Pv9sFo/\nvZvHbDbD7+fM6ER0fWY7z+DHzYMAgByzjnMVXsVctc3WVSVzsp65ZDFqsbDMhpZuD8Z9YTisnMuQ\n5s+sQlZVVRUqKiogSRKqqqpgt9vR3Nw89XwgEEBOTg4sFgsCgcC0xy8PXTNxOEzQpMlYNi4XbwlX\nAttdOUq0vdViuO5lIrE4Ogd8sBi1WFSVB9XFL4HpbDbtMJ/mat+Yq+28VM/m1aVo6fagY8iP26ud\ns14Pzb90b/tZhazXX38dbW1teOqppzA0NAS/34+NGzeioaEB69evx6FDh7BhwwbU1dXhxz/+McLh\nMCKRCDo6OrBw4cLPXf/4eHA2Zc07l8sKt9undBlZh+2uHKXa3uefvO5l2no8iMZkLK10IBAIJ6Gq\n+WW1GGbVDvNprvaNudrOS/UsKEp8UB8+3ou1tXnXtQ4eb5STTm0/UxicVcjas2cPnnjiCezfvx+S\nJOHgwYNwOBx48skn8aMf/QjV1dXYsWMH1Go17rnnHnz5y1+GEAKPPvoo9HqeqiWi5Gvv8UACsKDU\npnQppDCn3YhSlwVnu8YQCsdg1LN/Hs2PWe1pOp0Ozz333Gce//Wvf/2Zx/bt24d9+/bN5tcQEc3K\n6MQkRr1hlOZbYDJolS6HUsDqBU78sd6P5s4xrF2cr3Q5lCU4Mh8RZZy2Hg8AYGEZz2JRwuqFib5Y\nJ9rdCldC2YQhi4gySjQmo3PAC7NBg2KnWelyKEVUFFjhsOpxqmMUsbisdDmUJRiyiCijdPZ7EYsL\nLCi1ZcQdhTQ3JEnCqgVOBCZjaO+dULocyhIMWUSUMYQQaOv1QJKA2lK70uVQilldm7hkePIcByal\n+cGQRUQZw+2ZxJg3jFKXBSYD7yCj6RaV26HXqnGyY1TpUihLMGQRUcZoOp/48Fxa6VC4EkpFWo0a\nSysdGBoLYihNxmOk9MaQRUQZYdw3iV53AC67EfkOo9LlUIqqq0kMRnrqHM9mUfIxZBFRRjh9fgwA\nsKImd2oeVaL/rK7mYr+sDvbLouRjpwUiSnveQARdAz44rHqUcNgGxaTaJNwz1ZObo0dL1zj+fLQH\nWs3VzzXs/bvFySiNsgTPZBFR2mvuHIMAsLyaZ7Ho85W4LJAFMDAaULoUynAMWUSU1oKTUXT0eWE1\naVFReOVJWokuV+pKnO3sdTNkUXIxZBFRWjtzYRyyEFhelcvBR+ma5NkMMOjU6HP7IYRQuhzKYAxZ\nRJS2JiMxtPV4YNJrUF2So3Q5lCZUkoRipxmhcBxj3rDS5VAGY8giorTV2D6KWFxgWXUu1Coezuja\nfXrJ0K9wJZTJeFQiorQ07gujvceDHLMOi8o4hQ5dn2KnGZLEflmUXAxZRJR2hBA42jIMAWDtYhdU\nKvbFouuj06qR7zBidGISoXBM6XIoQzFkEVHa6XMHMDAaRFGeieNi0ayVuiwAEvsTUTIwZBFRWpFl\ngaOtbkgAvrA4n+Ni0axdClnsl0XJwpBFRGmltdsDbyCCheV22K16pcuhNGaz6JBj0qJ/JIB4XFa6\nHMpADFlElDZC4RhOdoxAq1FhZW2e0uVQBijNtyAWFxgYCypdCmUghiwiSgtCCNQ3DSISlbGq1gmD\njlOv0o0ry794yXCYlwxp7jFkEVFaaO3xoM8dQFGeCYsrOGQDzQ2X3QidVoWe4QBHf6c5x5BFRCnP\n4w/jWIsbOq0KG1cUsbM7zRmVSkKpy4JQOMbR32nOMWQRUUqLxmQcPjmAuCxwy/JCmAy8TEhz69Il\nwx5eMqQ5xpBFRCnt94fPY9wXRm2pDeUFVqXLoQxU7DRDJUkMWTTnGLKIKGV91DSItxq6YTVp8YXF\n+UqXQxlKq1GhMM+IcV8Y/lBU6XIogzBkEVFKOtbqxr/837Mw6TX4m1XF0Gp4uKLk4cCklAw8ahFR\nymnqHMU/v9EErUaFR/etRG6OQemSKMOVcigHSgKGLCJKKW09Hrzw76cBSPjm7hWoKbEpXRJlAYtR\nC4dVj8HRICKxuNLlUIZgyCKilNFwZgj/67WTiMsC//0fl2NJZa7SJVEWKcu3QBZAPyeMpjnCkEVE\niguFY3j5zTP45zeaAQE8tHMZVtY6lS6Lskx5QeKSYdegT+FKKFNwwBkiUtT5fi/+9xvNGPaEUFlo\nxYN3LkNBrknpsigLOax65Ji06HUHEI3JvNmCbhhDFhHNOyEE2nsn8PaRbjS2jwAAvrShAv+wuQoa\nNT/YSBmSJKGyKAenOkbRO+xHVXGO0iVRmmPIIqJ5E5yM4VTHCP58tBedA14AQFVRDvZsrcGSCofC\n1REBlYVWnOoYxYVBH0MW3TCGLCJKGlkIDIwEcPr8GE51jKC9dwJxWUACsHqBEzvWlWNBqY1zEVLK\nsFv1sFt06HMHEInyLkO6MQxZRDRnorE4Ogd8ONc3gfYeD871TSAwGZt6vqrIihXVediwrBCF7HdF\nKaqy0IrGc6OcZoduGEMWEc2aNxBBR98E2vsm0N7rQdegD7G4mHreaTOgriYPSytzsbw6DzazTsFq\nia5NZVEOGs8lLhkS3QiGLCK6JrG4jHM9HhxtHkBH3wTO9U1gZGJy6nmVJKG8wILaUhsWlNpRW2KD\nw6pXsGKi2ckx6+Cw6tE/EoAvGFG6HEpjDFlE9Bn+UBSDo0EMjAbQPxpAZ78XFwZ9iMTkqdeYDRrU\n1eShujgHC0psqCrOgUHHQwplhsoiK060hfHR6QGsruaguDQ7PCISZTFvMILuQR/6RwIYGAtiYDSI\nwdEAvMHotNdJElDitGB5rRMluUZUF+egMNfEDuuUsSoLrTjRNoLDjX0MWTRrDFlEWWRoLIjjbW6c\n65tA15APY97wtOclAE67AXVFOSjKM6Eoz4zCXBPK8i0w6jVwuaxwu9lPhTKf1aRDns2AU+dG4A1G\nkGNif0K6fgxZRBlueDyII2eH8UnL8LS7pXJMWqyozkNFoRWlLvPFQGWEVqNWsFqi1FFVaMXoxCSO\nnBnC9rVlSpdDaYghiyhDuT0h/MfhTnzcPAgBQK2SUFeThy8szsfSylzYLTpe7iO6iqriHDSeG8G7\nJ/qw7aZS/n+h68aQRZRhPP4w/lh/AYca+xGXBUpdFuxYV4bVC5wwGbRKl0eUNox6DTbWleD9E71o\n7fZgMWcloOvEkEWUIYQQqG8axK//3IZwJI58hxH/sLkK65YUQMVv4ESzcvstlXj/RC/ePdHHkEXX\njSGLKAMEJqP417dbceTsMIx6Ne7ZsQib64o42TLRDVpalYtSlxnH29zw+MOwWzj2G107hiyiFPFe\nY9+slhsaC+LwqQEEJ2Nw2Q3YVFcESQI+OD0wxxUCVosBPv/k57+QKENIkoRb15TiX99uxeGT/fj7\njVVKl0RphF9zidKUEAJnu8bxzpEehCZjWFmbhx3rymHlreZEc2rD0gLodWq819iPuCx//gJEFzFk\nEaUhWRZoODOET84OQ69T47b1ZVhZ64RKxb5XRHPNqNfgluWFGPeFcfLcqNLlUBphyCJKM+FIHH85\n2ou2ngk4rHp86eYKFDhMSpdFlNFuXV0CAHj3xOwu61N2Yp8sojQy4Y/gr8d74QtGUZZvwaa6Img1\n/K5ElGylLgsWltrQ3DmGwbEgCnP5xYY+H4/ORGmifySAP33cBV8wiuVVudi6upgBi2ge/e1NpQCA\nNz7sVLgSShc8QhOlgZbucfy/Y72IxQU2rijEmkUujj5NNM/WLs5HeYEFHzcPoWuQc3jS52PIIkph\ncVlGw5khHDkzDL1WjdvWlaKmxKZ0WURZSSVJ2HdrLQDg1XfPQQihcEWU6tgniyhFeQMRHDrZjzFv\nGHaLDn+7phQWE6fFIVLS0spcLK/ORdP5MZw+P4q6GqfSJVEK45ksohQjhMC53gm8WX8BY94wakts\nuH1DBQMWUYrYt7UWkgS89m4Hx82iq2LIIkohgVAUh04OoL5pEJIkYfPKItyyopAd3IlSSGm+BRtX\nFKFvJIAPTw8qXQ6lMB65iVJAYDKKY63D+P3hTnQN+uC0GXDHLRWoKspRujQiuoJ/3FwNnUaF3x8+\nj3AkrnQ5lKLYJ4tIQeO+MOqbBvBWQzcCkzGYDBqsqnWiuiQHKt49SJSyHFY9bltXhjfru/Drd1px\n739Zwjt+6TMYsiirzXZS5hsxGYmhe9CPzgEvhsZDAACdRoU1C51YXOGARs0TzETp4I6bK9F0fgwf\nNg2iLN+C29aVz/jauTrWbF1VMifrofnBkEWUJPG4DH8oCl8oinFvGKPeSYx5w/CHolOvyXcYUVVk\nRWVRDvRatYLVEtH10mnV+MbuOvyP//MJXnn3HIqdZiyvzlO6LEohDFlENyASjWPcH4YvEIU/lPjx\nBSPwh6IIhT/bT0OvVaPYaUJRnhmVhVaYjbxjkCidOax6PLJ7BX74byfw0h+a8U9fW8spd2gKQxbR\nNYrFZYx4JjE0HsSoN4xx7yQCk7HPvE6SALNBi8JcPSxGLSwmLewWHXJzDDAbNOy3QZRhaopt+K+3\nL8LLb57FT14/hce/sgY5Zp3SZVEKYMgimoEQAqPeMHqH/RgcC2LEMwn5shGeDTo1ivJMcFj1sJl1\nsJi0sBi1MBu0UKkYpIiyyS3Li9DrDuCthm58918a8LXbF2P1ApfSZZHCGLKILhOXBQZGA+gZ8qPX\n7Z+65CcByM3RoyDXhIJcE5w2A4x6/vchok/t2VoDu1mH198/j+f//TQ21RVh/7YFPFZkMb7zlPVk\nITA0FkTngA/dQz5EookRnPVaNWqKc1Cab0FRngk6dkwnoqtQSRJuW1eOZVW5+Pkfz+CDUwNo6RrH\n5pXFiMXjsFv07C6QZRiyKCvJF6euaTgzhK5BHyYvDiZo1GuwpMKGikILnHYjx6oioutW4rLgn762\nFn/4oBNvNXTj94fOAwBMBg1KnGYY9RrotCpoNWpoNSoIISDLArIAhCwgi4s/soBAYogXnVYNvVaN\n7iEfXHYjz46lCb5LlDWEELgw6MORs0M4cnYY474wgMQZq4VldlQVWZHvMPKbJhHdMI1ahd1/U4Md\n68rR1DmKdz7pQb87gPbeiRta71+O9gIAbBYdinITdyqXF1hQWZiDEpeZ4+ylGIYsynh9bj8azg7h\nyJlhDHsSg38a9RpsWlEEg16NwlwTO6oTUVJYjFpsWFqIyUgcsizg8YcRjsYRjcmIRGXE4jIkKXGp\nUaWSIF38U3XxMUhANCojHI0jEo0jN8eAobEgBseCaOn2oKXbM/W7NGoJpS4LKotyUFloRWWhFcVO\nBi8lMWRRRvIGI2hoHkJ90yC6hnwAEmesNiwtwBeW5GN5VR60GpUiI74TUXZSqSTk5hhuaB2Xj/ge\nicYxMBpE15APFwa8uDDoQ6/bjwuDvqnXaNQqlOVbpkJXRaEVRXlmTjo/TxiyKGNEYzJOnhtBfdMg\nTp8fRVwWUKskrKp1YsOyAqysdXJUdSLKGDqtGhUXg9OWlcUAEuP59bkDuDCYCF0XBhM39HQOeKeW\nU0kSCnKNKHVZUOIyo8RpQWm+GS6bkWf155gkxGUD/6QIt9v3+S9KAS6XNam1ptpZllSZM8vlsuK1\nP7cASPSzGpmYREefFxcGvVN3Bubm6FFTbENlkZUdROeQ1WKAzz+pdBlZiW2vjExo97gsw+OLYHRi\nEmO+SYz7wvD4I4jG5GmvU6sk2C162K062C16OKx62C16mAxXPoYm+zMh2Z+xc8nlsl7xcX76UFoK\nhKI43+9FR78X3kAEAGDUq7G00oGaEhscVr3CFRIRpQa1SoU8mwF5tk8vVQohEJyMYdwfhudi6Br3\nhTHuT8yzejmLUQuX3YB8hwkFDiNsFh1vELpGDFmUNiYjMRxrdeNo2ymcbB8BkPjmVVloRU2JDUV5\n7MBORHQtJEmC2aiF2ahFqcsy9bgsC/iCkanQNeadhNszic4BHzoHEmeVTAYNSl1m2M16LKl0sBvG\nVTBkUUqLyzJauz2obxrEsVY3wtHEeFb5DiNqinNQUWjlIKFERHNEpZJgs+hhs+hRUZi4BCaEgDcQ\nwfB4CANjQfSPBNDWM4G2nlPQalRYWZOH9UsLUFeTB62Gx+PLMWRRypFlgfZeD460DONYyzC8wSgA\nwGkzYMfyMtyxpRYfnOhRuEoiouwgSZ8GrwVldsiywMhECGqVCsfb3Djamvgx6NRYs9CFjcsLsajC\nwcGcwZCVEiYjMQyMBjE8HsLweOJPXyiKobEgYnGBmJzonKhRqaBRS1CrVdBqVJeNAvzpaMA6rQo6\njRpqtQQJEi7t43FZIBqTEz9xGZFoHOFIHOHoxZ/I5X/KiMsyLr8lQq2W8FZDN8yGxCTIdosOLrsR\n+Q4jXPbEj9mgmdV1eiEEhj0hnO0aR0vXOM52jcN3MVhZTVpsXV2C9UvysaDMDpUkweU033CbExHR\n7KhUEvIdJmxdVYJdW6rRM+xHw5khHDmbGDanvmkQeTkGbFxRiFtWFCHfblS6ZMUwZClgzDuJ1h4P\nzvVNoKNvAj3Dfsx0j6daJU0NJBeLRxGXk3czqCQlxpIy6NTQqDUAEgPhAUA8LiMciWN0YnLGGox6\nNVy2ROByWPWwmLSwmnSwGrXQqFWIy3IiNMZlePxhDI2FMDSeGFTvUqgCAIdVjy0ri/CFJQVYXG6H\nWsXxXIiIUpEkSSgvsKK8wIrdW2vQ3uPBh02D+KRlGG98eAFvfHgBC8vs2LSiCGsXu2DQZVfsyK6t\nVUg4EkdrzziaOsfQ3DmGgdHg1HMatQq1JTaUF1hR4DBOu3vjo+bBz5wZEkJMBZVLIwBHpkYDlhGJ\nxadGEQaAS3FIJUlTZ7+0GhV0WhX0F89+6XWJP7Ua1VXPRG1dVQIhBMLROMZ9Ybg9IQyPh+D2TMLt\nCcE9EcLgeBDdw/5rbhtJAlw2IxaW2bG0woHFFQ4U5pp45woRUZpRSRIWlTuwqNyBL29fgGOtbnx4\negAt3R609Xjwb39uw02LXFi/tABLKhxZMRI9Q1YSCCHQM+xHc+cYmjrH0N7rQSyeiDt6rRora/Kw\npMKB2lI7ygssM+5oVwoakiRBq0kEJiXGf5IkCQadBkV5GhTlffaynRAC3mAUHl8YvlAEvmAUvmAU\nsiygVkvQqBKXO60mLQpzTXDZjVnxH42IKJsYdBpsXFGEjSuKMOIJ4cOmQXx4emDqcqLZoMFNi1xY\nuzgfi8ocGTsCfdI/pWVZxlNPPYXW1lbodDo8/fTTqKioSPavnVeyLNDr9qP1Ylpv7fHAH/r08ld5\ngQXLq/KwrCoXtSW2jN2ZgIsdJM062Mw6pUshIqIU4LQbsXNTFf5+YyU6+ibwydlhfNI6jEMnB3Do\n5AB0WhUWlTmwvCoXS6tyE8PxZMjVjKSHrL/85S+IRCJ45ZVX0NjYiGeffRY/+9nPkv1rk0IWAhP+\nCEYmQugbCcDtDaOtaww9w/6pkcaBRJ+im5cVYnl1LpZW5jJwEBFR1lNJEhaU2rGg1I67ty1Ae68H\nJ9pH0NQ5htPnR3H6/CiARP/eigIrllY7kW/To8BhQr7DmJazdyS94mPHjmHz5s0AgFWrVqGpqSnZ\nv/JzRWNx9I0EEIkm7rSbuusuFp/6eygcS1zqCkXhC0Yu9kGanOrrdIlaJaEoz4zKIisWldmxsMwO\np83APkVEREQzUKk+7b8FJG4Ia+4cQ0v3OC4M+tDa7UFLt2faMlaTFk6bETazDlaTFjlmHcwGLfRa\nFTSX+htr1FP9jzUaFRwW/Q1Pyn0jkh6y/H4/LJZPR5NVq9WIxWLQaJRLpD/7j2Y0nhu5rmXMBg1K\nXObEcAU2AwpyTVi5uAAmNTj4GhER0Q3IzTFg88pibL440XUoHMPEZByn2obhHg9hyBOEezyE7iHf\ndd1lL0nA//xvGxWbai3pScdisSAQCEz9W5blzw1YM020OFe+//DGpK5/ruz9u8VKl5Cy2DZERJlv\nRa1T6RJuSNJ7YK9ZswaHDh0CADQ2NmLhwoXJ/pVEREREipOEmGkYzLlx6e7CtrY2CCFw8OBB1NTU\nJPNXEhERESku6SGLiIiIKBtl7oBNRERERApiyCIiIiJKAoYsIiIioiRIv+FTk2RychLf/va3MTo6\nCrPZjB/+8IfIzc2d9ppXX30Vv/3tb6HRaPDwww/j1ltvvepy8Xgcjz76KPbs2YMtW7YAAB5++GGM\nj49Dq9VCr9fj5ZdfnvdtTTXz1fYvvPAC3nvvPWg0GnznO99BXV3dvG9rKpnrdm9sbMQzzzwDtVqN\nTZs24ZFHHgHAff6Sz5ti7K9//StefPFFaDQa7N69G/v27Ztxma6uLjz++OOQJAkLFizA9773PahU\nqiu+XzQ/bf/000/j+PHjMJsTc7r+9Kc/hdWa3OGI0sFctv0lBw8eRFVVFfbv3w/gyseplCFICCHE\nL37xC/GTn/xECCHEm2++Kb7//e9Pe354eFjccccdIhwOC6/XO/X3mZbr6uoSd911l9i6dat4//33\np9Zz++23C1mW52mr0sN8tH1TU5O45557hCzLoq+vT+zatWsetzA1zXW733nnnaKrq0vIsizuv/9+\n0dzcLITgPn/J22+/LR577DEhhBAnTpwQDz300NRzkUhEbN++XXg8HhEOh8WuXbuE2+2ecZkHH3xQ\nfPzxx0IIIZ588knxzjvvzPh+UfLbXggh7r77bjE6Ojqfm5UW5rLtR0dHxX333Se2bdsmfvOb3wgh\nZj5OpQpeLrzo8ul/tmzZgo8++mja86dOncLq1auh0+lgtVpRXl6OlpaWGZcLBoN45plnsH79+ql1\njIyMwOv14qGHHsL+/fvx7rvvztPWpbb5aPtjx45h06ZNkCQJxcXFiMfjGBsbm6ctTE1z2e5+vx+R\nSATl5eWQJAmbNm1CfX099/nLXG2KsY6ODpSXl8Nms0Gn0+Gmm27CJ598MuMyzc3NWLduHYDEe1Bf\nXz/j+0XJb3tZltHV1YXvfve7uPvuu/H666/P8xamrrls+0AggG984xvYuXPn1DpSfb/PysuFr732\nGn71q19NeywvL2/q1K7ZbIbP55v2vN/vn3bq12w2w+/3T3v88uUWL/7siOTRaBT33nsvDhw4gImJ\nCezfvx91dXXIy8ub0+1LZUq1vd/vh91un7YOn8/3mctjmSrZ7f6fp88ym83o6enhPn+Zq00xdrW2\nvtIyQoip+VEvfw+utA5KftsHg0F89atfxde//nXE43EcOHAAy5cvv+KxKNvMZduXlZWhrKxsaoDz\nS+tP5f0+K0PW3r17sXfv3mmPPfLII1PT/wQCAeTk5Ex7/j9PDxQIBGC1Wqc9fqXlLud0OnH33XdD\no9EgLy8PS5YsQWdnZ1Z94CjV9jOtI1sku92v9NqcnBzu85e52hRj19LWly+jUqmmvXam9yCb9vGr\nSXbbG41GHDhwAEajEQCwYcMGtLS0MGRhbtv+Wtafavs9LxdetGbNGrz//vsAgEOHDuGmm26a9nxd\nXR2OHTuGcDgMn8+Hjo4OLFy48HOXu1x9fT2+9a1vAUjsCO3t7aiurk7SFqWP+Wj7NWvW4IMPPoAs\ny+jv74csy1lzFmsmc9nuFosFWq0W3d3dEELggw8+wNq1a7nPX+ZqU4zV1NSgq6sLHo8HkUgER48e\nxerVq2dcZunSpWhoaACQeA/Wrl074/tFyW/7CxcuYP/+/YjH44hGozh+/DiWLVs2z1uZmuay7a8k\n1fd7jvh+USgUwmOPPQa32w2tVovnnnsOLpcLv/zlL1FeXo5t27bh1VdfxSuvvAIhBB588EHs2LFj\nxuUuefzxx/GlL31p6g63Z555BidPnoRKpcL999+P7du3K7XJKWO+2v7555/HoUOHIMsynnjiCaxd\nu1apTU4Jc93ujY2NOHjwIOLxODZt2oRHH30UAPf5S640xdiZM2cQDAZx1113Td1lJYTA7t278ZWv\nfGXGack6Ozvx5JNPIhqNorq6Gk8//TTUavUV3y+an7Z/+eWX8ac//QlarRY7d+6cuvMt281l21/y\n/PPPw+l0Tru7MFX3e4YsIiIioiTg5UIiIiKiJGDIIiIiIkoChiwiIiKiJGDIIiIiIkoChiwiIiKi\nJGDIIqKM9vjjj+Oll17CAw88AADo7+/HF7/4RezatQs+nw+7du3Czp070dnZqXClRJRpGLKIKOPl\n5+fj5z//OQDgyJEjWLZsGX73u9+hpaUFOp0Of/jDH1BVVaVwlUSUaThOFhFlFCEEnn32Wbz3Mm4q\n4wAAAR9JREFU3nvIz89HPB7Hnj178MILL+DFF1/Eww8/jGAwiG3btuHo0aMYGRnB+vXr8dJLLyld\nOhFlmKycu5CIMtfbb7+NM2fO4M0334TP58Odd9459dySJUvwzW9+E0eOHMEPfvADNDQ04IUXXmDA\nIqKk4OVCIsooR44cwW233QatVovc3NypaZWIiOYbQxYRZRRJkiDL8tS/NRqesCciZTBkEVFGufnm\nm/HWW28hEolgYmIChw8fVrokIspS/IpHRBll+/btOH36NO644w44nU7U1NQoXRIRZSneXUhERESU\nBLxcSERERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlEREREScCQRURERJQEDFlE\nRERESfD/AXZaow4oj9opAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAGkCAYAAABw5S9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVPX+B/D3mY0Z9n0RRQXcchc1TU3DzHZNKy0jS8tr\ndatbv3tLLa8tamU3b2W22ap1S0tTUTMrzS3NLXFHBZFFZN8ZmO38/kAIcIABZubM8n49Dw8MZ5nP\noPCez/d8zzmCKIoiiIiIyG5kUhdARETkbhi+REREdsbwJSIisjOGLxERkZ0xfImIiOyM4UtERGRn\nCqkLsIW8vDKL1w0I8ERRUaUNq5GeO7xGgK/TlbjDawRa9zpDQnxsXA3Zk9t3vgqFXOoSbM4dXiPg\n+q+zqKwaaZdLIchc/9fW1f8ta7nL66SruWTnS+RKDEYTfjqQjo1706A3mODrpULfroGYNDoGAT4e\nUpdHRG3g+m+hiZxYSYUOL39+EGt3pkKlkKFP10CIooi9Jy7j7e+SUKUzSF0iEbUBO18iByWKIj7d\nfApZ+RXo2zUQNwyKhFqlgJ+fBmt+TkZSSgE+3ngKf5/UFzKZIHW5RNQK7HyJHNT2I1k4kVqILuE+\nuPnaKKhVNe+VBUHAjYM7oXOYN46ez8cPu1MlrpSIWovhS+SAsvLKsWbHeWg85Lh1WGcIQsPOVi4T\nMGFkV/h7q/Dj/ovIKXT9mcFEroThS+RgRFHEV9vOQm8w4eahUfDWKM2up1YpMLp/B5hEsPslcjIM\nXyIHc/piEZIzihHdwRfdOvo3u273Tv4IC9TgwOlcXLxs+fntRCQthi+RAxFFsa6LHdk3osX1BUHA\n6P4dAABrd6XYtDYish6GL5EDOZ5aiJSsUnTr6IfwQE+LtukS7ouoMG+cSC3EucxiG1dIRNbA8CVy\nEKIoYv2VrndEn5a73vpq1//5YIbV6yIi62P4EjmIU2lFSLtchh6d/BEaoGnVth1DvBDqr8GRs3ko\nKKmyUYVEZC0MXyIHsfVAOgBgaK+wVm8rCALieoTAJALb/8y0dmlEZGUMXyIHkJFbjpMXCtEp1BsR\nQZYd622sV+cAeHoosPPoJVTrjVaukIisieFL5AC2Xel6h/QMbfM+FHIZ+scGobLKgP0nL1urNCKy\nAYYvkcSKyqqx/1QOAn09ENPBt137GhAbApkA/Ho4E6IoWqlCIrI2hi+RxLYfyYTRJGJwj9CrLiPZ\nWj6eSnTr6I/MvAqkZJVaqUIisjaGL5GEqnQG7DiSBU8PBXp3CbTKPgfEBgMAdnDiFZHDYvgSSWjP\nsWxUVhswsFswlArr/DpGhXkj0NcDB8/koqxSZ5V9EpF1MXyJJGIyidh2MAMKuYCB3YKttl9BEDAg\nJhgGo4i9xznxisgRMXyJJHLkbB7yS6rQu2sgPNXm71zUVr27BkIhF/Dbn1kwceIVkcNh+BJJQBTF\nuotqDO7R9tOLmqLxUKBXVAByi7U4kVpo9f0TUfswfIkkcCa9GKmXShEb6YcgX7VNnmNg9xAAwC+H\neb1nIkfD8CWSwKbf0wAAw3u3/lKSlgoP9ETHEC+cSC1EdkGFzZ6HiFqP4UtkZ+czS3D6YhG6hPsg\nIsjLps8Vd6X7/fUwTzsiciQMXyI727QvDQAwvHe4zZ+rW0d/+Hgqsfd4NiqrDDZ/PiKyDMOXyI7S\nLpfiWEoBOoZ4o1Oot82fTyYTMKhbCKr1Juw+dsnmz0dElmH4EtmJKIr4/rcUAMCIPrbvemv1iwmC\nSiHD1j/SoTfwbkdEjoDhS2QnJy4U4lRaEbqG+6BzuI/dnlfjocDAbsEoqdBh51F2v0SOgOFLZAcm\nk4g1288DAEYPiLT78w/pGQqlXIYt+y+y+yVyAAxfIjvYeyIbWfkV6NM1EKEBGrs/v6daiYHdglFc\nrsPuY9l2f34iaojhS2RjFVV6rNuZCoVcwKh+EZLVMaRXTfe7+feLqNax+yWSEsOXyMZWbz+Pkgod\nrusdDh9PlWR1eKmViOsRgqLyamz8/YJkdRARw5fIpk6lFWLPsWyEBmgwpJftrmZlqeG9w+HnpcJP\nBzKQmVcudTlEbovhS2Qj1Tojvtx6BoIA3Dw0CnKZIHVJUCpkuHFwR5hMIlb+lMw7HhFJhOFLZAOi\nWBNuecVVGNIjFOGBnlKXVCemgx96dPLH+cwS/HyQN10gkgLDl8gGdiZdwr6TlxER5ImREk6yakr8\noI7wUiuwZsd5HD2fL3U5RG6H4UtkZWmXS/G/n89CrZLjzhFdoZA73q+Zj6cSk66Phlwm4KMNJ5Ce\nUyZ1SURuxfH+KhA5sdxiLd757hgMRhG3D+8CPy/pZje3JCLIC7cN64xqvQn/+fYoTlwokLokIreh\nkLoAIldRXF6Nt779EyUVOsQPikR0B1+pS2pRj6gAjNcZ8fPhTPx3dRJuu64zbh3WGWpV838aKqsM\nyMgtQ2ZeBcq1emirDZDLBAT7qRESoEG3jv7wUMrt9CqInA/Dl8gKSip0WLr6KPKKq3Bdn3AM7hEq\ndUkW6x8bjNAAT2zcewGbfr+Inw9mYEjPMPSIqrkdoVIuQ2FZNQpKqpCRV470nDLkFVc1u08PpQz9\nYoJxff8OuKZLAARB+pneRI6E4UvUTpcLK7F09VHkl1RhUPcQu96xyFoigjwx/eYeOJSchxMXCrHn\neDb2HDd/GUqNhxydw3wQFqBBaIAGXmolVEo5jCYTSip0yCvW4lxGCQ6eycXBM7noGeWPyWNiENPB\nz86vishxMXyJ2uFsRjHeW3cM5VoDrusTjhF9wp22y1OrFBjZNwIj+oQjM68CRWXVqKzWw2AU4aNR\nwtdLhSBfNXw8lU2+xo4hNZ9H9++Ay4WV2HviMs6kF2PRysO4cXBH3D06BioORxMxfInawiSK2LLv\nItbvToUIYPyQTugfGyx1WVYhCAI6hXqjU6h3u/YREeSFu0fHID23DNsOZuCXQ5k4eaEQf7uzN6LC\n7HdLRSJHxNnORK2UW1SJt749inW7UuGlVmJqfDeXCV5biAr1wfTxPRHXPQTZBZVYtOow9p28LHVZ\nRJJi50tkIb3BiK1/pCPx9zQYjCJiIn1xy7Wd4enBX6OWKBUyjI3riM7hPti8Lw0rEk8hLbsM98bH\nQC5jD0Duh381iFpgMJqw93g2Nu5NQ1FZNbw1SsQPikSPTv5Oe3xXKrGRfki4qQd+2H0BPx/KQEZu\nGWZP7ANfCe/2RCQFhi9REyqr9NiVlI3tRzKRX1IFhVzA0F6hGH5NODxUnDTUVoG+ajxwU3ds2X8R\nZ9KL8crnB/H3yX3RJdzxz4smshaO9xDVYzCakHQ+Hx8nnsSzy/dizY7zKCnXYVC3YMy6ozfGDIhk\n8FqBh1KOiSO7YlS/CBSVVWPxqsPY28SpTdaSnX0J118/FA89dD8eeuh+TJ8+FTNmPIAff9xUt84n\nn3zY4LE5n3++Art3/2Z2Wf3tR44cjOLi4lbVePr0Sbz55uK6x88880TdPh599FGcP3++Vftri3Xr\n1mHMmDGYOXOmzZ/LHrZu3YqEhIR27eOdd97B+vXrrVRRDXa+5LZEUURxuQ5ZeeW4mFOG5PRinM0s\nhk5vAgD4e6sw/Jpg9IsJgobHda1OEAQM7x2O0AANNv1+EZ9uPo20y2WYEh9rs+f08PDAF1/8r+7x\n5cvZePrpx6DRaDBmzFg88sjsFvdx+PBBdOnS1ewyS7ZvzoULqcjLy617fPDgH3Vfr1ixol37ttT6\n9evxzDPPYMKECXZ5Pmfw9NNPW32f/ItCTksURegNJlTpjajWGVFhEJGdU4pqnRFVOgMqqw3QVtV8\nrqz/uUqP4godisqqoTeYGuwzyFeNLtE+6BUVgIggTx7TtYOYDn5IGN8d63dfwK+HM5GRW44XZ15r\nl+cOD4/AzJmz8b//rcKYMWOxaNFL6No1Bvffn4BPP/0Iu3btgEKhhJ+fH+bNewk7d25HcvJpvP/+\nu5DJ5NizZydKS0uQlZWF664biaKiwrrtAeDjj5fjzJlTMJlEPProYxgxYhS2bEnEb7/9iiVL3gaA\nusf/939z8MknH6KiohyLF79cV+NTT/0Nb775DqZMmYB33nkHffv2xerVq7Fq1SrIZDIEBwdj/vz5\n6Nq1K+bMmQNvb28kJyfj8uXLiI6OxtKlS+Hl5dXgdZeVleHll1/GmTNnIAgCRo0ahWeffRZLlizB\n8ePHkZmZiaKiIjz00EMNttu+fTs++OAD6PV6qNVqPP/88xg4cCCWLVuGo0ePIjc3Fz169EDnzp0b\nPH7ttdfw+uuvY9++fZDL5ejXrx/mzp0Lb29vxMfHo1+/fkhOTsazzz6LcePG1T1ffn4+/v3vf6Og\noAB5eXmIjIzE22+/jaCgIMTHx+Ouu+7Cvn37kJ2djVtuuQXPPfccgJpONTExEf7+/ujcubPZf/s/\n/vgDS5YsQVhYGDIyMqBWq/H6668jJiYGc+bMQXFxMTIyMjBmzBgUFBSgW7dumDlzJpKSkrBw4UJo\ntVoolUo899xzGD58OFJSUrBo0SIUFxfDaDQiISEBd999d5P/9xi+5FC01QZk5pUjr1iL/OIqlFTq\nrgRmTWhWVBlQpTPUBKzeiLbeC95TrUCgrwf8PFUI9tcgxF+DyGAveGuU1n1BZJFAHzWmjeuOH/9I\nx9mMYjzz35146Oae6N010ObPHRvbDampDYdzc3IuY82a/yEx8WeoVCp8881XOHXqBCZPvhc7dvyC\nyZPvxejRN2DPnp2oqqrGV1+tAQAsWvRSg/106BCJ5557Aamp5/H3v/8NX3/9fZN1hIWF45FHZuO3\n337FvHkLANQE87vvfgR/f/+69fbt24dPPvkEq1evRmBgINatW4cnnngCmzdvBgCcOHECK1euhCAI\nuPfee7F161ZMnjy5wXMtXLgQ/v7+SExMhF6vx2OPPYbPPvsM8+bNw+nTpzFt2jTcfPPNDbZJS0vD\nf//7X6xcuRIBAQE4d+4cHn74YWzbtg0AkJWVhU2bNkGhUGDZsmUNHr/77rvIzc3Fhg0bIJfL8cIL\nL2DJkiV45ZVXAADdunXD22+/fdXPZPPmzRgwYABmzZoFURQxa9YsbNiwATNmzAAAVFZW4n//+x9y\ncnIwbtw43HfffUhOTsa2bduwfv16qNVqPPHEE03+zE+dOoW5c+di8ODB+Oabb/Cvf/0L69atAwBU\nVVXV/UznzJkDANDr9XjiiSewcOFCjBkzBidOnMDcuXOxdu1aPPXUU1iyZAl69+6NsrIyTJkyBbGx\nsRgwYIDZ52b4kmQqqvRIv1yGtJwyXLxc85FTpG1yfZlQcxUmlVIGH08VAhUyqBQyKJVyqBQyeHt5\nQDSaoFLKoJTL4KGSQ62Sw0Mpr/n6ymeVQg6ZjB2to/FQyjFhRBf8cSoHu49n463VRzG4RwjujY9F\nsJ/GZs8rCALUanWD74WEhCI2tjtmzHgAw4Zdh2HDrsPgwUPNbt+vX/8m9z1xYk3nEx0diy5duuLk\nyWPtrnf37t249dZbERhY88Zk0qRJWLRoETIzMwEAo0aNgkpVM3u8e/fuKCkpuWofu3btwjfffANB\nEKBSqTB16lR8+eWXmDVrVpPPu3fvXuTm5jbohgVBQHp6OgBgwIABUCj+ipT6j3ft2oVnnnkGSmXN\nm9uEhIQGoTh48GCzzzl9+nQcOnQIn3/+OdLS0nDu3Dn07//Xz3vs2LEAgLCwMAQFBaGkpAT79u3D\nuHHj4O1dc5GYyZMnY9WqVWb337Nnz7rnnjx5Ml555RUUFRUBAOLi4q5a/+zZs5DJZBgzZgwAoE+f\nPkhMTMT58+eRnp6OefPm1a1bVVWFU6dOMXxJOpVVBmQXVuByQSUuFdR8ruluG16c30MpR1SoN0ID\nNAj0VcPPSwVvjbImQFVyKOWyZoeB/f09UVxcaeuXQzYkCAKG9Q5Hvx6h+GHHeRxKzsORc/m4tlco\nbhoShagwb6sfCjhz5hSioxseZ5bJZHjvvY9x5swpHDp0AMuWLcXAgYPxj3/886rtNRrPJvctq3cO\nsyiKkMsVEAQBYr0hG71e36p6RTPDPaIowmAwAECDNxKNn6uWyWS66nHt9k0xmUwYPnx4gw41Ozsb\noaGh+Pnnn+Hp2fDnUP+xueer/7obb1vrzTffxLFjxzB58mRce+21MBgMDV6Ph4dH3de1r7Xxa5bL\nm54g2XhZzb+RvMma5HL5Vf//zp49C1EU4evriw0bNtR9Pz8/Hz4+TV/JjeFLzRJFETq9CWWVOpRp\n9Sir1Nd8XalHRZUe1TojdAYjdHoTdAYTdHojdHojqg0mVFbpUVqhR7XeeNV+NR5ydAn3QViAJ8IC\nNQgP9ISfl4rHWAkA0CHYG/ff2A2n0oqw/3QO9p2s+QgN0GBAbDC6d/JHZIgXQvw07RrFSE+/iC++\n+ARPP90wVM+dO4uXX34RH3/8BXr16o3AwKC6WcxyuaLFoKr144+JmDx5CpKTzyAzMwO9e/fByZPH\nkZqagurqahgMGuzdu7tufblc3mDfjR8DwMiRI/HSSy9h+vTpCAwMxNq1a5s9tmnOyJEj8fXXX2Pe\nvHnQ6/VYs2YNrrvuuma3GTZsGN59912kpKQgJiYGO3fuxD//+U/s3LmzxecbNWoUvv32WwwdOhRy\nuRxff/01RowY0eJ2e/bswZNPPokbb7wROTk5+P3331ucCDZq1CgsXrwYM2fOhLe3d4NAbOzMmTM4\nc+YMevbsidWrV2PQoEHw9W36lLfo6GgIgoC9e/dixIgROHnyJB555BHs3LkTHh4e2LBhAyZMmIDs\n7GzcddddWL58udkOGmD4uh2TKKJCq0d5/SCt93Xd9ytqvl9eqYfeaGp5x40o5ALUKkVd9xrg64Eg\nXzUCr3z29FAwaKlZgiCgd9dAXNMlABeyS3EspQAXLtdcJ3rbwQwAgEwmwFujhJdaUXc4QS4XoJAJ\nNV/LZJDLBMhlArTl+aiqqsKdkyZd2VYGuUKJQSPvRoEYiZ8PZSCnqBIq73IMUAZj4NBReOjhB+Dp\nqYFarcYz//gXAGDEiFFYvvwdiwL40qUsPPzw/RAEAS+/vBi+vn4YMmQYBgwYhGnT7kZ4eBj69h2I\nlJRzAIA+ffrh44/fx9y5/8Rrr/0H119/Ax5/fCZef/2tun2OGDECDz30EKZPnw6TyYTAwEB89NFH\nDbrslrz44otYuHAh7rjjDuj1eowaNQqzZzc/U7tbt2545ZVX8Oyzz0IURSgUCnzwwQdNdq31PfbY\nY3jjjTcwceJEGAwG9OvXD/Pnz29xuyeeeAJLlizB+++/D7lcjkGDBtUNczdl9OjRSE5OxuTJk+Hr\n64uePXvWDSU3FhwcjLfffhtZWVkIDAzEkiVLmt23SqXCsmXLsHjxYixZsgRKpRLLli2DSqXC+++/\nj0WLFuGTTz6BwWDA008/3WTwAoAgmhuTcHJ5eWUWrxsS4tPk+iZRRFW1EZXVelRWGaCtNsBgEmE0\nmmAwijCaRBhNJggQIAg1fywE4K+vBdRb9tdyk1izrclU01n+9Vi88gfjyh+NK39E5DIBcnnt4yt/\nTOQ13zeaRFTpjKiqNtR81hlrAlSrR/mVDrXKYEJhiRbllXqUV+ktmqSkVMig8VDA88qHxkNe81it\nqPu+xkMBlUIGhaLmGKtCLoNSUVOfFMHqLsPO7vA6m3qNBqMJmbnlyCnSIq9Ei+Kyamiv/L83Gk01\nv0ei2OaJeM2RyQRoVHKoVX/9PtR9qORQX/naW6OsuwuUj6cSPp4qeKnNv9ls7u+PuXXJev744w+8\n+uqr2LSp+fO6bcUlO9+k8/morDbAdOUXseYz6h7rDSZU6WpOTxHkMhSXalGtM6Jab4T2SthWXAlb\nV3hrIgBQe8ihUSkQGexV9wfDs16INg5VpYLXXyHHo5DL0CXCF10imr8altjo995Y+9jU8M2uSRRh\nNIp1h0qqdbWHTWoOpVTra/4u1BxO+etxudb84ZSmyGUCvD2V8NGo4OtVE8geSjn8/dQwGYzwUP41\nEVAmEyATAJlQ+7UApUKGWxi+LsUlO987/q/pMf6WKBUyaFQ172rVV97R1oaVh1IOhby265RBIRMg\nyARAFCECEEVc+VzzRe3XNQ+vfE8EBNmVXyyhZvvaX7TaiQI1HXXNH4fa7vqvr8UGX8tlQs1s3rqZ\nvDJ4qhXwUivhpan5HBnhhxIX75QAIDDQG4WF5VKXYXPu8Dqd4TWaRBF6/V/nmVfpakafKqsMKK/S\nXzm8Y0BFVc1hngpt7alylod2fYlv8aIXrsQlO99Hb78G1QZjXcDJZUKDwFMpZfBQ1gwfRYT7oqKs\nqu6UFFc8BSUkxAcerveyrhIS7AWF2Prj087GHV6nK79GvcGIssqaztnTW42c3LIr3bWp3khdw06d\n8yNcj0uG7/A+4RavGxLijTy4XPNPRA5KqZAj0LfmdJaQEB/4efBa4e7IJYedS8qrpS6BiMiqdFod\nTlwowNLVSXjgpu6IH9RR6pLswlUnmnFWDRGRk6i9FnntzT/IeTF8iYicRM3JiuQKGL5ERM6C2esy\nGL5ERE5G5CRRp8fwJSJyEnWNL7PX6TF8iYicRO3pvsxe58fwJSJyGjXp64JniLodhi8RkZPgha5c\nB8OXiIjIzlzy8pJE5PiOH0/C0jffgFyhwLXDhuPRWY+ZXW/H9l/x6y/bsHDxGwCA2bNm1C1LS7uA\n22+fgL8/9Q/J6qyqqsKC+XNRWFgILy8vLHh5IQICAuuWf/7ZCpw/dw6LXqu5V+y7b7+Fo0f/hNFo\nxF13TcbESXdbXEtt48tRZ+fHzpeIJPH64oV4ddEbWPHplzh54jiSz5y+ap233nwd77/3ToNjnB9+\n/Bk+/PgzzP/3KwgNDcOMR2ZJWufa79cgJrYbVnz6JW697Q589snHdct+37sbe/fsrnt86OABZGRk\n4LMvvsKKT7/Eyi8/R2lpqeXFcMKVy2DnS+TANm3cgN9+247KygoUFxfjkUf/hvix43Dk8CF8sHwZ\nZHIZOnbshLnz5qOquhqLXn0J5WVlyMvPxd33TMXd90zB7FkzEBAQiNLSEjz3/Dy8+soCyOVymEwm\nLFz0BsLCw/H20v8g6egRAMD4m2/F1PsfwMsLXoRKpcKlS5dQkJ+Hf7/0Knr2ugZ33jYenbt0Rdfo\naDz7f8/V1frM03+HVvvXrSu7do3G83NfNPu6ysvLodfp0LFTJwDAsGHX4cCB/ejRs1eD9fr1H4DR\nY+Lxw7rvr9rH0rfewN+f+gc8PT0B1HTEH378WYN1Zs+agc5duuJi2gWIoohFr72J4ODguuVrVn+D\n7b/+3GCbl15ehPCICIvrTDr6JxKmPwQAuO66kfj0SvhmZKRj3drvMetvj2PD+nUAgL79+qN7j54A\nAEEQYDQZoVBY/me47gpXbH2dHsOXyMFVVWnx3vsfo6ioCA8/eD+uv34MFi18GSs+/QKBgUH48P33\nsClxA3r2ugY3jb8ZN8TfiLy8XMx+dAbuvmcKAOCm8bfghvix+G7Nt7imdx889dQz+PPPIygvL8PZ\nXcm4dCkLn335NYwGAx6dOR2DhwwFAIRHRGDuC//G+nXf44cf1mJur2uQk3MZK79eDX9//wZ1/ved\n9yx+TRUV5fDy8qp77OnlhayszKvWG3fTzTh86OBV3z937iwqKiowdOiwuu81Dt5a/fr1x9x58/H9\nmm/xxWef4J/Pzalbdu+U+3DvlPvaVWdFRTm8vX3qlleUl6GyshJLXl+Ml15ZhLQLqXXrenh4wMPD\nAwa9Hi8veAF33XV33ZsHS9Te8tRoYvg6O4YvkYMbOGgwZDIZgoKC4OPri7z8PBTk52HenH8BAKqr\nqjB02HBcN3IUvvnmK+zY/iu8vLxgMBjq9tG5SxcAwJ0T7sLKLz/DU08+Bm9vHzz+xFNIS0vFgIGD\nIAgCFEol+vTthwtXAqPHlS4tLDwcSUlHAQD+/v5XBS/Qcudbv8tc8PJCVFb+tW5lRQV8vC2/e82P\nWzZh4sTJFq1b+0aiX/8B2LnztwbLWup8vby8W6zTy8sblRUVdcu9fXzwx/7fUVCQjxfm/gtlZWXI\nz8vFl59/iukPz0RpaSnmPPcs4uKG4KEZj1j8mgFAIWf4ugqGL5GDO3P6FACgoKAAFRXlCA0NQ2ho\nGP7z1jvw9vHBrp07oNF44uuvVqJv3/64+54pOHTwQINjjTKhZnrHrp07MGDAIDw66zH8tHULVn75\nGW6IvxGbEtfj/mkJMOj1OHYsCbfdficAmL2JuyAzP1Wkpc63cZepUCqRmZGByI4dsX//73jk0dkW\n/0wOHfgDD06f0fKKAM6cPo2wsJo3D9ExMc3W1Ji3t3eLdfbvPwB79+5G7z598fvvezBgwCDcEH8j\nboi/EQBw+NBBrFv7HaY/PBNVVVV4YvYjmPbAdNx8620Wv95a8is/e6OR4evsGL5EDq6gIB+Pz34E\n5eXleH7OC5DL5Xj2n8/jmaf/DpNogpeXF156ZREEQcB/3nwNP2/bCh8fH8jlcuh0ugb76tWrN15e\n8CI++/RjmEwmPPPsv9Cz1zU4cvggZjz0AAx6PcaOG4+eva6x+euaM+9F/PvFOTCaTLh22HD06dsP\nAPDk43/D0nfeg1KpbHLbgoKCq7pvc8d8AWBT4gb87+uV0Gg0eOmVxVavc/Ld9+KlBS/i0RnToVAq\n8OqiN5rc17q13yErKwvr16/F+vVrAQDzF7yCyEjL7s0rvzLsbDDxloLOThBd8FIpJeXVUpdAZBWb\nNm5AWtoFm55K4yqW/ucNPPvP5xt8b/asGZgzdz66dO0qUVXWo9PqkJVXjvmfHsANgyKRcFMPqUuy\ni5AQyw9HOBOeakRELmHaA9OlLsHm5PLaYWd2vs6Ow85EDuz2OydIXYLTCAsPv+p7Tc2Adla1w848\n5uv82PkSETkJxZXO18DZzk6P4UtE5CT+6nw57OzsbBq+SUlJSEhIMLtMq9Vi6tSpSElJaXabgoIC\nPPbYY5g2bRqmTp2K9PR0W5ZMROSwas/zNXDY2enZ7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L\n27z55psXWPqqAAAgAElEQVS44447cOutt2L//v1ITU1FVFSUrcomInJYKqUcAKAzGCWuhNrLZp1v\nVFQUli1bZnaZTqfD8uXLER0d3eI2R44cQU5ODh566CEkJiZi6NChtiqZiMihKeQyyGUCqnUMX2dn\ns853/PjxyMy8+lqtABAXF2fxNllZWfD19cUXX3yB9957DytWrMDTTz9t9XqJiBxZQIAnFAo51Co5\nDCbRZc9/dRcOf6qRv78/4uPjAQDx8fH473//K3FFRET2V1RUc41ppUKGCq0eeXllEldkH676JsPh\nZzvHxcVh586dAICDBw8iNjZW4oqIiKSjUshRreews7OzW/gmJiZi9erVrd7u+eefx4YNGzB16lTs\n3r0bs2dbfvF1IiJXo1LKUMVjvk6P13YmInICOm3NTTIWrjyE1Eul+OS5G+ru7+vKOOxMRESS06hq\nTjeqrDa0sCY5MoYvEZET8VLX3GqxrFLXwprkyBi+REROxEtTG756iSuh9mD4EhE5ES91zRmi5VqG\nrzNj+BIROZG/Ol8OOzszhi8RkRPxvtL5ctjZuTF8iYiciKeax3xdAcOXiMiJeF8Zdi7lsLNTY/gS\nETkRXy8VBAEoKK2SuhRqB4YvEZETkcsE+GiUKChh+Dozhi8RkZPx9VKhuLwaBqNJ6lKojRi+RERO\nxtdLBVEEisp4HXtnxfAlInIyfl4eAIDcYq3ElVBbMXyJiJxMkG9N+GbnV0hcCbUVw5eIyMkE+6kB\nAJcKKiWuhNqK4UtE5GQCfNQQBOASO1+nxfAlInIySoUMfl4eDF8nxvAlInJCIf5qlGv1KOTFNpwS\nw5eIyAlFBHkCAFIvlUpcCbUFw5eIyAl1CPICwPB1VgxfIiInFB7oCUEAUi6VSF0KtQHDl4jICamU\ncoT4aZB2uYyXmXRCDF8iIicVGeIFvcHEoWcnxPAlInJSXcJ9AQDHUwskroRai+FLROSkOod5Qy4T\nGL5OiOFLROSkVEo5OoZ4Iz2nHMXlvMORM2H4EhE5segOHHp2RgxfIiInFnMlfA+eyZW4EmoNhi8R\nkRML9FUjIsgTJy8UcujZiSikLoDInaVlmz9FpEuEr50rIWfWp2sgsgsqsf9kDm6+NkrqcsgC7HyJ\nJJCWXdpk8NZf3tw6RLV6RgVAJhOw90Q2RFGUuhyyAMOXyM5aG6gMYGqJxkOB2A6+yMqrQHpOudTl\nkAVsGr5JSUlISEgwu0yr1WLq1KlISUlpdptTp05h1KhRSEhIQEJCArZs2WLLkolsqq1Byi6YWtI3\nOggA8OuRTIkrIUvY7JjvihUrsHHjRmg0mquWHT9+HAsWLEBOTk6L25w8eRIPP/wwZsyYYatSiWzO\nWsGZll3K48FkVnQHXwT4eGD/ycuYPDoGfl4qqUuiZtis842KisKyZcvMLtPpdFi+fDmio6Nb3ObE\niRP47bffMG3aNMybNw/l5RxSIffGDpjMEQQBcd1DYDCK+OVQhtTlUAts1vmOHz8emZnmhz/i4uIs\n3qZfv36455570KdPH3zwwQdYvnw5nn/+eavXS2QrtghLdsDuJyDAEwqFHCa5HAbBfN80cmBH7D+V\ng+1HsjDt1mvg48nu11E5/KlG48aNg6+vb93Xr776qsQVEVnOll0qA9i9FBVVAgAKi7UoLqlqcr3B\nPULw29FL+N+PpzDp+hh7lWczISE+UpdgEw4/23nmzJk4duwYAGDfvn3o3bu3xBURETmuAd2C4aVW\nYNuBDBSV8aIbjspu4ZuYmIjVq1e3eruXXnoJixcvRkJCAo4cOYLHH3/cBtURWZ89js3y+C81plLI\nMbJfBHQGE9bvTpW6HGqCILrgGdklvMQaSczeocjhZ9en0+oAAPnFWuQ3M+wMACaTiC+2nkFBSRVe\nnD4YXZ34/weHnYnIYbEDpvpkMgFj4zpCBLDyp2SYTC7XYzk9hi+RlUkVhAxgqq9zmA96dwnAxctl\nvPCGA2L4ErkQBjDVN2ZgJDQecqz9LQU5V2ZLk2Ng+BJZUVvCLzWr9KoPe9dArslLrcSNcZ2gM5jw\n6ebTHH52IAxfIitpbeg1F7TtDWEGMNXq1TkAPTr543xmCTbvS5O6HLqC4UtkZ60J1vaEMAOYat00\npBN8PJVYv+cCzmYUS10OgeFLZBWWBl1bg7Q9AcwQJo2HAndc1wUA8NHGkyit0ElbEDF8ieylvcdy\nOQxN7dExxBuj+kagqKwaH244AaPJJHVJbo3hS9RO9gw2BjC1x7XXhKFbRz+cSS/GdztSWt6AbIbh\nS2QH7e16rbUvDkO7N0EQcOuwzgj09cC2gxnYeTRL6pLcFsOXqB0sCTJrBq+19skAdl8eSjkmXx8D\njYcCq35KxonUAqlLcksMX6I2kip4rYVdsPsK8PHApOujIQgC3l9/Auk5ZVKX5HYYvkROylrBzhB2\nT5HBXrh9eGdU6Yx457tjvP2gnfGuRkRt4Ehdb3Skde9YY+4OSZa8Xt5ZybZac1ej1jhwOge/Hb2E\nTqHemDNtEDQeCqvt2xpc9a5GDF+iVrJV8Nbuty0hZu0Abg+GsG3YKnxFUcTPhzJx9Hw+enTyxzP3\n9odKKbfa/tvLVcOXw85EEqod8q0f6M4+DOzMtbsjQRBwY1xH9Ojkj+SMYnyw/gQMRp4DbGsMX6JW\nsFbXa0nAtiaEHW1iFwPYuchkAm4b3hldwn2QlFKAzzafhsn1BkUdCsOXyELWCpTW7ocBTPagkMsw\ncVRXRAZ7Yf+pHHz981m44FFJh8HwJbKAtQKwrYHkrEHmrHW7K5VCjsmjoxHir8aOI1lYtytV6pJc\nFsOXyE7sEUSO1v2S81GrFLh3TCwCvD2wed9FbP0jXeqSXBLDl6gF1uh6rRG8HH4me/HSKHFvfCx8\nNEqs2XEeu5IuSV2Sy2H4EjXD0QLP0eoh1+XnpcK9N8RC46HAlz+eweHkXKlLcikMX6ImSDXByhXx\nZ+CcgvzUuGdMDJQKGT7aeBLJ6UVSl+QyGL5EZrQmLOzdZbL7JXsKD/TExJFdYRKBd9ceQ2ZuudQl\nuQSGL1Ej1uzSbNXxOWMAs/t1Xl0ifHHrtVHQVhuxdM1R5JdopS7J6TF8ieppbUDYepIVkaO4pksg\n4gdGorhch6Wrk1BWqZO6JKfG8CWC81/SsTmO1P2ScxvcMxRDe4XicmEllq07Dr2Bl6FsK4YvubX2\nhK41ut7613ZubS2OfFyaXNfo/h3QM8of5zNL8NW2ZF4Fq40c695RRDbmSN1tU7WkZZe67J2BXPm1\nuQtBEHDLtZ1RVFaN3cey0SnUGzcO7iR1WU6HnS+5vLZ0lS1pb9dryU0VLMHul6SgVMhw16hoeKoV\nWL39PC440JtaZ8HwJZdlq+O47Q0xWwQrkb35eqlw27DOMJpEfLjhBCqrDFKX5FRsGr5JSUlISEgw\nu0yr1WLq1KlISUmxaJvExERMmTLFJnWS63HU4JK6Lna/ZE1dI3xxba8w5BVX4dvt56Qux6nYLHxX\nrFiBF198EdXV1VctO378OKZNm4aMjAyLtjl16hS+//57Htgni9gy4Gx11yJ77c8RuOJrcmcj+0Ug\n1F+DPceycTqtUOpynIbNwjcqKgrLli0zu0yn02H58uWIjo5ucZuioiIsXboU8+bNs1Wp5EIc+Q+7\n1BfcILIFuUzA+KFREATgy5+SefqRhWw223n8+PHIzMw0uywuLs6ibYxGI1544QXMnTsXHh4eNqmT\nXIetQ8jeXa+tpGaVIjqSM46dTUCAJxQKOUxyOQyCY03X8ff3xLDsUuw7no0/Uwpw28joljdycw59\nqtHJkydx8eJFvPTSS6iursb58+exaNEivPDCC1KXRg7G0YPP0etri9o3Iwxy+ygqqgQAFBZrUVxS\nJXE1VxsUG4RDp3LwzbZk9I8OhIdSbpX9hoT4WGU/jsax3j410q9fP2zevBmrVq3C0qVLERsby+Al\ncgD1RwE4iYsAwEutRFyPEJRU6LDvxGWpy3F4dgvfxMRErF692l5PR27EHl2lqww5WwPDlpoysFsw\nBAHYfSxb6lIcniC64BTikvKrZ1iT63KG8G1PjZZcEaq1V41qz1CxuZ9Fa/fHq1y1nk5bcyOD/GIt\n8h1w2LnW97+lIDW7FK8+ci0ig73avT8OOxO5KXZ6f+HPglrSM8ofAHDqAk87ag7Dl5yaOw33OjKG\nMtXqGOoNADiXWSxxJY6N4UvUDGuECt8gkDvx81LBU61A2uUyqUtxaAxfonZiuPJ0I/qLIAjw1ihR\nWqmTuhSHxvAlp8XQq2HPyUsMWbKEp4cCOr0J1Xqj1KU4LIYvUROsdRyzPeHIWcHkjGrPoZEJgrSF\nODCGLxG1SuPul90wNabVGeChlEGpYMQ0hT8ZIjdjjbCMjvRl6JJZoiiirFIPH0+V1KU4NIYvOSWp\nb6JgD7a4uIa1tSWApa6ZbKu4XAdttQHRHfjv3ByGLxERWU1mXjkAIKaDn8SVODaGL5EdtLbbs1XX\ny6FisrUz6UUAgD7RgRJX4tgYvkR2YmlYOsNwM5E55Vo90i6XoWuELyKC2n9dZ1fG8CVqp9YEYUvr\n2jJU2fWSrf15Lg+iCIzoGy51KQ6P4UtkZ+YCtkuEr1U748YcJXjZsbsubbUBh8/mwddLhZF9I6Qu\nx+EppC6AyB0xhMjV/HE6Bzq9CZNGRUGllEtdjsNj50tkBfYKU2fuesl15ZdocehMLoJ81Rg9MFLq\ncpwCw5fISTh78LLbd02iKOLnQ5kwicC0cd3hwa7XIgxfIiuxZbg4e/CS6zqcnIeM3HIM7BaMAd2C\npS7HaTB8iVwQg5fsIa9Yi51Jl+DjqcSDN/eUuhynwglXRFbUJcLX6pe+bE3X66ihyyFn16PTG7Hx\n9zQYTSIevrUX/Lx4LefWYOdLZGXWDBpXCF5yPaIo4scD6SgoqcKNcR0xIJbDza3F8CUyo71BZo0A\ndpXgZdfreg6eyUVyejFiO/rh3vhYqctxSgxfIhtpzYUzzG1rKQYv2dO5zGL8dvQS/LxUeHxiHyjk\njJG24E+NqAnWCrXWXn7SVYKXXM/lwkps+v0iVAoZnr6nH/y9PaQuyWlxwhWRHdQGalOTsVrbITpD\n6LLrdS2lFTqs3ZkCg9GEv0/qiy7h/PdtD4YvOSVbzCo2JzrSF6lZ1nseawQSg5fsrVpnxPc7U1BR\nZcB9Y7thYPcQqUtyehx2JmqBI4WdI9XSFAavazGaRGzYewH5JVUYG9cR44Z0krokl8DOl8gC1u6A\n21qDrTQVmK0dXWDwupaaS0dmIO1yGQbEBuO+sd2kLsllNBu+CQkJEAShyeUrV660ekFEjqo2/KQI\nYVsFr6X3F7YkhBm8rufA6VwcSylAVJg3Zt15DWSypvOAWqfZ8H3yyScBAGvWrIFarcbEiROhUCiw\nadMmVFdX26VAoqbY67hvY/YOYamCt7l16//cGbqu6Ux6EXYmXUKgjweevrs/1CoOlFpTsz/NoUOH\nAgDeeOMNrF27tu77AwYMwKRJk2xbGZGDs0cI2yJ47X0BEHI+WfkV2LzvItQqOf5xT38E+PCUImuz\naMJVdXU1Lly4UPc4OTkZBoOhxe2SkpKQkJBgdplWq8XUqVORkpLS7Dbnz5/Hfffdh6lTp2LOnDkW\nPS+RPUVH+tokJB01eMm1FZdXY92uVIiiiMcn9kHHUG+pS3JJFo0jzJkzBwkJCQgLC4PJZEJhYSHe\neuutZrdZsWIFNm7cCI1Gc9Wy48ePY8GCBcjJyWlxm6VLl+LZZ5/FkCFDMGfOHOzYsQPjxo2zpGxy\nA1INPZtTPyzb2w1bO3gZumQJnd6IH3anQlttwIPje6BPdJDUJbksi8J35MiR2L59O86ePQtBENCj\nRw8oFM1vGhUVhWXLluG55567aplOp8Py5cuvWmZum2XLlkEul0On0yEvLw/e3nwXRo6vrUPSDF2S\niiiK2PJHOvKKqxA/KBJjBkZKXZJLsyh8S0pK8OabbyI9PR3vvPMO5s+fjzlz5sDPz6/JbcaPH4/M\nzEyzy+Li4izeRi6XIysrCw8//DC8vb3RsyfvGUkNOVL321jjMG0qjBm61JKAAE8oFHKY5HIYBOtf\nomH7oQyczShG35hgPDl1EK/ZbGMWhe/8+fMxYsQIHDt2DF5eXggNDcW//vUvfPzxx7auDwAQGRmJ\nbdu24bvvvsPrr7+ON954wy7PS87DkQO4PltfJIOh67qKiioBAIXFWhSXVFl13+cyi/HLwXQE+arx\nyG09UVRYYdX9t0dIiI/UJdiERW9tMjMzMWXKFMhkMqhUKjzzzDO4fPmyrWsDAMyePRtpaWkAAC8v\nL8hkfDdG5rlz8LTnDkrk3gpKq7B5X83NEp6c3Bc+niqpS3ILFnW+crkcZWVldRfcSEtLa3UIJiYm\norKyElOmTGnVdrNmzcKcOXOgVCqh0WiwcOHCVm1P5MoYuNQeBqMJiXvToDOYMHtCb0SFuWaX6YgE\nURTFllbatWsXli5diuzsbMTFxeHo0aNYvHgxxowZY4cSW6+knBcAcXfOMATdXgxe96LT6gAA+cVa\n5Ftp2PnXw5k4fDYPowd0wPSbHXM+jasOO1sUvgBQWFiIY8eOwWg0on///vD19YVK5ZjDEwxfAlw7\ngBm87sfa4XvxchlW7ziPiCBP/PuhIfBQytu9T1tw1fC1aOx4ypQpCAwMxJgxYzB27FgEBgZi8uTJ\ntq6NqF1c9TioK74msi+dwYifDqZDEIBH77jGYYPXlTV7zPfBBx/EgQMHAAA9e/asO+Yrl8sRHx9v\n++qIrKA1NwdwdAxesoa9xy+juFyHW66NQpdw/p+SQrPhW3vXooULF+LFF1+0S0FEtuLsIczgJWso\nKqvG4bN5CPZTY8LIrlKX47YsGna+55578MwzzwAAUlJSMG3aNKSmptq0MCJbccbhaGerlxzXzqRL\nMJlE3D0mBioON0vGovCdP38+Jk6cCACIiYnB448/jhdeeMGmhRHZmrOEsDPUSM4hp6gSZzOKEdPB\nF0N6hkpdjluzKHy1Wi1Gjx5d93jEiBHQarU2K4rInhw5hB21LnJOB07nAgDuHNm1bg4PScOii2wE\nBgbim2++wZ133gkA2LJlC4KCeLcLci3N3TC+qXVa0p7jywxesqbSCh3OpBehY4gX+nQNlLoct2dR\n+L722mt4+eWXsWTJEiiVSgwZMgSLFi2ydW1EkrLFTectDWMGL1nbqbRCiCIwNq4ju14HYFH4dujQ\nAR999JGtayFyeQxVkoIoijh1sQgKucBjvQ6i2fD929/+ho8++gjx8fFm3yn9+uuvNiuMiIiso6RC\nh/ySKgzsFgxPtVLqcggthO+rr74KAFi1apVdiiEiIuvLyC0HAPTqHCBxJVSr2fD9/fffm904MjLS\nqsUQEZH1ZeXX3J+3eyd/iSuhWs2G7x9//AEASE9Px8WLFzF69GjI5XLs2bMHsbGxdef+EhGR4yoq\nq4YAoEOwl9Sl0BXNhu9rr70GAEhISMDGjRsRGFgzPb2kpARPPPGE7asjIqJ2K6vUwddbBYW8dfdh\nJ9uxaLZzbm4u/P3/Gq7QaDTIy8uzWVFE1PJpSZw5TZbSVhsQ4u8pdRlUj0XhO2bMGDz88MO46aab\nYDKZsHXrVtxyyy22ro3IbVlyPnDtOgxhapEgALDo1u1kJxaF79y5c/HTTz/hwIEDEAQBM2bMwNix\nY21dG5Fbau1VsRjC1BKZABhNDF9HYlH4AkBwcDBiY2MxadIkHDt2zJY1Ebmt9lyOkiFMTfHWKFFY\nWgVRFHl1Kwdh0dH3L7/8Em+//Ta++OILaLVa/Pvf/8ann35q69qIqA2c9X7FZDsBPmpU600oqdBJ\nXQpdYVH4/vDDD/j000+h0Wjg7++P77//HmvXrrV1bURuxZqhyQCm+oL91ACA1Ev8f+EoLApfmUwG\nlUpV99jDwwNyOW/CTOTIGMBUq2u4DwDgRGqBxJVQLYvCd+jQoXjjjTeg1Wrxyy+/4LHHHsOwYcNs\nXRuR27BVUDKACQAigrygVsmRdL4ARpNJ6nIIFobvc889h86dO6NHjx5Yv349Ro8ejeeff97WtRGR\nFTCASSYT0DMqAEXl1Th6jt2vIxBEUWxx/vmMGTPw2Wef2aMeqygpr5a6BCKL2SscOQvauem0NZOl\n8ou1yC+pavX2+SVafLblDHpG+eO5+wdZuzybCQnxkboEm7Co862qqkJ2dratayGiFqRmldZ9tBY7\nYPcW7KdBl3AfnEkvxskLhVKX4/YsOs+3sLAQ8fHxCAoKgoeHR933eT9fovaxJBCbCtr634+OtKyr\nTcsuZQfsxq7v3wFpl5Oxevs5vPTwUMhkPOdXKhaF7wcffICdO3di//79kMvlGD16NIYPH27r2ojc\nnqUdbu16loYwuafwQE/06RqIExcK8cuhDNw0NErqktyWRcPOH374IY4ePYp7770Xd911F3bv3o2V\nK1faujYil9ZS19uWoWVLtuHws3sb3b8DPD0U+H5nCrLyyqUux21ZNOHq5ptvxtatW+sem0wm3H77\n7diyZYtNi2srTrgiZ9BcCLYleOuzpAPm8LNzae+Eq/rOZRbjh90X0CnUGy8kxEGldNzrNrj1hKuI\niAhcvHix7nF+fj7CwsJsVhSRO2tv8Nbuo6X9sAN2X906+qN/TBAycsvx2ZbTsKAHIyuzKHwNBgMm\nTJiARx55BLNnz8Ztt92GnJwcPPjgg3jwwQeb3C4pKQkJCQlml2m1WkydOhUpKSnNbnP69Gncf//9\nSEhIwMyZM5Gfn29JyUQOrangay4w07JLzX4QtcXYuI6IDPbCgdO52PR7mtTluB2LJlw9+eSTDR7P\nmDGjxW1WrFiBjRs3QqPRXLXs+PHjWLBgAXJyclrcZtGiRZg/fz569eqFb7/9FitWrMDcuXMtKZvI\nJbQUsM3dzSg1q7TZIWjOfnZfCrkME0d2xaptyfhh9wX4e3tgVP8OUpflNiy+vGRzH+ZERUVh2bJl\nZpfpdDosX74c0dHRLW6zdOlS9OrVCwBgNBobnOpE5ErMdb2t6Wzb0k239jnItXhplLh7TAzUKjm+\n2HoGB07ntLwRWYXF9/NtrfHjxyMzM9Pssri4OIu3CQ0NBQAcOXIEX331Fb7++mvrFkpkZ+bCrr3B\nW3+btnTA5PgCAjyhUMhhksthECzqmyzi7++JmXd64JONJ7Ai8RQC/D1xXT92wLZms/C1pi1btuCD\nDz7Axx9/jMDAQKnLIbK55oK3uWHm2uWtHUrm8LPjKyqqBAAUFmtR3M7Zzo15KWWYfH00vvstBW+s\nPIgZt/XCdX0irPocbeXWs52ltGHDBnz11VdYtWoVOnXqJHU5RDZnLnjNTbBqbtKVpd11S9uQ++gY\n4o0pN8RCpZTjk02nsf2I+ZFLsg67hW9iYiJWr17dqm2MRiMWLVqEiooKPPnkk0hISMC7775rowqJ\npGGNUGQAkzV0CPbC1PhYeKoV+GrbWazZcR4mE09DsgWLLrLhbHiRDXJULQVi4+VtCcPGw8eNH7d0\n7Lctw88t1ckh7faz5kU2WlJUVo21O1NQWFaNgd2C8egd10CtkuYoJYedicjqWjqv15yM7AJkZLf9\nnqzW7n7b2pmT4wrw8cADN3VHVJg3/jyXj9e/OoLCUtsGvrth50tkR41DqKmut/F6LYVtp4igBo/b\n2/2a26Yxa3TlZDl7dr61jCYRPx/KwLGUAvh5q/DU5H7oaud/Q3a+RCQJS7rcxutY46YNlsy4bi12\nwM5FLhMwfkgn3DAwEiXlOrz+9REcOpMrdVkugZ0vkZ20pett7fBycx1wW7rf+ttaMzjZAbeeFJ1v\nfeezSpD4exr0BhNuHdYZk66Ptsv9gNn5EpFdmQvewtzMqz5a2qZWc+HfEmt3rOyAnU9spB8eGNcd\n/t4qbNl/EUvXHEVppU7qspwWw5fIgTQVSuaCtv6y+uoHsCOHnCPXRuaF+Gvw4PgeiIn0xam0Irzy\n+UFc4L9jmzB8iSRmLoTqB2hToVufJeuYY43bF5J7UasUmDQqGiP7RqCwrBqvfXUYu5IuSV2W02H4\nEknA0ms5mwvV0rw0lOalNbtuU92vo3WbjlYPWUYQBFzXJxx3j46BQi7DFz+ewRc/nobeYJK6NKfB\n8CWyg9aETG1wNg7exqFb+7j+95oKYCJbiO7giwfH90BogAa7krLxxtdHUFTGCa+WYPgSScjSUDbX\n6TbFXLfcXPcr9dAzu1/n5u/tgWk3dkfvLgFIzS7Fy18cwNmMYqnLcngMXyIHUBtA5rpeS4K3NeFM\nZG1KhQy3DuuM+EGRKKvUY8k3f2LHn1lwwTNZrYbhS2Rnrek0G4dq/aFmc8tq1Ya3sww9s/t1foIg\nYHCPUNx7Qyw8lHKs+ikZX249w+PATWD4EjmBpiZZmTsO3BRHHnom19E5zOeq48DFvPDRVRi+RDbW\nVFfX1PWba7tWaw0ls/sle/PzUmHajd1xzZXjwAtXHkJWXrnUZTkUhi+RxFoKndYe8639uq3n/hJZ\ng1Ihw23DOmNUvwgUllZj8VeHcTqtUOqyHAbDl8gBNRW4pXmpDT4s2aa+5oKeQ89kbYIgYHjvcNw+\nvDN0ehPeWpOEg7wxAwCGL5FDMXdu719fp6Ixc9+zlCMO8zpiTdR+13QJxD03xEAhF/DhhhPYezxb\n6pIkx/AlsqO2dpfNhWz9ZbVh3Xjo2VmO+5Lrigr1wZQrM6E/3XwaO49mSV2SpBi+RA7AXDjy3F1y\nNRFBXpga3w2eHgqs3JqMA6dzpC5JMgxfIgdz9fm7LQ8tt2f4uT5HOO7LoWfXFhqgwT1jYqBUyrAi\n8RROuekkLIYvkQ21dJpRW4KmqXN+iZxFWKAn7hoVDQB4b91x5BRVSlyR/TF8iZxIcxfUqO1+Gx/3\nbcwenWVqVulVH0T1dQ7zwc1Do1ClM+KD9SegNxilLsmuGL5EDsL87QOvnkzVcPnV32tqv+aOK9si\niAwUglMAABdbSURBVJsKWgYwNda7ayD6xQQhPacca7anSF2OXTF8iRxQa4aVrT0E3Z6QbGlbBjA1\nNnZQRwT5qrH9SCYuXi6Tuhy7YfgSOQFXOsZrSQBz0pX7UCpkGDsoEiKAb3895zZ3QmL4EpFVsKul\ntuoS4YuYSF8kZxTj1MUiqcuxC4YvEbUbg5faa1ivMADA3mPucfUrhi+RC7HW+b62xrCmxjoEeyHA\nxwOHz+ZBW22QuhybY/gS2YkzBU5ranWm10WOSxAEdO/oD73BhAtucMyf4UtERA4hxF8NAMjKr5C4\nEttj+BIRkUMI9K0J39wircSV2B7Dl8hGpDhdxjck2q7PZ8tzgnm6kfuSywSpS7A5m4ZvUlISEhIS\nzC7TarWYOnUqUlJSLNpm8eLF+Oabb2xSJxERSU9vMAEAVErX7wtt9gpXrFiBF198EdXV1VctO378\nOKZNm4aMjIwWtyksLMQjjzyC7du326pUIiJyAIWlVQCAAB+1xJXYns3CNyoqCsuWLTO7TKfTYfny\n5YiOjm5xm4qKCjz55JOYMGGCrUolcni+IV3atMyWOMuZrC0jrxwA0L2Tv8SV2J7CVjseP348MjOv\nvlA8AMTFxVm8TadOndCpUyfs2rXL6jUSOSrfkC4ozUuDb0i005y7S7YVEOAJhUIOk1wOg+B6w7J6\ngwkXc8rh56VC/55hEATXPu5rs/AlIuuqDeTG3/vra/OTrQJDOwIAOkUE2ao0soOiK/e8LSzWorik\nSuJqrO94agEqtHrccm0U8vPL674fEuIjYVW243pvn4icVG1INqdh2HZpdh2phqOJWstkEnHwTC5k\nAhA/qOXfA1dgt843MTERlZWVmDJlir2eksglMVTJ1Rw9n4/8kiqM6BOOID/Xn2wFAILogvdvKim/\neoY1kb01Pk+1/gSl2mW1n2tvdF974/va4eW/Pjd/3Lf+kHPjzrfxsHOXCN8G2zZ+XCs60vz3G7+W\n9mjuOYCma3NHOq0OAJBfrEW+Cw07l1Xq8emWU1DIZFg8axh8vVQNlnPYmYhcDsONpGQyidi8Lw06\nvQl3j4m5KnhdGcOXSEK14dfSZCjfkOgmJ1RZ0vU6I74xcH27j11Cem45BnYLxugBHaQux64YvkR2\nUn+ItalgqQ3LpiZNNQzaaLPBaw5nOpOjOZVWiD9O5yIsQIOZt13j8qcWNcZTjYhswJbXJbb39ZuJ\nrC31Uim27L8ItUqOJyb1hafa/aKInS+Rg7NkdrMlpyABlg/ltjQRqqXl1ngOck1Z+RXYsOcC5HIZ\n/nFPf3QM8Za6JEkwfIkcTOOh58ZfN9bUspYursFjqmRvGbnl+G7HeRhNJjw2oY9bXEayKQxfIok1\nN+mqcQA397jx+kSOJO1yKb7/LQVGk4jZE/pgQLdgqUuSlPsNtBM5uZaubAW0b5Yzh4PJ2s6kF2Hz\nvosQBOCJSX0xINa9gxdg50skGXPDvrXdb/3wbO0xX3P7a+r52qM9Ic2Adw+iKOKPUznYuDcNSoUM\nT9/dn8F7BcOXyEFZGsCNl1nS9bblqlb2xOPRzs9oEvHTwQzsTLqEAB8PzH0gDr27BkpdlsPgsDOR\nHUVH+pq9NGOXCN8WT0+ypAOuH7y27HprNfV6WtqGXFu1zogNey8g7XIZosK88fTd/RHg4yF1WQ6F\nnS+Rg6kfmra4QhW7SrKlkgodvv7lLNIul2FAbDDmTBvE4DWD4UskofpB2NJVr5oTGNqx3V1vWzvS\n1mzHrte1ZeaV46ttycgvqcLYuI74+6S+UKs4wGoOw5fIATU+7ahxuDZeJjVLQpXB67pEUcSf5/Lw\n7a/noK024P4bu2HauO6QydzrkpGtwbckRA6k/rHfThFBdbcarGVJ0DbX9dpyolXtPswdA27N/jks\n7lwMRhN+PpSJ46kF8NYo8fjEPujZOUDqshwew5fIBpqbQNV4klJz65oL4Oa05QYK1u5I2eG6j7JK\nHdbvuYDsgkp0DvPGE5P6IthPI3VZToHhS+RgGoexJQFsLnQt7XqJ2iIzrxwb9lxARZUBw3uHYfrN\nPaFSyqUuy2kwfIkcQOPANRfAAMyGsCXB2xRH61L5BsHxiaKIo+cL8OuRTEAUMXVsN4wb3NHtbgnY\nXgxfIgm05fxYoO335WWokTUYjCb8cjgTx1IK4K1R4LGJfdGLx3fbhOFL5CDMdb9A6+8NbM9JVuQ+\nyrV6rN+diksFlegU6o0nJ/VFsD+P77YVTzUikoi58DMXlJZ2rV0ifJ26w3Xm2l1ddkElVv2UjEsF\nlRh2TRjmJcQxeNuJnS+RjVhyycjW7AtougtuKrjY9VJ7nb5YhB//uAijUcQ9Y2Jw87VRPL5rBQxf\nIgmZO/bbXGi3pjt0puBl1+t4RFHEnuPZ2HcyB2qVHI/f1Zt3JLIihi+RA2pv18wwo/bQ6Y3YvP8i\nzmWWIMRfjacm90NkiLfUZbkUHvMlklhTnWhbA7S57dj1UkvKKmtujHAuswQ9o/wxf/oQBq8NsPMl\nsiFLO9jmbjUIWDbjuaUQc8TgJceSX6LFd7+loKxSjxsGReK+sd2gkLNHswWGL5GD+P/27jUmqnNf\nA/gDcxFkwAsXW09AxSO7qOXowIFe0NYNlrYxsjdqAS2mFxt1H3sxTY/UVG2ioE3aL0UaE00bv5hq\nm+60eNLa3VZBxUJFoYCluikdRa0Ccplhhhlm1ns+KKNU7s6sNWt8fomJzMu7+P9ZMA/vmjVrDfXe\n3zuD9c9BPJKVo68GL1e9vqO5xYIvyn5Dj8OFFYtm4ulknljlTQxfIi/z5FnPfdsbDQYvDedCcwdK\nyn+HJIA1S+Lx2NwHlS7J7zF8iXzIUHcGupftEQ3m7IVWfFd1CXptIF77+8OYGzu2q6jR6PBgPpEM\nlFit+nLwctXrG8rr/sC/Tl+CIViH/11pZPDKiOFLJBM5A5jBS0MRQuD4z1dxovYqIiYEYXNeImZw\nv8jKq+FbU1ODvLy8AcdsNhtycnLQ2Ng45ByTyYTc3FysXLkS27ZtgyRJ3iyZyKvGEsCjDdKxBm/f\n5Sn//M9T1H75S3/RF7yn6v9A5MRg5K8yYsqk8UqXdd/x2mu+e/fuxVdffYXg4Luv/1lbW4tt27bh\n2rVrw87ZuXMn3njjDaSkpGDr1q34/vvvsXjxYm+VTeST7gzUgV4PvpeV7nCB+OfxsZw8xtD1Hafq\nr+HHc9cwZVIw3sqdj8lhQUqXdF/y2so3JiYGRUVFA445HA4UFxcjNjZ22Dn19fVITk4GACxcuBDl\n5eXeKZhIJvcaRH2r4Tv/yVnLSFbH3lo9072pOt/iPtTM4FWW11a+GRkZaG5uHnAsMTFxxHOEEO73\nmoWEhMBsNnu2UCIFjPV2gd6owde2RQObNGk8tFoNJI0GzoDRr5tqLrTg+6pmTDSMQ8E/HsfUCF61\nSkk+/1ajwMDbP2Td3d0IC+MvOfkPT78HeKRfk9Snvd0KALjRYUNHZ8+o5ja3WPD5D/9GkF6Djc/9\nF3RCoKVFHQuZyMhQpUvwCp8/23n27NmoqKgAAJSVlSEpKUnhiog8S84wZPDef9rNdvzz+G8QQuB/\n/v4woqO44vUFsoVvSUkJDh48OOp5mzZtQlFREbKzs9Hb24uMjAwvVEekLDleG2Xw3n8cThf+efw3\n2Owu5GX8BXNmTFa6JLolQAghlC7C0zotdqVLILonSl6OknyTw+YAALR22NA6gsPOQggcPmXCL6Z2\n/NX4H3j+qb94u0Sv4GFnIpKNpwKTwXv/qmlswy+mdsRODUNO2iyly6E/8fkTrojuV0PdyWg0c+n+\nc8Pcg6NnLmN8kBb/+Ntc3hbQBzF8iVRguCBm2FIfSRL4v1Mm9LokvLwknu/l9VEMXyKVYdDSUKrO\nt+BqmxUps6cgOX6K0uXQIHgsgojIT5itDpysvYqQIC1WpvN1Xl/G8CUi8hNHz16GwylhxaL/ROh4\nvdLl0BAYvkREfuCPG1Y0XOzA9AdCkZrwoNLl0DAYvkREfqC0+goAYMWTMxF463r45LsYvkREKne5\nxQLTNTPmTJ+E+Om8ipUaMHyJiFSu4pfrAIAlj01XthAaMYYvEZGK3ejqwb8vd2Lm1DDERU9Uuhwa\nIYYvEZGK1TS2AQAW/3e0+97n5PsYvkREKuV0SahraoMhWIf5syKVLodGgeFLRKRSTVe7YLO78Njc\nB6DT8ulcTbi3iIhUquFiBwAgZTYvI6k2DF8iIhVyuiQ0Xu5ExIQgTH/AP+95688YvkREKnS5pRsO\np4T5syJ5opUKMXyJiFSo6datJR+O5UU11IjhS0SkQpdaLNAEBvC9vSrF8CUiUhmnS8L1dhuiowzQ\n6zRKl0NjwPAlIlKZlg4bXJLAjKlhSpdCY8TwJSJSmattVgBA7IMMX7Vi+BIRqYw7fLnyVS2GLxGR\nyrR22qDTBmLK5PFKl0JjxPAlIlIRIQQ6LHZETQxGIN/fq1oMXyIiFbH2OGHvlRA5MVjpUugeMHyJ\niFSkrasHABA1ieGrZgxfIiIVae28Gb5c+aobw5eISEW6uh0AgPCwIIUroXvB8CUiUhFLTy8AICxE\nr3AldC8YvkREKmKx3Qrf8TqFK6F74dXwrampQV5e3oBjNpsNOTk5aGxsBABIkoStW7ciOzsbeXl5\nMJlMAID6+nosX74cK1euxPbt2yFJkjdLJiLyaX3hGzqeK18181r47t27F++88w7sdvtdY7W1tVi1\nahUuXbrkfuy7776Dw+HAwYMH8eabb2LXrl0AgC1btmDz5s04cOAADAYDSkpKvFUyEZHP67Y5odcF\nYpyeN1RQM6+Fb0xMDIqKigYcczgcKC4uRmxsrPuxqqoqLFiwAAAwb9481NXVAQCuXbsGo9EIADAa\njaiqqvJWyUREPs9mdyIkiIec1U7rrQ1nZGSgubl5wLHExMS7HrNYLDAYDO6PNRoNnE4noqOjUVlZ\nieTkZBw9ehQ2m81bJRMR+axJk8ZDq9XA4ZIwKXQcIiNDlS6J7oHXwne0DAYDuru73R9LkgStVovC\nwkIUFBSguLgYSUlJ0Ov5OgcR3X/a22/eTKHH7oR2QhBaWswKVyQPf/0jw2fOdjYajSgrKwMAVFdX\nIy4uDgBQWlqK999/H/v370dHRwcef/xxJcskIlKM0yXB6RII0vvMuonGSLY9WFJSAqvViuzs7AHH\nFy9ejJMnTyInJwdCCBQWFgIApk2bhhdeeAHBwcFISUnBE088IVfJREQ+pcfhAgAE8WQr1QsQQgil\ni/C0TsvdZ1gTEamZw+ZAu9mON4tPIjk+Cusy5ypdkix42JmIiBTlunWdA00gn7rVjnuQiEglXK6b\nByq1Gt7HV+0YvkREKuGUboavRsOnbrXjHiQiUgmXq++wM1e+asfwJSJSCVffypfhq3oMXyIilbj9\nmi+futWOe5CISCVun+3Mla/aMXyJiFTi9glXDF+1Y/gSEamEuBW+Oh52Vj2/vMIVERGRL+OfT0RE\nRDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJTKt0AZ7U09ODt956C21tbQgJCcF7772H\nyZMn9/ucQ4cO4dNPP4VWq8X69euxaNGiIee5XC5s3LgRy5cvx8KFCwEA69evR3t7O3Q6HcaNG4d9\n+/b5ZZ+7d+/GsWPHoNVqsXnzZiQkJKi2x+rqahQUFECj0SA1NRUbNmwAoNy+lCQJ7777Ln799Vfo\n9Xrs2LED06ZNc4//8MMPKC4uhlarxbJly/Dcc88NOsdkMiE/Px8BAQGYNWsWtm3bhsDAwAG/P3KS\no8cdO3bgzJkzCAkJAQB89NFHCA2V9+brnuyzT2FhIWbMmIHc3FwAA/+sk8oJP/Lxxx+LDz/8UAgh\nxOHDh8X27dv7jV+/fl0sWbJE2O120dXV5f7/YPNMJpPIzs4WTz75pCgtLXVv55lnnhGSJMnU1d3k\n6LOurk7k5eUJSZLE5cuXRVZWlowder7HpUuXCpPJJCRJEmvWrBH19fVCCOX25ZEjR8SmTZuEEEKc\nPXtWrFu3zj3mcDhEenq66OjoEHa7XWRlZYmWlpZB56xdu1b8+OOPQgghtmzZIr799ttBvz/+1KMQ\nQuTk5Ii2tjY527qLJ/tsa2sTL7/8skhLSxMHDhwQQgz+s07q5leHnauqqrBgwQIAwMKFC3Hq1Kl+\n4z///DPmz58PvV6P0NBQxMTEoKGhYdB5VqsVBQUFSElJcW+jtbUVXV1dWLduHXJzc3H06FGZurtN\njj6rqqqQmpqKgIAATJ06FS6XCzdu3JCpQ8/2aLFY4HA4EBMTg4CAAKSmpqK8vFzRfXlnnfPmzUNd\nXZ17rLGxETExMZgwYQL0ej0SExPx008/DTqnvr4eycnJ7p7Ly8sH/f7Iyds9SpIEk8mErVu3Iicn\nB59//rms/fXxZJ/d3d149dVXkZmZ6d6GL+xL8jzVHnb+7LPPsH///n6PhYeHuw85hYSEwGw29xu3\nWCz9DkmFhITAYrH0e/zOeQ899NBdX7e3txcvvfQSVq9ejc7OTuTm5iIhIQHh4eEe7a+PUn1aLBZM\nnDix3zbMZvNdh349wds9WiwWGAyGfp976dIl2ffln+u/syaNRgOn0wmtVjtkbwPNEUIgICDgrp4H\n2oacvN2j1WrF888/jxdffBEulwurV6/G3LlzB/x59iZP9hkdHY3o6GiUlZX1277S+5I8T7Xhu2LF\nCqxYsaLfYxs2bEB3dzeAm39BhoWF9Rs3GAzu8b7PCQ0N7ff4QPPuFBERgZycHGi1WoSHhyM+Ph5N\nTU1ee8JWqs/BtuEN3u5xoM8NCwuTfV8OVb8kSdBqtSPu7c45gYGB/T53sJ7lfi3U2z0GBwdj9erV\nCA4OBgA88sgjaGhokD18PdnnSLavxL4kz/Orw85GoxGlpaUAgLKyMiQmJvYbT0hIQFVVFex2O8xm\nMxobGxEXFzfsvDuVl5fj9ddfB3Dzl+DChQuIjY31UkcDk6NPo9GIEydOQJIkXLlyBZIkeWXVO9TX\n91SPBoMBOp0OFy9ehBACJ06cQFJSkqL70mg0ulc31dXViIuLc4/NnDkTJpMJHR0dcDgcOH36NObP\nnz/onNmzZ6OiosLdc1JS0qDfHzl5u8fff/8dubm5cLlc6O3txZkzZzBnzhxZewQ82+dAfGFfkuf5\n1Y0VbDYbNm3ahJaWFuh0OnzwwQeIjIzEJ598gpiYGKSlpeHQoUM4ePAghBBYu3YtMjIyBp3XJz8/\nH88++6z7LOCCggLU1NQgMDAQa9asQXp6ul/2WVRUhLKyMkiShLfffhtJSUmq7bG6uhqFhYVwuVxI\nTU3Fxo0bASi3L/vOdj1//jyEECgsLMS5c+dgtVqRnZ3tPkNWCIFly5Zh1apVA86ZOXMmmpqasGXL\nFvT29iI2NhY7duyARqMZ8PsjJzl63LdvH77++mvodDpkZma6zw5Wa599ioqKEBER0e9sZyX3JXme\nX4UvERGRGvjVYWciIiI1YPgSERHJjOFLREQkM4YvERGRzBi+REREMmP4Eo1Sfn4+9uzZg1deeQUA\ncOXKFTz99NPIysqC2WxGVlYWMjMz0dTUpHClROSrGL5EYxAVFYW9e/cCACorKzFnzhx88cUXaGho\ngF6vx5dffokZM2YoXCUR+Sq+z5doGEII7Nq1C8eOHUNUVBRcLheWL1+O3bt3o7i4GOvXr4fVakVa\nWhpOnz6N1tZWpKSkYM+ePUqXTkQ+SrXXdiaSy5EjR3Du3DkcPnwYZrMZS5cudY/Fx8fjtddeQ2Vl\nJXbu3ImKigrs3r2bwUtEQ+JhZ6JhVFZW4qmnnoJOp8PkyZPdl98kIhorhi/RMAICAiBJkvvjwe4+\nQ0Q0UgxfomE8+uij+Oabb+BwONDZ2Ynjx48rXRIRqRz/hCcaRnp6Ompra7FkyRJERET0u/sMEdFY\n8GxnIiIimfGwMxERkcwYvkRERDJj+BIREcmM4UtERCQzhi8REZHMGL5EREQyY/gSERHJjOFLREQk\ns/8HkrAgsxv62WMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE : 1.16343369599e-07\n", + "MAE : 0.000227541731508\n" + ] + }, + { + "data": { + "text/plain": [ + "count 149.000000\n", + "mean -0.000026\n", + "std 0.000341\n", + "min -0.001370\n", + "25% -0.000128\n", + "50% -0.000006\n", + "75% 0.000125\n", + "max 0.000875\n", + "Name: diff, dtype: float64" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(testX)\n", + "pred = y_scaler.inverse_transform(pred)\n", + "close = y_scaler.inverse_transform(np.reshape(testY, (testY.shape[0], 1)))\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(np.reshape(pred, (pred.shape[0])))\n", + "predictions['close_bid'] = pd.Series(np.reshape(close, (close.shape[0])))\n", + "\n", + "p = df[-pred.shape[0]:].copy()\n", + "predictions.index = p.index\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n", + "ax = predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10))\n", + "ax = predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=ax)\n", + "index = [str(item) for item in predictions.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('Prediction vs Actual (low and high as blue region)')\n", + "plt.show()\n", + "\n", + "predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + "plt.figure(figsize=(10,10))\n", + "sns.distplot(predictions['diff']);\n", + "plt.title('Distribution of differences between actual and prediction ')\n", + "plt.show()\n", + "\n", + "g = sns.jointplot(\"diff\", \"predicted\", data=predictions, kind=\"kde\", space=0)\n", + "plt.title('Distributtion of error and price')\n", + "plt.show()\n", + "\n", + "# predictions['correct'] = (predictions['predicted'] <= predictions['high']) & (predictions['predicted'] >= predictions['low'])\n", + "# sns.factorplot(data=predictions, x='correct', kind='count')\n", + "\n", + "print(\"MSE : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "print(\"MAE : \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + "predictions['diff'].describe()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "so it looks i improved on the previous results, by using lookback of 1 tick, 100 iterations, and my additional features. However, can i predict fast enough to make trading decisions?\n", + "\n", + "Sim results:\n", + "\n", + "- it got a lot worse when i changed lookback to 20 ticks" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/log_results.xlsx b/capstone_project/log_results.xlsx new file mode 100644 index 0000000..edf63df Binary files /dev/null and b/capstone_project/log_results.xlsx differ diff --git a/capstone_project/main_fx_spot_prediction_notebook.ipynb b/capstone_project/main_fx_spot_prediction_notebook.ipynb new file mode 100644 index 0000000..ad1113a --- /dev/null +++ b/capstone_project/main_fx_spot_prediction_notebook.ipynb @@ -0,0 +1,3605 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "# Machine learning capstone project - fx spot prediction\n", + "\n", + "The goal is to create features that can help predict the bid price, using a lookback period of a few minutes.\n", + "\n", + "Try to include the bid offer spread - from the benchmark model it seems volume is not an important feature so it is not a problem that i dont have this data point.\n", + "\n", + "I took inspiration from : https://www.kaggle.com/kimy07/eurusd-15-minute-interval-price-prediction/notebook\n", + "\n", + "Introduction\n", + "This notebook trains a LSTM model that predicts the bid price of EURUSD 15 minutes in the future by looking at last five hours of data. While there is no requirement for the input to be contiguous, it's been empirically observed that having the contiguous input does improve the accuracy of the model. I suspect that having day of the week and hour of the day as the features mitigates some of the seasonality and contiguousness problems.\n", + "\n", + "Disclaimer: This exercise has been carried out using a small sample data which only contains 14880 samples (2015-12-29 00:00:00 to 2016-05-31 23:45:00) and lacks ASK prices. Which restricts the ability for the model to approach a better accuracy.\n", + "\n", + "I will use 1 year of data, from 1Jan16 to 1Jan17, also in 15 minute intervals, but with tick data features.\n", + "\n", + "Improvements\n", + "\n", + "To tune the model further, I would recommend having at least 5 years worth of data, have ASK price (so that you can compute the spread), and increasing the epoch to 3000.\n", + "Adding more cross-axial features. Such as spread.\n", + "If you are looking into classification approach (PASS, BUY, SELL), consider adding some technical indicators that is more sensitive to more recent data.\n", + "Consider adding non-numerical data, e.g. news, Tweets. The catch is that you have to get the data under one minute for trading, otherwise the news will be reflected before you even make a trade. If anybody knows how to get the news streamed really fast, please let me know.\n", + "\n", + "Credits : Dave Y. Kim, Mahmoud Elsaftawy," + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "To run on EC2:\n", + "- Enter the repo directory: cd aind2-cnn\n", + "- Activate the new environment: source activate aind2\n", + "- Start Jupyter: jupyter notebook --ip=0.0.0.0 --no-browser\n", + "- Find this line in output and copy url to browser: \n", + "- Copy/paste this URL into your browser when you connect for the first time to login with a token: http://0.0.0.0:8888/?token=3156e...\n", + "- change the 0.0.0.0 with EC2 IP.\n", + "- you should see the checked out repository" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd, numpy as np\n", + "import pypyodbc\n", + "import io, datetime, os\n", + "import matplotlib.colors as colors, matplotlib.cm as cm, pylab, matplotlib.pyplot as plt\n", + "from collections import OrderedDict\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from subprocess import check_output\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pypyodbc\n", + "display(HTML(\"\"\"\n", + " \"\"\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "initval = True" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "#kaggle dates: 2015-12-29 00:00:00 to 2016-05-31 23:45:00\n", + "min_date = \"29Dec15\"\n", + "max_date = \"31May16\"\n", + "\n", + "if initval:\n", + " rerunSQL = False\n", + " log = False\n", + " useKaggle = False\n", + " runLSTMBinary = False\n", + " simname = \"500_epochs\"\n", + " sim_desc = \"\"\"\n", + " kaggle params but with 500 epochs to account for more features\n", + " \"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if log:\n", + " #log = {\"simname\": [\"mine_initial\", simname], \"sim_desc\": [\"kaggle params\", sim_desc]}\n", + " #df_log = pd.DataFrame(log)\n", + " if os.path.isfile(\"sim_log.xlsx\"):\n", + " df_log = pd.read_excel(\"sim_log.xlsx\")\n", + " df_log.loc[len(df_log)]= [simname, sim_desc] \n", + " df_log.to_excel(\"sim_log.xlsx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffled
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-07
MAE0.0002857810.0003408460.0005363070.0002029050.000594482
count102102103103102
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372
std0.0004009530.000444650.0008268490.0002555660.000478296
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495
75%0.0002399680.000177890.000316920.0001162290.000830978
max0.0007556680.001287820.003273720.00053370.00159335
mse train all feature:004.3917e-074.45245e-075.16241e-07
mse test all feature:006.79626e-076.55241e-084.82937e-07
mae train all feature:000.0004235650.0004267730.000505385
mae test all feature:000.0005363070.0002029050.000594482
mean avg bo spread:003.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.882353
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.655556
if same sign, how often is actual better than predicted in both directions:000.97826110.366667
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.0666667
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.333333
if not same sign, how often is actual worse than -0.1 percent return in both directions000.10526300
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_log = pd.read_excel(\"sim_log.xlsx\")\n", + "display(pd.read_excel(\"log_results.xlsx\").T)\n", + "#display(df_log)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create 15 minute data - this fills the 15 minutes table\n", + "if rerunSQL:\n", + " str_query = open(\"get_data.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + "\n", + " df = getQueryDataframe(str_query, [min_date, max_date])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# dates only have an effect if a subset of dates is needed.\n", + "if rerunSQL:\n", + " str_query = open(\"get_data_1y.sql\", \"r\").read() # returns prepared data\n", + " str_query = str_query.replace(\"/*\", \"\").replace(\"*/\", \"\")\n", + " #print(str_query)\n", + " df = getQueryDataframe(str_query, [min_date, max_date])\n", + " df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.set_index('datestamp', inplace=True)\n", + " df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if rerunSQL:\n", + " df.to_csv(\"data/eurusd_features.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Create features" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "df = pd.read_csv(\"data/eurusd_features.csv\")\n", + "df.set_index('datestamp', inplace=True)\n", + "df.index = pd.to_datetime(df.index) # else fill betweeen doesnt work" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if useKaggle:\n", + " # load kaggle reference dataset for comparison\n", + " df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_sample.csv')\n", + " #df_kaggle = pd.read_csv('data/bm_kaggle/EURUSD_15m_BID_01.01.2010-31.12.2016.csv')\n", + "\n", + " # Rename bid OHLC columns\n", + " df_kaggle.rename(columns={'Time' : 'date', 'Open' : 'open_bid', 'Close' : 'close_bid', \n", + " 'High' : 'high_bid', 'Low' : 'low_bid', 'Volume' : 'volume'}, inplace=True)\n", + " df_kaggle['date'] = pd.to_datetime(df_kaggle['date'], infer_datetime_format=True)\n", + " df_kaggle.set_index('date', inplace=True)\n", + " df_kaggle = df_kaggle.astype(float)\n", + "\n", + " simname = \"bm_kaggle\"\n", + "\n", + " df = df_kaggle\n", + " print(\"min date\", min(df.index))\n", + " print(\"max date\", max(df.index))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# to include seasonality as a feature\n", + "if simname == \"bm_kaggle\":\n", + " df['hour'] = df.index.hour\n", + " df['day'] = df.index.weekday\n", + " df['week'] = df.index.week\n", + " df['month'] = df.index.month\n", + " df['momentum'] = df['volume'] * (df['open_bid'] - df['close_bid'])\n", + " \n", + "df['avg_price'] = (df['low_bid'] + df['high_bid'])/2\n", + "df['range'] = df['high_bid'] - df['low_bid']\n", + "df['ohlc_price'] = (df['low_bid'] + df['high_bid'] + df['open_bid'] + df['close_bid'])/4\n", + "df['oc_diff'] = df['open_bid'] - df['close_bid']\n", + "df['period_return'] = df.close_bid / df.open_bid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Explore dataset - show some graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOEAAAJKCAYAAABgNMM7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vH7TEvvBJBeFFAUVFwLiCiysijoAnZFrHzt\nZe1lLSwL4i5WcFV+wi5SRFdUUGygoIKyYqOI9JJQQgjpbdr5/ZEwyZBJn2RS3q/r2otTnvOcz4xe\nJy7nzucxTNM0BQAAAAAAAAAAAAAAAKDOLKEuAAAAAAAAAAAAAAAAAGjuCOEAAAAAAAAAAAAAAAAA\n9UQIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4AAAAA\nAAAAAAAAAABQT4RwAAAAAAAAAnA6ndq+fXuF46mpqerdu7d69+6tJ598MgSV1Uww6ly0aJFvjo8/\n/jjIFUr5+flKSUkJ+rwAAAAAAAChQAgHAAAAAADgKKtXr9bFF1+spUuXhrqUFmvp0qUaMWKEfvjh\nh1CXAgAAAAAAEBS2UBcAAAAAAADQlOzfv1833HBDqMto0dauXav77rsv1GUAAAAAAAAEFSEcAAAA\nAACAcjweT5XnO3XqpM2bNzdSNaE1ZswYjRkzJujzVvcdAwAAAAAANEcsRwUAAAAAAAAAAAAAAADU\nEyEcAAAAAAAAAAAAAAAAoJ4M0zTNUBcBAAAAAABQXmFhoRYsWKBly5Zpx44dysvLU3x8vE488USN\nGjVKI0aMkMVS8XeL1qxZo+uuu06S9MEHH6hnz56aP3++li5dqp07d8rpdKpjx44699xzdeONN6pN\nmzZ+1/fu3bvSmubMmaMzzjhDqampOv/88yVJV1xxhSZOnOgbs2jRIj366KOSpB9++EHLly/X66+/\nrtTUVF/9L730ksLCwnzX7N+/X2+99Za+/fZb7d27Vy6XS8nJyTrttNN05ZVX6pRTTqnTd3h0nc88\n84w+/PBDLVq0SJs3b1ZhYaHatWunwYMHa/z48eratWuFOcp/nueff14XXXSR3/mioiK98847+uKL\nL7Rlyxbl5+crOjpanTt31qBBg3T11Verbdu2AWsKZPny5erUqZPfsa1bt2revHlas2aNDhw4INM0\n1bZtW/3hD3/QVVddpRNPPDHgXK+88oqmT5+umJgY/fDDD5o1a5bmzZungwcPKikpSWeccYays7O1\nYsUKSdKyZcvUuXPnSmubOXOm/vnPf0qSlixZol69elU6FgAAAAAAtE62UBcAAAAAAABQ3rp163Tn\nnXcqLS3N73h6erq++uorffXVV3rrrbf08ssv+wU8jpaRkaGHHnpIW7Zs8Tu+fft2bd++Xe+++65m\nz55daYijvt5++21NmzbNr/78/Hy/AM67776rv/3tbyouLva7NjU1Vampqfrggw90xRVX6K9//avs\ndnuda8nPz9cNN9yg7777zu/4nj17NG/ePL3//vt6+eWXNXjw4BrPuX//ft14443asWOH3/HMzExl\nZmZq3bp1mj17tqZNm6Zhw4bVumbTNDVt2jS9+eab8nq9fud2796t3bt367333tM111yjRx99VDZb\n5X/NNW3aNM2cOdO3f+DAAVmtVo0ePdoXwlmyZIluv/32SudYvHixJKlv374EcAAAAAAAQECEcAAA\nAAAAQJOxdetWjR8/XgUFBYqKitLVV1+ts846SzExMdq7d68++ugjLVu2TD///LNuuukmLVy4UJGR\nkQHneuSRR5Senq7Bgwfr0ksvVYcOHZSamqpZs2Zp/fr1ysnJ0cMPP6yPPvpIhmFIKumec/DgQU2Y\nMEFSSQeZq666SpLUpUuXWn2WF154Qcccc4zuvfdede7cWb/++qu6d+/uO79o0SI98cQTkqROnTrp\n2muv1UknnSSr1apt27Zp3rx52rRpkxYuXCiXy6UpU6bU+vs84qOPPpJU0uln3Lhx6tmzp9LS0rRg\nwQKtWbNGBQUFevjhh/X5558rOjq6RnM+8sgj2rFjh6xWq8aPH69BgwYpLi5Ohw8f1sqVK7Vw4UIV\nFRXpwQcf1Geffaa2bduqbdu2+uCDD7RhwwbfZ7/rrrt83XHKh6omT56sOXPmSJISEhJ0/fXXa8CA\nAbJYLFq3bp1mzZqlgwcPau7cucrPz9ezzz4bsM78/HzNnDlTxx13nO688061adNG33//vc455xz1\n6dNH8fHxysrKqjKEs2nTJl+Ya/To0TX6fgAAAAAAQOtDCAcAAAAAADQZDz74oAoKCtS+fXu99dZb\nfsGXfv36acSIEZo3b54mTpyoLVu26NVXX9UDDzwQcK709HTdeuutuu+++/zmGDZsmC677DL9/vvv\n2rZtm9atW6f+/ftLko4//njFxMT4xicnJ+v444+v02cxDENvvvmmevbsKUkaMGCA71xaWppvGauz\nzjpLr776ql+Y6JRTTtHo0aN9IaFFixZpxIgROuecc+pUiyRdcMEFmjZtmhwOh+/Yn/70J02YMEFf\nf/21MjIy9M0332jEiBHVzrV37159//33kkpCNLfddpvf+SFDhqhnz56aOHGiCgoK9NFHH+nGG2+U\nw+HQ8ccfr5ycHN/YDh06VPiOf/zxR18Ap3v37pozZ45fQGfAgAEaPXq0brzxRm3cuFHvv/++hg4d\nqgsuuKBCrV6vVzExMZozZ44SExMlSaeddprv/MiRIzV37lzt2LFDGzZsCNgZ6cMPP5Qk2e32Ckty\nAQAAAAAAHFFx8XQAAAAAAIAQWLVqlTZt2iRJevjhhyvtPHPNNdfo9NNPlyQtWLBALpcr4Ljk5GTd\nddddFY47HA6/bia///57fUsP6PTTT/cFcI42f/58FRYWymazaerUqQG7+dhsNj399NO+UNCRUEpd\nOBwOTZw40S+AI5UEhY50+pFKOhHVxKFDh3zbXbt2DTjm0ksv1WWXXaZ77rlH/fr1q1W9b775pm/7\nueeeC7jsWHx8vF588UVZrVZJ8ltu6mjDhw/3BXCONmbMGN/2kiVLKpz3eDy+TkJDhgypdB4AAAAA\nAABCOAAAAAAAoElYsWKFb3vQoEFVjh0yZIgkKS8vT+vXrw845swzz5TNFrgJcPmAT35+fi0rrZkj\n3XUCOfJZe/bsqXbt2lU6LiYmRqeeeqokae3atZUGjqrTr18/JSQkBDxXPkSTnZ1do/m6dOni+26f\nffZZLVu2rEJtYWFhmjRpkm6//Xa/zjPVcbvdvi47ffv2rTLA06VLF5199tmSpPXr1yszMzPguJNP\nPrnSOfr27atevXpJkj7++GN5PB6/86tXr1Z6eroklqICAAAAAABVYzkqAAAAAADQJBzpgiPJ1+mm\nJlJSUnxBlfI6duxY6TXlO8+43e4a36s2jjnmmIDH3W63tmzZIknavHmzevfuXaP5CgsLlZGRofbt\n29e6lqquCQsL86utJhISEnTZZZdpwYIFSktL0x133KGoqCidccYZGjhwoAYNGqQePXrUuk5J2rdv\nny8YVVWQ6Yj+/ftr5cqVMk1TW7duDfjvTnXf2dixYzVlyhSlp6fr+++/9wuBHVmKKiEhwRf+AgAA\nAAAACIROOAAAAAAAoEmorItJdXJycgIej4qKqvQawzDqdK/aiI6ODng8JydHXq+3TnPWtFPN0ar6\nLsozTbPGcz7++OMaP368ryNOfn6+vvzyS02aNEkjRozQH//4R73wwgs6fPhwrWrNysrybSclJVU7\nvk2bNr7tyr6fyv5ZHDFq1Cjf5yi/JFV+fr6WLVsmSRo5cqTsdnu19QAAAAAAgNaLTjgAAAAAAKBJ\nONKFJSEhQbNnz67xdVUt5xRKlQV9ynebGTx4sO6///4az1l+6ahQs9vteuyxx3TLLbfos88+01df\nfaW1a9eqqKhIkrRnzx699tprmj9/vt58880ql5UqrzZBIEl+y0dV9p1XF7pKSkrSkCFDtHz5cn3+\n+ed6+umnFR4eri+++EKFhYWSWIoKAAAAAABUjxAOAAAAAABoEuLj4yVJBQUF6t27tyyWltnA98jn\nlCSv16vjjz8+hNXUX3Jysq699lpde+21cjqd+umnn7Rq1Sp9/PHH2rt3r3JycvTggw/qk08+qdE/\n07i4ON92RkZGtePLjyn/3dbWmDFjtHz5cuXn5+vrr7/WBRdcoKVLl0qSevXqpb59+9Z5bgAAAAAA\n0Dq0zL/NAgAAAAAAzc5xxx0nSSouLtamTZuqHPv1119r1qxZ+uyzz2q93FGoORwOX0ebjRs3+nXG\nCWTBggWaN2+eVqxYUe3YxuL1epWSkqLvvvvO77jD4dCZZ56p+++/X59++qlOPvlkSdKuXbu0c+fO\nGs3duXNnRUZGSpJ+/fXXasf/8ssvvu3u3bvX9CNUMGTIECUmJkqSL4xz5PPRBQcAAAAAANQEIRwA\nAAAAANAknH322b7t+fPnVzrO4/HomWee0dSpU3X33Xf7lgsKlsbowHPks2ZlZenjjz+udNzu3bs1\nceJETZw4UX/7299kszWNpsZ//etfNWzYMF1//fVKSUkJOOZIIOeI4uJi33ZV37HVavVdt3HjRm3Y\nsKHSsbt37/YFZfr06aOkpKRafY7y7Ha7Ro0aJUlasWKFVq5cKafTKavV6jsOAAAAAABQFUI4AAAA\nAACgSRg2bJg6d+4sSXrvvfe0ePHigOOmTJmi1NRUSdL555+vjh07BrUOh8Ph2y4oKAjq3Edcd911\nslqtkqTJkydr8+bNFcYUFhbqwQcflNfrlSSNGzeuQWqpi/POO8+3PWXKFJmmWWFMYWGhli9fLkmK\niory61JT3Xd8ww03+LYfeughHTp0qMKY7Oxs3XffffJ4PJKkG2+8sQ6fxN+YMWMklYSjXnrpJUkl\ngank5OR6zw0AAAAAAFq+pvHrUwAAAAAAoNWz2WyaOnWqxo8fL5fLpYceekhfffWVLrroIiUnJ2vv\n3r1auHChvv/+e0lSXFycHnvssaDXkZCQILvdLpfLpY8++kgDBw5UbGysunbtqvj4+KDco1u3brrv\nvvv0z3/+U1lZWbr88st19dVX65xzzpHD4dCWLVv073//W7t27ZIk9evXT9dcc01Q7h0MQ4cO1Ukn\nnaT169dr+fLlGjt2rK666ip169ZNpmlqx44dmjt3rrZu3SpJuummmxQREeG7vnyo5e2331avXr1k\ns9l0/PHHKyIiQqeffrrGjRunt956S9u3b9fFF1+s8ePHa8CAATIMQ+vXr9fs2bN14MABSdLIkSN1\nySWX1Ptz9enTRyeccIJ+++0333f/5z//ud7zAgAAAACA1oEQDgAAAAAAaDIGDBigN954Q/fdd5+y\nsrK0dOlSLV26tMK49u3ba8aMGerUqVPQa7BarRo6dKg+++wzHTx4UDfffLOkko41Y8eODdp9brnl\nFhmGoRdeeEFFRUWaNWuWZs2aVWHcaaedpunTp8tutwft3vVlsVg0ffp03XTTTdq2bZs2btyoJ554\nosI4wzB01VVX6fbbb/c73qFDB/Xt21cbN27U1q1bfV1+/vOf//iWonrsscdkt9s1e/ZsZWRk6Pnn\nnw84//XXX6/7778/aJ9tzJgx+u233ySVBL2GDRsWtLkBAAAAAEDLRggHAAAAAAA0KQMHDtTy5cu1\nYMECrVixQtu3b1dubq4iIyN17LHH6vzzz9eVV16p6OjoBqth8uTJSkpK0vLly3X48GHFxsYqMzMz\n6Pe5+eabNXz4cM2bN0+rV6/Wvn37VFhYqPj4ePXt21cXX3yxLrzwQlksTW9F8fbt2+v999/Xe++9\npy+++EJbtmxRVlaW7Ha72rZtqzPOOENjx45V//79A17/2muv6bnnntPq1auVk5Oj+Ph4v2WnLBaL\nHn74YV1yySWaP3++1qxZo7S0NFksFnXo0EFnnHGGLrvsMvXp0yeon2vEiBGaNGmSb7v80lkAAAAA\nAABVMcxAi3YDAAAAAAAArdDKlSs1YcIESdLChQt18sknh7giAAAAAADQXDS9X6MCAAAAAAAAQmTR\nokWSpGOPPZYADgAAAAAAqBVCOAAAAAAAAICk1atXa9myZZKkq666KsTVAAAAAACA5sYW6gIAAAAA\nAACAUJk0aZLy8/OVm5urlStXyu12q3379ho7dmyoSwMAAAAAAM0MIRwAAAAAAAC0WhkZGVq6dKlv\n3263a/LkyYqIiAhhVQAAAAAAoDlqMiGc9PTcUJcAoAVISIhUZmZBqMsAgAbH8w5Aa8HzDkBD69Pn\nJK1atUrFxcXq1auPbr75VvXq1a/R/66K5x2A1oRnHoDWgucdgNaitT3vkpNjKj3XZEI4ABAMNps1\n1CUAQKPgeQegteB5B6ChjRlzmcaMuSzUZfC8A9Cq8MwD0FrwvAPQWvC8K2MJdQEAAAAAAAAAAAAA\nAABAc0cIBwAAAAAAAAAAAAAAAKgnQjgAAAAAAAAAAAAAAABAPRHCAQAAAAAAAAAAAAAAAOqJEA4A\nAAAAAAAAAAAAAABQT4RwAAAAAAAAAAAAAAAAgHoihAMAAAAAAAAAAAAAAADUEyEcAAAAAAAAAAAA\nAAAAoJ4I4QAAAAAAAAAAAAAAAKDRLF26RP/61ysNNv9PP63VU089WuH4Sy9N04EDB/yO7d69S3fe\nOSEo97UFZRYAAAAAAAAAAAAAAACgCbvnnvsbdH5COAAAAAAAAAAAAAAAAK1A1NNPKGzJB8Gd9IrL\npYeerHJIcXGRJk9+RgcOHJDL5dJ5553vO7dgwVwtX/65rFar+vc/RbfffrfWrftF06e/KJvNpvDw\ncE2aNFUOR5j+8Y/JSk1Nkdfr1S233KZTTz2t0numpKToL3+5U9nZ2Ro9eqxGjvyz7rxzgh588DFF\nRUVr4sQnZJqmEhOTgvZVEMIBAAAAAAAAAAAAAABAg/ngg/fUvn0HPfPMFKWk7NF3332rvLw8bd++\nTV9++YVee22WrFarHn/8Ia1a9Y1++eUnDR06TJdffrW+/fZr5eTk6rvvPlFcXLweffRJZWdn6Y47\nJmju3HcqvafH49bUqS/I6/Vo/PirNWjQEN+5OXPe1LBhw3XxxaO1fPnnev/9/wblcxLCAQAAAAAA\nAAAAAAAAaAXyn56k/KcnBXXO5OQYKT23yjF79uzWmWcOlCR17txF69fHKCMjQ7t371LfvifJZiuJ\nr/Tvf7J27tyuceNu0Jw5s3TPPbcpObmtTjjhRG3fvk3r1v2s337bIKkkZJOVlaX4+PiA9zzhhJNk\nt9sl2dW9e3cdOLDPdy4lZY9GjRotSTrppP5BC+FYgjILAAAAAAAAAAAAAAAAEEDXrt21adNvkqS9\ne1P1+uszSo9302+/bZDb7ZZpmvrll5/VuXNXff75Ul144Ui98srr6t69hxYvXqSuXbtp2LDhmj79\nDU2b9rLOO2+YYmNjK73n1q2b5Xa7VVhYqF27dqpjx06+c9269dDGjeskyVdXMNAJBwAAAAAAAAAA\nAAAAAA3mkkvGaMqUibrzzgnyeDy64oprlJ2dpZ49j9XQocN02203yTRN9evXX+ecc65++22jnn12\nkiIiImQYhh566HG1aZOsqVMn6c47Jyg/P0+jR18mi6Xy3jMOh0MPPHC38vLydOONExQbG+c7N378\nTZo48QktW/a5OnToGLTPaZimaQZttnpIr6Y1EQDURHJyDM8TAK0CzzsArQXPOwCtBc87AK0JzzwA\nrQXPOwCtRWt73iUnx1R6jk44AAAAAAAAAAAAAAAAaHZmz56pH3/8ocLxxx57KqgdbmqKEA4AAAAA\nAAAAAAAAAACanRtuuEU33HBLqMvwqXxxLAAAAAAAAAAAAAAAAAA1QggHAAAAAAAAAAAAAAAAqCdC\nOAAAAAAAAAAAAAAAAEA9EcIBAAAAAAAAAAAA0Cy4Pd5QlwAAQKUI4QAAAAAAAAAAAABo8kzTJIQD\nAGjSCOEAAAAAAAAAAAAAaPJMU3J7zFCXAQBApQjhAAAAAAAAAAAAAGjyvKYpr5cQDgCg6SKEAwAA\nAAAAAAAAAKBZ8BDCAQA0YTUK4fz6668aN25cwHOFhYW68sortX37dt+x119/XVdccYXGjBmjd999\nNziVAgAAAAAAAAAAAGi1LFu3yL7l91CXAQBApWzVDZg5c6YWL16siIiICufWr1+vp556Smlpab5j\na9as0c8//6wFCxaosLBQs2bNCm7FAAAAAAAAAAAAAFqdduecLklK358pWa0hrgYAgIqq7YTTpUsX\nvfLKKwHPOZ1OzZgxQz169PAd+/bbb9WrVy/dcccduvXWW3XuuecGrVgAAAAAAAAAAAAArZt1985Q\nlwAAQEDVdsIZPny4UlNTA54bMGBAhWOZmZnat2+fXnvtNaWmpuq2227Tp59+KsMwqrxPQkKkbDYS\nqwDqLzk5JtQlAECj4HkHoLXgeQegteB5B6A14ZkHoD7istJlTT4l1GXUCM87AK0Fz7sS1YZwais+\nPl49evSQw+FQjx49FBYWpsOHDyspKanK6zIzC4JdCoBWKDk5RunpuaEuAwAaHM87AK0FzzsArQXP\nOwCtCc88AHWVXPqn9U/DlX4wJ6S11ATPOwCtRWt73lUVOKp2OaraGjBggL755huZpqm0tDQVFhYq\nPj4+2LcBAAAAAAAAAAAA0FqYZqgrAACgWrXuhLNkyRIVFBToiiuuCHj+vPPO0w8//KBLL71Upmnq\nySeflNXKMlMAAAAAAAAAAAAA6saSssf/gNcrWYLebwAAgHoxTLNpxEZbU2siAA2ntbU6A9B68bwD\n0FrwvAPQWvC8A9Ca8MwDUBfW9euUeP7Zvv1Dm3fJTEgMYUXV43kHoLVobc+7Rl2OCgAAAAAAAAAA\nAACCyXC7/PYtBw+GqBIAACpHCAcAAAAAAAAAAABA0+Y8KoSzb2+ICgEAoHKEcAAAAAAAAAAAAAA0\naUc64Xi6dJUkmXv2hLIcAAACIoQDAAAAAAAAAAAAoGlzlYZwuveQJNk/+ySU1QAAEBAhHAAAAAAA\nAAAAAABN2pFOOO7jekmSopd9GspyAAAIiBAOAAAAAAAAAAAAgKbNWRLC8bbvEOJCAACoHCEcAAAA\nAAAAAAAAAE1baSccMyqy7JjTGaJiAAAIjBAOAAAAAAAAAAAAgCbNcJWEcGSzq3jEyJJj+XkhrAgA\ngIoI4QAAAAAAAAAAAABo2kpDOKbDITMqSpJk5BHCAQA0LYRwAAAAAAAAAAAAADRpZZ1wbAp7/7+S\npMgX/xnCigAAqIgQDgAAAAAAAAAAAICm7UgIx26X4fFIksLffTuEBQEAUBEhHAAAAAAAAAAAAABN\nmuPTjyVJpsUiT+cukiTXGWeFsiQAACoghAMAAAAAAAAAAACgSQtb8aUkyf7Lz8p77nlJkvN0QjgA\ngKaFEA4AAAAAAAAAAACA5sHrlTcqRpIU/Y/JkmmGuCAAAMoQwgEAAAAAAAAAAADQLBTeeocUHubb\nN7IyQ1gNAAD+bKEuAAAAAAAAAAAAAAAqVa7bjbf9MTLtDt++UVAgMyExFFUBAFABnXAAAAAAAAAA\nAAAANF1Op9+umZTk2zby8hq7GgAAKkUIBwAAAAAAAAAAAECTZeSXBG2KLhpV4Zx91TeNXQ4AAJUi\nhAMAAAAAAAAAAACgyTLy80s2IiIrnIt55P5GrgYAgMoRwgEAAAAAAAAAAADQZBnFxZIkMyIixJUA\nAFA1QjgAAAAAAAAAAAAAmq6iIkmSGRbmO5T92puSpOI/XRSSkgAACIQQDgAAAAAAAAAAAIAmyygu\nCeEovKwTjufEfpIkb9t2oSgJAICACOEAAAAAAAAAAAAAaLKMAJ1wTIej5JyzOCQ1AQAQCCEcAAAA\nAAAAAAAAAE2OkZUp+8zXZOTlSZLM8PCyk6UhHDmdIagMAIDAbKEuAAAAAAAAAAAAAADKM9LTFTdm\npOybN8kbF1dysFwIx3SUdMUxCOEAAJoQOuEAAAAAAAAAAAAAaFIShp8r++ZNkiRLdrYkyQwr1wkn\n7EgnnGIVpuyV3O7GLhEAgArohAMAAAAAAAAAAACgSYi+6TqZiUmypqZUOFd+OSrTXhLCsa1fpy4D\njlfBteOV//wrjVYnAACB0AkHAAAAAAAAAAAAQEh4vaYkyeP1ysjKVMSSDxT5nzcDDw4LK9t2lIRw\nrPv3SZIi5/6nQesEAKAmCOEAAAAAAAAAAAAACAmP1yu53bJNfVaWTb+VHe/UucJYMzKqbMdikWm3\nN0aJAADUGCEcAAAAAAAAAAAAACHh8ZoKn/sftXnhWSVeMsJ33JqaInf7Y1R4zXUl46Jj5Bo4yO9a\n0xEmAACaEkI4AAAAAAAAAAAAAELC4zVlFBYGPGd4vcp7Ybp27cnQwa0pMmNi/c6bERF1uqfb463T\ndQAAVIcQDgAAAAAAAAAAAICQ8HhNmVFRAc9ZD6ZJkmxWi2zWiq81zeho/wOVhHkC3RMAgIZACAcA\nAAAAAAAAAABA43M6Ff32XFm3b/M7nP/AIzItFhVcO16SZLcFfqVpxsT47VsOZ9Totl5COACABmIL\ndQEAAAAAAAAAAAAAWp+IN99Q9FOPVTjuOfY4pW3cIWtCvCTJYhgBrz96eSrL4Qx5O3aq9r50wgEA\nNBQ64QAAAAAAAAAAAABodNad2wMeN+12WZMSJUvVrzKPXsbKyKhZJxxjx3bFXTlG1u1ba1YoAAA1\nRAgHAAAAAAAAAAAAQKMzHY6Ax50XjqrR9faf1vrt12Q5KiMjQ93OO12OL5cp5p47anQfAABqihAO\nAAAAAAAAAAAAgMZns/vt5o8arbSUdMlqrdHl3uS2fvtGdnb1t/z157IdZ3GN7gMAQE0RwgEAAAAA\nAAAAAADQ+Oz+IZyC6a/JEhZW48udQ//ot2/kVB/CqW6JKwAA6oOfMgAAAAAAAAAAAAAanWmz+R8I\nD6/V9QX3PeC3b/32m8rvZZolG+VDOIZRq/sBAFAdQjgAAAAAAAAAAAAAGp/D4dvcs2FnrUMxZmSU\n337Eyi8l05ScTkU9cK/f0lMeb2kIh+ANAKABEcIBAAAAAAAAAAAA0OhMW9lyVBHJibWfoLSTjiep\nje9Q7JWW3buEAAAgAElEQVRjFTnjJUXOmaX4UcN9x90eryTJknHId8z+80+1vycAAFUghAMAAAAA\nAAAAAACg8TnKQjh16lBjGEpZt037/7de2TdMkCSFfbVMUVP+VnK6qMg39EgnnJhbb6p7vQAAVIMQ\nDgAAAAAAAAAAAIBGV74TTl052iXLGhkh59R/yiy3vFV5ln17FfvUYzKys2R4vRXOew6kScXF9a4F\nAABCOAAAAAAAAAAAAAAanddirfccFsOQzVryytNwOv3OFY0eK6mk+03i7NcV8dI0Fdx6p98Y+zcr\n1b7fcYp+9IF61wIAACEcAAAAAAAAAAAAAI2u2F2xK01QWW2SJNuG9ZKkqOkvKeL1GX5D4seOkiRF\nzP1Pw9YCAGgVCOEAAAAAAAAAAAAAaFwulxL/8XdJ0qHpMxvmHh63JMmSl+s7ZJhmw9wLAAARwgEA\nAAAAAAAAAADQyCLe+JdsWYclSRabLShzFl90sSQpe/Y8SZLhctduAper5M/SoI5l5w4lDjhRtv+t\nCUp9AICWLzg/0QAAAAAAAAAAAACgBixrf1D0M0/49q12qzxBmDdn9lzJ5ZJRkC9JMt1uGVmZNb4+\n9prLFLbiS0lS9jOTFbbuF1lT9ij29lt0eO26IFQIAGjp6IQDAAAAAAAAAAAAoNEkXXi+/wEjiK8s\n7XaZ1pI+BF6nUzF331ZhiGkYAS89EsCRpLinHpPl4EFJknXPLsldy646AIBWiU44AAAAAAAAAAAA\nABqH11vxmNUa3HtEREiSIr/8IuBpMzZWRnZ2tdM4vlnh27Zu2SzPCX2DUh4AoOWiEw4AAAAAAAAA\nAACARmHk5lQ8aAnyK8tqQj3e6Bi//ZwXplc7pZEToG4AAI5CCAcAAAAAAAAAAABAozCysioetARe\nHqrBxMb5NjNf+peKr7lOh/67RJJUPPKSgJcYLmejlAYAaN5YjgoAAAAAAAAAAABAo4j+y10VjpkR\nkQ16z4IzByny+1VlBzxu36b7qmtKajhniNIPlnW7sezepfihZ8ta2rnHcBY3aI0AgJaBTjgAAAAA\nAAAAAAAAGoTXNOVye337Yd+srDDGjIoK+n0LL7/Kt13wl4f8zhl5edVe7+3aTYe3pSjvmcklB5yu\noNYHAGiZCOEAAAAAAAAAAAAAaBCFu1PkOZxZ5RgzOibo981/8NGy+c89z++ckZNz9PDADENyl3TN\nibljQtBqAwC0XIRwAAAAAAAAAAAAAARdxBuvqtvpJ6rzid2rHOeNiw/6vc2u3ZT5zgfK+GVThXOu\n886v8TzWPbslSZa83PrXZJoyTbPe8wAAmi5COAAAAAAAAAAAAACCLvqJR8p2XCXLOZkWi4pPP1Ou\nE/r6TplJSQ1yf/e5Q+Xt0NHv2IHX/q38R/9a4zmKLrsyaPWYpf8DALRctlAXAAAAAAAAAAAAAKBl\ns6bslqdLNxler+RwKGvFd7Ju2SxnWrqsVmvj1TFmjDzFxZIk18mnVjve3f9kSZJzyHnVjKyBIwkc\no/5TAQCaJkI4AAAAAAAAAAAAABqUdcN6GdnZJTthYZIkT6/eMnse1yj3z/pgqcxDh3z337VxlyIT\nYqvPw9hKX6e63fWuwSSFAwAtHiEcAAAAAAAAAAAAAEHnTW4rS/pBSVLczePLTjjCfJs2q6VRanEN\nPNtv3xoXK8NWg1elltL6PJ5612CakkH+BgBatMb5qQYAAAAAAAAAAACg1fB4vfJGRckTE1vhnDc+\nPgQV+Qt31LBXgWHItNmCEsKRSoI4AICWixAOAAAAAAAAAADNnNvjDXUJAOBT7PKoaNUa2XbtlBkT\no9zHn/I7byYkhqiyOrJag7IcFQCg5WM5KgAAAAAAAAAAmjGv15TL7W20JV0A4AiP16v8Qrfycwvk\n2bZDxtYtsm3bou6L5ysqbZ8kybZvr4ruuV9Fd9yj5A4l4RtvQkIoy64102oLSgiHLjgA0PIRwgEA\nAAAAAAAAoBnzeL3yeHmzC6DhmKapwmKPCg8ekvf332Vs2SL7tq2K2LVNySk71X3fHlk8gUMqzlMG\nlGzYyl5LGt5m1r3LZg3SclQ8qwGgpSOEAwAAAAAAAABAM+Y1JQ/LUQEolVfoUnSEvc7Xu5wuFW3f\nJe+m32XZukW20rBN25Qdijh8qMJ4Z1SMMnv1VV7nHnIde5yMPn0U3vtYdRx+jiSp4NG/ls19yqmy\n//yTnEOH1bm+UDCtNhmVhIxqNQ8ZHABo8QjhAAAAAAAAAADQnJmiEw4An4zsIkVH2OU1TVkMo9Jx\nnrw8uTdtlvf3zTK2bPZ1tklI3SVbcZHfWNMwlN+uo/afNli5nbsrt3MP5XTpLu+xvRXVpYMSYsMV\nHx2mSEvF+3m7dPFtZy1drkO79qlNz87B+8CNwIyIlGX//pIUTRXfabXzBLEmAEDTRAgHAAAAAAAA\nANCkmKYpox4vOVubxAnXqe0vPyv7l99CXQqAEAufN0fH/PqbjPvvk+Wtt+To1VPuU0+Te+s2X2cb\n+/atCt+1XZEH9la43h0WURayKf0zt3MP5XbsKm9YuBw2ixKiw5QQG67jYsIUZrdWWotzyHmybNgg\nT8dygRurVfZ2bRviozcoT48eCvv2a8ntlux17zIkiSQOALRwhHAAAAAAAAAAAE2Ky+2Vo4oXu/AX\nuXRJyUZBgRQZGdpiAIRUzH13KkaS/v1qleMKk9oq7eQzldupmy9ok9OluwrbtJcsFt84i2EoNsqh\nbjFhSowNr9UyV9kL3pOKi6WwML/jdpulkiuaLjM8QpJkFBfJrEcIx2Q9KgBo8QjhAAAAAAAAAACa\nFFf6ITmS4iu8uEXVLIcz5CWEAyCATVf9X1lnm07d5Y6KrnRsZJhNiTHhSogJU3yMQ1ZLHUMzNlvJ\n/45itzW/kKVx5OdRsVOq/KsDAIAQDgAAAAAAAACg6TDyctXt5ONUNOoS5b75VqjLaV5crlBXAKCJ\n2nDDvZWes1stio8JU2JMmBJiwhTuaNjXh82yE05pCMdwFtdrNSka4QBAy9f8fsoBAAAAAAAAAFos\nS2qqJCl8yYchriS0ip0eebzeWl1jEMIBEMDOC0b77VsMQ3FRDnVvH6tTj0vWwBPbq2+3RB2TFNXg\nAZzmKuzjxZIk29r/hbiS1sf2688Ke/Qhye0OdSkAUCP8JAUAAAAAAAAANB28ZJMkRT/9uBybNir/\n/SU1v8jpbLiCADRbP97ztCIcNiWUdruJjwmTzcrv6deGabPLKC5W3E3XKf1gTt3noRNOrSX8cYgk\nKXvwOXJeODLE1QBA9QjhAAAAAAAAAACaDMNDCMf+zUrF/79XJUn5pikZRo2uM1yEcIDWzPa/NRWO\nZSz6WKf366yIMF4J1kfRNeMU+ca/JEluj7ceISZTRU6PIsP551FbRk52qEsAgBoh5goAAAAAAAAA\naDrohKOo5yaX7VTX3aZ8WwUny1EBrVnCyD9WOOY9ezABnGAwyr1Sfe+/MjIP12mayPlvyfIDS1rV\nCd3eADQThHAAAAAAAAAAoA5M05SXdSWCz+0JdQUh501q49s2iouqHlwutEQnHABoGEXXjvdtH3Pn\nzYq9+fpaz2Hk5ij5kXt13FUsqVQXsQ/cQ1AXQLNACAcAAAAAAAAA6sDtMeVyeUNdRovDclSSNy6u\nbKeouOrBxeXO0yUAaNU8bZIlSc7zzi/5c/C5IaymZfH07qPc62707Tu+WVH7SQrLQpVGXm4QqmoF\njgo72375KUSFAEDN0X8OAAAAAAAAAOrA/snHcnbpJvU/KdSltCz8lru8nbv4to2iQlXVb8koF8Ix\nXCxHBbRm3qQ2sh5KV/bcd+Q9fFiWpKRQl9SiWCxH9TYwTckwany94S57RhsZGTKjY4JVWosVtuhd\nv30jl/ASgKaPTjgAAAAAAAAAUFtFRUq+6Rp1/OOgUFfS7LiqW26KEI7MsHDfdvmQTSCGs3wnnGq6\n5gBo2ZxOOZPbSXa7LO3aSTZ+Fz+Y3KUdho6wbt1Sq+vNcs9zb2ZmUGpq6cI+eM9vP+7qS0NUCQDU\nHCEcAAAAAAAAAKglw8WyP3VhHDyosL89IyMnu/IxLEclecsFlYqKKh8nKXz+W77t6KefaKiKADQH\nRUUywsJCXUWLZYaH++1HvvCPGl8btnC+2pxxsm/feyhDHi9LWlbH/t1qv33D45FjyYdSQYGSenZU\n/LBzZF/1TYiqA4DACOEAAAAAAAAAQG05WfanLmIeuFtJ/3pRUX9/pvJB1XXKaYG8Xv8FpwxP2Xdg\nFFcdwoma+nfftjVlT3ALA9CsWDMPS4RwGo7D4b9fiyUAIydP9NuP/fvTSt+xLxhVtWiW0tBuwcDB\nvmNxN41Tcrf2suTmyr7uF8WPvkjJbWMlQk0AmghCOAAAAAAAAABQSwbL/tSJNSVFkhS+cH6lY4yi\nwsYqJ6S8Zlnwxnl08Kh8CCcvr7FKAtCM2X79WZaiQtm3bw11KS2Wke//PDZjY2t0nSXtgGz7/QM3\nERvX6aSBJyji5eeDVl9Llj/vnWrHRN92s2Sa1Y4DgIZGCAcAAAAAAAAAain8P2+GuoRmyVr6ctgo\nKKh0jH3Vt41VTkh5PKUvCl0utfnzCIW/9e/yJ32b9jXfVTmP6+RTGqA6AM2N48tloS6hxfMmtfHb\n9/Q4tkbXxf75okrPRU96uh4VtXyeuHi5OnSSoqJUNObSKsdGvP/fan9mAkBjIIQDAAAAAAAAALUU\ntviDUJfQPBlGtUMi5sxqhEJCz1O6bIbttw2KWLtGMfff7TtnlgvhmOHhVU9ktfnvu91BqxFA82Fa\nraEuocVzD/iD8ocN9+0b7hosR2WaVXYn8iQmBaO0Fstwu2QmJEiS8p57Qdn3P6KcV2cq/94HlL4/\nU9lz3vYbb9nPEl8AQo8QDgAAAAAAAADUknnUb8OjhpzO2o0P0rIS1q1bFPbmG0GZK1i8XlPm4QxF\n/fXRCuc85Zaniv77M5VPUlgo+48/SJIKRv1ZkmTZszu4hQJoHliGp1EUzH9X++YuKtmpSeixqKjK\n06bdHoSqgs+Tnx/qEiRJRnGxFBEhSTJj4+R8+DEVX3qFCh57UrJa5fzThcpYt7lsfMahUJUKAD6E\ncAAAAAAAAACgltx9Twx1Cc2Sc+gw37ansLD6C1w16DJQA4mDTlPsow/I9vOPQZkvGLymFP3kY3J8\nv9r/hMejuBkv+h0ycrIDzmE5sL9sTGk3Bfv/vg9uoQCaBaNcBy00rPDo0g5lNemE80wVQUpJltyc\nIFQUXPYvl6l992MUPm9OaAtxu2W43VI1HeG87Y+RWRrUseTlNUZlAFAlQjgAAAAAAAAAUEtG5uGy\nHV581pj7pH6+bdvixf7nPN4AFwR3aSUjKyuo89WW01X670pRkTqf2luR7yyoMMax7PMKxyz79vmu\ns6SmyP6PqbJu3ypLerokqWDoH+UacJokyahJuAlAi2M6wkJdQqthHOle43TJrK4D0dSpvs3DH33h\nd8p51iBZCgqa3DKC4fPfkiRFzHgppHUYu3aVbNRgqbWsdz4suSY7W2a5II6XDlEAQoAQDgAAAAAA\nAADUkiWjXAintksstWJGuWWW2tx1i2/b8fknsv9rhiTJdDjKjQ9OJ5wjwmc17pJUxS6P0jILtCUl\nS//blKbVGw/I7fHKujdFtsqWzCiuuHRJ5MP3y3Jgv6KfeERJp/ZV/D/+rsSzBihy+guSJG/3HjKT\nSjrhNLVltwA0LFfpc9XTpYskqeiyK0NZTutQ+nMqavqLCn/kQVl27azRZZ7Tz/DbN+PiJUlGXm5w\n66sH29r/KXzx+yU7R4VfAoZlG1CbgadKkhwrv6p2rBkdLUmKnPGS2vboICMrU/bvVsl8550GrREA\nArGFugAAAAAAAAAACKXwJx6VJe2ACmbOrvE1xuGMsm1nsW8ZhCbB7VZhRrYi2iWFupKKKvlt/7hr\nr5AkpU/4PxnlQ02u4HYHCP/sEzXkq84ip1vZeU5l5RUrK8+pQmdZ/YbbpcQtG+SOLlZYVd2TIiMr\nHAr/7ltZ7rxVjq/9X0SGfbpUkuQ9qZ/MqJIXkI4tv8tIS5PZrl0QPhGApq7Y5ZXdZi1ZtkeS6/Qz\nQ1xRy2fa7L7t2NlvyPP5Uh3++bcK46wbN8iMjpaRl6esD0qe1we27FHUxReq+E8jFb13lyTJyMmR\nGZ/QKLVXJ+HCsmUjZS17jWzk5cr2+RfSJZfUqDNNYzOjovz2I6c9p8jXS8K96ZdfLhlGKMoC0EoR\nwgEAAAAAAADQqsW8UfKSpsYhHK9X9g3ryvadwe3WUl+Rjzyg5DmzlPHzb/J27FThvNvjlc0aoibp\nR3e2KSyUygWYLEd1hzHcLgV9IQnTDNrLuMJit7LzncrKLVZWfrGKnP7hmqj9KWr34yq1X/ut2v6y\nRvaCPDk7dJJnyLmBJ3S7ZVrKXm7mDvuTYpZ9KkkVAjjluYYOk+Vgmm/fkp0lDyEcoMVzLH5fiV98\nIefLM8pCjjZe/TU4u91v17o3tcIQy9oflHjh+ZKk4l7HyzXwbEmSERunjQs+UbvESEU980jJsdym\n0wmnPLNc2Cbm7tsV9tGHys1/WUXjrq/1XA393x5HgqhHWMqHpbOzmkzICUDrwHJUAAAAAAAAAFAL\nRy9pZDiLQ1RJYFFzZkmS7Gu+C3jevWu3nFk5kiSPt3GXljCO6oTjWPaZVK4G+4ov/c5bf98U/Boy\nD1c/qBKFxW7tz8jXpt2Z+n7jAa3ZlKbf92TqQGaBipwe2Qrydcx3X+qU6X/Tn64frgvHX6ABLz+j\njquXqzg+UZLk2JeqiAVzfXPm3n2/b9uxYrkMV1lQqeiGm6utyZ3cVt627fy7ALBEGtAqxN08XnEL\n58qyN1VGfr4k/+AEGoY3sWKnOSMnW5b9+2RJ2SPl5yupNIAjSUZUWYczw5DC7FbZrRaZkSXP7djr\nr5b9268bvvBqGLk5/gdsVhmbN0uFhQr76ENJkvn773Wa++iQam0U3Px/1Y45shyVj6XsFXjU5Il1\nvjcA1EWNQji//vqrxo0bF/BcYWGhrrzySm3fvt3veEZGhoYMGVLhOAAAAAAAAAA0Z5EvPe9/oCkF\nHsyyvjH25V9UOG3k5arzWf3V5sLzpcJCJR/XRRH/nOo7b92wXhGPP1zpslH15vZ/CRd303UKW/y+\nbz/2ntv9zsc8eG/Qg0IRb/yrxmMLilzadyhfm3Yd1neloZvNKVlKyyxQkcsjeb2K37JRfRa8oSEP\nXKdLLj1LZz91h45dPF/hWRnae9b5+vGuJ7X035/pk39/pl8mPOw3f9bL/1LRE0/59i0pKbKs/rZs\nv2fPamvMXrpMslj8lkcxXE3o30kADc/pVMzDf5EkGcVNKxjaEplt2lQ4FnvN5Urq30dJA05Ucvdj\n/E+W605kGIYiwmyyWg2ZpcsP2nbvUvyYkfJOmSLP3Hnyfv2NlLKn4X4WB+L1ynJUwMb+809qM/gP\nSu5a1lktduartf7vHsue3Ur6y+0y0tPrVFrhXfdVPyg8XM4zB5btLpxfdo6lqAA0smp70s2cOVOL\nFy9WRIA1jdevX6+nnnpKaWlpfsddLpeefPJJhYeHB69SAAAAAAAAAGhIHo9Ugw4C1rQDfvuWzMMy\nPloi73Xj5Y2NkxHClz1h777t2454923lzTiqa8/hki4wYds2K2rSU7Lm5ij6ub+r8IGScEji0EGS\nJLN3HxVdd0PwC/RUfKFo5OVVOtx0ueR0eRURVo+m7qb/glZRzz8n59nnyH32ORWG5he5lJXnVFZe\nsXLynCp2V/zN/fCMg2r302q1W7tK7X5arfDsku/UNAxlHtdXBwYMUtppZyvj+P5+wRhJ2jp6nLoY\nBUp8/RVJklG6PEbexMmKfvIxedu0UVzpi3Sp5EXv3lkLlPziVNk3bfTrknOEt0PHkj+7dC072MSW\nSAPQsAxP2bPKm5gYwkpaL0cl3eckyfHDGr/96Ai7bFaLzIhIv+PtXpjit29aLCpq007Fx3SUq0Mn\nuTt2krdTZ6lTZxldu8ravYsssXFBqT9y2lRF/WNK9QMlhb/7toquua7Gc8fce4cc336tIptVua+8\nVrOLSgO4xWcOlPeYDtWPNwxlL/5URnq62vQ9KsBKMA1AI6s2hNOlSxe98soreuihhyqcczqdmjFj\nRoVzU6dO1ZVXXqk33nijwjUAAAAAAAAA0CQ5nVKAX0asdPjgc+X4ZoWin3pc9jXfqXDr7zr83Ety\nhNkb9beuPV6vnC6vDEOKOJzhf9I0/WqxHCgLENk2rC8b5/X6Ld0Q88A91YZw3B6vbNZahmMC/Fa/\nUVhQ6XDTNOV0eRQRVu1fZdfqngljRip9f6bynF5l5RUruzR44/JU7LpjcRarzYYf1e7HVWr/4yrF\n79jsO1eYmKydF4xW2oBBSjt1oJxxCVXXYrWq8PGnpNIQjkqXMjOjY0ruleO/FIgZHiHn+Rcoe+RF\nkkr+WcfffZvC31mgrP8ulpmbI9lLgz6GocP3PqTEF5+Tded2uU4/I6SBMACNyOWSp1t3WXftlHPk\nJaGuptVyd+osW2pKteMc9pKfnUc64RzxzaTXFHlwvyLT9pX8mb5fUWn7FLf+Jxm/rg04lzM6VkXt\nO6q4fQe5jukoT6cu8nbqJHXpIkvXLrJ17CCbveqfoV7TVMRrM2r4KVUh3Hq0o//7wMjKKv0zs8a3\nCPtwUcmf36+ueV0KsCyV6A4FoPFV+/9chg8frtTU1IDnBgwYUOHYokWLlJiYqMGDB9cqhJOQECmb\njXUqAdRfcnJMqEsAgEbB8w5Aa8HzDkBrwfMuRD7/3LeZnLlf6tK/2ku8cfHyduwox5l/kL5ZIfum\njZKkiLfnqePb82SOGiVj8eI6l+T1mnK6/z979x3mNpW1AfyVZLl7aiaVJJBQkpDQwtI7LL0mhITe\n69JhKUvobUNZYOlLh4WPvvQOgQChhNCS0Elv06u7JX1/yJYtd8/Y45nM+3uePCNdXUl3JjO2rHt0\njoJQWEUorJiWg2FFb4ttCytQVH0ybEiNEyOt0UkvQQA0DXU2DaisiB/83NONReuo9YDog/t1994O\nXHedaRx1g9wZg4mC996PyG9/wHXX7fl/Y62t0KKTasHLZ8J28w0AAPcVl2bcRV69CmMmbwLxySeA\nDTZA4MuvYT+5wAw9SYEtMYHzL8Cv58VLQdkdVtgBQNPgWvYnBn01B4O+/hQ1334JKRgAAChWK5r+\nshOatt0FTdvujK4xmxg/I1v0Xy7DRsSzVFTaJaDOA9RVAQA8gc74+G65DXUjauEJRmBPDEJ69mng\n2adRleb/RlnyGwCg4twzYRU12I+cDq2qCoLYg0xCJcLXvPLQNI3BWesKv99YrHFZEK6phbBmNeoG\nV2TZiUrJ8ucfgNOpZ9YDgBdeAKZNA447Lv1r3tBaY7H1+0UYM3wUQmEF4YiKjrCC5rCKYFhBOBCE\nuHo15NUrYa9fDcfaVfrX+tWwr10F56plqPjj57RjUi0yAkOGITRsBCLD14MychQwKpZJZ33YG9bA\nddD+BX2fHpcVniyv4f7WDlhkEbLbpTfY9GBRmyTk99qvqsDpJxmrBb1fqK6UJrugws73HKJewes7\nXQ8eH0jvpZdegiAI+OKLL/Dzzz/j0ksvxf3334+6urqs+7W2Zn7agYgoX3V1HjQ2dubuSETUz/H1\njogGCr7eEdFAwde78qnbZx9jOTLjSLTO+SpLbwDBIOra2xCcuBmCCuACoAUCSJzSFl5/HY3LGyCE\nQ0AoDCEUhBIIIuwLQPEHEAkEofgDUAN6uxIMQvUHoQYC0IIhqKEQxEgYYjgMKRxdjq7bI2E4w/Ht\nxtdwCJIaAb7Vo2rCEzeDvOAHtH3yBcLb72iMrbahEUY4xnPPxQd9/fVoPP08JN7F9Z94KrpuvSP1\nZxCJoO7ss2AD0HzqGVCHDM3jJw1UTjkU1oAezNIw9WiMjAbhJFNtdojRoBdAL/eFgw4CANgBNP8l\nz9IUUUJ9AwYB8B5wCFxvvmq0D/rgLXSerAcAyZ3tGPLdF3q2m28+h7NxjdGvffRY1E/eCWu33glN\nEydDsSdkS/Kan66XBAGyLMJqkWCNfpUtIqwWEbIswWYR0dzcZfycO1o6EWzshDWkoRKAb+lKxPIi\neN1V6GzshKKqkPIMoqlathyxR13tZ58F5YbroYXCCJx3Ifxnnp33z6zU+JpXPuGIApkPRK8TaiZP\nNP7e239djMpv9Uwp/NvqHcmznqHtd0R7exCOmdfCfe1MBPb4Kzp33Qc1EQUtLV4gzf+LNSIgVkwq\nMnwkrND0LDmyCDgSp3DdwPq1ULWJCEdUhCMqAhEVHRE9YCccVqC1tEJatQKWVasgr1kJ6xo9YCeW\nVafqm8zlsgrVtWIN/Fl+z+oG699VyxfzoYzdCFUQIAMI+QJoz/H7GVFUuP99O2LT+P6jjkVXgb/T\nyf83wS4fOvh3QVRyA+36LlvAUdGDcJ5++mlj+dhjj8U111yTMwCHiIiIiIiIiIiIqNzyCSYRGxsA\nANrgwYBsBQAIoVBKv7rRQ4o7uAIpG20MecEPEFpaEAwrsMn6VG3wsKlwPPV42n08Z51qWnc88Uja\nIBx5XjxQSaxfm3cQjvWzOfFj2GR03P0AKs45w9QnPG4COp55Ac6774DjsYfTHygQSN+egbhsCQBA\nGz4c7U89B+eF50JurEfTplthwpN3Y+j8z1Hz6wIIql6KKuSpxIpd98XayTuhfvKOCA8ZDqssQraI\nqIkG1dhkc3CN1aJvz7c8V+dNt8Dzj0sQ2n0vvcGiZwlwPPyA0cciCAgBeQfgAID3uptQdfC+xrq0\nVg8mcl/9jz4VhEPlE4qoDMJZFygKpBXLjVX3ReeVcTAEAKG99wMA+M88GwF3BbC/XkZQyvq+UFhW\nKlEQYJMl4z3dZHglMHF9U5OmaQgqKroiKsJeP7RVqyCsWAFp5XJYVq3CkOefgLWlKeVQ/mkz4Hjh\n2TEArScAACAASURBVMzjaDaXvhSXLgEEAepo8/lrtp+MxoYOyPOjpbTSlHxMJHS0w3X9NXC8/47R\n5r32xqz75IPlqIiotxUchPP666/D5/Nh+vTppRgPERERERERERERUVkIa9ZA1TREIiqs6Sa4YA7C\n0ayZiw/Vb70TVNkKVZb1fxYrVIsMTZaNds0S3WasJ/Q31q3QrDJUi5ywjxWa1Wosx46xxxG7Qm5r\nAaAH4QCAZeGPiAwbDdtWm+nfY1LAUHDCRNh+WggAsL/2v9SfSX09tCHmgKKqQ/aLb89Q6ikX0SYj\nOP0oIBqE01jfDvXPxRDHbACIIoL7HpA5CCdP3kAYLrsM64fvAwCU8RMQ2mc/RJ55AbV/3QUj5+iT\nfJokoXOzyejccVf4dtkDyuZbQrbLGGoRMcoiQRSLX7oncMoZCJx8erzcVzQoQoiVMAEgRMIFHzey\n0SaZNwaDgC2fglm0LguFVbjs5R4F9ZS4do1pXapfW6aRDFzK0GGQ1q5By+y5sH7wLvynn6VvEEUo\nxx0PMY+yb2rd4JKOURAEyBZJD7yzy0BtBbDZeGN7+5X/QOiOuzDitng5yq5zL0Tg/IuyBuEITY2m\n0na12+ilPBsbOkxl0pKJq1ZkHa/j/nvgeuIRU5tWUZmhdwHq63t+DCKiAuQVhLPeeuvh+eefBwAc\nFE37meipp55Ku1+mdiIiIiIiIiIiIqK+Rv7tF2DePISGrQfryNRyR0J7G+wP6ZlKtMFDIQQzZ2QR\n33oL+ecvKY5YAA4ARMZNAAC4bp8F1+2zsHZtm55RJWwO7AiccDIsd/0LUsLEWOft/4bnonMBALaH\nH0TgiqsynlPwebs1ViGa+aX1nY/0QB5BgLjh2HgHS+Zb10I4d3CK0NQE6e13gWOOgvuOW/XGQXrG\ndnXCpghMPQKay43Q7nsivNPO0CqrYAVg7dZ3000JE7Ra9OeRKLLV1oUfU878c5M/eBeRCROhNDZB\n3Gabwo9N/Z7jwXvhefJxdM7+HLD26m87FZm0bGna9rYTT+/dgQxgrR/PhffXP+HcdCL8m040bcsn\nAAcAIttuh4Z/XAd5z91LMcTcZBnSxRdCfeBfELu6EBk8BP6Z1+TcTVi7Bp2dflRUOFO2ua+dmXE/\ny+I/07aHwgqssgTX7bPSnKzwQNjQrrvD+slsAIAmCJCWLyv4GEREPVH0clRERERERERERERE/YG4\nZnVK25AD94LidKLlp8WA02l60tvzt9Nge0/PnqLW1cGy8Me0x2355MvSDToLzWqFEAqh+Z3ZEJMD\nVX77Axi3cUoAi1BVha4bZ6HyhKNMx4kJCtnL1riuvwaazY7wrgVOIEaDbDIGmmQJwhEb6qFsnCXj\nC4BBE8YAANpGDjPatFgWGFlG5/09y7JTdEnf75KX3oU7ms2oEOmCeWIqTj8ZYkgvydG4tg0ooMwV\nrRvcV14OAPD9+guUSZuVeTTUbYqCqkP3T2kOjxyNlqtvhKcMQxqItJpaKJv38KctCPCf8TcI9syv\n3aUmiSLEri59xZ47TZZmt8P+6ScYu+FQNC5ZAyG2LwD4fLB+8L55h0gk6/GExkaM2HRs2m3hDQt/\nHwQA71XXwbrnzgAAZcxYWP78A53NbfDUVnXreEREheJVNhEREREREREREQ1IzliGlCSSzwdpzSrI\nX86F4/ijAa+e7SX2VDUAqIMHQ3O6Uvb177UPlPETSjPgHFo//gId9z8MdavJUMaPN22rPe4IfSEp\nCEetrEJo/wPRPHuu0aZVVxvLg+6cBaG9LeM5Lb/+jKpph6DimOmwz7w8/8HmyMKhSZmDcNzRLD35\nELwJmXrymFwsm6QgHPkv3ciCAwBy5oncWAAOAAgd7d07PpWdqmpQVLVHx0hXeo76D0vCe1EiqbUZ\nFonTfr3JYet5rgN7EY5RLJYcGWM6jjwOQiCeBVD+ai4GTdrIWBdbmqEOqjXtY33jVdO60NBgWpe/\nnItM2j77OueY09Gc8Qw9WjQL3gabrt+tYxERdQffjYmIiIiIiIiIiGhA0rJlW1m7FpUzpsDzzhtw\n3XwdoGkQgvEgBq1uMCClZokRrOV7ml3ZcCMEp+rBNlpFpWmbvHSxvhAOmfeJZltRN52IxiVr0P7k\nswj9dV9ENoxPqg3aaFTOc9veexue/9wL4f778htsriwslswZeExP3edg+XmRsaz15fI7SUEVtu5m\nRcjyO51IbGnu3vGpqMIRpeB9IoqKcKRnQTjOu27v0f5UXtUzpqRtF7u6YJEKL91D3VeMoKd8S1f1\nBi1hLO0PP4GOE041bW+/9U7TetWMqeb1vXeD/O18U1vlaSea1u0vP29aFzs7TOv+v2wH1WaHUjuo\n2xnbNEc8CEcZMhQAIKgq4PN163hERIViEA4RERERERERERENSEqVnvGl7ebbUrZVHXYAhOhkjfzl\nXIhLFpu2q4OHAEkTZ5osw3fJFSUabeHaH/2vuUHTIHZ2mprU9UbGV1wuhPbdHxAEdN7zYNpjapqW\n9ZyDrr4MyNEnL2mCSVSPXvYjsvEmWctbSAsXGMuuW24ylpWRo3s+rlIJhXL3yUeGyVzfQYeZuzUz\nCKfchOZmDNl0LCpnTIH76CNSslRltHgxsGRJaQdHfVfS74mW9DcvMRMOdUPgED2wK7THXkZb6ODD\nEJxlvj6yyRI67v1PxuNITY3Gcsf1N6ft477qH8ay0NQEz/l/M20XamrQvKIBLT8vTt41b5rDYSwn\nBp2KDfXdPiYRUSH4bkxEREREREREREQDj6rCc9s/9cVJm8F77oUZuwqdnVD9fvPuaZ7Qbv51KZQJ\nmxZ/rN0UOvBgdDzwiLFuf+JRoD1ehqht7wMy7hvZKrUckvX1V1GbkBUntN0OUOXU7DLW995JPWCB\ngTlpy1FFs8XYPv8UdcNrYHv1ZYhLU4MRKo+cmtIW3HATaIMHFzSG3iSEixSEA8B3+PSUNu+Dj6Dx\n+dfgO0sv5SW2tBTtfNQ94ttvQmptgfWjD+B4/x1UHHNEXvuN2HkyRu48uUfnTg7coP5DXL3KWA4c\nfBi818UDDX2nnNGnsqpQ/9F1y7/QeexJ8F51vXmDIKDp16Xo2Hp7tD37EgRBQHDaDKz4OHeZKC0h\nox4AhEeMTOnjui01UCe8z36FDT7duaPlQtXqGlg/m2O0Wxb+CPH33yB/9AGkn3/q8XmIiDJhEA4R\nERERERERERENPIFAfNntgW/mNVi+ogUtc75K6WpZshh1u++Q1GhJzYRjd6DPSQgUsv/fUxDa2hAZ\nvT5+X7gMHY88lXVXzW43rVecchykjngQT3D6UWhYugaNq5qx6tufEanTg1wqj50O6c/fzQfLkrkm\nrTSZcESv1zyeU09A7Tabp/RLDGjxx8pzDR9e2PnLaO2KxtydslC32DK10WIBdtsNkXHjAQBic1OP\nzkE9V33xuaZ12+wPgWyl1hQFka9yT3znhYEa/ZaQkM3Me+MsKGPGGuvhnXYpx5BoHaBV1yBw+51Q\nxk9Iu63h+dcQ3uOvRpt9wjjUL1mDpsWr0PnP29F13kWmfZTKKj1YOYGQeE0RK8GYkNmp4+4HENp5\nNwRmHN3zb8hmw9rP5qP5q+/QNfMao7nypGNRu+PWqJoxBTW7bgdp0ULA6zUFtxERFQODcIiIiIj6\noFwp3omIiIiIqGeEYDwIR6vWy1I5bBYo48aj7dW3Edoyc6aJlc+9Hj1IfCJbk6S0gSPlpiUE4Qhd\nXRDb26BWVsFa4YHdKmXdt3X25wCA4H4H6g1JQTmBI4+BJMuALMO63gh0/TNetkL+6kvzwYLBwgZu\nyT62ROLyZfEVr9eU5cXx0vMAAMFmK+z8vSy0+17onHIE2l59G1IPx6pZM++vDhkKALC98GyPzkE9\npGkQYpPQCbIFR3lOPwnDDtor4/aCSPn/fVHfIvj1Mom+cy6AOmQoQnvtg6ZZd2LtnQ8itF/m7GZE\nPeG0yyltossFze1B4KRT4b/8StM2QQCUpMw3WlWVsWx7/RUIDQ2wvfKy0RY84ki0v/Ra0a6lpI03\nAqqqoVVWZexTs/sOqNtgGGq3GA9x9kdFOS8REcAgHCIiIqI+KaKk3owjIiIiIqLiEULxbClqTa1p\nW3j7HdH+7mw0NnSk7Nf07CvATjsBAAJHH2e0J2eN6SvCu+xmLFt+/w1iwA+tpgZWWYSQIxuGGs1s\noykRtHQEoCUHhySV4xISSlNJv/8GKEp8W6iwIBzNkjrhl0nt1pPguuhcQFHgvuKS9J2sqWWz+hRZ\nRvvdDyK8/Y49PlTK/1MCZZNxAADr559CnvNxj89F3RRKX35MbG8zli0LfoD9kQeNjBH21/5n7lxo\ndqkE/hNO7va+VF5CtDSi5ohmXhME+I46DpgxnRmOqGRkS47p5KTrAbGtDVpdnanNf9KpxrLrkgsx\naOKGEDsTrrNK9fubcC2STe30QwsunUlElAmDcIiIiIj6oHCEQThERERERCUVLUcVmDINKCDziLb7\n7rDJehYJdchQhIfpZY40W98MwtGqqtFxgTkwRR0zFhYp961hTdS/T/t772CTDQfnnCATEibTnPfe\nBde18SfjE4Oemv/7Qu6BF/gkvPOpx2F79WVYfv3FaAtvEC/TolnzD+opl5yTnPnKEnCkeTzGctXh\nBxfnfFSwjEFpPr+x6Dn3LHgu/zvkLz5PfwyfN217PrJlhqC+LR6E4zTaLJIAkQE4VGa+ww6HUqVn\nFgwcPj1le/Dw6eh48FEAgNTaYtoW2WR8ycYVPPAQKDW18F58GQA9c6F/tz3Td84QIElEVCgG4RAR\nERH1MZbv5mPw1AMgrlld7qEQEREREa2zYkEhmtuTtV/7488Yy13X3JgSiCJEn/5W+2gmHADQNt3U\nvO6pyG/HpJI1YmursRzYZfeU7qE9/2padz5wT3wlGvTkPeIohPcy98vn3PkQm5sgz59nrGvrxUth\nWN97t+Dj9bZiTaInlqNqWrwKTX+ujG9zukx9bdFyXdTLguknehODcyyLFgAAxBXL0/f1+bp/fmZ7\n6LdiwVeaMx6EI0m5M5sRlVrnA4+g6ZelaPjye3TeeW9qB0FA8MBD0u7b+skXJRuXNngwWn5ZAt8l\n/0BDfTsaVreg6/n/oe35V4w+yqj19SEWmLWPiCgTBuEQERER9TEVpxwPx7wv4bxtVrmHQkRERES0\nzlKbmgCYM4OkkxhYEjjuhNQOsRIMfTQTDgCEkia9tHxLM4mZbx8rW2+d0qbV1GLNnHnmtjY9cEfs\naNcbKishZTlu/AT5lY8IDR1uLLuumWnaJsTOCUD0duV1vHWCLf7/q7k95qArSUJk+AhjteLMU3pz\nZBQldHWa1mMBFbEJ4MoZU4xtYmcHFDU1W64wkH6nyZBSjgrFC+Aj6glRECCKAoQxYzJnZJPNWel8\n51ygZ8fJ57qgCAQhnjUqvNseWPnS2+j49/2IbL6F3iHAIBwiKg4G4RARERH1IYk31oRgoIwjISIi\nIiJat9mjGUAim4zL3tFmw5ola9G4ti191pzoxJHWhzPhJE9uCUllIDLKko0msRRKIsu4Tcyn/vY7\n/Zwt0XPW1OR16sRsLukoo9dH46pmeO++32gTwmFzJ7nvl6AqBc2S/ftunb8QHcee2EujoXTs//eU\nsdx17U3wXnKFvhLNkGP96ANju+25/4N8yd9TjtGdTDhaLFiDmXD6nIiSZ1lyv/7/npgJh6g/aXrt\nXYQ2HofW9z+B98prETzs8LKNxbrTDgjOONoITmYmHCIqFgbhEBEREfUhiqJBi90oDvKDHxERERFR\nIcLhSN593U8+CgAI7bVPzr4WlzPjU9rSyhUAACGS/7nLzf7yC/l1zFYSKiELQ7LGNa3wH3cSAGDQ\njEMBAEK0HFVyOaRMtLo6NNzzMFrmfJV+u90OyDK0ocMyHkMZNTqvc61rBK83ewdJQvD2u6BWV0PJ\nUY6NSiP2dxCaMBH+088CJP31xfHQ/Sl95R+/R+2TD6UexNuNclRGEE6eAR/UK9Qff4TS2Awg9/uY\n2NYGANDc7pKPi6hYWt+KBxZq222P9s++RmTzLcs4Il2sjJtmiwb+8l4sERUJg3CIiIiI+hBF1aC5\n9Jtx0rIlZR4NEREREVH/4XjgHgwfUQOxfm3uzglZILTa2h6dV4iWTZJ//7VHxym19seeNpYDM47J\nb6csJU40e+YgHEhS6gRxLEjJkiWwJ0no0KlQxo1Hx7/jgQnBfQ/Qv+5/IABAGTkq4/6+cy80ltW6\nwXmft78T/PkFZ6g1tZC6OqF2J5iDekQI6Rlv2q++UQ/wi078Wud+BgSyZ8XtvEDPiiP4ulGOKvo3\nLeSbdYVKTmhvw5C9dsKwXbZG3eAKDB9RE3+9TMM160YAgLL+mN4aIlG3KaPXBwBEJv+lvAPJxciE\nEyrzQIhoXcEgHCIiIqI+RFE1hEfoN5FzPr1IREREREQG91X/AADIH3+Uu3N0kkW1O7IGmqxLQgcc\nBP9ofdLWe8XVPT+gxZJ9u2qe5BcieqmoXKWSEsmyfvs6svU2RlvgmOPQ+vq78MXK9zidaHnxNf2U\nSQFVmt2O4H56sI5aXZ33efu7yOStAQAdRx6btZ/lzz8AAEM2GArLd/NLPi6KE6JBNxanXsYucOIp\nxra6UfGAsdarbjDtF9xrbwiDBunH6EkmHJVBOL1Jy1L+S2htBQBIba1Gm+vaK03BohFFRYc3BHHF\ncqNNHaCZvqh/aflsHlYuWtLnr7VimXBYjoqIioVBOERERER9SNU/r4PznTf0Fd4UIyIiIiIqXLYS\nSlGCV88gEdxjr1KPpk9pnvM1li9pAOT8A2G6Swj4jWVt4YKETDg5gncSiLEyEQmlwDRPBSLbbm/6\nf1Z22Q0tX8xHy1ffo+PWO+MHkKR4vwzlxNZFytiNsOiLn9A2686s/cKbbWEsV+27R6mHRQnkT2br\nC9GJX81TkbafNm6caT286+5GKSvB14MHd6IZvKh3qFmCcJBmm/PBe2GZ97WxXnHB2ai+4u8Qmxrj\nnQp4LSUqG5sNtrqeZRzsFVaWoyKi4ho4nzyIiIiI+oHq+++KrzAIh4iIiIiocHk8bS22tugLFekn\nvtdVNocVDpe9KMfScv2c1fjEcsWZp0B+5y19v+5MHCcE3MSeVk+mjN0IWkUlgsefFG+0WOKfq4QB\ndiu8thaynD0gre2N94xlIVuQABWd/MN3+kLC35H3nAtMfVrfnQ2sN9LU5j/tLKOEdXey5wqxYDiV\nQTi9Kdufl5Dh/0Lo6jSWXc/+FzXPPAbXZXopMt/pZxV1fEQDnRYtR6UFg4hEy/WpKt8Xiaj7Btgn\nDyIiIqL+Q1NUfuAjIiIiIipUHhkexGXLAADq6PVLPJiBy3/G34xl+68/w/Ha//SV7gThJGbCsTty\ndo8FCKlDhsaDcAZQJhwAkAQBFinH92wvTkAWdZ9mjQeV+a681lhu/v5nRLacDGWTcWi95kbU33o3\nGr77CRAEaE4nAEDwdaMcVQwf+ulVmqZlLkkVyfGeFQgYi9bvvgEAhLfdoVhDIyLAyErmvuISOK+4\nFLWjh0L44P0yD4qI+jPmqyMiIiIqM1XVIIppniLVNCiqClHMnU6fiIiIiIh0Qh6lBGLlqNSqqlIP\np99b+/WPCIgyxMGD4fn5R1QdtA+EUChj+ZwYZcON0HHbXai4+DzzhjzKhaVI3MeePhNOopbvfkJ7\nQys8Fgt8514A2ztvouuq6wo/bz8mSbkzQlH5qBWVEDvaoYyfYGpvbOgwdxQERM46B6FQBHarPp2j\nudz6pujrWN4SgkAElqPqVaoGaADS/VUKnR1pWmFkSTIytyVQxm5YvMERETRZz4Rj/fknWH/+CQAw\n+JjDU1+TiYjyxCAcIiIiojJTNQ1imlsxmtWKiKJB5hUbEREREVHe8pmYFrr0PrHJbMpMXW8kEFHh\nsMuIbDkZrR98CvWZp6Htd0DOfZUttkxpk7+ci+CUaYUNIrEcVR7/Z+rwERCqBwMAIltvMyAn0aR0\nD3qkERkzFpbFf5Z4NJRMrauDGi1/kg/ZkpANqruZcBIDbxRmwulNGbPgALC99kq2HVG7+biUZmXc\n+GIMi4iiYq+rRETFMrBycBIRERH1QbGbMclPP4ntbVDb28sxJCIiIiKifkvwevPoEwvCcRXtvFp3\nMrz0A6IoQBTiAR3KuPFo+fuVeWW00Wyp5Y7EpqaCx6BJ8ScT1DwDp9wOueDzrEsSgzayUWtqSzwS\nSisUglZAEI6UWJIt9jfgy/1aZ5IYhKMyE05v0rTMgTjKqFEZd0oOKm2bea0eVCgw0xVRMWnV1eUe\nQp+gZgkYJKLCMAiHiIiIqMxipdgrD9rX1G5pasT6Ezcw3ygjIiIiIqLsQrnLUUmrVwMobiYcze0p\n2rH6EkkUU8rn5ptlRbOllo4KHHVMwWPQahMCRYoYOLUus8r5BYVpiUE4nHzrNVowBMj5B+GY9o1l\nbOgqsBxVJBJfVpkJpzdl/dMS0k/TeS69EEJbm7He8tk8hM+9oMgjIyIAUKsyBOEMsNdKXyCSuxMR\n5YVBOERERERlFnvKQP5pYfoOfn8vjoaIiIiIqH8TQmEAgOX7b2GZ/UHaPs577tQX7KmZWrorlEd5\npv4qOauKJOUXhKMOHYbAuAmIjIxneghvtXXhAxAErHrhDTTe+wgzQORJzPPn1HXLv+L7LF9WquEQ\nAFWNR2IIgQA0uXvZmoxyVN7CylEJSiRhmQ/79CZV09IG4kQUFUI4lHYfadlSCK2txrrmWTcDPYn6\nAq2mJm270NXZyyMpH6GlGZ7zzoJQX1/uoRCtExiEQ0RERFRmipr9aUMhmPtJXiIiIhpYxB++g7Iw\nQwAv0UAXCkLoaEf13ruhevoUAFnS64fDPT5d+2NPo3Pn3dE561+5O/dTyQEd+QZ4wG5H/XufwXvD\nrHhbASV4EkW23R7K1Knd2pcyU4ePQOfpZwMAxJbmMo9m3RYM64EvypIlsHS0ITJ2w24dx8jg5S0w\nE05i4A2DcHpVOKKmLUflC0aAcDw4Krjjzljy/e/6PhMmwnXrzcY2ddjw0g+UaIBSBw8xr8deZ/2B\nMoyme8S1a+A+7USIy5Z2a3/Pxedj0CvPYdCkjYo7MKIBikE4RERERGUWjqiQ536WcbsQYCYcIiIi\nMqv9664YuscO5R4GUZ8khMLwnHNmfL21BYFvf0jbN7zTLj0+X+iAg1D/5AuAw9HjY/UXljwz4QCA\n024xlXPQLN3L/iFJIiSRt7NLQfTok41CoeWNKG+W+fMwfNKGsN9wDWzPPwsAUCdu1r2DWa3QJAnw\negvbL5IQeDPASqyUWzCsIKIkBeGEwxg27UA4HnkQALDykf9D+0uvw1Y3CKrFAtXhgO2dN/Wuk7uR\nQYyI8qYOHWYsN338BUL77AsAENT+E7DonHUjHK+8BPcZJ+e3g6JAfuQhCG16xi3Lwh+NTa6Lzy/F\nEIkGFH5qISIiIsoi4xOzRRSOKHA89EDG7UKhN9aIiIiIAAj19fCcdWq3n4Yk6jcUBeJDD8bXwyHY\n3n7DWK04ahpG77cLpAXxyYXIiPUQWm8kIElFGYLVMrBus4piYSWhTA8WdLMET3JJLCoeza2XuWEQ\nTum4r5kJS1sLPP/+F6pvj2Y3cbu7dzBBgOZyQSvwXkFiOSr0o4nlcoooalHuCykNjQgHzFmOpT9+\nh3Pel5BWrwIAWD0uCKIIWZagWa0I+4MIHHEkAKDzjnt7PAYiyo/gcgFi9PqwP2UNi75W2ebPy6u7\n9Z23UHX5Rag6KBpw1NlhbHM++Wjxx0c0wPCTCxEREVEW4scfQ1yzuqTnCCsakKXklPvi80p6fiIi\nIurfgqH0N4fd11wB+4vPwXMRryVo3ea4727UXvH3eEPStbU1Ohlh/fgjo03weqE5uzkBnsZACxAp\nNCONEEgo59DNwKe8S2BRwTSnEwAg+H1lHsk6LE3ATOzn3l3OX3+C7YVn89+B5agKpmkaAr4elgj3\nerHFLpMw4tB9zMe2203rFofNWJZ8Prh/+hHy7A8BAOqIET0bAxHlTautjV+r9KPXSq2yylj2nHkK\nhIaGrP3F1hYAgOXXnwHwIVCiYhtYnw6JiIiICiDWr0Xd9ENQs+0WJT1PJKJCyZIK2vrlXABIWz+c\niIiIKBBOf3NYbG4CAAhdHWm3E/V30p+/w33x+ZC/mmtqlz/7NG3/xCd89SCcnk2AJ7JIvM2aFYM7\n+rRYMIApWIqKSk4o8xGjuVzdPp7Yob+eVfztNKOUSE6RhEw4/WhiuZyGjRmG0RsMhuX7b/Pqny5r\nTuw9yr4o6XcguW80I1UiqVGfRNfSbCOi4uq64mq0TjsamtsDzWIBkJRBrI/TquJBOPaXnkftFuOy\n9hebGk3rakIQj2p3pL5GEVFB+OmQiIiIKAMhelOr1Dciw4oKNZL7BlgowprtRERElERVoSgqpHlf\nQ1z8p3lbbLLN0r3SL0R9nevKy+F48lHY3nvH1G6pX5O2v+CLPuEbDkMMh7pfCoYKptUOAgBExo0v\n80goHSMgjcFS3aJEujdJq9YNLsr5nbfenFc/czkqTq7mI3Y/yPbic7n7NjTAOfUQSH/8bmqvmjHV\n1MdYTvq90bK9JzETGFHJ+c+7CM233KWvGOWo+s+92OTg8uTXGHNnDa6brouvd3UhvMOOAAC1shJi\nwA9x5YpSDJNowGAQDhEREVEGsaceSkpVMemIveGe81HWbuLqVRC+/7704yEiIqL+ZdFC2D77BDUH\n7IXa7bY0bRJCIQCAZrWWY2REJWf74L2s2zWLBV03zkJ4zIYAALG9HQAgxQLWamtLOj6KCx58GJpv\nvBXtL7xa7qFQOg4HAEDw+cs8kP7H+s5bGDq8BpbP02fgyiayxZa5O+XB+dAD+XVMnEzuR9kd+gSr\nLWcX183XwfPZx6g46ZiMfWxvvIqK44+C9f13zJmJAGie9Nlu/MefXNhYiajbnLboveBYhsN+2tiA\nAQAAIABJREFUkDUsEIq+lhQQMCQ0mrPgVB34VwgBvfReaI+99D4sT0XUIwzCISIiIspAUEv/QUtc\ntRLu33/O2a92i/EYccDuQJayVURERDRAJFwP1O25E9Y/YVr6fpGw/rU3AouJ+iDvVdfBf+qZaH/n\nQ70hWrJFrF8LAFA2yZ6mn4pIkhA66VSoQ4aWeySUhmaPBuEEGIRTqFgWGvs9d2XtFxk5ylj2HzoV\na1Y2Q6uuKenYUgeRWI6K9xYKoSaUecnE8ot+b0dojZYHi0TgmHaYqY/jP/fB9vYbqDz6CMhz44Fb\nzS+8Cq0mfWBorFwcEZWebNGnzY0HM/tBEI74zTfQli2Nf/ZLlBxIoyiQFi1Meb+Xf1pktKnR7IWC\nt6sUwyUaMBiEQ0RERJRJKM2HlyJzX3l5YTtEn2gnIiKiASzPm8Fa9KltoaG+lKMh6rM0mz5xqVVU\nAgDs774NBAIQOjuj7RVlG9tAZJF4K7qv0mKZcPx+aBrLFBUkmm3O8eF7kOd+lrJZ+uN31A2ugGXF\ncqPN8cpLsFjLUCoyMQiHD/gURHPlLl8oz5+nL0Tv21i+mw/3Jx+a+lgSSod6/nEJAKDr2BOh7rq7\nqZ/vrHONZXFt+hKLRFQ6QlD/O7Z++H6ZR5JDKIQRh+6NwX/ZDNbXXgEAdFxzo7FZSiop5bx9Fmp2\n3wGOR/6Teiy/H5ogGAGiQkdH6cZNNADwkw8RERFRBkK6JwiKzPbW6wX1T3xSIcIn14iIiAamSOYS\nEraXXzCWtehTjNLixSUfElGfJIrmrwDcMy+D9L5exkrt7SwURH2U5nDqCwE/IoqGcISfNfOl2eJl\niqoO3R8Im+8jVB66f8o+vjPO7vF51epqYzm0cX5ZvRKz/Qr9ILtDXyIEAnn3lVpbAABi9GsuYk3q\ne1F4ux3iK3IZAraIBjjb2/r9WvcNV5d5JNkJbW3GsvXH7wEA2tgN4Tv1DACA7bmnTf3t/31C7/ve\n2ynHklathGZ3ILLpJABAxdmnmz5bElFhGIRDRERElIEa7HtZZ4Rg0FjmjVEiIqKBSVAyB+G4rr4i\n3i+aQlwM+GFP97QjUX+WRxYHIVp+KpHtzVfhfkafgFDGjS/6sIj6JYeeNUrw+RBRVPiCmd9nKElS\ngIRl4Y/GsrhmNaQ02ejCf9m2x6dtfWc21t52DyIj1oPo8+beAYDl++/iK71QfrvfS3ifKbRUm9DV\nCc/Zp2fcrkUzKAEJZW+S9o8JHHFkQecmop6LZVPs66TFf6S0hfbYC+rQ4QAA1z13oW5wBeQvPodt\n5uWQopm1hOhDHcEDD4Ea/V6lFcuh2e2IbLY5AEBsbEDFGSf3xrdBtE5iEA4RERFRBloJgnDyDZzR\nBCH9Bn/8xo/2889AAU9jERER0ToiSyYcqX4tXGedCucdt8L68UdGu+fyi3thYES9R8hj0jm8487x\n5eikt9jcbLSp0TJVRAOdWlGlL7S1IaKoCIUZoJEPRVVTPpNXHbKfsVy7uTlDjRYN2FGHDu3xudUN\nxiAy42jAbgcCwdw7APD8/fz4CjPh5JZwveWadSOEhobMfZPKuIn1ayEmZKhI1PnP26GsNzLekCYI\nRx02PH5opyvPARNRsWj21CActczlGh0P3ouq3XaA0B5/bak+eN/UjrKM4GFTTU1Vh+yHiv/ca6xL\ny5YCAMJbbIXW/z4X7yiK0KqqijpuooGKQThEREREGYjRDyRFE4nA9ffzYYnVCc+i7fX30PjNQqxe\n2WLcqAMSMuHMnYvRe+9ovolGREREA0Mk+8SZ88Xn4Lr5+tQN/sKe4ibqywRv+iCcwKHxSYfI1tsY\nyx3/eSylr+bxFH9gRP2QVlMDTZIgNtRDW7ESrrcLK5s8UFVOORjWr74wtRlli5ImaxtXNKLlmwVo\nvOdhRIqQCQcAbFYJsNkhBLvxcE4e2cQGOqHVnE3NfeWlmTsnBTXVbD85Y1etpgZaZTwIVEtTbiq8\nw07x7XyvIup1yoYbmRt8PtgvuQhCfWp2s97ivvJyyD8thO2lFwBVhZAQWB6z9sW3AADq0GF5HVNz\nOaEmlL+TmpugudxJncobfETUXzEIh4iIiCgDIc/63fmyfvQ+Kp9+HNX77Zm137LXPkRkm22BUaNg\nkSVocjxNsfzeO/rC23rtXvtzzxR1jERERNT3ZStHlU3tpI2LPBKi8omVW0umuVzomHU7uq642tzu\ndKb2dXNikwgAIIqIDKqD0NCA9Q/YFaPPOwXSooW9PoyIokJV+8lkn6bBMXdO2k3ug/aFuHKFse69\n4GLAZoM6bDjUw6cVdxh2G6TOjsJ3ZCacnNwzzUE3YlNT5s5ZshQmU6uqoTkS3pOk1Ew4SMiOrGzE\n6zei3tZ5z4MAgMjIUQCAymOOQOUTD2PQpI2y7VY6XfHrXs9lF6Hqr7vAc8HfUroJO+2oL6TJsJWO\n5qkAbDZ03nFPwkHM2dkd112FusEVcF52UeHjJhrA8vsrJCIiIhqIivy0eGIwTUxwr71h++A9Y71+\n4R9QPdXGuiAIiGyzLWLlJDzXX6XXe/fpN9lUpgglIiIaeAqY6EkkdrQXeSBE5SN0pQ/CgSgieOKp\nKc2apyK1rzX1+pxowLLIsC5faqyKHe3o7TCNcESFRRIgilIvn7kwwvJlkBb/YawrngrUz1uA4eNG\nAwAcX82FY/JEAIA6qA6+y640+opihtLT3SR/Ox8A4PznDfBdNjP/HRVmwsnF8vMi07pms2XuXMC1\nmVZVZQ4MtaT/fW948HGEwipseU6mE1HxaJVViFRWQ40GzEl//pFjj26cQ9MQiqgIR/QykGFFRSic\nbl1B5aqlqEvYV17wI7Dgx5RjJr7HdNz9ABz3/RudDzyKml23AwB0XnAJ7G+8Avn33wAAkYmbAQCU\nYebMOeFNJ0FetAAA4L73LgCA69GHEJpyhP7gKBHlxHdvIiIiogyqb7nBWBY62qFV6OmCVU2DKHTj\nxpnDkdKUnFZYrKyE02q+ROu4/xHU7DgZYouemcd1+yxgxgx9/zSBPURERLSOyzDR45t6BKyffwrL\n2jUIjZsA6y8/AQBCO+wE69zPAACWb742legh6q8ylaOSli5Nv4PFAs1uj5eKISITedUK03rWgINS\n0DRUXnUZQltOhjp9Rvc+c/eSQVtPMq1rdjvkmuq0fQNTDk/JKlAKrn/dUlgQDstR5SaZg2O0qtT/\nY2H+N/q9nhEj8j6s5nRBc7ri65bUclQAoB16GJRg9wKviajnEq8bA0cdq9+PzUFREwJpIko0oCa+\nnhh0E1FU5Jv77a9nz8jZJ5JUgio4/SgEpx8FAGhsiGdMC1w+E9W7bg/Lz4uMslvJr28dTz8P+fNP\nUfG300ztjsceQieDcIjywiAcIiIionR8PtOqWF8PJRqEEworECDo9dcLEQ6nNAnhpBsqspxys1Gr\nrUVor31gf/7/4m0LFkAA+PQuERHRAJSpHFXg3Avhvf9hAID1rTdgPUG/6dr+wquoG1ELALD8+AOD\ncGjdEM2E4730CnhHjUHVc/+Fdc5sCJ2ZMz41/bIU0orl0Gw2CGmuzYkoQW8Hafh8qHzsP8BjgO/x\nh+F/4mmoQ4b27hjyoGqpU6aazQ4A6Pjb+ai4907ztsrSZq/tnPUveC69MGufiKLCIolQRqwHadVK\nAIC85A/YL7kIwauuSSnNZ3viESjjJzLbQVLQs/3F59B530PGuvzZHFRNORAA0PytOWtOMqV2EKRm\nvZyVstHGQGJGpAyZbkRBgNOePkCHiEpPs9sh+vX7w7EM5QBgO/RARJxuhJxuhJ1uBB0uhOwuBOxO\nBB0uhF0eRJxuhJ0uhF1ufdnhSgnsK4S9rSXjtsChU9D4t4uAESNgz/N4rZ98YVqPbDkZq2feAPu+\n+wAA1OEjEDz4MIRefA6BAw5GxcXnAQDExsZujZ9oIGIQDhEREVEa4to1pnUhEC9NFY6o6PSFMXyQ\nK3m37MIh06qqadCiN/9XvfoelE4vHKKYdlf/6WeZgnCERfoNHk3mDRkiIqIBJ5K+QIiWkHVPrUtI\nWC7LaP/vc6g8ZjqEpEBjov5K+vEHAIBaVQ1h2jR0Tt4KzhOOgf+OezPv5HRC2WRcL42QqH8TQqHc\nnYp5voQAU+e384C774D3htxZB0pJWrgAjvv+ja5b7gDcbgBAOJQaCCs16ZOS2vbbA/feicDh02F/\n8TkAgNDeVtIxBk44Ga4rLkVk8y0y9lH/XAxUeqCJIsJDh0PydkLs6IDn8YcgDq6D7+LLjL7i6lWo\n+PsFAMyZEwaiXAFU7ovONZalpUuy9q3/39sYfMg+8N7+b0AQYH/l5fhG3tch6pMEpwNCqx78Is+f\nZ7RXzJ3TreOFHc5ocI7+LxIN0gk73fFgneRtLg8idmfW43bdfDvstbVQ1Xzz6qQhCOg68XTInoQs\neDYb2p/7HwAg8MXnsL/0PCLjJ3T/HEQDDINwiIiIiNIQuzrNDbG09ZqGwaceC1fdMODOO1N3zEII\nmm9iVpxyPOzvvgUAsEyaCIszc1BPZNLmads1T0VBYyAiIqJ1QIZyVFplZbzLX7ZF5023ILzTrvq2\n6HWG4DOX8AmGlMKz+xH1AZ5ZeulYed5XCJx8GtQxY7H6nU9Q4WSmSKKiCAZ793xJ723O/9xf9iCc\nqikHQGxrgzJpc/jPPBsAEGpuTekXKzMd2ns/tH74KSLjJsSDcIIlDmYSBKhuN4QOPQuYfO/dEEaN\nQuigQ4wuI3bayrSLWhUPLhE6zIE2YjRTjtG3u+W41wHB/Q+C/M3XGbdbliw2lmMZcQAgOHw92Fbr\nP8fW199Fx3obQKwbhNU//gGHLc2UnJ8B0kR9kt2RtozpR3c8g84RoyH7uiD7umDxdUH2Rv/5umDx\neVO3Rb9afF2wdrbDVb8KUqjn77ONyxsAu57/RhR79lotW9I/GAoA/rPOgf2l5wE1/cMgRJSKQThE\nRERE6SjmDxWum65D+//ehNDSAvf7b8MNoLHQIJykGyuO118xlkWbzZyOOE9aD1KZEhERUf+UqRyV\nVlFpWg+cckZ8WzRLjuCPZ/eDz4fqE49B+KxzEN519+IPlKiHrG++jopTj0fLZ/Ogjhmbtk9w2nRj\n2WHlrU6i7uq87S54ouUmAEAI924mHCi9XP4qD2JbNItNws8i8u33Kf1MQbDRB2g67n8YFWeegsCx\nx5d2kNDf/4WODiAQQNW1V+htNhuafltuTM6a+gsJE61J9xScd9xqLFfuuTNaL78G2GvPkoy7z4uW\nHus8/2K47r8HmjUhY02Gcm2hXXbHsseex8Zj9YyEyvgJkJ0eKKqKxFimzn/eDs9lFwEApGXLSjN+\nIuoRob0NYigI+1OPm9qDVdUIVdUgVFXTo+PLSgTOkA+OgA/2oA+2gBe2gA9Wfxesfi+s3k5YfF5Y\nvF3wPP6Qad+mP1cW/cFMm5z5HrPmij3QwaBBonzxkykRERFROtGn8DRBgKBpsH7+KQBzWSqEQoBV\nf9JW0zQIOZ4OE1euiK8kBflkqgGeqGXOV6icMQXS6lVGmxAtZ0VEREQDSIZMOMkTaYlimXCQkAnH\n9s6bcM3+AJj9wYAvOUF9U8VZp0CIROB4/BH4zj4ftjdfQ+D4kyAuWwoAUFxuhPbc2+if7QleIsou\neOgUUxAOSp3BJUmmANNeFQpB/vYbiLM/gtCWUEZKin5e7+rCxicdbt5l+Hrw3vNgyqGCU49A49Qj\nSjnauMoKCH80wHPmyUaTEAyibvQQNC5dm9o/4XpB+v5b0ybbB+8Zy9YFP2DwcdPQtLql+GPuD6IZ\nHyLbbI/wJ7NhXbQAAOALhFH9yvNpdwnudwCqPTYE9tkfWLoUWkUlZABqSIOGeKmYwEmnwr/tDnBf\nfD78p59V8m+FiApnWfwnAMCTUHrut1vuR9eI9VP6CtCvQ2WLFP0qQpb0r9bYeuI2i5hXlrFI9J+6\nx56wPfUYuu68D4LPW5LM6NmuozWrXqZK6O0seUT9GINwiIiIiNJQwtEgHJcbQkJpKiEYT0PqPvdM\niC3N8F18OQKT/wKLlOHDUzgMy+dzICakeU68oadZLEAeH7yUceOhbDLOFIQDJZJXABARERGtQ5KC\ncHxHH4+Go09C5sKWgOZ06l+74kE4msyyPdS3GZmbVAUV55wO6+wPIYRDcNytZ6SUvF1lHB3RuiU5\nm1qvZ8LJFGBaSpoG6ZefIc7+CNLsD+H8+gtIaUoDaXZ98lFOClgBgKWffodqj63kQ81Gq6iE5PdB\nevP1lG32Z582rXsvvgyu2/5prNs+/xTw+QCnE0jzkI9Qjv+XPsAXCMMZzXYjWCTAbocQCkFob8Po\njUYZ/cKbbwFp8WKIndH7PTb9d6HzqWfR7g3B+KsSAAHm+zbCppti7UtvwsMyikR9Unjb7SF/9YWx\nrro9kKZNwyaBsBFgkxhcU0qhffdHaN/9AQAa6kp6rnRiQTgI9fK1AVE/xiAcIiIiojQi0af+NJcL\niAbh2O79N8SEp/McL78AAJC//gre31fCkuHhc+c9d8J18/WmNmnZkvhKAQE0mtV8c8ayZDHw5JPA\nMcdkffqdiIiI1h2xTHj+o49DQ+1w2C+7BEowexmPWCYczZsQhONylm6QREUlQPpTfxrZPfMyo1V1\n8HeYqJjaXnsHVQfvq6/09kRbcrbYEhFXr4I4ezaE2R/C+fkcWJsbjW0dI8egfqsd4GlcjaFzPzLa\nPZf/HYGTT4eQkE0OAIJ77wu3ow9MsdjMQUCazW48QBQreRQT3nlXICEIBwDEtauhjtkQ1g/fT3/8\nSCSv7L3rCseD96L6tlkIzThabxBFCNGyXhUnm8uLKRtuDFhkiPPn6V0b6o1tspR7Ut5u5X0cor4q\nvOVkUxBO6+zPUeGyosI1AAPnbPr3bH/tf+jUHi/oXjbRQMUcrURERERpBFfrN05iT40DQMW1M+G+\n4ZqUvqLPC0XRUtpj7I8/ktJmiZa3ApCxlng6XbP+ZVoXgkEM/vs5qN1wZN7HICIiov4t5NOzg6gj\nR6Hp1HMgWiyZM/JFaQ4HAMD91muwvvY/AID006LSDpSoSJz/uQ/KyNTr3fo5X5dhNETrrvB2O6D1\n3ocAALboe0UhlAI+26bsGzJnYYkMGdrtYyUSOtohvfE6xAvPh2ubrVC7xXhUX3AWql57CYqmYdme\nB+GHy2/BvLe+wooP5sJx392oGjE49UCaBgTimXG7rrgaHQ8+BjnT0zi9yPLtN8ZyaMed0bS8Hisf\nfTZtX83tTmmr3W4rWL79BkJbKwDAe9lM03b35X8v4mj7PveVl8PS3gb5i8/1BkmCZtevo9TqagCA\nJssITtwMvvMuQtd1Nxn7KqNGG8uyJX5tJkT/JesLvz9ElF5g+lGmdXXkqAw9131GJhwA4to1ZRwJ\nUf8xcMKXiYiIiAow+oLTAOSfejnbzUZpzeqUNs/1V8dXtMwBPMnU4SPQ8dDjcP7fUxAWLYJUr9d3\nF5mKn4iIaMBwPfMUAP1maOwJ6pwp0BOy6VWcfTqaDj4Mnuuuim/3+4FooA5RX5QYHA8AkY02gWX0\nwJ0MISoVMVp6yfbBewXvGwwpsNsEiN14Ql5JyrxjlPcpVCgE4esvoX34EWyffgL3ou8hRrPsROxO\nrNl2V7T9ZScEd9kN1s0nocpjw/CkQAi1sjLlsNJvv0JICMIJ7XsA4MpWCLL3BI47Cc5/6w/stD/7\nMiAICO2+Z9q+yoj1EJ44CfLCBaZ2+xOPwvF//wUARDYZb9rmeOIRdN16RwlG3k+IIsTmJgCA/dWX\nAQDtz7yI8K67G10a17QiNPtjWPfcw2izJGXCYeIIov5FGT/B3CAO4LwWCZ8lLQt/RGjY8DIOhqh/\nGMCvGEREREQZJNxYi2y8SV67VN12U+5OmRQQhAMAwUOmwPLhB3qpLCIiIhpYIhG43nhFX7ZZjQme\n5ImeFLIcX05T8sN95eXFGiFRcSQFw9vef9e03jXr9t4cDdHAkfC0e1ObP//9VBXDd94a7qu6936i\nhMx/86LPBwSDuXfUNGgLFkC94w5YphyK6o1GYdCUA1F377/gXvg9WjbZDH+ceA4WPfoi/pj/G/DK\nqxh01aUYsdu2qKt2ps1E4vvHVSltQlcnxIYGAIB/m+2hbDKuW99nKQT32ie+Ei1NZbFIiIwZm9JX\nq66B4A+ktMsJ2XTU2kFo+fAz03Zx+bIijbb/EKKBYJooQVyx3LQt5X6MJMGy5x6mSBvBtAykz4VD\nRH1WQtBN28lnlnEgfYAUf6+sPPqIrPeyg6HeKS9J1NcxCIeIiIgoiePRh4zl8C67p+3TtOhPtO6y\nl7Fec8+/0vbLh1BgEI5hANVkJyIioqhwvFyHJlshifqEjpDr8erE7aoKV2JWPgCWBd8XbYhExWB/\n8rGM29RBgxDeaZdeHA3RwKElPO2uvP8+PEdNg+2Wm3PuJ/i8kJctgevB+7p1XjXx/S36Wbdms03S\nBo4qy5Yj/OhjwPHHoWL8WAzec0cMuflqVH/2EXx1w7Ds8OPw212P4c/5vyHy0WxUzroRgw/cG7V1\nFbmDVgFobg/aH37C1Ca2tsB93ZUAgM7jT+nW91gqke22R/vjz6Bpwe9Gm0US0frR52j88Tf4zj4/\n3lkQIAT04Cr/EfFSK5Zff4kfb5ttoUzaDJGxGxpt7pmXlfA76EMS7s9YlizWF0QBQthcLk2tSy1Z\nlisDFDPhEPVfwSnTyj2EsotsOslYtr38gmmbFgxCvnUWhPp6DB87DLZ77urt4RH1OQzCISIiIkoi\nLV0cX8lQn1urq0Prk8/Cd1oZn4SwyLn7EBER0TpFCMfLdWg2G6Q8JhNTjqEocN5tLishtrT0eGxE\nRSVnvtb1n9C3JsCJ1ikJQTgT/3YM7B+8i4rbbk4bDJNI60GWDzUSwdDjjgAAtEw/1igLLbW2QFq6\nGEpLCwIvvgTlnHPg2HoLDP3LRAy/7DzUvf0KNAhYs8+hWHLDnVg890f4v/4WzvvuQfWRU1E1og5S\nN8uHhA4+DK0ffgrvxXrwSeVR8QnY7rz3llpo/wOhDRlirFskAXA6gaFD4b3oUtQffzpW//AbAEDw\n+/ROztQylE2L/jSyP3TNij9sJHS0l3D0fUggNUuQ0NmJyGabm9rU4SMKPDAjcIj6M3HwoHIPoeyE\ntlZj2fpSPAgn3OmF/M+bUHXrjRg0aSOIwQAqokGrRAMZH58mIiIiShLeams4Hn8EAKBJFvhOPQPO\nhx4wtvv2OwgA4LLL5qefNC310SZNgyaKEFS16OPUkicmVHVg1ycmIiIaCMLxch1aRWXOp67z1Vcm\n11RNg2fmpdDCCny3mMsNacEgBJstw560rtHcbgBA17U3oeWoE+Bsb4ZWOwiOp5+A//iTyzw6onWX\nJqWfMrB8Mw9Cw1qEDzo07XYB3czwCkB+7RVYW5oAAGJVlWlbzfaTTZ+pww4nmnbcA/6ddoW2x56w\nbT4RFlGEu9tnzywyaXPIn3yc0i4KQPE/4ReXKUOey4Wua26E26nfQ4hsuDGsX38JZeRoNC5ejYoT\njoJtzscA9AeOYpT1N+jNIfcJgs+X0ia2t6HjwUdRs/l4iD6v3pglUDTtcQVmwiHqj+rnLUD4y69h\nG71+uYdSdl3X3YzKk48FANg/eBeB999FeMedMXzssDKPjKhv4iwNERERURLNlXD7zmKB98ZbsPin\n5Wha+Afql9XD+8TTAABRFKAOjj9phkgEKcLhjAE4/qOP69lAk8pRWb6b37PjERERUZ8nRBLKdVRV\nQZKKM6MT3m5H/WtEhVKC4OF8dXUF4XzoAbgefwhi/Vqj3frGaxg8sg7Wd98u29iod3kuOAcAIDY2\nwFHphjZqNOBywX/aWQCDsYhKJvF9JlH1QXuj6uTjIDQ0pN+xB+8dNWecZCxrU6ag+ZsFpu3tE7fC\nmjMvxKoX3kDr78uh/e8V2C+6AI4tN4NY4gdRhFjQRYJYKcj+xO2UjcDdtsefwZpTzoH/xFMAtxsd\nL76Gptmfo37OPPNOCVmRNK/XVKppXWX95KOUtsiEidAqq9Cy4NceHVtgNhyifkccPRqWaVPLPYw+\nIXTQIWh/5CloDj2LWtXR02D5vWevi0TrMmbCISIiIkoiqPE021r0ppNnUBU0pEYwa4MS0pEGgylP\nQ9lefyXl+G0zr4UwYj0om20Ox9NPdnuciRNTACA2Nnb7WERERNRPhOOTo+FttivaRKAQ8AMA1qxo\nxJL2CJx2GR6HDLdThsdphdth6XZJj7zO39kB+z9vRN1D9xtt8mdzEJyqlydxPnAPAMDx4L0I7bNf\nycZBfUds4tvyw3dlHgnRAJPu4ZIEYkM9lMGDUzcklKuSP/4I4d32yO98SWWuNJsd6qjRqF9aD+sz\nT0E55DBodXXlm8hQU8twaf0wpUli5jytthaNF/0Dw9yueNumk1LvdySUwLb98B3qhlSicWWTKThn\nXeO6ZmZKm7LJOACA5tR/XsqgupQ+eel/vzZEBJT0M1B/EzroELRsOhG1220JzW4HgqHcOxENUHzl\nICIiIkqWeBMwx1O2mhy/+SQEgynbK848JaUtfNY5CE2dlvPmZi7SyhWmdbG5qUfHIyIion4gpN/o\nbD/8SECWexyEo6y/AVSbHdbZH8JzxkmYvO1GqJv/ObyBMNa2+vDHqnZ893sjPl+wFt/80oBfl7di\nVZMXHb4Q1CI+Ee+66Tq4EwJwAED67RdjOVaG0/rZnKKdk/oHhen/iXqVqeRyGq5bbsqwY/w9oeqI\n9CWr0rG98lJSg/4ZW3Q6EDnlNFN5pHIIHnSYsRzaeTcAgLLxuDKNpjgEADZZytkvlu0gke3lF0ow\not4h1Nej4sipkH7LnLlBHbFe5gNIEpq//xmtX3/fvfN3ay8ior5FHTMWqseD8JgNIQQD6fs4XWnb\niQYSBuEQERERJUsIjtGs2YNwwjvsZCxn+uCRIlpGSh2m18wN7b5ngQPMoKEeqrrup4fv284DAAAg\nAElEQVQmIiIayITodYolOkkp9PBp/NY33ocYvYaxv/wiAGD0h6+n9FM1DV2BMNa0+PD7yjZ8+1sj\nPvtxDeb/2oDfVrRhTbMXnT0IzBE6O1PanP++I76S8ASqNgDKYRAQ3moyAMB7aWpWAiIqHWXTieg8\nMHMQje2dN9NvSCpHJXR15pXJynXTdab1xAdd+gJlwqbouPxqtL71Adqffh6rP5wLZdz4cg+rRwRB\ngMWSx9SQK3USVezsKMGISk9oaIDn6Gmwffg+POecnrFf8NApAADvBRen3a4OHwHN7Sn8/ELPr9mI\niPoKze2BtHYNPGkePgWgZ8khGuAYhENERESULOHmYbr67yZWK/xHHasvB7IH4fiPPxmBXXY31rWq\najT8tgzt//dSlr3y57n5eij19UU5FhEREfVNgt+nf3W7C9639cNPTeua1QotXUkR5BfkomoaOv1h\nrG724tcVbZgfDcz59rdGIzCnyx/OK2hGraxMaRMUBZYFPwAAIhM2Ndq9y1blNT7q34TWVkTcnrJn\nwSAaiFrvvB/tBx6Wu2OipCCcyhlT8f/s3Xd4HNXVBvD3zmwvqparLBs3bGObgKnGQAjNlNCrCT0Q\nykcLJRB6D5BgQq+BQIBATK8JAQIYML2Zaty7JVll++6U74/Zna2SVtJKu1q9v+fxo5k7d2bvytJq\nyrnnVO+5K+RF33S6W/jwo9IbushG2++EQOS886Fssx3gcEBMnVrsERWEpaflVaKxrvuUoNoZk2D/\n2shgI0KhtG2Of/wd1jv+aqzEjGBnZfovCvr6DMAhonKiu92QNzVD3pj7PnSuTGpEg03RSqkSERER\nlSqRUo5KXrO66x3iNwlFJAJN16Hres56wf5b5mW1iarqHo8ztvVMWD//DOFDj4DjmaeN8X7yMXDA\nAT0+JhEREZU24fcDAPQeBOEo07dMW/f9+a8dvUq3j52g6Trag1G0B6NAs9EmCwGP0wqvywavywqv\nywqn3ZL2QEqvrjGXgwcdCle8PEn17jujccWGtDE17LYtNi1b1+Mx0sAgmpsRHTU6LQsSEfUPu9cF\n331/Q9T6d2gbNmDY9Ilp2xVVg0VO/m7GFA12PT0Ix/rxQgCAvHwZ1GnTO36x+O946ORToYbC0IYO\nK9C76Bup73sgs8g9/FuvDMwgHJEaJBaLIaaosFpkBDY0o+73ZwEAfG4XPNdcDgDQXS40P/wEtAIF\nzzAEh4jKSVfXorqDQThEDMIhIiIiypQShBM6/qQuu+t2I8WmiIRhv+Fa6OEwlGtv6LPhJbQ/8gRC\nl14Bx3V/MoNwVE1nqkMiIqIylijb1JNSCFnHSjnnSVW19Ads96eLoNrtUG0OqDYbVLvDWLbboVnt\nxja7A6rNbvxLLNsdUFO2a1Y7VKsVbcEo2oJR8zVkScDrNIJyPC4r6qPJcqDB626CHInA/trLRt9V\nKyFSMg7KgYCRcYHBGeVL1yEF/JC83Q82I6Lek4SA3Soby0OHov3EU6HvvAs8f7wQqsUK/f33IY8c\nDnWCEZyzqS2IERmZcEyW3I8gtP++CTkYgwgaGd7Chx8FZettCv9mKKeeBhOJaLTrTiVO+P3QXnsd\neoUHYw//tdnuvfj8ZCerFepuu0NHYcpJMBMOEZWTQlyLEpU7BuEQERERZVKSD4H0PDLVmHVuwxFU\n/fXPAIDGjCCc4FnnFW58cdrwEVh59S2YWFuVbNPyKx9BREREA1OiHJXucvX+YPEgnOApp8H1wL1m\nc9XSH1G19MfeHz9OF8IM4EkP2nFAiwf4VH26INl/yBCETj3dDMJB40YgnF46QjQ2Qh9W2tkSqBci\nEQhV5Q1+olIgBII33gxZkqDecwdsn3yEkYftBwDYsKEN9rffxLSjDoHv5uzMrwBgWfgBfL/YFs5v\nv4a2225mAKW05x6oAeA77mQAgO4swN81ypsk5RcU4rvtLuA//4b31RcBGBmAE1lkBoyMspjyhvWo\nP/noTncRbW0QQjCDDRFRDrrbnbbeftnVqLjuSvj+9Be4/nJT1ucu0WDEIBwiIiKiTFrKrPB8ZivZ\nbAAA5/13Z22KzpoN2wcLEPjjFYUaXZqGoekPJrTYwEwNTURERHmKRACkBAH3QiKQJ3D9zcDKlXD9\n+1WoDWPQ8vrb0ENBRHwBhNv8iLT7EW0PIOoPQg0EIEcikKIRyNEI5EgYcjQMORqNL8fbYhHIEWNZ\nikWT/SIRWMIh2Ntb4/3SZ9S3vPIGIEmIzZqN0DHHwfn4o9C+/gZ6MD0IR1q5AiqDcMqWWXYt4wY/\nERVHotyynlEqSn3933DPuxEA4L0o98QT9923w3337QCA8G57wPfUs2nbvY8+ZBy7EMGlVHDhucci\nstd+ySCclk2IRJSBE4Sj61BXrir2KIiIyoqIX5MmRM4+D0t/eya8Lhtc825hEA4RGIRDRERElKWj\n0gwdSZSjcrz8QvaxAgFoTicg980NKps1PTGyrnRv7ERERDSwmGWZ7PZeHaft6OMQPfAQcz127PHA\nv19F4NIroQ8ZYrxE/F8qVdMQCCkIhGMIhBUEQjEEwjFElQ7KkHRF0yDFohj+1ceYLvugbLu90S4E\nYjvvCufjj2LIlRcjsMectN1q9tsDjWuaAau1Z69LJU0EjCAcMAiHqKTotvTP3JHHH9Gt/R1v/xfh\nDxbAc84Z2cd28fe9VFkdNnPZ+dgj2OyxR9D004q8MgcXW8UJxyQz63VDdL9fd92JiGiQsv3vLXO5\n5bU3AaSUORTCKB1MNMixeDYRERFRJtW4UFhz9c359XfkeAgWj/gXfh+0PryZmKgrHvj9hQCAMeed\nCmn5sj57PSIiIiouEY1nwrH3LBNO+90PoPGCyxCed0daAEt0r32w8edViBx8WKf7y5KECrcNI2rd\nmDCqEltOGIJZ00Zgp2nDseX4IZgwqhIjalyodNkg51PqQpKg2R3YsMOuiJx8atomdbNx5rL1x++z\ndnXNu6Xr49OAZGbCYTkqopISOfDQXu0faxiLqoP2hWXF8qxtzHxVuqQc2fesn3xUhJHkL1GqOzUA\nJzprdlqf8BFHw3/NDVCHj0Bk733SD5BPVmQiokFKq6pKLg8bDgCwWuIhB5LETDhEYCYcIiIiomyK\nAgCQGkbn1V235QjCiUQAhwPw+6G5PYUcXU7aqORYvRefj7Z/PttJbyIiIhqwwvHU37mCgPMQOexI\ntAejqMgRICMqKns8LKtFRrVXRrU3fVzhqJLMnBMysucEIwq0jBuzUo6HXcpWMxFtGAvbyuWwrVoB\nAIhttTWsX3wOAJAX/5RzLJaFH8Ky+EfExoyFNn0G9OqaHr8vKg4RCBgLnr4/jyai/One3gXGWVcu\n73gjy1GVLosFjfPuRt15KRmMtNJ+wGq76QZI9aPS2vw3z0PFycfC8uMPAADfrXcANhtCp/0fbG/+\nB/Z/v1aMoRIRDTgt732M2umT0Hbkb6DVG/ekUzPhCJ2ZcIgYhENERESUQWhGSSeb3Yp8Lhl0my2r\nTUTC0BUFcuNGKFvMKPAIc4zBkjytS6Txtnz5OWLrN0DsPYezuIiIiMqEiBjlqHqaCQcAbJb+S4zs\nsFngsFlQW5kcr6brCEUUMygnEI5BUXI/zIvusx9s991lrrff/whqtzXOrbSGMTn3qT5g7+T+O85G\n2wuvFuKtUD8Sfh8AQGcQDlFJSWQoi42qR/vzr5qfxx1RJk+B5Qcjk5lWNxRS48ac/Va9/i56/leN\n+kPg0CNRedstsK2IZ94t5SwHioLqeTdlt8sSWp95GUOmTUB0x52AlHs50V/ujvbD58K1cAECB/Qu\n4xMRUbnThg3HshXNcNjk7EADZsIhAsAgHCIiIqJsqhGEI1vzC8JRtts+uzEcgRxogtA0KFOnFnZ8\nuUjJh2nasGGwvfQ8Kk8+DgDw6V8eRuSXu8PjtMLjssLjsELKpzwEERERlZ5wPAgnVya+PNmscqFG\n0yOSEHA7rHA7rF32FdXV5nLw9LOgjRmb3BYMQNd1szxnLrYPF/RqrFQciUw4LE9DVFq0+tFYO/9V\naGPHwt5QD12WIeLXz5l0m80MwAGQFoCjDRkCqakJABDZfkfYt9qybwdOvWa3yskAHACIxYo3mC50\nFOylNowFrFY0bmzP3ijLCN15DyJCQNN09F+4MhHRwORyWHJmM4UQ5r11osGM5xJEREREmRIXCpb8\n4pXV8RMR2G7HtDYRCUO0tRnLKXVy+0xqJhyLFY7nk+Wotjn/RDj/dj9aX3oN3334LRZ8vRaf/rAR\nP6xowepGP9r8ESgq04QSERENBHo8CKen5aiA3KWfSpVWmTyP0oYOAwCseulNAIC0di1iGxuLMi7q\nWyLgBwBont6VviGiwhM7zYJttFHmJ3TibzvsF9tuB7TfdT8AYNObC6DVDQUAtF9zA5q/Wwrsuadx\nvFis02BKKg1mmZE4EY0UaSRds73139wbrJ0H/ybOjzhpiYioax1fUwpmwiECM+EQERERZVMV46uc\n/yxxMXo08PGH5roeDkP+6UdjpXZIIUeXW8pYdV2DlhH4s/Vd15nLUbcXvoZxaG8Yj/bR47A+vqw3\njIHH4zAy5jit8LqssFqKO1OeiIiIMoR7X45qIBHBoLmcyIqi19cDAOyvvYxRr70M383zED7hZACA\ntGZ1/w+SCi4RhMNMOESlJzUYQ2pMBkK2Xn8zqi69CKFjjkNb/ThYfnsS9MoqNB5+FADAd9udUJ57\nHtqJpxg7xEsBiUjpBnNQutZ/PoOqo+KlmqLR4g6mE47HHi72EIiIBi+JQThEAINwiIiIiLKIeFYY\nXepGEE5KLXEAUANBSG2tAABl/ITCDa4Dupw8rdM0HaKmNrluseLjC25Axcol8X9LUf3Tt6j9/qv0\nMdvs8NVvhvaGcWhvGIcVDeMRGTcRmDAB7iqPEZjjtMFuY2AOERFR0ZhBOD3PhDOg6MlsfbrDCDyS\nvOnZUbwXnWcG4cjLl4EGPuGPB+F4PEUeCRF1RmptMZdjc4/F2tHjYP3lLghqEryu9Gvk6J5z4J+9\nOzz2eDaSI48EXnkFkYMP688hUy+oU6eZyyKRma8UMbMSEVHR6EIAGjOuEzEIh4iIiChTohyV3I3K\nnRmlq9RACIjEZ4Y5+mGmekomHOtXXyLiNB5YBGbtgndPvwL+YaPSugslBs/aVfCuXIKKVUtRscII\n0PGuWoaqpT+k9dUkGYGRo9E+ejzaG8Zhw9gJUCdNgpg8Ba66angcVrgcGaeVqoqgPwRXJR+cEBER\nFZLrxeeMhf44vygBoVNOh+e6qwAA8soVAACL25nVz/L5p1C23gaipSVrm+3F5xA94OC+HCYVmAgG\njAWnq7gDIaLOKUYW2cj4iYDbDeucvQAAbi33DHiPM6Uc0LHHYsWwcXBtMbnPh0mFoXkrzGURChVx\nJJ3TA8G09RXz7ofzwP3A0Bwion4gSQAT4RAxCIeIiIgoixmE042MLxlBOFooBD0xU93W9zPVU2cg\nOj5ZiMRjufDtd2Hr0Q3wh2LwBaLwBWNoD0YRBOBrGAdfwzisTRu4BlfjOnhXLk3LnONduQSjVr+J\nUR++mfa6wboRaG8Yh7Yx4xEdPxHapMmQpk3FmCvOR90br6NxxQbAmf2gjIiIiHpGigyyTDgp5xFq\nwxgAgJzjHK3yN0eg+bulkFavyj7EY48wCGeAEfEH+KnZHomo9Ih4SSJt+Ii0dknKL9zBseV0o2wF\nDQyuZGCk56pLETrjrCIOJp387SLU7DYL0VmzYfvhO7M9tvlkqAcfApGRmYmIiPqIEBA6M+EQ8UqW\niIiIKJNqzObrzk1/3WpNbwiHoYXi6Zn74SGZVl2Ts133eiEJgQqXDRUpN50UVTMCcgJR+EJR+AIx\nRBQVkCQEh41CcNgobNh255QD6bC3boJ3lRGUk8ycsxTDP3sf+Oz9nK8vbVgPbexmBX2vREREBOj2\nwZEJBwA2XXQZxEcfQTlybod9pKYmyIu+gfeKSwAALa+/heo5vwIAKJM275dxUgElUtjz4TxRaVNi\nxtfM6+E85RusQyVCCPgvu8rMUIdwuGQy89XsNgsAYPtgQVp78OLL4Xb07OeTiIh6QAhAZyocIgbh\nEBERUV40XYc0SOpqix5kwlEnpafQ9rz2IirnPwkA0G19P+MqOmffnO26x5uz3SJLqPbaUe1NBghF\noirag8lsOb5gFGoijbgQiFTXIlJdi6YZ26UfK+CHd9VSIzhn5c+oWLkUIxe+DcDI0KOBQThERETd\noes6RK7zrtSbmYMlEw4A3/+dB/UMHd6U74kuBETGzd2aX+1kLqvjxqP9vr+h4ncnQRuWnqGBBgAz\nCKcb5WGJqN9po0YDX3wOfQQ/ZwcLbdhwc1n4fNBLJAgnl8b1rYAkgX9JiIj6kSQxCCdOUTVYZP4V\nGqwYhENERER50XXdiGQfDNT4Tf9uBOGEjzkOUdkKR+N6uG+4BlXxABygf8pRdfh/040ZiXabjDqb\nE3VVRtkHXdcRjCjJjDnBKAJhBVrGhZTi9qBl8gy0TJ5htk1+8n5Mf3gepOam7r8XIiKiQU7VdFjk\nHH/bY7HkcnfKZg5wQgg47Rnv124HwmFEd90NtnfeztpHd3ugDakz9o+X8KIBJBGEM1iuP4gGqMBl\nVyJYUQ316muKPRTqJ1pdnbks+dqgpqwXi2hszL2BgZxERP1PiOS5/CAmrVwB8fGnwGGHFnsoVCQ8\nCyEiIhpEMoMnumNQBbBHI8ZXazfilWUZ0aPmQh05KntbP81UX3fPI2nrSm3vboYJIeB2WDG8xoVJ\no6swc/OhmD19BLaeWIcJoyoxrMoJpy339yhSUWUsLFqE0I+LezUOIiKiwcbMRJcpGu3fgZQIiyyy\nZxBKRlCOMnkK/Gf9Pnsnq9Us2SUiEbNZ1TSovClc+hIXH3yASlTS1HET0HjtLdArq4o9FOonsd32\ngOb2AABEIFDk0Rhsz803lxOlwmObTynWcIiIBjfBTDgAUL3nLhh+xomwfPYJWnyRrnegssMrWSIi\nokFE6+iBziBl+fB9iPfezWoX7W0AAK2iezcSLbIEPX4zKpXeT0E44X1/Dd8OswEAytBh2PDJNwV/\nDUkSqHDbUF/nwZSxNdh+6jDsNG0EZoyrxWbDK1Bb4YDNIkGNP/SqvP4qNOw8s+DjICIiKmeaphtZ\nCDOImBGEE5yzf38PqajkHCm8w4ceDgBQZm6L0OVXIXTwYdk7OuLnYCmZcNz/dzocd93eJ+OkAtJZ\njopooLBa+Hs6qAiB8AknAwDsTz+J2vGjIJYtKdpw5MU/oeKyPwAA/Oecj/BRxxjL11xftDEREQ1q\nQkDo/TPpQTQ3I/LBwn55re6SWloAGH8r/QEG4QxGPEMmIiIaRDqcVZ2HXA+CBrrqA/fBkEOzH2KJ\n1lYAgF5Z2f2D5sqe009BOLIk4F24AACgTJsBm8fVL69rtUioqXBgzHAvpo+rxaxpIzB+XEYWnjL8\n+SEiIuorUUWDoub42xk1ylEJW/7lJsuBlKMkkf+GW9D08huIHHgIACBwzY1QPV6E9tkfm97+AACy\nMuGIxkZ45z+Jqmuv6KeRU4/FsxXpgrcuiUpdVrlAKnu63QYAcN13NySfD/Z5txZnIMEganbaxlxV\nZ24L/3U3YeUrb0PZbY/ijImIaJDTJQl6P00E9lx+MeoP2gvyosJPRO0N2+uvmsuuhx/E1jPq00tL\n06DAK1kiIqJBpDeZcAZTDIVobYXqcgPW7j/gUqZvmdWm22yFGFaXZCn5gCq215x+ec2OWJ3O9IZw\nOHdHIiIiyjJ87sEYObLKzM6XIPnajYWKiiKMqsTY7dC32x6IB+jow4bhp88Xw/fwP6BuMc1oSwRC\nx4Nwgus2FmWo1H0iUTIsRwAWEZUWmRmrBp94kGtCdO16rFjvw8aWIHzBKBS1fzIgOFLKUAHxey9O\nJyxb/aJfXp+IiHIQwgyo72uO+U8BAOQVy/vl9fIhrVuLyuOOymqv3mOXIoyGiolnyERERINIrzLh\nFHAcpU5qb4NW0YMsOAC0ESPRPmvXtDbd2k9BOHLKQ4oeBBAVUmJmXEKp1IonIiIqeYEAPB++BwCw\n/+ufaZukjRsAANrQof0+rIGg0mOHSH0Y7EhkwjGCgYO+YHLbYIowH4g0lqMiIipZ0Wjaau27b2Dl\n8g34bkULPvupEQu+WYcPFq3DF4sb8ePKFqzc4MPG1hD8oRjUAj6YldatTVtXJ08BAFgtzM5ERFQ0\nug45GIDw+4x1vx/eU09My1ZTjhn3E2q3nJyz3fL9tznbY4ral8OhIuKVLBER0SDSu0w45XtynEm0\ntUHz9nyGeXRkfXqDq3/KQqXNQCz2rOGMwKPEhVe7L1SM0RAREQ0YiUAbAICcLHMpzf8XLF98DgDQ\n6hiEk0vmQ7dEJhwRCgPRKCrnP2luc959R7+Ojbopce3BIBwiopJj+Ta77Id73aq09aiioS0QxbpN\nQSxd147vlm/Cpz9uxHtfr8OHi9bjy8VNZoBOUzxAp7v3rEQo/f6CNnJU998MEREVlHXR1wAA17w/\nAwA8V14Kx/PPoOZXOwEAlJiCaETp8fE1Xc/KuCaUGOSlP8Nx/TWAWppBLdGdd83Z7g/1/HtBpc3S\ndRciIiIqF1ovAmnKOgZH15NBK7oOKeAHvJ4eH06yJk+xtMrKfn14oNXUQtrUDK12SL+9Zu6BpF8M\nOR+4F/bXX0HdqpVo+nYJ9Lq6Ig2MiIiotKVlj4tntrM9/igqz/s/s1kbOqy/hzUwJTIDKgrc114B\n1+MPmpvsL7+A0JlnF2lg1CWNQThERKXKf82NsL/+alqbHIt20DtbRFERUVS05kiY67DKcNotKf9k\nuOwWOOwWSBmTjURrKwAgeMxxiFbVdP+NEBFRwfluvQPe358F5713IrL3vnA+9rC5Tfr0Yww7eH9I\nkTA0twctH34GbfgIeE44Blp9PYLX3dTl8ZvbwrCsX4taT8oE0FAIVb/aGVIwAH2LLRA56NC+eGvd\nEpu+JZTttofzofsBALo7+1mD/MP3cL6/EDjx+JzXPaqmseznAMYgHCIiokGkN5lwyk5qVJGqApb4\naVE4DKGqgNfb40NbU0sx9fOJcsur/4U6/xmIvffp19fNpGyZXoPd9cA95rLtrTcQOXJufw+JiIho\nQBCpD7FiMYimprQAHADQmQknL7oUz4yjKrA/90zaNnXCRACAomqwKDE4/vYAIsceD93T83NAKgxV\n0wA9UY6qyNkdiYgoizZmbFab1I0gnM6EYyrCMRUt/kiyUddhDQXhifjhDfvhDvvhCvpQF3+wG7z4\ncih1dWARKiKi4lMmGeWYRCyG6v33TNtWu+8e5rIU8MPx5D8QPO9COF99CQC6DMKxvfQ8pp58XFa7\nCIchBY3ITudNN0D928PQXC7oLhfgdEN3OSHcbuhuN4T5zwXh8RjtLhd0lxu602l8dbmMzPa9uK8f\nvOBiROfsC/92s1D3uxOAcHZ2+IoT5qJm6RK0brE5YjvMytoeUzTINgbhDFQMwiEiIhpE1EQQjqLA\nfvGF0PbZF7Hd9+x8p7iyK0eVmpoyEjGDcDxXXwYAsH7ycY8PLduSp1iBP1zW4+P0hDZuPNrOOAdV\nRY6S16uqO9yWNsOfiIiI0kWSD7Gk1hazpGMqbSiDcPKSCLJWVcRmbgv5tZfNTY6nnoBYvw4brrkZ\nFa+/CPeN18L26cdof+jRIg2WElRVT2ZVLHaJVSIiypbjs1mKdh2EI0WjsPrbYPO1weZvh629Dbb4\nutXfbrT72mHztcLmb4fV1272ldSOy3XotbXMFEBEVCKUbbfLu6/7xmsRPO/CvPtX5gjAAQARDJrL\n1iWLUb1kcd7H7IzqcEBzOKE7XfGgHjfgckF3ugC3C4gH9CQCeMJTpxv71Q1FdJ/9jIMcdDD0004E\nQtlBOJalSwAAnj+cD8v33yJwyeVp3w/pyy8gRo2APqq+IO+H+heDcIiIiAYJ74nHwNHuR3D+87B/\n9CEqHn0IePQhNG5sz2v/ckuiY/14obksohHobjcAwPm3BwDAjJ7vETl5ihU56JCeH6eHLHJp33wS\n0UjXnYiIiAap1Ew47huuQXDLmVl9NGbCyY8cnxOvKJCWLc3abH/nbTTsui20qioAgOXzT9PLlFKv\n9DR9uqLqZtZKXZT2eS0R0WAV2e8A2F950VyvX/Af1H7/pRFc42sz/6UG11gi2Q8gO6LJFkS9lYh6\nK+Ef1YCYp8JY9xhtmtWK6Q/fZnS28DEXEVHJ6OBaKnzI4XA8+6++ecm2lrT1ZXsfgq9PuQByOARL\nOAQ5HIYlHIwvG22WcBByJBxvC8bb4tsjqf3i25uaYAmvgiUS7nAc7sR4lJTAUSGgO5wQGUE40vp1\n5rLl+2+N/W+8Fmp1NSIn/BZQVYzaf3cAyPv5DZUWnp0QERENEo5XXoIDgE/VIULBLvuXO/cN1yRX\norHCHlxOJkHWHc7CHjsPFrk0Hhxteut9hH/4CSPPODF9Q6G/30RE1OdYi7z/ZAar1h15YNq6OroB\nureiP4c0cMV/ZuV1a81Zhjm7tbYa/dashvOO2xA6+7x+GV5ZCwah33MvxO9O6XaJL0XTIBKZcPi5\nQ0RUktof/gfUDRvh/vcr8F5wDia89GTOfoq3EkpFJcJ1E6BUVEGtrITirYJSWQmlosrYXlkFtSK+\nXmGsa05Xl0GxS2bPQvWU8X3x9oiIqEDChx4B/zU3wvnQfX32GlJLehCOMnkqRO0QhGJqB3v0gqZB\njoTSg3bCIWx7yyWoWL0MABA885z0fRwOMxOOpuuQhIBobMx5+IqLfo/G35wAEfAXfuzUrxiEQ0RE\nNMhomg6EkhHbQxqGYtPHXwH/+Q+0Y4/r8CZHOZSj0jQdkmS8P2XS5mY2HBGNQAeAWDI4RM1R4zxf\neuosLLu9x8fpqVLJhKNOmw5p6hZQr7gIclPywkINdTxjgIiISlMoosLbtNpIg9zpdSMAACAASURB\nVMyH4n2rk2DV4G9PQ+D6m/pxMAOcENAtlk4DcDJ5rrsS2ogRiBx+VB8OrPx5Lr8YzsceQdDfgsCV\n1+a9n/bFl3D+8GOyHBU/b4iISpY8bCjChx4B3eEArFZolVXQq6vNr3pFZdokpQQJgC3+r1dGzUEf\nPF4lIqJeCv3meDj/8XcAgP+WedA9XkT33R/uW2/O7pw47wd6npW0eVPaau2RB2PHCcMRU1T4Qwr8\noRj8wSj8YQXBcAy9esohSVCdbqhON1Knz7w973EcePgsAEDod2ek7aK7XEYmHEWB9b57oc2dCxHu\nODuc2LQJ3jN+m2wIhQBn/0/0TRWJqrDbsv+mU8cYhENERDTIqKqWlglHhMOo2n9vyCuXw6fGED7x\ntzn3G+gxOMLvQ+zLb2CfbZwMK7/YGohfDOhh45RZpETN+/5ye89fLPVhQY4bTn2tVIJwAECWJGz6\n9mfUDas02xiEQ0Q0sIiWTRhxxCFwfPU5gr87E4Frbyz2kMpaZ2UbA9feyFJJ3SXLQGo68Ayx8ROh\nRKJwrl5htlWceSoaGYTTK3K8/Jf1gwV572N//hlUnGpkUAztsbfRyJ93IqLS5nYjcsTRxR4FERGV\nEP+f/wrd60Vs+1lmVkxlxi9yd06ZFOv5w+/hv3le7n45Hk5EttwK9q++gPOl5wAAWnU1/Mf9FuqE\niQAAq0VGtVdGtTc5SVbTdPjDMQRCMfiCxld/KAa1lw8/opXVCE2dDqm6KmtSru5wwLrkZ9SNrDHG\n/dH7CJ1yGgAgeM75iO2wI9SR9ajZdQcAgGP+U7C/+z9zfxEMQi9yEE57MIo6W3HHMNCUzhMaIiIi\n6hf2hQsggunlqOSVywEAlm8XdbjfQM+EU/GbI1F/yBxYvvgMABAJJgNBLLffBv377yC1JoNwtBEj\ne/5iRQi8KWlCYNObC9B+9wMAgIp/PlrkARERUXe4r7kCjq8+BwA4H36gyKMZBKLRnM3Bc87nOUYP\niEjHQU0A0H7TX9C88Eu0XvDHtHbLV1/05bDKnlY7xFhobs57n0QADgBYFn1jLDATDhERERHRwCJJ\nCFx9A6L77p9zs1pRieiv9gAAiLY2s935yEMdHtL+zNPmcvDMc7B6/qtou/3etD7tDz6KyKWXdzE0\ngQqXDSNq3Zg0ugpbTarD7BkjsN3kYZg6tgYNQ72o8Tpgt3T/2nvli2+i/dmXc71o2qr8808QEePZ\nhOatQHT3vaBOnmJu91x1aVp/oXScLbc/SBvWw/uPh9OzFlGXeCVLREQ0yAw/8kBIm3LfDBe+tpzt\nzvvuQs31V/TlsPqcLT4LNxFoVPWX5Cz+qqcew9BddzDTQCpDhkKdOKnnL2ZhssFM6vQZiO28KwDA\nsqkZCAQgOvg5JCKi0iKvXZOykrwRNdADdEuViAfhBP/vXLTP+TVCk7cw1s/5fTGHVTZWvftp2ro+\nbTrsNhmRC/6A9etbzZKk1XvuOvBTQRZTzPg5tq5c3qPvo3X9WmOBQThERERERGVBq6oCAAQOPMRc\nllrSS0llTkqRli2F7d670iZJBK68FvZdZkMaMiStb+Lec3cJIeByWDC0yolxIyswY3wtdpw2HLO2\nGI4Z42oxbkQFhlY54bJb0FmeTlkSOTN5Whb/lLauTtwcwu8HAOhuV2IQ8N16R+4DdzBRp794fn8W\nRl9zMZx3dzA+yolXskRERINBRpSyvmFDzm7C50vuknKz3HP5Jah56J6+GVs/E6EgpNWrYGlrzd4Y\nL5MUPebYXr2GzlnqOWlDh5nLdZuNwJDJm0H+/rsijoiIiLpLl5J/4xSVAQp9In6DTZk+A+G//wMr\nX34by1Y0m2m8qXe0sZuZyz+/sRB6TS0AY0akLEmI7Lm3ud1zEQOfekprSQb3O/54EUQ3MuKk0gVv\nXRIRERERlYPw3OMAAMo220H3VgLIDsKx/fc/aeuVxx2Fyisugeu+u7OOp3v79hrZZpVRU+FAwzAv\npo6twXZThmH2jBHYamIdJtZXYWStG16nDXI88EaS8iulK61bA+/vTgIAaMOT2fgj++TOHJRasqsY\npOYmAIDtzf900ZNS5XUl+9VXX+HYY3M/jAqFQjjqqKOwZMkSAEAsFsOFF16IuXPn4rDDDsObb75Z\nuNESERFRz2RGS3cQhJNKVcs0vWAoBMuP3+fcJMdn3OoZdVu7TWYmnJxyzASwfv5pjo5ERFSy5NQg\nnDI9Vygy+8svAAB0mx1CCHhdNnic1iKPqnxIkkB01mwAgHfKhKzt1o8/Mpedf+84HTp1IhSC68P3\nzFXvQ/eh8oS5ne4irVyRe0OO80ciIiIiIhp4ApdfjeZX34Ry5NFmAI3j9lvT+lSeMBe2e+8CdB2R\nb76F5ccf0ra3/zUlGMfhQHj7WQAA303px+krsiSh0m3DqCFGOauZmxvlrLadPBROe37PBKxffgER\nnwCt19SY7Xptbc7+jvlP9X7gvaBXVQMARDBQ1HEMNF0G4TzwwAO47LLLEMlRQ/ubb77BMcccg1Wr\nVpltL774IqqqqvDEE0/gwQcfxLXXXlvYERMREVG3iVhGGsfGjTn76R6P8UBNUaAoxoM1XVH6fHz9\nyfL1V5A/zR344XjofgCAbnf07kVkztjtiP/s9BnluttdpJEQEVGPpPyNiykMwukLtvfeiS8YgTdW\nC88rCqXtyfmwyBLa/vUCGpevh2SzZfXx3ZsMvFFSsuZQ/uzPP5PVZv3oQwCAtGE9EMi+eVtxxim5\nD8ZyVERERERE5UGWoW2zLYQkQVq9EgDg+G92dpXKKy5B3bBK1O++Y9Y2dcLEtPX2F19D48Z2hE/8\nbd+MOQ9CCLgdVlh68ExAy8h4G5u+JQCg9dF/mm2ORx/u3QB7SY9fN4tocTPyDDRd/jQ0NDTgjjty\n1/iKRqO46667MG7cOLNtzpw5OOeccwAY9eFllmMgIiIqvkh6EI7rk4U5uzmefxb+Fh/qRtag5rQT\ngXAYQ0fW5Ow70Oguo76q48Xn4PnLn8z21SuazGXbwg+Mvs7eBeHoFmbC6YiI/z8k6BnrRERU4hI3\nXfx+iOXLijuWMqdbmP2mEJQxY83l6A47GTdGrVagg3MQdcJENG5sh+b1QnMxWLgnRCiUu725GVWz\nZsJ73NGQVq2E65YbAVU1trW35dxHr6jos3ESEREREVFxhE/oWdCMNnxE2roYAJkzW155A20XXILG\nbxZnbdM9nrT11hdeQ+uzLyM2Z99kn8rKPh9jp6xGEI6eWW2BOtXlE6K9994bq1evzrlt5syZWW3u\n+Gxmv9+Ps88+G+eee25eA6mudsFiYcAOEfVeXV3f1oEkGpCi7Xl3HX3ikQAAz6svwh7zp20b0L9f\nLhcQDKa3ffgh6huy0zx6h1TB25v3WpF8qNOX37MB+f9RV522Wul1AAPxfRBRvxqQn3dlJZnxRowc\nYfx/7L8H6j7+GFizBhg5spN9qaeq6ir5N7IA1D33BB58AKHrbkTd2OF576dXV8Pib0ddnReKqvVo\nVmNPlMXnnTP37cYhU4zMQvJ7/4PjoH2AVavgnjoJOOEEwOXM6q+5PagblTslOxGVh7L4zCMiygM/\n74gyHLgP1F9sBfnLL7rue8klgKIAPh9qt5o68ErW7ruH8Q+AvtlmEMuSE5pqx45Iv+6v8wKb7Wcs\n33YbcO65sBx5RHE/Q7zGsw7r4h9zjiOmqLCmxHhUVrlgszLmo0+maa9btw5nnnkm5s6di1//+td5\n7dPSEuy6ExFRF+rqvGhs9BV7GEQlR1rbjFy3rzdsaIP47lvU7bEzRHwWquOjD8zt6+54EA0p/Qfy\n71eNw4nMU79myQmt0Ye6jPb2qI5IL96rs9WPRAx7X33PBurnnUMRSD1Vb2tsRXQAvg8i6j8D9fOu\nnFRvaDRvHkQrq9He6DMCcAC0LvwcsZ15Q7mQEuclLVFA4c9+ryl/vAatY6ah8oTfwN+N72eVpwLW\n7xah5Za/wvXQ/QjusSciV/ZtyfVy+bxzbWhGlzmE4qXtI08/g/D/3odt86lwfv55eh+LXBbfDyLK\nrVw+84iIusLPO6Lc6lICcNY8/RIcm09E7ZaTzTZ1VD3CU6YhfPQJyQw4Tf7MwwwolcNHwpYShNMY\nBtDB54Nl0jRUAwi2+hEo4meIV9GRqBvQ8vpbUGZua26T1q1F6KNPYT/oAABA7bmnQ12+Eo3Pv1KE\nkfa/zoKjCh6E09TUhJNOOglXXHEFdtwxu1YbERER9T8Ry67XGZu5DSQhgC2moWnlxpyzTBtuu6E/\nhtenNE2HJIncJaLs9pz76M7smbjdoqi927+cqUraqmAaSyKikid8yYx6IhxO39aWu4QM9Z6yVXb2\nYeoBpxP+Aw/FEFv3ynslUn5XX2RkeLb/+B3WXXZ1v2XEGdBCxkQ7dcxYyCuWd9rV/trLsANQtpie\nvVHi95qIiIiIaDBQd9wJmt2C6KzZsH2wAJF99ofv9ruhV1YVe2gFpXszgjYcjtwdAejx8sgiGOjL\nIXVNSd7PT9wDktathevG6+D85z8AAC0Nb0HZcitITzwOJwC/ogC5nscMIt2+mn3ppZfw1FNPdbj9\n3nvvRXt7O+6++24ce+yxOPbYYxHOuElHRERE/UtatzarTR07LrlitUJz9DLwpERpug5N02FZvixr\nm24zgnC0qoyT+Q6Cc/KmZAc9kUEEQ+nrba1QNa2D3kREVAqUyVOTK+GMz/GM9UyarvfFkMqa5nYj\nOGXawEuxXaKEQFpq7HxZvvs2q621tcg3PweIxPmeMmlzAEBkzn5oefF1ROsb0PzVD7n32dSc1Sa1\ntPTdIImIiIiIqGQkJju0Pf4vNH/6Ddr//kTZBeAAgG3Bu+kNnVz36y6jDJQIFrmaUEoQDux2yN8u\nQu2Wk80AHACw338PnPfcaa5La1b35whLUl4hSPX19Xj66acBIGd5qccee8xcvuyyy3DZZZcVaHhE\nRERUCFJTY3ajlp6tpe2FV1F52AGQfOWVHtX6/nvQ29pzb7TbAAD+G/+MitN/azYnosx7KlfmITKI\nUPpFg1ixAqqqI99J5ZqmQwhA8MEkEVG/USZMhP2N1wEAIpSRCaeLSTdi0SKoDifkiRP6bHxlR9Mh\nZNZPLxQBAZul+xlVpLbWrDbbRx8C++5ViGGVtcRN4sAlV8A3YybEb34DbVQ92j5fBHQQfJ04R9z0\n77dRs/du/TZWIiIiIiIqDrV+NOTVRplaixy/1+t2Q3P37t58KetOQI35jKJYQTiKAsstN0FOmdws\nwiHU7LZfVlfXs/+C9s5b5rpl8Y+IjhnbH6MsWczrSkRENBjkKPkjAukzeZWtZqJ5yZrOjzMAZ7MP\nOezXqDv5GHM9PHM7czmRCSfxNUEbNrx3L8ognA6Fj5wLAPBfdT0AwLrgXahaN36uNm5AxZzdYV34\nQV8Mj4iIctBT/q5JkYwgnC7SIg/dfScM32nrPhlX2dJ1CJbhKRhJEnA7up8GO3zE0Vlt4084DNKy\npYUYVllLBNToVVVQLrwI2qj65MYOfrYTac314SOg1dT0+RiJiIiIiKi4Aldeay4PlgmX0VmzAQCB\nSy5H0/fZmftT6fFgJOv77/XfdaiqQn7rv4CmwfbWG6iedxOsX39pbhYZE7jD+x9oLkvNyeym0oYN\nfT/WEse7OkRERIOAyBGEEz7ymBw9k9p22T27cYCXDWr9y+3Y8NzryQabLf1rnDa8d0E4QjWyDOlW\na6+OU460sZthw4Y2hE40Mg/ZF30NvRs/V66H7ofji09RedgBfTVEIiLKFE89rFssWeWnMm/AUAFo\nGktRFZjL0f1zMnXkqJztliWL4bz9VniPOBhQVQi/Lz09dwY9I4hdWrcW0orl3R7PQCJCxueE7nJB\nzhF0EzjjLLQfeFj6PvHvk26zo+XNBfDP2qXD0lVERERERDTw6WWc8aYj7Y88jpb7H0Hw3Aug19Z2\n3tnlgi4E5OYm1G7/i34Zn/PO21Bz1CFw3XIjhN+ftV1e8rO57Lv1Dvj+9hgCc4/LPlAXWZMHAwbh\nEBERlTtNg+fCc7Oao/vnDmJoefM9tN8yD02PPoXo2HFZxxrIJJcLFlmg+Zuf0PjOR+YDLj0jCEf3\neHv3QomMAZbuz7oeDCQhAIfDXNdDoU56p/P+9c8A4oFloRDknxcXfHxERJQukQlH93oh+f2w3HVH\ncmN7W5FGVb4E9A6zhVD/CZ57Qc52y5NPwHPdVXD8701Y33kbQ8aNMkq6PvGPnP0VNf38ueKEuajd\ndgbQjfOfgcbMhON05dwevOp6BO59EBsXLcneaLdBG1WPtY89A23EyL4cJhERERERFVFH1wvlTK+q\nhnLQIflNvBEi7d6AEsmeaF1Ilm++guf6qwEA9ldfzjnpyn2Tkd0+8PsLEf7N8QCA0KVXJjvcfz8A\nINyWHcAz2PCuDhERUZmzvfWGObM0TQcnesr0LRE5/mR4nFa0vfQ6Nt3yV0R32c3YOADKUamahmA4\n92xk3WaDzSob5aamTElukOX0jr2dfR4zToh1CzPhdCj1e9ze3mE3rZOfuarDDkDNrJksC0FE1MdE\nIstH/O9a9dWXmtvc99xZjCGVN2bCKQ0uF1Z+vyKr2f3Sc+Zy1VGHAABsHyxA7blnQF6SHRwcU9LP\nZaxffA4AkDaWcXruRIBRStB1JossQQytQ9NDj6e1J8rEWi28ZUlEREREVM70Tq4XyJDIuA8Alr8/\n3KevVb37zuayvHwpvDkmdifoNcksPvqQIQgecxza77wPGDsWAFD3p6uAZ57p9N5+ueMVLRERUZnz\nnnFKVpueGXSSgyQEMGw41ONPBKT4g6BSz4QTDqNyzu7A44/l3t5BUIy0bm1Bh6GOnwgAiO00u6DH\nLVdDzzi5w22xWMc/c9ZPPgIAyGvXFHxMRESUlMiEIzVuzN0hEIBa6ucIA4nOTDilwlpVCf/l1+Td\nX7S2pjcoCuTPPgVSbpwm1G47A5UH7mOUsyozIhiE5nTlFUxmcTvTG+LlXO1W/g4QEREREZUzdfwE\n4yszYOal7rIL++/FEpn+OxA++jfJFSEQmHcnIkccnTYRo+70ExFemj2xZbDgFS0REVGZk1IeBqj1\no42vkyZ38yDxU4YSj1y2fvQhnF9+hjGXnNNBh9zloaJ7zSnoOMLHnYi1f7kbvjvvK+hxy03gkssB\nAK5PF+bcHomqiCrZD60y6a6uU5cO5qh7IqJe6+Lmi7RxAwKhHFnoUj97GaSTP2bCKRkWWULorHPR\n+sxLefUXbW0Q7W2Qv/8OorkZrttvRf3Be8F5/z1Gh4zfJduH72PIuFGwfPZJoYdeVCIUhOZ0dt0R\nAOx2czE2eoz5s2+1dD1pgIiIiIiIBi69qhqb3lmIljfeLfZQBo4+usctmprS15XclQYAQJkwEbq3\nIvfG7bZLW5XffrPXYxuoGIRDRERU5tSxm5nLyhbT4gudP0zLpCeCcEr8AZpekXLyF4lkb7facu9X\nXVPYgVgs8B90OPSKysIet8wEz0uJ3s84sbc/+y/U11dj3NghyZIGHckjs1M4oiAS6zqgh4iIcoh/\nRms1uf9euu78K2pO/g20aEZ98tTsH119lpNJMBNOydE9ng63+Q8/2lyuOuoQDJkwGjW77oDKow6G\n+0/XAQBs77wFALB++H7OY1i+/KKAoy0BwSB0Z9dB0gCAlM8NKRbtpCMREREREZUbdcpU6EOHFnsY\nA4ZobOyT4zpSSo1HZ3WR3b+zQKCUSRYAUP/H84AyzP6aD97VISIiKnORlCwvutttLHQSyZxTfEaq\n0Es7CCf1fUlrVmdvt+YuRwUA0UmbF3QoksQZ7PkI77s/AEC0t6W1V5yWLFHlvv4qY6GjILAuMjQA\ngOtv90MqtwdcRET9RMSMv68tb3+AlnseytrufOxhVL/1OizxMoGmlCAcEQ736RjzoQRDJR9QbN7M\nYiackqK7s4NwAhdcjKY/zUPgjnugjKrP2m796ktzWWw0SrnpdkdWPwAQuQLkFQXOy/8Iyzdf9XDU\nxSNCIeh5ZsIRavL83XfbnZ30JCIiIiIiGtzkVX1T3inqMK7fdIsF2rBhZrs6bLi5HDzwEGOhi/sq\n/iuvS1vXfl5SoFEOLAzCISIiKnMidRa6xZrdlo8BUo5KpARjWBb/lLVdGzosqy0hvN+BBR0LY3Dy\no1dWATDKN3REaopH+HcUbNNFySppw3rUXXUJRu73K1i+/rLTvkRElEP8IbnmrYBy6OFQNp8CAPDd\ncHN6v3BGFrqU4FgRDPTpEPMxYuwwVP1qp2IPo3OJcy1mwikpZiB7ith2O0A94SRIkoTYnH073d+6\n6Gvj68L0TDih/Q4AAIhA9u+H/cXn4LnvTlTvvnNPh92v3KeeBM8JxwCaBhEMAnmUCwWA6C67mcvK\nNtt10pOIiIiIiGhwik00JhDLq1cV/NiisRE1t1wPAGh7Yj60YSPMbeqkyeayJBv3KUQXQTihM8/G\nxncWJo+RUepqsOBdHSIionIXSz4A0y2WeFv3ylFBDIxyVGnp7Bs3Zm1OjeLOlDh51Av00EtmFE5e\nEiW7pPaOg3ASfeQcgVVA+gzqnPuvTmZFss9/urtDJCIa9Dxvv2EsxM8jWt54B+t+WonY9rPS+mUG\n2qR+Phc9E048uMX63bfFHUdX4ucjgucRJSVXEI5eVWVmPswVRJOL5/qrAQDq6AY0rmtB+PSzjP2D\nQbOP2NQMedE3kFatNNssH39knr9LG9bD9rcHSio43rrgXbienw/nqy/Bc+6ZkELBvL8nsNmw7KNF\naHnjHZZyJSIiIiIiShHZfU8AQPSQwwAA0qrCB+G47rzNXNY9Hmh1yfJgypa/MJcTwTlqjkywmcSU\nqfBf9ydjpaW1QCMdWBiEQ0REVO4iKQ+9EplweliOqtSDcEQ0ZQZ+JJz1cEJ3ZT9AMXmMMgPaiJGF\nGQvLSORF93oBAMLXcW1Y0WacqEsbN+Tu0ElQmeXjjzBkn18lGzopSUZERDmk/i1NfIY6HLBUVUEb\nMyatq/zTj+n7ppWjCvXVCPPT3XOfYkmcazETTknRvRUAgPC2O5htWjybn7Gh659vy0fJmYCt818E\nZDkZ3PPzz+a22q2mouZXO5kBOwBQvf+e8J52EixffYHa6ZNQefH5sL7zdk/fTsHZ/veWuez85+MA\nAOuSxXnv7xxTD2XLrQo9LCIiIiIiogHN98Aj2PDWB4jsbWRf9VxzecFfQxuezHyjV1ZBr6011yP7\n7GcuB/5wKfyn/R/a738kr+PqTiM76sgzTyrMQAcY3tUhIiIqc3oo+VAgeMZZiA0bgfa77u/eQQZI\nOSpEk8EYIhzJHq8sd7hr+ORT0Xr0cWh7+vmCDEXiDPb8JB7opmQxyiQ1NQHRKKqOMurOJtJvmjrJ\nhFO9/55p61pdXc/GSUQ0WKV+PmcEhmRmrZA2ZmShSy0XGCxuEI4jHhiQSivF85r4mASDcEqLLGPZ\nD6vR/K8XzSa9KhmEE/zDpQhvMQMbX3sbTf/+X85DVP96L3NZ22yccYx4ySbXqy8a//fvvQcRyv27\n4njpBVTvuau5bnnoAbQHovAFo/CHYgiGYwhFFISjCiJRFdGYipiiQVE1qJpWmJ93vx/Wf7+Wdo4t\nmpvhuv3WXh1W5s87ERERERFRFt3jhTRtGtRx4wt6XEVNTrZOzWqs1o+GOnx4st/W22DjSWdg/XOv\nAS4XQtfcAH3oUORDtGxKrpTi/Zc+Zin2AIiIiKhvWT/5GADQ/Pm30OpHY9kHX6Paa+/eQRI3xrXk\nyZL1icegr1gJ5ZJLCzXUXkvNhCMi4e5l7vF4sOnGW+F12QoyFomZcPKim9mZkgFU0soVaX1s770D\n27vJ2d7a5CnA4mS2he5kdsq7NAIREQHIyDLX1d+2TZvSVuVlS5Mra1ajmDwXnmsui8ZGwG6D7Zqr\nIQ46CLHZuxRxZBkS5y48jyg5Nq8bspz8f0kNQlPHT8TaV96C12WDDiB8yGFwPDu/y2MmMuwAgPPe\nu4Ar/5j/eD5YgK+/XJY4EgBAJG5spt7gTAR2xftIQkDoAIQxM08IQCD+TwgI6EYf6Ma6AIRu9Jvx\nxzNQtehzRGbNRvvzr0JsakbNdlvmHF9s5jZ5vxciIiIiIiLqhMuFSMNmsAQ6ziafj5iiwvnff8Py\n3LNQb7gJem2tmaG+7aFHAacTsZ1/idAhRyB6yKGALCN6zfXQoaPj6c25RXfbA7juKmNFUQZdhnoG\n4RAREZUx4WuHdd0aAIA2xMgAYpG7/1BHjz8I0lPKSlSdeyYAoPEPl5ROyYTU2frh9CCcwKyuH7A5\n7YU7NSqVb0nJs8VPvmPJQBp51cqsbqnZFZTJU2B/KSVjUazjIBxldAMsqcfztfd8rEREg1Gk40xl\nAOC75Ta4r78KUmsr0Nycti01G1n1aSehadfd0tIa9ye9ogKi1ShvKK9aAc/ll8D6yUfAow+i+bNF\n0EY3FGVcWeIBEzpPJEqOzZpxyzEjw2JqILfuqUA+9CFDzGVPjgCc4CmnI6poqHr4PrOt/a77UXHm\nqbD52nDwwdvm9TqFZv9gARCJwHXrzZBSzq1an3kJVYf+2hjnPQ8VZWxERERERETlSK+qgtiwrhcH\n0CHdNg/VN19jrD/3NBpXbICIX9OpU7Yw2q1W+O990NzNapHSMufkS50+A9Htd4Ttow+BSIRBOERE\nRFQ+hN+fXLEZDwaslh481EkE4SgxZIbwCL8vqxxFsYhYLH05/iArPHY8mu7/O1xd7G+RC/fAi5lw\n8pOaCcf67v8Q22EWRHNTVr/Eg1MA0Cszft46KUeVWdJBXrqkF6MlIhp8RCTc6fbw8SchfPxJqB0z\nHHJLc6d9LQveQezAQwo5vLzFttsB9v+8DgCoOOEYSBs3JMf1w3eIlkoQDjPhlLy2fzyFUFNrp7MA\npXgQfC7td9zb5WvodjtiEzdH4MprEZMs0PbfHzXx4JbI4UehrbUVoVde8ih53QAAIABJREFUT+6Q\n9vMistp00XE/PbVN5NjXPJ7xZdRbrwAA6kanl/hse+QJxGbNTu6XUq6LiIiIiIiIekf3eiFFwrCd\nfiqit90B2LtX7UD+6UfUJQJw4qwfLzSDcHSvN+d+kiQg6T27R6HXGhNPRDQCHZ4eHWOgYhAOERFR\nGROpZSHiM6p7EmgiLzdS3cs//ghtVH3atp8XLYd1/Dh4XTZ4XdaCBrJ0l/f8s5Mrqmo+yIqNboCt\ntrpfxyL48Cw/8Qh4xz/+Dts7byN0zHFwPv6ouVmrqYG0aRM8V6WUPcuoIZsafJVG0yA1NyG87Q7w\nvfIfDBlRDamxseBvgYiorEUiXfeB8Xktt2zqtE/laSejqUhBOKkp6uT16TPHRHvpZElLlAxiSr3S\nFd1rn2TZpw6kZvDL2n/3vdLXZ/wCtq+/TGtbs3Q9LLKALEmwAlB33hWt81+EssV0Y59TToN8ymk9\newO9FPzjhXA9mMzME2sYi9YPPjUD/pXNxsGybCn0SgbhEBERERERFYrz/XcBAJXP/BOBMQ0IXnxZ\n7o5+P+DJDngRoWBWm+vySyDFjAzImrfjjK49feaj243rRBGLofOr6PLDuzpERERlzHPlpVltPTlh\niu6+Z3pDyoMH39qNWLquHV8tacKCb9bh4+834IcVLVjT6Ed7IApNK9LplZYMwrFYLUUNDqKO6fEg\nHOuH7wNAWgBO25PzEbj0qqx9lImbp69HcgfhiGDAeEhWYVxA6C4XkJEZh4iIOifipR4jGZ+9mbTq\nGlhaWzo/lqoa5SKLQHTyuplZ04qKmXAGhK4yHsZmd1wGNbUEFQBseu6VtPXWp583A3DSjrnLL4tW\nzi1V6Kzz0tZjc/YxA3AAoPW/76Jp8Ur+DBMREREREfUR960352y3vf4q6saNhP3Zf0HPmLiaeu9D\nq6kx+v/wHSxLfjYanc7CD9QWz9ZTpHtBxcSnUURERGWsoxSC3T5O/ARM2rjeaEiZFb/rH07Cr84+\nEtv96SJMfewu1L72PCIfLsTyH1bi88WNWPDNOnz240b8tKoV65oD8Idi0LuYPVwIQlUhdONBlmTp\nrGAAFZXFSMyYeMibKvaLmdCqsjMYqVO3wKb3P4Xv5nkAAPsLz2RlxwFSyrFVGL8HutPV4YPWntS1\nJSIaDBLlqMK77NZpP72qCnIwAHSUnSyurmEoPBefD9vLL0J0kTmnoHJk9Gm//R4AgP25Z/pvHF1J\n/D0TvF0zkAUuuTzvvrLXi9CvD0LbeRcBuo7YL3+VFYBTSrThI4zA5rjY9rPStuveCmbBISIiIiIi\nKrCW//yvyz6um28AAFScdjK8B+2XvjHlvrjuyBFw0wcTKbQhRhljkZGReKDLZ+I5y1ERERGVsejs\nnWF/5UW0zruzV8cRigIAqD77dDQedQyEz2duU2tqUb34O9T+8HXWfpGKKvhHNsA/agz8I8fAN2oM\nNo4ag9CoMbAPG4KKeAkrr8sGp73ApyUp5ahY0qGExTPh5KLX1gJ2W3a7kKBNnARLvHSD++3/Qn3h\nWUQOOjStX+LnVPfEM+E4HBDh3EE4qqaDsVpERDlE4kGSDkfn/azxz+tYLOuzfcN5l2DYvBvNdeff\nHoDzbw9AFwKRKdMQ3XkX6LvsitgOs6B3kv64NxLBRAmBiy+DvGolAMD23v/65DV7hJlwyoMt+/wF\nANbfOA+5Tjf8Dz2ao7VECYGm5euBdWvhfPkFRPfdv9gjIiIiIiIiKnvqhInmcviwI7vs7/xkIQLf\nfoPo5lvAapFgeepJc1vgymtR8buT+mScqdQxYwEA3vPOMsoYlwFp3Vq0Wt2oWbMU2KPjLLgMwiEi\nIipjImrMRhe1Q7ro2YV4EI55XF87ACA091j4b7sLfkWBWLUS6uKfof70E8TPS2BZvhSOlcvyCtBp\nHzUGG+vHQhs/HvKkiXANr4PXZYPd2ouoCFVLPsgCH2SVKt2SOwin7ZEnAADq+Alp7b4//xX6sGHG\niiV5Kisv/inrGMKfCMIxauDqDiekeGCOputmKQlF1aCqGtCbnzciojIlokYGGclu77yjzfg8F6qS\nXee7sjJt9Z0/PYTa77/C0C8/Qu13X8Dx3TfAfXdBk2X4p85AcIedEdt5F4gdd4S9sjBZ/UQ4ArWi\nAnJ7/Bzm+JMBScB9y43QSylYN5EJp5TGRD2y9rPvYAkF4fj2a1jvuQv+F16FZrXnDMIZkEaMROiU\n04s9CiIiIiIiokEhNXuNY/5TUMeMRfi4E6GNGGm2i4xs8UN22wlrbn8QdWf/1mzzn3sBIgcfho3D\nRsL9n1fgvvsOM1im0LS6oQAA68/Z9+4HIstnn6B6n91hForupOIDg3CIiIjKWcyYva7bOs420hPe\n444yFhIPiCwW6JuNg7TZOEh77WX2CwPY5A8jvHQZtB9/ApYugXXZUrjWrIB3zYrOA3RGjUGwfgyU\nseOhjx8PefNJsE+ZBDler1T8vBhDZs1E8HdnInDtjVnHgKowE85A0EEmnOhecwAA6viJ0OwOSJEw\nfDfegvBxJ5p9UgN4NFXNOob92fkAAGntGqPB5YQIhxGOxBAJhFFZEy9T9f77UDefCjhqs44h/D5Y\n592K2NnnsLQCEQ1KZgYZRxdBOInP5FzlqCoq0PbQY6g8+VgAwMatdsTGrWfh+2NOhxQJo/a7LzH0\ny4UY+tVHqPn2a1R88wXwwO1QrVZsmrIV2radheCOs6HN3AZOrwtuhxV2WzdDGSJh6HYHQscfDuu/\nX4VeWQlYLFArKqGOHNW9Y/WlREpjZsIZ8Cz1oyCEQGTSJDTtfQC8ThsKe0ZOREREREREg4bFAmV0\nAyzxrL7uv9wEx9NPYtNni8wuonFj1m6jUgJwAECbOMnoO2sWgrNmIbbLblC3mNY3Y5bLZhoKAMD+\n3Py8+zIIh4iIqIyJaLyEhDV3Svy86Vpyed1a2H76EQBgyZF9JJPL44BrxhRgxhSzLRRRsDL0/+zd\nd5hcddnG8fuc6TPbk91NIyEJvcbQFRBsCAiKCsSCIqCoYEEExAIiL4gNVOyKgqgUEV8RXrECSm+G\n3lIhfZNNtk0/57x/TN+Z3Z3dnd2Z2f1+rotrzvmd9iSZnR3m3PP8EurrDctavVbGyhXyr1ujhvVr\n1bDh1VRA5+XnNOOFp4rOF29ulbdne+78P/1hKoRj2wX7GZal7FfxCeHULMdT/Ha097SPFHS56Xp1\ns4x4XMbgLgx5+yQTlmzHkffZp9VywjEKn3aG9NprkiRr0aLUtfwBmZGwdtopFbbpvudBmZs3qX3Z\nu9X39ncofMNvs91xMhq+eKH8N/9WuvY76trSW5E/MwDUE3PNakmS0zlr2P1cLzyXelyxQsmDC0ON\n0RPfLbMxb77xvNda2+dX1+sOVdfrDtVzktzhAc189gl1LH9EHcsf1sxnHlP7049K131XSV9AW/dZ\nqi1LDtG21x2m5D77KdDgV8jvUdDvHjacY8Tjcnw+9X/rGulb1+Q2+HzZbj81If0tqprqzoMxMfKe\n517mvAQAAAAAjNP2+x9T+4LO7Hpmmm1JCl7zLbm2bFbsgIPke+KxIc+R31FHkhJvekvlC01L7r5H\nwXpfOK7G4DjvVVWRuX37yDulEcIBAKCO5U+pU1KmE864Qzi5tnrue/6VXe6/4htjOl3A51bA51ZH\nS0CaP0N641JFYkn1RRJ6LZxQfySu/r6IPBvXp4M5a9WQ7p7T+NrqghBORvDqbxYOWJaMZOrb+A43\nPmrXoOmoNt73iNx77lkwZhqGVGIalPwAT+u139FGudR6bep5EPrpD7Lboss+mFrw+wuO9/7jrzJi\nqRuvjXffqW2xpEL+VD2R3gEFGoNyP10cBAOA6cQYGJAk2Z2dw+7nXrVSkhT62iXqufOvkiTH41F0\nnyXyBH2SYajrtS4ZibgO8wUVjiY1EE1oIJJILyeVtG0lgyFtOvhIbTo4Na+2p3eH2p95PBvKmfXE\nA5r1xAOSpHioUVv3PVBblhyitUsOVc/Ou8rtdivkd2dDOUG/WyGXI3PzJiUXLiqq2/F6pVi8Yn9f\n45YJFdMJZ0rxeAhVAQAAAADGKRAoGjI3bpA9e45CX79ckmS9/nDtuOhLajnlXaXPESw+x0SxFy5S\ncu48udevU9OpJ6np1VfV+9ATk3b9MbFtNZ70Dqm5SX2/vrlgk+vp5dnl/ksuV8MwpyGEAwBAHbMs\nW+YwARMjnp4SYpzTURlWrstM62c/KUmKz5qj5H5LxnXefAXBnLToXrPVF95f/elwTl84Lqe3Vyed\ndFDhwY6j0DevLByzLSkSSS37J++NJUZp0HRU7sWLyz/WWxjMmX3tN0vuZu+8UJLkBIIF487MdjWc\nd252venSL8r6xrek/n7N32WOIieeJGN7d25/xyn4VjsATAdGMplacJX38YGdCZHYtoxEQvL55Hal\nAwg+nxyfTz5JPo9LrY2Fr+OxuJUK5kSTCqcfB8xWbXjDW7ThDalvZvm2b1XH8kfU/tSj6lj+sOY8\nfI/mPHxP6vjmVm3Z/xBt2f9gbVlyqDbO21kyDPm3bta8eFz2boXfwJIk9/p1qYWBASkUGtXfzUQw\nMm38TH7fTCXDhuYBAAAAACiTEwjIyNz3kDRj/8LPOsKf+uywMwPYDU0TVlsp1j77yr1+nXz3/HNS\nrztqtq3gh96v0N/+LzsUfuF5WXvuJc9998humyH3Ky8rdsBB6v71rXK3zyCEAwDAVJW0HJWYzSen\nUp1wBk31JEl9Z59bYsfK8nvd8nvdas8L5sTiHdpw658155QTsmPev9xVfLBly4hGJUnOoA4oqCHx\nQd0HvOU/Vx1vcXecwRK775ntJuA0DHpbPOiGWNuvfqquq74p98pXJEmBO/5YsH3H+q1qnddedn0A\nMCVkQjju8j4+8D/+iPq7t2WDj0bAV3aA0ed1yed1qW3Q50GRWDLXOac1qB1zZmvDm94hy3EU2LJB\nHctTgZyO5Y9op3/frZ3+fXfquBkd2rLkEPXN3VmSZLe0Dnlt98pXKhouHjM64QAAAAAAgCF03/ew\nEq+t16z3HFdyu9PSKjmOokceLf+/7yne3tg40SUWXq9hcq83Vu6nlxcEcCTJe/99ch68X40Xfz47\nljzyjXK3zxh8ePH5Kl4hAACYNJbtDLvdyAQcRhFsKKlECMczb45i4zvrmPi8LumoNxaMNZ/+/qL9\nDMuS+6UXJEnmtm2TUhtGz+jtzS5brW2jO9hXxvM6L4A1OITjeuH54v0HBmT8+98lT7Xb0sXacdsd\nShx51GiqlG07MuloAKBeWakQjlNmJxxJClz3M0U++vHUim/8QdhMt7wZzXmv6Y6jaNzSwM5tGthv\nD716yvv0QiQhY/Uqzfzvw6lQzlOPasE//5w7ZpgPmgbPiV41mSlADaYvAgAAAAAAheydF8q180JF\nPnymAjdcV3onw1DfbX9S//InNfNtR2ngs59X6LvfllSFEE5o0BdjLUtyDT27Q7VkvtCdr+FLFxWN\nWQvL6+TPpzoAANSxkUI4mS4jjmd801GVCuFYCxeN75wTpO+b16QWLEu+36fm7PQ8/GAVK8JwrL33\nzi53PfHsqI4t64ZwXgBtcOre3Li+aHezr1ctl39lyNMFfvWL8gtMS1jFPz+S5Fq1Qu6vfEnu/9b4\nPLgApjUjaaUWhpn+UpIGPndB4UAsHQT2jdy1bCwMw1DA59bMloAWzGrUnju36cA9O7X02EPVfv65\n6v/59Xr2vqf06E1/03OfuUSbTjhF0WUfKDpP/I1HpxYSiQmpc9TohAMAAAAAAEbQ/61r9Op/nlTP\nL27IjvVc9+uCfZwlS7Xpvy8ofHHu8+7JD+EMmvq7Vj5/GSS+clVZ+xHCAQBgivPe9WctXtQu14sv\nDLmPHatUJxyraGjcU1yNU88NNxWNbf/z3xR7z8mpFSupxCGvlyT1X3bFZJaGUbAW7aJVf/y7Nj7y\ntFyDp4sagRGNFI1F3vdB2a256UacvJu/g/8Hw3/H/xYdb27aOPxFh5lPdyjJIUI4bYcuVetPr1Xr\nMUeP+pwAMFmczIcjI0xHlTzokNwx/oCMeLpf3gSFcIZiGIaCfo/aWwJaMLtJC998qDq+9Hm5rvuF\nrD32LNo/uWcqDBoPp36n2M4IAeeJlgnhjOH3DQAAAAAAmD7MRQsVP/EkRU56r8KnvF/xE95VtI9r\n7tyCL/o4jU1F+0wke9bsgnUjWYMhnP5+dZz3SUlSYv/Xaf1LrxZsjr731OyytcuuZZ2ST3UAAKhT\njZ87V4bjKHD9MJ05sp1wxheYMSLFrfg03u464xQ/9nh1rd1cMOa0tckx09/Utyz5f5dKftudsya7\nPIxCcr8lci/cefTHve4AbX/3MvV98tPZsf7v/UgDX7w0uz5wydeyy54H7x/xnI3nnp1d7r73IfW/\n930F250x3ExOJkuHcPJ1//g6rd3Upy07IuoLx4cM7gDApEuWNx2V4817fXS5ZMRSIRynAtNRTah0\nUDk+kHqvkyjjNXtCZUJAhHAAAAAAAMAwvO7UZwf9P/2lBn7wk2H3TRxwYGphkqeCsmfOHFRI7YVw\ngtdenV2OnPsZeVtbFDvyqOxY39XXauvKdeq+72E5M2aUdU4+1QEAoF5l0svDfWM7numEM77AjBEJ\nF6xHDjtc1uJdxnXOiggEFHv78dlVe9as3JtIy5J75YrsMmqX3zvGN/4ulzZ/4/tKvOvdheN5yf7k\nkqXZZWvnhSVPk985x/3Ky5Kk/uPfKWuvvRX50U8L9nUixd13hmP09mjOKe+Q519/Lxg3M8/NtN0v\nPU+rN/Xq+TXdeuLlLt3/zEY9+OxG/feVLr24djsBHQDVk/kdOkInnILAr21L2RBOdTvnjSQzZef8\nU46XEonqh3DSnXAcpqMCAAAAAADDMEbx2cGOu/6hVS9vmMBqSst8SSsrkZz0GkZiz90puxx7Z+pe\nQ+LNb5MkJRfvIvn9chqbZO25V9nnHP5TNAAAUNdCf71L0vg74VjzF2SXt33yPMW+fKk8NXJzKPLJ\nT8l3912Knrws1UoxnaT23fsvWTPb5drapcQbme6nlvk8Y0/f+7wuyR8oGEsc9gZZwaAin7uwYDx8\nzmcUuP66onNYu+wm87FHCsbMOXNKX3D9+mHrcRxHztq18r/4vKxYTJ6tXQo+/oiCy96jri292f1m\nHLa06NgjL/qIBjrnKtw5VwOdc7KPPTM6i76h4HWbCvjcCnjdqUe/WwGvSwGfW24XOXsAFZTuhDNS\nCEe+whCOMTCQWg6GSu9fK/Km7DQ3b1KiuaOKxYhOOAAAAAAAoPJMUw3Nk/8ZTeLAgwvWjURcVZ4I\nvFj6C1G9P8ndO4ic8VFp00bFzvzYmE5JCAcAgKkqv0OOd3whnPCnP6fQ1d+UJFkLdpbHXTs3hhKH\nvl7bnn4pN+VUXljBtbVLyaaWgs4oqD2mOfZ/H6/blLVwkeK77Kb4yam5Wa1dd9PKR19Qa3tLwb5O\nQ+NQBRQN5U9htuP3f5Ln5z+R/8nH5Xv2afXHYtIQ01JZlq3ZB+83fNGZG9P51/P61Pnfh0vubrvc\nCrfPUrhzTiqk0zFHA7NSj72dc7W5vVOOO9ftKhPQCfrc8nsJ6AAYHyMzteUI7YoLA7+O3M8/m1pq\naJio0ioiv+7AT3+kXW78lbbf/5jseTsNc9TEMZx0Jx7euwAAAAAAgAoaTeecSrH22FMrH3lOc37w\nbQVu/JWMnh5p7rxJr2M4Rl+fJMlpzLt/4PMpctkVYz4nIRwAAOrVSNNR5U/B5BnfdFQKBnOn8ntV\naw0D7VmzcyuDAhV2Q41/Ax/j4nGbkuFT9/2PypX3b+9qCBXdwHRmzNC2y78p16KFavnAydnx2Anv\nlOeRhwr2tWflQjiJNx6t2JFHyfXJj8r/h1tldm0Z8uZs20nHjViz/0+3Z5e3/+PfUjSm5MGHSOGw\n9Nqrir68SvGVq2SvWSPfxvUKbl6v0OYN6njq0ZLnc0xTkRmd6e456aBO+nFL51xF2mfLTgfxBgd0\ndrnuuwo+cJ96/vSX8b9OAJiSjHAqOOiERgjT5IUTDdtWw4XnpZa3b5+w2ioib8rO4E9/KEny3/I7\nhc+/aNSnsmy74HfRmGTe1hmEJgEAAAAAQP1rWriT7I5U52Gze5usEfafbMZAOoQz1Jd4x4AQDgAA\n9SobwhliezIvKlPBhLPZ1FSxc02GEW8aoq5l0vuDb3p6huj4Yp/9cdnRaMFY5KyPa9tBh6vl979T\n8y9+JKn4eWMahuyZM1PL3duyIZykZRd0l/ENCvOUYm7ITWmV3G9JbkMwKO2+h/y77yF/eigcTei1\n3pi29UbVt71P/i0bFNy8QaHN6wc9btDM5/8r49kniq7nGIaibe25Ka460o+z5qrle9+SJIWu/JoG\nLr18xNoBTD9Gf+aDiOF/nzr5Qb50G996UGrKTnPdawp+7tOKfPVyOU3NZZ3HtfIVuf7xT1kfO3t8\n77tsOuEAAAAAAICpJRNwyXzZq2ZEIgpdnfqM3CaEAwAApFF0wqkga+eFE3LeCROiE850NOyUaX5/\n4bppyt5jT8WvvEpKh3Cs+QuKDnPaZkiSjG3bsmPRuKWGQPpaeT+L3ad+SO6gX02/+lnxeUYxNUvQ\n71HQ79G8jgZZdpu2981Sd+/e2tgbVTRR+DNuJBMKdG1WaPP6wpDOlg0KbVqvthef0cznl5e+zg+/\npx1f+qo87uGnmwEw/Rj9/XJMs6ArXilOMO/3bd7roRPwl9i7hpSYsjPw219LkowZMzTwpUuHPtZx\nlFz7mtw7z1frm4+QEQ5rx/77KXHo68deT+bvbhxTNQIAAAAAANQSx5/qoGx2dVW5kkKuDeuyy5Wc\nUp0QDgAAU5RhTcykUU4gMCHnnTAVfOOE+uEeohNOhjVjplzbtmbXQ/7U2+K+r31drjWrZe27X9Ex\ndjqEY+YdF4kl1RBId3+IxVLnWHqwold/V42/+3V2PyeQunltO052Ofzxc0f1Z3KZpmY2BzSzOfUz\nOBBNqDvdJad3IC7b7VF49jyFZ89Tqf+VMayk/Nu2KLQpFcyZ+8A/NO+Bf2S3m7f/QTr5ZDWf8HbF\nDz5UkUsuG1V9AKYms79fdqhhxM4sTnt7djn0jbw5s2t8WiVnmKn4jO7uYY8N/OhaNVz2ZfX85hYZ\n4bAkydy4YXwF0QkHAAAAAABMMe6XX5IkNZ53rqInLyv5pahqMLpyn/UzHRUAAJBjFHfCsW1HZuab\n08mJCeHI55uY804QpqNCKVv/9YA69989u56Z1ir68XOGPCYbwulOdcIxN2/SXvvupvguu6nnwcdl\nDKRaaZqdHfJ43AXTsdiNjZLjqL8/ppZ7/ilJShx40Lj+DCG/RyG/Rzt1NChp2drRlwrkdPfFFEsU\nd8JyXG5FOuYo0jFHkrTuyLdr3jty02HNOvcsde+zt7yPPiTvow8RwgEgKTUdlV1OoHWI0Ejk9LMq\nXFFluZ8u3SFMkjRCoDl47dWSJO/f/5Ydy/wuiMSSCvjG8JFLthNObYeXAAAAAAAAyuVauya7bG7Z\nLHveTpNbgOMo+N1vK7r/UtlvenOulq7NuV0aCeEAAID0zS7LtpVI2jIMKRxNqimUThBbqQBA7OBD\nK3pZx1tfIRymo0Ip5uzZWv3AU2psLv/54cxIT0eVDuH4/vB7SZJ3xcup8fR8tq70m3UjEc8ea3d0\nqvWIg9WybZs8mU46rsq9FXe7TM1sCWhmS6pLTn8koe7eqLp7Y+oNx2WXmLbO9vr0xPV36IDTT8yO\ntR11WMVqAjA1GAMD2RDiaFnNLXI6OytcUWVFT/uIgj/7ccltRolAcyJpyWWaqdBzLPU6b/ty394y\ntm+XcfPNcj3zrLzz5yh5/Amj+2ApHeB06IQDAAAAAACmiNjxJ8r7r1RX9vgll+qZL3xj0B6OzFhU\nrmgk+58ZjcgdjcgVjcoVCcsVSz2asfRYNJx9NKPDj3n6eiVJIUlbn1uZ7ehsbt6UK6GCX0AnhAMA\nQJ1zPfSgPDfeIO+WjQq88KISv7pBMozsdFTO3LkVuU7P9b+Tff/9BdNN1AM64WBI8+bJCQw9Dclg\njt8vSTKiqWmn7PyfrURC4W07NEOSkw5+JQ7JC7REo3Knwzq5ExYHYyqlIeBRQ8Cj+Z2NSlq2uvti\n2p4O5cSSeV1yDjhgwmoAMDUYVlKOu7yPDvo+eLoaf3N9bsAu7spVa6zd99D6dd2aO6+teGOJEE50\n/Sa1XnmpQps3ynBSgRn/LTdltzdcfokK3nl85Qvaumq9rEBI5ghTJUqiEw4AAAAAAJhyoh/8sBrP\n/7Qkafadt6lh+eMyE/FsyMYdi1TsWo5pyvIHZAWCsnwBJZqaFZ6/SM3PpbohN31omXr+kupWb27Z\nIknaccfdFZ0anBAOAAB1LrDqFQUu+kx2fWtXl5yODslK3/iqULeN+HHv0MCbjlG99ZVxyplCA9OS\n2zXKN9WedGAnmUg9JhLZTU1nfFDtf/2LJMkJpn5Kkvu/Tusff06zjn+zjGjx/0QY/X2jL3oM3C5T\nHS0BdaS75PSF4+rujam7Nyr3EDeErdYSN6MBTE+OU/aHEH2fvbAghGPkTctXy7zeId4rWYUhInPN\nai06eP+i3Vw9O+S4XDKs0qGjmYtSoc3ey7+u+LIPyGluGbKWTLCnkh/8AAAAAAAAVJVhqGtLrwI/\n/aEC37hCgYE+OYGA7JkzlQwElQgE5ARDcgIBOcGgnGBQSo8pmHkMSoGgFMrsl3rMbM+MyeMp+bnK\njnv/pZZT3iXvE4+lPvNxubKdcOyOjor+cQnhAABQr4a4OWPEY3Kk3Le3Xa6KXTLkL79rSDX1/Ppm\nNX9omaRcVxJgsKECKENx3KnnvxNPhW+cvBCOLx3AkSRz44bssnf+TrIbGmX27Cg6n5lugTnZGoNe\nNQa9WjBr6DlujVh0EisCUNMcR0aZgRBz7uzCMIo9cR2/Ki12+Bs+hq43AAAgAElEQVTlu/++wsFk\n7nXesm3NeMuRQx7vBEMyRnhdb/rKxUrcerN2/PM/Q++U6YRj0AkHAAAAAABMLZGzz1Hk7HOqcu3E\nG4/OLrtWr5L/pt8ocNNvJElWx6yKXotPdQAAqFdDhXAGBlIL6Rtg5U4hMZXE335cdpnpqDAUlznG\nTjjp8E3zZz5Zcjejt6dwIOCX2b2taD+7pXV0158gPb/8jZLNLer9/o8Vfu8yJZYeICMSmdDpsgDU\nkVF0wnG5XLIbcgE/ow6mo8ro/e2t2vae9xWMOYmkPPf+S+allyj84KMyB7++53OXF3r2PPPU8DvY\ndMIBAAAAAACoOMNQ9JTUZz9trz9AwWuvyW2r8IwKhHAAAKhTjoYK4fSnHjPfQjcr1wmnHjnBYLVL\nQI0qt7NDRibQ5sTjsoaZYsXI65AjSY4/UHJKlthJ7x3V9SdK/B0nquvFNYot+4AGfvQzOc0tMhxH\nitINB4BGFcKRJDs//DrE9Ew1KRDQju9cq+TsObmhv/1FLae8SzN+/F0tevfbhj/eLP3xSu9V31H/\nRweFNocLOWZ+XwxxPgAAAAAAAIxN/A1HTMp1+FQHAIC6VfoGjhEOpxYy01GV+c3sqYoQDiomrxNO\nrDc85G6Rsz5esO74/UX7hE95v1RDXaryp+Zygqkp3LKvJQCmN9sZVSDEacyb6m6YwGIt8rjM4sDM\nIMnZc7Th2VVF40Zv8VRU3dfdqNgZH1XkiqsKxtv22VVOd3fpC2QCOoRwAAAAAAAAKsppb5+U6/Cp\nDgAAdcq9aWPJ8aLpqFzTPYQTqnYJmCIcdyqE4yQSarn4c0Xbwx8+Q12vdSl+zLGFG0qEcNRaG1NR\nlZIJrhnhgSpXAqAmjLYTTsF0VPUVwvF6TDmHHz7sPu6NG+SZ2VY0PrgLmiRZJ7yz5DlcXVsUPPvM\ngjEnE76x049MRwUAAAAAAFBRTt7nVnYwpB233aHu+x+r+HUI4QAAMMXkpqNKd8Jx1U63jaoIBqpd\nAaYKbyqE03jXn9T8h5uLNjvtHZLPV3ycv/g5WNAposY4gXQIJxKpciUAasIoQzhOhefQnkwu01Ry\nyVI5JbrQRE77iCTJmtkumaa6H3xiXNdquO+fcj/+qBzHkfeOP8r1/e+mNqTDOKVqAAAAAAAAwNgl\nDjlMfRdcrB033KTuZ15S4sijZO22e8Wvw6c6AABMMYM74dTSlDfV4Hi81S4BU4TT3DLsdmv+gtLH\nleqEU8MdquiEA6DAKEM4pYKH9ea1F9aq/83HZNcjZ35MA1/4svoPO0K9N90mSbJnzRr2HLHDjyxY\n33H7nUX7GBs3yrzxBjWf9WHNuOJSaWBAhpPuHkQjHAAAAAAAgMoyDEUvuFiJY4+X09g0YZeZ3nfl\nAACYgszVK+X09EjJdAinhm/2T4ppHkJCBY3QlSBx6OtLjjuBEjeka3iakVwIJ1zlSgDUAkOORpMI\nca9dPXHFTBJfc5OcJUukf/5VkjRw8VfkNDVr4I93yjRTfxeOr0TAMs3xetVz2x0Ff2uJw49U19rN\ncr/0gnx/uFXBn/5ILWeeVnCcEY9lO+HI4DtTAAAAAAAA9YhPdQAAmGJCP/ieZizdW4adCuE47ukd\nwnHcnmqXgCkk/JGPFo2tf2aVVj21UvbOC0sfZNsTXFVlZUI40e29Va4EQE1wHMksP4TjefH5CSxm\ncpimISM9NZ8kOcFQdjyrRMjXntmeWnC5ZZQKbgYCSi5ZKru9o/SF44nc74waDmsCAAAAAABgaIRw\nAACoU84wHW5cfb1qOfHtqRVzmodwGhqqXQKmECMRLxrzds6Ud2bb0MdEo5JSnRFygzV8czXdhWHW\nR5bJ9fxzVS4GQNVlOrOMQeRDZ1SwkEnm9+WWS3XVK/E6ntxzL0mSM0LnNHPL5pLjRiKe+/se4RwA\nAAAAAACoTXyqAwDAVDdNp2Pa/pd/atvnvygrfUMMqIRMoCYj0zXG4x76bbURi0mS7Nahgzq1xLVu\nXXa56aMfrmIlAGqC48gZY6C3/9vfrXAxk2gs4SNPuvuezzvsbvFj3zHEhrhkpacTJYQDAAAAAABQ\nl/hUBwCAOmVkbtKMYLiOOVNZ8oCDZF/4hdruOIL6Ey/shNPzm1slSeYwzzMjPCBJcmbMzA2Oo7PE\nRBu44OLscnKffatYCYCaYNsypuHvUmP79lEfE3/zWyVJkRJTF+ZLvOEI9Z/3+aJx73/ukyIRSZLj\nD4z6+gAAAAAAAKg+QjgAANSj0dzAd03PTjjARIh+sLAzTOKQw0Y8Jn74G1PHLnt/dszo7a1sYRXk\ndHRo4z8fSC03tVS5GgDVZjiOnFFkcGLHnzhxxUyi8GfOl2MY2n7V1UPu0/XMK4rk/V6InPVxrb/r\nHoUv/OLIF8gPZqb5f3uDQpd+SVKu0xoAAAAAAADqCyEcAADqUboLTnLnhdp07c8lSfEDDspujnzo\njNy+7unZCQeYCImj3lQ4kJl6ZBiRsz+pFTffpcjZ52THYie+q9KlVZS7sVFSrosPgGluFJ1w+q/6\n9gQWMokCAb326jZFP3zG0Pt0dsppaMytG4bcBy4t6+/L8eSmrIoenAp0OqEGeVavTC0H6IQDAAAA\nAABQj/hqPAAA9ci2JUnWgp2VOOk9Wr/X3vLPaFXrW46UubVLyT32yO5qzZ1XrSoBSJLHI9dhh0qG\noVdXblI8nlDzjOZqVzUs0+9LLSQT1S0EQHVlOu+NIoRjd85Szw03Kbn7HiPvXOPcLlOmOfyf3YjH\nJElWS6uk4acnzBc99f2y7rlHzqc+LWPNavkffUhm97bsdicUGmPVAAAAAAAAqCZCOAAA1CE7kUwt\nmKa8Hpe0996yTUPb//FvWQ8/LPfuu2f3ddpmVKlKABlBX+ptt+HzylNG95xqc9ypGo2kVeVKAFTV\nGEI4khQ/9vgJKGbyedxlNA+Ox1OPPt/oTh4MqutHv1RLg0++9eskSUYkkttu0LgYAAAAAACgHvGp\nDgAAdci20iEcl0umYWS/pW3PmSvrnSdJAX92X6YzACorfO5nJUnbLr607GMyP6OGDLnMOngLnpnG\nLpmsbh0AqmuMIZzpxIilOuGMOoQjKeRPBTQdV+o119i+PbfRJgQJAAAAAABQj+rgDgAAABgsHktP\nEVPiZr7bZcpx5ZrdOX5COEAlDXzlMq17eoUi53x21Mcahkac2qQmuNOvIUxHBUxvhHBGlNxnP0lS\n/I1Hj/pYTzrwaESjkiSzZ0d2m2ERwgEAAAAAAKhHTEcFAEAdshLpGzOmq+R2e/6C7LITCk1GScD0\nYRjydrbLGduhpbJzNScT5DN7eqpcCYCqyoRw6uGFq0oiZ50ta9FixY88asznMDduLBpLHHzoOKoC\nAAAAAABAtRDCAQCgDiWH6YQjSTIM9V3zA5nPPl0QyAFQGYZhaCx9IQyjTqaj8nhSD48+LKN7m5y2\nGVUuCEBV2HbqkU44Q/N4FD/m2PGdw1340cy2m26XPXfe+M4JAAAAAACAqiCEAwBAPXrttdSjq3Qn\nHEmKfuBDk1QMgHK56mEqKqngtcW1YoWSB0/NEE6sb0C+xpCUTBbdBAcgpqOaLIN+N9jz51epEAAA\nAAAAAIxXHXwNFwAA5HO98Lx2e+/bJElOMFjlagCMhlEvN7Lz63TGMvFW7fPf8EvNWzxb7R1Nap/T\nJt9tt1S7JKDmNH7uU5Ik9ysvV7mSKS6RLFg1fL4qFQIAAAAAAIDxIoQDAECdcS9/Mruc3GXXKlYC\nYDowYtFql1B5iYQaL/hswVDoqiuqVAxQu/zpcJpr/boqVzK1JY44snDA569OIQAAAAAAABg3QjgA\nANSb/A4VdMIBMMGM/v5ql1BxrpdeLB6sl6nCAEw5ySVL1X362dl1p6WlitUAAAAAAABgPAjhAABQ\nx5xgqNolAJiidlz5LUmS0d9X5Uoqz47Fi8Ycl6sKlQDlM1etVOD710i2Xe1SMAHCV1yl6CGvV3Sf\n/SWmowIAAAAAAKhb7moXAAAARimvE45DJxwAE8To6JAkmVu3VrmSyrP6Ut194oe9Qd6HHkgNejxV\nrAgYWetxb5bZ3S1r190UP/b4apeDCvN5XOq94y8yDLpyAQAAAAAA1DM64QAAUGcC11+XXXYChHAA\nTAxrr30kSe4Xn69yJZXnevq/kqTkvvtlxwg1otaZ3d2px21TLxiHFAI4AAAAAAAA9Y8QDgAAdcbz\nxGO5lWSyeoUAmNKsOXMlScamjaM6znGciSinYozubZr5P5dIkqyFi7PjTlNztUoCRseyql0BAAAA\nAAAAgCEQwgEAoI4Z8Vi1SwAwVQUCkiQjNrrXmcTdf5VqeAorz2OPZpddmzYqdujrJUlOY1O1SgJG\nx7arXQEAAAAAAACAIRDCAQCgjsWOfUe1SwAwVRmGHJdLSozccctOd79xP/OU5n74FLW+420TXd2o\nWenggrl+XW4wPKC+X9+UWk4kqlAVUB738idzK4RwAAAAAAAAgJrlrnYBAABgbAY+eHq2UwUATAiP\nR7JGDuE4d9wh+bwy0/u6V62Y6MpGLZG05fKaMsLh7Fj40+fLcXtSK0lCOKhdoa9+ObfiEMIBAAAA\nAAAAahUhHAAA6kzs7cfJd/f/KXLxV6pdCoApznG5R+wQ4/niRWr/xY8lSVZ7R8VriCUs+TyuUR2T\ntGy5XYVNP+MJW36vZIQHJEk7br9TTmenlJ5uy6ATDmqM4zgyDEOSZG7tyo4bcZ6rAAAAAAAAQK1i\nOioAAOpNetoX+X3VrQPA1Od2ScmhO+EYW7aoJR3AkSRX15bKXt9x1PT5T8t99/+VfYi5cYNCH/2I\njC2pWqxIRNq8Wcaf/yQ5joyBVAjHCYVSB3jSnXDKmHYLtcWa4tMyxRJWdtnx5n7nZ4JkAAAAAAAA\nAGoPnXAAAKg36Rvijjm6zhAAMFqO2zNsCMe1eeOEXt9cvUpNN90o3XSjurb0lnVM4yfOkvfB+xVp\nDKn/ez/SrAWdkqR2Sdv3WCzvX1OBHieYDuGYphzTZDqqOhSNWwr5p+73SmJxS35v+n/Zfd7suBGJ\nVKkiAAAAAAAAACOZup9YAgAwRRmZG+JusrQAJpYRj8u9Yd2Q292PPjyxBZT5OmdnOoRJMjelgkFG\nJKzEr64v2M/ctEnuVSsl5XXCkVLdcOLx8dWKSRdPTO1OONGEJSf93K52Jxxr1uxJvyYAAAAAAABQ\njwjhAABQbzLTbxDCATDBzL5emeGwNETnjeAPvy9JGvj4ubIbm4Y8TyI5xrDEMF14shxHA+s25dZ9\nqbCCa8MGzbno0wW7Gtu7c4f5/Lllj0dGgk449SZpTd0QjvnqWjX97gYlk+kpqTLTpklSODz5BRnG\n5F8TAAAAAAAAqEOEcAAAqDeZm9Imv8YBTJLeXtnhSLYrR0biDUdIkuInnyq7vb3wmLwATSxhjemy\nRhkhHN8fbtWiA3aX89vfSsp1DDFXryra1+zLTWnlzJiRW3Z7mI6qDtm2M/JOdar1TYdr/mUXyXXf\nvZIk28j9zjfGEcKxnTH+nRHCAQAAAAAAAMrC3TsAAOqMYVlyXC5uiAGYcE4gIEkKXfFVde7cKWf5\ncklSdFOXolu7pfQNfbupWU6oofDgWCy7OOaOJSNNEWVZavrkRyVJ7eefI0nyPPVfSZK5tatod6Ov\nT3YgqPj+rysMMno8UqKMrjuoKWMOlNQBs7dHkuRs3yFJMrZty24z1q4Z83mjsTE+z3nPAQAAAAAA\nAJSFEA4AAPUmmUyFcABgghnpaaiCN6e6zPju+KNczz6jnfZbrI7j3iT/rTdJkhx/QH3X/qTw2Fg0\nu5yMjRCmGer6ed1povHi8IBr5YrcvrYtRXPXNEoENIze3lRdeVNRSUqHcBJyP/m4mt5zoowd28dU\nLyaXNYU74WTMOueM1EI0omRziyTJt/zJMZ8v9sxzI4fbSiGEAwAAAAAAAJSFEA4AAPXGtiSXu9pV\nAJiGWn74XbW96Q2SJN+avOmeAn5Ze+0tu7EpN5buLGNs3ao995yr5nceK98fbh3V9Tz/vje73HHI\n/tLgaXh27ChYbT3qMDnDhAWCP742Fdbx+wrGHbdbRjKh5lNOku8/96rh4gtGVSeqw7adoinS6l2p\nKbbMzZvkW/GyXOGB3OAY/tze66/TbscfqcD1vxh9YYRwAAAAAAAAgLIQwgEAoN7QCQfAJOm5/ndl\n7ec0NUuSBi67IjuW6WLjeSrVtcP70ANq+sRZBd1qpOGnqmr4n69ml33rX5Pn0Ydz69+7Wr6f/7hg\nf/eqlSU74BTVmx8WkiSvV4rGslMA+UcZFsLkMzdv0oKLP634pi3VLqVizB/9QMaPf1g0PmPf3SRJ\nRiLXGUqWNerz+25LPa+9f/j96IsjhAMAAAAAAACUhRAOAAD1xrIkQjgAJkH8rceMuE/fN67OLkc/\n+GH1v+fU1EomMGAXhmyMaETGtm3yXvR5matWKvH8C3LKnP7JtWZ19pxNV3xVoT/dXtZxgzmNjQXr\ndken3Nu35bb7fIMPQY1puPBzmnnnHzTr6EPHNr1SlfVHEoMG+jXjq19Ux2VflLF+3ZDHxQ88OLWQ\nSAy5z1D8jz6UWkgWT+02MkI4AAAAAAAAQDkI4QAAUG+SluRmOioAk8DjUXTXPYqGEwccpNjb3i5J\nir37vQXbjIA/9ZgN4RR2pjHCYc3cc6Gaf/Uzhb5+uea/+TB17LagrHKMntT0U0Zfb8F477U/Gfa4\nHbf+b8G6ue61gnV73k4F64mlB5ZVD6rHSWdC3N3b1PCVL1S3mFHy/f5mLVwwQ8aWXBcf39/vzi67\nfz90JyanrU1SrtNUufJ/Zoz+/lEdK0kyCeEAAAAAAAAA5SCEAwBAnTGspByTTjgAJofhL+4Kk9xn\nP/X+5lZt3tQjp7mlYJvp9aYWMiGcQdPmNJz/6exyfvDAc989I9Zi7kiHcHp6CsZj7z11yGO67/6X\nEke9ScmFi7Jjdnt7wT5256zCgwz+N6nWWYt2yS57/3JXFSsZvaZzPiZJajn1JEmS98471HT2Gdnt\nLVd+deiD3Z7UYyQ69D6lhCPZxcEhtnI4TEcFAAAAAAAAlIVPlwEAqDeWJbkJ4QCYJCWmZrI7OiRJ\nZonuGI4nFcJxYjHZtiNz08bC0/3z79llIxzOLrvvu7foXIlDDpMk9RxyeGr/Hdtlrlkt6/Y/Zvfp\nWrOpaIo+a6f5uZXGptS5jjw6O9R/1XcKax70Z/Q++J+iWlBbnEzYS5Jr0HOsXrife0bNb3+TGi77\nctnH+P7vz5Kk0Le/Pqprmf254I17a5fMDevLOs5uT/2sRz5+7qiuBwAAAAAAAExXhHAAAKg3ySTT\nUQGYNK4d24vG7JntJfZM86Q6dVgrViph2Wr8wvllXafhB9co9K7jpUiuY4eSCdker3b85JepWl5+\nSTMO3l8dV14iSRo4/yIpGCw6l7Vg5+yyEwpJkvq/dqW23HCLujZ0y2ltKzygxGuq0dtTNIYa4oy8\nSz3wPvm4XGvXlNwWOXlZwXrs7cfljvvb3YN3H5b/xhsK1geH44YSO+ZYSVLijUeN6noAAAAAAADA\ndEUIBwCAemPZRV0fAGCiuFe8UjTmtLYOub/jTYVwOs45U9bAwKiuFXzwP3L/3525gXToMNgxQ5Lk\nfeyRwgPyOtgMnHV2drkghNPQkFoIBGQce2zpwE1/f3ExieSoasdkK5HCyQ9w1amBz39Bkbe+XVuf\nXyU7v6OTJGvX3ZXYd39JUuKwN4zqvPbs2QXr5tau8g50pkjaCQAAAAAAAJgkhHAAAKgzhpWUXHTC\nAVA9jj8w9Ea3J7u4YLd52eXIh87ILkff9e5smGAwK2HlVpKWHLc7211nsMQBB+Uuu2lT7hx77Z2r\nNdQwdK3Z66QCN7bPP/K+qAn50ZDEAQfKc++/1L6gU76bflO1msplzZg55LbYCe9S/29vlTNzpsKf\nOq9gW/iz56v/mmslSXZrq8zXXpXrxRfKuqaTDp/F3vI2SZJrzepR1eyoeOo5AAAAAAAAAMUI4QAA\nUG8sSw6dcABMsu5vf199510gSUocfMiQ+zlDBGYKutO0zZDnmady5773odx+eZ03jERi+On3bDu3\nb2+vJCn2ugNkt3fk9inn9dJKhXCcvM46sqwhdkatsRYsVOD66yRJ/h98T3aNd2+x23LTofUf/VZt\nu+V/1XPjLdr+l3/K2nOv3I7pqdQynMambGcn18svacYB+6jtyEPKmlrKiMYkSdaee6ePf7m8Ymv8\n7xIAAAAAAACoNYRwAACoM4aVlNyEcABMLiMUUvTir6hrS6+cthlD7+jxlhy229uzy9H3n1a4bV6u\nY07nZ3LTSslKZkM44c+cnx3u/Z9vqPeDpytx+JG5+vpTIRyjuVlOIDjyHyhfen/Dkwv8GBbTUdU0\nOxcOcT/3jIxoaiqqfrn1wNMbtXzFVq3e2Kvu3qiSlj3UWaojHYiRpPj5F8g++k2KH3OsknmdnYbi\nBFPBHN+/782OeR56YMTjMn8/yV13kyQFfv3LghDbyCegEw4AAAAAAABQDkI4AADUm6Q1fGcIAKgg\nu7EptTB33vA7ZnhKvz4l99lPA0e9Rf0fPkvJ/ZbI8eemfnIaGgt3znTfSCaz0+gMpLvwSFLs9DMV\nu/r7BV1ukrvvKUlKLD1Qco3uf3Ni7zhRiY5Z6rv2J3kFE8KpaXmditwvvSijq0uSZHu8shxHO/pj\nWru5T0+v2qYHntmox1/copdf26HN28OKxqv7b2vEotllp3NWWcdY6f2cYHHAzP3QgyNfs3ubJMnu\n6MyONb/3xJEvTCccAAAAAAAAYFTK+nT6qaee0mmnnVZyWyQS0bJly7Ry5UpJkm3buuSSS3Tqqafq\ntNNO09q1aytXLQAASN14NOmEA2BybP/7fdp65XeUPOTQsvZ3hnh9svbZVwO3/EGRb10tSeq5/re5\njaapvm9cnVuPpkMK+dNRBYPavKlHmzf3SN7ibjsDl39dvd/5vsLnXSDHHF0IJ7lkqbY/85Libzkm\nb5AQTi0b3KnI3LFdkjTz+f9q19tvUOfjDyjQtUlyHDmS+qMJbdg2oBfWbtfDz2/Ww89t0vNrurW+\nq1994bicSQybGLGYHNPU+p/eKDtvmrZSuh94XD0f/Ii6n3hWkkp2eQpe/wuZq1cNex7Xpk2SJGvR\n4uyY9/5/j1xr5u+FTjgAAAAAAABAWUb8Gv3Pf/5z3XHHHQoEAkXbnnnmGV166aXavHlzduwf//iH\n4vG4brnlFi1fvlxXXXWVfvzjH1e2agAApjEjb3oWAJho9qLFUt6N+5G4Nm4YcpuRdyPfnrtT4ca8\nYI0RDssJBOQkk5LXlx03zaGDAE5Ts2KnnZ5abm4pu97BtUVOO12BG6+XkddpBTUoWfjvk98hZslP\nrsouJ4Ih9c5frN4Fu6QfF6t3/i4Kd8xWNGFpy47UNE0u01BzyKvmkE9NIa+aQh65RhnmKpcRjyu5\n7/7yvGvkTjTWrrsp9q1r5M50d/J4Su7XcOkX1fvrm4c+UTpU5mQ6W2UvYBV0lBq6aEI4AAAAAAAA\nQDlGvIM3f/58XXvttbrwwguLtsXjcf3whz8s2PbEE0/oiCOOkCQtWbJEzz77bAXLBQAAZd8wA4Aq\niL73VBl33anAypeH3c/adTf1fObzcpYeIEky+nqz24xIWOpxybNlsxKLdx11DcmlB2rD+V+W+9hj\nNOroQOb1lRBOTXPswn8f90svSpJe/P71ivf0yfPyS2pYu0JNa1eodcULmvHi0wX7J30B9c5flA3l\npB4Xa/WseZLLJdMwFPK7U6GcBq+aQ175PBX43es4MmJROT5fQShtOO4hplfrv/R/1HDZlyVJrleG\n/3lTpnOQ16Mtv/iNOs76oCSp6fT3q/fGW4atFwAAAAAAAED5RgzhHHPMMVq3bl3JbQcccEDRWH9/\nvxoaGrLrLpdLyWRS7hG+sd/aGpTbzQ1FAOPX3t5Y7RKAieM4km3LE/DxXAfPAdSm9oO17sHHNa+z\nsONGyefrd7+VW/bl/l9gRrNf+viZkiTPylfG9Fzf+IUvqK01MGSAYUiNqY4qbU0+iZ+xmjH4OZB0\nlw6w7PGBE6S2NknSQCSh3oG4Nu7oV/zFl+U897wCK19Ww5oValjziprXvqK2V54rON7yejWwYLH6\nd95V/TvvooGFu6p75121bt58+UMBtTb51NroV2ujTw3B4mnR5DjDd41JJCTblrcxNO7X8IZ9dpe+\n/nXp4otlLlgw/PlcqZpmdrYo/qFlUjqE4/vrX4Y/zp/qvDNjZiM/D8Ak4f0dgOmE1zwA0wWvdwCm\nC17vUio+l0VDQ4MGBgay67ZtjxjAkaTt28OVLgXANNTe3qiurr5qlwFMnGRS7ZLitqEenuvTGq93\nqGX9vdGC9chpp6t/hOercfIHNfOiiyRJ3Zt3qO3vf89uG8tzvbc3KtO2ZI5yGp1Q3FZQ0vauHiX5\nGasJpV7vAgNRNUiKLD1IgScfy453hW3Jyu3rljSjOSgdskQ6ZInC0YS6IwmtDSfU3xeVvXqVQmtW\nqGntSjW9mnlcpaZXXii4nu32qG/uguy0VusWLFZ44a4yd9tVbXZM+x+1f66GjduH7Fhn9PdppqSY\n6VbvGJ9f7enH3g1dip15jtquuFLWho3Dvi9oDkflldS1PSL5bLnv+rtaj39rqt5hjmuMxOWXtG1b\nv+wQPw/AROP9HYDphNc8ANMFr3cApovp9no3XOCo4iGcpUuX6p577tFxxx2n5cuXa7fddqv0JQAA\nmL6S6ekkRtvZAQAmkcede43a/OoWmX7/iMc4DY3q/dAZavr1L3OvdePgcpmjDuCkD0w9VqAGTKD0\nv8+OC7+swLJ35sa9JbrT5An6PQr6PepslaRmObt3KBI7UH3hhDaGE3o5Eld/f0y+zRvyQjkr1bR2\nhZpeXanmtSsKzmebLpmDpsYy16/TjAP3lSR1beiW8r+UEp2iZgsAACAASURBVIunHn0j/0wMZeC8\nzyt0zbcVe/fJqRo6OmV2bRn+INtOPaaf38mDDpHd1iY7ECzvomP5WQIAAAAAAACmoVGHcP785z8r\nHA7r1FNPLbn9rW99qx544AEtW7ZMjuPoyiuvHHeRAAAgzUrd6HPK6DIHANUS9LtlhxpkDvSXFcDJ\ncHlSU99UIgDjdo0xNJB5fbWs4fdDVRnp4IvT3p4d6/3YOaMOixiGkQvmpGaxkuM4Csc61RfeR/3h\nhDaH4+qPJGTZtgJbNw/qmrNSM597suCcmQCOJPl/c4Oip5+Zu14s1SXKGSEsNJzwxZcofPEl2XWn\no0OeVStSQRtziJBuNsSb69Bjt7TKtWb18FNoOc6Y6wQAAAAAAACmo7Lu4M2bN0+33nqrJOmEE04o\n2n7jjTdml03T1Ne+9rUKlQcAAPIZVvFNNACoNW6Xqe5nXlIyHNVoXq2MdAgn+1o3zhrGwnG70jUQ\nwqlVtuNIydS/j6uxQRsfe1ZGS7Nczc0VOb9hGAr5PQr5PVJeMGcgmlR/pE19ey7W5vDRWhVJyHIc\nyXF08jF7lTyXa/26gnVzw/rU+UKhitQqSU5juvVtOCw1NJTcx7AsOaZZELZxr1opSfLf8MuCoFDh\nydMhHDrhAAAAAAAAAGXha/QAANST7DfZ+RUOoLY5DY1yNQw9L25JtdAJJ/P6ynRUNcn18ksy77oz\n++9j+rwyZ8+Z8OsahqGGgEcNAY9mtaWmcLIdR+FoUn3huLZf/g21fuWiEc9jbtokSbIW7VKx2jKB\nHmNgQE46hBOJJRXw5b1XsJKF02LlabzwPLmf+q8in/psrq6BAZn9fbJsQjgAAAAAAADAaIzt66EA\nAKA6LFuS5NAJB8AUlOkSYvzj7+M+l2uoaXlGPDD9+koIpya1HX6QZnz9MgXv+pMkyahiKNVMB3Nm\nzwgpefYn1HPjLdltAxd/JbUQixUes2WzpAp3wgmlgjfGQL8kqeWYozR/pzaZmzbmdrIsOWbhewcn\nGMwuB377awWu/W52fcZB+2nGvrvJStIRCgAAAAAAABgNQjjAODmZFu0AMAmyU7S4CeEAmHr8f0hN\ngdvynauqVoOT7hZSiSmxMHGy04XV0O/D+DHHauP6bnVt6VXsmOMkSUa8MITT+IXzJUmu116t2HWN\naFSS5Hn0Ycmy5Pnvk5Ik77/+kdvJsrNTrWVs/+u9Betmb29qSitJ5tauwjrphAMAAAAAAACUhRAO\nME52OoQTiXGjBsAkyNx0ZDoqAFOQNWdutUvIvb5adACpOfF48ViNdYZze9LPH6839ZhIlNzP3Lih\nYtfMhNeaPv0JuZ5/Ljte8POUTEiDOuFYiwunxPL9+X/VvvOsgu49of8+VrE6AQAAAAAAgOmAEA4w\nTrYtKR5X4uUV1S4FwHSQuZlXYzcdAaASen/1m2qXkO2s4iQIWNcao6eneLBGfx866RCOk+5SU2Ss\n06WNoO3Nh+dqSD/akYiMcLhg+ilJkrt0oLfxgs8WD9IJBwAAAAAAACgLIRxgnGzHUfCH39PiNx8s\n7z//Vu1yAExxRroLgOP3V7kSAKi85OsOqHYJ2emorHjpDiaoHiNWHGhxAsESe1af09goSTI3lO54\nE132gYpda8cf7yo57rrt9wpedbk6F3TKvXaN7FBD8bG336no3vsWjHn/9peK1QYAAAAAAABMN4Rw\ngHGybUeBH3xPkuT5z7+rXE1t8f/mBvkvu6TaZQBTSyQsSXJ8hHAATE39X72iYL3n1zdPbgHpKXva\nPnHG5F4XIxocwuk74uja7YTT2iaruUVm15aC8fjBh0qSEm84omLXGupcTbf+VqGrv5WrqaGx+NjD\nj9Smm+8oGHOSJaZioxMOAAAAAAAAUBZCOMA42Y4jw2K6glIaP/cpNf7wu9UuA5hSstNa0AkHwBRl\nd3RklyMfPlPxtx83uQWkO+EYtj2518XIorHC9RoN4GQFAtLg6ajCYVmhhoqHWmJvO7aMekq/d3A1\nhgrXe0tM+0UIBwAAAAAAACgLIRxgnGzbya04ztA7AkAlRFI38xyfr8qFAMDEiJ303uyy43FP+vUd\nj2fSrznd2WW+hzbihSGc4OOPTEQ5FWMk4vK+uia7btuOFInI8Qcqfq3+73xv5J283pLDbp9X0SOP\nVviU91e4KgAAAAAAAGD6IYSDspX74fi04jhyP/ygFI9n11EC3yQHKsa17lVJkt3SUuVKAGCC5HU3\ncW3YMOmXN6wSU/FgQtm2I/e9/5J7+ZPD7ud++qmCdVd/30SWNW7mtm2pxw3rJUmJpC0jEpETqHwI\nx+6clV0e+PwXSu80VAjHZarvtj9p4Ac/GfL8juiEAwAAAAAAAJSDEA7KFotzQ2Iw3+2/1/xlJ8pI\nMh3VsBKJaleASeYQSJsw5rZuSZK9YOfqFgIAk8Bz/78n/6L57+syQWtMKMdx1HrKu9T6tqOG3a/x\ngs9KkhL77j8JVVWO0dsrx3GUSCRl9vXKCVY+hFN4vRLTSUmSp3QIBwAAAAAAAEDlEMJB+VavklHj\n3zadbO4nHy8cIHhQGiGlace5+255bvhVtcuYkvx33C5JcrxMRwVg6hs8/dCkSObCw4GfD90ZBJVj\n5U3v6tx8cxUrmSAul5yuLrkfeUiuvl5ZCxdPyGW2PfWitj31omSU/t98Z4hOOGUx6IQDAAAAAAAA\nlIMQDspi9Pdp/pEHqvXwg6tdSo0jhJORP32Z2bWlipWgGjo/fKpaLvgMAawJ4H0mPRXHeG6kAUC9\nqMKUlkZeBz/X2tWTfv3pyE7mOm52fPpj8t3yu+EPcLuG314jImd8NLWQTKrt3e/QTstOTK2HQhNy\nPXv2HNmz5yh84cXa+rFPFe/g8Yx8jvaOCagMAAAAAAAAmD4I4aAsRm+vJMm1YX2VK6kxdL4pLRpV\nZ2dzdjX4g+9VsRhMNmPz5uwyAayJ45RxIw0A6l343M9O/kXjedNoumo37OE4jmx7arwXdWKF0341\nferjw+4fPXnZRJZTMY7bLUmKhaPyvPxidtyY4N/hTmOTEpddrr4LLi4cLyPA2/3AYxo4/SxJUuyY\nY3Mb6IQDAAAAAAAAlIUQDsrDh64lGYNCOI5lDbHn9OJ+8fmCdSMaqVIlqAYjkbuR5vv9LVWsZIqj\nEw6AaSB84Rcn/ZqxU9+XXXZqOISTtOyCzoP1LHj7rQXr8Te9peR+VucsxRcslALByShr/NypsI19\nzz0Fw5MRpHW7TEXPu0Bbz/xkbtAz8nsHp6VV4W9erS2be5R83QETWCEAAAAAAAAwNRHCQXmmyAf8\nlRa47mcF64kdfVWqpLb4/vf2wgGTl5ppJS+E47/991UsZGpzyriRBgD1atsjy7Xtrr9X5T2E3Tkr\nu2zU6rSKjqOZRx2mxi9dWO1Kxs3z0APquPi8wsHwQOmdLUtGurtMXUjXOvebl5Ucn4zrh7/6P9lV\nx1t++McwjMIvYvClDAAAAAAAAKAs3BlHeWr1BkSNabntd9UuoSYEf/T9gvXkvvtVqRJUQzwSyy4n\n99q7ipVMbU4gUO0SAGDC2AsXyT7okKpdP3ziSZIka9HiqtUwrFhM3pdfVMMvfzbyvjUucO01RWPe\nhx+SbdmplWhUMgy1HLifDMtKdSeqk0CIsb275Lj3r3+ZtBp8nlw3J2O0XTsJ4QAAAAAAAACjRggH\n5SGEUz7brnYF1VXiw33HVUffWMb4OI7aPvKB7KrR21vFYqY2e95O1S4BAKas+LveXe0ShmVu2Vzt\nEionL9wRX7xrdjm6ao1kWfI89IAkyfPqGjnJhFTDU4QNFrjx+pLjro0bJq0G08z9/boff2zSrgsA\nAAAAAABMV4RwUJZRf2tyGjP6p/eUVGbXlqIxIxYrsSemIt/Nv5Vv9crcQInnA8YvvmDh5E1lAQDT\nkOFNT/mXqM0getMnzqp2CZWTF8IZ+Pq3FD3lfZKkBW9YotBXviAjnpvm0tXXV1chnOjJy6pdQgEn\nGBzd/gWdcCpcDAAAAAAAADBFEcJBeRKJaldQN1wvvFDtEqrK/ejDxYNxQjjThWv9uoJ194pXqlTJ\n1OWYpuyOzmqXAQBTmuP2SJKMRHyEPavD89gj1S6hcvKCHobfX7Ae/MVPFbr0i4X7m2ZhOKSGhc/5\nTOnxz5w/yZWkOO0dozugTv6eAQAAAAAAgFpCCAdlMaza/BZwLQr8/MfVLqGqPM88XTRmRKNVqATV\n4AQKv2Ht6ustmqIsaU3zKdvGw3Fk2LYMF7++AWBCZTvhEESfcPlBj3BY1qLFBZvdq1YW7p6sn38T\na9fdNHDYEQVjG59dqYEvXjKpdXTf86Biu+6uyJkfG/tJCOQAAAAAAAAAZan5u3iRGOGPmpB3A4Ib\n6MPz3/HHapdQVeZrayVJvdf+JDvGdFTTh9HXWzy2Y0fBOq8h42Cn/+7qaCoOAKhHmU44hHAmQy7c\nYe80X+FPfGr43WPx+gmEeDzaftsdSuy3RJIUe8vb5O5on/T6rb33Ue8Djynx+sNHeWSd/D0DAAAA\nAAAANaSmQzjm+nXy3HlHtcuAJCMczi7bv/yl5DhVrKZy7Ar+OeJLD6zYueqZ//bbJEn2rNm5wRid\ncKaN3v9n777j26jPP4B/bmh6ryxiZwEhgQAh7Bn2HoEyCoVCgTIKlLIplKaUTdmUvSmj8GOHssLe\nYQYIIUD29rZla97d9/fHaZ2GLdmSJSWf9+sFuvve905PZEmWdc89j5mE03v6WdA23AgA4L71X5BX\nrQQA6IYBw1g33j8KIlJViEk4RET5ZY+0oyq+JBx1XWpFBQBy7E9SfaONAacTnmv/ZZli7LprdFkq\nsTanDpsCyRf+WyqhYmDRi08WKpXEJyIiIiIiIiIiogIr6iScml23x8gzToQy/8dCh7Lekzye6PIG\nl50Hx/PPFjCaHBECjisuh332G7k5XH19To6zrhCVldFlyV9aJ0to4MoeMCsg+f9wKtRffwEAuO/9\nN+q2nAQAUD/9GPa33yxYfCWPlXCIiIaGLVIJJwhoGiqOmoGyq2YWMqIoZcni6LJeVV3ASHIkRXKH\n/+Q/ovfcC6Lr8vvvw3/Y4WnnF7vgHnuZt7tOL2wgg1GCjzsREREREREREVEhFHUSjhxuayK3tRY4\nktwJaQYCgeK7orY/UneXZV39/rsCRZI78prVqL73DlQde+SAj6FN2hQAsGrW24DMk+LQzPZxocmb\nQdt4k+iw3NpSqIhoKMVVljIahqHn6ustmwNLV6B+xoEYedJvhzqy4uP3Q8SdRM1YpBKOVNS/vomI\nSp6w2c2Fnh4oC36C87234b795tj7cAEJhyO6XIyVerIl0iSWBg47wrKurFoFADBGjsp7TLnWe/k/\n0PnSa/Aff2KhQ8kOE2+IiIiIiIiIiIiyVhpn8dahL//q9tsdoxvrclZ9ZahI4YSoCH306AJFkkOR\nihKDIQxoNbWQpk2D96xzzSF3iZWZH4RgyHoiKpKsZYwZC5SVoWXuAgCA47VZSc8hWgf5zbZj3s2n\nAmVlCBx4iGXz6G0mFyKqolR92P4Ytu0WsH3yUVb7SQbbURERDQmbCgBwP/k4lOXLosPK0gEkUOZK\nKATbZ59A6u2NDkmhYOHiyRE93PbWcJdZxydZPzfIqyNJOCNRchwOhHbYydJ6qySwHRURERERERER\nEVHWSuJbQCMXyRLFQAg4vvsGAOB84vECB5MdOa4dFQBI4YonpUwEc3DSQtcBWYGqyNAnme12gjvv\nOvjjlgjnHbdA/frL6LrUFU7CqTZbI0huV3SbvGSJZV9NX0de1xQl+X0AAL1hOADAGLUBWlZ3wPe7\n3ydPXlfe1wfI9vVXAIDqww5I3ujzQXrrzZTVFuSlSwEAjrdez2t8RETru2glHADq/HnR5YVf/YzF\nq7vR4QlAH+LfZWWXXYTqQ/ZD+czLo2NSKGSpRFeKpLY2AMDy735N2CCh44130frupwAA3ymnAwD8\nvzuRCSFERERERERERERUtEoiCSdU+KrvOSF1dkSXHa++XMBIsid1J1QxCWlAIICys063JGGUEsPn\ny8FBDEA2TwII1QZg3UhQyoTr37ej7rorUbPfHuaAEKg84RhzsbLKvHU4o/Pl7i4YQpjJaLfdDPXD\nD4Y8Zsov0WNemS+Xx1WDUhSEttsheXIgMERRlZ7yv/8V9cf9Bs5HHrRu6OmB48nHAAB605gCREZE\ntB6x2aKL8tIl0WV/RyeWrvVg7sJWfPz9Gny1oAW/ruxCa6cPIS2Pf7SsWgl3+PeC3NEOIUkIbr+j\nua3EW1LJ7e3Q6hvgrEiuJqlNnQaxqdn+1Xfamfj1ywUI7Tp9iCNcj7ESDhERERERERERUdbUQgeQ\nCeWLzyGm71boMAZN+eWXnBxHCAFpiL8ElRIr4egaHK+8CPczT8L9zJNoaS69VkOGPwdJAIYByOG2\nMGr45RRaP5Jwyv9xuWVd6vHAtuAnAIAIV8KBwxHb3tEBf0BD+dqVqLx6JgCU5POG0vD70TDNPEkm\nJ7Rk0ydukjRd8vsgXK6kcQJs779r3s75FP6T/xgdbxg/Krrs+/3JQx4XEdH6JL4SjuvJWAXL4V9/\nikBVLTyN46G5y+DxBeHxBbGixdzudqioKrOjqtyBqjI7XI7c/LnVsOUky7pRXQNRXm6uBIOA3Z5i\nr9KgdLZDHzYCcn9/38gybMMazGUmhAwNPs5ERERERERERERZK4kknPobr0L74TOgT9io0KEMiuTz\nDvoYvoCGz+evhSxJkCRAliQosgRZliBL8beILUfGw+uKHN5XDu8rSZBkCYquw9bZBltrM2ytLbC1\nNkNtaYbS2gzbe28DANbeejeGn3uGecVtqVd8SazuMxC6DijhglKRJByttK9GHqj4RK1o1ae4L+7l\nNatQffFfIO2QoioKlTx59arYitNp2aZtOgWhseNhW7IoOqYsWQytpnaowist4eQ15wvPwXPvwwhp\nOmyqYpkiXM5UexIRUa7YUv+ZtPHzj2Lj5x8FAHjrR6C7aTw8TRPQ3TTeXG6cgNXVtVjdbn7ud9gU\nMyknnJhT5lRzkkwvqmsAp5nMKvl8sYScEiOvWglbVyeMDD8/O+3m70N9o40BAKGtt81bbJSACTlE\nREREREREREQZKYkkHACQly0r/SSchC+XbTdej9CFF2d+AMNA1cXnYcTkHbBm210BAegQfbfrEgK2\nXg+c7a1wdrTC2d4CtSOybK5Hlh1d7ZCESHso/+gxkEduYK5oIUAuiW5maZU9+/SgjyEJARF5HCQJ\nQlGgF6gSjhACuiGiyVZDyu+3tixL8TxyPf4o1PnzgKceG8LAaMgosSQR4UyocGOzoXPOt6g46zQ4\nn3kKgFkZiZIp99wN9af5lrGuniDqqxMe08THmIiIciq+Ek7Ezzfdh57Fy1GxfBEqly1CxfJFGPH1\nJxjx9SeWeYGKqlhiTuMEeJrGY2XTBPwybCRUVUVVuT2amFPhtkOWs//cZtTWwqipAQDInR3QGxoG\n9g8tsPLLzL+F5N7ejOZHHitt6jQsf+41uKZunrfYCEDcU1OASThERERERERERESZKJkkHN1InxxS\nMjRrtkz1jVej5U9nAwmtW9JR536DqicfwS54BM/NmgtHp5k842pviSXZdMQth2+VYN9tl0Lucvhr\n6+FpHAd/bT38NQ3w19TDX1sPX21DeKweYzcbj9FLzXZDyrJl0CdO6vO4xa7i2SdjK0IM6OpOoWmW\n8v9CVSGCwVyEl/4+hYAvoMPrD6HXr8VuAxpG1LrROKw8Z60P0kqogiS3NFuScLxnn5e0i7xmVdIY\nlT7DEAhpBlxxSXnpqrSI+PZkfn90OaQZsKmlndSXFT0hczIUAmw2yCuWo/YKa2Km4+knMO7G6+G/\n+TbLOFt5ERHlWYr2TsYhh6G9pQdLvSFohgEAUHt7okk5lcsXomLZIlQuW4i6+d+ift7Xlv01hwue\nxrHRxJzmpglYNGYCpA0noLK6AtXldlSW2aEq1t+JyrwfkmKRDB0iXFFOamsDSvRaBb2xCQAQ3Ghi\n1vsGttoGzrLSbcNVElj9hoiIiIiIiIiIKGslk4QT7PGWTrDppGjfJLe1wnA3ZbR7fOWIIw7aos+5\nhqLCX1OPrnEbmwk14aSa2G0DfLUNCNTUQc+wooLDaYdktwEAnM89A23qVhntVxICgaQWOhkxDGtF\nIEUFMryStz9CCPiDOnp9yck2RpqKRZXvvoGmC06F98BD0Pvwf3ISRyqS1/pvlFua4b7hmljscVdj\nG5WVkLu7IaV6XMLJB1S6avadDhHS0PPoE7HBtO8psRM5kt8XXfYGNFSp689JNPd1V1nW5ZZmyM1r\nod56S9LcynPOAAAo/7wCek0tlI52ACmqDRERUW4pStJQXZUTdVXm50WvPwSPNwSPtxyehlosn7SF\n5fOZHAyifOUSVC5fhIplC80knfB/Nb9aK54ZsoKeUU3wNI1HV9MEBCZsBEzaBPbJk1ExvBajd98x\nKRbbN19Dm7IlAKDmkH3R0pyDNqsFIKqrAQCdM6/Ous4K00OGGBNyiIiIiIiIiIiIMlLUeS1GdTXk\nzk5z2efvZ3YJ0M0kHP+MI+B84TkAgNHcAjRmloRTfczh0eWeHXZBsK4BgboGBGrNyjXe6jp4q+vR\nW1UHr6sCuW6KJMuSpTS/4+UXc3wPQ8f5+COWdcnnhRhoEk7cSRrZ2wv3wp/hW7IYxthxGR0immzj\nD8Hr12JJN30k26Ri7+rAlAtOBQC4X30ZuUkFSsNvra4kt7fB8cG7AIDOCy+zJCatfeNDjNxhC0gp\nKgTJ7W0who9IeReGEEPfVouyZp/7DQDAE5dkmMlryfbBewgcfiR0w0DP8tWov+Uq6H+7AsboxrzF\nWhBeL+zvzEbwwIOjJ6/KbrvJMkVevhw1B+/T52Fs382FHq54AKSvNkRERDkiSfDuugfcH7yTcrPb\naYPbacPw8FuzIQR6fZHEnCA8Xhs89o3RPW5j6466jrLmVXGJOQtjlXRWLAY+edsy3Vtv/ZwU3G13\n2N9/F8Hd9wSMvnrSlojw5wfZbkfWdU/5MTH/+FmciIiIiIiIiIgoa0WdhCNcbiCchFN7z23o3XN3\nS4WNUiOFv2QO7bQrjMYxcN9+M6ouOQ9db72f1XFaf/gVYtgwAOYPUAVQBqAuYZ4QAppuIKRFbg3z\nNm5Z0yLrcXPC5fUTyZIEY0TsRIBtzmdZxV1MKs4/x7Iu+XwQNdkfRwoEYNiSK3g4n30a3gsvTRr3\nBbRYsk24uo3Xr0HPItkmneFff2IdSKzSk0NSICEpLi4pxzjoYMsmpbyPdmv+9Ml1gaBuaavFpJzi\n5lvdHF1WFi7sf4dwaypjbTO23HUKAMAvQvDc90g+wiuYikvOh/PpJ+C55gb4TzkdPb4QEn+LVf3h\nd0n7+U46Ba6HH7CMRargAOij2hAREeXKmseeQfUDd6H2qivQ8ca7fc6VJQkVbjsq3HaYn8xhJpp6\n4xJzfCF4A0DvyEb0jmzEmu2mxw4gBBwdrQmJOWaiTjzfyafBe9a50LbYEnJbK1z/eTTH/+ohFv77\nSHE4sr6AgJ8Lh0D8Y8zHm4iIiIiIiIiIKCNFnYSDuGQQ14/fAzdeg54bktt1lIxIpQhVhbx8KYBY\nFYm+CCEgSRJCW06F8tNP0QSc/kiSBJuqwJblTzld8o7LoUCU1SGw7/5wvPFadgctcv6ObthHbZDx\nfI83iAqXDXKPB0ZlZdL2shuvxYrfnwFfVw/83T0IdPci6PECQT+UQAByMAAlFEBlIICaYHg94b/E\nseT1IJSAH0ooACUYhLOj1RKD5O2FKK8Y9GOTihSwVsIpuyKWcKRPmmzZJpelT8JJPE50n2VLUXfa\nKQjcdif0jSeagwK84rkAIu8//Wk8fL/YSgZX5otwe7KGuAowcmtruuklS/3icwCA7bNPoY2bgKqr\nrk6aI7c0W9a9J5yE3n9el5SEE0+Ek5iIiCh/ZFlC4E/nYOUZZ8NuS25P1R9FllFV7kBVeew9O6QZ\n4Uo5IXh85m0gpAOShEBtA1pqG9Cy5XaW4xy5zyQAgLbxRAT33T+aDCF6egbxrysOUihkLmT7BwsA\nmZ8LhxaTcIiIiIiIiIiIiDJS3Ek4CSfolZ8XFCiQ3IhUwhGKAmP4yIz30w0BVZEgBQIDa5mUpf6S\nd3ovvcKShKNXD6CETJEJtbRC1TTIamYviV6PD/YfvoNkGDAqUie6TNwsszZjA6HbbDBsDuh2B3SH\nA6HyChhOJ9yrV0TnSD09eUvCiVSwMSoqIXu6oa5YDgAI7JXcUkf0UbEjqaJOmPuu2+H66nM4jz0S\n7V9+B0MIsxIOs3CGnPzkE1A2nwJtyhY5Pa7e7QE0DbZlS6Jj6ZKySpmoqgIAOF9+Ac6XX8hon95/\n3Zb+eKqK3r33h7bF1JzER0RE6SmyBFWRgezzb9KyqTJqK52orYx9pg+EdHh6zUo5kQSdkB67GKF7\n3MaoXPwzfCeebEmEMGoT62CWHhF3kUK2MkkSpsERrIRDRERERERERESUtaJOwpGCQQibLXqFpCgr\nK3BEgxT3JbP3wkvgvudO6MOG97ubrguoCgCfryiqH+gTNrSsC3cf7YZKxNijDkRw6jR09dNqAADs\ns17GlLj2MSJFJRwAaNlsGoIV1dDtdhjhZBk9LnHGsIfXHeaYYQ9vs6deh9MJe3kZHOVuON12uB0q\nnHYVLocCh02BpOtwj6qN3r+Ux6ujI8kzoqoK8HTHxvUUFVD6OqmSrh2VZh5H8pr/hlDIyFdnLeqD\n1NmB+r+cCQBoae7uZ3aM/9jj0xwwdvLG+cVnCHR0WLeX4A+5v0pBRgbv8fG6b7+7z+2+k05B58xr\n4VBzeEaYiIhSsqlD83vJYVPgqHahvjqWuOwLaOgOJ+T8dPcTmPjOiwieeIp1R7cbgU2nwDHve0DX\nAaX0fjeIQNC8VW1Z78uckCEQ/yCX4Oc0IiIiIiIirenVOwAAIABJREFUIiKiQijyJJwAjKpqKG1m\nixJRVl7giAbH/s5sAICw2yEqKmE4nNBG9tMCKRSCaO8A6mogr1kDbczY/Afan4REICkukcIwDMgl\n+gWt/ZuvMppXdkNCOxktdeudTy+/BYHahqxisClyNLGm3KHC5VDhsitwOlQ4+muDkJDsIvV4rNuF\nyNnZikjFEpFQBUjqzjxRI/44SUT46m/JfC55vEGUuWwD6VRAWQoEdTjs5nNNSpck1YeOP54Fbdo2\nqTfGPf9sba1Qv//Wuj1YepVwNF3ApqZ/XaWrRuU9ZAawwWi4774jOrZqZQdsca/zjrc/hNTejuoj\nD43t6HTBPkQnhYmI1ndKAT/TusKfA4fXANigCsGtLk49ccQIYN73kLo6IUqtMo6mofyR+81lW/ZJ\nODKzcIYWH28iIiIiIiIiIqKMFO+ZPMOApGnRVh4A4HzxuQIGNEheLxz/e8VcjrSUUlXzqtU+1G05\nCY2bbwjll58h+30wxk/Ic6CZ6frr3wGYJcolvw9SVyeqD9wbw0dUQ2ppKXB0+ZV4pa4cThJLpLlS\nVwiyqzKq3HaMqHFj3IhKTBpTg602asBOm43ETlNGYtrEBkweW4txIysxotaNqnJH/wk4YStnfwz/\nvgeYccYnxPT0oGF4Fcr+dmlGx+mP4fMBAPTx1qpI2SZtKIsXpd4ghHkjSXA89wwaLjwbeppkJ8od\nqbkZtUcdAvXrL82B8M85rfDPyXKMLCqW2eZ8Zj1cZVWamcVLNwwYKR6HCKOnN+V47+13Q28aYxlT\nE5JrtClbILTb7gjuslt0TDgcbL9BRERRjrffAgBU/OXsAkeSPfftN0eXxUCScGT+Psw/tqMiIiIi\nIiIiIiLKVvEm4YQrZBgleFI2FUkLRZeFM1xqXpYhGX0nFsgtzQCAinPOMAeKpCVX8Nzz0dLcjdDW\n20Hy+1F54nGwffE5AMD22ccFji7PEtrAxFf9aF24Ar7jT0LbNjujor4GI2vdGD+yEpPH1mLricOw\n85SR2HGzkZi6cQM2GVODMSMqMLzGjcoye05aHtimbAZt510AALW/OQTy6lVmyIt+BQC47/33oO8D\nADxtZoJPaLvtEdhq6+i4UZX69RrcceeU4xXnn5P6DoxIJRwJlWecgvqXnoG8ZPHAA6aMuO+/G+5P\nPkTV0YcDAKS4JByptRX6gp+tO6RIIlRE5slSekcXACC42+4AAGPEyGxDLjjDEDCMFEk4vb2wX3c1\n3K/PsgwHDjwEq39dAbjdgN0eHddHjkqbXOM75fTY/gcdmnIOERGt3xyvzep/UpEpu+6q6LJI8xmy\nL8wJGWJ8wImIiIiIiIiIiDJStEk4IlxRQwwfDv/2OxU4mhyIJBUAEJFKOIpsGe+LsmihuW+a6iqF\nItwuSIYB+8cfRsekfqr7lDq9aaxlvffiy6LLoqISPTfdBuPV/2HLjRowsakGTcMrMKzahXKXDaqS\n35ecJEnQNpkcXXc89yx0w4Cwx1qIiT6qdgAwq1DNm9fnlLJXXjAXgkH0PPgYtLHjIFwu9Fx9Q8r5\n2uRNM/sHhElLlpixxl0VLa1endUxKHsi/PyUus3kGDl8CwD1k8djxC5bQ5n/Y2wHTUs6hm35sozv\nr/Lh+wAAeqTCVwm+d4ieHmgrzWS3QCgWf8VFf0HVzdcnzVd/+A5qZaW5b9zzW7jTv7cH9z8Qqxev\nwfJlrdCzfC0REdH6oa/fI6VgINXwWBluCEishENERERERERERJStok3C8fd4AQDC4UTLY8/ENpTg\nSVoAQFwrHeEOV7OR5Iz/PXKPJ7yvK+ehDYaorU0eLNWfUYZEQ4N1YADl8/NJb2yKrdhUVB59BNSf\nYokTwVDfiV9lV81E/e47wHXnbWnn1L/xsnlf4ybA2GA0OubMRevStdA33SzlfFHfkHI8HecnZlJX\nSIpVHXJ98E5Wx6ABCFfpksKJWvZZLyVNsb/5WnRZXpOcGBU44sis79aorg4vlN57R+NOU9G49WTY\n/jcLfn+s4pn6w3epdwjF5sRXwumvlZta5obTae9zDhERrX+6HvoPACC46+4FjmSQVDXrXWQmheQf\nk3CIiIiIiIiIiIiyVpxJOIYB9emnzGW7HUpZXOJJMFiYmAZJ0mMVI4yGYQAAoSgZV8KJEGXlOY1r\nsERNchKOvOCnaDux/hj9VWXJE23ChgAA79l/yXrfYm+LFJ8k5L7perjffxuVfzwpOua67SbohgE9\n7rmnfvMV5LVrzH3uvBUAUH7l31Iev/zcP0WX9UmTU85J5D3tT/1PCpM83bFYly+JLjfckz4piHIj\nWqUrzH3f3cmTbLFEELmt1bLp128XIrjXvtnfb2U4CUfP7v2wGCgd7QCA6hOPxYSNR0L+5isAgBpf\nMSiO1BWrLhRfCaf38pn5C5KIiNZZwb3N37uSt7fAkQyc5/CjCx0CZYJJOERERERERERERBkpyiQc\n55OPY9SNVwIAhMMBRYlVw5CCmSV3FJ24ti2ivt5ckGWIhKoxWj8noQNHHZPz0AZDOJxJY+W3/gtV\nJxwD9esvIb//bp/7t3T68hVan6RgENqoDaxVYzLd1+vNQ0S5I8orostyZ2fS9robr8KIEdWo2WU7\nQAg47rsHNfvujuo9d8no+K4nH48uGxWVmQVVVgb/LtMtQ3qkIlQCZfGifg+nZ5m8RpkRzv4rbcnt\nbbEVzfr+JVdn30oCAES4PZOUor1VUUtICpV0HTUzDoK8YrllPDRlC4jwiSvP/Q/H5sftHzjiqDwG\nSkRE6yyHA4bDCYSTPENa6VWVk0v177v1ARNviIiIiIiIiIiIslaUSTiSxxNbsdshyxJEpG1HMJR6\np2IXTrbpOvxoQA4/7IqS1LopGIpbT9GeRB83IW8hDkiaVkz2d99GzX57oO7IQ9Pv+s5sNB15QNIJ\n65wTAlK4nZdhhCvvaBqEzW5pB5Px4QJxJ853yixxZUhJEvzTtu13muOXBag+YC9UXn4RAEBpXouG\nYRkm1QAwXG6I4cMznu955gUs+XoBltz/FJrnzIW2ySQIVYVIqIYktzT3f99GYSooreuEw9HvHKmt\nFbZ/3wF58aJoha/ALrthzVsfQVX6+ZWS7jxOIPxeV2Kt7FK145K9vbB9/qllzBg+HKtXtmPNmk5L\npSDL7zoiIqIBEm43JJ8PQgj4AqX1uxRgEk5RYxIOERERERERERFR1ooyCUdUxCp5RNqTBA6ZAaD0\nK+HYnLGkD2X1KjiWLwV6Y+XjQ1qswof97beSj1NkX4QKVc1gUuqEiepjDkfld1+jbqtNcxyVleum\n61E/fgM4H7wP9Rs1Qvl5gVnBwm7LLP54ug7H118AAJa+8RE8jz6Zh4gHz3fxpRnNs331Rdpt+shR\nfe675q0Ps4oJigJlWAMCu+8Jo2kMUF4BSdPgPPUkGP7Y61pqaUl/jPBzSWcSTl5IGSTBuJ54DNX/\nuAx1220ZTZrRdtwZmLIZVGVg70/a1GnmglFiJw7TVO6pPOMUy3po+51gUxUosvVXrtTTk7fQiIho\n/SHcbsDrhTZnDqqvuzLrdreFFto7+1aWRERERERERERERMWqKJNw4k9suh57CABilXACpZmEEzm5\nLanJlWPU+fPM2y/noP6iPwOhcLUfR/ZVWoZcJpVkUlT0Ub+fm4dgksmrVqL8hmsAABWXXgDF0w33\nTddBCgUhVBuUX3/J6nhSR0dsefJkiMqBtd/JN236noM/iK/vVmG2cWOzPqRdVWBTZciSBH3iRABA\n5cvPY3hTA+RVKwEAFeefk/4A4VZg3d4QjDTJXTQI2baDCs8XqgpFlvuvhJNC13EnQZsUTsQrsUo4\nUj+vkdbPv0XXU/8H31l/Trndf9RvoY3fEF2PPpWP8IiIaD0hd3TAtmIZRh28N+ruvR22zz4BgD4/\nK/XXAncoCFmGUVuHwAknFToUSqfILgAhIiIiIiIiIiIqBUWahJOi5VQ42UMKlWg7qsjJ7RQnqUX4\nS/CaA/ZC9f89Ga2AY5Rn3hqoUERcUpF/l91SzklV7cH179vzFpPlfh64N2lM7uiAFAwCdofZEiwb\ncUk4DnuW+5YYpbOj76o0aVqR9UWWJThsCiRJgqiwPr+VRQsBvz/6Gu989qWk/SPPpUBQR2htC/TW\ntqxjoPSkQFzCXNyJu54tpqHl8+TEuUg7Ksjma0HK8ESNCL/u/JOnwH/TrdHXYSaVeIqJ5PP2uV00\nNiG45z6xFoSJ24cNQ8dnXyO4/4H5CI+IiNYTsrfXsh75/dTjS/93U3z1zYIIhSAZBkKbTWGiRzHj\nz4aIiIiIiIiIiChrRZmEI4Vi1RjaP/4SQKwSTqm3o0rV/sh2y7+sA5FEHdWa5OH51215CW0w4k9C\nq62tqef0eDIayzXnow/B9unHyffd2wsEAhAOe1ZJXcbbb6N+p2nRdbnIv5Ru+24BVsz53jLWftHl\nWPLhN/DceKtlvPWXZQhtuVXSMeo3nQAA8AVir0khywhutc2A41LV8PM7IYlH8nlRecoJ0XVts82x\n4ufl+OWbX+E79ngAgNxrPm/GXHIWRm++IUZMHjfgOCiZsmRxdNn58AMITTWfEy0vvg6MS36sJU/4\ndZxhW7fI+59RV4/VX/yA5udfhSxLsWS4kkvC6bsSTqaPCxERUU4JAQgBafZsSC0tEP/7H5y33Iiq\nnbaB1NkB9f57UHn+OWlbxg4FyR/+Hep2FywGIiIiIiIiIiIionwozjOE4cSIhXc/jsqNNjbH7A7z\ntlTbUUWq+6RoR1XxzpsItMUqeginy1wwrF+Mh7baOm/xDZRtzmfR5UhbrURyjweJ19pGT97ni66j\n4sJzU28TApIQgN0OvWlMRodzPvYwKi5I3VKmWBkjRsKRMKYfdzwcw4bDWPBddKzrzvsgqqrR+eZ7\naBiWXH1J+fUX1J91Ovx33A19w40gGQaEPfsqOBHR5KWEEz+S1wvHm69H10VdHVTDQGVVZex1o+mA\n14u6Wc8P+P6pD95YUp3tk48gHE4AgNNpPv6e625CxSXnw6ithdzeDttss2pXYsJg2sP/+QJI8+fD\nP/OfUMc0AZFWGCWahON45MGkMd8fToXrofvhPbOPtmpERER5Zn/7TYw/5Zik8fIjZ8A592sAQMv5\nFwDjxg91aCavmYQjXK7C3D9lpsgvOiAiIiIiIiIiIipGxVkJJ5yw4nA7o2Oi1NtRBc24hSMxLcLk\nvugvsZVwcoJkWE9Ii5qa/MQ2CD3Xxqr4dP73hZRzktpR6TrsKSrU5JLU2Zl2m+3LOeaC3QH/scfD\nN34jS2ypJCbgeI9MPqlREioqoCoyJC1W2UbfbErStNCYWNWTmj13hvvrL+C+8ZpogtxAWlElMRJS\ns3p6oE3YEADgP/w3AABFls2knbjEHbk9oQVVMDj4WAiA9f1V0nUz4UpRoIarc/lPOgUrf1yC4B57\nAwBczz4FABByZkk4YvhwND/1ArQtpgJA9LiQJAhZLqkkHNuH78P1youWsa4ZR6Hnn9dhzfwl6L3i\nygJFRkRE672QBvf116TcFEnAAYCG7bYEAEiebohXXhnSyjiRaprRiw+oODEJh4iIiIiIiIiIKGtF\nmYSj+c1qN66yuISVcBJOyVbCibTRSpO84I47meu67WZzIeGEdDF+Sa1vPBGLHn4Wq667DaHd90w9\nye+3rLpPPSlv8YjwyYP6Sf23KRIOB6CqaP3gc/i33cEcTJHQYXtndtKYVFY2uEALJVLyP+4ki77x\nxKRpXY8+GV2OtNyRV66MJeGkqOiUtYQkHN3TCz18NXbPDbdY50a+/xcCytIl1k3e3sHHsh4T8Sfc\n9FhyFgwD0HUzOSZCkmCvr4Wy6FfrQbJou+R2pnnuKEpJJeHIa9ckjQXuuR+w2aDU1QJyUf56JSKi\ndVBomrVNqOT3wTb3m4z3rzjrdAw7+Tg4n3w816GlZX/CvC9lxYohu08iIiIiIiIiIiKioVCUZwmr\nbr0RACDV1kXHRKRdiVE6J2ktQmZyR7pKOPEcH75nLiQkKWSybyH4dtwF0u9/n35CXJKE1NmBslkv\npp87SIGQDnnRQsuY/+hjU08OJ3Y57SqkSrMNkxSfhBBWfczhSWORxJSSE0kMiE+8iEug6L77AfiO\nOQ5ik0nwH3GUZVdpzRrUTtvMXMlBJRxRXmFd72iH1NkJIcsQFQltseIq4Ujd3ZZNMk/eDEpIi73P\nSKHY819ua4Xtqy8gp6g+1jvzautAFkk46QhZAbTk118pkXi1OBERFUDXsy+i+f3Po+vK4kUZ76v8\n8D0cr80CAFT85ayk7fa334R6792DDzKO1NmBitvMapraVtNyemzKMX62ISIiIiIiIiIiylrxJeHE\nnYQ1xoyJjSvmSV6phColxJMC4QorNntmO+h6clUIpzP13AKTJQmynP4L2uqTfhddrjre2sYpMGEj\nGPbcJRcFNQNSQvJScLfd0fny6wjV1kHEJ4/EJzVFkggyfX6V+hfSadoNBI44Cj233w3IMnquvdGy\nzbZ8KZRwKyhRWZlq96z4TjwZPUcfC8/1ZuWn2luuh/3LOebPL/HxjUvCSUxOK7v+qkHHsj5zPHgf\n1DmfQ3r9NThmvRQdl7rSt3QLbb8jhCtWmcuobxh8IKVWCWf16kKHQEREBMBMbJYmTYquu+66I+U8\no64uaax2j536PHbVb3+Dmr9dnNNEWXek6ieAwMGH5uy4lHui1P/mISIiIiIiIiIiKoCiS8KR2tsB\nAL7tdrRWw4hUwtFK5yStRaQSjj2WhNP681I0//XKlNNrN9sI6o/zrIM5qDaRD4oiQ87wC1rb559a\n1kVdPeRgICmxAjCr2mTD+eC9GLPtppBbW6zH2e9AhLbfEcu/+gmBw46I3bcjLqkp8tgmPL/kuNZH\nvSecFK1GVEpfSItIC6p4KR7vpP2qa6CF20Ml0puaBhsWUF4O3x33ILTTLv3PtSThWH9GoU2nDD6W\n9ZTU0Y76Ky5GzUF7o/6Eoy3b1AU/9b1vXDUofczYwQejyKWVhNPdBQDovORvBY6EiIjIKvI7Kt6i\n2Z+hbd5CrHrpDfh/c3SKvZKTdETc50V5jTX51EiT0N0fZcFPcP/7tth9FGG7XSIiIiIiIiIiIqLB\nKLoknNCqNQAAsckk6wYlHGoJnaT1BcwrRg0hIAUC5mBc9RVRXQPf6WchuNvuSfsqba0on3kZACCw\n1z5YMeeH/Ac8QIqSOiElOH2PtPsEDjoUnbfdBZSFE0Qij0/8nGB2P+uKSy+E2rwWtndmR8fWzrwO\nKC83t5c5oMQlFghXLAlHqJEkL+tVvuWXXxxd9t5wC4za5CuIi137Z9+g66HH0frT4thgpidO3GWp\nx3N4wkRvGmNZ9579l6Q5Ir4dVfiEkLbhRgCA8ptvyFkspUrPIKkqpWByq6lM+Y85Lnb/EzcZ8HGi\nVLWk3t/hN5OQtOl7wHf8Seh84dUCB0REROu77sR2kXFcm24CyDJsO+wAUVaeco7c1gb4/eaKpkFr\naYtuK7voPMvcju5ARok4znv+jYpD9ofU4wEA2N94zTqhhBLb10v8+RAREREREREREWWtuJJwfD6M\n3GdnAICor7dsEtF2VLkrhZ5vvoAGr1+DphmA1wsA1nZIAJx2BV2PPoXgjjunPY7U2wt59Oi8xjoY\nbkfqCj3xVX8itLHjAADdDz6G0G9/BymczCH5fZZ5yqJfUXfpeZBSXMnbn0jC04o/XQhx+umWbbbv\nvo2txFfCSXh+SZ5uoLfX2mZHlmPJKyX0hbQxYiSCBx0KEZdAFDzwYAQ2mYzu+x/pc18RqUCVOO7I\nYWs0pxNGXHsrqb0teU6KdlTBfQ+IblZ++Tl38ZQg98y/wXHX7X3Osb33DpSf5lvGJG3gSTie625C\n818uxbJPv8vJ60HISkm9v7vvvQsAIJeXo+em2zKr6ERERJRH+rbbWdZ7z7sIAOD94xlQldiffcKW\nvrpmzT67Qf3iczSMqsWoKROi49LqVdFl93X/xITtJ0OaPTtpf8fzz8J52imQfvwR/q+/RcUVl8L5\n2cdwPvIQAEBuWRudG9hrH+jhpGoiIiIiIiIiIiKidUXRJOH4O7ogx325qydVwgknA5RQpYRASEd3\ntxfuO29F5YXnmoNxlXAAQJYlwO2GPqHvL6BtatH8qJLEf6nfHykYRKhxTPSkfaQajZRQCafi1JNQ\n/fRjcN/yr6zjkYLmsSobqqDI1ti6734guizifxbhdlRG0GwbVj9hNBrGjYTU2wMAaL3/sYQ7KZ0k\nnFRERSWaZ3+EwKGH9znPkrQUv3+KBKvBaPnqB3i22BoA4L3or8kTwo+3hFgSjh7XKssx66WcxlNS\nNA2V99yBypmX9zmn+qjDULvrdpA6zJZ/0scfRdv/9WXJi2+l3uB2Q7/oYjjGjUm9PVuKAugDrOhD\nREREEC5rC1Lv+Rej5Ydf0fuPa6wTVetFAZZNP81HzYF7Jx87FEvcLbv5RtjaWjHsuCMgL15kmVd5\n+smoeOEZ1E/fHo377Rodl1uaAcSSWAHAe8ElJf+ZmoiIiIiIiIiIiChR0WR2jNh5a8gdsRPCgQMP\nsU4IJ0mURBJOby+01nZseMgemLLZaNRc+4/opkhFnyR9XJEqhRNDSk6qEvWBABCXwBGtqBIpfR8m\nd3Wat2vXZH+/4cdLStFKSR8zNnbfzvh2VObjX/GH4y3Vd5wvPm/GscEG5rxwxRZRZ63UVIqc9vTP\nuf6ovyzIYSSAXFWNzlffREtzN4yRo5InxFfCibwHxCVYGTW1OY2nlEhtKSoHJc7x9kaX6yeOhf21\nV1E/4wBUnnVa0tyV85ZY1o1w9apUVEU2EwlzQVFK4/0dsLy3xb+nEBERFZJwJbQLtdmAYcNiFzOE\npfys1Q/nzz9BamlJGpfXxirb9PV73H33HcmDctH8KUrpMEmKiIiIiIiIiIgoa0XzzaetZS0cs14G\nAPT8/apY0k2YKKFKOPUbjsbIyWPh/mV+0rZIZZVEiW2qLEooCUfEf1Eb/8W6rkP+9htIwYC1iko4\nEUbqjSUJAIBwm1fySuE2XtmQwgk9kWPEs1RYiq+EE06Ocv7wHdzXXZV80PBJje67H0T7YUeh99wL\nso5rXRLcbY+cH7PPpCAp/FwyjGglHMgyPDfcYm7u7s55PKUiUvmpzzk91vedigv+DABQ58+zjHtu\nvBX2BmtCk1yW/DrKixJKwlHeegMA4N1jn6TqZkRERIUiKqsymuc76ZSsjus/5jgAgPum61Bx1AzL\nNknEqthJvn4+tyck6DORtQQwCYeIiIiIiIiIiChrRZOEAwBKuLqGtulmyRvDCR3qj/OStxUZqY8T\nyZEKL0n6KAsf2nX6ICMqjMDhR0aX3Sf/HnX77AbZ47GctNYbzVY2ytIlln1jSTjW5JxMOF59xTyG\nKzl5QJRXxJYdsUo4UGNXCLsfuDdpP6Ox0Yx3yuZovvFOoLw867hKUev3vyBYW4/ev14RHVt4830I\n7nfA0AYSXwknfAJHyDK0zaYAgKWK1vpGCsUl6Wla6jkJSW6RlhDxQlO3gv/3fwAAdL7wanRccQ5R\nkomipI2/2NT+7ihzoaH0K2IREdG6Q1RlloQDpxOhadtkdkyHA8Hd9wQAuB+6H8733rZsV+d8Flvx\nWStb+n73e7R89UN0vezvl0WXl/26GmI9rmRIRERERERERERE667iSsJZvAhAmhLp4eoX7nvuHMqQ\nci64066pN8RV/lm6YDm6/xBrE9N76d/yHVbOBGYcEV02qqoQ2Hd/AEDZ/16Ojovq6tichgYAyUkU\nItxKakCVcCKJO/EVd/oh1PRVWPTyCsuVxVXlmR+31Inhw/HrZ/PgPfcCdD3+X3TPOAr2ww8b+qti\n45JwpLhKOKLWPHkjdXYk7RLSjKSxdVIwFF10Pv1EyinpKnBZxFWuCu20C9rf/ggd/3kWqqr0sVPu\nCJcLUsDf/8QiIjld/U8iIiIaKnGVNSPVa9LpfPUty7pIqOzmn74n2j/+Em1fzUPg4MPSHkcsWQo9\n/NlM/dFMuBHuMnTMegs9198MNDbBCLdzjfwd13XIEXBVJreNpSLESjhERERERERERERZK64knHA1\nFGPYsKRtUqD/livFzrvXftDDlTsSBXfcObpsr6yAPn16bGMWySSF5rn1rtiKJAO25NhFTU1sucpM\nyKn4y1kQzzyDkGZWEYpUwlG/nwvlrjuTytdnQvL7+t4ef8JfSZ+Eo/R4LOuqUlQvm7yrqTBPygT3\n3R++u++H0+3sZ488iK+EE6k0Jcswqs3nkrR6ddIu/mBpVFUZLMeLz0WXbR9/mHJOzT7TMziS9SSL\nPmVzaPvsO2TPd+F2Qx5A0t1Qk1Ysjy6HdtixgJEQEREla2nuxqpvfoLnptv7nijL6Dnp1OiqkVCV\nxj73a+gbbQwxbBigqvCeeU7Kw1Q88Qg0zfycHqlqqo8dB23b7aJJQXJC21Cbs3T+tlnvMQmHiIiI\niIiIiIgoa0WVTSAFzbYqYl2tLjA8ObkoIrTdDgAAo6YGqiKXboUFZ1yChhCQVyxLmqL+ND82JXxl\nLAAMO+sU+PwahBCxdlQ+H2pn/hXqt19nH4uRuhKKPmoD83Z0U1xQ6ZNw1nfxSRiyXKAv4uOTcOIr\n4VRVQzgcUH76MWkXTc8+catU+IMa8O03kFpaUHbzDdHx+CpTUaFYpRwhp3/LF67CvucIdxnkYCCW\nZFWMhED9VptGVwMzflPAYIiIiFKzbTDKUhUnHd/1N8G/824wXG7o4ydYtmkTJ1nWQ1tNs67Xxloy\nll9wjlmtMNxWsvfCS633c9Ip1vULLun/H0HFIe5zJBEREREREREREWWmqJJwolJ8aWw5uTyAqijF\nQEoo827hduOXVz9A+yfhZBNlaFrA5JNk6FAWLUoaV+fHEiYSS99PGN8AzP8Rtk8+tozL7W1Z33/g\ngINTjne++D80//0aBA84KBaHLTkJRx8zFgDAQdJGAAAgAElEQVTQ849rsr5vyrFUSTiKAigK9MYm\n2FatBPxxlY00DbXXXwnl5wVDH2ueuG++AbY/nw0IAWP1GjTssxtq9tjJMkffoNGyrukG5NaW6Lox\nOra95+9XWeb6/nhmHqLOXKQqVny8xUb4E9pl8epwIiIqcZ7nX0HLopUQ5eWW8e5HrC0ugwcdalkP\n7bxLdLn66cchL1sKuc38vG7U1Vvm9vz9KmhjxwMAOp55EcbYcTmLn/LL8fr/Ch0CERERERERERFR\nySnOJJwUCSiBAw+JLkudHUMZTc7YZ73c5/bqbbaEqKszV9aFJJze3mhLqOAee0XHPdf+K7oc35oq\nwvHc/0FpXms9VnNz9gGkSXoyxo6DOPNPlhPokt/a7qztqx/QMestdN12F3yn/yn7+6bciibhABBm\nEk6kqov66y8AgKpjDo9Od7zyIurvuwPV++0xpGHmU9l1V6H6qUdRfukFGLPNZACAsnYNtHHjo3Mk\nb69lH39Qh7x2TXTdc+Ot0eXAoTPQOn8xup76P6yZuwDB/Q7I87+gb3o4QUhetbKgcaRif/kFyMuX\nrVPPJyIioghZUQA59reHNnIURG1dwiQZIv6zc7X1M7zc1QmprRUAYn/PRLjd6JjzLVav6oA2nb9L\nS4rGSjhERERERERERETZKs4knFTVBTIoqV7sEhNL+tRH25hiF6luI1QbAocdAQDwH3lMdLu29TbR\nZX38hkn7GxUVSWNyNo9dBuSE55jU02ONobEJYvhwBH/7O1a7KAZxlXCkSLsiyfoasX/yEaQej7nJ\n6wUAyOH1dYnrofst6+riWLUpyeeLjc/5HBvsNBW2Tz8BAHgu/wdCu++JtutvQee9D8MY3QhRV4fg\nnvtAGTlyaILvi91u3oZbWRQLZcFPqDrl96ibthns8+cVOhwiIqL8iLsAQF29KuWU1mWxpHhRWYmO\nl9+IrsurVsVVwqlL2hcAVLX0LzJY76wDF4YQERERERERERENtdLM9ND0QkeQd0Iu3S88O2Z/iO6z\nz0Nw3/3RM/NqdDz+XwQOPzK6XZSV97E3UHPNzKSx8qv/keswLSIVe4zqaiz6+ue83hdlT6RqR5Ui\nUU1eZZ40EpGEjvVMfCWcmoP2hn3FMpT//a8AADFiBADAOOlkhGYcUZD4+hJpCRdNsioS6vdzU44H\nd5k+tIEQERHlkcgk2cLhQO+FlwIAAocdDm37HaKbKv58BtSvvjCPVZ1c6ZJKVAn/TUpERERERERE\nRFQoJZWE4z3UPHEs6cVVKSFTPZfPzHyyXLrVV/SJmyDwt5mAqkLU10Pbd39LNZlI25mI0OZbJh1D\nm7Rp8oEjyRcpyCtXWNZXP/pMdkEHzHZURsMwOEc0ZLcv5Z8UuRGAIcyVFCeLnHffYW5aumSIAisu\nkQpAqRgjiqDaTV8UMwkHoSJqe+D3o/LMU1Nu8p3BNnVERLQOUTL7s9B7/sVYs2AptPDn9+5LrwAA\n6MNHxKp+lnBFT7ISqlroEIiIiIiIiIiIiEpO0XxDqmVwgliyh1tSFVm7kkyFdtkt88nrYOnvtq9+\nwOIX3gKcTst451vvo3vrHayTdQ16bR3WLlkLvWkMAMD2+adpj60sWxpd7r7gUoi998kqtkglHOF0\nwcZS+cUnnMQlDAP21181x8KJap3PvhSd5n7iMWDlSpTdcE1s3z6St4qdIcIJR+H3vNCWU6FN3CRp\nnu+gQ82F3t6kbdFjDR+R8/hyKnKSR9MgIv/uApO7OlOOt8y8DsG99h3iaIiIiPIo04onsgylJlbp\nRt9zLwCA7af5+YiKCkybOg0A0HNo8VVRJCIiIiIiIiIiKlZFk4QT2nu//ifFnaQtFUZdXXRZ2B2Z\n77gOXkFqNDYBW22VvEGSgB1iSTiG3WGeiFcUyG4X5PBVtWVXXpH+4OHqGd6TT0PgokthU7N7/CSf\n31xISBCiYmEm3GiaAftnnwAA9NFN5u0mk6xTZ8+2rFb8+cz8h5cnPT7zea0sXgQAMIYNR8eHc9A+\n6030zLwavomTsXD+cvTcfhcAwDnrpbTHMkYUdxKOCFfCUZYsRtWBe0P5pfBt4dzXXRVd7jn0N/Ae\nfBg8hx8F3wknFTAqIiKiPBhgxRPhclvWgzvslItoqEj4TjsTC+/5D9puvL3QoRAREREREREREZWM\nosn0CBx0SP+Twl8OSyWUhNP11HOxFbs94/1Eplejlhi3I/UX/EqkyhHMdmPqooVAuBiG54ZbAADB\nvfqobhN+Tgw00UAKmEk4gkk4xSlcCcfo7o4O6ZMmm2PDR8Bwl8XmnniiZVfnf5/Me3j5IDU3o+ao\nw6B+Pxe1O20NIHaiS992e/jOPBvdH3wKd3UFEHcCTJn3A/QU1X9EZdXQBD5Q4ff3iovPg+PLOag8\n/ugCBwS4nngsutx774PwPPAo/Pc8AIeb7xNERLRu0UeOii4Ht9ku8/022tiyHtxjr5zFREVAVeHf\nY2/A6Sp0JERERERERERERCWjaJJw4MigSkykRVMJJeFoW8Yqv4gsknDWxUo4ACCHWwglscUn4egA\nALW1GQBgjG4EACg/fJf2uJJmVgyBMrCreL1/NKul+E4r3aop67RwEk75Yw+l3Bzcd/+hjGZIVFxy\nPmrnfITy886JDSYkicmSBFWRLe3ranffEaEly5IPKKV57RUJx6svW9bl1tYCRZJMSBJkWYIcfgzT\nvo8RERGVKO8558G79fZYePl16HrptQEfR1RV5zAqKgYOVS72j5FERERERERERERFpWgyPURcEka/\nc8JJOPLyZajeZzrUr7+E+o+ZUD//DADgvu6fcBRj9YtsknCEyF8cRUj0UQJfhBO0nK++AsD8uTcM\nq0TlicfFJoXCiVm2gSXhBA8+FAsXrEJwn3UvmWOdEE5KK3tvdsrNks/b7yGMEntNOSKtpUSsqo3U\n2ZF2fnDqtOhy4/abW7a1v/1RboPLA3nNaut6dxeM5csLFI2VVGLPHSIioqyVl6P5+Vfh+92JWbem\n8p58WnRZVDMJZ11jYxIOERERERERERFRVgaWsZAHkqe7/0nhKieSrgGhEOqmbQYAqNlvD3P7v29G\ny6p2lN18IwCg5ehj8xJrn8Ina7UNRqPj5detm+wZVPsJkww9p2EVu9B2O6bfmFAlqWaf6ebw/14x\nH29JAnQzCaevZJ7+OMtZZr1o9ffNv5Q+nzAUrqQUDOlw2ovmLS8lwxCQZcmSbGP7bm502XvWX9Lu\n2/XCq2gYm9yOrfvOe6FP2TzFHsUltPU2UJZbK/gMn7YpVv31KnSceCpkyaz8E6lIY94CkmXMnCMN\n5EyRrkNqb4fc2gK5rdXS0stoGDbYfx4REVHRczlUSMj+d6j3sivgfvBeAIBR7O0vKWs2VYbBfGQi\nIiIiIiIiIqKMFc0Z6dB2O8I3dWuETjsj/aRIgoWmwfnogymnSF1deYguC+ETt/q48UBjk3Wbvf9q\nP1H6+pWEo223PVo+/hINO22dtE3foDG67Lr9ZshtcW1qgkHA4YDr8UcAAHJ7+4BjsNuU/idRYfST\nVOE9/yIYa9bA9c2XSdtsK5ZD8nRDU13QDQNKEbd66/YGUV3ugO2D95K29V5yObTttk+/s9udNNRz\n5TUIHPXbHEaYPz033ALnC88ljY+89m/4ePoRWR1LliRIhgGH1wNXVzucXe1wdLXD2dkOR1cH7J1t\ncHS0wd7ZDntHG+wdbVC7OtJWvOl89qUB/ZuIiIhKiSxJcDuz//NQuMtiy6yEsw6SIIFZOERERERE\nRERERJkqmiQclJVhzYtvoNyVPlElWuVE0yF3dqacY/tqTj6iy1wkeUZJTujIphLO+paEAwDYaOOU\nw6KuDr499obrnbdQftVMyzbJ74NwOGB//10AgP2N1+C98NI8B0pDLiEJp3ffAyzr2uZbouXlNzHy\n8P1h++LzpN1tH30IfbtdoSluKFl0hRtq3b1mEo4oL0/eOID3BGPEyBxENTREVTWCTWNhX7bEMq65\nwslFQkD19sDZ2QZHZwccnW1wdLXD0RlJrmkPj4W3dXZAzqCiWKCiCr7qOgQaxyNQVQt/dS02nPV0\ndLv3rHOhT940l/9UIiKidUtcgrM2cVIBA6F8YCsqIiIiIiIiIiKi7BRPEg4Au9pPhYpwYovk90FU\npS51LsVVQpF6PBDlFTmLr18/zoMcvvpTSpGEA1sWlXC09TAJJ0HHm+9Fl6XK1D9Hye9HsCz2WOmT\nJuc7LCqEhG//ey6bicR3C5dDRfe9D6Fuq+SECbmtFRtusgH8U7eG54138hjo4ISWLoehDIPk8ydt\ns7//btYJZoGDD8tVaEMiVSUaJRjEgcdOh6OrHUoo1O8xQuUVCFXXonuDMQjV1iFUUwettg5aTR20\nunpotfXQ6+qg1zVAr66BbLdDCre2kmWzldWS43+HsUcfBICtqIiIiLJSVtb/HCop5sdwZuIQERER\nERERERFlqqiScGz9JOHYvjSr3FSeeSp8J/8x5Rzni7F2Jsq8eX23b8klrxcN03eIVusRcVeE+o47\nAbaPPrRcJdoffVMzkcB7xtm5jbOE6E1jYiu21OVLHPf8G+p330O4yyB5e9Fz1XVDFB0NJZGQhCNv\nsknKecboRmh/vQzqNVdbxtUfvgMAOL/5Ep78hDhotndmY/tjDgcAdN9jttvzHXcCXE88BgAwho/I\n/qCpkgGLmBQKJg/a7bC7ndAbN4dW3wCjvh6ivgFGfQOMujoY9Q0QDQ0w6uph1NUDDmvFMVv4v6zi\nmDolumzU12f/DyEiIiJaR0iSBLAdFRERERERERERUcaKKglH6qfWtTrvewCA3NIMqbkZAND1+H9R\ndfzR0Tn2d2bHjuftzUOUqdmeNduXSJpmDsSd/O655c6sjycqKrHgl7WorXLlJL5SoY8cBWX1KnNF\njT091R++Tzm//N+3RZdDtXUQVdV5jY8KJIs6+Gq4BZFQVXhuuROVZ5+er6hyyvHma7EVnw8AENpu\nB6gffQjb0sXwXHNjv8fwH3QInLNeBgD0HjwjL3HmU/T9M6zriWcQ3Hu/IY9DuGNX8RvDhg/5/RMR\nEZWa9g/nQNeNQodBeSDF/Z+IiIiIiIiIiIj6l3lpliIgXO7osvuh+wAA2sRNENhzn5TzpUBgSOKy\nv/4/VF94rnVQHnwFCimLyjnriq7nX0Fg4mS0n3MBRGWs5Zg6f150uWP2BwhutnnSvlrj2KEIkQoi\n9sW/6O91EXnd2+2xZAp/cnunYiPiWi0pn31qLrhc6PxiLprXdkEM7z8ZpPdvV8JwOOE590J47n84\nX6HmjaSZj0H3b36L1gVLCpKAAwCwxypv6ePGFyYGIiKiEqJP3ASYzLaw6yJJkrLJhyciIiIiIiIi\nIlrvFVUlnP4IpzN5rLoa3U/9H/Q33sSI439j3RgcmiScqhOOSR7MQRsYWV7/vu3UJ2yE1W99CLsq\np20ho22+JYz6hqRxwbYx6674b/77e20FzZZGwm6HKDMT9+zvvJ2vyHLG6OqOLpf99wkAgHCY73n9\nVQmLHmPceCz9eSXKXTaUViOqsFC4Ek5lJURNbWFjCROVlYUOgYiIiKigMv0sSkRERERERERERCVW\nCQdqclpGpP2QUhU7Uao3NgEApAJWvxC5SMJZT7/rdDtU2FTr49f10H8s65LTkbxjmTt5jNYN8V/8\n91cJJ9LSyGYHwtWzlDWrYtuFyHFwgyQE5LfeQPnLzydvcqR4nvfD5SjJ9BsAsUo4aqrXd4HEV2Aj\nIiIiIiIiIiIiIiIiIupLaSXhJJx8D245LXpyXt5gVHQ8cMgMAIBYtmzoYkukDP6hXV+vOEz17w5t\nv6N1QEku4iTKyvMVEhVa3HOi3zZzl1wC/+Qp6Hr4CQh3igQKw8hxcIOjfPIR6o47MuU2ee2a7I9X\nwm3sRCTRMhQsbCDx4lpTERERERERERERERERERH1paTO1gZ33tWy3nvdjdFlo7EJPaefBe8RRyG0\n1TQAQNUNVwOhUH6D8nohwgkCRm1c+xRp8A+tvJ4m4aQi6uux+uGn0Pb5t+a6LUUntZrqIY6Khkw2\nr4WxY7H6tfegbbsd9DFjkzbLH7yfu7gGSVq1ErUzDky7PbTDTkMYTeH5zvozACC45z4FjiQO34eJ\niIiIiIiIiIiIiIiIKEMllYTTe9nfLevaVltb1n1XXoPeux8A7LFWJpLPm9eYJI8HkhDwH3gwPDfe\nGtuQi3ZUJfXTyT99n/1gjBtvrqSqhLPB6CGOiIZMli2k3E7z+SGqa5K21R19WKxlVYHVbznJsi4k\nCe3Pz4quGymSiNZl3vMuwo9vf4nQHnsVOhS0zf0J7R9/WegwiIiIiIiIiIiIiIiIiKiEpCgnUsSc\nzszmBfyxZZ8fqKzKTzwApGC4NY67DIhrfSNykISzvrajSseuxmUlqclPXX3EyCGMhoaUrmc1vb8q\nUlJXF0Rd3WAiGjR5zeqkMe95F0HfcecCRFMkJAlSY2OhowAAGCNH9T+JiIiIiIiIiIiIiIiIiChO\nydZa8e+zX9ptUiAQW85zJRzXg/cBAITNBuGKJeHkpBIOk3As4pOSvOeeH10ObTLZvE1oV0brDsnI\nLgmn3+N1d+X0eANRt/nEpDHJ7wdkGe2vzkbrS68XIKrCq692FToEIiIiIiIiIiIiIiIiIqIBKa1K\nOPGcmZ2olfz+/icNgvuu2wEAti/nwH/iybENci4q4Qz6EOssfcJGaF2wBNq770GZMQM9vhDK3fZC\nh0X5YhjRxa4HHh304WRPN4z+pw0J37HHQ+7qguPVl6FP2BAAoG+zbYGjIiIiIiIiIiIiIiIiIiKi\nbGVUCWfu3Lk4/vjjk8bfeecdHHHEETj66KPxzDPPAABCoRDOP/98HHPMMTj22GOxcOHC3EYc4XCk\n3RQ48JDocr4r4USoPy+AcJfFBpTBFxmSZWbh9EXU1AKHHQZIEtwuW6HDoXyKa0cVPGRGVruGtppm\n7jdhI3jPPAcAIHV35y62QZL8fnTfeS+673sY/uNOKHQ4REREREREREREREREREQ0QP1mitx///24\n/PLLEYhr8QSYyTbXXnstHnroITz++OP473//i9bWVrz//vvQNA1PP/00/vSnP+HWW2/NS+B6Y2P6\njW43es+7CAAg+Xx5uf9UhCuuOo+cgyQclsLplxJ+nPlYreP0gbejChxxlHl7xlkwRowAAEgd7ZBX\nrshJaIOm60BZGQKHHcHyV0REREREREREREREREREJazfTJGmpibccccdSeMLFy5EU1MTqqqqYLfb\nMW3aNHzxxRcYN24cdF2HYRjo6emBquan45UxbESf24XbbS7485uEI5xOAEDnsy9ZKuEIZfDtqIgo\nTJjNo8QAktt8p5yOJe9/Cf/xJ8IYOQoAUHXyCaibOhnKl1/kNMyB0MeNL3QIRERERERERERERERE\nRESUA/1myOy7775YsSK5YkRPT8//t3fn0VHV9//HX3eW7CEL2VkjS2QH/QFiBDGlWixQtiJ1Vywq\nVVtFRFy+pR61li/8vl8UBKz+oLYKqNEqhUIBBalEZRNZo+xhkQYIWQhJJjP390dgDBAgySRMJvf5\nOIeTe+/c3Pu+c05eZ+7cN5+PIiMjvevh4eEqKipSWFiYDh06pIEDByovL0+zZ8+uViExMWFyOKrf\nuBKZGKvI+MiL7xAXLUmKdkq61H61UFJarpDgM29dly7ybNmq6JFDpEqj7oRFhCqsjs8LWNaZvzfD\nbld8Nf6uzt8nNLKrIkKdUp//c872E5mf6EB8WzkddgU5bHI67Qp22uV02Cp+Om0KclRet8teF9PE\n3XOPdzH8lRcVfonp9QDgUqqTiQDQGJB3AKyCvANgJWQeAKsg7wBYBXlXodbD1EREROjUqVPe9VOn\nTikyMlLz5s3TDTfcoPHjx+vIkSO65557tGjRIgVf5iFzXl5xtc4bf+ZnvtumstzCi+4X4rYpUlLB\nD8dVeon9auOHE8VKiq0YaSemuESGw6Hc3ELJNL31FZe6daqOzwtYVXjhaYWpYoSpY5f5u4qPj6z4\ne6ykzOXW6SK71CRBcYYhwzQlSSkfL5Bz3x65wiPlCouQKyxCpWHhKgqLkCs8QuVnfp59rTwsQkZI\nsJyOH5tznHZbxc8z/7zbz/xz2M8dvce+Z5di337bu55bUCaprE7eJwDWUlXeAUBjRN4BsAryDoCV\nkHkArIK8A2AVVsu7SzUc1boJp02bNtq/f79OnjypsLAwrV+/XmPGjNHu3bvldDolSVFRUSovL5fb\n7a7taS4uNPSSL5tnXjdO1+10VI7Nm+Tcvkf61YiKDeUumY6K65VRaYQMpqMC6s7ZDLHV7u/K4TjT\nCBMSIjMsTMaZBsKwY0fVauWimpXidJ5pzomUKyzc25xT0agTrvLwCBWHRcoVXvGaOzxSZmSkFNlE\nimqi9FEZ3mOdvuveWl0PAAAAAAAAAAAAAKDhqXETzqJFi1RcXKzbbrtNTz/9tMaMGSPTNDVixAgl\nJibq3nvv1TPPPKPbb79dLpdLjz/+uMLCwuq8cDP00sc8+7pRUrdNODE/vVExknLPNuG4XFKQ88Lz\nnzf6BQAfeCqacMxaNrfZKjXIld5wo0KXLZEkrf7XZqmgQCoskFFYIFthoeynCuUsLpKz+JQcxUVy\nniqqWD9VVLFe6bWIk8flLD51sdNeVnnnrrX+XQAAAAAAAAAAAABAw1KtJpzmzZvrvffekyQNHjzY\nuz0jI0MZGRnn7BseHq7p06fXYYlVMy87Ek6IJClsyss6PXZcnZ/f/l223O3TKppwnBc24cigCQeo\nK2U3D1TYG7N0euzDPh/LVu7yLnfsnnrB6+Vuz5l/plzlHrndHpWcWS93e7zbXGfWy8tcMguLZCuq\naOBxnGnSqWjcKZTj1Jnl4oomnqj9u9R0x2ZJUukvb/P5egAAAAAAAAAAAAAADUOtp6Pyt8uOhBPR\nRJJkKyiol/PH3tBTuXuPyHC55AkOuXAHpqMC6oyrX39t+fcWJbVr6fOxiv5nhhw3patw2qtVvu6w\n2+So5UhWlRt4yt0elZd75HJ7VOo2depMA89h01RayxhfLgEAAAAAAAAAAAAA0AAFbhNOzKUfYnta\ntKj3GkIy36sYCSci4sIXacIB6pTZNE6qNK1UbXmSknVix546qOhCvjTwAAAAAAAAAAAAAAACW8A1\n4RQ9N1n66mt5kpIvuZ8nOaXiZ1BwvdXi2LZF9uPH5E5IuPDFOmgWAPAjg78pAAAAAAAAAAAAAEAD\nFnBNOKcfe0KlZW4FV+OBvKtjJ9lycuqtltC5b0qSHJXOYdpsMjweqbS03s4LWBE9OAAAAAAAAAAA\nAACAhiwg500JDqreVE9mSKiMkpJ6rkayFRX+uBJcMfLOlTgvYCU2unAAAAAAAAAAAAAAAA1YQDbh\nVFtYmGyuMsntvmKnNB1OSZJRShMOUJciQp3+LgEAAAAAAAAAAAAAgItq1E04ZkiIJMk4dqxez+OO\ni/9xuV07SZInPqFezwlYTWhwwM2eBwAAAAAAAAAAAACwkEbdhOPYvk2S1OTRB+v82J7IJt7lk/9a\n5V0umPuOcsc+quLf/LbOzwkAAAAAAAAAAAAAAICGqVE34XhatJQkBa369NL7mWaNj5234nMVPfcH\n5ebkytO8xY/HSk5R8XOTpeDgGh8TAAAAAAAAAAAAAAAAgalRN+EUzPl/kqSy9L6X3M/j9qjM5a7W\nMd0tWqosIUme1Kt0+rHHq2y2CQtx1rxYAAAAAAAAAAAAAAAABKxG3YTjSWkmd1i4dPLkJfeLT79W\nzZrFKHTG9Msf1DSlIJpsAAAAAAAAAAAAAAAA8KNG3YQjSZ7YWAVt2yKVl190H8fePZKkiBeev+g+\nZS63PB5T8nhk2Ox1XicAAAAAAAAAAAAAAAACl8PfBdS7sHBJknHypMy4uFofJuTPs6VWLWWWu2UG\nBdVVdQAAAAAAAAAAAAAAAGgEGn0TjrtrNzm/2ynb8WNy+9CE03TypDqsCgAAAAAAAAAAAAAAAI1J\no5+Oyvn1V5KkJnePrtXvm6YpmWZdlgQAAAAAAAAAAAAAAIBGptGPhGM/sE+S5Ni754LXbD8cUcRD\nY7zrptN5wT6utV8qYvfOeqsPAAAAAAAAAAAAAAAAga/RN+GU9b1RQWtWS5JcZeVyBp25ZNNUk9tH\nyrl1i3dfw+WS3G7Jbq9YLypUs2G3XPGaAQAAAAAAAAAAAAAAEFga/XRUBX+e510Oe2mydzk4871z\nGnDOMvLyVJ57TJJk37atvssDAAAAAAAAAAAAAABAI9Dom3DM2Kbe5ehZr3qXw2a+WtXuatqlnZI7\nXSVJMkpOX/B6wbN/0MFvd9VxlQAAAAAAAAAAAAAAAAhkjb4J5wKmKUlybLtwFBxJMtzuioXSUhkF\nBRe87r7xRqlp0wu2AwAAAAAAAAAAAAAAwLos14RjnMyTq9R1+f0KC2UrvLAJxxMVLafdcm8bAAAA\nAAAAAAAAAAAALsFy3STRwwYppcXlR7Kx79kt25HDF2z3JCTKZjPqozQAAAAAAAAAAAAAAAAEKEs0\n4Zx6+jnvsmP7Vu9y8S0/V/Gjj3vXyzIGeJdtx4/JvnfPOccp7dlbCg+vx0oBAAAAAAAAAAAAAAAQ\niCzRhHP63jFVbnfdNlolQ0d41/MXfKjyxCRJkqe0VEZx8Tn7F87/oP6KBAAAAAAAAAAAAAAAQMCy\nRBOOGdtUp4b98oLt7rbt5W7TVpJU8ovhkqTTTz0jSfKUlEqlJeceJyKynisFAAAAAAAAAAAAAABA\nIHL4u4Arpk2bCzaZwcFSWJhyc3KloKCKbU6nJMnYtFHBy5dJko798k6pVSvJZomeJQAAAAAAAAAA\nAAAAANSQZZpwyntcc8E2T+vUioXg4B83nmnGiZ07x7vp6ItTFRkWpNB6rRAAAAAAAAAAAAAAAACB\nyjJDu5hBweeuh4RIhnHBfo71X1+wzWGI1LYAAByPSURBVOmwK8hpmbcKAAAAAAAAAAAAAAAANWSd\nzpIzI9xIUsFrs3X8mx1V7ua+uuMF22w2Q3amogIAAAAAAAAAAAAAAMBFWKazxKzUhONulSoztmmV\n+5WMvuOCbXbbhSPmAAAAAAAAAAAAAAAAAGdZqAnnx+mobKcKL75jUJBKul/rXS38v6+JHhwAAAAA\nAAAAAAAAAABcimWacBT8YxNO5Yacqhx9+z3vcskdd8tGFw4AAAAAAAAAAAAAAAAuweHvAq6UytNR\nuW7od8l9jagoFQ74mcpu6CcZBtNRAQAAAAAAAAAAAAAA4JIs04SjSk04Mi7dVOMMcujYW+8o2GmX\nU5Jxmf0BAAAAAAAAAAAAAABgbZZpwrncFFSVOew2hQUb3mmoGAkHAAAAAAAAAAAAAAAAl2LzdwFX\nTHDQ5fepxFap8YaRcAAAAAAAAAAAAAAAAHAplmnCqclIOAAAAAAAAAAAAAAAAEBNWGY6KgUH6/gr\n/yOzQwd/VwIAAAAAAAAAAAAAAIBGxjpNOJLK7rlPNpthneF/AAAAAAAAAAAAAAAAcEVYqgnHYaf9\nBgAAAAAAAAAAAAAAAHWPrhQAAAAAAAAAAAAAAADARzThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAAB8RBMOAAAAAAAAAAAAAAAA4COa\ncAAAAAAAAAAAAAAAAAAf0YQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAAAAAA\nAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj2jCAQAAAAAAAAAAAAAAAHxE\nEw4AAAAAAAAAAAAAAADgI5pwAAAAAAAAAAAAAAAAAB/RhAMAAAAAAAAAAAAAAAD4iCYcAAAAAAAA\nAAAAAAAAwEc04QAAAAAAAAAAAAAAAAA+ogkHAAAAAAAAAAAAAAAA8BFNOAAAAAAAAAAAAAAAAICP\naMIBAAAAAAAAAAAAAAAAfGSYpmn6uwgAAAAAAAAAAAAAAAAgkDESDgAAAAAAAAAAAAAAAOAjmnAA\nAAAAAAAAAAAAAAAAH9GEAwAAAAAAAAAAAAAAAPiIJhwAAAAAAAAAAAAAAADARzThAAAAAAAAAAAA\nAAAAAD6iCQcAAAAAAAAAAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAAAAAAAAAMBFud1u\nf5cQEGjCARBw1q5dq927d/u7DACod+QdgMbONE1J0hdffKG8vDw/VwMA9e+tt95SZmamv8sAgHpH\n3gGwiqVLl+qbb77xdxkAUO9mzpypSZMmSfrxOz1UjSYcAAHj22+/1ejRo5WZmakJEyZo48aN/i4J\nAOoFeQfAKgzD0P79+zVx4kRt2LBBLpfL3yUBQL3IysrS/fffrxMnTqhv377+LgcA6g15B8Aqdu/e\nreHDh2vdunVatmyZ8vPz/V0SANSLlStX6tFHH9VXX30ll8sl0zRlGIa/y2rQaMIBEDA++eQTDRs2\nTNOmTdOQIUP0zjvv+LskAKgXn3zyiYYPH07eAbCEXbt2KS4uTt9++62OHj3q73IAoF789a9/1eDB\ngzV+/HitWbNG//73v/1dEgDUi7fffltDhgwh7wA0ellZWbrrrrv0/PPPKyYmRvv37/d3SQBQ5zZs\n2KAlS5bo/vvv19ixY5WcnCzDMOTxePxdWoNmnzx58mR/FwEAVSkuLtZf/vIXFRYWKjQ0VHl5eUpJ\nSVHr1q21a9cuSVLv3r0liY5LAAHLNE25XC5t2rRJERERCg4O1s6dO5WamqpWrVqRdwAaleLiYq1c\nuVKSFBsbK0nauXOnunXrpiNHjqiwsFAFBQVKSkqS3W73Z6kA4JPi4mLNmzdPRUVFat26tUJDQ/Wn\nP/1J69atU3x8vObOnSu32622bdvK6XT6u1wAqJXK97Ph4eEKCQmRx+PR//7v/+rrr78m7wA0Kmfv\nZz0ej5o2barNmzdr/fr1WrRokVq0aKHXX39dhmGoffv23M8CCGhn72ddLpeSk5P1y1/+UsnJycrP\nz9fatWt144038rnuMmjCAdAgbdiwQb/73e8UGRmpnJwc7d27VyNHjlRaWpokacGCBerevbvat2/P\nA2kAAc0wDK1fv17Tpk1Tt27dlJiYqC5duuiqq66SRN4BaDw2bdqkhx56SDabTUuXLlVoaKhSU1O1\ndu1aXXPNNdq/f7/mzJmjiIgI9evXz9/lAkCtnb2fbdKkiQ4cOKCtW7fq1ltv1Z49ezR69GgNGjRI\naWlpWrBggX72s58pKCjI3yUDQK1Uvp/t0qWLkpKS1K5dO23btk233347eQeg0ajqftY0TeXk5Kh3\n796666671KZNG/3tb3/ToEGDeDgNIGBVfj67d+9e5eTkqGvXrnI4HPrmm2904sQJZWRkyOPx8Lzi\nEhz+LgAAqvLFF1/o0UcfVUZGhj777DN9+eWXioqKkiSdPn1a+fn5ysjI0JdffqnDhw9r2LBhhD2A\ngFRWVqbMzEzl5eUpKytLSUlJio+Pl0TeAWhcduzYoUceeUS33nqrVqxYoc2bN6uoqEiFhYWaOHGi\n0tLS9NOf/lTNmzdXYWGhIiMj/V0yANTK+fezWVlZioiI0COPPKLExERJUo8ePRQcHKyjR48qIiLC\nzxUDQO1Uvp/96quvlJKSovj4eD3++OPe+1ryDkBjUPl+9l//+pe+//572Ww2xcbGau/evZKkXr16\nKTg4WPv379fVV1/t54oBoHaqej4bHBwsSerTp49mzJihH374QUlJSTJNk2cVF0ETDoAGyTAMhYSE\nSJJCQkK0a9cueTwe2Ww2ff755zpy5Ij++7//W3v27NHYsWMJeQAB4WIfSocOHaq7775b7777rrKz\nsxUbGyu73a7Vq1eTdwAajZycHG3evFm33nqr+vTpo4KCAh05ckQul0vPPvusrr32WmVnZ+vvf/+7\nXC6Xv8sFgFo7/3529+7d8ng8io+P17x581RQUKCTJ08qPDxcKSkpfq4WAHxT1f1sQkKC5s6dq8LC\nQuXl5ZF3AAJe5fvZ9PR0FRUV6fDhw+revbtWrlyp//qv/9KpU6cUGhqqZs2a+btcAKixs88uLvZ8\n1jRNNWnSRBkZGfr444/14IMP8qziEmz+LgCAtZ2dO/osj8cjSXr00Ud1/fXXS5JWrVql/v37y2ar\niKzTp0/r8OHDuvrqqzV37lz16dPnyhcOADXkdruVn5/vXT/7wTUoKEhpaWnq3Lmz2rdvr6ysLB06\ndEhSxdyrhw4dIu8ABBSPx6OSkpJz1iVp7Nix2rt3r7Zv367w8HC1atVKubm5uvPOO3XttddKktLS\n0jRx4kTFxsb6pXYAqInz887tdku6+P2sYRhKT0+X3W5Xp06dNHXqVIWGhvqldgCoCbfbrdzcXEk/\nfra72P3sf/7zHzkcDl133XWy2Wzq3LkzeQcgYLhcLmVlZamoqEhSRdZJF97Ptm7dWrm5uerZs6cm\nTJigzp07q3fv3nrttdcY1RVAQDg/78662P2s3W6XJHXt2lVdu3a94vUGGvvkyZMn+7sIANZjmqZO\nnjypKVOmKCEhQQkJCd7XKndOFhcXa82aNRozZoyWL1+uFStWqH379ho/fry6d+/uj9IBoMY++OAD\nTZ061Tv1Sps2beRwOLx5FxYWJklKTU3VihUrZJqmOnTooLCwMD344IPq0aOHP8sHgGpbsGCBZs6c\nqS1btig1NVVRUVHerAsNDVVZWZkWLFigIUOGKCUlRe+++65uuOEGNWnSxM+VA0DNVJV3Z//jyFnn\n38/+85//1C233KK+ffuqS5cufqocAGrm9OnTmjJlir788kvddNNNMgzDO1q1dOH9rNvtVqtWrdSi\nRQtdd9115B2AgPH+++9rypQpioiI0DXXXCO73e4dGeL8+9nk5GTNnz9f6enpatasmTp16qROnTr5\n+xIAoFqqyjvp4s9nV6xYoUWLFqljx47q0KGDWrRo4a/SAwYj4QC4os52jhuGoYMHD+qf//yn1q1b\n5x0dwjAMbdy4UU888YQOHjyoXbt2ae3atXryySe9X1j27t1b4eHh/rwMALiss3m3Y8cOrVy5Ui+8\n8IJ+8pOfaNu2bTp+/LgkefMuJydHpmkqKipKvXr10smTJ+VyudS6dWtFRET48zIA4LLO5t3333+v\nTz/9VJMmTZJpmlq4cKF3nw0bNmj8+PEaOHCgTp06palTp+quu+5SUlKSoqOj/VU6ANRIdfLuYvez\nS5cu1eDBg73DegNAQ3Y27yTJbrfr4MGDOnjwoD799FNJks1mu+j9bH5+vhwOhyQxRQGABs80TZmm\nqdWrV+u9997Tyy+/rFGjRnm/u7PZbFq/fn2V97PJycmKiYnx8xUAQPVcLu8Mw9D69esv+nx28ODB\nioqK8vNVBA6HvwsAYB15eXkKCgryNtBs2LBBP//5z7Vnzx5lZ2erV69eWr9+vRYsWKD+/furefPm\n2rdvn/Ly8nTnnXcqPT3dz1cAANVTOe/WrFmjVq1aqWXLlrLZbHrzzTcVHR2tjRs3av78+crIyDin\nc3zo0KF+rBwAaqZy3q1du1Zt27ZVq1atdP3112v+/PnKzc3Vjh07tGLFCl1//fWKjY3VjBkzdODA\nAXXv3l0DBgzw9yUAQLXUJO/69evH/SyAgHX+93dHjhxRVFSUhg4dqiVLlqhbt27avn27li5dqptu\nuon7WQABKy8vT06nUxEREYqMjFTPnj01f/58bd26VTExMWrXrp1SU1P19ddfKz09nftZAAGrJnnH\n/WzdMMzKbe0AUE/mzZunxYsX65prrlF8fLweeOABfffdd2rfvr1mzZql0tJS3XPPPQoLC1NwcLC/\nywWAWjubd927d1dqaqpuv/12HT9+XE2bNtWuXbs0a9YsTZs2TSUlJfxPaAABrXLetW7dWnfccYd3\nytGnnnpKUVFRio6OVmxsrMaNG+fvcgGg1sg7AFZR+fu7uLg4/frXv9bhw4f1xRdf6MYbb9TDDz+s\niIgIPfXUU+rYsSMj3QAIWGfzrkePHmrWrJnuuecePfzww2rbtq3Gjx+v7OxsffbZZ7LZbBo7dqy/\nywWAWiPv/IORcADUu3379mnNmjWaNWuWXC6XnnnmGcXExGjEiBGSpGHDhmn69OnauHGj+vbtK0ly\nu93eOQgBIFBUlXcOh0OjRo2SaZpasmSJd37onTt3qmXLloqNjfVz1QBQc1Xlnd1u1+jRoxUTE6MZ\nM2YoODhY8+fP905n4HK55HQ6/Vw5ANQMeQfAKs7Pu2effVZJSUmKi4tTZmamPvvsMyUmJsowDDVr\n1kyGYai8vNw79RQABIrz827ixIlKSUnRhAkTVFxcLElKS0vTqlWrlJycLInPdwACE3nnPzZ/FwCg\n8Tt+/Ljat2+vkJAQJScn65FHHtHs2bNVXl4uSUpKSlLXrl21YsUKHTt2TJJowAEQkKrKuz//+c8q\nLy+XYRj6z3/+o+joaE2aNEmZmZnyeDz+LhkAaqWqvHvrrbdUXl6unJwc7dq1SwcPHtTq1au9o35x\nAw8gEJF3AKzi/LwbN26cZsyYobKyMnXs2FEPPfSQXn31VV111VVasmSJJNGAAyAgnZ93jz32mKZO\nnapWrVrJ6XQqKytLP/zwg7799luFhoZK4vMdgMBE3vmPffLkyZP9XQSAxuPsg2bDMOTxeGQYhoqL\ni7Vs2TJ169ZN0dHRSklJ0bZt23T06FF169ZNUkWnZXx8vNq3b+/nKwCA6qlJ3h0/flxJSUmaMGGC\nXC6XBgwYoIceekhhYWH+vgwAuKya5F1xcbGCgoL0t7/9Te+//75GjBihoUOH+vsSAKBayDsAVlGd\nvGvWrJmys7NVUlKiJ598UomJiZIqvsPr3bu3n68AAKqnunm3detWFRcXy263a/78+frggw80bNgw\nDRw40N+XAADVQt41LDThAKgzs2fP1uLFiyVJqamp3pBv2rSptm/frr1796pdu3YKDQ1VQUGBwsPD\nlZaWJo/HI4fD4R3qDAAauprmXWhoqK655hqFhobq2WefVYcOHfx8BQBQPTXJu/z8fDmdTvXv3199\n+/bVqFGjdPXVV/v5CgCgesg7AFZRk7zLy8tTTEyM0tLSVF5eLrvdzn8mARAwavr5zuFwaMCAAbrl\nlls0cuRIPt8BCBjkXcPDdFQAfFZWVqYXX3xR+fn5uu+++1RWViapYkopwzC0detWtW7dWocOHdL8\n+fO1ePFiLViwQE2aNJEk2WxEEYDAUJu8mz9/viIjIyVJY8aMYbhuAAGhNnm3cOFC7+e7kJAQPuMB\nCAjkHQCr8PX7O+5lAQQKXz/f2Ww2Pt8BCAjkXcPFJ2cAPrPb7d7pVd5991253W7t379fv/71r/Xy\nyy9rx44dmjJlinr37q1Nmzbp008/1RNPPKE+ffr4u3QAqJHa5N348ePJOwABh893AKyCvANgFeQd\nAKsg7wBYBXnXcBmmaZr+LgJA4FmwYIEMw9Btt92mw4cPa/bs2UpJSVFCQoL69eunxx9/XD179tSd\nd96p2NhYf5cLALVG3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CA+MLAaiVdevWac6cOTp9+rRSUlIU\nHh6u5cuXq127doqLi9Pvf/97rVq1yjukmdvt9nPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvIu\nMNCEA6BacnNzvcvff/+9IiIilJqaqqlTp0qSRo8erfj4eGVnZ8vtduvQoUO67rrrvPNF2+12v9QN\nADVF3gGwCvIOgFWQdwCsgrwDYBXkHQCrIO8CE9NRAbikH374Qa+99pqOHz+ujIwMpaenq0mTJsrN\nzVViYqKGDBmiOXPmqG3btlqxYoWysrK0b98+nT59WuPGjdMNN9zg70sAgGoh7wBYBXkHwCrIOwBW\nQd4BsAryDoBVkHeBjSYcAJf0+uuvy+Vyafjw4fr444+Vl5enJ554QuHh4ZKkGTNmaMeOHZo5c6ZM\n05RhGNq8ebO6devm58oBoGbIOwBWQd4BsAryDoBVkHcArIK8A2AV5F1gs0+ePHmyv4sA0LBkZmbq\nL3/5i7Kzs3Xw4EHdfffdatGihRITE7Vz504dOHBA3bt3lyT16tVLr7zyilq2bKk2bdpIkpKSkvxZ\nPgBUG3kHwCrIOwBWQd4BsAryDoBVkHcArIK8azxowgFwjqlTp2rLli26//77tWzZMi1evFhBQUFK\nT09XaGio7Ha7tm3bpi5duigkJESS1KFDBzVv3lyxsbF+rh4Aqo+8A2AV5B0AqyDvAFgFeQfAKsg7\nAFZB3jUuDn8XAKBhKSws1G233aZOnTrpjjvuUEJCgv7xj39o0KBB6tChg5o2barS0lKFhYV5hzfr\n06ePv8sGgBoj7wBYBXkHwCrIOwBWQd4BsAryDoBVkHeNi83fBQBoODwej26++WZ17dpVkrRkyRL1\n69dP48aN00svvaS9e/dq7dq1OnnypDwejwzD8HPFAFA75B0AqyDvAFgFeQfAKsg7AFZB3gGwCvKu\n8TFM0zT9XQSAhqeoqEj33nuvZs2apfj4eM2aNUv5+fk6duyYJk6cqPj4eH+XCAB1grwDYBXkHQCr\nIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSkePHtX111+vwsJCvfjii2rXrp3Gjx8vp9Pp79IAoE6RdwCs\ngrwDYBXkHQCrIO8AWAV5B8AqyLvGgSYcAFVat26d3njjDW3btk2/+MUvNGTIEH+XBAD1grwDYBXk\nHQCrIO8AWAV5B8AqyDsAVkHeNQ5MRwWgSpmZmcrNzdX999+voKAgf5cDAPWGvANgFeQdAKsg7wBY\nBXkHwCrIOwBWQd41DjThAKiSaZoyDMPfZQBAvSPvAFgFeQfAKsg7AFZB3gGwCvIOgFWQd40DTTgA\nAAAAAAAAAAAAAACAj2z+LgAAAAAAAAAAAAAAAAAIdDThAAAAAAAAAAAAAAAAAD6iCQcAAAAAAAAA\nAAAAAADwEU04AAAAAAAAAAAAAAAAgI9owgEAAAAAAPCzp59+Wh9++OFFX580aZIOHTpU4+Pm5OTo\nmWee8aU0AAAAAAAAVBNNOAAAAAAAAA3cV199JdM0a/x7hw8fVk5OTj1UBAAAAAAAgPMZZm2+wQEA\nAAAAAECtmaapV155RatWrVJCQoLcbrdGjhyp/fv3KysrS/n5+YqJidFrr72mjz76SK+++qpatmyp\nd955Rzk5OfrjH/+okpISxcTE6A9/+INatGihuXPn6qOPPpLNZlPXrl31wgsvaPDgwTp48KCGDh2q\nZ599VpMnT9b333+vY8eOKTU1VTNmzNCxY8f0m9/8Ri1atNB3332nzp07q1evXvroo4+Un5+vmTNn\nqk2bNsrIyFBGRobWr18vSXr55ZfVsWNHP7+TAAAAAAAADQcj4QAAAAAAAFxhy5Yt0/bt2/WPf/xD\n06dP14EDB+R2u7Vnzx4tWLBAy5YtU8uWLbVo0SKNHTtWCQkJeuONNxQeHq7nnntO06ZN00cffaT7\n7rtPzz//vMrLyzVnzhxlZmbqww8/lGEYOnr0qJ577jl17txZv//977Vp0yY5nU4tXLhQy5cvV2lp\nqVavXi1Jys7O1rhx47R06VJt2bJFhw4d0sKFCzVo0CAtXLjQW3d0dLT+/ve/67HHHtPEiRP99fYB\nAAAAAAA0SA5/FwAAAAAAAGA1X3/9tW6++WY5nU7FxsaqX79+stvtmjhxot5//33t3btX33zzjVq2\nbHnO7+3bt085OTl6+OGHvduKiorkcDjUo0cPjRw5Uj/5yU90xx13KDExUfv27fPu17NnT0VHR+ud\nd97Rnj17tG/fPhUXF0uS4uLivKPaJCUlqU+fPpKklJQUHTx40HuMUaNGSZIyMjL09NNP68SJE4qN\nja2X9wgAAAAAACDQ0IQDAAAAAABwhRmGIY/H4113OBw6efKkxowZo3vvvVe33HKLbDabzp9F3OPx\nqHnz5vr4448lSW63W8eOHZMkvf766/rmm2/0+eef64EHHtDUqVPP+d2VK1fq1Vdf1d13363hw4cr\nLy/Pe/ygoKBz9rXb7VXW7XD8+FWSx+O56H4AAAAAAABWxHRUAAAAAAAAV1ifPn20dOlSlZWVKT8/\nX2vWrJFhGOrVq5d+9atfqW3btvriiy/kdrslVTTFuN1uXXXVVcrPz9f69eslSZmZmXryySd14sQJ\nDRw4UO3bt9dvf/tbpaenKzs7W3a7XeXl5ZKkrKwsDRw4UCNGjFBcXJzWrVvnPX51LV68WJK0fPly\ntWnTRlFRUXX4rgAAAAAAAAQ2RsIBAAAAAAC4wgYMGKAtW7Zo0KBBiouLU5s2bVRSUqKdO3dq8ODB\ncjqdSktL804F1b9/f40dO1Zvvvmmpk+frpdeekmlpaWKiIjQn/70J8XGxmr06NEaOXKkQkNDlZyc\nrGHDhsnlcqmwsFATJkzQAw88oCeffFJLly5VUFCQunfvfs5UU9WxceNGffDBBwoNDdUrr7xSH28N\nAAAAAABAwDLM88c1BgAAAAAAAM6TkZGht99+W82bN/d3KQAAAAAAAA0S01EBAAAAAAAAAAAAAAAA\nPmIkHAAAAAAAAAAAAAAAAMBHjIQDAAAAAAAAAAAAAAAA+IgmHAAAAAAAAAAAAAAAAMBHNOEAAAAA\nAAAAAAAAAAAAPqIJBwAAAAAAAAAAAAAAAPARTTgAAAAAAAAAAAAAAACAj/4/LMZTXjsASL8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAJ8CAYAAABQyzzyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX+/vF7Jj0hPaEEQq/SRJCiqFRxVURhkaUpoivq\nYt/VRVkLYP8hFlR0RV1BUWysKIoFQfALCEiTToCQQHoyaZNM//2RzZiQnkxIAu/Xde2VM+ec5/N8\nzhAhO9w8j8HlcrkEAAAAAAAAAAAAAAAAwKOMDd0AAAAAAAAAAAAAAAAAcC4imAMAAAAAAAAAAAAA\nAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMAAAAAAAAAAAAAAADUA4I5AAAAAAAAAAAAAAAAQD0gmAMA\nAAAAAAAAAAAAAADUA++GbgAAAAAAAAC1M2LECJ06dUoDBw7UsmXL6mWOvXv36vXXX9eePXuUnZ2t\n8PBwDR48WPfee69GjhwpSZo0aZLmzZtXL/NXx8GDB9W9e/daj3e5XPrxxx/13//+V3v37lVGRoa8\nvb0VExOjIUOGaPr06WrXrl2VNVavXq3PPvtMBw4ckNlsVvPmzdW/f39Nnz5dffr0qbKPzMxMvffe\ne1q3bp0SEhLk5eWlNm3a6Morr9S0adMUFhZW62cEAAAAAAANg2AOAAAAAAAAyrVv3z5NnTpVFovF\nfS41NVXe3o3jI6X4+HjNnz9fFoul1sGknJwc3X///dq0aVOp81arVUePHtXRo0f10Ucfac6cOZo6\ndWq5NQoLC3Xvvfdq/fr1pc6fOnVKp06d0ldffaX77rtPs2bNqrCPvXv3atasWcrIyCh1/tChQzp0\n6JA++eQTvf766+rZs2etnhMAAAAAADSMxvEpCgAAAAAAABqdt99+2x3KmTJliq6++moZDAZFREQ0\ncGdFbr31ViUkJGjgwIG1Gu9yuXT33Xdry5YtkqRevXpp6tSp6tSpkwoLC7V582a9//77ys/P17x5\n89SsWTONGzeuTJ25c+e6QzlDhgzRtGnTFBUVpX379unNN99USkqKXnzxRbVo0ULXX399mfGpqam6\n/fbblZmZKR8fH82YMUNXXHGFHA6HvvvuO61YsULJycm644479MUXXygqKqpWzwsAAAAAAM4+gjkA\nAAAAAAAo19GjRyVJLVq00GOPPSaDwVDq+qFDhxqiLTen01mn8WvWrHGHcq666iotXLiw1GpAgwYN\n0rXXXqspU6YoOztbTz/9tEaOHKlmzZq579myZYtWr17trvHSSy+536cLL7xQY8aM0aRJk5SYmKjn\nn39eo0ePVlBQUKk+Fi5cqMzMTEnS4sWLNWzYMPe1wYMHa8CAAXrggQeUmpqqxYsX64knnqjTcwMA\nAAAAgLPH2NANAAAAAAAAoHEym82SpNatW5cJ5ZwLPvvsM0mSv7+/nnjiiXK36OrcubPuvPNOSZLJ\nZNKGDRtKXX/vvfckSX5+fnrkkUfKvE9RUVF69NFHJUkZGRlatWpVqetpaWn66quvJEnDhw8vFcop\ndvXVV2v06NGSpE8//VTZ2dk1fFIAAAAAANBQCOYAAAAAAACgXC6XS5LKDaw0dS6XS7/99psk6aKL\nLlJ4eHiF915yySXu44MHD7qPzWazNm3aJKloC6sWLVqUO37EiBGKjIyUJH377belrv3000+y2+2S\nVO42V8X+/Oc/S5JsNpt+/PHHCu8DAAAAAACNy7n3qQoAAAAAAKgX06dP16+//lqjMeVtdZSRkaEV\nK1Zow4YNOnHihAoKChQREaE+ffpo7NixuvLKK6tcneXIkSP64IMPtHXrViUnJ8vlcql58+a6+OKL\nNXnyZPXq1avcca+++qoWL16ssLAwbd26VYmJiXrnnXe0YcMGpaamKiwsTP369dNf//pX9e7dW5KU\nn5+vd999V2vXrlVCQoKMRqN69OihqVOn6uqrr660z127dunjjz/Wtm3blJqaKm9vb7Vu3VpDhw7V\n9OnTFRMTU+n4tLQ0LVu2TOvXr1dCQoJ8fX3Vu3dvzZgxQ0OHDq10bG1t3bpVN910U6lzv/76q7p1\n6yZJGjhwoJYtW6bExESNHDlSkjRp0iTNmzfPff/nn3+uOXPmSJK2bdumH3/8UW+++aYSExMVFham\nXr166eWXX5afn58kafPmzfr000+1c+dOpaamysfHR9HR0erfv7+uv/56DRo0qFQ/Z34vluxv9uzZ\nuvvuu6t8TqvVqrvuukspKSnq2LFjpfcWB5QkyWKxuI/37t0rm83mfl8qM2DAAK1du1Y7d+6U1WqV\nr6+vJLnDQVXV6N+/vwwGg1wul7Zs2aLx48dXOh8AAAAAAGgcCOYAAAAAAIB64eXlVebcmjVr9Nhj\njyk3N7fU+ZSUFH3//ff6/vvvdfHFF+uVV15RREREmfEul0sLFy7U0qVL5XQ6S12Lj49XfHy8Pvvs\nM02dOlVz5sypdKWXjRs36r777lNeXp77XGpqqtauXauffvpJS5YsUWxsrG677TbFx8eXGrt9+3Zt\n375dR48e1T333FOmtt1u14IFC7RixYpS5y0Wiw4fPqzDhw9r+fLlmjt3riZNmlRuf7/88ovuvvtu\n5efnu8+ZzWZt3LhRGzdu1B133FHhszUmH330kRYuXOh+nZaWpvz8fHcoZ968efrggw9KjbHZbO5f\nz88//1zXXXednnnmGY+u3OPn56fbb7+9WveWDAGVDFPFxcW5j9u1a1dpjdjYWEl/PFuXLl1K1QgJ\nCSn3e75Ys2bNFBERoYyMjFLzAgAAAACAxo1gDgAAAAAAqJYFCxbIbDZXeN3lcumxxx7T3r17JUkP\nPfRQqevfffedHnzwQTmdTvn4+GjixIkaMWKEQkJCdOzYMX344Yfas2ePtm3bpptuukkff/yxgoKC\nStV4+umn9f7770uSwsPDNWPGDPXv319Go1F79uzRO++8o9TUVC1fvlz5+fl69tlny+3VbDbr3nvv\nld1u12233abLLrtMFotFX3zxhb755htZrVY9+eSTMhgMSkxM1JQpUzRq1CgFBATol19+0Ztvvimb\nzaY33nhDN9xwgzt0UWzu3Ln64osvJBWtdHLjjTeqQ4cOslgs2rlzp5YtW6a0tDQ99thj8vX11Q03\n3FBq/P79+zVr1izZbDb5+PhoypQpGjFihHx8fPTrr79q6dKlWrJkiYxGz+9S3qtXL61atUqS9Ne/\n/lVpaWnq2bOnnnrqKUlSYGBgjeotWrRIrVq10n333afY2Fjt3r1bHTp0kCStWrXKHcoZOHCg/vKX\nvyg2NlYWi0UHDx7UO++8o9OnT+vLL79Unz59NH36dEl/fC+W119UVJRH3odiFotF//nPf9yvL7vs\nMvdxSkqK+7iq1Y9atWpValxxMKe4RsnrFWnZsqUyMjJKzQsAAAAAABo3gjkAAAAAAKBaqloRZNGi\nRe5Qzvjx4zVjxgz3tby8PP3rX/+S0+lUQECA3n77bQ0YMMB9vW/fvho3bpz+9a9/6dNPP9WRI0e0\naNEizZ07133Pjh073KGcDh066P3331fz5s3d1/v3768bbrhBM2fO1L59+/TFF19oxIgRuvLKK8v0\narVaZbPZ9O6772rIkCHu81dccYVOnTqlPXv2uFfJWbRoUaktqy666CKFh4dr/vz5cjqdWrdunW6+\n+Wb39R9++MEdypk1a5YeeOCBUnMPHDhQEydO1PTp03X06FHNmzdPw4YNU3h4uPueefPmyWazyWg0\n6o033igVBunfv7/GjBmjKVOmKCsrq7JfkloJCgpSjx49JMm93VLJczVlMBi0dOlSderUSVJR/8U+\n++wzSVLnzp21dOlS93ySdPHFF2v06NG67rrrlJ2drZUrV7qDOcXfi57oryrPPfecEhMTJUmXX365\n+zkkKTs72318ZojsTAEBAe7jnJycMjWqGi/9EYo6c8UpAAAAAADQeHn+n1UBAAAAAIDzzqpVq7Rk\nyRJJUr9+/fTkk0+Wuv7pp5/KZDJJku6+++5SoZxiRqNRjz/+uNq3by9JWrlypXuMJC1dutR9/Pzz\nz5cK5RQLCwvTSy+95N5G69///neFPY8ePbpUKKdYySDPwIEDS4Vyio0cOdJ9fPLkyVLX3n77bUlS\nly5ddP/995c7d0REhB5//HFJRav3fPLJJ+5rhw8f1s6dOyVJEyZMKBXKKdaxY0f94x//qPDZGpOB\nAweWCrOUlJ6eLqlotZmSoZxiLVu21D333KPbbrtN06ZNk8vlqtdez/Tee++5V/QJDAzUnDlzSl23\nWq3u4+KtuSri7+9f7rji46rGl7yn5HgAAAAAANC4EcwBAAAAAAB1sm3bNvfKNjExMXrttdfKhCw2\nbdokSfLy8tLEiRMrrOXr6+u+brFY9Ouvv0qS7Ha7tmzZIknq2bOn+vTpU2GNtm3baujQoZKkvXv3\nVriqTHmhHElq0aKF+3jw4MHl3hMZGek+Lrm9V3Z2tnbt2uUeazAYKuyzf//+7lVSip9NkjZs2OA+\nvvbaayscf80115QKezRWffv2rfBax44dJUkbN27UokWLlJGRUeaeadOm6R//+IcmTZpU6fvpacuW\nLXNvhWYwGLRgwQJ3v8WKA2DF91RXyXuLa9R2PAAAAAAAaNwI5gAAAAAAgFqLj4/X7NmzZbPZFBAQ\noNdff71UaKXYkSNHJBVtQRUSElJpzQsvvNB9fPjwYUnS6dOnlZ+fL6nyoEex4ntcLpd77jO1bt26\n3PMlQ0Xlrcpz5j0lV3E5cOCA+/WyZcvUrVu3Cv93wQUXuJ8pISHBXePYsWPu48q2Z/L391fXrl0r\nvN5YtGrVqsJrM2fOlLe3t1wul5YsWaKhQ4dqwoQJWrhwoTZv3txgK8MsXrxYCxYscP9a/vOf/9Q1\n11xT5r7iraWkoiBZZQoLC93HJVfHKa5R1fiS91RndR0AAAAAANA4EMwBAAAAAAC1kp2drVmzZslk\nMslgMOjZZ5+tMEhSvCVVRERElXVLBnuKx5Xc0qq84M+ZoqKiSvVZnuLVaipTckWU6qhodZ6q5OTk\nuI+LV40xGo0KDQ2tdFx13ouG1qxZswqv9e/fX4sXL1bLli0lSU6nU7///rveeustzZgxQ4MGDdL9\n99+v7du3n5VebTab5syZo1dffVVS0co0jzzyiGbMmFHu/SW/h0qunFSegoIC93HJX9fiGiWvV6R4\njqq+LwAAAAAAQOPh3dANAAAAAACApsdms+mee+7R8ePHJUmzZ8/WVVddVeH9JVeVqYrT6XQfG43G\nGo+XJIfD4T6uaNsfb2/PfyxSct4777xTY8aMqda44ueUSvfrcrkq3bbIx8enFl2eXVVtuzR8+HAN\nHTpUGzdu1A8//KBNmzYpJSVFUlEQZc2aNVqzZo1mzZqlBx54oN76zM3N1ezZs93binl7e2v+/Pka\nP358hWNiYmLcx8nJyerevXuF9yYlJbmPS67EFBMTo9OnT5e6XpHk5OQy4wEAAAAAQONGMAcAAAAA\nANTYE0884Q4wjBkzRn/7298qvT80NFSpqanKzMyssnZ6enqpcSW/Sn+sKFOZkveEhYVVeb+nlOzT\n39+/0q2oKhIdHS2pKKCUlZVV6SpDJVcSasp8fHw0YsQIjRgxQpIUFxenzZs364cfftCWLVvkcrn0\n5ptv6vLLL9eAAQM8Pn96erpmzpypQ4cOSSraXuqll17SFVdcUem4Ll26uI9PnjxZ6b3F25X5+Pio\nXbt27vOdO3fW9u3blZWVpdzcXAUHB5c7Pi8vz/3fT6dOnap+KAAAAAAA0CiwlRUAAAAAAKiRt99+\nW59++qkkqUePHnruueeqXBWlW7dukqTjx4+X2rapPLt373Yfd+zYUZIUGxurwMDAMtcrsmvXLvdx\nhw4dqrzfU7p27VpuD+WxWq1avHixPvnkE+3cudN9vnPnzu7jvXv3Vjje6XTq8OHDdei24ZlMJv32\n229KTU0tdb5Tp06aNm2a3nvvPT3yyCPu8z/99JPHe8jKytLNN9/sDuVERkbq/fffrzKUIxV9XwcE\nBEhSldttFV+/8MILS63WdOGFF7qPd+zYUeH4HTt2uFeOqo9wEgAAAAAAqB8EcwAAAAAAQLX98MMP\nWrhwoSQpKipKb7zxhjuYUJmhQ4dKKtrqqTjUUx6r1arPPvtMUtFWQoMGDZIkeXl5afDgwZKkffv2\n6ffff6+wRnx8vDZv3ixJ6t69uyIjI6vxZJ7RokUL9yoqmzZtcq+SUp4vv/xSr776qubOnauVK1e6\nz1955ZXu4+L3ojzr169v0ivmbN++XYMGDdLkyZO1YsWKCu8rGZCxWCylrlUVCKuK0+nUPffco6NH\nj0qSWrdurRUrVqh3797VGu/v76/LL79ckvTzzz9XuJrTunXr3NdGjRpV6trIkSPdW5J9/vnnFc5V\n/N+Nj4+Phg0bVq3+AAAAAABAwyOYAwAAAAAAqmXfvn36+9//LqfTKX9/f73++utq1apVtcZOmDBB\nISEhkqRXX3211AoxxZxOp+bNm6cTJ05Ikq6//vpS2zjdcsst7uOHHnqo1JZXxbKzs3X//ffL4XBI\nkmbOnFnt5/OU4j5tNpseeOCBclcIOn78uF544QVJReGS6dOnu6/FxMRozJgxkqS1a9eWG9ZISUnR\nggUL6qP9s6ZPnz7u0NQHH3yg+Pj4cu9bvXq1+/jMwIyvr68kKT8/v1Y9vPPOO/r1118lFW159v77\n75faZqo6pk2bJkkqKCjQ3LlzZbfbS11PT0/XU089Jaloq7Px48eXuh4SEqKxY8dKkr777jutWbOm\nzBxr1qzR999/L0kaO3bsWQ2bAQAAAACAuvGu+hYAAAAAAHC+S0lJ0R133KGCggJJ0qOPPqqoqCjF\nxcXJZrO5t9g5U6tWrRQWFqbg4GAtWLBA99xzj8xms6ZPn65JkyZp+PDhCg4O1vHjx/Xhhx+6t6lq\n3759qS2MJGngwIGaPn26li1bpri4OF133XW6+eab1b9/fxkMBu3du1fvvvuukpOTJUnXXnutxo0b\nV4/vSvnGjx+v7777TuvXr9eePXs0duxYzZgxQ3369JHVatWOHTv0n//8xx3Yufnmm3XBBReUqjF3\n7lxt3bpVJpNJjzzyiLZu3aprr71WwcHB2rVrl95++22lpaUpMDBQZrO53D5effVVLV68WJI0e/Zs\n3X333fX74DXk6+uru+66S/Pnz1d2drYmTpyoadOmqW/fvgoNDVVqaqrWrl2rr7/+WlLRtmZXX311\nqRrR0dE6duyYDh06pE8++UTdu3dXaGio2rZtW+X8eXl5euutt9yvZ8yYodzcXB04cKDScaGhoYqJ\niXG/HjhwoK677jp9+eWXWrdunaZOnaoZM2aoVatWOnDggN544w2lpKRIKgqUFQfUSvr73/+udevW\nyWQy6cEHH9Rvv/2m0aNHS5K+//57ffDBB3K5XIqMjNT9999f5bMBAAAAAIDGg2AOAAAAAACo0i+/\n/KLU1FT363/961/VGvfMM8+4VwgZM2aMXnzxRc2dO1dms1nLly/X8uXLy4y59NJL9fzzzysoKKjM\ntUceeUQ+Pj569913lZGRoRdffLHMPQaDQTNmzNCDDz5Y3cfzKIPBoJdfflmPPvqovvrqKyUnJ+vZ\nZ58t996pU6fq4YcfLnO+efPm+uCDD3T77bfr1KlTWrVqlVatWlXqnkmTJiklJUXr16+vj8c4K6ZO\nnaoTJ05o2bJlys7O1muvvVbufZ07d9Zbb73l3vKp2JVXXqmtW7fKbrdr7ty5kopWWnruueeqnPvb\nb79Vdna2+/VLL72kl156qcpxN9xwQ5lfzwULFshkMunnn3/Wrl27dN9995W6bjAYNHv2bP35z38u\nt2ZkZKTefvtt3X777crMzNSyZcu0bNmyMve89dZbat68eZU9AgAAAACAxoNgDgAAAAAAOGuuueYa\nDRo0SMuXL9fPP/+shIQEWSwWtWzZUj169ND48eN1+eWXy2AwlDveaDTq4Ycf1rhx4/Thhx9q69at\nSklJkdFoVExMjAYNGqSJEyeqe/fuZ/nJSvP399fChQv1l7/8RZ999pl27NihtLQ0ORwORUdHa8CA\nAZo0aZL69+9fYY3OnTtr9erVWrlypb7++mvFx8fL6XSqS5cumjx5ssaNG6dZs2adxafyPIPBoLlz\n5+qqq67SJ598ol27diklJUV2u13h4eHq3r27rrzySt1www3y9i77MdbUqVNltVr1ySef6NSpU/L1\n9a1wBaEz7d+/32PP4efnp3//+99avXq1vvjiC+3fv195eXkKCwtT//79ddNNN1X6ay0VbdP1zTff\n6N1339W6deuUmJgoh8Oh2NhYjRgxQrfcckuprd0AAAAAAEDTYHBVtNY0AAAAAAAAmrSsrCwNHjxY\nDz/8sGbOnNnQ7QAAAAAAAJx3jA3dAAAAAAAAAOrHkSNHJEmxsbEN3AkAAAAAAMD5iWAOAAAAAADA\nOSg3N1cvvviiwsLCdNlllzV0OwAAAAAAAOclgjkAAAAAAADnoC+//FLHjx/XK6+8In9//4ZuBwAA\nAAAA4LxkcLlcroZuAgAAAAAAAJ7ldDqVk5OjsLCwhm4FAAAAAADgvNWogzl2u0NZWeaGbgMA6lV4\neCC/1wEAAAAAgCaFzzMAAAAA4A/R0cEVXmvUW1l5e3s1dAsAUO/4vQ4AAAAAADQ1fJ4BAAAAANXT\nqIM5AAAAAAAAAAAAAAAAQFNFMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAA\nAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAAgHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA\ngHpAMAcAAAAAAAAAAAAAAACoBwRzAAAAAAAAAAAAAAAA0KDWrFmtN954td7q//bbdj3++Jwy519+\neaGSk5NLnYuPP6HZs2/3yLzeHqkCAAAAAAAAAAAAAAAANDH33vtgvdYnmAMAAAAAAAAAAAAAAHAe\nC3pirvxWr/JoTcvY65X/xIKKr1sK9fTTTyo5OVk2m03Dh490X1uxYrl+/PE7eXl5qW/ffrrrrnu0\nZ88uLV78kry9veXv768FC56Tr6+fXnjhaSUmJsjpdOqvf71TF100oMI5ExIS9MADs5Wdna0bbpig\na6+9XrNn365//OMRBQU107x5c+VyuRQREemx94FgDgAAAAAAAAAAAAAAAM6qVas+U8uWMXryyWeU\nkHBSmzdvUl5enuLijmrduu+1ZMk78vLy0qOPPqRfftmoXbt+04gRo3TjjVO0adPPysnJ1ebN3yg0\nNExz5jym7GyT/va327V8+coK53Q47HruuUVyOh26+eYpuvTSK9zX3n9/qUaNGqPrrrtBP/74nb74\n4lOPPCfBHAAAAAAAAAAAAAAAgPNY/hMLKl3dpj6cPBmvwYMvkSTFxrbV3r3BysjIUHz8CfXs2Vve\n3kWRlr59L9Tx43GaPv0Wvf/+O7r33jsVHd1cF1zQS3FxR7Vnz07t3/+7pKLgjclkUlhYWLlzXnBB\nb/n4+EjyUYcOHZScfNp9LSHhpMaOvUGS1Lt3X48Fc4zVuWn37t2aPn16mfPr1q3ThAkTNGnSJK1c\nWZQ4slqtevDBB3XjjTdq5syZOnHihCRp//79uuyyyzR9+nRNnz5da9as8cgDAAAAAAAAAAAAAAAA\noGlp166DDhzYL0k6dSpRb7752v/Ot9f+/b/LbrfL5XJp166dio1tp+++W6Orr75Wr776pjp06Kgv\nv/xc7dq116hRY7R48VtauPAVDR8+SiEhIRXOeeTIIdntdhUUFOjEieNq3bqN+1r79h21b98eSXL3\n5QlVrpjz73//W19++aUCAgJKnbfZbHrmmWf06aefKiAgQJMnT9aIESP07bffKjAwUCtXrtSxY8c0\nf/58LV26VPv27dMtt9yimTNneqx5AAAAAAAAAAAAAAAAND3jxo3XM8/M0+zZt8vhcGjSpKnKzjap\nU6fOGjFilO6881a5XC716dNXl18+TPv379Ozzy5QQECADAaDHnroUUVFReu55xZo9uzblZ+fpxtu\nmCijseI1anx9ffX3v9+jvLw8zZx5u0JCQt3Xbr75Vs2bN1c//PCdYmJae+w5DS6Xy1XZDWvXrlW3\nbt300EMPuVfFkaSDBw/qhRde0NKlSyVJTz/9tPr166etW7fq0ksv1ejRoyVJw4YN0/r16/X444/r\n+PHjcjgcateunR555BE1a9asygbT0nLr8nwA0OhFRwfzex0AAAAAAGhS+DwDAAAAAP4QHR1c4bUq\nV8wZM2aMEhMTy5zPy8tTcPAfhYOCgpSXl6cePXrop59+0qhRo7R7926lpKTI4XCoT58+mjhxonr1\n6qU33nhDr732mh5++OE6NQ8A5wp+rwMAAAAAAE0Nn2cAAAAAaIwWL16srVu3ljn/9NNPKzY29qz3\nU2UwpyLNmjVTfn6++3V+fr6Cg4M1atQoxcXFacqUKbrooovUs2dPeXl5afTo0e59vEaPHq358+dX\nax7+1QWAcx3/wgwAAAAAADQ1fJ4BAAAAoLGaNOlmTZp0c7nX6uv/x1T2Dxcq3lirCp06dVJ8fLxM\nJpOsVqu2b9+ufv36ae/evRoyZIhWrFihq666yp02uvXWW7Vnzx5J0ubNm9WzZ8/aTg0AAAAAAAAA\nAAAAAAA0ejVeMWf16tUym82aNGmS/vnPf+rWW2+Vy+XShAkT1KJFC/n4+Ojll1/WkiVLFBwcrKee\nekqS9MQTT2j+/Pny8fFRVFRUtVfMAQAAAAAAAAAAAAAAAJoig8vlcjV0E5VhOVQA5zqWfgYAAAAA\nAE0Nn2cAAAAAwB/qZSsrAAAAAAAAAAAAAAAAABUjmAMAAAAAAAAAAAAAAADUA++GbgAAANSey+XS\nriPp8vf1UkgzP4U181WQv09DtwUAAAAAAAAAAABABHMAAGjSMrILlW22KtsspZgKJEk+XkaFNvNV\nWJCfQpv5qlmAjwwGQwN3CgAAAAAAAAAAAJx/COYAANCEJabllzlncziVnl2o9OxCSZK3sSioExrk\nq6hQfwW9CcuRAAAgAElEQVSyog4AAAAAAAAAAABwVhgbugEAAFA7eQU2mfItVd5ndzqVkVOoY0k5\n2n00Q3aH8yx0BwAAAAAAAAAAAIBgDgAATVRial6Nx1jsDp1Iyq2HbgAAAAAAAAAAAACciWAOAABN\nkNXmUKqpoFZjT6XnKa/A5uGOAAAAAAAAAAAAAJyJYA4AAE1QUoZZTperVmNdko4kmDzbEAAAAAAA\nAAAAAIAyCOYAANDEOF0unU7Pr1ONbLNVSRl1qwEAAAAAAAAAAACgcgRzAABoYtKyCmSxO+pc59jp\nHNk8UAcAAAAAAAAAAABA+QjmAADQxCSm5f3xwuWS0VJYqzo2h1PHTud4qCsAAAAAAAAAAAAAZyKY\nAwBAE5KdZ1Fugc39utvHb2vcny9RYPKpWtVLyjQrJ9/qqfYAAAAAAAAAAAAAlEAwBwCAJiQxPf+P\nFy6XOn39sbwtBWqz6bta1zycYJLL5fJAdwAAAAAAAAAAAABKIpgDAEATUWi1K91U4H4dcXCPglKK\nVsqJ2byu1nXzCm06VTLwAwAAAAAAAAAAAMAjCOYAANBEnErPV8l1bWI3fCNJsgUEKnLfTvnmZNW6\n9omkXFlsjjp2CAAAAAAAAAAAAKAkgjkAADQBDqdTyRnmP044nWrz87eyNgvRoYkzZXQ61PLXjbWu\nb3c6dexUtgc6BQAAAAAAAAAAAFCMYA4AAE1AcmaBbA6n+3XUvt8UmJ6iU5eOUuJlYyRJMVt+qtMc\nKaYCZeVa6lQDAAAAAAAAAAAAwB8I5gAA0AScSssr9bp4G6uEK65WbttOyotpq5bbN8potdZpniOJ\nJjldrqpvBAAAAAAAAAAAAFAlgjkAADRymTmFMlvs7tcGh11tfl4rS2i4UvsNkgwGnR48XD7mfEXv\n2VanucwWuxJT86q+EQAAAAAAAAAAAECVCOYAANDIJabll3odvWeb/E0ZShx6pVxe3pKk00NGSJJi\ntqyr83zxybkqtNqrvhEAAAAAAAAAAABApQjmAADQiJkLbcrMLSx1Lnb9/7axGna1+1x6z36yBocq\nZvNPUh23onK4XDp6KrtONQAAAAAAAAAAAAAQzAEAoFE7c7Ucg92m1pu+U0FElNJ69Xefd3n7KGnA\nZQpMS1LosYN1njc9u1AZ2YVV3wgAAAAAAAAAAACgQgRzAABopOwOp1IyzaXOtfhts/xys5V42VWS\nl1epa6eHDJekolVzPOBIokl2h9MjtQAAAAAAAAAAAIDzEcEcAAAaqaQMsxxnbEsVu6F4G6s/lbk/\n+eLL5PTyVswWzwRzCm0OHUoweaRWY5RrtspZx22/AAAAAAAAAAAAgMoQzAEAoBFyuVw6lZZX6pzR\nalXM//0oc3QrZfS4sMwYe1Cw0vpcrIjDv8s/PcUjfaSZCnQ6Pb/qG5uY7DyLdh1N17HTOQ3dCgAA\nAAAAAAAAAM5hBHMAAGiE0rMLVWhzlDrXYscm+ebnKuGKqyRj+X+Enx4yQpIUs2W9x3qJO5WtvAKb\nx+o1tOx8q/Ycy5DD6VJiWp4ysgsbuiUAAAAAAAAAAACcowjmAADQCCWesVqOJLVdv0aSlHBF2W2s\nip0ePFySFLNlncd6cbhcOhCfJYfT6bGaDSUn36o9celyOP/YwurgySxZrI5KRgEAAAAAAAAAAAC1\nQzAHAIBGJr/Qpux8a6lzXoUFitn8k/JaxSqra68Kx5pbtpapQ1c137lFXgWe24Iqv9Cmo4nZHqvX\nEIpCORmlQjmSZHM4dSA+Sy6Xq4KRAAAAAAAAAAAAQO0QzAEAoJFJyjCXOdfy15/lXWguWi3HYKh0\n/OnBw+Vls6rFjv/zbF+ZZqWaCjxa82zJMReFcuwVrPpjyrfoZErZVYoAAAAAAAAAAACAuiCYAwBA\nI+J0uZSSWTaYE7vhG0mVb2NV7PSQEZKkmK3rPdqbJB0+aVKBxe7xuvUpx2zVnqMVh3KKnUjOUXae\n5Sx1BQAAAAAAAAAAgPMBwRwAABqRdFOBbI7SARJvc75itq5XTpsOyu7YrcoaWV17qSAiSq22rJcc\nDo/2Z3cWbfvkbCLbPuWardpbyUo5Jbkk7Y/Pks1e9b0AAAAAAAAAAABAdRDMAQCgEUkuZ7WcVlt+\nkpfVooRhVW9jJUkyGpU0aLj8szMVeXCPx3vMMVt1PCnH43U9Lfd/21edGXSqjMXm0KGTWfXYFQAA\nAAAAAAAAAM4nBHMAAGgkCix2ZeaW3UqpJttYFTs9ZLgkKWbLOs80d4aE1Dxl5hTWS21PyCuw1TiU\nUyw9p1CJaXn10BUAAAAAAAAAAADONwRzAABoJMpbLccnL0ettm2UqUNX5bbrXO1aKf2GyO7nr5jN\nP3myxVIOnsyS1ebZrbI8Ia/Apt1H02sVyil27HSO8gpsHuwKAAAAAAAAAAAA5yOCOQAANAIul6vc\nYE7M//0oo91Wo9VyJMnp56+Uiy5RyMk4NTt1wkNdlma1O3WwkW37lF9Y91COJDldLu0/kSl7HesA\nAAAAAAAAAADg/EYwBwCARiAzxyJLOavPxK6v+TZWxU4PLtrOqtXm9XXqrTKZuRadTMmtt/o14XS5\ndOBEVp1DOcXMFruOJmZ7pBYAAAAAAAAAAADOTwRzAABoBJIy88uc883OUoudm5XZpafyW7erec3B\nw+QyGBSztf62s5KkE8m5ysm31usc1ZGQnKvAX9Yr7Mg+Ga0Wj9RMzjIrpZyVjAAAAAAAAAAAAIDq\n8G7oBgAAON9ZbQ5l5pQNkrTe9L2MDnutVsuRJEt4lDK791HU3h3yyTHJFhJW11bL5XS5tD8+U/26\nRMvPx6te5qiKudAmr7ff0hWvzivqyctbubEdZOrUXaZOPYq+duwua2h4jWsfTjQpONBXgf782AQA\nAAAAAAAAAICa4W+YAABoYMmZZjldrjLnYzcUbWOVeMVVta59evAIRR7YrVbbNurkyLG1rlOVQqtD\nu46kq0+nSAX4nd0fL1wul05sP6BLli6UtVmITg67WmHHDins2CGFnjiidj+udt9rjmr5v5BON5k6\n9VDSoCvk9POvtL7D6dKB+Ez16xoto8FQ348DAAAAAAAAAACAcwjBHAAAGlhyOVsl+WWlq/meX5XR\no6/MLVrXuvbpwcPU+91Fitmyrl6DOZJUYLUXhXM6RyrI36de5yrpdFqeOr/wmHzM+dp2/3yd+NOf\niy44nWqWdFJhcQcVGndQYccOKizuoGK2rlfM1vWSpKSLL9Omp96qco7cAptOJOWqY0xIPT4JAAAA\nAAAAAAAAzjUEcwAAaECmPIvMFnuZ8202rpXB6dTJYVfXqX5O+y7Ka9lGLbdtlMFmlcvHt071qmKx\nF62c07tjpEKC6ncuSSq02lW48hO13rxOqX0H6sRVE/64aDQqr3V75bVur8TL/1h1yNeUqbBjB9Xz\n/cVqtW2jIvftVEbPflXOlZCaq8hQf4WehecCAAAAAAAAAADAucHY0A0AAHA+S8oou1qOJMWu/0Yu\ng6FUoKRWDAadHjJcPuZ8Re/ZVrda1WRzOLU7Ll1ZuZZ6n+vYvpPqu3iBHD6+2nHfk1I1tpqyhkUo\n9aJLtOe2ByVJPT54o1pzuSQdjM+Sw+msS8sAAAAAAAAAAAA4jxDMAQCggdgdTqWbCsqcD0hLVvTv\nO5Teq78KI5vXeZ7Tg0dIkmK2/FTnWtXlcLq091hGuc/nKSlZZsW+9JQCMtO1f9pdymvdvkbjM3r1\nV2rfQWq1faPCD+6p1pgCq11xp3Jq0S0AAAAAAAAAAADORwRzAABoIClZBXK4XGXOt/n5W0lSwhV/\n8sg86b37yxoUrJjN66Ry5qsvTpdL++OzlJJZ/qpAdWGzO5T19ffq+M0nMnXoqkMTZ9aqzv5pd0mS\nLvhwSbXHnM7IV2ZOYa3mAwAAAAAAAAAAwPmFYA4AAA0kOSO/3PNt130ll9GoxMuu9Mg8Lm8fJQ+8\nXEGpSQo9ftgjNavL6XLpwMksnUrL82jduLgUXfjiv+QyGLTjvnlyefvUqk5an4uV1qu/Yrb8pLCj\n+6s97lCCSXYHW1oBAAAAAAAAAACgcgRzAABoALlmq3ILbGXOhx/aq4gj+3R60DBZwqOqVcvXu+o/\nzk8PHi5JRavmNIAjp7IVn5zrkVoZ2YWKfH2RghNP6Oi4acrs0bf2xQwG7Z96pySpxwdvVHuYxebQ\nkQRT7ecFAAAAAAAAAADAeYFgDgAADSApo/ztnTp/+aEkKW7s5GrV8TIYNLBHC3VpEyYfr4r/WE8e\nMFROL2/FbPmp5s16yPHkHMWdyq5TDbvDqeSft6r7yqXKb95Kv8+4t859pV50iTJ69FWbX35Q6LFD\n1R6XYipQqqmgzvOf6wosduWarSqw2GW1OeR0nr3t1AAAAAAAAAAAABqad0M3AADA+cbhdCo1q2yg\nwzcnS7Hr1yg3pq1SLrqkWrWiQv3l7WVU66ggNQ/z17HTOUrKLBv6sQWHKq33ALXYtUWtN34nl9Eo\nL0uhvC0F8rJY5FXiq7elUF6WQhmtVplbxCira09ldu2tguiWksFQp2dPSMuT3eFU19gwGWpR63hi\nlnq/8KiMDrt+u+dx2QOD6tSPJPeqOZfNvUM9VizRlkcXVXvokQSTQoN85efjVfc+zkFWm0M7j6TJ\nai+97ZfRYJCX0SBvL6O8vQzyMhZ99ffzVufWoQ3ULQAAAAAAAAAAgOcRzAEA4CxLMxXK7nSWOd9+\n7RfyslkVd+1kyVi9Re1aRAS6j328vdStbbhaRQbpSKKpzFZZp4cMV4tdW3TJ/NqtMlMYHqXMrj2V\n1bW3Mrv1UlaXXrKER9a4TlKmWaY8q1pEBKhFeKAC/Kr340h2nkUB776tyIN7dHLY1UoeeEWN5y4p\ntnkzJaWbZXc6lXzx5crs0lNtfl6r4GlHlduuc7Vq2BxOHU4wqXfHmr8P54ODJ01lQjmS5HS55HS4\nZHOUvdY6Kqja3xMAAAAAAAAAAACNHX/rAQDAWZaUkV/2pNOpTl99JIevn05ceX216vh5eyk82K/M\n+ZAgX13UNVpJGWYdT8pxhx+O/2mivGxWGRwOOfz8ZfcLkMPPTw6/ADn8/P93zt997PT2UXDicYUf\n3qeIw3sVceh3xWzdoJitG9xz5TdvpayuvZTZtbdOXzJSuW07Vqv3AqtdJ5JzdSI5V2FBfmoZGehe\n/ac8TqdL8TsO6PJ3F8kaHKpdd86p1jzlMRoM6hobppYRgfLz9tLR09lFq+ZMu0tDH/+benz4pn6d\n80K162XkFCopI1+tIj2wes85JDE1T5m5hTUel5pVoHYtg+uhIwAAAAAAAAAAgLOPYA4AAGeRudCu\n7HxrmfMtdvyiZkkJOj5mvGwhYdWq1TwioMLtoAwGg2KighQd5q/jSblKysiXwz9Ah268rUb9FjRv\npdQS22r5ZaUr/PDvijj0u8KPFH1ts+l7tdn0vXouf03bHnxKCcOvqdEcpnyLTPkWeRkMig4LUIuI\nwDKBo/jkHPX4f4/Jp8CsbQ8+JUt4VI3mKOZlNKhn+whFhPhLkmKig3Q6I19mi11Jg4fL1LG72m5Y\no/3T71Jemw7Vrnv0VLbCmvmx0sv/5BXYdCwpp1Zj00wEcwAAAAAAAAAAwLmjevtkAAAAj0jKLGe1\nHEmdV6+QJB0dO6XatVqW2MaqIj7eXuoaG6Z+XaMVHOBb7doVsYRHKXnQMO2/abZ+mb9Eqz/eqK+W\n/6htDz4lp7ePBj/zd/V69yWpnK26quJwuZScZdbuuHRt2Zes40k5KrDYlVdgk/PTTxWzdb1SLhys\nE1feUKve/by91K9LtDuUIxWtntMpJrTohcGg/VPvlMHpVI8Vb9Wsd6dLh06aatXXucbhdGr/iUw5\nXa5ajc8rtMlcaKv6RgAAAAAAAAAAgCaAYA4AAGeJ0+VSSqa5zPnA5FNqtXW9Mrr1kalrz2rVCg7w\nUZC/T7XnDgn01UVdo9QtNkx+3l7VHlclg0EFzWN0Ysx4/fjKR8qNaaseK97UJU/eLW9z+SGk6ii0\nORSfkqutB1K077c4XfjaU3L4+mnHvU9IFawSVJlm/j7q1zVKzQLKvmeRof6KCC4K65y6dJSy23VW\n2x9XK+j0yRrNYcq3KCE1r8a9nWuOJmbLbLHXqUaqqcBD3QAAAAAAAAAAADQsgjkAAJwlGdmFstrL\nriTT8euPZXC5FDd2crVrtajGajlnMhgMahUZpIEXNFeHliHyNnr2x4Dctp304ysfK6XfELXevE4j\n7v2LgpIS6lz3gjefk39WuvZN+5vyW7er8fiwZn66sEuU/H0r3maqc+sQGQ0GyWjU/ql3yuh0qPtH\nNVs1R5KOJ+Uo/zxe7SXVVKCkcsJnNa6TRTAHAAAAAAAAAACcGwjmAABwliRllA0sGK1Wdfz2U1mC\nQ5VwxVXVqmM0GNQiPKDWfXgZjWrXMliDLmiuNlHNigIpHmILCdPGp9/SkXHTFBp/VCPvvlHRu3+t\nVS3fnCx1X/GWOn77mUwdu+vwn2fUuEaL8ED16RQpb6/Kf+QJ9PdRTGSQJCnxsjHKadNB7b//rwJT\nTtVoPqfLpYPxWbXexqkpK7TaddhD23mZ/7eFGQAAAAAAAAAAQFNHMAcAgLPAYnMoK7ewzPk2G9fK\nLztLx6+aIKeff7VqRQT7yccD21H5eHupc5tQXdy9uVqE1T7ocyaXl7d2/e1Rbb/vSfmY83X5P29V\nx9UrqjnYpYgDu3Tx8//UtZOHqfe7i2QLCNT2B+bL5V39rbskqV2LYPVoF17t4FG7lsHy8TJKXl46\nMOUOGR12df/43zWaU5JyC2w6mphd43FNmcvl0oH4LNmdZVeEqq00trMCAAAAAAAAAADnAII5AACc\nBenZhSpvDZVOq1fIZTDo2DWTql2rNttYVSbAz1s92keof9doRQT7eazu8atv1Ibn3pG1WYj6vzpP\nF73yhAz28ldB8SrIV4evV2rUXRM08t7Jav/Df2Vu3kq7Zj2sr5f9qKyuvao9r0FS1zZh6tAqpEb9\n+ngb1f5/YxKGX63cmLZqv/ZzBaQl16iOJJ3OyNfJlNwaj2uq4lNylZ1v9WhNgjkAAAAAAAAAAOBc\nQDAHAICzICO77Go5oXEHFLV/p5IHDFV+TNtq1fHxMioytHor69RUcKCv+nSKUp+OkQoOqNnqNBVJ\n7z1APy5eKVPHbur01ce6fM5t8s3O+mPO+KO68LUFGjt5mAa8/LhCjx9W4tDR2vDsUn27dI2OTJgh\nW0hYtefzMhjUq0OkYqKCatVvTGSgmvn7yOXlrYOTZ8nLZlO3lUtrVetYUo6SM8tuX3auyc6zKD7Z\n8yEks8WuXLNnwz4AAAAAAAAAAABnm3dDNwAAwLnO4XTKlGcpc77zl0XbO8WNnVztWtFhAdXemqm2\nIkL8FRHir1RTgfILbHI6XXI4XUVfXUVfi//ncLrkdBV9tdgc5dYzt2itdYs+0MAX5qjNpu81avZE\nHZx0m9r+9LWi926XJBVENtfh8Tfr2NUTVRjVolZ9Gw0G9eoYqfA6rPpjMBjUqXWodselK37kWF2w\n/HV1XLNSB//yVxVGNq9xvcMJJvl6GxURUj9hqoZmdzh1ID6r3NWgPCHNVKjgQN96qg4AAAAAAAAA\nAFD/DC6Xq77+LsUj0tLOn20gAJyfoqOD+b3uHJduKtDvJzJLnfPJy9G1k4fJEhahNe+tlby8qlXr\noi7RCglqnEGFxLQ8HT2VXfENTqcuWP66ei5/zX0qpd9gxV07WaeHDJfLu26r9HRpHarW0c3qVKPY\n78czlJ5dqA5rVmrAS4/r8PibtfuOf9aqlpfRoAs7R52TAZN9JzLrdcspf18vDb6gZb3VBwAAAFB7\nfJ4BAAAAAH+Ijg6u8Bor5gAAUM8ycspuY9Xu+//K21Kg/ddOqnYoJ9DPu9GGciSpTXQzeRkNOpxg\nKn8FFaNR+2+arawuPRV5cLdOjBqnvNgOHpk7JjLIY6EcSeoUE6rMHItOjL5eF3ywRB2//lgHJ/1V\nlvDIGtdyOF3aeyxD/bpEK8Dv3PnRKykjv15DOZJUaHUox2xVyDkYagIAAAAAAAAAAOeHc+dvhwAA\naIRcLlfZYI7LpU6rV8jh46PjYyZUu1aL8EAPd+d5rSKD5GU06OBJk5wVLMqXNGS4koYM99icYUF+\n6twm1GP1JCnAz1uto4OUkOrSwUm36aLF89VjxZvadeccqRZbiVntzv+Fc6Lk4129IFaj5XTKtmev\n0o+mKqwaCy86vX2U075Lrd43SUrLKiCYAwAAAAAAAAAAmiyCOQAA1KMcs01Wu7PUuea7tigk8bji\nR46VNSyiWnUMklpEBNRDh57XPDxQRqNB+09kVRjO8RR/Xy/17BAuYy1DH5Vp1yJYKZlmHb9qgrp/\n9Ja6rFqmyP07dWDKHTo9eLhkNNaontli195jmerbOVJeNRzbWBSmZSp05jRFb92kmBqM2zXrYR2Z\nMKNWc6aZCtSptWeDVwAAAAAAAAAAAGcLwRwAAOpRRnbZbaw6rV4hSTp63ZRq1wlt5id/36bzx3ZU\naIB6dzTq92MZctRTOMfLaFCvDpH1tgKNt5dRHVqF6FCCUxuef1e93ntFbTau1aVPzJapQ1cdmDxL\niZeNqfZWZJKUY7Zq/4ks9eoQIUM9hInqQ6HVrjRToXIOxqnf32cq5MQRpVw4WNkdu1VrfPvvV+mC\n5a8rftQ4WUPDaz6/zaHsfKtCG/E2bgAAAAAAAAAAABVpOn/DBwBAE3TmNlYBacmK+b91yurcQ5nd\n+1a7TsuIxr+N1ZnCg/3Up1Ok9h7LlN3prHpADfVoG65mAT4er1tSy4hAnU7PV26bDtoyd5GCT8ap\nx4o31fanrzXk6QeV02axDk6+XSdHXCuXV/V+rMrIKdThBJO6ta15SOVsKQ7jpJkKlGO2KvTYIQ2d\nO0uB6Sk6et0U7bzzkWoHkgqat1LfJc/qguWva9ffHq1VP2lZBQRzAAAAAAAAAABAk9Q091EAAKAJ\nKLDYlV9oK3WuwzefyOh0KG7sZKmaK6Z4GQyKDvOvjxbrXWgzP/XtHCkfL8/+yNGhZYiiwup/ay+D\nwaDOJbZRym3bSb8+/Ly+WbpGx66aoGZJCRr4whxddcuf1GHNShmt1mrVTco060RyTn21XSsWq0OJ\nqXnaeThNW/anKO50tnLMVjXf8YuGPzBVgekp2n37Q9r5t7k1WiUo4N67lRfTVp2++kjNEo/Xqrc0\nU4Fc9bwtGgAAAAAAAADg/7N33/F11uX/x99n75O9Z9M9obR0gAwZsgS/iD+WgqCIqDi+XxXFicpQ\ncQOCgMhQEBQHe+9VCnSvtGmbdKTZ4+x5//7ogNKRc9KkzXg9H48+Qs+5r899pZak9n5zXQAGA8Ec\nAAAGyYen5ZiSCdU98ZDiHp+ajj8j43OKcl2ymIfvt2yf267DxxfKMUArp4pzXaop9Q3IWZnI8TpU\n/KEQUKiiRu/+37V64p6nte6sC+XqaNXs3/1Yp11yisb9568yx/ZcYfZhG7cF1NwRGqy2s9LaHdFb\nK7dp3dYe9YTfDxfVPPNvHfODK2ROxPXm936t+k9dmnGgTNr+ezevwKfWb/9Q5lRSM+78db/6iyW3\nr7MCAAAAAAAAAAAYbobvUz4AAIa4jp7dwxkVbzwvV2e7Nn7sbKVcma+mKhmGa6w+zOO06fDxhXLa\nDiyc43PZNLE6d4C6ylxduV85bvsek38ixeVadOUP9cS9z2rNOZfIHujRzD9ep1M/f7ocXe19nlu/\nqXuP3ycHW2dvVKsbu7TbPBrD0OS/3qI5v/qekm6PXvn5Xdp8/OlZnWuSVLsjQOW54P+pc/osVbzx\nvAqXvt2vPtu6I/2qAwAAAAAAAAAAOJQI5gAAMAiSqfQeEz7GPnK/JKnh4+dnfI7TZlGu1z6gvR0q\nLodVh48vlMtu7Ve9w2rRtDEFh2R6kNNu1cwJRTp6epmOnlaqmeOLNKk6TzUlPhXluGStqNCKK76r\nx+97Tg0fP0+e1uaMpsMYklY3dSmeSA3+J7EXPcGYVmzoVPoDa6JMyYRm/faHmnbvzQqVlOuF3/5N\n7dNnZ312ca5LHqdNkmQ2mxW85jpJ0mG33yil01mfxzorAAAAAAAAAAAwHPXvyRgAANivzt7obmEH\n/8a1Kl66UC0z5ytYNSbjc4rz3DJlsTpoqHPat4dz1m/pUSCSUCSWVCZRC7PJpKlj8uWwD8w6rANh\ns1qUY7Uox7NnYCoaL1b4sN+pt365ap/9j9af9il1TJu13/MSqbTqN3VrWl3BYLW8V4FwXMvWdyr1\ngd+n1nBI86/9hkrfeU1d46bo1WtvUyy/KOuzTdIe68ZcxxyllpPPVMmzj6r6xcfVdOKZWZ0ZT6bV\nHYwrz+fIuh8AAAAAAAAAAIBDhYk5AAAMgg+vJxr72N8lSevOvCCrc0rzXQPW01DhsFk0uTZfcyaX\n6CMzynTE+CJNqMxVeYFHOW67LHsJIk2oypV/L0GYocZptyo/z6Pojb+RJB1x889kSiX7rGvvjaq5\nIzTY7e0Sjia0tKFDyQ9MrnF2tOr4b16k0ndeU/OcY/Xir+/tVyhHkkry3HLvmJbzQamf/kwpm03T\n7/qtzLHsV3ixzgoAAAAAAAAAAAw3BHMAABhgacNQZyC26+fWUFA1z/1X4cJSNc//aMbn+N32vYYb\nRhKL2Sy/x67yQo8mVOVq5oQifWRGmeZMKtGU2nxVF/s0tjxHpfnuQ91qVkzz56v9f85T7vo1GvvI\nAxnVrNvSo0is7xDPgYrEklrS0KFE6v1Qjn9DvU74+vnKa1ilhtPP1es/uUUpl6df55tNpj2m5exk\nG1un1k9/Xu62Zo3/931Zn93WHdltEhUAAAAAAAAAAMBQRzAHAIAB1huK7xZ6GPPUP2ULh9Rw5gUy\nLJlvkSwZZmGUgWIymeR2WlWc61JduV9Vxd5D3VK/pK+9TgmvX9Pu+YMcnW19Xp9KG1qzqXtQe4ol\nUiz3z9kAACAASURBVFra0KFYIiVJsvd06fBbrtXJXz5HntZmLbv0G3rv69dk9fv0w0ryXHI59l1v\nufpqxf25mvz3P8nR1ZHV2YlUWt0fCL0BAAAAAAAAAAAMdQRzAAAYYLutsUqlNP4/f1XS4VTDGedm\nfIbZZFJx7shbYzWamIqL1fXt78sWDmrGnb/KqKY7GNPm1uCg9JNIprWsoUOReFLmeFwT/nGXTrvk\nFI3/798ULinXaz/5o1Zf8EVpL6vEMrW/aTk7mfLy1Pn1q2QLhzTlvpuzvgfrrAAAAAAAAAAAwHBC\nMAcAgAHW0ft+MKfijefladmixpM/oYQ/N+MzCvxO2ax8mx7uTJdfrsDEqap97hEVLl2YUc365l6F\no4kB7SOZSmvZ+g4FI3FVvvKUTrnsDB12x42S2azFV3xXT93xaFZr1valNN8tp73vaTuWK76oUPUY\n1T3xD/maGrK6R3tPlHVWAAAAAAAAAABg2OCJHwAAAygcTSgcS+76+YSH75Yk1Z/92azOKcljWs6I\nYLEocuNvJUkzb7lWplSyjwIpbRha1dg1YOGTdNrQ8g2dsr67UB/9309r/rX/K3fbNtWffbGe+MtT\nWvvJz8qw2Q/4PmaTSTUl+5+Ws4vNptCPfipzOqUZd2Q2TWinRCqtrl7WWQEAAAAAAAAAgOGBYA4A\nAAOo/QNrrPJWL1XhykXaOvc4BavGZHyGy25Vfo5zMNrDIWCaN08d51yg3A31GvvI/RnVBCIJNbUE\nDvjeacPQ+jeWauL3rtSJXz9fhSsXafPRJ+npOx/Vki9dndUUp76UF3jksFsyvt505lnqmTVP5Qte\nUtGit7K6V7brrLqDMfWG41nVAAAAAAAAAAAADASCOQAADKAPrrGa8K97JElrP5ndtJyaUp/MJtOA\n9oVDK/3TaxX35WjaPTfJ2dGaUU1TS/DAwiS9PYpd9V3NOe9EVb/0hDrHT9WLv7pXb/74JgUravt/\n7l5YTCZVlXizKzKZFL/u55Kkw27/pZROZ1za3hNVOr3/iULBSELrt/bqrRXbtHhdu5asa1d3kEk7\nAAAAAAAAAADg4CKYAwDAAEkkU+oNbQ9SuFqbVfnK0+qum6jWw+dlfIbbYWWN1UhUVKSe7/xAtnBQ\nM+7MbHVT2jC0urGrzwDK3kSffk6+ubNUfc+tiuXka8FVP9fzNz2k9hlHZn1WJsoLPXLYMp+Ws8sR\nR6jrzHOU17BKNc89knFZMp1WZyC6x+vReFJNLQG9s7pV76xpVVNrQNFESpKUShta1tBBOAcAAAAA\nAAAAABxUBHMAABggnb0x7YxQjHvkbzKnU1p79sVSFtNvakp9MjEtZ2T6/GUKTp6umucfVeHShRmV\nhGNJrW/uzfgWwd6wQt/6jiovPkf27k6tuOhKPXXXE2o66ROSeXD+2GcxmVRVnOW0nA9I//RnStkd\nmnb372SJZr6iqq1r+7WJZFpb20NatLZNb61s0frmXgWjib3WpIzt4ZyuAOEcAAAAAAAAAABwcBDM\nAQBggLTvWGNliYRU9/hDiuYVqumjH8+43uO0qTiXaTkjlsWiyK9+J8Nk0hE3/0ym5N7DIx+2uS3Y\nZ5AkEktq/RtL5D/zFNXee6tCJRV68Td/1cqLvqKUc3B/T1UUeWXvz7ScHdIVler9wpflbm/RhIfv\nzriuvTeq5es79OaKbarf3K2eUGZrv1KGoeXrCecAAAAAAAAAAICDg2AOAAADIG0Y6twRzKl95j+y\nhwJad+b5StvtGZ/BtJxR4Mgj1fmpC5Wzca3G/fdvGZetaepSMpXe4/VEMqV1W3q09U/3aOanT1fB\nqiVq+ugZevbWf6lz8mED2fleWcwmVRV7Dvic1De/pXh+oSY9eKccnW2Z1aQNtfdGlTayX/W1M5yz\n899ZAAAAAAAAAACAwUIwBwCAAdAdiCmVNqR0WuP/fa9SNrvWn3F+xvVepuWMGsZPr1Xcn6up990s\nZ0drRjXRREoNW3p2/TyVTqupJaB33t2oku/9r+Zd+78yJ5N6+1vXa8F3b1TS4xus9ndTWeSVzdr/\naTk7GV6fQt++WtZoWNPu+cMAdLa74vfe0JT7bpHS74ebUoah5Rs6CecAAAAAAAAAAIBBRTAHAIAB\n0LHj4X7Zgpfk29qkxhPPVCyvIOP62tKDE6TAoWcUFKj36h/JFg5pxu03ZlzX3BlWe3dEzR0hvb2q\nVR2vva3jv3yO6p78p7rGTtazf3xYjR87WzpIU5esZrOqir0Ddl7ys5cqMm6ixjz1sHLXrRywc22B\nHs27/puaet/NKlvw8m7vpQnnAAAAAAAAAACAQUYwBwCAAdDRs/3B/oSH75Ykrf3kZzOu9blsKmRa\nzqhiXHKpglMPU82Lj6loydsZ1y3f2Kk1TV2q/Oe9OvFr58m/ab3qz75IL/z+7wpWjRnEjvdUVeyV\n1TKAf5S0WhW9/hcyGYYOv/UGqR8rqvZm6r03ydHbLUma9ODte5y7M5yz899hAAAAAAAAAACAgUQw\nBwCAAxSMJBRNpJS7bqWKly7UtllHq7d2fMb1taX+QewOQ5LFouivfivDZNLMm3+qkndeV8Hyd5Vb\nv0K+pga5W7bI0dUhSyQkpVK7yuy9XTrqmit1xC3XKun26LWf/lFLvvQ9pe32g9q+zWJWRZFnwM9N\nHn+CAieeqqJl76ji1WcO+Dz/hnqNe/QBBSpq1HzkMSpcuViFyxbucV3aMLRiI+EcAAAAAAAAAAAw\n8KyHugEAAIa7nQ/zx//rHklSfRbTcvxuuwpynIPSF4Y2Y9ZsdZ37GeU/eJ+O/d5l+702ZbMp5XDJ\nnEjIGouo9bC5WvDdXypaUHyQut3ObDLJbjOrqmiAp+V8QOK665V++Xkddscv1Tz3OKUd/fz3wzA0\n85ZrZUqntfhL31Pc51fZwlc1+YHb9eqMOXtcvjOcM6U2T4U5TLACAAAAAAAAAAADg2AOAAAHqKM3\nKmdHq6pfelK91WPVMvsjGdfWlvoGsTMMdakbf61VYyYr1bxNlnhMlmhk+8dYRNZoVJZ4VJbY+z/M\nqZQaTzxLq8/9vGSxDGgvZpNJdqtZDrtFDptl10enzSK7fcdH28Dec29SdeMUvOwK+W+7SRMevlur\nL7yiX+dUvvKUipcu1NZ5H9W2OcdKkloPm6vSd19Xbv0KdU+YukdN2jC0cmOXptSI9XIAAAAAAAAA\nAGBAEMwBgFGuKxBTLJFSab77ULcyLMUSKfWG45r2yP0yJxOqP/tiyWTKqDbHY1e+n2k5o5rTKe+V\nV+jdNW1KpNIH5ZZmk0luh1Uep1Uel01up1Uep01Ou0WmDH/vDrb4t7+jxEMPaPIDt2vjx85WtLAk\nq3pLJKzD/vRLpWw2Lf7id3a9vur8L6h4yQJNevAOvfXD3+21Nm0YWtnYpakmE9OsAAAAAAAAAADA\nASOYAwCjWOO2gDZu65Wx4+eEc7LX2RuVJRpR3WN/V8yfq8aTzsq4trbUP4idYbhw2q2aUJWrFRs7\nB/RckySP0yaP0yr3Bz66HEMngLMvhs+v0Pd+pNxvfU3T7/qNFl71i6zqJ/39drnbt2nVBV9UqKJm\n1+utRxylzvFTVfnaM/I1rVegum6v9TvXWk0bk094DgAAAAAAAAAAHBDzoW4AAHDwJZIpLW3o0IYP\nhHLWNHWppSt8SPsajjp6oqp57hE5Aj1q+Pj5Sjsye4if63Uoz+cY5O4wXBTlulRe4BnQM8dV5Gj2\npGJNrs1XTalPhbkuuZ3WIR/K2Snx6YsUmTJdtc89ovxVSzKu82xt0sR/3qVwYYlWnf+F3d80mbT6\n/MtlMgxN/Mef93tO2jC0YkOnugKx/rQPAAAAAAAAAAAgiWAOAIw6vaG43l3Tps5AdLfXDUlrmrrV\n1h05NI0NQ+m0oa6eiMb/+16lrTY1nHlBxrVjSn2D2BmGo7EVfrkdAzPMsLzAo4oi74CcdchYLIr9\n/EZJ0uG3Xi+lM1v1ddiffiFLIqGlX/i2Uq49w05bjj5JvVV1qnnuEblam/d7VsowtHx9h3qChHMA\nAAAAAAAAAED/EMwBgFFkc1tQi9e1K5pI7fX9tGFoVWOX2nsI52SiozeqooWvyr9pvZqOP13RguKM\n6vK8DuV4mZaD3VnMZk2pzZf5ACfa5PscGleZM0BdHVqJeUcpeMYnVLB6qapfeKzP60sWvqqKN19Q\n2/TZ2nT86Xu/yGzW6vMukzmV1ISH/9LnmSnD0NL1HeoNxbNtHwAAAAAAAAAAgGAOAIwGyVRaKzZ2\nat2WHqUNY7/Xpg1DKzd2qbM3ut/r+hKJJbWhuVdGH/cbruKJlNZt7tGEh++WJNWf89mMa8eU+Qep\nKwx3XpdNdeX9//3hdlgHJNwzlMR+cq1SDodm/PnXskRC+7zOlIhr5q3XyzCbtejL35f282vQ9NEz\nFC4qU90T/5C9u7PPHlJpQ0sbOhQIE84BAAAAAAAAAADZIZgDACNcMJLQe/VtWa2oShuGlm/oVFcg\n+/UtqXRaG5p7tXB1qxpbAtq4LZD1GUOdYRha3dQlx9pVKln0ploPm6uesZMzqs33OeX32Ae5Qwxn\nlUVeFfidWdfZLGZNryuQ1TKy/niXrq5R6IqvytXRqkkP3rnP68b/56/ybd6oho+fr56xk/Z7pmGz\na82nLpU1FtX4/9yXUR/JdFpLGzoUjCSy6h8AAAAAAAAAAIxuI+vJDQBgNy2dYS2qb1M4lsy6Nm0Y\nWr6+Q93BzMM5LZ1hvb1yeyBn52SexpbAAU/fGWqaWoLqDMQ04V/3SJLqP5n5tJzaMt9gtYURZFJ1\nrhxWS8bXm00mTanNl8thHcSuDp3Y1/9P8eJSTfznX+Ru2bLH+86OVk356y2K+XO1/OKvZnTmhtM+\npVhOnsY9cr+soWBGNYlUWkvWtSsUJZwDAAAAAAAAAAAyk1EwZ8mSJbrooov2eP2FF17QOeeco/PO\nO08PPfSQJCkej+ub3/ymzj33XH3uc5/Txo0bJUmNjY264IILdOGFF+rHP/6x0un0wH0WAIDdpA1D\n9Zu6taqpS6kDWCWVMgwtW9+hntD+17f0huNaVN+mVU1diiVTe7y/qrFL0Xj24aChqCsQ08ZtvXJ0\ntav6hccUqKhR89zjMqot9DvldzMtB32zWS2aVJOX8fXjKnKU53MMYkeHmNeryI9+Iks8phl3/mqP\nt6f/+TeyRcJafsk3lPDnZnRkyulS/dkXyx7sVd3jD2bcSiKV1tJ1HQpHR8bXNAAAAAAAAAAAMLj6\nDObccccd+sEPfqBYbPeJCYlEQjfccIPuuusu3XfffXrwwQfV3t6uhx56SG63Ww899JB+8IMf6Gc/\n+5kk6YYbbtA3vvEN3X///TIMQ88///zgfEYAAHUHYtraERqQs1JpQ8saOtQb3jOcE0uktLqxS+/V\nt6lnL+/vlEiltXJj164pOsPVzs/XkDTp73fIkoir/pxLJHNmA+hqy/yD2h9GljyfQ1XF3j6vqyz0\nqrzQcxA6OrTinzpPkcNmqerlp1S4dOGu1wtWLFLtc/9V17jJWn/ap7I6s+GsC5VwezThX3fLHM98\nOlgsmdKShnZF+jGNDAAAAAAAAAAAjC597juorq7WTTfdpKuuumq31xsaGlRdXa2cnBxJ0qxZs7Rw\n4UKtW7dOxx57rCSprq5ODQ0NkqQVK1Zozpw5kqRjjz1Wr7/+uk4++eQ+GywqYuUHgJFvoL/WtQbi\n8nmdA3rmxtaQZk/2KsfrUCptqLG5V+u39CiZMjK6lyGpI5TQlDEFA9rXwWIYhhauapHdaZOvrUNj\nH/+7IqUVaj/nQvlsfU/BKc5za0x1/kHoFCNJQYFXxopm9QT3HnwrzHVp1qRimUymg9zZIfKnW6R5\n83TE7b/Qm3/+ryRp1m3XS5LWfOun8uVkGVDyOrXp7M+o7m9/0qSXH9Omsz+dVfn61pDmTi0dsSvE\nAAAAgL7wd7cAAAAA0Lc+nyKccsop2rx58x6vB4NB+Xzv/x8vj8ejYDCoyZMn68UXX9RJJ52kJUuW\nqKWlRalUSoZh7Hpo5PF4FAgEMmqwrS2z6wBguCoq8g3417qGpk7FEnuulDpQL77dqNoyvza3BhXp\nx2qqFeuiMpIpFee6Bry3wbahuVeNLdv/dxp3x+9lice1/NNfVm8sLcWifdaPLfXyPQ39UpHnUnNr\nQKn07hOnPE6bKvKcam8PHqLODoG6KXKdfa5y/v2QCv91v2QYylmzXI0nnqlNddOkYN//Ln7Y8jM/\nrZqH/qKa+27TqhM+IcOSecgmEJRee3eTDh9fmPV9AQAAgOFuMP4+AwAAAACGq/39hwuZ7d7YC6/X\nq1Do/TUpoVBIPp9P55xzjrxery688EI9++yzmjp1qiwWi8wfWPMRCoXk97POAwAGQyAcl9HeLnfL\nFmmAV0clUmmt3dzdr1DOTmuauhSOJgawq8HX2RtV045Qjrt5s+qeeliBiho1nnRWRvV+t125Xsdg\ntogRzOWwakJl7m6v2SxmTRuTL6ul33+UG7Zi1/xUKadL0/7ye03/y++UcLm19LJv9f+8/CJtOOWT\n8m7brKqXnsy6vjsUY6UVAAAAAAAAAADYp34/zRk7dqwaGxvV3d2teDyud955RzNnztSyZcs0f/58\nPfDAAzr11FNVVVUlSZoyZYoWLFggSXrllVc0e/bsgfkMAAC7ae8I6uQvfVJnXHSSzjz3I/rI9y/X\nlHtvUtmbL8rR2Zb1eeZ4TP4N9ap47RlNeuB2Tb3793J2tPa7v1Ta0MqNXUql0/0+42CKJVJa3dSl\nnRGnKfffKnMyoRUXXZnxZI3KYu/gNYhRoSTfrZIdk6bMJpOmjckfteuT0mXlCn/t/+Ts7pCjp0ur\nPv0lRQuKD+jMNf/v80qbLZr04B1SP742tXZFDuj+AAAAAAAAAABg5Mr6ic6jjz6qcDis8847T9/9\n7nf1+c9/XoZh6JxzzlFJSYlsNpt+//vf67bbbpPP59N1110nSfrOd76jH/7wh/rNb36juro6nXLK\nKQP+yQAAJOOVV+Vu36ZAebXMqaTKFr6qsoWv7no/XFiqrglT1TlxurrGT1PnhKlKeHxyt22Tb/MG\n+TZvlHfLRvk2b5Rv8wa5W5tl+tDknfH/+auWXfoNNXz8fMliybrHYDSh+k09mlyTd8Cf72AyDEOr\nNnYpntz+oN67eYNqnv2vemrGadNxp2V0hstuVVGOczDbxCgxvipXveGEqku8yhnlE5iiX/ma7A8+\noKjMqj/74gM+L1xWqU3Hn66aFx5V2YKX1Tz/o1nVt3SFVVO67xGVAAAAAAAAAABg9DIZxgDvORlg\n7CkGMNIN5E72SCyp2JVf1fj//k0v//zPaj3iKDm6OpS3doXy6pcpv377R1dn+251KZtNlsSe66Ui\nBcUKVNYqUFGrYGWtApW1crc2a9rdv5c92KvO8VP13tevUdeEaf3qd2JVrsoKPP2qPRg2NPeqseX9\n/23m3PBt1bz4mN744e+15ZiPZXTGuIocVRYxMQcDI55IyW7LPgw3IoVCCkQS6pVNoUhCwUhCoUhC\nqX7+0da/oV6nfPET6ph8mF743QOSyZRV/RHji+T32Pt1bwAAAGA4Gsi/zwAAAACA4a6oaN//Ae/o\n3IEAACNUR3dEE19/XnFfjtpmHClJiuUVaNucY7VtzrHbLzIMOTtalb9mmfLqlyu/frnswV4Fymt2\nhW8ClbUKVtQq6d57aGbzMadoxh2/VO1zj+jEr56rdWddqOWXfF1JT3YTI9Zu7pHXZZPPPfQeZnf2\nRncL5fg31Kv6pcfVNW6ythx9UkZn2CxmlRW4B6tFjEKEcj7A45HPI33wq45hGIrEkgpGEgpGkrvC\nOrFkqs/jesdM0Jb5J6jizRdUtHSh2g6bk1U7LV1hgjkAAAAAAAAAAGAPBHMAYASJL3hb7vZt2njS\nWTKstr1fZDIpWliirYUl2pphwOTDYnkFWnjVL7TxY5/UEX/4icb/92+qfPVpLfnid7Xp+NMznjSR\nNgyt3NilWROLZLWY+9VLX5KptLa0heRyWuV12uR29v2tLxZPaVVj126vTb3vZpkMQ8s/+zXJnFmv\n5YUeWTK8FsCBM5lMcjttcjttKv7Aprx4IqVQNKlwLKnIzo+xpKLxpD44X2f1+V9QxZsvaNLfb886\nmNPaFdHYihyZs5y0AwAAAAAAAAAARjaCOQAwQiSSaeU896QkactR/QvcZKvt8Ll69rb/aMI/79KU\n+2/TvBu+pdqn/6X3vvojhSpqMjojEk9qdVOXpo0pGPD+Esm0lja0KxB5f02XxWyS12mTx2WTd8cP\nj8u6K0CTNgytbOxUIpXeVZO7doUqX3tWHZMP07Y5x2V0b7PJpPLCobumCxhN7DaL7DaL8nyO3V5P\n75iwsyusk3+UOmfOVem7ryt33Up1j5uS8T0SqbQ6e6IqzHUNdPsAAAAAAAAAAGAY4z/jB4ARoqM3\nqvLXn1PS4VTL7I9kVWs7gGk1abtdqy+8Qk/f/oiaZx+j0vfe0CmXn6XJf71F5ng8ozPae6La1Brs\ndw97k0imtGTd7qEcSUqlDfWE49raEVL95m69t7ZNry1t1turWrRyY6dWbuxUT2j3vqfee5MkbZ+W\nk+E0jJI8lxysHQKGNLPJJI/TpsJcl6pLfJpYnSfLt74pSap77MGsz2vpigx0iwAAAAAAAAAAYJgj\nmAMAI0RkyXL5N61Xy6yjlXJmPrHB7bBq7pQSVRV5D2gFS6i8Wq9d9ye9+YPfKu7P1bR7b9bHrviE\nipa8nVF9w9Yerd/aq7Rh9H1xH2KJlBav61Awmuj7YkmGpHAsqdbuiNp7oru9l79ykcoXvKzWGUeq\ndeb8jHuoKvZm0zKAISJ+wslKlVeq+sXHZA2Hsqrt6I0q+YFpWwAAAAAAAAAAAARzAGAESKcNuZ9+\nXJK05ejs1liVF3hktZg1tiJHsycWKdfr6LtoX0wmbT72VD115+OqP/siebc26fhvf1ZH/OEaWUN9\nT8Rpag1oybp2xeKpfrcQi2+flBPKMJTTl2n3/EGStCKLaTkFfqfcTtuA3B/AQWaxKPqZi2WLhFX1\n4uNZlaYNQ61MzQEAAAAAAAAAAB9AMAcARoCuQEzlrz+ntNmirXOPz7jObDKpJN+96+dup02HjyvU\nlNr8A1rDlPR4teRL39Pzv3tAPTXjNPaxB3XK5WepZOGrfdb2hOJ6Z02rOj40uSYT0XhSi9e1KxxL\n9qftPRQteVsli97StllHq3367IzrKouYlgMMZ9FPXyzDbFbdEw9lXdvSFR6EjgAAAAAAAAAAwHBF\nMAcARoDe+vXKX7NMbYcdqYQ/N+O6ohynbNY9vxUU57o0Z3Kxqot9B7TeqmvSDD13y8Na8Zkvy9nZ\npmO/f7mOvPFq2Xq791uXSKW1bEOHGrb2ZLzaKhJLavHadkXiAxPKkWFo6o5pOcs/+7WMy3wuu/J8\nBzB1CMAhly4rV/zkU5W/doVy61dkVdsTiisyQOFAAAAAAAAAAAAw/BHMAYBhzjAMOZ/q3xqrskLP\nPt+zmM2qK/dr9sQi5WcRNLFZzMrzOlRV5NXY8hyZnA6tvPireu7mf6hz/FTVPvsfnfqFM1X+2rN9\nnrWpNagla9sV7SNsE44mtHhtu6KJPVdg+TfUq/aph2WJZDfFouTd11W0/F1tmX+CuibNyLiuqnjf\nv6YAho/oxZdIkuqe/EfWtayzAgAAAAAAAAAAO5kMI8NRBIdIW1vgULcAAIOqqMh3QF/rekJx+c7+\nuEoWv6VH739J0cKSjOrcDqvmTM7sWklq646oYUvPbuEXt8Mqj8smr9Mmr2v7D4d99xVYwUhCy9Z3\nKJZIyZRKasI//6Kp994sSyKuTceeqkVf+b5ieYX7vbfNYtak6jwV5Dj3eC8UTWjJunbFk+nd3zAM\n1T32dx1+289lScQVy8lT/Scv0bqzLlTS08eqKcPQiV89V/n1y/XMrf9Wz9hJ+79+B6fNorlTSmQ6\ngClDAIaIVEp5s6bJ6OrSYw+8oqQ789Cdy27V3CmZf30FAAAAhqMD/fsMAAAAABhJiop8+3yPiTkA\nMMz1NDaraOlCdUyakXEoR5LKCrKb7FKU69KRk4s1uTpPM8cX6SPTyzRncomm1uarptSnghznHqEc\nSfK6bDpifJG8TpsMi1VrzvuCnrntP2qfMlNVrzylUy77uKqff1TaT05012qrLbuvtgpGtk/K+XAo\nxxoKaN71/6dZN/1USZdba//nIplSKU3/y291xkUnasq9N+13nVbZWy8qv365Nh17asahHEmqLPIS\nygFGCotFsc98VrZIWFUvPZ5VaSSeVG8oPkiNAQAAAAAAAACA4YRgDgAMc5ann5A5ncpqjZXZZFJp\nviv7e5nNKsl3K8djl9WS+bcQh92iw8cXqsC/feJNsGqMXvz1fVr0pe/JEo9r7i+u0tE/+pLc27bs\n95xNbcHtK6viSfWG41qyrl2J1O6hnNy1K3TyVz6lqpefUtu0WXr21n9r8Ze/p8fve17LLv1fGRaL\npv71jzrjohM1/c+/lqOrY/ebpNOads8fZJjNWnHxlRl/jlazWaUF7oyvBzD0RS+8SIbZrLonsl9n\nta0zu/V5AAAAAAAAAABgZCKYAwDDWDiaUNFLT0tSVsGcohynbNY9p9sMJqvFrGlj8lVRuGNSj8Wi\ndWdfpKdvf0QtM+epfMHLOu3SU3XkL78j/4b6fZ7TG47r3TVtWrquY/dQjmFo7CN/0wnfuEDerU1a\ndf7levnGuxUpKpUkJT1erb7gcj1+73Na/MXvKOnyaNKDd+r0i0/SYbfeIGd7iySp8tWnlbt+jRpP\n+LgC1WMz/vzKCz1ZhZUADH3p8gpFT/yY8uuXK3ftiqxq27oju034AgAAAAAAAAAAo5PJMIb2EwP2\nFAMY6Q5kJ/vmDS2accw0Bcsq9cwdj2Vcd/i4QuV6Hf2650DY3BZUw5Ye7foGZBiqfuExTfr7YS9p\nogAAIABJREFU7cppXCdJ2jr3eK0+/wvqmHpEn+dZQwHN/s0PVfXq04rl5GnBVb9Qy5HH7LfGHI9p\nzFMPa9KDd8rd1qyUzaaNp3xSRYvflndrk5768+MKVdRk9PmYTSbNnVIih+3ghp0ADD77M08q5zPn\nqeGM8/Te16/JqnZabb4Kc7OfTgYAAAAMBwfy9xkAAAAAMNIUFfn2+Z71IPYBABhgpmefkSUe05aj\nMp+W43ZYD2koR5Iqi7xy2i1atbFLKcOQTCY1nXimmj56hsoWvKxJD96h8gUvqXzBS2qfeoRWn3eZ\nmuccJ5n3nEiTV79c8677P3mbN6lt+my9dfWvFC0s6bOHtN2hhrMu1PrTPqWa5x7R5L/frrGPPShJ\nWn/apzIO5UhSca6LUA4wQsVP/JgSpeWqfuFRLbn820q5PBnXtnRFCOYAAAAAAAAAADDKWa655ppr\nDnUT+xMOxw91CwAwqDweR7++1sUTKTl+c6NyN9Rr8RVXK1pQnFFddYlPOR571vcbaG6nTfl+hzp7\nYkqld8zOMZkUrBqjjaeeo5aZ8+Xo7lDJordU/eLjqnztWSVcbvVWj5XMFskwNO6/f9P86/5P9kC3\nVl14hd751nVKev3ZNWKxqHv8FDWcdYECFbVKur1aduk3snr4Prk2T/aDvBoMwEFiNkuBXrleeVGh\nskp1j5+acWk0nlJ5oUcWs2kQGwQAAAAOjf7+fQYAAAAAjEQez74HI7DKCgAOsf6Oft7W3KWJR01T\nwuPVE/c9L5n6fvBrNpk0f2qJbEMoRBKNJ7V8faeC0cRe3/dvqNekh+5U1YtPyJxOKVRcpvpzLlHR\nsndU+dqziubka8F3f6nWWUcf5M63y/c5NWNswSG5N4CDw7xls/JnTVPX+Kl6/qaHsqqdUJmr8sLM\ng34AAADAcMEqKwAAAAB43/5WWe25EwQAMCykXnpJ9lBAW486KaNQjiQV5TiHVChHkpx2qw4fX6h8\nn3Ov7/eOmaC3v/NLPXn301r7ic/I0dOlmbfeoMrXnlXrYXP07G3/PmShHEmqKvYesnsDODjSFZUK\nHXeS8tcsU+66lVnVtnSFB6krAAAAAAAAAAAwHBDMAYBhKJVOy//sk5KkLUeflHFdacHQnNpgtZg1\nvS5fVUX7DrmESyu0+Cvf1+P3Pa/lF39VS77wbb3887syXuE1GPxuu/J8+x5LB2DkSH7u85Kkuiey\nm5jTE4orEksORksAAAAAAAAAAGAYIJgDAMNQV3dEZW88r5g/V+3Tjsioxu2wDukQiclk0tiKHE2u\nyZNlPxOA4rn5WvWZL6v+/31Oshya6T9mk0k1JT4dNo4VVsBokTjxZMVKylT9wmOyREJZ1TI1BwAA\nAAAAAACA0YtgDgAMQ7HX35Srs01b558gw2LNqKZsiE7L+bCSPLcOH18op21ordzaKd/n1OyJxRpT\n5pfFzLdRYNSwWhW+4CLZwiFVvfRkVqUtnZFBagoAAAAAAAAAAAx1PFEEgGHGMAx5nn5ckrTlqMzW\nWJlNJpXmuwazrQHlc9s1a2KRcr1DZ8KP027RtNp8zRhbILczszAUgJEl/dlLZJjNqnviH1nVReJJ\n9YTig9QVAAAAAAAAAAAYygjmAMAw0xOMqfS1Z5V0utUy66iMagpznLJZh+YEmn2xWS2aMbZAlYXe\nQ9rHzrVVR04qVmHu8Ak3ARh46YpK9R5zggrWLFVOw6qsals6WWcFAAAAAAAAAMBoRDAHAIaZ0HtL\n5NvapOYjj1HantlEmeGyxurDzCaTxlXmaFJ1nswm00G/f4HfqSMnsbYKwPsSl3xOklT3+ENZ1bV1\nR5Q2jMFoCQAAAAAAAAAADGE8ZQSAYcb15GOSpC1HZ7bGyu2wKs83dFZC9UdpvluHjy+Uw3Zwpv64\n7FZNH1Og6XUFcjlYWwXgfcYppypaVKqaFx6VJZL5FJxEKq3OnuggdgYAAAAAAAAAAIYigjkAMIwE\nIwkVv/KM0labmucel1FNab57kLs6OPxuu2ZNKFKOxz5o9zCbTKot3b62qiDHOWj3ATCMWa3qPfdC\n2cIhVb38ZFal27pYZwUAAAAAAAAAwGhDMAcAhpHAinrlrVullsPnKenx9Xm92WRSWcHICOZIkt1m\n0WHjClU+CKu5/G67Zk0sUm2pX2bzwV+bBWAYufRSGWZz1uusugIxGayzAgAAAAAAAABgVCGYAwDD\niO2J7NZYFeY4ZbMenPVPB4vZZNKEqlwdNrZQOe4Dn55jMZk0tjxHM8cXyuO0DUCHAEY6U3WNOo86\nXgVrliqnYVXGdam0oVA0OYidAQAAAAAAAACAoYZgDgAME7F4SoUvPSXDZNLWo07IqKZsECbLDBV5\nPodmTijStDH58vYzUJPrcWjWxGJVFXtlMjElB0DmohddKkmqe+IfWdUFwvHBaAcAAAAAAAAAAAxR\nBHMAoA+b24JatLZNm1qDisQO3qQDwzAUjCS0pT2kVY1dWrFwtQpXvKeOKTMVyyvss97tsCrP5zgI\nnR5ahTkuzZ5UrCk1eXI7rBnVWMwmja/I0eHjC+V2ZlYDAB9k+/jpihQWq+b5R2WJhDOuC4QTg9gV\nAAAAAAAAAAAYangaCQD7kDYMrdvco60dIUlSTyiuhq098jptKsx1qjDHJa9r4FYfJZJp9Ybi6g3H\n1ROKKxCOK5U2dr0/5pVnZTKMjNdYlea7B6y34aA4z63CXJdaOsNq3BZQNJHa63X5PocmVOXKaedb\nIID+M9ls6vjkBaq8/feqfPVpNX7s7IzqekNMzAEAAAAAAAAAYDThqSQA7EUyldaKDZ3qCsb2eC8Y\nTSi4LaGN2wJy2a0qzHGqMNelHI+9z3PThqF4IqV4Mq14IqVYIq1tvTE1belWuI9pPBWvPydJGQVz\nLCaTygpGVzBHkswmk8oKPCrJc2tre0iNLQElUmlJktVs1tgK/4he7wXgIDvvfOn236vk3TcyDuaE\nY0ml0mlZzAyuBAAAAAAAAABgNCCYAwAfEokltWx9R59BGUmKxJPa1BbUpragHFaLCnKc8nvsiidS\nSuwM3yTTu/55Z0jkg3xeZ5/3Klz2jooXvanuuokKlVXt91qX3aqpY/Jls1r67H+kMptNqiz2qrTA\nrS1tIYWiCY2tyJHDNnp/TQAMPMe0KYr7c1WwanHGNWnDUDCcUI535K8aBAAAAAAAAAAABHMAYDfd\nwZhWbOjca4CmL7FkSls7QrtWXw0EV+tWzbjjV6p++UlJ0rpPfHq/1xfluDSxOldWC5MYJMlqMaum\n1Heo2wAwUplMihw+WzmvPCdHZ5ti+UUZlQUI5gAAAAAAAAAAMGoQzAGAHZo7Qlq7uUdpwzjUrcgS\njWjiP+7SxIfulDUWVefE6Vr0pavVOWXmXq83m0waU+ZXVbH3IHcKAKNbcu5c6ZXnVLBysbZ+5OSM\nanrD8UHuCgAAAAAAAAAADBUEcwCMeoZhaP3WXm1qCx7qViTDUOUrT2nGHTfK09qsSH6h3vvqj9V4\n0lmSee9TcBxWi6bU5jF9AQAOAdO8eZKkwiyCOYFwYjBbAgAAAAAAAAAAQwjBHACjWjKV1urGLrX3\nRg/4LHM8JmdXu8zxuEJllTKstqzqc9et1OF/vF5Fy99VymbT6vMu06oLrlDS7dlnTZ7Xock1ebLb\nLAfaPgCgH1IzZyltsahg5aKMayLxpBLJlGxWvnYDAAAAAAAAADDSEcwBMGpF40ktX9+pYHT/kwss\n0Yi8WzbK2dkuZ9eOH3v5Z3uwd1dN2mJVoLJGvTXj1VszTj212z8GK6plWHb/0mvr6tARt/xSdU/+\nQybD0Jb5J2rJ5d9WqKJmv33VlPhUW+qTyWTq/y8CAODAeL0Kj5usvLUrZI7HlbbbMyrrDSVUkEMw\nBwAAAAAAAACAkY5gDoBRKRhJaFlDh2LJ1F7ft0QjKn37FVW98pTKFrwka2zfE3ViOXmKFJaoa/xU\nRfMLlbZY5W9qkL+pQTmNDbtdm7LZFKgco96aceqtGSfDZNKkf94lWzCgnpqxWnzF1WqddfR+e7dZ\nzJpck6d8vzP7TxwAMOCis46Ud81y5TasVOfkwzOqCUTiKsjh6zgAAAAAAAAAACMdwRwAo048kdLy\n9XuGcsyxqEoXvqqqV55S+VsvyRoNS5ICFTVqOeIoRQqKFc0rVDS/UNG8IkXzCxXLzd/3yirDkKut\nWTkb18nfuP1HTuM6+RsblLuhftdlCZ9fi778fTWcef4e03Q+zO+2a0ptnpx2vnwDwFCRnjtPuv8v\nKli5OONgTm9o/9PaAAAAAAAAAADAyMCTXQCjSjptaMWGTkUT20M55nhMpe+8psqXn1L5Wy/IFtke\nxgmWV2vTcadp07GnqqduotSfdVEmkyLF5YoUl2vbnGM/2ITcrc3yN66Vq7NNPSefoU6ru8/jKgu9\nqqvwy8zqKgAYUkzz50mSClYu1tpzMqsJhOOD2BEAAAAAAAAAABgqCOYAGFXWbOpWTziuwqVva8xT\nD6vijRdkCwclScHSSjWcdaE2HXeausdO7l8YJxNms8KlFQqXVkiSfF6nFNz3qiyr2ayJ1bkqynUN\nTj8AgANTU6tYQZEKVy6SDCOj7x+JVFqRWFIuB38cBwAAAAAAAABgJONJAIBRo6kloJausCpfflLz\nrv+mTIahUEm5Gs44V5uPO01d46cOXhinn3yu7aureHALAEOYyaTgjFkqePEpudqaFSkuz6gsEI7z\n9R0AAAAAAAAAgBGOJwEARoX27ojWN/eqeNGbmvuL7yjpcuuNH9+k1sPnDbkwzk6VRV7VlbO6CgCG\ng/jsOdKLT6lwxSJtyjCY0xtOqDhvkBsDAAAAAAAAAACHlPlQNwAAgy0YSWhVY5dy167QUT/5qgyT\n9PqPb1brzPkDFsoxSSrwOzV9TIHmTy1VbalPDqulX2fZLGZNq83XuIocQjkAMFzMmydJKli1JOOS\nQCg+WN0AAAAAAAAAAIAhgok5wCjS1h2R32OXw9a/wMhwFEuktHx9h5xbGnXM978oaySst77/G7XN\nnDcg59ssZpUVeFRW4N5tHUltqV/VJT61dUe0pS2k3nBmD1/97u2rq5x2vjwDwHBimT1LaatNBSsX\nZVwTjCSUNgxCmAAAAAAAAAAAjGA8+QVGifbuiFZs7JTFZFJ5oUfVJV7Z+jnRZbhIpw2t2NApo7VF\nx159mZzdHXrvyh9q87GnHvDZOR67ygs9Ksp17fOBqtlkUkmeWyV5bvWG4trSFlRbT1Rpw9jr9VVF\nXo1hdRUADEsml0u9E6Yqd81yWaIRpZyuPmtShqFQJCGf234QOgQAAAAAAAAAAIcCwRxgFAhFE1rV\n1CVp+0PATW1BNXeEVVnsUWWRV1bLyNxqt6apS+G2Th3//cvlbd6kFZ/5shrOurDf51nM24M25YUe\neV22rGr9Hrv8nnzVJVLa2h5Sc0dI8WRakmSzmjVtTL4Kc/p+iAsAGLoiM2crd+Vi5dUvV/uMIzOq\nCYQJ5gAAAAAAAAAAMJKNzKfxAHZJJNNavr5TqfTuU1qS6bQ2bgtowcoWbWoNKp3e+xSX4apxW0Bt\nrT06+porlbdulRpOP1crL7qyX2e57FaNr8zV/KmlmlCVm3Uo54McNovGlPk1b2qpJlXnqSTXpaNm\nlBPKAYARIDFnriSpYNXijGsCGa46BAAAAAAAAAAAwxMTc4ARzDAMrWrsVCSe3Oc1iVRaDVt7tLkt\nqJoSn0oL3MN+lVJrd0QbtnRp3i+uUvGSBdp89El676s/krL8vBw2y6D9mphNJpXmu1Wa75bLYVVw\nQE8HABwK5vnzJUkFK7MJ5iQGqx0AAAAAAAAAADAEEMwBRrD1W3vVGYhldG0skVL95m5tag2qtsyn\n4lyXTMMwoNMbjmvNxk7NvPV6Vb36tNqmz9aCq38lWSwZn2GzmFVd4lNFoUdm8/D7NQAAHBqO2mqF\ni8tVuHKRZBgZBUJD0YSSqfSIXSsJAAAAAAAAAMBoRzAHGKFaOsPa1Jb9HJZIPKlVjV1qagmqwO+U\n32NTjscumzXzYMtACEcT6gzE1BuKy2wyyWIxyWoxy2I2yWIxy2oxyWre/tGy43XDMLRifacm/O1W\njXvkfnXXTdTrP7lFabsjo3tazWZVFntUWeTlASkAoF96px+h0ucfk2drk0IVNX1eb2j71Jw8X2bf\nqwAAAAAAAAAAwPAypIM52zpC2tISkMdpk9tplcsxpNsFhozecFxrNnUf0BmhaEKh6PvrNdwOq/xu\nu3weu3I8dnmc1gGdqJNMpdUdiKkzEFNnIKpoPNWvc8Y88ZCm3fMHhUoq9Op1tyvh9fdZYzGZVF7o\nUXWJ96AHkAAAI0t01pHS84+pcOWijII5khQIxwnmAAAAAAAAAAAwQg3ppEt3MKb1zb27fm4xmeR2\n2uRxWuVxbf/odlrltA/pTwM4qOKJlFZs6FTaMHZ73dneogkP360tR5+kjmmzsj43HEsqHEtqW1dY\nkmQxm+R32+XfEdRx2q07ptqYZDFnNm0mEI6rKxBTZ29MveH4Hj1nq/z15zTrDz9RLCdPr9xwh6IF\nxfu93mwyqTTfrZpSnxw2AjkAgAOXnjNXklSwarEaT/6fjGoC4UTfFwEAAAAAAAAAgGFpWCVaUoah\nQCSuQCQudb3/usVsktdpU47XoXy/Q36PXeYBnOQBDBdpw9CKjZ2KJXafNuNrXKdjv3e53G3Nmvjw\n3dr8kY9p6WXfVKi8ut/3SqUNdQVj6grG9njPbDLtWDm1c92Uecc/b187lUob6gpEFU+m9zzYMOTf\nuFZlC15W+VsvqmD1EpnSe7luH5JOt1699k8KVo7Z5zU2i1lFuS5VFXuZxAUAGFC2WTOVdDhVsHJx\nxjWBcHwQOwIAAAAAAAAAAIfSiHginUob6gnH1ROOq6k1IKvZrFyfXfk+p/L9DibqYNRYu6lbPaHd\nH+4VrHhPH/nRl2UP9GjNpy5V4Yr3VPnaMyp/60Wt/cSnterCK5Tw5QxoH2nDUDplaHs+qO+VVOZ4\nXEVLF6pswYsqf+sleVq2SJIMs1ldYycr6XJndl+bXasuuFxdE6fveQ+TSXk+h0ry3SrMcRLeAwAM\nCqfHpe4J01Sw/F1ZQ0ElPd4+a6KJlGKJFNPbAAAAAAAAAAAYgUZkYiWZTqu9J6r2nqgkye2w7grp\n5HjtGa/ZAYaTLe0hNXeGd3ut/PXnNO+Gb8mUSuntb9+wfaWGYajy5Sc148+/0cSH71btM//Wys98\nRQ1nni/Dajto/Tq6OlT29ssqW/CSSt59XbbI9t4Tbq82HXeqts79qLYdeYziOXkHdB+v06aSfLeK\n81w88AQAHBTBw2ercNk7yl+zVK1HHJVRTSAclyPHNcidAQAAAAAAAACAg21EBnM+LBxLKhwLanN7\nUGaTSbleu3I821de+T02gjoY9rqDMTVs6dnttbrHHtQRN/9UKbtTr//4JrUcecz2N0wmbT7+dG09\n6kSN/899mnz/nzTz1us17tH7tfSyb2nr/BOkAZ4mY4mE5G9sUE7jOvkb16lw+bvKX7NMJsOQJAXK\nq7XhtI9q69zj1T591gEHhGwWs0ry3CrJd8nntg/EpwAAQMbis+dI992mgpWLsgjmJFRIMAcAAAAA\nAAAAgBFnVARzPihtGOoMxNQZiEnavt7G47TuCOnY5Xfb5XKMul8WDGPReFIrNnQqvSPkIsPQlPtu\n1tS//lHRnHy9du1te13tlLY7tObcy7ThY5/U1PtuVt3jD+noa65U62FztOTyq9Q9fmrWvViiEfma\n1iunca38G9fuCuJ4Wrbufm+zRW3TZ6t57vHaOu+jClbWHnAYyGYxK9frUHGeSwWsqgIAHEpz50iS\nClYuybik90OrKAEAAAAAAAAAwMhgMoydT/OHntWNnVpW33rQ7+uwWuTz2OR325XjscvnsfOQHwck\nmUrLMCSbdWCnM/1/9u47Tq663OP450zdqbuzfVM2vYckm1ASQKqggCiKgCIKgoiI5dIEQZGOinrx\nIgJ2RVQUVECvXrqUNNJJ75tsrzM7vZ77x0IgpOxsSbKbfN+vV16bPef8fr9nNpnds+c853naQwm2\nNISIJTMAGNkMs//nDsb+60kiVSN59d6fEx0+Kq+5fDu2MOPn9zNs0X8wDYPaD36MlpnHYk0msCUT\nWN//J5XAluj+aE0mcLc04mmq21UF5x2JQCmhUePpevtPaMwEQqMnkPH4+vXarYZBoddBkddJwOfE\n67JjDNH3aVmZj9bW8KEOQ0REBkgynaXwmJk4Q508/dRCyKM6o81i4cQZVQchOhERERGRgaHrGSIi\nIiIiIu8qK9v3/W+VhtmLZCZLMpSlLZQAwGGzUFXioarETYFDXzLpvfU7OukMJxle6mVkuQe7zdqv\n+UKRJFsbuwi95+l6ayLO3HuuY9iiV+gcP5XX7nmUZKA07znD1eN4465HKF82n5k/+z6jn/87o5//\ne97jU4ES2mYcQ2jU+HcTcUaPJ+UP9Oq17YvFMPC57bsScfxKmBMRkUHKabcSnFbDyOefxrdzK+FR\n43sck8nliCXSuAv6185RREREREREREREREQGl8Miy8QWi+Kv3Ywlncx7TLysimjliLza56QyOWqb\nw+xoDlPsL2B4qYeAzzlkq3PIwVXXEtmV5LWjJUx9a4SqUg8jy7047b1L0AnHUmxr7NrViu0djlAn\nJ952NSXrVtI0+3gW3PY/ZNyePsXbfvQJbP7Q84xf8RqWrhAUFGC63JguF2aBC9zdH9/53HS5oKAA\nrNbudlrRFNlwkmRXglQ83acYoLs1lcdlx+fqTsYp9DqwWQe24pCIiMiBEqs5Bp5/mtK1y/NKzAEI\nx5SYIyIiIiIiIiIiIiJyuBlaiTmmiau1iaIt6ynaun7XR2/Djj5NlygqoX3qLNqnzqJtag2dE6aR\ncxbse3mgvStBe1eCAoeVYW9X0elv9RM5fHXFUmxt7NptW9Y0qWuN0NAWpbLYTXWFt8dKTLFEmm2N\nYVpD8T32uZvq+cAtV+Kv20btaefy5vV3Y9odfYq3IuBm7DA/TruV9PBzez3eYhgUep0Uep2MqfKT\nzmTpCCfp6ErSGU6QyuT2Oq7AYcXrsnf/KbDjddtVnUpERIa0zDHHAlCydgXbzrogrzFdsRQVxe4D\nGZaIiIiIiIiIiIiIiBxkg/rOt2PzBqpfeLU7AWfLeoq2rMMZDu12TNJfRHPNXEKjJ5L2ePc6jwHY\nbRbsNgsOqxW7FWxbNuNa9ibD57/I8PkvApCz2giOn0Lb1Fm0T5lF+9Qa4uVVe50zkcqytbGL7U1h\nygoLGFbqodDrHNDXL0NbJptj3fbO7ioye5EzTRraozR1xKgIuKiu8OFy7v6WjCcz1DaFae6M8c4s\nRjqFt3Envrrt+Oq2MeGvv8PV0cr6Cy7nrSuuB0vvq8r43Q7GDy/E7+lbQs++2G1WKgJuKgLdNxnD\nsRQdXUkSqQyedxJxXHZVwhERkcOObcZRpF1uStauyHtMONb3SnMiIiIiIiIiIiIiIjI4Gaa5j6yB\nweB9raLCw6oJjptCcNxkguMmExo7mXhpxa7jLIaBy2nDXWDDU2DDXWDHW2CjwGnDso+2U7kdO0i9\nPh9j0SLcy9+kaPM6LJl3b4rESivYcfq5vHX5dT22vfIW2Bk3vJCATwk6Amu2d9Aa3LPCzb4YQHmR\ni+pKHzYDmt7aROytdXjqtu1KwvHV1+JpqsPIvVt5xjQMVn7xG2w6/7Jex+i0WRkzzE+lns4/pMrK\nfLS2hg91GCIiMoDSmSzWc86iYvlC/v7kAtL+oh7HWAyDE2dU7fO8VURERERkMNH1DBERERERkXeV\nlfn2uW9QV8xJXncD7b5SUlOmk5o0FdPnxTAMXAa4DYPhBhiGgWF038hwOqy9vpFhqa6m4OJquPhT\nZEyTbe0hEouWYlm8EN+qpZStXsrkJ35B57gp1J1y9n7niiTSrN7WTs2EMrwue39eugxx9W3RXiXl\nQHertMwbb2D/8y+pWL6AEYk9xyeKSmibWkN4xGgiI0YTHj6a4LgpxCqH92oti2EwosxLdYVX1WpE\nREQOALvNSuf0OVQsX0jJ+pU0HXtyj2Nypkkklh7wCnYiIiIiIiIiIiIiInLoDOrEHOcP78feGsYO\neA7CeoZh4C8twn/O6XDO6cSTGTavXs/kj57CrEe+S9MxJ5HZR7usd2RzJqu3tTNnYhl2m/UgRC2D\nTSSeZkt9qOcD35HLUbX4P0x+4heUrlkGQFf1OEJjJhAeMYbw8NG7EnHSXn+/4ystLGDcsMI92maJ\niIjIwErMOQYeg5I1y/NKzIHuto9KzBEREREREREREREROXzozvx+uJw2XHOm03DFVxj5yI+Y9thP\nWPmlm3scl0hlWbO9kxnjStSK4AiTyeZYu72DXB4d4oxMmpGv/C+Tn/gFhbWbAWg47mTWX3Ql7dPn\nDGhcNouFsqICKovdFHrVak1ERORgyB19DAAl61bmPaYrlqZ3dfBERERERERERERERGQwU2JOHszr\nbyDyzJOM//vv2X7GeYTGTe5xTDCSZHNdiIkjiw5ChDJYbNoZJJbM7PcYazzGmH8/xcSnfo2npZGc\nxUrt6eey/sIv0DVm4oDFYjEMSvwFVARcFPsLsFiUJCYiInIwuavKCY0aR8n6VRjZDKa151PvcCx1\nECITEREREREREREREZGDRYk5eXAVetl0wx3UXPd5Zj94Jy//6PdgsfQ4rqE9isdlZ3jpwWjEJYda\nY3uU5mB8n/sdXZ2Mf/oPjH/69zi7gmScBWz62CVsPP8yYpUD82y8ARR6nVQEXJQVubBZe/5/KiIi\nIgeGz22nfcosCmu3ULhtI8HxU3scE0tmyGRz+hkuIiIiIiIiIiIiInKYUGJOnhwfOZu6v57JiNef\nY/Tzf2f7hz6R17gt9SHcThsBn9oHHc6iiTSb60J73WdJJpj22E8Y//QfsCXjpHyFrLnSNWdgAAAg\nAElEQVTky2z+6GdIFRUPyPo+l53ygJvyIhdOh3VA5hQREZH+sVkthGfMgX8/RcnaFXkl5gCEY2md\nO4qIiIiIiIiIiIiIHCb0KG6eSgsLWPuVW8kUuJnx8/txdHXmNS5nmqzd3kG8h/ZGMnRlcznWbu8k\na5p77AtsXM0ZXz6fyX/+JSlfISu+dDP/+P2LrP3cVwckKafAbmXOxDLmTCpnZLlXSTkiIiKDTGrO\nsQCUrF2R95iuaO/aWeVMk46uBKl0tlfjRERERERERERERETkwFPFnDxZDIOiKeNY89lrmPnz+5n+\nqwdY9l935DU2nc2xelsHNRNK1ZbgMLS5LkQ0kd5tm5HNMPmPjzL18UewZDNs/Phneevy68g5CwZs\nXbfTxoxxJRQ49DYWEREZrKxTJpPyFVKyLv/EnHAs/8ScrmiKDTuDu85FXA4bfo8Dv8dBoceBp8CG\nYRi9jltERERERERERERERAaG7uj3QlWJm8Uf/yyjn/sbY//1F7Z/6BN0TJmZ19hoIs262k6mjynW\nzZHDSHNnjMaO2G7bvHXbOPZ7N1OyYRWx0krevPFeWmrmDei63gI7M8aV4LCrQo6IiMhg5vM6aZ88\ng6o3X8PZ2UYyUNrjmHAs3eMx2VyO7Y1h6lojjPvb7xj93N959bu/JF4YIJ7K0NzZfX5itRj43N1J\nOn53d8KO3aZEcRERERERERERERGRg0VX5XuhwGEjUOxj2VdvwzBNZj94B2TzbxnQ3pVgW2P4AEYo\nB1M8mWHjzuC7G0yTcc88zhlXf4KSDauoPf1cnvvZ0wOelFPocTBrQqmSckRERIYAr8tO+9QaIP92\nVslMlkRq321Qg5EkSze0srM1QumKRcx69HsEtqxj/NO/3+PYbM4kGElS2xzmrW3tvLG6kcXrmtm4\nM0hrME46k+vbCxMRERERERERERERkbwoMaeXqkrctM04hu0f/BiBzesY948/9Wr8jpYwze+rsCJD\nU0NblGzOBKCgrZkP3HIls39yN1mHk/nfeoDFN32ftNc/oGsW+wqYMa5ELdFERESGCJvVQnTWMQCU\nrF2e97i9Vc3JZHNs3BlkxeY2YskMzs42jvvuDZiGhZTHx4SnH8caj/Y4dyyZoaE9yprtHcxf3cjS\nDS1saQjR0ZUgm1OijoiIiIiIiIiIiIjIQNLd/V4q8RdQYLey6sobSHn9TP/Nj3F2tPZqjg07g3RF\nUwcoQjlYWkNxAEa+/E8+dNXHqFz6Bo3HfIDnfvYM9Sd9aMDXKytyMX1sMVaL3rYiIiJDSWb2HEyL\nhdI8K+YAdMV2P1fs6EqwZH0LDe1vJ95ksxx33424Otp46/Jr2Xj+ZTjCIcb+7196FZsJhONpdrZE\nWLW1nTfeamLFpjZqm8KEoilyptmr+UREREREREREREREZHe6w99LhmFQVeIhGShl9WVfxxENM/Pn\n9/dqjpxpsmZbB8lU/m2wZHDpiqXItrVz3L3XM/e+G7CkUiz92u28fvejJErKB3y9qmI3U0cFsBjG\ngM8tIiIiB5a7tIjgmEkENq7GSOeXnP1OxZxMNsf62k5WbW0nkX733HHq4w9TsWIhDXNPZeMnP8/m\nj15MpsDNxKd+gyXV9wTwnGkSjCbZ1tTF8k2tLFjdRCS+Z/UeERERERERERERERHJjxJz+qCyxI3F\nMNhyzkV0TJjGqBefpXTV4l7NkcxkeWtrO5ms2gUMRR21DZzx5U9Q/cr/0jZ1Fs898je2fuQiOACJ\nMyPLvUyqDmAoKUdERGRI8rsdtE+ZiTWdIrB5XV5jwrEUrcE4b65roalz9zao5cvmM/XxnxKtGMbi\nG+4FwyDtL2LLORfibmum+qVnByz2dDbHqi1txBKZAZtTRERERERERERERORIosScPnDarRT7nWC1\nsuxr38E0DGY/eGfeT0C/I5JIs3prB7mcWgQMNY5nn8HT0siWj1zEKz98jOjwUQdknbFVfsYNKzwg\nc4uIiMjB4XXZ6Zg2G4CSdfm1s8rmTNZs7yCZ2b3CYkF7C8d99xuYVhsLb/kRaX/Rrn2bPnEpOZud\nSX/+JWQHrjJjKpNj5ZY24kkl54iIiIiIiIiIiIiI9JYSc/poWIkHgM5JR7H1nAsprN3CxL/9rtfz\nBKNJ1m7vIGcqOWeoCMdSlL32AgAbPnk5ptXW4xi308b0McWMH1bIiFIvJf4CPAV2rPupgjNhRBHV\nFb4Bi1tEREQODYvFID5rDgCjn/s7rpbGPs1jZDMcd98NFATbWfWF6+mYMnO3/fGySmpPPxd/3TaG\nL3ix33G/VzKdZdWWdpJptWIVEREREREREREREekNJeb0UbG/AJejOyHjrc9fS6KwmKmP/bRPN1ra\nuhJs3BEc6BDlAGlvaKdi2XxCoycQHVad15iyIhelhS5GlHsZP6KQo8aWcMzkcj4wcxjHT6ukZkIZ\nU0YFGFPpp6rYzdRRAYaXeg7wKxEREZGDxTp+HLWnfoSires580vnMeLVf/d6jqm/+wnlq96k7oQP\nsunjn9vrMesv/AKmYTD5iV/AACd+x1MZVm5uI51Rco6IiIiIiIiIiIiISL6UmNMPVSVuANK+QlZd\neSO2ZJxZj9zXp7maOmNsrg8NZHhygBgvPI81naJ+3ml5jynxF+xzn8NupdDjoCLgZlSlj0nVAcoD\n7oEIVURERAYJn8fJ4pu/z5Kv34ElnWLe3ddy9A9uwRaL5jW+YsnrTPnTz4hUjmDJ9ffAPqruRUaO\nof6EMyje8BblKxYO5EsAIJbMsHJzO+lMbsDnFhERERERERERERE5HCkxpx+qStxY3r4pUnvGx2id\nPocRrz9P1YKX+zRfXWuE2qbwQIa4X6FoilVb2nl9VSNvbW2nriVCJJ4+aOsPRZF4mtJXnweg4fjT\n8xrjsFnwexwHMiwREREZ5HxuOxgG2865kBceeorO8VMZ89zfOOPqj1O8bsV+x7pamzjue98gZ7Ox\n4FsPkPb693v8+ou+AMDkP/18wOJ/r0gizVtb28lklZwjIiIiIiIiIiIiItITJeb0g91mpbTw7Uoo\nhsHSr99OzmZn9oN3YIv2LcFmW1MXDW35PTndV53hJCs2t7F8Uysd4QSZXI72rgSbG0Is2dDC/NWN\nrN3eQWN7lHgyc0BjGWpa28JULXqFeEk5nROm5TVmf9VyRERE5Mjgcdl3JXSHq8fy4o//yLqLrsTT\nVMep117ClN8/hJHd87zLyGY47r4bcIY6WXnVTQQn9nz+0TnpKJpr5lKxfAGBjasH/LUAdMVSrN7a\nQTan5BwRERERERERERERkf1RYk4/DSv17Pp7eNR41n36Ktxtzcz45Q/7POemuiAtwfhAhLebjq4E\nyze2snJLG8FIcp/HpTI5WoJxNuwMsmhdMwvXNrFhRyctnTHSmeyAxzWUZF9/HWc4RMO8U8GS39tH\niTkiIiJiMQw8BfZdn5t2B6uvuI7/fP83JIrLmP67n3DK9Z/D3Vi327jpv/kxZauXsvOkD7Pl3Ivz\nXm/9RVcCMOmJXwzMC9iLYDTJmm0d5EzzgK0hIiIiIiIiIiIiIjLUKTGnn4q8TtxO267P133qSkKj\nxjPuH09QuurNPs1pAutrO+noSgxIjG3BOEs3tLBqazuhWKrX4xOpLI0dMdbWdrJwbTO1TeEj8uno\nSDxNyX+621jVH//BvMZYDIOA33kgwxIREZEhwue277GtdeaxPPfo39l50ocpXbucM68+j+oXngHT\npHLRK0x+4heEh1Wz5Nq74O2KO/loqZlHx4RpjHj9Obx12wbyZeymI5xk7XYl54iIiIiIiIiIiIiI\n7IsScwbAe6vmmHYHS667C9MwOPqB27Ck9l2ZZn9ypsmabR10RXufSANgmiYtnTGWrG9h9fYOwvH0\n3g5i9P/9lWm/fgCy+VXCyeZMtjV1sXhdC00dsT7FNlS1dsYYNv9F0m4PrTOOzWtMwOfEmmdlHRER\nETm87S0xByDtK2ThrT9i8Q33gWly3PdvYu7d13Ls928ma3ew4NsPkPF4e7eYYbD+U1/EME0m/fmX\nAxD9vrWFEmyo7cRUco6IiIiIiIiIiIiIyB6UMTAAKgJurO95grljyiw2nfdZfHXbmfr7n/Z53qxp\n8tbWdqKJvSTVvE8uZxKJp2nujLGtsYs317ewtraTyD7GFrS3cOK3ruKYH97K1D8+yrTHftKr2JLp\nLOt3dLJ0Q8t+22IdThLLVuJtqqPpmA+QczjyGqM2ViIiIvKOQs9+zh8Mg9ozz+P5h/9G+5SZjHzt\n/3CGQ6y4+hZC46b0ab36408nPGI0o194hoK25t5PkM1SufhV7OFQj4c2B+Ns3BnsQ5QiIiIiIiIi\nIiIiIoc36+233377oQ5if2J9aL10sFktBvFkZrckmLbpc6h++Z9UvvkaDfNOJVlc1qe5c6ZJeyhB\nWVEBNquFnGkSTWQIRpK0BOM0tEXZ3tTFloYQDe1R2kIJQtEU6ey+W02NePXfnPitqyjatpGm2ceD\naTJ8wUt0TJpBZPioXsWXyuRo6ogRiafxuhzYbYdnrlcknsb2m19RvnIR6z59FV1jJuY1buKIImzW\nw/NrIgPH43EOie91IiLSP3ablXgiQzSR2ecxaV8h2888j7TbS+vM49j0ic/1qoXVbiwWMo4CRsx/\nAQyD5jkn5D3U2dnGCXd8jal/eBhnqIOG40/vcUwknsZmteDfXwKSiIiIiBw2dD1DRERERETkXR6P\nc5/7DHOQ15xvbQ0f6hDy0hVNsWxT627bKpa8wUm3fIHO8VN58cEnMK22Ps/vtFuxWgwSqSy5Pv6T\n2SNd1Pzkbka99CwZZwGrrryBLedeTNHmtZz2XxeTKXDx/MN/JV4+rE/zWwyDYSUeRlX6DrsEne1N\nXYz75Icp2rKeZ/7yBmmvv8cxPpedOZPKD0J0MtSVlfmGzPc6ERHpn2Qqy+J1zWQP0im4JZXi7EvP\nwBaL8M/HXiTtL+pxTNmKRRz33RtwdbQBECut4J+Pv5xXgpDFMKiZUIrPreQcERERkcOdrmeIiIiI\niIi8q6zMt899h1f2xCHk9zjwFth329Z89AlsP+M8ApvXMuGp3/Zr/mQ6SyyZ6XNSTvnyBZz5xY8x\n6qVn6Zh0FM//9K9s+ehnwDAITpjGiqtvwRkOMe+uazHSfXvSJWea1LVFWLyumbqWSJ9jHYzCG7dR\nvHE1rTOOzispB6CkUG2sREREZHdOh5Xqin2fnA+0nMPBxvMvwx6PMf7ZP+7/4GyWqY89xMk3X44z\nFGTFF29i58kfxt3WjG/ntvzWM03Wbu8ks5/qjSIiIiIiIiIiIiIiRxIl5gygqlLPHttWXHUTiaIS\npv/uQTz1tQc9JksywcyH7+Xkmy6noKOVNZ/9Ci/99+NERo7Z7bit51xI7ennUrJhFTN/dn+/1kxn\nc2xuCLF8YyvZ3NC/KRNLpCl65TkA6o//YN7jSvxKzBEREZE9jSz34nL0vZJib209+0JSvkIm/P0x\nrIn4Xo9xdrRy0je/wLTHfkKstIKXf/QYmz55Gc018wAoX7Eg7/XiqQwbdwYHJHYRERERERERERER\nkaFOiTkDqCLgwmrZvcR/2l/E8mtuxZpKcvQD34G+VJHJZqlc9ApVC17Gv20j1ngsr2GBjas548vn\nM/Fvj9E1ciwv/c+fWPvZazBt9j0PNgyWfu12QqPGM+Hp3zPilf/tfZzvE46n2VwX6vc8h1prMMGw\nBS8B0DDv1LzGOO1WtXAQERGRvbJYDMYNy68C30DIuD1s/ujFOEOdjPn3U3vsL1++gDOv/gQVKxZS\nP+80nv/pX+mYMguA5prjAahYln9iDkBLME5DW7T/wYuIiIiIiIiIiIiIDHEH71HdI4DNamFEmZfa\n5t17K9ed9GHqX/oHwxe8xJh/P8m2sy7Ie86S1Uup+em9BDav3W17oqiEaOVwolUjiVaOIFI5gmjl\nCKJVI0kUlzHpz79g6uMPY8lm2HTeZ1l1xXXknPuv4JJ1uVnw7R/zwa9cwNH//W2C46bsUVmntxo7\nYvg9DqpK9qwmNFR01rUwe+ViOsdPIV4+LK8xqpYjIiIi+1Na5CLgddIZSR6U9TZ97BImPvlrJj75\nK7Z85KLuRO1slqmP/5Spjz+MabWx4ks3s+njnwPj3UTzWFX3eWbZysWQzYLVmveam+tD3e1eXXtJ\nChcREREREREREREROUIoMWeAja70EYwkCUVT7240DJZ99TbKVy5mxs/up/HYk0mUlO93HldLIzN+\n+UOqX/4nALWnnUtozAQ8TfV4GnfiaaojsGktJetX7XOOWGklb95wD+1zTsButWC1GlgtFmxWA6vV\nwGaxYLNaiMTTBKPdN4XC1WNZcu2dzL3vBo6/82u8+D9PkHW5+/U12VwXwucemjdlYok03tdfwpJJ\n0zDv9LzHlRYqMUdERET2b/yIQpZuaCXXl4qKvZQqKmbbhz/JhKd/z8hX/peWmnkc990bKV+5mGjF\ncBbc+iM6J8/Y69iWmnmM/ddfCGxas89j9iZnmqzd3sGcSWVYLSrUKSIiIiIiIiIiIiJHprwSc1au\nXMkPfvADHnvssd22v/TSSzz00EPYbDbOP/98LrzwQtLpNDfffDP19fVYLBbuuusuxo0bx9q1a7nq\nqqsYPXo0AJ/+9Kc5++yzB/wFHWqGYTB1VDFLNrSQzuZ2bU+UVrDqCzcw539uZ/aDdzL/Ow/u9jTy\nO6yJOBOf/BWTn/gFtmSCjklHsfzqb9IxtWbPxbJZXO3NeJrq8DbW4Wmqw9NYR1F7I5bp04jcegeT\nSwJY9rLO+9W3Rtja0EXWNNl56jmUrlnG+Gf+wOwH7+TNG+/ba6z5ypoma7Z135SxWYfWTZnWYILh\nb7exqj/+tLzGWA2DIq/zQIYlIiIihwFPgZ1hJR7q2iIHZb2Nn7yMcc/+kem/fRDro9+nINRB/fGn\n8+b195D2Fe5zXHPNXMb+6y9ULF/Yq8QcgFgyw6adISaPCvQ3fBERERERERERERGRIanHxJyf//zn\nPPPMM7hcrt22p9Np7rvvPp588klcLhef/vSnOe2001ixYgWZTIY//elPvPHGGzzwwAM8+OCDrFmz\nhs9//vNcfvnlB+zFDBZOh5XJ1QHe2ta+2/atZ19A9cv/YPj8Fxn+2nPUn/Shd3eaJiNe/Tczfn4/\nnpZGEoFSln31Nmo/+DHY1xPGVivx8mHEy4fRNuNYAArdDmaOL8ViMXpVDml4mZdifwEbdgQJRpOs\n/OJNFG94i9EvPE3bUXN61X5rb+KpDBt2BJk2prhf8xxsba0hZix+lWjFMEJjJ+c1JuB3YrH0PZFJ\nREREjhyjq3w0d8Z2S+g+UGIVw9lx2jmMfuEZcjY7y6++hc3nXdJjAnbLrLkAlC9fwPpPf7HX6zZ1\nxijyOaks7l8VRhERERERERERERGRoajH8iXV1dU8+OCDe2zfsmUL1dXVFBYW4nA4mDNnDm+++SZj\nxowhm82Sy+WIRCLYbN3pIatXr+aVV17hM5/5DLfccguRyMF5MvhQKSksYGSZd/eNFgtLrr2TrMPJ\n7Ifuxt4VBKBwyzpOueFzzLvnOgo621h/0Rf416/+Re2ZH993Us5euBw2po8t7nNSiMtpY9aEUsYP\nK8RwOlnwrf8m5Suk5id3U7R5bZ/mfK/WUJy6lqHz7x5LZHAtno8jGu5uY5Vn1aASv9pYiYiISH5s\nVgtjqvwHbb3Vn7+WrWddwEv//TibP/7ZvM5vUkXFBMdOpnTNMizJRJ/W3bQzSCyR7tNYERERERER\nEREREZGhrMeiKh/60Ieoq6vbY3skEsHn8+363OPxEIlEcLvd1NfXc9ZZZ9HZ2ckjjzwCwIwZM7jg\ngguYPn06Dz/8MA899BA33XRTjwGWlfl6PGawKinxYq5pIhRJvrtx8hQ2X/FfTHr4exz3yL1kPF5G\nPPMnDNOk+cQPsuFrtxIbMRrXvqfdK7vNwtzpVXhc9n7HXVbmY+LYUt7a4uet237EnBuv4IS7r2X+\nr58l4+vfjaOWcIrR1XYCvsGfvLK1PsToJf8BoPO0D+Pz9hyzYcCkcWU47dYDHZ4cZoby9zoREemf\n0lIvkXSOcDR1wNYwjO6Wq5bCMWz5zv1kcya9+cnTedyJFG1dT/XW1bQfc2KfYqjrSDB3ehHWIdba\nVERERET2TdczREREREREetabbke78Xq9RKPRXZ9Ho1F8Ph+/+c1vOPHEE7n++utpbGzk0ksv5dln\nn+WMM87A7+9O6jjjjDO466678lqntTXc1xAHheGBAppawmRy77YneOujl1D+/DNUvfAsAF3V41jx\npW/SfPQJ3QdEevckssUwmDmuhFgkQayXY/dnbLmHurPOYv2yq5j8x0eZcsd1zP/Og3lXjtmX15bu\n5OhJZdhtgzt5ZePWVk569QVSXj87xh+FmcfX1u920BWMHYTo5HBSVuYb8t/rRESkfyp8Dhqau/o0\ntqzQxZgqHxaL0Z1883YSzq5knPedu5mmSVc0RXtXkvauBNE8KtnUTTuGMfwC7/xX2T7l6D7FGY4k\nWLAiw6TqQJ/Gi4iIiMjgousZIiIiIiIi79rfgwt9flx13Lhx1NbWEgwGSaVSLFmyhJqaGvx+/65K\nOoWFhWQyGbLZLFdccQWrVq0CYMGCBUybNq2vSw8pLqeNydVFu20zrTYW3/hdWqfPYfnVt/DcI397\nNymnDyZVF1HodfY31D0YhsHIci+ue+6kffZchs9/kYlP/abf8ybTWdbVdmKaZv+DPEDiyQzWt1bi\nbm2k8diTMW35VSIqLRz8lYBERERk8Cn0Oikv6l3NRJvFwpTqANPGFOMusFPgsOG0W7HbrNisFqwW\nyx5JOdB9jlfodTJ2mJ9jJpdz3JQKxg8vpNjn3OvxAK1HzSFns1OxfEGfXt87GjtiNHcqiVlERERE\nREREREREjhy9rpjz7LPPEovFuOiii7j55pu54oorME2T888/n4qKCi677DJuueUWLr74YtLpNNde\ney1ut5vbb7+du+66C7vdTmlpad4Vcw4HpUUuhpd6qG97t8JQ15iJvPKj3/d77jGVfioC7n7Psz9u\nrwvzt78jddoHOOoXPyRT4GbrORf2q3JORzhJbXOY0ZX9a411oLQG4wxb8BIA9cefnve4Yr8Sc0RE\nRKRvxg7z0x5KkM0jebnI62RydREFjj4XwNzF5bQxoszLiDIvmWyOznCS9lCC9q4E6Wx31cesy0P7\n5BmUrlmGPRwi7Svs83obdwbxuRy4C/ofu4iIiIiIiIiIiIjIYGeYg7lsCUO/ldU7cjmT5ZtaCcd7\nbhWQr6pi90FtBWBbvAj/JRdiDXay45SzWfr1O8h4vH2ezwCOGlsyKJNZlm5oYe6l5+DbuZVn/rKA\njNvT45gCh5W5UysPQnRyuFHpZxERecf2pi62N+37Z4LFMBhb5WdEed/PwfJlmiZtoQRrtncAMOX3\nDzH9dz9h/m0/pv7EM/s1t89lp2ZCGRZL/1qkioiIiMiho+sZIiIiIiIi7zograykdywWg6mji7FZ\nBuZLHvA6mTCyqOcDB1Dm2OMIvvwGiTnHUv3K//LBa86naPPaPs9nAutqO0mmsgMX5ACIJzNkt26j\naOsGWmbNzSspB6DU37v2EyIiIiLvN7LcS4Hdutd9PpedOZPKDkpSDnS3vCorcuF6uypPS808AMqX\nL+z33OF4ms5wst/ziIiIiIiIiIiIiIgMdkrMOYhcThsTR/a97P87PAV2po0pxtKPVlJ9lRs+gvAz\n/yL85a/ha9jBaV//FGOf/SP0sfBSOptj7fYOcoOocFNrMM6whd1trBrm5d/GqqRw8FX+ERERkaHF\narEwdvju54sGMKrCR83EMjwF9oMeU0Vxd/Jxx6SjSLvcVCxfMCDzBiNKzBERERERERERERGRw5/t\nUAdwpCkPuAlGUjS0R/s03mGzcNTYYmzWQ5hTZbeTuP1u0sefiPeaq5jz4J2Ur1zMkmvvJOPZd3mm\nfQnFUmypD1FZ7CabM8lkc2SzJpmcSTabI5N9Z1vu7f0m44b78bkdB+DFQVsoQc38dxJzTs1rjM1i\nodB7YOIRERGRI0t5kYsGr5NgJInbaWNydQC/59CdZ5QXudneFMa02WmdcQzDFv0HV0sj8fKqfs2r\nijkiIiIiIiIiIiIiciRQYs4hMH54IV3RFJFEulfjrIbB9LElFDgGxz9b9swPE3rlDRyXXcrIV/9N\nYNMaFtz63wQnTuv1XPVtUerb8k9W2tLQxazxpb1epyeJVIZ4Uwulby2hffIMEiXleY0L+J2HpIKR\niIiIHJ7GDy+koS3KuOF+rAPUCrWv3AU2/G4HXbEULTXzGLboP5SvWEjtmR/v17yRRJp0JovdtvfW\nXSIiIiIiIiIiIiIihwO1sjoELBaDqaMDWHuRyGEAU0YF8B+gKjF9NnwEqX/9H/WXX4O3cSenXftp\nxj39eI+trezhEOVL32DyHx9l3h1f5axLz2TK4w/nvWwwkqSjK9Hf6PfQGkxQtfg/WHLZXrWxKlUb\nKxERERlAXpediSOLDnlSzjvKA93trJpr5gEMWDurzkhqQOYRERERERERERERERmsBkfplSOQu8DO\nzPGlJFIZDMPAMMBiGLv+bsC7fzcMrBYDl3OQ/nPZbDi+ex+bjjuB6m9cw+yH7qZ85SKWXHc3aa8f\nazxKYNNaijeuJrBxNcUbV+Nt2LHbFKZhMOUPj7Dtw+fnXaVma0MXAZ8TY4Aq1aQzWXY0hzn67TZW\n9cefltc4Ayj2KTFHREREDl/lRS62NnTRNXoCiaISypcv6E7E7ud5WDCcpLzINUBRioiIiIiIiIiI\niIgMPoM00+PI4Pc48HsGWQWcfij6+EfYNmUKJddcyYjXn6d4w2rSbjf+HVsx3lNBJ+UrpGn28XRO\nOoqOidPpnDidysWvcvSPv8PEp37Dqi9+I6/1Iok0TR0xqko8AxL/lvousvE4lWKtSZQAACAASURB\nVEteJzysmnD1uLzGFXqc2G2D42l2ERERkQPBYbdS5HXSEU7QUjOX6pf/iW/HFsKjxvdr3mAkOUAR\nioiIiIiIiIiIiIgMTkrMkQFVMnkcnU8+S/uddzLpj49ijxTQNn0OHe9JwolWjdzj6eraM85j6uM/\nZdw/nmD9RVeSKgzktd72pjDlAVe/2zx0hpM0dcaoXLEQWyJGw/Gn5/0EeInaWImIiMgRoCLgoiOc\noHlWd2JOxbIF/U7MiSUzJNNZnHbrAEUpIiIiIiIiIiIiIjK4KDFHBlwg4CF8z1388+IvErfYwdrz\njZacw8GGCy6n5uH7mPC337Hmsq/ntVYynaW+NUp1ha/P8eZMk011QQCGvd3GqmFefm2sAEr8SswR\nERGRw19pUQHWnQYts+cBUL5iIZs//tl+zxsMJ6kodvd7HhERERERERERERGRwUiJOXJA+NwO5swe\nQyqdw8TENLsTYEwTzL18zOZMNp99IVP+8Cjjn36cDRdcTsaTX7LNjuYIVSVu7La+PWm9szlCLJmB\nXI5hC18iWRigbWpNXmPdThvuAr2NRERE5PBntVgoLSyg2RxOZFg15SsXY2QzmNb+nQt1KjFHRERE\nRERERERERA5j/ev/I7IfNqsFd4ENT4Edr8uO3+2g0OOgyOsk4HNS7C+gpLCA0iIXFcVuKkaUsvH8\ny3BEw4x/5g95r5PJ5ahtivQpxlgiQ21zGICSdStwdbTRMPfUvKr8gKrliIiIyJGlPNCdQNNcMw97\nLEJg4+p+zxmMJPs9h4iIiIiIiIiIiIjIYKXEHBk0RlV42f6xi0l5/Uz862+xxmN5j21ojxJPZnq9\n5qa6IDnTxNXaxHHfvRGAHaecnff4kkIl5oiIiMiRI+B3YrdaaKmZC0DFsgX9njORzvbpPE5ERERE\nREREREREZChQYo4MGnablaoxlWw67xKcoU7G/usveY/NmSbbGrt6tV5zR4zOSBJHsIOTbr4CT3MD\nqy/9Gi1zTsgvXquFQo+jV2uKiIiIDGUWw6A84KJl5nGYhkH5ioUDMq+q5oiIiIiIiIiIiIjI4UqJ\nOTKojCjzsv0TnyNT4GbSX36FJZXKe2xLME5XLL/j05kcWxpC2KJhTrrlSvw7t7Lhk59n3cVfynu9\nkeVeDMPI+3gRERGRw0FFwE2qMEBw3GRK1i7Hmoj3e87OsBJzREREREREREREROTwpMQcGVRsVgvD\nJlaz+dxP4WpvYfRzf+vV+K0N+VXN2doQIhuJcuK3ryaweS1bz/okq668EfJMtBlb5ae6wter2ERE\nREQOB36PA5fDRnPNPKzpNKWrl/V7TlXMEREREREREREREZHDlRJzZNAZVuphx6euIGt3MPmJn2Nk\n0nmPDUaStIcS+z0mFEnS1Bxk3p1fp2z1Unae/GGWfu32vJNyJowoUlKOiIiIHNHKAy5aauZ1/335\n/H7Pl8rkiMTzP+cTERERERERERERERkqlJgjg47FYlA5dSxbz74AT3M91S//s1fjtzZ2YZrmXvfl\nTJONtR0c972bqFryGo3HfIBF3/geWK09zmsAk6sDDC/19CoeERERkcNNRcBN27TZZO12KpYvHJA5\nVTVHRERERERERERERA5HSsyRQamy2M2Oz3yRnNXG5D/+DLLZvMdGE2maOmJ73VfXHGby925h5Kv/\npvWoo1nw7R9j2h09zmkxDKaMLqay2J13HCIiIiKHK3eBDXdxEe1TZlG0ZR2Ors5+z6nEHBERERER\nERERERE5HCkxRwYlwzComjWZ7Wd8DH/dNka88Xyvxm9vCpPN5XbbFk+k8d9xK2P//RQdE6bx+p0P\nky1w9TiXxTCYNrqY8qKejxURERE5UlQUd7ezMkyTshWL+z1fMJzaZ9VDERGRI008maElGCeezBzq\nUERERERERESkn5SYI4NWWZGLuku/jGmxMOUPj0IvbtQk01nqWqK7bcvceTcTnvotXdXjeO3en5Px\neHucx2oxOGpsCSWFBb2OX0RERORwVl7koqVmLgAVyxf0e75MLkc4nu73PCIiIkNNMp2lLRRnW2MX\nq7a088ZbjSxa18za7R0s3dBKS+feqwKLiIiIiIiIyNBgO9QBiOxP5bEz2HnyWVS//E+qFr1C49xT\n8x67syXCsFI3dpuVzI9/zNhf/DfRiuH857u/JFUY6HG8zWLhqHElFHp6bnUlIiIicqRx2K0w52jS\nbg/lA5CYAxAMJ/G7de4lIiKHr0w2R1c0RTiWJhxPEY6mSWb23b47k8uxtraTznCS8SMKsVr0jJ2I\niIiIiIjIUKPf5mVQC/ic1F/+FQCm/OGRXlXNyeRy1DZFsD/+O6ru+Tbx4lL+871fkSit6HGs3Wph\n5ngl5YiIiIjsT3mZn9YZx+Jr2IG7ub7f8wUjyQGISkREZPDJ5nLsaA6zaG0zq7a2s62pi7ZQYr9J\nOe/V2BFj6YZWIqouJyIiIiIiIjLkKDFHBr3yDxxD/fGnU7J+FeUrFuY9zhaN4H3oAQqv/xpJXyGv\n3vdLosOqexzntFmZNaEUn57WFhEREdmvksICWmfPA6B8ef7nafsSiqTI9SIRW0T6JpnKYuq9BoBl\ny2Yy0RiZbI50JksynSWRyhBPZogl0kTiacKxFF3RFKFIklxOXzfpnZxpUt8WZfHaFrY2dpHO5vo8\nVyyZYdnGVupaIwMYoYiIiIiIiIgcaGplJYOe3+1gxxe/zvD5LzLlD4/SUjNvv8e7WhqY8LfHGPuv\nv2CPRUl5fLx2z8/oGjOxx7UK7FZmji/F5dRbQ0RERKQnNquF1AdOgZ/eS8XyBWz/8Pn9mi9rmoSj\nKQq9zoEJUET2kM7kWLKhBdPsrlBa7HcS8DkpcBxZvwMlUhlSv/kd4771X7RPmckr9/+OnKPnhzO8\nBXamji7GXXBkfb2k90zTpLkzzvamLhKp7DsbqXzzVYxslvYps0gVFfd63pxpsrk+RDCcZFJ1EXab\ndYAjFzk8ZVMprN+6FWPnTjZ+5wfk3J4exxR5nVQUuw9CdCIiIiIicrjTlSQZEkpPO4Gmo0+kcsnr\nlKxZTvu0mj2OCWxczcQnf82IV/8PSy5LvLiU9RddyZZzLiLtL+pxDQOYNqZYSTkiIiIiveCbM5N4\ncWl3xRzTBMPo13ydkaQSc0QOoG3vqdjRGorTGooD4CmwU+zrTtIp8jqxWPr3Xh6sOroSNLRFKfjH\n35l77/UAlKxbycxH7mP5177T4/hIIs3SjS1MHFlERUA3a2XvWoNxtjeFiSbebTtlSaWY88BtjH7h\n6V3bwsOqaZ9aQ/vUWbRPmUVo9ASw5pdo09aVILyhlcnVAQI+/dwU2ZdwLEVTYyejbryGytefAyDb\n0cHrdz1CzrH/905TRwyrxaC0yHUwQhURERERkcOYYQ7y+tWtreFDHYIMEo1P/x8zrryAxmNP4vW7\nH+3emMtRtegVJj35a8reWgJAcMxENp7/eXaecnZeTzy+Y1iJh4kje07gERloZWU+fa8TEZEhK2ea\npC6+hJEvPsv/Pfp0XlUK96fQ46BmQtkARSci79UVTbF8Uys9XQSwGgaF3u5qOsW+giFfHSadydLY\nHqOxPUY8laFy0SuccPtXyTqdvH7nT6n56b0Ubd3A4hvupfbMj+c9b1Wxm/EjCrFa1CVcunV0JdjW\nGCYcT+223RHs4IQ7vkrpmmW0T5pB43EnUbJ2JSXrV+KIdO06Lu320DHpqO5knSmzaJ8yk7SvcL9r\nGkB1hY/RlT6MfibHivTWYL2ekcnmaO6M09QeJdYR4vg7vkrlsvm0zDyWtNvL8AUvUT/vdBbc9gCm\ndf8/46yGwczxpfg9ankvIiIiIiL7V1bm2+e+oX11TY4ogbNOp/Woo6la/Cola5ZRuG0jE//6W3x1\n2wFoOvpENpx/GS2zj+/1k9p2q4UxVf4DELWIiIjI4c1iGCROPAVefJaK5Qv6nZgTjqXJ5nK60S0y\nwEzTZFNdsMekHOhuK9cRTtARTgAhHDYLfrcDv6f7j89tHxLv0VA0RUNblNZgnNzbzySVL1/A8Xd+\nnZzNxut3PULbUUcz/7b/4YNfuYA5P76d0JiJBCdMy2v+xo4Y4ViaqaMDuAvsB/KlyCAXiae720tF\nknvs82/fxAm3fRlvUx07Tj6LN2+4l5yzoHtnLodv51ZK1q6gdO1yStatpGL5QiqWL9w1vn7eaSy8\n9Uf7rOxhArXNYYLhJFNGB464tnQi7xWKJGlsj9EajJM1TezhECd9+0uUrl1Bw9xTWXDrj8AwOPHb\nX2L4ghc5+oe38uYN98F+fqZlTZO3trYze2KZqmyLiIiIiEifqWKODCmtTz7D1C9fsuvzrN3OjtPO\nZeMnLu3XTaCJI4oYVtpzb2mRA2GwPmEmIiKSr+imbYw+YSYNx53MG3c90u/5ZowtodhfMACRicg7\n6lsjbKoPdX/Sz7ZzFsPAU2Cn0OPA77Hj9zgGTTJANJGmM5ykqT1G5D1thABK1izjpJu/gJHL8Pqd\nD9My54Rd+yoX/4cTv301sfIqXnjoSVL+QN5rWg2DCSOLqCxWa6sjUTqTY8n6FpKZ7B77Kt58jXn3\nXIc9FmHNJdew9rPX9Pjes4dDlKxbScm6FVQufpXiTWvyruxht1qYOrpYra3koBkM1zOS6SwtnXEa\n26PEkpld250drZx0y5UUbd1A7Wnn8uYN92DaupMorfEoJ998BSXrVrL5oxez/Jpv9fjedDtt1Ewo\nxW7Lr92ciIiIiIgcefZXMcd6++23337wQum9WCzV80FyxHBMGEf85VexxSJsPP8yFn3zB+w8/VyS\ngZI+z+lz2Zk4skgln+WQ8Xic+l4nIiJDmqMkgPmnJyjcupENn/w8WPt3w8Jpt+mmosgASqWzrNnW\nSc40Gf2vJznlhs9hi8domzYHsw/vVxNIZbJ0xVK0hhLUtUZpbIvRFU2RSGXI5kwsFgOb9cBW1TFN\nk0g8TWtnnB0tYTbVhdjZGqEjnCSVye12bNHGNZz8zS9gTSVZcNuPaT725N32R4aPBmD4/Bcp2ryO\nHad+ZL8VFHaLA2gLJUgkswT8Tiz63fKIsr62k673ta7CNBn/9OMcd//NYJosvul7bDnvkrwS4nLO\nAiLDR9E66zhqzziPknUrqHrzNVytTTTMO22/c+RMk5bOGJa329GJHGiH6npGOJaisT3KlvoQWxq6\n6AwnSWff/b7vbqrnlBsvpXDHVjZ/9GKW/ted8J7ENtPuoO7EM6h881WGLXoFI5uhtWbuftdMZ3N0\nRVJUBNy6higiIiIiInvl8ez7d3El5siQYrVaqD39XBaddQmtNfPIuvpf5Wb6mJJB83SnHJmUmCMi\nIoeD5Np1+Fe8ScusucQqR/RrrlwOVTMUGUAb60KE4ynKli9k3r3XY0slKVu9lOHzX6R90gwSJeX9\nXiObM4klM3RGkjR3xqlrjdDQFqUznCSSSJPO5DCM7ooefb2hmTNNumJpWjpj1DZH2FwXor4tSkc4\nSSyZ2dWu6v382zZy8k2fxx6LsPjm71P/gQ/t9bjWo44msGktVUtew5LL0tLDTdr3iyTStIeSFHkd\nOFRR4YjQ1BFjR8vu1UKMTJqah+5m2uMPkywq4bV7f0bzMSf1aX7TaqX+hDOoWL6AYYv/gy0RozmP\n9t2dkSSReJpifwEWixII5MA5WNczsrkcHV0JdrZE2LSzOwkzGEntkYQJ4NuxhVNuvBRvcwNrP30V\nq774jb0mWuacBdSf8EGGzX+REQteIuN00T5t9n7jSKazxBIZyooKlJwjIiIiIiJ7UGKOHFa8bgct\noQSZbP+7sFUVuxle5h2AqET6Tok5IiJyODByOTxPP0WiuJSW2cf3a650JsuIMq9uJooMgGAkyZaG\nEN767Zz8zS9gyXS3cUq7vQxb/Cpj/v0URi5L29Safle7er9sziSeytIVTdEWStDQFqWuJUJbKEE4\nliIS72471RlO0tGVoKMrSVsoQVsoTlswQWswTmtLEO/dt+O/7Zu0L1/LFqufZquHeGrfiTjv5a3f\nzik3XkZBqJMl19/Djg9+bN8HGwZNx57EiNeeY/iClwiOnUy4emyvXnM6k6O5PYY72EZhQy25ispe\njZehI57MsHpbO+/9b2iPdHHCd75C9av/Jjh2Eq/c/xvCoyf0a52c3dGdPLDwZYYvfJmsw0n79Dk9\njoslM7SFEgR8TrXekQPmQF7PSKayNHfGqW0Ks2lniObOOJF4mmxu39/7AxtXc/I3Po+rs52VX/wG\n6z9z9X4T2bIuDw3zTmPEa88x8vXniBeXE5w4bb9xxZIZsllTbVdFRERERGQP+0vMMUwzjytZh9Ch\n7lMsg1MskWH5ptbdytT2ls1i4dgp5TjsukAlh9Zg6MkuIiLSb9EoxROr6aoezwsP/7Xf000fXUxp\nkWsAAhM5cuVMk6UbWkm1tnH61z+Fr247i2+4l9ozPw5A+bL5HP2jb+FpaSQ4djKLb7yP0LjJhzjq\nd3nrtjH33hsIbF6LabFg5Lp//2ubNputZ32Sug98iKzLvc/x7uZ6Tr3us7hbG1l2zbfY8rHP5LVu\n4dYNnPb1T2Farbzw4F+IjByTd8zWeIxJT/6aSX/+JbZknPoPnceGr3+bbFEAq8XAYjGwGm9/fPtz\ni2HgsFsI+Jyq5jpEmKbJik1thN6TkOCpr+XEb1+Nv24bDXNPZdHN95NxD1z1N1dLI6dd+xncrY0s\n+a872Hb2hXmNs1oMJlUHKNfPVDkABvp6RjKdpbUzTnNnnPD7W8T1oHTVYk687cvYEvH/Z+++w+Oo\nrj6Of2d7r+rVtuTejSs2zRgCwZQECKEkQAqEkoQkQEhoIZQk9BBCIAECeektFIMpwQUMtsHg3pss\nW71rtX135v1DxthYlnZl2Zbl83kePStp5965K6200sxvzmHJL2+j7NRzUh7rLN/C8b/5AebWJhbf\ncA/bTzityzGleW4KsuRiPyGEEEIIIcTXMjOd+7xPKuaIw5LRoMPjNFPbFKa70bIBeS68Trm6RRx6\nUjFHCCFEn2AykZw7D8+qL9k88/udnixPaTqDXq5EFmI/ba9to66+lal/uBrfhlWsO/dHbPjej3fd\nH8wtZOu3zsbc2kTu5+3VcwAaho0B3aG9gKH4g9eZduvV2Gsr2fqt7zL/z0/QNGgExmAbmSs+p+DT\nDyl98zlstZWEfZl7teOyNNRy/HWXYK+pYMWPf83Gsy9Jed9RbwbBnAKK575N9rJFbJtxJqrR1Pkg\nVaX4g9eZetvPyVs0l5jLQyC/mKzPF5D7zms0+HKoySkmFEnQFokTCMdpDcVoCcZobovS0BphR12Q\n+uYI0XgSva49rCOtUnqn8po2qptCuz7OWPEZx93wY+z11aw/50cs+dXtqOZ9XyXXHQm7k+oJx1A4\nfzaFH79HS1EpgeLSLsdpGtQ1h0kmNbxOszynRI/qieMZiaRKbXOYzRUtbKpooTEQJZZIpjVH7qK5\nTLv1anSJBIt+dx/bZ5yR1viY20vtuCkUznuHwvnv0jRwGG0F/Tod0xSIYrcYsVuMae1LCCGEEEII\n0XdJKyvRJ5mNepxWI3XNEdLN5jgsRgYXeeSAlOgVJJgjhBCir0hWVmP/ZD7NAwbTMmD/qm6oqkZe\nRs9VGhDiSBOJJVhT1sToR+6kaP5sKiefwJJf3Q463R7bqSYTVVOm0zBkNFnLFpG/cA45n31Ew7Ax\nRL3+lPalJOI4d5SRuXIJ+khkr5BMOgyhIOPvv4nhzzxC0mTi82v/xLoLfoZqttBaXEr5jDMoO+ks\nEjY7rvLNZC9bTMk7L5G3cA6oKoGCfhhCQY6//hKcO8pYc+EVrL3wyrTX0dp/EMa2VvIWz8NRsY0d\nx35rn+1QMpcu4ujbf0np2y+iqEnWnfcTFt14P5vPOJ+E1UbO5x9TPPdtXGWbqBs1vtPgYiyh0hKM\nUdUYoqohSDCcQKP9/9902/upmkY8oaLX67reWKSsNRRjfXnzruMQ/We/zJS7rkUfj7HkmttY//2f\n7vVz1lNibi+1YyZRNGcWhR+/S8PQ0QRzC1Ned0swht9lRn+A1ieOPN09nqFqGg0tEbZWB9iwvZm6\nljCR2NdhHFtNBfbqHVhrq7DXVGKv3o6jYhvO7Vtxlm/GvW0j7i3r8WxaS+7ieRz10G1oej2f3PZ3\nqqZM79ZjifgyqR95FEVzZlE0/13qh48jlJPf6ZiGlggepxmLSapxCyGEEEIIIaSVlejjappCrN3W\nlNaYsaUZuB09e/WaEN0lrayEEEL0FbpVK/BPn8a26afz2Q137/d8Rw/PkbajQnTT6q2NuP7vccY9\nfAfN/Qcx94HnumyrY2xrZfSjf6b/+/8laTSy+gc/Z8O5l6Lp29srKckE9srtuLdtxFW2Cde2Tbi3\nbcK5owxdIr5rnsaBw9k88/tsP+E0kpbU2+d4N6xi8l2/wVFZTsPgUSz+/b2dhg6UZILsJQsY8M4r\n5C6eh05NkjBbiLm82OqqWH/2Jay47Pp9Bmq6oiTiHHf9pWSu+oLlP7l2j2pDAI7tWxn9r3vIWzQX\ngLIZZ7DqkmsIZ+Xutd2E+28iY/WXRJ1ull3xe8pPPD2tdekUBY/DhN9lweu0oKERi6vEEsn223iS\nWKL9Np5QicaTu1o/e+xmSgvcOKxS1WF/JVWVL9bXEYomUJIJRj/6Fwa+8QxRp5uFtzxE3eiJB2Ud\nmUsXccxNl6Hpjcy7+980DRmV8lizUc/wfj5c9i6qQAmRgnSPZzS3RalpDFHfEtmrPb2ptYnCue/Q\n7/3/4tu4Oq11xOxOFtzxKA3Dx6U1riPZSxYw7ZYrSRqNzL/7KZoGj+x0e6Nex9iBmdgs0opQCCGE\nEEKII11nrawkmCP6hB11bWyqaElp22yPlaH9fAd4RUKkToI5Qggh+gxNwzWsFC2R5K0XP97vigHD\nir1kefevJZYQR6LG1gjVL7/JMTdeTszl4cO/vUgou/Or/neXu2guRz14C9bGehoHj6QtrwjXtk04\nt29FH9+zMkLcaqO1qJTWfqUECvvjX72MvMVzUVSVmMNF2UlnsuW07xMoGrDvHaoqg157mpFPPoAu\nEWfdeT9h1cW/QDOkHiSxNNRS/MEbDHj3FRyV5Ww+7Ty+/MWt6PU6jAYdxt1uDYbd3tfraAvHaWiN\nEIom9prX3FjHSVedg6Wpnvl/eoK6sZMxtTQx7Jm/UzLrRXTJBLWjJrD8st/SPGh4p4+x5K3nGfXE\n/RgiIaomHssXv/jDXiGefVEScbwb15CxcgnezWtpGjic8uO/TSQjO7XxQK7fTv9cJ0aDBB67a315\nE1WNIYytzUy581dkL11ES3Epn/zxkZQr1+T6bKiqRl1LBHU/DsnlLfiAo++4hpjdydwHniVQVJLy\nWJ2i0C/HSa7fjtEg1XNE96V6PEPVNJZvrKflG9V1lEScnM8X0O+D/5K3aB66RBxVp6fmqKNpy++H\najCg6g1oBgOqXo+mN7Z/zmBA0399X+3oSV1Wt0lH/sfvM+XOXxG3O1lzwc/Y8u3vdVrtzGoyMG5Q\nxl6/XzVNI6lqqOrOW639fVUDh9Ug1auEEEIIIYToYySYI44IWypbKa/t/Pmi1ylMHJqNWa68Fr2I\nBHOEEEL0Jfqf/hjfGy/zwd9foXlgJyepU5DrszG4yNtDKxPiyKCqGmveW8jUK89FH4sw/+6naRg+\nNu15jK3NjH3kLornvAVAwmyltbiE1uJSWorbgzitxaWEsvL2qvxira1iwDsv0f/dV7A21gNQO3oS\nm04/n8qjp+8RuDE31TPxnt+Rs2QBEW8Gi6//M7VHTe3WY3dYjGS4TGQ1V6MvLcVo1KNLoypNKJKg\noTVCQ2uE1mBsV2jCv3opx193MXG7g41nXsSgV5/CFAwQyCtixU+vo/LoE1OufmOrrmD8AzeTvXQh\ncZud5T+9nq3fPnev8bpYFN+65WSuWELmyiX41yzDEA3vsY2mKNSOnkT59JlUTDuJuMPV5f4NOh39\ncpzkZdrT+toIqG8Js2prI87yzUy95UqcleVUTJnOZ7+9u8tqVF8ZkOuiKLv9IF0klqCiLkhVQ4iE\nqnYxsmP93n2VCfffRCgjm7kPPJtWAA/aAzqZbgs5fjtep1QVFulL9XjG1qpWttV8vZ17y3r6vf9f\niubMwtLcAEBLcSllJ3+H8ukz02qJ6LKZUBQIhOL7FXb7pqL/vclRD92GIRIi4vax4exL2Hz6+STs\njg63Nxl06HW6PUM4naxHr1PIdFvJ8lrxOs0o8jtZCCGEEEKIw54Ec8QR46ur1/alJM9NYVbH/0AL\ncahIMEcIIURfonvxBfw/v4yVl/6Kdedftl9zWU0GJg1LrRoEQDyhUt8SJtef2glSIfqi7eu2Mej7\np+GoLGfx9X+mfMaZ3Z7LbjEyIlZLS1xhk97D3vVkOqck4uR/+iElb71A1vLFAIR9mWw99Ry2fPt7\nuLZtZuI9N2Bpqqdq/DF8ft2fiHr9ae3DbTOR4bGS4bZgNfdcG5FEUqWxNUJDS4TGQJSi/z7DuIdv\nByDmdLP6oivZPPP7aMZutAPSNPq9+yqj/3k3pmCA2tGTWHrl77E21JGx8nMyVy7Bt34F+vjX7cFa\nikupGzme+pHjaS4ZSubyxRTPmUXG6i8BSBpNVE06jvLpM6maeByqqfOQhc1soDTfjc9lSX/9R6BY\nPMnn62rxfzqHyX+6FmMoyNrzL2fVxb9IqTqcTlEYUuTpsApcIqlS1RCioq6NSDyZ9toGvfQEox+/\nl0BBP+be90zaP0NfsZoM5PptZPtscjGTSFkqxzOa26Is31SPsbmRormz6PfB63g3rQUg6nRTPv10\nyk46i+aBw9Jq8edxmCnOdu4KlSWSKk2BKI2tEZoC0W79PH1FryjYLEYMzY3kvfAkpa8/gykYIOZ0\ns/GsH7DxrIuIO93dnv+bzAY9mR4rWT4rLpu0mRNCCCGEEOJwJcEcccTQmdQ19QAAIABJREFUNI3V\nWxupb43sdZ/NbGD8kCy5KlD0OhLMEUII0Zco9fX4h5dQN3I88+/9z37PN3lYNhZT5yfbE0mVirog\n22vbSKgqeX47gwo9+71vIQ434UAIy3fPIGv5Z6z9/mWs+tGvuj1Xnt9OSb5rV5uNeCLJ1qoAVQ1B\nunMQwVm+mZJZL1L8weuYggE0nQ5FVVENRlb86Nds/O4PUw44eBwm/O72MM7BCBBomkZLWxTz/feQ\naG1j9VkXE+mBE7KW+hqOeug28hbN3XN/Oh3NA4ZQN3I8daMmUD/iKGLujquH2aorKJo7i6I5b+He\nthmAmN3JjmNOpnz66dSNmtDp19XvslCa70471KTbugVdYwOJceNRgWRSJZFsrxKRSKokkurO9zWS\nyfZqMB6n+bA94bxycz0ZT/ydkU/cj2o08flv7mT7CaelNNao1zG8vw+Po/OwlKpp1DeH2V4bJBCO\ndbrtN418/F6GvPQETaVD+eiux4l5ut++W6co+Fxmcn12fC6p4iE619XxjHhC5Yv1tWR88BaT7r6h\nvVWV3kDVxGMpO+ksqiYdl3bA0edsD+S4u/iZCkXiNLZGaQxEaG6L7bN6jcmgw2E1Yrcacex8s5kN\nKIqCqmqsLW+iqaKW0jeeZdBrT2NubSZus7Pp9AvYcPYl+/Xz1hGb2UCW10qWx4bN0nOBUyGEEEII\nIcSBJ8EccURJqiorNjXs1bd6dEmGlGYWvZIEc4QQQvQ11uOnYVu/hjdeXZRye499GVLkJce3d4UB\naG/ZU1kfZFtNgHhyzzYghZkOSvJ77kpmIXo9TSN22eXkv/ECFUefyKe3PJRS0OWbjHodgwo9ZHqs\nHd4fjMTZUtlKQwcXQ6RCHw5ROO8dSt5+EX00wufX/YmmQSM6HfNVUCDTbcXvtmDQp/+4epKmaYSj\nCdrCcdrC7bfBcJxoohvVGTSNwnnvUDRnFq39SqkbOYH64WNJ2Pd9IGdf87i3rKdozlsUzX0HW301\nAKGMbCqmnUzlpOOoGzWhwxPgOkUhP9NOcbZzj6+tqmpE48n2t1iSZHUNzrdfxz/7ddyrlgKw49hT\nWHLNbSm10QKwGPVk7Pw+ehymwyL0UVnRgPu6X9Lvf28Sysjm0z883OVz9isWo55RJX5sFmPXG++m\npS3K9ro2GloiqQXhNI2jHryVAbNfJpBXxMd3/pNgfnFa++yI2agnx2cjx2fr0YpUou/o6njG6rJG\nEos/44RfX4RqNLH6h1dTfsLMblV2ynBZKMpxdivgl1RVWtpiNLZGiSWSuwI4dqsxpYDn5ooWtte1\noQ8HKXn7JQa//CSWpnoSZgtbTjuP9ef+KK32W6lyWk1k+6wUZEr1byGEEEIIIQ4HEswRR5x4QmXZ\npnqCkfbS35luK8P79+wVLEL0FAnmCCGE6Gv0f7gF3yMPsuC2v1M1Zfp+zZXttTG0eM9KEaqmUdMY\nYlt1oNM2BcXZTvrnpnayWIjDXfKvfyXnzptpKhnK3Pv/j6Q1/VCc225iaLG3yypVAI2tEbZUttIW\niXe5bXcZ9TryMuzk+e2YTb2/tU4sntwZ1mkP6gTCcULRdBuA9QBVJW/tl/Sf9zZZc2djaG0BIG6z\nU33UNKomHU/VxGP3qvJgMuhw2U1EY+1hnFhCRR8Okv/JhxTNmUX2l5+iU5NoOh01YyZjiITJWLOU\nYHYei2+4l4bhY9NaplGvI8NtIcNtxes0o9P1vpBOdNt2bD84H9+6FTQMGcWnt/4t5ZPvTquREQP8\n+1XVKRRJsLmyJbUgnKYx4qm/MvT5x4i6vSz44yM0Dh3T7X1/k8NixOsy43NacDtMUo1YAJ0fz6hu\nDFG2dD0zrjoHS3MDH9/+KDUTjklrfgXI8FgpznbisKYXcOtpO+ra2FzRggboohH6v/sqQ158HFt9\nNUmjibKTzqJlwGDiNgdxe/tbwubY+bGTuM3evfaHwKgBfmk9KIQQQgghxGFAgjniiBSNJVm6sY54\nQmXC0KyUDi4LcShIMEcIIURfY/h0Ad6zvs2m089n6c9v2a+5zEY9U4bn7Pq4pilEWVWAcCy1k90D\ncl0UZadZeUKIw4iaTBJ9/N8U3notUbeP//3tJcJZuWnNoQBF2U765TjTqmCiaVr7ideqQPeqxeyD\n02okL8NOttfWK8Ma6YgnkrQG47SGYrQEYwSCMZI9fBhGpyg4rEZcdhMuuwm3zfR1kCkWw7joU5R3\n3sb03mysFeUAaIpCw9DRVE06gcrJx9PabyDs/N4riTjZX3xC8ZxZ5H06B0M0DEDjoBGUT5/J9uNO\nJeLPQkkmGPrsowx77h9oKKz+4dWsO++noE8/iKLXKfhcFjLdFnyuQ18VCUD35RLsF52Ppb6Gshln\n8MU1f0Q1pVaF1+e0MKyft8ceR1VDkE0VLSTVrp87/d9+iXF/+yOawcCi391L5dQZPbKG3ekVBY/T\njM9pxueySDWdI9i+jmeEowm+XFHOsb/+Ab71K1l22W/ZeM4lKc+rAFleG8XZjrQrTh1I9c1h1m5r\n2vV7XInH6PfB6wx54V84qnd0OT5pNLWHdOwOVv/garZPn5nSfjM9Vob3kwsOhRBCCCGE6O0kmCOO\nWKFInKZAlHwp+Sp6MQnmCCGE6HPicbyDigm7fbz71Hv7NZWloZapaz+m9pwL2dqc7FZ1joH5bvl7\nUPQ5mqoSfu0NvPfehWvLehJmC/PvforGoaPTmsds1DO02IvH0f22v4mkyvbaNnbUtnU7dKJTFPxu\nCwUZdtz7sZbeTtM02sJxWoMxWoMxWkIxIrHUQk16RUGnU9DrdwZxbCbcdhNOmym1AJOmEVu1hugb\nb+Kc+wEZq79EUdvbAAaz86iadHx7a62P3sXc0gRAW14R26bPpPyEmbQV9u9w2owVnzHpz9djq6+h\ndvQkFv/2L0QyslN6TB3RKQoumwmv04zHYcJp75nqLKqmEY0l0TTQ0NC09s9pWvv35atb46aNuF59\nHu9//oUuFmPFT65lwzmX7goudSXXZ2NgoafHK8qEownWlTfREox1uW3OZ/OZcsev0UfDLLvi92w6\n66Ju79dWXUG/91+jauJxNA0Z1eE2VpMB385qOh6nCX032uiJw1NHxzNUTWPZhjqG3HINxXNnsfXk\n77DkN3em/DOk1ymMHODfr9elA6k1GGPlloY92qgqyQSZKz7H1NKEMdSGMdiGMdSGIdSGMRTEGAxg\nDLZh2Pm+o7KcYG4B7z45O6Wvi05RmDwsG9N+VOASQgghhBBCHHgSzBFCiF5MgjlCCCH6IvP538P1\n4bu88/T7BHMLuz3P0bdeRf7COeyYdhILb3oQunmyb3Chh1x/+q19hOiNQrPfx/WX2/GuWY6m07Ht\nxDNYfdFVhHIL0ponw2VhcJEHo6FnTvRFY0ma26JE40kiO9shfdUWafcTmLsz6nXk+u3kZdiO2Cqn\nX7XAUhQFvW5n+EanoFN2e7+HKweFowmqNu5Aef89chbNJefzjzEF2/8niXj8bD/uVMqnz6RxyKiU\nThqbWpsYf9/N5C/8kKjLw+fX3kXV5BN6ZK16nYLHYcbjMON1mlNqZxNPqLvain3VWiwUTaDu4xCY\nMdBC4bx36PfB6/jXrQAg6vLw2fV/pnricSmvtX+Oi+KcA1elTdM0tte2UVYd2Odj+Ypnw2qOufln\nWJrqWX/Opaz4ybVpvYbaaioY+txj9Hv/v+iSCTRFYdOZF7Hqkl+SsO379VSnKBRnOynMdki7qyNA\nR8cztla1YnnofkY9cT/1w8Yw/+6nUU2ptXAy6nWMLPHjsnWv5dPBEo4mWLG5IeUKjt806a7fUDTv\nHf73t5doGjwypTFSBVIIIYQQQojeT4I5QgjRi0kwRwghRF9kfOKfeH53LV/8/Ba2nH5+t+Zw7NjK\nKT8+DWXnvyzrzvsJK3/8m27NpQBDi71keW3dGi9EbxD66BPsf7qdjC8+BWDHtJNZdfHPCRSXpjWP\nTlEYkOei4CBWkkqqKtGY2h7W2RnYMRl1faJd1eEsGkuyvbaN6ppmPKu/REmq1I8aj6bvRkhK0yh5\n63lGP/YX9PEYG8/6ASt+cm3KJ+RTZdTr8DjNeHcGdYC9QjiReNdViJRkguwvPqHfB6+T9+kc9PEY\nmk5H9VFTKTv5O1ROmZ5y6yqdojC40EO27+C8xrSF46zb1tRlFTlb1Q6OuelyXNu3sP24U/jsuj93\n+ZistZUMff6f9H/vNXSJOK0F/dly2vcY8PZLuHZsJZSZy5c/v7nL4JXTamRIsRd7L2pDJHreN49n\nNLdFqf2/lzn6D1cR9mfzv4dfIurLTGkuk0HHqJKMlMJ3vUE8kWTllkZaQ11Xsfqm3EVzmXbLlWz4\nzg9YfsXvUxpjMxuYOLT71ciEEEIIIYQQB54Ec4QQoheTYI4QQoi+SFe2Ff/E0VRMOZFPb3u4W3OM\nfeg2Sme9wBe/uJVBrz6Fs2Ibn//mTsq+9d3urUlRGNbPS4bb2q3xQhwq4S+WYbnrdrI+/gCA6vHT\nWHXJL2kaNCLtuVw2E4MKPYfNiU9xcMTiSbbXtdEciKIoCooCiqKg23m762OAnZ9PqBqtbTGiiT1D\nMO4t65l8129wlW+mqWQoi35/3z7bYB0KrrKNFH/wOsUfvom1sR6AluISyk76DuUnnk7En5XWfB6H\nmQF5roNe4UNVNbZWtbKjro3ODuwZW5uZ+oeryVz1BXUjjuKTPzxM3OXZaztrXTVDnn+MAe++ii4R\nJ5BXxJqLrqL8hNNAr0cXizL0+ccY8uLj6BJxth93Ckuv+H2noQudotAvx0lhlgNFquccFqKxJAaD\nknI7st2PZySSKutmf8K0q85FUVXm3v8MzQOHpzSP2ahndEkGNsvhVTktqaqs3dZEfUsk5TE6RcFE\nkpPPnoqm0zPr+XkphyFHl2TsCiQKIYQQQggheh8J5gghRC8mwRwhhBB9lXP8KPT1dbzxykI0Q3oh\nAFNrE6ddOJ2ox8fsp97DXr2D6b/4PsZQkI/+9Dh1YyZ1a006RWFEfx8+l6Vb44U4mCJr12O86w6y\n338TRdOoHz6OlZf+kvpRE9OeS69T6J/rIj/DLifIRY8KRxM0t0VpaYvRHIwSiSXRh0OMefTPDJj9\nMgmzlaVX/p7yE8/o8eo5nVGSCay11Tiqt2Ov3oG9agfZX36Kb8MqAGJON+UnnEbZSWe1h9zS/Llw\n2Uz0z3Ud8pPkzW1R1pU3EYntu0qQLhZl4j03UDj/XVoLB/Dxnf8klJMPgKW+hqEv/JP+s19GH4/T\nllfEmguuoPzEmR2GBVxlGznqwVvIWLOMmMPFip9ey9ZTzun06+eymRhS5MEm1XN6hURSJRRJEI4m\nCO18C+/8OKlpu1oM5mfaMRs7b3W4+/GM9cs2M+biM3BUbWfhjfez47hTU1qP1WRgVIkfq/nwCuV8\nRdM0NlW0UFEf3OPzZoMeq8WAzWzAav761mLWgwbBy65gwJvP8dFd/6Jm/LSU9pXlsTKsn+9APAwh\nhBBCCCFED5BgjhBC9GISzBFCCNFXma79Fe7/PMHce/9D/agJaY0d8vxjjPz3gyy7/LdsPPsSADJW\nfMZxN/yEhNXGh399nraC7lVg0CsKo0r8uB1yxbHonRob27D+8RYKXnwKXTJBU8lQVl36S6onHJt2\neADA77IwsMCNxXR4nvQUh5dILEFLMEZzIIp11huMvOdGTMEAqt5Aa3EJzQMG0zxgKM0lQ2gpGUzM\n5e3WfpRkAnNzI7baqvbgTfUO7FXbsVdX4KjajrWuGp26Z1hF1empnnAMZSedRdXkE7oVFHJYjPTL\ncZLh6T3V1xJJlc0VLVQ1hva9kaoy6vH7GPzKk0S8GXz+mzvJWbKAAW+/iD4eoy2ngLUXXsG2GWd0\nXb1DVSmZ9QIjn7wfYyhI7agJfPHL2zqtjKRT2sOBBZkSDjxYIrEEwXCCYCT+dQgnkiCeVFMar1MU\nMj1WCrMc+6yy9tXxjOqaFrIvOoes5YtZc+EVrL74Fyntw2Y2MLo0o8sA0OGgtqn958+6M4Bj0Hde\ndaj67Q8Zeel3KJtxBp9f/5eU9qFTFKYMz8ZoOPy/XkIIIYQQQvRFEswRQoheTII5Qggh+irTe7Nx\n/+A81p5/OasuvSblcbpYjG//8EQMkTCznp1Hwu7YdV/x+68z8d7fEcgrYs5DL3T7hK5epzC6NOOg\ntx4Rh0ZrMEZtUxiP04TXaU65RUdX2sJxAqEYDqsR534+l5KqSnVjmOpt1Yy+5Rfkfv4xgbwiVl16\nDTuO+RZ0Y81mg56SAjdZvShAII48yS1bMf3trxhXLMO6cS2GSHiP+0OZue1hnZIhNJcMpaX/QJRk\nEktjPZbmBiyNdVia6ts/bqrf9b65pRFlH4e0wr5MgrmFBHPyacstJJjT/n5rcSkxd/deN6wmA/1y\nnWR5rL02WNLcFqWsOkBzW3Sf25S88SxjH7lz19cumJ3HmguuYNtJZ6Zd3c5aV83Yh+8gf+GHJI0m\n1l7wM9Z978doxn3/PnTbTQwp8h621VF6o0isPXATjCQIReIEI+1hnKTac4d8vQ4zhVmOvSoOZmY6\nKd/RRPyqqyl58zl2TJ3Bwpv/mtJrlsNiZHSp/4gNmYTCMfyTxmBpbuTNFz8mabWlNK4kz01hlqPr\nDYUQQgghhBAHnQRzhBCiF5NgjhBCiD6rrQ3/oGKa+w/iw7+/kvKw4g9eZ+I9v2P92Zew4vLf7nX/\niH8/yNDnH6Nu5Hg++tMT3W6NYjbomTQsG52ud55gFftP0zTKa9rYVhNA3fmvr05RcNlN+JxmfC7L\nPqsAdOSrlj1NgSjNbVFiia+rDpiNevwuC36XBY/TlHL4JxxNUFEfpLohhLGmkmk3/wzPlvVUjT+G\nRTfev0cwLR25Phsl+e4ur9gX4qBKJlG2bCHx5VJYvhzj6pXYNqzB2lCb8hRxm52IN6P9zZdJOCO7\nPXyTW0Awp4Bgdj6quefaFZqNeoqzneT4beh6aSDnm1qCMbZVB2gMRDq8P+/TDxn0yr/ZduIZlJ18\n1j6DNDazgbwMOzk+G0lV2xn+iO+6DYYTJFSV/AXvM/bhO7A21tFSXMpn1/2Z5kHD97k+vaLQP89F\nQaaEC1KlahrhnS2nQtH2tlPtQZz278G+2Cu2UTLrBVB0NA4eQdOgEQRzCrpVfQ3AbjFSkGkn22tD\np1Pw+x2s/e2dDL/3ZpoHDGbOA8+StNq7nMdlMzGqxH/Ev0YFrvs9A55+mEW/u5ftJ5yW0hib2cDE\nodkHeGVCCCGEEEKI7pBgjhBC9GISzBFCCNGX2U4/BdtnC3nzxQXEPL6uB2gaJ13xXVxlG5n99HuE\nsvP33kZVmXznryn8+D3KTjqLz6+9q9snmAYXesj1d30CSRx+wtEE68qbaAnGOt3ObNDjdZrxucx4\nnRaMhq9PEsbiSZraojQHojS1RYnEkp3M9DW9ouBxmncFdcymvasBNAWiVNS10dAaQQM8G1cz7ZYr\nsTbUsnnmeSy96qau28l0wGY2MKjQg0datYnDSKyyiviXy1CWr0C/fi1RnYGIL2O3AE4GEW8mUa+f\npKV7FaB0ikKG24KqaaiqhqpCUtVQNY2kqqLt9rGqaRj1OoqyneRn2A/bAGcgFGNbTYD6lo4DOh3R\nKQp+t4U8vx2vs+vfI9F4kmA4TqSukax77yD31WeIOVzMefA5AkUlnY712M0M7eftE22M9pdh+VLM\nr75M24xTaBo9gXAsSTiabG8/FY0TjSVJ5wCuc9smhj7/T4rmvY3yjeBO1OWhadAIGgcOp2nwSBoH\njyTiz0prvSaDjvwMB1mrl1Bw0dnEHC4+fPiljv9u+waPw8yI/r4jPpQD0LxkOQO/fQyVk47jk9sf\nTXnc2NIMackqhBBCCCFELyTBHCGE6MUkmCOEEKIvMz94H667bmPRDfewffrMLrfPWrqQ4377I8qP\nO5XFN96/z+30kTDHX3cxvvUrWXnpNaw7//Jurc9uMTJhSHono0TqVFVjS2UrTruRTLf1oJ3crmkM\nsXFHy64qAta6arwbVhHKziOYU0Dc4epwnAI4bSbsFgOBUJy2SLxH1uO0GvHtDOkEwnEq64MEd5s7\nd9FcJt91LfpomOU/vZ6NZ1+cdthMpygUZjkoznYetiECIaC90tXabU3UNoe73jhFCjC0ny/ltm67\nV9jqC9rCccprAtQ1h/cZ7rAY9eT67eT4bfsVlDG/9Dyuqy+nLaeAOX99gajX3+n2NrOB0aUZR244\nR9NQ/v4wvrv+gC7R/roQKOjHllPOYdtJZxL1ZqQ1nXvzWoY+9xgFC95H0TSa+w9i7fmXE/Fl4Fu/\nCu+GVfg2rMJRtX2PcWF/Fo2DdlbUyc5P6TVISSYY8697MATbmP+XJ6kfOb7LMX6XheH9fPI6tZOq\naZinHY1r8zreeuGj1ELsQLbXxtDi7rXlE0IIIYQQQhw4EswRQoheTII5Qggh+jLDyuV4TzyGshln\n8vn1f+5y+2k3XU7uZx/xv4depGnIqE63NTfWceIvzsNeW8XCmx5gx7GndGuNowb48bl6ru2JaJdU\nVVZtaaSpLQqAUa8j22sjx29Lq31UOhJJlY3bm6nZ7YS+sbWZGVefi6N6x67PxZxugtn57e1vcvIJ\n5ha2t8DJySeUld/t9mjdUfr6M4x59E8kjSYW//ZuKqedlPYcPqeFknwXdsuB+boKcbCpmsaassa0\nKr10RqqjtQtFEpTXBKhtDqNqGgrgdVrIy7Dhd1lQeiiIZLn7Lpz3/pmGIaOYd8/TXbYWs5oMjCnN\n6LC6WF8VT6jUl1WS9dtfkvPxB0TcPlZd8ksyVy6h4OP30MdjqHoDlVOms+XUc6gZdzTo9/318a5b\nwbDnHiVv0VwAGgeNYM2FV1A16XjooLWiqbUJ74Y1eDesxLehPbBjq6/p1mNZ8qs/svXUczvdRqco\nZHutDCz09JnAW08J/eU+iu+7jS+vvonNZ1yY0hidojBleM4eVf6EEEIIIYQQh54Ec4QQoheTYI4Q\nQog+TVXxDCslAcx6/qNOr8B2lm/mlJ/MpH74OOY+8GxK07u3rOeEX12ALplk3j1P0zh0dNpL9DnN\njCpJ74p00blEUmXl5gZaQh23kXLZTOT6bWR6rD3WyqKlLcrabU1E4ru1m0ommXbzFeQu+ZhtJ8wk\n5nJjr96Bo2oH9uod6GPRvebRFIWox4/ayQnQPbbX6agfOZ7tx55KzVFTUw/1JJOMeewvDHz9/4h4\nM1jwx0doGjwytbE7Oa0mBuS5Umo3I8ThRlU1Vm1toDGw989pOkrz3BRkOXpoVX1DOJqgviVChtuC\n1Zx+y7wuaRrmK36K67WX2DHtZBbe9ECH4ZDdWU0GRpf6sZgOwHp6kaZAlOqGIInFnzHpjmuw11RS\nO3oii2+4Z1c7KWNrM8VzZtF/9st4tm4AIJiVS9m3zmbrt75LOCt313wZK5cw9Nl/kPPlpwDUDx/H\nmguvoOaoqWlXXrM01OLdsApLU33KY9QBpWwbMq7D+8wGPT5Xe1tHr8uMvovnwJEqWr6D/IkjaBgy\nirkPPp/yuNJ8NwWZ8rtNCCGEEEKI3kSCOUII0YtJMEcIIURfZ738xzj++zLv/+O/tJQM2ed24x68\nlZJ3XuLTW/5KxbSTU54/57P5TLvlSqJuHx8+9AKh7Py01zh+cNYBq+JypIknkqzY3EAg3HUbKL1O\nIctjJddvx2XvXpUaVdMoqwqwvTawV4uW4U8/xLBn/0HVhGNY8Md/7FltQNOwNNZhr67AXrUde/WO\nXW/WhlqUFP9VNoSCWJobAIjbHFQcfSLbjzuFmnFHoxk7fkz6cJDJf7qOvEVzaSkuZcEdj6b1vLWa\nDPTPc6XclkeIw1VSVVmxuYGWYMchv64UZzvpn9tx6zpxgMVimM86HdeShaw/50esuOy6Lof01XBO\nLJ6kujFEdWOIUCTOwNeeZtTj96GoSdZceCVrLryi42o4moZ3/UoGzH6FwnlvYwyH0BSF6vHTqJwy\nnaK5b5O5cgkANWMns/aCK6gbNSGtQI5ep2DU6zAadr7pdagaRGIJwtHkrpaQ++J0WAi0fV3Zalfr\nRrcFl+3gVZ873OlOOxX/55/wzlPvEcwrSmmMw2JkvLRjFUIIIYQQoleRYI4QQvRiEswRQgjR15lf\nfgHXVZex4ie/Yf33ftLhNqbmRmZeNJ2wP4vZT87utF1DR0pff4axj9xJc/9BzL3/WRL29K4gzvXZ\nGFzkTWuM2Fs03h7KCUa6DuV8k8NiJMdnw2o2oNcrGPQ69DoFg15Br9d12PoiFEmwdlsTgfDeJ+1z\nF85l2q1X0pZTwP8efpm4y9Otx9QlTcO7YRWF82dTOP9dbHVVAMQcLiqmzmD7sadQO3YymqE9+GVp\nqGXazT/Du2kt1eOOZuHND5Kw7/uf9t2ZDDqKs53kZtilFYg4YiSS7eGc1n1U4NqXggwHpQXuA7Qq\nkQqtqRHbSdNxlG/hi1/cypaZ3+9yjMWkZ3RJxoGp5HMQxeJJmgJR6lrCNLZGUTUNY2szE+67kfyF\nc4h4M1h8w93Ujp2S0nz6cJDCebMZMPtl/OtW7Pp81cRjWXPBz2gcNnbX5ww6HRaTHpNRj8Wkx2zU\n7wreGHYP4Rg6fm3dXTyhtod0Ykki0QSRWJJI7KvbJC6nBT0afpcFv8tyRLUj60nxJ58i74ZfsOqH\nP2ftRVemPG7cwMxuB5uFEEIIIYQQPU+COUII0YtJMEcIIURfp9TVkTG8hJoxk/no7n93uM3QZx5h\nxH/+xtIrb2TTWRd1az9jH76d0jefY+Wl17Du/MvTGqtTFCYPy8ZklBNK3RWJJVi+qYFwLHFA5tcr\nym6BHR0GvUJrMEayg39pHRVlzLjqXJRkgjkPPt9ppaYepWn41i2ncP67FHz0Hrb6agBiTjc7ps6g\nbtRERj75ALb6araceg5f/vyWXYGdzugVhYIsB4VZjh5r/SXE4SS7q7deAAAgAElEQVSeUFm+qZ62\nFEN/ErbsPWIbNuGfOQNzazML/vgPqice2+UYi1HP6NLDK5yjahqtwRiNrVGaApG9qsb51i5j8p2/\nxl5bRc2YySy+4W6ivsxu7ctTtoHi5YsITp5KcvRYTEYd5p0hHJNRf9BeJzRNIyPDSUND20HZX1+m\ntbbgH1ZKMCuP9554O+WqR/K7TgghhBBCiN5FgjlCCNGLSTBHCCHEkcB5/FSMG9fxxiuLSFpte9yn\ni0U57aIT0cVjzHpuLkmrvVv7MLY2c+b3plI/bCzz7n8m7fHS8qT7QpEEKzbXE4knD/VS0IeDnPjL\n83GXbWTx9X+hfMYZh2Yhqop/7XIKPppN4UfvYW2o3XXXip/8hvXn/rjLE286RSHHZ6NfjlNCY+KI\nF4snWbapnlC08/BfptvKsH5eFKkq1Wu0fPgR/S8+G1WvZ+79z6YUljyQ4ZykqhKOJglFE4QjCSKx\nBDqdgtmox2zSYzG2B1zMJn2nFWUisQSNrVEaAxGaA7GO2z6pKoNefYqRTz6AoqmsvuhK1p7/s7Qr\nAxr1ul0tonxOc68JacrxjJ6ju+hC/O+/xf8efpmmQSNSGqNXFKaMyOk1zwchhBBCCCGOdJ0Fcw6f\nS0+EEEIIIYQQh63kiTOwrFlJ5orPqJ50/B73Fc2ZhaW5gXXf+3G3QzkAcZeHxsEj8a9ZhiEYSLk9\n0Fcq64MUZzvR6eRkbjrawnFWbm4gmjj0oRw0jfH334y7bCMbz7zogIdybGYDNrOB+tbI3nfqdDQM\nH0vD8LEsv/wG/GuWkv/ph9SNHE/VlOldzu2ymRhS5MVmkX/bhQAwGdtbHC3dVEck1vHvG5/TzFAJ\n5fQ67hOPZd1tDzD8d1cy7eaf8eFDLxLJyO50TGRnEGtMN8M5mqYRiSUJRxOEoglCkQThaPtbOiFS\ns2HPllBmk55oPElja6TLkJi5qYHx999E3uJ5hH0ZLL7hXurGTEp533aLcWeLKDMuu0me132cev75\n8P5bFH34VsrBnKSmUdMUJj+j+38/CyGEEEIIIQ4OOcInhBBCCCGEOODi02fA3x4gZ8knewZzNI1B\nrz6Fqjew6czutbDaXevRx+Nfu5zspQupmHZyemtMqlQ3hsiTkxspC4RirNjcQDzZQZWAQ2Dga09T\nNH829cPHsfyy63p0br1OwWUz4bKbdt0aDe1XqDe0RFhX3rTvr4NOR8OIo2gYcVRK+8rz2yktcHda\nqUGII5HZ1B7OWbapnug3whVuu4nh/X3yc9NLeS++gDVlZQx77G6m3XwF8+77PxK2zl9vozvDOaNL\nMroMKSZVldZgnJZglOa2GIF9tDr8JmtdNf1nv0LU46Ny8vGEs/L2XEMiSTSRJBDu+jEC6CNh8hbO\noWjOLHKWLECXTFA97mg+++1fiHozOh2rUxQ8DlN7ZRyX5bBq5SV6wEknE3d5KJz/Disuuw5Nn9r3\nv7ohKMEcIYQQQgghDgPyH54QQgghhBDigItPmETSZifniwV7fD77i09xb9vEthNmEs7M2a99ZHus\nOM48DZ74K9lLPkk7mAOwo65NgjkpammLsnJLY8etOw6BzOWfMepf9xL2ZbDwpgfQjKb9ms9qMrSH\ncOwm3HYTdothn9UK/G4LRw3OZPXWJgLhWLf3qVcUBhZ6yPHZut5YiCOU1WxgdImfZZvqiSXaf/84\nrUZGDvCj10k7l97KaNBhuO5aNu/YRsnbLzL5rl/zyW1/7zJ8EI0nWb6pntGlfmwW467PJ5IqrcEY\nzW0xWtqiBMJx1BSCOF8xNTcy5MV/Ufrmc+jj7b+3xz18O80DBlM56XiqJh9P4+BRkMJzSkkmyFq6\niKI5b5H/yf8whkMANJUMZeupZ7N55vmdzmMx6snPdJDrt0lLoiOZyUTbaWfiff5pspYupmb81JSG\nBcJxAqEYTtv+/d0jhBBCCCGEOLAkmCOEEEIIIYQ48EwmYlOPwfnBu9iqKwjl5AMw6LWnANhw9iX7\nNb3FpGdgoQcKxhN3utsDQJoGaVZOCEUTNLRE8Lst+7Wevq6xNcLqrY1dVyNQVTJWLcHc2oySSKBL\nJlGSCXSJOLpEov39ZLL9vkQcRVVpGDaWmnFTUjoZ+hVrXTWT7/w1KAoLb/4rEX9Wtx6XTlHI8dko\nznZiNunTGmsxGRg7KINNO1qobAimvW+LSc+I/n4cVmPXGwtxhLNZjIwqyWD5pnqMBh2jSvwSaDgM\neF0Wttz2F2w1leR+9hFjHrmLpVff3OVrdTSRZPmmBgbkuQiE47S0RWkLx0k9hvM1QzDAoFefYtCr\nT2EMhwhm57H2gp+hi8fJXTyPrGWLGbZlPcOef4yIx0/VpOOomnQcNeOm7lnhR9Pwrl9J8ZxZFM6f\njaWpHoBgdj4bz/oB5dNnEigu7XQtTquRgiwHmR6rVHoS7S64AJ5/mqI5b6UczAGoagj1qmBOXXMY\nnaLI39NCCCGEEELsRoI5QgghhBBCiIMiMX0GfPAuOUsWsGXmebi2biBnyQJqR02gedDwbs+rUxSG\nFft2npTVEZhyDL73Z+HcvpVA0YC059te1yYnEjqgaRoNLREqG4I0BqKpDGDcQ7dR8s5Lae8rmJ3H\n1m+dTdm3vttlJSVdLMaUO67B0tzAl1fdRMPwcWnvDyDTY6V/jqvLdimdrkVRGFTowe0wsaG8OaU2\nKgA+p4Whxd5drbGEEF1zWI2MKvFjNOgwGtIL0olDp1+hlxV3/A3rledR+tbzqAYjdaMnEsrMIZSZ\nS8zt7TCoE00kWVve1O396iNhSt58jiEv/gtzoIWIN4OVP/o1W089F9XUHmjYfMYF6MNBsr9cSO7i\neeQtnk//916j/3uvkTQaqRs1kapJx2NqbaZozls4K8vb1+b2sun08ymffjoNw8Z0GTTKcFkoyHLg\ncZi7/XhE35SYOJloXiH5n3zAl5FbSVqsKY2raQpRku/qFVXDGloirN3WhKpp+JwWSvNde1S7EkII\nIYQQ4kglwRwhhBBCCCHEQRE74UQAsr9oD+YM/O9/gP2vllOc7cRl//oq4eSJJ8H7s8j+YkG3gjnN\nO6/El8ol7aLxJNUNIaoagkTiyZTHDfu/hyl55yWaBwxh67e+g6Y3oOoNaIb2W9Xw9fvazo91iQT5\nn3xA0dx3GPGfvzH8mb9TNeEYtp5yDlWTjkMz7P09GfPoXfjXLmfbiaez+YwL0n58HruZAXmuPZ5D\n+yvba8NpNbJqayOhaKLTbYuznfTLce6zTZYQYt96U4UIkRqdojBoWBEL73iM43/+PQb99z8M2vn3\nAEDSaCKcmUMoM4dwRjahzNyd7+cQysolmFNAwu5IeX9KPEb/d19l2LP/wNpYR8zhYsWPfs2mMy8k\nad27bWDSaqdy6gwqp87gC1XFu2EVeYvnkbtoHjlffELOF58AkDBb2XbCTMqnn0bNUVM7fH3anV5R\nyPbZKMi0S0hB7JuiED37XFx/u5+8hXPYfsJpKQ1Lqhq1TWFy/Ye2HWtzW5Q1ZY272so1BiIsWR8l\nL8NOvxynVDYTQgghhBBHNEXT0mjAfAjU1QUO9RKEEOKAysx0yu86IYQQRwz3+FEo9fW8+/gsvn3x\nSYQyc3n3ydlptS3ancdhZnSJf49Qg66yAv+YoVRNOIYFd/6zW/PmeG0MKfZ2a2xf0RSIUtkQpKEl\nsusES6pK3nyOcQ/fTltOAXMefI6oLzOt8YZQkML579D/nVfwr18BQNiXQdlJ32HrKWcTzC8GoN97\nrzHhvhtpHjCEOQ8+l/KV5QAOi5H+ua4DWh0pqapsKG+mpjm8130GnY6hxV6pziSEOCJVNQTZunIL\n2UsXYq2vwVZXjbWuqv22vhprY/0+x0ZdHoI5BQRzCwjmFNCWU0gwJ59gbiGhrNz2kEwySdHcWQz/\nz8M4qneQsNjY8J0fsOHcHxF3uNJer16nUBBtpt+KhehdDgInnEzUZCWWUInFk8TiKrHEnrcJVcVk\n0JGf4SAvw9YnKzvJ8Yyep1+/Dt8xE6mcdDyf3P6PlMe5bCbGDUrv762e1BqKsXxTPUm1478ZjXod\n/XNd5PptEkYWQgghhBB9Vmamc5/3STBHCCEOMTmQJYQQ4khiv/5X2J56gpqxU8heupAvr765W1VO\noP0A//jBWZhNe5/osk0Zj3lHOW+8ugjVlH6rCJ2iMGlYNmZj3zuJ1plEUqW6MURlfbDLSi/7kv/R\ne0y581dE3T7mPPDsrhBNd7m3rKf/7Fco/vBNTG2tANSOnkTl5OMZ+eQDJM0W/vf3VwjmFqY0n8Wo\npzjHSY7v4J0YqqgPsrmiZVfAyWExMry/D6tZitgKIY5cq7c2Uteyd3AR2ivdWOtrsdVXY62rxlZX\nha22Cnv1DuxVO7DXVKCPx/Yap+l0hDJzAAV7TQVJo5HNM7/Puu9fRtSbkfYaXTYTuX4bmR5r2tU+\nVFUDpf1vir5KjmccGM4TpmJat5a3Xviovb1bisYPzjokFR+DkTjLNtYTT6pdbuuwGCktcEsrNyGE\nEEII0SdJMEcIIXoxOZAlhBDiSGKa/Tbui88HIOp08/YzczpsJZGKEf18ZHg6rpCiv+F6fE8+yvw/\nPU7tUVO7NX9RlpMBeelfVX84UjWNjdubqW0Kk9yPfxEzly3mmBt/imowMu/e/9A8cHiPrVEXjZD/\nyf8YMPtlspZ/BoCmKCy4/VGqJx7b5XiDTkdRtoOCTAc63cE/SdoairFmayNuu4lBRR703awSJYQQ\nfUU8obK1qpVILEk0niQaS5JQuz6xD4CqYmmsw169A0fVdtx1lThrKrBX78BaUY6hpZn6b5/Fhh9e\nRYM7i1gixXlpD/5me23k+G3S1rILcjzjwLA+8jccf7gx7QB7foadgQWeA7iyvYWjCZZtrCeaSL3d\nKUCmx0pJnguLSULKQgghhBCi75BgjhBC9GJyIEsIIcSRRAm04h/cDyWRYO35l7Pq0mu6NU+e386g\nwn2feNDP/RDfed9h/dmXsOLy33ZrH0a9jsnDs4+IAEV5TYAtVa37NYdn0xqOv/aH6GMxPr7zMWrH\nTumh1e3NUVFG8f/eJJBfTPmMMzvcxmLS47Aa298sRjxOc9rVDnpaUlWPiOeTEEJ0VyKp7grpROPJ\nPd5PJDUsJj0WkwGruf3WYtJjNun3rkqjabDb56LxJMFwnLbd3sLRBLsfFPU4zO3VcdzWQxLgPBzJ\n8YwDQ1ddhW/0EBqGjmHug8+lPM6g0zFlxMH72zUaT7J0Yx2RWHqhnK/oFYWCLAfF2U75mRNCCCGE\nEH1CZ8EciaQLIYQQQgghDhrN6SJ69DEYF33Kpm62sLJbjJTkd17JJjllKkmzhZwlC7odzIknVaob\nw+Rn2Ls1/nARjSXZVr1/J9XsleUcc+PlGMIhFv3+vgMaygFoy+/H6ot/AbS3CLFbDNgtRhw2464w\nzqEO4XREQjlCCNE5g16HQa/DbtnPSjXfCOqYjXrMRj0+l2XX55KqSjCcIBiJ47absVnkMKnoHdSc\nXGJTjyVjwXzsVdtTbteZUFVWbG5gcKH3gD+f44kkKzY37BXK0UfCjP37HdSNmsC2k87qdI6kprGt\nJkBzW5QR/f0YDfJ3khBCCCGE6Lvkr10hhBBCCCHEQdX26BOsf+0D1OyctMfqFIWhxd6uAw4WC8GJ\nR+PetglrXXU3VwoVdW3dHnu42FTZghqPoYtGujXe3FTPsb//KZamepZd8Xt2HHdqD69wbzazgQG5\nLsYPzmLaqFyOGpzFkGIvBZkOPI5DXxlHCCFE76fX6XDZTeT67RLKEb1O9NzzACiaMyutcS3BGEvW\n11JeE+BAFcpPJFVWbG4kGInveYeqMvHuG+j/3msc9eCt2GoqUpqvJRhj6cY6wtHEAVitEEIIIYQQ\nvYMcrRRCCCGEEEIcVFpGBpkTxzBpWDal+W7MRn3KY0vyXDisqV1FnzxxBgDZSxZ0a50AoWiC+pZw\nt8f3dk2BKHVNIY658TLO+u4kJt35a7I//xiSqbUkMATbOObGy3BUlrPm/MvZdNZFB2ytekUh22tj\nTGkGE4dmU5TtxGE17t2+RAghhBDiMBc77XRUs6U9mJNmwEbVNLZUtfLlhnrawvGuB6Qzt6qxaksj\ngXBsr/tGPPVXCha8TygzF308xsjH70t53lA0wdKNdQRCe88rhBBCCCFEXyDBHCGEEEIIIcQhodfp\nKMh0MGlYNoMKPFhMnQd0MlwW8jMdKc+vnXQyADlffLJf69xRG9yv8b2Vqmlsqmghd9E8spcuQtPp\nKJo/m2NvvIyZF57AyMfvxblt0z7H62Ixjv7jz/FuWsuWU89h9SW/PCDrdFiMDMx3M2VEDkOLvXgc\n5gOyHyGEEEKI3kJzuYl961Rc27fg2bSmW3MEwjG+3FBHWXUrag9Uz1E1jdVljTQHo3vd1++91xj6\nwj8J5BfzwSOv0jh4JEXzZ+NfvTTl+WMJlWUb62lo6V4VRyGEEEIIIXozCeYIIYQQQgghDimdopCX\nYWfi0GyGFHmxmfduJ2E26Blc5Elr3mTpQKK5BWQvXYiS7H5p/OZgtE9evVtRF/x/9u47Su66+v/4\na3rf3rMpm56QkAAJRYr0JgKCSJEuICKKihR/FmIFRaRKEaSIUhUQvtIUKdISIAXS+ya72Wzf2en1\n8/sjJJRkN7Mzsy15Ps7h7Ml8Pu/7vsMfe2bfcz/3KhSKavoDN8swm/WfO57UK7c+ptUnnCFLPKbJ\nT/xZx178ZR3xna9p3LOPyNbd9cnidFr73niNKhe8q8YDjtD8714n5bFzjcVsUk2pR3tPLNesyRUa\nUe5lPBUAANitxE79miRp9CvPZR0jbRhavzmg+Sta1Z3D51nDMLS8vlPt3dsXzZQvmqd9bp2juK9Q\nb/7yLsULi7Xw0h9Jkmbefb2UTme8T8owtHhduza17ZqF8QAAANh9WebMmTNnsJPoTXgXPAAHgE/z\neBz8rgMAQJLJZJLXZVNNmUcep1WRWErxZFomSXvUlcqT4QirTwVUetkyeebPU9PsgxUpr846t3TK\nUHmRK+v1Q00skdLS9Z2qfeU5jfvX41p/9Fe0/rjTFCmv0ub9DtWqr5wrf91EWWMRlS/+QDVzX9eE\np/+iwrUrlHI4NP7ZR1T30tNqnbaP3vr5HTJs9rzk5XHaNLa6QJNHF6u8yNWnMWcAAGBgcZ7Rv1Kj\nx8j1wH0qWvahNu1/mGLFpVnHiifT2tweViptqMjjkGknBdWGYSgSS6ozEFNzZ0T1zQF1BLbvlONt\nWKcv/ugimZMJvfnLu9Q1cZokKVJRLd/Gdar64C0Fa0bJP3Zyn/Jt744qnZaKfXRKBAAAwPDh8fT8\n+dVkGHnoY9mPWlsDg50CAPSr8nIfv+sAAOhBW1dE0URKtX0YYfVptv/7p4ouPEdLzv62lp57edZ5\nmE0mfWFa1S7TtWVZfadaWrp03IXHy9nRohceeFGRipod3utsb9GoV57TmH8/o8JPjbbyj5mgV296\nWAlfYc75mCTVVnhVV10gcx477wAAgP7DeUb/sz/7tAovOk/B6pH6z+1PKFHQtw6SO+J2WDVpZJEK\nbZIcDqXSaYUiSQUiCYUiCQU//pnaydcG9u5OHX7FmfI11uu9K3+t9cec8tl9mht17De+pLivUC/c\n/4JSLnefc60sdmvSqCI+HwIAAGBYKC/39XiNjjkAMMh4wgwAgJ65nTYVeLLvxmJUVcv1x9tkiUe1\n7rivZh9HUpHXIdcOxmwNN/5gTKs3+TXu/x7T6Ff/pdUnna2GQ4/v8f6k26P2PfbWmi+fqab9D1Xa\nalO8oEjv/ORmxXN4cnsrp92i6XWlqi717PTpbQAAMHRwntH/UpOmSMmEvP9+UcWrlmrD4V+SzLkV\niieSKZXf+EuNuuTralu2RvOLxqohbKijO6pAJKFYIqWdPclrSsR10M8uU8nqpVp2+sVaedqF2+/j\nLZA5FlXNvDeUttrUOmPfPucaiibkD8VVVuiU2cznRAAAAAxtvXXM2TUe9wQAAACAHTAKChWeOUsl\nKz6Srbsrp1j+0PD/4skwDK1q8MsSCWnqI3cr4XJr2ZnfzGyxyaTOidO0+qpfSM89p9F7TZLTntuo\nqeoSt2ZNqlChlzEFAAAAOxK+5ieKHXOcKhe8o+n33ZRbMMPQtAdv1eQn/izDZNbo5x7XsRccqwlP\nPSRTMpFxjFm3XKeKD99Tw0FHa/EF3+vx1uVnXKxISZkmPflnuVqaskq5KxjTwlVtisVTWa0HAAAA\nhgIKcwAAAADs0lKHHylTOq3KBe/kFGdXKMzZ1BZSMJrQhKcflrOzTStPvUDxopKM15tNJk0eXSyL\n2azqUo/2nVKpSSOL5LT1rUDHbjVrWl2JJo0q3mXGgwEAAPQLs1mBO+9VYvxETfrHgxr972eyDjXl\nb3dqyqP3KDBitJ5/6GUtuOzHksmkmXffoKO/ebIq3/vfTmNMfuxejfn3M+qYNF3zrr6h1w4+KZdH\nH134A1ljUU2//+as8w5GE5q/qlXhaIbFQwAAAMAQwwkoAAAAgF1a6qijJElV77+ZU5xAOC7D2Flj\n/6ErkUxp/eaA7N2dmvzEnxUrLNbKU8/vU4wxVT55nLZt/zabTFsKdKZWamJtZgU6ZYVOzZ5cobJC\nV1/fAgAAwG7J8BUo8PCjSvkKtM8t16l4xUd9jjHp8Xs17S93KFhVq9d/96AiFdVaffLZeuGBF7X6\nhDPka1yvQ358iQ786bfkbVy/wxgj3nhJ0x+4WeHyar015w6lnDv/PFd/5EnqHD9Vo//7nEqWLepz\n3lvFEiktXtehZCqddQwAAABgsFCYAwAAAGCXltxzphLFJVsKc3IorEmlDQUjw/cp3bWbupVIpTXp\n8ftkCwe17IxLlPR4M15f6LZrZMWO7zebTKop21KgM6G2SI4dFOhYzWZNHlWsaXWlsllzG4EFAACw\nu0mNm6DAvQ/InEzowDmXy9nekvHaCf94UHv++Q8KVVRvKcopr9p2LV5YrAXfvU7/vvMptczYVzVz\nX9MxF5+o6ffeKGsouO2+4uUfar/fXaOEy603f3mXoqUVmW1uNmvht34kSZp59/U5fR4Px5JatTG3\n8bQAAADAYLDMmTNnzmAn0ZtwePi3iweA3ng8Dn7XAQDQn0wmadFCeRa+r4aDj1asuDTrUB6nTQUe\nex6TGxjdobhWNfrlbGvW/r+9WtGSCs27+gYZFmtG6y0mk6aPK5N9Jx1xTCaTCtx2jSjzyG41KxRN\nKpU2VORxaM/xpSryOvLxdgAAwBDAecbAS9eNk+F0yfPi/6l02UJtOPxEGZbeP5+Ne/YR7XXXbxQp\nrdBrv/+LwtUjd3hfrLhM9UedLP/YiSpdulA1895Q3UtPKe4rVNxbqEOvuVC2SEhv/+xWtU+f1ae8\nw5U1Kli/WlUfvKXAyDp1103s0/pPC0WTslst8rmH32dyAAAA7No8np7PPumYAwAAAGCXZxx1tKTc\nx1l1h4bfl0+GYWhVg1+SNPWvd8oSj2nJuZcrbc+8SKaupkBuZ2ZFPJJkNps0otyr/aZUanpdqWaM\nL5XTnvl6AAAA7Fjk8isU+cpXVbZ0ofa64xe9dqCpe+FJ7X3HLxUtLtNrv3tQoZpRvQc3mdR40NF6\n8b7/00fnXyFrJKzZf/iJjv3G8XJ2tmnhN6/V5v0OzSrvDy/6oVI2m/a87yZZopGsYmy1utE/rDtZ\nAgAAYPdDYQ4AAACAXV780CMk7Z6FOZs7wgpE4vI2rFPdi/9Q98ixqj/yxIzXF3kdqi3PfOTVp5nN\nJpUWOmUymbJaDwAAgM8xmRS8+Q7Fpu2psS/+Q+Oee2SHt43+9zPa55brFCss1uu/vV/BkXUZb5F2\nOLX8rEv1wgMvqP7wL8uSiGvVSWdr9clnZ512uLpWK085X+7WJk38+wNZx5GktGFo6foOJVPpnOIA\nAAAAA4XCHAAAAAC7PKOyUtHJe6hs8fuyRMJZx4kmUorGk3nMrH8lkmmt3dQtSZr20G0yp1NafMEV\nmY+wMps0aWRRf6YIAACAvnK7FfzLo0qWlGrmXTeofNG8z1yufe15zb7px0p4C/T6Dfere8yErLaJ\nllVq3rW/0zN/f0cLL/t/W0bE5mD5GZcoWlymyY/fJ2d7S06xwrGkVmzsyikGAAAAMFAozAEAAACw\nW0geeZQsiYTKP3ovpzjDqWvOuqZuJVJpFa1aopGvv6iOSdPVeOBRGa8fP6JQLgcjqAAAAIaadO1I\nBR/4qyTpgF99T+7NjZKkEW++rP1uuFpJp1tvXH+f/OMm57xXoqBop0U5DqtF5YUuja0uUJFnxyNT\nkx6vFp//XVljEU2//+ac82rtiqixLZRzHAAAAKC/UZgDAAAAYLeQPPxISVLV+2/lFMc/TApzWroi\namrf8kXF9AdukSR9dOH3M37SucTnVHWpp9/yAwAAQG4SBxyo4G9+J4e/UwfOuVy1rz2v/X/zQ6Uc\nDr1x/b3qnDitX/Y1m0zyueyqLfNq6uhi7T+1UgdMq9IedSUaVenTzAllmjqmRE6bZbu1644+RV1j\nJ2vMv59R8crFOeeyptGvQHh4fD4HAADA7ovCHAAAAAC7hcS++yvlcqvy/TdzijPUO+YkU2ktq+/U\n0vUdMiSVL5qnqvffVPNeB6hlrwMyimE1mxlhBQAAMAzELrhIga+fp6K1y3XAb65U2mLVm7+6Rx1T\nZuZtD5vFrLICp8ZWF2jm+DIdOL1K+0wq1/jaQlUUu+W0b99hsaLIpdlTKjSmyifLpwvDLRYtvPRa\nSdLMu66XDCOn3NKGoaXrO5VMpXOKAwAAAPQnCnMAAAAA7B7sdsUOPEQFDeu2tfrPRjCSGLIH/52B\nmN5f3qLmzvCWFwxD0+//g6SPu+VkaEJtoRz27Z9wBgAAwNAT/e1NCs0+QEmHU2/+4k61TZ+Vc0yz\nyaSyQqemjSnRAdOqNG1sqUZV+lTkdchizuxrBYvZrDFVBf1+PKcAACAASURBVJo9pUIVRa5tr7fO\n3E8NBx6psiXzVfu/l3LONRJPasWGrpzjAAAAAP2FwhwAAAAAu43UEVvHWWXfNceQFAgn8pRRfqTT\nhlY3+rVoTZuiidS212ve+a9Kly1Sw0FHq3PS9IxilRU6VVni7q9UAQAAkG92u8LPPq+NcxfLe9zR\nKvI6ZM5wfOnn+Vw2jR9RqAP2qNS0ulKVFbmyjrWV027V1DEl2mt8mXwumyTpw4t+qLTVppl3/lq+\n+tU5xZekVn9EDa3BnOMAAAAA/YHCHAAAAAC7jfhhR0iSKj/YdcZZBcJxfbCydfsvIlIpTXvgFhlm\nsxaff0VGsWwWsybWMsIKAABg2LFY5K2p0Ogq37ZxU3uOLdWoCp98Lrt6K62xW80aWe7VrEkV2mdS\nhWrLvbJZ8989sdDr0N4TyzVpZJESo+u06JKr5epo02E/OFslyxbmHH/tpu4h9TkdAAAA2Gr74a8A\nAAAAsItKjx2n+KgxqlzwjkzJhAyrLas4/lBMki+/yfWRYRja0BxUfXNAacPY7vro/z6nwvrVWnfM\nKQqMGptRzAkji2S3McIKAABguLOYzSopcKqkwClJSiTT8gdj6gzG1BmIKRpPqbTAqaoSt4oLsu+w\n01cmk0nVpR6VF7lUf/Glet/l1j43/1RfvPpCvX3dbWqedVDWsdOGoaX1HdpnYoVsVp5JBgAAwNBB\nYQ4AAACA3Ury8CPlfvA+lS5bpLbps7KK0R1KyDAMmQboC4zPC0eTWrlqsxIbNqi0rVmu1ia5WzfL\n1bp5y8+2Zvka1ills2vJOd/OKGZFkUsVRa5+zhwAAACDwWY1q6zIpbKPP++lDWPAinF2xGoxa9yI\nQnVedonmFhVr9i++p4N++i3Nu/oGbTzsS1nHjcZTWrGxU9PqSvOYLQAAAJAbCnMAAAAA7FYShx8p\nPXifKt9/M+vCnGQ6rVA0Ka8ru4472TD5u+T52f+TsXChfE2bNLqro+f8nG6FK2q04rQLFamo2Wns\nEp9DExhhBQAAsNsYzKKcTyv2OeQ8/wzNKyzSrGsv0f7X/1AOf6dWn3x21jHb/FHVbw5odNXgdrgE\nAAAAtqIwBwAAAMBuJXHQwUpbbap6/00tueB7Wcfxh+IDV5hjGPJe/X05n/6HUnaHwuVV8o+ZqEh5\nlcJllYqUVytcUaVwebUiZZVKeAukDL5ssZhNGldTqJoyzwC8CQAAAGB7LodVY047XguKH9ee3z1P\ne935azn8HVpy7ncy+ky7I+s2dyuZSmvciMI8ZwsAAAD0HYU5AAAAAHYrhten+Oz9VPLOm3J0titW\nnF2b++5gTCMGqKDF8cSjcj79D7VNnanXbnpYhiX3P+WKvA5NGlkkl4M/CwEAADC4rBazxhx9kJY/\n/E+Nv/gMTf3bXXJ0dWj+5T+VLJasYm5sDSqeTGvSqKIh0yEIAAAAuyfzYCcAAAAAAAMtecSRkqTK\n+W9nHcMfjucrnV6Z162V99orlXB7NPeaG3MuyrGYTJowolAzx5dRlAMAAIAhw2QyacS+09Xw5L/U\nNXayxv3rce3/mytljmf/ubu5M6zFa9uVTKXzmCkAAADQNxTmAAAAANjtxA/bUphT9d7/so4RjacU\nS6TyldKOJRLyXXaxzKGQ5l/+M4Wra3MKV+ixa9bkCo0o9+YpQQAAACC/SieOUeczz6ttz9ka+b+X\ndNBPvilrOJR1vI5ATItWtyne35/dAQAAgB5kVJizaNEinXPOOdu9/t///lennnqqTj/9dD3xxBOS\npEQioSuvvFJnnHGGzjrrLK1Zs0aSVF9frzPPPFNnnXWWrrvuOqXTVKgDAAAAGBypadOVqKlVzbuv\n5vQErj/Uv11z3Df9VvYP3lP9YSdow5EnZh3HYjJpfA1dcgAAADA8eKvKFH36WTUffKQqF76rL151\nnhyd7VnHC0QSWrCqTZFYMo9ZAgAAAJnZaWHOvffeq5/85CeKxWKfeT2RSOj666/X/fffr4cffliP\nP/642tra9PrrryuZTOqxxx7Tt7/9bd1yyy2SpOuvv17f+9739Mgjj8gwDL3yyiv9844AAAAAYGdM\nJiVOPFm2cFCV89/KOkx3PxbmWN99R+5bfq9QZY3mf/dnWccpdNu1z6QK1VZ4ZTKZ8pghAAAA0H8c\nPo/06OPafOLXVLJqiQ698pycOudE4knNX9mq7gEaSQsAAABstdPCnFGjRun222/f7vU1a9Zo1KhR\nKiwslN1u1z777KP33ntPdXV1SqVSSqfTCgaDslq3PI25ZMkS7bvvvpKkQw45RG+//Xae3woAAAAA\nZC524smSpNo3Xsw6hj/YP4f6Jn+XvN+6SJI099oblfT4+hzDbDJpbHWBZk4ok9tJlxwAAAAMP2a7\nTZZ771XL6eepoGGdxj33SE7xEqm0Fq1qU0d3NE8ZAgAAADu309PZY445Rg0NDdu9HgwG5fN9cjjs\n8XgUDAbldrvV2Nio4447Tp2dnbr77rslSYZhbHs60+PxKBAIZJRgeXnfD6ABYLjhdx0AAIPg2MOV\nGlGrEe+8qhV2kwy7o88hTCaTSko8slgymhKcGcNQ+ruXyNy4Uasv/K7i+31B2XxSGFnp0x5jS/OX\nFwAAwOdwnoEBc8+tSj3/tCb/40E1n/UNpVzunMKtbw3LW+DSiHJvnhIEAAAAepb1Y5Ner1eh0Cdt\nI0OhkHw+nx588EEddNBBuvLKK9XU1KTzzjtPzz33nMxm82fuLSgoyGif1tbMCngAYLgqL/fxuw4A\ngEHiPuEkee75ozxv/FdN+x+WVYw19R0q9vW9qKcnjicfU8Fjj6l9ygwtPO1iGcG+P81rkuQbWchn\nDAAA0G84z8DAMstywSUque33qnj8Ia386gU5R3x7YYPGVhdoVCUFZgAAAMhdbw8uZP1Y57hx41Rf\nX6+uri7F43G9//772muvvVRQULCtk05hYaGSyaRSqZSmTp2quXPnSpLeeOMNzZo1K9utAQAAACAv\n4tvGWb2UdYzuUP7GWZnXr5Pn6h8o4fZo7rU3yrBk9yxFWaFLLgfjqwAAALDrSH/7ciXcHk168n6Z\nY/kZRbW2qVurG/15iQUAAAD0pM+FOc8995wef/xx2Ww2XXvttfrGN76hM844Q6eeeqoqKyt1/vnn\na8mSJTrrrLN03nnn6fvf/77cbreuueYa3X777Tr99NOVSCR0zDHH9Mf7AQAAAICMJfeZrUT1CNW8\n81+Z49kV2HSH81SYk0zK/c2LZAkFNf/ynypUPTLrUCMraMkPAACAXYtRXKK2My+Qs7NNY59/Mm9x\nG1qDau4M5y0eAAAA8HkmwzCMwU6iN7RDBbCro/UzAACDy/3Ta+W5507975d3afN+h/Z5vc1i1oHT\nq3POw3HDr1Xwh99qw2Ff0txrb5RMpqziFHkcmjmhLOd8AAAAesN5BgZDrKlZVfvNUMLj1fMPvay0\nPT8jZS1mk2ZNqqDrJAAAALLWL6OsAAAAAGBXED/xK5KkkVmOs0qk0gpFEznlYJ37jny33KhQZY3m\nf+dnWRflSHTLAQAAwK7LUV2pjad8Xa72FtW9+I+8xU2lDS1d36H00H6OGQAAAMMUhTkAAAAAdmvJ\nfWYrXlWjmnf+K1Miu7FU/mD246xM3X65L/mGJGnuNb9TwluQdSy3w6rSQmfW6wEAAIChLnzpd5R0\nODX58fuy/vy+I4FIQms3dectHgAAALAVhTkAAAAAdm9ms+JfPkn2YLcqF7yTVYjuUPZfCNi+f4Uc\nTQ1aduY31T5tn6zjSHTLAQAAwK6vZMIorfvS6XK3NmnMv5/Ja+yG1qDa/dG8xgQAAAAozAEAAACw\n20ucdIokqTbLcVb+LAtzzH9/UoXPPaX2KTO09OzLsoqxlcNqUWWJO6cYAAAAwFBntZjVeuFlStns\nmvLon2RK5jZW9vOWb+hULJHKa0wAAADs3ijMAQAAALDbS86arXhltUa8/UpW7fAj8aTifT287+qU\n96fXKmV3aO7Vv5VhsfZ5308bUe6R2WTKKQYAAAAwHBRPGqO1x58mT3OjRv33//IaO5FKa1l9pwzD\nyGtcAAAA7L4ozAEAAAAAs1mxEwZ2nFX6pz+To71VS7/+LYVGjM5qz60sZpNqyjw5xQAAAACGi5IC\np9aecbHSVpumPHK3TKlkXuN3BWPa0BzMa0wAAADsvijMAQAAAABJyZMHbpxV+K25qnjiL+oeOVYr\nvnpBVvt9WnWpR1YLf94BAABg92A2meSbNFbrjjlFvk0bNPLV5/O+x/rN3fIHY3mPCwAAgN0PJ7cA\nAAAAICk5e9+cxlll2jEnEYur8Jrvy2QYmv/d62TY7H3e69PMJpNqy+mWAwAAgN1LZbFby0+/WGmL\nVVMeuVtK9XG07E4YkpbVdyqRTOc1LgAAAHY/FOYAAAAAgLRlnNWXvvzxOKt3+7w8EEkonTZ2ft8t\nd6ho5WKtP/JEtc7YN5tMP6O80Cmn3ZpzHAAAAGA4KfDYpdGjVX/kiSpoWKfa/2XX+bI30URKKzZ2\n5j0uAAAAdi8U5gAAAADAx5Jf+aokZXWonzYMBcK9d83ZvHi1xt51o+LeAn148dVZ5fh5Iyt9eYkD\nAAAADDeVxW4tO/ObSpstmvq3u6R0/rvbtPmjamwN5j0uAAAAdh8U5gAAAADAx5Kz91W8omrLOKtk\nos/r/b2MswqE4yr6xU9kC4f00YU/UKy4NJdUJUklPoe8LlvOcQAAAIDhqKLYpVDNKG04/AQV1q/W\niLf+0y/7rNnUrWCk738fAAAAABKFOQAAAADwCbNZkS+dKHvAr4osxll191CYk0yl1fLksxr52vNq\nnzJDa48/LddMJUkjK+iWAwAAgN2Xy2FVoceuZWd+U4bZvKVrjrHz8bJ9lTYMLV3foVQ/dOQBAADA\nro/CHAAAAAD4lPRXTpUkjXzjxT6v7aljzurVm7XHzXNkmM364LvXSebc/xTzuWwq9jlyjgMAAAAM\nZ1UlbgVH1mnjF49T0drlqn731X7ZJxxLatVGv4x+KPwBAADAro3CHAAAAAD4lOS++yleXpnVOKtE\nKq1w9LNrNneEVXLP7fJt2qBVJ58j/7gpecmztsKblzgAAADAcFZe5JLZZNrSNcdk0tS/3tkvXXMk\naXNnWG8v3qzF69rV2Brc7rM/AAAAsCMU5gAAAADAp5nNCh+f/TirT3fNCUeTanpngSY//ieFyyq1\n5Nzv5CVFp82i8iJXXmIBAAAAw5nVYlZpoVPdYyao4eBjVLJqiaree6Pf9kuk0mrzR7Wq0a95y1v0\nzpLNWlbfqc0dYcXiqX7bFwAAAMMXhTkAAAAA8HmnZj/Oqvvjwpx02tDSde2acdsvZEkktPDSHynp\n9uQlvdpyr8wmU15iAQAAAMNdZfGWovVlZ10qSf3WNccW8MsSCX/mtVgipebOsJZv6NQ7Szdr3rJm\nrdzYpdauiNJpxl4BAACAwhwAAAAA2E5i3/0VL6tQTRbjrLZ2zFmzya/iF/+pygXvqGn2wWo8+Oi8\n5GY1m1VV6s5LLAAAAGBXUFLglM1iln/sJDV+4QiVLv9Qe/3xV7L7O/MS3xoKaPp9v9eXzzhYX7z6\nAimd7vHecCypTe0hLVnfofrmQF72BwAAwPBGYQ4AAAAAfJ7ZrNBxX5Yj4FfFwrl9WhqOJdXUHlLL\n+ibNuOcGpewOLbj8p1KeOtzUlHlktfCnHAAAALCV2WRSxcddcz686EoFq2o1/tlHdPx5R2vyo/fI\nEo1kFdeUSmrcs4/o+POP0eQn/ixTKq3SFR9q5OsvZLR+Y0tQkVgyq70BAACw6+A0FwAAAAB2wPh4\nnFVtFuOsVm7s0rQHb5Wro01Lz7pUoeqRecnJbDJpRHl+xmEBAAAAu5LK4i1dJYO1dXrpvn9pwbd+\npLTVqukP3KLjzj9Gdc8/IVMqwyIZw1DV3Nd09CUnae87filzPKaPLvi+Xr7nGaWtNk178FaZEvGd\nhkkbhtZu6s7lbQEAAGAXQGEOAAAAAOxAar8DFCur0Ii3/tPncVZFKxdr3HOPqru2Tiu/emFe8nHZ\nrZpQWyiHzZKXeAAAAMCupMBjl9thlSSl7Xat/sq5ev6hl7X0zG/KFgpo1i3X6ehLTlLNW/+RDKPH\nOIVrluuQay/UwT/9lnyN67Xm+K/phQdf0vIzL1Fg9Hit+dLp8jZt1NgXnswor1Z/RJ2BWF7eIwAA\nAIYnCnMAAAAAYEcsFoWOPeHjcVbzMl+XSmnvW+fIZBia/93rlLbbs07BJKmswKk9x5Zqv6mVqi6l\nWw4AAADQk61dc7ZKenxacsH39MKDL2ntcafJ17heB/78OzrsB2erdMn8z9zrbG/RrJt+rKMuO0WV\nC97V5lkH6eW7ntb87/1cseKybfctO+tSJVxuTf3rXbJEQhnltabRL6OXYiAAAADs2ixz5syZM9hJ\n9CYc3nk7SAAYzjweB7/rAAAYokxej9yPP6KU3a6mAw7v9V5zPK6KBe9oj4f/qOoP3lL9EV/Wqq9e\nkNW+dqtZteVeTR5drJoyr1wfP/kLAAAwVHCegaHIabeooXX7Ypmk26OmAw7TxkOOlautWVXz31bd\nS0+paPVyBWpHq+6Fv+uA31yp0hUfqnv0eM27+gYtPfdyxYpLt4uVcrllTiRUM+91pewOte05e6d5\nxZNp2a1mFXiyL9oHAADA0ObxOHq8ZjKGeJl2a2tgsFMAgH5VXu7jdx0AAENVKqWCaROlRELPPfaG\nDKvtM5cdnW2qnveGqt99VVUfvC1rNCxJClXW6JXbHv/Mk7WZKPI4VFPmVlmRS2aTKW9vAwAAIN84\nz8BQtXBVm7pCvY+OKl0yX3ve+3uVLV2w7bVoUakWn/ddrT/2FBmW3gvjreGQjjvvaFkSMT3/4MuK\nF5XsNC+bxax9p1TIZmU0LQAAwK6ovNzX4zUeuwQAAACAnlgsCh5zgkofeUDli+apZe8vqHDtClXP\nfU01776qkhUfyfTxsw6BmlFq2v8wbdr/MLVN23u7Ip6eWM1mVZa4VFPmkceZ2RoAAAAAO1ZZ4tpp\nYU77Hnvr1Zv/ppp3/qux/3pcXeOnavnXLlLS481oj6Tbo2VnXaq97vqNpjx6jxZ960c7XZNIpbWu\nKaCJI4sy2gMAAAC7DjrmAMAg4wkzAACGNvP/3lDpqSfIP3qcrJGwPC1NkqS02aK2aXurab9DtWn/\nwxQcWdfn2F6nTdPHlcph46lZAAAwvHCegaEqmUrr7cWbld7BVx9mk0lOu0Uuh1Vuh1Uuh3Xb+KuO\nQLRP+5jjcR37jePl7GjRi/e/oHDliJ2uMUnaZ1KFvC4K8gEAAHY1vXXMoTAHAAYZB1kAAAxxqZR8\nM6bK2dKkuLdAm2cfrE37H6bN+xyoREH2T7sWuO2aPrZUNqs5j8kCAAAMDM4zMJSt3NilcCy5rfhm\nWxGOw9LjyNiWrojWNPgVS6Yy3mfUf57Vfr+7RuuPPEnvXX1DRmuKvA7NHN+3kbcAAAAY+ijMAYAh\njIMsAACGvrYPFqtp2Vp1TN4z4xFVvSn2OjRtbIksZopyAADA8MR5BnZFyVRa65sCamwLKqMvTtJp\nHXXZKSpct1Iv3/2MuusmZrTP1DElqihy5ZQrAAAAhpbeCnM4BQYAAACAnSjYc4q6ps/KS1FOeaFL\n08eVUpQDAAAADDFWi1njawu198Ry+Vz2nS8wm/XRhd+XyTA0/f6bM95nbaNfqXQ6qxw7uqN6b3mL\nwtFEVusBAAAw8DgJBgAAAICdsNssmj2lQuWFuT3VWlXs1tQxxT22zwcAAAAw+Hxuu/aeWKYJtUWy\n7qSgfvPsQ9Q6fZZq5r6m0sUfZBQ/mkipoSXUp5zShqE1jX59uLZdoWhCH65pVzSe7FMMAAAADA4K\ncwAAAAAgA067VXvUlWjPsaVyO6x9Xl9b7tXk0cUyUZQDAAAADHkmk0kjyjyaPaVClb2NnTKZ9OFF\nV0qS9rzvJsnIaAiWNjQHMi6sicSSWrCyTRtbg9teiyZS+nBNuxLJVEYxAAAAMHgozAEAAACAPigp\ncGrW5AqNrS6QJcMim7qqAo0fUdjPmQEAAADIN4fNoiljSjRjXFmPBfodU2aq8QtHqGzpAlW/+2pG\ncVOGobWbund6X3NHWO+vaFEgEt/uWjiW1IdrOpRMZTcWCwAAAAODwhwAAAAA6COzyaRRlb4t4616\ne3pW0vgRhRpd5RugzAAAAAD0h2KfQ7MmVchpt+zw+kcXfl+G2azp998spTLrYtPSFVFXMLbDa8lU\nWsvqO7VsQ6dS6Z678AQicS1Z16F0L/cAAABgcFGYAwAAAABZctqt2qOHp2fNJpOmjCpWbbl3kLID\nAAAAkE9ms0ljqgp2eC0wapzWH3WyCutXa/Qrz2Ycc3WDX8bnxl8FwnF9sKJVzZ3hjGJ0BmNaVt+5\nXRwAAAAMDRTmAAAAAECOin2OT8ZbmU0ym0yaOrpYlSXuwU4NAAAAQB5VFrt6HGm15JzLlbLZNe2h\n22WO77gTzucFowk1tX9SgLOxJagFq9oUiSf7lFerP6KVG7v6tAYAAAADg8IcAAAAAMiDreOt9p1c\nqRnjy1S2kxFXAAAAAIYfk8mkMdU77poTqajW6pPOlru1SeOefTTjmOuauhWOJvXhmnat2eRXOsvO\nN00dYa3d1J3VWgAAAPQfCnMAAAAAII8cdosKPfbBTgMAAABAP6kocsnrtO3w2rIzLlbc49OUR++W\nNRTIKF4ildZ7y5vVEYjmnNuGloA2NGe2LwAAAAYGhTkAAAAAAAAAAAB9UNdD15xEQZGWn36xHAG/\nJj3x54zjZdcjZ8fWNnWrqT2Ux4gAAADIBYU5AAAAAAAAAAAAfVBa6FSBe8edMleffLYipRWa+NRD\n8tWvHuDMtli5sUttXZF+i98djqvdn3uHHwAAgN0BhTkAAAAAAAAAAAB91FPXnJTTpfnf/omssaj2\n/82VMscGvoDFkLS0vlOdgVjeY7d1RbRoVZvWNXXnPTYAAMCuiMIcAAAAAAAAAACAPir2OVTkdezw\n2qaDjtLqE85Q0bqVmvGn3w1wZlukDUOL17ZrU1v+xlptbAlqyfoOpQxDwWiiX7vyAAAA7CoozAEA\nAAAAAAAAAMjC2B665kjSom9eo666iRr/3KMa8ebLA5jVJ1KGoZUNXfpobbtiiVTWcQzD0MqNXVqz\nyS/jU6/XNwdzTxIAAGAXR2EOAAAAAAAAAABAFgo8dpUWOHd4Le1w6t0f/0FJh1Oz/vBTuZsbBzi7\nT7R3R/X+8ha1ZtHhJplK66O1HdrUvn3nnUAkro7ugR/VBQAAMJxQmAMAAAAAAAAAAJClul665gRG\njdOCy34se7Bb+11/lUyp5ABm9lmJVFpL1ndoWX2nkql0Rmui8aQWrmpTR6Dn4pv65kC+UgQAANgl\nUZgDAAAAAAAAAACQJa/LpvIiV4/X1x97qjYcerzKli7Q1L/cMYCZ7VhzZ1jvL29RZyDW632BcFwL\nVrYpGE30ep8/FJc/2HssAACA3RmFOQAAAAAAAAAAADmoq/LJ1NNFk0kfXDFHwapaTXnsTypf8O5A\nprZD0URKi9a0aXWjX+m0sd31Nn9EC1e1KZZMZRSPrjkAAAA9ozAHAAAAAAAAAAAgB26nTZXF7h6v\nJz0+vfv/bpJhtmi/314lR2f7AGbXs4bWoD5Y2apAOP6Z15as61DK2L5gpycdgZi6PxUDAAAAn6Aw\nBwAAAAAAAAAAIEejq3wym3rsm6POyXvqowu/L1dHm2b//kdSOj2A2fUsFE1owao21W8OaHWDX6sb\n/cq8JOcTG+iaAwAAsEMU5gAAAAAAAAAAAOTI5bCqqqTnrjmStPLU87V51kGqfu9/mvjUQwOU2c6l\nDUPrNneroS2YdYw2f1TBSCKPWQEAAOwaKMwBAAAAAAAAAADIg9FVPll66Zojs1nzrrpBkZIyTb//\nZhWv+Gjgkvt8KrGoSpYu0PinH9bs312jYy46QQf84gqZktkX19A1BwAAYHsmw+jDkNBB0NrKhzgA\nu7bych+/6wAAAAAAwLDCeQbQszWNfm1s7b3zTMX8t3XIjy5SqKpW/77zKSU93n7NyZSIq3DdKpWs\nXKzilR+pZOUSFaxfJXM6te2etMUqcyqpNcd/TfOvmCP1VmDU0z6SZk+ulNtpzV/yAAAAw0B5ua/H\na3wyAgAAAAAAAAAAyJNRlV5tag8ple75ueiWvb+g5adfrCmP/Un73DZHc6+9MatCmB0xx6IqXL9K\nRWuWqWj1MpWsWqLCtctlSXzSCSfpcKpj8p7qmDRNnROmqWPSdEVLK3Toledo3PNPqHv0eK3+yjl9\n3tuQtLEloEmjivPyXgAAAHYFFOYAAAAAAAAAAADkic1qUW25V/U7Geu05NzLVf7hPI169V9q3vsL\nWn/MKX3ey9HZrqI1y1W0dtmWn2uWy9ewTqZ0ets9aatNXXUT1TlpmjomTFPnpOnqHj1OhmX7r4je\n+vkfdeR3vqaZ99ygQO0YNc8+uM85NXdGNLrKJ6edr6AAAAAkRlkBwKCj9TMAAAAAABhuOM8AepdM\npbV0fafSaUOGDBmGZBhbfqaNT/7tbGrQoRefJEskrFhRiVIOp1IOp5IOl1IOx7Z/pxxOpexOJZ1O\nyWSWb+NaFa1ZLldH62f2Tbg96ho7WV3jJqtr7GT5x02Wf8xEpe32jHMvWbZIh/7wXKVtdr1y66MK\njB7f5/c/osyjCbVFfV4HAAAwXPU2yorCHAAYZBxkAQAAAACA4YbzDCB/bK++Iuevfq5ER6cssags\nsaissags8Viv68Ll1VsKcLb9N0WhyhGS2ZxzTiNf/Zf2v/6HClaP1Cu3Pa54Yd9GU5lNJu03tVIO\nmyXnXAAAAIYDCnMAYAjjIAsAAAAAAAw3nGcA+bdmk18bW4KfvJBOyxKPfVysE5ElFpM1FpE5kVBg\nxGglCvq3I80eD92mqX+7S63TZ+n1G/4sw5Z51x1JKfiMGQAAIABJREFUGlnu1bgRhf2UHQAAwNDS\nW2EOAz4BAAAAAAAAAAAGWV11gboCMQUiiS0vmM1KOV1KOV2S+taxJh+WnHO5fBvWauT/XtI+t/1c\n7//gV5LJlPH6Te0hjar0ymalaw4AANi95d7PEAAAAAAAAAAAADkxm0yaMrpElj4Uv/Qrs1nvXXW9\nOibsobqXntKEfzzUp+WptKGG1lA/JQcAADB8UJgDAAAAAAAAAAAwBLidVo2vHTrjn1JOl976+R8V\nKa3QjHt/p+p3X+3T+sbWkJKpdD9lBwAAMDxQmAMAAAAAAAAAADBEVJd6VF7oykussdUFmjK6WDWl\nHnmctqxiRMsq9dbP/6iU3aH9rv+hCtatzHhtMp3Wpja65gAAgN0bhTkAAAAAAAAAAABDyMSRRXLY\nLFmvN0maPKpYoyp9qix2a+LIIs2eXKEDp1VpjzElqi3zyueyKdOhWZ0Tp+m9q66XLRLWQT+7TI7O\n9oxz2dgSVCpN1xwAALD7ssyZM2fOYCfRm3A4PtgpAEC/8ngc/K4DAAAAAADDCucZQP+ymE3yumxq\n7gz3ea3ZZNIeY0pUUezeQVyzPE6bSgqcqinzqLbcq0KPQw67RTKkeCLVY9zu0eNlmMyqffs/Kl22\nUBsO/7IMy86Lh9KGoWgspXgipWgipWQyLcOQzOYtuQIAAOwKPB5Hj9dMhmEYA5hLn7W2BgY7BQDo\nV+XlPn7XAQAAAACAYYXzDGBgrNnk18aWYMb3W0wmTRtbqmJfz18M9SaRTKm1K6qWroj8wZi2+wLJ\nMLTf9T/UqNee14ZDj9eCy3+ieEFxVnttzddus8huNctus8hmNctpt6jI65DPbZOJwh0AADBMlJf7\nerxGYQ4ADDIOsgAAAAAAwHDDeQYwMNKGoQUrWxWIJHZ6r81i1vSxpSrw2POydzyRUqs/qtbOiPyh\nT4p0zLGoDr3qPJUu/1Apu0P1R3xZq086W/6xk/Ky71Z2q1mlBU6VFDhV7HPIajHnNT4AAEA+UZgD\nAEMYB1kAAAAAAGC44TwDGDjhaEIfrGhVqpevcxxWi6aPK5XXZeuXHGKJlNq6Imrpiqg7FJc5EtLY\n55/U+H/+Td7NDZKklhn7atVJZ2vTAYdLGYy46guzyaQir12lBU6VFjrltFvzGh8AACBXFOYAwBDG\nQRYAAAAAABhuOM8ABtamtpBWNnTt8JrTbtGMcWVyOQamWCWWSKm1K6KG1qCikbiq572hCc88rMoF\n70iSQpU1Wn3i17Xu2FOV8BX2Sw5ep00lBU6VFTrz1iEIAAAgFxTmAMAQxkEWAAAAAAAYbjjPAAbe\n4nXtavNHP/Oax2nTnuNK5bDlt0NNJmKJlBatblM4lpQkFaxfpfHP/k2j//2srLGIkg6n6o88SatP\n+rq6x0zotzxmTarot05BAAAAmaIwBwCGMA6yAAAAAADAcMN5BjDwEsmU3l/eqlgyJUnyuezac1yJ\nbNaBL8rZ6vPFOZJkC/hV99JTGv/Pv8nT3ChJattjb0WLy5S2WpW2WmVYrEpbrDKsH/+0WLddS9sc\nWn/0yYqWVmSUQ2mBU9PHlvbL+wMAAMgUhTkAMIRxkAUAAAAAAIYbzjOAwdEZiGnRmjYVeR2aVlci\nq8U82CntsDhHkpRKqWbuaxr/zF9VufDdPsVsmn2w3vz1nzK+f+8J5Yy0AgAAg4rCHAAYwjjIAgAA\nAAAAww3nGcDgaekMq6zQJbPZNNipbBNPpLRoTbtC0cQOr1vDIZnjMZlTSZmTCZlSKZmTSZk+/e9U\nUuZkUlMfvkMVH76nN379JzXPPjij/Yu8Ds0cX5bPtyR/KC6P0zokip8AAMDQR2EOAAxhHGQBAAAA\nAIDhhvMMAJ+XSKa0aHW7gj0U52SqcO0KHXXZKQrU1unle56RYbFmtG7GuDIV+xw57b1VVzCmhavb\nZJLkcdpU5HWowGtXkccuu23wRocBAIChq7fCHMp8AQAAAAAAAAAAkBOb1aIZ40vlddpyiuMfO0lr\njztNBRvWaOy/Hs943bqm7pz23SqdNrRyY5ckyZAUjCbU0BbU0vUdenvJZs1b1qyVG7vU3BlWLJ7K\ny54AAGDXRmEOAAAAAAAAAAAAcpav4pwl535HCbdXezx0u2wBf0ZrusNxtfujOe0rSRtaAgrHkj1e\nD8eS2tQe0rL6Tr2zdLPeXbpZazd1a4gPqAAAAIOIwhwAAAAAAAAAAADkxZbinDL5XNkX58SKS7X0\nrEvlCPg19a93Zrwu16454WhCG5qDfVoTjae0oSWwrcsOAADA51GYAwAAAAAAAAAAgLyxWc3ac1xu\nxTmrTz5HweqRGv/sI/I2rMtoTTCaUEtXJOs9V270K51l55umjrBWbOjMem8AALDrojAHAAAAAAAA\nAAAAeWWzmj/unGPPan3abteii6+SOZXUjD/dmPG69U3ZjZVqag+pKxTr87rPxOgI0zkHAABsh8Ic\nAAAAAAAAAAAA5J3VYtaM8aUqdGdXnLPpwCPVsuds1bz7qio+eCujNeFYUs2dfeuaE0+ktHZTbmOw\nttrUHqI4BwAAfAaFOQAAAAAAAAAAAOgXVotZMyeUadLIItksffxaymTSokuvlWEyaeY9v5Uplcxo\n2frN3X0aSbWm0a9EKt233HpBcQ4AAPg0CnMAAAAAAAAAAADQb0wmk6pLPdpvaqVqy70ym0wZr+0a\nP1XrjjlFhetXqe6Fv2e0JhpPqak9nNG9Hd1RNXd9tsOO3d+p8oVzpSxGYm21qT2kVQ0U5wAAAApz\nAAAAAAAAAAAAMACsFrPGjyjUrEnlKvE5M163+PwrlHC5Ne2h22QNBTJas2FzQKl0711wUum0Vn6u\neKZ4+Yc6+tKTdejV52vaA7fkVJzT2BbS6gZ/1usBAMCugcIcAAAAAAAAAAAADBi306Y9x5Vqel2p\n3A7rTu+PlZRr+RnflMPfqal/uzujPWLJlDa19d41Z/3mgKLx1LZ/j3npKR125dlydrYpUlKuKY/9\nSXs8eGtOxTkNbUGtbqQ4BwCA3RmFOQAAAAAAAAAAABhwpYVOzZpcoXE1hbKae//KauWp5ylUWaMJ\nzzwsT2N9RvE3NAeUTO24a04wklBja0iSZEomNPOPv9Lsm36slNOt//3qT/rPHU8qUDNKUx+9R1Mf\nvqNvb+xzGlqDWkNxDgAAuy0KcwAAAAAAAAAAADAozCaTRlZ4te+UClWXuGXq4b603aEPL75K5mRC\nM+69MaPYiVR6W/HNpxmGoZUbu5Q2DDk62/XFay7UhH/+Tf4xE/Sf259Q86wDFS2r1Os3PqRg9Ujt\n8dc7NfXhP+bwLqWNrUGt2URxDgAAuyMKcwAAAAAAAAAAADCo7DaLJo0q1t4Ty1VZ5JLZtH2JTsPB\nx6h12j4a8fYrKl84N6O4G1uCSiQ/2zWnsS2k7nBcRSuX6MjLT1P5R++r4aCj9cqtjypUM2rbfZHy\nKr1244MKVtVqj4fv0JS/3pnTe9zYsmWsVU9dfAAAQP+IJVLqDMTU0BpUR3d0wPc3GUYOgzEHQGtr\nYLBTAIB+VV7u43cdAAAAAAAYVjjPANDfYomUNrWF1NQeUvxThTXFKxfryMtPU9fYyfr3H/8uWSw7\njTWqwqexNQVb4sZTmre8WSNefkazbrlO5kRci8+/QsvPuETaQTGQJLmbG3XoD8+Tp7lRH51/hZaf\ndWlO781iNqmiyKXqUo8KPPacYgEAgE8kkikFI0mFowmFokmFo0mFogklPlcU63PZNbrSq7IiV972\nLi/39XjNMmfOnDl526kfhMPxwU4BAPqVx+Pgdx0AAAAAABhWOM8A0N+sFrOKfQ6NKPfK7bAqFk8r\nnkwpWlohz+ZGVX3wpiIVVeqasMdOYwXDCVWVumW1mLVibavG3fprzfjzTUo63XrnZ7dq/bGn9liU\nI0kJb4Eav3CERrz9H9W+9R+lbA61T9sn6/dmGFIwklBTR1htXVGlDUMuh1UWc885QApFE7Jbd16I\nBQDYfcSXLJPz0ouUeuLv2tDk11IVqimYVEcgpkAkoWgipfQOetXEkym1dEXU1hWV1WKS22mVqZfP\nApnweBw9XqNjDgAMMp4wAwAAAAAAww3nGQAGgz8UV2NrUME19Trm/GOVdLn1wgMvKunx7nRtbZlX\npfGACi+9UJUL31X3qHF6a87tCtbWZby/u6lBh151rjwtTfrwoiu14msX5fJ2PsNsMqm80KmqUo+K\nfT1/sTfUBSMJeV22fon7wYoWjSjzqq7GJ4vZnPc9AADDQzKVVktnRMbTT2uPX18lWzi07VrKZlfT\nvoeo4ZBjtWn/Q5VyeTKK6XZYNarSp4riHY/TzERvHXMozAGAQcZBFgAAAAAAGG44zwAwmGKJlPSb\n36j2jzfKP3qcImVVSjmcSjmcSn78c8t/LqUcDiUdLslq1eTH7pW7uVGNBxyheVffkFFBz+d5mjbq\n0CvPlbttsxZdfJVWnnZh3t+fy25VdalblSVuOWzDo0NMuz+qDS0B+UNx7TWhXIV5HtG1bH2Hmrsi\nkrb8/5k8qkiF3uFbwAQA6BvDMNQZiKm5I6y2jpCmPHirpjz2JyUdLr3/g1+qa9xk1b7xoka+/oIK\n69dIkpIOp5r2/aIavnismmYfopTLvdN9XHarRlV6VVni7nOBDoU5ADCEcZAFAAAAAACGG84zAAy6\nSERFJxwl6+KPZOrDV11LzrlcS7/+Lf1/9u47PKoybQP4fc70nplk0ishIaEjRRAFe19dBdfVVSyL\nuoqr7oqiiIK66q69oWtZ3XV1XfvaPntDQOm9hBDSezKZ3mfO90cggqTMJAGSeP+uKxeTOed9zzuJ\nTOQ9d54H3VRckYkCLEY1Wh3+Tttf6OqqcPz8OdC2NGLj1QtQOvvyzieKRqFpaYShtgL6mgoYasqh\nbapH7fRTUHXyOT2uVRQEpCVqkZtqhEI+8CrERCUJzW0+VDe54faHOp5PNKoxZlhiv13HHwxj9Y6m\nA74XAoBMqx55aUaIbAFGRDRkef0hNNh8aGzzIhCKQOlow9EPzEfq+pVwp2djxeKn4MwrPGCMsaK0\nPaTz7Scw1pQDAMIqDeqnzkT1jDPQeNQxPYZz1QoZMpP1SEvUxlyljcEcIqIBjBtZRERERERERDTY\ncD+DiAYMSUJLkx1luxsh+byQB3yQBQKQBXyQ+f2QBf2QB/yQBfxwZebBVjyu2+lMWiWKcszQqOQI\nhCKoaXKjrtWDSPTA22m62kqcMH8ONK1N2HTVLWgZPRH62goYan760NdWQh7wdXqdilN+jfXX3xnT\nb+8rZCJyUw1IT9JB6GV7jf4UiUZR3+pFTZMb/lCk03MmjUjut5ZWu2sdqGl2d3pMq5KjKNsMYz9X\n6CEiGugkSUIk2v4RjUqISvs93ve81P4YANISY2vpNBB4/aH26jhtPji9wY7nzbu2Yto9N0DXVI+6\no4/H6gV/Q0hv7HoiSYKxohRZ332CrO8+gaG2suNQwGSGOzULntQMeFIz4UnL3PtnFrzWVEjyn36G\nqeQyqJV7P1RyqJUyaPb+qVLIOn42M5hDRDSAcSOLiIiIiIiIiAYb7mcQ0UDjC4SxvaINLl+w55M7\nIQDISTUgJ8VwUPglHImittmD2hY3guFox/P62gocf/McaGzNB80XVmngysyFOzMHrsw8uDJy4crM\nRUSlxuRHF8FSsgXO7Hz8sOgxOHMLYlqjXq1AfoYJZsORaeEUCkdR1+JBTbMboUi023OTEzQYmWvp\n8zXDkSh+2NZwUDBqfwKAzGQ98lJZPYeIfhl8gTA27W7pMhzZmbxUI3JSuw6OHEmBYARt7gDaXAHY\n3YH2lpU/k/vJ2zjq6XshhkPYdun12HHxH7qtfncQSYJpTwlyl3+GxLLtUNVWQ9NQA1kodPCpogiv\nNRWe1CzYCkdh+yXXIaLpPNgkCgJUChk0KhlOmprX5eUZzCEiOsK4kUVEREREREREgw33M4hoIIpK\nEvbUOlHT0nl1la5olHIU5Zhh6qHqSjQqod7WXinGFwwDAPQ15Rjx5j8Q1ujgymoP4Lgzc+FLSgG6\nqG4jhIIY++IjKHzvFYRVamyYtwgVp53f5fk/l2RSIz/dBI1KHtfr7C1/MIyaZg/qWzyIxHhbUQAw\nuSgFWnXf1ljV6MKeemdM5+rUCozIToBRy+o5RDR0+QJh1Lz9MXLfeAlbL7sBjvyimMeOyUtEokl9\nCFcXm1A4Cvt+QRxvINzluWIwiAlL/4Jhn7yFoMGEH297CI2Tj+vVdc16FYpzzFAqZAAAKRJBqLoG\nkbJySHv2QKysgLyqEsraKmjrqqFpbQIA2PMKsXLJ0/CkZXU7/wWndP29YDCHiOgI40YWERERERER\nEQ023M8gooGsxe7Dzio7wtHuq7oAQKpZi+GZJshlsf/WvSRJaLL7UN3ohtt/8G/axyp9xZeY/Mgd\nULqdqDj5HKz/411d/kb+z4mCgEyrHtkp+rjWHiunJ4jWNg/0/3wR2W//CxuuuwMNU2bENUeaRYsR\n2eZeryEqSVi1rRGBcOwVIURBQFayHjmpBogDoO0XEVF/8gfDaHvkSYx+8i8QI2F4UjLwxdK3ETIm\nxDReLoo4qjAJWnX/tBqMRSgcgTcQgS8QhscXgt0dgNsXQiwhFU1TPY6590ZYSragLb8YK+96Et60\nzLjXIADITTUiO0Ufc0vISDQKv90F9eI7kfrGPxE0mPDDwkfQNHF6l2MYzCEiGsC4kUVERERERERE\ngw33M4hooPMFwthR2Qant/PWVnJRRGF2ApITNH26js3pR22LB25vKK4AyT7ahlpMve/PSCzZDGfW\nsPbWVnmFMY9XyWXISzci1aKN+9r7i0SjaHMG0Or0w+YMQL1rOyY+dhcSSzYDABy5Bfj8ufdjruoD\ntIdkphQnQ63sXdWc+lYPSqrtvRqrVcmRnWJAslnDgA4RDQl+jw+RG29C7gevI2Ayo37yccj98gPU\nT5mB5fc8G3NbJ61KjqMKrf0a6oxGJXgDYXgDYfj8Yfj2PQ6Ee2x92BkhEoZ14ypM/estUDnaUHHK\nr7HuhsWIquKv9qOSy1Cca0aCvvdtID3PvYisexZAjESw+fc3Y9fsKzr9echgDhHRAMaNLCIiIiIi\nIiIabLifQUSDQVSSsKfOiZrmA1tbJehVKMpO6HVgpCvhSPSAm5E+f7jjRmUk2vXtOCEUxJiXHsOI\nd/6JiFKFDfPuQPnps+MKwRi1SqQlaiGTiZCLAuQyETKZALm4989ObsD6g2G0OgNodfhhdwcQlSSI\nAT9GvvYsRrz1EsRIGFUnnAWZ34+MH77C9/c+i4ajj4/ra5KZpMfwTFNcY/ZZvaOx2/YmsdAo5chO\n0SPFomVAh4j6zOsPodnuhygKMBtU0GsOT+WZUEMTlHN+h6SNq2AfNgIr7l4KrzUNxy76A9LWfo+t\nc/6IHZdcF/N8FoMaY4ZZYq4e05VWhx+ltXb4g90HU5V2Gyy7tsJYVQaF2wmF1wO51w2FxwWF1w2F\n1wOFx7X3OQ/kAR8AICpXYMO1t2PP2b+N62fiPhaDCkXZP7Wu6gvHN8uRcd3l0LQ2oeqEs7D2T/ci\noj4w3MtgDhHRAMaNLCIiIiIiIiIabLifQUSDSYvDh5IqOyJRCbmpBmQlx97Kor8EQnvbePjDaLJ5\n4eikkk/aD19jysMLoXQ5UHnC2Vh/4xKEtbG1tuqJAEAmipDLBMhkIiRJOij0Yt3wIyY+sRiGuip4\nUtKx/o+L0TBlBkx7SnDqH36N5tET8e2jr8Z1XZkgYOqoFCjk8d0UbXX4saW8Na4x3VErZMhM1iM9\nUQdRZECHiGK3L4zTZPfB87P2hQqZiASDCma9CmaDChpV/wY+ASCyeQsMl14IXX0Nao49BatveaCj\n7aHS2YaT582Gtqke39/3PBonHRvzvFnJeuSn9y44CQBVjS6U1zsPakkl97hg3rUNll1bYCnZCnPp\nVuga67qdK6xSI6zVI6TVIaQzIKTVI2hMwK5Zl8FWPD7ute1rXZWTaoh7bHfsuythmTsHids3tLfW\nWvwUvKkZHccZzCEiGsC4kUVEREREREREgw33M4hosPEHwwiFozBolUd6KQAAhyeImiY3Why+A25q\nahtrMfX+m5G4YxNcmbn4YdHjcAwbcUjXonS2YewLDyPvs3chiSJ2nTcH2+Zc33HjFwCOveNqpK35\nHl89/h/YRk6Ia/7sZAOGpRvjGrOxtAV2TyCuMbFQyfcGdJK0kMXY9oWIfnm8/jCa7T40231w/yyM\n0x21QgazQYUEgwoJehVUfazUInz0IRLmXQ25z4Ntl8zD9kuuO6hllXnXVpzwp4sRVmvx5TPvwJuS\n0cVsByvOMSPFHF8rxGhUQklVGxrtPgjhECwlW2Ap2QJzyVZYSrfCUFNxwPl+kwVtI0bDVjga9mFF\nCBoTENLpEdIaENbpENLoICkO/tksCgKivYiyqBQyFOf0rXVVdxw2F8T5N2PYR/9FwJiAH+54DM0T\npgJgMIeIaEDjRhYRERERERERDTbczyAi6h++QBi1zR7U2zwd7a6EcAhjXnocI95+CQGTGV8+/VZc\nN1pjJknI+vb/MP6Z+6F22NA2vBhrb7oX9sJRB52atHk1Tph/GWqnnYSVdz8d12Xkooipo1I6bafV\nGacniPWlzXFdI14KmYhMqx4ZVl3M6yKioc0XaA/jNLXFF8bpjk6tQKJRjWSzJr62V5IE5aMPwfjg\nfYgoVVhzywOomXF6l6fnffwmJj2xGLYRY/DNI68iqowthCoTBIwvSIo5tBoIRbB1jw0uXxD66nIc\nc88NMFXu7jge0uphKxy9N4gzBm2Fo+BNTo+7DZVKLsP4giTIZSLcvhA8vhDcez+8gXCXgR2LQY3i\nnIS4q7TFy+0LwfnEUox58l4gGsXmq29B6XlzcMGpxV2OiSmYs2nTJjz88MP497//fcDzX3/9NZYu\nXQq5XI5Zs2bhN7/5Dd5991289957AIBAIIAdO3ZgxYoVqKmpwTXXXIPc3FwAwEUXXYQzzzyzxxfF\nf9wR0VDHjSwiIiIiIiIiGmy4n0FE1L/CkSjqWjyobfEgEIoAAIZ9+DomPnUP2oYX45tHX0NErem3\n62kbanHUU3cjbc33CKvU2Hbp9SiddRkkWRdtWCQJJ974WyTu3IxPX/wIruz8uK6XF0dLkW3lNjQ7\nfAc8p6uvhmXHJtTMPL3rNfaCXBSRs7e9GRH9MgVCEZRU2WFz+Q/pdfRqBZLNGiSbNVAru3kf83qh\nu/E6aN9/F15rGlbc/TTsw0d2P7kkYdIjdyDv8/dQdtaFWH/jkpjXpVbIMHGEtccwi9MTxLZyGwLh\nCDK/+wSTHl0Ehc+LyhN/hYbJx8E2YjTc6TkHVfSJl1wUMb4gqcsgU1SS4PGF4PGH4fa2h3U8/hCy\nkvXITunf1lXd8QXCqPngC0y4cx40thZUnHwOcr94v8vzewzmvPDCC/jggw+g0Wjw5ptvdjwfCoVw\n5pln4u2334ZGo8FFF12E5557DklJSR3n3H333SgqKsKFF16It956Cy6XC1deeWVcL4j/uCOioY4b\nWUREREREREQ02HA/g4jo0IhKEprbfKhucsPtC2Li43dh2Cdvo/LEX2H1gr/FXXWgMxnLPsOUh26H\nPOBDw1HHYP2NS+BJy+pxXPryLzD9nhtQfup5WDv//riuqZC1V83pqX2ULxDG6h2NB7T30leX44Sb\nL4Xa3gpbwSisvfm+fm/vNXZYIixGdb/OSUQDX6vDj907qpH/+vNQeFwIafV72yzpEd7v8QGtl7R6\nSPI4qt90IkGnQrJZA2uCBgr5T++LYl0tDHMugnLzRrSMnICVi59EwJzUzUw/kfl9OPGmi5GwZydW\nz38Alaf+Oq71jB2eCLGLnzGNbV6UVNkhBQMY9/xDKHj/VYQ0Wqz9072oOb7nYiyxEgUBY4Ylwmw4\nNG2o+lswFMGu1dsx9vZrkbhzM9BN9KbHSGl2djaeeuop3HrrrQc8X1ZWhuzsbJhMJgDAxIkTsWbN\nGpxxxhkAgC1btmD37t1YvHgxAGDr1q0oLy/HV199hZycHCxcuBB6PdOnRERERERERERERERERED7\nTckUixYpFi3aXAFsvWExTOW7kPP1h2grHIXS8y/r0/zpy7/A1PtvRkStxqpb/4qqk86JOexTd8xJ\ncGbmIefrj7Dtshvgs6bGfN1QJIr6Vi8yrd3fG6xuch8QytHW12DmgiugtreiadwUJG9ajZPnzcaO\ni67GjouugaSIrf1KT3bV2DG5KLnH4BARDQ1RScKeOidqG+yYfs9NSFv7fVzjW0ZOwPZL5qFx4jG9\nCkzaPQHYPQHsrnXAYlAhOUGN9FXfwHjLnyBrakT5aedj/R8Xd9uSShSEA1o6RdQarLzrCZw8bzYm\nPrkE9vwiOPKLYl7P7hoHCrMSDnhekiTsqXeiuskNTVMdpv3lT0jcuRmOnOH44c4n4MoeFvdr74oA\noDjHPGhCOQCgVMhQNHUUNvz9DQz76yJ099XoMZhz2mmnoaam5qDn3W43DIafSgHpdDq43e6Oz597\n7jnMmzev4/OxY8figgsuwOjRo/Hss89i6dKlWLBgQY8vxmo9fOWGiIiOFL7XEREREREREdFgw/0M\nIqJDy2o1QG9UY/PfnsO0K8/B2BceQnDUWNgmTuvdfCu+woT7b0ZUpcK6x/4F+5iJiPedvHLOHzDm\n/gUY9eGrKLlhUVxjHb4wxiXqIYqd38QOhiLw7rHBoG+vXKNqbsDRt18JbUsjdl5/OyouvhpJK7/B\nqAfvwKhXn0H2yq+wZeHf4Bw5Ls5X0Tm7L4KiXFO/zEVEA5fHF8Km0mY4vSFMee4BpK39Hk3TTsCu\n626F3ONu/3C7IPe4IPfue7z3eY8LKlsLkrasw4yFc9E2ZiJ2z70JrZOm9yqgI4RDSPz4HWS/+jwM\n5bsgiSJ23HgnKn9zBXRdzKdRyZGfaUJakh5ykmawAAAgAElEQVT1LW6U1TjgC4TbDxYWYsviRzHx\n1qsw/S834YeXPkDYYIxpLa5ABP4okLW3HVQoHMXm3c2we8PI27oKY5fcBKXTjrpTz8W2BfcDGm3c\nP0O6MzLPguzU2NY60CQnG7E59Zluz+l1E0a9Xg+Px9Pxucfj6QjqOJ1OlJeXY+rUqR3HTznlFBiN\nxo7H9957b0zXYTlUIhrqWPqZiIiIiIiIiAYb7mcQER0eCgBiWhpWLnocx8+/DOMWzcOXT78Fb0pG\nXPOkrF2B8YuvRVQmw/f3/h0teaMAtz/u9ew65nQMT3wEme+/jk0XXIWQIfYgiwvA1l2NSEvUdXq8\nosEJu9MHAFC1teKY+XOgravGtkuvx/Zz5gBuP1xjp6H6uQ8w9sWHkf/xG5h29fkomXU5ts35I6Kq\nvrWi2lrqhwISjLr+qcJDRANPg82L0ho7IlEJhW/+A9n/+w/a8oux/LaHENF0/t7UmYTd2zHy388g\n44evMPnGS9E8eiK2zfkjmscfHdN4mc+LvE/fQeE7L0PXVI+oKEPFyeeg5ILfw5lXCHgCB41RK2TI\nSTUgxaKFKAC2VjdUAlCUaUSjzYvKRhf8wQhc44+F9qJrUPz6cyhe8iesXPwUEGM1sNVb6hDwJkKp\nkGHLnlZ4vQGMfO0ZjHztWUTlcqy7YQn2nPUbICL06mdIV3JSDNDIhEH974sMc/c/g2RLlixZ0tMk\nTqcTn332GS644IKO50wmE5555hn86le/giiKePLJJzF37lzo9XosX74cADBjxoyO8y+55BIUFRUh\nJSUFH3/8MTQaDaZPn97jC/B6gz2eQ0Q0mOl0Kr7XEREREREREdGgwv0MIqLDJ0GvQoU8AR6DCVnL\nPoN1y1pUnHwuJHlsv39v3bgKx951LQBgxT3PoHn81B5GdE2SyQBJQvqq7xDS6tAyZlJc473+MDKS\ndBB+VgkiEo1iR0UbopIEhdOOmbddCVPlbpTMvhJbr7jxgEoUUaUS9VOPR/OYybBuWYv0Vd8ha9mn\nsOcXwZuS3uvXBgAubwipidqD1ke/TOFItMsKTzS4hCNRlFS1obLRBUkCMpZ9hsmP3wVvUgq+e+if\nCJnMcc3nt1hRfcKZqDv6BGham5C64QfkfvE/WDethic1o8vwpNLRhhFv/gNT/zofmSu+gBgOo+xX\nF2HVwodRedr5CJgTDxqjVsgwLN2EETlmGLXKg96fBEGAQatEepIOKoUMHl8IdaMmIWn7eqSt+R5R\nhQotYybG9LokADanH/WtXkjNzZh+9x+R9/l78KZkYNn9L6J+2gm9qgzUnfREHYZnDP5qZYIgQKfr\nug1X3MGcDz/8EBs3bsTYsWORkZGBRYsW4e2338asWbMwbVp76byvv/4aCQkJGD9+fMcco0aNwn33\n3Yf3338fDocDCxYsgLKbnmj78B93RDTUcSOLiIiIiIiIiAYb7mcQER0+MlGAViVHiXUYNC0NSF+9\nDNrmetQdc3KPN0gTt67DcXdcA0GKYOXip9E46dg+r8eRW4D8j/4Ly66t2H3u72IOCAHtN8d1ajl0\nGsUBz9e3etHs8EHucWPGwqtg2b0du391ETZde3uXr9Gbmony02dBFgwgbc0y5H32LlSONrSMnoSo\nondVb4LhKERBQIK+65urNPT5AmHsqGxDaY0D/mAYWpUCCnlsFUdo4HF6g9hc1gq7p/3/XS07NuLY\nJdcjolRh2d9ehiczt9dz+xOTUX3i2aifMhOa1kakrv8BeZ//D9bNa+FJy+wIC2qa6jD6X09hyoO3\nIXXDSkSUKpT85vdYtfAR1B53KkL6g1s4qfYGcopyzDDqDg7k/FxHQMeqg1KpQNnoaUj/6iNk/Pg1\nWkYdBU9aVkyvKRKVYN66HjNvuxLmPTtRd/Tx+P7+F+BNj218PKwmDYqyE4ZMGLK7YI4gSZJ0GNcS\nt8FcroiIKBYs/UxEREREREREgw33M4iIDr+SqjY0Nthx/PxLkbhzMzZcuxC7z7u0y/MtOzZixu1z\nIQsEsPKuJ1A/7cR+W8volx5D8X+fx/rr70TZORfHNVavVmBSUXLH55IkYfWOJgSdLhy38CpYt65D\nxSm/xpqb74u5/Ypl+wZMfvROGKvK4ElJx9qb7kHTxJ47d3RGFARMGmGFVq3o+WQaUqKShOpGN6oa\nXYjsdwtdAJBk0iArRQ+jlq3OBpOqRhcqGlyI7v1+6uqrceINv4XS5cDye59F4+Tj4p5TIRMhl4nw\nBcMHHbPs2ISR/16KtLXfAwAaJ0yDL9GK7G/+D2IkDG9SKnbNvhx7zpjdZesslUKG7GQ90hJ1farY\nFJUkOL7+HsMvPQ9BnQGbr74FkAAxEoIQDkMMhyFEIhAjob2PwxAjEShdduR98g4EKYotV9yEkgt+\nH/N7cTwSdCqMzU8cUlWprFZDl8cYzCEiOsK4kUVEREREREREgw33M4iIDr9wJIp1Jc2Q6mpxyrzZ\nUDrasOxvL6F53JSDzk3YtQ0zF1wBuc+LHxc+gtoZp/XrWlRtLTjrkpPgS0zGpy9/AkkWe9UcABid\nZ0GSSQMAaLL7sHNXA6Yvvg6p61agesbpWHX7Q3HPKQYDKH7tWRS98SLEaAQ/LHoMNTNOj2uOfUxa\nJcYXJA2ZKg7UszZXAKU1dngDB4ct9pegVyE7WQ+LUX2YVkadkSQJ4UgUofDej72PwxFp73MRePxh\nOPer8Khw2nHiTRfDWFOOdTcswZ6zL4z7unJRxPiCJOg1CvgCYdjdAdhdAbS5AwiGox3nWbZvwKhX\nnkbq+pUAAEdOPkoumIuqE86E1ElFL7VSBr1GAbNe1edAzs+pXnwexoXz4xrjNyfhx4WPdPrzpT/o\n1QqML0iCXDa0KlExmENENIBxI4uIiIiIiIiIBhvuZxARHRkOdwAbd7fAsnUdjr/lcgT1Rny59C34\nktM7zjGV7cTxt14OhduJVQseRPWJZ/f6egKA0XmJqG52w+4OHHDsqCeWIP/jN/Dj7Q+j+oSz4prX\nqFXiqEIrAGDD9jqMun0eMn74CnVHH4+Vdz3R6Y3rWJl3bcXxN1+KiFqDT1/4CMEES6/mKcgwIcOq\n7/U6aHAIhSPYXetEY5s3rnEGjQJZKQZYTWoGuPogEIyg2eFDNCohEpUO+DMqSQc9H4nuDeREoj1P\nvh8xGMRxC+ciefMa7LzgSmy56pa41yoTBIzNT4Spi1Z3bl+oI6hjdwcRjkZhLtkCudfTHnARRYiC\nAJ1aDr1GAZ1GAf3ej0MaUJEkKL/+At7SctQ6gojIZJBkckTlCkTl8vbHMhmkvZ9HZXK4svMR1nZe\n0Wd/mUl65KUb4PaG4PKG4PIG4fKFug24qZUyTCiwQqWQ9eerHBAYzCEiGsC4kUVEREREREREgw33\nM4iIjpyyWgeqm93I/+A/OOrpe2ErGIVvHn0VUZUaxopSHH/LZVA52rB6/v2oPPW8Pl0r06rH8AwT\nolEJO6ra0Gz3dRzT1VbijN+fCXveCHz5zDtAnOGEcflJEKIRqK66Etnf/h8aJ0zF8nv/jqiy85ve\n8Sh4558Y/9zfUD3zdPx4x2O9mkMmCphclAy1Mr7KPTR41LV4UF7vjDvksT+NUo6sZD1SLVoIAjqC\nI+HI3iBJJIpwJLr3+fZj0agEs0EFs0H1iw71ONwBbKuwHVBp5pCQJEx+6DbkfvkBqo87DT/e8Wjc\nrZlEQcDoPEvMlZIkSYLLG0KbK4BwJNoRxNGq5RCP4Pe81eHHtgpbR2uvvshNNSA31djpsXAkekBQ\nx+UJwh+KQCkXMaHACo1qaL6vdhfMkS1ZsmTJ4VtK/Lz7lZciIhqKdDoV3+uIiIiIiIiIaFDhfgYR\n0ZGToFeh1eFH47CR0DbXI331MmibG+DMzsfxt14Otd2GtTfejYozZvfpOlqVHCNzzRAFAYIgIDlB\ng3BY6mgNEzImwFi5GykbfkTryAnwpGfHNX8wEELGXfOR+fn/0DLqqPZQjlrTpzXvYxsxBikbViJt\n7XI48grhys6Pew5JArz+CFIs2n5ZEw0cbl8I28ptqGv1dBpQEIMBmHdthaGmHJ7k9G5DHOFIFK1O\nP6qb3KhocKGqyY2aZg/qWj1osHnR2OZDs8OPVqcfba4AHJ4gnN4gGtt8aLB5EQpHoVKIUMiHXvWQ\n7tS2eLCjsg3h6KGvITLy30tR+L9X0Vo8DiuWPA1JoYh7jqIcM6wJsb8/CYIAlVKGBL0KFqMaeo0C\nSoXsiAextGo5DFoFWux+9OUrPzzDhOyUrkMooihAo5LDpFchOUGDzGQ9MpJ0SLVoh2woB2j/N1JX\nWDGHiOgI42+YEREREREREdFgw/0MIqIjy+UNYkNpCxDw4/ib5yCxZDNCGi0UPi/WX78IZef8rk/z\nCwDGF1hh0h3cUqqq0YU99U4AQELpNpwybzYax0/Fsgdfjnl+VVsLxr7wEHK//AC2glH47sGXEdZ1\nfZM3VqIgQAAgAdBVluGUa89DSGfAZy9+iKDR3Ks5i3PMSDEznHO4eP1huP0hJMcRgohVVJJQXudE\nbctPgRwhHIKpohTmXVthKdkK866tMFWUQoy0t+JxZg3DjouuRvUJZ0GSHbpAgVGrRIpFixSz5tC2\nNTrCopKE0mo76m3xtQ7rrZwv/ocpD90Od2omvn7ivwiYE+OeY3iGCZlDrK2d3R3Alj2tiMQZjBIA\njMg2I5WBxU6xlRUR0QDGjSwiIiIiIiIiGmy4n0FEdORVNrhQ3uCEprkBJ8+bDbW9FRuvXoDS2Zf3\nee4sqx75GaYujzfavCiptiMqSZix4EqkbPgBXz71JtpGjOl2XoXLgRFvv4yCd1+BPOCDfVgRvnvw\npR5DM2qFDKOHJUIua6/eI6C9IoUg7A3jCDigEoUvEMb6Xc3Ie/0FjHvxYVSe+Cusvu3BuL4GHWuW\niZhSnPyLq2hyuEQlCQ53EDZne1UZb6A9EFOQmYCMJF2/XmtXpQ2ujVtg2bV1bxBnCxLKdkIW+qkK\nYESpQtvwYrQVjIbc70XOlx9AjIThTsvCzgvnouKUX0NSHBxY6y+iICDRpEaaRTvkWl0FQhFsK7d1\nVN061KybVmPG7XMR1mjx9WP/gSt7WNxzdNeuabBzeILYUtaKcDS2VmKiIGBkjhlJhyA0N1QwmENE\nNIBxI4uIiIiIiIiIBhvuZxARHXmSJGFDaQuc3iB0dVXQ11WjcdL0Ps+rVckxaUQyRLH7QIDN6ce2\nChsS167AzNt+j5pjT8UPdz3R6bkynxcF/3sVI976B5RuJ3wWK7b/7lqUnz6rx5CDTBAwviAJBm18\nYQiHO4BNu5pw/I0XIbFkM5bfvRT1006Ma459UhI0KM619GrsUOYPhiGXiXFXeAmFo7C5/Gh1+GFz\nBjoNBoiCgHH5iTDpu24NE4/aJhdSLv8t0tZ+3/FcVCaHI68AtsIxaBsxGrbC0XDmDIck/6nVkaap\nDkVv/gN5n7wNWSgIb1Iqdl44F+Wnz0JUpY5vEZEIjFVlSCjbgcaJ0xEwJ3V7ukouQ7JFg9xUA2Td\ntNMaDByeILaX2xAIR+IbKElQOu3QNdRAV18Ntd0GIRyGGAlBDIchRMIQIxEI4fbPxUh47/EwMlZ8\nCbnfh+/++iJaxk6Je80ZSToUZCbEPW4wcXrbwzmhSPfhHJkoYHReIsyG/vn7OFQxmENENIBxI4uI\niIiIiIiIBhvuZxARDQxefxjrSpoQ6afbfQKACQVWGDtpYdUZpzeIrWUtmHHN+Ugo24FP//Ex3Jl5\nHcfFYBDDPn4Dxa8/B7W9FQGDCTsvvApl51yMiDq2qgvF2Wak9LJtSlObF9XL1uCU685H0JCAz174\nECFD15WAujMmLxGJpjiDGEOY/5XXIHvrv2geMxnNU46Dv6AYSoUMSoUMCrkI1d4/lQoRSrkMoijA\n5mwP4jg8AcTyX6xSLuKoQivUyr61kGpzBeD4+4uY/NDtaC0ai8qTzkFb4WjY84sQVcYWNFC3NqHw\n7ZeR/9EbkAd88FmSsGv2lSg76zeIaDqv7KNwO2HZuRmJ2zcgcftGJO7cBIXXAwBoLR6Hbx59Nab2\nWGa9CmOGJfYYlhuo6ls9KK1xdLQP+zkx4IeusRa6+mroGmqhr69uD+Ls/dj3NYtXVCbHmpvvQ9XJ\n58Q99pcUxnN5g9jcTThHIRMxZlhizD8XfskYzCEiGsC4kUVEREREREREgw33M4iIBo6aZjd21zr6\nZa6sZD3y0+MLrvgCYTS/+G9MvPtG7DnjAqz70z0QImHkfPE+Rr66FLqmeoQ0WuyadQV2zboMYV3X\nNy5/LtOqx/BuWmrFoqrRBeWjD2HMy4+j4pRfY80tD/RqHrVChklFyXFXhxmKnN4gkqdPhKG2suM5\nX2IyGiYdi4ZJx6JxwjSEjP1TacSgUWB8QVKvK8b4AmFsWV+Gky47HXKfF5/+42P4ktN6vR6l3YbC\nd/+F4R+8BoXXg4AxAbvOvwxl51wMta2lPYSzYyMSt2+AsWoPhP1uxTsz89A6agI0zQ1IXb8SWy+7\nATt+d21M17UY1BidZzki4ZyoJKHR5oVcJkKvUUCjii0oFZUk7K5xoK51v2CNJEHXUIOkLWth3bwG\n1i1roa+v7nR8WK2FOy0TntSfPnyJyYgqFJBkckRlMkhyBaJyOaIyORQqJTR6NbR6LbR6NRRJFrTI\ndGiy++Jqn2UxqDF6mAXiEGoj1hO3L4TNZS0Ihg8M56jkMozJT4Reo+hiJO2PwRwiogGMG1lERERE\nRERENNhwP4OIaGDZtLsFbe5An+aItYVVZ4L+IBKmHQV1Uz02XLcII955GYaaCkQUSuw+93fY+Zu5\nCCbEV30iQa/C2PzEfrk5vmtPE0Zecg7Mu7fj+788h4YpM3o1T3qiDoVZQ7u1TU8CoQhKvl6Dky49\nFQ0Tp6PypHOQunY5Utcth8rRBgCQRBGtRWPROLE9qGMrHA3IZL2+Zm+rl4QjUWwobcHwx+5G4Xv/\nxpYr/oSdF13d63XsT+G0o+D911Dw3itQup2QBOGAEE5YrUVr0Vi0Fo9D68jxsBWPQ9Bobh/rcuDU\na34NdVsLvn7idbQVjo7pmklGNUbmHd7ASIvDh7JaJ3zBcMdzclGETiOHXqOAXqOATqOAXq044L0j\nEIpge4UNDncAhuo9sG5eC+uWNUjashbalsaO84I6A+zDR7YHcNKyOgI47rQsBE1moIvXqpCJMGiV\nMGgVMGqV0GsVUCm6/m/MHwyj2e5HU5sPLl/XIR2TVomxwxMHfeuw3vD6Q9i0u7Wj3ZhaKcO4/KSY\ng1jEYA4R0YDGjSwiIiIiIiIiGmy4n0FENLD4g2GsK2nushVJT+JtYdUZ5UsvwnTbnwG0t5ApP30W\ndlz8B/isqXHPpVbIMHGEFQp578Mc+4tKEio+X47JV/wa/gQLPnvhw7gq9+zPYlAjL80Ag/aX19Yl\nKknYVNoC62svYsKzD2Dtn+5B+RkX7D0YhXn3dqSsXY7UtcuRuH0jxGj7Df6AwYT6o4/Hxj/c1utK\nOsPSjMhOif17JkkStpXbENy0Gadcez48qRn4/PkPEVX27/dN7nEj/6PXkbH8S7gzc9BaPB4toybA\nmVvQZZsqg0YBzcplmLngSjizhuHLpW/H3NrNatKgONd8yMM5Hn8IZbUO2FyxBf5EQYBGJYdeLYe5\noQr4/HOYN65C0pZ1UDtsHef5ExLRPGYSWsZMQvOYSXDkFvQY2hIFAQaNAkadEgadEkatok/tzXyB\nMJrtPjTbfXD5Qh3P69UKjBueBIX8lxfK2ccXCGPT7hbIZCLG5id2G3aigzGYQ0Q0gHEji4iIiIiI\niIgGG+5nEBENPMFQBGV1TjS2eeMe25sWVgfx+2G8/GK4tCasmXUV3Bk5vZpGFARMKEjq9+BLOBKF\n+47FKHjpCew5YzbW/enePs1nTdAgL9UArfqX0+KlpKoN9TYvjrt9LlLXrcCH//kW/qSUTs9VuJ1I\n3vBjezWdtcuhba5H3dEzseLuZ4BeVCMRAIwZlgiLUR3T+XvqnKhqdGLmLZchefOaPlVK6i8KmYj8\nDBNSLVrsqXPCfPdCFL73CkrPvQQb590R8zwpCRoU5ZghHIJwTjgSRUW9C3WtHkR7ESPI+eJ/mPTI\noo5QljcpFc1jJ3eEcVxZeV1WwdlHpZDBqFPCpFXCqGuvhnOogkj7Qjp2dxAjshMYREF70FMmCv0W\njPwlYTCHiGgA40YWEREREREREQ023M8gIhq42lwBlNbY4Q2Eez4ZgE6twMRCa69aWHW3hp2VbR0t\nUeJRnG1GikXbb2vZn9/jg/HkmTCV7cSy+19E46TpfZpPAJBq0SIn1dCnCh6DQW2zG6W1Dsh8Hpw7\nexqc2cPx5bPvxjY4EsFxi65B6roVfWonJRdFHFVohVbd/de6sc2LHZVtyPrmY0x9YD5qp52IlXcv\n7dU1+0uSSY2CzAODHzt31mHspWfBVFkW93+PqWYtinLM/bY+SZJQ1+pFRb2z15W3hv/vVUx45j4E\nDSZsmjsfTROmwZuS3mMQx6hVtn/o+14Nh+hI6i6Y88utw0REREREREREREREREQ0xJgNKkwqSkZe\nqrHHKhMCgBHZCf0ayvlpDVYkxljdZJ/MJP0hC+UAgFqngeuJZxCVyTHx8Tsh93r6NJ8EoN7mxeod\nTdhd40AwFH8QaTCwuwMoq3MCAJI3roIsFIqv+oxMhlULHoQ3KRWj//UErBtX9Wod4WgUW8tbEe4m\nOOL0BlFSZYfc68G45x9ERKHEpj/c1qvr9QeFTMTIXAtG5x3cFqiwMA3bFz+GqFyByY8shMJpj3ne\nhjYvSqra+mWNba4A1pU0o7TG3rtQjiSh+NWlmPDMffBZrPjm4VdQccZseFMzug3liIKAkbkWHFVo\nxfBME5ITNAzl0JDFYA4RERERERERERERERHRECIKAnJSDZhclAyLoetwTFayAcZ+bhm1j0Iuw5hh\niRieYYqpDU2CXoVhGcZDspb9qaZMgu2aP0LXVI+xLz7UL3NGJQk1LW6s2t6IPXXOboMjg40/GMa2\ncltHW6O0Vd8BAOqnzIxrnmCCBT8sehSSIGLqA/Ohbm3q1Xq8gTB2VLahs6YwgVAE2/a0r7X4P89C\n09qEnRdeBU9aVq+u1VcpCRpMKU5GcoKm0+OiKCDn9ONQcsUN0LQ2YeJTdwNxNLupt3lRWhN7mGd/\n8k0boL71ZuxZth6bylrg9od6NQ+iUYz7+18x+pWn4U7NxDePvgpnXmGPwxQyEePyE7v82hANNQzm\nEBEREREREREREREREQ1BGpUcY/MTMTLXApX8wGodOrUCualdt93oL5lWPSYUJEGr6roShlohw6hc\nc0wBnv4g3b4QvuEjkP/RG7Bu+LHf5o1IEqqaXPhxWyMqG1wdYZbBKhKNYuse209VVCQJaauXIWAw\nobVobNzz2UZOwOar5kPd1oKp998MIRJbu7Wfa3X6UdFwYEvNaFTC1j02BMIRGKr2oPDdV+BJycDO\nC+f26hp9oZLLMDrPguJcCxQ/+3v3cwq5DNqFt6F11ARkffcpsr75OK5r1bZ4UFbriPl8pzeI+rXb\noLvgPBj++QImXXQqil9dCjEYjOu6ACBEwpj06CIUvvcKHDn5+Oax1+BJz+5xnFopw4SCJJj0qriv\nSTRYsRYUERERERERERERERER0RCWnKCBxaBCRb0LtS1uCIJwSFpYdcWgVWLiCCtKqx1oaPMecEwU\nBIzM6znA0K9UKviX/h3qM07CpMfuxI8LH4Hc74PC44LC64bC44bc6+54rPDu/dzjRtWJZ2PP2b/t\ndvpwNIryBifUStkhbc11qJVU2Q+opGKsKIW2pQGVJ5wNyHr3/So9bw6Stq5H5vLPMfqfT2DL72/u\n1TyVjS7oNIqOiislVW1w+YKAJGH8M/dBDIew8Q+3IaqKr51aX6VZtMjPMEEui70+hlangmvp8zCe\nMRNHPXUPWkZPhC85Lebx1c3tf6eHpR9ccSoYiqDNFYDN6YfNFYDkdOLEmy6F0m5D2dkXIn3l1xj9\nytPI+fojrP/jXWiaMC2ma4rBII7+63xkLv8CthFj8P19zyFoNPc4zqBRYPSwg9t6EQ11DOYQERER\nERERERERERERDXFymYjhmSakWDRweUOHrIVVV2SiiKIcM8xGFUqrHQhH26uwFGYlHPa1AEB4wkR4\nr7sB+qcfx8k3XBjzuIQ9Jag8+VxE1D234Klr9QzaYE5VowtNdt8Bz+1rY9UwZUbvJxYErLn5LzDt\n2YmiN15Ey8gJqJ92Yq+mKqlsg1Ylh83pR+PetWas+AKp61eiYdKxqDvmpN6vM05qpQwjsswwG3pX\nBUY3cgSa7vgLMhb9GZMfXohlf/0HIMYe7qlqckEUgewUA5yeIGzOANpcfrh8+7WoikRw7AM3w1S5\nG6XnXoKN8+7A5t/Px+h/PYnhH7yGmQuuROWJv8Kma25FwJzU5bVkPg+OufsGpK5fiaZxR2PF3UsR\n1up6XGOiUY2RuWbI4nhdREOFIHXWgG8AaW529XwSEdEgZrUa+F5HRERERERERIMK9zOIiKgvfIEw\ntle0wahToCAz4cgtxO+H+pEH0VTXCr9ah5BWh5DOgJBWj7BWj5Bu78fex0X/fQEjX38Oq279K6pO\nPjemS0wpSoZWrTjEL6R/tTr82Freip/fRD7+z5cgadt6fPDWipiqo3THVLYTJ934W0SUKnyx9B14\n0zJ7NY9SLiIUjkICIPP7cNrcs6CxteCz596HOyuvT2vsiSgISDSqkWrRwmxU9b0VmyRBfuEFMH/7\nOTb+4TaUnn9Z3FPIRAGRaOe3/8c+9zeMeOefaJg4Hcv/8ndIsp9qeCSUbsPEJ5bAsmsrgjoDtvz+\nz9hz5m8OCgcpXA4ct+gaJO7YhNppJ+HHOx5BVNlzGCnNokVhVgKEw9SujuhIsFq7bg/JYA4R0RHG\njSwiIiIiIiIiGmy4n0FERH0V3XuLstPb6BkAACAASURBVM9hhn7Q5gpgU1lLj+fp6qtx5mWnomns\nZHz38CsxzZ1l1SM/w9TXJR42Xn8I63e1dFQ02kfhcuCcC6bDVjQG3zz+er9cK/ezdzH5kTvQNnwk\nvn78PzEFPLoz6l9PYuRrz2LnhXN73SIrFgaNEqkWDZLNWijk/Vv9RWhuhvHYKZC5XfjimXfgyhne\nL/PmffIWJj12F5xZw/D1E68jpD+47RUiEeR//AbGvPQYFF43WovGYt2NS+DILwYAqGzNmHH7XCSU\n70LFyedg7c33HRDu6fLaqUbkpHYdWCAaKroL5rBOFBEREREREREREREREREdVqIgDIhQDgCYDSpk\nJul7PM+TloWmcUcjefMa6GorY5q7webtCCENdOFIFFvLbQeFcgAgZd0KiNEI6qfM7LfrVZx2PspP\nOx/m3dsx/u8P9GkuXV0VRrz5D3iTUrD94j/00wp/opLLkJWsx+SiZEwcYUWGVd/voRwAkKxWeB9/\nGrJQEEf/7VYIoWCf57RuWo2jnrwHAYMJy+99tvNQDgDIZCg752J8+o+PUXXCWUjcuRmnzJuNcc8+\nAGP5Lpz450uQUL4Lpef+DmvmP9BjKEcUBBRnmxnKIQKDOURERERERERERERERET0C5eXboBW1XP1\nj/LTZ7Wf//l7Mc0bikTRYvf1aW2HS2WDC95AuNNjaau/AwA0TJnRr9dcf/2dsA8bgfyP3kD2Vx/2\nep7xzz4AWSiITVffiohG1y9rEwUB1gQNxg5LxNRRKchPN0F3GNqShc44C96L58C8ewdGvfpMn+bS\n1VVh2j03AABWLn4SnvTsHsf4E5Ox6vaH8d0DL8KdmonC917BadecC31dFbb/7lpsvO6Og1pc/Zxc\nFDFmWCJSLNo+rZ9oqGAwh4iIiIiIiIiIiIiIiIh+0WSiiKJsM3qq4VNz7CkI6gzI/fw9IBKJae66\nVm/fF3iIuX0h1LZ4Oj8YjSJtzffwWayw721r1F+iKjV+uPNxhLQ6THx8MQyVu+OeI+3Hb5C+6ls0\njZuCmpln9Gk9clFESoIGxTlmHDM6FaNyLbAY1RAOc3Un718eQDgnF0VvvICkLWt7NYfc48Kxd14L\nlcuBdTcsRsvYKXGNb5o4HZ8//wG2XTIPAZMZG69ZgG2X3QB087VQyESYtEqML0iC2dC31mREQwmD\nOURERERERERERERERET0i2fUKZGd0n3bnahKjaoTzoKmtQmp65bHNK/dHYCvi0o0A0Vptb3LlluW\nki1QOdpQP2VGt6GM3nJn5GLNzfdDHvDhmHtuhMzXRUCoE2IwgPF//yuiogwbrrujV+vTquTIsuox\nLj8Jx4xJRXGuBSlmLeSyI3crXdIb4Hr6eQDAzFsux9H3/Rnmki0xjxciYUy7788wVu9ByazLUXHG\n7F6tI6pUYfuc6/HBWytROutyyAQBWpUciUY1MpJ0GJ5uwuhcCyaNSMaxY9IwfUwaJhRaodcc+spC\nRINJz/XYiIiIiIiIiIiIiIiIiIh+AXJSDbA5/XD5Ql2eU3H6LAz/6L/I+/QdNEyZGdO89a1eDEs3\n9tcy+1V9qwcOb7DL46lrlgHoWxsrURC6DP4AQO1xp2LX+Zeh8N1/YdLji7HqtocgRCMQwmGIkQiE\ncAhiJAwxHIYQiUCMhCCEw8j98n3o66qw67w5cOYVxrwWo06JRKMaiUY1tOqBecs8fPRUOF9+Ddq/\n/QXZ332C7O8+QfPoidg1+wrUHX08IJN1OXbccw8ide1y1E+Zgc1z5/dpHSZte2BNr1VApej6mkTU\ntYH5LkNEREREREREREREREREdJiJgoCiHDPWlTR3GSRpKxgF+7ARSP/hGyjtNgQTLD3O22DzIDfN\nAPEwt0TqSSgcwZ46Z7fnpK36DlG5Ao0TjunVNURBwJTiZDjcQVQ3ueH2dx562jz3Zlh2bkL2Nx8j\n+5uPY57fb07CtjnXd3uORilHgl4Js0EFi1F9RKvhxCN4xlkInn4mFMu+heqZp2D95ktYt66DKz0b\npedfhopTz0NErTlgzLCP/ouC//0bjpzh+PH2R7oN8HRHr1YgL82IRJO6P14K0S+aIEndRBMHgOZm\n15FeAhHRIWW1GvheR0RERERERESDCvcziIhoqKtucqOsztHl8eHvvYIJzz6AjVcvQOnsy2Oac1Su\nBdYETc8nHkY7K9vQ0Obt8rjK1oxzfjsDjeOnYtmDL/fqGplJegzPNHV83urwo6rJBYfn4Co9muYG\njH/2fqjsNkTlCkhyOaIyOaJyOSRZ+2NJ3v55+2MFqmeejtZRRx0wj16tgFGnRIJeCZNeNWQqvch2\n7oDs6SdheO9NiKEQAgYTys7+LXaf+zsELFZYN/yIGbfPRchgxJdPvglvWmbc19Cq5MhNNSDZrD0E\nr4Bo6LJau26FyGAOEdERxo0sIiIiIiIiIhpsuJ9BRERDnSRJ2LS7FXZPoNPjSmcbzr5oJtzp2fj8\n+Q+BGCrhWAwqjM1P6u+l9prdHcDG3S3dnpPz+XuY8vDCuAJI+xMFAUePTOk0GONwB1DV5Ear0x/3\nvPsTAOg1CiToVTDp2oM4CvngqIjTa42NiDzzDMyvvQyV046IQoHqmWcgfdV3kPu8+PbBl9E6emJc\nU6oVMuSkGpBi0Q64yk5Eg0F3wRy2siIiIiIiIiIiIiIiIiIi2o8gCBiRnYC1JU2IRA+ucxA0mlE3\n7SRkLfsUlp2bYSse1+OcNlcAvkAYGtWRv0UblSSU1nRdEWiftFXfAQAapszo1XXSE3VdVqsx6VUY\no1fB4w+hqtGNZruvy/Zh+yhkIrRqOXRqBXRqObRqBQxaxaBpTdVvUlIgu/tu2G6+Bd6X/oXkV55D\n7pcfAABWz78/rlCOUi4iO9mA9CQdRJGBHKJD4ci/6xMRERERERERERERERERDTAalRzDM0woqbZ3\nerz89FnIWvYpcj97N6ZgDgA02LzISzP25zJ7pabJDY8/1O05QjiE1HUr4E7LgisrL+5riIKArBR9\nj+fp1AoU55iRl2ZATZMH9a0eCIKwN3gjh06jgE6tgFYtHzItqfqL3KiH8aZ5sF09F2Vvvw+v04Pa\nY0+NbawoIitZj8xkHWTiLyzYRHSYMZhDRERERERERERERERERNSJtEQdWhz+TtstNU6YBq81Ddnf\nfoxN1yxARKPtcb6GVi9yUw0QjmCrIF8gjMqGnltSJm3bAIXXjYpTzo2pVdfPdVctpzNqpRzDM00Y\nlm5k5ZY4abUqaOf8BqFwBDndFx3qIJMJDOQQHSb8m0ZERERERERERERERERE1IXCrAQoOmuVJJOh\n4tRfQ+H1IHP55zHNFQhH0Oo4OORzOO2udSDSQ8soAEhdvbeN1eT421jFWi2n07EM5fSaQi6DUhHb\nB0M5RIcP/7YREREREREREREREREREXVBpZChICuh02Plp54PAMj79J2Y56u3eftlXb3RYvd1Wv2n\nM2mrv0NYpUbTuClxXyfeajlEREMZgzlERERERERERERERERERN1ITtAgOUFz0PPetEw0jp8K65a1\n0NdWxDSXzemHPxju5xX2LByJYnetI6ZztQ21MFWWoWn80Yiq1HFdpy/VcoiIhiIGc4iIiIiIiIiI\niIiIiIiIelCQmQCV/OAqMOWnzwIA5H72XkzzSAAajkDVnMoGF/yhSEznpu1tY1U/ZWbc12G1HCKi\nAzGYQ0RERERERERERERERETUA4VcREGm6aDna6efjKDOgNzP34MQia0STkOrF5Ik9fcSu+T2hVDb\n4on5/NQ1ywAADVNmxHUdVsshIjoYgzlERERERERERERERERERDFIStDA+rOWVlGVGlUnng2NrRkp\na5fHNI8/FIHNGTgUS+xUabUd0RiDQGLAj+SNq+DIGQ5vSkZc12G1HCKigzGYQ0RERERERERERERE\nREQUo4IMExSyA2+zlp/W3s4q79N3Yp6n3hZ7BZu+qG/1wOENxnx+8qbVkAf8qGe1HCKifsFgDhER\nERERERERERERERFRjJQKGYZnHNjSyl4wEvZhRUj/8Vuo2lpjmsfmDCAQihyKJXYIhSPYU+eMa8y+\nNlb1R8+Maxyr5RARdY7BHCIiIiIiIiIiIiIiIiKiOKRYtEg0qn96QhBQftr5ECNh5Hz1QUxzRCUJ\nDa3eQ7TC9vm3VbQhFInGPkiSkLbqO4S0erSOnBDzMFbLISLqGoM5RERERERERERERERERERxKsxM\ngFz86XZr1UlnI6JQIPezdwBJimmOQ9nOane1HYYP34V55+aYxxiqy6FvqEHDxOmQ5IqYx7FaDhFR\n1xjMISIiIiIiIiIi+v/27j1cy7LOF/j3XUeBxeIQRwVEQE1wOySKOW7JoQhtYsbSEc1wa5g78tKw\nTEBBLEFsMvckWlvtqtkhFtekjllJO5kUT0OecDyglhwEDyhyEFBYrLXe/Yd7loOCsBbrBdTP57/3\nfZ/7fn7Py3U91/P++K77BgCAZqquKk+/fWubXtfVdspLf/3pdFj2fDo/8/hOzbGpriGr39jU6rWt\neG1DOv2vK/PJGRfmM+ePzqe+fWa6P3zfDgNDPf90T5LmbWNltRyA9yeYAwAAAAAAANAC+3Zpl441\n1U2vl4w8OUlywNxbdnqOl1t5O6vVb2xK4/U3ZODsH2dDz955Zcgx6fb4ggy7+Kv5zNdPSu8//jaF\nhvptju3xp/lJkleO+O87fT6r5QC8P8EcAAAAAAAAgBY6uHfHlBcKSZKVn/hk3uzaM73v/l3K39q5\nwM3rb2xK3ZaGVqll46YtWTP7X3L4td/N5g6dcu8VN+TeGT/JH677VV741AnpuOTZfHLGhTn+K59L\nv9/8MmWb31mtp2LjhnR94uGsPujQbO7cdafOZ7UcgB0TzAEAAAAAAABooTbVFenb8/9vaVVeniUj\nv5DKt95Mr3t/v1PjG4vFLFq2Jpt3MZyzpb4hK+6YlyOnfzMNldW59/L/nQ379U2SrD1wUBZccnXu\n/Omdef7zo9Nm1coMueY7+dsxn8nHf3FDKje8ke6PPZCyhvq8PHTYTp/TajkAOyaYAwAAAAAAALAL\nenVtl9q2VUmSpSO+kKR521mt2bA5jzz7ala/sWnHB29DY7GYJXc/kiMnfjWF+vo8OPnqrPn4Ye85\nbuO+ffLo+Zflt7PuyqJTz0l53eb8t5/9r/ztl4fn0J/+U5Lk5aGf2qlzWi0HYOcI5gAAAAAAAADs\ngkKhkIP7dExZoZA3e/bKK0OOSdcnH0nnpx/b6Tnq6hvzH4tfz/Mvrktjsdis8y997NkMvuCMVK9f\nl0fGfyevHHXc+x6/uXPXPPmVC/Kb2X/M42dfmPp92qZ2xZJs6tA5aw46dKfOabUcgJ1TKBabeVff\nzV57bf2eLgGgpLp2be9eBwAAAHyg6GcAwLYte2V9lrzyRj725CMZ/s0vZ+Unjs787/202fO0b1OZ\ngX07p011xQ6PfXHxy9n/9BPT6flFefKM87Loy19v9vnK6urS697fZ2OP/fL6oMO3e1x5oZAONdXp\n1L46PTq3TWWFdSAAkrd/I23Pju/kAAAAAAAAAOxQ7+41eW3tW3n90CF5Zcgx6fHI/enyHw9l1WFH\nNmue9W9tycPPvpqDenVM985tt3vc66+9kZ7j/kc6Pb8oz3/ulCw6fVyL6m6sqsoLnx71nvfLCoXU\ntq1Kp/bV6VhTlfbtqlJWKLToHAAfVSKMAAAAAAAAAK2g7L9safXUGeclSQ79P9ckLdjEpKGxmEUv\nrMmiZWtS39D4ns83bNyctuePS/fH/j0vHj08j503JdnF0Ewhb6/W07tbTQ7r97Ec8996ZPCBXbJ/\nj/bpUFMtlAPQAlbMAQAAAAAAAGgl7dtWpVfXmrxwyF/lpaM+lX0X3JNuC/89r37i6BbNt3LNm3lj\nY10G9u2U9m2rkiRb6hvScPHFOWDeHXn9kL/KgklXpVje8v/6LSTp1a0mfbq1tz0VQCtzVwUAAAAA\nAABoRX17tE+bqoo8NebtVXMG/Z+ZLVo15z+9VVefx/68Kstf3ZDGxmLe+MerM+AXN2Z9r76577s/\nTsM+bVo8d3VleQ7r3yX99+0glANQAu6sAAAAAAAAAK2orKyQvj3aZ+1Bg/LiX386XZ5+LN0fvm+X\n5mwsFvP8S+vywo/+OQf/cFre6twl86/4Seo6dGrxnF07tskRB3dLp/bVu1QbANsnmAMAAAAAAADQ\nyrp1apN2+1TmqTPeXjXn0J/v2qo5SfKxpx7L4TMuTP0+bXLftOvzZo/9WjRPeVkhH+/TKYP6drZK\nDkCJucsCAAAAAAAAtLJC4e1Vc9b1OzjLhx2fzs8+kZ7/fneL56te/VqOvvwbKWtoyINTrsnaAQNb\nNE9t26occXC39OjctsW1ALDzBHMAAAAAAAAASqBrxzZp36YyT3/56ykWChnUwlVzCvVbcvS0C9Jm\n9Wv5j7Hfysojjmn+HEn2794+gw/skjbVFc0eD0DLCOYAAAAAAAAAlMgBPWvzRt8D88Jxf5tOzy/K\nfvf/odlz/NUN30/XJx/J8mHH57mTz2r2+H2qyjN4QJcc0LM2ZYVCs8cD0HKCOQAAAAAAAAAl0rl2\nn3RoV/X2qjllZRn082uTxsadHt9n3h058F9nZd3+/fPQt6YlzQzWdO/UNkcc3C0daqqbWzoArUAw\nBwAAAAAAAKCEDuhZmw29D8iyT/9dOiz9c3rNn7tT4zo8/0yG/NOl2dK2XR64dGYa2rRr1nl7danJ\nIft3SkW5/xYG2FPcgQEAAAAAAABKqGNNdTq3r87Tp49LY1l5Bs26LmloeN8xlevX5a+/e34qNm/K\nn759ZTb0PqBZ56yqKEvfnu13pWwAWoFgDgAAAAAAAECJ9e1Zm4379snSkV9I7fLF6fPH327/4MbG\nHPW9i1Lz8vIsOu1/5qVjPtPs8x3Qs9ZKOQB7AXdiAAAAAAAAgBKrbVuVLh32yaIvfS2NFZUZeNN1\nKTTUb/PYgTf9KD3/ND+vDDkmT55xXovO1fNjzdv2CoDSEMwBAAAAAAAA2A369qjNW933y+LjT0r7\nl17I/nf9+j3H9Pz3P2bQTddlY/f9smDS95Py8mafZ0CvDq1RLgCtQDAHAAAAAAAAYDeoaVOZbh3b\n5JnT/mcaKqsy8KYfpVC/penzdi8uy9DvTUhDVXUeuPSHqavt1Oxz9OzcNrVtq1qzbAB2gWAOAAAA\nAAAAwG7St2dtNnfrmcV/OzrtVr6Yvv/3tiRJ+Vtv5q+/e36qNq7PI+dflrUHDmr23BVlZTmgZ21r\nlwzALhDMAQAAAAAAANhN2lRXpHunNnlm9NlpqKrOwNn/O2V1dTniny5NxyXP5S+jTsuyz57Yorn7\n9mifqsrmb30FQOkI5gAAAAAAAADsRvv3aJ+6Lt3zl1Gnpe1rL2fYpLHp88ffZtXAwVn4tYktmrPd\nPpXZt2u7Vq4UgF0lmAMAAAAAAACwG+1TVZF9P9Yuz55yduqr26TrEw9nU6cueXDyP6VYWdWiOQfs\n1yFlhUIrVwrArhLMAQAAAAAAANjN+nSvSX3nLnn6y+OypW1NHrzk6mzq0r1Fc3Xt0Cad2le3coUA\ntIaKPV0AAAAAAAAAwEdNVWV59utak2dHfzXPffF/tHilnPJCIf33q23l6gBoLVbMAQAAAAAAANgD\nenerSUVZWYtDOUnSu3tN9qmyHgPA3kowBwAAAAAAAGAPqKwoS+9uNS0ev09Vefp0a9+KFQHQ2gRz\nAAAAAAAAAPaQ/bq2S2V5y/7btv++HVJWVmjligBoTYI5AAAAAAAAAHtIRXlZhhzcNQf0qE2bZmxJ\n1ammOl07tilhZQC0BpsNAgAAAAAAAOxB+1RVZP8e7bN/j/ZZt2FzXln9Zl5d+1YaGovbPL6sUMiA\nXh12c5UAtIRgDgAAAAAAAMBeokNNdTrUVGdArw5ZtXZTXln9ZtZu2Jz/GtHZt0u7tNunco/VCMDO\nE8wBAAAAAAAA2MuUl5Wle+e26d65bTbV1Wfl6reycs2bqW9oTN8e7fd0eQDsJMEcAAAAAAAAgL3Y\nf93qqm5LQyrKy/Z0SQDsJHdsAAAAAAAAgA+IqsryPV0CAM0gmAMAAAAAAAAAACUgmAMAAAAAAAAA\nACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAA\nAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMA\nAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUgmAMAAAAAAAAAACUg\nmAMAAAAAAAAAACUgmAMAAAAAAAAAACVQsTMHPf7447nqqqsya9asrd7/t3/7t1x33XWpqKjISSed\nlFNOOSW33nprbrvttiTJ5s2bs2jRotx///1Zs2ZNJk6cmEKhkAMPPDBTp05NWZlcEAAAAAAAAAAA\nH047TMbceOONmTx5cjZv3rzV+1u2bMmMGTPy05/+NLNmzcqcOXOyatWqfPGLX8ysWbMya9asDBo0\nKJMnT05tbW1mzJiR8ePH5+abb06xWMy8efNKdlEAAAAAAAAAALCn7XDFnD59+mTmzJm56KKLtnr/\n+eefT58+fdKhQ4ckyZAhQ/LQQw/lhBNOSJI88cQT+ctf/pKpU6cmSZ566qkMHTo0STJs2LDcf//9\nGTFixA4L7Nq1ffOuCOADyL0OAAAA+KDRzwAAANixHQZzRo4cmRUrVrzn/Q0bNqR9+3d+eLVr1y4b\nNmxoen399dfn3HPPbXpdLBZTKBSajl2/fv1OFfjaazt3HMAHVdeu7d3rAAAAgA8U/QwAAIB3vN8f\nLuxwK6vtqampycaNG5teb9y4sSmo88Ybb2TJkiX55Cc/+c6Jysq2Ora2tralpwYAAAAAAAAAgL3e\nDlfM2Z7+/ftn2bJlWbt2bdq2bZuHH344Y8eOTZI89NBDOfroo7c6fuDAgVmwYEGOOuqozJ8/f6vQ\nzvuxHCrwUeBeBwAAAHzQ6GcAAADsWLODOXfccUfefPPNjB49OhMnTszYsWNTLBZz0kknpXv37kmS\nJUuWpFevXluNmzBhQqZMmZKrr746/fr1y8iRI1vnCgAAAAAAAAAAYC9UKBaLxT1dBAAAAAAAAAAA\nfNiU7ekCAAAAAAAAAADgw0gwZyc9/vjjGTNmTJJk0aJFOeWUU3Laaadl0qRJaWxs3OrYxsbGXHrp\npRk9enTGjBmTZcuWJUmWLVuW0047LV/60pcyderU94wDAD5atvXM8Prrr2fcuHE5/fTTc+qpp+aF\nF17Y4ZjEcwZ8lLz7t8mXvvSljBkzJmPHjs2qVau2OtY9A0j0NACA1qenAbSEngbQHB+mfoZgzk64\n8cYbM3ny5GzevDlJcu211+bcc8/NL37xi9TV1eXuu+/e6vi77rordXV1mTNnTr71rW/lyiuvTJLM\nmDEj48ePz80335xisZh58+bt7ksBAPYi23pm+P73v59Ro0Zl9uzZGT9+fBYvXrzDMYnnDPioePdv\nk+nTp2fKlCmZNWtWRowYkRtvvHGr490zAD0NAKAU9DSA5tLTAJrjw9bPEMzZCX369MnMmTObXh9y\nyCFZu3ZtisViNm7cmIqKiiTJRRddlJdeeimPPPJIjj322CTJ4MGD8+STTyZJnnrqqQwdOjRJMmzY\nsDzwwAO7+UoAgL3Jtp4ZHn300axcuTJnnnlm7rjjjqZnB88ZQPLe3yZXX311DjnkkCRJQ0NDqqur\nk7hnAO/Q0wAASkFPA2guPQ2gOT5s/QzBnJ0wcuTIpn/YJOnbt2+mT5+eE044Ia+//nqOOuqoJMk/\n/uM/Zt99982GDRtSU1PTdHx5eXnq6+tTLBZTKBSSJO3atcv69et374UAAHuVbT0zLFu2LLW1tfnn\nf/7n9OzZs+kvRTxnAMl7f5t069YtSfLoo4/mpptuyplnnpnEPQN4h54GAFAKehpAc+lpAM3xYetn\nCOa0wPTp0zN79uzMnTs3J554YtMySP+ppqYmGzdubHrd2NiYioqKlJW983Vv3LgxtbW1u61mYPfY\n1v6FO9q7cG/f8xAonW09M3Tp0iXDhw9PkgwfPrwp1f1+YzxnwEfb7373u0ydOjU33HBDOnfuvNVn\n7hnAu+lpANujpwE0h54G0Br0NICd9UHvZwjmtECHDh2a0lbdunXLG2+8sdXnhx9+eObPn58kWbhw\nYQ466KAkycCBA7NgwYIkyfz583PEEUfsxqqB3WFb+xfuaO/CvX3PQ6B0tvXMMGTIkNxzzz1Jkoce\neigDBgzY4ZjEcwZ8VN1+++256aabMmvWrPTu3fs9n7tnAO+mpwFsj54G0Bx6GsCu0tMAmuOD3s8Q\nzGmBadOm5YILLsiXv/zl3HzzzbnggguSvLN/2YgRI1JVVZVTTz01M2bMyKRJk5IkEyZMyMyZMzN6\n9Ohs2bIlI0eO3JOXAZTAtvYv3N7ehR+UPQ+B0tnWM8OECRNy++2359RTT829996br33ta0k8ZwDv\n1dDQkOnTp2fjxo0577zzMmbMmFxzzTVJ3DOA7dPTALZHTwNoDj0NYFfoaQDN9UHvZxSKxWJxj5wZ\n4EPokksuyWc/+9l86lOfSpIcd9xxqa+vz3333ZckefDBB3PLLbfkqquuet8xd911V4477rj3HQcA\nAADQWvQ0AAAASsOKOQCtaFv7F+5o78K9fc9DAAAA4MNPTwMAAKA0BHMAWtG29i/c0d6Fe/uehwAA\nAMCHn54GAABAadjKCqAVNTY25rLLLstzzz2XYrGYK664ImVlZZkyZUq2bNmSfv36Zdq0aSkvL89F\nF12U8ePHp0ePHu8Z079//yxZsmSb4wAAAABam54GAABAaQjmAAAAAAAAAABACdjKCgAAAAAAAAAA\nSkAwBwAAAAAAAAAASkAwB6AV4CuOHgAACspJREFUNDY25tJLL83o0aMzZsyYLFu2rOmzO+64I6NH\nj37f8StWrMgpp5xS6jIBAAAAmmyrn/H000/n2GOPzZgxYzJmzJj87ne/2+54/QwAAIAdq9jTBQB8\nGNx1112pq6vLnDlzsnDhwlx55ZX58Y9/nKeffjq/+tWvUiwW93SJAAAAAFvZVj9j+PDhOeuss/KV\nr3xlT5cHAADwoSCYA9AKHnnkkRx77LFJksGDB+fJJ5/MmjVrcvXVV+fiiy/OlClTdnquuXPnZvbs\n2amvr0+hUMi1116bP//5z7nxxhtTWVmZFStW5HOf+1zGjRtXqssBAAAAPgK21c/o1q1blixZknnz\n5mX//ffPxRdfnJqamh3OpZ8BAACwbbayAmgFGzZs2KpJVVZWlokTJ2bSpElp165ds+ZaunRpbrjh\nhvziF7/IgAEDct999yVJXnrppcycOTNz5szJT37yk1atHwAAAPjoeXc/o7y8PIMGDcpFF12U2bNn\np3fv3rnuuut2ai79DAAAgG2zYg5AK6ipqcnGjRubXq9duzYrVqzIZZddls2bN+cvf/lLpk+fniFD\nhmT27NlJkgkTJqR3797p0KFDkqRQKCRJPvaxj2XChAlp165dFi9enMGDBydJDjrooFRUVKSioiL7\n7LPPbr5CAAAA4MPm3f2MxsbGHH/88amtrU2SjBgxIpdffnnTajiJfgYAAEBzCeYAtILDDz88f/zj\nH/O5z30uCxcuzJFHHtn0V2ArVqzIN7/5zVxyySVJkuOPPz7J23+V9nd/93eZN29eXn311XTu3Dnr\n16/PNddck7vvvjtJctZZZ6VYLCZ5p9EFAAAA0Bre3c846KCDMnbs2EyZMiWHHXZYHnzwwQwaNCjH\nH3+8fgYAAEALCeYAtIIRI0bk/vvvz6mnnppisZgrrrhih2NqamoyatSo/MM//EMaGxtz6aWXpqam\nJocffnhGjx6dioqK1NbW5tVXX02vXr12w1UAAAAAHyXb6mds2rQpl19+eSorK9OlS5dcfvnlW43R\nzwAAAGieQvE//3QBAAAAAAAAAABoNWV7ugAAAAAAAAAAAPgwEswBAAAAAAAAAIASEMwBAAAAAAAA\nAIASqNjTBQB8GG3ZsiUXX3xxXnzxxdTV1WXcuHEZMGBAJk6cmEKhkAMPPDBTp05NWdnb+cjVq1fn\ntNNOy69//etUV1enoaEhM2bMyJNPPpm6urqcd955+Zu/+Zs9fFUAAAAAAAAANIdgDkAJ/PrXv07H\njh3z/e9/P2vXrs2JJ56Yj3/84xk/fnyOOuqoXHrppZk3b15GjBiRe++9Nz/4wQ/y2muvNY2//fbb\nU19fn1/+8pdZuXJl7rzzzj14NQAAAAAAAAC0hK2sAErg+OOPzze+8Y0kSbFYTHl5eZ566qkMHTo0\nSTJs2LA88MADSZKysrL87Gc/S8eOHZvG33fffenevXvOOeecTJ48OcOHD9/9FwEAAAAAAADALhHM\nASiBdu3apaamJhs2bMj555+f8ePHp1gsplAoNH2+fv36JMkxxxyTTp06bTV+zZo1eeGFF3L99dfn\nq1/9aiZNmrTbrwEAAAAAAACAXSOYA1AiL7/8cs4444z8/d//fUaNGpWysnduuRs3bkxtbe12x3bs\n2DHHHXdcCoVChg4dmqVLl+6GigEAAAAAAABoTYI5ACWwatWqfOUrX8m3v/3tnHzyyUmSgQMHZsGC\nBUmS+fPn54gjjtju+CFDhuSee+5JkjzzzDPp2bNn6YsGAAAAAAAAoFUVisVicU8XAfBhM23atNx5\n553p169f03uXXHJJpk2bli1btqRfv36ZNm1aysvLmz4fPnx47rzzzlRXV6euri5Tp07N888/n2Kx\nmMsuuyyDBg3aE5cCAAAAAAAAQAsJ5gAAAAAAAAAAQAnYygoAAAAAAAAAAEpAMAcAAAAAAAAAAEpA\nMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAAAAAAAAAEpAMAcAAABgLzVx4sTceuut2/180qRJ\nefHFF5s97/Lly3PxxRfvSmkAAAAA7ATBHAAAAIAPqAULFqRYLDZ73EsvvZTly5eXoCIAAAAA/qtC\nsSXdGwAAAABaXbFYzJVXXpm777473bp1S0NDQ04++eQsW7YsDz74YNatW5dOnTpl5syZue2223LN\nNdekT58+mT17dpYvX54ZM2Zk06ZN6dSpU77zne+kd+/e+dnPfpbbbrstZWVlOeyww/Ld7343o0aN\nyooVK3LiiSfmkksuyWWXXZY///nPWbVqVQ444IBce+21WbVqVc4999z07t07zz33XA499NAMHTo0\nt912W9atW5frrrsu/fv3z/DhwzN8+PA8/PDDSZIrrrgiAwcO3MPfJAAAAMDewYo5AAAAAHuJ3//+\n93n66afzm9/8Jj/84Q/zwgsvpKGhIYsXL84vf/nL/P73v0+fPn1yxx135Jxzzkm3bt1yww03pF27\ndpk8eXJ+8IMf5LbbbstZZ52VKVOmpL6+Ptdff31uueWW3HrrrSkUClm5cmUmT56cQw89NFOnTs1j\njz2WysrKzJkzJ3/4wx+yefPm3HPPPUmSZ599Nl//+tczd+7cPPHEE3nxxRczZ86cfP7zn8+cOXOa\n6u7YsWP+9V//Neeff34mTJiwp74+AAAAgL1OxZ4uAAAAAIC3/elPf8pnP/vZVFZWpnPnzhk2bFjK\ny8szYcKE/Mu//EuWLFmShQsXpk+fPluNW7p0aZYvX55x48Y1vbdhw4ZUVFTkE5/4RE4++eR8+tOf\nzumnn57u3btn6dKlTccdeeSR6dixY2bPnp3Fixdn6dKlefPNN5MkXbp0aVr9pkePHjn66KOTJPvu\nu29WrFjRNMcpp5ySJBk+fHgmTpyY1atXp3PnziX5jgAAAAA+SARzAAAAAPYShUIhjY2NTa8rKiqy\ndu3ajB07NmeeeWZGjhyZsrKyvHtn8sbGxvTq1Su33357kqShoSGrVq1KkvzoRz/KwoULM3/+/Jx9\n9tm56qqrtho7b968XHPNNTnjjDPyxS9+MWvWrGmav6qqaqtjy8vLt1l3RcU7LabGxsbtHgcAAADw\nUWMrKwAAAIC9xNFHH525c+emrq4u69aty7333ptCoZChQ4fmtNNOy4ABA3L//fenoaEhydtBmYaG\nhvTr1y/r1q3Lww8/nCS55ZZbcuGFF2b16tU54YQTctBBB+Ub3/hGjjnmmDz77LMpLy9PfX19kuTB\nBx/MCSeckJNOOildunTJQw891DT/zvrtb3+bJPnDH/6Q/v37p0OHDq34rQAAAAB8cFkxBwAAAGAv\n8ZnPfCZPPPFEPv/5z6dLly7p379/Nm3alGeeeSajRo1KZWVlDj744KZtpI477ricc845+clPfpIf\n/vCHmT59ejZv3pyampp873vfS+fOnXPqqafm5JNPTps2bdKzZ8984QtfyJYtW7J+/fp8+9vfztln\nn50LL7wwc+fOTVVVVQYPHrzVNlU749FHH82vfvWrtGnTJldeeWUpvhoAAACAD6RC8d1rHwMAAADA\nTho+fHh+/vOfp1evXnu6FAAAAIC9jq2sAAAAAAAAAACgBKyYAwAAAAAAAAAAJWDFHAAAAAAAAAAA\nKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKAHBHAAAAAAAAAAAKIH/B9d82iYe\n1IBXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot close price, compare to low and high price\n", + "ax = df.plot(x=df.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in df.index]\n", + "plt.fill_between(x=index, y1='low_bid',y2='high_bid', data=df, alpha=0.4)\n", + "plt.title(\"entire history\", fontsize=30)\n", + "plt.show()\n", + "\n", + "# plot first 200 entries \n", + "p = df[:200].copy()\n", + "ax = p.plot(x=p.index, y='close_bid', c='red', figsize=(40,10))\n", + "index = [str(item) for item in p.index]\n", + "plt.fill_between(x=index, y1='low_bid', y2='high_bid', data=p, alpha=0.4)\n", + "plt.title('zoomed, first 200', fontsize=30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- there are periods where the price doesnt move, probably weekends. Maybe dont consider these for training" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def pltGraph(xname, yname, irow, icol, df, xval=None, yval=None, title=None, norm_axis=None):\n", + " x_axis_col = xname\n", + " y_axis_col = yname\n", + " if xval is None:\n", + " xval = df[x_axis_col]\n", + " if yval is None:\n", + " yval = df[y_axis_col]\n", + " if title is None:\n", + " title = x_axis_col + \" vs \" + y_axis_col\n", + " if norm_axis is None:\n", + " norm_axis = \"x\"\n", + " \n", + " axarr[irow, icol].scatter(xval.values, yval.values, color=\"green\", lw=0, cmap=pylab.cm.cool, alpha=0.8, s=2)\n", + " axarr[irow, icol].set_xlim(xval.values.min(), xval.values.max())\n", + " axarr[irow, icol].set_ylim(yval.values.min(), yval.values.max())\n", + " axarr[irow, icol].set_xlabel(x_axis_col)\n", + " axarr[irow, icol].set_ylabel(yname)\n", + " axarr[irow, icol].set_title(title)\n", + " axarr[irow, icol].grid(False)\n", + " return icol + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\statsmodels\\nonparametric\\kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + " y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQEAAAT7CAYAAAAkHuRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WeYVdWhBuBvaAoOiBiDiteGCteOEo0FiUQfURERRBEf\nIrYUvfYkgg3FhsbYUK/lWlFQVEQp9m5AYtRYg4mNCCqCogIKMzBzf3A5lzYwJjIzB9/3Tzhn7732\nWuscM+tZ+ztrlVRWVlYGAAAAAAAAAAAoWvVquwIAAAAAAAAAAMC/RwgIAAAAAAAAAACKnBAQAAAA\nAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAHXOX/7yl+y1\n117ZZpttMmzYsNquTp0ye/bstGnTJhMmTEiS9OnTJ5dccskKr6usrMzw4cMzd+7cKs/p169fTjzx\nxCTJiBEjsvPOO/9bdX388cfzySefJEkmTJiQNm3aZPbs2f9WmQAAAAAsW4PargAAAADAkq699tps\nvPHGue2229K8efPark6dNnjw4DRosOIpnpdeeilnn3129t9//6y22mrLPOfMM89MZWXl91KvKVOm\n5L/+678yatSorLfeemnXrl1eeOGFNGnS5HspHwAAAIDFCQEBAAAAdc7XX3+djh07ZoMNNqjtqtR5\n1Q1JVSfc07Rp03+3OlXer1GjRllnnXW+t/IBAAAAWJztwAAAAIA6pVOnTnnzzTdz7bXXpk2bNkmS\nNm3a5Morr8yuu+6arl27Zv78+fnggw9y9NFHZ7vttsuee+6ZSy+9NGVlZYVyXn/99Rx66KHZbrvt\n0qtXr9xxxx3p1KlTkmVvTTV48OB079698Hp55U+ePDlt2rTJI488ks6dO2ebbbbJYYcdlvfff79w\n/cSJE9O3b9+0a9cuHTt2zA033JAkOffcc9O7d+/F2nz//fenU6dOywzqfPvttznzzDOz4447pkOH\nDnn44YcXO77odmBTp07Nr3/96+y4445p3759TjzxxHz++eeZPHlyfvGLXyRJdthhh4wYMSKDBw/O\nMccck6OPPjo77rhjHnjggcW2A1vo+uuvz84775ydd945F110UebNm5dk2duFLXr9z3/+8yTJAQcc\nkMGDBy/V59OnT8/pp5+eXXbZJTvssENOOumkfPbZZ4Wy2rRpkxEjRqR79+7ZZptt0rVr17z66quF\n4/fcc0/23nvvbL311uncuXNGjhy5VN8BAAAA/JAIAQEAAAB1yn333Ze2bdvmqKOOygsvvFB4f8yY\nMbnjjjtyySWXZN68eTn66KOz8cYb54EHHsill16a559/PhdccEGS5IsvvsjRRx9dCJJ07do1V1xx\nRbXrMHfu3OWWv9C1116bCy64IPfdd19mzJiRP/zhD4X7H3HEEfnxj3+ce++9NwMHDsyNN96Y++67\nL127ds0rr7ySTz/9dLG2denSJSUlJUvV5bzzzsvLL7+cm266Kddcc03uuOOOKut93nnnpby8PMOH\nD8+dd96ZKVOmZNCgQVlvvfUyePDgJMkTTzyR/fbbL0ny/PPPZ6eddsrw4cPTsWPHpcr78ssv88IL\nL+T222/PpZdemtGjR+d//ud/qtWH9957b5JkyJAhOeqooxY7Nm/evPTt2zdTpkzJTTfdlNtvvz1T\np07N8ccfv1gQ6uqrr85JJ52UBx98MKWlpRkwYECS5O233865556b0047LY8++mh+8YtfpF+/fvnw\nww+rVTcAAACAVZEQEAAAAFCntGjRIvXr10+TJk0W2z6qZ8+e2WyzzfKf//mfGT16dBo2bJizzz47\nm266aX7yk5/kvPPOy7333ptZs2Zl7NixWW211XL22WendevW6d27dyH4Uh0rKn+h3/zmN2nfvn3a\ntGmT3r1754033kiSPPzww2nYsGEuuOCCbLbZZunYsWMGDBiQJk2aZIcddsgGG2xQWNFn+vTpefHF\nF9O1a9el6jFr1qyMHj06/fr1yw477JDtttsuAwcOrLLekydPTmlpaTbYYIO0bds2l19+eY488sjU\nr18/a665ZqF/V1999SRJ48aN88tf/jKtW7dOixYtliqvfv36ueyyy9K2bdt07Ngxv/nNbzJ06NBq\n9eHC8po3b5411lhjsWPPP/98Pvzww/zxj3/M1ltvnW222SZXXnll3n777YwbN65wXu/evdOxY8ds\nuummOfroo/POO++krKwsU6ZMSUlJSdZbb720atUqvXv3zs0337zMNgAAAAD8UDSo7QoAAAAAVMd/\n/Md/FP797rvv5qOPPkq7du0K71VWVqaioiIffvhh3n333bRp0yYNGzYsHG/fvn3Gjx9frXutqPzm\nzZsnSTbaaKPC8dLS0sJWWQvv36hRo8LxRUM+Xbt2zdixY3PkkUfm4YcfzhZbbJHNNttsqXq8//77\nKS8vz5Zbbll4b+utt069esv+Xdevf/3rnH766dl5553z05/+NHvttdcyw0ULtWrVapmrDy3UsmXL\nrLvuuoXXW221VaZOnZqvv/66ymuq4913383666+fli1bFt5bd91106pVq/zjH//IbrvtliTZeOON\nC8dLS0uTLFhFqEOHDtl2221zyCGHZNNNN83PfvazHHTQQWnWrNm/VS8AAACAYiYEBAAAABSFhavX\nJAuCINtvv30uvvjipc5r2bJlGjdunIqKisXeXzSQs6zgy8IAT3XKnz59epIsFjJKUtjKqmHDhott\na7Wkrl275rrrrsvkyZMzZsyYKoM6C+u5aFn169dP/fr1l3n+fvvtl5/+9Kd5+umn8/zzz+fCCy/M\nqFGjcvvtty/z/NVWW63KOiZZKmy0sE8bNGiwwj5cnqruW1FRsdjntmT/Jgv6YvXVV8+wYcPy6quv\n5tlnn81TTz2VO++8M9dff30hQAQAAADwQ2M7MAAAAKDotG7dOpMmTcq6666bjTbaKBtttFFmzJiR\nSy+9NOXl5dl8880zceLEzJkzp3DNm2++Wfj3wnDJ7NmzC+9Nnjy52uWvyMYbb5y///3vi517zTXX\n5KSTTioc32abbXL//ffnzTffzP7777/McjbZZJM0bNgwr7/+euG9d955p8o6XHnllZk8eXJ69OiR\nK6+8Mtdcc01efPHFTJ8+fbkr/lRl6tSp+fLLLwuv//rXv6ZVq1Zp0qRJGjZsmG+//XaxgNKifbi8\n+7Vu3Toff/xxpk6dWnjv008/zSeffJLWrVuvsF6vvvpqBg8enB122CGnnHJKRo0ala222iqPPfbY\nd20iAAAAwCpDCAgAAAAoOl27dk29evVy+umn5+9//3teeeWV9O/fP+Xl5WnatGm6dOmSxo0b58wz\nz8x7772X0aNHZ9iwYYXrN99886y++uq54YYb8tFHH+W+++7LM888U+3yq1O/+fPn57zzzsv777+f\nZ599Nrfffns6duxYOOfAAw/MzTffnPbt2y+2LdaiSktL07Nnz1x88cWZMGFC3nrrrZxzzjlVBmze\nf//9DBw4MG+88UYmTZqU0aNHp1WrVmnRokWaNGmSJHnrrbcWCz8tz/z583Paaadl4sSJefzxx3PD\nDTfk2GOPTbJgW7K5c+fmpptuykcffZQbb7wxb7/9duHahff729/+lpkzZy5W7q677po2bdrktNNO\ny5tvvpk33ngjp556ajbeeOPssssuK6xX48aNc8MNN+SOO+7I5MmT88ILL+S9997LtttuW612AQAA\nAKyKhIAAAACAotOkSZPccsst+frrr9OzZ88cd9xx2X777XPZZZclWbD110033ZTPPvss3bp1y623\n3ppDDjmkcH1paWkuuuiiPPPMM9l///3zxBNP5L/+67+qXf6KlJaW5qabbsr777+fAw88MOeee26O\nO+64dO/evXDOfvvtl/Ly8hxwwAHLLat///7p1KlTTjjhhBx99NHp1q3bMrfJSpLzzjsvG220UY45\n5ph07do1H3/8cW644YbUq1cvW2yxRfbcc88cddRRGT58eLXa0bp162y99dY5/PDDc84556Rv377p\n1atXkgWrGfXv3z933HFHunbtmvfeey9HHHFE4dq11lorPXv2zFlnnZWrr756sXJLSkpy3XXXpUWL\nFunTp0+OPPLIrLvuurntttsW27atKm3bts0f/vCHDB8+PPvuu2/OPPPMHHnkkenRo0e12gUAAACw\nKiqpXN4G9QAAAACriDvvvDO33HJLnnrqqdquSpLkH//4Rw4++OD86U9/SmlpaW1XBwAAAIAi16C2\nKwAAAADwQ/L555/npZdeyp133pkuXboIAAEAAADwvbAdGAAAAEAN+uabb3LGGWdkzpw5OeWUU2q7\nOgAAAACsImwHBgAAAAAAAAAARc5KQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAAAAAAQJET\nAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAA\nAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAiJwQEAAAA\nAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAAAABQ5ISA\nAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAAAAAAAAAA\nipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJAQEAAAAA\nAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAAABQ5ISAA\nAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAAAAAAAIAi\nJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJAAAAAAAAA\nAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAARU4ICAAA\nAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAAAAAAoMgJ\nAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAAAAAAAAAA\nABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECREwICAAAA\nAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAAAAAockJA\nAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAAAAAAAAAA\nRU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSEgAAAAAAA\nAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAAAIqcEBAA\nAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAAAAAAAECR\nEwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEgAAAAAAAA\nAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCAgAAAAAAAACAIicEBAAA\nAAAAAAAARU4ICAAAAAAAAAAAipwQEAAAAAAAAAAAFDkhIAAAAAAAAAAAKHJCQAAAAAAAAAAAUOSE\ngAAAAAAAAAAAoMgJAQEAAAAAAAAAQJETAgIAAAAAAAAAgCInBAQAAAAAAAAAAEVOCAgAAAAAAAAA\nAIqcEBAAAAAAAAAAABQ5ISAAAAAAAAAAAChyQkAAAAAAAAAAAFDkhIAAAAAAAAAAAKDICQEBAAAA\nAAAAAECREwICAAAAAAAAAIAiJwQEAAAAAAAAAABFTggIAAAAAAAAAACKnBAQAAAAAAAAAAAUOSEg\nAAAAAAAAAAAockJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyAkBAQAAAAAAAABAkRMCApIkjzzySPr0\n6ZMkueqqqzJy5Mjlnn/NNdfkiSeeWGn1OfbYY/Puu+9+p2t+9atfZcSIEd9bHV5//fWcc84531t5\nAEDdU9fGQCsyYsSI/OpXv6q1+68sAwcOzODBg2u7GgBQ5/Xr1y8333zzMo+1adMmX3zxxUq9/9Sp\nU9OrV6+Veo+6ZPLkyWnXrl1tV+N7t+gYGABWBZ4p1Q0TJkxIly5darsa37ubb745/fr1q+1qQLU1\nqO0KAHXPSSedtMJzJkyYkM0222yl1eGmm25aaWVX17vvvpupU6fWdjUAgBpSF8ZAAAB1WcuWLXP3\n3XfXdjUAABbjmRLA/xMCgh+wq666KqNGjUrz5s2z0UYbFd7v169fNt988xx99NG5+uqr8/jjj6dh\nw4ZZa621cvHFF+fxxx/Pm2++mUsvvTT169fP3nvvXbh2woQJufTSS9OyZct89NFHWX311TNo0KC0\nbt06ZWVlueyyy/LSSy9l/vz52XLLLXPWWWeltLQ0nTp1yrbbbpt33nknp556ai6++OJcddVV2Wab\nbXLPPfdkyJAhqVevXn70ox/l7LPPziabbJKpU6emX79++eyzz7L++uvn888/X2GbR4wYkfvuuy/f\nfvttSktLM2TIkNx7770ZNmxYKioq0rx585x99tlp0qRJrr766sycOTP9+/dPt27dcv7552f06NGF\ndi58PXjw4Pz1r3/NZ599ljZt2mSjjTbKlClTMm3atEyZMiUtWrTIFVdckZYtW37/HyIA8J2tjDFQ\nRUVFLrroorz22muZPXt2Kisrc8EFF2SLLbZIx44d8+ijj2adddZJkhxyyCE5/vjjs80226R///75\n5z//mebNm2edddbJ5ptvnhNOOGG59Z82bVqOPvrofPbZZ2nVqlXOP//8rLPOOvn0009z7rnnZsqU\nKamsrEy3bt1yzDHHLLes9957L2eeeWbKyspSWVmZgw8+OIcffngGDx6cf/zjH5k+fXo+//zztG3b\nNhdeeOEyx23bbrttBg4cmE8++STl5eXZf//98+tf/zpJcv311+eJJ57I3Llz8+233+b000/P3nvv\nnVmzZuXMM8/MxIkT8+Mf/zj169fPjjvu+K9+pACwyqlqLiRJXn311fTq1SvTp0/P5ptvnj/+8Y9p\n0qTJYtffcMMNeeCBB9KgQYNstNFGGTRoUJo2bVrl/fr06ZPWrVvnzTffzIwZM3LggQfmxBNPzOTJ\nk3P44YendevWmTJlSgYNGpSjjjoqr776aubNm5c//OEPeeaZZ1K/fv20a9cuAwYMSKNGjfLf//3f\neeyxx1JRUZFWrVplwIABS82L9OrVK3379k3nzp2TJJdddlkqKyvTt2/fnH766ZkxY0aSpGPHjjn5\n5JOXqvN9992Xe+65J+Xl5fnqq69y7LHHpnfv3lWWe+qpp+bSSy/NU089laZNm2bbbbfNe++9lyFD\nhiz3s6ioqMiZZ56Zt956Kw0aNMhZZ52V7bffPuXl5Rk0aFDGjx+f+vXrZ9ttt03//v1TWlpaZVmz\nZ89O//79M2nSpNSrVy9bbbVVBg4cmJdeeqnK+bR+/frlyy+/zEcffZSf/exnOemkk6qcX3v66adz\nww03pKysLF988UW6detW6LuqxsAAUJs8U6reM6WKiorsueeeueaaa7LNNtskSU455ZT85Cc/yc47\n77zMuZ0lLWuO5uc//3mV5R500EEZMGBAXnvttTRt2rTwo7hBgwYtt8+++eabnHjiiZk0aVKaNWuW\ngQMHZpNNNsnMmTNz3nnnZeLEiSkpKUmHDh1y6qmnpkGDquMK06ZNW+a4cMSIERkzZkwqKioyderU\ntGzZMoMGDUrLli3Tp0+frLnmmnn//fdz2GGHpVu3brnwwgvz97//PeXl5dlll13y+9//Pg0aNKhy\nPFleXp4LLrgg48aNy9prr5211157uWNpqGtsBwY/UE888UQee+yxjBw5MnfffXdmzZq11DmffPJJ\nbr/99tx///0ZMWJEdtttt7z++us5/PDDs/XWW+f3v//9Yg+/Fnr77bdz1FFHZdSoUenevXt+97vf\nJUluvPHG1K9fPyNGjMhDDz2UH//4x7nssssK122++eZ5+OGHFytz/Pjx+Z//+Z/ccccdeeihh9Kl\nS5ccf/zxqayszMCBA7PddttlzJgxOeuss/LBBx9Uq+3vvvtuhgwZkiFDhuTPf/5zRo4cmbvuuisj\nR47MMccckxNOOCHrrbdeTjzxxLRv3z4XX3zxCsucMmVKHnjggUJ7/vKXv+Sqq67KI488kmbNmuWe\ne+6pVt0AgJVrZY2BXnvttXz22We55557Mnbs2Bx00EG56aab0rRp0+y999556KGHkiwI3UybNi0d\nOnTIBRdckM022ywPP/xwrrrqqrzyyivVasMHH3yQc845J6NGjcoWW2yRCy+8MEny29/+NjvvvHNG\njRqVYcOG5aGHHsqYMWOWW9bNN9+cTp06ZcSIEbnxxhvzl7/8JRUVFYU2XX311Xn44YfToEGDXHvt\ntYXrFh23/e53v0uPHj0KE2Pjxo3L2LFjM2XKlIwbNy533nlnRo0alVNOOSVXX311kuTqq6/O6quv\nnkceeSRXXXVVtcdxAPBDsLy5kGTBlly33nprHn300UydOjWPPfbYYtc/+eSTGTFiRO65556MHj06\nG2ywQe68884V3vfjjz/OsGHD8sADD2Ts2LF5+umnkySffvppjjvuuMVCzUkydOjQvPXWW3nwwQcz\nevTozJ49O2PHjs3IkSPz97//Pffee28efPDBdOzYMWedddZS9+vZs2ceeOCBJMn8+fPz0EMPpWfP\nnhk+fHg22GCDPPDAA7nrrrsyadKkzJw5c7FrZ8+enXvvvTc33nhjRo4cmSuuuCJ/+MMfllvuvffe\nm7feeiujR4/O3XffnY8++qhan8ecOXOy2267ZeTIkTnppJNy8sknp6ysLP/93/+dzz77LA8++GAe\nfPDBVFRU5NJLL11uWY8//nhmz56dBx98MPfdd1+SFOpR1XzawjqMGTMmv/vd76qcX6usrMwtt9yS\nQYMGFT7/G2+8MV988UW1xsAAUFs8U1rxM6V69eqlR48ehTHOV199lXHjxuWAAw5Y7tzOovdb1hzN\n8sq97rrrMn/+/Dz88MO57bbb8vbbb1ervz755JP07ds3Dz74YLp06ZLf//73SZILLrggzZs3z6hR\no3L//ffnnXfeyS233LLcspY3LnzllVdyzjnnZOzYsdlqq60K82NJ0qxZs4wdOzZ9+vTJRRddlK22\n2iojRozIyJEjM2PGjNx6663LHU8OHTo0H374YcaMGZNbbrkln3zySbXaDnWFlYDgB2r8+PHZe++9\nC79O6tGjx1K/fGrZsmXatm2bgw46KHvssUf22GOP7LLLLissu23btmnfvn2h3IEDB2bGjBl55pln\nMnPmzIwbNy5JUl5enrXXXrtw3cJrFvX8889nv/32S4sWLZIk3bt3z4UXXpjJkydn3LhxOf3005Mk\nG220UXbeeedqtb1NmzaFdj/zzDOZNGnSYvvZf/XVV/nyyy+rVdZC22+//WJp5Z122qlwjy233DJf\nffXVdyoPAFg5VtYYqF27dllzzTULD5QmTJiQNdZYI8mCB1HnnXdejj766Nx///3p3r176tWrl2ef\nfbYwyfLjH/+48Gv1Fdl1110Lv94++OCDc/DBB+ebb77JK6+8Upg8adq0abp3757nnnsu+++/f5Vl\n7b333jn99NPz+uuvZ5dddslZZ52VevUW/Fakc+fO+dGPflS4z0UXXVQYey0ct33zzTd56aWX8tVX\nX+Wqq64qvDdx4sTst99+ueSSSzJq1KhMmjSpsEpSsuBzOOOMM1JSUpIWLVosM1gOAD9Uy5sLSZK9\n9torjRs3TrLg4dcXX3yx2PXjx49P586ds+aaayZJ+vfvX637HnrooWnYsGEaNmyYzp0754UXXsjm\nm2+eBg0aZPvtt1/q/HHjxuXAAw/M6quvniS58sorkyzYYvWNN95Ijx49kiz45fq333671PX77rtv\nLr300kybNi1vv/12Ntpoo2y88cbp0KFDfvnLX+aTTz7JrrvumtNOO22pX16vscYauf766/Pss8/m\nww8/zMSJE/PNN98st9xLLrkkBx54YFZbbbVCe1e0ClCy4CHSfvvtlyTp0KFDKisr8/777+e5557L\nKaeckoYNGyZZsJrS8ccfv9yydtxxx1xxxRXp06dPdt111xxxxBHZaKON8umnn1Y5n7bwuoWqml8r\nKSnJ9ddfn2eeeSajR4/Oe++9l8rKynz77bfVGgMDQG3xTKl6z5R69OiRgw8+OP369cvo0aOz5557\nFn58VtXczkKtWrWqco6mqnKfffbZ9O/fP/Xq1UtpaWkOOuigvPPOO9Xqrx122CFJctBBB+Xcc8/N\nzJkz89xzz2XYsGEpKSlJo0aN0qtXr9x+++355S9/WWVZyxsX7rbbboWVMg855JAceOCBhesW/W48\n88wzeeONNwoB7Dlz5iRZ/nhy/Pjx6dKlSxo1apRGjRrlgAMOqFbboa4QAoIfqJKSksIvyJKkfv36\nS51Tr1693HnnnXnjjTcyfvz4XHTRRdl5552X+eutRS1ZVmVlZerXr5+KioqcccYZ6dixY5IFv9qa\nO3du4bwll65eeO2y3ps3b95SbVjekoGLWvQ+FRUVOfDAAwvJ8oqKinz22WeFibKFlrxXeXl5lWUm\nKUyALetaAKD2rKwx0DPPPJMLL7wwRx55ZH7+859n0003Laz+0759+8ybNy+vv/564ZfnyYKxy6J1\nWXKCpirJFqEeAAAgAElEQVSL1rmysjINGjRIRUXFUuONioqKzJs3b7ll7bnnnnn00Uczbty4jB8/\nPtdee22hfovep6KiYrH6LRz7LLzv3XffXXgY+cUXX2S11VbLW2+9leOOOy59+/bNbrvtlp/85Cc5\n77zzFqv7stoEAD90y5sLSRaf/1jWnEP9+vVTUlJSeP3111/n66+/zgYbbLDc+y5abmVlZeFvf6NG\njZY557Lke9OnT09FRUUqKipyzDHHpHfv3kmSsrKyZT7IatKkSfbZZ5+MHj06r776anr27Jkk2Xbb\nbfPkk09m/PjxefHFF9OzZ89ce+21hYdJyYLViQ499NAccsgh2XHHHdO5c+fCykVVlbtkfas79lry\nvMrKyjRs2HCpX9hXVFQsNV+0pP/4j//I448/ngkTJuTFF1/MkUcembPOOitrrbVWlfNpC9u06H2W\nNb/2zTff5KCDDspee+2V9u3bp0ePHnniiSdSWVlZrTEwANQWz5Sq90ypVatW2XLLLfPMM89kxIgR\nOeOMM5JUPbez4YYbFq5d3hxNVeX+q/NWS55XUlJSmLtaVHXmraoaFyZLz1st+nrJz+yqq65K69at\nkywYG5eUlCx3PLkkYyeKje3A4AeqQ4cOeeSRR/L111+noqIiDz744FLnTJw4MV26dEnr1q3zq1/9\nKn379i0kXevXr1/lH+eJEydm4sSJSRbsYb/DDjukWbNm2X333XPXXXelrKwsFRUVOfvss3P55Zcv\nt5677757xo4dW/hV2/3331/Yu7xDhw6FJRE//vjjTJgw4Tv3w2677ZYxY8bks88+S5IMGzYsRxxx\nxFJtbNGiRT7++ON8/vnnqayszBNPPPGd7wUA1L6VNQb605/+lD333DO9e/fONttskyeeeCLz588v\nHO/Zs2fOP//8tGnTJuuvv36SBfuYL/wV0owZM/LEE08s9sCuKhMmTMjHH3+cZMHYZY899khpaWm2\n22673HXXXUmSmTNnZuTIkdl1112XW9Zpp52WsWPHZv/998+AAQNSWlpaWOL4ySefzMyZM1NRUZHh\nw4dnzz33XOr60tLSbL/99rn11luTLJhIOeyww/Lkk0/mpZdeytZbb50jjzwyO+20U5588slCn3To\n0CH33XdfKioq8tVXX+XJJ59cYbsB4IdieXMh1bHrrrvm8ccfL2z5NHjw4Nx2220rvO6hhx4q/G1+\n+OGH06lTp+Wev8suu2T06NGFeZ5zzz03Y8aMye6775777ruvcP+rrrqqsA3Ekg455JCMGDEir776\navbZZ58kyWWXXZbrrrsue+21V84888xsttlm+fDDDxe77s0330yLFi1y3HHHpUOHDoUHNgvHGssq\nt2PHjnnooYdSVlaWefPmFVZkXJEvv/yyUP5TTz2V1VZbrTAvdffdd6e8vDwVFRW56667sttuuy23\nrKFDh6Z///7Zfffd87vf/S677757/vGPfySpej5tSVXNr02aNCmzZs3KySefnE6dOuXPf/5z4Zzq\njIEBoLZ4plR9hxxySG666abMmTOnsFLg8uZ2FlreHE1V5Xbs2DH3339/YVXH0aNHV2ve6p133snf\n/va3JAs+zx133DGNGzcufJ6VlZUpKyvL8OHDVzhvtbxx4YsvvpipU6cmSe6+++5lzlslC74Tt912\nW+G+v/nNb3LnnXcudzzZoUOHjBw5MnPnzs3cuXMzduzYFbYb6hIrAcEPVMeOHfPOO++kR48eadas\nWdq2bVtYYnihtm3bZt99902PHj3SpEmTrL766oVfwO+555655JJLUl5enoMOOmix6370ox/lyiuv\nzJQpU9KiRYvCfujHHXdcLrnkkhx00EGZP39+/vM//zP9+vVbbj1322239O3bN0cccUQqKirSokWL\n3HDDDalXr14GDBiQ/v37Z9999826666btm3bfud+6NChQ4499tgcddRRKSkpSWlpaa655pqUlJSk\nXbt2ufLKK3P88cfn2muvTa9evdKjR4+ss846+dnPfvad7wUA1L6VNQbq1atXfvvb3+aAAw5I/fr1\n0759+zz22GOFFXS6deuWyy+/fLHJqv79++ess87KAQcckObNm2f99ddf7JdfVdliiy1yxhlnZPr0\n6dl0000zcODAJAsmRgYOHJgRI0akrKwsBxxwQLp3777cso477riceeaZueeee1K/fv3stdde2Wmn\nnfLnP/85P/rRj3LsscdmxowZ+clPfpJf//rXyyzjsssuy/nnn58DDjggZWVl6dKlS7p27Zrp06fn\nsccey3777ZeGDRtml112yVdffZVZs2blhBNOyIABA7LvvvumRYsW2WKLLVbYbgD4oVjeXEh1dOzY\nMe+++24OO+ywJMlmm22W888/f4XXzZkzJwcffHBmz56d3r17Z5dddilsQbYsvXr1ypQpU9K9e/dU\nVlZmp512Sp8+fVKvXr1MnTo1hxxySEpKSrLeeutl0KBByyxj6623ToMGDbLPPvsUtuk64ogj0q9f\nv8IWDG3atEmXLl2W6qP77rsvnTt3TuPGjbPtttumRYsWmTRpUjbddNNlltu9e/d88MEH6datW5o0\naZINNtigsJLh8qy99tp57LHHcuWVV6Zx48YZPHhwGjRokN/85je55JJL0q1bt8ybNy/bbrttzj77\n7OWW1a1bt/z5z3/Ofvvtl8aNG2f99dfPL37xi0ycOLHK+bQlVTW/1qRJk/zsZz/Lvvvum2bNmmXD\nDTfMZpttlkmTJlVrDAwAtcUzperr1KlTzjvvvBx77LGF96qa21lUly5dqpyjKS0tXWa5v/rVrzJw\n4MAccMABadq0adZee+1qzVttuummueaaa/LRRx9l7bXXLowDzzrrrFxwwQU54IADUl5eng4dOlQ5\n17RQVePC0aNHp2XLlvnd736XadOmZbPNNivMjy3pzDPPzIUXXli476677ppjjjkm8+bNq3I82atX\nr/zzn/9Mly5dvlMYH+qKkkp71ADfowkTJuT888/P6NGja7sqAAB12l133ZUtt9wy7dq1S1lZWXr3\n7p0TTjihsMx1bRo8eHBmzJiRc845p7arAgDUgD59+uTwww9P586da7sqK80LL7yQzz//PAceeGCS\n5IILLshqq61W2M6jNplPA+CHyt/AumvMmDEpLS1Nx44dU1FRkRNOOCG77bZbYcvX2jRixIg8+uij\nueGGG2q7KlAnWQkIWOX07t07s2fPXuaxu+66K6WlpTVcIwCApS38VX5FRUXKy8vTuXPndOzY8Xsd\ny8yaNSuHH374Mo+tscYaGTp06L9UdwCguLz44ou5+OKLl3ls5513ruHa1I7NN988N998c26++ebM\nnz8/bdu2zbnnnpuLLrqoyu1A+vfvn5/+9Kff6T4nn3xyPvjgg2Ueu+KKK7Lpppt+57oDACuPZ0rL\ntvnmm+ecc87J5ZdfnvLy8uy8887p2bPn9z7W0f/w/bMSEAAAAAAAAAAAFLnqbSQNAAAAAAAAAADU\nWUJAAAAAAAAAAABQ5ISAAAAAAAAAAACgyDWo7QrUpGnTZtZ2Fb53a63VJDNmfFPb1Vhl6d+VR9+u\nXPp35dK//7511mla21X4wavuuMj3vebo65qjr2uOvq45+rpmrKx+NjaqfavinBH80EyZOTl9Hzk8\nt3W+K62ablDb1QH+RcZFtc+4CFaeKTMn1+lxyqo6nlpV28Wq718dF1kJqMg1aFC/tquwStO/K4++\nXbn078qlf/kh8X2vOfq65ujrmqOva46+rhn6GaDuatV0Aw92AIA6acrMyYUgypSZk2u7OlVaVcdT\nq2q7oCpCQAAANai8vDynnXZaevXqld69e+e9997LpEmTcthhh6V3794ZMGBAKioqkiTDhw9P9+7d\nc8ghh+Tpp59OksyZMycnnHBCevfunWOPPTZffPFFkuSvf/1revbsmV69euWaa66ptfYBAADUFg92\nAIC6ZmH4J8lKD6J8HwGjVXU8taq2C5ZFCAgAoAY9++yzmTdvXu6+++4cf/zxufLKK3PxxRfn5JNP\nztChQ1NZWZknn3wy06ZNy5AhQ3L33Xfn5ptvzuWXX56ysrIMGzYsW2yxRYYOHZpu3brluuuuS5IM\nGDAgf/zjHzNs2LC89tprefvtt2u5pQAAAAAAP2yLrkKzMoMoL3/60ndaaagur0gE/HuEgAAAatAm\nm2yS+fPnp6KiIrNmzUqDBg3y1ltvZaeddkqS7LHHHhk3blxef/31tGvXLo0aNUrTpk2z4YYbZuLE\niXn55ZfToUOHwrnjx4/PrFmzUlZWlg033DAlJSXZfffdM27cuNpsJgAAAAAAWfmr0EyZOTn9nv9t\nBnW4rHCvhVuQVXV+Xd+aDPjXNajtCgAA/JA0adIkU6ZMyb777psZM2bk+uuvz0svvZSSkpIkyRpr\nrJGZM2dm1qxZadq0aeG6NdZYI7NmzVrs/UXPLS0tXezcjz76aLn1WGutJmnQoH616rzOOk1XfBLf\nC31dc/R1zdHXNUdf1wz9DAAAQF2y6GpDyYKQT+8xPZMkQ/e/d6kQ0pLnA6sWISAAgBp02223Zffd\nd89pp52WTz75JEcccUTKy8sLx2fPnp1mzZqltLQ0s2fPXuz9pk2bLvb+8s5t1qzZcusxY8Y31arv\nOus0zbRpM79LE/kX6euao69rjr6uOfq6ZqysfhYsAgAA4N+xaKCnVdMNMnT/e5d6v6rzV6YpMycL\nG0ENsx0YAEANatasWWElnzXXXDPz5s3LlltumQkTJiRJnnvuubRv3z7bbrttXn755cydOzczZ87M\ne++9ly222CI77LBDnn322cK5O+64Y0pLS9OwYcP885//TGVlZV544YW0b9++1toIAAAAAEDtadV0\ng1oP39h2DGqHlYAAAGpQ3759c8YZZ6R3794pLy/PKaeckq233jpnn312Lr/88my66abZZ599Ur9+\n/fTp0ye9e/dOZWVlTjnllKy22mo57LDDcvrpp+ewww5Lw4YN88c//jFJct555+W3v/1t5s+fn913\n3z3bbbddLbcUAAAAAIDvYlVaOce2Y1A7SiorKytruxI1ZVVcGt2S7yuX/l159O3KpX9XLv3777Pl\nRe2r7ne4Nr7vlZWVKSkpqdF71gX+v6Xm6Ouao69rjr6uGbYDW3X57wcA6gbjotpnXAS1Z+HKOYIz\nQPKvj4tsBwbUqHue+kf+MOzV2q4GAHXUvPkVOeOmCRn1pw9quyoAAAAA34uKioqcc845OfTQQ9On\nT59MmjRpseNPPfVUevTokUMPPTTDhw9f7jWTJk3KYYcdlt69e2fAgAGpqKgolPPFF19kn332ydy5\ncxcr/7333suOO+641PtA3VKdlXNsrQWsiBAQUKP+9uGM/G3SjMz+try2qwJAHTTzm/JM/eKbvDvl\n69quCgAAAMD34oknnkhZWVnuueeenHbaaRk0aFDhWHl5eS6++OLccsstGTJkSO65555Mnz69ymsu\nvvjinHzyyRk6dGgqKyvz5JNPJkmef/75HHXUUZk2bdpi9541a1YuueSSNGrUqOYaDPzLVhQA6vvI\n4YUg0JKBIAEhIBECAmrY3PL5SZLpX35byzUBoC4qm7fg78TCvxcAAAAAxe7ll19Ohw4dkiTbb799\n3nzzzcKx9957LxtuuGHWXHPNNGrUKDvuuGNeeumlKq956623stNOOyVJ9thjj4wbNy5JUq9evdx6\n661p3rx5oezKysqcffbZOfXUU9O4ceMaaSt1j2DIqmPRlYKWFQha9DXwwyUEBNSoOf/3UPezGd/U\nck0AqIvmls1f7H8BAAAAit2sWbNSWlpaeF2/fv3MmzevcKxp06aFY2ussUZmzZpV5TWVlZUpKSkp\nnDtz5swkyW677Za11lprsftec8016dixY9q2bbvS2kbdJhiy6lm4UtCSW4dVZysx4IdBCAioUWX/\nFwKaZiUgAJahbN6CfeznWAkIAAAAWEWUlpZm9uzZhdcVFRVp0KDBMo/Nnj07TZs2rfKaevXqLXZu\ns2bNqrzvQw89lPvvvz99+vTJtGnTctRRR32fzaIIrErBEEGmpS35ua4Kn3Ndsuh3zvePYiIEBNSY\nysrKzPm/lR2mzRACAmBpC8OiZUJAAAAAwCpihx12yHPPPZck+etf/5otttiicKx169aZNGlSvvzy\ny5SVleUvf/lL2rVrV+U1W265ZSZMmJAkee6559K+ffsq7/v4449nyJAhGTJkSNZZZ53ccsstK6uJ\n1GGrQjCkLq5oVJfqwvdv0e9cXfz+wfI0qO0KAD8c8+ZXpLJywb+FgABYlrn/F/6ZYzswAAAAYBWx\n9957509/+lN69eqVysrKXHTRRRk1alS++eabHHrooenXr1+OPvroVFZWpkePHmnZsuUyr0mS008/\nPWeffXYuv/zybLrpptlnn31quXWw8tW1FY0WhkLqUp2KyZSZk+t8vy35nfNZU0yEgIAas+gD3Wlf\nflOLNQGgriorX7Ad2Nyy+YvtcQ8AAABQrOrVq5eBAwcu9l7r1q0L/+7UqVM6deq0wmuSZJNNNsmd\nd95Z5b2eeuqp7/Q+FIvaDGAsGVqpK6GkYgjTLKlYAlTL+syhWNgODKgxcxfZ2uUzKwEBsAwLtwGr\nqKzMvPkVtVwbAACg2NimAQD4PlW1FVRth0KKdYuquhKgWp5i7VtYSAgIqDFzF1kJ6Iuvvs38Cg93\nAVjcooHRueX+TgAAANXngQ0AFJ+6/ne7roZW6mq9quNfqXNNfk+KuW8hEQICatCcRR7sVlQmX84s\nq8XaAFAXlc37/+DPnLJ5tVgTAACg2HhgAwDFpVgCvHVlbFHX+2llqY3vSV35zOFfIQQE1Jiy/1sJ\nqOT/Xn/+9ZzaqwwAddKiq8Yt+m8AAIDq8MAGAIpHsQZ4lwyjrCicUtXx7xJqWTIIUywBqu9DsX5P\noLYIAQE1ZuFKQOs0b5wk+UIICIAllM2zHRgAAPCv+yE8CAOAVUmxBTu+axinquPfNcSzZBCmqmDM\nsspbFcZHxfY9gdokBATUmLn/FwJa/0drJLESEABLK1sk+DPXdmAAAMB38EP6RTwAqy5/x+q26oZx\nqjp/Re+v6N7Le72ssZDxEfzwCAEBNWbhti7rrd0kSfL513NrszoA1EELA6PJ/68gBwAAUB22igCg\n2AlsFIcVhXGqOn/Jz/X7HrMsayz0746PivG7WIx1hu+TEBBQYxZu67JwJSDbgQGwpLLyRbcDEwIC\nAAC+GwEgAIqZQOv3qy6FQWoq4LWs786/EwAqtlDayqxzMfUDP2xCQECNWbitS/PS1bJG44a2AwNg\nKXMX2w5MCAgAAACAHxYBoO9HXQqwTJk5uSgDXur8/+rS9wlWRAgIqDELH+yu1rB+1mne2EpAACxl\nsZWAhIAAAAAAgH9BXQmwLBoeqe26/CvU+f/LrAvfJ6iOWg8Bvfbaa+nTp0+SZNKkSTnssMPSu3fv\nDBgwIBUVCwIDw4cPT/fu3XPIIYfk6aefTpLMmTMnJ5xwQnr37p1jjz02X3zxRa21AaiehQ9zV2tU\nP+us1Tjfzp2fb+aU13KtAKhLyubZDgwAAAAA+PfVZGCjqhViFoZHKH4CQBSLWg0B3XTTTTnrrLMy\nd+7cJMnFF1+ck08+OUOHDk1lZWWefPLJTJs2LUOGDMndd9+dm2++OZdffnnKysoybNiwbLHFFhk6\ndGi6deuW6667rjabAlTDwoe5qzWsl3WaN06SfP713NqsEgB1zKLbgc0RAgIAAAAA6rjqbBVlKymg\nptRqCGjDDTfM4MGDC6/feuut7LTTTkmSPfbYI+PGjcvrr7+edu3apVGjRmnatGk23HDDTJw4MS+/\n/HI6dOhQOHf8+PG10gag+hY+zF2tUYOss1aTJMnntgQDYBG2AwMAAAAAismKtoqqqa2kiilkVEx1\nhWLToDZvvs8++2Ty5P//D7yysjIlJSVJkjXWWCMzZ87MrFmz0rRp08I5a6yxRmb9L3t3Hxxlfe//\n/7W3iSYb1PNDsdJ0kGNOpTMKBGgdgVZ6KG3tt1UCCYmlMtV2yoinWFBwxpKjrQZbYVqx1vYUtQ0N\nSWytR2rHmSOooHhozCm10tJjOZ4oKB68oewGsve/P5Jr2Sx7n7322uw+HzOdJnvdfa4rca8Pe73y\nfvt8o1431s3k3HPPltPpKPBZWG/iRE/mlZA3rm/hREf+/6ILJ+itD05JkgIRrrFZuK7m4voiX48/\n/rh+85vfSJL8fr/+8pe/qKurS/fcc49sNpsuueQStbe3y263q7e3V93d3XI6nVq5cqWuuuoqDQ0N\n6dZbb9V7772nmpoa3XvvvTrvvPO0f/9+3X333XI4HJo7d65WrVpl8Znmxx8My+mwKRSOEgICAAAA\nAAAAMC5kCvgUIwC04unr0oaNjngPl0RLq2zGCiB/loaAEtntpwsTDQ4Oqq6uTrW1tRocHBz1usfj\nGfW6sW4mH3xwsvCDttjEiR4dO5Y5AIX8cH0LyzsYkCSd+PtJTTxnuBLQwFvHucYm4HfXXFzfsavk\nENXixYu1ePFiSdKdd96ppqYm/ehHP9Lq1av18Y9/XBs2bNDOnTs1ffp0dXZ26te//rX8fr/a2tp0\n5ZVXxlqi3nzzzXrqqaf04IMP6o477lB7e7u2bNmiD3/4w/r617+uP//5z5o2bZrFZ5u7QDAiz9lu\nfeD1x9pIAgAAAAAAAABSS1ZtKD70kxi8sTIQVKzKSEClsrQdWKJp06Zp3759kqTdu3dr1qxZuuyy\ny9Tf3y+/3y+v16tDhw6poaFBM2fO1PPPPx9bt7Gx0cqhA8iCPxCW22WX3WbTxHPPkiS993fagQGo\nTH/605/0t7/9TS0tLWNuierz+RQIBFRfXy+bzaa5c+dq7969Vp5eXqLRqALBsOpq3JJOt5EEAAAA\nAAAAgHI31hZZiQGgFU9fF9tnfPAmcZkVCACVDlqzlZ+SqgS0bt06ffvb39bmzZt18cUXa9GiRXI4\nHFq+fLna2toUjUZ1yy23qKqqSq2trVq3bp1aW1vlcrm0adMmq4cPIAN/MKxq13BLvnPrqmW32fT+\nCb/FowIAa/zkJz/RTTfdJGnsLVF9Pp9qa2tHrfvmm2+mPX4ubVKLVbnJHwwrKum8umq98Y5XkWjl\nVY2qtPO1Ete6eLjWxcO1Lg6uMwAAAACg0JK1yBpLtZ5k1XaMr6nEAwOt2cqT5SGgyZMnq7e3V5I0\nZcoUbdu27Yx1mpub1dzcPOq1s846S/fff39RxgigMPzBsKrcww+cHXabzvVU6b0TVAICUHlOnDih\n119/XZ/4xCckjb0larJ1M7VKzbZNajHb3/lOBSVJNklul0O+k4GKar1Hq8Hi4VoXD9e6eLjWxWHW\ndSZYBAAAAACVLTGYU4hwRrrtCHxAIhBWrkqqHRiA8uYPhFXlOl114h8mVOu4z69QOGLhqACg+Pr6\n+nTFFVfEvh9rS9Ta2lq5XC698cYbikajeuGFFzRr1ixLzm0s/IHh9l9VLruqXY7Y9wAAAAAAAABQ\n7hKr9lgVzqA9VGUhAFR+CAEBKJr4SkCS9A91VYpGpeM+WoIBqCyvv/66Jk8+PbFet26dtmzZopaW\nFgWDQS1atEgTJ06MtUS9/vrrR7VEfe2119Ta2qqenh6tWrVKknTnnXdq7dq1WrJkiaZNm6bLL7/c\nqtPLWyA0HPpxuxyqcjs0FCQEBAAAAAAAAKAyWRUAWvH0dQSBgHHM8nZgACpDKBxROBIdVQnovLpq\nSdJ7fx/S/zfhLKuGBgBFd+ONN476vhAtUadPnx5rsTpeBYLDleGqXA5VuRzyngxYPCIAAAAAAAAA\nKE9HvIfPCBoZFYhKSbJxAkiNSkAAimIo1uIlvhLQcAjo/RNUAgIADFeMkyS3yz5cCSgQVjQatXhU\nAAAAAAAAAMpNfKUbq6ve5Hv8sYw7U8WfUqkGRGUiIHeEgAAURWDkwe5xn1/P7T+ip1/6Xx0+5pMk\n9b92TM/tP6Ln9h+xcIQAAKsZ9wq306Fql0PRqBQMRSweFQAAAAAAAIByEh8ssSpkYhwv3+OPddxG\nxZ9kFXbSLSu2UhoLMF4QAgJQFEYlIJfz9NuO0zH8dYgHvAAASf6EdmDDr4WtHBIAAAAAAACAMhMf\nLClmyCRZ8Cff4xdi3Om2LaXQTSmNBRgPCAEBKArjIa4R/JEk50ggKBQmBAQAiKsENNIOTJL8AUJA\nAAAAAAAAAAorPlhSrABQquBPvsc3c9xWtt+i9RcwNoSAABSF8RB3VAjIYZNECAgAMMwfGr5XVLkc\nsRDQEJWAAAAAAAAAABRYsYMmhQr+FINVLdKsPjZQLggBASgK4yGuM1k7sHDUkjEBAEpLIGBUAopr\nB0YlIAAAykokEtGGDRvU0tKi5cuXa2BgYNTyXbt2qampSS0tLert7U27zcDAgFpbW9XW1qb29nZF\nIpFRx7nxxhu1ffv24p0cAAAAgHEhXdCkkOGTxH0lC/7Er5Pp2MUKxhSzRVopHRsoF4SAABRFINYO\nzBZ7zeWgHRgA4DR/aPh+4HbZVW2EgKgEBABAWXnmmWcUCATU09OjNWvWaOPGjbFlwWBQHR0devjh\nh9XZ2amenh69++67Kbfp6OjQ6tWr1dXVpWg0qp07d8b29YMf/EAnTpwo+vkBAAAAKH3JgiZHvIez\nqkKTbRAn232tePo69R/ty7h+sSvkWBnCIQAEjA0hIABFMTRSycEV3w7MORwICoYIAQEATgdG49uB\nUQkIAIDy0t/fr3nz5kmSpk+frldffTW27NChQ6qvr9eECRPkdrvV2Niovr6+lNscOHBAc+bMkSTN\nnz9fe/fulSQ9/fTTstlssW0AAAAAIFFiAGjF09dJUtoqNPFBnExhnGwq2lzkmayN8+7T+j1rMx67\n1Cvk0L4LKB2EgAAUhT9WCej0247dZpPNRiUgAMAw417hdp4OAQ1RCQgAgLLi8/lUW1sb+97hcCgU\nCv3WtfgAACAASURBVMWWeTye2LKamhr5fL6U20SjUdlstti6Xq9X//3f/63f/va3+uY3v1mkMwIA\nAAAw3sUHbNIFgIz1JGVVlSebwE7jpNkZj53L/sYqnzBPsasUAUiPEBCAojAqOcSHgGw2m5wOu0Lh\nqFXDAgCUkEDwdDuwKtqBAQBQlmprazU4OBj7PhKJyOl0Jl02ODgoj8eTchu73T5q3bq6Oj3xxBN6\n5513dP311+s3v/mNHn30Ue3evbsIZwYAAABAGr8VYdIFbOJDLkZYZyxVeRKvkRXVfZL9nPIN82S6\nHmP5nRivv0+AlQgBASiKWCWgkRZgBpfDTiUgAICk0e3Aql20AwMAoBzNnDkzFsrZv3+/GhoaYsum\nTp2qgYEBHT9+XIFAQC+//LJmzJiRcptp06Zp3759kqTdu3dr1qxZuu222/TYY4+ps7NT1157rVas\nWKH58+cX+SwBAABGi0Qi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQa2ur2tra\n1N7erkjk9Ofr77//vhYtWiS/3y9J8nq9+sY3vqEvf/nLamlp0R/+8IcinTEqVblWhEkWchlLAMjM\na5TNflONYSzhpmxaqOWqXH+fALMRAgJQFMZDXJdj9NuO02EjBAQAkBTXDsx1uh0YISAAAMrLwoUL\n5Xa7tWzZMnV0dOj222/Xjh071NPTI5fLpfXr1+uGG27QsmXL1NTUpAsuuCDpNpK0bt06bdmyRS0t\nLQoGg1q0aJHFZwcAAJDcM888o0AgoJ6eHq1Zs0YbN26MLQsGg+ro6NDDDz+szs5O9fT06N133025\nTUdHh1avXq2uri5Fo1Ht3LlTkrRnzx599atf1bFjx2L7fuSRR/SJT3xC27ZtU0dHh+66667injgq\nzlgr5JSyQp1TIa9RYjgm29BMujEU+mc31mBRuf4+AWZyWj0AAJUhVgkoMQTktOukP2TFkAAAJSYQ\nGg6FVrkctAMDAKBM2e32Mx4+TZ06Nfb1ggULtGDBgozbSNKUKVO0bdu2lMe6+eabxzhaAACAwujv\n79e8efMkSdOnT9err74aW3bo0CHV19drwoQJkqTGxkb19fVp//79Sbc5cOCA5syZI0maP3++Xnzx\nRS1cuFB2u12PPPKImpqaYvtesWKF3G63JCkcDquqqsr8k0XZMVpgZWs8BDZyPadCy/bY6cZpBH7i\nQzK5hGbMPv/4sY/lWOPh9wkoNVQCAlAUKUNADrtC4aii0agVwwIAlBB/MCybbbhKnFEJaIgQEAAA\nAAAAGOd8Pp9qa2tj3zscDoVCodgyj8cTW1ZTUyOfz5dym2g0KpvNFlvX6/VKkq688kqde+65o45b\nV1en6upqHTt2TLfeequ+9a1vmXaOKE/l2I7JqnPK9XjJxhn/darAT7rQULGU4+8NMJ4QAgJQFENG\nOzDnmSEgSQpHCAEBQKULBMNyuxyy2WyqdtEODAAAAAAAlIfa2loNDg7Gvo9EInI6nUmXDQ4OyuPx\npNzGbrePWreuri7tsf/6179qxYoVuuWWW2IVhIBslWM7pos8k7Vx3n1FPScjFNN/tC/r9ROv/ViC\nNcUO5ZTj7w0wnhACAlAUgZFKDg6HbdTrrpHvQ+FI0ccEACgt/mAk1gbM7SYEBAAAAAAAysPMmTO1\ne/duSdL+/fvV0NAQWzZ16lQNDAzo+PHjCgQCevnllzVjxoyU20ybNk379u2TJO3evVuzZs1Kedy/\n/e1v+uY3v6lNmzbpk5/8pFmnhzJnZZDDjNDKEe9hrd+z1rR9J2MEj1IdN7HajxHYib/2YwkF5RvK\nGcs1IgAEWIcQEICiGAqE5bDbZLeNDgEZlYCCIUJAAFDpAsGw3CMV42KVgGgHBgAAAAAAxrmFCxfK\n7XZr2bJl6ujo0O23364dO3aop6dHLpdL69ev1w033KBly5apqalJF1xwQdJtJGndunXasmWLWlpa\nFAwGtWjRopTH3bRpkwKBgO6++24tX75cK1euLNYpA2NmVvUas6rUZBpv46TZSY+buF268aULBWWS\nTwAo3fnQ6gsoXU6rBwCgMviD4VjgJ55z5GFvKEw7MACodIFgWOd4qiQNt4+02aQhQkAAAAAAAGCc\ns9vtuuuuu0a9NnXq1NjXCxYs0IIFCzJuI0lTpkzRtm3bUh5r165dsa9//OMf5ztkwHJmtpQya5+Z\nxpsq2JO4nVnBHkmjKgwlVhvKNK74fax4+rq8fz7pjgtg7KgEBKAo/MGwXM4kISCHEQKiEhAAVDp/\nMCK3c7gCkM1mU7XbQTswAAAAAAAAoEKNt6BIvuNNtV2hq+3EV/dJ/DqXcY0loGVWhScApxECAlAU\n/kBYToftjNeN1wgBAUBli0SiCoUjqnKdnp66XQ7agQEAAAAAAADISykETfIdgxlhmfjwjvG1pLyO\nM5bAk1kVngAMIwQEoChStQNzOWgHBgBQLOzjdjlir1W7qAQEAAAAAAAAIHdmVpzJdp9jGYNZYZnE\ntmNWhHIIAAHmIgQEwHShcEShcFTONO3AgiEqAQGoHD/5yU/U0tKixYsX67HHHtPAwIBaW1vV1tam\n9vZ2RSLD74m9vb1avHixmpub9eyzz0qShoaGdPPNN6utrU1f+9rX9P7770uS9u/fr6VLl2rZsmV6\n4IEHLDu3fAVG7gPxIaAqt0NDVAICAAAAAAAAkCOzwi25BHvGOoZct4sfUy7BI0I5QHkhBATAdIGR\nB7jJKgEZwSDagQGoFPv27dMf/vAHbd++XZ2dnTp69Kg6Ojq0evVqdXV1KRqNaufOnTp27Jg6OzvV\n3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+858tPtPc\nGPeKqrjAaJXLoUAgrGiUanEAAAAAAAAAcmNGuCXXYI+xntmtyeLDSWZWQQJQ+pxWDwBA+fMHhwM+\nLoftjGXOkdcIAQGoFC+88IIaGhp00003yefz6bbbblNvb6/mzJkjSZo/f75efPFF2e12zZgxQ263\nW263W/X19Tp48KD6+/t14403xtZ98MEH5fP5FAgEVF9fL0maO3eu9u7dq2nTpqUcx7nnni2n05Fy\nebyJEz1jPOvMToaGgz4T6qpjx/PUVikqqe6cs1XtroxpazGuNYZxrYuHa108XOvi4DoDAAAAQGXL\np0LPiqevM7XtVmI4aeO8+0qmws8R7+G8rlmpjB8YbyrjaQoASw0FQpJSVAJyGJWAqPIAoDJ88MEH\neuutt/TQQw/p8OHDWrlypaLRqGy24VBkTU2NvF6vfD6fPJ7TDxlramrk8/lGvR6/bm1t7ah133zz\nzQzjOJnVeCdO9OjYMW+up5m15/YfkSS9e/yUJOl/3/q7HvuPg5Kk90bGeOStv6uuxm3aGEqF2dca\np3Gti4drXTxc6+Iw6zoTLAIAAACA0lSIMIpZrcmSHUcaHvP6PWu1cd59apw029RjZpJPAKoYoSmg\nnNEODIDpAiOVgJKFgFxGCChEJSAAleGcc87R3Llz5Xa7dfHFF6uqqkpe7+mHiYODg6qrq1Ntba0G\nBwdHve7xeEa9nm7durq64p1UARhh0Ph7hfG1f6RVGAAAAAAAAAAUSyHbahUzzHKRZ7I2zrtP6/es\ntbwlWD4BqGKFpoByRQgIgOlilYCcSSoBOYcrXwRpBwagQjQ2NmrPnj2KRqN65513dOrUKV1xxRXa\nt2+fJGn37t2aNWuWLrvsMvX398vv98vr9erQoUNqaGjQzJkz9fzzz8fWbWxsVG1trVwul9544w1F\no1G98MILmjVrlpWnmTOjLaQzrnWkcd/wBwgBAQAAAAAAANmyOviRq1Idb75hlMTzseL8GifNPmPs\nZowjm33mE+YhAATkjxAQANMZFRxccQ92DafbgRECAlAZrrrqKl166aVasmSJVq5cqQ0bNmjdunXa\nsmWLWlpaFAwGtWjRIk2cOFHLly9XW1ubrr/+et1yyy2qqqpSa2urXnvtNbW2tqqnp0erVq2SJN15\n551au3atlixZomnTpunyyy+3+ExzE4qkrgQ0RCUgAAAAAAAAICuFrF5TDONtvJkkno+V55cYACr0\nOMrtZweUC6fVAwBQ/vxp2oGdDgFFizomALDSbbfddsZr27ZtO+O15uZmNTc3j3rtrLPO0v3333/G\nutOnT1dvb2/hBllkRlvI+HuFER6lEhAAAAAAAACQnfHWSqmUx2uEXHIZX+L5mHl+R7yH8x5XvvvJ\ndp8ArEMlIACmi7UDSxsCohIQAFSyUGT4PuBI1g6MSkAAAAAAAABA1sZbKKNUx5tvyCVxfbMCQIkV\nh3IdV7L95DoGY59UAwJKR8mFgILBoNasWaNly5apra1Nhw4d0sDAgFpbW9XW1qb29nZFRh4S9fb2\navHixWpubtazzz5r8cgBpBIYqQTkciYLAQ0/7DUqQAAAKlN4pCKcK0k7MCoBAQAAAAAAALCC1QGl\nVOGa+IDSWII8uQSd+o/2jRqXcUzaggGlpeRCQM8//7xCoZC6u7t100036Qc/+IE6Ojq0evVqdXV1\nKRqNaufOnTp27Jg6OzvV3d2trVu3avPmzQoEAlYPH0ASpysB2c5YZrPZ5HTYqAQEABXOuA/EVwIy\nAkFDVAICAAAAAAAAUGEyVfspVMuxbANAi5/8QiwIFH9M2oIBpaXkQkBTpkxROBxWJBKRz+eT0+nU\ngQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDgQYtHDyAZ/0gloGTtwIzXgyMVIAAA\nlSk0ch+Iv1fE2oFRCQgAAAAATMdf7wMAUFhjvbfmUu3H7ABO46TZevyLv1XjpNmSRrcCK8bxAWTP\nafUAEp199tk6cuSIPve5z+mDDz7QQw89pL6+Ptlsw38VXlNTI6/XK5/PJ4/HE9uupqZGPp8v7b7P\nPfdsOZ0OU8dvhYkTPZlXQt64vmNnH3mIO8FTLU9tdex142u3y6FIJCpPbTXXu4C4lubi+gKFZVQC\nGhUCGqkK5KcSEAAAAACYyniwyF/xAwCQv/hgTKHurYWq9lMI8QEg5g1A6Sq5ENCjjz6quXPnas2a\nNXr77bd1/fXXKxgMxpYPDg6qrq5OtbW1GhwcHPV6fCgomQ8+OGnauK0ycaJHx455rR5G2eL6Fsbx\nvw9JkgKBkLy+4a89tdWxr+02aSgUltc3xPUuEH53zcX1HTtCVEh0OgR0ZjswKgEBAAAAgLlK4cEi\nAADZSKxAUyrHSwzGmHFvzXYcZl8f5g1AaSu5dmB1dXWxMM+ECRMUCoU0bdo07du3T5K0e/duzZo1\nS5dddpn6+/vl9/vl9Xp16NAhNTQ0WDl0ACkYFRziH+zGczrsCoUixRwSAKDEhEfagTns8ZWARkJA\nVAICAAAAUOLKoZUWD/IAAKUuU0ssK4+XLBgTXxUo2b7zHVOqfRTz+hR63pDtmMthzgWYreRCQCtW\nrNCBAwfU1tam66+/Xrfccos2bNigLVu2qKWlRcFgUIsWLdLEiRO1fPnyUetVVVVZPXwASRgVHOJb\nvMRzOu2KRKVwJFrMYQEASkisEpDzdGDUOdJOcohKQAAAAABKWLEfSAIAUKmKXYEm1+MlWy/ZPCHf\nuUP8dsn2MV4r9GR7PfK5bszPUIlKrh1YTU2NfvjDH57x+rZt2854rbm5Wc3NzcUYFoAxOF0JKHkI\nyGj3YjwABgBUntBIJSAnlYAAAAAAjEGxW4RI4/eBGwAA45EV9/l4uc41UlUIymfuEL/dEe/hpPsY\n63izUeh9Zns9cr1uiS3a4l9n3oZyVnKVgACUn6FAWE6HXXZ7qnZgw68TAgKAyhUKR2S32UbdK1wj\n9wdCQAAAAEDlyeevtq2syMODJAAAyl/iXGMsc45Mc4dU+zYCQCuevi7jMcYyN0q1jVnzrVyqLWV7\n7GShISo4ohIQAgJgukAwrGq3I+Vyo9JDKEQICAAqVSgciYVCDXa7TTbb6baSAAAAACpDvg9nqMgD\nAEB64yn4UIpjTazEY2YLq3TbmFU5J93xja+tnm/lej2TVUpivohyRwgIgOmGAmFVuVK/3cRCQCOt\nYAAAlSccicqR0DbSZrPJ6bBriBAQAAAAUFHG8nCGBzoAACQ3niqglPJYjblGqvlK4pjzmddks00u\nlXNylXj8xJ+HlfOtQoR4mC+i3BECAmA6fzCsKrcz5XKXc/itKEg7MACoWMkqAUmSy2GXPxiyYEQA\nAAAArMTDGQAACms8VUAp1FjNDhElCwAlCy+Nx2Bz/PGzDTwVi9XXBih1hIAAmM4fzFQJaPihb4gQ\nEABUrFA4GqsMF8/psMkf5P4AAAAAAAAAjNV4Ck8UIgBU7GpCuYaXSqHSUb5ttUq5WhNQ6VKX5gCA\nAohEogqGIqpyOVKuQzswAKhs0Wg0ZSUgp9OuwVNUAgIAoJT09fWlXT579uwijQQAznTEe3hcPeAE\nMH4wBwLGF6sqH+USAFrx9HUZx5hpbpPL3Cdx3f6jfVq/Z21e12k8VZYCKg0hIACm8gfDkpRdCChE\npQcAqESRqBSNKmkloOF2YGFFolHZbWeGhAAAQPHdf//9kqTjx4/rjTfe0MyZM2W32/WHP/xBDQ0N\n6u7utniEACpVtg/TACAfzIGA8aeU5wPZhGgyzW2yWX6RZ3KsWk/8uke8h7V+z1ptnHdf3tepVK8v\noXBUOtqBATBVLATkThMCchqVgAgBAUAlCo+8/zuStgMbfi1ISzAAAEpGZ2enOjs7NWnSJD355JN6\n5JFHtHXrVu3YsUM1NTVWDw9ABeMv0gGYiTkQgELLNGfJNLdJt9wICPUf7dOKp6+TpFHrGts2Tiqv\nKmbl2qas3M4H5iIEBMBU/sBwCKg6TQjINdL+JUgICAAqkhECTdUOTJKGRkKlAACgdLz11lv6yEc+\nEvv+Qx/6kN566y0LRwQApfsX6QDKB3MgAMWUTVAo1etGyMcI/ySua8a8yeqwipWhcLPOvVyDTTAP\nISAApjIqAbmzaQcWjhZlTACA0mK8/ydrB2YEg/yBUFHHBAAAMvvYxz6mdevW6bnnntOuXbu0Zs0a\nzZo1y+phAQAAmIo5EIBCMCPQ0X+0b9T3RtuvbAIxhRiPWWGVXPdnVQDIrKAO1S6RK0JAAEw1NFIJ\nqCqbEFCISkAAUIlilYDsSSoBjdwj/LQDAwCg5Hz3u9/VP/3TP6m7u1u9vb2aPn262tvbrR4WAACA\nqZgDAZUnMdgx1qBHusBIvvvuP9qna//96lFBIKMVWKZ9xrcOy3c8Rtio0GGV8VIFx+ygDgEg5MJp\n9QAAlDejElC6dmCnKwHxgBdAZbj22mtVW1srSZo8ebK+8Y1vaP369bLZbLrkkkvU3t4uu92u3t5e\ndXd3y+l0auXKlbrqqqs0NDSkW2+9Ve+9955qamp077336rzzztP+/ft19913y+FwaO7cuVq1apXF\nZ5m9dJWAXEYIKEA7MAAASo3b7dbixYv1uc99TtFoVOFwWH19fbriiiusHhoAAIBp8pkDRSIR/eu/\n/qv++te/yu1267vf/e6olmK7du3Sj370IzmdTjU1Nam5uTnlNgMDA0k/R5Kk999/X62trXryySdV\nVVWV8nMkANkzQihGwCPx+3ykCowc8R5W21NL1XX1Y0mXpTvepJoLNbm2XpNqLoytv37PWm2cd19W\nLcU2zrtP6/esHXWekrI610Jck3RjGy9VcMbDGFEZqAQEwFRGJaBqd+rModM5XPmBEBCASuD3+xWN\nRtXZ2anOzk51dHSoo6NDq1evVldXl6LRqHbu3Kljx46ps7NT3d3d2rp1qzZv3qxAIKDt27eroaFB\nXV1duuaaa/Tggw9Kktrb27Vp0yZt375df/zjH/XnP//Z4jPNXqwSkCNJJSDn8HR1KEg7MAAASs2m\nTZv06U9/Wp/97GfV1tamz3zmM9q8ebPVwwIAADBVPnOgZ555RoFAQD09PVqzZo02btwYWxYMBtXR\n0aGHH35YnZ2d6unp0bvvvptym2SfI0nSnj179NWvflXHjh2L7TvV50gAspcYQsk1lJKqgk0ugZFs\nKgdd5Jmsx774xBnjbpw0O6tjNE6afUbQSdKoc013LlTBAUoHISAAphryDz+0TVcJyKjyEBypBAEA\n5ezgwYM6deqUvvrVr+orX/mK9u/frwMHDmjOnDmSpPnz52vv3r165ZVXNGPGDLndbnk8HtXX1+vg\nwYPq7+/XvHnzYuu+9NJL8vl8CgQCqq+vl81m09y5c7V3714rTzMnp0NAVAICAGA8eeqpp/T888/r\n85//vH7xi1/okUce4S/LARRMqbd8AFC58pkDxX+eM336dL366quxZYcOHVJ9fb0mTJggt9utxsZG\n9fX1pdwm2edIkmS32/XII4/onHPOSXpc43MkALlLDKHkEgDKpZXVRZ7JSasApasclLj/+O9zDc8k\nCzoZoaBM55KpUhBKHz+n8kE7MACmGoprBxY8lbzSD+3AAFSS6upq3XDDDVq6dKn+93//V1/72tcU\njUZlsw1XwampqZHX65XP55PH44ltV1NTI5/PN+r1+HWN9mLG62+++WbacZx77tlyOlMHNONNnOjJ\nvFKePLXVcr1/SpJUc7ZbntrqUctra9ySJHe129RxlIpKOMdSwbUuHq518XCti4PrfNr555+v2tpa\nXXLJJTp48KA+85nP6Pvf/77VwwJQBsxsKYHUMrUZATAsnzlQ4mc3DodDoVBITqcz7WdAybZJ9jmS\nJF155ZVJj5v4ORKAwsl078ynQk78usb+Ux1nrFWKshE/L0u371RjTDevY+5ROph/lxdCQABMZbQD\nq3I75D0VTLqO3W6T3WZTKEQICED5mzJlij7ykY/IZrNpypQpOuecc3TgwIHY8sHBQdXV1am2tlaD\ng4OjXvd4PKNeT7duXV1d2nF88MHJrMY7caJHx46Z9wGR1zck30m/JCkUCsvrGxq1PBQavo+8+57P\n1HGUArOvNU7jWhcP17p4uNbFYdZ1Hq/BotraWj3xxBP62Mc+pm3btun888/XiRMnrB4WgDJgdksJ\nnIkHP0D28pkDJX52E4lE5HQ6ky5L9hlQ/DZ2u33Uuuk+A0r2ORKAwjjiPay2p5YmrdwTL9/7qnFv\n3jjvPn3ruX9JeZxcQkO5HtuYF2SaH6SbR2SqYsTcozQw/y4vtAMDYKqhgNEOLH3m0Om0UQkIQEX4\n1a9+Fevh/s4778jn8+nKK6/Uvn37JEm7d+/WrFmzdNlll6m/v19+v19er1eHDh1SQ0ODZs6cqeef\nfz62bmNjo2pra+VyufTGG28oGo3qhRde0KxZsyw7x1yFQsPtINO1AzMqywEAgNJx99136/3339fH\nP/5xXXTRRdqwYYNWr16ddptIJKINGzaopaVFy5cv18DAwKjlu3btUlNTk1paWtTb25t2m4GBAbW2\ntqqtrU3t7e2KRIb/TfnLX/5STU1NWrJkiX73u9+ZcOYAioEHEKmZ0aqBBz9A9vKZA82cOVO7d++W\nJO3fv18NDQ2xZVOnTtXAwICOHz+uQCCgl19+WTNmzEi5zbRp0874HCndcRM/RwIwPhj35kk1F2a1\nvhGq6T/al3ULsnStvRIrDGUz1lTrZVPFCNbjZ1E+qAQEwFT+kUpA1a70LWecDrtC4WgxhgQAllqy\nZIluv/12tba2ymaz6Z577tG5556rb3/729q8ebMuvvhiLVq0SA6HQ8uXL1dbW5ui0ahuueUWVVVV\nqbW1VevWrVNra6tcLpc2bdokSbrzzju1du1ahcNhzZ07V5dffrnFZ5q90MgDO6fDdsYyIxhk3E8A\nAEDpuOCCC7Rs2TIdPHhQt912m4aGhnT22Wen3eaZZ55RIBBQT0+P9u/fr40bN+rHP/6xJCkYDKqj\no0O/+tWvdNZZZ6m1tVULFizQf/3XfyXdpqOjQ6tXr9bHP/5xbdiwQTt37lRjY6O2b9+u3/zmN/L7\n/br66qv1uc99LtYyAwDGOzP/ap4HP0B28pkDLVy4UC+++KKWLVumaDSqe+65Rzt27NDJkyfV0tKi\n9evX64YbblA0GlVTU5MuuOCCpNtI0rp16874HCmVVJ8jARi7izyTU1bnMcI12dxb01XtMV7PVG3I\nWDebyj3x1YIKOacw9pFLFSLmHoA5CAEBMJXRDqzanT4E5HLY5afKA4AK4Ha7k37gsm3btjNea25u\nVnNz86jXzjrrLN1///1nrDt9+vTYX8uPN0YINFklIKdz+IEd9wgAAErPSy+9pA0bNigcDqu7u1tf\n+tKX9P3vf19z585NuU1/f7/mzZsnaXj+8uqrr8aWHTp0SPX19ZowYYIkqbGxUX19fdq/f3/SbQ4c\nOKA5c+ZIkubPn68XX3xRCxcu1BNPPCGn06kjR46oqqqKABCAssJfzQPWy2cOZLfbddddd416berU\nqbGvFyxYoAULFmTcRhpuNZ/scyTDrl27Yl+n+hwJQGGkCgC1PbVU0unwTqpgTLZBnFxDNamOmW2b\nr3wDQoUMFo21pRlQyWgHBsBUsRBQVYZ2YA6bgiHagQFAJQqPtIN0UAkIAIBxZfPmzerq6lJdXZ3O\nP/98dXZ26nvf+17abXw+n2pra2PfOxwOhUKh2DKPxxNbVlNTI5/Pl3KbaDQaC/jU1NTI6/VKkpxO\np7Zt26aWlhZ98YtfLNj5AkCp4IEYYK185kAAKodRISg+AJSqPZdZ4d5Ux8z2ePmOq1Dnk+6aobj4\nGYxPhIAAmMofGP4wtyqLdmDhSFSRKC3BAKDShCPD7/0Oe5JKQEYIiEpAAACUnEgkookTJ8a+/8d/\n/MeM29TW1mpwcHDUPpxOZ9Jlg4OD8ng8Kbexx80dBgcHVVdXF/v+y1/+svbs2aO+vj7953/+Z34n\nCAAAkEQ+cyAAleUiz+RRVXnSBWPyDcykC2ekO2Z82650QZv49XIJghSqtRiVD61HGGv8IgQEEtJz\nJgAAIABJREFUwFRDgbAcdptczvRvN86R5QEe8gJAxQmHjRDQmZWAXCMhoCEqAQEAUHImTZqkZ599\nVjabTSdOnNCPf/xjfehDH0q7zcyZM7V7925J0v79+9XQ0BBbNnXqVA0MDOj48eMKBAJ6+eWXNWPG\njJTbTJs2Tfv27ZMk7d69W7NmzdL//M//aNWqVYpGo3K5XHK73aPCQgAAAGOVzxwIgHkKHVAwI/Aw\nljBLsvGMJZxhbJNN0MZobdb21NKiB0EIAFmPMNb4xacgAEw1FAyr2p2+CpBEuxcAqGThSJp2YE4q\nAQEAUKruuusu7dixQ2+//bYWLlyov/zlL7rrrrvSbrNw4UK53W4tW7ZMHR0duv3227Vjxw719PTI\n5XJp/fr1uuGGG7Rs2TI1NTXpggsuSLqNJK1bt05btmxRS0uLgsGgFi1apIsvvlgf/ehH1dLSomXL\nlunyyy/XnDlzinE5AABAhchnDgTAHIWuVFJqlU+MEE6ubb1SnUfi6/Hbp2pXFt/aDJWHn/v45LR6\nAADK25A/2xDQ8INfHvICQOU53Q7szBCQw26Tw27j/gAAQAn6xS9+oc2bN+e0jd1uP+Mh2dSpU2Nf\nL1iwQAsWLMi4jSRNmTJF27ZtO+P1VatWadWqVTmNCwAAIFv5zIEAmKOQlUqOeA9bVvnEOHYu0q2f\n7jySvW6Eg5ItK+S1yOc8AeSOSkAATDUUCKnanTlv6KTdCwBUrNMhoORT0yqXg0pxAACUoGeffVbR\naNTqYQAAABQVcyCgtBSi1VZ8hRwrAkDGsZNV48m3Co+xTeI5plo3VTioUEqtyhJQzqgEBMBU/izb\ngblGQkCBYMTsIQEASkw4nLoSkCRVuR2ERAEAKEHnnHOOPvvZz+pjH/uYqqqqYq93dHRYOCoAAABz\nMQcCykNi9RsrKgBJpwM4kkaNJ358+cr2HJOFn9JVB8qHldcYqDSEgACYJhSOKBSOqiqbdmDOkUpA\nwZDZwwIAlJhwJCKbTbKnCAFVux3ynQoWeVQAACCTa6+91uohAACQFdqPoJCYAwHlITGUYvZ9IlXQ\nJv7YiePJFJrJdH9LdY7x2xlhn43z7lPjpNlJty3UfZR7MVActAMDYBqjakN27cCGH/z6A1QCAoBK\nE45EU1YBkiS3yyF/kEpAAACUmmuvvVYf/ehHdfz4cXm9Xl122WU8FAMAlBzaj6DQmAMBubPyPTjd\nseNDKfHrFXq8ye5FR7yH1fbUUrU9tXRUGCh+nVRVe1LtM5lUFX7ij7lx3n1av2et+o/2nbFtqdxH\nC92aDChnhIAAmGYoMFzVp8qVRSWgWDswHvICQKUZDgGlnpZWuxwKBCOKRKJFHBUAAMjk4Ycf1je/\n+U393//9nw4fPqyVK1fq17/+tdXDAgBgFNqPoNCYAwG5sTJEku2x+4/2xcI4idsUYtzxLb/iwzdd\nVz+mrqsfO6MqT6pjxi/P9/6WbLvGSbNjQaDEY5fCfbSQv0OlEmoqJVyL8kM7MACmiVUCqso+BDRE\nCAgAKk44nL4SkNFW0h8M66wqpq8AAJSKnp4ePf7446qtrZUk3XTTTWptbVVTU5PFIwMAYDQCQCgk\n5kBAbqwMkWTbUutbz/2LguHgGdsYgZFCjb/tqaWSFAv+JO4z03iNqj1jbWGWrDpQ46TZlod90inU\n2Eoh1FRKCv07jtJAJSAApjndDixzCMjlHH478gcIAQFApQlHonI40oSARirKUS0OAIDSMmHCBDmd\npwO6Z599tmpqaiwcEQAAgPmYAwG5szJckOnYRkWex774xBnhmkIGRpJV/sl1vEe8h5NW68nXEe9h\n9R/t04qnr1P/0b6U7cesrJxjHL+QCLucRiiqPPGn1ABMYwR6qrNqBzb88NfPA14AqDjhSERVrtTT\nUqMS0FAwrAnFGhQAAMjowx/+sFpaWnT11VfL6XTqP/7jP1RbW6sHHnhAkrRq1SqLRwgAxWO05QBQ\n/pgDAYVTKvfPXEM5+Y57rOeaKbCRy7iOeA/HKhPdPucOfeu5f0kaUMo3JFKony0hFfNxbcsPlYAA\nmGYoEJIkVbsz5w2NdmCEgACg8kQi6duBGWFSqsUBAFBapkyZooULFyoQCOjkyZO68sor1djYaPWw\nUEGs+mtkIJHVfyEPoLiYAwGFMV7vn+nGbfa5pDtmrtczvjLRxLPPz7huujEkG1Mhf7Zmh1TG2+8g\nkElJVgL6yU9+ol27dikYDKq1tVVz5szR+vXrZbPZdMkll6i9vV12u129vb3q7u6W0+nUypUrddVV\nV1k9dABxcmkHFgsB8YAXACpKNBpVOByV3Z46m25UAiIoCgBAaVm1apUCgYDcbrcGBgb0+uuva/78\n+Wnv60ChGA8W+KtglAL+Qh2oLMyBgMIo5funUcUmVTWbZOM2e34aX7nHqNiTeMxcj23sY/2etdr8\nqfszbpvtOZbyzzYR/65AOSq5Gcm+ffv0hz/8Qdu3b1dnZ6eOHj2qjo4OrV69Wl1dXYpGo9q5c6eO\nHTumzs5OdXd3a+vWrdq8ebMCgYDVwwcQxwgBVWURAnJRCQgAKlI0KkUlORypKwFVUQkIAICS9KMf\n/Uh33HGH3nrrLV133XX6+c9/rvb2dquHhQoxnh4soDLwuwhUDuZAQOGU4v3TCIX0H+07o5qNsSwZ\nY35qlqODb8cq91zkmaz+o32j5sSZ2m+lqnZj7KNx0uyMY8imHVn8uuMB/65AOSq5ENALL7yghoYG\n3XTTTfrGN76hT33qUzpw4IDmzJkjSZo/f7727t2rV155RTNmzJDb7ZbH41F9fb0OHjxo8egBxMup\nHZhz+OEvD3gBoLKEI1FJStsOzAiTDnGPAACgpOzcuVPf/e539dvf/lZf/OIX9cgjj+jAgQNWDwsV\nhA/qUUpoIwFUDuZAQHmLD8UkhkOyCYyMtQ1Wsm37j/Zp8ZNf0NHBt2MBoMVPfiEWBMrUfivT8lza\nfaULAI3H9m4S/65A+Sm5dmAffPCB3nrrLT300EM6fPiwVq5cqWg0Kptt+MFQTU2NvF6vfD6fPB5P\nbLuamhr5fL60+z733LPldGauSDLeTJzoybwS8sb1zZ/DNfwWM+l8jyZO9MhTWz1qefz31aGIJClq\ns3HNC4TraC6uL1AY4cjw+3+6EFC1i3ZgAACUokgkIrfbrWeffVarV69WJBLRqVOnrB4WABQdbSSA\nysIcCChfRjUd436e7L5uZhusVHOKxkmz9fgXf6tJNRfqiPdw7Hujek+m42Y7rsTjZ6oulM8xAJiv\n5EJA55xzji6++GK53W5dfPHFqqqq0tGjR2PLBwcHVVdXp9raWg0ODo56PT4UlMwHH5w0bdxWmTjR\no2PHvFYPo2xxfcfm/ZH/5oZO+nXsmFde31Bsmae2etT30ehwJQjvoJ9rXgD87pqL6zt2hKhgCIez\nrwRECAgAgNJyxRVX6Atf+IKqq6s1e/ZsffnLX9aCBQusHhYAFB0PvYDKwhyo/OUSfED5yDfUm/j7\nMpbfnXRzikk1F6rtqaWSpK6rH9OkmgvP2DbTvrM9vpTf9eC/G6A0lFw7sMbGRu3Zs0fRaFTvvPOO\nTp06pSuuuEL79u2TJO3evVuzZs3SZZddpv7+fvn9fnm9Xh06dEgNDQ0Wjx5APKNtS7U7cwUum80m\np8NGOzAAqDCxdmCO1NPSKqMSEPcIAABKyrp16/TTn/5UPT09stvt+va3v61bb71VktTT02Px6ACg\nuHjoBVQO5kDlbTy3NMLY5BPqzfb3JZffp3TVfLqufkxdVz8maextx9JZ8fR1kkTIGRinSi4EdNVV\nV+nSSy/VkiVLtHLlSm3YsEHr1q3Tli1b1NLSomAwqEWLFmnixIlavny52tradP311+uWW25RVVWV\n1cMHEGdopGJDlTu7omMup50qDwBQYWIhoHTtwEbCpEOEgAAAKDkf+tCH5HAM36svvfTS2Ovd3d1W\nDQkAAMB0zIHKF9Xdxp9CBmFy/blf5JmsjfPuS7tdIYNlRquy+Io9yY6XjVTrxf83wH8HwPhUciEg\nSbrtttv061//Wo8//rjmzZunKVOmaNu2berp6VFHR0dsYtXc3Bxbb9GiRRaPGkCioUBIUnaVgCTJ\n6bDHgkMAUM7ee+89ffKTn9ShQ4c0MDCg1tZWtbW1qb29XZFIRJLU29urxYsXq7m5Wc8++6wkaWho\nSDfffLPa2tr0ta99Te+//74kaf/+/Vq6dKmWLVumBx54wLLzykd45HzThYDcLtqBAQAw3hgtnwFg\nvKmUyg+Vcp5AsTEHKg8EH8YPqys3HfEe1vo9a9MefyzBskznlXju6a5HtuvlOqZc98EcBDBfSYaA\nAJSHoUBYNpvkdmb3VuNy2jXk5wEvgPIWDAa1YcMGVVdXS5I6Ojq0evVqdXV1KRqNaufOnTp27Jg6\nOzvV3d2trVu3avPmzQoEAtq+fbsaGhrU1dWla665Rg8++KAkqb29XZs2bdL27dv1xz/+UX/+85+t\nPMWchMPZVwIiBAQAwPhhs6W+twNAMeT7UGs8tIAZ6/jGy3kC4xFzIKC4rK7clOz4ye6v+QaA0t2v\nkx071fVI3Fe665YpSBS/LNc5BXMQoDgIAQEwjT8QVrXbkfU/fNxOh/zBsELhiMkjAwDr3HvvvVq2\nbJnOP/98SdKBAwc0Z84cSdL8+fO1d+9evfLKK5oxY4bcbrc8Ho/q6+t18OBB9ff3a968ebF1X3rp\nJfl8PgUCAdXX18tms2nu3Lnau3evZeeXq1g7MEfqaWmVUQmIdmAAAAAAspDvAyarHyRmoxAPz8bD\neQIAkC2r72eJAaB09+lc7t+JrcayCRcd8R4+Y33jtWSBoWRjSzdPSFyW65yCOQhQHE6rBwCgfA0F\nQqp2Z/82U+UafgA8OBTShBq3WcMCAMs8/vjjOu+88zRv3jz99Kc/lTRcJtoIS9bU1Mjr9crn88nj\n8cS2q6mpkc/nG/V6/Lq1tbWj1n3zzTczjuXcc8+W05ldu8aJEz2ZV8qTe+Q+cXa1S57a6qTrXHTh\nBElS1GYzdSyloNzPr5RwrYuHa108XOvi4DoDQOkbywOmUn8oVaiHZ6V+ngCA8hUfVCmH48QfK5sK\nO9nex41WY49+9peSlHFbY/8b592nSTUXxr429pHumIljS7du4rJcr3GpzkGK+fsCmI0QEADT+ANh\nnV3tynp990ilh5NDQUJAAMrSr3/9a9lsNr300kv6y1/+onXr1un999+PLR8cHFRdXZ1qa2s1ODg4\n6nWPxzPq9XTr1tXVZRzLBx+czGrMEyd6dOyYN9tTzJnvZECSFAqF5fUNJV3He+KUJOmEz2/qWKxm\n9rXGaVzr4uFaFw/XujjMus7lGCyKDzQDgBXK+SFOOZ8bMN4xBwLSyzUIk7htttuM5Ti5yhSgySYg\nlEzi+kYYKN368aEfY9t0oaSLPJNTVgqqJMX8fQGKgXZgAEwzNNIOLFtGCGjwVMisIQGApX75y19q\n27Zt6uzs1KWXXqp7771X8+fP1759+yRJu3fv1qxZs3TZZZepv79ffr9fXq9Xhw4dUkNDg2bOnKnn\nn38+tm5jY6Nqa2vlcrn0xhtvKBqN6oUXXtCsWbOsPM2chEdaQDrsqVtHOh12OR02+YO0AwMAoJSc\nOnVK3/ve97R48WJ96Utf0j333KOTJ4eDxr/4xS8sHh0AAIA5mAMB+cs2bJLY+qr/aF9O7TCLGWrJ\nFLRpe2qpjngPF6TSjLGvVBonzR4VRkp1TCP0En9dC3mtxtK21AqVHoJC+SEEBMAU4UhEgVAkpxDQ\n6XZgQbOGBQAlZ926ddqyZYtaWloUDAa1aNEiTZw4UcuXL1dbW5uuv/563XLLLaqqqlJra6tee+01\ntba2qqenR6tWrZIk3XnnnVq7dq2WLFmiadOm6fLLL7f4rLIXjkQlSQ5H6hCQJFW5HISAAAAoMXfd\ndZeGhoZ0zz336N5771UoFFJ7e7vVwwKAcWG8PRwDcBpzIGBssgkAxQd+jLZYG+fdl1NIw6xAR7J7\neKZjHR18O2WIKdWc4Ij3sJY+eU3OcwZjLPEBpMTjGKGX+NBQOrmMIdfAVqkgAIRyQjswAKbwB4Yr\nO1S7s3+biVUCIgQEoAJ0dnbGvt62bdsZy5ubm9Xc3DzqtbPOOkv333//GetOnz5dvb29hR9kEcRC\nQPb02fQqt0P+ACEgAABKyYEDB/Tkk0/Gvt+wYYM+//nPWzgiABgf8m05Uei/0geQH+ZAgLkSq7KU\nUpWWXO/hF3kmq+vqx1KeQ7L9Gff7o4Nv603vgI4Ovh2r7GPsayzjNsYVf33TbScNVyDK5tj5BrYA\nFBaVgACYYigw3NIrt0pARgiIdmAAUClOh4AyVwIaIgQEAEBJiUajOnHiROz7EydOyOHI/t+AAFCp\n8nmYmVgVAYB1mAMB5ku8R5ZKoCTTPTzXKkGJ+4u/30+quVD1dR/RpJoLU+7riPew+o/2pdy3Edwx\njiPpjCpLqc7DGMvRwbdTjj/ZMTfOu0+Nk2afsT8AxUMICIApjAe1uYSA3EY7sFNUAgKAShEJD1eO\ns2cIAVW7HQrQDgwAgJKyYsUKLVmyRBs3blRHR4eWLFmi66+/3uphAcC4kOvDzFKqggBUunzmQJFI\nRBs2bFBLS4uWL1+ugYGBUct37dqlpqYmtbS0xKo9p9pmYGBAra2tamtrU3t7uyKR4c9Went7tXjx\nYjU3N+vZZ5+VJHm9Xt14441qa2vTihUrdOzYsUJfDqBspAuqJLbSSrVOupZfqZbF7y/+fn+RZ7Lu\nX/DjlOM74j2s5h3X6Jp//3zaIFD81/H7TzUm43VJsZZhmz91f2ybZGOJ33b9nrWjlhNkBoqPEBAA\nU/hHHtRW5RQCGl73JJWAAKBixCoBOTJXAgqEIoqMrA8AAKzX1NSkBx54QB/+8If14Q9/WFu2bNGS\nJUusHhYAlC2zAkA8lANyk88c6JlnnlEgEFBPT4/WrFmjjRs3xpYFg0F1dHTo4YcfVmdnp3p6evTu\nu++m3Kajo0OrV69WV1eXotGodu7cqWPHjqmzs1Pd3d3aunWrNm/erEAgoMcff1wNDQ3q6urS5z//\neW3dutXUa4PyV673jHSBmGxDLOkCu4nhm0z7MY79ref+RW1PLVX/0b4zxnCRZ7J6/98TeuJLvzuj\n8k42Uo03MYhkBHuMMSQbS7p9EmQGio8QEABTDPmNdmDOrLc53Q6MSkAAUClOtwNLPy017hF+qgEB\nAFBSDh8+rDfeeENHjx7Ve++9Z/VwAAA5KtZf55frQ2NUrlznQP39/Zo3b54kafr06Xr11Vdjyw4d\nOqT6+npNmDBBbrdbjY2N6uvrS7nNgQMHNGfOHEnS/PnztXfvXr3yyiuaMWOG3G63PB6P6uvrdfDg\nQTU0NGhwcFCS5PP55HRm/3k9kKicK7okC6okVsQZa4glvvpOqso9iet3Xf2Yuq5+TI2TZqcM7KQK\nAGVTkSjVOSWGeIwWX0ZloHTXIz7ElGx/mcYIYOwIAQEwhdEOzHhom41YOzAqAQFAxTgdAspQCWik\nspxxfwEAANbbtGmTfvazn2ny5Mk6//zz9cMf/lA/+clPrB4WShAf7gOlqxh/nW/1Q2Peg1Bo+cyB\nfD6famtrY987HA6FQqHYMo/HE1tWU1Mjn8+XcptoNCqbzRZb1+v1ptzHueeeqxdffDFWBYiqjRiL\ncqjoku6ekKkiTjb7znS/MwI1iS2zUo0t/tjZXvd01Yvy+RnGt/jKdizZXAur5wdAOSMEBMAUQyOV\nGqqrsg8BuRx22W02KgEBQAUJh7MMAY2ESgNUAgIAoGQ899xz+vnPf67ly5frK1/5in7xi19ox44d\nVg8LJYYP94HSZ/bDXCsfGvMeBDPkMweqra2NVeSRpEgkEqvKk7hscHBQHo8n5Tb2uGrKg4ODqqur\nS7mPBx54QDfeeKN+97vfaevWrbr55pvHfP6obOM9AJTrPSGX8832fpeskk4uFYLShYeyqV6U688w\n3XmlupbZXItyCJUBpYoQEABTGJUaqt3Zh4BsNpvOrnbqJJWAAKBihCMRSZLDQSUgAADGmwkTJox6\n2BQMBkf9tTog8eE+gGFWvQfwHgQz5DMHmjlzpnbv3i1J2r9/vxoaGmLLpk6dqoGBAR0/flyBQEAv\nv/yyZsyYkXKbadOmad++fZKk3bt3a9asWbrsssvU398vv98vr9erQ4cOqaGhQXV1dbEKQf/wD/8w\natxApTHznpCpvVaysSR+n6pCUOJx4oNMydp75VK9KJ1M7byOeA+r7amlaYNAmZh1fyb8i0pH808A\npvAbISBXbm8zNWe5NHiKSkAAUCmybQdmhEr9VAICAMByt99+u6Thv0b/0pe+pAULFsjhcGj37t26\n+OKLLR4dShEP31Gu4ttiWLE9ssM1RqGMZQ60cOFCvfjii1q2bJmi0ajuuece7dixQydPnlRLS4vW\nr1+vG264QdFoVE1NTbrggguSbiNJ69at07e//W1t3rxZF198sRYtWiSHw6Hly5erra1N0WhUt9xy\ni6qqqvTNb35Td9xxh7q6uhQKhfSd73zH9OsElDLjnlDIe7ARxBlrwGhSzYVZ7cNYxziHxG0KcV7Z\nnlMoYs3zvHQ/v0L9PIDxjBAQAFMMBYar+eRSCUiSaqqdevf4qVF9jQEA5et0CCh9gUqjHRghIAAA\nrDdnzpxR/2/42Mc+ZsVwAMASY33AxAMqYPwZyxzIbrfrrrvuGvXa1KlTY18vWLBACxYsyLiNJE2Z\nMkXbtm074/Xm5mY1NzePeu2CCy7Qv/3bv2UcHxCv3EOqhb4HF6LCUPyYslnH7HlEtufktLsKfuxM\nMp07VQABQkAATBJrB1aVawjIpXAkKn8wrGo3b1EAUO7C4ewqAcVCQLQDAwDActdee21W6/zmN78p\nwmgAwBpjfcDEAypg/GEOhEpQCSFVM+7BmfaVKVhljCndNonjNvtnlK7SjtFurOvqx4r+e5LNz69c\nf3eBbKX/k2sAyMFz+4/E/vf62yckSX/823ux17JRUz0c/Dk5FDJtnACA0hGORGSzSfZMIaCRynJD\nhIAAABgXotGo1UMAANON9QETD6hSO+I9bPUQgLwwB8J4Vykh1WKenxGsSnVvi3/dWC/VNkYbMOPr\nxO3NljguM65jNudT7r+fwFgRAgJgimAoIklyOXN7m6mpHi4dOEgICAAqQjgSzVgFSFKsOhztwAAA\nGB9o7wwAyFemh6VAKWMOhHJAwKLwUgWr4u958QGsVGGs+PX7j/YV/Z6Zb0gs2/ExBwAKgxAQAFME\nw8MhIKczt3/0nD1SCWjwVLDgYwIAlJ7hEFDmKWmVa3gdQkAAAAAAUN4qpQoFAKD8GaGWVNLd81K9\n9uhnf6mjg2/rmn//vI4Ovn3G9mYGaDK1NUu1TbbBHuYAQGEQAgJgipBRCciRYyWgs6gEBACVJBzO\nrhJQlYt2YAAAAAAwnuXyUJKHfwCAcpBNqCW+rVc2YZmLPJM1qeZC1Xs+okk1F54RADKrks4R72G1\nPbU0476TtTB79LO/zPo4qa4V1YGA7BECAmCKYDgip8OWc/nTGqMS0BCVgACgEoQjUTkcObQDIwQE\nAMC4EI1GrR4CAKCEWNne44j3MA8OUTTMgQDrldp7frbB1lyq4Fzkmaze//fEGevmU0mnkNcr3f1+\nLPMA2oQBuSEEBMAUwVBEzhyrAEmn24GdpBIQAFSEcCSSVSUgN+3AAAAYV77+9a9bPQQAQAkpRnuP\nZA8GjaoF2VQuAAqBORBKXbm/F44lLFIK12as98lc2nUZIdlcWnV1Xf1YxqpGye73Y50H0CYMyA0h\nIACmCIUjcjlzf4upqTbagVEJCAAqQSSSXTuwWCUgQkAAAJSMT37yk7r00kv18Y9/XHPmzIl93dTU\npClTplg9PABAiTE7AJTsIabxwDLTQ0sgF8yBMF6VWzWVZOeRLCySzfnmem2svobJxtt/tC/rczBC\nspKShmtS7SPbKkX5bpvPfgGciRAQAFMEQ/mGgIx2YFQCAoByF41GFQ5HZbdnvl9UuRySaAcGAEAp\nmT17trZs2aJ9+/bp97//vR566CEtWLBA3/nOd3TnnXdaPTwAQIVJVSGAh4YoNOZAsEIhQiflVE0l\nXWgnMQCUTTAml2tj7LP/aN+o1/KVz7aJ4z3iPaz1e9Zq47z7cvr5Hh18Wxd5Jo8aQ+I1MzPwZHWY\nCihXhIAAFFw0GlUoHM2rHVjNWSOVgE5RCQgAyl04ElVUksORuRJQlZt2YAAAlJrXXntN//zP/xz7\n/pOf/KT++te/atq0afL7/Um3iUQi2rBhg1paWrR8+XINDAyMWr5r1y41NTWppaVFvb29abcZGBhQ\na2ur2tra1N7erkgkIkl69NFHtXTpUi1dulQPPPCAGacOACghxsPKTMt50IhCyWcOBIxFId/HyiEA\nJGUf2skl3BMfqMm03sZ592n9nrU64j2cUwWeRLn8bJNVuzNeN86zcdLsrLfd/Kn7tX7P2jPGH3/N\n0o1vrL+P3J8B8xACAlBwoXBUksZUCegk7cAAoOwFQ8MP6rJpB+aw2+V02DVEJSAAAEpGXV2duru7\ndfLkSfl8Pm3fvl0TJkzQoUOHYoGcRM8884wCgYB6enq0Zs0abdy4MbYsGAyqo6NDDz/8sDo7O9XT\n06N333035TYdHR1avXq1urq6FI1GtXPnTr355pt68skn1d3drd7eXr3wwgs6ePBgUa4HAKB44h8Y\nZnrAW06VL1Aa8pkDAWPB+1hy2V6PXK5btsGUxkmz9ehnfylJeVXgiR9bYkWfZGNKVn0ocbypjp8q\npGScQ+Ok2WeM3/g61e9eIQI8/F4D5iEEBKDgjIe6+VQCcjkdcjvt8tEODADKXjCcfQhIkqrdDioB\nAQBQQu677z7t3btX8+bN06c//Wn9/ve/17333qu9e/dqzZo1Sbfp7+/XvHnzJEnTp09WiA4RAAAg\nAElEQVTXq6++Glt26NAh1dfXa8KECXK73WpsbFRfX1/KbQ4cOKA5c+ZIkubPn6+9e/dq0qRJ+tnP\nfiaHwyGbzaZQKKSqqiozLwMAoEji25IkPnjMphIEUCj5zIGAseJ9LDf5hlOyCabEV8zJVIEn22Ma\n+028v8VXu9s47z5967l/ySkI23+0L2VIyQgOGa3EUl2zVK02CxHg4fcaMIfT6gEAKD+hkYe6+VQC\nkqSzq51UAgJQtsLhsO644w69/vrrstlsuvPOO1VVVaX169fLZrPpkksuUXt7u+x2u3p7e9Xd3S2n\n06mVK1fqqquu0tDQkG699Va99957qqmp0b333qvzzjtP+/fv19133y2Hw6G5c+dq1apVVp9qRqEc\nKgFJUpXLIT+VgAAAKBl/+tOftGnTJrlcrlGvL1++POU2Pp9PtbW1se8dDodCoZCcTqd8Pp88Hk9s\nWU1NjXw+X8ptotHo/8/e+8dHUd37/6/N72Sz8QcuJIVGxcpVevnlAp/2q2C+KAVNhQgmQLxUCqKX\nekkxiRC8/LgoNYAkrcErFYHSUiOQhxqwsakCRqJwJe79gCjS9sI1CGZlQSzJ5tcm2c8f4YxnJzOz\nM7OzP/N+Ph48SGbOnPM+Z87MnMz7Ne83TCaTULa5uRnx8fG4/vrr4fF4sGHDBgwfPhw333yzUV0m\nIgilr6EJgpAmnK8b5gRlDkeKHECEEj1rIILo7wTzGSN+ZmjFlwBIXLfWNuTGQur55uuZJ1UX28YE\nQEW2pYJIiRf++PtcjYbncDivfQjCHygSEEEQhsMiAcXriAQEAObkeLjaKBIQQRDRyXvvvQcA2LVr\nF5YsWYJf//rXkqksnE4ndu7ciV27dmHbtm0oLy9HZ2cnXnvtNQwbNgyVlZXIycnBSy+9BABYvXo1\nysrK8Nprr+H48eM4efJkKLupCiEdmMrnRSJFAiIIgiCIsGLfvn245557sGrVKnz88ceqjklNTYXL\n5RJ+7+npQVxcnOQ+l8sFi8Uie0xMTIxX2bS0NABAR0cHiouL4XK5sHr1ar/6SEQmRqQnIIj+Rrhf\nN2IHJTnsiFCiZw1EEMEmnO7nwXjGaImO4w9SdYsj9/iyU2ksxGnBeJHKYMsQVGZXeZXJr8n1Ksun\nDWMCoDL7BpxvPueVFoyeq+G/9iEIfyAREEEQhsPSu8TpjARkToxDW0cXeno8RppFEAQRFtx77714\n9tlnAQBfffUV0tLSJFNZfPLJJxgzZgwSEhJgsViQmZmJU6dOeaXDmDhxIo4cOYKWlhZ0dnYiMzMT\nJpMJd911Fw4fPhyyPqrFrSMSUDtFAiIIgiCIsKGiogJvv/027rjjDrzyyiuYOnUqfvOb3ygec8cd\nd+DQoUMAgGPHjmHYsGHCvltuuQWNjY349ttv0dnZiY8//hhjxoyRPWb48OH46KOPAACHDh3C2LFj\n4fF48Itf/AL/9E//hGeeeQaxsbGB6DoR5lCUEILQTiRcN+FsG9G/0LMGIohgolXcEGgRRKCfMXrS\nRLLjjGxbzbirTTfGhDx8feKoNQ5XU59jAAjpyXZMfRVTh2Zjx9RXAaBPWjApIZOc7VrHSoswKlQY\nPS/DtZ9E/4TSgREEYThdQiQgdU5dMebkeHgAtHZ0ITU53md5giCISCMuLg7Lli3Du+++i4qKCnz4\n4Yd9UlkopcNg2/myfIoMs9mML7/8UtGG665LQVycOqeY1WrxXUgHl69GfUtOjIclNcln+xZzArq6\ne3D99WbV0YMijUCNNdEXGuvgQWMdPGisgwONszepqamw2WxwOBxoamrCsWPHFMtPnjwZH374IWbP\nng2Px4PnnnsOb731FlpbWzFr1iyUlJRgwYIF8Hg8mDlzJgYNGiR5DAAsW7YMK1euRHl5OYYOHYop\nU6Zg//79OHr0KDo7O1FfXw8AKCwsxJgxYwI+FkRoUEqnQBDhSDinnQhXuwgiHNG6BiKIYKJF3OBv\n6iwtNhmB1HNUj5hDb7/Fx4nbVlOfmv3iNF3ids83n0NJfTGWj18h27ZY7CNlGxOuzKt9GOsmbERJ\nfbFkpCMtY8WXZ3WHq9DYyHkZzv0k+h8kAiIIwnBYJKB4nZGAUpJ6b02t7W4SAREEEbWsX78excXF\nyMvLQ0dHh7CdpbJQkw5DqSxLhyHH5cutquy0Wi1wOpu1dE01zostAIDu7m40t7TLl7vaPnuqnPvq\nH8KzIpoI5FgT3tBYBw8a6+BBYx0cAjXOkSos2r59O95++210dHRg2rRp2LJlC9LT0xWPiYmJwTPP\nPOO17ZZbbhF+njRpEiZNmuTzGAC4+eab8cc//tFr2+TJk3HixAmtXSEiFHrZTigRCrGNrzZpzgaW\ncBZYEdGFnjUQQQQbtfdDf6KhBPu+689zVGyr3n4PtgzxiqbDtvE/qxkXu6MBtvRxiu2I6xOn72Ki\nnRHWUYIgyZftPCydWGV2VR/Rkfg4LWOlRxgV6URCREWifxGWn1BfunQJd999N06fPo3GxkbMmTMH\n+fn5WL16NXp6esUFe/bswYwZM5CXl4f33nsvxBYTBMHD0rvE6YzSYE7qFf642rsMs4kgCCJcqK6u\nxssvvwwASE5Ohslkwj//8z/3SWUxcuRI2O12dHR0oLm5GadPn8awYcNwxx134P333xfK2mw2pKam\nIj4+HmfPnoXH48EHH3yAsWPHhqyPahHSgal8XiQm9EYu6nBTSjCCIAiCCAe+/vpr/PSnP8WCBQtg\ntVrx4Ycf4oUXXgi1WUQ/gH2xTC/bI59ApU3QmgYlWG3SnA0coTjnRP+F1kBEtKFXAOTPfVfPcXLP\nUV+2yO3X2++S+mIh/ZfatnjsjgbM2PdT1J6pUdUeq09sL0v5pbYfvtYo/P9y+9W2IyeSimb6Sz+J\nyCDsREButxurVq1CUlJvSojS0lIsWbIElZWV8Hg8OHDgAJxOJ3bu3Ildu3Zh27ZtKC8vR2dnZ4gt\nJwiC0eVnJCDz1egOrna3YTYRBEGECz/5yU9w8uRJPPzww1iwYAGefvpprFq1Cps2bcKsWbPgdrsx\nZcoUWK1WzJ07F/n5+XjkkUfw5JNPIjExEXPmzMHf//53zJkzB7t378a//du/AQDWrFmD4uJiPPTQ\nQxg+fDhGjRoV4p76RhABxahLH5kY3ysCau8kkShBEARBhANnzpzBgQMH8Otf/xr19fV44YUXcPr0\n6VCbRUQ5YscKvWyPXAIp2giF2EZtm772k4hFHySwIoIJrYGIUBBuzwd/IwjpXQPIpYFVssXIZwSL\nwANAtg++2rKlj8PL925HmX2DzzFQ0zcxasVJgy1DUJ5VIdRhxBzTc27DbW4TRDQQdnkU1q9fj9mz\nZ2PLli0AgM8++wzjx48HAEycOBEffvghYmJiMGbMGCQkJCAhIQGZmZk4deoURo4cGUrTCYK4CnPq\n6hYBXU0B1kqRgAiCiEJSUlIkvw4Tp7IAgLy8POTl5XltS05ORkVFRZ+yo0ePxp49e4wzNAiw9JFa\nRUCd7p6A2UQQBEEQhHq++OILvPPOO/jVr36FmTNnYunSpfjlL38ZarOIKIcc/dFDIM9lqNJC+dsm\npQvzDxozIljQGogINuH6fNBrSyDWAP6KcNXCIgHtmPoqdkx9FQ5Xk5eIhp0nX0wdmo0RVnUfcWqN\nwiM1V6TSmPF9AWDIHNN6bsN1bhNEpBNWIqA33ngD119/PSZMmCCIgDweD0ymXseQ2WxGc3MzWlpa\nYLFYhOPMZjNaWlp81n/ddSmIi4sNjPEhxGq1+C5E6IbGVz2W1N4IXjExveKftNQkYZtSeR6r1YL0\nq2Nuioul8fcDGrvAQuNLEP7j7upN66VaBJRAkYAIgiAIIpwYMGAATCYTbr75Zvz1r39FTk4ORWqO\nMIIhlAhEG+QgiEyk5kKgBECR6kwikZt/hEr8RfQ/aA1EBJtofD6Eui96nxn8uWBpvd6Y9ifY0sdJ\nnidf7fCiITX2qLFbLPZhxzHBD5/6i//dyGhJWsqyduk5ThDGEVYioNdffx0mkwlHjhzB559/jmXL\nluGbb74R9rtcLqSlpSE1NRUul8trOy8KkuPy5daA2B1KrFYLnM7mUJsRtdD4aqO5pR0A4Grr/YPH\n7e4StomxpCZJ7nM6m9Hj7nXufu1sofHXCc3dwELj6z8koiIALh1YrDoRUNJVEVCHuztgNhEEQRAE\noZ5bb70Vzz77LObMmYPi4mJcuHABbjeldY4UgiGUiGQxBmEswZwLke4ojVS7Q8355nPIr8lFZXYV\njSERcGgNRIQCvfe2UAkrQino8NW2v+sSdowtfZwgABLvU9MOW7MA6qLwiOsT95M9CwGgMrvKyx41\nAiWtY2HUOWZ9EQuiSBREEPrRl6snQLz66qv44x//iJ07d+L222/H+vXrMXHiRHz00UcAgEOHDmHs\n2LEYOXIk7HY7Ojo60NzcjNOnT2PYsGEhtp4gCAZz6sbF6rvFpCT1pgNztdMfTgRBENGMIAKKUfe8\nYOnAOigdGEEQBEGEBf/xH/+B++67Dz/4wQ+wePFiXLhwAWVlZaE2i1BJMIQSkS7GIIwj2HOB5hxB\nEIGE1kBEpMCEFeebz/WLdtW27e+6hK+bFwDpaYftk4reI25PHDWH9ZPfX5ldJQiAxOPApy3z9xwZ\nfY7FgqjaMzVBnUOhmKsEEUjCSgQkxbJly7Bp0ybMmjULbrcbU6ZMgdVqxdy5c5Gfn49HHnkETz75\nJBITE0NtKkEQV+nq9gAA4uP03WLMyb1BylztlO6FIAgimnF3MxGQciSgumPnUXfsPP636QoA4Pj/\nXBS21R07H3A7CYIgCIKQJjY2FmPHjgUA3HPPPVixYkW//Egrkl8YB0MoQWIMgqHn63KCUAtzfNI9\nhwgGtAYiIoVQCbJDKQRX27Y/AiAlcYp4u692WPSewroCyTrZfl7ow/7nRTP8fvZPahyY/Q5Xk1/n\niG9fL1JjNdgyBOsmbESZfYOiMMpIQilaI4hAEbYioJ07d+KWW27BzTffjD/+8Y/YvXs3SktLERvb\n+wV4Xl4eXn/9dbzxxhuYMmVKiK0lCIKHpWmJ1xkJyMwiAbVRJCCCIIhohkUCivEhAmIwcSkTDxEE\nQRAEQYSaSH9hHKl2E+GNEfNKy7VF87h/IxXhgCAIgviOUN0bQ3lPDlWkS73rFxa9R43d4ueekj1y\n29ZN2IiS+mKfbalB799CSmNlSx+HHVNfVYyyZCQUvZSIRsJWBEQQROTS2t6F5MQ41U5dMSmJcUI9\nBEEQRPQipAOLVfe8YGkmu0gERBAEQRBEmBDJL4wjXcBEhCdGzSu111a4zuNwsydakTr/NPYEQRD+\n0Z/uo3r7Krc+4dcvdkeDYrvzah+G3dEgROVRqpMJhPjj+Lqkov0owUQ2/v4NoxRtSO+x/P5gEol/\nzxGEEiQCIgjCUDweD1rbu2BOitNdR0yMCcmJcXC1UyQggiCIaEYQAcWoW5LGXRULdXWRCIggCIIg\niPAhUl8YR7KAKRqIVgebUfNKyqEVyPbkbNB7nFZhUrTOh0AjPv/hJgoLFzsIgggukXzth9t9NJDo\n7aua8nZHA2bs+6msEIg9v2zp44SoPErpxfgUYHx5OTEs26YkkuWfnWr6Ky4nTk8m1b4v6O8Qgggc\nJAIiCMJQOtzd6PF4kOKHCAgAzElxcFEkIIIgiKiGpfWKVRk5Li6ORQLyBMwmgiAIgiCI/gS9eA8N\n0e5g83desa/i1Y6P1vbUpujQe460CpOifT4EGn6cw0ncSOeVIPonkX7th9N9NNBICUl94ev8sv3p\n5gy8Me1PSDdnyJZl7bKoPGrb46P4SJ0vtg2AlxhIHEFIqn4poQ8fsYgvJzcOWuYQRfIjiMBBIiCC\nIAyFCXdYSi+9mJPiKRIQQRBElPNdJCB1IqD4q+nA3JQOjCAIgiAIImyhF/i+6U8ONq2cbz6Hkvpi\nrJuwUZOIRkv9apyz/p4jLceFYj5E83UaLtcVXecE0T+JhmvfKNsj4VmjNZKcmhRWbH+6OQP5NbnI\n3ZejSuwijt7DIgBJtScW/UjZwR8rjiDEw8pIjQEfsYi3w4hUXuKIRZEmnoskW4n+CYmACIIwlFYm\nAvI3ElByHDrdPYKDmCAIgog+WFqv2Fh1IqCE+FgAQEdnd8BsIgiCIAiC6E8Y/fLa19fERtQfLUSy\nczCQ8M4mNWh1GmlxzgbzHAWyLbmv+qPpegpX6DoniP4JXfvh86wJxfqA31+eVYH42Hgve8QReXix\nD4A+kXeYQEcv7FiWekxsC2+3kuBISYikB7FIKdzEc0pjHi7zmyCUIBEQQRCG0no1ek9KUryPksqw\n41spGhBBEETUojUSUGJ8DGJMJrR1ULpIgiAIgiAIfwnEy2v+Bb7R9atJv0BEB1odQFqdRlrTU0Qy\nctdNqBxt0TKuaulv/SX6HzTHCTmkRB3Bni9q1qLiqDdK+/W0nW7OwPLxK7yENCwij93R4CUK4sUw\nfOQdrf3gt+XX5CK/JleItlNYVyD8LpdKLJiEsm2G3NgpjXk4ipYIQgyJgAiCMBQWCcjsZySg1KvH\ns/RiBEEQRPTB0nrFxqhbkppMJiQnxqKVREAEQRAEQRB+E6iX12rTBOipV64++hq3/8GnjghE3dEy\nn8TXTaDGTA3RNK5q6G/9JXzT09ODVatWYdasWZg7dy4aGxu99h88eBAzZ87ErFmzsGfPHsVjGhsb\nMWfOHOTn52P16tXo6el9v7Jnzx7MmDEDeXl5eO+99wAA3d3dWLt2LWbPno0ZM2YI2/2F5jjhC7EA\nKNjzxddaVI3AXG6/2rRhDlcTHt8/3yvyD4vIU1JfDAB90nSJI+/o7cdgyxCUZ1WgMrtKEBhVZlcJ\nv/NtaEGrGMnXMUaU13us0tj5+juGBEBEuEMiIIIgDMVlUDqw7yIBkaOXIAgiWtEaCQgAkhPj0N7R\nBY/HEyizCIIgCIIg+g2BfnkdKIGR1Hb6Grf/wAtZAiVki5b5xL70Z4Syb9E0rmrob/0lfLN//350\ndnZi9+7dKCoqwrp164R9brcbpaWl2L59O3bu3Indu3fj4sWLsseUlpZiyZIlqKyshMfjwYEDB+B0\nOrFz507s2rUL27ZtQ3l5OTo7O7F37150dXVh165d2Lx5cx/xkV5ojhNaCNV88SXiUBKYy+2XEo5I\nCU8GW4bAlj4Ob0z7E9LNGV77+Eg//M9q+qFWsHK++ZwgNOLLSpXjf9abBktun1YBmD+CMSPTxNK9\njYh0SAREEIShsOgMKYn+iYDMyb3Ht1A6MIIgiKjF3dUDkwmI0SgC6vEAHe6eAFpGEARBEAQRGvrb\n1/RGpyIj+ge8wyZQ592fesPlOlb6uj1U9LfrtL/1l1DGbrdjwoQJAIDRo0fj008/FfadPn0amZmZ\nuOaaa5CQkACbzYaGhgbZYz777DOMHz8eADBx4kQcPnwYn3zyCcaMGYOEhARYLBZkZmbi1KlT+OCD\nDzBo0CA89thjWLFiBSZNmmRYn2iOE+GKFhGI1LHs+SknDlk3YWOfKHtybaabM5BfkytEAxJH/JGy\ng5VRK6jhbeG3+RIX8fWx9GF5b+VoSoPFjhWPixY7lMqztGl6jlV7TKgIlzUjEZ2QCIggCENpbe9C\nYnwsYmP9u72Yr0YCcrWRCIggCCJacXf1aIoCBADJibEAgDZKCUYQBEEQRJTBXrz3l5fB/qaF6C/j\nREij9BV7KAmn9Dj9MUpHOIw7QcjR0tKC1NRU4ffY2Fh0dXUJ+ywWi7DPbDajpaVF9hiPxwOTySSU\nbW5ulq3j8uXLOHv2LF5++WUsXLgQy5cvD3RXCaIPaqPnqNnnq6yWZ7FcBB+xyEd8jDh9l6/nrbvb\njYKDi2B3NPi0jZWRKqs1Pa6vNYBYWF2eVYG4mPg+9YqP4ffl1+QKIid+XLTYIWUX0DsWD+7NRu4+\neWGS3LHhTjitGYnohERABEEYhsfjQWu72+9UYACQZk4AAPzD1el3XQRBEER44u7uQWyMtuVo8tVI\ncyQCIgiCIAiCiGz8ESiocaAQ/YdwEtCFm/BGKn1IOIxTIAineUAQUqSmpsLlcgm/9/T0IC4uTnKf\ny+WCxWKRPSaGe5ficrmQlpYmW8e1116LrKwsmEwmjB8/Hl988UUAe0kQ0oifj0wAwaLj8GgV8agV\nyiiJhcTiJCZmkbJTqn4pwRAvEtp0z2bExcQj3ZyhuE5gba+bsFE2TZhcajBfAiE12NLHoTK7SnWU\nIwAoz6pAZXaVl716UoDJ2fPm9BpUTav2ubaKtOd/uK0ZieiDREAEQRiGu6sHXd0emA0QAQ1ISwIA\nXPpHu991EQRBEOGJu6tbRyQgEgERBEEQBBGdDLYM8XrpHmmIHShq0NpX1gZzjkSbM4AwjlCe+0Bf\nw3quNd6JGckCukizO9LsJQLLHXfcgUOHDgEAjh07hmHDhgn7brnlFjQ2NuLbb79FZ2cnPv74Y4wZ\nM0b2mOHDh+Ojjz4CABw6dAhjx47FyJEjYbfb0dHRgebmZpw+fRrDhg2DzWbD+++/DwA4deoUMjIy\ngtltIgKQulcF4v4lFs2sm7DRK3IMv0+tOIKVVWoL6CtmYemr2LH8PnF0HCk75YQ2TIwqbo8X1yj1\ni7WXbs6QbYe1JSdQkiorF4VJblzE9jhcTbL9Lawr6NO+FkGSkmDofPM52NLHqVrzaxECh8vzmQmm\nCCIQkAiIIAjDcLX3OmSNiAQkiICukAiIIAgiWnF39SA2lkRABEEQBEEQQN+X7uGM1Mt7lgogUC+y\nmYMAAHZMfRW29HGqytOL9ehHLKCL5nNvdzQgd1+O5muNOePkogpEAnIRGxjhJqSM5nlI6GPy5MlI\nSEjA7NmzUVpaiuXLl+Ott97C7t27ER8fj5KSEixYsACzZ8/GzJkzMWjQIMljAGDZsmXYtGkTZs2a\nBbfbjSlTpsBqtWLu3LnIz8/HI488gieffBKJiYnIy8uDx+NBXl4eVq5ciTVr1oR4JIhwQk4goub+\n5e/9TemZpPVe7steXpTC94+JcuQi+yjZqRRhT0+UF/Z8K6wr8BITSZVja2I5IZWSLeL+K0XvOd98\nDosPLMKDe7P7RG1iz125Z6/UNi0pzgL1HA3281mpHV9rm0C0SfQfTB6PxxNqI4KF09kcahMMx2q1\nRGW/wgUaX228+u7fcMB+DqNvvQEjbxmgWNaSmoTmlr4Cn6zRg4Wfn/j1+xiQloRnFvwfw22Ndmju\nBhYaX/+xWi2+CxEBRe0cDuR8X/ybQ4iPi8G0u25WfczFf7Tj7SONuP3G6zDu9oEAvJ8dkQzdW4IH\njXXwoLEOHjTWwSFQ40xro9AT6uuHvQCOBOe8nK3819OBbFurMyXcx7O/E6hzFI3nnontunrcqJi0\nWZUQTimCgPj6jYTxYvcZuftluPUj3OyJFGhdFHpCvS4igovUvcrX/UtpPcgEJXJRYPREglQTCcbo\nNSLfF6BvGq55tQ8LIhxeSCM3HkprfbujQaiH4XA1CdEv080ZXvXz7dgdDT7XBOJ+ifujNC7nm8/B\n4WrS1IZcm2zM1Nal5bwGqqw/qPkbz9faJhBtEpGF3nURRQIiCMIwWjvcAICURP8jAQHA9WlJFAmI\nIAgiinF392hOB5aSGAuAIgERBEEQBBFd6PlaOFTI2eorvYFRbQeyPBFcAvkltpHnPly+pmZf3O95\noFrWeSaX3kNcRpz6I1Ii1shFbADCsx90DyKI/k043Y+U0BOJR+pezKenkrofq7lP6zlGjb1ay/N9\n4aNd8naII+xJCYCkIu7w/eSj/7BUt6xMYV0BimxLhchAtWdqvOpjx/uKBCTVL7l9cuPirwBIKZqn\nryhGaglUWX9Q8zee0tomUG0S/QMSAREEYRitBqYDA3pTgrV1dAv1EgRBENGDx+OBu6sHMTHalqNJ\nCZQOjCAIgiCI6CQUL2r1Oqd8fclKEGrwx0mhlILDSMJNWCIntmNORDlno7gOfl8kOovU9IsgCCKU\nhNPzI1A2SAnC5VJP+no2sTJqU0UFGr4vLOUVAC9hELNZLpWW1POWHZNfkyuIpRyuJgBAujmjjx0j\nrKNQnlWB8qwKlNk3oMi2tE/aMrnonEr9Eo8n65NeEZYSfJuRIOA1GrVz18g5TmshAiAREEEQBuK6\nKtYx+yECqjt2XvjX3tkNAPhLQ6PXdoIgiEjG7XbjqaeeQn5+Ph566CEcOHAAjY2NmDNnDvLz87F6\n9Wr09PQAAPbs2YMZM2YgLy8P7733HgCgvb0dixcvRn5+PhYuXIhvvvkGAHDs2DHk5uZi9uzZePHF\nF0PWP7V093jg8QCxsdoiAcXEmJCUEItWEgERBEEQBEH4Bf+Fsz91iOsL15f44WpXf0fNl/hS25Qi\nDRiJGuejlMMsmIi/sBc7G6WQctxGA9HSD4IgIp9wESYGe30m9QwSi1SVjpWLNmkUWsaB7wsfrYWJ\ndRyuJp/iWznbu3p6s2rwQiNxWSY8KqkvRro5A+smbESZfUOfiET8cWrWRlJCnMK6ArR1tUqWXTdh\nY5/tWueT3Djw42bkHKV1P0GQCIggCAP5LhJQvCH1pSb3iolcbeToJQgieti3bx+uvfZaVFZWYuvW\nrXj22WdRWlqKJUuWoLKyEh6PBwcOHIDT6cTOnTuxa9cubNu2DeXl5ejs7MRrr72GYcOGobKyEjk5\nOXjppZcAAKtXr0ZZWRlee+01HD9+HCdPngxxT5Vxd/UKnbSmAwOA5MQ4tHd0G20SQRAEQRBE2BKo\ndEnrJmzUlEJAbBPvZAiVs0uN7aESKJEDQhqtKSvE5ZUiDahBq/DNlwAoWKm1xE4/3j65L+yJXuha\nJAgiFITDPTmQ6zO191YtNgRyzPSkIxPDnrWV2VV91iFykfqk8Hh6033x9TKYkIdtZ22w9gDIplsr\nqS8W0opJ2SG3jlg+fgWS41L6HMMEQnyUIKm1jz/IRVLSQjA/TKA1BREpkAiIIB5+sAwAACAASURB\nVAjDaG13Iz4uBvFxxtxazFfFRC1tbkPqIwiCCAemTp2KX/7ylwB6U2LFxsbis88+w/jx4wEAEydO\nxOHDh/HJJ59gzJgxSEhIgMViQWZmJk6dOgW73Y4JEyYIZY8cOYKWlhZ0dnYiMzMTJpMJd911Fw4f\nPhyyPqrB3e2PCCgW7u4eQUhEEARBEAQRzQTyRbZeEYXcF8+hEADJjU2oU0mEe2QkI9HSR63jIvd1\nuJpoN1LYHQ14cG+2XxGwxHYEI7UWSx0ilaqDtdvf8FdMFmw7CIIgQkWgBEBa7q1abPC1rtOL1nRk\naqLpKPVLLirPYMsQVE2rloz+w4Q8fNov8Vpb3A8m1mECf1v6OMl+MXvYGojvZ5l9A8qzKoQ1Fx9l\nsDyrQrBV/DeAXGRRPZGC/EkRG6wPE/rT+p6IfPTn7CEIghDR2t7lVyowMebkXhEQSzNGEAQRDZjN\nZgBAS0sLCgoKsGTJEqxfvx4mk0nY39zcjJaWFlgsFq/jWlpavLbzZVNTU73Kfvnll4p2XHddCuLi\nYlXZbLVafBfSyuU2AEBSYhwsqUmaDk0zJ+Kri62IiYuFJTUxMPaFiGjqS7hDYx08aKyDB411cKBx\nJoJNoAUsegRA82ofDosUF3JjI2VjsG016rz5Sp0RarTOB7Xjwtdr5JxLN2dgSGqmkMrDCIKRWotF\nHQhU/ZEAfy1omRPBcAaGw/2QIIj+SajWCVL3ViNskbqvGnmvVZuOzFebvvoqF5WHHaeUHmvdhI0o\nrCvACOsoWZvZNrujQYgoVJ5VgcK6AklxEesHiwJaZFuKMvsGYTuLMGR3NAh2s20l9cVe6zFeaMTX\nKTV2cvZLjaPaclJjEawPE0IV+VQKLddbOP89Ec62RTokAiIIwhA6OrvR2dWDAYlGioBYOjCKBEQQ\nRHTR1NSEJ554Avn5+XjggQfw/PPPC/tcLhfS0tKQmpoKl8vltd1isXhtVyqblpamaMPly33zPEth\ntVrgdDZr6Z4qvv6mt/2eHg+aW9o1HRsX2yuYuviNC7HwBMS+UBCosSb6QmMdPGisgweNdXAI1DiT\nsIjwRTi9GNX78jtQL3j5r5L5beHwgt7fMYoEgYGesdYjFlLbhlgoInVM1bRqQ8czWM6LUMyBcHHM\niK8FrfOuPzgDCYLof4RinSAn2jDKFjlBh68IPlojDSkJSny1yYQySiIosaBIShzDt8cfm27OgLvb\nDYerSbIdvr2S+mIsH79CEAyx4/h682tyBSExAMwbvgBl9g19BEr5NbkAgOXjV3i1y7fPBErlWRWC\nECjdnCEZFRFAH9GQ2H65OaMk/JU6f8F8DofDM1/L9RYOf0/IXXPhYFs0Q+nACIIwhMstHQC+S+Fl\nBMmJcTCZAFc7iYAIgogeLl68iPnz5+Opp57CQw89BAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0d\nHR1obm7G6dOnMWzYMNxxxx14//33hbI2mw2pqamIj4/H2bNn4fF48MEHH2Ds2LEh66MaWCovfenA\nekWibR0UKY4gCIIgCCIU6I0eFIjQ+XJ1R9qLZKl+RIrAIBhRqnx9Hc7+Z2MoNZ58agujiOa0EOHU\nt2B+5a+VQEUYIgiC8EWw1wlKzwWx6MUflCLfqLFJqX3xWkGrHVLpuvh1h93RALujoY/wh6XL2jH1\nVThcTV4pPu2Ohj7pPuNj4/uIa6TsYxF9GCYTUFhXIJn21O5oQE71/Sj5oAhFtqVewpzBlt6Ig5XZ\nVZg6NFtS4AR8J1AqrCsQbJdaWzHBLosSJGWP3PxVSu9l1NpEzfkP52exlms/1H9PqL1vsLKEcZg8\nHo8n1EYEi2j8KpK+9gwsNL7q+fyLb/D8rmMYecsAjL71Bp/lLalJqiI/vPH+GfT0ePDQ/3+LsC1r\n9GC/bO0P0NwNLDS+/tOfv3Zfu3Yt/vznP2Po0KHCtn//93/H2rVr4Xa7MXToUKxduxaxsbHYs2cP\ndu/eDY/Hg8cffxxTpkxBW1sbli1bBqfTifj4eJSVlcFqteLYsWN47rnn0N3djbvuugtPPvmkoh1q\n53Cg5vv/Nl3Bs7//GMNvug5jbxuo6dgvHM04dOwrjLttIG6/6bqoeS7QvSV40FgHDxrr4EFjHRwo\nElD0QtdP4FH66trfaCPhEq3EX+yOBskvpSMRqXMSiPOk9HU474DzFR3IXxvCff7pHYNI6BsjkmxV\ngr6Kp3VROBDp66JouR+EC1qeIf7cw/SeN63pIpnQQEskFb4MHwmI1bNuwkYAQMHBRTh7pRHft9wo\nRB4Up+xi6bZYatL8mly4u91ekQql1jBSdokj7TCxjTg9F6uj9kwNAGDq0GzFPvNtsAhBfDQhh6sJ\n6eYMr/blbBVHTlLzNwEvAJIro8Z2ueP5PlGEmsCj5pxF85j7+0zSuy4iEVCEQy96AwuNr3o+PNGE\nbTWf40c/HIRh37/WZ3m1IqC/fHQWX19uw8M/GSZEi4gWZ28gobkbWGh8/Yde6ISeUIuA/vblt1j3\n6n9jxNDrMWaYVdOxX19uxV8++hL/fPP1uOOfrFHzXKB7S/CgsQ4eNNbBg8Y6OJAIKHrpj9dPsB1k\nUqmuxKkRou2FrxaiaRykhDmAemebXJ1qRGRipxmfBiNQ4xruzmZx+hG9Tk+1bYViLKLp+gHCf04F\nGloXhZ5IXheFOkVWtKFnPPUIT408b/6IRKTWq1IprfhyTOTChD1MIAN4p/tiv0u1wZdliMVGUnXx\nAnLx814quoqU+MWX4Ig/no0Fbxe/T9y2eLzkbJSy35/1iq/5pCQyUqqXCCzROOZG3Nv0rosoHRhB\nEIZwuZmlA4sztF5zcm96sVZKCUYQBBFVCOnAYrUvR1MoHRhBEARBEFFGsEOfGxlKX097/O+BCFEf\nKaHkeTtDHarfSKTSNgDQ3D+p+SLXHl9OKq2GVvTO7XCEPx9q55mefgVyLHzVGa7Xj96xMCKdDkH0\nV4J9P4iE54A/aHlu8MewbWrHRu9582fcfaWhYmWY6EWqjwBgSx8nlGG/O1xNfVJasWN48ZB4H28L\nSzsG9Ip3WKqx/Jpc5O7LEURCfPoxFpGIryd3Xw7ya3LhcDWhPKuijwCIrZ2UUjbxawjWX1bHvNqH\n4XA1CanO+Hr4PjKYyCd3X06f9nhxEKtPCbk55ms+SY25VBkiuETjmIdyjUoiIIIgDIGJgFKS4g2t\nl4mKXG3k6CUIgogmBBHQ1ShvWki+KgJqJREQQRAEQRBRQCicR0a8jFSy+3zzOUWBi9TvRhEpzjg5\nR1O0IHWutQqAtArFWDkAaHW34oTzOAZbhnilr2B1q23bF2LBUySg5jzouUcY7eRQKwLj2w8n/LkX\nRcp9jCDClWDeDwJ17/O1jYcJLQLRNiAdUYb/Xa8QQ64dtXZJicy1rE+l2hdHtwF6RT2++sGXYQIe\nXigjxu5owIx9PxXSc0mxbsJGlNk3wOFqgrvbjcUHFqGwrgDLx69AfGw80s0ZWDdhIwrrCgSRUGFd\nAfLeyvES2JhMQO6ts1FYV4DFBxZJ9jndnKF6PcPER7zwqKS+GA5Xk1e/WR/Z/GTRGYHedGLnWs7i\nhPO4sI+Jidj5O+E87nW8HMEWWNCzOXyIlHMRqjUqiYAIgjAEQQSUGJhIQC6KBEQQBBFVuLv1i4Di\nYmMQHxdDkYAIgiAIgogKQvV1oL/tydnNXvCLI7GIywWqv+EaEURMpNhpBHr6yJxKWoViDlcTHv3L\nPHzlOodH33lEcK4xh5IacYUep2U4iDbUOknVIuf0VXOMv0iJwHyVDzf8ucb70/2BIKIBXymU1CJ1\nv/Z1DxcLLfTiqx29UR39vY8p2cW3yyLZANKiEPH6VOn8KImIlBALoPn0YWJs6ePw8r3bUWbfgPPN\n57zOH+szE+akmzNQNa0aVdOqUZ5VgalDs4VoPrb0cUJ0H1v6OFRmV6Fi0mZ0eXr9aQ5XE1rdbdjw\n8a/w2IhFiI+V/oifjZ0vEVV+TS4K6wq81mhMAMX/z7a/Me1PkuNgSx+HLZN/J/SfHzP2zC+zb8DL\n926XHUc+2qTcPqPXB0bWqzXaIuFNOKy9wx2Tx+PxhNqIYBHJeUzlsFotUdmvcIHGVz1rfteAc84W\n5E++FSaTb4euJTUJzS3tPsudd7pwwH4Oo2+9ASNvGQAAyBo92G97ox2au4GFxtd/KL976FE7hwM1\n3w9/2oStf/ocP/7hINz6/Ws1H1996Aw6u3qQN+kHUfNcoHtL8KCxDh401sGDxjo4BGqcaW0Ueuj6\nMRY+9QFB6IG92NcihGApL842f4HrEgfg8ZG/wN4zb3illgB6HaZKjjl/bA7VnPc1Xnpt03Me1NSp\npi6+HIs6IOfYNdpGIrTQuij0RMO6KNzuyXrufUrbeGrP1GDq0Gz/jObakWtPvD1YY+yrHSZOKc+q\nUHy+2x0NSDdnAIDX+RHXL14n8BFsmPiGP0Zp3SsuJ16LsIg3C9+dh+rpbwvt8udiXu3DKLItxQjr\nqD79FPediYly9t6PVybvQOnRtXB3u7Hqx2swdWi27FiysWGCKvazVH/k+qoGLXNIzfxSul78rVuu\nvBHzXsvahdY58oTyPh9M9K6LKBIQQRCGcLm5HSlJcaoEQFowJ/dGFmppo0hABEEQ0YSQDixW33Mj\nOTEO7Z3d6OnpN3p2giAIgiCIiEFr6ieC8JVCRG1qrlU/XoP1E8qRlmhB1d93CV+q8/WwFBZ6bVNq\nP1QoRWHwx0ESiDQ3WlKtsWP49CJyc4UgCIKh9l4TiAgSUpFx9Nz7tLTHoqn4i6/IdsGK6uirXUA6\nBRoT+EjBniWsPl4AJI5wJLVOqMyu8hIAsYhCdkeDZARMVpdUJEK7owE5e+/Hq5/9AQBQenQtMszf\n87KfjypUZFuKx979OU44j6Orx43CugKvttq6WlFYV4DaMzV4cG82Tl36HN9PvREjrKNQmV2FqmnV\ngkhMLMBh/4tTivERk8SRPfl5LY5i5Astc0jN/JITBkuJtKTKqEFc3oh5r2V9JY6OSXyHkevTaIRE\nQARB+I27qwdXWt0wJ0mHEvQHVqeLREAEQRBRhSACitG3HE2+mn6yrZNSghEEQRAE0b8w6iWl0WHs\no/XlKRF45JwxWp2ndkcDHnv35/jPYxWomLRZSI0hrlOLI0VL26FGTgCk1tElV0bKYagXPaIidky6\nOUOxP5QSgiAIhpp7TSBSyUgJENTao9dOo8WawRYc6FlLilOgDbYMEQQ6cnWJx0mcukvudz7lFNvm\ncDUJ/5fUF2P5+BUoz6qQjHDD6hLX29PTg5L6IjhcTajMrsKb02tkx9yaMhBDUjMxwjoKFZM292kr\nzhSP8qwKjLCOwqCUDGw5sRmrfrymj2CHt008V/mUYuxnAIoCp/yaXDy4Nxs5e+/vk85M6pz5i1oR\nHS/wkhJ5ab1mjL7G+HrVoEfAHkjCxQ6jCMSzQKmtYEIiIIIg/Obblg4AQEpSnOF1x8fFIDE+Fq52\ncvISBEFEE+5uJgLSHwkIANo66PlAEARBEET/waiXlEbUI/d1M0EA2l5y+3KuqHW+2NLH4c3pNaia\nVi0cJ2WX+At6KfivvX21LXZGhhNqx07qGhb3x6jrXK8TjTlhpfoTKAcdQRCRi6/7QSDuG0p1SkUy\n87dOvoxRqBUcGCUmV7uW5Lfb0sfhjWl/8hL6igU4SuJiMVLPFLl1AEtPydJvrZuwEaVH16KwrkB4\nbtodDV4CG3EEGVv6OOx7sBbVOW/3STsm1e+S+mKs+vEaAEBhXUGfdUx8bLxQf3VODZaPX4HSo2sl\nIxXxoibWr9ozNSisK/DqH6uPRUCSgomXWBozOdENv05Smje+9s2rfVh2rSWOVsTKO1xNklGftAqc\neVGRluOMIJzWOKH8my9QbQZrfEMxdiQCIgjCby582wYAMCcbHwmot944uNrc8Hgo5QtBEES0wCIB\nxegVASUxEVC3YTYRBEEQBEGEO0a9pDSiHnEd/nzhTkQXel5yywl2tLR5vvkcbOnj4HA14cG92ZLO\nJvb1vq+6tKR94J2RkRQdS+wwEzs5xcKmQDhJ1I6ROJqCXBm99YcbkWo3ET3IiRHk9kUqelJv6a3T\nHwdwMJ3/wYyipBQpx1d74kh/WvvA6pXbLl4HMDELS0/J2relj0NldhXKsypQUl/sVYYXnojFK7b0\nccK6Ie+tHOTuy+kTcYeJVdZN2Igy+wYAvcKb5eNXePWNtX2++RwcriaUHl0Ld7fbK1IRHymJpdAc\nbBkiRFFsdbcK5flIUOx/sbAn760cr75IiYv4bW9M+xPSzRmy80ZuTvG/r5uwUVKgJnXsYEtvGjUm\naGLbxPNC7VxmkY9y9+WE5AOIQKS9CpQo0Z/6leoK5HgHYnyl2gi2mItEQARB+M1XThcA4NrUhIDU\nb06KR3ePBx1ucvQSBEFEC0I6sFidIqCEWAAUCYggCIIgiPAh0l4C661H7ktbvXVRBKHow4iX3Fqj\nA/COmXRzBm5ItsLZesHrOP7rfV8RFbTazzvAwik6lpJTTexs5PsrFWUhWLZJlRPbZ2T94Uak2k1E\nF+I5yAsZ+uP8lItwIlVObpvWZ4u/Y+zP8cGMosTX4W9EQLl6GeKUVUqRZcQpwfJrclFYV4Ai21LJ\nVKMsKpAtfZyQwpLtyxp8jyAQ4tsHesXJcTHxeGJ0gSDUEc83W/o4FNmWYrBlCByuJjy+fz5qz9QI\nZdLNGYKwh61zqqZVCzaV2TfA4Wryio6TX5MLu6NBiKJYnVMj2C717OfH44TzOM42N6Lu7EGvyDq8\noIsXMJXUFyPdnNEnVRcv1mb7+PER33dYP8WCbjlxT5l9Q5/UduKIXGrn1mBLb8o0PuqS1HFS661w\nuV/y4xloUaLRa5lwioYkh5o+B9v+sBMBud1uPPXUU8jPz8dDDz2EAwcOoLGxEXPmzEF+fj5Wr16N\nnp5ep9GePXswY8YM5OXl4b333gux5QTRfzl/sQUAcG1qYkDqNyf3RntwtZGjlyAIIloQREAx+paj\nlA6MIAiCICKTnp4erFq1CrNmzcLcuXPR2Njotf/gwYOYOXMmZs2ahT179igeI/e+CAC++eYbTJky\nBR0dHUHpV7Q7bXmHFy9yAPx7KRsJL3T9xZ85EcnzychoVb7mCXPMmEy9zjSHqwnOtgt45shqry/x\nxV/vy2F3NPg9n4M9t+Xmij92MAcm30awHTr+Oqki8f4SqXYT0YV4DrJ5yUQC/Wl+KkU4kRJKKW3T\nIgDy536rJFgy4h7OBB6RAC8E5lNS8QIVqXPGM9gyRIj2U2bfICnsYELj2jM1ACCIbF797A944dhG\nQQgkFreU1BfjsRGL8PSHTwlCnfyaXDhcTYLwx+5owMJ358HuaEC6OQMv37sdpUfXAvCO6jPYMgTz\nhi+ALX2ccH5s6eMwb/gCISIOEyi1dbUKacX48rwISWo87I6GXnHNXWXYcmKzZNQgsYCJv2ew+nP3\n5SBn7/2CgJvBxo1P5cXX4XA1SaZgFQuA+HuWeD4oiaClYGVZ1Cdxf/ly4uuOT8XG1+WLQPwNwM95\nPk2aP8j1KxBrGSPrCtT4htvzMexEQPv27cO1116LyspKbN26Fc8++yxKS0uxZMkSVFZWwuPx4MCB\nA3A6ndi5cyd27dqFbdu2oby8HJ2dnaE2nyD6JeedLsTGmJBmDkwkoNSkXnWtq90dkPoJgiCI4OPu\nZiIgfZGAUkgERBAEQRARyf79+9HZ2Yndu3ejqKgI69atE/a53W6UlpZi+/bt2LlzJ3bv3o2LFy/K\nHiP1vggA6uvrMX/+fDidzqD1Kxgv/UIlCOFfaPNf6Uo5teS+plZCb6oGrYRi/Pxx4kk5KfobvDPJ\nl1Ak3ZwBjwcorCsAAKy7q0z4Cl7JGSRGKg2WlnPAf2EeTAGQ0jyTsoM5NOVslKqTpdYIpkNHrVAo\n2ggnBxLRP5G7b8jti3bE6Qil7k1qt6nB33WlOOKKEVHqpAThwUJvm2IxijglFS8u8SVuZ9F+pNbB\nTGg8fegMPL5/Pk44jwsimwHJAzDY/H3MGzG/j1CYRbZ5+Ic/84q+19XjxqL9jwrCHwDItNwotGtN\nGQh393e+MmZL7ZkaFL6/GK9+9gfBttozNXj6w6eE5zfrV3JcCsqzKvqMl5RwhdnNpzq7bcDtAPoK\nhhlKUXIGW4agalo1qqe/japp1X3KpZszvFJ58etAX5EKxX+3SLXvC1/iPiXEgqfK7CqvCE9qIyAG\n6hpj0aH4NGl6EUdqkhIChSNazoNWwq3PYScCmjp1Kn75y18CADweD2JjY/HZZ59h/PjxAICJEyfi\n8OHD+OSTTzBmzBgkJCTAYrEgMzMTp06dCqXpBNEv8Xg8OH/RhfTrU3Q7cn1hTu4VAbW0kQiIIAgi\nWvguEpDOdGBXRUCtHZQqkiAIgiAiCbvdjgkTJgAARo8ejU8//VTYd/r0aWRmZuKaa65BQkICbDYb\nGhoaZI+Rel8EADExMfjd736Ha6+9Nphd8xIsGE0oIw2JnSFyUU6kxBNi/HHeSO3T8jI/FONntDgs\nGsUOvuAdDEr7AWDTPZtRnlWBf333USyrL/RKfcE7g5TmqNi5pFWMFYpUOf44mZWQusYf3z9fl9jP\nH6TsVOOMDuV9kyCI6EAqKgxDSSgltU3rvUjtcb4EoHqj1MkJIUIR7YIXoUvZqDQGvMhHnJKKr0fp\nWSKuU2ptvG7CRuw98wZevnc7rCkDkRyXguXjV6DMvgFbp+zwEuAw+LnFpw/b80B1b4qu6W/D2XoB\nJfXFWPmjNQB6n83O1gte9aybsBEAMHVoNsrv3oT/PFYhRNQpPboWz935PKYOzfbqT2V2lWDD+eZz\nXtF3yrMqUJldBYerSdjGhE7rJmxEujlDiGAkhtUjHtvaMzVe6zkmqhILsJhdLJUXs5FfeygJusXn\nnNnAX8u8CFp8fsVzQU5QJ0bNvULttRPoa8yoiG68wF6uvnBcg8ndA3jCbQ355T++1HVcnMF2+I3Z\nbAYAtLS0oKCgAEuWLMH69ethMpmE/c3NzWhpaYHFYvE6rqWlRbHu665LQVxcbOCMDxFWq8V3IUI3\nNL7KXLjcivbObgwdci0sqUmajlVb3np9r6PY3e2BJTWJzolKaJwCC40vQfhHFxMBxeoTASXExyDG\nZKJIQARBEAQRYbS0tCA1NVX4PTY2Fl1dXYiLi5N91yN3jMfj6fO+CADuvPPOIPWmL+yFYSDCn4cy\nvLgaR5faL3P5F+l6X4IzYQYAxWgmfD18uoJgoibSkZpILYGaW75Qc57kjgP095/Bzl1JfbHsl/nM\nMVhSX4wi21KYTH33s+Nqz9Tg8f3zFeeqr2hBSn1hDrJgnyOj62NzjYe/xvXOCyNgkQjYeZW7JkJ9\n3yQIIvIx6j6i9xnu6zi19YqjE2ltNxzupw5Xk9e9n9lYZFuKMvsGL/v4ZxQrK143smcn66e4XvYM\nzK/JlVxrSq2D+ShB5VkVQqQfKbtOOI97pSzl2+Tte3z/fDxlexrP/tdqnG1uxLq7ylDyQRGsyQPh\ncDVh8YFFaO9uQ3JcMvY8UI2szEl46XiF0H5XjxtbTmxGVuYkoT9dPW6s/NEalB5dK0QDYmuogoOL\n4PH0CqvZtsUHFmHTPZu9xqjIthQL352HTMuN2PNAtbC9sK4A5VkVXuPPzlGRbSkK6wok17d8ulbx\nfFNaB0rBn/PyrArhWDnxl1jQJRXRy5cATrxPPL/4+vn25foT6GvNqPrF15n4/1D87aIGPfMgVJxv\nPodH98/Fx499rPnYsBMBAUBTUxOeeOIJ5Ofn44EHHsDzzz8v7HO5XEhLS0NqaipcLpfXdv5FkRSX\nL7cGzOZQYbVa4HQ2h9qMqIXG1zcnTl8EAAywJKC5pV31cZbUJNXlTZ5eR/HlK+1obmmnc6ICmruB\nhcbXf0hERfgbCchkMiE5MZZEQARBEAQRYYjf5/T09CAuLk5yH3vXI3dMTEyMV9m0tLQg9ECZQL4w\nDIeXkEqwtApySH1JKyfw8eWs4r8UVuvM0uI8CBa+Xo6LxyEUAiAtL+/tjgZBIKJGpKWmfjavlIQ1\nbDtzMm2+dysAeDmTWF1l9g147s7nFcVq4nFnc80XwTxHvINFiyDOH/EdAOH8hsqpIyW08uX41iJY\nCqW4iSCI8MSIe4Le54Oa48TiaiPuY+I1GxMCAcaJkuXSNcmJnaTu/UwcwotpAGnhBb9u5PuglMKN\n1edwNQn7fPWDFyczkRKDtXnCeRyP1OYj03ITfjt5q5eASCxcefne7Sizb0DFpM0Aep/DA5IHoPTo\nWgBAl8eNr10OfC/1O3FRXEy8YMueB6rhcDUJNi4fvwLPHFmNZ46shskEr+hIAODx9NrKBEwOVxPO\nXvkCBQcXCdGImI3V09+WTAfGb7M7GoSoPnKpw/jzyERCJ5zHBZv58ZEbdyWUBGJS+/hzz1Dzd4vU\nNSJnt5T4SU/f/EVrW0rXKOuPGqF2OCFnp9ScCQWDLUPw5qw3dR0bdunALl68iPnz5+Opp57CQw89\nBAAYPnw4PvroIwDAoUOHMHbsWIwcORJ2ux0dHR1obm7G6dOnMWzYsFCaThD9kvPO3hexg29I9VFS\nP0kJsYiJMcHVRo5egiCIaMHdzURA+pejyYlxaO/ojQJAEARBEERkcMcdd+DQoUMAgGPHjnm9y7nl\nllvQ2NiIb7/9Fp2dnfj4448xZswY2WOk3heFA+H+ojMQ+EqZJI4KI/eyVUvodd4hpaZsqF5CK/VF\nrV0sjUGw7WcONrUCIJYOjjnbpEQp/Hj46j+bD3ZHAwrrChTHkjmZimxLYUsfJ+loYv3ZcXKb5vRR\nWuZloBGnZanMrhK+uleyUW9qA3F5h6spZNcTmzNSDjMpfN2bxGXDKfUDQRDhj5b7hd57pq9nJPBd\nCiYjU1LyQgWlZ7dUGh1fSNUrdw/mI7CI7/1MHGJLH+eVzkoq4ot43chHiScYtQAAIABJREFUOZLr\n+2DLECwfvwIFBxcJz5LzzeeE1FR2R4OwnR97Jhoqsi3FY+/+HLn7crzanDo0G7+fWonfTt6Kkvpi\noa0TzuMA4BVBaOrQbOyY+irSzRlC/6cOzUZldhVs6eOw+d6tuD7pBjx753NwuJqw8J15yL11tlAv\ni6DEbCw9uhbZN0/Dpns2CxF8WJ8driZsumczqqZVe43LjdfchF+MKsDj++fjhPM4Wt2tKKwrAAAh\nZRi//mNjzsRbRbalgtiIF1azc876y9ZudWcP4pHafNSeqfE6L2x8pZ7t4nkz2DJEEFMxlK4Pvk72\nc+6+HEForfXvFr48bze/fmOCGXa8uAzfL1/XlZ5rXu26h7dBrjx/jSpFPgpXfN1nQ23796/5vq7j\nwk4E9Nvf/hZXrlzBSy+9hLlz52Lu3LlYsmQJNm3ahFmzZsHtdmPKlCmwWq2YO3cu8vPz8cgjj+DJ\nJ59EYmJiqM0niH7HuasioCFWc8DaMJlMsCTH44qrkxy9BEEQUYK/kYCAXhFQjwdobnUbZRZBEARB\nEAFm8uTJSEhIwOzZs1FaWorly5fjrbfewu7duxEfH4+SkhIsWLAAs2fPxsyZMzFo0CDJYwBg2bJl\nfd4XEeEH//JU7ESSemEfTZGUxH2Xe2nuq478mlzVQgYjYc4bNe1KpYNT4yxReunOHCRyX46zcryT\nqfToWsHJU3umpo/tSlGFpBybvPNRSzSZQCJlT0l9saxzixfhqRWdSTmsgO/EXszBGQr8EQ/6qjcS\nvlj3l1A7soj+hb+iw2DhS0Apt13LvcfovvHRW1gUFbED3qg25CJkiJ87asdEql72zOfhxcBs3SgW\nRbDtJfXFmDd8AQrrCoRnlJRghBcLidvixT2s3WeOrEZnt1tIm5W7LwcP7s1G7ZkaLNr/KFrdrTjh\nPC6cA4erCTl770dOdTZGWEdhy+TfCaIafn0xwjpKWJOwNh/fPx/Lx6/oM94nnMdlx/XUpc/xdVsT\nltUXwdl6Ad2eHlSe2inUy9tVWFeAi61OvHBsIxa+M89rnGrP1CBn7/1YtP9RYVvuvhwU1hVg5Y/W\nICtzEp6783mMsI5CSnwKHhuxCIV1BVh8YBGKbEuFdQgAYd3qcDVh3vAFKD261uscsL6ccB73SoHG\nREIP//Bn+P3USoywjpKcM/y5k1qrMPgIQmyO8FGjpIRbrK3K7CpUTasWBO1y60Z+Tcnbwpcpsi0V\n6uDnPX+98seJt/kS92kRPIvxdb8QC5eUyksJf6TqCWeC9bdpsMbB5OlHHvVoTN1CKWkCC42vb/7j\nd0fRdKkVmwvvxqFPvlJ9nJZ0YABQf/wr/G9TM3Im3Ixpd96sx9R+Bc3dwELj6z+UDiz0qJ3DgZrv\nz+2048xXV/AvU/RHcvzvvzrx6f9+g6dmj8btN11voHWhge4twYPGOnjQWAcPGuvgEKhxprVR6KHr\nxz94R4zSfj6UPnsZLE43IXVsuIbEV1snAOFL4vKsCsW0aVJjyZwTSscFCi1jwsqKz614n1oRCp9S\nAJAXf/CpFliKilOXPsey+kLcmHaT15fuUrbJ2aA2pZn4XIUiVRabN/w84ecem3dqzydfTnwMS/sW\nKqT6oNQvX/en/kSo5qdWaF0UeoxYF2mdb6G8fyql+lGyScs9Ve656Ksetc/NQKxffK3PpNIZabnn\n8s8TJjqJj433eu7aHQ1eqaIACBFe+LZZ1MC2rlZ4PMCzdz6H0qNrsXz8CpQeXSuIeArrCrB8/Aoh\nRRV7Nua9lYOzzY14ZfIO4TgAePa/VsPjgSDkYUIXAJj+5n0YaB4ES0Ka13M2pzobCbHx+MWoAuw4\nuQ1FtqWYOjRb6CdbXzDbgN61Rt3Zg3j4hz/zGlsAyNl7P9bdVYaHf/izPmPyr+8+ipxbZmLzJxVY\nP6Ecy+oLsfUnvxfaqz1TgxHWUUJ96eYMvPm31/GD634gjAEb18dGLML6hl/hzzMPoO7sQWw5sVlI\nH9blcaPJ9RWqp78tjGPurbPx2l93CqnKWCovoFe49PQHS+Fsu4BXJu+ANWWg17lytl7AI7X5KL97\nE3ac3CY5j6T+TuDHJt2c4bUO5D8w4K+t/JrcPung+HU5q6fIthTWlIEA4HPNJP7bhkVcEq9ZmXha\nLJSXq1PqHsRQsoVf66lBvIb2tSY24v4SzL/p9BCsZ5CedvSui8IuEhBBEJFDT48HTZda8b0BZsT4\nEclBDQPSkgAAl66oFw4RBEEQ4Yu7qwfxcf4tRa9P640C2fh1ixEmEQRBEARBEDoQf/Eq9WWj1Nev\n/O9yX4cqbQ9UPwLxpT77opg5reT6w17iS33NqzYij9FoEQDJfSks3qemTXFEA1+Re9i/8qwKFNYV\n4Df/XYaBKYNQMWlzn0gDal66s3PmSwDEvtBWU3+gz19+Ta6QNo3Z5nA1wd3tRmFdgaY0MeIx4wmW\nAEjKTrnr1Nf5jISvz31hhP39JdoRER5ouR8qRZlQM/f9uT6U7FQb+UJrG/y9TGn9oTbCh1EOeoaa\n9GKsT0wswSOV6kv8c+2ZGiGNKNArYo2PjRfSWzJs6eOEVJ9sLcUi6PCpQtn+Z/6/5+BwfYVVh5/G\nlY4rgqCn4OAiLD6wCK3uVoywjhKi17C5t+eBalRPfxvWlIFwd7vx9AdLsfDdeVj5ozWCAIhFk0k3\nZyDdnIEbr7kJz921QUjNxfpRnVODX4wqwNMfPoWswffg8f3zhX6ytUrurbNRZt+Ax0YswvLxK1B3\n9iCWf1AspMBiUY0AwJo8EL/57zJhvjABkLP1As42f4FrEq/B91IH47YBt8OaPEgQstgdDVj4zjwh\n4o4tfRwcriZU/X0XSo+uFYQ0bL0DAI7WJpT+11oUvr8YP8m8DyOsoxAfG4/N927FK5N3wJY+Ds7W\nC2h1t2L9x2vR6m5DYV2BsI1F1HnmyGpcaP0a6+4qwwjrKOFcMbHWCOso/H5qJR7+4c/6pMXi5xcv\n2mERofjUcEyAw+aWUvRM/m8Q1mdb+jhh3fnMkdWYXn0fcvbej9ozNX3WePwc5qP2APCKMiSev2oE\nQLx9Yvi/s6RsYXOKjaHadR6zXa6fvuzSip56grl2C9YaKZhrMRIBEQShG+e3bXB39eB7NwQuFRjj\n+mt6RUDfkAiIIAgiKnB3GyEC6n02nL1AX+4TBEEQBNE/CEcnNv8i05fIQPyyU0oQJFc3Q0p44S9K\nzkejGGwZIpmmQyyQkRKeRILjXuys8cd+5uCSm0diJxH/e7o5A8vHr4DJBMSa4iRTifFOWF91K9nM\nnEZSjitxnUaLzKREMPzc4Z1kLJ2FOO2E1jYCYbfSOZZyIuu5FkJ9/RgxjkbOn3C+jxDRh1IEGV4A\nKycUVTP31a4LlOrwda83Arnnotp7lLh/Rt6jxaIkcXoxOaTWfr4ET0zMUXp0LV6+d7sgIiqpL8by\n8Sv6iCVYmqzaMzVCtJXzzedkn+9Th2ajOudtbL53K9ISeyP0jLCOQlxMPJ4YXYCU+BQ4XE0os2/A\nvOELhGMdriacuvQ5SuqLserHaxBrisO6u8owdWi217nhhR4rf7QGZfYNwr7aMzWYXn0f6s4exI6T\n2/Dcnc+j7vwBPHfn80I/zzefw8J35uGZj1Yia/A9WFZfiAV/+RmW1j+JaxKuw8oPn8YDb07BskOF\nuNJxBUDveuYr13cpq4psS5FuzsDUodkov3sT/vD5dng8gLP1Ai62XcDCd+YJ58MDD545slo4F2yc\nWQQclrZrsGUIsjInwZo0EP/X+TF+Pnwhtnz6n3C4moQoSmX2Dag9U4PH3v05nr3zOVRPfxtbp+xA\neVYFltcvRZPrPAoOLgIArPrxGmRabsJtA273GuPCugJ09bgBQIhWJF4fi6P5AEBXz3eCZl4YdMJ5\nHA/uzUbuvhwAEIRi/N8YYmEZ2863l27OQNW0auzN+TOqp7+NqUOzJdd47GexCJ0XJonxVzwtl8aW\nv7b4a1VJhCdGbi2rBf5e7i9iu4Mt4g7WGilY7ZAIiCAI3ZxzugAAQ6xBEAFZeqM9XLrSEfC2CIIg\niMDj7ur2WwRkSYlHfGwMzlIkIIIgCIIg+gGheBHKt60E/3W03ItqX/Wq/creiJfVPLzzKhgvZOWE\nTvzvctEIwh02D/ydp/yY8F9z8w5EKecx27f0UCHa3O0wKQStlhOZ+Io8Jd4ndlxJOWn5r8WNitYg\ndqADfecO7wDjf+YjPKhtwwjE50qpDSUnsh5CKQAyYhyNEjKFo5CUiAy0zh1fTme5yIC+ysrV52td\nEMo1lBy8IJOJO6TKVGZXweFq8oqa429/pISkYlESL1yQa4tPS8XXKz5fcudwhHWUUH7dhI0os2/o\n88y1pY/Dy/duR+nRtSisK0CRbalgJy+a5o+zpY8TIgOxSC/lWRXYcXKbIDQqsi3F8g+KkbsvB7Vn\najDtzakofH8xpg+dAWvKQDhav8J/HqsQnld2R4MQcc/uaMCL9hdQenQtimxL4XA1we5owDNHVsMD\nD37z32VYN2EjbhtwO+YNX4AtJzbD7mhA3ls5cLiaYElIw6/vfhHzRszH1p/8Htum/AEDkm7A83eX\nCyLma5OuA9Arbn5k+HzEIAanLn2OvLdysPCdeXhwb/Z364CWc+jq6cII6ygsG7cCF1q/xpt/ex22\n9HHYm/NnVE2r9hpnNpYOVxO6etxYfGAR7I4GnHAehznBjM5uN444PsRzdz6PdHMGCusKhLEfYR2F\nQSkZuNR2CenmDJTUF8PZegHOtq9RMm4lKiZthsPVhNKja7Hqx2tQUl8MAMK5qMyuEqI08lFr+N+l\nIvnseaBaiPbI9nX1uDHCOgpvTq8R+gjAqwz7+8TuaPBqj59jLHoQP3fYz+K1SN5bOYLgiEcs8DcC\nZhubc1Jtiu+latdPUgIivZF6fEUN01qXnKAwFITTM0MPJAIiCEI35y/2Ol0HB0EElBAfC0tKPL65\n0g6PxxPw9giCIIjA4u7qQXysf0tRk8mE69IS0XTJhQ53t0GWEQRBEARBhCehehGq1tHk6ytYcZ1q\nv9znj2HoeVktZT8vXAoVzK55tQ+j9kxNxL9sVorepKVvctEgpByl/Ff5ubfOxtetDlxqc0Lu9RET\nfInt9GW7XD94ARDvpBXXKdUnLUg5RaREUVLHiJ1hRbalXk4yMYG43/DiLjXCKKlzw45VGjt/HVBG\nonccpRyVaiM4KdUZbiKI/kZPTw9WrVqFWbNmYe7cuWhsbPTaf/DgQcycOROzZs3Cnj17FI9pbGzE\nnDlzkJ+fj9WrV6OnpwcAsGfPHsyYMQN5eXl47733vOo/ffo0bDYbOjq0fWSrde6oKS8liFVbVgqW\nHkrpfhJqZ7IYNk7itFhiBluG9EkpJOXo19qu3LNM6me5NG2FdQVCSimpNEziZzcT7jAxCC/8EJ9D\nfp04dWi2EOGlzL5BVnArJY5lPzPhDzt+6tBsQTxiTRmIm665GSv/zzPYe+YNpJszUD39bVRNq4bD\n1SQIMVgEnUf/0hvJ51LbRaz88GlMr74Piw8swqofr8G2n/wBKfEpOHXpc0yvvg9LDz2JKx1Xrqbu\n6r1+l49fgdsG3I4H92aj9Oha/M/l/4GjtQmX2i4hOS4FObfMxOWOb3Ch1YG6swfxvP05PHzbI9hx\nchsqJm3GugllSI5LwQnncSytfxI9PT0wmXrFZL8/uR2WhDQ889FK1J6pQbo5Ayecx73W3MvHrxDO\nw5x/mosujxsL35mHR995BFc6ruC3k7eiPKsCLx2vgMPVhMrsKjw2YhHK7BvgcDWho7sdT77/b3jz\nb69jx9RXhfRjvz+5HYsPLELBwUVo7rwCa8pArzUQOxdMlMPPGbl1Hi+mZtGfHK4mOFxNiIuJF86t\nw9XkdbzD1SS0x1LH5e7LESJR8fObT4fGBF9S14LD1SSsLfn6leYiPx+Vfpb6ndkml05YbJ/UNib8\nkvsIgRcQSdngC/7vP3/vsVK26q3PiLVONKybSAREEIRuzl+NBDT4htSgtDcgLQmd7h5c/AelBCMI\nIrI5fvw45s6dC0Dbi5v29nYsXrwY+fn5WLhwIb755hsAwLFjx5Cbm4vZs2fjxRdfDE2nNOLu8j8d\nGNAbKc7jAc45KRoQQRAEQRDRTyicV2odZ0xY4Qv+ZX6RbanwUtuXU1/8ElarAEjO4bVj6qtIN2cE\n7CWvmn4BvWPx2Ls/R+6+nLB+2azGNrEjQa/zlX25z45j54p3HDLHHHPaVP19F75nHoLn7/4Nfjt5\nq6yYSEn8Iv5dbcoWsZNWCX+c6nLXmpQTVPx1NusDc9gp4a/oRK5OJWGUlmOl8MdhEyhnjx4BkJIz\nXa994SiC6G/s378fnZ2d2L17N4qKirBu3Tphn9vtRmlpKbZv346dO3di9+7duHjxouwxpaWlWLJk\nCSorK+HxeHDgwAE4nU7s3LkTu3btwrZt21BeXo7Ozk4AQEtLC9avX4+EhATNdmudO6GYa0zgqEV4\nZHT7asrw5RyuJqybsBFTh2YLabGUEO/3FelDyj72HBA72vlj5SKOyImUmDCjPKtCMp2pOEoTv58X\ngrCoQvxzjok32O9MKFRSX4zaMzVCvx2uJkEoyotj+eff+eZzeObIaswbvkAQoTDxSEl9MVb+aA0e\nHDZTmLvp5gwhfdVjIxYJAiRn6wVsnbIDv777Rfzloffw28lbkWm5CU+MLkCZfQOsKQNRnlWBLSc2\nY2DKIFybeB1S4pMxwjoK1dPfBgA89u7P8fPaf0FTy1d4bMQiVP19F65LvB5ZmZOwfPwKbP6kAtcm\nXIfvpfam6JozbC4q//oHFNmWAgC2nNiMx0Ys6n2We4AbkgciKTYZztYLaHKdR3xMPFb9n2cxwjoK\nP6nKwqPvPILpQ2fgX999FNOr78PCd+fhhPM4as/U4NmPVqHN3Y6k2GT8y23z8E3HJRw5fxjO1gto\nvPIF/vXdR3HCeRwlHxQJachS4y0YmDwIGz7+lSC62ZvzZ/x28lZsumczVv5oDS64vsbiA4twwnnc\n67wAEEQj5VkVWD5+hdc6jxeIMfg1A4sGVFhXIKwReYFzujlDKJP3Vq/oh22rmlYtCGqk5nN+TS4e\n3JuNnL33e0XdYv+X1Bdj0z2bsemezSg4uMhLwMRfQ3KReMTzUS4tovhaZvNeK6wutQIiI9YZ/qBk\nqxFCR61Ew7qJREAEQejmq4suJCXE4vq0xKC0x9ppdDQHpT2CIIhA8Morr2DFihXCl1daXty89tpr\nGDZsGCorK5GTk4OXXnoJALB69WqUlZXhtddew/Hjx3Hy5MlQdlEV7u4exBkhAkpLAgBKCUYQBEEQ\nBBFA1AiApEL3y9XFHDVl9g3CS21fwgwtL2HlxD5yX8sG6iWvGsEJa5f/Ij1cXzZreakuTgugp0/M\nGcDqYl95M8Rfb5fUF+OxEYuwdcoObDmxWTLSDT//tMxZqZ+lEDtpfQnQtDrVxXazMZCax7zIjd/O\nHJ68wEqKQH4BrVYwqKdeqWhOeo8NBfy8FtvCpw7UWzcjnMWG0YrdbseECRMAAKNHj8ann34q7Dt9\n+jQyMzNxzTXXICEhATabDQ0NDbLHfPbZZxg/fjwAYOLEiTh8+DA++eQTjBkzBgkJCbBYLMjMzMSp\nU6fg8XiwcuVKFBYWIjk5WZftekScgUYsDA7V9csLLpXK8OI+u6MBD+7NxuIDi1B7pgalR9f2iWKj\nFl/3PT4FJPufd7Qz2+yOBiGiXe2ZGq82pCLdARBSleW9lYPCugJZG6XsYyLe8qwKlGdVCOVOOI9L\nPp/Z7+nmDCGiz7oJG4VUaSzaDR8Jhk9T63A14cvmRrzwf8uEaHivfvYHlNQXY97wBSg9uhZ5b+UI\n/c3d15t2q7nzCpbVF8LZegFFtqVY+M48LNr/KLIyJwnCpE33bMaOk9sEgZGz9QIqs6sw/4eP4Urn\nP3D/TdMA9K4R0s0Z2DL5d0iNt+CVn+zAwz/8GXJvnY3LHd/gzb+9LvQ3ITYRv528FSecx/G7k6/A\nEp8Ga8pAFNYVoLnzCkrqi+BsvYAb027Gjvv+iKpp1RhhHYXrkwbgYqsT2z/bgjf/9jqc7Rfg7nFj\n+2dbYDIB/3LbPKy7qwwrP3wal9ouwQMPSsb/OzbdsxkjrCMBAFtOvIRn/2s1rMmDYDIBl9ouAVx0\nxSdGF+AvD72HLZN/BwDI2Xs/nK0XUFhXgMUHesVJN17TK4x6fP98Yd5c6bjiNacWH1iEhe/Ow4v2\nF7zWd+x8M6EXDxMJsUhGDJbmjAmNKrOrsOeBamGNyOYnLyTj22ARjzbfuxXfT70R6eYMr3UQH/EG\nADweCPOWF7KJ7WViNgCCUElpzcbq44VCtWdqUFhX0CeKEX9diBGLrtQ8//XcR7WIEH0h177W9ag/\nzwOp9XokQyIggiB00dXdA8c3rRh8gxkmpSTrBjLgml5Hb+PXJAIiCCJyyczMxKZNm4Tftby44V/+\nTJw4EUeOHEFLSws6OzuRmZkJk8mEu+66C4cPHw5J39Ti8XiMiwR0VSB6lp4NBEEQBEEQmvDHAWzE\nl5X8y3Txy1q5r1XVfmnvK82FnE1Go+YlNL+PjUW4oiUqFEsRonRO1bbHUgxIpRrgnSdFtqV4+sOn\nAEBInyAn/JJKKxYIfAnQtNbla7tUGd4hxX8t7yvqRDg41aWcwHlvqY+WpcdxFA6IoySxfjAhnL/3\n4EAKvAh5WlpakJr6XUT92NhYdHV1CfssFouwz2w2o6WlRfYYj8cjvJM3m81obm6WrePFF1/E3Xff\njdtuuy3QXQQQHIGZ1Bz253kjrlsLUtFu/h97Zx4XdbX//+cMM+yLOIIgpmUuaCFeSVvM8uteVFKG\nGV3LzCwqscDcfi7X5bolVlhxM6+Z3WzxukeaW7hlapTGN7M0UwQZGUBlmIFhtt8f4/n0mXFYVNTq\n+3n58AF8lnPO53zO8v6c9+u8X96ukZP7EqK6sWZQDov6ZDNn/yxsDquUd0P7puez1xZRRD7m1zaX\nWu1W0nPTiAqK5t2+S8nMm++WnmekO/mYlJ6b5kaIkCNPf4CkdfdLc668zGKejgqKJnXrSB5el0hu\nwXae3TIcs9Xsij6zaywTu08GXMSIt/LeZMiGJGbsnSY9U0JUN97tu5SBbRLdIsmI54wKipai/ggZ\nrYjASM5ZzjJu5yv0iunDssP/ZmL3yWjUWvSmYkZvS6XaXoW+spgRt4yiRXAMU/ZMIiIwkqYBOpxO\n3OyIqKBo5vZcIBGBnts6gjW/rGLugZkEa0PIOphJ0tpEKfJRRGAkKhXERcRTZCykbXhbekTdw8qj\nnzBn/ywmdJtCqF8oUUHRRARG4oMPfho/DOYSFvbKYsQto2ji15S4iHim3jldiloEYLFbsGGjxHyG\n85bzADhxUllTSYWlgqWHF/OPvZMpMJ5wlT3QFclpwq6x6AJ0RAe1YP49C/nswbWMvW08GpWWdw5l\nMb7bZGZ+M40HVg8gfcdoFuW9wZz9swCIDmpBRGAkye2GovVxSXQ93mEYsbqOUpSr3ILtnDYVsuaX\nVSSvd5HGEm96iFBtGPO//adEjhHklQfXDGDkl09Jx+XQm4rd+rsguwhC2YRdY92u87T5RNvINxzi\n2S3DJfKWOLeoT3atRB1h46pUv0fBkpOSRLQmeR8Qac/tucCtb3k+lyir1W6V/hb3yJ/NW1+vC57R\nty4lIqY31EXA9Ga3Xakddjn26OUSgP5qtpHmehdAgQIFf07oy83YHU5iIoKuWZ5NQy6QgJRIQAoU\nKPgTY8CAARQW/m5MXsrCjfy4/Fr5glBQUBCnTp2qtxzh4YFoND4NKnNEREj9F10CLFY7TicEB/oS\nEux/RWkFBvqi8VFxuszc6OW8HvgrPMOfBUpdXzsodX3toNT1tYFSzwrqgtgp+kdNX9wvFjkvx8Hv\nea9IUzh/LreMnmHzvS0oN7TMte0ivZ4O/uudf2PhUp5BOEfqa2911Y3c8eItf3naA9skSk5K4aTx\nFk1FOEXri4TTUNT3bhvzvcsj/zT0ek8HVkbCOObsn0VEYGSdRCDP57qWbbg2h4/eVEyB8ST5hkNe\n3yu4HMXy6EiXI6HxR4M8QkBjELP+KFGP/q8hODgYk8kk/e1wONBoNF7PmUwmQkJCar1HrVa7XRsa\nGlprGuvXrycqKopVq1ZhMBgYMWIEH310ZVGlasOV2BeXAnmfuNL85bYRNMzW8BwPvRFrvJVZDjH+\nikgl4nxDybaetpj8b/lxQVCKi4j3SqiOCWnJoj7Z0u8xIS3drhXpyucLeR6i/KLu5vZc4D63OMFg\nLpHSEuURUl8Tu08mQBPI4n7vExEYyQ3BrZl653Qy8+ZLEX8yEsZhMBmYuW8qTXybovXRMGf/LOIi\n4tGbisnMm+9WZvFTbyrm+S0jOWMuZs7dC3j7YBYvdnFFhCk1GXDg4F/5i3iv3zLiIuKlZ9H6aEmJ\nHcbcAzNZceRDxvwtg4m7x7K36GtKzQZ0Ac2kssdFxEvzjphvHm8/zCVPGhzDmL9l8OqOl3m5awZR\nQdESwcPphDW/rGLpj4sprHSt447oNIperf6HOftnkdxuKOCypaKCo7HabTy7eTjBviGUVZcCrvvn\nHZhFs4BISqtLeKLDU5y1lAOQdPOjDI8bwWdHV9Ap/Fa2F24hMiCKpn46Qv1CCda6vmnLq8oYt+sV\n5vd8nSl7JuGr9uPVHem8du9CJu15lVcTJrHiyId8cHgpWrWWsbeN55/fzGDp4cW0DL4Bg7kEpxNG\nfDmMYtNpxnQZy7Obh1NYeQqNSiPZgssO/5spt89g5dFPqLJVkRI7jBn7pqBVa5nYbSoD2yRK725U\nXCqZefNAFntAELlEVKrVD30upW21W0ndOpIATSArEleybOBHUt2813+ZRKLxxNSvJ+FwONAF6KT2\nLEg7nrKlnhEYAYkEJ2yOPP0BRm15mpbBraQ+JY9GJWyS2vq3sF17bvCDAAAgAElEQVTlkI8tRcZC\nr9GDaiPOeNqLwv6trQzyvlNXGeV2lshLnBPjhTheVxlry8fb8Wthr/wVbSOFBKRAgYLLQpHB9UER\n0yy4nisbD36+PgQHaDmhN7o5zRUoUKDgz4xLWbiRH6/r2tDQ0HrzPXvW3KDyRUSEYDA0LvnydKmr\nvCH+GoyV1VecXotmQZworkB/5jw+6j9voMurUdcKvEOp62sHpa6vHZS6vja4WvWsEIv+Grjajq8r\nTd/z/roWoT3v84w04ul0Eo4cq92K1kcrLQzXt4jszVnkbUepKHd9i8iei8+1Pfu1gqfD66+2sOwJ\n8R68OR7qcjhcLkEILm6PggAESI42b+nV9S7kedbnEKmtHXum1ZgEmksl5nheP2f/LKps5lpJUuK6\nuhzM3q5vzLbt6ZQXaSdEdeO9fsvcHL7y8nruwJc71C6FPPVHhbfx7XLxZ6+LPyO6du3KV199xf33\n38/Bgwdp3769dO7mm2/m5MmTnDt3jsDAQL799lueeeYZVCqV13s6derEvn37uP3229m5cyd33HEH\nnTt35o033sBisVBTU8Ovv/5K+/bt2bJli5RP7969Wbp06VV7xmvtRPUcly41f2/zdEMIQN7Gwyt5\n5ktNx3Pu8yRFeY7b4pw8aoqcuDB6WypaH60UmaehJAP5TznhaNnAj9Cbil1jdv9lzPxmGlPumC7N\nleK8zWFlxt5pLOqTTVRQNMnrk1jUJ5uEqG5uRNUZe6dx3nqWpzs9y4dH3sdaY2Vi9ylukl/we9QV\nuV1qd9oYd9v/451DWZw4f5zxu9KZ13MhzYOjcDphTs/5RARG8sDqAXz+yJcATOw+mRl7pzGv50Ji\ndR0BeC7uJVYc+RCnCvx8/EluN5RRW57mubiXMNZUkG84xKTd4zhdWYQDB2O6jGV43Aj0pmJUahVv\nfJdJrK4jwqV13nKOGfum0NRPhwYNQb5BxEV0Zs7+WZRXlTNz31SW/riY9/ovQ6PWoFFrSLzpKZYf\nXgqo8EFN2/C2RAe3YMzfMnj7YBbJsY+x7tfV3BTahvXHV/PAzQ9is9vYVriZMN8mvHbvQsZsf4kZ\nd80mIjCStO2ppMankX0oi3zDD5wxF5MQ0Z09+p2UVZUxu8drLM7P5sUuaSzOz2Zi98nM2T+LF7qM\nZumPi8lIGM+c/bOotlXjr/FnTJex5BZtY/bd810SYsC4Ha8w9etJZPddQkJUN8L9w5m4eyx3xtzF\n6/e+xdnqs6w7vpo7Y+6SiFUTdmcQERDJvJ4LpWhDz24ZztpBX0hRqeB30tmiPtmM3pYqRY1a88sq\nZuybgkblikok2r/oDyIykEalZf49r5OZN59lAz9yI8kI5OkPEBUUfVG/EfZFle339XUR4Qtc8mM2\nh5Upd0x3I8V7+x7wtJ/l/Uren1NykpnYfXKDxwtPW1Z8/9Vmr17pN4t8HJKPkZdi/18JkbMx8Fez\njf68XhIFChRcVxSVVgJc00hA4JJ9qayyctZouab5KlCgQMHVgli4Adi5cye33XYbnTt3Ji8vD4vF\ngtFolBZuunbtyo4dO6RrExISCA4ORqvVUlBQgNPpZPfu3dx2223X85HqheFcFQARTS5Pi94TrZqH\nYLU5KC5rGLFJgQIFChQoUKDgaqAxHF91hR+/3PTlTnS5w6gu2Qr5vfKw6J4OeZGmkF5Y+dBat4hA\n9YVUF+H3ve1K9/bcns8upC5EPrXV0fXa2Smvn4Y47vP0B65Bqa4OxHvYdNzl/JA7HlJykknPTfPa\nFry9G3Gdp2RBXdIF4lrxU28qliQpPMtYV5uUX+OZZm3lr00GRqRVn/TC5eJyZAuEg2nNoJx6STFy\np3F9O7kv5/lqu15ebyk5yaTkJLtdKyRf5GXRm4rdJDPk5xb2yvpLEID+ijvU/6+hX79++Pr6MnTo\nUObMmcPEiRPZsGEDn376KVqtlgkTJvDMM88wdOhQBg8eTPPmzb3eAzB+/HgWLVrEY489htVqZcCA\nAURERDBs2DBSUlJ46qmneOWVV/Dz87vmz3mt2mhdc/6lwFMiqyHEysbqiw0dP4W941kOz/s952F5\nOcXcKJcly9MfIG17KuAivqTnppG8PqnOedfzWJ7+gDTXRwVFSzJLD69zyV9FBEZysuIEIzYNI217\nKkXGQknqa8od09H6aCU5q1OVJ6U003PT2HQ8h8y8+bzYJQ2VU0Vy7GP8u/9ybgy9iVhdR9Jz0xje\n6RmJpJGem0ZGwjiigqJZkbiSF7ukYTCX8MHhpS4yRnA04X463j6YJRFrIgIjeXbzcIpMp1jzyyoe\nWD2AcTvT+a3iV974LpPUrSNJXN2PrIOZJN70EDFBLXm5awYrjnxIiDaUNw8uoLDyFON2pnPGpAdU\nNPXTsblgI+CK5NPUr5lUXxq1lpVHPqXc4iLJBGgCebHLy2hVfkzYnUH/Vvex7L7/MOX2GfioNBwp\n+wmr3UZ5VTkf/vQ+Yf5NACdN/XVEBEZSbavmje8ypQhHZy3lfGvYj1btsoHKq8tQo8ZcY+LzXzdw\ntqaMF7eNYm/R15ysOMGnv3xEoG8QSw8vpu8NA9ij30mYbxN0ATre/D6T8qpy3jnkkqKKi4invKqc\n2funY7XbeOdQFqPiUjlrKcNUYyLnt/X0iulDZt58YnUdidV1xOkRzWdxfjaL+71PVFA0bx/MYt6B\nWQzv9AwGcwngkkibe3cm/j4BxOo6YrVbiQiMpFVIa6KCoikyFhIVFC29a0H0Valgyp5JPLwukXnf\nzmLq7TNZOmA5c/bPkkg/ggD08LpEhm/8OyoV9GrV263vCwm5lJxkNh3P4ZH1D5BbsN2rLTEqLpUA\nTaBbfxASdRO7T8bphJnfTCMlJ5k8/QGvGx08+7B8DBLnxTmz1czIzU9d0veCPP26vv8a+s3ijegv\n8pGXX25D1paO/LvU23Fvz+LtmLATL9fObgz7vLFt/MaCQgJSoEDBZeG3Ytfu15iIaxcJCEAXqkiC\nKVCg4K+FS1m4efzxxzl69CiPP/44n376KS+99BIA06dPZ+zYsTz66KN06tSJ+Pj46/xUdaOxSUCt\nm7uiJxScUeYGBQoUKFCgQMH1xZUSgOpzBF0OAchzYVn8bIgDy3OB1lv5PNNIz02TdsvWlkee/gBD\nNiQxYXfGRZE7aitHbc/mmc+1iFJyKZDnW9f7FfIGdS3s/1EXmOF3mannto5we4aYkJYNJmHInSHC\nASh2Y9fVP8RubHmEAUFM88xTvkPZ02HgGU1B7AavT+altvOeDpXGboOCgFRbunU5XupydIu61puK\nJRKOcF7Vlt6l7tiu633K621hryyJ1FNf34HfnfkiH+EU/qtA7hhU8OeDWq1mxowZfPLJJ3z66afc\nfPPNPPjggzz22GOAK0rPqlWrWL16NU888USt9wDcdNNN/Oc//+HTTz9lzpw5+Pi45N6HDBkipTFg\nwICLyrB9+/bLIgZdzTbnjUDZUFzJuCoImvK0LiXvxnA4N2T8FGOZJyFSzFlyqSHPeVgeKUgQVuXH\n03PTcDphUZ9sBrZJdJNM2nQ8h+T1SW4OdrnDXVzzyPoHyDccwmq3ojcVozcVM2f/LHT+EUQFRZMQ\n1Y0l/T/gpiZtmHLHdPINh3hu6wgyEsYxsE0iE7tPlkgaUYEtABi9LZUqm5kZe6cxt+cCYnUdaRV6\nI+Aiicy4azZRQdEYayqYsDsDvamYhb2ypEg1KTnJ6E3FLM7PZny3yfjKSMH+Gn+m3jmd7L5LCNQG\nYjCXMPvu+YzpMpZw/3BOmwrRm4uxO+0k3TyYGXfNRq1So/OLIOe39didNubu/ycqFaTEPklM0A00\n84tkfLf/x/x7XsdHpealLi+zsFcW+YZD6E3FlFeXShGA+re6j6WHF2N32gEY0Po+3jr4OqWWEjQq\nDW8eXMCIL4exOP8dioynGLfzFYrNp6mwnifEN5QX48cAUOOwcKTsJ/TmYgqMJxi38xUM5hKig2IA\nMFqN5OnzsGPHCTTxDye2aUfp3Ox900ntnEap2YCxpgIVKobEDiUqMJoBre9n0u5xFFacotxSirHG\niMFcQr7hEIaqM9icNpw4cDpdzxSsDeG89Sxnq8vJOpjJoDaPMGHXWAzmEnxUasb8LYP03DSe3zIS\nY02F1Aan3jmdiMBI3vguk2e3DKd/q/vINxzi7YNZ2JxWDOYSVCoXkSqrdzZ6U7Fkn5itZo6dPQa4\n5OZeiE8jUBtIdt8lrB30BQ+3Hwy4okI+v2Wk9G0SFRTNnLsXcM5SzgvxaVJZBERbFG1tdo/XGL8r\nnZFfDnfre8nrk5i4e+xFkXlEv8jMm8+iPtl89qBrg8SEXWPd7GP5d4w3W070NdEHAV7umkFdqI0s\nKB8j6hpvvH2z1GaneebrzabzNm55pnMpRMi6NgaItnE5hPSG5l/Xubqe81LRmPOtyukU3fSvj79i\naHQl5PvVhVK/3mGutjImazcxEUH84+nu0vHcg0UNTiMk2P+yJGCKDCa25RXy4F038vA9bS75/v8r\nUNru1YVSv1cORfLi+qOhbfhqtPePtx5ly7enmPzkbRSUXHnaMc2CmPOf7+jf7QaG9mnXCCW8PlDG\nlmsHpa6vHZS6vnZQ6vraQJED++vij9J/rgZZpTHT9ExL/C0WUOf2XCCFvK+PYDC35wIM5hLiIuLr\nDfvuSWLyln9teYr8/ggRNGp7F+L4puM5DGyTWOu9f4TnqK895ekPuMkM1FdueXsQ8gPgWswfvS2V\nRX2y3Y7LSRDyd5+Sk1zrzmR5G5WT2oSMiKd0gRye+V1uvVwqGpKet2eSQ/48l0MglNdTXdJhlwIh\n1dKQcgknm5Co8fauxP2e7U6eBiDJ0vwV8EcZC64mFLvo+sNgMNY6fgo0xrjnbRzzHM8vJZ+GXiuf\ne+TEwYb0LVFGuFhmsCFzZG1jYF33eto53uZOb+OhZ30KaSORlrd0H16XyIy7ZjNqy9NEBUWT3XcJ\ngCTVNGf/LEk2bPimJxje6Rl6terNkA1JOJ2uiCwvxLvkoxb2ypLKIsi94Iqg0qtVb/SmYpLW3Y/d\nbicqOFqS55q4axxzes6X8pqwaywZCeOYs38WFZYKyqoNLO73PnP2z5LSEu9kVFwqugAdcRHxDPxv\nHwK0/jidYHfaOGPSE+oXRrhfUxb1yWbT8Y38K38RNrsNH7UPTf112Ox2ztWU80jbIeSXHSK53VBm\n7JvC6/e+hS5Ax7id6ejNxfRp2Z/thVtcEmU/vQ8qmN/zdV7d8TIqtYowbTillhJGdBrFf44sI7Vz\nGpsLNlJlM1NQcRIHDgDUqKXfAR64cRDfG76jpEpP88Ao+re6j89++RizzcSygR9RVlXG1K8nYbRW\nMKLTKN4//B5OnPjgw+ePbCYqKJrcgu2cOH+CgW3u477VfQEnPiofFtzzJlO/nkSl1UhEQCS9Wvbh\nv8c+weF0oFVrmd/zdWbt+wdl1aX4qHyICmzBM7eOYs7+GahUKsL9dJRZSgn3DSc1fjTh/uGM35VO\njaMGnV8zbE4b52vOMfX2mRIJZ80vq2gb3paIwEie/OJxzlnOolapea//Mubsn4WxpoKMhPH885sZ\nEhEqKsjVFjRqDeAivyzOz8bmsPJCfBqxuo48uGYANqdNql+csGTABwxsk0iRsZCktYkUm4qY13Mh\nbx/MkiTnhKTWpN3jcDoh1C/UrX88sv4B3u27VJKjy9Mf4ME1A1Ch4t8Dlkt2epHRFdHKU5pUkNze\n7bvUzaYX7d/msPLZg2sbZMOK/qo3FUtlN1vN/KvfEjfZPs/+JSTFBFJyki+S+pOPLXVF3fG0Jev6\nFqwrOlBdkN8rH4c9763Lpq+tDA1BQ2z8uuYGUfeNYSfXltfl2kVKJCAFChQ0CLkHi6T/n2w/ht3h\npGmov9vxa4Gmoa6dCieVaA8KFChQ8KeFiAQUGd44kYBuiAxGhRIJSIECBQoUKFDw58fVcOg21BnW\nkPOeC7EiYovYZTp6Wyp6U/FF13lChNrPzJsv/V2X40u+E11+XCz4PrhmAEM2JHnNS5StPlyLyBp1\nkWDy9AfIzJtf6w7XS422cjXQkN2yngQgb9Fq5BEFaouWk56bhs1plaRF5JFr5HUmlzepa2eyt/oT\nkX7ku6Ph953L+YZDDXruhu4ibigamp78mYSjd8iGJLdIXOJ5PNNqSNqi3oTD2Fs5LwVFxsKL6ry+\nNAQByFOqx/Nd1kbwiQlpKUl/XGu5vas1pjTGWHAtxjsFf27UN35eybgnv6e+9nwp+TTkWrk9I+Ye\nz2O1zdXy6+SSWnXlL/9dEIDm9lwgRa0Q45LnvZ7jlXwOFPCMVCfukY+H8qgmRcZCSe5LPi/I51a9\nqZhi02kiAiNZ3O991gzKkaSXSs0G5uyfxcTuk6WIQhkJ41h2+N8AZPXOZlGfbJxOePP7TOk6kU9U\nULQUrWdxfrYkHzb37kzUajU19hpKzHoycsdQZDoFuAg9CVHdmNtzAXER8UzsPhmNWsPifu8TFxHP\nwl5ZUv4i7Qm7Mhi5+SnW/LKKM1XF2Bw2nuo0AqcTAjVBlFWXUlFznpFfDifrYCZPdHgKtVpN0s2P\nUl5dxkM3J2Fz2thZ9BXGmgo+OLyUlsE3EKvryNSvJ+Gv8WdIuxS2FW6mqZ+OL09uJNQ3DKfDSayu\nI6/d+wYtglqi8fHBR6Xhg8P/JunmR3k3/y0mdp/MjLtmM/n26UT4RzKmy1giA5sTrHE5+FWo2Hgy\nB7vTRhPfcClqUKXNiAMHx84eI33H6AvXutz7TpwX6rcFUUHRrPllFRk70njz4AJWHvkULpy3O+38\nY+9kjFZX1J/SKgOfHV2Bw+kgzDeMid2msuDbeQRrQ9D5NyMiIJI5PefTNrwtrUNvYkK3KWh9NDQP\niCIl9klm7pvKvAP/ZEK3KTT106FWqamoOU+QJph5B2ZJknAz9k3hyU2Ps+n4RkqrDQzr+DRrk75g\nYJtERsWlYjCX8Ob3mQT5BhEZ0BwVKjISxqP10WCxV1PjsDB+Vzqj4lKxOqyM35XOkbKfaBlyA0Pa\npbBXv4eIgOa0CIkhLiJeascCugCd1P70pmKsdiszv5mG1W7DUHVGiuRTZHTJjM3u8Rpz9s+SZGyj\ngqJpFhCBLqAZc/bPkuTvAGbsncbD6xKl8SF5fRJz9s/i3b5LiYuId+vfIrqhRv17VCp5OT3HC2Ez\nCek8cJF7nuo0grTtqRdF6Jqwa6wUeRPcbVmbw8robakX2YP1yd2CewTNTcdzLorGI58nvKVRH7FR\nnpf43TNqp/yctznpSghAnvnXdr6uuSE9N+0iKdrLRWN/7ykkIAUKFFwyhJO1VeS1lQIDCPDTEB7i\np8iBKVCgQMGfGIbzVQT4+RDkr2mU9Px9NUQ2DaTgTCX/h4JcKlCgQIECBQoUNAoul+AgyB3CwWMw\nl3Cq8iSjt6W6ObG8LRYLyJ36dTntBBHAkwQidtwWVp6iylZVa/mFRNm1InFcCryRYOqq8+sFUZaG\nRGwSDgnh4JQ7AQVZRe6E9LaIv7BXFgGaQK/5iLaXENWNjIRxpOemoTcV10uc8uZkkDtLRVtckbiS\nid0nS5Iq9S3IeyM6yeujNtR2viFOcW/EvBWJK/nswbWSY1oQYOBiR3BDHOXy9+Pp3LicPuNZ5w1J\nY0XiygZFF6vrWFRQNC2DW9VKZroauNIxpT7C0pUSgK7XeKfgz4O6xk9v5xsKb+3Pc2z2JNc0NJ9L\nJRR5zre1OZHFeOiNOFNb/vJ5UO6kz0gYR1RQNBN2jWV4p2ek+VF+b57+AEnr7ncjEMjLkqc/IEkd\nyu0tT0lRkacgOYixfFGfbFYkrnQjIolnjAqKZu2gL9yI2npTMaPiUimtNjAqLpW4iHiWDfwIvamY\nzLz5kqyrICpMvXO6RCSSS3qm5CTz/JaRUnQfMa88ccuTzOu5kFDfMJoHRRHkG0TL4Bskwss/v57B\n8I1/Z8iGJCbuGkexqYiyqjKGb3qCqKBoKf/R21xlG99tMq1CbuTh9oMZ02UsI24Zxex90zljKsZk\nMzGi0yh0Ac14tN1jaFVaWobcAA5YfewzHE4H205tITKgOTa7nWqrhRqHhdl3z2fT8Y2crizCYrew\n5/QuVKh4scsYzpiLOV9zjmaBERwp+4m3D2Yxs8dsNGoNodow7NhZffQzQn3DAHh283Bm7JuCobqE\nFUeWU2o2UGkzokLlut5pw2w1Y6gu4YMLBCeB85bzqFU+GK0VOC9EDwpQu2ylAa1dUloz9k3BgYPO\nTeOl+9Wo0fk3I1gbQog2lABNIA4cxIZdkAerqeRfP7xFkekUT3UawaA2j1BWVcorX41m1JanSYl1\nyZPpK4ux2CysOvYpYb5NKKsq5e2Db1JuKcPhdJDWJQOro4ZQ3zAiAiNZMyiH1+99i9fvfYvhcSOY\ncvsMPjzyPgZzCXn6A7x9MIv3+i9jxl2zeblrBgvufYN/D1hOrK4jNoeNUrMBp9NJZGBzYnUdye67\nhBbBMSz4dh5mq5nPjq5gVFwqSwYsY8zfMsgt2C71jX/1W8KS/h8QERiJzWkl33CI9Nw0XuySRlbv\nbEJ8Q2gRHCORdQSRWkSwEuNQvuEQZ6vL8df4k9xuKOm5aQzZkITeVEy1vYrTlUWS7Jv4XomLiGfI\nhiSS1t4vEWdEhC7R7kWfzTcckmT45MRAYVtm5s2XbMx8wyFm7ptKhcXodg/8Locqt2UX9soiM2++\nRNCTj61yUqI3yL/ZPMvibcyrC96I6J7fh/XZ8PL7PG2ka2HX1PeMjWljNub3ns8//vGPfzRaan9w\nmM0117sIjY6gIL+/5HP9UaDU7+84cYF0Y7M7+ObHMwQHaIlv1wyVEDO9RPj5aqipsV3WvTVWOyf0\nRu7t0gJ/38ZxIP/VoLTdqwulfq8cQUGXrj+uoHHR0Dbc2O3d6XTy2VfHaN4kkP/p2lKaX64EN0aF\ncvTUOU6eMXJ3XDSB/tr6b/oDQhlbrh2Uur52UOr62kGp62uDq1XPim10/XG9+0+RsZBQv9Drkrex\npoI7ou+ig66j1/OhfqHcorvV63mn00lSW1e4//G7MhibMIFx3SdK6Y7aMoLX7n1dujfUL5Q+rfoB\nrh2qPWJ6Ulx5GqfTyfBNT9CnVb+L6iHUL5TOzeKl3fqhfqFu6XSNuo0WgTFMumOq5HiTpxHqF0r/\n1gPR+TejR8uebml7S68x34O8LHW9Y3Fc/tOzPNezjQjn3aqjKxncfojXcohrOjeL56Xtz5PUdjBJ\nbQfTQdeRPq36SQvaxpoKBrcfwpAOQxncfgjg/oyiHXTQdaR/64HkFmznH3snu7WNImMhL21/nlt0\ntzJlz0TMVjNfntjI2mOr6N96oNt1dS2k1/U+AjSBJLZ5iKigaIw1FV6vF+9EyABEB0YToAkk1C9U\nqo/+rQdirKnweq94Vm/nayubSPeTIysYeNP9Ul7DNz1BUtvBxIS0vKiexnWbyMxvpkl1KNpXXXVz\n9OzPfHlio9RH03PT6NwsHqfTWWsaDWmj8metqxzime6IvouXtj9/0fuX16187CgyFl50LNQvlIE3\n3d9gp0pj9LWG1HFt2HQ8h2EbH+OemF60CI65onI0dtmuFRS76PrDbK6ptx/UNibWd4+39ie/13NO\nSGo7uMF9sq7rvOUtn2897RC5jdC/9UAGtx/iRkZOWptIYpsHLxrXxBg1uP0QyUaKCWkpzVmD2w/h\njui7WJA3j7k9F7jZSADFlaf5+vRunr71Wbfx7OjZnxm1ZQRfntjIwl5ZDLjxPoJ9Qxi+6Qn6tu7P\nYx1S3Iitwr6b+c00btHdSnHlaUZvS2XTiRx6tryX9Nw0aX64I/ouacxPiOom1Uu+4RB//2IIfVv1\nJ6XjMAK1gbySO5r24R2Y+c00SaJLPFN6bhqPtHuUobEugs6oLSNYdXQlPWJ6MuDG+9h+aisTu0/m\n5iZtpbHdWFPBP/ZOZmGvLB66OYmRcc8R16wz7x9ewv03Psi/8/9Fhe08w2Kf5qezP+Ln488hw0FG\nxaVy4vxvvJz7Ijq/ZuT8th6typc3v1/ApNuncuL8b0zfN5k9p3dhw8aj7YbyU9mPnK85z9AOT5B1\nMJPnO49mw29rea7zi5wynuKF+DQebZ/M1oLNlFSfwWw3UWk1knvqK3KLtjG47WOcMRdTWVNJld3M\nzWHtOFT6PXannQCfANYfX8P5mnOcqzrH/5b+wNjbJrC7aCdPdXqGffq9DGr7MNXWan459zMA4X5N\n+cdds/hWvx+z3UywNpgahwWLvRqAxBsfwmQ106FJLKfNRRw9+zPP3ppKXskBNE4tT3R6ks9PrAPg\ne0Mecbou7CzKBcBQZSDENxSLvZqmfjpC/EIwW02cqzmL1VFDmG8YZ8x6HDho5h+Bw+mgym7mUOlB\n9ur34MD194vxL/PB4aWcqSpGpVJjsVVRUVNBjcOKv08AFdbzAFTZzdzS9Fb05mJKqwxsPvEl8RFd\nyMybx/ZTW1l3bA3hfk3JKznA3tNf89nPH1NWZUCND/MO/JMvTnzOhmPr2Kf/hi0nvsTmtOGvCUCj\n1qBRa9hesJUBN95H27B2rPt1NQGaIEJ8Q7g75h4m75nIp798zJcnv+CJDk/Rp1U/SqtKefP7haw5\nuopiUxEH9Aeotlex4fha+rTqx63NOjPh9skA/P2LoSzqk83Ttz5Lj5ieEqHj6NmfmfnNNOb0fI3/\nuaEPE/eMZdxtk9iv30ebsJv5vuQ7fNQ+7D39NRt/y2HyHdO454ZehPqF0iXib+Se+orHYh+nb+v+\nTNg1llt0tzJh11j6tOpHsG8I3aPuYM7+Waw5uopeN/QmPqILU/ZMlGzZFsExkk0MEKAJpEN4R34o\nPcjTtz5LTEhLaUzzNm6J77Rg3xBe2v48d0TfRYvgGMk+FDLOnnaUNztPlKXSWinZ4C2CY9zu8Qa5\nvSuulZdb/o3Rv/VAjp79WRobPMd08U2anpsmXS/KWtu3qtMXf8AAACAASURBVLwcV+M7SswPl2JT\nXU5ZLtcuUiIBKVCg4JJwutSEze7khuYhl00AulK0bu4Kj3is8Px1yV+BAgUKFFw+KsxWaqwOIpo0\njhSYQKvmruh0J89UNmq6ChQoUKBAgQIFVxu17Wr0dt2V5FHb8eT1SW67yT3hGclFfq/nDtFlh/8t\n7SwXkUfEQrrn7nmr3Urq1pE8vC4Rvam4zjDrE3aN9RqyXtSbyLe2naC5Bdt5ZcdLbDqec1H5PdPz\nthv1cuAZAaAuiZDaIO6pK1z/tUBt0ifeEBUU7TUqDvxeJ3LJOM+oDOLeImMha35ZRfqO0Qzv9Ixb\nGmJ3cFRQNCsSV7I2KYeVD62VdkXL87qUOhPXfvTjcklSyzNqESBFTRDtLz03jfKqckZufork9e6y\ndJ6SL/I6rU3uwFuZ5Pct7JWF1kfrdsxbnYs8BrZJdItOIc7VVQ8Tdo1lVFwq6blpjPxyOGar2U1+\nwts9DYkuVFcEEG9lF3JwtcEzekZKTjJ6U/FF9XEpBKDG6muXQ7IpMhaSmTefd/surVXi7Erg+f6V\naEAKGguX0ne8EYC8jS1XIotSWzlqi+BTVxQfb8g3HKLAeILcgu1u0XS8wfPZ9KZiSeLKU0JTjL9T\n7pgulU2MgULuZ2GvLCmaECDJscojUYjyizl59LZURm9Lxea04nSCwVwCIEX1SYjqxqi4VMney9Mf\nQG8qZuY30wjWhDJ+ZzrHzh5j1JanMdZUMGOviwAUFxHv9qzGmgqe3zJSKouIrJeemybJgc3ZP+ui\ncXpuzwUYzCWSrOyc/bPISBhHnuEA8+99nam3zyQhKoES8xk0ag0Gcwnjdr3C2B1jCNIEs/THxTic\nDt7+4U1qHFbe/D6TzLx56PyaMan7NJr66din34tarSYldhgrjnxIs4AIcn5bT6nZwIojH5ISO4zZ\n+6Yz9etJ+Kg0hPs1BWBIuxR8cG1E31H4FZUWE2H+oYzoNIqdRbkuKTCc1NhrcDgdqPFhW+Fm7NjZ\ndnILarWaL05swOF0MHHXOL448blUXw7s6AJ0lFlKASizlBKkCZYkvjadyKHGbuFbw34Ayi1l/Oen\nZagcUIOFfMMPqPjdR+eKFORy+6tUKgI0AQRpgrE5bAxqM5izlnLXOdQMaJ2I40I+NY4ayi1lhPvq\nUKMmzLcJOr9mTL19JjeG3Ui5pRQ1ap7qOIIXu7yMj9oHu9NGpc1IE9+mPHDjINT48P7h9+jQpCM2\np40zVcWM25mOscaI3lzM2epylh9eCsAtTeM4aynntsjb+ezoCgK1gTT10xERFImPSsPUO6fjdIK/\nxh+nE2bcNVuySTLz5hHm20QiB03YlcHLXTNo5hdBhH8kbx18nVd2vET6jtH0b3Ufa5NyWJe0kX/1\nW8J7/ZexuN/7TNo9jld2vES+4RBrfllFgfEEm45vBFwRpYZsSCJ5fRJp21Oldj6wTSKrH/qcXq16\nU22vYsLuDF7skka4f1Om3jkdm9PKjL3T3Pq6r4+W0dtSAZd0noj6mW84xPBNT0gSd3rzaVK3jmTG\n3mlU2cxexxHRp2N1HSVJsdq+zfL0B6RvBzGOyKO3iu8uETnIU1pWbivIo/WAS643I2GclJa371j5\nt5SnnebNDhTjmt5ULEVMA+/2cUJUt4u+ScS4WZct3djfUQ2xZb1dey2iFsmhkIAUKFBwSTh1wbna\nuvm1lwIT6NKuGQCbD5xSZF8UKFCg4E8GwzmXTENjk4AEQfRo4blGTVeBAgUKFChQoOBS4LlQ2hDE\nhLR0W0ytLd265KzqK1NdBBRPqS3Pe4VkhVxOSJRb7pwTznqxwJ0Q1U2SoPAsQ0xIS1Y+tJY1g3KY\nc/eCi0Koey6sespleR4XC9vgLhsiFqEX52cTHdTCzVnlTeqkIaSMhkKevmdeDSF+eTr+aiPWXCuI\n56jr/IrElYDLQSAW+oUMgiDviHflTWZLEM7y9AcYsiGJeQdmofOLQBegk+pL/m7kzg2Rb/L6JDYd\nzyHfcMir87g+B8FHPy4nfcdoKiyu6D9COkW05U3Hc3hk/QOSA0U4NUP9QogOimFRn2w3KQZ5+/SW\nd11Obs9+I34KB0hDnB/C6eKtH3rLT0CQ+lwSMCXM7DHbTWrMW5/2JBp5K4tnO66vnwnSmDwvvanY\nbcwSeabnplFhqSBte6pEbJQ7ohpKTrhc0kFjQE7cakh5L5Xk5k2eUSECKfCG2myGS+nfDU2/Ieca\n2k4bQuCpDXInOOBGSvWUAxvYJpEPBq7giVueZG7PBZLsqBhvPUmzwrk9sftkaZ7zlMoUc9rcnguY\ns38WKTnJEnlZToycsGvsRXPcKeNJNztNTq4WNtbUO6ezZlAOi/pkk5k3300mLE9/gPG70hne6Rny\nDYdIWnc/qVtHUmO34q/1w6lysuLIhyzu9z7v9V+GSgUz9k6TxmOAkV8O54xJz2lToSTLlG84xIy9\n06SIegBVNjPPbh5Oem4aH/24nOT1SaRuHcmITcMoMJ6QCEpCTuztg1l8/POHzNg7jXk9FzK47WOc\nt57DV+WHHTvnLK51wNfueYNw33CcOOjdsh/6ymLKLWW8dfANyi1lJN08mAndprDy6CfYnFbe67+M\ne2J6UVptwFBVwjsHF2HDxq1NOxOoDcBX7UdTPx25hdsosxgAF8mpzGLAVGMi57cNmGyV2J12ACpt\nRhw4sDmt0rPu0e9Eq/IFQKVSExveEQeu633wwWw1k1vwlVs7rLD+Xld+Gn/aN4l1O19mKcWKK4+W\nITe4nQvzC5PK87dmCdjsdky2Ss5bz5F1MBPHBQkxJw4+O7pCKsv5mnM4cVJlM1NuKeN8zTnKLKUs\n+v4Nxu9Kx98nACew9PBiFh1ciBofKU8flQ9fF+8mOqgFd0X1ZHvhFtSoCffV4a/x57H2T6BCha/G\nl0m3TyM6qAVHzv5EhH8kj3YYgho1xhojFTUVWGwWVCo4dvYYJVV6BrUZjKHqDON3ZTB+VzpxunjO\nmPWcrS5H66NhxC2jaBXa2vVurOdJiX1SClwQ6htK9g9Z5BZsx2AukWyDiEAX0cgHH46dPcZrebPp\n3bIfWQczyS3YDsDjHYbxYpc0nE6Y+c00qS8mRHUj33AIf58A5t6dSa9WvSXbV6P6nZwt7LIX4tNQ\nqSB160ie3TycPP0Bcgu289zWEWQkjCMmpCUD2ySydtAXZPddwqI+2RelI5dmFd89Is+H1yW6jRPg\nIhuN3uZ6VvmYLAiBelOxZMcK1Ga7iXFJ2PL5hkPA7+RBMX54koLEeCmXNhN1IuTExHlhv4kyZySM\nk6QIvcmBifTkNnB9tpu377Da0FDbq6FzTF32smd+V8MeU+TA/uRQQr5fXSj1+ztO6I04HE72/qjH\nT+tDQmzEFUUCuhI5sPi2zTipN3L45Fk63NCk0R3JfwUobffqQqnfK4cS2vn643rJgf186hzf/WLg\nzluac1N0aKPJgYUG+bL7h2J+LjhH13YRhAb5NkJpry2UseXaQanrawelrq8dlLq+NlDkwP66aIz3\nKhb5btHdepF8TV33GGsqGL8rw00SwhPGmoo6pZjqgmc4d7E4K0KX9289sE4pMB98eHXHy3z2y8fc\n2/J/pDDyIvy6/NmFZIeQSBKSNsG+IRdJjoX6hbpkDbYM5/Nf17P66Eq6RPwNp9NJSk4y0YHRtA1v\nL10r/ylPA34PUS8Ph5+nPyDJUvWI6cnWk1sY0mGoW5k902yoVFJD4Zm2/PfIgEhJouno2Z+9yv7I\ny3M9QtxfKsQ7/fLERrpGJnBXix5k5s13a9stgmPc5BDk7VJIEyREdWPgjffTtkl7vjd8yzfFe3nt\n3tdJiOomyQPkGw4xqO3DdNB1lN5lj5ierD76X1b8tJzVx/7LXS3upm14e6l+5G3fW1vq06ofPVr2\npEVgDCPinmX0tlQ2HF/L57+uZ8WR5ZRUlrDq2EoyEsYzoM39kmTB3zs9RXKHofS6obcU1UE4JYqM\nhW6SaPKyCHmE2ghAnnIJnhJX4jqAm8Pa0jXqNsDV9oVsV57+AI+sf4B7Ynrx2/njPBf/gvS88rzE\ns0QGRDJ+VwZ/7/QUSW0Hc+L8b/xc/jMvdX3ZrX8ZayokmRtvMjje6li8Y7kkRG0ygPJ3Iq+/PP0B\nktbdT+6pr0hs86Bb3p2bxbO14Euyemfz1C0jACSJCSFTJ+QraoOo90uBt/53JX2yIXUj8qjvGs90\nPaX5hITcHw2KXXT9MfDjAZJUk1y6sLY2J+/fnhKHnv1B3naNNRWSLSIn3Mjl/hpqV8ltEdG2L7Uv\nCnurR0xP0nPT3GwluRwYINkoTqeTwe2H0D68A1P2TKRzs3g3ia/+rQcS7BtCUtvBdI26TZICEmOo\nqAPRP1sEx0gypmO+eoEvT2ySJA2NNRXcHNaW57aOILHNQ7QIjsHpdJLz2wZGxj0njfuD1t7HHdF3\nEqAJBOC/v3zC16f3MLj9EDroOnKL7lY3mcgfSg7y36Of8WNZPnuKdpN575ukdU1naOwT9G7Vl8dj\n/879bR7gnht64XQ6iW3akR2FuWw6kcP6X9dyi+5WPvtlBRO6TeH4+V/Zp9+L1W5lz+mdGGuMlFUb\nuCP6Tl7a9hxOJ5RWlTAq7gWm751MkG8QM+6azQ+lh8i8903iIuLpEdOTCbvG0rd1f7YWbOb5zi+x\nqyiX70u+43D5/zKg9f2ctZQToAkg2DeYQE0Q9910P9+V5PHQTQ+zsygXrUbLK13H8a3+ABZHNQfO\n7GNnYS6PdxhGgfEkodow3jjoIiRY7NUEaAKospv55dzPDIt9mh1FX2G2mTDZKgnUBGJ1WAn1C2No\n+7+TX3qIcksplVajJN0V17QzZ6rOSFF8ekTdw6nKk1idVqw2KzanjeMVxwBQo6Z9WAeKzIX8UHrw\nggxYDX4qf5r6N8VsMxHgE4jZbuJU5Um3NqpW+Uh5mGpMnDYXSefubdmbHUVfoUVLkbmQ3jf0laTH\nALRoJSJQiDaUIE0w1fYqQjShdNbFU2mrpMpehY/Kh0CfIIL8ggAuSH658nTixO50+fX81P44sFNh\nPU+VtYqTlb+hQkVTfx12px2tWsu2gi04cWC2mjh2/ihWu5UySynJ7R7ng5/+jclaiVrtQ7A2mLM1\n5TidsL1gCzanjV/KfybEN+RCPzHyY3k+Yb5NaOLflKdvGcm8b2fxeIcn+ezoxzicDgqMJwnSBtOz\nxb0YqkrQqLR8fnwdq4+tRKPyZUzXdJoFRqDzb0Zu0TZOGk/wRIenWHv8v7zQeQw3h99Mzm8byDmx\nnq9ObSWz15u89LeXaR/egVFbnkar8mXC7gzUKjWHDAf57y+fENu0I89uGc6k7lMZ132iZCvdoruV\nBXnzyOyVxQNtHiL31Fe0bdKOSXte5dWESXTQxUq2mtPp5OlNw7i/zQNsLdgsfe95fv+JsfXo2Z/Z\ncmIzm07mMCruBSbuGUvH8E68kjua3FPbsDqsLOqTTVRQtJttlnN8PU/f+iyJbR6SZJaNNRUYaypI\nXp8kSfWKcU48x5Q9E3mkbTLv5r/Dwl5ZdNB1dLND5d+xYswTfdhTijb4wvv85MgK6VnlMsFdo26T\npL3qmjcaYkvL4fnNWts81hDbS4zX8nS9XVfbd6VnWW7R3VqnNDYocmAKFCi4Bjhz1kyN1cENzYOv\nmxSYwIM9bgRgw9cnrms5FChQoEDBpeFqRQLy99Uw/L5Y7A4nSz4/jM3uaNT0FShQoECBAgUK6kNt\nEWtqg3zXt7jP87wcYtenOHep0Ya8pVkfioyFvPFdJnbsjL9tsrRgnLTWPUqFtx2YCVHdeLfvUqKC\noknJSXaTHBM7QxOiurG43/u83DUDq8NKem4aelMxFZYKRm15utZIOfIIH0XGwouuEzvsxQ5YsQte\n7HoVi+Ge0k2e9XW1kKc/IJFjxI5c8QyXWh75DtPrHdFD7PIdFZfKs1uGM/XrSRfJnQBSdBw55P0H\nXO/qze8z0ai0kvSJwMPrEnly0+PSrmqx49hgLnE5BP1CUKMmIjCyTik1z2PCYbw4PxsAq8O10z7p\n5sHUOKwsPbyYhIhuvH0wizz9AVK3jpTamN5ULEVAEu9ElE1OCJJHRZLLnHmWS9zvGanKc0d0Sk4y\nSWsTpf4inL/J65PI0x8gIaobs3u8xqbjG3lqUwrL8pe67c4WaYzelirtvhbPlG84RPqO0bzYJU26\nVvwfsiHJTepMXpdWu9WtjPL6le9Kl0e7qq0e5NeCS8KmiW9TxLKkZ/93Ol273cX1KxJXsrBXVr0R\nmeT1fqXRdRojwk5tu9rrG3cbkq683AoU1AZvkezqanO1RdPz1h+8XVtXmqL/1hfZzbOsl9MX5VHt\nAElqVJzzhMhDSFhV2cxeJVY9+5u4R8hNbjqec1H6i/OziQ5uwaI+rjlJzClxEfGsfuhzt7lVkH3k\nmLJnEklrEwGkSG4CnlKLA9sksnzgx2QkjEfro5UiJ4oIRgZzCRN2jWXT8RxScpKZsmcSKbHDeCHe\n9azHzh5jzaAcHm4/mH/1W4LNYeNf/ZbwQnwaIb4hhPvpyNPnoTcX82i7x1ib9AV3xtzFDSGtye67\nhIjASD57cC0RgZGk5CRzpOwnhnd6hoSobizslcWb32eirywm8aaHOG0qZM3RldidNkbFvUATv3Cm\n3jmdKXsmMSoulf8cWUZZVRnlVWUUGk9RZjEQrA0h1DcMO3beOfQmcbp4Pv75Q8Z0GUtkQHMA/t5x\nOOG+Opr4hpMQlYDT6cCJkxBtCOYLEk0Wm4Vlh5dcIMWABg09ou5BhYofyg/RI+oeAAJ9gth7Zg8A\nPmiwOC04JfJNCA4cHDn/EwAqp4oRtzxHkCYYi7Mai92CDz6E+oYRog11k/vq07I/kQGR0t9tmrSV\nfteipdB4CgArVpw4ublJO+l866DWUgQhcBGf+rUeQBPfcIy2Cr417KfcUiaV2Ww3ccak53zN7xHX\n+7Tsj1pGK7A4qjHZXMohNqwEaoJI65JBWXUp52vO0Tr4Jum5Q33DACivLsPmsLH08GKKTadRq9Q8\nGfs0YX5NaOqno7LGSNMAHSGaUM7WlOFwuu5v6teMpzs9iy5Ah0atYflPS7HarfwrfxFxunjO15wj\nJXYYT3Uawecn1qE3F3POchat2hcnTkqq9Izb9QqD1t7HWwffAGBQm8HkFm1jdo/X+OLEep758kmc\nTtCqtEzoNoWBbRKJCWlJRGAkzQOjWXn0E56Le4lw/6ZSpKCIwEgiAiJZnJ/tFl1HHhlVYHF+Nq8m\nTGL5T0tJWnu/9B2SbzhEYWUB4P69J/6Wj2dv5b3JoLX3MWPfFJ6PG81LCWNY/dDnxEXEs7BXFlm9\nswnUusYD+fi6sFeWJCMWFRTt9i0k8hdyvZ7fJMaaCuZ9Owuz1Szd6xnZRnwjimPi+T0hxsKVD/0+\nJokxW+TtzVbznDc8I4rKy9yQSKveoh/VF9FO1Jm4z1u0TvG7Z/Qf+Tl5fiKKElCnTXy5UEhAChQo\naDAKLkiBtbqOUmACN0WHcutNTTlScE6RflGgQIGCPxGuFgkIXJHienaOpqCkkg17TjR6+goUKFCg\nQIECBfVBLCg2xCnrzVklICcuiBDscoe7pyxFQyB3+nqT9KmNfPKvfktoFXIjD7cfTJHRJfFQYDwh\nhYT3fHb5Yuic/bOk/ESeefoDPLwukTz9AT76cTmTdo9j/K50nE4YFZdKVFA0gdoAFvd7/yLyiKib\nlJxkhmxI4oHVA3h4XaLbQrqcAJQQ1U1aCFapkBxzYjFc66O9KP2rDVE+4dxKiOomOfPki8uei8m1\nvevaHK/XC8sGfuSSR7k7kwBN4EVSb+B6HiGd4lleQShJ3TqS08YiUmKHERUULUl1xYS0JLvvEloG\n34BGrQFckl2j4lLJzJtPSuwwzl+QBjlS9hMTdo2VJBfkzt26nMNWu5UjZT+hUkGFpYK3Dr4OOAnz\nbcLnv62jwHiCvUVfc6LiNwzmEoqMhYzelkqFpYLUrSMBLiI5iXYnjm86nkP6jtFSX/B2nacTRPQx\nubzCisSVrE3KYc2gHLf+8mKXNCbsGstHPy5n3K5XePPgApLbPU72D1lSOYUDRfSFuIh4N9JWXEQ8\nzQOjiNV1JCUnmQdWD2DIBpezqMB4EoO5hLk9F5C2PdWNWCQn6Hg6SLw5dry9B2/vJ09/gGe+fJJy\nSyk2h418wyGGbEgiad39rvrMdcluCKd9Sk6y5MAWhKi65CAul1QjdyaJsfpqSIrVRqa4HFzOsyr4\nvwV526jtd2/3eLat2tqa+NvznBjX5Pd7GztqG8Pl9pQ3B7EnapszhXSXkJmUz83eyI1RQdGsSFzJ\nmkE5F0msCkev3EYU0l5aHy2j4lIlIqdIX9RDdt8lRAVF8/C6RJ7fMpKqC2QU+XjvWWcJUd1Yl7SR\nmT1mc8ZcLEkc6U3F0lgtxke5DRgRGMnE3a7nFgSl9Nw0BrV5hDn7Z5GRMI45+2cxKi6V06ZCZuyb\nwpz9M7E6rczYN4W9RV+TkpPM3qKvKaosZNPxjUzYnUFK7DDKLaV88vNHjOkyls0FGwF4fstIiWT6\nyPoHyC3YTnpuGucsZ3llx0u8suMlPvpxuSQPplKr+O/RT9H5N0MX2IwqaxVz988kud1QyqrKLtim\nP+DESaW1guc7j2b54aWuv2uMJN3sirw0oPX9fHZ0Bb+eO8aqY5/i6+NLmG8TPvppOWdryjhXc5bP\nf91AVFALdP7N0FyQ8+rcNF6S/PJT+6FChb82gD36nTgv2AgnK39Diy8WRzWOC7JcqFwRdFSo8EHD\nK13HoVb97poP0gbzzg9vUmUz46f2p9JqxI4dk7USo7UCfx9/6dofSg9y/40Pem2zVqx8q9/ndqzY\ndFoi7Zw0naRPy/74qVwRRTrruvDZ0RWcqzl7UVo2rOj8IgjwcZFJ/NR+qPHhq8KtEuFMg5Y+LfsD\n4O8TgC9+1DhqeP/H96R0RN30admfML8mDG77GD5qH5r5RzCkXQo++DCwdSIf/vQ+dqcNq8OK/YJE\nmclWiRo1apUavbmYUksJHx55nxfi0/hXvyX0btkPjVrDoDaDWXn0Y3CqmPftLML9w9GotIT6hqFS\nqfDX+NOnZX9aBLVkfs/XWdL/AwK1gahRM7DNfcztuYBerXoz5Y7poILX7l3IvwcsZ93x1eTpD7Dp\neA6jt6Uys8dsRsWl8m7+WyS3GyoRxgFCfEOZ2H0yadtT3cYIYY+M3paKr4+Wid0ns/LoJwDM7ZnJ\noj7ZEoFQ/t0j76cCYhx5LW82E7pNoWXwDWwu2CiNbaK/irFIbvMUGQslGTHR7/MNh9zsP2FHigiS\ngvA3elsq/j4BvNdvGWuTXLJjQzYkXWTDywnscngek3/7ivOedqJ8vJRD3Ce3kcX4LsqcvD7Jq23t\nmU5tdmZdZHHPNMT3lzfST21Ebs/nlZPvPeujMaCQgBQoUNAgOJ1OCs5U4qtV0zz8Ymb59cADd90I\noDh6FShQoOBPBMO5alSALsy/3msbityDRdL/mMgggvw1fL73BP/dcUw6rkCBAgUKFChQcC1wqbvO\nPaMyiIVjsQCabzjEc1tHkJEwTlrMjQqKZmGvLDeHjye8Obs8FyTljiiofdExIaqbtOibkpPM4vxs\nptw+g4FtEvnox+VSfsLpLhaFxW5YsatUXtYw33COlP3EKzteothUTLifjpe7ZjBpz6vkFmxHo3Yt\nSHs63MTi7MJeWUy5Yzpl1Qae7DhCWkgHF9FHOOTEorDeVCztgpc7yeqqw6sBOQFo0p5X3SIiyess\n33BIiuQinADib2+oL0JDY8EbUUP8lJPMioyFvH0wi+R2Q93am3xx3JMYVmQs5OF1iQxaex+L8t5A\no9ISpA1h/rf/ZM0vqxje6RnSd4xm03GXk+K9/svQqLSkbh3J8I1/Z+LusQxq8wgPtx9Mq5AbWXDv\nmyzOz2Z4p2fIzJvvVneCqOG521e8gypbFeN3pWOqMVFuKSfMrwkaNAxuO4SSqjMEa0O4M+Yulg/8\nmLiIePSmYmxOK3anjWLTacmRmZ6bxsJeWQDS+xu9LVWK5PDBwBVk910ikVREH5ITVuS7yvP0B0he\nn8Sgtfe5EYFiQn6PdiWcv71a9WZuzwW88V0mIdpQIvwjubPFXeCER9s9xmljEc9uHi7Vp3AMiUgP\nefoD5BZs56ylHHAR9EqrS6ixWymrKuO9fsskkp/TCcnthjJh11j0pmJpp7m3NultDBLvwZtjXR69\nC0CtVjMs9mn8fQKY+c00ptwxnbl3ZxIXEc+KxJVk9c5mwq6xbiTFuT0XXBSZw3M3d13tvD7IyQrC\nMXWlqI3w05i7xBUCkIKG4nL7RG1/e84Z9d0P3slCDXGyyh3EnlHLBOHac24VaQ9sk8iKxJWsfGit\nNJZ7krAFqTV5fZI0XomocPJ8nts6QiJ1i7FPzIWxuo60DG51UfpiTM43HOJ0ZRF2pw2NSutWh7XV\nWUJUNwa2SWTO3QuYsDuDB9cMYPS2VKx2q0SqEfUKrnnRYC6hZXArIgIjGb0tlWp7FaPiUpn/7T85\nW11ORKArAk2sriPrkzaxfODHTOw+BV+VLyM6jWLl0U+ospl594d3cOLk018+wuFwRXGxO+yUVOkJ\n83NFgzlS9hMFxhO8uuNlNh3fyLt9l7I4P5uFvbJYOuBDIvwjUePD/G9n8+zm4QxqM5h/91+ORq1B\no9ZQZa2izFKKzWljzoEZzN3/T57u9Cwf//IhL3Qew41hNxHmF4YNl2yVHTsf//wfAKpsVYT76ph8\n+3R8VBrMVjMVNec5ZyknzDcMFSo+O7qCGrsFjUorRf35ofz3ecXqsPJ0p2cJ0gQzpF0KYb5NACis\nPIWVGuxOOyHaEDQqDfYLZCC1Sk2obxjh/uFSdBuA89ZzWB1WHDhc5KELkXMqbUYAqi/IjYl8Pzzy\nPioXPYbooBZu793Xx10yaN2x1VJ6ANsLt2BxWlzthw2BbwAAIABJREFU0nAAX1zX3xbRHZ1/M0K1\nrvfjcDqIj+iCyV6JFi0WhwUHdhw4GHnr8wRqArFh5Rv914T7NaXaXkUNFmwOKyabiWBtCGO6jOX1\ne99iSLsUdhZ9xSnjSd4+9AbdIu/gnOUsq45+ih07n59Yh9VppUuzrhitFfSIuoeJ3afguPBPkJ7C\nfMOIDIgiM28eT21MYenhxQRpg9lR+BVOnFgc1fj7BNCrVW9ejB+DucaE3Wmn3FJGbtF2Ssx63j7o\n6sc+Kg0+ah/2Fn0tkdLLqsqE4hlxEfFkJIwjdetIRm5+ihPnjzNp9zjeOZRFE79wVhz5kIW9slj5\n0FrpuywiMJIC40lyC7aTkpPMW3lv8sj6B1iU9wZaHy0vxKcxsE2iKyKPSss7h7IYvvHvpG4didVu\nlaJvwe8RFeWRFcEVsevdvkt5uP1gNjz85f9n77zjoyi3N/7dlk2yKYSQkJAAAQIhQOggRYqCdBFF\nOggCRlBARESjFBWvogIqXsV27SCKSA0EQiAQCDW00AMhkLakl+1tfn8sM25CQK4K3nt/+/jxs2F3\n5p13zrxz5sx7nvc5xMZMZ2bSdGcbDitxneff0ieKPunlFGe8/PROZ9lUMRYX30XExQliXLV26AbW\nDt0gqSIBKOUqiewo+lFAioFcY1Txu1VnvrvJ59fkx5f0WCrF7TURjYCbSN0hmlB+HbqFAY0Hs3bo\nBtY/Ei/FxbcjjLq2UV1F1vWY1d9fXH93VfX9PcLsrUiyIvnrdipFfxRuEpAbbrhxR8grMmA026gf\n7INc/veWAhMTunnFeurW9uL0lRJ+SXYnet1www03/htQWGaktp8apeLuhKEeSgXdY0IRBNh/Sovd\n4S4L5oYbbrjhhhtu3Dv80cm76pOCS3os5Y0Di3j78Jt81vcrBjQeLG0rltYSUZOSimt5KddtxMla\nMcnkuk1Nk56u/RMnPpf3XsHGzF/5Z9qHPL9nBv9IfUMi2sR1ni8prYir6GcmOVfFJmTGk1uZw5MJ\n47ludCbK/D1qgSBgd9jp3eBBXuzwCp+cXFEl2eZaKkMkR4Fzgv7pmBm8c+RN5qU8z9Ttk6ok/sfG\njyBEEyqVJBN/+7MqGndyXasnGcXvxP6Pa/lEFfUfkZAwJ3kWsTHTWZj6Ctcqspi+cypzkmcR13k+\nNsFaJbFYUz9uN+5uReC51XY1bV9dCWFSwjhppbCr+kl64UmuVl7hjUMLpOvumtgUFWjCfMNZdeY7\nSQEAwEfly1dnP6ehbwQ6WwUdgjrzxqEFZJVnoZApnEkanAmAj/qsxGq3UWouZmjjx3j78Bto9flM\nbDGZ5oHRWO1WPj6xgt5hfaqsGF7SYykzk6bfZM9HNw5mZtJ0VAoloZowpreZiRwZHzzwT97r9QEH\ntPuZ3CKWSksFT+2YBDjJPRO3jaXSXIlCpmRazEy+OfsviagXoglFq88nW+dUzlEpfkuciPe1mCDR\n6vOx2q3MTJpOmvYI6YUnGbZhkEQGc1VNcL0urokS8bqJ5VRyddmUmIspNZfw1qE3UMk92Ji5Do3K\nl3xdHlMSniAh00nyExNDk7dP4OH1A3gpZQ5+Kn8KDQV8nr6SJfcvY3b7F5izZyaXSi9JfTDZjSw5\nslhSt3ItZVGd6Oh6H4rEKDFhVH119Myk6ZLKj7gafsn9y1h1/lvGNp+AIDjL3byUMkcqZxGiCWVS\niym8ffhN4jrPl8rYGG0G0gtPMjZ+hERerI6aVNbu1I/XlJj6vX1v9/vtCD//CYpfbvz/we+Rm//d\nsSg+D+DmpOntjl8TbpdkdYWY1BZV5aoTrm9Vesb1U/TRrgRWEWLMIpY0td0ob+rqF8SkevWks9j2\nR31WSv7TlZT5Qod5xAS1oYFvBF/0+4a1QzdIvkyM425X+mZcyyf44qFv8PXw46M+K/moz0qWpb0r\nxWcicUksBykSqm2CFa0un+aB0bx9/1KJECruB8447INjy3in53LSCo+wvPcKVvb9Ei+VJ0qUvNTp\nVf7V/zt+vPA9MmT4e9Ri9fnvies8n94NHmR5r4+o7RXIhyeWknxtN+BM5odoQlEr1chlchQyBRqV\nDytOLKPYWOxUi7HbqLCWMyTiERr4NcRfFUCBUUtSdiKxrZ4lOTeJMVETWJuxhiERjwAwuUUsnz30\nL2TIOVOSTpmlhM9OfYLRZqDSXEFd7xAeazoSg9UAN8pvCQLI5TJJtUZU1JEjx4GDdRk/c92Yz88Z\nqym3lFUpmwWgtxok1RwZMoZHjqLUUsz8/S/f8noBUp9FdAj6TfWpzFKKw+HA38OfOl5BEqlKRPew\nntLfKjyY1maG9O8Q71AGRwytsr1dZkctU3Oi6BjFpiJMNifhqGNQZ1K1KQyJeKRKCTFwloay2C3O\nc7TpMFmd+6hlnjdKqwnorJV8dPJ93jr0Bj9nrMaBs7SaTbCxX7sXpVxFkHcwgeo6hHiHEuQZzCHt\nAXxVvuzX7iXpaqJ03WZ2mE1tdSB6i57Hm47iul4rHR9BdiNmq8fkFrEEeweTXniST9OdY6uudwi1\n1YGEakL5V//v+KjPShbsf4XZ7V+glkcA7x79B3Gd5xPXeT4fHFuGgCCV0VuY+gomm4mXOy0gzLc+\nCpmSMVET8FH5YhOsUnwnxu+FhgKW3L+MpUffodJSwbtH/8HDjR7lq7Of0zWku0T+F+PXZ9rM4rox\nH7PdLN13AMnXdmETbpCAHFbSC09WiUnePvwmY+NHkF54krh9c9FZK7E5nGS3tw+/WYXcKCl+tZgi\nvTsu6bGUtRlr+KzvV3QI6VTjghS4uYShuA0gKQ2JflR8h6xeelXc/oUOTtXXWyn8uB5fLFUYogmV\nSFCu7x2uBKPq+4nfu/r66oo9rqhOABIX3bj2qXpceCsy6p08y6rvf6t/V18c9GegeO211177Uy38\nF8FgsPzdXfjLodGo/yfP6z8Fbvv+hh+TLqI32ugWE4K3Wvmn21N7KLFYbH+6HY2nksy8CowWO41C\n/QCICPH70+3+t8M9du8u3Pb989Bo1L+/kRt3FXc6hv/K8W612fkl+TIN6vrSPcYZnGdpK/+Stl3h\n463CZLGTW6THQ6kgOMDrv+LZ4PYt9w5uW987uG197+C29b3B3bKzOzb6+/HvXNfcyhz81DfHFuL3\nfmo/EjLjeSnlBfo0eKjGbWuCn9pPmvTr27AfO6/tYHnvFTSpFSm14af2I9Q7lMeaPk5UYDRp2iPM\n2DWtynHq+YQRHdCCnvV7S/2alDCOloGtEATBuX39foyMGs3cPc+x5vxqfs1Yy9bMeNoGt6OeT5i0\nT7BXMJEBzaR2tPp8QjShdAntRqfQztT1CmFMi3EMbjyUQkMBTyVO4r6QrrQP6Uiwl3PF+Krz36FE\nRdy+uZQYS0m7fgSZTI6vyo9jhUcQAINdj6fci/ePvUu5uZwIv8YEeAbQP2Igk2OeollAFG8cWOSc\nqE+Zx5enP+XXjF/Yl7eHaa1ncq74HKXmYk4VneDV+xahUWmIz9xEkFcwS4++w1fpX7Dq/Lesz/iV\nrVe20LpOG+k87/T6uNrydtfVdZuM0gs8tmkIPcN6ExUYTcvAViw+uIiWga2kyfNJCePoEtqN/hED\naegbwefpKzFajax48BNGRo2hf8RANCoNGy/9ymtdF7Ngfxyt67Spct3F83C91vV8wqQ+pWmPEJs4\nucp513QervtXbx9gXcZauof1YMauaQyLHE6X0G4s2B+H0WZgy+VN9K7/IKcKTvD24TfpFfYgL3V+\nhQGNB+On9qN1nTb0jxiIzqrj0Y2Dia7dgnJzOVMTJzKv46t8duoTdNZK+jboj1afz5nSdByCg2zd\nVQAyyy6ht+nYlb2TXuEPUM8njHxdHjuvbcdgMXCy6Dh27GSVZvHDhW9IzNrOY5EjOV54lF3ZibzU\n6VW6h/cgITMejUrDzms7iI2ZztK0d2gZ2AqdVceX6Z8yvfVM2gS1o21QOz5P/4RKayUNfBrxzdl/\nobNWklF2Eb1Vh8Gq55D2ACWmEkrMxRjtBnRWHWnXD/NixzhaBbUGnCShTiGdOVFwnMejRjGx5WSi\nAqMBZ0mw8VtH0qfBQzwS+agzGeMTRlJ2ItuvbCMpO5FKSwXtgjowd8/z5OlzGBs9gSkxTxOiCaXS\nUsGjGwez5fImrA4rves/yIRto9lyeRNlpjJOF58EQYaX0gtPhSdF5kKsggWb3Y7eVimV3DhWkMbo\n5uOo5RHAxydWUG4po7a6DiOajeZg/n725+7DZDdytuQM41o8QWO/SL49+xULu76OwaonNW8fCpmC\nsyVnaF2nDTqr7ia/5Kf2Q4GC5/fMoGdYb3RWHV+kr2R083GMbzFRuj9E2/ip/Wgb3I6dVxMZEz2O\nLZc3senyBqICotmbl0xm+WVe7/Ymo5qPITV3P8+2ncWMpKf56cJq4i9vQi6XMzZ6Am2C2jJv7xy0\nunzSCo5SbChmY+avRAVE80Knl6okkWITJ7O89womtnSujq+0VEj3SaWl4o7uefEZ8Hu+4k58ievx\nXe3Yp8FDf1jF59/1eX8X3HHR3w8xLqq0VDAscniNY676OL6T8VVpqWBdxlqGNxt5E/G4pjZuN+Zd\ntxX/TtMeqdEH1fMJw0/tR7BXMO1DOuKn9qNlYCt61u9dpf2azkHc9uWUuZItcitzyCi9wIxd0xjf\nYiIjo0YzvNlIogKjGRAxiOHNRkr7AuTr8ohNnEz3sB7U8wmTCNuDGw+VfKD4rBUJQJNaTGHlqX8y\nLHI4PcN7SaSD8VtH8lKnVxnX4glm7ZrOZ6c+oVf4AwiCcFNM4Kf2w0vpLfWtnk8YfRo8xLnis/x6\n6WeSs3fz04XV7M5O4tX7FtKkViQzdk1jVLOxJOfuol/DATwWNYIWtVtisOqJS5lHni6HvbnJmKxm\ndlzbxtjoCdIzrJ5PGN4KDenFJzldnM5jTR9nYKMhbM/aRoWlHBkyDuUf5JeLa5jQchLRtVuw8+p2\nThWfJK7TfLqH9yA1N4X9ufvQqHyY0+FFjhccw1PpSbhPA/bk7OLJlk9xRHuIzPJLzGg7m34RAzhe\ncJzHm47is/R/0r/BID45uQK7w8G5sjMMjxzFQW0qYT712Z+3l9ntX+RM0Wkcgp1SUwkBnrXpHd6H\nnzNW4+vhi7dSg9FuxMfDhyJDIQabnnOlZyRFndrqQB5uPIx8Qy46a81zmhqlDzaHFYdgx0fli9lh\nIl+fh9FuxOq4/TvHxbILVf6dZ6i66N1bqaHSWoHepqeJf1OOF6ZJvylRSnGTAzuXSi9itDtLyA2K\nGMqRgkNUWCqkPpodJuzYaeYfRZG5SIoLrhu0TG89izmdXmTT5fXMaT+PYwVpWBxmThefwt+jFkq5\nEovDzICGg270WUCj8kEuk2O2mxAQQAC7YCdAXRvDjX6Ak2SmkCmptFYwu/2LpObto8RSjEblg8Vu\nJrP8MjJklJiLUcs9Sbq6Axs2rlVm4aX0psJczvCmo0gvPoG30gdvpYYhTYZyvPAYjzV9nD4NHiLx\n6g5kMtB4aHAIDtoGtafIWMTPF3/kROFxysylLOmxDG+VN28ffhO9TYevyo8nW07lVNFxdGY9Babr\nXC6/xD/uX0JyThIJV+OZ3nomh7QH6NuwHy+nzOW9Xu/T0DeC2cnPclR7BK0hj9e7/oNRUWPoHt6D\nHVcSmN91EaOixkrltl5OmUufBg/RM+wBjl4/zJDGQ4lNnIyHzIPn98xAZ9bRPrgj6y/9wsZL69l6\nZQvtgzsSFRhNv4YDGN5sJAWG60TXbsXp4nTUCjWf9P2c/hED6RDSiT4NHsLHw5efLqxm0+UNbLi0\nDk+lJ6Obj8PHw5d1GWt5pu3MKv4zzDecPg0eAmDGrmks6bEUnVXHkwkT+OXiGtoGtSM2cbL0LiD6\nVPFYYpwk+hhwxsBfpK+kW70eJGXvYEpMLIIgVImtxL/F44f5huOn9qPSUsGGS+tueu8QbecaF7nG\nj+J3rn690lLB2PgRrMtYS7+GA6qcd6Wlghm7pklEyOpti/a+Vdx1u9jQ9Tg1vZ/dCmL/Ack+IQFB\nv7tfTXCTgP7L4Z7ovbtw29eJy7nlbDt0jXp1vGnVKPAvafOvIgH5eKnIL9ajLTZQP9gHL7XyvyLR\ne7fhHrt3F277/nm4J3T+fvwdJKCCUiNJx3Jp3jCAdk2dwevdIAEBBNXy4lJOOdpiA5Hh/jQNr3VX\njvNXwu1b7h3ctr53cNv63sFt63sDNwnofxd3el1vlfByndzL1+UxYdsoXujwEp5Kzzua7BMhTvqJ\nk7w+Hr5MShiHAgWBXoFklF5gbPzj7M1Jpn1wR+Ykz+K9Xu9LE59iUmrB/jhpkrN68kpwwLtp/2DX\ntSRKDMV4e3jzRre32H51G8nZu/CQeRDh34gyYzmLDrxCi9ot8VJ68/D6/nx56lM2Xd7AD2e+ZfW5\nH0gvPsn6jHUMajyEGUlPo7NUsi93L6XGMl478Cqpeak8ET2ZdZd+osJSzpmSdASciYkzJek094+m\nyFyIt0LjJFfYdPQKe5Bvzn3JmnOrSMndQ4h3KEuPvkNWeSb+HgEc0O7D4XCgkCuY2nIa35z9knJL\nGbXUAUxuFctn6Z+wPmMdZeYytmVtQY4CP7Uvz7aZzZWKy8R1ns/ig4uoMFWw+OAiWtdpIyXORBtW\nJ8ZUT8CDc0K5JmKA6zY6q44H6/elZ/3e5FbmEBUYjQIFrx9YSNvgdkQFRlNhquC9o2+x7uIvbLq8\nnlHNxrE3bzdDmwzj5b1z2Zy5gZ/P/4jWkE8Dn0acLznHoMZDGN9iopSIHLl5GAMiBhHmGy5da3Fy\nPaP0AnOSZ2G0Gdh1bSf9Gg6oMtHv2v9KSwVN/COrJEWrE5U6hHQi2CuYupoQfDx86R7Wg0B1HRKy\ntpB0dSerL3yP2WbiWOERAjwCiQ5sQWpuCi/vncv6S7/QNbQbR64fZte1JIY0GUpq3j5i6rRhc+YG\nDDY9Z0rSqeddj1JLKb4qXyw3kmUGmx6AOp7BDGv6GIIgMCb+cZr4NeVC+TlAoE94P/bkORWF9DYD\nh7UHkCHjpU7zGdh4MN+d/prZe54lIXMrfRv055eMnxjRdDTvHnmLQY2HkHBlGwlZW0jO3cWe3N14\nyr0x202cKTlNsbEQo92IwaInQB3IlFZPc+z6UcospQR61uHhRsO4VpmFxW7lXOkZNl3eQKBnHdZl\n/MTR60d4rdubLNgfR6BnHVoHO0vdPZ88E7vDzr7cFHZl7yTUO5Q3DixCLlOwsOvrzGo/h6a1mvHJ\nyRVoDflMjJ7Cw5HDSMzaweKDi5CjYFvWFjwUHnirvGjk14T1l35BEKDEUkS3kPs5U5KO3qantlcg\narkngkNAJpNhdpjRKDV4KrywOxz4qnx5LfVVvFRemGxGPBQepGr3ISCgt+kw2808HfMs7x97j0Pa\nVLJ1V0nNTWVtxo/EdV7IycITzO+yiAX749ietY33er2Pj4dvlfvqtQPzeev+d+lZv7eTrFjbSVYU\nx+msXdNpG9QOQRBIzU1Bo9LwRfpKHmrYHx+VH0nXdrAvby92wY5SpmJP7m5iW09nZNRojl8/xu7c\nJIx2IwBGq4GU3D0kXt1Onj4XBw7uD+3FudLT2AU7p4vSqacJI9ArkMobCdF1GWvpHzFQ8rvDIocz\nLHI4wG0JO5WWCrqEdqsxAVX9Hqv+++3IPK7bVPdDd0K2SNMeqUJ2rIk0+p8Kd1z098NgsEj+f1jk\n8N8dx6JiQr+GA25LmhOTqtUJQNUJqGIbYnK6OqoTbmfsmkawVzDjt45kT85uPnjgnxKxRuzLqjPf\nSUREiRTt0v+aiHfi/mJi2/VcXX2dmLgGJJ/i2r/qz+GowGh6hvWmQ0gn6f6MTZzMTxdWk3h1B/M6\nxbHy1D+lRPyc5FmsOb+aQY2dhJqzJWfoHzGQgY2G0KfBQzSpFVnFhq6fTyZMYGTUaKl/GaUXiN35\nJPM6vsr0ts8Sn7mJnIpsThWdpHntaJ5u8wx9I/oRE9iamKA2ZJRe4OW9c/n23NcYrDoCveogCJCS\nl8yzbWZTz6eeFHdmlF5gauJEvJUaXuu2mMUHF9EmqC1rM9Ywvvkk0goOE9d5AYe1h0jIimdvbjIA\nRpuB00XpRPhFEJv4JHGdFzCp1RReP7AQAQc2h41d2YkEetYh35DHkEaPcKroBPvynH5eb9Nz9Poh\nPBVeHL1+GIdMwNfDBy+lF8cKjlJqKiElbw92wcapopNUmMvQ23XOMlJ2E6eLTwFgtptxCA7sgp3B\njR7hfOlZfNV+GG1OAosMOQq5ghOFaXgqvPBX+2N32LAJNmTI8FJ4YxOsWB0WBATaB3VEb9Ojt+lv\nkGZu/76hUWqwOpzqJ2q5GrtglwhFIlxJRN4KjUT6AWhTp20VEtGYqPEcLzwGQLGpCJ1Fh9nhLAdm\nc1iRIaOhpiGXKy/RMagzJrsJo92IDBlHtAcJ8qrLjqxtnCw8ToWlHJDxeOQojhUcwSZYERCk4wkI\neCo9USvUtAlsT47uGlbBggwZgiBI6jYiPBWeGO0GThQcp9xahkbpg6+H09ZxnRfSJqgd50vOkZC1\nhQnRT3K8MA1PuRdLe3/A0YIjXDdcR61UM6VVLI82Hc5zyc8wqtk4vjz9GVEBzVl36WdMNhPDmjxO\nat4+tmXFk3b9KCabiTe6vcWZ4tN0Ce3Gc8nPEBvzDIlXE5DL5OzKTsRT4Y1DsGOwGfBV+fF8x7mM\nbj6OSP9mvJ/2HgXG6zTxa0rcffO5Up7Jh8eX81KnV5na+mlScvYyqdUUXt47l7UX11BmKmVPTjJD\nmgwlX5cnqS7G7Z9Lnwb9WH/pF/o26Me+3L30ixhATGBbcvTZvNg5jqa1mjG6+ThScvay89oOWtdp\nQ1RgNKm5KUxMGEtqXgp+aj8+7vs5IZpQYhMnS/7VT+1H26B2DGk8lNHNxzE15mnAqTTTr+EAoOoC\nFFcCjkjsiU2cjMVhRo6CyTFPMbzZSLqH9ahCxKmJYCP+P6DRIIY0Hkr/xoPoFf6A5O+qH0v08a7x\njfiscCWJu/ph12dBTbFN9b/7NRxA97AeVd6Zx8aPYHizkQyLHE77kI41xmViX/4d1EQOd30/u5P2\nxP3EPv3RuMhNAvovh3ui9+7CbV8nViVeRFtioGvLEHy8VX9Jm38VCUgmk+GtVnElvwKzxU5EqJ+b\nBIR77N5tuO375+Ge0Pn78XeQgK7kV3Dw7HU6RAUTVd9JyrlbJCClQo5KKedagQ6L1UGPNvV+f6e/\nGW7fcu/gtvW9g9vW9w5uW98buElA/7v4vesqTki6JnvFcjYDGjnJF8FewSw+uIjxLSbSOaQLS4++\nwxfpK4mu3UJS07kTuCa9XNUz4jM3EeQZzL68vfio/BjSZCjbs7bRPrgDkQHNSMiMZ0bSNDZnbgAB\nRkaNlogqOquO8S0mAs5J/02XN2CxW9CofFAr1TT0bUTC1XhGNxvPG4cW8MPZ70jJS8Zb6c3+vBTq\nacJYm/ETDuwYLSaMDgMGux6dRY9NsFFp1nHo+oEbhAE9h7SptK3TnktlGRy5fhCL3Yr1xuS/l8IT\nm+CcDxBk4LDb6RDciYzyC9gFO1cqLt+whAw5cjZf3kAjv8bkGLI5XpiGl8IbBGcJgkPaVMx2E0pU\nmO0m9uXvZXSz8ZwpSee6UessvWAuZsWDKxnW7DFa12mDwaon2Ksuiw8tRHDAlisbic/cTKh3KOXm\ncsZvHU2Huh0lIoKo6CQmJDNKLxCbOJkfzn3LpssbqqwoFVFpqWDEpmF8dupjDuQdoFNIZ2bsmoYC\nBS+nvECppZS92clkll7mwxPLcDickv8KuYKsiivIBDn9Gw0k/spmTFYzlbZyBjYcwpoLP+Cp9GTn\n1e2MuHF90wtP8sPZbxnS5BHq+YRJE+RafT5PJkyQFKWGNB7KxJaTpcltMWnqSmgbsWkYq85/R8/w\n3tKqXoAuod2YmTSdndd2kJZ/lKVpS/jlws/8cvFn4q9sIv7KJmqpAxgVNY4D+fuYFjODU4UnOFl4\njF8u/sSP539AhhytMZ+U7BRe7BTH+oxf6NuwH60CWzN//0vIZTLnqnGg1FKCChVGh7GKXQM967Cs\n94csPrgIwQGbr2xwGS8wtPGjnC85i8VuZkjEUK6WZ2Gw6zleeIzVZ38gKXsH7ep04HJFBscL0ygx\nF7M/bx/l5jIi/Bpzqug45ZYKlChx4GB01DgiazXjWOFRBAQGNXyYUnMZJeZiDmr3Y7AbGdl0LI39\nm7Du0k+Y7CZkyFjY5Q0CPYNYdf47BAFUCg8ebNCHbVe2sDZjDV5ybwI8A2joG8GWKxvxU/sxOGIo\nK0/+EwEH46Mn8fXZL2niH8nKU//koQYDySy/xEFtKj+eW832a/HYHXaSs5MIUAfip/ZlTNQEvj7z\nBXaHHQd2zHYTF8suoECJHTsxtdtSYi6m3FomJRCtDitmhxmDXU9K7h6QyZjdbi4apQ+nik9IdpUj\nx9+jFqeLT/Fwo2EMajSEXdcSmd1+LpfLLtEltBsH8vdJylUTW06WiDTivSMS1ERCnJhUbhvcjgnb\nRrPx0q/kVuawJyeZL9M/Y/X578kqzeKq7gpbM+PZn78XgIERQ7hYdh6j3UCFpRxPuRchPiG8dfh1\nyszOUixymYKlvT5gcOOHqeVRm8PaA4BTXeGBsL4Mbfwop0tO8UvGT8RnbmJ9xjp6hvfCT+XP+8fe\no3tYD4lk55qE0erzydflScTONO0RBEGQyADVfYGYGBO/T8iMr/IsuN3qcdF3iyUcxWS+qCAiJvpc\niRKu7aVpj0iKWy+lvCAln5b0WFqFrPSfCndc9PfDYLDUSFarSakHflP4EVUbbpfovBV5Niowuor6\nQXVVupr2gd9UK3rW70107RYczD/AxJaTq5B6ROLLW93fo3/jQTeRel2Twa6qQK73cHV1iO5hPaTj\ni30U70+xLfH393q9z9SYp6soSoi+RExiv9f9pnloAAAgAElEQVTrfZ5s9RTdw3rQs35vWga2IkQT\nyoxd05jXKY49Ocl0CunM2otriI15hnePvMXmzA2k5OylZ3gv+jbsR4gmlGGRw9FZdfRt2A+Az099\nIsUI4nGjA1rwWfonTGw5md71H+RgfirPtJnF83tmMLjxUARBoMBwnRlJ09h5bQejo8aRmpfCy50X\nMKr5GMZEj6OhbyN+uriaHy98j0Km5MEGfQFIzt6NgIPZHebSJbQbGpWGpGuJFBgLeLfnch6LGsGA\nRoNQylRsz9qKVbAQqK6Dp8qTB+r3ITUvlROFxxjYaAibMzfwRre3mNNxHlEB0TzVehrtgzvw5qHX\niOu8kCdbTeH+sJ6cLT6DUq6kxFwMMhlyQYaXUsPLnV/liPYwGpUvBqsePw8/yixlDIp4mCtlmUxq\nMZUeYb3pEtKNQ9pUwKlcI0PG+ZKz2LHjIVfjrXQq1HgrvdDb9HgqvPBV+zK11TSSsncAzqjVLtil\nWAacKj76GyRmf49atKvToQpppzrsjt/2twt2/FW1JBK0n4cfHjI1lhskHoAnW07ldFE6dsGGXbAz\nMOJh6TwA2gV14HhhGt5KDTPbPs+JwmNSf0BG95AepJeeorl/NKdKTmJxWJDLFGhU3pgcJk4VnsLk\nMEl9GNl0LNuztmJyGBEQkCHDz8Mfm93GiKZjOFl4jApreZVzdJYBs6KWqSWlIQCb3Sr95qP0RWer\nZHLLWC6VZ3CswKnieH+9nlwqy6BNUDuOF6ZhFSw80uRRRkaNYVDjIWy6tIH4KxuJCWzDxdLz7L62\nk3mdXqF5YDRrzq9CEOBMcTovd17AsMjHOHz9IJWWCvpHDCTt+lFScpPRmSuZd18cEb6NScreQbBX\nCFNaxZJVeYVnWs/k2XYziQqMptJSwezdMyg2FzExegobMtcR4h3KrN3TUclVnC5Ol+6nEE0o35/9\nmkJDAROinyRHl01CVjyJV3cwpVUsP11czVv3v8t99bqSeDWBGe1mI0fBy/te4GrFVT7qsxKdVUfs\nzid5uPEjzGg/m2YBUSw+uIg+DR6ifUhHYgJbM7X100yNeVoiBu3L3cvwZiOluCA2cTLbs7ZJCoei\nP0wvPCm937gq8Lj610pLBcObjWR083GMjBot/Sb6aVfiTk1qOeK7rOh3XJXKXMnN1RdeuPpcMRZy\n9bG3Umr7vdimejuuzyxx39sRWO8ErudU3aY1EZjuBGJ/3CSgO8D/4oSoe6L37sJtX8gr0rN6ZwZ1\n/D1p27QOMpnsL2n3ryIBAfh6q8gt1JNfYqBhiC/NGwT8Je3+N8M9du8u3Pb983BP6Pz9+DtIQKev\nlJCeWUzPNqGEB/kAd48EBFDbT012gY68Ij2tmwQS4PufPe7cvuXewW3rewe3re8d3La+N3CTgP53\nUdN1FROxmy9t4JV982hdp400meoh88BT6SklVgRB4PnkmdKK8PYhHRnQaBCB6jp8ffbL3y2VISaT\nxclO19WDrYPbUM87jMPaQ+y4upUlPZYxqdUUQjShBHrW4fk9Mwj2rMtzyc+AAHKZnAfrP4S3youZ\nu6ax6tz3/Ov0ZwSq67Ao9RUSrmzDYrdgESyYHSYqLJWk5CZjF+z4KH3IrLiMxWFBhQdGh5EKSwWJ\nVxOkpITDZQJfXEF9piT9pnPKM+Qi4MCBQyIAAShkSuw3SEBGmwE7drJ1V6skTcTWjXZnkiHPkIuX\nwguV3AODXV8lieDskwMFSqyClSPagwyPHEXPsAdYdf4bZCgk5ZjxW0fzzdkvOVdyFrPNhEIhp8hU\nxIPhD/H24cVsy9yK1pBHYtYOVp//np/Or+bFjnF4Kj0llYHFBxfxWOQIzhSfZnqbGXQP7yGRGkTV\njTDfcNoGt2PXtZ0UGq/Tt0E/ogKa83n6SmJjniGz/DIV5goOavcjIGCyGzHZjZjtJkCg1FLCjqzt\nlJpLMNtNTIh+knUZP4NcxsToKZwpPk3v+g8SmziZ9RfXEegdyH0hXSg3lyMITjvGJk5GwMEHD3wM\nwMspzmScOM5m7JrGpBZT6B7uTGK6rtgN0YQyNn4Ea86v5vuzXzO0yTDWX/qFjsGd+TljNS0CWpKt\nv4qX0pvHIkdwQLsPs83E+ZLzmO0mzpWcRWerRIESna0SBw66hnanxFRMmaWEziFdSc7Zxb7cFJKu\nJmJyGPGUe1VZJS6W3XBFbKtn6N9oIMMih3O++BwpeXuq7He2OJ0Kq5O4dLHsAnac48xsdxJd7IJd\nKqsRoArA5DDho/LFQ6Fid/ZOKi2V0pgFuFR2kczyyzeui7NNuUyG6ca/5cg5XXLqhsKV0+6DI4ay\n6vx3JOcmYXPY0Nkq8VZ5sydnN8+3f5EwTTifnFrBmnOrOFtyGjkKRjQdw4oTy6i0VCAgsDt7Jy92\njGPp0XfoGtKdT9M/QhDAYreglDnLb3gpvBnZbAwf9V1J89rRvLRvDoIAxeYiqb+u92u27qpL4u83\neEhJORm+Hj7suLbtplIkwo17scJSwSFtKntzkgnyDuZgfiomu4ktmZsot5SzOzuJrZlbGN18HOAk\njyVm7eCdI/8g2CuYl/fOJcwnjGk7p9xQt8pDJfMgJWcPCpkShVxJq8DWkj8Rk4iivxAQyCrLqnL/\nH9KmsuXyJgZHDOVSWcaN5KhAVEALXt03jwPa/ciQoVH6YHVYuFJxmaPXD6OUKfHzqMU7PZeyNzeZ\nn86vYVvWZow2IwfzU6UkmoiM0gsM2ziIH8/9QK/6D5Cvy+OxTUPoHNKFZ9rOrLFUhGvZI3HVfj3v\nMEkJSvQZrhCVvb47+zXrM9YR5hPG7N3PsqDLa1IpwTnJs7A5rPQI7yX5perlJwVBYPuVbfSq/wBP\nt3lGStqJ6kyiStCdoKaSS3cb7rjo74cYF1VP0N5KFctVteHPJDpdE6i/11b1bQEiA5pJShiupczq\n+YTRM6w3/RsPkvYXybBdQruxPWvbTfdxpaWCny6spkd4r5vul0pLhRQTioqMadojzNo1HbvDwcio\n0VWULqICo2+pKOG6jdhu6zptJAXHLqHdaFIrkg2X1kmljj5L/wSz3ez0jzLYfmUb267Es+HSOpoF\nRDF+60j25+4jQF2bbN1Vnmz1VBXSYF1NiOSfxBJmEf6NGHwjBhi5eRjfn/0GjYeGhV1e57P0T3ip\nk7N0548XvifpWiLbr27FT+3H+OaTyKrMZGtmPJszNzC7/QtsvPwrXUK78vLeuWy7Eg8y+OjBlRIR\nNL3wJHH75/JSp/nM6xzHo00fJz5zEyk5e7ELNpQyFZ1COrPq3HecLDxBj/BevHV4MduzthHqXY9d\nOTu5VHaJA/n72J+3j8Xd3+KFTi9R1yuE1LwUnmnzHHvzdrM/dx+llhKmtHqaI9pDeCs1mOxGMssu\n4av241LZRXblJNK/4UBOF6djs1tp5h+FxsOHme2eZ0/ubswOM74qXx4I78OZknQ8ZGrMDhN6i57G\n/k04cUNpJ9grmECvOgyPHEmuLofBjR7hWuVVibRjtBkkZTqoOccmIODBb2QZQRCw4STLOBwOHm7y\nKOdLzyLcUD9894HlJGUlklWZCUD/hgPZk7sbcJKS2gW1d5JnHFb256XgrfTBaDNIMUuuLhsBgXJL\nuTPvJ4CPypdKayUy5Ph6+OIp92J01DhOF58iV5dDmaXUOW5V/tgEG1aHlTpewRQYtXzwwD+pMFVK\nBO0gz2BJBai2Z6D0t7+HP2/d/x5hmnBOF51CqVBgcVg4W3yaMnMp/h61GBAxmA2Z6xCAk4XHCfYK\n4cmWT/Ht2a9Ye+EnmgVE8UqXhQR7hbAx81d61OvFscKjnC89R6R/UxKvbqeOVzDPtX+BjZm/0jao\nPTuyEjA5jJwoOO4s8ZW9G4VcgZdCw08XV1NpqeCxyBF8dvpj5nV8he/PfVPlvW971jaW9fqQCP9G\nfH3mS9K0R/H39OeLft9IRBux7N/Oq9sBGWkFh1na6wNmtJtN97AevHV4Me/1ep+e9Xs7Y++IQWj1\n+TyXPJ15HV8lts10OoR0QhAEOod0YVnau3QJ7cbig4uY1GIKEf6N8FP7ERnQjHo+YWSUXuBUwQme\nSpzEuz2XU1cTIpH4u4f1kBYAuBKaJ2wbxVv3v0v7kI5V/K8IVzKj6EvF9wJRybS6QqFrnFD9Xba6\n2tutCJ6ucZPYhqjKeKvnwK2UgG7lZ13JS6KfrV6a7I/EOTWp/9TUhz8KNwnoDvC/OCHqnui9u3Db\nF37efYnsAh2dWwRTy+evewH7K0lAMpkMTw8FWdpKLFY7vdreudT6/yrcY/fuwm3fPw/3hM7fj7+D\nBHT43HUu51Uw8L6GEiHnbpKAZDIZ/hoPLudVkFuko0fr0L+MzHo34PYt9w5uW987uG197+C29b2B\nmwT0vwvX6ypOXo6NH8E3Z/7F2ow1qOQqogKiGdfiCRr6RjBnz0w6BHfiZNEJuoZ2Q0Bgw6V1DGk8\nVEre6Kw6Zu5+mrkdXsZT6cnuq0m8sm/eTWoRadojDNswiPgrm1l3cS0jo0bftBK9e3gPGvg24OEm\nw7ivXlcmb5/AqnPfk3b9KHGdF9A8MJqka4kUGQsps5RxvDCNjZfWo7NU0jygBfU0Yfx44XusDiuF\npoKbJPlFuKqqVCf7/BEoZcqbyBxiQv/fhU2w3bLf8Ft/BQSOF6Zxtug0Hgo1ZZZSDuanMiJqNCHe\nodwX0pW060fpFf4Ap4tPOVVPio7jwIHdYUPj4SSrlxiLscscnCs+y67snczrFMcbBxbRxC+S785/\nhUKmYHPmBup6hTAjaRpfnv4Uk8XMu0ffItQ7lCa1IqmnCeNYwVF2Zyex/tIvyGVyMisuM7jRUFLz\nUxjYcAj5unxsDptkY6VMhRyZVNYIIKcyG52tkloeAezJ3YXepmNM8/EIDtidm0i/BoNYcvhN1lxY\nxdYrThLG8GYj6RHeC3ASgF7oMI8F++P4/uy39K7/IOE+9Xll/4v0DOtdhbxUzydMWv2rkqnYfGUD\n5cZyjhYcJkeXjRw5uYYcEECtUJN2/Qhmh0kiMwHY7TanPbEjQ46AwJUKJ5nmubZzKTIWcqzwKHqb\nXrqmcZ0XcrLoBCa7CblMjhJVlTEITsLHugtrySi5wBdnVkoryEVYHBYUKBFukMKcnwoEBOlThMnh\nJMqYHWZn+Q8cCNXGqsVhqUKoEb8T0SGok0QqEnGx7IJ07cwOM4HqOrSsHcPp4lMkZG3jVNEJanvW\n4fGmo2jk14TU/BQyyy/jpfBGqVBQbikj2Lsufip/9ubtJq3gCCCTSouIyUST3cjxwjTqeoUQFdic\n7VnbaOofdVuFgZrwG6FGwGx3tt1Q05Bya/kt97EJVgJUAeQZ8zDajZLtFKgoNhdSxzOYuJQX+fXS\nWuKvOAk6/zr9BTm6a+zLSSFPn4PepseBg+OFaQgIGOwGzHZTFR90+/7+BrPdxPHCtCrqCIe0qVWu\nt7fSW7qWcuQY7QY0Kh861O1Ip5D7OJh/gGa1osiqvMK4qIkMjnxYehaIpYDqeoVwsfQCgxoPcZbF\n86zLylP/lNQ+qqvyiPdRmG84kQHNuFp2lW1ZW2hdpw0Tto3my/RPaVG7paTkFhnQjEpLBZ+f/JRi\nU5GUcMzT59Iz7AFmd5grleB7stVTUomMuJS5vNx5Pu1DOkp9BmdCenbys9wX0gUvpTfphSd5Pnkm\nod6hTNg2iuiAFngpvW+blHJNarkmyP6q1fK3gjsu+vtRU7x7qxJ1rr+7frreQ/8uqrdVE1xVF2oq\nmVe9lJlreTwxcbykx1I6hHS6qUQZOElCWzPj2Xltx02xm5hAnthyspQQj02cjMlm5pO+n99UHvBO\nzjdNewQfD1/WnF/N5JinqigJNfGP5LGmjztLCUU+SvvgDoxqPobk7F0s7PI6M9rPpmd4L/pHDJQU\nkcJ86rP40ELm3/c6Ef6NqiThm/hH8kzbmdI5i/d334b9JFLQw00eYWrM09TVhPDDuW+Z1GoKu7J3\nEhvzDM+0m8nenGSea/cC7xx9k6W9PqBX/QdYff57Iv2jSLt+mO71enD0+iEWdn2dXdeSmNr6aSm+\n3n0tiWmtZ7Ax81fGt5iIj4cv6y6uZWHX1zmsPcSHD36MRqVhTPPxdKzbmZ71e0vqSwtT49BZdTzf\n/kUa+Eaw89p2UvP20SaoLb0aPMDDTR4hMqApq85+h8lh4skWT9EtrBubMjdgtBmRy+T4q2tRYi7G\nW6HBT+1H34b92JK5EY2HDzn6bDzkHjQLaM5h7QFGNh1LviGXk4XHXWJaGWqFmiMFh5Ajx0fly4cP\nfEwD34Z8cnIFMpmc44VHiQlsI8UJSpT0Cn+QKxWXUcs9sQs2OgZ1xmgzoVFqAOfztfpzTnyWCQic\nLTnNA+F9uVJxmSsVl7ladpWEa1tQyz3xVKhpGRjjogQk0LRWlESs1ag0LOjyOgfy92GxO+9vH6Uv\nFoeZSS2mkqvLRaVQUWlxkrd9lD5UWirQ23UUGguYGD2FjLKLVN4gW5sdZnxUGix2C1NaPS0p93x9\n9gunaicCI5qO5kjBQdRyT6eiksoLD7maWp612JebwiFtKuOjJ1FsKsbmsDG5ZSxXyq/wTs+lrLu0\nFsEBU2OmcVCbyqBGD/Pjxe8Y2HAIe/N2s/3qVpoHRPP9uW/oU78fX535DD9VLV7q9AqfnFxBqakE\njYeGC6XniY2ZzkspczDY9YxsOpYSUzG96j/Azmvb0RryOaRNRSFT4K305mjBId6+fynjWj5Bv4YD\nCPSsw5w9M0nM2oFCLmdk1BinutXVREotJdRS12JI46H4ePii1eezPWsb/SMG0sivCedKz/Juz+XE\nBLUhzDccQRCk+1tUCKyrCSEqMJpgz7p8dfoLErLiaRvUjhm7pvFI5KP0bdhPKsX7XPIz7MhKYEDE\nIKmU6qMbB3NYexhfD19GRo0hNnEya86vZu2FNey8toPhzUZKpONKSwU+Hr4MbjyUnvV71+hP07RH\nmJM8C6vdSs8bBEg/tR+h3qEkZSey69pOWtdpc1PpRrGN6qpq4vuFSEQeFjlc+qyp9FZNJM7qZNTq\nvvhWZNFbKdeJcFXncVWH+6PPrN8jwP4ZIvUfjYvkf2gvN9xw4/8FSipMHDxzndBAb+oH+/zd3bkt\n6gf7EOCrJiu/kuslhr+7O2644YYbbtSAwjLnZHhQLc97dsyQQG8a1PXhcm4FH/5yiqS0HHIKdTiE\nP5bIcsMNN9xwww03/rchJo0AlvdeweZHt7PwvsU4HAJz9sxk0rbxBHoF0sA3AoB8XR6TEybwxNYx\n5OlyOV98DpvDypzkWQAEeQXz4fFlDP11AM/vmUGZubTK8dK0RwjRhBLqU48noiejUqjQ6vOr/D4p\nYRwJmfE8lTiJhamvkF54EkEAmcyZLFiW9g4zk6YzuWUsDsGBHAXgVFIxO8zs1+5lv3YvduyUW2pO\n7P9Rks/vwfYHCT9/BSptFZRZSrELNsZETWD9xXU8v2cGS48u4boxny1ZG53kgxtkBACzYKbcUkax\nuYj7QrrhEOzcF9KV5b1XUGws5krFZbZkbUQl8yA25hmsDitvHFxIvj4Xq8PKhyeWkVeZy5TtT9Br\nTVde3DubYmMRFeYKbIINu8NOvwYD+eTkh1gcVrZkbaTSVlGF7KK36TC7kBkEBMpMzjJH7YI6OFeJ\ny9UUGgrYcHkdQZ7BJOckYcOGh1yNUvZbGfeZSdOZtWs6S3osJSaoDSOajkarz2P81lF8fGIFb3V/\njxBNqDTucytzpL+1+nw2Zv5Kn/B+bMnaCEC5pQyH4Oyrv7oWJSZneSkRzf2dSU8bv1336kSez9M/\n5quzn0v/tgsOfFS+/Ov05wiOG2pTggMrNRMui8wFUn8AZMhQoPytvRvH/u3TXuXzr8TRwsO/u02h\nqYCknB3gcNrCJtgw2gx8dfZzvjr7OQICRcZCBJlDuj/DvMP56uznWB0iwanq/Sl3mdJflvYOo7Y8\nhtaQz37t3r/kvK7qb08kClAFcFV/lSa+kVW+L7OUYnfY+ceh18jX59KjXm8ANmduoMhYiL8qgDJT\nyU3+5m75H1eUW34bp3ZseMg8MNj0PL9nBs/vmUGuPrvK9UzIjOfh9f0ZGz+ChMx40rRH+Obsvxjb\nfAJzkmeRkBnP5+krWdJjKcnXdjE2fgQjNg0jITOeSQnjJN8t+vNVZ77j54zVlJpKACfZb8n9y1h8\ncBGrznzHEwljWHXmO75J/4oicwFeSm++6PcNo5o5n0eBXoEADNswmOk7p6LV55NbmUOhoYBrFVd5\n48Ai0rRHGBs/gpGbhzFi0zA+PrGCOl5BvHFgEQ+v78/U7RMpNZUQ5B3Mix1ekb7Prcy5pd3CfMP5\nZsAqwnzDpb8ByV/cCapvJ/qYNO0RAOnTjf8OiEnd3xsDYjJ4bPwIabs7HTN3gpqeW67tu47dmvYR\nf+8Q0qnK765/v5wyl4/6rGT14LU3JXbF312Pt7z3CrxV3oRoQmts83bfpWmP8NimIaQXnqzSZphv\nOC90mMfTO50qI0t6LGVm0nSm7phIoaGA5b1XsCztXbT6fOYkz2Jm0nTStEd4+/CbrM1Yw/JeHzGu\n5ROE+YazpMdSQjShUnvphScl+4ltz0meJdmnQ0gnwnzDnaUQ9XkAxMZM552jb1JocPopgHCfBgR5\nBzOg8WCW3L+MladW8FKn+XyevhKL3fkcu27IJ73wpGQnmQzWZqxhSY+l0jFUChUxQW1YPXgtAMM2\nDuJ88Tme3jlZ8hMhmlB8PXwJ8gwG4MMTS7FjR2vIZ3LCBEZuHkaIJpQQTSj1/RpQ1zuElLxk3jiw\niLhOCwn3bUBd71B+GPwTC+9bTJAmiJc6vcqHx5eBABOjpxDsVRe5TMGn6R+x4L43aF47Gk+FF7XU\nAYRq6lHHKxhRrRKcT+hKawXP7IxlyZHF2AUHBpuewRFDpdKaQZ7BPNFiMntvqPTYHTa8FN4cL0qj\n1OIkwFgdN8c97YI6SH+L8d/Rgt+eVQarU+FPEJzleE8XnQJAo3Tm8kI19aRtK62VLEx9hXJLOYMj\nhvJc27l0DukCwOoL31FsKkRnrWRgxGAAjDYj7/X6gOW9PsJqt/Fp+kdUmJ1xSsegzlKbDhx8e/Zf\nWB1WSk2lfP7Q13zc9zPe6bGcmR1mU0sdgNlhoshcQLGpiAVdXmdl3y/xVnnh5+HPqgvf0j64Iwab\nng9PLKXEXESxsZi4zvOpsJbRIaQDC+57g81X1vNih1eIv7K5io2MNgMrT61wqi9aK/j4xArGRE1A\nIVMgk8mwCVaaB0bzZb9vCfepT9d63QBYmPoKX/T7hoX3LaaOOhg/tR/eKg1fPPQN41o+Id2D41o+\nwfJeH+Gl8sRqtzFr13TmJM/i3Z7LaejbiOfavcCc5FmM3DyMmUnTies8nycTxvNSyhziOs8nyDtY\neua5vuMlZMYzMWEsj24cTJr2CJ+nr8TqsCIISPfpnORZ0j0ZE9SGDY9s5eeHNwAwNn4EIZpQ1j8S\nz4Zh8ax/JJ4OIZ1YPXgta4duYO3QDSzvvQKtPp/HNg0hITNe8smuPgqqvm/OSZ7F8t4r+KjPSl5O\nmSv5iLcPvwk43487hHSS4gFXHy9eD9F21X2zGBeJ79o1wXW/6qgeP7juU327O3lO1bTvvxPf/F5b\n1fv0Z9r+o5AJwv+fDEhh4d1baf53ISjI93/yvP5T8P/ZvjqjlU83nuZsVimTB0Vjc9wsw/xn4Ovj\nSaXO9Psb/hvI0lay90Qe98eEMnnwf35967uJ/89j917Abd8/j6Ag37+7C//vcadj+M+M9+QTVVfF\nbtp3Bb3Rxui+kfdUkUdntHLgtJb84t9IoiG1vZk+rNV/FMnV7VvuHdy2vndw2/rewW3re4O7ZWd3\nbPT3w/W6uk5UiskWmQwGRQzl01Mf0cCvIQu6vM4Lyc9RaCpAjhwZMnw8fAnyCuajPisBpJJKy3uv\noNBQQLGxmM/Tf0smpWmPMGzjIL546BsW7H+F64Z83r5/KZ+nO/eP6zyfZWnv8kKHeQxoPJiEzHje\nOLAIlULF8t4rCNGEkl54kqk7JhLsXReAHF02MmS/m1RXocKKMzGjRHmDtCFDiQIbNsK8wsg15t62\njf90eCq8MNudCjX+Hv7oLLoqRBC5TI5DqDrX4YEHXipvFHIFeqsOuUyB0W4gQF2bcnMZcpmcSL+m\nnC8/h1ruidnx27yGWq7GU+mFwaaXlH3kyBkU8TDxWZvw8/BHZ61Ejhy1whOdrZKOQZ3viEgiQqP0\nwWAzIOCglkcAOkslr9y3iLcOvy4Rrhbet5hHmw1Hq89n+s6pmGwm3u25nMUHF3Gt8ioP1R/AlqyN\nBKrr4OPhi0quYmHX16VVyuBMTMQEtWH9xXW8cWhBjX3x96hVhVjx76CmMaqQKRAEAfG/fxceeGC5\nBXHoPwUyZIxoOoaUvGQMVgMVlnLpXH2VflTaKu7o/v13oJFr0DtuLgN2txDsVRez3czwyJF8ffYL\nBIS//Jz+LBQoJBWI38PkFrGsuvAtvkp/xkU/wafpH6FR+hDoFYggwLNtZzFnz0yebPEUe3OTJf/c\nIaST5LM/6rOS88XneH7PDJ5rO5dJMZMZGz+CuM7zmbL9Cd7t+T5z9z6Hj8qXcksZvjdKsfQJ70dK\nbjI2wcayXisI9Apkyo4nEASBcN/6CAJ4q7yJjZlO7wYPotXnE6IJrfFz6vZJWB0WSozFhPiEcl2v\nxc/Dn2JzEQvvW0zXsG5VyBC3g/iM/L1yT+J2Y+NHVCFR5FbmoNXn83LKXCa1mMIr+1/k16FbpKRk\nmG84Jo8y6vvXv6P+uHF38HvxrkgUudW/xe+galK3OjHnTpCmPVLj+HQ9pvh3Tf24Xb/F78bGjwC4\naaz+kbZc93c9Z9exX5MdRGK46B8GNB5cow1WnfmOeXufJ8K/kUQIACQi0OrBa6X7H36zv+s5phee\n5O3Db2K0GVDKVJLvEgkA1clRYnsjNrHcZqMAACAASURBVA3DJlhZ/0g86YUneXrnZGJbPcvWrE38\n/PAGtPp8hm4YwKZhCYCTjPxRn5UUGgpYlvaupLxU09gQ411wxiELU1+RjhMT1IYRm4axdugGkq/t\n4oNjy/BWedOvwUB+OPcNKoUKpVzJF/2+IUQTKsXZAAdyU/ns1CfU9qpNbMx0Pjm5gkERQ9lxbRtx\nnefz9uE3MVgNGKx6yi1lBHnVRaVQYnPYiKoVTVLODoZEPMKOa9sI8qrLlFaxlJvL+fDEUpRyFb3q\nPeAk+wJDIh6hfd2OfHbqE0rMRXjKvai0VeCvqoXBpsdT6YXJZqRn2G/7aJQ+WOxmaqkDsDjM/B97\n9x0eRfU1cPy7LZteCKE3QaQJSFE60gVBqrQoiKDYABWQ3pQioFiwYENRXvipiIQqRRDpgihFBaQI\nASQhhCSkb5v3j2XGTUgn2YTkfJ7HR7K7M3vv3Tszd+eePTfOEqeNzY0Y8fXw05bgUsdefkZ/HqzU\nns8fXs6kneP58sRS7IqdHtV6seH8WnyMviTaEnj7wfeJSYnh7cNv4GXywsvozdWkCOeY0QEV/Sth\nUAycjT9DKXMw05u/SrsqHVh2/HO6Vu+mXUP6rO1OaK2h7Li0jYTURDpU6cS3p1cS4BFAv7sH8uVf\nn2PHhlFvorRnaaKTr6HT6Vjb+4ebn+cPvHfkLcp4l9U+p6ikq8w+MJPYlFiupURRyhxMrxp9qR/S\ngCl7X2Feqze0fr64w3/frQas783D1XrSpFwTulZ3BtCcjD7BKz+/xJRmM2lRsaUzY1b1vqw86cyC\n6m3y5q12i3l66zCikq8ysek0Fvw6h/mtF/HJ8SXYHFaebzgmzfc0te+r+q/rjdVh5aPOnxGVdFV7\nb/WYARi7cwxdqnRj8ZFFlDIH83b793j94Jw0/UyngzW9NlLRrxKbz20kOjmadlU63HJ+Ub+HqvV2\nPUbU4zn9sZr+XKSefyISr2R43KU//mYfmImiwKqeYbecT9W6pm8f12v8ij+/YtKecYT12qSVK33Q\nS07O0+p2Gb3mcMShTM+hrvVWgx5ze73JSdly8zpXm89t1D6/3NY/r/eLJBOQEOIWZy7HMeuLg/x1\nPoZ7q5eieb2yhV2kHKla1pcAHw/2/xnB9sOXSE4tvF8cCiGESEtRFBKSrfh6m9y+JJevl4k5TzVj\n/rMteLJbbR6oU4aI60nM/epX9v8Z4dayCCGEEKLoU2+4qb9wNBlMLO6whKktZxDWexOLOywhxLsM\n11OcE8gOFBSdQpwllrjUWKKSrvL01mHsDN+hBessOryQdlU6pLlxWs6nPFX8qjp/2XnzF5yP1RvK\nyu6rtF92j2sygUWHF3I44hBdq3dnVc8wVnZfpf06u2v17qzt/QPr+2xhfZ8tvHjfeG2yvVW5tlqd\nWpVriwHDzfT8YMV68986bNjQoQMULRgoMjlSy+pSGDzwyPDxATVDb5bVSf13+rJ6GbyxKc5AHLPe\nTKIlEZ1Oh5/JmYI9wBTIw1Ufcf7bIxAPnTPFugULcdZYvIzePFb7CZLtSejQE5N6HQcObIqNk3En\nALQAILPefPNvZxah5xu86FJGHVsubGJ6s9d4sdE47IodPw9/Uh0pBJgCORL1W5r6ZCfRlqAtWRVr\nidEy7pTzKY8BA8PrjqTPPf3ov875a+RkawqRSRFM3zuFxR2W8GnnZfwe9Rvg/EW5TgcJ1nie2vpE\nmowlI7c9Se+w7vzv1HJ6VOuVYVniLTcI8AjMUbnV7FQdK3UBnMtoudKho5Q5GIPekKv2cJVRAFBu\n9qXL4DZ5g1IN81QWAFMGfVhBYdXp/93MqJA22CnBlkCIZxk6VOqsPRZgDMj1+6avszsDgABiU2KJ\ns8RqAUDgDMgrSuzYSbE5j9+sPmMfow/bL27DpPPgWupV3j/6Dh56MzGp13m4Wk9W9QyjXZUOBHqU\nYuWpr3jhvjHa+fly/CVe2z+T8PjzjN7+HMFewQSbS7M13Dkhqma6ADgedQy7YteC6sp4Ou/Dbr+0\nFaPehAMHr+x6iVd+HkuwZ2nKepd3Zo7Tm5j8wDQ+OLKYneE76LuuB2v+Xs3o7c9pgQZqVpGryRHo\n0FPJvzLjmkwEwMvkxfC6I5l/cDa91z58yy/rM8tg4vrr/MMRh9JkeXH997DNj6XJanI5/pKWbUDN\ncvDJ8SV83OlzLfAhdGN/Dkccos83fXLyUQo3yCxrQWYZdjJ7XUaZeXJCzZCz+dzGLF+X0wxFGb2/\nmp0mfcaf7Mqa2b5c/63WWc3UNXbnGG1iPz11bDf5gWlpst+4BgBdjr/EJ8eXUNGvEos7LNHeTz2u\n1HPLpN3jtYwb6mSyax27Vu/OW+0WY9KbtGxHTcrdrwUCqcez6zF7POooJoOJ11rO0/bxSpMpLDm2\nmPNx/2jjCDVbnRqENGbHc8B/mYbUz9K1b8xv8yaLDi/U3nPktidRFGdg0+sH57Dm79VcSghnzd+r\nmbRnHDqdM1h+a/gPGPUmJt4/FU+DF/sv79MymozZ8RxPbx3G7F9mEJl8hf41B/HJ8SVcS4rm3SNv\nci0pivohDXmr3WJmt5qHt8mHMt5lGd90Iks6fYbFbtECdbZc2ESARyAWeyqv/TKd94++gxEjpT1L\ncyH+PIEeQQBsPL+Oub/MQsGBw+Eg2Z5EoEcQSdZE7NiJt97ggbIt2HFpG0EewQR4BBLkGUSQZykC\nzIG81+EjAs1B6PQ6AjwC+bzrcvre7Qze6lGtF+91WIJBZyDBFs/G8+tY8edX7P53J6XMwfSo1ovZ\nbV6ntLkMZsN/Swe9f+QdEmzxmPQe9K7Rj2R7Mn4mfwI9g0i2phAef4Egcym8Td58cGQxA9b35rvT\n33Ay+oQWODah6VSWn/yCFFsKU5vPYPXpbwDwNHiz/eI2QrxDMOqMTLl/Br4mP/zNAYR4ldX6YoA5\nAAcO2lZsz+WESwzdNJjX9s9kevNX+erh/1HaM4TY1Bi++OtTAD7u9Dm1g+tQ1f8upjd/lbE7xxCV\ndJWIxCsoCqw9t5r6IQ3ZfG4jk3aPJ9grGJ1ex8qTyynnU575bd5k7bnvmdHiVcJ6b9SCdPw8/Pm0\n8zJGNXmR+a0XseyvpbzVbjGLOyxh2V9LmfzANO04U49ZtQ3e67gEb5M3UUlX0xyfAFFJV2lS7n4m\nPzCNT/74gCfrPk2CNZ7Juydgc1gJ8S6jZcAy6U3aewC8/PMo+qztrh0Lrpn3yvmU1zKOqRm8Dkcc\n0o5n10w96bmef9Tzh7pv9bhWt1vWdQX1QxpivHk+cD02Xc9PGZ0jXX/cMmXvK8xvveiWwCTXdky/\n38xk9ho1C1Fmz6vnE9dMbbmR/tqWkbxk9TkccYhnfhyuZYzMLpNefmUNMsyaNWvWbe/lDpHROqZ3\nOh8fc7GsV1FRUto3xWIj8noS/1y5wb4/Ilj2w0mSU230aXMXQ7vWxqDXcz4if3/tavYwYrHkb5CO\nTqfD18vEhYh4jp6NZvvhS1y/kULpAE/8fTK+gVhclZS+W1ikfW+frO9e+HLah2+nv7teO1Isdv44\nd50yQV5UK5+39W9vx4XIeKJik1GA0oFeBPmZCb+awKGTVzkVHkNsQio1KwW4PUDJlZxb3Efa2n2k\nrd1H2to9CqqdZWxU+E5HnsPf7ByjqDfempd3/pL0jQffppxPeeItN/D18GPUjmfpVLULuy//jEnn\ngY/Rh0RbAn4mfxJtCfx8cScRSVfYcmETO8N/IrTOEHrf3Y+KfpW09wDwN/tzX0gjagXXwd/sTwXf\nitrjFXwr0rFKZxqXa0q94HuZtHs8Hat0vmUfABV8K+Jv9ifecoP7yjaidlAdTsWc4KuH/0dZr3Ls\n+3cPQ+sNp22ldpyJPY3FbkGnwGN1nuD3qMPAf4EDHSt1IcEST6ItAQcOku3J1PC7mxiLcwkbL4MX\nZoMnNm2ZIjDrPbFnsOxXg1INiUyOTPOYCQ8c2LXn1PfVY6C0ZwgWe6pzmQfvsvS7ewDHrx0l0BxE\ngDmQsY0n8nTDZ/nhn014m7wZUe8ZZracTQ3/mmz4Zy3+pkBeb/0Gzcq14N/Ey7zZ9m2q+N7Fvit7\nGFb3Ka6lXOPLbiup4V+Tv67/weGrh3jxvvHUCLg7TTaeEM8yjGzwPKtOf0OCNf6WDCa1A+pwLfUa\nrcq15UriZTyNXlhuLt9lwMCAWoP5MXwrDhwEeARiU6wMu3cEbx6ezw3LDV5pOoVzcWeZ9MA0tlzY\npO3fiFFbliwrPkZfbA4boKDXGbgUf5GhdYez78puIpKu0KFKJ34M38q7HT6gd82+7Lm8i486f0aT\ncvfjZfQm7Mxq9IpzAmlas1kcjTqCj4cPT9V/htMxpxj545O83vpNht07gk3nNnIt5Rp6DBj1RlId\nqfga/XiuwRguJYQTlxrLqIYv88e1Y1gdlpvBV9Y05a0dUIeo1KtaW5h0Hnzbcw0xyTGcijnB6PvG\nMrPlbJ67bzSP1OhNl6pdOXjlIBa7RetXBoz4mny1dgbw0HmgoDDmvnH8ErEvTb/zMnmjKKTJ1uRj\n9MXb4E2qIwVPvVeapeoCPAKcx0W6jDXXU67jZfTWlujwMnhlusRd+uAbdRk0AwZ8TM7PTIcOo97I\nsDpP8fvVw3gavLA6LHSs1IVZLWez8+JPHI3+nR7VenExPpwEe4JWvlR7apr9e+g8blnirLAz7pj1\nZixKKl4G5xIfziA6HXbFnqZcTUMe4N+ky1qbZVS/gqK22+QHZnDk6u9YFAsJ1oRbXteqXFvO3jiD\nUW8kzhJLx0pdSLInEp96g0BzEPsj9tCjek8SrAn834llTGg6lW/+Xknvu/vhb/bH3+xP17se5pEa\nvXi4eg8m7x5PVPJVFrZ9i8blmhJvucGo7c8SmxrLkajfUFAYUDOUSwnhXEl2TqTX8LubqJQoQMGs\n9yTRnoC30RuDXs/W8B/wMfnQvnJHvvrrC07H/s2ge4bw9u8LiU2NIbTOEBqG3MczPw6nYelG/Bi+\nlSDPUnzU+TPuDWnApn82oNfpORfnvPa90PBF7i//gHZ9ORxxiFE7nqVjlc5prjmnY07xeN0ntAm/\nPmu7s+WfH7ivTCNGbhvO6tOr6FK1KxX9KlEv+F5mH5jJGw++ja+HH6Eb+7Pl/A/a3y/vHI3VbmVU\n45eo6FeJLlW70u+eAdQKrsOjDXsT4Jn7IDiRf5KSLNp4KH0/SM/f7K+NUVQZbZvVPjJTwbcidYLq\nsujwwjT7ymz/6cvh6nL8pQzLcDn+EqN2PKsdv/nJ3+yv7f+NB9/moWrdtKwembXr3UH30LZiO8r5\nlOd0zCn6rutB24rtUBRFO1YG1X6MWsF1tAAf1zGi2g61gutoj7vWMd5yA3+zP1cS/mXbha08UW+4\n1maKorD69CpaVWzDyG3D2XB2HW+1W0yCNYEhPwxkQtMpLDn2Ph2rdCbecoMZe6eg1xkI8izFUw2e\noVZwHR6s1J4m5e53jnPLNGLd2TD+768v6VS1C1vPb+Z/J5ez9cJmulZ7WCuLOu6t6FcJRVHoUb0n\nTzV4Bl8PP774Yynbwn/g2fqjWf9PGAvbvsWYxmNpXK4pHjoPvj+ziuPXjpNqT2HT+fWMrP88Hx//\nkBRbKnNbz6d+cENG1B9JreDaPFStGzsv7sCoNxJgDqRtpQcZvf05tl/cRqo9BbvDwYZ/1jKo9mO0\nrtiGNWdWAzCs7lNcTY5ArzNg1Bkp7RXCjBav8VSDZ3i4eg8erNSODWfX8UTdERyPOkqAZwDeJm+S\nLIkEeQbzRL0RHIjYi16nJzzhPMPrjmRArUH8cH4DOvTEpcbyfMMxPFilPWvPfI/VbiXeeoMqvtX4\n4k/n0qHn4s7S6+4+7Pt3DwnWeF68bzy97+nLJ0c/4lrqVU7H/k2toDocijxAdPI1pjV7FS+jF2Fn\nVzOgZihLOn9KbGoMOy5u46l7n2XPvz/jZfQm0Z6Iv4c/doeDua3nU9GnMhv+CbsZBGti24UtHIjY\nR5wljhRbCuW9K/Bb1K+AjjmtXufYtaO82Ggsp2P+ZkbL1zDpTGy+sJEAcwAjGzxH8/It6X1PXyp4\nV6SyX2WORP1ObGoMZqOZgxG/0LhME/Zc3o2/OYAxjcay/MQydl7czrYLzrGsj8mHr0+u4JtTK9l3\neS8v3DeGtWe/5+6Amrz88yjmtV5I/ZCGbD2/hRktXqVxuaZU8K1IveB7mb53MvcE1WLSrvH8GL6V\nt9otpm3ldlyOv8Ss/dO0zFSur//65EpWnljOhnPrmNHiVfrWfJQEawJNyt1Pl6pdaVyuqXZ8jtw2\nnJH1n+Pln0fRtmI72lZuR52gujzbaBR1S9XjUOQvPNtgFG8eXkCnql3YEf4jU5vNREFh1I5neabh\n89QOqsOwe0dQK7hOmvNUvOVGmmNbPS+oATbqMQPOIJsuVbvecj7J7Hw3cttw7Vo8bPNj2vfULlW7\nauXI7HyW2WPqubpvrf5pno+33KBVxTZpzjO3K7vztOv5JK+yuv5ld63JrExqH8lu24z2n9f7RbIc\n2B1OUr4XrOLevleiE/lu51l+P30tzeNeZgNtGlSgXLB3gb13QSwHpmpUM4Q9x/5l5++Xib7hvIlw\n392l6d6iKjUqlowvkMW97xY2ad/bJ0teFD53LwcWFZvMDwfCqVstiKa1y+Rpf/ntRqKFn36/TFyC\n86a+t9lIpRAf/H3NWKx2Uix2HIpCg+rBtGlQngDfjAfcV6IT2XIwHINBz0MPVKFMYN5+6SrnFveR\ntnYfaWv3kbZ2D1kOrPi678PG2o1gSLusBJBmCQUgzXPqUiveJi+mN3cuq7QzfAfALWnlXeVmaYyc\nLEmhllHNPqSWset3HYlMvoJJb6Ksdzk8DV6E1h7C2nPfM6zuCIK9ggnxLsPmcz+w+MgiKvhUYnzT\nibSr0oE1f69m5cnl3LDE4XAoxFvj+LTLMkK8y/DF8aV8d/prHDgw6Iy82fYdYlKcyxW0qNgSgB7f\nd2Fqs1l8eOQ9PE1mxjWZyIRdL7P0oa+YsmcC45pM5J3fFjG71Tyt3SbuHksF34qs6bVR+1W5a/r5\n9EvRXI6/xID1vVncYUmGn9/O8B1aqn/XZTPU5SWGbX6MWoF1OBi5n0RLIlOazWDSnnHY7c7ABQcO\nnqz7NH4e/nx7eiWb+v7Imr9X06JiS3qt6UZ534r0rtGPagHV+PDoYm05jJPRJ/jk+BImPzBNW8Yi\nxZ7Mp12WMXbnGG3SwHX5hTV/r2bv5d2cij1By/JtOBi5n3tLNaBGYE2qBVRj/sG5+Jv9mN78Vc7E\nnGHlyeXMaPEqiw4vpFf1viz4dQ5hvTalSX+f0ZItar9NvzQA3JpxwJVa70m7xzOuyQSm752CSW9y\nZsBKucrwuiNZ9tdn2pJePar14oXGY+gZ1pWlXb6ifkhD7b0ORxyiV1g3qvhV05YdUG0+t5Gntj6B\nxWHFpDeysM3bxKTE8Nov0+lRrRc/X/4Jf48AopIj+azLl8w+MJPnG47hfNx5dl7enibLwuANj5Jg\njUen6KjgV4mXGo8D0JZmalKuCZN3T+BqcgR+Jn/iUmPxNnkTb41nRrPZAMz+ZQZ6nZ43277LnAOz\nuJ4aTctybdgbsYumIQ9wOOoQZb3LsbDtW+wM/4mvTnyOTbFh0pkYUudJ/u/kMsp4l2Ve64WEeJeh\nSbn7tSUT/E0BlPYO0ZZveXrrMBTFmblFXVZOXd5D9d8Sfmn5GHxJtCfgafAkxX7rPTcvgxfJ9uT/\nXn9zuRBwBr3sjdh1M6gx++xB6utvfQ9vku1JlDaXwWgwYNAZGXHvSN4/8g4eBg8G3vMYOy9vp0nI\n/Sw/8QUKCm+0fYd3fluEzWGjVYU2lPepwKd/LCEpB+XIi+F1R9K/9kD6rO3OhKZTmfPLTBw4tHbr\nUa0Xp2JPcC72LG8++C4LDs3leko0FXwr8lrLeQDa5wj/HTNZnacvx1/ieNTRNMv7qEvsRCVdZcqe\nCXzaZZm2bJjajnoM+Jp8SbEnE2QOxt/sl2ZZlIjEK/QOe5j5bRbxwZHFnL9xDh061vXZTJNy92tl\nU5cZSr8k19idY+hfcxALf51LJd8qrOrpPEeqS2m41ktdwtJ1mQ/X/Wa0TFj6pZFcn89qWTEZFxU+\ndbyblyVPVLezbU72lZv9Zzfmyu2+sjrWM9s/oJUBss6GkX4pHzVwyLX8uV1izXU5MjUrT0bLCbmO\nE1zHX+rxrpZdHX8pijNLSmbLEqnX9LW9f0izVKFre7iOQVyX+jkccYgxO57jRmo8JoMRT4PXLWOG\nFX9+Re3gOlq2ovohDTkedZTX9s/E6rBqy+1O2fsKH3f6HID6IQ21cvRZ2x2r3UZkUgSlPEvhYfBg\nfZ8t2jXZrtjxMfoyo8WrRCdHM3nPeCY0ncqXf32Oh8GEUW9iZP3nmLRnHJ92XsbsA84MNyHeZbRr\n+qM1B/LukTd58b7xVAuoxifHlzgDfSzxXE+9ht1hx6g38lmXL9MsNxziVZZBtR5j9Rln5p31fbaw\n7PjnvHvkTe1a1iusG4HmIJ5tMIo+9/Sj87ftuJYaxdsPvkft4Do8EtaVYHNp3njwLUZuexIvgw+l\nvYOx2K281Hgcr+x6mQCPAK6nRhNsDsHX7MOl+Iv4mvxY3OFDgDRlKuNdlsikCBQUbRylZi8FeP3g\nHK4lRbGo3bvUD2moLVt1MvoEY38ezVs3ywXODDqvH5yD1W7V+lD6sWeP7x8iKjmSEK+yfPbQMm07\ndTku9RoHaH1H1TusOx4GE4oCM1q8ql2DM1oWS338eNRRpu+dwr+Jl6jo63z834TLLGjzFo/VG5rm\nOFGXwnIdU7teP9X+7Pr32J1jgP++r6X/jqlun9GSV1ktZ5jZ98300i/rlV/n6YzOR5kttXinyGjJ\nycKS13GRBAHd4eRGb8Eqru2bkGxl3Z5/+On3y9gdCqX8zQT7e+LrZcLHy0SF0j54ehgKtAwFGQSk\ncigKl64m8Oc/14mKdb5XSKAnIYFeNKtTlgqlfagU4ou5gOtaGIpr3y0qpH1vn9zQKXzuDgI69+8N\n9hy7wgN1y1C7SlCe9lcQrDYHp8JjiL6RSkx8KvGJljS/nXUujAE6HTSpVYbG95SmtL8XpfzNWGwO\nNuw7z/4/I1BH1Hqdjpb3lqNT00rcSLJwISKei1cTUBQI8jNTyt+TYH9PypbyomyQFyaj4WY57DgM\nBq5E3qBSiC9Gg6zaW5DkPO4+0tbuI23tHhIEVHxtPr4jw5utqqwmK9Xn1RvA6R/PbpInPyfI1Mmd\n9Ddgj0cdJcS7jDb54npD2tXmcxupH9Lwlpu36o1q15vcoRv7k2xL4sVG46gdXCfDyR/XyXH4L/jD\ndWI5fRukn6zOSTtldlPcdbJNlf4G9eZzG1l0eCHD6o5g8p7xrOmVdskRdaIho/fJaGI9JxPg6uPp\n2zv9dpvPbeSZH4fzfc8NGQbspG9D1wCegpQ+SA5gZ/gO2lXpQP91vbWJMnWyJLNyZfRZqzaf26hN\npKntv+LPrwj2CuaJzaHaJFL64IuMJlrVYDL4b4JoZ/gOlv21VJsIHVn/OT44spgZLV7VJhBDvMvQ\nZ213As1BeBo9WdLpM8bseI54Szw/9NvOmr9XM6rJi7d8jnP3vaZN0O26vBObYmVJp89uaYP0E6rq\nY2N3jtGWpJixbwpLOn3G0E2DsSt2rqdGU9pcBp0ODHoDEUnOuvkZ/Xmt1Txe+fklKvpVpn5wAw5H\nHaJJyP1sOL+Wct7lWdj2LSbsGsvE+6fy5q8LeL3NQqbsmUC/uwey8Z91/HPjHKU9Q7g7oCZ7I3ah\nQ0cZr3LEpcbSs0YfVp3+Gm+jNz4mH2JTY/Az+XM9NRqj3oiv0R+TwUhsagzPNRjDsPrDiUi8wujt\nz6HTgdVhxagzaUEman/df3kffe7pp31OrpPTXap049vTK5nQdArHo46x/K8v8DCa8TR48nb795i8\newIj7h1JkGcQk3aP47HaT7Dj0jZebDSOOQdmEZ16jY6VurD78k7QQZsK7TgVe4L1fbakOV4ORxzi\nZPQJPjiymJjU6yRY4pnfZpEW1KeWTT0H9l3XQzsmcyq7yXrXie/jUUeJTo5mwq6XWdj2bdpV6ZBm\n0jz99q7nVLWv57Rs6vuOazLhlnO/eoy7Hkt91nZnTa+NBT4RJuOiwlccv1fkx5grfZBK+v1ndpxn\nNubJTXnzKxBqfps3KedTnv7ret8SUJPR69KPCdMHZUP2AU391/VOEyiUvj1cx7Djmkyga/XuWjnG\nNZnAjH1T+DfhMp91+fKWQI70QRSugUlRSVe1oM33D7/L/04tJzz+grYUlHq96V9zEPN+efVmXSoz\nu9U8Xj84h3jLDea1Xshr+2ei06EF/HxwZDHh8edZ0OYtgr2Cef3gHCY/ME0LTBm9/Tne67iEp7YM\nIyLpCjqdDofDTvWAu7VxhnpePx51lBn7pgDwWst5PLX1CfxM/tgUG3GWWOeyY94h+Jr8WNUzjJ3h\nO3j551GYdCaWPvQVE3aNxWzwxKQ3MaPFqwzfMhS7YqOKXzXCem9k2fHPWXxkEW89+B6AFsSkBuz3\nXNOVsj7liE+NJ8WRzPzWizgfd553j7xJOe/yeBo9uXTjIgoKQeZgzEYzJoORB8q2YO3Z1ZT3rcCL\njcbxwZHFXEoIJ7TWUFac/JIQ7zJ82mUZo7c7l4PT6eDhaj2Z2nJGmuAQdbyTPkjWNePcM/VH0bV6\nNwB6r32Y8j4VtGvR5nMbeXrbMC0IPqNAN0gbIOR6XUvfp9U+99r+mbzX0Rl0+/TWYUQlXyWs1yat\njJl9l1G/V6jngcyC8dNLP47N6DHXAKP0x1hOglXSBynlt8zOUZB5gPCdIKcBl3mpV063KZFBQA6H\ng1mzZnHq1Ck8PDyYM2cOVatWzfT1xXHgIjd6C1ZxaN+kFCvhkQmER8ZzITKe8MgErkQn4VAUygR6\n0b99DW4kWdy+/Ik7goBUiqIQxczPsQAAIABJREFUGZPMH+ei+fdaUprn9Dodlcr4UKNCANUr+FOh\ntA/lg73x9DC6pWwFpTj03aJM2vf2yQ2d/FdQ46L8CAKKjkthz7ErxCVa6NS0EhVK++Rpf+5gszuw\n2hwYDXqMBh1Wu4N//r3BqfBYYhMyXv4l0NeD+2qWxu5QOHYmmrjEnC0TowOCAzyx2h1aNiIAs8lA\nzcoB1KkahI+niRSLnZRUGw5FITjAk9IBXgQHeOJh1ONwKCgKWGx24hIsxCVauJFkwWTU42024u1p\nJNDHTNlS3piMmQcWKYpCisWOp4ch2zGB+vWhMJdOu11yHncfaWv3kbZ2DwkCKr6iouJv+9fuufk1\ndkHKST3y4xfv2QVG5UZB3QzObsIso1/suiOIJjeKYpmyUtCZH8A5weI6WZSbbTOaKHGdSEz/S+X0\ngTrpf0Gd0Xtdjr/EI2se0rI+ZZRpIadlT1/GneE7+ODIYnQ6tIww+y/vY+Gvc7UANtdf1q/qGaZl\nRkg/4Zo+gOzJzY8TlXRVW2ZsRrPZ9LmnH8ejjjL7wEzOx/1DGe9ymAxGFAU+6vyZVma1jdIHQ6af\n7Eqf8emJzaHaRGX68qiTeGoGDDVQRd2PaztlFFy4M3wHtYPraBl/Vp3+OsvPQp24tTqshPXeeEt5\nXV+Xl2Myp8GM6uSoOqGc1/3ltEyQ/QS+a7nc8Wt+GRcVvtyOd4v6pG5Oy3e7E+jZBSWnv77k9toA\n2Y+7sqtDTo7nzec28vrBObdc69Rt4Nag6qzK4RoYoW7rmm3MNSDE9XVqfQ9HHOLZbU+luVakD/RW\nH++/rjfgzPyiBoeAM4jxk85fALDo8MI0Y7/R25/jhiUOb5M3LzYaxyfHl9C/5iDmH5qtZTCC/65x\nm89tZMa+KRh1Ju391YAqNXDl9dZv8u7vi7gcf4lSnqXxNHryUuNxWkai1w/O0a5J6mcbkXiFYT88\njoKDmJTrBN3MTORp8OKF+8bQrkoHQjf251pSFN4mH2a3msfT24Yxsek0Vp3+mskPTGPE5qEoOoVy\nPuX5tMsynt46jFRbqpZ1cM3fq1n461yCPUP47KFljNnxHINrDWHhr3OZ0HQqa899rwVLt6vSgZ3h\nO3j390VaoI9OB9Obv8rrB+cQk3IdT6MnXkZvJj8wjTMxZ3jj8DxG3vsCHx17j7De/wXNPLVlGNEp\nUXzS+QstyEvN2HQpIZw1vTZm+GOF9w+/myZb3fGoo1rfVLNVJduStDFQRpns0vfHzI6DjAL21der\nmfue3joMdPBp52VpgtUy6tsZUceVmWXISX++cP07ox97pD/mcnpcFtY5uyh9Z86NnIzhcluv3GxT\nIoOAtm7dyo4dO5g/fz5Hjhzh448/ZsmSJZm+vjjeEC1ON3rVrqh1SJeeqa4bnb63KulerP6d5mXa\nYznch8tzwcG+XLuW4PLajMv439//ba3c+lCafQCYPQx4ehgw6G+dlFMUBYvVQbLFRnKqTZsATLHa\n0aFDr3dOviWn2oiJv5m9IMmC1ebAZlew2h1cjUnSMuCojAYdQX6eVC3nS60qgRm+tzu4MwjIVar1\n5iRpQiqxCRauxSUTfSMVhyPtB+XjaaR8aR/8vEz4eXvg6WFwLg1jtZNqsWuTq15mIz5eJgJ8PAjw\n9SDAx4zRkHZSVJ0k1QGeHga8PY1a5gdFUbDYHKRa7VgsdlKtdlKtDgx6HX7eJvx9PPKUDaKgzw0O\nRcFmc/zXv3XO+jmrerO+N5tB+//NF6mtI5PHRY9DUbBaHej1YDToC/Qzkhs6+a+gxkW57e9Wm8P5\n6xiDnu2/XeL42WiOn4tGUaBWlUAeqFPmjjz+FUXhWlwK0XEpJKbYSEqxYrE5qF7Bn2rl/LQ6ORSF\nCxHxXLqagJ+3B6X8zZTy80Sv15GYYiUpxUZCspUbiRbnf0kWDHo9vl4mgvw9sdvtRF5PznEgUU7p\ndTrKlvKiYmkfzKb/MuAlpdqIik3hWlwyKTevb8H+npQOdGYs8vd2Xt88PQxcjkrknys3uBAZj82u\nUCbIizKBXpQJ8sLXy4S3pwlvsxEPk/P8odfpUBRFq3NCshWdDrxuXj89TM4gJptdwW53YDDo8fQw\nYDY5x0fOcZIRs8mAze7QxkM2uwMfTxPens4gp5RUO3GJFuISU7HZFWf5Azzx83bejEmx2ElKsWFz\nOPAwGjCb9FQoH0hk5A2sN4O+AO299XodNruDpBQbiSlWAHw8Tfh4GbVxk6Io2B2Ky7hOh2u31unA\n4VCw2pxjMrV+JoPuZoCZHr3+vw0UxdkOFpsdvU6Hh0mf4RjNcbM945MsWKwOfDyd45CcBG+l30+q\nxbnknYdJn+l4ND+kP4coijNwzZHDr6HZVUvtaznh+t46nfO4SN9udodzfGPQ3/pcUVdcxydFjQQB\nFV/58bkW9QmwoqqwbwbL5yZUeZkkzm5ytyD6V0YTwa7vl1EGh5zsM3Rjf7pU6Ua1gGoEewWnmdxS\nl1hTJ0LTv39eZZYNSy1TTn7Znh3XCbfsAljyM7gxr3ISbJMf5828Tli5o21kXFT4cjMuKuzreHZy\nk8UhN4EtuS1D+oCCrLKKZRRcmj5oIDcBR7mpi/peaiBpZhk8chIwlT4wQr0uuWZUcuUaiJE+EGLA\n+t58+0hYtu/vGlAzZsdzfPtImBZs4hqo45qVqHdYdyIS/2V+m0V8cnwJSdYkdDr4N/4ya/v8kCZY\n6a12i7Uglaikq2mCU1Vq0JPr8qRqZkn1utc7rDveJu80gUB91jqvu4qiUM7XGcRTzqc8a/5ezRuH\n5/F9zw0AWoBxOZ/y2n5G1n+Ox+oN1bImztg3hRcbjWPsz6Op4FOJzx5apl0L1WUg1cAZ1wxMrm2j\nLgOpZt5x/ZzUoOi32i1OE3ysBiv1DuvOR50/S5OVp3/NQVqQkWu/UNsxdGN/kqxJzG41T1tiTM2y\n5LoMZ/rMOOkzVqX/PLLiGhST1fjJNXMekCZILrtgI9d9qMd9Ztn9MtouswCmnGybWZ0LKrNNTtxp\n373yI4j0drcpkUFAr7/+Og0aNKB7d2dEfJs2bdi9e3emry+IG3VbD11k3Z5/yGsj5uW2ctoJBh25\n+QiVNIE1af91SwBNuuCZtI+l3192ATYu+8koUKeEMxmdk0HqR6vg/DX+7R6dZpPBOfno76kt+eXn\nbSoSExqFFQSUEbtDIeZGCtE3UohLsBCbaCEuwUJKqq3A+qnRoMeg12Gx2rN9Dy+zIceTWyq9XndL\nYFN+cCjOJWts9vzbt87lH7oMJlFdg4pc/kwTVKRz2UnavwtGbs+9RV1Gn6sOMJn0lAn0ZurQJmmC\nBvKD3NDJfwU1LsrNZOcf/0Tz7qpj2B0KhpsBDnaHgo+nkRb3livSGYCKAtdrY1KKjciYJBwORRsn\nACSm2Ei8GVDjcDgDGXQ6HXq9zhlc42HA02zE4VCwWO1YrHYSU2zE3gx+VQNeXBkNuptBPEZSLXbi\nk61YrLe+TuUMUNURn2jFas/8dYXNdDNTkj2X10OjQY8tk3p5ehhuBvc4bnuMoNfpMBqdASwWq+OW\noBijQXcze5NOu1amWOwZBs8Y9DoMBjXoOOvro83hDABKz8Ood7aZ8l+wjKIo2t/w33XZ9Zp86/vp\n0myvgJaxSv07v6ltadTrUUgb7KMoCg5Hxu+tA4xGZ9Yvu0PBZlO09tXpwHQzYKsIDJ1zpKDGf+I/\nHiYD04Y3I8gr/7OGytio8EkQXeG6024GC+Eqo0merH6p7e7y5NSKP79i7M+j+bLrygyX5bjT3Un1\nyOkkXn5kAiqKbSLjosKX0bgoJxlmiqqCnMTNbTnUyffjUUczzPaV2QR9+iwl2S09drvlVN/rdvaR\nPjAjo6wr2dVV/Ts3mcjSB7D2XdeDjzt9fkvmlvSBWa5ZeSBtdrv0mZByGsilZie6lBDOJ52/0IKD\n1KU/1b/VAB014EUNRFGXhp3X6o0Ml1lVM+qM3PYkr7d+kyl7X2FeqzeYtGccYb02cTL6BO2qdLgl\n8036umXWrzJbutW1ndRsfbMPzMSoN/FWu8Va1kT1c3QNokm/pJtrMNDIbU9qAUdjd47BarfyXscl\nGY6rbicQLqNt1cAm4JYsWBllr8pLsG5+ZPjMr0Dg/M5sUxwVlXYokUFAU6dOpUuXLjz44IMAtGvX\njh9//BGj8c5exkcIIYQQIrdkXCSEEEIIIYQQheti3EX6fNOHDx7+gGaVmhV2cXJt3cl19Kzds7CL\nIYQoYtRz25qBa6gcULmwi3NHuxh3ESDL9rwYdzHbds7Ja4qSi3EX6b6yOxtDN6Ypd/p6ZNbXcltf\n19f/cumXNNfkvLZd+u3S7zer7f6N/5dmlZpp+1D//8ulX3hh0wusGbgGIMO2mNF2hnZtzqh9LsZd\npPPyzmwbsk17n18u/UIFvwoZvjaruue077nu17VOah0y2o9rXdO3o/q4Wn71fbLaX17rkNX5zPU9\ns9pnYR+j7jj+77RzTEG5k9vhjg4Cev3112nYsCEPP/wwAG3btmXXrl2FXCohhBBCCPeTcZEQQggh\nhBBCCCGEEEIIIUTJpi/sAtyOxo0ba5NbR44c4Z577inkEgkhhBBCFA4ZFwkhhBBCCCGEEEIIIYQQ\nQpRsd3QmIIfDwaxZs/j7779RFIV58+ZRo0aNwi6WEEIIIYTbybhICCGEEEIIIYQQQgghhBCiZLuj\ng4CEEEIIIYQQQgghhBBCCCGEEEIIIYQQd/hyYEIIIYQQQgghhBBCCCGEEEIIIYQQQggJAhJCCCGE\nEEIIIYQQQgghhBBCCCGEEOKOJ0FAQgghhBBCCCGEEEIIIYQQQgghhBBC3OEkCKiISklJYfTo0YSG\nhvL0009z/fr1W17z7bff0rdvXwYMGMBPP/2U5rlt27Yxbtw47e8jR47Qv39/Bg0axPvvv1/g5S/q\n8tq+mW23bds2OnXqxJAhQxgyZAgHDx50a32KAofDwYwZMxg4cCBDhgzhwoULaZ7fsWMH/fr1Y+DA\ngXz77bdZbnPhwgUGDx5MaGgoM2fOxOFwuL0+RU1+tu9ff/1FmzZttP66adMmt9enKMlL26qOHj3K\nkCFDtL+l74qiyh3n6KzGJSWJu66H169f56GHHiI1NdV9lSti3NHWy5Yto3///vTv379Ej6Hd0dYr\nVqygX79+PProoyV2bOKu84fD4eCpp57if//7n/sqV8S4o63nzJlD3759tTF3fHy8eyspioX03zdU\nGfVRq9XKuHHjGDRoEKGhoZw9e9bdxc2V3NTNYrEwbtw4BgwYwPDhwzl//rybS5s7mdUNIDk5mUGD\nBmmfT3bno6IkN/XKyTZFSW7qZrVaeeWVVwgNDeXRRx9l+/bt7ixqruWmbna7ncmTJzNo0CAGDx7M\n33//7c6i5lpe+mR0dDQPPvjgHXuOhIzr1qdPH23MMXnyZHcVM9dyW6+PP/6YgQMH0rdvX1atWuWu\nYpY42V2LwsLCeOSRRwgNDdU+h8yuzSdOnGDAgAEMHjyYyZMnF7uxcX621Z9//smjjz5KaGgos2fP\nLnb319zRVsWlX7nKzRi5pN+7Lci2kr6V9fE7b968NPeUpG/lvK3c2rcUUSR9/vnnyuLFixVFUZQN\nGzYos2fPTvP81atXlR49eiipqanKjRs3tH8riqLMnj1beeihh5SXXnpJe33Pnj2VCxcuKA6HQ3nq\nqaeUP//8032VKYLy2r6ZbffWW28pmzdvdm8lipgtW7YoEydOVBRFUX7//Xfl2Wef1Z6zWCxKp06d\nlNjYWCU1NVXp27evEhUVlek2zzzzjHLgwAFFURRl+vTpytatW91cm6InP9v322+/VZYuXer+ShRR\neWlbRVGUTz75ROnRo4fSv39/7fXSd0VRVdDn6KzGJSWNO66Hu3btUnr16qU0atRISUlJcWf1ipSC\nbuvw8HClT58+is1mUxwOhzJw4EDlxIkTbq5l0VDQbR0dHa10795dsVgsSnx8vNK2bVvF4XC4uZaF\nz13j6UWLFin9+/dXVq5c6a6qFTnuaOtBgwYp0dHR7qyWKGYy+r6hKJn30W3btiljxoxRFEVR9uzZ\no4waNaowip0jua3b8uXLlWnTpimKoihnz55Vhg8fXhjFzpHM6qYoinLs2DGlT58+SsuWLZUzZ84o\nipL1+agoyW29stumKMlt3b777jtlzpw5iqIoSkxMjPLggw+6s7i5ktu6bdu2TZk0aZKiKIpy4MCB\nItsfFSVvfdJisSjPP/+80qVLlzSPFzW5rVtKSorSq1cvdxcz13JbrwMHDijPPPOMYrfblYSEBO2e\nvMh/WV2LoqOjlfbt2ysxMTGK3W5XhgwZoly8eDHTa/Pzzz+v7Ny5U1EURRk7dqyyfft2RVGKz9g4\nP9uqT58+yuHDhxVFcc4vhYWFFav7awXdVopSfPqVKrdj5JJ877Yg20pRpG9l1l7R0dHKiBEjlI4d\nO2r3lKRv5bytFMW9fUsyARVRhw8fpk2bNgC0bduW/fv3p3n+2LFjNGrUCA8PD/z8/KhSpQonT54E\noHHjxsyaNUt7bUJCAhaLhSpVqqDT6WjdujX79u1zW12Kory2b2bb/fnnn6xevZrQ0FDmz5+PzWZz\nb4WKANe2ue+++/jjjz+0586ePUuVKlUICAjAw8ODJk2acOjQoUy3+fPPP3nggQcAZzuX9P4K+du+\nf/zxBzt37uSxxx5jypQpJCQkuL9CRUhe2hagSpUqvPfee2n2JX1XFFUFfY7OalxS0rjjeqjX6/ni\niy8IDAx0Z9WKnIJu63LlyvHZZ59hMBjQ6XTYbDbMZrOba1k0FHRblypVirCwMEwmE9euXcNsNqPT\n6dxcy8LnjvPH5s2b0el02jYlVUG3tcPh4MKFC8yYMYNBgwbx3XffubmGojjI6PsGZN5H77rrLux2\nOw6Hg4SEBIxGYyGUOmdyW7czZ87Qtm1bAKpXr16kM3hkVjdw/rr9gw8+oHr16tpjWZ2PipLc1iu7\nbYqS3Nata9euvPjiiwAoioLBYHBLOfMit3Xr1KkTs2fPBuDff//F39/fLeXMi7z0yQULFjBo0CDK\nlCnjjiLmWW7rdvLkSZKTkxk+fDhDhw7lyJEj7ipqruS2Xnv27OGee+7hhRde4Nlnn6Vdu3ZuKmnJ\nk9W16NKlS9SqVYvAwED0ej3169fn6NGjmV6b69SpQ2xsLIqikJiYiNFoLFZj4/xsq8jISBo3bgw4\n5/QOHz5crO6vFXRbFad+pcrtGLkk37styLaSvpV5eyUmJjJ69Gh69eql7UP6Vs7byt19S4KAioBV\nq1bRo0ePNP/Fx8fj5+cHgI+Pzy3poBISErTn1deoE/kPP/xwmpvmCQkJ+Pr6pnltcUhdllP52b6u\nj7tu16pVK6ZPn86KFStISkri66+/dlPtio70/cxgMGjBUFm1Z0bbKIqi9eGS1l8zk5/t26BBAyZM\nmMCKFSuoXLkyH3zwgfsqUgTlpW0BHnrooVturEvfFUVVQZ+jszpWShp3XA9btWpFUFCQO6pTpBV0\nW5tMJkqVKoWiKCxYsIC6dety1113ual2RYs7+rXRaOT//u//GDhwID179nRHtYqcgm7nv//+mw0b\nNmgTlyVZQbd1UlISjz/+OG+88QafffYZK1euvKNvgonCkdH3Dci8j3p7e3P58mW6devG9OnTi/QS\nTLmtW506dfjpp59QFIUjR44QGRmJ3W53Z5FzLLO6ATRp0oTy5cuneSyr81FRktt6ZbdNUZLbuvn4\n+ODr60tCQgJjxozhpZdeckcx8yQvn5vRaGTixInMnj2bRx55pKCLmGe5rdv3339PqVKl7ohA6NzW\nzdPTkxEjRrB06VJeffVVxo8fXyzOIzExMfzxxx+8++67Wr0URXFHUUucrK5FVatW5cyZM1y7do3k\n5GT2799PUlJSptfmatWqMXfuXLp160Z0dDTNmjUrVmPj/GyrypUrc/DgQQB++uknkpOTi9X9tYJu\nq+LUr1S5HSOX5Hu3BdlW0rcyb6/KlSvTsGHDHO3jTlWQbeXuvlX0v4mVAP3796d///5pHhs1ahSJ\niYmAM1os/S8vfH19tefV17h2vuxeW5R/yZHf8rN9XR933a5fv37avzt27MiWLVsKrD5FVfo2czgc\n2okyJ+3puo1er0/z2pLUXzOTn+3buXNnrU07d+6s/cqrpMpL22ZG+q4oqgr6HJ3bY6U4k+uh+7ij\nrVNTU5kyZQo+Pj7MnDmzoKtUZLmrXz/++OMMGDCAp59+mgMHDtC8efOCrFaRU9DtHBYWRmRkJE88\n8QSXL1/GZDJRsWJF7ZeWJUlBt7WXlxdDhw7Fy8sLgObNm3Py5Elq165d0FUTJUBmfXTZsmW0bt2a\ncePGceXKFZ544gnWr19/R2Wxy6xunTp14uzZs4SGhtK4cWPq1atXpLOv5EZW5yNRdF25coUXXniB\n0NDQIh0ok1cLFixg/PjxDBgwgI0bN+Lt7V3YRbptq1evRqfTsX//fk6cOMHEiRNZsmQJISEhhV20\n23bXXXdRtWpVdDodd911F4GBgURFRWUY5HUnCQwMpHr16nh4eFC9enXMZjPXr18nODi4sItW7GR1\nLQoICGDy5MmMHj2awMBA6tWrR1BQEO3atcvw2jx37lxWrFhBzZo1WbFiBfPnz2fatGnFZmycn201\nb9485s6dywcffEDTpk3x8PAoVvfXCrqtStJ3Lrl3m3PyfT53ctteudlHcZMfbeXuviWZgIqoxo0b\n8/PPPwOwa9cumjRpkub5Bg0acPjwYVJTU4mPj+fs2bPcc889Ge7L19cXk8lEeHg4iqKwZ88emjZt\nWuB1KMry2r4ZbacoCj179iQiIgKA/fv3U69ePfdWqAho3Lgxu3btAuDIkSNp+mONGjW4cOECsbGx\nWCwWfv31Vxo1apTpNnXr1uWXX34BnO1c0vsr5G/7jhgxgmPHjgElt7+6ykvbZkb6riiqCvocnZtx\nSXEn10P3Kei2VhSF559/nlq1avHaa68Vm8nGvCjotj537hyjRo1CURRMJhMeHh5pbsSUFAXdzhMm\nTGDVqlUsX76cPn36MGzYsBIZAAQF39bnz59n8ODB2O12rFYrv/32W4kfc4v8k1kf9ff31262BgQE\nYLPZimy2nMxkVrfjx4/TokUL/ve//9G1a1cqV65c2EXNN1mdj0TRdO3aNYYPH84rr7zCo48+WtjF\nyVdhYWF8/PHHgHOSQqfTFZsx2YoVK/i///s/li9fTp06dViwYEGxCAAC+O6775g/fz7gXDInISGh\nWNStSZMm7N69G0VRiIyMJDk5ucQviV1QsroW2Ww2/vrrL1auXMm7777LuXPnaNy4cabX5oCAAC0j\nQpkyZbhx40axGhvnZ1v9/PPPvPnmm3z55ZfExsbSqlWrYnV/raDbqjj1q+zIvduck+/zuZPb9sqI\n9K2ct5W7+5b8tKSIGjx4MBMnTmTw4MGYTCYWLVoEwBdffEGVKlXo2LEjQ4YMITQ0FEVRePnll7P8\ndZeaMtNut9O6detbUlCVNHlt34y20+l0zJkzh1GjRuHp6UmNGjUYMGBAIdfQ/Tp37szevXsZNGgQ\niqIwb9481q9fT1JSEgMHDmTSpEmMGDECRVHo168fZcuWzXAbgIkTJzJ9+nTeeustqlevzkMPPVTI\ntSt8+dm+s2bNYvbs2ZhMJkqXLl3iMwHlpW0zI31XFFUFfY42GAy5GpcUZ3I9dJ+Cbusff/yRgwcP\nYrFY2L17NwBjx47NMhi0uHLHOaR27doMHDgQnU5HmzZttDXZSxI5f7iPO/p0r169GDBgACaTiV69\nelGzZs1CrrW402XXR4cNG8aUKVMIDQ3FarXy8ssv3zHZO7Krm8lk4t133+Wjjz7Cz8+PuXPnFnaR\nc8y1bhnJ7NxS1GVXrztZdnX76KOPuHHjBh9++CEffvghAJ9++imenp7uLGaeZFe3Ll26MHnyZB57\n7DFsNhtTpky5I+oFJbtPPvroo0yePJnBgwej0+mYN2/eHZFRLLt6tW/fnkOHDvHoo4+iKAozZswo\n0T/MKEjZjY0B+vTpg9ls5sknn6RUqVIAGV6b58yZw8svv4zRaMRkMjF79mwqVapUbMbG+dlWVatW\nZdiwYXh5edGsWTMefPBBgGJzf80dbVVc+lVm5N5tzsn3+dzJa3tlJCQkRPpWDtuqRo0abu1bOkUW\nUhVCCCGEEEIIIYQQQgghhBBCCCGEEOKOVjzyeQohhBBCCCGEEEIIIYQQQgghhBBCCFGCSRCQEEII\nIYQQQgghhBBCCCGEEEIIIYQQdzgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEOIOJ0FAQgghhBBCCCGE\nEEIIIYQQQgghhBBC3OEkCEgIIYQQQgghhBBCCCGEEEIIIYQQQog7nAQBCSHc6vjx40ydOjVX29Sq\nVStf3vvYsWO88cYb+bIvIYQQQoj88v333zNp0qTCLsZtGzJkCL/88kthF0MIIYQQd4hLly7RoUOH\nDJ/Lr3tBmenVq1eB7l8IIYQQIq9kHk0IcbuMhV0AIUTJUr9+ferXr18o733mzBmio6ML5b2FEEII\nIYQQQgghRNGwdu3awi6CEEIIIUSGZB5NCHG7JAhICJFrv/zyC++99x5Go5ErV67QoEED5s6dy6ZN\nm/jyyy9xOBzUq1ePmTNnYjabad68OfXq1ePatWtMmDCBjz76iOXLl/PPP/8wY8YMYmNj8fb2ZurU\nqTRo0IBLly7xyiuvkJSURMOGDbMtz/fff8+aNWuIjY2lffv2DB06lBkzZhAREYFOp2PcuHHce++9\nLF68mKSkJJYsWULZsmU5ePAg8+fPB5y/XB81ahQAb7zxBg6Hg5o1a1KpUiUiIyO5cOECly9fpn//\n/jz33HMF2r5CCCGEKHpsNhuzZs3i9OnTXLt2jbvuuovq1atTtmxZRowYAcCYMWPo0aMHDRo0YPz4\n8cTFxXHPPfdw6NAhdu3drtABAAAgAElEQVTaleX+L1y4wGOPPaaNZ8aNG4dOp2P16tV88cUX6HQ6\n6tWrx/Tp0/Hx8cl0PwsWLGDv3r0YDAY6duzIqFGjeO+99zh//jzh4eHExsYycOBAnnrqqRyNoVq2\nbElkZCRTpkwhPj6eqKgounfvzvjx47FYLEydOpU//viDihUrEhMTk69tLoQQQoji5aOPPmLdunUY\nDAZatWpFaGgoKSkpvPzyy5w+fRp/f38++OADgoKCtG1iY2OZOnUq586dw8PDg0mTJtGiRYtM36ND\nhw506NCBX3/9FYB58+ZRt25dhgwZQkBAAKdPn+add96hd+/enDp1KtP979q1i8WLF2Oz2ahUqRKz\nZ89OUy4hhBBCiKzIPJrMowlRmGQ5MCFEnhw7dowZM2awefNmUlNTWbp0Kd9++y1ff/01a9euJTg4\nmKVLlwIQExPDyJEjWbt2LUbjf7GHr7zyCkOGDGH9+vVMnjyZF198EYvFwuzZs+nbty9r166lcePG\nOSpPZGQka9asYezYscydO5d+/frx/fffs2TJEmbMmIFer2fMmDF06NAh28HH+fPn+fLLL1mwYAEA\np06dYunSpaxatYpPPvmEGzdu5LHVhBBCCHGn+v333zGZTHzzzTds27aN1NRUypUrx8aNGwFISEjg\nt99+o127dsydO5du3bqxfv16unbtSmRkZLb7v3TpEu+99x5r1qzh8OHDbN++nVOnTmk3fdavX4+X\nlxfvv/9+pvu4fPkyu3btYt26dXz99decP3+e1NRUAP7++2+WLVvG999/zzfffMOff/4JZD+GSkhI\nYMOGDfTo0YNvv/2WdevWsXLlSq5fv87y5csB+OGHH5g2bRrh4eG328xCCCGEKKZ+/vlnduzYoU1A\nXbhwgd27d3P9+nWefPJJNmzYQOnSpdm0aVOa7d59912qVKnCDz/8wMKFC3nnnXeyfa/AwEDCwsIY\nM2YMEydO1B6vVasWW7ZsoU6dOlnu//r16yxatIilS5cSFhZG69atefPNN/OvMYQQQghRIsg8mhCi\nsEgmICFEntx///1Ur14dcK6jPnr0aIKCghgwYAAAVquVunXraq9PH4mcmJhIeHg4Xbp0AeC+++4j\nICCAc+fOcfDgQRYtWgRAz549mTZtWrblqVu3rjYw2rdvH+fOnWPx4sWA85f7Fy9ezHHd7rrrLvz8\n/LS/mzVrhoeHB8HBwQQGBhIfH4+/v3+O9yeEEEKIO9/9999PYGAgK1as4Ny5c5w/f56goCAsFgsX\nLlzg999/p3379nh4eLB3715ef/11ADp37pyjcUOHDh0oVaoUAN26dePgwYNERETQvn177VfnAwcO\nZPLkyZnuo2zZspjNZgYNGkT79u156aWXMJvNAPTo0UPLINShQwcOHDhAUFBQjsZQI0aM4MCBAyxd\nupTTp09jtVpJTk7m4MGDDBw4EIBq1arRqFGjvDStEEIIIUqAAwcO0L17dzw9PQHo168fYWFhlClT\nhgYNGgBw991335JZ8NChQ1oATq1atfjmm2+yfS/13lSHDh2YNGkS169fB9DeJ7v9//TTT1y5coWh\nQ4cC4HA4CAgIyEu1hRBCCFGCyTyazKMJUVgkCEgIkScGg0H7t6Io2O12unXrpg00EhMTsdvt2mvU\nmzyu2yiKcstj6jbqczqdDp1Ol215XPfvcDj48ssvCQwMBJzRzaVLl+bEiRPaa3Q6XZr3t1qtmZZV\nnTzLaDshhBBClAzbt29n8eLFDB06lL59+xITE4OiKPTs2ZNNmzbx+++/8/TTTwPOcVJuxwuuv/JS\nFAWj0YjD4UjzGkVRsNlsWe5j1apVHDx4kF27djFo0CAtW4/r2M3hcGh/52QMNX/+fC5evEiPHj3o\n1KkT+/btQ1EUdDpdmjK61kEIIYQQwlX6cQ04J5tcxw8Z3XNJP744e/Ysd911F3p95gnuXbfJbNyT\n1f7tdjuNGzfmo48+AiA1NZXExMRM308IIYQQIiMyjyaEKCyyHJgQIk8OHz5MZGQkDoeDsLAwpkyZ\nwrZt24iOjkZRFGbNmsWXX36Z6fa+vr5UrlyZrVu3AnDkyBGuXbtGzZo1admyJevWrQNg69atWCyW\nXJWtefPmrFy5EoAzZ87Qs2dPkpOTMRgM2sRZUFAQZ8+eRVEULl68yKlTp/LSDEIIIYQoIfbv30+3\nbt3o168fpUuX5tChQ9jtdh555BE2bdrEhQsXaNq0KQAtW7Zk/fr1gHPpi5ykQFZfl5qaysaNG2nZ\nsiUPPPAAO3bsIDY2FoBvv/2WZs2aZbqPv/76i8cff5z777+fiRMnUqNGDf755x8AfvzxRywWC3Fx\ncfz000+0bt36lu0zG0Pt3buXESNG0K1bN65cuaKNAVu0aMGGDRtwOBxcvnyZ3377LXeNKoQQQogS\no3nz5mzcuJGUlBRsNhurV6+mefPm2W7XtGlTbYmws2fP8vTTT2c7yaUu17pt2zZq1KiRZRafjPbf\noEEDjhw5oo2jPvzwQxYuXJijegohhBBCqGQeTQhRWOSnmkKIPClTpgwTJkwgMjKSVq1a8fjjj+Pt\n7c0TTzyBw+GgTp06jBw5Mst9vPHGG8ya9f/s3XtclGX+//H3AIIKQy2FJ0jXY6VlJmqZodvBJDPB\nA4IYabad1bQ0DxmamqfULP1W1mZ+MxU0FY9r5qHM1TWig8VqmboUeAizdAAVlPn90Y/5RgIiM8M9\nN/N6Ph772JiZ+5rrvhnnfnNfn/u6JmrevHmqUaOG5s2bJ39/fyUlJWnUqFFKTk7WjTfe6Fi6oqLG\njx+vpKQk3X///ZKkmTNnKigoSK1bt9b8+fM1a9YsDRs2TCtXrlRUVJQaN26siIiISh8LAABQ/cXG\nxmrkyJHatGmT/P391aZNG2VlZal+/fr6y1/+ojZt2jgGpMaNG6fRo0dr+fLluu666yo0/XGTJk30\n6KOP6vTp0+rRo4ejSOexxx5TYmKiCgsL1apVK7344otlttGyZUu1adNGPXr0UK1atXT99derc+fO\nysjIUEBAgBISEpSbm6vHHntMzZo10969e0tsX1aGeuyxx/Tcc88pODhYV111lW644QZlZWUpISFB\nBw4c0L333quwsDC1aNGisocXAABUc3fccYf27dunPn366Pz584qMjNQdd9yh9957r9zthg0bpvHj\nx6tnz57y8/PTzJkzL1kE9MUXX+iDDz5QrVq1NH369Mtuv06dOpo6daqGDx+uoqIi1a1bVy+//PJl\n7zMAAPBujKMBMIrFznxcAC7Tnj17NH/+fMfyEgAAAPg/7733nm677TY1a9ZMGRkZeuGFF7Rq1SrD\n+jNv3jxJ0tChQw3rAwAAQFW488479d577yk8PNzorgAAAC/GOBoAIzETEABT2LhxoxYsWFDqc2vW\nrKni3gAAAJStUaNGeuaZZ+Tj46OAgABNnjzZpVkmMTGx1CXG4uPj1b9//0r1GQAAwCzKy0IAAADe\ninE0AMWYCQgAAAAAAAAAAAAAAAAwOR+jOwAAAAAAAAAAAAAAAADAORQBAQAAAAAAAAAAAAAAACZH\nERDgocaMGaN33nmn1OeuvfZanTx50q3vf/z4ca9aSz0rK0s333yz0d1wuU2bNikxMdHobgAA4FZ7\n9uxRjx49jO6GRykvS5pZjx49tGfPHqO7AQCA16guOevOO+/UN998c1nb7N27V0lJSZKkb775RsOG\nDSv39dU1fwEAgEszw1hMZbKKzWbTgw8+6Pg5Ojpap0+fLvP1q1at0mOPPVbpPgJwDT+jOwDAM9Wt\nW1fJyclGdwMAAAAAAACocj/88IOOHz8uSbrxxhv12muvGdwjAACAqnXq1KkShdRr1qwxsDcAKooi\nIMBgKSkpWrx4sXx8fHT11VfrhRdeUOPGjSVJX375peLj43XixAk1b95cs2fPVu3atUtsv2DBAq1e\nvVp+fn5q1KiRpk+fLqvVWub7JSYmqmnTpvr222/166+/Kjo6WsOGDVNWVpYGDBigpk2bKjs7W9On\nT9fgwYP15Zdf6vz583r55Zf18ccfy9fXVzfffLMmTJggf39/vfHGG9q8ebOKiooUFhamCRMmqG7d\nuiXeMz4+XoMGDVJUVJQkadasWbLb7Ro0aJBGjx6tX3/9VZLUpUsXDR8+/KI+f/DBB0pJSVFhYaFO\nnTqlRx55RAkJCWW2+8wzz2jmzJnatm2brFarWrdurYMHD2rx4sXl/i6Kior0/PPPKyMjQ35+fho/\nfrzatGmjwsJCTZ8+Xbt375avr69at26tsWPHKigoqMy28vLyNHbsWGVmZsrHx0etWrXSpEmTlJaW\nppkzZ6pu3br66aefVLNmTU2fPl1NmzbVmDFj9Ntvv+mnn37S3/72Nz399NOaNWuW0tLSdOHCBbVs\n2VLjx49XUFCQtm/frgULFqigoEAnT55UTEyM49i9+uqrWrduna688ko1atSo3H0GAKC6yM/P14gR\nI3To0CGdO3dOU6ZMUbt27WSz2fTiiy9q//79slgsioyM1DPPPCM/Pz9de+212r17t0JCQiTJ8fOB\nAwf00ksvqXbt2srPz9cHH3wgf39/SdLOnTs1Y8YMrVu3TpJ0+vRp3XXXXdqyZYs2bNig5ORk1ahR\nQwEBAZo0aZKaNWtWop8nTpxQUlKSfvnlF+Xk5CgsLExz587Vvn37ymw3MzNTEydOVGFhoRo2bKgj\nR45ozJgxuuWWW8o9Junp6frwww+Vm5urTp06afTo0fLz89Pnn3+umTNn6syZM6pRo4aGDx+uzp07\nl9vW5s2b9cYbb8hiscjX11fPPfec2rdvX+FsuXjxYmVlZWnWrFk6c+aMLBaLhg4dqjvuuEP5+fma\nOHGi/vvf/+rUqVMKDAzUrFmz1KRJE/3www8aN26czpw5oyZNmig/P79Snw8AAFB5ZslZ8+bNU3Z2\ntnJycpSdna2QkBC98sorjutUS5cu1f79+1VQUKCHHnpIffv2LXOfjx49qtdee002m01jx45VTEyM\nJk+erPXr1ysvL09TpkzRF198IV9fX919990aMWJEie2nTZum/fv36/XXX9e+ffs0ffp0FRUVSZIe\ne+wxdevWzTW/HAAAYJiyxmIOHz6sSZMmKT8/Xz///LOuu+46zZ07Vx9++KGWLl3quAH/yJEj6tev\nn7Zt2+bIQzabTV26dNGHH36o0NBQSVK/fv301FNPKTAw8JKZYs+ePXrllVd0zTXX6MCBAyooKFBS\nUpJuvfVWSWVfKyrL2LFjdfbsWUVHR2vVqlVq2bKlI+OVNj75R5s2bdKsWbP01ltvyWq1Vmg8EIBr\nsBwYYKDdu3frH//4h9577z2tXbtWPXr00FNPPSW73S7p9yW53n33XX344Yc6fvy4Nm/eXGL7rVu3\natWqVUpJSdH69esVHh6u999//5Lve+TIES1btkyrV6/Wxo0btX37dknSsWPH9OSTT5YIF9LvF0ky\nMjK0Zs0ax8WOjRs3KjU1Vd9//71WrFihNWvWqEuXLho/fvxF7xcbG6vVq1dLki5cuKC1a9cqNjZW\ny5cvV3h4uFavXq0lS5YoMzNTNputxLZ5eXlasWKF3nrrLaWmpuqVV17Ryy+/XG67K1asUEZGhtav\nX6/k5GT99NNPFfp9nD17Vp06dVJqaqqefvppDR8+XAUFBXrjjTf0888/a82aNVqzZo2Kioo0c+bM\nctv66KOPlJeXpzVr1uiDDz6QJEc//vOf/2jw4MFat26devfurVGjRpXow4YNGzRq1Ci99dZb8vX1\n1apVq7R27VrVqVPHUei0cOFCTZ8+3fH7f+utt3Ty5Elt2bJFmzdvVmpqqpKTk5Wbm1uhfQcAwOyO\nHTumQYMGac2aNYqPj9e8efMkSVOmTNGVV16pdevWaeXKlfruu++0cOHCS7Z34MABzZ49W2vXrnVc\niJGkTp06KS8vz3EX1Pr169WlSxcFBQVp6tSp+sc//qGVK1eqX79+Sk9Pv6jdDRs2qE2bNkpJSdHW\nrVtVs2ZNrVmzpsx2AwMDNXToUD399NNat26dEhMTtW/fvgofk0WLFik1NVX79+/X8uXL9euvv2rY\nsGF6/vnntW7dOs2YMUOjRo26ZF6aOXOmJkyYoFWrVunpp58usSRXRbJlQECAxo4dq5kzZ2r16tV6\n4403NHHiRB05ckQ7duxQcHCwli9frg8//FA33HCDlixZIkkaOXKkYmNjtW7dOj344IM6cuRIhfYd\nAAC4jllyliR9/vnnevXVV7Vp0yYFBwcrJSXF8VxAQIBWr16thQsXavbs2Tpw4ECZfaxfv76GDRum\ndu3aadq0aSWee+2113Tu3DnHtbEvvvhCn332mSTJbrfrxRdfVHZ2tt5++20FBgZq3rx5euihh7Rq\n1SpNnTpV//73vy95jAAAgGcrbyxm+fLliomJUUpKijZv3qysrCx9/PHHioqK0o8//qgffvhBkrRi\nxQr16tWrRB6yWq3q2rWr1q5dK0k6ePCgcnJyFBkZWeFMsXfvXg0ePFipqanq27ev5s+f73iutGtF\n5Zk2bZrj2pWvr6/j8UuNT65bt07z58/X4sWL1aRJkwqNBwJwHYqAAAN9+umn6t69u+OuqN69e+v4\n8ePKysqSJN19992qVauWfH191bx5c508ebLE9rt371ZUVJSuuOIKSb9X5D7xxBOXfN+4uDjVqFFD\nwcHBioqK0s6dOyVJfn5+atOmzUWv37Vrl6Kjo1WzZk35+Pho7ty5iomJ0fbt2/X111+rT58+io6O\n1vvvv6/Dhw9ftP29996rr776Sjk5Odq5c6caNWqkv/71r4qMjNTmzZv1yCOPKCUlRc8+++xFsxgF\nBgbqzTff1CeffKK5c+fqzTffdNwBXla7n3zyiaKjoxUQECB/f3/FxcVd8phIUnBwsLp37y5JioyM\nlN1u16FDh7Rjxw7Fx8erRo0a8vHxUWJioj799NNy24qIiNAPP/ygxMREvfXWWxo4cKCjEvy6665T\nu3btJEl9+vTRvn37HNXPERERjjY+/vhjbdu2TTExMYqOjtaWLVt08OBBWSwWvfnmm8rIyND8+fM1\nffp02e12nTlzRrt371bXrl0VFBQkPz8/9enTp0L7DgCA2V1zzTW66aabJP1+ri3OTTt27NADDzwg\ni8Uif39/xcfHa8eOHZdsr379+goLC7vocYvFor59+zoKkVetWqXY2Fj5+voqKipK8fHxmjRpkqxW\na6l3lw8cOFBt27bVu+++q4kTJ+rAgQPKz88vs93vv/9e0u93SEnSrbfequbNm1fomERHR6t27dry\n9/dXz549tWvXLu3du1cNGzZ0HKvmzZurbdu2joGrstx3330aMmSInn/+eZ0+fVqPPPKI47mKZMvi\nzPbUU08pOjpajz76qCwWi7777jtFRUWpV69eWrx4saZMmaLPPvtM+fn5+vXXX/Xdd98pJiZG0u85\nqaL7DgAAXMcsOUuSOnTo4Ji5uWXLljp16pTjufj4eElS3bp1dfvtt2v37t2XcRT+z65du9S3b1/5\n+vrK399f77//vmOGxkWLFik5OVlDhw51DOjde++9mjRpkp599lllZGTomWeeqdT7AgAAz1HeWMyo\nUaMUEhKit99+WxMnTtTPP/+s/Px8+fv7O26Qv3DhglavXl3q+FVsbKxSU1MlSStXrlTv3r3l4+NT\n4UzRoEEDXX/99ZIuzkOlXSuq7P6XNT75zTffaPTo0YqPj1f9+vUlqULjgQBchyIgwEDFM/78+bHz\n589LUokp+CwWy0Wv9/X1lcVicfx8+vRpRwFRef7Yrt1ul4/P718F/v7+pU779+fHTpw4oZ9//llF\nRUX6+9//7pghZ+XKlVq2bNlF29euXVvdunXT+vXrtXLlSsXGxkqSWrdura1btyouLk7Z2dmKjY3V\nF198UWLbY8eOKSYmRtnZ2YqIiCgxPWBZ7f65v8X7dyl/fp3dbleNGjUcUysWKyoqUmFhYbltXXPN\nNfroo4/06KOPKjc3Vw899JA2bdokSSWqpYvfp/ixPy73VlRUpHHjxjmO74oVK/Tqq68qPz9fvXr1\nUkZGhlq2bKnnnntOfn5+stvtF31O/vxeAABUVzVq1HD89x/Ph6Wdx4uz1h8VFBSU+PnPS7D+UZ8+\nffTPf/5T+/btk81mcwz6zJo1S2+++aYaNmyot99+W0OGDLlo25dfflmvvvqq/vKXvyguLk6dOnVy\n9LW0dn19fUvNgBXx59f5+flddDykkvmzLCNGjNCyZct0ww03aNWqVYqLi3O0VZFseeHCBTVt2tSR\na9asWaOUlBTdfvvtWrp0qZ5//nnVrFlT999/v3r06OHINcVt/nEfAABA1TJLzpKkmjVrltpXqeR1\nH7vdXulc4efnV+J63NGjRx03d7Vv317jxo3T2LFjHdeO4uPjtXbtWnXq1Ek7d+5Uz549ufMdAACT\nK28s5plnntHy5csVFhamQYMGqVWrVo7XxsXFacOGDdq+fbuaN2+u8PDwi9pu166dzp8/r71792r9\n+vWOAqOKZory8lBp14oqo7zxSavVqnfeeUfz5s1zPFaR8UAArkMREGCg22+/XRs3bnTcQbVy5cqL\n1g4tz2233aaPPvrIMc3gvHnztGjRoktut3btWhUVFenUqVP65z//qTvvvLPc13fs2FHr169XQUGB\nioqKNHHiRG3YsEG33367PvjgA8f7v/rqq3ruuedKbaNfv35atWqVvvzyS8capbNmzdLrr7+uu+++\nW88//7yaNWum//73vyW2+/bbbxUSEqInn3xSkZGRjuUlLly4UGa7Xbp00dq1a1VQUKDz58877iC7\nlN9++83R/rZt2xQQEKBGjRopMjJSycnJKiwsVFFRkZYsWaJOnTqV29bSpUs1duxY3X777Ro1apRu\nv/12xzTT+/fv1/79+yVJKSkpatu2rYKDgy9q4/bbb9eSJUscx/2FF17QnDlzlJmZqdzcXA0fPlx3\n3nmnPvvsM8drIiMjtWnTJp0+fVpFRUVas2ZNhfYdAIDqqvh8arfbVVBQoOXLl+u2226TJIWEhDiW\nm/joo48q3GbdunV10003KSkpyXEX+smTJ9WlSxddeeWVGjRokIYPH67vvvvuom137typgQMHKiYm\nRldddZV27drlyDWltdu0aVP5+/s77qrfu3evvv/++xIXWsqyYcMGFRQU6Ny5c1q1apU6d+6sm266\nSYcPH9bevXsl/b4cR1pamjp06FBmO+fPn9edd96p/Px89e/fXxMmTNDBgwcdg3wVyZZt2rRRZmam\n0tLSJEn79u1Tt27d9PPPP2vnzp3q1auXYmNj1bhxY23btk0XLlzQlVdeqVatWmnFihWSpIyMDMfM\nSAAAwHielrMupfj60JEjR7Rr1y517Nix3Nf7+vqWWtTUsWNHrV69WkVFRSooKNCwYcMcGeeGG27Q\nAw88IKvV6lh6Iz4+Xvv27VPv3r01efJknT59usQd+QAAwHzKG4vZuXOnnnrqKXXv3l0Wi0Vff/21\n49pPgwYN1KZNG02dOlX9+/cvs/3Y2FhNnjxZ1157rRo0aCDJNZmitGtF5fHz89OFCxcuukGtvPHJ\nv/71r+rYsaMSExM1evRoFRUVVWg8EIDrcBslYKBOnTpp0KBBGjhwoIqKihQSEqIFCxZUeOaaLl26\n6IcffnAEhWbNmmny5MmX3O7s2bPq27ev8vLylJCQoI4dO5Y7g1B8fLyys7PVu3dv2e12dejQQYmJ\nifLx8dHx48fVr18/WSwW1a9fX9OnTy+1jRtuuEF+fn7q1q2bAgICJP2+HMaYMWPUo0cP+fv769pr\nr1WPHj0uOkYffPCBoqKiVKtWLbVu3VohISHKzMxUkyZNSm23d+/eOnz4sGJiYlS7dm2Fh4erVq1a\nlzwuV111lTZv3qy5c+eqVq1amjdvnvz8/PTEE09oxowZiomJ0fnz59W6dWu98MIL5bYVExOjzz77\nTN27d1etWrXUoEEDPfjgg9q/f7+uvvpqzZ07V9nZ2QoJCdHMmTNLbePJJ5/UjBkz1KtXL124cEHX\nX3+9xowZo9q1a+tvf/ub7r33XgUHB6thw4Zq1qyZMjMz1aVLF3333Xfq06ePgoODdd111znuRgMA\nwBuNHz9eU6ZM0f3336/CwkJFRkbq8ccfdzw3adIkBQcH67bbblNoaGiF242NjdXTTz+tN954Q9Lv\nA11PPPGEBg0apJo1a8rX11dTpky5aLunnnpKM2fO1Ouvvy5fX1+1bdtWP/74Y5nt+vn5ad68eZow\nYYLmzJmjv/71r7r66qtL3NVVlvDwcPXv31/5+fnq2rWrevXqJYvFoldffVWTJ0/W2bNnZbFYNG3a\nNDVu3LjMdvz8/DRu3DiNHDnScef71KlTHUtcVCRbhoSE6LXXXtPMmTN17tw52e12zZw5U2FhYRo8\neLCSkpK0atUq+fr6qlWrVo5inzlz5mjs2LFKTk5Ww4YN1aRJk0vuNwAAqBqelrMu5dy5c+rVq5cK\nCws1fvz4cvOPJN18882aO3eunnrqKT344IOOx4cMGaKXXnpJ0dHRunDhgrp376577rlH27ZtkyRH\nVoqJiVGXLl00cuRITZ06VXPnzpWPj4+GDBlS6l3/AADAPMobixkxYoSeeuopXXHFFapVq5bat29f\n4tpPcRFP8dLvpYmJidGcOXM0Z84cx2OuyBSlXSsqT2hoqFq2bKl77723xEogZY1Pbt682fGaxx9/\nXNu2bdM//vGPCo0HAnAdi7209YgAVFuJiYkaMGCAoqKijO6K2+zcuVO//PKLoqOjJUlTpkxRQECA\nRo0aZXDPpD179mjy5Mlav3690V0BAAAmMWPGDD388MO6+uqrdfToUUVHR2vLli2lziRY1bwhWwIA\nAAAAALhCUVGRXnzxRYWFhenRRx81ujsAqilmAgKqmX//+9+aNm1aqc8Vr6Ne3TVv3lzvvPOO3nnn\nHV24cEHXXXedJjIfLk0AACAASURBVE6cqKlTp2rPnj2lbjN27Fjdeuutl/U+w4cP1+HDh0t97pVX\nXuFOdQAA4BLFa8j7+fnJbrdrypQpOnHihBITE0t9fePGjTV37tzLeo9LZchx48Zddr8BAAA82aFD\nhzRixIhSn6tMngIAAChPbm6u7rjjDrVu3VqjR482ujsOCQkJysvLK/W5JUuWKCgoqIp7BMBZzAQE\nAAAAAAAAAAAAAAAAmJyP0R0AAAAAAAAAAAAAAAAA4ByKgAAAAAAAAAAAAAAAAACT8zO6A1UpJ8dm\ndBcAuEC2LUuDNg3QoqglCrOGG90dAJUQGmo1ugtej1wEAJ6FjOvdyEbGIxsBznPXuSzblsW5EfAi\n5CLjkYvg7bJtWUrYEKul960ggwAwVGVzETMBATCdMGs4gyMAAACoVsi4AACzc8e5rLiwKNuW5bI2\nAQAAAKA6s9jtdrvRnagqVC8DAOAZuKvLeOQiAAA8B9nIeGQjwHMxExDgXchFxiMXAeQPAJ6BmYAA\nAAAAAAAAANUKA3AAAKCqkT8AmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAA\nAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJ+RndAQAAAAAAAOCPevXqpaCgIElSeHi4Hn/8cY0ZM0YWi0XN\nmzfXhAkT5OPjo+XLlys5OVl+fn564okndMcdd+js2bMaNWqUfvnlFwUGBmrGjBkKCQkxeI8AAAAq\nh1wEAAAuB0VAAAAAAAAA8Bjnzp2T3W7X4sWLHY89/vjjGj58uG655RYlJSVp69atatOmjRYvXqyV\nK1fq3LlzSkhIUKdOnbRs2TK1aNFCQ4cO1YYNG/T6669r/PjxBu4RAABA5ZCLAADA5WI5MAAAAAAA\nAHiM/fv368yZMxo8eLAefPBBffXVV8rIyFCHDh0kSZ07d9auXbu0d+9e3XzzzfL395fValXDhg21\nf/9+paenKzIy0vHa3bt3G7k7AAAAlUYuAgAAl4uZgAAAAAAAAOAxatasqYcfflixsbH673//q0ce\neUR2u10Wi0WSFBgYKJvNptzcXFmtVsd2gYGBys3NLfF48WsBVI1sW5bCrOFGdwMAqg1yEWAMMg0A\nM2MmIAAAAAAAAHiMxo0bq2fPnrJYLGrcuLGuvPJK/fLLL47n8/LyFBwcrKCgIOXl5ZV43Gq1lni8\n+LUA3C/blqVBmwYo25ZldFcAoNogFwFVj0wDwOwoAgIAAAAAAIDH+OCDDzR9+nRJ0vHjx5Wbm6tO\nnTppz549kqQdO3aoXbt2at26tdLT03Xu3DnZbDYdPHhQLVq0UNu2bfXJJ584XhsREWHYvgDeJMwa\nrkVRS7hrHgBciFwEVD0yDQCzs9jtdrvRnagqOTlMcwgAgCcIDbVe+kVwK3IRAACeg2xUUkFBgcaO\nHasjR47IYrFo5MiR+stf/qIXXnhBhYWFatKkiaZMmSJfX18tX75cKSkpstvteuyxx9StWzedOXNG\no0ePVk5OjmrUqKHZs2crNDS03PckGwEA4BnIRSWRiwAA8F6VzUUUAQEwLdZkBcyLCzrGIxcBgOch\n33ovspHxyEYAAHgGcpHxyEUAAHiGyuYilgMDYEqsyQoAAIDqhHwLAAAAAAAAwFkUAQEwJdZkBQAA\nQHVCvgUAVDUKTwEAAEpHTgJgZhQBATAtBkgAAABQnZBvAQBVhRnoAAAASkdOAmB2Frvdbje6E1WF\ndUwBAPAMrO9uPHIRAACeg2xkPLIRvFG2LYsCVAAeh1xkPHIRQE4C4Bkqm4uYCQiAaVGFDQAAgOqE\nfAsAqEoMbAEAAJSOnATAzCgCAmBKTMcIAACA6oR8CwAAAAAAAMBZLAcGwLSYjhEwL6Z2Nh65CAA8\nD/nWe5GNjEc2AgDAM5CLjEcuAgDAM7AcGACvwwAJAAAAqhPyLQAAAAAAAABnUAQEAAAAAAAAAAAA\nAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQE\nAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAA\nAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJ\nua0IqKioSElJSYqLi1NiYqIyMzNLPL9t2zb16dNHcXFxWr58ebnbZGZmqn///kpISNCECRNUVFRU\n4n3+/ve/a9myZe7aFQAAAKeQiwAAAAAAAAAAAOBubisC2rJliwoKCpSSkqJnn31W06dPdzxXWFio\nadOmaeHChVq8eLFSUlJ04sSJMreZNm2ahg8frqVLl8put2vr1q2OtubOnavTp0+7azcAAACcRi4C\nAAAAAAAAAACAu7mtCCg9PV2RkZGSpDZt2ujbb791PHfw4EE1bNhQV1xxhfz9/RUREaG0tLQyt8nI\nyFCHDh0kSZ07d9auXbskSZs2bZLFYnFsAwAA4InIRQAAAAAAAAAAAHA3txUB5ebmKigoyPGzr6+v\nzp8/73jOarU6ngsMDFRubm6Z29jtdlksFsdrbTabvv/+e61fv15PP/20u3YBAADAJchFAAAAAFA5\n2bYso7sAAABMhvwAwJv5uavhoKAg5eXlOX4uKiqSn59fqc/l5eXJarWWuY2Pj0+J1wYHBys1NVXH\njx/XwIEDlZ2drRo1aigsLEydO3d21y4BAABUCrkIAAAAAC5fti1LgzYN0KKoJQqzhhvdHQAAYALk\nBwDezm1FQG3bttX27dvVvXt3ffXVV2rRooXjuaZNmyozM1O//fabateurc8//1wPP/ywLBZLqdu0\nbNlSe/bs0S233KIdO3bo1ltvVffu3R3tzZs3T1dffTUDXQAAwCORiwAAAADg8oVZwxnAAwAAl4X8\nAMDbua0IqGvXrvrXv/6l+Ph42e12TZ06VevWrVN+fr7i4uI0ZswYPfzww7Lb7erTp4/q1q1b6jaS\nNHr0aL3wwguaM2eOmjRpom7durmr2wAAAC5HLgIAAACAymEADwAAXC7yAwBvZrHb7XajO1FVcnJs\nRncBAABICg21Gt0Fr0cuAgDAc5CNjEc2AgDAM5CLjEcuAgDAM1Q2F/m4uB8AAAAAAAAAAAAAAAAA\nqhhFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAPAov/zyi7p06aKDBw8q\nMzNT/fv3V0JCgiZMmKCioiJJ0vLly9W7d2/169dP27dvlySdPXtWQ4cOVUJCgh555BGdPHnSyN0A\nAABwCbIRAACoKIqAAAAAAAAA4DEKCwuVlJSkmjVrSpKmTZum4cOHa+nSpbLb7dq6datycnK0ePFi\nJScn65133tGcOXNUUFCgZcuWqUWLFlq6dKliYmL0+uuvG7w3AJyVbcsyugsAYCiyEVD1yB8AzIwi\nIAAAAAAAAHiMGTNmKD4+XnXq1JEkZWRkqEOHDpKkzp07a9euXdq7d69uvvlm+fv7y2q1qmHDhtq/\nf7/S09MVGRnpeO3u3bsN2w8Azsu2ZWnQpgEMxAHwamQjoGqRPwCYHUVAAAAAAAAA8AirVq1SSEiI\nY7BKkux2uywWiyQpMDBQNptNubm5slqtjtcEBgYqNze3xOPFrwVgXmHWcC2KWqIwa7jRXQEAQ5CN\ngKpH/gBgdn5GdwAAAAAAAACQpJUrV8pisWj37t3at2+fRo8erZMnTzqez8vLU3BwsIKCgpSXl1fi\ncavVWuLx4tcCMDcG4AB4M7IRYAzyBwAzYyYgAAAAAAAAeIQlS5bo/fff1+LFi3X99ddrxowZ6ty5\ns/bs2SNJ2rFjh9q1a6fWrVsrPT1d586dk81m08GDB9WiRQu1bdtWn3zyieO1ERERRu4O4NFY4gIA\nPB/ZCDAGOQmAmVEEBAAAAAAAAI81evRozZs3T3FxcSosLFS3bt0UGhqqxMREJSQkaODAgRoxYoQC\nAgLUv39/HThwQP3791dKSoqGDBlidPcBj5Rty9KgTQMY4AIAEyIbAe5FTgJgdha73W43uhNVJSeH\ntU4BAPAEoaHWS78IbkUuAgDAc5CNjEc2gjfKtmWx1AUAj0MuMh65CCAnAfAMlc1FzAQEAAAAAAAA\nAF6GgS0AAIDSkZMAmBlFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAA\nAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxFQAAAAAAAAAAAAAAAAIDJUQQEAAAAAAAAAAAAAAAAmBxF\nQADghbJtWUZ3AQAAAH9CRgMAmB3nMgAAUB2QaQCYGUVAAOBlsm1ZGrRpACEWAADAg5DRAABmx7kM\nAABUB2QaAGZnsdvtdqM7UVVycmxGdwEAPEK2LUth1nCjuwEvFhpqNboLXo9cBACeh4zmvchGxiMb\nAa7BuQyAs8hFxiMXAWQaAJ6hsrmImYAA4DJUl8pvwisAAAAAAHA1rjcAAIDqgEwDwMwoAgKACmIK\nSAAAALgLWRMAgNJxbgQAAJeL/ADAm1EEBMCUjAhwYdZwLYpaQgU4AAAAXC7MGq7pkbPImgAA/AFF\nsgAA4HKRHwB4O4qAAJiOkQGOQRkAAAC4Q7YtS2M+HclFSgAA/oAbsgAAwOUiPwDwdha73W43uhNV\nJSfHZnQXAPxJti2rUkGsstsB8AyhoVaju+D1yEUA4HnSj6Upol57o7sBA5CNjEc2AgDAM5CLjEcu\nAgDAM1Q2FzETEADDODOjDwVAAAAAqE6YCQgAAAAAAACAs5gJCIChmNEH8E7c1WU8chEAeB6ysfci\nGxmPbAQAgGcgFxmPXAQAgGdgJiAApsQgBwAAAPA7sjEAAAAAAAAAZ1AEBAAAAAAAAADwSCyVCQAA\nqhr5A4CZ+ZX3ZFpaWrkbt2/f3qWdAYCKYqkEAFWNXAQA+CPyKAAA7pdty9KgTQO0KGoJ510AAFAl\nyB8AzM5it9vtZT2ZmJgoSfrtt9/0448/qm3btvLx8dGXX36pFi1aKDk5uco66gqsYwpUDwQwwPzM\nuL47uQgAUIw8ClczYzaqbshGgOfy5sJbb953eC9ykfHIRUD1OAdXh30AvF1lc1G5y4EtXrxYixcv\nVr169bR27Vq9++67euedd7Ru3ToFBgZW6g0BwFlh1nAGXABUOXIRAKAYeRRAdcJSB57P239H3nq+\nLS469vbfPwAYge9emB05AvBu5RYBFTty5IgaNWrk+LlBgwY6cuSI2zoFAJfirReAABiPXAQAkMij\nAKoHBgc8nzt/R2Zp01tRdAwAxiAfOc/sxy7blqWEDbGm3g9yBODdKlQE1KpVK40ePVoff/yxtm3b\npmeffVbt2rVzd98AAAA8DrkIAAAA1QWDA57PXb8jdwxuMWjqevzbBICqRz5yTnUooKku+AwD3suv\nIi+aMmWK3n//fSUnJ0uSbrvtNiUkJLi1YwAAAJ6IXAQAAIDqhMEBz2eW3xGDpgCA6oJzmXcLs4Zr\n6X0r+BwAMC2L3W63V+SFv/32m86cOSO73a4LFy4oKytLHTt2dHf/XConx2Z0FwAAgKTQUKvRXXAK\nuQgAALiS2bNRdUA2gqtk27LcMmuPOwah3NUuADiDXGQ8chGclX4sTRH12hvdDcApZGV4gsrmogot\nBzZ79mzdddddioqKUkJCgu655x7NmTOnUm8IAABgZuQiAAAAAKVxx3JY2bYsxa6NccuSGu4qLAIA\nmBvf5XBGti1LQ7c+wecIpsYytzC7ChUBbdiwQZ988om6d++u9957T++++65CQkLc3TcAXoKTaNXi\neAPOIRcBANwl/Via0V0AADjBHcthHcs7qqzcH3Us76jL2izm6usDDJYAQPXAdzmccSzvqH7KzXRL\ndgGqCsvcwuwqVARUp04dBQUFqXnz5tq/f79uvfVWnThxwt19A+AFuEBUtTjegPPIRQAAd0g/lqbe\na3tQCASgyvH3oWu5eqAgol57rY7e4PIlNdxxfYDBEgCoHvguhzPqBdbXNUGNVC+wvtFdcQoZGXwP\nwswqVAQUFBSk1NRUtWrVSuvWrdNXX32l06dPu7tvALwAF4jK5q6pvjnegHPIRQAAd4io114L7l7o\n8kFeACgPN4qYgzvODe66PsD1Btfi3yYAI/BdDmeEWcO1omeqqT9HZGTAM/BvsPIqVAT00ksv6eTJ\nk7rlllsUFhampKQkDR8+vNxtioqKlJSUpLi4OCUmJiozM7PE89u2bVOfPn0UFxen5cuXl7tNZmam\n+vfvr4SEBE2YMEFFRUWSpCVLlqhPnz7q27evNm7ceNk7D8AzmDkMuos7QybHG3AOuQgA4A7ZtizN\nTp/JBQ4AVYobRczBXbPEueP37o7zmLeeGxmABOCtqsP3ntH7YPT7mx0ZGTAeWdg5FSoCqlu3ruLj\n47V//34999xzSk5O1n333VfuNlu2bFFBQYFSUlL07LPPavr06Y7nCgsLNW3aNC1cuFCLFy9WSkqK\nTpw4UeY206ZN0/Dhw7V06VLZ7XZt3bpVJ0+e1LJly5ScnKxFixZpxowZstvtThwKAPAchEzAc5GL\nAADuQP4DYBS+dzybO5eLdPUFdXdcqPfmi/9kAwDeqDp87xu9D9Xl/Y3+DHD+BYxFFnZOhYqAdu/e\nrejoaD355JM6ceKE7rrrLu3cubPcbdLT0xUZGSlJatOmjb799lvHcwcPHlTDhg11xRVXyN/fXxER\nEUpLSytzm4yMDHXo0EGS1LlzZ+3atUshISFKTU1VjRo1dOLECQUEBMhisVz+EQAAD8WJDfBM5CIA\ngLuQ/wAAfxZRr72mdnrZ5UuCuWOAMMwarumRs1x6PvP2i//eut8AvJcrvvc9oXjEyHOXJ7z/sxHP\nOf07NHsxGADnkYUrr0JFQHPmzNHSpUsVHBysOnXqaPHixZo5c2a52+Tm5iooKMjxs6+vr86fP+94\nzmq1Op4LDAxUbm5umdvY7XbHQFZgYKBsNpskyc/PT++//77i4uLUs2fPCu4yAABA5ZGLAAAAAFSV\n9GNpGvevUS6fCcgdA4TZtiyN+XSkywfsuPgPAN6lOhSPGH3uMvL904+l6bEtg53KLkYXMgGA2VWo\nCKioqEihoaGOn5s1a3bJbYKCgpSXl1eiDT8/v1Kfy8vLk9VqLXMbHx+fEq8NDg52/PzAAw/o008/\nVVpamv79739XZHcAAAAqjVwEAAAAoKpE1GuvBXcvdPlMQJLrBwhdcec/AADOcFXxiNFFRGbmzuwC\nAKiYChUB1atXT9u3b5fFYtHp06f1xhtvqEGDBuVu07ZtW+3YsUOS9NVXX6lFixaO55o2barMzEz9\n9ttvKigo0Oeff66bb765zG1atmypPXv2SJJ27Nihdu3a6dChQxoyZIjsdrtq1Kghf3//EoNiAAAA\n7kAuAgAAAFBVsm1ZmvbZFLcMRrq6TVfc+V8aBmIBAJfDFQVAnjCbkFll27I0afcEp45fti1LCRti\n+R0AQCX5VeRFkyZN0ksvvaSjR4+qa9euuuWWWzRp0qRyt+natav+9a9/KT4+Xna7XVOnTtW6deuU\nn5+vuLg4jRkzRg8//LDsdrv69OmjunXrlrqNJI0ePVovvPCC5syZoyZNmqhbt27y9fXVddddp7i4\nOFksFkVGRqpDhw7OHxEAAIBykIsAAAAq789LnpbmwoULGj9+vA4fPiyLxaIXX3xRAQEBGjNmjCwW\ni5o3b64JEybIx8dHy5cvV3Jysvz8/PTEE0/ojjvu0NmzZzVq1Cj98ssvCgwM1IwZMxQSElJFe2g+\n6cfSuFPbw50vKnR5m8WDa0vvW+GymXvcced/8UAsS4IAqI7IRZ6JpaiccyzvqDJth3Us76hTx7Dw\nguvzz+XItmXxGQBgWha73W6/1IteeeUVjRgxoir641Y5OTajuwAAACSFhlqN7kKlkYsAAICrmTkb\nXcr27dv1+eef68knn1Tfvn118uRJDRs2TAMGDChzmy1btmjr1q2aNm2a9uzZo0WLFslut+uhhx7S\nLbfcoqSkJEVGRqpNmzYaPHiwVq5cqXPnzikhIUErV67UkiVLlJubq6FDh2rDhg368ssvNX78+HL7\n6a3ZKP1YmmLWdFdq9EYKgTxUti1LsWtjtKJnqksHotxRBOSONovbZRAO8B7kopK8MRfxvW9umw5t\n0IOb+uu9qGWKanJfpdpwV/65nPenCBl8F8ETVDYXVWidiO3bt6sCtUIAAADVHrkIAACg4ubPn6/e\nvXtr48aNat26tbZt26aVK1eWu83dd9+tyZMnS5KOHDmi4OBgZWRkOGY67Ny5s3bt2qW9e/fq5ptv\nlr+/v6xWqxo2bKj9+/crPT1dkZGRjtfu3r3bvTtpYvUC66uhtZHqBdY3uisoRw3fGi5vM8warjl/\ne83lAxvuuGufwRd4I5bAqZ7IRZfGUlyewZnjH9XkPr3SZX6lC4CKOZt/nNkHZoMC30UwuwoVAV15\n5ZWKiorSM888o7Fjxzr+BwAA4G3IRQAAAJenadOm+vjjj3XnnXcqMDBQhYWXLhLw8/PT6NGjNXny\nZN1///2y2+2yWCySpMDAQNlsNuXm5spq/b+74gIDA5Wbm1vi8eLXonRh1nAtv9+YO6xRMWHWcJfP\nrCP9PrAx5tORLh/YcEfBEuBtzDTwaIY+ehpyUfkovjCes99B2bYsLfrPO04X4TiTf1zxPcpn0Lvx\nXVR9eGtW8avIi3r16uXufgAA4DSmZ0RVIBcBANyFLIPq6Oqrr9bkyZP17bff6uWXX9b06dPVoEGD\nCm07Y8YMjRw5Uv369dO5c+ccj+fl5Sk4OFhBQUHKy8sr8bjVai3xePFrUTa+d7xTmDVcz0Y859Lf\nv7tmF/JmZAPvZJaBR5bLuXzkoopx9vPkCd+dntCHynL2OyjMGq7pkbOc3n9ntndVHwCYmzdnlQrN\nBNSrVy9dd911+u2332Sz2dS6dWsGwAAAHsVMd0nB3MhFAAB3IMugupo9e7ZuvPFGvffee6pdu7au\nueYazZ49u9xtUlNTtWDBAklSrVq1ZLFYdMMNN2jPnj2SpB07dqhdu3Zq3bq10tPTde7cOdlsNh08\neFAtWrRQ27Zt9cknnzheGxER4d6dBNzIXeeH9GNpeuSjQUo/luayNrNtWXr8o7+7vK/eem7MtmWp\nx6puXrv/3s4MA1VmKVbyJOQi98u2ZSl2bYyh352e8Leds+/tzL/rbFuWhm59wvD9d3bGw+pw/nVl\nzqsMMx9DT/h3DOd5c1apUBHQwoUL9fTTT+vnn39WVlaWnnjiiUuuUwoAQFXy5pM5qha5CADgDmQZ\nVFdr165VTEyMGjVqJEmKiIjQQw89VO4299xzj/7zn/9owIABevjhhzVu3DglJSVp3rx5iouLU2Fh\nobp166bQ0FAlJiYqISFBAwcO1IgRIxQQEKD+/fvrwIED6t+/v1JSUjRkyJCq2FXALdx1J3u9wPqq\nH9hA9QLru6zNb3K+1o+2/+qbnK9d1qa7BmDMMKDz8Y/blJ33kz7+cZvRXQHKRHa9POQi9zuWd1RZ\nuT/qWN5Rw/pg9N92RhcveMrvwJn8ZPQxdIX0Y2nqvbaHYYVAZj+G7pg1E8bw1t+hxW632y/1om7d\numnlypUKCgqSJJ06dUr9+/fXxo0b3d5BV8rJ8ey1TgEA8BahodZLv8hDkYsAAICrmTkbXUpCQoLu\nvfde9evXT6+++qrWrVunZ599VjExMUZ3rQSyETxVti1L/dbFaPn9qS69gO2udjcd2qCoJve5rD3p\n90GsiHrtXdaemZYFeGnXJD1/W5LR3QCqFLnIeGbPRe44F5mN0cuRLcl4TwNaPehUG87sgyvO9UYf\nQ1e8v6sz1OUy+hg6o7iIalXP9YYeQ29n5s+Qq1Q2F1VoJqArrrhCfn5+jp9r166twMDASr0hAACA\nmZGLAAAAKm7hwoX65JNPdPfdd8tms2n9+vUeN9AFeLJjeUf1oy3TLXfTX/rW0Mvn6kHXbFuWnvl4\nmEvvIjd6hoaKSj+Wpre+/R/Dl/IA4DrkIvfLtmVpdvpM084+4irOnuOcOX7px9I0dudIp85fzs4i\n44pzvdEFQK6YRcfo4hVPz1rliajXngIgg5l9Nimj+V36JdI111yjuLg43XffffLz89NHH32koKAg\nzZ8/X5Kq/fSBMB6VfvAkfB4B70YuAgC4i9F36QGulJqa6vjve+65R/v27VPt2rW1fft2SWLAC6ig\niHrtNbrdeLecHywWlzdpGma4rhNRr70W3L2QbABUA+SiquOqQk9vHgNwdhadeoH1FR7U0KklR12x\nHKqZPwN8jj2DK5fNxeUzS+G+p6rQTECNGzdW165dVVBQoPz8fHXq1EkRERHu7hsgiUo/eBY+jwDI\nRQAAdyieapq7/VFd7Nmzx/G/L7/8Up07d9bp06cdjwGomE2HNmjyniRtOrTB5W3nF55xeZuu7meY\nNVxjO4z3yov/2bYsTftsCteggGrAbLnI6O8dT3j/hA2xhvfDKM4W4IRZwzXvrjecOne7YiZAZ7c1\n+2eAsSzncPw8gzf+DeAqFZoJaMiQISooKJC/v78yMzN1+PBhde7cWT4+FaohApxCpR88CZ9HAOQi\nAIA7MNU0qptp06Y5/vs///mPWrZsKZvNpm+//VYdO3Y0sGf4M+4Qdi1XH88bQ29Sg8Bw3Rh6k8va\nlKRvcr7WcEe+RwAAIABJREFUkbwsfZPztcv6u+nQBg3clKD/jVrqsmXB0o+l6bEtgzlHAjA1s+Ui\nZ2aBcZazs9A4u3114UweybZlacynI536HTizfbHzRYWV3tYVn4PCC5V/f2e5ov+MZTmH4wez8504\nceLES73of/7nf7R69Wq1atVK/fv3108//aQvvvhCd955ZxV00XXy8wuM7gIqKTgg2OguAA58HgHn\nBQYGGN2FSiMXAQDcpUFQmNFdgEHMnI0uZfbs2VqzZo2io6N16tQpvfTSS8rOztYtt9xidNdK8NZs\nVDzAcFfDrvyt6wLuOJ62gtNafWCl+l0b79LfUbO/tNCNV7V2WbFOcZsFhYUa3PoRl7XZIChMdWrW\nVbcm3V3WplkEBwTrnkZRDD7B65CLjBdYdIXa1mtnyHsHBwTrroZdK/3dFxwQrFZX3aBrr7reqT6Y\n+fvX2Tziit9BnVp1nPoM2QpOa/l3yZXOP87ug63gtFJ/WKk+LfoZkpGd7f8f20HlcfzgCSqbiyp0\ny/rWrVs1ZcoUrV+/Xj179tS7776rjIyMSr0hAJgZU/8BIBcBANyFrInqaPv27Xr77bclSXXq1NG7\n776rzZs3G9wrFAuzhuvZiOdMO8jladx1x3AN3xouba+Yq2cX2nRog177arZLlwRLP5amsTtHeu1y\nmfzbBKoXs+Six7YMNvR719llpMZ8OtLpv63M/P3rinznzLbFs/g5+xmyWJzaXMfyjlZ62zBruJbe\nt8LQz4GZP4MAjFehIqCioiL5+/tr+/bt6tKli4qKinTmjOvXjAYAT8YaoAAkchEAwD3Imqiuzp8/\nr7Nnzzp+Liw0blp9XMxVgzSltQvXCLOGa2yH8S4fCMq2ZSkm9T6XnnfcsXRZvcD6Cg9qqHqB9V3W\nJgAYxSy5yMxLMLKEj/vyXUVF1GuvBXcvdPozdPqcrdLbph9LU8ya7k4dA2/+DHkKo6+P8DcNzKxC\nRUAdO3ZUjx49VFhYqPbt2+uBBx4w3ZIXAOAs/oAAIJGLAADuQdZEdRUfH6/evXtrxowZmjFjhvr2\n7av+/fsb3S38fxH12rt8oC/9WJp6r+3hlRfN3VHQmX4sTY9+9JDLj+c3OV/rR9t/9U3O1y5tt3aN\nWi5tL8warhU9Uzk/AqgWzJKLjC4Acvac5+3nDHfku8uRbcvS7PSZTuWhj3/cpuNnjurjH7dVavt6\ngfXV0NrI1EXERhfAGM3oG6W8+W8aVA8Wu91ur8gLjxw5orp168rX11f79u3T9df/vp5mSkqK4uLi\n3NpJV8nJqXzVKAAAcJ3QUKvRXXAKuQgAALiS2bPRpezdu1eff/65/Pz81K5dO7Vs2dLoLl2EbORa\n6cfSDB9ANEq2Lculg4/ZtizFro1xeSFMti1L9668S//ss9Vl7WbbstRjVTet7/2hy/vqrQO63rzv\n8F7kIuMZmYuKZ3BJjd7otVnCEzh7/nFFFlyS8Z4GtHqw0tt7wj5UVrYtSwkbYg1fksxoRueg6vA3\njdHHEM6rbC6q0ExAktSgQQP5+vpKkmOgS5KSk5Mr9cYAgKrh7RXjgDuQiwAA7kBuQ3Wyfft2SVJq\naqoOHTqkkJAQBQcH6/vvv1dqaqrBvYO7mf1iuTNcfZE9zBqueXe94fJ2j+Ud1S9nTuhY3lGXtflN\nztfKzvvJpbMLFQ+CeeM50pv3HeTC6oZcVHH1AuurfmADp2Zw8YR/P872wcjtnZ2BJduWpWc+Hub0\nPjhTACQ5l8k8YRaYwgvOLxdo9llsKF5xjtGzKcFYFS4CKksFJxICAI9ihpOeK/rISR6oWuQiAEBl\nFc/0QG5DdfHNN99Ikvbs2VPq/wBUjKsG0v4sJ/9nnbefV07+zy5r85czv5T4fzjPFQOAMB93Xc8j\nZxrH23KRs5+1Wn61nXpvo6+HO1vE6YoiHGfe31OWqt50aINT2zvzGTB6STVJquFbw6ntPaGQyczS\nj6Wp15r7TH38POXfMozh52wDFovFFf0AgEqpzFR2xSHak09+ruojJ3mgapGLAMB7uHpK5WN5R5WV\n+6OO5R0lu6FaGDZsmCSpR48e6tSpU4nnNm/ebESXAPzBjaE3qU6terox9Caju1KuMGu41y+FAe/j\njut5ZrgeWp15Uy5y9rPm7Pd+dbge7gn74OyYhLPn7k2HNmjgpgT9b9RSRTW577K3d8V3npEFQK44\nhhH12mvB3Qu9eoZOZ9QLrK/woIZOzUrmCcz8XSixnJkk/XTqJ11zxTWXvZ3TRUAAYJTKBjlPCNGX\n4so+evJ+AgAAmJE7BlEi6rXX6ugNXKBDtbFx40YVFBTotddecwx8SdL58+e1YMEC3XPPPQb2DjCP\nMGu4xnYY75blwE6eO+HS4tMBrR7UNzl7nV6+48/ccV3DLAMKzs4CAPNyx9KCnn49tDrzplzkis+a\nJ3xOnTlPuKKAw9lt5/ztNaeXw3Lmb1Nnf4dRTe7TnC7zKlUAVPz+3v6dl23L0uz0mbox9CavPg6V\nFWYN14qeqRw7JznzXeopBcxG/t2QbcvS37ck6vNHP7/sbf8fe28fH1V17f9/8sRDJkPAOGGGGSKg\n0kQbYx2DhdbKjaWNjRUQRcWfaG21114RrdhqVbxFf6JefEDsk1pEekXRa1E0NbcqRa1QjHNrTBF8\nIIUwwxwyRB4mM4E8zHz/iMPNyU1wZq91cuZM1vv18rVU2Hv2OWeffdbe+7PXIqcDEwRBMAuKI2eF\nD7cV2igIgiAIgjAUMWpBUQRAQibR1taGLVu2IBKJ6NJdfPDBB7jpppvMbp7QC0kPk974tHpc+/oP\n2FMRhKIt6Ix1sqYDq2uqxcqPHien7zAaapqUwUKiIAncSF8yj6HmF5m9WTv3FVqaZY6UYmbfg1vf\nWaTcfp9Wj1kvf4/ke1C/sYGwH6s++r1lnwFAuwdcfdBs8YRgPmanRqT043Tow2bPG9x2D9Zdsk6p\nLDkSkN1up1YhCIKgjDgwgiCkE+IXCYIgDB3EDxWEYzN37lzMnTsXmzdvxtSpU/v9OytWrMCCBQsG\nuWVCb9LldKUwME6bC2PzXeypCBz5xchGDhz5xaz1WoWuWKfZTRAEYQghftHgoUWCaD60ixTpzm33\n4L6zl1nWN6K232lzwWUbp+x7JDbNzU7rVtdUqxxJCDA3ggmX+MGqfTgdyIR5Ese7SIFjLE2He2/2\nvEElFRiQZCSg9vZ2PPDAA7jwwgsxc+ZM3HvvvYhGowCA1atXK/2wIAiCIAiCFRG/SBAEQRAEIXkG\n2ugCgA0bNgxiSzID7hOIVt/kGip0x7vY69zeug0xdGN76za2Oj/b/5nOcsEdBQkA4nH2KtnhiAIg\nCEYj/TM1rOIXcURxMQunzQUnQcAC0CPpJOowC472j8zNJ7WBY9NciwSVy9Y11eLKunnK0Qmp0T8y\nKS3eUP19LiGW2ffQTDjGIq52UMjNtmZ63qREQEuWLMHhw4dx77334v7770dXVxfuuusuo9smCIJg\neVQ/LmZ/FAVBGBjxiwRBEASjMGKTUxDSmbgVduHTCCMEAemyMCsMTGOoAf623WgMNbDWW1pUhpys\nXJQWlbHVOdU9DdnIxlT3NLY6fVo9Llx/Pvs3Mi8n/Rfz0yEFgiAcCxGq8ZJOfhHluaZDv8gjbthS\nRdJm3wPq98Nt9+C2KXeQvj/UTXOfVo/ZL9cof//LHRU4YdQElDsqlNsQ7Ywql80EzO7HZv8+B2Zf\nA0dqWaunpONISWbV9LxJiYC2bt2KxYsXo7S0FKWlpVi8eDG2bt1qdNsEQRAsjerHxWzHQBCEYyN+\nkSAIgmAERm1yCkI6k5WVZXYTLIURi6hGLczKfJaP1vZWneUiFG1Bd7wLoWgLa50xxFjr9Dor8btv\nr4TXWclWp9vuwUPTH7XEYr4V2igMXdJhcy+TSCe/iCogofYLqh9BvZVUkbTV3w2fVo9rXr9KeW7K\nsWnutLlQNMKhHNHJbfdg3cxa5TZokSC0yB7laESZsMdjdj82O2IpNRoUYP49TLRBFa57YCaZEpVL\nhaREQPF4HIcOHTr634cOHUJOTo5hjRIEQcgEVD8u6eAYCIIwMOIXCYIgCEbgdVbijxe8yrrJKQhC\n5mGFeWIg7MfF62dZetMjnZheUoWxI12YXlLFWm+5owKegvGkE/J9MSIdWCDsx53v/kIiYAlCmmKF\n75KQOtTnSt10poonqEGVrL5pTL2HTpsLJfYTSCnVqBEMtUgQrYdDpJRgFJw2F0pGqd+DdBDDcdVh\nFpnir5n9nTT7/pn9+4D5z4DK7oO7lcolJQK66qqrcNFFF+G+++7D0qVLcdFFF+HKK69U+kFBEISh\nBOXEhBGkwwdXEKyO+EWCIAiCUVAWWQVBEFTgON3ZFy0SxO62XaZt2mQiI3JHGFNvzkjW+k4ac5LO\nctAYakBzeCdrOjSzT5YLgnBsVDe7hMwgXQ7Imv37FNx2D272/oy0N/Fo1W+Uy9c11WJ+3WWoa6pV\nKg/0HJJZN7NW+ZAM1cel3gMqHGI4ah0c8wQrR9GxchqoBGanwjK7D6UL1OufvXa2UtmkREBz5szB\nY489hvHjx2P8+PFYsWIFLrroIqUfFARBEMwhE0JQCkI6IH6RIAiCYATiqwlDkRNPPNHsJggG4LS5\nML6AdnrcynCP41okCC2qno7iWBzubmetz4jUZY78YuRl58GRX8xWp5VOlluhjYLACWWzy+qIX/S/\nUDfd83LymFpiTXxaPX78xtXK6byo38lyRwUmjJpIjjZI9SU7uzuVy1LvATUyJlc0KmodXTHaPeQ+\nbDDYpIMAyGwhlZWjmqUDHEKsdZesUyqblAgIAPx+P5qbm6FpGlpbeXNQC5mBlV9CQRgKDJZyWsYC\nYSggfpEgCILADfW0piCkK+FwGEuXLsWFF16IuXPn4uGHH0Z7e4/wYNmyZSa3TjDihKvb7sELF7w0\nJMczIxaqnTYXXLZx7KKqxlAD/G27WSPslBaVITsrB6VFZWx1ep2VuLXyTtZ0mVaJBGTU5pms2wjp\nDGWzywpYxS+y8jjhtnvw0PRHyWO8qoAmgZn30OusxC3eXyh/O6n7CG67B+tm1pqeFq4rri5gofoK\nWiQIf1uz5SNjdhCEVFTSQURk9ljI8R6Y6e9S55pmR4PigGPeMb5wvFK5pERADz74IJ588kl4PB4U\nFxdj+fLl+N3vfqf0g0JmkglqPEEYCgyGAMjMsUDGIGEwEL9IEARBMAKfVo9rX/8BebFZENKN22+/\nHbm5uVi6dCmWLFmCaDSKO++80+xmCb2w8qIqFe45pFEL1fE4a3UAAJ/m01kONgc2IRbvxubAJrY6\n65pqcfeWxaSUIn2xUiQgbsxetxGEZFDd7LICVvGLzN54pxAI+3HdGz8itd+n1ePC9eeTIumYeQ85\nvp1UX4ajPMWn0iJBBCPqkRSpvgJHOjNKJKFEHZRvPjUaZTqk06Ksr3C9x1QBjxWE68fC7LGEA2o/\nMmvekZQIaOPGjXj66adxxRVXYP78+Vi9ejVeeeUVo9smWIhMUOMJgkDHzLFAFrKEwUL8IkEQBMEI\nnDYXPAUlQzZ9jpC57Nq1C7fccgu+8pWvoLS0FLfffjs+/vhjs5slGIhV5mZWaadR6cAKhxfqbLpS\n7qjA6GHHkVOK9MYq65hGReqywrULQqYiflFyUL7NjaEG7Dz0T1KkO6+zEn+84FXWKHSDSfWkGjxd\nvQbVk2rMbgoJ6jN8aeafTIuGBNDSmXFEEqJeA0eKX2oaKoof5NPqMfvlGlMPWlHnG4GwHz/deEPa\nz1fSHaoodOZL5yn3I46xZPfB3UrlkhIBFRYWIhKJHP3vzs5OFBQUKP2gkLnI5FHIZMxU+1oNs8YC\nWcgSBgvxiwRBEAQjcNs9WDz1l+LLCBnHxIkT8fe///3of2/fvh0TJkwwr0GC4VhlbmZEO62UDuyk\nMSfpLAdjRozRWQ42Nm/A/o5WbGzewFanlTDiPUr3d1MQMhmr+EUc6bRUoUbfcOQXIy87D478YlI7\nqMIH6j2k+hJUAZDZ+xl1TbW4sm4eKZoRVcRlZjozr7MSj894ytRrsPoahdPmwth8l/K7zPEeW2Ve\ndCzMHguocER0ioMWlpUi5guE/Zi9drZS2WOKgG677TbcdtttiMVimDlzJn75y1/innvuwYUXXojR\no0cr/aAgCILV4FDrWuF0YSZgZWdKSH/ELxIEQRCMxKfV48dvXC3pwISMoaqqCueeey7ef/99XH75\n5aipqcEFF1yAOXPmYMeOHWY3TzAYI+ZmRsypudtp1EJ/blYea30A8LsPfqOzHDSGPtRZDkqLypCN\nbJQWlbHVadQ6jaz7CIIwEFbzixa8eZ2pY1pXrFO5rNPmwgn2iSQRD8d+ACX9C8emdTqkQaJC3Xin\nYmYap0DYjwd9D5h6OJ0jZbmZ6cwAID8vn/T7HFF4zIyGRIXjGTyzdTVji0wipl6Uml7Sbfdg3SXr\nlMrmHusPp0yZorMJTj31VKUfEwRBsCLURbxMUPsKgiB+kSAIgmAsVg85Lwh9+cMf/gCgJ2riX//6\nVxw4cAButxsAkJWVZWbTBAuSWIC2wtzaiPbl5fCLgH58+nV4t+5t/Pj069jqbOts01kONgc2IYYY\nNgc2sX0jjYoCNa/2YlM3agRBSF+s5hftbtsFLRI0bTyLE7QfbrsHL1zwkqnRO6gCEADo7FYXQvm0\nesxcdx5env2a8reT8vscVE+qwcPnPEaKaBQI+0kiHIrvmRCCqZbn6EPUa3DaXDh+pENZUBcI+zH3\nlVl4/vtq7yP1HnBE8mnviiqX5cJMv5I6Fj6zdTVueut6AMDlp87nbFrScAipsnOSSqzVL2au9R1T\nBDR79peHF5o9ezbWrVNTIAmCIFgF6odWFoD6h+KIC8JgI36RIAiCYDTcqV4EwUwSG1sLFy7Enj17\ncOKJJyIQCBz981mzZpnVNKEPRszLfFo960LnUD5c47Z7cPHJl7Jf+2f7P9NZDhKnhDkjBxiRtgyw\nzjqNrJsIQmZgNb9ofMEJps5NqOLXxlCDqWMnVQBCJRRtQWe8E6Foi3IdZmvTAmE/fvXBo5heUqUs\nwqGIc912D2ZOutC0g+EcfYjaBi0SRKi9RVkQqEWCaA6rCwqp94BaXosEj/5DeY/rmmrJ6fmsSkL4\nY5YAKAHl+Xmdlbjvmw+S5raUsoGwHz964wq8f+37KZc9pggoGeIUSa4gCIIwZLHSSU5BSBbxiwRB\nEARVxDcSMpWPP/4Yr732Wlqechd6xp6L188in5jvjU+rx6yXv4eXZv6JXQg0FHlm62os2XInxowY\nw7qAPtU9TWc5cNs9gDY0n5UR6RokupAwVNl9cDfGF443uxmGYBW/iNMvSBWq+LWuqRZX1s3D09Vr\nlDfeqf4Rh3iZIoQqd1TAXeBBuaNCuY7cbJoQiypi7RGQ7DQtIhWH/2VmNCqONjhtLjhGFisLAr3O\nSjwxY5XyfMBt9+CqU35omgjK66zE4zOeIs1nOMYjM+HwRTlT+qpCGY98Wj1u/evNKC0qMyWaDyUd\nmHr8oi9Id2dFEARBSE+G8klOIXMRv0gQBEFQRXwjIVM58cQTEQqFzG6GMABaJHg05QcnsViMtb6h\nTGlRGXKzctkX0OuaXtNZDgryCnSWg9b2Vp3lwqfVs9YHgP09AsxPxyIIg00g7MfstV8eidmqWMUv\nos5JKGNsQnzxzNbVSuUd+cXIQQ4c+cXKbTDKP0oWt92D26bcQXoOOVnqMSCowtaEiIoaGTBGOGxJ\nvYeXnzofC09fZHoEEyqUd1GLBLGvPaT8HgTCfjzoe0C5H9Q11eKnby1AXVOtUnmANpZR2w/wCPKo\nGOHzpvLbF64/n9QG6jiSOHCnWo/T5oLLNs6SkbvJIiBBEARBUEU2uQRBEARBEP4X8Y2ETOTw4cOo\nrq7GpZdeivnz5x/9R0gPqCd8B0LE8bzE4tYQVbV1tuksBzsP7tRZDhLRqjg3RTg2OfqDmhJHsC6c\nafWsBOXEuxWwil9E6X/U8bC0qAzZyCaJX3NycpTLAj3+ESUlWiJ6hup99Gn1uPb1HyjfQy0SxN5o\n0DQRE4eIKhRtQRchpRn1Hvq0evzmw0dJ33Wq8IEiXEj8PsXf8TorsfSby0iRfCgHnaon1eChc1aY\nFkHHbffgvrOXkddp7MNGMbUodajjsdvuwUPTHyVFU/rjBa8q9yGO94DrOZoFRRxNTgcmCIIgCL0x\nK1+9Wb8rCIIgCILAhU+rNyW8sCAYyY9//GOzm5BRcM97tEgQLZG9rKkWvM5KPPmdp4fseMb9jDYH\nNiGGGDYHNqX9PXXZxuksB1eVX41VHz2Bq8qvZqsTAMCcydnrrMS93/gP9hR4kgpsaCJpYjMXq/hF\nlP5H3fQFaAJIr7MS/1q+gPT7brvH1JRoTpsLnoISUhqmdTNryRvvqn2AKqICvoigYhuvHEHFaXOh\ncNgY5TaEoi3ojNFESJT0uBzCBarY36fV4xfv3kJKg0SNxLPqo99jekkVKSoVpeyt7ywifYs5onpR\nrsHrrMTvvr2SNBb8dOMNJH+UOhZTfaFA2I8Fb16nPKZrkSACYb9pqQlNTQcWJ4RjEwRBEDILDmVu\nMr9xrN8dqielhPRA/CJBEARBFZ9Wj1kv8UYlEIR0YMqUKf3+I6SOUfOtOLMagiN0/mDB3UYjntFU\n9zRkIxtT3dPY6gSAwuGFOstBMLJHZzloDDXgYMdBNIYa2Or0OivxxHdWsQp2Ehtl3N9xEYAMTYZy\nmthMTwdmFb+IKj6gjK9eZyWemKE+Rj+zdTWWf7BMOZ0YB1QRp9vuwYpzf0MWgKjitntw1Sk/JLWf\nQ0Q1MnekctnGUANa2jVl/8GRX4zcrFxSWjnKOnFCgELxKbVIEKH2FuWITByCPgpuuwc3e39GEvFQ\nInJxfIt9Wj2u+fNVyv4hdW7BMS+jpqalzouo44gWCcLf1qz8HoSiLegkRCUD6PdgfOF4pXJkEdC1\n115LrUIQBEHIEIxepBjI6Un8LgDDRUiCcCzELxIEQRBISPYcQRCOgVHzLW4RkFU2r6kbA/1hVLj5\n3Gz+YO4HjxzUWQ4K8gp0loPW9lad5cAIoRr1pPVgImsm1iDdx1CjyPR0YFaBKj6glqWM0ZefOh+L\nz7obl5+qnmZtMA66ftnv37DhOtLGP8XHqWuqxU/fWoC6plql8gBYUpFRs8tSfFynzYUTRk0kRWOi\nRMbk8KepgjqAJiajQhXQAEBXjCZg4YDSD6lzC7PnZWaPpQA9Mpojvxh52XnKgkAz70FSIqBzzjkH\nZWVlOOusszBlypSj/z5nzhxMnDjR6DYKgiAIFsJIh+JYTovb7jHdqRGGBuIXCYIgCEbgdVYqhwoX\nBGHowD3X2d66DV3xLmxv3cZar1XmZNSTrX3hOLXdl55NqAnsmzATCifoLAf2YaN0loPSojJkIwel\nRWVsdRqxdmCVCFhGiN8EgRvVE+8CH5QxkiP6BmXTOxD244VPnyONc9TvBPUeaJEgmsO7SEIaio9T\nPakGd561BNWTapTK+7R6XLj+fHJ0vA7iNayuflb5GqjRjDj8AqqfQm1DWvgMRCFYbrZ6akEO8YbT\n5kKJXd2P55hbUPsRJT0jVzovKuR1NsKZGY57sPvgbqVySYmAKisrsWLFCmzZsgXvvfcefvvb36Kq\nqgp33303fvnLX/ZbJhaLYfHixbjkkktwxRVXYNeuXbo/37BhA+bMmYNLLrkEzz///DHL7Nq1C5dd\ndhnmzZuHu+66C7FYDACwatUqXHzxxbj44ovx2GOPKd0AQRAEIXOg5EcVhGQRv0gQBEEQBEHIFC4/\ndT7OnzCTdFq+Pygnx60MNW3BQHX+pOIGS8x1jRAWhaItiCNGCsHfH9z306hDSSLWEQTBDDiiuKhC\njYIDAO1dUXI7qOM5RYTDcUCEsnHv0+rxwPv/v7KIhyONlBYJQovsIfVFSiqvRBtUMSo65GC3Idxx\niNQGihCMGsnIbffg2vLrSFF0qH49NbUfxzOkCogemv4o+R6okg5CNKfNBbfdQ06xqAolTWpSIqBP\nP/0U3/72t4/+9znnnIOPP/4Yp5xyCo4cOdJvmTfeeAMdHR1Yu3Ytbr75Ztx3331H/6yzsxNLly7F\nypUr8Yc//AFr167Fvn37BiyzdOlS3HjjjVizZg3i8TjefPNN7N69G+vXr8dzzz2H559/Hn/961+x\nfft2pZsgCIIgWINjqa/TIbSgMDQQv0gQBEEwAq7TkoIgZDbc853HfMvx6s6X8ZhvOVuddU21uLJu\nHrsQyIi5HmWDrD98Wj1+/MbVrGN5XVMtbnrreksIq/7r4+d1lgNHfjFykEPeyBsMjBAAGZGyjrqZ\nIwhC5jP75Rrlbxl1nNEiQTQfUo+Co0WC2NMWIAuZqGMvNZUVBbfdgzU1Lyg/A6fNBU9BCWnTmxrB\n0GlzoWTUCcr1+LR6Uj/2afWY+dJ5yuWNiA452G1oDDUg0OZHY6hBqTx1jYMayYia1o7Dr6c+g0DY\nj59uvIFUnrJnxtGPqe8AR+RWahvivNmzU4KSJjUpEdCoUaPw3HPPIRqNoq2tDc8++ywKCwuxY8eO\no6fP++Lz+XD22WcDAE4//XT84x//OPpnO3bsQElJCQoLCzFs2DB4vV7U19cPWGbr1q2YMmUKAOBb\n3/oWNm3aBKfTiSeffBI5OTnIyspCV1cXhg8frnQTBEEQhPSh9we578f5y9KBSSowYTAQv0gQBEEw\nAq+zEvd+4z8kHZgw5Ons7MQtt9yCefPm4aKLLsKbb745YCTE559/HhdeeCHmzp2Lv/zlLwCAw4cP\nY8GCBZg3bx6uueYafP7552ZeDitGHHyYPXkOikeOxezJc9jqLHdUYPSw41DuqGCr04hrp26Q9YfX\nWYnffXulJcbyopFFOsvBmc4pOstFdnZSS9gpMVQPEFE3kwRBGHzM8I0oAhDqOOO0ueC0jSOJSLpj\n3crzQuWDAAAgAElEQVRlgZ5rmPVSDWmspKQhMvuACEcqLKrfRo2E6LS5cPxIh3I/CkVb0BHrUI5E\nmC6RgCj7JdS0cFS/mBqJp3pSDZ6uXkNqP3WNxux+QP19jvSMF6+fRRoLqIc2qG3QIkHsjQZJwlLq\nWK6aJjWpGdSyZcuwadMmnH322Tj33HPx3nvv4f7778emTZtw880391umra0NBQUFR/87JycHXV1d\nR//Mbrcf/TObzYa2trYBy8TjcWR9IZu12WwIh8PIy8vDcccdh3g8jvvvvx+nnHIKJk6cmPodECyN\nTFgFIbPoPUEYaLJwLIdDBEDCYCB+kSAIggDwz0V8Wj1+8e4tEglIGPKsX78eo0ePxpo1a/Dkk0/i\n7rvv7jcSYigUwh/+8Ac899xz+P3vf4+HHnoIHR0dePbZZzF58mSsWbMGs2bNwq9//WuzL4kNow4+\nZGfxCiw2Nm/A/o5WbGzewFanUQvoRkRuoZxY7o/W9lad5cKn+XSWg//+Z63OcuC0uZCdlUOOKNCb\ndEgtkAwStWdok+79Uxg8zPCNFk/9paljT35evnLZ7a3b0I1ubG/dplxHY6gBzeGdyhFQ3HYPbpty\nh/I9pKbT4th4p8CRRokaCVGLBNES3au8cV/uqMCEUROVRe3pIrqlPAOfVo/737/HtEg+Pq0eP/rz\nlaatkfi0etz615vJkYD+9fUfKd8Dqi/IEUmIUl6LBLG7TT2yG8ehDS0ShL+tWbkNXmclfnbm7crj\nsZmizqRm+Y2NjXjwwQfh8/mwZcsWPPzwwyguLsYVV1yBb33rW/2WKSgoQCQSOfrfsVgMubm5/f5Z\nJBKB3W4fsEzv0x6RSASjRo0CABw5cgSLFi1CJBLBXXfdlcJlC5mApP4RBHXS9b3pvagtkX2EdEX8\nIkEQBMGIuYiVokcIgpFUV1dj4cKFAIB4PI6cnJx+IyF++OGH+NrXvoZhw4bBbrejpKQE27dv10VT\n/Na3voXNmzebdi1GwD0/2ti8AVo0yCrYmV5SBbdtPKaXVLHVmQ4pFZLBCLHS/sP7dZaLcMchneXg\npDGTdZaDRX+5EYe727HoLzey1WkVjNhAHOrConQfQxLIurfQGzN8I0oKHLfdg2vLryNFnqCMUxzf\nTUd+MfKy8pRTUfq0elz7+g9Im74U8St105sqIuK4frNx2z1YMu1eU7+XHN8Aah0DRb1PBo79nSxC\nXj1qimKnzYUSu3pKOoAuKEwXMZkqTpsL4wto95Ca2tHrrMS6mbXKa211TbW4e8ti5X5EFXVSSEoE\ntH79epx77rlYvHgx3n///aQqPuOMM/D2228DAD744ANMnvy/k78TTzwRu3btwoEDB9DR0YH3338f\nX/va1wYsc8opp2DLli0AgLfffhtnnnkm4vE4fvKTn+ArX/kKlixZgpycnOSvWsgIRCAgCGqk+0JC\n73da3m8hHRG/SBAEQTBiLmJE9AhBsCI2mw0FBQVoa2vDDTfcgBtvvLHfSIjHiqaY+P+JvysMzPSS\nKowd6WIV7LjtHiw68+esY6TZofSTxQix0lT3NGQhG1Pd09jqNIpzT5ihsxxc+dUf6CwHVhLCdHZ3\nstZnFUGdEaT7elhvZN1b6I0ZvhHlcEJdUy1++tYC5Q3TQNiP695Qj5xxvXchFp6+CNd7FyqVB3o2\nbW+dcqfyPXDaXCgaoZ6KijpeeZ2VeHzGU8rtp4qIelK6uUgb/+WOCngKxitH4ukRcExQboNPq8c1\nr19FEsNRI7ic/8fvkr5Z1H7ktLngtntIz5HyHfM6K/HEjFXK/bh6Ug0eOmeFcjowt92DR6t+Q7qG\nckcFSuwTSGmSKb4gtR9So5pRUwuanRoR6HmG42we0jOkCoB2H9ytVC4pEdCjjz6KP/3pTzjjjDPw\nxBNPoLq6Go888sgxy8yYMQPDhg3DpZdeiqVLl+K2227DK6+8grVr1yIvLw+33norfvjDH+LSSy/F\nnDlzMHbs2H7LAMDPf/5zrFixApdccgk6Ozvx3e9+F2+88Qbee+89vPPOO7jiiitwxRVX4O9//7vS\nTRCsQX8fKpkICULqyEKCINAQv0gQBEEA+OciVtngFoTBIBgMYv78+Zg5cya+//3v9xsJMZloir2j\nJgoDMzJvBGt91PQN/WEV4YIR8+1QtAVxxBCKtrDVaRTPfLRaZzlw5BcjNytXORpDfxh1qtqI/pmX\nk8da31BeE7LatVulncLgMNi+0ZLNdymPadSN98ZQA3YdokXO+HPza6QxmRr5QYsEEWpXT0VFHa8C\nYT/pGVJFRAAQjysXZcFt95DS2lGjwFB9143NGxCI7CZF6+T47uVm0fwQqoiJclAqEPZj1Ue/J5Wn\nzj/cdg9uPONm0jPoiquLgKg+r0+rJ0WGA6A8lgM8EbM5hES52bnKZQH6ezB77Wylskm3uqCgAF6v\nF5qmIRgM4oMPPjjm38/OzsaSJUt0/+/EE088+u9VVVWoqqr60jIAMHHiRPznf/6n7v/NmDEDjY2N\nyTZfsDgJxaqVJmpC5hII+7+0Hybzd8wkndsmCFZA/CJBEASBm0DYjwVvXkc6JSUImcC+fftw9dVX\nY/HixZg6dSqA/42EeNZZZ+Htt9/G17/+dZx22ml45JFHcOTIEXR0dGDHjh2YPHkyzjjjDLz11ls4\n7bTT8Pbbb8Pr9Zp8RbxwzzW1SBD+8G5okSBrvVlQD93fH1bavG8MNbC205FfjGHZw1hFMADQEt2r\nsxwMzxmhsxyEoi3oinexi6C6YvwRdrjXLqmnr49V71DFStee7muLwuBhhm+0u22Xsm8QCPvxeONv\netKDKpSvnlSDG06/WVlEBADRzqhyWaAn8sPYfCcp8gOVdZ+8qBzNSIsE0RzeSXqGd//tLpQ7KpTK\na5EgtMgekn/ZGGpAoM2v7FclUpKppgGiRoGhHvK5/NT5OqsK1ceniJEDYT/mvjILz39fbY2Deg85\nyt/s/Rnp/iUORxSNLFIa07RIEP5D/HO1ZKGmsqprqsX8usuwuvpZpetPCMFUxyKg5xru/cZ/kCKj\nBSMB0nhKmSO47R6su2RdyuWAJCMBrVy5EhdddBF+8pOfICcnB48//jhWrVql9IOCoIKVFnuE/4vR\nJ/UG8yRgMiEUrRRe2IrIfRXMRvwiQRAEAQB7OGItEjy62C4IQ5nf/va3OHToEH79618fjXB44403\n/p9IiA6HA1dccQXmzZuHK6+8EjfddBOGDx+Oyy67DJ9++ikuu+wyrF27Ftdff73Zl8SGEXPN7a3b\n0BXvwvbWbWx1ljsqUJBnZ984M2JNiHt+WddUiyvr5rFGQfI6K3HdaTeQw8j3Zf/h/TrLwZHuwzrL\nwcbmv+gsF7nZ/BF2uCP6UVORHKteIb2RtUWhN2b4RuML1COgALT0NXVNtXj0gwdJUXj2RoOkeZUW\nCeLzw62kdFiUVFSP+ZZjyZY78ZhvuVJ5gCbI1iJB7Dq0k3T9jvxiUh+iisE4UrJRosBQ09oBdAGQ\nT6vHrJe+R0ppdvHJlyr7NlokiOZD6msc1Cg2gbAfN2y4jhQF59rXf2Cq37S9dRu6oD5X40iBS03r\nN2HUROV5IYd/7dPq8Yt3bzHtOXKIycYXjlcql1QkoL179+L888/H6NGjAQDvvvsu/H4/Fi5Uz6kp\nCMnQ+8SDCICsidFRnAY7SlQygjQRrRmHRAUT0gHxiwRBEIREOGHKiai+OG0uuGzjSAssgpAJ3HHH\nHbjjjjv+z//vGwkRAObOnYu5c+fq/t/IkSPx6KOPGtY+MzFCZLDz4E6d5WBV40qEOw9hVeNK3D5t\nMVu93FExAmE/5tVejDU1L7DVWz2pBk9XryFFL+jLM1tXY/kHyzChcAJ5M6g3Zzqn4F3tbZzpnMJW\n5zfc38L7offwDfe32Oo0ImKRERF2EhtVnP3JCN/Ap9Vj9ss1ypERhMFB0sQKvTHDN1pxrnoEFADI\nIgQEbG1vRRxxtLa3KpXnSGVFxW334N9Ov0H5Hp405iSdTRWvsxL3nf2g8j1w2lw4bkSR8venJx1a\nCyl6SUIM5nV6lSOo7CO0gToO905rR7kHZJ+S8C4+s3U1lmy5E2NGjFHyQZ02F5wmrnH0FiGpPAOq\nkAygR/QsLSpDXlYeSovKlMpT/VOWKDYza0mpDan+NTWlmNPmwujhY5T7QSKlGuf6YbIkFQmoqakJ\nb775Jh5++GG88847WL58OXbs2GF024Qhjpx4yAyMFsSYIbhJ5reS+TvSt1NHBFZCOiB+kSAIgsCR\nl7w/Rubms9YnCEJmQT0N2x/hjkM6y8GEwgk6y0FCsGOFeTSnAAgAppdUoWj48ZheUvXlfzkFdhz4\nVGfTlXNPmKGzHPi0evzwv+eznwjmfI8S5GbxRixy2lzwFJSI6DjNoUagEAQqVH8jHlf/7eklVXDb\nxit/9wJhP+589xek9lMj+dQ11eKnby1Qjmb02f7PdDZVqJEvGkMN2BvV0BhqUCrvdVbipZl/Is2X\nHfnFyMvKUxZPOG0uHDdSXchE9bsd+cXIRrZy+zmiS1KfQ2lRGfKy1QUoAC06pNvuwbXl1ynvBTlt\nLhw/Uj0ilRYJovVwiBRVzOusxJPfeVr5GXidlVg/u840USPHfhx1L4+awjcQ9uMXf/2Z8ru8sXkD\nWtr3YmPzBqXy1JRqFJISAe3cuROrV6/GjBkz8KMf/QgvvPACWlp48zAL1saICYls9mcORj5Dq+bH\nFpGbOlZ83kJmIX6RIAiCEAj7sfS9e1h9OY4wzYIgCKmywHsjbLkFWOC90eymfCmU1CL94bZ7WKO2\nJOCe5zeGGtB6ZJ/yRtxA5OfZdJYDI0RlRqQt2966DZ3xTtY0eI2hBvjbdrM/p07ixkdf3HYPOcKH\nYDxGrYvLOqRgBdx2D1698L9JEViawztJ4zF1rCx3VMBd4FFOgcMRCejeb/wHadM5DoKSC7QUQkDP\nNdw65U7la2gMNSAY2cP+XU6WULQF3ehGKKq2ZlzuqMDxIxzk9LqU5+B1VuKBsx9WfgYbmzdAiwaV\nxRNUMV1PRKq9yiIejqhiHGtHlGdo1HwnFaii+3BHmFR+Y/MG+Nt2K/fDopFFyEIWikYWKbeBKgDa\nfXC3UrmkREBFRUXIysrCxIkT8fHHH2Ps2LHo6OhQ+kFh8DHauTdSzCATUusxmJNJKwtpROSmjhWf\nt5BZiF8kCIIgAPTTSH0JhP1Y8KZ6vnpBEDIfI8SCjaEGRLraTNsgyTSMiFi0sfkvOsuFyzZOZzlo\n62zTWQ4OHjmosxyUFpUhBzmkk+19qZ5Ug9XVz7JGgtIiQeyNBkkn0PtiRESxoY5R99IIAZBV11GF\nwYfqb+Tl0KKYUca96kk1uPOsJaTxmGOstA8bpVyWCjUSkCO/GHnZ6lF4OMabuqZa3L1lsbIAJJFO\nTjWtHDV1aLmjAs58l7KIpzHUgNDhFpKPTvVLfVo9bv3rzcr9aHpJFYpGqEezdOQXIxe5yv0QoInZ\nAmE/HvQ9QP5uUtaOOOYWlPGU+i77tHrMfOk85T5EFZIBPf2weORY5X7I8U2hEAj7UbNG7beTEgGd\nfPLJuPvuu3HWWWdh1apVePzxx9HZybvgKRjDYDj3ImYQEgz2ZNLqfc+q7TYTK4WAFzIX8YsEQRAE\nAMjN5k3PoUWC2N22i3WjTxCEzMKIzXuf5tNZDqaXVKEwbzR7+qqsLNbqEAj7cfH6Wezzy/2HP2et\nr9xxms5yYUQ6sNLjynSWAyOiCwFAbk4ua30AyKf1++J1VmLdzFrTUkAIX46Ra6HcdVp9HVUYXCj+\nBjWFj0+rx+yXa5Q3jX1aPe6vv4ccfaK9K6pclircduQXY1j2MGXxg9dZicsmX6H8/XDaXCge6VSO\nQOK2e3Cz92ek8aZ6Ug0eOmeF8sZ7ImqHavQOn1aPH/5ZPXWoFgniwJH9ps/vqYeXYrGYctnGUANa\nD6tHs3TaXHCP8tCiShECWrntHtx39jLyd7O9q51YXn0s8mn1mPXy95T7MfVdDkVb0BHrUI6Idfmp\n87Hw9EW4/NT5SuWBL97Fw+rvok+rx/3v074p3CmIkyUpEdC///u/47zzzsNJJ52EBQsWoKWlBQ8+\n+KDRbUs7rLjpPFjOvUweBECtv1HfK+l7giAMNuIXCYIgCEaEVHbaXHAQ8tULgjA0iHaqLwL3hxEC\ni43NG3Cw8wDpxGZ/UBfQ+2KE+JLjtGpfqJtYA/HZ/k90loN3A+/obLridVbivm8+yCquMerQErdf\nMNTTj1pFWGOUuGioPndhcKlrqsVNb12vHMHFaXNhbL6LNP51xbqUywI9PkLgkF/ZR6AKt73OSrw8\n6zXl79RjvuVY+dHjeMy3XKm8FgmiJaqRNs2vff0HpI3vnigs9yvfQ0d+MXIJ0Yy2t25DZ0w9dSg1\nlRRXhMFop7r/7LS5cHy+Q/ldrJ5Ug4fPeYx0DSNz85XLAkA8TosEdMMGWrRmarpYLRJEMLKHNF+h\n3AOfVo9rXr+KIMqkHTjxafV4/B+/IotoqOkNqfeQImx12z2onaf2PU1KBJSTk4MzzzwTAHDuuefi\njjvuwOTJk5V+0KpYOVymOPfCYJKqAMiq75UwuCT6SDrkMBUE8YsEQRAEgH+e1ZOvvsX0k4KCIKQv\nWiQILUpbBO7L9JJ/0VkOjBCtUBfQ+8Npc2F8wQmsIovpJVVwjChmjYJkRLQmAHDbx+ssB0Ujj9dZ\nDozoo9T0FgPR2c2fKpRbWDSU04EZJdQyYo1qqEft2X1wt9lNGPJQxILljgp4CsaToqNRov9tb92G\nbnQrizeAnugVXehSjl4B0COwUPyTqe5pyEEOprqnKZUPRVvQGe9Uvn6nzQV73ijSNWxs3gB/226S\nsDonuS3wfqH6s4GwH0vfu8fU721jqAGBiLr/3BhqQDCyR7k8Vcjltntw8cmXkr6F2dnqfUCLBPHP\nA02kuZcjvxg5WTmkqF4U4TpVUEg9rOZ1enU29fKVuMX7C7pwn/BN4biHnoIS0ng4vlBtvqbe+4cY\nVne8h+LETjAejig+yb5X0oeHLn3FYlYdhwVBEARByCyMOOkvkYAEQTgWTpsLzvxxrOPEqzte0VkO\nPtv/mc6mK267B4un/pJ1jqlFgjjYcYBVqPWPfR/qLBdfPf40neUg2hnRWQ5a21t1lgOnzYXCYaPZ\nv7l5ObypQgHg0BHeNGgAfWNaGByG6vpXIOzH7LWzzW7GkOfWdxaR5js5WeopF7VIEP5Du5W/pdNL\nqnD8cJogt9xRgbH5TpKQiZI+mpqy1GlzwWlT9xmpwoWNzRsQOtzCHhUyFbzOStx3trp4wpFfjFzk\nKt8DgBbBs66pFvPrLlOOqAX09OMJoyYq9+NyRwWOH16sXJ4q5Hpm62os2XInntm6Wqm80+bCuAK3\n8nsQiragG90kMeDmwCZ0x7uxObBJqbxPq8cv3r2FJFyn+LtaJIg9bQHl8ZjaB+uaanH3lsWk9wAA\nsigqICJuuwcvXPCSKX6diIBSwKqOt0RbEYyAq18lKwBK1z6cSpvSsf1WoD+xWDrdy3RqiyAIgiAI\ng4MRJ8m1SBB729RDrguCMDTII2wo9YfLNk5nOdj++TadTVc4UlX0R3esm7W+E0ZN0Fkudhz4VGc5\nKM4fq7PpysbmDWhp38u6OclxWr0v1BP8A0HZmLYyRkWXNmpdaKiuN7ntHqy7ZJ3ZzRjyUA7E96Sv\nUd803t66DV3oUo7ko0WCOHDkc9K8SosE8fnhVuU63HYPbptyB+keUlKW9kSZ3Ut6Bt1x9WhKpUVl\nyEYOSovKlMpz4NPqcdtfF9H8PIJuQIsEEWhTF7NxiKDddg9+8+0nlfthY6gBrUdChEhCH+psqkwv\nqULR8ONJgj5KOrFyRwVK7BNIYsDrvQsx9+R5uN67UKm811mJe7/xH8pitkDYj1kv1Sj7FHVNryGG\nGOqaXlMqT+2D1ZNq8HT1GlJKOafNheL8scpiKJ9Wj5kvnUcaS6jrfOu3r1cqJyKgIYDVoxhZmUye\nrHH0q2QHTSP7MOUZpSJOSmchkxXoKwBKl3uZTm0RBEEQBGFw4T5FH4q2oBPqIdcFQRgadMV5x54J\nhRN0loPS48p0lgOjosGMzXexRoPhSEHSl5boXp3l4sTRJ+ssB22dbTrLwX99/LzOcjC9pAqegvGs\naduop9X7o9xRAZdtHGnzqS+SZp0Xo9aFrLTeZEQbVdNeCHyQDybE1Yv2CEiylQUkVBFRglgsplyW\nKjTmiP7ILUpOhVC0BTFiBBUqTpsLo4ePUb6H21u3oSuu3o+o5aeXVOG44UUkX4WaArTcUYHjRziU\n/ZAF3htROKwQC7w3KpXvESHtUxYhUcV4brsHv52hLmABeiLZPP/ps8qRbKiRgBpDDWgO71S+h1eV\nXw173ihcVX61UvlA2E+OLEf1g7VIEKFoC+m7FovTvgcXrj9f+RnWNdVi1tpZSmVFBDREkInd4GOl\nyZoqVAFQKgOfym992b2nPqNUxEkixuMjne5lOrVFEARBEITBxYhT9GaGKBYEIf3RIsGj/3Cxec8m\nneVg9uQ5GJE9ErMnz2Grc//h/TrLBXdkpaKRRTqbzoQ7DuksB0ZElkrMtznn3W67B/d+8wHWOkuL\nypCLXNaoB1okiNb2fexRArkjC1kFI9ZqjVoXMqreoSxWElKDsmHptLlwQuEEUgqeGGLKApLpJVVw\njKClAwOA7Gz17VOnzQVPQQlJxDOMkGKSmsbo8lPn4+pTrsXlp85XbgOV0qIy5BCiCTWGGrA3qil/\n86aXVGHsSJdyP6IKjhtDDfj8SCv5m93ZrX6AoDHUgNDhFuU2aJEg2jvblf0YR34xcqCelo4qxguE\n/bjmz1eRvnE96ZHjymmSvc5K/PGCV5UjAQFAnKDKbAw1INx5iCTEuuqUHyr7MxxRuJ02F8bbTzBN\nEEh9huWOCkwcPVGprIiAhgBGOOG96xQnv39EHHBsUh34Uu1nyUxCOZ5RKmWN7gt9rzWT3810eq/S\nqS2CIAiCIAwORpyiL3dUwJ43ivW0vyAImYXXWYkfl19PWgTuy9Rx03SWgxW+R3A41o4VvkfY6rze\nuxBXn3Ktcij9gTjc3c5anyO/GLlZucqbFYNJueM0neXAiBRjRuDT6nHN61expoJz2lw4Pt/BGlnK\naXNhXIGbtc66plpcWTdP+US6laFuRA02RgiArCKC2n1wN2t9Qur87tsrlf0Nt92D57//knK/oEb/\n0yJBHOjYTxJQUtPHuO0ezCu9gvRudBDEG1Tqmmrx1EdPKH8rqOKNBFlZ6odkqFFsAMA+zK5c1m33\nYM5Jlyj3gXJHBYpHjiWvD1CiiCaEK6oCFgCIQT2CClXMRo36ubF5A/xtu0npY2dPnoPCYaNJhyM4\n/cBUofaBuqZa/PStBSS/M9oZVS4L9LyLi6f+UvldLC0qQ252HknoT5m/u+0erJmzRqmsiIAyHCOc\n+951GlV/pmCVSaVZpCIASrWfJTsJzZRn1PcemXkSJ5PeYUEQBEEQhMFiVeNKHOo8iFWNK81uiiAM\nSawwj3lm62os/2AZa7qhpxqf0FkO7MNG6SwHPq0e/7ltFatoozHUAH/bbvaoKJQNq/4wIm0XAOw8\nuFNnOWjvatdZDgryCnSWA6fNhRLCieD+aAw1QIsG2ftTnJBSpz+qJ9Xg6eo1qJ5Uw1uxBeDYiOqL\nlSLhGBm1iJNA2I/Za2ez1imkzpLNd5H6NaVfTC+pQtHw45UjqISiLeiM0dIsa5EgtDb16IvUFJFa\nJAgtuoc9ElyyOPKLkQt1UTNHetRQtAVd8S7l59gYasC+wyHSdzncEVYu+5hvOZZ/sAyP+ZYrlW8M\nNaClfS+p/VokiEDYr9yPrvcuxMLTFymL8KkRVDg40n1YuWxpURlysmhRHhtDDTjUcVD5OXJEwqFw\n0piTdDZVWttbEUecJOpsDu8kjYVU8b/T5sKovFGmibECYT/+7U//plRWREAZjhHOfe86uetPZuJk\nhUmVwEPiWbvtHtx39rKU+1kyfz9T+lN/76IZkaistPjBxVC6VkEQBEEQejBiIaYn17pdOdf6QIiv\nIgjJYYV5jBEpsUpGTdBZDiYUTtBZDkLRFnTEO0gbeoMGs2jj1R0v6SwXRkTt+erxp+ksB0aIytx2\nDy77Ci1Cw2CgRYLYG+VNAQhgyEYdNEIAZbVI8FZop9vuwbpL1pndjCHPrkP/JI09FJ+KKw0ShVC0\nBV1QF6BML6lC8cixykImp80Fe26haZvOTpsLhcPHKP++ESkyU8WRX4y87DxlIdPG5g3Y2x5UjgIz\ne/IcOEYUs6bHVSFOUBMHwn683PSi8vuceP6q/YAaFWxj8wZoUfVnCAA5RBlFuaMC7gIPyfeipHSj\nQo3qRU0t+ML2tYgjjhe2r1Uqn4DyHqz75EV8fqQV6z55UbkOykEWt92DX33vV0plRQQ0BDDCue9d\np1ECo/4YigKDoUrfiFO3vrNI8lZ/CYn3JnFdZrXBSosfVDKtDwmCIAiCYB4bmzcg3BkmLVD1RXwV\nQUgeK8xjxowYo7Mc5OfZdJYDIyLMcKQj6At1c2ggYnH1tAf9MWbEcTrLhRHPPhjZo7PpCjVCQ384\n8ouRjWzW/uR1VuJnZ97OmgLQSr6BEW00IgJSun87emPEPTWizvGF49nrFFKjM64eSYd6YIKaWrPc\nUYExw4pIm+5UH0GLBHHwyAFlIdXG5g3Yd6RFeW7IIZ6g/L7T5oKzQD0NE0D3/bzOSpw9brryN7S0\nqAzZyCYJmXJzcpXLckBNp9UYasDOQ/9UFuTVNb2ms6lCFZNNL6nCccOLSGK8cXZ6WlZqVMfOmLoI\nyJFfjLws9bEsFG1BDDHlPkRNLXjf9GU41/Md3Dd9mVJ5oOc5umzqz5EaDcmn1WPWS99TFgIFwn5c\n88o1SmVFBCSkHceaOA01gcFQxsiIU/39hpXpO6Ey+7qsfj9Twex7LQiCIAiCObjtHqypeYHVB60P\n6FYAACAASURBVLj81PlYfNbdyiek+kN8FUFIHiu8J6VFZchCFuup6mhnRGfTFSMEUAAQj/GG7eFI\nf9GXSaNP0lkujHj2RqTu+se+D3WWA+rJ9P7Y3roNMcRYn31dUy2WbLmTNX2V2+7Bzd6fpf2YZyWx\nklUw4p4a9Zx2H9zNWp8w+FAiV3idlfj9d1crizc2Nm/A/o5W0uEKp82F4pFO5U1jp80FW16Bcnlq\n9EdqeWr0Di0SRCjaQoomRY2kc/3r/4o3/X/G9a//q1L5zYFNiCGGzYFNSuU3Nm9AMLJHuR9SU7Id\nrYMgqKOKyajRQZ02Fxy2YuX3qDHUgP1HPidFFeuKdSmXTbRhT8Sv3AYtEkSgbbfyu+S0uXB8vkP5\nHlL7UPWkGjx0zgplEXZdUy02+F8n+8LdcfXnWO6ogKdgPC2SJm+26KQREZAJDLXJC/V6+xM4CEOD\n/iJOcb8/lP6UDu/yQJPtTH9P0uHeJ8j0ey1kLun0HgmCIFgRbh8gEPbj8cZfp5W/KwhDCUqI7sEi\ncQKTMyVWcf5YnU1XjIguRE31MVi4bON0lgsjnv30kn/RWQ6KRh6vsxwse+9+neWgtKgMuVm8qU+o\nGy/94dPqcc3rV6X9mCdCZmPWQLnvqRF1BsJ+1Kzhj9gkpI5P8ymX7Yqri4ACYT+WvneP8jswvaQK\nxw8vVo7+AXwhYmnfq7zxTk0fM9U9DdnIxlT3NFPKU6N3OG0ujMgZSY6gkp2Vo1x26rhpOpsqsyfP\nwXHDi5RFSKVFZchBDskvyMlRv36g5zmMtamL2YpGFunsYJdvDDUgGNlDEvHECXl6G0MNCLSpC3g4\n2rA5sAld8S5lMRr1HjptLowapp6aMBD241cfPEryaSj3D+i5B/623aTnmJutHtXL66zEEzNWKQtb\n3XYPnvj+E0plRQQ0yFBDIVoN6mkAn1Yvpz6Eo6TT+5MuJ5KG4qJIutx7QbA66TKeCoIgCD2s++RF\naNEgKc+4IAjqzHpZPUT3YFE9qQYXn3wZazqbD0Mf6CwH1FO/gh4jIuEAQLnjNJ3lILFhTNk47suH\nLX/XWQ4WTfm5znLgtLkwNp+W+qQvoWgLuuK8QjWnzYXjRhSxttMorLLWZVSKLSPm7Fa5p0J64HV6\nlcppkSACYT8pCkxr+z7lslokiP1HWkm/DwBxQg6f670LsfD0Rbjeu1C5juxsmgAkm7D9W+6owJjh\nxylHvljVuBIHOw9gVeNK5TZsbN6Ave1B5Ug6VHGuFgki2hUh9aPsbPVn4HVW4udn3kFKCapFgtgb\n0ZSvodxRgbEjXcr9gBpJiJqWr9xRAZdtHCmCC1WAQr0HB48c1NlUod7DdZ+8iNYj+5TXqbRIEDsP\nNin3Qer944D6TaMKWyUdmDDoJNtZKQKFQNiPW99ZhPvOXiYTFKFfzNy8TifxTe829L4nmby5ny73\nHsjs+ywIgiAIX4Z8B/lInNJUPa0pCAKNEvsJab8p/phvOZ7/dA0e8y1nq7OtI6yzHDSGPtRZDowQ\nFpU7KmDPG0UL7d6Hy0+dj7knz2NN7WhEJBzAmOhKiQ1j1Y3j/nDbx+ssBz2imixWcQ01akR/lDsq\nMGZYEWsf5ThVL/wvVjuoxt1OI67fbfegdh5fCjxBDWe++sZ/KNqCznin8hi77pMX0dK+V3nTeXNg\nE7rRrRw5g4NA2I8/N7+m/G6Eoi3oiqnfQ2q0w43NG/D5EfWUatWTztNZFagpzQCakMvrrMTSby4j\niXCyCDmA6ppqcfeWxeQ0SFlZ6m2gCuqokYCcNheKRhyvPEfTIkG0tu9Tbr8jvxjDsoeRIjJS78Ht\n0xZj7snzcPu0xUrlnTYXRubkK9/Dk8acpLOpsr11G7rQpZwulyOymyO/GHlZ6kIogC4GC3ccIpVX\nRURAg4zb7sGamhfSZvP6y+jrpATC/pSd+1SvNVFvQmSRzEfWKhMtgUbv9ycdJtlGv8c+rT6l6+t9\nT9Lh/lAYqN2J60oXrH6fhaGNlfwRQRDSE/kO8pJYpDZzsVoQhjLPf/+lIekbGSGw2HVop85yQF1A\n749VjSsR7jxEOqXel2e2rsbzn67BM1tXs9XZdOAzneUisRjNuShd7qhAfq6NVbTy1eNP01k+aIv5\n/RGLxVjr29i8Afs71DdhBeMx6pCgEXsIRgl2jLj+8YV83yRBjX2EjXOzI1+MGTFGZ83i0BH172v1\npBosPH0Ra/THVJheUoXCvNHKG+8cKWypz3F76zZ0o1tZfODT6nHLWzcqRwp12lwoHDZaWXxR7qjA\n8SMcJJ/KaXOhOH+saQcdqBEiG0MN0KJBknC5O9atXNbrrMR1p91AEoIlhCeqAhSfVo+Xm15U7ocr\nfI/gUOdBrPA9olS+3FEBT8F45X5IncNpkSAOdRwgieydNhfcdo/ye7C9dRu64upCJmo6Mrfdg4Vn\nqUWVExGQMCB9Jwa9N9+NisLR9zeT+Q3ZfEh/uCeXCZtO0WA4CYT98Gn1mP1yDS5eP+uY96/3n/W+\nJ4l/tyKJd7o/xybdriuT+6GQ+Ui/FQSBylD/DnLPP7Z/vk1nBUEYXKwwlhmxqRUI79ZZDoyIXPP8\n9ud0lgMjogtxnFofLFqie3WWg6V/uwfRrgiW/u0etjqDkT06y8HT/3hKZzkIRVvQjW7W6ELTS6ow\ndqSLdPq5L478YmQhm3QaWtBjhe8HYKxgScg8uuKdyhuepUVlyM3OU07DRI0qV1pUhmxkK/8+B42h\nBgQi6pu+dU21WP7BMnIUGFU2Nm/Awc4DyiLUz/Z/prMqUH0qqvhgc2ATutClfEhnY/MGhA63KN/D\nxlAD9h0OkQQwWiSIlqh6lEKnzQXHSHUREfVdpqayogrBntm6Gss/WEYS99c1vaazKsRj6sJ1jvS/\nI3JGKpdlQT2Y1VEIQcGwec8mnU2V6kk1WF39rLKos66pFte+eq1SWREBDTJWEqz0nRj0FRgMxm8a\nVUYYPIzs85n4zBP3y2lzYd3MWrxwwcCnUfu7t33/bl8hnxVw2z247+xluPWdRQO2OZ3G0Uzsh4Ig\nCIKQLEP1O2iEj+uyjdNZLtLFZxIEgY4R0XCG5QzTWQ5a2/fpLAfnnjBDZ9OV/9n7vs5y0NF9RGe5\nOHH0yTrLwW1fvwPDsobjtq/fwVanEd/HK7/6A53loNxRgbH5TtYoSAAwaridtb66ptcQR4y0GSUY\nTyDsx+yXa9j9OKMO9QpCb5w2F8YMG6MsHHDkFyMXuaSN/xhiyhv/CTrjncplqdGQAFoqKaoI5/JT\n5+PqU65VTm/KIVyf6p6GbGQrp8ve2PwXnU2V2ZPnwDGiGLMnz1Eqz5LOjCNqIaEKaqpT6jMAaAIY\n6tyJQ1BITY3ntLlQOFw9olRpURlys3JJ13C4u125LBWnzQWXzU2KZqVFgghE/Mr9eOq4aTqrAiWq\nW/WkGqybu06prIiABhmzBCuqznjfdib+20jnXuXeDNXNBytgFZFWukxYe98vr7PymAKgL7u3vf/c\nSgJEoCfU4kDXZpU+JQiCIAhC5mKEP3L7tMU41/Md5Vzv/WE1H1AQzMQK7wnHhlJfSkZN0FkOvuE+\nW2c5sEqEnbmll+osB6VFp+osF0akA1v3yYvoiB/Buk9eZKvz3cDbOsvBqzte0VkOqKftByLcEWat\nj3oqfzAxYlxWTacx2DSGGrDr0E5SBIjBQHzNzMUxolg5Chk1AgoAZGWrC2Cml1ThuOFFpChq1Ogd\nl586H4vPultZRFPuqEBBrl1ZWEoV4dQ11WLlR48rRyLiEK6Hoi2IIaYcYY8jAsrw3OHKZdMhLZ3T\n5sI4O01AQUmnRX0GoWgLutBF6AMVcIwoVn6PQtEWxBEnRXlMiBFVRYkc42l2lroUhJrKiiMqGHWu\nsr11G7pi6tHtOMYzqp80tmCsUjkRAZmAGQKgebUXsznj6e7cp2u7hjKqfb73szTyuaZbnz6W8Cdh\nE+39sntr5fRpx2qrla5DEARBEITMhHtT5pmtq/Gm/8+kUNN9saIPKAhmkU5zwoEwIr3FttatOsuB\nEekNjYiwU1pUhixksd5PI8QlRkRWAoDpJf+isxwYseF1muN0nU1X6ppeQ4w5ws7G5g3QokHSxk9f\nyh0VcOa72CMWcWPEWp1Pq8esl75nCSEQNQXKYGGUr7n7IF+KSkGNgx0HlEWN1HRgAEjRSxpDDfj8\nyOek+Vr1pPOQhSzl6B2BsB/PfvwH5TFsVeNKhLsOYVXjSqXyVBz5xcgljEGO/GLkZdHGMGoUGaqA\nnCp+KC0qQw7UI7BwiCcAoCvWpVyWmk6LKp6g3oPGUANCh1uUn6Ejvxg5yCH148TzV+0HpUVlyCX0\nI45IOhSmuqchBznKEb1WNa7E50daSWMh9R76NJ/OpgpVo+HT6lG1Wk3UKiIg4Uvp2zHNWEhO9uUw\nQ8yR7ouEVqHvfez9LI1+rsn26f7aOFj0Ff6ovIOZvvkj76IgCIIgCINFXVMtrqybp3wysj+oi0OC\nINAwYp2De6OZK71FbyYUTtJZDjhCpvfFiHRgmwObEEccmwOb2OosPa5MZzkIhHfrLBdcm0tGY4RY\nyYjnZESEHeoGYn9okSA+P9zKHrGIG6PWn2PxGGt9gDHrUV5nJZ78ztPwOivZ6+aG+xkFwn7MXjub\ntU4hdeJxdRWO0+aC2+ahRR+Jq0cf6YmYGCdFTqT6CFokiObwLuWxlppCiEU4TkjD5LS54LbT+sAC\n742w5RRggfdGpfJUYXK5owKegvEk0Wwc6t8c/xd+n5/g/zWGGhBo85OETJR+5MgvRm6Wemq/g0cO\n6myqlDsqMGHUROIzpKVkS4whqmOJ0+aCw1ZMepc6YuophamRaJ02F8YML1Juf/Wk85CTlas8Fiba\n4CxwKbeBw8dv74oql/U6K/Fo9aNKZUUElGYYMWlw2z1YU/OCkkM+kPhisAVAyQpABluglG4RZIwm\nletMRbjV333s/SxVnmuqi63JCIB6t9GoZ9+7/r7t630PMl3QkypD7V0UBEEQBMFcqifV4KFzVpDy\neveFGnK+P7ijwgpCJmOEAOjC9eezCoGml1RhZHY+Kb1FX0LRvTrLwVONT+gsB42hD3WWg9mT5+C4\n4UWYPXkOW53UzYr++O7EGp3l4k9Nr+gsBz2ilRxW0crz25/TWQ6MiCzlyC/GsOxh7JFbcrJ5l++d\nNheOG6G+GTOYGLH2lZWlnmKoP4zytQJhPx70PTAkfTi33YN1l6wzuxlDHqpgjvKqbQ5sQgwx5U1z\nDp9hqnsaspClHL3C66zEEzNWKQv5qMIBqnCcmoYJAHKz8pTLAj0Clkh3m7KAhSOFD0ELR+7HC7w3\nYnjWCGURVAKKiIWakg2gjSXU1LVuuwfzy65W9ieokZAA+ljSGGpAMLJH+T3Y2LwBwcge1qiSqf7+\nviPq6cy8zkrcPuUukihaiwTRElFP2Us9OKFFgghG9ij/vk+rx4LXFiiVFRFQGmHkJjZl0mR2+Pgv\nE4CYKVAaSuH1U+mfyf7dxN8DevpZX3rf11QFQBeuP5/1ZHZ/IhzuZ5+4Hz6t3nTxXbqQ7Hho9Ls4\nFBddBEEQBEEYmEDYj8cbfyM+giBkENzvs9dZid99eyVrFIcVvkfQHotihe8Rtjrtwwp1loODRw7o\nLAdv7vpvneVAiwRxqOMQa0SUdwNv6ywHL336gs5ykRCBcItBssArsmjvatdZDs4Ye6bOcuB1VuL/\nK72K9Z132lwosU9gfUaNoQZo0SB7WlMrpNhy2lwYPXwMe5+nnO4eCKPWuaziu44vHG92E4Y83egm\nRcEJhP2mRRwrd5ymsypsb92GOOLKm/+BsB+LN/1C+Z0zQlScCtToHwCw73CI1AbqxjtHKqk9EfUo\nOrMnz0FBrl1ZbL7ukxdxJH4Y6z55Uak8YH7Uxxe2r0UMMbywfa1Seeq7/MzW1Viy5U7llOscQrKn\nGn+POOJ4qvH3SuUd+cXIhXo0Jeo1cNwDCnVNtViy5U7yXm+MEJWLGlWsJyXbOGX/02lzwZHvUCor\nIqA0It0EJb0FGqmUMYJjCYDMjv6R6vMaqK3pPglLpX8m+3f7/j2uZ5lYbOU+MdP3erjf1cT98Dor\n02osGGxUoy0ZKQAye5wRBEEQBCHzKRxeqLMcUKLCCsJQg9vnNyKKA8emVl+0yB6d5aBw+Gid5cBj\nP0FnOdjeug1d8U7W9GpGCGvOGvcNneXi3864QWc54Igc0JedB5t0lgMjNlcf8y3Hyo8ex2O+5Wx1\nuu0e/NvpN7B+xx35xchBDmvEIiMinxnBxuYNaGnfy3oaXosEj/6T7hgZtUjITFQjV4SiLeiMdyp/\nC6a6pyEbOcq/v//wfp1Vgbrx3RhqwM5D/1QWkPSkvslSToFjRATFVFjhewQHjuxnFa6nCkc6sFHD\nCpVTSa375EW0dYWVRTwcvspJY07S2VRx5BcjG9nKPoMRc5dU4BgLqNz29TswMicft339DuU6sglR\nIV/d8YrOpgo1pVtpURlysnhT26ZKKNqCrjjv/CRVRubmK5fVIkHsjahF7RURUJqRTouzqYqSjN4o\n76/edBNOfRkD3SOriAxSuc/J/l2VyDq971N/9ywQ9qN6Ug1r3xisZ2NWuq906Xu934V0eb/TpR2C\nIAiCIKjD7esYIa6hLlIOhPgw/KSL7yzwwu3zGzGPKC0qQxayWBdRnbZxOstBR3eHznJw0Vfm6iwH\nOw/u1FkOjNhsiHZGdJaTPNBSdQwGXucUnU1X/OHdOstBXVMtbnrretZI16FoC7rRzboR4nVW4o8X\nvMoaBckIppdU4bjhRawpFb3OSjw+4yn2aw+E/Tj/j99l9zm6Yp2s9RklLNri38Jan6CGaprickcF\nJoyaqCyeAGjpxKjCB+ALwWSWumCyelINFp91t3L66J4oTHHlaEwXl16is6nS42uq+5we+3idVYEq\ngpleUoUROSOVx/x1n7yIgx0HSJF4KHAcEip3VMBtG6/8LlLTylH94tKiMmQjW7kfUseCjc1/0VkV\nGkMNaO+OKgsCqVEhOURIlLR4oWgLuk0W4FCjKVFx2z14aPqjpqzNiQhIOCapij5SSduVCscSyVhp\nUTtxjwb6/1a6FsCYzZQv+63efaHvv/f9c04BkBVEWoDaM0mn6+sv7VpvzGqjpBkTBEE4NjKeCemM\nUb6OFU58C/ykk+8s8GKEz89dZ13Ta4gjrrwp1x9Hug/rLAeJ1DicKXL+6+PndZaDCYUTdJYDI+7n\nuSfM0FlOKKHx+6PcUQFnvou08duX80/8vs5yYET0PfuwUTqbrhiVGoQ7xZYRNIYasP/I56yp0AJh\nP+7+213sfsHG5g0IRHazRi0CgNzs9Bf++bR6VK3mE2oJ6nidXqVybrsH88uuVvaDNgc2oTuuno6M\nY+Oe2gafVo/76+9RjpBGjYaU8BVVfUaqCInjgEui/6n2w6V/uweHu9ux9G/3KJWnXgNVgHK9dyHm\nnjwP13sXKpVPQBHUUaEKuULRFsQQUxaQVE+qwcLTFymL8aaX/IvOqkBNree2e7Di3N8oj6eNoQYc\n7m5X9n22t25DN7qUhWDU6+dITQgABB0T+eBIIOzHTzfeoOwrep2VeOuqt5TKighIMBTVtD59sapI\nZiD6uxdWu7ZjPVMjwsr2Fx2mt6jKyOgxVul//YmikiHdri+d0/9xkmnXIwjC0EXGMyHdMcLXMSLt\nhVGhquXd5CXdfGeBDyPS2HDXaYRo5TTH6TrLwUljvqKzHHzU2qizHDzz0Wqd5WDS6JN0loNXd6zX\nWS42BzahG+obnP2hRYL4/HArq1DWCNHKu4F3dJaD6knnIYuQuqU/uDY+ejPVPQ3ZWdnKG8v9YZX5\nQLmjAiX2CawiNS0SRPOhXezi8NKiMuSCN32GESfRjYiO6XVWYsN8XvGTMLg8s3U1lmy5E89sVfu+\nUsUTHFFoOEQsXfEu5bI94gf1qG1Un5H6DKjp1ADAp/l0NlWmjpums6lCvQZq+s26plq88OmzpGiA\njaEG+Nt2s4pfU4Equqb6gHVNtVj+wTLle0jtgwCwec8mnU0VqoAEAOIECQw1Ei1VQMMxllCFTFeV\nX41hWcNxVfnVym2gRmLc2ybpwIQBGKwJWN8JH3dan0xZZM2UReO+16Eq+OovNdqX/Zbb7tEJXfpG\nWLL6vVWlP1FUMqQaNcnMaDyZ8O4kcNs9uO/sZRlzPYIAGDc+pPti8lBHxrOhjVXeT+7+6XVW4nff\nXsma+oEjbH1frLIpZzVkvMtMZr38PVbRjhFiwcf+5xGd5aCts01nOWho+R+d5eDE0SfrLAdGCHaa\nDnymsxx8w322znIxe/IcHDe8CLMnz2Gtlxsj0mWOzB2psxyEoi2II86a7qAx9KHOcrC9dRticfXU\nHv1hlfUat92D3854krWdTpsLTts49khITpsLnlHjWevl2EjsDyOe+zg7X4pKYfDh2LSl8D9739dZ\nM6BGEjIqaluyOPKLkZulnj6HKoAB6JGAqFCfATX9ZuLeUe4hVUw8vaQKznyXcko1aiQganlqP759\n2mKcP2Embp+2WKk8F9ypPFNhc2AT4oSoYNT32AhBfKos/ds96IgfUY4qBgAd3erPsK6pFrPWzlIq\nKyKgQWawF1+5Fn2TKd+fUONYaX04sMpittWj/gxEbwGQiuDrWMKxgX4r8ffm1V6Mua/MwsXrZx39\n+yp9PZm/b6XNk94RklSeAfffT4Vkx5l0RDUN263vLLJEvxKEZDBqfLDSGDxUkfFs6GKl99OIselB\n3wOs9XKEre+LVTblBCEtoMQI7wcjxILnjK/SWQ6MEK18fdw3dJaDUHSvznIQ7YzoLAdGCIu2f75N\nZ7nQIkG0dYZZI5h4nZV48jtPs/Z7I1LBGcGrO17RWQ440lAMFlbwNYyat+QZlGIrN4u/XjM3EpMl\nEPajZo1a6haBF7PSt1DLnzH2TJ1VgRq9gypgpYofeqJ3ZNOiiRF8Y6oAhgOqGI36DB35xcghCFCe\navw94ojjqcbfK5UHeAR5cUI/CHcc0tlUSURXpERZjBMuoK6pFq/ufJkUjan33qcqh46ElctSxWQ9\nqQl5I0gONqVFZchBjvJ4WHpcmc6mihYJYm80qDznKndUoKSwRKmsiIAGETMWyTkWfY/V7r4n2vr+\njpETQKtsOlilnRRUBV/9RfBJpr+67R7cNuUO/KTiBmRl9QyifaMQcIp7ercrnZ9j77apPoNk/z7X\nu82VMtBMVNsum3JCpmFUnx7q74oRqUmMOPkpkYB4scr30CrvpxF+hlWuHQA2NlsjnYJV+r2Qubw0\n60+swoVA2I+l793D2rd3HdqpsxwYIVqpD/5NZznI/WKTPZdxs729q11nOXDZxulsutMV62atzwiR\nrBGHC5u/eIeaGd8lI0RlRpx+nl5SBceIYuVT/YOJVeYteTnGiIAOd/ONTQkoJ9EHQny4zEU1Chk1\n/Us6UJBXoLODDTXF5PbWbYhDPeobVcRT7qiAyzaOlH7R7GhIl586H4vPuhuXnzpfqXwo2oJYXP0e\nnn/i93XWDDY2b8De9qDymoJ92CidTZVf/c+jOpsqPWmgupXfA44+eMe0uwBkfWFTh/oMXti+VmdT\nZXvrNsQIYwn1HlIFPAlyc3KVy1KjdnudlXh8xlOktYbcbLX2iwhoEDFroZj6ewO124jQ1hztSjes\n0k4qlOvrvSmTTD11TbW45vWr8LO3b0K0sx0L3rwOPq3+6GkeFXHPl5EQAJktVBnot6ltS6Vsss/6\ny+rrG0EqsRBzrGtMRyjveKaPC4LAxVB9V4zwtYz4lhl1ojZdx32jSQd/IxWs8H4ateHDXZ/HPl5n\nOXhm62rc9Nb1eGbrarY6jcBq/V7ITLhTuRjBCaMm6CwHRohWvvrFhs9XCRs/fZlQOElnOSgaebzO\ncvC+9p7OckA9fToQmwObEIN6qpL+MGINzIhNsJIv3qESxnfp3BNm6CwHRqQD0yJB7D+ynzUClBEY\nNW9Z8OZ17CK1NTUvsPuFjaEG+Nt2ozHUwFanFgki2BZgffZGie1r56lHXRC4yMLFpZcolaSmf6FG\nL+mJXJFjauQK6jVQU/BQceQXIwtZytFDtEgQre37SOPN7MlzMDxruHLaUqqQNhD24+mPViqPb+WO\nChSPdCoLoXqeQTYpHZgjvxjZhDpKi8qQTYgoVTi8UGdTxYh0wGaQQ5BiUJ8BNaokdSyjRjVz2lwo\nHD6aNFf3Oivxr+ULlEU4T//jKZ1NlUDYj7v/dpfyWKJFgtgT3qNUVkRAg4wVFsn7o792e52V+OMF\nr7KelEsVq9xPq7TTDPouECUjHHnQ9wDu++aDOGHURCw68+fIyur5GCTqSWWjJ5XIQWYLur5sYk0R\nonBfVzKLAH0jLN36ziL4tPp+y/WuLx03h+QdFwTZwDUCI3wtI8Z8s74j6YIRJ5SHgoD8WBghKBuq\nKesuP3U+Hj7nMeXTiwMh/V7IRIzYxHxo+qOs/brli1RYLYwpsYKRPTrLwcEjB3SWg50Hm3SWg+2t\nW3WWA2rqiP6gnj4dCCPaClhjfmxEFKinGp/Q2XRle+s2dMU7lU90DxZG+AZaJAh/WzO7AMoIQZVR\nETBiWby5L43y4cYX8oniBVXiyuOE2enAQtEWxIipqKgHNBz5xcglpIKa6p6GnCx1IROHCCmGmLII\nyWlzYfTwMaSN+6V/uwdH4kew9G/3KJXff3i/zqZKY6gBu8L/VBZjapEgDnR8rvyNqGt6DXHEUNf0\nmlL5RB0xQh2haAviiCu/S1Rfc0LhBJ1NFbNTwgH0aETUSDw+zaezqfL89ud0NlWoUc3WffIiPj/S\ninWfvKhUHug5HLf8g2XKh+Ou/OoPdDZVtEgQzeFdymOB11mJ5+ao3X8RAaUp3KccjKrDTAGQYE36\n60u9hTjJCEfuO3sZSovKsOLc3+Dxxt8czUvau55UNnqS3WhMRKwxi4Em1on2U+vmJJXUAXFcGwAA\nIABJREFUbr3/vtdZ2W/qtd5py6yyKSwIQw3ZwDUGI3wtI56REd8RK6QYM0qsZNR1W+H7aaXUXdwR\nUY3ajKWGTe6Llfq9Ffq8kD5wf3cCYT9+uvEG1n5YnD9WZzm47et3IAe5uO3rd7DVaQS2PJvOcrDj\nwGc6y4ERqdCMorSoDLnIZf9OcGOEGMKIqFpGRBcyQvg3vaQK9txR7OnAjPjmcvsGHOkY+uLT6vH9\ndd9l9wupJ+f7IxRtQVeskySMEIYWqlHIqGkHqeKNdCAUbUFXvEv5fQtFW9BNSCVlRDrJVNjYvAEt\n7Xv/H3tvHh9Fle7/f7qzkTRhix06JKKGEUGNqBEUlJkMbtEgBv0FFa8YQRj5DqACg8IAXhEFHWAE\nnMuMXhH1wgxwkUUzZkAwyBVGYjvEqGRcIktiN2nClnS23n5/JKet01R3us6SdJN6v17zepzQdfpU\n1anqqvN8zufhKk0tywkxXHifPyymNJhiuzMLoUQI9XlFNLmZeci7dAxyM/OYtt99dBcVtcJ7L+B1\ntBJRQvXAT/upyNKHnvG9mPvA68zGew54hWTTsp/ExCunYFr2k0zbA/z7wHsvyLYMxRu3r2N+/qyu\nq8LT/3iaaVtdBBSBiJxUFdFWYBv6RKoOK+2Nx3ASNMS6d+z2PDgaarAhbzM2j9lGbaMlcUiEPeF8\nb2Hxw51W/o6g1kctiS21Yx/u37SidbJG+Xm1sUJcnnSRgY5O5NKVhQs6YokW55Zo+l2KFnclWcdU\nhgAof/vdQp8NSRJWZDJWRj+jZdxHy5jXiRxEC3YA4FTjKaHtyRAELPnnYnjgZl5lrUbPhF5UFEFy\nfE8qiuCmfjdTUQQX97iEiiIoOfYxFUVhMaXB0j1NeCk80ddRxanDVBTB3uN7qCgCGSUrxg16kIoi\n2PrtFtS5z3GtqA6kuq4KBTvyI/43t7quCosOsJdjUKO48kO4fW4upwY1eBO3amSZhyCl20XMpWnU\nqK6rwviigog/9zpssJYDszttONXE7oDCuzhCxO8mbx+yzEOQHNdD6PWmBd5yktOyn8ST185mTrzz\nOrCIgPccjh14P3rHpzCXI+N1MBnebwQVWeAVP7y4fxE+OLIdL+5fxNwHHnjPAW9ZPbvThtomvrJ2\nvGVtS47twdmWM1yCOgMMzNvyXke8gkSrvRT/U7GOa06L11X1ixOfU1ErvM+f5Y4yVJ5hc8PVRUAR\niMhJVRFtKR04WCdS9ReBCxct5zaUkw2J4TjHbB6zDa/f/haWW19BuaNMtT1SWqq9vpPxHM73Lh25\nLGITkoHOOQTl39SuX7XyW6ITJlraUboaBbt3RXrCSUdHRyx6ErdrEi0iA0CO/b8MoumYRkMfLaY0\npJn6CU2ckuSRyCSSjH4C0XGOomnM66hTVlaGRx55BABw9OhRPPTQQxg/fjyee+45eL1eAMCmTZtw\n3333Ydy4cfj449ZET1NTE6ZPn47x48dj8uTJOHUqPCGOy+MS2v+SY3twotHGNWEbCPnNEfnbwzsx\nrYYMl5Ur+gyiogiq645TUQSZvX5BRREkx/egoijsThtOOO1Cx5MMQUCaqR8VRWBpa8sisM26lnNU\nFMGyg0upGKm0ljk4EvHPxXanDcfr2csxqCFDrAPwOweoUXJsD2qbTgr9XZLF8bPi7ssXEh39bMRa\nfuZA9X544GZOvPOSZb6Gip3BuvK1qHOdw7rytUzb8zpPEAEXq5Cruq4KG79dz/x7zluCSAS8Ahi7\n04Y69znm3wxSyo21pJsIR6yxA++HuVsqs4imZ0JPKmqF18XU7rThnOsM8zngFX+8Vf4mvPDirfI3\nmbYH+EWJR84eoaJWcjPzUHD5Q8xuTrwidxFOQi3eFi4XQ9770fV9b6CiVuxOG47W/cg8js1JqYgz\nxjFtq4uAGOiIJJTIiUpRbbWXmA+Gnry7cGE5t8FKWamJUYJ9p91pQ25mHmZlz8GUXY/Bai+ltrM7\nbWEJdrQmBtRKVUXKuFY7F4GTb4H7S8RSga5JIhMmWseI8rvD/f5IOQcsRHPfdaKfaBl/ehI3OogG\n+38ZWO2luG/H6E53CgyXaDim0URibJLQ9kTYfavBOlkQiq4+5qPlNzSaeeONNzB//nw0NzcDAJYs\nWYKnnnoKGzZsgM/nw+7du+FwOPDuu+/ib3/7G958802sWLECLS0t+Otf/4qBAwdiw4YNyM/Px3/9\n13+F9Z1xMWKvlYevmoAnr52Nh6+aILRd0Wyq+BsVRSDDsejouSNUFEF8TDwVRfBlzb+oKALeBEww\nHA01cPkivzSQjP3vFtuNiiL43P4ZFUUgo8SYLAwG9lXmHYXFlIZe8X2EiqMfvmoCJl45Rfi9vntc\ndyqKIKf/KPRJSBFaCi49OQMrclYJL6c5duNYYe1dKHTGs1FnMShlMGIN7OUqeZPmItrg/e3iFS8s\nO/gyFbWy9dstsDfYmF1seEsQiWB4+ggYYGAW4VTUHobb6+ISwyljZxFjjGHedlr2k7g14w5mRyhe\nIfvmio3w+DzYXLGRaXteF5q5N81HPOK5yiZnJF9MRa3w3ktes67Epu824DXrSqbtecXOMhw9tZKb\neRcVtcJbotXRUAMXRzlWiykNA/oMYNpWmgjI6/Vi4cKFeOCBB/DII4/g6NGj1L/v2bMH999/Px54\n4AFs2rQp5DbBVM0AcOrUKdx5553+hx/ZXMiClsB9CizDozUxr7atzoWFSKcppcAmGNV1VRj3fr6/\npEGWeQj6JqXB0VDjvy5JMg4ILVgjiQuW8axVuCQSnlJq5HPK/146ctl5tSjDcUYKF5ZSZV1FZBjN\nfdfRTiQ+F0XT+NOfIcQi+rx35ftZtmUo3hvzAXNd5wuBrnjeATkJDxnJHgCIFSwCijbxm2i68j2v\nI+nfvz9Wr17t//9ff/01hg0bBgD45S9/if379+PLL7/Eddddh/j4eCQnJ6N///6oqKiA1WrFyJEj\n/Z89cOBAWN8p+pq22kvxX1+uFHqttHiaqSgC3pWNanx/+lsqiqCi9msqiuDfpyqoKIKURDMVRcCb\nCAxGlnkILu1xmdBSJenJGdiQt1notSRr/0UTH5NARRHIKAfGW9JAjWzLUDyRNT3in4nLHWWoabSj\n3FEmrM3iyiKs/eZ1FFcWCWsTkOMAVu4ow6nmWqH7X11XJbycZnpyBhb+cqGw9i4UOuPZiLWUE+99\nxmJKw0WJZmbB3g9nvqMiC7wLNHiTxrzOFbOHPUNFrYwdeD/iEMfsIMMrvgD4nXR4S0HxljTjLaMk\nQjxRcmwP7A3szqSvWVdid9VOZgEJr0si72/h7qO7qKiVdeVr0YIWZkcvgH8c8G7f2c/Rg/oMpqJW\nRLiKESEfq6Cvs0WN6ckZWHfvOqZtpYmAPvroI7S0tGDjxo2YNWsWli792bbU5XJhyZIlWLt2Ld59\n911s3LgRJ0+eDLqNmqoZAPbt24eJEyfC4XDI2o3z6AhBS2dMJgZOZCpFDgSle4hWtAgAohWe/kfz\nvosqWxdOW+nJGdh0zzYsvWU5si1DYXfaEB8ThyUHF/vdbJTJuFACIJ7EhRbhkkjaSzgE9qO9yTfi\nBBTKPUgE4V7/LMkUImSKRoGALpDsWkTic5E+/romMpLXXf1+FunJDpl0ZTGEjISHDGSIlWSJ36JF\nVNTV73kdxZ133onY2Fj///f5fH6XCZPJhLq6OtTX1yM5Odn/GZPJhPr6eurv5LPhMH33VKHXdEXt\nYbg4Vg+rcbb5DBUjlV/0HkhFEaR1T6eiCGKNsVSMVEQk0tRIT87Amtv+W/j9THR7WeYh6JOQIlSs\nJKMUHElWi3SZkeHUJUNYtP7rd7Dy0DKs//odYW3KwgdfZ3chLGSUl+MtL9RRWO2lGPe/4zq7GxFH\nZzwbscJbPqbcUQZ7g41ZsMb7/QB/KUrepDG3+wZn0nv2x0/BBRdmf/wU0/a8AhqAv1w2r4iG9/mr\n3PElFbUiohzqoJTBiEEMs6vW8PQRMMLILMSSVdI2XHjLkYmAtxwW77VkTkpFDGJgTkpl2p63PGlV\n27N2FeMzd27mXTDAwOziA/AfQ96SbrmZefjjr15jLslWXVeFye9PZtpWmghIqS6+9tpr8dVXX/n/\n7YcffkD//v3Rs2dPxMfHIzs7G6WlpUG3UVM1A4DRaMRbb72FXr16ydoNVWQLgDpjIj1wIpMk1tUE\nAoHiIBGE2m8tx6KzJuF5zlug6CLSEwkyCbcU2LxPf4fiyiJM3z0VC256HhvyNlOTLNmWoaiuqwra\nnlrignWcdeTkP0vCIdRnQ7XX0XXcw9m3YPeH9sq+RTJ68qjrEInPRTLGX7Rei10JWeLJaLmfdfUx\nKnr/dTFE5CPrWUmGAEiGu5Csa14f8x2P0fjz9JXT6USPHj3QvXt3OJ1O6u/JycnU38lnw+FY3ZEO\nfw/Syi96X0FFEYwdeD96xvdiXumtxm+vn0FFEdjqq6kogl4Jvagogi8d/6KiCHL6j0LfxDShJXwA\neYJW0e2VHNuDU821zKvY1ZBRCu5wm0vVYYFuVTJctXgTGWrwlu4JRjQ8u0eLsAbgT+aqkZ6cgbnD\n5gt/NvL5okOs1Zl0xLMR67jmdeLhva5ElFnmFeLxulfwliPj3X70gDFU7IrwCgeyzNdQUSsiyqE6\nGmrggYer9CtPOTFeMRvvdchbikuEAwyvK5g5KRWxiGUW8fCOAV4nH95zUFz5IXzwMYsBAf7flHpX\nPRW1Ul1XhdfL13A9155rZrsGpImA6uvr0b37zzbmMTExcLvd/n8LpkhW20ZN1QwAN998M3r3ZrPA\nEoGMF5HOnEgP/E41l5Ng4iAlocqKhfputf3WUm6pM1ciizpvnbkPnf1i3Z4DDTk2APDemA8AtE7S\nLtw/D3an7Twnq4Id+SHbCxQAhet+Qz4r2i0nXGTfG8hq8c4Q1ij3LVDEFeza0JOPOtFCJD4X6SWh\nogMZ5ymaxZM8dPUxKsPtrysjo9zJ5/bPqCiCaHFNlOEu1NWv+QuNK6+8Ep991nptfPLJJ7jhhhtw\nzTXXwGq1orm5GXV1dfjhhx8wcOBAXH/99di7d6//s9nZnWPbndN/FNJM/YQKN74//W8qiqDcUYZz\nLWcFl8fhW7mtxqRrnqCiCGSsTk7vnkFFUSTGdRPanixkPG/wJjLVMLetCDcLXBnu9rqoKIIR6SOp\nKALepGQwjILTDNHyOy6rzAZv0qyjsNpL8ZuPJgoVcltMacjskymsvQsV2c9Goy+9F9Oyn2TqG6/j\nGG/5m8oz31ORhZz+v6aiVnjFD78fsRATr5yC349gK43HK17gdS8R4WLIK+Ya3m8EFbXCuw+8zy+i\nhJsGGJi3dTTUwOV1MQtIeI8B7zMLb0m5LPMQpHS7iMuNUoQo0QMP87a84m/e+zHvOeC9lwL8bkTd\n47pTsaMpd5Th6NmjTNtKEwEFqo69Xq/frjAcRbJyGzVVc2cj80UkkiZo1foSqgRSsLJi4QiDAtsj\nSapwJ62JGKCz0OpgotyOJBA6S9DAOp5Due0Efq49yIrLYCsvlQI0AFhycDFSk/oi1hAHiylN9biJ\nLn1A+rEhb7PwpE84hPtCHe55DHbeyTXeWagJrUJdG5F0z9TRCUYkPhfpJaEiH710l1i68r7LIlqS\nM9GCjIRkdV0VHv9HYVScI9HuQvo1f2HxzDPPYPXq1XjggQfgcrlw5513wmw245FHHsH48ePx6KOP\n4umnn0ZCQgIeeughfPfdd3jooYewceNGTJs2LazvSDOlCy3jAwDxxgSh7cm4T5iTUmGEkXl1qRoi\nVi4HsvvoLiqKoLq+iooikFEKze60web8SbhTlQxBKwC4POJEMEBrGQAjjFxlAAK5pMelVBRBrDGO\niiKQIdjhTeyqYTGlIa272HuojN9xGaX1ZJXr4y1jo8aB6v3wwosD1WwlPdTItgzFQwMfEfocl56c\ngXX3rhPW3oWK7GejD45sZy7xx3td8Dqw3J15DxVZ4HXy4b3XVtdVoejH95nf48xJqTDAwPx8N3bg\n/UiO68HsFCmiHBivA0lnl2HiFS84GmrghZfLxSfLPARJsSZmEQvvtSzCSYcHcuxYj2HJsT2obTrJ\n5UbJK0bjdcKpaThBRa3wCrneKn+Tih39/QC/qJN3+/TkDNzR/y6uZ1pWMZ80EdD111+PTz75BABw\n6NAhDBz488vvgAEDcPToUZw5cwYtLS34/PPPcd111wXdRk3V3Nl05QnF6rqqoAIgtbJigccp3GQB\n2VbrS0SkJSLC2d/05Ay/oKazXKDCHc+kn+E64oSz/0TwNXfY/JDuBEScYjGlYUPeZrw/9h/YPGab\nX0ClJC4mLuTkQ2BJLzLxFa5zVUedJ9KfwBIJ7Tkm8ThwATjPXakjCSa0YhXa8XxWR0cUkfhcJOM5\npis+F8lE1vNmVz5PXX3fRSf6uvo7kehnpZTEi6gogpJje1DtPC60hEo0IWts6s+THUNGRgY2bdoE\nALjsssvwP//zP9i4cSOWLFmCmJhWW/px48Zhy5YteO+993DnnXcCABITE7Fq1Sr89a9/xTvvvAOz\n2RzW97V4m4X23+60obq+Sqhwo2db2aqeAstXiUgwBMK7YlSNupazVBTBFW1JpSsYk0tqtLfAiQWL\nKQ2WpH7CRWqAnPtkXIw4EQzBYBA7hc2bEFGjyd1IRRH85dCfqCgCGeISAPD43ELbk4GIpLRamwYY\nhLYJAA0uJxVFIOPe/Jp1JdZ+8zpes64U1mZ1XRUefu9hYe1dSHT0s1FniSd44S2/A/ALOKZlP8nl\nprT12y040WjD1m+3MG3PKxwoObYHda5zzO+RvCIqgP+e9Wn1PipqhVcAMyhlMIyIYS6VKaJ852rr\nq3C667Ha+irT9uWOL6moFd5xwHsv4S0DNShlMGI4y50+fNUEPHntbDx81QSm7XmFVNf3vYGKWuG9\nF/KK+cgiAJ7FAB/88D4VWeBx1HrNuhIrDy1jflbKMg/BZb0uY9pWmgjo9ttvR3x8PB588EEsWbIE\nc+fOxfvvv4+NGzciLi4Ozz77LCZNmoQHH3wQ999/P/r27au6DaCuao4EuuJkd7DyXMpJ8MDjovb/\nw00WaD3Gnemko/zvQIFJe33q7BJT4aLsJwBsyNsc1G0nHAcXAvlMbmaeqvOT8pjYnTb/95PPqZWI\n2pC3OeR+tDeOIwFlf7ItQ/GX29Yi2zI0ZP95rgGlg9fMkhmdWjpCTWgVSvikpZxbJJ1jWVzo+xeN\nROJzkYzrWx974umKz5vRRjSNexnjqauOURlltpTPYqIYlDIYRoORa9JKjWga96KR9Tx5/CybNbWO\nOGzOn4QK5ipqD8Ptc6GiVlyivbrNwrya0cpcDXNSKnzwCXUCkuE0khzfk4qRSounmYqiiBPoLqNE\n9L1Mhui4ovYwPD630Gvp1ktup6IIusUmUlEEKYlmKopAhrik3FGGqvrjQssKRsv8TZZ5CFISzFyl\nQjoKGffm4ekjEGuI5S5Xo6TcUYbK05XC2tNhh7V0yqaKv1FRK+SZhPXZRIT7CK/7xPqv3+FyU5Ih\n2tPCoJTBiOEQsIhwhSTfzdqHR69+jIodTUXtYXjhYX5+ESFY5i19y1uasrOdgHjLQDkaauDxubkW\nS1jtpXit7I/MZTN5hUy89xLeZwfec8DrJATwC5GyzEMQizjmZ73h6SMQY4hhflZKT87AH+/8I9O2\n0kRARqMRixYtwt/+9jds3LgRAwYMwD333IMHHngAADBq1Ci/Ivnhhx8Oug0QXNVM2LNnDxISxFos\n65xPKGFAoPAgVPkv2W434brZiEL5UhpMzBNMzKAUyhDnk85AiztToPBHzbknsL32BFBkTBBHoMDx\nojy+M0tmoNHd4P+38UUFKNiRr/ojGmyflOOVtFtY3Hof0uKIJJvAfi63vuL/XuXfSX/IuAv3+go8\ntoHHS8YqQ1ZETf50BceCaJko62p0hecimWNPH89i0Y+nOPR7btcdT+S5VOT+N3uaqCiC4soP4fV5\nmVeAqtHVx72M58nquiqM3ThWWHs67IhcsS4j2SqjfBW5P4i8T5AJTpFJ4SNnf6CiCGQIdmSJlWS4\n68i6n4t+387pPwrppouR03+UsDZfPPCfVBTB6AH5VBRBt9huVBTB96e/pWKkkp6cgVnZc4SOJ3NS\nKmIQI1T0WO4ow8nmGqECKABIbSv7mCqw/OMXJz6noggspjT0TUoTOodoTkpFjCGm/Q/qSIe1FGFS\nnImKWtlcsZGKWuFNmgP8IhbeMqa8IqQfznxHRRZijOzX4S96/4KKLPCOA14xWWc7WvE6uAD8Li68\nrlq8gkBeNyTesqoi3Jg2V2yEx+dhHsfD00fACCPzexXvOOa9lnmFaLzl1IDW8oam2O7M5Q2n7XoC\nLrRg2q4nmLZvFZN5mMVkVnspxv3vOKZtpYmAdC5cLKa0oMIK4PxJhPaEBuQzashKJIqc5FBOAquJ\nZIJ9f6CrEvl8Z0yoa53IJkKdYOKvcNuz2ksp0ZTadoHHd0XOKiTGJgFodQVakbMKLq/rvCRMe30g\nAppA8U8oVyPl/++o8xRYWg+A3wkpsB8ujyton4O1rdzvwHHc0SXPQv091PlkKecWqYgYU11B6KQT\nmcgae1092Swa/XiKpavfc6NpPEVDH2UgY+WdDBckWcg67zLKNG59YKvQNnW0w2PxrYaMFdzp3TOo\nKILfj1iIJ6+djd+PWCiszQPV+6kogknXPEFFEbR4WqgoAuU7vMg2Zbyjy3x+F0l6cgZm3/CM0H6a\n2hLTJsYEtRqfVn9CRRE42lb/OwSWLXN5XVQUgYiEeyBWeyke3/ko88p5NSpqD8PD4cqgxttfvUVF\nUXzpOERFEQzodTkVRWB32uBoPCG0BKKjoQbuKCgv1xVgLQHUPa47FbXCm7gXwfD0ETDAwJx453Wc\nq2s5R8WOxmJKgzmxL7PAT8TvAq8TDq+IiFcAktN/FJJjezCLmEUIqQalDIYB7M7AvGIy3t8dXgEJ\nrwCG9/sBMfcznvdU3muRV8jFey8TsbBm67db4HTXM5dXfO32PyMe8Xjt9j8z90H0XEO46CKgCCRS\nJ6iVJZZCTfYHTiIEExoQ2ivNJPJlj7dcUjAC2wrmjkM+uy53PbItQ0MKXjqacL9T7fwC2tx/yOef\n3TcbK3JWUZNZam5SSnFHtmUoNuRtht1pw73b7oKjoQbxMXGqwqv2+hA4NoP1UyliUzsGgZ+XRXsO\nXGRloFqfQ7Wpds54x2Cgm1Ooz4Vbmi1Un5Sirs64h4r4TpH9j4aknM6FiaxSQ9EisojUZzglXf14\nymgzGo6lLKJlPCkdE0UhIyHbM6EXFUVQ21hLRRGouXdGIjLOu0wu7slmsa4jjou6RX45FxmlgQCg\nMGui0PZEJC0C4bWSV0NGgm3vsd1UjHRkCIBE33uLK4swc+90FFcWCWszI/kSKorgdNMpKorA3OYC\nYxboBnNpz0wqikDGNe9oqEGLt4WrBEcgg1IGI8bAXt5GjdEDxlAxkhHhDKKG1+sV2p7uBBQ5sCa+\n/32qgopa4XXBESHEPlC9Hz74mAXNvE5AOf1/TUWt8LrI2J02nGiwCRX4aYXXEa1g0ANU1AqveGPr\nt1tQ5z7HLDyw2q1UZKGi9jB88DKLXxvdjVTUCq8TEe+iJl4BTCSUFjxQvR8eeJjvRbxuTrxCrkgQ\ndfI+p5Y7yuCCi9n1MTczDwtuXITczDym7S2mNFi6W5i21UVAEUakr6YlYon2Vn6GEmO0J2RQ/n3p\nyGXCJpiVx1ZmoiIcoVOolWGRnkQBggt1tCSBlGIoZVtKxygiAAt2XRgMBnx/+nvEGuOCqtLbc5lR\n2xe1fgKghDVq+xno7sSLmpAmMOGkjOTvan0O9R2i7znhuH8Rgl0vLEnFzkpE6qXKdHTkEw3XRTQl\nm6PleMr8fdIRh4zxFC3nSPSEaEriRVQU06Z4C/NocY7Q0dHKySaH0HIusq4/ZRSBjGeYLPMQ9E1M\nEyqqqnfVU1EE17Ulxq7jKLMQSN6Ae6kogmh7hlG6FIsgyzwEqYkWoeNJhlNXU1uCrIkxUaZGRe3X\nVIxURCQqA8nNzMMff/Uac8JEjYraw/D4xDoBySoXY6uvpqIIZJQYczTUwA23ULEWOU86nQ+rSPaK\nPoOoqBVe4QBxMGJ1MgL4k8a8TkAy7qtaOFC9H26fm1l4IEIcyisekOFMqQXeZw3e60AEvELXAz/t\np6JWeN2YeAUwIhZV8Z7HilOHqaiVwqyJ6Bnfi3nRB6+AOKf/KKR0u4jZEUvGM7tWssxDkJLAvmDI\nai/F0oMvMBue2J022OrY5h91EVCE0dlJ4HAmFLSu/OQpz6PmlsPyXUpRQUcQSugUjjtLNCBiEooc\nD1ISjIhoAFACMCIII99LymE9fMWjeOXzFzEla+p5xzyUACXw72qfCxQ4KceP2gQpuS5ElUZQE9KQ\nHwm1fSV/D+x3e/XTZTljKdtsr301wZzVXsrUp85y0RJ1DAPPISsXwj1GR0c2+nUS2YQjOo+ENmUh\na3xGw7iXkeiU4dpjtZcif/vdQl1LeW3z1ZBRnkMG0XLedS5sfPAJbU/G9VfbeJKKonALLAsEtE5U\nnm05LVQsObzfCCqKQIS9fCAyVrtG0zMM8LNLsShkjKektjJgSQLLgaV1T6eiCO68LI+KImhyN1FR\nBD0TelJRBNV1VVj3zZtCnw1kXPOrrH+koiga3A1U7EqIdGrS4YPVCSgj+WIqaoVXxHP03BEqsmBO\nSoURRpiTUpm2573f5GbeBQMMyM28i2l7XgdFGQ5vWuF1UBmePgJGGJlLuvGKPGWJRDsS3nOQZupH\nRa3wPlcXZk2EKba7cNdTLfAKoUYPuIeKWrE7bXC6nczP0bwC4nJHGWqbTjIvtuF1VQNa7+cGGJjv\n5+WOMtQ2sy8YcjTUwOVzMQumiTsmC7oIKALpTAFQOBOvWhLeRNQRrmWv2ndrEQA4I8xCAAAgAElE\nQVSFI/jozNVT1XVVKNiRj3Hv50d0EiZc4ZZSVMU6cZ+enOEvCWYxpfnHlvK/q+uqMLNkBsYXFcDu\ntMHtdWHyzkK89c0bSI7rgT8dWnWegIeIiYK5TAUrWRdqX8IR0xBnI2VftKAU9ChLlQW6YqkJmJQC\nGnLd/eajie0mp0QJT9TaJOdBy3bhOoDx9FnG/rIQeG5EJMCibZWojk5nEC2lgboyMsoNkeeJSL8/\nyrqPR8vvQ7QkOi2mNJgTU4O6UbJQ9MN2KkYqsgQ7MhbDRPo40ok8RJbOe/PLP1NRBDenj6SiKGKN\nYkUb2ZaheP32t857P+ZBxKr+QGSsLOVNlqgh47lIFjKeiWWMpwaXk4oiIM8EIp8NeEvqqFHb6KBi\npJKenIF7M+8TOpZklBVMiOlGRVHwlt9Qo6bhBBVF8MEP71NRBJsrNgprS4cPm/Mnpu14BSS8if9L\nelxKRRYOVO+HF15mFxneZ4ziyg/hgw/FlR8ybc8rxOJ1IhLhoELGH+s4BAAv2MsVZpmHwNwtldn9\ng3dBgIhnX942eMthiTiHPGz9dguc7nrmkmy8Ah4AmHvTfCTGJGHuTfOZticlMlkFLBW1h+H2uphd\nEHlFlbzXgQgXQ97yjgDfgiHecwgABhiYttNFQDp+wpl4DSyhFAoySVF45SRKiBDKrYdnMjlUWTGl\nmKIzrOvJvtmdNhgMgE/sAkOhaD0PyhJrLMeWjBO70+YXjASKR8gkEhEKbbpnG1665RX0T74U825c\neN4qs3D60l7JumDba5nQ0nosAwU9SpSuWMrPqY3vbMtQLB25DFnmIXhvzAftTpTJSgqGOybU9rW9\n5B9PnyMlCWq1l+K+HaMpIZAIx7LOdpTT0enK6NedOLryvUyWCCZajqkMsZaM336704YTDXahrgRX\nt00uXi2w3Amv/bUaumBHDsfPiktI6rAjUrgho9QUrx28GunJGZg7bL7wEmPLra8Ive9Oz34KplgT\npmc/JaxNGUl2UjqFtYSKGtHyG06QMee25OBioeNJRlkkGe5C3WK7UVEErjbnL5dABzAZjhHrv34H\niz5bgPVfvyOsTd6kuBq8JX+C0TOhFxUjFRmCOpFOajp8PJY1qVO+l9dFJ6f/r6nIwvD0EYgxxDK7\nyPBSmDURiTGJzA4mvKLHwqyJSDQmMX+/CPcOXv70xSoqaqXcUcZVLpj3XVzEOOYtpytCzMWDDAc/\nLYhwIi05tgeNngaUHNvDtD1vKdOc/qPQPTaZuRwXb0k43nvR9Oyn0DO+F9c74LTsJzHu8vGYlv0k\n0/YirgNWEQ/QVhrZxCYg0kVAOhTBygyR/9ayap5MUjx81QS/ECHUBDzLpEa4Ti2BAg+RhJNUUIoz\nNt2zDZvHbIvYyRut50GZpGIt30SOTThircLih1HuKMNy6yt44eaXsO6bN7EiZ5WqqIc44rCUadAi\nIALUx4HWYxlYcizwegvmXKR08gl0TgpnBZrMCcVwBEBqpdjaS/6puTdp6VMkTKBmW4aeJ9IS5VjG\nclx0dLoSumtPdCBDYBAN512mY1Gk77ssZPz2Oxpq4PKy2/mqIcPhg7f+fDC66liSRXVdFcZuHNvZ\n3dCBWOHG9W3in+sFioB4LfXVsNpLw3KQ1UJ6cvulqbVScmwPnG4n8wS6GqTEBmupDTVkiAx0xCMi\nsRaIjLKe1W0Jk2qBzjWnmmqpKAIZbjCDUgYjzhgX8aWhPq3eR0VRnG0+Q0URlNr+ScVIJaf/qKgu\nn3MhIfJdRwu8Ljq8LjZAq6tb99juzO5uvA4sq62votHTiNXWV5m253VT2vrtFjR6G5gdVF4YuQQx\niMULI5cwbQ/w/66+MHIJ4hDP1Qce9w9eFx0RpYUH9RlMRa3wjmPeUsa89wIZrp9a4T2GvG5E68rX\not5dh3Xla5m2jwR4z19xZRE2fbch7IpFgQhxeuUwBil3lKHGyfZ7rIuALlACSwaxtiEqEU0elkIl\n7omrCYtrSmcSblJBKdiI9EnzcF1uxhcVUEkqHhenwO9V/rfSGWjpyGVYbn0FS0cuQ25mHpaOXKbq\ndEMchmZlz+kQ2+xQTlRa21E6H4UjbAu8FtKTW0usrchZ5f/3cL63Mwh23Fye0CvSrPZS6j6i9V4Q\nKddgoACIOIaJSFRGyj1SRydSiZT7gE7Hop/3yIc8x0S6y4yMFXEySlQMShkMAwwRn0CLNmQ4aG59\nYKvQNnXYECnc2FSxgYoikCHsy7YMxV9uWyu01JIMYZEs4gxiS6HJcETp6u92Mp4NiB0/jy1/IDJK\nLf2i90AqiuDi5P5UFMHoAfdQUQTZlqF48453hN6bZJAYm0hFURw5W0lFEfyi9xVUFIEMwWvJsT2d\n5jqhQ8N6HnjFC7zuHyKel9aVr8VZ1xnmxDmvKLhg0ANU1AoR0rEK6ogDEqsT0mrrq/DAzSxiAviP\n4dZvt8CFFmYhE+87P+91IGJ+gNeNiHccPnr1Y1TUSmfPZ/BeRwD/MeR1I8rNvAtGGJkXPcgoyawF\nu9OGI+d+5HLh5r0WRfymeA3sKqDczDzMvWUu07a6CIgB2S/dvO2TyQHigiKyvNaGvM3+i02rWIdM\n/qgl7rX2OVT5qc6YFFGKl7rKpEygUKW9SSleMRk518QxiDhLzSyZoTqxSLbJzcwTtvK7vX3QImJr\nDy1iMTVx3cySGZi+eyoKduSHdPBS+3tHj2G14xYXE6f6w15dV4XiyiKqjBbZf5HlODoDUv7l2X2z\nhbUXCY5HOjoi6Cq/rTo6QPQ4FsmCCLkj/boflDIYsYZYoZNRvFbdalTUHoYPPmbraJ3zkZWMv7in\n7hoSCXxx4vPO7kJIRExEByKjdJcMYZEsVxDR1dpliERllQqVhej7o4xng7fK36SiCGSUrJDRpgyH\nGRlOQNV1VVi4f57Q8y7DEUBWOTCPz0NFEVTVHaWiCMjvpsjfT5GlOXXYMcDI/Js7duD9iDckYOzA\n+5m25y1/KuLeaXP+REWt8IqCiys/pKJWeJ9HeL8/Ob4HFVmQUQZXC50tpBIxP8Dresk7Dnh5q/xN\n+OBjfl7jPYfmpFQYYeQSjR+o3k9FrfC60FTUHoYXXo5yYnzumUfPHaGiVkQ8sw9PHwEDDMzXoohz\n4PG5mc9BcWURXvq/l5i21UVAGhE14RcqIS/CfUdZXklrn9TKD5F+lTvKcN+O0SiuLKL62V7ZHjU3\nFmWCWq0kVGDflN9Fvlvtc52xOipQxBRqtZtyX6IVpeOM0sUnmN13sPMS6ASl9t8E5Vgk/2132uDy\nuFRLZig/F6xPgf8/1HkJFLOptSVr/Gl18iHJw81jWkvPBUskqpX4Ey3mCkfQF9gPssov8J5htZdi\nfFEBlhxcTE0oV9dVwe60UcKgaCXYPZCVaJkk1tEJRTStfI6GPupEB135/i0r0Snj+vT6vELbqzzz\nPRVFsPvoLiqKItqfuXjQhdY64RIfE09FEbz91VtUFIGMMS1LWCTaFcTRUAO3T2xpRxki0WgRyAJy\nnt3TkzNQeOUkoWOUtzxGRyFDtCED3nIfapQ7ynDk3I8od5QJbFP8anbeMh3B6JtkoaIInC4nFUWQ\nFGeios6Fg48jabzkn4vR4mvGkn8uZtp+7k3zEYc4zL1pPtP2IsRpvO4bvCIcXvEGb9K6Z0JPKmqF\nV0QF8JcD6+xSUMsOvkxFrYgoM8or4iGlkllLJvM6sHT2dXigej+88DILeAD+cfj7EQtxg3kYfj9i\nIdP2vPcCGUJvLYi4DhwNNfDBx/zOx3s/5BWj8Swu0UVAGhExORLqhZi1/cC2lNuH66wTyolH6ary\n3pgPkGUe4p+cb+8Fv7iyyF++KVSppGCCDSIQICKBUA5AnTUhqxQxESePYA4ryn2JRsg+BE78W+2l\nmLyrMKQrT2A7ZMypuUKFOn7kc8/um43Vt66hRC6BbagJ1QL/PZzzonRpCdaWrMlTFlEOEWiF4yhk\nd9ooAU6wfdA6mRdO34m4MPDvgWIY4m60ImcVNuRtRm5mHtUGALw35oOIt4kOB7VyiTo6XZloSbZG\nk1hJR0ck0bDaX8b1WVz5IbzwCl0R1+JppmKkYrWXIn/73cKFQNF0/4z03yQddsYNelBYWz/VV1NR\nBKMHjKGiKGSUYJTxbrzk4GKh9wpzUirijHFCS0IBQIwhRmh70fI8DMjpa3FlEWbunY7iyiJhbcpI\nDNa1nKWiCGSUb3J73VQUgaOtBJpDYCk03sShGjJcF2WRkmimoghMbUIdk0DBjgwR+w9nvhPWlg47\nMYhhFrTOvWk+4g0JzCKeJf9cDBdczCKi1KS+VGSBN3HOC694IzfzLhg4SgDx8ljWJBhgwGNZk5jb\n4L1nk/HLOo5Ljn1MRa3wlsIS8ZvFK17gLXXKW9KMV7zLex2LKPPLuw8v7l+Ezx0H8eL+RUzbZ1uy\nqaiVhjbhcAOjgJi3bCqvExEAWO1WKnY0vGK0h6+agHm3zGPaVhcBMcD7ItveCzGLAIhXVBSOEw8R\n/FhMaRhfVOB3XwklyiF14Gdlz4HFlBbWvqj1TVl2ivwt2DHorEkR8r3tHcPAfQkkEia/2+uD23u+\n+47FlIb+yZeEPM+BZeFmZc/BzJIZAOAXCbVX5s3tdVGfy7YMPc+xStkeESwFXiPk38nn2zsvAPwi\nr0DxmrK/WsZfuA4/agK6QPFUuO0Ftr0iZxVmlszwH6dQ15CWyTyrvTSse93Skcuw3PoK5g6bH5ao\n0GJKO+/4iyyhFSnoYgIdHZqumvDQ0Yl0quuqULAjX/hqf9HXkow2eVfEqZF/+f9HxUjFYkpD74Q+\nYb3fhUu0Pft0ZSekCx3WSX41XG3vriSKQJa7lwyi4ZnIYkpDP1OG0PtZtmUotuX/XfgClWg4ngTR\nfc3NzMPbuRv8i4FEIKPM1g2WG6kYqVzX9wYqikCGwwxv6QY1Kmq/pmIk86XjX1QUwck2p6aTAh2b\njpytpKIIdFehyMADD7NrwtZvt6DF14yt325h2p7XrU2EeIL3fa+zRUStzhde5nPIK34QUZaaV2TI\nK6TKMl9DRa3wiojSTP2oyAKvCIfX7Y1XwJGRfDEVtcIrgpIhSNbKpT0vpaJWePfB7rRRUSuN7kYq\nakWEgKcwayLikYDCrIlM23f2O7jVXoo/7P8D07a6CKiT6MhJba3fFUxgQ0qA2Z02vxuHUvig5o5i\nMaXhvTEfwJyU2u6kLin1E6oUVLBVP0qhRCRMHLdXpiyUAKizJ7/b60N6cgY23XN+iSny9/YEH2Rl\nN1nF1+hu8P+AqAm5lM4+dqcNscY4qk3yGfL/lSXmCBZTmv/vyrYAqH4+1LFRW5nOcj2He64Dv5OI\n6+7bMRp2p43aLxaHKYspDRvyNlNioMBrWUm4AiBSmqu9zxNhFVnRqXSNCrxmgom0lA5cF0pCRpTr\nnI6OTscSTckZ0ci45+j3scjH7rShqv4Y82RARyK6j7wr4joKGSUayh1lONFgF1qeI5qElMpnXZ0L\nj6Iftgtrq1dCLyqK4NZLbqdiVyLUOyEPcYo5BlGIFBURuvpzUZZ5iND2xg68H30SUjB24P3C2kyO\n70HFSOXYuSNUFEFTW2KniTHBo8aB6v3wwcdVgiMQGUItGaXQAOBXF4+iogiMBiMVRcCb3FMj0sv0\n6bTP8PQRiDHECBXxaUGEeIJXAMLrvlGYNRHd45KZk9a8AhRe54q3yt+gIgvXmK+lYkfDW8KHd86A\ndwwB/CIaXhcY3lJSvCKms81nqaiVadlP4taMOzAt+0mm7QH+c8ArKKw4dZiKWrk78x4qaiUl8SIq\naiU38y4YOV3NVltfRQuasdr6KtP2N1iGUVErvIsPKmoPMy8s0kVAFwjhChhC/VsoNyHi1jErew4m\n7yz0u7eE2p5M4lpMaXh232xVNxPl9jNLZvhdXgL/rbquCqPfuxOPFo9XFQIRoUSwcmbhHgdZBBM2\nBPYnEia/gznPqH2OEKrck3JyXOmSRFxo4oxxlBtQYLvEqWdW9hxkW4ZiRc4q1c+oCayUk4RKwdrS\nkcv8ghdA3VUn2D6r9ZGFcM51oNMWEfoQcZ3SBSlUG6H+jRzfbMvQ89yQWEVp2Zah55XmCtWGxZQG\nl+fna5+cr8AScmr9V37nrOw5wsuHhAPr97W3Ha8AqLMFhTo6Ol0HGfcc/T4WHWRbhmLrvUVC3Q5k\nnHsZoo3r21bPXy9wFb2M1UUi6qcHkmUegr5JFuEJ2WgQAAGt4/4vt60V7vJx/CzbxKaOWIam3SSs\nrcTYJCrq8CPjPuH2iXNqAugy5iLblPVcFA3PWjL23+60wemuFyoS5l1trgZv4kSN5PieVBRBc1sp\n02aBJU1llGyTIdSS4YQDAKW2f1JRBEltv0dJAn+Xft3/NiqKIBrc7roKrAIQR0MNPD52JyHexL0I\neBPvvCKakmN7UO+qQ8mxPUzbH20Teh4VKPjUwuxhz1KRBV7xBK+IhldI9dvrZ1BRKyIcUHivJVIq\nmbVkMq+r1+f2z6ioFV5Hr9esK7G7aides65k2h7gf57hfb7kFXLx9n/0gHuoqJWK2sPwwsvlKsb7\n/Md7DniPYU7/UejXnU3UqouAugjhuLuEEiQQ8QYAVNdXoeDyBymhQKBQgQgLCETAEer7N+RtxqZ7\ntqn22+60IS4mFv1MGf7JZjXxjFq5JjWHos4SAgUeZ7X+dPbkt9VeGlJIQSa0SBKF7EOgAKu6rgrj\n3s9H/va7KeGWct+zLUP9rkLBWJe7HnanDZN3FbbWgQ8oQ8bihKUUvNidNr+rTjDxU2C5LWUMV3QW\nyuFKDeXxDLYPyu8g11Dgd7fXP3J81frNI3oK7F+ofrRe3+qrL8l2gW2o/f/l1lfCErBp3Zf22mC5\np1TXiS+foiQSBIU6Ojpdh2gp36QTHYk+Gedehmjj0+p9VBTBFX0GUVEEvJNmatidNpxscESFA5QM\niKOp6AT/2I1jhbWnw45IJwMZ5PQfhZSEi5DTX5wzRFfG7rThp7rqiL+fyXoukiFYIu2KRMb+W0xp\nuLh76JL2WuFdra4Gb+Kmoxh1yR1UFIGMkm3/+LGIiiIgC1rVFrby0LtbHyqKwNHsoKIIyh2HqCgC\nkcIvHT5YBTBvf/UWFbXCW/6Gd3sR8IqIDvy0n4pauTl9JBU7GhFllHgdTHj7wOsG9Vb5m1TUiohx\nzNsG77XMO2/ycs4KKmqF9xzyjkER8Jbm62x4BZGDUgYjBjEYlMLuEsh7HfA+44soD9mjG5uASRcB\ndSCyJ93ba39W9pyQL8zBSmkpHVZyM/Ow4lersb3yPb97CpkwUDqtkJdzq70U497Px+M7H/WXE2uv\nn4GuLkR8lBibhCUjX6GERoFiEKu9FNN3Tw0qFAjX5UYroYQegQQ61fjFVRrakAVxVGrvGLm9Lr8Y\nh+xDYMktANh0zza8cfs6LLe+cp4YiwiJyPfkb8ujJp8CxWT9ky+BOSlVyD4C9Hl4b8wHcDTUUOKn\nQJFTcWURxhcVIH9bHsa9n+/fd2UZusBzF0wgFU4fyXlQomZ/HjjGyfeRzwebKCPblTvKcN+O0XjN\nuhLjiwpQsCM/qABJi+AlXKEW2ddAhyeC0jkqcHwpx6lSCBgOogSBrJORMsunqI1xHR2d84kGMUQ0\nod9zIh9ZDjv52+4WXhaJdbVjMGSINprcTVQUQbSUGKuoPQw33FwrsdToyvfl9OQMLPzlws7uhg7E\nXtMnGuxUFEG5owy1zSeFluPr6hiMBqHtySpbJkuoxLoyOhiyhEWiSU/OwG+vnSH0POX0/zUVRSDD\neVAGn1btpaIIZCS94mPiqSiCrLYyNVmdVK5GCxebLqaiCM40n6GiCEQKv3T4YP2NmD3sGSpqhTdh\nWu74koos2Jw/UVErvA4kvA4qvPAeQxHCWF4HEVKOjrUsHa8Ylbf/IuA9j49e/RgVtcLraFhc+SEV\ntSJCfMELbx94HaF43Zx4BYkizoGPectWeK9lXjGZCEGfz8d2FHQREAMsL7LKSfdQ27NOoKtN6ivF\nFAU78jFl12Mh21cT6ai1+/BVE7B05DI8u292SAcRktxfcNPzuKTHpcgyDwnqKqIUfKgl1J/dNxtz\nh833i0nUEu9Weylm7JmK43VH/f1Sc94hQg9RExLtCT3C+Z7xRQV+UUxnlr4IR0iRnpyBTfdso0Qb\ndqfNf/7IhM/4ogLYnTbkZuapnlOXp1VIZLWXouTYHpxosGFK1lTqc0Qg9ey+2Vg1ao3fwcfutKG6\nripoGa9QLkbks1Z7KcZuz0P+9rtRUXsYv/loIgqvnOQXk5GSEcpyeHOHzYfH5wa535LxZLWX+vdZ\nTfyiFEgF65faebCY0s5zuwlsQykkI31VipkCPx8osMsyD8FLN/8BL3++GFOypiIuJk5V0KXcRnk9\nBdsftWOhBulzoFMYuRaU9xjSn4Id+SjYke8fPyyiF5ErCVnakFE+BQj9W6CjE83IWJ0cDcmJrowM\nwUpXR5q7ktjcKdZ//Q6e3jsN679+R2i7je4Goe1V1R2loghuveR2Korgu9PfUlEEOf1HoU9CilAn\nkmi6L8tI8FvtpXjovYeEtafDTl2LuLITMYYYKopARFkAnZ/JtgzFtnv/Lvy9TLRgR0ZZS6BVVFZV\nfzziRWUynguLK4swc+90yrmal9zMPPzxV68hNzNPWJsyVqArF1OJ4uaMX1FRBDLud7WNJ6koAhnP\nbwAwos29Y4RAFw+7005FEXSL6UZFEYh8vtbhg7UM0+L9z1NRK1+d/JKKWvmyzZnqSw6HquH9RlBR\nK7zC0LED74cptjvGDryfaXteISVvKa6CQQ9QkQVeJ5/NFRupqBXeY8jrgCJCPMF7HnnPAa+jIW9J\nN17xhQgxHm8pKd7tecva8Z5D3nNwoHo/vPDgQDWbCAngL4s3KGUwjDAyuxGRMqc85U5dHjbHSV0E\npJFwxTyBkEl3IpZQ25bnpT5YmSkiYtg8ZlvIhLPVXorHdz6KnPRbg5b5In8Dfi4PphRlkH9XOgOt\ny12P3Mw8bLpnG8odZUhPzvC/YCuPpfJ7gokcAsUkyj4pBUdv3LGO2s9gzjuiJhCUwhk1kRM5D8G+\ni0wib8jbrNpGRxPudysFGM/um+13miL7syJnlV+MEnhMyJhckbMK03dPxTOfzMRvsqbh9fI1/vNJ\nXGqUIhGgdTItf/vduHXTSORvvxvljrJ2S6wp942c/5klMxBriMPSW5ZjUMpgvHTzH7DyX8ux/ut3\nkG0Zipdu/gM1jtblroc5KRWOxhosHP68//vIuV+RsypoMiCwPJ6SYKINNfcb4kBEPqPchowztZJ4\nys+T67O6rsp/P0pJTEGaqR9y+o/y70Mox632jrPaPob6NyKkUt5bZ5bMQOGVk84r/0ZYfesarMhZ\nhZklM84rTxdufzrbtYKML95jqCTYb0E0JNR0Oh7RCXZZBN7/dLoG0gQrXRzRDjvZlqF44/Z1QpOn\ng1IGI9YQy2X1G4jdaUNV3XGhSVln2wSIU2B5DhErVgO5vPdAKoqg3FGGU821wpPGooVaMhGd4M+2\nDMWeCWKvTx02TghMjHp8HiqKoDBrIszdUlGYNVFYm10dkeWgADmCHRllLQEgyzwElyRfhizzEGFt\nyhBKynD1zs3Mw9u5G4QKdqrrqrDumzeFvrd0j+tORRF8WfMvKopgz9GdVBQBb+JPjVhjLBVF8L//\n3kRFUcgo6Zocn0xFEchwAtKJHFhLs/GWOb6kx6VU1ErPhF5UZIFXgLGp4m9U1Mq68rVwuuuxrnwt\n0/a8Qkpy7lnHAEnY8yTueUU4vO4dvCIe3t8HXjcqgF/8wCtG5nVg4RUhDUoZDAOHeIP3+ImA9zr4\n96kKKnY0vPNcIpwheYVUjoYaeOGFo6GGafsBvS6nolbsThuOnT3GtK0uAtIIq4iEfC5UqSXel/rA\nNpWOIOnJGSEnNhwNNfD6vFh5aBmKK4vOE/OQfQgsrQW0DkAywaGcDFVuW+4ow6PF4/Hi/kV4tHi8\nXwi0dOQyyrVHiZqjjtpnxhcV+NtadOA5vPDP585zFAkUMYhOLIVaRbN05DLMLJmBgh3BE5hK8VO4\nbjGdjdvrwvTdU1HuKMOs7DlUya/05IyQoihyLrMtQ/Hba2cABmB75Rb/xH96cgZmZc/BlF2P4TXr\nSv84JiKXZ26Yj1PNtUiMTcKiA8/52ybbkmtUDaVQaeHw5/GnQ6uQv+1uvPL5Szhy7kc8vXcapu16\nAvM+/R2s9lIUVxbhvh2jYXfa/Iku5b6Q/35232xqPwl2p63dsRZKtKG8ho7VHUW5o8yfECdjihyv\nmSUzWleztQm0AkuakWvN7rRhfFEBZpbMwKzsOVh04Dn4fK1/DxTNKcudBR7HYCUGlZN+7YlQgono\n6lrO4U+HVqkmgwxtjgNEfEUEZ0RIFGqylUcUw+LyFU6b7fVHa58Dz4meRNcJhgynDRm/VXanDUfO\n/Cg04SqrTIOM/Re94rurE2nPUx2JDIed6rqq8569RSAyYQ60la/yiS1fVddSR0URTM9+CkkxJkzP\nfkpYmzImfHhXkqlhd9pw7NxRaeVuRCLLkaNfcj+h7emw0S1WnJOBjLKB6ckZGD9oQlQ830fDb66M\nRRMyBDvVdeLLWgKt42lbfpHw8STjGTvYAiEeRAqAgNDzJKzwJjDVmDd8IRVFIMP57O2v3qKiCEQI\nAwIhDnIineQAwJzUl4oiuKLPlVSMVNxed2d3QacN1vIvvPcuXiefqy+6hoos8Jbz+u31M6jY0d/P\n676RkphCRa2IKAfGK2TiFaA8fNUE3GAehoevmsC0Pa9TnHIxeGfBK0bmPQa8IqSK2sPwwcs8FyRC\nkMxblo53/kWGA6QWeF3ReMV4AL+Yy5yUihhDDMxJqUzbF2ZNRCximRfyHKjeD7eP7dlIFwExoFVE\nohQLkBI/yn9T/m+59RVqMpFlYpF8X2BJn2DJcTKZkN79Yiy88QX/S3Bg8ryCj38AACAASURBVD3Q\nlYRgMaXhL7ethcWUhmf3zcaKnFUAQDmOZJmHYMGNi5CbeRfezt0Ac1IqxhcV4Ildj2Ps9rzz+hXo\noJO/LQ/j3s8/z6ZXOUlsMaXBYACUpfFIySc1AY7smx4RJADAipxViIuJo/5dy483qwOVLNKTM7Bq\n1Bq4vC5M3lWIRQeeC7kqK5hAh6ySenboAqy57b+RGJvk/7cs8xBclGjGy6WLUXjlpFYHoG13o7iy\nCMPTRyDWGIe65nNw+1wod5SdN74Dy2ipseTgYowf9AiWjlyOcZePRyxiEWOIwabvNuChgY/4P0Nc\ngarrqjDv/+bg0eLxlAORUiyjFKIUVxZh7Pa8oKukA8U5ymMUKJ5abn0FS29ZjuXWV2B32uDyttq/\nkdJoC/fPw7nmc3hm3yycaz6HyTsLkb+99XgphTYrclb5Hbw25G1GlnkI3L7WtoiIiIyz4soiqtyZ\nUlBntZfiNx9NbNeBpz1RVuBngVbBk6OhBuMHPYI4Y+t1Q659u9MGn+9nJ6pn982GxZTmd4ualT2H\nKocW2DdWAWDg5LCo0n3Bznd7n9HSZx2dYMQZ4oQ6bchy7HE01MAFF7PavqNQCqhFISvRLAPR5726\nrgr3bL1TaLvVdVUhRdmRhIw+5vQfhZ7xvYSWcLI7bag884NQ4cafvlgFH3z40xerhLXJO4GpBq+t\ntholx/agweMU6tjkhZeKIqhpOEFFERRXfggvvCiu/FBYm4Cca0lWgv/2d8WWEdFh47iTPVERSGrb\nJGEq42ShGq9ZV2LloWV4zbpSWJsyiBZHUhkOM+T9PdL3XUe82D5wnkQEMlwCP/jhfSqKoKFtDrlB\noKtfYmwiFUWQHN+TiiKQIdYBAEfbc5ZD4PPWl45/UVEE8THxVBRBs6dZWFs6fLAm/slcE+uc0zXm\na6nYGSTH96CiVsgcFutcFm/inPf3Q4YQUys/nPmOilrhdRCZtusJfO44iGm7nmDanrcE0PwRz1GR\nBV4RS72rnopa+eLE51TUyugB91Cxo+F1IgL4yyPyzr/wlkJtdDdSsaMRURbvc/tBKmrlQPV+eHzs\nJclmf/wU3HBj9sdsC/6Gp49gFtrrIiBG1FxpghGYwFWKOQp25GPc+/kYX1QAu9NGufcQBxKtL49q\npbXIxEZgcpz824a8zfjz7f+N7ZXv+R19bPU/we60Ud9PBAdE5EDEAUsOLvY7npDJULe3VZxRsCMf\nd2zOwYuf/Sfyt92N2sZazCyZgbnD5mNbfpG/TFlgv0gyv9xRBnvDTzjXXIfJuwr9/SECgLnD5vu3\n2XTPNmwes82/39mWodh6bxH1t45AWc6IiBSUjgPFlUWqop5gZcNklDHTSqCoItsyFC/c/BKW3rIc\nq29dc945VI4TpUCHlKAiq9Bz0m/Fy58vhqOhBhvyNgNoXamenpyBN+5YB4upH/50aBUOVO+HDz4s\n3D8PFlMa/jDyjzAajHjyullYdOA5vxMOuTbJ8Qol1jjZ4MCizxZg9idPYeWhZfjttU/h98P+EzGG\nWLz7zVuYvLMQje4Gf5kyoFVk1jfJQtllk7FIIunLogPPIaWb2b9iTymYIf0k12WgmEY5Nsj+PHzV\nBL+QMDE2CQuHP4+ZJTP87kBN7kbYnD/BCw/cXjcu6paKRQee8wuB1FbPlTvKEGuIwws3v4QpWVMx\neVch7tl6J8Zuz8PjOx9F4ZWTYDGlwe114fF/FPoT3BZTGt4b84H/vAcTyJC/hRIhBgq2Fh14Dj3i\ne2JDxbvw+VoTYhOKH/K7Qq2+dY1/rJAyi+QYLre+gqUjlwVtnxxPnvsqcX4SscIv8LckmGCT5Xv0\nUjo67TF32EKhCUy704aj545EhYuDDMGODGSVfpAh2BF9PEuO7UFV/XGhYgi704aq+mMRP0ZliZVK\nju3B2ZYzQo/pger98HDW5g6Ed7WeGjKSXcfrjlExUok1xFJRBLxWxh2FDDEhaVd0gt/utOHHMz8K\na0+HneRYcSVSZDgB8ZZm6Cii5V2EvNuJvJ5lCItkulhGi1hL9P5b7aW4d+tdwsu2BZaW52V69lPo\nGd9LqEugjBJjqW0CmFSBQhilm7UoquqOUjGSGZRyFRVFcEWfwVQUgYwSa6daTglrS4cPViefzRUb\nqdjR8LroAK3ODYkxiczODbziAV73i6PnjlBRK8t+/SoSYxKx7NevMm0vwsnu+r43UFErvE5Cw/uN\noKJWeMviEfcaHkdj3nHE+8xwrG38HWMch7zXUSQ4WvGKub4//S0VtcLrjPb96X9TUSsinHx44XWk\n4mX2sGeoqBVHQw2zY7ouAmKA5SVZKcYhEyF2pw1xMXFYcNPz/nI2xL3H7rRhufWVkImfUC+qytJC\n5HNq5ZmUn8+2DPULEgDg4uRLUFF7GGO356G4ssi/Gp2IlWaWzMDMkhn+cjwzS2hrw9ONZ7Dg03lw\nuuvhaKqBBx48cc10vF6+Bo3uBiw5uNjfLyImIqIBIixaOnIZcjPzsPSW5fjDr1bAktQPFlOaX2xR\neOUkLDm42C+mUu47IdsylMlBQ+vnAl1nXB4XXi9f45/8IeIBsjKo8MpJAICCHfmUa0z+trygQqCO\nmEgLFCaRPivPDxHxTN5ZiDn7nsb03VPPE/so3WeUpaqe3TcbOem34um90zBq40isPLQMLZ4WLNw/\nD+WOMtz93m14eu80vGZdiWzLUPz59v+G2+fC0oMvYOo1M/xOT4NSBvuPw/F69Zf38UUFmL576nkT\ncFZ7KcodZTjbcgYXJaSiT0IfxCAG237YgncOr4XBB/RM6I0YQywmDJ7oF5yUO8pwosGGWGMs5T5E\nyvyRfc0yD8GGvM3YPGYbPrjvH9iQtxnljjLct2M0iiuLML6owO+sQ6474mwzvqgABTtaS32N3Z53\n3rlQljMj9nO1jbXw+XxIjEvEwhtfwOSrp+JUUy0mXT0FTZ5GPPaPRygXLbvT5hfnTfrHBDjd9fjd\n3pl4vXwNnrlhPpLje2DC4ImAD1hufRkAsOCm53GysQZTsqYCgN9tTHmulQIZIsQhTjRKEWKgIIdc\nC/5rx+vCmZbTWDj8eay+dQ1y+o+CuVsq/vrvd/3HudxRhrHb81BybI9fkEPunxZTGnWPDrxmWJ01\nyP6RSd1wkj+h/j2YQCmYYJOFSJ901+lcXvhs4XkOezxYTGmIMcSGLD/KAu9LezBcHpfQ9tKTM7Ai\nZ1XErySvrqs67/dFBKKPZ2vdboNQtyoiDo90UZXdacORs5XCxUrEyp3V0l0N3pVtapBSPCJL8nxZ\n8y8qisAHHxVFMChlMGINsULHPbEMZrUOVoN3FZUaNudPVBSBDDEh8PPzq8j7vaOhBi2eFmHt6bCT\nZhJXlq13tz5UjGRkiECi4V1ExhyLDGERIOd4yppjkjGeRD8XORpq4PKJdRu12kv9peVF0q97utD2\nluYsw60Zd2BpzrL2PxwmJxsdVBRBZq9fUFEETpeTiiLgTY4Fgzf5rIaMYxpvjKeiCGIhTlCkwwdr\n4pxXAMLrfCHCtXVd+Vo0ehqxrnwt0/a8wm3exTE3p4+kolbsThuaPc2duoiKd76hs0uiRQKdvQ/9\ne1xKRa3wXkdZ5iFISbiIWtCvBV5HLoDfFew31/6WilrhnWv5851rqagV3rlIEaLOzmbZwZepqBUe\nAZUuAtKI0mWExU0CAJUonztsPpYcXOwvZ0NevGeWzPALYMj3KlFLYqt9hggJlKV0Aj+rTMoToVC2\nZShW37oGr5ev8TuZEOcPktwj4h9lIqXk2B4UVxZhtfVVnGyuQbOnCXddMhoxhhgkx/bApT0vxZSs\nqdh6bxGmZE31H8OZJTOo5NGGvM1YkbMKFbWH8Zp1Jeb+32ws+HQePD43lfRf982bWJGzCr+9tlUc\nUu4o8+8r66RDuCIv5eeUAhhS3om4lRCnFGV5sN9lz8Pr5WtQ7ijDsbojmLyzsLU01RUTkBSXdN55\nUe6PUuAV2EdSyilwm2D9VxsHSoEK+f/Td0+F2+uC3WnzixTWffMmlo5cjn6mDL8TkFK8YLWX+sf6\nkoOLca75HJYcbC3t9b/fbURqYl/EGmNggBEGGHCu+RxmfvwkfD4fxl0+Htsr3/M7Di0a8RJ88OHt\nb97EsbojKDm2B5N3FsLtdeO/ylbBktQPtY21/uQruU6nZE1FXEwcLKY0//5Z7aW4d9tdmPPJTJgT\n++L3Ny1EUpwJ5qRUPHX9LDx53SykJJrRLS4BzZ4mvPDZQqy2voqx2/Pw5Me/hdvnRqO70e8+RIQ/\nFlMaiiuLMGXXYxi7Pc9/rojgj4j6cjPz/ON7+u6pqK6rap188rROPk3JmorVt67BwuHPw+b8ye++\nRYRu5LzYnTbMLJmBKVlT8adDq2AwGlqPx6HVePHgf8LtdWPt16/D4XTA43NjziczYXfa/IKmU021\ncDTVwAsv3B43TjTaMNxyMzZ/9zdMyZqK7ZXv4dlhC1DTcAJ2pw21jbUwJ6Xi1S+W+12/lKUBA4WO\n5L+JGIjcWwDazaq4sghP752Ge7beifFFBSh3lOGp62eB5NOI09E511m0eFyoqD0Mq70UCz6dh5Ru\nZrxevgazsufghX8+h7u23Oq/x92beR/sThvGFxWojn/iYtTedRJ4zZC+K0WVwbZv714SrFRaKMGm\njo5IkmJMzC9Basz++Ck0ehqYrS2D8dXJL6koCpET1EDbNf/hf0T8SvJyRxmOnPsxaKlKVkTbwrbW\n7fZxrXhSQ2SJKaD1vN+xOUfoea+oPQw33ML3nSS2RSa4mz1NVBRBSuJFVBTB6aZTVBRBt5huVBSF\nAQah7clIzNjbJo/sAgU7MhJdvGUIgkGeX0UKaXnsxXXEUnn2B2Ftybj3yJjIl+UGE+nuMgTR713R\n4oJEiAZ3IRklcs1JqYg1xPoXV4lAhounDBek4soi7K7aKfR3zOvzUlEEgYstRWCKM1FRBBnJl1BR\nFDJKwX3206dUFIGj2UFFEbRAF0ZHCn85tKZTvjep7RpNEnitaoV34QNvCRsRDiQ88JZr/uCHHVRk\nQZlvYGFQymAYYWR+H+R1oeEVw4lYyMXriiyjDLoWeMdRybE9qG0+ybwwSISrtKzFrR1FZzu78Zak\nEwHv/fiSNhHcJYxiOB50EVAIAl8ylC+yRLwydnsesxBoXe56f/KNlLMhyf1GRQ1lZekoAhHkBPZN\nWVJoZskM5F02Br/JmoYlBxfjNetKjN2eh/Vfv0OV8xq7Pc9fciCwJFFWyhDMvuEZFFz+INKTM2Ax\npeGerXfi3q13YfLOQswsmYH1X7+DZ/fNxh3978LTe6dhQvFDWPvN6wCAAT0ux9pvXofH50Gd+xye\n3jsNT++dhiX/XIyn907Di/sX+d2ENo/ZhnJHGfK3tbp7FH74H3h67zQs+mwBxmTeh/wB98Neb8Mz\n+2ai8MpJyM3Mw6zsOaioPYxn/28W6lrqMGnnBEwofui8fWzv3Kqdm/YeLsjnyLkjDiVKlyTyXURI\nMyt7Dp7Y9The/nwxGlwNqG2sRZopHbHGWBRc/iDe+uYNFFz+oL+MWqD7jvIFmIh1yL8XVxbh0eLx\nfiehYBMvSmefwPaJSIQ4U9mdNqzIWYXVt67BqlFr/G41joYaFF45CTn9R6HJ3eQX2VhMaZiVPQcl\nx/ZQ18bcYfPRI6EH7uh/F5ZbX0a18zicLU7UNp2EwWCAF16caq7FyeYa2BtseO+7Tf7VtdV1Vcgy\nD0FSXBLOtJyGDz48d+D3qKo/jiZXMx664hHkD7gfT++dhqkfPY7iyiIU7Mhvcx2ahbnD5vudb8YX\nFcDRUAOv1wtHYw08PjdeLn0Rbq8bJxtPYtbeGZjzydM42ViDGEMspmT9P/RO6IO137yOY+eO4nRz\n6+StwWf0C4GKK4sweVchxm7Pw4JP52HJLcuQGJtEHe8Ze1rPfW4m7bxwvP5oq6BpVyHONp/BpH9M\nwMy90zF5ZyEAYOkty5FtGQq704YmTyMaXI14YtfjuGvLrXhi1+M41XgKSw++iLzLxqCbsbVG+snm\nn63hTjedRrOvCQmGBEzJ+n/+czp5ZyFONddi9KX3wggjxg+agJ7xPfHuN2+hruWcX1gzduD9SE3q\niwPV+zFz73S0eFpgc1Zj+u6p55UGVO6v3Wnzux7NLJmBce/nUy5GJKFdXVcFc1IqLElpmJX9DKZk\nTcWUXY9h6cEXcVGSGVa7Feeaz8GclIpt9/4dT10/CzP3TseEvz+EqvpjmHT1FKzIWQVzUirONJ2B\nvaFV9HP7phws+mwBHil6yF+WkBx3MnlIUCtdFgrlvYHsQ7AJznDvJWrbK8V+4SJjgkznwsbpqcdq\nK5utrxqJsYlUFMWRs5VUFMFq66s403Ja6P5v/XYLTjTasPXbLcLarK6r8gtGRZGbmYeFN77gF5qL\noNxRhp+cVUKFRTJKQk38+yP44Mh2TPz7I8LaXFe+Fo6mGubVgR3Juq/eoKIIbPXVVBTBlu82UlEE\nMpITRoORisLaNYptT0ZS7kjdj1QUwfpv3qGiCJ4pmUlFUbz91VtUFEFnTe7rnE+P+B7C2pLhbCYD\nWW440VBmCtDfn0QjYzxlW4ZSC3lEYDGloV/3DKEupmQRXKS7QJmTUmGEUagAirjZiXS1k+WwI5ov\nTpRSURQi3AcCefTqx6kogp5xPakoApOx84QfOjS/uXYq03a87/OD2krWDWIsXSeifCrZd9ZjwAtv\nOS9eeBfkiUh6844DR0PrAmiRrn9a4BXxzL1pPuIQj7k3zWfuA+9isOHpIxCDGAxPZ1usQxYMsi4c\n5C1lxesmVdt4koos8DpS8cJb0o3XmY13DM69aT4SjAlc18EXJz6nolZ4xXC8gkCeuXHdWzEAkqgm\nExZKlwalqwXQ+sLYNymN2k4L5HvIio51uetRcmwPVv5rOarOHcfUjx7HohEv4TcfTcRfbvs5sUCc\nc+YOm4/ffDTRLwaalT0Hz+6b7e/zqcZTWHmotb+941Pw8ueLYYrtjj8dWoWFw5/H4/8oBNC6gjOt\nez+UO8owZddjMMV2h9FghKOp9cdx03cbALROTCbH90BVfRWS45Lh8wF39L8Lc/Y+jTsvvRtbvt+I\ncZePx6bvNsAII4ZbbsGn9k9wg3kY/nXSClNsd8QZ49DkacL/fvc3AMCqQ8uR3j0DFbWHUVF7GL/b\n+xTccON3nzwNU5wJyXE9UOc65++DEUb0ju+DV79YDgB45pOZgAHoHpeMP/xqBRYdeA7jBz2Ch6+a\ngJTEFEzfPRVH637E3KELMS37Sb9AQSnaUTt/5L9JuaZg55e4sRRc/qB/4sBiSsPcYfNhTkqF3WlD\ntmUoVuSswuSdhX7brieypuPSnpdi3qe/w++y5+Gdw2vRu1tvGGDAG1+tQW3DSaSa+mL1rWv836sc\ne2QlkLIPG/I24+3cDcgyD/FvQ8aCclwTZ5S5w+ZTnyUuPuty18PRUINZ2XMwfXfrQ67BAPy/ITNQ\n13IOhR/+B2oa7fDBh9GX3osTjTastr6KA/ZPcbrpFE42OGA0Gv11wPO35SE+Jg4j++Vg1aHlfrGK\n09Oq3OwZ1wstnhY0ehoQi1h44AWMBvzp0CqkJKZgwafzkJVyDc62nAUAJBqTkHtJHjZ9twEnm2uw\n6LMFiDHEwhTbHU9eNwsL98/DT/XV+P709/D4PLDardhQ8Q56deuFKVlTYU5KRc+EXqhtPomTDSfh\ngRsLblyE1w69ilPNtfh1+m3Y91MJbrQMx5LSRUiO64E0Uz94vT7UNjng9nlwpuUULooxw+1rda96\n4/Z1AIApux5DSmKKv2QW0Ko2PnruCBZ8Og/fn/4eb3/TZp93+38jzdQPOf1HYekty/F6+RrMu3Eh\nAOClzxZh4j8eAXytN/gNFe+ixnkCvbr1hsfnhr3BBnO3VNQ21cILj/86H2a5Cb9M/7X/emn0tIoJ\nm33NeOmz5zHvxufgaKiBz9f6o/svxxfw+DxYfWgFvPDCCCMmXjUFvbv1xnLrK7g38z44Gmvw9jdr\nseDGRRg78H6/apqMFeW4IdfWutz1ftcwUiqQuEhZ7aWYsWcqHrriEbz51euIi4mFo6EGc/Y9jdRE\nCwb2vAIVpw/D7ft5v6Z+9Di23lsER0MNjDCiwdUAj8+DFz5biEt6XAq3142E2AQkxSbhdPMp9ElI\ngRExMMWbcPelYzB5ZyEuTr7E71j10s1/8F/XgaXLlO4+SiGOct+UpCdnYFb2nKD3/3DFhMrrlBBY\nai7YfchqL/WXQCMiRNErBXUuXJIFJrpKbf+koigq636gogg6ezIlXOxOG47U/ei/h4rAai/FkoOL\nMDx9hLBESpZ5CHrF9xHqLHW2+SwVRTBu0IP44Mh2jBv0oLA2ZZQwkoXb66aiCE40nqCiCDzwUFEE\nXnipKIKz7rNUFEG2ZSjeuH2d0CRns6+ZiiKQUQqtxdNMRRGYk/oCp9qiQM42n6GiCFgn1HQim/zL\nC7Dy0DLkX67uTspClnkIMrpfLPQ3VwbR4oajnPsT1VcZbUYbMvZbdDlXAH4nbpFEQ6mCA9X74YUX\nB6r3CzuuvRJ64UTzCfRK6CWkPQCINcZSUQQynodNcSY0tjQKdReSxS96/4KKIugR3wOnXaeFimib\nveKeB3X4YHVAGZ4+AgYYmIUDvGNV6R7y8FUTmNrgdYHh5dGrH8Puqp149OrHmLYfnj4CMYZY5nMw\nesAY7K7aidEDxjBtT+YbeeYdeccB7znk/f7HsiZh03cb8FjWJKbt15WvhQstWFe+Fr8fsZCpjZ4J\nPamoFYspDb269WYWTfOKwXj7z+sqJmLBK6+TK68zoCgBCqsQhXfedOu3W9DsbcbWb7dgWvaTTG2Q\nXHUq49wQr7CUdwzwCFq7vBOQ0jlB6QgBAIVXtt6cC3bko2BHvl98Q0olAUCcMQ4z9kxF/rb2HYGC\nOQsRyh1lmLl3OprcTeiTmIJYQxyyzEPwl9vWwpyU6nfcmPrR43476b/cthaOhhqM3Z6HRQee87un\nAEDeZfcAAOINCTDFJ+HezPtxrvksnO56fPDD+6h2Hke9qw4eePyuNOlJGahtPukXABHijfFY+83r\nbUl5H+pc52BrqMaqQ8vhggsfHNmOqvrjfvGBF158av8EAPC54yA8Pg/Ouc6itvkknO56/wS8Dz7Y\n621+hyAPPEjpdhHijfE423KGmgQ2oNUxpsHdgKr6Y1hufRmppr74j0GFON18CrWNtVh96xpsr3wP\nxZVFWPDpPORdNgYurwuLPluA9V+/g9Hv3YnJOwtxb+Z9eHbfbBRXFmH91+/4HXGU57C4sgj37RiN\nF/cvUl3BRsbDmebTWPTZAuRvay27Nvq9O/H4zkcx4e8PYez2PLy4fxEOVO9HVf1xPL13Go7VHcWq\nQ8ux6MBzeOnmP2Dt16+j6txxvFz6IowGI7xeH3p3S6F+WNZ//Q6m755Kleki53nGnqn+Umq5mXl+\nhxaC0vGHiIdW5KzCcusr/nFIXHzW5a7H1m+34NHi8Xj64+lw+1xYOPx5NLga8bu9T8HutMPlbcFj\nV06GuVsqPjzSKkD7n4p1GG65GSca7PAZfJh6zQy8ccc6AMBPdVWoa6nDO9+shQ8+NHvpchFnW874\nxSpuuAH4MG/oQqy+dQ0WfDoPR+t+xP/P3n0HRlGmDxz/7qYnJKElBClSLJRD0AgISi8JBEho0i6I\nYAFFQEApUo4iIAJKURSV4+BABQkJvQiiCIgYDeYEfnpwlIQEQmjJpm37/bHZIRtCye5sNoHn889L\nQmb2ndkp78w88zxbz8QppRY83T05cGE/AFqNG77ufhjNBnSGTGYcnsr1nBv4ewYw/5c5GMwGFics\nIC3nEoEe5Xn7hzd5fktPruZewQ03DOgxY+Z67nWy9ZZo5O+SvsVD48n6v75Eb9JzJTedLg93o031\ndjSv0hIwYzAbyDPmkWvM5cWdf+et78cS5BvMik7/ZPKPbzP2+zfovimMtX+sZtKP4/Fx8yXXmMPM\nI1NJyjjHhcwkDicfwl3jQWLaMVYkLqfvo/35+NgSDl84RFrOJYxmEwYMzD0yk4H1onmv9SKu513j\nlUavUdkrmBGN38gPdtHilh/PuTdpNzF/rVf2lYJvfJs0ZuYcmcGQnYO4mJXK848O5EbeNcvfKQ/G\nzMw+Mp2x379BDb+azDs6i0GPv4CH1oMNf33FqsSVTDgwlgkHxjIu9G3AtsyXtUyftSTXkJ2DOJl+\nglcajWDUvhHsPL2NF3f+ndPXTjHzyFSSdeepG/AoAHqTnmTdeX6/coymVZ5Rjr8AkXV6szT+Qyb/\n+DYaNLi7uQFQ2TuIwfWHclGXyvXc62TlZ1DLNmRjxsQLDYby8bHFVPSpxLQWMxi7fxQ7T29jwoGx\nrP1jtXJjOjSkqc1NamsmMeu+0XdzlFKisfDNzPjUo7z67VDl2GHdP++lnKA1U1mqLoWecRE2mbms\n2dyswZ2Fz09W1uOUtURb4QG5munSxf3J3rTGRUnPTbdp1eKMh83OeKtUjTfNCjuZfgKDSa9qWaiT\n6SfQm9Wd5/5z+7ial253et2ifHduj02rhvUnv7Jp1ZCl19m0alAj5XNRdCadTasGy9jtZvsgcc8f\nf7mr+F6NMzIIVPWpatOqwRlBVb9fOWbTquG7pG9tWrWcv3HWplXDifQ/VJuXcMyVPPVKd5269pdN\nqxY1g7jhZqbh0p69xBmcEazkrAAoyVikLmeU2UpMO0ZyprrZMZ3BGYEgVfxCbFo1XMm/931FxZKK\nZUmQbzDuqFuyLsg3GDeVy+DdyA98u6FiAJy/h79q8xKusfP0DsyY7S4lZX2R2toWlxoP7h0t/xIa\nEmrTFpej6wBAa1a31HRxWINiHQmOdfQezsHkAzZtSbNu//buB2q8dOZoJp9Nf24kPeey3VnPHQ0G\nc3Q/XNbpEx72e5hlnT6xa3rrS4RqvkxYXP935aRNW1yOBhE5mt3W34BXvwAAIABJREFU0YxeLaq1\ntCQdsXMbBscz+TgaCOVoQGLbmu2pGVDTrmkf6CCggqVsesZF8MbeEUpGiKjYCMZ+/4ZycMsxWgIE\nFrVdwqRmU5RSTxt6xDL1mRmk6i4w4tuXbErOFPVZO09vswniKHhjoFFQYxa1Wcr81ou4lnuV15tY\nPmPm4elK39KyLnH+xjlSs1IYtnswY74byaQDb9OxRhgD60Uz6cfxjNwznJ5xEaw6/jkAeeZcJUDH\ngIEU3QUlWMfqSm46b34/klMZRW+EeaZb07mazCZVHsgVfGhgxkyWXkeW0fJwomDkv6fGCwCdIROj\n2Uh6djq5hlz2nt/DqCbjWHX8C8CSEentH8ZyLuMM/z6xigBPS5To1lObSdadJynzPPOOzuLx8vV5\nadcLvPn9SK7mXCEx7ZhSwig5I4mZh6cz4LFoliQsJLJOLyWwYefpbfmlpsazqO0Stvf6ltFNxjPm\nqXFMPTiZtOyLlPeqwPXca3SsEcbihAXMOlIwUteMh8aTq3np7D27h5TMC/h4+GIwGjGZTWi1lsHZ\ngMejlXJrb34/kkx9Bn0f7c/wPS/Z3KBz13owrcUMAJvybvGpR6nmX51FbZewqO0SmxJG1rJlYAkS\n6hkXQZeNHdh/bh+zj0xHg4b03MvcyLUM0jQay3fj5ebFldx0Vp9YiU6vU97Q1mrcWHX8c8yYMZqN\nLEv4kBHfvsSGk19jwkS/xwbhl59uzkt755OFGTPLEj4kxK8qY54ah7+7ZYCQm59S+HreNWXgYzIb\nyTLo0GBZZ9fyrnI1L530nMvKPuuOB2AJRtOb9WTob2DCZPN2+eKEBWSbLAEkJkzojJl44gmAr5sf\nK4+vYP1f65TANrDsM9dyrmHEyMXsFIbvsaTSNZsholYP9EYDi39bSI86vbihv87Twc3w0HjwQoNh\nVPSuzJyjM8nUZzD14GQu6lJ598g/+Ovan6z/ax11/R+B/H3L292HuT/PpJJPJQI8AvkoYTGXcy8x\n+8h0Ludeyl8Wyz6kRUuToKeK3C9NZqMSHGQw61mSsIgMfcYta9+EZb/eeiYOg8nA6uMraV2tLY0q\nNWZJwkJ83H0J9q1Cena6EpS2/9w+UnUpzGu1gKkHJxMV15UhO/5OaFBTJcDv9LVTjNs/mtSsFNy1\nHoxuMp6ng5qxN2n3LW/6/3rpF/ae3WXz/aw8voLkzCS0GjclK1RaziU+TliKwWwgQ2/ZVp+o2Jhs\nYxZmzBxMPoDerEeLG0G+wRhMeuJT48kz5TH++9G3HKer+Ve3lDD7/g0i6/RS9hmDWc+itktuCbBJ\nzkiySUtu3f+6bwqzCdgreLO2YGBR901h9NgUzku7hnAhM5m+j1oGk0N2DlJuGjYKaqwE9xQso2ad\n19yfZ/NW6GSlb9Z9Hm4eD+4lEKioIFXxYCh4XHNUWQoGuJyfxvWyA+lcC5tyYIJNq4Z3D//DplXD\nsl8/tGnV4IwyPs4oKWAdy1lbNVgf3Kv5AH/f2d02rXiwWIP71XItP1vNNRWz1pQVzghWAucEvd7u\nOlyUPH939R48Opr+vijW8b7aASZqH3vKkrIQrFSWyquVJWp/942CGlOtXHXVM3Wp/XJPkG8w7hoP\nVQNBnJFp1dPN06ZVgzOyCzUOfsqmVZNb/ktwajmZfgKj2aDqCyF1yz9q06pBzUxNwn6jm4y3O+uC\nq8vfOGO7LK6tp7bYtMXlaBkjAI3W/iAgRzNXOJp9BBzP4vJstVY2bXGpEYjlCEeDJ8CSycfXw8/u\nTD7WwAtHAjAc4WhpzJF7hnNWd5aRe4bbNf3+c9/ZtPZwNACkz+PP27TF5WgAjKMl2Rx9aVaNsn4n\nr5ywaUuao4FM1fyrs77verumfaCDgOBmiaXkjCQMZj1pWZdITDtGbNQ2RjUZR9zpGAbWiyZVl8KL\nO//OG3tHMPXgZAymmzdIGgU15rPOq5SsHmv/WE2vzd1sLtJSdSkMaTCMl/cMIXJTF/pujrql3MzA\nbX1ZkbgcgIfKVeOjhCUkph1Db9KjyT9fzzw8HVP+A/66/o9wJTedZN15tp6JY+aRqZhMJtb/tY4L\nGRfu6WanmlH6ask22t4g0+ZvprnmnEJ/l0VaziXOZ5xl/V/riKzTi7H7RzH5x7e5mnOFliGtuJKb\njtlsRoOGvUk3H6Q0DX6G9X+tI+qRPoAlcKNRUGPmPPs+C+PnszT+Q/53/TT7kvYQ4BnIp79/TI/Y\ncCbuH8/gnQMYtnswbat1IC3rkqWEW8IC3j7wJll6He+1WsSkZlMJ9qvCL5csGRYKBmWYMZOXn45/\n65k4jBjJ0N9QAjqy9dlczE7h3SMzyNJnKdPlGfOY+/NMkjLPMamZpf6h9QbgzMPT6bs5ihC/qmyK\n3MbSDst5adcQpfTS2P2jbAIHrGWQwFIWLDNXR2pWCtMOTcKECQ+tJwEegVzJTWfc/tFk5mVixIjO\nkGldCCVQCyxBctbtTYMGXw9fMnN1rDy+AmN+uarr+msEepYnz2x5mPdsSOvbbgNXctMZsLk3b37/\nBhmGG/kfaZm/p+bWi/87BaMZuLmvuhXjTe08LN+RNUuRv9utN4Ot/wfQPKQFo/eNVPbHi9kpnLtx\nlpi/1tMypBXbzmzG282HNSf/ic6QicGkR6fP5Ebeda7kptsEwpzK+K+yTDpDJnqznq2ntpCWc4n0\nXMsDa1NRgT6Y+CXt9lk99AXWhfkOxweP/MApE5ZsRNYgKDNmruddQ6fX8fb3b5KRd4PB2wfw5vcj\n6bapMztP7yDPlMvTQc25mJ3CyuMrlHkaMSqZenJNOSxOWHDbvmabsjiru/XN6oL7jtXl3Es23/+p\nGzcHU3uTdhPoWZ4+j/bjZPoJbuRm8PGxxUp/dp7ewcBtfZXAv+SMJCUY05pRLFWXQqouhbSsS0pw\nnfVvrUGk1vTZoSFNGfj4YLzdfJTsRwUzycWnHlXK8bWu1haD2UAln8qMf3oCAR7lee/obCWYau7P\ns5nUbIpyjhi4rS8jvn3JJiNQqi6FLH0W847OoltMmLIsI759ie6bwgCo4luVtKxLd7xZXPiGcsGf\nHbnJLIFFojRzRkYUZ8zzct5lm1YN1gfNaj5wtgYuqvnW88nrJ2xaNfyWFm/TquFydppNqwZnPDQW\n6nNW4KOHm4eq82sSHGrTCseVpaBXUXzWDLRqUOMt9MKs1/JlYWztjKykZWG5nRGwU1bKq5U1zthG\nvd3U29/B0seouK6q99VNo+4jgXL5L/5Z29I6z2Rdsk2rhjPXT9u0agkNaUps5HZVS+HVq1QfN407\n9SrZ/0C5sMD8EnCBKpaC83LzUm1ewn77k/fafS5zNICkNHA0iKXFQy1t2uLq8HAnm7a4QvyqEuxb\nxe7gD0epsQ38fuk3m7akOboMjpayUiNz39yfZpOhv8Hcn2bbNf2Gk1/btMXlaECgo4FY3ep2t2mL\ny9EgJDWcuX7Gpi0uRwNg1MhI5QhXl2YEx/dFRwOZkjOSeHnLy3ZN+8AGAVmDbqwZfWoF1mZw/aGW\nMk47B7Dpz42s+M9HRNbpxco/VmAwG7iUdZGI2j3QaMjP/pOilFoCSzmbYbsGM/HAON4KnawM0q3Z\nGD5KWMKEp6cQ13MHSzssv6VP1owtc3+ezegnxwGWoB9PNw+mPjODEL+qTGsxg2CfKnhpvYt8KGIN\nsCj8oLwwNyxvEtwpEKC0uFswkwkTKboLvHvkH/R9tL8loKdSYw6m/oA5v3RZ4SARa+YD64WkwaRn\nVeJKViQuJzSoaX7wioHKXkFcz7vGxewU9CY9K4+vQIsb3lofFicsYPDOAfzj0BQ8tB60fqgdaTmX\nmHZoEhMOjMVsBjeNO24aN7w0N28kau+y2+Xml0AzYSSqbm+u5lylml8NPN088XbzwWg2svXUFiUA\nIS3rEjnGbCVQLC3rEifTT5CsO8+Gk1+TZ9QzqdkUUnUpSgABwKrwtSSmHWPm4emU8/LDz70c2vyb\nALmmHG7oLdlW0nMucy3PNs3ZnW54W9d5rUJ1PrVoeTq4Geb8ElWHUn+843qwbN83vzcvrRdPBzVT\ntnF7GO/Q7woeRUeiWredDGPhrDm21v+1jqt5NwcjFb0qEeAViAGDsi3qDJnoTXoy8zPwZOgzuJp7\n57TGmvztpXD2Lu4Q+OQoa7CQn3vRN1qu5l7BiJHONbvg6+GHl9YLo9kS7JWiu6DsX4VvoOeUwMNM\nncH24XumPoPFCQt48/uRpGVfxF1rebCmxY1lxz7kas4VXtr9At03hdF9Uxh9N0dRr1J92lbrwKvf\nDuVk+gk2RW4D4FzGGSUTlzVYxxpgt/aP1az9YzUrj6/gSk46HyUswWxGyeg24tuXeGnXEK7mXGFp\n/IesPL4CN40bXWt1Z97P73Jdf5UK3hWVfmfk3WDWT9OVcmGvNBpBiu4CaVmXbMqvzXp2Dg+Vq4aP\nuw+Tmk1h2qHJnLtxluTMJE6mnyDXmMNLu18gKjbithfuhW8oV/OvrgTI3uvN66IyHlmPUdb/K5jB\nrCzcvBdC3Lvc/MBZa1taWQNuC2egc8R1w3WbVg3OCCgT6rOOHW83hrSHM0qTCCGKR81SNo4+vCmK\ndayu9nFC7QDE+NSjt7wc5yhnlS1zRhm0caFvq/4dOevc8KBemzljGwX196UQv6rU9H9Y1Ye4oSFN\n+azzKlWDS56s8rRNqwZnZDN82L+WTauGKznpNq2anPHw3l2jbnah8c0m2LRqkCCg0sGRc1mQbzAe\nWvszjg1qOJjnHx3IoIaD7ZpeDY4GgLh6+lRdChd1qapmQi4ONbLofNljIxo0fNnDvlJUjmoU1Jgg\n72DVM/zdKzWCH15sNMymLS5Xl1FytJRVkG8wbvlVIuzhaEk6cDwTjqOBVI4GQjnK0QDk67nXbVp7\nOBpY3iioMSG+Ve0+FqhxPLQ3U/4DGwRkvcG6LmIDoSFNmfrMDOJOxzCx6VQ8tZ60qNaSTzuuJO50\nDC2rWtLFmTGzJGERyRlJTD04mbH7R9G5ZhcmNZvCwvj5zHp2DrUCazOv1ULiTscoF9LW7CzTWszg\n/fg5pGVdYuz+UTblYqwBSWlZl9Ab9axIXM7SDsvZ0COWJe2XM/fn2fTdHMW0Q5O5nH2JXFNOkcvl\nXijTye0CTowYlRJKZcXDfg8X+fsnKlp2PCNGlh9bSrLuPL+k/YyXtugLBk888XcPoHq5Gkotyqu5\nV1icsIBzN86y/s8vlb8tmKnEGozhhht55lyeDmoGwHX9NcJqdmVf0h6eDmpGhj4DL60345+eQJ9H\n+2E0G22yGN0tqMlaxsqMmcUJC5h5ZCpPBj3FlZx0dIZMAj0DWf/XOtpW68CofSN4adcLpOpSmfrM\nDPaf28cLOwcCUNkrmJXHV3BBl8Rb348lKrYro/bdLHmXqkvhlT0vkm3IJrJOb3SGTKXMUkGmQoE4\nhbcxK2tgmdWvhd6yN2Fib9JuTJgo5+5f7AC0XFPuLZljqnhVUcp93YvCfSzoqt6+gUhRtGhx17qT\nkXuDQM/ySvYid9xxw41KXpXpUL3zPc3rToFLzqZkfipEgwYzZlYeX8GlrIvkmnLx0ty6v+UYbY9T\naj50vVcNK/xN+bcJk5K9yYQRo9nA08HNCPKpQq4hl9TMFDL1GQzePoDFCQvoXrsnE38cR1rWJeb+\nPJtg3yrMenYOi9ouUTJpgaU2rqWs4FX8PQII8ApgaQfLMXzV8S+IqG0pD5equ0BqliVDkgYtJrOJ\nlcdXcDE7BS83b4wmIy/vHsLLu4eQmpnCtZxrvLx7CFGxXVn820ImPG0511izE40LfZtGQY2V7F8A\n2foc3LXuTG0+E7AE8VX0roSH1kMJBCxKwYv6gpnC7uVtU2uGI+sNeeu5zxokZQ2aAstxxxogdCTp\nSLG+SyGEEMJe1useNa9/nq3W2qZViwQACXH/cPSmd1GSM5JsMv2qwRklxgqWTVZThsrZrJ0RWBSf\nepRX9ryoenCJM4J1HuQyY87YRp0RzFvNvzpTn5mh6jytpcXV/N6dUXon25Rt05ZWbvlBNW4qB9c4\n4/gUGtKU2Ch1swsBeGjVDX7r8/gAVecn7OPIuSzEryqBHhXsDmRb+8dq1v+1jrV/2Fdy3DpecGTc\n4OpSUOF1IhjdZDzhdSLsmj4t6xL6/Mon9nA0eKJepfq44eZQ5rFNf27EjJlNf9oXBORo8EVi2jEu\n56TZnfXa0ewhLaq1xA03h0px7Ty9w6YtLjUCMBzRt14/m7a40rIuYcRo934wq9Vc/D0CmNVqrl3T\ng+szo8Wnxtu0xZWl19m0xZWWdQmj2WD3dxAaEmrT2sPRYLZUXQpXc6/YHVQ5qOFghjZ4xSWBrQ9s\nEJBVNf/qxKceZWH8fMaFvk3Px3oTF7WDEL+qhNeJYFzo2xxJPQyAr7sfZkz0fKQvn3T6nM41u1jK\nQP0wlnGhbxNeJ4L13WMZ1HCw8uDUOmC3zi+mx1bC60SwLmKDzYNk688L4+eztMNyJTipmn91QkOa\nsi5iAxt6xLK84+f8M/zfTGs+iyDvYCp7BRPkbTkR+7r5saXXLqXMkq+bHzX8H8bf42YZo3qBlpPu\nsyGtmdp85m2DIqr5VHPK+tagVQKTfLS+RQZCjG4yntFNLOvFTePOsyGtqeRVmQtZN9ONlXP3Z2iD\nV/DUeNKupuWtuvKeFZjcfBrTms9Ci5Yg32AqelkOrIGegcrFWB55ZBhu0LJqK5b/vgR/D39MmPDS\neqEzZJJpuDXji1/+dw+W8lLDG73BscuWNITuGncSLv+KFi2p2SkEepYn25jFW9+PUUoPFUfBrEWe\n+YEV285s5u/1hmDCxD9avMvoJuPZn7yXJe2X817rRWjzH2isOv4Fi9ospW3N9vSoGwVAWM2uBHj5\nM6/VQtZ3jyXEr6qSDWhFp38S4BVAaEgowT5VCPS4mbrVW+uDFi3BPsFo0ODn7keuKfe2WYCMGJWA\nLICutboBlkAdsATGVPSqxLTms6harip+bvcedWl5YGP70KaCRwUu5l4s8u2Q4j7gsQZ0FZeHpuiL\n3IpelTGYDBgxkZF3Q8leFOBVHq1WiwatTXm64vLUeOHnbl8tXDW0r94JM2Z83HzJNmbxbEhrgvxs\nLwis34FHMYK0nOGG4QbPhrS+bUDktjObyTFkcyXXckFnNBlJz7GU3TmUcoCqfg9ZSoS1tWT2mfuz\nJXXmqvC1yrF5ZOhoPmizjAreFcjQ3yBbn0OIX1VCQ5oypMEwFicsIMugw4hR6Ye3m7eyr3viRaY+\ng7ScSyRnJpFryKWybxBXc67grnVnXquFGEwGNvz1FeNC32b4npfoERvOsF2D6bs5isS0Y4zaN4Jh\nuwZzNSed91otokW1lkz8cRxmk5kJTd9hWosZvLF3BD3jIm65gC98Q6ng28XWc2TBvysY6GMNGJrU\nbArrIjYA8PyWKOW8ty5iA5OaTSE0pKnNOW9eqwW8vv11B75Z8SCxlmMsqiyjEMK1nLF/OmOennja\ntGpwRoYPZ3i1yQibVghxZ0+HNFdtXi2qtUSDxqEb90VxRiCM2oFFoH4Gi8S0YyRnJqlafhQg25B1\n9z8qhhC/qlTxrarq8jsrWOdBLzOmdiAEqB/MG596lFe/Hap6UNmNXHWPI84oFWF9ifJuL1MWR/1K\nDW1aNfh5+Nm0pZ0zsguZTc7LVi5cp3q5mnZvL/vP7eNy7iX2n9tn1/T1KtXHHfszR6hRwsfRYG5H\nsyHtPL2NJQkL2Xl6m13TNwpqTPVyNezOXOFo+RoAN61jwZGOBtHUq1QfD42H3dtReJ0IpjafaXcg\nVpBvMJ5aT7u3AQCt1rFH+OF1uuCmcSO8The7ph/SaCjlPPwZ0mioXdM7GkR0OPmQTVvSqvlX56MO\nnzo0vtt6aotNW9IczSQU7FvFpi2Ltp/eYtMWV2hIUz7rZH8WzZ2nt7Hy+Aq7j+cABpN9ySIeqCCg\nwg8uraVKJh4Yz7jQt5n782yltJf1/6wZfqqXq0F5rwpo0XIo5QBv7B1B7KmN+eWe3JU3KAqWUymK\ndSOxBvdYL7YL/mwN/inI+vPY/aOY+/NsWlRrSWXfINZEfMnuvvsZ3WQ82cYsTqafYErL6QR6lsdo\nNhBVt7flgbJXMCG+Vckx56DFjVM3/mLlHyswYsQNNzRoCfQorzy4n9tmARU8K+GlvVnOx9fdT8mG\nA9CtViSVvYLxcfPFTeOmZDuxTKOhW61I/N0tmXaeDWmNh9YDN7RU9avG0AavYMLIucwzjG4ynh29\n9rI6/EumNZ/FOy2nMaTRUB4t/xj/DFvDpl5b+XfE19QKrM3q8C9ZHf4lG3rEEp92lM/D/kV4nS5U\n8alKOc9yTPpxPC2qtWRV+Fq29NzF3ucPsDr8S77qFsML9S0p7zpU74wbbhxKOUBF70rkGCzZSnJN\nN0tYBHpa6nQObfAK1cvVoIJ3RQI8LL+r7B1k+Uy/EDy1nkxuNp3POq+iRkBNvN18+EeL2WjRElKu\nKpOaTcND44Gbxg0tWp5/dOAtwQj+HgF4ab2V4C2wBEsFeQfzkP9D+LsH8HBALRoFPYGn1rKOP01c\nxrjQtwkNaUrbmu15OLAWjYIasyp8LW1rtmfIzkH0rdePIO9gXn9qFGYzrEhcrmxL81otYOKB8Upw\nw9yfZxPgGcjSDsup4lOV6uVqsKLzSmoGPMzwJ0YCoM0PovJz96NbrUibvnppvRna4BX+7/pJS3CW\n1pPXnxrFtOazqOhXmecfHci2XnvY+/wBRoaOZkn75VQt9xAVvSpRzt0fD40H5b0qUMWnqs2bM4Ge\n5fMDkUKoXq56/udZtq2a5WvRrVYkFXwqKNsYgL97ANXKVae8ZwWGNnglv8/lcNe480KDYco8rNt6\nJa/KpOWkKT9bt1/rz1q0ynbv516OoQ1eYVrzWQDozXplX/DQePD8o5YsTIPqDybLoGNa85m80WQs\nYCkPtibiSzZH7eSdZ6bZ9PlOAt1vrRmbZ84l6x5La90ug9a9uF0w1dFLlgwu1jd9fk49TO9H+tlM\n82KDl3HTuCulxazbf2F1/e2vaXsnWrRMaz6LmS3ncCknlUBPy3ZSMPDRA0/MmC3lzcxGXm8yBrPZ\nEoj3/KMD2dJzF5sitynH3/ScNF5pNMImC5D1/wY1HMyghoOZ1nwWO/vstfn9tOazyMzLQIOGN5qM\nJdinCnrTzfR9Hu6W9ejvEYAZM9dyr/JKo9eoXb4Oyzt+Tr1K9bmUdZFJzabQKKgxGo0l0KyKXwjT\nWsxgYfx8pj4zg4cDavN52L8Y1HCwMjCpHlCDD39dyNyfZ/N6k1Gs6PRPm8GKtURgwRuK1vNickaS\nkiJ95+ltyt8VzPpjPZ4sjJ+vTO+u9VDeJE7VpSg3LAue80JDmrKp3ya1vm5RSvhofGxatTSr2sKm\nVYOz+loWWIMzXR2kKUqeNTDb2qphaKNXbVo1OOMGw2fhq2xaNbSt2Z4g72Da1myv2jydwdG0xUWx\njt/UHMdZr5HuVjq5OOR4J4pLg8but0yLcjj5EGbMqt60Tkw7RlLmedUDYQwmvarzc0bQSnidCEY1\nGWf3g5iipOpSSNFdUL1Uhq+Hr6rzc2awjjPmqXbACjy4ZcuckbEoMe0YF3TqBtQ5WmahKF542bRq\nyM6/l5atYrl6H3dfm1Ytzsgs5YzsQmlZlzBg/xv+RQmv06XMVTC4H23oEWv39te2ZntCfKvafa0U\n4leVav417A5CcnUWHyuN2f7tOMjX8mK2IwEk1ioY9n6+u8bd7s+3lLOs5VDgoaPfY2hIU74IW233\nOTQ+9Sjzf3nX7nFNaEhTPu/8L4fO4SaT44Gwjlxj7z+3j0x9ht0BfY5mcWlRrSXuGnfVX6q4V2oE\nY9erWN+mLWmOZiJyNIuOo9Q4nj8R1MSmLa7kjCQWxs932fVIqi6FpBv2fXbRdX3uU9YAH+sA2noB\nbW2tN0bv9H/7z+1jReJyFrVdQohfVVJ1KcqJrKhB0d0G7LcL9rnd31ozLRRcDrAMjj9OWMzi3xbi\nrvEg2DeY1xqPYkXich7yr8byjp8r/dx/bh8TfxzHZ51WKfOaeXg6rzcZxdsH3gSz5SS/r98BUnUp\nvLBjIFdy0jGY9CxqswSwRNGGhjQlPvUoY/ePUh5Ob/pzIy2qtWT4npeUFGmrEleyP3kvX3RerQwa\nJh4Yz2edV9EoqLGyDNYdqedjvanmX5313W8ONENDmtr8DJZMHGAJ2FrV5d8238fEA+NtbpAM3NaX\nbEMWwT5VOJtxhmC/Kni7+bC083LSsi4x7dBkDCYDvR/pR9zpjSzv+DlpWZdoFNSYH5L3YzDrCfat\nwph649nw11eE+FVlS89dJKYdU/q8KXKb8j3Vq1Q/f7BanQreFZh4YBzzWi9kUMPBSv3NDSe/Zl/S\nHma2nMPcn2czpeV0TqafoJJPJYJ8g5Xlsa7fhfHz+bzzv/KjuGvabK9FrZtq/tXZ3Xc/1fyrs6FH\nrM32VTgAzbpdFdzWwXIB2/Ox3jxS4RFLkFHiSmJPbWT3uR2U96yAzpBJFd8QPuu8ihC/qhy4sJ83\nQsfQt14/QkOaEuJXldUnVrL5dAwvNhpm8/kbesSy/9w+xn7/Bi82eJnDqQeZ1GwKk398m5TMCxgx\nMvrJcaw7uYalHZYr68M6vTVQ4bPOqziZfoJVx79gdJPxbD+zGbMZxrWYwIrE5VQvV4M5z81n5uHp\nvBE6Bn/PABYnLKCSV2Vu5F3ng3ZLCfINZvD2AVzNu8q8Vgu4mnOVmUemMrTBK+w6u4O07IuMeGIU\nQxoNVTJ8ffr7x1zOuQRmSLj8K1X8Qpj0zBS61e1OeJ0Iwut0Ufr58bHFfNhumc2Az1PryZSW09l5\negf/OvEFXlpvNBq4mJWqZIjxcy/HdYNtlHSgZ3laPdSGrWfi0KK97RtRWrRoNBo83L0Y3WQ8SxMW\n0bVWd7ad2UzLkFYcTv3xrm9TmTHj6+ZHllGHn1s5dEZLeTAaW+q1AAAgAElEQVSz2dK/AK8Axjw1\nnnUn11ArsBa1Amoz+slxfPjrQmU7OJx8iJV/rGBow1fY8NdXfNBmGWeunyH21EYy8m5wKuO/uGnc\nMJqNBHoGFlmSDiDAM5DwhyPYcWYrGfobPFGxMb9fuf0NKxMmKnhXYO7PszGbYVqLGbx94E1ee2I0\nixMW8HRQM3RGHa80GqEMgIJ8g/k0cRkvNniZL/9cw4uNhinfWWhIUzZFblMC74o6VidnJBF3Ooae\nj/W2+f3I0NG0qNZSOabsPreD4U+MZO7RmXi7+ZCpz8ANN2a2nMPi3xYy+slxrDr+BUvaLyc0pCnJ\nGUn5gYCWfdNd44GPh6W1Bv9Z992C/QqvE0GQbzBj94+i76P9mfTjeOXYYd2OrUGw1mMmoBxzrMcH\n6w1H63QFjxfWdVPweFvw3FT4hmXB/tUIdM3AUdjy06r3tqKfhx/ZedmqvwHZrW4P9ibtplvdHqrN\n861mk5l5ZCpvNZus2jyfDWnNwdQf7inA815V86lGcnayqhka61dswO9XjlG/YgPV5lnFqwoXcy+q\nGlzihRe55Kp6098TT/LIUzUbjLVEppo3qZ0xT4BXm4xk5pGpvNpkpGrzVCPNemHTn53F4J0DmP7s\nLNXm6QypuhQy9DdI1aWU6gwKqboUruVeVbWfgxq8wMwjUxnU4AVV5gdQw68GZ3VnqeGn3vigoldF\nLuZepKJXRdXmCc45Nvu7+ZNhvDUjrShZagahAfR8rDcrEj++5frAEeF1Ilgd/qWqgTBgCeRXU8Hs\nomqxvhEfGhKq2vKHhjQlNlLd0jjOeHBvnW9ZYH2RRM3AFWvggjPWa1lwOPmQqttoo6DGNvcY1Jnn\nEzatGnLJtWnV8LfKT7A3aTd/q6xePz/osIwuMR34oMMy1eZpVRa2dzUyXRTldtULRMlxdPur4O3Y\nGNyRMnNqlGR1tJRUiF9VagbYHwRzMv0EJkycTD9h1znA0XKvIX5VeTigtt39tz6TcmQ7qlepPu5a\n+zP5WMtfFr5nfq8cze7o6OefTD+BEaPd24CVRmP/vaV6lerjprE/K1ejoMYEeATaPeYIDWnK+60/\ntHv5w+tEMK35LLuvHdQIxrZkh9XaHcjkaGY0R/168RebtrgcDeI5c/2MTWuPtjXbsfL4Cruzwzn6\nQoaj6yDEryq1K9S2a9oHKgio8IPL27W3+7/kjCRLuaW2S4p8oHk7ateCtr5RZX1gC5aD0eZeO21O\nSNX8qyvR1gX7MKjhYCWIx8p6IrIeSAr+XyWfyixo8yFBvsG3HOys5XCs8x8ZOhqA2Kib2TPeaTmN\nIRk3gydut8MU/v3dAqSsPxc1TeHfLWq7hLH7R7G84+eA5SF3we+xYECNNdDDyhpAY/1/a5CS9eei\nTuIF11Ph9V2wta6PIN/gWwKXrPO3rt+Cn1N4AHW7dXOnzFS3m77gv62fXfC7DK/ThTf2jmBpB0tm\nIWuwE6AEIxX83E2R20jVpdyy7VTzr67UQCy4XzUKakxi2jGmHZpMz8d637K+C67jgllFrIEZQxoN\nJVWXwsQD45VgvYLrb0ijoUqgl3U+8alHydDfYHLTaaw6/gWrwtcqgU9vhI5RgssK9uP9NosYtmsw\nk5pPY93JNRjyswJZBxQFv+fNPXfaLH9oSFPionYogVK7z+1Q+pqYdoy3fxiLt7s3o58cx7yf36X/\n44NYffyfeLl7MqHpO6xIXE41vxoM+5sl09HcozOp5F0Zo8nI5ObTlEAy6/cDsP3MZl5/ahQHL/zI\n0Us/KQFAz4a05tUmIxj73Wja1+zI+r/W4ePmi96Yx+tNxrD9zGay9Nn4evjwWuNRXM25Ss/HepOY\ndkxZp49UeIRXvx3Kpx1XEl4nQvkurN/NIxUeYebh6QC3fE/D97zEmKfG8fGxJUx9ZgZTD04m25DF\npGZTWfzbQsxmGPPUOOpVqs/Y/aOo6F2JQK9A/hXxJYlpx/jv1f/yxX9WoNNn4unmiZvWjbefnkwl\nn0pKX6zfmXU/DPQKZP4v77Ki0z9pFNRYOZ5at9fQkKZKIFtBdzvu32kwUHBe1v2qgncFViQu55VG\nI5S+WddPwUCjwoF+hY9JRf274Odagwity1twvoUDiJIzkjCY9DYXKIWXuzjHk8LLLkqf5Z0/V21e\n77T4B29+P5J3WvxDtXlC/nHDr4aq2Tas4xVrq4YpLacTEdOJKS2nqzbPz7uspktMBz7vslq1eUY9\n2offjxwj6tE+qs3TGcEl519L46GPK3L+tTTV5jmx+VRmHpnKxOZTVZvn1OYzmXlkKlObz1RtnhG1\nerD1TBwRtdQLfAPHU2kXxRkPfJyhUVBjagXUVvVhV8EA4dLMGf10xrb0SdhKusR04JOwlarNs2nV\nZ9h6Jo6mVZ9RbZ7gnGPz0EavsjhhgWrzE/ZR4yZ7QdX8q7Oj997bXj/YS81jGTgv28Qbe0c4/PCn\noPA6EfwrfJ3qAVCl/ThuVTD7eGnmjMw1zuKMdWrNgquWZfGLmXnEMnZV69qlmn91lnf8XNVld8Y1\nmwce6NGrmtHP0ZIYt+Plpt6LC87kjON9wXucajmZfgID9pW9EOpx5BipxraWY7Q/Y9fI0NFcz73u\n0HHT+tzC2hZXNf/qLO2w3O510LZmeyp5Vbb7uOroWEyNIB5HhfhVpZa//YFIalA7u2NxOFrODCzr\nsKpfNYfWoZvG/hclViWu5Ib+OqsSV/JOy2nFnj4+9SiTfhx/y/Ps4kz/3i+Wyjr2nqccPb+lZV3C\n7EBpvRC/qlQPsD8zWnxqvNLacx3laLZuR4+laozd1Mgm5MiLdY4GNFbzr87uv++2a1qN2ZrS4QGQ\nlub4m3Wl5aK7JPuh1mcVDF5yxTosuByl5XssqDT26XbU7mtR83P0M+40fVH/Z71RY/2/wsF2hbfd\n5IwkesZFKEFOY/ePsvvipnB/kjOSlHkaTHrWd7cEfViDm+a1WkBa1iVe/XYoMT22AtwxI1nBefaM\ni2Dg44NZeXwF5T0rULXcQ0qQ3LqIDew/t4+Pjy0hz6gnNsq2RuWdlu12N7qsb+wZTHols01Ry16w\ntX5WwX9b/7aovhRcXwUDv24nOSOJvpujlAsZV+x71vVSMBjxTn9rb/+s2/G8VgvuecBaeL07S1CQ\nv1PnL+7uw/0f2T0AL0pyRhLdYsLY2muX6ttPWTlHqn3T3xnzTM5IIvybDjalC0vjPHee3sYLOweq\n/rBvWfxiVYO/kjOS6LKxg6oPeZMzkmj91TP80P8n1bf7nae3qf7wdO0fq1U9loBz+llWjiNlQcFx\nsFrr9N1DM1mcsIDRTcbbdXOwKGv/WM2b34/kgzbLVN1GrQ9kpzWfpdrxJD71KBExnTBON6oyP2Gf\nqu8/5JSgHTW5+r7KvYpPPaocJ8pCMIianPEdlZXv3ZmccR9K7XXqjO0+OSOJzhvaKpm+1ZqnM7Yn\nta9banwcpGQGVevFgPjUo/SICWdzr52q9tUZ14EPus3n1zPsqWGu7sYD7bHFj99SfaCkOHo/oDSc\nNx3NYufoOohPPUpkbBfVg/TulVpZ/Jz5jOheOHq/w9HPd/TeiKPX7oWfo9gzfbv1z/Ld8wdd8vnx\nqUeJiu1KbJT9mT/VGIM68j06ui85ev9iwOY+7E3aTYfqnfmyxzfFnl4NauyH3TeFsaWnfc8sHB3j\nq3Hf3N5naRIEJEqU3HwXZcmdAscKn3ydsW0XFYxR8HPsuclgrV/68u4hShm3wv1XOwikpIJKrJ9z\nLxd5rj4W3evgTY2LVlcv6+1IEJDrNfn4KdVviJTW7U3YctY5qywErDhDWVmfQqhJ7W00PvUo3TaF\nsbXnLlVvUjsjSA1g4v7xzGurXuae+NSjRMV1JWdKjmrzFMXXYOnfykS5obJyjniQH4rL2KBscEZg\nkSMPqm43T2eUQnPGiwZqP3B//LOHuaq/SgWPCvzfy2dVmSeUnWuMB53cM3I979neqpfMLA41gh/K\nwr3fO03vSPCG9frCVd/h/VDK01kvp90rNc6tamwHjuxLagRIO7ovOzLmKS3bsaPr4N1DM+1+2cpZ\nL1cVhxrHc0dftI+KjbCpgFQcahxLJAjoHkgQkBBCTWXxpqZ14KI36l2e0tNZXH2Rd6/utZ9lZXmK\nS27ouF7C6RP35bYlhBCibCorD+XiU4/Sa3M31cvdnM49TvPqzVWbnyg+GRsJIRxVFgLAnJUhQ+1+\nOuOhU2nIDiLujdwzcr2difvK3H3v0sbVWWxc/ezifrin7eprVDXWoau3A1d/viNKSxCQIxwd+zia\nRcdRpeE7UCOo05EgIpAgICGEKFHnr5+n59c92dRvEzUCa7i6O8Vy/vp5gDLXbyGEEEIIcX8qa2Pr\nI0lHJGBHCCFEmXX++vlSf749f/08z618jh+H/qhqX8vCsgshhBCidLgfxg2OLoMr18H56+eJWBfB\ntoHbXPo9lNV1KEFAQgghhBBCCCGEEEIIIYQQQgghhBBClHFaV3dACCGEEEIIIYQQQgghhBBCCCGE\nEEII4RgJAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJ\nAhJCCCGEEEIIIYQQQgghhBBCCCGEEKKMkyAgIYQQQgghhBBCCCGEEEIIIYQQQgghyjgJAioFjh07\nRnR09C2/37dvH71796Zfv36sX78eAL1ez7hx4+jfvz8DBw7k1KlTJd3de1ac5crLy2PcuHE8//zz\nDB06lDNnzpRwb4vndssGkJ2dTf/+/ZXvxmQyMW3aNPr160d0dDRnz54tya4WW3GW7V6mKU2Ks2x6\nvZ633nqLgQMH0qdPH/bu3VuSXS2W4iyX0Whk0qRJ9O/fnwEDBvDnn3+WZFeLzZ7tMT09nTZt2pTq\n4yMUf9l69uxJdHQ00dHRTJo0qaS6aZfiLtunn35Kv3796NWrFxs2bCipbj6wytp56UFVlvb5B1HB\n49zZs2cZMGAAAwcOZPr06ZhMJhf3ToDtd3T8+HFatWql7FPbt293ce9EUWNt2ZeEK8i4qOyQsVHp\nJeOiskHGRqWXjIuEKF1kzGE/GRM4Ts7X9pPzqeOKWoeyHRZPUc9gXbUdupfIp4jb+uyzz9i8eTM+\nPj42v9fr9cydO5dvvvkGHx8fBgwYQPv27UlISMBgMPDVV19x8OBBPvzwQ5YuXeqi3t9ecZdr586d\n+Pr6sn79ek6fPs2sWbP44osvXNT7O7vdsgEkJiYyffp0Ll68qPzu22+/JS8vj6+//pqEhATmzZvH\n8uXLS7LL96y4y3a3aUqT4i7b5s2bKV++PO+//z7Xrl0jKiqKDh06lGSX70lxl+u7774D4KuvvuLI\nkSN88MEH99X2qNfrmTZtGt7e3iXVTbsUd9lyc3Mxm82sWbOmJLtpl+Iu25EjR/jtt9/48ssvyc7O\nZuXKlSXZ3QdSWTovPajK0j7/ICp8nJs7dy5jxoyhefPmTJs2jb1799KpUycX9/LBVvg7+uOPP3jx\nxRcZOnSoi3smrIoaa9erV0/2JVHiZFxUNsjYqPSScVHZIGOj0k3GRUKUHjLmsJ+MCRwn52vHyPnU\ncUWtw9dff122w2Io6hms2Wx2yXYomYBcrGbNmkUG8Zw6dYqaNWsSGBiIp6cnoaGhHD16lNq1a2M0\nGjGZTGRmZuLuXjrjuIq7XP/9739p3bo1AHXq1CnVGTxut2xgyWj00UcfUadOHeV38fHxtGrVCoAm\nTZrwn//8p0T6aY/iLtvdpilNirts4eHhjB49GgCz2Yybm1uJ9LO4irtcHTt2ZNasWQBcuHCBgICA\nEumnPezZHt977z369+9PcHBwSXTRbsVdtpMnT5Kdnc3QoUMZPHgwCQkJJdXVYivusv3444889thj\nvP766wwfPpy2bduWUE8fXGXpvPSgKkv7/IOo8HHujz/+oFmzZgC0bt2aQ4cOuaprIl/h7+g///kP\n+/fvZ9CgQUyePJnMzEwX9k5A0WNt2ZeEK8i4qGyQsVHpJeOiskHGRqWbjIuEKD1kzGE/GRM4Ts7X\njpHzqeOKWoeyHRZPUc9gXbUdShCQi4WFhRUZyJOZmYm/v7/ys5+fH5mZmfj6+pKcnEyXLl2YOnVq\nqS3BVNzlql+/Pt999x1ms5mEhAQuXryI0WgsyS7fs9stG0BoaChVq1a1+V1mZiblypVTfnZzc8Ng\nMDi1j/Yq7rLdbZrSpLjL5ufnR7ly5cjMzGTUqFGMGTOmJLpZbPZ8Z+7u7kyYMIFZs2bRvXt3Z3fR\nbsVdtpiYGCpWrKjcxC/Nirts3t7eDBs2jC+++IIZM2Ywfvz4++Y4cvXqVf7zn/+wePFiZdnMZnNJ\ndPWBVZbOSw+qsrTPP4gKH+fMZjMajQawjB8yMjJc1TWRr/B39MQTT/D222+zdu1aatSowUcffeTC\n3gkoeqwt+5JwBRkXlQ0yNiq9ZFxUNsjYqHSTcZEQpYeMOewnYwLHyfnaMXI+dVxR61C2w+Ir/AzW\nVduhBAGVUuXKlUOn0yk/63Q6/P39WbVqFc899xy7du0iLi6OiRMnkpub68KeFs/tlqt3796UK1eO\ngQMHsmfPHho2bFhqM68UV+FlNplMZSJoRkBKSgqDBw8mMjKyVAfL2OO9995j165dTJ06laysLFd3\nRxUbN27k0KFDREdHc+LECSZMmEBaWpqru6WK2rVr06NHDzQaDbVr16Z8+fL3zbKVL1+e5557Dk9P\nT+rUqYOXlxdXrlxxdbfua3JeKv3u533+fqTV3ryk0ul0pTrL3oOqU6dO/O1vf1P+ffz4cRf3SMCt\nY23Zl4QryLiobJCxUdkhx/KyQcZGpY+Mi4QoHWTMoR45jjlOztfFJ+dTxxVeh7Id2qfgM9iCcRwl\nuR1KEFApVbduXc6ePcu1a9fIy8vjl19+4cknnyQgIEDJpBMYGIjBYCi1GXOKcrvlSkxMpEWLFnz5\n5ZeEh4dTo0YNV3dVNU899RQ//PADAAkJCTz22GMu7pG4F5cvX2bo0KG89dZb9OnTx9XdUU1sbCyf\nfvopAD4+Pmg0GpuBUFm2du1a/v3vf7NmzRrq16/Pe++9R1BQkKu7pYpvvvmGefPmAXDx4kUyMzPv\nm2ULDQ3lwIEDmM1mLl68SHZ2NuXLl3d1t+5rcl4q/e7nff5+1KBBA44cOQLADz/8wNNPP+3iHonC\nhg0bxu+//w7A4cOHadiwoYt7JIoaa8u+JFxBxkVlg4yNyg45lpcNMjYqXWRcJETpIWMO9chxzHFy\nvi4eOZ86rqh1KNth8RT1DPZvf/ubS7ZDeb2plNmyZQtZWVn069ePiRMnMmzYMMxmM71796ZKlSoM\nGTKEyZMnM3DgQPR6PW+++Sa+vr6u7vZd3W25PDw8WLx4MZ988gn+/v68++67ru7yPSu4bEXp1KkT\nBw8epH///pjNZubMmVPCPbTf3ZatLLvbsn3yySfcuHGDjz/+mI8//hiAzz77DG9v75LsZrHdbbk6\nd+7MpEmTGDRoEAaDgcmTJ5f6ZbJ6kLfHPn36MGnSJAYMGIBGo2HOnDll5g3luy1bu3btOHr0KH36\n9MFsNjNt2rT7JhNcaVWWz0sPirK8zz+IJkyYwNSpU1m0aBF16tQhLCzM1V0ShfzjH/9g1qxZeHh4\nULlyZaU2t3Cdosba77zzDrNnz5Z9SZQoGReVDTI2KjtkXFQ2yNiodJFxkRClh4w51CNjAsfJ+bp4\n5HzquKLW4cSJE5kzZ45sh/eoqGewdevWdcnxUGM2m80l8klCCCGEEEIIIYQQQgghhBBCCCGEEEII\np7g/asAIIYQQQgghhBBCCCGEEEIIIYQQQgjxAJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQIS\nQgghhBBCCCGEEEIIIYQQQgghhBCijJMgICGEEEIIIYQQQgghhBBCCCGEEEIIIco4CQISQgghhBBC\nCCGEEEIIIYQQQgghhBCijJMgICGE0yUlJdG+ffsi/+/xxx936mdHRkY6df5CCCGEEM5w5MgRoqOj\nXd0NIYQQQgiXk3GREEIIIcSdTZw4kZiYGFd3QwhRSkgQkBDivhYXF+fqLgghhBBCCCGEEEIIIYQQ\nQgghhBBOJ0FAQgjVffLJJ3Tt2pXu3bszb948TCYTOTk5vPnmm3Tr1o2BAwdy9epVm2muXbvG66+/\nTpcuXYiMjOTw4cN3/Iz27dsze/ZsoqKiiIqK4vjx4wBER0czcuRIwsLCOHHihJJp6Hbz/+GHH+jT\npw9RUVGMHDnyln4JIYQQQrjKlStXePnllwkLC2P48OHk5eWxceNGunXrRvfu3Zk4cSI6nQ6wza4Y\nExPDxIkTAcuYacyYMYSFhZGenu6S5RBCCCGEcJSMi4QQQgghbjKbzcydO5ewsDCio6M5d+4cAB98\n8AHPP/88YWFh9O/fn7S0NDZs2MC4ceOUaZctW8aKFStc1XUhRAmQICAhhKq+//579u3bR0xMDJs2\nbeLs2bMcOHCAK1eu8OKLL7J161YqV67M9u3bbaZbvHgxNWvWZMeOHcyfP58PP/zwrp9Vvnx5YmNj\nGTVqFBMmTFB+//jjj7Nr1y7q169/x/lfuXKFhQsX8sUXXxAbG8tzzz3HggUL1FsZQgghhBAOuHDh\nAtOmTWPHjh1cvnyZL7/8kk8++YQ1a9awZcsWfHx8WLZs2V3n07p1a3bt2kWlSpVKoNdCCCGEEOqT\ncZEQQgghxE27du3i+PHjbN26lcWLF3Pu3DmMRiOnT5/mq6++YteuXdSsWZMtW7bQtWtXDh8+jE6n\nw2w2s2XLFiIjI129CEIIJ5IgICGEqn766SciIiLw9vbG3d2d3r17c/jwYYKDg3niiScAeOSRR27J\nuHP06FFl0PH444/z9ddf3/Wznn/+ecDyJtfFixe5cuUKgPI5d5v/sWPHSElJYfDgwURGRrJ27VrO\nnj1r/8ILIYQQQqioXr161KhRA61WS926dcnIyKBdu3ZUqFABgH79+vHTTz/ddT6NGzd2dleFEEII\nIZxKxkVCCCGEEDf9/PPPdO7cGQ8PDypWrEjr1q1xc3NjwoQJbNiwgXnz5pGQkEBWVhZ+fn60adOG\n3bt3Ex8fT40aNahSpYqrF0EI4UTuru6AEOL+YjKZbvmdwWDA3f3m4Uaj0WA2m23+puD/A5w6dYra\ntWuj1d4+VrHgNCaTCTc3NwC8vb3v+LfW+RuNRp566ik++eQTAHJzc5XU0UIIIYQQrlZ4/BQQEMCN\nGzeU35nNZgwGg83PGo3G5ncAXl5ezu+sEEIIIYQTybhICCGEEOImjUZj8zzO3d2da9euMWzYMIYM\nGUJYWBharVZ5Fte7d2+WL19O9erV6dWrl6u6LYQoIZIJSAihqmeeeYZt27aRk5ODwWBg48aNPPPM\nM3ed7umnn1ZKhJ06dYqXX34ZjUZzx2m2bdsGwJ49e6hbty6BgYHFmv8TTzxBQkIC//vf/wD4+OOP\nmT9//j0tpxBCCCGEK+zbt49r164BsH79epo3bw5AhQoV+OuvvzCbzezbt8+VXRRCCCGEKBEyLhJC\nCCHEg6pFixbs3LmTvLw8rl+/zoEDB9BoNDRr1owBAwbwyCOPcPDgQYxGI2B5RpaamsqRI0fo2LGj\ni3svhHA2yQQkhFBVu3btOHHiBL1798ZgMNCqVSvatWvH6tWr7zjdqFGjmDJlCj169MDd3Z358+ff\nNQjo119/5ZtvvsHHx4d58+YVe/7BwcHMmTOHMWPGYDKZqFKlCu+//36xl1kIIYQQoiSUK1eOV199\nlejoaPR6PQ0bNmTGjBkAjBs3juHDh1O5cmVCQ0NvKb0qhBBCCHE/kXGREEIIIR5kHTt2JDExkW7d\nulG5cmXq1q1LTk4OJ0+epHv37nh4ePD444+TlJRkM83169fx9PR0Yc+FECVBYy5ck0cIIcqA9u3b\ns3r1aqpXr+7qrgghhBBCCCGEEEIIIYQQQghR6pjNZvR6PUOGDOGdd96hYcOGru6SEMLJJBOQEKLU\nio6OtqnvbtW/f38X9EYIIYQQQgghhBBCCCGEEEKIsiMtLY2IiAj69u0rAUBCPCAkE5AQQgghhBBC\nCCGEEEIIIYQQQgghhBBlnNbVHRBCCCGEEEIIIYQQQgghhBBCCCGEEEI4RoKAhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEKOMkCEiI+8yRI0fo1q2bq7tRYi5evEj//v2LPd2TTz5JUlKSav3YsGEDa9euVW1+\nQgghhHC++2Xc1L59exITE2/5fUkt3969e5k9e7bTP0cIIYQQJSMpKYknn3zyrn+XmJhI+/btS6BH\nJeOdd97h0KFDxZpm5syZLF26VLU+nD9/njfeeEO1+QkhhBDCNe6n8dTSpUuZOXNmsacbOnQoV65c\nAeDll1/mv//9723/9n65RydEaeHu6g4IIYQjqlSpwldffeXqbhAfH8+jjz7q6m4IIYQQQpS4Dh06\n0KFDB1d3QwghhBDCIe+++66ru8CFCxf43//+5+puCCGEEEI47ODBg8q/P/vsMxf2RIgHj2QCEuI+\nlJWVxZtvvklkZCTh4eH88ssvAGRkZDB+/Hi6detG9+7dmT9/PgaDAYDHH39cicgt+PORI0fo0aMH\n/fv3p0ePHuTl5Sl/8+OPP9K9e3fl5xs3btC0aVOuX7/OunXr6NGjB71792bgwIFFRvguXbqUUaNG\nMXDgQMLCwhg9ejSZmZmAJcPP66+/Tq9evejevTuffPIJYImebtOmDUOHDiUsLIzffvtNiabW6/XM\nmjWLrl270r17d9555x1lfr/88guRkZFERUUxdepUTCbTXdfjxIkTGT58OBEREbz//vvk5eUxZ84c\nevbsSY8ePZg4cSKZmZns2bOHffv2sWrVKtauXXtLVHTBn6Ojoxk5ciRdu3ZlzZo1REdHs3DhQgYN\nGkT79u1566237qlvQgghhFBHWRk33WmcA/D111/Tq3+aQBsAACAASURBVFcv2rZtywcffHDL9Dqd\njkmTJhEWFkbXrl1ZtGgRZrP5juumQYMGvPfee/Tq1Yvw8HB2794NQExMDAMHDqRnz55ER0cTExPD\nq6++CkBaWhqvvfYa4eHhdO3aldWrVyvrc+LEicrYbs6cOcr6FEIIIYR9oqKilMw127Zto1GjRuTk\n5AAwZcoU1q5de9t7GXD7ey8FnTp1ivbt27Nnzx4A1q1bR1hYGL1792bdunXK312+fJnXXnuNfv36\n0b59e6Kjo0lPTyc+Pp42bdoo9zqys7Np0aIF6enpyrQmk4k2bdrYZDZ88803WbduHadOnaJ///70\n6tWLnj17FpmFOSkpiXbt2jFhwgQiIyPp0aOHMqYDWL58OT179iQyMpLXXnuNixcvAkXfo9m5cycA\n3377LVFRUXTv3p0BAwbw+++/A5CZmcno0aMJCwsjOjqa06dP3/V7KmqMuG/fPvr27UtUVBT9+/fn\nt99+w2g0MmXKFM6dO8ewYcNuySBQ8OeixmMjRozg9ddfp1u3bvTs2ZM///zzrn0TQgghHnQynrJI\nSkqiY8eOzJo1iz59+tCpUye2b99uswyDBg2iW7duvPXWWzb3pIoyadIkAF544QVSUlJsslh/8803\nRERE0L17dwYPHkxKSorNtL/88gvt2rXj119/RafTMWrUKCIjI+nZsydTpkyRZ2hC3AMJAhLiPpSa\nmsqQIUOIi4ujf//+Slri2bNnU758ebZs2cLGjRv5v//7P1auXHnX+f31118sXLiQzZs34+npqfz+\n2WefRafTKSfurVu30qZNG8qVK8ecOXP4/PPP2bhxI88//zzx8fFFzvvYsWMsWbKEHTt24O7uzkcf\nfQTAW2+9Re/evYmJieGbb77h0KFDyoAjNTWV1157jV27dhEUFKTMa/ny5Vy6dIm4uDji4uIwmUzM\nnz+fvLw8Ro8ezcSJE4mNjaV58+bKIO5ucnJy2LZtG2+99RYrVqzAzc2NmJgYNm/eTHBwMAsWLKBT\np060b9+eIUOGMGjQoLvOMyAggO3btxMdHQ3AuXPnWLNmDZs3b+ann37i559/vqe+CSGEEMJxZWXc\ndLtxjpWXlxcxMTFs2LCBlStX3nIDZcmSJeTm5rJ9+3ZiY2P59ddf7zrmMBqNBAYGEhMTw4cffsjk\nyZOV4Kf//ve/rFmzhjVr1thMM2PGDGrVqsXOnTv5+uuvWb9+PWfPnmXOnDk0bNiQmJgYYmNjuXr1\nKv/85z/vuj6FEEIIcXsdO3bkwIEDABw4cIDAwEB++eUXTCYT+/fvp3Pnzre9lwF3vvcC8OeffzJ8\n+HDeffddOnXqxIkTJ1i2bBn//ve/2bhxIx4eHsrfbtu2jSZNmvD111+zd+9evL29iYuLIzQ0lPLl\nyyv93LZtGy1atKBSpUrKtFqtlt69e7Np0yYArl+/zqFDh+jevTtffPEF7du3JyYmhhUrVijLV9iF\nCxd47rnniIuLY9y4cYwZMwa9Xk9sbCx//vknGzZsIC4ujjZt2jBlyhRlusL3aMDykGv69OksXbqU\nLVu2MGrUKF577TUyMzNZsmQJ3t7e7Ny5k8WLF99z1p6CY8QLFy7wwQcfsGLFCmJjY5k1axZvvPEG\nubm5zJ49m5o1a/LFF1/cdZ6Fx2NHjx5l6tSpbN26laeeeuqe5iGEEEI86GQ8ddP58+d57rnn+Oab\nbxg/fjzvv/++8n/nzp1TxkZms5nly5ffcb3OnTsX/p+9Ow9vqkz7B/7tCjQNeyA1oUjRDsjUKrE6\noCwyItUKbSkUWiyggMsMOOAuIoyMP0AHUUTGURCXSqXsi9WOCgIqDFPjWCsvdaGyJCYSC0KaFpq2\n+f3Rt32NUGS5H5pDvp/rmuuMaXvznJyT5Ml57nPfAN544w3ExMQ0Pl5aWor58+dj6dKl2LRpEwYN\nGuQX69///jcee+wxvPTSS+jduzc++OADeDwebNiwAatXr24cJxGdHpOAiC5CXbp0QWJiIgCgR48e\njYs127dvx+23346QkBBERkZi9OjR2L59+2/Gi4mJgclkOunxkJAQjBgxonFSsXbtWowcORJhYWFI\nTk7G6NGjMXv2bOj1eowYMeKUsZOTk9GxY0eEhoZixIgR+OSTT1BZWYmioiIsXLgQqampyMzMhMPh\nQGlpKQAgPDwcV1111Umxtm/fjtGjRyMiIgKhoaHIycnBxx9/jG+++Qbh4eHo06cPAOC2226DTqc7\ng2cSsFgsjf9/69at2LJlC9LS0pCamooPP/wQe/fuPaM4v3TNNdf4/feNN96I0NBQREdHo2vXrjh6\n9OhZxyQiIqJzo5V5U1PznAYNfdMNBgM6duzodzcYAOzYsQMjRoxAWFgYIiMj8dZbb+G66677zf25\n/fbbG5+b+Ph4FBUVAaivfhQdHX3S7+/YsQOjRo0CAOj1erzzzjvo2rUrtm7divz8fKSmpmL48OH4\n8ssveXc6ERHReRo8eHDj/OSzzz7D+PHj8emnn6K4uBixsbEwGAxNXsv4rWsv1dXVGDt2LHr27Nl4\nPWXnzp24/vrrG2/IavjMB+rv8u7duzdee+01/PWvf8W3336LyspKAMCYMWOwcuVKAPXVC7Oysk7a\nl4yMDLz33nuorq7GO++8gxtvvBF6vR6DBw/G0qVLMXnyZLz//vuYMWMGQkNPvqTdpk2bxqqLAwYM\nQFhYGL7++mt89NFHKC4uRkZGBlJTU/HWW2/5Je78+hoNUL/49Ic//AFdunQBAPTp0wft27fHV199\nhZ07dyItLQ0hISFo3749Bg8efEbH6pdzxE8//RSHDh3C+PHjkZqaigcffBAhISE4cODAGcVq8Ov5\nWK9evWA0GgHUV3Tk9SUiIqLfxvnU/4mIiMCAAQMA1M8lfv75Z7/nqX379ggJCUFGRkZj9aSztXPn\nTtxwww2NiUHjx49v7KThdDpxzz334KabbkKPHj0A1K/Rfffdd8jJycErr7yCcePGoWvXruf0bxMF\nk/DmHgARyftl5nBISEhjq4dfZ/bW1dWdsg3DL1tXAEBUVFST/1ZGRgbS0tIwcuRIuN3uxsWk+fPn\n45tvvsGOHTuwZMkSrF69+pSZwWFhYX7jCQ0NRV1dHXw+H1asWIFWrVoBAA4fPowWLVrgyJEjiIyM\nRHj4yW9fp9o/r9fr9xw0ONXfn8ov972urg7Tp09vnAR5PB6cOHHipL/59b/n9XqbjAkALVu2bPJv\niYiISC2tzJuamuc0+OXcpqm5T0hISON/OxwOtGzZEu3atWtyvMDJc7WG/25qP3/97xw8eBDt2rVD\nXV0dFi5ciO7duwOob4f2y98jIiKis/e73/0OXq8XmzdvRteuXXHjjTdi2rRpCA8Px8033wyg6WsZ\nv3XtBQAWL16Mhx9+GO+//z5uvvnmk+YYv5wn/P3vf8eXX36JjIwMXHfddaipqWn83aFDh2LBggX4\n97//jcrKSiQlJZ20LyaTCVdccQW2bt2KtWvXYvr06QDqb5z617/+hR07dmDnzp1YvHgxVqxYgdjY\nWL+//+VYGvY7LCwMdXV1mDhxIrKzswHUz91+mRxzqjnNqa7L+Hy+xrlgU8/B6fz6+lKfPn3w/PPP\nNz7mcDjQqVMnvzZmvL5ERESkHudT/6fhxjMAJ12z+eU4fT7fGa+x/VpYWJhf7OPHj8Nutzf+7JVX\nXsGf/vQn3HLLLbjyyivRpUsXfPDBB9i1axf+/e9/44477sCMGTOQnJx8Tv8+UbBgJSCiIHLDDTdg\n+fLl8Pl8qK6uxsqVK9G3b18AQPv27RvbUzT0JT0TnTt3RmJiImbOnNl41/rhw4cxYMAAtG3bFuPH\nj8fUqVPx9ddfn/LvN2/eDLfbjbq6OqxcuRI33ngjoqOjcdVVVzW2iDh27BiysrKwefPm046lX79+\nWLFiBbxeL+rq6rB8+XJcf/31iI+Ph8/nw7Zt2xr/zXO5G6rh+auurkZdXR2eeOIJLFiwAED95KTh\nYlC7du2we/du+Hw+VFZW4pNPPjnrf4uIiIiaV6DNm5qa55ypPn36YN26dairq0N1dTXuu+++xqo+\np7N+/XoAwO7du/H999+f8iLTr/+dNWvWAADcbjfGjRuHffv24YYbbsDrr7/e+Hzee++9eOutt854\n/ERERHRqN910E+bPn4/rr78e3bt3R0VFBTZt2oQhQ4YAaPpaxm9de4mMjITFYsGcOXMwa9YsuFwu\n9O3bF59++imcTicANFY4BIBPPvkE48aNQ1paGjp06IAdO3agtrYWANCqVSsMGzYM06dPx+jRo5vc\nl8zMTCxZsgTHjx9vrMz8wAMP4N1330VKSgpmzZqF6Ojok9qeAvVzqoa7+Lds2YKIiAjEx8c3trSo\nqKgAACxcuBAPP/zwaZ/TP/zhD/j0008bW03s3LkTDocDiYmJ6NevH1avXo26ujocPXr0N69VnS5+\nQ3Xpbdu2YdiwYThx4gTCwsIak31at24Nr9eL7777DsDZzTuJiIjozHE+9du2bNmCo0ePora2Fvn5\n+ejfv/9v/s0v180aXHfdddi5cycOHToEAFixYkVj2zGDwYDevXvjkUcewUMPPYSqqirk5eXhscce\nww033ICHHnoIN9xwA7799tuzGjtRMGISEFEQmTFjBg4fPoyhQ4di6NCh6NatG+65557Gn82ePRvp\n6en4n//5n8ZShGdi5MiR2LNnD9LT0wHUL4zde++9GD9+PIYPH45nn30WTz311Cn/tmPHjpg0aRJu\nueUW6PX6xvHMnz8fxcXFGDp0KEaOHInbbrsNw4YNO+047r33XnTs2BFpaWm45ZZbUFNTg8cffxwR\nERFYvHhxY0nGDz74wK9X6pn605/+BJPJhPT0dNx6663w+Xx49NFHAQD9+/dHbm4uXn75ZQwbNgzt\n27fHzTffjLvuugtXX331Wf9bRERE1LwCbd7U1DznTE2ePBkRERFITU1FWloaBgwY0HhH2+l8/vnn\nSE9Px/Tp0/Hcc8+hTZs2p/39mTNnoqysDEOHDkVWVhbuvvtu/P73v8fjjz+OysrKxuczPj4eEydO\nPOPxExER0akNHjwYZWVljcnKffv2hcFgaGyxcLprGWdy7eW6665DSkoKpk+fjt/97nd46KGHMG7c\nOAwfPtyvOvKf//xnPPPMMxg+fDgmT56M3r17+7W3Gj58OA4fPoy0tLQm92XQoEGw2+1+rVH/9Kc/\nYdOmTRg2bBgyMzNx00034dprrz3pb1u0aIENGzZg2LBh+Oc//4nFixcjLCwMI0eOxMCBA5GZmYmU\nlBR8/fXXmDdv3mmf08suuwyzZs3C5MmTcdttt+HZZ5/FP//5T+j1ekyZMgXh4eG45ZZbcM899yA+\nPv60sU7l8ssvx+zZs3H//fdj2LBhWLhwIV566SVERUXh8ssvR1hYGEaMGIHo6Gg89NBDmDRpEjIy\nMlhFkYiISBHOp35b9+7dcffdd2Po0KFo3bo17rrrrt/8m8GDByM7O9uvHXzD/k+cOBHDhg3Dxx9/\njCeffNLv79LT09GtWzfMmzcPaWlpqK2txa233orhw4ejoqICY8eOPauxEwWjEB/rghJRM1m0aBGO\nHDmCmTNnNvdQiIiIiOhXfve732Hnzp1o3759cw+FiIiINMzn82HJkiWw2+0nLfJIsNlsGDp0KP77\n3/+KxyYiIiIKBKrnU0R0cTm3hn1ERBeBsrIyTJs27ZQ/69atm19vdiIiIqKLzdKlS7Fp06ZT/mzC\nhAkXeDRERER0sfrjH/+I9u3b46WXXmruoSgzdepUfP/996f82XPPPYe4uLgLPCIiIiK6mATifIrz\nH6LAxUpAREREREREREREREREREREREQaF9rcAyAiIiIiIiIiIiIiIiIiIiIiovPDJCAiIiKiAFRc\nXIycnJxT/qyqqgqjR4/G3r17Gx97+eWXMWrUKAwfPhyrVq26UMMkIiIiIiIiIiIiIiKiABHe3AMg\nIiIiIn9LlizBxo0b0apVq5N+VlJSglmzZuHHH39sfGzXrl3473//i7fffhtVVVVYtmzZhRwuERER\nERERERERERERBYCgSgJyudzNPQSii4LdbYNJb27uYdBp2N02jC8cg9eTl/NYUUAyGPTNPYSAFhsb\ni0WLFuHhhx8+6WfV1dVYvHix388++eQTxMfH489//jMqKipO+Xe/xnmRLLvbhpEb07Bq2Hq+7xIR\n0Vnj3Kj5cW5ERES8nhYYOC9qfpwXEVFzszqLMHzjbVg77B1YjEnNPRyiZnOu8yK2AyM6R3a3rbmH\ncEakx9nwZVhFXJJj0pt5wYJIw4YMGYLw8FPnalssFsTExPg9duTIEXz11VdYuHAhnnzySTz44IPw\n+XwXYqj0v5weBw6698PpcYjG5ecjERERERHRhcHraURERIHBYkxiAhDReWASENE50EoijIpxqvgy\nrOr5DHa8YBH4eM6TlLZt2+KGG25AZGQk4uLi0KJFCxw+fLi5hxXQpF9/Rl0MYlt3hVEX89u/fIbs\nbhvSN6TwvYKIiIiIiOgC4fU0IiKiwMAEIKJzxyQgonOglUQYrdy9opVxEkli8htJslgs+Pjjj+Hz\n+fDjjz+iqqoKbdu2be5hBSxVn7krh8q2AitxFWP/sX0ocRWLxQTqy+kSEREREREREREREdHFh0lA\nRAFCVSKMirYkKhIXmABEwYbJb3Q2Nm3ahPz8/CZ/fuONN6Jnz54YMWIE7r33XsycORNhYWEXcITa\nYtKbMa/ffPHXn3S85LgUvJGch+S4FLGYVmcR0jbcykQgIiIiIiIiIiIiIqKLUIjP5/M19yAuFJfL\n3dxDaDZ2t00zC81aGGtDIkygL+BbnUVI35CCdakFomXztHCMiCiwGQz65h5C0Av2eZEWPsdVaGgx\nti61QHTfrc4iluglIjoPnBs1v2CeGxEREQUSzouaH+dFREREgeFc50WsBBSApCusaKnljN1tQ3bB\nyIAfq6oKHtL7bdTFoENLA4y6GNG4KhZMA/2YN9DKOImIqGnBXomrVXiUaDxWFyIiIiIiIiIiIiIi\nCgxMAgowKhJ2gn2hSytUHHunx4Hy4y7xlmDStJKoppVxkho87kR0MTDpzchLWSU6LzTqYhCr7yqe\ndExERERERERERERERGdHaTuw4uJizJ8/H7m5uX6Pb9myBYsXL0Z4eDgyMjKQmZmJuro6/PWvf8XX\nX3+NyMhIPPXUU+jatWvj38yZMwfdunVDVlYWAOCpp57C559/Dp1OBwD4xz/+Ab3+9OWQtFLCMNhb\nLWlh/1W1EVGx71ppz6GF4w5oZ5wkK5hbB6nC0s7NTyvzIhX4mpanlfkGEVGg4tyo+QXz3IiIiCiQ\ncF7U/DgvIiIiCgznOi8KFx5HoyVLlmDjxo1o1aqV3+Nerxdz587F6tWr0apVK2RlZWHQoEH4/PPP\nUV1djfz8fHzxxReYN28eXnrpJRw+fBgPP/ww9u3bhwkTJjTG2b17N5YuXYr27dur2oVmE+yLUVrY\nf1XVlbSw78GOxyg4saIa0cWFr2lZdrcNj378oPhzysQiIiIiIiIiIiIiIqKzo6wdWGxsLBYtWnTS\n43v37kVsbCzatGmDyMhIWCwWFBUVwWq1ol+/fgCAq666Cl999RUAwOPxYMqUKUhNTW2MUVdXh/37\n92PmzJkYPXo0Vq9efUZjYisXkqSFhUOrswjDN94Gq7NINK70a4lttkgLtPCaJ7pY8fMhsKlIqlI1\nhyEiIiIiIiIiIiIiupgpSwIaMmQIwsNPLjRUUVHh17ZLp9OhoqICFRUViI6Obnw8LCwMNTU16NKl\nCxITE/1iVFZW4vbbb8ff//53LF26FHl5eSgtLf3NMQVzkgEXUIKTxZiEtcPeEb2LXkXCjklvxvgr\nJmgiySJY30OIiJqL3W1D5qY00fdfJp/Kk/4MtxiT8PJNy8QrAXFOTERERERERFqTnp6OnJwc5OTk\n4LHHHsP+/fuRlZWF7OxszJo1C3V1dQCAlStXYvjw4cjMzMRHH30EADh+/DimTJmC7OxsTJo0CYcP\nH27OXSEiIqILQFkSUFOio6Ph8Xga/9vj8UCv15/0eF1d3SmTiACgVatWGDt2LFq1aoXo6Gj84Q9/\nOKMkoGBt+6C1O6m5ICfLqIsRjafibv/CsgLcv20KCssKxGKqwEVjIqILz+lx4IB7P5weh1hMtgML\nfHa3DXP/85ToZ67W5sREREREREREJ06cgM/nQ25uLnJzczF37lzMnTsXU6dORV5eHnw+HzZv3gyX\ny4Xc3FysWLECr776KhYsWIDq6mq8/fbbiI+PR15eHtLS0vCPf/yjuXeJiIiIFLvgSUDdu3fH/v37\n8fPPP6O6uhqfffYZrr76avTu3Rvbt28HAHzxxReIj49vMsa+ffuQlZWF2tpaeL1efP755+jVq9dv\n/tvButCjohqMKkyykGV32zByo2z1BED+tZQcl4I3kvOQHJciGlcaF42JiC48izEJSwa/Lj6P4Xt5\n8FFVXYiIiIiIiIhIldLSUlRVVeHOO+/E2LFj8cUXX2D37t249tprAQD9+/fHjh078OWXX+Lqq69G\nZGQk9Ho9YmNjUVpaCqvVin79+jX+7s6dO5tzd4iIiOgCOHWpHQU2bdqEyspKjBo1Co8++igmTJgA\nn8+HjIwMdO7cGYMHD8ann36K0aNHw+fzYc6cOU3G6t69O1JTU5GZmYmIiAikpqbi8ssvv1C7okla\nWeww6c2Y128+F+aEOD0O2CoOwOlxBPxzqiIByO62ie93oD+PREQXG7vbhmetzyDBkMj34CBi0puR\nl7JK9Jg3VBeSPpdUzDeIiIiIiIiIAKBly5aYMGECRo4ciX379mHSpEnw+XwICQkBAOh0OrjdblRU\nVECv1zf+nU6nQ0VFhd/jDb9LRKQFvOZGdO6UJgGZzWasXLkSADB06NDGxwcNGoRBgwb5/W5oaChm\nz57dZKwpU6b4/ffEiRMxceJEwdFe3LTyRml32/Doxw+y2ooQizEJc2+YL54EpoXzqaGqFM8lCmRa\neC0RNTdWYQteWjjmnG8QERERERGRSt26dUPXrl0REhKCbt26oW3btti9e3fjzz0eD1q3bo3o6Gh4\nPB6/x/V6vd/jDb9LRBToeM2N6Pxc8HZgFxsttK2yu23ILhipibFyoU+W1VmE6Z8+BKuzSCymVlq2\nsaoUBTqtvJaIzoaq85nv5SRBRXUhzl2JgtPy3W829xCIiIiIKEisXr0a8+bNAwD8+OOPqKiowPXX\nX49du3YBALZv345rrrkGV155JaxWK06cOAG32429e/ciPj4evXv3xrZt2xp/12KxNNu+EBGdKV5z\nIzo/TAI6D1zAVbPYxzd0ORZjEl6+aZloJSCtfPA2VJUK5tcnBTZVryWe83SmpM8VzotIC1TMXwJ9\nTqRaML/mg3nfVZC8caGBimSd5bvfxLRtk8Vj77LtEo1HRERERBeHESNGwO12IysrC9OmTcOcOXPw\n+OOPY9GiRRg1ahS8Xi+GDBkCg8GAnJwcZGdnY9y4cZg2bRpatGiBrKwsfPvtt8jKykJ+fj4mT57c\n3LtERHRGgv2aG9H5CPH5fL7mHsSF4nLJ9zrVSisXq7NISUuo7IKR4ndUkxwtHSMVr6VgjknBSUsl\nMg0G/W//EinV7bk4rEstED1Xlu9+E2N6jRWLR6QFwfw5bnfbMHJjGlYNWx90z4GqebaK721aYHUW\nIX1DCtalFojtf0OyznMDXhT/bJL+vLM6i5C24VYcn3FcLCadPRXXjIiIiOjs8ZpR8+O8iIiIKDCc\n67yIlYDOkxYudrMiCklTUT1CCy3rVFS5aFg8C/R9J23QSqUuCgz7jn2PElexWLzCsgLcv20KCssK\nxGISBbpgr4Dl9Diw71gZnB5Hcw+lWXhrvaLxrM4ipK6/RbwijopqONLnvFEXg85RMTDqYsRijuk1\nVkkCUENsaSEhIeIxiYiIiIiIiLQqWK+3EUlgElAQULUobNKbNVFhRhUVHz7SMVUco2BO2DHpzZjX\nb77o8+n0OGCrOBC0i2ckL1jfk+nsvZn8NpLjUsTiJcel4I3kPNGYRIFOxdxAJenkktLyPajx1aC0\nfI9oXK0kE0aERYjHlE4EUdG6yu62IW19ivj3gaiIKNF4gJpkHRUsxiRsHbe1uYdBREREREREFBCC\n/cY7ovPFJKAgoZWFCa1QVRFGxQeaFo69imQlFclvKqpqWYxJom0PiIjOlIpkHSYAUbCxu224f+t9\nmrgg0dBuSTIRaEyvsZh53d9EEy0KywowtjBLPBFIOp5Jb8aCgS+IzjUtxiSsT31XdF6oohpOiasY\nB9z7RKvJBfsNJgBwnfm65h4CERERERERUUBg1wOi88MkIDpnqpJWtLCIouKub1UfaCqSiqQXPBri\nSlMxRhXHiAlARERE2lVTJ9sSClAzHzbqYhr/J8XutmFD2VrR8RqiOiE8JByGqE5iMQvLCjCuMFs0\nEUhVy2UV80LpajiqKr/xwh4RERERERERNeB1AqJzxyQgOmeqKq1oobybqov+KhKAVFQsUrHvgX7M\nG3DSQUREdGFoZW4QHirbEsrutuGPK/sp2f+auhrReKoSpMNCw0TjJRgSEau/FAmGRLGYwX5HGiu/\nERERERERERERBSYmAQUgrSx4ANqptCJN1Tgl2zMAasapogpSMFeVIiIiopNpZW6gooXRIuvzOHyi\nHIusz4vFBOpbONkrbKItnAD57wMWYxKWDH5dtCKOSW/G366fo4lKlkRERERERERERETng0lAAUYr\nlXBU0srFdBUJQOkbUpQkAklSUQkomKtKkXaoOJd4ftLpFBcXIycn55Q/q6qqwujRo7F3797Gx9LT\n05GTk4OcnBw89thjF2qYREqY9GY8YHlYfG6QuSkt4N975w2cjzuvuAvzBs4XjZtgSETX1rLVcFSw\nu2141vqM6HGyOosw8f1x4vNsyfZixLkWERERPigi1QAAIABJREFUERERERGRBCYBBRitVJjRGi1c\n/DXqYtA5KgZGXUxzD+W0VJ2jKuJJVyyi4KWqtR4T1agpS5YswYwZM3DixImTflZSUoIxY8bg4MGD\njY+dOHECPp8Pubm5yM3Nxdy5cy/kcInE38usziLc/eGdonNYp8eBA+79cHocYjFVJRZJJwAB9XOj\ndakFAT83UjWHCwkJEY1XWFaAsYVZmkgEUjHXkP5+aXfbkL4hhXMtIiIiIiIiIiKi88QkoACkIgFo\n+MbblCQCaeGCqt1tQ3bBSE2MVXhtAoCaY6Ri8UhFu4/7t96nieNOgU9Vaz0ttD+k5hEbG4tFixad\n8mfV1dVYvHgx4uLiGh8rLS1FVVUV7rzzTowdOxZffPHFhRqqZgV7grQkFXMtizEJL9+0TLQllMWY\nhPWp74rGVJFYBKibY2vhM8futuG+LfeKn0/SLcYSDIm4tHU38cpKWkiusTqLkLr+FtGxlriKse/Y\n96Lt6nhTABERERERERERBSMmAQUBFYsogLburPTWesVjSu+30+No/J8UrSRAaelcInlaOe4qFpC4\nKEVNGTJkCMLDw0/5M4vFgpgY/6pxLVu2xIQJE/Dqq6/iySefxIMPPoiampoLMdQLQkWVmbQNtzIR\nSJD0XMvutmHuf54K+M8IFcklKudvWrgpwOlx4MAx+YpNT3w6XbydrXRlJVXJNfuP7RNNrgHkKysl\nx6XgzeS3kRyXIhZTRRtjujCaaom6ZcsWZGRkYNSoUVi5cuVp/2b//v3IyspCdnY2Zs2ahbq6OuXj\nJiIiIiIiIiIKBEwCCkAqKqI8a31GPK6qKhYqLtJGhEWIxlORtGIxJmFdaoF4spaKBChpJr0ZD1ge\nFq+ysmDgC5o4P4MZE8CIZHTr1g3Dhg1DSEgIunXrhrZt28Llcl3wcbxoXSgeU0UVCwCATzacKlpI\n2lBFeg6jojqmqnl2pbdSNB6gJvlNxevTqItBF31X0Ra5Ja5iHHDLJ8JIV4AC1CTXPHHdbNHkGosx\nCfckTBH/3iJdVUnFdwxSr6mWqF6vF3PnzsWyZcuQm5uL/Px8/PTTT03+zdy5czF16lTk5eXB5/Nh\n8+bNF3Q/iIiIiIiIiIiaC5OAAoyKBXGVZdBVJFio2H/pZBBVCVDSF9IB+QQoQE1Fhrs/vFN8UUr6\nzl9VCStaWYxVgS2xiGSsXr0a8+bNAwD8+OOPqKiogMFgOO3fFJYViI7hRetCzN71hHgikIoWMRZj\nEtanybaFAtR8PkpXBbG7bRi5MU18rCrmGzU+2SQgizEJa4e9I3rcVSQZOD0O/FgpWx2ykXDym6oW\nTquGrRd9TpPjUvBGcp5oIoyK16eK5BqrswhPf/aU6DiX734TC7+Yj+W73xSLaXfbkLZevm3ZhH+N\nVZJMKbnvDV79/FXxmFrUVEvUvXv3IjY2Fm3atEFkZCQsFguKioqa/Jvdu3fj2muvBQD0798fO3bs\nUD94IiIiIiIiIqIAwCSgAKNiQdzutmHK5nuVJBqoqC4knbCkqgy8FpIWVCRAqaqCpGJRTvpcUvX6\nDPZKOFp4LRE1t02bNiE/P7/Jn48YMQJutxtZWVmYNm0a5syZ02Q7sQZjC7NEE4Eua3eZ3zbQqUgA\nytwkm1zjqjyE6rpquCoPicV0ehywVRwQTTAx6c3IS1klnggj3SYVgGh1GaA+yeCuD+4QTwRRUR1S\nRfKbihZOgJq5gfQYAfmqPSqSawDA55PN/hrTayyeG/AixvQaKxZTRbWm0vI98Pq8KC3fIxYTqD9O\n07ZNFj1Oy3e/iYmbJorF07KmWqJWVFRAr9c3/rdOp0NFRUWTf+Pz+RpfozqdDm63W+GoiYiIiIiI\niIgCB5OAApD0RW8Viz2AmuQFFQk7Wqo0In2Xqt1tw/1b79PE86liMVYLyV9aOj9JG4I5oexiYzab\nsXLlSgDA0KFDMWrUKL+f5+bmonv37gCAyMhIPPvss3j77beRl5eH3r17n9G/8d2R78TGqyoZIMGQ\niK76buJtYqRfK06PA/uOfi863zJEdUJEaAQMUZ3EYlqMSbg7YbL45650myUViTB2tw3ZBSPFW1eZ\no2PFk4tUVIdUFVdFco0WWIxJWJ8qm1SlIrnGYkzChrT3xI+95BgBNdWaVDyfANChVQe/rYQeHXoi\nDGFi8S5G0dHR8Hg8jf/t8Xj8koJ+LTQ01O93W7durXR8RERERERERESBgklAAUh6UcpiTMLD1zwu\nfuHXpDdj/BUTAr7SSkPcQGd1FiFtw63iiUBVNZWi8bRCS8k1WhgjaSO5hi3r6GzMvO5vmGz5i2hM\nFckAJr0Z69MKxKuwSbfEclUegtfnFa3aY9TFoKu+m2iCiYpKI4VlBRhXmC3eYk5Fwoq3VrbFmIrW\nVaQdKs5R6YQVQF1SmTTpZE8AGBg7SDxmgiER5ugu4uMNDzt9Bb9g1717d+zfvx8///wzqqur8dln\nn+Hqq69u8vevuOIK7Nq1CwCwfft2XHPNNRdqqEREREREREREzYpJQAFGxQJuYVkB/rZrpvjCTGFZ\nAe7fNkU8brAy6mIQo7tEdKHP6XHA4flBtCqBlpIMuCBHUrRy3qtqqRjsLesuVtIJQCppoUqiIaoT\nIkMjRav2qEgwGRg7COboLqIL4wmGRMTqL1WygC8tIixCPCbnG0TnT0WlLhVtGhu0DGslGs9iTMK2\n8dtEY14sGlqiRkRE4NFHH8WECRMwevRoZGRkoHPnzk3+3SOPPIJFixZh1KhR8Hq9GDJkyAUcNRER\nERERERFR8wnx+Xy+5h7EheJyaaMHvN1tE1/ATVufIn4XPVCfCCR513/DYrN0BRfp51SFhgvfeSmr\nRMdqdRaJ3/0rHTOYjztph4r3ZunzXkuvpeORP6NLmy6iMens5O5aIV65Z/nuN5VUsVBxDkrPYQA1\nn7kqqHg+tfKZq5VxEgUbFd+FrM4ipK2/FevTZNu2qfp+vbP8IwzrMUwsHp09rVwzIiIiutgZDE23\n/KQLg/MiIiKiwHCu8yJWAgpAKlph/XPwUiULHtKLZ1qqYqGigseCgS+IHyfpxUi724b7t94nuv8m\nvRkPWB4WP+7SdxNTcFPx3iydrKOVlop2tw3p+emiMensSbdvWr77TUzbNlm0zRSgrjrE3P88paQF\nqxaomBNqJbFGK+MkkqSF+bCK70JGXQy66LuKVloF6qvJ/VjpEK0mV1hWgLT8NLF4REREREREREQU\nvJgEFATsbhse/fhBTVz8VTFWFYviDXd/Si9ITtl8ryaOk7fWKxrP6izC3R/eCauzSDQuUaAL1oV4\nk96MdaPWNfcwgl7X1rLtm8b0GovnBryopBJQpbdSPGZVjXxMIqLzpYVESgDiLaFV3Wgg3VIRqE/4\nXJdaIJr4mWBIRLe23cTiERERERERERFR8GISUABSUWFGusqKKlqpYlHiKsZ+9/cocRWLxXR6HDhY\nsV/0jlIAShJrQkJk41mMSXjIMl30QrqqykpEgU4ryXRsBdb81qXKtwlVkQCkouKC0+OAo+IH8c9c\nIqLzoaqimnQCf2FZgXg1OVVUfReQrvxm0puxdfxW0ZhERERERERERBScmAQUYFTcqWl1FuGuD+7Q\nzMKwFiQYEmGO7iJaQcGoi4Ex6hLRcvVWZxHSN6SIH3ufTzQcCssKMHvXE6ILCVqqrKSFMZI2WJ1F\nGL7xNr7f0xnRSpKkiooLqlrEaGFBnEgLgnVupLKimqQEQyJi9bLV5Ex6M/JSVmnms0kFJkgTERER\nEREREZEEJgEFAaMupvF/0qQv0KsqV6+CPrK1eEzpCjtGXQzM0bHixz4iLEI0XoIhEZe27ia6kOD0\nOGCrOCBe5UHFOT++cIwmznkKfBZjEtYOe0f87nSi5qai4oJ0i5jCsgKMLcxiIlAQUvEZHsznkd1t\nw8iNaQHfvgqQb90FqKmoJj13N+nNWJ8mX00umBOAiIiIiIiIiIiIpDAJKMCougOyVXiUaDxAXcKO\ndLl6FVQcJ6fHAYdHtjWJSW/GzD5Pio7TpDfjsWtniMec3XeOaEyLMQmvDH5NdOFYxTlv0psxr998\nJYseTCwKTkwAoouRivcz6fddFVUCKfCpSObVWkKZdPU5FYncKtpXqWrdJU3V90sm7BARERERERER\nEQUmJgEFIBUXaBcMfEEzF2qP11Y19xDOiPTzaTEmYX3qu6IL+FZnESa9P150ccbqLMLdH94pHlO6\nZZ3dbcOz1mfEF44rvZWi8exuGx79+EFWGNIAPpdEzSPY38+0kggSrEx6M8ZfMUF0XqgyoUz6daSi\nDaWKRG4V7au00roLYMIOERERERERERFRMGESUBBQlWSg4q7SElcxbBUHUeIqFoupJSpatvngE41n\nMSbh5ZuWiS7MqGhbZtKb8XrycvFqTc5K+WpN0uNUGVcrmFRFdPFQWTFNUomrGPYKm+gcRmsVYbRA\numpNYVkBpm2bLH6MwkPDReMB9Z9lQ9cNEf0ssxiTMOf6v4tXXpRO5FbVvkoLCUBEREREREREREQU\nXJgEdJ60sCBs0pvxgOVhJYtnKlppXNq6m/idz9ILPiqoSDIw6mLQtfWlosk1drcNc//zlPjCzKph\n6wO+TYFRF4OOLTuJJ2sF+sK21qh4LWklCYHoYqSyYpqk5LgUvJGch+S4FLGYquZFWpi/AvJVkKzO\nIqStvzXg54VOjwOOCtmkYwDYemALbBUHsfXAFrGYVmcRHvn4ftHnVGWCNBEREREREREREdHFTmkS\nUHFxMXJyck56fMuWLcjIyMCoUaOwcuVKAEBdXR1mzpyJUaNGIScnB/v37/f7mzlz5uDtt99u/O+V\nK1di+PDhyMzMxEcffaRyN5pkd9uQuSkt4BdSVLRvaqCiutBLNy0VvUhvdRYhbYP8go/0wpSKZC2T\n3owXBr0kvugh3RJLK5weB346fkh8UU6FYK5co2LxUCtJCEQXI1WvaRXvkZIJQED9vq9Lla1eYnfb\nkF0wMuDfzwrLCjCuMFt8vlXrqxWNZ4jqhPCQCBiiOonFNOpiYNRdIp50PDB2EAwtO2Fg7CDRuD6f\nbNVJAJqYaxEREREREREREREFImVJQEuWLMGMGTNw4sQJv8e9Xi/mzp2LZcuWITc3F/n5+fjpp5/w\n4Ycforq6Gvn5+XjggQcwb948AMDhw4cxceJEbNnyf3esulwu5ObmYsWKFXj11VexYMECVFdXq9qV\nJjk9Dhxw7w/4i9QqyvQDahaRVC2019XWicZTsTBldRbhrg/uEE1WsrttuG/LvaLPp9PjwA8VNtHz\nXisJK0ZdDLpEd1XStk1asLcDk6alJASiMxXo1VB+SUVFEFVVEqWpaJEqncyros1UeVU5fPChvKpc\nLKar8hBqfbVwVR4SiwkAIaLR6kWGRYjHdHocOOY9Kv7dJSRE9hmwOouQuv6WgE/gB9Qk82ql/Z+K\nz5Dlu9/URExAzf5vLN0oHpOIiIiIiIiIiIKPsiSg2NhYLFq06KTH9+7di9jYWLRp0waRkZGwWCwo\nKiqC1WpFv379AABXXXUVvvrqKwCAx+PBlClTkJqa2hjjyy+/xNVXX43IyEjo9XrExsaitLRU1a40\nyWJMwvrUd8WTa6RZnUWY/ulDmljsU5W4EBIquziRHJeCBQMWid7xb9TFoHNUjGiCidPjwP6j+0QX\ne1yVh1DjqxFdQFN13FVUqlLRtkwVrYxTmqrkGhVJCEzUouakoi2SqrmGirZQkz4YH/D7X1hWgLGF\nWaL77/Q4YHcfFJ0bqGgz1aNDT4QjHD069BSLaYjqhDCEiVbtAeSTYACgutYrHtOoi4EuPFp0rmnU\nxSBWL9t6FpB/TlUk8NvdNqRvSBGdb6h4zQPyiTAqKq0u3/0mpm2bLDpWFTEBNYlqhWUFSMtPE4tH\nRERERERERETBS1kS0JAhQxAeHn7S4xUVFdDr9Y3/rdPpUFFRgYqKCkRHRzc+HhYWhpqaGnTp0gWJ\niYlnFKM5qEgAkl64thiT8PJNy8THatKbkZeyKuAXsI26GMToTKKLE3a3Da//z6vix0rFXd/St6cb\nojohHOHiC2jSd6VrJREEYEsoaSa9GfP6zQ/49yYgeBO1KEAIfz5YnUUYti5ZE4kwAOCrk21hpKr9\nqPSBKi3fgxrUoLR8j1jMI8eP+G0lGHUxMLfuIp9cIpwYbjEmYenNb4jOs50eB+wVsolaALDumzU4\nfKIc675ZIxbTpDdj0R9lW8+quNEiwZCIWP2lSDAk/vYvn6ESVzH2HftetFpXgiERl7buJjpOVYkw\n0m3gxvQai+cGvIgxvcYGdMwG0olqCYZExLWLE41JRERERERE547rNkSkZcqSgJoSHR0Nj8fT+N8e\njwd6vf6kx+vq6k6ZRHS6GBcDFYkLdrcNz1qf0cQHlooWYwAQFRElGk9VkoH0Xd9GXQw6RXUWv+Pb\n1NosGtPqLEL6hhTRhVOtVFlRdc5rifSCuaq2gsF8jIJ53y9mj1wzQ3SRvbR8D7w+r2hyCYDGdlCS\nbaGMuhh0iOoo395Rdk0chqhOiAyJEE287dCqg99WQnp8Bjq3ikF6fIZYTGWEj5HdbcPc/zwl+j5Z\nWr4HNT7ZRC0A6GPqixCEoI+pr1hMu9uGOwpvV3ITgyST3oz1aQWi88LkuBS8mfy2aGVQk96Mdamy\n41SRCGMxJmFD2nvix0lFss7A2EHiMVUkqpn0Znw07iOxeERERERERHTuVN1kTkR0oVzwJKDu3btj\n//79+Pnnn1FdXY3PPvsMV199NXr37o3t27cDAL744gvEx8c3GePKK6+E1WrFiRMn4Ha7sXfv3tP+\nvpaoSC5RlbCi6kPQK5wIo6Jikd1tw/1b7xPdd6fHgR8rHaJ3fTs9DriqDonfSS5846+SVmgAq/Zo\ngdVZhOEbbwv4BLBgnvQH875f7GbvekK0us6YXmNxvbG/+CJuietLv61MzGI4PD+IVvCwGJOwPk12\nUdhiTMK9ifeJV0SRrjRi0pvx9wELRN93nR4HbMfkq+GoUOmtFI03MHYQjFEx4skLDa1cJVu6rvtm\nDZyVDtHqQoCa1oIq5oWSCUANVIxTRSKMdJKaCna3DWnrZVu2NSgse0885n8d/xWPSURERERERGdP\nKzeZExE15YIlAW3atAn5+fmIiIjAo48+igkTJmD06NHIyMhA586dMXjwYERGRmL06NGYO3cuHnvs\nsSZjGQwG5OTkIDs7G+PGjcO0adPQokWLC7UrStndNtzzwUTxSkAqqmKoSi6KUNESSwMsxiS8Mvg1\n0YU+oy4GxqhLRJNrVCQrAfLVmgD5hB0VyRAq2+ppIWnDYkzC2mHvKLnjXzqeVlqMSeMXnuZTXFyM\nnJycU/6sqqoKo0ePxt69e/0eLy8vx4ABA056/FRCESpaYebRrQ/iU+d2PLr1QbGYADAw9ka/rYQE\nQyJ04dGiiTCA/KL48t1vYuEX80Xb+Jj0Zvzl6gdEX9NWZxEmvj9ONHFDRdsyAPAJt8Fzehz4wW0T\nnxdFR8hXOTVEdUIIQkRf95e1u8xvK8HqLMLQdUPEE4Gk22EBapKV/t+O2aLx7G4bMjelic4LVbUY\nk34+S1zF2O+WbdkG1B+jhV/MFz1WhWUFSM1PFYtHRERERERE54fXw4lIy5QmAZnNZqxcuRIAMHTo\nUIwaNQoAMGjQIKxZswZr167FmDFj6gcSGorZs2djxYoVyM/PR/fu3f1iTZkyBVlZWY3/nZmZ2Rhj\nyJAhKnfjgipxFeOAe5/ohUqVlYCkq+GY9GYsGPhCwFfwUDVO6XYSABARKptUZTEm4e6EyeLl71U8\nnyM3yi54mPRmjL9igiYmf1qq3iKdAKSCqmRKFVSMUQvn/MVmyZIlmDFjBk6cOHHSz0pKSjBmzBgc\nPHjQ73Gv14uZM2eiZcuWZ/Rv1KEOq0rzRcYLAGZ9F7+tlARDIjq26CSasLPI+jw8NRVYZH1eLKaK\nRfExvcbizivuEq2uVFhWgPu3TRGtAuWqPITqumrRCjMDYwdBFx4tWsHEVXkINXVe0XG6Kg/BC9mY\nAPDz8Z9F4wH1iVV1qBNNrEowJKJ1ZBvR12dh2Xuo8dWIVlpR8fq0Ootw69qbRBNXVCSXOD0OfPvz\nN6KJamN6jcU1hmtF35usziLcsvaPos/nO3s3+W2lJMfd4rclIiIiIiIiIiIKJBe8HdjFRnqx1RDV\nCWEhYaJ36KpI1lFFxUK7iiQoVQkBNXWyrdAAoMYnG1NFVQJV7dVsFQdEFzxULJyqStYJ5so1Kmil\nGo6Wkr/o9GJjY7Fo0aJT/qy6uhqLFy9GXFyc3+NPP/00Ro8ejU6dznwOIZmwM9nyF/zRfDMmW/4i\nFhOoT5AuP+ESTZCeYpmKlqGtMMUyVSzmmF5j8dyAF8UTdl77nyWinzuGqE4Ig+xcUyuJWip8d+Q7\nv62Edd+swU8nDom32OrRoSfCEIYeHXqKxXy9ZBmOVR/F6yXLxGJajBa/rYR9R/f5bSW8VvIqfPDh\ntZJXxWKqsPjzF/y2EiZ/cA8+c/0Hkz+4Ryzm/P887beVcFv3oX5bKQ3HXPLYW51WsVhERERERERE\nRBTcmAR0HlQttoZAuE8BAG+tfHKJSW/GY9fOEF0UV7HQrqpikYoEi6qaKtF4To8DP1TYRRNhBsYO\ngjm6i+id+QBQ6a0UjaeivVpyXAreSM5DclyKWExVySVaqlyjFVpo2aaVZCX6bUOGDEF4ePgpf2ax\nWBAT49/mce3atWjfvj369et3xv9G+xYdkB6fcV7j/KUXrQux2fY+XrQuFIsJ1CeYxOovFU0wWffN\nGhyvq1KSZCEpwZCI1hGyVVYAICREdq5Z4irGTycOiSZqjewxCqEIxcgeo8RiNiyyB/pi+9ETR/22\nUlyVh1CLWvGqRVrw1U9f+m0l9Lmkr99WwuN9Z6K7/jI83nemWMxlt+bC1MqEZbfmisW8I2GC31ZC\n19aX+m0lrCxd4beV0qN9T7+tBFYVIiIiIiIiIiIiKUwCOg8qFluNuhh01hlh1MX89i+fBeG1HgD1\nJdvv/vBO0ZLtWqEiwaLEVQxbxUHRBTSjLgaXRJtEzyeT3oxN6f8SPe+dHgfs7oOiyUqq2qtJJgCp\nxEpAgY9Ve0jSmjVrsGPHDuTk5GDPnj145JFH4HK5Tvs3FV636PtuH1NfhIWEoY9JbkEcqH8/++fg\npaLvZyqqFlmdRRi2Lll0XrTumzU46v1ZPFmp1lcrGu+Nr17z20pQ0bpKRYWZy9pd5reVkBx3C0IQ\nIp4UoCIJ6tI2l/ptJahI3Ph9xyv9thJKXF/6bSXc+W4O9rq/w53v5ojFnPzBPbBX2UWr9jS8LiVf\nnwNjb/TbSvhz7/sQglD8ufd9YjEBwOY+6LeVEOgVpYiI6MLhNQIiakp5eTkGDBiAvXv3Yv/+/cjK\nykJ2djZmzZqFuro6AMDKlSsxfPhwZGZm4qOPPgIAHD9+HFOmTEF2djYmTZqEw4cPN+duEBER0QXA\nJKDzJL3A7vQ44Ko6JLooBwDhoRGi8YD6Sisv37RMtNKK3W1DdsFI8ao9Cwa+IF6xSDrBwhDVCZGh\nkaLtOQAgQsGxl1Zavgc1qBFdSADUtFeTpuKcb4jLSkCBTVXlMyYWBafly5fjrbfeQm5uLnr27Imn\nn34aBoPhtH/TtkU78aTjUAVTS7vbhtvfHSV6XquoWlRavgden1f0s0xFgsniz19AHepEWwON+/0d\nfttA1TDHkpxrqWgHVlj2HnzwobDsPbGYANCmRRu/rYSBsYPQLrKDaIXI3p2v8dsGkz92Hey3laCi\nJdaR40f8thISDIno3CpGtPKZUReDS3SyN0QAwLyB85F5eTbmDZwvFlOyohQREWkXv9MTUVO8Xi9m\nzpyJli1bAgDmzp2LqVOnIi8vDz6fD5s3b4bL5UJubi5WrFiBV199FQsWLEB1dTXefvttxMfHIy8v\nD2lpafjHP/7RzHtDREREqjEJKMAYdTHoEt1VvHKLdBIMUP/FdOaO6eJfTKVbl6lIhrC7bZiy+V7R\nmBZjEjakvSeaVAUAlV7ZFmMqklZUtRjz+UTDAdDOHVnB3hZKS8dJOl4wH/eL2aZNm5Cfny8a81DV\nj9h6YItozBpfjWg8AFhkfR7lx3/CIuvz4rElvVayxG8rQUWCiYokA0NUJ4QiVDS5Zt/RfX5bCQ2J\nT5IJUCqoqFgEAO1atvPbSihxFeNIdbloJUsV7dAaqipJVldqaFUn2bKuQ6sOflsJKt5HVJxLTo8D\nh6qcojfDOD0OHKqUjQnUzzN3OD4WnW9KHnMiItIufqcnoqY8/fTTGD16NDp1qv/evXv3blx77bUA\ngP79+2PHjh348ssvcfXVVyMyMhJ6vR6xsbEoLS2F1WptbB/fv39/7Ny5s9n2g4jobGhlnYcoEDEJ\n6DxJvwGZ9GasGrZevDLE/VvvEx9riasY+459L3rRH5BvXaaiao/T48BB937xC8rSd6mWuIph98i2\nGAOAnypP32LmbJn0Zsy54RnxixwRYbJVkFTckWXSm5GXsooXeARp6c45FWPkuXTxMJvNWLlyJQBg\n6NChGDXKf6E5NzcX3bt3P+nvmnr8VCTb2LxW8ip88Im3NKnwVvhtJaiosJN2+Qi/rQQVLWdUUNG6\nKznuFoQiVDRpo3vby/22EtLjM9AusgPS4zPEYr78xUt+WykqEqve2bvJbyth78/f+m0l7LTv8NtK\naKjUJFmxSSsJO6u/Xum3lbCqNB8++LCqVC7h1VV5CF6fF67KQ2IxAWDrgS2wVRwUTaQtryoXi0VE\nRNrG7/RE9Gtr165F+/btGxN5AMDn8yHkfxdSdDod3G43KioqoNfrG39Hp9OhoqLC7/GG3yUiCnRa\nWuchCkRMAjoPqt6AVHzZO3bimHjMBEMiDC07iZZsB+Srt6ioBGTUxaBdy/aiSTt2tw0jN6aJjrPh\nYrLkReV136yB6/ghrPtmjVhMq7MIkz5T+4NDAAAgAElEQVQYD6uzSCymSW/GXQn3ireBU3FHlorX\nvKr3Jy1MuLRy55yWJrEqxnjwaGAnNQQLs76LWKwY3SV+WynREdF+WwlWp9VvG6j0ka39thJ6dOiJ\nsJAw9OjQUzRmKEJFY7oqD6EOdaKL9yoSi5weByq8x0QTw1VUawIAh+cHv62E8qqf/LYS/tZvrt82\nUKl4PksP7/HbSti8/wO/rYQZfWf5bSV86frCbytBRVIVoKYdmmQsIiIiIrq4rFmzBjt27EBOTg72\n7NmDRx55BIcPH278ucfjQevWrREdHQ2Px+P3uF6v93u84XeJiAKdVtZ5iAIVk4DOg4oKM4D8Yquq\najAlrmL8dNwlHle6eotJb8YDlodFj1OJqxg/VjpF993pceBghWx1oTG9xmLmdX/DmF5jxWKmx2eg\nQ8uOone8A0Btba1ovMKyAty/bQoKywpE46qYcEgmPzVQ8f6kpaQVFVQkfKr4DJGmogWg3W1Den66\nWDw6d5KVcMYn3IkIRGJ8wp1iMQFgimUq2kS2xRTLVLGYKtotqaguVJ+0EiaatFJavge1vlrRqj0q\nKgGpWLxXkVikotKIinMJAHq07+m3lfD7jlf6bSVMKhzvt5WgohrOHQkTEIpQ3JEwQSymimOkIqlM\nRRUkFclfKpKqgPrvQ7pwnej3oT6mvmKxiIiIiOjisnz5crz11lvIzc1Fz5498fTTT6N///7YtWsX\nAGD79u245pprcOWVV8JqteLEiRNwu93Yu3cv4uPj0bt3b2zbtq3xdy0W2dbTREREFHiYBHQeVFSY\nUbHYCgAhEO6xhfpKQJ1aGUUrAZn0ZiwY+ILooriKKjMJhkRcojOL7rtRF4O2kfLVhVZ9u0L0fHJ6\nHHBXy97xDgAhobLnaIIhEZ2jZM9PFazOIqRtuFU8EUhFG0CtZF6rSlqRToBS1apRC0x6M9aNWtfc\nwyDItvCZ+++n4EU15v77KbGYDSQX7gEgOS4Fzw14EclxKaJxpRl1MegU1Ul0bqCigkWHVh38thJU\nJMIYojohFGEwRHUK6Jiqqpekx2egTWRb0cQFFdWVliS/jghEYEny62IxVZz3KpLKVCSt7Pxhh982\nUKlILFJVoe71kmXw1HjweskysZiS+01EREREF79HHnkEixYtwqhRo+D1ejFkyBAYDAbk5OQgOzsb\n48aNw7Rp09CiRQtkZWXh22+/RVZWFvLz8zF58uTmHj4R0W8K9pvSic5XeHMPQMtULYhXeitF4yUY\nEhGrv1Q8GcLpceBo9RE4PQ6x56AhsUryeTXqYhCr7yq6gAYArVvIls0scRXjUFV9dSHJc0r6fDLq\nYqCPaC3+fNbV1YnGc3ocKD/+k+j5qYpPugfe//LWesVjBvpzqYpWEqBUMOnNyEtZJb7vXdrItaGi\nc9fnErnKA30u6YuV3+aJxgTq389txw6KzzdeKXkJA2MHicU0RHVCZGikaDJIiasYzkqH6NxARUUU\nFe1HVdhp34E61GKnfQcsxiSRmPVVkOorK0nFnGz5C2zug5hs+YtIvAYlrmIcqz4qPtcMD5X9Slni\nKkYNagL+vN964KPGrVRC4R0JE7Dq27dFqwvd1n0oVn6bh9u6DxWLeWmbS/22Eh7vOxMOzw94vO9M\nsZiqfPXTl35bCZ85/yMWi4iIiM6P1VkkNrcnkpabm9v4/996662Tfp6ZmYnMzEy/x1q1aoUXXnhB\n+diIiCQF85oMkQRWAjpP0tVQnB4HnJU/iMY16c2Y2vsB8TdKizEJ61ILRL8UqWiPY9Kb8cKgl8Rj\nSi+KG6I6ISI0QnTx0OlxwOmRPZ/WfbMG5Sd+wrpv1ojFLC3fg1rItiZxVR6Ct062PQcg37qrPknt\nUvGkKkC+tZ5WqEpaURFPxThV0MIY6dxIVobo0aEnwkPC0aODXBsboP4zogY1op8RgHySrMWYhEeT\nnhCdF6moCKOias++o/v8thJU7LuK6kIqnk+rswhvf5MrPudIjkvBggGLRCtgWYxJWHrzG6LnfXJc\nCt5IzhMdp4r3p3kD5yPz8mzMGzhfLKbFmIR3h38o/ny+mfy26PM5ptdYPDfgRdGWw1ZnEdbvXS16\n3qto/QgAt3Uf5reVcI3xWrFYREREdO6sziIM33ib+FyciIiIzh7XJYjOHZOAzoOKLwVGXQy6RMtW\nrSksK8C0bZNRWFYgFlMVFe1xVLXcUZFUJb2IYtTFoF1L2RZj6fEZ6NCio2griYGxg9ChRUcMjB0k\nFhOQb4OnonWXSW/GzD5PBnWCSTCTTiQlOlvSVXtqfbWi8YD6xftQhIou3js9DtjcB0Rfg4VlBZi9\n6wlNzLekNbSCkmwJpSJhRyssxiTMuf7v4ncf2902vP4/r4rPs5+1PiM+z5Zu1WfUxeDS1nHibXd3\nOXeK77t0AjsAJe1xpRM+XZWHUF1XLb7/Ktpiq2gvNz7hTnSO6iwWj4iIiM6NxZiEtcPeYSUgIiIi\nItI0JgGdB4sxCS/ftEy8Es6iP8pWrQHUXPxUkRABADV18i2MVLRFkr7gb3fbMPc/T4nGLXEV48fK\n+hZjUpweBzw1FaILpyWuYhw+US46TlVt8KTbllmdRZj4/jjN3GGkov+qiteSil6x0vG0dHcZ++5e\nnKSrOBSWvQcffCgse08sJtDQwqkOO+1yVYsKy95DLWpFx6qico2KFkaqRITKVp9LMCTCGBUj+jlu\niOqEiBDZqosqWqFZnUWY/ulD4p8PqipuaqE0s4qk6xJXMfa7vxedvxaWFWBsYZZoMqHdbUP6hhTR\nz3Krswip628RPUd/2V5NiqrvA5Mtf8HM6/4m2rLPpDej6K7AnxMSEREFAyYAEREREZHWMQnoPKi4\n89XutuG+LfeKxlRR+r9BTW2NeMxw4UUkQL4tkt1tw8iNaeIL4yqSlXzwicazGJPwyuDXRL8Qq7hA\nb9KbMe6KO8UXpXw+2ecTAEJC5JP07G4bsgtGir8/SSfXqIipYpFTxThVVnqQjid9LlFgkEwAAuqr\nwISHhItWg9GSPqa+CEUo+pjkqiv16NATIQgRrbihIlkJkE+SdXoccFUeEk06NupiYNKblbTglKTq\n7mOtVMdUweoswqQPxosmrSQYEmFo2Uk8US0MYaKJaiWuYuw7JpuspKJqz7yB83HnFXeJtlcz6c1Y\nn1ag5ByVTABq0KVNF/GYREREREREREQUfJgEdB5U3Pnq9Diw/9g+0QUPu9uGhf99Vkmp+jrUiV78\nNenNWDDwBfE7lB+7doaC4/S9eCuf47VVovGS41Lw3IAXRRPAVFQsMunN+OfgpaLHaPnuNzF71xNY\nvvtNsZiuykOoRa3oOW8xJmF96ruauMtIKxUE7G4bHv34QfFzVHqcKio9MGGHmpPFmIRN6f8Sfz/r\nY+qLMISJJte0adHGbyuhtHwP6lCH0vI9YjF32nfAB59oFaT0+Ay0CosSbetZWr4HtagV3/da1Iru\nOwBI5/IOjB0EY1SMeEtTFS2hVFHxmaOiSp50IneJqxg/HXeJJ9dIf79SUa1KFckEoAZaSFIjIiIi\nIiIiIiKSFFRJQFpYFDXqYtChVUfRO5RV3P0J1N+pGh4SLnqnqt1tw5TNspWQrM4i3PXBHaKLCa7K\nQ/D6vKIX6EtcxbBX2ESPk91twyslL4mf+4c8P4rGs7ttmPT+eNFxdmjVwW8rITkuBW8k54lX1VJR\nkcCkNyMvZVXAJ9cA8oszqlqTSMezGJPwkGW6eMKEdEUxFecSXbxUJDQadTGIib5E9L2yj6kvwkPC\nRROLjhw/4reVUJ8AJTvORdbnUVVbiUXW58ViqnBZu8v8thKcHgdsFQfFk7jbtWwvGq+wrADjCrNF\nW0IB6uYG0smnKloOW4xJ2JD2nuh7lIp5oYqYY3qNFW//mByXgjeT31ZSaZaIiIiIiIiIiIjOT1Al\nAWmhjU2JqxgOzw+iiSCGqE6ICI0QTdYB6hflLomWbalQvzhzQLz1Q+vINgHf+iHBkAhTtFm0pQAA\n/FTpEo33eskylJ/4Ca+XLBOLufXAFtgqDmLrgS1iMVUtTkgfH1Wt5QA1yTXSlYBUUTFG6WNUWFaA\nv+2aKb7IK93+EOBd9NS8nB4Hfqpyic4NLMYkTL92VsBXYTPqYhDXNk50DjPFMhUdWnbEFMtUsZg9\nOvREKEIDvm3ZTvsO1PpqRKsLmfRmjLx8tOj7ZIIhEZ1aGcXnHKpU1VSKx5RuLweoSbqW/n4FQEli\njXT7R0DNOImIiIiIiIiIiOj8BVUSkHRlCJPejAcsD4vGVJGwY9TFoH0L2epCDUJCZONZjEl4ZfBr\nootyWw9swaGqH0UTTAxRnRAZEil+4V+6RcW6b9bAdfwQ1n2zRizm431n4i9XPYjH+84UizkwdhA6\ntugk3kpDRcJO+oYU0WQQp8eBA27ZFoANpJNWVFUC0kKVNhWVDlQk/pn0ZtyVcK940o6KY7TLtks8\nJp0dFcdVRUwVcwMVSXgqKteY9GY88Ycnxeevzw1cJBpTRQsjFc9nenwGYnSXiLZCU9F+1Olx4MiJ\ncvG5gd1tw21rh4jPYxwVP4iPNQSyXzJUJF1bnUUYvvE28dZlKlqhaYV0YrTWHDx6sLmHQERERERE\nRBQwtLB2RBSogioJSHpRVEWbKQCAcCJIiasYP1Y5xNuBOT0O2NyyLRXsbhuetT4j+sY+MHYQjFEx\nogkmFmMSlg55Q3RBssRVDLvnoOhx6mPqi1CEirYRAYBL21wqGs/pceDnE4fFz6W09bIJOyWuYuw/\ntk/8tSS90AWoqVSmIvFRxThVkW6zBQD6yNai8QrLCnD/timii2gqjpHVWYRBb8om/dHZy9wkuyCu\nqrKZ3W3D3P88JZ6Ep49oLZqEZ4jqhMhQ2QRhq7MIE98fJzrXtDqLMOFfY0VjJhgSYWjZSfT5TDAk\nwhzdRTxRMvPybE1UN6vzyVfC2XpgC+we2cqLRl0MOrbqJHqzgVEXA0NUZ/Fqo/vd34tXFJtz/d9F\nvw9YnUVIXX+L+PdLySQ1VTFVtcHTSlKV3W1DSh6rKxEREREREREB2lo7IgpEQZUEJM2oi0HnqBjx\ni96ddUbRmCoWpQCgtHwPanw1KC3fIxZTRZIBALRr2V40nt1tw/RPHhb/8FGRDCLdGmj57jcxbdtk\n0Qv/peV7UAPZc6nEVYwDbtmEnQRDIrq2vlR0QdJiTML6tHfFW9KoaN1ldRZh0vvjRRdTVL3mVUwM\npV9LJr0Zj107Q3Tfk+NS8MR1s0VbdKg4lyzGJLyQ/IJYPDo3B47tF10Qd3ocOFghG7NBpVe23dDr\nJctwzHtUtLWlxZiEtO4jRN/PXZWHUF1XLVphp7R8D7w+r/hnruv4IfEkWWkvWhdi4Rfz8aJ1YXMP\n5bRUzLFVcXocOFTpFH8vkY7pqjwEb51X9LVkdRZh+qcPiSeZhAiXWlUxd1cRMzkuBQsGLBKdw6iq\n1qRKdW11cw+BiIiIiIiIKCCY9GbxDj9EwYRJQOcpKiJKNJ7T44Cr8pD4Xaob0t4TTzIY02ssnhvw\nIsb0GisW0+oswqQP5JMMpNvjbD2wBbYK2TupVSzeW4xJeOSaGaLH/sjxI35bCR1adfDbSlCxkGDS\nmzG77xzxSYf0axOoT4K5f+t98skwwnlqVmcR7v7wTtHXvKoqSHkpq8STqqSrcVidRXj6s6fEn0/p\nNnBWZxHuK7xPLB6dG6PuEvnqHcIVQYD6udEPHpuS5CJJ/2/HbKz8Ng//b8dssZgJhkR0atVZNPm0\nR4eeCEMYenToKRbzuyPf+W0llLiKYauQrZCows4fdvhtJZS4vvTbSln99Uq/rQRX5SF4fbLJNa7K\nQ6jx1YjGTI5LwXMDXhSfZ68d9o7oPM5iTMKSwa+LxuzRoSfCQ8JFX/Njeo1F5uXZot8D7W4bFn/x\nguh8Q0W1pgYqEs6lE8CIiIiIiIiItIwJQETnjklA50FFFQejLgZtW7QXX0CTjtdAMmkDULOAWFhW\ngGnbJouXlpdmdRZhzq4nRRfvC8sKMHvXE6L7nh7//9k7+7Aoy/T9nzMMqAwDvjQ4OEiGxWIuak3U\namsRpWKaSqT4srqmW9++pWlppWW2P60lv5mlaG8WmawWmoulFr2IVBvm0rQhKiytrOKMMzKSwjAg\nDMz8/iDcnnVLoPN2Brg/xzHHdTQ5F8/M83Y/93Xe55WCnkG9kByTQsspojBjdVrwWtHLdOECW6TW\nklcE7PZVJkM8dk7kuhaJKKB1FIW4iCKnQRuBXuR7iCgnoNxZPBGlpH00eRup+ewuG065uO4dgBgH\nD2dDtSIysLlOKiKDIkchKupO+X0bynmmBYgNG4R5pgW0nPrgcGhUGqqTZXJMCrSaEOoYZni/EYrI\nYHJsKlRQY3JsKi0nANz1qymKyGD30V2KyCBOPxR9gw1U8ZvVacGL3zxPF26w3ZqsTgse/fxh+nYG\nqAOo+bYc3oxt322lOgHZXTaUVx+j3kPM9gI8+tlD9LG21WlBwjsj6PvJWe+k5pNIJBKJRCKRSCQS\nSfuRbagkEklHRoqAfgEiHCyaiz12arHH6rRg8vuT6DesnLI9mJUzjSowsbtsOFXDLSBW1lUqIoMZ\ng2dhztX3Ule/imiJJYIiRyHONpyhH6Pslb8AXwQjIqfZXoAJf0kSIgRye/jfXwSiRIpMRLgLxemH\nop82klrkLHIU4lQt/x4iwlXqhsgbqPkkbYftsiLCEQT4QRDQI4J6rrSIK5gii9jegxTRX3HUVqAR\nXAHinA9moqSqGHM+mEnLCfDFStmlO+BqrEF26Q5aThEOiQZtBHoLWBQgwmGo7Ow/FZGB3WWDvdZG\nfR4ochTiuPNf1GueiJZY2aU7YK+1UY9RkyEeE6NT6O5CP44sPPBQ85VUFsMNbvtDAEj76mlUuc8i\n7aunaTnzynNhdVpp+To6hYWFmDnzwntKbm4uUlJSkJqaim3bml3NPB4Pli9fjtTUVMycORPHjx8H\nABw5cgQjR47EzJkzMXPmTHzwwQeX9DtIJBKJRCKRSCSSjouIeoBEIpFcSqQI6BcgwsEiKXoc3kra\nSnVEsbtsKHdyV1UCYlpUiChMJUQloldQHyREJdJy5pTtQcaRjVQBVGyfQdCAa9VvtpsVkYEIUZXd\nZcNx57/ox6irsYaab781Hx54sN/Ka/khqjjRXEA7SV9NPem92/2+dZeodmBsNxwRiHBPEMUBywFf\nb4IEXPcOUdhdNjjOnaJez1quucxr75W9rlREBiJcVkTcxwf2vEoRWTR5m6j5enXvpYgMROz37NId\nqKw/TRWCAECkrr8iMphx9SxFZPBm0RuKyEDEuSRCVGVxnlBEBiJaFW4vyVJEBiIcEkW11hMh+jxW\ndYyWq6OzceNGLFu2DPX19Yr33W430tLSkJGRgczMTGRlZeH06dP49NNP0dDQgKysLCxatAjPPvss\nAODw4cO4++67kZmZiczMTNx+++2++DoSiUQikUgkEomkA9JRug1IJBLJT9GlREAi2kExBUAiafJw\niyhA84paR10FdUVtUvQ4PHnDCqoIqshRiDMNldTt/OeZfwLw/hA5GLQRMOr6U1d9z46bg7CgMMyO\nm0PLmRCViPAefamiKhGtXvLKc2FznUReOa/lkIji4YzBs7D8hpVUVylATGs9gH8tESGuETFAtzot\nuO+TP1CFRUWOQlhdXCcWu8uGs/VnqGIJoy4SaxLWUX9Ps70AiZt51xBJ+2G2MBIhPAWahQAer4cq\nCBBx7U2KHofNSW9TxzAiCs0iiuImg0kRGWwvyYIHHqrIYO/xTxSRQZx+KHp360MVX4oYbwDAcOMI\naFSBGG7knfci3DFr3S5F9FeOVx9TRAb/+L5EERkcPfudIjKocdcoIgMRQq35poXopuqO+aaFtJyA\nuHNU0kxUVBTS09MveP/o0aOIiopCWFgYgoKCYDKZUFBQALPZjJEjRwIAhg0bhkOHDgEADh06hLy8\nPMyYMQOPP/44amq4C0QkEolEIpFIJBJJ50YKgCQSSUemS4mAfp8znS4E6ggttkoqi9GEJrrTiD44\nHBqVBvrgcFpOs70AzxaspDqNxOmHIjKkP7U4kxyTgvAefZEck0LLCQAqbtcLFDkKUdVQRRcZVDdU\nUUUGIo4lEQ5QsX0GIYDs1mR1WrC1JJN+LbG7bDjl4rbWE7FCW1SrKfYAvchRiHLnMeq5JMKNw2SI\nR/bEPVSBqtVpwZIvFlP3kckQj9xZPIFeZ+WnWmEAQF1dHaZOnYqjR48CAJqamrB06VJMnToV06ZN\nQ2lp6UXz9+l+GfUa6WyoVkQWLUIlpmDJ6rRg+3fv0K89TAEQ0DzeCA7QUscbuqBQRWSgDw6HGmrq\nfVwEU2KnKiKDvPJcfF9fSRUd7z+Zr4gsTIZ4PHfTC9R7RE7ZHrxJdsd84NoHFZFBhLafIjIYP3CC\nIjJYP+oVdFN3w/pRr9Byhgf3VUQGIq7LIsRf2aU7UO89R3fVEsETI5bj9oHSqQYAxowZA41Gc8H7\nNTU10Ol05/9bq9WipqYGNTU1CAkJOf9+QEAAGhsbMWTIEDz66KPYsmUL+vfvjw0bNlyS7ZdIJBKJ\nRCKRSCQSiUQi8TVdSgTEbrNldVowfc9kagEpr3yfIjJIiEqEITiCWugDmp1Gugf0oDqNOGor0OBp\noIoMAECjvnAS8ZcSGhRGzWd32XCyxkoVbSRFj8PyG1ZSj3uTIR7TfzWL7oKlVnEvRyIcoABADa5S\ny+6y4UTNcXorNABQkVVlcfqh6NsjokO0mmIjSqh2Wbdw+rWZff0U1Qqtn45XiO2M/FQrDAAoKirC\njBkzcOLEv9vF7NvXPG545513sHDhQrzwwgsX/RuV505Tr5GTY1MVkUWfHn0UkUWtu5aaD+CLwzcV\nZaC2yYVNRRm0nEnRYxWRQU7Zh/DAg5yyD2k5J8emQg019XgS4VYl4vi8O26uIrIw2wvwyOcL6WL7\n8B7cNpSO2gqooKLez54YsRwLhi3GEyOW03LG9hkEjYorDm8ZDzLHhfNNC9EzqBfVDUfEcS9CrCTC\n/UtU3i2HN+ODox/Q8nVGQkJC4HL9WyTmcrmg0+kueN/j8UCj0WDUqFH49a9/DQAYNWoUjhw5csm3\nWSKRSCQSiUQikUgkEonEF3QpEZCIwrW7yU3NlxB1iyL6M+nmF+FsrEa6+UVazqTocVgwbDFVtGJ3\n2WCpPkEXWZxrqqPmE4HZXoBVBU9Tiz3rzWuRceQ1rDevpeU0GeLx+ui3qMKiOP1Q9Ol+Gf2895Kv\nmgZtBC7rzm/bZdBGoFe3PtS8dpcNZxu+9/tWUwC/EG/QRiA82ED/PasbzlJ/z5yyPXTXOxFOQFan\nBeO2ch1TOhs/1QoDABoaGrBhwwZER0eff++2227DypUrAQAnT55EaOjFXV56BvXqEKI+Ea5ZdpcN\n1hru2ECEOPyJEcsx5+p7qcKFFqEOU7AzIGyAIrJQkYW3SdFjEYAAqgBKHxyOALJIFAC6qbtR8wHA\nfms+Gr2N2G/lOQzZXTZUnnPQHSIDEED/TcO6cQX8Bm0EjCHcVr4GbQRCgnT0caEXHmq+lpbIzNbI\nFbWnFJHBdYbrFZHFrZePUkQGbOevzsjAgQNx/PhxnD17Fg0NDfj6669xzTXX4Nprr8Xnn38OAPj2\n228RExMDAJg7dy4OHmxufbl//34MHjzYZ9sukUgkEomkbZyoOnHxfySRSCQSiUQi+Um6lAhods4M\nemHY7eGKgES0rsorz4W91kZtUwAAkbr+isggp2wP1n37PLWA7aitQCO4LYyKHIWw1JygOigYtBHQ\n9+hLn/RvIk/6J8ekQKsJobYmsTotWJ7/ONlVKxeV505Tj3tHbQUaPW7qsWR32VBRx23bBTQfoxV1\ndvoxyhYsiRKYsK/3dpcNjrpT9P3kVXmp+eL0Q9E3mOvIYNRFYlPSFrpQS4QLS2fip1phAIDJZEJE\nxIXnoUajwWOPPYaVK1fijjvuuOjfONtwhtoiZfXfVikiCxGOEyWVxWj0NtJbpbJboVmdFnxuzaNe\nz0QIYWYMnoUXbl6PGYNn0XKKaGdrMsRj950fU0XHjtoKNJFbZZoM8bhvyHy66+KVva5URAYihEUA\n381wvXktVhx4kipiB4DTdQ5qvuzSHag8d5p6bU776mlUNVQh7aunaTmHG0dABRWGG3ntwERw9Ox3\nisjizLkzisggJDDk4v+oi7Jr1y5kZWUhMDAQS5Yswdy5czF16lSkpKSgb9++GDVqFIKCgjB16lSk\npaVh6dKlAIA//vGP+NOf/oSZM2fim2++wf333+/jbyKRSCQSiaQ1WJ0WJGcl+3ozJBKJRCKRSDo0\n/B5JP6KwsBCrV69GZmam4v3c3Fxs2LABGo0GKSkpmDJlCjweD/74xz/iH//4B4KCgvD000/j8ssv\nx/Hjx7FkyRKoVCpcddVVeOqpp6BWq/H000/jm2++gVarBQC89NJLiv7w/w12EdPussHmam7fxMzb\nPaAHLRfQ3HImQtuP3nJmnmkBquqrMM+0gJZTxMpffXA4NOpAas44/VAMCL2CWmi3u2w49YMYhHU8\niRCtZJfugKuxBtmlO2j7vshRiGPV/0KRo5D23WcMnoUz585QC5Jx+qEwBHPbYTlqK+Am76MWvOAK\nTH682p+1n0S0mjLqIrHI9ChdtOL1cH/P5qTcdM1iJe4+EkGzQxtXlCtpZtWqVVi8eDGmTJmCPXv2\nIDg4+Gf//Qdlu2jX8huNI7HX8jFuNI6k5Gvhxy2cWE6BCVGJ6N2tD3Vs9GOBMOv8s7ts+Fd1GfWc\nFiGEAUC93wLN+8io7U8fv7IR4Yiy5fBmrP12NQaEDaD+riJctXp176WILDxeroi9qr5KERks3rcQ\nrsYaLN63EG9PeJeS0+I8oYgMhvcbgW3fbcXwfjzBTkllMbzwoqSymHYtufXyUdh97D2qu44oRBz3\ncfohtFydgcjISGzbtg0AFMLmxJ5aHL0AACAASURBVMREJCYq7wtqtRorVqy4IMfgwYPxzjvviN1Q\niUQikUgkdIy6SGSnZvt6MyQSiUTiB1idFr+uc0gk/owwJ6CNGzdi2bJlqK+vV7zvdruRlpaGjIwM\nZGZmIisrC6dPn8ann36KhoYGZGVlYdGiRXj22WcBAGlpaVi4cCG2bt0Kr9eLvXv3AgAOHz6M119/\nHZmZmcjMzLyoAAgA3QkHAL2ACwA1bic9Z5CAlgJWpwUfl39Id1dSqwUcll7ujjLqIrFixJ+oN5+S\nymI0etzUFe/64HAEqYOoAigRq8hFFNCsTgveOpIhwA2G2/IC4Lc7EYXJEI/XRr1JLRxbnRY8nPcg\ndT+Z7QX4n0/nUNvgAYA6gHttMmgjYNRFUp2V9lvz0UR2ZBDR4sigjUDPbj1p+STAzp078eqrrwIA\nevToAZVK1ar7aXRP3rW85PtiRWSRFD0WaqipzjVFjkKcqf+e6pb2Y7ESCxHndEfBqIvE4useo461\nzPYCTMhOot4fWpxQmI4oRY6DisgiISoRfbpdRhVWiXBEEeECJaJl3a8vG6KIDCbHpioigxmDZ+Fy\n7eVUQdne458oIgMRrm8PXPugIrIQcdwzf0uJRCKRSCSSjk7/MF7nAYlEIpF0TER0fJBIuhLCREBR\nUVFIT0+/4P2jR48iKioKYWFhCAoKgslkQkFBAcxmM0aObF45PmzYMBw6dAhAs9jn+uuvBwDcdNNN\nyM/Ph8fjwfHjx7F8+XJMnToV777bupWXD302D1sObyZ9w+Yi5uVhA6gFXBGtu+wuG+y1J+nCBQA4\nc+57aj4RLbEctRVoJLdpECEyEDGZbDLEY9XINVTRhj44HAEqDVVYNNw4AhpoyAW0Qhx3/ota4BVR\njBXRvgkQJ6xasf8p+qCrkdxW0WSIx18m7KYe9yZDPDaO2kR3zghUB1LzNbfnUNPbc7Bbd+WV5+JU\n7Slqzs5OSyuMn2L06NE4cuQIZsyYgblz5+Lxxx9H9+7dL5o3tvcg2jYu/c0yBCIQS3+zjJYTaL6P\ne+Ch3sfj9EPRM6g39dob1i1MERmIaLljthdg4s6xdKHkkrzF1Hw5ZXvw0GfzqS1iSyqL4fZyBdct\nYwLm2EBEy12geWxUWX+aOjYS4YgiQgQlSljF5s2iNxSRwe3bb8Nx13Hcvv02Ws6BPa9SRAZJ0eOw\nOeltmuNbC90C+IthRDhLdQQHJIlEIpFIJBKJRCKRSC4Vojo+SCRdBWEioDFjxkCjubDbWE1NjcK1\nR6vVoqamBjU1NQgJCTn/fkBAABobG+H1eqFSqc7/W6fTidraWvzud7/Dc889h9dffx1bt25FSUlJ\nq7aLubLQqIvEk7/5f9QLkIgVkAZtBLSaEKqwBhAnWDr5Q4s1LlynFZMhHvf++gGqICA5JgW6QB2S\nY1JoOc32Aiz5YhG10FdSWYwmbyO1gGYyxCMjKZMusGAz3DgCAQigFmPtLhvO1H9PP+bnmRbgRsNN\n1HZ9dpcNJ2qO07dVQxbCAKBf76xOC9L+9jRdAEU2KftBJOGliiVECElnDJ6F1+94nZavs/KfrTBS\nU5XOEJmZmRg4cCAAIDg4GGvXrsWWLVuQlZWF227jFXtbS7r5RbjhRrr5RWrevPJ9isjJmYszDZXU\nMYwIp7ycsg/hhRc5ZR/ScjpqK9DgaaBeJ5bkLUbGkdeoQqBmEauXKmaN7TMIaqgR24cnfhOx30WI\no4FmIXegitsiV8Sziy4oVBH9FSHCvx9adjFbd21M2gQ11NiYtImW84kRyzF+wEQ8MWI5LScAuije\nZIjHs799nv6MIWLfSyQSiUQikUgkEolEIvk3ZnsB7v3kbvpCRomko3Gi6kS7PidMBPRThISEwOVy\nnf9vl8sFnU53wfsejwcajUbRysLlciE0NBQ9evTArFmz0KNHD4SEhOA3v/lNq0RAL9y8nrqy0Gwv\nwB8+/j31AqQPDoeG7LKSXboD39dXIrt0By0nIMa5ZntJFrzwYHvJT7sdtJXm39JL/U23HN6Mtd+u\npjpLZZfugNPtpO+nJm8TNZ+IYo/VacEjnz1MFVhU1lUqIgODNgLBgVqqwMSgjcBl3cPpopVn8lfg\nS/vneCZ/BS2nQRuBEI2Ouq1GXSS2jttOFVNanRZMfn8SXbBT18h1wwEAZwO3/WNS9DisuTmdeq8T\ndYyOHjiamk/SdpbfsJIqFHw2YTXmXH0vnk1YTcsJiBEEiLiXiSApeiwCEEBthSbi/ijCuUaEw0xJ\nZTE88FCFzAC/rafJEI8Hhi2kCxeaWzH2ol7P9cHhUENNHWe3HO/M436+aSF6BfXBfNNCWs55pgWY\nctV06nVUhFBtU1EGPPBgU1EGLWdO2R7sPvYe1anL6rRg0s5x9BaxS/7KXRABiLk+JUQlol9IP1o+\niUQiaS+y3YJEAllslEgkEonEDzBoIxAZEkWvS0jahnw+8C1WpwXJWcnt+uwlFwENHDgQx48fx9mz\nZ9HQ0ICvv/4a11xzDa699lp8/vnnAIBvv/0WMTExAICrr74aBw4cAAB8/vnnuO6663Ds2DFMmzYN\nTU1NcLvd+OabbzB48OCL/u3Xil6mHqyO2gq4PW7qSmoAgIpbSBAxQQ384FyjCaU618Tphygig5bV\n88xV9CJaCiTHpMAQHEH9PUsqi9FIdu0RQXbpDpyqs1EFUCL2Ubr5RTjd1VSXC7vLBkfdKbq7zoCw\nAYrIILt0ByrrT9OFamw7R7vLhnLnMepvanfZcNLJdSnLK8/FqTqum5rVacGGb9dR73V2lw0VtXbq\nd7c6LRi3ldvuQ9J22C4jAOgCIKDZcWLBsMVUxwkRwgURGLQRCAnkii9FUPJ9sSIyiO0zCCqoqGII\nEQKLOP1Q9NNGUh1MRIjNgeb7juNcBfW+s9+aDw881HZoLeNW5vjVqIvE8uFcB9ecsj3Y9t1WqhDG\nUVsBL9nRz2QwKaK/IqKVLwCA7LoINDsaLhi2GDMGz6Lm1agvdFKWSLoacoLZt1idFszOmSH3g6RL\nY7YX4M73x0shkEQikUgkPsaoi8T2CTtlOzAfYnVaMH3PZPl84EOMukhkp2a367OtFgHV1NTAZrPh\n5MmT519tYdeuXcjKykJgYCCWLFmCuXPnYurUqUhJSUHfvn0xatQoBAUFYerUqUhLS8PSpUsBAI89\n9hjS09ORmpoKt9uNMWPGYODAgZg4cSKmTJmCmTNnYuLEibjqqqva9s0JJEWPw4PDFlEdFxy1FWgk\nC4tyyvZg+3dvUyeogeZCgrOxmlpIEIEIu/aEqFsUkYFRF4n/u2kN9YYmwq0pTj8UhuAIarFLRCsN\nEftIRE4AaPJw3ZqAluIpt9A53DgCanI7NEDMRC/blQEAVGpuzoSoRIQF9URCVCItp91lw7+qj1IF\nO47aCri9fMFrQ1MDNZ+k7UzITqJPbLJFCy0wHUEAMcKFOP1QRIb0p94fNxVloMp9lurgcazqmCIy\nGD/wDkVkIKIVmoj9DgCBAdzCvYjxGyBGBCXCEUXE988p24OHP5tPfR5qaVXHbFkXpx+Ky7rrqdcR\nEW3gRDiKxemHIiyoJ/W7mwzx2DnpA7qrltlegFcOplPvoUWOQpRXl9Py+Qu/dB5J0rWQAhTfY9RF\nYlPSFllokXRpTIZ4/GXCbvr4QSKRSCQSSduR41Lf0+hx+3oTujz9w9rnvt+qGetXXnkFr732Gnr2\n7Hn+PZVKhb179/7s5yIjI7Ft2zYAwB13/LsokJiYiMREZdFTrVZjxYoL29ZcccUV+POf/3zB+3/4\nwx/whz/8oTWbfx52y5mcsj1Y9+3zMBlMNCFQUvQ43Gi4iSosEjGZDDQXEgIQQF+hrYGGmlOEwCRO\nPxQR2n7U39RsL8A9H8+mTlTPMy2AxXmC6gJld9lwpv572F022vnUUpToCMUJtgCqpLIYTWhCSWUx\ndYJhvzUf3h8Kncy8GnUALRfw74le5kSjiIKPyRCPnRO5OfPKc1HVcBZ55bm0leTbS7LQ5G3C9pIs\n2rbqg8MRAG6bSgBw1nNboUnaDlvcteXwZjz02TwAoLojmO0FuCN7DHYlf0Q7rkWMDQB+i7/ZcXPw\netErmB03h5ZThDhaxD03KXos0r9dQxeAsfmxUxzrPpYck4JXD75EdYcElO3QWOeSCMFOs+hYTRUd\nx+mHIjQojDqGS45JwYbCtdT9VOQohONcBYochbTjyaCNQK/uvamOYiJaKmaX7kBVw1lkl+6gPruw\nx9gteOCh5mOKyfyF9s4jSbouUoDiH8jfXyKBFABJJBKJROInWJ0WOT71MV4BDsuStnGi6kS7hECt\ncgJ699138emnnyI3N/f8qyNO3LDb7cTph0IXGEqdTJ73yX340v455n1yHy1nkaMQp885+NbqAFRq\nbkc5gzYChpAI6iS1iNWvdpcN35+rpB9TbPMSs70Ab5dmUlepGrQR0PcIp+6j7SVZishgxuBZuDVy\nNLUQbXfZUHnuNHW/J0QlQhcYSnWDAZoLU7279aEWpgzaCERojdR9b9RFYpHpUfpATkTrnI4wCSSi\npaKjtgJNaKSKRfLKc3GyRq4E72wkRCWie0B3+vVsvzUfjd5GqnuLPjgcAaoA6tgg3fwiqhrOUltG\n5pXnwtVUQ3VdTI5JgVYTQr0/iBCCGLQR6NP9Mur1PDkmBfru4XRxTaO3kZrPqIvEkuufoN8bRQg3\nhhtHIIDsEvhjsRKLHwtMWNhdNlTXV5Fbhe5TRE7OXFTUnaJeR0S4IA03joBGpaEeSy3iVBEudV4P\ndxZsuHGEECdLX9JZ5pEklxY5wS+RSCQSiUQikUgA6RQqkQDN50FyVnK7PtsqBUdERATCwnirhX1F\n8nvjqGKITUUZqHZXUVs0iGinUFlXCS+81NXZgJjWZXaXDRW1p6iT6QZtBMKDDdQikskQj/vi5tOd\nRh67bhk956u3ZVBz2l02nHLZqftovmkhdIGhmG9aSMv5TP4K7LV8jGfyL3QYay+O2gq4ycd8dukO\nON3V1KIU0LyfatxOulCtrrGWms9sL8Dcj2ZRr82i+pSyWyqKKMaKaPMjwuGD3eJG0n6YhebF+xbi\nXNM5LN7Hu5YDQMn3xYpIyVlZjCZvE1VkIEKEV+Q4qIgMNhVlwNVYQx2/Nhevuc4teeW5cJyroLed\n7dm958X/URvY8M06eODBhm/W0XKKaF0FNIvfgtRBVPGbQRuB/qFR1HF2s9so1xlURNsyEe0yJ8em\nQg01Jsem0nKKGG/MMy3A8htWUh17DNoIDAiNph9LP44sHLUVaCQLpEsqi+FF51pe11nmkSQSieRS\nIwtdEolEIpFIJM0LBJ4duVouFPAxqs61XqnDYdRFIjs1u12fbZUIaMCAAZg+fTrWrFmD9evXn391\nNMKCepGFICZFZNC8Mp3fdkUEcfqhiAzpT3VCMmgj0LMbdz/ZXTZUkEUrWw5vxtpvV1NXleaU7cHK\nA8upBR+r04Inv3ycOoHgqK1Ao5c76W132XCuqY66jwaEDVBEf2WeaQGmXDWdWkRpwUMuJGSX7kBF\n3SmqYKmkshhur5taiAf4fUpzyvbg9znTqeenCHGNCEQIi5JjUtBX25eWT9I+QgPDqOLL1be8CK1G\ni9W38JxwAGB4vxGKyKCjiPCahQAqqiBARDswR20FvPBQxwYi3IUAoNZdR803JXaqIjIQJeA3GeLx\n+ui36M52GlUgNR8ABJDdRhOiEtG7Wx+qU1lzu0yuo5jJEI89d35C3UdJ0eOwOeltartpAPSxq1EX\niQeGPUid3GtxkGM6yYkiISqx042NOss8kkQikVxK5Ip3iUQikUgkkmasTguWfLFYjot8jEbNn/eT\ntI32tAIDWikC6tu3L0aOHImgoKB2/RF/4VSdjdoSSx8cDjXU1IlfR20FmsgCi4SoROg0/HZDANA9\noAc1nwi7ekdtBdzgrtIVUUiI0w9FP20kVVRV5CjEcee/qMd9nH4oenXrTd1OEQ47sX0GQQUVdeVv\nnH4oDMER1O+eU7YH2797m77aX4RT1zzTAowfMFGIYIlNdb2Tmk8fHA41uXWQCBFCUvRYqBGApOix\ntJwiBK8AEKAKoOaTtJ26xlq6W1iE1kjNBzTfc43a/tR7rohWNqLOFTW5PYyI9k0A6G1sRDi3FDkK\nYXWdoI+LLtddQR0bJEQlIjKEe8wDzZMnaX972u8nTwzaCIQG9qQuCihyFOL7+krqvm9ul9lEHWsB\nYtqPsgVAIhDhgJUckwJDcAS9BaAIYZXdZcPZc2dp+fyBzjKPJJFIJJcSoy4Sm5K2yBXvPoY9RyeR\nSCQSiaTtGHWRWGR6VI6LfIhRF4mt47bLfdBBaZUIyGq1Yt68eRe8OhqB6kBqAbekshgeeKgOFi1t\nOZjtObJLd8DZyG83BAB1jdzV1AlRiYjQ9qMWPcx2syIyEFFIAIDgQK6oSkSRM688F9/XV1KFWvrg\ncKigop+fXnip56eIdnVx+qHo001PLR625L2sWzg175bDm7H72HtUBywR5JXn4lSdjS4mZAs0W453\ndluWCG0/auE0KXocFgxbTC105ZXn4mTNSVo+SftQk502AKDRy3XhApofNnbf+VGXfNjYb82HBx66\ni4UmQEPNlxQ9Dm8lbaVeJ2L7DEIgAqliXhEObEZdJFbe+Cfq8WnURWJXsphjnt3Wszkn93kgrzwX\np+v5reDYiHBFBbpuCxAR1xGjLhIfpuwVci6x97tBG4EBPQdQc/qazjKPJLm0dNVroETyY7ric48/\nIcIJWiKRSCQSSdsx2wtw7yd3w2wv8PWmSCQ+5YDlQLs+16rqT2lpKVwuV7v+gD/Rp/tl1MKoCBeH\nOP0QRWQgasW3iNXUAOBubKTmE9EWKk4/FH26X0af/PVyuzchOSYFvbv1oa5+je0zCAEIoBblcso+\nhBde5JR9SMspgpyyD+GBh7qdRY5CnK6voJ9HRY5CVNY76HnZiHDVEnFtFlE43vDNOkVkYHfZUFHH\nbX+YU7YH6759njoBFttnENStG4JIBHJf3Hyq44TdZYOl+gTdXQjoGBPh+uBwBKq4gvPhxhHQQEMd\nw5kM8dg58QO62wjbacRkiMcbSZup25kQlYheQdx7jqgJCRECGLvLhpNOK/UcLXIU4qTLQh1vJEQl\nom+PCLrjpgjBDhur04LpeybTi+AiiuoicopwLBJxT7I6LZi0cxz1NzDqIjH3mrm0fP5AZ5lHklw6\nZBskiUTiD4gQJkskEolEImk7Bm0EIkOiqHV9SdsQNU8laT1mewFueeuWdn22VRU4tVqNW265Bamp\nqZg1a9b5V0fDXstvB6ZRaejtYVRQUYvXBm0EenXrQ79QiiiKZ5fuwOn6Cqpr0bGqY4rIIK88F5Xn\nTtMLNNUNVdR8dpcNrsYa+uS3SsVt+TE7bg56BvXC7Lg5tJwzBs/CgmGLMWMw71oV1i1MERmIcKpq\nwQuuqkyEAEyEq5aIa/OZc2cUkcGU2KmKyEBEaz2Afyy1OOl1BaqqqrBs2TLMmjULZ86cwdKlS1FV\nxb3Wt5e1366mOnuJao0DgO5AJqLVlMkQj/eTc6iiFZMhHrvu/Igu2BHRboiN1WnB8+b/oz5kFjkK\ncbbhe+o9R8SExJbDm/HQZ/OEOO95VWTFOfj3CADQBekE5Ayl5ityFMJawxVAAcDpWgc1nwjBitVp\nQfJ73JwteZmY7QWYmD2WLtIrchSi3HmMuu+3HN6MRz99lJbPH+gs80iSS4dsgySRSPwF5nySpH2c\nqDrh602QSCQSiY8x6iKxfcJO+XzgY9xNfOd/SesxaCMQFRbVrs+2qhfAI4880q7k/gizLZKjtgKN\n5PYwcfqhCA0Ko65S/bGlPlMQIQIRRTkRTkAinEayS3egou4Uskt3YJ5pASWnQRsBQzC3NVBzWyRu\nkdfussHprobdZaPd0M32AmwofBFJ0WNpxc7kmBSs+/saqrOSiONTJCpy+yB9cDgCEECdYBFxbRZx\nbeooiBB8Mq+d/s6TTz6JG2+8EQcPHoRWq0V4eDgeeeQRvPbaa77eNMy5+l7quCBOPxRRugF0p40W\nQQQA2vYmRCUiMqQ/1WkEgJCVKR1BsCMCoy4Ss6+eS33QT4oehydvWEFvN5R+68vU7RThhHMesl5H\nHxxOb7kMAIEBgdR8Rl0k1iSsox9P7FXi2aU74DhXQX0e+LFghfX9ixyFOF7NzWl1WnDbtpvw6ZTP\naTkdtRVwe/niaIAvfkuISoRRZ6Tm9DWdaR5JcumQE/y+x+q0yP3gY+Q+8C1mewHufH88/jJhd5d9\nFvM1VqcFsz5KxcH/PejrTZFIJBKJj5FjIt9D9oSQtBGjLhKfzPykXZ9tVTVXpVL911dH5MpeV9Jy\ntQiKmMKi7NIdqGo4S3XCEdH6ABDjjCFCXCMipwhajk3mMQoAgWpuEaWlyMMs9mwvyUKTtwnbS7Jo\nOXPKPkSjt5Heuutswxnqqt8ix0FF9GcctRVoJLvMiHAOySvfp4hdCZHOUkz8ffuYWCwWpKamQq1W\nIygoCA899BDsdruvNwsAkHHkNWqbN6MuEjsn7aE/nIlwdjPqIrHI9Bh1W2ULCy45ZXvw8Gfzqceo\n2V6AVQVPU11BrE4LHs57kL7fQ7vxnXAAwOPlurAZtBG4XHcFVQBn1EVi6fXL6Ofn/L3/S99PbNFj\nckwK+vaIoArOk6LH4e6r76GKlZKix2HcgAnUnOnmF1FZfxrp5hdpOeP0Q9GrW2/6forTD8Vl3cLp\nebtrulPz+ZrONI8kkXQVpN2/77E6LZj8/iS5D3yIyRAvBUASiUQikfgJckzke7x8A3DJJaJVIqB1\n69adf61Zswb/8z//g40bN4reNjpst4nkmBT06X4ZdZJ2uHGEIjIochTiTAO33Q4gTrTCRoSLhQgh\njD44HBoBK6nPNdVR8+235sMLL/Zb82k54/RDFJGByWBSRH8lIeoWRWQh4rgXgYjtnBybChVUmByb\nSsuZEJWI8B59qWJKEYKdjuIslRQ9FmoV11XKXwkICIDT6Txf9Dp27BjUZEet9jIg9Ap6AZPdJhNo\nFm68dHAtVbghQmDS1VtYsB/Kk6LHYc3N6VSRAQA0eZuo+QCg0cO3xa0Q4FxSUlmMJjShpLKYllOE\nNbPZXoC5ObOo57zdZUO58xi1Ra6IllhGXSRy7tpL/T23HN6MjCOvUdvLPZO/AruPvYdn8lfQcraM\n25jjt7zyXHxfX0m/NxU5ClFZ76A+X9tdNlidVlo+f6CzzCNJLi1ykt/3SLt/32J32WCpKaeOWSRt\nR4TDq6T1GHWR2HiHHDNIJBJJV0eKo/2DRq98PvAlVqcFyVnJ7fpsq6pQmZmZ519vv/023nvvPWg0\nreok5lew3SbsLhuq66uoD2YtriVM9xJRYgAReeP0QxGs0VKLkseqjikigxbHGqZzDQB4PdzV2UWO\nQlhqTlAnqEWIv0S4SokQWIg45kW51ohwwNp9dJciMkiISoQuUEcV15RUFsMLL7XIaXfZUFl32u8n\n4kScSyIoqSymu1H4K/Pnz8fMmTNx8uRJ3H///Zg+fToWLlzo680CAGRP5Lr2tLTtYhaagebjxe1x\nU89pUQITEdeIjvCgK8IFyeq0YPXXq6g5RbQ0BQAN2XUx3fwiqhrOUh1RAHHumOyFBiWVxXCDe84D\nQJOHKwArchTiWPW/6N+fzYzBs3Br5Giqm9rsuDnQakIwO24OLWfL/mbud5GOsOx2YCZDPFKv5gmg\n/IHOMo8kuXRIV0X/gN2SU9I2TIZ4ZE/cI11ofIgIobekbVidFjzwwQO+3oxLRk1NzUX/TVNTE5Yu\nXYqpU6di2rRpKC0txfHjxzFt2jRMnz4dTz31FDw/1BW2bduGO++8E1OmTMG+fc3zzefOncP8+fMx\nffp03HPPPfj++++FfieJRCJhIGJBl6RtNC9Yssh94EOMukhkp2a367PtWorev39/lJWVtesP+hqm\nIMBRWwG3l9saRwSxfQZBAw1i+wzy9aZclLSvnkZtowtpXz1NyxnWLUwRGeiCQhWRgYjV2SLQB4cj\nSB1EdSyyOE8oIoOk6LGKyEBEIUHEqmegeT+x3c/GD7xDERlsKsqA0+3EpqIMWk4RiDg/Z8fNQRC6\ncQto3xcrIgORbRq7AjfddBMyMjKwatUqpKSk4P3330dCQoKvNwsAqPdaQFyxVUReq9OCtX9/njqx\na7YXYOLOsfRWU5N28ieg2fma26s9ShWV5ZXnwuo6QXXw0AeHQ6PSUO+NIlpXPZuwGnOuvhfPJqym\n5QTEjOFyyvZgVs40qquWCAG/iPu4CHG41WnBze8Mp56jz+SvwF7Lx1TXnrzyXLgaa6jnpwghc0da\nDPNM/gq8dfAtWj5/pCPPI0kuDV3dVdEfMOoisSZhndwHki5NkaMQx6uP+b3QuzNj1EViw+0bfL0Z\nwti3bx+ee+45uFwujB07Frfeeiu2bNly0c8AwDvvvIOFCxfihRdeQFpaGhYuXIitW7fC6/Vi7969\ncDgcyMzMxDvvvIM33ngDa9asQUNDA95++23ExMRg69atmDRpEl566aVL8VUlkg6PFIRKujqO2go0\nehv9XgfR2ekf1r9dn2uVCGjp0qWK15QpUxATE9OuP+hrDp0+SMvVUdrtGLQR6NW9N93KVMRE7fB+\nIxSRktM4AmqoqS3WRLSaErlSlYnJEI/XR79FXZUkoiVWS7syZtsyfXA41FBTi2ciVj0DP7gdkN3P\nRFzzRLSvEnEuFTkOKiKDdPOLaEA91elh6W+WIRBBWPqbZbScIl21ugJfffUV7r//fiQkJOCKK65A\namoqvvnmG19vFgBg23dbMe+T+2j5/nnmn4rIQsS1V4SDh6O2Ag2eBup1t8hRiONO7nZanRaM3XEr\nXQA15yNu+yYRmAzxeGPMZuoYxmwvwD2fzKZ/d7Y4GBAzhhNxjxAh4Bfx3CIi55NfLEW1uwpPfrGU\nllPE7yliXJQckwJdYCi1JIutCAAAIABJREFU1bao5ysR+77ZXUlLy+cPdKZ5JImkq2B1WrDki8Wy\n4OVDzPYC3Pn+eL8fV3dmkqLH4ckbVtBdYyWtx+q04J5d9/h6M4Sxfv163Hnnnfjggw8wZMgQ5Obm\nYseOHT/7mdtuuw0rV64EAJw8eRKhoaE4fPgwrr/+egDNC9Dy8/Nx8OBBXHPNNQgKCoJOp0NUVBRK\nSkpgNpsxcuTI8/92//79Yr+kRNIJsDotmL5nshwX+RCDNgJRugGyTacPkeOijk2rREDXX3/9+dcN\nN9yABx54AM8//7zobRPCjcaRtFwiVqmKEJfklefCca6CulITaBbXqMjiGhETtY7aCnjgoRblRBQ6\nRQgs9MHhCFQHUgunVqcFy/Mf9/vBjwjxV0llMTzwUAU7Iq4jQEvRnOsEJIL9J/MVkYE+OBwBKu53\nj9T1V0R/zbmpKANuNFCdlUQUD9nHuz+zatUqrFjR7L4QHR2N1157Dc8884yPt+rf+LvoFhBz7e0o\niBgbZJfugL3WhuzSn59kbAv7rflo9LqpwtsZg2dhwbDF1BZGVqcFK/Y/RR/DNDVx20yZ7QWY8Jck\nevHH6rTgyS+5YzgRzy4iWs+KcMrbe/wTRWRQ11iniAy+tH6hiAxq3DWKyCCvPBdOdzX9mVUEvbr3\nUkQG2aU74Gp00fL5A51pHklyaZDtwHyPdGPyPSZDPF69LUO2A/MhZnsBVhU8LYVYPqbWXevrTRDK\nwIEDkZeXh8TERGi1Wrjd7ot+RqPR4LHHHsPKlStxxx13wOv1QqVSAQC0Wi2cTidqamqg0+nOf0ar\n1aKmpkbxfsu/lUgkEn/HqItE+q0vy7GpDzHbC/Cc+U9yXORjDlgOtOtzrRIBVVRUIDk5GcnJyZg0\naRJuvvlmpKent+sP+hrmRJ0IRIhLRK2AzCn7EF54kFP2IS2niO8vYoVyh8LLTSfCPUGUe4SqfR0P\nfxJRgh0RNBfNuW0vRFxLYnsPUkQGJZXFaPJyv3tVfZUiMhBRQBIh2JH8Murr6xWr3gcOHIjGxkYf\nbpESfxfdAs1tTVVQUduaihDJ6oPDoQG31dSMwbNwa+RoqhBGxLVHRE6zvQAvH1xHfci0u2w4XvUv\nah9rR20FGsG1xS2pLIYbbrrwTYSzlAhEtDRdP+oV3Bo5GutHvULLuWzEU4rIYPzACYrI4Pe/vlsR\nGdwdNxcBqgDcHTeXllOEqErUc6AIJyCm6M1f6EzzSJJLgxSg+Afy9/ctVqcFj3z2sBTD+RqVrzeg\na2N32XDSedLXmyGMyy67DCtXrsShQ4cwcuRIPPvss+jXr1+rPrtq1Sp89NFHePLJJ1FfX3/+fZfL\nhdDQUISEhMDlcine1+l0ivdb/q1EIvl5ZJtU32N1WjB/7//KcZEPMRni8acbn5MCdR9ithfglrfa\n10XnZyvkq1evxtKlS5GRkaGwcX700Ufx0UcftesPdiacDdWKyEBEEUUUItr4iPj+IlYoiyC2zyAE\nqAKoRU4A8Hg91HwiBDsi9ntJZTGa0EgtoIk4lkRcR0SRV75PERmIWO3fURBRQBIhVhKR0+bqvJM5\n/0l0dDSee+45lJaWorS0FC+88AIGDBjQqs8WFhZi5syZ//X/1dXVYerUqTh69CgAwO1245FHHsH0\n6dNx1113Ye/evayv0Gp2H92liCyaRcdequjYoI1AP20k306WPFn8TP4K7LV8jGfyV9ByihB0ihDJ\nOmor4Pa4qeIaR20F3GTBTkdCxBhORLs+ES1NzfYC/NX2GVVUZtBG4HLdFdTryIzBs7D8hpVU4V9S\n9DhsTnqbat1sMsRjd/LH1EmgB659UBEZiHheBbr2+LU1yHkkyS9BFll8T07ZHl9vQpcmu3QHTtVx\nXTslbcNkiMfGUZtkscuHmAzxSB/beYXDzz//POLi4rB582YEBwejf//+F3VL3LlzJ1599VUAQI8e\nPaBSqfDrX/8aBw40OwN8/vnnuO666zBkyBCYzWbU19fD6XTi6NGjiImJwbXXXovPPvvs/L81mfy7\nTiJpRgoffIvVacHDeQ/K/eBD7C4bjldzF/NJ2obZXoAlf10knYB8iEEbgYiQ9s09/qwIaPTo0bj+\n+usRHByssHL+7W9/e37Q0dFgriwU0cpFRFFYlMuKCEQUkUQUJ4SJVsjuJSKKKMkxKQgNDENyTAot\np4iCpCgHLDZx+iGKyKLIcVARGeiCQhWRgQjRwJYjmxWRgQgBmMV5QhEZHD37nSIyEPHda92dq93F\nz/HMM8+gtrYWixYtwmOPPYba2lo8/fTTF/3cxo0bsWzZMsXKrhaKioowY8YMnDjx72Pn/fffR8+e\nPbF161a8/vrr53vFXwymO8L4gXcoIgtRRdyggEBqvpLKYjR6ueLT2XFzEBygxey4ObScIpwxkqLH\nKiIDEeO3ZsgWiR0IEaJOEe36RLTBA4D6pguvp/6G1WlB+t9fpE8yMgXcLTz5xVJqvpZjqCO0fhTx\nfP3WoTdpuXxNZ5xHkki6CjllezArZ5oUAvmQ4cYRCFAF0FssS1qP1WnB4399VBZ9fYjZXoB5H87z\n9WYI4/3338ekSZNw+eWXAwBMJhPuvvvnXTtHjx6NI0eOYMaMGZg7dy4ef/xxLF++HOnp6UhNTYXb\n7caYMWOg1+sxc+ZMTJ8+Hb///e/x0EMPoVu3bpg2bRq+++47TJs2DVlZWZg3r/P+vp0F2SZVIvnB\nfdvbdRfz+QMGbQR6d+/DX0graRNBmqB2fU7zc/9zyJAhGDJkCG677TYEBASgvLwcMTExOHfuHIKD\ng9v1BzsTP7Ysn2daQMkpoigsyl0ots8gqKGmOteIaGUjoj2JCIGFCEQUUfLKc1HtrkJeeS5tlbKw\ntiwqbk4Rv+fuo++fj8xV3yJEiiLOzxYxCFMUEt3zSnzt+Buie/JWZ//YBYm5kp7NwJ5XKSIDUcXY\nrkJYWBieeqrtrWKioqKQnp6ORx999IL/19DQgA0bNij+X1JSEsaMGQMA8Hq9CAgIaNXfYQtrRJAQ\nlYjLuoUjISqRmrehyU3NlxCVCKO2P3U7s0t3oLbJhezSHbSxZosTF9ORq2WMxXbtaSKP30Rcy38s\nqvLn+wPQLNJa++1qqliruV0f93lAxDh7wzfrzseM2zMpOe0uG066LLC7bDTninTzizjTUIl084t4\nNmE1JeeSvMXIOPIaANBy3r79Nnzt+Btu334bPpj8KSWniMUwItpJAsA80wJU1VfRrssA8PaEd/Hb\nt6+j5fMlch5JIum4iJibkbQNR20FmrzcxXyStpFXngtLzQnqvKekbRi0EZ26zf3u3bvR1NSEKVOm\nYO3atdi1axcWLVr0s58JDg7G2rVrL3j/z3/+8wXvTZkyBVOmTFG816NHD6xbt+6XbbjkkiLbpPoe\noy4SW8dtl/vAh8Tph6KfNhJx+qG+3pQuS5GjEDbXSRQ5CuW54EO83vYtav1ZJ6AWDh06hIkTJ+L+\n++/H6dOnkZiYiL/+9a/t+oOdiV/1jlVEBglRtygiAxETqkDzg6kXXuqDqYgVyiKYHJuqiAxEuCCJ\nICEqEaFBYdQip4h2CgDg8TZR84lwFxo/cIIisugorQVFiFYitP0UkcE/vi9RRAYihFoiHFNEOCt1\nBZKTkwEAsbGxGDRo0PlXy39fjDFjxkCj+e9abZPJhIgI5fVSq9UiJCQENTU1ePDBB7Fw4cKL/o0F\nwxZTJzX1weFQQUUvGthdNpyud1CtX+0uG6w1J6g5jbpI3HVVKvWBaLhxBDTQUFcC3x03VxEZxOmH\nQhcYKuChnOvaM9+0EN0DemC+6eLnR2sR4YIkSvgmwmlle0kWvPBge0kWLed800LoAkOp++nWy0cp\nIoOSymK4PW7q7yniWVAEG5M2QQMNNiZt8vWm/Cz7rfnwwov91nxqXqvTgqzSLdRVuevNa1F6ppSW\nzx/oiPNIcqW175H7wLcYtBHo3e0yudLXh8hFOL6noziLd2byynNxynXK15shjIyMDHz22We47bbb\n4HQ6sXv3bkyaNMnXmyXxQ2TBXSIBemh6+HoTujRx+qG4XHeFFGJ1UFolAlqzZg22bt2K0NBQhIeH\n489//jP+7//+T/S2CSE8uC8tlwghSEdq3dVS5GMW+0S0shHxAC2iiCLCZUUE2aU7UN1QRe1PbtRF\nIv3Wl6kD25yyD+GBBzllH9JyijiWOor4C+g47aucDdWKyOCuX01RRAbDjSOghppa3BdxPLVMADMn\ngplFWH8lOzsbQHPf9uLi4vOvkpISFBeLaXVis9kwa9YsTJw4EXfccfGWXOu/fYHaz1dUsfXNojcA\neH+IHES07lpvXou1367GevOFq/Pai8kQjzuvmgKTIZ6WU8QYJt38IpzuaqSbX6TlFEF26Q6ca6qj\njmFaxhnM8YbdZUOV+0yH6Hk+OTYVKqipz0N2lw3nGuuo3z8hKhG6wFCqsErEPffHblUsRAiL8spz\n0YhG5JXn0nKKELC3jLHYLVWyS3fAXmujXkuu7MVzsPQXOuI8kmy54Ftk2wvfU+QoREWdHUWOQl9v\nSpelxb2O7WInaT0i2idLJEDz/NDOnTuRk5OD0aNHw+PxIDg4GPv27cPOnTt9vXkSieQ/sDotmL5n\nshyb+pjAgEBfb0KXxqiLxMob/yRFiT7G3c6OBq0SAXk8Huj1+vP/feWVnW+Cqj382FaeRcvkH3MS\nMDkmBT3UwUiOSaHlBJqLHV54qUWPB659UBH9lYSoRAQHaKmFhHmmBRg/YCLVVl6EC5SIY9TqtOAP\nH82mDqhmx81Bz6BemB03h5ZTRAu8pOixUENNdRAQRY27RhEZiHACErGdovCSXS5EiAmDA7WKKGkb\nDz300CX5O6dPn8acOXPwyCOP4K677mrVZ5rQRL2Hi7g/AMD4gXcoIoOO0tbzmfwV2PbdVjyTv4KW\nMyEqEX26X0Ydw4gQGeiDwxFIbuspQmSQFD0WAaoA6n3cUVsBt8dNbwMhomWdQRuBgWFXUoWijtoK\nuL3c759dugNOdzVVtCHCfW9ybCoCEEAVVYlAxAr52D6DoFEFUsfZIkR6gJj7XVL0OMyLn0fL5w90\nxHmkZ0eulpObPsSoi8Qi06NyH/gY9jOqpG20LKhgL6yQtB4RTp8SCQAcOHDg/Ovvf/87brrpJlRX\nV59/TyKRSCRKjLpI3Bv3v/L5wIeY7QW495O7qQuJJW3D7rLhRHX7jBlaJQIyGAzYt28fVCoVqqur\n8fLLL6NfP16blUuJLiiUlmtK7FRFZCDCCWhTUQbqPLXYVJRBywkANtdJRWTQ0kqA2VIgts8gBCCA\nOqGcbn4RtU0u6or3LYc3Y/ex97DlMK/ljohiV5x+KCJD+lPt3/LKc2F1naCuJra7bKhqOEtdRe6o\nrYAHHnpRTq0KoOYDxBS4Y3sPUkQGIlx7RGyniGJXcwsVL/V6JwIRv6e/Cy+YXHnllVi/fj2++OIL\nFBQUnH+1lV27diEr66ePlVdeeQXV1dV46aWXMHPmTMycORPnzp27aF5m8VqUm2GcfigMwRHU+46I\ndnzJMSkIC+pJF12zKXIUovLcab9f4W3QRqCv1kAVl8T2GYRAcEUGBm0EIkOiqNsZpx8KnYbfXs2o\ni8TuOz+iTp4YdZEYd8UEv5+QmWdagClXTaeK7WcMnoU5V99LbatoMsRj9c1rqe5fSdHjMOfqe5EU\nPY6a84Wb11NzGrQRMIZEUs+lJ0Ysx/gBE/HEiOW0nC2ooKLm23J4M9YXrKfm9DUdcR5pyReL5Upf\nH2K2F2Dux7PkBLOkS1NVX6WIkkuPKBGxpPUkRCWiVzfeXLa/kJaWdv41c+ZMpKWl4fHHH8eECROQ\nlpbm682TSCT/gVEXia3jtvv9fEdnJqdsDx7+bD5yyvb4elO6LAZtxPmXxDeUVBbD7RHoBLRixQrs\n2rULNpsNo0aNQnFxMVas4K1IvpQw3RFEFLtEWJaLWKUKAMP7jVBEBi0iLaZYy1FbgSY0UYUbcfoh\nisggISoRIRoddXW2CCcgAHA3NVLz7T+Zr4gMns7/f/DCi6fz/x8tp4gWDY7aCjSSV7uL4oOyXYrI\nIN/6hSIyEDFptvvoLkX0V0q+L1ZEf83JvHb6O2fPnsWBAwfw2muvYd26dVi3bh3S09Nb9dnIyEhs\n27YNAHDHHXcgNVXpDJGZmYmBAwcCAJYtW4Yvv/wSmZmZ51/du3fnfpmLMNw4Ahp1IL3tit1lQ2Xd\naaqoMzkmBaFBYVTBTpGjEFUNZ6nimkOnDyoig47SetbussFWc5K6302GeCy9YTlVYAEA9U0XF9y1\nhU1FGXA2VtMF/ADoLcZEtMETMd7KKduDbd9tpU4c5ZTtQcaR16g5zfYCLP5sAbUAvuXwZmQceY26\n0MDqtGB5/uN0sUQQ2eY7p2wPdh97jz5hmBQ9DmtuTqeKoFoWrnQmOuI80qakLXKS34e0TG4yW5ZK\nJB0NUXO4ktYjYtGrpG3klefiTD13LtufeP7557F69WoAQF1dHV566aVWzxNJJBJJVyJOPxT9tJH0\nRXKStlHn5s57StpGQlQi+oW0b0FVq0RAmzdvxpo1a/DVV1/hwIEDWLduHcLDedb8lxJmEVOEDbgI\n29eEqEToAkOp4hJAjNOIyWBSRAaVdZWKyOBY1TFFZLCpKAM1jU5qwUfEque88lycqrNRXXsitP0U\nkcF1husVkYEI54i3Dr2piCxEtMQK69ZTERmMMI5URAYiiuZlZ/+piAxEHE8hgSGKyECEE9Cr326g\n5fJ3WgQ56enpeOmll5CZmYnNm3mF2F/CgmGL6Q4WGaM30wUWAODxeqj58spzUd1QRb2XbSt5RxEZ\nXB46QBEZiBi/ihAW5ZR9SG9Zl1O2BysPLKcKAvLKc2Gv5Y6LRGG2F2Bi9liqwESE6+R800L0DOqF\n+aaFtJxmu1kRGYgQK20vyUITmqgugSIWBTz5xVI43dV48oultJwA3/VAhJMc0CyCevGb5+kiKLW6\nVdMzHYbONI8kuTSImGeRtI2OIhbvzIhYJCeRdDSYLtz+yL59+7Bx40YAQHh4ON588018/PHHPt4q\niT8iHSp9i9VpwfQ9k+V+8DGh3XiGEZK2I6IeLGk7PQJ7tOtzrZpl2rdvH7zeztET+u64ubRcIiZ+\nRZBdugNOdzWyS3dQ8yZE3aKI/oqIiW8RYiUROXPK9mD7d29Ti12xfQZBDTW1lUaLQxfTqevo2e8U\nkYGIwumvLxuiiCxECDdEbKsI96/xAycoIgMRAigRx5OI6/I3p75WRAZGovDJ3ykpKcGECRMwZswY\n3HrrrZg6dSrKy8t9vVkAgJcL11HFAFanBY989jD94Xi/NR9NaKIKpEXcy4IDtYrIQITzoAixkojr\n2RMjluNGw03UNj764HBoVBrog3lF6ISoRESG9KeK7ZOixyIAAUiKHkvLCTS7DzZ4G6jugyLa7gJA\nRDtXuPwUIn7TybGpCFAFYHJs6sX/cSsRcR8XcX4+cO2DUEONB659kJYzu3QHKupOUZ9Z7S4bHLUV\ndAesIkchjjv/RXV+c9RWtNve2V/piPNIU3ZNkpP8PkREq2hJ2xDhAiuRdDRELAKTtI3OLkRsbGxU\ntG93uzvXGFDCweq0YHbODDk2lXRpjLpIrElYJ91afUhsn0FQQUWf95O0HrvLhvKz7asntUoE1LNn\nTyQlJeHhhx/G0qVLz786Ihu+WUfLJcJpQwQiJn4BMe1xRKzSFYGI1VH64HAEkAtTlXWV8MJLdUFy\n1FbAC6/ft68KD+6riAxECP9ETXSKmLwTIawSkbPFZcbf3WY6ipBUhLCBLXrzZx5//HE89NBDOHDg\nAP72t79h7ty5WLJkia83CwDoYoDs0h04VWeji45FjGMctRXwwEP9/iKcuFpWQDJXQg7seZUiMhAx\nfltvXosv7Z9T20wZtBHo3f0yah9roy4Si0yPUSckDNoIRIT0o/fbFjF+FdF216iLxNLrl1F/U5Mh\nHk/c8EeqU5nJEI/VN62l5kyKHofNSW9T20zF6YfCqO1PdcMxaCPQuxv3XBpuHAGNSkNtKSlCRAqI\nuebpg8M7XTuwjjiPdLz6GF00Jmk9x6uPKaLk0mO2/00RJZeeWrdLESWXnpoGpyJKLj1bjrzl600Q\nytSpU3HnnXdi1apVWLVqFe666y5MmzbN15sl8TOMukjZqtbHGHWR2Dpuu9wHPsTqtODunN9JMZwP\nKakshhde2bLZhzhqK9DobWzXZ1slAkpOTsZ9992HkSNH4vrrrz//6ojUNdbRcoloYZQck4KwoJ5I\njkmh5RTF8H4jFNFfEdGmQITAwlFbgSZvo9+La/TB4fDCSxUriSjwzjcthC5QR20lMd+0ED0CelBz\ninLUGj/wDkVkcOvloxTRX6lrrFVEBiJckETsexEOHy2DbOZgm9mqzd/xer245ZZ/7+NRo0ahtpZ3\nbP5SmCLRlsIts4ALiBEuiDhXRLj2iBBci3DfE5Hzg7JdisigyFGIijo71b0jp2wPHvpsHtV10e6y\n4WSNlV6IFjEmjtMPhU4TShWYmO0FmPvRLKpTmYhWcGZ7AR77/GHqdoqioamemi+vPBen6yuodtDN\nIr0+VGGRiGMeaHaWUkNNdZZqEdR1JjriPFITuf2opG2cazyniJJLj/aHhR9a4gIQSdv40vq5Ikou\nPSec5YooufQEqgN9vQlCmT17Np577jno9XpERETgueeew/Tp0329WRI/RIpPfI9cIOBbskt3wF7L\nX3AqaT0zBs/CgmGLMWPwLF9vSpclKXoclv62fQuqWi0C+m+vlv/XkThWVUbLNSBsgCIyKHIUoqrh\nLLU40VLgYxb6AKDIcVARGYgoIonop93SVo7ZXk7Efmpud8Jt0ZBT9qEiMhBR4C1yFMLpdlLPpezS\nHahrqqMOOl799mVFZPHWoTcVkcGxqmOKyODavtcpIoPqH1yVqonuSh/9a48iMhAhQmh5MGE+oHTX\ndFdEBl1pYv+6667DSy+9hNOnT+PMmTPYsmULBg4ciJMnT+LkyZO+3jzqPXz131YpIgsRwlsRbnEi\nECG4FuG2IaLQPkQ/TBFZeMFtTSPCyTGn7EN44KGOtQAxY+JNRRlwNlZjU1EGLaejtgJur5sqjI/T\nD0WfbnqqWEnEduaU7cHvc6ZTxUrZpTvgOFdBHb+KcCnLK89FRd0pqrBIVLs6gzYCYUG96G5dnY2O\nOI/U5G2UKxx9yJHKIkWUXHoq604rouTS0+hpVETJpafl/i7v876jswqw9u1rdgLfuXMnysrK0Lt3\nb4SGhqK0tBQ7d+708dZJJJL/xGwvwKT3bu8QC386K8kxKQjv0bdDmGZ0Vsz2Arx0cK08D3xITtke\npP01rV2fbZUI6Of4uR7vhYWFmDlz5gXv5+bmIiUlBampqdi2bRsAwOPxYPny5UhNTcXMmTNx/Phx\nAMDx48cxbdo0TJ8+HU899RQ8nuaVWdu2bcOdd96JKVOmnB9AtYbxAye15ev9LC2TicxJRRFiCBGT\ntAAwOTZVERkMN46AGmpqYWrpb5ZBBRWW/mYZLef2kixFZCBiPzW3O+G2aBAhfhPhHiFCVCWiyHnX\nr6YoIosemh6KyEBE67Kq+ipFZDD/2ocVkcGQ8GsU0V950PSQIjK40ThSERmwV+T7M3v37sW7776L\nKVOmICUlBW+88Qb+/ve/43e/+91/HSN1ZEQ4ZgFihDAiXHtE9EhOiEpE3x4RSIhKpOU0aCMwIDTa\n7ye1J8emQq1SU8eZIsYGIpwcRYjigRbxuooqYhexraLE4afrK6ji8Dj9UIQGhVGFRSIcN0WMX1ta\nVzG3UxRs4R/QLKw601BJFVYxj/eOwM/NI/mSYI2Wes+VtI2z7rOKKLn0VNRVKKLk0iNFQL6nzHlU\nESWXngZPg683QQhFRc0i1wMHDvzXl0Tyn8gWSL7FoI1AhJbfql3SNkKDuHNjkrZRUlkMt8ctF8v4\nkDj9UESFRbXrs79YBKRSqf7r+xs3bsSyZctQX6+0Hne73UhLS0NGRgYyMzORlZWF06dP49NPP0VD\nQwOysrKwaNEiPPvsswCAtLQ0LFy4EFu3boXX68XevXvhcDiQmZmJd955B2+88QbWrFmDhobWDQ7f\nKc78ZV/4RzyW97Ai+iuinIBaTnrmyV9SWQwPPNSc8z65D154Me+T+2g5dUGhishAxH4SUUSJ7TMI\ngapAapFzvzVfERmIcK3Ze/wTRfTXnAAwsOdVishgz9H3FJHBu/94WxEZtPQOZ/YQF7EickrsVEVk\n8OQXSxSRwTenvlZEBkWOb2m5/J3c3NyffN1zzz0+3TZtQAi1vaEIkSggRiSbEJUIXaCOWujbb82H\nF17qvQwAevfoTc1n1EVi+4SdVFvpGYNnYfkNK+nWsBqVhppPxNhA1DhbFBpVADWfiJauIhYF6IPD\noSE7NmWX7kBVw1mqEESE42Zsn0HQqDTUsXtL6yqm+E3E+SnKVUvE2IiZqyPwU/NIvqa20YV084u+\n3owuS4toT4R4T9I63HArouTSU+etU0TJpUdei3xPZ2uR2sKDDz4IABg/fjzS0tIUrx+3kZdIgGYB\n0OycGVII5GPcTVKUK+nanDl3RhElvqG9XTp+sQjop4iKikJ6evoF7x89ehRRUVEICwtDUFAQTCYT\nCgoKYDabMXJks8vAsGHDcOjQIQDA4cOHz/eNv+mmm5Cfn4+DBw/immuuQVBQEHQ6HaKiolBSUtKq\n7Zo6iLfq/paoUYrIQMRKTVEkRCWiR0AwtYAm4oKybMRTisjg6NnvFJFBc+suNXWCPjkmBfru4VS7\nPJMhHslXTobJEE/LOc+0AOMHTMQ80wJaThGuNbdePkoRGYgQggCAyWBSRAb9Qy9XRAZ3/WqaIjIw\nGa5XRAbjB05QRAb64HCooaYWJG/od6MiMggO1Coigzhye5+OSlYWz02uPbiaaqiuGKKcB0UU7zcV\nZcDpdlJbGIm45xqON4dNAAAgAElEQVR1kbg37n/pfeDZ+axOC94r+wt1cspkiMfro9+ijjeSoscq\nIgMRx31yTAp6BATT7Y5LKovRSG51ow8OR6AqkHp+NjtZeqgCE0dtBRrJjk0imB03B/ru4ZgdN4ea\nV60S9thP44kRyzF+wEQ8MWI5LaeI8TAAPHDtg4rIgNkaV/LLYLb/lUgkEolE0nY88Ph6E4TwwQcf\nYOfOnXjyySexc+fO8693330Xzz33nK83T+JnGHWReHbkavr8jaT1FDkKcdJloc6dStpOYECgrzeh\nS9O8UC+AulBP0nba6xIqbDZwzJgx0GguXL1bU1MDnU53/r+1Wi1qampQU1ODkJCQ8+8HBASgsbER\nXq/3/CoxrVYLp9P5kzlaw5fWz9v7lS5g99Gdishg/8l8RWQgSqmXbn4RdU211JVyFucJRWTwZtEb\nisjA7rIpIgNHbQW88NKLEz2796TmeyZ/BbZ9txXP5K+g5dxyeDN2H3sPWw5vpuWscdcoIgMRK5RF\nuDUBwKvfvqyIDGoanIrIoMWdjenSduDkl4rI4Jn9f1REBvut+f+fvXMPi7pM//97OArDiEqDM86I\nhq1BLtE6UqutyeL6lSJTs9RwQbO2rd9qWdrBPHSt2trBzQzbbTuYaVpqpmZstBVRffMQTl9pMsmS\nBGdiZETBYQY5zfz+YMfts50A388c4Hldl9dd6Nw8n/mcn/v9vG944KG6hsRFxikiA3eLSxEZfH36\nCC1XKBMMrTCY1540bToSY/pTW+MAYor3i0YtxVjj/1CLzQAQHsZ1WSmqKMQ9H8xFUQW3IMnOZ9AY\ncXGfVOrklM1pxdI9D1KFRSKcB0U4AYl4xgbaBefhCKcKznVqPTRRvan22O0iWW6rKRHPWyIWbxg0\nRtyRPpd6LunUesRH9aHuo+zkHCy9Yjmyk3NoOYsqCvHmsV3065MIRDjiMlvjSs6PM8RFJBKJRCKR\nSCQ+GhoasH//frhcLkUbsIMHD+Luu+8O9PAkQYbNacUDHy2QTkABRBubCBVUIdEGu7sianGkpHOE\nITidfHsKdlc1rGe6di84bxFQZwtYcXFxcLn+U0h0uVzQaDTf+7nH40FERATCwsIU/7Z3794/mqMj\nxEfzBBEPXblcERmsHfcMrtRdhbXjnqHlFOUu9EjmKlypuwqPZK6i5RQh3Lg57RZFZDDjknxFZKCN\nTUSYilvwAIAzTTzBBiCucMpGxH4X4SAw0jAKKqjoSlrfNYR5LRllGK2IDDL0v1ZEBiLccHz3DuY9\nJFQQsdp9/IW8omEoE+hWGHddtoDqwGZxlKGm8URIrJDZdGgD3rP+iyo+Lakqht1djZKqYlrONG06\nkjSDqcKqoopC5BfdRC20P1CyAFu/2owHShbQclocZTh25hvq8SSiddWMYfm4tF86tRXajSnToIIK\nN6ZMo+X0wbbW33FkO0411VJbYrWLZNuoYi0R70MzhuVjrPF/qPt+06ENWLZ/Cf3a5DhbQ702me2l\nWFm6DGZ7KS2nKGG8CCyOzxSRwaJRS/Hgbx6k5Qt2gkEI/WNEh0cHeggSiUQikUi6IVOnTsXKlSvx\n5JNPKlqBrVixAtdccw0A/GBnDUnPxKAxYtYlt0jxQwAprz0MDzzUxR+SziFqcaSk44hoBy/pHDq1\nHr2je3fps+ctArrttts69e+HDBmCyspK1NXVobm5GQcOHMCvfvUrDB8+HB9+2O7Sc/DgQQwdOhQA\ncMkll2D//v0AgA8//BAjRozApZdeCrPZjKamJjidThw9evTcv/85Dtj3d2q8P8WfP16iiAyKKgrx\nsf1D6kVNlBPQpkMb8LH9Q+oktQgXi6c/fUoRGYj4Th3uGrSRnQ5KqopxopFbkBRROBUxkV5U8ZYi\nBmvOFy0vwAsv1akKABa8P08RGdS4TygiA587G9OlraLua0VkIKLF2HuV7ygigy9PlSsiAxHOGcw2\nfZKus6tiO3VFkTY2EeFk9w5ATGFYhCNKZlIW+kT3pbZJNWiM2DmpkDrpI8K5JjPpt4rIIE2bjr5R\nCVQBlIhtn/3PPHx2qgyz/8lrOVxeexheeOkTTSv2/FkRGYgQ14hwBhXxrPnwnmV4z/ovqjumCFdY\nITlte9DiaaE+G/gE8Uxh/JtHdysii7mmeYgJj8VcE+85GwCS+yZT8wUzPzePVFZWhry8719Xi4uL\nMWXKFEybNg1bt24F0L6AbOnSpZg2bRry8vJQWVkJAKisrMRNN92E3NxcPPTQQ/B4OtZa5GTzyU5u\njUQikUgkEknHGTly5I/+XXExbw5fEtpI8UPgyUzKgjFuIHWeT9J5vAjeBSQ9gTRtOnpHxdOd/yUd\nZ8eR7XC4HV367E+KgFJSUpCamnruT1paGtLT05GamoqMjAwAOKdS/jl2796NLVu2IDIyEg888ABu\nueUWTJ8+HVOmTEH//v0xbtw4REVFYfr06Vi5ciUWLlwIALj//vtRUFCAadOmoaWlBePHj4dWq0Ve\nXh5yc3Mxc+ZM3H333YiO7thqLab7wIxLZipisNLesy+M7jSSEJOgiAx8K56ZK5+H9PmFIjIQMUkt\nongqon2VCETs92rXt4rIID46XhEZiBC+AUBCzAWKyEDEuTRQk6SIDE6fPaWIDMprDykigxH/FhSN\nIAqLROQUIVZiur1Jug7bZUXUyoA5prvorkUAFG6TDEqqilHXdJoqvPXlZSJCyKyNTURUWBT1Gaak\nqhinm2up25+ZlAVdrD7oJ3BECfjHDhqniAxEiGtEiMpCBb16gCIyGDlglCIGKyJExyn9UhWRRUlV\nMRrb3PSFFrfuvpWWL5Cc7zzSc889h8WLF6OpqUnx85aWFqxcuRLr1q3Dxo0bsWXLFpw8eRLvvvsu\nmpubsWXLFsyfPx+PPPIIAGDlypWYN28eNm/eDK/Xi/fee0/cRkskEolEIpEQCGa3RIl/yU7OwUvZ\nm6ktmCWdw6AxYr7pfunGFHBkK6pAsuPIdtQ311EdwCWdY/LQKeiv7t+lz0b81F+Wl7c7CTz00EMY\nPnw4rrvuOqhUKrz99tv46KOPfja50Wg8tzprwoQJ536elZWFrCzl5HtYWBiWLfv+KsoLL7wQL7/8\n8vd+PnXqVEydOvVnx/DfuFtcP/+POsjHto/ORVZhqqTq/XORdYP/rm2dSZdByQmIWZn/3clf1lgH\nxw9WRAa+ldnM71RE8VSEaEUEIr5PEUWU8lOHFZGBCHcdQEzR42jdV4rIQBMVr4gMxgzMwtEvvsaY\ngbwib0rCMHx2qgwpCcNoOUUI1UTso6a2s4rIgCmmCmU62spUFBGqCKpoIzs5BxuyX6FPUNicVpTY\n3sMs52zqi7eK/BIpQni76dAG3P3BHACgtRyaY7oL9U31VFGVSZeBXZPeoj5nzhiWj9NnT1NbLQFA\nXCT3vBvefwTePLYLw/uPoOUU4YQDAPVN9YrIQBPVWxEZiHjHeCRzFSrPHKO2MV40aikO2D+htsjN\nTr4aT5c9SW096zuHmOfS5KFTUHBwNSYPnULLKYLJQ6fgH5/9jT5OEYthfA513YHznUdKSkpCQUEB\n7rvvPsXPjx49iqSkJMTHt783mEwmlJaW4uDBgxg9ur1d8WWXXYbPP/8cAHDo0CFcfnm7MP6qq67C\nxx9/jHHjeCJIiUQikUgkEjaBbhsvCS6k80Zg8bkxJcQkSDFWgNDGJiJCgOu8RBJq9Iro1aXPdWgJ\n9GeffYaJEyeeewgZP348LBZLl35hoGGuqBXhtCFiIl3EJCUgpkAhojghoiiXmZSF+Kh46kpys92s\niAxEiFZEHE8icooQf9U2nlREBiJW5QPApycOKCKD2Ei1IjLw3by6ehP7IT44XqyIDESIqkQcTyL2\nUXR4L0VkoI3tmnI5FNm3bx+mT58OAKioqMDYsWPx6aefAgA2bOC1VewKYSquEw4AIS/FBo0R67M3\nUQVAOrUe2pj+0Kn1tJzZyVcjDOHU4r2IZxifqIrZCg4AVQAEtI9z21ev0sfpbHZS87U7boZT3SFv\nTJmGMIRRHRIBwKQzKSID3/HOPO4v6nuRIjIoqihEsfUdqpX6WvMafGz/EGvNa2g5TboMPHj5Q/Tz\nie1+ZXGU4XTTKaqb3BzTXVh6xXKqQNGgMWL91S/TV26KEr2Gh3UPEZCPrs4jjR8/HhER31+v1tDQ\noBBQq9VqNDQ0oKGhAXFx/3FVDQ8PR2trK7xe77nfrVar4XRyr/8SiUQikUgkEokobE4rcgtvpM+J\nSDpOmjYdhjijFGMFmDa0BXoIPRoRXXEkncPiKENlfWWXPtuh6k9MTAy2b98Ot9uNhoYGbNq0CX36\n9OnSLww0fXv1DfQQ/I6INlMAYNQMVEQGIpxrRORst0Crp1qgiRCtiLD/bz+euO4RvlzBrugd1Huw\nIjLITMpCn6i+9OJMY2ujIjIQcTzVN9UpIoPUf7v1pBJde0QIFK8dcp0iMhCxj264eKoiSjrHo48+\nes7pMDk5Gc8++ywefvjhAI+qnTsuvZNeaDbbS6n5fLALuHZXNeyub2F3VdNy6tR6DIgbQBUWiXiG\nabczvo/+nYrY942tbmq+kqpinGisprdYY7tKmXQZWHzFn+nnpwi+6+bIQhubiEhVJP1ZMzKMm3Ok\nYRTCyQKwoopCLN+/lCpWsjmtmLQzJyQmj9mTSjanFXe8e6uQba9trKXn7G6w55Hi4uLgcv3H2dnl\nckGj0Xzv5x6PBxEREYq2ny6XC7178xZaSSQSiUQikUgkku5PuOonm+lIBFNU8Ra88KKo4q1AD6XH\nIqJ1u6RznM/8U4dEQI8//jjeeecdXHnllRgzZgz27duHxx57rMu/NJAkEt0HfJOJzElFESt0He4a\neOChtpkCQscJyCf8YgrARGx7SkKqIjLwOV8xHbDa25a1Uo8n302ceTMX4wD1W0VkUFJVjLrm0/SC\npAhe+3KrIgYrItxw3v6mUBEZWByfKSIDEcf9kwceV0QGNnKLm2CmqakJQ4cOPff/Q4YMQWtrawBH\n9B/WHFyFTYd4bkRmeymuf+NaIWIQds69tj1oQxv1BcbuqobDXUMVFs0x3YW7LltAdcYw20vxh3dm\nUb9Ts70UE3deTc1pd1Xj2wYb9fsUQXntYbShlSqCESEEAcS4l8wYlo/VY9ZSW02ZdBl4YfwGqghK\nRMs6nVqPC+OHUIV/adp09I/VUVcaWhxlqHR+Q3Xt0cYm0ltKmu2lmLTrGup1xOIoQ+WZY9RtB/7T\nqpF5DwWgEK10B9jzSEOGDEFlZSXq6urQ3NyMAwcO4Fe/+hWGDx+ODz/8EABw8ODBc89dl1xyCfbv\n3w8A+PDDDzFiBK9to0QikUgkEokIhgwZEughSIIEg8aIJzKfoi/gknQcu6sa37qsQT8v1Z3JTr4a\n4Squ67qkc4hw65Z0jpSEVESqIrv02Q7NMhkMBhQUFODVV1/Fxo0bsXr1avTvH5qtPGrcJ2i5Rugu\nV0QGadp0RIf1ok78tvdN5E7SAmIEESJaCogQ14jY9lWfPKqIDERYtWljExGGMOrxJGK/z0qbjdgI\nNWalzablFIEI0QYA/PKCSxWRgYhr3qXayxSRgbvFpYgMHhy5VBEZVJ45pogMnM1nFJHBRX0vVkRO\nzqE//4+6CcnJyXj88cdx5MgRHDlyBKtXr8bgwYMDPSwAEFK4v9f0oBB3oet2ZlMLwyIEwjq1Hn2i\n+1EFAaJad7W28YVovpYrTDweDzVfZlIWtL0Sqe57mUlZuCCamzM7OQdPjCkQ0l5PhI01u+WwzWnF\nko8fDHrnGoPGiG3X7aROyooQE/pWDNGda7zcdADg9XCTZifn4OZL/kA/l0SJ30pmltDyBQOseaTd\nu3djy5YtiIyMxAMPPIBbbrkF06dPx5QpU9C/f3+MGzcOUVFRmD59OlauXImFCxcCAO6//34UFBRg\n2rRpaGlpwfjx49mbKJFIJBKJRNJpnE4nVq5cieuvvx5Tp07F6tWr0djY7uS+atWqAI9OEizYnFY8\n8NGCoH8v7s443DVo8bTQzRUkncPrFTD5IOkwojoNSTqOTq1HbGRslz7bIRGQxWLB+PHjsXDhQjz4\n4IPIzMxEWRl3NZ2/OFx7iJZr51fbFJHBgvfnoclzFgven0fLqVProYnuTS1KAe1FhJjwWGox4UXL\nC4rIYMWePysiA7PdrIgMFlx+vyIyEOGws618CzzwYFv5FlpOEa0kdhzZDneri9qy7R8H/66IDI7W\nfaWILESIQT4/+ZkiMhDRVlCEA9bW8lcVkcHMX96siAxuTJmmiAyuNIxWRAYWx0FarmDn4Ycfhtvt\nxvz583H//ffD7XZjxYoVgR4WAK44FhDnXlJeexgtnhbqPSIlIRXhqgjqd2BxlOFEYzXVccKgMWJ9\n9iaqyKDduaaN+n2adBmYmDyFKgBrdx5so0622F3VqG+uowos7K5q1Lecpua0Oa141vJ3+mSfzWlF\nbuGN1LxFFYXIL7qJet5bHGWocnLdW8z2UkzcwXWrAkB9zgTEuJTNGJaPqb/IpQpWRJyfOrUeg+IH\nU99ZNx3agHVfPEt37AH4Av7uyPnMIxmNRmzd2u4+OmHCBEyb1v5sm5WVhe3bt+P111/HjBkzALQ7\nKC1btgyvvvoqtmzZcm4F/YUXXoiXX34ZW7ZswcqVKxEeHt6h322IMXR2UyUSiUQikUg6zKJFixAR\nEYGVK1di2bJlcLvdWLJkSaCHJQkyRLVyl3QcUeYKko6z17YHHnhkK6oAImIeWdI5CsxPor65a92T\nOiQCevjhh7F69Wq8/vrr2LlzJ9auXYvly5d36RcGmjnDeeKaKwZcqYgMVv32SUSporHqt0/Scu44\nsh2nmmrpk9Qr961AY5sbK/fxipk3p92iiAxEuJfMSpuNSETRXWYiwO0xumjUUlw7eCIWjeK5l4gQ\nGYhARGs5EcdSY2ujIrIQ4lb12ycRpYqiXp8+PXFAERlc3C9FERlMTZmuiAy0sYlQQUV9kRAh/Cs/\ndVgRGcwbcS8tV7ATHx+Phx56CLt378aOHTuwaNEiaDSaDn22rKwMeXl5P/h3jY2NmD59Oo4ePdrh\nz/w3Oa+PoxfEvQKsIUQIdgAgQtWxYmBHSdOmQxerpzutsG2HUxJSERkWSf0+H96zDFu/2oyH9yyj\n5RTRbggA2sjuQqG2MuxU4ylqPhEuM2nadCTGcFtiOdw1aPY2U/fTWvMaLNu/BGvNa2g5Jw+dgpjw\nGEweOoWWc9OhDdj61WaqECY7OQcXx6dQHXYMGiOS4gZTJ7lnDMvH0iuWUwVQQPs1b83BVdRrntle\nit+88BtavmAgVOeRzhAXUUgkEolEIpH8N5WVlbj33ntx8cUXIyUlBYsWLcKXX34Z6GFJggwRrdwl\nncfLN72WdILJQ6dAHR5HnSORSEKN8zFQ6JAIyO12Iz39P5Owl112GZqamrr8SwPJm0ffoOUaOWCU\nIjKwOMrQ7G2irnwV1bNv4a8XIxKRWPjrxbScIhxhTDqTIjJYuW8FWtBMFUA53DVoRSu1OFFUUYg3\nj+2irs72jY85Tl8bCXY7CTaD4wcrIoNBvQcrIgsRblXrLevQ7G3Gess6Wk6fIwzTGaahpUERGXx9\n+mtFZFBU8Ra88FIFOyKOURFYHDw3qWAlJSUFqamp3/vj+/nP8dxzz2Hx4sU/+LxlsVgwY8YMHD9+\nvMOf+SHYrm5p2nSoI+KEtBtia4tMugzsnPRPqnON3VWNuiauI4zZXorJu3Kokz4mXQYeG72auu0i\nnrV0aj0GxBmpriDtq1daqc+ZIkQwBo0RCy9fTF/xV1JVjBON1SipKqblFNEOze6qxqmzJ6nnkoj7\nuAgKzE+isa0RBWae4Np3z2Xeeye/fi3K6w9j8uvX0nLO/mce3rP+C7P/2TEha0ewOa1Y839/pbtq\niWhlvNe2B63gt2oMJKE6j3R18oRAD0EikUgkEkk35sILL8T//d//nfv/8vLyoGkbLwku2O2SJZ2j\nvPYw2rzcOSRJ59hxZDtcbQ10gwtJxxHRdUPSOc7H6KJDIqD4+Hi8++675/7/3XffRZ8+fbr8SwMJ\ns9DuswBnWoGLmKAWUZwAgCUfLUQLWrDko4W0nCIuKCK2X4RjkQhEbLuInCKOexFiiFC64cVHxysi\nAxEtxib94kZFZFDbeFIRGVidxxWRgYh9JKLQV1H3tSIy0ET1puUKVsrLy3H48OHv/fH9/OdISkpC\nQUHBD/5dc3Mznn76aSQnJ3f4Mz8G0y2swPwkXK0N1OI1IEa4IQKTLgPPjnuRKq7RqfXoE92XKoQx\n20tx/4f3UIVF2thERIVF8V17vNyCeGZSFhKiL6AKVlISUhGp4jorme2luOVf+fQVfykJqYggu2rZ\nXdVoaD1DFew43DVo9XKF8XNMd+GuyxZgjukuWk4R3JgyDWEIozpuimi9+sfL7lBEBstHr0RMeCyW\nj15Jy7ly3wrUN9dRF24AYpwXuyOhOo8UFxkX6CH0WOIj4hVRIpFIJJLuRFZWFsaOHYsDBw5gxowZ\nyMnJwXXXXYcpU6Z8z+VZItGp9UhU96fOB0kkoYYogwtJx+nbq68iSvzP+dS4O9R7aNmyZbjvvvuw\naNEieL1eJCUl4bHHHuvyLw0klWeO0XKJKOCKKDSLclmZmjIdbx7bRW2PI2L7RRGpiqTmEyGEEbHv\nUxJSEYYwagFppGGUIjIQIdgR0RbJJ4ZgiyJEtEMTUUQSISwSQY37hCIyEHG9uzFlGtZ98Sy1eDjj\nknwc+OATzLiE20qjp1BfX4/CwkKcPn0aXu9/VvDMmTPnJz83fvx4WK0/7FxgMv2w28pPfebHYAo6\n55rmYcuRzZhr4rVeBdrbuVgcn1HbuZjtpZi06xrsnMhzA7I5rVj5yQqkadNpDi4WRxlOuO2wOMpo\nOR3uGrR4ue2rTLoM/D5lFlUAZXGUwdpwnLrtFkcZTjXVUnOadBl4Y3IRddvLaw+jxdOC8trD1LwA\nhLhq3TdiEXWcadp0XNBLS3UVszmt2PDFi5iVNpu270VMhDjcNfDAQxdAfTeyUIHri25xlKGxrZF6\nfl47ZAK2frUZ1w7hOrtkJ1+Np8uepDoBjTSMQji4bSoDTajOIzEF0hJJqKGCCl546dd4ScdRh6nh\n8rigDlMHeigSScCIRjSaEPzugZ1l48aNAICWlhb87//+L+rq6mAwGAAAKpW87kqU2F3VcDTWwO6q\nprsESzpGqHSv6M58t9sFsx25pOOEkjGC5Pt0yAnowgsvxLZt2/D++++juLgYr7322vdWn4cK7JY7\nbOaa5kEdoaYW0EQ5AYnAN+HGnHjLTMpCfFQ8ddU3AHjZVRQBiNj3e2174IEHe217aDl97WiYbWlE\niGBEtAAUJYKpdn2riAxEiKBECItEtFgb3n+EIjIQIQATcS6JcBc6WvcVLVew86c//Qn79u2Dx+MJ\n9FC+x+oxa6nCGoujDO5WF7WlKdDe2nLdF89SW1vq1HpoYxKDfkVVmjYdvSPjqWKI7OQc3HnZfOrL\n81rzGqz74lmsNa+h5RRBmjYdSZrBYlrWEclMyoK2F7fFlo/wcK7IoKiiEMv3L6WenxZHGU6edVCv\nJQXmJ3G6uZbqVJaZlAWDeiB1P6Vp0zFIcyH9GGULgLKTc/DEmALqdaT9fcVLfW/JTs7BhuxX6JOF\nJl0Gdk9+my7Siwjv0BqtkCEU55G0vRKD/h7RnRmhu0IRJf4nLjxOESX+x+P1KKLE/0T8e810RMfW\nTksE0CuiV6CHIASDwQCDwYDVq1dj165dsFqt+OSTT/DJJ59g//79gR6eJMgw6TJw/4jF/IVBkg6j\njU2ECiq667Wk44gw4pB0jk9PHFBEif/JTMqCJkrTpc/+5NPskiVLsHz5cuTl5f2gGnnDhg1d+qXd\nBREig5KqYrhaXSipKqYV5mYMy8drX26lFvqA9ptgGMKoN8GSqvfPRdZk7Y4j21HfXI8dR7bTJsDL\naw+j9d/9QFkPYpOHTsGjnzyMyUOnUPIBYlrWzTHdhfqmemoxITPpt1j3xbNU8ZdJZ1JEBiJUr3NN\n87Dxi/V05wy9eoAiMkjpl6qIDELF/UvE9T47+Wo8dfCv1FXkIoRFDS0Nishg7KBxePPYLlq+YKa+\nvh4vv/xyoIfxg7AFBtnJOXgpezO92JqmTYcuVk8tytld1ahu+Ja6osqgMeK2tDuoK7R2HNmO+pY6\n6jNMUUUh1hxcBZPORNtXk4dOwVMHn6A+w4hwSDRojHhm3PPUfWS2l2LyrhzsmFhIeya0u6pxpqWe\nvuLPpMugul8BYsQg2ck5WHLFMmrOuaZ52PH1durzlkFjxJvXv03dRyKOUaD9vGd+nzanFeu/eKFd\nCEUa64xh+ThWf4z+zhoqgg6TLgNbb9ga6GFQCOV5JMfZGqoblaRz2P79TmgL8nfD7szF/VJxwPEJ\nLia+80s6hzpSjcbmRqgjpRNQoBikGYyjzq8xSDM40EPpscz65R+w5uCqQA9DGF9++SXeeust6f4j\n+Ul8C24u6nuRdEAJEHtte+CFF3tte6QYK0DIdmCBZ3j/EXjz2C7q4nhJ51hvWQdns7NLn/1JJ6Bp\n09rbidxxxx2YM2fO9/6EIswWKSIQIdp4oGQBPrZ/iAdKFtByAmIcYUQUsEXcKN6rfEcRGRSYn0ST\n9yx1hbIIpazNacWWI5tgc3au5cxPIcKxSEROEcdSgflJtKCZut+B0GmzJeKcF+Eolp18NVRQUQU7\nT3/6FLzw4ulPn6LlFEFt40lFlHSOoUOH4vPPPz/vPLt378aWLTyHJwCYtDOHei0HxBRb7a5q1DWd\nht1VTctZVPEW2tCGooq3iDkLcfcHc6iOKL72MMx2mSKwOMpQ13Sa6twiotWSzWnFncV3UI97nVqP\n/rF6qquUTq2HXj1AiFMVe+LK5rTi6YNPUb9Ts70Ujx5YAbO9lJbToDFi87Vb6YV9dj6b04oHPlpA\n/T6LKgoxs2c06doAACAASURBVCiXem0yaIxYn72JLqh79vOnqfvd5rQit/BG+r3OJ/5jj/Xut++m\n5QskoTyPFBUWJVf6BpCL+g5VRIn/iQ7vpYgS//PrAVcqosT/jBmYpYgS//Ox7cNAD0EoQ4YMgcPh\nCPQwJEGOiAU3ks4hBSiBR8QCQUnnEFELl3SOz092vUPHT4qAfvnLXwIAHn/8cVx++eXf+xOKMIs9\nItrtzEqbjZjwGMxKm03LKcLFAcC5ghSzMCXCveW7fSNZiGgNJEK4MNIwChGqCOo+2nFkO+zuauw4\nsp2WUwQiXHu+61TFQkQ7LECMuEZEOzARQjURD4cOdw288MLhrqHlFHEdmZU2G5qI3tR7yC8vuFQR\nGWQmZaFfr360fMFIVlYWxo4di3379mHq1KnIzMzE2LFjz/3pCEajEVu3trsCTJgw4VxRzcfGjRsx\nZMiQH/3Mz1HlPEYVbYgqtpp0GXh23ItU8cKstNnQ9kqkniui2q+Gh3HbN4lCBe4qxpSEVESoIpGS\nwFuJbndVo+pMJVVQBgAiFnDGRMTykwrA7qrG8Qb+d+r1cNvuihDXiMCgMWK+6T6quCZNm45Bvflt\n8NgCKJMuA69f9yZdqOZucVPzAWLEfxZHGb6p+4aWL5CE8jzSrklvyVW+AWTsoHGKKPE/N1w8VREl\n/kfEPIGkc1SeOaaIEv+T3Kd7F9zPnj2L7OxsTJ8+Hfn5+ef+SCTfRcSCG4kk1JAClMAj3w8Cz/nU\n5X5SBOQjISEBBw4cQHNzc5d/UbDAdMW4dsgERWSw3rIOjW2NWG9ZR8t5c9otUEGFm9NuoeUEcM4B\niOkEJKJ4Hyp9I0WIlURMUItYmZ8Qk6CIwYoIoZYoRbkIkWJcZJwiMhCx/SKOURHnpwghpcVRBmfr\nGaqww+d+xHRBKqkqxqmzp2j5gpGNGzdiw4YNePXVV7Fo0SKkpaVh6NChyM/Px4svvhjo4QGAkNZd\nLW0t1HxA+8THX82PUSc+DBoj/nVjCbWILeJeZtJl0AuS2thERKoiqU4HIkQGOrUeg3tfSHfYuSAm\nkZrzu63lWBg0RmzO2SakHQ3TuQRo/051sVzXIp1aj0Hxg6k5RTjXiMBsL8Uf351Nd0HaMbEw6Lcd\n4DtV2V3VOOGupovUACA2kivUy07Owc5pO6k5A00oziNJAVBgsTg+U0SJ/xHhTi7pHCLmMySd40rD\naEWU+B/mvGMw8sc//hHPPPMM7rnnnpBxS5T4H7urGtaGKiHvMpKOIV1oAo8UoAQeKcQKPEfrvury\nZzskAvr888/x+9//HpdeeilSU1ORkpKC1NTQ7A/NdMUQgYjCfXntYXjhRXktz70jlAiVF+jB8YMV\nkUH7xLed+rCYkpCKcIRTV+a/eXS3IjIQIS7RxiYiTBVGLZz6crFt5/XqAYrIQIQISpRzBhsR5+eL\nlhcUkYEIsZIIwSfz+hGsGAwGGAwGbN68GXv27MGkSZMwZcoU7N+/Hy+//HKghwcAIWMpLMIZw5eX\nSXZyDjZkv0L/XtkFSZ1aj0FkcY0IkYFBY8S263ZSc9pd1ag966A+F+nUegzUDKK37hIlAJq08xq6\nECgqPJKaz6AxYusE7r735Q12RLnhhMK2i8Cky8COiYVCvk8RQr3rUq6j5gs0oTiPJFdaBxYRbraS\nztHeBjuMugBEIgk1RLhgSzoH2y092Pghp8Rgd0uU+B+TLgMrf7NKitQDSH1TvSJK/I8UqAee2Ei1\nIkr8z/k4hHZIBLRv3z6Ul5ejvLwchw8fPhd7OiKUoCMHjFJEBqJcVkSILKzO44rIQERbKBHbnpmU\nhcSY/shM4vWcLq89jFZvC10AFhEeQc0n4rjXxiZCBRVVXFNU8RY8Xg+1reC28i2KyMKnDj0flag/\nEHF+ikDEqlQRx70I57PJQ6cgApGYPHQKLSfzHAp2Pv74YxQUFGDs2LH43e9+h6eeegofffRRoIcl\njEiyGABoFy7c9s7NdOGCCEQIq9gFSRHiGl9eNiLaDbEFAQaNEQVj/x46IgsBrcsiwvjnfch8nwKQ\nk7xcRH2fPfkY7SihOI8koq2ppOOIWHgh6RztbbA91DbYks4RKk7Z3Rmfkz7bUV8ikUg6g9leioX/\nuyAk5sK6KyIMGySdw6QzKaLE/4gwG5B0jvMxOOmQCKi5uRnPPPMM7r//fjQ0NGDt2rUhZensQxPZ\nG7PSZtPyfXrigCIyEPGyl6ZNR3xUPLVFw7m8kX2oedO0lyoiAxEtd0Rgd1Wjvqku6C0eTboM3D9i\nMXVCXYQQpKjiLXjhpYoNRAgsbkyZBhVUuDFlGi0nAIwdNE4RGWQn52DqL3KpRW4RgrqUhFSooKK6\nzfj2D3M/iRAWiRBSLnh/HlrRggXvz6Pl7Em0tbWhtbVV8f/h4eEBHJE4RDkj6NR6GOOS6E4roYDN\nacWNb0wSIgSScLA5rZj73h30fSSiCG3SZeC5cevpIihRrcskEklo013mkSSSnoQIZ1lJ5wgVt+Tu\njG8hZU911JdIJMFBeztzbY+cCwsWbk67BSqopCg0gMiWbIFHCrFCmw6JgJYtWwa3241Dhw4hPDwc\nVVVVWLRokeix0XG2nEFJVTEt35A+v1BEBiIuaust61DfXI/1lnW0nACw48h21LfUYceR7bScIsQg\nIlrZiNhPOrUemsh46oOdCFFZUUUhlu1fgqKKQlpOES3bRNycRFhAimrXJ0IIs9a8Blu/2oy15jW0\nnCIQ8Z36VkIyV0SKsLv3WSYzrZOvHXKdIko6x4QJE5Cfn4+NGzdi48aNmDlzJq699tpADwsAsOnQ\nBnpOUW4wIeW0QkT2gOditpdi0i5uOyy7qxrHnZXUfWRzWjF5V44QYdHKT1ZIUZlEQkCEUO+FT3kt\nYoOBUJxHkqLGwCIdUAKPnOQPPPI8CDyZSVnoG92P6tQu6RwjDaMQju65eEoi6Sh2VzUc7ho5HxRA\nRNVtJB1HxIJnSeeQAvXAcz413g6JgA4dOoR77rkHERERiImJwaOPPhr0Ns4/BrN3oIiXYxFiiOzk\nqxGuCqf39BYhiBCRc6RhFMIQRnUCErGfSqqKcbKphipU08YmIhKR1JZYIi76KQmpCEc4VbCijU1E\npIq77SIsIEX1NRXxkDp56BREqaKpbaHStOnoE9WX6igm4jsVcdyHygSriPMzO/lqhKk69AgS8tx+\n++2444478O2338Jms+H222/H7bffHuhhAQDu/mAOXQgkoihqc1pxT8mdPbI9h0mXgWfHvUhvZ9MT\nv0ugXXCdpBlEFVzr1Hro4wZQc1ocZTh25htYHGW0nBKJhIcIod6mQxtw6+5bafmCgVCcR5ICoMCS\npk2HQT2Q7mIt6ThyHwQebWwiwhFOncuSdI6SqmKcbjpFnZ+VdJ7u6qAskXQUnVqP2Ig46QQUQES4\n+Es6h4jOMZLOsffbPYoo8T8r9vy5y5/tUAVOpVIpbJtPnz4NlUrV5V8aKEQIYVTgfg+iBAEer4ea\nDxBTwBbVAz4Uis2ZSVm4IDqRutJEp9YjPrpv0LsLiUCn1qNvr37Ubb92yARF7Gms3LcCzd4mrNy3\ngpZzx5HtqGs+TXUUm5U2G9peidT2j6GCCIGiw10DDzxUF6Ty2sNC7kvBypgxY3D//ffjgQceQGZm\nZqCHc47VY9ZixrB8Wj6b04rcwhuFCExaPS30nKGAzWnFX82PUb9TUS3GQgGDxoitE3bSi7wxEbHU\nfGnadFwQnUgvwBk0RjyR+ZQscksk54kIod6MYfl4fsLztHzBQHeZR5L4l9jImEAPocfTO5rnVCvp\nPCLevyWdI1TmPbszOrUe2lhtoIcRVLS0tODee+9Fbm4ubrjhBrz33nuorKzETTfdhNzcXDz00EPw\neNrn2bZu3Yrrr78eU6dOxfvvvw8AOHv2LObOnYvc3Fz84Q9/wKlTpwK5OZIOsOPIdpxurqXOmUs6\nR2bSbxVR4n9E1cslHSelX6oiSvzP4lEPdfmzHVJG5Ofn4+abb8bJkyfx8MMPY8qUKZg5c2aXf2mg\nUHm5E05p2nTERWioE/QiRDBFFW/BCy+KKt6i5RRFewujMKrjhMNdg1Zva9C/QNtd1TjVdJJq8SjC\nXShNmw5NZG/qcV9eexhtaKO61pRUFaOm8QR120W0gfMJE9kCRRGTFiMHjFJESk4BTl0GjREbrnkl\n6IucW8tfVcRgJU2bDkOckXrOy8m04IApAPLhbnHTcwKA1yskbdBj0BixPnsT9XrW01uMse8NIoQ1\nFkcZTjbV0J2AerKrliQ0YLYbFpkzOzkHG7JfQXZyDjXvLcNvoeYLNN1lHkniX3rqM1+wYNAYZVu8\nAJOdnIMlVyyj32MkHUcbm4gIsrO4pHNYHGX41slzYe8OvPHGG+jTpw82b96M559/HsuXL8fKlSsx\nb948bN68GV6vF++99x4cDgc2btyIV199FS+88AKeeOIJNDc345VXXsHQoUOxefNmTJo0CX/7298C\nvUmSn0FExwxJ5xBRC5JIQo2dX72miBL/s9fWdRemDomArrnmGowePRqnT5/Gyy+/jNmzZ2PKFF47\nGH/RCq4QZL1lHZytZ7Deso6WMyUhFWFkEcystNlIiL6A7oqRpk1HQvQFdDGIFx6qGETEzTolIRVh\nKm57nKKKt+CBhyrWEtHGZ71lHZwt3OP+9NnTihis+HpSMwUr28q3KCILEe2rQmU1lM1pxR/+NSvo\ni5zD+49QRAYi7iEAfzJeG5tId9KTBB67qxon3NVCxCWR4ZH0nMF+jfDBLsKYdBnYMbGQ3mIsVGDv\ndxHCmjRtOoxxshWHpGdRVFGImUW5VNGOiJw+ZHH25+ku80gS/yLimU/SOaQAKLCY7aV49MAKmO2l\ngR5KjyZMOtcFlDRtOpL7Jgd6GEFFdnY27rrrLgCA1+tFeHg4Dh06hMsvvxwAcNVVV2HPnj347LPP\n8Ktf/QpRUVHQaDRISkpCeXk5zGYzRo8efe7f7t27N2DbIukY8dHxiijxP+WnDiuixP+8X/WOIkr8\nz4LLH1BEif+xOo93+bMdEgEtWbIE5eXlKCgoQEFBAT755BP85S9/6fIvDRR69QDqZLqIG7Eo29eo\niChqPqDdaaW26STVaSVURAZ7bXvg8badlwLvvxHRXs3hrkEb2qjHkwi3KhEtjEQdS6owbmu5G1Om\nKSILEVaJIoRF28q3wAMPVQRVUlUMa8Nx6rVJhFAtVFp3WRxlsLmOUx0pfA51ksDCnlgWJS4RsSJZ\nZOuyUKCn9pS3Oa2YtDMnJPa7JorfikOu7pcEM2nadAxQc50HRbgZ+hAhLDpe3/WJnWCku8wjSfyH\nvE8FB1J8Elh0aj2SNIN67PN6MKBT66GN6S/3QQAxaIx44n+eCPQwggq1Wo24uDg0NDTgzjvvxLx5\n8+D1es+1WlWr1XA6nWhoaIBGo1F8rqGhQfFz37+VBDcjDaOggoq6GFnSOUR0RZB0jpSEYYoo8T/S\nESvwpGkv7fJnO1TNLisrw5NPPomsrCz87ne/w5o1a/Dxxx93+ZcGilONtdTV6SIKuCJOqJKqYlS7\nvqUWxAEgMykL/WP0yEzKouUUsf0i9pMIRxgR2y5CtNHuNMJ1FxKBNjYR4Qin2vc63DVo9bRQBRY+\n5yd2uz4RYi0RwqpHMldh6i9y8UjmKlrOGcPysXrMWmqro4v6XqSIDEQIi9ptqyOox72oNnhhHXsE\nkQhk0q5r6JP8oiZKRRSDRLUuC3ZsTitmFc2gC2FCoWBkcZShynmMKmo0aIy4Le0O6jEqosXYd3OH\nAiKEWqFwjIYSIvZRTEQMPaeI1kIiHIZsTisy12fS8gUD3WUeSeJfQuU+1V0x20tx/RvXyntmADFo\njNg6Yac8FwKI3VWN2rOOHts+ORgw20sxbTt3sWR3oLq6Gvn5+Zg4cSImTJiAsO8sVHW5XOjduzfi\n4uLgcrkUP9doNIqf+/6tJLhp75jhpXbMkHSOvd/uUUSJ//HNO4TCYr7uinTECjznUz/sUAVOr9ej\nsrLy3P+fPHkS/fv37/IvDRR9ovtRi1OZSVnQ9kqkimBECFYyk7KgVw+gjtNHZHgENZ+IQrsIdGo9\n+kYnUI8nEX1eM5OykBB9AXXfO9w18JKdRmYMy8ddly2gijZEOKKIEFXNSpuNvlEJ9HZ9ItDGJiKS\n3Bfd5rTiy7rD9Ac5Edc7NpOHToEmojcmD+W1RXC4a9Dq5ba+FNWDOiKMe/+QdB69egD1PmZzWnHj\nG5OEvJixHRfsrmpUN9h65MSuQWPE+uxN1MKC2V6KSTv5ojI2Iu5jRRWFuOeDuXQxALvF2HdzB3tO\nEU5dsqjJJVTc1CyOMnzrslKFf0C7w1CSZjDVYcjiKMM3dd/Q8gUD3WUeSSLpSZh0GfjH79b12Lax\nEgnQfh48O+5FeR4EEJ1aj8F9Bgd6GEHFyZMnMXv2bNx777244YYbAACXXHIJ9u/fDwD48MMPMWLE\nCFx66aUwm81oamqC0+nE0aNHMXToUAwfPhwffPDBuX9rMvE6EUjE4FuAHewLsSUSkVzcL0URJf4n\nLjJOESX+53zqch0SAbW2tmLixIm49dZbcfvttyMnJwcnTpxAfn4+8vN5RXvR1DTaqROAdlc1zrTU\nUwtImUlZiI+KpxewW1pbqfmAf7eIaeBPqrIRITApqSrGyaYaqrtSdvLVUEGF7OSraTktjjLUNp2k\n7iMRTiNmeyn+/tlT1MKMNjYRKqio4xTh3AIA8b34qy9SElIRoYqgviiYdBl4YfwG6kSIQWPEfNN9\n9DY/174+nlqY0sYmIjKMWzguqSqGs/UM9ToiQqgmwlUKAKDippN0nghVJDWf3VWNb+qP0oU1IhwX\nAAg5BoO9IO5DxMpiDzz0nOzv06TLwPPjX6Lex0S1G6pr4j5rAGJcoEQ5S7GRRU0+LW0tgR7Cz5Kd\nnIOXsjcjOzmHmtegMWLnpELqtTQ7OQc7p+2k5QsGuss8kkTSk7A5rfir+bGgv693Z0Ll2ao7I8+D\nwGPQGLF+4vpADyOoeOaZZ3DmzBn87W9/Q15eHvLy8jBv3jwUFBRg2rRpaGlpwfjx46HVapGXl4fc\n3FzMnDkTd999N6Kjo3HTTTfhq6++wk033YQtW7Zgzpw5gd4kyc8gqnuARBJKVJ45pogS/yP3QeCp\ndn3b5c92aBn+3LlzFf8/e3bwO1b8EAnRWuoEvUmXgftHLKZOJu84sh31zfXYcWQ75pjuouU82VRD\nzenDC66/uiiByT8sa5GdfDVtX1kcnykig3aHHS/VwQMAVOQqp06tR0LMBVT3CIe7Bs2eZuq2l9ce\nhgcelNcepu33yUOn4Kn/e4Lq3GJ3VcPmtMLuqqYWEnRqPQxxA+kuHys/WdFe8CSN1WwvxW3v3Iwd\nEwtp+6mkqhg213GUVBXTxH86tR6DNBdSv8/21nphVKGWiJZtIsapU+thlPbmAedsWyM1317bHrSh\nDXtte+iFdvbzhk6thzamP/0aOatoBt1lRwRFFYX0ojh5F51zltp2Ha8dgm9Cn3kfA4BWD1ds/91W\nvkwRu0FjxMTk6+mty0TkZLdDszmtWL7vIfq+F3Eu2ZzWoL+GAEBDi5OeMzKcK04FwL/W/RsR++hX\n+l/RcwaS7jKPJJH0JEQ4Rko6h9wHgUfug8Bjc1rxh7f/gM/u4M27hzqLFy/G4sWLv/fzl19++Xs/\nmzp1KqZOnar4WUxMDJ566ilh45NIuiN69QBFlPgfh/uEIkr8j9wHged8rkEdcgK6/PLLf/JPqFDb\n5KA6ohRVFGL5/qXUleki2oGJarElQrAjAp1aj7iI3tRCn1EzUBEZZCfnYPYlt1EnqtO06dDGJNKt\n6u1urquW2W5WRAaZSVnoE9WX6qplcZShvrmO7n7FLm77iAzjF1KczWeo+XRqPeKj+tJbNRrjBlL3\nvUFjxJ8uu5M6CSSiZZ0IRI3T3eqm5pN0HmvDcer1bI7pLiy9YjldcJymTYcuVk+9l9ld1ahx26mu\nRQaNEY+MXkWfLGavQBXlrOTxcp2A7K5qHKuvoO8j9oR+SVUx7O5qqqubCEEnAGw6tAHL9i/BpkMb\ngjqnzWnFncV3UI99u6sax+q+oR5PRRWFyC+6id4KLvu1sfTznrl/ADHHvUFjxOacbfRrKN1F7t+I\naIOXs1mMYClQdJd5JIl/kc4bgUcKHwKP3AcSCdDc1hzoIUgkAcU3B8+ei5dIQomUhGGKKPE/2tj+\niigJLTokAuouhCOcKljRxiYiXMXNmZmUhX7RCdTi9denv1ZEFg53DVq9rXT3llZvK8prD9Nyimjd\nNdIwCuEIx0jDKFrOTYc2YN0Xz1In6S2OMtQ0nqAWedvbDHmp7YZMOpMiMiipKkZd82nqfgf4gh0R\n55EPtsuHiBaAFkcZTjRWU3MaNEbsnvw2faX/3R/MoReS2E5dadp0DO59Ib0tDZsdR7bD3mAP9DB6\nPKvHrKU7JDCd0nzYXdWoPXuSWrx3uGvQ4m2hXnttTivmvscVLohoB5CmTae7Y5bXHkYb2qjPb+W1\nh9EK7jNhqOB7twh2oT0AHKs/pogM2gVgXMGOw12DVnCft0S04NxxZDtONFZjx5HttJybDm3A3R/M\nob5jiBBci0CU6NHmtOK3W66kixVONZ6i5pNIQg3ZBkkikQQD8loUHKhUsoe8pGcjYhG6pHMcsH+i\niBL/ExcZp4gS/yOdgALP+bQDEyYC8ng8WLp0KaZNm4a8vDxUVlYq/n7nzp2YMGECcnNzsW3bNgBA\nc3Mz5s+fj6lTp2L27Nk4duwYAODQoUO44YYbkJubi+XLl8PjaV9pvGLFClx//fXn+qA6nT9tSR4W\nxt9cr5crCLA4ynCqqZZaEK9vqldEFtrYRESGRVILFCJWPmcmZUHbK5E6Sa1T66GPG0B1LxG16puN\niNZA7QXJC6gFSRFFKRHuVyLEhIAYwY42NhFhCKNvP/s6AvBXzokYZ3ZyDu68bD5VhGHQGJGfOpu6\n/dnJOVh6xXLqOCcPnYL+aqkeDzR/NT9KF6xM3pVDnyx1uGvQ4uEKdkRcz+2uahx3VtKda0zaDOo5\nbXGU0d0xRTxrpSSkIkIVQX3eEDGhL+L5rajiLUVkIaKd7eD4wYrIQIRILzs5B0+MKaDeyzKTstAn\nmus6KcIV9vTZ04rIwKAxYspF0+gt2ybt5N5Dvj79Nbzw0hfDrNy3AnXNp7Fy3wpazpKqYticNlo+\niSQUkS14JBJJMCCvRcGBCHdziSSUEPFuKOkcvSJ6KaLE/3zmOKiIEv8jnYACz7VDJnT5s8JEQO++\n+y6am5uxZcsWzJ8/H4888si5vzt16hSeeuopbNy4ES+//DJ2794Nq9WKrVu3IjY2Flu3bsXixYux\nfPlyAMCSJUvw4IMPYvPmzYiLi8Pu3bsBtIuDnn/+eWzcuBEbN26ERqP5yTElaQZTRRsiVj2LKDTP\nSpuNPlF9MSttNi0n0C6EGaA2Ur/TNG06jHED6S0/6pvqqEU5u6sa1Q3fUnOKQMQKZYe7Bl54qYWZ\nkqpi1DadpLr2iCpKsV179tr2oM3bhr22PbScPkS4FrHbQunUehjiuNcREejUevSLvoA6zqKKQjx1\n8K/U1eki2rKY7aV43PwXmO2ltJwAoI5UU/NJOo+14Tj1umtxlKHyzDF6y8Ts5BxsyH6F7loUpuI+\nBuvUesRH96FeJx7eswzrvngWD+9ZRsuZpk3HoN6D6c9aZ1rqqc9FOrUe/WP11O/ToDFivuk++oQ+\n29UtPjpeEVnU/HvVTg1x9Y4IEVSaNh19ovpSj1Gb04pVB7jCx5KqYtQ1cV0nfaI3pvhNBGvNa7Dm\n4CqsNa+h5bQ4ylDl5N5D5pjuwl2XLaC3qfRNwJzPRMx/w1y4IJGEMrLoLpFIggF5LQosBo0Rhbli\nWrpKJBKJJHRobmtSRIn/Odt6VhEl/sdsN3f5s8JEQGazGaNHjwYAXHbZZfj888/P/Z3VasXFF1+M\nPn36ICwsDGlpaSgrK8PXX3+Nq666CgCQnJyMo0ePAgBOnDiB4cOHAwCGDx8Os9kMj8eDyspKLF26\nFNOnT8drr732s2Padt1O6kO8iBXKIoQ1dlc13K0uIYKVZg//4tvqaeXnBDfnXtsetIEr3NDGJiJS\nxRWAiXDtAfjikpSEVESAey5lJmUhodcF1NXZadp09ItOoBalJg+dgn7RCUJa6LCLkiJW0QNAhCr4\nV/e0t9azUwtTadp0GOKM1OMpJSEVkWGR1HPJpMvA69e9CZMug5azXUgZ3CLKngK7cM9uMyUKky4D\nuya9RT2uS6qKUdN4gioIENEDXoRjmE6tx8C4QfTn1xq3nfr8araX4tZ/zaSKGkU8G4ha8fen4XdC\nBRX+NPxOal42O45sR13zaWpLrJKqYthcXOGjCF60vKCIDES4wopymmW/Y9icVvyr6i26Q50Iceqi\nUUvx4G8epOWTSCQSiUQiCWUGxssWSIFGtsQLLCIcXSWdw+Y8rogS/6OJildEif+pbXQoosT/nE9d\nQJgIqKGhAXFx/+nTFx4ejtbWdiHGoEGD8PXXX+PkyZNobGzE3r174Xa7kZqaivfffx9erxcHDx7E\niRMn0NbWhoEDB+KTT9r7Lr7//vtobGyE2+3G73//ezz++ON4/vnnsXnzZpSXl//kmNgqfp1aD3Vk\nHN3BIiqcWxDXqfXQRPamj7OkqhjVrm+pk+klVcWwu6upOV+0vACP10OdTBexqlSn1mNQ7wup+0mE\na482NhER4LZQ0an10MVxV/tbHGWoPXuSKtooqSrGqaZa6vFpd1XD1dpAF+mJKEranFY8a/k7/SUw\nknzNEwW7MAXwRY8mXQYWZiylChsA0O8fJl0G3p/5PjVnd6SsrAx5eXk/+HeNjY2YPn36OcH0z7Vh\n/SHYBUwRbaaAdtesmUW5VNcsgH9ci3BEmWuah/jIPphrmkfLKcIxzKAxomDs36nP2iLc9xzuGjR7\nmoPec7v+pgAAIABJREFUzXDGsHysHrMWM4bl03ICvmdNrjOqCEQITES0QhPBzWm3QAUVbk67hZZz\n0ailmH3JbVg0aikt56y02UiM6U91mhXxjgEALW0t1Hw+2KJ4AHh47MP0nBKJRCKRSCQSSVdgt9KW\ndI73Kt9RRIn/MWgGKqJE0hOJi9IoosT/aKJ6d/mzwkRAcXFxcLlc5/7f4/EgIiICABAfH4+FCxdi\n7ty5uOeeezBs2DD07dsXU6ZMQVxcHHJzc/HOO+9g2LBhCA8Px1/+8hf84x//wMyZM5GQkIC+ffsi\nJiYG+fn5iImJQVxcHH7961//rAiIzXrLOtQ312G9ZR01r7ulkZpvx5HtqG06SV1NC7Q7rfSP0VOd\nVlISUqGCiupisfDXi6GOiMPCXy+m5bQ5rSj85g3qg7BBY8TSkX+mFtBEuTKEh4dT89ld1Tjh4q72\nF1FIENGiQafWQxc7QIhIj12UBPiFFIPGiIWXL6aLNEWs+F56xXJqwUeE6LGoohDL9i+hiiVsTquQ\nF/8rjFdQ83U3nnvuOSxevBhNTd933LNYLJgxYwaOH//PSpSfasP6Y7ALmNnJOXgpe7OQvGwXMpvT\nihvfmEQ9rrWxiYgKi6IXsAdoDNR8IsRKNqcV95TcSf8+I1R8QQCbzKQsGOMGUp+HAdAFQD7Y7nsi\njnsR7dB8L8zn8+L83+z9do8isogKj6Lmszmt2Gv/mP7e8tLVm+nPb+w2jRKJRCKRSCRdQQofJBJg\nffYm2RovgIhyCJZ0nEG9ByuixP80tZ1VRIn/OX32lCJK/E+169suf1bYLNvw4cPx4YcfAgAOHjyI\noUOHnvu71tZWfPHFF9i8eTPWrFmDiooKDB8+HBaLBSNHjsQrr7yC7OxsDBzYrrD84IMPsGrVKrz0\n0kuoq6vDlVdeiWPHjuGmm25CW1sbWlpa8Omnn2LYsGE/OSb2A7xJZ1JEBhZHGWyu49RV9HNMd2Hp\nFcuprjU+NGT1317bHnjhpbbZsjjK4GptoH6ndlc1qpzH6C0qbnvnZmqLChGuDCZdBh75zV+pTiMi\nVvvr1HoYew+kimt8xyXz+ASAyDC+E46ooqSrtYGaz2wvxR/fnU097kUU9832Ujx24GHqOGcMy8fS\nK5bTC73sNnAGjRGPjF5Ff/Hfb91PzdfdSEpKQkFBwQ/+XXNzM55++mkkJyef+9lPtWH1JyKcEWxO\nK9Z/8QL1nLa7qnG8oZJ6HzfpMvDo6Ceo90eDxojNOduo55+INjYAXyRq0mXgsatWU7/P2sZaRWRg\n0Bjx3P+sD3oxq49WL38/3XHpndT9NHnoFCREX0BtlZqdfDXCEIbs5KtpOUcOGKWIDEy6DNyeNpfu\n6HemiddSEGg/Pue+dwf1ONWp9RgUz3eqChXHSYlEIpFIJMGBzWlFbuGNUggk6fFIAVBg8c1XsbsH\nSDrOl6fKFVHif6obbIoo8T869QBFlPifD6re6/JnhYmAxo0bh6ioKEyfPh0rV67EwoULsXv3bmzZ\nsuWcI9DkyZORl5eHvLw89OvXD4MGDcJLL72EadOmYc2aNXjggQcAtLcPmzVrFqZPn464uDiMGTMG\nQ4YMwcSJEzF16lTk5eVh4sSJ+MUvfvGTYxKx4pu9QllEcQKAEAEQwC8kTB46BbpYPXXSX9TKfI/H\nQ82nU+sRE66mTnxrYxMRGRZJ3XazvRQLPriLKoYQ5R7BXu1+Ud+LFJGFiOKEQWPE7slvU1/YRLQA\nNOky8Pp1b1KLXXZXNawNVdSXJJ1aj/iovtTz0+a0YttXr9LvS2EIo57zNqcVt79zK11UlbWBK1Dr\nbowfP/7c89J/YzKZoNcrj8WfasMa6hg0RvoKNJ1aj4Fxg6jntNleigc/vpd6fwTETLyxHQJFYLaX\nYuH/LqB+nykJqYhABNXRT4QLkigHNrur+twfFpsObcCag6uo7eXsrmqcaa6n38f1agP1nBfRtk3E\n9ylikYmIBREGjRH/L/1O6jVPhJBSIpFIJBKJRCKe4/XHf/4fSYQihXCB5UrDVYoo8T/O5npFlPgf\nfZxBESX+R7oxBZ6L+l7c5c/+cHWJQFhYGJYtW6b42ZAhQ87995w5czBnzhzF3/fr1w/r16//Xq6s\nrCxkZX2/WHjrrbfi1ltv7fCYfEVh1iSgCPeSzKQsXBCdSHfvsDmt9MlPu6saNqeV+p0aNEY8dtUT\n1LGadBl4IGMJ3bmmDW3Ufb/jyHacbq7FjiPbaaItky4Duya9Rd32vbY9aEMb9tr2CFmdz4QtrknT\npuOC6ERq8dSgMeK2tDuEFCeY5ybQXuw6Vn+M7lzDXu1u0mXg2XEvUvNaHGWoabTD4iijfqds54z2\na5OHem2yOMpQ5TxG3XaTLgPF+dxWdT2dn2rD+mOY7aX082/ToQ1C2hixr5EGjRHbrttJf974x+/W\n0b9TNj6BCVtYxb7n6tR6GOOSqKINnVqP/mo93WmEjSgHNpMuAzsmFlKP0cykLOhiue2BHe4atHhb\nqPcyu6saJ8/WCHk2YpKZlIV+0QnU71NUaz0PvNR8RRWFuOeDuUiISaAuDGDvcx8i7qESiUQikUgC\njxQRBx6b04pb383DgdsOBHooPRoR8wYSSSgxQncFPjtVhhG6KwI9lB5LdHgvRZT4n6N1XymiJLQQ\n5gQUjLCLwiLaKbSvfK2jrqq0Oa249vXxdPW2iAl6s70Ut7ydT131XVRRiOX7l6KoopCWM02bjgFq\nI1UMIsplprz2MDXfHNNdmH3JbVR3qU2HNuDuD+ZQVz0bNEbc+Ivp1BcVi6MMJ5tqqCupfQUP5vEJ\ntJ9Lk3flUM8ls70Ufy97iu5ywcbmtOKv5seo17w0bTqSNIPp7hlieqlyi3Kitv0Ko3yBYvJTbVh/\njEm7rqGezyKu5SIR0b6Jfe0RgQhnJRET5QaNEQVj/07N+V0hCAsR225zWvHARwuEHEsiRAt9e/Wj\n5kvTpmOQ5kLqfUeE+5cILI4ynG46RX3WFLFwxeGuQauH+x6Ypk1H/1gddb+b7aX0e50v73U7sul5\nX/j0BWo+iUQikUgkXUOKHgKLQWPEjmk7Aj2MHs98033yXAggb39TqIgS//OZ46AiSvzPsfqjiijx\nP5ckpCmixP9c3C+ly5/tUSIgEYUZdvsiAICKm66kqhg213FqCx9RiBAWiZhQBoCIMK6R1tenv1ZE\nBiIKsmZ7KTZ9+RK/PYcqktqeY9OhDVi2fwl129tXUnPbq9U21sILL90JSYSDgojzE+Dby4pwUDBo\njHhm3PPUnOst61DbdBLrLetoOdO06Rjcm1s4FbHtks7ja6n6Y/xQG9afw+vlCsZEtMbxwRZKisCg\nMWLWJbcIERexCYWe8iKEMKKEICKcqkQ4AYlAlABs56RCek62+5cIRLTIFdEaWRubiEjyM7HdVY3T\nZ0/Rr0+tbfzWmCKEVZsObcCtuzvuciyRSCQSiUQcwb6woycwMH5goIfQ4/nju7ODfiFod2ZqSq4i\nSvyPb/GumEW8ko4g24EFni9qLYoo8T+VZ451+bM9SgQUCpPpOrUefaMTqMWJzKQs9I3i2soD/2nf\nJKKNExO7qxonG09SJ5TtrmpUu2zUnJOHTkFCrwsweegUWs4Zw/Kx9Irl9IJsW1sbNZ9OrYdOraMe\n96KK0SpuzVxIGw2gvdi1dOSfqdc8Ee0kbE4rcgtvpE6w2JxW3FNyJz0nuxi9aNRSTP1FLhaNWkrL\nadAYkZ86m+5Iwf4+JR3DaDRi69atAIAJEyZg2rRpir/fuHHjuVarvjasr776KrZs2aJowfpjPP8/\nL9FdQZhiTh9FFYWYWZQb9EIgEc5uNqcV2a+NpZ5/ZnspJu68mjqZJ+JaLkJUJeLeCIA+MRpq110R\n71ehklME7EUmItoD69R6GDRGeru+3lHxdAG7h9wmFWgXXRviuK6wM4bl4/kJz9PySSQSiUQi6Rq+\n9smh8iwukYji9evelO1vA8jOr15TRIn/GRyfrIgS/3OsvkIRJf5n3OCrFVHif87n+O9RIiARk+ns\nfBZHGWoa7VQLeIujDKeba6k5AZ97S4SQgh+T8trDaPW20NtikTvuwO6qRkOzk94KblfF69Tj1OGu\nQRvaqJPpdlc1Trjs9JW/bGENACFXTU2Uhp7TbC/FH/41i1qY1Kn16E8Wa4mipa2Fmk9E+xyzvRQ7\nj75Gb8fEdsAC+N+nJDhYuudBurjk2tfH0wURIgSIIshOzsETYwqoBfwdR7bjRGM1dhzZTsvpcNeg\nhdzGBwAaW93UfCJEVWZ7KX01o9leiuvfuDZkVkjKYkbPRMTkfUxELDVfSVUxHGdrqO612thEhCEs\n6O8fPn6Z+MtAD0EikUgkkh6PiPkfiSQUkQKgwBIVHq2IEv9TXntIESX+54IYrSJK/M/+bz9WRIn/\n0akHdPmzPUoExEbEyoA0bToSorXUVYUii2cqL7l3mQBEuOHo1HrER/ehr37Vxw2g5hTRTiJNm44B\nau7KVxGW+janFde+Pp4ugBJROCV35PkP5NPT7qqGo7GGKtYyaIxYePli+uRKZHgkNZ8IHO4aNHua\nqcdTSkIqwhBGF2eqBFzqj9cf5yeVdIpjZ76hCoSLKt5CG1pRVPEWLSfQfn9MjOULENnOQjanFU8f\nfIp63xlpGIUIVQRGGkbRcop41rS7qnH8TBX1/iBCVGXSZeC2X/6JOplp0mXgH79bR80posUWIFc1\nS3iIOEYzk7JgjBtIFfGLWLwAtC+ysTVYqfdQs70UV62/ipZPIpFIJBJJ15ECoMAj54wkEkmgSYi5\nQBEl/se34JC98FDScbSx/RVR4n9qGx1d/myPEgGxC80GjRHzTfdRc1ocZahtctBde+hqAB/kI0gb\nm4iosCh6u6ENh9dRCx4iVqoCwOnG09R8NqcVt79zK73YExsZQ83Xvko3nLrfS6qKYXMdp68mDgU3\nCqC9KHn/iMX0Qic7pwhXBoPGiCcyn6K3xGK3uhFxvXO4a+CFN+iFajanFZO3TOYmlXQJZkvPRaOW\n4q7LFlBb3AH/but5litALKooRH7RTVQhkN1VjSrnMeo4TboM5KfOpl53RTxr7rXtQRvasNe2h5bT\n5rTiyU//Sr3ubjq0AWsOrqK6pdmcVqz8ZAX9WUtUOyz2u4uk58I+jgwaI3ZPfpuaNzs5BxuyX6G3\nWNPGJiIyLJL6DFdeexjNbc20fBKJRCKRSCShipwzkkiAhmanIkr8zwmXXREl/ufU2VOKKPE/X53+\nUhEl/ueivkO7/NkeJQISYf9/679mUnOKc1nhu5cAgMfjoeYz6TLw6Ogn6MWuyjPHqMUuEStVC8xP\nor6lDgXmJ2k5LY4yVDm52w4A7pZGar72VbpcJyAR+wgAVAIsUUS41hRVFGL5/qXUAreInCZdBr3H\ntM1pxQMfLaAXZFs93JZYJl0Gdk16i7rtIpwzAL4TkEFjxI5pO7hJJZ1m9Zi1VJc8AHQBENDuBNQn\nqh/VCUgbm4hwsvgUANo8bdR8a81rsO6LZ7HWvIaWUxubiHAVd9v79uqriAxEPMNkJmVBF6unPxuw\n7w+iECG8DSWkA1LwI0Kgxn4mAsQ8w6UkpCJSFfxOlhKJRCKRSCSikXNGwYF8fwoscVEaRZT4n14R\nvRRR4n8u7peqiBL/E6YKU0RJaNGj9hq70CyqNZCItisiKK89jDa0obz2MC2n2V6K+z66m1qcEFHo\nM2iM+MtvHqNOVM81zUN8VDzmmubRcqZp06GNSaSKyiyOMnzr4trfp2nToYvVU8dp0Bjx3P+spxcT\nVGRXLVEtP0SIQdK06UiM0VH3E8DvMS2qf3tEGL8ww75/2JxWrP/iBfqLenMbv8A9MH4gPaekc7AF\nQICYSSKLoww1jXbqfUfEM4yInCMNoxCOcGo7MAAA2d0rISZBERlkJ+fgzsvm0wv4IiZvhLX1JCNC\neAvwW+sBoAuVbE4rbnxjEv0aJWLbJaEB+zwy6TLw0eyPqDklEolEIpFIQhU5ZxR4ZCvpwOJwn1BE\nif8xagYposT/HK37ShEl/qdfrwRFlPif8+k60KNEQMwV5EB7QXxQ78F0gYWtgSuwENXCKDMpC4kx\n/amrqctrD6PF00ItoAGgd0Mz20sx++08aoHC7qqGq8VFbSPSXjg9QRfssIUgdlc1Tp89Rd12m9OK\nO4vvoL6s6NR6JGkG068lzO32YXNa8azl79Ttt7uqUd98Wsh42YhoUcFuMVZUUYiZRbnUAqIIAZTd\nVY0T7mr6fpf93QMPezJHRNs8QIyoMSUhFRGIQEoCbyVJZlIWLohOpD4X6dR66OMGUO87DncNWsnu\ne2nadAzufSH12aCoohBrDq6it2z7tsFGv541tnIdEgFxqy5FCIDY9zKzvRQTXh9Pf84+3lAZ9G0F\nJT2bK4xXBHoIAcfj8WDp0qWYNm0a8vLyUFlZqfj7nTt3YsKECcjNzcW2bdsAAM3NzZg/fz6mTp2K\n2bNn49ixYwCAL774AqNHj0ZeXh7y8vLwz3/+09+bI5FIJBKJRBKyiFhgKek48dF9FFHif47VH1VE\nif9xt7gVUeJ/BscnK6LE/5xPW8geJQJiq5cNGiP+/rvnqQ9DIoRF7e3AuMUe4N/CjUaucENEm4by\n2sNo9bZShUV7bXvQ6m3FXtseWk4R40zTpsMYN5Au2Klr5u53nVqPpN6DqEVO+/9n797DoyrPvfF/\nMzlAMjMEEhMmzpBgqAimEcoYLXaDvLS8RCNCzIZAaBCx9rCFouJuwSLtBi1si9oAfa0nykGCCVs5\nmZpuENC28KNxuonhVAsphxkzJITTZBJymJnfHzHZXW2tmNzPzCzm+7muXk8hzO2zstasWbOee923\ntw6nr5wSnafVbEPeTfeLvucd7io8sOM+XbTmsFty8MqEX4kvIKqgIrlBusWYqgRN6fZ/dksOtk6u\nEG/Zxv7uoTdp60Tx98pFBT2aXR4nfnFolXhS50BjmvjnzuV22URJt7cO9d5zojFzM/Pw4t1rRJOq\nrGYblt7107C/QWgxpsEYaxLd7yoqJKpKqAPkK+yoaC93wLUfHZC9zrYY02BJkE2oU5H8BuijshKR\nKrt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rLy5GQkIDy8nIsXrwY\ny5YtAwAcOXIEDz30EDZu3IiNGzfi3nvvDdVmERERERF9IZdbL2lGCr5Ln/7uL3EfUAQ7/On9zsPC\na0507ZLjU3r82ohKAloxZqXo4oSKRWGr2YbJmQXiiUUD42VbLQFqniQHgAF9k0TjXbx6UTNKGG29\nCwbh9hwzs2Zhzq3fFm/PEmOIEY1nMaZhkEk2YcdqtqF80jbR495iTENy/A2i81zjKEHJoZVY4ygR\ni2m35ODlb6xV0hJLunKNy+PE8j88E/alYF0ep5KkzwX2H4gfo1azTfQYVVGRAVDTso393UPP2XQW\n+87sEYu378weuJvrRGMCnYkwZ4STOt3eOpy/Wi8aU1mbWINsOUMVbQMd7ip8Z/ecsG/nuq5mLS62\nXsC6mrViMbNTRmBggnyrzMaW86LxgM79NHnbPaL7ScXDBvlDC5BmvBH5QwvEYgJArHBbT6vZhq2T\nK8SrBEpXF3K4qzBl+71KWqxJC/drTNV2HN8R6imEnMPhwJgxYwAAI0eOxOHDh7t/5nQ6ccstt6B/\n//4wGAzIzs5GdXU1Tpw4gbFjxwIAMjMzcfJk55O6hw8fxr59+zBz5kw89dRTaGpqCv4GEREREekU\n24GFVkrCQM1IwRcXHacZKfi67rVJ33Oja3fVd1UzUvA5Pac//x99hohKAlKRsCNdFlFFkoGKyi1A\n54nXarKJnoCtZhu+nf090d/pXPt8TLu5CHPt88ViAkCMIVo0XmVtBX519FXxthd13k/Eq+FsuV82\nYQeQb4lV01CNOu8nok/m5w8tQFKfZNFFKZfHiecdzympXDPvPdl2aADQ7msXjaeC1WwTT/pUscAN\nAO2+DtF4uZl5WJ9bKlrhQxX2dw896Zaew5KHI9YQK9piq4sPPtF4FmMa+scliVcFyTDLVgWxW3Kw\nbfKvRRPxVCQ12i05ePv+d0Tn2dBcDz/8oskliX0SNaMEFS1Nt378FupbzmHrx2+JxewSCATEY0YJ\n9921mm349QO7w76yFCDfflRFdSGLMQ0D+sie71weJ/K354leZ7o8TkzdMUU3Cw3SCdeVtRWYXDZZ\nNKYeNTU1wWQydf85OjoaHR2d18sZGRk4ceIEzp8/j5aWFhw4cADNzc0YPnw49u7di0AggEOHDuHc\nuXPw+Xy47bbb8IMf/ACbNm3CoEGD8Itf/CJUm0VERESkO9L3VumLOXW5VjNS8A3pf7NmpOCra3Jp\nRgo+Q5RBM1Lwxcck9Pi1EbXXVPQxlY43oO8AzShBReWWLua4fqLxKmsr8MT780RvqlbWVmDLnzeL\nxrQY05BmtIr+TlW0BrJbcrDiX54P+/ZNDncV7t+aK5pgkZuZhyV3LhNNhnB76+BtbxJPqlJxbnJ7\n63C26bR4clWU7DqfEi6PE0/s+77oIpKKBe6ahmq4vGfF23fpIQGIwsPltkui5wi7JQf/dtt88c+c\nytp34Qv4UFn7rljMmoZq1Le4Rd9/VrMNv5wg2yYWkK/E5XBX4du7HhJPapSeZ3bKCNxolE02n2uf\njyV3LhNNDLcY0zDILHud3Vlx0iBacbKb8Oe4ilbGeiKdsKKiulBNQzXONcue72oaqnHqyl9EY7q9\ndTjrkb92VZFUpKLyYmNLo1gsPTOZTPB6vd1/9vv9iInprGybmJiIRYsWYd68eXjiiSeQlZWFAQMG\noKCgACaTCUVFRdi1axeysrIQHR2NCRMm4Mtf/jIAYMKECTh69GhItomI6IvSS0IsEV3fpB+opy/m\nlqRbNSMFX0PzOc1Iwdfqa9WMFHxxhjjNSMHnabvS49dGVBKQHjKXZ2bNwot3rxFtCaWqcovVbMPU\nm6fLty4TbqmQnTIC6Wb5xYm4aNmWAhZjGpL6yravcrirsPB3C0QX+lweJ4oqpop+CVDRSsLhrsJz\nHz4ruu0WYxpSElLFE+pUnJtUJf/FCLfSAPRzg0v6d5mSkIpYQ6xo4p8qetlH9MW8OmGdaOLGpiMb\nUHJoJTYd2SAWEwBmZ8/BDX1SMTt7jljM3Mw8vHD3atGkORUJiCpYjGmwmdKVJIdL69dHNtkcgHhl\nSKvZhiWj/0P8szxW+Dqzi4qqPdJJKyquNQGg3S9bzdDlcSL3v74uPk/pClC5mXl46NZHRM93uZl5\n2JC7WTSmxZiGpPhk8YpFU7bJViwC1LQrHJc+HlazVSyeXo0aNQoffPABAODQoUMYOnRo9886Ojpw\n9OhRlJaWoqSkBLW1tRg1ahRqamowevRobN68Gbm5uRg0qLPa5MMPP4yPPvoIAHDgwAFkZWUFf4OI\niL4gFe3NiYh6QrqCMH0xRxtrNCMF36XWS5qRgu+rN35NM1LwNXc0a0YKvuT4G3r82ohKAlJBxZey\n5Phk8ZgqbDqyAUsPPi262Of21uFiq2xLBavZhgdvnSN+0SrdTaGmoRrnWurEq4IE/PJtH6SpaGFk\nMaZ1/0+K21uH+uZz4k8oq6BiUdJqtqE0b4v4Qp/0DS6r2YYXxq0Sn6d0iwqLMQ03Gm1hvxDPm5DX\nryX7nxLdryoSmYHO9/SuafvE39PPO/4zIo9rVUkr0lScy1VwuKvwyH/PFk06VlXJ0WJMQ7p5sC6S\nmaV1tsh1ibdtO9dSJ5q0s8ZRgqUHnxZtDb3pyAasPfqKeIKmdOUaFa18axqqccZzSvz7FQAYDPK3\nUkxxps//R9e5CRMmIC4uDtOnT8fy5cuxaNEi7Ny5E2VlZd0VgfLz81FcXIzi4mIkJSUhIyMD69ev\nR2FhIUpKSrBw4UIAwE9+8hP89Kc/RXFxMf74xz/i3/7t30K5aURE10RVtWgioi/qkV2y33Ppi+nw\nd2hGokhUVff/aUaiSHS5F4mITALqBRVPqaooLa7qadqZWbOw5M5loot9nW22bhRdnFCRrAQAHQHZ\np4lVVAWxGNOQkSi72GM12/Dt7O+J35BQ0Uaipf2qaDyLMQ0Z/eQXz1RwuKvwnd1zwv7LmoobXC6P\nU7xkrdtbB2fTGfEEsITYnvfzDBar2cY+4Ncp6VYuAMQTgLpIH3/7zuyBs+ks9p3ZIxZTRaIkANFr\nQkDd54P0daaqykpKPheFW2w53FVY9LsnxedqNduw+usviR+jKlpiLbpjsfg8/X6/aDwVbZzzhxYg\nqU8y8ocWiMUcljwcsYZYDEseLhZz05ENePz9uaLfr7qSiqSTiwKQfyBCRWtogDf4gc7kqqVLl+LN\nN99EWVkZhgwZgkmTJqGwsBAAMHfuXGzbtg1lZWXIzc0FACQlJWHdunUoKyvDa6+9hoEDBwIAsrKy\n8Oabb2Ljxo148cUXYTIxyYqI9IHfvYkoHCT1la3SSV+M1WTTjBR8faP7akYKvqu+q5qRgs8f8GtG\nCr7e3CtiElCYUdGeAgCutPa8Z9xncXmc2PLnN8Vv/EtX2BmXPh5W4yCMSx8vFtPtrcMnTbJPE6uo\nCmI121A+SbYVXGVtBR5/f654opp0pZF9Z/bgXEud+ALv01+Vr56gohKF3ZKDl7+xVrSKgKqEQmkq\nEovslhxsnVwh+vtUlTAgTUVSFYUH6VYuejIufTwGxqeJXhsAEE8UrKytwKzKGaKfuXZLDv7d/pQu\nPh/afbIJ1w53FaZsv1e8as/kzALR36fFmIaBCbLVDIHO/fS93d8S3U8ujxOTtk4UjelwV+Fbv3lQ\ndD81NNejA7KtZ1Uk17i9dfC2N4meS+yWHOyYUileWUoPTlw8oRnDmdtbB+cVXmsRERERUXiQrtJJ\nX8y5ZrdmpOBram/SjBR8bb42zUjBx6pkoXelref5HRGVBKTiKVUVrXHWHX1ddK41DdX4xOtUctFi\nVjUMAAAgAElEQVQmvTjj9tbB3fyJeDuw5WOeC/uFdkBNVRDpBcnslBEY3O8m0co9KpI2utrqSbbX\nc7irxEuhujxOTNsp22aqK+7zjufCfkFWT62mIvXpF5Yjv36pqMAmXbWmi4pzRHys7JM8KhJMVFTG\nqKytwNKDT4vvK+nPBwC46msRjxkQzjZ/dv9SlP+5FM/uXyoaV8U1YU1DtXgFMBVVtRqa69EWaBNN\n2FFx/Wq35OC5MS+KJ4D175Mkfs1RWfuuaLxx6eORGJcomkh58epFzRjO3N46uDxnxR8IGWgcKBaP\niIiIiKg3UvqmKrlvRKQXpliTZqTg6xvTVzNS8HEfhF5S36QevzaikoBULDRLL4pazTYssP9ANG52\nygjcaLQpuWiLjY4VjWcxpsGSINsOTEXihsWYhhtNsiXgrWYbXhi3SnTfq1iQtJpteOkbr4V9QoCK\nxR6LMQ3p5gzR/e721uH0lVPiyVqqEjek3/Oq2oFJn+9VxdRDZSWA5civV9LHtIqqNYCa95/bW4c6\nr2zSMQB0+GSfihiWPBwGRItWGgGAKOn+VZBP2KlpqIaz6axowoqKFj65mfcgGtHIzbxHLKaKa8Iu\n0vteRdK1iuQ3q9mGyZkF4tfZC3+3QPQ6u6ahGuda6kSP+2f3L0XJoZWiiWpbP34Ll9suY+vHb4nF\nVNFeTUVMADjeeAwd6MDxxmNiMd3eOpzznhOLR0RERETUG+evNrASUAgNMqdrRgq+C60XNCNRJGJb\nvNC7cLXn56CISgLSQyUDh7sK3971kOjNZACIjY4RjQeoa2UTa5BPLJJO3ADk25a5PE58f8/3xBMC\nfD6faDwVrYFUVMOxmm3YOrlC9Pi0mm1YNf4l0ZgqEsq6qEgsUvGeVxFP+nzPajh0Pbql/3DRYzol\nIRUxUTFISUgViwl0Ld4/IH7uvaFvqui593jjMfjgE10Ubmiuhx8+8Yoo/WITRZNkVSTs5GbmYc6t\n3xZvWedt84rGs1ty8M4D/y3eXk1FG0YV79HslBEYGJ8mejypaNe3xlGCkkMrscZRIhYTkC9Jve/M\nXs0ooc77iWaU8MdzH2pGCTOzZuHFu9dgZtYssZgqktRUsRjTYDFZQj0NIiIiIiIAUPZQOV2bxpbz\nmpGCLzU+VTNS8EVHRWtGCr5LrZc0IwVfSy8evI2oJCAVi7fSN+ctxjQMTEgTrzTianKKJwQAUJIN\nrqLSSPmkbaL7X0XbMre3Dqcu/0U0ZkNzPXzCi4dWsw0rxqwU/32qqIYjHU/Volx8jHzLD4e7Cg/s\nuE88oZDkqKr0oIfKQhQeyv9cioX7nhSL19Bcj45Ah+hnDgBsOrIBSw8+jU1HNojFdHvrUN/sFv2c\nOHX5lGaUoKIiytaP38Ll9kuiFTwcbodmlLDpyAasPfqK6H7f+vFbON9aL7rtKqhKPLVbcrAjv1I0\nYcntrcOltgvi11xRwsWqLrde1owSDrj2I4AADrj2i8XMTrlNM0p4KPthGGDAQ9kPi8UcNfB2zShF\nMvEL6Ewm3JC7WTyZcFjycMQYYkWrtLm9dTh7+axYPCIiIiKi3kiIjQ/1FCJaV+WH3lSAoN650nZF\nM1LwXW67rBkp+BJiEzQjBV9vqrpHVBKQNJfHiak7ZKuXAECccBJMQ3M92v3t4otylbUVeLCySLTt\nh8r2B5JUtC0DgCjhFY/czDx8f+QC0RvfLo8TD1V+U/S4V1ENR1UrNBUVZlRU17FbcvD2/e+IVyZQ\n0VZRmp7agamoqqWHfUThwxzXTyxWbmYelty5TMliaxSiRBdbVSQseT69KeARvDmgooqF03NWM0pI\n7JOoGSWo2Pa59vmYdnMR5trni8VUcb0BqGvDKP19wGJMQ0q8bFWtfWf2wN1ch31n9ojFnJ09B8YY\nE2ZnzxGL+aUBX9KMEoYlD0cMYkTPd3ZLDhbf+R+i14Rz7fOx5M5lou8lVW1SpT+TgE8f3Im3iB73\nW46XwQ+/WDwiIiIiot6Q7oJARPRFJfVJ0owUfHGGOM1IwdebVmxMAuoFt7cOzqYz4k++6uUCKztl\nBFLjLaJlIVUtiqu4oSydrGUxpiHNKJsIU1lbgVWHnhdN1Nr68VtwN9eJP0UvXQ2n8/cpn6ilgqqF\nPsnFHkBNFShAvnKNXtqB6SUmwOpCoVJdXY3i4uK/+/s9e/agoKAAhYWFKC8vBwC0tbVhwYIFmDZt\nGubMmYNTp059bvzkPjeILog73FVY/oel4skQxxuPIYCAaJut7JQRuihtraLCTlfil2QCmArZKSOQ\n1CdZdB9V1lag/M+lotdFFmMakvomi19vqKjkV1lbgVmVM0S33+2tQ0Nzvej3oZlZszB/5JOibaH2\nndkDb0eTaGKRikpdnS2hZKvCVtZWYNnBJaL7HYBoAlCXdl+7eEwV1zBubx3Ot8ge9/PsjyExTi6R\nkoiIiIioNzoC8tfmdO1iDDGakYKv2desGSn42vxtmpGCr29MX81IwZfQi7VzJgH1gt2Sg1cm/Ep8\noV26/H1KQiqiEIWUBNnelW5vHS61ypb/t5ptWGD/gfgCtoobym0KYkqXVEtJSEVMVIzovs8fWoDU\n+IHIH1ogFlNVBagOf4doPFVVVvTSsktPlWtUJFaFe4WyLioSgFTsI7a8+OdeffVVLF68GK2trZq/\nb29vx/Lly7F27Vps3LgRZWVlOH/+PMrLy5GQkIDy8nIsXrwYy5Yt+9z/RqpxoOicG5rr0R6Qrzyo\noiIMAPgCsp8R8+yPwRzTD/Psj4nFVFFdaHDiYM0o4feu32pGCfvO7MGF1kbRpA2gdyVU/5GahmrU\neT8RbZHrcFdh0taJ4tcHKQmpiDHEil4XWoxpuEG4EpDDXYVfVP9cdPuHJQ9HrHD7pplZs/Di3WtE\nk5U6WxWeE/1+lZ0yAgP6JIknPUonFQFAU7tHNJ7L48Q9b31dSQvvNJPswwZubx1vbBIRERFR2Pik\nySX+8DuRnvjg04xEkcjb7tWMpC8RlQQkffPP5XHiecdz4nFjDLIVZg649iOAAA649ovGVXHz0+Gu\nwiO7ZosvesQKV+1xe+vgbv5EPAFq0R2LRRfwO9ts2cSfTpdOVlKRXFLTUA1Xk1N0UU5FkprDXYUH\ndtynJBEoUivs6IVeWnep2EcujxN5pfLtOa4n6enpWL169d/9/cmTJ5Geno7ExETExcXBbrejqqoK\nJ06cwNixYwEAmZmZOHny5Of+N6STL09cPKEZw5mKdkNubx2aOjzCi/e3aUYJF69e1IwSvnzDbZox\nXKmoLpSSkAoDDKKJNZW176Ij0IHK2nfFYnaJEq446vbWoaFFNmnlgGs/OgIdot9d7JYc/Ntt88Uf\n3hiXPl40nooWuSoS6lRUlVJxXlZVwRSQf9jAbsnB3gf3isYkIiIiIuopFRVv6dq1+lo1I1Ekam5v\n1owUfH2i+2hGCr6LrT2/hx9RSUDSi62qFsRL87aIxhxtvQsxiMFo611iMbvERMkm1wBAQLgfmtVs\nw9Sbp4sn10i3mnK4q/Ct/35QPBlEOmHH7a1DnVc+AUr6vZSbmYcX7l6N3Ey5RAOHuwrf2T1HdB/Z\nLTl4+/53xBelVLXBi8RkHVX01LqL+z34Jk6ciJiYvy/529TUBLPZ3P1no9GIpqYmDB8+HHv37kUg\nEMChQ4dw7tw5+Hz//EmV2e9+U/R4udx6WTNGmi3HyxBAAFuOl4nF7KpaIlm9RAUV1YVOXT6lGSXs\nO7MHja3nRZMMDrj2ww+/aMKKigpQXaQrIQFAu1+2OubxC8c0o4RNRzag5NBKbDqyQSymy+PEhPJx\n8g+ECH+/mpk1C3Nu/bZoxSIVVFR9G9B3gGaUUtNQDWfTWdGHDQDgcP1h0XhERERERD3lbq4Tv96l\na8eF99Ab2GegZqTg69+nv2ak4KtvqdeMFHy9+RyIqCQgFYutemg5Y7fk4Gd3/1w8yQCQv+lvt+Rg\n+5R3Ree66cgGLD34tOhNfwCI70Ufvs8SJdwLTkWbLbslB9/Nnid+PEm3+3B5nFh39HXRhRlVCTuR\n/FSFXqrhqKKX1l3SrGYbXp30aqinoUsmkwle7/+W3/R6vTCbzSgoKIDJZEJRURF27dqFrKwsREdH\n/9NY51pkqyPkZt6DKEQhN/MesZiqqKiGMy79/2hGCV2JJZIJJioWxcelj4cpxixaFSWxT6JmlKCq\ntZy0FeNW4uu2/4sV41aKxrUY02Du00/0uqOy9l0EEBCtWjQsabhmlKAiqWxdzVqcb63Hupq1YjEB\noM7rEo1XWVuBtUdfEa3ao6K1XG5mHr5mGSuawD8ufTwSY/uLV2xqbGnUjBI2HdmAb+38llg8IiIi\nIrr+VFdXo7i4GABw+vRpzJgxA0VFRfjxj38Mv98PACgvL8cDDzyAadOmYe/ezkqTV69exbx581BU\nVIRHHnkEFy5c+Nz/VkxUjOj1Pn0xzb5mzUjB19jaqBkp+K76rmpGCr44Q5xmpODrTUW4iEoCitRK\nBg53FRb97knxCjOdFWHke8NKJ1jMzJqFJXcuE336VUXFJhXJNS6PE0/s+75oQoCKJ6k3HdmAx9+f\nKxrTarZhxZiVSpLqJKms2CPdXk6FSG4HpoJefp8ujxOP/vrRUE9Dl4YMGYLTp0/j0qVLaGtrw4cf\nfoivfOUrqKmpwejRo7F582bk5uZi0KBBQZ9bQ3M9AgigoVn2yQAVi60qEmFUtJpSYVz6eNhMg0QX\nxdfVrEVTh0c0GUJFNRgVvjTgS5pRQmVtBd5z/rdo0gbQ2Rqp8ep50eQ/FVWgRlvvgiEqWrSK6Y/u\nWoKvWcbiR3ctEYt58tKfNaOEJ/c+Bm+HF0/ufUwspsPt0Ixi/LLVW+fu+i5+7/4Ac3d9VyzmvjN7\ncLn9kvjDBjUNH2lGCZIJakRERER0/Xn11VexePFitLZ2LgYuX74cjz32GEpLSxEIBPDee++hoaEB\nGzduxJtvvonXX38dL7zwAtra2rB582YMHToUpaWlmDJlCv7f//t/n/vf6wh0iN/foWvnh18zUvD5\n4NOMFHxtvjbNSMHX5m/TjBR8/eL69fi1EZUEpIKKagvSyToWYxpspnQl1UakK9eo4PI4sb327bBv\ni6QiuUaFmVmz8OLda0STqmZmzcL8kU+KxlSRAKUnDncVHtk1W/x8okK4J6x0UXEsRWrrLqvZhq2F\nW0M9DV3ZuXMnysrKEBsbi4ULF+Lhhx/G9OnTUVBQgIEDByIjIwPr169HYWEhSkpKsHDhwmuKK7nI\nrmyhWQEVC7j7zuzBhdZG0cXmufb5WHLnMsy1zxeLaTXbsMD+Q+FEZrtmlHDfkEmaUcKJiyc0o4SU\nhFTEGeIi9glJFdWVjjcegz/gw/FGuQSwNY4S/N79AdY4SsRirr13I4YlDsfaezeKxXzwyw9pRgkq\n2ss1NNejA7KLAqNvvEszSnjv9C7NKEVF5bfD5+U+j4iIiKh3IvVeIoW39PR0rF69uvvPR44cwR13\n3AEAGDt2LPbv34+PPvoIX/nKVxAXFwez2Yz09HQcP34cDocDY8aM6f63Bw4cCMk20LUzfLp0a+AS\nbsj0jeqrGSn4rgauakYKvoRPO+IkKOiMQ9cmLCsB+f1+LFmyBIWFhSguLsbp06c1P9+2bRsmTZqE\noqIibNmyBQDQ1taGBQsWYNq0aZgzZw5OnToFoPOC5l//9V9RVFSEZcuW/dPShsGkou2Kw12F/O15\nogv3VrMNW+7fpqQiyop/eV5JZRRJeqmMoSK5RlU1mGHJcu0ZgM7j/uWaNeIJK83t4V8uU0XLtm6y\nD2hHNBXne7207gLU3AAblBj8SjV6Y7PZUF5eDgCYNGkSCgsLAQDjx4/HW2+9hbfffhszZ84EACQl\nJWHdunUoKyvDa6+9hoEDr61f9dxd3xGbr4r2TYCaJIPslNs0o4RhycMRjWjxz0jJCjNAZ5WZJ96f\nJ1plJjczD/NHPinaxkdFUpmKqj12Sw4W5jwtej2sovoV0Jn0Fw3ZCjsqDEsejugo+feStDWOEhy/\nfEw0sSglIRXRUdGiSWVThxUiClGYOqxQLKaKhDoVbRq/njFBM0p55+ROzSjhyzfIfR4RERFRz+np\nXg1FlokTJyImJqb7z4FAoPsBbaPRCI/Hg6amJpjN5u5/YzQa0dTUpPn7rn97LaS/k9K1i0GMZqTg\nawm0aEYKvihEaUYKvssdlzUjBZ/Hd22f2f+IsiSg3bt3o62tDWVlZViwYAFWrFjR/bMLFy5g1apV\n2LhxI9544w3s3LkTTqcT5eXlSEhIQHl5ORYvXoxly5YBAJ5++mk89dRTKC0thclkws6dOz+ztGEw\nqUguUVW1R7plF9CZuPHU7/9dNHFD1RctVdsvTTIBCOic47d3PSQ6V4e7ClO23Ssa02JMQ3LfFNHj\n3u2tg9v7ifi+lz42VVUssltysG3Kr8WT9CKVivO9XhIUeQPs+mYx3igW63LrZc0oRcWiuIrEoobm\nevjgE62MUVlbgQcri0QTdrJTRmBggkW0bVllbQVKDq0UnaeK6kIqkmsqayuw9ODTots+LHk4Yg2x\n4kkwFmMabGbZ7xkqkkEOuPbDF/DhgGu/WEwVLQA7k6miRJOqjjceg0+4CpLFmAarySa630db70KU\n8Lar+H2OSx+PfnGJou0PAaC53asZJbASEBERUXjQy70aIoPhf5f2vF4v+vXrB5PJBK/Xq/l7s9ms\n+fuuf3stJO+Z0BfDdmCh1wd9NCMFX7whXjNS8MUhTjNS8PXmHKQsCeivSwyOHDkShw8f7v6Z0+nE\nLbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDIzMzEyZMnAQDnzp3DqFGjAACjRo2Cw+H4zNKGemc1\n27D66y+JftFwuKsweds94kkrdksOfvq1n4kmGaj4oqWiupLDXYUp22UTYQD5BBNlreCEE2/d3jo0\nXm0QTdixGNOQZrpRdNtVJUO0+9pF43VR0QIwkhNBVNwAUhEzUqup0RcXH52ANRN+KRZPVSUgFQkB\n+87s1YwSVCSYpCSkIoCAaAKU21uH8y2yn7kqfp8qqEj+UpGkZrfk4LkxLypJ5JXu5DvaehcMMIgn\ng8RExYjGVLHvO89JAdFz07Dk4TDAIJoA5vbW4VyzW/Q9f7zxGAIIiCYrqfh9bv34LVxpu4ytH78l\nFhNQU2FIsgUcERER9Q7vf5Ae3HrrrTh48CAA4IMPPsDtt9+O2267DQ6HA62trfB4PDh58iSGDh2K\nUaNG4f333+/+t3b7tT1sw0pAFMla0aoZKfi8fq9mpODrQIdmJH1RlgTU1NQEk8nU/efo6Gh0dHQe\nJBkZGThx4gTOnz+PlpYWHDhwAM3NzRg+fDj27t2LQCCAQ4cO4dy5c/D5fBg0aBD+8Ic/AAD27t2L\nlpaWzyxtGEyq2sNIVwVpaK5Hm79N9Ml0QE0lIBWUJcIIt1pScTypaAVnt+Rg22TZCjN2Sw5emfAr\n8cWumKhY0XiqkiFio2XnCXQeT0UVU8XPT9Ix9UTFdquoLKViH/EG2PVpf9GHovtWRTIAoKbCkDmu\nn2aUoKKVza9qXteMEg649qMj0CG60K6ivVpKQioMMIgm16ioWqOicovDXYUffPC4+DW221sHp+es\neJVEQ5TsV0q7JQe3DsgSvS7MThmB5D43iFbAyh9agPjoeOQPLRCL2dBcDz/8ot/bGprr0e5vF/8u\nKE3FuV5VhbquJC3JZK3slBHI7J8pFo+IiIiIrm8//OEPsXr1ahQWFqK9vR0TJ05ESkoKiouLUVRU\nhAcffBCPP/44+vTpgxkzZuDPf/4zZsyYgbKyMsydO/ea/hunLp9SuxH0meIMcZqRgi8xJlEzUvDd\nEHeDZqTgi0WsZiR9UZYE9LelB/1+f3fP0sTERCxatAjz5s3DE088gaysLAwYMAAFBQUwmUwoKirC\nrl27kJWVhejoaPz0pz/Fyy+/jAcffBDJyckYMGDAZ5Y2DCa9VEfIzczDi3evQW5mnmhcuyUHL39j\nregNel0lwgi3WtLL8QRAPFnH5XHiecdz4okLKpJrpPeP1WxDad4WXex3PVGRXKMi6ZNttiiUVJx3\noqOixWPWeT/RjOFKxWLzsKThmlHCH899qBklqEiAOt54DH74RZNr8ocWIM14o2jShooKM8cbj6E9\n0C667V1xOwIdonEbmuvREegQTTDJf/s+fHShGvlv3ycWc9+ZPWhsPY99Z/aIxVzt+DlafC1Y7fi5\nWMyVf1ihGSW8c3KnZgxXKloAqogJoDuJUjKZ0mq24cWJL4rFIyIiIqLrj81mQ3l5OQDgpptuwhtv\nvIGysjIsX74c0dGd92OmTZuGt956C2+//TYmTpwIAIiPj8eqVauwefNmbNiwASkpKdf03xucOFjJ\ndtDn8wf8mpGCr6WjRTNS8F1qu6QZKfjYmjD0EmITevxaZUlAo0aNwgcffAAAOHToEIYOHdr9s46O\nDhw9ehSlpaUoKSlBbW0tRo0ahZqaGowePRqbN29Gbm4uBg0aBAB4//33sXLlSqxfvx6XLl3C1772\ntc8sbRhsekgIcHmceKXmJSWL4tKJG5GcCKOCy+PEfW9PFN/30k+mq9jvVrMNi+5YrItjSfqJfKBz\n+18Yt0r8d6qHhCVVyYQqjlEVMfWwjyg8rHGUiMdsD8iXBr1vyCTNKKHrRpbkDS1Vi83SRg28XTNK\nGG29C9GIDvv2TVazDY98+Xthf45Use3A/z7FKfk0Z3bKCCT3la2ws/iuHwOI+nSUoSJRTUUFrNst\nd2pGCSrOoSqO0eyUEcgw3yR6LKlKgFKR9OlwV6GgTC5BkYiIiIiotyS/PxHpzYA+AzQjBV8UojQj\nBV872jUjBZ+3veft8JQlAU2YMAFxcXGYPn06li9fjkWLFmHnzp0oKyvrrgiUn5+P4uJiFBcXIykp\nCRkZGVi/fj0KCwtRUlKChQsXAuhsHzZ79mxMnz4dJpMJd99992eWNqR/rKWjWTym1WzDijErlSRC\nSdJLtQ2Xx4mpO6aIznPfmT1wec+KPvXscFfhgR33KWlRIcnhrsJ3ds8J+3Z1qn6fLo8TC3/7ZES2\nhVKVTKiHbQfUzDPcz5/UM0sPPi2aCNTZsiog2roKAF4+9JJmDFcqWk19acCXNKOEAX0HaEYJFmMa\nbohPFW29mpKQitioWNF2YJuObMDSg09j05ENYjGzU0agf9wA0cSF3Mw8zB/5pIIqnvKJavvO7EHj\nVdkKO52VigKiFYu6EtQkE9XUtISSTyxScW5yuB2aUYLVbMODt84RvY5RkQAFqHkvHXDtRwfkE2mJ\niIiIiHrq+AXZ6rR07VoCLZqRgu9C6wXNSMHHJKDQG5Y4XDNS8PWJ7nnuS4zgPDQMBgOWLl2q+bsh\nQ4Z0//+5c+f+Xe/RpKQkrFu37u9ijR8/HuPHj/+7v582bRqmTZsmM+Ew0ZUIItm+yu2tQ533E7i9\ndeIVhr6761vYNqVCPG64V9tQwe2twxnPKdH9NDNrFi5evYiZWbNE4gGdFZB++rWfiVZC6kqEefv+\nd8Ti2i05ovFUUTVPvRz3quhhu7sSFKX3k/Q5VNU8KTw4PWfFYqloXQUAayb8El/d9BWsmfBLsZjD\nkocjGtGii/f5Qwvws6rloq2mVFBRwaOmoRrnWupQ01Atdp6wGNMwoG+SaGKRimowWz9+C5faLmLr\nx29hrn2+SMzK2gqsOvQ87Ba7aCJQSkIq4gxxoolVKqg4RrccL+sepa65fvHHVd3j2ns3isRUVQVK\nmookmK4kvQF9B4h9d0lJSIUB0eLHfG5mHjbkbhZP1CMiIiIiCiemWFOop0AUMqyAEnptaNOMFHx/\nunxcM1Lw9YnuA4/P06PXKqsERD3j9tbB2XRGtCqKxZgGS8KNoosoQOeCzxnPKdQ0VIvFVFW1Ry+V\nMQKBgGg8l8eJ7bVvi87V4a7CU7//d9HKNaoSYaSPeVXCPVGJ1FCRqKWXVmgUHswx/TDP/phYvPyh\nBRgQlyyeBOP21iGAgHjFOINB9jJ4Xc1atPibsa5mrVjMlIRUxCBGdAG7saVRM0pQUWlk35k9qG85\nJ1phRkUVpLn2+bhv8GSxBCCg8/cYQED09wl0Xm98c9hs0esOFS3GcjPzsOTOZaIJFjbzIM0o4dFR\n39eMEnIz83Df4Mmi266iopiK97wKxxuPwQ+faFUpVeba52O0dXSop0FERERE1G3qsMJQTyFixSJW\nM1LwxSFOMxJFogACmpGC70rblR6/lklAYcZuycHWyRXiSQFRCqqlZaeMQLp5sGj7A1WLzdIJOyoW\n2i3GNAw0WkQTV1S0bLNbcvDyN9aKH6PS8fTSBk6VSN9+vVDRsiySW6HRF9Pc4RVNrHF769DUcUU8\nWQcAAn7ZLxoNzfVo97ejobleLGZu5j0wwIDczHvEYgLyyUrj0sfDkpCGcel/X2Wzp0Zb70JMVIxo\nqyUVFVHGpY+HObaf6LZvOrIB75zaLtpiTJU1jhKsPfqKaBvA2dlzYI7th9nZc8RiOtxVeO7DZ0UT\nzvOHFiClb6pokmJDcz2iECV6Hnl2/1K8c2o7nt2/9PP/8TVS0bpLRUJdTcNHmlHCuPTxGBCXLPqe\nBzqrdc2qnIHK2gqxmAv3PYkDrgNi8YiIiIiIequr+ikFH6vQhB6TH0IvGtGakYLv9pQ7NCMFnw++\nHr+WSUBhSDoZwu2twycel/iinNVsE28F1hVXkl4qY7i9dWhorhfdTy6PE0/s+77otrs8TjzveC7s\nk0v0klCmKiart+iDqn1PdC188OGAa79YPBWJNV0M0bKXrLmZeXjx7jXirVwMwpfWFmMa+sX2F69s\nZ4o1i8azW3KwduJG+SR24Z7fWz9+C572K9j68VtiMYclD4cBBtHWcioSLFSpaaiGp/2KaGVQizEN\nAxPSxI/7GxJSROPlZuZhfW6p6HnkR3ctwfyRT+JHdy0Rizk7ew6S+iSLJmqp0PWUseTTxmV6YlEA\nACAASURBVDUN1bjUdkH0+ASAfWf2akYJ8+yPYUCf8H/PExEREVHkkGylTaQ3qfGpmpGCryv5oTdJ\nENQ7Hzb8QTNS8NmMPV/vYxJQhAhEqclWVfG0vzS9VMawGNNgMcq3bZNmNduwwP4D8e2XfNq7ix4S\nylRW7InkZJBwT1IDWK2JQm/JnctEWxipaOEDdCaYbJv8a9EEE5fHiVdqXhJ9/zU018MHn2gS1L4z\ne3C+tV60JRYAxEbLlpNWkSCcm5mH749cIHo8jbbehShEiVYsamiuhx9+0f2uogoSoK+2UK2+q6Lx\nrGYbXhi3SvzaSPp8B0A0AajLQKNFNN7MrFmYP/JJzMyaJRaz6z0k+V5S0VIR6ExUMsAg3h4h1cSb\ny0REREQUPhpbGkI9BaKQOd9yXjNS8MUgRjNS8FnjrZqRgu9qR8/vkTIJKAypSIaQfjId6Jxn/vY8\n8flGcjJEQmyCaDyr2YbSvC2i2+9wV+E7u+eI7neHuwpTtt+r5NiXpKK9Giv2yNNLcg33PYWaZCIA\n0HkuX161VMm5XLrCDAC0+2RLKqtok9r11J3k03cqkiFUnM8qaytQcmilaLudA679CCAgWgFLRUWQ\nlIRURCFKPHFBRcLOaOtdMMAgmli178weuJvrRJPfXB4n5r33PfFrA8nWaqqo+j7w0kerwv7a3WJM\ng7WfTfwhC7slBxUP7BL/bJL+XCIiIiIi6g2reVCop0AUMjGGGM1IwWeMMWpGCr6m9ibNSMHX5m/r\n8WuZBBRmVCTW2C052DZF9gl6oPOmqs2ULnpT1eVxoqhiatgv3qug6gllaXZLDt6+/x3R48liTEOa\ngipI0seRy+PEwt8+KR433Pe53ugpuUYPc6Tr16zKGaIJFscbj6Hd347jjcfEYnYJ94VmQE2b1Pyh\nBUgz3oj8oQViMV0eJ771m9nin2V6qA55ufWyZpSQnXKbZpRwvPEYAgiIv5dUVAI63ngMfvhF56qi\nyozbW4e/XD4pepyucZRg6cGnxROB5u76rmg8QP56o6G5Hm3+NtGqPY0tjZpRSnyM7EMWXaRbX7q9\ndXB5XKIxiYiIiIh6ozfVB6h3uh7qV/FwP12bZn+zZiSKRP6AXzOSvvATJMx0toRKU/K0ojSr2YYt\n928Tv6nc4Y/MJyBVJJioSqqSvukNALEG+dYk0tVg9JRcEum4j4iujWT1ElUc7ipM3nqPeCLQVV+L\naDwAqGmoFo1nNdvw6wd2i57T9p3ZA5f3rGiVFYe7ClO2yVf0i0KUaDy7xa4Zw9V7p3dpRikqKgEl\nxycjClGirctUVJmprH0XPvhQWfuuWEwVSVVzd30X5X8uFU8E2nRkg2i8lIRUREfJttkalz4eKX1T\nMS59vFhMq9mGb2d/T/y6sLK2QjyRFgD8ft5UIyIiIqLw4WmTe4CGvhg//JqRgq9/bH/NSMF3peOK\nZqTgYxJQ6CX04uE2JgH1koqKNSqeVlT1BL30YhcAxAgngwBq9pM0vSSYVNZW4MHKIvGb3tL7XUXr\nrq64FJn0cB4h+qKmDisUizUseTiiEY1hycPFYgKdiaftgXbRBNSahmq4mpyi1zGqFoWlP3eGJQ+H\nAQbx/RRAQDRedsoI3Gi0ibZXS0lIRZwhTjRxoSv5RTIJZtqw6ZpRyoC+AzSjhNzMPLxw92rkZuaJ\nxWxorke7X/Y9/6O7lmD+yCfxo7uWiMXMzczDhtzNotu+ZsIvMe3mIqyZ8EuxmJuObMDj788VTQRq\naK6HL9Ahuo/c3jpcbr0kWq2psrYCT7w/T/y8nJ0yAoP73SR6fgLkz6NERERERL1hjksM9RSIQuZK\n+xXNSMHXN6qvZqTg8/q9mpGCrzctCZkE1AuqKo2U5m0RXfBxuKvwwI77xBOBVCSDqNh+FftJFRUJ\nK9K/z9zMPKzPLRVd8FC131W07qLIpKfzCNEXIdnCx2JMQ5pJvrVjSkIqDDCIJm6kJKQiGtHiMWOE\nK2MAwLP7l4rGa2iuhx9+0cV7izEN/fsMEN/3vkCHaDy7JQev/d/1ohUyOyuiyB5L2SkjYDMNEk8w\nmJk1Cy/evUa0zZbL48QrNS+Jfj6mJKQiBvLvJckEoC6S18NdJBOAgM7Ev5ioGNHEv+yUEcgwyyfB\nRBlkq3/lZubhoVsfEd9PVrMN420TRL+7HHDtR4fwOY+IiIiIqDf4MGzodFVGlq6QTNfOB59mpOBr\nD7RrRgq+GMRoRgq+Dn/P7xUxCagXVFVukY5nt+Tg7fvfEW8JpuLJX0BNIoyKijBMBpClYr/robIS\n6QOPJ7oezbn126LJAG5vHc41uUWrOACfVpyAT7wVpcEgfxlsiJKN+ez+pSg5tFI8EUjavjN7UN9y\nTrTF2L4ze+BurhON6fI4sfwPz4hewx1vPAZfwCeaUAcA0VFqvlxLVizq0tLRLBrPYkxDRuJN4kll\nkSw6Klo0ntVsw7YpFaLXRXZLDrZN/rXod9ZNRzZg7dFXxNuhPbt/KdYefUX03CzZVo6IiIiISMLB\nT34f6ilErK4qoawWSpEsNipWM1LwcR+EXnMv7rsyCaiX9LIgrOImusvjxLqjr4d9MoyKijB6qQri\n8jgxdccU0Xmqagem4nepl/cn6QOPJ7re/Oroq6Ln8obmerRDtoUP0FlxIs14o2jFCYsxDakJA0Wv\njyzGNKQZraIxZ2fPQVKfZMzOniMWMyUhFXFR4d8Sa1z6eNzQJxXj0seLxQQAT5tsGedx6eORGj9Q\ndJ5ubx3czZ+IJ9SpaFnn9tahzis7V6vZhi33b+PnrhC7JQfbpsgm1wBqrouk5zgseThiIFsFCQBy\nM+/RjDIx8zA3Z65YPCIiIiKi3vK2s/0LRa5oRGtGCr6WQItmpODrqljMysWh4w/4e/xaJgFFAJfH\niaKKqeJJFnqpjKFinqq2XTqxxu2tg7PpjOjCTHbKCKSbB4suxuolqYqIKJiqq6tRXFz8d3+/Z88e\nFBQUoLCwEOXl5QCA9vZ2LFiwANOnT0dRURFOnjz5ufGlz+WqWhi5vXVoaK4X/Sxze+vQ0CIbEwAS\nYhNE4wHAQKNFNJ7dkoPt+e+KL7ZLc3vrcKXtkug+qmmohrPpLGoaqsViur11uNR6UXSenQll8q31\nAPlS4nZLDl6dsE4XCSaRLNzf712k21dbjGmwmNLE30tdlb8kK4BtOrIBa6rWiMUjIiIiIuqtPtF9\nQj0FopBhOzAioB3tmpGCj0lAFDJ6uUGvYp4qEoCkK+zYLTnYOrlC9Ma/1WzDLye8Jp5UpaJlm14w\n+YmI/tarr76KxYsXo7W1VfP37e3tWL58OdauXYuNGzeirKwM58+fx/vvv4+Ojg68+eabePTRR/Hz\nn//8c/8b0q1cAMAc1080HtC5yNoR6BBdbFWRuGA121Cat0X881E6JiCfEJCdMgIZ5pvEE8CiDLIJ\nK7mZediQu1m0la3FmIaMfoPFkwziY+QTyrJTRuBGo008kft5x3O8lqFec7irkL89TzQRyO2twzmv\nfJvKmVmz8OLda0Rbas7MmoXXJr0mFo+IiIiIqLdiDGraVNPn64M+mpGIiCKT1dTzdQEmAYUh6Scg\nrWYbXhi3SkmCBW/4y2lsaUQAATS2NIZ6Kv+UqvZqT+z7fkQeT6oqdRGRvqWnp2P16tV/9/cnT55E\neno6EhMTERcXB7vdjqqqKtx0003w+Xzw+/1oampCTMzn36iRvi5QlbAyM2sWlty5THSxVVXigh6S\njlWwmm3iSWWqKsxIJgABndtePkm2dZWq9xIA9Osjm6hnNduwwP4DXRynKvD6TY7FmIbkvimiCXUN\nzfVoD8i3qQQg+pnU5eFRD4vHJCIiIiLqqSvC7bTp2rWiVTMSEYVCfFS8ZqTga/f3vAoTk4DCjMNd\nhQd23CeaCKQiaaMrLls4yVHxRKmK40lV1Z7m9mbReEREejZx4sR/mMjT1NQEs9nc/Wej0YimpiYk\nJCTA5XLhnnvuwdNPP/0P24gFg6qE4+21b4teb+ilpameSP8uVSVqqbhuVXEcSVcuAdQkFzncVXhk\n12zxhxik46ng8jiRvz0vYr8LqWhjfP6qbJvG7JQRGNxPvkoZEREREVEkiDPEhXoKRCEThzjNSMFn\njjZrRgq+ropwrAwXOsOTs3r8WiYBhRm7JQf/bn9KvD2FiqQNLqDJG5c+XjSe3ZKDt+9/R/R4UlG1\nx+2tw7nmOiULXuFO5dP+RHT9MZlM8Hq93X/2er0wm81Yt24d/uVf/gW/+c1vsH37dixcuPDvWonp\nlarrmEj8zNETFdeZeklgV9EWqYv0+8hiTEO6OUO0eovDXYXJ2+4R3/5NRzaIxqtpqMbpK6dQ01At\nGld6nipiqmhjbDGmYZBJ9liymm3YOlm+9SURERERUSRo87eFegpEIdOGNs1IwefxeTQjBV+br00z\nUvCduXKqx69lElCYqaytwLKDS0RvqKqqBAToo0WFXqhamJJuo6GC3ZKDrZMrdDFXFfg+IqJrNWTI\nEJw+fRqXLl1CW1sbPvzwQ3zlK19Bv379uisEJSYmoqOjAz6fL8SzlaEi+VRFpbyuuCQnUhPYLcY0\n2EzposkQqqhoh6bCpiMb8Pj7c0WTYXIz87A+t1S0xZyKeaqImZ0yAunmwaIVdqxmG7bcL38shfux\nSUREREQUrjr8HaGeAhFFsFjEakYKPibDhV5jy/kev5b1m8KMipvJelnw0BuXxyn6O9XLfrKabXhh\n3CrxeUZqAhAR0bXYuXMnmpubUVhYiIULF+Lhhx9GIBBAQUEBBg4ciNmzZ+Opp55CUVER2tvb8fjj\njyMhISHU0w5bKirldSUWScclWeF+nQV0znH111/SxVwBVdWFBosmQQ1LHg4DDBiWPFwspgpdbYEl\n2wOriGk127BtCivsEBERERFdz/rF9Qv1FIhCJgpRCCCAKESFeioRy/BpHRMD65mETAABzUjB95WB\nt8N1ytWj1zIJKAxJPlHZhTdoZXVV7dFD0o50spLL48R3d31LFzf+pbediCiYbDYbysvLAQCTJk3q\n/vvx48dj/Hht+0ij0YiSkpKgzi9YVLVNlK6yYrfk4OVvrGUCEPVaVxVPPVxnqqAqCSo2WvbJscra\nCsyqnIENuZtFH+CQTNZRGVOanr5fkTp+vx8/+clP8Kc//QlxcXF45plnkJGR0f3zbdu24fXXX4fZ\nbEZ+fj6mTp2KtrY2LFq0CGfPnoXJZMKSJUswePBgnD59GgsXLkRUVBRuvvlm/PjHP4bBwJvHRERE\nRNfqStuVUE+BKGSY/BB6rWjVjESR6MTFj3v8Wt4BCTOqWkKpaAUWyVRU7VGx710eJ4oqporGrGmo\nxhnPKdQ0VIvFVEHVe4mIiIJPekHY5XFi6o4p4p+5zzue4+cO9ZpeqkOqoqIFoN2Sg22Tfy2apJed\nMgKD+90k/gCHZNuuLtKtCl0eJ6ZsyxPdR1azDSvGrIzY45467d69G21tbSgrK8OCBQuwYsWK7p9d\nuHABq1atwsaNG/HGG29g586dcDqdKC8vR0JCAsrLy7F48WIsW7YMALB8+XI89thjKC0tRSAQwHvv\nvReqzSIiIiLSpRgDawgQUeh0VWFiNSainmESUJjRS3JJF+kbynoifYNa1YJPh79dNF52ygikmweL\nL3hIH5+RvoBGRESfze2tg7PpDNzeOrGYqhawK2srROORPkT69Yv09Ssg33rWarZh62TZypibjmzA\n4+/PFU0EcrirMGXbvaLf21Q8FNBVAYuJlJHN4XBgzJgxAICRI0fi8OHD3T9zOp245ZZb0L9/fxgM\nBmRnZ6O6uhonTpzA2LFjAQCZmZk4efIkAODIkSO44447AABjx47F/v37g7w1RERERPoWZ4gL9RSI\nQiYOcZqRgo/VmEKPiVihZ4oz9/i1TAKKAKoWpRzuKjyw476ITgSSpmLBJyD8+Wg12/DLCa/pIlEt\n0hfQiIjoH7NbcrB1coVoUoCKBeyudkNMBKJIE2OQbd2livS15sysWXjx7jXy7buE79XkZuZhfW6p\naBs0JvATADQ1NcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMCh\nQ4dw7tw5+Hw+BAIBREV1HvxGoxEejyck20RERESkVxdbL4Z6CkQh04Y2zUgUiZgEFHqZ/b/U49cy\nCSjMqGoJpeKpSrslB2/f/474U7UkqyMg+yS1ihYNvOlPRETBpqIqiPRnmap2Q6y0QeHMarahNG9L\nxF4XSicAqWiFBkA0AaiLin3OB1b0xWQywev1dv/Z7/cjJqazDUViYiIWLVqEefPm4YknnkBWVhYG\nDBiAgoICmEwmFBUVYdeuXcjKykJ0dDQMhv+93eX1etGvX7+gbw8RERGRnsXHxId6CkREFEJ++DUj\nBd9H9f/T49cyCSjMqFhAspptWGD/gZKbqkwACm9ub133/yS1++RbNETqQg8REV0/VLQKlW435PI4\nUVQxlYlAFNZ4XShLL9/ZpM9LDncVpmyXbYXWhedQNUaNGoUPPvgAAHDo0CEMHTq0+2cdHR04evQo\nSktLUVJSgtraWowaNQo1NTUYPXo0Nm/ejNzcXAwaNAgAcOutt+LgwYMAgA8++AC333578DeIiIiI\nSMdidVKhlYiI6Hr1pQFDP/8ffQYmAYUhFW27Htk1m09B6oCKak3S7U4AIDZaH18A9HJzXi/zJCKi\n4FORDKEimZfXmbJUXRuoaC3HdnUkQVWCYkC6NzLUtTImYMKECYiLi8P06dOxfPlyLFq0CDt37kRZ\nWVl3RaD8/HwUFxejuLgYSUlJyMjIwPr161FYWIiSkhIsXLgQAPDDH/4Qq1evRmFhIdrb2zFx4sRQ\nbhoRERGR7vgCvlBPgShkYhGrGSn4ohGtGSn4jAajZqTgS4jt+e8+RnAeFKYsxjSkmzNgMaaFeir0\nT3TdTJauBKWi3YmKFg0uj1O80oGK36c0vcyTiIjoszjcVbh/ay525FfqpuKIJIe7SnS7u5IhpK+3\nKmsrMKtyBjbkbhZr5aQiJsmrrK3Qxf7p8MsmKNotOdg+5V0l34dWjFnJa3cFDAYDli5dqvm7IUOG\ndP//uXPnYu7cuZqfJyUlYd26dX8X66abbsIbb7yhZJ5EREREkWBW1sOhngJRyEQhSjNS8PU19IXX\n70VfQ99QTyVitfhbNCPpCysBRQCr2YbySdsi+ialHp7SVNEKDlCz7SrmKP00rV5+n6rmSURE9Fmk\nK/o1NNejI9CBhuZ60bgqrmFUtBvK356ni0pI2SkjMLjfTchOGRHWMVVRcTyp2O/SMbsStfRQsSlG\nQbsBFYmJLo8TT+z7vi6+YxIRERER9dTeM7tCPQWikGlDm2ak4PMH/JqRgi+AgGak4Gtu9/b4tUwC\nCkO8mShLT+XaVSSsqCirL01VIowekpUANa1eiIg+j14WxEmW1WzDC+NWiX72pCSkIgYxSElIFYvp\n8jiRvz1P9Dh1eZyYtnOKaEyLMQ0DE9JEK25azTYsumOxkuuirZMrROOqiKmCimtih7sKU7bfK3re\nU5FUpipRS8X1sIpqo6qoaKv4+h9fF49JRERERNRTl1svhXoKRCET82kjnRg21KEIlmBI0IwUfEP6\n39zj1zIJqJekb36qSDLQUxKMCnoq1x6p+wjQRyIMq/YQ0fVkyjbZBAuHuwpTtskuiJM8FRUsLMY0\nDO5/k2giTE1DNU5d+QtqGqrFYrq9dfjLpVq4vXViMQEgIVb2i7DDXYXv7J6jm/eS9O8TUHNN3NLR\nLB4zEJB9EkpVUpl0opbL4xT/DAH08X2gi3RFtU1HNuBbO78lGpOIiIiIqDdSEgaGegpEITMwfqBm\npOC70WTVjBR8hiiDZqTgO3z+ox6/Vtle8/v9WLJkCQoLC1FcXIzTp09rfr5t2zZMmjQJRUVF2LJl\nCwCgra0NCxYswLRp0zBnzhycOnUKAHDs2DFMmzYNM2bMwKJFi+D3d5b+euaZZ/DAAw+guLgYxcXF\n8Hg8qjbnH9JLCyOVSTB6SFrRS7l2VceTiidq9bIopYKeFicoMoX7uY7CxxnPKdEECwBgm2x9kK5g\noar1rHTf9eONx9CBDhxvPCYWU8W1lt2Sg5e/sVa8jZGKSkgqquGomKfbW4c67yeiCUt2Sw62T3lX\nfD9JJ5UB8tevNQ3VSj5D9HINo+J9PzNrFl6b9JpYPCIiIiKi3rp49UKop0AUMn1j4jUjUSTqF9dP\nM1LwffmG23r8WmVJQLt370ZbWxvKysqwYMECrFixovtnFy5cwKpVq7Bx40a88cYb2LlzJ5xOJ8rL\ny5GQkIDy8nIsXrwYy5YtAwCsWbMGjz76KDZv3oy2tjbs27cPAHDkyBG89tpr2LhxIzZu3Aiz2axq\nc/4hPbUwWvjbJ3VRtSiS6eV4crir8MCO+8QTgXgcEfWeqvMy35/Xp/W5pcjNzBOLZ7fkYNvkX4sv\niAM8BvVA+nojNzNP/Bgdlz4eNtMgjEsfLxZTBZfHiecdz4kf925vHc5cOS2aCGMxpiHNeKNo5RoV\n81R1fpKOp5eWWCren3r7bqliHz086mHxmEREREREPTU8OSvUU4hYbEVF9L/nIJ6LQic5/gbNSMF3\n8tKfe/xaZUlADocDY8aMAQCMHDkShw8f7v6Z0+nELbfcgv79+8NgMCA7OxvV1dU4ceIExo4dCwDI\nzMzEyZMnAQDDhw/HpUuXEAgE4PV6ERMTA7/fj9OnT2PJkiWYPn06/uu//kvVpvxT4X6DFlCbXKKH\n1kh6uZkOqDmepG+k2y05ePv+d0QXPfR0018Pc6TIpeK8rKf3J30xkou3XVQlABVVTBU/BitrK0Tj\nqaJintJtbFTJThkhGs9qtmFn/m/Ez5HSx6eqKp4WYxoGmTNEE3YAID5GtnKNqnmqOD+poIfvLID8\nZ4hevlsSEREREUWK3zr3hXoKEcsca9aMFHzGWKNmpOC7ePWiZqTgM8clakYKvlEDb+/xa5UlATU1\nNcFkMnX/OTo6Gh0dHQCAjIwMnDhxAufPn0dLSwsOHDiA5uZmDB8+HHv37kUgEMChQ4dw7tw5+Hw+\nDB48GM8++yzuueceNDY24s4770RzczO++c1v4mc/+xlee+01lJaW4vjx46o2J6hULLSqupmql5u0\nepmnNFWL99KLMnq56c8qK6QHkZrwSdc36fZVlbUVeLCySDzBRrpKnop56iU5WtVnbrhvN6Cula3V\nbMOW+2Xbtqk4nlTMk/SB+5yIiIiIKHx8+QbZB3Po2iV8+rBNgvBDN3TtbrfcqRkp+NZM+CViEYc1\nE34Z6qlErFuShmlGCr7jF471+LXKkoBMJhO8Xm/3n/1+P2JiOkvXJSYmYtGiRZg3bx6eeOIJZGVl\nYcCAASgoKIDJZEJRURF27dqFrKwsREdH49lnn8WmTZtQWVmJKVOmYMWKFYiPj8esWbMQHx8Pk8mE\nr371q9dFEhArLkQ2FYs9KqqCqKjIoIcqSHqrssLzCEnhohxdb7JTRiCj32DRSjMOdxWmbL9XNBFI\nxTwBfbyn9ZKAqCqpSjrxrYuK36deYhIREREREdG1O3HxT6GeQsRiC57QG5f+fzQjBV9NQzXa0Yaa\nhupQTyVi2cyDNCMF37Ck4T1+rbIkoFGjRuGDDz4AABw6dAhDhw7t/llHRweOHj2K0tJSlJSUoLa2\nFqNGjUJNTQ1Gjx6NzZs3Izc3F4MGdR5UiYmJ3VWFUlNTceXKFZw6dQozZsyAz+dDe3s7/vjHPyIr\nS/99AfWy4NFFL0kGepinnhLAVC1MSdJLBQFV73k9HU9ERJ9Hun2V1WzD1skV8tdbAdlwyuapE3rZ\nbhXz1EvLNiIiIiIiIro+DeqXEeopRKwpN/+rZiSKXFGhngBRSL13elePX6ssCWjChAmIi4vD9OnT\nsXz5cixatAg7d+5EWVlZd0Wg/Px8FBcXo7i4GElJScjIyMD69etRWFiIkpISLFy4EADwzDPP4PHH\nH8c3v/lNlJaW4vHHH8eQIUMwefJkTJs2DcXFxZg8eTJuvvlmVZsTVHpZ8NBLkoFe5mk127BizEpd\nVJnRw8KUnhLqVD1Br5ftJ1nS7YiIQk1VpRXpeHZLDrZN+TXslhzRuDyPhz/p865eWrYREREREV2P\nwv0eMlGw3Js5KdRTiFiXWy9rRgq+3Mw8bMjdjNzMvFBPJWKlJKQiLioWKQmpoZ5KxMofWoDU+IHI\nH1oQ6qlErO+M/F6PXxsVCASEn1mmSHL28lkMSgz/MmB6mOfZy2eRX5aPrYVbReeqYtv18PskikQH\nnQcxfsN47Jm1B3fa2K+YiEg1nneJiIiIiK4fqu7PEulN3LI4/Pah3/J7bgj96L0f4dmvPxvqaRCF\n1EHnQZ6HQujs5bPIK81DRVEFr4tCaMfxHbh/2P1f+HVMAiIiIiIiIiIiIiIiIiIiIiIi0jll7cCI\niIiIiIiIiIiIiIiIiIiIiCg4mARERERERERERERERERERERERKRzTAIiIiIiIiIiIiIiIiIiIiIi\nItI5JgEREREREREREREREREREREREekck4CIiIiIiIiIiIiIiIiIiIiIiHSOSUBERERERERERERE\nRERERERERDoXE+oJBIPf78dPfvIT/OlPf0JcXByeeeYZZGRkhHpa9Dfy8/NhMpkAADabDcuXLw/x\njOivVVdXY+XKldi4cSNOnz6NhQsXIioqCjfffDN+/OMfw2BgTmGo/fU+Onr0KL7zne9g8ODBAIAZ\nM2bg3nvvDe0EI1x7ezueeuopuFwutLW14Xvf+x6+9KUv8b1EQcfrIn3gdVF443VR+ON1UXjjdRGF\nm78+Z1Bw/aPzwde//vVQTyui+Hw+LF68GH/5y18QFRWF//iP/8DQoUNDPa2I1NjYiAceeABr167F\nkCFDQj2diMPvYKH38ssvY8+ePWhvb8eMGTMwderUUE8pIvG6KHR4XRQeeG0UHnhdlQuqzgAAIABJ\nREFUFHq8Ngq93lwbRUQS0O7du9HW1oaysjIcOnQIK1aswEsvvRTqadFfaW1tRSAQ4IVlmHr11Vex\nY8cOxMfHAwCWL1+Oxx57DHfeeSeWLFmC9957DxMmTAjxLCPb3+6jI0eO4KGHHsKcOXNCPDPqsmPH\nDvTv3x8/+9nPcOnSJUyZMgXDhg3je4mCjtdF4Y/XReGN10Xhj9dF4Y/XRRRO/vacQcH1j84HXOwK\nrr179wIA3nzzTRw8eBAvvvgivx+EQHt7O5YsWYK+ffuGeioRid/BQu/gwYP4n//5H2zevBktLS1Y\nu3ZtqKcUkXhdFFq8LgoPvDYKPV4XhR6vjUKvt9dGEfFYncPhwJgxYwAAI0eOxOHDh0M8I/pbx48f\nR0tLC+bMmYNZs2bh0KFDoZ4S/ZX09HSsXr26+89HjhzBHXfcAQAYO3Ys9u/fH6qp0af+dh8dPnwY\n+/btw8yZM/HUU0+hqakphLMjAMjNzcX8+fMBAIFAANHR0XwvUUjwuij88boovPG6KPzxuij88bqI\nwsnfnjMouP7R+YCC6xvf+AaWLVsGAPjkk0/Qr1+/EM8oMv3nf/4npk+fjtTU1FBPJSLxO1jo/e53\nv8PQoUPx6KOP4rvf/S7GjRsX6ilFJF4XhRavi8IDr41Cj9dFocdro9Dr7bVRRCQBNTU1dZerAoDo\n6Gh0/P/s3XlclWX+//H3gSPK5hpZLvgVUnMZU0jRTE0m3BJTURCMbDKd9nEZBRfAHBUro3LcsnFp\nEANScy2dUotGy0EdcnTCemhSkpm7LMXiuX9/9Jszo4lKB7k58Hr+xTn3fV3nc12XHD/A51xXaamJ\nEeFqderU0ZgxY7R8+XK98MIL+uMf/8gaVSH9+vWT1frfjcMMw5DFYpEkeXp6Ki8vz6zQ8P9dvUYd\nO3bUlClTlJKSoubNm2vRokUmRgfp5+8VLy8v5efn6/nnn9f48eP5XoIpyIuqPvKiqo28qOojL6r6\nyItQlVz9noHKda33A1Q+q9WqmJgY/elPf1JoaKjZ4dQ469evV8OGDe0f1kDl42cw850/f16HDh3S\n66+/bl8DwzDMDqvGIS8yF3lR1UFuZB7yoqqB3Mh8juZGNaIIyMvLSwUFBfbHNpuNRKaKadmypQYP\nHiyLxaKWLVuqfv36On36tNlhoQwuLv996ygoKKASugoKCQlRhw4d7F//+9//NjkiSNLJkyf16KOP\n6uGHH1ZoaCjfSzAFeVHVR17kXHgvr/rIi6om8iIA/3H1+wHM8eKLL2r79u2Ki4tTYWGh2eHUKOvW\nrdOePXsUHR2tL774QjExMeT/lYyfwcxXv3593X///XJzc5Ofn59q166tc+fOmR0WUOnIi6oOciNz\nkBdVDeRG5nM0N6oRRUABAQHKyMiQJGVlZal169YmR4SrrV27VvPmzZMknTp1Svn5+fLx8TE5KpSl\nXbt22rt3ryQpIyND9957r8kR4WpjxozRwYMHJUmffvqp2rdvb3JEOHPmjB5//HFNnjxZw4cPl8T3\nEsxBXlT1kRc5F97Lqz7yoqqHvAjAf1zr/QCVa8OGDXrjjTckSe7u7rJYLFcUZuLWS0lJ0erVq5Wc\nnKy2bdvqxRdfJP+vZPwMZr7AwEB98sknMgxDp06d0o8//qj69eubHRZQqciLqgZyI3ORF1UN5Ebm\nczQ3qhEf+w4JCdHu3bs1cuRIGYahuXPnmh0SrjJ8+HBNnTpVkZGRslgsmjt3LrsSVGExMTGKi4tT\nUlKS/Pz81K9fP7NDwlVmzpypP/3pT6pVq5Zuu+02+xm2MM/SpUt16dIlLV68WIsXL5YkTZ8+XbNn\nz+Z7CZWKvKjqIy9yLuRFVR95UdVDXgTgP671fvDmm2+qTp06JkdWc/Tt21dTp07VqFGjVFpaqmnT\npjH/qHH4Gcx8ffr0UWZmpoYPHy7DMBQfHy9XV1ezwwIqFXlR1UBuBJAbVQWO5kYWg4NVAQAAAAAA\nAAAAAAAAAKfG/mUAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAA\nTo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgABUCXv37lV0dLTZYQAAAFQJ5EYA\nAAA3r02bNje8Jzg4WCdOnKiEaAAAAMxDXgSAIiAAAAAAAAAAAAAAAADAyVEEBKDKOHfunMaOHat+\n/frpySefVHFxsdatW6dBgwYpNDRUsbGxKigokHRlJfP69esVGxsr6efq5fHjx6tfv346e/asKeMA\nAACoCORGAACgugoNDdXRo0clSZMmTVJCQoIkKSsrS2PHjtWyZcs0dOhQDR48WC+99JIMw5Akbdiw\nQUOHDtXDDz+sadOmqaio6Ip+Dxw4oH79+iknJ0cXLlzQ2LFjFRoaqvHjx9vvzc/P1/PPP6+IiAj1\n6dNHkydPlmEYmjx5stLS0ux9RUdH6/PPP6+M6QAAADUYeRGAikYREIAq47vvvlN8fLzef/99nTlz\nRm+//baWLl2q5ORkbd68We7u7lq4cOEN++nVq5e2b9+uRo0aVULUAAAAtwa5EQAAqK569+6tTz/9\nVJL05Zdf6sCBA5KkjIwMPfDAAzp06JDWrl2rDRs26NSpU9q0aZO++uorpaenKzU1VRs3blSjRo20\nfPlye59ffPGFpk+friVLlqhFixZasGCB2rVrp82bN2vUqFE6c+aMJOmjjz5S27ZtlZaWpu3btysr\nK0uHDx9WWFiYNm3aJEnKzc3VuXPndM8991TyzAAAgJqGvAhARbOaHQAA/Mfdd9+t5s2bS5L8/f2V\nl5enPn36qEGDBpKkiIgITZ069Yb9kIgAAIDqgNwIAABUVw888IBWrlypbt266a677tKxY8d09uxZ\nZWRkqFWrVjp48KCGDRsmSfrpp5/UpEkT5eXlKScnR+Hh4ZKkkpIStWvXzt7nE088of79+8vPz0+S\n9I9//EOvvPKKJKlLly72vGrQoEE6ePCgVq1apWPHjunChQsqLCxUUFCQ4uLidOLECW3cuFEPP/xw\nZU4JAACoociLAFQ0ioAAVBlW63/fkiwWi+rWratLly7ZnzMMQ6WlpVc8tlgsVzwnSbVr1771wQIA\nANxi5EYAAKC66ty5s6ZMmaI9e/aoa9euatSokbZt26aSkhJ5e3tr9OjR+t3vfidJunTpklxdXbV2\n7VoNGDBAM2bMkCQVFBTo8uXL9j7nz5+vKVOmaMSIEbr77rtlsVjsx2VIkqurqyQpOTlZ27dvV3h4\nuO677z59+eWX9jxqyJAh2rp1q7Zt26a//OUvlTgjAACgpiIvAlDROA4MQJW2c+dOXbhwQZKUnp6u\noKAgSVKDBg301VdfyTAM7dy508wQAQAAKg25EQAAqA5cXV11zz33KDk5WV27dlW3bt20dOlS9e7d\nW926ddPGjRtVUFCg0tJSPfPMM9q+fbuCgoL0wQcf6OzZszIMQzNnztRbb71l77N79+6aNGmSZsyY\nIZvNpu7du2vjxo2SpIMHD+qbb76RJO3evVsREREaPHiwLBaLsrOzZbPZJEnDhg1Tamqq7rjjDjVu\n3LjyJwYAANQ45EUAKho7AQGosry8vPT73/9e0dHRKikpUfv27fXCCy9IkiZNmqQnn3xSt912mwID\nA3X+/HmTowUAALi1yI0AAEB10rt3b2VmZsrf318+Pj46e/asHnjgAQUEBCg7O1vh4eG6fPmyevbs\nqaFDh8pisejZZ5/V6NGjZbPZ1LZtW40bN+6KPocMGaJ169YpOTlZzz//vGJjY/XQQw/Jz8/PfuzF\n6NGjNXPmTK1YsUKenp7q3LmzTpw4IUm68847dccdd2jo0KGVPh8AAKDmIi8CUJEsxv/u/QUAAAAA\nAAAAQA1jGIZ++OEHRUdHa8uWLXJzczM7JAAAAFOQFwHOjePAAAAAAAAAAAA12vbt2/Xwww9r4sSJ\n/KELAADUaORFgHNjJyAAAAAAAAAAAAAAAADAybETEAAAAAAAAAAAAAAAAODkKAICAAAAAAAAAAAA\nAAAAnBxFQAAAAABqjBMnTqhz5843vO9f//qXgoODKyGiqmHv3r0aNGiQ2WFUuOXLlys2NtbsMAAA\nAAAAAACgUlAEBAAAAAAAAAAAAAAAADg5q9kBAAAAAMDVhgwZoilTpui+++7T1q1bFRsbq8zMTNWp\nU0czZsxQ27ZtNWLECM2fP1+ZmZm6fPmy2rVrpxkzZsjLy0unTp3SrFmzdPLkSZWUlOihhx7Sk08+\necVrHD16VGPHjtXUqVMVEhKiNWvW6K233pKXl5dat25tv+/MmTOKj4/X2bNndfr0aTVt2lSvvfaa\njh8/rokTJ2rXrl1ycXHRjz/+qODgYG3ZskWNGjWSJNlsNvXp00cLFy7Ub37zG0nShAkT1KVLFwUF\nBWn69OkqLi6WYRgaPny4Ro0a9Yu5WLp0qT788EMVFRXpxx9/VExMjH7729+W2e/QoUOVkJCgzz//\nXN7e3rrrrrskSfPmzbvunBcWFur5559XTk6O6tatq1mzZqlly5bKy8vTCy+8oOzsbFksFvXs2VMT\nJ06U1Vr2j5OnT59WTEyMzp8/L0nq3bu3xo8fr/Xr12vr1q2y2Ww6deqUGjdurHnz5qlx48aKjo5W\nvXr1dOzYMUVGRmrIkCGaM2eOvvzyS5WUlKh79+6aMmWKrFar1q5dq7S0NJWUlOjixYsaO3asoqKi\nVFJSotmzZ2vPnj1q1KiRGjVqJG9v7xv9cwMAAAAAAACAaoGdgAAAAABUOQ8++KA++eQTSdInn3yi\nevXqad++fbLZbProo4/Ut29fLVu2TK6urlq/fr02bdqk22+/XfPnz5ckTZ48WWFhYVq/fr3Wrl2r\nPXv26L333rP3/+WXX+rJJ5/UnDlzFBISoi+++EILFy7U6tWrtW7dOtWqVct+79atW9WpUyelpaVp\nx44dqlOnjjZu3KjAwEDVr1/fHufWrVvVvXt3ewGQJLm4uCgsLEzvvvuuJOnixYvas2ePQkNDtXz5\ncgUHB2v9+vVatmyZfXz/Kzc3V3v27NHq1au1efNmTZgwQQsWLLhuv4sXL9bly5f1/vvva9WqVfr3\nv/99U3N+8uRJPfbYY9q4caMGDRqkKVOmSJJmz56t+vXra/PmzVq3bp2OHDmiFStWXLev9PR0NWvW\nTO+++65SUlKUk5OjvLw8SdKBAwcUHx+v9957T+3bt9ecOXPs7erWrav33ntP0dHRmjt3rtq3b6/1\n69drw4YNOn/+vFauXKmCggK98847WrZsmTZs2KBXX31VL7/8siRpzZo1On78uLZu3aoVK1bo5MmT\nNzV2AAAAAAAAAKgO2AkIAAAAQJUTEhKiiRMnKiYmRvv27dNjjz2m3bt3y9PTU76+vvLx8dFHH32k\nvLw87dmzR5JUUlKiRo0aqbCwUJmZmbp48aJef/11ST/vcpOdna2OHTuquLhYjz76qLp27aru3btL\nkj799FP16NFDPj4+kqSIiAj9/e9/lySNHj1a+/bt08qVK3X8+HF99dVXuueeeyRJo0aNUnp6unr3\n7q20tDR74cz/CgsL0/DhwxUbG6stW7aoT58+8vb2VkhIiGJiYnTw4EF1795dM2bMkIvLlZ/TaNq0\nqV588UVt3rxZOTk5+vzzz1VQUHDdfj/++GNNnTpVLi4u8vLy0tChQ3XkyJEbznmbNm0UEBAgSRo6\ndKhmzpypvLw8ZWRk6O2335bFYpGbm5tGjhypt956S+PGjSuzr549e2rcuHE6efKk7rvvPk2aNMm+\nI0+PHj3UsmVLSVJ4eLgefvhhe7t7773X/vVHH32kf/3rX1q7dq0k6aeffpIkeXp6aunSpfr44491\n/PhxZWdnq7Cw0L6OgwYNkpubm9zc3BQaGnpTYwcAAAAAAACA6oAiIAAAAABVTps2bVRSUqIdO3ao\nRYsW6tOnjyZMmCCr1aq+fftK+vmorWnTpql3796SpIKCAhUVFclms8kwDKWmpsrd3V2SdO7cOdWu\nXdt+PNWiRYs0ZcoU/e1vf1Pfvn1lsVhkGIb99V1dXe1fv/zyyzp48KDCwsIUFBSk0tJS+72hoaFK\nSkrSZ599psLCQnXp0uUXY2natKnatWunjz76SOvXr9e0adMkSX369NH27du1Z88effrpp1q0aJFS\nU1Pl6+trb3v48GE9/fTTeuyxx9SjRw916dJFL7zwwnX7tVqtV4zl6sKislx9n8VikdVq/cXuRDab\nTaWlpdftq2PHjtqxY4c+/fRTffbZZxoxYoQWLVok6cq5tdlsVzz28PC44trrr78uf39/SdKlS5dk\nsVj0/fffKyIiQuHh4QoMDFT//v21a9eua8bxv30DAAAAAAAAQHXHcWAAAAAAqqQHH3xQ8+fPV48e\nPeTv76/8/Hxt3rxZ/fr1kyTdf//9SklJUXFxsWw2m+Li4pSUlCQvLy916tRJK1eulPRz8UhkZKR2\n7NghSXJzc1NgYKDmzp2rhIQEnT59Wvfdd592796t77//XpLsx2xJ0t///neNHj1aQ4YMUaNGjbRn\nzx5dvnxZkuTu7q7Bgwdr2rRpGjlyZJljCQ8P15tvvqmffvpJgYGBkqRJkybpvffe00MPPaSEhAR5\neXn94viqzMxMdejQQb/73e/UtWtX7dixw/7aZfXbu3dvrVu3TjabTT/++KO2bNkii8Vyw/k+cuSI\nvvjiC0lSWlqaAgMD5e7ubp9nwzBUXFys9PR03Xfffdfta/78+Vq8eLEefPBBTZ8+XXfddZeOHz8u\nSfrss8906tQpSVJqaqr69OlzzT7uv/9+rVq1yv66Tz31lFavXq1Dhw6pYcOGevrpp9WzZ097AdDl\ny5fVs2dPbdiwQUVFRSoqKrriCDgAAAAAAAAAqO4oAgIAAABQJYWEhOjYsWP2gpP77rtPPj4+uvPO\nOyVJTz/9tJo2baqhQ4dq4MCBMgxDsbGxkn4uQvn8888VGhqqESNGaNCgQRo8ePAV/QcFBemhhx7S\ntGnT1KZNG02ePFmjR4/WsGHDVFRUZL/vmWee0UsvvaRhw4bp2WefVUBAgL755hv79WHDhuncuXMa\nMmRImWMJDg5Wbm6uhg8fbn/u6aef1ubNmzV48GCFh4frwQcfVNeuXa9oN2jQIJ0/f14DBw7UsGHD\n5OHhoYsXLyo/P7/Mfn//+9+rdu3aCg0N1e9+9zs1atRIderUueF8+/n5aeHChRo8eLB27typefPm\nSZJmzJihc+fOKTQ0VKGhoWrZsqWefPLJ6/Y1evRoZWdna9CgQQoLC1OzZs00aNAgSVLjxo01efJk\nDRgwQLm5ufYdjK42ffp0FRYW2l+3devWeuKJJ9SjRw81btxY/fv315AhQ3Ty5Ek1bNhQOTk5Gjly\npDp06KBBgwbpkUceUbNmzW44bgAAAAAAAACoLizG/+4TDwAAAAC4aYZh6M0331Rubq79mC6zbd26\nVV5eXurdu7dsNpuee+459ejRQ1FRUWaHpvXr12v79u164403zA4FAAAAAAAAAKodq9kBAAAAAICz\n+u1vf6uGDRtqyZIlZodi16pVK8XHxyspKUklJSUKCgrSiBEjNH78eH399dfXbPPqq6/Kz8+vXK8T\nFRWlgoKCa15LSUmRl5dXuWMHAAAAAAAAAPx67AQEAAAAAAAAAAAAAAAAODkXswMAAAAAAAAAyuvz\nzz9XdHT0L57fuXOnwsLCFBERofT0dBMiAwAAqFzkRQAA4D84DgwAAAAAAABO5c0339SmTZvk7u5+\nxfMlJSVKTEzU2rVr5e7ursjISAUHB+u2224zKVIAAIBbi7wIAAD8rxpVBHT6dJ7ZIdxQgwYeOn++\n0OwwnBbz5zjm0HHMoeOYQ8dV9Tn08fE2O4Qar9PiAK3qn6Km3s3MDgUAgBqP3Kj8fH199ec//1lT\npky54vmjR4/K19dX9erVkyQFBgYqMzNTAwYMuG5/hmHIYrHcsngBAABuFfIiAADwv2pUEZAzsFpd\nzQ7BqTF/jmMOHcccOo45dBxziBuhAAgAADizfv366cSJE794Pj8/X97e/y2q8vT0VH5+/g37s1gs\nTvHhserMx8ebNTAZa2A+1sB8rIH5KI4uP/Ki6of3IvOxBuZjDczHGpjv1+ZFLhUcBwAAAJwABUAA\nAKA68vLyUkFBgf1xQUHBFX/8AgAAqCnIiwAAqJkoAgIAAAAAAEC14O/vr5ycHF24cEHFxcXat2+f\nOnfubHZYAAAAlY68CACAmonjwAAAAAAAAODUNm/erMLCQkVERCg2NlZjxoyRYRgKCwtT48aNzQ4P\nAACg0pAXAQBQs1EEBAAAAAAAAKfTrFkzpaenS5JCQ0PtzwcHBys4ONissAAAACodeREAAPgPjgMD\nAAAAAAAAAAAAAAAAnBxFQAAAAAAAAAAAAAAAAICTowgIAAAAAAAAAAAAAAAAcHJWswMAAKAiPT5v\nZ4X2tyKWM7MBAAAAAAAAAAAAVH3sBAQAQBWzfPkb2rBhrdlhlMtnn+3RnDkzzQ4DAAAAAAAAAAAA\nqLEoAgIAAAAAAAAAAAAAAACcnMPHgdlsNs2cOVNHjhyRm5ubZs+erRYtWtiv79y5U4sWLZLValVY\nWJjCw8PLbJOTk6PY2FhZLBa1atVKCQkJcnFxUXp6ulJTU2W1WvXUU0+pT58+unz5shITE3Xo0CEV\nFxfrueeeU58+fRwdTrlU9JEztwLH2ADArVVQkK9582YrPz9PZ86c1m9/21cffLBNq1e/I4vFoqSk\nFxUY2FU+Pj5KSnpJHh4eatCggdzcamv69Jll9puR8ZF27vxQP/30k8aP/6Pateugv/3tfaWnv61a\ntWqpeXNfTZkyXVbrtf8rT0lJ0TvvrJOLi4vatm2n8eMna86cmTIMQz/8cEo//lioGTNmyc3NTTEx\nE1S3bj11795D3br10GuvvSzDMFSvXj1NnZogd3d3vfzyXP3wwymdPXtGPXr00rhxT+v48a+VmDhL\ndeq4y929jry9696iWQYAAAAAAAAAAABwIw7vBPThhx+quLhYaWlpmjRpkubNm2e/VlJSosTERK1Y\nsULJyclKS0vTmTNnymyTmJio8ePHa82aNTIMQzt27NDp06eVnJys1NRULV++XElJSSouLtbGjRtV\nWlqq1NRULVmyRDk5OY4OBQCAcjtx4oQefLCvXn11kV59dZG2bdsqf/9W+vzzf6q4uFgHDuxXjx49\nNX9+oqZNS9CCBUvVpEmzG/Z7551NtGDBUsXGxmn+/ERdvHhBy5e/oQULlmjJkuXy8vLSxo3rymy/\nfv16TZw4RW+8sVItWrRUaWmpJKlp02ZasGCpHn98nBYvfl2SdO7cWb366iKNGjVaL744WxMnxmjh\nwmXq3r2HUlLe0g8/nFL79r9RUtJCLVv2lv11Fy9+XU888Xu9/vpidejQsQJmEwAAAAAAAAAAAMCv\n5fBOQPv371fPnj0lSZ06ddKhQ4fs144ePSpfX1/Vq1dPkhQYGKjMzExlZWVds83hw4fVtWtXSVKv\nXr20e/duubi4qHPnznJzc5Obm5t8fX2VnZ2tv//972rVqpXGjRsnwzAUFxfn6FAAACi3hg0bKj19\njT7+eJc8PDxVWlqq0NAhev/9LTp79qzuv7+XrFarzpw5Iz8/f0nSPfd01o4df7tuv/fcEyBJ8vPz\n19mzZ/Xdd7lq2dJPHh6e9uuZmZ+V2T4xMVGLF7+hkydfV/v2v7E/HxDQRZLUocM9WrAgSdLPBUe1\natWSJOXkfK1XXvm5OPfy5VI1a+arunXr6osvDuvAgX3y9PRUcXGJJOmbb75R27YdJEm/+U0n5eQc\nL9fcAQAAAAAAAAAAAKg4DhcB5efny8vLy/7Y1dVVpaWlslqtys/Pl7e3t/2ap6en8vPzy2xjGIYs\nFov93ry8vDL7OH/+vL755hu98cYbyszM1NSpU5WSknLdWBs08JDV6urokJ2Kj4/3jW+qZmrimCsa\nc+g45tBxVWUObxTHX/6yUN26dVFUVJQ+++wz/eMfezRgwG/15puLdPHiOSUkJMjHx1tNmtypixdP\n6a677tLx41+qTp1aZfbt6Vlbx49/KR+fETpy5IiaNWuqDh1a69tvc+Tp6SoPDw8dOfIvtW3busw+\n3njjdb344lzVrl1bY8aM0bfffqU6dWopN/eYHnywpw4f3q+7726jhg095eb231j8/Pz06quvqEmT\nJtq/f79Onz6tjIwPdPvtjTR58mTl5ORo06Z3ddttXmrTppW+/fYr9erVSydOHL3umAAAAAAAAAAA\nAADcWg4XAXl5eamgoMD+2GazyWq1XvNaQUGBvL29y2zj4uJyxb1169Yts4/69evrgQcekMViUdeu\nXXX8+PEbxnr+fKEjQ3VKp0/nmR1CpfLx8a5xY65ozKHjmEPHOTKHK2KDKzSWG8URENBNr776kjZu\n3Pz/C1wt+u67c7r//ge0b98/5O7eQKdP5+kPf5isyZNj5O7uoVq1rPLxub3MvgsKinTs2HFFRo5S\nSUmxJk6M1eXLtTR69FhFRY2SxeKiZs2aa/To35fZR5s2bRQePlIeHh7y8fFRkyZ++umnEn344S5t\n2/Y32Ww2TZuWoHPnClRSctnezx/+MEUTJkzS5cuXZbFYFBsbpwYN7lBq6gxlZu5XrVq11KxZc33x\nxTGNG/ecZs9O0NKly1S/fn25udW+6XWjWAgAAAAAAAAAAACoWA4XAQUEBGjXrl0aOHCgsrKy1Lp1\na/s1f39/5eTk6MKFC/Lw8NC+ffs0ZswYWSyWa7Zp166d9u7dq6CgIGVkZKhbt27q2LGjXnvtNRUV\nFam4uFhHjx5V69atFRgYqI8//lj9+vVTdna27rzzTkeHAgBAuQUE3Kvk5PRfPP/oo4/r0Ucftz/+\n978P68UXX1WDBg20bNli+/Fb1zJmzO+v+Xzfvv3Vt2//m4prxIgReuCBX97cMQPcAAAgAElEQVQb\nHh6pbt3uu+K5ZctW2b++++62Wrhw2S/avfXW29d8nSVLlt9UPAAAAAAAAAAAAABuLYeLgEJCQrR7\n926NHDlShmFo7ty52rx5swoLCxUREaHY2FiNGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+en\nfv36ydXVVdHR0YqKipJhGJowYYJq166t8PBwJSQkKDw8XIZh6IUXXnB4MgAAuFUaNmyoiROfkbu7\nh7y8vDR9+kxNmzZZly5dvOI+Ly8vzZuXdFN9fv/995o9O/4Xz3fuHKjY2D9WSNwAAAAAAAAAAAAA\nnIPFMAzD7CAqS0Ufz/P4vJ0V2t+tUNHH4lR1HMPkOObQccyh45hDx1X1OeQ4MPNlHftCTb2bmR0G\nAAAQuVFVUZXz55qgqv8MUxOwBuZjDczHGpiPvKhq4PvAXLwXmY81MB9rYD7WwHy/Ni9yqeA4AAAA\n4AQe2zZKuXknzA4DAAAAAAAAAAAAFYQiIAAAgBpoVf8UdgICAAAAAAAAAACoRigCAgAAqIEoAAIA\nAAAAAAAAAKheKAICAACogTgKDAAAAAAAAAAAoHqhCAgAAKAGemzbKAqBAAAAAAAAAAAAqhGKgAAA\nAGqgVf1TOBIMAAAAAAAAAACgGqEICAAAoAaiAAgAAAAAAAAAAKB6oQgIAAAAAAAAAAAAAAAAcHIU\nAQEAAAAAAAAAAAAAAABOjiIgAAAAAAAAAAAAAAAAwMlRBAQAAAAAAAAAAAAAAAA4OYqAAAAAAAAA\nAAAAAAAAACdHERAAAAAAAAAAAAAAAADg5CgCAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACA\nk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAAAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAA\nAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAnRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAA\nAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAAAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAA\nAIBbzGazKT4+XhEREYqOjlZOTs4V13fu3KmwsDBFREQoPT39um1ycnIUGRmpqKgoJSQkyGazXfE6\nTzzxhN5+++3KGxwAAEAlu1FutWnTJg0dOlRhYWFas2aNSVECAADceuRFAADgahQBAQAA3GIffvih\niouLlZaWpkmTJmnevHn2ayUlJUpMTNSKFSuUnJystLQ0nTlzpsw2iYmJGj9+vNasWSPDMLRjxw57\nX6+99pouXbpU6eMDAACoTNfLrSTppZde0sqVK/X2229r5cqVunjxokmRAgAA3FrkRQAA4GoUAQEA\nANxi+/fvV8+ePSVJnTp10qFDh+zXjh49Kl9fX9WrV09ubm4KDAxUZmZmmW0OHz6srl27SpJ69eql\nPXv2SJK2bdsmi8VibwMAAFBdXS+3kqQ2bdooLy9PxcXFMgxDFovFjDABAABuOfIiAABwNavZAQAA\nAFR3+fn58vLysj92dXVVaWmprFar8vPz5e3tbb/m6emp/Pz8Mtv87y9sPD09lZeXpy+//FJbtmzR\nggULtGjRosobGAAAgAmul1tJUqtWrRQWFiZ3d3eFhISobt26N9Wvj4/3jW/CLcUamI81MB9rYD7W\nAM6EvKj6Yg3MxxqYjzUwH2vgnBwuArLZbJo5c6aOHDkiNzc3zZ49Wy1atLBf37lzpxYtWiSr1aqw\nsDCFh4eX2SYnJ0exsbGyWCxq1aqVEhIS5OLiovT0dKWmpspqteqpp55Snz59ZBiGevXqpf/7v/+T\n9HOF86RJkxwdDgAAQIXz8vJSQUGB/bHNZrP/MubqawUFBfL29i6zjYuLyxX31q1bVxs2bNCpU6c0\nevRo5ebmqlatWmratKl69epVCaMDAACoXNfLrbKzs/XRRx9px44d8vDw0OTJk/X+++9rwIABN+z3\n9Om8WxYzbszHx5s1MBlrYD7WwHysgfn4Y2P5kBdVT7wXmY81MB9rYD7WwHy/Ni9yuAjof88bzcrK\n0rx587RkyRJJUklJiRITE7V27Vq5u7srMjJSwcHBOnDgwDXbJCYmavz48QoKClJ8fLx27NihTp06\nKTk5WevWrVNRUZGioqLUo0cPnTx5Uu3bt9fSpUsdHQIAAMAtFRAQoF27dmngwIHKyspS69at7df8\n/f2Vk5OjCxcuyMPDQ/v27dOYMWNksViu2aZdu3bau3evgoKClJGRoW7dumngwIH2/v785z/rtttu\nowAIAABUW9fLrby9vVWnTh3Vrl1brq6uatiwoS5dumRitAAAALcOeREAALiaw0VA1ztv9OjRo/L1\n9VW9evUkSYGBgcrMzFRWVtY12xw+fFhdu3aVJPXq1Uu7d++Wi4uLOnfuLDc3N7m5ucnX11fZ2dk6\nceKETp06pejoaNWpU0dTp06Vn5+fo8MBAACocCEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiFBs\nbKzGjBkjwzAUFhamxo0bX7ONJMXExCguLk5JSUny8/NTv379TB4dAABA5bpRbhUREaGoqCjVqlVL\nvr6+Gjp0qNkhAwAA3BLkRQAA4GoOFwFd77zR/Px8eXv/d4siT09P5efnl9nGMAxZLBb7vXl5eWX2\n4ePjo3HjxmnAgAHat2+fJk+erHXr1l031gYNPGS1ujo6ZKdSE7fOrIljrmjMoeOYQ8cxh45jDqsO\nFxcXzZo164rn/P397V8HBwcrODj4hm0kqWXLllq9enWZr/Xcc885GC0AAEDVdqPcKjIyUpGRkZUd\nFgAAQKUjLwIAAFdzuAjoeueNXn2toKBA3t7eZbZxcXG54t66deuW2cddd90lV9efC3ruvfde/fDD\nD1cUEV3L+fOFjg7X6dS0c/o4m9BxzKHjmEPHMYeOq+pzSIESAAAAAAAAAAAAULFcbnzL9QUEBCgj\nI0OSfnHeqL+/v3JycnThwgUVFxdr37596ty5c5lt2rVrp71790qSMjIydO+996pjx47av3+/ioqK\nlJeXp6NHj6p169ZauHCh3nrrLUlSdna27rzzzusWAAEAAAAAAAAAAAAAAADVlcM7Ad3ovNHY2FiN\nGTNGhmEoLCxMjRs3vmYbSYqJiVFcXJySkpLk5+enfv36ydXVVdHR0YqKipJhGJowYYJq166tcePG\nafLkyfr444/l6uqqxMREhycDAAAAAAAAAAAAAAAAcEYWwzAMs4OoLBV9LMrj83ZWaH+3worYYLND\nqFRV/fgbZ8AcOo45dBxz6LiqPoccB2a+qvzvAwCAmobcqGogPzJXVf8ZpiZgDczHGpiPNTAfeVHV\nwPeBuXgvMh9rYD7WwHysgfl+bV7k8HFgAAAAAAAAAAAAAAAAAMxFERAAAAAAAAAAAAAAAADg5CgC\nAgAAAAAAAAAAAAAAAJwcRUAAAAAAAAAAAAAAAACAk6MICAAAAAAAAAAAAAAAAHByFAEBAAAAAAAA\nAAAAAAAATo4iIAAAAAAAAAAAAAAAAMDJUQQEAAAAAAAAAAAAAAAAODmKgAAAAAAAAAAAAAAAAAAn\nRxEQAAAAAAAAAAAAAAAA4OQoAgIAAAAAAAAAAAAAAACcHEVAAAAAAAAAAAAAAAAAgJOjCAgAAAAA\nAAAAAAAAAABwchQBAQAAAAAAAAAAAAAAAE6OIiAAAIAaKDfvhNkhAAAAAAAAAAAAoAJRBAQAAFAD\nPbZtFIVAAAAAAAAAAAAA1QhFQAAAADXQqv4paurdzOwwAAAAAAAAAAAAUEEoAgIAAAAAAAAAAAAA\nAACcHEVAAAAANRDHgQEAAAAAAAAAAFQvFAEBAADUQPN6zuc4MAAAAAAAAAAAgGqEIiAAAIAaKPaT\nP7ITEAAAAAAAAAAAQDVCERAAAEANxE5AAAAAAAAAAAAA1QtFQAAAADUQOwEBAAAAAAAAAABULxQB\nAQAA1ECr+qewExAAAAAAAAAAAEA1QhEQAABADUQBEAAAAAAAAAAAQPVCERAAAAAAAAAAAAAAAADg\n5KxmBwAAAOAMMjMzr3u9S5culRQJAACobr69+K2a12tudhgAAAAAAABwchQBAQAA3IQFCxZIki5c\nuKBvvvlGAQEBcnFx0T//+U+1bt1aqampJkcIAACcUW7eCT3xYbT2jdtndigAAAAAAABwchQBAQAA\n3ITk5GRJ0tixY7Vw4UK1aNFCkpSbm6v4+HgzQwMAAE6sqXczvRvxrtlhAAAAAAAAoBpwcbQDm82m\n+Ph4RUREKDo6Wjk5OVdc37lzp8LCwhQREaH09PTrtsnJyVFkZKSioqKUkJAgm80mSUpPT9ewYcMU\nHh6uXbt2XdH/0aNHFRgYqKKiIkeHAgAAcEPfffedvQBIkpo0aaLvvvvOxIgAAICz4ygwAAAAAAAA\nVASHdwL68MMPVVxcrLS0NGVlZWnevHlasmSJJKmkpESJiYlau3at3N3dFRkZqeDgYB04cOCabRIT\nEzV+/HgFBQUpPj5eO3bsUKdOnZScnKx169apqKhIUVFR6tGjh9zc3JSfn68XX3xRbm5uDk8EAADA\nzWjfvr1iYmI0YMAA2Ww2bdmyRffee6/ZYQEAAAAAAAAAAKCGc3gnoP3796tnz56SpE6dOunQoUP2\na0ePHpWvr6/q1asnNzc3BQYGKjMzs8w2hw8fVteuXSVJvXr10p49e3Tw4EF17txZbm5u8vb2lq+v\nr7Kzs2UYhuLi4jRx4kS5u7s7OgwAAICbMnv2bLVp00apqalKT09Xp06dlJCQYHZYAAAAAAAAAAAA\nqOEc3gkoPz9fXl5e9seurq4qLS2V1WpVfn6+vL297dc8PT2Vn59fZhvDMGSxWOz35uXlldnHwoUL\n1bt3b9199903HWuDBh6yWl0dGa7T8fHxvvFN1UxNHHNFYw4dxxw6jjl0HHN4a7i5uWnYsGEaMGCA\nDMPQ5cuXlZmZqe7du5sdGgAAAAAAAAAAAGowh4uAvLy8VFBQYH9ss9lktVqvea2goEDe3t5ltnFx\ncbni3rp165bZx6ZNm3THHXdo3bp1On36tB5//HGlpKRcN9bz5wsdHa7TOX06z+wQKpWPj3eNG3NF\nYw4dxxw6jjl0XFWfQ2cuUHrllVe0Zs0alZaWqkGDBjp16pQ6dOigd955x+zQAAAAAAAAAAAAUIM5\nfBxYQECAMjIyJElZWVlq3bq1/Zq/v79ycnJ04cIFFRcXa9++fercuXOZbdq1a6e9e/dKkjIyMnTv\nvfeqY8eO2r9/v4qKipSXl6ejR4+qdevW+uCDD5ScnKzk5GT5+PhoxYoVjg4FAADghrZu3aqPP/5Y\nAwcO1F//+letXLlSDRs2NDusctv/fabZIQAAAAAAAAAAAKACObwTUEhIiHbv3q2RI0fKMAzNnTtX\nmzdvVmFhoSIiIhQbG6sxY8bIMAyFhYWpcePG12wjSTExMYqLi1NSUpL8/PzUr18/ubq6Kjo6WlFR\nUTIMQxMmTFDt2rUdHjgAAMCvcfvtt8vLy0utWrVSdna2+vbtq5dfftnssMpt2KZBWj94iwLv6GJ2\nKAAAAOVis9k0c+ZMHTlyRG5ubpo9e7ZatGhhv37w4EHNmzdPhmHIx8dHL7/8Mr9LAgAA1RJ5EQAA\nuJrDRUAuLi6aNWvWFc/5+/vbvw4ODlZwcPAN20hSy5YttXr16l88Hx4ervDw8DJj2LlzZ3nDBgAA\n+FW8vLy0YcMGtW/fXqtXr9btt9+uS5cumR1Wub3x4AoKgAAAgFP68MMPVVxcrLS0NGVlZWnevHla\nsmSJJMkwDMXFxWnBggVq0aKF3nnnHeXm5srPz8/kqAEAACoeeREAALiaw8eBAQAA1CRz5szRuXPn\nFBQUpKZNmyo+Pl7jx4+/bhubzab4+HhFREQoOjpaOTk5V1zfuXOnwsLCFBERofT09Ou2ycnJUWRk\npKKiopSQkCCbzSZJSklJUVhYmIYPH6733nvvhuN4Zf9Lys078WumAAAAwFT79+9Xz549JUmdOnXS\noUOH7Ne+/vpr1a9fX6tWrdIjjzyiCxcu8IcuAABQbZEXAQCAqzm8ExAAAEBN0rhxY40cOVLZ2dma\nMmWKfvrpJ3l4eFy3zfU+lVVSUqLExEStXbtW7u7uioyMVHBwsA4cOHDNNomJiRo/fryCgoIUHx+v\nHTt2KDAwUG+//bbeffddFRUV6aGHHtKAAQNksVjKjGlV/xQ19W5WoXMDAABQGfLz8+Xl5WV/7Orq\nqtLSUlmtVp0/f17//Oc/FR8fL19fXz355JPq0KGDunfvfsN+fXy8b2XYuAmsgflYA/OxBuZjDeBM\nyIuqL9bAfKyB+VgD87EGzokiIAAAgHL49NNPFR8fr8uXLys1NVUPP/ywXn75Zd1///1ltrnep7KO\nHj0qX19f1atXT5IUGBiozMxMZWVlXbPN4cOH1bVrV0lSr169tHv3boWEhGjDhg2yWq3Kzc1V7dq1\nr1sAJIkCIAAA4LS8vLxUUFBgf2yz2WS1/vwrrvr166tFixb2o+p79uypQ4cO3dQfu06fzrs1AeOm\n+Ph4swYmYw3MxxqYjzUwH39sLB/youqJ9yLzsQbmYw3MxxqY79fmRRwHBgAAUA5JSUlas2aN6tat\nq9tvv13Jycl66aWXrtumrE9l/eeat/d/EzlPT0/l5+eX2cYwDHuBj6enp/Lyfk7CrVarVq9erYiI\nCA0ePLjCxgsAAFDVBAQEKCMjQ5KUlZWl1q1b2681b95cBQUF9qNU9+3bp1atWpkSJwAAwK1GXgQA\nAK7GTkAAAADlYLPZ5OPjY39811133bDN9T6VdfW1goICeXt7l9nGxcXlinvr1q1rf/zII48oPDxc\nY8eO1WeffaZu3br9ukECAABUYSEhIdq9e7dGjhwpwzA0d+5cbd68WYWFhYqIiNCcOXM0adIkGYah\nzp0764EHHjA7ZAAAgFuCvAgAAFyNIiAAAIByuOOOO7Rr1y5ZLBZdunRJKSkpatKkyXXbBAQEaNeu\nXRo4cOAvPpXl7++vnJwcXbhwQR4eHtq3b5/GjBkji8VyzTbt2rXT3r17FRQUpIyMDHXr1k3Hjh1T\nUlKS/vznP6tWrVpyc3O7olgIAACgOnFxcdGsWbOueO4/x1xIUvfu3bV27drKDgsAAKDSkRcBAICr\nUQQEAABQDrNmzdKcOXN08uRJhYSEKCgo6Be/bLnajT6VFRsbqzFjxsgwDIWFhalx48bXbCNJMTEx\niouLU1JSkvz8/NSvXz+5urrq7rvvVkREhCwWi3r27KmuXbtWxnQAAAAAAAAAAACgiqAICAAAoBz+\n+te/KikpqVxtbvSprODgYAUHB9+wjSS1bNlSq1ev/sXzzz77rJ599tlyxQUAAAAAAAAAAIDqg3Mi\nAAAAymHXrl0yDMPsMAAAAAAAAAAAAIArsBMQAABAOdSvX1/9+/dX+/btVbt2bfvziYmJJkYFAAAA\nAAAAAACAmo4iIAAAgHIYOnSo2SFUiNy8E2rq3czsMAAAAAAAAAAAAFBBOA4MAACgHIYOHaq7775b\nFy5cUF5enjp27OiUhUGPbRul3LwTZocBAAAAAAAAAACACkIREAAAQDmsWLFCf/jDH/TDDz/oxIkT\neuqpp7Ru3Tqzwyq3Vf1T2AkIAAAAAAAAAACgGuE4MAAAgHJIS0vT+vXr5eXlJUl65plnFBkZqbCw\nMJMjKx8KgAAAAAAAAAAAAKoXdgICAAAoh3r16slq/W8dtYeHhzw9PU2MCAAAAAAAAAAAAGAnIAAA\ngHJp3ry5IiIi9NBDD8lqteqDDz6Ql5eXFi5cKEl69tlnTY7w5uz/PlOBd3QxOwwAAAAAAAAAAABU\nEIqAAAAAyqFly5Zq2bKliouLVVxcrB49epgd0q8ybNMgrR+8hUIgAAAAAAAAAACAaoIiIAAAgHJ4\n9tlnVVxcLDc3N+Xk5Ojrr79Wr1695OLiXKesUgAEAAAAAAAAAABQvTjXX6sAAABMtmjRIs2YMUPf\nffedRo0apbfeeksJCQlmh1VuFAABAAAAAAAAAABULxQBAQAAlMOOHTs0e/ZsbdmyRYMHD9bKlSt1\n+PBhs8Mqt9y8E2aHAAAAAAAAAAAAgApEERAAAEA52Gw2ubm5adeuXerdu7dsNpt+/PFHs8Mqt8e2\njaIQCAAAAAAAAAAAoBqhCAgAAKAcunfvrkGDBqmkpERdunTRI488ouDgYLPDKrdV/VPU1LuZ2WEA\nAAAAAAAAAACggljNDgAAAMCZxMTEKDo6Wo0bN5aLi4vi4uLUtm1bSVJaWpoiIiJMjvDmUAAEAAAA\nAAAAAABQvbATEAAAQDk1adJErq6ukmQvAJKk1NRUs0ICAAAAAAAAAABADUcREAAAQAUxDMPsEG5a\nbt4Js0MAAFQR/J8AAAAAAAAAVA8UAQEAAFQQi8Vidgg3LWrrCP7oCwBQbt4JPbZtFP8nmOzbi9+a\nHQIAAAAAAACqAYqAAAAAAACooZp6N9Oq/ilq6t3M7FBqrNy8ExqaNtTsMAAAAAAAAFANUAQEAABQ\nA6156B3+4AsAkCT+PzBZU+9mejfiXbPDAAAAAAAAQDVAERAAAEAF8fb2NjuEm8YffAEAqDqa12tu\ndggAAAAAAACoBqyOdmCz2TRz5kwdOXJEbm5umj17tlq0aGG/vnPnTi1atEjW/8fevcdFWef//38O\nDGjCgOWSmEoJSWZbHvDQ4aMVu3y0k61SoraYZVltJ4tMbRNbK7GDbp/KzpkrZWBppll2y0NLaZ9C\nWjLdNXepKFhRNM2ZIRlgrt8ffprvb1rPg7yZuR73263b2+G63pfP63o38Gaul9fb6VR2drZGjhx5\n0D6VlZWaMmWKHA6HunfvrunTpysqKkqLFi1SUVGRnE6nbrnlFl188cWqq6tTXl6e9u7dq5iYGD3y\nyCPq2LFjqKcDAABwSD/99JOeeuop/e///q+ampo0cOBATZw4Ue3atdOCBQtMxwMAAAAAAAAAAIBN\nhfwkoFWrVsnn86m4uFh5eXmaNWtWYFtDQ4MKCgo0b948FRYWqri4WDt37jxon4KCAk2cOFELFy6U\nZVlavXq1amtrVVhYqKKiIr388suaM2eOfD6fFi1apLPOOkuvvfaahg0bphdffDHUUwEAADisGTNm\naN++fZo5c6YeeeQRNTY2avr06aZjHbWymlLTEQAAAAAAAAAAANCMQn4SUFlZmQYNGiRJ6t27tzZt\n2hTYVlFRoZSUFCUmJkqSMjIyVFpaqvLy8gP22bx5swYMGCBJGjx4sNatW6eoqCj16dNHsbGxio2N\nVUpKirZs2aJx48apqalJkvTvf/9bCQkJoZ4KAADAYW3evFnLli0LvM7Pz9ell15qMNGxGbHsci0Z\n9o4ykvubjgIAAAAAAAAAAIBmEHIRkMfjUXx8fOB1dHS0Ghsb5XQ65fF45HK5Atvi4uLk8XgO2sey\nLDkcjsC+brf7oMf4ud/YsWO1detWvfLKK4fNeuKJ7eR0Rod6ymElKcl1+J0ijB3PublxDUPHNQwd\n1zB0XMPjw7Is7d27N1CAvHfvXkVHh9/8ggIgAAAAAAAAAACAyBJyEVB8fLy8Xm/gtd/vl9PpPOA2\nr9crl8t10D5RUVFB+yYkJBz0GD9bsGCBKioqdNNNN2nVqlWHzLp7d92xn2iYqq11m47QopKSXLY7\n5+bGNQwd1zB0XMPQtfZrGM4FSuPGjdNVV12lzMxMWZaltWvXasKECaZjHbXkuE6mIwAAAAAAAAAA\nAKAZRR1+l0Pr27evSkpKJEnl5eVKT08PbEtLS1NlZaX27Nkjn8+nDRs2qE+fPgft07NnT3366aeS\npJKSEvXr10/nnHOOysrKVF9fL7fbrYqKCqWnp+v555/X0qVLJe1/OlA4/gt8AAAQfrKzs/X000+r\na9eu6tq1q5566ildddVVpmMdtXErr1G1u8p0DAAAAAAAAAAAADSTkJ8ElJWVpXXr1mnUqFGyLEsz\nZ87U8uXLVVdXp5ycHE2ZMkXjx4+XZVnKzs5Wx44dD9hHkiZPnqxp06Zpzpw5Sk1N1ZAhQxQdHa3c\n3FyNGTNGlmXprrvuUps2bZSdna3Jkydr8eLFampqChwDAADgeKuqqtJ3332nmJgY7dq1y3ScYzJ/\n6Gvq7OpiOgYAqNpdxfcjwxgDAAAAAAAAIDI4LMuyTIdoKc29LMr1s9Y06/GOh3lTMk1HaFGtffmb\ncMA1DB3XMHRcw9C19msYzsuBzZ49W2VlZbrkkktkWZZWrFihzMxM3XTTTaajHZXW/P+HXXDTHdj/\nPhi38hoKEw1iDFqHcJ4bRRLmR2a19t9h7IAxMI8xMI8xMI95UevA+8AsvheZxxiYxxiYxxiYd6zz\nopCfBAQAAGAnH374oZYsWaKYmBhJUk5OjrKzs8OuCAhmcdMd2K+zqwvvA8MYAwAAAAAAACByRJkO\nAAAAEE4SExPl9XoDrxsaGhQfH28wEcIRN92B/4f3gXmMAQAAAAAAABAZeBIQAADAEZg6daokye/3\n68orr1RmZqaio6NVUlKi1NRUw+mOXllNqTKS+5uOYWvcdAcAAAAAAAAAAM2JIiAAAIAjMGDAgKD2\nZ2eddZaJOCEbsexyLRn2DoVAAAAAAAAAAAAAEYIiIAAAgCMwfPjwI9rnrbfeaoE0oaMACAAAAAAA\nAAAAILJEmQ4AAAAQKSzLMh3hiFEABAD4WbW7ynQEAAAAAAAAAM2AIiAAAIBm4nA4TEcAAOCoVLur\nNG7lNRQCAQAAAAAAABGAIiAAAAAAAGyqs6uL5g99TZ1dXUxHAQAAAAAAABAiioAAAAAAAAAQNvx+\nv/Lz85WTk6Pc3FxVVlYecL9p06bp8ccfb+F0AAAALYd5EQAA+CWKgAAAAJqJZVmmIxyxlV+vMB0B\nANAKsBwYwtGqVavk8/lUXFysvLw8zZo16z/2KSoq0tatWw2kAwAAaKrZAusAACAASURBVDnMiwAA\nwC9RBAQAANBMJkyYYDrCEbt25RgKgQAALAeGsFRWVqZBgwZJknr37q1NmzYFbf/888/1xRdfKCcn\nx0Q8AACAFsO8CAAA/JLTdAAAAIBwcuGFF2rHjh1KSEiQZVlyu91KSEhQly5d9NBDD5mOd8T+MnSh\nhqZeZjoGAKAVoAAI4cbj8Sg+Pj7wOjo6Wo2NjXI6ndqxY4fmzp2rp59+Wu+9995RHTcpydXcUXGU\nGAPzGAPzGAPzGAOEE+ZFkYsxMI8xMI8xMI8xCE8UAQEAAByF/v37a+jQofrtb38rSfrrX/+qlStX\nKjc3V3/6059UVFT0H338fr8eeOABffXVV4qNjdVDDz2kU089NbB9zZo1mjt3rpxOp7KzszVy5MiD\n9qmsrNSUKVPkcDjUvXt3TZ8+XVFRUZo/f75WrNj/ZJ8LL7xQt9122yHPI6ndyc14VQAAAFpOfHy8\nvF5v4LXf75fTuf8jrpUrV2r37t2aMGGCamtrtW/fPqWmpmrEiBGHPW5trfu4ZcbhJSW5GAPDGAPz\nGAPzGAPzuNl4dJgXRSa+F5nHGJjHGJjHGJh3rPMilgMDAAA4Cv/85z8DBUDS/oKbr776Sj179lR9\nff0B+xxqffaGhgYVFBRo3rx5KiwsVHFxsXbu3HnQPgUFBZo4caIWLlwoy7K0evVqff/991q2bJmK\nioq0aNEiffzxx9qyZcshz2PEsstVVlPaDFcEAACgZfXt21clJSWSpPLycqWnpwe2jR07VkuWLFFh\nYaEmTJigyy+//IhudAEAAIQj5kUAAOCXeBIQAADAUUhISFBRUZGGDRsmv9+v5cuXKzExURUVFfL7\n/Qfsc6j12SsqKpSSkqLExERJUkZGhkpLS1VeXn7APps3b9aAAQMkSYMHD9a6det00UUX6aWXXlJ0\ndLQkqbGxUW3atDnkeSwZ9o4ykvuHcCWA8FftrmIZJAAIQ1lZWVq3bp1GjRoly7I0c+ZMLV++XHV1\ndcrJyTEdDwAAoMUwLwIAAL9EERAAAMBRePzxx/Xwww/rsccek9Pp1Pnnn69HHnlE77//vvLy8g7Y\n51Drs3s8Hrlc/++RjnFxcfJ4PAftY1mWHA5HYF+3262YmBiddNJJsixLjz76qHr27Klu3bod8jwo\nAILdVburNG7lNZo/9DUKgWB7FMQh3ERFRWnGjBlBX0tLS/uP/fiX7gAAINIxLwIAAL9EERAAAMBR\n+PLLLzV79mzFxMQEfT03N/egfQ61Pvsvt3m9XrlcroP2iYqKCto3ISFBklRfX6/77rtPcXFxmj59\n+mHPgxu+sLvOri4UAAGiIK61+P7H79U1savpGAAAAAAAAAhzUYffBQAAAD9btmyZfvOb3yg/P18b\nNmw4oj6HWp89LS1NlZWV2rNnj3w+nzZs2KA+ffoctE/Pnj316aefSpJKSkrUr18/WZalP/zhDzrj\njDM0Y8aMwLJghzJu5TWqdlcd1bkDkYaCB4CCuNag2l2l4cXDTccAAAAAAABABOBJQAAAAEfhySef\nlMfj0apVq/Tiiy/q/vvv19ChQzVx4sSD9jnc+uxTpkzR+PHjZVmWsrOz1bFjxwP2kaTJkydr2rRp\nmjNnjlJTUzVkyBCtWrVKn332mXw+nz766CNJ0t13360+ffocNBM3fAEAP+PngVmdXV30Vs5bpmMA\nAAAAAAAgAlAEBAAAcJTi4+OVkZGhmpoabdu2TeXl5Yfc/3Drs2dmZiozM/OwfSSpW7duevXVV4O+\nlpWVpS+//PKozqHGu42bvgAAtBIsBQYAAAAAAIDmQBEQAACtwPWz1piOcEjzpmQefiebmDdvnt59\n913V19dr2LBheuGFF5ScnGw61lH73duXaumV7yojub/pKABsrtpdRVEibO/Tqk81sMtA0zEAAAAA\nAAAQ5qJMBwAAAAgn27dv1+WXX67x48crKSlJ69at0//8z/+YjnXUOsWdouS4TqZjALC5aneVxq28\nRtXuKtNRAGPKakqVuYCCawAAAAAAAISOJwEBAAAcha+//lp///vf9d1336lfv34qLS1V7969Tcc6\naic425mOAADq7Oqi+UNf40lAsLWM5P56fcTrpmMAAAAAAAAgAvAkIAAAgKPw7bffasGCBcrKytIN\nN9ygN954Qzt27DAd66gtvOwNbroDANAKVLurdP/a+03HAAAAAAAAQASgCAgAAOAodOjQQQ6HQ926\nddNXX32ljh07yufzmY511Gq820xHAACWAwP+T4O/wXQEAAAAAAAARACKgAAAAI5C9+7d9eCDD2rg\nwIGaP3++XnjhBTU0hN+Nu+FvX6aymlLTMQDYHMuBAfvFRMWYjgAAAAAAAIAIQBEQAADAUXjggQd0\nySWX6PTTT9ftt9+uHTt2aPbs2aZjHbUu8SlKjutkOgYAUAAE2+vs6qIVY1aYjgEAAAAAAIAI4DQd\nAAAAIJxER0erX79+kqTf/OY3+s1vfmM40bF5Y9hSbrwbVu2uYgwMYwwAtBZdE7uajgAAAAAAAIAI\nwJOAAAAAgBZW7a7SmBVXq9pdZTqKbTEGAFqT73/83nQEAAAAAAAARICQi4D8fr/y8/OVk5Oj3Nxc\nVVZWBm1fs2aNsrOzlZOTo0WLFh2yT2VlpUaPHq0xY8Zo+vTp8vv9kqRFixZpxIgRGjlypNauXStJ\ncrvduvnmm/X73/9eOTk5+tvf/hbqqQAAANgGxQ8AALQO1e4qXbbwMtMxAAAAAAAAEAFCLgJatWqV\nfD6fiouLlZeXp1mzZgW2NTQ0qKCgQPPmzVNhYaGKi4u1c+fOg/YpKCjQxIkTtXDhQlmWpdWrV6u2\ntlaFhYUqKirSyy+/rDlz5sjn8+mVV17Rueeeq1dffVUFBQWaMWNGqKcCAABgGz811pmOYGudXV00\ndcD9LEVlUGdXFy287A3GAECr0OBvMB0BAAAAAAAAEcAZ6gHKyso0aNAgSVLv3r21adOmwLaKigql\npKQoMTFRkpSRkaHS0lKVl5cfsM/mzZs1YMAASdLgwYO1bt06RUVFqU+fPoqNjVVsbKxSUlK0ZcsW\njRs3TrGxsZKkpqYmtWnTJtRTAQAAsI0a7zbVeLdRAGFIWU2pbvxgnJZe+a4ykvubjmNb/P8P7Fft\nruL9YFhMVIzpCAAAAAAAAIgAIRcBeTwexcfHB15HR0ersbFRTqdTHo9HLpcrsC0uLk4ej+egfSzL\nksPhCOzrdrsPeoyEhARJUm1trSZNmqT77rvvsFlPPLGdnM7oUE85rCQluQ6/U4Sx4zk3N65h6LiG\noeMati6MR+Qp+K/HKT4xKDmukzrFnaLkuE6mowCwuWp3lcatvEbzh75GIZAhnV1dtGLMCtMxAAAA\nAAAAEAFCLgKKj4+X1+sNvPb7/XI6nQfc5vV65XK5DtonKioqaN+EhISDHkOSvvrqK91999269957\nA08QOpTdu+237EVtrdt0hBaVlOSy3Tk3N65h6LiGoeMatj7NPR4UFZl337pJ6tHhTAqBDLIs0wnA\n00+A/QUoFAABAAAAAAAAkSHkIqC+fftq7dq1uvTSS1VeXq709PTAtrS0NFVWVmrPnj1q166dNmzY\noPHjx8vhcBywT8+ePfXpp59q4MCBKikp0bnnnqtzzjlHTzzxhOrr6+Xz+VRRUaH09HT961//0p13\n3qknnnhCPXr0CPU0AAAhuH7WGtMRDmnelEzTEYBWZ+YFj1EAZFCNd5u2eatZks0gnn4CoLWodldp\n7Ps52njLRtNRAAAAAAAAEOZCLgLKysrSunXrNGrUKFmWpZkzZ2r58uWqq6tTTk6OpkyZovHjx8uy\nLGVnZ6tjx44H7CNJkydP1rRp0zRnzhylpqZqyJAhio6OVm5ursaMGSPLsnTXXXepTZs2mj17tnw+\nnx5++GFJ+5869Oyzz4Z6OgAAALYw9eN7eBKQYT8vgwszePoJsB8FcQAAAAAAAEDkCLkIKCoqSjNm\nzAj6WlpaWuDPmZmZyszMPGwfSerWrZteffXV//j6yJEjNXLkyKCvUfADAABw7LrEpyg5rpPpGLaV\nkdxfS698lyIswyh4APa/D2YNepz3g0GdXV20YswK0zEAAAAAAAAQAaJMBwAAAEDLyz/vT9zwNYwC\nIGC/sppS0xFsrdpdpSkf3aNqd5XpKLbWNbGr6QgAAAAAAACIABQBAQAA2NCED67jxjsA48pqSjX8\n7cv4fmQQS+O1Dt//+L3pCAAAAAAAAIgAFAEBAADYUDtnHMuBwfZ48ol5yXGdWJ6wFaAAyKxqd5Uu\nW3iZ6RgAAAAAAACIABQBAQAA2NAP9bv01tbFpmPYGgUoZlW7qzT87csYB8M6u7rojWFLKUIxjPeB\neb4mn+kIAAAAAAAAiAAUAQEAANjU6SeebjqCbVW7qzRu5TXceDfoy9ov9O3eb/Rl7Remo9hejXeb\n6Qi2Vu2u0pgVV/P9yLDY6FjTEQAAAAAAABABnKYDwN6un7XGdITDmjcl03QEAACaXf7ABzU0laVH\nTOns6qL5Q1/j6ScGnZ3US13iu+rspF6mo9haWU2pRiy7XEuGvaOM5P6m4wBGdHZ10YtXvGg6BgAA\nAAAAACIATwICAACwoUc3PKyymlLTMWyNAiDzXLEJpiPYXkZyfz3/23kUABnU2dVFcy56ku9JBlW7\nq3Tru7eajgEAAAAAAIAIQBEQAACADSXGnqjkuE6mY9gaS++Y1dnVRQsve4PCB8Oq3VWaXfYo7weD\nqt1VmvLRPYyBQZ1dXZQ/ON90DAAAAAAAAEQAioAAAABsaPtP2/Rl7RemY9hWtbtKY1ZczU132F5n\nVxfNGvQ4xVgGsTyheWU1pRq9ZLTpGAAAAAAAAIgATtMBAMC062etMR3hkOZNyTQdAUAEat/mRJ2d\n1Mt0DFtraGowHcHWqt1VGrfyGoofDPv5KTSMg1kffrdG15w11nQM28pI7q81Y1v37yQAAAAAAAAI\nDxQBAWGutRewSBSxAEBrtKd+t97auli3ZdxpOoptORymE9hbZ1cX5WXcS+GJYYyDea9tXqC7/nqb\nJFEIZNAprlNMRwAAAAAAAEAEYDkwAAAAG+p4QicNT882HcPWfDwJyKiymlLdtOp6ldWUmo5ia4yD\nedecNVZ39r6HAiCDqt1VGl483HQMAAAAAAAARACKgAAAAGxo/iWv8uQNg2q827S9bptqvNtMR7Gt\njOT+ev6385SR3N90FFvLSO6vJcPeYRwMKqsp1bMbn6QQy6DOri6ae+lc0zEAAAAAAAAQASgCAgAA\nsKEpH92janeV6Ri2lZHcXy9kvULhg0HV7irNLnuU90ErkBzXyXQEW6ut2yGf36fauh2mo9hWtbtK\nNy6/0XQMAAAAAAAARACKgAAAAGwoL+NengRkULW7Sg/+73QKUAzq7OqiWYMe531gWLW7SmNWXM17\nwaCzk3rpVFc3nZ3Uy3QUW2vws0QkAAAAAAAAQkcREAAAgA1N+OA6ln4xqMa7TZU/fstyYAZVu6t0\n94d3UHzSCtQ11JmOYGudXV30XNZLFMQZtvun3aYjAAAAAAAAIAJQBAQAAGBDHdt1YgkewyyHZTqC\n7TU08eQN02q827TNW01BnEHV7irdvvoWCuIMemvrYm33bjcdAwAAAAAAABGAIiAAAAAbiomKMR3B\n9qKYihvXaFEE1Bo4HA7TEWytxrtN3/xYQSGWQbdl3KmLT73YdAwAAAAAAABEAO48AAAA2BD33M3K\nSO6vF/97vjKS+5uOYlv7n0DzbwofDMtI7q8Xs3gvmLTy6/fUpCat/Po901Fs6+H1M7S2cq3pGAAA\nAAAAAIgAFAEBAADYkJMnARlV7a7S7LJHWX7HoIzk/lp65bsUnxjGe8G8oamXKMoRraGpl5iOYlsZ\nyRmmI4Qdv9+v/Px85eTkKDc3V5WVlUHb33nnHV199dUaNWqU8vPz5ff7DSUFAAA4vpgXAQCAX6II\nCAAAwIYmnH2LOru6mI5hW51dXTRr0OOMAWyP94J5tXU75LeaVFu3w3QU20pqd7KcDqfpGGFl1apV\n8vl8Ki4uVl5enmbNmhXYtm/fPj3xxBNasGCBioqK5PF4tHYtT1oCAACRiXkRAAD4JYqAAAAAbOju\nv96ulV+vMB3DtqrdVbp99S08/cSgsppSDX/7MpXVlJqOYmu8F8w7O6mXktt10tlJvUxHsa3auh1q\ntBpNxwgrZWVlGjRokCSpd+/e2rRpU2BbbGysioqKdMIJJ0iSGhsb1aZNGyM5AQAAjjfmRQAA4Jf4\np2YAAAA29JehCzU09TLTMWyrxrtN37m/VY13G09AMSQ5rpM6tuuk5LhOpqPYWo13m6o83/FeMKjG\nu00/7NvFGBiU1O5kxbBM51HxeDyKj48PvI6OjlZjY6OcTqeioqL0q1/9SpJUWFiouro6XXDBBUd0\n3KQk13HJiyPHGJjHGJjHGJjHGCCcMC+KXIyBeYyBeYyBeYxBeKIICAAAADDAsizTEWzP6/OajmB7\nGcn99ULWK8pI7m86iq01+ZtMRwCOSnx8vLze//c93O/3y+l0Br1+7LHH9M033+ipp56Sw+E4ouPW\n1rqbPSuOXFKSizEwjDEwjzEwjzEwj5uNR4d5UWTie5F5jIF5jIF5jIF5xzovYjkwAAAAG7p25RiW\nAzMsKoqpuElvbV2snfU79NbWxaaj2Fq1u0qzyx5lOTCDaut2qElNqq3bYTqKbdXW7VCDv8F0jLDS\nt29flZSUSJLKy8uVnp4etD0/P1/19fV65plnAstfAAAARCLmRQAA4Jd4EhAAAMBx5vf79cADD+ir\nr75SbGysHnroIZ166qmB7WvWrNHcuXPldDqVnZ2tkSNHHrRPZWWlpkyZIofDoe7du2v69OmBYpIf\nfvhBo0eP1rJlyw67xvu0gTNYDsygjOT+uvns23n6iUHD07P1/MZnNDw923QUW+vs6qJZgx5nGSqD\n/rX7X0EtWl5Su5MVGx1rOkZYycrK0rp16zRq1ChZlqWZM2dq+fLlqqur069//Wu9+eab6tevn669\n9lpJ0tixY5WVlWU4NQAAQPNjXgQAAH6JIiAAAIDjbNWqVfL5fCouLlZ5eblmzZqlZ599VpLU0NCg\ngoICvfnmmzrhhBM0evRoZWZm6vPPPz9gn4KCAk2cOFEDBw5Ufn6+Vq9eraysLH300UeaPXu2amtr\njyjTrNIHdV7n8ylCMeS1zQv0P+WP67TE03TNWWNNx7Glzq4ueuzCORSfGFbtrtLtq2/RG8OWMhaG\nnNf5/KAWLS8jub/uOe8e0zHCSlRUlGbMmBH0tbS0tMCft2zZ0tKRAAAAjGBeBAAAfok1CAAAAI6z\nsrIyDRo0SJLUu3dvbdq0KbCtoqJCKSkpSkxMVGxsrDIyMlRaWnrQPps3b9aAAQMkSYMHD9b69esl\n7f/Q55VXXlH79u2PKFODv4GlXwzqcEKHoBYtr6ymVDe8f63KakpNR7G1Gu82Vbq/UY13m+kotrXy\n6/eCWrS81zYv0MyPZ5qOAQAAAAAAgAhAERAAAMBx5vF4FB8fH3gdHR2txsbGwDaXyxXYFhcXJ4/H\nc9A+lmXJ4XAE9nW73ZKkCy64QCeeeOIRZ3I6nEpqd3JI54Vjd3ZSL52W0E1nJ/UyHcW2aut2yGf5\nKIYzrLZuB0WJhg1NvUSS4/9aAAAAAAAAAOEs5CIgv9+v/Px85eTkKDc3V5WVlUHb16xZo+zsbOXk\n5GjRokWH7FNZWanRo0drzJgxmj59uvx+vyRp0aJFGjFihEaOHKm1a9cGHf+DDz5QXl5eqKcBAABw\n3MTHx8vr9QZe+/1+OZ3OA27zer1yuVwH7RMVFRW0b0JCwjFl6uzqouS4TsfUF6Hr7OqisWdez/JH\nsL1dP+0KatHy9hdgWRRiGXRRSqZOTTzVdAwAAAAAAABEgJCLgFatWiWfz6fi4mLl5eVp1qxZgW0N\nDQ0qKCjQvHnzVFhYqOLiYu3cufOgfQoKCjRx4kQtXLhQlmVp9erVqq2tVWFhoYqKivTyyy9rzpw5\n8vl8kqSHHnpIs2fPDhQLAQAAtEZ9+/ZVSUmJJKm8vFzp6emBbWlpaaqsrNSePXvk8/m0YcMG9enT\n56B9evbsqU8//VSSVFJSon79+h1Tph/37Q3llBCi1zYv0IxPp+m1zQtMR7E1hxymI9geS+OZRyGW\neZ1dXfTk0CdNxwAAAAAAAEAECLkIqKysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyV\nlpYetM/mzZs1YMAASdLgwYO1fv16bdy4UX369FFsbKxcLpdSUlK0ZcsWSftvqD3wwAOhngIAAMBx\nlZWVpdjYWI0aNUoFBQWaOnWqli9fruLiYsXExGjKlCkaP368Ro0apezsbHXs2PGAfSRp8uTJeuqp\np5STk6OGhgYNGTLkmDLt9u3S/C/nNedpAmHl7KRe+lXbJJZkM+xfu/8V1AJ2VFZTqqvfuNp0DAAA\nAAAAAEQAZ6gH8Hg8io+PD7yOjo5WY2OjnE6nPB6PXC5XYFtcXJw8Hs9B+1iWJYfDEdjX7XYf9BiS\ndOmllwb+JfyROPHEdnI6o4/5XMNRUpLr8DvhkLiGoeMahobrFzquYei4hqGJiorSjBkzgr6WlpYW\n+HNmZqYyMzMP20eSunXrpldfffWgf9eaNWuOKFN8jEvjzr7+iPZF8/v2x2+DWrS8L2u/UO2+Hfqy\n9guWZTPo9BNPD2rR8np0OFNOOdWjw5mmo9hWbd0ONfgbTMcAAAAAAABABAi5CCg+Pl5erzfw2u/3\ny+l0HnCb1+uVy+U6aJ+oqKigfRMSEg56jGOxe3fdMfULZ7W1btMRwh7XMHRcw9Bw/ULHNQxdc19D\niorM8zS49eF3a3TNWWNNR7GloamX6KnyORqaeonpKLZVVlMWaIemXmY4jX3xJCDzkuM6qUtCVyXH\ndTIdxbbOTuqlk+NONh0DAAAAAAAAESDk5cD69u2rkpISSVJ5ebnS09MD29LS0lRZWak9e/bI5/Np\nw4YN6tOnz0H79OzZM/Bkn5KSEvXr10/nnHOOysrKVF9fL7fbrYqKiqC/AwAAAAhH0VH2ekJla5OR\nnBHUwozh6dk6qU0HDU/PNh3F1n7ct9d0BFv7svYLbfduNx0DAAAAAAAAESDkJwFlZWVp3bp1GjVq\nlCzL0syZM7V8+XLV1dUpJydHU6ZM0fjx42VZlrKzs9WxY8cD9pGkyZMna9q0aZozZ45SU1M1ZMgQ\nRUdHKzc3V2PGjJFlWbrrrrvUpk2bkE8cAADAztrHnqiLUjIPvyOOG7/fbzqCrfEEmtahxrtNbt9e\n1Xi3sSybIfO/nKfdvl2a/+U8/fH8fNNxAAAAAAAAAIQg5CKgqKgozZgxI+hraWlpgT9nZmYqMzPz\nsH0kqVu3bnr11Vf/4+sjR47UyJEjD/j3Dxw4UAMHDjyW6AAAALa1x7eb5cAM+qR6vZrUpE+q1ysj\nub/pOLZ0YtsTg1qYUVu3Qw1Wg2rrdpiOYlunJZ4W1KLlUYwIAAAAAACA5hLycmAAAAAIP1GKUo8O\nZ5qOYVs/1v8Y1AJ2tWhLUVCLlrd73+6gFi3vvM7nK4qPZwAAAAAAANAM+JQJAADAhixZPHnDoKGp\nlwS1aHk9OpypaEc0xXCG/ebUrKAWLe/0E08PamFGTHSM6QgAAAAAAACIABQBAQAA2NCcC5/S0NTL\nTMewrU+q1we1aHm1dTvUZDVRDGdYjw5nyiEHxViwteS4TuoY19F0DAAAAAAAAEQAioAAAABsqOCz\nB1XtrjIdw7bO63y+ohWt8zqfbzoKYNQn1etlyaIgzqCzk3qpfeyJOjupl+kotlXj3abt3u2mYwAA\nAAAAACACUAQEAABgQzt+2q75X84zHcPW/PKbjmBru37aFdTCjB/rfwxq0fLe2rpYe3y79dbWxaaj\n2JplWaYjAAAAAAAAIAJQBAQAAAC0sDe2FMuSpTe2FJuOYlsdTugQ1MKM0xJPC2rR8j7fviGoRctL\njuukLgldTMcAAAAAAABABKAICAAAwKbcvr2mIwDGnJ3US8ntOrEEkmEUY5mX1r57UAszHA6H6QgA\nAAAAAACIABQBAQAA2FCUonR1jxzTMWzLFZsQ1KLl1Xi3qbZuh2q820xHsbUPv1sb1KLl/VwQSmGo\nOTXebfr+x+9NxwAAAAAAAEAEoAgIAADAhuJjXEqO62Q6hm1tqPksqEXLW/n1e2pSk1Z+/Z7pKLZ2\ndtI5QS1aHmPQSvAgIAAAAAAAADQDioAAAABsaG/Dj3qq7AnTMWzrpt63BLVoeRRitQ5f1m4MatHy\nvv3x26AWLS85rpOS45JNxwAAAAAAAEAEoAgIAADApi5Kudh0BNt6/LNZQS1a3lVnjAxqYYanwRPU\nouVREGdejXebqvdWm44BAAAAAACACEAREAAAgE19+N1a0xFsy9fkC2rR8nbv2x3Uwoy6Bm9Qi5bX\n1tk2qEXL+3l5QgAAAAAAACBUFAEBAADYlCs2wXQE23L79ga1aHk/1v8Y1AKAKYltEk1HAAAAAAAA\nQISgCAgAAMCmuOkIO9u0c2NQCzNKt/1vUAvYEcWIAAAAAAAAaC4UAQEAANjUu18vNx3Btmp/qg1q\n0fJOTTgtqIUZzihnUIuW92P9nqAWLW9DzWemIwAAAAAAACBCUAQEAABgUxd0Hmw6gm1FO6KDWrS8\nxVuLg1qYsef/Ck/2UIBizBe1fwtq0fLqm/aZjgAAAAAAAIAIQREQAACATfHkAXPiYuKCWrS8KEdU\nUAszvH5vUIuW16SmoBYtr010W9MRAAAAAAAAECH4xBsAAMCmdrEUlTE7fTuDWrS8uoa6oBZmRP3f\nr6RR/GpqjF/+oBYt7/PtpaYjAAAAAAAAIELwSSsAAIBNVXuqTEcAjPHJF9TCDApQAOkn6yfTEQAA\nAAAAABAhKAICAACwqX1N+0xHAIyxZAW1AAAAAAAAAACEO4qAn64wZAAAFdBJREFUAAAAbKpBDaYj\nAAAAAAAAAAAAoJlQBAQAAAAAAAAAAAAAAACEOYqAAAAAAAAAAAAAAAAAgDBHERAAAAAAAAAAAAAA\nAAAQ5igCAgAAAAAAAAAAAAAAAMIcRUAAAAAAAAAAAAAAAABAmKMICAAAwKbiouJMRwAAAAAAAAAA\nAEAzoQgIAADApi5Lu9J0BAAAAAAAAAAAADQTioAAAABsqsdJZ5qOYFsnOE4IatHyGANgvx6JZwa1\naHnnnNTLdAQAAAAAAABEiJCLgPx+v/Lz85WTk6Pc3FxVVlYGbV+zZo2ys7OVk5OjRYsWHbJPZWWl\nRo8erTFjxmj69Ony+/2SpEWLFmnEiBEaOXKk1q5dK0nat2+fbr/9do0ZM0Y33nijfvjhh1BPBQAA\nAGgRkwbcF9Si5U3odWtQCzMuP+3KoBYtb2SPMUEtWt6qUR+pb8e+pmOElWP5LAoAACASMS8CAAC/\nFHIR0KpVq+Tz+VRcXKy8vDzNmjUrsK2hoUEFBQWaN2+eCgsLVVxcrJ07dx60T0FBgSZOnKiFCxfK\nsiytXr1atbW1KiwsVFFRkV5++WXNmTNHPp9Pr7/+utLT07Vw4UL97ne/0zPPPBPqqQAAANjGr9qc\nrOHp2aZj2Nbw9GzGwLCM5IygFmY8OKhA8U6XHhxUYDqKbd2WcafyBz6o2zLuNB3F1spuLjMdIawc\ny2dRAAAAkYh5EQAA+KWQi4DKyso0aNAgSVLv3r21adOmwLaKigqlpKQoMTFRsbGxysjIUGlp6UH7\nbN68WQMGDJAkDR48WOvXr9fGjRvVp08fxcbGyuVyKSUlRVu2bAk6xuDBg/XJJ5+EeioAAAC2kRSX\nZDqC7TEGZp2d1Eunurrp7CSW4TEtOa6T6Qi2RwEQws2xfBYFAAAQiZgXAQCAX3KGegCPx6P4+PjA\n6+joaDU2NsrpdMrj8cjlcgW2xcXFyePxHLSPZVlyOByBfd1u9yGP8fPXf973cJKSXIfd52gsn80j\n60PFNQwd1zB0XMPQcQ1DxzVES3t/7HvqmtjVdAzbSko6kzEwLCnpTH00/q+MgWH7YuN1Qps26tAh\nXkmJzfv7GoDIdSyfRR2J5v7cCEePMTCPMTCPMTCPMUA4YV4UuRgD8xgD8xgD8xiD8BRyEVB8fLy8\nXm/gtd/vl9PpPOA2r9crl8t10D5RUVFB+yYkJBzRMX7eFwAAAEeGwgfzGAPzGAPzuiZ21cZbNpqO\nASDMHMtnUQAAAJGIeREAAPilkJcD69u3r0pKSiRJ5eXlSk9PD2xLS0tTZWWl9uzZI5/Ppw0bNqhP\nnz4H7dOzZ099+umnkqSSkhL169dP55xzjsrKylRfXy+3262Kigqlp6erb9+++utf/xrYNyMjI9RT\nAQAAAAAAQCt3LJ9FAQAARCLmRQAA4JcclmVZoRzA7/frgQce0NatW2VZlmbOnKm///3vqqurU05O\njtasWaO5c+fKsixlZ2frmmuuOWCftLQ0ffPNN5o2bZoaGhqUmpqqhx56SNHR0Vq0aJGKi4tlWZZu\nuukmDRkyRD/99JMmT56s2tpaxcTEaPbs2UpKSmqu6wIAAAAAAIBW6Fg+iwIAAIhEzIsAAMAvhVwE\nBAAAAAAAAAAAAAAAAMCskJcDAwAAAAAAAAAAAAAAAGAWRUAAAAAAAAAAAAAAAABAmKMICAAAwIa+\n+OIL5ebmmo5hSw0NDZo0aZLGjBmjq666SqtXrzYdyXaampo0depUjRo1SqNHj9bWrVtNR7KtXbt2\n6cILL1RFRYXpKLY0fPhw5ebmKjc3V1OnTjUdx5aef/555eTkaMSIEXrjjTdMx4l4fr9f+fn5ysnJ\nUW5uriorK4O2r1mzRtnZ2crJydGiRYsMpYxshxuDd955R1dffbVGjRql/Px8+f1+Q0kj1+HG4GfT\npk3T448/3sLp7OFwY7Bx40aNGTNGo0eP1h133KH6+npDSSPX4cZg2bJlGj58uLKzs7Vw4UJDKe3h\nYJ9N8DP5+GNeZB7zIvOYF5nHvMg85kWtR3POiygCQsTx+XymI4Stffv2cf1CtGvXLtMRwprf79f2\n7dv5hSZEP/zwgyzLMh0DrdiLL76o+++/n1+aDFm2bJnat2+vhQsX6qWXXtKDDz5oOpLtrF27VpJU\nVFSkiRMn6s9//rPhRPbU0NCg/Px8tW3b1nQUW6qvr5dlWSosLFRhYaEKCgpMR7KdTz/9VH/729/0\n+uuvq7CwUDU1NaYjRbxVq1bJ5/OpuLhYeXl5mjVrVmBbQ0ODCgoKNG/ePBUWFqq4uFg7d+40mDYy\nHWoM9u3bpyeeeEILFixQUVGRPB5P4Gc2ms+hxuBnRUVFFEkfR4caA8uyNG3aNBUUFOj111/XoEGD\nVF1dbTBtZDrc++DRRx/VK6+8otdff12vvPKKfvzxR0NJI9vBPpvgZ3LLYF5kHvMi85gXmce8yDzm\nRa1Dc8+LKAJC2FqzZo0uvvhiZWVl6d133w18/YYbbjCYKrz861//0h/+8AdNnTpV69ev16WXXqpL\nL72UyeRR+Oabb4L+u+WWWwJ/xpG57777JO2vcB0yZIhuu+02XX755SovLzecLHwsXrxYTz/9tDZv\n3qyhQ4fquuuu09ChQ7V+/XrT0dBKpaSk6KmnnjIdw7aGDh2qO++8U9L+X2ajo6MNJ7Kf3/72t4Hi\nq3//+99KSEgwnMieHnnkEY0aNUonn3yy6Si2tGXLFv3000+6/vrrNXbsWOZeBnz88cdKT0/Xrbfe\nqptvvlkXXXSR6UgRr6ysTIMGDZIk9e7dW5s2bQpsq6ioUEpKihITExUbG6uMjAyVlpaaihqxDjUG\nsbGxKioq0gknnCBJamxsVJs2bYzkjGSHGgNJ+vzzz/XFF18oJyfHRDxbONQYfPPNN2rfvr3mz5+v\n3//+99qzZ49SU1NNRY1Yh3sfnHHGGXK73fL5fLIsSw6Hw0TMiHewzyb4mdwymBeZx7zIPOZF5jEv\nMo95UevQ3PMi5/EICbSE5557TkuXLpXf79edd96p+vp6DR8+nKdfHIXp06frzjvvVHV1te644w69\n//77atOmjW644QZdfPHFpuOFheuuu05t27bVySefLMuy9M033yg/P18Oh0MLFiwwHS8sVFVVSZL+\n/Oc/68UXX9Rpp52m7du3Ky8vT6+++qrhdOFh4cKFKiws1C233KJnn31W3bp10/bt2/WHP/xB559/\nvul4aIWGDBkSeO+h5cXFxUmSPB6P7rjjDk2cONFwIntyOp2aPHmyPvjgAz355JOm49jOkiVLdNJJ\nJ2nQoEF64YUXTMexpbZt22r8+PG6+uqr9e233+rGG2/UypUr5XTyMUFL2b17t/7973/rueeeU1VV\nlW655RatXLmSD9SOI4/Ho/j4+MDr6OhoNTY2yul0yuPxyOVyBbbFxcXJ4/GYiBnRDjUGUVFR+tWv\nfiVJKiwsVF1dnS644AJTUSPWocZgx44dmjt3rp5++mm99957BlNGtkONwe7du/W3v/1N+fn5SklJ\n0c0336xf//rXOu+88wwmjjyHGgNJ6t69u7Kzs3XCCScoKyuLfzRwnBzsswl+JrcM5kXmMS8yj3mR\necyLzGNe1Do097yIT/cMys3NVUNDQ9DXfq6gKyoqMpQqfMTExCgxMVGS9Mwzz+jaa69Vp06d+MD0\nKPj9fg0YMEDS/kfRd+jQQZL44P8oLF68WNOnT9fo0aN1wQUXKDc3V4WFhaZjhaXo6GiddtppkqSO\nHTuyJNhRiImJUbt27RQXF6euXbtK2n8N+X4ItF7btm3TrbfeqjFjxuiKK64wHce2HnnkEd1zzz0a\nOXKkVqxYoXbt2pmOZBuLFy+Ww+HQJ598on/84x+aPHmynn32WSUlJZmOZhvdunXTqaeeKofDoW7d\nuql9+/aqra1Vp06dTEezjfbt2ys1NVWxsbFKTU1VmzZt9MMPPwR+L0Pzi4+Pl9frDbz2+/2B339/\nuc3r9QZ90Ibmcagx+Pn1Y489pm+++UZPPfUUv9McB4cag5UrV2r37t2aMGGCamtrtW/fPqWmpmrE\niBGm4kakQ41B+/btdeqppyotLU2SNGjQIG3atImbXc3sUGOwZcsWffjhh1q9erXatWunSZMm6b33\n3tMll1xiKq7t8DO5ZTAvMo95kXnMi8xjXmQe86LW7Vh/JrMcmEH33HOPvF6vHn30Uc2ePVuzZ8/W\nnDlzNHv2bNPRwkLnzp1VUFCguro6xcfH6+mnn9aMGTP09ddfm44WNrp166Y//vGP8vv9gTUeX3jh\nhUCFOQ6vQ4cOeuKJJ/Thhx/queeeMx0nLHk8Ho0YMULV1dV64403VF9frz/96U865ZRTTEcLG5mZ\nmbrlllvUvXt33XTTTZo/f77Gjx+vc88913Q0AAewc+dOXX/99Zo0aZKuuuoq03FsaenSpXr++ecl\nSSeccIIcDoeiovjVqCW99tprevXVV1VYWKgzzzxTjzzyCAVALezNN98M/A6wfft2eTwexqCFZWRk\n6KOPPpJlWdq+fbt++ukntW/f3nSsiNa3b1+VlJRIksrLy5Wenh7YlpaWpsrKSu3Zs0c+n08bNmxQ\nnz59TEWNWIcaA0nKz89XfX29nnnmmcDyF2hehxqDsWPHasmSJSosLNSECRN0+eWXc6PrODjUGHTt\n2lVer1eVlZWSpA0bNqh79+5GckayQ42By+VS27Zt1aZNG0VHR+ukk07S3r17TUW1JX4mtwzmReYx\nLzKPeZF5zIvMY17Uuh3rz2Qe92FQr169dOWVV+qrr75SVlaW6ThhZ+bMmVq2bFmg+rlTp05asGBB\n4IYODu+hhx7SmjVrgm56dezYUbm5uQZThR+n06k//vGPWrJkCcvRHYMlS5bI5/Npy5Ytatu2rRwO\nh9LT07kxfhQmTJigzz77TB9//LFOOeUU7dq1S7m5ubroootMRwNwAM8995z27t2rZ555Rs8884wk\n6cUXX1Tbtm0NJ7OP//7v/9bUqVN1zTXXqLGxUffddx/XH7Zz1VVXaerUqRo9erQcDodmzpzJE0Fb\n2MUXX6zS0lJdddVVsixL+fn5io6ONh0romVlZWndunUaNWqULMvSzJkztXz5ctXV1SknJ0dTpkzR\n+PHjZVmWsrOz1bFjR9ORI86hxuDXv/613nzzTfXr10/XXnutpP03X/jMrHkd7n2A4+9wY/Dwww8r\nLy9PlmWpT58+/G5/HBxuDHJycjRmzBjFxMQoJSVFw4cPNx3ZFviZ3LKYF5nHvMg85kXmMS8yj3lR\n6xTqz2SHxR1rAAAAAAAAAAAAAAAAIKzxzHsAAAAAAAAAAAAAAAAgzFEEBAAAAAAAAAAAAAAAAIQ5\nioAAhI0zzjjjsPtkZmaqqqqqBdIAAAAAAAAAAAAAANB6UAQEAAAAAAAAAAAAAAAAhDmKgAAcN1dc\ncYUqKiokSXl5eZo+fbokqby8XDfeeKNeeOEFDR8+XMOGDdOjjz4qy7IkSUuXLtXw4cN15ZVX6r77\n7lN9fX3QcT///HMNGTJElZWV2rNnj2688UZdccUVmjhxYmBfj8ejO+64Qzk5Obr44os1adIkWZal\nSZMmqbi4OHCs3NxcffHFFy1xOQAAAAAAAAAAAAAAOG4oAgJw3Fx44YX65JNPJElbt27V559/Lkkq\nKSnRRRddpE2bNunNN9/U0qVLtX37di1btkz//Oc/tWjRIhUVFentt99Whw4d9PLLLweO+Y9//EN/\n/OMf9eyzz+rUU0/Vk08+qZ49e2r58uW65pprtHPnTknShx9+qDPPPFPFxcV6//33VV5ers2bNys7\nO1vLli2TJFVXV+uHH35Qr169WvjKAAAAhIZlUgEAAAAAAAAAv+Q0HQBA5Lrooov0yiuv6Nxzz9Xp\np5+ur7/+Wrt27VJJSYm6d++ujRs3asSIEZKkffv26ZRTTpHb7VZlZaVGjhwpSWpoaFDPnj0Dx7zh\nhhs0dOhQpaamSpI+++wzzZ49W5LUv39/de3aVZJ0+eWXa+PGjZo/f76+/vpr7dmzR3V1dRo4cKCm\nTZumqqoqvf3227ryyitb8pIAAAAAAAAAAAAAAHBcUAQE4Ljp06eP7r33Xq1fv14DBgxQhw4dtHLl\nSjU0NMjlcunaa6/VddddJ0nau3evoqOj9eabb+qSSy7R/fffL0nyer1qamoKHPPxxx/Xvffeq6uv\nvlo9evSQw+EILCMmSdHR0ZKkwsJCvf/++xo5cqTOP/98bd26VZZlyeFw6He/+51WrFihlStX6qWX\nXmrBKwIAAOzqiiuu0BNPPKG0tDTl5eUpPj5ef/rTn1ReXq65c+eqf//+eu+999TU1KT/+q//0qRJ\nk+RwOLR06VL95S9/kd/v11lnnaXp06erTZs2geN+/vnnmjp1ql544QUlJiZq0qRJqqmpUVpaWtAy\nqffdd5+2b9+uHTt2qF+/fnr00Ud17733ql+/fsrJyZG0f5nUe+65h6ckAgAAAAAAAECYYjkwAMdN\ndHS0evXqpcLCQg0YMEDnnnuunnvuOV144YU699xz9fbbb8vr9aqxsVG33nqr3n//fQ0cOFAffPCB\ndu3aJcuy9MADD+gvf/lL4JjnnXee8vLydP/998vv9+u8887T22+/LUnauHGjvvvuO0nSunXrlJOT\no2HDhsnhcGjLli3y+/2SpBEjRqioqEjJycnq2LFjy18YAABgOyyTCgAAAAAAAAA43ngSEIDj6sIL\nL1RpaanS0tKUlJSkXbt26aKLLlLfvn21ZcsWjRw5Uk1NTRo0aJCGDx8uh8Oh2267Tddee638fr/O\nPPNMTZgwIeiYv/vd77R48WIVFhbqjjvu0JQpU3TZZZcpNTU1sBzYtddeqwceeEDz5s1TXFyc+vTp\no6qqKklSp06dlJycrOHDh7f49QAAAPbEMqkAAAAAAAAAgOPNYf3/19EBgAhnWZZ27Nih3NxcvfPO\nO4qNjTUdCQAA2EBTU5OysrI0btw4xcTEqKKiQt26ddOiRYs0cOBAderU6YDLpH7//ff/sUxqQkKC\nzjjjDM2fP1/33nuvXnzxRfXo0UNXXHGFHnvsMfXo0UOSNGTIEL388stau3ZtYJnUHj16KD8/X3fd\ndZcGDhyouXPnyul06p133tFLL73EUxIBAAAAAAAAIIyxHBgAW3n//fd15ZVX6u6776YACAAAtBiW\nSQUAAAAAAAAAHG8sBwbAVoYOHaqhQ4eajgEAAGyIZVIBAAAAAAAAAMcTy4EBAAAAgA2xTCoAAAAA\nAAAARBaWAwMAAAAAG2KZVAAAAAAAAACILDwJCAAAAAAAAAAAAAAAAAhzPAkIAAAAAAAAAAAAAAAA\nCHMUAQEAAAAAAAAAAAAAAABhjiIgAAAAAAAAAAAAAAAAIMxRBAQAAAAAAAAAAAAAAACEOYqAAAAA\nAAAAAAAAAAAAgDBHERAAAAAAAAAAAP9fe3BAAgAAACDo/+t2BCoAAMBcfBY8uc3WLKMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb Rows: 10204\n" + ] + } + ], + "source": [ + "# create ohlc prices, analyse distribution, think about feature transformation and de-trending\n", + "\n", + "fig, axarr = plt.subplots(4, 4, figsize=(40,20)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"frequency distributions\")\n", + "\n", + "\n", + "sns.distplot(df.period_return-1, ax=axarr[irow, icol])\n", + "axarr[irow, icol].set_title(\"dist period_return\")\n", + "#axarr[0, 0].set_title('Axis [0,0] Subtitle')\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " icol+=1\n", + " sns.distplot(df.avg_bo_spread, ax=axarr[irow, icol])\n", + " axarr[irow, icol].set_title(\"dist avg_bo_spread\")\n", + " icol+=1\n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " qlow, qhigh = 0.01, 0.99\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < df.avg_bo_spread.quantile(qhigh) ) & (df.avg_bo_spread > df.avg_bo_spread.quantile(qlow)),:]\n", + " #df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)) & (df.avg_bo_spread < 0.0001 ) & (df.avg_bo_spread > -0.0001),:]\n", + " icol = pltGraph(\"period_return\", \"avg_bo_spread\", irow, icol, df_mask)\n", + " \n", + " \n", + " \n", + " irow, icol = 1, 0 # move down one row\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"avg_bo_spread\", irow, icol, df)\n", + " icol = pltGraph(\"hour\", \"nb_ticks\", irow, icol, df)\n", + " icol = pltGraph(\"day\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 2, 0\n", + " df_mask = df.loc[(df.period_return < df.period_return.quantile(qhigh) ) & (df.period_return > df.period_return.quantile(qlow)),:]\n", + " icol = pltGraph(\"hour\", \"period_return\", irow, icol, df_mask)\n", + " icol = pltGraph(\"hour\", \"ohlc_price\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"weekday\", \"nb_ticks\", irow, icol, df)\n", + " \n", + " irow, icol = 3, 0\n", + " res = df.loc[:,[\"weekday\", \"avg_bo_spread\"]].groupby(\"weekday\").std()\n", + " res.plot(kind=\"bar\", ax=axarr[irow, icol])\n", + " #display(res)\n", + " \n", + " icol = pltGraph(\"weekday\", \"avg_bo_spread\", irow, icol+1, df)\n", + " \n", + "\n", + "#plt.tight_layout() # reduce overlap\n", + " plt.show()\n", + "\n", + "print(\"Nb Rows: \", df.high_bid.count())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- it seems the hours with the least number of ticks have the highest bo spread. This is expected, as during low activity traders might set spreads wide to avoid surprises.\n", + "- period return is between two closing bids, 15 minutes apart. It might be a spurious measure.\n", + "- do i have to stick to 15 minute intervals to complete this?\n", + "- weekday 1 seems to have higher stdev of avg bo spread" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Add PCA as a feature and show graphs" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# Add PCA as a feature instead of for reducing the dimensionality. This improves the accuracy a bit.\n", + "from sklearn.decomposition import PCA\n", + "\n", + "df_np = df.copy().values.astype('float32')\n", + "pca_features = df.columns.tolist()\n", + "\n", + "pca = PCA(n_components=1)\n", + "df['pca'] = pca.fit_transform(df_np)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABs4AAAKTCAYAAAC5Jf2HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8z/X///H7zmMbwjRtH0JG5diYhBwicj6Nmc8QSvpE\nxbLJYYUKjU8slVSUnCZznFSUqIl9lo+klA9Rm405xDazjb1/f/i9398d3u+d7PDe3K7/zF6v1/P1\nfL7e+1wun0fv++v5fNoYDAaDAAAAAAAAAAAAgDucbXkPAAAAAAAAAAAAALAGBGcAAAAAAAAAAACA\nCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAA\nAIolMDBQCxYsuO37GAwGRUREKD093eI1ixcv1kMPPaQ2bdroypUrt93nV199pYSEhNu+DwAAAABU\nNjYGg8FQ3oMAAAAAgIrm77//lr29vVxdXW/rPocOHVJgYKB+/PFHubi45Dl/7tw5Pfroo5o7d64e\neeQReXl53VZ/8fHx6tatm7Zv3y5vb+/buhcAAAAAVDb25T0AAAAAAKiIatSoUSL3KehdxqtXr0qS\n2rdvf9uhWWH6AwAAAIA7GUs1AgAAACgzTZo00caNG9W3b1+1atVKTz75pP7880/T+b///lshISHy\n9fWVr6+vgoODlZKSIkm6cOGCpk6dqocffljNmjVT9+7d9dlnn1nsq6DrMzIyFBoaqrZt2+rhhx/W\n8uXL1aNHDx08eLBQ7bMv1RgeHq7nnntO8+fPl6+vr9q0aaO5c+fq5s2bkm7NGnvmmWfk4+OjNm3a\naPLkybp48aLi4uI0atQoSdJDDz2kyMjIHM9w8OBB9e3bV5LUvXt3hYSESJKOHDkif39/NW/eXI8/\n/rhWrFihrKwsU7tt27apX79+atasmR566CFNnDhRFy5ckCQ99thjkqR+/fopPDxckZGRateuXY5+\nQ0JCNHnyZElSZGSkBg0apKCgID300EN69913JUlbtmxRz5491bJlSw0aNEh79+41tbf0vAAAAABg\n7QjOAAAAAJSpsLAwPfvss4qIiJCtra2eeuopZWZmSpImTZqk33//XcuXL9eqVat0/PhxzZkzR5I0\nbdo0Xbp0SatWrVJUVJS6deumV155xRQI5VbQ9fPmzdP333+vZcuW6YMPPtCXX36pv/76q9Dtc9u7\nd69SU1O1YcMGzZw5U2vXrtXXX38tSXr11VeVmZmpiIgIffrpp4qPj9f8+fNVt25dhYeHS5J2796t\n3r1757hn69attXr1aknSxo0bNWPGDF28eFHjxo1Tly5dtGPHDs2YMUNr167VBx98IEn68ccf9fLL\nL2vcuHH64osvtGzZMv3666967733TPeRpNWrV2vs2LGF+pv98ssvqlatmjZv3qwBAwZo//79eu21\n1/T8889r+/btGj58uCZPnqzDhw/n+7wAAAAAYO1YqhEAAABAmRo1apQpIFqwYIG6dOmi6Oho3XPP\nPTp06JC2bt2qpk2bSpLmzp2r6OhoSVKXLl3UtWtX/eMf/5AkTZw4UR9//LFOnz6t2rVr5+knv+ur\nVKmiyMhILVmyRL6+vpKkhQsX5giuitqfs7OzZs2aJUdHRzVo0EAff/yxjh49qh49eiguLk4NGjSQ\nl5eXnJyctHjxYqWmpsrOzk7Vq1eXJNWsWVPOzs457uno6GhaErJmzZpyc3PT0qVL1aJFCz3zzDOS\npPr162vKlCl67bXX9PTTT8vJyUlz587VwIEDJUmenp567LHHdOLECdN9pFtLTZrbU82SZ5991vTc\n06ZN07hx40yfV7169XTs2DGtXLlSrVu3tvi8AAAAAGDtCM4AAAAAlKk2bdqY/l27dm15enrqxIkT\nunbtmhwdHdWkSRPT+RYtWqhFixaSpICAAO3atUurVq3S6dOn9csvv0iSaTnE3PK7/tSpU8rMzFTz\n5s1N1zdq1EjVqlUrVHtz6tatK0dHR9Pvrq6uppl0zzzzjIKDg9WuXTs9/PDD6t69u/r371/4Dy2b\n//3vfzp48KBat25tOpaVlaXr16/r8uXLevDBB+Xi4qJly5bp5MmTOnnypE6cOCEfH59i9SdJVatW\nzREWnjhxQkeOHNHy5ctNxzIzM9WgQQNJJfu8AAAAAFCWCM4AAAAAlCk7O7scv9+8eVN2dnZycHCw\n2CYrK0vjx49XYmKi+vTpo+HDh+u+++7TE088UazrjX0ZDIYS6S/7Pc3p3bu3Hn74YX3zzTemZQ63\nb9+ujz/+2GIbS27cuKHHH39cL7zwQp5zbm5uio6O1oQJE9S7d2+1adNGo0aN0o4dO/Tbb7+ZvZ+N\njY3ZPrLLHghKt/5mU6dOVdeuXXMct7e/9Z+YJfm8AAAAAFCWCM4AAAAAlKljx46ZZp2dP39eiYmJ\natq0qerUqaOMjAydOHFC3t7ekqQffvhB06dP11tvvaUDBw5o9+7dpqUTf/rpJ0nmw69ffvkl3+vr\n1asnJycn/fzzz7r77rslSWfOnNHVq1cL1b6o3nrrLXXr1k1DhgzRkCFD9P3332vs2LG6cOGC2eAq\nP40aNdL+/ftVv35907Hdu3dr165dWrhwoT755BM98cQTWrBggen8smXLTOPO3Z+Dg4PS0tJkMBhM\n5+Li4lSnTp18xxAfH59jDMuWLZODg4OefvrpfJ/X3DKXAAAAAGAtbMt7AAAAAADuLO+9956+/fZb\n/fbbbwoODtZ9990nX19fNWrUSB07dtTMmTN19OhR/fzzz1qwYIHatWsnDw8P2dnZKSoqSvHx8fr+\n++8VHBwsScrIyMjTh7u7e77XV61aVcOGDdOCBQsUExOjX375RSEhIZJuBUsFtS+qU6dOac6cOTp6\n9KjOnDmjHTt2yNPTUzVr1lTVqlUl3QoUC7MP2MiRI3X69GnNmzdPp06d0nfffafQ0FC5ubnJ1tZW\nderU0U8//aRjx47pjz/+0L///W/t27fPNG5jf7/++quSk5PVrFkzpaena8WKFfrrr7/0/vvvm5al\ntGT8+PFav3691q1bpz///FPr1q3TsmXL5OXlVeDzAgAAAIA1IzgDAAAAUKaGDRum119/Xf7+/qpa\ntaref/990/KNb775pjw9PTV69GiNHz9ezZs316xZs3T33Xdrzpw5ioiI0BNPPKF58+YpICBATZo0\n0bFjx/L0UZjrg4KC1KZNG02YMEFjx45Vz549ZWNjIwcHhyL3V5BXX31V9evX1/jx49W/f3+dPXtW\ny5cvl62trby9vdW1a1eNHTtWERERBd7Lw8NDH3zwgX7++WcNGDBAISEh6t+/v6ZPny5Jmjx5surV\nq6d//vOfGjFihH7//XcFBwfrf//7n9LT03XXXXfJz89PM2fO1NKlS3Xvvfdq+vTp+uSTT9S/f3+d\nPHlSo0ePzncMPXr00KxZs7Rq1Sr17t1bq1at0pw5c9S7d+8CnxcAAAAArJmNoTjrjAAAAABAMTRp\n0kTvvfdenr2xysNXX32l9u3by9XVVZJ06dIltW/fXt98843uueeech4dAAAAAKA8sMcZAAAAgDvS\nO++8o127dum5557TjRs3FB4erlatWhGaAQAAAMAdjHUyAAAAANyRwsLCdPnyZQ0ZMkQjRoyQjY2N\n3n777fIeFgAAAACgHLFUIwAAAAAAAAAAACBmnAEAAAAAAAAAAACSCM4AAAAAAAAAAAAASQRnAAAA\nAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAgieAMAAAAAAAAAAAAkERwBgAAAAAAAAAA\nAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAAAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMA\nAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAAAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAA\nAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcAAAAAAAAAAACAJIIzAAAAAAAAAAAAQBLB\nGQAAAAAAAAAAACCJ4AwAAAAAAAAAAACQRHAGAAAAAAAAAAAASCI4AwAAAAAAAAAAACQRnAEAAAAA\nAAAAAACSCM4AAAAAAAAAAAAASQRnAAAAAAAAAAAAgCSCMwAAAAAAAAAAAEASwRkAAAAAAAAAAAAg\nieAMAAAAAAAAAAAAkERwBgAAAAAAAAAAAEgiOAMAAAAAAAAAAAAkEZwBAAAAAAAAAAAAkgjOAAAA\nAAAAAAAAAEkEZwAAAAAAAAAAAIAkgjMAAAAAAAAAAABAEsEZAAAAAAAAAAAAIIngDAAAAAAAAAAA\nAJBEcAYAAAAAAAAAAABIIjgDAAAAAAAAAAAAJBGcAQAAAAAAAAAAAJIIzgAAAAAAAAAAAABJBGcA\nAAAAAAAAAACAJIIzANmEhIToww8/NHuuSZMmunTpUqn2f+7cOfn7+5dqHwAAAKUpMjJSEyZMKO9h\nlLg5c+YoPDy8vIcBAACsCHVPyQgPD9ecOXPMnuvWrZuOHj1a6mMYMGCArl69Wur9ABWFfXkPAACM\n7r77bq1fv768hwEAAAAAAADcMbZu3VreQwCsCsEZcAfasGGDVq9eLVtbW9WuXVuzZs1SgwYNJEmH\nDx+Wv7+/Lly4oMaNG2vRokWqWrVqjvbLly/X5s2bZW9vr/r162v+/Plyc3Oz2F9gYKAaNWqkn3/+\nWZcvX9aAAQM0efJkxcXFaeTIkWrUqJHi4+M1f/58jR07VocPH9aNGzf05ptvau/evbKzs1Pr1q0V\nGhoqR0dHvfvuu/ryyy+VlZUlT09PhYaG6u67787Rp7+/v8aMGaNevXpJksLCwmQwGDRmzBgFBwfr\n8uXLkqTOnTvrhRdeyDPmBx54QKNHj9bBgwd17do1TZkyRY8//rjF57ezs9Mrr7yi06dP68qVK3Jx\ncVFYWJgaNmxY/D8UAAAoMVlZWXr99dd15MgRpaamymAwaN68efL29lbnzp31xRdfyN3dXZI0bNgw\n/etf/1Lz5s01ffp0/fnnn6pRo4bc3d3VuHFjTZo0Kd++kpKSNG7cOJ0/f16enp6aO3eu3N3dlZiY\nqFdeeUXx8fEyGAwaOHCgxo8fn++9Tp48qRkzZigjI0MGg0FDhw7VyJEjFR4erhMnTujChQu6ePGi\nmjZtqtdee02urq7q1q2bWrRood9++01TpkxRixYtNGfOHCUkJCgzM1N9+vTRM888I0l67733tHv3\nbqWnpystLU3BwcHq0aOHUlJSNGPGDB0/flx16tSRnZ2dfHx88nymXbt21dtvv63mzZtLkl588UW1\nbdtW7dq1Mzvu7OLi4hQYGChfX18dP35cBoNBs2fPVps2bSzWglevXtXs2bN18eJFJSUlydPTU2+9\n9ZZq1apVpP89AABQmVH3WF/dI0m7d+/W22+/rZs3b8rV1VXTp09XixYtJEmnTp1SYGCgkpKSVLt2\nbS1evFh16tTJ0f6zzz7TypUrZWtrq7vuuksLFixQ3bp1LX6eISEhsrGx0cmTJ3Xp0iV16NBBM2fO\nlIODg5o1a6bHHntMx48fV1hYmIYOHaoDBw6oZs2aFr/327hxo9atW6esrCzVqFFDs2bNUqNGjfL9\nmwIVFUs1AneYAwcO6IMPPtAnn3yibdu2qW/fvvrXv/4lg8Eg6dZyiStXrtQXX3yhc+fO6csvv8zR\nfs+ePYqMjNSGDRu0Y8cOeXl56dNPPy2w37Nnz2rdunXavHmzdu7cqW+++UaSlJiYqGeffTZH0SZJ\na9eu1bFjx7R161bt2LFDqamp2rlzp7Zs2aLff/9dGzdu1NatW9W5c2fNnDkzT39+fn7avHmzJOnm\nzZvatm2b/Pz8FBERIS8vL23evFlr1qzRmTNnlJycnKf9zZs3Vb16dUVGRuqtt97Syy+/rEuXLll8\n/n379qlatWqKiIjQF198oWbNmmnNmjWF/8MAAIBSdeTIEZ0/f14bNmzQzp07NWjQIK1YsUJubm7q\n0aOHtm3bJunWFzZJSUnq1KmT5s2bp/vuu0+ff/65lixZoh9//LFQff3xxx+aPXu2tm/fLm9vb732\n2muSpKCgILVr107bt2/XunXrtG3bNkVFReV7rw8//FDdunVTZGSk3n//ff3nP/9RVlaW6ZmWLl2q\nzz//XPb29lq2bJmpXePGjfX555+rR48eeumllzRkyBBFRkbqs88+U3R0tHbu3Kn4+HhFR0fr008/\n1fbt2/Xiiy9q6dKlkqSlS5fK2dlZu3bt0pIlS/THH3/kGZutra2GDBliqrmuXLmi6Oho9evXL99x\nZ3f27Fl17NhRW7du1dSpU/XCCy8oMzPTYi0YFRWlVq1aacOGDdqzZ4+cnZ15QxoAgFyoe6yv7jl5\n8qRCQ0MVHh6u7du3a/LkyXr22WeVkpIiSfrrr7+0ZMkS7dq1S9WqVdPGjRtztDcGXB988IG2b9+u\nbt266d133y3w73P8+HGtXLlSO3fu1MmTJ7VhwwZJUmZmprp27aovvvjCFARKlr/3O3TokLZs2aI1\na9Zoy5YtGj9+fIGhKlCRMeMMuMPs379fvXv3Vs2aNSVJgwcP1muvvaa4uDhJUvfu3VWlShVJtwqP\n3PuaHThwQL169VL16tUlSdOnTy9Uv8OHD5eDg4McHBzUq1cvfffdd2rcuLHs7e3VqlWrPNdHR0dr\nwIABcnZ2liS99dZbkqTnn39eR48e1ZAhQyTdeuMnLS0tT/snnnhCCxcuVFJSkn755RfVr19f9957\nrzp16qSnn35aCQkJeuSRRzR16lSLs+X++c9/SpKaNm0qb29vxcTEKCYmxuLz/+Mf/9Dq1at15swZ\nHTp0SK1bty7UZwMAAEpf69atVb16da1fv15//fWXDh48KBcXF0m3Xrh59dVXNW7cOG3atEmDBw+W\nra2tvv32W9OXI3Xq1DHNZC/II488ovr160uShg4dqqFDh+ratWv68ccf9dFHH0mS3NzcNHjwYO3b\nt099+vSxeK8ePXooODhYP/30k9q3b6+ZM2fK1vbW+4+9evVS7dq1Tf28/vrrCg4OliS1adNGknTt\n2jXFxMToypUrWrJkienY8ePH1bt3by1YsEDbt2/XmTNnTG+lS7dqvpdfflk2NjaqWbOmevToYXZ8\nQ4YM0dChQxUSEqIdO3aoa9eupi/lLI07u+rVq6tfv36Sbq0EYGdnp99++81iLShJ//nPf7Ry5Uqd\nPn1aJ06cUMuWLQvzZwEA4I5B3WN9dc8PP/yghx9+WP/4xz8kSe3bt1fNmjX1888/S5I6dOhg+q6u\nadOmZr+P69ixo2mG2ZgxY/L9uxgNGjTI9LcfMGCA9uzZY/q+y/i55e7H3PdeCxcu1JkzZ+Tv72+6\n9sqVK/r7779Vo0aNQo0FqEiYcQbcYYwzy3Ifu3HjhiTJ3v7/8nQbG5s819vZ2cnGxsb0+9WrV02h\nW36y39dgMJgKCEdHxxznzF0vSRcuXND58+eVlZWl8ePHa+vWrdq6das2bdqkdevW5WlftWpV9ezZ\nUzt27NCmTZvk5+cnSWrRooX27Nmj4cOHKz4+Xn5+fhbforKzszP9OysrS3Z2dhaff+3atZoxY4ac\nnZ3Vr18/9e3b1+xnDQAAysfevXtNm9c/9thjGjFihOmccWnAn376STt27DC9oGNvb5/j/8/NBT/m\nZK8hDAaD7O3tlZWVlac2yMrKMtVglhjfBH7iiSf066+/ql+/fvrzzz/z9JOVlZVjfMalto39rl+/\n3lQ/bdiwQRMmTNCxY8fk7++vlJQUdejQIc/ySdnHm72v7Dw9PfXAAw9o7969ioyMNNVc+Y3b0mdl\nHK+dnZ3FWvDNN9/UkiVLdNddd2n48OHq0KEDNRcAALlQ91hf3VPS38ddv35dJ0+eNDvO3O2y92fu\nc8uvH+P3XllZWRowYIDpc928ebM2bdpkCtiAyobgDLjDdOzYUTt37jS9ubJp0ybVqFHD9HZQQR55\n5BF99dVXpqnk4eHhWrVqVYHttm3bpqysLF25ckWff/65unXrlu/17du3144dO5SRkaGsrCy98sor\nioqKUseOHfXZZ5+Z+l+yZImmTZtm9h7Dhg1TZGSkDh8+rJ49e0q6tdfZO++8o+7du2vGjBm67777\ndPr0abPtt2zZIkk6duyY/vjjD7Vt29bi83/33XcaNGiQ/Pz81KBBA3399de6efNmgZ8LAAAoG99/\n/726du2qgIAANW/eXLt3787x/9V+fn6aO3eumjRponvuuUfSrRlQn332mSTp8uXL2r17d44vEiw5\nePCgzp49K0lat26dHn30Ubm6uqply5ampZyTk5O1ZcsWPfLII/nea+rUqdq5c6f69Omj0NBQubq6\nKiEhQdKtpXSSk5OVlZWliIgIde3aNU97V1dXtWrVSitXrpR068uPESNGaM+ePYqJiVGzZs305JNP\nytfXV3v27DF9Jp06ddJnn31mqt/27NljcYzDhg3TihUrdP36ddN+IPmNO7tLly5p3759kqSvv/5a\nDg4O8vb2tlgLfvfddxo9erQGDhyoWrVqKTo6mpoLAIBcqHusr+55+OGH9f333+uvv/6SdGtmV0JC\nQqFnzrdr104HDhzQ+fPnJUnr16/Xm2++WWC7zz//XBkZGUpPT9fmzZvNfm7ZWfreq0OHDoqKijL1\nv27dOo0ePbpQYwcqIpZqBO4wHTp00JgxYzR69GhlZWWZNv0s7JtEnTt31v/+9z/T20r33Xef5s6d\nW2C769eva+jQoUpNTVVAQIDat2+f70w1f39/xcfHa/DgwTIYDPL19VVgYKBsbW117tw5DRs2TDY2\nNqpbt67mz59v9h7NmjWTvb29evbsKScnJ0nS6NGjFRISor59+8rR0VFNmjRR3759zbb/8ccfFRER\noaysLP373/9W9erVLT7/8ePHNXv2bEVGRsrOzk4PPvigfv/99wI/FwAAUDb8/f0VFBSkfv36yc7O\nTm3atNGXX35pemN54MCBWrx4sRYvXmxqM336dM2cOVP9+vVTjRo1dM8995iWDsyPt7e3Xn75ZV24\ncEENGzbUnDlzJN16gWfOnDmKjIxURkaG+vXrp8GDB+d7r2effVYzZszQhg0bZGdnp+7du8vX11eH\nDh1S7dq19dRTT+ny5ctq27ataeP73MLCwjR37lz169dPGRkZ6tu3r/r3768LFy7oyy+/VO/eveXg\n4KD27dvrypUrSklJ0aRJkxQaGqonnnhCNWvWlLe3t8UxduvWTa+++qqeeuqpAsedm5OTk7Zu3aqw\nsDA5Oztr2bJlsrOzs1gLenp6auHChXrnnXdkZ2enhx56yOxMNgAA7mTUPdZX99x3330KDQ3Vc889\np5s3b8rZ2Vnvvfeexe1DcmvSpIleeukl00w5d3d3vf766wW2c3Z2VkBAgK5evaqePXuaZhhaYul7\nL1dXVz311FMaO3asbGxs5OrqqrfffrtQ4SpQEdkYWNcCQCkLDAzUyJEjC70+tjVo0qSJDhw4YFpf\nGgAA3HnWrFmjBx54QK1bt1ZGRoYCAgI0adIkde7cubyHpvDwcF2+fFmzZ88u76EUW1xcnPr166fD\nhw+X91AAALjjUfdUPiEhIWrcuLHGjRtX3kMBKhxmnAG4bT/88IPeeOMNs+fatWtXxqMBAAAoGcY3\nbLOyspSZmalevXqpc+fOCggIMG0mn9uaNWvk6upa6D5SUlI0cuRIs+dcXFy0du3aYo0dAACgKKh7\nKp5Tp07pxRdfNHuuQYMGhZoxCMA8ZpwBAAAAAAAAAAAAkgq3qREAAAAAAAAAAABQyRGcAQAAAAAA\noNI4cuSIAgMDzZ5LS0uTv7+/Tp48aTq2fPlyDR8+XIMHD9bGjRvLapgAAMBKVco9zpKSkst7CBVG\nfHKcPN288hwbs2ukVvVak+ccAAAlyd3drbyHABW+dspdI5irIwAAQOmhdirYihUrtG3bNlWpUiXP\nuaNHjyo0NFTnzp0zHTt48KAOHz6sdevWKS0tTR999FGBfRT3e6f45DgFRPlpbZ+N1FAAAJSy26mb\nmHF2BzN++RWfHJfjuKebF6EZAADII3uNYKmOAAAAKE/16tVTeHi42XMZGRlatmyZGjZsaDr23Xff\nydvbW//617/0zDPPqEuXLqU2tsTUhBw/AQCAdSI4u4PlF5ARmgEAAHOMNQIv2gAAAGvUs2dP2dub\nX2DJx8dHdevWzXHs8uXL+vnnn7VkyRK9+uqrCgoKksFgKNExxSfHKTYxRiH7g/R084kK2R+k2MSY\nEu0DAACUHIKzOxxfdgEAgOKijgAAABVdjRo11LFjRzk6Oqphw4ZycnLSpUuXSuz+xuUZp+ydrKk+\n07Tqlw815oFxhGcAAFgxgjMAAAAAAADckXx8fLR//34ZDAadO3dOaWlpqlGjRond39PNS4u7LNXa\nPhvV3L2l5ncK06pfPtRUn2kK2R/EstcAAFgh83PXAQAAAAAAgApu+/btunbtmoYPH272fNeuXRUT\nE6OhQ4fKYDBo9uzZsrOzK7H+45PjFLI/SFN9pmlR7EKt6rXGtNx1c/eWzOAHAMAK2RhKeuFmK5CU\nlFzeQwAAAIXg7u5W3kOAqJ0AAKgoqJ2sQ1Frp12norQodqHmdwqTh8utPdYIzAAAKF23UzexVCMA\nAAAAAABQCuKT43KEZn7bBiogyo8lGgEAsGIEZwAAAAAAAEAp8HTz0vxOYfLxaCtJcrBz0OIuS5lx\nBgCAFSM4AwAAAAAAAEpBfHKcpuydrPjkOHm6eWltn42mEA0AAFgngjMAAAAAAACglCRnXDX9m5lm\nAABYP4IzAAAAAAAAoBQcTTqi+JQ4HU06kucc+5wBAGCdCM4AAAAAAACAEhCfHJcjEGvu3lIf91qr\nXg37mM4bf47ZNTLH7wAAwDoQnAEAAAAAAAC3KT45TgFRfgqI8lN8cpxiE2M0ZtdINXdvaTpvDMs8\n3by0qtcaebp55QnRAABA+bIxGAyGsujo4sWLGjx4sD766CPZ29srJCRENjY2aty4sUJDQ2Vra6uI\niAitX78dkmAMAAAgAElEQVRe9vb2mjhxorp27arr16/rpZde0sWLF+Xi4qIFCxaoZs2a+faVlJRc\nFo8EAABuk7u7W3kPwWpROwEAgNyonaxDfrWTMfxKTE1QyP4gze8UJh+PtjnOm9vnLDYxJsd1AADg\n9txO3VQmM84yMzM1e/ZsOTs7S5LeeOMNvfDCC1q7dq0MBoP27NmjpKQkrV69WuvXr9eHH36oxYsX\nKyMjQ+vWrZO3t7fWrl2rgQMH6p133imLIcMM3nwCAKBsVITaiboAAAAgL2MoFrI/SFN9psnHo22O\nuslcaBafHKeQ/UHUVwAAWIkyCc4WLFggf39/1alTR5J07Ngx+fr6SpIeffRRRUdH66efflLr1q3l\n6OgoNzc31atXT8ePH1dsbKw6depkuvbAgQNlMWTkwrIBAACUHWuvnagLAAAALPN089L8TmFaFLvQ\ntFxjfnVT9mUbAQBA+Sv14CwyMlI1a9Y0fYEjSQaDQTY2NpIkFxcXJScnKyUlRW5u/zd1zsXFRSkp\nKTmOG69F2aOIAwCgbFSE2om6AAAAIH8+Hm21qtcaebjUNdVNsYkxFq+nrgIAwHqUenC2adMmRUdH\nKzAwUL/++quCg4N16dIl0/nU1FRVq1ZNrq6uSk1NzXHczc0tx3HjtSgfFHEAAJS+ilI7URcAAACY\nZ5xddjTpiMbsGqnE1ATFJsZo0NY+2nUqKs91AADAupR6cLZmzRp9+umnWr16te6//34tWLBAjz76\nqA4ePChJ2rdvn9q0aaMWLVooNjZW6enpSk5O1smTJ+Xt7a2HHnpI3377relaHx+f0h4yAABAuaF2\nAgAAqHiMIZhxSetdp6L09FdPaswD4zRpz0RJUg2nu/TGoXmKTYzRmmOfKCDKzxSkxSfH3VaQlrtt\nQfcqTl8EfQCAO0WZ7HGWW3BwsMLDwzV8+HBlZmaqZ8+ecnd3V2BgoAICAjR69Gi9+OKLcnJy0ogR\nI3TixAmNGDFCGzZs0HPPPVceQwYAACg31E4AAADWK/v+r8YlrZu7t5SXaz3VqlJLcSl/6kB8tC5f\nv6Snm0/UxN3j9eK3z+lcaqKe/upJU4gWEOVX7EAr+z5qBe1HW5z9aktij1uCNwBARWFjMBgM5T2I\nkpaUxD5oRsaiDQAAa+Tu7lbwRSh1Ra2dqC8AACgf1E7WwVztZK4+Mh7bdSpKs6NfliTNeeR1XUy7\nqJf2vahazrU1ocWz2noqUvM7hcnDpa7pHsa2ha27cl9nDKkstS1OPWepTWHuZQze2CcXAFBWbqdu\nKpcZZygbJfE2EAAAQHbUFwAAAHmZC4OyH0tIPatuXj301Jdj9NaPi1S7Sm1dTr+oT379SFN9puUJ\nzQKi/BSbGFPoustc//m1LU54ZSk0K8wYjTPxCM0AABUBM84qOd4IBwBYM96atg7MOAMAoGKgdrIO\nRamdjCGYX2N/LfzPa6rhdJdW9vpUHi51dTTpiF76doqqODirin1VLe6yVD4ebbXrVJTeODRPa/ts\nlFS8kMvYd1nUbNSGAABrxIwzWEThAgAAShr1BQAAQMHik+N0NOmIJOku57v0fo+VcnVwM80uu5h2\nUefSEnQj64am+85UyP4g7ToVpQm7x2q670x5unndVt1VVjUbtSEAoLKxL+8BAAAAAAAAAJVJfHKc\nBm3to4SUsxrZdLSmfDtJs9rNyXF+1S8f6t+d31bTWvfLx6Otmru3lKeblyL775CPR9tyHD0AAHc2\nZpwBAAAAAAAAJcxgkO5yrql98Xv15ANPaeOJ9bphyJR0a5bWVJ9p6lKvm6bsnazYxBjTzC0Pl7rF\n7pN9aAEAuH0EZwAAAAAAAKg0jhw5osDAQLPn0tLS5O/vr5MnT5qODRo0SIGBgQoMDNT06dOL3J+l\nsMrRzkFOds66fjNNa377WE83n6gq9lW198+vFZsYowm7x+po0hFl3szUlL2TFZ8cp9jEGI3ZNbJY\nAVh8clyx2wIAgP/DUo0AAAAAAACoFFasWKFt27apSpUqec4dPXpUoaGhOnfunOlYenq6DAaDVq9e\nXaz+jGHVql5rcuz15enmpaXd3pWHS10dTTqi6funqWmt+/V084ma8u0kLe4cruXdP1Jz95ba2H+L\nJCkxNUEh+4M01WeaPN28FJ8cZ3b/MEvHPd288oyjsM9Q2DZFuRYAgIqKGWcAAAAAAACoFOrVq6fw\n8HCz5zIyMrRs2TI1bNjQdOz48eNKS0vT2LFjNWrUKP33v/8tUn+Wwqr45DiF7A/S3j+/1svfTdP5\na4l65qvxunz9sgwyaFHsAs05EKqAKD9Tmyl7J2uqzzQtil1oceZZ9lll5maWFSc0y2+WWvbj5sZU\nmHYAAFQ0BGcAAAAAAACoFHr27Cl7e/MLLPn4+Khu3Zz7hzk7O2vcuHH68MMP9eqrryooKEg3btwo\nUp+WZn8NaDhYIfunKvFaopzsnJWccVUf/vy+6lS5WyseX6WN/bfo6eYTJUl7//xamTcz1dy9pab6\nTJOPR1uzgZwxqJNUIssy5jdLLXdIF7I/SPM7hZmutRS6sWQkAKCiY6lGAAAAAAAA3JEaNGig+vXr\ny8bGRg0aNFCNGjWUlJSUJ2ArqjXHPtH8Q3M18L6h+urMF7qccVG6ISn9ohxsHZR07bySrp3XlG8n\nqbazu5Kun1edKnfraNIRTdg9VpH9d8jHo63pftmXSDQu42hppltRZ51Zuj53qGZuOcrsQZqldtaA\nJSYBAEXBjDMAAAAAAADckT777DPNnz9fknTu3DmlpKTI3d29SPcwzqwy/oxNjFHwvinKMGQo4sRa\n9ajfU062TpIkW9mpqp2LZke/LEma1W6OFnVZoppOtXT5+iW5V61jNjTLPoPL+Lu5cViaAWYcV1Hl\nDsqyi02MUcj+oBJZMrIgtzN7raDPBQCA3AjOAAAAAAAAUClt375dGzZssHh+6NChSk5O1ogRI/Ti\niy/q9ddft7jUoznGUCb7/l8+Hm214NHFcneuI0mKOLFW6Vnp/7+FQVcy/9bpq39o7JejND9mrqbv\nn6bkjKuSza0rsodmUt4ZXJZmdJk7bhzfrlNRGrytb7HCM0vPnXvpxtJyu0s/5ve5EJ4BAMyxMRgM\nhvIeRElLSkou7yEAAIBCcHd3K+8hQNROAABUFNRO1iF37WRcBjD7zzG7Rmp+pzAdiI/Wez+9rXqu\n9fWfpEM52rk719HElpM0yHuIElMTJOUNzUqCcVyxiTElev+yXP6wNPpi+UYAqNxup24iOAMAAOWG\nL3+sA7UTAAAVA7WTdShM7WScyTRwSx+dSf5DktTB41F9n7hPtZ3qyGCTJXsbB13JuKw3OoZp5IOj\nSnXMAADcaW6nbmKpRgAAAAAAAKAEebp5ydPNS1sGRun5VkGSbBRz7gfNbjdXi7suUXL6VVVxcNaE\n5s/p5e9f0q5TUQXek2UFAQAoG4VftBkAAAAAAABAgYzLAHq6eWnGI7N1b/V7VatKLfVq2EexiTFy\nr3q3BjQcoi///Fyvd3hTi2IXyr1qHXm41DW7fKBx+Udze5sBAICSRXAGAAAAAAAAlJDcIVd8cpyW\nHF4kexsHSdLcH0KVmHpWS/+7SHdX9VCXet3UtNb9euar8arqUFVr+2zME455unlVmNCMvcMAABUd\nSzUCAAAAAAAAJSR3yJWYmqCE1LO6fjNNs75/Wc+2nKyGNRppVrs5usu5pqnduWsJmu47U1LeZRlL\nMowqzSUfjaGhNS0rWdZjKUp/hb3Wmj5PALgTEJwBAAAAAAAAJSh7yOXj0VZbBuzU6x0XKiE1Xsv+\nu1RLu72rQd5DtLbPRtM1mwdEqbl7SwVE+Skgys8UlpgLo8wFa4VR2sGWtc2MK+sgryj9FfZaawwj\nAaCyszEYDIbyHkRJS0pKLu8hAACAQnB3dyvvIUDUTgAAVBTUTtahOLWTMfTw2zZQs9u/KveqdRSy\nP0hTfaZpUezCHGGT8drs4VP2GWfZl4I0Ksr+Z3faUopl/bxF6a+w195pfzMAKAm3UzcRnAEAgHLD\nlz/WgdoJAICKgdrJOhS1dtp1KkqLYhdqqs80uVeto8lfT5TBIP2r1WS9f/RdLe6yVD4ebfO0yx2W\n5A7PpP8LzBJTE8zeAwCAO9Xt1E0s1QgAAAAAAACUgtjEGE3YPVYDGg7WhN1jlXTtvDKzMpWZlal3\njixV5s1MScqxLGNsYkye5fly/+7p5mVaFlGSQvYHsZRfCeKzBIA7GzPOAABAueGtaetA7QQAQMVA\n7WQdClM7ZZ8dFpsYYzru4VJXA7f00dwOr6u5e0sdTTqiNw7NkyQt7rJUk/ZMVFzKn9o8IEoeLnUt\nzjjLrz/cnuxLYfKZAkDFxYwzAAAAAAAAwArEJ8cpIMrPFJgdiI/WoK19dCA+Wnv//FrxqXGacyBU\niakJWhS7UIu7LDUt1xjQNFCbB0TJx6NtntAmvxCHgKfkGGfy8ZkCwJ3LvrwHAAAAAAAAAFQmmTcz\nNWXvZD1e7wkt/e8iVXOsrjkHZ8lWtspSlgKaBsrDpa5pqcUxu0ZqQMPBmnNwlv7d+W35eLRlFlk5\n4nMHgDsbSzUCAIByw3JD1oHaCQCAioHayToUVDsZ98c6mnRE478YrYktJys546o++uV92cpW1R3v\nUnXnajIYpC0Do+Tp5mUKydYc+0QjHxyVZ7lAQjQAAIqGpRoBAAAAAACAcmYMvBJTEyRJmYZMffTz\n+1r5ywpVtXdRLefaqu5cTZevX1ZCarwSUxNyhGIjHxwl6f+WC8x+T2MgV5wxAQCAwiM4AwAAAAAA\nAG6TMaCa6jNNk/ZMlCS5Orgp+cZVGWTQtRupSrp+XrWd3HUl42+5OLgq6dp59dvcU7GJMVpz7BPF\nJ8eZ9kaTZArhsu+5lf28pTFk//12Qrf83M49CfMAANaMpRorIabvAwAqCpYbsg7FqZ2oNwAAKHvU\nTtbBXO0UnxyngCg/Zd7MVGZWphJS41XD6S6dTztn8T42slF1xxr6O+Oyajjepb8zLqumUy1du5Gq\nzQOi5OPRVrGJMZqyd7LW9tkoTzcvxSbGaPC2vorsv0M+Hm3zjCH78o7Zj5d03Wapr9JuCwBAYbFU\nI0xK800iAAAAiXoDAAAgN083L63ts1Eb+2/RloFR+uDxj2Vnayd72au2Y22zbVwd3JSSmSxb2Wpp\nt3f0fKsg1XSupTc6hsnDpa4kmX4a+Xi0NYVmuWsx4/KOucOo0ginLPVV2m0BACgLzDirhHgDHABQ\nUfDWtHVgxhkAABUDtZN1KEztFJsYowFbnpCrg5supV9UFbuqcrB10NXMK5JuzTYzyKDqjjX0Svt5\nqlWlluYcCNX1m2myt7WXwSDN7fC6ejXso9jEGNPsMmMNxqwtAADyx4wz5EDBBAAAShv1BgAAwC2W\nZuHf5VRLgfc/qbur1FU1x+q6abgpSarvUl+2NnaSpKsZVzTnQKjGfTlKV9L/1vXMdKWkp+psapzG\nfzlar0XP0VNfjtGuU1GmsCw2MSbPrC1WAgAAoOQQnAEAAAAAAKDSOHLkiAIDA82eS0tLk7+/v06e\nPJnj+MWLF9W5c+c8xwuSewnr+OQ4xSfHadTOETqXlqAl/w1TSuZVnUtLUOqNFEnSmdQzumm4IUky\nyKDLGRd1M+umLly/oAvp53UxPUk96/XWP5uO0ZL/hiku5S+N3RWoxNQETfWZppD9QTmCsuxjKEyA\nlv26/K6/3TCuMoR5leEZSkN+n0tsYkyZ9leRVdbnAioDgjMAAAAAAABUCitWrNDMmTOVnp6e59zR\no0c1cuRI/fXXXzmOZ2Zmavbs2XJ2di5yf9lnfsUmxiggyk+bf9+kpOvnTdek3kjN9x4dPB5V73v7\nyaAsOdk6ySCDdpzeqk9+/Ugudq6SpFpV3CVJbxyap/mdwpSYmpAjsFvVa40kKSDKL98ALT45TgFR\nfgqI8lNsYozZ0C/7dbkDusIytyduYe9l7lx5BAzs62tefp9LbGKMBm/rW6LhWWX9O1TW5wIqC4Iz\nAAAAAAAAVAr16tVTeHi42XMZGRlatmyZGjZsmOP4ggUL5O/vrzp16hSrT+OeY1P2TlZyxlWtPb5a\njnIqdPvvE/dpx+mtkqT0rFuB37DGAXrZN1QZhnTZy15vdl5suj7p2nmF7A/S/E5hkm6FZdkZQzVL\n4cXaPhu1ts9G+Xi0NYV+2QM1S8FVUb7kN7eUZPZZcZbuZSlwK4+AIfcz4Jb8Phcfj7aK7L/DtCdf\nafdXkVXW5wIqC4IzAAAAAAAAVAo9e/aUvb292XM+Pj6qW7dujmORkZGqWbOmOnXqdFv9erp5aXGX\npXK2q6KApoHKUN4Zb/lpWv1+2chGdznW0vOtgvRk83Fa9t8lMmQZ9HK7ULlXraPJX0/UdN+ZWhS7\nUFN9ppnCicybmUpMTTCNwcejreZ3CtOUvZO161SUqQ9jAGUcb+6fxkDNeGxtn42mdua+5C8oyMp+\nbfb2+QUG5s6VZ8BQmD7zm92X3/miKOwSnEW9trgsfS7xyXElGpoV1F9FV1mfC6gMCM4AAAAAAABw\nR9q0aZOio6MVGBioX3/9VcHBwUpKSirWvTxc6srGRmrv+Yhmt5srOxu7Qrc9fuVXGWTQlYzLeven\npfLbNlAX0y/I2aGKPjr2vsZ/MUZ/Xj0jSZrfKUyLYhcqPjlOiakJkqQpeycrNjHGtP+Zh0tdXU2/\nqqe/etI086ywAZQxYDuadCTHLLTcodntzALLbwyWArWCxmzu34W5/nZY+hyMx3Mvh1mSfRS3v5KY\nwVcSsxIBwJoRnAEAAAAAAOCOtGbNGn366adavXq17r//fi1YsEDu7u7Fvp/BcCvEau/5iJxtqxS5\n/cx2ryqk7Syl3kiRJF2/cV3nUhLlYGev4LYz9caheUq6dt60p9mkPRM1u/2reZZelKRqTtX0fo+V\nphlAucOv7LIv1Sj9Xzi3uMvSHLPQjIo6C6wooUpRg5fCLgNZnLEUxNLnYDye+29SUn3kHntR+rvd\nGXyWPj+WHgRQmdgYDAZDeQ+ipCUlJZf3ECqU/AonAABKk7u7W3kPASp+7UQNAQBA2aJ2Kpy4uDhN\nmTJFERER2r59u65du6bhw4ebzgcGBuqVV15Ro0aNcrSzdDy3/Gon4yywpGvnNWrXiCKPvYptVUUO\n3K7jF3/V6Sun5ePhI0lyr1pHU/ZO1uXrl/R3+mVtHhCl4xd/Vch3U+VR9R5tGXhrSUbjfmXGn9mP\njdk1UvM7heVZSs/c9ZIUmxhTosvuFRTcZR9nUQOY7PcuTI1a0DXFqXPLqjYu7md0u33mDu747wAA\n1u526qZSn3F28+ZNTZ8+Xf7+/hoxYoR+//13nTlzRiNGjFBAQIBCQ0OVlZUlSYqIiNDgwYM1bNgw\nffPNN5Kk69eva9KkSQoICNBTTz2lS5culfaQ7yhMowYAwLpUlNqJGgIAAFgrLy8vRURESJL69euX\nIzSTpNWrV5sNxywdL4rE1ARN2TtZklTVzqXI7dOyrilgxzDN/SFUS/4bpinfPK83Ds2TJE33nSk3\nRze90THMFJo903ySbGxu9RsQ5addp6JMS/ZJMtVrnm5emt8pzLSUo1H2ms64/5jxePZrjfcraD+v\n/I5bClqyLy9YnJlsue9dmLYFhWZFrXOzL5VY2sp6Zpe55R8JzQBUdqU+42z37t3as2eP3njjDR08\neFCrVq2SwWDQk08+qXbt2mn27Nnq1KmTWrVqpbFjx2rTpk1KT09XQECANm3apDVr1iglJUWTJk1S\nVFSUDh8+rJkzZ+bbJzPOioa3RAAA5YW3pvOqSLUTNQQAAGWL2sk6WKqd4pPj5LdtoG4YMnX5+mVd\nyfi7yPe2kY2q2FdV2o1rMsigOlXu1nTfWVpyeJHsbRyUdiNNDnb2Skg9q7ucasrJzlmJ185qRY9V\nmnMgVA52Dprue2tJx7V9NkpSgTOFLM0sM14bmxijwdv6ann3j7QodqHZZQPNzWYrzMyo/GbC5ccY\n4pi7/+3Mjso+862oda5xj7nKtFxhcf8+AGANrHrGWffu3TV37lxJ0tmzZ1WtWjUdO3ZMvr6+kqRH\nH31U0dHR+umnn9S6dWs5OjrKzc1N9erV0/HjxxUbG6tOnTqZrj1w4EBpD/mOwFsiAABYJ2uvnagh\nAAAALHOwc9Co+8cqLfNasdobZNC1G6kyyKC+9w5QFfuqCvvPAiWknFVA00A52Nnr3e4faMuAnfp8\nyB5tGRilLQN2qlfDPtrYf4vW9tmo5u4tdSMrU5Lles1Y08Unx2nK3sk5ZkoZ9woztvXxaKvI/jvU\nq2Efi/t5mZvNVpiZUdn35spvnLmPjdk1UpLy3D/37Kii7q2WfeZbUZXEfmbWpqC/DwBUVqUenEmS\nvb29goODNXfuXPXr108Gg0E2NjaSJBcXFyUnJyslJUVubv+XALq4uCglJSXHceO1uD0srQQAgHWz\n1tqJGgIAAMAyTzcvTfedqa2nIvXP+8cUqa2t7Ez/drJxkr3sdSDhe9nYSFXsq2h+p0Vae3y1zqbE\nS7oV0mQPtoz9G4/Z2zrkuL8xDDMuJ5i9pruRlakpeyebrvHbNlABUX45ar6CghNzoVFhA6iCZqPl\nrj2zB3K5+wvZH6T5ncJyzBorbJhVEksgVqbQzKg0non/ngBg7cokOJOkBQsW6IsvvtCsWbOUnp5u\nOp6amqpq1arJ1dVVqampOY67ubnlOG68FrenrNdCBgAARWeNtRM1BAAAgGXxyXFaFLtQU32mafup\nLZIkV/vCLROVpZumf2caMjW48TBdTL+gUfeP1cb+WzTywVEKf+xd1XO7Vx4udU39WQqW1vbZmGO/\nsuwztLKHXJ5uXorotyXH9Q52DlrcZWmemq+gl6jMLd94OwFJfrWnpWPG5yvu7DHq3NLHy3gAKoJS\nD862bNmi5cuXS5KqVKkiGxsbNWvWTAcPHpQk7du3T23atFGLFi0UGxur9PR0JScn6+TJk/L29tZD\nDz2kb7/91nStj49PaQ/5jkAhAACAdbL22okaAgAAwDxjcNPcvaVqV3XX862CNK7ZhEK3H/vA05Kk\nLGWpac37NbvdXD3n83yOmWXhj71r+r2wwZK5GVq5z2c/vrbPRrMzzMp69lbucRblel74sl78bQBU\nBDYGg8FQmh1cu3ZN06dP14ULF3Tjxg099dRTatSokWbNmqXMzEw1bNhQ8+bNk52dnSIiIrRhwwYZ\nDAZNmDBBPXv2VFpamoKDg5WUlCQHBwctWrRI7u7u+fZZ3A3uAQBA2WKD+7yonQAAgCXUTtbBUu1k\n3CfMOOPpaNIRzfr+ZZ1J/qNQ9x37wNP65NePlGUwqK7LParmVM3szLH5ncJMwVZx9uMq7h5eAABU\nJLdTN5V6cFYe+PIHAICKgS9/rAO1EwAAFQO1k3UwVzvFJsZo4NbeMhgM2jrwc0nS4G19NcI7UBtP\nrFdy5lWL93OQoxztHZV+47pqV3VXcNsZev/ou5ruO1O9GvYxLWnn6eal2MQYTdk7WWv7bJQkjdk1\nskh7ixnDN0szfoobqhnblWYoR+AHACiK26mbymyPMwAAAAAAAKAy8vFoqy0DdmrrwM/l49FWPh5t\n9ZLPy1r5ywpTaOZk62y2baYylHojRTd0Q/a29mpa634t7rJUi2IXKjYxRgFRfhq45VaAZtzfTLoV\npM3vFJYnNAuI8jOFbeb2P8semsUnx+W4tjh7TxnbGcdaGntXFXZsFXHfrIo4ZgCo7AjOAAAAAAAA\ngNtkDMykW2HIIO8hqlPFQ9Uda8jF3lUZWRlm27nYu0qShjUO0OsdFypkf5A8XOpqVa818nCpq+m+\nM3XuWoISUxPk6ealxV2WmmZ3hewPshi8WAqbsodmAVF+prCruHtPGdtlD/VKWmHGVtzgrzxVxDEX\nVkk/U2X8jABYL5ZqBAAA5YblhqwDtRMAABUDtZN1KKh22nUqSm8cmqfpvjMV9O0LOp92zuK1fe8d\noGFN/RX07Qu6kvG3PKreo/d6fGDaJ824rGJiakKeY0a5w6TsSxoWtLxh9mUgS0J5L6dY3v0XR0Uc\nc0EKWhK0vO8H4M7AHme58OUPAAAVA1/+WAdqJwAAKgZqJ+uQX+0UmxijQVv7qHYVdznbVVFKZrKu\npF9R2s1rkmzkYueiazdTZdCtr+Psbf4fe+8eH1V17v+/J5PJhRBQQ2hSIrVYrdovxWOEU1tpUyiK\nRiF4jKWhIFW0RCVqQATKpSLKpYA1VLFo1epPqnKUAKaNChqlViXNOVIq8tIjWgxkTAi3MLlOMr8/\n0j3u2dkzs/dcMrfn3Vdfkr33WuvZ13nW+qznWckMG3g2Hd3t3DryNrZ88jybC7e4I8oUtOkYQX99\nM0GIFkItCMajwCgIQniRNc4EQRAEQRAEQRAEQRAEIcLk54xm6+QqHrx8DSUXTKex9UvaulsZbDuD\njOQMHN2nGZQyGCtWBtvOwOVyMf7sCXzZaufJDzd5pGEsqSrG7mjok8pPEQ8U0Uy9ThlISjshOgi1\nyCWimSAI/YkIZwmKOFGCIAiCIIQC8SkEQRAEQRD6ctOr03ng/V/jAqwWKz304HCeBsBisTA49QwA\nuunmtUN/oeziuaQnp3Og+SMA7I4GAHIycpl50c0eqReVtHV2R0Ofdcq8rZllxmeLV/8uXs9LEARB\nCD0inCUg8bzwqCAIgiAI/Yf4FIIgCIIgCH050PwRTpeTbrpx0UO3q5s2ZysXDL4QgJMdJzjW0czJ\nrhMAtHd1UPnpSzS2NnL3W3fw3IfPsGD3PNYXVLCvaa97W5291i2Yzc2fz4Ld89jXtJfNhVvckWrD\nMvP6pG8047PFq38Xr+clCIIghAdZ4yxBkbzAgiAIQjQg63REB8H4TuJTCIIgCEL/Ib5TdOBvjbPy\nmjK+OHWI007jPlZW6hCOdTRzVmoWO2942x1xdqD5I+5+6w7yBp5NZsogbh1ZyqZ9G+nq7uL2i8tY\n9HzZNlIAACAASURBVM49/P4nT7Jyzwr32mgKaj/N27/1iFf/Ll7PSxAEQdBH1jgTTCOOgiAIgiAI\noUB8CkEQBEEQhK9SKJbXlFF83lROO1tITUrzWeaG80qwYQOg1elgkG0wmamZ2B0N3PLaTCZXXsW6\nutXkDTybx694moVjFrNp30aKz5uKzWqjYPg47slfxMjsUbr2eEvZ6C/yKlz+ndJmKNZjC6Sc+K2C\nIAiCUUQ4i3MkBF0QBEEQhHAhfoYgCIIgCMJXYtS+pr20drVysuMkAB097W5hTI/K/3uJLroAaOtu\n42TXCZpamzjQ/BFNrY0sGL2EzJRBPHj5GgCWv7uMls5TrP77Cm4dWcrWj1/i/veXUnPojT7RZkrK\nRsU+ZQ00b6kcvZ1XqFCukZJu0td6bHX2Wp82SNpFQRAEIdyIcBbHiCMhCIIgCEK4ED9DEARBEASh\nl2GZeczNn8/yd5dxxFHPo3sfJt2aDuAWxvTodHX02eZwnmbJOwvJHfh1vnXmt7hi+FUs3D2fsjdK\naXO28fgVT7Pq8nU88kEFa/7+AGUXz2XTvo3AV1Fvyr/tjga3oNfV/ZUdatFMK2Qp+PP1zPqAimCX\nk5HrFu70RLw6ey3Xbb+GOnutVxv0ygVrnyAIgiCoEeEsjjHiSAiCIAiCIASC+BmCIAiCIAi9HG6p\nZ13dGpZedh/bi6pZOGYpbd1tAdd32tnC/zvru/yi+uc8/MFaDju+4OpzJtHU+iXvHv4bm/ZtZOll\n97FpwlPMHHkTzp4u9jXt5YYdRZRUFVNnr6V4exHlNWXMzZ/Pyj0raNfYowhlC3bPY9XYtQDuqDTw\njFjTO19vopo/wWpm9TSPv9XrrgHk54zm5UmvkJ8zGkDX3/TXhq80ld6OFwRBEAQ1IpzFOTKYJQiC\nIAhCuBA/QxAEQRCEREYtMs286GaWv7uMA80f8cf9T5IU5JDbK59vo5tuAIakDmVw6mC66WblnuU0\ntx1l+bvLWLlnBXZHAy4X3P/eMlwuWDhmMTkZudisNtYXVDBxRCELxyymqa0Ru6PBbbciYD098Tm3\nSAW4j1EwE/HlL0ptWGYeq8au9VsuP2e0h43aY0uqij1EPr129NJRBrrmWyIi10OIBPLcCdGExeVy\nuSJtRKhpamqJtAmCIAiCIBggOzsz0iYIiO8kCIIgCLGC+E7G2Lt3L2vXruXZZ5/ts6+trY1f/OIX\nPPDAA5x77rl0d3ezePFiPvvsMywWC/fddx/nn3++z/qbmlrcAs76ggoAJldeRXdPNxaLhcEpZ9Dc\ncdSjjA2bz7SNCgOTM2nvbuO6b93ABWddyIO1yxmSNoSjbU04XU5uOK+Eyk//myeu+CPZA4aSnzOa\nOnstORm57Gvay7q6Nawau5acjFyPaK7i7UVsmVTpsU0rYNXZa1mwe56H6KR3nC98Ha+IVN5ENyPb\nlO12R4OH4BeMbWbPMd7xdZ+E2CQWnnF57oRwEIzfJBFngiAIgiAIgiAIgiAIQlzw+OOPs3jxYjo6\n+q4ftm/fPqZNm8YXX3zh3vbmm28C8Pzzz3PXXXfx0EMPGW6rq7uL8poyAHIzhnFWWhZOl5OTnSe5\n8+J5nscaEM0A2rrbGJCcwZZP/sTJjpNYemDND9ezY8qrLP3P+1n4vcV8Y9A5ZA8YyoLd89xil93R\nwPJ3lzE3fz4Ldnu2PSwzz0M0U7Zpyc8Z3WfQ2uwAtq/jfaX6NrpNYcHueQGts2ZmuxHiMUImVlKy\nx+O1DwexElUZK8+dkDiIcCYIgiAIgiAIgiAIgiDEBcOHD2fDhg26+zo7O3nkkUcYMWKEe9tPfvIT\n7r//fgCOHDnCoEGDDLWjiFGbC7eQnzOayqIqXiuu4aEf/Y5zBn2T/Jx8rFhN29/tcnLaeRqAFz5+\nDpelN1FUU2sjz3z0JPua9lIxbiMAq8audYtdAPWnD5E9YKju4LN2LTFf56XGyHpiZgbkAxkUV+rX\nrr8W6QF2RZCos9dG1I5wEOlr649wiUHRLi4FQrS8L0aIBRuFxEGEM0EQBEEQBEEQBEEQBCEuuPLK\nK0lOTtbdl5+fT25ubp/tycnJ3Hvvvdx///1ce+21htsalpnnHuhV/j3tOzPYMqmS7AFDuePiuwM6\nhx5XNy5ctDnbcAFz3ijlplen8/mpz7jp1Rnc8tpMiiqvZvbrs6iz12J3NJCTkcvWyVXk54z2myrR\nqDhwuKWeG3YUeQhDaqFMSVdZvL3Io85Qig9qcUptezREiSlrtulFv5m5xuGyL54JhxgUK5FZgSCC\nlCCYR4SzBCcefwwEQRAEQQgv4j8IgiAIghBvrF69mldffZUlS5bQ2toaVF12RwNFlVezad+jJkta\nPP463XWabpeTk50nsFqsJFuSyUobwoOXr2HV2HWkWG3MerVXRJuyrZCm1sY+Nar9NrNig93RwKFT\n/2LOrlK3YFZSVUxJVbF7zaT1BRXYrDaP9tTigy+/0YhPqdisl0YyEEItjujZpVwnI9F6WlviWbwJ\nNaEWg2IpMksQhPAjwlkCIz/GgiAIgiCYRfwHQRAEQRDiicrKSn7/+98DkJ6ejsViISkp8OGywy31\n5GTkkpqcRlu3bwEuqc+wnMvjr4G2gdx00a0AdPR0YLOkYLHAPW+Vs2nfRsZ+vYABtnRmf3cOLhfc\n+vovqD5Y5SFaaUUsbcpGXz5dbwrKP3usj7a5cAubC7e4/87JyPX4Wy0+1NlrPQSkQAUiI0KG0cgt\nxb5QEqjQohVqlPsj4k3kkOsuCIKCCGcJjPwYC5FABloFQRBim0j6D/IbIgiCIAiCWXbs2MELL7zg\ndf8VV1zB/v37mTZtGjfffDOLFi0iLS0toLaUSKOtH7/Eqc6Tfo/voafPNhtfRW+d7DzJjoOV5A08\nm4zkDLpcXTS1NtLYZmdk1iie3L+JxtZGfr/vd9z/gwfZNOEpVu5Z4RERphaxFKFKL/2hNz9LSf2o\nlAHP9dJKqor7lFGOL68po6u7C7ujoY9QZtan9CW0BRK5FcqJYNp6hmXmeYiJ/o7V2ivjdIIgCJHH\n4nK5XP4Piy2amloibUJYkB9PIdZRHMFICrbyHglCdJGdnRlpEwRC4zuF+/tq5DdEvvGCIAhCvCO+\nU3Sg5zsdbqnH7mhgzq5SbFYbXx8wjF31r/msx0oy3Th19yWRxIDkDDq627lt1J1s3FvBWelZrPnh\neprbmikYPo4JLxZwZvoZ3DaqjILh49xrnYFn5IziR60au5b8nNHubYqglpORa6ivrvW1FOHMl0hk\ndzSwYPc8d5RXsGuTmfEDzR4fqE1Gxzn8HSu+rCAIQmgJxm8S4SxGCLfgID/OoUGuo38ieY2iQbgT\nBMETGfyJDgL1nZRveii/r4EOcMg3XhAEQUgExHeKDrS+kzryan1BBU2tjdzzVjlftjW4j8lIHsi5\ng87lH8f2+q0/0zaINmcrTpcTq8VK3sDhtDvbyUzJZMP4jSzYPY9VY9dSXlPGwjGLWblnBa1drXzZ\n2sDWyVVucUxro9ZHqrPXUl5TxubCLYB5UUsdPeYNRZjTCm7hnnDVn/WbaU/GjQRBEPqPYPwmSdUY\nI4QzLZKsVRIawnkd4+neRNJBlPSkgiAIoUObTiZUopmvhdR91S/feEEQBEEQIoWSmm99QQUAK/es\nwEUPKZZU9zEO52m/olkyyQyyDeastCxmXHgTFiyclZrFXZfMZVBqJksvu4/8nNE8PfE58nNGs7lw\nCxNHFLK5cAuPTXiClZev9RDN1D6VMtlJva+8pgxnT5d7vxnUqRu9pXqss9dy3fZrsDsaPI5Tj53U\n2Wt9tmGWcI9xqdNbKpi5duKrCoIgxAYScSYAMuMlVITjOsoMekEQ4hmZNR0dBBtxFir8pfsRBEEQ\nhERHfKfowFuqRiXq7IrhV/HwB2sN1ZVpG0Sr00F2+lCuPudanjvwR7IHDAXgv771U176vxdIs6bT\n1dNFitXGi9dW6qYkvGFHEYdO/YvKoj+TnzO6z1iC3tiCnvhjNnoKcJ+3ng9XZ6/tY4/SniKsvTzp\nlT5RcsGMhYRrjEsv5aUgCIIQvUiqRg0inBkjGsSyaLAhFpDrJAhCvCKDP9FBNPlO/n7z+mOtCkEQ\nBEGIVsR3ig68+U7VB6vIHjCU2a/P4l8tn/mtR1njLD1pAIPTBtPcdpSFY5ZS3/IFT+7fxFmpWTic\np3l8wtNkDxjKnF2lbBi/0S1Eqf2eOnstc3aVsmVSZR8RTBG47I4GnwIVYGhNWei7hpqCUT9Ovcaa\nNxEqGn07f76oQrTZLXgnGp+zYInHcxKEQJBUjYJpoiE9YzTYECuEOze30H/I9e5f5HoLQnSiTRNk\nZrDFm+8gfoUgCIIgCJGkzl7LL3feRFNrIx3d7VixYsHis0w3TgDaelo51tZMl6uL333wW57c/zgW\nLLR0nWLV5evcEWgA5TVlPPfhM33SW+fnjGbLpEqP+hXRrKSqmBt2FFFeU9bHV1Knu/aX+lqpS2lb\nK6L588XUoplyrK/IrWgY+Ne7XnrU2WspqSqmeHuRz9TjQvgxc+3jsQ8Rj+ckCJFAIs4SmGiYfRAN\nNiQykgayf5Hr3b/I9Y4NZNZ0dNCfvpN2VrOv1D7eykvEmSAIgpCoiO8UHXjznZT1uiZXXkVXTxcu\nzA25pSalckbqWRxrP8r0C3/B/3fgaVaPXc+9u8vJzRjGYxOeoKm1kVten0luxtfZOrmqT+SXXh8o\nlJFQ6rr0Uj+aSfMY7X5bnb2WBbvn+e1TqlM45mTkAtEh+iUigYwDxMKzaJZ4PCdBCARJ1aghEYQz\n+QAmBv1xn+VZ6l/kevcvcr2jHxn8iQ5C4TsFOlCil+7HbH2CIAiCkCiI7xQd+POdnvvwGdb+fTVH\nHPVu8Sw1KZWOng6/decMyOXWkbex7eDLzM2fD8Cs125kcMoZPHP1n8jPGU31wSpGZo9yR5RpRTK9\n7eEgnv01s+uZxfO1iDXkXgiCoCCpGhMMCblNDPrrPosz0b9E+/WOt+9KtF9vQYgXzP5mqd9NJS2Q\n0fri7TslCIIgCEJ8cbilnqf3/4Gb/9+tWLG6t/sTzS7NHgPAT8+f5hbNRmaPYuWeFZR+t4yj7U2U\n7pxF9cEq1tWtcbel+EzqyUhmfLNgfKt47m8paSuNiGbK8dFMIvnQ0X4vBEGIDUQ4i0GUH28hvvGX\nW1wIPYnkSOohorwgCIFi5jdL+cb4W/9Crz75TgmCIAiCEO0My8xj1di1bDv4MrdffJd7e2pSGgBJ\nmqE4GylkpQ7haEcT2WlDqfpsO5NHXMfKPSvY17QXgPycfGxJNu78j7msq1vjjkRTjw+pfSSjvpn4\nVr6Jl/EYuc+CIAjmkVSNMYqs3RM/SAh5dCDvVC+BPI/x8gzHy3nEGpJuKDoIh++k904dbqmneHsR\nG8ZvNLRehNF6BUEQBCFREN8pOjDiOykixZRthUwe8V9UfLCOgbZMkixJnOo8hYse97GZyYPIGpBF\nW1c7Fgs0tx0lK30IA22ZbBi/kfyc0dTZa93/nbOrFIAtkyoNry/mbb/4VrFBsPdJ7rMgCImIpGpM\nQGIpGqm/ZrTE4swZmfUTPcTSOxVOAhnAjodnOF7OQxCiBe07pfzX7mig/vQhAFaNXRvQNzfRv9OC\nIAiCIMQGSjrqGRfexDmDz2Foeg5Wi5WTnSf4fs7lWLEyKGUwAC3OU4zLm8Dxjma6e7px4cJqSQbg\nQPNHAORk5HK4pZ6cjFwslt427I4Gj/YUtP0aX/0d8a2in1D0V2PlPkufXBCEaEEizoSw0l9RPLEc\nLZRIs34S6VwTiXi5r/FyHrGGzJqODsIZcab9jVYWs4/V321BEARBiCTiO0UHRn2n5z58hrvfugOA\nQSmDOdV50r0v3TqAtu5WAKwWK3kDh9PR3Y7VksyXjgaenPgszW3NlL81h/U/2sCmfRsB2Fy4BegV\nzcprylhfUAHgXovL2/iIErEWSqQP1X+E61pH0z0M5dheNJ2XIAiRQyLOhKilv6J4YjlaKBZtDgSJ\n6IktzNyneHmG4+U8BCHaUP9GH26pdy9mH6u/24IgCIIg9A8nT55k8eLFzJgxg+PHj7Nw4UJOnjzp\nv2AUMe07M3joR7/jzovn4eg87d5+zTmTcfZ0udc7G2DN4MaLbiIzJZN5l96LxWKhua2Zad+ZwR8n\nbqZg+Dg2F25xi2bDMvPIyciltauV2a/PYsq2QqoPVrn3af2swy31LNg9L6T9cenj9y/hEs2i6R6G\namwv2s5LEITYRISzBCMSPxr9NSgmg2/RTTAOUCDPrThIgSNOpiAIwaL9jiiimb/fAvnuCIIgCIKg\nsGTJEkaOHMmJEyfIyMhg6NCh3HPPPZE2yzQXZF3ItoMvkZU+hHTrAADebXiHzJRBZNoGAb2pGh94\n/9d0dnf1FrLAvbvLqT5YRfaAocysnobd0YDd0UBJVbHbZ7Il2XhswhNsmvAU6+rWePhegMffZvvj\nvvwyb36duoz4ddFPNE5CD4Ut0XhegiDEHiKcJRB6g+HiyAj9SaCimVkRJ5TCT7B1xOo7FujaQ4Ig\nJCaHW+o9vnfazmqdvdb9XVZENPWgj1JeRHtBEARBEBTq6+v56U9/SlJSEikpKdx9993Y7fZIm+UT\nxY+ps9cCUH2witKdszjcUk9j25e0dbeSmpRKc8dRjnU00+I8BYAFC5akJO66ZC7r6lbzhyueYfXY\n9azcs4KyN0qZedHNzNlVStkbpXT9W1yzOxqwWW3kZOQyMnsUT098ro8tim9lJm2dP79MvU8rmqnb\nE78uNojXfn+8npcgCP2HCGdRRKAOhdFy2kEscWSEWCCQmUKhimgI9h2JtXdM6eCUVBVTXlMWM3YL\nghBZ6uy1lFQVewhh4DnTubymzKsgr3wrAfeAj3x/BEEQBEGwWq20tLRgsVgA+Pzzz0lKio5hLL0J\nyYpP89yHz1C07Woe+NtyZr12I84eJ2O+dpn7+I6eDve/e1w9QG+qxiFpQ3j3yN+oP/0FNYfe5On9\nf2DhmMW0drXx6N7edcwqxm1ky6RKAI/1zZSINLU/pvSLAfd2fz6W1i/T89289bfV28MV8RPrPmKi\nTswVBEGIRaLD4xACHmBXyimzmfyhdlokdDm+iGcHKpBn1JdoZvRdC/YdiaV3TN1BUnLnx4LdgiBE\nFmW9jPUFFX6/GzkZuR5/ry+o0B1Y0RPhBEEQBEFIPObMmcP06dM5cuQIt912GyUlJdx1112RNgtA\nN7JqWGYeq8au5dG9FXR3d/PoPx6mu6ebk+0necf+NmlJ6Viw6Nbn6D5NY+uXvPjJZixYePajp5h5\n0c00tzVztK2R20aVsWH8Rg9/Sok8G5aZx9z8+br1DsvMw+5oAHoj1Pz1hbXil6/jtGjr9ZbC0Re+\nxD11BoNIEArRK5om5oqvLQiC4BuLy+VyhbOBrq4uFi1axOHDh+ns7KS0tJRvfetbLFiwAIvFwnnn\nnceyZctISkrixRdf5Pnnnyc5OZnS0lJ+/OMf097ezj333ENzczMZGRmsXr2as846y2ebTU0t4Tyl\nsGEmdF5Nnb2WBbvnxcwAvZpAzzlR8Xa9FAcqFp+BSBBLz11/2hpL10WIH7KzMyNtQtQRa76TkW+H\n+pg6ey3lNWV0dXexZVJln7LatTnCYY8gCIIgxCqJ5jsdO3aMf/zjH3R3dzNq1CiGDBkSaZMA+ODg\nRx7R9VqRyO5ooKm1kSXvLKKju53G1kZ66DZcf0byQM5MOxO7o4Eh6dm4XJCWnEabs5Ws9CEsHLOY\npX9bRLLFxtLL7uOW12YyfNA3qBi3kfyc0R52KJFpTa2NjMwepet7edtm1K9SMpcA7slU6jqMjFfo\n1aHeN7N6GqvGrvU4P182htInVGwLdoJpsDaF6pxkDClwzPZ9hL7I9RH6k2D8prBHnG3fvp0zzjiD\nzZs388QTT3D//fezcuVK7rrrLjZv3ozL5WLXrl00NTXx7LPP8vzzz/OHP/yB9evX09nZyZ/+9CfO\nP/98Nm/eTFFREY8++mi4TY4YgX408nNGx+SPXaylsVOI5Owmb9crliKbooFgBmP7k/5+RxLl+Ym1\nb46QeMSa72R0NrEyg3jB7nksHLMYm9Xmtb5gvtOx6FsIgiAIgtCX9957j9tuu42CggK++c1v8tOf\n/pT/+Z//ibRZQN9sPuA5+Sc/ZzQTRxRy/w8eJDkpmevP+6nhulOT0nA4T3Oq4xTdrm5+OOzHNLbZ\nsZ9uoLHtS64YfhUr96xwH589YChnZ34lmtXZa91Cz5xdvWuiVR/8CzdWl7Cvaa9HW3q+kzqzkZls\nLerMJdp6jYxXaOvQ7nt64nMeopkvG735hP581XATbJ87VH32aB5DimY/3khfQ/ojvpHrI8QSYY84\nczgcuFwuBg4cyPHjx7n++uvp7Ozk7bffxmKxsHPnTt555x0uv/xy3nrrLZYvXw7A7bffzi9/+Us2\nbdrErFmzuPjii2lpaWHq1KlUVVX5bDNWI86CJdSzafrjBzTWZhlEelZOrF2veCJS917ueWiJ9Dss\n9CXRZk0bIVZ9J2/vlxJhBr3pGXMyck3NYA7EDnm/BUEQhHglkXynKVOmsHr1as4//3wAPv30U+bP\nn89LL70UYcv6+k56ftDhlnqmbCvk81OfkWpJo8PVbqju8XlXkJ6czj+P/YMxX7uM/236O5+c+BiA\nJJKouu514Ks02EoqRkU0u277Nbw86RX3/n1Ne/nlzpu4J38Rd+Tf2ae9UESc6aEMjIer/2U24sxX\nX9BIP1F8zPATC/11iTgLHrk+Qn8S1RFnGRkZDBw4kNOnT1NWVsZdd92Fy+VyL+6akZFBS0sLp0+f\nJjMz06Pc6dOnPbYrxwp9CaVi76+uUM4KiLUPpXpWTiivg9G6ovl6RWOecbPPsNFc76HGX7tC6Ijm\nmXWCoBCrvpPeb+ThlnrKa8ooPm8q6wsqWLB7nntwRzs7W0FdNlA7BEEQBEGIfTo6OtyiGcC5556L\n0+k0VHbv3r1Mnz5dd19bWxtTp07l008/BXrTZN9zzz2UlJRw/fXXs2vXLtO26vlBdkcD4/Im9J6L\nAdFsfN4VpFvTebN+J698vo1Dp/7Fi59s5j+yL+WcQd8kM3kQPfRwoPkjymvK2Ne0l5pDbzC58ipm\nvTqT6oNV5GTk8vufPEl+zmi3TzQyexQvT3pFVzRTbPe2zYxfpbfGWTj7X/5s9Ba15u18/dkpPmb4\niYX+uhHbotn+aECujxArhF04A2hoaGDGjBlMnjyZa6+9lqSkr5p1OBwMGjSIgQMH4nA4PLZnZmZ6\nbFeOFfqi/LiEsi5fa2klckitXtqBYIiHaxqpc/DVrq/UDGa2qwmXaBap+2+kzVDbFQ3PuThpQiwQ\nS76Tv+9pS+cplr+/hKbWRlaNXcuC3fM8xDElzY72b7PpdQRBEARBiC9GjBjBb37zGz7++GM+/vhj\nHnroIc455xy/5R5//HEWL15MR0dHn3379u1j2rRpfPHFF+5temmyA0E9VvDch88wZVshOw5WkvTv\n//nCgoVd9a/R1t1GDz2Mz7uC5KRkrjlnMi9+spkxX7uMs9KzyBmQywVZF3Kq4xQ3vzqD+W/fTY+r\nhyOOema9diPjXxzL/e8t80jXWFJVTE5GbljTFvpbWiIUbYQCEcaiH7kPgiBEC2EXzo4ePcpNN93E\nPffcw/XXXw/ARRddxPvvvw/A22+/zaWXXsp3v/td6urq6OjooKWlhU8//ZTzzz+fSy65hLfeest9\nbH5+frhNjmlCNQDva8aOv9D1aEMZjAsloZwFEwszavwRyWgsszPGzG4Ppb16ROr+RyI3dzyIxILQ\nH8SS76R+rxWxC2DV2LXuWcY7przKMxP/xMjsUX3WZR2WmecW0+rstR7rV2i/jf31DZFvlCAIgiBE\nBw888ACtra3MnTuXe++9l9bWVlasWOG33PDhw9mwYYPuvs7OTh555BFGjBjh3jZx4kTuvLM3Gsvl\ncmG1WgO2WfFtHvmggl+OvINTnSc5K3UIadZ0n+VceK6i8mb9TgbaMvng6P+QRBIvfrKZdmc7Vkuy\n+5ivZeRw26g7uX3UXQBcMfwqjnU0Y3fY3WmyNxduYX1BBXZHg9uPUv7vaxJqSVWxKZ9IOW8jKeyU\n/+qtrab+r1kiMZFXEARBiF/CLpw99thjnDp1ikcffZTp06czffp07rrrLjZs2MBPf/pTurq6uPLK\nK8nOzmb69OmUlJRw4403cvfdd5OamsrPfvYzPvnkE372s5/xwgsvcMcdd4Tb5JilvwbgfYlm0TYo\nruT3Dpd4Fo11RYpQnEOoo8B8CcBmZsIZJdB3IJj0F4FiNBVFKL8p8SASC0J/EEu+kzrifcHueawa\nu9b9b+V7NSwzj+wBQ93fR60Ylp8z2iMSzVvanVBG13sjGn0ZQRAEQUhUBg8ezLJly9ixYwdbt27l\nV7/6lUeaam9ceeWVJCcn6+7Lz88nNzfXY5temuxg+eL0v6j6bDv3jl6MxQKt3b3ZAFJI8VnOhg2A\nVGsaJztO0OZsIzOlN3vAj/J+zNH2Rg40f8TR9kZau1qp+GAdz330DMkkc8MFUzkrNYvTXS3cOrKU\nYZl52B0NzNlVSnlNmdtPK6kqBtAVuoIRrdT+nx7qjALavqG/rAPe2lT/u7+WHDHSntm6gtkvCIIg\nhAeLy+Vy+T8stgjFAvdCYETjAo919lryc0ZH2gzBC+oFffUWgQ3HMxXOBWfD+Q5EYqFcs+cTivOP\nxu+IED4SaYH7aCYUvpP63VX/9irfrlVj15KfM9p9XJ29lgW753msB+JvEfr++A7KN0gQBEGIZhLB\nd5oyZQpbt27lggsucK/xCrjXfP3oo4/81lFfX095eTkvvvii7v7p06fz61//mnPPPRfoTZN9++23\nu9c584c/30mZvDvr1Zk0ttlJciXR4eogK20IpztP09Hjf80zCxZcuBia/jU6ujvITh9KV08XfUZs\nIQAAIABJREFUj014ggPNH7H276v50tFA3qCzufM/5jLtOzOoPljFkncWUVlUhd3RwOzXZ2FLsrFh\n/Ea3H1ZSVexee3bV2LXkZOT26ZPbHQ2mx1F8+XLe/EF/5dUTsfTq04pvvpYcCbX/GKq+ry/bIjEG\nkKhIH0AQ4pNg/CYRzgQPYv2HIlbsD8bOWDlHI6idQIVoFYSCqSeU96y/7fbnxOulUQtG/JSOQeKR\nCIM/sUAohbM6ey1lb5Ty4rWVfY6xOxpYsHseMy+6maf3/8E9eKKuw983IJ5+BwVBEATBLInkOx04\ncIALLrggoLJmhLOjR48yffp0li5dymWXXWaofl++k+KrVB+sYtZrN2KzpODoPg3AAGuGO/rMHz/I\n+SF/s+9mSFo2JzqP84crngFg+bvLsFjA5YKll91H9oChbhFMLYYVby/iUMvnPHHFH5k4orCPfXX2\nWo+UjurMLIH2yXz5cv4mzerVpUTHKfbp1WfUrmj1H/3ZFs22xwsyDiEI8UswflPYUzUK4SWUIdux\nnp4oVuwPxs5YOUejqNNuKevi9GfbwRKJdcL6y26lLW956vXq0EvFaPb8JZ2jIMQmysBGnb2WObtK\nOXTqX+xr2utekN7uaKCkqpjymjJmXnQzi965h7n5890zjhWMppEVBEEQBCH+ufvuu0NSz44dO3jh\nhRe87tdLk93e7j8iTA91ysHl7y7jzNQsOnrasfz7fzarDSv+11DLSB7I4u8vY/2PNrDoP5eSRBLN\nbc2s3LMCiwUqxm1ky6RKJo4odK8Nq/7vsMw8NozfyPDMcxiZPcqjbsWXys8ZzebCLR6imbJGbaB9\nMn/rkPs7Rnu82j5v9Rm1K1oxch2E8CLjEIIg6CERZzGM2WgQI/tjfSZLrNif6BFnoX72InlN+jvi\nLFSEMuIs0jPkovH6GiFW7Q41iTRrOpoJxHdSfwMAircXsWVSb5RZzaE3mPadGR7pdQ631LvT/iip\nHLXfGXkvBEEQBME3ieQ7zZkzh29/+9uMGjWKtLQ09/bRoyO/FIO/iDPo9Y2WXnYfd785h5MdJ7BZ\nbbR1t7mPs5JMN84+5a2WZLpdTvIGnk1yUjLpyQO4dWQpm/ZtZH1BBYA7vaLSXqCR+tooMG02AL3z\n8tWu+HKCIAhCNBHRiDOXy8UXX3wRbDVCAPiaEWFkYVS9/b6crVggVhy0YOyMlXP0hhKVYPTZM1Jf\nJKPwjNgdbffMaGfG36wrdQfL1/UPt2gWi1GYsWq3EBriwXdSz6aeWT0Nu6MBm7V3MXu7o4FF79xD\n9cEqwPMboCwar17bQi2ayXshCIIgCILCiRMneP/999m0aRMVFRVUVFSwYcOGSJvll2GZeW7fqLmt\nmeaOo6Qmp3mIZoCuaAZgcfWu63as7RhtXe2sL6jggqwL3fvLa8oo3l7E4Zb6Pv6T2o8yIpopZZVs\nI4qvpvXHlH680pdXl1W3bSQji97fyn+VteH8ldU7XyN/G7VL2aZ3LfoT8YsFQRAih+mIs2effZaH\nHnqItravfvCHDRvGzp07Q25coMRixFk4ZuUos7mDbVNy/cYvkZgNpjjc3tItBFpnvDyb4c7T7i/n\nPPSdQWhmlmIk7kOs3v9YtTvUJMKs6Xj1naoPVjFxRKHuN6D6YBXL312GzWpjfUEFORm57nLKmhoL\nds9jbv58jzU3/PkugiAIgpDoJILvpOXEiRNYrVYyM6Pn3P1FnCnRWzkZudQceoPj7cdZ/v5SwPsQ\n3Jm2MznedRyAFEsqna4OAB760e/c0WZK5L6ynqzaB1P39cDYOmVq/00t0nhbuxroc7zR7AF6mQaU\n66T4hb/ceRMvT3qljz+o+I7qc1PKaetT/21k7EGvj6yU7eruwma1hXT8wigyFicIghA8/Rpx9tRT\nT7Ft2zauvvpqXn/9dR544AFGjRrlv6DglXDMsD7cUu+eKeQNoz+88ZbrN1TXuT9m/oSzjUjN7Ffy\nlIfyeYqWZzPYa2nmngR6/7y9z95mECrRJP6+JZGMFImW+2+WWLVbME88+k519lp+ufMmj1nB6md6\nZPYobFYbC8csprymjKLKQm7YUQT0fm+Utc7UdRjxXQRBEARBSBwOHDjApEmTuPLKKxk/fjxTp07l\n0KFDkTbLL+q1vEuqinnw/eWsqr2fH+SM9VlOEc0sWLjiGxNJIonstKFckHUhrV2tNLU2uo9NTuqN\n9NcKVUpfz8g4jlY0U9Yd91ZWqVf7t/pYf30c7bHqtdkmjijk5UmveEy4UmxThDV1m0o5vbXTfGVf\n0v5b73yVcYstkyojIpp5s0sQBEHoP0wLZ1lZWZx99tl8+9vf5uOPP+a6667js88+C4dtCUM4fgxD\nXae3dJDRitkUlYHUH26RwGwboRJQ+oN4dPzUQlOgGO3cGD3WVzt629QLL3vrjARjuyAkKvHoO+Xn\njHYPbHj7rdpcuAWA9QUV2JJsdPV0eewvGD7OY0axfEcEQRAEQVCzaNEi7r77bt5//3327NnDzTff\nzIIFCyJtlmHKa8ooPm8qR9ub6Ozp5B3724bKjTzru7zy+TZ66AGg+uBfaHAc5pbXZ/Lch8+wYPc8\nFo5ZjN3RwMzqaVQfrHJPeNzXtBfoK6jppTBU+3B6Apg2DaO2vLpsnb2Wwy31Hv1hdVl1em91Xer2\n6uy15GTkUlJV3KdfPfOim1lXt8bdjra8glK/0tbCMYvd++rstbqpJtXnq0bpFwfim4ZqrChYv9hM\n2sxERq6FIAh6mBbO0tPTee+99/j2t7/Nm2++SVNTE6dOnQqHbQlFKAaJ9H7kAy1r5PhoXYfEl22h\nGpQL5eCet2topo1goo8iRbQ4cKF0aNU54YOpxxt6zr0vAnketLPsjLSjPT5QovF7IgihIF59p5yM\nXOyOBlaNXdtnYGZm9TS2fvwSN1aX0NTayIbxG0m29M6MVoR6oE8aHhHNBEEQBEFQcLlc/PjHP3b/\nPWHCBFpbWyNokXmmnP9flF08l5SkFDJtg7Bg8XpsiiUVgH8c6xW/rjlnMgAPf7CWn18wk3svXcyj\neyuYmz+flXtWUPZGKTMvuplbXp/JTa9OZ/KI67jl9Zk88LflHuKT3niBtygrBUVkUupRr2em3ne4\npZ7qg1VMenki1269kinbCt1CXklVMdUHq7hhR5E728CcXaW6a55XH6ziuu3XUHPoDZw9XczZVeoW\nyYq3F7Hwr/OYedHNlNeUccOOIo861HYpdawau5bZr8/i5ldncMOOIurstZTXlNHmbNU9fyUDSyj6\npNEyXubLjmixMRqQa2GcQK+RXNvYJVzBHP3JFycDX1/etHC2ePFi3nzzTcaOHcuJEye46qqr+PnP\nfx6wAfFIJFL4BfOhD8RBUKceMFJ/sARim7/1m4IlVKKZr/sWr+k0o8WBC3VbRqOzAqU/xNRIEcpo\n0EQjEc851ohH30kZxCjadjWzX5/lHrBQnse5+fPZ8snzfD0jj5HZvWkpbVabRx16vode+hxBEARB\nEBKTSy+9lEcffZSjR49y/PhxnnvuOc4991yOHDnCkSNHIm2eT9QThWoO76L0u2XYkmyMyDzXa5lO\nVwffPavXb0oiib837qG5/SgAT+7fxAN7fs3nJ3uzFiwcs5jkJBsFw8cxe+QcGhxHePLDTQxOOYOK\nD9ZxvP0Y5TVlVB+s8uhH6qXZ1vpfynpi6wsq2Fy4xd3PhV7/rbymjIVjFrvPb+Hu+ThxMjf/XjZN\neIqVe1YwZ1cpbc5Wlr+7DJer195N+za6bVdzuKWedXVruCd/EU/v/wNLvncfFgvM2VUKwJZJlWyd\nXEVWehabC7fw4rVfpU883FLvFtJyMnJ58Ae/YdE799DU2ojFAhaLhSXfu4/8nNGsL6ggPXlAn/MP\nNXopIyO1pIG38YNYG0MKJ3ItjBHomE2sjU0JX2H03kXzPT7cUs+UF6YEXN7icrm8r0zqhf3793PR\nRRfR0tLCP//5Ty677LKADQgHgSxwHyqUhyWcH129NoIRhRThzGzeZiPnGorrES11hAttCoVEwdd5\n9+c1iefrH6pzq7PXuqNCwnm9jNbt7bhofs/DRTycc6IscB+PvtPhlnr2Ne1l5Z4VLByzmJV7VtDm\nbHVHlm0Yv9G9RoWygLvyLVFm/ap9D/XzDATkmwiCIAhCvJMovhPAuHHjvO6zWCzs2rWrH63xxIzv\n9NyHzzDvrTvpptvvsVaspCSlMjhtMG3ONpKwcu7gc/l70x4AzkzJIiNlAGnWdG6/uIys9CzW1a1h\n8ojruGzY98nJyGVf015GZo9iX9NefrnzJndq7OqDVdzy+kwen/A0E0cUArhFMrX/Bb2ptrWZAZRx\nJ7ujwaNMUWUhd10yl2nfmeE+zu5o8FirTBGRFN8R8PDzFDtWjV3rzmqg9hWrD1ZxY3UJf5y42W27\n0lZJVbGHvUr/VbFDfR7avqT6byP9UTP9YcW3VTLT+Bs7C5cdghAqAn3u5HmNXYIdp4sG2lNOcPbg\nswMqa1o4W7t2Lfv37+fJJ5+ksbGRuXPnMmbMGObMmROQAeEgksIZ9M/Dov1RDYWwFK6PXyiuR7TU\nIZgj3Nc8Gn60g60rGp5LXzZUH6xyd7aUtYwiKdL4+95Fw/Xsb2L9nBNh8CcefSf1c6cMdChpgxaO\nWcz97y2jYlyvcKbMblYL8CVVxSwcs9hj4ENdb6CTegRBEAQh3kkE38kIzz//PFOnTo1Y+0Z9pzp7\nLXN2lVL4zUk8/MHaPvvTrem0dbf12Z5iSaHT1QmA1WKl29XNDeeVsOfLdznScpiz0rM41t4MwILR\nS9h84Fmgd+KSWiiqPljFxBGFbt/qePsxzkw7yx0tphWdvE3K1vbDFJ+tzl7LlG2FbJ1c5VGHXp9N\nLSQpPqK2DcBjIpX6GOVctAQzLmCmfxvI2Jvat/XWfwXPc+6PCeqCIAiJQjB+k2nh7JprrmHbtm1Y\nrVYAnE4nU6ZMYceOHQEbEWoiLZxFArOOQqwPtBqlv84zUa6nGdQz18JxbQJ1FoNxMvVmpwXjsIZL\nBApkFpy39KYzq6cxN3++u4MSDc96NNgghI5EGPyJF99J3fHXi3xXp/8p3TkLlwtSrDYqxm10zyBW\nZv8Wby/CZrX5FMbkXRcEQRCEviSC72SEKVOmsHXr1oi17893UqKrlryziAbHYc5MzeJYWzNddPos\nZyGJcXk/YVf9awBkpw1l0X8uBWDad2a4fS0lsmzJO4tIsdro6umiq9uJzZrM1slVbr9M3SdXIv4V\noczsRCVv0Vp6GUrU23zVYaSdcGK2LW/nFWjbeiJhtF0jQRCEWCYYv8n0GmdOp5P29nb3311dXQE3\nLoQOde5kBW+5RQPJPRqNeUr9oT7PcNpv5nrG6nUMpIwySBoN6315K2f2HTCyoLKZ58DXOQSaI9hX\nOfU2IzYo+9Sz+qLBOY8GGwTBDPHgOykDK0onXS9d9OGWesprypj9+iycPU4AOrt7z3XV2LWU15S5\ny2+ZVMn6ggqfbWrrFwRBEARBUAhg1ZF+Q5kkdMvrM2lztlL63TK+bGvwKZplJGcwPu8K/jjxOdb+\n+LfcdNGtDMs4m0X/uZTf/s86oDfiqrymzCMd42MTnuDFayvZ+JMnsFmTaTh9BLujQbdPnp8z2r1m\nGXy1Dpu3yC8tepNI1UJSnb3WvW3B7nkBj5H46u/5qjOQ9sy0pVzTUPmmap9abYeR/q70iQVBEMKP\naeFs6tSpXHfddaxevZrVq1dz/fXXRzQ8PpHw5yAUby/yGLzSDp4bGSj3VncsCkPKeQJhXaRQ3Y4v\nAhVCIkmgNg/LzPNYyyZcIm2gzqI6YsJoe97eG/XArpE6lc6E+n301lkIVhhUoxWStTb4qi8eiKX3\nTog/4s130voWRZWF7vUwbh1ZSorVRpo1nft/8CDdLqd7YXfoXRNDmSldXlPmFuP06lb+jrXfTkEQ\nBEEQwo/FYom0CV5RJgnde+liGtu+ZPOBZ7BarD7LOJwOdtW/RunOWyh4/vts/fS/+dLRwP3vLeNf\nLZ9x91t3MLN6Gqc6TrH145eYUf0zrnppPOU1ZUBvBNrWyVVUFv3ZbcPc/Pnk54ymzl7rVwzTjiUp\n/pqvc1TW7lL6mOU1Ze5xAL0+qbYvrJ6YpbVBD3+TRP35jGbHtvSODXVGnXjpbwuCIMQjpoWzkpIS\niouLef7553n66aeZMmUKJSUl4bBNUOHvB97uaKD+9CH3zCJtVI2ZgXItRgfwzToh/TEIpszc6Y/c\nz/7Ovb/sCBZ/EVVG61A70ME6p+EgkHPzl2McfDvSerP+fJ1zMMKg3jb1bLZAou78Eezsv3ARrwPv\n8XY+8Uw8+E7KjGSA4u1F3LCjiDp7LXZHA1+2NnDryFL2Ne1lwV/nsuR797FlUiXZA4byZasdp6uL\nnIxc1hdUMGdXKVO2FWJ3NLC5cIvHLGejkb3BIu+OIAiCIAj9wR35d3LTRbeSmpyKxWUhxZLqt4zD\neZqTXSc43nGMHno40XHcva+HHlo6T/HH/U9yRsqZpFrTWDhmMdDrnwEcaP6I67Zfw3MfPsMtr8/k\ngb8tZ8q2Qoq3F/URrhRxTCtgqQUxX+Rk5PrMXqJGiULzlpVGLdj56h97K280G4xRv1I7QVrd5482\nxLcVjNJfz4o8k0K8YFo4W7JkCf/85z9Zt24dGzZsYO/evTz44IPhsE1QofejrSY/ZzRbJ1eRk5Hr\ndjLUUTUQ3MwYM46FEYGtpKq4zyzzUKMdeAsnRqPOYkE00xu0NIs3kcZIuXCmd9RrzxeBRKP5i956\neuJzHjnRgxkU9jcjT6999b/9CUpG61ULpHozEyMtXMWKaG2GSF9TwRzx4jsp75DT1UVnd5d7hvPK\ny9fyyAcVLP3bInIzvs7I7FHYHQ0AWLCw/Pu955qTkcuWSZXuxeP10tLo/ZaGWjSTd0cQBEEQhHCi\n+BvPffgMT+7fRGd3J4NSB9Pp6gAgzZpmqJ4eesiwDcSChaR/D9+d6jrJiY7jnOg8TmuXg5V7VrCv\naS/1pw9Rc+gNFr1zDw/+4DcUDB9HdvpQHtu3gZWXr2XLpEoPoavOXst1269xT4SC3gnZRsePtELS\nsMw81hdU9BHclL6ier1bdRllEpW6r+xrOQNfgp5eKkltJJ1Z1ONrkepT+or+E99WMEp/PSvyTArx\nhMVlMjH0xIkTqa6udv/d09PDNddcw5///OeQGxcoRha4jzWUD87M6mnu2T++nAllUFz9XyNthNoJ\n8FZnIJFvZttVFlntL8dGu/CuEcJxzYMlkjZF4r7Fgi16KPb5+x74Ku/r+2D0/NXH2R0NXm2Jxmc9\n1omXa5oIC9zHk++kTH5R1icrrynD2dMrpKVYbfzs29P51pnf4tbXf8H8S3/F5gPPsmH8RrfI5m/x\n+f749sbLuyMIgiAkJongOxlhxowZPPPMMxFr35/vpPgbz334DI980Os3/XBYAU/u3wSAlWS6cTIk\nZQhHO4+Sbk2no6eDHlePRz1JliR6XD0kkcTglDOxWZOxkMSXbQ3kDTybBy9fw8QRhe61xursteRk\n5LrFsTm7StkyqRKgj4+lHDuzehpz8+e76zHav9TzqdTb1H4dhGb8x1f/1V8fNBAfMNJ+oyJwvjzp\nFQ/RUU2kbRRih/56VuSZFKKJYPwm08LZL37xC37961/zjW98A4DGxkbuvfdennrqqYCNCDXxJpzp\nORv+PkJmB578HR+ogxHM4FewH1qtwxZOG9QihjdnxlsZvXQCifwDY+T8jTz/gYhI4W7HaFmzYrd6\nQWaj9aufvUDPX++4SDy/if7OxDqJMPgTb76Tevbgvqa9ZA8YSk5GLjWH3qD8rTl8bUAO3T3dnOo8\nyeNXPO3eb3c0+PxWeRP05R0XBEEQhK9IBN9J4b333uO3v/0tzz//PAcPHuSWW27hN7/5DZdcckmk\nTQvYd/rJlh9yrP0Y4CIlKYUeVw9dri6SSMKChdTkNFqdjj51nJFyJmeknYHLBXddMpd1dat58PI1\nrKtb4zGm4Kuv582nUqdRzM8ZHdL+XX/4cdE+6TVY9Pr7giAIgjGC8ZtMp2p0Op1MnjyZWbNmMXv2\nbAoLC/nyyy+ZMWMGM2bMCNgQwTvq1EWKE+DPGTAbRu7r+EDDbI3Y4CtFXLChvVrH0WxdRsqpI+e0\nKfiM2KcnmhltMxwEm7IvFO0ZEc38pRc0c799HW9EnPa3aLLZNr3t82afXroKf9dA/ewFev7ejvMV\nYRoOEikNQCKcY7wSj75TSVUx1269klmv3ciNf+ldr61g+DiGpGWTak0jNTmV7AFDASjadnXv+mc+\nvlXqf5v9XRQEQRAEIT5ZvXo1y5cvB2DEiBFs2rSJBx54IMJWmUPdX7Q7GjjRfhwXPbhw0dHTwW2j\n7iTTNgiAQSln0NXTCVjISM4AICt1CDecV0LuwK+z/PsPYrHAIx9UkGZNZ2T2qD5prrXjDN76Z2rf\nKj9ntMe6ZsGOpWjtMUKwbURaNAunrxoO0Ux8a0EQBP+Yjjjbs2ePz/1jxowJyqBQEG8RZxD5GTTh\nSuMY6ig3b+XDEXEWroi6cLbpzx5vEXCBtunrHoSq3kD2B3u8QiDpOY20qd3nrx0jaSmM2hJIlJm/\n40KdniNQW2KZSP8GhJNEmDUdj75Tnb2W0p2zONl+iuOdzSz9z/v51pnf4uZXZ7Dmhw/x6N4KXC7Y\nMH4jpTtnsXVyFdD3G2Dk+5MI77ggCIIgGCURfCeFq6++uk9q68mTJ7Nt27YIWfQVRnynOnstU7YV\nkpORS3ryAG4dWcrdb93hcUxG8kAcztMAZKUN4fZRd/LA+7/uTc2Yeia/+t5SFv51Hpsm9GYqWLln\nBesLKtzpGA+39KbR1qbD1kbyq7PkzNlVis1q81pGjUSMGRt/iGb7tcSavYIgCMHQr6kaY4F4FM7A\nWHh2OFLHhWJQHrzPdArXQHp/OALBCHLhEo2CIdQp+/TWvgL8DpJGgkDTH4T7HNQdnHCnZ9B7Lr29\n/2ZTwULfnPraY8L9LkTT8xYIsW6/NxJp8CeaMes7HW6pp3h7EbdfXMbKPfeTnjyAzp4OGhxH3CLa\nyOxR2B0N7rU1fKWGVeqMx2dcEARBEEJJIvlOd9xxB9/4xjeYPHkyAFVVVXz++ec8/PDDEbbMuO+k\nrCNmdzTQ1NrIjOqfufelW9Np624DcK9htvSy+5j/9t0sHLOUy4Z9n6bWRhb9dT4PXr6GX+68id//\n5ElGZo/y6K9phTN1H1LdD1dQ1quNVPq/SAl0gbRntO8bbX5sqCcbC4IgxCr9mqpRCD1GQqT10rFp\nywcTRu8rPZx2u5l2FCeupKrYUOq5UKA4AP0xe0Y7O8tMuUDtC+c5eavbjEOpFkoVB13Jlw70OSYa\nqLPXUrTtat20i/7ua388Y2bTgKrxZ796v/a59Pau6x3ni2GZeT6f+Tp7relvl9nvkL/jYyFVRbS8\nL4KgvC9OVxcP/+86bEkpdLuctHd1APDgnvu4qXp675pnNWW0Odvc5byluJWUjIIgCIIgaHnggQdo\nbW1l7ty53HvvvbS2trJixYpIm2UKRTQrrynjtp23urdbsLhFM4D05AEc72xmyd8W4nK5ePLDTdzy\n2kxuqp5OY+uXZA8YysuTXmFk9igPf2pYZl6fyLFhmXnuiZfqfrj6+JyM3D62qseWzI7fGO1n+epj\n9gdG+oZqjI7dRFNfzcj5RZO9giAI0YoIZxHG6A+2tx9rdXl/P+j+2tArq1enGdFHccr0UgDcsKNI\nV1ALBu31CKR8sO0arc+o6GC0/Ujj7VlRCz/9JWgGhE7sbbQM5AYTRWp2PTi9d92XTWY7HXo2KMKq\n2fM08iwp9ukdb2bSgV7nURASEWVCzL6mvTh7nLhcYLFAe1cHp7tOMTT9a2SlZWOxWHj4f9dx68hS\njrY1sq9pL4DH+hlqovr3QRAEQRCEiDB48GCWLVvGjh072Lp1K7/61a/IzIydiDtl3KO8poxzB32L\n084WkkjimnMm49J0QJV0jae7WhicdgYdzg5cLsgZmMuC0UvIzxnt7lPPzZ9P6c5ZHhNS1f0VpY9V\nZ6+lvKYM8OwL2R0NXidI19lr+0x+9tVf8iVEeetveuuXhRtffUNfxJp/Kn61IAhCaBDhLMKYFaHA\nc3FZbXlfopkvR0dxHvT26wk83gbAvdmtd3xyko31BRV96g/GafI10O+PYEQSvftoJIomFMJMtIg7\n0PdZ8fY89bet/trLzxlNZdGf+0R1BepwBiPAhhJ/9iszEf2dn6/nS92GtuOl929v5Y2koVX/W/lm\n+UNtn7ZzZmbSgbfI2XggHs9JCB92RwNd3V0seWcRTa2NjD97Au1dHRzvPEZW+hAK8sZTff0u/nDl\nMyRbbGSlZ/UuZv/uMkqqisnJyHXPfNYinXtBEARBEAAuuOACLrzwwj7/V7YbYe/evUyfPl13X1tb\nG1OnTuXTTz81XCYQ7I4GXC64LOcH/OXzVwDooYdXPtdfoy2JJDJtgxh/9hU0tTfS/u+o/Qffv889\nDlRnr2XJO4v4/NRn1Bx6A/iqv1K8vYjqg73rymrHRdTjSXoTF9X9Mu3kZ+04i1ZQU9rT9gm9iWTa\nv832swLtv2j7hrHcD4p0ZhxBEIREQISzKMDMD1qdvZbrtl/TRzwz0oa3WT1qJ8jbLKFAIlf0jlHb\no86prZ7dZCb9mjd8iYTeMCoi+Cqvbqe8psxvfaGaCRTK2UTBOo/ae1l9sMrjfvRnyjwzaRi8CTeB\niGaBCJnhEkB9dQiUmYhGhC1/z7G6w6M+l1CkidDWYfa90TvO36QD7fdKL3I2Hogm4V2IfpTfttsv\nLuOxCU8w+7tzeHL/Jo52NNLtctLc2syLn2zm6X29a284XV2s3LOCjT95gqWX3cfmwi0AlNeUccOO\nInnuBEEQBEHQ5cCBA3z00Ud9/q9s98fjjz/O4sWL6ejo6LNv3759TJs2jS+++MJwmUD8fW0CAAAg\nAElEQVRQor2a25p5cv8muul277N4GYrroYeWrlO8+Mlmzkg5k1NdJ7l4yCU4cXKg+SN3/+3+HzxI\n3sCzeeSDCrcQtb6gAqeri1tem0nx9iL3OuPKZGWlb6aMU+j1f4dl5nmkgNSiHbPRE6L0Isz0xgIC\nzegRbP8lkMwp0UYs2y4IghBLiHAWY+TnjOblSa/oOjlmZpzoDUTbHQ1eo6YAnyKQkYgNpb06e63u\ngL0yu8lM+jVvEU3eImD8CTb+RASzKHnDAxUN/AmRZiJv/OFN5NATUn1tV89UWzV2Levq1ng8O76e\nlVA6gHqz3/qDQMXQQMoZFZi93VOjbQZzLt5EezP3WE/UNhP16qtePbx1+OJNNANJ4yGYp7WrlQV/\nncsvqn/OS//3AgCZtkFkJA/ESRc/yPkhE0dcxb6mvaQnD2B9QQUAt7w+E7ujwT2wk5xk86hXOv6C\nIAiCIGg5efIkmzdv5pFHHuF3v/ud+//+GD58OBs2bNDd19nZySOPPMKIESMMlzGLMrZw68hSHM4W\nBtkGk5GcAUASVlz0eC1rIYnBKWdw40U309PTw6uH/owFCxdk9UbarRq7lokjCnnw8jXYrF/5U/k5\no9k6uYrKoj+zZVKle2wlP2e0u39jdzQA6K5vBr3jP1O2FVK8ve8EJ3U/39sERG99P63QBrgzegCm\nJiiGqv9ipJ5o9U+lDycIgtA/iHAWA2h/rBXHR73PTKQW9P2hVSLZFEdKqXvB7nnMzZ8PYCgyxV97\ndkeDux21uKUWfwKNoNPuNxulEkrnQ4lQUduhjhI0gi8RKdSikLf6tDZ4iwzUu9aAh7OuRi/yUdke\nzDp96mO8pegzUtZoW97wdn7+6jYrmvkTOZU61aKTt3tlFr2OlDadh3qfupzSSTL6ThgRtUMpuvZ3\nRyTSHTLpcAlGGZaZR2VRFbNHzuFYWzOnOk8B0NJ1ilanAxcu9jS+y7UvX8nNr85g4ZjF5OeMpqm1\nkdyMr7sHafJzRvdJ1Wx2nVBBEARBEOKf22+/nffee4+eHu9Ckx5XXnklycnJuvvy8/PJze0rHPkq\nYxalP1EwfBxnpmZxquskDqeDgcmZWP59jLeoMxc9nOw8yaMfPExW+hBu++6dpFhTaGptpKSqmLI3\nSqk+WMW6ujUe/pTSrrIOmvK32h4lDaM3/18R37ZMqvSatUP9X2/nrnct1GW1GT0CmagZCvyJZtEc\n1SV9OEEQhPAjwlmU421wXC1eeMtR7Q/1sXqRbMMyexedXVe3BghMoFFHlihOnNKOkQgkbV3q/xqJ\nktHWqy2jN/gfKtTnNzd/vnvgP1Bx09u+UAl9erm+9Zxcb7PMfNmqRn0NtKka9I5XlzMSDReoKKS1\nRSsMBoKv9zfYurXX3Fu9WtFJXc5X9KXZ81LqNmL35sItrC+oMBzh6e350oqu3r6BRq+xtr7+oD86\nZNHa2RNiB/UzZHc08Ng/NmAhibbOVganDObMlCwsWLBiZeHopeQMzGVYZh4js0dRfbCKWa/diMv1\nVX2K36L+Lmnf32gfrBAEQRAEIfycPHmSiooK5syZwx133OH+fyyg9K0XjPkVNouNrNQhDBkwhDNT\nswA8os5+kPNDbBYb4/Ou4JxB3+Smi25h4X8u5WTHCSo/fYnHJzzNyOxRrC+owOWClXtWeE236Mse\n9X+9oR6rCRXexgmiWfyRqC5BEARBhLMoRx3Krt2miBc5Gbm6UT1m0ZY/3FLvkWYvENFMiSxRD+Kr\n2zEqcHiLdPJHNMwgUq6jErmnFYp8YWYmV6jwJz5pHW5/EVXqqCK9Z8LX+nrqcv6EIsUmpb5A0vbp\npRc0+px4i/bSE2+1dZuNRlTX5ateveumHOsrwsOfTaHoRBhNy6puU7FPbac3gVBBT5zVw8h9Dse3\nItwdsmCeX0GAvs9QTkYuA2wZdLjasVqttDnbmPCNK+mhh266qW/5AqslmY0/eQK7o4GFu3t/++66\nZK7726Od7FNnr2X267NMRSALgiAIghD/nH/++fzzn/+MtBkBc7ilnqf3/4E1P3yIgSmZjMubgMXy\n1f5keiPcDhzfz6CUweyqf43m1mae2v84G/duYNXYdQywDSB7wFBmVk8jJyOXDeM3eqwXH6hdvv4O\ntJ54Q/xQQRCExEaEsxhBTyBQ7/NGMIPAaoHOVzlvf2vD7/UGuo2mZvIW6RQM/TUop8ykV0fugaeA\nZsThDHdEiiJmmbkueoKmelv1wSqu236NxwLDyjMBuPOs+2pTKwIp23yV0YpzShltvVr0ohONXA9v\nz3KdvdZnFJ7ybJhdW89btJo3m31FLephxCZfEWv+bNfez0DLGol6VJ+nLwHJ330Op9Bu9DoE0nYw\nz68ggP4ztPR7y7GQRHt3O2nJ6bz8yYtkWAeShJWn9j9OfcshDjR/xJxdpTS1fcmC0UvYtG+j+91V\nz5A+3FJP6c5Z/KvlM/Y17XW3Ecg3QhAEQRCE+GDcuHGMHz+e9957jxtuuIGCggLGjx/v/r9ZduzY\nwQsvvBAGS32j+FEXZF3I4dP1PLl/E23dbe79TpxYsNDccZSfXziTs1KzGJw2GLBwtL2JrPQst0i2\nauxaAMpryiivKQvYd/e37IJRpA8hCIIgxDsWl0udPCc+aGpqibQJIcfbAJKviK06ey3lNWW6OawV\nJ0dv4VYjA6zayBZlEEwRYLRtKnbaHQ19Is70UjNpB9XiYfBM71ztjgbKa8oA7wviKtdO736ZbdPX\ncXr3zUwb6rbq7LXM2VWKzWpj4ZjFTBxRqGuTkq7LyMC+NtLMV2qKOnstORm5fcpon9tQCqfaa62s\nG6hOgap3rfTOz9tzoH3njFw7fzZ7uy6AT5u8HWu0XaPPpV67oXhGAyGS36JAv9lm6o/UuWVnZ0ak\nXcETI76T8ltxquMURxz1uPB0Ic9MyeKSofnsqn+NnAG53DryNjYfeJYN4zdSXlPG+oIKcjJy+3w7\nDrfUs69pr/u3IhzfaEEQBEGIFxLBdzp8+DAAPT09vP3227z33ns4nU6+973v8eMf/5jhw4dH2ELz\n406/q3uYFe8vAyz00O3efmn2GP7etIfBKWfQ2uXgtlF3UvXZdm6/uIyC4eP69P0UAvGRvPWlA+0L\nhLJcvIz7CIIgCNFFMH6TCGcxiHpGj7eBJWVwq6u7y+vCrt5EKzMiBniKH0AfAeZwSz3F24twurpI\nTx7gN62Atj5/g/PBOF3hds581a92WrUij57gA4Gt2WUmeiyUIlJJVXGfe61nk5F2fT1zRkRhPYHZ\nWwRnKK9Dnb3Wff7qtQjVtnu7377ezVAKQaB//lqhztcaY77uqbf3U9uunm2hGDj3V0+kO2i+RFQj\nx8aDuJAIgz+xgFHfqc5eS+nOWXxx6hDd/x70Scb273+7cOHCQhJJFgtWi5UnrvgjE0cUeny37Y4G\nAJ/iv/r7KQiCIAjCVySS77R69WoOHTrEddddh8vl4uWXXyYvL49FixZF2jRT407qyUc2azJjvnYZ\nuRlf5+EP1pJiSeGKb1zFvuZ/cLjlC5KSktz+k1JWne0jWL8/Gvo/ev3HeOjXCIIgCNGHCGca4lk4\nUxwuwJ3uzptjoY26UcqrnRN/EWBGbVLboTe4e8OOIlwuWHrZfayrW2M6wgj0RcJAnC4jgkAoMCIS\nBRNxF4jgFMg5BDqDDHwLnWbETbORNv4i1BT71O9SKJ8Jf/fV1zMYzP02e5wvQUxPqDPSplbs1Ts/\n7XX3Vl+4o6ki3UEzEglp5trHKok0+BPNmB382VD3W57cvwkLFo/Is8EpZ3Dnf8xl5Z7lDEoZzOLv\n/Zpp35nhLqeOtPY2kSbS76YgCIIgRDOJ5DtNmjSJyspKkpJ6VxlxOp1ce+21/OUvf4mwZebHnZTl\nCw40f0T5W3P448TN7n3K2vJNrY3c/94yXry2EujtTyuTiZR+VCBZYqINiTgTBEEQ+gsRzjTEs3AG\n5qI11GKBNpKreHsR9acPsXVyVcCzus1EqSk2BzoobkZQMDpQHqpZW0ZsNnqtjKQv7I9BxUDbMCK6\n9Fc0nFLOVxQjhDbizKzQF+y5BfKMGWnbSNRYMGXBu7Dq7/qFOjoy0jMufZ1nf4oHkboWiTT4E80Y\nTdWofFNveW0mDY4j4II0azpt3a1kJA+ko6edJ674I/e8Vc6Xbb2RZc9M/BMTRxR6+CbKxB5vPkGk\n301BEARBiFYSyXcqLCxk69atpKSkANDR0cF//dd/8corr0TYMvOTjoq3F2Gz2thcuIWaQ29QMHyc\n7piEeuLw3Pz5/HLnTbw86RVyMnLjRjgTBEEQhP5ChDMN8SacBRppok4Np6wpoh2s0kacBdK2WUHA\nVwSZmXYDQSvg+bPDWx2B2qYnIAbaRjgHFYON+DES1Rdq+7U2+xLwwj0gG+4BYPXgs1oQDEWUlp7t\nSgdN3YZeBF2w+BpA9xfFFsw7Gc2zHfvLlkhG+CTS4E804893Up6RufnzWfq3RdSf+oLMlMHYrMlc\n883JbP+0kpOdx8lIGcifCv+bdw//jTPTzuTh/13H1slVXgeG9NZsjKZ3UBAEQRCijUTynR577DFq\namooLOxNW1hVVUVBQQGzZ8+OsGWBCWcbxm8EoLymjNauVu7/wYMeGXm0fVbwXCdefCRBEARBMEcw\nflNSCO0QwoAyqKQ4TWaOy88Z7R6MAnh64nNuAU05zp9ophyrrlf5t7+okZKq4j7llDoVe3xFnBg5\nZyOo7VXarrPX+rXDW11GbPNl48zqae72vdVjxJ5wR5oF45Qr5YZl5nm9vtoOgTdbjNir2Ky+rtq2\n1TaEu7OhJ/p4O5dAzl85t/yc0R5ikj+x2l87vmy1Oxo82lC+Lco1V1KPBIL6Hup1FtX3Untfzb6T\n2na1Zf29m/2Nt2i9cLRjNHJYSFxWjV3L8neXcbrDgcsCxzuP0dj2JU/u38SxjqNkpAzkRMdxpr5y\nHcvfX8Lx9uNu0Uz9u6ug/ZaphXmtryEIgiAIQuIxe/ZsSktLOXLkCIcPH2b27NlRIZoFgs1q493D\nf2P267MoPm8qRxz1LPrrfFaNXQt49kPUk3xzMnIBEc0EQRAEob+RiLMYwJdApT3OSEo0ZVtJVbHX\n9UW0x2qjPbSzw/XKqaNUlPb8rcvm7Vy8RaCoU1F6q0cvNaORskZtM9q2tnyoo2RCSTREuRiJgNFG\nIkVrpIIvQcvX+ZtJxRFIG8r+4u1FbJlU6d7mLQLLm6ilTS9q5h7o3UP1du176u2bFop3yeh3pb8x\nEsHZHzaEum3lvBJp1nQ048t3Ur8bpTtn8cWpQ7iAHroBsGAhwzaQm7/zSx7+YC3ZaUM53nGMYQPP\n5rEJT3hEvRuJco+GZ14QBEEQohXxnaIDs+NOv6t7mOXvLwFgSOpQjnc0k2RJ4g9XPsOiv84nM2UQ\nC8csJnvAUN2sIpKmURAEQRDMIxFnARBrM5gDiYBQR1iptymOlrOni/KaMp/1aiM89GaHa+tXyiki\nWUlVMXZHg0ed/uzWSxWntlMd8eLPfm3UkfocjKCt36ij6i2CQy8CygzBRNjo1aWHWmT0Vk5vv1mb\n1NdI7zr7GyzVPpvKNrOoIxu0dvz/7H17fFTVufYzSSaYDAGFBicmosXag9gU2xQsVWo+EKFGYLAn\n1BOOGrlpepp4miACh4tcCogkrYk2CkojHjgt+cQkOJrD7URRqaQ5NU1BW7+misEZM0WFZBLIZDLf\nH+O7WHvN2nv2JCEXXA8/fkn2ZV3ftfZa77Pe9+2NdtYrk1H9I4GM0JLlwd+nn26vC02tJ9HgqdfM\nF3xbUPloHJMM0t9G1iLhIOtDAm/VRvlmOTND5gNZvSPJXywL7wqlvyFa4vUXgdDbeffmPKZw8cGP\njSkp02CBBbk3/RxRiIItxoYAAmj1tWBbw9OwWqwoTH8SO6a/CH+gE9mv/SvcXlfY7y6Nb956tT9l\nXkFBQUFBQUGht3CqpQmVjXvxy9uewuqb1+Pyyy6H3XYVRsZ9DafbT+NUaxMyr78Hm45tQO6hHGye\nvDVkf3T2/Nl+rIGCgoKCgsJXD19J4qw/FHY9cTmkpzjiFdt8nXhlNy24+Gfq3LVITkjBnpkVpk8s\nydzc6VkIiRYhPr8PdluSJi+99oikb/TIO1nZIyG/esNtm1krwe6gtxSJRm0d7p6MvJDJoFHeBCOy\nJVLZNAM9matudIbUK5w8RiIXem2pV38in8PVT3TpYdSO/BxAz6XZJ2DbtN9gxpgMDfmVWeVAZpWD\npZtZ5YCj8k42f4jENT8vlM3YpSHLw0EkynnSn8+H2kScS/h+M2qHSMrS1y4bxbHEl0fP5Whfozfz\nVoTI4ENyQgp+8fY67DixDQEE0NJxFl3ogrfTy55p97fjp+MfRmL8KCTGj4Lb68Kn7S4s2p8NIDiu\n9Ehut9cFn9+HvMM5bO6hfBUUFBQUFBQUBjNo/5Q+egrKP/gtVk9aiwXfWozPz32GkXEjUXRbCeZ8\n88coSi+GNdrK3qO9TYOnHp94gz8VFBQUFBQU+gZ9RpzV19fj3nvvBQB89NFH+Jd/+RdkZWVhzZo1\n6OrqAgDs2bMHd999N+bOnYv/+Z//AQCcO3cOubm5yMrKwqJFi/DZZ5/1uCx9rbCTKasjhUyxnOXM\nxNx9Do0lgtvr0ii7eWsNUdkts/AwqoPsd7GMsnalhZ+R8t4oDSMCwQwBFokSXSR/lh1ZoiEfw+Vl\nlF9vKuB7Q3Zlbc0rKo1ik4nkBUGMtyWDHkkUaay57kBP5jZP3orCui0oSi/W1MuoXN2VK9m1cNaJ\nRunyMhquHWUWo6damlBYtyWEzLZYtO+VTC3F1UOvYT72jYhrt9eFu6vuCol7Fq6t+BhINFfZbUnS\nOYHS4+URQLdiF4qIZOz3BsR5RyajZtIYbFCESHgMlLXTqZYm1Llrse3PT2Pu9VlIGnoVyj/4bchz\nUZYoXDv8WsypzEB142tISbga9vgkbL+jDG6vC3MqMzSkGL8eWHZkCUqmlqJ4SqlGYdSXGIzjSEFB\nQUFBQWHgg/YXbq8LnV0+PPJ6PjbXrscVl43A+t+vwdPvFiPLmQm7LQnLJ65kehw6IJiaOB5Ft5Vg\nxpiM/q6KgoKCgoLCVwZ9EuNs+/btqKqqQlxcHPbs2YOHHnoIDzzwAG6++WasXr0akydPxk033YT5\n8+fjpZdewvnz55GVlYWXXnoJu3btQmtrK3Jzc+F0OvHHP/4RK1euNMyvv2OckTJXdk12L9K0Kd6H\n2+tCfk0eU/SfamnCnMoMuFo/QYXjVaTZJ4TEHhLLZ6Y8fJ7AhXhn4Ugr0bpMJGiSE4Kxkcy4TIy0\n3fgy8/mYrW9320fmLo+3KNKLd9bT+vYG9NrsYrxrtn56Y8lMW8r+Noqx0502NxrrPXm2p2WItDwk\nr1nOTHR2+bBnpjbeWXfmrzp3Ley2JPZ8daMThXVbDGP+if0jypHRXCQrY0/at6/HYE/KrTcmBgtU\nnA45BsraiR+bnrZmrHprBVo6zuKz86cRH23DN4Z/A3/6LHj6ef64xUhN/DbWHl2FLzo+x+qb12NS\n8g/YOK5udCI1cbzheqC/LM0G+zhSUFBQUPjqQK2dBgYi0TvRgUK7LQkNnnosOpANW8xQ7MrYA7st\niXnrsNuSNLHoeb2CXoyz/tAdKCgoKCgoDBYM+Bhno0ePRklJCfv7+PHjmDhxIgDghz/8Id5++238\n6U9/wne+8x3ExsYiISEBo0ePxvvvv4+6ujpMnjyZPXv06NG+KLIGkZxA1rNC6S03W2QdAwQtPsSF\nU4zFiu13lLFFlswqRGb5FS5PPjCtkVJJz2JCZkFBp67CtW933K7x5eQt78ykY0Z5bcZaincfp2fd\npWeZxl830z69Ab6Mde5aqcWQmXfN9KtZ0kzm+tFMW55qkcfFM4pfRWWX3TNbDyNZNWMxGWlf82SR\n3vNmZIys1YrSixETZdVc49sykvnLbkti80uduxYPHpyPgrSlhv0m9g/FYOTLKcZb1CujmXlDr7/7\nY/Mpm6MjeVcp+y89DJS1E607lh1ZgtPtp/Fpmwu3j54OAGjzexlpBgAvvLcDP3/9Z/ii43NYYMG2\nhl8j91AOqhudONUStG4FEDKu+e90ljOz22XtCdQ4UlBQUFBQULgYqHPXwlF5Jx6o/le2znkoNRef\nnT+N8vd/hwZPPXIP5eChAwvR4KlnoS4I4Q5JqrjBCgoKCgoKFwd9QpxNnz4dMTEx7O9AIADLl37A\nbDYbWlpa0NraioSECwygzWZDa2ur5jo925eIdCESzrWb2TyN7uXX5EmVxEDQLWJq4nhNuY3ctvGu\nG/n/snKES493sybG5JG5PNMjQPTKKbPmMgKfPynkxXJESjjo3ZPVTXRnqFd/GXhCgMgHs2XprpxR\n7CogSMrunfWKLslkRAzp9XekZePbx0x7821mlCb9ruc6MRKXqjLyrbuKVz0im/peRg6GK69eecTr\n9K6MjNcrazjw84vdloS9s15BauJ4aTmACy4WRfDuZ+kdMxYpZkh+WfuZPVAw0BDp/Kgw8DGQ1k70\n/Sw78Tyy/uk+7PlgN4AL/ly/lxgk9PyBTgyPvRwJ1mEYFWfHP9o9aPW1YNGBbLi9Ljbes5yZmPny\ndDa3GX0P+xKKNFNQUFBQUFC4GNh8ayG+OP85JtlvwaL92ahsfAkJ1mHYcWIbsqvn4WzHGXzc8hFW\nv70C7Z3taPDUhxwOLEovNr2vU1BQUFBQUOg5+izGmSbTqAvZer1eDBs2DEOHDoXX69VcT0hI0Fyn\nZ/sS3VGE6xEGZpTxelY2fNoiIUPvAGDXZQsoWXpkkQYEFVlzKjOQ5cwMUSaHIybotLhoUUL3yHLE\nbN1laROBIHvGjNUcbwklIyL4dIz6PRLCz0huKC+Z0p5PY/PkrRqy1KgsZq1sxOd4CzOeRJGlGU5G\n+f4Sr0c6BmSyrAeeaAQgHSMyeebfF+N/mSlndaMzpBzic7J3ZeCJbODL04kVd2LuPgcAaBTLZssr\nu873jdif4hinOYfSiYRY5MtGFmgyGdbrj90Z5fC0NaOp9SRzX6JHXOttJPWgR6jzY24gbDwjKYM6\ncXppo7/XTjRWjrrfwhVDRgC44On7D55j7PczHV+gxXcW3xqZCgss+Mk35yHJdhVz3ZqckILFqTlo\nav0YNScPa4jqZUeWSMeygoKCgoKCgsJgBO2zx468AQ+m/gw73/sNEqzDMXvMjxEXE4crYkfiqqHJ\n6OoKoAtdmJIyDZ72T7Hgv+9Dg+eCVb+RTiUSXYCCgoKCgoKCefQLcTZu3Di88847AIA33ngD3/ve\n9/Dtb38bdXV1OH/+PFpaWvC3v/0N3/zmN/Hd734Xr7/+Ons2LS3topVLb4HRG6d3IlH+61nZ8M/I\nFP56RA2dVJIRL3x6RenFiIuJZ/60RashnpiQKb8L0paisG4LqhudLC96rs3XJi1XODKDT3vZkSUA\nEPKMGbeCMgsmMa06dy3mVGZoyLNwMiGrhxlQmekEvmgdx6dPVkB6lkB6sqDXDrK6k4WZjNyQpUnu\nQvVkQSSAxHTCWYV112pLNhYoTZk8y96X3dMbNwVpS/Hgwfm6ssefEuSv6Vm72W1JmrrbbUmw265C\n8ZRSds3IFWw4nGppYnJOVlz8uJCR5qKl3rIjS3QtCvl8xLJ116KksG4LNt16Ie6ZKEdUJ54UN9sW\nMkIdgMY1Sn8i0rmlJ2NHYeBjIKyd0uwTsHziSqz+/jqMGDISVsTqPnuoaT86A534df2ToGi6JMsj\n40YixhKDsSNvYN8LIPhdGijjT0FBQUFBQUGhp6B9tqetGb/+05PoDPjwj/PNePLdrWhu/xQWCzD/\nxsX46U25uCJ2JNJH/x88PrkI1w7/OhLjR6EovRhurwturwudXT7DvNReQEFBQUFBoXdhCQQCgfCP\n9RxNTU3Iz8/Hnj178Pe//x2rVq2Cz+fDmDFjsGHDBkRHR2PPnj343e9+h0AggAcffBDTp09He3s7\nHn30UXg8HlitVhQWFiIxMdEwr0iCtBJIQWnkZrGvg8bzCutI3wOCCvbNk7dqgsqKZAKhzl3LnuMJ\nMll9ZeWi5wvSlmLTsQ1o72xD6e3PMSu0xQcewMuznezEuZiWERHApz1jTEZIfYm0IMW67P6yI0tC\nLLNkdciscqB8VkXYNhDRnb6iNu9rhCur0X0igoCgRRdBz6pJVj+9do30uhnQu6SYzR63APNuvK9b\naejlL9ZTJJpkQZz15E9mxSi+f6qlCW6vi5GcsvYKN4fR+8AFgtjtdSG/Jo/1q2wMiPOImCc/9+jN\nHXSPT0fvOrWvOH75tvX5fbBGW1GUXqzbJiLENMU5k2+biwkz80Z3vwODCSrAvT4G2tqpzl2LmXun\nAxagKxBAF/zS54bHXo4W31l0BbqQeNkoFKY/icT4UWxNsPrtFTjV2oQqR7Xh2uOrIP8KCgoKCgqR\nQq2dBgbM6p1o3zIidiTecr+huRdtiYE/0Mn+jomy4tqEryNr7L34r7+8iDZfOzztn2J47OWwxdpQ\nevtzGv2O2+syrVMIt8/v672P0b5Vrf8UFBQUFHoLPVk39Rlx1pfoDnEGQFcpzN8f6B9wUTlOinCZ\nwpmuk/UTH9OKngtXX5404BdvogK+utGJ1MTxuor+LGcm2jvbEGOxwhptDSmznvJcr+zie0Qgmmk/\nM4s5s+/3Nvorff56nbtWYxHQHbIr0kVyuEU+YGwllpyQgl3HdyL/9Vy8MGM3ZozJiKgtjeRC/F2s\nd3f6TBzH/Bhze11M5kUiWkYIGZU7s8qBkqmlyK/Jg8/vQ8nU0pBxQmOcT5vAK7rJvaFIqOoRgrJ2\nkl3n74kbQ5llWzhSki+vrK75NXkAYBjrrTfGYU8PYwyG75FZKOXPwIDR2onkjebRYbHDYEEUvuj4\nPOTZKEThn6+/By998Dv40QV7vB0JsQmIibIi8/p7UP7Bb5kVeoXDGTIH8MR+X7ZgHs8AACAASURB\nVB9YUlBQUFBQGAxQa6eBgXB6J36v8qOXpsLd5gp5Zrj1crT52uBDB6IQheGxVyD3O/+OLX/4BYbG\nDMNl1iE45zuPf5xvxpVxSRgRNwJF6cXIPZSDc/52eNqbUTH7VUNdB+0hZfoUun+x11yyw1F6B0z5\nA5VA38egvZT2WQoKCgoKPVs39YurxoEMI7dYg+HjybtDI8UTxQbSA7kPEBdbZkgz0UUiuZtbPnEl\nS+NUSxMK67YA0MZo4vMhN5ElU0ulCmvRhZ1R2XkXc5GQZnydw5GoPPj8ZC74jN6JBJG6beut9Pnr\n1KZur0vq8pEgutMTISNFxOt6z4tly6xyhLgG5a8T5t14n4Y04+skKyN/XbaYp/tmYqdFCn4ckxtB\ncqHoaWtmMs/LK08S84SWnry4vS40tZ4EABSlF8MabQ1xkXaqJehLn08bQIjrV5l7NYpbJHP9mZwg\nd50paz+CoyIDcyozUN3oDOkXo/amTRn/jt6cEM4tKhBZjDcjGNU1HC72XBBJORQufZC8VTc68ev6\nYlwxZATOdJzB2Y4ziI+2hTzfhS7s+WA3/PADCMDf5UfxlFIsTs3BE3UbsTg1BxUOJyPNaC7NcmZi\n7j4Hcg/lsLlbkWYKCgoKCgoKgxG0tslyZsLtdeE3M/4T1yV8I+S5M74v4EMHgOAa6vOO03jhxA5k\n/dN9OOv7AoEA8B/fX42UoVej7Ef/id0Z5bDbknDO347LouOw+dbCsKRZljMT+TV5mv2XuD+72Gsu\n2f5P7zk+jIBeuJGLhYGyz1JQUFBQGBhQFmcCeHdBorVEf548icSsXrRW4a1EIq1LuOdkLh7dXhcc\nlXdidMI12DOzIqQ9I3EBSddl7ur0LIz4ZyPpv+6UkS8bgbfMMrLQCReLTK9+F9M6xUy+srGhl4YZ\ny7NITrfptT+56eP7gr+uVyeyjuStrXg5AiCVu96eF4zS4y2xssctwIq3HtGQxbyV1PKJKzXuTPX6\ngkAWXHoEIQDmvpS/T+NcdI0oq4eeTMlOGOqhzl2L3EM5+Leb8vD0u8Ua14x8n+tZAYpzQnesIfk2\njISMv1jo75OQvXkyVZ2aHhgwWjvRPPNZ+2d48Ns/xYZ31qALXYbpxVqGYGjsUHg7W7H51kKUnXge\n2eMW4Nf1xZq1gTgvEQbC2ktBQUFBQWEgQq2dBgbMWJzRfrO9sw0fnv27qXSnptyBNz75HyRYh2FI\nzBDYYobC1+XDM9OeC+bb1oxFB7Kx+dZCbGsoZTHqjcoByN3k99YaK1wYCrM6HaNyXwzo7VXV2lNB\nQUHh0oGyOOtF8Iqc6kanrmVJX0K0mBDvySw66DRPmn0CU0iJljH0vlG+4epMLtzoOcqzYvarGsUY\nXza9BZrZxYmsXHRNtK4TF4d6deHv65XRKA3eAoue1bPQCXeiy6h+3YFZ2dVbNIr5hiPNRFmVuePj\n09Jzy2eUNi/HdOqOD5js9rrYdX4M83UiUnn5xJWwWMAsq6i+ouWRKCN8HcKVXQ/i3KI3nqmd5t14\nn4Y0IzkrSi9GUXoxCuu2aCxAxT6iuYCs8ey2JNS5a5FZ5dCMHWprt9cFa7SVpcWXa9mRJSxN0fKL\nb6Nw49qMXObX5KEz4MPYkTfAGm3F8okrsezIEjR46gEE+5uXDdHCjO9Ho9OO4cYK9cPFIs14GTW6\nT2XpT/TFyVSFgYM0+wQsTs3Bp+0uPPnHwrCkGQB0BM7DH/DjodRcbGsoxebJWzF25A042fIRm2/4\n8ciPUbPf7oGAgVw2BQUFBQUFhf4D6UZ2Z5Rj4pWTTL0zdvgNqGk6BF+XD2c7zqDZ+ymyxt4La5QV\ni/Znw1F5J9YdXYPNtxZi7Mgb4PP7kF+TZ7ge4ddW9LeRdxgAmj1lONS5a5lnkEhgxvrsYpNmA32d\nqaCgoKDQv1DEmQSkyCms26JR6AwkJSGvFJbF/Vp2ZAlb7FD5RWVxOJdjYtp6xJ3oHg4AcyN3qiXo\nMi+zysGU2pG2oUzxLXOHRwptmRVLuP4T7+sRe7J8d2eUM4JSLCP/TFF6sSkywah+3ZE/M+/qLRr1\niC0zLinr3LUaV4lGeYR7hgeRlPwzWc5M5B3OQYffhwZPPRwVd8LtdWn6gSe9CtKWsj6bMSYDq76/\nlp3U48e8jHiSkYv0MxJXEjyBx6cbrq940oaXeyo7jX1+syMSoGSxBQA5BxfiZMuHyD2Ugzp3LTsZ\nSeAttbKcmahz12rkQuw/cV6RtQeNCcDYPS49S65c7bYkFKUXIzVxPJujqR5GEMtI7i9lz4Vr/4v1\nDaA+0puX+2NjpzfnE3rSFmqDOvgwduQNSLJdhTaf1/C5uKh4WGABALR2tOCp+l+xmGZ2WxK2Tytj\nlq78eOQPKxHMHDTpSwyEcamgoKCgoKAwuOD2uvBA6oKwz1kRi7+cef9Ld9fAbclT4IcfO45vw+pJ\na5lrxpKppdjWEIxTLYa6oPVVuLUJf2BcfF4WksMIdlsSvhaXiE3HNkjXSpRfuBjSfQ2zug4FBQUF\nha8uFHGmA1Kqi0rq/oC4yBA/5jKlcEHaUg15JiqLRYso/n0xbz5PcfHEK+6NFhkWC9DgqY84Bpis\njrK/+WtG5JgsTzOEnl45jPJ1e124u+oudvKK7w8xXb00w+UdDmbfNVJOiifRRBJWVPQTkZFfk8cs\nwPTei7QcZEUmkpS7M8pRPKUUsV9aR32ps2X3+XTr3LV48OB8VDc62d+LDmQj73AOI53FzQNPcvGQ\nyXy4mIL0HrUHuVnkrbxkzxP5LEuHfifyLPdQDuZUZmDX8Z3sHZ7IJZLQ7XUhLiYez93xAkqmBjdf\nmVXBGEOLU3OYVRmBP9EoyiiVP78mDwVpSzVkmx5JZVYpToQZEJQrspaj2GpkdUdpGm3KzJDo/QEq\nl148x74+vKFHkPfGRlJtSAcfyPJzx/QXsXziali+XD5a+Mn2S4yKS0QAQS/g8dZ4+AOdmHr1NOQe\nyoGjIgObjm1AdaOTHazYPHkrGjz1ePDgfDZ38DCaH/pSjmT5DbRDVQoKCgoKCgoXUF9fj3vvvVd6\nr729Hffccw/+9re/AQC6urqwevVq/OQnP8G9996Ljz76qFfKQCRUdeNriLZEGz7rQwempExDNKJh\ngQXvf/4eYiwxiImKQWL8KADAtoZS2G1JzDsKH2f6VEsT5u5zSGOAyyA7ZArI48iHQ0LsMM1BYSqP\nnt6KR1+u6YwO8dLfA3Vtp/ZOCgoKCn2PS5o4i8TyQ4a++FjqncgJVxY9SzD60JNFBpEAMosqcZFk\ntGAhJb/MUkOWJn+vfFYFiqeUaiz4AH2LN5nlRXcWCXrWEqI1jFHQWZkFjVmk2Sfg2dt3oLBuCwBI\nycxw6Ro9E648kSxAjYjDUy1NmFOZEUK6UtuILin5eFvkrlP2Hp1iC7d4Fesqc1mZnJACuy0JMVFW\npCaOx/ZpZSGbCErXbkti/XKqpYlZQOyZWaHr2hSAVP5Fy6ui9GLpGBFP8JG88WV0e11o72yTutpw\ne11oaj0Z4k6RXMryYybNPgHlsyqw6datWPZmAWa+PJ0RcvTMsiNLUN3oZITTjDEZzFqzZGopLBYw\n12rUbm6vC+WzKkJIKcobAHMZuenYBlMnFKlfZGQ6bfzq3LWYu8/B5Io2idT+PHnP94us3cX7AxFG\nLlllhPrFQm9bvoZLW2Fw4P3T7+GFEzsQbQkuH4kg4/GR94KiqbPLj2hEY+eJHfB2tsJiCX4bNh3b\nAJ/fx+J+bDq2Ac/evoMphczId1/LkV5+So4VFBQUFBQGHrZv346VK1fi/PnzIfcaGhowb948fPzx\nx+zawYMH0dHRgd/97ncoKCjA5s2be6UcafYJ2HjLE3imoQT/MfExDLdejhFDRiIa0ZiacgcAIME6\nDFFfqub+8sV7SBgyDAEEsOBbi3HFkBEovf05pNknYPWktWwvRusPIslorxMTZWVWaIA57x6yNU4k\npBkdXBTfkemH9N7vizWdWf3IQFzbqYOHCgoKCv2DS5I4C0cCic/2Z+wykcQxS6QYpQEEF0hkuUCQ\nLQB4N4vigkVMU3RHKAPvRo+35BIt+IhE4RXzIkmRZp+AgrSlrD6ict0s4WR0OpwWeTILFSI48g7n\n6MZECocZYzJYHxTWbUH2uAW6ZCblyUNvEWlGVswuQHmrIFm71pw8jA/P/p3Fk+IXwPk1eayv+LZ0\ne1148OB8DdHDl8duS8LeWa/AbksK695QtFoyIo3JKmnTsQ2aOonkcGrieE28r03HNmjS4ctK79ht\nSVJ5FTcY4uZAzD+/Jg8+v4+9S5ua/Jo8xFis0pN6afYJeHm2k1l20rsFaUtZO/NuGpMTUjDvxvuw\nfVoZO/1HZaN6FNZtQUHaUthtSZqxarclYc/MCrb5IbePd1fdhQZPve6pPOBC3DOyTKNYc3pkqF4s\nyTp3LdxeF062fIT3T7+HmCirxqIMkMds1Gv3cO5GBsoGJJIx21/fLbPz4GDckCroIzkhJRhb8M0C\nnPefw4xrMgyfj0EMAKDd34bY6FjYhyZhSPQQxFisSIwfhd0Z5Vg9aS3S7BNQlF7M5kFH5Z3YdXyn\nafnuazlScqugoKCgoDA4MHr0aJSUlEjvdXR04Omnn8aYMWPYtbq6OkyePBkAcNNNN+HPf/5zr5Vl\n7MgbEAgEDxu1+bxByzOLBX8+3YCHb1qCNp8XUYjC6pvXY+OtW9B6vgVJtqsAAJ5zzXj/9HvMa4rb\n69Kskfj4zwDYHk62pzWCTN8g+93s+zzEdZ2e55mLjcF8eG8wl11BQUFhMOOSJM6IWDLzYemLD5CR\nFZnMCsyoLGT5JXuHCAbggls23spELy2ezOJJAVm8HSOLB54MAxBiycWnLVqJ8PmR1VJ1o5MtDkWy\nxMhKjG8Xt9cVlpjhlfFiXZZPXImYKKvGMihSUPqbJ29F2YnnQ/qPUN3olCr3ZfJgVm7NyLXb60Jn\nV/Dk/9x92hNrp1qaUHbiefzytqcwY8wFRSmfLt82VFcixmSnzngiygyIfKO+JIiEGllSAdCQoWJb\nibG5KN6XKNviGAOgceNopNgVx4wY7658VkWIDJC1l2gpx1unifnOGJOBvbNeAQBGNPMWazPGZISc\n/uNJwE3HNrAYhNTv1MbJCSmMcAKgsdKTWQnyY7p8VgWzvqN68D/pnYK0pSGWqEQAkiVg2YnnGfHH\nQ+aPnv/J97vM3UgkBxYuBozmLjPP9MV3K1ysOrPvKgx+nGppQmrieAyzDsc/2j048snrhs93ohOx\nllgAQLu/HXeM/hFenu1EydRSLDuyBDUnDzOXucuOLIHb68KmYxuQGDeKWbt2p4wKCgoKCgoKCgAw\nffp0xMTESO+lpaUhKUm7F21tbcXQoUPZ39HR0ejs7OyVsthtSUiyJeOFEzvQhS5ER0UDgQA+bXfB\n5f0EXejC1+ITccVlV+B0+2l0ohOLvpWDSck/wJVxSUgfPYXtZwCw/SHtLemwrkyvwe+/za6VxIOf\nRt55wkHct1xwXek0VRaz+ZjFYCaeBnPZFRQUFAYrLkniTG/RwENU4Mqu6z0fCfQWKXqWEmYsDWTu\n4vi/yTKICCjeykk8OWREBJASXKagFQk13hqIlNM8ecFbM5GCnk+TV7rTe0QKyMgXPSsxEbx1D5XT\nrHl+2YxdjHgws0gxsoIjF3oiWci/W1i3Bc/eviOEUDKjYNcrT7h7ZAH15QE4xERdOLHGE5zzbrwv\n5H3qBz1rOCNijLdy5GVELDeRYUXpxdL0qG9F0lYc//yGQbSCE0kZcaPAp8fPLTLLMnpWNmYoTb5s\n/Ngjl2Vz92ljmZE7Mz4eEJ+2p60ZcyozUN3oZO7PZOD7EwDzjV8+q4K5YKQ2pjYid6Np9gka60kj\nl66Uj+j2UjZnEGlGpKBI/M8Yk6Eh9/n+4duc0jYi+vX6mAi8SDYiPd28mZmHwj3TFxsn0erSbL31\nxoAiNgYnqP9rTh7GmY4vEEAArR0t0vhmhFjLEPgDflw+5ApEIxovvvcbuL0uRvBvayjFI2krMGNM\nBrN8XT5xJbbfUcbmokiIW0XWKigoKCgoKPQEQ4cOhdfrZX93dXXpEm/dQYXDifvHzUcXunDntTMx\nNDYBUZYo7P1gD64YMgI/TP4/yH89F7/630Ksvnk9yj/4LRbtz0ac9TK2N7PbkqRxxPmfMsj2rkYw\nc0gvkrWXuCfjD2SGw0BZ4/V3/goKCgoK/YNLkjgzQygYxdYye91sWWSWEXpWYD1JDwAWp+YwK63d\nGeUoSi9mVk6A3BJGJAX49Og5Pi+epKDnKQitWB7eEi6zyoEGTz1aOs4ivyYPu47vDKmbmB+5putO\n+xMpUzK1VKPQ13NXILOiEcujB6qjLAjvruM7mSWZzKKPsHnyVqQmjo/YfadeeYxio/GkAZEnRKTw\nJ9Zk9TeSX7GNRfAWhbwc8mnypBXJGe8KUkzX7XWxPEVlKw+y+uPJYiIOxVhrIuGjR3TrxQeUEeJ6\n45YsKsllWUAIGWSNtgK4QKDxxPmpliZsOrYBV8YnITVxfIg1G+XBu0MELliD8uWj/0ScUuw0flMj\ns+Dj5V3WDjwpTu3Kywm563R7XRoXjxTfTKwvv/HjY7YRAWfWEpPmL7JsNevGsaebt3BjhC9jf7nj\nkH0DIi2L3ryhNp2DDzReyk48j2UTViEa0bgsJk4a3wwAohGNjsB5+OFHbFQs7h+3ANcO/zqAoBys\nO7oGLR1n8fgfNmDX8Z1YdCAbP3ppKhbuvx8PHViomdP5NYTRN7u/x8tgw2Ass4KCgoKCwsXEd7/7\nXbzxxhsAgHfffRff/OY3eyVdfs+3+/0XMWLISLxw4nmc6fgCXYEudKITX5z/HOUf/BfybirAM9Oe\nw8/SHsbyiSvhaW+Gz9/J9s60Hy6eUtqtNU+kB+Hop2wP3pO1l6hvCFeO/nZRqPYxCgoKCl9dWAIB\nUU07+OHxtIR9hhYePb3eXZCytzuLAFlZ6COeXT0PBWlLkZo4XqPY5n8HwpNBZCHFp09Ke9lpJUdF\nBiwWsMC19D7lXd3oxLqja9AZ8OFUSxN+Ov5hFL9biBdm7Na4AOTrwVua8OXhLVP0rMHoeV6pzrc3\nLX70/u4O+IUU9UNi/Cg4Ku/E5lsLNVZbp1qa0OCpZxY3+TV5rD4EWf9FWh6998R7de5a5NfkhbWu\no/d2Hd+JbQ2lAMAstmRtyOcjEhziM/Szzl3L7vPXAGhkigjbmCirptyyuslc9JGMPXRgIaxRVuay\nMb8mj9WJ2gWQy5o4tiLtJ3EeONXShMwqRwj5RdZoJB8iAUfXxLbk3yWrPf46kVZiH2aPW4AVbz2C\nZ2/fweYSvXkny5kJn9/HymzUJmKfEbKcmZq/3V4XHBV3YvsdZZr89eSL71OjMcw/T/2/7MgSFKQt\n1cxD/POyNHsyJns6z/QVevubZ5TmudgvcPXwq3s1L4XIEW7tROOspO5X2HFiGwAgClHoQpfBWxYA\nAcwftxhH3W+xOXb5xJUAgNTE8ZhTmYHOrguukBJih4XM6TRHiIcCeDe4/YHBNKYJg7HMCgoKCgpa\nJCYm9HcRBgWampqQn5+PPXv2YN++fWhra8NPfvITdv/ee+/FY489huuuuw5dXV147LHH8Ne//hWB\nQAAbN27EddddZ5i+Gb0TcGE/t2h/Ns75zqMLfpzzn8OQ6CH4/PxnsMCCYbHD8dikDdjWUMrWPLQv\nBiBdA/WGHknBHFTbKSgoKAxe9GTd9JUlzsKhtz6MkZAX4dLQI5VkxJiesle8p6cM5/Mg8qCzy4dV\n31+LGWMyNIRCUXox8g7noMPvQ7w1nsU2IqU0/xMAcg4uxMuznWjw1IeQZpQvAA3JIlOYA3JlGfnN\nJhcApBSXKfHDKcO7KwdkxfLs7Tuw+u0VeHm2M0QJSG1HhAWBJyh7mzDTe57Ij5KppSGuMfnniBCk\nuiXGj9IQTUZEGb3L94WMwBSJmDp3LRwVdyKAAJ674wUU1m0JsRoUSTaecL276i6py0+eVFo+cSVS\nE8fD7XUh73BOCLFDeVwMiONbT0EsuizUq4s4/grSlmLTsQ3sOsX+o2dyDi5EXEx8SB/uOr5TY63K\nE6t8P5OLSPGeHtGV5cxk7S1TfFM7OCoyEG+ND2kLcvfGP2uGvJTJWjiiL1ya3cHFIMIHM061NGHh\nwXvxh8V/6O+ifOVhtHbi55iWjrNoav3YdLpDoobA3+XH1+IT8dqPD7F0Ort8KJ4SPICRX5OHxak5\n2NZQiuUTV4YQ2eEODPUnCdQb67y+xkAtl4KCgoKCOSjibGDArN6pzl2L3EM5+PuZv8EPP7s+csjX\ncFPid/E/TYfQBT+iEY2UhNGocDgNv9PqO66goKCgoGAeijgT0BPirDcVMd05ES0jc4hwIMJAtPyS\nEWlifnxZSPFsZE1BeVC+BWlLseqtFYi3xmNxao5GoS4SP7LTUbySWiQGeBDZQtZaMgslM+AtzsxY\nUslgdJpLZtkjPkNtIKsv30e8dZ5IqEWKcDKnt8jm+9yMxQ5f5rn7HAgEIHURKMotT+zQNbFv+T6j\nOpDFYvmsCilxAkBD6hFRJhItfB3EMvIEL8muGcIqnFyZIWh5yzN+fMoIHZGcJBlr87UhNtqK4iml\nrE1F8pJAVmZ2WxIyqxxYPWltCCFJbcPHTSuZWspIUJ4QpTYSSb5wdaX+5dtGtD7jScUGTz3rXwAa\n8p7Gu8ya0UxfDCQrDL3vgNmyDbbNtLI4GxjQWzvx36blE1eioOZheM41m0ozPtqGNn8wXkiMJQY7\npr+IxPhRAIDcQzmwRgcPKdScPIyyE89rvhlmZdjoIE1/YiDNKQoKCgoKlxYUcTYwYNbTUWaVA/92\nUx7yX8/VuLqOxRB04DwAYLj1crT5vdgy+ZdIHz2FPaPWEAoKCgoKCj1DT9ZNl2SMs+6ClBwAek3R\nwZNbvJLfKH+RhNo8eStT7CcnpLBYQckJKew+H7eJfGjz6SYnpGhIN8qD0hTLYLclsXzJ9WO8NR6Z\n19+DFW89goK0pQDA0qI0SMmdX5PH4hbRdYJoycMjzT4BBWlLsehANivfsiNLWNn4chqBiA6eLNCD\nXlp8m4nP8/G4+LhcfHqkwOfry8dRImJjTmUGu747oxy7M8q7RZrxZQZCZU4mX7zCUYwPRfIkpg9c\naN/khBQUTymFNdoa0k5lM3Zp/JfzfUHtenfVXSHvUaw1vg4zxmSgZGrQMmHZkSUs7lhmlYPJWdmM\nXUhNHI+9s16B3ZbE+oXPlxTA/JigMlL9KZ6abGzx4NPSg/iM2AeUbn5Nnsayi5ctamd+fJ9qaWLW\ndG6vC0XpxYi3xuOn4/PYeKF+4mO/AdAEl3Z7XbBYgu7SxLmA2qYovRjlsypQMrWUEVUFaUvZ75Q+\nlZNvM9kcmmafwPIKN8fyZHtmlQObjm3AxluegN2WhGVHlqAovZgRsbuO74Sj8k7M3ecIaSs+Pb5v\n+Bh1/NjpS8jkSlZuPQtiWXoD2Qe/rFyKNBvYoO/Y7oxypCaOx/Ahl8OKWFPvRlmCy8yRQ76GQCCA\nR48UYNbLM+Bpa8bqSWuxO6Mcbq+LrSv4b0YkMjwQZV42bhUUFBQUFBS+WnB7XWhqPQkAiImKwdSU\nO9g9Is2iEIXY6FiMirOjsO5xzKnMQGZVMIa8XlxxBQUFBQUFhYuPrwRxZnZh0ZtKDp6EM5uu3nOk\n/Ja5ZqT7vCK6IG1pCJHGu1ki0ivLmcmU9DyoDJTupmMbAARPmlc27mVxj8iShQggUliTkm35xJUs\nfVL0E6nHkwJ8m51qaUJi/Cgk2a5iyniRCDJDWPBtyruQk+VnpHAjcqe60RnST3y/iJY6PJlG9a1u\ndOLuqruw6/hOds9uS0LK0NHwtDVr5EUsZyQgORBlSbwmkjCUP93LcmZK21kkCNPsE1jcGr5N+Xzp\nWSI56D3RhaJs3ND1/Jo8uL0uRtq4vS5Yo61YPnEllh1ZwtrZ09aMufscjIwS25OspygPINjPPNFL\neRKZBoD1a082Knwf8OOBR2dXsHwU+04kxPnxSe2XZp+A5RNXMktQsd/5tiTCieaDQAAaQp3vA2p3\n4AIJ7fa6NFZo1Da8PISzWqR6ydqnKL1YkyZdK59VgaL0YpSdeB5ur4tZtdE8VXbieWyfVoY9Myt0\nx4CsL8Ty96UC3ixJRteN3gv3/kDAQCf1FPRBYyo5IQUZX58FHzpMvdfaGTyJPSnpFgBAIBBAIBDA\n8iNLsfjAA6g5eZjNZeSekb4ZesoiWdkGqswPxDIpKCgoKCgo9B3S7BOwbdpvMHbkDejs6sShpv3s\nXtSX6rgudOHz859hwbcWo7ntU3R2dWL1pLUAELJvUutpBQUFBQWFvsMl76qxO65yeupeh5S94dxl\ndcedlqxs/DXggns53l0buWTzdflY3CAg6PqMrNn4WGKEmpOH8ev6YhRPKWVEGR8/ipB7KAcft3yE\nCserABDiPo6Pf0aWLrw7PgAstpXFAgQCwOpJa1ksLYqrRsr7zCqHYTyucO0mthlB1h/VjU7TrqN4\nCy5qH77dKC2xHcW21Su3Xp7dVc4RsSfLn+6RHPHEAlkVibHJ+EDGfP2IfOHdL+qNE7ENqWx5h3NA\ns5XFAuyZWRGSFuVF8dqM3EDy4yfLmYmWjrNIiB3GysjHWgPAZJbqoVd2GfEpu0buEsnFYO6hHJRM\nLWXuy4iM5NtUdKVJMibGkJP1M19fvs/5/uWf4essi18muszUawdeFvT6gH9PdDUqky1ZP9Dz4dpe\nBlndZeldDIh5h5Mn/p7ZMnanHS4WZHkod0MDA2bcDVU3OrFg/32IjRqCzi4fzned1302Lioe7V1t\nsMUMRVunFwEEsPrm9dj53g6U3v4cjp56G5tr1+PxyUWYd+N9IfksOpCNq4deo/utNyOvfSHTCgoK\nCgoKfQ21dhoYMOuqMcuZiUn2W7DjxDbNvbjoOLT72zE8djjafG3Y8sNfRuGZtQAAIABJREFUYusf\nHkdcTBzbgwLd3+MoKCgoKCgoqBhnIRAXMJEsLMySXkbvmyHdIiXnjBTR4jUZwUHWK0RcEcQ4VIQs\nZyY+P/cZPm1zI3loCvbN+W8A0Ch4M6scONnyIUYnXMvc6L1/+j2seOsRPHv7DiTGj2Ik2UMHFuKZ\nac9pYiI9dGAh1t+yMSRvQnJCCp6qexKVjXtZ+YGg1VLe4RzERFkjil0m9qkstphIqOgptPXS5+Mz\n8TFhiMyIRMFvRhaN5MiMYp3el5F21Y1OjbUh309GpBFfJhlBQwQo5SsjssTYY2IcPbFeMmJIFn+L\nj+0lI9SIyOItNPmYbLK8+bY2O6ZFMqi60YlF+7NR4Xg1xL2oSFjRtTp3LRwVdyKAACodrwGANEad\nmBffviLJxueTWeVgFn2pieM19Q4nd5QfWWySlSq1kR5JLNab7xtRRqiPZcRvpP0hlmPuPgdioqzd\njjXYHRiR+7Lyi/1qNt1InuurTblS/gwMGCl/aEzN+L9T8Wl70Eo2Ljoe7f42U2l/e8R4/OmzegyP\nHY7LouNR9qP/xEMHFuKjlr/DarHi+ek7Nd9JmqMo1qlsXjNzqETFGFNQUFBQuBSh1k4DA2aJs5kv\nT8ep1iYuvpkFFgABBDAsdjjWTvoFPj/3OZ7/8zbEW+Pw0/F5GDvyhojjvCsoKCgoKCiEQsU4C4NI\nLc16oiw06zIoEtdCfLlOtTRpYpTRff4auVMiN4KkUBatu4CgOzg+pgiVpyi9GFdcNgKrbl6HfXP+\nW3OPUDK1FFcNTcbqSWuZsn/ZkQI8krYCK968EAPp/dPv4dO2C+7oiIBwez/B+t+vQUHa0pD0iRh4\nom4jCtKWsvIT6bFnZkVYhbHo4klUulGbub0uFr9FJAYiseoQ86LyFtZtYS7+eBeGRqBn69y1hnnr\nyREp1cO5tOTlhEd1oxMPHpyP5RNXsjrwLgBF+ZOlCWit7ahP51RmMJeDdlsSc03Iv8/H9ePLRnIi\nU6DyVlLkDpKPt8VDdAFG8mW3JbH0KNYauR6UgcYk9SvJsh54eSJi6VRLEzYd24CkoVfB09bM3ufd\nJYquBIl83H5HGUYnXAsAGreSPERXkHz71rlrWTuI+RBptunYBszdF4wlRy5L+T6mNpAhzT4BG295\nApuObUBmlYP1u0hw8fLq9rqQWXUhTll+TR6WT1wJICiXPKmZWeVg7mf52HdmYlXqldntdSEm6oIL\n0FMtTabcxZmBmbHIl7c3FP7d/SaJ8qDw1QXJQoOnHqfPeb68ajFNmtlihqLhsz9h7PAbcKbjDJrb\n3fC0NaPC4cTDNy1BckIK1h1do4npSDEW9Vy/mpHrSNZZCgoKCgoKCgoXE9GIxl3Xzkb0l/8ujx2B\naETD29GKR17/d2x45zF84m3CndfOwtI3fo6ZFTMwpzLDcK9lBmotr6CgoKCg0H18JYgzs+gtJUsk\nFmRmFjJ8uWRl1Cs3ERU8QXR31V1o8NQD0MY1EpWl759+D0Xpxahs3BtS7jp3LSPeAgFg9dsrkOXM\nhKetGQEEcOb8GTS1fozFqTlwe11Y8dYjWPq9/2AWQOTi7dEJK1E8pVRDLM2pzGBkj92WpIl74va6\nkHsoh+UdjjS7u+ouXYU3tRm1idvrMtWmRiAyhN5JTgjGoSKlPoAQxTTf5qKLODFWnVG+MohkoAgj\n67fCui3MRSYRMkQqZTkzkVl1gUgRY7pRmjJSzm5LwpXxSZrTczFR1pCy8YQvAJaPXlvwJA6RdZQf\nP3Z2Z5TD09aMj1s+Qt7hnJC0RMKFbxu+3jxhRmSQ2+vCgwfna2SOL6+M4CPZ251RjnU/2IhF+7MZ\nWbp58lYml3wMw82TtyL3UA7m7nMgNXE8c+9IpBPF0+Pboyi9WDPfkFw+dGAh5lRmsDzFtpoxJgO7\nM8qxZ2YFlk9ciQcPztfE+5u7zxHSJvw4qHPXouzE84z4IjKd5hH+oALJKwA0tZ6E2+uC2+uCz+/D\nijeXYubL03Ff9b9g5svTGZlWPquClZMfZ3x76fWFXvw+ai86UED91FPyzAwRJc7DRhDnm3DPmkFP\n50CFSxMkC6mJ43HtsDG4xf5DAOadFXg7WzEsdhjeP/Me5o9bjFU3r8OMMRmoOXkYz/ypBA9/pwCA\nNoaHnlWvWC4zZVdQUFBQUFBQ6A+QDgYAoqKi8N0rv4crhozE8CHDcZl1CP7j5scwfMjlGBJzGbrg\nx7DY4WjpOIuuQBe6uvwsFnV3D7OJB7Bl93sLZtJSJJ6CgoKCwmCDIs4E9IWShbcmMrsI0iPZjJRM\npAQuSFsKIEgiEBlCLsh4KyJKZ/aYu5H/ei48bc0at2FEmOUeymFWQrHRVsRYgtYZifGjkGRLxv6T\nr+GXtz2FeTfehzT7BDx7+w5UNu6F2+tirvl2Hd+J9e+shqetGdnjFmDZkSVo8NTD1foJlk9cyRaI\nZMlGlicAGAlghDT7BOyd9YqhmzUitvSe644s6JFQROTwinFS3MsU1GSFRO9Fsljmle7hXFjpKSPp\ntD9vacC7syyfVaGxROOtAkQCUIQ1yso2EMkJKShKL5aWj7f2efDgfGSPW6BpC5G84kkvuy0JjooM\nZFY5NOm6vS4U1m3B9jvKUDylNKR8sn4gUL2JrOBJLCBU5niSkdLh06exQSRiYvwoBBCAp60Zp1qa\nGKlV3ehk1lR8nD/fl2PQbkuCxRJ0p5lmn4DscQuw+MADGjKM3E/ybbfp2AbERlux6datLM6aOBfw\nP2eMycCzt+9AYd0WVh+KRUiEFy9TPImZmjietR0QJCHJUoxkhto0zT4BL892wm5LwrIjS5A19l54\n2pvx42/8BLFRsdh46xbmOpTvJ5JF/kAAf787Fpjh5ohIECkRNRBIq97MX22UBy/4dcbqSWtR5zmG\n+Gib6fcTrAmwWoZg/rjFOPJJDR6v3YBdx3di2ZEC+AN+jB15A8pnBcl52Td0TmWGZh5VUFBQUFBQ\nUBjoIN1JzsGFiLbEYNmEVfjFO4/hH+eb8dn503B5P8ETtZvw2fnT8Ha2AgDOdpzBjhPb0IUuRFmi\n8O/fLdAcBI0UvJcQce/fm94l9NK6WPkpKCgoKCj0FRRx1g/glbNm4yGR4pcn24wWKHP3BQmDzZO3\nMjdpmVUObDq2gVmhkUKeP4FU565FZeNeFN1WwmIS1blrmUu05RNXomRqKfbMDAar3TOzAiVTS7H6\n7RXIPZSDZ6Y9h90Z5Zh3432sPInxoxg5BgA+vw9jR96AottKkBg/CiveegTZ4xYgNXE8rk64hsU0\nIdKI2mx3RjlKppaGjY1E4J8zWqDJ4mf1FsTFqp7ViuhOj0CkSqSL5UhdWImLWp40IRny+X3sGgAm\nvzzJQPIpWl3xsFiA3EM5Gld8IqHBtxsRTGUnnmd1A6Cx9hIty9xeF9xtn8DX5WNtS3kRkZxfk8fK\nSeWm52TWdFQusV3JOgqAJj4ZkYIWCzTEHt8uNDbJwvKqocnYdGwD3F4X4q3x2DbtN5gxJoMRdI7K\nO+H2ulAytRQxlguWeoEAmKuzbQ2l+FpcIisL35eiRdmq769F2YnnUd3oZFZVoizsOr6TzTOpieM1\nZHtnwMfi4ImyDoDFthPbT3RjKs5jVPbscQuCMQ5vLcT+k6/huTteQGrieGw6toH1o0iY0mEBsZ94\nC0zqG9kYkV2TkWbdmTNkacvmb15W9PLhD2AMdKiN8uCFSDrPGJOBB1N/hnNd7abT8HV14h/nm7Hz\nvR34l3+6F3bbVRg78gY89O1cRFui8f7p9+D2uhjhz8PtdeGT1lPoDPh0UteW1WydFC5AtYeCgoKC\ngkLvgg4QLp+4EjEWKywW4IrLroAffgCALcYGCyxo79K6vbbAgihE4YFxixAIBPDkHwsx4/9OZWma\nyVe0LhO9FvEHonrroJ4sfXH9r7xZKCgoKCgMRijiDMbxmi4WRGsOPfAWPwBCThzJrHwaPPU42fIR\nc4lIljIlU0tZzCYiQ8hCg9y7kdI5ffQUZi2Tc3AhALB4R7mHctDgqWdu5jxtzXC1BkkK3gUfWcg4\nKu7E0iM/Z4puAMg7nINtDaUAoCFFymdVsHqRwp2vm8ySxMj9gPiM3n2RuOltOaB2JcshXnEvIy1E\nN2xmF5hmXLwRKE3eDaKM+EqzT0BRejHKZ1UwWZNZ7hAhK4s3xT9bPKUU1ugLpI+RS0l6l9zm8eWm\n+GUiKUUkVMXsV/HMtOc07r98fh9WvbUCiw5k47P2z5Bfk8fkXkMIdfmw7ugaZk1H40QEWUeJFl0E\nuy0JMVFW3ZOCRenFrC2SE1Lw8mwni7VGLghPtTQhzT4BJVNLcfXQa1i6/HslU4NtarclYfnElUiI\nHSbpca3FIwBmpTVjTAb2znoFdluSxu3izJenI//1XGbtRwQ6yUdcTLyGgOLnJQBSF6X0HBGvfNvw\nlq2Oigwsf/PCfAQESXjqx/W/X6NJm7cC5K3iZBaYRKIanYo0gtGcEsncIaYjWqCGswzVi+E30KA2\nyoMX9C3i3a+W/qkYgYB5V43n/EGS7YohI7Dj+DZYLMCi/dl4tuEpPPTtXKx46xF42ppxZXxSyLtp\n9gmodLyGl2c7DS2ozZKzkZC4PR1XA31cAorUVlBQUFBQuBjgPbisnrQWcTHxSB89Bb+87SmMGDIS\nbZ1tCAhur2+x/xBRiMKVNjte+mAPutCFb434Nj5td6GsYUfYA3O8txPZXl22t+jNtbmYvmz9r/YC\nCgoKCgqDDV954kwkXnpTgdAb6fCKYHJjxC9KKB9aSJ1qCbos2z6tTGMJBICRDMAFiw5PWzOWHVmC\n2WPuRmHdFhSkLWUWJEXpxVg9aS0CAaBkailSE8ezWEWJ8aOwd9Yr8LQ1M9d3FY4Lii2KMQYAmycX\nwgILgKCVz+pJa1E8pRRF6cXIr8lDauJ4tqhye12YU5mhie3Et4VefDc93996izYZ3F5Xt+QgnPKd\nXziTopu3+qN4YjxpoZdWOESqoK5udOLBg/MZqckTX/yJNSJAePBtTs8QCcOTWiIJQKQQAE28Or12\nI5lt8NRrLMCIcBHdRJJ1BBBqAVYytRTPTHsO26eVYUTcCEYGE0FG8kLkHsV1yz2Uw9wmiuXkx5nM\n9Slv5cRbdoptQc8DYGQ5P7aJPKO+4MlGIjfdXhfW/34NMq+/x1DJLFpp8fXg+zchdhiKbivB2JE3\nAACs0VYsTs3RlIF/T7TOE8lOGaivqO/ya/JQlF6MCocT26b9BonxoxjRTO5aS6aWsth4IhnIu6Cl\n/hT7RWwPvl34v/mfPPTGWaRKeb6NeEKaL7uR+1CS/cEAtVEevOAtbe22JCybsAoWi8X0+0NjEjAq\n7koEAsE1x8PfKUBC7DBsunUrZoz5EZ69fQcS40chNtoqJbSN3KSK81k4OePHnBF6uh7sL0LqYq8Z\nFBQUFBQUFMyB1vOFdVvYQcP00VNwpc2OB8YtConz/ftP34J9aBLmXp+FM74vkHHtLPzt7P/Dwzct\nQc2pQyhIW4q8wzmGMdzpsCu/vyTwcbTF/VM4mH1OXFdEsr4YTId4BlNZFRQUFBR6hq88cSa6L+st\nBYKe0qQ7H1lSBPNWFGK5KXYYABZTiM+L4ovx1gnkKi173AJs+cMvUJC2lFl0uL0u5B7Kwaq3VsDd\n9gk8bc3IrHJg3dE16Az4kHsoB562Ziz87/uRPW4BZozJ0CzAyL0eAMy78T7mYq29sw3rjq5h75P7\nP3qPTp0TYUFu/GQu5HiIFkP0DK+IloG3/qK8APPxhWTKdiNXhbx7Q+pTIpvEdM3EZJKVJ5JnibSj\n/iOCj3e51+CpD2kPIkyI2KJ3eRKGl0kgVGbFssjGi9vrwt1Vd+Gpuic1cc6or/lFOfVzUXoxlk9c\nGUIwkTwRWbs7oxypiePh8wctJUWXgTzhVT6rAtum/Qabjm3Q7RM9KyZ+XJBs8PLq9ro0aSYnpCB7\n3AI8eHC+Ji4g3ZcRKZR3zsGFaPzib1j/zmpUNzo1z/BtyhPVYt67M8rR4KnHsiNLUJRejLEjb8Cc\nygw0eOpRlF6MshPPa9qf8hfrRWnS+NUrC99O5MIxzT4Bbq8LK95cCkflnZq6uL2uEMJRPDxA5DTf\n3lROghiXTWbpZRSHUm9+MOt+l0+X3I5S/cTTmnrvES6Ggl5tCBVEnGppQmaVA4V/eBxdgS5T70Qj\nBm2dXnjaPTjr+wKbJxdi3o33YXFqDn71v4VwVNyJFW8uRX5NHoqnlEqtj41IKKPvihHCjZlwpHU4\n9Ach1V2yTpFmCgoKCgoKFwe0HuDjSWdefw+Out9CjCUGQNA9413XzoY/4MePv/ET/McPVuPhm5bg\nb2f/H3x+H7JT57O9+UdnPsSi/dnSvRXtB4HQA67k4UYM1SGzYpPpryI9GBgpZHkM1L1Ifx2OUlBQ\nUFDoH3zliLNwCtDuKklkacqULt39yMriofG/E2Hh9rqQX5OnMdHnrb94QoQsdtJHT8GV8UkstlhR\nejFzBbf+lo2omP0qI9RKppZi3Q82whptxen20/AFfHjyj4UhljR17lqsO7qGWekU1m2B2+uCz9+J\n1ZPWojPgYyTcy399CXP3OeCoyMCi/dmgg+y8Ij3n4EJWJ1GZzS9IqQw89OKHUbuQNQ+5o+IRrq9k\np6p4gnLX8Z0hBBhvJUQxoHgykxSARi4MZYiUbCMCRUbaURl4AofPg1yHNnjqNcQGv0Dnrb3omp41\nFoAQ4pP65dnbd6D8g9/ikbQVePrdYjgq72Qx0vi0Se7ya/KYm0Uxv6L04pA2tUZb4fa6GOnT4KmH\no+JORmDQu0S2yU7wie0qgidmePKUytvma2Pv1blrUXbieWy85Qmk2SewduTdo4rEDhCUnXU/2Iiv\nD78Oq25ex/qVn3dI5imN/Jo8+Pw+1Jw8zJ6lWEPZ4xaw/K+MT8L636/RWPnx8kAuHHnLvSxnJtxe\nF9p8bYz448tCBFdRejGrN3Ah9tyi/dlobvsUD6XmYtOxDcg7nIPFqTmM4OY3hMkJKcxSUox7x1tl\n8fMH9StPlvFyIYtDaTSueMsX2T3+XdmBDbIa1HNvKb5ndK2nuBgbQrW5vDTQ6muB199q+nk/OtGF\nLgTQBcd1/4yxI29AdaMTS9/4OfyBTmyeXBi0bP1y3UHQGy88xG+q7J74O59eOPDjvjsKnb4mpJT1\nmIKCgoKCwsAE7cF+8fY6rH9nNVJHjsc5fztiLbGIQjSuu/x6DLdejlc/rEJ1oxP7T76Gxak5KJla\niuSEFDR46rHu6BokxA5Dc9unmnjh4t6fDkCSR5ksZyY2HdvADsuKh6/5g9Wy9Y7Z9UVP9g9iHgOF\nnAp3aCvSdxUUFBQUBh8sgUgCVQwSeDwt0uv0AY7kw38xFJKRmqybtXwCLljekFUGXdt1fCfm3Xif\nNF1S3pMCmxTfPJmQeygHALB60lpmJZVmn4Bdx3ey+ENAcGG2fOJKFpuJ4qzVuWtx9NTbWP/Oaqy6\neR3KP/gtlk9cieVHluITbxOusqXguell8LQ1A4CGzKlz12JOZQa2TfsNUhPHIzkhGBeMf4bqQ4vS\nvbNeYfeWHVkiDYZLafNuoGjxCYApsc3Ki0iSNnjqcX91FlbdvA5zvvnjkDSo3cnqzmIBYqKsEZFl\nsnLw9ZOVjfKmdhJJEEBrjVOQtlTTn4v2Z8PT3ozt08qw6dgGtHScxWXRcSw+Hb3HKyb5dPkFMfVJ\nljMTnV0+FE8pRZp9AnMhSXG35u5zMJehAFgsPXqXyksykF+TxyynCuu2aAhjspKjZ+g9arvMKgdO\ntnyIxycXoezE8yHv0u80BngQSSxb+MuIdEdFBu4fNx//9ZcXEQhcGF8FaUs16dS5a2G3JaHBU8/k\nnmS3zl0LT1sz1h1dw1wpbmsoDakbPzfwfV5z8jB+/vrPsPrm9ahs3IvZY+7G83/ehmFDhjHrL75N\nZcprcb6hfiFXmJSOKI/0bu6hHHzc+hEe/d5KNjcsOpCNR7+3EpWNe1GQthTrjq7BOX87tt9RBuDC\nPMVbiFG70SZQ7AdeVqisYh+RvIqyysuA3viUjTVxXIV7t7snNXsbvVmOcN/TxMSEXslHoWfQWzsR\n6Lv2b4ceRIvvrOl0Y2BFJ3xf/h6DhNjhaPWdRXJCCkpvf47NHZlVDlijrVg+caVm/tMbV3oyJY5n\nvfnXzBpPTCvcvK7Qu3OHgoKCgoIcau00MGBm7UTrhQZPPTYd24DM6+/BCyd24GTLhyFxzobHXo4o\nSxRsVhua2z7FqPgrsfHWLVh0IBvDrMNxtuMMNk8uxNiRN7A9Wu6hHLYPJ/0Nv5ckGK2pwukOZPXS\nO7jUm/uH3l5PRJJmT9Z6l9o6Ua3tFBQUBjt6sm76ShFnQOQfy0gUpJHA7IJET+Ej/s0reuk9Uh4X\npC1lJISobCZiYfaYu7H7/RdhjbYyt4W8gnlOZQYe/k4Byk48z4gU3jUbEW+5h3JgjbaGKJ3n7nPg\nZMtHeCg1FzWnDiF73ALMu/E+VobUxPEsn09aT6HS8VqIBRn/N5E+pHDj24me55/hCRUglMAhxT9P\noPAw6itqB9nCaNfxnYx84e8RwUIWZ2bzEhFOjowWbUTGiLIkEisiuUUED5FptAng21RGSPLpyhb5\nDx1YiHhrPCMsSc7450umlmpkWI/QoXI9eHA+O13HlyP3UA4sFmDPzAtkH7U9Py6of8SNhqzP+XEn\nqztPLAFB2ch/PRcxlhgsn7gaO9/bgbiYeGZ5Qe3Ft31MlJXdp7xyDi7EJ62nMCr+ShSkPYqn3y2G\nxQKs+v5aRlrJxglfvpkvT0dC7DDcMfpHKH63EFfG27Hlh0Uh7+ttkPj5htKvbnRi3dE1IX0mvpvl\nzMTi1Bxs/cPjOH3OwwjyzCoHymdVsHZ4qu5JRrxXNu7VnRdJ9mQkMsk8bSrF/hPJWH4+DRevLdz3\nQnyXzw8IJesuNRi1j1L+DAyEWztlOTPR5mtDU8tJxEYNQXtXW8R5XBE7Ep93nMbDNy3BjDE/Qn5N\nHpZPXInUxPGYu8+Bn47Pw7aGUka2y+ZVMySzSNDrjb3uvC97RiGIS01RpKCgoDBQodZOAwPhiDMg\ndI9RlF6MB6r/Fe42uVccALjr2tkYFX8ldv9lJx5M/Rl++5ddSIhNwL/dlIexI29ge+VNxzbA5/ex\nONj8fkW2/ukJETTYDw91p9w9Wet1592BuLYcrP2toKCgwEMRZwLMLGAAc6SDkaK4ux8PM++LSmDx\nXVGJJLOQ4JWyvBKe3s87nMPIrGcaSpAYNwrb7yiD3ZaEOZUZeHm2k5Vh1sszcNXQFNw/bj6zCOGJ\nBcqf3M3xZJBo6ULWRM/evoNZkFGZM6scQfeNs52s3HdX3cXID6pXdaMTqYnjWV1EAgjQkjd8vUWC\nLLPKgY9bP8LVQ69B+awKlr6e5YqsL8UyyJRu1AYAMLviR3h8chEjD7tjaRLJiXk9paFYdhkRxcui\nSKDoySNfLt5aZ/PkrQCAhw4shLvtE2yfVsYsrDYd24DFqTmYd+N9GvKD0pi7z8GII5Gw1SP6yPqR\nr3tmlQNA0HqNZJdIKRmhqkew6BGP1D48IeLz+5hFIVl2LjuyhFl3xVvjmEWd3ZbELC945XGDp565\nU+VPD5Ky+el3i+Hr8iE22spIszZfG6xRVkZm8+SlKCPkAqTV14KE2AQUTylF3uEc0BeCxoaRjPE/\nHRUZcLd9gorZr7L6ysgu3sokMX4UK191o5PVl/r6s/bPMCJuBFO0R2JpQjLh8/tC2jaSk5d6z0di\njUbPk9zzhxUGy4akNzd2SvkzMBCOOAOAmpOHkf96LoZEX4Zz/vaI85iacgcONe1HytCrsfHWLVjx\n5lL8o92DTbduxdPvBudGOtRA8sVb8gIwRWQb1cPMWO1LxcqlBtUWCgoKChcfau00MGBW7wRo11I/\nfz0XQHg13F3XzobzwypYEIWVNz+G3e+/yA5Irv/9Gqz6/lq2JyJPQOEO8gFa/QwAqS6Ff0dcFw3W\nb3139X99gYFAUKnDYgoKCpcqFHEmwOzJH6MPk+y+mRPIZhHupLPMgoPAW7sAWiW9nvWEjFwgF2+F\ndVuQPW4Bnn63mFl4zK74ESodr8FuS8LLf30JG99Zi0TbKJxu+weuuGwkU17zljwAmEs9iwXo8PuY\nBRERZvT8ruM78fS7xUxhTqQYAGadQ23gaWtmymVSolP9ZcQGXx6+PcS/iVhJTRyvsTgjizYi9vj3\n9PoLgIaEkskOWd09+r2VWPfOKlw77Osovf25kDpFSp6FU/rzEC2leCs8Ut77/D5GkvCyaOSqTyZ3\n/PsFaUuRGD+KpW+xAD8dn8dIsvyaPGRefw+eqNuIjbc8gbITz4e0iUhK8e4WqS78uCCLJVEG+H4X\nNw0yklq0fOPdl/q6fKhwOKVEokhwARdiEAJgZciscjDCjB+zi1NzmLUiEcjkgtTT1sysPqkNKG0i\n5vi4h7zFGU9y8gQl7w6TTx8A8g7nMOs8M/Ipji8+X9lY5MtObkcclXdidMI1zH0nby3GW47yMiGT\nE/EnWbjy8hkp4aXnHi6SDSfvqpUsL/XIup7gYmx0entjp5Q/AwNm3FwDQPrvfoAzHV9ElPbUlDtQ\n56nFmfNfYKg1ASPjRiLGYoWvywfHdT9mlujk+jnc4QwgvOtUvvyRjq1Ixs1AUHQoKCgoKHy1oNZO\nAwORHNimfeWi/dno7PIDCMAPv+F7w2OH40zHGQBAsu1qWCxAIAAs+d6jePSNfFwz/FrsmVmBl//6\nEta9swopQ6/Gvjn/Ld2nkE6I38t+dObvsERZcM2wazWHlgC5zqmv0B9EjRn94MUu01eduLuUoMhG\nBYWBhZ6sm6J6sRyDArxSNdxHwShAqRmlixFkixn+XtmMXUizTwgpAwB2vcFTrwkGS+WjspLS2+f3\nIb8mL0ShvOzIEiTGj0LZjF1IHz0F1mgrgKBSHgHg/dPvwVGRgXVEan+pAAAgAElEQVTvrMKIuJF4\nfHIhrkpIRkJsArM4o/yIeCDF+6rvr0W8NR6LU3Ow7MgSPFX3JO6vzkJ1oxN17lr8uj5oHZN5/T14\n8OB87Dq+E5lVDhbMFgAjHxLjRwEIEgFlM3bBbkvC5slbkZyQwtpCbMssZyaynJnYdXwnaw8ebq8L\n7Z1tWHQgm1nhUDun2Sdg76xXmMI/HJITtMF1gVDZAYIn6LdPK8PP0h7Gzhn/hXU/2Kipk+wdM3nz\nqHPX6gbSPdXShPyaPNZ2VNfdGeXYnVHOfufJJqqX6E6S0pORCvy15IQU5ioUAEt/1ffXouzE8zjV\n0gS7LSlIHnzwW2y85Qk8/W4xU5KKfUvpEmFalF6skeeCtKXsGYtFW1Y+dt26o2s0Yye/Jo8FWeax\nefJWjZzTRgMAOgM+uL2foMFTz8aabOzy/6mNi9KLUVi3BW6vC9Zoa4iFZlF6MbY1lLL6pNkn4Nnb\nd8BuS8JDBxbi/uosPFX3JJYdWYLlE1dq+hIIujxt8NSzduL7guaC6kYn7q66C9WNQevOmCgr/u2m\nPHjamvHgwfmobnRi2ZEl8LQ1IxAItjk/r9BPmVwkJ6Rgd0Y5ZozJYDLE9wPf9skJKbDbktDZ5WN9\nYLcloWL2q9gzswJ2W1LQreWXZJndlsTa0O11IcuZqZF7/hpPjtG9xQceYPMV/x3g+55+F+d9QD62\nedkU24LmEPF7I443UbFvFBCbL58RwqXTXZj5fipcOuD7u8FTj7iYuIjTONS0H2fOf4GMa2fhvP8c\nHv5OAUqmlqK9sw3PNJRg9pi7sezNAri9rhACnOZU/hpdDwfZGDAjt5HIthoPCgoKCgoKCkagtUJq\n4nhsv6MMCUMSwpJmABhpBgTJsg5/Bz71uvCr/y1E0tBkFE8pRYOnHk/UbcT8cYtxWbTxGo10Dmn2\nCSiZWoprL/86nrvjhRDSjN/3ivsUszC7X5G9x+8V+wpG67me7qnMtkVfrSVl5VDr2d7DxdqDKygo\n9A++UsQZfYTr3LWmLL546H1I9AiKcBOlqKTVU+yQAkl8psFTj0UHstHe2aYpHymdeBKnfFaFxiqH\nni9IW4rcQznsb7JU2XRsA0bZrsS2hlL8+3cLsPrm9RgWOxyJ8aPw8mwnymdVIDVxPMtvTmUGU9QT\n+VZYtwXLJ65kMdEqG/ei6LaSC1ZHXT6c6zyH3e+/yMiSky0fYv3v12jIAlrYUflJKS6SHGL77c4o\nR+b19+Dnr/8MNScPhyi782vyUHr7c6iY/aqUFCIiLZwliviOzPKNiAK318VIGABYdCAbcyozGCFh\nJA9mPrriAlcPsphq/PNi+fNr8uD2ukLcGGZWOdiilsona68ZYzJYfD26t+nYBg3JVTI1GNNm7Mgb\n0NR6UlPn7Op5qG50sjapc9ci73AOI9eIINk8eSs2HdvA3ouJsmrK4fP7GGFisYCRbskJKVg+cSWT\nXco7u3qehtAkebDbkrDsyBKU3v4ctt9RhnVH12BOZYZmbNFPsd9E8ttuS2IEEN/nRCStO7qGte+m\nYxvg9rrwzLTnkDw0BbvffxHpyVOx6dgGOCoyWDvYbUm4Mj4Jq95agdxDOShIWwogSHSR+0aSxUfS\nVjACb3FqDpa/uQTrjq5hrlE3T96KdUfXoDPgY4T1siNLsOv4TtxddVcIeSYjTyk+Hck6EbXifFQ8\npRTWaCsb4wRHRQbyX89FS8dZdq/BU4/8mjzkHc6Bz+8DAEbO5dfkob2zTXNYgPqQ2kbmSlZ28EAk\n1sKNUxG8cl82JkmuxDTMbNyMSHIz6fQUemULB7WBGFyg/nJ7Xdh1fCcWHcjGef95WBEbcVoBBPDK\nh5Xwdfmw6dh6VDe+hub2T3HFkBH4xhXfwOiEa1ieIrmuN976cwyI+SgoKCgoKCgoGCG7eh5Ot5/G\nF+c/N/1OrGUIAODDMx+iuf1TwGLB+ls2osIRPPxYWLcFG295Akfdb+mmQYca6XcguB/dM7OCHXQU\nnyc9DA+z6/hI9isDCXrrue6sJ8WDmGbb4mK3ldEeVq1neweKhFRQuLTwlXLVSAr3QAAs5g9grADU\nu8crciJx20X3zLqB5J+l8tC1grSlmjg/FDuMSAqxDqILwjmVGfik9RRzyUhxysiVWc3Jw1j+5hJc\nGZ8Ef6ATl0XHMZdi2dXzkD1uAbY1lMLn92H1pLXMtRu5ZeTdHFJZyEWAp60ZC/ffjyRbMiocTjR4\n6gEgJIYTKdeJIOED4erFdKM8cg/l4KOWv+MqW0qIOz2qK9WlOwsho77n3TaSqzwibYCg67s2Xzvi\nYuI0btr4eshkIFwZjeQu3H09uaQYVGJ78674KE6YeFpNlueplmD8K3LjmV+Tp4kxxrvq5N1xUnvO\n3efAh2f+jqo51Xj/9HtY8dYj2DvrFXaveEppSCw2fuwTZO4oRVdgYrl5sod/tsFTr4mlJrYnoHXT\nSLLHx1eTuSzl3TDmHc7RtNED1f+KT9vceGDcIuz6ywuwx1+F9bdsZOMw73DQlWQgABbnbHFqDrY1\nlGrirNF4AoDM6+/BpOQfaIilzCoHzvnbmdsPfhzycQdl/c23LXDBfz5Zf5H7SbHdKQ7d6klBv/00\nJ1EctnP+dhaP0e11sQMAJVNLWT6iHPHzg2zuF8k+PTe5ojtPM2My3Hzf3XhKPRnvkaA79ZS9o1dX\n5W5oYEBcO/FrjYX77wcAOK77Z+z54P+zd+5xUVfpH39zl+GihuAghGbmnWhFTEWT1VCUTMzFbe0i\nKaGUUoGpuKB5WTBvu2LGRmZ2s9JfCRqJoSzlrTR2ZdnKsjUjlZGJakVAGWB+f0zn+J2vM1zUSuv7\n6dUL53s533M/z3k+53mezZeVvgsumDDJ386OLnRq14kVd6wh89AyYm+5l7zjb9t1DWyvT2mbUg0a\nNGjQ8FuDJjtdG7icGGcAc/7xOHtOvtfs8zonD+oa62jv2p4f6r9nWt8EIoJ+DyD3e2KPbEv3o4a9\n/Y3Yl9mKg92a90Ua9q5djqx2vct39vZFrdm7/RzuEq/3+tWgQYOGtkKLcaaCLQFGTWYI2FNo2lu0\nlDGFlKROW2FvsbKnxFcvtLYUuILIUMYdU5IPgtBaXbKC5cNXMbMwnkZzAzsm7gKQcZVS980hc9gq\ncsqypRu4JQcXUddQxzv3WJ4tLi9iwf4nreKAifqM6zud+ftSuNGz6yWkkFBaG2oqmFkYz98jNwAW\n13KBnkEy1pMyLfEdkW8hGNqqP2X7gMUyL/PQMqt6Ude/vX+3tg1tvVNiOEzi7nicHVxkHLeHC+Pw\ndffD3dldurRUKvhFmW0pnq9UuGnt+y2d3LdHLoh6VhMS9ohfZdw9EbsKLsbjaq6/FxzPZ+GBBSwZ\nmsHD78UxLyyNiT0nARbCxcGBS4goNZEJF0kc8X3lt9RjXMQCTAmdS0LhQwR6Bl1CvDVnkap0EwlY\nbW5EucXGRxCJIqaYmjgU10RcuK3H3iAhOJG//XM1Z2oryIl8UZbbUFNB4u54su/cYFUGMZaUdS2s\nWPW6LpJoE0T6w4VxLB+2mvv6PWjVHq0R7pXtq47/tu2Lt5gV+tgldVZmLGXBvrlU1p5hw+iX5OYw\nJm8cM4Nnk3VkNS9FbZbljN0eQ4PZJMeb0n+/qG+RtjqGor3529Yce7kbmZaIsraO79YQCFdr49WW\ndNRt3dqNtab8uTZgT3YK8Aqk4Hg+6fsX8PiAFJ54f9Zlpe+AI2aaAHjstjmE6kOpqquit08fZhbG\nY6g9zfORm1odW7S5QyDXGsH2S39fgwYNGjT8uqDJTq1DaWkpq1at4pVXXrG6XlRUxPr163F2dmbS\npElMnjyZ+vp6UlNT+eabb/D09GThwoV069at2fTbGuNs+fBV/OmdP/BDfestzl6Oep13/ruDHV9t\nk7HAxX5OGYu7td9X729it8dw8lw52ybk290X2Xtfea+lvcJvjUC73Lxfz2XWoEGDhmsVWoyzVkBp\nbh7gdTHmkK04ZmoXXQKnqk9Kpbb4PX/vnMsyp7a3GAZ4XXSzqDw1JPJ2qvqkVOwLyxfl95UkliiD\nsOwoMRyW7tf0Hv64OrlIP9gBXhZ3dX/752o6uHVk/ZEs6hpqqaqrYnXJCqb0foBvz1eyqWwjU/Jj\nySnLlqRZmbFUujBLCZ1LTlk2el0X1o3KlveEMlyQZsnFSbj+6BpP7+HPtgn5rBuVfUk8pk2fviDd\nxsX1nS4FNXuko4h7JZ6J6h5N6qA0ZuyeZlVftpRqyjpW16u9tmrunYqa0ywcspg1EVmWeh+2Gi9X\nb9IHL2br3ZbYTcXlRUzMiyZ2ewyGmgrpZvFqujVQ51FdZjWm5McSuz1G/q+MOaN0n6WMQba6ZIVN\nl4OiD8JFl1oBXoEypproy2AhgybkjmXyjphLiAYxHk5Vn5TWUWBx/fXSpxutLJS2jM+1anPl2AeL\nK7/E3fFMyY+Vcb6Ky4vkt2bvSZTuDAuO5zMhdywPvxcnNybCXanIn625QqQlrgn3hGCx8hKuJ0Xd\nKv3Nr4nIsnIzmVycREroXEL1YTKuYXJxEqmD0hgSMBSAiKCRLA3PICfyRSt3oMbaSipqTmOsrZTu\nMYN9Q6xcuYoyBPuGcKNnV/4euYF1o7IlcRjsG8LyYatZsP9J6eZWOT8JcspWvxNzpnBVqoz/JoJY\nixhr4p0p+bEsObgIU2MDZrOZhQcWUHA8/8dYa2ZC9aEEeXWzyvvWu3Nlu4i+JeK5CbeuIm3helSQ\nlLbGgK253V47twbKd2yl01bSzJYrV1vufq/GacXWpqNsa8Bu/CltI3h9QbRXsG8Irk4uZHy05LLT\nMtOEAxeDTz5WNIvk92eTuDuepeEZ3OjZFV+dX4uxRe2tafbuNff8z4Ff+vsaNGjQoEHDbxHPP/88\naWlpXLhwweq6yWQiMzOTjRs38sorr/Dmm2/y7bffsmXLFnQ6HVu2bCEtLY2lS5detbwIHc/Rqs/4\nX/0PbXq3uPwfHDpzkIT+j5JTlk1c3+lWhyGVrvNPVZ+8ZG8lvm/L9aJyH9XcYXDxvq0QF63ZK1yO\nLHS9y0+Xu+fR9koaNGjQcG3hN2Nx1lqoLZbsWZDYsxS4WidE7JE7gLSucHfWWVlWGGsrbbpOE+VS\nWogorW/E9djtMZRXn6CLZwBLhmaQvn8BZ2oryBy2ilUfP0194wW+PW8k/fYl0sJn8o4Yyqu/lqfE\np+THMjpoLKH6UHx1ftI1JMDUgimsGbFOWrJV1VWRU2ZxrSaU9EorLmGVJAim5PdnSysTe/Ul6kh9\n6smehYz4DiC/1ZIVkb1vq90XCHeVohzz986R7i1TB6Wx5OAiTp4rJ3PYKnzcfVh4YIFVmypd4bXW\ntWdr+5Oy3Gp3WMJqROkeMHVQmoxPp35e+Y7aqrO5sXGq2uKysaGpgczhK/DV+TFh21g2jHnJpttD\ntUWYIEgFKSSs+nInvCtJOVsbAPG+sEh77ZOXWbD/STLCV9Lbpw+Ju+Ole0OABrOJJUMzms2TPWsf\npXUVIK1ClZsd8VfZJ0Xdnao+yfhtY3BycGZq32msLMkgI3wlPu4+LDm4SFozqsea0n1mfaOJpeEZ\nLDm4SFrjKfu6ukwin0p3jsr5Rf2cqdFk05Wnsi+UGUutylhiOExM7jgaaWJHTIFVXgqO5+Or8yOp\nKJFHQpJY+6/Vsn4ndJ9EXPA0K4tXtXtL0fdEXSvdugqLM3suX+2178+JyxnPymu/5ClFW4c9WjOH\naqemrw20JDu99snL5JRl4+HkwcfGQ5f1DQ8nT3QuOqrOf0sTTbR36cAb49+ysiS31ZdbI2s1NwZ+\n6dO7v/T3NWjQoEHDrwua7NQydu3aRa9evZg7dy5btmyR148ePcrKlSt54YUXAMjIyOB3v/sdH330\nEeHh4URGRgIQERFBcXFxs99oi8XZxLxo3J113Ozdg4IT+TTQ0KbyODk4o9f54+AAz4/eJL0JZR5a\nJvd2E/OiOXH2KxbevpSJPSddVbd/bZHt7b3fFm8BLb2jQYMGDRo0tBaaq0YV2iLA2FKuKImOtsad\n+al9EqsJJUDG+Dl5rpy5A/9M3vG3W3SdJoiDJQcXWbmcE7GEBPEjMLVgCum3LyGn7Fk6trtButkT\n7wjl9di3RmGorcDZwZmNY17BV+dn5WIv2DeEmNxoHByg4txpnh9tIdyULvqU5UwdlEb6/gW4OLow\npfcDl7h1E8/acgfYGsFMqXBXt7fShV9L6cFFN3RKgk6pnBeWdt+f/46O7W4gITiR3j59AEvMs6//\nd0KSRmoSTp1nZXmvxH2cqC8BW77Sy4yl0j3hulHZzbpnELBHyqnr/O5tUZjNZhwdHZkfls7rn79i\nM06aeE9Jrgh3g4IECfYNYfKOGPm+IEmaI89E/p4pWcvTh5fh79kFZwcXGSsLsCIB1cSuMsabvXg8\n6ndEX1C7ThX1rYzBJazwGpoacHZ0JvHWJN4r30ldQy0NTQ2khM6T7joAln64iPLqr8md8K7Mu5Io\nEhaigsRSt7/Id+z2GExNJlwcXXj0tiRJcNtyeSqg7qclhsPM3pMoLUnV/vfLjKX46vwArFx+ztg9\njefu3CjJUIDpBQ/i7dae7y5U0cUjEG83bxKCE2XZMw8t4/vz3/H9he9krDd7rkOVJHdzrhp/7o2a\nPdK/uedtEdhtiT1wNXElZIWm/Lk20JzsJGKk/qnnA7z46fOYuXzRMVx/BwcMe3HAAX+PADaM2XSJ\n2yDlmgwtj4ufQ/76NeOnmB80ZZcGDRo0/HTQZKfW4eTJkyQnJ1sRZx9//DGvvvoqf/vb3wBYu3Yt\nXbp0oampidLSUv7yl79QWlrKn/70J/7zn//g5ORkN/3m3FwrIVzOT+g+ia3HXsfV0Y0LTedbXQ53\nJx2N5gZGB43lnRN5vBz1ujzUWl1/Fi9Xb6lbOHjqACtLMnjuzo1Wupjm8teae/but3a9b44c+yVl\nOE1e0aBBg4ZfPzRXjW3EqepL3fKJ6wFeF93IqS1AWsLVco2lzqs6f4K0AqRLo6135zKl14OsLMkg\nJXSuXbJCmPKbGk0sPLCAb859zbYv3pIEyeqSFfK5hMKHSN+/AIDOOj1DAobi5tSO0UFjmb93jkxL\nuIYrM5ayc9IeFt6+lA6uN5B5aBnG2kpJwAmFu85Fx2O/S0Hv0QVfnR9lxlIm5kUTkxst0ywzlrIm\nIstilVVdzvnGOrYee0O2nRq23AHaq0cB4S4PsGpv8bxwO9ac20Sl5ZbS/YFwxyBOgIGFxEgITuS7\nuipGB41l3t5kjLWVzN87h/TBiwny7iZdbarzoyyPsp9dSZ8T7yvLIggWZfsK94Rq0ky0hTo/oo8K\n0sJWfYk66+p9EytH/A1f9848/fEy0gcvtlmWEsNhYrfHyG8qyablw1ex9MNFGGoqrEiz2O0xTMyL\npuB4vpULC9EWyjxtPfYGvjo/su/cIOPyJRcnkVSUKN1PKvNgqKmg1lRLQuFDlBlL7dav+KucWwBZ\nv8LiTNSriL8mvqn38Gd+WLrFMsO1A++V7yR1UBpmM1TWnOHZ0izi+k5nxu5p+Or82DI+V5JmwhWj\n3sNfuvQw1FTIujPUVEjXm6Jvi3yuG5WNq5MLpiYTOWXZrInIku4vxXhWEq9KCyPlODl5rhxjbeUl\nxODEvGjpclMQWIaaCjIPLZMuYBOCE5mxexoAXbwC8XT1orNOz4Yxm9gcvZWIoJEsH76K1SUriL3l\nXr6rq2LewDRcHF0k6abs48r8ifHVkh9/ZVnUfehyYW8eiSu4jzJjaatJM5E/ZduJulSPa1vluZL8\nNpcfJbRN6PUP0aah+jAywldSYjxM8A23AuCCS3OvXgIXXAHYb/iA2Fv+RNrti3Fxcmb2nkQKjufL\nvipcqgpZprl1TjkPXc0T1b9WNDf/XM1y/xRpatCgQYMGDVcDnp6e1NTUyN81NTV4eXkxadIkPD09\nmTJlCoWFhfTr169Z0swW7K1/eg9/5g1MY9uXW2nv2kGG/mgNRgWOprNHZ+7vHcc7J/JwdHDky++/\nZP7eOQzRh9POyZ1gnxCeeH8WibvjmdhzEs/duZElBxeRVJRotVcoMRy2Cr2gzLd6f6F8T/y1d+hc\n/U5z9WJrv3Alh4CvBL+UvKLJRxo0aNBw/cDpqaeeeuqXzsTVRm1tvd17YnEPDxjO/X2nSoVvdf1Z\n4gruY1RQpFy0vd28KTEcZlbRTEYFReLt5m0zPeV1W89cLoTyP+qmcTJ/fu5+LP1wkcxnP5/+zN87\nhw6uHXn642Wkhi1kSr8HLklHvHvfu7EcOL2PdaOyiQ+egY+bL0s/Wsjbx/6PrV+8QebwlQzQD6SL\nZwB9buhL8ck9FH69i2/rjHR09aHoZCEHKvYxI/hRVhzOYHKve7m5fQ8qa88wtWAKQ7sM4wb3G3jt\n85e5r9dU0g/M561jWwj2uZUeHXvi7ebNrZ1CSD+QioMD7PpqJwcq9jMv7M98WHGQXSd20s6pHYl7\n4gn1C2OQ/nYKvn6Xx383h/hbE/B09ZLt5O3mLcsW02MSAV6Bsl6U7WIhAacxumuUVT3O2D2NjGEr\nGKAfCMCx7z+ni2eAbMfRXaOY1HMyvXz60M+nP71+tA5Torr+LG9+vpnhgSPo5dNH9iVvN2/MZjNv\nHdvKmG5jSSicxhtHN3OwYh9n689Sfu5rakw1TA+ewf19p9LZQ8/kXvdaCYzN9aWr2edKDIepOHea\nXj59GBUUyQD9QPr59CdxdzxvfbGVqJvG4enqZTUOSgyHeajgAXK/fItbO4XIsos2mVU0k8H+Qy8Z\nO8p69XT14o7AEfT3vZXgTrdypPJfzBrw+CXlOVV9kvvfvZfTNSe5q/sEmU/xzXOmc/z9yHo+OFXM\nvb3vw9vNG283bwI8Axh/cwxLDi7iuX+vZ0Tg72X7VtefZVLPyQR4BVJdf5aeHXtxyPARU/tNo8xY\nSvr+VBKCE/mX8Z+M6TaW+/tO5av/Hee1oy9TV1/HK59t4m+/f4Z7e9/HHTdGcGunEDxdvezOEaLP\nAnLc6j38Gew/VI7n6vqzJBROI/aWe4npeY98vo9PX3adeJcXxrzM1H7TGKAfSHT38Yy/eQJjb7qL\nMd3HcUdABKH6MNnvEgqnMTcslc4eeibmRZP337fJHLaSmzv0oINrR/r73kpC4TRMjSb83P148v0n\nuM3vdyQUTsNf588dN0Zwm+/vuOvmuxnTbSyh+jB6dOyJX7vOZP/7Gfr59CehcBpvHdsqx5UYf6Kd\nxRyy5OAidhzPZYDfQHr59MFf58/ekx+wduR69B7+xPSYhKerFwmF02hoMjEi8Pc8UTybDysOkjoo\nnXt6xeLh7EFc/+l8cLKYMd3Gynng/r5TGew/lIxDi6k2VRPXfzqzBjxOz469WF2ygn4+/a3GtHp+\ntwf1s8La5o6ACJmesn1bMwbV64x4R2xCxZwU3f3uS75hL3+A1bo1KijSqh8q50cxR7YFyr7blvpq\nKzw83C7rPQ1XF2rZSdn+1fVneepgGhEBo9j+1TaAH23OWm951kSj/PfR7z/j/ZNFeDh70mhu4PWj\nr5L35Tam9HmA8IDhjOk2lvT9qYzuGiXndDVE/sQ4b+04bO45W32+tWP8Woe98Xyl49cWfoo0NWjQ\noEHDRWiyU+tw9uxZdu3aRWxsrLzWvn17nn32WcaPH4+joyNZWVnEx8fz3//+F19fX+bMmYO3tzfH\njx8nKiqq2fTVspOt9U/onz4yHOCH+u/xcPakprFGnZRd1JjOYaip4JvqcmobajBj5sDpfQzwHcib\nxzbTaG7gn8aPmdY3gbmDFtDLpw/uzjr+74s3MJthcq97qa4/y+QdMbx7PJ8mcxN3BI6Q+w0hHwz2\nH8r9facCltAgYp8/q2gm/Xz629SJVdef5a1jWwkPGC51A0J2s1UvgF1ZROSltfJca/YoLaWh1B/9\nXLgaedegQYMGDW3DlchNvymLM3Gyw9RoIrk4SV4TVkfqky7C6kh9gl95/2qeUFGnY6ip4OS5cgw1\nFdKCSViLCHJIWNzc1+9B1oxYd4krQyEQLB++iqju0eROeJct43MJ1YcR4BXIxJ6T8HPX4+rkSid3\nP2nxBOCr88PUaHERd0M7H7JLs0gNW0gnNz96dOzByXPlFJcXkVD4EL46Pxl/zFfnh6ujK6H6ULp6\n3cRfRzwj3Q8KnD53isd+l8LWu3NZE5FFb58+NJotfr593H1Iv30Jmz59gYigkSTdlsLWY28we4/F\n+kdtiaV2Z6i0EBNtqDzVtXz4KoJ9Q3j77ndkvgqO53PP9rt47ZOX5XNKS5r5e+fYbWez2WKdJE5w\niVNXwvJK7+HP5uitrBuVzbYJ+WyfWMCOibvIi9lJqD6MMmOp7INXy6qltZBuI3LHWrnmBEsbnW+s\nk/1PWc/JxUk4OEBCcKIsu9LaT1gY2RpT4veU/FhmFsYzMS+a1L1zWThksd186lx0PB+5ycqiT3wT\nwFfXWT5bcDyfguP50lpp4ZDFODg4WOVBWLyJNhOWgcXlRTz8Xhzf1X3H+iNZJAQnMn/vHMqMpWQe\nWsaUXg+y8dMcJnS/B72Hv7SiSi5OktZoSigt8gBpuTazMN7KUjHAKxBDTQXV9WdZ8lG6bAthhSQC\nNotyC4i6V1pOlRlLaWgykb5/AWXGUupM58mJfFG6SU1+f7a06Fw4ZDHz96VQXn0CY20lZy+cJaHw\nIQqO55NUlMjsPYnE74qjxHCYU9UnySnLlm27OXqrtKATlpmGmgom74iReQz2DeF8Yx2nqk+SVJTI\na5+8LGOtifcE1kRkkT54MatLVkgXjc+WZvHaJy+T/P5sjLWV0oWust70Hv64O+t4evgaK6u6lNC5\nJBcn2TwlqR5ntsa2st+G6sN4++537LopbWkNUFum2rKCi+oeTUb4Sit3ls3BniWOMj9qa9C2oi0n\nQDUF+a8P6v6zfPgq4oKn4e3SHgAzTZeV7kDfQUzqMRkzZnDrqGoAACAASURBVHzcbiBj2Arau3bA\nWHuGMmOplM/gohWugHJsiDw1tz6r37V32lmZpr0xer2jufH8U4xfbU7QoEGDBg3XEnbs2MGbb76J\ni4sL8+fPZ/r06dx7771MmjSJzp0707VrV1566SX++Mc/snbtWubPn39Z31Gvf0InkBI6DyecON/Q\neheNAJV1Z2ikkZ4degNwV7cJdNL5UlhewORbptDFM5CFty/loGG/3PsEeAWyZXyuDMkBljjX60Zl\nSzf6Qh5SylMCLk4u0suR8NJhS4YQHlX0Hv7yHXvrv1KebE631hp9yJV6GlDKdz+3vPJTeKnSoEGD\nBg0/Ha6LGGdNTU089dRTfP7557i6urJs2TK6du1q93l7vqbVcZiUihF7i7cy3pC9Z66WayBbvp2V\ncbaU31PHeBJ/leSGiBGyfPgqq3hOSpQYDpO4Ox6zGRwcIPvODdKNXez2GL459zUzg2fTrX035u1N\nZn5YOks/WshLUZupqqsiImgk47eNYcfEXQBWsZuUJJyhpoKYvHHkTngXY20lCw8swN1Zx5qILJKL\nk6g11VJRc4r5Yek8/fEygry6kj7YQqTM2D2NjPCVrP3XatyddXbjZokYY8LdoHANKYQvvYc/U/Jj\nqWuoxd1ZR+qgNHx1fkzMiybQM4gpvR9gZUnGJQpypRLaXtuJ+2rlmlCWpw5KkzGXlG1pqKngnu13\n8WToAoYEDOWe7XfZVNC3hCvphyWGwxyt+oycsmxMjSYpYBccz2fJwUUANt00ith6DWaT7DdKl322\nSDNlLLASw2GSihKprq/GUFtBoOeNODk4kxtjIY2UZKitv8oYYxPzojGb4fEBKTzx/iz8Pbowd+AC\nNn36goydJeLwiVhzgoRZPnyVzOOE3LHc0M4HN6d2ODiAu7OOhOBEcsqyqTXVsjQ8g9S9c5kzcB45\nZdlWscjUY8xWPYjvT8yLJnPYKjZ9+gLLh6+SfTN1UBoLDyxg24R8ArwssdeUfbLEcJgJuWPp4hmA\n2QyN5gbaObnLNhNE6Mzg2fy9bB3tXTtQWXdGBoguM5YSv2sqG8a8xJKDi2QsN2NtpfSTL8ZFcnES\nsbfcy5KP0unmfRNLhmZc0odFmWK3x9BgNmE2Q8W5U3Rt340t4y0uL0W5AB5+L44b3H3YOOYVjLWV\n0qVi5qFlmBpNuDi5yDa1WP4tYGl4hpxrhBLd1vgU7SDiugGyTeBiDELAapzZ66/2oB5rrRl7za0l\nSsL/nu138dydG2UMussZ08r8/BKbwcuBFqfjp8HVkJ0ERPy8uL7TSXk/iabLJM0E/Nw7o3fX8+/v\nSvF2aU9tQw2d3H15MepVOW6F+2hB1tuL4decDAeXjjdoW2xQe66JrnRsXS/jU4MGDRo0XHvQZKdr\nA83JTgJiH/D9+e84U3sGMLcpVqwDjjg6OIDZ8qave2faObej0dyAl6u3Vex5uHjAtDl9hi156Er3\nEK3dE9n7JjQfr/lqQ11H6nxqMtq1C619NGjQ0Fb86mOc7d69m/r6et58801SUlJYvnx5m9NQn5xW\nTrTNEWJKpWtLVglXArVFj4Dew9/qhLQgNGbsniZjIylPAcGPVkS50czekyiV8uqyib/JxUmYGhtY\nGp5BQ1MD8bviJNmz9e5cZgbPJuvIapZ+uAg/XWeGBAxlzYh1+Or8mL83heLyIip/PCU+MS9axpTK\nPLSMKfmxlBlLmZIfi7G2kiCvrhyt+oyEwodYMjRD1u3m6K38PXIDfrrO9OjYg9wJ75I+eDGZh5bJ\nmEcRQSMl0aYW+JT1JyzwVpeskFYyycVJ8gT7mogs3J11xN5yr7RIEvG7ZoU+ZqVMF3UZV3DfJafe\nlXWp7E/CckhYQm2O3mpFDBhqKmS+puTHovfwJyN8JU9/bIkHd7mkWVtOxNt6Lqcsm9RBabg4uciy\nRnWPZt2obBwckKfXlEK3sbZSvq+0EFBaWInvqckNsJAfW8bnsnPSHv464hkyhq3gTG2FtMBTx5ZT\nl9PUaCLz0DIMNRU4O7jg6uRCb58++Ht0oaruW3r79GFT1GvSAklYl83ek2h1gk7v4c/sPYkcrfoM\ngBV3rOHvkRtYMjSDNRFZF+vG0YWlHy5izsB5zN+XQq2pluLyIhmLTH3Czt5pslB9GNsm5BMRNFLG\nkzPUVFDXUIuvzk+SZiWGw6wsyeDJ0AXWY9gMD/aZhovjpfGF9B7++Ht04b3ynSwftpqXxm5m4e1L\n2XrsDWJyLdageRN3AvBN9dckFSUCkHloGUlFlnoJ9g0huTiJhOBEJvacxMtRr5N95wZplWfrpOG6\nUdm4O+t4fEAKeRN3ylhzYBlzUd2jCfYNoZO7H1V133K06jNm7J7G6KCxrC5ZQUJworQ+zTy0jIl5\n0cz9IJnT504S/95UVn38NDG50dydG8XsPYmyT4k2LTOWMnlHDLP3JDJ5Rwzxu+IkOSrGpKhr5ThT\nWgTaUq7bsiBUn4RsrTWWvbVEzPnCqi2qe3SL8ZzsQb3h/bVYymi4PFwN2Qms418+ffgvV0yageX0\n9JxB85l8yxQeHzAHRwdH3Jzaoffwl0R75qFlxPWdLmNCijzYmoNsjVWlBbjy2bae9LV3UOdKxlZr\nrN80aNCgQYMGDdc/ArwCSR2UhrG2EjNNbSLNwEKWTe0zHQcHB5poourCtzw+IIUdE3fJPa3yW+Iw\nnjJ+rNBN2LLcV+oxlPfUz7emnK15RqnzUstT9izbrjaEbGurfNfCHupqf/vXJGteC+2jQYOG3xau\nC+KspKSE4cOHA3Dbbbfxn//857LSsaX8sAX1ZNycYvVqQWlJY+vbcNHNmyCThEWVMl9T8mNJ3B3P\n6eqTnG+sk1ZAQoGsNktPHZRG1XkjVXVVVNacobLOQEJwolQ2v3tiOwDfXaiioamBpCKL9c3Rqs+k\n0OeAxe+au7OOnMgXieoezeborayJyGLph4s4e+EsmYeWkT54MTll2XTW+RPsGyKtrQw1FRhrKzlT\nYyD+vakYaytZXbKCNRFZbI7eSlT3aAw1FWyO3ioFQ6EUUwt/YCEPlO4GRF4CvAIlwZF3/G2eu3Mj\nofow9B7+UjGntEApMRwmuTiJuL7TrVy+KdtMvWgLIUwphArCYd2obOJ3xRGTO47i8iJMjRb3kd+f\n/x5/jy5kHlp2CcnZGjTn8kANdZ4vkqcmgn1DpBWWuC/ILbXSv8RwmIcL41g4ZDHbJuRbWSEJUkHU\n4eQdMcRujwG4JH3xzqZPX5Ckka/Oz4oEFWkB8neAVyBb784ldVAaofow1o3KJmukxSru3Xt2s2H0\nS7IuRXuE6sNYE5FFg9kk74l+Xl59gr/9czVdPAPw1fkRvyuOhMKHrMjBhUMW4+xoIef0ui48PiCF\nBfufJCV0rvyOmnBRzxmi/oSFWeahZSwfvgpjbSUV505LIkvU/XN3bmTrsTekK0S9hz9+Hp3ZeuwN\nFg5ZjLuzO+tGZVtteLZNyCd1UBo5ZdkkFycxJGAoqYPSOH3uJIm74wFYXbKC50dvkm5b10RkIWyP\nDTUV1Jpqmb83hck7Ygj2DZH1YK9/hurDSB2Uxry9yRhrKzHUVEhLNKXLkA1jNuHvEUBE0EgywleS\n85/1TOh+Dwv2P0mZsVTmpc50nu8vfMcjIY/x9PA16FzceXxACo44snDIYorLi5iSH/ujxeJZ0vcv\noNZUx7pR2aQPXkzVeSMJwYnSSiUmbxwLDyxgQvd7JGGudi8q+q1y/NsiudriGk4JobBXutpV9wul\nK1JlP1I/ZwutWbeUz/6c0DY2vwyupuy0Keo1fHV+fFtrvGr5+/L7L9l/ei9PH17G/LB0/h65AUNN\nBTN2W2JNmhpNVu5hxaEYeySZeqwKd7K2xsCVKGTsja3W9HN7sp09xY2Gy4NWdxo0aNCg4VpCsG8I\nvjo/wKHFZy+FmaKThSwYtAi9zp+Vw//Kpk9fkB5PxN5cuZ947s6N8iAzcIk+Sfxtbk/zUxEUyn2r\nPfePVxO2Dik1t09q6wGrq42rXe+/NqLpl24fDRo0/PZwXRBn586dw9PTU/52cnKioaHhitJs7rSv\nLYWGPQX41YCazFIvBMoYUwJKN4giDUGELRmaQWdPPe2c3OU9IRQpFbfCnWJO5ItEBI1k/qB0ungE\nklOWLUmj9MGL8XHzJdDzRlbcsYYt43OlFU4XzwB83H3IjXmXqO7RpA5Kk2SegNkM7s7u8t7m6K0s\nDc8gwCtQWljoPfzJPLQMH/dOtHftQLBviCRORD4FwWav/tR1qffwt6pHQYwp7wnXfQFegdIapeB4\nvqxrvYc/pkYT649kSZJLCVttpbR8U0IQDsa6M7R368D6I1kAbCrbyJKP0nmwz7RmfYI3V257J6Zs\n9U91noVyUbj6U9ebeEZ9Sv9o1WdgtsTBU1rciRNuZcZSWYf1jSYZ00p5ikypQJzQ/R7m753D0arP\niMkbJy3zlPGswGLZJhSkZcZSZuyeRsHxfOJ23k/i7nhOVVtcIS45uEhaIon2OFV9kqNVn1FRc9qq\nL+k9/Onq3Y2l4RksGZqBsbaSqvNGMoetkv06ofAh0vcvICE40eLD/UcCTVgItXR6Tl33SqWu3sPf\nishSItg3RBK/wjLNy9WbhOBEgn1DcHZ0sUlmiThhyphgDg4OmM3INlbOIcbaShwcYPYeS1yzv0du\nIDfGEg9R1LOwAmkOZrOZBfvmEpM3jjJjqfR1L+pb7+GPzkUHwH39HiQjfCWzQh+TmztRZ/+r/57I\nG6PI/ncWTx/+C/WNJiKCRpIb866lH7w/m4TgRLJGZtPOyZ1aUw3fnq+UdSbcYIr0lg9bjbODC1uP\nvcFzd26UZLmYC0W/LTEcthrD9iwGr8SNonIuEvlTzu3KZ1tLhNm7b480+zk3T7+2zdr1hKspO4n1\nYcHti+jo6gNcPDTTGjjggAuu8vfkW6aw+egrck3cfPQVkouT0Hv4y3l13ahsqwMzSst6AWW/UssI\nyrXpakItE4prLRFgtsZ0cyScNm4uD1rdadCgQYOGaxGeLl50dte3+T1HB0ce7DONzUdfASAiaKTc\nZwMyPqzyIK3Qu4gDROK6Mg653sNfWvIr10xxmFC9v20LWqOXEN9obRqXA3G4Sn3AqqVvt1Z+bCmP\nl1OGK6n3ltL7teDXVBYNGjRc+3B66qmnnvqlM9ESDh06xA033MAtt9wCwMaNG5k+fbrd52tr61tM\n09vNm1FBkYCFHBsVFIm3m7fVffGMemK2dx0si6MyndZAnZ7yfaHQvSMgAk9XL2YVzWTliL/Sy6eP\n1Ten5Mfir/MnofAhDhkO4ebkxrpR2fTy6UN1/VliekySi++sopk44UTinnjeOb6d4m/+wRtHN/Pe\n1++SdvtTjO4WhYeLB7tO7MRf14WCr/N5qO/DvP75qwz2H0qoPoxbO4XQo/0tPPH+LP7YawoV505z\n37ux9L2hH+7OOibmRVNUvpu0wYvo3+lWsv/9DH7ufpgx88DOP3JHQARdPAPo4hmAt5s3t3YKIf/4\nds7UGujVsQ/hgcNl2ebtTSEldB5juo+TZa6uP8uknpOt2q+6/iwBXoGyXUV9ivL38ukj69nbzVsq\nV/r59Gfph4uI6zudJ96fxR0BEfTy6YO3mzdRN41jcq97mdzrXpvtXV1/VqYl2k1cU+YzwCuQinOn\nef+bYnTOOtaNymZc97vY8J/nuLfn/fyp730kFE5jdNeoVvUfkXdRHnV/VN5XpmdL4Sf6unhnsP9Q\nungGyDIpy+bt5k2J4TAJux8ic9gqqzYB6OIZQJ+OfVldsoKYHpMA2P7fXP58+yIG6AfKNJT52/Fl\nLn/eP5eE4Ed45bNNtHNuR4/2t7Cq5GmWD1+Fp6sXAV6Bsi5Fuz9RPJunh6+mqq6Kt77cwrkL5xjS\nZSjzP5iDgwNEdb2LxR+mcXP7W/Bx9yF2ewxvf7mFmcGz+WOfKZQYDsv+d5vv75j/wRxePfoShw2H\nSLv9Ke7r9yAAPTr2pM8NffnHN3vY9uX/Mdh/CLvLCyn6ZjdT+02T5VH3N6XVkLL+xG/l//18+nNz\nhx6yP/fz6Y/ZbGZKfizhAcMJ1YfRz6c/ofow/HX+PFb8CHd1n8DUftNs9rmb2/dgdckK7u87lZge\nkxigH0hndz3R3cfT2cOyYZu8I4ZtX76Fv86fhwvjWDViLSNu/D3vnyxmXPe7CNWHcez7z1n64SKm\n9Uugl09vHip4gADPAHp07HlJf5xdNBOdiyd/Gbac6cEJ3HFjBLd2spBzyjksPGA4vXz6yH50R0AE\nN3fowRtHN+Pi4EJMz3s4c+4MW469jtlspsZUQ4d2HYi4cSQAtaYa/nmmhLj+0y0WeO5+vHtiB8uH\nraa/760W67zKj5kblooZMxPzovnPt2U8e2cOU/tNY4B+oJxzxTzaxTOAOwIipIJe2V7KMop6busc\nL6D8rnL9Gew/lFlFM63Gq611pqXvtiZfza1fPwVa8z0PD7efJS+/NVxN2elU9Ukm5kWz88Q76Jx1\nXGi8gDMuNNLY6vw0KZ6trD3D0C7DeKh/PP82lrJwyGLuueUP9PLpI9efWUUz5XokUF1/1mqOjCu4\nj5gekwgPGM78vXPkGLocWaw179hbW+3185bWavGuGj/3OP0lcDlt1Br8FupOgwYNGjTZ6dpAa/RO\nYFmbAjwD2Pbl/2Fqat07AmbMfP79Uc43nudMnYHwLsPkfsbVwZW1/1qDqdHEtOCHrdZVoRuBi/qi\nXSd2MrprFAAT86LZfPQV+t7Qj3l7U+jn05+Kc6flvk3sk8W7t3YKsZLJbOkKxHWlrKT8rdyz2ntf\nmUY/n/5W37QHezKFt5s3o7tGSX3M1YQ9mVDcEzKrrfstQV1vVyov/RTylgYNGjRcT7gSuem6sDgb\nMGAAH3zwAQBHjhyhZ8+eLbzROjR32lf5DGAV00Z5XYnWuNJqLi+2EKoPIyN8pbS+smXNJCBc3eXG\n5LP17lxpZSNM9MV3NkW9xn39HuSlqM08P3oTrk4uLA3PICfyRdYfySJ+11SSihJJHZRG3vG3Sb99\nCcWn9shYI6998jLJxUnklGVL6w2ApqYmFh5YQHF5ERXnTpMQnEj6/gWk7ptDRMAo4t+bCsDbd79z\nSZ2E6sNICZ1HZ52e9UeyrOoqJXSulfWIqGcBpTs/8YxwPyCeVZ9EV1p6CAuc+/o9eEmMMaW1lRoi\nbRFnSVgvKi0Zp+THSrd18/fO4e+RG2TbCJeS75XvlPmzZ1Wnhi3LMZEne5aLzVlZKq0RheWdPXd1\nwv2DIJbUEBaDot7WRGTJGGNKiHZ7tjQLHzdfS/y8iCwe7DNNukAULg1FHSsh3EtGBI3ksdvmsOOe\nXT+6wIBHQpLI+c96Evo/yoL9T2KoqWDdqGw6tfPjubJneKZkLRNyx8o+ovfwZ92obJYPW42Lows5\nZdkUHM+3KtPjA1KkhYXO5WK8PVvtb6/Obc0Rp6pPSks6QI6zMmMpDU0mkouTKDiez8zCeAqOW1xZ\nms1m6T5ReYruVLXFPWLmoWXyBKHI4/x9KUzf9SBj3xpFmbEUs9niOtNX5wdmqKqrssTi+/GbSlel\nKz7+Cw+/F8eJs8d5+L24S9oSLNalS8MzpMtR0eeFBYnew1/GIRNuUcV1gHOmapZ8lM5fDixh8+cv\n06mdL+O6jaeJJgZ1HsLsPYmMz41i+q4HeXxACklFicRuj2H9kSxyIl/kvn4PSks+EStN7+FPTuSL\n0sqtOWssW/Oqcs6xd1pR/WxLEGNcuf6ordiUFimtQXNWLrbwcyuUNQX2L4OrKTsZaipwd9bx9PA1\nNJmbaDQ3UM+Fy0rLzbEd3543suXYZpZ8uJAGs4nUvXPlXCegtARXYvnwVczeY3FrK8aN2pq5rRZH\nyvW8OTQnM9rr57bW6tbk59c8bn5qq7Bfc91p0KBBg4brC6eqT/LaJy8zb28KNQ3nWvWOh7Mnrj9a\n6jvgyLhu43F31hHoeaP0GvLaJy8zf18KqYPSpPcY5TfVVu5qF9buzjqWD1tNVPdolg9fZWX5r9wX\nGWoqMDWarEJXKOUmW67t1bKP2ptTc++Ld1pyj28rL7ag1OVcTbmjJa8BwBVZev0aLcU0aNCg4XrE\ndUGcRUZG4urqyr333ktmZiapqalter+lxVYtZKifUbrxai695ha31ioJ1PcLjuezYP+TVibztr4r\nXLIdrfpMXhNpCTeD6rSDfUOkK73MQ8sI9g3h0duS6Nq+G+mDF0shamLPScT1nc6mT18gru90Fux/\nktRBaWyO3kqwbwix22PQe/iz4o6/4uzgwtp/rcZX54ePuw+N5gYyh60i/6vtmLEo+421lTJgrRBy\nSgyHmbc3GWdHZ+oa6mR+lXGglMLX8uGrMNRUMCU/luTiJAD5TIDXRdeLcFH5JggO8Ve48lMSHfZI\nSXtQu41S9wFTo0nGrRIknWgbNRGkjv/VEmwJaS0p923FVFH2TRFHRhAvaoW+aCulWz3l9wVxo4RI\nU5RN5DO5OAlDTQX1jSbOmn5gZmE88bviWH54KRnhK63cfhprK2loMmGoqZBEqIuTC4aaCu56ewzP\nlT2DsbaS5OIkGswWt37P3bmRuOBpkpwJ1YexYcwmciJf5PXPX5Hpxm6PYWJeNDML48kpy2bhkMUk\nBCdKN5AlhsPEbo8hpyyb50dvku4TRfys5OIkGppMl7S/kpwV+Ra/1QSO2Mhs++ItUvfNIa7vdFaX\nrCBrZDZrIrJI37+A8uoTTCt4gKNVn7Fh9EusLlkBWMfwE0gdlMaSg4ukwjlUH8bzkZtIHbSQM7UG\nUvfOpcFsUrTPatYfySJ1UBq5MZYYaXoPfxqaTPi4+7BtQj7Pj95EoNeNPD960yX9SrSHrf4mlNpg\nIdfON9Yxe0+irB8xDl6MepXHbpvDn4cuJCfyRTq068DR7z/jrm4T+PyHz5jS+wFoMtPZQ09vnz44\nO7pYroEkTNUbJkNNhVXsPntzuD3iSelCt7l4Ser53d74E25nlfkUfUW5oVOTrc3BHhmruSrTcKWy\nk4AgwYW71qoL37bJTaMabk5uMkaqE85M6D6Jb89XMkQfzsOFcRQcz5drf1zf6XIuFv3aWFvJN9Vf\nU2YstUmGX46Lm7YoaNpCfinli9bitzB+NWWQBg0aNGj4LeBU9UnGbxvDE+/P4kyNAcdWqt9qGs5R\nTz0OODAy8E42fppDQ1MDz4/eJA9Fzv3gCZqammTohObIK3FN+e81EVnycLLS9b9SHyJkQOE+W7lv\nac61va3fyjy19L7Ihy139iJfyn1aa2JQX+7Bquau2dPNKfVSVwJNTtKgQYOGXx7XBXHm6OjIkiVL\neOONN3jzzTe5+eabW/2uvQWyNcpG8Vt58qalBbc5y7WWlATqtEsMh1ldsoKM8JU24xgpoffwJ67v\ndJLfn834bWPk6R0RZ0go7pVk1ZT8WIrLi9C56EgdlEaZsZQF+5/kkZAkaSGUVJTIqC3DmfdBMimh\nc4kIGklG+Ep50qnMWMrJc+WWWFKfvsCjtyXh7OCCk4MzKcWPceqcpSwLhyymi0cgSz9cROahZZIY\nSQmdK4kvP11nUkLnUXXeSHF5kZWyWghwwkIouTiJ5OIk1kRksTl6K4AVMbO6ZIW0aBLEm7KuRPwn\n8VxbhRLRVoaaCubvnWMzPlmAVyDrRmXj7OhCmbEUgNjtMVZ9R+/hz5qILHnC60r8WSvrC2yTY+I5\nW6fAxG8R202QY0rSTBBMgihSp6/sD0oI8kxY2yjzmRuTT17MTpaGZ+Ds6IzZbKa3Tx/5bWE9VN9o\nknUUqg+T71edNzJ34J+J6h7Nmogs3J11lBlLWXJwEbHbYzha9Zns88nFSQT7hrBlfC55MTsJ9g2h\nwWzC1NiAgwMkBCeSeWgZ649kkRG+ksxDy5i9JxFTk0kqjUU9in6YOiiNLeNzrepTkIOTd8TIPhLX\nd7rdE28BXoGWPH+UTge3jtJ3vej3uTH5JN2WgoOjA/P2JuOr87OqT0EKKQmsE2ePM33Xg1LhnHlo\nGRN7TiLpthQ2jNmEi6MLMwvjKTEcZv2RLE5Uf8WSg4soLi9ixu5plBlLqW80kVD4kMynu7OOqrqq\nSw4SiHoQsdXgIiGmLKdlPDgDFlIrcXc8pkYTZcZSZu9J5NnStZQYDhPVPZqskdmcM1XzXvlOQn3D\neOnTjeDowLR+CYTqw4i95V6ePryM8411JBcn8donLzMxL5rx28Ywe08isbfcS3JxkiT2ldaUsdtj\nrPLfUkw68bu5eaIlaxcxnwsrXVvEtXIjKuqwOSLcVj7tXbsW8GsmAq5FXInspIRQACz9cBFPH/4L\ngCS+LgdnTf+T//72QiXP/nstbo7tePXoJrxd2kuyO3VQmoyFmHloGYCMz+jv2cXqAIet8as+xdxS\n/2tOedOS7Gfr+uWOw2t1/F5t/FLlu9bmoWstPxo0aNCg4erCy9WbhbcvJci7Kx7Oni2/oIAZM3tO\nvgeAv85f7g31Hv50a38TK+74q5WXIeX+xp4llFh3lHKP0CPY0mcoY8+rCSvxTGth78BTc7DlMUct\nK7UmBnVb5avLPZwoyEZtfdegQYOGXweuC+LsSmBrgVQqJ5tTNip/C4FE/UxbFkT1O/YUteLe/L1z\nSAmdS05ZdosuwuIK7iMiaCRJt6Xg5WrxYbx8+CpWl6xgTUSWJC4EUaT38KfWVEvqvjmSLMg8tEy6\n4BP5+OH8D3x3oYommvjy+y+J3R7D3A+eYGJeNDG50Sz9cBFzB/6ZYN8QaZW2blQ2S8Mz+N+FH0i6\nLYWcsmwyDy1jaXgGW8bnkhCcyPojWZQYDrPk4CLqGmo5WvUZ39YZ8XH3IXPYKptWdsLyz1BTIQkz\nIcQBNk8wKSEILkNNBTN2T5PviLZV16mtf6vbSknkKNtCCHeCpJuxexrF5UWcPFduRR4FeAVakaJt\nUfbZy5f6RJcyv80JqErF/da7cy8RnkP1YeREvsjfO2jx3wAAIABJREFUIzewZXwugJXgLBSaOZEv\nsrpkhZWAe6r6JPG74ojJGyct0gw1Fdyz/S5Jsi05uIil4RkEeAVirK2UfT5UH8aaiCxcfySExPNi\nXOZEvkje8bet6jt9/wLOmaox1p1h/t4U6fZRWU+izZwdXHBxcqahqYGcsmxSB6VJq7U1EVksHLIY\ngIUHFvBwYRxxfS/GCDI1mlhycJFsU6VFwpqILJwdXWTgZWWftiV0B/uGsPD2pbwY9apsQ9Hny4yl\nFJ/aw4rhf5V+3mfvSSQmb5zFarLvdJKLk5hZGM+aiCzAEkja09WL9P0LZJ0VlxeRdWQ1xtpKHglJ\nwlB72lLXvR/AEQem9H5AumCN6h5Nbkw+2ybko/fwl+TYpk9fkO5jRTuK/AtrRfE9QdiLPm2srcTd\nWSfrtKLmNI/eZiHqp/R+gAZzA8baSllP352vor6pnhc/fZ5z9dWYm5p4+uNlPFOylqc/Xoavzo/n\nR2+S+coctgpnR2eq66tZ8fFfSAhOxOFHwxhBngnrPWH1pjwVeDlQkuii7dXpifl8+fBVBPuGWBFi\n4nmwHk8tWbkpYe+047W0YfstWNH8mmGRGepwcHDA8cf/XB0u3094e9f2uDm64ezgjLdLe86a/oeX\nizdnTf+juLyIxN3xJBQ+RMHxfHLKsqXlfIBXIIaaCrZNyJeHJ2y5+VGOOfG7NcSXGDctEenqd+2l\nfbnzyuUc5vkp8WsZt9faPHSt5UeDBg0aNFxdCHm+Y7uOZN+5ATendrg5tmtTGg44cLNXD8q+K7XS\nj2SNzCanLFuuIcLTjTgg/donL1+Sli39l1IGUsLW9dYeBr9aUOrHbLmEVD/bmvTa+u22lv+3cgBK\ngwYNGn4rcDCbzZd/bPgahdFYbfee2KQqrQNas6ip37N3rbXpCOsHe3GohIBgS5ixd4JIEBEZ4SvZ\n9OkL0kWc2txemY64r1YaFZcXsf5IFg1mE3Wm88y49RFWlmTwp54P8NrnL7F82GqeLc2iur6a7y98\nh6ezF9X1Z9kw5iWCfUMoLi9i/r4Uno/cJN2oCaub+ftSMJvNbBj9EksOLsLUZELnoiP2lnvZeuwN\nqfjXe/hf0lZlxlKpeFa6C7DVpmrBSm09pSa71BYjov5stRNY3K4JIlKZllCgzyyMR+eiY3P0VlnP\nJYbDslziPXFN+W1BbgJWZVW2o63rlwORVl1DLe7Oumbd0U3Jj8XUaGLhkMWyXdV5V7pUEL+Ly4tI\n3TeHuQP/TI+OPaQbxoLj+WQeWkZ1/VmMdZXMG5jG5qOv4OBgcesn/LULa7GE4ESS35/NS1Gbieoe\nfYlgHrs9hgaziVPVJ2kwN2DGTHuXDqwblW31vEhT9H1DTYW0YDTWVvJwYRzPR25i6YeLMJuhwWwi\n+84NGGsrpeWDeHbJwUW4OLlId4DqOcJWn1PeE3mK3R5DefUJ/D0CyI3Jl+8VHM8nqns0JYbDGGsr\nSd07lw1jNgGWPtb4I9k0LyyNFR//hbkD/0ze8bfp1aEPW45txgknune4mUdCkujt0wdjbSW+Oj+S\ni5P4ru473F3acfrcKRJvTSL/q+0Al/jJLzEcZvaeRNaNysZYW8nqkhVWmxjRl09VX3TVuW5Utuzf\nofowOV5SQueSeWiZ1bgQdRD1f6NYOWINCYUPkRP5IlV1Vczbm0zirUm8V75TWrOJdHx1fjIOXuqg\nNHx1fszeYyHLHglJIiJopLwnxqogAH11flZWxM3NxS2NMVE2ZZ00F7NMPd8q55uW3MVe6Zr1S27i\n7H3f19frF8iNBjWak51KDIeJyRtHp3Z+fHe+irrGWm726sF/q79s83e8XLypNp0FwBFHVo+wrPkR\nQSPZ9sVbbD32hlxnbM3b92y/S8ZKFRbrQm5Qz7HAJTKVGsr1FC5ay7a0vqrlqZ9qbLWU9uXIom35\nztVK/1rBLz0PqnGt5UeDBg3XBzTZ6dpAc7KTwDMla1nyUTp3dZvAOyfyrOSgluDupMPUZMLBDB3d\nb2DXH/5hJXso9QFiv7wmIov73/0jVee/5eWo1+V+qS37ncvVNfxUMoM9ck+DBg0aNGhoDa5EbvrN\nEWdgrbBuy8KufO9KlCXqdNRpNKe8AKyIFfVzr33yMhFBI61cuCmV2s2RhYJAiN8Vx+mak3TxCGTO\nwHn09ulDqD6M1z55mQX7nyQjfCW9ffoAEL8rjj/c8kfWHlmFs6MLK4f/lVUfPy3d52099gZgUUCV\nGUvJPLRMKq0FMSTymlycJMkbYSUn8ioEQbDEbxKKd3U7KImn5OIkTI0mm8FybRGP6meUda1WZgsl\n4vJhqyVJCUhiqbq+mh/qv+P5yE3SraWAKI8gEhfsf9IqCK/y24JkEPWhzN/VIs7gIoGl/o4ar33y\nMmv/tZqT1Sdx+LEsSrJNSUaJ9hCE7pOhC3j981f4+uwJ8mJ2yudEvxgdNJac/6znuTs3yjoL8Aq0\nIij1Hv5MzItm24R8SXYBUuEZkxvN0vAMquqq6O3Th4LjO8k7/hYVNafJnfCu3DSIen/uzo1WfVG0\n4ffnv2Ne2J/JKcsmITiRnLJsqz4p8gwW944RQSNtlr8lqEmTxN3xODu4yD4r2nlNRBZJRYmc+N9X\nmMwmunnfJOtAuJLMjcmXhPXM4Nk8V/YMns7eeLp58NjvUpi/NwUc4PnITSw5uIhHb0ti7b9WM6H7\nJJ4tXUtnDz3uzu5kjcwGrAnRiXnRmM3g6uSC2YwkTtVlVZKQyjEvSEXRhkoltSCLCo7nS8Isff8C\nXBxdWDcqm5mF8fw90kJaCgJR7+FPmbFU9osH3/0T7d06SAITkCSmyE/qoDQrJXxrDlC0ph2Vc476\nEIK6je3N98q+Z2tes9VfWpOv5vJxLUFT/lwbaEl2ssR8LGHtkVU44HBF7hodccTdWYenixfuLu1w\nd9YxOmgsfy9bJw/cGGsrCfYNuWQ8KA+gpITOJdg3RK4z6oD2ygNCymvNKYeaO82sfOdKx1Nb5peW\nCPArJV9aKo9G7mjQoEHDtQVNdro20Bq9U1zBfUQEjOK98p0c/+G/XGg63+r0/dw786deD/DmF6/x\n/YXv5H62ub1CmbGUBwv+xGO3zSGq+1gpH9nSHdlKQ1y7XF3D1ZYZruU9jAYNGjRouD6gEWcqtObk\nj0BLZJKt567mwm1LYdPSiV+l0l4pzJQYDjMhdyxdPAN+dD/nYmVpIRTXtiyohEWJgwPUN5p4fEAK\nAPP3pdDB9QYK/rAHuOgmb8buaTwZuoClHy1kzYh1+Lj7ALD0w0V8ffYE88PSmdhzkiTFhLK8uv4s\nOybuArCyBFFaKSkV7+K30uWSkgxUt41S6aVUmAvl2+WQpXCp8qzEcJiY3HHkxlgLr8Iq6OHCOJYP\nW01E0EhpgSMs6wQBo7TAEQp9ZTmU90UdtYZgbSuU5IwtgVqprBQEWOahJdzQrhObxr4KIIknochU\n51cQSiWGwyTujif7zg0Ass+lD15sZUWkJKiE9ZewUhOKUGWfEGlPyB2Lr3tnqs4byRy2ivv6PWil\nOFUSO8Jl6Dfnvkav6yKtvF775GWefP9xnJycmDcwjbzjb5MSOpeFBxbIfIvTfEerPpPEp9KS0J6V\nor16Ff1BSRiKehPEkSCLRD6Ucf+OVn3Gff0epMRwmKk7p+Dj3omE4ERJcIv6AWT/7NTOj8o6A5jh\nhnadaOfcjscHpODj7kNC4UMEegax9e5cDDUVxOSNk8rspCILUSfISFuWm2Lcx+SNw9+jC9sm5ANI\ni1GB2O0xnDxXLt17KpXgSUWJZI3MJnF3PGYzGGpPM29gGitLMsgIX0nqvjnSKu2J92cxrW8Cs0Mf\nt5oDxL9jt8fg4uRiRfCq+/qVnGRsaX1Q3rdnLQsW4lf0Q3sK89bksaV8XGvQlD/XBuzJTqLfxeRG\nc/rcSUxm0xV9Z6DvIP5pLKGJRtq7dKBDu47E3DyJtUdWodf582LUqyTujufE2a/o6nUTuTGW+UM5\nv+g9/C+xCLdl1Susx5QHH1ozrlpDWLVWbrT1u60k+M9BgF+r80NzuB7zrEGDBg1XA5rsdG2gNXon\nsf88eOoASz5Kx8vFm9qGGhrNjXbfccWNei7ggAPOjs501unJGLYCX51fq/aZwmMJXOr1pLW4ltbY\naykvGjRo0KDh+sOVyE2/+hhnLUGpoFSeMlZCeT/A66fxWWyoqWg2H+K7gIxbtiYiyyofeg9/ungG\nkH3nBhmjKqp7tIzBpfyrVuYkFydhajLxSEiSjCWVU5aNt0t7KusMbPviLSbviCF9/wIyDy0jI3wl\nE3tOYs2Idaw/kkWwbwjBviE8EpKEv0cAr3/+Cne9PYakokSSi5Mw1FSQEJzIt3VGSb6ZGk1kHlpG\nSuhcArwuxuZS1snkHTEkFydJSxVlOU5Vn5R1poxxIuIqgcU6LaHwIWK3x1BiOHxZ7WerTfQe/uTG\nvGsVY03UI8CNnl2l5Z+LkwsLhyyW7iiTi5MoMRyWhKYgzZTlEPcFqWYrz7YIrrZC/Y74toCyXkP1\nYbx99ztM7DmJAK9AvFy9MNZWMntPolROKuPoKfOnFNadHVxI3B3P7D2JnG+so77RhK/Oj01Rr+Gr\n8+Oe7XdRcDyfKfmxLDm4CH+PLpJsEfmdvSdR9onZexIlERLk1Y05A+dZxckL8LLEkRN1fLTqMwB8\n3H3Yencuy4etRueio8xo8Ru//kgWODgwb2AaW4+9wfLhq6iqq+LE2a+I3xXH7D2JNDSZMNZWynhg\noh/YG2NqKNt5/t45PFOylqkFUyguL5JzUsHxfBJ3x1NRc4rZexLlu9sm5FuRZom743ni/Vn85cAS\n4nfFYayrZIg+nJyybOJ3xcn+FqoPQ+/hT+ahZTwfuYkNYzaRGraQLp6BrByxBgcHmPvBE6TunUvm\nsFXS6i1UH0buhHcJ9g0hVB/GlvG5bJuQb0WaCYg5av7eOZYxMuFdtk2wEEFlxlKmFkwhJteyiQvw\nssTSy4l8kWDfEEmaCaK5vtFSx2YzLA3PQK/rwtZjb/Bk6AJ6+/Qh0DMIX50fvX364NvOj9c+fwlD\nTYWsWwHxndRBaVYEsJiHANnfmosl2RxEW9ubX+z1BeXzhpoKztRWWMVKs+UauLX5aUs+NGhQQ4wD\n0e8MNRW4OLrwSMhjV5z2x8ZDNGFRFv3P9AP1TRfI/e9bBHreyItRrxKqDyP7zg0Eet7I0vAM4GLs\nQENNBTG5lliZIm6hmDPV8UoDvCxxRVIHpTF/75xLZAClDKGGvfFnzxpNPW+on1eu8bbSbw7KZ2y9\ndzlzVkvfuR7QkuyuQYMGDRo0XAsQVvH/u/A/nHHmiQFPMrXP9GbfqecCTg5OtHftQGedHicHZ+Bi\n6IuW9ACCNAMuizSDa0suuJbyokGDBg0afltweuqpp576pTNxtVFbW9/iM6eqT+Lt5g2At5s3o4Ii\n7S7I6vvivSuFEHAccWJ96Vpiekwipscku9/wdvPG282bfj790Xv4M6toJqOCIuWz1fVneeuLrYTp\nBzFAPxBvN2+bFnXKtEUewgOG897XO9l/eh8XGuvZcTyXFXes4f6+U9n99XuUfvsvzGZwcIBHQ5LI\nKcvmlU9folfHPuR/tZ3B/kOYuXs6uV++xV9/v44Rgb9nyxebWTXib9xzyx+YvSeRj898ROqgdLL/\n/QwxPSYxude9hAcMZ+mHixgVFEl1/Vmq688yq2gmc8NSublDD7Z9+Za0hIoruI9+Pv3p5dNHniQP\nDxjOnV1HE6oPo59PfzxdvZhVNJOU0Lks/XARM0Ie4a7udzOu+10kFycxumtUmwQvW31DKGvu7zvV\nqi6r68/yxtHNHKjYz9qR6zlnOsf8vXOY3j+B27sMoWfHXszfl4KbUztu9x/MjJBH8HT1ku06KiiS\nXj595N9+Pv1l3SiVd7b6hshTP5/+dPEMaFXZxDsxPSYxqedkPF29uLl9D9L3pzK6axTV9WdJKJzG\nyhF/pdePlktdPAPwdvNm3E3j8XP3Y+2/1tBkbmLtyPV4unpZ5V+NguP5LP1wEamD0viw4iBpgxex\n/9Q+6hvrKT5ZJPMQ3f1u7rgxgtFdo7gjcATxwTOsCO6b2/fg1c9eYlRQJGbM5JQ9y/5T+7gjcARh\n+kE88f4sHv3dY4y88U5u7tCD6vqzxBXcx2D/oYT43sZjxY+QEPwIqfvnMEg/mOx/P8P0/gk89o9H\nOHB6H1N6P8D+0x8Q1386+059wAC/ULL//Qwzgh/l0d/NZlz3uxh7013M/2AOTeYmZg14HG83bwqO\n59PZQy/bs7l6n1U0U1pN9vPpz/rStSQEP8Irn23C1cGVx/8xi9c/fwVPFy/+9vtnmDXgcbZ98RZP\nvD+LoV2G0aNjT05VnyShcBqPhiRxu34Ia4+sor1be0YHjWXrl68zrtt4PqzYz4xbH+Wv/1zJ6K5R\nGGoqeOe/2xlx4++Z/8Ec8r/ajrebN0kDktHr/Cn8ehc1pnMc++ELhgeOkH3JbDYTV3Cf7Ivebt5U\nnDst7yv7UoBXoHxO9BeAHh17EuxzK3/s/SfZP6rrzzJrz0xeP/oKm4++Qo/2PXn7yy109bqJghPv\n8GHFQc7UVDD91hnE3zoDn3adeOrAn9lTvpup/8/euYdFVa79/zMww2E4eEAQxNDcamqRFmppWrwq\nipKKuTHTUvJAUUkF5mkLbsENakKvmFFqhrZz94tXBY1EUV6K1FLZyeZN3du2qYkgI55wBmQG5vfH\n9KzWDMPBwy6r9b2uLmNmzVrPetZzuNd939/v3WcGyYeWUnB2L0mPpXC08hu6tfkDiV8lkBqcbjUG\nT17+J8/teprH/YPxdfPjD216sPqbNEZ2CZW+WzE0lZf6zbntF7Pmnr2ns2ejNUgc38ndn8c7B1u9\n3MrP1dI+1VI7mlo77ga4uTn/0k1QwE+2k5jPYrwNDwjB3cmD7O+2kjQkBaPJyD8uHr1lqcYubl24\narwq/T2m61jOXDtNytCVPH5PMGBZc7af3Mres/ls/VcW/u7+JH21hBFdRnLg/JesGZ4h7ff3ez1A\nVP4MHuzQl6j8GYzsEmplF80vipNsguEBIdLnYs0S65YtbPd3+XHFFYcbrX9ye8ye3Xi/1wMsKJor\nHdfSPtHU97Y2nO21b+Zcv2bc7JqoQIECBb8lKLbT3YHW+J06ufvj49KRFUeW4e7kQf7Z3RzV/b1Z\nO0qFijFdx1JaVcLzfWbz7aVSDlV8zcwHolj45Vwe7xxs1w6prrvWpK9A+FrE979V++DngOi7X7oP\nf+nrK1CgQMGvBbdjN/0uGWfNZQ43lbnaVFbPzWS6yo8VgZ+x20eR9HWCVeZQS+y3BUVzARqxeir0\n5ZjMRmbviaS44jDFFYeZkhtB3qlc6Zy2bYjYES6xhV7qG4PGQUPK0JWkDFklsXxc1C5U6i8w/J4Q\n1CoN75SkExUYTbm+jJRDiZgx893l7zA1mPB164S31odA775sH2+RCPB188NkNlJXbyQ4YJiULS3Y\nLIKlIrK+BWsJfpJXEtnmgj0DYGowMmdftPSZYHsJFpe4jm2W1c1mJ9tjbciz3OWfrxmewcKBi9EZ\nKqWMsAVfxhGeHYa31oft43NJeiyZ2fmRlOpKrJ6L7XXkfSPaLR8bcmaYaNOCormtvj/bzPWIHeEk\nfbUEY721DJdga4k2FFccpkJfzqL9b7Bw4GKyxmVLgU1bSSnxu7xTubywdwaRfWYS2i1MYkMmDFqK\nq9pVqksVmTfVqvadGOtytqe31gc/904kHlwisZrWDM9gQdFcvLU+kmxiwoFF0tiOC5onnSvAowsT\nek7kvREbpXESHDCMDq4+xD+6lKyTH+Oj7Uigd1/SgtMlVmTWyY+Zsy+amIJoTlQdR+NoqcHl72GR\n1RRsKvFcmltLBDNNPOflQ1cxyH/wj07eWOrNJtaHZPJuyAZCu4VRoS/nzeJkYvrFSRmEFfpyquuu\nseDLOLq36072+M9IHJzMjlPb8NS04cNjH9CgMvP+/62juu6aVA/NZLYwPRMGLcXPzZ/EwclU6MtZ\nV5rBysffYseEPNKHZViNJTG+5GPgqR1PWo1B+Vhqaj0N9O5LbGFMo7UocXAyHVws7DFfbSc2H9+I\nn5s/yUNW0qVNV+m4tUfTMavMXNCXk3xoKeevlxEVGE2gd19e7hfD/KJYzlw93ajPBVtSSMauPZrO\n5dpLVt+Fdgv7j7A4bM/TnJO3pYzQ1jqIW2K/KFDQHOyxmkp1JSwcuJjCswV89M9NNNyGyvcZ/Rlc\nHF2kv7ee/H+U6X8g4cAiiisOS+t9wqClqFQWmeOUQ8ukZINPxmZbsXzlNSrtYflQiz0jtzUq9OVW\ntkhzsGWl2a5/rWV4toaNLL9ea+ZrS8w1e8y33xKUoJkCBQoUKLjbUVZ9juCAYawL+QAHHKk3m3B2\nbN6Bp0HD7jOf0c65PVtObKZCX0FEj8kEBwyjs3uAdF6wViayt+cLv5Pw+8gZ983ZBfbeJ+5m3Gz7\nbvV+7Cke/SfQ0nlv5RkqUKBAgYKbx+8ycNaUo6E1ko3y425ms7Q9t5AQ2jlhN2lPrGHq/dOabJvt\n+eVyaPI2LSiay6sPxXGPRxfAUofpcu0lyfEPNJIiE3XQZu+JZH5RLHrTdeZ9Ecv8L2IJzw4jtjCG\nVx+Kw9OpLR8cW0/YveNQO2jo5dWbnPBd7JiQx8qhb7Hi8DIqDReY3mcGMQU/SfeBxeGmVmmoN5uo\n0JfbdS7J71sEEsQ9CueUr5sfVTUXJenHT8ZmS5KUwnFWqiuRHPNy5/2CorlWwZnWGhHy4+QBEdEu\nW+N0zr5oZu2Zzqw904nsM5PggGH4ajtRbzYRUxCNr5sf3lofAn58RuJZNmfE2pMJtXXcCZkqcb7W\nGFqi7+V4qW+MJNEnxqhoQ96pXMKzw5iQE4bOUCkFnmyfnzi/MNCF7GTyY2+Seex9Pvp2s9Sfolaf\nqDclb/+cfdGM7/aUJL0p2izGueZHSVEhQSgPjpXqSii/fp6oQIvEobxWXPqwDKlOoDhnhb6cqlod\n3lof0oLT8XDylCTzjPVGAr37siUsizXDM6irN7Lwy7lEBUZLgY7QbmGkPbGGd0M22B0btrANLs7Z\nF82cfdGoHdR4u3ZE7aCmqqZKmuNBvgN4b8RGCsv2Wf3GxdGV5UNSSS1eic5QSWi3MFKGrCI1eDUd\n3X15+cFX0Tiq0dVUojNUUltfQ+LgZLaEZRHo3ReNg4bEg0uYvSeS6rprrCvN4ETV8UYO3rJqiwyp\neOHydfNj27hPrWoG2Rtj9vrAWG+UnmmFvhyVyvL5xR/b+NrDcZjN8NrDliBh/KNLpTmfNS6blUPf\nYtEjS/B3v4cFA+JZ/U0qT24bxepvUunk7s+GUZusgr0CwtG+JSyLl/vFcMFQIck12guu22v7zb58\n2BsH/8kXmKbWkFuRqFXw+4Z87odnhzE9bwrP5z3L/KJYXgycQyc3f1Sobvn8ZrMZT00bvF18eKXf\n6/i73cO03jOILYyREhBSDi3DbIZ3QzawJSxLmqdiDxT7opjXQb4DrOq+in1ILicsTzIREtmtgXz+\niGC7bZ3V1qC10owtBcNae05bacq7OYB+t7ZLgQIFChQouFUIW2RKbgRVNVVcM16hjaYtTo5OzdpR\nddRhNBtxwBFdrQ6T2Ujy10sp1ZWwZniG9F4mf6e3t+cLmeotYVmS38Teu7u9dtv6OW5V0v7nwM3a\nOLdjE8mTYP9T71etad/NPkMFChQoUHBrUJnNt5E2fJeiNUVam0JTDhCx8ciNEVsJxJbOZ+9Y2/Pa\nfgdI38v/XziO5I4bwdARtYJKdSXMzo+UajWlBaczZ1+0FBiBn4JB4TljaOvUHpUKKg0X6OTuz/qR\nmYClnpSxwcj0PjPIOvkxUYHRZB57Xwpu+br5UaEvJ+/ULvac3YWx3kjCoKWkFq8kss9MFu1/gzeC\nFrH8cBJ+bv5kh+c222ei7lNm6EeU6kpILV5JZuhHFJ4t4PXPX+HVfnMpLNsn1bgSfQGWYKG4vlzb\nW9TAas0zs9f3QptcsFbAEmyxPad4DjpDpdTuUl0JiQeXAEjMKNEvchaMMGRtC/g21V5xnHwMAZKD\nUO5AtL23yLypUva++GxCThjl+vNWtavEtQWjz9RgZEzXcdJzlo8lW+SdyiXl0DIp+Obv0ZmPvt3M\n65+/Qmf3e3BxdGXN8Azp+CDfAdJ1Fg5czMw90zA2GOnicS/vhmyQxpnoW/H8K/TlEttw4cDFJB5c\ngslsxFhvwtPZU5L6FIEwgAk5YXi5eLNhVCaxhTFsCcuiVFdiVUQ5tjCGGpMBtUpD1rhs6beFZwvw\ncvWSnq9gnCV9tYRPxmZL9yrGghgjzT0Hcc/eWh/LuNv1LFfqLrF8SKoUVLf3PAQjM+9ULlH5zzPl\nvml89M9NtHVqz6Xaizg4OLB8SCpgqek2Le8Z/N3u4dOndkv9caLqOAuK4ujg6sOoLqP54Nh64h9J\n5JWgVxuNazH27a1VTd2jnJlZoS8npiBa6ifx7KICo1n9TSrGehOVhgrqzQ2oHRzZMHIT8fsXUW82\n4eLoSsKgpczOj6ShvoGO7ha9/7LqH0AFHbV+bBiVCVjWLI2jpsk5APDRt5sJDhhm937s3VNza7U9\nNDXP5HO9ub5r6pwtvRyJdeDXFCRTCtzfHWjKdiquOMyJquOs/iaVWlMtYJFX/PifH2Go19/0dRxV\njtSbLTXORNH7tk7tuGa8yvz+i1l55C+sC/mAqpoqVn+TyvbxudJvxXo7Oz8SP7dOUg1Fe2guwCRn\nqYv5eLM2Wmu+v9O43evdzHrzc5xHfr6fsx9/btzp/lKgQIECxXa6O9Aav5Owo9aVZnC59hI6QyX1\nP9Z6lcMRR+lzN7UbxnojG0ZtAuC7y9+RcjiRLh73kjUuW3qHsn3Xke83cp/K7doM9t5h7jbc7F57\nt+/Nd6J9d/s9KlCgQMHPhduxm36XjDN7kEuLzLxCAAAgAElEQVSOgX2Hiz0pspaCZrYsM9vvW2K/\nwU+ZzraMI8FskR8b2WcmKYeWMSHHEgBYH5LJlhMfYqw3ojNUonHUSCwLwSIRcncLBv4JtYOaBhqY\n2P1picmjUoHGQcMg/8GYGoysK80gLmgec/ZFE54zhie3jbI41Y6uIqLHZLLGZRPaLYzIPjNZV5rB\neyM2MqHnRPzc/HH6kSVkr48FW2JB0VwpKCfkmfw9OjP1/mkkPJLEnwYnsHzoKimLPO9ULk/teBKd\noZItYVkkDFrKC3tnkHcq1+o+RZaU3ABs7rmJvgdrqbfIvKmU6kp4aseTUsa6nBUW5DtAkgAEC9tp\nzfAMSdJQSAOKjHWRBSYcd62VW5Rn38vHyJawLNKC05scm/KMe7nU1PbxuY2CZiJTTWTyv9Q3hnX/\nt1ZicjWFsupzpBavZOHAxVK7yqotMhWbQ//G+pGZEmMspsAyjj76drMUrPLW+rBy6Fu89cTbUtAs\nYkc44TljiN+/iMg+loLKU3IjpKCTkOwDUKs0bBiVSVpwOrGFMZTqSgjPGUP03lkArAv5QNIDN9Yb\nKTxbQGrxSit2Y1RgNGqVRY6xVFfCpJ3hPLltFLGfz6GqpkpicRZXHGbWnumcuXbaKjhXoS9nQk6Y\nVTag7XMQ2WppwekkHlxCbGEMJ6qOc/lGFS6OrqwrzbA7TwSDUgSyAr37olW78cGx9Wgd3fF09mDl\n42+xfEgq//33VBZ+OZeqmio0DhrUDmpKdSVMyAlj9p5I1pVmsHxoKioVfPTPTUT0eIblh5PIO5XL\nlNwISfJVOJntjavmxpqcffhi/izMZqR+mrMvmqjAaOYXxTKt9wzUDmq8XDvg6OBAO2cvvrv8HeX6\nMqtzrg/JpEube1k/MpOkx5Jp7+qFyWyi4ccXzdjCGFQq7M4BedbkutIMK8mSlu7J3lrdmizA5uQX\n7bFWxb/2nntLWYNNSc/9XIw3Bb89iP0zOGAYGSM2AFBhKGfjsXW3FDQDqDfXo0LFpB5TUKvUtHfu\ngLPameVDUhnkP5iUIatI+moJcz9/lfPXyyg8WyBlawsG8/z+i3FVa+22V/wrZ5nZzluxp4nEjqbm\nV2vmvVxS2bYN9j6/XdxOcOlOBc3uZAZzc7bwbwFKxrcCBQoU/H5RVm1RCZlfFEtEj8msfDyNzh4B\nzOgThaujtR1Tj8U+csSRjBEb2DBqE95aH0K7hTGh50S6eNwrJZ3asuzFteT7jT0Fkda2GaxtBrm/\n4m7Fzbbtbr4XuDPtu9vvUYECBQp+DVACZ/xUr0LUAmtKXks4gVtrdDTnCLClz7fmt3K2iVQ/S1bv\nLHrvLOZ98TojA0ZTVn2O2Xsipd8mDFpKyqFlRPSYzAt7Z0h1qoRsGsCi/W+QPGQlr/aby7ula8g7\nlUuFvpz0YRmsGZ4h1RYRMm9Z47JZPiSVqlodl2sv4+fWiS0nPqRCX25p45dxGIwGAr374u/Rmezw\nXD4Zm20lHyD60zZYFeQ7gMKzBdSYDFJwoLjiMDmntknsMSEzGdotjPdGbJTqosn/lssT2LI8mnJk\n2Pa9cKzLa6qIa8g/s3ceEaQS9yDk6YTcnbh38Vzl55L3S3NBPnEtAcE8bG6cCjlMcZzcwJa337Zu\nmgiEBgcMQ+OosZK6Kqs+ZxWIE7XqxPlF8CTQu69k7Pu6+fHJWMs4yjz2vhSsit47i/lFsaw6skIK\ndmWNy2bqfdNRqWDeF68TUxDNwoGLWThwMQkHFvH6569I8hVZ47KlexFSi+tDMlGrNMQWxkjSiwAm\ns5EFRXGM7/YUc/ZFU1xxmEk7wyXpUp2hktn5kdTVG0kZupKYfnGkFq/g+bxnmZBjqeG3YeQmcsJ3\nSYFVEWzcPj63WVae+FyMj4UDF/NOSTptnNpyte4KET0mNxqzgFTX58ltoyQ22HVjNQ444OToxEt9\nY1j9TSprj6ZT13CDdSEf0MurNzvC88gOzyXQuy8pQ1bh4uhKVGA0Xq5ekuzj3yuP0GBukNro6+ZH\nWnB6s8HY5iDmX8KgpWg1WhIGLWVB0VxKdSX8cP0Ml2sv/zi23kGlgg9C/8rKoW8BsOLIMrxdO7J+\nZCZTej3HC3tnAJb1DCDpqyVU1lwAoFJv+TctOJ1PxmZbrRu2c8nfozNpwelWkiWtvRdbx3xzQSl7\nwTe5o14whMXfYuyIIIH8fK3ZT+zBdq1VHLgKbgUV+nKCfAfwdE/74+xm4YADB8qL8HLtwOT7pqKr\nqWT5ob8wPns0a4+mM7RTMA008GwvS3B/4cDFUrLA8qGryDm1TVqTxNi2Z7vJ9yh5opE8icY2SckW\n8jXY3nwq1ZU0klu2FxS/3bnX3DwX39/J75r6/GaDXC1d2/Z53A7uxrXttxwUVKBAgQIFzcPfw1Kz\n1Ww2s/xwEgkHFqFSwfbvtlJTb2h0vBkzbZ3bUVVTRcKBRYTnjJHer9cMz7BbV1x+Ldv9pjW+Dzla\n8pEoUKBAgQIFvzc4/vnPf/7zL92IOw2Doa7Vx5ZVn+M+r9487h/M4/cEMzwghPu8ejM8IKSRoXG/\n1wNE5c9g68ksRnYJpbrumsRasYfiisPc59Xb7neezp7c7/UAC4rmcr/XA5Z6Hzbn8nT2tLr2KwUv\n4ogjiV8lsGDgYlZ/k8abT7zFfV69Kb9+nk//vYNrdVc5W32GNs5teeu/1hDo3Zfs77Yy1P9x/vfs\nPk5cPs6Koam4adyIKbBIMO45s4vR9z7JsHtG4K31YcXhv3D9RjVfVxzk/dL3+OJcIQVn9zKySyj+\nHp05efmfROXPoGe7+3ik0yB0eh3vf/seDjiiUqko/KGAh32COFr5DUsHL6Ojmy+ezp7Sf+LehgeE\nABan1aN+g3m2z3T8PTrj6exJ3qlcovfNovpGNYM6DcZVreWVgheJC5pH/P6F9Gx3H0/1+CNJXy1h\neEAID/v2t3pm3dv1lPpXfC5/XuL6TTmhxTEHyor4suwLJvacJD0P4aibXxTH8IAQPJ09qa67xpTc\nCEZ2CbV6jmXV54jKn8Ffj29ici/Lffq6+fHhsU0E3zNMGk9+Wj+e2/U0j/sH4+7kwZTcCLaezOIx\n/6FSv5RVn2t07si8qVIbyqrPUV13jaj8GdK4aA6d3P2lZyCuZ9t+cUyFvhx3Jw+2nszipX5z8Pfo\njJPKieRDSWw9mcWDHfoyY/dzvPePd3ii839hNptxd/IgvPtE6Zn6af04UL6fnu3uo3u7nhwoK+L1\nwjn0bHcfq79JY+YDUawrzWD1sLV0b9ODY5f+D2NDHbqaSrq36cnpq9+z/EgS03vPQldbyUt9Y1h1\nZAW7z+zivZCN9PcZSJc2XYktjOEx/6GYzWaez3sOk9nI5F5Tedi3P/18HmL6/TOk8fBKwYv86ZEE\nvio/wN8riynXl/FMr2cZfe+TtHPyoqisEH+3e7hguMDSwctI+moJe07votpYTT31ODk408/7IVKL\nVzKiy0ju8+qNj6uPNC7v8+otPRvb+S3/rLruGtnfbeWpHn8k/8wepveZyf7zRfxQ/QP9fB6ik7u/\ntGaIc64p/m/yf8ijV7vedNB680yvZ7nX8w/sPZPHV+UHqKq5yJRe09j7w24C3O9lXtHrBLh3pZ1L\nO57bNZmvKw5iMBnY8e/t7PhuOy4aFxY9moBGpeF/z+1jQvc/8lSPP+Lu5EFU/gx2n97Fgx360snd\nv9lxZQ/Vddd4vXAOacHp0jrb0c2XnO+28/fKYqb3mUlRWSEaByce6zSEVUdWUGE4z4IB8bz80BwA\nYv73RV4IfIV3//E2Hx3fzIGy/YTdO45vKo/grvHgvZCNGIx6aX2YXxSHj6sPUz+LYPf3eUy6b7I0\nHsuqz/FKwYvS362FfM4BbD2ZxcSek6iuu0Z13TWr+dhcX0TmTSW8+0T+0KY7iQeXkP3dVib2nER4\n94nc59WbkV1CmdhzEoDVuZo6r3xs2PtOrHXNrXu/JNzcmi+QruDngT3bydPZkwc79GXOvmj6+TzE\n6r+nccN0A6O59XaWPZgxc63uGjXGGoorDxP9YAwnLh/H2dGF2KA3WH10FS89+Cr7ftiNzqDj83OF\n7D27m+3fbWVU19GM6DISgP89s49FX87j4xNb2PV9LgsHLuZh3/5Su2MLY9h6MgsnlRNRe59noO+j\nvND3JWkOyG2R1igIhHefaLWv+bj6kHJoGcZ6I5PusyQ62LMj78Tcs3cOsY/Y2gP22t7cd/d7PWC1\nttuzL1qzFtmiuWs3dU/Nnau567Z0rV8Sd1t7FChQ8OuHYjvdHWjJ71RWfY6HffsTfM8wnun1LE92\nG0f3Nj3IObWNB9v35cKPCYBgkWo0Y8ZZ7cxnp3ai1WhZ/V9rcdO4Se9i4n0BsOuLau5doTX77d36\nrqBAgQIFChTcDm7Hbvpd1zgTL9mtyQSVB0wEmvutYLHJC8jbOwZoVGfD9roComaZucHMhlGbrOpH\nTcmNICowmnlfvI6/R2cyRmyQrltccZg5+6Kt6knFFsZw7cY15vafz9qj6QCoVHDtRjWXb1SxYmga\nvbx682L+LN4NscgziXpaU3IjuFx7iaqai2g1blytu8KTXceTe3oHndw6kzJ0JSmHlrFw4GLJodRS\nLSx5vShx39v/tZXlh5MI8OhqVWMqPDuMC4Zy5vX/E4P8B0ttswf5c2vNsy6rttT6clVrWThwMS/s\nncF7IzZKEoARO8KlfpTXrhJ9LL9PcW1Rj2V+/8XknNpGXNA8ovKfZ13IB9J5BeNMXjNNaJeLLHt7\n7be9P1Ev62alFGyZa/IsNvlYFiyeUl0JL+ydwRtBixjkP1gaG6IOlm2dNcGSHN/tKd4sTib5sTeZ\n98XrdHTzxcXRFWODEZXKIrEopDbfCFrE3/75Ic/c9xwrj/yFlCGreKPodXaG5wGWMXy59hIXDBWk\nPbGGdaUZGIwG6s0mHFVqkh5LZtGX83BxdJXGj7wGVOHZAnr9GGiI3PUsrhoXzGZ4N2QDMQXRnL12\nBq3anSt1l4jpF0dk4AwySzfy7j/WMH/AYtYeXY27kwcqFSQOTibl0DLSgtMlqVHRJ/Lr2gbj5XX6\nxLEV+nKi987ifHUZKx5Ps6onKMYDWOq0TblvGsEB/2XVX1dqr6CrrcTbxYfU4NVU1VTxTkk6Y7qO\nI/1oKh1cvLlSexkvbQecHV2oMRmob6innUt7Xu4XQ2rxCgDWj/yp/pto163o5Iv7Err4YpyVVZ9j\n9NbhVBjK6ex+DxO7P03GP9Lp4tmVMV3HkfGPdLxdO2JqMJE5+q/M2h2JSgWOKjWmBhMzH4jizeJk\noh54mdzvdzCll2WceLl44+nsycKBiwn07ivNWds1wh5bs7X3Yyt50praYvZ+NyU3AlODkfRhGVYS\nqQL2xk1zjLOWCkTfrS/BSp2OuwPN1TibkBPGvP5/YuO367h64wrVxluvJSvQxqkNDqjROKpR4cCl\n2ouggh3heegMlXhrfXjm0z9ype4yjipHPhj1V7y1PkTvtUi+nr9+DpPZRNoTa+jl1Zs5+6JRqbBi\ntgNSrdTIPjPJPPZ+o3nSVA2Q5vZF8bftOt4aNDcXb2ae2s77Wzmv2Lebuv+bsZ+aa+ftrj03Y8Pd\nreucAgUKFNxJKLbT3YHm/E62e5fweSwfuoppnz2DrrZSOtbV0ZXa+lrMmHHAAR9tR9QOapKHrCS1\neKVUw17syy3VNFegQIECBQoU/ASlxtktQsjJtcbYEMdU6Mul/2/uBV7UxGouaPbUjicBi7RYU0Ez\nIe0XmTdVkpvLmbDLSmpOIDhgGO+P2sz28blSgEPg3PWz6AyVxBbGEFsYQ0SPyVysrWTt0XQSBi0l\na1w2QzsFc6XuEm5qD3p59cbXzQ+txqK9HVsYIzmR0oLTcVG70EHrzfU6i7H4h7Y96OTWmQ2jMgn0\n7kuNySAdKyT97KGs+pxkDApDsLjiMOHZFi3vnPBdUjBK/Jcdnsu8/n8i8et4SS7PtkadOLfo05ak\ncuRBi3L9eUkCctu4Twn07ivJMf1w/QyzdkcyISdMkoAqrjgsBT/FueQyTaHdwngxcA4rj/yFyD4z\nCe0WRsoQi4yhqDcHNJJe8HXzw9RgJLYwhgp9ud32296fPb3z5mDPMWgr0eDr5ieN5VJdCRE7wkk5\ntIw3ghax/HASMQXRUv/La7aJ+mZl1T/WyPEfTs6pbbw3YiOXay9jNBuZcX8UCYOWkvRYMhoHDVN6\nPUdotzCSH3uTrJMfYzbDIP/BdNT64eXqRVePe9EZKiX5wF0T97EpdAvBAcNIC07HyVEjOVQXfTmP\nSv0FEgYtlcaOCG6M3jqc1z9/hchdzzJj93NcqClnWu8ZZIdb6uJ9Mjab7PDP2PLkJ3TU+vLuP9Yw\neutw0o+m8uKDc2jn0o7rpmqm95lhNbZFDTshwynGjVhnhFSYWHvktffgJ8kwV7WWDaM2MfX+adJx\nc/ZFYzAaiC2MQWeopKPWj6LzhSQeXMIzPZ9jxZFl1JhqWPRIAmoHDQ4qR2btmQ7AmWunCfINIv6R\nRNq6tMXHzRd3jQfT+8ygquYil25U8bh/MPO+eJ1z138gLmg+vm5+GOuN0viw1clv7fgSa5g8yC+c\ntc6OLjjiiLHexJ6zu3i2VyQv9Y3hvdK3iX7QUu/uQk05B8sOoHFUozNU8trDcagd1Gw58SFvBC0i\n59RWautrWHnkL7wQ+AqfPrWbtOB0SbpVLtsph1hXb1bay1b+RL62NLe+2Na7FPNELispXoTFy7AI\nmNo7h22bmtvLxHnvRhkzBXcPmhofQb4DmNf/T6w4soyy62V3JGgGcLXuGpfrqrhYo+PyjSqe6/08\nPq6+6AyVJH21hMhdz3Kl7jIeGk8cccRb68OJquOU68/z2sNxvD9qMwEeXQkOGEaQ7wDWDM9A7WCp\nnSkkTyv05aQcWkZc0Dym3j/NbnBIJDvYfm4rmWq7T8r33ZsNdtnra9vvmpNQlO8jcjugOXlF23OK\n64l9qyX74lYdc3fCoddcG+T3pDgPFShQoECBHCUlJTz33HONPi8oKGDixIk8/fTTfPLJJwAYjUbi\n4uKYPHkyU6ZM4d///vdtXVu+dxVXHOaFvTOIC5pHkO8A9kQUkvBIEg44oMKB5CFv0lHrSzvn9jiq\nHIkKfIkL+gqSvlpCXNA86b1G7P+2ZSgUKFCgQIECBf8ZKIyzZlg8tsg7lSsxkGwZUrcCwTBqLotW\ntEV+rKg7Jf7NDP2IUl2JFOCRfy5nDQkGTOHZAtYeTeflfjH08urNgqK5BPsPZ/XRVTzZdTyfns6h\nq+e9bB+fKzGIInaEkzBoqZQl9WL+LJIeSybhwCIGdhxEzqmt+Go78W7IBnSGSovD3gw5E3YBSO2V\ns2vkbRPfz9kXTY2phvP6c2wK3YK31seKiSHvo4++3UxwwDCp9oq8zwCpL5oKXsqPlzNGxD1D40xz\n8RxsmVWCFQYWVprGUUNacDpBvgN+DASOwdOpDW5ObmSM2CCxr1YcWUaARxerDHnbsXirTJ+WYHvf\n8sw1ce/yYwrPFjDvi9fp5N6ZpMeSCfTuy6Sd4cQ/upSkr5ZgNiMFOW1ZamO3j6Ls+jmJGTB++2jq\nzHV4u/hwzXiVds7tMdXXU3VDR/wjiWSd/FhiDIGFZajVaBkZMJp3S9fg59ZJYgUGeve1YjNV6MuJ\nKYiW6nxtH5/biF0wa3ck9WYT8wf8ibVH0wm7dxyFZfuIC5rHC3tnWAW9xTMAOFh2gM3HN1J+/Twv\nPjiH0G6jAaTnLMaGfF7Ozo8kwKML8Y8uJSr/eTpq/cgOz23EMhTXAgtDIrRbmBWLT/6vmC86QyUJ\nBxZRobcwMLec+JCEQUuJ37+I1x6OY35RLCuGppFavAK1gxpXtVZirOkMlSz6ch4VhgrcHN1o69KO\nerOJGmMNeyd9IY2J230pyzuVa8WODc8O492QDcQWxkj16dQqDWH3jmP10VV0dPVDpQKzGS7WVNLG\nuS37JhVJ/eKt9WHOvmhMZiO1plqqai6ycGACYKmJtj4kU+o7MY6bGvtxQfMI7RZ2S/d1s8yG1rLF\n5E5g22zSps5hjzEj1nxxDTnz7m5jZShZ03cH+r3zsF17qPBsAZnH3ifYfzjvlKzGydEJvUl/R67Z\nzrk9bho3ZtwfxYojy6hvqKeDqzeOKjV19Te4UnuZ90M3S8e/sHcGUQ+8zJ6zu6z2XTlTG5DWiIwR\nG5izLxr4aX+yt882F5CxF1ADGtVNvdWEFdvvmmN5ya8vGM7ytaMle7IlFuvdtja0hNtlwylQoEDB\nrxWK7dQy1q9fz44dO3B1dZWCY2AJkI0ZM4b/+Z//wdXVlWeeeYb33nuPo0ePsnPnTlavXs3+/fv5\n+OOPWbNmTbPXaK3fCaxtc/F3ePYYlg9NxcvVi9l7IqX/99b6EJ49hvUjLUnJ4j2wNX4jBQoUKFCg\nQIE1bsdu+l0HzqCxgSHYQ/LggThO7mhtyTBpzhFjj1nW0rnkckCAFCwSjiJ5kKI5B2veqVxm7ZmO\n2WzGR+vLp0/tlhzxwf7DiQycQeHZAoIDhgE/BZ/m7IuWgkEnqo6zoCiO+QMWs+nYRioM59E6ujPn\nodfIOvkxABE9JvO3f34oBYSE8xwaO3tEvwNSwGPe56+z8JEEVh75iyRpaE/qwFYeTe5EEVKHrXH8\n2wbbBINMOOZaYqrJrz8lN0IKmonvJ+SEYWowUWm4QE74Lg6WHSDn1DYi+8yU+rop51VTTrY7JX8k\nzi3Gkm2gUTyb8dmjMTYYiX8kkS0nPrSSz3xy2yi0GldJcq6s+pwU/BHXkf9dXHGYE1XHWf1NKsM6\nh/DXE5l0cvdnWu8ZZJ38GIPRgFajZUtYlhQIe+a+51hxeBkdXH3YMCqTE1XHWbT/DZIfe5N1pRlW\nc/ajbzezrjRDksETASeA6L2zKL9+nvkDFltdSzyzvFO5Vu0Wv4sttDCgzGa4duMaemM1qCAnfBcn\nqo6zrjQDY70RjaOGqMBopt4/TbpXMYZsg0i2wZuy6nNM2hnO2eozrA/JJOmrJdL/y4P14rlNyY1g\n4cDF0nOI378IgBv1tcwf8Cf++++pODlqMBhrcFW7SjKjs3ZHonFUc/56GW2c2nK17grtXbx4uudU\nVh9dxebQv1nJiNobN62dU1NyI6gxGcgYYQmqz86PZPmQVFKLV7B+ZKb0bE5UHef1z1/h1X5z+eTk\nFioNldSbTbR39pICZ5N2hmM2Q8KgpQDM3DONBrMZlRnau3rh5OiEi6MrCYOWNlozbCFf6292HrXG\nAd3S723XPnsB/uYc7LZtkScJ2EoFF1ccJqYgGrWDxu76+0tDcf7cHTh66nijfWhCThinr31PwiNJ\n/O2fH3Kp5hJVNy7e9rWcVM7UmW/giCM+bh3ZOOpDTlQdZ8Xhv3Cppoq2Lu24cuOyJBstl5deV5rB\nlRuXaevcThrPcUHzSDm0jBqTAbVKg950HScHZ7LDc61sAWheZlvcN7R+T77Z4I29YPnNrLO2+7at\nDduSzdISM/ZuWhtaA8VRqECBgt8jFNupZezevZv77ruPefPmWQXOTpw4wZtvvsn7778PQHJyMg89\n9BA9e/bkrbfeIj09nfz8fPLy8njrrbeavcbN+J3sIe9UriQtX1tfg4ujK2BJ9pEnA4Hl/cc2qRh+\nsgfuRMLjrxmKPaBAgQIFCpqCItV4G7B1jFgYTwZJxks4NQXVXji4W+PItJUPbEqipzUbvGCRVejL\nmbQznNjCGCuH63sjNtp1lsivVVxxmJRDy/DRdmThwAQu1lZSqivB182P5UNXkfv9Dp7cNop1pRbn\nupAH9HXzY83wnwITC7+ci7vGgxWHl/Haw3G8GDiHy3VVpBxKJKLHZBYOtAQk4h+1OLdFkGvhwMVs\nCctqJPkmpPzm7Iumrt5IL6/e+Ht2ZtOxjXg6tSHl0DIrqULB/IsLmgfQqK+FdJE8yNgSRFvkcodp\nwemNpPSERJKt5Jr8POIe807lStJ7GSM2EBc0Hx9tRw6WHSDp6wSC/YeTeez9RpJx8vEj/t/2HpqT\nXrtZOTZ5/y0omttIymlB0Vx83fzICd9F2hNr6N6uOz9Un6FUV0KFvpwKfTlVtTpe6hvDgqK5kkRW\nyqFlVvNHzuwRz+b0te/ZfOIDfLQdyRixgUH+g0kLTufdkA0SMyq2MIa6eiNbTnyIn3snUoautEhL\nHXufN4IWsa40g4UDF1OhL2dKbgQffbuZRfvfYOHAxaQPyyC2MIax20cxblso0XtnoXHQSEGzqMBo\nssNzrQKdKYeWkXcqV2LphGePYfaeSKICo1GrNEzvM4Oaej3P9o6ki2dXTlQdJ/bzOUQFWmrcLRy4\nmEX735DOIQ+IhHYLk+7L36MzcUHzmJ0fKfVThb6cT8ZmS6ypT8Zmkz3+MwK9+0pBYvHbUl0JpgYj\n8fsXEb9/EbPzLSy6GpOBCkM58754ndcejuOlvjF4OntKwabovbMo0//A+G4T2TByE6nBq1kwIJ5L\ntVXknNrKW0+8LQWd7KE5qTHbY8ASfDY1mJi9J5LEg0vo4OJDavEKzl3/gdl7IqnQl/Ni/izWHk3n\n1X5z+ez0Di7qdfhq/ZjRJ4rLNy5ReLYAsLDQjA1GEg8uwVvrQxePe3ml72uggsqaC8y4Pwpjg5Go\n/OftypvK26wzVHKrsJUNa63Emu2xxRWHCc8ZQ0xBtN3f2q4vzbVFPs7kUsFifU0flmF3/VWgQMB2\nTPh7WOqldna/h+7tumM2g4vaFQ+N/cLzrYGTygmAOvMNwHK+Sv0FZu+JZO3RdItt8XgaWo2Wds5e\neLl6saBoLiMDRnNeb5kbET0mc6mmiqjAaHzd/CQJo4UDF6NWaXi5XwxVNRdRqSzXlEsYi/liD2LP\njdgRbrW/yqWXRb/Y7vs3M6fkxzdlL4rjbCGcQuI72/VNbrPYW4eaa6Ntu34tUNYyBQoUKFBgD6NG\njUKtVjf6/Pr163h4/ORAc3Nz4/r16+BSeGwAACAASURBVGi1WsrKyhg9ejTx8fF2JR7vJMR7p3jP\nTx6ykoRBS9E4WmSndYZKXsyfhclspLqumtl7IqV3BuELsPUH2PMZ3Ik9/VbPcbvXbu3vW/N+qkCB\nAgUKFNwKfveMMzmEwwSQmBlCEq0luT9bCDaDcMjLr3EzzCE5000wQKbkRhDRYzJZJz/GWG9kzXBL\ncED8v62ko3ASReZNJbLPTNaVZpAWnE7krmfxcPJA46hh4cDFzP38Na7euML8AYvp3q47UfnPkzJk\nFf/991Q0Dhop8+lE1XFSi1dgrDfhonah1lTLxVod7Z3bc814FW9XH+rN9bip3TE2GLlgKCdlyCoy\nj73fiCEm7hEsMmxJXy3hk7GW68zeE8kFfQUrH3/L6re2LB0hUybPOBfyfPYkzJrrZzmrz57zaEpu\nBKYGI2YzkuxZU8//qR1P8t6IjVIW2dnq0zQ0NHBv224M7RRMse6wdD05GwuwYtTZY841lVXW2vu1\nbas9lqX8e9En4v5rTDUA6GoqWT4kVaqJJ++3phh/ZdXnCM8O41z1WeqpxwEHUp+wBJMWfBmHt6sP\nLo6uEsNRZ6iUxv72f20l6+THbAnLolRXYsUwADCZjahVGolxBJYXiFm7I9HVXGDF0DQA1h5NR2+6\nzqXaKpYPSSXz2PtSPanZeyLR1VSSPf4zfN38KDxbwPyiWNq7eKFSqXBycGb4PSH87V8fkvzYm0y9\nf5qULSju05ZhKe9fucyXYNOlD8tAZ6iUpGBTDi2T6uzJx7cYE6W6El7YO0Ni20UFWjIRvVy9WFg0\njzL9D7R1bkdb57aU688zv/9iiQ26cOBiiiuKefcfa/DW+lCpv4C3tqOU5fjpU7ulfmtq7Wot40zM\nwXHZoZgbzGwM/bDRs4wKjGbeF6/jo/XF09lTkm9MHGyRAx27fRQeTp5WUpxibdUZKkk5tAyD0cBr\nD8cx9f5p0tizTSSQz3FAmp+3KtVoC7kcbksyKgLi5VbOFG4NE6W1kLP+bPeiuwlK1vTdAWE72c71\niB3hGBuMkjyzvk5PVe1FGmi47WsKxqu3iw+bx/zN0o4fZWQv6Cvo2uZenrnvOXJObWN8t6fY+O06\nKg0XaOfshcZRbbVXCPlksbY2xcBvStpUrAmJB5dYyZraMjpvZv2z/dce7LFfbeWcxDnl8sotrS+3\nyh77tTLPFChQoOD3BMV2ah3OnTtHbGxsI8ZZamoq69evByyMs4cffphvvvkGJycn4uLiKC8vZ/r0\n6ezcuRNnZ+cmz38rfif5O5J4p4kpsCQQCxUUgPCcMZjNZqIfjGHP2V0sHLjYLuNMwPbdW/gLgNti\not2qXXC79sStMPr/U3aLwmZToECBgl83FMbZHUTWuGwpECWYWLYsnNbA180PU4OR2MKYRgwCOVrK\njhGsFMGg8PfozMKBi3mzOJmIHpOljCQ5OweQCs8KQ8Pfw1JEPvPY+0T0mMyJquNcqbvEy/0sxlr8\n/kXoaiqZ2ms6yw8nkXBgEW2c2vHff0+lXF+G3nSdUl0JE3LCWHVkBZWGC6hUUG82cenGRfzc/EgN\nXs3yIamYGkxcqqliSq/neDdkA9vH5xIcMMwq8CVnbglGVcqhZZjNNplSZujl1dvKYJIz/wSWD11F\navFKogKjJRaUQGuMLdE/sYUxhGeHSdlb4ndy9kz6sAypr5t6br5ufrw3YiPeWh/8PTqzZngGCwbE\n09nzHsZ0Hcff/vUhkX1mApaaaFH5z0sZ52XV56RacnLmXKmuxKq99gJSItB7s4adwWiQxpcc8gx2\ncf/xjy4lLmg+rmpX5ve3sKtOVB2XjhHtA6iuu9Yo861UV4JWo+WVfq/jgCMqVKw6soIFX8Yxv/9i\nPJw8eblfDFGB0byYP4vZ+RZWUqmuhMSv46muu0aprkRiGCQOTmbN8AyyxmWTMWIDKhV4a32kLDwA\nT2dPFgyIZ/U3qcz74nVq62twU7szv/9i1pVmEBc0j9jCGGIKonFxdGV9SKbU71Pvn8aKoWlU1V6k\nQl9O2fVz/PV4Jm8ELSLz2PuUVZ+TGFpiTId2C5NYi75ufhjrjVbPTQSBFhTNJf7RpcQWxpByaJk0\nZmpMBmbnR/LRt5utgmYi6COODQ4YRkSPycwvimX+F7EkHFjE3P7z6ejqR43RQOLgZOb3X0zOqW2k\nBacTFRhNyqFlZP97Kx1cfYgLmk8nD3+uG69RVXuRC4ZyCs8WMCU3wmp8265TrRlf4oXN180PH1df\nfN39rIKLOae2sXDgYpYf+gsqlYqZD0SxJSwLb60PAAkHLLKT60dmkhacLv0uyHcAacHpvJg/i5RD\ny0gLTic73LLGyFkbk3aGN5qfYj0H2Dbu0zsWNBNzT6wZIuBt77gpuRGU6kqI2BHOhJzG15cHzSJ2\nWN9DS/uQ7bFibRVydvZYLQoUyGFvricMWsoFQzlVNVWW/b22igZuPudKhcrqb0eVIxqVE200luDZ\nB6XvE1MQzaw906k13sDTuQ0v9Y0h+dBSab/U1VTi7dqRBQP/RKXhAgmDlkrrrBjrYt8UTilbNqjY\nJ+X3LFia3lofNI4aaf0HrBid8v5pKou7rNoiuSuuLf/XHuTXgp+CeLbHy9lyTdmNwt67WRacveso\nDiIFChQoUPBbxB/+8AfOnDnDlStXqKur48iRIzz00EN4enpKTLQ2bdpgMpmor6+/o9cWdkTeqVwW\nFM2VbJj0YRlWpQOCfAeQPf4zVgxNY93/rZXqegt7Xu6nEO+8tmoa8vfO29nTb9UuuF174lYY/f8J\nKGw2BQoUKPh9Q2Gc/Qh5RottPQy4tY24tU7mljJYhANVznASjCQ5C0WgQl/OhJwwto/PbcS6eLt4\nNYlfx6N20NBW0462Lm0lJlnkrmd584k0Eg4skmpNLRy4mO8uf8fyQ0nkTNglnedE1XHeKUnnIe/+\n7D9fxKguo/mirBCT2UhZ9Tme6/08H53YhJ97JzJGbGjUn4BV5rS87SLjSqWySLOJGiX2CuLmncpl\ndn6kxA4SjjIhlfjC3hmSZFlLKKs+J7GYInpMZkLPidL5hGPLHivN9hkK53iNyUC5/jzrQzJJPLiE\nH66foa1Te67cuMSLD85hz9ldEktQsKqaYvTkncolKv95to/PlbLgm5Nxai3E2DpbfZoAj64SY7Ep\nebtJO8M5ffV7ANq7dODNJ9KoqqmS6nvJs/Sf3DaKMv0PdPG4l+zwnxiA4TljpGDO+G5P8f7/rWNu\n//msPZou9cWs3dMxq8x01PpSa7zBh2F/w9fNjwk5Ybz6UByZx94nss9MUostQVw/N3+yw3MBCP2f\n4eT9cR/wE2tK1HgyGGvQOKpJHJwMQOLBJZjMRraPz5Vq+8lrmgFEBUbTy6s3Uz6dxOW6KklOUNRO\nE/cFWI1RUTtQ1AjMGpdtt1/lrCMx/sS8E3Xwpt4/zYrRNCEnjIwRG4jc9SxX6i7RwcXHEng68aFV\nLcJeXr0lFoW31ocJOWGkDFnF6m9SAVCrNDzuH8zGY+sY3nkkhef20cHVhzefSLMaj6K99mrgNTWu\n4Kf5ElMQLbE05fXeqmqqiP18DhE9niHn1FZprlTVVKE3VrNgYDzr/y8DN7W7lNAg2CThOWNYPiRV\nYpmJsenv0RmzGcqvl5EzYVcjFpjt+n6nXrLkc8+2xpj8mIgd4dIzEs9dMMLkLJjiisNMyAljXcgH\nVszD5phstuuj/DdiPN6NDnEla/ruQFOMMzFfUw4t44K+gks3qm7p/I6oMdOAs6MzNfU1uGs8MBj1\nODo44uzgwnVTNTP6RPHZ6Z1UGi7QQAPDO49k37k9eGg8qTZeI+GRJLq364631ofx2aMtDqXSjB+T\nP84T4NmF+EeXSuuoSDiQ1xwVa65Yn22Z+fLj7WU6y5mc8jqaTdkl4potzV9bVlxTa+3NJDDcLlpj\nn95t64kCBQoU/B6g2E6tg5xxtnPnTgwGA08//TQFBQWsXbsWs9nMxIkTmTp1Knq9nkWLFqHT6TAa\njUybNo2xY8c2e/5b8TsJ+3z50FXoDJV267aDNTNNXsdYKA3J642LpNJbUUpS0DIUe0eBAgUKft1Q\nGGd3APJMXpH9Az8xjW7nvM2hNZuwxFj6kdEgGC2CeSVnlYlM687uAVL75ZnWOae2kfBIEr5aX9SO\njpjMRuk6V+ousbBoHgajgRVHLMGjxINL2PjtOlBZ5JN83fyILYxh7dF0dAYdn5zcwnn9OTYeW4fO\nUEni4GT8PTpTcC4fD00baoy10vlFLS/BbJIzo8TnOkMlIpT76kNxJD2WTIW+nKd2PNmoZlFZtUUX\n3M+tEzpDpZVhKVhbovZbS89AOLSTvlpiue+v45mQE0beqVzp2qLNgrEib4dthv6WsCy2j88le/xn\nhHYLI2ucpVbVgoF/wlvrQ+73O4gKjJYYgymHljElN8KqJpgcgd596ewegK+bX7NZT4KpcjMZUVnj\nsskJ3yUFJmy10uVjK/7RpfhofWnn0p5LtReZtXs6q79JJS04nYRBS61YSvVmE/5u9/BuyAbpfnzd\n/PBz60TWyY+J7DOTzcc3cqGmghWH/0LCoKUsKJpLVU0VPm4dae/cgRn3R1F1Q8fsPZGApVbc2qPp\njO/2FGuPplOhL6eNU1ucfuzHzNKNXKgpZ/u/tkoBEtGeunqjFDRLPLiERV/O47qxGrVKw/Z/bSX2\n8zmWfwtjiN47i7TgdCJ6TCb28zlM++wZqo1X8XLuQGi30cQ/upSYAos8oghwvJg/y9IGWZAiss/M\nRuNPPB/BPBqfPZrZeyIpPFvA7PxIquuukXBgESsOLyPYfzgLvoyTmGcieFWuP8/BsgNcqCnnxcA5\npAxdSdbJj61qES7a/wY6Q6UVs6qzewBerl64qrUkDk5GpYIvygrxce3IicvHqaeeCzXlxO9f1Gic\niHnYEmtJjE/RF0G+A/hkbLY0PsKzw3i7eDUzd08jtXgF8Y8kcujCQSmj87qxmit1l3B38uAvX/+Z\ncv15rt64gs5QKTH3fN38aOfcnnWlGRRXHKZCX078o0vx97DUZHo3ZANd2nS1CnCLtUPuyLZldN0O\nbOesvYC9v0dnssZlsyUsC183P4J8B1ChL8dYb7TU7ZOtb0G+A1gX8gGpxSutXrCb2i/sZWXKWcdB\nvgNuiY2q4PcHe3tbaLcwS22xWwyaAdRjooEG6hos83hSj2cwY+a5Xs/j62apaRjR62nUDmo6ufsz\nqccU/n3tJA44oDdel84Tlf88J6qO4+3aUapxmR2eS3b4Z7zU18Lera67RuLBJRL7Xqy5ETvCmbMv\nmpiCaMm5JOaFmEP21g0BYbMJ9r/ZbKkbKa8rlnJoGetDMqX5H5k3tdH8lttl8j4XaMpuka+v/+nM\nZ3GtptZ8JQNbgQIFChTc7ejcubMk0zh27FiefvppAIYNG8bWrVvZtm0bU6da9lU3NzdWr17Nli1b\nyMrKajFodqsQ9jkg1W0XtoVgk8n3WNs6xmnB6WgcNVa+lZRDy5oNmt3KXq3s7z/hZhOTm/tc6VcF\nChQo+HVBCZz9CHkASxgdpbqSJovIt+Z8cjkfe7CVEGoOwukCNJIRtN3IhXNW7jQVn2eGfsSEnhNx\nVKmpqr0oBamCfAewPiQTlQqu3LjM/P6L2Xx8I8YGI2oHNQsGxJNavJIKfTlbwrJ4uV8Mfu6dmNRj\nCn9o04NJPaZwzXgVsAQ3ak21XKm7xIUaSzBMyA4IOUSRLSXuY/nQVUTvtcjyvdwvhhv1tcwvimXW\nnukAvDdio11DcEtYFomDk3lh7ww++nazlWM/M/QjKwk9eb/bPieRgW42Q/d23XFycOLVh+II7RZm\n5QC3dX7J+9X2M9Gvciz4Mo56cz3GBiPvlKRL/SJk/ZqSBRXPtCUJJuEctA1+2YPcASckIZqSc5A7\nBOvqb+Dp1IaVj7/FhlGbcFVrAUvwTwQ2SnUlXDBUMLf//EZ1YTJGbCAtOJ1VR1agr9NjbmjggqEC\nsEiMLiiKo9Z4gyt1lxjkP5iYfnF4OHkCluDtmWvfs/xwElN6PYcDDmg1bqQPy6BCX867/1hDW6d2\nbDnxITEF0RjrjVIATTAYwVILreJ6OVW1F3m5Xww5p7YR/0giOae2EdFjMuX685yoOk7WyY+JfyQR\ntaMazHDNeJUX82cRv38RZ66elhhY60I+QKvR/vSci+YyvttTLPxyLoVnC1CpLIEaMedFsMRb60N7\nFy8q9OWkFq9gfUgmOyfsJnFwMu1c2vPZ6R14u/qwrjRDkhYT0h0Tek7EV+tHzqmtLCyaR3XdNcnZ\n6uvmR/Jjb5JyaBm+bn4UVxxmzr5oEgYtJfHgEtKC0wntFkb6sAxe7hfDptFb+GMPy4vkq/3mSgxB\nOYJ8B7QqEC0fn+IclvuzSKmW68tY9vUSzJg5f72MqzeuYjZDZ8978Nb6WJzmbpYgbWePAF7tN5e2\nLm0ldmDh2QJKdSVU1Vwkosdk5uyLJjxnjBTs0xkqCfIdwEt9YxrNSTEGFw5cDMC562ftSireDgSr\nUg7bQDQgOaTn7IuWxodtn4d2C5P2I7lcXFOwtybIHfW3Ijus4PcLeUJRccVhtpz4EIc7YDZ2de8K\nwJGKr+mo9WXP2V1cN1az74d8Zu+JpNJwgRumG2T/+3+oNdXi5+aPj7Yjbz3xNoP8B9NR60dq8Qpc\n1a4Sq0xg4ZdziQq0SO6azEZSDi2T9vy04HSyxlmC+GoHjbQ22s4LW5tBLssot+tSi1eSMGgprmqt\nJBFZoS/H1GCUajnaWw/lASl7NmBLyTH2ZK9vFq35jTxZyF7w7HYlmBTcGn6pNVzZOxQoUKDgzkEk\ntQlVELDYWuOzRzN2+yig6XIT4p1dvB/I3//kkAdqmkuEsYffanLMz5V01JRtdzP+PwUKFChQcHdA\nCZxhvZFN2hlObGEMH327mel5Uyg8W3BLzgl7zg3ba7a2HpVtcKc199NUUE0g6bFkunjcS9JjydJv\nvLU+uDi6smHkJrq3605Z9TnC/zARtUrD5uMbfwxqWAIBC7+cS0SPyZRWlbBmeAZvh7xL2hNrCPTu\ni85QyaXaKjq4evPWE29TVVMlOabkBp0IsoDF0FOrNPhqO+Hl6sWVG5eJfjAGPzd/AIl1IfqyuOKw\nVL8q0Lsv28Z9ytT7p0mOfREQsnXs2NYOEd8H+Q6Q6tuFdgtjw8hNUv0q29om9p6DvUCTfNyIjPP1\nIZm0dW5H0mPJmM1YZbbbBjqbu0Zzx7RWy7ypgJ/t794uXk1k3lRLXaYek7lYqyPs3nGs/iaVQO++\nEjtzS1iWFNwL7RZG2hNr6OXVW+qPKbkRkp571on/x3n9OS7W6lj1xGqe7zObQO++BHr3pZ1Le9q6\ntGV9SCYnqo7zXunbUqAj8eASOrr54u3akQk9J7JgYDzZ4Rb5Sl83P/zcO9HB1Zs1wzNIH5YhBZC3\nhGWRMWKDdI7EwclsDP2QLh730surN8uHruKVoFeJC5rHpmMbmd9/Me+UpGOsN9K9XXeqai7ycr/X\n6OTWmdcejuPdkA108vCXnl+gd1+pz4WzMevkx3i5ePNOSTp19Ubm7IsmtjBGCoAJtqGzowuYodJw\nAW+tD6W6EpK+WsKl2ipe6hvDzgm7Jf17ERAVY9IidWagXF9Gud5Sn2zSznAidoSz+ptUDEYDpboS\nZu+J5IfrZ6iqqeJs9Wl0hkrKqs8xNXeSxKh7++hbdHT1I7TbaLvjRQROWxOUtf2dWOum3j+NBQPi\ncXRwJLRLGA00sProKmpNtYzvNhGdoRJdTSUzH4hi7dF0nBw1RAbO4JOx2bzcLwZjvYnXP3+F1/73\nFYxmI5uObSRh0FLm91/Maw/HUWuqZdbu6SwonEvs53P46NvNUhvEPBQyaoAkfXon4evmR4BHF4kd\navsCJdbnzNCPpFoE8Y8uteucFn1XXHFYCvzdKuQsX+VlTUFzkI+PCn05U3IjmLXbktTSwdX7ts//\n7+rvAPjHpRKq66op15dz0aDjyo3LGOtNLBgQj9kM7V28cNd4MPOBKC7XXgIsErqvPRwn1TcL9O4r\n2VqCbR8cMIw1wzPYPj6XtOB0iekaWxgjBfHFvmVrh8n3RcFEj9gRLtkb8iCYYP2LBBiRENSSALrc\n7hAMZdvgurwN9n7fko3ZHFrrDBN7TXO1fn+JoNndvH79Ug65/zR+qw5UBQoUKPg5YS8pJ/HgEsJz\nxpB3ylJiw0fbEZ2h0m5CnRxyu0W8/8sTdOTrtjwRprXr+G8xOebn2Mua6jdb2++31K8KFChQ8FuH\nUuPsR4gNNGJHOAmDluKt9SF67yy2j8+VjrFX66K1522KHdTac8lr1QjIpQnl55ySG9Eka2hKbgQG\nowGtRsvIgNFSnS3BxjGZjSQOTrYwaqq/R+Og4aUHX+Xd0jVkj/8MsDiuquuuYTaDq9qVrHHZUm0m\nY72R2voa6urr8HRqw8v9Yoj9fA7xjyTyStCrUjvE8aKd8jpi/h6WeioJBywMEvEM5E6kKbkRUk0t\neb2iiB3hkt53U33bVO0Q4fQSTjB7z0fUlmtJCkHObpF/Jq7j6+bHpJ3hfDI22+4xt4s7dS5RE29G\nnyj+ejyTTh7+TOs9g43frqPs+jnSnljD2qPpnLt+1ioIUVZtqTl1tvqMVOdF1HaK6DGZpK8TGOw7\nlP0VX/Bk1/F8ejqHzu73kDxkJVH5zzOv/58Y5D+YCTlhtHFqR+bov0qBo4gek9l0bCOvPRzH65+/\nwubQv+Gt9bGqYWNP512we2rra3BVu5I+zFJPLemrJagdNCwcuJj4/Ys4W30aH1dfPJw8pJpcY7eP\nwlhvosFcz7W6q6wfmUn8/kVSXTV7a4NtEMS21o28jk6prgRvrQ86QyVR+c+TMmQVp6+eZs/ZXRIT\nMS5oHokHlzTSs5+x+zlMZhMAnd3vwVGl5rWH41h1ZAUaRzXXb+i5ZrxC9IMxBPkGMWvPdHy0HZnY\n/WlWH13Fk13Hc7B8P1U3LvJqv7nkfr9DqvsG1owlUWuwubElXkrkWv1izolncPrqKVQqFW5O7ly5\ncRlXR1dq6mvwdvGh3lyPVqPF1GBi5eOWGnq9vHpL9b6qaqp4pySd6rpqogJfYtOxjZyp/h5HlRqz\nuQFQ4ahyoMHcwD2eAWSM2NBo7ZyQE0bi4GRJwvJOI+9UrsR2lfeDvG9EnTZvVx92TtgtjVl740is\nSzdbo8x2DRL1m+62WmdKnY67AzpddaP5K9bcpK8T8HfvzOWay+jrr7dwppuDAw64ql3Rm/QAtHFq\ny9W6K3g5d2Dxo39mXWkGV25cxsnBGSdHDfGPLmV2fiTrQzIb1TKzrUcq6p2mHFpmFeCyZULb/r/4\nW9QfbKquqTjGtg22885e7RL4Seq3o9avEdNX/lt79p78uJu1MVuyEexdu7m1/07aL83Btl23e647\n2eY72baWrvNLrN3N1d1ToEDBzw/Fdro70Fq/k609IH8fiN47C1e1VvJntLamdGuuY2tX3C22/y8F\npQ8UKFCg4PcJpcbZHYB8A008uISYgmgyRmyQsnhuJetGGC6tuaY4vinYZqcI9s5TO54k71Ruqxhx\n/h6dpSzrkQGjST+aSkSPyRI7Z83wDNQqDSmHlpH0WDK+Wj/aOrXjs9M7WD4k1UrOL3nISi7WVpIw\naCmluhKi8p8nKjCal/vFcMFQwZXay7zcL4bggGGSBJ5oX4W+nBf2zmDhwMWSQ0ZeR6y44jDeWh/O\nXy9r1FfyrKqscf+fvTsPqKLqGzj+vcBlBxcEQcwFTVNDLdz3XQwXzFCzMFNzqaRSUzGX3JfUJ6FC\nbbNMWyjFBXd9TdNUIjVb7LHIBWTLlU3Wef/gmelyvZdNBLTf5x8F7sycMzP3nDNzzu+ciAIRbAlp\n8VxOucjZ5DOFngdzL54mHwoiIye9wBSShqITolgZvVyLvDMeNab+azi6y3h79TgJafFYWegLbF9W\nI6DKal9xKflr4r3ScioBjwwDHaRlpdGwWkOcrJ1Z1TWUbnV6MKf9PJZ0WlHgWng61earAfnruvm4\nt8bTqba2/tbLPq+wqmso17KuUkVfld9v/Mactgt4v896fL38mNbqDZb9sJDk9CTW9f4YO72tds6C\n28xiadQC4lIvA1DPuT5XM67iv/UJraPq0KWDjNv3PIO8niywLuCMI1P/N0WXFenZGUzYN5Y5x2aS\nlZtNwMPDtfv++aYvUN2uOqE9wwrcK4kZ8dzIuk5Vm+pczbhKfFqcFn1oah2cSQcmMnH/WC3STKV2\nghnue8nJhdq/LrauLItaxOrTK7iReR1A6zTT6fI7y9TpOPPPgRdDHx4BwJCGw8hVcljxwzL+vp1E\nm5rtuZqZjIOVE2E/hTD/+7lMbB5EUnoiOy9s45WWUzl79SduZd2kqnU1fL36cTs3g9hbl++Ith0R\nGVAgH4VRHwQNowzVzv/QnmG81fVt6jrX57kmYwDIyM3AQpdfHV3LvMqV1DgS0uOZuP8FXvv2Zb6P\nO0Ztxzq42rvxTLORhPQIIzcvl6VRC1jQcTGvtJzKQ04PUdWmGlYWlgS3mcPHvp9hZ2VfYHpV9Rpl\n5+bwwt5RJZqypLh2x0Qyfv/oAmsymopm8XFvzQTvSThZO3Po0kFtbQLjcsNw+pWSdpoZlwMy0lEU\nxTCSSTW40RA+8d3E6GbjyqzTTIcOAAssUVC0TjMLnQXWFtYAXM+8xupT+e0UBytHdDp4sUUQvl5+\nvN97Pd6uLbiVmb+W2aimY7TyyXiKQXWaWDUK1HDtS+MOLuO2lDoVEvwzTbYa/b47Jn9wQUZOOvO/\nn6t11BlHcavn03hNRTWiy3iqX8O0GXZcmVpjsrBOM3PtAOPOQlOMo96CDk40G21cXtFIhtG6ZdFp\nVtZpLq/R+RUV5SdT/QohROkZ1hGG/3d38GDLoEjGeU/UPns3gxSMj2P8t387OQdCCCFKSjrODHg6\n1dam6zPs1DD8e0n3V9RUjKY6DoLFNgAAIABJREFUXArbnyFv1xa87jOTBcfnalMJJaTFa2ttmNtX\nQvoVvvzvRiyx5JNfP2LSgYkEHcx/qRQ+MIJNfuF4u7bAxtKW61nXuZWZwupTKwu8zPF2bYG7fS1c\n7d1YcnIhNezyp6R7+8eV1HKozYw2s1l3Niw/Auz8FwXOg7uDB5sH7tCiPdSf1ZHhT27rD8BW/11s\nGXTnCGw1DcZTE6hT9c3/fm6Jp5NT96NO7WSq00uNEvL18ivwckS9dup0aqY6UQK2+TN4q5/Wqefu\n4KGNKjO3XWmV1b7U+3fvpV0AzGg9m+TbScz8bhrjvCfSrU4P/CP8GLv3OaYfmXzHS0G1cwD+eemi\ndjQ94tKEPnX6kZGbTtb/pkOcfCiI3TGRbDq3AVc7NxYcnwuAnZU9wW1mMePIVLxdWzCj9WwsdBa8\ndyaEVx6bwntnQsjLzSM5PYnBW/2Y8d0U7Cwd+OiXdYxqOqZAXiA/slJvaUVOXn6UVlZeJkujFnD9\n9jVmfjeNj35dR8DDw7W0ezrVZorPdHToCHzkeZxtnHj7x5VA/npaxtN3qudApwMrnZ7QnmHaPaWm\nY2X08jvuz+T0JDb5hfNB3/VY6qyoYeOGoihMOjBROxcvtgjSphlb1S2EJScXMqf9PH5M+oFqNtXZ\nGvMNSemJ6C2tmN5qFtv+t3bbpv5fUcepHi+1DGLvpV242dckpEcYo7xHk6vk4GxThbSsVM5d/Y3M\nnEx0FjrePR1SYLHq4kwBqn4XziafYfKhINKz01lycqHWUajOw7/+1w+Z034eX/z+zwv6SS0ms7Lb\navToeerh4VhgQVpOKq1c29DeswOhPcO0F3fJ6Ukk304iJy+HqxlXWXv2HdrUbE9K5i1mtJ7Np7/l\nrxdgLr16Sys8HGsVuV5bScWl5K97tLjjW2ajM9Tf7Y6JZPXpFbR370jwd1NJz043mR51wIOpB+Ci\nqOXAxl8+LTCIQx4aRVHU+0X9Dvl6+dHes4PW4XW3FPInO+heuyd6Cz1z2i6gf71BWGLJAC9/rLDC\nQmdBamYay6IW4ld/IADTj0zWIsjOJp/h79tJ3M7N4O0fV5KT98/0z4brAk7xmZY/vfQ2f20NMsMy\nW+2MWtp5BQlp8QXWoIA7p64MOjiRUU3H8MK+UZxNPoOVTo+ukNPi6ZS/9pnhmoqG7QZfLz/tPBu3\nBdXvqroOiuHLNDWN6qAc4/rXVDtgd0yk1j4yPpZxnWS4rZWF3mTbqLDOrLLsZClsUFJpmOogLgsP\natlaXp2CQgjxIDMeWKPW44cuHeS1b1+m79fdC9TRZXEcIYQQQtwd6Tgzor7sV9fFKG3DxTDKxfCl\nhPFoY8MXAcV9KFVfYiekxbP8h0XcykwhtGcYwW1mMflQEJMPBZldeNTHvTXv915PNdvqfOS7gQj/\nSK2j8NClgwU6pBZ0XAx5Crl5ucSnXrkjksteb691AG0fvIeQHmHY6+15rulows9/QXCbWVpHnPpC\nWM2zqZ83/vIp87+fy+s+M7U1q4w7oEzlyTCaI6zXB9oxixpRbeq8AgVGo6vbG06tZ2o7U/OGG774\nCu0ZxrreHxdYCwtg6HZ/LVqqLBu5ZbUvdwcPsnOzC0QapWSlMOPIFA5dOoi93p4P+nzCVv9d2vpm\n5tIzqukYZhyZyu6YSAZu8SXk9EqqWFdlQcfFLDm5kPTsdC2qanGn5SgK2vRahuvYhJ//gg/6fMLs\ndvNY/+uHPN04kHpV6+Nq74adlT3TW80iNesWsamXmfbtawze6sfumEgm7BvL2L3PcTvnNvM7LMbZ\nxplXHptCVZtqTGwehJO1E4s7LcfDoRaf/PqRFk0QlxLLM81GsqprKN8nHGV2u3lE+Eey1X8Xvl5+\nLO28QvvOGUaZfjUggvCBEXwfd6zA+lXGkUOeTrUJbjOLF/aNIiEtnuT0JJLSE1B0eVy/fY057efx\n1YAI5rSfx7qzYdpUYOq1AUjNTuF65jV61O7NVv9dhPX6gIbVGlLVphoNqzXEx701c9rnn6/gNrNw\nsnbG3cGDs8lnSExL4Prtayg6hWVRi0i+nURw6zmE9gwr0MFXnI4bw47BVd1CiPDP74hW96O+QF7v\nuxFv1xZYWVgB+VOzffH7Rlzt3ajh4ErEn1/D/17Q/5B8kv6b+wBo94CrvRtWWOFmXxMXOxecravw\n1flNZJNNbMplLtz6iwn7xmrXz1QkiRpRXJbU/L97OqTIzntv1xbUdnyIA5f3sa73xyanaVP/LelI\nfzVCEPJflE/+dhKjmo4pdECFECrj9oj63Tl39Tetw6ss2FjY8vuN35jRejYAOy5sJVfJ5dNfP+Kl\nlq/mr31qaUk12+qsORvKyCajC3Tcebu2IGLQTt7vsx57vT0hPcIKpFn9v69X/jSvapS6osCkAxO1\n6DH/rU8wYEtfgg4WXIdyis80ziaf0QZHqINdLqVcxMXOhTpOdfF2bUH4wAhCeoSZXKdQ5ePeWpvO\n2LCjzjjCvbBOKMPyWC0XpvhMY/KhIG3wVGFRtLtjIhm79zkyctLvOFZRg7cMI++KE2Ff1hFd96rj\nRtbtKj55ESuEEHdHbU+pz4zq+4VHXJrgauvGzcwbBLeZpbU91PrJVLS5EEIIIcqH5ZtvvvlmRSei\nrKWnZ931PhRF4Zvz4XT07MzLByfQs05vnG2ci7Wt+tJySKOhtPPoQGOXJtrvvjkfTp+6vjjbOONs\n40zPOr21h9GS7N/TqTa1HD3R66w5eHkvPev0ZmX0ct7q+h+eazaaxi5NCuzbUMNqjehT15eaDu7a\nftIy03jj6DS8XZrTsFojAG5m3uSLcxupaluVOe3ms/rUKi3tKVm3cLGtQcfanbW81HL0xFpnzfzj\ns8nNy+W7uCMMfyT/hZN6DgH8Gw4pkOdmLo/y180YJhwYw62smxy9coSm1Zvx2qFJNK/RglqOntpn\nTeUpLiUWZxtn4lJiefngBPwbDtE+r768aebyqLYf9fOmpGTd4pvz4QxpNFT7jHpc9ToeizvCa4cm\naecCoJajp5Y/9XhqnlOybjFu32j2XtjNtj8jtH2nZN0ioPFw+nsNqrTrRqRk3WJo4+E0qtaYEc0C\nycrO5mLKX1jp9JxJPs3qHu/SoGpDGrs00c6FqfMbnRDFuP3Ps7jTcrxdWxAZs4MnGwZwLfMqTz78\nFI+7+fCKz2S61O7K84++wOPurWjp9hjPNRvNXzdjeO3QJBpVa4yCwp4Lu7C3dOCTXz9izKPjWHBi\nDm91eZsuD3XDw96DEc0CaebyKIMbPkUnzy5EJ/7At7GHUMjDUmfFjcxrjPEeT996/Vh8cgHt3Tvy\n0S9rsbawoVfd3hyO/ZYrqbFsj4kgI+s2i07Mw7f+E9ha2RL++5dEJZ6go2dn7ZopisKXv29i38W9\nDGk0VLu/nW2c2f5HBDOPvs7wRs/ywc9rtfvCv+GQAufIzsqevRd2069+f6Z++wo3M2+QnZfNss6r\naFurPQAvH5hAnpLHE179efngBBpUacj+S/s4euUwWblZPFFvIBt//wQv54YsOjGPjec+4VbWTSJj\ntlPTzp2wn95haecVdHmoG33q+gIwft8YdOjIVrKoYefK8i6rGNzwKUY0C6SWoyfNXB6lsUsTLZ2F\nfXdUtRw9cbNzo8tD3bRyQf3eqtONtXFvx+PurajnXI/tf2zFxsqGq7eTqWHjxoVbfzGxxST+uhWD\nlYUVGTn5kViDGj6Jo7UTIyIDeK7ZaFzt3Pj9+jkOxx0iKzcbKwsrMnNvE592BQcrJz7ou167Lw2/\nmw2qNGTjr59Sz9lLu05lKT71Cvsv7WVVt5AC586Ys40zdZ3qsencp4zxHq+VL4bllnrezJXl5hiW\nY4+7t6KWvSfPNBtZYL9lne+74eBgU9FJEBRsOznbOOeX2/tG88W5TXx+bgMHL+0nPScNGwtbcpUc\nrLAij7xSH8/F1oX49Cscjf+OHxN/IDPvNgB55HHx1l9k52ZzPfMa89ov4kzyaR5z82FAg0E82ThA\nK8MauzShlqMnfer68tfNGOys7EnJulWg3o9LieW1Q5MY0mgonk61aen2GLsvRBLQeDiNXZrQtHoz\nTiac4O3u7/Jcs9GkZqcyKKIfEec3s+OvbUz1mcGK6GX4NxxCY5cmdK3dnQZVG9K5dlccrZ20dpTb\n/yKlDdsbqriUWBq7NGF3TCTP7AzQyvs9F3YVaG+o595wO7W9oNYtahuwZ53ePO7eij51fRnaeDgd\nPTsz+VAQfer6audA/a6r58DOyo6wXh/gaO2ktd3UY5oqZ6ITogrUWcUtm4z3V5y6o6jPlXWZZS7P\nRSluXoQQ4l6StlPlUNz3Tuq7oDWn32P9rx8woIE/ver2wd3Bg3H7RqPT6fhPt1Bc7d0I3DWMxZ2W\n87h7K20t1CbVm9KwWiOtXi5OW/5+ra/u13QLIYSovO6m3SQRZ2aoUV3qdD+lkZAWr0UKmJvqrDQP\n7OoIpOiEKLbGbGZJpxVaRI5hlFZh+zacjiguJZbw819QyyF/CkaVj3trPuz7KU7WzrjYuWjbxaXE\n4h/hx+RvJ2lROWra1v/6IdNavcGNrOvEp8Zx6NJBbTQV/DP9k/p5dbSVq70bn/p+zvbBe9jqvwtv\n1xZapJPx9EOGDCPrDKfeMfydYTRYUaOgDad+NP69OuXiC3tHaSO2jT+jpsFwHSF1qjV7vX2BaTTV\nc1FZO80Mp917Yd8o3oleTeRf28jOzcFOb6t9zniqJ3ORjobTc+p0sPH3TxjnPZEJ+8Yybt/znE0+\nw4wjU7X9zDgyNf/Ye0eRnJbMC/tGMXbPKPrU6cfq0ytISk+kW50eLO74Fr5efv97yfu8No3X1Yyr\nrP/1Q0J7hhE+MIKwXh9gZ2WPq11NIH9qxJSsW3z06zpy83LJys1kwfG5vPr4FJZ3+Q/VbFwIOb2S\nP2/+oaXj74wkAh4eXiACyNMpfz03df1Aw3vHxc6F/3R9h1Heo7WIRVOj5j2dajO73TzOXf0NK50e\nV3s3PujzCY+4NNGiHfSWem3dtaWdV7Dk5EJ0Oni6cSAJ6fEciz9CUMsphJ//In8toOavYG1hzYzW\ns7VINcN7LSEtniupsdzMvEHgI89jqbNiwfG5uNq7mYyYjU6IKtYUqOoaX+roSMPPq9ONqZETrvZu\neDo9hJ2VHQBbY74hIyeD8PNf0LDKw+gt9Ogt9ExrNVNb5w7y17FbFrWQl1oGMbvdPK5nXsXW0g53\new9srWwL3J/q+TUsH3KVXBacmMPgrX5lPp3YjCNTCW4zq1jfa1d7twLbmotALmk9YTi9o1oulzSy\nWfy7qffyqm4h2vqnDtYOVLGuiqXOEoAcckq1b1uL/O97devq//vZlpvZN7G3dNAi2nJyc7mRdR3y\n4Prt61xJjWP+idlM+/Y1dsdEam2Yjb98CuSv/Thy99M8sbkXwB1R4IbTM7o7eBSYjludKlH9zro7\neOBmXxNPp4dY2mklzzQbWeB74+7gwdDt/kzYN7bAlEoro5drkdXG0edDt/uzOyaSldHLeb/3er4a\nEKGtGWsc2Wf4f1PTRqrHNCwfPJ1q37HOqHEZok5H7e7gYbIsNzUoSW2/Gf6tuGWTYb4KW2/N8P/F\niQAryzK7JGVhcdqQpSGRA0II8eDzdKpNwMPD+Tsziey8bL6PO8akA/nrmgW3mYWVTp+/FIaDh/Zs\nq3J38GDJyYUFlo4wNUuFIcM2RFkpj/qqOPWs1JtCCCHKk05RlLKbd6eSSE5OKdP9qRV4SV44qi81\nTE1hUxbpgfwOiyk+01hyciEAq7qFEHRwIl8NMD9lnrr9iMgAgtvMYmX0cu1lckJavMmXvWojbYrP\ntAKfP5t8pkCjTv2su4MH/hF+vPr4FNb/+mGBF/aG50U9p2oHo/H5VfdlLi/qPkxNoWh83g1/vptr\nEp0QRXJ6ktbBWJL7wfjz9+LeKGtxKbEkpMXTf3MfdOioYe+Kk7UTs9vNw9XeDR/31oWea3N2x0Qy\n59hMwnp9wORDQYzznqhFxKjbqtd/8FY/0rPTebpxIO+eeZuZbeay6sflZOVmsqzzKmYefZ3NA3cA\n+dNvhfYMY9SuZ7mReY33+6zX7tG4lFgGb/VDUSBXySE5I4mlnVby9o8r8W8whDU/hVLNtjrXM6/h\nbl+LVx+fwrzvZ3Mj6zqjm47js3PrmdF6NltjNt9xz6nfKfhnTaDdMZE8t3sEs9vOJ/z8FwX+Ziw6\nIYqBW3zJUXIIajmFtWffYV3vj1kZvZwpPtPw9fK747xGJ0Qx+VAQq7qFcO7qb7z940rs9faM856o\n/b9PnX74evVj8qGgO9bQWdp5Bc/uHMaN29fR6SzQAW727thZ2ZGjZLNlUKRWJqj5y87NLnRKTnXf\nhmk2Pi/q5wCtHJr53TQSUuN5q+vbrD61kkerN2fHha0A/KfrO3Sr04MRkQGs6hZCcnoS0w5P5urt\nv6nrVJ/QnmG8sHcUVhZWzO+wGID53+evCWecVjU9KVm36FOnH5N8Xi2T76DxfWuqPDO3ze6YSO1c\nmSpTS8M4DZW9rHF1daroJAjubDsZ39fJ6UmM2TOSbCUHCyzII7fIfdrobMhUMgv8TocFikGkWv96\ng9h1YQc6Cwuq6KtwK+smwW3msOncBkY8Esimcxu4lHKBic2DqFelHuvOhgEQ8PBwFpyYw6quoTzi\n0oTndz/L9dvXiPDfqZVbqoBt/ugt9QXKwYS0+AJtDPV7M6rpGNadzZ/+esHxuXw1IELbj+EgGkAb\nzKB+f9XphQ3bPGeTzzBmz0jqValPSI8wk+0adZ86Hdq0j8aDttSoXcPy3Pg6maonTLWPArb5F1qW\nG37WuAPM3LTVxtupaS4sHcZt66LKqpK0x0tT7pnbxvC4hvm6W6V5vhBCCJC2U2VR2Hsn4zp06HZ/\nbty+QY6Sg7N1FWJTL/Nyi1fZe2kXKVm3mOIznffOhHAp5SIRg3ZqA11WdQu5Y3CM4THM1SPFfSYp\njvKsrwqrv6XeNK+yP+8JIURFupt2k0ScFcLwwb+klXNxRuOWdrSMYfSEOlLacO0Nw0XvzcnOzdai\n1NQ0mltHR42S8fXyK/DSwPgFr2GUEEC3Oj20FyzGL1EMz6mpKBx1X0WdBzW6y9TfzP1c2gZFXEos\nkw8FseTkwjvmHi9sG8PoMsPfmRplXllZWuSvM+Ood+LFFkEsOD73jrVZVMYv7VSGI+nnfz8XK50e\ndwcPVnULYf2vHxZY5029/glp8fSo3ZukjEQ++HkNOUoOi06+SWp2CnZW9gBsHrgDdwcPZhyZSmjP\nMJLTk7iRdQ1Xe7cCEZSQPyXigo6LsdRZMb3VLLrV6cGCjovZe2kXE5pP4mPfz1jaaSV6Cz3vnQmh\nhp0rr7Scyp6Lu6hqU43BjYZokZ3GjCNKvV1b4OlYm/DzX7CqW4jZTjNAe5HqZufOKO/RbBkUibdr\nC229MFPnWV2LccaRqTzi0gR7vT3BbWax7mwYegs9AQ8PJ+T0SibsG1sg+gjyIwa+jzvG1dt/U9Wm\nGjXsavBh30/Z8eQeXmoZRHzaFS0CUD32Jr/wIl+0qt9Jb9cW2nbBbWYVGWmbnZuDhUV+dRSfdoXH\na7bCWV+FmnYedKvTA0+n2ozzzl9/KPjINBLTE3ix+SuE9sx/CW1raUd2bg4Ljs9lycmFzGk/D52O\nO6iRWIoCH//6/h3rNpaG8chINSKwOC9/oxOimP/9XKITogjY5s+4fc+bjNQrCXOjUYUoLbU89nZt\nwYd9P8XV1hWFPOws7AvdzgILspSCUxjVdaiLQh42Fv9MlXAs/jtq2LlR3aY6zzYZxfIu/9E6zbbG\nbGZO+3ls9d/FKO/RrP/1Q8Z5T2STXziDGw2hlkNt3v5xJZMPBfGx72dap5n6PVLr3vCB/0QFq51m\n/luf0KJO1TyOajqGmUdfp0+dfgBcunWRs8lntDXEdsfkr0UY2jOsQKdZwDZ/Zh+dWSAafeMvnzJ4\nqx/zv59LTQd3ZrebZzbaC/IjsbNys+9YB1ONOjaMAlTLc+Pyx7j+fXJb/ztGm6sRzMVhXG6bWs/V\nmDpAwTAaz9TascZt6+K88CmsPV6a6DXj7c1tY3jcsixXTeWnsrcHhRBCFM1UnaIooNPpuJ55jYZV\nHiZXyWH16RVUt3YhMS2B6Ucm82KLICIG7dS2ycnL1v5v+D5BVVi9aG6mk9Ioz1krivOsKc84Bd2L\niHghhBD5ZI0zM9TKR50/uqznWVb3b2otjOIyXJtCXUuoa+3uuDt4FJrelKxbRPzxjbbeh7oP4/WM\njLdR19kwt0aOuo8ph14hIf0KDas0YvHJBXjYezD9yJQ7tjH3f/Xn4qw9UZ7zXzvbONOnri+NqjVm\nZfRylnZeUegaRuo19m84pMDaJCMiA/ji3CZ86z9BStatAj9Xpvm81fQ/2/Q52nm058ekaGa1m8vq\nU6u4nZNJaM+wQvOvvrTr4tkNRVG0+wYg4o9v6FevP34NB2hrw8w+Glxg/b9mLo8ycf9Yvos7jE6n\nQ0FhSMNhPNkwgCNx35KZe5vdF3fSyq0N9arUx7/hEBytnXjt0CTGeb/I/E6LC9w/KVm3GNJoKAoK\n6356j6Nxh9n513aOxB4mJfsW+y/v4dvL/8fPV8+yuse7PP/oCwxtPJwbmdcJP/8FaTlp2FrY0bLm\nY4yIDNDSanidDY/nbONMf69BDGk0tMAacKY42zjzuFsrDscdoqNnZ+3l6nPNRt+xX0Pq+mGNXZrQ\np65vgfVumrg0ZUfMNp5vNhb/Rk9q994358NpVK0x07+bjLN1FfQW1tzIusbABv4oKKyIXsaSTvlT\nhBivwVic+zMl6xZDt/uz5Y9v8LD3YPz+0bRxb6etnWiYZw97D+Z/P5ekjARmtJ7N2BbjsdbZsPyH\nRdhZOnAz6zoPV21Edl4WL+wbxfIuq3it1VTc7NzZ8me4tq5cl9pd2R6TPx1n33r9cNA7aH8zTnMt\nR08GNBhEh1qd8HZtcdffOVNr+RS19oCzjTNudm446B1Yd/Y9hj/yDKO9X6C/10DtRXxp1iJTjz3F\nZxoNqjbU1qkq6Tqd5U3W6agcDNtOhvegp9M/a1k1rNaIBlUacCopmg1PfEENGzessCIu9bI2zaKD\nlSPZeVnYWzr8LzpNp/3tZvZN9FiTpWRhqbMk4OGn+SHpJBb/e5F0IuEYp5KiiU+7wrEr3zG11QxW\n/LCMJ7z609ilCW52brxy6EX6ew0iNTuVgQ392XNhF7PazaXLQ/l1zfnrv/Pktv74eQ3k2abPaXlS\n12uL+OMb+tbrR886vTkSe5ihjYdreaxXpT7VbWrwVvRiohJO4GxdhR51enIs/igBDw8n+OhUmlRr\nyuyjwez4cxu+9Z8A4Ov/fkGukodOB3v+2oWtpS2Tv51EamYKb7SbS1TiCY7EHqZL7a4F1jWLTohC\nnfihc+2uHLy832TbbMaRqbTz6MCzTZ/T1kMctfsZ2nl0oFfdPgXq4uiEKGo5elLL0ZMunt20MsVw\nLdi3uv5H20b9mzFTvzdcs9Lc59S20pBGQ7XfqWsGq2vOGd5bcSmxhbYtjZlLq3GbvaTrlxW1zb0o\nP01F7N+LdSjNXeP7zYOSDyHKgrSdKgdz751MrWXf0u0x9lzYhY2lDeeu/UoeedhZ2hOT8gcOekdc\n7Fz4+epZnPVVmPR/42nr3p5vLx9i/6X8Z5p2Hh1MPnsX9YxZVipL+VtZ0lGZlHbdViGE+LeQNc7K\nmKmRsGWtuCN3S0pde6OwfarRI4bUkcymtjMcwVLUeXF38MBeb8/STitZdzaMjJx0lpxcWKroh8pa\n8S85uZApPtPumKrPmKlzpUa8qKO9jX+uTAzTr0Y2+nr55afXQm8y6sqQuq6Zj3vrO0Zrq+uUvbxv\nAtEJUXeM1If8e0lvocdR78wbbd5kWedVRPz5NevOvkcVm6ooKDjpnVkWtUibDhAgIyedZT8s1CIv\njaP+3B08qGHvygd9P2HLoEjCB0awrPNK9Do9izst19a6Ua/burNhuNnVpIp1VUJOr2T92Y/MnidT\n57C497FhBJma9oS0+AIdMqaoLx4N/1Xl5OWw4MQcLUpCjYrzdm3B0k4rSctKxU5vywTvSSw5uZDJ\nh4JY2nmFFk1a1Kh+cxQlf+pYXy8/Fnd8S4uaM97PyujlhPYM4/3e6wk//0WBdRv1VlZUt3Uh+Lup\nJKcn4WLrqm0bfv4L7RieTrVJTk8iNvUy567+xuRDQQQdnKj9zdw5A8psZJ7xd7youiM6IYrx+0eT\nnJ7EQ451te3UMqW09Y9aryw5uZCAbf4SfSZKzfgeNCyHlpxcSFivD0hOT2L16RWcSDyGk/U/LzHs\nLO2xwAJrK2sU8sgjj+o2LoxuOg6AbLLQYUENWzc8HGphgQUp2SmMbjqO/3R9h0/6bcLT8SGWdl6J\ni51L/jSN+8f+EzmlwO6YXfhvfYLk9CRylGxt7Y8RkQG4O3iwttdH+Li3JiEtnhGRAZxNPqOt1xbc\nZpa2tqreUl8gSn/U7mdoWK0hno61eb/Petb0/oCV0csJbjOLrTGbWdvro3/qwf9t6+lUm5AeYUT4\nRxLW6wP0lnoecWnCqq6h1KvihYudC1a6/Dre3cFDi8CNTohiUEQ/BmzpS8A2fy0C2zhqTI1iNVzn\nUf2uTz4UxKQDE7VyzDjKzLAj3rANp9bf5kYoG//e8F9THT3G2xuWsYBWtxm3Iw3rZsNyqqTlsvE+\nDdNQ0v2UF1PnrqyfPUxFJd6vKns+iorCFJWHXA9RXozLcncHD6wt9XzSbxMf+W7A0+EhFndajott\nDZytq/B+n/UEt5nFsh8Wkpubi6u9G+EDI7T3NmX93kg8WORZTwgh7g3pODNi/ILhXirL8HlVQlp8\nsadrNJ7ex3jKHEMlWQx+k1843er00BaiVzsiHhQ5ef+8pIOip/cxNZWb4dR1xj9XJqbS5O7gYXIa\nPFMMr7vhvbX30i761xuguLSDAAAgAElEQVTEV+c38dyuEcSnxpGTl3PHsZ9uHMj1rKssOvEmF25e\noLqtC8kZSVhggQ4dVjo9iekJjPOeqHVShfX6gIhBOwu8MIR/7uGzyWeIT7tS4Diu9m7Uda6fP72i\niY5Oe709tpZ2WOgsCTsTQnCbWYVOPVhaapng496a4DaztOmtCrvHDKf9M/z3bPIZqtlWZ1XX0Ds6\nwkZEBuBi50ItJ09GNhnNup/f1aZUNF4byJC676Ie2vSW+R2rcSmx2jqHxudILXN83Fvj7dpCm4pE\nnQ42Pu0K47xfZF3vjwFIzkhk7N7nSEiLZ1W3EMIHRmj3l7drC+o5189/Wd0tBKsiOnbVjqspPtPu\nyfeuqH2qncq+Xn6E9gwz+SBc2nSpHbDqNTA3na0QRSnsHnR38MDXy485bRdggQXVbKsxp+0C6jrV\nZ1X31Xg4eJKencbopuOwxAp7vT3fJxzVOs8s0HE7N4OQ0ysBsNJZcTjuEN3q9CA5PQmA986EMP/7\nuVS3dUFRYMK+sSw4PpcJzSex5qdQXO3c8ju/LPTa+h/p2ekkpMWzMnq5th5YStYtXtg7imd3DmPS\ngYkFBr8Yd+io68Za6qy0vBpOVa2WpYbbbvzlU21qacPfd6vTg9CeYdoAAcOpbuNSYnF38KCWoyeW\nOitylGwS0uKZfCiI6IQo4lJiC3SCuTt4kJOXrf1dvQaruoUUqI8NB6wYXkfjtqZhOW7c4WS8jVrH\n7I6JvKMzraiOHsMpuQurB+CfF4Kl7SBROyML27YyvXA0d+7Kqk5SzwVwTwcClpfKNj1XcacGrewd\nfv82cj1ERTqbfEZ7RvH18uODvutZdzYMK52e5IxEzl39DW/XFrzfez2eTg9pzzLqM25lKgOFEEKI\nfwudos4R8wApbJHW4iiPTrN7eSxTi7CX5NjqQ4X6MqO4i8gbbj8iMoBNfuEkpMVr6zcVV3me/9KI\nS8lfH8Vwsd2i0lzYNans+YWi74mS5CEuJX9x5Nnt5jHt8GQ+9v2M5PQklpxceEcHYnRCFAM298XR\nxokbmdepYl2Vm1k3ALDUWeLhUIvRzcbxss8r2r7VRZTV821qhLx/hB9ren/AjCNTmeIzTZt609Q1\nik6IYtKBieh08ES9gXzzx5e832f9Pe2MUF/4ZudmEz4wQvu9uXNsHHFmGGlknE41PwC3czNwsnZm\nnPdEnmk2UnuRYGrRZfUeMHeeTKXH+P+FfT5gmz96S7320nmQ15OEn/+CnLxsrCz0BLeZhau9G+4O\nHvhH+BHhH3nHvaLmuThlTnHLyeK6m+/xvSgD7odyRSUL3FcOxW07GUf0qB07xtGv6gAe/4gneL/P\nelzt3fBxb8070av56Jd1JKQn8FLzV4j8axtz2s/D27UFCWnxDN7qRw07V6b4TOcRlyYEHZzIiy2C\nePd0CNl52eQqOSgKfNB3PQCTDkwkfGCEtu2WQZF3dJyvP/sRq0+vYE7bBbT37KDV3yrDDqIpPtOY\nc2ymltdtg3drAwqMI5p2x0Qyfv9oLRJNZXhO1LJG3U6NkF7VLYTk9CRc7d2YfCiIVd1CtLrGykJ/\nRxtKPaeTDkwktGeYts3kQ0Fa3Wnqe2/qd2r6DOt1U+W+4efV46nn1nBbU8c03J9xG8JcHWOu3ihu\nPVJYHWWcppK42/K0LMrjkraziltfl1X6KsLdRBfe7XGN76XCzuH9en4fVA/K9ZC2U+VQ3LaTOhhm\ncce3tGcutY0wcf9Ybufc5vrt/DW6F3dazpKTC7VnIukwE0IIIe7O3bSbJOLMhPLsNLsXo96K+zLY\nXD4NRzQlpMUTm3qpWBFsxs4mn8F/6xNFTh1p6H4YCWhq9HRhD8txKcWbBrMyMx7lZji1ZHGjkAwp\nCsw+OhNHfX7hpU59ZXwefdxb85HvBhysHAHoWzd/PRk7S3tylVwycjIIP/9FgWNn52YTdHCi2Rcq\nnk61ifCP1K6h2mlmKkJJvXahPcN4unEga86GkpiWwMT9Y+/ZNVOPGdxmltZpZmoxaMPPG9+HhpFr\n5vIT2jMMOys7gtvMYv2vH2rRBGB6dLp6DxQ1RadhOoz/X9jnwwdGaB2e63038rLPK2zyC+erARHa\n9JI+7q05m3yGiyl/seW/3xTYh497a6b4TGPyoaAij6d+vqyoHbalvScqIupNiLthHEVtXAap9aSP\ne2si/Hfi7dpCi5baGrOZ0c3GkZOXjY+7D+EDI/D18tO2WdJpBZY6K22aVkXJnzI3tGcYrz4+haT0\nRPSW+RFhQQcnamnycW/NlkGR2hSNannm6VSbNzrMYU7bBQxuNEQrY9R8qNQyztu1BVY6PYO8hpCj\n5HDu6m/ad3x3TCQjIgMYERlAdEIUvl5+bB64A2/XFtp+1E6mEZEBWjSauh3AJr9wrZNs3L7ntd/5\nuLcmfGCEVuZ5OtXWOreiE6K0cxubeolzV38DCk79aKo9Ye53aoSc4RTKpjqyVIblvuHUisb3gvG5\nNLwfDH82F+Vm6v/FbScZRjEX9vfCysaiorpLoyzaeSXdR0nq63vRDi2PNq36nbyburc0xwTzU7Gb\nI/Vx5SLXQ1QEH/fWrO31EevOhhV4dnZ38MBKp2d5l1Us7bySpPRE5hybWeCZSO5ZIYQQouJIxFkF\nux9GvZU0MsPwwdJw1HVJtq/s56Q4I5eNR1iD+TWjKnt+jRmOvFdH6BuOti/K7phIZh+dyYKOi4sc\nUaeOsp+wbywR/pGERr/Np79+RB55WOos+bDvp3eM9DccgV+cvID50fbq8dVRgi52Liaj48qSGj1l\nHNFoahS+Gt1ZkpHo6r4MI0PVaILCvut3M2K/OOkq7BoYfpf6ft2dm1k3tCk51c+MiAzQovTK8zul\nRsyV93EfFDJqunIoSduppPWWYXkD/0RrGdcbhpEyQIFILUCrb9SOqoBt/sxpP6/AfnbHRN4RRWwY\n1WpYXpoqUwEGb/XDSqcnJSuF6nbVWdUthKCDE7H637SQQIGoNeNoqqWdV5CcnsT4/aNZ3PEt1p0N\nu6NsUuuWotpXxvWBYf4Mp3EqLD/motDMXUdT5bFx5FxhEWem9mfYZlDTXliZbyri7F62lwqrg4yv\nQWn2XZ4RZ+rni1tfl+V5vZftBFPHgrvrCClu3sszX6JyqOzPZ9J2qhxK2nYybgsZt0/OJp+558+Z\nQgghxL/N3bSbpONMlKl/04NlcacOMp6m6EE7L6XpqBq63Z9Lty7yfp/12sMBFD7dk8o/wo+4tFh0\nCizv8h+eaTbSZJpKGlFU1PU03Gd5PEybenFoamqgknacmTpGcfdzr6dFKs5UR2pag9vMMvnS/V6m\nz5y7vQ7/dvLyp3K4122nkrygLs6UZ6Y6w9SpkIynTjRXbhjvT+3UMZ6W0DA6ylQnlbn/G3c2lTb/\n5jrEDKPYCqs/i9s5Zu6Y5uqf0nQ4GHZCQdHTPBY3vWWhuPfe/aKi0ny/nKuS3lP3S77E3bsfnttu\nW9/goSoPVXQy/vWK03YybAOYq+PVv6s/V9b7TgghhLgfSceZqFQu37wsDXkTHtTzcvnmZfw2+RE5\nIrLY+bt88zJXUq7QtnbbIs+L4d/VYy3svpCajjVpW7utyc8P/nIwW4ZteeDOt6lzVVb3VXGuQ2U5\nr5Xxu1QZ0yTEg+7yzcsABb57J2JPmKwbTsSe4KWdL2llmKkyTf0eV9T3uaTlrKn8G/+9uPVrcY5V\n2nNivG1p0yXlrChrck8JcyrzvaHWFT+M+6GikyKKoD67AiV6VhZCCCFE5SAdZ0IIIYQQQgghhBBC\nCCGEEEIAFhWdACGEEEIIIYQQQgghhBBCCCEqA+k4E0IIIYQQQgghhBBCCCGEEALpOBNCCCGEEEII\nIYQQQgghhBACkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIYQQQggh\nhBBCCCGEEEIIIQDpOCt3Z86cITAw8I7fHzx4kCFDhjBs2DC++uorALKzs5kyZQrDhw9nxIgR/Pnn\nn+Wd3BIpSd6ysrKYMmUKQ4cOZfTo0Vy4cKGcU1ty5vIHkJGRwfDhw7VrlJeXx5w5cxg2bBiBgYFc\nvHixPJNaYiXJW3G2qWxKkr/s7Gxef/11RowYwVNPPcWBAwfKM6mlUpL85ebmEhwczPDhw3n66af5\n73//W55JLbHS3JtXr16la9eulb7MhJLnb/DgwQQGBhIYGEhwcHB5JbNUSpq3tWvXMmzYMJ588knC\nw8PLK5lCFKmoOt1UO8fcNhcvXuTpp59mxIgRzJ07l7y8PG0/165do2/fvmRmZpZf5u5z5XFt1q9f\nT0BAAAEBAbzzzjvlm8H7VHlcl40bNzJkyBCeeuopdu7cWb4ZvI+VV3mWl5fH2LFj+fzzz8svc0KI\nSkPaTpWXtJ0qJ2k7VV7SdvqXU0S5WbdundK/f38lICCgwO+zsrKUXr16KTdu3FAyMzOVJ598UklO\nTlb27dunBAUFKYqiKN99953y8ssvV0Syi6WkeduwYYMya9YsRVEU5c8//1RGjx5dEckuNnP5UxRF\n+emnn5TBgwcrHTp0UP744w9FURRlz549yvTp0xVFUZRTp04pEyZMKNf0lkRJ81bUNpVNSfP39ddf\nKwsXLlQURVGuX7+udO3atTyTW2Ilzd++ffuUGTNmKIqiKMePH3/g7s2srCzlxRdfVPr06VPg95VR\nSfN3+/ZtZdCgQeWdzFIpad6OHz+ujB8/XsnNzVVSU1OVkJCQ8k6yEGYVVqeba+eY22b8+PHK8ePH\nFUVRlNmzZyt79+5VFEVRDh8+rAwaNEh57LHHlNu3b5dn9u5r9/raXLp0SRk8eLCSk5Oj5OXlKcOG\nDVN+++23cs7l/edeX5erV68qfn5+SlZWlpKSkqJ06dJFycvLK+dc3p/KozxTFEVZuXKlEhAQoGza\ntKm8siaEqESk7VR5SdupcpK2U+Ulbad/N4k4K0d16tQhNDT0jt//+eef1KlThypVqmBtbY2Pjw9R\nUVHUr1+f3Nxc8vLySE1NxcrKqgJSXTwlzdsff/xBly5dAPDy8qr0kSHm8gf50XPvvvsuXl5e2u+i\no6Pp3LkzAC1btuTnn38ul3SWRknzVtQ2lU1J8+fr68srr7wCgKIoWFpalks6S6uk+evVqxcLFiwA\n4MqVKzg7O5dLOkujNPfmsmXLGD58OG5ubuWRxLtS0vydO3eOjIwMRo8ezciRIzl9+nR5JbXESpq3\n7777jkaNGvHSSy8xYcIEunXrVk4pFaJohdXp5to55rb55ZdfaNOmDQBdunTh2LFjAFhYWPDxxx9T\ntWrV8szafe9eXxt3d3c++OADLC0t0el05OTkYGNjU865vP/c6+tSvXp1IiIi0Ov1/P3339jY2KDT\n6co5l/en8ijPdu/ejU6n07YRQvz7SNup8pK2U+UkbafKS9pO/27ScVaO+vbta7LzKzU1FScnJ+1n\nBwcHUlNTsbe3Jy4ujn79+jF79uxKPS1eSfPWpEkT/u///g9FUTh9+jSJiYnk5uaWZ5JLxFz+AHx8\nfPDw8Cjwu9TUVBwdHbWfLS0tycnJuadpLK2S5q2obSqbkubPwcEBR0dHUlNTCQoK4tVXXy2PZJZa\naa6flZUV06dPZ8GCBQwYMOBeJ7HUSpq3zZs3U7169fumsVHS/Nna2jJmzBg+/PBD5s2bx9SpUx+Y\ncuX69ev8/PPPrF69WsuboijlkVQhilRYnW6unWNuG0VRtIdUBwcHUlJSAOjYsSPVqlUrj+w8UO71\ntdHr9VSvXh1FUVi2bBlNmzalfv365ZS7+1d5fGesrKz47LPPGDZsGAMHDiyPbD0Q7vW1+e9//8uO\nHTu0QWhCiH8naTtVXtJ2qpyk7VR5Sdvp3006zioBR0dH0tLStJ/T0tJwcnJi/fr1dOrUiT179rB1\n61ZmzJhx383dbC5vQ4YMwdHRkREjRrBv3z6aNWtW6SN7SsI433l5efdNR5OA+Ph4Ro4cyaBBgyp1\nx9LdWLZsGXv27GH27Nmkp6dXdHLKxDfffMOxY8cIDAzkt99+Y/r06SQnJ1d0sspM/fr1GThwIDqd\njvr161O1atUHJn9Vq1alU6dOWFtb4+XlhY2NDdeuXavoZAkBFF6nm2vnmNvGwsKiwGcrc9Tv/aA8\nrk1mZiZTp04lLS2NuXPn3ussPRDK6zvz7LPPcuTIEaKiojh+/Pi9zNID415fm4iICBITE3nuuefY\nsmUL69ev5/Dhw+WQMyFEZSJtp8pL2k6Vk7SdKi9pO/27ScdZJdCgQQMuXrzIjRs3yMrK4ocffuCx\nxx7D2dlZ67muUqUKOTk5lToqyxRzeTt79izt27fn888/x9fXl4ceeqiik1qmHn/8ca2gO336NI0a\nNargFIni+vvvvxk9ejSvv/46Tz31VEUnp8xFRESwdu1aAOzs7NDpdAUq7/vZxo0b+eyzz9iwYQNN\nmjRh2bJluLq6VnSyyszXX3/N0qVLAUhMTCQ1NfWByZ+Pjw9HjhxBURQSExPJyMiQaVdEpVFYnW6u\nnWNum6ZNm3LixAkADh8+TKtWrco5Nw+We31tFEXhxRdfpHHjxsyfP/+BGuR1L93r6xITE8PLL7+M\noijo9Xqsra0fmLbMvXavr820adMIDw9nw4YNDB48mFGjRmnT8wsh/j2k7VR5SdupcpK2U+Ulbad/\nNwmBqUDbt28nPT2dYcOGMWPGDMaMGYOiKAwZMoSaNWsyatQoZs6cyYgRI8jOzua1117D3t6+opNd\nLEXlTa/Xs3r1atasWYOTkxOLFi2q6CSXiGH+TOnduzdHjx5l+PDhKIrC4sWLyzmFpVdU3u53ReVv\nzZo13Lp1i/fee4/33nsPgPfffx9bW9vyTGapFZW/Pn36EBwczDPPPENOTg4zZ858YPJ2vysqf089\n9RTBwcE8/fTT6HQ6Fi9efN9EshaVt+7duxMVFcVTTz2FoijMmTNHHrJEpWGqTi+qnWOuHTB9+nRm\nz57NqlWr8PLyom/fvhWcu/vbvb42+/fv5+TJk2RlZXHkyBEAJk+ezGOPPVaR2a707vV1sbS05JFH\nHmHYsGHaehDqehGicFKeCSHKg5Q1lZe0nSonaTtVXlKe/bvpFFlERAghhBBCCCGEEEIIIYQQQgiZ\nqlEIIYQQQgghhBBCCCGEEEIIkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBAC\nkI4zIYQQQgghhBBCCCGEEEIIIQDpOBNCCCGEEEIIIYQQQgghhBACkI4zIcQ9FBsbS48ePUz+rXHj\nxvf02IMGDbqn+xdCCCGEKA+bN29mxowZFZ2MuxYYGMiJEycqOhlCCCGEeMBJ20kIURak40wI8UDa\nunVrRSdBCCGEEEIIIYQQQgghxH3GqqITIIR4cKxZs4Zt27ZhaWlJx44dGTFiBLdv3+a1117j/Pnz\nODs78+6771KtWjVtmxs3bvDGG28QExODtbU1M2bMoH379maP0aNHD3r06MEPP/wAwOLFi2natCmB\ngYFUqVKF8+fP8/bbb+Pv78/vv/9udv+HDx8mJCSEnJwcateuzYIFCwqkSwghhBCiuHJycnjzzTc5\nf/48f//9N/Xr18fLy4uaNWsyZswYAIKCgujfvz/Nmzdn6tSp3Lx5k0aNGhEVFcXhw4cL3f/Fixd5\n5plnuHHjBt27d2fKlCnodDq++eYbPv74Y3Q6Hc2aNWP27Nk4ODiY3c+yZcs4evQolpaW9OzZk5df\nfpnQ0FAuXLjApUuXuHHjBsOGDWPs2LFs3ryZLVu2aMccOXIkc+bMISEhAZ1Ox5QpU+jQoQOJiYnM\nnDmTlJQUkpOT8fPzY+rUqWRlZfHGG2/w888/4+npyfXr18v0nAshhBDi/iVtJ2k7CVHZScSZEKJM\nfPvttxw8eFBrKFy8eJEjR45w7do1nn/+eXbs2EGNGjXYuXNnge1Wr15NnTp12LVrF8uXL+ftt98u\n8lhVq1YlIiKCoKAgpk+frv2+cePG7NmzhyZNmhS6/2vXrrFy5Uo+/PBDIiIi6NSpEytWrCi7kyGE\nEEKIf5VTp06h1+v58ssv2bdvH5mZmbi7uxMZGQlAamoqP/74I926dWPRokX069eP7du34+vrS2Ji\nYpH7j42NJTQ0lC1bthAdHc2BAwf4/fffWbNmDRs2bGD79u3Y2dnxzjvvmN1HXFwchw8fZtu2bXzx\nxRdcuHCBzMxMAP773/+yfv16Nm/ezJdffskvv/wCQGJiIlu2bGHy5MksWrSIIUOGsHnzZsLCwpgz\nZw6pqans2LGD/v3789VXX7Ft2zY2bdrEtWvX2LBhAwC7du1i1qxZXLp06W5PsxBCCCEeENJ2kraT\nEJWdRJwJIcrE8ePH8fPzw9bWFoAhQ4YQERGBm5sbzZs3B6Bhw4Z3jJiJiorSOq0aN27Ml19+WeSx\nhg4dCuRHn82YMYNr164BaMcpav//93//R3x8PCNHjgQgLy+PKlWqlCbbQgghhBC0bt2aqlWrsnHj\nRmJiYrhw4QLVqlUjKyuLixcvcurUKbp37461tTVHjx5lyZIlAPTu3RtnZ+ci99+jRw+qV68OQL9+\n/Th58iQJCQl0795di5gfNmwYwcHBZvdRs2ZNbGxsGD58ON27d+fVV1/FxsYGgP79+2ujrXv06MHx\n48epVq0aTZs2xcoq/5Hx2LFjxMTEEBISAuSPFL98+TJjxozh+PHjfPjhh5w/f57s7GwyMjI4efIk\nw4YNA6BevXo89thjpTm1QgghhHgASdtJ2k5CVHbScSaEKBN5eXl3/C4nJ0drMADodDoURSnwGcO/\nA/z555/Ur18fCwvzAbGG2+Tl5WFpaQmgddoVtf/c3Fwef/xx1qxZA0BmZiZpaWlmjyeEEEIIUZgD\nBw4QEhLCyJEjefLJJ7l+/TqKojBw4EB27tzJqVOneOGFFwCwtLS8oz1UFMP2jKIoWFlZ3dH2UhSF\nnJycQvcRHh7OyZMnOXz4MMOHD9dGNqttKTDftsrLy+OTTz6hatWqQP6I6ho1arB06VIuX75M//79\n6dWrF8eOHUNRFHQ6XYE0GrfJhBBCCPHvJW0naTsJUdnJVI1CiDLRrl07IiMjuX37Njk5OXzzzTe0\na9euyO1atWqlTd/4559/8sILL6DT6QrdRg3d37dvHw0aNCg0WszU/ps3b87p06f566+/AHjvvfdY\nvnx5sfIphBBCCGHs+++/p1+/fgwZMoQaNWoQFRVFbm4uAwYMYOfOnVy8eJFWrVoB0KFDB7Zv3w7k\nT3V969atIvevfi4zM5PIyEg6dOhAmzZtOHjwIDdu3ADgq6++om3btmb38euvv/Lss8/SunVrpk+f\nToMGDbS20P79+8nKyuLmzZv83//9H506dbpj+3bt2rFp0yYA/vjjDwYOHEhGRgZHjx5lzJgx9OvX\nj/j4eBITE8nLy6N9+/bs2LGDvLw84uLi+PHHH0t2UoUQQgjxwJK2k7SdhKjspOtaCFEmunfvzm+/\n/caQIUPIycmhc+fOdO/enU8//bTQ7YKCgpg1axYDBw7EysqK5cuXF9lx9uOPP/L1119jZ2fH0qVL\nS7x/Nzc3Fi9ezKuvvkpeXh41a9bkrbfeKnGehRBCCCEAAgICmDp1Krt378ba2pqWLVsSGxuLh4cH\n1apVo2XLllr7ZubMmUyfPp2vvvqKRx55pFjTDXl5eTFu3Dhu3bpF//79tZcz48ePJzAwkOzsbJo1\na8a8efPM7qNp06a0bNmS/v37Y2dnR5MmTejSpQu//PILNjY2jBgxgtTUVMaPH0/Dhg356aefCmw/\na9Ys5syZw4ABAwBYvnw5jo6OjB8/nmnTpuHs7IyLiwuPPvoosbGxjBgxgvPnz9OvXz88PT1p1KhR\naU+vEEIIIR4w0naStpMQlZ1OKWmsqxBCVKAePXrw6aefUrt27YpOihBCCCFEiX366ad06NCBhg0b\n8ssvvzB79mw2b95cYekJDQ0FYNKkSRWWBiGEEEIIc6TtJISoCBJxJoSodAIDA02G3g8fPrwCUiOE\nEEIIUXbq1q3L5MmTsbCwwMbGhgULFrBz507Wrl1r8vNbt24t0f4La0c9/fTTpUqzEEIIIURFkbaT\nEKIiSMSZEEIIIYQQQgghhBBCCCGEEIBFRSdACCGEEEIIIYQQQgghhBBCiMpAOs6EEEIIIYQQQggh\nhBBCCCGEQDrOhBBCCCGEEEIIIYQQQgghhACk40wIIYQQQgghhBBCCCGEEEIIQDrOhBBCCCGEEEII\nIYQQQgghhACk40yI+9bmzZsZP358RSejzM2fP5/Q0NCKToZJb7zxBseOHSvRNmWdn8uXLzNp0qQy\n258QQghxv5oxYwYffvhhRSfjrl27do3GjRuXevv4+Hj69+/PwIEDOXXqlNnP3S9tiBdeeIE//vij\nRNuMHz+ezZs339Vxw8PD2bhx413tQwghhHiQFdb2aty4MdeuXSvxPr/++msmTJhQ4HeTJk2id+/e\nDBo0iEGDBrF48eJSpRfgwIEDLFy4sETb/Pbbb/Tq1YvBgwcTGxtr9nM//fQTc+bMKXXahBCVm1VF\nJ0AIIe4XixYtqugkcOXKFf7666+KToYQQgghKokTJ05Qo0YN1q9fX+jn7pc2xPvvv18hx42Ojubh\nhx+ukGMLIYQQ/zY3btxg1apVbNu2jbZt2xb426lTp/jmm2+oWbPmXR+nZ8+e9OzZs0TbHDhwgLZt\n2xb5DuiPP/4gMTHxbpInhKjEpONMiDKWl5fH4sWLOXPmDGlpaSiKwsKFC2nUqBFdu3Zlz549uLq6\nAjB06FBeeuklvL29CQ4O5tKlS1StWhVXV1cefvjhIkcFJycnM2bMGJKSkvD09GTBggW4urqSkJDA\nm2++SVxcHIqi4O/vz9ixYwvd159//skbb7xBVlYWiqLw1FNP8cwzzxAaGsr58+f5+++/uXr1Ko88\n8giLFi3C0dGRHsojUuYAACAASURBVD160Lx5c37//XcmT55M8+bNmT9/PvHx8WRnZ+Pn56eNHFqz\nZg379+8nMzOTjIwMpk+fTu/evUlNTeWNN97g3LlzuLm5YWlpiY+Pzx3ntHv37rzzzjt4e3sD8Npr\nr9G6dWvatm1rMt2GYmNjCQwMpE2bNpw7dw5FUZgzZw6tWrUCICwsjL1795KXl4enpydz586lZs2a\nBAYGUqVKFWJiYnj66afZu3cvzzzzDL6+vuzfv5933nmH3NxcHB0dCQ4Opnnz5sXKj7ETJ06waNEi\n7O3tSU9P5+uvv+a7774jLCyM7OxsbG1tmT59Os2bN2fWrFkkJiYyZswY5s2bx4ABA7TR5bGxsdrP\nmzdv5uuvvyYjIwNHR0cGDx7Mvn37sLCw4OLFi+j1epYtW0ajRo0KTZsQQghxN+51uyg6Opo9e/aQ\nmppKx44dmT59OlZWVvzwww8sX76cjIwM9Ho9r776Kl26dLlj+5CQEPbt24der6datWosWbIENzc3\nmjZtynPPPceJEydIT09n8uTJ9OnT5476dcOGDYSHh/P555+Tl5dH1apVmT17Ng0aNOCvv/5i/vz5\npKenk5SUxCOPPMLbb7+NjY0Ne/fu5T//+Q92dnY8+uijJs/dl19+ycGDB1m7di2Q31YbNWoUhw4d\nwtLSEoDjx4/z9ttvk5KSQmBgIC+//DILFixgx44dQH4bY8GCBWzdurXUbYjC8mjoxIkTLF++nJo1\na3L58mVsbW1ZunQpDRo0ICsrixUrVhAVFUVubi5NmzZl1qxZJtuTS5YsYfXq1Xh7e/Pll1+yYcMG\nLCwsqFGjBrNnz6Z+/fokJiYyY8YMkpKSqFWrFlevXjV5DmfMmMGNGze4fPky3bp145VXXjGZju+/\n/56DBw9y9OhRbG1tuXbtGtevX9dGkYeGhmo/m2oftmzZkh9//JH4+Hh8fHxYtmwZFhYyuYsQQoj7\nk7n6F/I7tYYPH87ff//Nww8/zMqVK7G3ty+w/dq1a9myZQtWVlbUrVuXpUuX4uTkVOAzu3btws3N\njWnTpvHtt99qv798+TJpaWnMnTuXuLg4Hn30UaZPn07VqlULbL9582b27t3L7du3iYuLw8PDg2ee\neYbPPvuMCxcu8PzzzzN69Gg2b97Mnj17WLt2LYGBgUXW2du2bePzzz8nNzeX27dv07FjR2179bh7\n9uzhzTffJCQkhJSUFIKDg/H39zfZBtuxYwehoaGcPn2apKQkGjduzIoVK8y+hzI0fPhwRo0aha+v\nLwArVqxAURRef/31Ap8z1241dy0sLS158803uXDhAjdv3sTBwYEVK1bg5eVVshtFiAectOaFKGNn\nzpwhKen/2bvzuCjr/f//zwEEFdCiUEzTvh41W829RdzSNM09UvBjUWafLLVyySWXUnPpQ1Z61JN2\nynNMU0tTlNJKcylNkcrMjmXW0SBINBcWZZv5/cFvpmEYYIAZZuFxv926Jddcy/u65lpe83693+/r\njNavX6+PPvpIgwYN0sqVKxUaGqqePXsqPj5eUmHlR3p6uiIjIzV37lw1a9ZMH3/8sd544w19/fXX\nDm3r119/1cyZM7V161a1aNHC0hpm4sSJ6tixo7Zu3ar33ntP8fHxSkhIKHVd//znP9W9e3dt2rRJ\nK1as0OHDh2U0Gi37tHjxYn388ccKCAjQ0qVLLcs1b95cH3/8sXr27KlJkyZpyJAhlgqX/fv366OP\nPlJKSor279+vd999V1u3btVzzz2nxYsXSyqssKpZs6a2b9+uN954w25LaD8/Pw0ZMkQffvihJOni\nxYvav3+/+vXrV2q5rf3+++/q1KmTtmzZogkTJujZZ59VXl6eNm/erJ9++knvv/++tmzZoi5dumj6\n9OmW5erUqaOPPvpII0aMsEw7efKkZs2apSVLlmjr1q0aN26cnnrqKWVmZjq0P/acOHFCr776quLj\n4/X777/rtdde04oVK7R582bNmTNHY8eOVU5OjubOnavGjRs7NDTVzz//rNWrV2v16tWSpMTERM2Y\nMUPbtm1TmzZtfGJ4KwCAZ3N1XJSWlqZVq1Zp8+bNOn78uDZs2KDz589r3LhxeuGFF7R161YtXLhQ\nkyZN0m+//VZk2dTUVP3rX//Sxo0btWnTJt1zzz367rvvJEkFBQWqW7euNm3apNdff13Tpk2zDD9k\n/Xw9dOiQNm/erDVr1mjz5s16/PHHLQm+DRs2aODAgVq/fr0++eQTJScna/fu3Tp79qymTZumJUuW\naNOmTWrYsKHdfevbt6+SkpKUnp4uqbCiZvDgwZakmSTdeeedGjdunNq1a2d53tvj7+9f4RiitH20\n9cMPP+ixxx7T1q1bNXjwYEvFzooVK+Tv769NmzYpPj5e9erVU1xcnGU563jS7MCBA3rrrbf073//\nW/Hx8XrggQf09NNPy2Qyafbs2WrVqpUSEhI0ffr0UuOtK1euKCEhQZMmTSqxHD179lT37t0VGxtb\nrAGWPbbx4enTp7V69WrFx8frq6++0qFDh8pcBwAAnqi0568k/fHHH3rnnXe0Y8cO/fHHH/rkk0+K\nLL9z505t2rRJ69ev17Zt29SoUSO9++67xbYTHR2tMWPGqGbNmkWm//nnn7r77rs1e/Zsbd68WbVr\n19a0adPslvXw4cOaP3++duzYoXPnzikhIUH/+te/tHLlSr3++ut264bKemb3799fw4YNU58+ffTq\nq6+WeJwaNGhgicHmz59f4nxmKSkp+vDDDxUXF1dmPZRZVFSUpR6soKBA8fHxioqKKjZfSXFrSd/F\n3r17VadOHW3YsEE7duzQrbfeynDVgB30OAOcrHXr1qpbt67WrVun3377TQcPHlRwcLCkwofeSy+9\npJEjR2rjxo0aPHiw/Pz8tGfPHsvDsF69epbWJGW5++671aRJE0nSgw8+qAcffFDZ2dn6+uuv9fbb\nb0uSQkNDNXjwYO3du1d9+/YtcV09e/bU5MmT9d133+muu+7S9OnTLa1uevfurWuvvdaynXnz5mny\n5MmSZOm1lZ2drcTERF28eFFvvPGGZdrx48fVp08fLVy4UFu3btWpU6csrc6lwqBs2rRpMhgMCgsL\nK1JhYm3IkCF68MEHNWXKFG3btk3dunWzVLqVVG5rdevWVb9+/SRJXbp0kb+/v3788Ud9/vnnOnr0\nqIYMGSKpsGX85cuXLcuZ98/aV199pTvvvFPXX3+9JOmuu+5SWFiYvv/+e4f3x1aDBg0sFWdffvml\nzpw5o9jYWMvnBoNBp0+fdmhdZjfeeKNCQkIsf99yyy2KiIiQVNgi6dNPPy3X+gAAKC9Xx0UDBgyw\ntHLu37+/9uzZo4YNG6px48Zq1aqVpMKkTJs2bXTo0CHLs1uS6tevr5YtW2rQoEHq3LmzOnfurLvu\nusvy+f/8z/9Iklq2bKkWLVooMTFRUtHn6+7du3Xq1CkNGzbMstzFixd14cIFTZo0SV9++aVWrlyp\n//73vzpz5oyys7OVlJSkFi1aqFmzZpKkoUOHatGiRcX2LSQkRL169VJ8fLxiY2MVHx+vtWvXlvMb\nqBhH99G29XfLli0tsdOQIUM0e/ZsnT9/Xrt371ZGRoblXbF5eXm65pprLMvZi7f27dunPn36KCws\nTJI0ePBgvfzyy0pOTtb+/fstsWiTJk2KDfFkzbrnf1nlcJRtebt16yY/Pz+FhISoSZMmunjxYrnX\nCQCAJyjt+StJPXr0UK1atSQVxli27zU7cOCAevfurbp160qSpk6dWq7tt2rVqkhj7TFjxqhTp07K\nzc1VYGBgkXlvu+02NWjQQJLUqFEjderUSX5+frr++ustox3Zctcz+4477lBAQGE1fFn1UGb333+/\nXnnlFaWnp+uHH35QkyZNdMMNN9hdv724NTExscTv4vrrr9fq1at16tQpHTp0SK1bt3bm7gI+gcQZ\n4GS7d+/Wyy+/rEcffVT33nuvmjZtamlN3a5dO+Xn5+u7777Ttm3btG7dOklSQECApfWOJIeHdrFu\ncWwymRQQECCj0VhkXVLhQzg/P7/UdXXr1k07duzQ/v37deDAAS1dutRSPuvtGI3GIuUzV1aZt7tu\n3TpLEPXnn38qKChIx44d01NPPaXY2Fjdc889at++vV566aUiZbe3T9YaNmyom2++Wbt379amTZss\nLY5KKnfjxo1LPFbm8vr7+8toNOrxxx9XTEyMJCk3N7dI4GQ75IBtea2nmY+xI/tjy3o7RqNRd911\nl15//XXLtNTUVNWrV0+HDx+2TDMYDEW2lZeXV+I6JRVpyWW7LAAAruDquMj2OWuOhWxZP6et1/vu\nu+/q6NGjOnDggObNm6eOHTtaWvzaxj/mv22f2QMGDLD0rDIajTpz5ozq1q2r5557TgUFBbr//vvV\ntWtXpaamymQyFXsGmytR7ImKirIMi9isWbMiiT97yooNHJ3P0X20Zft9mEwmS7w1bdo0denSRZKU\nlZWlnJwcu9uzXtbetPz8/HIdQ9t9Ka0cZsRYAIDqqqz6Dutnrr1nnr+/vwwGg+XvS5cu6dKlS2rU\nqJFD2z98+LAuXrxoeS+ZOXayV7dim0grLR4wK+8z21WxVWn1UNbL9OrVS9u2bdM333xjt7eZmb24\ntaTvYu/evdqwYYOGDx+ufv366aqrrrIkRgH8haEaASf78ssv1a1bN8XExOi2227TZ599poKCAsvn\nUVFRmjNnjm688UZdd911kgp7QH3wwQeSpPPnz+uzzz4r8nArycGDB/X7779Lkt577z117txZISEh\natWqlaWbdUZGhjZv3qy777671HVNmDBBH330kfr27atZs2YpJCREqampkgq72mdkZMhoNGrDhg3q\n1q1bseVDQkJ0xx136J133pFU+ECOjo7Wzp07lZiYqFtvvVWPPvqoOnTooJ07d1qOSWRkpD744AMZ\njUZdvHhRO3fuLLGMDz30kFauXKkrV65YWg+XVm5rf/75p/bu3StJ2rVrl2rUqKEWLVqoU6dO+uCD\nD5SZmSlJeuONN/T888+XeqzuvPNOffnll5Yhnw4cOKDU1FS1atWqXPtT1vpPnjwpSdqzZ4/69++v\nnJwc+fv7WwKwOnXqKC8vTz///LMk0YMMAOBxXB0XJSQkKDc3Vzk5Odq0aZM6d+6sVq1a6ddff7UM\nu3jixAklJiaqQ4cORZY9fvy4HnjgAf3tb3/T//7v/yo2NlY//vij5fPNmzdLko4dO6Zff/1V7du3\nL7b9e+65RwkJCTpz5oykwnjskUcekSR98cUXevrpp9WnTx8ZDAYdOXJEBQUFateunX7++WcdP35c\nUuEQjCW54447JElLly4ttbLELCwsTL///rvOnTsnk8mkzz77zPJZRWOI0vbR1vHjxy37tX79erVp\n00Z16tRRp06dtGbNGuXm5spoNGrGjBl2e9lZ69Spkz766CNLS/aNGzfqqquuUpMmTRQZGan169dL\nKhyO++DBg2UeG/M6SyqHv7+/pVLw6quv1rFjx2QymZSdna0vvvjCofUDAODtSnv+OuLuu+/Wp59+\naqljWbJkiVatWuXw9rOysjR37lxduHBBUuFrRXr16uVwo2RnCwsL04kTJ5STk6P8/Hx9/vnnls+s\nY4fSYjBb5amHeuihh7Rp0yZ988036tWrV4nrtBe3lvRdfPHFFxo0aJCioqL0//7f/9OuXbuKxOcA\nCtHjDHCyYcOGaeLEierXr5/8/f3Vrl07yws//fz8NHDgQC1atKhIZcHUqVM1ffp0S0uP6667rtg4\nz/a0aNFC06ZN09mzZ9W0aVPNnj1bUuELQ2fPnq1NmzYpNzdX/fr10+DBg0td11NPPaUXXnhB69ev\nl7+/v3r06KEOHTro0KFDuvbaazVq1CidP39e7du315NPPml3HXFxcZozZ4769eun3NxcPfDAA+rf\nv7/Onj2rTz75RH369FGNGjV011136eLFi8rMzNTYsWM1a9Ys3X///QoLC1OLFi1KLGP37t310ksv\nadSoUWWW21ZQUJC2bNmiuLg41axZU0uXLpW/v7+ioqL0xx9/6KGHHpLBYFCDBg20YMGCUo9Vs2bN\nNGvWLI0ZM0YFBQWqWbOm/vGPfyg0NLRc+1OS5s2ba/bs2Ro/frylJ+Hy5ctVu3ZtNW/eXP7+/nrw\nwQf1/vvva9KkSRo1apTCwsIcHuITAICq4uq4qFGjRoqOjlZ2drZ69uypQYMGyWAw6I033tCcOXN0\n5coVGQwGzZ8/3/JSe7OWLVvq/vvv15AhQ1S7dm3VrFmzyPslvv76a23YsEFGo1Gvvfaa3R5WkZGR\nGjVqlB577DEZDAaFhITo73//uwwGg5577jk9/fTTqlu3rmrVqqX27dvr9OnTCgsLU1xcnCZOnKga\nNWrYTchZi4qK0rJly9SjR48yj3ezZs00bNgwDRkyROHh4eratavls4rGEKXto61rr71Wr7/+ulJS\nUhQWFqZXXnlFUmG8tnDhQg0aNEgFBQW66aabNGXKlFL35Z577lFsbKweeeQRGY1GhYWF6c0335Sf\nn59mzZqlqVOn6v7771dERIRatmxZ5rEpqxydO3fWnDlzJEkxMTHat2+f7rvvPtWvX1+tW7emFxkA\noFoo7fnriC5duujnn39WdHS0pMLYxPx8dXT5ESNGKDo6WkajUTfeeGO5lnc286hJ999/v8LDw9Wx\nY0dLQ6vWrVvr9ddf19NPP62lS5eWGIPZKk891K233qqAgAD16tVLQUFBJa7TXtxa0ndx/PhxzZw5\nU5s2bZK/v79uueUW/fTTTxU/SICPMpj4BQC43Zo1a3TzzTerdevWys3NVUxMjMaOHWsZRsadlixZ\novPnz2vmzJnuLkqFJScnq1+/fvrmm2/cXRQAAFAGT4iLbrzxRh04cMDyfg+U7eDBg5ozZ462bdvm\n7qIAAABUG8StgGvQ4wzwAOZWH0ajUXl5eerdu7e6dOmimJgYZWVl2V1mzZo1lpe2OyIzM1PDhw+3\n+1lwcHCVvWy+unr22Wf166+/2v3stddeU9OmTau4RAAAeKaS4iIAAAAAAKoCPc4AAAAAAAAAAAAA\nSY4NUAsAAAAAAAAAAAD4OBJnAAAAAAAAAAAAgHz0HWfp6RnuLoIkKSUjWbHbh2tV7zVqGNrI3cUB\nAMDjhIeHursIkOfETmbEUAAA2Efs5Bk8LXbyJiXFecR/AABnq0zc5JPvOPOkACYlI5kHPgAAJaDy\nxzN4UuxkRgwFAEBxxE6ewRNjJ29SUpxH/AcAcKbKxE0M1ehiPPABAADKjxgKAADAN5UU5xH/AQA8\nBYkzAAAAAAAAAAAAQCTOAAAAAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAA\nAAAAAAAAAEkkzgAAAAAAAAAAAABJJM4AAAAAAAAAAAAASSTOAAAAAAAAAAAAAEkkzgAAAAAAAAAA\nAABJJM4AAAAAAAAAAAAASSTOAAAAAAAA4OXOnTunLl266OTJkzp16pSio6MVExOjWbNmyWg0SpI2\nbNigwYMH66GHHtLnn38uSbpy5YrGjh2rmJgYjRo1Sn/++ac7dwMAAHgAEmcAAAAAAADwWnl5eZo5\nc6Zq1qwpSZo/f76effZZrV27ViaTSTt37lR6erpWr16tdevW6Z///KcWLVqk3Nxcvffee2rRooXW\nrl2rgQMHatmyZW7eG9+UkpHs7iIAAOAwEmcAAAAAAADwWgsXLtSwYcNUr149SdKxY8fUoUMHSVLn\nzp21f/9+fffdd2rdurUCAwMVGhqqxo0b6/jx40pKSlJkZKRl3gMHDrhtP3xVSkayYrcPJ3kGAPAa\nJM4AAAAAAADglTZt2qSwsDBL8kuSTCaTDAaDJCk4OFgZGRnKzMxUaGioZZ7g4GBlZmYWmW6eF87V\nMLSRVvVeo4ahjdxdFAAAHBLg7gIAAAAAAAAAFbFx40YZDAYdOHBA//nPfzR58uQi7ynLyspSnTp1\nFBISoqysrCLTQ0NDi0w3zwvnI2kGAPAm9DgDAAAAAACAV1qzZo3effddrV69WjfddJMWLlyozp07\n6+DBg5KkvXv3ql27drr99tuVlJSknJwcZWRk6OTJk2rRooXatGmjPXv2WOZt27atO3cHAAB4AHqc\nAQAAAAAAwGdMnjxZM2bM0KJFi9S0aVP16tVL/v7+GjFihGJiYmQymfTcc88pKChI0dHRmjx5sqKj\no1WjRg29+uqr7i4+AABwM4PJZDK5uxDOlp7OeNQAAHiD8PDQsmeCyxE7AQDgHYidPEN1jp1SMpIZ\ndhEA4BUqEzcxVCMAAAAAAACAUqVkJCt2+3ClZCS7uygAALgUiTMAAAAAAAAApWoY2kireq+hxxkA\nwOeROAMAAAAAAABQJpJmAIDqgMQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQSZwAAAAAAAAAAAIAk\nEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQXJ86OHDmiESNGFJu+a9cuDRkyREOHDtWGDRtKXebU\nqVOKjo5WTEyMZs2aJaPR6MoiAwAAuA2xEwAAAAAAgHu5LHG2cuVKTZ8+XTk5OUWm5+Xlaf78+Xr7\n7be1evVqrV+/XmfPni1xmfnz5+vZZ5/V2rVrZTKZtHPnTlcVGQAAwG2InQAAAAAAANzPZYmzxo0b\na8mSJcWmnzx5Uo0bN1bdunUVGBiotm3bKjExscRljh07pg4dOkiSOnfurP3797uqyAAAAG5D7AQA\nAAAAAOB+Lkuc9erVSwEBAcWmZ2ZmKjQ01PJ3cHCwMjMzS1zGZDLJYDBY5s3IyHBVkQEAANyG2AkA\nAAAAAMD9XPqOM3tCQkKUlZVl+TsrK6tIZZAtPz+/IvPWqVPHpeUDAADwJMROAAAAAAAAVafKE2d/\n+9vfdOrUKV24cEG5ubk6fPiwWrduXeL8N998sw4ePChJ2rt3r9q1a1dVRQUAAHA7YicAAAAAAICq\nU3w8IBfZunWrsrOzNXToUE2ZMkUjR46UyWTSkCFDVL9+/RKXmzx5smbMmKFFixapadOm6tWrV1UV\nGQAAwG2InQAAAAAAAKqewWQymdxdCGdLT+ddHgAAeIPw8JKHHETVIXYCAMA7EDt5BmInAAA8X2Xi\npiofqhEAAAAAAAAAAADwRCTOAAAAAAAAAAAAAJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgD\nAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAA\nAAAAACSROAMAAAAAAAAAAAAkkTgDAAAAAAAAAAAAJJE4AwAAAAAAAAAAACSROAMAAAAAAAAAAAAk\nkTgDAAAAAAAAUIaUjGR3FwEAgCpB4gwAAAAAAABAiVIykhW7fTjJMwBAtUDiDAAAAAAAAECJGoY2\n0qrea9QwtJG7iwIAgMuROAMAAAAAAABQKpJmAIDqgsQZAAAAAAAAAAAAIBJnAAAAAAAAAAAAgCQS\nZwAAAAAAAAAAAIAkEmdul5KR7O4iAAAAeAxiIwAAAAAA4E4kztwoJSNZsduHU0EEAAAgYiMAAAAA\nAOB+BpPJZHJ3IZwtPT3D3UVwWEpGshqGNnJ3MQAAcIvw8FB3FwHyrNiJ2AgAgJIRO3kGT4qdPB2x\nHQDAXSoTNwU4sRyoAIIHAACAvxAbAQCA8igoKND06dP166+/ymAw6KWXXlJQUJCmTJkig8Gg5s2b\na9asWfLz89OGDRu0bt06BQQEaPTo0erWrZuuXLmiSZMm6dy5cwoODtbChQsVFhbm7t3yCebRBFb1\nXkOMBwDwKgzVCAAAAAAAAK/0+eefS5LWrVunZ599Vq+99prmz5+vZ599VmvXrpXJZNLOnTuVnp6u\n1atXa926dfrnP/+pRYsWKTc3V++9955atGihtWvXauDAgVq2bJmb98h3NAxtRNIMAOCV6HEGAAAA\nAAAAr9SjRw917dpVkvT777+rTp062r9/vzp06CBJ6ty5s7788kv5+fmpdevWCgwMVGBgoBo3bqzj\nx48rKSlJjz/+uGVeEmfORdIMAOCN6HEGAAAAAAAArxUQEKDJkydrzpw56tevn0wmkwwGgyQpODhY\nGRkZyszMVGjoX+86CQ4OVmZmZpHp5nnhmJSMZHcXAQAAlyBxBgAAAAAAAK+2cOFC7dixQzNmzFBO\nTo5lelZWlurUqaOQkBBlZWUVmR4aGlpkunlelM38/jKSZwAAX0TirAJsgwKCBAAAgIohrgIAAJWx\nefNmvfnmm5KkWrVqyWAw6NZbb9XBgwclSXv37lW7du10++23KykpSTk5OcrIyNDJkyfVokULtWnT\nRnv27LHM27ZtW7ftizfh/WUAAF9G4qycbFvU0MIGAACgYoirAABAZd1333364YcfNHz4cI0cOVLT\npk3TzJkztWTJEg0dOlR5eXnq1auXwsPDNWLECMXExOiRRx7Rc889p6CgIEVHR+vEiROKjo7W+vXr\nNWbMGHfvktcgaQYA8FUGk8lkcnchnC093bXjUadkJBcJDmz/BgAAjgkPDy17Jricq2On0hBXAQDg\nOGInz+DO2AkAADimMnETPc4qwLYyh8odAACAiiGuAgAAAAAAnoTEGQAAAAAAAAAAACASZwAAAAAA\nAAAAAIAkEmcAAAAAAAAAAACAJBJnAAAAAAAAAAAAgCQSZwAAAAAAAACcJCUj2d1FAACgUkicAQAA\nAAAAAKi0lIxkxW4fTvIMAODVSJwBAAAAAAAAqLSGoY20qvcaNQxt5O6iAABQYSTOAAAAAAAAADgF\nSTMAgLcjcQYAAAAAAAAAAACIxBkAAAAAAAAAB/DuMgBAdeDSxNmRI0c0YsSIYtN37dqlIUOGaOjQ\nodqwYYMkyWg0aubMmRo6dKhGjBihU6dOSZJ++OEHRUZGasSIERoxYoQ++ugjVxYZAADAbYidAAAA\n4KlSMpIV0BvgcgAAIABJREFUu304yTMAgM8LcNWKV65cqfj4eNWqVavI9Ly8PM2fP18ffPCBatWq\npejoaHXv3l1ff/21cnNztX79en377bdasGCBli9frmPHjunRRx/VY4895qqiAgAAuB2xEwAAADxZ\nw9BGWtV7De8wAwD4PJf1OGvcuLGWLFlSbPrJkyfVuHFj1a1bV4GBgWrbtq0SExOVlJSkyMhISdId\nd9yh77//XpL0/fffa/fu3Ro+fLimTZumzMxMVxUZAADAbYidAAAA4OlImgEAqgOXJc569eqlgIDi\nHdoyMzMVGhpq+Ts4OFiZmZnKzMxUSEiIZbq/v7/y8/N1++236/nnn9eaNWt0/fXXa+nSpa4qMgAA\ngNsQOwEAAAAAALifS99xZk9ISIiysrIsf2dlZSk0NLTYdKPRqICAAPXs2VO33nqrJKlnz5764Ycf\nqrrIjN0MAADcxhtjJ3uIpwAAAAAAgDeo8sTZ3/72N506dUoXLlxQbm6uDh8+rNatW6tNmzbau3ev\nJOnbb79VixYtJEkjR47Ud999J0k6cOCAbrnlliotLy8+BQAA7uRtsZM9xFMAAAAAAMBbFB8PyEW2\nbt2q7OxsDR06VFOmTNHIkSNlMpk0ZMgQ1a9fXz179tSXX36pYcOGyWQyad68eZKkF198UXPmzFGN\nGjV07bXXas6cOVVVZEm8+BQAALiHt8ZO9hBPAQAAVF8pGcnEgQAAr2IwmUwmdxfC2dLTM9xdBAAA\n4IDw8NCyZ4LLETsBAOAdiJ08A7GT48wjD9CICgBQ1SoTN1X5UI0AAAAAAAAAfB8jDwAAvBGJMwAA\nAAAAAADFOOMdtSTNwLuOAXgbEmdOwgMAAADAccROAAAAns08zGJF4raqjPWIKz1bZc4jX8MxALwH\niTMnsH0AOPMmyA0VAAD4mtJiJ2IfAAAAz1DRYRarMlFCUsbzMVxnIc5VwLuQOKsA2xuc9QPAmTdB\nbqgAAMAXOBo7EfsAAAB4lookO6oyUUJSpnKqKu7m++FcBbyNwWQymdxdCGdLT89w2brNFTql3ehS\nMpKddhN05roAAPA04eGh7i4C5FmxE7EPAAAlI3byDK6MneAYYsbKcyROBwBvVpm4yeHEWWZmpjIy\nMmQ9+3XXXVfhDbuSqwMYHs4AADiHL1f+EDv9hdgJAADn8OXYyZuQOHMvb074eFpc7GnlgXPx/boX\nx9/9XJ44+8c//qEVK1boqquu+mtBg0E7d+6s8IZdiQAGAADv4KuVP8ROAADAFXw1dvI2xE7u540V\n0p6e8PPGY4qSefr55us4/p7B5YmzHj16aMOGDQoLC6vwhqqSJwYwPHwAACjOVyt/iJ0cQ3wEAED5\n+Grs5G08sd7JGYjNXK+yx9hV3xGV/L6Ja9q9OP7uV5m4yc+RmRo0aKC6detWeCPVHS+6BwCgeiF2\nKhvxEQAAgOcgNqsalU2aueo7ahjaiKSZD+L7dC+Ov3dzqMfZjBkz9NNPP6ljx44KDAy0TB8zZoxL\nC1dRzmj5U1pGuDzZYvO8ZJgBACjOV1tNV7fYyV6cU1bsY/7BT3wEAIDjfDV28jb0OIO78B15B76n\n8uOYwRVc3uOsfv36ioyMLFLx48uS0hJLbMFRntYd1vNy4QMAUH1Up9jJXtxUVrxk/hwAAACeoyrr\nrujZVjZ7x4j6Rc9H783y8/Vj5qv75esc6nE2depUzZ8/vyrK4xSVafljvlAXRMapbUT7Eucpb48z\nAABQnK+2mq4usVNpcZMjPc6IkQAAKB9fjZ28ja/2OKsqvE+rbBwj78ZvnfIr6Zh5+7HkWnYvl/c4\n++mnn5SVlVXhjXgT85i+1pU/tlnh8pzk9oYtAgAAvq26xE724ibJsR835WmEBAAAAO/gSOxWHd+n\nVd6Ytjoeo9J4228CvrfyKylp5u090biWvZdDiTM/Pz9169ZNQ4cO1cMPP2z5z1dZn8jlHZqxrM+9\n/WIHAABlq06xk71GQmUN0+goYicAAADvUZ7YrTpVIlc0pq1Ox6g0/CbwPY5+l76SdPL28ldXDg3V\neOjQIbvTO3To4PQCOUNFu8wnpSXaHZ7Rdrq9l9lbd7u0/cyat3cvBQDAmXx1uKHqGjuZ4xzzdNu4\np6RhKkqLj4idAAD4i6/GTt6GoRpLRuxmH8elcrzp+NmrN8ZfGLoQVcnlQzUaDAa7//kC880sKS1R\ng+MfUFJaYrHPp+ybaJkvJSNZMQlRikmIKpIdN2fAJZXaCoIbAgAAvs+XYqeSYhrb2Mn8AygpLVFT\n9k1UUlpisZjIXovBslqQEjsBAAB4j9IaQ1VnxLSV4y3Hr6R6Y+vPq7vy9iLjmMFdHOpxNmLECMu/\n8/Pz9eOPP6pdu3ZasWKFSwtXUY62/LHNcG//JUG9m/Yt8rm51XREcAOlZaVaWk9L9CoDAKCyfLXV\ntK/ETmW1BrTucZaSkay0rFRFBDewfH40/UiR2KokxE4AADjGV2Mnb+PrPc6cHZu5s4cJcSZcoawR\nM6SSh7Sv7HXgDee0s8pI7zRUVmXiJocSZ7Z+++03zZ8/X8uWLavwhl2pPAGM+UK2vRDNfy+IjNP4\n3eOUnZetP7JT9eGABLtDEnkqTy8fAKB6qy6VP94cOzkSS5hbVmbnZat2jdpa1HWxxu4creTM08Vi\np7IQuwAAULLqEjt5Ol9OnDmzoto6rnNHjEele9mIvcuvMudVZY+3N5zTjpbR0WPBOYrKqPLEmST1\n7t1b27dvr/CGXamiAYx1Es32/5KK9TiTVO73dFQlb7iZAgCqt+pU+eOLsZOZubfZ+N3jtKjrYkuv\nM3PsZDuvvdaX9hoyAQCAoqpT7OTJfDlxJjnecKqsSnFPiOs8pY7OE1l/R5L3DIfoCdx5XnnDOe0t\n9wf4PpcnzqZOnVrk75MnTyoiIkKLFy+u8IZdqTIBjPm9HOaHhqRiSbGYhChJ0tq+79v93JMufG+4\nmQIAqi9frfypDrGTbbJrQtvndVt4K0n2GxaZl7H9zF6vf2IXAADs89XYqTLy8vI0bdo0paSkKDc3\nV6NHj1azZs00ZcoUGQwGNW/eXLNmzZKfn582bNigdevWKSAgQKNHj1a3bt105coVTZo0SefOnVNw\ncLAWLlyosLCwUrfp64mzsji7R4mruHv73sDcOcCT6jJRdUgAwte5PHH24Ycf/rWAwaCrr75ad999\nt2rUqFHhDbtSZXqcWVf8mBNkUztM123hrYpU8Ei84wwAgMry1cofX4+dbCtL1hz7t6Z8MUEre66y\nJM/KEycROwEA4BhfjZ0qY+PGjTp+/LheeOEFXbhwQQMHDlTLli316KOPqmPHjpo5c6YiIyN1xx13\n6LHHHtPGjRuVk5OjmJgYbdy4UWvWrFFmZqbGjh2rhIQEffPNN5o+fXqp26zuiTPJ8+O3qmrY7unH\nwVG+sh/VAe8P815cZ1WvMnGTnyMznTlzRoMGDdKgQYM0cOBAdenSRUuWLKnwRj2RORk2oe3zejXp\nFUnSoq6LNbXDdI36NFYDN/ctMkRjaSe5bQ80AABQvVSH2Mm6h9iKo8sVXqueZnw5TTEJUUrLSlVS\nWqLDcVB5fjwQWwEAAGu9e/fWM888I0kymUzy9/fXsWPH1KFDB0lS586dtX//fn333Xdq3bq1AgMD\nFRoaqsaNG+v48eNKSkpSZGSkZd4DBw64bV/crTxxlqPxm7tit4ahjaokaRa7fXi59rGqjkd5t+Oq\n41TV37/t9tz526G823Zk/oqccyUpzzXCb7DKc+Z3h6pRauIsLi5OU6dO1dtvv62pU6da/nv++ee1\nY8eOqiqjU9m7gZqHX4yKH6jZB2ZpQWScJGnsztEKr11P19asJ4NBlkqgkk5ye+vmggAAoPrwxdjJ\nzBzPmOMbs4ahjTS1w3TN6/SKateorajmwzR252j1/7C3HtjUq0gcVNnYiNgKAADYCg4OVkhIiDIz\nMzVu3Dg9++yzMplMMhgMls8zMjKUmZmp0NDQIstlZmYWmW6etzoqb5zlzEp+V8V2ru7ZUd7kXFXF\nsp4SM1d1OWy3587jUJHryZH5nZ0QdjRp5gnnk7ks3qoqkvlwrlITZ/fdd586dOig2rVrq0OHDpb/\nOnXqpDfffLOqyug0Jd1A07JStbbv+1py73LV8K+hiOAGOpp+RKcv/Vfp2WcU4BcgqTCRNn73OC2I\njLO0sLZdd1JaomUaFwQAANWLr8VOZtYxlDm+SctKlSStOfZvPfHpo5rx5TQ9cdto/V/SPMW0HCGT\nTEq//IdlPqkwNjLHURVBbAUAAOxJTU3Vww8/rAEDBqhfv37y8/uruisrK0t16tRRSEiIsrKyikwP\nDQ0tMt08b3VU3t4nzqrkt7cuT60ct1eu8sSlVRXLekrMXNXlsN2eve1X1blV3n0vz/xlzePsfXTX\n+VRSBxXrundv4+5rEuVTauLs9ttv16BBgxQfH69evXrppptu0oABA9SjRw/dcMMNVVRE5zFf6NZ/\nT2j7vKbsmyhJighuoEVdF0uSZnw5TUZD4evfDAZpeY+39H7/zVrUdbHaRrRXSkayouIHWi5Wc0XQ\nlH0TPfYBDwAAXMvXYicz6x9LKRnJOpp+RIO29LW82+z5di+ohl8NXVPrGm3qv013NbxbDUOu11v3\n/Uvp2Wck/dXL3zpWqkjMxI8NAABg7ezZs3rsscc0adIkPfjgg5Kkm2++WQcPHpQk7d27V+3atdPt\nt9+upKQk5eTkKCMjQydPnlSLFi3Upk0b7dmzxzJv27Zt3bYv7uaOSn7bdXlS7xZrpZXLFUNcVpan\nxMxVXQ7r88h2+1V9bpV335353jJXJM+qkr39oO4dVc2hd5x9//33GjBggJ566imdPXtW3bt31xdf\nfOHqsrmM+cJLyUjW/ENztSAyTmlZqYpJiNK4XaN1NP2IsvOyZDBJ5y6fU2rW75ZKH/PFmZaVqlMZ\nv+rJTx+3JM/aRrR3ysOeix8AAO/ma7GTJEvSLCYhSrMPzNJVQVdLksJqXqO7Gt6tfFOeRn0aq+2/\nfKyxO0erhl8Nnbt8To9sj9GaY/+29PI3x0qlDX9dFmIlAABg9o9//EOXLl3SsmXLNGLECI0YMULP\nPvuslixZoqFDhyovL0+9evVSeHi4RowYoZiYGD3yyCN67rnnFBQUpOjoaJ04cULR0dFav369xowZ\n4+5d8grOrEi3Xpen9JayVVK5PDXRV52V9J2Udm75ym8SV10/rtzXknpy2tsP27p3R9cHVITBZDKZ\nypopKipKy5Yt06hRo7R582b9/PPPGj9+vOLj46uijOWWnl76eNTmYYbMlT9TO0zXq0mvaELb5zXj\ny2nKNeYoNet3XRtUTy/cOVOvJi1UTf9aWnLvckUEN7BU9gz48H7VC66v0MA6Wtv3fUnFWzLYTiuL\n+ebuiUECAADOFh4eWvZMXsjXYidrSWmJSs8+o5E7HpZRRhWYCvRal7+ra+PuWnX0bb3xbZwahVyv\nCW0nq+U1N2n0Z4/rwwEJSstK1ZR9Ey3vkjX/u21E+3KVlVgJAFCd+Wrs5G3KEzvB95nrGeE+tt9B\neb6Tivy+cOZvEk8/f8qzr+XdF2evm9+KsFWZuMmhHmdGo1Hh4eGWv5s1a1bhDXoC6wtnUdfFmn9o\nrmJvHqnw2vUU6F9DV/JyVMOvhnJNOZq8d7yu5OUo35Sn8bvHWZZrG9FeWwZ9rK2DdliGd7RuzZCU\nlqiYhKgi23Uk4+2pLWsAAIDjfC12MjMPtRheu56eavWMDCaD/OSvuMMLdTT9iD44sV71atXXhLaT\nNWXfBI3bNVqz756nhqGN1DaivRZExhV5Z6x10sw8GoC9bVojVgIAAPBentAbxBuGsfOE42TN08pj\nraRh/RxVkd8XzvpN4owei67+bhzd14rsi72hWiuz7vK+qxEojUOJs4iICH3++ecyGAy6dOmSli9f\nruuuu87VZXMp8/BAx8/9R39e/lNTvpigsTtHq88N/XUh90+1uqa1LuVeVFBAkDLyL+qZ1hMU1XxY\nkQuvbUR7S+tpSZYW1CkZyRq/e5zyCvIs85bn5kFFEAAA3s0XYyfpr/fDjv7scS078oZCg+ro6qCr\nlX75D03aM14pWb/pz8vnJEnhtetpxp0v6dWkV4q8wDnPmKdFXRcrIriBZZp5FICHtg4s9mL4koZZ\nAQAAgOvYxmTOWqe7hzX0hDKUxdPK6GnlseWMJFZFlnXGb5LKlr2qvhtH32dYkX2x98qjyjSedDRp\n5snnNDyDQ0M1njt3Ti+//LL2798vk8mkjh07avr06apXr15VlLHcHBmqMXb7cMXePFJTvpggo9Go\nqR1m6uqaVyvu8EI1qN1Ah9MPSZL85a8xdzynD06sV0rWb5rZcY7GtH3G8p6zKfsmakLb53VbeCvF\nJEQpryDPMqRjWlZqsZbUVPQAAPAXXx1uyNdiJ7OktESN2zVaGbkZOpP9h4wyyk9+mt7xJUnS7IMz\nFBpQR3Vr1lVaZqr+r8vruqbWNZp/aK4WdV2s0Z89rtTM37Ug8lWt+uGfRX78JKUlavzucVrb9/0K\nD7MCAICv89XYqSQmk0nJycm6/vrr3V2UInx9qEbr4c4kOXXos6S0xHIP1e1s3hBfeloZPa089lS0\njN6wb6Wp6vK7cnvmRFbs9uEVGta/vNtyxn54+/ljy9f2pzJxk0OJs9dee03PPfdchTdS1RwJYMwn\nwfZfEjRz/zTlFeQrNet3GVVQZD4/+ale7fp64ranlJzxmz45/bFW3rdK43ePU74xTzPufEnzD83V\n2r7vKy0rVeN2jVaAXw3Le9PMQYYvnXCovnzt5gnA/Xy18sdXY6eYhChl52WrwJSvc9nndNmYLUmK\nqN1ABcYC5RnzdCH3vK4KvFqXci/KT34KD66nQL8g/aPnWxq7c7SevmOcVhxdrqkdpqt3075Fni0V\nHV4FQMUQ2wHex1djJ7PVq1frtdde0+XLly3TGjZsqM8++8yNpSrO1xNnkorFaCU9L1zxLimeTygv\n828V20Z4jizHO7EcV9LxcvSadfRddElpiZqyb6LHfy++dv742v5IVfCOs88//1wO5Nc8mr0unikZ\nybotvJVm3z1P2XnZkorvo1FGpWWnavbBGXr7hxVKzvxN23/5WFM7TJf1ITH3LlvcfbnlvWnmoRvN\nXT+T0hLpAgqvRTdmAHCcL8RO9izqulhz7pknk0mKbvk/lukXcy4q/coZZeZmSpIu5J6XUUblK19n\nsv5QgSlf23/5WDX8a+iaWtcoOy9b8w/NtQydbf1siUmIUkxClLb/kiCp7KGBeC4BFUNsB8ATvfPO\nO9qyZYv69OmjTz/9VC+//LJatWrl7mL5hPLe760rTUtLmpXnWeLIcGue/nzy1HJ5G085jt74/uSK\nHDtnHW97x8vRa9ac3DTPZ17Oelh/s7YR7Z36vbjqfPPG86c0vrY/leVQj7OHH35Yf/zxh2655RYF\nBQVZps+fP9+lhaso25Y/9rKl5os1ryBPF3MuKP3KmTLX62fwV7B/sLILshVRu4Fq+AdIkmbfPU/z\nD81VVPNh2vLLJsXePFIrjhYm0NpGtLcM6zhoS181Cmms9/tv9poTsDq38qnO+14SjgkAZ/PVVtPe\nHjvZsu5tllNwRWnZqQ6v209+Cg2so4u5F/TMHRP1yemPlZF7SfM6vWLpcWY9vPX2XxJ07vI5Tfty\nkubd83/FhnS05q6WiBV5HvIMhSfivAS8j6/GTmZRUVF6//33tWLFCjVr1kzdu3fX4MGDtWnTJncX\nrQhv63Hmyl4ErniWeMJwjvZU9ji667lb3u26upyuOh+rQ1xTkWNXFb2IHDn29noFVsXvOV/sRQXH\nVSZu8n/xxRdfdGTGdu3aqUmTJmrYsKHlv5tuuqnCG3al7OzcIn/XCaqjexv3LDYM0D0NI9U+ooO2\nnPxQucbcYuuxZZJJQf6BulJwRTX9ayqqebR2/fapOl3XWZ+d/kQJ/43XsBb/owWJczS0xXC99f2b\nlu1eF9JQnRt1VZ+mD+jGazzzuKVkJKtOUJ0if8duH657G/dUnaA6xT53Z9mqYnvW++7sdbvrOFaW\nt5YbgOcKDg4qeyYv5c2xk606QXV0+7WttOXkJmXkZijXmOPwugP9AhXkX1MBhhp6496luqbmtYr/\n5UMlph1S36b9LI2L6tWqrzxjrv7no4f045/HNbXDDK364Z9aEBlnN3ZKyUjWmF1PakFknEICQ5WR\ne6lKnlMViRFcGVc4yhx/eHMcAufjXAC8jy/HTpK0bds2NWjQQFdddZV27dql2267TWvXrtXDDz/s\n7qIVUVbs5Gls68WcvW5nMsd47oybSuLocbQXb7krHjRv95ZrbtV1IQ0dnt+V5XTV+ehp54sr2Kvj\nLmu/yzrezvh9YF6+tHXVCaqj+5r0LlKO60IauuzeZL1dV28DnqsycZNDPc5KM2jQIH344YeVWYXT\nldbyx5zdvpyfrbyCfBlVoNSs38u9jeCAYOUU5CjflK9rg+rJYJCCAoI0r9MrGrnjYfn5+WlBp1fV\ntXH3Yr3crDPrntIaoqwxam0/r8pyu6tlgCv2kVYOAFCUr7eatsfbYiep8Pm1+/QuTdzzjAps3gdb\nHg81j9E36YfV54b+2vLLRi3v8ZYighvogU29dO5Kuj4ckGCZNyK4gaTShwYyi0mIkqRS32lQ0nO9\nqnqPuTPmM8cfCyLjvOJdAQCAkvl67PTTTz9p48aNmjx5sp555hkdOHBAY8aMUWxsrLuLVoQrepx5\nSv2QVPH3FVVmXZVdpjzrdMb6S4stS6r3cdd3XN5ePZ50LrqKM89xZ2+zPOurbB2jM+spvanOszqc\n4yjk8neclcbb3t/RMLSRpnaYLklKzUpRVm5WudfhL39l5Wcp35Sv0IA6Op/7p9KvnNF9je9X76Z9\n9Urn17Sy5yqtOLpcUfEDSxxHNSUjWQ9tLfzc3WP7ljSGqflv68+rerxpd42v6ortMVbsX9x9zgOA\nu3hb7JSSkayo+IGa8sUEtQ5vW+H11FCgNpxYq5MXftbSI6/rv5d+1eM7YiVJb/Vapfmd4hQR3EAR\nwQ00dudoDdrSt9QyxW4fLqnw2bq27/tlJs3sxS4VjWkq8hx357PfHH84+10BlUEcAACwp0WLFhow\nYID8/Pw0b948LVmyxOOSZq7gSe/1si1LSWWy967astblyLYl58dN1uVwxrEubR2l1fu4KwYrbwzo\nCbGiK5XnnVzOui5dcY07o47RmfWU5V1XWfcYe/M6g7O/V1/gK/vhbJVOnBkMBmeUw+WsL8Y5X81S\nh/p3ySijLuVdLPe6rFtaZxdkqVZALUnS2z+s0JhPn9TkfeP18/mftajrYtXwr6G0rML3gJgrdszS\nslJ1+tIpHU0/4lBQUtZnlVXWjc06ibYgMq5KH6T2WunYU97jU97gzRl8PQBxhCf9KACAquYtsZO1\nJfcul4wGHU4/VOF15KlwSCOTTDKYCkPQ37NStPv0Lj356eOavG+8Hto6UGlZqbqcf1m/ZxZ+Zv2s\nSEpLVFJaYpEfZea/S3u+2v6Is66UWdV7TYX3ycxZcYmr1iEVjePcsX3bdRIHoLI4fwDfFBcXp7i4\nOEnS5cuXtWzZMi1ZssTNpXI9T2pk60jD6ZSMZE3ZN7HMuqHy7Jcr4wPrclRFssETvkdbnlgmd3H0\nHChtvoo0vHPFNe6shJezONIDVfor8e6KBLwjZSypR2h5+MpvGl/ZD1eodOLMG1ifAGlZqTp16b/a\ncGKtU9ZdYCpQZt5fXfQ3nFirXGOuZh+coePn/qMnbhutKfsmKiUjWdt/KRx+yFyWiOAGahBynW4L\nb2W5YLf/klBiEs28H0lpiRUqqyOVOo5m+c375Mj6nc3eBZ2SkezQzbas9ZQ2X0WPO4rzpB8FnoCH\nEwBPlZJROMz09l8+Vo7pilPWaZLJkkSrG1hXCw69LINBqle7vp5qNU4RwQ1Uwz9AVwddo8n7xmvg\n5r6W5/yAzfdr4JY+lpgqKS1Rg+MfsPxt735qnSQrqZWxvbjCUbYtmO1Nt1ceR9ZbVqzi6sScq35E\nEQd4F0+MU7zlB76nlw/wRLt379bKlSslSfXq1dM777yjTz75xM2lqhqe9Fy0N/qQ7efm3uyOrsuR\n+VwZH1iv11XJBnfd9335eePsfStvr8bShuN0pD7R+t/OHPLRlVy1fuv6VXPi3ZHekK64N9hLmpU3\ntvSV3zS+sh+uUC0SZ9YnQNuI9oq8rqvLthVoCJLf/39Y5x58UZP3jdeApoO1+/QuPbI9RrtP79KC\nyDjL/LUCauto+hFL0ux/P3tME9o+b7dlj7mnl72klTV7CZ7SKm/K213dXuvspLRExSREVUlyybbH\nm7lSb/zucWW2drLet/K0MDEfd5JnzsMNuZC3VPwAqL7yjXm6oe4NCjAEyCDn9pa7kHtBf1xOVfdG\nPZVvzNeUfRO0+/QuXcm/oikdXlCtgNoqMOVb5m8ceoMWdHpV8w/NtbzX7M0eb+vVpFeKND6yboAU\nkxBVpIFNWlZqkee/vbjCXiLM/Jkt8/KSisVt9t4dW9I9317STVKRFt+285v3raLKegZV9EeUI2Ui\nDvAOnhqneMMPfE89doCny8/P15UrfzXWycvLc2NpIKlIjGRvurM4M7HgDq6+75fWkMqTnzeujFXd\ntT5H4hBH61vLk3yTHBsitTKc8RujJLbDx5sT745c966+N1Q0tvTme5Y1X9kPZ6s27zgzVzisOfZv\n7Ux2XWulXFOOjDJKki5cOa+6gVfp5YMv6sUD03V1UJgWJr6scbtGKyq+cCiiJ24brSc+fVQv75+t\n+Yfm6s0ebyu8dj3L+mJvHinprxuldSbetleauVJocPwDSkpLLDFJVNJ024ok23XbTrN+AIzfPU6X\n87M1dudohyqDSvq8tPms57FNHi7qulhr+75famsnezf/kgJA2+XaRrTXgsg4jd89zqkPbEc+d2Xw\n444M4XbrAAAgAElEQVTAylODOXfxhoofAM7lLbGTVDisdEZuhpZ+u1hX1bhKJjm77IXre/uHFTqb\nna5aNWpr9oFZSstO1cz903Qx94JSMpM1/6u5GrtztGJajtDwWx5WVPNheuK20Rq/e5zCa9fThLbP\n69WkVzSh7fNKy0q1NOZJy0pVXkGe0rJSNWXfRA1oOlhT9k0sUgLbuMK6gZB1rGP7g9c8zdxiUlKR\n+7m58sde3GX+3Ho95vfemuczJ/PsNaayXqd5SHBH2T6HHWnhWZ5nd2lldbaq2IYreUO5PTlO8cQy\nWfPkYwd4smHDhmnw4MFauHChFi5cqAcffFDDhg1zd7GqvfJU/DvyfCutUbej5fE0JTWaKouj81Tk\nnWruVtlElTOHSjSrqmPlyPCgZR0fe3F1SUOkVvU1UVY9b0msGy96Gk8sE9yr0omzJ554whnlcLk1\nx/6tqPiBejVpYZVts0AF6hhxlwpUoIu5F/RnzjmlZacq8rquMhikJz99XHGHF6qmfy298W2czl0+\nK0kaHP+A/p70hvp92Evj94zV/RvvtVQAmd/jYU4CmXt6bf8lQTEJUYoIbqB59/yfJFmmmyt1rJez\nrWgwJ9zMlS/WFUTmFtzbf0mwbE8q+rBZ2/d9Le/xVpF3upl7Z5mXMa/TdvvmabYtxW0fDua/bZOA\n5t5m9pT28LH+d2kBoPXQmiWtq7wPjLIqlcyfu7IliTtaJbljm96AhzNQvXh67GT9bBr1SazSslN1\n+tJ/dTb3rEu3W6ACXcg5rwu55yXJ0rvNJJM2nFirkxdPaPbBGRrz6ZOafXCGJu55Rmez0/X4jljN\n+WqWBjQdrDlfzdLYnaN1KeeSRn/2uEZ9EitJighuoNibR+r/kuapa8N7Jf0Vp9j+kDUn3Gx7kkmy\n/Ejd/kuCBm7uq4Gb+2rsztGW0QLM6zDHZdYxkLWYhCg9tHWg5Tl/NP2ITmecUlpWqiWuMCfz7MU+\n5vJM7TC9yHz2WCf+rOOKlIxkRcUPLHEZ63+X99ltPk6ufO5XRazkDI5WhFRmXa5GnFJxHDug/GJi\nYhQVFaV169Zp1apVGjRokGJiYtxdrGrFkeSMvboa27/L8wwsT/LHVfGFM9bn6EgD5ZnHvF5ve6ea\nVHxkh5KUtv+VGSrR3jLOUJ7vzd6/raeV9b1aH7+Shkit7DVhey2u7fu+U3rTObK98i7jqTF/abyx\nzChkMJXS7Llly5ZFXmAfEBAgPz8/5ebmKiQkRImJpQ9bd+TIEcXFxWn16tVFpu/atUtLly5VQECA\nhgwZooceekhGo1EvvviifvzxRwUGBmru3Llq0qSJTp06pSlTpshgMKh58+aaNWuW/PxKz/elp//1\nzrGktESlZ5/RI9tjdE1QuK4UXFZmfkYpS7uen8FffZo8oEN/fKU/L59TvgqHIDLIoI8Gf6btv3ys\nZUfe0HUhjfTIzY/pvR9XK/rGEfrXD28rJfM3bR20Q+nZZzTti+f12C1P6O1jKxTgF6AAQw09fcc4\nTfligiJqX6cr+Vf0Z85Z1Q4I1pX8y1p53yqF166nUZ/EauV9q5SefUbzD83VpZxLGnnrE2p2dTNL\nGecfmqupHaZLkmYfmKWn7xinyXvH6+qa18jPr7CcUmEr5/G7x2lqh+nq3bSvpdX1gKaD9crhl7Wi\n5zuaf2iu8o152tBvsyRp0Ja+Wt7jrcJKrO3DtSAyTqM+iVVoYB0t6rpYEcENLJVSt4W3KtLS2bYV\nt/nf1p+ZmW/e5pbdDUMbKSkt0bJde63CbZW2XfPf5kTi2r7vS1KRdSelJdrtBWe9Xuty2q7b/Lmr\ngiBnrbs863Hl/gAoztOvuSuBF3R93evdXQyn8dbY6dtf/lPsmSRJ/T7speTM3yp4NCrPIINMMqll\n3Zt0/OJ/5Cc/hQVdqxuvbqmDfxyQ0VQgf4O/6gZerXM56WoceoMG/m2IPvpvvLLzList63fFdXlD\n/734X+1O2am24e319g8rFBZ0jbLyM7Wy5yr1btpXkizvSRu542EZDAaNvn2cPjn9sdb2fV+7T+9S\n18bdFZMQpajmw7Tg0ByZDCZdU/Na1QyoKZNJ2jywcPmj6Uf0+CePqF7t+prX6RVLHDX8locl/ZWw\ne/LTx/WPnm9JKhxRwDx9yr6JluN/NP2IXk16xe6oAeYYzBw7xSREaVHXxZa4IyUj2TJPXkHhMFc1\n/GtY5klKS9SgLX314YCEIrGKbVxSUpxlntdeXJRXkKf3+28uFsfYm78y9yfrWCktK9Wh96w4a9uO\nbiMmIarEyofyxk/24sXS5vfkez/gDo5eF55+/YSHh7q7CC41efJk5eTkqH///jIajdqyZYsiIiL0\nwgsvuLtoRVjXO/kK8zO/pOeNuX7DXqxgbzSf0p5bzooBnDVveZ+zjnJ02558z6kMR45rRY99RY6b\nM491VcWSjh6b0spT1mclbcPRdboyprVexvwaHVfdV1zBVfcWV/DE4+cMlYmbSk2cmc2aNUtt2rRR\n//79ZTAYtGPHDu3bt09z584tcZmVK1cqPj5etWrV0oYNGyzT8/Ly1KdPH33wwQeqVauWoqOj9eab\nb+rrr7/Wrl27tGDBAn377bd68803tXz5cj355JN69NFH1bFjR82cOVORkZHq2bNnqeU1BzDmXlRv\n9nhb5y6f04sHputi7gVHj02VCA4IVlZ+luXvexvdp73JnytPeZrZcY6urnm15h2crYu5FxTkX1MZ\neZfUsu5N+vniCUvCLcAQoPq1G2hiu8lacXS5Ludn65nWEzT3qxd1LqewdXjdwLoKqVFHuQU5Sr9y\nRhG1G+hCznn1bzpYG06slSRdHXiNLuT+WVgpVfMaXbhyXmG1rtX5nHMaffs4LT3yuowmo4wy6rUu\nf9fCxJcVGhiqy/mXlX75jFb2LEzMpWef0ROfPqqQgDpa3fe9Yvs84MP71bjODZp510tF5l/R8x3d\nFt5KsduHK/bmkZryxQQ1Dm2ixd2Xa9yu0VrcfXmRIG1C2+eLJNasW4pbVxrtPr1LK44u16Kuiy1d\nmtOzz1iWNc9vm+SyvjGXVBFjDgqtK2vMZTG/s25T/21FPpNULKFXmZtTaUm/qrjhedNDwMzdDwN7\n26/KMjm74hKey9Ovz5SMZD3+2QgdfuKwu4vidN4WO92xrE2xRh9JaYmK3vagpQeYpwk0BCnXlKPH\nbn5C639aq6z8TN0T0Vn70/bp0ZtHKTMvUxtOrFUt/9q6XJCth5rHaE/y5/rjcqoCFKCra4bpqppX\naUO/zVp19G298W2crql5rc5dOau6gVfpYu4F1atVX1M7zNBze8bomTsm6oMT63X2yhmFBtRVUECQ\nagXUsjRa+v/YO/e4qOr8/78GGBDGQQ2hQYhatqtGuJF0MYqfl2RFBeuLW/jVzFrTTXEXzNuilvpV\nQ+G7YS1lZmZf/W7yLdGipTSXsqs0368sae2NVoMYxUs6gHKd3x+zn+NnPvM5Z86ZCwzj5/l49Ehm\nzvnczuec85736/N+f5bcUYj//ssbuNBuxdlLp3HVgKGIDDPi7MWzONN+Gjsy7DbRkwdm4+mU5Vh3\neDXiBsYjNFgvLS4iwtz8lIWSHbFu9EZEhUdJi58GBIdj5d3PYs0Xq9DZ04k9WXbBbvKeCTCGRkoL\neUg02eaxZTAZYmFpbZL+Twt1xLZi3wsE3mIj+jvaTqLFOlYsYp9HZkuN7HFqFjPREJuf2Fyu3rNk\noZenTghXuBLO3ClPrdOf1Av47yr0vkYs/LqyUGsT+bvtBAS+cJaRkYGqqirp756eHkyaNAnvvfde\nH7bKmUATzngLj2nUvmvlBDX6mN68tzwRHvz12e+v7ZKjL8TD/jZGgO98e2rFS1f3szdx59lAvlcK\nUPDX93d/mI/+PH6e4ondpCpV45///GdkZWVJK6gnTJiAuro6xXMSEhKwefNmp8//8Y9/ICEhAYMG\nDUJoaChSUlJQU1MDs9mMtLQ0AMDIkSPx9ddfAwCOHj2K1NRUAMB9992Hzz77THXnTIZYvDxuG9Yf\nXouo8CgYQ/3LwAwLCvuXaKZDpH4QwoMj8GHDB9Dp7Jel2PwcfvPRfDRfOgWjPhLtXZcQFx6Hb89/\n4yCaPZX8a3TburD+8BqUpJdi5i2zse7L1ZJoBgDnO87jZFsTzlyyfzYn6Vd4Mmk+/udvbyIYwZg9\nfA5W3v0sghCEwWFDAAA2nQ0hQSEYFDoYLxz5T8AGhAdHAAA+/+EzWNqa8MhNM/DO1Pex5I5CrPxs\nObL3TkR0RAyeTJoPa9d5zN3/BPIOzsPc/U9g6t5MNLedwjBjHHJvnoHH35+JX34wC+sPr8WW8a9J\nbd2Qtglb6srwyvjt2D25At+e+QYnLhyX9k+LM8ajIGUx5ux/DDn7sh1SPBJjbufRHQDsK7XzP1qA\nC+0XpDRNc/c/gV/un4XJeybYUy3tnYidR3cge+9EabU5cDkkWm5fM/JQIQ4i+phGawOKzUV4edw2\nB2cSCQtn906Rc1a5gpTJniP3uS8goeK9gTf605tjo7b+3mwTW5dcewSBAbk//dXwiTPGY88v9vR1\nM3xCf7OdaDFj6aFF9nfrH/8dwUHBmvrdm3TY2gEAb/7FLpoBwNdn/wwbbNh2bIu0MOhS9yUAwPv/\nfA9nLjXDFBGLjff/DoMHDEZHdyc2m3+H0iPFACDZSZe67OecvXgG/zz/T4ToQvDikd+hs6cD0296\nFAPDDNg6YTtyb56Bc5fOITo8Bs99tRYX2q04134Gy1JXAgDShqXjfMePCAKx7YrwdMpyvPr1FnTZ\nOjH2mvGw2S7vU3bu0lms/nIFdh7dgWJzEdaN3ojf/W8xHq3Kxcz3HkFjSwPOt/+INV+sQlvnRXT1\ndMHS2gRLa5N9IVLSPOl+77J1OoxXfnUeqk8clOyeB/dNAsB/D9Q110o2zvaMnVL7SArKae/YRTmy\n6rPRejlNi8kQKwlF9LuGthcarQ0OkXAEufchSXkpt1F5immUgyNP6T3baJXfG4LF0/dznFE+1Y07\nZWp9lltam7xiXwSiXaDl2va17SjwDmptIn+3na4EYmNjcfz4cenv06dP4+qrr+7DFl0Z0HOfjXIH\nHN+15HjA8R3B3j9yjnitz1NPnr9a7mnegh9/e/bzfs9rObcv0Dr2nuKra+fL8VNqszciM+UWwSnV\nQZ/nbt/lznPn2UDaQe9NLddeX9IbNnxfIOwfPqqEs/DwcLz11ltoa2tDS0sLdu7cicGDByueM2HC\nBISEhDh93tLSAqPxsoBlMBjQ0tKClpYWDBw4UPo8ODgYXV1dsNlsktPJYDDAalW3qoestIyOiEFn\ndyfWH16LdfcWwRA80PXJPiYYdidUe4/d4aMDcKHzPNq72xGqC5UcQcQJBABZP30QEaEG/HDxB+j+\nddmCEYynkn+Nin+8BUtbE05dPIkX/7cUa75cieZLp3BHdOq/yrePnz4oFDroEBU2FK9+vcUeQYZu\ndKMbBxv247ma/wB0wPn2H3Gu4xx0Nh0W3bEE3bZu9KAHM4fPRmdPB6IGDMVjSY8jfuA1uDvuHtQ1\n12JDzRp09XRhw73F+PbMN9jy9YvYcG8x1oxeh92TK/DS+K3Yk1WJ6IgYhOj02HZ0C3psPQjWhaAk\nvRRnLp7Bo1W5yK6wi2ud3Z1Iik6GpbUJyz99GhvSilE+pULa+yMpOhl7siqRe/MMFJuLJOdHimkU\n1o3eiOWfPg2zpQYZiZl4PWMXtk7YjrrmWiw5lA+dDlhyRyFOX2wGACQYr8XNUbcg1jAM6w+vdXgI\n8vY1o7/fnrHT4RhWHCPpnwBnQ5T3UNJqBCk92OTCrNWU6w5knxFfYLbUqDZ+PBkzrWW5A6/+3nxB\n8X7MsEaUP/5AELiPvxs+gZSmkaa/2U70D5GClMV4+qN8nLzYhO6eboQiVG23e42hoUOlf7d22+0l\no96Ilg57X4MQhGCEICpsKCL+tejnfOeP6Lb14Bc3Tsf0ETOx4q5n0d59Ca8dewVDwq7CoNDL16e9\n5xKCdMEwhg7Ci0d+B6N+EHrQg1MXT2LbsS1ouPA9yr99E6u/XIHVX67A7BFzsOHeYmy8vwSxhjg0\nWL/HyYtN2HbMbu8QW2zW8MdR/rc/IDwkHAtHLsLOb19HS6cV+dV5qGuuhTHUCFNELKLCo7A9YyfS\nE8agIrsSJfdvxo6J/42YcBMGDxiMiddNQbetC6faTmLBh/PQ3HYKJsMw/L62FI3WBtQ11yI8JAIr\n734WSw8tgqW1CZ3dnfh9bSmGhF2F9IQxkvOLfQ+YLTWYs/8xe/T/oUWoPnFQWpT05IHZmJM0DyFB\negB2O4m36TmZT7w9yIidtCuz3CGdI8B/H5J5WZJeqhi5RTvy5N6z9L95e0OwsIuDvPVDmR4bX0AE\nuxTTKI/tC612ga/sB2+Xq9WR6mqVtqB/oPZe8HfbKdDp6upCVlYWnnjiCcydOxeZmZk4efIkZs6c\niZkzZ/Z18wIa3m9C+hmnZl8lpfvHnd+9SouF1eLOPa1mgbC3FvZqOZYVM9TsoUb+f6X8zvf24m56\ngZivRF+le8MT0YpdrK+1H2RhpZpzWLtWS13uLm5hy+4N0SyQ7yNh/zijSjjbuHEj9u/fj9GjR+P+\n++/HF198gaKiIrcqHDhwIFpbL6cmbG1thdFodPq8p6dH2heEPjYyMtJlHazwUT6lArsyy3Hm4hm0\ndbcqnNk72GDj/t2DbnTYOhy+m3RdFkJ0Idh+bCt+bD+HMfHjAdgw7YZczB/5G3xw4o9YM3od/vP+\nFxATfjW+PfcNhhniMXv4HJibaxCpH4ShA6IRrAtGZ3cHdEFBGBASjgh9OJ5K/jUi9YMQP/AaLPxZ\nAU61nYIOOmy8/3fY9sAOvJqxA1HhUTjXfhY5NzyCBSm/xjBjHAYEh8NkiMUrD2xHfnUeVn++ClHh\nQ2Gz2aPkln5SgHWjN+LmqFswZ/9jqD5xEEsPLUJz2yksPbQIK+9+FsG6EAQHBWPN6HUwGWLx+9pS\nDA69Cr++vcC+J9q/VkmTVU3TR8yEpbUJU/dmIrsiE7mVOfj2zDdY8+VKzBr+OEyGWOm6Tx8x02El\nVFJ0MvKr87Dys+WADVh9zzrMT1mIPVmVyEjMxO7JFUgxjcKerEonhwy7Uph1AhHIMazTiIX9jPe3\nFiOILoM1iFjkHFjegETnya388AQSRUhWvbsK3da6QaunZbmDmrnhS5TmoVhl0r8IVIMtEOhvthNw\n+f5Pik5GZJgRg0OHwNpxAdC5PteXhEDv9NnpjstR9caQSAwKHQRrpxU/v84eRdWDHjx0wzQMCAmX\nhLVJ12XBhh48f2QTXjA/j9Wfr7Iv4Ll/M3Zm7sbmMWUYEhqFYF0IrgqLgs4G6IND0I1uBOl0uMZ4\nLRaOXAS9To/IsEH44MQfJUHs27PfYOknBSioXoiuni7s/PZ1xIRfjZV3rsGCkfnoQQ+e/igfSz8p\nwLLUQpRPqcCspNmIjojBQL0Ry1ILUWwuwoq77DYSsZ9I1NeWujI0t51CZJgRj9w0A88f2YQzl07j\nubQSbB5bhmJzEX59ewFCgvSoa67FkwdmS/vPEpGofEoFfpWchx/bz0lpGwlkYRJgt53jBybg5qhb\nUJCyGFvqyvDyuG2SfTV9xEzsyiyXoplo2HcHqZu2jQpSFjssImLft7x3FEkH6anTmxfpD7h+53vb\nfvKl3UTXQf/fk3K0LDjy1QpvX5SrZWxYMdfXbRMIrmQWLFiALVu2YM6cOZg9ezZefPFFPPPMM5g/\nfz7mz5/f1827IqCFB6VnnDu/HbW+l9QsOObhreeyXD3eeP67G/0stwjW1Tl9vQiEfX96WoYrvBV1\nTy+O94boK4fSYit3+8GKTFrvWbKAzVWmBuK3o8UzrXVpPc6dsfF0Plxp/jJh36rc4wyw769RX1+P\n7u5u3HjjjdwV0SwNDQ3Iz8932qcjMzMTu3fvRkREBB5++GGUlZXhyJEj+NOf/iTt0/HCCy9g69at\nTvt03HXXXZg4caJivWSfDuDyDWW21GDKngx02bqchKveJEw3AD3oRkhQCC52X5Q+10GHIAQjQh+B\nnBsexvvH/4jHb52DXd++gXOXzuJs+xkMCh2MoeHRyL15BrYd3YKGlu8RPSBG2p+DQJwh43en40Ln\nj4g1xGHN6HUAgOiIGJgMsdLG9R09HYgfeA1mj5iD1V+uwJDQKDw/5gWsP2zfg2VXZjn2/PUtbDSv\nw9tT3pX2IyMbyZNVzas/t++zoQ/SY+XdzyIjMRON1gZkV2QiQh8hOYQKUhZL39U11yIpOhkAMOnt\nCfihtQFxA+Ox7t4irP58lbQKmcZsqXHYp2Pq3kyUjduK/Oo8qb1KKzS0bhxPzpX7sQzw9/7wxkNU\nzoEkd6yrXOJs210JUO70gV3J4q1x0HLdvFWvt8vyNf2prQLvwN73/ZVA3qejP9lOZJ8O8iwxW2rw\nyw9moaHle88GwQ2CEIQe9Eh7kxHGxj+AjxoPostmT1cdHhSBDlsHdDoddD3Ar0YuxG/vWYmdR3dg\nw+H/wPmOc8i9aSb+69vtWDpqBe6OuwdT9mRgUOgQDAwzoLO7C80XT+K5tBJsqStDZ3cnOnvsC3d+\nfXsBFn/8G7w6YQf+fu7veO6rtXhl/HZkJGbiBfPz2HB4DWIMV8NmA0YPS8OyuwqR8T9jceqiBSX3\nb8bNUbcAgGSf5NzwMO6Ouwdz9z+BiuxKaYwXfDhPspuIjZNbmYM5SfOw/dir2JC2CSZDLHL2ZaPL\n1gmbDajIrkRdcy2iI2KkdyNJsUkEpqr6Soeod+DyM4PsEUueH2RhUvzABJRPsduTJA01GZOXxm+F\nyRDr9ENVbh9Y+vlEIH2m90ehj3fl9JHbc0ULSvXI7ZdAn+eqnVrb5qt3d1/aBIHYJ7YdvrL9BQK1\nXAr9MWAj9vsTgbbHmRw8f4g/PPNcvdPV7mXqST1afDbulK/2WE/tk974Xcnac+7Up9ROuYVR3vJJ\nuVuON9rgro3J+gjdvcZq61eypdWUpeZ8d9tGjlUaA395tvkLgeJvAjzzOakSzurq6rBw4UIMHjwY\nPT09OH36NF588UUkJycrnkc7f9555x20tbXhF7/4BQ4ePIgXX3wRNpsNDz30EKZPn46enh4888wz\n+Otf/wqbzYZ169bhpz/9Kb777jusWLECnZ2dSExMxNq1axEcrLzfxpH6b5wualV9JR7/YCa6e3rQ\ng24VQ+MZRn0kum3daOtqRRCCYNRHoqWzBbEDY/HQ9b/AByf+iKSoZMQahuH5I5twVVgU5o/8NZ77\nai1iDcMQotNj89gy5B2cB5sNyL15Bl79egsi9OFYcdezWH94LXJueBg7vtmGEJ3eIdUNcWTkV+dh\nWWohkqKTUX3iILYfe9XB6WC21KC57RSSopMRZ4zHC+bn8d9/eQMhQXqUpJcCgINDhvdv1gnDChy0\nIUEbL8QhA0DauLz6xEFsqStDSXopd7N4ukzWgaJWENIK72UDgCtS8b7zVr1qz/GGQeSNh6O3HrCB\n9KD2Jb01TsKQ8D8C4ZoEqnDW32yn5mar07OEiGfWDitaOqzo7gX7iWZI2FX4sf1H5I3Mx976t7An\nyy4YLTu0GJ09Hfix/Ryiw6/GojuW4MUjpdg8tszBVvn2zDdY/unTeDplOabe+JDUJ8AuaM1Jmodi\n83MwhkaiJL3UKQIra8/PsXXC65KoRRYM5VbmoK2zDWtGr8Pqz1dBH6x3sGWmj7icRoos/iCiFrFv\niB3U1tkGfZDd5iM2EgAH+4L0Z8GH86DTAbsnX15YxNogrn4Yyy1wIaIdAAcby9LahAUfzgMAqZ9q\nxALaLpv2TjZCgi6fy/tRrOR4osvy5QblnpTtTbvHG84VYTv5lkB49wr6L43WBjxxYAa+mvNVXzfl\niqc/CmeePr88dTyrWYjiSdtYnxix3XwtBsktJOoN/MkG0VKHNxdrV9VXothc5Fe2jyvb1lf3Aa8e\nub89Kc8bYh6N3OI6b6MkPrt6tgFXXirDQLF5fS6cPfzww1i2bJnk7Dly5AjWrl2L//mf/3G7Yl/C\nGjC0uHPm4hkUfbUOltYmn0WeDQodjCEDhuD8pQs413EGIboQRA2IxtLU3+J3/1uMk21NWHzHb/H6\nsW1YM3odHqv6d0RHxOC1jP+SyiCreukIq+y9E7Hh3mJJXCKrkkvSS7mrdumXyKNVuVhx52pMvfEh\nxVWSPMeJq5uEXuXMW9XDPlxJ2WQVNSs+qXmB8B7YvnIU8MoH+BvHqlkNrVbgUirH1yte3FnJ5M02\n+qKcQKc3jC7hiBP4gkAVzvqr7cQ+S6rqK7H8k8Xo6umCtcPqsP+qLwjWhSAiOAKhwaEI0gWh+dIp\nrLxzjSR8NVrt0ewvjd8KwNFeooUn8ryqa651iKIHLi/mIRFVtOBG3r+W1ib88oNZMIZGOolFBLWC\nFXsMad+GtE0A4CCmKf1QJCIcu3iJZ39pWXXr6ke11sVJrE3Es1XZ43P2ZTsJc2xZrH3oDVtF7Xme\n2E5a6vfWe/ZKsJ2uhD4KBHKIiDP/oL8JZ2oX0arx/7iKNldyTMv5jTxBzl7ojQgTb0a3aW1Xbwkw\n/gjt533ywGy8PG6bU7aFvoIstAOcs2J54z7oi+vN2ve+iF7TEnHmC5+o3O8Mcj07uzsdglY89ft6\n8zyBMp74nFTtcdbW1uawQnrkyJFob293u9LeJs5oz0EaHRGD7cdexeI7lkOn8/6GHUEIwsKRi/CH\nSW9h4c8KcLG7FSvvXIOZt8zG+Y5zAIA1o9dh/b2bsOObbThu/Q5mixmxA4fh7KUz0orepYcWAbDf\nMOTfJkMsTBHDpNQ/xFFENv5m+0v+32htQEZiJkru34y99W8DcM5xS2/6SuojY6bmhiV7V/A2IKfL\nJ+WSslnHD/2AcFUvr/1a2qwFuk1ywhhdt6uHp5pc3Lw9ytjv3d1QXs34KBm6Sm3XWk9vlkNQ25Vv\nnqMAACAASURBVP7+hq9frr66vwSCQKW/2k7sO3zNF6twstWCkKAQ3GW6x+v1DQodhMjQQQCA6AEx\niNQPQkuXFQNCwrH8zpWINQzDrm/fkI63tDbhZFsTmttOOex5lWIaJeXep59XGYmZKEkvlUQz8h5L\nMY3CrsxylE+pcLBHcitzkLMvG3kH52FAcDhK0kudbA5La5ODbcDaCTw7iPybPi7FNEpqB4lKc/WO\noo+hy2Hr5YlmvHc473OejcMTDuXaytpESqIZQR+sl8aabQvdN579p6afalByInpr/1RX53vrPRvo\n72pPrrNAEAgI0UzgDq7eM8QOknu20j4j3jFs+ewxcnaLkm2hxffAsxdoHw4pi/6/N94lpD/eQm27\neH403jHeflf607t3e8ZOZCRm4uVx26RtYPwB4qvlZdFSst/lYO+RvrCBWPveXZuVtfVp5DJSsLh6\nVimhdK7c7wzye0YfrOd+z6tD7T3sznn9nf7WP1XC2aBBg3DgwAHp7wMHDmDw4ME+a5SvWHpoEWYN\nfxzTR8xEYeqzXiuXbAwfpAvCW39/E7/8YBa21JVh/b2bMGTAELx27BXk3jQTSz8pwBMfPIoXj5Ri\n4c8KcHV4LF6q24x19xZhb/YfJecN/QCiN2CM0EcAkN/HC5B/oE4fMZMr7Cg9/NQ+BJUEL7kHKr36\nB9C+yaar8n2J3INMrSClZoWX0jFxRt9vKC9Xb38XTq6UF5Gv6M/XXiDobQLBdoozxmP35Aq8OmEH\nAKC68SBC4HqfNrUM0g/Gwp8twoWO8whCEMJCwmAIjUBMuAmL7lgiLXbSB+thaW0CYP9BtWX8ayg2\nFznZPKyo5GpREM8mImLa7skVkl1Gl0nev3KLV1gnEO2wya3MkX6osc9TNZtu897DWhYc8cpX824n\n40i339X7lB4HV/YKvRBMjZCn1G5f2Cq9af+ose8FgWGTCgQCQV/g7nNTre/G1QIXpYUwZkuNwzne\nXLhLbBhSh9lS4/V3CSmfxt2FPK58RmqPo203b8BeI2+ipUx2Ydr6w2tVib69Cfs7g2fbqhXNWBHH\nHcHN27hz36j5DUEfq2WuebOvvDEmix3VCIdqf1/xfvMEun3bH32yqlI1fvfdd1i8eDFOnDgBm82G\nhIQEFBUVITExsTfaqBm5kPmq+kr8cv8svDJ+OxZ/nA9LW5NH9cSFx6HpYhOCEISnRv4a1o4L+PD7\n/WhqbZQ2mr/QfgGXui7iwLSPYWm1r5COjojB0kOLUJCyGKs/XyWFetKQlxxwObUQvUcGvc8GuXnJ\nBOzNzap5dbLfu3pYeKt9rtriLXw1plrb7+trG6iIcRMI/ItATdUYKLYTYH9uPlCejuZLp3DbVcn4\n89lat+rQIQg29Eh/DwodhM1jXsLTH+Wjx9aN5XeuxItHSnGp+yIGBIdj5d3PothchFnDH5f2aZWz\nb+gfk+Rv8k51lQKR119eOeQzVyl55N7nbBvl6vQF7tqI9HkErTYm7zhXq6PFe/oyvWXfCgSC/kOg\n2k79jf6WqlENnr6fWRtKjc3QaL28H2xBymKHdHtq/UlyNhbve2+lVmT7x6ad9tb725Vd6upcwL1F\n8bzvPN3PTa581reptiwWpbIB5SAEV3V5eg093UtX63neth+VynPnN4U7vyGUni9yv7364neXK+jn\n0pVo2/dFv32+xxmhra0NPT09GDhwoNsV9gZyBkyjtQHT3slG6ZgyTK+chrPtZ2DUG2Ht1G7wBCEI\nkWGD8GP7OQwKHYzQoFA0XzqF2cPn4MPv9+Ol8VvR3HYKs6tmoBvdeD1jF5Kik50eFK5eTATa+UPv\n4cG+XPpiAio9jHy5ibu/PQC9UfeV+uAUCARXLoHu/OnvthNw+QdnUlQydv9tl8d1TbshF43WBjS0\nfg+dDrC2W3G2/QziBsZj3b1FWP35KnTZOrEnqxJ1zbUoNhcp/kiXE3eIHaXVwaBGYOrNhUHewl3H\ni7f70hf2YX8nUPslEAjcI9Btp/5CIApnBDmHtTvCiiuHOfm+IGUxis1Fmm22DWmbkF+dBwBOvjFP\nHP1q6ualnFTjuPe0Hl/4/9QIilrrU2t7kt8aatJ7s+cArgUxrQIie663BdDewtuBCoD8/asmwop3\nvpa61QRtkP97KpB70l5X5fbmgjjxG8KOz4SzFStWYM2aNZgxYwZ3T7AdO3a4XbEvceX8qWuuxaNV\nudBBh9uj78BXzYdVl23UR+KmwTc7nKMP0iNqwFB093RjUNhgXOg4j8jQQVh597NYdmgxAGDrhO1S\nlJjaVTdqlXV/vgl80T5/XHnrj20SCASC/kCgOX8C0XYC7O+5zebfYduxLQjThaHd5t5+bUEIRuGd\nz2DNlysxdEA0AOB8x494IOHn+MeFv0v7feVX56EkvdRh9bGaxUa8H9Ce/MgPZPr7YiNemcIWEwgE\nVwKBZjv1VwJVOGMdzuRvkq5a6T0r56x25fg2W2pgMsQCcO2o5vnDXEWc+YLesqOUREwtUVq+jiaT\nK1NttgN3hA6l6877XK4MdxeReVNc8baf15tRTa5sbLlFhoDjNj3u2OhaItXoeUxna9OKN6IUeWX2\nth/fn34b9fXva58JZ19//TVuvfVWfPbZZwgJcd7TIjU11e2KfYkaA2bn0R1Y9+VqnL7UjAFB4ehB\nN9p7XDuBFo5chDf/uhPNF09hfvJvkJH4czS3ncKKT5fjpfFb8XnjZ1j95QpED4iBIdSAEJ1eSjXE\nvjCUVlv4enL39aT1FH9svz+2SSAQCPydQHP+BLLt1GhtwNjdaZhxy2MoPVLikHZRjoEhRky78REc\nv/BPfNjwAaIHxKA4/Xn8/dzf8fqxbbC0/YDpNz2K1469gpL7N2P6iJlSXUrOmt74ASvofwhbTCAQ\nXAkEmu3UXwlE4YwVUHh/exKpLudg1xI5pDX1tBbbwN+jglgRQa1wpsbH6G7ftV5vJcyWGknoULLp\n2XKJ8EoLigB/PqmNgqPbItc3d8UVnhhKX1dP/cGsgMSKTu5ca63zlN16iODtOSZ3rKf3PZl/gDYB\nlndtAc+vqbv4w28jX0b/qsXnqRqnTp2KPXv2uF1Jb6PW+ZOzLxu5N8/Alrrf42TbSZcOoCAE4WqD\nCU2tP2DhyEWYlTRb2rdszv7HpM3qsxIfxK5v3wAArLz7WWQkZnIfut58wWjBn1RngUAgEFzZBKrz\nJ1Btp+oTB7H449+g09aJEOjRhU7Fc4aERmHQgEisvmcd8v+0EL+9ayWWflKAWMMwrL5nHaIjYmAy\nxCK7IhMV2ZUuU28QhB0jEAgEgiuVQLWd+hv9RTjzRLxw53x3/FzuRgi5ikbRmkaut+1Ld3xzriJX\neGPpzsIytSKpt9IYAnASBQE4pW9k6zRbapC9dyISjNdi9+QKp7JpMYM3X3j9NFtq8OC+SXh7yrsu\nxTNSjjv9VJNljFeGKzGQ7TNdp1z9WlA7NwizqqY77FkN+GaRo7uCoKdBLTyhUm6++aofWultQU1u\n3vbWM9cTuylIzUFRUVH46quv0NHR4XZF/og+WI/rh1yP0xdPwzmZEqD716eTrstCnOEazBr+BJ5L\nK4Y+SI+99W8huyITUyoysOLT5Vh/7yZkJGZie8ZOzE9ZiPIpFdg8tgzF5iJptTT94ACUbxpfTpo4\nY7xwNgkEAoFA4EMCzXYiKwd/X1uKqw0mGPVGdKMLPzVeL3vOoNBBsHaeR6O1Afl/Wghr13kAgCli\nGFraW7H+8FoAdrtETjQj3xNmVU0HAGHHCAQCgUAgELiAOCZZX5TS8azvSo3gpKY+pe/ijPGKQgH9\nf/o44tsCgJx92Wi0Njgcb2ltUu30BnrfvnTHN8f2n4bY67mVOTBbaqTxIP1Ti9p5Q4+/u/DGP84Y\nj12Z5VLadnY+0sJEimkUKrLek0Qzuq+zqqbDbKmR+kK3l/6MJcU0Ci+P2+ZSNFOat2r6SaN0Xdky\n6PGgP2P7Spe1IW2T1F45kUjNc0LL3CD/FaQsxvJPn0ZBin0rI3JdeGWrfVa52y5eO+XuQbXzmxyX\nYholjTNbttZ54u44+LoOd9ulNL7+/pteVcTZXXfdhR9//NF+gk4Hm80GnU6Hb775xucNdAe1K3/I\njTr57QkYHHYVpvw0G9uObQFg34NDH6RHe88lGEMiERwcjB/bz+E/738BN0fdYq+n7RQef38mrjaY\nMCA4HOVTKmSVf7Vqrj+EUQoEAoFA0FsE6qrpQLSdiKG8569vYfWXKzDpuiy8f+I9hAaFobWrRTou\nCEEYGh6NsxfPYGhENOYk/QrP1azFklGF2Fv/NrISH8SaL1dixZ2rsbf+bZf559WuwBQIBAKB4Eog\nUG2n/kagRpxpiSaRi5wBPNt3ij5HzZ5FZksNpu7NlLJAFaQsxopPl+NkWxP2ZFU6RSyx7eBF6fhT\ndIiWuohgmF+dB+Byqjy56CZP6iLH+TKCSSlKUU3kFkFLijh63vHmm9rINS39VItSlCGvzURMBeRT\nSqo5xtN+0JGsvP3seG1w59kFeDcQRcv89mYEprefKWyZrlKRypXRX7O++DxVY39DjQFDbtSClMV4\nrGoGABuCdEHotnWjBz2IChuKkCA9Tl5swtXhsfix4yyyEh/CC+NfkiZLQcpirPliFVbc9SzWH17r\n8ICpqq9ERmKmpnb350koEAgEAoE7COePf6DW+dNotae6/ueF7zAodBDOtJ/GaNN9+NTyMQB7lNmQ\nAVdh4c8KsO7L1QgLCcMrD2xH3sF50krQOGO8ZCdV1Vc62VCkHjbFhbCNBAKBQCAQtpO/0F+EMy2o\nWaxEHNw8QYZ8z9uHTEmIcFVfnDGe62ynIftcEdGoq6cTK+561sEvpyQQyKVbczVenqRa1ILWulgR\ngbWtXS1c09Jed1Pk+UJEor8DtKUlpMtzNd9YsYq3l5iaujyZD2oEa7nvtJzvCa7ua7l2Ks13V+Kh\nt+9HT4R0f1j0yY6lJ7+v/aE/7uDzVI0dHR146aWXsGTJErS0tOCFF17o16mHGq0NWPDhPGxI24Qz\nF88gKEiHqwZE4VfJCxGkC8bg0CEICdLjUvdFAEDmTyZjyR2FeOe7Paiqt6cS2pC2CcXmIpSOKUNS\ndLKDIl5VX4lHq3JRVV/JrVvus/4SpigQCAQCgUCZQLOdgMv2yuaxZVieuhLnO+wRdZ9aPkZ4cDiG\nhEZh85iXUDZuK4rNz6H50ik0tfwAANg9ucIhTUVGYiYarQ1Yf3gtOrsv75NG0sqwKVXUrnwWCAQC\ngUAgEGiHtr+0pGMj59KwohlJ15ZfnSfrE1NK4wjY0+cp2YQmQyxmVU2HyRCLXZnl2D25wmkxe5zR\nngKQF1VDp1tTuyeaVh+eJynStNrEtN3N2tZE6HHVDq3zQC2+TkdHygf4aRHVzEFX84CML52iz9La\n5HAPuWofnVrRnf6R8+j+KrVV7nz6OLYeT66RmvuaPpZup9x855Xp6npraZ9SW9WMhZpx7m3YsXRX\ne/BUNOvrcXAXVRFnhYWFuOqqq3Dw4EGUl5dj1apVsNls2LhxY2+0UTOuVv6QMO7Fd/wWRV/9B4z6\nSPzYfg5DI6JxqvUkoANgA4J0QZh6fQ721r+FoQNi8Pitc7C3/m0HlRZw3mSRhIWz+3UorbwRgplA\nIBAIrkQCddV0oNlOZIVuV08nOro7odMB5y6dk8QzAIgeEPOv1Izz8OKRUpy9dAZn289gR8Z/S0IZ\nb9UrAGklMdmI22SI1fyjR9hSAoFAILgSCFTbqb9xpUac8Y6jI9B4kQ0b0jYhvzoPF7vasCeLv6+t\nNyOQfBkVoTUSRq6Nfd02te3wVXu94YRXsv+VIp20Xj9XbaUjGUvSSyURV+m3iS8izrSUw97DPF+1\np6kTefUA6qJU1Zap9JkaSKSqmig3d35vqpk7/eH3q6e/t/v697rPUzVOnToVe/bsQXZ2NioqKmCz\n2TB58mS8++67blfsS9QYMFX1lSg2F2HW8MeRnjAG2+u2ofK7fbjQcR5nLp5GVPhQhAaH4pUHtuOx\nqn/H2YtncO2g61A6pswpnJl+4FlamxRzL3vzBhcIBAKBoL8TqM6fQLSdGq0NqGuuxerPV6HL1okQ\nnR5Xh5vwqeVjGEMisXr0Opy7dA5FX/0Htox/DdERMWhuOyWJZuxCI57h7E6qa9I2YUsJBAKB4Eog\nUG2n/kagC2dqj6WFM3ZRFLtAKr86T9UeSp60kU2xJ+eslyvLXfGLlw5Nrl5PUWqj1r2LfC3k+dI+\n95bopPQZoC79Hy3AeNI2b6F1/vGEOIKSqKS2n+T+B/j7qMnNW28IT0qCqBZx0JviPvl3f1r86Q2x\n29356Ck+T9Wo0+kc0gudO3cOOp3O7Ur9gYzETGxI24Ttx15F9YmDKD1SjNybZyA0OBQ66KAPCkWw\nLgQAMGTAVXjuvhLsnlwh3ch0SCz9EDEZYqVQXfo4Qn+4GQQCgUAgEHhGINpOAFBsLsLmsWXYk1WJ\nlXc/i/89XYPZw+fAEGrAkkP5WPflsxgUOgTRETFYemgRoiNiAACW1ibpRwFJEcP7cVpsLnIrjYOw\nrwQCgUAgEAjcx1VaMV5qNOIPYx3hdBo6AkmhqDVag9dGktqb1y6ykJ0W9XIrc2TLoj93lTpPSYyg\n05+x9XozRZlSejnSf7X1+TKVXG+kqXN3Lnk7/R8Zd3fb5m2U5r0cvGxp7Oc80czVNSbzf+mhRShJ\nL5UVzZYeWgSzpcbpXFf3I5uykkXpno4zxsu2iYc3RDO2Lf4omsmNt6ft1JpNxpfPDi2oijirqKhA\neXk5jh8/jp///Oc4cOAAnnrqKfzbv/1bb7RRM1pW/pALkV2RiZfGb8WCD+ehy9aJmbfMxq5v30D5\nlAopiowXbk5/zirkatTj/qYwCwQCgUDgTQJ11XSg2k7s6i/yAyd770TMTVqAsj+XYnDYELz/b3+S\n7KeClMV48sBsvDxum1P0mYjCFwgEAoFAG4FqO/U3roSIM/I3G8XFO5ZXDu34pKPS1LaFZy+aLTXI\nOzgPIUF6lKSXOmV8kouccRVxRvv5eGW5k06O4O0Ub0rt0mpLu2N7qz3HX6LZ1PpmPfld4o3IKG8i\nN+/duXZK46cUKQZcnvuW1iakmEY5PBvijPGoqq/E+sNrsSy1EOsPr3V6RvD6wbZNLiKOd0+zbaQz\notDtVapT6TNX3yu119u4e2/7g0bh7v0id54ndlPwM88884yrgxITE3H27Fl89NFHqK2tRV5eHh5+\n+GG/XTnd1tbh+qB/ERkWiciwSGQmTsbAUCPui78fd5ruwpJP8hEWHIYxCeOQYhqFmPAY3G66Q7oI\nYxPG46aoWzA2YbyDITE2YTwiwyKlssn3SvW7OkYgEAgEgkDFYAjr6yb4hEC1nYiNA9gN05uibkFT\nyw+41vgTLLpzCS52XMKfGg7gnmH34r5r0jE2YTxuN92BW4YMR7G5CCOibnWwn5TKFwgEAoFA4Eyg\n2k79DS1+J5ZGa4Nf2jykTY3WBlg7LmBW1XSMiLpVEqduirpFajt9bGRYpEOfyP9JGXfF3oP3//lH\nPHTjNNX9lvOV2Ww27P7LH/D8mBeRYholtW9swnhYOy5ITmm6LXJ1knaT84ifj/RrVtV0ycen1XdH\nzlFzHjsf2Lp5ZcuNk9Z5pfV4V21TW7aae4BcG3ZsyLwi19xVOdaOC8i+/iGXvlkt7Xd1LN0/MmYj\nom6FzWZTPFbN52rbozRuWq4dO8dIWdaOC5h/cK5TeaS/2dc/hOzrHwIAzNk/G7cNTcb8g3MxIupW\nzD84F8EIxq+rn0JY8AAkR4+E+dRXTs8Its28+5Icx15j0m5yT9PQvn0ATu1l68ytzMFtQ5Ol6+fq\nPpD7Xote4Ala7lOayLBI6fd6X+LOvFfqsyd2k6qIsyVLlqC9vR1TpkxBT08P9u7dC5PJhN/+9rdu\nV+xLtK78abTa9yaj863WNddixafLEaGPwLLUQmmldLG5yEmtdqViCwQCgUAg4BOoq6YD0XbirTyc\nNfxxLDmUj86eTpTcvxnbj72KWcMfx/QRM51WfJH9Zft6BZtAIBAIBP2ZQLWdvEFtbS02bdqEN954\nA8ePH8fSpUuh0+lwww03YNWqVQgKCsLu3bvxhz/8ASEhIZg3bx7+3//7f7h06RKefvppnDlzBgaD\nAc899xyuuuoqxbrcjTjzxop+NmrDm9D+LQBOUSK074u2B7cfe5UbkaamrVoje9joNTq6hc0M5ape\ndo8jre3y9Brw+uNOuZ5GTGnBG31WEwHG239KLkLIF5E97kac8eqU2+NLrn3ejPxhx82TZwd7XUh5\nvOPoPubsy0b5lArpePK7sCBlMQA4ZCdRKkvubzURca6i05Si2nL2ZQMA9MF6VfuhsfX1xW9fXmSe\nmnP8IeLMXXwRcaZKOMvIyEBVVZX0d09PDyZNmoT33nvP7Yp9idZUjbmVOejs7sTmsWXSZo7k85L0\nUqSYRkkbPbJpG+ly+uOkEggEAoGgLwlU50+g2U5KPwCXpRYCgJSGUcmxIhYZCQQCgUDgGYFqO3nK\nK6+8gn379iE8PBy7d+/G3Llz8dhjj+HOO+/EypUrkZaWhpEjR2L27Nl466230N7ejtzcXLz11lvY\nuXMnWlpasGDBAlRWVuL//u//UFhYqFifJ6kaPfEf0TYVzzflDeSc/ACk1Grk86r6Sientxbnq5Jw\nIHcuzxlO/1uLaMKmgvNUxNOK1jLkBDKeMKLlGvjSn6lW1GM/I35YJUEDkN+zTGv6SlfiF+94gish\nxlV7XYlPnqK1b67KArT1g57jJGMb/TuRpHJ0F17d5Nn09pR3YTLEOrSBvna8a8YT0tjj1bTBH4Qo\nrW3ojQUDvY0ndlOQmoNiY2Nx/Phx6e/Tp0/j6quvdrtSfyLOGI9lqYXQB+sdHshxxnhJNCPMqpoO\nkyFWWnnDliMQCAQCgUAABJ7tFGeMdzK2TYZYAEB0RAwyEjNhttQ42FEb0jZhwYfzJMN6e8ZOIZoJ\nBAKBQCDwCQkJCdi8ebP099GjR5GamgoAuO+++/DZZ5/hz3/+M372s58hNDQURqMRCQkJ+Pbbb2E2\nm5GWliYd+/nnn/u0rXIOdbXnEptqQ9omrzrWCSmmUdiVWc6Nglp/eC06uzthaW0CYF849faUdx0i\nRUgbleqgjyX9IN8TRy/v+EZrA5YeWoRGa4PscbQ96spZHGeMdxIU1F4PMgZq+qlUvxrRTKm/AKTx\nJt/TfZdrj6syvYGrayR3XKO1QRJveeeR43mw111LpA0ZE1dzh4hBJPqKPVbuPN7nWo6Va4sr2Lax\nIp8W6HuGboPcPKLnOC2amQyx0nnkdyULWx49P3j9o79ff3gtXh63zen3JzmGXD/2PlCas0rzQe4c\nVkPw1b0mh5rnIHu8Er5+ZvgbqoSzrq4uZGVl4YknnsDcuXORmZmJkydPYubMmZg5c6av2+hTGq0N\nKDYXoSS91MkgoF/G5MYGgPzqPIebSyAQCAQCgYAmEG0n1ogmi4yWHlqEqvpKPLhvEqrqKx2OaWg5\nITkVxCIjgUAgEAgEvmLChAkICQmR/rbZbNLesgaDAVarFS0tLTAaL688NxgMaGlpcficHNtbuOOE\nJGII8Vm5Uyf7N/Fx0XXwbL9lqYXYPLbMoW65hVGsEEI7pum6lx5aBLOlhiv68CDf0cfR57Nt5vXf\nlYjnCtLukvRSh8/l2qF0ndQ6qgFngYb+jicYyc0vuTLlxEp3kbuWvOuk1blPxEK5a8kiJ7qw5dHz\nUO54AA7islx0Ev3ZrKrpMFtquG1y9Zkc7ooYdN/Ivc+2zVW9bHly14+MJe1bNxliZec0fR7vGaJ0\nj7GfJ0UnS+0j9yqpl71+5N5nhX/e85FFaZ6zGkJfiE7e/B2u9V7t76hK1Xj48GHF78kqHn9Ba6pG\nwDk0U+5z+hxAPp+uQCAQCAQC1wRquqFAtp1oaJuorrnWaS9YOpWOQCAQCAQCzwlU28kbNDQ0ID8/\nH7t378Z9992Hjz/+GABw4MABfPbZZxg9ejQOHTqEZ555BgDw1FNPYe7cuXj55ZcxZ84c3HbbbbBa\nrXjkkUfw7rvvKtblSapGFnfTXmk5j/Z18dLKqUkXaLbU4MF9k6TUZ1rTeTVaG5y2P6F9b3QblVK+\nsdmh5D6Xa5Pcvma8sXFVFnDZL0j6xqYmJ1E23tjXTut37PfkGpAtadhx5M0NpTFRMwfZY9Tse8z6\nZOWO4V1LXptIP9SkOGXHS8uYKH3HzgPefefOeLPtVTqPd81zK3MwJ2keln/6NN6e8q7DvoZy4yOX\nXhWA02dsikRX14k9n/XFu3pGyB3PpjOlj+e1kz7ek5SsPH2BEEhagrvvsd7A56kaU1NTFf/rr9Ar\nLOi/iXotB1GgrzSVVSAQCAQCgToC1XaiIXaTpbUJs6qmIzoiRvox6moFskAgEAgEAoEvGT58OL78\n8ksAwMcff4w77rgDt912G8xmM9rb22G1WvGPf/wDN954I26//XZ89NFH0rEpKSk+b583nKdaRDO5\naC7ymRqncIpplORY19I+uq/51XkOqRlp3xvtwKajX+jzO7s7kV+dx40ao9O9sVFtdB0l6aXc/rJj\n4yo6iPYLEtGsIGWxkzBBPlcjMMmhFEHlqlwyro3WBkx7JxvZeyeiqr7SKWKR5+N0FUnkKnqGjbQy\nW2rw5IHZ0ngoRWe5gsxbOoOYXJtIP1JMo1Sl72TPY0VeJdFIrny1dcsd4yqqUq7v5HOSIYSe13FG\nexTplroyvDxum0P6RLnrKtd/OvUhgWQe4WUgYa8/r162b+y5cmNBUIpiVeonezwbWcpDabzoei2t\nTdyx6ks8bUdfRdL1BqqEs0CFvRHkHqRKYZm8B6VAIBAIBAJBoEPbTUQwMxliVe2nIBAIBAKBQOBL\nlixZgs2bN+MXv/gFOjs7MWHCBERHR2PGjBnIzc3Fo48+it/85jcICwvDI488gr/97W94t/yAUwAA\nIABJREFU5JFH8Oabb2L+/Pk+bZucA9xX8HxfgLOgpgYSqUTOc5XejedQJQKXnEjAimP0+eVTKrAr\ns1xauEXaTju26XNYfx4RspTGCrgcXWe21HDbwULEsWJzkZPjf0PaJhSbixTHSqvjWcvxtOiwe3IF\nKrLeQ0ZiJnfsefNAbm6oCSYg/SciHRFfMxIzXYpcPGGFhQiWaoQrV/3hQUckKe27R3/HE4x5IieZ\nt2quAZm3cqlE5cQhUt72jJ3SfoSssEv2LYyOiHFInyg3Hrw2EhGTjZ7Lr87DstRCblpZ+jmi1H66\nD6yfPmdfNneceeWx15HMTSJs7cos5/Y3Z182Fnw4T1HoosVJti3scSTFKy/itbdR82xTQyAHFqlK\n1djf8EbIPBve6Sos0xuh1wKBQCAQXGmIdEP+gTu2E+tkYW0nuRQevDQZAoFAIBAI1CFsJ//AkzTX\nJGWcP0Tma02vRbcfgJS6US69W1V9JZKik50i3JQwW2ocUkESh65cSkTiswPAdX4Tfx4gnxKS1y4i\ndBFfHzmfNyZs2bw+aUkRqAYtKdG1lu3peWrLofvAHkPGjOyJJZfWUM29JPfbRO05ABxSXLJzgp1T\ntB8Z4G/zo7ZNvPnqbt+U5jl9D/PGVms9AJCzLxvlUyqkcWLbTO93RoulbPly7c6vznNIr0hStird\na2wf6XqnvZON3ZPt7SXtyzs4D6Vjyrjpael2VdVX4skDs/H2FHuaX7k2yPWvt7eCupJ+l/s8VeOV\nBpk85OFBlGell5uS8i8QCAQCgUAQSPCi8dkVlEorHgF4vLJNIBAIBAKBwF9RSttFIvb9Aa0+LLr9\nJHpILr1bVX0lHq3KRV1zrar6SPQDGxFGIkKIDcnuI0Z8diXppVIkGvk/AAfxghdBxP6bYDLEOvj6\n5JzwRLRT6p+WFIFqo8h4UTy845Ta5epcb9nrSlFUvKgX8l1BymIsPbRISvXHovZeouePljbTe1zl\nV+c5iHmA/JzilRNnjHeKOlQjmhH/tCeRf3RZbIRWfnWe1De6zA1pm6TIT/ozuWtJX7tZVdMV73tS\nFhGjaPGKvRfl2m0yxDqIZgQ6Awo5lq2bHjeCpbUJJ6zHYWltkr4zGWIREqTn9oFtF4noY58bLHJC\nmqusLd6GrrOvI9/8oW45RMSZDFojyLy1CkMgEAgEgisJsWraP9BqO6mJxldThrCdBAKBQCDQhrCd\n/AMl26kvogd8gVKECy/LAOAcdVVVX4mMxExVdSmVQx9HYJ29097JRkiQHiXppdwIOF5EEx1NAzhH\nBilFpZFzSJQLK+C4imhzNQ5qxp43FmrLUoMnwpsalCLOeFFctLDgSQSZ1ihLItyx84o3hwD+/KUj\nktgoKyW8meFM7p6ytDYhvzoPgGPUZs6+bKy8+1mH1Jpy+5uRc4lAmF+dh87uTul8tk42SpQVjejf\nmuy8Z8+Vi5xScz/RkXVstCtwefwLUhZz+6E0Z3mw84e+tn397ujL+n1Ztyd2kxDOFBAOHYFAIBAI\nfItw/vgH3kjVKBAIBAKBwPcI28k/cGU7ydlJPEd7X9pTatO/8dKbAc4CAb24inyvtl45QY79jOyZ\nRX9HHPU8AUuufjkRgNcnAE7jwaaO5LWVzrSgRgyTGxvSR9bJzhMf2HPYPa20ikbecmbz+ulp+kTA\nvT3L5NrDm5O5lTlo62xDhD7CYdEgm7KRnZt0+0i7Zw1/HOkJY7hzzFXkmbeeE3LPHVq0In2Zd+AJ\nWFqbsCer0mFvQldlkr/rmmvx5IHZeHncNkRHxDjNReDyPnVkj0A6Nafc/cyKlEppS12NXVV9pUO9\nPBFu59EdWPbJImwZ/xqSopOdxkGtmMt7LrCpRvv6N3Zf1u+rukWqRh8hnEECgUAgEAgEfISdJBAI\nBAKBQMBHTvh4cN8kmC01kkOeTX3dm8illgOc08vRKelopy9JIceWQVIl8sqWq5ceM17qMjp9Gi1M\nNFrtaf2WpRaqToFJl89+zqaLIykf6ePp83lpGNk0aK4iXtREj/HSv+3KLHdKRcmeQz5Tut5ax0kr\n7Jh6UjY5R2mOybWBFXiVxoYcvyy1EBH6CMxJmid9V1Vf6ZCykfSFzAUADve3pbUJG9I2YUtdmdM9\nr3RdlPqmpd/0v0m72LSRZK7SfdmTVSmJZuQ+YMsm40QLiuTYjMRMvDxuG1Z/vgpT92ZKzz66TbRo\nVpCyWIp8I3uVsf2kr+OsqunStWD7SfdLaWxIvSQlKH39SFu31JUhakA01nyxCtkVmdy5A7hOvcl7\nLrDPLF/+xuaNkdJzuK/x1rvx+/Pfu32uiDgTCAQCgUDQZ4hV0/6BsJ0EAoFAIOgfCNvJP3DXduov\nEWf093RUBC/NGImyYY9RSlumNpUZHcFGR1kRpzot7mmJONMyLr6OwFBbvlJEHj2XeNFy7DG+Ru6a\nA9pTLBLINSZCYW5lDpalFkppBNVEFbHRenQEGW98ydyeNfxxLPtkEeIHJmDl3c86RFGxUYDs2Fta\nm5C9dyJeGb8d0RExUuQWL6KTHS9ehKWWcaTvUfq5U9dcK0VZqYnUIuIf++wiEY8l6aUO/aLTGpJz\nvz3zDdITxmDaO9mw2QB9sB67Msulcslx5BqzzxAC3W+5/mmZY6Ts6hMHsf3Yqw7CGbuHGmkf+5zp\n6ygxNchFu3krDag328dG9XrStkZrA544MANfzfnKrfOFcBYA9IcbVCAQCAQCHsL54x8Eku0k7CKB\nQCAQBDLCdvIP3E3V6G20ilKe1MFzZLLp1nipD+X2DVMSC+QEDvpvwFEQIg758ikVqtLJ8froyRjJ\nlS1XvlJUjJr28MQE+t/0NeOJL1r6q+V4Vw5vUhaJeOIJEOx4kuve2d2J8ikVAOz7b+mD9U4iKguJ\n9Hx53DYkRSfLls8TvujP6P2vyL/pdIJyInOjtQFT92YiRKeX2svbg4831uwcYcUPJXGXCI1zkuZJ\nghBdBony4o0bK1LSY20yxCJnX7Z0HSytTVjw4TzpewAO6SpzK3NwsasNTa0/4JXx27H+8FosSy1E\nUnSyw3MDkE9dmFuZg66eTuyeXIG65lpJLCX1y+0vqEYsbrQ2IGdfNhpaTjikYpQ7TyktpD8itwhA\n6Tksd35vttWbdV8K/RHXDLrGrXNFqkYGb4UB9hZKIb0CgUAgEAgEvsTf7A9hFwkEAoFAIOhrXNkj\n3rJTePV40xZiy40zxkupAlnRhqRPZJ2cbDo+0j46/SNbB5sSkTjveX/TadJKx5RBH6zn9oE43+n0\na/QxvNR1WsZJKe2m3HXKrczBtHeyNaXuY6FTxFlam7jpD+kUgrRwonaOaD1eLgUjLWKYLTXIqvg5\nsvdOlMadnhtsOsE4YzxK0kslUTTOGI/NY8uwK7OcmyqTJsU0ShLN6PItrU1SvaQuup/0HGy0NiDF\nNEr6N4muAuCw9xcRKNmy9mRVonxKhWz6QdIO0hb2/lIaW7n5lV+dh4tdbXjxSKlDik9SRlJ0sux1\nWvDhPHR2dwKwC1P6YD2WpRZi6aFFqGuuRUPLCWn8TIZYh+9NhlipPnK/lo3bilfGb0dGYiZK0ktR\nbC5y2NuMHMtLXQjYI9pCgvTSnmk7j+5AbmUOcvZlI786z2k8aZGdd3/Rz4U4YzzKp1RgT1YlkqKT\npXN4NFqd05/S//c32LlBX2t6Pqg939fw3h/eqNtd0QwQEWcOeBIG2Jerm8XKaoFAIBD0V8Sqaf/A\nHdtJyW4SdpFAIBAIBL5B2E7+QXOzVdHmUIom8Ub6KaV6vGEL0VEp6w+vBXB5zyE6eongaaQVG1nG\nawsbhQbASVRjIyro6BwaNt0biZhhU8S56gf5jI5G0tJnGnciLehoqAf3TcLbU951SlnHS8dHO9LV\n1OXpnCIp9egUfmZLDZrbTklRYHQ9jdYGSVjZkLZJ2mOLF0nnKvqHNw9IBBWd9pGOYpQ7n6TqoyPf\n5OYFGWO5KE3enC5JL3VIVUiXx5atJtUjiQZjozCVUpvSbSHjTq4bPd/Id+T68PoMAHXNtdIzhL2/\nyLxgI+hIG+nrTr4naTdJvZbWJql+GnI+m2KSTi/Jpnmkr4+rZxqbqtbVM703fqP64n3g7XZrKc9b\n70tP7CYRcUYhtyrCFX29ulk4hwQCgUAgEPQ2SqtJhV0kEAgEAoEgkHFl78jZI678TlrtJ1457q7S\nZ8WdDWmbUGwuQkl6qRTZQ5zMRESY9k62YnlyY0RH0bhqEx3pRtq2K7PcQVwgUSX0eFhamxxSwJFz\n6WtAIkhI9BIvIksuood8Rspw1Wc2+oW0hbSPJ66pJcU0ShLN6PI3pG3iRuSQOnmRfzzUCGtyEIFh\n1vDH8eSB2aiqrwRgj1Ra88UqpzEh/yfzjYwtG4lIvpOL3qLbTs5lo9XoqKg4YzwsrU1cQXND2iYA\n9hSEy1ILpchG3r3GRvIoRWKymAyxXPGY9IlcK/Y5IvccINFg9JgQ0ayts02aG+x4LUstlMSorMQH\nUWwucri/SPQdfX3I93TfcvZlY87+xzAnaZ6TyE3KIWNLz0MiBJN7mL5XMhIzHSLT8qvznKLKyPl1\nzbVYemiRNOfoZwc9v+ioR7oudvzNlhqH5wb9PFQSy3vj97FcHUrtUoO3RTP22arUJnd1Gm8S/Mwz\nzzzTZ7X7iLa2DrfPjQyLdOucsQnjhaNGIBAIBAKNGAxhfd0EAdy3nXh2k7CLBAKBQCDwHcJ28g+C\nuwZosncarQ2S3UTbT/TnxKk4NmG8at8UfT79mTvlsOcMGxiHsQnjcVPULYgMi0SjtQHzD87FiKhb\nMTDUiNnvz8A/z3+HyT/Nhs1mc6pLziZkPyfO6tuGJuOmqFukPpE2jYi6FUsPLcLYhPGwdlyAteMC\n4ozxUn3Wjgt462/leOjGadJnxHH+00E3YHR8mlM76GtB95H+zNLahGED4xAZFokRUbfipqhbpPOt\nHReQff1DUjtI+Up9fuDaDDx04zSX4yF3fXjXObcyBw9cmwFrxwVp7Ojr2NTyA97/5x8dxoY4qbOv\nfwg3Rd3CrZtXn1Lb5OYbmTMb0jZhQuJE3DJkOIrNRRibMB4AsOfvb6EkvVQaW7Zem83mMM50uUpt\nJ+NC5hEbzTf/4FxkX/+QwzWvqq/Ev783De9/90dk/GQirB0XEBkWKQl/2dc/hOzrH8LVBhNGx6Vx\nx5s3LnfF3gObzSbNXXK8pbUJ8w/OlfrwwLUZ3H6S4+OM8dL/1UbtkHkH2IWpYARjk/k5bLz/P/HE\nbU9idFwaBoYaHfpgttRI43Cx8yLWfLkSc5J+hXHXPeB0jcgzgu5LZFik9F/GTybiTtNdeP7/SjA6\nLk16fgwbGOd0Lch1JuXeF5eOFNMo6RrS40JftweuzZCuB4Gcf9816QhGMH7z0XzcF5cOm83mMMbD\nBsYhJjwGa75YhZjwGPymeoHDvKHvmWnvZOPlP/8ew68agdtNd0jPDbo97HUjfSX3OO9YObTcg6Rc\nNc8Rre8Gb0K3kR4jeu7wzpFD7Rh5YjeJiDMvIZxDAoFAIBAIBHaEXSQQCAQCgSDQ0Zpuil1Vz36u\ndXW9UoSB1qg29hxeujI6wsTS2oTSMWW4btBP0Nx2SjaaQinyju4DiYKpqq+U/iZtIvunWVqbpH2N\n6EgFEkVC9lwiKdrWjd6I5Z8+jar6SlVRF/RnltYmPLhvEsyWGim6hN2LS66fShF/rsaDBz1GvLZb\nWpucIpGAy5FeJemlDuNNIt/IeHmaPUIpCwV9DYHL0UJ0pBebWpL0k0TDsdBRcmoi4XjRfHQEIzmu\n2FyELeNfk1Iw0vOSPj63MkeK1FLqu6W1SYr4m/T2BOTss0dnkutD7+9F2uXqXuZFRLqCjHVBymIs\n+8ReJxlzEi1G9y/FNAp7siqxeWwZ9ta/jRV3rsbe+reliCte3aQvdP8JSdHJuNjVJu19Rt9LZDx4\nUV5y84IHWyY5v9HagBePlOLlcdtgMsQ67XHYaG3A+sNrMWv441h/eK20rxvv2bx7cgVeGb/dKfpO\njoKUxVJEJClHzXUjx7sToebqOeIPEVz0XGb3X9SC2jHyNMpPCGe9hC/DMQUCgUAgEAgCBWEzCQQC\ngUAgCCTknJW8dG1anIdKTlAl0UxOxKPFFVqcoqHTm5kMsSgdUybtN8QKEa5ghZWunk7JiZ1fnSc5\nwmdVTZf2llqWWgidzrkvROh6wfw8pu7NRM6+bKQnjMG60RslRzftLKfTLOZW5kiCAKmTTn3IpgWU\nExnpfrGp4zxJ1UZEDyIO0KLRrsxySVikIeIOLZKQskrSS7EstVA2zSFvXrlqtyvxjR5vufPocTZb\napB3cB53XrGCE69tRCzk3WOkDFZMmzX8cWn/NZIikAh+5P9k/Oh0iqzgRaKTsvdOBAAsSy1E88WT\n6LJ1SseTvpK5yRszubF1V/xIik5G/MAEREfEOJQDOAtPKaZRkqAx9caHpONYEZEI3BvSNmH94bXI\nrczBzqM7HO6puuZaNLX+gLrmWqf0iGS/MdJ/+v/k3+TaKM1XXkpS8lxoaDkh9RlwFJoBoKunE1vq\nylCSXuqwFxw79+KM8Q7Crxzk/l9/eK1DGkrAOW2n3GIK3rGeQM8tf1rgSt9D7pyr5lrMqpqO789/\n73YbhXDWC3jyghQIBAKBQCC4UhA2k0AgEAgEgkBEybnnie2jJB7IHc86G1nRqK65Fg0tJ1DXXOtw\nLqmDjhAg/6ajQ2h7Ti5KhOfI3T25AstSC7GlrgzWjgvIr85zEjAAICRIL/2bbsfL47Zhb/3bWH/v\nJpRPqbCfe+xVpz2UWDGlq8cuaLB7ZtGCExsVwUZwqRGWXO2DJAeJhpLbT4kIi6ygtiy1EMXmIodI\ntUZrA/Kr8ySnvpoIOFf2uSvxjR5vdp83FtI/ADhhPc49hog0JBqQ3TMptzIHCz6cJ+1rReqlo4fI\nnCBU1Vci/6MF2Hl0B3L2ZWPq3kwpIo+N2CNRWuRvVogl0Ukb7i1GimkUkqKTMWxgHFbfs85hXHlz\nirfvGW+MtQgNdL83jy3Dgg/nOXxGxpSe+3R9RMixtDZJkWOA/bmRvXcizJYapJhGSXNu2SeL0NZ5\nOcIsOiIGsYZhWH94LRqtDVK/iVhO6iPPIDoqbFbVdOw8ugPLP33aQSxloZ8PdHnNbaewJ6tSEsBJ\nhCM9N3dPrkBJeqm0pxuZQ3kH57kUe3mQekhd7L3AtpF+Rsod6yl0uTyxrr+i5lpsz9iJawZd43Yd\nQjjrBdxdDdCfJ69AIBAIBAKBO/R1+giBQCAQCAQCX8JGunhq+/DEAyXkInhIFEixuQjr71WOhqEd\nsLSoQJzsG9I2OaQ7BODkICaOcHKepbUJ6w+vxbLUQgwIDpeiosjxJeml0vfAZYc+ISMxExvSNmFL\nXRnqmmulfrHOa8AuDpI6bTZ7JA2J3OJdCy2RGsRxzoqaPNGMiAQ8gZEVekjqOV6UFivC1DXXothc\n5HBdSXpG2qmvtj9ykTJKohrbTgBS3UpjGWeMh8kQi1fGb3doIz2/Ors7kV+dB8D5t0NJeikudV/E\nL/fPchDP6HLyq/McxLSMxEy8nrEL00fMRPmUCmwZ/5qU2o+OZKLFLTpiinxGR0Au//Rp6bqG6PSS\ncCQ3RoBzNBTdb7Uiq9y5jdYGNLedQkPLCUkUJN8TkSvOGO8U1Uj6Nnf/E2hq+QGW1iY0WhtgMsQi\nwXitQzReRmIm9mRVoiK7UjonvzoPZeO2Svct3W9WBCdlkfZtSNuE7cdexbrRG6VoQDL2dB/Ze448\nX548MNvpON69nF+dJ0XZkmdNSJDe6XrQ40vuW7m5z5v/7DGsYCl3rDegn7Vq7l+a/qxPeDqeQjjr\nJdwRzcSKa4FAIBAIBFcK9I9hgUAgEAgEAn/GXV8Nz9fjqWjGRhO4sz8VSUFGBJj0hDEOZbLiCR0Z\nQkP2IiOiBkl3aLbUOIloTx6Y7bSXGUEfrEdSdLJDBI7JEIuLXW1Yf3gtAEhRQ7QTuLntlJTysSBl\nsVOaRlL3L/fPwqzhjyPFNAqbx5ZJTnc50UxJHOIJQfQ4udqfqa651mFs2DqJuMnbX4r+jtS58+gO\nPHlgNgpSFkvX1WSIdRCbeJEnSshFoKkVfsk51ScOqjqWpLrjicwpplEon1LhdM3IeQBgDI3EhnuL\nUWwuAgCna8QKeI3WBiRFJ0uiF33estRCpzbnVubgifdnSRFTdGQdiYCkU32WT6mQylGK3Ft6aJFD\nJCAZYzZCjj2P7j8bXVeQsljaH3D94bWSKMgKY2QesW0g/4/QR+CVB7ZLgiJgjxJlx4b02dLaBEvr\nD5JgNmf/Yw4pYMm9Q8QpOsJvwYfzkFuZIwl624+9Kp1HP0vYuUiTFJ0sXQMyNrx7KM4Y7yDqkT6w\n0Wn0+JotNcjZZ0/HKZfWlr1GvGPc3d/LVV1ysPer0v2rVVzzN7zVXp3NZrN5pSQ/ornZ2tdN8Apa\nVrQIBAKBQNAfiY429nUTBPAf20nYPgKBQCAQKCNsJ/9g5O9vd9vhKWfvaLWDiEOTFw3kjQg2OoqG\n3dMrtzIHXT2dkuOcnEP2GrrY1YbwkAjJMZ5iGoWq+kqHqJGq+kokRSc71G1pbZIc90Rwy6/Ok8rJ\nr87DnKR5SE8Yg9zKHHR224WLzWPLkHdwHo5f+Ce2PvA6kqKTHUSKnH3Z0AfrsSuzHAAwdW8mQnR6\nbB5bJpVPi10kbRvpL+D+gngi4LFCJKmL9JONAKOPY6Nl2DLImAHAg/smYd3ojZg+YqZTeaQfvLmj\nZd64M8d2Ht2B/I8W4PWMXchIzFQsgwhYRPQg/5ZrB+lbbmWOw5xj62D7TcrOr85DZ3cnOns6EaGP\nQEl6qXRdpu7NlNL9EarqKzFn/2PYMv41aa6xbafnEBF7Xh63DWu+WMUVnMhxdNpT+p4CnAVAXn8A\nR+E2e+9EJBivxYq7nkV0RIyD8MWKh3S72flHQ8ZZae40Wu17vZG+svcV3f6ClMWSIL4stRDrD6+V\nrgGvfHacePcJ3Ub6b3p8SL+mvZMNmw0on1LB/Z73N+868yB1d3Z3Ouyhxh7jjd/Acu8EufqU3kXs\nvNL6burL3/Rs+z2xm0TEmR8jHEcCgUAgEAiuJITtIxAIBAKBoD/giygBLenYAPkUeu62i1curw6S\nyowWzeiosZL0UuzJqkRJeqmUrrGqvtIh9aPZUoP1h9ciZ182pr2TjUlvT0DOvmwpXSIRPYgIR4tm\nSz8pgKW1CctSC7F5bBn0wXqYDLEoHVOGYQPjuGKcPlgv7VUVZ4xH2bit0AfrwUKEhql7M6UoEU8y\nItDRfLRgRaJlSBpAnijES/XGiypMMY1CQcpiKd3k21PedRLNeOWxohlv/vHmo7uRHNNHzMSKO1dL\nopmrSDwSAUX2HGMj8tgoIgCSaEbS39FiEi86M2dfNvKr81CSXorNY8scRDPAHuUYPzDBaQ+t6IgY\n7MmqRHREjFPqOzoSibSZRKBFR8TghPU46ppruWNNp+1j7ym5yEa5vfdIvRVZ76F0TBnWH16LvIPz\nHNJ10uXVNdcie+9EWFqbHCKzyLUikWFknF3NHcAekUaQE5i2Z+xEUnQydmWWY07SPCfRjO0Xe7+w\ngj6vHSS6jSfaWVqbEBJkF9EBOOyxxovgo+cUia5Tgjwvec8buh10u929x5QiyNj6eNF3bDn0367w\npwg1NeOgFiGcCQQCgUAgEAgEAoFAIBAIBCrxRJziORXVOvrY83mOYHcclkrn8iJJyN5j7HlkTygi\nXhAhhxWPlh5ahGWphSifUoEVdz2L05dOoct2Oe0dETlK0ksRHhKB5rZTAIBzl84h1jAMnzd+Ju1f\nRKJIAPteUsTBX1VfKbWnJL0UJkOsg5BBUrHRUSkpplF4Zfx2hIdEwNLaJHtdXI0x7ZRnozvIvkYk\nNZ1W6DYRAW794bXo6ul0iMziCTNyc0dOhOU59FkxQS1mSw02mtdJaSVJJBVPPCPfk7SMdMQXPbYA\nnPamo1MNkpSi7L5dpO1EUE0xjXKYE3Q72CghEj3W3HbKKa0hYI9a2nBvMVbe/awkhJG5lWIahQ33\nFkuiMT2GrKgH2MUsIu7R10AO3vVJMY2SxDeynx+pj5xD5lB0eIzTGNICHhFT2AgvWmShr1Fdc63T\n+NMCC9l3jxy79JMCXOxq4/aLHM+Om5JQxiuHngcFKYthMsRK193S2iTVTwuMrsbYFfRzhu4PaSub\nntMT4Ukugoz+nk7Lq/TOcSVu0+VrTd/KtsvbeGthi89SNfb09OCZZ57BX/7yF4SGhmLt2rW49tpr\npe8rKirw6quvwmg0YurUqcjJyUFHRweWLVuG77//HgMHDsTKlStx3XXX4dixY3jyySdx3XXXAQAe\neeQRTJw4UbZuf0k3JBAIBAKBQBmRbshOX9pNgLCdBAKBQCDoLwjbyT/wxHbyNI2V0vm877R+5ird\nFyu8NFod0+qR79jPWUGApC8EIKU8I9Bp1kgqwqzEB7Hmy5UYOiAaFzrOY0NaMdITxkjHn7t0FsZQ\nI3ZPrpAi1IhgBgDZFZmwtP2Aiqz3HMQR0s6lhxZJfSYRcnKimdz40ONK0kwC9n2b6PJZMc0d6PR/\nSdHJDn0AnFNsknPk0t/xkJsncqkTlc4h15KuP2dfNgB7qk02PaZSGlKl8aPTX5IUjHQKPlL2hrRN\nDmkJ6e9d1UnPV7bNBSmLMWf/Y4gfmCD1i019SlIT8qLIiDCzLLUQc/Y/hqsjYvHS+K3SfcSm0OOl\n3ATgcO+RY6pPHER6whjpWHqe1zXXSm1ioVOo8uYYAIe0jGSM2PFnz2HTJ1bV26P4lh5aJO3Rx0vX\nSt/X5Frynj/suJN0piZDLCytTZi6NxNRA6KxdYJ977Zp72Tj+IV/YumoFdhoXoe3p7wLAFL9pGxe\nOld27vDSr5LP6dSb9Jiw5XkDuTmipnzy7FW7qENLm129Z7yJX6ZqPHDgADo6OvAHYAraAAAgAElE\nQVTmm2+ioKAAGzZskL47e/YsSktL8cYbb+C//uu/8M4776ChoQG7d+9GREQEdu/ejcLCQqxZswYA\ncPToUTz22GN444038MYbb7h0/ggEAoFAIBD0J4TdJBAIBAKBQHBl4KmTUOl8OZGHjdCQi3pTihgg\nURJs6kI6HSPdBvpzErmQW5mD7IpMrP58leTEJvstAXCIJCLRWiQyYn7KQryesQs7Jv43YgcOw81R\nt0jn5tzwME62WfDITTMc2vbtmW+k9uh0wNABMVL0GukTiUqbNfxxaQyKzUVOkUT0OCkJanSkD4lY\nYaM72P+7Q4ppFF4etw3F5iJJJGGjhNj20RFQdAQQHQHD9pUHnVJQaQzYz1jRjqTHm3fgCacIHrb9\nbNQYr32kj8ThT6Ia6WPpqD9yDokgYtPXke/oOUzmP5l7tFhDUnNuGf8ayqdUSKn82OuSkZjJFc1o\nkqKTsSerEhXZl6Pt2LnHu85xxniHe48cU33iIPI/WoDqEwcB2EWzJw/MRkHKYgDA+sNrsSy1UCqb\n3KtT92YivzpPul/pqDPSlrrmWpywHpfu2VlV06VIrs1jy6ToTfocEhVG/k3uO5MhFgUpi/Hkgdmo\nqq+UxDfAPudL0kux4MN50vjPGv64dM2By1FSbF0FKYuRd3CedK7JEIv1927C6UunsODDeQCA0jFl\n2PrA6yj/2x+wbvRGAJDqpyNZ6blD+kvPHSJqs9FaZH7SqTd5zxNvCkls+ew9qhT1pSYqja7Hk3b5\nKz4TzsxmM9LS0gAAI0eOxNdffy1919DQgJtuugmDBw9GUFAQkpKSUFtbi7///e+47777AACJiYn4\nxz/+AQD4+uuvUV1djenTp2P58uVoaWnxVbMFAoFAIBAIeh1hNwkEAoFAIBAIvI2cU5bnsCSOX15q\nLlowIw50gskQi3WjN2L94bWS+ADYna7rRm9EUnSylBqsJL0U+iA9dLrLUR9dPZ1Sekdy3LLUQuRX\n/3/2zj4uyjLf/x8eRmUAy2hoEB86/rZepsvSL5Ky9MRLxcgpGe2Hp6UtKZGcitldMAQXcEUWjIRd\nx2wKUclWto1XCtgUiXIoNUtjV3aOD7t12JXUmZiwPeIM6gzM74/Z7+V139zDgw+b7bner1cvh5n7\nvu7r8Z676zOf79fIRAvaWE+apIM2NAohwWqc6DoOl9uX/6y+fQcK7itC7RdvI6VBj8y9BqTc8QSy\nPspkgp4q0JdjaOnuNBbikDbv8+Lzkbd/uWTDXZ7XSt6vQ+3rayGS+SNpko6JQCQW8Rvh8tCMctED\n8Akki3bphxx6bqAN76HMN7mQtmG2GcEBl3PQ0eckVJA4QeLNYC5ImkPZcTkoOrhKUg5BggCd40/g\nBABPn5sJvfQ5zQ2ro61fH5MARAIw1Z0EFXpP7moDwOY6iSryHFpK40Pt49ctL6qS+6v62GYU3FeE\njUdMLMfgG3O2IGmSTtJOqltFggkjglTweoG8+Hw4XJ1Y2PAoC7/Iu6zKW8uwdkY5qy8v5mXuNUhy\n1A3keqJ7S9IkHXbMfw8xmlhUJJgk4TK1oVEsxKbdacPKAy8x8YzK4HPc0bVKDxXD6/W5G6l/EybM\nwqbEatTOr2Ouuq6eLnj63Nh4xARjs4HlvyNhmkR1AJJ7Ij93KKed3HFGIqp8XId7bxhuiEN/63Gg\nPGfXM4yiUr2uJdey7tdNODt//jzCwsLY30FBQfB4PACAiRMn4ssvv8Q333yDnp4eHDx4EC6XC3fd\ndRf+8z//E16vF0eOHMHXX3+N3t5e/OhHP0JOTg62b9+O8ePHY+PGjder2sPmnzGRBAKBQCAQ/Gvz\nr/zcJJ6VBAKBQCAQCC7zz3428idw8JATIjsuB1ktRr/5lyhUGm2ckyPntTYTKhJ8//EiQe7+bDy2\n82FWDuWsMs3yOY1y9y2HaZYZefH5LO8XbcTnxecjI8aAjKZnsP3oNonbKC8+H7n7s2Fzngbg27he\ncOfjzOHi8boxPfoBjA0dhxhNLKLDx+Gdx+pQ9XA1Joz2hUPny9OoIzEubAITRJTEFr6vhtPXQznv\nauDFHHkoSF4E4h05vNBTo6vFO4/VDeqA4uEFCX+fKb0ndwJRyDtVkIo5AXlxgY7j85kRdG355j+1\nf82nq/BV90kA8Cv08XOA7ze+LNMsM1RBKmhDo9jndqcNFQkmlB4q7pefKjp8HNKmLGHrwOpoA+AT\n2RbU66Cv00nWFwmF249uw+LGVCaeyeGdcfy5ufuWM+GIHw/KKwhczlk2PfoBfNV9kvW1Rh0paWdA\nwOXraUOjfG0PVKHo4ComtMVoYgFcdoTSeFUf29xPtAV8Od8qE7dK3IaUf5DmJLlRM/caWN9oQ6OY\nG1Q+l/i8dDvmv4cnpz4tEa3kueLoHN4FSP1ZeqiYiWZpU5Ygb/9yFNy/Ghtmm0HJrahvqWy5QEhj\nzaMUppEXUa8Uf45h+mywc4HLa0QpRx9/jYGEtRuVgfrnSrhuwllYWBicTif7u6+vD8HBwQCAm266\nCXl5ecjMzERWVhamTp2KMWPG4PHHH0dYWBhSU1PR1NSEqVOnIigoCImJifjhD38IAEhMTMSxY8eu\nV7WHxbUeDIFAIBAIBP87+Vd9bhLPSgKBQCAQCASX4TckbxR4MSNpks7nCgtSKR5LYcbIHUQb0sGB\nPmGBFzbitNOwLCYTjp5OJnwAQEtHM3OHVCdtx4mu4yg9VCxxjZBbaP0fy3FriAaVVjPWzlzHykma\npMOmxGrU6z+ANjSKhV/jwzw6XJ0SIYA21U2zzBLHEW0gb5htHvKGMi9cDGWzeiA339VC1yehgq8j\ntaex3YKFDY8yVx8dz4tGA4lh/q47nOd8qgPNNwpnZ3faWD6vVvthiXOO6k95rehvujaFzVMaq3ce\nq8OmudX93D0EL+DRGPHhGnnnJJ+LavvRbVjY8CgTn7ShUczBSHVasS8LPR4XWjqakdH0DPLi85E0\nSYedyRa8nlglWV8URvDJqU+j4qENTMxSqi8543gXY3ZcDqqPbe7nBKXPeSFSGxqFqLCxzMnFi23a\n0CgE/8OVyYdb3DDbjNr5PmGV3GkkkJOIpxSKlBc9Sw8Vs3FbtEuP9N2L8feL3yKrxcjGuyLBhBfu\nNkIVpGKhHeXtpbrx9eZzKPLt5ucnzSES+wgKmUhusoQJszAubAJiNLFM0CVBmi+bf83fc4YaAvFq\n8Of4HGg98vOTv2eRCOjvGrwY/33hWoeAvG7C2T333IOPP/4YAHDkyBHceeed7DOPx4Njx46hpqYG\n69evR3t7O+655x5YrVZMnz4dv/vd75CUlITx48cDAJYsWYI//elPAICDBw9i6tSp16vaw+L7Eo9T\nIBAIBALBjc2/6nOTeFYSCAQCgUAguAxtYvvLEXWlXGmoLT4XDz2vkVAgF1L4zVQ+VxZ/PDlxSBip\n/K+NWHFvPtucbWy3IOujTCRPWojo8HFo6WjGzz96EV093zBxDPDlW/J43QgOUKFkRhkTLqiuFHqN\nF+pS7ngCufuWQxsahcrErb66nz+Flo7mfg4dEkVSGvSwOtrYBjLv1KK/eeRii9wBpDQGKQ16ZLUY\nkR2Xc83GXe62AqSuKnkdyS2kDY1iYoo8fCL9OxQxTO5oG8rx5a1lrA7A5XCCcdppiNHE4ja1731/\nQhhfPwCSsHn85j8dY3faWKhCf/1H8zTVkoJlTenw9LlZ2fwc5wWoSquZOa9qdLUsn5jdacPameug\nUUdi4ujbUfRACSqtZtymjmIuLXJJ8eur1X6Y5fP6zR/KJWENlfpcqV/XzlwHbWhUP2GEjqG22J02\nhASrYXW0ScRj6gt53i2ro42J2XanjfUVAEmeLvn1qDwSrFxuF3vvncfqUDX3Tdw8cgwqEkxMnHG4\nOpG7P5utY74cHhoH/nqLdukla4KO4+d4j8fFBPZW+2GkNOhhbDZI+ggAE9ABsPsOAMV1wefS48VD\nf04tvo+v9J6t1CdK7aXyeIGaD8/K55b0x1COuVquh8B4LfcerptwlpiYiBEjRuCJJ55AaWkp8vLy\nsGvXLvz+979nv6BesGABnnrqKTz11FO45ZZbMHHiRLz55pv4j//4D6xfvx65ubkAgF/+8pcoKSnB\nU089hT/84Q94/vnnr1e1h43YCBIIBAKBQHC1/Cs/N4lnJYFAIBAIBILLKOVRuhqUxI6hCiAD5eKR\nlyMXEPjcStHh49DYboG+fh6MzQYmqL0xZwtqv3ibbWYnTdKh4qENqG/fgcZ2C6qPbcZP716O0SNu\nYuHXaHPZPKcKG2abUd5aBsDniNkx/z1JbjTC43Wj7PNfIW3KEgA+4Q0AosPGYf0fyyVh4cjZZnW0\noaP7b1i6Ow1WR5vEDSh3rFBf8H0THe4LGTlQiEO70wZVkAp58fmI0cQOmqNrKMjdVtlxOZJQgyQs\nUR1J4NCoI/uFNJSP8VB+9KbkaBtorvHlxmhi2bGt9sOSHFxqlRqA1AVDY8GH8pSH5JMLnLzwyQt7\nSuIgCTt58flQBaow7/b5THyVO/NOd59iop9GHclEBVpD2tAoZLUYkdVihGmWGUmTdKjR1aJOb2Fi\nCl9Hqos2NIoJcWqVWhLWUN7nSmEpSczmQwfyjjn+/dx9y5ERY8DSprR+oTvl42d32vDcnmeRHZcD\nu9OGBfU6pH+Yhu5L52BsNiBz72XRiYQYJcGoIsHExpbQqCNRo6tl4RitjjYUHVwFTUgkar94W5JD\nTF6v092nYGy+HNLR7rSh49xJJuyRuM73MwCEBKtROH01KhJMcLg64fG6canXzdxt1UnbsfMv7zJh\nncRXGmclUYrWHy/Q0pzyt9Z5QZs/x999XN72geDnFe8apHs83SdqdLXsBw7fJUP9nvouCfB6KWLn\nvw4OR/d3XQWBQCAQCARDQKMJ/66rIIB4dhIIBAKB4PuCeHa6MZA/Oym5QQbjSs4ZTlnXqnza1Ey1\npDAHBm0m58Xno/RQMfLi81HeWobsuByWU4zOTWnQw+N1Y2fy5dxN5NSgkIwerxvmOVVMAKANVdrw\np9xqFCLO0+eG1+vLnxQdPg7bj25DREgEc98Y9qTD6wV+dk82Kq1mpNzxBGq/eBvdl87hmx4HKhO3\nIkYTy0I6lreWMYcN72KiPmxst/RzN9EmPYkm8k11wLfxT20MCACCA1WKoeeorUMdL+q/tClLUH1s\nM7LjclgYPbnjJ63xSayduY71H59rij9uOHOFF80GOp+/vvy69D6JJzSXaI7ZnTbo6+dh7YxyvNZm\nQsH9qyWfy4U/eX43vg4pDXoAl+cLX2+69sr9OTh1/iv8+qFX8eTUpyXnU30pzx/gy2ulNJY0p2g8\naLwWNjyKkgdfYWXTtV1uF9QqtcTdpDQu9LrVfljRYUdrhY6h+vHYnTZoQ6OwoF7H1iO/vt29bkkf\n0fG0xjYeMQEAXrjbiEqrecA68/XiQ7Ua9qTD5jyDuuT32d+qQBW8Xp/bi19LSq6zVvthJtrVzq8D\n4HOO0rl2p61f//B94nK7YHedwc0jbkFAADBm1C2o0dVi51/eRdFnBfjp3cvxiwcK2bUX7dLjncfq\nFO+vdC35nJavNTk09nwIUH785OMq78+hCNvU70p9MZyyrre4dr2/B4Gre266bo4zgUAgEAgEAoFA\nIBAIBAKB4F+ZK/nV/LX+pf21Fs14B4pSqDTKPRSjiUWPx4XSQ8VMvJFv9L9wty+3EL95Lg8T5/UC\n6R+mMReG3Plk2JOOcxfPQRsahRpdLd55rI5t8FP4x66eLkmZNudpbDxiQkaMAWWf/woZMQaEjxiN\n0hnrmPNJGxqFpEk6dh6Jf3yOLQqlR0416pc47TSUPPgKAKkzhnd9kctKFaSCaZbZrzvN3wa23O3G\n99/ametQfWwz0qYsYfnBCLmDjCDHFO8SGmiu+JufcqeZv/PJnSgPvce7wuRYHW2s/6JCx2L9H8tx\n8tzf2OfyXFL8XKF2NbZbWEhPAAgIANycQ5F3DVYkmFDeWoZNc6uxLel3EtGMrse7LMlV5s+xY9iT\njsWNqXi1dT17TxsahZIHX8HKAy+hsd0iubZapZaUJXdv8e4pcjnJ3Wu8Q6vVfpiNs9XRhpQGPRbU\n66Cv0yGrxQirow0hwVIHGNWF8otRPzpcnazM6mObUTh9NQqnr0b1sc1IueMJVl++fnzf0twz7EmH\nvn4eljX5RLK1M8rhcHUiq8WI4AAVno81onZ+nWI+Orkzi/IRkmgG+AQ3yrlGOefoeJorFCLz9cQq\nbEqsRnBgMM5e6EJefD4AoObEW4gMuQ317e9K5j3lfeOh/slqMbI20zhoQ6NY/jh/OQ3tTlu/sJj0\nmh8Tf3njBkLuMOT7Tn5/HYx/hiPtWopm18O9JhxnAoFAIBAIvjPEr6ZvDMSzk0AgEAgE3w/Es9ON\nwfVwnF1Lh9hwHUxyZ4vcfQKgn9OFP5Z3C/ECBjnE8uLzmQOnsd2CpEk6NLZb8NyeZ1Hy4CuICIlA\nRtMzKJ2xDk9OfVpyrcZ2C9I/XAwEAFVz35Q4eYjtR7eh+thmidsDAByuTsRoYpHSoEft/DrYnTaW\nQ4t3t5FARk4h+VhQfUiUoOP19fMwIXwiCu5fLamXvD+By8ICuUCoLH9jxbu1cvctVzyGyqD20XWo\nvqe7T8HqaEPpoeJ+Dhh/wqj8+gPNo4GcjkpuKX+veQei3PFnd9qQudcgcSP5u67daYNhTzrOdJ8G\nAoAJ4bejdn4drI42FH6yUuJ6lJ8r74vGdgs06kgsbHgUb8zZwsJ/Ul4uf+2xO204ePoTvNJawtyI\n5C5SGgul+wA/jvKx598DwOY0OYxovWnUkchqMaLH44LXC6gCVcwpRteXu9V4x6Wx2YDgQBU7ttV+\nGMua0qFWqZFyxxNY81khKh7agI1HTGzukcNSvhboHqFRR8Lh6kTRwVX4qvsk1s4sBwCsPPCSJGSs\n3BEoz7nIf0b3KeoLAMwJyrvBeLE3Oy4HK/fnICggGHV6n5CZaklBRowBufuzsSmxmvUDAEWBl78X\n8K49ACz3ndK65Z2q/hxpSvPC33tDOV7uGh6O6+xGYrDvSOE4EwgEAoFAIBAIBAKBQCAQCG4glDYs\nleDfl2+WX6tfyw/VmcBfm3d18O4T/hjevcBfi/Jn8fDuMnevGzGaWJzuPoXtR7cxN055axkyfvgC\nNh4xQaOOROkMn4OKcqW92roep7tPoby1DFUPv4mquW+i9FAxc8O12g8zR8eTU59mm/+U+8zh6sRz\ne56F3Wljohk5tXL3LWftonxh+vp5SN+9mOXV4qENeHK1kIOlLvl9mGb58rApuUuob+k1uX9ebV2P\nhQ2PSnJ2yeFdWfwxcvcN4HPcAGBOpawWI1rth7Folx7puxczt568/IHmyGDzyN9Gvb9cXDRm9Dk/\n72hcYjSxEidadLgvl9mG2WbWVnqfvybvADLPqWLzhQSVNZ+ugu38GbR0NEvqq+TSA3yi2eLGVDhc\nndgx/z2Wr4zPw0fnUxuoDsZmAxbc+biiMBKjiYWnz82cSnxb5I48+lvuDKK+AsDaTHnutKFROHfx\nHDKanoHD1ekLQZhsweuJvnyBlVYzejwuNhd451GqJQWlh4qRPGkhtKFRzCHJz5uvXTbkxedjwZ2P\n4za1FpMj7mL3iejwcciOy8Fze57t54gjd2pWixGlh4pROH01NOpI/OYP5ai0mvHGnC395hDNL7lL\nU+4WpOuTUEU54/i+58uj0Kmdzq+x5sES1t81ulo8OfVpbEqsRtIkHdbOXIfMvQY2Vvy9j8RLek0O\nSconSPNWKc8ZnxPPH0rfBwN9R/Cfyb9jeAcsORuVXL3D4Vq7uoZ6zcG+I6+HACiEM4FAIBAIBAKB\nQCAQCAQCgeAa4G8T099mKHEtf/l/peVQfSisGV8Obdbzwg1wecOaNmVpU5mcOYDPyZJqSUGl1YyC\n+4pQ374DaVOWwNxmwsnuv+Ipy4/xWpuJiSdjRt6CNZ8VoqWjmYU7jNHEsus9tvNhJNc9guS6R9gm\nPbltLvW6sawpHWs+XcU20Clf1vaj2wCACQ3A5XCKmxKrMSH8dsmGtnwTmkJU0rlx2mnQhkZJwjvy\n4pGc2vl1qEzcivr2Haxug4lX/L9yUYEPyWZ1tAEATnQdB+ATDgvuX42xYdEICQ5h5w9n03swN5pS\nWdVJ26ENjeon9qVaUpC518D6ihdXeVFSCbl4KK8Hhb6jnFGlh4qZQwwATLPMWDEtHysPvMTGhZw/\nrfbD/QTMGE0sJoTfjhhNrESA4cPvUZ3dvW7WV3nx+QgOVElyS5HAQ7zzWJ3E9UN14e8ZvMja0tEs\nEbZ50YbEvPLWMvb56JG+cKTlrWUALq9PwCecUJhGpbk9d8IjWPNZIR7d8TCMzQa0dDSzuRynnYad\nyRbEaGJhdbTh7xe/xYmu45L1kDRJJxGt+HsEXaMiwSeUBwUEY0SQCnnx+ejq6cLChkdZGEt5iEJ/\n0H2KxobCaZLATtA6Od19CqWHipE6+SlMvOl2dk8hKJfh6e5T7D5AY0fjQznW6H5I1wV8ee8IpR8b\n0GtyIfpbi3JRSy50Kf2AgdooX5fy+wQ/165UNLseIREH42qEvqtBhGoUCAQCgUDwnSHCDd0YiGcn\ngUAgEAi+H4hnpxuDgZ6d5IKS0gYovR4sFN9wUAr5NhzXGdA/lBcfEs3ldmFEkApeL5gDiOrOh9aj\nNmlDo1iYPVWQShLirrHdtwGvr9Nh9vhEbD22CdFh47BrwYfs85X7cxA+YjTy4vNR3lomCU2nr5+H\nFffmo+bEW8xVRKEhD57+BDUn3oK7z43XE6tYmLmlu9PQ6fwaXngRGBgoCccmD31HbZGHiSNIPKEN\n8O5L51Ayo0wSjpLKpg14PizalW5a+xtXcpllxBiQt385cu79Bco+/xXGhU1gIQ6pjwD4zbU2nHrJ\nQ3cONp+pjiR0KIVz5JHPQX/1kocupDrwYToDAny5qvLi8xGjiZU4xgBAXz8Pdcnv9wu9J7+2vA18\nXflwkwUHVqJOb5Gsnx6PCyHB6n6h8vg1xIfuBMBCO7rcLhZSkM6hOapURz7MJR8Ck8I50nX4sWrp\naMbKAy/hpbiVGDNqDH7zh3LYXWewdkY5C4NK893ldmHxlGcl4ShJCKVQqXRsXnw+ntvzLDtu0S49\n3H1uBAf4QkduPGLCqfMdeC7mRVj+2gBVkMrv/KR5onSfo9CJ8vCN8j5O/zANXRccqEzcysKyAsCj\nOx6WvN/YbukXfhYA9HU62F1nUJf8viQUJIB+IVOV7ve8w0/ezoFcnPy9Y6AQi/JrKpU/0Hoa6PyB\n6vnPZLjXF6EaBQKBQCAQCAQCgUAgEAgEgu8Q2iQn95M8VJf8NR+KT17OcK/LuwCUXE/DCXEldyVU\nJJigVqnxfKwRqiAVcxRR3Xl3DbkvUhr0yGoxonD6ahbyjUSxpbvTYHW0QRWowr4zLYgM0aJkhs8h\nQ6LTprnVqEgwoeDAStaPFI6uLvl9vBj3UxaiEPCFhDzRdRxrPitE6uSnMCJIxUIW5u5bjpIZZahf\n8AEaFjSiLvl9Fo6Nd0dZHW3MheSPVvth6OvmQV8/D3anDRkxBpw+fwqFn6xkbqHy1jKJs0rulhiu\noCkfK7mLhYSxyRF34TZ1FBbc+Th2Jlvwwt1G1u9Kjjn5tYbqJFFy08jns1KIOl404/+l13anDamW\nFBZyUh72Ucm9I78ezb/n9jzrm2NBKphm+fJ6xWhiJW2keRsVOhYOVye7XqolBVZHG1vPdG3qZ6on\njS31R3ZcDgDgZPdf0dLRLFk/IcFq5spU6i+qC90LosPHIWmSDnnx+VCr1P3OkbsPqU9ozgM+EStt\nyhIkTdKxcskVxV/b7rQx0ewHY36AlQdewuIpzyIqdCwSJsxicxkA8uLzYXedwfToB5gYRg7QpbvT\n4HK7kNViZA7IGE0sC1tpd9rg7nPD6wUKp69G9bHN2DDbjJx7f4HdHR/A43UjLz5f0VVF7VO6zzW2\nWyQuPMrNSE5Caqc2NAqjR45m4tj2o9vYWHddcKB0xjpo1JEs/yJfF7o/jAhSYVNiNRPkATDXoyrI\n5zbkx4UXYWme0pyQi1pK60/p3qEUApI/nsqTu9oGu//I3dL+7gfXUjS72u+6Ky1nqAjhTCAQCAQC\ngUAgEAgEAoFAILhGOFydADBgHhuCNvzkG5b+xBt/G5lKm6vy8IH8hrNSGfKwZ3xIwooEE6qPbUZG\njIFt/tJ5fN2yWoww7EkHAGTEGFB6qJgJDY3tFhQdXAUvvOjq6ULt/DqYZpkRohqFooOroK/TYWlT\nGhMgHK5OdHT/jfUnbQbz11q0S882rSdH3IUJ4bdjwZ2PwzTLjLz4fJZrqLy1DNrQKMRppzHhIXOv\ngQkgJHjxIRR5kYnGI047DZvmVjPHyZNTn8abSTUwz6lix1YnbWfCHI2BvJ8GY6ANYj5sHG3ak8tH\nrVLD7rThRNdxZH2UCX2dTrJ574/hhELzd+xQhEESOuTwIT5rdLVs3OK009h88LepTwLFol0+sVYb\nGiXJTaYNjWLhLOUO0KwWI7xeX3jH7Lgclids6e40lhONQo0CYGuEz1VG6628tQwadSTGhY3Ha20m\npDTomROK2uQPahOFR+RFWLng5m8M7E4b3L2+etmdNrjcLuTtXy7J2+fpc8PqaJOUE6edhpIHX0Ht\nF2+j9FAxMn74Amq/eBvBASq0dDSjvLUMaVOWIDp8HGI0sRgfNhHa0CjmNPumx4HcaQUIHzEarydW\noSLBhNJDxazetN6MzQZ4vcCIIBU06khUJ22Hw9WJV1pLkBFjQHCACqWHivvlyPM37/h+l4tJje0W\nLKjXMSccLx7HaGKx/eg2/PyjF/H3i98iRhOLysStmBxxFxbU61B0cBVKHnyFOdLo3rV0dxou9bqh\nUUeyUJ+8OEdzTe4Ok68/ufBMc2igfIf8PFHKN3ktkIt78h908HW4FgxHrNYQKY0AACAASURBVOeR\nr+ErLWcoiFCNAoFAIBAIvjNEuKEbA/HsJBAIBALB9wPx7HRjMNCzEwkAtOnvD14EkoevUwrzSOcM\nFKZL6RrysFtKZciFncZ2Cws7yJ9ndbSxsGv+2kbh7PLi81FwYCVUgSpsmG2GYU86vF7gZ/dk49sL\n3+Llz4tZeLxUSwoyYgyICIlA0cFVKJy+Gs/teRZvzNmCL7/9Ej8Y8wO2iZ3SoGehHwGw0Hm0QU5i\nZUqDHqfOd2BnsoW9x7eR6plyxxOo/eLtfm4oeZsWNjzKHDZK/ecvTKFc3AGUw7T5Gz9CXh6Vkxef\nz/J5UT+QqygjxoDJEXdJBFy6trzca4E8fKMS249uw8oDL0nmEN9/8vey43LYXKCcVEph8KhtfEhQ\n/jN+7gKQXAe4HFp17cx1WNaUjl6vh4UKLfzEN4/feaxOchwAydzi14rdacPS3WkYFRQiCT9IfUSh\nACkUKYWXpLbK199g0P0kLz4fGnWkJFwj31Z9nQ5fu2xsXfD3BHkdunq6WOjPV1pLWL3oXlB0cBU2\nzDbD4eqUhD2kEK3k/KJrpzTomUuUHHrUB/z5VAY/jnw75fctul9RH/R4XAgOUMHjdaPogRLWl3w/\n9XhccF5yQq0KxeuJVWzdklOOwjTy88rYbEDB/av7hb3kxXW6H/Hv8WE1+Tnn7348lLEe7v3/SqC+\n4ttzJfW9VnWUX1septVfOVfz3CSEM4FAIBAIBN8ZYvPnxkA8OwkEAoFA8P1APDvdGAz27KTkMPIn\nyMg3+fk8OP5C6l3thqV8E1e+GUk5nwD0y2UGQHFDW16+1dGGpbvTsGluNWI0sXh0x8Po7LEDXuC2\nUC2CA4NhnlMFbWgUWjqakbd/OW4eOQZbk34LbWgUrI42FH6yEl+d60AverEt6Xcs95BGHck2TEkw\ny9xrwFfnTzInGO/Yk2+uUpvTpixB7r5s3DzyFjT+v70DtokXhZQ2wfmy5QKdvA/lm+sD9aNcXJXn\nSSKhiDbxAZ9IFKOJZSKap8+N4EAVMmIMqLT6whaSuFaRYBpU7JK32V//kLioVB7vrMyOy2G5xgYT\nB0kYkeej87dmqF+ovxbt0sPrBWrn17G54q+ecgGO0NfPw9oZ5UiYMEuSw4/yaSnl5Wq1H0byzkdQ\n9fCbTMhqbLcgo+kZPBfzIsx/MiFSfVu/PH680OUPXqDj+0Ffp8OIIBWCA1WK4g29Bi7n5+PbCYCt\nHT6fWZ3egpaOZpbrzOHqxNKmNPT19WFs2DioVWpJXjNPnxvuPjd2Jlv6hQ6kcaH8bZ4+N955rL/A\nBoAJ5Hzd5fns0qYskQixJEhWJJgkIqA8tx0J+SP+EcqTXK1rPl2FHk8PAGDT3GqJAEn3PV4M49vE\n51ej8SGxUF7vgX64cL0Y7nXk7ftn19dfneRi72DfR0I4kyE2fwQCgUAg+H4gNn9uDMSzk0AgEAgE\n3w/Es9ONgb9nJ6UNRX+/0Je/r7QZPtRrXC18ma32w0iuewRVc99kYgVtpi9rSmfujIEcda32wzA2\nG9jmOXDZHfXlt1+i9ou3mYhDos507YPYemwTCu4rQn37Dub8sTlPI3daARbc+ThzDZU8+ApzUpGw\nlBFjwMYjJtTOrwNwWaAhRwvltyLxDwDLz9Tp+hr1+g+GJCDx/SUXtuTjIncfDmWMlcK6+fubHC4k\nhLncLvR6PXC4OrF2Zjmqj21GdlwONOrIfm4mEjfJWTPYnBuKy0TJccYLZrTJzbu2slqM/cQGpT4d\nSKDkhQzgsnBmd9rwTONPEBQQjPcWfsiEMwCK9eTL452FVkeborAlF1TkfaGvn4dNidVsHWXuNeC8\nuxvfXjiLm0bejHUP/UYiICq5Q+Vt5vuSFxF5kUbuguLdkrwQktKgR/elbnx7sQujVTfjvOccW69y\nwYhcoZVWM9y9brxwt5GtQRJoqVz6Wy7K8oKcp88N0ywzE8l5hx0v6PECuXwt0XvZcTlsTsvFFBLS\n+PnEX8Ph6kTBgZU4c/4UAgICcNOIm3H2QhcCEIB/u3kScxkuqNehdMY6TI64S+Jy5dspd/i12g9j\nQb1O4u6TzzWlv68HV+oU4+ec/LuKP+a7ENKU6qbE1Tw3iRxnAoFAIBAIBAKBQCAQCAQCwVUw1Lw8\nSu/TRu5QRLNrkctFqY6ENjQK9foPkDRJx3L3AMCJruMs3xifu4sv83T3KSbmeL2Q5P2q0dVCo45k\n+YzI+WSa5fv349MtiBipwZvHtrCN7zq9BS/PrMD06AeQaklB6aFivBS3Ern7s2HYkw6row0VCSbk\nxeej+thmFE5fzdpDotnZnrNs4zw7LgfGZgOS6x6BYU867E4bsuNWICo0WrFvlPqZxoDyRtXoav2K\nZlktRonASMfIN53516mWFDYX6Fi5iEKfk8NMGxqFigQTVIEqBAcGY8yoW/BamwnJkxai9FAxjM0G\naNSRLO8XQY6fwfA3h+UoiVFpjU8CAJszcgGkIsEEVZBKkovKX59SWfw6IHGS1h9w2Z1n2JMOu8uG\nzh47WjqakVz3CPR18yQ58+Tlne725ZCiOgNgawHwCTmUo43awreX74u65PcRo4ll89njdaPs3yuw\ndmY5/n7xWxQcWClpN+CbN6mWFGw/ug2plhSkNOiRakmRtI/WJT8mlOeP5gS1JU47rZ+7zu60ITp8\nHAqnr2aiWbfnf5Bz7y/gcHViYcOjaGy3sPa1dDSjx+NCpdWXNxAAKq1mVm+HqxOePjcrVxsahbz4\nfDYuVB/qq7z4fAQHqphotrgxFduPbmP3P3KvURup33nRjJ9X/JymvqbxTJqkQ158fr88cSTMrfl0\nFS54LmBs2DjkTiuAWhWKoMAgrLxvlcQJd9OIMcjdn41lTek4d/Ec6xtqJ409/zpOOw07ky0sZyKh\n9AMKfi5eLUplDHUNKyH/rpLX92q+k4Z7nlxMvpp2DQXhOBMIBAKBQPCdIX41fWMgnp0EAoFAIPh+\nIJ6dbgzkz06804HfoB7MWaQUxmwo4fuuNm+NPLQdbYjKc6vJxZqzPWdZSEN5/Sm8GgAUTl/NnDSt\n9sMs3xHv+OGdUhUJJizdnQaX24Vu9zmUzfw1c0tlND2DW0M02DS3GgBYaMff/KEcdtcZaNVj0ev1\noGRGGRPIKhJMyNxrwAt3G5G7PxubEquhUUcic6+BiWtFB1fB43Xj9LlTuC1Mi/ARo1GRYOrncFHa\nlOVDxsldSrwQyjupBhoLeW4vGhP59fgQgfKcWQCYoFNwYCUu9l7A2QtdyJ1WgJoTbymGE1S61rVG\nyRkmd6ZRKEZ/fc27yeQONN5hRJ/zji2row0adSQAsDlBIQf58Hl0rjyUIQCWg4vqmtH0DCoTt2LN\np6tgmmWWiDnyseTLSN+9GBNH346C+1dj5f4cBAcGIyRYzcalsd2CooOrcKG3B46eTmxKrPab103e\nx3w/pDToERAAeL3Ahtnmfq4vY7OBub0W7dKj4H7fmqD1kxFjwGttJhbeM2//ctymjsLriVUSZ1VW\ni5F9fmuIhq0hchGmTn5Kkj8QuByikXejbT+6jQlxfM4+/hh52+m+Is936O51S1x3je0WLG1KQ1To\nWBY6kkRtl9uFC54LOHvxG+RNK0R9+w5kx+UA8N0fyL1K/Un9ROPP55K7mjCGdI7SfWWo5fH3an8O\n5yspcyiu6KG6pQcr/1ofTwjHmUAgEAgEAoFAIBAIBAKBQPAdEB0+TlE0410scmcR/yt9ctn42xSX\nX+tq68rnyCI3S6olhTmkePGHNv4rEkwYPTJcUg5fP1WQCoXTVyMg4PIGPIV3/Or8SbR0NGNhw6Nw\nuDqZWKYNjYKnz40TXcdhP2/D2YtdcPe5sfbQr5iTpHTGOnzT44DD1YnMvQYs2qVHpdWMn92Tjbrk\n9/Gze7Jx+vwpVseKBBNOdB3HqfMdAIDxYRMBAMua0nHy3F9R+MlKaNSRqJ1fh6IHShAQGICSGWWo\n0dVCGxrVz+Hir7/5kI8Ulm/RLj3rjxpdrST8IN9XNB9o3vAuFXJR8GXn7lv+j3xsy1nZVE5Wi5E5\nr5Y2paHwk5UICABGBY9CpPo21H7xNjbMNvfLZaV0rWsN397GdgtzIPHtPd19CuWtZciOy+lXl+1H\nt2FBvS+vXaolBVZHGzuHd5uQw4g+o7Vld9qY8JTVYsQLdxvx5NSnJY4t4LKTjULrZe41APD1c158\nPp7b8ywT1GI0sRgXNgFdPV04ec7nwCT3IY1lq/0wq2ONrhYVCSbEaGJRr/8ApllmlB4qRlBAMIoe\nKEFFggl2p803frvTcKG3B9lxK6BVj+0nmvmD+oHuP6ogFQru961Fmh/0n8PViY5zJ5H+YRoAsPpo\n1JHM6ZcwYRYTzRImzMLOZAvq9L5wg9RWAHC5fS60nHt/gU1zq1Gjq0WcdhpS7ngCHq8bL39eDJfb\nBaujDWmNT2LnX97F0qY0dF86J5kfkyPuYv1U3lrGHGL8PLE7bf3WkSrIV8esFiMy9xqQF58Pd58b\nWS1G1qdFB1dh7YxyhASr2bnkFFMFqhAYGAD0Ab/781vIjstBeWsZAODU+Q4m9FN/xmhikTRJh8rE\nrSg6uIr17UAhGIcCja/8njNUNxd/r7Y7bRIxmP+c5uVQHWL+nGb+RLPhOs+G6xa73u4yJYTj7Dvm\nan8pJBAIBALB9xnxq+kbgxvp2Uk8GwkEAoFA4B/x7HR96Ovrwy9/+Uv8+c9/xogRI1BcXIyJEyf6\nPV7+7KTkFAAub5zKczYN5vSRb0Ze7WbhQE4Vqof8tdJmPeUF4nP48E4oJZeau9eNwumrkTRJx1xZ\nKQ165kBb1pQOAOi+dA5nL3bh0duT0fRVI+qS35dchxxAJIytPPAS3pizBTGaWLR0NCNhwiykWlLQ\n43HB7rQh595foL59B9KmLEGl1YwejwuePg8AICQ4BO885nOTLKjXwTynCie6jqP62Ga/eXwIEsm0\n6rFQq9QsfxrlggIuOz7oPXID8S47ACxPklKOLBofytXG55ujjXBy1pFAx7ul+PqQO4jcOEPN5XY1\nkKvH3euGx+uG7fwZbJpbzXJR8X3M52rjx1xfNw+3hkSidGYZCj9ZycpQcqfJBQy70wZ9/TzcOioS\nqqBg9Lgv4O8Xz7I6yOtKY9BqPwyHq1OSe4z6knJxUd6sby+cxajgUbCdP4M6/fuSfF/kNgQuO5bI\nnUYi2aigEF/fOM9gWUwm6v77XQQEAMEBKrj73Hg9sUpxzvhrN/8eYXW0IUYTy/KKBQeqkHLHEyj7\n/Fcsn5lhT3o/5xsALG1Kw/iwiawd+jod7K4zWHFvPmpOvIWAAOD5WJ+rk45r6WhG1keZKLivCD8Y\n8wNo1JFM+M3bvxzhqtEIHREKd68Ho0eOZo41CmnI30uByy7ABfU6jAubgBfuNrI8a4XTVzPRlVxs\nWS1G5lo7d/EcOl12NCxolDgSeecjueYSJswCAJajrLHdwuYqjanL7cKaB0tYf/JORH6t8vnWhnPv\n9jeWQ3Vj8Tnf+DVCjuCAALD73pV8nyiJZrzL8kb9/3jhOPuecrVxQAUCgUAgEAj+lRDPRgKBQCAQ\nCL4L9uzZg0uXLuH3v/89srOzsXbt2iGfq+QUIMgVw+ds4nMV+SuP/2X/tRDN/D1fRYePk+RY4jdZ\neWcJ1Zd3gTS2W5DVYkTalCUwNhv6tZnavWG2WSJUWB1tUAWpYHW0IXOvAQEBgKfPA7VKjUV3pOK/\nz30JrXosqzttclsdbcxpVX1sMzJ++AJKDxUjpUGP19pMrH7mOVWoTNyKF+N+irUz17G8TDuTLdg0\ntxqjgkJwqdeX18vutCE4QIWlu9Pw849eRNqUJazN/vpcGxqF8WET8XpiFTJiDMhoegYpDXomvJDz\niBx25ACR5yMj0WxBvU4SwlI+PtVJ2/vlmwMA9z/aQPnBTnf7cp5ltRhhdbQxd5rdaYOx2cByU5FL\nZigM55lc7qjM3bccFQkm1M6vg3lOFbShPgcVL5bRvNSGRsHd63MK8eJfVNhYlM4sQ3lrGYoeKMH4\n8ImI0cQOuiaiw315trTqsVAFBcPrBQICAI06EqWHivs5/7JajJK8ckub0rBol16yVvV1OixuTMWr\nretRdHAV8uLzMWbULaxegHSd8HnbAgKAb3v+zvre4eqEo6cTL9xthHlOFcaMvAXrj6zDz+7JhnlO\nFQqnr8aIIBXLxQZAMe8brW3qM560xifR0tGMjKZnYHW0IS8+H+88VocaXS0W3Pk4diZb2HwJDlCx\n+dHYbsHixlR8+e2XGB82EYXTV7P7hCpQhZtH3IKXPy+Gx+uGaZYZCRNmQasei8Lpq2F32rDxiAmB\nCMSWo5UoPVQMbWgU1s5chyenPo3KxK24Va3BT/9vNr7p6WS5DiNGaVh7+Nxt1FbKFVY4fTVWHngJ\nKXc8AVWQChp1JFsf5HbLiDEgRhOLigQTggODgQBff9idNqQ1PonGdgsy9xrYWGfEGFB9bDN2/uVd\nLNqlx7KmdLTaD6P0UDEbf21oFDJiDLCdP4303Ythd9qQF5+PooOrJD84yI7LkbgTB3KsyteMv/eG\n48aK007D2pnrmMjO38s2zDYjOFA1rDKVriH/m3fM3oii2dUiHGffMf+qE0sgEAgEgqEgfjV9Y3Aj\nPTuJZyOBQCAQCPwjnp2uD6WlpfjRj34Enc4n8MycORP79u3ze7xSjrPh5GiRh3WUl3Gtn4f85aBp\ntR/GwoZHsWP+e1KnT/085iCRn0ebwgvqdYgYpUFAAPC1047ND2+TuC/4cI/kEluxLwsBAQFYcW8+\nar94Gy63C4unPItK62tw9DjQ6/Xg1w+9CgCotJrhcrtgd57Bimn5WPNZISoe2oBKqxkZMQbmOOvq\n6UKl1czcJi63C2qVmglTlAeJ/gak+dXIMUZuIn+hyOT9Se6OtClLkDBhlsRtp6/T4WuXDaUzfIIB\n39+8A43cd+TI8zduSu9TnjNyw/R4XCh6oAQFB1ZCrVIjI8aAiJAIrPl0FU7+z99Qv+ADAPDrblO6\nhtwxM1B9Bjr2dPcplkuLNvVJbOZzWPF55WjsyO0kd0LKx0hfp0Od3qLo+LQ62pDR9AxKZ6xjY8U7\nm+SuPxon3rUHADv/8i5qTryFr86flOQfo7nDOzAB3zyr0dUyF1bFQxswOeIu5O5bjuRJCyU5tbp6\nujA54i7mVrvQ24PwEaOZe8pfKFd/bldyU527eA596MXZC12oS34fAPrlMaS8Y4BPoNv5l3dR+8Xb\nyIvP7zde1C8AWN+Qmyk40CfArdyfg6CAYLyeWCVxivIOSMOedJjnVAEAE9CDA/vn4ZPPM6or1Y0P\nS2h1tOHpxh9jXNh47FrwIayONhQcWInXE6vYWqXciGtnlGPFviwAwE8mp2HrsU0YrboJPb0uVM19\nk/U51ZfO33jEhMLpq1FwYCVsztOomvumZO2SW2/Np6vg9cJvjkP6gQJ/j5U7k6+UoTqMBxP1BqsD\nL4L/M1ysQ0Gp3sJx9j1GbAwJBAKBQCAQXEY8GwkEAoFAIPhnc/78eYSFhbG/g4KC4PF4hnz+QHlt\n+L/luYj4Y+Q5z5TKulL85aCJ007DjvnvsQ1tcnxsSqzGhtnmfu6rVvthZO41QBsahcrErah62Ofg\nulWtYU4e3gVjdbTB0+fGsqZ05O1fjp9MTsOmxGrUt+9ARowBnj4PSg8V4RuXA7eMvAWqfzgiVh54\nCRkxBryeWIUJoydiwZ2P482kGhZOLWHCLJQ8+AoAIHd/NvLi8xGnnYaKBBPUKjXL55W7bzkKp69G\nRYIJVkcbFtT7NrhpE7/70jmUHiqG3WmThFejdgzk1qOQaNXHNkvG0O60Qa1SozJxaz/RjMLtkRBh\nd9rwwt1GiUuFGMwpSJvrcdppyIvPh+38GSz/6GdQ/SMU34p9WVi6Ow3PxxoxYfTtrM5DRe52lNdH\naV7z60D+TO/1+nLfkVgmXwfUFhJCSEzhyyJnHe8OA3yCSUf332B1tPWrV3T4OMRoYlGZuBWVVjOs\njjaJwEWiCE+cdpov1GPdPFgdbUhp0MPqaEN9+w5smG3GpkRfuEi704aUBj2WNqWhsd3CHD+5+5bD\n4epkrsAnpz7N5i+5NOvbdyAhejbSdy9G+u7F+M0fypkzcMNsM0YFhbDcaANB15T3d5x2Gmp0tSid\nWYazF7qwdkY5tKFRiu7Y8tYyiQuy9ou34e51I0YTy8aLD8dKTjXKqVU7v4652TTqSIwKCoEqUMXu\nK+cunkPmXgPLU5fVYoSnz4OsFiO0oVHYMNvMzvdHY7sFaY1PQqOORPelc8x5CPhCwqY06BGjiUXh\nfWsQEhwCu9OG0kPFGBGkYq63SqsZAQHApsRqRIRE4JZREYhU34Z9Z1oQMVKDnl4XIkJuhUYdyRx4\nJEyTa27DbDOKDq5Cr9cDTchtzJlG+cOKDq7C0qY0uNw9kvrL17HdaZPkUZM7k68G+fcRf226Nw8U\n5WUoUWD4+zyfi+675HpErxGOM4FAIBAIBN8Z4lfTNwbi2UkgEAgEgu8H4tnp+lBaWorY2FjMmzcP\nAPDv//7v+Pjjj/0e7+/ZSe68GU6eG3/5YwbK5TRc/LmnyAFFm+pK+ZTIIUFuG3Jk0MayPD9V5l4D\nvuo+ibUzyxEREoEvv/0SRZ8V4NcPvYrJEXfB2GzApV43er0+gbJkRhk06kjEaafh1db1qG/fwTbG\nKe8QbYi2dDQjd182tKFjcanvIrY8/JbEGQRczmXk26R3w+sFPF43zHOqmOOn7PNfoXTGOpbbjIf6\nnsqS9yG5LJRcHEpjmdKgh8frxs5ki6RuACS5kuRjI7++v7H81SdFWH9kHQrvW4PaL95mDjQSBOV9\no1SGv7Ll7w91XstdZ/Lr+7sW9Q3fL+SOfGPOFokDi85vbLcgRhPbr158/rSlu9Pg6OnE+LCJ2DDb\nDAASJxVfN3Jerrg3Hy9/XgyteizWPFjC5ijlQtOoI7GsKZ25HAFIXICUR4xYtEuP4EAV5k54BJX/\ntRElD76CiJAIaNSRTCwsuH81c1UpuSDlfaw0V+UuUd5BJ5+jlM+LRJDsuBxo1JEStxh/TyBIdKT+\nszrasObTVSi4fzUT/CjX3KbEagBg7aKcZPwYOFydivnraOypr55u/DG2Jf2OzQ3KOUf1PHfxHN5b\n+GE/J+H2o9uYY3XFviz09fXh6SnPYlz4eCy483G0dDRj4xET3H1u2JynERUajRFBKlzqdaNOb2Ht\noXEyzfLNIcOedNidNhb+kncqDrRe5E6t6+E0ptx2lNuMr9O1cpzdSBFjhONMIBAIBAKBQCAQCAQC\ngUAguEbcc889TCg7cuQI7rzzzisqR+68UXLiDAYvliiJZkP5Rb2/z5Xqwbvg6F8l5wPlyeFD1JGg\nRfmFiDjtNGyYbUZU2FiUt76MpU1p+MGYHyAqdCx+84dynOg6juBAFV5PrELJjDKMCgpB0cFV0IZG\nodV+GK+0lrB8Yzv/8i4WNjyK7Ue3Ia3xSVgdbVjxcRZuGnkzFk95Fmd7urCsKR2LdumZM4icEFQ3\n0ywzaufXYWeyzxWUNmUJyj7/FXLu/QWenPo0Ex0oRxXl7iHHEu+yUnJZpFpSJDnh+JxldExAgM91\nxfcR9bOSaEYojTdtiJPLpdV+GC2n96LwvjV4Me6nvnB7yRaJW4nccLyjzl/Z8vflAt5Q5jXfV/y5\n/Hv+rkWiWXlrGTuW3JGUz4oXJFrth5E0Safoksvca4C7140TXccBAGtnlDPRjJxEFDIzpUHP+kYb\nGsXckSvuzYcqUIXCT1Yiue4RbD+6DUt3p+Hpxh/jRNdx1OktTEROtaRAGxqFvPh8BAeo2HvkdjTN\nMiPljidQ+V8bkfHDF5AwYRbLBbZhtpk581LueII5Efk5KIfazM8Veb9S+/T185hrjz5vtR/Gc3ue\nRWO7BcZmA9KmLEHpoWJktRhhd9rg6XNDGxqFGl0t8uLz2RyitU9C+4J6HdJ3L0b73/8baz5dxdx4\nADA+bCI06kgUHVwFT58bGnUkE+CyWoxInrQQhj3pWNqUhrQpS/q1URsahTfmbGHuzhGBI6BRRwIA\ny0dGwn1efD66LjiYs41otR9G7v5spNzxBNb/sRyakNsQPnI0thyrRNFnBai2bkGl1YzUyU9hzYMl\niAqNxpoHS2CaZYZapWbjmNVixIbZZphmmRGnnQZtaBRCgn0O0zjtNOacpHvHQOuFF/sHcoEN10HF\nr1dfrjeVZNzos4EYSKiVH3OjiGbAta+LEM4EAoFAIBAIBAKBQCAQCAT/a0lMTMSIESPwxBNPoLS0\nFHl5edes7KGEXeQFAD4MnXwTcDiCxVA3W/2FAlRypmW1GFFwYCXsThsqEkxMPOI39nmhwzynCuEj\nRjOxbUTgSJw+fwq5+7JZKLTy1jIUTl8NVZAvTCO/Sb796Das+awQP77zKVQf24y1M9dBo45EH/rQ\n1fMNth3fgk1zq1Gnt8A0yxeGrfRQMbLjcpDVYmR1yd23HC0dzawdlVYzbh45BrVfvM3qz4tlp7tP\nIXffchaCje9PXmSkPuq+dA5ZLUYmRCxseBSN7RY2FgDYBvxg/Sz/nPJlyXH3upG514BFu/TIajEi\nOy4HtV+8zYQWXiSTi6N0XbnLjq45lBCNA22s0zXJxcifQ+9RPZXCDAJAjCYW2XE5kvPJ6cVv/suP\nITcfoQpS4YW7jVixLwunzn+F8taXYdiTjmVN6XD3uiXihcfrZoLPol16FqqQQjSa51RhbFg0Nh4x\nISggGFGhY1n4R3Ii9XhcLExgQACYiHb6vC8/V+ZeA9YeXoOMH76AN6yvYudf3mXXj9NOQ+38OlQk\nmFDfvgNvzNnCxGRecJT3t3zclAT8DbPNiAodixNdxyVjrw2NQsmDr0CjjsTJc3/D+j+WIy8+HzW6\nWmhDoxD8j/CpdqcNS5vSYGw2sPVFAiMJtS/PrEBwUDAK7l8NADjZdVlOZwAAIABJREFU/VcAwIbZ\nZmhDo9Dj6cHzsUYWpjSrxYizPWfx8ufF8Hp9omal1cxEYX7+0Vho1JGo138AbWgUuyd5+tysP5Im\n6VCZuLVfiEuHqxNRoWOx7fgWnDl/GsvvXYGIUbfilpERCAoIxtt/3o6zPWex5rNCvPRRFruXAGCi\nHAndDlenZA7X6Gr7Xc+fy5P/nBc6lUJoyo8bCLm4z68Z+mGDfD36K2Oga/B1/t+ACNUoEAgEAoHg\nO0OEG7oxEM9OAoFAIBB8PxDPTjcGwwnVqBSqy1/IRMDnXrraPDcDhdoDpGJeqiUFAJgQNpAwt/3o\nNuTuz8b4sIl44W4jyzkG+Nwu2XE5eG7Ps9gx/z0mcgBgIQ2tjjYUHVyFF+42YnLEXcjdtxxpU5Yg\nYcIsFt6M2k/iyImu40w0ozBo6R+m4WuXDRGjNKh+5LcsHBtdTxsahUW79PB6gcLpq9HV04WsjzJx\nm1qLrUm/BYB+4SX5kJVUdwrBRznR5OHWTnefYqHo1s4oR8KEWSxsIIWck/f3UMeVnw9A/7CZBPUT\nuYoohJxSCMKhhgNVqgudP9D85OeTPJQiD/UPbeQrhbAD+o9Rq/0w9HXzgH/kqaLQjDRmNB4LGx5l\nc5Cuv/3oNkSERAAACj9ZieAAFTbMNvcLL7phthmZew0AwD6nUIfUHrvTxsI0OlydWNqUBq16LDx9\nHqiCgvuFZ2zpaMbPP3oR25J+h66eLqz4OAsv/3sFyltfhqOnE5sSqyUhGfnQinw4T3mISgDM1cW3\nRYlW+2Gkf5iGM85TeDOpBjGaWKRaUnDu4jl0XXBgZ7IFje0fwPLXBgBA7fw61k4K4+hwdTKBKNWS\ngowYgyTMKc3FOO00NLZb8HTjj1F43xrUt+9A8qSFWPNZIcaGjkPpzDIkTdKxEIt58fmsL8lJxs8L\nauuiXXp0dJ9kOeaqk7bD7rSxewTvvCPBmfqRX6NWRxtr04mu47A6/oSaP2/DczEvovpYFSLVkTDN\nMuNE13FUWs3ovnQOuxZ8yMYyd182VkzLR82Jt1g/8fUlR+pA93taL4PdG/h79kDH8OE6yQ3Ijz1/\nnxto7Q723UP1GWoI4u8CeRuv5rlJCGcCgUAgEAi+M8Tmz42BeHYSCAQCgeD7gXh2ujEY6NmJ3/xW\n2jwdTKy4VvlilEQSXiTjN1L5HGLyc+TOo+y4HCZEVTy0AZVWc7+8RyQ26OvmISpsLMxzqvoJAABY\nrqGo0Gj0ej0omVGGvH05qHq4Gmkf/AT/c+lbVCZuZZvpVEZGjAE5H/0cCASiw8YhJFiNjBgDKq2+\nEHw1ulpYHW1YuT8Hjp5O1CW/j8b2D7CxbT1uH/1vqJ3vy/cj72fKh0XC3YJ6n3uFQikq9Ud10nZY\nHW2sTbTxTHmjhjqe/som/H3GjykAZO41sPbJP6e2+Rtjf/Xh3xtsc30wRxqtC17skguCqZYUuHvd\nCAgAy81Ex5CAwwsnJA7y4xGjiZWIqZQjq9JqRo/HBfOcKskaAHzCDOXn4vN38fm9eOH2NnUUSmeW\noejgKhROX401n66C1+sTnXihEfDNWcrt53L3QK0KQcH9q1kuMZpDefH5yGh6BpWJW5m4SO1LadCz\nsSVxKHOvAR6vG8EBKnZdpfFIa3wSyZMWYsyoMXhy6tMAIBGuAGBxYyoK7itC7RdvIyPGgNx92UAA\nsOLefKw9vAYTR9+Odx6rY0Jk7r5srJ1ZjskRdyH9wzR8c8G31gCfYPXYzocRFBCM2eMTcdB+AA6n\nA6NUIxE+YjQT6rPjchCjiYW+ToeO7r9h4ujbmfAon6e8kMcLh6fOd7B1SgJ96aFiNoeej/U5DseG\nReOn/zcbG4+YsGG2Gc80/gR2lw0BCIDu9vlo/JsFHnhQeN8aTI9+AAsbHkXGD1/A+iPr8OuHXsX6\nP5bjTPdp9KEPt6mj8M2FTibiyQX31xOr2Pz2d78f7N4gX+uDfW/QHA4OVLE1Sg5YuZCsdP5wfrRx\nrb6nrjVK/S2EMxli80cgEAgEgu8HYvPnxkA8OwkEAoFA8P1APDvdGAz27CR3Lw0mSA0kQlzJ5qR8\nw1XukJILF0obskouOV5gI3Ei1ZKi6Mg63X0K+jodVIEqiZDDO0jsThuS6x7BTyanYeuxTbh1lAaO\nC514dkoGth7bBOPd2djd8QHbAJ85NgGZcT9jwhQAaNSRONF1HCsPvIQ35myRiGw9Hhe8XuD1xCos\n3Z2GU+e/YnnAeBcG32Z+85iOGapjhNpHm9VvzNnCBJ6BxpEX7JTmhZJTkB8Tai8vjhG8sERjpeRM\n8ifcDXezf6By5aKZ/DhaM+QSkgti/lxpLrcLrydWAQBzLQI+kfa5Pc/ijTlb0NXThUqrGRkxBmw8\nYpLMSbrusqZ0fO2ysVx4/Dyluiyo1+HUua/ggQfBAcGIDhuP1xOr2OdyEZovg+r6s3t84o0qSIWK\nBBOeafwJvr1wlonM5Hwjlxu119hsYMKVfA74E0Wp71o6mpH1UaZEmCIhnHdfkSOLBLWuni5sPGKC\nx+tG0QMlbH0Z9qTjq3NfYfzo8ehxX8DZC98gUq1F6cwyZDQ9g53JFpzoOo6X9v0cnj43fnr3ctT9\n97twXnLiLd3vmMhEPy7gXXxK/ZdqSYGnz41LvW7U6S397mlUHi+uT464C5l7DVAFqZARY8Bv/lAO\nm/M0ACB3WgHWHl4D/f/5f/j49H/i24tnceuoSCz5YQZejPsp63NtaBRaOpqRMGEW9HU6LJ7yLDb/\nVyWqHq4GAEldW+2H8eyHT8HmPINtSb/rJ7gPdY35Wz/+xHi5I1S+xvnzhiK+DccVeyVu2uuNcJwN\ngtj8EQgEAoHg+4HY/LkxEM9OAoFAIBB8PxDPTjcGQ3l2GorDbKAQjkPdWB3o+oB/0cFfKDGl17Qh\nTQIFL37IwxIC/fO6yf/mN7qfafwJxoy6BSl3PIHp0Q9g8QepuGnkTei+1I0PHt/LNtSz/vOn+OZi\nJ3ODZLUY0X3pHEYFhcDd58aaB0uYkAf4RBM+79CCeh2+OteBSTf/HxTcv1oSUpLvM3mYM39ODHn4\nPnk/Dia6yct397r7OYZ4V40qSCVxs2nUkchqMcLd60bh9NUsjB/fXlWgCsGBKraRLh/3gdo43E10\nf22TO2ZIqFGCwiVSe0iQ5VFycq34OAtjw6MREqxm486H+qy0muHudeNCbw9GBYUA8IXwlIfTPN19\nCi0dzcyRJXdpAj5HX+rkp/DmsS1YPOVZ1H7xNvLi81HeWobsuByUt5YhbcoSSehAvu2Fn6wEAJjn\nVDGnGTm9Ftz5uGS98WEZF+3SS0SjgcR4+RjwQvaaB0uYiEIienZcDjKansFNI8Zg9MhwXOp1QxXo\nC2VJOcSejzXitTYTTp77G8aGRaPHfQHfXuzCTyan4bcnqhGpvg2b5lZDGxqFR3c8jKqHq5G7bzni\nNNMwLnw8xowag5cP/wp2l42J11Q/QBr6kZx08jFq6WhG3v7lTNiUt48EUIerk61vAJJQrie6jiMi\nJAJFB1fB6TmPsxe6sOLefEyPfgDA5Tx6vNjs7nVD92/zYf6TCZqQ25izTn6fSGnQ46vuk1j2o0z8\n4oFCv2vhSsQmf2K8vFz5DwLkP+IYKGzjcL5z+HsGcGOHbrya56bAa1gPgUAgEAgEAoFAIBAIBAKB\n4H89tIEYHT7O74Yi/xltWvKCxdVsREaHj2NlkIhAxGmnDSjWkZuHPs/dtxwZMQZ87fKJWLSx3Wo/\nzMKUURnyNlAZrfbDSLWkYEG9Dsl1j6Cx3YKlu9Nw9kIX5k54BPXtO3Ci6zi+vXAWz8caEaYKh91p\nw7KmdJQeKsbzd2cCAMaMGoOsFiMyYgzodH2N1MlP4WuXDV09XQB84fT4cJBUh53JFmxN+i3eeawO\nSZN0KHnwFUWBbFlTOqs/D9+HrfbDWFCvQ0qDHq32w6zP+LZT2YONX3T4ONToavuJZlSe3WlDQIBP\nCKQQeYsbU2HYk468+HwEBAAFB1ayz6PDx8HutMHmPIPnY40sJB5tmPNiDrUbADx97n5149tzJdD8\nI9bOXIfy1jK/ZTpcnfjq/Em89FEW/n7xW59IZUmB3WlDqiUFqZYUdm6NrhY1ulokTJiFiTfdDvOc\nKuTF52NpUxqsjjYYmw1IrnsEr7WZkBefj8LpqxE+YjQ2zDbjhbuNbN5SPQH4wnseeEky/2t0tahI\nMCFzrwGGPek4d+l/UPvF21jzYAkTzUoPFTPRLHnSQqw88BKy43JYHwJgIQk9fR6c7j6FE13HAQAx\nmli8mVQjEZIcrk5WH8LrBUYEqdgx/Drl26A0BoBv/r6eWIXy1jK2FrWhUahO2o6kSTqUzliH/7n0\nLZ6PNUKtUqNw+mrEaaehRleLgvtXo/rYZhTcvxovz6xA0QMlCB8RjtxpBdj+5zehCfGJZnHaabA6\n2tB1wQEASIiejS3HKrHxyHpkfZSJjJjncevISNSceEvSxwDQfekccvdnI23KEgDAV+dPoujgKsm9\npfrYZlQmbpUIP7QGAaA6aTu0oVFImqTDjvnvQRsahdx9y2F32phjL3dfNrp6uqAKUmHLw29h7Yxy\nvHy4GCe6jiOrxYjGdguS6x7Bol162J02ZMQYcKG3B6Yj5bhpxM2oergamxKr++UQiw4fh9r5ddg0\ntxotp/f2m+PR4ePYfBtszJTQhkZhx/z3kDRJJ/lekH+H5O5bLrk2XTd333JsP7oNWS1GnO4+1e/7\nRl7WcLja76obGSGcCQQCgUAgEAgEAoFAIBAIBNeBwVwF8g1Qpc+uBqujDQsbHpVssstdGrzQlR2X\nI9l8pXo9OfVplM7wCR8OVydOne8A4Nus5kUiJXdbqiUFmXsNqEgwoeiBEkSqbwMAfO204+aRY2D+\nkwkJ0bOx8YjP1RMREgHAJ6R87bIhLz4fL8b9FL9+6FVMjrgL7l43IkIiMDYsGgvufBylM9Zhxb4s\n6Ot0LMycXAiyO20oPVQMu9OGxnaLRCAhSBwkkYz6icQn6hNtaBQqE7eidn4dE6Mcrs4r2jyma8id\nH+Tq04ZGwesFSg8Vo9V+GNXHNqPioQ0wz6lC0iQdCu5fjTPnT6Ho4Cq2IQ4AmxKrUX1sM7ShUWzj\nnHch0rEkTAUHqiT1ulab4bzoRXWRt5/+LW8tw7KYTJy9+A26XN/ghbsvh50koYzqb3faWL+985hv\nHGI0sdCERCJGE4uC+1ejau6bMM0yo/RQMXOwUVjP7LgcFtaR+qK8tayfoEq4+9xwuV3o7PkaKXc8\nwdyMFLowRhOL7Lgc1LfvQMmDr7AcayRcp3+4GFZHG7xewOv14qWPfwZ9nQ6LdukRo4lFq/0wUhr0\neGznw1jalIa5Ex7Bc3uelYgyFKaRF0N44UMu1lC7yK0EQJIzbedf3mXH0fpOmDALFQkmicBJwmDh\nJyuRuy8bOR9nweN1Y8yoMdCqx6J0ZhlzV5a3lqEycSsA4P2/NaDwvjX4re73mDj6dowZNQajVCNx\nobcHxmaDpL7hI0Zj7YxyVFp9ISrrkt9n6wu4LADx+c3sThu+On8Sy5rSkWpJgdXRxuY2ucwoR13m\nXgMK7l+NqLCxqLSamZtxcsRd6EMf1n3+Mjx9bmjUkRgbFo3nY40w7ElH7v5sZMetwNjQcbh51M0A\nIOkb6lu6l5CwJf+xwunuU8hqMUrE36FC92kaN/ma5P9WWrNx2mnIjstB3v7l6PG42DlKztOhrncS\nlfnvr39FhHAmEAgEAoFAIBAIBAKBQCAQXGOUftU/GFfr8uGvTRvZb8zZwjZd+TrJN09Pd5/Cmk+l\nLg++vOpjm1moPQqXNlgYwtx9y5EXnw9VkAoOVyeKDq6Co8fnqLn9pn9DXnwB+vr68Lp1A1InP4Xb\nb/o3AEBAgK+M0hm+zfJXW9ej0mpG5l6fA6To4CoEB6hgd9owOeIuAECv18MEknceq5PUg0I7Zu41\noPRQMd6Ys6Wfc+W1NhNztDS2W5irh3fokRBIjjYALNweOYSGOn4DzQ8SJEk0qdHVModQwoRZyGox\notV+GBp1JAIC/j975x4WVbX//xeX4Q5ecHAQvGSmohEmimJaHG9RlGIdrDSVvFBUYIEpeACPYqIk\nnMRTlLcwT9aJX4kaSd6ivJXESaLU0jimICOIpjCgDDC/P+as1Z4RvHQ5x/ru1/P4CDN79l577bXX\n7Ge9+bzfNqQEL0RvqCRiSzgTNoehdfGSbVa2X3nNxeK+ztW71Xys1mwjbwRx/TNDstgYloveUEns\n7mjC88KkoKMci0tHLGf7yW34uPmy7O5Mcg6vlcKvUiizFo2UVVVV9WcoPLmbWTsiSf1sATpXbxKD\nkqTVYuLeOSy56yVpF9nUYpT7XjpiOTmH11qIIpPyI4jdHQ2Ah0M7pveLIvfYO4BZzBNVWQCLDiwg\nPnAurxzKkgKJj7sv1fVVGE3G/1Q62TN/yALsbO14bmA8JpO53dE7Z0oryaXDM9h+cpsco631vfKa\ntjaWhCgqBEsxB8TujjaPk9seZdHnyYzNDWHi1nAKyvJJ3DuHBzfdK8eZwNhsFpTsbTTMG5xETcNZ\nDI0GXvj0eXnPKa+h1sWL2N3RnPjx3wT7DCNQN5hFw5aQsCeeMwY9l4yXEcFRygrCkG4j5TGV+W7K\nsaQcM4G6weSN/5C88Hwp9glhVvR/oG4wmSFZGFuM+GsD2DTevG11fRURW8I5WnOELq6+uGicyRpp\nFu2aWppY8WUGJhMsHZ5BX08/5gyax7sP5knxV7QtUDdYVreJ+aK0uoTwvPtlDqN1leRvUdElrn9b\niDl70/j8VsWun/Nd9X8BVThTUVFRUVFRUVFRUVFRUVFRUVH5lfi5doti4fnnChbKRXNRlbN0xHL8\ntQFyUfdqbdIbKjlZ+4PF/pQ5T0tHLJeL5DpXb4uKrWJ9UatWjzmhb6F18ZIL2ynBC1k9Jgd/bQDv\nPpiHp7MnPdr1ZOnwDDaXvc9jfaaw6MACfrz0IzO2T2Xep3EkFM4xL/J3u4+Vo7Jxd/AgJXghK0dl\nk7BnDjpXb9aMXc/qsTlSzAAsRJnMkCxp1bcxLPeKyhUw2+FpXbwo1hfx5M7pRPabYSHQKG0rlQvg\noT3DyLxnJf7agBtagG6r6sN6AVyIXOKaglnwidllFnS8XDpT01BDwp45rByVzaoxb1gIpWIfyv0p\nRS2liKZsg/V4utFFdXF+4nrE7Iqm3tiAvv40pdUlsqpOtE3n6k1mSBabxufT19NPVhhZZ9FZixei\nXdX1VdhgQ19PP/LGf8i7D+ZRWl1C1I4nZF/5unWzEGhMJnO7hMgiBCNh7ZcZkkXWyGzywvNJCV7I\nxm/fpN74U9WOGF+l1SWU152UlqFCqIOf7Bj7evqhN1QS7DOM1WNy6Ovph8ZOw9GaI1TWncbY3MTK\nUdmcv3Refk7cfxM2hzEpP0LeW9bCpvVYEhVBQtRLO7iY0uoSTl78gZhd0QT7DCNlSCrtndrT+B9h\nLG34cs42VMuxELElnNLqEjR2P1Uj9urQi86uOgCaTEam94+S90KxvojonTOJ2RXNY32mYGv3k+zg\nrw0gL/xDEoNSqG26QErwQgAp7ok2i35rzUZQ5HQpz1OIy+J160w8wZn6SkqrS9AbKonZFc2M7VM5\ncaGMeXvieG5gPFkjswnUDZaZisbmJi43X2LFlxmMez+UuE9iyCldx6T8CAu7Q2UbRHXb/L1zaaGF\n5H3zpfiqPEcl13tPXY/l67W+a672hw7X+nxr1Yz/F4Q2VThTUVFRUVFRUVFRUVFRUVFRUVH5FWjN\n/tD6/at91lqoud7FSetKMqVFGWBRpdNWlYqwSBNVLkqhRm+olIvSysqmgrJ8mfklhDpxnIracvSG\nSiZsDuNAxX6zXdges+XbhM1hUtR4ZkAsk/tPJbLfDNK/eJHaxlouNP5IR8dOeLl2Znf5Dmyx5cMT\nW6iuryIzJIu0g4tlZYzeUEnK/vnE7IqWVV/WC8GiMkgsHovKlbe+eVMKTitHmSvaRJ7Q5P5TpZCi\nzKqav++FKzLPVpVmy8XxGxVLrVFWtynHhbDR1BsqSR66UIouVfVnSNgTL3O10g4uljaAygwo6+MK\nUcvabk4p4CorE38OymowjZ1GZkQJSztl1Z+w9CytLmF83n3Szs86iy5iS7gUu5RibUZxusza0rl6\nozdUSutAYfuXOy5P7gdg5ahsC2FIWEtG75zJDxdPUF1fRVxhLGAWSFeNeYPXxqzBx93Xoiox7eBi\n0oYvZ1VpttyXELom5UegdfFC5+rNpvH56Fy9STu4WGb1rSrNZt7gJC40nqegbBuLPk8m4rZHZYVd\nZkgWzvYuJAYlXVF11Vpft/Wa1sWLp+6IYeWobOIKY5nQ+2HzOLLVEFcYS19PP9k+YYOYsn++tDW0\nsTFX1QE42jvi5dyZ9YfXSfvTmF3RnK6roM5YS+6xd1g9Jgedq7fsp6M1R8g99g46ly5oXbyuEPcK\nyvJJ2DMHuPIeUs6Nrc2pShtSwELY1rl6kzbcLPo/tWMmk/pOwQYb5g9ZgJdLZ5Z/sUyKYYG6weSF\nf8icQfM4f/kcU/2mszb0TWIHxPNa6Uqi/KPbFPdEdZu7gwfpI/6Gg51GVnO2VmnW1vx+IxWryp+t\nheQb5WqiWWvt/KPmmimxMZlEceQfh+rq2v91E1RUVFRUVFSuA63W/X/dBBXUZycVFRUVFZXfC+qz\n083BtZ6d2sqKEQuQ1/rLfqVgcSO5M9bbFuuLiCuMlYu2bS06K/POhECi3F65H/ipQqu6voq0g4tJ\nDEoiZf98skevsbCWiyyYzNIRy4nc9jhnGirROnlRfamKDo4dMRjrWDN2PSn750tRIKM4nfjAuTI3\nqrq+Cn9tAKXVJSTvm89zA+NJ3DuHVWPeIO3gYtmeCZvDqLhYTgfnjlxsvMCqMW9IK76rnWtkvxly\nf/7aAApP7iZx7xxpQ6lEWDZW1JZTWl0i91+sL7LIIxN9d71YL3hPyo+QC/MPbXmA10evI7RnmDy+\nuBZgzmQT9plgruqZlB9BYlASaQcXE+UfzaslWZhMkDsu76rtEvsX7RDXLmHPHAvxUFT9XO+4FGNh\n4tZwaYXX2j0gRNbY3eYsqtTPFsjtrbebuDXc4pysF/T1hkrZR4lBSRbXSuSa1Rvr0dhqWDkq26JK\nSZzj0Zoj9PX0k9sL8ShiSzgaOw1R/tHM3/cCS+56ib6efsQVxsrrJoSnuMJYEoOSpNjUZDKyaXy+\nbCOYq91sbCBrpFlwC9QN5sX9i/jLsBSL8ao3VFr0+7X633quKdYXMWt7JOV1p5g9YA4fnthC1shs\nOXYB+bO45iIvUMwfwnow7uPZuDm60tTSxBmDno5OnbjQeJ604cs5f+k8bx5Zx+w74wnpNpKILeHm\nHDL/GFZ9/QpL7noJgJzDa2XbhBhaXneStOHLmdx/apvn1Nr8JQRrcY2s50DxxwPPDIhl7p7n8XLW\nmYWxS+dZ980qztTrWTv2TQB5r8Xsiqa2sZaahmo8nbVo7Ow5U6fHx8MXZ3sXeSxo+48jJuVHXNOa\nsTVL1Gt9R1hvB7T6841+f7TVJuvXrreNNwu/5LnJ7q9//etff72m3BzU1zf+r5ugoqKioqKich24\nujr+r5uggvrspKKioqKi8ntBfXa6ObjWs5OHo0ebr3s5ezFQN+iqnxULk6O6jbnm4qnyWNbHNZlM\nPNx7otyH2Hdrn/Fw9GBUtzGAeeG1v+ft9PlPdpjJZOKdoxvx6+jHkZrDzNg+lQOn9/Hn3o/wwfdb\n2HVqB8bmJgrLd3NHpwDcHNzxcfdlVLcx9PH0o2e7nnxQtoVFw9Lo26EfByr3kjA4mT6efXmg5zju\n7XEfqZ8tkKJZwp45BGgH8OTO6dza7jZWfJlJQ1MDD946ni+rvuTPfR5hWv/p+Lj7Utt4kfeP5WJn\na4+7gweJQclkf/V3+nveThc3H4u+UvbpqG5j6NHuFj74fguP9H2MJwqmsOl4LmnDl3O79g5qGy/K\n/qptvEjUjunc0SmAqB3T+fjkLkJvuZ/axos8u/spKSYdO/8tz+5+ilHdxrQ5BpQU64uI2jGdsd1D\n8XD0oLbxIu8c3cjOk9u5t8d9jOw6mozidPp73k7CnjmyP8d2D+UunxEsL15GfOBc/LUBzNsTz1Dv\nYXx0YhtPD4iR7ycEJbG/ch8P954o22Q9BgCLvhJjoY+nn+wvD0cP2Q4vZy/m7Ym/5nmKPr+1XS/+\ncWQ9j/adbLFPsY3otwDtAD45Vcgn5YWkBC/EVeN6RX96OHoQ2uN+JvZ5VP5e23hRHuf5whg+OrGN\nzJAsurv3YMWXmdzRKYCvqg4xZdsjBOmG8tBtf+ajE9u41NxA4and3OUzgqgd0+ndoQ/DutzFqYsn\nifskhrHdQxmoG4SDjQPLi5cx1HsYO09uVwiW81hVms1HJ7YR5R/NkoOpfHRiG55OnVhevIwZt0eR\n/dXfyQzJYrAuiI1HNzBEFyzbONArkP2V+3jqjmdZXryM0d3HUll3mjmfzqazs475e+fiYOPA/L1z\n+ejENu7oFCDvydrGi3KMtnZNxTUU/dzFzYfu7j3w9xzAP7/bSGNLI1F3RDPU25xB1sXNh1HdxuDm\n4M5Q72H08fSjV4fejO0eio+7L38vXkHC3nh2ndxJzeWzPHTrRBKGJLH9hwI8HN156o5nWff1avL/\nvYULly6w69R2Hrx1PPf3fICdP+yg3HCKWbdHs6r0VfK+f48Z/Z/Ez7MftY0XAZjY51F6tbuNnMNr\n2xxXbb12R6cA7u1xH3GFsTzceyL7K/bgbO9CbeNFpn80hUvNDWjsNDjZOfNV1SEMzXUcOH2Aj07m\ng8mGZlMT/Tr68/wnz+Js68Lf/vUSJloY3e1eiquLuNx8CRvsyB6zmj91HcVDt/2ZhD1zGOo9zGJ8\nimsg/o3tHoreUEkXN59W77nWzkl53dr6jPV2yp9rGy8S3uu5vOf8AAAgAElEQVRhiz8QUM6F1vts\n7XcxTypfV44167Gl/Kxyu5uFX/LcpFo1qqioqKioqKioqKioqKioqKio/MpYV8IUlOXz5M7pV1jn\nKbe7Vg6Z8jNXs3FsLSvrWp8R1nCt2S02mYzM3D6NFz59Dk/nTiQPXUigbjArR2Vjb6NBY2dPlH80\nMbuimbg13KJCwV8bgJezjldLssj/9xY6OXux9utVhOfdT+zun6wkUz9bQFxhrMxle330OnIOryXi\ntkc5e6mK5H3zeWZArLQrFMdIHrqQDk4dWTkqm8n9p8r2K/tZ2afK8xd2arnj8tg0Pl9WyYTnhUlL\nPKUtY2ZIFho7DXpDpYXdobCSE9U710JUjhmbjRZtzB2XR2ZIFnGFsfhrA+T+rcdDoG4wS0csJ6M4\nHTBbSApbOJH5FB8415y/psjbam0MtDYelFlZyiwncUzrLL7WEP0T2jOMvPEfXlGhI6qF4gpjiQ+c\nKzPwhCWgGAttZf4JK0QxZjOK00kMSpKViIl753Dx8kWid85k0YEFLLnrJdIOLgbM1Uf2tvayb+qN\n9czYPpXpBVNIO5hKF1df/LUBFJTlM3/fC0T2myFtQleVZhMfOJfJ/aeSGZJFZkgWOYfXkhmSRWJQ\nktxeVAOKSr5OTuZKSrFdRnE6Uf7RvHIoi8h+M4jdHc3RmiN4aNqRUbyMakM1iXvNmXqJQUkW2Voi\nN0tpV3k160azSPsEAJWGCk7XVVBaXSL3qezTuMJYi3unoCyf1M9TeNL/WVw0LnR09OQfR3M4WnOE\n85fO8VifKeQee4eVo7LZHL6NdaEb8Hb1QefqzdGaI3Ju2Hh0AxpbDfMGJbHsC7Od6APv38uk/AhK\nq0vIObz2usaVEnHfARibjRSe3M20gkmE54VReHI3JhM42Tlzf49xrDu8iin9nmDt2DfxcPSgo6Mn\nl5obWDYik2cDZ5M8ZBG5x94hMySLpwNieevb9XR09MTZ3oXzjTUUnvyYJ3dOB7C4L0U7lPmOAKXV\nJTy05QFpVXm9lrtK0etqn2ktt9B6zl86YvkVtqbi59aO0dp3T1vbWbdbOSb/KKjCmYqKioqKioqK\nioqKioqKioqKyq+I9WJjRW05GcXpvD563RWZTWI7ZdZUaxZ01lxLXLN+33pR1Fo8Uf4u7P/EQnr2\n6DUkDE4GE9hiR9rBxVTUlqNz9Zbi2YovM2hoasBkQgpbAo2dPU8HxPLMgFjSRqTjonFm9dgcskZm\nS1s9e1uNtECLLJiM1sWL+MC5vP3tBp7yj8HGBilaxBXGMik/goKyfDKK08kMyZL9KgQeZV6cOP9i\nfRETt4bLxfrGZiOl1SVSbAKzpZ7ecFr2ocguStgzB52rt/zZ2jYvJ/Qt2farXbuK2nJp7bdyVLbF\ntfZx97WwDlQKWIBFvpVYuNcbKpm5fRrheWFS5BMibUFZvuwrsaivFBDFgve1BFjxvs7VW1bYXQ/K\n8Wd9HGXGldbFi6UjlhPaM4x3H8xj5ahsKYAp2yIW50urS2hqMVpkU0X2m0FGcbq0Ndw0Pp819+Zg\nb6OhyWSkr6cfxmYjMz+KZN6eOCoulssMs9S7ltDRsRMttFDVcIY5g+bJjLQld73Eii8zmFrwGEdr\njtDUYmTRgQUWmVyiT0J7hsl8PCHmFZTlM/OjaZypN1+nmR9FknZw8X/au4wfLv6bjOJllP34PS98\n+hzVl6o4XXeaC43nmTvoL7xakkXinrk0tRiv6DchdrcmCivRuXqbBeJj7zC223200MLx88evuFYb\nw3KlcCvuFYDuHj0I1AVSZTjDswOeo6WlBU9nTzo4dWTj0Q2cv3TOYty6aFwoPLmb5z95lh8unuDl\nf2VgbDGSNTKbYJ9heLt24bmB8dRcqibKP5q0g4st7E6vF+V9p7HTENJtJOtDN5J61xLm73uBZwaY\n55xAXSCdnb3ZXb4DMAvmyUMX4u3qg6ezJ8X6IjYe3UC9sR6A5V8sQ+vshbO9C5eaG5jeL4oD+n28\nPnqdtOJUjmsxBpR/cCDme5Hndy1BUHmvtTZXK79LrtYXShGtur6K8rqTFkI//JQF11q7Wvv9WoKm\n9Zj8o6AKZyoqKioqKioqKioqKioqKioqKr8irf3lvqi+aWu7QN1g3h/3gaxgakuAUVYWXO390uqS\nKwQx65yaYn0RxfoiKUgUlOUTvvl+Zm2PpPDkbrkYCvDmkXXY2tqSNiJdVupMyo+wEM9cNM48MyCW\nmF3R5uyx/1Ssna6rYM4ns4n7JIbEPXNpbDbirw2QC+WiWkoIMvGBc5m1PZK5n8bx/Y/HebVkBcbm\nJplZtTEsl8SgJFI/W9CqkKOsBlH2S1xhLCaTOfsqed98ThvKmbU9UopKPu6+zL4znrzwDwnUDaa0\nusRif+I6WS9QKyvsrjf7p7q+SlbGWVerWItGov2iqs1aUMMETS1NxOyKplhfRNrBxXLRXimGiEV+\n0W69oVIKMm1VninPdVJ+BLG7o2+oqkT0u7K6Trn/0uoSJmwOk5UxAHGFseSUrpNCsthWnEtGcTrJ\nQxda5G+JSq+EPXMoKMtH5+pNoG6wubrMRgNASvBCPBw9SBicTI/2twDIdjnZO2Fva0/KkFRCuo0k\nYc8c4gPn0tfTj9l3xuPj2pWQbiN5OiCWhqYGUj9bQGS/GcQVxlpUbilz/nJC38JfG4DWpTMv3f0y\na8aux8PRgyj/aF7+Vwb6uko6u+qID5yHva09zwQ8h9bJiy5uXeji5kuwzzAam42cvVTFY32mXHnd\nFf1oXVGkvKY+7r5sGp9PYlASO04VYIMNvTr0umKcif0am41U11fxw8UTJO+bz+w746lpqMHG1gaA\nJpooPPkx5y+fY6DXIM7U68kpXcf4vPuYtT2SKP9o+nr64enUCRMmhuiC0dhqpFBpMkFfTz9Z5Smu\nwfVWZinHlmizOJfQnmGE9gzj9dHrWPFlBnGfxDBz+zSevONpTtdVkLJ/PvXGBpZ/sYxmUxMzCqYy\na3skTSYjGlsNBWXbqDCcIj5wHmkj0qEF/LV3AKB18SJiSzjj8+6T41K0XTkvKKstW7terWH9nWFd\nmSnE76tVjCo/mxP6FloXL4vMRmXbhJh2PX1s/UcIbbX/j4aacaaioqKioqLyP0PN6bg5UJ+dVFRU\nVFRUfh+oz043B9f77KTMH4osmEx4r4evmXMjsmjaypFRvge0mkcjstRm7Ygkv2wr732XS+gt91+x\nTX/P24krjOWjE9tIDEriodv+zN1dQ7jH908M0A5k/r4XCOs5DjcHd6J2TKepxcjfQv6OvzZAZkLt\nrfiUh3tPpI+nH6G33E/fjn6s+DKT+iYDekMlD946nkDdYDo76zh09ktc7N2Y2PsxTtb9wMO9JwJw\nl88I3BzcAXOWzqT8CLZ+n8dpQwX1xgYAvFw702Jq4cDp/QzwuhM3B3ee2jmDUxdP8pjf4xYZXQKR\nfSX6R+QO+XX0Q+vixe5TO3np7r8x7tZw7u4aApgrtaJ3zWRs91AKyrbx/CfP4u95B7069G4188c6\nk+hq11nZ994u3mQUpxMfOJe7u4bIa+Ht4s28PfG0d+jA/L1zGds9VOZZ6Q2VPN5vmsy5KtYXYTKZ\n6OPpxz1d/0Rwl2Hsr9zHvT3u44Pvt/DswOdkG7u4+XBHpwCLbLjwXg/j5uDOu9++w92+97SZz6bM\nNrqjUwA7fthukZnWFsrMpzs6BTDdf5aFGCByoebtiWdOYAJzgxLlZ9eUvs6uU9uZP3gBg72DLPq7\ni5sPXs5eZBSnE97rYWobL/J8YQyzbo9mZsCT2GHH7MKn2X6igIbGBhZ+loSDrSNby/LYf3ovfxmy\ngNdLX+UvQxaQdnAx9U0GDuo/Z+WobEZ3G8s93f4EwK3tepH62QJeK3mFnT98RHun9uhcvJn3aRx1\nxjoc7Zz4uqaUzJAs2a/iukRsDeeNr1cz1DuYIzWH2fz9+3xT8zWzA+O4y2cESw6mUmes5VLzJVb8\n6VW6t+vBAO1Acg6v5eylalKGphJ5+wwAHrh1HAO0A0n9PIW7fUJkZpb1vS/Got5QybO7n6K/5+3y\nmtY2XsTH3ZdeHXrT2VnH7lM7OVR1SF73/p63YzKZqG28yJRtj9JCCxP7PMauH3ZyufkSH3y/mZ0n\nP2LZiEzu7DyQfx7dyFdnD/F430hyj7+Nh0M7yutOYW9nz4LgxbxaksWHZfkA2NvaU1x1EAc7B/ZU\nfMIzAbHsO72HHSc+Yrr/LADyjr/HtP7TZT7X9aDM8IraMZ27fEZYjOFeHXrjYufKoeov+Wvwi9zX\nM4yh3sH8qesodp/agd5wmtl3xrO38hPaObTntTFr6NnuVtKKFmGDDYM7D6GPZ1/e+fYtDp/7mkl9\nphDe+yF83HzYWraZR/tOxs3Bnbzj78n7QTnn/xwhqa3vh7HdQ+U8a50R2Np3AMCx89/y0JYHeKTP\npCty1o6d/5bwzfdzj++frsiCvFru2vVcj+vNePxv8Uuem2xMJpPpV2zLTUF1de3/ugkqKioqKioq\n14FW6/6/boIK6rOTioqKiorK7wX12enm4HqfnZSLp9ezkNpWZdi1ss7ael9URMQVxrZpoVVRW05p\ndYnMfhJVG6KKx18bAJitF8V+ACK2hKOx01hYJIqFU2XOl6goi9gSzr8vltHBoSM1l6tJHrKICb0f\nZsLmMOxtNNjY/GTVKNo8ttt9bDjyBucu1zC9XxQbjrxBZ1cd7g4e5iypvWY7ya0TPrKwTGytf8T/\nfy9eQfoXL+Lr1o1nBsQS0m0kkQWTLSo9Csry0bp4Eb75fjo4dmTbw7tazfxprbLsatdDvFesL5LV\nTBnF6bIyTvRplH80iXvn0NnFm9fGrCGuMJaGpnoqDadlVpjeUMmEzWH4unUjd1weekMlT+2YSepd\nS6hpqOGVQ2YbSJ2rt4Wop7RqEz9Pyo+wuO7X4nrHcmvHa60tekMlCXvmML7nQ+Qee0fmfl1qbmD1\n2BxZrZY7Ls+i8k2MvYraclndmH7333jlUBbPDIjl/KXzLC1KpaOTJ1H+T7O0KBUvl85ynxvDcmW/\nvTZmDTpXbyblR2BsNmJsMeKicSEzJIujNUfo+x+xMq4wltrGi9jZ2JN61xK0Ll5XWK+G54VxsvYE\nWmcvNLYOnL1UhYemHe2d2vPug3lyDMQVxpIYlCTHWicnLzR29jS1NAFgMkF1wxm8XX3IC8+ntLqE\n0J5hFmO6tLoEf22AxXwRsSWclOCFclvr6y3ugwm9zSLVW9+8yarSbMBciTlreyQ61y68NmYNs7ZH\nUmU4Q0JQMhuPbiB3XB6l1SXM/TQOe1t77G3tGd/zYbaf3EbEbY+y7IvFrB6TQ/K++Tw3MJ4VX2Zg\nbG7ictNl/jI0hbmfPk8nFy1n66tlFVxb9+71IM5v4tZw3n0wT54fmOe/cZtCwQa8nHW00IyDrVlE\n+fHyeS40/sjE2yaxv3IPq8fmSJvVEJ9RvPPtW1Q16Mm8ZyXnL53nta/+TlXDGd4MfRt/bYC0AxXH\nac1+V1TC/txzE/u6nnvtat8Bygpm5T04cWs4yUMXyqq4653XrmeevZn4Jc9NqnCmoqKioqKi8j9D\nXfy5OVCfnVRUVFRUVH4fqM9ONwfX8+zU1iJkWwuQQgwwNhvR2GmkkNHWQmZbx2xLHLuamCMWeXWu\n3lJEE9Z+TS1GTCbIHWe5KK20gFOiFOsSg5JIO7iYjWG5Mu9o9oA5vHpoBT3a30Ly0IVE7XiCuYP+\nwoTeD1NaXSKFpMKTu3nlUBYnLpbhau+Gu6M7+rpKXrrnZfp6+hGzK5ofLv6bLm6+5IXny76KD5x7\nhR2mOMfxPR8i9fMUYgfE06NdDxL3zmHT+HwpLinPC8yCjvI9630KrvfaCLFH5JtZL6or+7RYX2Qh\neinbI8aE+F1vqCR650x+uHiCTk5azl6qprOLDjeNuxxLykVt62v3Wy12X22x3VrQKTy5m7hPYtA6\ne3Gh8UdWj8kBzLZ7xfoiKW6JPhNCiVLsnLl9GlrnzlQ3nKGjkyfnLtXQ0tJCJxct9rb2xAfO49WS\nLLJG/iQoFuuLGJ93H5vDtxGoG0xBWT7Hzx8n99g7ZIZkUV1fxZM7p/P+uA+uyLYS2XzCPlR5nWZt\nj2TJ8HRSP1vAY32myP1ZCyzieoTnhWFjA9mj13CgYj9Li1Jp79gBja0DGjt7skevIWZXNCnBC+U9\nUlpdwrSCSXT36CEFqGJ9EeGb76erW3cpNAJyPEUWTDbbS34SQ+Y9K+nr6cdDWx7g9dHrLERyIXhP\n2Gy+l2bfGU9It5EUntzNvD1xmEwmEoNSWFqUig02PHVHDIUVu4jsN4O+nn6Eb74frbMXl4yX0djb\nU9NwloTBybx5ZB0mEzSbmlg9Nue6s/LaGlvivCK2hEtRT4yZ6voqZm2PZHLfaWz74QMqDafROnnh\naO+IyQR3agfy0YkPwQbW3vsmoT3DKCjLZ9aOSFaPyaGmoYYVX2ZQXluOCRMdHTuSEbLCQuxWjmHl\n+BbiuMg9u9453PocrQXPG+2fq92DIgdR2AO3to2yHeI7wrpN4n0x995s4tkveW5SrRpVVFRUVFRU\n/meodkM3B+qzk4qKioqKyu8D9dnp5uB6np2sLfyELZ2wsjp2/luidkxnbPdQCxvBiX0e5eHeE/Fx\n972qRVaxvugKi622bLKuZRs4qtsY+nj6cez8tzz+4UQc7ZyYeceTPNx7IiN876HgRD4jfO+RFoHi\nc8r9VtSWU9t4kScKprDt3/nUNxnY+cMO7GxtGeF7D/f2vB9nWxce6zeZB3uF88TtsxioG4SXc2cW\nfpZEr3a9yf7q7ywdsZw6Yx1RO5/gsT5TOKDfSwvN2JhsaWy5zLHz3zHdfxZezl58d/47Fg5bTGdX\nHT7uvng5e/HkzunSzk7Z1v6et/PSF0uwxY6TtT9QpP8cF40Lvdrdxl2+I2T7J+VH8I8j63nvu1xp\nLdiafVlt40UitoSTd/w9eQ2vRm3jRd47lstAr0D2VnzKtP7T8XD0kDaM4mdxrbu4+VhY8AmLQnEu\nfTz96OLmQ23jRZ7d/RRP3fEMQbpgYgOfZ+cP20m/O5M/93mEe3vch5uDu9xHa3aS4vhKRH/8Ess1\na2tQZT+K9vT3vB03B3d6tLuFD8q2sOzuDGb4R+GqcWXyhxH069ifeqOBt7/dwL6KvdKmc5PCHg+g\nV4fe3OP7J6ICohnqHcwXZ4p4tPfjBOmGcvjc15w2VBDa434O6j9ny/d5hHQdSWXdaQD+eXQjj/ad\nzFdVh5jx0VQ+Lt/JX4IW0MlFS+pnC1gyPJ1b2/diUn4EecffY/fJnUzrb7YGHOgVSNSOJ/Dr2I/n\nC2PkNd51cgeP9p3M5uN5HK75mhUjX5Gin4ejB8X6Ivp4+skMwF7tb+OrsyUM9AokYW88k/tOo6jq\nc1KGLqL4zBcM1gXxj6PrOVT1JYlBSQzUDcLZ3oU+HfxIGJJkMW7u8f0T9/d8ADcHdzm+nt39FEO9\nh/F4v2nc5TuCLi4+rCrNZlr/6YT1HMet7XsBZhHo8X7TpJ3nlu/zmNRnCvP3vUBnZx0LDyTxeN9I\nzjToefrOGO7UBjK6+72kF79IfOA8cg6vxdetK6O73cuByn3oGypx07ihsXHk4/KdZIasZGS3URzU\nfy7vAWtau9+s348smIyXsxdTtj1CkG4on5QXorHR8Pwnz+Js60Lsx0/xZdWXTOo7lTcOr8LV3p3n\nB77A4XPfYKKF6oYzXGyspc5YS0dnT4qrvuCOTgHUGw1sPv4+43tNYEiXYN45upHaxgtgMuFk58LB\nM5+REZJFnbGOZ3c/RXivh6+wl6yoLaePpx/9PW9H5+p9Q/aT1vdPa5a819s/wqqzv+ftcq5Qfq5X\nh97c7RNiIV62ZRXZ3/N2EvbMkecL5krVsd1DAbOt6ZM7p+PXoR/z9sTfVHaNv+S5yfZXbIeKioqK\nioqKioqKioqKioqKiooKln+NL/4KPz7QbC8o7OeUFSw+7r7yn/I1a4r1RTy05QFZ3SW2+zlVDYBs\nQ6BuMJvG5/PamDXyPZ2rN8YWI3GFsfJ44n9RYSPOUW+oRGOn4ZkBsdjb2nO2oYrH+kwhYc8cCsry\nWVqUyoOb7qW6vgq9oZKK2nI8nT3xdu3Cy//KkBaPgbrBvD56HYG6QHxcuzKl7xPUN9fRyVlLSvBC\n9IZKc/7aLeNIO7iYiC3hFOuL8NcGWFRPKBHn0c6xPStHZbNyVDZT/aYT90kMb33zJpEFkwHIDMmS\n1pHKc1OeuzhvjZ2GxKCk6+pzH3dfMkOyyChOl3aUogpNtF+ME3EMZVWboKK2nIQ9c+Q2Ykwl7Iln\naVEquUf/yfnL50jeN5/onTOJ3R3NpPwIiyqzpSOWX2HtpzyWaJfyc8r3WmvXtRD7tD5O9M6ZTMqP\nQG+oxMnOmUUHFqBz9Ubn6k0Hx47M3zuXRQcWsHpMDinBC0nYMwdA2iwqCdQNxsfdl9CeYUT5R7Pi\n0HJWHFrOJeNlOjt709fTzzx+6k8z86NIwvPuByAv3Gx/mXbQLMKmDEnF09mTuMJYWUWjN1SSGZKF\ns70LiUFJ0rpU6+KFztUbrYsXmSFZJAYlMffTOCrqyjlQsR8HOw3GFiPV9VUUlOUTWTCZgrJ8Htry\nAAVl+UzcGs64TaHM2xNHlH80x88fx8Xele0nt+Ht2oW+nn5o7DT4awPIG/8hK0dlk3ZwMQVl+UzK\nj2BVaba8l5TE7IomYks4k/IjAIgPnCsr5AA8nT1paKoHkBaVgIWVn4+7LxvDcunVoRd22NHBqQPN\ntLD+8Foq607zRMHjJOyNx9PZk/fHfWC2Pf1PNdvyL5YRHzgPH9euPNJ7Mk4aR9KGm+9vcQ+0Vckp\n7oO2EHNdaM8w3h/3Af7aAJpMRjYe3UBnFx3BPsPYND6flOCFfHhiC+0dOqKxs6eDUwc0thpWj81h\nzdj1rLk3B1+PrvKaxhXGsujAAjq76kj9bMF/xkY+L939MjrXLlw0/khjsxFAVpNZz9ei/QVl+cQV\nxsp+/bmI/VvbnF6rf0R12NIRy+XcLT6n/KwQc69FoG5wq5VvekMlkQWT5dwb2jPsZ38P3YyoVo0q\nKioqKioq/zNUu6GbA/XZSUVFRUVF5feB+ux0c3Cjz05KW7EJm8NYNeYNmZNztfyxqyHyx673c23Z\nZ4k2bRqfLxdRJ+VHcK7hHB2dO0prwcSgJDKK04kPnCutzIRlmXKhvVhfRMyuaJkxlXvsHRKDkgCY\nsX0qLS0mbG1ssMEGL9fOVDdUMbnPNN76dj3zBiWx7IvFLB2ewSuHsjh58QQdnT0511AjM5aE9WDa\nZ4vZ+u9NLLnrJV45lGWRSWUtnImF4Un5ESQGJeGvDWDi1nAuXq7l3KWzbJlQAFy5iKy0AVSee1e3\n7qwcZc6EulEbNuvcOevsOL2hkvDN9+Pt2gVne5dWx0ZBWT5pBxdb5H4VlOXz3MfPcv7yOWIHxBOo\nC5SWm9X1VXKstJYvJsak0uKyNStOMTaA6x6zyoylBzfdK/PoxHvKY4uxIzLbxufdR0tLC74eXVk0\nbAkZxekyN0p8Nm34ckK6jbyincIaFEBjq8HTqRMdnDrK/tC6eBG9cyaLhi2RFoWl1SUk75tv7pf6\n07jbt0PrqiUxKImoHU+wabzZEjRmVzRNJrOF6WtjzBaKNjbmTLKGpgaqG87gpnGns6tOCmnnLtVg\ngw2rx+bIcxX9Io57ufkS+nqzGGiPPetCN1xhfSeETiHaal28pCAmxtCk/AiaWozSklK8Vm+sl6J4\neN79mDCxOXybxXhUjhEhZD9R8Dhn6vUkD1nEum9WoTfowWRC52bet8gcFNfnQMV+3jyyDnsbDecv\nnaPm8lkAOjl6Udt0gdVjclqdu35uTlZFbTkPvH8vaSPSWXRggcxejCuMpd5YT0NTPQ52Dpwx6PFx\n92X2nfHkHF5LfOBc2X/iXhR2nMJOVfSNctyIPm2rjWK+EOLVryEiXc3itzW73Njd0TIzUnku1laL\ncGX+XVsI+0nrOf9GbWv/26gZZ1aoiz8qKioqKiq/D9TFn5sD9dlJRUVFRUXl94H67HRz8HOfnUSW\nkYvGRS5yW2c1Xe9+bkTAaCtvTbwn8oHAvPD51jdvygykyf2nXrFAOmFzGNmj17S6gFysL+KB98di\ngw22trZonTvjbO9Mk8nI7DvjWfFlBouGLQFA6+LFrO2RVNWbhYaOTp5cam7Ayc6ZlOCFzN87l4d7\nPcKrX61gS3iBPMaBiv0s+jyZ2QPmEOk/Hb2h8or8J72h0kII3BiWKzPUlo5YzsyPIqluOEPC4GQm\n9H5Y5o9ZC2EFZfmkfrZAihARW8JbPc71XreILeE0mcxVK0KIse5DIYpav668lpH9ZvBqSZYcOyKb\naXzPh/lX1RdSWAGI2vEEvm7dWDkq20IcVOaL5RxeK0Wpa51Da+1qDVEZ+frodQBMK5jE+tCNFgKd\nEJCU/ZM7Lo9N371Hrw690Lp4UV1fZSGaiW3ve28U5y+fs8jzEtc7MSiJYn0xed+/x7R+03n72w0k\nD10oBceVo7KJ3PY45y/XoHXujMbOXlYaPh1gFn3Tv3iRtOHLZabeylHmMTBxazj1xgZcNM68+6D5\nvtEbKqmurzJXQN72KBuPbiAleCFaFy8p8PX19JOin/LeEXaNBWXbePWrFUzp+wQh3f7Ualaf2F5k\nEYp5RGCdYafMXYvdHS3zCkurSwCkcCRy2sRxxP7rjfVUGipwtnOhi7sPiUFJ1DTU0Fdh2wpmATk+\ncC4p++fLfnyszxTSv3iRSX2m4u7gwdvfbsDBzoElw9MtRHdxzOvNc7QWi8R8tT50oxS2hIh/tOYI\nz3/yLClDUln3zSriA+cxb08c0XfEsurrV3ghcD7BPsPkOYjjF5TlSxHVwU5D1shs4gpjuXj5Is72\n5vmpNfFPiEutZS3+XK6WlynmttayMsX9rhTSlONFmYVIsHcAACAASURBVFsmfm+r/5Viamt/mCCO\nqczVu1n4Jc9NqlWjioqKioqKioqKioqKioqKiorKb4yPuy+vjVljsdBpb6v5WfvZGJZ73VU/V7Nx\n9HH3lRU+wpJwcv+prA/dyOT+U+U2yv9NJnMVhviMsuLgaM0RmmnGzcGdNWPXM2fQPFKCF1JpOI2n\nsycmk3mxPnHPXKrrq1gyPJ32jh2obbzIMwNiWT02R+6rsu40fz/0N4wtRt4oXUv0zpnE7Ipm3Ter\nsLOxp0e7HlJAFHZ2QsyytrLUGypl1ZjO1RsbG+jo5EnusXcsLP+U/VSsL2Lm9mn8cOGE3MfKUdny\nOGBebL+W1ZmwRxPHMTY3yf0Ji0vltmkHF1v0t3hdvLZ0xHJWlWYjSiEqasvJKE7nKf8YNpe9x6Xm\nBhKDkkg7uNj8b/hynhkQK9uqtH8DZPWN9bm0dl7W1nRXQ1huZhSn468NYH3oRikIKrexZmXxyyz6\nPJnnPn5WilHiugkKT+7G0c6J1WNyLBbr9YZK6o31zNoRycajb9LQVM/6w+tkXwkx8WjNEX5sPEdH\nJ0+MLY3Y22hICV7I0wGxJOyN5+1vNzB30F9YVZotRdmEPXPY9N17JA9diIvGmeShC+Vx4wpjpWi2\n7ptVNJmMLDqwgOr6KjaNzyek20gCdYMpKMsnPO9+wvPCmLA5jLe+edNsi/nBRFYcWs6Uvk9wQL+P\nRQcWWIxfYfOoFLWM/7ENFG1QWsIqK1wjtoRTXV9F1shs2XdpBxeTsn8+kdsep6GpnrSDi6X956T8\nCNIOLibKP5q88HwSBidzqbmBsd3uI/WzBSTsjedozRHiCmNltZsYS5WG06QELyRrZDaby97nSf9n\neevb9aw8lElVwxkuGS+TdnCxhV2oOAfx2tXuJ2urworaclaVZuPj5itFwMKTu6moLSeuMBZPZ098\n3brSwakD1fVVnLhwgsaWRt47/k9G+Y4l9fMUnih4nJhd0dJGt1hfRPK++Zw2lNPU0kTy0IUE6gYT\n5R/N2YYqDE11zNoe2arFqRDNlP35S7kRG17x3ZA7Lk+K5DpXb+xtf7KVFf+EjaPyGNdqQ2v3q7Ch\n1djd+HfZzc5vVnHW0tLCX//6V7799lscHBxYvHgx3bt3l+/n5eWxdu1a3N3dmTBhAhERETQ2NpKY\nmMipU6dwc3MjJSWFHj168MMPP5CQkICNjQ233XYbCxYswNa2bc1P/atpFRUVFRWV3wfqX02b+V8+\nN4H67KSioqKiovJ7QX12ujn4uVaNbVUI/JK/0G/L3uxGKoPEYnR84FxZCdLWZ8U5CEvE1tr/4v5F\nZH+VRcLgZFI/T5GVINX1VUTteIJJfaay7vAq7LFH5+aNvq6SDk4d6eSildZiEbc9SurnKXRy0tLY\ncpkLjRewx56X7nmZFV9mcL7hPF6uXrKCRqAUvcQi71vfvElIt5HSgi3KP5p5e+Lo4uZD9ug1sirD\nutpMVECJyqHWLBRF9dDVbOdENYaNDSQPXSirclqze2xrjFhXg1gfV9g3Rtz2KLnH3iEzJEvazsXs\niqa87uQVdoxXG0PXqlJsa3y0hlI8uFpVS7G+iOidM3G2d+FWj17sOFmAzrULzaYmnO2dLaqlphY8\nhsZWw5bwAosqNDE2C8q2seKQ2WrQx7UrM26PYtkXi9E6e2Fva09TSxNLhqdz/PxxFn2eTMqQVHKP\nvUO9sZ7nBsYDZkFxfM+HyD32DhvDcskpXceKQ8vp7OyNs8ZJXkMxfo7WHGHenjiMLUaShyxi7der\nqG44w7IRmbKiL64wltrGi7LyyWQy8XTAbNlWrZMXGSErLCwHAVm5JyrYlHavAjEehEgbuzuaf/9Y\nhpuDO5eaG1g15g3m753L2YZq5g76C+u+WUVFXTmZ96ykr6efhWVoaXUJs3ZEMm9QEhuPbuBi4wUu\nNP7I6jE5AKQdXCxFSCFIZxSnE9lvhrTOFNabKcELeffoO3xwYjOjfMey/E8vt1lJqZyD2hpfbc11\nAPe9N4oz9XpiB8Tz/479k2ZTEzY2NphMJkwm6OjckYjbHmXt16uoMJyio6Mn7g4eNJuasLc1Vx0C\nXGpuwNjchLPGSWagCTExpNtISqtLWq0KFX0/86NI7G3tZXXxr1mFVVCWb1Ed2Na+xZy2dMRyWbVp\nPb8p55obqfprjRudF/5b3JQVZzt37qSxsZF//vOfxMfHs3TpUvneuXPnyMrKYsOGDfzjH/9g69at\nlJeX8+677+Li4sK7775LUlISqampAKSlpfHcc8+xceNGTCYTu3bt+q2araKioqKioqLyX0d9blJR\nUVFRUVFR+WNiXSGhfL2gLL+NT93Yvov1RVdUYUzKj2BSfsR1VTyI6oPQnmFSNGutzYKNYblSrGjN\nqizSfzrdPXowoffDJA9ZRGjPMHSu3rL66YB+H7MHzGFd6AaWDE9H5+ZNO8f2UoxLDErizSPr8HHz\nJSNkBV3cfJk9YA5bH/qIkG4jqbts4ILxR0Z0CSEl+KeqH9FmUWUB5kXm5z95lgmbzQvNTS1GXv5X\nBl4unaVoJrZXildiQToleCGhPcMI1A0mb/yHbBqfb7HQHFcYe0U/K6+HqABZOSpbVhc627vICjDl\ncUV/KvcvXrNe8E7YM8diHAhbPZEpJyoCA3WDzdaH4/PbtI6zrihs7ZjKY93I2BJEFkwGaHOfFbXl\nzNoeibG5iSj/aE4ZTjK57zReG7MGdwcPng6IlRUtoT3DeDP0bdaOfdOiAkaISEdrjpD3/Xt4OnYC\n4N7u97G57H2e8o/B3cGD8T0fpqKunJqGGt7+dgMpQ1J5NnA2iUFJ6OtPs6zoRRL3zmF8z4dI/+JF\nKRBtP7mN2QPmUPDnXWSPXkOTyUhcYSzF+iLiCmN55VAWy0ZkknnPSib0fhh7W3taMPHKoSxpcZcZ\nkoWzvTN9Pf1YM3Y9Pu6+RPpPJ2VIKhNvm0St8SJaFy9WjsomMShJjpH3x30g7yNft274awMorS4h\nPO9+xuWFMj7vPvSGSor1RURsCSeuMJbkoQvp4NSRC40/MnfQX/DXBuDu4EHa8OVsLnuf+MB5dHPv\nQV9PP4tqPh93c/VWB8eOLCtajKGpDo2tgxTNABqa6kn9bAFpBxczvudDpB1cTGS/GSz/YplFJdap\nuh8oPPkx3188ziBtELvKt0ubSOsxuHTEcmnJeTWulqvlpnHHQ9OOV0tWUGk4jb6+kjMGPWfq9bSY\nmskMySLYZxhpI9LxdevKW2Hv8tqYNTjZOcuqQyFoAywatoTMkCzSDi7m/KVzvPyvDDZ99x6pny2g\ntLqk1Xkydnc0VQY9NjaQGZL1q4tm0womye8OZV8o/xdzRGS/GbIaMj5w7hX3uBBKxVz1c0Uzgfg+\n+qPwmwlnxcXFjBgxAoABAwbw9ddfy/fKy8vp06cP7du3x9bWFn9/f0pKSjh+/Dh33303AD179uT7\n778H4JtvviEoKAiAu+++m/379/9WzVZRUVFRUVFR+a+jPjepqKioqKioqPwxUS5GCksrvaGSB96/\nl2kFkwjPC5MLnT9n32JBvjXx5XorHYQA1JqNn7UVmbBGbA2RaaU3VJI8dCGbvnuPl4qXUKwvkqJG\nX08/jM1GNpe9x/y9c5n7aZzMNNO5elNRW07qZws4XVfBkuFmi78o/2i2n9wmF/ft7eyws7Fjw5E3\nmLUjUi4iizYrhR1/bQA9PG6RIlny0IVobDXY29qjc/WmWF8kt1ee46T8CN765k2e3DldLgRbZ7q1\n1s9iwVppRefj7itFk4zidBKDkmQFUmvWhyJjSbkofzVRS7QjL9ws6vlrA6g31hOzK1pe0+vNYbNu\nR2uvbQzLvSFBwPoeUFJQlk/ElnBWFr9Med0pztRXsuLLDEJ8RrHu8CqO1hwhyj+anMNrLY7prw0g\nozhdXnvR7xG3PUrCnnhOG8p5ZsBsHugxnre+Xc/4ng+x6utX5FjKvGclAD9cPMHGoxvkWFk6PIMO\nTh1JG76cXh164evWTbbV2Gwk/99bAPNYcLZ3kWJvZkgWNjaQUbyMVaVm4eW5gfH0cL/FQogBaGw2\nErMrGjCLqIUnd7O0KJX3v88lbbhZNHpqx0wLS0Pl2BMVlmkHF7N6bA5bwgtYNiITQO43MyQLf22A\nuYrzP0KemH9Cuo2Udp+pdy2RIqzoXzEfuGncWToiAzsbO/SG0xTri5lWMInpBVMwNjeRNdIs7i37\nYjFn66tJO5hKheEUl5obZOabk50z6w6vorz2JF+dPYQd9gBX2BhW1JYTqBssM7euJty3Ztco7t9n\nBsTS0FyPu4MHNv/Z/k++ownrMY7zl85xoGI/4/JCmftpnNyfztWblaOyWTkqm7SDi6mur6KyrpIz\nDZVyuyj/aKrrqyivPUnq5ykc//EYiw4skNdHzBE+7r5kjcymR/tbWDRsyc+6765GaM8wC8tT6z+e\nEPMGwNIRy8k5vJYo/2ii/KPJKE5vtU8jtoRLsfOXiGbi+yhhz5w/jHj2mwlndXV1uLm5yd/t7Oxo\najJ7+Hbv3p3jx49z9uxZGhoaOHDgAPX19fj5+fHxxx9jMpk4dOgQZ86cobm5GZPJhI2Nebi7urpS\nW6vaCamoqKioqKj8cVCfm1RUVFRUVFRU/rgoRZW4wliid87E3taezHtWkhduXvi/2kJxWwixoLUF\nT2uR4kb2LRY9lQKUMqOrLQJ1g3l/3AccqNjPzO3TWPR5Mi8EzgfMGVDCdm7lqGyaWprQ11Vypl7P\n3T4hLDqwQC5+v/tgHmvGrkfr4sXEreHM2xNHbeNF9IZKSqtLqGk4i86lC+l3/42lwzNIO7hYflYp\nZgk2jc+XotyiAwtICV6IvY2G0uoS2S4hfimFoZzDa3l99Dr52Un5EURsCbdY9Lfu56tlAYFZ3BMZ\nadbbiH0W64t4cud0iwoRa5HB+nW9oVK2RW+oxEGRN/Rr5CxZcz3ZbkrasmactT2Sf18s443Dq5ne\nL4r5QQuwt9EQ2vM+Ojt74+nsScLeeCL7zbDoLx93X+ID51oIm0tHmCuplo7IoLOLjhc//ysfnNiM\nsdlIsM8wXh+9jpBuI2U2WOLeOWidO/PMAHN13qT8CF4tySLKP5rlXywz24r2nULUjicorS5h5ahs\nbGzMGWGAtMME89h/OiCWKsMZEoOSKK0uIWFvPCnBCzlac4TwzfdTUJbPUztm0mxqoqGpgUUHFpAY\nlMSq0mxc7d1pajFy/tJ5YndHc7qunIjbHpXirrWIKu5FIaAk7p3DUztmYmODtI8Ec3VoSLeRUlSJ\n2RXNxK3hHKjYT22jubpt6Yjl0sZU9OXGsFxSghcS0m0k9cZ6mmnm/x37J8lDFtHR2RN7W3uq66sA\n0Dp78ePl85xrqCFlSCrxgfN4asdMZnw0lYameh7oMZ5aYy3RAbF09ehK3MezGZ93HxO3/nQvCfFH\niHhXq3wSAo01ekMlq0qz8XLpTEcnT54d8DwAu8q388GJzTTRRNahTIwtRs42VHPGoGdK/mNM2BxG\nXGGsPB8AW1sb2jt2oKbhLLO2R7Ks6EWaaebh2x7hiX6zMGHimQGx0qZTmakoxkLawcW/yb2ndfGS\n87JyvlFW7AmxPLLfDBL2xpOwJ/6KijMlNjatvnxdKM9RtONG54ebFfvfasdubm4YDAb5e0tLC/b2\n5sO1a9eOxMREYmJiaN++Pf3796dDhw6EhITw/fffM2nSJAYOHEj//v2xs7OzyOUwGAx4eHj8Vs1W\nUVFRUVFRUfmvoz43qaioqKioqKj88REVHzG7omnCKLOA4OoLxVfbn6iyag1ldtXVsmuU9oBiEfj9\ncR+QGJQkF+YjtoSjsdNI27q2qhOO1hxh0efJTO8Xxa5TO+jg1IG4wliMzUaq66t4cud0Xh+9DncH\nD6YPieLouSO8dXQ93m5dWBmSLdsrrAdfG7OGozVHeOVQFtE7Z2IygckGZtweJSt7hIChzOlSVqGI\nfKLEoCTK607Kti46sADgiowy66o70XeZIeY2xOyKRmOnabOiry2RSORUKXPklO+LrDMhQFpndwkx\nULRH/CwEpPfHfYDO1Zu4wliyRmbLjDPr7LZfyq9h6QbmRfbVY3MAOH7+OOsPr6PSUIGXS2eq66vo\n6NwRAG/XLrxyKMvifgFz9Y04Z9EnogLT09mT+Xvn0tjciMbWATBXaInKsFcOZbFqzBvUNNSQuHcO\nvm7dSAleSPK++WQUL+NsQxXzBicR7DMMz6+1cvxcvFxL3CcxdHH1pdnUhLuDO+8+aK4Ae/lfGYgy\np0UHFmAymTh+/jhLi1Jpbmnm+Pnj6A2naefYHheNC2AWvjJDspi1PZLzjTWs/XoVcwbN44VPnmNp\nUSrrD6/DRWPO2FLm2yXsmSNf83H3lZln4vpY3/MiX63JZKSh8RKLPk8GYNb2SJzsnAFzrpcY24lB\nSUTteIK5g/5CnbEWW2yZM2geAFUNZ9A6eTFj+1RsTDasuXc9NQ01rPgygw5OHUjYG08nJy983H2Z\n6jedXh168cGJzQTqAunRrgdxn8TQyUlL8tCFMldNtPN6xlVFbbnMwovyj2Zy/6nyXlRmtCXvm4/W\nyYvqS2ZBzNOpExpbDRpbDYmDUyivPWXOWrTzZqrfdDKK0+Vc4uWsQ2NnT+yAODYe3cAzgbHM+XQ2\nm46bj+Pl3Jm+nn5yHCvv12J9EXM/ff43yfqqqC0ndnc0JpOlWC7aYZ2DuKo0m3mDzONYaccpUFYw\n/txcM+V81Fo7fs/8ZhVnAwcO5NNPPwXg0KFD9O7dW77X1NTE4cOH2bhxIytWrKCsrIyBAwdSWlpK\ncHAwb7/9NqGhoXTt2hWAfv368fnnnwPw6aefMmjQoN+q2SoqKioqKioq/3XU5yYVFRUVFRUVlf8b\nBOoGy4onJb80V6a1nBtlzta1FjKVi6/vj/sAgCd3Tpd5RMYWoxSgJm4NbzXjqqK2nFWl2ehcvDmg\n38dzA+OZv+8FovyjWTkqG39tgMxqSgxKYmlRKu8e24iHQzsLWzMfd19z3pThNNX1VeQcXktK8EKc\n7V2Y1m86mEysP7xOVoopRTPrbDGRT9TUYq4yEllfuePyWDkqm9xxeRbVW9bZScq+E/Z8K0dlX7cN\npkD0q782wMLGEX4SQpSvt1WxZm17mBP6lhSQrD8jRDPr4/0a/Br7EwLpogML2Hh0AzY20MHREzAL\nTxG3PUpGcTqLhi2R+WbWBOoGy34orS6RNnEp+82VjolByXg4enC05oj8TNbIbLm/VaXZpA1fTu64\nPPy1ATSbmnC2d2be4CRyj71DzK5o7G3t5dh31jiRec9K5gyah76+kguXL8jqLxsbWDYiE39tALnj\n8kgYnEzusXfo6OSJDTa8/e0G5g1O4sfL55l9Z7wce0JA9HHtiovGnH92S/uerBm7nrzwfBKDkqTN\nnqgyjQ+cS0ZxOsX6IgrK8skoTre4Ltb3vMgOXDRsCTn3/YNOjl54u3Zh9dgccsflkRK8EHcHD1aO\nyiYzJAutixedXbzJPfYOCYOTscWWjOJlrPgyA1+3rmSErMDLWYeXa2eOnz8uRexXDmXh7dqFNffm\nsGjYEpZ9sZhifTFgFkc9nT2xs7HD1cEVrYvXFePpesaV3lBJpeE0Y7vdR9wnMRSU5Vt8Xm+oZNGB\nBejrT/Ngz3BsscXLuTPPBMzGzsae9BF/Y1Xpq2w48gYAhkYD6V+8yPieDxGoG4zeUImLxpm6ywbe\n/nYDTSYjJy6cwGQykX7335h9ZzwXLv9IzK5oiyozMabNY8GGRcOW/Cbikb2tRmYkWs/B1tXNZ+ur\nWfaF2X7y51Q1Xw0xz4rqv4gt4RaVcH8EbEwmk+m32HFLSwt//etf+e677zCZTCxZsoTDhw9TX1/P\nI488wt///nd27tyJo6MjTzzxBKGh/7+9Ow+Iqlz/AP4dFpFNcWFLpaSupkZqaLllSi5wQRGRQAwy\n3FPJwARN8Lov99pNLbe0SNNKEnEBMdRM3JJIzcxKJTVNEEFDFmGGOb8/uOf8ZoaZgUEZBvx+/rky\nM+ec9z3bfTvPeZ7XGwUFBYiKikJpaSns7e2xePFiODs7448//kBcXBzkcjnc3d2xaNEimJub69x2\nXh5LEhERETUEjo729d0Ek1Cf4yaAYyciIqKGgmMn0/AwYycxe0ihlGPHMPWgjSEPG7U9MFXNWlLN\nvqqttOwUKdNmYvqbUslD1W3qaldO8S14uvSU1lEiLwEAJI9Ikdp25PphzMp4B842LrBv0kzKFhH7\nMuXgeKwbtEkKjImf3Sy8gSfs2yJ5REqVjCptfc7KycTJmyew4ofF2OWfAk+XnlKQTcxQUs1Q05yz\nTDPIpZmhVtP9rG0bqu1QncdKc52qf2flZFYJkqm2KysnE1FHIgFAmoPLVKmexznFtzDhm7EQhMog\n1O2SXGwa8hk8HLtK55MuadkpUjajo40ThiUNBQC42LkiostE/DtrCd71nIPd2UlI8N4mlSYsVZTA\nQmYpzUPmn+yDKc9HIvXqHsT1mg9HGycpKyqn+BamH5oiZej8M2kQ8kvuwNHGGTN7xGBWxjtwsnZB\nM6tm0jUjzlm2Mms5Ph6SgF/zLyImIwpu9k8hcXgyjlw/jFbWreDh2BXn887Bw7FrlcxJzfMU+P9r\nZHL6eNwqvolNQz6Dt7uv2n5VPX/SslMw4ZuxgAyI6VEZtHayccbegAMAKsuyiqVUVc8d0fBkbzg0\naYHmVg5Y8+o65JXcxpxjs1CmKMOdB3mIe2kBAjoESr8X2x6w2xel8gfILb0FSzNLONu4wFxmgfWD\nN0llDlWPa02vJXG5tOyUKv0W+3Ly5gks/X4B5JDDDOYwNzODXCnH291mYvXZlQj6x2jsuLQdABDR\neSK++H0rNgz6BEtPL8IQNx+sPrsScS8twMbza5FTUhkc9XvKH1cKL0uZt2L2qOaxmpw+Xurjo6Ya\naNe3/m0XtiAmI0rtOGvuW133veqIfY32nCVlcoplb8Xz1FSCZw8zbqqzwFl94sMfIiKihoEPf0wD\nx05EREQNA8dOpuFhx06qD7/Fv/WVUtS2fGhKEOQVcqlkIAC1B+wP2z7xQfBre0dgx7DkagMX2ton\ntiun+BYmp49HTslfSPZPVSutdz7vHBxtnKSgkfjQWwxqWFvYqJWRjDoSKT209nDsqjXopNmHEcm+\nyCn+C442TtgbcED6jRjUUw1iaa5D9bjoC3yJpcqqC1hqbkP1MzGgutprnRSs0RYEFEtpqpaGG7H7\nn3C1fQK7/FOkfaUZ4DNVN+/f+N/cdfmIzYiGi+0TmPFCNNaeWy3tC0D3g33Vh/je7r5SwKZEXoK7\npQV4yqE93uoaiYRfNqtdH1k5mcgruY34E3NgbVFZDvHNtNcr54sWgDb27aTgrBgMUL0egMrSpLEZ\n0XC0cUJucQ6cbV2wpF9l9lfc8Tn/a9+fMDMzw/KX36/MwHxuKsZ6RODI9cN457tpAAAXG1fkl97B\niv7/xZgu4VK/xPMpp/iW2nWjFki+fwObh26RAkjazltx/+SX5mPj+XXIK86DQ1MHKWAoBj3E/3Wx\ndcWR64elffZm2uvIL72DzUO3VB6nY9GoqKhAaxtHTPR4C4mXvqxyfG7ev4Fdv+/EF79tRX5pPuJ6\nzcfac6sR12u+dJy0XV/VBXBUryFt16zqPaSwrBCj/hGMry99hZk9YqQAZljKaLzXKx7/OjEXhfK/\n8Zl3ZQDN0cYJk9PHAwBmvBCNAW5eCE0JQm+Xvki89CXuywvR1q4dlvRbIc0nphn4O593DlHfvg2H\npg5qGa2PkrbgueY+Ck0JQmFZITYNTdB7L9B2T6oJ8f4pr5CrlXs09P/P6trDjJvqrFQjERERERER\nERERqVOdl0b8W99cZdqW3+6biMThydJDZnEdjyJoplqGUZxLRwwcaJYz1Cen+BbGpo2Bi60rkkek\nINk/Va20HlA575QYGFG13TcRu/xT1AJUsRkzpSyYCeljkVN8Cwne2+Bi64rQlCCp3aolGwHAxtIG\nHw9JkIJm4m9USziK+1XfcRH3u+qDfdXfjE0bg6ycTL0l0TS3ofrZ+wNWw8LMEnklt3XuU835lMTP\nlvVbCWuLynmzxH3VEGTlZCJgty/C00bj3e9mwP/pQCzsuwQbz6/Daq918HTpWWWfa1ItWSlaN2gT\nLM2awMnWBXG95mNMl3C160MsZbfg5DxYyCzR26UvAMDMzAxKQYlW1o6QyYAj1w+rlcQThMr5s/yT\nfTDl4HgMcPNC8ohU7A04gBX9/wtzmQXmHJuFCeljMeOFaCzsuwQyMxlie8ZhgJsXJj43FRvOf4jz\neecwwM0LEZ0nwkJmgeAOYyAX5IjJiEJWTqbaOZxTfAsj9/hJ57t4Dk8/NAVvd4/GE3ZtsfT0IrUA\niGrQQvw7KycLH51djYkeU1CkKMTUbpGYfmiKWrAMqJzz73zeOUR9Nx1jO4+Di63r/7IAZbh89zLm\nHH8XMT3mopW1I+6WFaBF0xZaj6tf0lAs/D4e3R17oKAsH1f/vgq5Uo6lpxchKydTKvOnGgCrjnh/\nCk0JQlp2itp1L/Z1u28iPF16/u96ssDu7J24XZoDAGhqbo2TN08gvywP73w3DSWKYsS9tAAejl2x\n9PQiTD80BRWCAn8V30Ar68qyobNfnIttv32GUnkJnKydEe0Zg5VZKxDtOUtredSIA2G4U3YbRfK6\neTlVzDjTt8/E+4m1ReX8deK9SddvDQ1wZeVkSnPCicFBXWVCGzJmnBEREVG94VvTpoFjJyIiooaB\nYyfTUBdjp7p8S9+Qslma2WKv7R0BCzNLKYNDNcutuqwQMUtGXzlKzWwHcb4mbftBXOf0Q1Nw/f5V\n7B6xX21+M9X1qG5L89+qGWKqy+jqR02Pi2qGUG2Podh/MYuuphmImtmG+ko9mgrV7KC07P3Y/usW\n5D24jdZWTrCzspWy5/RRzbwRzwExu2pC+lg4Xrjk+wAAHqVJREFUWjvBvkkzrSUrxay8pacWYcel\n7WjexAHmMnMUlhcivNObSL26F/fK7mLj4E/h7e6rlvEYf2IOLGSWUtBA7EuJvAQVggIRXSZid3YS\noj1nYfyBN+Bk6wx5hQL3ygvg0KQlrC2bwkJmiQcVpcgtzsHmoVuQlZMFTxdPtcwxXeU5xSzDdnZP\nIr73fKnEoy4fZq3Cgu/jYA5z7Bv5jfS5ank9zW2mZadIZTIDdvtiVo/3pD6JJSyHuPngm+v71dYh\nlpAsq3iAnJJbaGvXDsXyYpTIi6VsQjGTTSw5KJZbBarPfBLvA+Jcb7r6Lh6TiR5T8O53M9C2WeWc\n4IIAFDzIx315IVpbOSH9tSNqyyWc/wQfnfsAbe3bSRmvR64fxsqs5TCXWcDG0gYTPaYg4ZfNVe4L\nYlbiy08MQNCzwQa9yFCTa1Qzu7K634rXV17JbbXs2ppuT18b9N1vTAlLNWrgwx8iIqKGgQ9/TAPH\nTkRERA0Dx06m4VGNnYwR3KhNQE4z0ASol0UT/9ZHs6Sg5vxr+tqqq9yk6kNjANLDe0Pn8arNfHLG\neCis+qBbsyxfdW3TLOunGWTRVfqxPon9nf3iXGl+sqycLOzO3qkWlNJF9RxT3V8ApBKgIs3+iwGO\nuF7zEXEgHApBAQszCyiVFQAAAQLMYIY3Oo/DdM8ZUqBmbOdx2Hh+nXSMVNsnln6ckD4W7eyexNRu\nkXi2VSfkldxGTEY08kvvILZnHHq36SMF4BacnIdSRSkqBAVyS3LgZO2CBJ/PdZ7/mtsDUO11JS7r\ns/NVxPR8D2O6hKuda7quHdV7h2rWKVAZnPR3H4llmQvhattGbe7C1/aOwNW//8DsF+PxyYWNiOgy\nEct/WITJHtPh7e6jdS4sQ6+xtOwUONo4ScEzXUEk8Xf+yT7YNOQzAJUlNB8oHiCvNBcJ3tuk9Sx7\n+T/4Nf8i3vluGsxhgU+9t0plZENTglCqKMG6QZuQV3JbyjjTtt207BRMTH8TLrauNQr+au7rmtxb\na3rMz+edw4KT86TPVAO9tX1RQ/MeU9MSm/WFpRqJiIiIiIiIiIgaCM1ygoDhc8xUt35xnYY+HNUs\nV6hagkuc26k6LrauUtBMLB0olmWrrq26HuSLpd0WnJyHhafmYcrB8SgsK0TUkcgal3rT7F9d/P5h\nKJRyKSCjLZtFtZ+q55D4MDxozwgE7PaVgipiSUJ5hbzKtuqbWFbP290XScP3wcOxK765vh8WMkvE\n955f7X5XLVupur+OXD+MN9JCkZa9XyoDqtn/nOJbuH7/Go5c/xYKQQ4XGxdMff5tPGHXBk42zgj6\nx2hABnzyy0b47HwVUUciEe05CxvPr4O8Qo68kttVjk1sxkx4OHbFx4MTMLVbJGIzojFi9z+RX5qP\nOyV5aNm0FRIvfQkXW1ep34nDk7FpaAIAwM7SHvkP8jD90BS9x1q1/54uPWt0fbexb4tPvT9Hwi+b\n1dbhYuuqs/yqailFzTkEoz1nYfuvWyEIAhb2XaJ2j4jrNR8AsOXiJxAE4IvftmKyx3Rs/PkjqQyp\n5voMDZqFp41GXsltRHvOwsT0N7WWIczKycTE9DeRV3IbbvZPwdHGCUtPLwIAKIUKCBBw+e5lKSA6\n/dAUfHR2NZytXdGuWTspoAZUlmu0kFkCABaemodoz1lYmbVC637zdvfFxsGfSr+vCUPu0zU55mIA\nc8HJeVAIcqx5dZ1aILq25RTFIJl4jjZ2DJwREREREREREREZkaHzmhlC8yH7owr8iOXhXts7Qu9D\nU3H7qg/HdQXENOcEq66tLrausDS3RFyv+RAEwMbSGu8PWG2SmQ61IdYF05aNqG0+J82Sk4nDk7HL\nP0Xa12JwqrrsrfoitkkMfm33TcSaV9dhZdYKnXMyqVI9p8TgYcIvmxHZLRrrz6/B7eJc5JXchkxW\ndbll/VZi26+fwdnaFcEdxmD9T2tQIVQgr+Q2Ei99gQqhAs0sm8PKvCneH7Aa3u6+2O6biPje8zHp\nYATSslPUti0eiznHKgNsHw9JQLJ/Kga4eeGp5u3xqffnanMSisvlldxGTkkO7ssLoRAUmNqtMtin\neV3oCnTU9LiqBlzEfQ2gynklEoOBqteoeB4uPb1ICm6qZvbdvH8DHo5dsScgrXKeOXMLlMhL8c31\n/dgw6BNpH+rLOtX2b1Uejl3xVLP28HDsCg/Hrmhr5ybda1S52LqirZ0bPBy7InF4MoDKuRMX9l0C\nh6YOaGHVEl/8tlUKiD6oKEV87/lIG3UI6wZtkvYXAClr69f8i7h+/xocbZz0Bp48HLtq/Vyf2r7c\noIuFWWUAWpz7UHOZ2twPxLnTLM0tpZcoxHPJFO8vD4uBMyIiIiIiIiIionqgmUXyKKg+ZH+U6/Z0\n6Ylk/1TsGKY/CKPtIb+uTDMx26OmD13Fh7SONk6wsbTBW10jtT4018XUsyTEB9LashG3+yZqfUCt\nGWDRFqBsCA+1xWChp0tPRHvOQmzGTIOPl5gl9V6fePi7ByK/7A7e/S4K2iYqGuDmBVe7JxDScQzW\nnlsFGws7THhuCpRQQkDlAiWKYshk6hlSHo5dsWHQJ1UyjtrYt8X5vHO4UfQnJnpMgbe7r5Q9uGNY\nsvQbTY42Tmhj2xaOTZ3Q1q4dnm3VCQBqdA0ZSrwniPta9bzS9lsx4K0ZcNvumwgPx66wkFlKGZ+q\nwd28kttwsXWFQqmAtUVlcLu6YJJqwF9bhp1qu8QSiGKwWFdAUfzufN45jNzjh/N557AyawXe6hqJ\nYkURSuSl8HDsitkvzkVe6W0sODkPOcW3pD6J67U0rwxCbTy/Dh8PTpACvfpYmtc84+xRU83mfH/A\n6lpdS7p4uvSsss6GcH+pDc5xRkRERPWG83SYBo6diIiIGgaOnUzDoxw71eX8WQ8zj42xiPMBqWZJ\nVUfs19jO4xB7LBpu9k9WG8xTXc6U94ehcz5pm9NM83tT7zOg3k4A0lx3YuDJkP0hzoM3Mf1N2FjY\nYpvvDgDq2WniA/8Ryb74q+gG5EJlKcdWVq2RX5YPQICDVQvM67UQA9y8APx/0Clgty92+adIn2lK\ny06Bt7uvWp/O553DpIMRUmlJbe1dcHIeQp8Nw5aLn8DawqZOsnjE4BYAtfnNajtPlWbgRJxXa9LB\nCCzp+2/EHovGx4MT4OHYVZpTTd/8XJpzKj6K/qvuYzF418a+LdKyU7D09CKpz2nZKdL34vx34hxm\nYruqmxdOc7uP6vg97Lrqav5MU76niDjHGRERERERERERUQNTlw8eazuPjTHpK7WmT4L3NozpEl6j\nDDhRQ9gfhgaJQlOC9M7x1hD6DKi3U/y3i60rxqaNQVp2So0zM8VlPRy7YpLHNDjbugCAWnaMGEgB\ngPWDN2Hz0C140r493u42Ey2atsTb3aJhBjPcK7uLVWdWqmUAns87h6uFf+B83jmd+1QMtqiWb1yZ\ntQIbBn1SJeAi/sbRxglypRzLMhfi5v0bmP3i3Do5ZmImkrYsJH3z4Ok7vzSz4sQ56wa4eaGd3ZNV\nMs2qOx9V5+17FFTPCfG4A1ArG3nz/g2szFoBoHL+uxJ5aZW508QyhTWdU/FRBs2qK49rrLbU9TpN\nDTPOiIiIqN7wrWnTwLETERFRw8Cxk2ng2OnRMuQheUPJoKotQ/unWSqwscnKyUTUkcgaZ/kAkLLC\nrhb+gf++8iHGdAnXOmccAGlfi+X5SuQlmPFCNKK+m47IbtEY6xFRJZi57cIWjOkSblA/9J3j4jFf\n9vJ/pM9q2teHodomfRlnWTmZerPEarqNtOwUrMxaoXc9dV36r7rjAFRmlckr5IjvPb9K5qD4vTHn\n9BLnlkz2TzXKedHYPMy4iYEzE9ZQUh6JiIhqiw9/TMPDjp04ZiEiIjIOjp1MQ2N57tRQNfaxp6H9\na8zBxNqWEMzKycSUg+OlubD0rV/8XgzSTfSYgpiMKOwesb9KoKKu9rUpnNPa2qAa1HuYoE1N1mMq\n57G24J1mkNHY7cvKyWTQrJYYOGuE/vz7TwR8FYBdwbvQrnm7+m4OERERkVYcsxARERER1a8///6z\n0Y7Fa9u32iz3/Y3vMTV1KuL7x2P4s8MfaXsaqkfV35qs53Hbt2TaGDgjIiIiIiIiIiIiIiIiAmBW\n3w0gIiIiIiIiIiIiIiIiMgUMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycERERERER\nEREREREREQFg4IyIiIiIiIiIiIiIiIgIAANnRERERERERERERERERAAYOHvsKJVKxMfHIzg4GGFh\nYbh27Zra94cPH0ZgYCCCg4OxY8cOvctcu3YNo0ePRmhoKObNmwelUimtp6CgAEOHDkVZWZnxOtfA\nGePYJCQkICgoCEFBQfjwww+N28EGzBjHZtu2bQgMDMSoUaOQmppq3A42UMa6nymVSowfPx5ffPGF\n8TpHRCaDYyfTxbGTaeK4yXRx7ETU+J07dw5hYWFVPtd2fcvlckRHRyMkJAShoaG4cuWKsZtrMEP6\nV15ejujoaLz22muIiIjA1atXjdxaw+jqGwCUlpYiJCREOkbV3c9NkSH9q8kypsaQ/snlcrz77rsI\nDQ3FqFGjcOjQIWM21WCG9K2iogKzZ89GSEgIRo8ejd9//92YTa2V2pyb+fn5eOWVV0z+vmlo3wIC\nAhAWFoawsDDMnj3bWM2sNUP7t2HDBgQHB2PkyJFITEysfgMCPVYOHDggxMTECIIgCGfOnBEmT54s\nfVdeXi4MGjRIuHfvnlBWViaMHDlSyMvL07nMpEmThFOnTgmCIAhxcXHCN998IwiCIBw9elTw9/cX\nunfvLjx48MCY3WvQ6vrYXL9+XQgICBAUCoWgVCqF4OBg4eLFi0buZcNU18cmPz9f8PX1FcrLy4X7\n9+8L/fv3F5RKpZF72fAY434mCIKwcuVKISgoSNi+fbuxukZEJoRjJ9PFsZNp4rjJdHHsRNS4bdy4\nUfDz8xOCgoLUPtd1faenpwuRkZGCIAjCsWPHhGnTptVHs2vM0P5t3bpVmDt3riAIgnDlyhUhIiKi\nPppdI7r6JgiC8NNPPwkBAQFCnz59hMuXLwuCoP9+booM7V91y5gaQ/v39ddfC4sWLRIEQRDu3r0r\nvPLKK8ZsrkEM7Vt6eroQGxsrCIIgnDp1qlGem+Xl5cJbb70lDBkyRO1zU2No3x48eCD4+/sbu5m1\nZmj/Tp06JUyaNEmoqKgQioqKhNWrV1e7DWacPWaysrLw8ssvAwC6deuGn3/+WfruypUrcHNzQ/Pm\nzdGkSRN4enoiMzNT5zIXLlzAiy++CADo378/Tpw4AQAwMzPDp59+CgcHB2N2rcGr62Pj4uKCTZs2\nwdzcHDKZDAqFAlZWVkbuZcNU18emZcuWSE5OhqWlJe7cuQMrKyvIZDIj97LhMcb9LC0tDTKZTFqG\niB4/HDuZLo6dTBPHTaaLYyeixs3NzQ1r1qyp8rmu67t9+/aoqKiAUqlEUVERLCws6qHVNWdo/y5f\nvoz+/fsDANzd3U06M0RX34DKzLmPPvoI7u7u0mf67uemyND+VbeMqTG0f97e3nj77bcBAIIgwNzc\n3CjtrA1D+zZo0CAsXLgQAPDXX3+hWbNmRmlnbdXm3Fy+fDlCQkLg5ORkjCbWmqF9+/XXX1FaWoqI\niAiEh4fj7NmzxmpqrRjav2PHjqFDhw6YOnUqJk+ejAEDBlS7DQbOHjNFRUWws7OT/jY3N4dCoZC+\ns7e3l76ztbVFUVGRzmUEQZD+I9XW1hb3798HAPTt2xctWrQwRncalbo+NpaWlmjZsiUEQcDy5cvR\nuXNntG/f3ki9a9iMcd1YWFjg888/R3BwMIYPH26MbjV4dX1cfv/9d+zbt08a0BLR44ljJ9PFsZNp\n4rjJdHHsRNS4DR06VGvwS9f1bWNjg5s3b8LHxwdxcXEmXxLP0P516tQJ3377LQRBwNmzZ5Gbm4uK\nigpjNrnGdPUNADw9PeHq6qr2mb77uSkytH/VLWNqDO2fra0t7OzsUFRUhMjISMyYMcMYzayV2hw7\nCwsLxMTEYOHChRg2bFhdN/GhGNq/pKQktGzZskG8IGRo35o2bYpx48Zh8+bNmD9/PmbOnNmo7it3\n797Fzz//jFWrVkn9EwRB7zYYOHvM2NnZobi4WPpbqVRKJ5nmd8XFxbC3t9e5jJmZmdpvTf0tAlNn\njGNTVlaGmTNnori4GPPmzavrLjUaxrpuXn/9dWRkZCAzMxOnTp2qyy41CnV9XJKTk5Gbm4s33ngD\nu3btQkJCAo4ePWqEnhGRKeHYyXRx7GSaOG4yXRw7ET2edF3fCQkJ6NevHw4cOIDdu3cjNja2Qc61\nqqt/gYGBsLOzQ2hoKNLT09GlSxeTzuwxhL77OTUMt27dQnh4OPz9/U0+uFQby5cvx4EDBxAXF4eS\nkpL6bs4js3PnTpw4cQJhYWG4ePEiYmJikJeXV9/NeiTat2+P4cOHQyaToX379nBwcGg0fQMABwcH\n9OvXD02aNIG7uzusrKxQUFCgdxkGzh4zL7zwgvQfL2fPnkWHDh2k755++mlcu3YN9+7dQ3l5OX74\n4Qd0795d5zKdO3fG999/DwA4evQoevToYeTeNC51fWwEQcBbb72Fjh07YsGCBY1mwGgMdX1ssrOz\nMW3aNAiCAEtLSzRp0kTtYQRpV9fHZdasWUhMTMTWrVsREBCAsWPHSqU+iOjxwbGT6eLYyTRx3GS6\nOHYiejzpur6bNWsmZWo1b94cCoXCZDOy9NHVv/Pnz6N379744osv4O3tjXbt2tV3Ux8ZffdzMn13\n7txBREQE3n33XYwaNaq+m/NIJScnY8OGDQAAa2tryGSyRjVO27ZtGz7//HNs3boVnTp1wvLly+Ho\n6FjfzXokvv76ayxbtgwAkJubi6KiokbTN6AyCy0jIwOCICA3NxelpaXVTpXA1xEeM4MHD8bx48cR\nEhICQRCwZMkS7N27FyUlJQgODkZsbCzGjRsHQRAQGBgIZ2dnrcsAQExMDOLi4vD+++/D3d0dQ4cO\nrefeNWx1fWwOHjyI06dPo7y8HBkZGQCAqKgodO/evT673SDU9bExNzfHs88+i+DgYGlOCHHOCNKN\n9zMiMgbea0wXx06mieMm08X7GdHjpbrre+zYsZgzZw5CQ0Mhl8vxzjvvwMbGpr6bXWPV9c/S0hKr\nVq3C+vXrYW9vj8WLF9d3k2tMtW/a6Lo3NxTV9a+hq65/69evR2FhIdauXYu1a9cCAD7++GM0bdrU\nmM2sler6NmTIEMyePRtjxoyBQqHAnDlzGkS/RI353Kyub6NGjcLs2bMxevRoyGQyLFmypEFlslbX\nv4EDByIzMxOjRo2CIAiIj4+v9sVImVBdMUciIiIiIiIiIiIiIiKix0DjyZUkIiIiIiIiIiIiIiIi\neggMnBERERERERERERERERGBgTMiIiIiIiIiIiIiIiIiAAycEREREREREREREREREQFg4IyIiIiI\niIiIiIiIiIgIAANnRGRkSUlJiI2Nre9mPLSwsDB8//339d0MIiIiauQ4diIiIiLS7saNG/Dy8tL6\nXceOHet02/7+/nW6fiKqXwycERERERERERERERHV0O7du+u7CURUhyzquwFEZHoUCgX+9a9/4dKl\nS7hz5w7at28Pd3d3ODs7Y9y4cQCAyMhI+Pn54fnnn8fMmTPx999/o0OHDsjMzMTRo0f1rv/atWsY\nM2YM7t27h4EDByI6OhoymQw7d+7Ep59+CplMhi5duiAuLg62trY617N8+XIcP34c5ubmePXVVzFt\n2jSsWbMGV69exfXr13Hv3j0EBwdj/PjxSEpKwq5du6RthoeHIz4+Hjk5OZDJZIiOjkafPn2Qm5uL\nOXPm4P79+8jLy4Ovry9mzpyJ8vJyvPfee/j555/Rpk0b3L1795HucyIiImq4OHbi2ImIiIjq3vr1\n67Fnzx6Ym5ujb9++CA0NxYMHD/DOO+/g0qVLaNasGT766CO0aNFCWubevXt47733kJ2djSZNmiA2\nNha9e/fWuQ0vLy94eXnhhx9+AAAsWbIEnTt3RlhYGJo3b45Lly7hgw8+wIgRI/Dbb7/pXP/Ro0ex\nevVqKBQKtG3bFgsXLlRrFxGZNmacEVEVZ86cgaWlJb766iukp6ejrKwMLi4uSElJAQAUFRXhxx9/\nxIABA7B48WL4+Phg79698Pb2Rm5ubrXrv3HjBtasWYNdu3YhKysLhw4dwm+//Yb169dj69at2Lt3\nL6ytrfHhhx/qXMfNmzdx9OhR7NmzB19++SWuXr2KsrIyAMDvv/+OhIQEJCUl4auvvsKFCxcAALm5\nudi1axeioqKwePFiBAYGIikpCevWrUN8fDyKioqwb98++Pn5YceOHdizZw+2b9+OgoICbN26FQCw\nf/9+zJ07F9evX3/Y3UxERESNBMdOHDsRERFR3fruu+9w+PBh6eWea9euISMjAwUFBXjzzTexb98+\ntG7dGqmpqWrLrVq1Cm5ubti/fz9WrFiBDz74oNptOTg4IDk5GZGRkYiJiZE+79ixIw4cOIBOnTrp\nXX9BQQFWrlyJzZs3Izk5Gf369cN//vOfR7cziKjOMeOMiKro2bMnHBwcsG3bNmRnZ+Pq1ato0aIF\nysvLce3aNZw5cwYDBw5EkyZNcPz4cSxduhQAMHjwYDRr1qza9Xt5eaFly5YAAB8fH5w+fRo5OTkY\nOHCg9PZNcHAwZs+erXMdzs7OsLKyQkhICAYOHIgZM2bAysoKAODn5ye9be3l5YVTp06hRYsW6Ny5\nMywsKm97J06cQHZ2NlavXg2g8k3xP//8E+PGjcOpU6ewefNmXLp0CXK5HKWlpTh9+jSCg4MBAE89\n9RS6d+9em11LREREjRDHThw7ERERUd06deoUfH190bRpUwBAYGAgkpOT4eTkhOeffx4A8Mwzz1TJ\ncs/MzJSCVh07dsRXX31V7bZee+01AJXjotjYWBQUFACAtJ3q1v/tt9/i1q1bCA8PBwAolUo0b968\nNt0monrCwBkRVXHo0CGsXr0a4eHhGDlyJO7evQtBEDB8+HCkpqbizJkzmDBhAgDA3NwcgiAYtH7x\nAQwACIIACwsLKJVKtd8IggCFQqF3HYmJiTh9+jSOHj2KkJAQ6c1mc3Nz6XdKpVL6WxxciZ9/9tln\ncHBwAFD5RnXr1q2xbNky/Pnnn/Dz88OgQYNw4sQJCIIAmUym1kbVPhAREdHjjWMnjp2IiIiobmmO\nfYDKF3lUxxgymazKOEtzDHLlyhW0b98eZma6C7GpLqNrbKRv/RUVFXjhhRewfv16AEBZWRmKi4t1\nbo+ITA9LNRJRFSdPnoSPjw8CAwPRunVrZGZmoqKiAsOGDUNqaiquXbuGHj16AAD69OmDvXv3AqhM\nmy8sLKx2/eLvysrKkJKSgj59+uDFF1/E4cOHce/ePQDAjh078NJLL+lcxy+//ILXX38dPXv2RExM\nDJ5++mn88ccfAICDBw+ivLwcf//9N7799lv069evyvK9evXC9u3bAQCXL1/G8OHDUVpaiuPHj2Pc\nuHHw8fHBrVu3kJubC6VSid69e2Pfvn1QKpW4efMmfvzxR8N2KhERETVaHDtx7ERERER1q1evXkhJ\nScGDBw+gUCiwc+dO9OrVq9rlevToIZVvvHLlCiZMmACZTKZ3GbHcdnp6Op5++mm92WLa1v/888/j\n7Nmz0lhr7dq1WLFiRY36SUSmga/9EVEVQUFBmDlzJtLS0tCkSRN069YNN27cgKurK1q0aIFu3bpJ\ng4w5c+YgJiYGO3bswLPPPlujckPu7u6YOHEiCgsL4efnJz2cmTRpEsLCwiCXy9GlSxfMnz9f5zo6\nd+6Mbt26wc/PD9bW1ujUqRP69++PCxcuwMrKCqGhoSgqKsKkSZPwzDPP4KefflJbfu7cuYiPj8ew\nYcMAACtWrICdnR0mTZqEWbNmoVmzZmjVqhWee+453LhxA6Ghobh06RJ8fHzQpk0bdOjQoba7l4iI\niBoZjp04diIiIqK6NXDgQFy8eBGBgYFQKBR4+eWXMXDgQGzZskXvcpGRkZg7dy6GDx8OCwsLrFix\notrA2Y8//oivv/4a1tbWWLZsmcHrd3JywpIlSzBjxgwolUo4Ozvj3//+t8F9JqL6IxMMrRNCRKRi\ny5Yt6NOnD5555hlcuHABcXFxSEpKqrf2rFmzBgAwffr0emsDERERkS4cOxERERGZLi8vL2zZsgVt\n27at76YQUT1ixhkRPZQnn3wSUVFRMDMzg5WVFRYuXIjU1FRs2LBB6+93795t0PrDwsK0ljAKCQnB\n6NGja9VmIiIiovrCsRMRERFR/dI3XiIiAphxRkRERERERERERERERAQAMKvvBhARERERERERERER\nERGZAgbOiIiIiIiIiIiIiIiIiMDAGREREREREREREREREREABs6IiIiIiIiIiIiIiIiIADBwRkRE\nRERERERERERERAQA+D9nDXmK/svmdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, axarr = plt.subplots(2, 3, figsize=(30,10)) #1 row, 2 cols, x, y\n", + "irow, icol = 0,0\n", + "fig.suptitle(\"pca against features\")\n", + "\n", + "if simname != \"bm_kaggle\":\n", + " \n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"pca\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"ohlc_price\", irow, icol, df)\n", + " irow+=1\n", + " icol=0\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df)\n", + " icol = pltGraph(\"avg_bo_spread\", \"period_return\", irow, icol, df, yval=df['period_return'].shift(periods=1).fillna(method=\"bfill\"), title=\"avg bo spread v future period return\")\n", + " icol = pltGraph(\"ohlc_price\", \"pca\", irow, icol, df, xval=df['ohlc_price'].shift(periods=1).fillna(method=\"bfill\"), title=\"ohlc 15 min future v pca\")\n", + " \n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAN8CAYAAABGOcflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FFX/x/H37maTkEI6JBB6iXRCC4ggoohIEbBQQnlQ\n8BFUpEgVEBBBihUeC0VEwJ+CgoCIIk2kg3QILfRQAiSQ3vf3x8pKSDEQyQb9vM7hHHb2zr3fuTNz\nZ+7eOxODxWKxICIiIiIiInKPGe0dgIiIiIiIiPw7qAMqIiIiIiIiBUIdUBERERERESkQ6oCKiIiI\niIhIgVAHVERERERERAqEOqAiIiIiIiJSIBzsHYCIiIiIiMj9Lp2F9g7hL5kItXcIGgEVERERERGR\ngqEOqIiIiIiIiBQITcEVERERERHJp4yMdHuH8JdMhWD4sRCEICIiIiIiIv8G6oCKiIiIiIhIgVAH\nVERERERERAqEngEVERERERHJJ4slzd4h3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJP\nFkvh/zMshYFGQEVERERERKRAqAMqIiIiIiIiBUJTcEVERERERPIpQ2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSTRVNw80QjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmkKbh5\noxFQERERERERKRDqgIqIiIiIiEiBUAdURERERERECoQ6oCIi/1DNmzcnKCjI9q9KlSrUq1eP3r17\nc+TIEXuH948VFBTEsmXL8pTWYrHw/fffc+3aNQC2b99OUFAQly5dupch5ioiIoJnnnmG6tWr89pr\nr2WbZsKECQQHB1O3bl2uXr2a7zITExNZuHBhvvMREbEnS0Zaof9XGKgDKiLyD9anTx82bdrEpk2b\n2LBhA/PmzSMuLo5evXoRFxdn7/D+9Xbv3s2wYcNITEwEIDg4mE2bNlGsWDG7xbRw4UIuXrzIsmXL\nGDNmTJbvT5w4wfz58xk2bBjLli3D19c332V+8cUXzJkzJ9/5iIhI4acOqIjIP5iLiwt+fn74+flR\nvHhxqlWrxrBhw4iKimLbtm32Du9fz2KxZPrs6OiIn58fRqP9Ls8xMTGUK1eOChUq4OPjk+X7Gzdu\nANC4cWMCAwP/ljJvrwcREfnnUgdURORfxmQyAdbODlg7FCNGjCAkJIQGDRrQp08fTp48aUufnJzM\npEmTeOSRR6hevToNGzZkxIgRtlG7JUuW0LJlS8aOHUvdunUZOnQoCQkJjBgxggcffJAaNWrw3HPP\nsXXrVlueiYmJTJs2jebNm1OjRg2effbZTN8PHz6ckSNHMmHCBEJCQggODmbw4MG5jtpevXqVwYMH\n06BBA+rXr0///v2JjIy0ff/tt9/Spk0batasSYsWLViwYIHtu+y2IbtlALt27aJz587UrFmTRx99\nlHfffZfk5ORsY8qt7s6fP09oaCgAjz76KNOnT88yBfde1NOFCxcYOHAgDRs2JDg4mH79+nHu3DkA\nunfvzuLFi9m5cydBQUFs374907pLliyha9euADz22GMMHz4cgGPHjvHCCy9Qq1YtmjZtypgxY4iJ\nibGtd/78efr3709ISAjVqlWjefPmzJ4925bnhx9+SEREhK3M6dOn06JFi0xl37rs/PnzBAUF8emn\nn9KoUSNatWpFSkoKFy9epH///tSpU4cHH3yQgQMHcvnyZVsee/fupXPnztSuXZuQkBCGDBnC9evX\nc6wrEZE7Ykkr/P8KAXVARUT+Rc6dO8e7776Ln58fderUISMjgxdffJHIyEhmz57NV199RYkSJeja\ntSvR0dEATJ48mfXr1zN16lR++uknxowZw8qVK/nmm29s+Z4+fZq4uDi+//57/vvf//LRRx9x4sQJ\n5syZw48//kiVKlV45ZVXSEhIAGDgwIGsWrWKcePG8f3331OrVi169+7Nvn37bHkuX76c9PR0vv76\naz744APWrVvHl19+me12paWl8fzzz3P+/HlmzpzJggULuHr1Kv379wdg7ty5vPXWW/Ts2ZPly5fz\nwgsvMGXKFD7//PMctyG7ZWFhYbzwwgu0aNGCFStWMGHCBNavX8/YsWOzjSu3ugsICODjjz8GYPHi\nxTz//PNZ1v+76ykuLo4uXbpw48YN5syZw/z584mNjaVbt27ExsYyffp02rRpY5sKHBwcnGn9J598\nMlPMb7zxBpcvX6Z79+5UrlyZpUuX2vb9K6+8Yluvb9++pKSk8OWXX/Ljjz/y1FNPMXXqVMLCwnjy\nySfp06cP/v7+2ZaZm5UrV7JgwQKmTZtGWloa3bt3x8nJia+//po5c+aQmppKz549SUlJIT09nb59\n+9KoUSN++OEHZs6cyYEDB5g8eXKeyxMRkfxzsHcAIiJy73z88cfMmjULgNTUVNLS0qhatSozZszA\nzc2NLVu2cODAAXbs2IGbmxsA48aNY9u2bSxatIj//ve/1KpVi9atW1O3bl0AAgMD+eqrrzh27Fim\nsvr160epUqUAOHPmDK6urgQGBuLu7s6wYcNo2bIlJpOJEydOsH79eubMmcNDDz0EwKhRo9i/fz9z\n5szho48+AsDT05NRo0ZhMpkoV64cDz74IHv37s12O7du3crRo0dZs2aNLYYJEyawZMkSkpKSmD17\nNj179uTZZ58FoGzZspw7d47Zs2fTq1evbLfhZifv1mWvv/46Dz/8MC+88AIAZcqUYdy4cXTt2pWB\nAwdmeXYzt7ozmUx4eHgA4O3tjaura6Z170U9LVu2jJiYGN577z08PT0B+PDDD2nevDnLly8nNDQU\nZ2dnzGYzfn5+WdZ3dnbOFLO7uzuzZ88mMDCQYcOG2dK9//77NG3alD179lClShU6dOhA69atKV68\nOAAvv/wyn376KUePHqVKlSq4uLhgMpmyLTM3oaGhVKhQAbB2iBMTE3nnnXdso/zvvfceISEhrF69\nmoceeojo6Gh8fX0pWbIkgYGB/O9//yM1NfWOyhQRkfxRB1RE5B8sNDTUNmXSZDLh6elp62gCHD58\nmPT0dJo0aZJpveTkZMLDwwF46qmn2LRpE1OmTOH06dOcOHGCs2fPZnr+z2AwZPr8wgsv0K9fPxo1\nakRwcDBNmjShXbt2ODk52Tqut4901a1blw0bNtg+ly5d2taRAHB3d880nfJWx44dw9vb29ZRBChf\nvjyvv/46165d4+rVq1nKq1+/PrNnz7a9gfb2bchuWVhYGGfOnMmU183nF8PDw7N0QPNSdzm5F/V0\n/PhxypUrZ+t8grUjWaFChSw/KORVWFgYYWFh2Y5choeHExwcTLdu3fjxxx/Zv38/Z86cISwsjIyM\nDDIyMu6qzJtu3d+HDx8mKiqKevXqZUqTmJhIeHg4bdq0oVevXowfP57p06fTuHFjHnnkEVq2bJmv\nGEREbrIUkimuhZ06oCIi/2AeHh6UKVMmx+/NZjOenp4sWrQoy3cuLi4AvPHGG6xdu5YOHTrw+OOP\nM3DgQMaPH58prdFotD1TClCvXj1+/fVX2xt4Fy5cyCeffMKiRYtwdnbONpaMjAwcHP68LN2a3005\nvazm1vVu5+TklO3y9PT0TOvevg3ZLTObzbRv354+ffpkyS+70bu81F1O7kU95Zan2WzOU1y3M5vN\nNG7cmFGjRmX5ztvbm/j4eEJDQ0lPT6dly5aEhIRQq1YtHnnkkTsqJy0t643drfvWbDZTsWJFZsyY\nkSWdu7s7AMOGDSM0NNR2bI4YMYJFixblOGVZRET+fnoGVETkX6xSpUq2l7CUKVOGMmXKEBgYyAcf\nfMDOnTuJjo7m22+/Zfz48QwbNoz27dtTrlw5zp07l+ubS2fMmMHu3btp0aIF48aNY/Xq1ZjNZjZs\n2EDFihUB658gudXu3btt392pChUqEBUVRUREhG1ZeHg4DRs25Pr16/j7+2cp7/fff8fPz882pTQv\nKlasSHh4uK2uypQpQ1RUFJMnTyY+Pj5T2rzUncFgyLUs+Pvr6dSpU5levBMVFcWpU6dsU1nv1M06\nKVGihK1OjEYjEydO5OLFi2zatImwsDDmz5/PK6+8QsuWLUlISCAjIyPHejCbzVnq88yZM7nGUalS\nJc6fP4+np6ctDh8fHyZNmsSxY8c4e/Ysb775Jn5+foSGhvLJJ58wefJktm/fbhsFFxGRe08dUBGR\nf7FGjRpRu3ZtBgwYwK5duzh16hSjRo1i3bp1VK5cGTc3N9zc3Fi7di1nz57l8OHDDB48mIsXL5KS\nkpJjvhEREYwbN47t27cTERHB8uXLiY2NpVatWpQuXZrWrVszduxYNm3aRHh4OJMmTeLQoUP06NHj\nrrbjwQcfpGrVqgwbNoyDBw9y5MgRRo8eTYUKFQgMDKRv3758+eWXLF68mDNnzrBo0SIWLFjAf/7z\nn1w7gbfr06cP+/fvZ9KkSYSHh7Njxw6GDRtGbGxslhHQvNTdzec+w8LCiI2NzbT+vaindu3a4e3t\nzaBBgzh06BCHDh1i0KBBFC1alNatW99Vnt26dSMmJobhw4dz9OhRDhw4wKBBgzh9+jRly5YlICAA\ngBUrVhAREcHWrVsZMGAAQKZ6uHHjBidPniQ5OZnatWtz7do1vvjiC86fP89XX33Fxo0bc42jbdu2\neHl5MWDAAA4cOMCxY8cYPHgw+/bto1KlSnh5ebFq1SrGjh1LeHg44eHhrFq1itKlS+Pl5XVX2y4i\nkklGauH/VwioAyoi8i9mMBj43//+R8WKFenXrx8dOnTg9OnTzJkzh4oVK2I2m/nggw84dOgQbdq0\noV+/fnh4ePD8889z8ODBHPMdNWoUDRs2ZPDgwbRs2ZIvvviCSZMm0aBBAwDeeustmjRpwpAhQ+jY\nsSP79u1jzpw5d/QG1FsZjUY++eQTvLy86N69Oz179iQgIMD2op7OnTszcOBAPvvsM1q3bs3cuXMZ\nPnw4vXv3vqNygoKC+Oyzz9i9ezft27dnwIAB1K9fP9tpn3mpu4oVK9KyZUsGDhxoi/VWf3c9OTk5\nMWfOHBwdHenWrRs9e/bE3d2dhQsXUrRo0bvK08/Pj7lz53L16lWee+45evfuTUBAAHPnzsXR0ZGa\nNWsydOhQZs2axZNPPsn48eNp164dISEhHDhwAICWLVtSsmRJ2rVrx4YNG2jYsCGvvvoqs2bNonXr\n1mzdutX2RuOcODs7M3fuXJydnenZsyddunQhLS2NefPm4ePjg7u7O7NmzeLcuXM899xzPPPMM6Sk\npDBz5ky7/t1VEZF/G4NFf/1ZREREREQkX2Jjx9g7hL/k7p639xDcS3oJkYiIiIiISD7pLbh5ozkn\nIiIiIiIiUiDUARUREREREZECoQ6oiIiIiIiIFAg9AyoiIiIiIpJfGXoGNC80AioiIiIiIiIFQh1Q\nERERERERKRCagisiIiIiIpJfmoKbJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS+LpuDm\nhUZARUREREREpECoAyoiIiIiIiIFQlNwRURERERE8smgt+DmiUZARUREREREpECoAyoiIiIiIiIF\nQlNwRURERERE8ktTcPNEI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5pSm4eaIRUBERERER\nESkQ6oCKiIiIiIhIgVAHVERERERERAqEngEVERERERHJJ4NFz4DmhUZARUREREREpECoAyoiIiIi\nIiIFQlNwRURERERE8isj3d4R3Bc0AioiIiIiIiIFQh1QERERERERKRCagisiIiIiIpJPhgy9BTcv\nNAIqIiIiIiIiBUIdUBERERERESkQmoIrIiIiIiKSX3oLbp5oBFREREREREQKhDqgIiIiIiIiUiA0\nBVdERERERCS/9BbcPNEIqIiIiIiIiBQIdUBFRERERESkQGgKrty1K1di7R0Cfn7udo+jMMRQWOIo\nDDEUljgKQwyFJY7CEgPYv91SXWSOQzEUnjgKQwyFJY7CEENhiaMwxHAzDvnnUAdUREREREQknwz6\nMyx5oim4IiIiIiIiUiDUARUREREREZECoSm4IiIiIiIi+aUpuHmiEVAREREREZF/uYyMDMaMGUOn\nTp3o3r07Z86cyfT98uXL6dChA08//TRfffXVXZejEVAREREREZF/uTVr1pCSksI333zD3r17eeed\nd/jkk09s30+ZMoUffvgBFxcXWrduTevWrfHw8LjjctQBFRERERERyaf7/S24v//+O02aNAGgdu3a\nHDx4MNP3QUFBxMbG4uDggMViwWAw3FU56oCKiIiIiIj8y8XFxeHm5mb7bDKZSEtLw8HB2mWsVKkS\nTz/9NEWKFKFFixYULVr0rsrRM6AiIiIiIiL/cm5ubsTHx9s+Z2Rk2DqfR44cYcOGDaxdu5Z169YR\nFRXFqlWr7qocdUBFRERERETyKyO98P/LRZ06ddi4cSMAe/fupXLlyrbv3N3dcXZ2xsnJCZPJhLe3\nNzExMXdVTZqCKyIiIiIi8i/XokULNm/eTOfOnbFYLEycOJEVK1aQkJBAp06d6NSpE127dsVsNlO6\ndGk6dOhwV+WoAyoiIiIiIvIvZzQaGT9+fKZlFSpUsP2/S5cudOnSJd/lqAMqIiIiIiKST/f7W3AL\nip4BFRERERERkQKhEdB/mMGDB9O2bVuaNWtGeHg4kydPxtfXlzNnzpCRkcGAAQMICQnhp59+YuHC\nhaSlpWEwGJgxYwbHjx9n2rRpmM1mnnvuOdq3b2/vzRERERERkX8QdUD/YZ599ln+7//+j2bNmvHt\nt98SHBxMXFwcEydOJDo6mm7durFy5UpOnz7NzJkzKVKkCGPGjGHTpk0UL16c5ORkFi9ebO/NEBER\nERG5v2gKbp6oA/oPExISwoQJE4iKimLz5s0EBweze/du9u/fD0BaWhpRUVH4+PgwbNgwXF1dOXny\nJLVr1wagXLly9gxfRERERET+wdQB/YcxGAy0a9eOCRMm0LhxYwICAggICOCll14iKSmJTz75BLPZ\nzEcffcSGDRsA6NWrFxaLBbC+/UpEREREROReUAf0H6hjx440a9aMZcuWUapUKUaNGkW3bt2Ii4uj\na9euuLm5UadOHTp16oSDgwNFixYlMjKSwMBAe4cuIiIiIiL/YOqA/gOlp6dTt25d29/tmTJlSpY0\nH374YbbrhoSE3NPYRERERET+ifRnWPJG8y3/YVavXk3v3r3p37+/vUMRERERERHJRCOg/zCPP/44\njz/+uL3DEBERERERyUIdUBERERERkfzSFNw80RRcERERERERKRDqgIqIiIiIiEiB0BRcERERERGR\nfDJkZNg7hPuCRkBFRERERESkQKgDKiIiIiIiIgVCU3BFRERERETyS2/BzRONgIqIiIiIiEiBUAdU\nRERERERECoSm4IqIiIiIiOSXpuDmicFisVjsHYSIiIiIiMj9LGVbbXuH8JccG+61dwgaAZW7d+VK\nrL1DwM/PnXQW2jUGE6H81KCzXWMAeGLH1/wS8pxdY2ixfZHdY7gZx9qGz9o1hke3LSbp4CN2jQHA\nufp6Eg8/ZtcYilRdw7I63ewaw1O7FwDw6QP/tWscLx35zO7HhXP19QCFIg57txctti/ih7qhdo0B\noM3vCwvF/vi8ah+7xgDw/OFZhaIu7H0NAet1pDCcI/ZuN8Hadso/h54BFRERERERkQKhEVARERER\nEZF8Mlgy7B3CfUEjoCIiIiIiIlIg1AEVERERERGRAqEpuCIiIiIiIvmlP8OSJxoBFRERERERkQKh\nDqiIiIiIiIgUCE3BFRERERERya8MvQU3LzQCKiIiIiIiIgVCHVAREREREREpEJqCK/9qFouFN0Ys\np2IlP55/4cG/LV+/xsFU7tcZo6OZ2BNnOTDhM9LjE+84nXMxHxp+/habQ4eReiMWAO+6VQl6rTtG\nk5GUG3EceX8escfPAuDbOJiKfbtidDQTd+IMh97+NNtyc0xnNBA0oCc+IbUwmEycWbiC80t/AaBo\nlQoEDeyJqYgzGI2cnr+MSz/9liXvh76fQVpc4j2JwaWUP1VH9cXs4U56QhIHx80g4cwFAMp0bUOJ\nto9gSbe+ga5IyeIkRlwGIPCZJyjZ8XGwWEiMuEzYpE9JjY7J+w4FigT6EzS0D46eRTGaHbiwYi1n\nv/oBAJ8H61ChX1eMZuu2hL39Sa55bfw9iY8WxJCSZqFyGTNj+3ni5vLn74ErNiQwf0Wc7XNsgoXI\na+msnlkcB5OBCTOvc/R0KkWcjDzVvAhdn3S7o22xxbErkekLbpCSaqFSGTNjX/HOHMf6eOYvj7V9\njkvIIPJaOj/PLoGDCd7+LJqjp1Ip4mzgqeaudGntnueyiz9UmyqvPofJbObG8bPsHT+btGyOk9zS\nlX32Mcq0b4bJ2cz1sNPsHTeLjNQ027qln2pKwCP12D7gvTzFVPrh6oQM6oDJ0YFrRyPY8MaXpMYn\n5Zj+kUk9iTp+gX2fW49PJw8XmrwZim+VQFITUji6dAsHF6zPc50UmuPCTnG4VShF0ODncXBzgYwM\nDr8zk9gjp+4odrOnO9XffAXnAD9rHpNmcuPAMQAq9+9OsUcbkRZjjT3+j7bjdsUeqs0Dr3TCaHYg\n5sQ59o+fle2xmZd0dacOIPlKNAenzAPAp15VqrzWBaODifTkVA5Nncf1Qydz3abCclwENq1BvYEd\nMTk6EHXsPJtGzcv1/Gjydi+iT0RwcO5q27Ium94jIfK67fOBz3/m5A/b8xxDQdZFdu16ekJi3tIY\njVR+rSfef1zHzn61nIilv+BaNpBq41+zrW8wGnGrWJr9w6fiUqoExVs0tn1n9iwK3Lvrumu5ktS4\nJRaMRtwrlmbfsGm4lA7A/5ZYuv/6DmZXZz6vNyBLufZuNwsdTcHNE42Ayr9WePgVnu85n59WHfpb\n8zV7ulN99EvsGf4+vz07iISISIJe7nLH6Uo82YSQmWNxLuZtW+bgWoTgyYM4On0hm0OHcXjyHGpP\nHIDBbP0tqdqofuwf8S5bnhtAQkQklfp1zbbcnNIFdmiBSyl/tnYdzPZeIyjd+UmKVq0AQM13BhM+\nazHbug9lz8CJBL3WA5dS/rZ8PWoGAeBUzOeexVB9XH/Of7earZ0HET5rEbXeGQyAd/0alGjXnB29\nR7Gt21AAqozqB4B7UHlKh7ZlV59RbA8dTMK5i1R4sXOe9uWtqo5+mcg1m9nRYwg7e79ByfYt8Kpb\nHbNnUaqO6seBEdPY1uk1Ei9cpuLLoTnmE3UjnTEzrvPuEG+WTy9OyeIOfLggc2e4bTMXFr1bjEXv\nFmPhZD98PY0M7+2Bj6eJqV/cwMXZyNIPirFgki+bdyfz666cL/a5xfHm9CimDfVh2f8CCPR34MP5\n1zOlafuIK4ve92fR+/4snFocX08Tw/t4WeP4/DouzkaWfOTP/HeKs2l3Eht3Zr0pyo6jpzvBY/uw\n8/UPWdtxCAkRkVR9tdMdpQtoXo/ynVuwpe8k1j0zHJOTmQqhrQAwF3Wl5she1BjaAwyGPMXk7OXG\nIxN7srr/Z3zd6k1izl2l4eAO2ab1LO9P2y8GUv6JepmWPzjiOVITkvim9ViWdn6H0k2qUbpZjTyV\nX5iOC3vEYXRypM5HozizYDnbewzj5OffUWNc/zuO/4EhvYnee4StnQdx4M3p1Jw4CKOTI2Btow6M\n+oBt3YeyrftQDoz6IMv6jp7u1HrzRX4f8gEbnh5CwvlIHsjh2PyrdBV6tME7OMj22eBgos6kV9g/\nYTYbu4zk+JzvqT2+b67bU1iOC2cvN5q8/R/WDfiE71qPJvbcVeoN6phtWo/y/jzx+WDKPVE30/Ki\nZYuTEpPAso7jbf/upPNZ0HXxV+16bm1/yQ6PUaSUP9tDB7Hz+eGU6tSaolUrEn/6PDt6DLH9u7Zj\nH5d+3sSVDTs4M/972/Ld/d4kI8ka2726rsefirCdC9u6DyVq+z4u/ryJyA07OP3lMttygNTEFH4Z\nOCtLufZuN+X+pQ7ov9jRo0fZuXMnAM2bNyc5OdnOERWs/1u4iw4da/NEq2p/a76+ITW5cTichHOX\nADj33S8EPPHQHaVz8vWi2MP12TXwnUzruJQOIC0ukaidBwHrL/hp8Yl41agMwI2wP/M7v2Q1/k80\nyVKuT0itHNMVe7gBESs2YEnPIC02nku/bCHgiaYYHc2cnL2YqJ0HAEiOjCLlRixOxXwAcPT2oMqQ\nFwDISEq5JzE4+XnhWrYEl37ZAsC1rXsxOTvhHlSO5GvXOTJ5VubRY38/AGKPnmTrM/1Jj0/A6GjG\nyc/bNppscHCg0ms9qT9vMg3mT6XK6JcxuRTJEi/AheVrufTzJgDS4xNIOH8JZ39fvENqEhMWTuIf\n2xKxZDX+LbNu801b9yVTvaKZMiWsPxo819KFH39LxGKxZJt+7vdxeHuYePZxVwAOh6fS5uEimEwG\nzGYDTeo6s2Zr3jp+meLYm0S1So6UKWEG4Nkn3Fi1MSHHOL5YGoO3h5FnWlpHDMLCU2jdzCVTHL9s\nTchT2cUa1SD60Cniz1lHqE8tXktgq6wzEHJLV6r1Q5yYv4rUmHiwWNj39lzOrbTun5ItQki+ep1D\n7/9fnuujVOOqRB44w40zkQAc/vpXKrYNyTZt9dBmHFmyhZM/7cq03K9qaY4v344lw0JGajpnfj1I\nhZZ18lR+oTku7BSHT0gtEiIuc3XLHgCubNzF/jfeB6wdt8oDehIy7x0aLphCtdH9MLlmPU8NJiN+\nD9UhYtkaAOKOnyHh3EV8G9XGYHbAvXJZyoS2peGCKdR8ZzDOxX2y5OHXqAbXD5+0HXNnvl1DyVaN\n7zidT72q+D1YkzPfrbUts6Sls6bVq8QcPQOAS8lipNyIIzeF5bgo0bgaVw+eJuaP8+PI1xuo0Cb7\n86NKl0c4vnQzp376PdPy4sEVsKRn0GruYNovfZPafdtgMObtByIo+Lr4q3Y9t7bf7+EQLv6w3nYd\nu7xmc5ZroWetByj2SEOOTJ6ZpeyK/Xtwbete4N5d1zPFUvsBijVvSNjkrJ1MgHMbD3Lut6w/1tu7\n3ZT7lzqR54WLAAAgAElEQVSg/2KrV6/mxIkT9g7DbkaNaUW79jX/9nydi/uQFHnN9jkp8hpmN5cs\nN0y5pUu+Gs3eYe8Rfyoi0zrxZy9icnHCJ8Qad9Eq5XErH4iTrycAyZf/zC85l3JzSudc3IfkyMzf\nORXzJiMllQsr/pwSU7L9o5iKOHPj4DEwGqg+vj/Hps8HwJKWlm3e+Y3BubgvyVei4ZabjaQrUTgX\n8yb+5Dmi94QB2EaDI9dttaWzpKfj27Q+jZd/imftqlxYad2Wsj3aY0nPYGfPYezoPoSUK1E5jl5e\nXLmBjOQUALwb1sajRhDXtu3FuZgvSZevZorXwc0l2zwALl1Np7ivyfa5uI+JuAQL8YlZb6KiY9L5\ncnkcQ3oVtS2rUcmRH35NJDXNQkJiBmu2JXIl+s6n/Fy+mo6/zx3EsSyWIS94/RlHZSdWbkiwxbF2\nayJX8xhHkeI+JF6+9diPwuzugsNtx0lu6dzKBODkXZSGM4bS7JuJPPBSR1JjrR3g09+t4+jMpaT/\nsb/ywjXAi7hLUbbPcZeicXIvgtnVOUvaTW99zfHlWUduLu8/RaV2IRgdjDi4OFH+8WBc/DzyVH5h\nOS7sFYdL6QBSrl2n6hsvEfLFJOpMH4XBZI2jXM/2WNLT2d5zONu6DSX5anT2o0Ae7mAwkHr9z2nj\nyZFROBXzwcnXi+jfD3Li46/Y1m0oNw4eo9bUoVnycC7uQ9Itx0FSZBRmt6zHZm7pnHw9qfZ6d/aM\n+hjSM2+7JS0dR++iPLZqOlVe60L4lz/kWi+F5bhw8/ci/lK07XP85Wgc3V2yPT+2vf1/hK/YlmW5\nwWQiYuthfn7xQ37sMYWSjatRJbR5nmMo6LrIrl2/9QfKnNp+k0sRnIv5kHT59utY5h88KvbvwcnP\n/i/LtF7XcoH4Na1P+MxvrOveo+v6rSq/2p0Tn36dZWqva7lAAHZ+tDy7KrJ7u1kYGTLSC/2/wkDP\ngN5nlixZwvr160lKSuLKlSv06NGDtWvXcvz4cYYOHUpCQgLz5s3D0dGRsmXLMn78eFasWMGvv/5K\nUlISZ8+epU+fPjRu3JilS5diNpupVs06Ajh27FjOnz8PwIwZM/DwuH8bAHsyGHP4Xee2G5G8psv0\nVXwiu1+fRuW+nQnqH0r0njCu7TqU6bm321luz8+QfbmW9AzI7tfo255nKNvjKUp3epLdAyaSkZxK\npVdCub4njKgdB+5tDDlMpbTcEp/Z051ak6zTcsM/yTz6dXXjTn7buJMSTz1K8Aej2PLMq/g0rovZ\n3QXvBtYOvdHsQEr0jRy3A8D/yYep1L8HB0a+S8q169nHm4scfqwnu8Phu18SeKS+M4HF/2yqB/+n\nKO/Ni6HT61fw8zLSqJYTe4/kvaN1U0YOcZiyi2N1PM0aFKHkLXEM6uXJ+19cp/OgS/h6m2hY25l9\nR/I4iyKHOstynOSSzuBgwi+kOjsGvU96cgp1xr9ElVee5eC0BXmL4TY5nY+WO3ieZ+vkb2k09Bme\nWTKKhCs3OL8ljOLBFfK0bmE5LuwVh9HBhO+DwezqN46YQyfwa1qP4PdH8NtT/fBtXBcHdxd8/jhP\nDWYHUqKynqe57cOki1fYc8uMkjMLVlD++aez5pFTO3N7+53T1G4D1Jn0KofenU/y1evZJkmJimFN\nq1cp+kBZGn4yks0nx2SfF4XnuMi2QO7s/Dj27Z/vDEhJTePgvF+o2q05h+evzWWtW8oqBHWRaXtz\nap8yMrId2b31GPKoURmzh7ttVs2tSnVqzflvfyI9PucZJX/ndd2jRmXMntnHUrrzkwCkxGU/Vdne\n7abcv9QBvQ/Fx8fz+eefs3LlSr744gsWLVrE9u3b+eKLLwgPD2fp0qW4ubkxceJEvvnmG1xcXIiL\ni2POnDmcPn2al156iY4dO9KhQwd8fX2pWdN6UX/66aepV68ew4cPZ/PmzTz55JN23tL7R8UXn6VY\nU+vzLg6uRYg9cc72nZOfNyk34khPynxznnjpKh7VKv5lukwMBtITk9jRd7yt3MCnqtuexXT8YyT0\nZn6pN+LIuC2/pMtX8aheMdt0SZeu4uiTOY+kSOuvmwazA9XHvIxruZLs6D2KpItXAAh8+nEMJhNl\ne7S3br+bKw3nT2Fb96F/awxJlzMvB3C+JT63iqWpPXUokb/uxKtOVep/PgmA+FPnOb/kZ27sOwLA\nhRXreWDoizi4u2IwGTn2/lzbVCdTEWeMjmbcHyhPlZF/Ppu1o8cQa33370GxRxqy59W3iDt+GoDk\ny1fxqFYpy7aYPbJ/uYW/r4kDx1NtnyOvpVPUzYCLc9YL+c+bExn2QuYfguITMhjYvSge7tb0ny+N\npXTAnTflAb4mDh77c79Y4zBSJJs4Vm9OYOgLmes+PiGDAT088HC3jkjMXRJDqVzieOClp/F/2Dqt\nysG1CDG3nCPOxbxyOEeu4VW9Qrbpkq5Ec2n9LttLX87/uJmgPu3zuvkA1Hu1LWWb1wLA0c2Za8f+\nnHHgWtyTpOvxpCXm/QbV0c2ZbdO+I/mG9caxdu+WtimLf6WwHBcFHUfD+VMAMHu4EX86gphD1lk5\nVzbuourIl3ApWRyDycjR97645Tx1wujoSNEHylP1jZdseW3/z3AAHNxdSYuNB8CpmBfJkddwq1ga\n90pluLjq1henWW/MK7/0NMVzaL+dc2y/r+F5Sxt2M51buZK4lPCj6sBu1vJ9PDCYjBidzBx+fyG+\n9atxab11CmLMkdPEHjuDe8VSOdaPPY+L4FfaUbp5bQAcXZ2JOv7n+eFS3JPkG3d2flRo25Coo+eI\n/uM8MxisI8J5VdB14eT754yP7K5lObX9GUnJJF2+mmX9W0chiz/WmEurfs3aqzYa8X+iCYkXI/Fr\n2gC4t9d1AP8WD3Lxx43ZxGKg2CNZp9MWpnZT7l+agnsfqlKlCgDu7u5UqFABg8GAh4cHiYmJVKxY\nETc3641v/fr1OX78OAAPPPAAAAEBAaSkZN8wVK9eHQBfX1+Sku78JQX/ZidmLmZLt+Fs6Tacbc+P\nxrN6RVunsHTHx4jcuCvLOte2789TukwsFuq+P5yiVcoDEBt+loSzF9n07CAAPKpXsuUX2LEFkb/t\nzKbcfTmmu7JxFyXbNsdgMuLg5kLxFg9y5dcdANSaOAiTaxF29B5t63wCrH+kJ+uadmPdw93+CNHC\n/pHv/e0xJEdGkRhxmeItrM8A+oTUwpKRQdyJsxQJLE7dj9/k5OffcewD69smb77MIWLJz1R/a4B1\neh7g3/Ih4k6eJS0mjqhtewl8phUGBwcwGHhgxH+p0K8rsUdOZnpRBEDlQb3wql2Fnb2G2zqft25L\nkT+2pWSHx7mSzTbf1Ki2E/uPpXDmgnXUevHqBJrVzzpdKSYug7OX0qkV5Jhp+eLVCfzva+uLN65d\nT2fJmgRaNcn+udXcNKrt/Ecc1hu6b3+Oo1mDHOK4mEatB5wyx/FzHB//3y1x/BJPqyY5Tz0+8ul3\nbOjyBhu6vMHGnmPxqlER11LFASj79KNc+nV3lnUitx7IMd2FNTso0SIEo5P1GVb/ZnWJPpz720Rv\nt2v6Cr7tMIFvO0xgSafJFK9VHo8yxQCo2rkpp9ftu6P8qnZ+mPr92wFQxMedKs8+xPEfduRp3cJz\nXBRsHDdfdLL9PyMoElAM9wfKAeBZu4r1rdUXIrm2bR+lnn0Cg4MJDAaqjnyJiv26EnPkZKaXqFjS\nM7i6ZQ+BHR4DrD9KuZYLJPr3Q1gyLAQN6mV9Oy7WH87iTlifxTz26Xf81nUkv3Udyeb/vJnpmCvz\nzKNc/vX3LHFf2XYg23TXD5xgbev+tvzOfreWi6u3sf+t2VjSM6g55kW8almf2XcrXxLXsiW4fjC8\n0OyPW+2Zsdz2sqAVXSZRrGZ5iv5xfjzQ6WHOrNubp3xu8qpUkjqvPoXBaMDkZKZK1+acXPUX17xb\nFHRd/FW7nlvbf2XjTgLaPnLLdawxVzb+ub5ncFWidh3MUqZbhdIkX4lme5dBtmvPvbyuA3gFVyVq\nV9YZTG4VSpMWE59leWFqN+X+pRHQ+1BOU38MBgPh4eEkJCTg4uLCjh07KFeuXI7rGAwGMm6ZJpHj\nlCK5IynRMRx461NqvzMQo4MDCRGXOTD2f4D1mc3qb7zIlm7Dc02Xm32jp1N9ZB8MZgeSr15n95B3\nbd8dfusTak4ahMHBgcSIyxwcN8Na7h8jBdu6DyU1OibHdOeXrKZIYHEaLpiK0ezA+aVriN4ThkfN\nIPya1iP+zAUazHrLVt7xGQu5tj3zxSb5yrV7EgPAgVEfUGXEfynfqyMZKansH/k+WCyU7d4ek5MT\npZ9rRennrG9CrTdnIrteGMn1fUc4/cUS6nw8Fkt6BslXo9g/dCoAp+Z+R6VXu9PgyykYjEbijp/m\n+IdfZqlzp2I+BD7zBEmXrhL80Wjb8nPfrOTiyg0cfutjakwcjNHsQOL5yxwaP4MSbR7Jdv/5eJgY\n/7Inr0+LIjUNAv1NvP2qF4dOpDDuk+ssetd6IT97KQ0/LyNmh8zn5Qsd3Xjjw+t0HBCJxQIvPedO\n9YqO2RWVK29PE+Ne9WbI1GukploI9Hdgwmve1jj+F8Wi9603MmcvpuLnZcoax9NFeeODKJ7ufxEL\n8FKnolSv5JRNSVmlRMewZ+xM6k/tj9HsQPz5SHaP/hQAzyrlqD2mNxu6vJFrulOL1+Do4UazhRMw\nGI1cP3KafW9/dcf1cFNSVCwbRs6jxYcvYjI7EHPuCuuGzQXAr3oZHn6rO992mJBrHntmrqL55Od5\nbvkYMBjYNeMHrhw8k6fyC8txYa84UqJusHfoVKoM6Y2piBMZqWnsGz6NjJRUTn7+LZX796DhfOt5\nGnv8NMc+ynqeAhyZMpuqI1+i0VdNsFjg4NgZpMUnknbyHEfenUvwu8PAaCQ5MooDoz+kyfLMfzIp\nJTqGfeM+o+6U1zCYHUg4H8neMdY0HlXKUXN0H37rOjLXdDlJT0xm1+D3qDa4GwYHBzJSU9kz6n+Z\nRqMKy/64XVJULL+Nmkvz91+y/tmZc1fYOGKONcZqZXjorZ4s6zg+1zz2fLyCRqO60H7ZWIwOJk7/\n/Humabl/paDrIrt2/ebsmB09hvxxHcuaBqwvJCpS0p8G86dhNDsQsfQXru85bMvbpZQ/SReyjvK5\nlPIn6VLm5ffqun5rmYm3/Kj85/IAEi9GZnrb/e3s3W4WSvozLHlisOT0+jAplJYsWcLJkyd5/fXX\n2bhxIz/++CPvvPMOYWFhTJs2jfbt2zNv3jyMRiOlS5fm7bffZuXKlbZ1kpOTadWqFevWrWPDhg1M\nmTKFMWPGMHLkSFatWoWTkxPTpk2jfPnydOyY/SvWb7pyJTbX7wuCn5876Sy0awwmQvmpwZ3/WY+/\n2xM7vuaXkOfsGkOL7YvsHsPNONY2fNauMTy6bTFJB7PvhBYk5+rrSTz8mF1jKFJ1DcvqdLNrDE/t\ntj4b+ukD/7VrHC8d+czux4VzdetLuApDHPZuL1psX8QPdXP+s0kFpc3vCwvF/vi8ah+7xgDw/OFZ\nhaIu7H0NAet1pDCcI/ZuN8Hadt4P0taWt3cIf8nh0TubLXRPYrB3AHJnbu0UNm3alKZNra/SrlKl\nCnPmWH+NbNu2bY7rODk5sW7dOgCaNWtGs2bNAGzLAF5//fV7EruIiIiIiPy7qQMqIiIiIiKSX5qC\nmyd6CZGIiIiIiIgUCHVARUREREREpEBoCq6IiIiIiEh+aQpunmgEVERERERERAqEOqAiIiIiIiJS\nIDQFV0REREREJL8y0u0dwX1BI6AiIiIiIiJSINQBFRERERERkQKhKbgiIiIiIiL5ZNBbcPNEI6Ai\nIiIiIiJSIAwWi8Vi7yBERERERETuZ+krA+wdwl8ytb5o7xA0BVfu3pUrsfYOAT8/d35q0NmuMTyx\n42vSWWjXGABMhPJLyHN2jaHF9kVsbNzBrjEANN28lLUNn7VrDI9uW8wPdUPtGgNAm98X2j2ONr8v\ntPtx0XTzUgCWBPewaxwd93xZKPYHUCjiWFW/i11jaLXz/1jX6Bm7xgDQfOu3hWJ/fFPrP3aNAaDT\nvi8KRV0UluNidYNOdo3h8R3f2L3dBGvbeV/QFNw80RRcERERERERKRDqgIqIiIiIiEiBUAdURERE\nRERECoSeARUREREREckvPQOaJxoBFRERERERkQKhDqiIiIiIiIgUCE3BFRERERERyS9Nwc0TjYCK\niIiIiIhIgVAHVERERERERAqEpuCKiIiIiIjkV4bF3hHcFzQCKiIiIiIiIgVCI6Dyj+LXOJjK/Tpj\ndDQTe+IsByZ8Rnp84h2ncy7mQ8PP32Jz6DBSb8QC4F23KkGvdcdoMpJyI44j788j9vjZfMdssVh4\nY8RyKlby4/kXHryLHEpgpDYANScO5NDbn2a7zb6Ng6nYtytGRzNxJ878mc5oIGhAT3xCamEwmTiz\ncAXnl/4CgEspf6qO6ovZw530hCQOjptBwpkLAJTp2oYSbR/Bkp5OSnQMYe/MylSea8Wy1PxoPMlX\nrmF0NBN/4gzHJs0gPSFzbN6N6lL2pW5Z0phcXag84mVcygSCwcDlVes5v3ApAA7ublQc1BuXsqUw\nOjlydt63RP78q7U2nm4FQMjCd0mMuEzYpE9JjY7JUh8V+/egePNGpMbEAZBw9gIHR71/F/UP3g1q\nUvGV7uzoMSTT8mbfTSU9OZW4UxEcnPwFXjUr8cArnTCaHYg5cY7942eRls2+KvZQ7b9MV3fqAJKv\nRHNwyjzrOk2CqT3uJRIvXbOl2dJ7/F3lfbcx3FSq3cP4P1KPnQPfzb6+ctjneUlzt8dFdvwfqkW1\nV5/F6GjmxvFz7B43m7T4pDynC5n6Cq6litvSuZbw4+ruIxz8aBH1J/a1LTcYjXhUKsW2wR9lG8e9\n3Cc+9apS5bUuGB1MpCencmjqvCz52iOG64dOZhuHX+NgKr/cGaOjA7HHz3Jwwsxs48gpndHJTLWh\nz+NRtTwYjdw4eIJDUz4nIzmVYk3qUOPNviRdvppt2QA+D9ahQt9QDGYH4sPPEvb2x1mOzb9K41TM\nh3qzJ7Kj++u264fPQ3WpOvoVki79WfbuvqNJT8h6vN1JXec13d0eFwFNalGz/zMYHR24cew8O8bO\nyfYcySmdY1FX6o7qgWdQadITkzm1bBPH/28NAEXLl6DemP/gUMQZsLD/w8Vc2nKw0NRFvo4Fo5FK\n/Xvi3bA2BpORs1+t4MLS1QB41qlGpf49MZhMpN6I5fgHc4k7cQaAUl3aEtCmOZb0dFKvW69bvo2D\nqdSvi+1+5dCEnK/x2aYzGgga0APfhtZr/OmFKzi/xLoPvOpWI+i17hhMRlL/uK+JO26NxSu4CpVe\nCQWg6ZyR7Bozi4SIK0DhaTvl/qUR0H+R5ORkmjdvbu8w7hmzpzvVR7/EnuHv89uzg0iIiCTo5S53\nnK7Ek00ImTkW52LetmUOrkUInjyIo9MXsjl0GIcnz6H2xAEYzPn7DSc8/ArP95zPT6sO3WUOThhp\nRAa/AZAQEUmlfl2zpDJ7ulNtVD/2j3iXLc8NyJQusEMLXEr5s7XrYLb3GkHpzk9StGoFAKqP68/5\n71aztfMgwmctotY7gwHwrl+DEu2as6P3KLZ1G0rkhh1UG/3HRcNkpGSnttT4YCwORd04/MYUdnV5\nhaQLlyjXt/ttcRWl8huvZpumbJ8uJF+5xu/dX2NP7yGU6PAE7tWCAAga9SrJkdfY3Wsw+18bS4UB\nvXH088EtqDyBXdoDsD10MAnnLlLhxc7Z1pxnjSAOjn6fHT2GsKPHkLvqfBqdHCn/385Uf3sQBtOf\nzalXnWoAbOs7id+6jiRy8z5qj32JWm++yO9DPmDD00NIOB/JA692ypKno6f7X6ar0KMN3sFBmZZ5\n16rMyfkr+a3rSNu/229u85J3fmIwF3WlxojnqTa0BxgM2dZZbvs8L2nu5rjIjqOXO3XG9WHbkOn8\n0mEY8ecjqd4/m7rIJd32ITNY13k06zqPZs/4z0mNS2DvpC+JPXnBtnxd59FEbjvIuVVbubBu113V\n9d3uE4ODiTqTXmH/hNls7DKS43O+p/b4vrdnXShiuJl/jTH/Zc+w9/ntmcEkRkRS+ZWsbXhu6Sr0\n6oDBZGRT1+Fs6jIUo5MjFf7zFACeNStzasEPbA4dYft3K7NnUaq88TIHRkxle+fXSIy4TIV+oXeU\nxr/Vw9T59C2cbjvuPGoEcfarFezsOcT2L7fOZ2HYJ05e7jQY/wKbB89g1VMjiIuIpNZrz95RutpD\nupCWkMxPHUaypttb+DeuQUDTWgDUHdmDU9//xupOY9jx5hwaTemXqR21d13k51go2b4FRUoFsCN0\nILueH06pTq1xr1oRk6sLNSYN4cSM+ezoPpijU2dSbcIgDGYHvOrXoETb5vzeZyQ7e7zOlQ3bAag+\nui/7hr/H5mcHkhhxmcovZ3+NzyldqQ4tcCkVwJYur7PtPyMp88c13sG1CLUnD+LY9AVsDR3K4cmz\nqfXHfY1TMW9qTRlM2JQ5AESs2UXwiJ7Wei4kbWehlZFR+P8VAuqAyj+Gb0hNbhwOJ+HcJQDOffcL\nAU88dEfpnHy9KPZwfXYNfCfTOi6lA0iLSyRqp/XX2fgzF0iLT8SrRuV8xfx/C3fRoWNtnmhV7a7W\nNxAAXAOsv7KfX7Ia/yeaZEnnE1KLG2F/bvOt6Yo93ICIFRuwpGeQFhvPpV+2EPBEU5z8vHAtW4JL\nv2wB4NrWvZicnXAPKkfytescmTzL9itsTFg4zv5+ALhXroBrhTJc/P4nyMgg6fxFAC4s/YlijzfN\nFJdXg9rEhh3PNk34B3M4OeMLABx9vDCYHUiPj8fB3Q3P+rU48/k3AKRcucbeF4eRFhNL3NGT7OzU\nDwCjoxknP2/bCESmejM74Fa5LKVD29Fg/lRqTBqMU3Ff63cODlR6rSf1502mwfypVBn9MiaXItnW\nv3dILUzOToS9/XGm5e4PlAcgKTIKgEvrduLXuCY3wk4Rf+4yAGe+XUPJVo2z5OnXqAbXD5/MMZ1P\nvar4PViTM9+tzVyXNSvhU78aDy2YQKPZo/EOfuCO885vDAEtGpJ09TphH3yVXXVZ48xln+clzd0c\nF9kp3rA61w+dJP6sdRtPLV5HqVaN7iqdwcFE3bdeZP/UhSRejsr0nU9wZUo+Vp89b8/NNo57uU8s\naemsafUqMUetIxouJYuRciOuUMYA4NuwJjcOn7S1U2e/+4UST2SNI7d00XvCOPH5UrBYIMNCzNHT\ntrbJq2ZlfOpX48Ev3yZk5pt43XaOeDeoRUzYCRLPW/ONWPIz/i2b5DmNo68Xvk0bsG/QxCwxe9QI\nwqtuderNnUydT97Cs3aVbOvgpsKwT/wbVSfq4Cni/jj2TyxaT+kns54juaXzrlqW0z9swZJhISMt\nnYu/7afUY/UBMJgMOBZ1BcDs4kxGSmqhqov8HAt+Dzfg4sr1tutq5C+b8W/ZFJdSAaTFJxC96wAA\nCWcukB6fiEf1IFKuXefo1Fm2UdaYI+EAWe5X/LO5r/EJqZVjumLN6nPhh9uu8a2a/HFfk2C7r0n4\n477Gs0ZlijdvyNUte4k9egqAU9+tZ9+0hUDhaTvl/qYO6D9cfHw8ffv2JTQ0lLFjxwKwY8cOevTo\nQffu3enYsSOnTp3im2++YfLkyQCkp6fTtm1bkpOT7Rj5nXMu7kNS5J/TD5Mir2F2c8HkWiTP6ZKv\nRrN32HvEn4rItE782YuYXJzwCakJQNEq5XErH4iTr2e+Yh41phXt2tfMRw4uWEiwfUrOZZuTL1/L\nNp1zcR+SIzN/51TMG+fiviRfibbeyP0h6UoUzsW8iT95jug9YYC1M1fp5VAur9sGQGzYcY5NnIHB\nbMZyy8P4yVeu4eDmmqkz51TMN3PZt6dJzyBozADqzf+QG3sOkXD2AkUCA0i5Gk1g53bU+mQiwXOm\n4la5PBnJKQBY0tMBaLz8UzxrV+XCyvVZas3J15vo3w8S/vFX7Og+hBsHj1NrylAAyvZojyU9g509\nh7Gj+xBSrkRR8eXQLHkAXN24k+MfzrNN470p5vAJAIr4Wzu1pdo1xejgQMr1PztDSZFRmN1ccMju\n+LwUlW06J19Pqr3enT2jPob0zL9iptyI48ziX9jUbRRHZnxDvWkDMo3i/1Xef0cMZ79by/FZS0hP\nzv5GEvKwz/OS5i6Oi9sV8fch4ZYbnsTIKMzuLji4Ot9xurIdHibpynUurP89Szk1Bnbh0Ixvs52e\nBvd+n1jS0nH0Lspjq6ZT5bUuhH/5Q6GMwZb/5Vvb5lziyCHd1e0HSDhrvQl39velbJdWXFprbZtS\nbsRydvFqtvR4g2P/+5o6UwZlyfevjs3c0qRcjebgiKkknD6fZdtSb8Rx/ruf2NVrGOGfLKTGO0Nx\n8vPOki7TNtp5nxTx98587F+OwjHbcyTndNcOnKRsmwcxOJhwKOJE4GN1cfbzAOD3ifOp8nxr2q5+\nj4dnDmXX219iSc86OmOvusjPseBU3JfkW6Z6J0Vew6mYDwlnL2Aq4ox3A+sosHuVCriWL4WTryfx\nJ89xfc9hwHpdrdg31LaurYw83tfcfo2//XxxLubzx32N8y33NRVs9zWupQNIT0ymxoTXAGgw+WUy\nUtOAwtN2yv1NHdB/uK+//prKlSuzcOFCOne2TkU8fvw4U6dOZf78+Tz++OP89NNPtG7dmrVr15Ke\nns5vv/1GSEgITk5Odo7+zhiMORzOt11s8pou01fxiez+f/buOzqKqn3g+Hdbeu9AaEmAEAKhhioI\nSFO6FCmhiVSV3rv0Ik2KgrwKiA0Ey/v+pFpABAJKCB1CIJDeezZld39/LGyy7G4SDCSRcz/ncDS7\nz8x9dubunblz78zO3ID3qL60ObCWam+0J+nSdV2DXHGMT3M0OIhLjH9mjUoNUiPrUKtNTqHUFJm+\noZxzpF8AACAASURBVHCwpdnWhaiylYTt0B/1kpRieaNlPxVz+4PN/PnGSOR2NtQcPQiJXIZlNQ8K\nsnK4MnE+Nxd/iNf7o7Gp56W3jjPd3+b+nm9psnmhwWdRxsRzZfpqsh9q72d9eOBHLD3dsajihnPb\nZri2b07gvvUE7luPa4dArGt7Gs3TlNQQbee8+YdTabd/ORqNhoKcXKMnV0+/Zmq7IYGmq9/j+of7\nyU1MNXj7r1mbif1VO00pJeQOKaF3cWnpX6p1P68cSqUU+/xF1gvdRynjtiga5zOsO7d2/2AQ4xTg\ng5mDDY9+Pmd0Hc8jj9Lsk7zkdE72eI+zo5cSsGR8pcjBuoaHkfWUtj0rOc7Otzatdi8h4ttjJPxx\nGYDLszcR99vj78iV26RevaO/AhPHBv26WYoYI67NW0/i78EApIXeIu3qbV0nxJhKXS/UpfyOqNWE\nfPg1aDR0+2YZbTe9R9y566jzVUjNFLRZN4kLiz/lp67T+XX0apovHImlu2GnvDJsi6KfSaeYumA0\nF7UaVXYOV+espebI/rTYtwGPHh1I+eua3rmEwsGOxlsWUZBTTMfL4LzGxGc3cYzXqNWosnIImbmB\n2qP60vrAOqq+0Z7kS9pcJHIZbh2ac+8T7YyShODrtPrwfW1ZlaTtrLQqenrtv2QKrngI0UvuwYMH\ndOjQAYCAgADkcjnu7u6sXLkSKysr4uLiaNq0KTY2NrRo0YI//viDw4cPM2nSpArOvPTafKGdLiu3\ntiQj7JHudXNXJ/LSMlEp9Udyc2ITsW/gU2KcHokEVY6S4ImFD3Vp982HZD+eelOeJDRCQrXHfymA\nVJ6MM2qnnGaifuqzKOMSsffX/8xP4pSxiZg5O+i9p4xPRhmn/zqAxeP3AGx8atB4/Wzif7/Ina37\nDB49npuYrHcAMndxJj89Qy+33NhEbP3qGo1xDGxMVngEeYkpqHOUJJw8g0uH1sT93y8Auv+69+iI\nzNycBmvmkRZyg+gjR3Xri/7pV3xnj0Nua01BkVFKG58a2PjUIvboab0tqykoQCKTcmfTZySdCwFA\nZmmB1EyBra8X9ecX3if19AOHipJZaa/wxp25jHv7ZtQc+BoyMwUKOxu9bWm8fibhUGRfPYmzqV0N\nq6qu+E0brt1WzvZIZFKk5gpubPqSWgNfI+yzH4t8HAmaAu1o8CtfaqcEPv0deZ45hC7/1OT2KKq4\nfV6amNLWC2VULOmht7CtX4fM2+G6dXX6ejkACmtL0sIKR6os3Bwfbwv9EdPs2CQcG3qbjLOvVxOp\nTEriX7cMPqtn15Y8/O9ZvVkEAHUnvIl7+2bAi90nNzYdwKVFA92FifRbD8i4E4Fzcz+gfOqFqRxs\nfaoDUGf8ANxMbAtTbbMyTj+Pp+OqdGmN35wx3Fj/GTHHtLcQyG2sqDGgC+GfFz3ZferCVGwCdn51\n9Nb7dN0sTczT5DZWVHuzOxF7DxcpWoK6QP8CZmWoF/6T+lG1QxMAFDYWpN0t/I5YujmSm5aJKsfw\nO+Lc0MtonLmHDVc2fUteehYAvqNfJ/NhHPY+1ZBZmBFz+goASVfvkX4vWreeyrAtzJwddet61rqg\njEvEzEV/eWV8kvZcIlvJ5clLdO+1/GqzbhqvtXdNmu78AE1BAbmJKY/z1T8+5xv7Thg5r3kSp4xN\n0putZe7qpB25lUgoyFFyqch5TZtvNpIdGUduQgqpoXd0U3otXBxwqFeTzt+sQG5lUWFtp/DyECOg\nLzlvb29CQrQn0jdu3KCgoIBFixaxatUq1qxZg5ubG5rHX/BBgwZx8OBBkpKS8PU1vH+ssvpz+Fz+\nHD6X82MW4eDvg1V17ZX1Gv1fI/604Y3rSRdCSxWnR6Oh2aa52NXXHhzdO7dEU1DwXJ6C+6w0hKLm\n58f/jgEugC0Anv27EH/mosEySReuYO9fR/eZi8YlnL5EtV6dkMikyG2scO/ShoTfg8mNTyYnKg73\nLton8zq3DECjVpMZ9hBLT3ea7VhC+H++487mvUZ/9yot5AbIpFh4VgGgSr9uJJ0J1otJCQ7BrkFd\nozGundpSc7T2gQUShRzXTm1J/fsqyph4Mm7dw/31jgBEf/d/qJRKrs9bS/T3R6m/rHBanUe3dmSG\nP9TrfAJo1BrqTh+NRRU3AKq92ZXMexHkJiSTfD4EzwE9kMjlIJHgO2883pOGknErXPfAouI6n6Cd\n4gsQvv//ODN0PsmXbvLop9M4NvTRPfmv5oDOxP1uOO0o4fxVo3GpV8M49cb7ugcMPfzuFDHHzxO6\n/FMKsnOoNagLHp2091bZ1auJQwMv4s9pT+6eLHN21JIXlkNpFbfPSxNT2nqhcLTHrmE9Mh7fR/XE\nk4db/DZiGU4NvbGuof2MXgM6EfPb3wb5xp+7WmycSzNfEi7eMPpZXZr5khBs+N6dj78rl32iUalp\ntHgcjgHazryNVzWsa1XVrbMic0i9pt0vdz85pHsg0LnRi3Eo0k7VeNN425x4PtRknEenQOrPHMnF\n91brOp8ABdk51BzYFfeOgQDY1a2FfQNvvfUmB2vbSUtP7Xqr9utK4umLzxzztIJsJZ5vdsP11Zba\nbVC3Nnb1fUg+H6IXVxnqxbUdRzg+eDHHBy/mZNBynBt5Y/O47nsP7Ej0b5cNcog9d81knPfAjvhP\n7geAuZMdXv078PDn82Q+ikdhY4VzgLbTZO3pip1XFVJuRVSabVGWupB4+iJVexY9rrYl8XQwaDQE\nbJyPra+27rl2ao2mQEVmWASWnh403b6UsK17+eP1t7k4YqYuD71jt4nzGlNx8acvUa1XR10uHl3a\nEP/bRdBoaKp3XtMKTUEBmXcjiP8tGIdGdbGsqr1/Oj08irSwSE4NXlihbafw8hAjoC+5IUOGMHv2\nbIYMGYKXlxcKhYIuXbowbNgwLC0tcXFxIT4+HtCOkEZERDBsmPH73Sq7vJR0ri7/mMZrpiGVy8mO\niuPq0u2A9p5N/wXj+HP43GLjinNl0Uf4z38HiUJObmIqf88y/hMT5SsXNeeRon3wgY13Da4t2waA\nna8XfgsmcD5oNvkp6dxYvpNGq6cjkcvJiYrTxUUePo6lpzutvliPVCEn8shJ3f2dVxdupv688XiN\n7o86L5/Q+ZtAo6FWUF9k5ubUGNSDGoO0P3vy9AMkCtIzUOfm4bdiFlKFgpyoWG4v34KNrzd1507m\n71HTyU9N4/aqjwxiAO5t+4w6sybQbP8W0GhIPHOBqG+19+bcmL8Gn+njqNK3GxKJlIeffUvmLe19\nlw/3HqLOrAkE7ltPbmIyobPXA+hGMINHzCIr/BF3Nv6HgA1zkMikKOOTubZIW+79z76jzntBBO5b\nh0QqJfPuA+5u2fdMe+XJ1N62e5chkUhIDrnDtXWfE/tLMM3WTUGikJMdGU/I4p0A2NevTaNF73Bm\n6HzyUtK5suwTo3EmqTVcnL4R/9kjqTv+TTQqNX/P20Z+qn7Hu7h1lzmHUjK1z190vXhabkoGfy3d\nTcv17yGVy8mKjOfSok8AcPCrTdPFY/jlrUXFxgHY1HAnK9r4z3rY1PAgOzqh2O3xIveJKieXSzM2\n0mDGcCRyOer8fC4v3E7rjxdUeA5PZlI8ncfVDz6myZqpSBVysiPjCF2qfcCXXX0vGi58h7PD5hUb\nV3fyW0gkEhoufEe33pQrd7ix7jP+mvkhfjNHUmf8ADQqFSHzt9Ly40W6uPyUdG6u2I7/qplIFdp2\n8sYHH2Hr643vvAlcHDnLZEyx1GpCZ6+j7vQx1B47GI1KxbVFG40+IK0i98nT9SI3OYPgxXtou2Ey\nUoWczMh4LizQ/tyWo18tWiwZw/HBi4uNu7nnf7RcOY7u360AiYTrH39P8nXtg23OTt9K09lDkZor\n0BSouLR8L1mRht+XitoWZakLUUeOYenpTot9HyJVyIn6/oTu/s7rS7bgO28CErmcvKQUQudon79R\nc3hfpBZmeA7sgefAHrocry/fScCaJ8fuWL3zGr8F4zk/fA55Kekm4yK/O45VNXdaH1iHRP7UMX7R\nVvzmj0P6+LwmZNYGADLuRnBz7R4C1mk7wbXf7ETwbO05Q2VpO4V/N4lGI8a3BS21Ws2QIUPYs2cP\nNjY2JcYnJJg+eJYXV1dbjgYa/5mN8tI9+GtUHKjQHABkDONEy0EVmkOXC99yum2/Cs0BoP3ZI5xq\nZfhzAeWp8/mD/LdZxV/M6fnXgQrPo+dfByq8XrQ/q/2t0MNNRlRoHv0v76sU+wOoFHn83MLwZ1bK\nU4+LX/FL6wEVmgNAp3OHKsX++CZgVIXmADD4yueVYltUlnpxPNDwJ07KU9fgbyq83QRt2/lvoPrK\ntqJTKJFsSMWfv4spuAIAjx49ol+/frz++uul6nwKgiAIgiAIgiA8KzEFVwCgevXq/PCD4ZPIBEEQ\nBEEQBEEQnhfRARUEQRAEQRAEQSgrTeX4mZPKTkzBFQRBEARBEARBEMqF6IAKgiAIgiAIgiAI5UJM\nwRUEQRAEQRAEQSgrI7+LLhgSI6CCIAiCIAiCIAhCuRAdUEEQBEEQBEEQBKFciCm4giAIgiAIgiAI\nZSWm4JaKGAEVBEEQBEEQBEEQyoXogAqCIAiCIAiCIAjlQkzBFQRBEARBEARBKCsxBbdUJBqNRmwp\nQRAEQRAEQRCEMlB9blHRKZRINkpZ0SmIEVDhn0tIyKjoFHB1teVEy0EVmkOXC99WeA5P8lBxoEJz\nkDGM9d6TKzQHgFn3tnOq1cAKzaHz+YMVnsOTPH5pPaBCc+h07hDh/dtWaA5eh88CMNtzSoXmsS5y\nS4XXi87nDwJUijwqQw5Xu3Wp0BwAGh47USm2xeY6kyo0B4Cpd3dUim1xPHBwheYA0DX4m0rRfld0\nuwnatlN4eYgOqCAIgiAIgiAIQhlp1BWdwb+DeAiRIAiCIAiCIAiCUC5EB1QQBEEQBEEQBEEoF6ID\nKgiCIAiCIAiCIJQLcQ+oIAiCIAiCIAhCWYmfYSkVMQIqCIIgCIIgCIIglAvRARUEQRAEQRAEQRDK\nhZiCKwiCIAiCIAiCUFbiZ1hKRYyACoIgCIIgCIIgCOVCdEAFQRAEQRAEQRCEciGm4Ar/ei5tm+Az\ncShSMwWZYRFcX/kxqqyc0sdJJdSbOhLnlgFIZDIiDvxE5JETANjV96betJHILC1AKuXB/h+IPXpG\nb30AHU99zuneE59buVbVPfBbOBGFvS2qbCXXlm0jOyIagJpDe1K1V0c0KhV5KencXLObnKi4IiU6\nIKUTag4/03bUaDQsmPcjPnVcGfN2m2datrS8Xm1A+1l9kJnJSbgVxdF5B8jLVBrE+fVpQYt3XgMN\n5CvzOPXBQeKuPtSL6bPjHTLj0ji17NtSl19/0WSy7j3k4Zc//ePP4BTYCJ93gwgeMQsAjx7tqTGk\nl+59uY0V5m5OADi3aYr3pKFIFdp9f3PlTlTZ+nXEZIxUSt0pI3F6XD8efvkjUY/rxxNVenbE9dVA\nQmeu1b3WcPUMbHxqocox3K7ObZriPXEYEoWcrHsPublyh/F8jMVIpdR5fyROrRojkUl5+OVPRB85\nDoBD0wbUeX8kEpmM/LQM7m7+jMywiGfetpbNWuM0bAIShRl5EWEkbF+NJidbL8amfVfs+w4FDWhy\nlSTu2UzevVvPXJYxvp386DGvF3IzGTE3ozk48ytyM3MN4tqMeoVWQW1BA0kRiRya/TVZSZkALL6y\nkvTYVF3s7x//wuUjf+ktH/jFhudeJ1zaNcNv0bso4xJ16/lrwiJU2UpqDO1JlZ6d0KhU5KemV1ge\nxurmi8jhCYsqbgR+vpbLU5aTcSucmkF9ce/SVve+wsHOYN8+zTYwEPfRbyNVKFDev0/kpg9RZ2cb\njfWcMQtlxH0SDx0CQGplhef0GZhXrw4SKSknT5D47Tcmyyrv/eE1/i3cXm0JQPqNsBK3Ra1X/Wk7\nQ9t+J96O4uT8L4y23769A2k29jVAQ35OPr8t/5b4aw+RmSvotHQw7g1rIpFKiL3ygF+WfoMqN/9f\nsS1c2jahzqQhSM0UZIQ95PoK0+caxcWZuznT8j8rODdsNvlpGXrLVu31Ku6vBnJ5xjqjOZSpDS9S\nfvNPVxEcNNOg/Co9O+HaIZDQWWuMlm9MebWb/xpiCm6piBFQ4V+vwcJJhM77kD8HTSU7Kp46k4Ya\nxCgcbE3GefbrglV1D84NncGF0fOo8dbr2Pl5A9BozQzu7T7I+aDZXJ62inpTRmBV3UO3vvDPtZ08\ndX7Bcy3Xf9n7RH53nHNvTefe7m8JWDMDAKcWDanauxPBYxdyfvhs4n8LpsGiibryJPgipRPPem3p\n3r0Exozcz9Gfrz/Tcs/C0smG7uuC+H7ybvZ0+YDUR4m0n9XHIM6xthsd5vbj0Ojt7O21mnPbj9J3\nxzt6MYHjXsOzuXepy7aqVY0m25bg3rn1P85fam6G1/i38F85HYmssOmM/fk0wSNmETxiFhdHzyUv\nKZU7G/YA4LdwElfnbeD84CnkRMfhM3mY3joVDnYmY6r1ew3L6h5cGDadi2PmUn3wG9j5+QAgt7Oh\n3ux3qDdjDBIkeuu096/LXxMX63IqWlb9BZO5Om89F96aQk5UHN6TDPMxFVOtbxcsq1cheNg0Lj3O\nx9bPB5m1FQ1XzyJs236Cg2Zwe/0uGqyYjkTxbHVQaueA27sLiFu/gMj3hlAQF41T0ES9GEXVGjiN\nnEzs8hlEzRhFyqG9eMxe+UzlmGLtZM2gjUPZP+4/rO+wiqSHSfSY19sgrlpDT9qP78iOvpvZ+Noa\nEu8n0G3W6wC4ermRk5bN5m7rdf+KnkRZO1kDvJA6Yd+wHhFf/qjb78EjZqHKVuLYoiFVe3Xm0tgF\nBAfNIv63C7qyyjMP0K+bl99f/sJyAJCaKWiw7D29ehix/3tdTn9PWoJaadh5Kkpmb4/njJk8XP4B\nd8aOIS82Bo8xbxvEmVevQe2167Bv317vdfeRo8hPTOTu+HGEvfcuzm/0xKp+faPllPf+cH01EKfA\nAC4EzeL8kGlILcyL3RaWTjZ0XRPE/97dxb5uy0h/lEjbmX0N4hxru/HKnH4ceXsbB3qvJnjHz/Tc\nPg6AwEndkchkfNFrFV/0XIncQkGLCd0MyqmM20LhYIv/oolcmbuRswOnkRMVR93Jxo/5xcVVeb09\ngbuWYvH4IuUTcjtr6s8dS/2Zo3mqSdf73GVpwwE8enSg6cfLMXd1fqp8G+rNHkfd6WNAYiIBI8qj\n3RReTqID+pI5fPgwGzZsqOg0ylXazXtkP4oFIPLwcTy6v2IQ49wywGScW4dAon76DY1KTUFGFrEn\n/qRK9/ZIzRSEf3qQ5ItXAciNTyYvLQNzN2ecWwaQERaB18h+AOSnZzy3cs1dHbGuVZXYE38CkHQu\nBJmFObb1apOblMqttbt1V1PTb97DwsO1SIkOqDnzzNvwqwOX6Ne/Md17NHjmZUurVrv6xIZGkPog\nAYCQA2fw69PCIE6VV8CxeQfIStCO1MRdjcDaxQ6pQgZA9VZ1qNXej5Cv/ih12Z5vdifmv78Sd+qc\n3usSuZw6U0bSYu9aAvevp/6iycisLI2uw6llADILc26u3GGynJoj+pCXkkbU9ycB7f7Jebzvow4f\nx6Obfh1xatnIZIxrh5bE/PdXXf2IO3lWV3fcO7cmLymFux/t11ufRRU3ZFaW+M4ZR+AXG6i/cFJh\nWYEBpN8MIyfySVnHDPMpJsa1QyAx/yvMJ/7EWTy6tceqehUKsrJJuaT9nmRHRKPKysHev57J7WSM\nVeNAcsNuUhATqd12R49g+0pXvRhNfh4JO9agSkkCIPfeTWQOziAv+2Seuh18eXTlIYn3tfXz/L6z\nNOnXzCAu6mok615ZgTJDidxcjr2HPdkp2hGxms1ro1apGf/tu0w7MYfXpnZDIpXolQG8kDph37Ae\nTs39afH5Wpp9/AEOjbUdnbykVG6t260bAcm4Ga4rqzzzeLpuNlw944XlAFBv5lhi/vcb+WnpGOPz\n/giSzoUYfe8J26bNyL59h7zoKACS/vsTDp06G8Q59+5NyvHjpJ0+rfd6zM4dxOz6BACFsxMShQJV\nVpbRcl7UtjC1PxJ+C+avcQvRFBQgs7LEzNG+2G1Ro1194q5GkBqh/X6Efnka397G2+8TCw6QbaT9\njroYRvCOn0GjQaPWEH8jEruqTgblVMZt4dwygLQbhcfyR9+dwKN7u2eKM3dxxK1DC/6eZji66PFa\na3ITU7m99QuD93Sfu4xtuJmLIy7tA7kyfZXBut06tyE3MYWwj/aZLN+Y8mg3hZeT6IAK/3q5cUmF\n/x+fhMLGCpm1fifCwt3ZZJyFuzO58frvmbs5oc7LJ/qnX3WvV+vbGZmlBWnX7mDh4YJ1rWrcedwB\n0BSonlu5Fu4u5CakgKbwx4yVCclYuDmRFf6IlMs3AZAo5NSZPIy4X87r4jScB4xPDyvOwsU96N23\n0TMv9yxsqziQEZOi+zsjNhVzW0vMbCz04tKjkgn/rXAktuP8Nwk7dRV1vgprN3s6LxrI/6Z9jkZV\n+nkudz7cQ+zR0wav1xrRF41KzcWRcwgOmkVeQrLB1fYnEk9f5O6WveSnZxp9X2FvS40hvbiz6XPd\na0WneuXGJyG3sdLr4Fq4uZiMsXBzRhn3dP3QXrWOOnKC+3sOoc7N08vBzMmO5ItXubXmE4JHzNab\n6mhQ3xKSkNtY6+dTTIy5uwu5RXJVPs4n+2E0MksLnAIDALCt7421V3XMXRyMbidTZM5uFCTG6/4u\nSEpAam2DxNKq8LWEWHL+KryI4DzqfbIu/QEFBc9UljH2VR1Jiy6cApYWk4qlnSXmNoajIeoCNQ26\nNWTBxWXUbuXNpW+1o4pSuZS7Z27z6fCd7HxzK3U7+NJ2dHu9Mop6nnUiPz2DyEPHuDhqDmE7v6TR\n2lmYu2rbjNTLNwBtm/H0iEl55fF03ZTIZC8sh6q9OyGRy4j+4ZTBZwWwru2Ja/sW3NtlejosgMLV\nlfzEBN3f+QkJyKytkVpZ6cVFb99G6qmTxleiVuM5ew51PtlNVmgouZGRRsspqjz2B4BGpcJzQHfa\n/rAThYNtsdvC1sOx1O33g9+u6f5uP38A4b+Eos5X8fCPm6Q+0H7Hbas60WRkR+4e/dugnMq4LSzc\nnVHGl+5cw1RcbmIKV+Z8SNb9KIP1Rx4+Sfinh1Ar8wzeK7rusrTheYkpXJu3nuwHhnUw+shxHvzn\nIKpc0+UbUx7t5r+O5l/wrxIQHdCX0JUrVxgzZgx9+/blm2++4ezZswwcOJDhw4fz7rvvkp6ezoUL\nF5g2bZpumbZttffFzJ07lwkTJvDWW2+RlpZWUR+hzAw6JxLjVV2jUoOxK21q/eVrjeiD9zuDCJm5\nFnVuPi6tG5ObmEpy8NXnX66J6S+aIjkpHGxptnUhqmwlYTu+NBpf2UikxWwLIxSWZvT+6G0carpy\nbN4BpHIpvbaM4ZcVh3Sjo2Xl3LYZru2bE7hvPYH71uPaIRDr2p7/aF1V+75GwplLKGPii40ruh+N\n1oHHMcauAJfU6U6/HsbVuevJS0oFtZrw3dr7YyVyOZja/nr5mI6RGKuXajWq7ByuzllLzZH9abFv\nAx49OpDy1zXU+c/WKTRVP57+LgJIzC1wm7kcRRVPEreX/l6lYss38b1Tq4wfra8fu8qyRgs4sfEo\nb38xAYlEQvCX5/hx8WFUeSqU6Tmc3v0b/j0KL+yYKuN51ImrczeQ8HswAGlXbpF69TZOgYVlKxzs\naLJlkdF7g8sjj6fr5pMRc8lTo9dlzcG2Xm2q9evKrbW7TH7O6oPfIPLQUVRZJVyse8Y2y5TIdWu5\nOfBNZLa2uA0bXvpyyqFeRB46yukuo3QxppgakVKb2BZySzNe3zoWh5qunJx/QO89twbVGfjVdK58\n8Tv3f72m956pcip6W5gckXvq85c27h8pYxv+IpRHuym8nMRDiF5CcrmcPXv2EBUVxTvvvENubi5f\nffUV7u7u7N27l507d/Lqq6+aXL5Vq1aMGjWq3PJ9VlZWZpibF1ZdsyIjLeauTuSnZaJW6t8Ar4xL\nxN7fx2icMjYRM2f9dSjjkwHtiIH/4slY165G3Klz+C+eDICNd3UKcnJptV/7oADLah5oVKrnUq4y\nTv91AIsiOdn41KDx+tnE/36RO1v3gbqSXM4you3UN/DprD2QmNlYkHA7WveerbsDOalZ5OcYXnG1\nreJI/90TSLoXyzfDtlCQm0/VJrWxr+5Mx/lvAmDtaodEKkFuLufYfMNOeOC+9QAknrlE+G7jIx0S\nmZQ7mz7TTcWTWVogNVNg6+tF/fmF9x8WvZfSFPfX2nBn42d6r5m7FF7NN1Y3c+MSsW9Qx2iMMi7R\nYPmiV7aNcQjwRW5nQ+KZS9rP9/jkQKNWo4xNwM7vqbLSM/TyKS5GGZeI2VP5KOOTQCJBla3k8uQl\nuvdafrVZNwWstAoSYjGv46f7W+7sgiojHU2ufodJ5uKOx/y15EdGELP4XTR5z3bFvqiuM3vg18Vf\n+3lsLIi9FaN7z87Dnmwj9dO5lgu2rnY8uKidynrx6/P0Xz0IS3tLfDv7EX0jmtib2noukYAqX6Vb\nNjU6RW9dz6tOyG2sqPZmNyL2HtG9J0GCRqUt28anBo3WzyHht2DufrSfzn/qfx/KI4+n62ZugrY9\ne3Ji/Lxy8OjRAbm1Jc13a+8NNndxosGyKYRt268tWyrFrWNLgkfNoST58fFY+frq/la4uFBgpE6a\nYtOsOcr79ylITkKtVJL626/YtzOctpkfr3/Rqjz2h41PTZBKyLzzAIDoH09Re/Sbenm0mtIT784N\nATCzsSTxduHInY27A8rULApMtN+9P5lI8r1YDg3frPeQobpvNKPT0rf49YNvuP3TJYNlMyrgO2Jq\nW3iPG4hr++YAyK0tyQx7aFCm6uljfmwi9g0Mj/lPx/0TZW3Dn5fybjeFl5MYAX0J+fn5IZFIhNid\n1QAAIABJREFUcHV1JSYmBhsbG9zd3QFo0aIFd+/eNVhGU2S6Z+3atcst138iOzuPlJRsUh7fP2Dv\nXwer6h4AePbvQvyZiwbLJF24YjIu4fQlqvXqhEQmRW5jhXuXNroroAGrpiOztiR47CJub/yc80Gz\nOR80m9/fGI86L4/Q+RsBUOXkEP2z4RTPf1JubnwyOVFxuHfRPonWuWUAGrWazLCHWHq602zHEsL/\n8x13Nu+t1J1PgLOb/8feXqvZ22s1Bwasp2qTWjjU0k43CxjajrCToQbLWNhb8dZXU7l77Ar/nfIZ\nBY9PXqIv3+eTdgt16wv58gy3/ve30c4noHvIhKnOJ0Dy+RA8B/TQjsJIJPjOG4/3pKFk3ArXe1BF\nSeS21lh5epAWelvvdXv/Olg+3vfV+nUl4am6+aR+GItJOH2RKr06FqkfbUk4bVi3i5JZWVB3+hjk\ndtoHedQY/vhhEGo1ycGPy/LUllW1X1cSn1pfcTGJpy9StWcnvXwSTweDRkPAxvnY+mofCuXaqTWa\nAtUzPwU3+0ow5nUbIK+iHYG27dqP7Iv69zNLbWypunwbWed/J37jkjJ1PgGOb/hZ99CLbb03UaNp\nLVxqa+tnq6C2XD92zWAZWzc7hu4YiZWj9oFCTfo1J/Z2DNmp2bjXq0LXGT20F0YsFLQZ9QpXfrqs\nW/bO79qn9T7vOlGQrcTzze64dtQ+xdOmbi3s/HxIOheCpacHTbcv5f6eQ9zdsldvRLk883i6blp5\nafezZTW355rD3c2fc27QFN13NzcxmetLtug6vjbeNchPz0IZk0BJMv76C0vf+phVrQaA0xs9ST93\nroSlCtm3b4/bcO2Ip0ShwKF9BzJDDO87zfhL+8CV8twfNj418Vs4Gam5GQBVenQwyOv8lv9yoPdq\nDvRezdcD1uHRuDYONbXfj0ZDXuHeKcP229zeigEHphF2PISfp/1Hr/Pp070Jry4axOHRHxntfAJE\n/HGj0myLe7sOcn74HM4Pn0PwmIWGx/LThp8h6UJoqeL+ibK24c9Lebeb/zYataTS/6sMxAjoS6jo\nlAhHR0cyMzOJj4/Hzc2N4OBgatWqhbm5OQkJ2gNwVFSU3nRbU1MqKqsby3fSaPV0JHI5OVFxXFu2\nDQA7Xy/8FkzgfNBs8lPSTcZFHj6Opac7rb5Yj1QhJ/LISVIu38S+UT1c2zcnKyKawN3LdeXd3XaA\npAtXdOsDkJqZcWfLvudSLsDVhZupP288XqP7o87LJ3T+JtBoqBXUF5m5OTUG9aDGoB4AqPPyCX57\nQfls7DLITsrk5zlf0GfbWGQKOakPE/i/mdpt5t6wBt1XDWNvr9U0HvYKdlWdqNM1gDpdA3TLfxO0\nFWWq4QM8yuL+Z99R570gAvetQyKVknn3AXe3PNtDGAAsPT3ITUzVjTg9cWP5DhqumoFUIScnMo7r\nH2zTja4Gj5j1uH4YxoD2wRqW1TwI3L8BqUJO1JETunv5TEk6F0Lkwf+j+a7lIJGSda/win1+Sjo3\nV2zHf9VMbVlRcdz44CNsfb3xnTeBiyNnmYwBiDpyDEtPd1rs+1Cbz/eF+VxfsgXfeROQyOXkJaUQ\nOmet0fyKo05LJWHbKtxnrUAiV5AfG0XC1uWYefviOmkuUTNGYdetH3IXd6xbdsC6ZeEJc8yS91Fn\nlm1adlZSJgdnfMnwT0YjU8hIjkji66naB4J4NqrOgPVvsbnbeh4Eh/PL1uNMOPgeapWK9Lh09r79\nKQAnNx6l74oBTD85F5lCRuh/Qwj+8pxeGcALqROhs9dSb8bbeI0dhEal5trCTeSnZWh/qsLcnOqD\nXqf6oNf1PnN55mGqbpbn9wO0P3GljC1+mvwTqrRUoj7cQI1Fi5DIFeTFRBO5fh2WdepSbdp0wiZN\nKHb5mF2fUO39KdT5ZBdoIP3PsyR9f8QgTpWWWu77I/boaSw9PQj8fC1qlYqs8EfFfpac5ExOzN3P\nGx+9g8xM234fm7UXADf/GnRZNYwDvVfTaGh7bKs64dM1AJ8i7fd3I7bSdkYfkECXVYX3IUf/Fc6v\ny77RK6cybou8lHSuL99JwJonx/JYri7dDoBdfS/8Fozn/PA5xcaVVVnb8BehPNpN4eUk0RQd+hL+\n9Q4fPkx4eDgzZ84kNzeXHj16sGLFCrZs2YJEIsHe3p7Vq1djZ2fHe++9R2JiIt7e3ly+fJljx44x\nd+5cXn/9ddq3L/kG8ISEjBJjXjRXV1tOtBxUoTl0ufBthefwJA8VB0oOfIFkDGO99+QKzQFg1r3t\nnGo1sEJz6Hz+YIXn8CSPX1oPqNAcOp07RHj/tiUHvkBeh88CMNtzSoXmsS5yS4XXi87nDwJUijwq\nQw5Xu3Wp0BwAGh47USm2xeY6k0oOfMGm3t1RKbbF8cDBFZoDQNfgbypF+13R7SZo285/g/ztFiUH\nVTDF5NLdRvAiiRHQl0z//v11/29ubs4vv/wCQJs2bQxid+7cafDamjXP54EegiAIgiAIgiAITxMd\nUEEQBEEQBEEQhLJ6MQ8cfumIhxAJgiAIgiAIgiAI5UJ0QAVBEARBEARBEIRyIabgCoIgCIIgCIIg\nlFUl+ZmTyk6MgAqCIAiCIAiCIAjlQnRABUEQBEEQBEEQhHIhpuAKgiAIgiAIgiCUkUZMwS0VMQIq\nCIIgCIIgCIIglAvRARUEQRAEQRAEQRDKhZiCKwiCIAiCIAiCUFZiCm6piBFQQRAEQRAEQRAEoVxI\nNBqNpqKTEARBEARBEARB+DfL+9C6olMokdmMrIpOQUzBFf65hISMik4BV1dbTrQcVKE5dLnwLafb\n9qvQHADanz3Ceu/JFZrDrHvbUXGgQnMAkDGMU60GVmgOnc8f5OwrfSo0B4C2Z37gj3Z9KzSHdn98\nz6HGIys0hwEhewF49FaLCs2j+tcXK7xetD3zA0ClyOO3Nm9WaA6v/vkdxwMHV2gOAF2Dv6kU++N2\nrw4VmgNAvZ9+rxTboqKPIaA9jlSGc5yKbjdB23b+K2jEFNzSEFNwBUEQBEEQBEEQhHIhOqCCIAiC\nIAiCIAhCuRAdUEEQBEEQBEEQBKFciHtABUEQBEEQBEEQykgjfoalVMQIqCAIgiAIgiAIglAuRAdU\nEARBEARBEARBKBdiCq4gCIIgCIIgCEJZqcXYXmmIrSQIgiAIgiAIgiCUC9EBFQRBEARBEARBEMqF\nmIIrCIIgCIIgCIJQVuIpuKUiRkAFQRAEQRAEQRCEciFGQIV/PZe2TfCZOBSpmYLMsAiur/wYVVZO\n6eOkEupNHYlzywAkMhkRB34i8sgJAKyqe+C3cCIKe1tU2UquLdtGdkQ0ADWH9qRqr44ANNy8lLvr\nP0YZFYtT62bUmjAcqZmCrLAI7qzehipbPx9TMTJrK+rOm4xVTU+QSIj7+VciDxwBQG5rg8/0sVjV\nqo7U3IyHew8Rf+z3Um8nr1cb0H5WH2RmchJuRXF03gHyMpUGcX59WtDinddAA/nKPE59cJC4qw/1\nYvrseIfMuDROLfu21OWXhkajYcG8H/Gp48qYt9s813WXlnObpnhPGopUoa0nN1fuNNh/ZeXYuhk1\nx49AqlCQde8BYWs+MiijuJjAn/aRm5Cki43+6nsSTpRcFxxbN6PW+CAkZgqy7z3grpG6WZoY35Vz\nyEtMJnzTbr3Xzau40XjPh1yftpTM2/eKzcXjlQD83xuIzExO2t1HXFq6h4Isw/poMk4qocncEbg2\nqwdA7B+hhG76Wm/ZWn1eoWqnZvw5ZXOJ28aiSVvs35qMRGFG/sO7JH+yAk1Oll6MVbse2PYaDhrQ\n5ClJ+XwD+eE39WKcp69DlZJA6mfrSywTyl4XnvBdMVe7TzbvwrJWdeounq57TyKVYu1di5sLVpN8\n+nylzAHAqU1TvCYMR6qQk3kvgturdhi2nSZipGZm1Jk5Ftv6PkgkUtJv3OHuhk9R5+Xh0NQf78lB\nSORy1Ll53N20h4ybYSb3iUvbJtSZNASpmYKMsIdcX2H6mFJcnLmbMy3/s4Jzw2aTn5YBgGu7pvgv\nmUxOXKIu7uK4JQbrriz7pCjr5q1wHTEOiUJB7oNwYreuRZ2TbTTWY+pcciPuk3LkGwCqzl2Goko1\n3fsK9yrkXLtC1Ir5JZZbUduiNMcCkzFSKXWnjMTp8XnFwy9/JOrxeYVtfW/qThuFzMICiVRKxBff\nE3v0TGEuCjkBH84j+nH8izzHeaJqr464dQgkZOZa3Wve4wfj0UV7HHYcM4eU/ZsgP09vuYpqN4V/\nPzEC+hKIjIxk0KBBxcYMGjSIyMjIcsqofDVYOInQeR/y56CpZEfFU2fSUIMYhYOtyTjPfl2wqu7B\nuaEzuDB6HjXeeh07P28A/Je9T+R3xzn31nTu7f6WgDUzAHBq0ZCqvTsRPHYhAIm/n6fe/HdRONhR\nd8F73FiwjktD3kUZHUvtiUFP5WI6ptY7Q8hNSOKvoClcHjuLqv26Y9tAe4Jdb+F75MYn8ffoGYRO\nWYr31LGYuTqXahtZOtnQfV0Q30/ezZ4uH5D6KJH2s/oYxDnWdqPD3H4cGr2dvb1Wc277UfrueEcv\nJnDca3g29y5Vuc/i3r0Exozcz9Gfrz/3dZeWwsEOv4WTuDpvA+cHTyEnOg6fycOeaxlyBzt85r3P\nrYVr+HvYJJTRsdScMKLUMZbVq1GQkcmVMdN0/0rT+ZQ72FFn/nvcXLiWv4dORhkdR62JhuWWFFNt\naD/sG/kZrF9ipqDeomlI5SVf1zRztKX5srGcn/kRx/rOJSsygYZTDNuw4uJq9myLbS0Pjg9cwInB\ni3BpXo9qXVoAoLCzpsmCkTSeG4REUvJ0KKmtA04TFpO0aQ6x0wdQEB+Fw5B39bdNlZo4DHufhNXv\nEzd3GOmH9+AyfZ1ejG2vIMx9G5dYnm6dZawLT1Qb2g+7gMJ9kvPgkV79SL0YQsKJ3412MipDDqD9\n7vkueJfr89cTPOR9lNFxeE0aXuqYmqPeRCKTcWnEDC6OmI7U3JwaI/ojkcvxWz6d22s/5tLIGUR8\nfoj6i983tUtQONjiv2giV+Zu5OzAaeRExVF3svFjSnFxVV5vT+CupVi4OektZ9+oHg8O/MT54XN0\n/1TZ+hdeKss+KUpmZ4/HlLlErV7E/YlB5MVG4zJqvEGcmWdNPFdswrZdR73Xo9csIWLKWCKmjCVu\n2wbUWZnEfbypxHIrcluUdCwo7nhRrd9rWFb34MKw6VwcM5fqg9/Azs8HgEarZxK++1uCR8wiZNpK\n6rw/EsvqHgDY+delxaercGjkqyvnRZ7jyO2sqT/nHXxnjIYiTWXVnq/i2q4ZF0bNA0CVmoj94Il6\nZVZUu1nZaTSSSv+vMhAdUOFfL+3mPbIfxQIQefg4Ht1fMYhxbhlgMs6tQyBRP/2GRqWmICOL2BN/\nUqV7e8xdHbGuVZXYE38CkHQuBJmFObb1apOblMqttbt1VyEzb93D3MMVx8DGZNy8izIyBoDoI0dx\n69peL5fiYu5t3kP4ts8BMHN2RKKQo8rKQm5rg0OLACL+o72anJeQRMi4ORSkZ5RqG9VqV5/Y0AhS\nHyQAEHLgDH59WhjEqfIKODbvAFkJ6QDEXY3A2sUOqUIGQPVWdajV3o+Qr/4oVbnP4qsDl+jXvzHd\nezR47usuLaeWjUi/eY+cx/Uk6vBxPLoZ1qeycGzRhMxbYbr9H/v9UVy7dCh1jG1DXzQqNf5bVtD4\n8y1UHzUYpCU35Y4tGpN5s3CdMUeO4tql/TPF2Dfxx7FlE2J+OGawfu/p44n7+RfdSE9x3Fv7k3I9\nnMyHcQDcO/gLNXq0fqY4iVSK3NIcmZkCqUKOVC5HnZsPQPWugSgT0wjd+LXBOo2xaNSKvHs3KIh9\nBEDmie+watddL0ZTkEfyrhWoU7Ujz3nhN5E5OINM2+E292uGRUBrMk8eLlWZUPa6AGDfpCEOgU2J\n/f6o0TLsGvnh/Gob7m3YWWlzAHAMDCDjZhg5T9rFw8dw7/pKqWNSQ24Q8fkh0GhArSbzTjgWHi5o\nCgo41/sdMu/cB8Cimjv5xbSbzi0DSLtReKx49N0JPLq3e6Y4cxdH3Dq04O9pawyWc2hUF6fm/rTa\nu5oWu5bi2KS+4baoJPukKKsmLVDevUV+TBQAqT//gF2H1ww/3xt9ST/1Mxl//Gp8RXI5HlPnEb97\nGwWJCSWWW5HboqRjQXHHC9cOLYn576+684q4k2fx6P4KUjMF4XsOknLxKgC5Ccnkp2Vg8fhicvVB\nPbj3ydek37irK+dFneMAeHRuQ25iCne27tdbn62vF/G/X6QgUzvCnR38K1YtO+nFVFS7KbwcRAe0\ngvXv35+kpCTy8/Np2rQp169rR3/69evH3r17GTx4MG+99Rb79u0DICYmhrFjxxIUFMTYsWOJiYnR\nrUulUjFr1ix27doFwKZNm+jfvz+TJk0iJSUFgNjYWCZMmMDo0aPp2bMnJ0+e5P79+wwYMEC3nqlT\npxIaGlpem6DMcuMKpyLmxiehsLFCZm2pF2Ph7mwyzsLdmdx4/ffM3ZywcHchNyFFe0LzmDIhGQs3\nJ7LCH5FyuXAKSe2JQST88ifmbi7660pIQm5jjcyqMJ8SY1Rq6i2eSvP9W0i7fJ3sh9FYelYhLzEF\nz7d6E7BzFU32rMemrhfqXP3pMKbYVnEgIyZF93dGbCrmtpaY2VjoxaVHJRP+W+EIZMf5bxJ26irq\nfBXWbvZ0XjSQ/037HI1KXapyn8XCxT3o3bfRc1/vs7Bwc0FZZGpcbnwSchsrvf1XVmZuLuQVLSMh\n0aCOFBcjkUlJvXSF6zOXcvXd+TgENqHKm2+UWK65uwu58cWXW1yMmbMjXlPGcvuDTaDW3//uPV9D\nKpcR95P+tC5TrNydyI5N1v2dE5eMwtYKubVFqeMe/HiGvPQs3ji+mZ4nt5D5KI6Y0yEAhB/6lZuf\nfI+qlN8PmbM7qqQ43d+qpHikVjZILK0LX0uIQXn5rO5vh6Bp5Px1GlQFSB1dcBg5g6Rti0CtKlWZ\nUPa6YObsRO0pY7mzfCMatfHvZK3Jo3m4+wuT08grQw6Atr3VK8Ow7SwuJiX4CjmPtMdDcw9XPAf1\nJOGXcwBoVCoUjva0/mEX3pNH8OjAD8Xk4YwyvnTHFFNxuYkpXJnzIVn3owzWn5+WyaNDxzg/ch53\nt39FwLoZmD81SlpZ9klRClc3ChLjdX8XJCYgs7ZBammlFxf/yRbSfz1ucj0OXd6gIDmRzPNnTMYU\nVZHboqRjQXHHCws3Z5RxT59XOKPOyyfmp190r1ft8xoySwvSrms7nNcXbyHpz7/18nhR5zgAkUdO\nEL7nkEFbmX79Lq6vNENhbwuAdfvXkTm46MVUVLspvBzEPaAVrFOnTpw5cwYPDw88PT35888/MTc3\np0aNGhw9epQvv/wSgNGjR9OuXTu2bt1KUFAQHTp04Ny5c2zYsIFp06ZRUFDAzJkzad68OcOGDePq\n1atcvHiRQ4cOkZ2dTdeuXQEIDw9n9OjRtGzZkr///puPPvqIzz77DAsLC8LCwnBxcSEyMpJGjSq2\nI1BWBh0kifFrLRqVGqRGpiOo1WBi6l7Rg5jCQds4q3JyePDJATyHGk5rfXoZo+U9FXP7g83cXf8x\nfitnU3P0IFKCQ7Cs5kFBVg5XJs7HopoHATtWkhMZTebtcKPrK0piYoTMVEdSYWlGj3VB2FZx5NDo\n7UjlUnptGcMvKw7pRkdfSqXYN2UlKUUZxcUU7eSp8guI/uYHqgzoSczBn0oquMRyTcUgkVBv2UzC\nt+4hPylF7y3rul549O3O1ckl38tVWIyJz/dUfSwuzm98X3JTMvip03vILMxos2kKdYK6c3e/8VGO\nYpkox9hJkcTcAqeJS5A5u5Ow+n2QyXB+fyWp+zbqrvKXVlnqAhIJdZfO5P7WTw32yRO2/r7I7W1J\nOHG6UufwZF0l5VGaGJt6Xvivnk3Udz+T9OdfutfzU9I412ccNnVrE7B1KVn3H+k6rHppmPqspayb\nT8c97cqcD3X/n3rlNmmhd3AO1D/eVpp9op9UiTmVhmOfgcRu2/AMxVaubVHaY7mxnJ5u32oG9aX6\n4NcJmbqy1BeTTa3rH53jFCPm5zOYuznTbPtiAAqiItAU5OsHVVC7WempxdheaYgOaAXr2rUrH3/8\nMVWqVGHatGns378fjUZDt27dWLt2LaNGjQIgLS2NiIgI7ty5wyeffMKnn36KRqNB/vh+q9u3b2Nj\nY0N2tna6xIMHD/D390cqlWJjY0PdunUBcHV1ZefOnRw6dAiJREJBQQEAAwcO5PDhw1StWpXevXuX\n/4Z4BlZWZpibF1ZdMxcH3f+buzqRn5aJWpmrt4wyLhF7fx+jccrYRMyc9dehjE9GGaf/OoDF4/cA\nbHxq0Hj9bACuz1sLajW5sYnY+tUtXJeLM/npGXr5FBfjGNiYrPAI8hJTUOcoSTh5BpcOrYn7P+0V\n0yf/VUbFkh56C9v6dUx2QNtOfQOfztoTGzMbCxJuR+ves3V3ICc1i/wcw4OebRVH+u+eQNK9WL4Z\ntoWC3HyqNqmNfXVnOs5/EwBrVzskUglycznH5n9ptPx/o9y4ROwb1NH9bao+la2MBGzql1BHiolx\n7fYqWWH3yb4XoX1TIkFTUPLV49y4BGz9inw2E+Uai7GqVR2LKu7Ufm8MAGZODkikUqRmZqhylMit\nLWn0sfbhFWYujtRdMp0H2z8n+exF3br8Jvaj6qtNAJBbW5J+t/CedEs3R/LSMlEp9etjdkwyTv7e\nRuOqdW5OyJr9aApUFGTmEPHTH3i+1uIfdUBViXGY+/jr/pY5uaLKTEOTq39vnszZHZfZGymIekDC\nBxPR5OdiVqchcrdqOARN08Y4OINUikRhRsqulcWWW5a68GSf1Hr3yT5xRCKTIjU3I2ztNgBcOrUj\n4eiverM4KmMO2jISsSvy3TNzNZZH8TFur7Wlzsx3uPvhp8Sf0N4mILO2wrGZP4mngwHIvHOfrLAH\nWHvX1HVAvccNxLV9c0BbNzPDCh+69qQNUD19TIlNxL6B4THl6bii5DZWVB/Qlfuff1/4ogQ0j4/D\nhZ+zcuyTogoS4rCoWzhdWO7sgioj3eA7Uhxzrzogk5FzLaTUy1TktjB3cSz8fyPHguKOF8q4RIPl\nn4xCShRy/BZNxrq2J5feWYAyRn8qstc7g7H19cLnPe2zIV7UOU5x5HbWxB77gwd7v6fLhW/Jjwqn\nIFb/OSIV1W4KLwfRTa9gdevW5dGjR4SGhtKhQweys7M5deoUXl5e+Pj4sG/fPvbv30///v2pV68e\nXl5ezJw5k/3797Ns2TK6d9fOt2/QoAG7du3ixx9/5NatW/j4+BAaGoparSY7O5uwMO0T/7Zs2UKf\nPn1Yv349LVu2RPO40e3evTtnz57lxIkTlb4Dmp2dR0pKNikp2s62vX8drB7fwO/ZvwvxZy4aLJN0\n4YrJuITTl6jWqxMSmRS5jRXuXdqQ8HswufHJ5ETF4f74KXDOLQPQqNVkhj3E0tOdZjuWEP6f77QF\nPL6amBIcgl2Dulh4VgGgSr9uJJ0J1suluBjXTm2pOXowoD1IuXZqS+rfV1HGxJNx6x7ur2sf7KBw\ntMeuYT0ybpl+0ujZzf9jb6/V7O21mgMD1lO1SS0carkCEDC0HWEnDadZW9hb8dZXU7l77Ar/nfIZ\nBY/vqYu+fJ9P2i3UrS/kyzPc+t/fL1XnEwrryZMHQlTr15UEI/WpLFKDQ7BtUE+3/z36dif5j+BS\nx1jVrkGNt4fC4w5glf6vk/hLydPZDNfZjeQzJZWrjcm4fpuLb44lZPQ0QkZPI/aHYyT88gdha7dz\nf+se/hoyWfdeXmIKd5Zt1Ot8AtzYeYSTgxdzcvBifg36AKdG3tjUcAfAa0Anon+7bJBz3LmrJuNS\nb0bg2bUlABK5jKodmpAUWvyTd01Rhp7HzMcfuUd1AGxeexPlJf0REam1HW5LPiEn+FeSti5Ak689\nAcy7e5WYyT2JmzuMuLnDyDz5HdnnTpTqJKosdSHj+m0uDXhb9xCV2B+OknjqD92JNYBd4wak/lX8\n7RSVIQeA5MftouXjMqr27UriU9+94mJcO7bCZ9rbhE5drut8AqBWU2/+ZOwaah/mZlW7OlY1q5Fx\n/Y4u5N6ug7oHAgWPWWh4rDh9ySDfpAuhpYorqiA7h+oDuuHWMRAA27q1sPfzIfHcFb24yrJPisq6\nfBHLen66J9k69OhN5oWzJSylz8o/gOzQv0sOLKIit0VJx4LijhcJpy9SpVfHIucVbUk4rX2v4aoZ\nyK2tuPTOQoPOJ0D47m/IuBVO2Ef7dXm8iHOc4tjV9yZg7UwkMu3zH2z7jCL7rP7FvYpqN4WXgxgB\nrQQCAwOJjIxEKpXSokULwsLC8PX1pXXr1gwZMoS8vDwaNWqEu7s7c+bMYenSpeTm5qJUKlmwYIFu\nPRYWFixZsoQ5c+Zw8OBB2rdvz4ABA3Bzc8PZWXuDe/fu3Vm3bh27du3Cw8NDd2+oubk5LVq0IDk5\nGQcHB6N5VlY3lu+k0erpSORycqLiuLZMe3Cx8/XCb8EEzgfNJj8l3WRc5OHjWHq60+qL9UgVciKP\nnNTd33l14WbqzxuP1+j+qPPyCZ2/CTQaagX1RWZuTo1BPQBo+vlG1Hn5hIybw+1VH+G3YhZShYKc\nqFhuL9+Cja83dedO5u9R08lPTTMaA3Bv22fUmTWBZvu3gEZD4pkLRH37X+3nnL8Gn+njqNK3GxKJ\nlIeffUvmLdM/JVBUdlImP8/5gj7bxiJTyEl9mMD/zdTeV+zesAbdVw1jb6/VNB72CnZVnajTNYA6\nXQN0y38TtBVlapap1b80tPVkBw1XzUCqkJMTGcf1D7aVvOCzlJGaRtjqrfgun4NELkcZHcvdFZux\nqeeD95zJXBkzzWQMwKPPvsZr2nia7N2KRCYj8bezpbr3Mj81jburPqL+itnadUbFcmefGe16AAAg\nAElEQVTFFmzqeeMz911CRk8zGfO85aZkcGnJp7Ra/y5ShZysyHiCF2rvXXf0q0WzJWM4OXhxsXFX\nNhyg8dwguh5ZjUatIf7CdW5//r9/lI86PYXkjz/AedoaJHIFBXGRJG9fisKrPk7jFhI3dxjWXd5E\n5uKBZYuOWLYofMJnwopJqDPT/lG5Za0LJbH0rEpubHyxMZUhB9B+926t3E6DlTORKLR17+YHH2Hr\n6029uRO5NGqmyRiA2hO0T8OtN7fwSZ1pV29x98NPuTZ3LT5TxyCVyVDn53Nj6WZyE4yPAOWlpHN9\n+U4C1jw5VsRydel2AOzqe+G3YDznh88pNs4ktYaQWevxnTkan3GDUKtUXFmwxeDBXZVlnxSlSksl\ndssaqs77AIlcQX5sFDEbV2HuUw+P92YRMWVsietQVPUkPy72mcqtyG1h7Fhg6+tF/fkTCR4xq9jj\nRdTh41hW8yBw/wakCjlRR06QevkG9o3q4fpKc7L+n737jquq/h84/rqLvWQj4kRQBNyomVamlTa1\nzEFiWZkj9565cptWNi3L1Eot+6ZNR8OJ4kJw40AB2Qiyx72/P65cuDJEkWG/9/Px8PGQe9/nfN7n\ncz6fc/ic8zmHyBjafb7AUFbERxtIPhRaRh5V9ztOWZIPnSSxtQ8dN+r/LEr+9Uhu/mp8wbmmjpu1\nnU5bO94yW9spdLq7mIMh/tPmzp3LE088QadOJd9GWZqEhIq9gbUqOTlZs7ND+X+Cpqr1OLSZPZ17\n12gOAF33/8SyJiNrNIdJFz+igI01mgOAikB2d+xbozk8HryF/V1Kfya4OnXe+zP7Hn6hRnN4eN//\n+KHV4BrN4aUT6wC41r/k25+rk8f3ITXeLjrv1b+Epzbk8c9DL9ZoDo8e+JEdAf1qNAeAJw5vqhX7\n49yzj9w5sIp5b/+3VtRFTZ9DQH8eqQ2/49T0cRP0x84HQdZcxzsH1TDzdxLvHFTFZAquAGDIkCGk\npaVVePAphBBCCCGEEHdLpuAKANauXVvTKQghhBBCCCH+42QAKoQQQgghhBCVJc+AVohMwRVCCCGE\nEEIIUS1kACqEEEIIIYQQolrIFFwhhBBCCCGEqCSdTqbgVoTcARVCCCGEEEIIUS1kACqEEEIIIYQQ\nolrIFFwhhBBCCCGEqCyt3NurCKklIYQQQgghhBDVQgagQgghhBBCCCGqhUzBFUIIIYQQQohK0mnl\nLbgVodDpdLqaTkIIIYQQQgghHmQZ091qOoU7slx4vaZTkDug4t4lJNys6RRwcrJmd8e+NZrD48Fb\najyH2pJHbcihMI8CNtZoDioC2dnh5RrNAaDHoc01vk8eD97CjoB+NZrDE4c3AfBru4E1msfTR76t\nFfsDqPH2WVva5qFHn6nRHAA6/PNLrdgfNd0/QN9HakNd/Nu5T43mAPDI/q383n5AjebQM+S7WtMu\nRNXTarXMmTOHc+fOYWJiwoIFC2jQoEGJuFmzZmFra8vEiRPvqRx5BlQIIYQQQgghKkmnU9T6f+XZ\ntWsXubm5bNq0iQkTJrB48eISMd9//z3nz5+vVD3JAFQIIYQQQggh/p87evQoXbp0AaBVq1aEh4cb\nfX/s2DFCQ0Pp169ys5pkACqEEEIIIYQQ/8+lp6djZWVl+FmlUpGfnw9AfHw8H330EbNnz650OfIM\nqBBCCCGEEEL8P2dlZUVGRobhZ61Wi1qtHy7+8ccfpKSkMHToUBISEsjOzqZx48b06XP3z0vLAFQI\nIYQQQgghKkv7YE8ubdOmDX///Te9evXixIkTeHl5Gb4LCgoiKCgIgK1bt3Lp0qV7GnyCDECFEEII\nIYQQ4v+9Hj16sH//fvr3749Op2PhwoVs376dzMzMSj/3WZwMQIUQQgghhBDi/zmlUsm8efOMPmvS\npEmJuHu981lIBqBCCCGEEEIIUUk6bfl/5kToPdgTlYUQQgghhBBCPDBkACqEEEIIIYQQolrIFFzx\nn1Lvpadw7/ME6HRkRcdxZtGn5KWk3dU6zOu54j35TUzsbFBq1MRs383Vb38BwOGhNjQZMRClRkN6\nRCRppy4A0GHjinLL8xwdhEu3TuSlpQOQeTWG8Jkr72kb7QP88Xx7EIeDJhVtd9+nAAj4ZhkZV6I4\nt/xL8m+V1XzWSDIuXuXqt9vvqbzSynTt2ZX6A541fK+2ssDU2f6e11/o9vo98+4nFGRmVXq9d0un\n0zFj2jY8mzox5PWH7nLpuihpBYD/wnGcevdTCjJKboNj59Z4Dh+I0kS/rYY4pQLvsYNx6NAShUpF\n5MbtRP20EwALD1d8Zg5HY2tNQWY24XNXkxkZQ8Og53Ht0dmwblNnBzQ2lmReiwVAZWGOeV1nWq2a\nwb5nhgLl1LVSideYwdjfKv/qt9uIvlW+uYcrPjNGoLG1Jj8zm9PzPiQzMgYAv0UTsPJsSEFWNgAp\nR8O58P46VJYWADz80weYOtYBhYLUsAscn7i0zHppOmIAShMNNyOucmpB8XoJwrGjPq8rG7cTtXUX\nAJaN3PGZNhSVhRnodFz46DuSgkMBqNe7O/X79TSsX2NrTV7qTQCcO7fC++3+KE3U3LxwjZPzPye/\nlJzKilNbmuM/eyhWDeuCQkHUr3u5tE7fzzQ2lrSY9CpWjd0xsbMGHRTk5Bj2x+3turr2h8NDbQxl\ndtuzgX97vlnl7bM4j349qff84xwcOBGAgA3LUWo0ZFy6iqmLI/G7Dhgdq+6lXgqZuTkT8PUSjo+Z\nz82zl2gw6AVcivUTjZ1Nie2269gOjzcHo9BoyLx0hctL3y+xr8qKaTp3GqbuboY4U1cXboaGc37G\nfOw6BdBk2jhy4hMM358eNQX7Lp1wffkFADquX2o4lu59dji5yalG5Vo18cB7whDUVhag1XJ68efc\nPHu5xDaUR2Nnje87b2Pm5qRfx6LPSQ07b/i+2y8fkJuqP3dkRF4n+te9VdJHrBq502rBSMPyCpUS\nG8/6HJ1U8rzo+lQXGr7yrL4PZedwbsVXpJ29dN+222v0IJwf72Q4Z2bc1mYB7Du1pdGwQJQmGjIi\nIjm36KMS7aKsGKWJCZ4T3sS6uScKpYK0UxeIWLEGbW4udm18afz2qyhUSvLTbhLx/ldkRFwpd1uc\nOrfGa2RhXV8lfEHp+6SsOKWphhaTh2Dr0xiUSlLDIzi1dC3anDzs2/rQbOwrKFQq8lJvcua9b0rN\noaqOnXfTLmornU6m4FaE3AEV/xnW3o2pH/gsR96cyaHACWReu06Tof3vej0+s0YSv2s/h4MmEfLG\nDNxf6EGdtr5o7GzwmTmCsGnLCe43hoLsbBq93hfgjuXZ+XkTPmslh4MmcTho0j0NPpWmJjR+qz++\n745HoSrqunXatKDBIP0vMIeDJpF04DjNp76FRUN3Wq9+B5fHO911WXcqM/b3PYZtCXltKrlJNzi/\n/Mt7LgcoUb9ZMXF4jgys1DrvxcWLCQwZvJ4/fj91D0uboqQTWvYCkBkdT9MRA0tEaeysaTFzBCen\nreDAy2ON4ur17oGFhysHB07g0GvTqN+/FzY++hcA+M4dTdSPOzjYfzwX12ym5eIJAFz55meCB00m\neNBkQqeuQGNtwemFn3Hg5bEAtFo5ndYfzERlYX6r/LLr2r13d8w9XDkUOJ6QIVPx6Pc0Nj6eALSY\nM4aorTsIHjCOy19swm/RRMM22fp6cXT4bEO7uPD+ulufNwVAbW7GwYGT2P3wK6SeuoDXyNLrxXfW\ncEKnvsf+vuPIio4zxHn07oGFhxsHBkwk+NXpNChWL80nv0709r8JfmUKp+Z/iv/CsShUSszrOuE5\nvB8hb71jKMPrrRcBMLGzxv+dtzg6eRX/vjiRzOg4mr1dsv+WF+c1vC/Zccns6TeF/UGzaPBid+z8\n9Nvbcs4wsuOTODxyESpTE9RW5hwavhCgRLuurv2hsbPBZ9YIQ4xCqayW9mnIyd+bRoOeN5QBGLbZ\nvK4LVo3r35d6AVCaaGgxdxQKTdF19sj1/zPUx7ER76DNzjYqT21rQ+MpYzk/exEng4aRExOLx9BX\nKxxz4Z1FhL8xmvA3RnN52YcUpGdwZdUnAFj7Nuf6pq2G78PfGI02K4vEHX8R/sZoAA69Oo2cpBuc\nXb62xOBTaWpCmw9mErlhG4eCpnBp7Y/4zR1dYt/dSbNJb5By4iwH+48n7J0P8V84HqWpieH749M/\nZF/gdPYFTufU0q+rrI+kX442lLMvcDqJwWFE/7Gf2L9DjNZtUd8Nr1GvcGzMQoIHTebyV1vxXzKx\nRA6V2W5bf2/CZq4yHEPDZq4yWlZjZ4P3jLc5PWMZIQNGkRUTR6PhgyocU3/wiyhUKo4OHs+RoPGo\nTE2oH9QHlaUFPu9O5tJH6zg6eDznl32Oz/wJRm22tLr2m/0Wx6esZO9LE8iKjsfr7QF3Fdfktd4o\nVEr2DZzKvgGTUZqa0OTV51FbmtNm6TjOfbCR/QOncGrxWlotGlPqumu6XYgHnwxAHwChoaEMGqQ/\nkJ0+fZouXbowaNAgBg0axG+//XbP601ISGDOnDn3Kcuad/PcJQ6+NJqCjEyUJhpMnewNdzoUajVN\nxwym/bolBKxfRvNZIw2/jN8uZttuYv/cB0BBRiaZUbGYuTpi38GftDMXybp1V+nyF1tApwMoUV5x\nCo0aK6+G1A98joD1y/BbNAFTF8e7zsu+Q0tUZqacefdjo8+tmzUmOSTM8HP8P4dwfLgtHn17cv2X\nv4nbfdA4n/tQZnENgp4nNyWV6P/tKjOmIm6v3+itO3B9skul1nkvvtt4hN59WvFUzxZ3vawCNyAJ\n0LeDqK07cH2q5DY4dGhJ6pmLhjuUxeOcHwkgevs/6Aq05N/MIHbnAdye6oqpUx0sG9YlducBAJIO\nnkBlZoq1dyOjdfvMeIvsuCRitv9t+MzGx5OwaSsMP5dX106PdOD6L38byo/btR/Xp7pg6mSPZcO6\nxO3cX1S+ub58MzdnVBbmNJsylIANy2k+cwRqGysAbP289XWjUuG/cCz1XuzBtR934vrUw6XXy+mi\neike5/xoe2J+ua1eena5tW4lGmt9eWpLc7Q5ufoVKpUo1Gqj9q3NzQPAsaM/qacvGcqK/GEXdXsW\n3R0rVF7c6eXfcOb9jQCYOtqhNFGTn56JxsYSxwA/zn++FceO/twIj2B/0EzDnaXb23V17Q/7Dv5k\nXr1eVBf5BdXWPk3sbWk+6XXOf7jBUAZA1rVYXJ/qSnZsgtFFrnutl0LeE9/g+q//kJda+gwYz9FB\nJB08YfSZbfs2pJ+9QE60/g5Y3LbfcOj+6F3HKNRqmkwbR+TqNeQmJAJg1aIZNm1a4vvZKpp/sARr\n/5LHl4aFx9KfSh5LHTq0JDM6jsQDxwFI2HOEkzNW3ipPhdfYwXRYt5iOG5bSYtYIVJYlj+kKlRKn\nh9sQ/bN+/ekXIsm8dh3HTq0Mg57GrzxNl28X0WbpWNyefKjK+khxdVp54/p4AOGL1pZYtzYvn9ML\nPyU36QYAqWcuYupgh0Ktum/bbe3VkAaBz9Jxw1L8F0/AzMXBOL+AVtw8E0FWlL7vxPz0By5PdKlw\nTGroaa6uu/X7glZL+vnLmLo6Ye7hRkFGJjeO6s/fWVejyc/IwsbXu8Q2lFXXV3/cSd2n7rxPisel\nHD9DxNqfbuWjI+3cFcxcnbCo70ZeehZJIfqLrxmRMaXe1azKY6dRnZbTLsSDTwagtdyaNWuYOXMm\nObembp06dYrXXnuN9evXs379enr16nXP63ZycvpPDUABdAUFOHZtT+dtn2LXyoeYX/W/hDcMegFd\ngZaQwVM4PGgSuQnJZd5du/7rP4ZfYO07tsLWz5uk4BOYOTuSHZdoiMuJT9JPhYIS5RVn6mhPytFw\nLn78LYcHTSI1/AItl06+67wS94Rw4f11hmm8hdJOR2Df1tfwc91nHkNpouHy2h+I/WNPifXcjzIL\naWytqT/gWc6v/LrU7+9GWfVb1uC4qsyc3ZPnXvC/x6Ut0FF0Es2JT0JjZVHilyIzFwdy4pJKjTNz\ncSAn3vg7U2d7zFwcyUlIMVz0AMhOSMas2NRny0b1sPHxJPlIuFF5So2avJsZReWXU9dmzg5kx91e\nvgOmzg4lys+JT8bU2QETexuSQ8I4u/gzDgdNpiArG58ZwwF9nwSI3X2Q4+OX0GBAL6ybNSyzXrLj\ny66X4nllxydj5qz/RfHM0rU0evV5um7/mLarZ3JmyZfoCrRkRcVxZcN2Ht5SNOMg4qufATB3sSfr\ntvVprCxQ35bTneJ0BVpazRtB101LSDp6hvTIGCw8XMlJvEHjV3rhPfJlbH2aYNOskeG4cnu7rq79\nYebsSPrFq0Ubp9NVT/tUKvCdN5rzH64nJyHZUAaAZZP6ePTrxal5q1Fq1ChNNJWqF4C6z3VDoVYR\n8/NuSmPZqB5OXdtz8fNNRp+bODsaBowAuQmJqK0sjfZVRWKcevUgNymZlH1FF//y024S99OvhL81\nlmtr1tF0/gxMnIwHOg0GPsO5974uNWeL+m7kJt3AZ8YwOny9iDYfzkShUgHQaPAL6AoKODR4KsGv\nTCYnMaX0O9u21qBQkHej6EJpYZsxdawDwNmPNrF34DRuhEXg+epzVdZHims+NpDzH28udbCTfT2B\nxP3HDT97jxlMwt4j6PIL7tt2pxwNJ+Ljbwl+ZTKp4edpuWyy0fKmzg7kxBdrhwlJJfZ5eTEph0PJ\nuqYfmJq6OOHe7xkS/jpA1tUYVOZm1AnQX4yxbuaJZSMPTBzqlNiGQqUdB0vbJ+XFJR4KI/OqflBo\n5upIwwE9id0dTObV66gtzHDs4AeArU9jrBvXK5FDVR47iyuvXdRqWmXt/1cLyDOgtVz9+vX58MMP\nmTxZf0AMDw/n8uXL7N69mwYNGjB9+nSsrKxKXfbDDz8kMjKSlJQUbty4QWBgIDt27ODy5cssWbIE\nR0dHxo8fz+bNm3n22WcJCAjg3LlzKBQKPv74Y6ytratzU++bxD0h7N0TQt3nH6f1qpkceGkUDp3b\norG2wD5AP7BQatTkpqSWux7XXo/QdHQQYdNX6K++Ksue17/3qdeNyjP6Jex6PKHjFxl+vrpxG42G\nvIiZm/M95XW7GyfOcOnLLfjMGE77rxYT88tf5KXeRJuXX2r8/SizUN0XupOw9wjZ1+PvaXkjZdSv\nTqut/LqrTRnbUHDbNihKPwHoCrSl14NWC4o710/9/r1IDb+ALr+g3Ljy6lpRyne6gtI/L/wu7VQE\nYVOXGT67tGYzXX5bg0Kt5spXP9LkLf20q5yEFKK27sblkfb6wNvqpawyKKNedFotShMN/u+OJXze\nJyTuO4atb1Nar5hM6umLWDVyx+WxAPY8O4JH/1wDQMt3hnFk/HJQlrMPiqtA3InZH6Na9CVtl46j\n6Rt9SDwUhkU9Z/LTs7i69S+sm3jgM/4VMm790leYe1EZ1bM/ynpurqrbZ9MRA7lx/AzJh8Oo08bH\nqIwW74zi1Oz30Wbn3IovOnbeS71YezfCvfcTHB02u9RlATz6PU3UD39QkGF8x0VRgT5WkRjXvi9w\necVqo+8vzF5o+H962GnST53Fpm1rEv8outuZsOcI2dcTKI1SrcLxodYcGTGXtFMROHVtR+uV09j7\n/AgcO7dFbW2Bw61jukKjLjGFF/RTrsvKvbDcjEj9QOnS+l/wGvYS6lIuAN6PPnLh8x8BqOPfFBM7\na6L/OFDqOgxFmJniO3sEpi4OHB+jr8v7td3Hxy02fBa5YTuNh7xY4eXvJsbKuzEtFk4h5sffST5w\nFIDwqYtpNHQgjUcMJjX0NDeOhqHLL/3crS+ooueYO8fZNGtEm2Xjidz8Jwn79IP8oxOW4zWiH96j\nA0k+fpakkFM4d2ljvJIqPHbebbsQDy4ZgNZyTz75JFFRUYaf/f396du3L76+vnzyySd89NFHTJky\npczlzczM+PLLL/n888/5999/+fTTT/nxxx/59ddfGTx4sCEuIyODp59+mlmzZjFhwgT27NnD008/\nXaXbdr8EfKP/RSvjchRRW/8kNfQsADHb/6bZ5KGorS1RqJScX/mVYcqVytwMpYkG62aNaT59uGFd\nhS/Z8RwdhPNjHTk+aj7pF64AkBOXiFuvRwzlZccmkJ+eabgLWry8/GJ3DK0862Pl2fC2u5EKdPn5\nd51XaVQWZtw4flq/VpWKen2eRGlqYpRDcfejzEIu3R/i/Htf3TGuInLiErFt0dTws35Kc7rhF9Pa\nSoE/Ctxv/aQBblD4K3RZ25Adl4itb9HzasXjsmMTMXGwM/ouOz6Z7DjjzwHMbn0HgFKB82MduLT2\nR+zbGk/vy0tNL5qWSvl1nR2XaLgbUvhdTnxSibyKf2fXshlqGysS9x7R14lCgUKhoP3aRYZn/UwL\nl1WAQq0hLzWdgtvrJTYR2xYl66UgO4fs2CRMHY3rJSc+CasmHqjMTEjcdwyA1PALpF+6hp2vJ3Xa\n+JCw5yi5xV4M5vxwKx7euBCNpQVpxe4GmjnZk1tGTna+TUqNc+zoz82Iq+Qk3qAgK4eYPw/g2i2A\nqF/0fT3qlz24dG2DnW8TUk6cx65Fk6L9Uaycqtwfjd/sh9OjASiUKuo+85jxHVBFyVzg/rdPt55d\nyU1JxfnRAFTmZpg62VOvd3cA1NYWtJg3BoVahU6ro95LT6EyNeHSmk33VC+uPR9BbWlOuzXv6j93\ntKfF3DFErF6vb59KJc6PdeDwqyXPmznxCVg1L5r+aOLoQH7aTeN9dYcYC8/GKFQqbp4oeixCZWWJ\ny/O9iNm4BQD31wKxbtkCiyYNMXVzIfor/VTEmF9KzqAxlJuYQsaVaNJORQD6warP9GFYuLugUCk5\n997XxY7ppihNTLBp1hifGcMM6zj06tRbdW5J/q0ZEabOdfT9yFP//K3XWy/h3FU/4FBq1PoXaBXb\nn/erjxRy69GJ6F/3Gl20Bf0LmQAS9h4h+ufdtFoxhYwr0RwdMRdtjn4a/f3abuumDbj++95ipRsP\n3rJjE7D2KdYOHR3Iu61d3CnG6fHONJ04lIj3viB+562yFAoKsrIJHVV0saTdxg/Iiiq6UAXQ9K2X\ncO7aVr8NlubcjLhWVE5Z+yQuCbvb+nDxOLcenfCZMoTTy77i+p8HjPI5PGy+Ybkum5cDxu2iKo+d\nhcpqF+K/o3bchxUV1qNHD3x9fQ3/P336dLnxPj76q83W1tZ4euoPRra2toYpvaXFurm5lfp9bVX4\nUonorX/iO3+sfroN4Prkw6Rfukp+WjrJwSeo91JPFGo1KBQ0m/YWTUYM5ObZS4blCwdcXuNfo06r\n5oS8NtUw+ARIOhSKxtqSsBkrOBw0ifyMLKNnloqXV5xOq8Nr/GuYuTkD4P7iE6RfjCQnIfmu8iqL\nqaM9bT6eY6iLlGOnjZ7/u939KBP0J3OLeq6knjx3x9iKSDoUiq1vU8w9XAFw7/0ECXtr/4sHdJxE\ny++3/v0JOAL6NlivTw/iS9mGwm21uLWtxeMS9hzB/dluKFRK1FYWuPR4iIR/D5MTn0xWdBwuPfRv\n5XXo0BKdVkt6hP4XAasm9clPyyD2z31G6wZK1GN5dZ2wJwS3Zx8rVn5nEvaEkJNwq/zu+vLtC8u/\neBWVhRle44cYnvus/8pzxO06wOGgSYb2YevbFOvmjXB/rhugI37PkVLq5WTJerkVF7/nCO7F8nLt\n8RDx/4SQeS0WtZUFtn5eAJi7u2DZ0J20c1dIO3cZx4dbozI3LSoj5DT7Aqez/7XZ1ClWVv0XHyfu\n36MlckoIDiszrm6PDjQdqr9botSocevRkaQjp8iKSSD1zGXqPdNFv7y/F/atvUk9c6na98elNZtI\nPHCMuJ37CHljuuGlUABKtbpa2ueep98i+BX9C15OL/yUrOhYDr02DYDjo+dzOGgSiXuPkBUdy7Xv\nf+HSmk33XC8XVn3NwZfHGI5jOYnJnHrnfcPFEasm9clLyyj1TmNqyHGsfLwxda8LgMtzvUjZH3xX\nMTatfEk7Hmq0TEFmFi4vPEOdrvq6Sdl7EF1uHuFDxxL91UZUVpYA3Dh5nrIkHjiOuZsz1s30z9Ta\ntWquf9t7TDxJwaF49H0KhVoFCgU+04fhOWIgaWcvGV6sEzxoMroCLYkHjhsG/1ae9bFsVI+Uo6cM\nd56vbf+XfYHTufbTX9w4cwkbrwZV0kcK2bdpRuLhki98K8w58vtfaffpXOL/PkzYzPcNg0/gvm23\n9/jX9G/HBeq9+ATpEZFGuaQcDsWmhRfm9fRvOK7b+wmSbus35cU4PtoJz3FvcHLcvKLBJ4BOh9/y\nGVg10w/SHB/rhC4/v8RbcC989gP7A6exP3AaB1+bjZ1RXXcv9ViaGHyyzDjXbgE0nziYkFGLigaf\nt/Jpt2oKNs0b6+Me74D21mya85/9YHgxUFUeOwuV1S4eBDqtotb/qw3kDugD5vXXX2fWrFn4+/tz\n8OBBWrQo/0UpZU0XqmxsbXQj9CxXvt5Km4/noCvQkpOYzMnJ+ruVl7/6kaajBhHwzVIUSiXpF65w\n4f2Srxc3dXag3ktPkR2bSOsPZhk+v7bpV67/+g+n53+M38IJKDVqsqLiuLhmM16jgwj4ZplReYV3\nEw8HTSLj0jXOv7eWlsunoFApyY5PJnzW+3eVV3kyr8YQ+c3/8J74Oh03vU9q6FnOrSj7jbT3o0zQ\n/7manMQbhmf8KisvJa1E/Z6at/rOC9YqOWgJRon+5RNWTeoTPle/DYVX5YMHTb61rZ/gv2g8CrWa\nrOg4Q1zU1h2Y13Oh44ZlKDVqon7aRcrxMwCEzVxF82lv0fi1Pmhz8zg5faXhCrGFhxtZ1+NLrBvg\nwgffYOfvjcpM/9bH8uo6eusOzN1dCVi/HKVGTfRPOw132MNnraT5tGE0fO1FtLl5hM94D3Q6kg6e\nIGrLb7T7fD4olGRcvMqZRZ8CcG75l7h0fwhtbh4Ba+aTfzMDtYUZYUv1bdSmeXW8N7oAACAASURB\nVGN8ZrxF8CtTyE1J49T8T2i5uLBeYgmb85G+Xn7cgYW7C502LkWhNq6XE5NX0GzCqyhNNOjyCzi9\neA1Z0XFkRcdh7uZEx2+KptiFztXnlZuSRui8z2i7ZAxKjZqMqDhC39G/sdS2eSP8Zr7JvsDp5cad\nXrkRv+mv03XTEnQ6HXH/HOXyd38AcGTie/hOeY36fbrr7z4rFLSaO9ywP4ofI6prf+TfzOD0/I9p\ntXK6vjKUCs7f6vtV3T5vV/jnqopvc+qZi5g6OxDwzbJK1Ut5LDxcyY4t/ZGB/BupXFzyPk3nTkOp\nUZMdc52LC9/D0tuTRpP0b64tK6aQmXtdcm5fv1bL+ZnzaTB6GPVeC0RXUEDE3CXk33pBktmtwezt\nx9Li+yQ3OZUTk5fRfNIbqMxN0eblEzp1OdrcPC6t/QGv0UF0XK8/pt+8cIXzH5R+TD+79At8pg+j\n07dd0OkgfM5q8jOyyL+kv6vWfuVEFEolWfHJHJv8PtaeHlXWRwAs67uSVca0YwCPPk9g5uKI86MB\nOD9adIfs6Mh59227z674itYrpoBSSU58MmGz3qfLtk8My+bdSOXcwtX4LJiEQqMmOzqWs/M/wKpZ\nE7ynjuDoqxPKjAFoNEz/jgXvqUVvoE49eZaI99ZwZs5KvKYM1z8Kk5jCqWlLyqwL0B+3wuZ9SuvF\nY1Fq1GRGxXFyjv4lgTbNG+M38032B04rN85rZH8UCgV+M980rDcl9Dynl35F6KzV+M14E4VGTU5i\nCscmreDR/71fIoeqPHbCnduFePApdDq5v13bRUVFGZ7VPHXqFPPnz0ej0eDo6Mj8+fPLfQbU0dGR\nAQMG8N1335GYmMioUaPYtWsXe/bsYejQoYb1duvWjd9//x1TU1OWL19O48aN6dOnT7l5JSSUfONr\ndXNysmZ3x741msPjwVtqPIfakkdtyKEwjwI21mgOKgLZ2eHlGs0BoMehzTW+Tx4P3sKOgH41msMT\nh/V31X5tV/IlJdXp6SPf1or9AdR4+6wtbfPQo8/UaA4AHf75pVbsj5ruH6DvI7WhLv7tXP7vQNXh\nkf1b+b19yT+zUp16hnxXa9rFgyB1bKM7B9Uw21V39/eDq4LcAX0A1KtXj82bNwPQokULvv/++wot\nN2rUKMP/BwwoOoB1796d7t31U1EK1/vXX38Zvp848e7/xpYQQgghhBD/n+l0D/ZswuoiA9D/gLff\nfpvUVOM3v1lZWfHJJ5+UsYQQQgghhBBCVD8ZgP4HrF79oD0nJ4QQQgghhPj/SN6CK4QQQgghhBCi\nWsgdUCGEEEIIIYSoLK3c26sIqSUhhBBCCCGEENVCBqBCCCGEEEIIIaqFTMEVQgghhBBCiErSaeXP\nsFSE3AEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU6m4FaE3AEVQgghhBBCCFEt\nFDqdTlfTSQghhBBCCCHEgyx5hFdNp3BH9h+fr+kUZAquuHcJCTdrOgWcnKzJDn+sRnMw8/2bX9oG\n1mgOAM8c3cjujn1rNIfHg7ewv8vzNZoDQOe9P7Ozw8s1mkOPQ5spYGON5gCgIrDG81ARyB8B/Ws0\nh6cOfw/A1tZBNZpHn+Pf1Ir9AdSKPGpDP63ptgn69lkb9se2WnAue+7oxlpRFzV9PgX9ObU29JGa\nPm6C/tj5IJC34FaMTMEVQgghhBBCCFEtZAAqhBBCCCGEEKJayBRcIYQQQgghhKgknU7u7VWE1JIQ\nQgghhBBCiGohA1AhhBBCCCGEENVCBqBCCCGEEEIIIaqFPAMqhBBCCCGEEJUlf4alQuQOqBBCCCGE\nEEKIaiEDUCGEEEIIIYQQ1UKm4AohhBBCCCFEJel0MgW3IuQOqBBCCCGEEEKIaiF3QMV/1p6j2Xyw\nIY3cfB1eDTTMGWGHlUXRNZft/2Syfnu64eebmTrikwrY8bkLapWCBZ/f4NyVPMxNlTzfzZyBvawq\nXLbzw61o9nY/lBo1aRHXODlvDfkZWfcU13bZWHISUghfuk6/TJfWtJo7jKzYJEPMgTfmARCwYTlK\njYb0iEjOvPsJBZnG63J4qA1NRgwsGaNU4jVmMPYdWqJQqbj67Taif9pptKzbM4/h9GgAJycuMXzm\nt2gCVp4NKcjKvmOd1OnUlgZvBaHUaMi4eIWIxR+WyK+8mIDt35CTULTNMd/9j4Sd/5a6PID/wnGc\nevdTCkqpd8fOrfEcPhClib4eDHFKBd5jB+Nwqx4iN24n6lY9WHi44jNzOBpbawoyswmfu5rMyBga\nBj2Pa4/OhnVr7GxQW5rdVqIdSrqhZesd66mQTqdjxrRteDZ1YsjrD1V4ufutqvJw6twarxH9UZpo\nuBlxlbAFn5W6r+4UZ+bsQMe189kfOIW81JsAaGwsaT7xNawauaM0NeHSV/8rNQfXh1vSYlRflCYa\nUi9c49jcL8jPKNmWy4rrsOxtLD1cDHGWdZ1IPHaWg2NX4diuOX7j+qNQq9Bm5xK6dAMppy5Vttr+\nc+2izL5Y0bhy+mwhMzcnOq5bwrHRC0g7q98H7r27U79fLwBaL5tI+ILPDO2nqtqmZSN3Ws4fZfhe\noVRi7Vmf45NX3HP9FaqqduH8cCt8ip2jTpRzLrtTXPtlY8lOSCHs1rnMoZ0PLcYNRKlSkZuaTvjy\n9aRduFrpnO9XXZR5vqxITDnnVOvmTfAa9yoqMzMUSiWRG/5H7B97aTDoBVxuO5dA1fYRm+ZN8B43\nGJW5GSiVXFn/M7F/7AWM+0jHlWM5NvcLcm/of2d6EI+donaRO6C1xNatW1m+fLnRZ+PGjSM3N7fM\nZTp37lzmd7fr1q0bOTk5Rp/t2bOHTZs2lYh9+eWXiYqKqvC6a6Pk1AJmr77Bikn2bPvQBXcXNe9v\nSDOKefZRCzavcGbzCmc2LnHC0U7J1DdscbBTsezrVCzMlPy0ypkNixzZfyyHf4/ceZAFYGJnTct3\nhnJ00ir+eXESmVHxNBvV757imgQ9g31rb6PP7Ft6cWn9r+wdON3wT2WiASBs2nKC+40hKyYOz5GB\nRstp7GzwmTmi1Bj33t0x93DlUOB4QoZMxaPf09j4eAKgtrHCe/KbeE8YggLjqSW2vl4cHT6bw0GT\nOBw0qcw6UdvZ4DltNGdnLuZY4AiyY2JpMCyowjHmHu7k30wndMg4w7/bB5/FlwfIjI6n6YiBJXLR\n2FnTYuYITk5bwYGXxxrF1evdAwsPVw4OnMCh16ZRv38vbHyaAOA7dzRRP+7gYP/xXFyzmZaLJwBw\n5ZufCR40meBBkzkyfA4F2dmcnLHqVmkKFDRDSTfu5nrfxYsJDBm8nj9+P1XhZapCVeWhsbPGd9Yw\njk9dyd6+48mMjsd75IC7jqvbqwsdPp+DmbO90XJ+s4eTHZ/MgUHTCHn7XZpPGFxi3SZ1rGkz902C\nJ33Izt5TyIiKx3d0Kf20nLhDk1bzV/9Z/NV/FsfnrSUvPZMTi75BoVYRsGQkx+at5a9+Mzn7xTba\nLXirstX2n2wXZfXF4u61zwIoTTT4zR2FQlPU/8zcnPAc1p8jQ2cDkHU9Ac+hLxnKqqq2mXE5mgOv\nTDX8Szx0kpg/9xP3T0il6rCq2oWJnTWt3xlKyKRV/PXiJDKi4mlexrnsTnGet53L1FbmtF82ltOr\nvuOf/tM4uWgt7RaPQqmp3H2R+1kXZZ0vC93rOdV/0UQurdnM4aBJnBj3Lk1HD8bcw5XI9f8znEuP\njXgHbbb+d46q7CP+iydwcc0WggdN5vi4hXiPCcLCw7VEH8mMSaD5sD7Ag3nsrE46raLW/6sNZABa\ni61cuRITE5MqW3/Xrl3p16/kQeO/4GBoDr6eGhrU1Z/MXn7Sgt/2ZqHT6UqN/+p/6djbquj7hCUA\npy/m8cwj5qhUCjQaBV3amrHrYMkrjqVx6uTHjdOXyLgWB0DkD7tw71nyYsGd4hza+eD0kD+RP+42\nWq6Of1Mc2rfg4Q0L6PTFLOxbN8Opkx8AWddiAYjeugPXJ7sYLWffwZ+0MxdLjXF6pAPXf/kbXYGW\n/JsZxO3aj+tT+u9cHu9EblIKFz5cb7Q+MzdnVBbmNJsylIANy2k+c0SZdVKnfWvSz0aQHXUdgNj/\n/YFTj0cqHGPt1wxdgRbf9xfQ6uv38Xi1HyiV5S4ftXWHYRuKc+jQktQzF8m8VQ/F45wfCSB6+z+G\neojdeQC3p7pi6lQHy4Z1id15AICkgydQmZli7d3IaN1eoweRdPAESQdPFNY6YIeWvWXWTWm+23iE\n3n1a8VTPFne13P1WVXk4dvAn9XTRPrj2407cnnr4ruJMHevg/Eh7joxbbLSMxsYShwB/Itb8AEBO\nfDIHh8wqsW6Xjr7cOHWJjKv6/nd5y1949Ox0T3EKtYq284dyctlGsuKS0eUX8PuTY0g9FwmAZT0n\nclPTS6z7bv0X20VZfbG4e+mzhZpNep2YX/8l70bRBUiFSolCrUZlaQ6AyswEbW4eULVts7g6rZrh\n2q0DpxZ/UcGaKltVtYvbz1FXfthFvQqcy26PKzyXXSl2LrP0cCU/PZPEEP1AMf3KdfIysqjj37RS\nOd/PuijrfFnoXs6pShMNl77cQkpIGAA5Ccnkpd7EzMnBaN2eo4MM55Gq6iNKEw2XvthCcmEu8cnk\npt7E1NmhlD5iaugjD+KxU9Q+MgW3FgkNDWXIkCEkJyczYMAAPvvsM37//XdiY2OZOnUqarUad3d3\noqOjWb9+Pbm5uUyYMIGYmBjs7Oz44IMP0Gg0Za5/9uzZREdH4+DgwJIlS/jtt9+4dOkSEydOZOXK\nlezduxdXV1dSUlKqcaurRmxiAS6OKsPPLg4q0jN1ZGTpsLIwvvqTklbAN9vS+X6Zk+Ezv6Ym/PJv\nFq2amZCXp2NXcBZqVcWuGpm5OJAdm2z4OTs+GY2VBWpLc6MpSeXFqcxNaTFxEIfeXkKDPt2M1p+b\nmk70b/uI/fsIdVp50X7FeCK3/m0UkxOfhNrKApWFuWHKkJmzI9lxiaXGmDk7kB2XZPSdlWcDAMO0\nIbenHzUqw8TehuSQMM4tW0NuShpe414ts05MnB3JLV52QiJqK0uj/MqLUaiU3DgSypWPv0JpaorP\n0lnkZ2Ryfcv2ssuIT0JjZYHK0tx4WpyLAzm3bWthnJmLAznxt9dDfcxcHMlJSIFiFzCyE5Ixc7bn\n5rnLAFg2qofTI+3Z36doih0koSMJsCyzbkozc3ZPAIKDL9/VcvdbVeVh5uJAdrF6zi5nX5UVl5OY\nwokp75VYt0U9V3KSUmgY+DROnVqhNFFzecMvJeLMXR3IjCvqf1nxyWisLVBbmhlNJatIXMPej5Cd\ncIOYv48a4nT5BZja29Dtu3mY2FlzeMpHd1tNJfwX20VZfbGyfRbA/bluKNQqon/eTaNXextisqLi\niNywjc6b9TMV7Nv4EPz6LENZVdU2i/Me/QrnP9lU6lTKu1VV7cLcxYGsCpzLyotTmZviN3EQB99e\nQsNi57KMq7GoLMxw6uhHQnAYdj6NsW5SDzNHu0rlfD/roqzzZWXOqdrcPK5v/8vwed3nu6MyNyP1\n1AXDZ5aN6uHUtT0HXhyFR79eVdZHtLl5xGwv+t3B/YXH9bmEn0ebk2fURxzbNuPfwfpHfR7EY6eo\nfeQOaC2iVqv58ssvWb16NevWrTN8vnTpUoYNG8b69etp06aN4fPMzEzGjRvHd999R3p6OmfOnCl3\n/QMGDGDDhg24u7uzefNmw+dhYWGEhITwww8/sHTpUjIyMu7/xlWzMm503n7TDIAfd2byWHsz6rkU\nXY+Z8KoNCgX0m5jAuKXJdGppSkVnBikUpQ9UdQXaCsWhgDaLRnFqxXpyEm+U+PropFXE/n0EgJQT\n50k5eQHLBq6ll6ktVqayjLy0WhSlfHd7vrdLOxVB2NRl5CbdAK2WS2v0bUqhLllRpa3/9vzKi4nb\nvpPL769Bl5dPQXoGMZt+xqFrx4qVcft2KEo/7OkKtKXXkVYLZe3TYvnX79+La1v+LPX5KGFMUVpH\nBLi9j1QwzmgZtQoLdxcK0rM49OY7hM74gGbjgkrGVbKfFo/zDHyKs2t+LhGTk5zG70+O5d/B82g7\n902s6pfeT4Wx+9Fnrb0bUa9PD84sXlPia/sO/jg/1oE9zw0HIP7fI/jNHn6rqKprm4Xs/LwwsbPm\n+p/77xhbk+7HuazdolGEl3Iuy8/IImT8ezR97Tke+W4h9Z5+mMSQ02jz8u9L7lXlfp5TGwx6gcZv\nvkzoxMVoc4oet/Lo9zRRP/xBQUZm2Xncj/NaMQ2DnqfJmy9zYuIStDl5JfrI9X+O0Xbum/qi5NhZ\nLp1OWev/1QZyB7QW8fHxQaFQ4OTkRHZ20VWkixcv0rp1awDatm3L9u36uz62trbUq1cPAEdHR7Ky\nyv7FV6PR0KpVKwDatGnD/v378fPTT9u8cuUKvr6+KJVKrKys8PLyqpLtq06ujirCLuQZfo5PKsDG\nSoGFWcmO9+f+LKa8bmv0WUamlnGDbLC11sev/ekm9d3K7i5ew17EpWtbANSW5tyMuGb4zszJntzU\ndAqyjZ/BzYpNws7Xs0ScVSN3LOo64TPuFQBMHWxRqJQoTTWcXvktDft2J+KrbUUrUijITTZ+vtXU\nyZ681HS0xcrMiUvEtkXTUmOy4xIxdaxj9F3xK6alsWvZDLWNFYl7j9xKQ3+y0WlL/gKWE5eAVfOi\ndmXq6EBe2s3b8is7xunJR8mIuEzmxUjDNuvyC6j/+kDqdG4PgNrSgozC78uoA9Bf1bYtVu9G9RCb\niImDndF32fHJZMcZfw76/ZUdf+vqrlKB82MdODR4arl19v+Z59C+OJfRR0zL7COJ2LbwvGNccTmJ\n+hkcUb/qnxHOjIrjRug5XB/XX7Do9v18ADSW5qRGFD3rbuZc59a6jZ+7z4xNoo5fkzLjbL0boFQp\nSTx61hCjtjLHub2P4ar+jbORpJ6/ik3TeuXW0f8HCvxR4G742cTRuL/drz7r1qsrKktzAr5YYPjc\nd95oLny4HvsOLUnYe4S8FP1xU2mixqlzax7asLhK22Yh1x6diP5tT9lXSmuQ97AXcS3WT9MqcS6z\nvnUua1HKuSx0wZfkZ2Zz4K13Dcs99sNSwzTe2uD2c+L9OqcqNGp8Zo3EslE9jrw5g+zrCUWFKpW4\nPtWFrOvxOHUNAKqujxTm4jt7JJaN3Dn8xkxDLk5d2hn3EY0a1y4t6fb9fDl2ivuidgyDBVD21SIv\nLy+OHz8O6Kfp3im+NHl5eYY7pEeOHKFp06KDpqenJydPnkSr1ZKZmUlERMS9pF+rdGplysnzuUTG\n6K+mbtmRyaPtb38zKaSla7kaW0BLb+NnbbfsyOSj7/UH3qQbBWzdlUnPLuZllnf+0x8NLwTa/+o7\n1PHzNLzhrcFLjxP379ESyyQEh5UadyMsgt1Pjzas7+qPu7m+I5iT878gPzOLhi/3wLWbftBl490A\nuxaNufz9HwCYe+ivErr3foKEvcYvtkg6FIqtb9NSYxL2hOD27GMoVErUVha49OhMwp7yX4yhsjDD\na/wQ1Db6twPXf+U5/RelDEBvHD6BdQtvzOq5AeD6wlMk7ztc4RiLRvWp//pAUCpRmpjg1qcXiX/t\n5eqX3xpeSnTyrclGy9fr04P4vSW3obAeLG7VQ/G4hD1HcH+2W7F6eIiEfw+TE59MVnQcLj30b1R0\n6NASnVZLeoT+jY1WTeqTn5Zh/IuEMBLx+RbDy1eCh8zCztfTsA/q9+lO/J4jJZZJOnSyQnHFZcUk\nkHrmEu5P658DNLG3xc6v6MJG4Ysv/gmai71fEyzr6/tf45e6cf2fYyXWF38wrNw4x7bNSAg5bbSM\nrkBLmzlvYN9Sf5y1buyOdUM3UsIull9J/w/oOImW39HyO0CZfbG4e+mz51eu40DfsYYXhOUkJBM+\n+wMS9h7l5rnLOHVug8rcFICs64kkHTlV5W2zkH2b5iSFhN9NtVWbc5/+yL8Dp/PvwOnsffUd7Iud\noxq+9DixpZzL4oPDSo1LCYtg59OjDeuL/HE3MTuCCZ3/Beh0dPhgErbN9c/Ru3UPQJdfcF/egnu/\nlHW+LHSv51S/hRNQW1pw5M2ZJc4ZVk3qk5OQwqEB4w0v9quqPgLQcuF4VJbmHH5jllEut/eRzNhE\nEkLOyLFT3DdyB/QBMHHiRKZPn87atWuxtrZGXcoUxzvRaDSsX7+eyMhI6taty4QJEwx3Ups3b07X\nrl156aWXcHZ2xsHB4Q5rq/0cbFXMG2nHxOXJ5OVDPVcV746qw6mIXOZ+coPNK5wBuBqbj1MdJRq1\n8WD+9T5WzHj/Bn3GxqPTwbCXrfH1rNgLoXJT0gid+xltl45BoVGTGRXPidmfAGDbvBH+s95k78Dp\n5caVSasjZPx7+E4ejNdbL6Ir0HJs2moyruhfvOO3cAJKjZqsqDhOzVuNdbPGNJ8+nMNBk8hLSeP0\n/I9LxID+5Qnm7q4ErF+OUqMm+qed3Dh+urxMSDp4gqgtv9Hu8/mgUJJxsexfHPJupBKx6AOazZ+C\nQq0mOyaWCwtWYeXtSZMpIwkdMq7MGIBrX31P43Fv0XrdByhUKhL/2U/c9p1llgH6E3n4XP322TRr\njM+MYQQPmnyrHj7Bf9F4FGo1WdFxhriorTswr+dCxw3LUGrURP20i5Tj+gs3YTNX0XzaWzR+rQ/a\n3DxOTl9puINh4eFG1vX48vedMMhNSSNs/qe0WjwOpVpNZnQcYXP0z/nYNG+M74yhHHhlarlx5Tk+\neQU+k4fg0ac7CoWSi1/+SItpbxrF5KTc5OicNXRYNgqlWk1GVDxHZn0GgJ1PI9rMHsJf/WeVGwdg\nVd+FjJhEo3UXZOUQPH4VLScF6v+UQG4+IdM/ISv+wX++/n4rqy/ejz5blpjtf2Pu5kSHdfo/KWXf\n1oewefpjb1W3TdD/SaesB+BiVW5KGsfnfka7pWNQavRt/3ixc1mrWW/y761zWVlx5Tk24yNazXwD\nhUZNTuINDk8o/7nZ6lba+bKy51Rbf2+curQjIzKGdp8vMJQV8dEGkg+FYuHhSnZs/G15VE0fsfX3\nxqmrPpeANfMN5V1YvbFEH3Fq25yjsz8H5Nh5J7XlLbO1nUJX1mtBRa2xbds2WrZsSYMGDdiyZQvH\njh1j0aJFNZ0WCQk3azoFnJysyQ5/rEZzMPP9m1/aBt45sIo9c3Qjuzv2rdEcHg/ewv4uz9doDgCd\n9/7Mzg4v12gOPQ5tpoCNNZoDgIrAGs9DRSB/BPSv0RyeOvw9AFtbl3wetDr1Of5NrdgfQK3Iozb0\n05pum6Bvn7Vhf2yrBeey545urBV1UdPnU9CfU2tDH6np4yboj50PgtjBLWs6hTtyXRd656AqJndA\nHwBubm6MGzcOc3NzlEolCxcuLDXu5MmTLFu2rMTnPXv2ZODAkn83SgghhBBCCCGqkwxAHwDt27dn\n69atd4zz9/dn/fr1d4wTQgghhBBCiJogA1AhhBBCCCGEqCSdTp4BrQh5C64QQgghhBBCiGohA1Ah\nhBBCCCGEENVCpuAKIYQQQgghRCXJFNyKkTugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQggh\nhBCVpNPKFNyKkDugQgghhBBCCCGqhQxAhRBCCCGEEEJUC5mCK4QQQgghhBCVpNPJvb2KUOh0Ol1N\nJyGEEEIIIYQQD7Koge1qOoU7qvftkZpOQe6AinuXkHCzplPAycmarNPdazQHc59d/NI2sEZzAHjm\n6Eb+6vRSjebQ7eAP7Hv4hRrNAeDhff9jd8e+NZrD48FbKGBjjeYAoCKwxvNQEciOgH41msMThzcB\nsKnlqzWaR7/Qr2vF/gBqRR47O7xcozn0OLS5xtsm6NtnbdgfP7QaXKM5ALx0Yl2tqIuaPoeA/jxS\nG/pITR83QX/sFP8dMgAVQgghhBBCiEqSt+BWjExUFkIIIYQQQghRLWQAKoQQQgghhBCiWsgUXCGE\nEEIIIYSoJJ1OpuBWhNwBFUIIIYQQQghRLWQAKoQQQgghhBCiWsgAVAghhBBCCCFEtZBnQIUQQggh\nhBCikuQZ0IqRO6BCCCGEEEIIIaqFDECFEEIIIYQQQlQLmYIr/rP2HMniww2p5ObpaNpAw5y37bGy\nKLrmsv3vDNZvu2n4OT1TS3xSAX9+URe1Ct79LIVzl/MwN1PwfDdLBjxtXeGynR9uRbO3+6HUqEmL\nuMbJeWvIz8i6p7i2y8aSk5BC+NJ1Rp97PPcIro+1I2TcihLrdXioDU2GB6LQqMm4eJUz735MQWZW\nxWKUSpqOHox9x1YoVEqufrudmJ92AGDXpgVNRw9GoVKRl3qTC6u+Ij0issx6qNOpLQ3fGoTCREPm\nxStcWLS6RB4ViWn27hRyE5O5tHKN0eembs60+nIFp8bNQWNvZ1gPgMrCvPRtHjEQpUZDekQkZ979\nxLDNXmMGY9+hJQqViqvfbiP6p50AmHu44jNjBBpba/Izszk970MyI2MA8Fs0ASvPhhRkZQOQcjSc\nC++vQ2VpAYCSnoaytRwD4sqsq9vpdDpmTNuGZ1Mnhrz+UIWXu9+qKg/Hzq1pOmIAShMNNyOucmrB\npxSU0kfuFGfq7ECHtQs4GDiZvFR9f67TtgVeowNRqtUUZOdydsVXpebg1qUl/qNfQmmiJvV8FIfn\nfEl+RnaF40xsLGk7Mwg77/oUZOVw+ed9XPhuFzaN69Jx0TDD8gqVArumHuwb/2Flq+0/1y4cO7fG\nc/hAlCb6Pnnq3bLbQalxSgXeYwfjcKvvRm7cTtStvlvIzM2JjuuWcGz0AtLOXgLAvXd36vfrBUCr\nZRM5teAzQ/upyrbp9HAbfN8ZSVZcoiEuZOg791x/haqqXbh2aYnvqL6oTNSkXrjGkTL6SJlxSgWt\npwbh1NYbgNh9Jzm58nsAnNo1w29cf5RqFQU5uZxYupGU8EuVzvl+1UWZZMBvtAAAIABJREFU54uK\nxJRzTnF8uC0+s94mu1gbODpsFgWZRfXq8XIv6j7/uD6+CvuI48Nt8Z090iiXkLdmU5CZjf/iCVh7\nNgDgiU3ziA85w4nl3wEP5rGzuui0MgW3IuQOqPhPSk4t4J0Pk1k+2YGfP3Kjnqua99ffMIp59jFL\nNq90ZfNKVzYuc8HRTsXUN+vgYKdi2dobWJgp2fqBK+sXu7DvWDZ7Qkoe8EtjYmdNy3eGcnTSKv55\ncRKZUfE0G9XvnuKaBD2DfWtvo880Npb4TRtCi8lBoCh5oNPY2dB8xkjCpi3jUP8xZEXH0WREYIVj\n3F/ogbmHG4cDx3FkyFQ8+j2NtY8nKksL/BZNImL1eg4PmsC5ZZ/TYsF4FJrSr2Op7WxoOn0UZ2Yu\n4djAkWTHxNFweNBdx7gP7I2tv0+J9StMNHjPGodSrUZlZWm0HgDPkSW32WfmCMKmLSe43xiyYuIM\nMe69u2Pu4cqhwPGE3NpmGx9PAFrMGUPU1h0EDxjH5S824bdoomGdtr5eHB0+m8NBkzgcNIkL76+7\n9XlTALT8bvh3N4PPixcTGDJ4PX/8fqrCy1SFqspDY2eN76zhhE59j/19x5EVHYfXyIF3HefWqysB\nn8/BzNne8JlCraLlu2M4/e7nHAyczKWvtuI39+0S6zatY03AvNfZP2E1vz8/jfToeFqO6XtXca0m\nDSA/M4c/ek9n1yvzce3sh1vXlqRdimFHv9mGf3EHTxH520Gidx+tVL39F9tFi5kjODltBQdeHktm\ndDxNR5TeDsqKq9e7BxYerhwcOIFDr02jfv9e2Pg0MSyrNNHgN3eU0XHKzM0Jz2H9OTJ0NgBZ1xNo\nMrSvoayqapsAtv7eXNm4neBXphj+FR943IuqahcmdaxpN/cNgid+yJ8vTCUjKgG/MS/fVVyDZzpj\n3dCVHX1nsLPfLBzbeePeoz0KtYoOS0dybN5advWbxdk12whYMLTSOd/PuijrfFHoXs8ptn7eRH67\nzXDeOBw0yagN2Pp702DQ84afq7KP2Pl76dvjoMmGf4W52Pk25cgw/cWRHf1mGwafD+KxU9Q+MgCt\npbZu3cry5cvv2/qmTp3Knj17jD5LSEhgzpw5JWKXL1/O1q1b71vZNeHgiWxaNDWhQV393bC+T1nx\n+55MdDpdqfFf/5SGva2Sl560AuDMxVyeftQClUqBRqOgS1szdh7MrFDZTp38uHH6EhnX9AOOyB92\n4d6z813HObTzwekhfyJ/3G20nFuPjmQn3uDMqm9LLd8+oCVpZyLIiooFIHrrn7g+2aXCMU6PBHD9\n17/RFWjJv/l/7N13dBTV28Dx79b03klooQRCILRQRKpUkZ9SBKQKiIAU6YQuoYMFxa6ggIggBBsi\nVXoJKJAQAkKAQAJJNoX0urvvHwtLlt0kGzFF3/s5h6O7+8y9z8zcubMz9+4ki8QDJ/Hs0QHr6l4U\nZmWTej4CgOyYe6izcnAIMLxAfsQpqCmZUTfIjb0PwP3dv+HWrUOZYhyaBeDUuhn3f9xnVH6d6eNI\n2HuYgrQM7Bv5GZQDGK9z6yakR0WTc/fROu8vss6tuf/L43VOOHgSz57tsXBzxqZWNRIOnAQg+fRF\nZFYW2PnVxtLLHZm1FQ3mvE6rb96m4YI3kNvr2o9DY902kdINKb2QUM/kNirOtq3n6duvKT17NSrT\ncv+08srDpXUgaVeiyX64L+7uOoBnz2fLFGfh6oR7xyD+nLbKYBltoZqjvSeQ8ddtAKyruetHn4ry\nbBtAyuVbZN7RHX83dvxOjefblinO2b8Wt385hVajRVOo5v7xcKp3DTJY3rVZfXy6tuT8sk1GZZfV\nf7FdpEU93r+xofvx7NneKMaldWCxce4dWxH38xH9sRt/4BRePR/3IQ1mjeHenqMUPEjXvyeRSZHI\n5chsrACQWVqgyS94XFc5tU3QfeF3bhlAm00rCfr8LZyaNSzjFjNWXu3Co20AqZE39W0/+vvD1Ohl\nfIyUFCeRSpFbWSBTKpAq5EjlcjR5BWgL1ezpPpUH1+4AYOPjTn5a5lPn/E9ui+LOF4/8nXMK6M4P\nzi0DCPp6NS0+DcGx6eM2oHR2wG/ma1z/cIv+vfI8Rhwb++HcshGtN62i5WdL9LlYerkhs7ai4Zyx\nALQKGYPS3gb4d/adQtUjLkD/H3NzczN5AfpfkJCkxtNFpn/t4SIjM1tLVo7xBWhquprNP2Ywa4yT\n/r3G9S3YcySbgkIt2TkaDp3OISlVY1bdlh4u5Man6F/nJqagsLVG/vDLjjlxFq6ONJo5nAsLPga1\nYb13dh3i+hehqPMKiq0/LzFZ/zpPlYzc1gaZtZVZMRYeruQVmY6Tm5iMhbsL2XfuIbOyxLlVIAB2\nDetg41sdC1dHk3lYeLiSl/i4nDxVklEeJcUoXZzwffM1roW8BxrDbeDxQlekchkJP+umESmcHQ3K\nAZDbWhuus7urwTSjvMRkfYyluwu5CckGn1m4u2Dh7kKeKhWK3LjIS0zBwt0FpbM9KeciuLrqM8JG\nzEadk4v//AkAaNVqADQcRMMRJDQAfExuJ1MWLOrF/15qYnZ8eSmvPCw9XMhNNNzeCltr/QWBOXF5\nSalcmvMOWbfijMrXqtUonR3o8Msn1J8yjFtbfjKKsfJ0Jjvh8fGXk5CC0s4auY2l2XHJETep9cIz\nSOQy5FYW+HRtgaWbg8HyTWcMIuLDXSanp5XVf7Fd5CWY1w6KizPqyxKTsXg46uj9vy5I5DLifjS8\niZcTm0DMNz/Rbsc6AJyaN+TW17v1dZVn2yxIy+Tuzn2cGTmX6x9tI3DNDH2+f1d5tQtrD2ey4w3b\nvsLEMVJS3O2fjpOfnkXv/et44eD7ZN5N4P6xi4DuZpGFsz2996+j8bRBXPv616fO+Z/cFsWdLx75\nO+cUgIL0DGJ37uPcq3O48cm3NFk9Cws3Z5BKabTkTW58uIU81ePtWZ7HSH5aBnd37uPsyGBufPwt\ngWtmYuHujNLZgZRzEVxZ9TkAhdl5BC0ZA/w7+86KpNVKqvy/qkBcgFZxGzdupH///gwaNIi1a9ei\nVqvp1q0bhYWFJCYm0rBhQ1JTU8nPz6dv374llvXtt98ycuRIhg0bRkxMDLGxsQwcqJsms2/fPl56\n6SVGjx7NpUuXKmLVypXG9EAnMhMtftf+LDq1ssLb4/EUremjHJFIYPD0eKatTqJNU0uKmWlqRGJi\nWiyA9okLyeLikEDzlZOJfGcLeUkPTMeURGr6sNYWvYgrIcZkXhoN6uwcIuaspubIfgRtfhvPXh1J\n/eMymoJC03lIzMijmBgkEvyWzOTmBxsoSE41+Mimvi+eL/XkxtpPDOJLrUtafIzExGdaten3H32W\nHnmDiOC15Cc/AI2Gm1/swKVdcyRyObe/2vUoEshBy3UkVDe9rv8PFbddn7zZYm6cKfkpaRx7YQJn\nxywkYOEE4xzMaTOlxF185zvQaumxfQnt3ptMwulINAVqfYxLYF0sHO2I+fVMqfkKjz3ZVxbbl6g1\npo9rjQY7v9r49OtG1KovjD52bt0E986tOfY/XbtQHT1PwKI3HlZVvm3z0px3SDxyDoAHl66RFv4X\nLq0q/6aCKSX1f+bG+Y97ibzUDH7uMpk9PaahdLCl3vCe+pi8lHT2dJ/K7yOW0nLJa9jW8PjnVqAc\nPO05BSAi+G1UR8MASLt0lQcR13Bu1YS6bwzhwcUrpISFl57HP3CMAIQHv4PqqHF7TI+8waU5b+vO\nb8DlT3ZTrX0TpHKZ6DuFf4R4CFEVFhMTw9mzZ/nuu++Qy+VMnjyZY8eO0bJlSy5evEhMTAz16tXj\n9OnT2NjY0K6d8TTPopo3b87rr7/O0aNHWbt2LcHBwQAUFBSwatUqQkNDcXR05PXXn/53GJXNy1XG\n5b/y9K8Tk9XY20qxsjTupPefzGb2GMNRvKxsDVNHOOBgpxtF/So0nepexR8u9cf3x6NDCwDkNlZk\n3Lir/8zSzZn8tEzUuXkGy+TEJ+MYUNcozra2N9bV3PCfNgwACxcHJDIpUgsF4Uu/LHXdc+NV2Ps/\nnvJp4eZMQXoGmiL1lxSTm5CE0tXJ4LPcxGSQSFBn53Jh4uMHZrTetk4/jfdJeQkq7IrW4epilEdx\nMda1qmPp5UHtyaMBUDo7IpFKkSqVqHNykdtY0eTT1brPXJ1w6diG/ATDEdCCtMwn6krCodET6/ww\nJjchCYsn1jkvMZnc+CSULoZt49FnjoENkNvbknT8PPDwZKvRotVo8Hm5J4YkgHkj6P9VdV5/GbcO\nLQHdMZJ5447+s0f74sljJDc+CYdGdUuNK0puY4VzUID+S37GtVtkXI/BuYVuSl737SEAKGwtSbse\nq1/Oyt2JvLRM1Dn5BuVlxyfj0tjXZJyFpy2X3ttBfnoWAA1GPa+fbgZQo0crbv980mAE/f87CU2Q\n4K1/rSwyg6LoMVlUbkISDgHG7UCTm2d0jOr6qxS8nu+AzMaKVl8u078fEDKF6+u34Nw6ENXx8xSk\n6qblSpQKXNs1o803q8u3bdpaU31Ad259/UPRDYK2sJibeJXAf0JfqnVqBuiOpfQnjhHdueyJY+R+\nCs4BdUzGeT/XkourtqAtVFOYmUPMzyfw6RrErd1HcQ/y597vut/2PbgaQ9pfd3CoV3Vu1D15Tvgn\nzilyW2u8+/cgZtNu/WcSJGjVajx7diA/NQ3vfj1Q2Nkgkeu+f5TXMSK3tcanfw9uF8kFCWgK1Tg2\nbYDCzgbVcd3+aTjmBSQyGV2/XYzCRvSdwtMTI6BVWFRUFIGBgSgUCiQSCS1btuT69et0796do0eP\ncuLECaZNm8apU6c4dOgQ3bt3L7G8li11X/6aNWvGrVu39O+npKTg4OCAk5MTEomEZs2alet6VYS2\nTS0J/yufmHu6aao792XSqZWlUVx6poY79wsJbGBh8P73+zL5eJvuy0nyAzWhB7Lo1d662Pr++nQX\nx4fM4/iQeZx8dTFOjetiU113J7fmgOdIOGr8A3rVmQiTcQ8ibnCo9xR9eXd2HeL+/jNmXXwCpIRd\nwiGgHlY+ngBU69udpGPnzI5JOnaOai90QSKTIre1xqNbO5KOhYFWS+C787BroPui4dalLdpCdbFP\nwX0QdhG7Rn5Y+ngB4PlSD1KOh5kVkxF5jXP9X+PiqGlcHDWN+B/3oTp8ghurP+LWBxv445WJ+s/y\nk1K5vux9LLzc9eUAqI4brnPy2YfrXF23zt59u+tjVMfO4dWns8E6q46dI0+VQk5cAh5ddU9SdG4d\niFajITP6DjJrS+pPH63/3WeNYf8j8fczoNHgGFj0d11KJNRBS/FPC/7/IPrz7/UPXQkbvQCHgHpY\nP9wXPv26kXjsvNEyyWfDzYorSqvR0GjBeByb6H6Ha+Prg02txxc8jx5ucXD4Ulya1NGPuNR5uTP3\njlwwKi/+9OVi4+q83JmAibqZJxbO9vj268idvY/v2Lu1aEBC2BXzNtD/E1rCizyYC+P9+8RxC4+P\nXVNxqmPn8e5TtL96BtXRMP56bxOnXp6qf7BKniqFy4s+QHX8DzKu3cKtXXNkVrp+P/d+EinnI8u9\nbRZm51B9QA/cO7cCwK5+LRz865J0uurMOrryyW4ODlrEwUGL+H14CM5F2r7vgC4mj5GE0xHFxj2I\nisGne2tA94Cwah2bkRwejVatoeWSMbg01V3A2dfxxq6WFykR0RWxmmYp7nzxyN85pxRm5+LTvydu\nnXXbxLZ+Lez965J8+iInXnidsOGzONF7LBemLiPrVqw+j/I4Rh63R10uj9qj7lkHlvjNGI384e8+\ntRoNd/aeYf9A0XeWRquVVvl/VYEYAa3CGjZsSHh4OIWFhchkMs6dO8dLL71Eu3bt+Oyzz7C0tKRj\nx4588MEHKBQKmjQpeRpPeHg4zZs35/z589Sr9/iunYuLC+np6aSkpODs7ExERASenp7lvXrlytlR\nxpLJzsxam0xBgRYfTznL3nQm8kY+Sz5KYcd7uvW7c78ANycZCrnhVJEx/e2Zvy6F/lPuowXGD7In\noJ6FiZqM5aemc2nJZ7RY8yYShZzs2EQuLtJNF3VoWJsmC8dyfMi8EuOeRkFqOlHLPiJgxUykCjk5\ncQlcCVmPXYM6NJg7nnMjZxUbAxC3ex9WPh4EbX4HqUJO3A8HeHBBdyKIXPw+DeaORyKXk5+cSvic\n1cXn8SCN6yvW03DZbCRyOblx8fy17H1s/epQN3gSF0dNKzamrAozMg3KAbj+wWbsGvjScN4Ewkbo\n1vnK0o9pvGKGbp1jE4gM+VC3zqH7sfL2pNWWt3XrvPvxOl9e+B4N546n1qj+aPILuDz/XdBqST59\nkdjvf6Xl50tBItX9KZuVnwJw7e0NeHR9Bim9ASla/gJMjxT/f5Sfmk7k0k8IXDUdiVxOTlw8EW99\nBIB9Q1/854/jzLA5JcYVR52Tx8VZb+M3fSQSuQxtfgERCz+g5ceLDOLyUjIIW7SBdm9PRKqQkxmb\nyNn5uumaTv61CFo8mv2DFpUYF7VhD62Xv07PXctAIiHy0x9IiXx8c8+upgdZcYYj84KhK0s/ocnK\nR/s3gctLdMekfQNf/OeP58zw2Q+PXdNxsaH7sfLxoM03a5Eq5MTuPkjqhagS67z38+9YebnRepOu\n/3Ju4c/lkI+B8m2baLRcnLWWBjNHUff1gWjUai7Nf9/kQ7KqgrzUDM4v/pI2aychVcjJik0kbIHu\nN4FO/rVosXg0BwctKjHu0ttbaRo8nO67V6LVaEk8G8m1r/egLVRzatr7BM4aglQuQ5NfyNm5n5KT\nmFpSShXK1PninzinhM9ejd+MMfi+NhCtWsPlBe+V2AbK8xi5NGsNfjNHU2fsy2jVGsIXrKMgLYPk\n0xe5u2MvQZ8vBcDWx51zS3R/zkr0ncI/QaIt7rGgQqUKDQ3l5s2buLi48Ouvv6LRaGjRogVz585F\nIpEwdepUqlWrxuzZs5k+fTrOzs4sWLCg2PKCg4PJy8sjOTkZiUTCihUr0Gq1TJ8+nR07dnDkyBHe\nf/99HBwckMvlPP/88/Tr16/EHFWqyj9purnZkXOla6XmYOV/kF9aDC09sJy98MdWDrcdUKk5dDm9\nkxPPvlSpOQA8e+IHDrUxfix8RXruzPeo2VqpOQDIGFrpecgYyv5Wxn+KqCJ1D9sOwPbAVys1j0GX\nvq4S+wOoEnkcaG38Zz0qUrezOyq9bYKufVaF/bGz6chKzQFgwMVNVWJbVPY5BHTnkapwjFR2vwm6\nvvPf4Ga/kn8OVxX4hp6s7BTECGhVVfTib9SoUUafr1u3Tv//7777bqnlrVpl/Dh4gB07dgDQqVMn\nOnXqVMYsBUEQBEEQBEEA0FSRp8xWdeIC9D8kPz+fMWPGGL1fu3ZtQkJCKiEjQRAEQRAEQRCEx8QF\n6H+IUqlky5YtpQcKgiAIgiAIgiBUgqrxKCRBEARBEARBEAThP0+MgAqCIAiCIAiCIDwlrUb8BtQc\nYgRUEARBEARBEARBqBDiAlQQBEEQBEEQBEGoEGIKriAIgiAIgiAIwlPSij/DYhYxAioIgiAIgiAI\ngiBUCHEBKgiCIAiCIAiCIFQIMQVXEARBEARBEAThKYkpuOYRI6CCIAiCIAiCIAhChZBotVptZSch\nCIIgCIIgCILwb3atT8fKTqFUfj8frewUxBRc4e9TqTIqOwXc3Oz4sfmwSs3hxT+/4Vi7vpWaA0CH\nk7u52a9dpebgG3qSnU1HVmoOAAMubmJ/q0GVmkP3sO381mpwpeYA0DPsuyqxLdRsrdQcZAwFYG2d\niZWax6zoj6rE/gCqRB5HnulfqTl0OrWLwr3elZoDgLxXXJXYH6L/1uketp1DbV6u1BwAnjvzPQda\nD6zUHLqd3VHp/Sbo+s5/AzEF1zxiCq4gCIIgCIIgCIJQIcQFqCAIgiAIgiAIglAhxBRcQRAEQRAE\nQRCEp6TRirE9c4itJAiCIAiCIAiCIFQIcQEqCIIgCIIgCIIgVAgxBVcQBEEQBEEQBOEpaTXiKbjm\nECOggiAIgiAIgiAIQoUQF6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFEL8BFQRBEARBEARBeEpa\nrfgNqDnECKggCIIgCIIgCIJQIcQIqPCf4vFsUxpOHohMoSDt+h0uhnxJYVZOmeJqvdyVmi91Qmap\n4EHUbS4u+QJNQaF+2RovdsCrc0vOTn3XZA7ObVtQa/wwpEoFWTdi+Gvlh6izc8yKkdlYU3/uRKxr\n+oBEQsLe34nduhsAuZ0tdae/hnWt6kgtlNzZtJPEfUfLvI2sWrTFeeh4JAol+TE3UH20Em1OtkGM\nbYfuOLw0BLSgzcslacM68qOvlrkuAM/2gQRMfhmZUk7a9bucf2sDhVm55sdJJTQLHoFbCz8A4k+E\nE/7edwbL1nqxPdW6tODUm+v077m2a0a9N15BqlSQceMOkcs+RW2iLRQbJ5XgN3UErm0Ckchk3N76\nM7GhBwGwqe2N/9zXkVlbglbL9Y+2kXzmEgA+fbtSY1AvAJqtncnlZZ9RkJYBgFu7ZtR/Y7C+rohl\nn5nMqbQ4S3cX2mxcysmhc/RlK+xtaDhzFLa1vZFaKLn51Q/c23vc/PUtY5yFuwutNy7j9NDZ+hyc\nWjSi/pShSOVy1Ln5XH3nK9KvRBuVXVZarZb5c3+ibj03Ro955qnLK45vp0Z0mPUiMqUc1dU4fpu7\nlfxM47bq/2IQQWO7ghYKcvM5FPI9CRF3AJgYtorMhDR9bNgXB4n66VyJ9ZbnPnnEqpobbTat4o8p\ny6tEDulRN43Kdn6mOb7jhyFVyMmMjuHaio+N+85SYizcXWj+xUrOj5ihr9+xeQB1Jo9EIpNRkJbB\njfc3knUjxuR2eNLRSBnrflGSXyihfjUNS1/JxdbSMOave1JW7LIgIxdkUlg8MI9G1TVM/cqSO6rH\noyFxKVJa1lHz0VjjNmVKVWgX5dl/u7VsQONpg5HKZajz8rm4Ziupl43bRWVtC5dnmlPnjSFIFQoy\nb8QQtfwTo/ZYbIxUSv03R+LcWnf+uPPtT8TtPgCAU/NG1J08HIlchiYvn7/e/Yr0KzcA8B03GI+u\nz6DOySMt4pp+nepOGIJUqasjcnnx624yTirBb+pIXB7mErP1Z2If5dKiEfUnD0PycB9cK9Jn1xk3\nCM9uuv6265JB/L58F+r8QqN6K6vfFP7dxAhoOVu/fj3btm2r7DTK5NixYwQHB1d2GmWmdLSj2Vtj\nOTfzfQ71m0V2XCL+kweVKc6rS0t8B3fj1ISVHB4QjMxCQZ2huosJhb0NTeaNovHsESAxPcVC4WhP\n/fmTuTJ/DedfmUTuvXhqTxhudkytsa+Qp0rmj+FvcuG1WVTr2xO7RroTt9+CyeQlJvPnqBmEv/kW\ndaa+htLNpUzbSGrviPuk+SSsnU/s5FcoTLiH8/AJhvlVq4HzyInEL51B3IxXSd25Cc/Zpr+clEbp\nZEfLJa9xZuZ69r0UTFasisZvDixTXM0X2mFXy5P9L8/nwKCFuLb0w7tbkC5XexuazR9J0+DhSJ7Y\nJwELJ3Ap+F1OvjyNnLgE6k8cYlSvwtGu2LjqfbthXd2LU6/M5Myr86g5+Hns/esA0HD2GOJ+/p0z\nw+YQufRTmqyYikQmxaqaG3UnDOLcuMUA5NxXUff1AUXqGs+F4Pc4/vJ0suMS8Zv4SjE5FR9X7fn2\ntP78LSzdnQ2Wa7xoArmJKZwaPpdzk5bTcMZILJ6IKWl9yxLn9XwHWj2Rg0QuI3D5m1xZ/jmnh87m\n5lehNF4yyajssoqOVjF65BZ+2xv51GWVxMrZlp5rhvPDxC/Y0C2EB3eT6DDrRaM4p9rudAzuy85R\nH7Gpz0pOf/QbL308Vv9Zbno2m/qs1P8r7UtUee6TR6RKBQFLJiNRmL7nXDVysKfB/ElEzltL2CtT\nyL2XgO8bw8oU49GzI80+WYZFkX5RZmNNoxWziP5wM+dHTOf625/TaOmMYvMoKiUTFmyzYN3oXPbM\nz8bHRcO7P1sYxOTkw9hPLRn9XD67ZuUwvns+c7borlDXjcoldHYOobNzWDI4DzsrLQsG5JVar25d\nK3+flGf/LZHLaL1mIn+GbOTgoIVc/eInWi17vUptC/8FbxAx923ODHqTnHsJ1J049In67IuN8e7b\nFavqnpwdOp1zo4OpPqg39v51kcjlBCybRtTKTwkbPotbX+3Cf/FkXX69O+HargXnRgUTNmIWeUmp\nADRa8Abhc9/h1MCpZMclUu8N0+teXJxP325YV/fk9JAZnB01lxoPz2USuYwmy6ZyZcVnnBk2m1sb\nQwl4S5dLtRc64fZsC86+OheALFUa7Wf0Maq3svrNqkyrlVT5f1WBuAAV/jPc2zYmNfIWWXcTALj1\n/SF8ehmPlpQUV733s9zYspeC9CzQarm0/Cvu7jkBgHe31uQlPSDyveJvKDi1akpG1HVyY+8DcG/3\nb7h372B2TPS6Ddz88GsAlC5OSBRy1FlZyO1scQwKJGbjdgDyVclcfH0OhemGd3BLY920FXk3oii8\nHwtA+m+7sWvf3SBGW5CP6uNVqFOTAciLjkLm6ALysk+Y8GgbQGrkTTLv6LZ19PeHqdGrbZniJFIp\ncisLZEoFUoUcqVyOJq8AgOrdW5GblEb4u98ZlZl2JZrsu/EA3N11AM+ezxrFuLQOLDbOvVMQ9345\nglatoTAji/gDp/Dq1V6Xk0yKws4WALmNFZq8fF2BUikSuRyZtRUAMkslmnxdrq6tmxjV5WUip5Li\nLFydcO8YxPlpqwyWUdjb4NKqCTe+2AlAXmIKp0cvpCAt0+z1NTfuUQ5/PpGDtlDN0d4TyPjrNgDW\n1dyNRhj+jm1bz9O3X1N69mr01GWVpNazDYkPj+HBbRUAF7cex//FIKM4dX4h++ZuJUuVDkBCRAw2\nrvZIFTK8m/uiVWsZtPVNXt0zj7aTeiGRlnyyL8998kiD2aO598sn/TquAAAgAElEQVQRCh6kV9kc\nnFoFkhF1g5xH/WLoPjy6tzc7RunqhGuHVoTPMLxZZl3dC3VWNg/+iAAgOyaOwuwcHAL8TOZR1Kmr\ncgJqaKjppgVgcLsC9vwhR6stGiOjuouWDv5qADoHqHnnVcPRn/xCmLfVkuC+eXg5aTFHVdgn5dl/\nawvV7Ok+lQfXdCNgNj7u5D/RX1X2tkiPiibnYVlxofvx7GHYHp1bNyk2xq1ja+7/8rv+/JFw8CSe\nPdujLSzkRJ9xZD7sJ628PfT9pF2DOqiOhVGYqZuRpDpyFoC0qMfrFBu6H8+ehnno172YOPeOrYj7\n+YlzWc8OaAvVHHthvL7PNszFl8Sj5/S5/LXvEvV7NjOqt7L6TeHfT0zBLSIzM5P58+eTkZFBYmIi\nvXr14pdffuHXX39FIpEQEhJC27Zt8fDwYMmSJdjY2ODi4oKFhQWrVpnu1AAOHjzI3r17yc3NZcGC\nBTRp0oSffvqJTZs2oVQqqVWrFiEhISgUCpPLb926lR9++AGpVErjxo1ZsGABwcHBaLVa7t+/T3Z2\nNqtXr8bCwoIJEybg6OhIhw4d6NChA8uWLQPA0dGRFStWYG1tzaJFi4iPjycxMZEuXbowbdo0oqOj\nmTdvHlZWVlhZWeHg4FAu27g8WXm4kJOQrH+dm5iCws4auY2VwTTckuJsa3phEXmTNh/OxtLNkZQL\n14hcp7u4ub3rMADV+xh3/o9YuLuSl/i47DxVMnJbG2TWVvqpO6XGqDX4LZqKW6e2JB07S/ade9j5\n1SE/KRWfwf/DqU1zpEoFsd/+SM7de2XaRjIXdwqTEvWvC5NVSG1skVhZ66fhFqriKVTF62NcXp1C\n1vkTUGg89aY01h7OZMen6F/nJDza1pYG07hKirv903F8ugXRe/86JDIpCacvc//YRQBu7vwdgJr/\nM/4yklt0Gycmo7C1RmZjZTiV1cOl2DhLDxdyn2gnrnVrAhC1ZiMtP15IzVeeR+nsQPj899GqNeTE\nJnD7m5959vv3AHBu7s+ZMQtN1pVrZk5F4/KSUrk4x3jqt7WPJ3nJqdQa2hu3tk2RKuXc+uYXsu/c\nN4graX3N3S55SalcmvOOUQ4AWrUapbMDbTavQulox6X560zGlcWCRboZCGfO3Hrqskpi5+VIxv1U\n/euM+AdY2FmhtLU0mE6WHpdCetzjttp5Xn9uHIpAU6BGKpdy++RVjq7ajdxCQf8NE8jPzOWPr38v\ntt7y3ifeL3ZBKpcT9+NhfEf1rcI5uJKXkPS4bBN9Z0kx+UmpRM5ba1Ru9p17yKwscWoVSGrYJewa\n1sGmdnWUrk4m8yjq/gMJno6PLxg9HLVk5krIykM/Dfe2SoqrvZaF2yy4dk+KnZWWGX3yDcoJPSPH\n3UFD1ybqUut8vD0qf5+Ud/+tLVRj4WxP1+9CUDracnbOx1VqW+QWbWuJychtrQ3bo7trsTGW7obn\nj7zEZGwfnj8e9ZNBX69B6WhHxALd+SI98jrVX+lN7Pe/UZCeiefzHXXLJpi37sXFWXq4GH7nSEzG\ntm4Ng1xab1qN0tGO8Id9dnrkdWoM7s3d738DoFHfVti42Rttu8rqN4V/PzECWkRMTAy9e/dm48aN\nbNiwgR9//BE/Pz/Onz9Pfn4+Z8+epXPnzixevJhVq1axefNmatSoUWq53t7ebN68meXLl7N48WJS\nU1NZv349mzZtYtu2bdjZ2bF9+/Zilw8NDWXhwoVs374dX19fCh9eCFSvXp3NmzczefJk1q7VnXhV\nKhUbNmxg7NixLFy4kMWLF7NlyxY6dOjAl19+yf3792natCkbNmxg586dfPed7uJqzZo1TJkyha+/\n/ppmzYzvcv0rFHPHTKvWmB0nkctwax3A+TnrOTp0IQp7WxpOevnpc9BoyhRzLWQdp3qPRG5vS81R\nA5HIZVh5e1KYlcOlCfOIWvQOvlNGYevna35u6O5Gm6TRGL0lsbDEfeZSFF4+JH1U/A2Wkuszb5+U\nFOc/7iXyUjP4uctk9vSYhtLBlnrDe/6tfDCzXtQak/tJq9EgVSposnwql0M+4VifNzg37i38547F\nwt0Fl9ZN8OjcimN93gAg8eh5Gi+a8LCuYra9UU7mxRksI5dh7e2BOjOHs2MXc2n+BzSYNgL7BrXN\nX9+/EWdKfkoax16YwNkxCwlYOAHrGl6lLlMVFLfdjfqPhxRWSv63fgyONd3YN3crAOHbT3E45HvU\n+YXkZeRwfsNh6nUPLKXe8tsndn618enXlSsrv6jyORT3swaDvtOcmCdTy84hYs4qao7oR8tN7+DR\nsxMP/ogw+F1/cbTFDFYW3QyFajh+RcbLbQvYMSOHoe0LGP+5JUV/Krf5qJJx3QpKra+oqrBPKqL/\nzktJZ0/3qfw+Yiktl7yGbQ0Ps/Oo0Pb5kLnnclO5FN1u+SlpnPzfOM6PnY//gjewqu5F/G/HSDx0\nmmYfLabl58vIvh1XfB5PrpOkhP7LVJ4aw1yO9xlP2GsLaLRwAtbVvbi/9zgJh8/Q4qNFAKREJ6Ap\nML6BUln9ZlWm0Uqq/L+qQIyAFuHq6sqmTZvYv38/tra2FBYWMnDgQHbv3o1KpaJLly7I5XISExOp\nV68eAC1atODXX38tsdygIN10hHr16qFSqbh79y5169bF1tZW//mJEyeKXX7lypVs3LiRNWvW0LRp\nU7QPz4pt2rQBoFmzZqxYsQIAHx8flEolANHR0SxZsgSAgoICatWqhaOjIxEREZw5cwZbW1vy83V3\nam/fvk2TJk0AaN68OTdvmn4QQFXUaZtuypXcxor0G3f171u6O5Gflok61/A3NznxyTgF1DEZl6tK\nJf738/oR09hfT+I39iWzc8mLT8LOv77+tYWrCwXpGWiK5FBSjFOrpmTdjCE/KRVNTi6qg8dx7diW\nhF91o6+P/psbF096+FXsGtYj85r5+6pQFY9FPX/9a7mLK+qMdLR5hlPGZK4eeM5bTUFsDPcXTUKb\nn/9kUcXyn9CXap10NzHkNlakX4/Vf2al39aG5WXfT8G5yD4pGuf9XEsurtqCtlBNYWYOMT+fwKdr\nENe3/GZQhm1NT7puD9G/tnBxfPz/bs4UmGgLufFJODSqazIuNz4ZC1fDMvISk7GtUx2ZpZKkE38C\nkHb5Opk37+IYUBen5v6ojv1BfqpumpFUKcetXTOe+WYVchsrMoq0Tws352Lap3FOpuKKevRbodg9\nuodSZccm8ODSNX05bb5ZDej2R+aNO0+1XYojt7HCOSiAxCO63+5kXLtFxvUYbOtUL3aZytZuam/q\nPqfr95S2lqiuPZ5RYOfhSM6DLApyjNu+nZcT/b4YT3J0PNuHvk/hwynh/i+1QhUV+7gciQRNofGX\ntjqvv4xbh5ZA+e6Tas93QG5jRasNS/XLNA6ZrP+8ItpFcTn89cE3BnF5CUnYN6qnf610M9F3mhFj\nRCJBnZPLxUmL9W8Fffu+fhpvSbyctITHPP6ylpgmwd5ai3WRn4G6O2ip7aGhSS3dF+4ujdUs+k7C\n3SQJdTy1RMVKUWsgqG7po59VoV1UVP99a/dR3IP8uff7HwA8uBpD2l93cKhXvcpsC4sio+SPynqy\nPToUaY9FY3ITkoyWz0tMRmZjjXPLAFRHwwBdP5l5IwbbujUoSMsgYf8JZBYWuLZvSa2RutFYpavx\nuezJNp+bkIRDgPG6a3LzyI1PQvnE+TA3MQW5jRVOLQNQHX2iz65bg/y0dOL3neD2ph/odnYHyTfi\nSY3RTbOtrH5T+G8RI6BFbNy4kaZNm/L222/Ts2dPtFotbdu2JSoqil27dvHyy7qRME9PT27c0D2x\n7NKlS6WWGx4eDsC1a9eoVq0aPj4+REdHk52tm/IYFhZG7dq1i11+x44dLFmyhG+++YaoqCguXLgA\nQGSk7qEcf/75p/6CWFrkblTt2rVZvXo1W7ZsYdasWXTq1InQ0FDs7Ox45513GD16NLm5uWi1WurU\nqaMv9/Lly2XabpXtyCvzOfLKfI6NfAunxnWxqa67g1qr/3PEH/3TKD7xdESxcfcOhlGtW2ukFrrp\n0J6dWpB6xfwLvNSwi9g3qo+lj27Ux6tvD5KPh5kd49alHTVH6R6IJFHIcevSjgd/RpB7P5GMq9F4\nPN8ZAIWTA/aN/ci4WrYnjGZfCsOifiPkXj4A2HXvS/Y5wyelSm3tqLb0Q7LOHCXx3cVluvgEuPLJ\nbg4OWsTBQYv4fXgIzk3q6O9q+w7owr0jF4yWSTgdUWzcg6gYfLq3BnQjfdU6NiM53Hi9M2Pi9fUC\nOATUw7q6JwA+/bqReOy80TLJZ8OLjUs8dh7vPp2RyKTIba3x7PYMiUfOkX03HrmtNQ6NdTcRrLw9\nsKnlTfq126Rfu4Xrs82QWem+oebcTyL5fCSnhgVzZvRCHAPq6uuq0a9rsTmZE1dUzj0VaVE38e6t\n+y2x0tkBx8b1SXv4NMMzw+ZwZtgcwkYveOrtUhytRkOjBeNxbKL7bZ2Nrw82tbxJi7xR4nKV6eS6\nPfqHXmwdsJZqzWrhWMsNgMAhz3LjYLjRMpYO1gzeNpXr+y7xy5tf6b9EAbjW96LdtBeQSCXILRQ0\nG96Bq3v+MCoj+vPvK2SfXHtvEycHTNPXladKIWLRev3nlZmD6rjhdkl52C9aPewXq73UnaTj58oc\nY0Srpck787FroLtAcuvcFm2h2qyn4D7jpyb8tpSYh0+y3X5SQZcAw5HTZxuqiUuREnlXd+49Hy1F\nItHi46K7UXzuhozW9dTFDd4aqArtoqL6b61aQ8slY3BpqvvuYl/HG7taXqRERFeZbeEQUA+rh2V5\n9+2O6om2lnz2UrExqmPn8Cpy/vDo1g7VsXOg0dBw/gQcHvWTtX2wrulN+uXr2DfwpfHqWdzauJNz\no+aQdStWn4fBOplo849yMRWnOnYe7z5diuTyDKqjYQ/7bMNcdH32dewb1iFw9UwkMhkArSd01z8Y\nqLL6TeG/RYyAFtG5c2eWLVvGr7/+ip2dHTKZjIKCAnr06MGpU6f0020XL17MvHnzsLa2RqFQ4OFh\nPGWkqNjYWEaMGEF+fj4hISE4OzszefJkRowYgVQqpUaNGsycObPY5f38/BgyZAg2NjZ4eHgQGBhI\naGgox44d49ChQ2g0GlauXGm03FtvvcWcOXMoLCxEIpGwfPly6tSpw4wZM7h48SJKpZKaNWuSmJhI\ncHAwc+bMYcOGDTg7O2NhYWEik6otPzWdC299TtDaKUgVcrJiE/lz4acAODasTdNFr3Hklfklxt36\n/iBKB1s6bV2GRCrlwdXbXFr+rdk5FDxI49qK9fgvm4VUoSAnLp5rS9/HtkEd6gdP5M9XpxcbAxD9\n4VfUmzWeFlveB62WpONnidvxCwBX5q2i7vTX8XqpBxKJlDtf7SDzatm+3GvSHqD6cAUes5YhkSso\niI9D9cFSlHUa4PZGMHEzXsW+R1/krh7YtO6ITeuO+mXvL56CJtP0wyqKk5eawfnFX9Jm7ST9tg5b\n8DkATv61aLF4NAcHLSox7tLbW2kaPJzuu1ei1WhJPBvJta/3lFp35NJPCFw1HYlcTk5cPBFvfQSA\nfUNf/OeP48ywOeSnphcbF7trP9beHrTdugaJXE7s7oOkXogC4OLsd2gw41WkSgXaQjVXVn1BTlwC\nOXEJWHm50Wazbsqycwt/IkI+AXTtM2LppzRdNQ2pXE52XIJBTgHzX+fUsOAS40pyYfY7+M8eTfV+\nXZFIpERv2GX0py5KWl9zt0tx1Dl5XJz1Nn7TRyKRy9DmFxCx8APyElNKXK6qyE7OZO+cb3jxw9eQ\nKeQ8uKPi15mbAfBoXIOeK4ayqc9Kmg5tj301Z+p1DzSYJrZ9+Aec+uBXur41iFd/nY9MIeParxcI\n336qxHrLc5+YqyrkUJCaztXlH9Fo+UwkCjm5cfFEhazHrkEd/IIncP7VmcXGlObK4nXUDx6PVK4g\nPzmVy8GrzcrJxU7LsiF5TP3KksJCCdVdNawYmsvlO1IWfWdB6Owc3Oy1rB+Tw9LvLcjJB6Uc1o3O\n5eE9TGKSJFRzLn3q+pOqwj4pz/5bW6jm1LT3CZw1BKlchia/kLNzPyUnMdUoj8raFleWfkzjFTOQ\nKuTkxCYQGfIhdg18aThvAmEjZlGQmm4yBnQPJLLy9qTVlreRKuTE7T7AgwtXAAifs5b6U19FIpej\nKSggctH75KlSyFOl4Ni8Ea23vg0SKapjYbgBV5Z+QpOVj9YpgctLdHXYN/DFf/54zgyf/TAX03Gx\nofux8vGgzTdrkSoMz2WXZq/Fb9pI3cOh8guIWPg+eYkp5CWmkNTMnzZbdT/vSrmZwPmNh422UWX1\nm1VZVXnKbFUn0WqL+5WDUJytW7fSq1cvnJ2dee+991AoFEya9PR/bqAsgoODef755+nQoUPpweVE\npXr6J1w+LTc3O35sPqz0wHL04p/fcKyd6Yc4VKQOJ3dzs1+7Ss3BN/QkO5uOrNQcAAZc3MT+VsZ/\ngqcidQ/bzm+tBldqDgA9w76rEttCzdZKzUGG7s8jrK0zsVLzmBX9UZXYH0CVyOPIM/0rNYdOp3ZR\nuNe7UnMAkPeKqxL7Q/TfOt3DtnOoTRme/1BOnjvzPQdaG//pm4rU7eyOSu83Qdd3/htc7NajslMo\nVdMD+yo7BTEC+ne4uLgwevRorK2tsbOzY9WqVUyaNIm0tDSDOFtbWz755BOzyrx37x5z5swxej8o\nKIgpU6b8I3kLgiAIgiAIgiBUJnEB+jf07NmTnj0Nn8L54YcfPlWZ1apVY8uWLWbHl/RnXwRBEARB\nEARBqFhiCq55xEOIBEEQBEEQBEEQhAohLkAFQRAEQRAEQRCECiEuQAVBEARBEARBEIQKIX4DKgiC\nIAiCIAiC8JQ04jegZhEjoIIgCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQU3AFQRAEQRAEQRCekvgz\nLOYRI6CCIAiCIAiCIAhChRAXoIIgCIIgCIIgCEKFkGi1Wm1lJyEIgiAIgiAIgvBvdq5z78pOoVRB\nv++p7BTECKggCIIgCIIgCIJQMcRDiIS/TaXKqOwUcHOz49MG4yo1h/FXPyO02YhKzQGg34XNzPZ5\ns1JzWBP7PncHB1VqDgDVvzvHnpZDKjWH3ue/rTLtYnvgq5Waw6BLX7O2zsRKzWFW9EcAqNlaqXnI\nGMqOwJGVmsPAS5sA2Nm0cvMYcHETB1oPrNQcup3dwdeNXqvUHABejfyySuyPgpONKjUHAEW7yCqx\nLfYGvVKpOQD0OreNo+36VWoOHU+GVnq/Cbq+U/jvEBeggiAIgiAIgiAIT0kjnoJrFjEFVxAEQRAE\nQRAEQagQ4gJUEARBEARBEARBqBBiCq4gCIIgCIIgCMJT0oopuGYRI6CCIAiCIAiCIAhChRAXoIIg\nCIIgCIIgCEKFEBeggiAIgiAIgiAIQoUQvwEVBEEQBEEQBEF4SuI3oOYRI6CCIAiCIAiCIAhChRAX\noIIgCIIgCIIgCEKFEFNwhf+0Gh0DaD29LzKlnORrcRyZv5mCrNxi4zuvHEnK9Xtc2ngAAAsHa9ov\nHoprQx8KsvO5tvsUl7/5vdR6PZ8NpNHkl5EqFaRdv8ufS76k0ES9xcW1XjsJm+oe+jibam4k/XmV\nyx/sIGjFBP37EqkUh3rVOTPjg1JzatDFn15z+yBXyrgfdY/vZ24jLzPPKO6ZV9vTZng70EJyTBI7\nZ39HVnImAIsuLSc9/oE+9uinh7mw+49S6wawbNYOh8ETkSiUFNy5Tspny9DmZBnEWD/bC7s+w0AL\n2vxcUr9+m4KbUQYxLtPXoE5V8eCrtWbVC+Deril+kwYjVcrJuH6X8KWfU5iVY3ac3MaKJotex7ZW\nNZBIiN1znJubfgZAYW9Do1mvYuvrjcxCyY2NPxD36wmTeZRXuzg9dR2uLRvSeNpgJHIZmtx8Lq35\nhtTIm0Zle7UPpMmUAUiVctL+iiXsrQ0mcyguTmlvQ4sFI3D0q4E6J49bP57g+raD2PtWo83K8frl\nJTIJjvWqc2L6+lL3j2+nRnSY9SIypRzV1Th+m7uV/EzjnPxfDCJobFfQQkFuPodCvich4g4AE8NW\nkZmQpo8N++IgUT+dK7XustBqtcyf+xN167kxeswz/1i5Xu0DaTzl5Yfb+i7nStgnpuIkUgnN5o7A\nrYUfAPEnwrn07ncAKO1taBY8DPs63sgsFER9+bPJHDzbBxIw+WVkSjlp1+9yvpgcio2TSmgWbJhD\n+Hu6HLw6NCVo6Viy45P15RwZtQIA13bNqDthCFKlgswbMUQu/xS1iWOz2DipBL+pI3FpHYhEJiNm\n68/E7tb1304tGlF/8jAkchnqvHyuvfMV6VeiAWiyagZ2dWsC8L9di7gfdo1zq7cb1evToTHNp/ZH\nppST+lcsJxd+XeI55Nnlo0i9Hkfk1/uNPuu87g2yVQ84u/zbYpc3a1ubG1fGfVKao5c0rNuloaAA\n6leXEDJKiq3V4+mGP57UsHm/Rv86MwcSUuHg2zJsrWDZNxoib2nRaKGxr4QFw6RYKs2brljVtoVb\nu2bUn/joXHGHy8tMn1OKi5PbWNF44ThsalVDIpEQt+cYNzebPjaL49y2BbXHD0WqVJB1I4ZrKz9C\nnZ1jVozMxhq/uROxrukNEgkJe49wd+vuMtVfFuXVd1ZFGjEF1yxiBFT4z7J0sqXzipHsn/IZ3/Va\nTPrdJNrM6Gsy1tHXkz5fT8O3Z0uD95+ZO5CC7Fy2936L3YNXUaN9I2p0alxivUonO5ovGcuZWes5\n0HcOWbGJBEwZVKa4s7M+5PDghRwevJALIRspyMzm4srNZNy8p3//8OCFJJ65zN29p7l3+HyJOdk4\n2zDw3SFseX0jazuuIPlOMr3m/s8ozruxDx3Gdebjl9bxbtdVJN1S0WPW8wC4+bqTk5bNuh5r9f/M\nvfiU2jniPH4Rye/NIX76AAoT43B8ZZJBjNyrJo5Dp6BaOYWE4KGkh27Adfoagxi7PsOxaNDUrDof\nUTra0WTxOP6YvY6j/WeSHZdAg0mDyxRXf8LL5CakcGzQHE6OWEjN/l1xbFwPgMC3xpObmMyJofM4\n+8YKGs0ciaW7s3H55dguJHIZrVZP5M+QjRwetICrX/5Ey2XjjMq2cLKjVcgYTs74kL0vziUzLpHA\nN18uU1zTWa9QmJ3Hb33ncXDYUjzbNcarQyDpN++xf9Ai/b+E05HE/HqauEMltxErZ1t6rhnODxO/\nYEO3EB7cTaLDrBeN4pxqu9MxuC87R33Epj4rOf3Rb7z08Vj9Z7np2Wzqs1L/75+++IyOVjF65BZ+\n2xv5j5Zr4WRHUMhrnJqxnt9eDCYrTkWTNweWKa7mC+2wq+XJ/gHz2T9wIW4t/PDpFgRA0NKx5CSm\ncmDQIo6+voZmc4YZla10sqPlktc4M3M9+14KJitWRWMTOZQUp8/h5fkcGLQQ15Z+eD/MwSWwHn9t\n3svBQYv0/wqzdRcPjRa8Qfjcdzg1cCrZcYnUe2OIUb0KR7ti43z6dsO6uienh8zg7Ki51Bj8PPb+\ndZDIZTRZNpUrKz7jzLDZ3NoYSsBbk/VlOgbU4/z4xQD81D/E5MWnhZMt7ZaN4vepH7P7hQVkxKpo\nMb2/yf3o4OtFj40zqNWjpcnPA0b3xKNFPZOfmVIZ+6QkKelaFm7UsG6ijF9WyvFxg/d2agxiXmwn\nZdcSObuWyPluoQxXB5g3VIqrg4TPf9GgVsOuJTJCQ2Tk5cOXezTF1Fa1t4XS0Y7Gi8ZxYc57HB8w\ng5y4ROpPeqVMcfXGDyQ3MYUTg2dzauQCqvfvpj+nmEPhaI/f/Elcmb+Wc69MJudeArUnDDc7ptbY\nV8hTJXN++FT+fG021fr2wL5RfbPrL4vy6juFfzdxAVrFDR8+nOjoaLNi7927x+HDhwFYvnw59+7d\nMxm3fv16tm3b9o/lWFVVb+dPYkQMaTGJAFz57ih1+7Q2GRswtBNXQ09x8zfDCzk3/xpc/+ksWo0W\nTYGamKOXqdOjeYn1erQJ4EHkTbLuJABw6/vDVO/V9m/FSeQyWix9nfC1W8lJSDH4zKVZfby7BnFh\n+Vcl5gNQv2MD7l66Q9ItFQBnNp+kWd8WRnFxEbGsab+M3Ixc5BZyHDwdyE7NBqBmy9po1BrG7ZjE\ntANz6Dq1BxKpeXf6LJu0IT/6CoXxdwHIPLAL62d7GsRoC/NJ+XwZmge6u9D5N6OQObqATDdRw8K/\nBZaBbck8GGpWnY+4tmlC2pWbZN+NByBm50Gq9WpXprgrb28m6v2tujxcHZEq5RRmZqOwt8G1VWP+\n+lyXU25iCidfXUh+WqZR+eXZLrSFavb2eJO0azEA2Pi4mczBs20AKZdvkfmw7Bs7fqfG88Y5lBTn\n7F+L27+c0h0ThWruHw+netcgw23ZrD4+XVtyftkmo7KfVOvZhsSHx/Dgtq5tXtx6HP8Xg4zi1PmF\n7Ju7lSxVOgAJETHYuNojVcjwbu6LVq1l0NY3eXXPPNpO6mV22zTXtq3n6duvKT17NfpHy/VoG0DK\n5ZtFtvVhk/ukpDiJTIrcygKpUoFMIUeqkKPOL0Bpb4NHm0ZEfvoDADmJqRwctsRk2amRj8uO/v4w\nNUy1zRLiJFJdDjKlAqlCjlQuR5NXAIBLYF3cgvx57tsldNo4D9fmfvoy06Ki9cdcbOh+PHu2N6rX\npXVgsXHuHVsR9/MRtGoNhRlZxB84hVfPDmgL1Rx7YTwZf90GwMrbg4K0DAAsvdyQWVvRcI7uBka7\nZaNQOtgY1ev9TCOSLt8m447uHHLtuyP49jZ9DmnwSmeu7z7J7X3GNwM9W/nh/Wwjru04YnJZUypz\nn5hyKlJLo9oSanrojqtBnaXsOaNFq9WajN+4V4uznYSBnXRfM1vUlzCujxSpVIJMKqFhTQn3zBxw\nrGrb4slzxZ1dB6jWs/RzStG4qHc2cfX9bwDDc4q5nFo1JXcV11kAACAASURBVCPqBjmx9wG4t/s3\nPLq3Nzsmet0Goj/8GgClixMShYLCLPPrL4vy6juFfzcxBfc/5MyZM9y8eZMuXbowf/78yk6n0tl4\nOZEZ//iiLTM+FQs7KxQ2lkZTqE4s1U3F8WnbwOD9hPBb1Ptfa+L/vIFUqcC3ezM0heoS67XydCG7\nyMViTmIKCjtr5DaWBlOGzImr1bcjuaoH3PvdeBSp8bRXiPxwp8lpSE9yqOZE2r3HU2fT7j/Ayt4K\nC1sLo2m4mkINjXo0ZsDawRTmF7L/nb0ASOVSrh+/xp5lP6KwVDJ60+vkZuRyYsPRUuuXuXigTk7Q\nv1YnJyK1tkViZaOfhqtW3Uetuq+PcRw+jZw/joG6EKmTK44jZ6BaORnbrv1Kra8oKw9nchIef9PJ\nTUxBYWuN3MbKYMpUaXFatYamIW/g+Vwr4o+cJzPmHg4NfclLeoDvsOdxeyYQqULBzW/2kHUn3jiP\ncm4X2kI1Fs72dNkWgtLRjrA5H5nIwdmw7IQUlCZzKD4uOeImtV54hqSL15Ep5Ph0bWF0TDSdMYiI\nD3eZ1TbtvBzJuJ+qf50R/wALOyuUtpYG03DT41JIj3ucU+d5/blxKAJNgRqpXMrtk1c5umo3cgsF\n/TdMID8zlz++Ln26vLkWLOoFwJkzt/6xMgGsPZ0Nbi4Vt09Kirv943F8ugXR58A6JDIpCacvc//o\nRZwDfMlNekD94T3xatcEqVLOtc17jXPwcCY73rBsU22zpLjbP+ly6L2/SA7HLgKQn5ZJzC+nuPf7\nH7g0rccz66ZycOACAPKKHHN5ickobK2R2VgZTMO19HApNs7Sw4W8RMPPbOvWAECrVqN0dqD1ptUo\nHe0In78OAKWzAynnIoha8yUdO7SkMDuXZ5e+yuEphseMjZfh+mYlpKK0szZ5Dnk0rbZam4YG71u5\nOdAq+BUOvP4efgM7Gm374lTGPilJfAp4FpnY4eGkm2KblQu2VoaxqRlaNu3TsGOxTP9eu4DH4x33\nkrRs2a9h8UjzxkCq2raw9HAh14xzSmlxWrWGJiET8ezSioSH5xRzWbi7kJeYpH+dp0pGbmuDzNpK\nPw231Bi1hgaL3sStU1uSjp0l+4759ZdFefWdVZV4Cq55xAhoFRIaGsqbb77JuHHj6NWrF6GhulGV\nDz74gBEjRvDaa6+RkpJiclm1Ws3nn3/OL7/8wqFDh/QjpykpKYwdO5bBgwczaNAgbt++rV8mJiaG\nAQMGcPXqVf744w8GDhzIkCFDGDNmDJmZxqMn/zYSqenmrdWYN+0H4PTqnaCFAaEL6Ll+PLGnolAX\nlHwBKpGY7ny0ak2Z4+oO7cnVL340inEOrIvS0Za7e0+Xtgol1qVRm757HbkvgiVN5nPg3d8Y8814\nJBIJYd+e5qdFoajz1eSm53DsiyME9GpiVv0UNxqlMd6WEgtLXKauRO7pQ8pny0Amw2XKch5sflc/\nOlomxbWDJ/aHOXEXF33Mga7jUNrbUu+1fkjlMqx93CnMzOH0mCVcmLce/+nDsG9Q23i9KqBd5KWk\ns7fHVI6ODPk/9u47vqb7f+D4667svSVBSBARktijRWOUVoc9Y/arKFq1VxAUpUW1RatD8atRtEop\nahYRsRKxg5CQvfe49/fH5cp1b9IYGdrP8/HwaHPP+5zP+37O53Pm55xLk3n/w6yGU9mWrSxjDkol\nFz7bDCoVr2+ZR5vl44g7FYGyWJ+w9fHA0MqcqD+C9S7jSSX20yfXz0MKYwPeXjUCq5r2/DldfVc6\nbMtJDgVtoyi/kLyMHEK/O0Sdzj5lKr+yvYh14jXqXfJSMtj12jh2d56AgaUZdQd3QSKXYebqQGFW\nDoeGLiB46tf4TtId4lrS3WKdtllKnNf76hx+9x/HntfVOdQJUI9yODVxleZiSdKFGyRdvIFDK2+9\ny9JXLpJS2oi+nIrVXX5yGsffGkXIe7NoMHs0JtWrkR5xk4tTl5GfpL4od+GrXbi2bYhUIdNeThnX\nTUkkchntlr1PyJLN5CSm/fMMxeethHVSGqX+XYXezea2oype85Pgaq+bW8QdFYMXF9G/g5T2vmU7\nBK1qdVFiu9Bpt/8cFxb4FX91GonCwhSP9/QP79abQhmOb8oSczVoJSfeHIrcwoyaw3QfxxCE8iLu\ngFYxmZmZfPfdd9y5c4dRo0Zhb29P586defPNN9m0aRNr165l+vTpOvPJZDJGjhzJrVu36NChAz/+\n+CMAX3/9Nf7+/vTv359z584RFhYGwO3bt9m+fTvLli3Dzc2NJUuW0LVrV4YMGcKhQ4dIT0/HzMys\nIr/6C9F03Fu4+asPPA3MjEi6HqOZZupoRW5qFoU5+WVenoGZEcHLtpOXph6a4vve66Q/HNJbXP3R\nPajWzg8AhakxaTejNdOMHKzJT8ukKFe73OzYJKwbupcYZ1mvJlKZlMSzV3XKc+3cgru7T0AJw58A\nOk/qilcn9UGeoZkRsVcf3120cLIkOzWLgifqwtbNDnN7C+6cUb+85szmYHos6oOxpTGeHby4f/k+\nsVfUV0klEv7xZPyRosQ4DD0eH3DKbOwpykxDlad9F0Fm64jdlM8pjLlDQtBoVAV5GNRpiNzBBauA\nCeoYK1uQSpEoDEj5ZmGJZb6ySf2SE4WpCemRdzWfG9nbPKxn7Tu/ubGJWHm7642za9mIjJt3yUtM\npSgnj/t/nsTJvznRu48BaP6bHR1HyoXrWDVQL6ei2oXczBiHZl6ag6jUq1GkXb+LRR1XADpvCVLn\nYGZE2o3HORg7WJOXlklRjm4Otg1r640zdDLj4vKt5Ker71x7DntDM+QNoMbrzbnze+lts81Hb+LR\nQX3xwsDMiIRrj6+8mztakaOnbQKYV7Omx7ejSIqMZcvAlRQ+HELn9W5zEq5EP16ORPKPIxUqU4Mx\n3XF+1C7MjMu0TrJik7Ep1i6Kx7l2aMq5xRtQFhahzMzhzq6/ce3UjJi/1MNBb/92HIDMe/Eknr9O\n9c7NAej4sF3ITY1JfyIHvW3zQTI23u5641w6NOXC4g2oCosozMwh6ve/ce3YjDu/HsO9jz9Xv9sN\ngNfo7tg38cSyTnUADOysNMsztLehIC0T5ZN9My4RS28PvXG5sYkY2GovIzc+GbmpMdZNvUk4qn4W\nOOPabTJuRGHmUQMDW0sU5qYkHH84gkAiQaVSqUc5jH2HGq+p9yEKU2NSitWLiYMVeWll34fYNaiJ\nuYsdzaeon0M0trNEIpUiM1Bwco7u8HSv0d1xbq9uFxW5TtRVUPpdm2q2EF7snWbxKWBhCiaGuvPt\nC1EyfaBM5/M/TitZsFHJzIFS3mxZ+slnVauLOu/3wqFtE00+GTfvaaYZlrRPiUvC6ol2q71PuUde\nYgpFOXk82K/ep5RVbmwC5l6Pnxk1tLOlID1Dq++UFmPd3JesW1HkJ6agzMkl/uDf2LdrWebyBeF5\niTugVYynp3oIaLVq1cjPV29cmzZVv9SgcePG3L79dEMYbt++jZ+fn2b+t99Wv3jm2LFj5ObmIpOp\ndxKjRo0iPj6eIUOGsG/fPuTyl/PaROiq3/ml+wJ+6b6AHX2X4OhTG8uaDgB49WvLnUMXn2p5Xv3a\n0Wy8us6Mbc2p3/sVbuwO0Ym7snqH5uUwRwbPw6ahO6Y11G8rrd3LnwdHzunME38qvNQ4uyaeJJy5\nrDcvuyaeJITon/bI/mV7NS8L+vLt5dRo7IZdLXsAWga0IeLPSzrzmDtYMODrIZhYq5+H8uvelNhr\nD8hOzcaxXjU6T1Q/Wyc3UtB66Ktc/P18qTk8khsWjIGHN3In9UGnWcee5IYe04qRmlrgMGctOSGH\nSfpiJqoC9Y40/0Y4Dz7oRty0gcRNG0jmwe1knzpQ6sknwN8DZ/D3wBmcGBaItXcdTKqr7wbW6NmB\nuKO6Q5oTgsNLjHPu1II6I9VXp6UKOdU6tSQpNIKc+wmkXbmNazf1czUGNhZYN6pD2hX1kVpFtQtV\nkZLGc9/Dxkd9sGFe2wVzt2qkhKufH3/0YqCDAfOxbeSO2cNlu/d+jftHdNdh7KlLJca5934N7w/U\nL/MytLGgdo923N37+G6nfRNP4v6hbZ5YsUfzsqBNvZbi7OeGlZu6bfoMeIWbB8N05jGyNKHfzx9x\n48+L7P7wB83JJ4Bd3Wq0mdBN3TYNFfgFtOXqnrK9IKsyRHy9kwN9AznQN5C/AoKeqGt/vesk7lR4\niXEpV6Ko3ln9bKJELsO5vR9JYZFkxSSSfPkObm+/AqjXl63v4wPSRy9cORwQhE2xZdfuVXIOJcWl\nXonCtXgO7dQ5FGTl4N63Iy4d1Pux+4fOUpRfwF8D1C8AsizW51x7dCL+uO7Lo5JOXywxLuFYKC5v\n+aufgzUzwbFTaxKOhqBSKmkwazSWjdTP85nWcsXUzYW0iBvIjI2oN3E4cgv1ds57+Ovc2X8WlVLF\nhS9/Y1fPIHb1DGLPgE+wb+SOeQ31PqRe3/bcPXShlDWrLeHiLbZ1nKJZ3rUtR7m974zek0+Ay6t3\nVso6sapXA2vv2jrLLq51AwkXb6mIilNfWNpyRIm/r+6JWlqWinvx4Ouu/fn+UCWL/0/JNx/L/vHk\nsyrWxY21v3Bi4HRODJzOqWGBWGntKzoSf0z32d/E4LAS45w6tsTjf+rHSaQKOU4dW5J0puwv6UkJ\nuYhFg7oYu1YDwLl7Z5Ke6Dulxdj7t6bmMPXL7SQKOfb+rUk5F17m8oWSKVWSKv+vKng5zzL+xfRd\neQsPD8fR0ZHQ0FDq1Cn5LWlSqRTlE0OD3N3dCQ8Px9PTkzNnznDkyBGMjIwYMmQINWrUYOrUqWzY\nsIFdu3bRvXt3pk6dytq1a9m6dStjx44toaSXQ25yBkdmrKfTypHIFHLS7yVwaKr6hT323jVpNz+A\nX7ovKHUZ57/Zi/+S4fTZFQgSCaFf7ibhUlSp8+SlZHB27re0WDoOqVxOVnQ8obPXAmDlVYvGgcM5\n1G92qXEAZjUcybqfqLcMsxpOZN9PKHNdZCVlsm3i/zFo7TBkChnJUUls/kj9AgTXRtXptbQfK15f\nyp2QWxz6Yj+jto1DWVREelw660esA+Dg5/t4d0EvPj44DZlCRtjuC4T8X9mGACvTU0heE4TthMVI\n5AoK46JJ/mouitr1sRk5i7hpAzHt1BOZnRPGzV7DuNlrmnkTFoxBmfl0w9eKy09J52LQWpos+RCp\nQk5WdBwX56wGwLJ+LRrO+h9/D5xRatzl5ZtoOGMEbbcsQaVSEXfkLLd/3gdA6KTP8Z46jBo9OiKR\nSrixbgdpl3V//qQ820VRTh7BH6/AZ/JA9c+w5BdyZsZqcuJTtHNIziAk8DvaLPsAqUJOZnQ8p2d+\nC4C1lxvN5gxnf9/AUuOufLeHFgtH0mX7ApBIiFjzK8kRjy+Mmdd0JCtGf7vVJzspk71TN/LOl+8h\nU8hJvZvAH5N+AsCxYQ26fDKQ9W8twnfgq1g421Cns4/W8NotAV9w8os/6Di3L0P/mIlMIePaH+cJ\n23KyzDlUJnVdr6P1srGaug6Z+Q2gXidN5wzngGad6I+7sHQTftMC6PLrIlRKFfGnI7j6wx4ATk5Y\nSeMZg3Hv7Y9EIuHy2l9pOnuYdg4pGYTOWUfLpWMftv14QmY9zqHJnOEc7BtYatzFZZvwnRZA552P\nc7j24x5Qqjj50Qp8pwbgNbo7qqIiTk/5ivxU9WMel+evptGij5HI5eTExHFp3pcAWHjWxmvmKIID\nplCQkl5iXPSO/Ri7OtJy41KkCjnROw+Scl79000Xpyyl3oQh6hfO5BcQPnslefHJ5MUnc2/rXpp9\nMx8A8+r2nJzzk866yU3O4O9ZP/DaitFI5XIy7sVzfMb3ANg2qEmboCHs6hn0glqCtspYJ+3W6Y6u\nesTWQsKC4VImfFVEQRFUt5ew6D0pl26rmPNjEdvnqQ8n78aDnRUo5NrHMit+UaJSwZwfH49M8POQ\nMCtA905pVa+L/JR0woPW4Lf4I6QKOdnRcYTN/RoAi/q1aTjrf5wYOL3UuKsrNtJg+ghe2fwpqFTE\nHQ3lzuZ9/1gXjxSkpnHtky/xWjAZiUJObkwsV+d/gZmnO/WmjeHs0IklxgBEfvkjdSePoumGFahU\nKpKOhxCzdU+ZyxeE5yVRlfQKM6HC7dixg1u3bjFp0iTy8vLo2rUrLi4uuLi4EBMTg6mpKUuWLMHS\n0lLv/JcvX2bChAmMHz+ezZs3M3fuXKytrZkxYwZZWerhcp988gm//vordnZ29O/fn8DAQJydnWnV\nqhULFy7E2NgYqVRKUFAQ1atXLzXfhISMF14HT8ve3pw1nro/N1GRRl1dyw6/wZWaA0CP8z8xxfXD\nSs3h0+iV3Oun+wbTilZ98xn2NNV91q0ivRn6f1WmXWzxGVqpOfS9+CNL3T+o1BwmR6pfMFPEpkrN\nQ8ZAtvoMqdQc+lxU34H7xbdy8+h1YT0HWuj+nEZF6nR6Kz82eK9ScwAYGrGuSqyPghOV/6ZSRZuI\nKlEXe5vp/rRKRet65meOtnm6F++9aO1O7Kj07Saot50vg2Nt9P/cX1XS9kT5/eZrWYk7oFVIjx6P\nNzKGhoaan1QpKy8vL/78808A3nzzTc3na9as0YobN+7xb6EFBT2+ert169anKk8QBEEQBEEQBDUV\nVWOIa1UnTkBfMvn5+YwYMULn81q1ammdTAqCIAiCIAiCIFQ14gT0JWNgYMCGDRsqOw1BEARBEARB\nEISnJk5ABUEQBEEQBEEQnpOqirxltqoTP8MiCIIgCIIgCIIgVAhxAioIgiAIgiAIgiBUCHECKgiC\nIAiCIAiCIFQI8QyoIAiCIAiCIAjCc1KKZ0DLRNwBFQRBEARBEARBECqEOAEVBEEQBEEQBEH4j1Mq\nlQQGBtK3b18CAgKIiorSmn7o0CF69uxJ37592bp16zOXI4bgCoIgCIIgCIIgPKeX/WdYDh48SH5+\nPlu2bOHChQssXryY1atXA1BQUMCiRYv45ZdfMDY2pn///vj7+2NnZ/fU5Yg7oIIgCIIgCIIgCP9x\nZ8+e5dVXXwXA19eXS5cuaaZFRkZSo0YNLC0tMTAwoEmTJpw5c+aZypGoVCrVC8lYEARBEARBEATh\nP+qvlr0rO4V/1CF4W4nTZs6cSefOnWnXrh0A7du35+DBg8jlckJDQ9m4cSMrVqwAYOXKlTg7O9O7\n99N/ZzEEV3hmCQkZlZ0C9vbm5F56rVJzMPI+zO4mAys1B4BuZzdV+oavQ/A2Trz6TqXmANDm+G9V\noi6K2FSpOQDIGFjpecgYyP7mfSs1h84hWwDY6jOkUvPoc3F9lVgfQJXI40CLPpWaQ6fTWyu9bYK6\nfVaF9bHTL6BScwDofn5DlaiLI617VmoOAO1Pbmdf836VmkOXkM2Vvt0E9bbzZfCyvwXXzMyMrKws\nzd9KpRK5XK53WlZWFubm5s9UjhiCKwiCIAiCIAiC8B/XuHFjjh07BsCFCxeoW7euZpq7uztRUVGk\npqaSn59PaGgofn5+z1SOuAMqCIIgCIIgCILwH9epUydOnDhBv379UKlUfPLJJ/z+++9kZ2fTt29f\npk2bxogRI1CpVPTs2RNHR8dnKkecgAqCIAiCIAiCIDynl/0tuFKplKCgIK3P3N3dNf/v7++Pv7//\n85fz3EsQBEEQBEEQBEEQhDIQJ6CCIAiCIAiCIAhChRBDcAVBEARBEARBEJ6Tkpd7CG5FEXdABUEQ\nBEEQBEEQhAohTkAFQRAEQRAEQRCECiFOQAVBEARBEARBEIQKIZ4BFQRBEARBEARBeE4v+8+wVBRx\nB1QQBEEQBEEQBEGoEOIOqPCvdexsLl9sTCe/UEXdmgrmjrHCzOTxNZffj2Sz4fdMzd8Z2Srik4rY\n/40jcpmEBd+kcu1OAcaGUt7xN2bAG2ZlLtvhFV88x/ZFqpCTfvMeYUHfUpiV80xxTZZ+RF5CCpc+\nXQ+AbVMv6n/YH6lcRlFeARFL15MacQuA5huXIVUoyLwZxZWFqynK1l6WbevGuI8ZoBsjlVL3wyHY\ntPBBIpNx9/92EbPzAAB2rzTBa/ZYcuMSNcs5O2o2Rdm51BjQjWrd/FEVFVGQmq7z/axbNaHm+4OR\nKhRkRd7h5uJVOjmVJcZzwTTyE5O5teIbjN2qUzfwY800iVSKqbsb937aik2b5kgVCgBkJsYv5Psb\nV3fCa+YYFJbmFGbncjloFdlR9wFouGgiZh5uFOXkApBy9hI3Vq4vVqIVUvxRskOnbv6JSqVi5vRd\neNSxZ/iI1k89/4tSXnnYtfGjzpj+SA0UZNy8S8SCNRTp6SP/FGfoYEuL7xdwauAUCtIytOY1dran\n5frFnB2/UG8O1V71oeH43kgN5KRdv8eZud9RmJVb5jiJVILf9MHYN6kHQOzfYVz8fDMABham+E0b\nhIW7CzJDBVfW/U7U7pPPXF+P/NvahV0bPzxGD0BqoO6TEQtLbgd646QS6n00BNuHfTdq0+9EP+y7\njxhVs6fl+iWcG7+A9KvqbaX7+31x6qTOu/6UEVxb8RPK/AJNWeXVNuUWptSfNBzTWi7IDA249cNO\nHuw9/sz190h5tQvHV3xoMK4PUgMF6TfucW7et3r7SGlxtXp3wK17e2SGClKu3OH8vHUoCwoxr+2M\n36zhyEyMQKUi4outxJ8Kf+6cy6MubFo3pvaoQUgVcjIjo7j2ydc6+5eSYqQGBtSZ9B7m9T2QSKSk\nX77OjWXrUObnY17fHY8PhyMzMgSZlHsbfyXuz2Ol5mLfxo+6Y/pp2l34grV622dJcVJDBV6Th2Pp\n5Q5SCWmXbnJ56fco8wqwqF+b+h8PQWZsiEQq5dZPu/Tm8DJuO4WqRdwB/Y9YtWoVP//8s87nY8eO\n1fns559/ZtWqVRWRVrlJTisi8MtUPptsw65Vjrg4ylm5UfsE6a32Jmz9zIGtnzmwaYk9dlZSpr1n\nia2VjKU/pmFiJGXnCgc2LrLjxLk8jobqblz1MbAyx2fOSM5OXsGRnpPJjo7Hc1zfZ4pzH9wNG796\nmr8lchmNF40lbME6jvWfwY3vfsU3aDQGVuYAhE9fRnDfD8m5H4fHBwO1lqWwssBr1hi9MS7dO2Jc\n3YnTAz/mzPBpVO/7JhZeHgBYNqxH1P/tImTwZM2/ouxcrJs1xPmtDoS+N5OQgMnEHzmtVZ7cygKP\n6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8Sz1zgcQjJ3F8q7NmOcAL+/4N5n5I\n9I79BPefwO11W2i4aJJmmZbedTk7OlBTL49OPiUy9aZVij/Pcp0vMjKB4UM2sG9vxFPP+yKVVx4K\nK3O8Z4/m4rTPOdF7AjkxcdT9YMBTx1V7oy3Nv5mLkYONzrxSAwXe88YhUeivf0Nrc5oFvcfJiavY\n9840smISaPRhn6eKq9mtDeZuTuzvNZP9fWZj36Qerp2aAdBs/v/IiU/hQN9Ajo78FL+pgzB2sH6m\n+nrk39guGswaQ9j0zzjZ5yOyY+KpM0Z/OygpzrV7J0yqO3FqwEROD5tOjX5vYOHlrplXaqCg4RPt\nwLlbe+xfacLpodMByEtMwWNUX01Z5dk2vQPHkBufRHDANELHLsBz4lAM9bTfp1Fe7cLA2pwm80Zy\nevIXHOw+hazoeBqM17MvKyXO2b8p7v068feoxRzsNR2ZkQEeg7oA4DN9KFG/HeNwv1mcm7uO5kvG\naradz6o86kJhZYHnzLFEzFhKSP/x5N6Po/aYQWWOqTm0JxKZjNDBEzkz+GOkhobUGNwDgAYLJ3Nn\n3RZCh04i/OMFuI8firFrtVJyMcd79ijOT1vO8d4fkx0TT70P+j9VnPuw7kjkMk4MnMqJAVOQGRpQ\ne8i7APgt+Zib32zj5KBphH60GM+PAnSW/TJuOyuSUiWp8v+qAnEC+h/35ZdfVnYK5eLUxTy8PRTU\ndFYfdPR53YQ/juegUqn0xv/wayY2ljJ6dzYF4HJkAd3aGSOTSVAoJLzaxIiDp3SvMOpj36ohqZdv\nkXUvDoCoXw7i0rXNU8fZNvXCvnUjorb/pflMVVjEwa7jSL8WBYCJiwP5aZnYt2oIQM69WABiduzH\n6fVXtcqzadGI9CuRemPs27Xgwe7DqIqUFGZkEXfwBE5d1NMsG9bDpqk3zX5cQpM1QVj51gcgPymV\nq59+q7kKnHHlllZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHIC9v2rUkJPqu1\nHOCFfH9DextM3ZyJO3ACgKRTF5AZG2JerxZG1RyQmRjjOXUkzTcuo/6sMcgt1HfJzevVBkDJs93Z\n+HlTKN17+NKla4Nnmv9FKa88bFv4kHY5kuyH6+Le9gM4dXnlqeIM7axxaNeMcxMW6y3Dc8pw7u8+\novfOPIBjK2+SL90i8666/93ceogab7R6qjiJTIrc2BCpgQKZQo5UIacovwADC1McWzYgYs2vAOTE\np3Bw0Dzy07PKXEf6/BvbRdqVx+s3esd+zXanONsWPiXGObRrTszvRzR9N/bASap1aauZ13PyCO7v\nOarVDsw9axN/9AyFmdkAxB0JwdG/xeOyyqltyi1MsW3eiMhvfwEgLz6Z08NnUZCWyfMor3bh0LIh\nKRG3yHrY9m9v+4vqXXXvKJYWV73bK9zYuJeC9CxQqbiw8Afu7lZvTyVSKQoL9T5XbmpE0cM70M+j\nPOrCurkPGVdukvNw/3J/x584dn61zDGpFy4T9eMvoFKBUknm9VsYOdkhNVBw5/ttpISGAZCXkExB\najqGDrYl5mLXopFOu6ump32WFpd8/iqR3+98mI+K9Ot3MK6mzufmuu0knbmkzic+mYLUDJ1lv4zb\nTqHqEUNwK1FBQQHTp08nOjqaoqIihg0bxs8//0ytWrW4ffs2KpWK5cuXY29vz2effUZoaChKpZKh\nQ4fStWtXAgIC8PT05MaNG2RmZrJy5UpcXFxKLO/gv66AwQAAIABJREFUwYPs3buX3NxcZs2aRaNG\njWjTpg0nTpwgNDSUTz75BAsLC2QyGb6+vhVYEy9ebGIRjnYyzd+OtjIys1Vk5agwM9G++pOSXsRP\nuzLZvNRe81nDOgbsPpqDr6cBBQUqDgbnIJeV7aqRkaMtubHJmr9z45NRmJkgNzXWGl5bWpzM2JAG\nkwI4PXYJNXv4ay1fVViEgY0FbTctRGFlzrnpqzBzc9aKyYtPQm5mojUM1cjBTmsYbfEYIwdbcuOS\ntKaZedQEoCA9g9i9x0g4GoKljyc+n07h9KBJZN26p4mXKOS4j9G+42jgYEd+8fISEpGbmWrlVFqM\nzNiYWh++R8TEuTi9/breunb7YBh3v92Igb32coAX8v0NHWzJS0hR76g105IxdLBFIpeRfCaca0u/\nJT8lnboThuI1czRhU5eSfvnmw+hsvXn/k1mBXQEIDr79TPO/KOWVh5GjLbnx2vWtMDNBZmqsNZSs\ntLi8xBQuTv1M7/Jd3vFHKpcT89shag/rrjfGxMmGnLjH/S8nLhkDcxPkpkZaQ8lKi7vz23FcOzXj\nrQMrkMikxJ26xIOjF7Dxrk1uYip1A7pQrU0jpAZyrv20l8youKevrGL+je0iL65s7aCkOCNHW/Li\nn+y7NQBwedsfiVxGzG9/UWvo43aQHnGDGv3e5N429YUt5zfaYmhnrSmrvNqmiasTeUkp1BzYDbtW\nvkgN5ERt3E323Qc6sU+jvNqFuu0//o458ckoSuwj+uPMajpheMmC1l9OxsjeiqTz17m0Qj3U8uLi\n9byydjoeA7tgaGPBmWlfoSpSPlfO5VEXRo525Gntp5J09mWlxaSEXNR8buhkj2ufblxfsgZlfgGx\nux9fYK72TidkxkakX7peSi7a7S63jO2zeFzS6bDHcU521OzXlYhF61DmFxCz67Bmmuu7HdTDo5/w\nMm47hapH3AGtRFu2bMHGxobNmzfzww8/sGLFClJSUmjcuDEbNmyga9eurF27lqNHjxIdHc3PP//M\nTz/9xJo1a0hPV1/NbdSoET/++CNt2rRhz549pZbn4uLCTz/9xMKFC5kzZ47WtHnz5vHZZ5/x448/\n4urqWm7fuaKUcKMTqZ4Wv/1ANq81M8LV8fH1mIlDLZBIoO+kBCZ8mkwrH0NKGMmnQyLRf6L65I61\npDgk0HjROCI+20BeYqrekPzkdA52HceJYXPxmfM+htYW+stUFitTWkJeSiUSPdMe5Rs+bRkJR0MA\nSLt4ldTwa9g0b6SJU1hZ4LdytuY5SM3XKKW8f4pBIqHu3Enc/mIdBUkpekPMvT2RW5qTcOBYmcp6\nlu9f4nKLlKRH3CR82lLyk1JBqeTWt1uxbdMYiVxc1/snJa73J/tIGeOKM69XC9ceHbm86NvScyip\nnyrL1k9VSiVeo94lLyWDXa+NY3fnCRhYmlF3cBckchlmrg4UZuVwaOgCgqd+je+kAVjXdys1J0FN\n5yREov9QRVWk1N+vlcqH7aATVxbrtoMHe48TdyiYJl8FApB15z7KgsKHRZVf25TK5Zi4OFKUmc2Z\n/wUSNnMl9SYMxtyzVonzVKoS92WqMsdJ5TIcWnoTMnUVhwcGorA0xWtsL6QGCpov/oBzc75hX5cP\nOTZiAb6zhmHs+HzDkctFWbYVZYgxq1cbv6/nE7N9L0knz2rF1QjojtuIvoRPWYQyP7/kVPQdxICe\n9vnPcRaetWjxzVzubttPwt/ntMJqDX4bj5G9ODfxU90cxLazVCqVpMr/qwrEkVIlioyMpHVr9TAV\nMzMz3N3dOXHiBC1btgSgcePGHDp0CEdHRyIiIggIUI/FLywsJCYmBgAvL/WzcU5OTiQmJuop5bFm\nzdTj6+vUqUNCQoLWtMTERGrVqqUp9+7duy/oW1YOJzsZ4TceD+eJTyrCwkyCiZHuRvnPEzlMHWGp\n9VlWtpIJARZYmqvjv9+ZQY1qJXeXuqN64ti2CQByU2Mybj6+O2hkb0N+WiZFuXla8+TEJmHl7aET\nZ1bLBRNne7wmqJ8fMbS1RCKTIjVUcHn5JuyaNSD2cCgA6VfvkHE9Cp54bsbQ3oaCtEyUxcrMi0vE\nskEdvTG5cYmaOwCPpj26Q+jS83Wi1u/UTJMgQVVUBICZRw0aLZ1KwpEQbqzaQIeTW4qVl4BZ/bqP\nl2lnS0F6xhM56Y8xcauOUTVH3MYOB8DAxvphHRhwc4l62Lid/ysk7DsMKpXOcoAX8v1zYxMxsLXS\nqdu8+CSsfDyRW5iReFy9LiQSCShVOjthQc19ZG/s2zYF1H0k8+bjbcyjdfFkH8mNTcSygcc/xhXn\n/EZb5KbGNP9uvmaehkHjNNM7bQkCQGFmTNqNaM3nxg7W5KVlUpSjffCXFZuMTUN3vXGuHZpybvEG\nlIVFKDNzuLPrb1w7NSPmL3WbuP2begh25r14Es9fx8a7dhlq6t9NQiMkPB6pY2D3uH/p224B5MYl\nYumt2w6UuXk6fdTQ3obc+GSqvdEWmakxzdct0HzuHTSeG6s2kHLxKrF//s2d9b/S6fRWrHzqIZFJ\nablxSbm2zbxE9d2gmD1HAciJjiPl4jWt5VS2+qN74NSuMQAKU2PSi+/LHKxL3JcV7yPF43ITUrl/\n+Kzmzti9PSfwHNkdCw9XZMaGxB6/AEBKeCTpkTFYF1tOVZEXl4hFsX2Hgb2+fVnpMQ4d21Bn0v+4\n8dk64g/8rYmTKOR4zhqHqZsr50dOJzdW+9gMwGNkbxxKOL4wLPH4Qrd9Fo9z6tQKrykjuLLsBx78\neUIrn0aBozGt7crpEYHkPFDn02BMd5zb+QFi2ym8GOIOaCVyd3cnNFTd2TIzM7l+/Tqurq5cuqQe\nf3/u3Dk8PDyoXbs2LVq0YMOGDaxfv56uXbtSvXr1py4vLEw97OLatWs4O2sP2XR0dCQyMhKA8PDn\nfwtdZWvla0jY9Xyi7quvam/bn037ZrpDSdIzldyNLcKnnoHW59v2Z/PVZvVd5qTUInYczKbrq8Yl\nlnd9zXaOD5jB8QEzODF0DtYNPTCt7ghAzV4diDt6VmeehOBwvXGp4Tf5683xmuXd3f4XD/YHEzZ/\nHaoiJY0CR2Ltoz7ZMqvtgqmbM/d+Ux/QGFd3AsCle2cSjp/RKi/p9EUsvevojUk4doZqb72mfi7D\nzATHTm1IOHaGwuxcXHt2wf419fNRZnXdsPDyIOnUBYxdnWj81Vxuf/eL+uU7T5x4pYZcwLxBPYwe\nvlDB6d0uJP8dUqaYjIhrhPYaoXnRUOxv+0j862/NySeAhW8DUs+G6V0O8EK+f15CMjkxcTh2VF8o\nsmnhg0qpJDPyLjITI+p+PFzz3GeNQW8TfzhYpx4EtchvthE8aCrBg6YSMnwWlt51MHm4Llx7dCL+\nWKjOPEmnw8oUV9y15es50WuCpqy8hGTCAx+/VO1A30AO9A3kr4AgbBu5Y1ZD3f/ce/tz/8h5neXF\nnQovMS7lShTVO6v7hkQuw7m9H0lhkWTFJJJ8+Q5ubz98JtDGAlvfOiRfrtyhs1WBijCU7EXJXgDd\n9ftEv4XHfVdfXMKxUFze8i/Wd1uTcDSE68vXc7L3RwQHTCE4YAp5CclcCvyChONnsajvjs+SSUhk\n6sc0DKzMubl2a7m3zZz7CaRfuYXzm+rn3A1sLLFqWJf0y7dKna8iXVm9g8P9ZnG43yyODJ6n3kc9\nbPu1enXgwZFzOvPEnbpUYlzMwRBcOjZHaqh+O7nza000z4vKzYyx8VGftJm6OmBey5m0q1EV8TWf\nSnLIBSwa1NW8HMj53c4kPtFOS4uxf60lHhNGEPbRfK2TT4AGCyYhNzXm3Psz9J58ApqXAp0cNI3g\n4bOx8vbQtLsaPTqW2D5LinP0b0H9iUMJHf+J1skngN+ij5CZGmudfAJEfL1TbDuFF0rcAa1Effr0\nYfbs2fTv35+8vDzGjh3Ljh072LlzJz/++CPGxsZ8+umnWFlZERISwoABA8jOzqZjx46YmZX9J0Ee\niY6OZvDgweTn5xMUFKQ1LSgoiClTpmBmZoapqSmWlpYlLOXlYGspI+gDKyYtS6agEFydZCwcZ03E\nzXzmrU5l62cOANyNLcTeWopCrj0kYUQPM2auTKXHR/GoVDCqjzneHgb6itKRn5LOxXlrafLph0gU\ncrKj47kQuBoAy/q1aDT7fxwfMKPUuJIU5eQROvFzGkwchEQuR1lQwPlZX5FxQ33FvuEnE5Eq5ORE\nxxER9CXmnrWpP2M0IYMnU5CSzuX5X+vEgPqFPMYuTjTfsAypQk7MzgOknr8MQNiUJdSbOILa7/VB\nVaTk0qzlFKRlqH/OxNCQ6n3eoHqfN3RyLUhN4+aiL/CcPxWJXE7u/VhuLFiBWT0P3Kd+wMXhE0qM\nKQtjV2fyYuP1lgVw44ufXsj3vzR7OfWnj8JtWE+U+QVcmvk5qFQknbpA9LY/aPrNfJBIyYq8y5VF\na8qU+39dfko6EfNX47P4YyRyOTkxsYTP/QoAi/q18Zr5PsGDppYa97zykjMICVxH62Vj1T+bEB1P\nyMxvALD2cqPpnOEc6BtYatyFpZvwmxZAl18XoVKqiD8dwdUf1I9CnJywksYzBuPe2x+JRMLltb+S\nEiEOop50ef5qGi16tH7juDRP3SctPGvjNXMUwQFTHvZd/XHRO/Zj7OpIy41LkSrkRO88SMr5K6WW\nmXw6jEQ/L1puWgpAVtR9on5Wr7fybpsXpiyj/pQRVO/RESRSbn23nfQrkc9cf+UpPyWdc3O/pcXS\n8UjlMrKi4wmdvRYAK69a+AWO4HC/WaXG3dp6EAMLM177v/lIpFJSr94h/PPvKczK5fTHK2k0eRBS\nAwWqwiIuLPiBrOj4yvzKehWkpHN14Vc0WDgJiUJObkwsV4JWYe7pTr1powkdOqnEGIBao9SjmepN\nG61ZZlr4VeL2H8fu1WZkR8XQeM3jn4qKXL2RlNMX9OaSn5JO+Pw1+C6egFQuJzsmTqt9es8cyclB\n00qNqzumHxKJBO+ZIzXLTbl4jQd/nsChbVOyou7TYt28EutDbDtLJy5Bl41EVdJrQYVKERAQwNy5\nc3F3r3rDUJ6UkKD7drSKZm9vTu6l1yo1ByPvw+xuMvCfA8tZt7Ob+Ktl70rNoUPwNk68+k6l5gDQ\n5vhvVaIuithUqTkAyBhY6XnIGMj+5ro/31CROoeoh4dv9RlSqXn0ubi+SqwPoErkcaCF7s83VKRO\np7dWetsEdfusCutjp5/uz25UtO7nN1SJujjSumel5gDQ/uR29jXvV6k5dAnZXOnbTVBvO18Gu6rA\n8eA/efts5R+biDug/zJjx44lLS1N6zMzMzNWry79zpogCIIgCIIgCEJ5EyegVcyGDRuea/5/6+96\nCoIgCIIgCEJVVlXeMlvViZcQCYIgCIIgCIIgCBVCnIAKgiAIgiAIgiAIFUIMwRUEQRAEQRAEQXhO\nSjEEt0zEHVBBEARBEARBEAShQogTUEEQBEEQBEEQBKFCiBNQQRAEQRAEQRAEoUKIZ0AFQRAEQRAE\nQRCekwrxDGhZiDuggiAIgiAIgiAIQoUQJ6CCIAiCIAiCIAhChZCoVCpVZSchCIIgCIIgCILwMvvF\nd0hlp/CPel1YX9kpiDuggiAIgiAIgiAIQsUQLyESnllCQkZlp4C9vTm5l16r1ByMvA+zu8nASs0B\noNvZTfzVsnel5tAheBsnXn2nUnMAaHP8Nw606FOpOXQ6vZUiNlVqDgAyBlZ6HjIGsr9530rNoXPI\nFqDyr073urC+SqwPoErkURX66b7m/So1B4AuIZurxPrY6RdQqTkAdD+/oUrURWVvs0C93TrUqlel\n5uB/6pdK325C1bhrJ7w44gRUEARBEARBEAThOSnFg41lIobgCoIgCIIgCIIgCBVCnIAKgiAIgiAI\ngiAIFUIMwRUEQRAEQRAEQXhOKiSVncJLQdwBFQRBEARBEARBECqEOAEVBEEQBEEQBEEQKoQYgisI\ngiAIgiAIgvCclCoxBLcsxB1QQRAEQRAEQRAEoUKIE1BBEARBEARBEAShQogTUEEQBEEQBEEQBKFC\niGdAhX+tY2dz+WJjOvmFKurWVDB3jBVmJo+vufx+JJsNv2dq/s7IVhGfVMT+bxyRyyQs+CaVa3cK\nMDaU8o6/MQPeMCtz2Q6v+OI5ti9ShZz0m/cIC/qWwqycZ4prsvQj8hJSuPTpegBsm3pR/8P+SOUy\nivIKiFi6ntSIWwA037gMqUJB5s0orixcTVG29rJsWzfGfcwA3RiplLofDsGmhQ8SmYy7/7eLmJ0H\nALB7pQles8eSG5eoWc7ZUbMpys6l4aKJmHm4UZSTq7cerFs1oeb7g5EqFGRF3uHm4lU6OZUlxnPB\nNPITk7m14huM3apTN/BjzTSJVIqpuxtXZi5CVVBAzfcHA9DokwlELFxDkZ56t2vjh8foAUgN1PWg\niZNKqPfREGwf1kPUpt+JflgPJtWd8Jo1GoWlOUXZuVya9yXZUfe1llu9b1dc3+nAqQGTnihRipRO\nqLiLiit66+pJKpWKmdN34VHHnuEjWpdpnvJQXnnYtfGjzpj+SA0UZNy8S8SCktdVaXGGDra0+H4B\npwZOoSAtQ2teY2d7Wq5fzNnxC/Xm4PSqD97jeiMzkJN24x6hc7+jMEu3LZcYJ5XgN20w9k3qARD7\ndxhhyzcDUK2tL83m/4/s2CTNco4M++TpK+oJ/7Z2UWJfLGtcKX3W7pUmeAd+oLXtOvN+IEXZubi/\n3xenTuq8vaYM5+qKDSjzCwCwb+NH3TH9NG0ufMFavTn9U5yRgy0tv5/PiYFTNW1TYWFK/UnDMKvl\ngtTQgFs//Mr9vcefuf4eKa924fiKDw3G9UFqoCD9xj3OzftWbx8pLa5W7w64dW+PzFBBypU7nJ+3\nDmVBIU5t/WgSNFKrjxwfvuC5c36Zt1nOb7XHsX1zzk/8VG8Otq0b4z56IBKFnKzIu1xZ+LX+/Xwp\nMYYOtjRd9wkhAZN0yq/WzR/7ds0Jm7y41Lp4GbedFUWlquwMXg7iDqjwr5ScVkTgl6l8NtmGXasc\ncXGUs3JjulbMW+1N2PqZA1s/c2DTEnvsrKRMe88SWysZS39Mw8RIys4VDmxcZMeJc3kcDdV/kvUk\nAytzfOaM5OzkFRzpOZns6Hg8x/V9pjj3wd2w8aun+Vsil9F40VjCFqzjWP8Z3PjuV3yDRmNgZQ5A\n+PRlBPf9kJz7cXh8MFBrWQorC7xmjdEb49K9I8bVnTg98GPODJ9G9b5vYuHlAYBlw3pE/d8uQgZP\n1vwrylbXhaV3Xc6ODtR8XpzcygKP6eO5Omsx5waOIfd+LDVHDX7qGJcB3bHw8dL8nXPnHheHT9D8\nSz1zgYQDR0kPu6xZFkB2TDx1xgzQqXeFlTkNZo0hbPpnnOzzkVaca/dOmFR34tSAiZweNp0a/d7A\nwssdAO9544nevp9T/T4m8tut+CyeqLVcy0b1qBXwjk55ABKaAGW/gBEZmcDwIRvYtzeizPOUh/LK\nQ2Fljvfs0Vyc9jknek8gJyaOuh/oX1elxVV7oy3Nv5mLkYONzrxSAwXe88YhUei/zmpgbU7Tee8R\nPGkVf747jazoBBp+2Oep4mp2a4O5mxP7e8/kQN/Z2DWth0unZgDY+tTh+k97Odg3UPOvMLts25CS\n/BvbRUl9sbhn7bNWjepyZ9PvBAdM0fwrys7FuVt77F9pwumh0wHIS0ylzqi+mrK8Z4/i/LTlHO/9\nMdkx8dT7oL/enEqLc37jVVroaZsNA0eTG5/MyYDpnBm7kPoTh2Cop/0+jfJqFwbW5jSZN5LTk7/g\nYPcpZEXH02C8nn1ZKXHO/k1x79eJv0ct5mCv6ciMDPAY1AUAG5863PjpDw73m6X5V1X7SHlvs+QW\nptSf9h71Jw2jpJ+RVFhZUH/mB4RPX8rpfh+SExOH+xjd/XxpMU5d29F4zXwM7W2fKN+MelNGUvfj\n4SAp/SU6L+O2U6h6xAloFbFjxw6WLVtWbss/ffo0EyZM0Pl84cKF3L+vfRcnMjKSgICAcsulIpy6\nmIe3h4KazuqDzz6vm/DH8RxUJVya+uHXTGwsZfTubArA5cgCurUzRiaToFBIeLWJEQdP6V7p1Me+\nVUNSL98i614cAFG/HMSla5unjrNt6oV960ZEbf9L85mqsIiDXceRfi0KABMXB/LTMrFv1RCAnHux\nAMTs2I/T669qlWfTohHpVyL1xti3a8GD3YdRFSkpzMgi7uAJnLqop1k2rIdNU2+a/biEJmuCsPKt\nD4BRNQdkJsZ4Th1J843LqD9rjFZ51s38yLx6k9zoBwDE/roP+07tnirG0q8hVs0bE/vrPr11bdHI\nC9v2rYlctlpnWdE79mu+Q3G2LXxIuxJJ9sN6KB7n0K45Mb8f0dRD7IGTVOvSFkN7a0zdnIk9cBKA\npFMXkBkZYl6vFgAGNpbUnzyC66s26pQnoRagQEWM3u+gz8+bQunew5cuXRuUeZ7yUF552LbwIe3y\n43Vwb/sBnLq88lRxhnbWOLRrxrkJ+q/Ue04Zzv3dRyhITdc73bGVNykRt8i8q+5/kdsOUaNrq6eK\nk0ilyI0NkRkokCrkSOVylHnqu2i2Ph7YN/Oiw//No/33M7BrXE9n2U/r39guSuqLxT1LnwWwalgP\nm6YNaLF+MU3XztNsu8w9axN/9AyFmdkAxB0Jwcm/BQB2LRrptLlqetpmaXGP2mboE21TYWGKbfNG\n3Pz2FwDy4pM5NXw2BWmZPI/yahcOLRuSEnGLrIdt//a2v6jeVfeOYmlx1bu9wo2NeylIzwKVigsL\nf+Du7hOA+kTDvrkX7TcF8ep3s7Ctwn2kvLdZTh1bkZeYyrUvdPchj9g09yH9yk1yoh/tw//U3c+X\nEmNgZ41d2+Zc/Fj3bqJDh9bkJaZwc9VP/1gXL+O2U6h6xBDc/7iZM2dWdgrlIjaxCEc7meZvR1sZ\nmdkqsnJUmJloX91LSS/ip12ZbF5qr/msYR0Ddh/NwdfTgIICFQeDc5DLyvZqbSNHW3JjkzV/58Yn\nozAzQW5qrDW8trQ4mbEhDSYFcHrsEmr28NdavqqwCAMbC9puWojCypxz01dh5uasFZMXn4TczASZ\nibFm6I2Rg53WULTiMUYOtuTGJWlNM/OoCUBBegaxe4+RcDQESx9PfD6dwulBkzCwsSD5TDjXln5L\nfko6dScM1crBwMGO/OLlJSQiNzPVyqm0GJmxMbU+fI+IiXNxevt1vXXt9sEw7n67kaLsHN1lxSeh\nMDNBZmqsPSzO0Za8J77rozgjR1vy4p+shxoYOdqRl5CiNbYmNyEZIwcbMm7cwTtoPNdXbUBVWPRE\nhlZIqIeSA0hopvc76DMrsCsAwcG3yzxPeSivPIwcbcmN178OnlxXJcXlJaZwcepnepfv8o4/Urmc\nmN8OUXtYd70xJo42ZBfrfzlxySjMTZCbGmkNJSst7s6u47h2asab+1cgkUmJO3WJB8cuAJCflknU\n7pPcP3wWW986tF7xEQf7zHrKmtL2b2wXJfXF5+2zAPlpGTzYe4yEo2ew8qmHz9IpBA+aTHrEDWr0\ne5N729QXtpzfaIuhnZWmrOJtLreMbTP3ibZ5YernOt/VxNWJvKQU3Aa+iX0rX6QGcm5v3E323QfP\nXH9Qfu3CxMmGnGL1nhNfQh8pJc6sphOGlyxo/eVkjOytSDp/nUsr1EMt81MzuLvnBA8On8XWty4t\nl3/EX32f75jkZd1mRe84CIDzm+30Tn+0bK22npCks08tLSY/MYVL05fqXfb9nfsBcHqjfYnlP/Iy\nbjsrkrKkW9iCFnECWklyc3OZPn069+/fp6CggNdff3yA/f3337Nnzx7kcjlNmzZl8uTJnD17liVL\nliCXyzE2NmblypUYGhoyZ84coqKiUCqVfPTRR7Ro0aLEMqOiohgxYgQpKSn079+f3r17ExAQwNy5\nczE3N2fSpEmoVCrs7e1LXMbLoqQx+FI99/y3H8jmtWZGuDo+7g4Th1rw+fp0+k5KwN5aSisfQy5c\nzS9T2ZIShq+oipRlikMCjReNI+KzDeQlpuoNyU9O52DXcVh4utFy9Qyidx3VX6ayWJnSEvJSKpHo\nmfYo3/Bpj+/Mp128Smr4NWyaN+LBniOET3u8M7v17Vaq9+6KRC5HVViod5lP5lRSDBIJdedO4vYX\n6yhIStEbYu7tidzSnIQDx0pd1pP1jkT/wA9VkVJ/HSmVJQ5JUimV1BkzgNTzV0gOCce6sZfWdCmt\nUHICePLE9L+txPX+ZB8pY1xx5vVq4dqjI2dGzn2mHHT6aSlxXu+/S15KBr/7j0NmZEDr5R9SJ6AL\nNzbs49TEVZrYpAs3SLp4A4dW3qXmJKi9kD4LhE17fLCfevEaaWHXsW3eiPu7j2DoYEuTrwIByLoT\ng7Kg8GFRJQwM02kXZYvTmkcuw8TFkaLMHE7/bw4mro40/2au5m5ZlVPivkxV5jipXIZDS2+CJyyn\nKK+AJvPfx2tsL8KXbeL0pC80sUkXrpN08SYOLatmHynPbVaZldDmtPfzZYh5TmLbKbwI4gS0kmze\nvBkXFxeWL1/OnTt3OHLkCBkZGVy7do29e/eyefNm5HI548aN4/Dhw4SEhNC1a1eGDBnCoUOHSE9P\n58iRI1hbW/PJJ5+QkpLCoEGD2LNnT4llFhQUsHr1apRKJe+88w4dOnTQTFuzZg3dunWjT58+/PHH\nH/z8888VUQ3lxslORviNAs3f8UlFWJhJMDHS3Tj/eSKHqSMstT7LylYyIcACS3N1/Pc7M6hRreTu\nUndUTxzbNgFAbmpMxs17mmlG9jbkp2VSlJunNU9ObBJW3h46cWa1XDBxtsdrwiAADG0tkcikSA0V\nXF6+CbtmDYg9HApA+tU7ZFyPApn29zK0t6EgLRNlsTLz4hKxbFBHb0xuXCKGdtZa0x7dIXXp+TpR\n63dqpkmQoCoqwsrHE7mFGYnH1bk8OqF+tKNcMrTqAAAgAElEQVTLi0vArH7dx8u0s6UgPeOJnPTH\nmLhVx6iaI25jhwNgYGP9sA4MuLnkSwDs/F8hPz4Rn+8+f1jvJmRFRpVaBwC5cYlYFqt3rXqITcTA\n1kprWm58Mrlx2p8/Wl+58clU69qW/JQ0HNo3R2ZshKG9DS03PHqBhAFSHg2rNgWqoR6OG8Z/jfvI\n3ti3bQqo+0jmzbuaaY/WwZN9JDc2EcsGuuvqybjinN9oi9zUmObfzdfM0zBonGZ6xy1BmhzSb0Rr\nPjd2sH7YT7UvNGU/SMbG211vnEuHplxYrL7zXZiZQ9Tvf+PasRl3fj2Gex9/rn63WzOfRCJBVSAu\nREhohAQXzd8Gdtr97UX1WbmZCa49X+dOsW0XElAWFiG3MCX2z7+5s/5XOp3eirWPJxKZlNYbF+ts\nvw1L3H7rtk19ccXlJaovpkXvUV8wzI6OI/XiNa3lVLb6o3vg1K4xAApTY9KL78s0bV93X2bT0F1v\nXG5CKvcPn9XcGbu35wSeI7ujMDOhVp8OXP/+d818Egl6RpFUnoraZpVVbmwCFl5P7MOf2KeWJeZZ\neI3ujnN7P0BsO4UXQzwDWklu3bqFr68vAG5ublhYWGg+9/HxQaFQIJFIaNq0KTdu3GDUqFHEx8cz\nZMgQ9u3bh1wu5/r16xw7doyAgADGjx9PYWEhycnJJZbp6+uLgYEBRkZGuLu7Ex39eANy584dGjVq\nBEDjxo3L8ZtXjFa+hoRdzyfqvvqq9rb92bRvZqQTl56p5G5sET71DLQ+37Y/m682q58dS0otYsfB\nbLq+alxiedfXbOf4gBkcHzCDE0PnYN3QA9PqjgDU7NWBuKNndeZJCA7XG5cafpO/3hyvWd7d7X/x\nYH8wYfPXoSpS0ihwJNY+6pM2s9oumLo5c+839QGNcXUnAFy6dybh+Bmt8pJOX8TSu47emIRjZ6j2\n1mtIZFLkZiY4dmpDwrEzFGbn4tqzC/avqe+sm9V1w8LLQ/0MpIkRdT8ejtxC/XKdGoPeVhf08AQ0\nNeQC5g3qYeRaDQCnd7uQ/HeIVk4lxWREXCO01wjNi4Zif9tH4l9/a04+ASx8GxD17SZNTNj7U7SW\n5dqjE/FP1EHxejB5WA/F4xKOheLyln+xemhNwtEQ8uKTyYmJw/HhWzNtW/igUirJvHmXY2++T/Ag\n9QtOLn+yhpyYWIIDpqirgt9Qshcle1ERjYqr/8mTT4DIb7YRPGgqwYOmEjJ8lu46OBaqM0/S6bAy\nxRV3bfl6TvSaoCkrLyGZ8MDHV9QfvdTicEAQNo3cMauh7n+1e/lz/8h5neXFnQovMS71ShSundV9\nQyKX4dzOj6SwSAqycnDv2xGXDuqDV6t6NbD2rk3syf/mui9ORZimTwAl9sXinqXPFmbnUL3X6zg8\n3HaZ13XD8uG2y6K+Oz5LJiGRqR/TUFiZcWPtNk4Omkbw8NlYeXtoyqrRo2OJbbMsccXl3E8g7cot\nXN5UP6NqYGOJVcO6pF2OfLpKLEdXVu/QvBDoyOB56n3Uw7Zfq1cHHhw5pzNP3KlLJcbFHAzBpWNz\npIYKAJxfa0JKxC0KsnOo3bcjzg/7iGW9mlh7uxNXhfpIRW2zyio55OE+3FW9bOfunUk8duapY57F\n5dU7xbazjFQqSZX/VxWIO6CVxN3dnfDwcDp27Mi9e/f4/PPPeffdd6lduzY//PADhYWFyGQyzpw5\nw7vvvsuuXbvo3r07U6dOZe3atWzdupXatWvj5OTEqFGjyM3NZfXq1VhZWZVY5uXLlyksLCQ/P5/I\nyEhq1Kihlc/58+fx9PQkPDy8IqqgXNlaygj6wIpJy5IpKARXJxkLx1kTcTOfeatT2fqZAwB3Ywux\nt5aikGt3yBE9zJi5MpUeH8WjUsGoPuZ4exjoK0pHfko6F+etpcmnHyJRyMmOjudC4GoALOvXotHs\n/3F8wIxS40pSlJNH6MTPaTBxEBK5HGVBAednfUXGDfWV2YafTESqkJMTHUdE0JeYe9am/ozRhAye\nTEFKOpfnf60TA+oXEhm7ONF8wzKkCjkxOw+Qev4yAGFTllBv4ghqv9cHVZGSS7OWU5CWQdKpC0Rv\n+4Om3/w/e/cd31T1PnD8kzTdg+4W2rLKaillb2WDgjjYIhtEqwLK3nvJElBUpoCACEj9Ck5wIMpo\nAdmrUHYpHbR0zyS/PwKhIU1bhDbF3/N+vfpHb5577pNzb05ycs49mQ0KJWmRNwxyzbmXxOX5H1Nj\n9ngUKhWZt+9wac4yHKpXwX/8e5wcPNJkTFHY+pYj605svscDcPAvz5mZuufnVKMygZNDONxv3P16\n+Jzg+aNQqFRkRMXo426F7sHW14smmxehtFRx69tfSTyu+9mU01OWETDxbSoP6oomO4dTk5bKeuv/\nUnZiMmdnf07tDx+cgzucnvEpAE4BlQmc/DaH+44vMO5JZSWmcHT6WposGobSUkXarVjCp6wGwCWw\nIvWnD+bXXtMKjDu5eAt1JvSjw7fz0Wq0xIad5eKGH0Cj5eAHy6gzvh+B73RBq1YTNu5Tsu892WIz\n/0WmXotP4zV7cuxCqo8ZjP/QHmjVGk5NWUZOUgoJYaeIrxtIky26WwjSrkdzbatu9lB2YjKnZ6+k\nzocjUapUpEfFGFybQZPf4mDfCQXGFeT4uCUEjhuMX9d2KBRKItftJPn8lader09DdmIy/8xYQ+NF\nI1CqLEi7FcvRqasAcA6sRN1pQ/jj9SkFxl3Z/itWTg60/mo2CqWSexeucfqjL0Cj5fDIZdQe34+A\nkG5o1GrCx68ota+R0tBm5SQmc37OpwTNG6N7D4+K4dysT3Cs4U+NiSEcGTDWZMzTJG2neBoUWlPL\ngopilZWVxaRJk4iJiUGtVtOuXTsSExMZM2YM69ev58cff0Sj0VC/fn0mTpzIqVOnmDt3Lra2tiiV\nSmbNmoWXlxdTpkzh9u3bpKam8sYbb9Czp/FS2KBbBffBfaPJyckMGjSIzp076+8BdXFxYezYsWRn\nZ+Pr68utW7fYtGlTgc8hLi6lwMdLgoeHI5lnWps1B5ugP/i+fp/CA4tZ52Nb+K1JD7Pm0PbwDg48\nn/9PkZSk5n99x97G+b8WSkr7sO2o2WLWHAAs6GP2PCzow55Gxj/fUJI6hG8D4Js6A8yaR/cTG0vF\n+QBKRR6l4XX6c6PXzZoDwIvhX5eK8/FtXfOvgN/l+KZSURfmbrNA12793rS7WXNoc+gbs7eboGs7\nnwWbgoaYO4VC9TuzztwpyAiouVhbW7NkSf6roQ0aNIhBgwYZbKtduzbbt283il24MP8fK35U48aN\n+eqrr4y25+1krltn/gtSCCGEEEKIZ5GmlExxLe2kA/ofs2LFCsLCwoy2z5s3Dz8/PzNkJIQQQggh\nhBA60gH9jxk2bBjDhg0zdxpCCCGEEEIIYUQ6oEIIIYQQQgjxhGRhnaKRn2ERQgghhBBCCFEipAMq\nhBBCCCGEEKJESAdUCCGEEEIIIUSJkHtAhRBCCCGEEOIJyc+wFI2MgAohhBBCCCGEKBHSARVCCCGE\nEEIIUSJkCq4QQgghhBBCPCGNuRN4RsgIqBBCCCGEEEKIEqHQarXym6lCCCGEEEII8QTWBg41dwqF\nevPcGnOnIFNwxb8XF5di7hTw8HBkb+OeZs2hfdh2fmrY26w5AHQ8spXfmvQwaw5tD+9gX7NuZs0B\noNXBnaWiLsx9bYLu+jR3Hu3Dtpv9umh1cCdAqaiL0pADlI66ULPFrDlY0IewVp3NmgNA433fl4rz\nYe52E0pH29k+bDt/Nu9q1hwAWh4INfvni45Htpr9fMDDdqu008oquEUiU3CFEEIIIYQQQpQI6YAK\nIYQQQgghhCgRMgVXCCGEEEIIIZ6QRqbgFomMgAohhBBCCCGEKBHSARVCCCGEEEIIUSJkCq4QQggh\nhBBCPCH5bcuikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFUIIIYQQQognJKvgFo2MgAohhBBC\nCCGEKBHSARVCCCGEEEIIUSJkCq74T3Hw96P66MGoHOxAo+Hch6tJuXD1scqwdHYkaPowbMp66MqY\nv5qk0xEAVBvRD8+2TclNTgUg7frtfMvwaF6Xau+9jtJKRcqlG5yZs5rctIwixymtLak5bjBlAiuD\nUknSmcucXfgFmqwcPJ+vR63p75AZE68v5/DQmQA02rwYpaUlqZevc37u56jTDY/p1qwe/u++YRyj\nVFLt/QG4Nq6NwsKCG1/tIurbvQb72pT1pNGGBRx/fzYpF65Qod9reLVvnqfenIyen2uzelQO6YvS\nUkVq5HUuzvvMKCdTMUorK6qOeRPHgCooFEqSz0VwafFaNNnZONcLwv+9fihUKjRZ2Vxauo6U85cN\nyi0NdeHevC5V3nkDpZXuGGfnrkSdz3VgMk6poPoHA3C7n8v1Lbu5ZZSLB002LuCfEXNIvnAFAJ8u\n7SjfqxPaXDUAXu2bU2nAa2bLAyBowXguzvuMnKSUJ7ouHrD2dKPemvkc7T+anKQUAN11MXwACgsL\ncpJSuLz8C9IuXy/ac3wKdeFSvybVhvdFobJAnZXNxSXrST4XCUDwh6NxrFIBgOahn6CytyUnKbVE\nz4f/273wbt9MH+PRsiH+Q3sWS124P1efoGnvGbRTR96ehjo90yAPBQ3RcgzQGB23MFqtlskTd1Gl\nqgeDhzQrfIcicG7SAL+hA1BYWpJ+5RpXFy43ujZNxVSdORFrn7L6OGtvL1JOniFi8myDbUGrl3Fh\n7FTSLhq2WeZqL6qPGYTPq20BeG73Ko6+NYXM6DiD/f5Ne2nr503g5HexLONIbnom52Z9Qvr998zy\nb3SmbOc2aNVqcu4lc+HD1WRExTx8js83IHjO+6gzMkn851yJXZsACkvdR2P3Vk2J33cIANem9akU\n0gellSVpl69zcf6nxm2WiRgLezuqT3wPuwo+oFAQ89M+bm751mBf75fa4N6iMWfGzzd6jo960s8X\nKntbak19G/uK5VAoFET9sJ8rX+422Nf35VZ4tW7AsVGLC6/rp3BOitp2iv+OIo+AhoaGsnjx4sID\n78vKymLHjh2FxqnVakaMGMH+/fv121asWEH37t15/fXXOXXqVIH77927l5iYGOLi4pgxY4bJuDZt\n2pCVlVXk/J82U/U3cuRIsrOzDbbt37+fCRMmPNHx7t27x+7duwsP/A9RWltR7+MpXN+8i7D+47ny\nxU5qzRzx2OXUGPsmiScucOj1UZye/gnB80ahtLYCoExwdU5PWcbhfuM43G8cp6csM9rfytmRWtPe\n5vj4pfzVfTQZUbFUG9b7seL8B3VBYaHk7zcm8HfvcSitrfAf+CoAzsHVuLr5ew70maj/s7CyBOD0\nxMUc7vU+GbdjqPJeH4PjWTo7ETjl3XxjfLq0w9bPm7A+ozgyeAJ+vV7CKbDKw7q1sqTmzOH6N2aA\n65v+R3j/sYT3H8s/705Hk5lpdLwak4dxdtIiwnuPIPN2DJXf7VvkmAoDu6GwsOBo/9Ec6T8KpbU1\n5ft3RaFSETh7FBcXrOTogNFc3/ANAdNGGJRZWuqi5pR3OTVxCQd7fkB6VCxV333D6DqwdHY0Gefb\npT12ft4cemM0YYMmUv71TjgF+hvkUuuRXGzKelAl5HWOvjWNw33H3s8jxKx5AGRGx1HxzV5PfF0A\neL3Ykrqfz8Haw02/zcLejprzxhK54kuO9h/FpcWrqTl7tEFOxXlOFCoLgud8wLl5qzjcdxxXvwgl\naMZwfZnOQVU5GjIdAJWtDUfenFKi56Nc51Z4PFefsIET9dtqzRpRbNeFc3A1rm3ZrW8rD/cbhzo9\nM588MlBQ2+i4hYmMjGPwgE38/NPZx97XFFUZJyqP/4CIafM51T+ErNt38HtrYJFjLk2fz5k3R3Dm\nzRFcXfQJ6tQ0ri37XL+vwsoS/8nG1+QD5mgvHKtXwq/bC/rXaVZ8IrUXT3jkmP+uvaw5431uhe7h\ncO+RXF27jVrzxwDg0rAW5V5uy9E3JxPebyyx+8IImPKuwTGD57yPOiuHa5t2ldi1CVAmqCqN1s01\nev7VJw/j3ORFHOk9nIzbMVR6p1+RYyoO7U1W3F2O9vuAf94cR7kuL+BUsxoAKkcHqo59myoj3wRF\n4fcOPo3PF1VDepIZm8Dfr4/j4IAp+HVrj3Otqrrn4WRPzQlDCBg7AHiYT0F1/aTn5HHazmeB5hn4\nKw2KbQpuXFxcoR3QGzdu0KdPH06fPq3fdvbsWcLDw9mxYwcfffQRM2fOLLCML7/8ktTUVDw8PArs\ngJZWS5cuxcrK6qmXe/HiRX7//fenXm5p5ta4NulRMcQfPA5A3P6jnJq8FACFyoJqHwyg8cYPabJ5\nITWnvouFva1RGQoLJR7P1SPqu18BSL10nfSb0bg3rYPCUoVjtYpU6PMyTTYvJPjD0dh4uRmV4d4k\nmKRzV0i/eQeAGzv3Uu7F5o8Vl3j8PJe/+Ba0WtBoSb54DRtvDwBcgqvh1rAmzb6cS+PV03GpWwP3\nJsEAZNwvKyp0D94vPG9wPNfGwSSfj8w3xqNlY6K//wOtWkNuShoxvx7A+8WH+1cf8ybRP+wjJyk5\n37qvMqI/dw+dMNjm0qg2Kecvk3ErGoDbob/g1eH5IsfcO3GO6xu+uV8HGlIjrmDj7Y42N5dDrwwl\nNUI3sm3j40VOcopBmaWlLpLOR+rP763QPQblPODWuLbJOM+WjYjavU+fy529Byn7Ygv9vjXGDuH2\nD3+Sc+9hLgoLJQqVSnd93/9Ak3X3nnnzAJQ2Vmiyc574urByd8G9RSNOjTb8kGjnVxZ1Wjr3june\nT9KvR5GbnkGZoOoGccV1TrS5avZ3DiEl4hoAtj5e+pFZm7IeWNjZEjB+KACanFyy7z9WUufDsUZl\nYv88Qm5qusFxiuu6cK5VHdcGNWm88UMarJqJc52AfPPQchMF5Y2OW5itW47SpWsdXuxY87H3NaVM\nw3qkXrhEVpRulC5m14+4tWv12DEKlQr/iSO5vmIN2XEPR9kqvv8OcT//Rq6JtsMc7YVLvUC0Gi3Z\n93TXY/rNaOz8ypLXv2kvrT1csa9Yjpi9BwC4e+gEFrbWOFavRPbde1xYuEY/gphy/or+/e2BnOQ0\n4v86Wix1YeraBCjfqxORq742OI5LozqG7dG3P+fTZpmOiVy2jsgVGwCwcnNBYWlJbpru+vdo24zs\n+EQiV2w0en75eRqfL84v2ciF5ZsBsHZ3Rmml0r8evds1JSv+HheXbzEor6C6Lmrc02g7xX/HY3dA\nlyxZwqBBg+jSpQsTJ+q+wTx27Bg9e/bkjTfeYMiQIaSmprJy5UouX77MihUrTJaVnp7O3Llzady4\nsX7bsWPHeO6551AoFJQrVw61Wk1CQkK+++/bt4/z588zfvx4rl69Ss+ePQH4448/6NatG127dmXq\n1KloNA/7+1u3bmXYsGFGo44PqNVqJk+ezJAhQ3j55ZdZunQpOTk5tG/fnvR03Qt03bp1bNiwgevX\nr9O7d2/69evHhAkT6NevX75lPnDixAkGDBhAt27d2LdvH/BwZDYyMpJevXoxcOBAtm7dWmA5oaGh\n9OnTh969e3Po0CF++uknevXqRe/evfWjrCtXruTw4cNs27aNCRMm6EeY846utm7dmiFDhjBv3jwm\nTJjAtGnT9M/77Nmn961ySbErX5bsu/cInBxC4w3zqffJFBQWFgBUGvAaWrWasAETONx3HFnxifl/\ne1fGERQKcu497NBkxSZg7emGtbsLicfOcPmzrzjcdxxJZyKovWicURk2Xm5kxtzV/58Zm4Clgx2q\nRzq8BcXFh50m/YauAbfxdqdi747c+e0wANlJKdzYsYeD/ScT8enX1Fs4Cgd/X4Oys2LvonKww8Lu\n4TFtPN0NphzljbHxNMwlK/Yu1p66znW5V9qgUFlw+7vf8q13+0q+eLRoSOTqbY88P3ey8h4v7i4q\nB3vDnAqISQw/ScZN3Zu5tbcHvj07E/e7bjqUVq3G0qUMTb9bjf97/bm55TuDMktLXWQ9Uo6lg53R\nFx82Xm4m42y83MiKfTQXVwB87ucS9UguGbdiuL55F823L6PFj6sAuHf8nFnzAHCuU5PrG3c+8XWR\nHZ/I2UmLSL92y+B46TduY2Fro/8CwjHAH/tKfli5uxjEFec50arVWLmW4fndK6k2vC/XNu0CwMq1\nDAlHTnPuw9UA5KSmUfP+iE9JnY/ks5fweL6+ro27T5lnJOxp55GdlMLNb34hbMAELn/2FbUXjsHa\n09UoDwWVAOMvAwszZVpHXnkt+LH3K4iVp7tBhzE7Lt7o2ixKjEen9mTfTSDx70MPt73UAYVKRdwP\nv5g8vjnaC6WlipSLV/WvU6calVFaWT5xe2nt6UZWXKLuC0T9Y7r30rQrN/VtksJShf+7fYi937bb\n++u+jIg/dLzY6sLUtQlweupy4g8cNziOtacbWbEFt1mFxqg11Jj2Pg03LSPp+BnSb+i+wIj+3x6u\nr9+OxsRn0kc9jc8XAFq1huBZ7/Hc1wtJOHae1PtTo2+G/srltTtRZ2UblVca2k7x3/FYHdCcnByc\nnJxYv349O3fu5MSJE8TExPDrr7/SsWNHNm/eTO/evUlOTiYkJIQqVaowbNgwk+XVqFEDf39/g22p\nqak4ODjo/7e3tyclJeXRXQFo1aoVAQEBLFiwAEtL3RTE3NxcZs+ezerVqwkNDaV8+fLcuaP7IL9p\n0yaOHj3K8uXLTY46RkdHU6dOHdatW8c333zD119/jaWlJR06dGDPnj0AfP/997z66qssXLiQkJAQ\nNm3aRL169QqtP1tbWzZs2MDq1auZNWuWQcd44cKFjBgxgg0bNlC3bt1Cy3JycmLr1q0EBATwySef\nsGHDBrZu3UpMTAwHDhwgJCSEJk2a0KtXL5NlREdHs3jxYiZNmgRAuXLlWLduHf369WPbtm0m9yut\nlCoL3JvV5db/fiVs4ERu7viZuksnorBU4d68Ph4tGtBk00KabFqIR8uG2FfyNSpDocz/JaHVaMiM\njuP4yA9Jv6HrFF3fvBs7Xy/jYBPTaLRqzWPHOdWoRJM107m+/Rfi/ta9KR4ft5SYfbpvhhNPXuTe\n6QjsypfNv6w81xhKE8fTaFDk85hWrcGxeiV8unTgwgLTjb9fr5e49c3PqNMMR1ZMPr+8ORUhxqF6\nZep+NpuonT9x9+Ax/facxCQOvfoW/7w1keqT3sP2wbf2RTluSdfFI2UZUJi45tSa/PPU6HLx7dqe\n8x+uMXrYtXEwnq0bs/+Vd9jf6W0AXOoHmTUPgPi/jlBjyvCndl08Sp2ewenxH1Khf1cabFyC14ut\nuHfsNJqcXJP76Mt9CnXxQHZCEn+9HEL4m1OoOfUd7PzKknz2MifHLyb77j0AUs5H4t68LgqVxVPN\noaDzEf3TX8T8fpj6n057WJZGaxT3tOri1IQlxP15BIB7Jy+SdCoCt0bB+eSRTGmZFKYownVXlBjv\nHq8Rtenhe6hdVX88X+nItY8+feycivu6sCtfDlsfT/3rNO4vXRv7pO1lftv1ed5n6exE3eVTUWdk\nEvn5Vt00+un3p14++rwp/mvTlII+FzxOzIVZyznw0kBUTg5UGNTD5PEK9BQ/X5ya9im/tX8LSyd7\nqrzZrZDjFlDXRY17Cm3ns0CrVZT6v9LgsRYhUigUJCQkMGrUKOzs7EhPTycnJ4eQkBBWrlzJgAED\n8PLyIjg42OQIY2EcHBxIS0vT/5+Wloajo2MBexhKTEzEyckJNzfdiMXQoQ+H7Q8dOoSFhQUWFham\ndsfZ2ZnTp09z+PBhHBwc9M+jR48ezJgxg8qVK1OpUiVcXFyIjIzUdxbr169f6D2X9evXR6FQ4Obm\nhqOjI/fuPXxBXbt2jeBgXQNYr149rly5UmBZlSpVAnTTmBMSEnjrrbcAXX3duHGDypUr57ufNs+3\nkS4uLri4PBwdCAjQTUPx9vbmn3/+KfD4pUmTTQsBsCzjQNq1KJLP6hZ2iNt/lMBJIdj5eKGwUHLx\now36qZEWttYoraxwqlGZwMkh+rLCBupGh1WO9uSm6K5Da08XsmLv4lClPI5VKxD90195jq57IVd9\nuzueLerr9rW3JeXyTX2EtYcr2UmpqDMN70HOjLmLc1AVk3Fl2zclcPxgzi1aT/QvB3VlO9hRvnt7\nrmz4Lk9JCrITDKd0WXu4kpOUiibPMbNi4ilTs2q+MZkx8VjnGSmy9nAlK/Yu3h1borK3pcEa3XRH\na3dXas58n8srNummRymVeLZuTPjA8UbnJSsmHqc8x7PycCMnOcUop4JiPNs1p+qYoVxaspbYvX8D\nunv9XOoHEb8/HIDUiKukXb6GvX8FMm5GG4yclXRdeL/4PBnRsXi0aKR7Pu7OBeYBkBkTT5lHrgN9\nLnfisXIzLCMzNoGynVpgYW9Lo7Vz9NuDZo3g0iebcG1cm9y0DOp/PMVgP3PkEffXUXISddfm7Z0/\n0XDzUuJ+O/DE10W+FArUGZmcGPbwXqGGXy3HpVFtKg7s/rCsYjonKntbXBoE6T/Yply8Ssql6zhU\nKU/FgV1wrRugXyjEytUZNFq0Gg02nm4lcj4ST17A2s3ZYEQqb5v0VOvCwQ7fbi9wbWOehVYUoMlV\no3Ky584vf3Nt4/9oH7YdLUkoyP9L5pKWFRuHQ8DDKdtW7m7kPnptFhJjV6UyCgsLUk48vLXI/YU2\nWNjZEfjpIgAs3VzxnzyGtMtXsC3vm6eskm8vrD1dyUlK0b9O4/4Mo/wbnZ+4vXw0l7yPAThUKU/w\novHE7Qvn0iebqDykB96dWujL8urQHNQaXBsFY+P19F4jBV2bpmTeicMxMM/zdzdujwqKcWlUh7Qr\n18mOT0STkUnsr3/j0bKJyeM96ml/vnBvEkzK5ZtkxSeizsgies9BvNs0MjqufYWyNN+iWxTJ59U2\npEbeMCivJNpOK7cyWDra678YEf8djw1PdPwAACAASURBVDUCGhYWRnR0NB999BGjRo0iMzMTrVbL\nrl276NKlC5s2baJq1aps374dpVJpMMJXVPXq1ePvv/9Go9Fw+/ZtNBoNrq6uJuMVCoVBp8rNzY3k\n5GR9527OnDn6hYw+++wz/cihKaGhoTg6OrJkyRIGDx6sf44VK1ZEq9Wydu1aevTQfXNVrVo1jh/X\njUqdPHmy0Of24F7XuLg40tPTDTp//v7++rLOnDlTaFnK+9+2+fr6UrZsWb744gs2bdpE3759qVOn\njkH9W1lZERenW9Hu3LlzRmU8YOqb3dLuwSICYQMnYlvWE8caus65c50A0GrJuB3L3cMn8evxom7E\nQaEgcFIIVd59g+QLVwwWItCqNcQfPI5vl3aA7k3SvpIvicfOotVoqT5qkG51XMC3WwdS76+weWnV\nN/oFgQ4NmoZzUFXs/LwBKN+tHbH7jxrlHX/4lMk47zaNCBgzgCPD5+s7nwC56RlU6NEBr9a6Nwun\nahUpU9Ofa1//DOhWHQTw6dKBuL+OGBzvbthJygRVzTcmbv8Ryr7cGoWFEpWDHV7tmxO3/wiXlm3g\nUM/39QvsZMUncHb6cv29OQ7+5clJTjNaMREgIfwETjWrYeurG5ks91oH4h/JqaAYj9ZNqDJyCKc+\nmK3vfAKg0VB90ns41dJ9CLSr5IddBR9SzkboyzRXXWTFJRLWexTh/XWL/5TJc359u7Yn9pE88uaS\nX1zc/qP4vNwmTy7NiPsznIilGznY4wP9dZsVl8CZaR8T99cxUi5eRWVrzZG3pnK43/0p4lqNWfLw\naF4PC1trANxbNyH57KUnvi5M0moJXjIZxxq6WTUerZuizVVzaeEqjg4cow8rrnOi1WioOeUdygTr\nrkv7Sr7YV/Qh6ewlYn49CEolR9/TrWngUjeA+MMnQKMtsfPhFOCPc+0aBosQKSyUxVIXuekZ+HV/\nAc/WuttrHKtVpExgFe4eOoFTgD+1F4zR3x6hpCZarhV8bktI0pHjOARWx9qnHABer3Qi8cDhx4px\nqhNE8nHDzwM3VqzhVL+39QsU5dxNIHLuYiJnLdRvA/O0F/EHjmPr44VDFd3U18pv9SI7PjHfYz5O\ne5kVl0BGVAxe7XSrE7s2ro1WoyE18ga2vt7U+3QGV9d9w6XlG0Gj4cqabRzs8h5/PK+7NUaTnU3C\nP2e58fUPqDOzSuTaNCUx/KRhe9SlA3cfyaegGI82zagwSDcbTWGpwqNNMxL/OU1RPfXPF+2aUGVo\nV0A3Bdu7XRPuHjG+7SrtejQH+ujai/Ahk83SdlrY2uh+2cDJvsj1JZ4NjzUCWqtWLc6ePUufPn1Q\nKBT4+fkRGxtLcHAwU6ZMwdbWFqVSyaxZs3BzcyMnJ4dFixYxduzYIh8jKCiIBg0a0KtXLzQaDdOm\nTSswvm7duowbN47Zs3XLnCuVSqZPn87bb7+NUqkkMDCQWrVq6eOnTJlCjx49aNq0KRUrVjQqr2nT\npowePZoTJ05gZWVFhQoViI2NxcvLi+7du/Pxxx/TpInum6sxY8YwadIkvvjiCxwdHVGpCq7OzMxM\n+vfvT3p6OrNmzTLo8E2YMIHx48ezbt06XF1dsba2LlJ9ubq6MnDgQPr164darcbHx4eOHTuSnJxM\nREQEGzZsoEePHkyaNIndu3fn+5z/K7ITkjgxbhEBY9/EwtYaTU4uJycsRpOdw5UvvqHaiP402bQQ\nhVJJyqVrRHz8Zb7lXFi4lsBJITT96nm0WjgzYwW5aRnkXrnJhSXrqbtkPCiVZMUmcHrqcp7f9blh\nHonJnJ61kroffoDSUkX6rRhOzfgMAKeAytSaMpQDfSYWGFftvddRKBTUmvJwBD/xZATnFq7n2Jgl\nBI4ZQNW3u6NVqzkx6WP90va15o1Gaaki41YMZ2etwLFGZQImvUN4/7HkJCZzbvZnRjGgW1TC1seb\nRpsWo7RUEfXtXoP7Bk2x8/Mm805svo/lJCZzYe6n1Jw7BoWlisyoO5yf9QmONfypPuEdjg4cYzIG\noFKIbtXT6hPe0ZeZdPoCl5as5cyEBVT5YDBKCws0OTmcm7GMrLgE/XFLS12cm/05wfNHoVCpyIiK\n4cxM3TEejLwf7jfufi75x90K3YOtrxdNNi9Caani1re/knj8fIF53N79B7ZlPWi8cQGa7BwAzs5d\nZdY8AJzrBnFhzidPfF0U5Nz0ZVSbEIJSZUn23UTOTFhgHFOM5+TkuEVUHzkApUqFJjuH01OXkxWb\nQFZsAje3/0TD1br3qeSIa9j5eNH0649K7HwkhJ0ivm4gTbYs0m87PWVZ8dXF2IVUHzMY/6E90Ko1\nnJqyjJykFKM8tCSj5UKh57Yk5N5LInLBcqrOnIjSUkXm7Wgi532EffUqVBqr6yiainnAxqccWSba\nxMKYo724ue1HytSsQqP1upEu+8p+HH9v5lNpL89MXUrAxBAqDuqGJjuHM5M/Aq2WCv1eRWltjV/P\nTvj11P1MkyYnh6NDJhnURdDM4TjXrkHyucslcm2aknMviYvzVhA4Z6y+Pbow+2McavhTfcK7HBs4\n2mQMQOSKDVQbG0KDTcvQarXc/SucqO0/PMaV8dDT+HxxYdlmak4cwnNfLwStlpg/j+q/xDZZBwXU\ndUm2nc+C0nFDQemn0OYdPhSPZdeuXdSuXZsKFSqwY8cO/vnnH+bPL/w3nP4r4uLMP23Kw8ORvY17\nmjWH9mHb+amh8TLoJa3jka381uRf3lfylLQ9vIN9zQq5l6QEtDq4s1TUhbmvTdBdn+bOo33YdrNf\nF60O7gQoFXVRGnKA0lEXarYUHliMLOhDWKvOZs0BoPG+70vF+TB3uwmlo+1sH7adP5t3NWsOAC0P\nhJr980XHI1vNfj7gYbtV2i2v9k7hQWb2fsTnhQcVs8caAf03Tp06xaJFi4y2d+zYkTfeMF6FND+/\n/fYbGzZsMNrev39/2rdv/6/yWrFiBWFhYUbb582bh5+fX5HKKFu2LCNHjtSP/M6bN48ZM2YQGRlp\nFLtmzRpsbGweK8enWZYQQgghhBBCmFuxd0CDg4PZtGnTE5XRtm1b2rZt+5Qy0hk2bFiBK/QWRcOG\nDQkNDTXY9jR/i/RZ/F1TIYQQQggh/j8qLavMlnaP/TugQgghhBBCCCHEvyEdUCGEEEIIIYQQJaLY\np+AKIYQQQgghxH+dRpZ2LRIZARVCCCGEEEIIUSKkAyqEEEIIIYQQokRIB1QIIYQQQgghRImQe0CF\nEEIIIYQQ4gnJLaBFIyOgQgghhBBCCCFKhHRAhRBCCCGEEEKUCIVWq5XRYiGEEEIIIYR4Aov83zN3\nCoUaG/mpuVOQe0DFvxcXl2LuFPDwcOT7+n3MmkPnY1v4vWl3s+YA0ObQN5x+ob1Zc6j1y172NOpl\n1hwAOoRvI6xVZ7Pm0Hjf9/zc6HWz5gDwYvjXZj8nHcK3kfuTj1lzUHWMAmBDzTfNmsfAs2tLxfkA\nzH59vhj+dal4narZYtYcACzoUyrOh7nfT0H3nloa6mJfs25mzQGg1cGdpaIuzN1ugq7tFP8dMgVX\nCCGEEEIIIUSJkBFQIYQQQgghhHhCGnMn8IyQEVAhhBBCCCGEECVCOqBCCCGEEEIIIUqETMEVQggh\nhBBCiCek1SrMncIzQUZAhRBCCCGEEEKUCOmACiGEEEIIIYQoETIFVwghhBBCCCGekKyCWzQyAiqE\nEEIIIYQQokRIB1QIIYQQQgghRImQKbhCCCGEEEII8YS0WnNn8GyQDqj4T/F8rg41hvVCaaki+fJN\nTs1aQ25axr+Kq7/oA7LiEjmzcCMAbg0CCXi/N0qVBeqsHM4u2si9s1eMynZrVg//d/qgsFSRFnmD\n83M/Q52e8Vgx1p5uNFg7j/B+Y8hJStHt81x9AqcOI/NOvD7un3emok7PLLReHBs1wmvQEJSWlmRe\nvcqtpUvQpKfnG+s7eiyZ168S/803ACjt7PAdNRprPz9QKEn8dS/x27cVeswH3JvXpeq7vVFaWZJy\n+QZn56xEnc85KSzO2tONxl/M4VCfcfo68XiuHkHT3yMj5mGdHHlrukG5zk0a4Dd0AApLS9KvXOPq\nwuVG58NUTNWZE7H2KfswB28vUk6eIWLybJybNsJ/4kiyYuP0j58bPh5NhvFze8CjeV2qvfu6/jme\nnrMq37ooLM7G040mX8zmQJ/x5CSlYF/Jh9qzh+sfVyiVOFYpz/FxSx67nosa92/Px6P+PGvBsu+t\nyM5VUK2chtm9M3GwMYyJuK1k3k5rUjLBQgnTe2ZR00/DB+ttuBH3cMn7qAQlDfzVfDq08NdEfnxb\n1KLeB92wsFKRGHGLA1M3kJNmuqzn5g4i8VIUZzfsMXqs9bJ3SY+7R9jcrwo9bnGeE5WTPQFjBmNf\nyQcLayuurP823xyK69oEsHSyJ2DMIBwq+aC0tuLK+v9x+6e/jMourtdq3m1Bq5dxYexU0i5ezrce\n/g2tVsvkibuoUtWDwUOaPbVyS/qc5Kc431MtnewJGjcAh0o+WNhYcWndd0T9+HeprYsHXJvVo3JI\nX5SWKlIjr3NxnvF7vKkYpZUVVce8iWNAFRQKJcnnIri0eC2a7OwCj/k060JpbUng2MGUCfQHpYKk\nM5c5t+gLNFk5+n19Xm6FV6uG/DN6UaH5mKvdFM82mYIr/jOsnB2pPf0tjo1dxr5uY0m/FUuN4b3+\nVZx//8641q2u/1+hsqDe/GGcmrOW/b0ncWnd/6gz6x2jsi2dnQiY/B6nJy4i7PX3yYiKwf/dPo8V\n492xJfVWzsbaw81gvzK1qnPjq90cGTBW/1eUzqdFmTL4jh7DjdmziHhzMNl3ovEePMQoztqvPJUW\nLKRMixYG270GDCQnPp5Lb7/F5eHDcHupM3YBAYUeV/dcHQma+g4nJ3zEgR4jyYiKodp7bzx2XNlO\nLWi0egY2nq6GdRJcnWtbdnO473j9X946UZVxovL4D4iYNp9T/UPIun0Hv7cGGpRRUMyl6fM58+YI\nzrw5gquLPkGdmsa1ZZ8D4BgUQPS2UP3jZ94cUWDnU/ccQzg+YSl/9RhFelQs1d/r/dhx5To9T+NH\n6iLtahQH+07Q/8WHneL2LweI2XekVJ2PRyWkwpSt1iwbnMkPk9PxddPw0W5rg5iMbBi60obBbbPZ\nOTaDkA7ZjN+k66EuG5RJ6LgMQsdlMPP1LBxttUzpnmXyeAWxdnGg+ZxB/PHBZ3zbeQopt+KoP6pb\nvrFlKpflhS9GU/GFBvk+HjT4RbzqVy3ScYv7nARNe5fM2Lsc7jeBo8PmUGP0QBNlF8+1CVBr2jtk\nxiZwsN9EjgybS8DoAVg/ElOcr1UAhZUl/pNHo7B8ut+7R0bGMXjAJn7+6exTLdcc5+RRxfmeClB7\nxttkxCTwV5/JHH5nPjXH9jfKs7TUxcNjOFFj8jDOTlpEeO8RZN6OofK7fYscU2FgNxQWFhztP5oj\n/UehtLamfP+uJo9XHHXhP6gLCpUFB/qM58Ab47CwtqLygNd0+znZEzhhCAFjBoKi8N+zNFe7KZ59\nhXZAQ0NDWbx4cZELzMrKYseOHYXGqdVqRowYwf79+/XbVqxYQffu3Xn99dc5depUgfvv3buXmJgY\n4uLimDFjhsm4Nm3akJX17z6QPA2PW3+lQWRkJP369TN3Go/No2kt7p27QtrNGACuf/MrPh2bP3ac\nW4NAPJoFc33nb/pt2lw1v3YcTvLF6wDY+XiSnZRqVLZro9okn79Mxq07AESF/oL3C88XOcbK3QX3\nFo04OWqeUdllalXHpX4QDdYvoN7ns3GuU7ROoGO9+qRfjCD7dhQAd7/fjXObtkZxbq+8QuKePSTl\neU0CRH/+GdGrVwFg6eaKwtISdVpakY7t1rg2SeciSb+pe643d+7F+8XnHivO2t0Fz5YN+Wfkh0b7\nOQdXw7VBEE02zqfh6hm41DWskzIN65F64RJZUbcBiNn1I27tWj12jEKlwn/iSK6vWEN2nG50z6Fm\nDZzq1SZo1TICPl6AY3DNAuvCvXGw0XMsm09dFBT3oC6O5lMXD7jUqYF3m8ac/XCt0WPmPh+POnhB\nRVB5DRU8dHOWXm+eww/HVAZTmA5esMDPTUuLQDUArYPULBlo2KnNzoVJW2yY0CWLsi7/bv6TT7Oa\nxJ+5RsqNWAAufr2Pyi81zje2Ru/WXPr2ANd+OWr0mHej6vg8V5OL2/cV6bjFeU5UTva4NQomco1u\nNkNWbAJhg6cYlV2c16bl/Rwu58nh0OCp5DzSfhbnaxWg4vvvEPfzb+QmJRs9ryexdctRunStw4sd\nC379Py5znJNHFed7qqWTPR6NaxGxJhSAzNgEDgyYRnay8ftqaaiLB1wa1Sbl/GUybkUDcDv0F7w6\nPF/kmHsnznF9wze6eZoaDakRV7Dxdjd5vOKoi4TjF4j84tv7OWhJjriGbVldDt7tmpIVf4+LH28p\nUj7majfFs++pT8GNi4tjx44d9OjRw2TMjRs3GDduHDExMXTv3h2As2fPEh4ezo4dO4iOjmb48OHs\n3LnTZBlffvklM2bMwN/fv8AOqPj/w8bLjcw7Cfr/M2MTsHSwQ2VvazAVqKA4C1trao7pR9iwBVTo\n2sagfG2uGitXJ1psmYulsyP/TPwk3xyyYu/q/8+Ku4vKwR4LO1v9FJ2CYrLjEzkzMf8pLzlJqdz5\n+U/i/wynTHANgheOJ7zfaLLiEvKNf8DSw4Oc+IfTRHPi4rCwt0dpZ2cwDff2pysAcKhT17gQjQbf\nceMp83wLkg8cIOvWrQKP+YCNlxuZeZ9r7F0sHeywsLc1nBZVQFxWfCInxxtPJQVdnUT/tJ/YfUdw\nrl2dOovHcqjPOP3jVp7uBh9Cs+Pijc5HUWI8OrUn+24CiX8f0sflJqcQv+cPEv8+hEOtQKrNmcKZ\nN4eTHffweRRUF5lFrIvMR+rixPiP8i3/geoj+hLx+bZ8p2SZ+3w8KvqeAm/nhx1GL2ctqZkK0rLQ\nT8O9FqfE3UnL1K3WXLytxNFWy+iXDaerhR5W4VlGQ7tgdYF1UxD7sq6k52kX0mISsXK0w9Lexmg6\n2YPpYeWaGHawbT3K0GhCb/a+tZTqPVsW6bjFeU7sfL3JuptIhT6dcW9aB6WViuubvy80h6d5bT7I\noWKfl/C4n8PVzd+TfiPaIK44X6seL3VAoVIR98Mv+PTraZTjk5gyrSMAhw9ffarlmuOc5JtDMb2n\n2vt5kRl/j8p9OuHZrDZKKxVXNv1A2o07pbIuHh7Dnaw8txjk/x5vOiYx/KR+u7W3B749OxOxYKXJ\n4xVHXdwNezjAY+PtToXXO3J2vu4Ly5uhvwLg81LR2i9ztZulmYbCR47FY3RAlyxZwpkzZ7h37x41\natRg/vz5HDt2jAULFqBSqbC1tWX58uWsXLmSy5cvs2LFCoYNG5ZvWenp6cydO5c1a9botx07dozn\nnnsOhUJBuXLlUKvVJCQk4OpqPB1j3759nD9/nvHjx7No0SLGjx/P9u3b+eOPP1ixYgVarZaaNWsy\nc+ZM/T5bt27lwIEDfPTRR1hZWRmVqVarmTZtGnfu3CE2NpY2bdowbNgwOnXqxHfffYednR3r1q3D\nwsKC1q1bM2HCBFQqFT4+PkRFRbFp0yaTdXfixAkGDBhAamoqw4cPp1WrVhw4cIBly5ZhbW2Ns7Mz\n8+bNw8nJKd/99+zZw5o1a1CpVHh6erJ06VI+/fRTrly5wt27d0lOTmbKlCk0aNCA1q1bU7lyZfz9\n/Rk0aBBTp04lKysLa2trZs+eTdmyZfM9l7GxsYwZMwatVouHh4fJ51KaKUxMF9GqNUWKQwH15g/n\n7JJNZMXfyzckOyGZXzsOx6lGRZp8PokDV6YZBijzn1Sg1WgeLyYfeTumSacukHT6Iq6NahP9wx8F\n7mfyeOrH+7WqWwsXcPvj5ZSfOh3PPn2J3fRlofsolCbq+tFzUsS4R+X90H3v5EWSTkXg1ij4Ybmm\nrok8dV2UGO8er3F1yQqDxy9NezhKnXr6HKlnL+BUvy7xP/+ab3kKE+fBuC6KFpcf51rVsHJ2JPqX\nAyZyMO/5eJSpxRryHj5XDX+ds2D9exkEV9Tw+2kLQlbb8Ov0dKzuv4N9+acVM3o+4UyXIlwHBe6u\nsqDl4rcJX/A1GfFJRT9sMZ4TpUqFnY8X6tR0jgydhq2vF41WzzSKK85rU6GyuJ9DBmFDp2Pn60Wj\n1TP0IzP6uGJ6rdpV9cfzlY6cHzHBZI6lkTnOiVFcMb6nKlQq7H09yU3L4OCQmdj5etFs3dR8O6Cl\noS4e7lCEdqIIMQ7VKxM0fxxRO3/i7sFjpo/36OGfYl041ahE3YWjubFjD3F//1PkHAwPZJ52Uzz7\nitQBzcnJwd3dnfXr16PRaHjppZeIiYnh119/pWPHjgwYMIDff/+d5ORkQkJCiIiIMNn5BKhRo4bR\nttTUVJydnfX/29vbk5KSkm8HtFWrVgQEBDBjxgwsLS0ByM3NZfbs2ezYsQM3NzfWrFnDnTu6hmzT\npk2cP3+e5cuXY2FhkW9O0dHR1KlThx49epCVlUWLFi0YOXIkHTp0YM+ePbz22mt8//33fPHFF0yZ\nMoWQkBBatmzJ9u3biYqKKrD+bG1tWb16NQkJCfTo0YPnn3+eqVOnsnXrVry8vNi4cSOff/4548eP\nz3f/77//niFDhvDiiy/yv//9j9RU3RQVGxsbvvzySy5dusTo0aPZtWsX0dHRhIaG4uLiwgcffEC/\nfv1o2bIlhw4dYvHixcycORMnJyejc7lq1So6d+5Mz549+fHHH9m6dWuBz6k0ef4rXUdAZW9LyuWb\n+u02Hq5kJ6WizjT8YJpx5y7OQVWM4hwq+WBXzoPAkbp7NazdyqCwUKK0tuTc0i24N6zJnT90U0eS\nL1wjJeI6jlX8DMrOvBOHU+DDexisPVzJSU5BkyeHosQ8SuVgh0+3F7m+MfThRoUCTW5uofWTExuL\nXZ7XnKW7O7kpyWizirZQi0P9BmRevUpuwl00mZnc2/cHZZ4znvLzgP9bPfBoobvHQ2VvS+rlG/rH\nrD1cycnnnGTeiadMzSqFxuWlcrDDr3sHrm7Is2CEArR56iQrNg6HgIf3HVm5u5H7SF0XFmNXpTIK\nCwtSTpzWx1g42OP1aidub8lzu4ECtGrD81HlrR54tqivr4u816e1yevTuC7yi8uPd/umRP2436hn\n12TzAn0O5jwfjyrrouXU9YcfYGKTFDjZabHLcxuoZxktlbw0BFfUfaBpU0vNtK8V3IxX4O+t5fwt\nJWoNNKzy+KOfdYa9SvnWtQGwtLcl8dLDkX07T2eyktLIzSja4iDuNSvg6ONOo3G6ETZb9zIolEos\nrCw5OH2jQWxJvUay4nUjE1E//AlAxq0YEk9exLttEwCabf5Qn0NxXZtZ8YkA3LqfQ/qtGO6dvGhQ\nDhTfa9X9hTZY2NkR+KnuCzxLN1f8J4/hxsovuHcw3GTe5lBS7YWpc+LdtgnVQrrhZSKHp/meemnd\nd7ocdu/X55BwIgLnIP9SUxf5xsfE41Tz4fu3lYeb0ft3YTGe7ZpTdcxQLi1ZS+ze/Bddyqs46sK7\nfVMCxw3h/OL1Jr+wNMVc7ab4bylSB1ShUJCQkMCoUaOws7MjPT2dnJwcQkJCWLlyJQMGDMDLy4vg\n4GCyH2Mlr7wcHBxIy3NfWVpaGo6OjkXePzExEScnJ9zcdAu3DB06VP/YoUOHsLCwMNn5BHB2dub0\n6dMcPnwYBwcH/fPo0aMHM2bMoHLlylSqVAkXFxciIyOpW1c3TbF+/frs3r27wNzq16+PQqHAzc0N\nR0dHkpKScHBwwMvLC4CGDRvy0Uemp9VNnDiRVatWsXnzZipXrky7du0AaNJE10BWrVqV+HjddA8X\nFxdcXFwAiIiIYNWqVaxduxatVotKpcLa2jrfc3nt2jV69tQ1APXq1XumOqB/vTEJACsXJ1pu+xB7\nPy/SbsZQoXtbYv40/mYx7vBpAkf2MYq7d/oyv700Qh9X7a2uWDk7cmbhRixsrQme9hZZCckknozA\nobIP9hXLce9MpEHZCeEnqTpiALa+3mTcukO5Lh2I33/ksWMelZueiW+3F0i/HkXcvjAcqlXCKaAK\n52evKHA/gJRjx/B+622syvmQfTsK15c6k3zoUKH7PVCmRQucmjfn9sfLUVha4tyiJSn/mP7GNnL1\nDiJX6zpmVi5ONP1qEXZ+3qTfvINv1/bE7je+/+Nu2Cmqvd+v0Li8ctMz8Ov+AmnXbxP7RziO1SpS\nJrAKZ2Y+XHgk6chxKrwzBGufcmRF3cbrlU4kHjhsUE5hMU51gkg+ftJgH3V6Bl6vdSbjZhSJ+w9i\nV6UyDjWqceXDZQZxl1fv4HKeumj+1UL9cyzftZ3Juqjxft9C4/LjWi+Ac4vWG20/3He8Pgdzno9H\nNauuZtH/rLgep6CCh5ZtByxpE2TYYX0uQM3C76w5e1NJTT8NRyOVKBRafN10newjly1oXFVdlPUy\njJxY8R0nVug+CNu4OvLqtzNxLO9Jyo1YqvdqxY3fTxS5rLiTV9jR7uF04zrvvoK1i0O+qzmW1Gsk\n43YcyeevUO6lltzc/jNWrmVwrlVN//jBvhP0ORTXtZlxO46k81fweakFN7b/os/hype7DOKK67V6\nY8Uabqx4ONuqztfriJy7+Kmugvu0lFR7YeqcAESs3EnEyp36HIrrPRXg3vmr+HZ+nmvb9mDl6oRr\ncFUiN35fauoiPwnhJ/AfPgBb37Jk3Iqm3GsdiP/r0fd40zEerZtQZeQQTn0wm5QLkfkdwsjTrguv\nNo0JGD2QoyPmkXzeeCX/wpir3XxWaORnWIqkSB3QsLAwKlSowLJly0hISGDv3r1otVp27dpFly5d\nGD9+PKtWrWL79u107doVTRGH3vOqV68eixYtYsiQIdy5cweNRpPv6OcDCoUCbZ5v+d3c3EhOTube\nvXs4OzszZ84cXnnlFQA+++wzNPLOOAAAIABJREFUJk+ezNatW+nd23i1MNAtFuTo6MisWbO4fv06\n27dvR6vVUrFiRbRaLWvXrtXvW61aNY4fP07Lli05efJkvuXldfq07tvYuLg40tPTcXFxITU1ldjY\nWDw9PQkPD6dixYom99+2bRvDhw/Hzc2NadOmsXfvXkB33+yrr75KRESEvjOrzDPtonLlygwePJh6\n9eoRGRnJkSNH2L9/P9HR0Ubn0t/fn+PHj1OjRg19vs+a7MRkTs5cRf2F76OwVJF+K5YT03QffssE\nVCJ46lD+emNSgXGmqDOyODr6I2qO7otCpUKTk8PxKZ+SGWt4/2VOYjLn53xK0LwxKC1VZETFcG7W\nJzjW8KfGxBCODBhrMqZAGg2nxi2k2qjBVHqzF1q1mjNTP9IvI19g7kn3iFqymPJTp6JQWZIdfZtb\nixZiW7UaPiNHcfndkAL3j169Cp8R71N11WrQQvLBA9z9X/4/5fCo7MRkzs7+nNofjkKhUpERdYfT\nMz4FwCmgMoGT3+Zw3/EFxpmuEy0nxi6ixphBVHmrJxq1mpOTlxvUSe69JCIXLKfqzIkoLVVk3o4m\nct5H2FevQqWxuhUzTcU8YONTjqw7sY8cW0PElNlUGBGC76A+aNVqLs9cUOACJ9mJyZyevZI6H45E\nqVKRHhVjUBdBk9/iYN8JBcYVxs7Pm4zoOJOPm/t8PMrNUcucN7L4YL0NubkK/Nw1zOuTyZkbSqZ9\nbU3ouAw8nLR8MiSD2TusycgGKxUsG5yJtW7yC9fjFZRzffz3nEdlJqTw95T1tF72DkqVipSbsfw1\n6QtdnjUr0HzWAHZ1m/XEx3lUsZ4T4MS4xQSMG4Jf13agUHJl3U4CJw41iCnua/P4uCUEjhuMX9d2\nKBRKItftNPrgW2yv1WeUOc5JzXyui+J6TwU4OmYptcYPpEK3tqBUELHmW5LOGXeISkNdPJCTmMyF\nuZ9Sc+4YFJYqMqPucP7+e3z1Ce9wdOAYkzEAlUJ0o8HVJzxcRT/p9AUuLTFeNC4/T6Muqr37OgqF\ngqDJb+nLTTx5kfP5fHlZGHO1m+LZp9BqC/7J1NDQUE6cOMHZs2exsbFBoVCQmZnJxIkTUalUzJ07\nF1tbW5RKJbNmzcLT05OePXvy3HPPMXbs2AIPPmHCBDp16kSL+z/78Mknn7B//340Gg0TJ06kQYP8\nl2oGWLp0KX/99RezZ89m5syZbN++nT///JPPPvsMpVJJYGAgU6ZMoW3btvz0009kZGTQo0cP1qxZ\nk29n78E0VkdHR6ysrIiOjmbjxo14eXmxe/duPv74Y/bs2YNCoeDGjRtMmjQJCwsLHB0dSUtLY/36\n/F+4oaGh/PDDD+Tk5JCens7o0aNp2rQpBw8eZPny5SgUCsqUKcP8+fNNdrh///13PvvsM+zt7bGz\ns2PevHls3ryZ8PBwlEolGRkZTJs2jaCgIJo3b86BA7rpFDdv3mTGjBlkZWWRmZnJ5MmT8fX1JSQk\nxOhcVqpUibFjx5KdnY2vry+3bt0q8L5WgLi4wjs/xc3Dw5Hv6/cpPLAYdT62hd+bdjdrDgBtDn3D\n6RfamzWHWr/sZU8j42X6S1qH8G2Eteps1hwa7/uenxu9btYcAF4M/9rs56RD+DZyf/Ixaw6qjrpb\nJTbUfNOseQw8u7ZUnA/A7Nfni+Ffl4rXqZqirfhZnCzoUyrOh7nfT0H3nloa6mJfs/x/TqQktTq4\ns1TUhbnbTdC1nc+CmRWHFx5kZtOvFTLoUQIKHQHt2rUrXbua/o2i7du3G2377rvvinTwDz80XA57\n+PDhDB9etBM3cuRIRo4caZBDy5YtadnScAWt33//HQBra2v9yGF+qlatyq5du/J97OWXX+bll1/W\n/3/ixAnmzp1LhQoV2LFjB//8Y/rmbVP116xZM5o1K9oPVrdp04Y2bdoYbe/UqZPRiO6DzieAn58f\n69atM9rP1OrC+cUKIYQQQgghClfwsJ544Kn/DMsDp06dYtEi45+T6NixI2+8Yfwj2/n57bff2LBh\ng9H2/v370779vxvpWbFiBWFhYUbb582bh5+fXz57GCtbtiwjR47Uj/zOmzePGTNmEBlpPJ9/zZo1\n2NjYFFpmdnY2Q4YMMdpeqVIlZs2S6QtCCCGEEEKIZ1+xdUCDg4MLncJZmLZt29K2bdunlJHOsGHD\nClyhtygaNmxIaGiowbYn/S1SKyurx6qvoo4UCyGEEEIIIURpUWwdUCGEEEIIIYT4/0LDv1iS/f8h\nE79UK4QQQgghhBBCPF3SARVCCCGEEEIIUSJkCq4QQgghhBBCPCFZBbdoZARUCCGEEEIIIUSJkA6o\nEEIIIYQQQogSIR1QIYQQQgghhBAlQu4BFUIIIYQQQognpDF3As8IGQEVQgghhBBCCFEiFFqtrNck\nhBBCCCGEEE9icvkR5k6hUHNvfGzuFGQKrvj34uJSzJ0CHh6OZJ5pbdYcbIL+4Pv6fcyaA0DnY1v4\nrUkPs+bQ9vAODjz/qllzAGj+13fsbdzTrDm0D9uOmi1mzQHAgj5mz8OCPuxp1MusOXQI3wbAN3UG\nmDWP7ic2lorzAZSKPErD6/TnRq+bNQeAF8O/LhXn49u6/cyaA0CX45tKRV2Y+/0UdO+ppeE1Yu52\nE3Rt57NAI8N6RSJTcIUQQgghhBBClAjpgAohhBBCCCGEKBEyBVcIIYQQQgghnpDMwC0aGQEVQggh\nhBBCCFEipAMqhBBCCCGEEKJEyBRcIYQQQgghhHhCGq3C3Ck8E2QEVAghhBBCCCFEiZAOqBBCCCGE\nEEKIEiFTcIUQQgghhBDiCWllGdwikRFQIYQQQgghhBAlQjqgQgghhBBCCCFKhEzBFf9Z+49l8vHm\nZLJztVSrYMmMd51xsHv4ncvufels2p2q/z8lXUvsXTV7VnuhslAwZ/U9Ll7LwdZayattbHmjk0OR\nj+35XB1qDOuF0lJF8uWbnJq1hty0jH8VV3/RB2TFJXJm4UYA3BoEEvB+b5QqC9RZ/8fefcfXdP8P\nHH/dmR3ZicSWCJFF7D3bGB3UJqiqPWsTW2u2tHRZpUonWqV8idokNhErhCBk7z3u/f1xuVz3JqLK\njf4+z8fD4+He876f877nfD6fcz/nfM5JARFLN5IaEQVAgx+WIVUoyLwRzZWPv6YoW7cs+yZ1qT6i\nj36MVEqNsQOwa+iHRCbjzpYdxGzfB4BDswC8Zo4iNy5RW86ZYTMpys6l2tBeOLVqCED65Rt638+2\ncQCVh/ZHqlCQdfM2Nxat1MupNDE1F0wlPzGZqBWrMatSkRqzPtIuk0ilWFSvwpUZC5GZmeHa820A\nGm1agtzSHBMnO468NZz85DSdMi2rV8RzwiDkluagUnF50Woyrt7S+w4lUdhY4T17FKblHTVlLFxN\nWvh17XIp7wJ5AKjJQM3RUpetVquZMW0H7h6ODPqgyXPl9W96WXk4NK2Dx4jeSJUKMm7cIWLBNxQZ\naCPPijNxsqfh+gWc6DuZgrQMnc+auTrSaOMizoz52GAOLs398B7dHZlSTlrkXU7PWUdhVm7p46QS\n6kztj2OAJwCxRy9ycflPAJRv4U/9+R+SHZukLefg+588/4Z6yn+tXjg0rYP78D5IlZo+KeLj4uuB\nwTipBM9xA7B/2HdFb/6Tew/7rkdMyzvSaONizo5ZQPpVTV/p1qUdlXp2BKDO0olcWvCttv44Nq1D\njRG9tHUufMG3BnN6Vpypkz2N1s/nWN8p2rIV1hbUmvg+llXdkJooifrud+7vPvKPt98jL6teODfz\no/boHkiVCtIj73J27hqDbaSkuKrd21KlSytkJgpSrtzm3Ny1qAoKUVhb4DelP1bVXJGZKLm2bgd3\ndx174ZxfxrYo9thZmpgSjq+PmJZ3osGGxZwbO5+Mh3X0EWO1kcp9OuP6VmsAmn8zmbMLNpB1Lx54\nPftOoWwRV0D/H1m9ejUXL140dhqvRHJaEbNWpfLpJDt2rHTGzVnO5z+k68S81cqcXz514pdPndi8\n2BEHGylTB5fD3kbG0g1pmJtK2b7CiR8WOnDsbB6HTut3roYobazwmz2EM5NWcPC9SWTfi6fm6J7/\nKK56/87Y1fHUvpbIZdRdOIqLC9ZyuPd0Itf9jv+84ShtrAAIn7aM0J5jybkfh/vIvjplKWys8Qoe\nYTDGrUs7zCq6ENb3I04NmkrFnp2w9nIHoJyPJ9FbdnCy/yTtv6LsXBxbNcCugR9hQZMI7T0eqamJ\nzvrkNta4TxvD1eBFnO07gtz7sVQe1v+5Y9z6dMHaz0v7Ouf2XS4MGq/9l3rqPAn7DpF8OJSE/x3g\nwqDxAIQNnEZeUipXl63XG3xKTZTU/SKY6B92ENZ/ClHrt+Izd0wxe7R4NScNJuX8VU70+ojw2Svx\n/eQjpCZK7XIVR1GxGxW7n2vwefNmAoMGbGLP7ojnzunf9LLyUNhY4T1zOBemfsax7uPJiYmjxsg+\nzx1XvmMLGqyeg6mTnd5npUoF3nNHI1EYPs+qtLWi3tzBhE5cyf/enUrWvQR8xvZ4rrjKnZtiVcWF\nvd1nsK/nTBzqeeLWvj4A9n4eXP9+NyE9Z2n/FWaXrg8pzn+xXtQOHsHFaZ9yvMc4smPi8RhhuB4U\nF1ehS3vMK7pwos8Ewt6fRqVeHbH2qq79rFSpwOepemBa3hH3Yb04PWQWADkPEnAf0k27Lu+Zwzg3\ndTlHun9Edkw8niN7G8yppDjXjs1paKBu+swaTm58MseDpnFq1MfUmjAAEwP193m8rHqhtLUiYO4Q\nwiZ9QUiXyWTdi6f2GAPHshLiXNvUo3qv9hwdtoiQbtOQmSpx7xcIQMC8IeTEJXOg90yODluE7+Qg\nTJ1sXyjnl7EtSjp2liampOMraOpo7RL6KmO0Ebv6Pri+3YaTg4MBiPn7NPXmDgZez77zVVK9Bv/K\nAjEA/X9kyJAh+Pr6GjuNV+LEhTy83RVUdtV0qD3eNOevIzmoi7k7/LvfM7ErJ6P7GxYAXL5ZQOeW\nZshkEhQKCc0DTAk5oX/G0RDHxj6kXo4i624cANG/heDWoelzx9nX88KxiS/RW/dr31MXFhHSYTTp\n16IBMHdzIj8tE8fGPgDk3I0FIGbbXlzebK6zPruGvqRfuWkwxrFlQx7sPIC6SEVhRhZxIcdwCdQs\nK+fjiV09b+pvWEzAN/Ow8a8FQMLBk5wZEoy6sBCZuRlK23I667OtX4fMqzfIvfcAgNjf9+DYvuVz\nxZSr44NNg7rE/r7H4La29vXCvlUTbi77Wm9Zlf7vkJ+SRsz2EL1l9g39yI6JI/H4Oc13OXyaizOW\nA5pBfo1xA2i4cRGNflhC7ZkjkFmY6ZUhkUlxbFaXmD805WdGRpN99wEOjf21B3IptZDSESnNAXOD\n38GQHzefpktXfwI71C71Z16Gl5WHfUM/0i7fJPthXby7dR8ugc2eK87EwRanlvU5O36RwXXUnDyI\n+zsPUpCabnC5c2NvUiKiyLyjaX83f/2bSh0aP1ecRCpFbmaCTKlAqpAjlctR5RVocvdzx7G+F223\nzKXV+uk41PXUK/t5/RfrRdqVx/v33ra92n7nSfYN/YqNc2rZgJg/D2r7rth9xykf2EL72ZqTPuD+\nrkM69UAikyKRy7XtWmaqRJWv2W8ODX316lx5A3WzpLhHdfP0U3VTYW2BfQNfbqz5DYC8+GRODJpJ\nQVomL+Jl1QunRj6kRESR9bDu3/p1PxU76F9RLCmuYudmRP6wm4L0LFCrOf/xd9zZeQyFtQVODb25\nuno7ALnxKRwKmqOJewEvY1uUdOwsTUxJx1cAz4mDebDrIAVphvsqY7SRvKRUri5eo73SmnL5Nubl\n7YHXs+8Uyh4xBdcIMjMzmTFjBhkZGcTHx9OhQwd27tzJX3/9hUQiYd68eTRu3BhnZ2fmzp2LhYUF\n9vb2mJiYsGiR4R9bK1euJCoqiqSkJNLT0wkODqZevXq0bt2aatWqUb16ddLT0+nYsSMNGjRg2rRp\n3L9/n4KCAmbOnIm3tzezZ88mOjoalUrFuHHjaNiw4SveMv+e2MQinB1k2tfO9jIys9Vk5aixNNf9\nI8Ep6UV8vyOTn5Y6at/z8VCy81AO/jWVFBSoCQnNQS4r3R8XNnW2Jzc2Wfs6Nz4ZhaU5cgsznem1\nJcXJzEyoPTGIsFGLqdy1jU756sIilHbWtNj8MQobK85OW4llFVedmLz4JOSW5sjMzbTThEydHHSm\n0T4ZY+pkT25cks4yS/fKABSkZxC7+zAJh05Szq8mfksmE9ZvInkJyaiLiqjQLZBqQ3uRl5Csk4PS\nyYH8J9eXkIjc0kInp5JiZGZmVB07mIgJc3B5+02D27rKyPe5s+YHvalQoJk+FNp/isHPmVcqT35S\nKl4zhmHlUZmCjCwiV20GoOqAd1EXFRE2YCoA7sN74zGiD1eXrtMpQ1HOCiQSClIfT/vMi0/GxMke\nEwfNWXwV54EMJNRCSktU7DaYz9OCZ3UAIDT0+aYE/9teVh6mzvbkxuvWN4WlOTILM90pjCXE5SWm\ncGHKpwbLd3unDVK5nJg//qba+10Mxpg725H9RPvLiUtGYWWO3MJUZypZSXG3dxyhQvv6dNq7AolM\nStyJSzw4fB6A/LRMonce5/6BM9j7e9BkxThCegQ/55bS9V+sF3lxpasHxcWZOtuTF/9031UJALe3\n2yCRy4j5Yz9VBz6uBzn34oj+YQdNf1kBgF1dL0I/mKld15N1LreUdTP3qbp5fspnet/VvIILeUkp\nVOnbCcfG/kiVcm79sJPsOw+ef8M94WXVC3MXO3Ke2O458cW0kRLiLCu7YHLJmiarJmHqaEPSuetc\nWvET1tXdyE1Mxb1fB5yb+iJVyon8fjeZd2JfKOeXsS1KOna+6PHV9WEdvf/HfqoM7Gpw/cZoI1lR\nd3nyVIDPmO7E7DsFvJ59p1D2iAGoEURHR9OpUyfeeOMN4uLiCAoKwsvLi9OnT+Pn50dYWBjTp0+n\ne/fuLFmyBA8PD5YvX05cXFyJ5ZqamvL9998TGRnJhAkT2LFjBw8ePGDbtm3Y2toydarmB/VPP/2E\nm5sby5cv5/bt2xw8eJArV65ga2vLJ598QkpKCv369WPXrl2vYnO8FMU9Bltq4Jr/1n3ZtK5vSgXn\nx81hwkBrPtuYTs+JCTjaSmnsZ8L5q/mlWrdEYnigqi5SlSoOCdRdOJqITzeRl5hqMCQ/OZ2QDqOx\nrlmFRl9P596OQ4bXqXpindJi8lKpkBhY9ijf8KnLtO+lXbhKavg17Br48mDXQQDu/baHe7/todrQ\nXlhWq/j4a5SwvmfFIJFQY85Ebn2xloKkFIMhVt41kZezImHfYYPLEw6fJvdBgsFlUrkMhyZ1OD1i\nLukRN3BsUY86y6dx5J0RODQNQG5ljn0DzWwBiUKuN4VXk7vhCSRqleqJ9WoGp2quIMEHsABe7Az/\nf0Gx+/3pNlLKuCdZeValQtd2nBoy5x/loNdOS4jzGvoueSkZ/NlmNDJTJU2Wj8UjKJDITXs4MWGl\nNjbpfCRJFyJxauxdYk6CxtP7AEkxba1IZbhfU6ke1oP2nBo6W2+xXUNfnFo35PDbw2m1Zy3xh07j\nM2s4ZycsLbZd69fN0sXpfEYuw9zNmaLMHMI+nI15BWcarJ6jvWpV5hR7LFOXOk4ql+HUyJvQ8csp\nyisgYP5QvEZ1I2bfSSwqOFGQlcPh9+djUdGJFutmkvWCA9CXohTHsn9yfLXyrIpblzc4M2zWc6f0\nstvII4qHt/cUZucRvvLXh6sSfWdJxJ9hKR0xADUCBwcHNm7cyN69e7G0tKSwsJAePXqwfft2EhIS\naNOmDXK5nPj4eDw8PAAICAjgr7/+KrHcRo0aAeDh4UFiouZMnK2tLba2uvdUREVF0aKFZvpFlSpV\nGDhwIHPmzOHMmTPae0QLCwtJTk7Gzu7F7k0xFhcHGeGRBdrX8UlFWFtKMDfV76T/dyyHKR/oTh/N\nylYxPsiaclaa+PXbM6hUvvjmUmPYezi3CABAbmFGxo272mWmjnbkp2VSlJun85mc2CRsvN314iyr\numHu6ojX+H4AmNiXQyKTIjVRcHn5Zhzq1yb2wGkA0q/eJuN6NMh0v5eJox0FaZmonlhnXlwi5Wp7\nGIzJjUvUXrV7tOzRGVy3994keuN27TIJEtRFRZozuFIJmddvA3B/x36qvv/eE+tLwLJWjcdlOthT\nkJ7xVE6GY8yrVMS0vDNVRg0CQGln+3AbKLmxeBUADm2akbDnAJUG9ca2qebekZRjp7izbosmn50H\nKE5eYgpZt2NIj9A8OCnh8Gm8pg/D3M0ZiUzKtc82kHRCczZWZmaCVKnEumY1vGYM05YRNlBzQkdu\nZUFhhmZQaeJkq3N2WV9Zufvi1as+pDuOLeoBmjaSeeOOdtmjuvh0G8mNTaRcbfdnxj3JtWML5BZm\nNFg3X/sZn3mjtcvb/TxPm0N65D3t+2ZOtg/bqe6JpuwHydh5VzcY59a2HucXbUJdWERhZg7Rfx6l\nQrv63P79MNV7tOHqup3az0kkEtQFRc/eUP9xEnyR4KZ9rXSw0f7fUL8FkBuXSDlv/Xqgys0jNzYR\npb1uGbnxyZTv2AKZhRkN1i7Qvu89bwyRKzdh19CPhCOnKUjRTDmUKuU4Nq1Dkx8W6fXfJsX23/p1\n01Dck/ISNSfT7u3SnDDMvhdH6oVrOuUYW63hXXFpWRcAhYUZ6U8ey7R1X/9YZudT3WBcbkIq9w+c\n0V4Zu7vrGDWHdOHmlr0A3NmhOYGYdTeepPPXsX2irZUVJR07SxNT3PHVpUNL5BZm1FujeUiaiYMd\nteeOJeP6LSwqG7eNJBw5g6V7JfyXTgYg9fod2m7WDFRF3yn8G8Q9oEawfv16/P39WbZsGYGBgajV\naho3bsyVK1fYunUr3bt3B8DFxYUbNzQ/kC9cuPDMciMiNDfdX79+HWdnZwCkBs7SVq9enfDwcADu\n3r3LhAkTqFatGp06dWLTpk2sWbOGwMBAbGxs9D77umjsb8LF6/lE3y8E4Ne92bSqb6oXl56p4k5s\nEX6eSp33f92bzZc/aX6cJKUWsS0kmw7N9e8DfOT6N1s50mc6R/pM59jA2dj6uGNRUbMPKndrS9yh\nM3qfSQgNNxiXGn6D/Z3GaMu7s3U/D/aGcnH+WtRFKnxnDcHWTzNos6zmhkUVV+7+oflBY1bRBQC3\nLm+QcOSUzvqSwi5QztvDYEzC4VOUf6s1EpkUuaU5zu2bknD4FIXZuVR4LxDH1prp2JY1qmDt5U7S\nifNYulfGK3ik9qE75Tvo3t+ZevI8VrU9Ma1QHgCXdwNJPnqyVDEZEdc43e0D7YOGYv/YQ+L+o9rB\nJ4C1f21Sz1zkzrot2rg767Ygs9Tcx5t68TrFSTx+DrPyTljVrAqgua9VrSbnfjxJoReo2D0QiVwG\nEgle04fhPqIP6VejCA2arP2nLlKRePwcFbq002wb90pYVK1AypkI1KpHp0A1uUjwAFKB0t1H/F90\nc/WvhPabQmi/KZwcFEw5bw/MH9bFCl3bE3/4tN5nksIuliruSdeWb+RYt/HadeUlJBM+6/EZ9UcP\ntTgQNA873+pYVtK0v2rd2nD/4Dm98uJOhBcbl3olmgpvaNqGRC7DtWUdki7epCArh+o92+HWVjPg\ntvGshK13NWKP//94CFxJ1FzUPpgL0N+/T/Vb8LjvMhSXcPg0bm+1eaLvakLCoZNcX76R493Hadtr\nXkIyl2Z9QcKRM2Rcu4Vj07rIzDQPTst5kEjS6QiO95tK6KCZ2Hi7a9dVqWu7YutmaeKelHM/gbQr\nUbh10pwAVtqVw8anBmmXbz73dnxZrny9jQO9gjnQK5iD/edqjlEP637Vbm15cPCs3mfiTlwqNi4m\n5CRu7RogNVEA4No6gJSIKLLvJ5By+RaV3tLcp2hiZ42dnzspEVF65RtbScfO0sQUd3yNXLGBEz3G\nah/ul5eYTMTsz4mYuUL7HhinjZhVcCbgq9lErd8KwOWvtom+U/hXiSugRtC6dWsWLFjAX3/9hZWV\nFTKZjIKCAt58802OHz9OpUqaqyezZ89m+vTpmJubo1AotIPK4ly5coUBAwaQk5PD/Pnzi43r1asX\n06dPp1+/fhQVFTF9+nQ8PT0JDg6mX79+ZGZm0qdPH4OD19eFfTkZ80baMHFZMgWFUMFFxsejbYm4\nkc/cr1P55VMnAO7EFuJoK0Uh150q8kFXS2Z8nkrXcfGo1TCshxXe7kpDq9KTn5LOhbnfErBkLBKF\nnOx78ZyfpXlITrlaVfGd+SFH+kwvMa44RTl5nJ7wGbUn9EMil6MqKOBc8JdkRGquJvl8MgGpQk7O\nvTgi5q3CqmY1ak0fzsn+kyhISefy/K/0YkDzwAQzNxcabFqGVCEnZvs+Us9dBuDi5MV4TviAaoN7\noC5ScSl4OQVpGcTuOYxZBRcabFiMqqiIrKi7OrkWpKZxY+EX1Jw/BYlcTu79WCIXrMDS053qU0Zy\nYdD4YmNKw6yCK3mx8Qbe1wxm1UW6Z0wfXcEMDZpMfnIa5ycvpdakwcjMTFAVFHJh6jJU+QVErf+N\nGmP602jTEiRSKRmRt7n+xfcGc7i6ZC1e04fReEtz1Gq4NGcVhVk5FD7cFlJaARIgG9VzPAX3vy4/\nJZ2I+V/jt+gjJHI5OTGxhM/5EgDrWtXwmjGU0H5TSox7UXkpGZyevZZGS0chVcjJuhfPyeDVANh6\nVSFg9iBCes4qMe7Css34Tw3ije0LUavUxIdFcG3DLlCpOT5uBf5TgvAa3kVzT/HkL8lPfbGHzfwX\nXZ7/Nb4LH+3fOC7N1fRJT7ZXTd9lOO7etr2YVXCm0Q9LkSrk3NseQsq5KyWu8/6fBzAr70jDjYsB\nsAvwInyepu/NT0knfP43+C8aj1QuJzsmTqdues8YwvF+U0uMK8m5yZ/iNXkQFbu2QyKRcnPdVtKv\nlL1BF2i2xdk5a2i4dAxB1S84AAAgAElEQVRSuYyse/GcnvktADZeVakz6wMO9AouMS7qlxCU1pa0\n3jIfiVRK6tXbhH+2HoCwCZ/jN3UAVbu1QSKRcHX176ReNu79zYYUd+z8N46vpWGMNlIl6F1kJiZU\n6qG5p7bdz/NQ5Rfyd9A80Xc+w//feU7PR6Iu7rGggtFt3ryZDh06YGdnx/Lly1EoFIwaNcpg7MqV\nK3FwcKB3b/3Hxb8sCQkZzw56yRwdrci91NqoOZh6H2BnQN9nB75knc9sZn+j7kbNoW3orxxr/o5R\ncwBoeuQP9jXUfyz8q9Q+7BeK2GzUHABk9DV6HjL6sreB/p9veJXeOPkzAL/5DzBqHt3ObywT+wMo\nE3mUhXa6p0Evo+YAEHjypzKxP7bXCTJqDgBdzm0qE9vC2MdT0BxTy0IbMXa/CZq+83UwznWssVN4\nphX3Pzd2CuIKaFlmb2/PoEGDMDc3x8rKikWLFjFq1CjS0nQfiGJpaYmXl1cxpQiCIAiCIAiCIJQN\nYgBahgUGBhIYGKjz3qpVq4qJFgRBEARBEATBWFRiXmmpvL43+QmCIAiCIAiCIAivFTEAFQRBEARB\nEARBEF4JMQAVBEEQBEEQBEF4QerX4N/zys3NZfTo0fTp04cPP/yQ5ORkg3EqlYrBgwfz448/PrNM\nMQAVBEEQBEEQBEEQ9Pz444/UqFGDLVu28O677/LVV18ZjFuxYgXp6emlKlMMQAVBEARBEARBEAQ9\nZ86coXnz5gC0aNGCEydO6MXs2bMHiUSijXsW8RRcQRAEQRAEQRCEF/S6PwX3119/ZeNG3b+5am9v\nj5WVFQAWFhZkZGToLL9+/To7d+7kiy++4MsvvyzVesQAVBAEQRAEQRAE4f+57t270717d533Ro0a\nRVZWFgBZWVlYW1vrLP/999+Ji4tjwIABxMTEoFAocHNzo0WLFsWuRwxABUEQBEEQBEEQBD1169bl\n0KFD+Pr6cvjwYQICAnSWT548Wfv/lStX4uDgUOLgE8Q9oIIgCIIgCIIgCIIBvXv3JjIykt69e/Pz\nzz8zatQoAL777jv279//j8qUqNXq13y2siAIgiAIgiAIgnGNcB5r7BSe6au4z42dgpiCK/xzCQkZ\nzw56yRwdrVjv9aFRcxh0eQ0/+w00ag4APS9sYIXHCKPmMC7yK6691dKoOQB4/nmIXfX6GDWHTqe3\nsCOgr1FzAHj7zGZ+8x9g1By6nd9YJnIAKDhW26h5KJpGsL1OkFFz6HJuE0CZyGN/o+7PDnyJ2ob+\nys4y0E47n9lcJvZHEZuNmgOAjL5lYlsYu88CTb91qnUno+ZQ/8Auo/eboOk7hf8OMQVXEARBEARB\nEARBeCXEFVBBEARBEARBEIQXpDJ2Aq8JcQVUEARBEARBEARBeCXEAFQQBEEQBEEQBEF4JcQUXEEQ\nBEEQBEEQhBekEn9bpFTEFVBBEARBEARBEAThlRADUEEQBEEQBEEQBOGVEFNwBUEQBEEQBEEQXpCY\ngVs64gqoIAiCIAiCIAiC8EqIAaggCIIgCIIgCILwSogpuIIgCIIgCIIgCC9IPAW3dMQAVPhPq9DC\nh3rjuyJTykm+fo+jwRspyMotNr75x++TciOGS9/t1b7X++hnZMenal+Hr/8fUTvDSlxv+eZ++I7p\nhlQpJ+36PU7OWUehgfUWF6e0tiAguD82npUoysnj1h9HifwxBADraq7UmzUQuZkpoObi578Se/zS\nM7dFlVbeNJ3wDjKlnMRrMYRM/4H8TP2car7dgIDB7QA1BTkFHJz/C/GX7iAzUdBmTk+cfSojkUqI\nvXCbv+f8TFFewTPXDWBRrxGO/YcgUSjIux1F7BeLUeVkG4x1GTeVvOhbpGz/GQDXqXNRlHfTLlc4\nlyfn0gViFkwv1bqdmvrjOaoXUqWcjMi7XJy/msKsnFLHyS3M8J01BMsqriCRcG/XEaI2/ollVTf8\nF4zUfl4ik2LtXokzk5YbzqOZP16jeiJVyEm/cZfz89YYzqMUcfWXjiM3IYXwJRsBsK/nRe3xfZDK\nZOSnZXJp2SbSI+/ole3S3A/v0d2RKeWkRd7ldDF1s9g4qYQ6U/vjGOAJQOzRi1xc/hMAjvVq4jO+\nF1K5jKK8fM4v2UzKpSiD2+JV5/Eshy6oWLFVRUEB1KgoYd77UizNJNrlfxxT8f1elfZ1Zg7EpUDI\nMhmWZrDgBxURt9So1OBTTUJwPymmSomhVelxbuZH7dE9kCoVpEfe5ezcNQa3RUlxVbu3pUqXVshM\nFKRcuc25uWtRFRRiVc2VOsGDkJmbglpNxBe/vPIcXFrUIWDeELJjk5BbmGHmaENOXDIAMnMzirJ1\n67Z9k7pUH9EHqUJB5o1ornz8tSZGKqXG2AHYNfRDIpNxZ8sOYrbvA8CsogteM0agKGdFYXYul+et\nJDv6PgCV+nSmfOc2qIuKKEhN5+qi1eTExGnXJ5HLaLJ2Fg/2hxG16S+cmvlT84n2d7GEdvqsuICl\n48hLSOHSw3aqsLbAe/IALKu6ITNVErnuD2L+OvrK94nC2gK/Kf2xquaKzETJtXU7DObwvNRqNTOm\n7cDdw5FBHzT5V8qEsrEtXrTParR0FJaVnLRxFq6OJJy5xvFxK3CsVxPfCb2RPOy/LyzdTNr1u3pl\nl2tUnwqDByBRKMiJus2tpStQPdV+io2RSqk8ZhhWfj4ApIWd5u4363Q+69ChPbbNGhM5Y94z9oiG\nMftN4fUmpuAK/1mmtpY0/3ggf4/7mq2dZpJxN5F6H3U1GFuumguB6ydQNTBA533rKs7kp2fzR9d5\n2n/PGnya2FrRYN4HHJuwit3vTCMzJh6/sd2fK85/Um8Ks/PY02U6If3m49LUh/It/AAImN6fW78f\nYW/PWZycvY7GS0YgkZXclM3sLHljURC7Rq3m+zfnkn43kaYT39WLs63qRPMpXdj+wSo2v72Qk1/t\npvOXQwBoMCIQiUzGD299wg+dP0ZuqqD+sDdLXO8jMutyuIydSszCmdwaHkR+7H0cBg7Vi1NWqEyF\nBcuxatZa5/37i2YTPXYw0WMHE7dqGaqsTOK+MTzI0yvTxgrf2UM5M3kFh96bSHZMHDVH9XquuBrD\nu5Mbl8zhnlM41n8mld9rh42PB5m3Yjjad7r2X2JoODF7jhF74JTB8uvMHsKpSSv4+71JZN2Lp9bo\nnv8ozr1/Z+zqeGpfyy3NqL90HJdX/MjBXtO4uHA99RaNRqrQPceotLWi3tzBhE5cyf/enUrWvQR8\nxvbQz6GEuMqdm2JVxYW93Wewr+dMHOp54ta+PhK5jIZLRnJ23npCes7k6podNFgwxPA+KSN5PJKc\nrmbmehUrRsrYuVBOBUdY/ptKJ+adplK2zpWzda6cn2bKcCgH0/tKcSgnYfVOFUVFsHWujG3zZOTl\nw9pdqmLWpv8dA+YOIWzSF4R0mUzWvXhqjzFQL0qIc21Tj+q92nN02CJCuk1DZqrEvV8gAH7TBhL9\nx2EO9Arm7Jy1NFg86pXnYOfnQeT3f3Fs+GIU5qbs7zGdfe9MAsB9ZF+ddShsrPEKHkH4tGWE9hxL\nzv04bYxbl3aYVXQhrO9HnBo0lYo9O2Ht5Q5A7TljubdtL6G9x3Nr7c/4LJwIgG19H1zfasvpwTM4\nGTSJ+INh1AoeobPO2hODMK+gGRgobazwmz2EM5NWcPC9SWTfi6dmMe30WXHVn2qnAH5zhpITl8yR\nvjMIHb6Q2pP6Y+pk98r3ScC8IeTEJXOg90yODluE7+QgvbKf182bCQwasIk9uyNeuKwnlYVt8W/0\nWaGTVhHScxYhPWdxZt535Gdkc27h98gtzWj82RjCl/9MSI9gzn28kUZLRur13/Jy1lSdPI4bsz/h\n0oCh5D2IpeKQ90sdY9++DaYVK3Dpg5FEDB6FlZ83ti2bASCzsqTy+JFUGj0MJKUbABqz3xRef2IA\nKvxnuTatTeKl26RHxwNw9aeDVO/c0GBsrd6tidx+jFt7zui871ynOuoiFR2+m8C722fjP7wzEmnJ\nnbNLY2+SL90i847mDPuNXw5QqWPj54qz86rC7Z3HUavUqAqLeHDkIhXb1QdAIpOgtLYAQGFuiir/\n2VcgKzWrRVx4NKnRCQBc3HKYmm/X14sryi9k34zNZCekAxAXHo2FgzVShYyYUzc4+dVuUKtRq9TE\nX76Htav+DydDzOvUJzfyKgUPYgBI3f0H1i3b6cXZdHqX9P27yTh6wHBBcjku46YRv2YVhYkJpVq3\nQyNf0i5HkX03FoDo30Jw7dD0ueIuL/ueK59rrqKZONggVcopzNS9emvr74lL2wZcWrjeYB6OjX1I\nvRxF1l3N/r79WwgVDOTxrDj7el44NvHl9tb92vcsKrpQmJlN4inND7/M2w8oyMrB1tdDp2znxt6k\nRERp69zNX/+mUgf9ullSnEQqRW5mgkypQKqQI5XLUeUVoC4sYtcb40i9prnqalHBify0TIPboqzk\n8cjxCDW1q0qo7Kxp2z1bS9kVqkatNjyXav1uNXZWEnq00hxCA2pIGPqWFKlUgkwqoVZlCfeTSlyl\nllMjH1Iiosh6+B1v/bqfih30rxyVFFexczMif9hNQXoWqNWc//g77uw8pt1Oiof9hdzClCID/cXL\nzsHezwPHBl60+n4OEpkUUwcbbZkubzbXWYddQ1/Sr9wk52E7jNm2Vxvj2LIhD3YeQF2kojAji7iQ\nY7gENsfE0Q6LKq7E7dOsL+nEeWRmJlh5ViU/KZWrS9Zor7JmXInC1MVRZ50KS3Pij57XrOOp9hf9\nWwhupWinT8c9aqfRT7RThbUFjg19uL5mGwC58ckcGzCL/HT9+vky94nC2gKnht5cXb39YR4pHAqa\no1f28/px82m6dPUnsEPtFy7rSWVhW/wbfdYjErmM+vM+5MLSLeTEJWNVyZmCzGziT14GIONh/23v\n567zOev6dcm6FklejObKfvwfu7Br26rUMRKZFKmZKVKFAolCgUQhR5WfD4Bdq+YUJCXrXREtiTH7\nTeH1J6bgCv9Zli62ZMWmaF9nxaWgtDJHYWGqNw039OMfAXBtVEvnfYlMRsyJy5xa+htyUwXtvx5D\nfmYOlzftpzhmLnZkP5xeBpATl4zSyhy5hanOdJ2S4pLCo6jSuQmJ5yORKeRUaBeAqrAIgDOfbKL1\nminU6PcGJnbWnJjyNeqiks8aWrnYkvHg8bbIiE3FxMoMpaWpzjTc9Jhk0mMe59Riejei/r6IqqCI\nO0evPC7P1Y46A1qzf+aWEtf7iMLRicLEeO3rwsQEZBaWSM3Mdabhxn/7OQDmfnUNlmPTvhOFyYlk\nhh4p1XoBzJztyIl7fFTLjU9GYWmO3MJMZ7rcs+LURSr8543ApW0DYg+eJvPh9L5Hao3ry/WvfjE4\nVU9Tvj05sY+3bfF5FB8nMzPBZ2IQJ0YtpkrXNtqYrDuxyMxNcWzkQ0JoODZe1bCqXkHnhz6AubMd\n2bG6dU5hoG6WFHd7xxEqtK9Pp70rkMikxJ24xIPDmh/v6sIiTOysaffTPJQ2loRN+crgtjBGHk2W\njzWYC0BsMrg8cS7F2VYzVSwrFyzNdGNTMtRs/J+KX2bLtO819X58Lvd+oppNe1XMHlC687vmLrr1\nLie+mG1RQpxlZRdMLlnTZNUkTB1tSDp3nUsrNNORLyzaSLNvp+HeNxATO2tOTf2Shp/qbouXnUN+\nagZ3dh3Dqkp5bH3cafTpWPb3nAGA3NJcZxquqZMDuXGJ2nXkxSdpY0yd7Ml9Yv158UlYulfGxMme\nvIQUeOKHb158MiZO9iQeOa19T6KQU31EX+L/PgGARfVKAFxcsA7vqQM163e2J7cU7bSkOJmZCbUn\nBhE2ajGVn2inFhWdyU1MpVrfjjg18UOqlBO1aRdZd2J52svcJ9bV3chNTMW9Xwecm/oiVcqJ/H63\nXg7PK3hWBwBCQ2+9cFlPKgvb4t/os7RTgbu0JCchlfsHNCe8M6JjkZuZ4tzYm7gTl7CtXRXram56\n/bfS0ZH8+McnXvMTEpFbWiA1N9NOwy0pJnFPCHYtm+H36/dIZFLSTp8j7cRJABL+1Hxn+zf1TwwX\nx5j9ZllWzPhbeIoYgL7Gtm3bxtatW1GpVAQGBrJ//35ycnKwtbVl1apV7Ny5k0OHDpGbm8udO3f4\n8MMP6dq1KxcvXmTu3LlYWFhgb2+PiYkJixYtYtOmTezcuROJRELHjh3p37+/sb/ii5Ea7sjUqtJP\n8bj+2+OBTn5BIZc27sOrX5sSB6CSYqavPL3ekuLOf/oT/h/15M2f55KTkErciQjs/T2QKhU0WTKC\nsFlreXD4AvY+1Wn2xViSL5V8wC/uqq2qmIGr3EzJG4v7Y1Xelt8HrdJZ5lS7Ip2/GsqFHw5x68Cz\n7z19mIDBt59nXwDYvtOd2FXLnuszxdaDp797KeLOz/oK2cJ1BCwZj8fgrkSu3qrJy9cDpY0VMXuO\nF5tGsfu7qHT1AgnUWziaS59uIi8xVWdRYVYOpz76jJojuuM1tjdJZ6+SeOoyqoJC3SKKqQd6OZQQ\n5zX0XfJSMvizzWhkpkqaLB+LR1AgkZv2AJCXnM6uN8ZhU7MyLVZP4e+bc/W/ihHyKElxD40wVCV+\nPaSmdR0JFRz1c4u4rWbsqiJ6t5XSyr+UP6SKrRfqUsdJ5TKcGnkTOn45RXkFBMwfiteobkR88QsN\nFo3k7OzVxB45j61PdRp//tErzSF82WbCJn4BgNWgt8hLSiXpwg2cGnk//vyT/UBx+1ylMlgf1EWG\n33+07BGFjTU+n0ygMCubm1//iMzCnNqzRwNQlJv3xFd88XZad+FoIgy0U4lcjkUFJwqzcjj+wVzM\nKzjTZN1MgwPQl7lPYvadxKKCEwVZORx+fz4WFZ1osW6m4e9TFpSBbfFv9FmPePR7k7Pzv9O+LszK\n5fj4z/Ee9R4+43qSePYaCaeulLr/5on2U1KM64A+FKSmcb5rX6QmStznz8S5exfift1u+DPPYNR+\nU3jtiQHoa87a2povv/ySr776ig0bNiCVSvnggw8IDw8HIDMzk3Xr1nH79m2GDRtG165dmT17NkuW\nLMHDw4Ply5cTFxfHjRs3+Ouvv9iyRXNF6/3336dZs2ZUq1bNmF/vudUZ9TaV2vgDoLQwJTkyRrvM\n3NmGvLQsCnPyS11e9bcakXztLinXNeVIJJqrK0/zHtEF15Z1AFBYmpIWeU+7zMzJlry0TIqeWm92\nbBL2PtUMxpm4WHJh+S/kp2cBUPP9jmTeiaOcu+bBFQ8OXwAgKfwm6Tfv65TzSKOxnaneVvOwAaWl\nGYnXHm8LS2cbclMNbwur8ra8/e1wkm/G8lu/FToPGarRKYA2c3pxYN7PXPvztN5ni1OYEIdpjcdX\nl+X2DhRlpKPOK/6BUE8zqeYBMhk5l86XKr7Z5k8AUFiYk37z8cN4TB3tyE/L1PnRCZAbm4iNd3WD\ncQ6NfMm4cYe8xFSKcvK4/7/juLRpoI0t374xMbuO6J369Bz2Hi4tNPcVyy3MSL9x12D5T8qJTcLG\n210vzqqqG+aujtQe30+zPezLaaZUmSi4sGAdhdm5HB/6sfZzrX9bop0e2O7neY9zeKpuanJ4qm4+\nSMbuiW3xZJxb23qcX7QJdWERhZk5RP95lArt6nNr+yGc6ntpz+qnXo0m7fodynlUBMBreBdcW9Ux\nWh6O9XRnNzypvD2EP/GspPgUsLYAcxP9H0t7TqqY1lem9/5fYSoW/KBiRl8pnRqV/COq1vCuuLTU\nXOVXPF0vtN9Rv17Y+VQ3GJf78GrKoyssd3cdo+aQLli7V0BmZkLsEU2bSQm/SfrNGBzrWQPQ+qcF\nLz0HhaU5VXu05fr6P7Wff7IfLUjLRPXEevLiEilX+/HUcRNHO21MblwiJg62Osvy4pPIjU1Eaa97\ntejRMgBL90r4Lp1CwsGTRK7cBCoV9i3rI7cyB6Dd/75EaWsFKjWFOXkkn736+Ds+Zzu1fNhOvQy0\n08h1fwBw78/DAGTfiyP5/HVtv/Oq6sXNLZqH7N3Zockj6248Seev49a+AWVFWdgW/3afBWDjWQmJ\nTErC6cd1DImEwuxcDg1epH3rjW0Lybz7+EFZAPlxCVjUenxPsdLRnsL0DJ32U1KMbfPG3PniW9SF\nhRQVFpL4v/3YtWz6jwegr7rfFP5bxN5+zVWtWhWpVIpCoeCjjz5i+vTpxMbGUlioOXNWs2ZNAMqX\nL0/+w7n+8fHxeHhoDvABAZofx9evX+f+/fsMHDiQgQMHkpqaSnR0tBG+0Ys5t2qH9mFBf/ZeiJNv\nNawrax4uUbNnS6L/Lt3g5RFbDzfqjn4HiVSCzERBrT5tiNqtP/C69NV29vacxd6eswgJmo+9b3Us\nKzkDUL17a+4fPKf3mdgTl4qNq969Nd4juwBgYmdNta4tubM7lMy78SgszbX3hlhUcMS6WnlSrurv\nq9DPd7L57YVsfnshP3Vbgot/VWwqa+598u3dnJv7L+p9xqScOd02j+fG3vPsHr9eZ/DpHliHVjN7\nsO39lc81+ATIOncKM08v7ZNsbTq8TWbYsecqw9zbj+yLZ0sd/+jBQMfen4WttwfmFV0AqPReW+IO\nndGLTwgNLzbOtX1DPIa8B4BUIad8+0YknX78oA27ujVJPKn/4I1r32zlUJ/pHOoznSMDZ2Pn445F\nRc3+rtKtLbEG8ogPDTcYlxJ+g32dxmjLi966n/t7Q7kwfy2o1TT8YhLlalUFoHy7BqgLi7RPwX30\n4IsDQfOwe6LOVevWxmDdjDsRXmxc6pVoKryhuZdaIpfh2rIOSRdvoi5SUW/uB9j7a/oW6+puWFUp\nT3L4TQAuf73dqHmUpEltCRei1ETHaU4g/HxQRRt//R9RaVlq7saDf3Xd9/eeVrFoi4rVH8lK9SPq\nytfbONArmAO9gjnYfy62Pu5YPPyOVbu15cFB/Xoed+JSsXExISdxa9cAqYkCANfWAdp74eSWZtj5\nabaFRQUnrKq6ast8FTkUZOdQrWc7XNvWI+7EJez9PbHz9SDuuKb/STii+8CupLALlPP2wOxhO3Tr\n8oY2JuHwKcq/1RqJTIrc0hzn9k1JOHyKvIRkcmLicG6nud/PrqEfapWKzJt3MKvgQt0v53Br3W9E\nfr5Re7Uofv8JjnfRPME65M2RxPx1jKtf/szBrhM13/Fh+6vcrYT+wkBcavgN9ncaw5E+0znSZzp3\ntu7nwd5QLs5fS879BFKv3KJCZ809rUo7a+x8PUi9fOuV1ovs+wmkXL5Fpbc0eZjYWWP31P2GxlYW\ntsW/3WcBONSrScLJK7ofUqtptmoCtl5VAHBrXx9VYZHeU3DTTp/FspYnJm6aNuz0VkdSjoWWOiY7\n8iZ2rTQPHZLIZNg2aUjm5av8U6+633xdqF6Df2WBuAL6mpNKpVy9epWQkBB+/fVXcnJy6Nq1q/Ym\ncEPThFxcXLhx4wbu7u5cuKC5klatWjXc3d1Zu3YtEomEDRs24OnpqffZ10lucgZHgr+jzfJhmsfk\n303g8DTNDfb2tSvTbP4A/uha8qPGz331J42De/PuH3OQymXc/t8ZnWm5huQlZ3By1jqaLtM8xS7z\nXjxhM9YAYOtVhfqzB7G356wS466s20XDj4cQuHUBSCREfPM7yRGaHynHPvqCupP7IDVRoC4s4vT8\njWTdK/mBPDnJmeybuolOKz9EppSTeieB/03S/FkAJ+9KtP+kL5vfXohvnxZYudrh/oYf7m/4aT+/\ntf8XNJ3wDkig/SePn1p5/0wUB+b+XOK6AYrSUon9fBGu0+YhkSsoiI3hwWefYOLuicvoSUSPHfzM\nMhSuFSiIMzBV7RnyU9K5MO9bAhaPRaqQk3UvjguzvwagXK2q+AR/yNG+00uMu7x8Mz7TP6DFz4tR\nq9XEHTzDrR/3aNdhUcmFnAcl74P8lHTOzf2WekselR/PuVmP8/Cf+SGH+kwvMa4kZ2d8iX/wYCQK\nOXmJqZyc8JleTF5KBqdnr6XR0lHask8GrwY0dTNg9iBCes4qMe7Css34Tw3ije0LNQ+jCovg2oZd\nqAuLOD7+c/wm9UEql6HKLyRs2jfkxKeUiTxarpla7Lazt5awYJCU8V8WUVAEFR0lLBws5dItNbM3\nFLF1ruZQeSceHGxAIdftV1f8pkKthtkbHs+OqOMuIThI/4z/0/JT0jk7Zw0Nl45BKpeRdS+e0zO/\nBcDGqyp1Zn3AgV7BJcZF/RKC0tqS1lvmI5FKSb16m/DP1lOYlUvYR5/jO6kfUqWmvzi/4DsaLR/3\nynJApSZ0/Ar8pgRRa9h75GdmgRparAsGIPKL77GqWY1a04dzsv8kClLSuTz/K3w+mYBUISfnXhwR\n8zS3AcRs24uZmwsNNi1DqpATs30fqec0D265NHM5taYNo8r776HKL+DSjM9AraZy0DtITUyo2KMj\nFXt0BEBVUMDpDwz/Caf8lHQuzP2WgCVjkSjkZN+L5/wT7dR35occedhOi4sryemJy/GZMpDK77UF\nqYTra7aTdln/TxW91H0ChE34HL+pA6jarQ0SiYSrq3+nTvCgZ+ZvDGVhW/wbfRaAZSVnsu4n8rSw\naV9Td9YgpAo5uQmpnBj/uV5MYWoat5aswH3uNCRyBXn3HxC18FPMa7hTddJYIj4cXWwMwJ0v11B5\nzDC8N34DKhXpZy8Q++Nv/3i/GLPfFF5/EnVxj6sSyrxt27YRFRXFyJEjGTp0qPYKp1KppFu3bhQW\nFhIVFcXEiRPJy8ujQ4cO/P3331y8eJEFCxZgbm6OQqHA2dmZBQsWsHbtWkJCQsjPz8fX15eZM2ci\nkxXfESQkZLyqr1osR0cr1nt9aNQcBl1ew89+A42aA0DPCxtY4THi2YEv0bjIr7j2Vkuj5gDg+ech\ndtXrY9QcOp3ewo6Avs8OfMnePrOZ3/wHGDWHbuc3lokcAAqO/btP6HxeiqYRbK/z4n/y4kV0ObcJ\noEzksb+R/p+oerqRdZcAACAASURBVJXahv7KzjLQTjuf2Vwm9kcRz/6buS+bjL5lYlsYu88CTb91\nqnUno+ZQ/8Auo/eboOk7XwcDHYp/4F1ZsSFR/wTHqyaugL7GunZ9/Dctv//++xJjTUxM+PvvvwEI\nDw/nm2++wc7OjuXLl6NQaKakDB48mMGDn30lShAEQRAEQRAEXcU9nEnQJQag/w/Z29szaNAgzM3N\nsbKyYtGiRc/+kCAIgiAIgiAIwgsSA9D/hwIDAwkMDDR2GoIgCIIgCIIg/D8jBqCCIAiCIAiCIAgv\nSMzALZ3/znOPBUEQBEEQBEEQhDJNDEAFQRAEQRAEQRCEV0JMwRUEQRAEQRAEQXhB4im4pSOugAqC\nIAiCIAiCIAivhBiACoIgCIIgCIIgCK+EmIIrCIIgCIIgCILwgtRiCm6piCuggiAIgiAIgiAIwish\nBqCCIAiCIAiCIAjCKyFRq8XFYkEQBEEQBEEQhBfRx3assVN4pi0pnxs7BXEPqPDPJSRkGDsFHB2t\nyL3U2qg5mHofYGdAX6PmAND5zGb2N+pu1Bzahv7KsebvGDUHgKZH/mBfwx5GzaF92C8UsdmoOQDI\n6Gv0PGT0ZW+DnkbN4Y2TPwPwm/8Ao+bR7fzGMrE/gDKRR1lop3sa9DJqDgCBJ38qE/tje50go+YA\n0OXcpjKxLYx9PAXNMbUstBFj95ug6TtfBypjJ/CaEFNwBUEQBEEQBEEQhFdCDEAFQRAEQRAEQRCE\nV0JMwRUEQRAEQRAEQXhBKvFonVIRV0AFQRAEQRAEQRCEV0IMQAVBEARBEARBEIRXQkzBFQRBEARB\nEARBeEFiAm7piCuggiAIgiAIgiAIwishBqCCIAiCIAiCIAjCKyGm4AqCIAiCIAiCILwglZiDWyri\nCqggCIIgCIIgCILwSogBqCAIgiAIgiAIgvBKiCm4wn/W4TO5fPFDOvmFampUVjBnhA2W5o/Pufx5\nMJtNf2ZqX2dkq4lPKmLvamfkMgkLVqdy7XYBZiZS3mljRp+OlqVet1Mzf2qO6olUISf9xl0uzltD\nYVbOP4oLWDqOvIQULi3ZCIB9PS9qje2NVC6jKK+AiKUbSY2IAqDBD8uQKhRk3ojmysdfU5StW5Z9\nk7pUH9FHP0YqpcbYAdg19EMik3Fnyw5itu8DwKFZAF4zR5Ebl6gt58ywmRRl51JtaC+cWjUEIP3y\nDb3vZ9s4gMpD+yNVKMi6eZsbi1bq5VSamJoLppKfmEzUitWYValIjVkfaZdJpFIsqlfhyoyFJB8O\nNbg/XAKbU6XfW6CGotw8rn36HelXowzGFkdhY4X37FGYlncElYrLC1eTFn4dgBpjgnBq25jCdE19\nyoq+/1xlG6JWq5kxbQfuHo4M+qDJC5dX1vJwaFoHjxG9kSoVZNy4Q8SCbygy0EaeFWfiZE/D9Qs4\n0XcyBWkZOp81c3Wk0cZFnBnzscEcXJr74T26OzKlnLTIu5yes47CrNzSx0kl1JnaH8cATwBij17k\n4vKfACjfwp/68z8kOzZJW87B9z95/g31lP9avXBoWgf34X2QKjV9UsTHxdcDg3FSCZ7jBmD/sO+K\n3vwn957ou7xnjdTpu04NnUVRtmYfSxSan0DObRoS93eYNsaxaR1qjOilrXPhC741mNOz4kyd7Gm0\nfj7H+k7R1k2FtQW1Jr6PZVU3pCZKor77nfu7j/zj7ffIy6oXzs38qD26B1KlgvTIu5ydu8ZgGykp\nrmr3tlTp0gqZiYKUK7c5N3ctqoJCFNYW+E3pj1U1V2QmSq6t28HdXcdeOOd/a1sUe7wsTUwJx9RH\nTMs70WDDYs6NnU/Gw+ORjX8t3Ef1Q2qipDAzG3i5beRxLo402riYs2MWkH41iir938GlfVPt8k57\nVyA3N+WPZsOA17PvfFXU4jm4pSKugBpRUFAQN2/e1HkvLCyM8ePH/+vr2rZtG/v37//Xyy2rktOK\nmLUqlU8n2bFjpTNuznI+/yFdJ+atVub88qkTv3zqxObFjjjYSJk6uBz2NjKWbkjD3FTK9hVO/LDQ\ngWNn8zh0Wr9zNURpY4Xf7CGcmbSCg+9NIvtePDVH9/xHcdX7d8aujqf2tUQuo+7CUVxcsJbDvacT\nue53/OcNR2ljBUD4tGWE9hxLzv043Ef21SlLYWONV/AIgzFuXdphVtGFsL4fcWrQVCr27IS1lzsA\n5Xw8id6yg5P9J2n/FWXn4tiqAXYN/AgLmkRo7/FITU101ie3scZ92hiuBi/ibN8R5N6PpfKw/s8d\n49anC9Z+XtrXObfvcmHQeO2/1FPnSdh3qNjBp3ml8tQY3Y+zYz8hNGgyt77bhu/iiQZjS1Jz0mBS\nzl/lRK+PCJ+9Et9PPkJqotRsI19PwoNXEBo0mdCgyYQHr3ju8p9082YCgwZsYs/uiBcq50W9rDwU\nNlZ4zxzOhamfcaz7eHJi4qgxss9zx5Xv2IIGq+dg6mSn91mpUoH33NHaQcbTlLZW1Js7mNCJK/nf\nu1PJupeAz9gezxVXuXNTrKq4sLf7DPb1nIlDPU/c2tcHwN7Pg+vf7yak5yztv8Ls0vUhxfkv1ova\nwSO4OO1TjvcYR3ZMPB4jDNeD4uIqdGmPeUUXTvSZQNj706jUqyPWXtUBsPGtwe3Nf2rbZWjQZO3g\ns5y3Bw3W6Z+Y0NS5YZybupwj3T8iOyYez5G9nzvOtWNzGhqomz6zhpMbn8zxoGmcGvUxtSYMwMRA\n/X0eL6teKG2tCJg7hLBJXxDSZTJZ9+KpPcbAsayEONc29ajeqz1Hhy0ipNs0ZKZK3PsFAhAwbwg5\ncckc6D2To8MW4Ts5CFMn2xfK+d/cFsUdLx/5p8dU0PRPtZ/qn0wc7fBdPIlrS9dyMmgSCQc0J0Ve\nZht5lIvPU7nc/v4PbZsBKMzJI2zKV8Dr2XcKZY8YgP4/0bVrV9q2bWvsNF6ZExfy8HZXUNlV06H2\neNOcv47koFYbPjP13e+Z2JWT0f0NCwAu3yygc0szZDIJCoWE5gGmhJzQP+NoiGNjH1IvR5F1Nw6A\n6N9CcOvQ9Lnj7Ot54djEl+itj08cqAuLCOkwmvRr0QCYuzmRn5aJY2MfAHLuxgIQs20vLm8211mf\nXUNf0q/cNBjj2LIhD3YeQF2kojAji7iQY7gEapaV8/HErp439TcsJuCbedj41wIg4eBJzgwJRl1Y\niMzcDKVtOZ312davQ+bV/2PvvsObKtsHjn+zuhfdQCl0QEtbCsgGBZmKmw1CZYnsvZUNKlNRwAWK\nCDiYivqTqQxZbZFRymoLBbr33kl+fwRCQ5JSLB34Pp/38rpekvs8z32edXJyTk4jKYiJByDh5/04\nde/0WDG2zZtg1/oZEn7eb7CtbQL9cHi+PVGrPzf4PoCquIQrH3xBUWoGAJlXozB1sEMilyGRy2g0\nZShttiyn7baV+M8fh8zSXK8MiUyK07PPEPvLYQByIm6Tdzcex3bNkCjkWDdqQP3Br9J220oCl0/H\nzMXBaD7l8cP2UHr1bsaLPf0rVE5FVVYeDm2aknklirx7Y/Hu7kO4vvjsY8WZOtbCuVMr/pm63GAd\nvrNGEPfbUYozsgy+79IugPTwm+Tc0cy/qJ1/4t6z3WPFSaRS5OamyEwUSBVypHI5qsJiTe5NvXFq\n5UfX7xfz/Dfv4viMj17Zj+u/OC4yrz7o35g9B7XrTmkObZoajXPu1JrYX49q166EQ6eo/WJHAOya\n+GDf0p82W5bT8svF2rULwH3AS0R9+aNeXY5tAvXGXG0DY7OsuPtjM/ShsamwscShdSCRG3cBUJiU\nxukR8ynOzKEiKmtcOLdtQnr4TXLvjf1bO49Qr6f+FcWy4uq98iwR2/6gOCsX1GouvL+ZO7+dRGFj\niXObAK59tReAgqR0jgUt0sRVwJNsC2PHy/v+7TEVwGfG28T/fpTizAfrk3OXtqScPk/29Vua8n7W\nXKWszDkC4DtzJHG/HzO6VgIknLxEwslLwNO5dgo1j7gFt4oUFxczd+5cYmJiUCqVDB8+HIANGzaQ\nkpJCfn4+H330kc42O3fu5IcffkClUtGlSxcmTZpksOw9e/Zw+PBhcnNzSU9PZ/z48bzwwgu88sor\nNGjQAIVCgaenJ46OjgwcOJClS5dy6dIliouLmThxIt26dWPNmjWEhoaiUqkYNmwYPXv2rPQ2qUwJ\nKUpcHGXaf7s4yMjJU5Obr8bKQqITm56l5Lt9Ofy4ykn7WpOGJvx2LJ9mviYUF6s5fCYfuUx3O2PM\nXBwoSEjT/rsgKQ2FlQVyS3Od22vLipOZm+I/I4izE1ZQv3cXnfLVJUpM7G3ouP19FHbW/DN3HVYN\n6ujEFCalIreyQGZhrr1lyMzZUedWtNIxZs4OFCSm6rxn5V0fgOKsbBL+OE7ysWBsm/rSdOUszg6Z\nQWFyGmqlEre+L+I5eiCFyWk6OZg4O1JUur7kFORWljo5lRUjMzfHY/LbhE9fhOtrLxhs6wbjh3Nn\n4za926JKK4hPpiA+Wftvn8lDST4RirpEiefIPqiVSs4OnQOA99hBNBz3JtdWfa1ThsLWGiQSijMe\n3OJZmJSGqbMDpo61SD93mcjPvifvTjz1h7xK01WzjOZTHvMWaObfmTO3KlRORVVWHmYuDhQk6Y43\nhZUFMktz3VsYy4grTEnn4uw1Bsuv+3oXpHI5sb/8iefwXgZjLFzsySs1//IT01BYWyC3NNO5lays\nuOh9J3Dr3oqXD65FIpOSePoy8ccvAFCUmcPt304R99c5HJo1pP3aKRzuP+8xW0rXf3FcFCaWbxwY\nizNzcaAw6eG1yx2Aosxs4v84TvKxEOya+tB01SzODJlJYVIaYfM/MZjPw2OuoJxjs+ChsXlhtu7x\nHMDCzZXC1HQaDH4Zp3bNkJrIubXtN/LuxD9Ok+mprHFh4WpPfql2z08yMkfKiLOq74rpZRvar5+J\nmZMdqedvcHntj9h41aUgJQPvIT1x6RCI1EROxHd/kHMnoUI5P8m2MHa8rOgxtc5rXZDIZcT9coQG\nw3prYyzc66DKLyRg6RQs3Otoy67MOVL3Xi6xvxzBY5j+Wmnp4QZA+Gd7HuT5FK6dQs0jTkCryE8/\n/YS9vT2rV68mJyeH3r17Y2JiQt++fXn99ddZt24d+/fvJzAwEIDU1FQ2btzIvn37MDU1Zc2aNeTm\n5mJpaWmw/Pz8fDZv3kxaWhr9+vWja9eu5OXlMW7cOPz8/Fi3bh0Ahw8fJj09nV27dpGZmcnmzZtR\nKBTExMTwww8/UFhYSP/+/enQoQM2NjZV1j5PmpELnUgNXPPffSiPzq3McHN5MB2mD7Phoy1ZDJiR\njFMtKe2amnLhWlG56pZIDJ+oqpWqcsUhgWc+nEj4mq0UpmQYDClKy+Jwz4nY+Dag7efvErPvmOE6\nVaXqlBrJS6VCYuC9+/mGzVmtfS3z4jUywq5j3zqQ+N+PAhCzaz8xu/bjOXogVp71HuxGGfU9KgaJ\nhEaLZnDr000Up6YbDLEO8EVua03yoeOGy3iI1MyUgAXjMHVx4Pxkze9JHDu0QG5tgUNrzbyTKOQU\npWXqp2No4Nzbl4L4ZM6XutJxe9uveI7oU66c/lcZ7feH50g540qz9vHArXc3Qt5Z9K9y0JunZcT5\njX6DwvRsfu0yEZmZCe0/nkzDoBeJ2Lqf09PXaWNTL0SQejEC53YBZeYkaDzcB0iMzD+lyvC6dm+N\nuTTnwRcUGRevk3npBg6tA4n77ajRuo3Ndf2xWb44nW3kMizquqDMyefsqIVYuLnQ+qtF2qtWNY7R\nY5m63HFSuQzntgGcmfoxysJiWiwdjd+EvsQeCsbSzZni3HyOD1+KZT1nOn49n9wKnoBWtooeU619\nPKjbqwfnxizQe18il+H4bEvOjZlP/t0E3Pr3xKljK8N1PIE5olkruxMyeqHBbQHcB74EQEnOg5Nd\nsXaWTfwZlvIRJ6BVJCoqivbtNbekWFlZ4eXlxcmTJwkI0EwqR0dHUlIefJN29+5dGjZsiJmZGQAz\nZpT9m7VWrVohlUpxdHTExsaGtDTNt04eHh46cbdu3aJZs2YA2NraMmXKFDZu3Eh4eDhBQUEAlJSU\nEBsb+1SfgLo6ygiLKNb+OylViY2VBAsz/UX6wMl8Zo/UvX00N0/F1CAbbK018d/szca9tvHp0mhM\nH1w6tgBAbmlOduRd7XtmTvYUZeagLCjU2SY/IRW7AG+9OCuPuljUccJv6hAATB1skcikSE0VXPl4\nO46t/En4KxSArGvRZN+4DTLd/TJ1sqc4MwdVqToLE1Ow9W9oMKYgMQVTx1o6793/Nrdunxe4vWWv\n9j0JEtRKpebbXKmEnBvRAMTtO4LH8D6l6kvGqnGjB2U6OlCclf1QToZjLBrUw6y2Cw0mjADAxL7W\nvTYwIXLFegAcuzxL8v6/jH7b0HbrSgCST4QS+8sRmq2ZTW50LOfGLdbe6iORSbn+0bekntZ88yoz\nN0VqYoKNryd+743RlnV2mOYKqdzakpJszS1ips61tN8kWzesT7zOg0TKd7X8f4nXO/1w6tgS0MyR\nnMg72vfuj8WH50hBQgq2/t6PjCutzksdkVua0/rrpdptmiyZqH2/209LtDlkRcRoXzd3rnVvnup+\n0ZQXn4Z9gJfBuLpdW3Jh+VbUJUpKcvK5/evfuHVrRfTPx/Hq34VrX/+m3U4ikaAuVj66of7jJAQi\noa723yaOdtr/b2jdAs2VKNsA/XGgKiikICEFEwfdMgqS0pBbWeDW5wWiS61dSEBVot8Hrt3b4TVC\nc/Xn4fXb1Oj6rT82DcWVVpii+TIt5nfNF4Z5MYlkXLyuU051azy2N66dngFAYWlOVuljmXbs6x/L\n7Jt4GYwrSM4g7q9z2itjd38/ie87vYj6/iAAd/ZpvkDMvZtE6oUb1Co116rbw8fEJ3FMde3ZCbml\nOS03vn+vDnv8F08mcv1WCpPTyQy7Tu0XO+H4XEvtiWPp3wg/yTlS+6WOyCzNab1pmfb1gCWTiFi3\nleQT50Aqwbmz5iGDfmN7Uef55oBYO4UnQ/wGtIp4eXkRGqo5acjJyeHGjRu4ubkZjXd3d+fmzZsU\nFWkm9KRJk0hMTDQaHx6u+cF9SkoKOTk5ODhofoMmfehbWk9PT8LCwgDIzs5m5MiReHp60qZNG7Zu\n3cqWLVvo2bMn9erV42nWrpkpl24UcTuuBICdB/N4vpWZXlxWjoo7CUqa+pjovL7zYB4bftT8HiI1\nQ8mew3n0fE7/t4H33fhiNyfefJcTb77LyWELqdXEG8t6LgDU79uVxGPn9LZJPhNmMC4jLJIjL0/S\nlndn9xHiD57h0tJNqJUqAhe8Q62mmpM2K8+6WDaow91fNB9ozOu5AlC3Vw+ST4To1Jd69iK2AQ0N\nxiQfD6H2q52RyKTIrSxw6d6B5OMhlOQV4NbnRZzuHYSsGjXAxs+b1NMXsPKuj9+88doH8dTuqfv7\nzozgC1j7+2DmVhsA1zdeJO3v4HLFZIdfJ7TvSO2DhhJ+2U/Kkb+1J58ANs38yTh3yWif3H+Awu0f\nf6flF4tJ+iuYsHmfaE8+AVLPXKRevxeRyGUgkeD37hi8x71J1rWbOg8uUStVpJw6j1uvbpp28HbH\n0sON9HPhqFVqfKYN1zwdF3Dr04OcyNtG8/pfFfXVTs4Mmc2ZIbMJHjEP24CGWNwbi269u5N0PFRv\nm9Szl8oVV9r1j7dwsu9UbV2FyWmELXjwjfr9h1r8FbQE+0AvrNw188+zbxfijp7XKy/xdJjRuIyr\nt3HroZkbErmMOp2ak3opiuLcfLwGdKNuV80Jt52PO7UCPEk4ZXy8/q9QcwkVf6DiDwD9/n1o3YIH\na5ehuOTjodR9tUuptas9yceCKcnLp17fF7QfoK0bNcD23tr1sIRDpzk1ZA6nhszhzIj52AV4a+ty\n793N6NgsT1xp+XHJZF69Sd2XNb+/M7G3xa5JIzKvRJW5XVW6+vke/ho4j78GzuPoW4s1x6h7Y9+j\nb1fij/6jt03i6ctG42IPB1O3W2ukpgoA6nRuQXr4TfLikkm/cgv3VzW/UzS1t8G+qTfp4Y/3dPLK\nZOx4ed+/OaZGrP2W0/0nax/oV5iSRvjCT0g5EUrysWDsAn2I++0vgt+ayZ1t+wCw8fOqlDly4+Mt\nnOo3RXucK0xO4/KCTzUnn4CVlzsl936Te+XzvWLtFJ4ocQW0ivTv35/58+czaNAgCgsLmTBhAnv2\n7DEab29vz6hRoxgyZAgSiYTOnTvj4uJiND4lJYWhQ4eSnZ3NwoULkclkBuO6du3K6dOnGTRoEEql\nkvHjx9OxY0eCg4N58803ycvLo1u3blhZlf9PjtREDrYyloy3Y8bqNIpLwM1VxvsTaxEeWcTizzPY\nscYZgDsJJTjVkqKQ616xGtnbivc+yaD3lCTUahjT35oAbxNDVekpSs/i4uIvabFyMhKFnLyYJC4s\n0Dwkx7axB4HzR3HizXfLjDNGmV9I6PSP8J8+BIlcjqq4mPPzNpAdobma1OSD6UgVcvJjEglfsh5r\nX08avzuW4LdmUpyexZWln+nFgObhCeZ1XWm9dTVShZzYvYfIOH8FgEuzVuAzfSSeb/dHrVRxed7H\nFGdmk7D/OOZurrT+dgUqpZLcm3d1ci3OyCTyw0/xXTobiVxOQVwCEcvWYuXjjdfs8VwcMdVoTHmY\nu9WhMCHpkXH1evfAzMUR5+db4/x8a+3r58Yv4eY3u2g06S3abl2JRColOyKaG59+Z7Ccays34ffu\nGNp9/xxqNVxetJ6S3HxKbt7l2prNNF8zG6RS7e/LnttXdl/+LytKzyJ86ec0XT4NiVxOfmwCYYs2\nAGDT2BO/90ZzZsjsMuMqqjA9m9CFm2i7agJShZzcmCSC530FQC2/BrRYOILDAxaUGXdx9XaazQmi\nx94PUavUJJ0N5/q3v4NKzakpa2k2Owi/sb00vzOetYGijIo9bOa/6MrSzwn88H7/JnJ5sWZNun8X\nwpmgWffWLsNxMXsOYu7mQtttq5Aq5MTsPUz6+asAXJy5Ep8ZI/Aa1Q+1UsWleWv1/lTPw4rSswhb\n+gXNlk9FKpeTF5uoMzYD3nuHU0PmlBlXlvOz1uA3awT1endDIpES9fVusq7WnJOu0orSs/hn0Uba\nrJqEVC4jNyaJ0PlfAmDn50HzBSP5a+C8MuNu7jiMiY0Vnb9fikQqJeNaNGEffQPA2emf0HTOUDz6\ndkEikXDtq5/JuFK9v28uzdDx8kkcU43JiYjm2sqNBK6YiUQu095tU5lzpCwW9WqTH5+kPam9T6yd\nZTN+E75QmkRt7LGgwlNjz5493Lx585G36T5pycllH8irgpOTNQWXO1drDmYBf/Fbi8GPDqxkr5zb\nzpG2/ao1h65ndnLyuderNQeADid+4VAb/cfCV6XuZ3egZHu15gAgY3C15yFjMAdb6//5hqrUI/gn\nAHY1G1qtefS9sKVG9AdQI/KoCfN0f+uB1ZoDwIvBP9aI/tjbPKhacwDodX5rjWiL6j6eguaYWhPm\nSHWvm6BZO58Gr9lMfHRQNduXte7RQZVMXAF9iixatEjv74YCT/0TawVBEARBEARB+N8gTkCfIosW\nLaruFARBEARBEARBMEDcWFo+4iFEgiAIgiAIgiAIQpUQJ6CCIAiCIAiCIAhClRC34AqCIAiCIAiC\nIFSQeApu+YgroIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpUQt+AKgiAIgiAIgiBUkHgKbvmIK6CC\nIAiCIAiCIAhClRAnoIIgCIIgCIIgCEKVECeggiAIgiAIgiAIQpWQqMXNyoIgCIIgCIIgCBXyotX4\n6k7hkfbnbKjuFMRDiIR/Lzk5u7pTwMnJmiNt+1VrDl3P7OTPdn2rNQeALqd3cbD1gGrNoUfwT9Xe\nH6Dpk2MdeldrDp1O7qkxbVHdedSUHAD+aDWoWvPoGfIDR9v3qdYcnj+1G6BGrBc1YZ5Wd3+Apk9q\nwhzZ1WxoteYA0PfClhrRFkq2V2sOADIGI5EoqjUHtbq42tdN0Kydwn+HuAVXEARBEARBEARBqBLi\nCqggCIIgCIIgCEIFqcQvG8tFXAEVBEEQBEEQBEEQqoQ4ARUEQRAEQRAEQRCqhLgFVxAEQRAEQRAE\noYLUiFtwy0NcARUEQRAEQRAEQRCqhDgBFQRBEARBEARBEKqEuAVXEARBEARBEAShglTVncBTQlwB\nFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCVOIpuOUiTkCFp17rbauRKhTk\nRN7m6vufo8zL13nfof0zeI17Uz9GKqXR5KHYt2mKRCbjzvf7iN17CMsGbvgvmazdXiKVYuXtzqU5\nq7CoVweX7h207ynsbB7UMXYwEoWc3Kg7XH3/M8N5GIqRSmk4aSj2bZshkUm58/2vxO09CIDdM/40\nnDQUiUxGcWY2EWs3kxN5G4B6g16l9itdUCuVFGdk6bWLY4fmNBw3CKmJguzIO4Qv+wJlbv5jx5k6\nO9Dmm2WcHjyL4sxsnW3rvPo8Ls+35vz0lY9u7wr0CYB1Yy8aTR2GzMwMiVTK7W0/k7D/xIN+Ushp\numYucffi77Nv1wKPMYORmijIjbzN9Q836OVjLEZqYoL39FFYN/ZGIpWQFR5B5JqNqIqKsHsmAM8J\nw5DIpJRkZRP5yWZyI6PLt5+V1Bb1g94wOD6f9BwBcHy2BX7zJ1CQmKIt59yY+SjzCrT/rtf/Jeq8\n3rVS26LWM/54TwxCIpehKizixkebyboSCYDn6IG4dGuPMr+Q8nDq0JxG4wciNZGTHXGHy8u+osTA\nnDEWJ7c0p8n80Vg2qINEIiH29+Pc/O7XMuu0b/8MnmOGIFXIyYm6zfUP9NcOYzFSExMaznhbMz4l\nUrKu3CBi9SZURUVYN/bCe/IIZGamIJNyd9vPJB44bjSP6lovdPazAnNVZmmBz9zxWNSvCxIJiX8c\n5e72vTrbXPM78wAAIABJREFUur7cBceObbg8+0Oj7aCXUyX1z6NU1ny5z6y2M62/XcH5yUvJvnbT\naB6uzzUlYGI/ZCZyMiPuErroa0pyC8od13bVBKzcnbVxlnWcSD53nVNT1uLU0pfA6YOQyGQUZeZw\ncdV2Mm/cBSpnzSpr3+2aNcZ7whCkpiaU5OQ9sn/KQ61W897cfXg3dGLEyPZPpMx/a/Pmr7l8+TJr\n1nz8xMuujnVTePqJW3CFp5ZEIgEgbO5qzgyYTH5cIt7jB+vEKOxs8Js3zmBM3V7dMK/nytnB0wgZ\nMYd6A17Gxs+b3OgYgt+aqf0vNfgiCQf+JvloMLe3/qx9/Z9xC1EVaA7Ejd8bT9jcVZwdOJn82ES8\nxunnYSym7hvdMa9Xm+DBUwm9l4e1nzcySwuafDiTyPVbCQ6azvVVX+G/bBoShZxarZpQ59UunBv1\nLiFvzSD56NmH6rMmYP5YLs75iJP9ppIfm0ij8W/qteGj4mq/1JHWXy3CzNleZzu5jSWN57xN4xnD\nQaJbprH2rkifAAR+OIObG3cQ/NZMLkx9n4aThmJezxUAm4BGtNr0AXaBvnp1+bw3gSvvrSJk0ETy\n4xLxGBtU7hj3oX2QyGScGzqN0LemITM1wf2t3sgsLfB7fxY3N2zh3NBp3Fj1FX5LpyNR6H6nV9Vt\noTc+733QrYwcbJv4cPv7fTpzpfTJp22gD/WDXq/UtpDI5QQsm8rVD78gOGgmtzbvxm/hRABqv/w8\njh1aEDJ8DsFvzeRRTOysabJgNOdnf8yJvtPJj02i0YRBjxXXcEx/CpLS+HvgLE4NnUe9Pt2xa9LQ\naJ0KOxt835tA+LurCB40iYK4RDzHDSl3TP1hmvEZ+tZ0Qt6ahtTUFPe3egPg//5Mojf9ROiwGYRN\nW4bXpGGYu9U2kkf1rRel97Mic7XBqEEUJqcSGjSFf96eRZ1eL2Dj30hTv7UVDWeOxnvq2yAxkoCR\nnCqrfx5Vb2WtHQBSEwX+iyfqrVcPM6llTcvFb3NmxjoOvDGH3Jhkmkzu/1hxZ2au5/CABRwesIBz\nSzZTlJ3H+Q+/Q25lTruPJhH28U8c7j+P8+9voe3K8Zg52QGVs2YZ23dTJ3sCV8zk+qpNBAfNJPkv\n3ePpvxEVlcyIoVvZ/0d4hcuqCF9fX44cOUj//n0rpfzqWDeF/wZxAvo/qH///sTExLBnzx6OHDkC\nwLRp0+jTpw83btwgKCiIgQMHkpmZWc2Zls3ERAZA/t0EAGL3HMT1hed0YuzbBJJ1NcpgjFOnNsT/\n9hdqpYqS7FwSD5/E9UXd7e2a+uLcuS3XVnylV7/3pLdIPX0BgKyrkeTH3K/jgH4erZsajXHq1Jr4\n3x/kkXToJK4vdMSiXm1KcvNIDw0DIO92HMrcfGwDfChKzeD6qo3ab4WzrkXp1OfQpimZV6LIu7ff\nd3cfwvXFZ/X2oaw4U8daOHdqxT9Tl+tt59qtHYUpGVz/dJvee8baW9sW/6JPpCYKbn69k/QQTVsU\nJqdRnJmNmZMDAPX69yTqyx/JuhKhU1et1s3IvhpJfkw8AHF79+PS47lyx2RevMKdLTtBrQaVipwb\ntzB1dcK8Xm2UuXlknNPkk38nlpLcfGwCfKq9Le7znvSWdrxVxhyxbeKDfcsAWn27ghZfLMGuWWNt\nmSb2tvjMeJuI9VsrtS3UJSX8/epocm5EA2Be10V71c3a14vk48Hlvprh2DaQzCs3tXPhzu5D1Hmx\nw2PFXV2zhWufaOaEqaMdUhN5mfXXat1Ud+ztOWBgfBqPybhwhdvf7io1Pm9i5uqI1ERB9Dc7SQ+9\nBNwbIxlZmDrrjpH7qnO9eLCfFZurUWu/Jmr9twCYONRColBQkqtpe6eu7SlKSSdq/Raj9RvOqXL6\n51HKmgvliXnUsc1nxtvE/36U4kz9O2dKc2kXQHr4TXLuJAIQtfNP3Hu2+1dxErmMVktGcXHV9+Qn\npmHt7kJxTh5JwVcAyI6Opzg3H6/+mjsmqnLfnbu0JeX0ebKv39KU97PuFdN/44ftofTq3YwXe/pX\nuKyKGD9+LJs3b2HHjl2VUn51rJs1nUqtrvH/1QTiBPR/WO/evenaVbPYnzp1it27d2NlZUVubi4/\n/vgjtra21Zxh2aRS3eFbmJSK3MoCmYW59jUzZ0edWwRLx5g5O1CQmKrz3sMf0LwnvcXNL3/Qu/3H\n0sMNp46tiPrqJ+222nKSU5FbWerm4eJgNMbUxZHCUjkW3Msj704cMnMz7Fs3BTS3XVp61sPU0Y7c\nm3fJOK85cEsUcrzH6n5DbObiQEGS7r4prCyQWZqXO64wJZ2Ls9eQeyuWh8XsOczNTbtQFejfSmas\nvbV1/os+URUVE//rn9rX67zeDZm5GZnhmhPO8AWfkHrqH71cTJ0dKEwqVZeBvikrJj34Ivl3NR8s\nTV2cqDvgFZL/PEX+vb6pdb9vfL2x9KiHiUOtam8LeDA+M8Nu6OTzJOdIcVY2MbsOEDJsNpGff0/g\nipmYOtmDVIr/4slErt9KYXJapbYFgFqpxMTelg77vqThhCBub/sFgKzwCByfa4nC1rpcV73MXHTr\nKEhKQ2FlgdzQnCkjTq1UEbhkPM/+uJK0c1fJuR1XRp26c9/w2mE8Rmd8ujrh1v8Vkv88jaqomITf\njmi3qf16d2TmZmRd1h0POvtUTevFfRWdqwAoVfgumEyrrWvJPH+ZvDuato//+SC3N+8o162vuvtb\nOf3zyHrLmAvliSlrvtR5rQsSuYy4Xx6MD2MsXOzJS3gwh/MT01BYWyC3NHvsOI9enchPziDur3MA\nZN9OQG5uhku7AABq+Xtg41kXSzdnnbKrYt8t3Ougyi8kYOkUWm9ZScCyqY9sm0eZt6Anr70RWOFy\nKmrixMls27a90sqvjnVT+G8QvwF9ShQXFzN37lxiYmJQKpUMHz6cunXr8sEHH6BSqXBxcWH16tWY\nmZkZ3P7jjz/mxIkTuLq6kp6eDsC6detwdHTk+vXr5OTkMHbsWEpKSoiOjmbBggUsWbKkKnfxsRn7\nTKlWlforTFLDQWqVComB99TKB9vaNmmEwtaahAN/68XVG/AyMbv2o8w1/i2dbh6Gv+tRq1TaW4l1\nqFQo8/IJm70Cz9Fv4jUhiIwLV0g/dxlVcYk2TGFnQ8AH0/W+LTS0bwAoVf8qrqKeVJ8A1A96g3oD\nXuLClPdRFZb9gVJSRrs/ToyVjyf+H8wmbvcfpJ3SfIC6PGc5Hu+8iee4oWRevELGuTDUJSUGyzJW\nbmW1xf3xqTKSz5PIIWzOau1rmRevkRF2HfvWgVh6uJFx4QppwZewe8bPYNlPMg+AorRMTr42Gmsf\nD5qvW0DIyHdJ2H8cU2d7mm9YiKo8vwE1sqA83Oblibu0YAPhH26i+YqpeL/dh8ivjFx9MFZW6XYp\nR4yVjycBH84idvcfpN4bn/e5B/Wibr+XuTRtqdETsJqwXjypuXptySfcWPUl/u/PpP7wftz++qcK\nJFX5/WNQGXOhPDHG5ou1jwd1e/Xg3JgFj84B4/398JwoT1zDIS/wz9LN2n+X5BZwauonBEzoQ5Mp\nA0j55zrJIVc1V4sNlVWJ+y6Ry3B8tiXnxswn/24Cbv174tSxlcE6hIdUx7op/CeIE9CnxE8//YS9\nvT2rV68mJyeH3r17Y2JiwieffIKXlxc7d+4kKioKf3/92z3CwsIICQlh165d5OXl0aNHD533Fy1a\nxKFDh/j888+JiYlh2rRpNf7kE0D50AJn6mRPcWYOqoIHHzYLE1Ow9W9oMKYgMQVTx1o675W+SunS\nrQMJfxzTPyBKpTh3bkPwsNnal0pf+TJ1sqc4K1snj4KEZGz8GhqMKUhMweShPAqSUkEiQZlXwPnx\nC7Xvtflhrfa2Skuv+gSumk3ysWAi131Hl5M7aLttBQByS3NyIu/o7beyQPeDeEFCCrb+3o+MexwP\nt+mT6hOJQo7f/PFYergROuo9CuKTH5lLQUIy1qXb3dHBYN+UFePUtQMNZ7xD5EebSDp076FHEgnK\n/AIuTnzwYabl9k+1fVOtbVFqfNo11f1N7JPKQW5lQd0+L3B7y4OHvEiQoFYqcX2xI0XpmTh1aoPM\n3ExzVbSS2kJmaYF9ywCSjwUDkH39FjmRt7Hydqc4M5vEg39z+7ufAeh6ZicPazi6L84dWwCaOZMd\neVenjiJDcyYxFbsAb4Nxjm0DyY68S2FKOsr8QuIPnsK1S2u9ekvvs02pfTZx0h+fj4px7taBhjNG\nEbFmE0mHHnxZJlHI8Z03EcsGbpx/Zy4FCfrzpSasFw/KrthcrdW6Gbk3b1OUko4qv4Ckw3/j1Klt\nhXKqzP55VL3G5kJ5YozNF9eenZBbmtNy4/ua1x3ttXcrpJwIBcBvbC/qPN8c0IyLrIgYbTnmzrXu\njXXdLzLy4tOwD/AyGmfn445EJiU59NqDjSQSSvIKOPb2g1u2e+z5kNu/n9Qpuyr2vTA5ncyw69pb\neuP2/YnPtBGADFDyNFm8eCGvvfYqAPv2/crChYufeB3VvW4K/w3iFtynRFRUFK1aab6Rs7KywsvL\ni4iICLy8NIt+v379DJ58AkRHRxMQEIBUKsXKyopGjRpVWd6VqahIc2C4/yCaur16kHwiRCcm9exF\nbAMaGoxJPh5C7Vc7I5FJkVtZ4NK9A8nHH2xv19yPtNDLevVaeblTnJWr86HfNqAh5m6aOur06kHK\ncd080oIvGo1JOR5CnVe66OSRcjwY1GqafvQu1r6aPnbq0g51iZKcyNuYu7nyzIZFRH+zi8hPvoV7\n3w6fGTKbM0NmEzxiHrYBDbG4t99uvbuTdDxUb19Sz14qV9zjMNbeD+r8d33S5IPpyC0tCB01r1wn\nnwDpwRex8W+kffhKnV49SH0on7JiHJ9vh/fUt7k0dcmDk08AtZomq9/D6l7fOHZuh7qkRO8puNXR\nFqXHZ+rZi8CTnyMleQW49XkRp85tNHU2aoCNnzeppy/w9yvvEBykeSjR1Q8/Jz82ofLaQqWi8Xtj\nsQ3U/PbW0sMNi/p1ybocgY2vJ01WzEQikyGRGT7URXy5i5OD53Jy8FxOD1+AXam54N6nm8G5kHLm\nktE4125t8R6leciMVCHHtVtbUkOMP4QkLfiC7th7owcpJx5eO4zHOHVui/fUkVyaslTv5MZ/2Qzk\nlub8M/pdgyefUDPWi/sqOledurSn/vABgObk26lLe9L/CatQTpXZP2Upay6UJ8bYfIlY+y2n+0/W\nPjSsMCWN8IWfaE8+Aa58vlf70KC/gpZgH+iFlbsLAJ59uxB39Lxevomnw8qMc2zpS3LwVd2N1Gqe\nXT+dWn4NNPl3b4WqREn0nmPAk1+zytr35GPB2AX6YFZbc/uv8/Nt7tX0dJ18AixcuJjmzVvSvHnL\nSjn5hOpfN2s69VPwv5pAXAF9Snh5eREaGkr37t3Jycnhxo0buLm5ER0dTYMGDfjqq6/w8PCge/fu\nett6e3uzfft2VCoVBQUFREZGVsMePHnqe1cmm3wwHalCTn5MIuFL1mPt60njd8cS/NZMitOzuLL0\nM70Y0Dy4wLyuK623rkaqkBO795D2d5UAFvVcKYhL0qvXop4rBQm6r19dtoGAD2Zo6ohN5MqSdVj7\neuE7dwwhQzV5GIoBiN17AHM3F1p9t0aTx88P8ghf+Am+c8cgkcspSk3n0mzNFYv6Q95AamaCW7+e\nuPXrqZdjUXoW4Us/p+nyaUjkcvJjEwhbtAEAm8ae+L03mjNDZpcZ928Zau+K9oltoA9Oz7Uk93Yc\nLb9apq0rcsM20u6dZBlSnJHJ9Q/W47dsJhKFnILYBK4t/RQrXy985ozj3LDpRmMAPMZoflvrM2ec\ntszMS9eI/GgjVxd9TKPZY5Eq5BSlpBM+d0WNaIvS47M4XfOgjcqYI5dmrcBn+kg83+6PWqni8ryP\n9f7sRmW3BcCl2atoNGUYErkcVXEx4Qs+oTA5jcLkNOye8afN9tUgefR3rUXpWYQt+YLmy6cgVcjJ\ni0nk0qLPAM2caTJvFCcHzy0z7trabfjPHcmzP64EtZrEY6FE/7jfaJ3F6Vlce38D/u/P0I69q/fW\nDp85YwkdNsNoDIDHGM3TVn3mjNWWmRl2jcSDJ3B8rhV5t2N55ov3te9Ffb6N9LMXDO57da0X2rao\n4FyNWv8tjWaOoeXWtajValJPBBO74/eK5VRJ/ROxZtMj662s+fI4CtOzCV24ibarJiBVyMmNSSJ4\nnuaBfLX8GtBi4QgOD1hQZhyAlbsLuXEpeuWfnfs5zywYgVQhpyA5g9NTP6EwXbOGVOW+50REc23l\nRgJXzEQil1GSnfvYbfW/qjrWTeG/QaJW15DHIQllKioqYv78+dy5c4fCwkKCgoLw8vJi+fLlSKVS\nnJycWLFiBSYmJga3/+yzzzh8+DDOzs7Ex8ezYcMG9u7di6OjI4MGDaJDhw6cPHlSewvujh07HplT\ncrLxD5tVxcnJmiNt+1VrDl3P7OTPdpXziPPH0eX0Lg62HlCtOfQI/qna+wM0fXKsw6P/3EFl6nRy\nT41pi+rOo6bkAPBHK/0/EVCVeob8wNH2fao1h+dP7QaoEetFTZin1d0foOmTmjBHdjUbWq05APS9\nsKVGtIWSynt4T3nJGIxEoqjWHNTq4mpfN0Gzdj4NOlq8U90pPNLxPP2/7FDVxBXQp4SJiQkrVuhf\nYfn+++/Ltf24ceMYN26czmsTJ07U/v+TJzW/u3BzcyvXyacgCIIgCIIgCA+oasgtrjWdOAH9D/np\np5/47bff9F6fNm0azZs3r4aMBEEQBEEQBEEQHhAnoP8hAwYMYMCA6r2lShAEQRAEQRAEwRhxAioI\ngiAIgiAIglBB4hbc8hF/hkUQBEEQBEEQBEGoEuIEVBAEQRAEQRAEQagS4hZcQRAEQRAEQRCEClKL\nW3DLRVwBFQRBEARBEARBEKqEOAEVBEEQBEEQBEEQqoS4BVcQBEEQBEEQBKGCxFNwy0dcARUEQRAE\nQRAEQRCqhDgBFQRBEARBEARBEKqERK1Wi2vFgiAIgiAIgiAIFdDGYkR1p/BIZ/O+qe4UxG9AhX8v\nOTm7ulPAycmaQ236V2sO3c/u4GDrAdWaA0CP4J/4s13fas2hy+ld1d4foOmTP1oNqtYceob8UGPa\norrzqCk5ABzr0Lta8+h0cg/7Ww+s1hxeDP4RoEasFzVhnlZ3f4CmT2rCHAnp/HK15gDQ6q/fa0Rb\nSCSKas0BQK0uRsn2as1BxuBqXzdBs3Y+DVQSVXWn8FQQt+AKgiAIgiAIgiAIVUKcgAqCIAiCIAiC\nIAhVQtyCKwiCIAiCIAiCUEHiz7CUj7gCKgiCIAiCIAiCIFQJcQIqCIIgCIIgCIIgVAlxC64gCIIg\nCIIgCEIFqRFPwS0PcQVUEARBEARBEARBqBLiBFQQBEEQBEEQBEGoEuIWXEEQBEEQBEEQhAoST8Et\nH3EFVBAEQRAEQRAEQagS4gqo8NRz7NAc77FvIjVRkBN5m/D3v0CZm1/+OKkEnylDcWjTFIlMxu3t\nvxKz9xCWHnVpsmTygwKkUqy93bk4ezUW7rVx7d5B+1bH3z5HYW1BXkwiUhMF2ZF3CF9mPI+G4wbp\nx0kl+Ex5C8e2mjyit/9KzJ7DANRq4Y/P5CAkMinFmTlc+3gLORG3Ne81b0zDCYMBeOazJVxZth7L\nBm54jR2MRCEnN+oOV9//DGWebi4O7Z8pM8bU2YGWmz4gOGgGxZnZOtvWfqULTp1ac2nm8irrj9Lq\nvNoZ506tuTBjhfY1r9EDcO3eHmV+oaa7TBSoiooBcOrQnEbjByI1kZMdcYfLy76ixEBOxuKkpgr8\nZ43A1s8TpFIyL0cSvvIbVIXF2Lfww3fKECQyGcWZ2Vz96DuyI+5UelvYNPbCZ+pQZOZmIJUSvfUX\nEvafAKBur264D3gJdYkSAJfuHfAY+kal5OH4bAsCFoynIDFFW07I6AUo8woIXD4da+/6AHTYsw65\npTnFmTlPPIdaLfxpNHEIErkMZWER19dsJutKlM64uE9iokB9b1yUZt+uBR5jBiM1UZAbeZvrH27Q\nmzPGYmSWFvjMHY9F/bogkZD4x1Hubt+rV4cxTh2a02jcQO2aELbsS4NtYyxOaqrAb+YIbP28QCoh\n83IkV1ZpxqdNY08aTxuKzNwUiVTKze/26ZX7qLWgPDH/dr0wuI8VmKtyS3OazB+NZYM6SCQSYn8/\nzs3vftXZ1u3V53Hp3JJz01Ybz6GS+uO+uq8+j8vzrfhn+irta1WxdprVdqLtlhX8M2kZWdduAlD/\nzVeo82pnABqtfp/bH62jMC4B27atcHt7KBKFgvyb0dxatRbVQ+PCaIxUSv1JY7Bu2gSAzLOh3P3i\na9396NmdWs+2I+K9JeXfx0psiwZvva5zXI+Jicba2hpbWwe9eh/H5s1fc/nyZdas+bhC5fwbarWa\n9+buw7uhEyNGtn/0Bo+pOtdN4ekmroAKTz3/eeO4NHcNp/pPIS82iYbj3tSLUdhZG41z69Udi3qu\nnH5zOmeHz8V94EvY+HmReyuWM0GztP+lnb1I/IG/SToaTPR3v2hfB1AWFaEqUXJxzkec7DeV/NhE\nGo03nEfA/LEG4+r16o5FvdqcGjSDM8Pepf69POSW5jRbMY0b67ZxevAsrqzYRNMPpiBRyDF1tqfp\nyulcXak5sCcdPYPv3LE0fm88YXNXcXbgZPJjE/EaN/ihPGzKjHHt2YlnvliKqZPugVduY4XPrHdo\nNG0ESCRV2h+a+i1pPHsUvtOHQ6nq67zyPE7PtuDssLnaPmk4tj8AJnbWNFkwmvOzP+ZE3+nkxybR\naMIgvZzKivMa3guJTMrfb87h70GzkJqa4DXsdeSW5jyzcirXP93OyTdnE778G5p9OBmpQl7pbRG4\nfDpRG3dyJmgW56d+gM/kt7Co54pZbSe8xwwk9J0FnBky814eYyotD7vARkRv/1VnrijzCjTvBTQk\ndMxCTd+ZmxHy9rwnnoNELiNw2RSufPAlZ4bM4tY3ewhYNFFvXNznMcpQvTb4vDeBK++tImTQRPLj\nEvEYG1TumAajBlGYnEpo0BT+eXsWdXq9gI1/I716DNGsCWM4P+djTvSbRl5sEj7j9cdnWXFew3sh\nkcs4OXg2J9+chczUBM+hbwDQfMU0Ir/ayakhcwidshzfKfr7VZ3rRWlPYq42HNOfgqQ0/h44i1ND\n51GvT3fsmjTU7IeNJf5zRtJ45lB0FpBytnN548rqD4WNJX5zRtJ4xjC9NqnM9QI0X8o1WTwRieLB\ntQf7Vk2o81oXgt+eB0D6iVN4zJqK3NYGj1lTiFz4AZeHjqYwPoF67wzXyaWsGIfuXTCr58blkeMJ\nf3sC1k0DqNXpWQBk1lbUnzoe94ljquU4YqwtHj6u5+bmMmCAfr3l5evry5EjB+nfv++/LqMioqKS\nGTF0K/v/CK+U8qtz3azJVBJVjf+vJhAnoFVkwoQJ5Y7t378/MTExFarv0KFDJCYmVqiMp0Xm1Sjy\n7iYAELPnIK4vPqcX49CmqdE4506tif31KGqlipLsXBIOnaL2ix11trdr5otzl7ZcXbHRYA75dxPI\nuHhdW/7d3YdwffFZw3lciTIY5/x8K+J+eyiPns9h4V6bkpw80kIuA5B3O46S3HzsmjTCpUtbUk5d\nIPv6LQDifj5E6unzZF2NJD9GU0fsngO4vqDbJvatmxqNMXGshWPH1lyc9oFe/s5d21OYkk7kuu8M\ntgNUbn+43qv/xqdbdcqz9vUk6VgIJTl52tdcu7QBwLFtIJlXbmrrurP7EHVe7MDDyopLP3+VyG/2\ngloNKjVZ16Mxc3XCwr02xTn5pIZoDvC52r5pWKltITVRcHPTTtJCwgAoTEqjKDMbU2cHJDIpErkc\nmaW59sNdYWpGpfWJXRMf7Fv602bLclp+uRi7Zo0BzdUFmYU5jWePAkBVXELRvStjTzIHdYmS46+M\nIftGNADmdV20V+AMjQunzu306q3VuhnZVyPJj4kHIG7vflx6PFfumKi1XxO1/lsATBxqIVEoKMnN\nozwc2wTqrQm1DawdZcWlnb9GVOnxeSMa89qOSE0URG7aTeq9taMwKY3iDN2rk2WtBeWJqeh6obOP\nT2CuXl2zhWufbAPA1NEOqYlc2/+u3dpRmJLB9U+2G8+hEvtDJ4dP9XOo7GOZ78yRxP1+jOKMLO1r\nhakZXFuxUXt1Me96BCYuzti0eobc6xEUxsYBkPTL79h3fV4nl7JiJDIpUnMzpAoFEoUCiUKOqqgI\nAPvnn6M4NU3vimh1t8XD/vjjAPv3HzD6/qOMHz+WzZu3sGPHrn9dRkX8sD2UXr2b8WJP/0opvzrX\nTeHpJ05Aq8j69eurtL7vvvuOnJycKq2zuhQmpj74/0mpKKwsNB++SzFzcTAaZ+biQGGS7numzvY6\n2zeaGETkFz/q3QJk6eEGQGZYBAVJ5cvDWJyZiwMFpXIsSErDzNmB3DvxyCzMcGgTCGhuvbTydMPU\n0Q5L99oo8wtpskxzq7D/0mmY1LLR3Z/kVORWlsgsHuSit8+lYopS0rk8dxV50fpfgsTtPUj0NztR\nFhbpvactqxL7I2bvIW5+vUuv/qzwCJyea4HC1lp70mXmaKet6+F2VVhZIDfUN0biUs6GkXdH8yHH\nzNWRBoN6knDkDHl34pFbmOHYRnObma2fJ9aebpg61qrUtlAVFRP361/a1+u+0RWZuRmZl2+QH5PI\n7W376LBjLR3/70sAMs5fqbQ+KcrM5u6uA5wdOofIz76n6coZmDrbY2JvS1pIGFeWfwVAcU4u/vPG\nVUoOaqUSE3tbnvv1CxpNHEL0Vs1tpjrj4h4Th1o8zNTZgcKkB7cQG5ozj4xRqvBdMJlWW9eSef4y\neXfi9Oox5OE1oaCca0fpuNSzl8i7o/mAZ+bqSP2BPUk4chZVUTGx+x6ME7c3uiKzMNMrtzrXC719\nrOBph/EqAAAgAElEQVRcBVArVQQuGc+zP64k7dxVcm5r+uLunsNEbtpdZj6V2R/3c4jatBtVgX4O\nlbl21n2tCxK5jNhfjuiUl3vzLunnr2r/7TZqGOnH/sbEyYmipGTt60XJKcitLJGWGhdlxaTsP4wy\nO4emO7+j2e6tFMTGk3k6GIDkX/8g7rsfUFXTccRYW9x3/7i+YMEio/mVx8SJk9m2zfiXHZVt3oKe\nvPZGYKWVX53rpvD0Eyegj2nPnj2MGzeOoUOH8tprr3HgwAGCg4MZNGgQQ4YMYe7cuRQXF7Nnzx4G\nDx7MoEGDOH36NB06aL6dvXLlijZ25MiRxMVpJtvHH39M7969GTduHOnp6WXm8MorrzBhwgSmTp1K\ndnY2kyZNIigoiKCgIK5fv87Ro0e5evUqs2fP5tatW/Tv31+77f2rq+vWrWPEiBEMHDiQqKgoBgwY\nwOTJk+nduzcLFy6svAasImrlQ7cYSAwPdbVSBVIDtwCpHmxv26QRCjtrEg78rRfmPvAlTXhJieFE\nHspDYqiu+3EG3lOrVChz87kwYzUew96g3faV1Hm5I2mhl1EVlyCRy3Du1JKoL38CID00DNeHrt6W\nLktLaqQ9VJVza8aT7A9D4v84QeKfZ2ixYQGtNi7VbFJ8r0+M3OKln9Oj42x8PWi7cSG3dxwg+e/z\nlOTmc276ajyHv0GH7cup81JHUkPCH9Rdrnor1hYN3nodr1H9uTBjheY3qW0Cce7chuOvjeX4S6MB\nqNUioNLyuDRnDcnHQgDIuHidzEs3cGgdSFZ4JBdnr6YoNQOA7KtROHZojkQue+I5ABSlZXLi1TEE\nvz0P//ljsahXW2dcaDcxMFcl5ZgP5Ym5tuQTTr48DLmNFfWH9zMYX9669deOR8fZ+HrQ5qtF3Nl5\nkOS//9EJ83jrNbzf6cs/01fqbl+etaCq1osnOFcvLdjAke7voLCxxPvtPuVPoYr6o7yexByx9vHA\nrXd3ri43fAcPaG5nBVDmFxCzaYvxY5XOnDAeU2fomxRnZHKh92Au9h+K3Noal369jNZfHlXVFveP\n61lZxq+OCtW7btZkqqfgfzWBeAjRv5Cfn8/mzZtJS0ujX79+SKVSduzYgYODA2vXrmXv3r3I5XJs\nbGz4/PPPdbadN28e77//Po0bN+bw4cMsX76cUaNGERISwq5du8jLy6NHjx5l1p+Xl8e4cePw8/Nj\n1apVtG3bljfffJPo6Gjmzp3LDz/8QOPGjVm0aBEKhcJoOZ6ensybN4+YmBiio6P5+uuvMTc3p1u3\nbiQnJ+Pk5PRE2utJs7AwwdT0wdA1uXelC8DUyZ7izBxUBYU62xQkpmAb4G0wriAhBRMH3TIKktK0\n/3bt3p74/zuuuZ2qFK/R/bUPbqj7ehdyIu/ola98OI+EFGz99fNQFhRSkJCK6UP7UpiUChIJJfkF\nhI598KCG9j99RF5MIoXJ6WRcuqG9BSnu1yM0mjYCUyd73TqysnXapCAhGRu/hmXGlJfHqAE4PttS\n++/K7g9D5DaWJBz4m+gtPwPQ/ewOJDIZHbZ/iNzSnOzIuzrlFRnqm8RU7B7KqXRc7e7t8Js9giur\nNhN/4JQmSCJBmV9A8BjNSW/D0X1xaN0Zi3quld4WEoWcgAXjsfSoS/Db8yiI11yJcHquJSW5+bT4\ndJ7OdpWRh9zKArc+LxC9pdSDIySgKlHiN38c9s0bax8gY2JvByo1apUKM2eHJ5eDpTm1WgZoT4Kz\nr98iO+I2Vt7uFGVmacdF97M7ALS3gunUm5CMden54OhgcM4Yi6nVuhm5N29TlJKOKr+ApMN/49Sp\nrV4993m/0w/nji0Ayj0+8w2sHaXjXLu3w2/WSK6u3kz8gZPaOIlCTuCCsVh6unF25ALy45N1yi3P\nWvAk14uHNRzd97Hboqy56tg2kOzIuxSmpKPMLyT+4Clcu7QuM4eq7I/SLN1r037bgwczVdZ6Uful\njsgszWm9aZn29YAlk4hYt5XkE+ew8nan2SrN7x4jFywDlYqixGQsG/s8yM3JgZKH+rysmFrPtePO\np1+iLilBWVJCyoEj2HfqQOJOww+ZqTN8CLXat6n2tkAqwblzG/6NxYsX8tprrwKwb9+vLFy4+F+V\n87So6nVT+G8RV0D/hVatWiGVSnF0dMTc3JyEhASmTJlCUFAQJ0+eJDY2FgAPDw+9bZOSkmjcuLG2\nnIiICKKjowkICEAqlWJlZUWjRo/+Efb9sm/cuMHu3bsJCgpi/vz5ZGZmlrmdutRJVOn83N3dsbKy\nQiaT4eTkRGFhxT9YVJa8vCLS0/NIT9f8VsA2oKH2A79b7+4knQjR2yb17EWjccnHQ6n7ahckMily\nKwtcurcn+Viwdttazf1ICw3TKzPxz7MUxGk+zAWPmKdf/vFQA3lcMhqXdDyUuq921ubh2r09SUdD\nQK3mmY/nYNPYEwCXrm1Rl5SQE3GbpKPB2AU2wryO5ssC5+fbkBsdg42fN+Zumjrq9OpBynHdNkkL\n1rRHWTHldWvjT4QMnUnIUM0Dbyq7PwyxaexF0xUzkMhkSGSaZS3iyx2cHDyX08MXYFeqLvc+3Qz2\nTcqZS0bjXLu0pvGMoYRM/PDBySeAWk3LtbO1fZMdeZfcOwmc6De90tui6QfTkFmaE/z2fO3JJ2hO\nwOTmpoS8M1/7MA3UqkrJoyQvn3p9X9B+YLNu1ABbP29ST18g8fApkEoJHa/5EFareWNSzlwAlfqJ\n5qBWqfCfNxbbQM0HYUsPNywb1CUzPEJnXNyXdPCEXr3pwRex8W+EuVttQDMfUh/Kr6wYpy7tqT98\nAKA54XPq0p70f/TXjPvuPxTo1JA5nBkxH7sA7wfjrrfh8Zl69pLROJcubWg8fRihkz7QO9lp/uEU\nZJbmBk8+oXxrwZNcLx4W8eUuTg6e++Tmare2eI/qDYBUIce1W1vtb7SNqcr+KC33Try2Xqi89eLG\nx1s41W+K9gE7hclpXF7wKcknzmHu5kKLzxZy85vdmgruXZnKDP0Hq8Y+mNatA4Dzqy+RfvKMTi5l\nxeRFRGH/vOY3sRKZjFrt25Bz5ZrRtojbvI3wURMJHzWx2toCwMrLnZKsXKN5lmXhwsU0b96S5s1b\n/udPPqHq103hv0VcAf0XwsM1B7OUlBQKCwtxd3fns88+w9ramiNHjmBhYUF8fDxSA7ceODs7c+3a\nNXx9fQkJCaFBgwZ4e3uzfft2VCoVBQUFREZGPjKH+2V7enry2muv8eqrr5KamsrOnTsBkEgkqNVq\nTE1NSU1NRalUkpubq/Nwo9L5ScrxhMKa6srSzwn8cBoSuZz82EQuL9b83tbG1xO/98ZwJmgWxelZ\nRuNi9hzE3M2FtttWIVXIidl7WOc3MRb1XA1+cLOoV5v8+CQs6rlSlJ5F+NLPabr8fvkJhC3aoMmj\nsSd+743mzJDZZcbF7D6IRV0X2m1fiUSum0fY/E/xe/cdpAo5hSkZXJip+fMB2RG3ubria5qunAFA\nnTe6EzZnFeZ1nAn4YAZShWZfryxZh7WvF75zxxAydCbF6VlcXbZBL+Zp6A9D0s5eIqW5H223r9Le\n8nPr+/8DoCg9i7AlX9B8+RSkCjl5MYlcWvSZtm+azBvFycFzy4xrNH4gEomEJvNGaetMv3iDKys3\nc3H+epq8NwqJQk5hSjr/zFxT6W1hG+iDU8eW5N6Oo/W9W44BItZvJ+7XvzCv7USbLSu0f4Ym/P0v\nK61PLs5cic+MEXiN6odaqeLSvLUUZ2aTevoCd3f8QauvNPll3YjWjO8fP3ryOcxahc/UoUjlclRF\nxYTN/4TCpDQKk9K04+K+mJ90/yQHQHFGJtc/WI/fsplIFHIKYhO4tvRTrHy98JkzjnPDphuNAYha\n/y2NZo6h5da1qNVqUk8EE7vj9zLH7H1F6VmELf2CZsunIpXLyYtN1Fk7At57h1ND5pQZ12icZnwG\nvPdOqfF5nfgDJ3G+N07abDL8gdjYWlBV64VeW1Rwrl5buw3/uSN59seVoFaTeCyU6B/3P14OldQf\nV1dtLrPu6lg7GwS9gczUFPf+PQHw37gOVXExV8dN49bKtXgvnotE/v/s3XdUFFf7wPHv0pEuRVTA\nAjZUVBTLa9RYozH22ILGnhg7lmAFReyxxBZjErsRNZYYexdbYhfsioKK0kF63f39sS8rSBF/iTOb\n1/s5h3Nk9zL3cWZ2Z+7ce5+rT8aLlzyet5hSVV2oNGkst4eNJjvhVaFlAJ6u+okKY4ZTa+MaUCpJ\nvHaTiG0lT8Yjx76A/Nd1oXhyfm8K/34KleqNcYVCsXbv3s327dsxMjIiKSmJcePGoaOjw6pVq1Cp\nVJiYmLBw4ULOnDnD48ePmThR3TBo2rQp58+f586dO8yZMweVSoWuri5z587F0dGR1atXc/z4cezs\n7Hj58iWrVq3CwcGh0BhatWrFoUOHMDQ0JD4+nmnTppGUlERycjKjRo2idevWLF26lLNnz7Ju3TqW\nLFlCcHAwjo6OREVF8d1337Fnzx5sbGzo27cvz58/Z/z48ezYoR6i1qtXL5YsWVJk/bmio5OKfV8K\ntrZmHGvU6+0F36O2f+3gaMPessYA0O7Sdk42kSfde65WF3+T/XiA+pgc8ii4dIKUOlzepjX7Qu44\ntCUGgDNNu8saR4vzuzncsI+sMbS/FACgFd8X2vA5lft4gPqYaMNn5HLLjrLGAOBx6oBW7AuFougp\nTFJRqbLIQb5ERgC6eMr+vQnq785/A1dT+a/7b3MneYfcIYge0P8PDw8PTcMy10cf5U/T3r17/g/r\n+fPqYTiurq5s3Vrwy2TEiBGMGDGiRPWfPHlS828rKytWr15doIyXlxdeXl4A+PkVXOR59OjRmn87\nODhoGp9Avn8LgiAIgiAIgiD8U0QDVEsFBQWxaNGiAq936NCBL774/y+MLAiCIAiCIAiCIBfRAH1H\nb/Zsvi9ubm5s3rxZkroEQRAEQRAEQfh7VFqyzIm2E1lwBUEQBEEQBEEQBEmIBqggCIIgCIIgCIIg\nCTEEVxAEQRAEQRAE4W9SKsQQ3JIQPaCCIAiCIAiCIAiCJEQDVBAEQRAEQRAEQZCEGIIrCIIgCIIg\nCILwNylFFtwSET2ggiAIgiAIgiAIgiREA1QQBEEQBEEQBEGQhBiCKwiCIAiCIAiC8DepyJE7hH8F\nhUqlUskdhCAIgiAIgiAIwr+Zi1knuUN4q0dJf8gdgugBFf7/oqOT5A4BW1sz1lT/WtYYht/7kd31\nvpQ1BoDu1zfxrcNYWWNY+Px7nvXxkDUGAMeAyxxo8IWsMXS88qvWnBfb6wyUNYbeNzewyHmkrDFM\nClkFQA5bZY1DF0921Bkgawy9bm4E4Le68sbx+Y2NHGvUS9YY2v61gw01h8oaA8DA2z9rxfHIOl9T\n1hgA9Jve1op9ccijr6wxAHS4vI0zTbvLGkOL87tl/94E9Xen8L9DzAEVBEEQBEEQBEEQJCF6QAVB\nEARBEARBEP4msQxLyYgeUEEQBEEQBEEQBEESogEqCIIgCIIgCIIgSEIMwRUEQRAEQRAEQfibxBDc\nkhE9oIIgCIIgCIIgCIIkRANUEARBEARBEARBkIQYgisIgiAIgiAIgvA3qciRO4R/BdEDKgiCIAiC\nIAiCIEhCNEAFQRAEQRAEQRAESYghuIIgCIIgCIIgCH+TyIJbMqIBKvxPc2pRi0bju6FroEfs/XBO\nT9tEVkp6keVbzhtA3MMX3Fx3DABDi1I08/XEpoYDWamZ3N9zgVtbTr21XvuP6lBzdE90DPR59fAZ\n12b9THYh9RZVrtGiUZg4ltGUMylnS8y1e9xavgOPud9oXlfo6GBRxZE/Jyx/a0zVW7nSYUon9Ax0\neXn3BTsnbiMjOaNAuf8MbEbj/k1BBbFhMfz2bQApsckA+NycQ2JEgqbsmTUnub7n6lvrBjCq1xSL\nPiNR6BuQ9fQhcT/6o0pLyVem1EcdMOvUD1SgykwnfsN3ZD2+m6+M9fiF5MRHk7B+UYnqBbBrWpdq\no/qgY6BH0sNnBM1eS3ZKWonL6ZkY4+bzFaYVy4FCwfMDZ3m88Q9MK5Wnrv9Izd8rdHUwd3Hi6qSl\nhcbxvs6Li+OWYdOgBrW9+qDQ00WZnsnNhVuIv/24wLbLNquD25jP0THQ49WD51ya+UuhMRRVzsDc\nhPrTv8SymhM5aRk8+f0cD7cdx7xyORrPG55nXyiwrOLIufErij84QOWPa9J8Uhd0DfSIvhfO4Slb\nyUwuGJNrFw88hrUBFWSlZ3LCbyeRwU8BGHlpPsmRrzRlL/10nLv7Lr+17nehUqmYNmUfLlVsGTzk\nP//Ydss2q0PtMT3/u6+fcbmYY1JYOYWOgnpTvsS2fjUAIs4FcXNJAAAG5ibUm9wPc+fy6Brqc/fn\nPwqNwb5ZHWqN7omugR6vHj7jShExFFlOR0G9yfljCFqqjqFs87p4zB5GakSsZjunB80FwKZpPVy+\n+QIdA32SH4Vxe84acgr5bBZZTkdBtXEDsG5UB4WuLmFb/+D5HvX3t1X9mlQd3Q+Fni45GZncX7ye\nxDshALjNn4CZSwUAOu/y4eWl+1xesL1AvQ7Na+M+rge6BnrEP3jO+Rkbir2GfDRnEPEPw7m94WiB\n91ouG0FqdAJ/zfm1yL8v0b4uabl3PCZvc+amkmW7lGRlQVVHBX6DdDA1Vmje//28kk1HX998J6dB\nZDwc/04XU2Pw36Lk9hMVShXUrqxgej8djAwUhVWl9fvCtmk9qo7MvVY85ZZ/4deUosrpmRhTe8bX\nmFQsh0KhIPxAII83Ff7ZLErpJvWpNNwTHQN9Uh6FcX/eKnJS00pURtekFNWmjKRUhfKgUBB56DTP\ntu55p/rfxfv67hT+vcQQXOF/lpGVKS3nDuDomB8J6OBL4rMYGk/oVmhZy8r2dNrgReX2DfK9/p8p\nvchKTWd7x5ns6TMfp2Y1cfq4drH1GliZ4T5rGH9OWsGxbt6kPI+i1pje71Tur0krOdlnBif7zOC6\n3zqyklO5MW8TSY9faF4/2WcGUX/e4tmhi7w4eaXYmExKm9BryRds/modi1rMJfZpLB2mdC5Qrnxt\nB5p/3ZLVXZexpM18Yp5E88mkTwGwrWxH2qtUln2ySPNT0sanjpklpYf7ELvUm4jxn5MdFY5l31H5\nyuiVrYCl5xii540hcrInibt/wWb8wnxlzDr1x7B63RLVmcvA0gw336+5+u0yzvSYSGp4JNVH9Xmn\nclW/6Ul6ZByBvb05/+UMKvRog2XtKiQ/Ceec51TNT8yfwYQfPk/EqYINn/d5Xij0dGm4YCTX/NZx\nsvd07v28jwb+XxfYtqGVGQ39hnB+wkoOdZlCcngUdcb2fKdydSf1JTs1g8PdpnK832zsm9ambPM6\nJD5+wdHePpqfyIu3CTt4kfATxZ8jxqVNab+wP3tH/sQvbf1IeBZD80ldCpSzqmRHi8nd+G3QKjZ2\nmsfFVYfpunqY5r30xFQ2dpqn+fmnG58hIdEMHrCZw4du/6PbNbQyw8NvKBcmrOBwl8mkhEfjNrbX\nO5Wr8FlTzCrac/TzaRztNQPb+tVwaOsBgMfsYaRFxXOstw9nvlpIPe9+BbZtYGVGg1lD+XPiCo50\nnUzK82hqFxJDceU0MfScxrHeM7BpUI3y/43Buk4VHmw6xPHePpqf7FR146Hm9BEETVnMhV7jSA2P\nosqILwrUq29pVmQ5h25tKeVoz8UvJvDXoCk49fkUc1dnFHq6uPmP487cH/mz37c8WbebWjNHa7Zp\nWasKV4b7ArCvh1+hjU9DK1Oa+g/i1LjV7PlsOknPo6k/vkehx9Giclk+WTeBip80KPT9WoPbU6Z+\nlULfK4wcx6Q4cYkqZqxTsmykLvvn6eFgC0t/y9/T06WpDrtm6bFrlh4BM3SxsYCpnjrYWChYu19J\nTg7smqXLbj9dMjLh5wMl6ynStn1hYGlGbZ+vue69lLOfTyAtPIqqo/q+U7kqw3uRHhXHuT7fcmHA\ndBx7tMWydsnPD31Lc6pNG8WdaYu43Hc0aS8iqfRN/xKXqTisLxnRsVzpP45rQ7+lXLdPMK9ZtcT1\nv4v39d0p/LuJBqjwP8uxqStRwWG8CosC4E7AGVw6NSq0bC3Pj7m3+wKPD+dvyNm6OvFw31+olCqU\nWTmEnbmF8yfuxdZbpnEtEm4/JuVpJABPdp7EsUOT/1c5hZ4u9Wd/RdCiraRFxuV7z7peVcq38eD6\nnPXFxgNQtUV1nt18SsyTaAD+3HSeet3qFygXHvychc38SU9KR89QDwt7C1LjUwGo0KASyhwlX+8Y\nhdcxb9qM+wSFTsmeXhu5NSYz5A7ZEc8ASD62i1Iftc9XRpWdSdxaf5QJ6qfQmY/vomtpDbrqgRqG\nrvUxqtOE5OO7S1RnLpvGbry685jUZxEAhP12nHIdmr5TuTvfbeLu91vVcdhYomOgR3Zyar6/t6pb\nDfvWDbk1b12hcbzP80KVncOhT8by6n4YACYOtmS+Si6wbfsmtYi79YTk/2770Y5TOH1aMIbiypV2\nrUjo/gvqz0R2Di/PBuHYxiP/vqxXFYc2Dbjiv7HQfZFXxY9qEBEURkKo+ty8sfUsrl08CpTLyczm\nyJStpEQnAhAZHIaJjTk6+rqUd6+MKkdF761jGXhgKk1GdSjxuVlS27ZeoVv3urTvUPMf3W6ZJrWI\nu/U4z74+WegxKa6cQlcHPWNDdAz00dXXQ0dfj5zMLAzMTSjTuCa31+wFIC0qnuP9ZhW67fjbr7cd\nsvMkToWdm8WUU+ioY9A10EdHXw8dPT2UGVkAWNdxwdbDlda/zuLjdVOxca+m2earuyGaz9zz3Uex\nb9+sQL3WjeoUWc6uRUPC/ziNKkdJdlIKEccuULZ9c1TZOQR+NpykB6EAGJcvQ9arJACMytqiW8qY\nGt7qBxhN/QdhYGFSoN7y/6lJzK1Qkp6qryH3A05TuWPh15DqfVvycM95Qo8UfBho37Aa5T+qyf0d\npwv928LIeUwKc+G2ipqVFFQoo/5c9W6pw4E/VahUqkLLrzukorSZgl4fq28z61dV8HUnHXR0FOjq\nKKhRQcGLEnY4atu+ePNa8XTXMcq1f/s1JW+5u4s3cu/7LUDR15TiWDWsS9LdR6Q9fwnAiz2HKdOu\nWYnLhCz7hZCVGwAwsLZCoa9PdkrJ638X7+u7U1upUGr9jzYQQ3D/x+3evZvjx4+TkpJCfHw8I0eO\nxMDAgJUrV6JSqahZsyazZs3i6NGjbN26lezsbBQKBStXrqR06dJyh/+3mJS1IjnidaMtOSIeQzNj\n9E2MCgyhOjdbPRTHoUn1fK9HBj2hSudGRFx7hI6BPpXb1UOZXXyKbWN7a1LzNBbTouLQNyuFnolR\nviFDJSlXsVsL0qMTeHGqYC9Sba++3F75W6HDkN5kUc6KVy9eD5199TIBY3NjDE0NCwzDVWYrqflJ\nbT5f1IfszGyOLj4EgI6eDg/P3ueA/+/oGxkweONXpCelc+6XM2+tX9e6DDmxkZrfc2Kj0CllisLY\nRDMMNyf6JTnRLzVlLPt7kXY1EHKy0bGywXLABKLnjca0Tfe31peXcZnSpEW+vtNJj4pD37QUeibG\n+YZMva2cKkdJXb8R2LduSMTpKySHvchXT41xnjxYvaPQYVjw/s8LVXYOhqXNabXNDwNLMy55ryok\nhtL5tx0Zh0GhMRRdLjb4MRU/+w8xNx6iq6+HQ5v6BT4TdSf0JnjlrhKdm2ZlLUl6Ga/5PSkiAUMz\nYwxMjfINw00MjyMx/HVMLaf24NGJYJRZOejo6RB6/h5n5u9Bz1CfHr98Q2ZyOlc3vH24fElN9+kA\nwJ9/PvnHtglQyr50vodLRR2T4sqF/n4Wh7YedDq2DIWuDpEXb/HyzA1K16pMekwCVfu3p2xTN3QM\n9Li/6VDBGMqUJjUi/7YLOzeLKxe6Tx1Dx6N5Ygi8AUDmq2TC9l/gxamrWNetwn+WjeN4r+kAZOT5\nzGVExaJvWgpdE+N8w3CNylgXWc6ojDUZUfnfM3VxAkCVk4NBaQsabVyAgaUZQdOWAWBQ2oK4y8Hc\nXfgzLZo3IDs1nY9mD+TkmPyfGZOy+f+/KZHxGJiVKvQakjustlzjGvleN7a1oOHkvhz7ainVerUo\nsO+LIscxKU5EHNjnuSUoY6UeYpuSDqbG+cvGJ6nYeETJDl9dzWtNa73u73gRo2LzUSW+A0rWB6Jt\n+8KojDXpJbimvK2cKkeJm99I7Fs1JLKQa0pxDO2syYiK0fyeER2LnqkJuqWMNcNw31omR0l1n7HY\nftyEmMC/SH1a8vrfxfv67hT+3UQP6AcgLS2N9evXs27dOvz9/fH19WXt2rXs3r0bJycnIiIiCA0N\nZe3atWzbtg0XFxfOnTsnd9h/m0Kn8NNbpSz505+LC34DFXy+ezrtVwzn+YW75GQV3wBVKArveVHl\nKN+5nItne+799HuBMqXruGBgacqzQxff9l8oti5lTuFPr28fCWaW2zSOLTnMkC3DUSgUXPr1Ivt8\ndpOTmUN6YhqBP52mVge3EtVPUb1RyoL7UmFohPW4eejZOxD3oz/o6mI9Zg4Jm5ZoekffSVHnwRvH\noyTlbvis5librzEwN6XK0NcNYSu3KhhYmhF++EKRYUhxXmTEJXLok3GcGeBH/VnDMHWyL9m2lSWM\nQankxuIAUKn4ZPssmi4dTeTF2yjzfCas67hgaGlG2ME/C93Gm4r8nL55fP5L39iAziuGYFnBliNT\n1L3SQdsvcNJvJzmZ2WQkpXHll5NUaVenRPXL7Z84Jq7Du5IRn8S+lqPZ384LAwtTqn7ZHoWeLqYO\ndmSnpHFyoD9/eq+m7sSCQ1yL6i0ucG4WU871a3UMf7QazYFP1DFU6a8e5XBxwgrNw5LYGw+JvfkQ\nuya1Ct1WYfWiKOYcKSymPPsuM+4VZzsN59LQ6dSc8Q2lHMuSePsRN72/IzNW/VDuxqp9ODSvjZ0B\nLjwAACAASURBVI6+bv7tlPDYFEWhp0uL777m0oIA0mJevf0P8v6tDMekOMrCLxWFfm3uPKOiZT0F\nDrYFY7sdquLL+Tn0ba3Dx3VLdguqbfuiyPOiwHn79nJBPqs40fYr9M1NcBla+PDuQkMowf1NScrc\n8/ue8x0HomduSoVBBadjCML7InpAPwAeHh7o6OhgY2ODiYkJmZmZWFtbAzBsmHoIkrW1Nd7e3piY\nmPD48WPq1n23eXbaosHoTlRspb7xNDA1IvZBuOY9kzKWpCekkJ2WWeLtGZga8ed3u8h4pR6aUnfo\nJyT+d0hvXjW+6U7ZFvUA0Dcx5tWj55r3jOysyHyVTE56/npTI2Kxqu1cZDmLahXQ0dUh5uq9AvU5\ntGvE0/3noYjhTwDtJnbAta36Js/Q1IiIe697F83tLUhNSCHrjX1hXdEGM1tzQi+rk9dcDviT7vN6\nYWxhTPXWrry484KIu+qnpAoFb22M58qJicTQ5fUNp25pW3KSX6HKyN+LoGtdBptvl5AdHkq03zeo\nsjIwqFIbPbvyWPb3UpextAYdHRT6BsSvnVNknR9tVSc50TcpRWLIU83rRral/7uf8/f8pkfEYFnL\nudByNo3dSHr0lIyYBHLSMnhx5AL2rRpqypZt24TwA2cLHA+pzgs9U2PsPFw1N1EJ98J49eAp5lUc\nAGi33U8dg6kRrx6+jsHYzoqMV8nkpBWMwbp25ULLGdqbcnPpDjIT1T3X1Qd9qhnyBuD0SUNC/yj+\n3Gw6riMurdUPLwxMjYi+//rJu1kZS9IKOTcBzMpa0f2n4cSGRLDd83uy/zuEzrVrQ6LvPn+9HYXi\nrSMV5FRzRDfK5Z4XpsYlOiYpEXGUznNe5C3n0LoB1+ZvRpmdgzI5jdB953Bo60H4CfVw0Ce/nwUg\n+VkUMdcf4NhOfe62+e95oWdiTOIbMRR6br6Mo3Qt50LLlW/dgBvzN6PKziE7OY2wP87h0MaD0L2B\nOPdqxb1f9gPg+k03bOtXx6KKIwAGNpaa7RnalibrVTLKNz+bkTFY1HIptFx6RAwG1vm3kR4Vh56J\nMVYNahF9Rj0XOOn+E5IehmHq4oSBtQX6ZiZEn/3vCAKFApVKpR7lMKoLTi3V1xB9E2Pi8+yXUnaW\nZLwq+TXEpmYFzMrb0PBb9TxEYxsLFDo66Broc8G34PB012+6Ue5j9Xkh5TFR74Lih6yXtYbgPDnN\nouLB3ARKGRb8u8OXlEzx1C3w+sG/lPhvUTLNU4eOjYtvfGrbvqjy9efYNa+viSfp0TPNe4ZFXVMi\nY7F847zNf015RkZMPDlpGbw8mv+a8jbpEdGYub6eM2poY01WYlK+z05xZawa1iXlcRiZMfEo09KJ\nOn4O2xaNS1y/IPxdogf0A3D7tnrid0xMDFlZ6hu2hAT1k19/f38uXbrE8uXLWbp0Kf7+/hgaGhY5\nr0PbXVnxB7918+e3bv7s7r2AMnUqY1HBDgDXPs0JPXnznbbn2qcFHmPUyXqMrc2o0fMjHu6/VKDc\n3R92a5LDnP5yFqVrO2PipM5WWvnzVrw8fa3A30RdDC62nE396kRfvlNoXDb1qxN9qfD3ch397pAm\nWdDKzktxcq+ITSVbABr3b8rtI7cK/I2ZnTlfrB5AKSv1fKh63RoQcf8lqQmplKlWlnYT1HPr9Iz0\n+c/AZtz843qxMeRKD/oTA5da6NmrbzpN2/Qg/UpgvjI6JubY+f5I2qVTxC6fhipLfSHNfBjMy5Gf\nETnZk8jJniQf30XqxWPFNj4BTWKg84N8sKpVhVKO6t5Apx6tiTxTcEhz9J/BRZYr17YRVb5SP53W\n0dejbNvGxF55nVChtHt1Yi4VTLAg1XmhylHiPnMopeuobzbMKpfHrGJZ4oPVGT9zEwMd7z8bazdn\nTP+7beeeLXlxuuAxjLh4q8hyzj1bUmukOpmXYWlzKndvwdNDr3s7betXJ/It5+b5ZQc0yYK2fr6I\ncvUqYllRfW7W+eIjHh0PKvA3Rhal6LNtHA+P3GT/2PWaxieATdWyNPX6TH1uGupTr39z7h0oWYIs\nOdxevYdjvX041tuHE/393tjXrQo9JpEXg4ssF383DMd26rmJCj1dyn1cj9igEFLCY4i7E0rFzh8B\n6uNlXff1DWluwpVT/f0onWfblT8vOoaiyiXcDcMhbwwt1DFkpaTh3LsN5Vurk/O8OHmVnMwsTnyh\nTgBkkecz59C9LVFnCyaPiv3rZpHlogOvUL5TK/U8WNNSlGn7H6LPXEKlVFJz+jdYuKnn85lUcsCk\nYnle3X6IrrER1SYMRs9c/T1Xa/AnhB69ikqp4sbK39nXw499Pfw48MVcbN2cMXNSX0Oq9f6Ypydv\nFHNk84u++Zidbb7VbO/+9jM8OXy50MYnwJ0f9shyTCyrOWFVq3KBbef1n5oKbj5WERapvjfYflpJ\nq7oFG2qvUlQ8i4K6zvlfP3pFyfxflawdr/vWxqc27ouHP/7Gec8pnPecwsVBPljmu1a0ISqw4Nzf\nmD+Diixn36YxLsPUo2h09PWwb9OY2MslT9ITf+km5jWrYuxQFoBy3doR+8Znp7gytq3+Q4VB6uR2\nCn09bFv9h/hrwSWuXyiakhyt/9EGogf0AxATE8OAAQNISkrC19cXlUrF119/jY6ODq6urnh4eODu\n7k7v3r3R09PD3NycqKiCvXz/NulxSZyeupG233+Frr4eic+iOemtTthjW6sCLWb357du/sVu4/ra\nQ7RaMJhe+3xAoeDKyv1E3wor9m8y4pO4OvMnGi0ajY6eHinPo7gy40cALF0r4e4zmJN9ZhRbDsDU\nqQwpL2IKrcPUyZ7UF9El3hcpscnsnPAr/X4chK6+LnFhsQSMUydAcHBz5PNFfVj2ySJCLz3m5PKj\nDN85GmVODomRiWwc8jMAx5ccpqv/54w/PhldfV2C9t/g0q8lGwKsTIwnbo0f1l7zUejpkx35nLhV\nM9GvXIPSX00ncrInJm17oGtjj7FHS4w9Wmr+Ntp/BMrkdxu+lldmfCI3/X6k/oKx6OjrkfI8kpu+\nPwBgUaMStacP45zn1GLL3Vm6ldpTh9B8+wJUKhWRp6/yZNthTR0mTvakvSz+eLzP8yInLYM/xy+j\nziRP9TIsmdlcnvoDaVHx+WOIS+KSzy80/W4kOvp6JD+P4q9pPwFg5VoRD9/BHO3tU2y5u78coNGc\nr2i/yx8UCm6v2Uvc7ddze8wqlCElvPDztjCpsckc8t5Cl5VD0dXXI+FpNAcnbgKgTG0n2s/1ZGOn\nedT1bIZ5udJUaVcn3/Da7f2Xc2H5QdrM7M3Ag9PQ1dfl/sHrBG0veji0NlHv65/5z3ejNPv60rS1\ngPqYNPAdzDHNMSm83I1FW6k3uT/t985DpVQR9ddt7q0/AMAFr+9xn/olzj1boVAouPPjXhrMGJQ/\nhvgkrvj+TONFo/577kdxafrrGOr7DuZ4b59iy938bit1J/en3Z7XMdzfcACUKi6MW0Zd7/64ftMN\nVU4Of327iswEdZKsO7N/wG3eeBR6eqSFR3Jr1koAzKtXxnXacP7s/y1Z8YlFlnu++yjGDmVovGUR\nOvp6PN9znPjr6qWbbn67iGpeA9QJZzKzCJ7xPRlRcWRExfFsxyE81s4GwMzRlgu+mwocm/S4JM5N\nX0/LZd+go6dH0rMozk5VJxmzrlmBpn4D2NfD7x86E/KT45i0+HlKkfFYmyvwH6yD16ocsnLA0VbB\nvKE63HqiwndDDrtmqW8nn0aBjSXo6+VvnC77TYlKBb4bXt/81nNRML1/wZ5Sbd8XmfGJBPutod78\ncejo65H6PJKgmasBMK9RmdrTh3Hec0qx5e4t20LNKUP4KGAhqFREnrlCaMDhIut8U1bCK+7PXYmr\n/yQU+nqkh0dwb/ZyTKs7U23yCK4OnFBkGYCQlRuoOmk4DTYvQ6VSEXv2EuE7DpS4fkH4uxSqf2tX\nl1Aiu3fv5vHjx0ycOPEf33Z0dNI/vs13ZWtrxprqBZebkNLwez+yu96XssYA0P36Jr51GCtrDAuf\nf8+zPgUzmErNMeAyBxoUnOsmpY5XftWa82J7nYGyxtD75gYWOY98e8H3aFKIOsFMDltljUMXT3bU\nGSBrDL1uqnvgfqsrbxyf39jIsUYFl9OQUtu/drCh5lBZYwAYePtnrTgeWeflz1Sq3/S2VuyLQx4F\nl1aRWofL2zjT9N0S7/3TWpzfLfv3Jqi/O/8NypmVPNmYXF4kvT155PsmekAFQRAEQRAEQRD+Jm1Z\n5kTbiQbo/7ju3eV9ciYIgiAIgiAIwr9Teno6kyZNIjY2FhMTExYsWFBgqcZ169axf/9+FAoFw4cP\np23btsVuUyQhEgRBEARBEARBEArYtm0bVatW5ddff6Vr166sXr063/uJiYls2rSJgIAA1q1bx9y5\nc9+6TdEAFQRBEARBEARB+JuUqhyt/3lXV69epVmzZgA0b96cixfzJ6A0NjamXLlypKWlkZaW9tZl\nnUAMwRUEQRAEQRAEQfjg7dy5k40b8y8VZW1tjZmZGQAmJiYkJRVMQlq2bFk6duxITk4OX3/99uSg\nogEqCIIgCIIgCILwgevZsyc9e/bM99qoUaNISUkBICUlBXNz83zvBwYGEhUVxYkTJwAYMmQI7u7u\nuLm5FVmPGIIrCIIgCIIgCILwN6lQav3Pu3J3d+fMGfXSLYGBgdSvXz/f+xYWFhgZGWFgYIChoSFm\nZmYkJiYWu03RAyoIgiAIgiAIgiAU0LdvX7y9venbty/6+vosXrwYgPXr1+Pk5ETr1q25cOECvXr1\nQkdHB3d3d5o2bVrsNkUDVBAEQRAEQRAEQSjA2NiY5cuXF3h90KBBmn+PGTOGMWPGlHibogEqCIIg\nCIIgCILwN6l49yyzHyIxB1QQBEEQBEEQBEGQhGiACoIgCIIgCIIgCJJQqFQqldxBCIIgCIIgCIIg\n/JtZm9R/eyGZxaZclTsE0QMqCIIgCIIgCIIgSEM0QAVBEARBEARBEARJiAaoIAiCIAiCIAiCIAmx\nDIsgCIIgCIIgCMLfpEIpdwj/CqIHVBAEQRAEQRAEQZCEaIAKgiAIgiAIgiAIkhBDcAVBEARBEARB\nEP4mlSpH7hD+FUQPqCAIgiAIgiAIgiAJ0QAVJLVv3z65Q9AamZmZcocAQFJSktwhEBwcLHcIgiAI\n/1oJCQlyh0BoaChnzpwhIiIClUolSwzJycncu3eP1NRUSevVhuuoIPybiCG4gqR27NhB586d5Q6D\npKQkzp8/T3p6uua1rl27ShpDjx49aNy4MT179qRq1aqS1p3XV199xbZt22SrH2DdunWEh4fTuXNn\nOnfujLm5uazxyOHFixdFvleuXDnJ4ti7d2+R70n1GZkyZUqR782bN0+SGPJKTU0lMTERPT09tm/f\nTteuXSlfvrwkda9cubLI90aNGiVJDAD9+/dHoVAU+t6mTZskiwPg7t27bN++nYyMDM1rUp4X2rQv\nLl26hJ+fHzk5ObRv355y5crRs2dPSWMA2LJlC8eOHePVq1d07dqVp0+f4uPjI2kMhw8fZs2aNZp9\noVAoGDFihCR1515HfX19mTVrliR1vk1sbGy+z4iU15FcCQkJnDt3juzsbFQqFVFRUXz99deSxyEl\npciCWyKiASpIKjMzk65du1KpUiV0dNQd8IsXL5Y8jpEjR1K+fHlsbGwAiryZeJ9+//13zp49y8qV\nK4mPj6dz5858+umnmJiYSBqHhYUFGzduzHdMPvroI0ljWLp0Ka9evWL//v2MHTuW0qVL06tXLxo1\naiRpHMnJyQQGBubrnZaq0eXl5QWoL9gpKSlUqVKFR48eYWNjw549eySJASAkJASAGzduYGxsTL16\n9QgODiY7O1uyffHpp58CsG3bNurVq4e7uzvBwcGy9ZSPGTOGPn36cPToUVxcXPDx8eGXX36RpO7c\n76jjx4/j4OCg2RcvX76UpP5cuTfVq1atonXr1tSvX5+goCBOnTolaRwAkydPpl+/ftjb20teN2jX\nvvj+++/ZsmULo0ePZvjw4fTt21eWBuiBAwfYunUrAwYMYODAgfTo0UPyGDZs2MCOHTsYMmQII0aM\noEePHpI1QPX09OjRowdhYWHcv38fAJVKhUKhICAgQJIY8po5cyaBgYHY2dnJGseoUaOoXLkyDx48\nwNDQEGNjY8ljELSTaIAKkpo4caLcIQDqC4McPSl56ejo0Lx5cwB+++03Nm/ezK5du/jss8/o16+f\nZHFYWVlx79497t27p3lN6gYoQExMDC9evCA+Ph5nZ2eOHDnCzp07+e677ySLYcSIEdjZ2VG2bFlA\n2gcT27dvB9QPRxYsWICpqSmpqamMHz9eshgAJkyYAMCQIUNYu3at5vXBgwdLFkOzZs0AWL9+PcOG\nDQOgfv36DBo0SLIY8kpPT6d169Zs2rSJhQsXcuHCBcnq7tOnDwBHjx5l5syZAHTu3FnyfVG5cmVA\n/TnNfUDQtm1bNm/eLGkcoG6Uy9HIyqVN+0JHRwdLS0sUCgWGhoaSP8DMldvIyf3ONDAwkDwGXV1d\nDAwMNHFI2djx9fWlVKlSzJw5E19fX8nqLUpQUBDHjx/XPFSWi0qlws/PjylTpjBnzhy++OILWeMR\ntIdogAqSqlq1aoHhGA0bNpSs/tyeLUdHR65fv07NmjU170l9wVy4cCEnTpygYcOGDBs2DDc3N5RK\nJd27d5e0ASp3QxygZ8+eGBkZ0bNnT8aOHas5FkOGDJE0DpVKJWmDtzARERGYmpoCUKpUKaKjo2WJ\nIy4ujsTERMzNzYmPj5dljllqaioXL16kdu3aXL9+Pd9wMillZWWxceNGatasyaNHj0hLS5M8hoSE\nBJ4+fYqTkxOPHz+Wdc7Zzp07cXNz4/r16+jr60tef/ny5Vm7di01atTQNHjkeGgG8u8LJycnFi9e\nTEJCAmvXrpVlmCVAx44d8fT05MWLFwwbNow2bdpIHkP9+vUZP348kZGR+Pj4ULt2bcnqnjJlCjt3\n7kRfX1+y4fnFqVChAhkZGbL3OOrq6pKRkUFaWhoKhYKcnP/9DLEqlRiCWxIKlVwzxYUPUr9+/QoM\nx1izZo1k9bdq1QqFQlEgQYJCoeDEiROSxQHq+bAdO3Ys8MT6+fPnODg4SBZH3hu3hIQEHB0dOXTo\nkGT1gzp5RcWKFSWtszD+/v506tSJGjVqaF6T+sHE0qVLuXr1KrVq1SIoKIhmzZrxzTffSBoDwJEj\nR1iwYAEWFhYkJSUxY8YMWrRoIWkMISEhLFq0iCdPnlClShW8vb1xdHSUNAaAa9eucfz4cYYPH86+\nfftwc3PDzc1N0hiuXLnCrFmziI2Nxd7enpkzZ0oeA0B0dDRr1qwhNDQUFxcXhg8fjpWVlaQxFDZH\nWI4HadqwL7Kzs9m5cycPHjzA2dmZXr16ydL7COrP64MHD6hcuTLVqlWTJYbAwEDNvmjZsqVk9Y4f\nP56LFy+SnJyMhYVFvvfOnTsnWRy5+vTpQ2hoKBUqVACQbQjukSNHCAsLw8rKihUrVlC/fn2WLl0q\neRxSMjd2lTuEt0pMuyN3CKIBKkjL09OTrVu35huOIceXYlBQUL6bt7/++kvy+YahoaEcOXKErKws\nAKKiovDz85M0hjeFh4ezcuVKyW/mTpw4wa+//kpWVhYqlYqEhAT++OMPSWMA9dDG5ORkze9yPJgA\nuHXrluamtnr16pLXnys7O5u4uDisra3R1dWVLY5cUVFR2NnZSV7vgwcPNInClEolP//8M1999ZXk\nccgpIiICe3t7njx5ArwecglQqVIlSWOZP38+kydPlrTOokRFReUb0VOvXj1J67958yY3b97kyy+/\nZMKECQwZMgRXV+lvgN98KKCvr4+9vT2enp4FGmTvy8mTJ7l16xZjxoxhyJAhDBo0SPKe8VmzZmnF\nENyQkBCMjIzyvSZXz2zud8fly5fx8PCQJQYpiQZoyYghuIKk5B6OceXKFUJCQli/fr1mDpVSqWTr\n1q3s379f0lgmTpxI27ZtuXbtGnZ2dpKnjS9M+fLlefz4seT1Llu2DD8/PwICAmjUqJGkc+zyknOZ\noJ07d9KzZ08WL16subF/8OABBw8elHQeqJ+fHz4+PvTu3bvAHFipHxYtW7aMgIAAsrKySE9Pp2LF\nihw4cEDSGACmTZvGkiVLUCgUeHt74+LiIlndY8aMYfny5YXeSEvZs7J+/XqmTJmCj4+P5rzIbYRK\nnfn10aNHmuHhcpo6dSo3btwgLS2N9PR0HB0d2bFjh6Qx+Pn5aXqUxo0bx+TJk9m6daukMQBkZGTg\n6OhIgwYNuHnzJsHBwZQuXRpvb2/JRjmtWLFCcy4uW7aMYcOGSdYAPXXqFC1btqRatWqa+fy5evfu\nLUkMeU2fPl327PYAPj4+VKhQgSFDhnDkyBGOHj3KtGnT5A7rvVLxvz/M+J8gGqCCpDw9PdmwYQNN\nmzalRYsW1K9fX9L6zc3NiY6OJjMzUzO3TqFQMGnSJEnjAPX8vq+//prQ0FDmzZsn2+T88ePHa24o\no6KisLa2ljwGOzs76tWrR0BAAN27d5c06ytoR6MrN6NnboKTwoaKSyE3a+SSJUskr/tNp06dIjAw\nkLlz5zJo0CDZljdYvHgx48ePJz09nalTp9KkSRPJ6l6+fDkgzzC+vHJ7uDZv3kxcXBzh4eFUqFBB\nlkZgSEgIjRo1onTp0prPqxz75969exw4cAAfHx+8vLwYO3as5DHo6+vj5OQEqHMbyJV0Ji4uTvOd\n0axZMwYPHsy4cePw9PSULAY9PT3MzMwAMDMzk3Rf5M6Rj4mJkazO4pQqVYq5c+fmy24vR0P4zp07\nmpFd06dPl/R8ELSbaIAKkvrkk08A9Zd1hw4dNMlWpFK1alWqVq1Kz549KVOmjKR1v0mhUBAdHU1K\nSgqpqamy9YDmZtkEMDQ0pFatWpLHoK+vz+XLl8nOzubs2bPEx8dLWr82NLpyM79++umn7Nixg9DQ\nUKpUqSJ5ts/cZT+USiULFy7UxCHHQxpbW1sMDAxISUmhQoUKmuHqUsnbk+Hu7k5gYCBPnz7l6dOn\nkt/MBQcH4+vrS0xMDOXKlcPPz0+W9YN37drFTz/9hLOzM48fP2b06NGaTLBSkWO5k8JYWVmhUChI\nTU2ldOnSssRQrlw5lixZQt26dQkKCpJliDqol7AKCQnB2dmZkJAQUlJSiI+Pl/S65ubmxoQJEzT7\nQsqhyI0aNeLFixd0795dsjqLkzsUPDY2VuZIID4+HisrKxITEz+IJERCyYg5oIKkLl++zKxZs2Rf\nNHvv3r38+OOPZGZmaoaRST3X7/Llyzx69Ag7Ozt8fHzo3Lkz3t7eksYA6huHVatWERISQsWKFRkx\nYgSWlpaSxhAZGcnjx4+xtbXl+++/p3379nTs2FHSGEA9N/jAgQP5sq3mLn0hFS8vL8qXL0/dunW5\nevUqcXFxLFiwQNIYAPr378/QoUNxd3fn8uXLbN68mfXr10saw/Tp0zU3kxYWFgQGBvL7779LVv/K\nlSuLfG/UqFGSxQHqB0X+/v64uLhw//59Zs2axa+//ippDACff/45W7duxdDQkNTUVAYMGMDOnTsl\njUFbkhAtWbIECwsLYmJiiIiI4Pnz55Lvi4yMDLZt28aTJ09wcXGhd+/esiQhCgoKYubMmURFRVG2\nbFl8fHwICgrCxsZG8+BZCsePH+fx48e4uLjQqlUryerNfSCVu45z1apVefjwIba2tuzevVuyOHK9\nePGiwGtyZEg+ffo0M2fORE9P3d/l6+uredj6v8rMWJ4EXO8iKe2+3CGIHlBBWsuWLdOKRbN/+ukn\n1qxZo1nvUUq5mXhBPYdKX18fQ0NDTp8+LUsDdOrUqXh4eNC5c2cuXbrE5MmTJZuzk/cimZutr7Cb\nS6l4e3szbNgwWeeWxcTEaOZ0tWnTRtIlefLS1dXVZL1t1aoVGzdulDwGPz8/IiIiaN++PXv27GHx\n4sWS1p/byAwLCyM4OJjPPvuM7777Lt+oAakYGhpq5p5Wq1ZNliU/ACwtLTU3k0ZGRrJ8VnJ7XFUq\nFXfu3CEqKkryGEA9fSElJQVDQ0MCAwMlzUocHBxM7dq1uXz5Mi4uLppz49KlS7IsSePm5lagoSXV\nMii58y9zRyxYWFgQHR3N9u3bJRupoC3rOOfy8vJCoVCgVCp5/vw5FSpUkGVOaGZmJkqlEn19fbKy\nsiRdW1suYhmWkhENUEFSCoVCKxbNdnR01DR4pHb48GFUKhWzZs2iT58+uLm5cefOHdkSBsTHx9O/\nf38AatSowZEjRySr28vLC3j91LhKlSo8evQIGxsbyeeBgroRLNcQqtw1ah0cHDRZmu/duyf58jS5\nc+mMjY356aef8PDw0PRkSC01NZXt27cTFRVFy5YtZWt0eXt7a7KutmjRgmnTpknWIM+9sdXT02Pm\nzJma4yH19IXcueJxcXF0796dOnXqcOfOnQKZNqWQtwelefPmDB48WPIYQD1yY9GiRcTFxdG+fXvC\nw8Ml+5zkro9bWFIuORqge/fuZe3atflGj0g1qih3/qVcaybnpS3rOOedPpCYmMiMGTNkiWP16tXs\n2bMHa2trYmJiGD58uGxr9graRTRABUlVqFCBxYsXEx8fL+ui2UZGRgwdOjTfQuZSPanMHR717Nkz\nzRNzV1dXWbLPgnoIV3R0NLa2tkRHR6NUSvf0TtueGn/yySd4eXnh7OyseU2qoZbt27fXJB7666+/\nMDAwIDMzE0NDQ0nqz5V7Q2tpacnjx48156Ucw/qmTp1K8+bNuXz5MjY2NkybNo0tW7ZIHgdA3bp1\nAfDw8JD0M5J7A5s7p+vJkyeYmZnlW6tWCoX1+n722Weaf4eHh0u2zEPehEPR0dGyJX6ZMWMGgwYN\nYvXq1TRo0IDJkydLlgU3dxkgCwsLrViS5qeffuKHH36QZVRRt27dAPVnQ+pREm/66KOPN5a1mAAA\nIABJREFU6Nevn2Yd5zZt2sgaD6gTMj179kyWui0tLTWJDW1sbCR/cCZoL9EAFSQVExODk5MTDRo0\noFSpUsyePVuWOHKHFsrJzMyMZcuW4ebmxvXr17G1tZUljnHjxtG3b19MTU1JTk6W5Zhoy1PjrVu3\n0q5dO1mGFZ48ebLY9wMCAiQZ+vm2uXS+vr6SZaNNSEjg888/Z9++fbi7u0va8MvL3Nyc7du3a+aj\nSjly420PQEaOHMmqVaveexwNGzYs9v0pU6ZIthxL3l4/AwMDWeZ/AqSnp9OkSRN++OEHKleuLPnD\nItCeJWnkHFWUKysri3v37lGpUiXNg2WpH5x5eXlp1nHu2rWrZh3nmzdvUqdOHcniyM3orlKpiIuL\nkzRzd14mJiYMGTIEDw8Pbt++TXp6uibZn1wPmt83FWIIbkmIBqggqW+//ZZdu3Zx7do1SpUqxYsX\nLyQfYgjQqVMntm/fzqNHj6hYsSJ9+/aVPIbvvvuOgIAATp8+jbOzM6NHj5Y8BoDnz59jYGBAWFgY\nVlZWTJ8+XfKETNry1NjS0lLTs6BtDh48KMvcwzc9efJE0vpCQkIA9UMKXV1dSevONX/+fH744QeO\nHTuGi4sLc+fOlSWOwiQmJsodAoCkSwa5u7vnyx2wadMmatasKVn9uQwNDTl79ixKpZIbN27IMkog\nd0kaKysrzXIbcixJI+eoolxPnjzRZDQHZEkuCFCrVq0C2eQXL14s6Xq5CxYs0ExZMDQ0lOXcBPJd\ny+VeeUDQLiILriCLuLg45syZw5EjR/Dw8GDMmDGaIWZSmDp1Kubm5jRo0IBLly6RkJDAwoULJatf\nm3Tv3p0VK1bk64GV42KV+9TYxcUFZ2dnWeb7TZo0CWNjY1xdXTU3UXKsnVaY/v37s3nzZrnD4Msv\nv5TsRurBgwfMmDGDkJAQKleujK+vr6QNjYiICOzt7QttdFeqVEmyOIoj5fGQO479+/dz8uRJ/vrr\nLxo3bgyolwt68OBBoXMh37eIiAgWLFjAgwcPcHZ2ZtKkSTg6OkoehzYobM5+7tBYKeXk5BAXF4e1\ntbVsa6IWRqrv7+joaJKTk/H29mbhwoWoVCqUSiXe3t789ttv771+AUyMnN9eSGYp6SFyhyB6QAVp\nnTlzhj179hASEkKXLl2YOnUq2dnZDBs2jH379kkWR1hYGFu3bgXUT+i0oWdJLlZWVpLN3SrKTz/9\nxLBhw6hVqxb379+nV69esiUhAu1ZTDyvDyF74JvOnj2bL5mG1NavX8+UKVPw8fHRDGcD9bHQhkbf\nh6ZZs2bY2tqSkJCgeTCko6MjW6Nvw4YNmozVcrl27RqzZs0iNjYWOzs75syZI/n8YFCPKgoODiY7\nOxuVSiVLZuJjx44xb948LCwsSE5OZubMmTRt2lTyOAoj1ff3zZs32bhxI0+ePNEkHtLR0RGJfySk\nUom1TktCNEAFSe3bt4++ffvSqFGjfK9LPfw0IyODtLQ0jI2NSUtL+yAXR86dh5GZmcmQIUPy9fpJ\nPXTq4cOHbNu2jdTUVPbu3Sv52pu5ippvJ9U8OyG/M2fOMHDgQNmG3uYuCTRo0KB8awoePHhQlni0\nmRSDqSwsLGjUqBGNGjXi4sWLPH36lDp16ki+bnEubZh/6e/vz+LFi3FxceHBgwf4+PgQEBAgeRyj\nRo0iKyuLqKgocnJysLOzy5ekSgqrVq1i586d+TKuaksDVCpt2rShTZs2nDlzRityXQhCUUQDVJBU\nURnq2rZtK2kcAwYMoGvXrri4uPDo0SPGjBkjaf3aIHcIoTYMJZw/fz4TJ04kLi6OXbt2yTZfpSja\nMM9OW2ZLSBlHfHw8zZo1w8HBAYVCgUKhkPTm+tSpU1y7do0DBw5w48YNQD3k88SJE5q1KOVmYWEh\nS70JCQn5Gn65Q2KlsGTJEiIiIggJCcHAwIC1a9dqHqhJSRvmX5qZmWnWAK1ataosy+KA+rO6fft2\npk2bpskOLDVtzrgq9fd32bJl+eKLL0hMTKRz585UqVKFli1bShqDIBRHNECFD1KpUqWoVKkSKSkp\nlCtXjr1799KxY0e5w5KUHPNz3pSbqQ/UGQzv37/Pl19+CSDLU/yiSDn8NScnhzt37pCenq55zcPD\ng0mTJkkWA6jnBn/00Ue0a9cuX0KNdevWSRbDmjVrJKurMNWrVychIQFDQ0PNgxqFQiHLd8XLly/Z\nv39/vnUWR40axYoVKySN49KlS/j5+ZGTk0P79u0pV64cPXv2ZOTIkZLFcPXqVbZu3Ur//v3p1q2b\nbGsonzp1SpZ687K2tmbatGk0btyY27dvo1QqNcPWpZy/ntvwTUtLw8jISJYpA9qQcTUzM5OQkBBq\n1KjB8ePHadGiBfr6+nTq1EmS+nPNmTOHefPmMX36dD7//HOGDh0qGqASUalEFtySEA1Q4YO0cOFC\nZs+eLXvq+g+dHL0W2m7MmDEkJiZqkkIpFAo8PDw0a8ZKJSAggIsXL7Jz5078/f2pU6cOU6ZMkTQ5\nVGZmJgsXLiQ0NJQqVarg7e0tWd2g7kXo1q0bXbp0KTShiZRL0owdO5YmTZrIss5iXt9//z1btmxh\n9OjRDB8+nL59++bLSCuFnJwcMjIyUCgU5OTkyJZsRhvmX1auXBlQ5zUwNTWlYcOGsixj1bp1a1au\nXEn16tXp1asXpUqVkjyGojKu5n1o875NnDiRFi1aUKNGDZ48ecKhQ4dYvHgxvXr1kiyGXBUqVECh\nUFC6dGlJl44ShJIQDVDhg1SlSpW3rmsnvH+5yY8iIyNZtGgRcXFxtG/fnmrVqsmeGEku8fHx/Prr\nr3KHQVpaGmlpaSiVSjIzM2VJzOTt7c3IkSNxd3fn6tWrTJ48WZZMwEU1cKRcksbExAQvLy/J6iuK\njo4OlpaWKBQKDA0NZbmxHThwIN27dycuLo6ePXvKMtwTtGP+ZXHz1qV05MgRTWK/Fi1ayLK8WlGj\ner788kvJEg1GRkbSo0cPAIYNG0b//v0lqfdNFhYWBAQEkJaWxoEDB8TDdkHriAao8EFq3bo1vXv3\n1jw9BmRbzFxAM2do9erVNGjQgMmTJ7Njxw65w9KQcp5duXLlePnypew9XU2aNKFq1ap4eXkxe/Zs\nWWIwNjbWJNL4+OOPWb9+vSxxaIMqVapw4MCBfOssyjF/28nJicWLF5OQkMDatWspV66c5DFYWlry\n66+/EhYWhoODA6VLl5Y8BtCe+ZeFSUpKkrQ+hULByJEjqVSpkuaBjdTJ7Ioi5fxLhULBkydPqFSp\nEmFhYSiV8gzHnDt3LmvWrMHKyopbt24xZ84cWeL4EKkQQ3BLQjRAhQ/S5s2bGTp0KGZmZnKHIgDp\n6ek0adKEH374gcqVK2NoaChp/YcOHaJDhw6kpqayYsUK7t27R82aNfnmm28wMTGRZJ5dbpr8zMxM\nDh8+jIWFhaahIcfC8qdPn+bcuXPs27ePjRs3UrNmTSZMmCBpDGXLlmX16tWa+W0GBgaaffGhLStw\n9+5d7t69q/ldrqVgZs2axc6dO6lfvz6lSpWS5eHEihUr2Lp1q+TD0t+kLfMvtUFur582knI+6tSp\nUxkzZgyPHj3C0dFRtmkmvr6+RSZ9FARtIBqgwgfJxsZGa7JYCmBoaMjZs2dRKpXcuHFD8iy427Zt\no0OHDsyZMwdHR0emT5/OxYsX8fHxkewiLkcjszg2NjY4OTkRGhpKeHg44eHhksegUCh49uwZz549\n08R04MAB4MNrgG7evJmkpCTCw8NxdHSUbU5XZmYmLVu2pE2bNuzYsYPo6GjJh8trS2+btsy/1Aba\nkNROGzx//lzzGXnw4AEhISH5krhJJTMzk3v37lGpUiVNA1zbsssLHzbRABU+SEZGRrKvfSm8Nnv2\nbBYsWEB8fDzr1q2TbR3QsLAwzVAlZ2dnjh49KnkMuVmAc+nr62Nvb88333yDg4ODZHG0b98eDw8P\n2rVrx6hRo2S5eZk3bx45OTmoVCpu3LiBm5ubVt1ESTm078iRI/zwww+a7LMKhYIRI0ZIVn+uMWPG\n0LdvX44cOYKLiws+Pj788ssvksZQVG9bZmampOfHqFGjSE5OBuD48eO0bNlStmVxhKJJ+TnduHEj\nu3fvxsTEhOTkZAYMGECXLl0kqz9XaGgoI0aMQKFQoFKpUCgUnDhxQvI4PkQiC27JiAao8EES6ci1\ni729PWPGjCEsLIzq1avny2AohdDQUDZs2ICenh537tzB1dWV4OBgsrKyJI0D1ImZ3N3dqV+/Pjdu\n3ODUqVPUrVuXadOmsXHjRsniOHz4MIGBgTx8+JCsrKx8GSalMmfOHJydnXnx4gW3b9/G1taW+fPn\nSx5HfHw8P/74oyYb71dffYWZmZmkS9KsX7+eHTt2MGTIEEaMGEGPHj1kaYCmp6fTqlUrNm7cyMKF\nC7lw4YLkMRTV2zZ06FBJhyV7eXnx8ccfc/36dZRKJceOHWPVqlWS1V+cD7UhnJaWhrGxMVFRUdjZ\n2QFo5ulKQaFQaEYnmJqaSj6dJNcff/xR6OsBAQGSJWQShOKIBqjwQRLDhbTLli1bOHbsGK9evaJb\nt26EhYXh4+MjWf0//vgjt27domLFity/fx9HR0dmz54tS0/sixcvNAmxKleuzB9//EHPnj35/fff\nJY1j6dKlhIWF4e7uzt69e7ly5QqTJ0+WNIbg4GCmTZtG//792bx5MwMGDJC0/lze3t58/PHHdO3a\nlStXruDt7c3q1aslXZJGV1cXAwMDFAoFCoUCY2NjyerOKysrSzMn+NGjR6SlpckSR2Gk7OkCiIqK\nokuXLvz2229s3ryZgQMHSlo/wJQpU/L9njtiwt/fX/JY5LZy5UoyMzMZP348/v7+1KpVi6+++gpf\nX1/JYnB0dGT+/Pk0aNCAK1eu4OTkJFndJXHw4EHRABW0gjyLZwmCIORx4MAB1q9fj5mZGQMGDODm\nzZuS1l+jRg169uzJzJkz6datG2ZmZuzYsQNXV1dJ4wD1Df7Zs2dJTk4mMDCQ7Oxsnj17JvmN/uXL\nl1m+fDkDBw5kxYoVXL16VdL6AZRKJbdu3cLBwYHMzExSUlIkjwHU6wh+8cUXVK9enX79+kmeYRSg\nfv36jB8/nsjISHx8fKhdu7bkMYC6MR4VFcWIESP4888/mTZtmixxFEbKZDOg/qwePXoUFxcX4uLi\nZDk/MzIysLOz49NPP6V8+fJERkaSmZkp+Zq52uDkyZOaqTTLly/n5MmTkscwb948HB0duXDhguZB\npjaR+iGNIBRF9IAKgiC73DkqciVL6N+/f5HDbaVe12/+/PksXLiQuXPnUrVqVebOncuNGzcK9HS8\nb9nZ2SiVSnR0dFAqlZLf3AN06dKFWbNmMXfuXBYtWiR5ZtHcdT6trKw4ePAgHh4eBAUFSToXN9f4\n8eMJDAzE1dUVZ2dn2aYRuLu7k5iYyPbt26lYsaLsmWjlNHToUA4ePKhZn1aOIdFxcXGaTKvNmjVj\n8ODBjBs3Dk9PT8ljkZtCodDMA87KypKlsaWnp6fV+16O7/EPjViGpWREA1QQBNl9+umn9OvXj/Dw\ncIYNGyb5fMOJEycyffp0Vq1aha6urqR158rOzkZPTw97e/sCqfs7deokeTwdO3akb9++1KlTh6Cg\nIFmyRnt6empu5vL2tK1cuZJRo0a99/rzDgMPCAiQ/GFEXrGxsQQGBvLkyRNiY2Nxd3eXZZ7f4sWL\nZR+aXRSpGxzt2rWjXbt2AIwdO1bzuq+vL7NmzZIkhuTkZEJCQnB2diYkJISUlBTi4+NJTU2VpH5t\n0qdPHzp16kTVqlV5/PgxQ4cOlTskQRCKIBqggiDIbu/evTg5OeHp6Ymz8/+1d6/BVVb328evDYQU\nSCRCCAYIhyScLeVYoCKUgKXDlMopEIogiO0goQhBQA4TBIlROrGlBSq0iIGxhENDsSUWG3CgGaJW\nFDZIwSFFA0ZMlETIOdns5wWT2IAg/p96r3Wb72fGGXb2i3XJ7Bny29e614pS165dHV3/e9/7nh58\n8EGdPXtWDzzwgKNr11iyZIlSUlJqTzit4fF4lJmZ6ViOlJSU2vVbt26t119/Xd27d9fly5cdy/BV\n3nrrLUfW2b59uyRp79692rx5syoqKiSZaRHmz5+v0aNHa+LEiTp27JgWL16sTZs2OZ7jX//6V+0g\n/vDDD2vSpEmOZ7gVJw+buZ2a5twJiYmJWrRokfLz8xUeHq7ExERlZGRo9uzZjmWwRWxsrEaMGKEL\nFy4oIiJCLVq0MB3JOmzBhS0YQAEYl56erpycHB06dEjbtm1TaGio1q9f72gG09+W19w3Onv2bKWm\nptY+8+n0Lww1dxtKUqdOnaw8Mdrpv5M//vGPeuGFFxQeHu7oujeaMmWKJKlbt276+9//biTDf2/N\nrtk675TbbUNPTk529LAZW+Tn52vPnj2196FKMvZ8sCkJCQm3/Bw6dY+zLfLy8m75Xps2bbRo0SIH\n09RPfr/PdARXYAAFYNy///1vHT16VG+88YakukNQfZOWlqbNmzerVatWRtZ3wwnRTjeQERER6tCh\ng6Nr3igyMlL79u3ToEGD9N577ykkJKS2aevUqZNjOUaPHm1sa3bNWjt27FCfPn3Ut29fnTx5UidP\nnnQsg22ys7O1bt06xcTEaOLEiYqIiDAdyXGc6vqFBQsWSJKKiopUUlKizp0769y5cwoNDdXevXvr\n9TPbsIvHTx8PwLB+/fopIiJCCxYs0LBhw0zHMWrWrFnasmWL6RhWmz59uqP3Pc6fP1/FxcXq3r17\n7fBbc9qmU6ZNm6aioiJduHBB7dq109133y3p+jDu5N+FJL3//vv6z3/+o8jISHXp0sXRtSXpkUce\nqXMH68yZM7V161bHc9yK05/PyspKHTx4UOnp6aqqqtJLL73k2No2uXjxog4cOFDnxHAnnhW3UXx8\nvJ577jkFBQWptLRUCQkJeuGFF0zHqhcCGpn58vjrqKouMB2BBhSAeW+++aaOHTumrKwsvfjii2rZ\nsuVNB/F829X8/1ZWVmrWrFnq0aOHsWHHdk5/b2rDlyJTpkzRunXr9IMf/EDvv/++JkyYoLFjxzq2\n/n8/G1zj9OnTkpz/fJaWlio7O1vf/e539e6779Y+m2sLpz+fXq9XWVlZ+uyzzzRq1ChH17bJwoUL\ndf/99ys0NNR0FOMuXbqkoKAgSVLTpk1VUGB+4Kg/OAX3TjCAAjDuypUr+uSTT5SXl6eysjK1adPG\ndCTH1WyjdHI7pe18Pp/S0tJ07tw5dezYUVOmTFHjxo21du1aR3PYsC05NTVV6enpatasmYqLi/Xw\nww87OoDWbIsvKChQYGCg7rrrLj3//PN65JFHHMtQIykpSb/61a90/vx5de7cWc8995zjGaTrJ9Bu\n2LBBOTk56tixo+bMmaOQkJA67ew3bfTo0erWrZtiY2OVlJR0y+uk6oPvfOc79bbxvNGQIUP00EMP\n6d5779WJEyccP1ke+CpswQVg3Pjx4zVy5Eg98MAD6ty5s+k4sMSyZcsUHBysAQMG6K233lJRUZHj\nw6ct4uLi6lwD87Of/Ux/+tOfHM8xYcIE/frXv1b79u114cIFPfnkk3r55ZcdWbvmqqLKysqb3nP6\n7mBJmjdvnvr371/7+czOznZ8m+PGjRu1b98+VVdXy+/3KyAgQAcOHHA0g2k1z0KvX79eP/zhD9Wz\nZ8/atr4+f6F36tQpffjhh4qKilK3bt1Mx6k3Ahq1NB3hK1VVf2Y6Ag0oAPPS09NNR4CFPvzww9rh\nZuTIkfX6sJGIiAg9++yz6t+/v95++221b9/eSI6AgIDatSMiIuqcvvpN+7KrimpO4j148KBjOWoU\nFhZq+vTpkqTu3bsbGfxeffVVbd++Xb///e/14x//WKmpqY5nMO2/7+vdvHlz7XPSLVq0cPz5aFtc\nunRJmzdv1rlz59SpUyctXbpU7dq1Mx2rXvD72YJ7JxhAAQBWqqioUFlZmZo0aaLy8nL5fPX3ePvk\n5GTt3LlTR48eVVRUlBYuXGgkR5s2bfT888+rd+/e8nq9CgsLc2ztmis1Dh06JL/fr8LCQqN3PVZU\nVKigoECtWrXSp59+qmvXnP/FMywsTGFhYSopKdHAgQMdv77KBjX39WZkZNR5Tnr8+PGGk5mzYsUK\nTZkypbadX758eb38cgL2YgAFAFhp+vTpevDBB2uvEpg3b57pSMY0atRIU6dONR1DycnJ2rFjhw4f\nPqyoqCjNmTPH8QyHDx/W008/reDgYJWWlmr16tUaOHCg4zkef/xxxcXFKSgoSCUlJXr66acdzxAc\nHKzMzEx5PB6lpaWpqKjI8Qy2MP2ctE0qKio0YsQISdd3j9TXk5FhLwZQAICVfvrTn2ro0KG6ePGi\n2rVrp5CQENOR6r3AwEDNmDHDaIb169dr165datGihQoKChQfH69du3Y5nuO+++7TP/7xDxUVFRlr\nYtesWaPc3FwlJCRo69atWrFihZEcNvB4PGrWrJkkKSgoSIGBgYYTmePz+XT27Fl17dpVZ8+eNR2n\nXvFzCu4dYQAFAFjp5MmTWrlypQoKCtS2bVutWrVKXbt2NR0LhjVr1qx24GvVqpWaNGliJIcNTWxQ\nUJB69OghSXryyScdXds2tjwnbYMVK1Zo2bJlys/PV+vWrY2088DtcAouAMBKcXFxWrNmjaKjo3X2\n7FmtWrXKyMmvsEPNXbnvvvuumjZtqn79+snr9aqiokJ/+MMfHM8TGxurTZs2GW9icV11dbV27typ\nnJwcRUVFadKkSQoICDAdC/VMw4bNTUf4Sj7f56Yj0IACAOwUGBio6OhoSVLXrl35ZbKe+7K7cmue\nc5OkyspKR69jsaWJxXW2PCdt0rx58/Tb3/5WQ4YMuem9rKwsA4mAL0cDCgCwys6dOyVJr732miIi\nIjRgwAB5vV5dvHhRGzZsMJwOtpo+fboj127Y1sQCN8rOztbgwYNNx6iXGjYMNh3hK/l8V01HoAEF\nANiloKBAktSnTx9J1y+aDw4OVvfu3U3GguWc+j7dtiYWuNH69esZQGE1BlAAgFXmzp172/fj4+Np\nQnETj8fjyDrjxo277fuPPvqoI00scCsej0fx8fHq1KmTGjRoIElKSEgwnAr4AgMoAMBVrly5YjoC\ncEs82QTTJkyYYDpC/eXnGpY70cB0AAAAvg6nmi64iy2DH59PmDZmzBhVV1crNzdXbdq00bBhw0xH\nAupgAAUAAK5Xc2IyUN+tXLlSeXl5Onr0qEpKSrRkyRLTkYA62IILAABcY9q0aXVaxoCAAN1zzz16\n7LHHDKb6gi1NLOqv3NxcJSUl6e2331ZMTIw2b95sOlK94RdbcO8EDSgAwFWaN7f/om98c9q1a6cx\nY8boqaee0tixY9W0aVP17t1by5cvNx1NEk0szPP5fLp8+bI8Ho+Ki4trDyICbEEDCgCw0tKlS+u8\nrmm61qxZYygRbJCXl6fk5GRJUmRkpP76178qNjZW+/btczSH7U0s6q8FCxZo8uTJ+vjjjxUXF6dl\ny5aZjgTUwVciAAArVVRUKCwsTKNHj1bbtm31ySefqLKykueZ6rmqqir985//VHFxsY4cOaLq6mpd\nuHBBZWVljuawvYlF/VVYWCifz6cOHTqovLxc166xLdQ511zwn3kMoAAAK12+fFkLFizQ/fffr7lz\n56qqqkrz58/X1atXTUeDQc8++6x27typ2NhY/fnPf9Yzzzyj48eP39SYf9Py8vIUGxuryMhIjR8/\nXsXFxYqNjZXP53M0B3CjjRs3avfu3dq/f7/S0tL0m9/8xnQkoA624AIArFRcXKycnBxFRUUpJydH\nJSUlKiwsVGlpqeloMOj1119XUlJSnWeBIyIiHM9R08T26dNH77zzjrEmFrhRSEiIWrZsKUkKDQ1V\nUFCQ4URAXR4/x7UBACzk9Xr11FNPKT8/X+Hh4UpMTJTX61VoaKhGjRplOh4MefHFF/W3v/1NnTp1\n0qRJkzRw4EAjOXJzc7V27Vrl5OSoS5cueuKJJ3T8+HGFh4erf//+RjIBkhQfH6/y8nINGDBA7733\nngoKCvT9739fkpSQkGA43bdbA09j0xG+0jV/pekIDKAAADtlZmYqJiaGExzxpbxer7Zs2aIzZ87o\nwIEDjq+fmpqqsWPHciozrLN3795bvjdu3DgHk9Q/DKB3hi24AAArZWdna926dYqJidHEiRONbLOE\nfcrLy3XgwAH95S9/kd/v1y9/+UsjOXw+n2bOnGm8iQVuxJAJ29GAAgCsVVlZqYMHDyo9PV1VVVV6\n6aWXTEeCYT/60Y80atQoTZw4UR06dDAdx3gTC8AeNKB3hgYUAGAtr9errKwsffbZZzz3CUlSRkaG\nGjX64teX/Px8hYWFOZ7DliYWgD38ote7EzSgAAArjR49Wt26dVNsbKwGDx6sqqoqBQQEmI4Fw9at\nW6cdO3aoqqpK5eXl6tixo/bv3+94DtuaWADmeTz2/xvl91eZjkADCgCw009+8hPt27dPJ06ckN/v\nV0BAAFscoUOHDunIkSN65plnNHPmTK1atcpIDluaWAD2sGG4cwOOFgQAWOnVV1/V9u3bNXToUCUn\nJysqKsp0JFigVatWaty4sUpKStShQwdVVZn5hW/Dhg0aNGiQ+vXrp549e2rmzJlGcgCA2zCAAgCs\nFBYWprCwMJWUlGjgwIG6evWq6UiwwD333KM9e/aoSZMmSklJ0ZUrV4zkqGlix4wZo4yMDLVu3dpI\nDgBwGwZQAICVgoODlZmZKY/Ho7S0NBUVFZmOBAusXr1agwcP1uLFixUWFqaUlBRJ0kcffeRoDlua\nWABwGw4hAgBYqbi4WLm5uWrZsqW2bt2q4cOHc9cibmn69Onatm2bY+utWLFCvXv3ltfrVfPmzXXk\nyBHt27fPsfUBwK0YQAEAgOtNmzZN27dvd2y9a9eu6eOPP1bz5s21d+9eDR48WNFs40+iAAAH70lE\nQVTR0froo4/Utm1bx3IAgNuwBRcAALiex+NxdL0GDRqobdu2CgoK0rRp0xQdHS1JWrp0qaM5AMBt\nGEABAAD+R9hYBgC3xwAKAABcz5bBz+kmFgDchgEUAAC4xo2nzebm5kqSBg0aZCIOAOBrYgAFAACu\nsXDhwtq2My0tTT//+c8lSfHx8SZj1bKliQUAWzUyHQAAAOBO1dwBevXqVd11113atWuXkRxVVVUK\nCAiofZ2bm6v27dvTxALAV6ABBQAA1qusrFRlZaUmTJigbt26qbq6WmvWrFGTJk2M5LG9iQUAW3EP\nKAAAsF5MTIw8Hk+dLa41B/4cPHjQ8Tw7duzQO++8U9vELl++XM2bN3c8BwC4DQMoAABwDb/fr0uX\nLik8PFxer1e9evVydP3KysraP2/fvl3Z2dnauHGjJKlx48aOZgEAN2IABQAArpGYmKgOHTpo1qxZ\nWrNmjTwej5YvX+7Y+rY1sQDgNgygAADANSZOnKg9e/bUvp46dapefvllx3OYbmIBwK04hAgAALhK\nYWGhJOnKlSvy+XxGMqxcuVIZGRmSpFdeeUVJSUlGcgCA23ANCwAAcI34+HhNmDBBzZs319WrV5WY\nmGgkx+nTp7V69WpJ0ooVKzR16lQjOQDAbRhAAQCAawwfPlxDhw5VYWGhWrZsWfv8pQmFhYW6++67\njTaxAOA2DKAAAMB6q1evVmJioiZPnnzT0JmWluZ4HluaWABwGw4hAgAA1vv0008VGhqqDz74QAEB\nAbU///zzz9WjRw8jmXw+nxVNLAC4CYcQAQAA6/n9fp0/f16LFy9WVVWVKisrVV5e7njzWPPc5+TJ\nkzV16lTNnTtXU6ZMUVxcnKM5AMCtaEABAID1MjMzlZqaqjNnzqh79+7y+/1q0KCB+vTpo/nz5zuW\nw8YmFgDchAEUAAC4xuHDhzVs2LCbfp6ZmamRI0d+4+sXFBSouLhYS5Ys0dq1a+X3+3Xt2jUtWbKk\nzv2kAIAvxyFEAADANb5s+JSkbdu2OTKAnjhxQqmpqTp//rwSExNrm9ghQ4Z842sDwLcBAygAAHA9\npzZ0jRw5UiNHjjTexAKAW3EIEQAAcD2nT6G9XRMLALg1BlAAAID/EY7WAIDbYwAFAACuZ8vgx32g\nAHB7PAMKAABco7CwUMXFxQoODlZISEjtz2fOnGkwFQDgTjGAAgAA63m9Xq1evVrXrl1T06ZNVVJS\nIr/fr8TERPXt21cxMTGmI0qyp4kFAFsxgAIAAOslJyfrd7/7ncLDw2t/lpeXp8cff1y7d+92PA9N\nLAD83zCAAgAA61VXV9cZPiUpPDzc8Wcu3dLEAoCtGEABAID1hg0bphkzZui+++5TcHCwSkpKlJWV\npaFDhzqaw7YmFgDchgEUAABYb+7cuTp9+rSOHTumwsJCBQUF6YknnlDPnj0dzWFLEwsAbsUACgAA\nXKFHjx7q0aOH0Qy2NLEA4FYeP8e1AQAAy2VlZd3yvSFDhjiYRLVNbHFxsYKCgtS3b1/Hm1gAcCsa\nUAAAYL1du3bp1KlTGjhw4E3vOT2A2tDEAoBb0YACAADr+Xw+PfTQQ0pKSlJkZKSxHDY1sQDgRjSg\nAADAeg0bNtTatWtVWlpqNIdNTSwAuBENKAAAcL20tDTFxcV94+vY0sQCgFs1MB0AAADg/1dGRoYj\n69Q0sVVVVY6sBwDfNgygAADA9Zzc0BUREaGuXbt+6XtpaWmO5QAAN2IABQAArufxeExHkORcEwsA\nbsUACgAA8D/C0RoAcHsMoAAAwPVsGfxsaWIBwFYMoAAAwDU2btxY53VKSookadGiRSbiAAC+Ju4B\nBQAA1tu9e7f27NmjnJwcHTlyRNL1K1Gqq6u1cOFC9erVy3DC62xpYgHAVtwDCgAArFdZWan8/Hxt\n2rRJs2fPliQ1aNBALVu2VOPGjR3Ps3HjRs2ZM6f2dUpKihYuXCiv12vNMAwANmIABQAArlFaWqor\nV66oUaNG2rlzp8aOHau2bds6tv5/N7HR0dGSvmhi9+7d61gOAHArBlAAAOAajz76qOLi4vTaa68p\nOjpab775prZs2eLY+rY1sQDgNhxCBAAAXKO8vFwjRozQpUuX9Itf/EI+n8/R9Rs3bqx27dpp6dKl\natiwoQIDA5Wenq6CggJHcwCAWzGAAgAA16iqqlJqaqp69uypc+fOqayszEiOefPm6dSpU1q7dq0C\nAgKUmJhoJAcAuA0DKAAAcI3FixcrPz9fjz32mN544w0tX77cSA7TTSwAuBXXsAAAANfo16+fIiIi\nVFxcrOHDhys/P99IDluaWABwGw4hAgAArrFs2TIdP35cZWVlKisrU/v27bVr1y7Hcxw7dkwHDx7U\n7Nmz9corr6hXr15cvwIAd4AtuAAAwDXOnDmj/fv3a8iQIcrIyFBgYKCRHP369dOMGTNqm1i24ALA\nnWELLgAAcI2QkBB5PB6VlpaqRYsWxnLY0sQCgNvQgAIAANe49957tWXLFoWFhSkhIUHl5eVGctjS\nxAKA29CAAgAA66WkpMjj8cjv96ugoEAej0cffPCBsecubWliAcBtGEABAID1IiMjb/pZly5dDCS5\nzpYmFgDchgEUAABYb9y4caYjSLKviQUAt2EABQAAuEO2NbEA4DbcAwoAAAAAcASn4AIAAAAAHMEA\nCgAAAABwBAMoAAAAAMARDKAAAAAAAEcwgAIAAAAAHPH/AF3rYPUR87AOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAEuCAYAAAAncUVSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU9f/B/B3IEyZCoggooKoOFCoq61aV3+uunGvuuq2\nruJEcY+itmq1+m2tVetqq3UPHMVatyK4FQUVqyBDZI/k90eaCDIC1pwb9P16njwtyUnOx5t7b+65\n53POkSmVSiWIiIiIiIgKYSB1AEREREREpP/YcCAiIiIiIq3YcCAiIiIiIq3YcCAiIiIiIq3YcCAi\nIiIiIq3YcCAiIiIiIq3kUgdARERERPS+yMaWYr/HEH10EEnxseFARERERCSIQpFd7PcY6kmOEBsO\nRERERESCKJVZUofwxthwICIiIiISRKksfo+DvmDDgYiIiIhIEAV7HIiIiIiISJuSnKqkJ0MtiIiI\niIhIn7HHgYiIiIhIkJLc48CGAxERERGRIEoFGw5ERERERKQNexyIiIiIiEgbpioREREREZF2ikyp\nI3hjbDgQEREREQnCHgciIiIiItKOg6OJiIiIiEgrNhyIiIiIiEgrpioREREREZE2MvY4EBERERGR\nVmw4EBERERGRVmw4EBERERGRNjKOcSAiIiIiIq0U2VJH8MbYcCAiIiIiEoSDo4mIiIiISLsS3ONg\nIHUARERERESk/9jjQEREREQkig5SlRQKBWbPno3bt2/D2NgY8+bNg6urq+b1PXv2YMOGDTAwMEDX\nrl3Ru3fvN6qHDQciIiIiIkFkOkhVCgoKQkZGBrZv346QkBAsWrQIa9as0by+ZMkS7Nu3D+bm5mjX\nrh3atWsHa2vrYtfDhgMRERERkSg6aDhcunQJjRs3BgDUqVMH165dy/V61apV8fLlS8jlciiVSshk\nsjeqhw0HIiIiIiJBdNHjkJSUBAsLC83fhoaGyMrKglyuutSvUqUKunbtCjMzM7Rq1QpWVlZvVA8H\nRxMRERERiaLILv5DCwsLCyQnJ7+qQqHQNBpu3bqFkydP4tixYzh+/Dji4uJw8ODBNwqdDQciIiIi\nIkFkiuxiP7Tx9vZGcHAwACAkJAQeHh6a1ywtLWFqagoTExMYGhqidOnSSExMfKPYmapERERERCSK\nDlKVWrVqhdOnT6Nnz55QKpVYsGAB9u7di5SUFPTo0QM9evRA7969YWRkhAoVKqBz585vVI9MqVQq\n33LsRERERESUj/SQj4r9HpM6p3UQSfGxx4GIiIiISJQSvHI0Gw5ERERERILIFAqpQ3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItJGpmSqEhERERERacMeByIiIiIi0oqDo4mIiIiISKsS3HAwkDoA\nIiIiIiLSf+xxICIiIiISRMYxDkREREREpFUJTlViw4GIiIiISBQ2HIiIiIiISCs2HIiIiIiISCuO\ncSAiIiIiIm1k7HEgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKt2HAgIiIiIiKtFEqpI3hjbDgQERER\nEYnCHgciIiIiItKKDQciIiIiItKKqUpERERERKSVkj0ORERERESkDXsciIiIiIhIKzYciIiIiIhI\nqxLccDCQOgAiIiIiItJ/7HEgIiIiIhKkBI+NZsOBiIiIiEiYEpyqxIYDEREREZEo7HEgIiIiIiKt\n2HAgIiIiIiKtSm6mEhsORERERESiKBUyqUN4Y2w4EBERERGJwlQlIiIiIiLSij0ORERERESkDVOV\niIiIiIhIOzYciIiIiIhIKyUbDkREREREpAVTlYiIiIiISDuFgdQRvDE2HIiIiIiIRGGPAxERERER\naaPkGAciIiIiItKqBKcqldzIiYiIiIhIGPY4EBEREREJwlmViIiIiIhIOzYciIiIiIhIG10MjlYo\nFJg9ezZu374NY2NjzJs3D66urnnKzZw5E9bW1pg0adIb1cMxDkREREREoigMiv/QIigoCBkZGdi+\nfTsmTpyIRYsW5Smzbds23Llz5z+FzoYDEREREZEgSoWs2A9tLl26hMaNGwMA6tSpg2vXruV6/fLl\ny7h69Sp69Ojxn2Jnw4GIiIiISBClUlbshzZJSUmwsLDQ/G1oaIisrCwAQHR0NFavXg1/f///HDvH\nOBARERERiaKDdRwsLCyQnJz8qgqFAnK56jL/0KFDiI+Px7BhwxATE4O0tDRUrlwZXbp0KXY9bDgQ\nEREREQmii+lYvb29ceLECbRt2xYhISHw8PDQvNa/f3/0798fAPD777/j/v37b9RoANhwICIiIiIS\nRhezKrVq1QqnT59Gz549oVQqsWDBAuzduxcpKSn/eVxDTjKlUql8a59GREREREQFSpxQsdjvsVoW\n8dbjeBPscSAiIiIiEoQrRxMRERERkVa6SFUShQ0HIiIiIiJRdDCrkihsOBARERERCcJUJSIiIiIi\n0oqpSkREREREpFVJ7nEouUlWREREREQkDHsciIiIiIgEUSpL7n17NhyIiIiIiEQpwalKbDgQERER\nEQnCwdFERERERKRVSR4czYYDEREREZEgHONARERERERasceBiIiIiIi04hgHIiIiIiLSig0HIiIi\nIiLSiqlKRERERESkFQdHExERERGRVuxxICIiIiIirTjGgYiIiIiItGLDgYiIiIiItGKqEhERERER\nacUeByIiIiIi0qokz6pUciMnIiIiIiJh2ONARERERCSIgqlKRERERESkDQdHExERERGRVhwcTURE\nREREWrHhQEREREREWrHhQEREREREWilK8HSsbDgQEREREQnCwdFERERERKQVU5WIiIiIiEgrNhwK\nERPzUtdVFMre3hJp15pJGgMAmNY8gX0+fSSNof2lLTjW0FfSGACgxdmdON24o6QxfHTqDxxt0F3S\nGACg1bkdyMYWSWMwRB+9iAEAjtTvIWkcn57fjl/rDJA0hm4hGwFAL74TfYgBgOTHaqtzO3Cofk9J\nY2h9fpvk3weg+k521e0naQydr2zSm22hD+es4426SRoDADQ/86venDtLAi4AR0REREREWrHHgYiI\niIiItGLDgYiIiIiItGKqEhERERERacUeByIiIiIi0ooNByIiIiIi0qokpyqV3DWviYiIiIhIGPY4\nEBEREREJwlQlIiIiIiLSig0HIiIiIiLSqiSPcWDDgYiIiIhIEPY4lFDBl9Lw7eZEZGQp4eFqhNkj\nbWBh/mq8+N6TKdi0N0nz98sUJaJjs3FkXVnIDWWYty4BtyMyYWZigI7NzdC7rUWR63b4uA6qje4B\nAyM5Eu89Quic9chKTn2jcj5Lv0R6TDyuLdkIACjzgSeqj+sFA7khstMzcX3pRiRcv6967UNvuI3s\nDQMjIyTdi8TN+WuQnZL78wosY2AAj3EDULqBF2SGhnj4yx5E7ToKALD72AeeM0cj7dlzzedcGj4T\n2SlpqLVwIizcKyI7NS3Pv8+2kQ9cv+gPAyMjJIdH4N6ilXniKUqZavOmION5HO6vWAezii7w8J+g\neU1mYIBSbhVxc/pCKDMz4fpFfwBA7QXjcX3+WmTns93tPqoL9xG9YWCs2gaacgYyVP1yAMr8uw0i\nt+zF43+3gbmLIzxnjICRtSWyU9JwLWAVUiKf5Ppclx5tUL5jC5zpPem1Gg1ggFZQ4iGUuJknnoIo\nlUpMn7oH7lXsMWjwh0V+39ukqxjsPqqLKiN7wcDYCC/vPcT1eQV/V4WVM3EogwY/zsOZPl8h88XL\nXO81c7JHw42LcGnsfCTevJ9vHI6NvVBzjC8MjeV4cfcRLs7+AVnJefflAssZyFB3Sn/Y+1QFADz9\nKxShy7cBAMo1qYN6c4ci5WnsG2+n/Lxr+0WBx2NRyxVy3Np97IOa/qNynbsufOGP7JQ0uH3RA46t\nVLF7fjUIt1ZsgiIjEwBg/1FdeIzsqdnvwuZ9n29M2sqZOpRBwx/n4nQfP83+aWRVCtUnfQ6LSs4w\nMDHG/Q27/9P2U9PVflH2Yy/UGNMdBsZGSLz7CJcD1ud7jBRWrpJvC1Ts/AkMTYwQfzMCVwL+B0Vm\nFhyb1IXPnGEl5hgRcd5y+uwTlP2kPq5MXJLnc8t86A23EX0gM5IjOfwhbs7/Lv/f+ELKmDiUwQf/\nW4Dz/Sblqbtc++awb1ofoZMXFbodRJ83T36+oNB49E1J7nF4b2dVinuRDf9VCQicXBp7VpaFc1k5\nvtmcmKvMZ5+YY0egA3YEOmDLYnvY2RhgyhBrlLExxNKfXsDc1AC7Vjhg80I7nL6cjj8v5j0o8mNs\nYwmvWcNwafIKnOw6GSmPo1FtTI83KufWvz1K162q+VsmN4T3wtEInfc/BPeahrs/7EadOSM0r3vO\nGImwqV/jbI9xSH3yDO6j+uT6PCMbqwLLOHduCTMXR5zrMwEXBk2BS492sPJ0BwBY16qKyF/24Hz/\nyZpHdopqe1jX9MClEf6a59XkNlZwnzoWt2YswuU+I5H25Clch/fPFU9Ryjj37gwrL0/N36kRj3B1\n0HjNI+FCCGKO/onE0BuazwKAlKhoVBnZO892N7KxRI0ZIxE6NRB/d/8yV7nynVvB3MURZ3pPxLnP\np6JCz7aw8nQDANQMGIvHvx3BmZ4TEL5+B7wWTcz1uda1q6JSv4556gMAGXwAFL3hCQDh4TEYNGAT\nDh28Xqz3vU26isHIxhI1Z47A1SnLcNp3PFKjnsFjVP7fVWHlyrVtgvrrZsPUoXSe9xoYG6FmwBjI\njAq+f2Jsa4kPAobg7KSVONxpCpIfx6DWuO7FKufa/iNYVnTEEd/pONpjJuw+qArnVvUAAGW8quDO\nzwcR1MNf8/iv3sX9oqDjMac3PW5tansgYstenO33leaRnZIGp/afwP5jH5wbOBUAkP48AVWG99DU\nVXPmcFyZshynfCcgJSoaVUf1yjemwso5tW2MBvnsn7X8RyAtOg5/95uKC6Pno/rEAf95G+pqvzC2\ntYRPwDCcm/wtgjp/heTH0agxNp/fs0LKOTX/AG49W+Gv4YsQ1G0qDE2N4d63NQCgtFcV3P35AE70\nnKF5/Fcl9bwltyqF6lOGoPqkz4F8rjuNbKxQffoohE1dinM9xyE16hncRub9jS+sjGObpvBeOxcm\n9mVeq9sCVb8aBo8JgwBZ4Re9Upw3s1KKdv2lL5SQFfuhL97bhsOZq+mo6W4EVyfVRUP3/zPHgVOp\nUCqV+ZbfsDsJpa0N4ftpKQDAjfBMtG9qBkNDGYyMZGjsY4qgM3nvKuTHvlEtJNy4j+RHzwAAkb8G\nwbnNR8UuV+YDT9h/WBuRvx3TPKfMykZQmzFIvB0JADB3dkDGi1e9Jok3w5H66CkAIOr3I3D8v8a5\n6izdoHaBZeybNsA/+05Ama1A1stkPAs6DcfWqtesa1VF6Q9qot5Pi+Gzdg5s6lQHAJiWc4ChuRmq\n+Q1D/c1fo/qMkZq6bOvVRdKte0h7/A8A4OnuQ7Bv1TRXPNrKWNetBZv63ni6+1C+29qqtifKfPIh\nwr9ek+ezHv9+RBN/TmUaeOHFzXCk/LsNcpZzaFofUXtParbB06N/o1zrJjCxt0Wpik54evRvAEDs\nmRAYmprAsmolAIBxaWtUnzwYd1ZuzlOfDJUAGEGJqHz/DQXZuuUiOnepg9ZtahTrfW+TrmIo08AL\nL268+g4e/XYUjq0/LlY5EztbODSth8vj878zVu2rQXiy7yQyExLzfR0Ayjaqifjr95H0UHUMhu88\njgptGhWrnMzAAHIzExgaG8HASA4DuRyKdNVd6zJe7rCv54kWvwTgkx+nwc67ap7PLq53cb8o6HjM\n6U2OWwCwqVUVpT+ogQYbF+GD7wM05y7LapUR/ecFZCWlAACenTwPx+YNAAB2DWrn2e/K5bN/FlZO\nvX9efG3/NLIqhTL1a+Pe+l8BAOnRcTgzaOabbjoNXe0XDg1rIf76fST/u+8/2HkMLm3y3sEvrJxL\n+49xd/NBZCYmA0olQuZvwMN9pwGoLhLt63viky1z0PiHGSijx8eIrs9bji0bIf15Am5/m/d3BABK\n1/dC4s17SH2s/v0+nPc3vpAyxna2sGtSH1cn5L1779DiQ6Q/j8e9lT9r3Q4l8bwpmlIpK/ZDG4VC\nAX9/f/To0QP9+vVDZGRkrtePHz+Orl27okePHtixY8cbx/7epio9fZ6NsnaGmr/LljFEUooSyalK\nWJjn/oLiE7Px854kbFtqr3muVhVj7PszFXWqGSMzU4mgs6mQGxatRWhatgzSnsZp/k6LjoORhTnk\npcxypSEVVs7QzAQ1JvXDudGL4dqlea7PV2Zlw7i0FZpsmQ8jG0tcnrry1Wfk6I5Pj46F3MIchuZm\nmm5KUwe7AsuYOpRB2rPYXK9ZuLsCADITX+LpwWDE/Hke1l7V4LXkK5zrOwnGpa0QdyEMt5euR0Z8\nIjzGD9S839jBDhk564p5DrlFqVzxFFbG0MwMlcYNwfWJs+HY4f/y3dYVR32Oh+s3IzslNe9nRcfC\nyMIchqXMcqcOlC2D9Nf+nepypmXLID369W1QAaZl7ZAeEw/kaHimxcTB1KE0Xt6NQM05Y3Fn5SYo\ns7LzxChDVShwFDLUy/ffUJAZ/m0AAGfPPijW+94mXcVgWrYM0qLz/w5e/64KKpf+PB5X/QLz/Xzn\njs1hIJcj6o/jqPx55wLjMC9bGik5jsHUZ3EwsjSHvJRprm73wspF7DmF8q3qod2RFZAZGuDZmWv4\nJzgEAJDxIgmR+/7GkxOXUKZOFXy44stibKX8vYv7RUHH4389bgEg48VL/HMwGDF/XoCNV1V4Lf0K\nZ/tORuL1u6jQsx0e7VTdlHBq2wQmdjaaunLud2lF3D/TXts/Q/yW5fm3mpd3RHpsPCr2aQf7RnVg\nYCzHg8373njbqelqvzB3LI3UHNs9NbqAY6SQchaujjC5ZoUPV02Gqb0NYq/cwbUVqrSUjISXeLj/\nNP45cQll6nig4XL9PUZ0fd56/HsQAMCpXdN8X8+zn8fE5vlNLaxMxvN4XJu6NN/PfrLrCADAse0n\nhW0CANKcN4O6//eeKJF0kaoUFBSEjIwMbN++HSEhIVi0aBHWrFkDAMjMzMTChQvx66+/wszMDL16\n9ULz5s1hZ2dX7HoKbTj069cPsgK6pH7+WXurU58V0LEAg3z6YH47moJm9UxRvuyrzTVxoBWWbUxE\nj0kxsLc1QCMvE4TcyihS3QVtU2W2okjlIAO8F47B9cBNSH+ekG+RjLhEBLUZA6tqFdFwzTScvl9w\nCoRSkaNegwJiUyggy+c1dcxhU77WPPfi6i0khN1G6fq18c/+kwib8upEdH/9Drj4toFMLs/3816P\np6AykMngMXsSHnz7P2TGxudbxLJmNcitLRFzNLjQz3p9u0OWf0ecMluR//ZRKArsulUqFKgysjcS\nrtxE3Pkw2Hq/SqmSlzJTvR1/A8jboHifFfi9v36MFLFcTpZVK6F8l5a4MGz2G8eR51gtpJznF52Q\nHv8Se5uPgaGpMT5cPg5V+rXG3U2HcGbiq0Z9bMhdxF69C6emdbXGRW/puAUQOuXVRVrC1dt4EXoH\nZerXxpN9J2HiUAY+q1XnzuSIKCgys/6tqoDO+jz7RdHK5XqP3BDmzmWRnZSKc0Nnwbx8WdRfN7vA\n8pIr8PdMWeRyBnJDODSsibPjlyM7PRM+c7+A5+huCPt6C85N+lZTNjbkDmKv3kM5PT1GdHneKpIC\n9rfcv/FFKPMfSXHedGhU863FL4IuBkdfunQJjRureo/q1KmDa9euaV4LDw9HhQoVYG1tDQDw8fHB\nhQsX0KZNm2LXU2jDISAgAACwevVqtGjRAj4+PggNDcWJEyeKXZG+cbQzRNjdTM3f0bHZsLKQwdw0\n70F1+HQq/AZb53ouOUWB8f2sYG2pKv/jrpeoUK7wDpzGv6i6/+SlzPDy3iPN86b2pZHxIgnZaem5\nyqc+jYVNTfc85SwqOcPcyR6e4/sCAEzKWENmaAADEyPcWL4FdvVq4OmJiwCAxFsReHknEpbuLqqy\ndraazzOxL43MF0lQ5Kg3/dlzWNeokm+ZtGfP87xf3SPh3PX/ELlxl+Y1GWRQZmfDxqsa5FYWeH5K\nFY+6MaRUKJD+LAYW1T1efZ5dGWQmvnwtnvzLmFd0gWm5sqg4ehAAwLi07b/bwBj3Fq8CANg1/xgZ\n0c/h9cOyf7e7OZLDX3Xd5ffvB1S9MtY5tnuubfD0OYzL2OR6LS06DmnPcj+v/r7SouNQrk0TZMS/\ngMMn9WFoZgoT+9JouGkJHvyk2l4GUKeflQJQDqq0pVC8jxpuXgxAdYwk3XuoeV79Hbx+jKQ9fQ7r\nGnm/q9fL5eTUtgnkpcxQ/4e5mvfUmjMGd/7t/vcc0RlOn9TVxJF497HmvWYOtv8eq7lvEqT8E4fS\nNd3yLefc4gOELFL1NmUlpSJy718o37IeInYHw617c9z64dXd5AJvFrxnZKgNGZw1fxvb5T7m3tZx\nK7cwR/mu/4eIHOcuyABFVjbkVqXw9PBfiNi4G63O7YCtVzXIDA3w4eZFec7hJgWew/Pun/mVyyn9\nuepGyOP9fwIAUh4/Q8LV23Bs0bDQbSZS9RFd4NjUGwBgVMoMiTl/zzT7ft7fs9K13PItlxaTgCcn\nLmnuRj/afxrVhnWGkYU5KnVvgTs/7tW8T98OEbdhvrBv8gEA3Z63iiLtaQysPF/7/X7tN7UoZd5U\ny+1zAEhz3lRmlqybb7rocUhKSoKFxauxkoaGhsjKyoJcLkdSUhIsLS01r5UqVQpJSUn5fYxWhY5x\nqFy5MipXroznz5+jbdu2KFu2LFq1aoXHjx8X9rYSoVEdE4TeyUDkE9UdpJ1HUvBJPdM85RKTFHj4\nNBteVY1zPb/zSApWb1PlRscmZOP3oBS0aWxWaJ2nek/Dqd7TcHrgLNjWckcpl7IAANduLfDsz0t5\nysecDcu3XELYPRxrN1bzeQ9/O4Z/jpxF6Nz/QZmtQG3/YbD1Ul1sW1R2RqmKTki4Fg4AsK5ZBWYu\njgAA586fIubUhVx1xp67WmCZmOALKPdZM8gMDSC3MEfZVh8hJvgCslLSUL5ra9g3U+X/WnhUhJWn\nuyrP39wUHhMGQW6l2pkr9O2gqkihQML5EFjWqArT8uUAAI6dWiPur/O54imozMvrt3Gx22DNAOin\nfxzC82N/aRoNAGBVpwYi12/RlAn94qtcn1W+SytEv/bvz7kNzP/dBjnLxQRfhPNnzXNsgw8R8+d5\npEfHITXqGcr+OwNLmQZeUCoUSLr3EMHtvsDZvqpBlzcWrEVq1FOc7fcVnh07o9oUOAgFDkKJx1Di\n1nvbaACAs339cLavH84PmpH3Owi+mKd87LnQIpXL6fbyjTjdbbymrvSYOIT5r0TMKdUxeGPNLs2A\nuxP95qB0bTdYVFAdg5W7NceTk1fyfOazM2EFlku4GYnyn6qODZncEE5N6yI2NByZyalw69ESzi1U\nFx02VSvAtmblYm+zd5ESoVDgoObvgo7HnN7kuM1KSYVLt/+Dw7/nLkuPirD+99xlVd0NXosnQWao\nSmk1srHA3e934u++U3B20EzY1HTX1FWhS8sC98+ilMsp9UkMXty8D+d2qjEYxqWtYVPLo9D3iHZz\nze+agcon+weofqf+3fcrdWuBf05ezvOeZ2euFVguKug8nFvWh4GJEQDAqZkP4q/fR2ZKKir3aAmn\nf48R66qusM1xoakPwtftFHLeKoq48//+fpdXfa5T50/xPPhCscu8KSnPm0//Llm/m7oY42BhYYHk\n5GTN3wqFAnK5PN/XkpOTczUkiqPIYxx27tyJ2rVr48qVKzAyMnqjyvRJGWtDzBllg0lfxyEzCyjv\naIj5Y2xx/V4GAtYkYEegAwDg4dMs2NsawEie+0sb3MUC079JQJcvo6FUAsO7W6Kmu3F+VeWREZ+I\nqwHfw2fJOMiM5Eh5HI0Qf1UemnX1Sqg9cyhO9Z5WaLmCZKem4+LEZagxsS9kcjkUmZm4MmM10qJV\neYQ35n6HWgsmwsBIjtTHz3B9zipYVquM6tNG4Hz/yciMT8y3DKAaKG3m7Ij6m76GgZEcUbuOIuHK\nDQBA6FeLUXXiYFQe0h3KbAWuzViOzBcvEXsmBI93HsAH6+YCMgMkh7+6G5OZ8AL3Fn6LanP9IJPL\nkfbkKe7OWwGLqu5w8xuFq4PGF1imKMzKOyH9aXS+9QGAhVsFXAtQ/dusqlWG5/ThONvvq3+3wRrU\nXjgBMrkcqVHPNOUe/34EZuXLouHmpTAwkuPxriDEX1FNnxo2YwWqT/0ClT/vAkVGJkKnLS84J44K\nlRGfiOtz18Brkfo7eIqw2asBAFbVK8Nz+hc429ev0HJvQ3r8S1yc9T80XDoaBkZyJD+OxvkZ6wAA\ntp4V4TNrEIJ6+Bda7urXW1BnSj98umshlAolos9dx+2f9gMKJf7+cgXq+PWD54jOUGZn49xXq9H0\nf1PfWvzvioKOx7dx3F6dvARVJw2C21BfKLMVCJ2xApkvXiLuXCie1/VEwy2qVMvkyH8QsXU/ANX+\nGTZ3LeosGg8DuRwpUc9y7Z81pw/D332nFFquMFe+CoTnV4Pg0qUlZDIDhP/wG2pMHfrWt+vbkBGf\niMuz16PB0rEwkBsi+XE0Ls78HgBg41kJdf0H40TPGYWWu78jCMZWFmj2y1zIDAyQcCsCYct+BBRK\nnB2/Al5+/VB9eFcosrNx3m8VGq+fJuU/uUBSn7cy4xNxc95q1FwwSfX7HfUMN+ashGU1N1SbOhwX\nBkwusMzbJMV5MyPhze6eS0Whg1mSvL29ceLECbRt2xYhISHw8Hh1w8HNzQ2RkZFISEiAubk5Ll68\niMGDB79RPTJlQdMI5RATE4O1a9ciIiIC7u7uGD58OGxtbbW97d/3vtReSIfs7S2Rdq2ZpDEAgGnN\nE9jn00d7QR1qf2kLjjX0lTQGAGhxdidON85/WlJRPjr1B442yDs9nGitzu1ANrZIGoMh+uhFDABw\npH7eaRxF+vT8dvxa579PfflfdAtRrceiD9+JPsQAQPJjtdW5HThUv6ekMbQ+v03y7wNQfSe76vaT\nNIbOVzaXtLEEAAAgAElEQVTpzbbQh3PW8UbdJI0BAJqf+VVvzp0lwcF6eadv1qbNha2Fvq5QKDB7\n9mzcuXMHSqUSCxYswI0bN5CSkoIePXrg+PHjWL16NZRKJbp27Yo+fd7smrTQHoenT5/C0dERSUlJ\n6Nu3L5RKJWQyGRISEorccCAiIiIiIhVdjHEwMDDAnDlzcj3n5vYqta958+Zo3rz5628rtkIbDhs2\nbMDUqVPh7+//alDrv42Hkj6rEhERERGRaLqYVUmUQhsOU6eqcm03bdqEuLg4REVFwdXVFVZWVkKC\nIyIiIiJ6l7y9yW/FK9Lg6N9++w3r16+Hm5sb7t+/jzFjxqBt27a6jo2IiIiI6J3yzvY4qG3duhV/\n/PEHTExMkJKSggEDBrDhQERERET0HilSw8HGxkYzF6ypqSlTlYiIiIiI3oAuBkeLUmjDYcKECZDJ\nZIiLi0OXLl3g5eWFGzduwNQ070JpRERERERUOKUO1nEQpdCGQ8+eeeetbt++veb/o6Ki4Ozs/Paj\nIiIiIiJ6B72zPQ7169cv9M1Tp07ltKxEREREREWk0Lr0sv4q0hiHghRh0WkiIiIiIvrXO5uqpI16\nUTgiIiIiItLunU1VIiIiIiKit6ckJ+zIlP8h36hfv37YtGnT24yHiIiIiOidtbnWoGK/p2/YjzqI\npPgMilM4ISEh198NGzZ8q8EQEREREb3LlEpZsR/6okipSufPn8ecOXOQnZ2N1q1bw8nJCb6+vhg1\napSu4yMiIiIiemeU5DEORepx+Oabb7B582bY2dlh+PDh2Lp1q67jIiIiIiJ65yjf4KEvitTjYGBg\nABsbG8hkMpiYmKBUqVK6jouIiIiI6J1TknscitRwqFChAgIDA5GQkIB169bByclJ13EREREREb1z\nFFIH8B8UKVUpICAATk5O8PHxgbm5OebOnavruIiIiIiI3jkleXB0kRoOGRkZaNasGUaOHIkXL14g\nJiZG13EREREREb1zFEpZsR/6okgNh7Fjx+L69etYunQpjIyM4O/vr+u4iIiIiIjeOSV5cHSRGg5p\naWlo3rw5nj59imHDhiE7O1unQe3Zs0enn1+SZGRkSB0CAODly5eS1h8WFiZp/UREJd3razG9j5KS\nknDr1i2kpKQIr1vq31Git6FIg6MzMzOxceNG1KhRA/fu3UNqaqpOg9qxYwc6dOig0zqK4uXLlzh9\n+jTS0tI0z3Xq1EloDF27dkXDhg3h6+sLDw8PoXXnNGzYMEmn4f3xxx8RFRWFDh06oEOHDrCyspIs\nFik9efKkwNdETVqwe/fuAl8TeXxMnTq1wNcWLlwoLA4ASElJQWJiIuRyObZv345OnTrB2dlZWP2r\nVq0q8LXRo0cLiaFfv36QyfLvTv/555+FxJDTzZs3sX37dqSnp2ueE7Vf6Nu2KGgtJtEiIiIQGRmJ\nqlWromzZsgVuI105dOgQ1q5dq9kOMpkMI0eOFFa/+nd01qxZCAgIEFZvYWJjY3MdI6Inv0lISMBf\nf/2FrKwsKJVKREdH44svvhAagxT0KfWouIrUcPDz80NQUBBGjhyJP/74A9OnT9dpUBkZGejUqRMq\nVaoEAwNVp0hgYKBO68zPqFGj4OzsDDs7OwAQfpIDgD/++AOnTp3CqlWrEB8fjw4dOqBt27bCp8S1\ntrbGxo0bc30nH3/8sbD6ly9fjhcvXmDfvn0YN24cSpcuje7du6NBgwbCYlBLSkpCcHBwrt4gURfM\n48ePB6A62SYnJ6NKlSq4d+8e7OzssGvXLiExhIeHAwBCQkJgZmaGunXrIiwsDFlZWUIbDm3btgUA\nbN26FXXr1oW3tzfCwsIk6Z0aO3YsevbsiSNHjsDd3R3+/v744YcfhNWvPkcFBQWhfPnymm3xzz//\nCItBfSG0evVqtGjRAj4+PggNDcWJEyeExZDTlClT0LdvXzg6OgqvW9+2hXotpjFjxmD48OHo1auX\n8IbD5s2bcfToUbx48QKdOnXCw4cPhac9//TTT9ixYwcGDx6MkSNHomvXrkIbDnK5HF27dkVkZCRu\n374NAFAqlZDJZNi2bZuwONRmz56N4OBgODg4SBbH6NGjUblyZdy5cwcmJiYwMzMTWr9USvKsSkVq\nOHh7eyMxMRHbt29HxYoVUbt2bZ0GNWnSJJ1+flEplUrhdy5fZ2BggCZNmgAAfv31V2zatAm//fYb\n2rdvj759+wqLw9bWFrdu3cKtW7c0z4lsOADA8+fP8eTJE8THx8PNzQ2HDx/Gzp078fXXXwuNY+TI\nkXBwcEC5cuUAiG1Qbt++HYCqUbt48WJYWFggJSUFEyZMEBbDxIkTAQCDBw/GunXrNM8PGjRIWAwA\n0LhxYwDAhg0bMHToUACAj48PPv/8c6FxAKp0zhYtWuDnn3/GkiVL8Pfffwutv2fPngCAI0eOYPbs\n2QCADh06CN0WlStXBqA6TtWNulatWmHTpk3CYsjJzs5OkrvqgP5tC31Yi2n//v3YsmULBgwYgIED\nB6Jr167CYzA0NISxsTFkMhlkMpnwi9RZs2bB3Nwcs2fPxqxZs4TWnZ/Q0FAEBQVpbgZKQalUYs6c\nOZg6dSrmz5+P3r17SxaLSPo0S1JxFanhEBgYiMjISHh7e2P37t24ePEipkyZorOgPDw88nRd1a9f\nX2f1vU59J9nFxQVXrlxBjRo1NK8ZGxsLiwMAlixZgmPHjqF+/foYOnQoateuDYVCgS5dughtOEjd\ngPL19YWpqSl8fX0xbtw4zfcwePBg4bEolUrhjZXXPX36FBYWFgAAc3NzSWY6i4uLQ2JiIqysrBAf\nHy9Z/nRKSgrOnDmDWrVq4cqVK7m63UURnc5ZkISEBDx8+BAVKlTA/fv3Jcup3rlzJ2rXro0rV67A\nyMhIkhicnZ2xbt06VK9eXdO4F32zA9CPbaEPazGp72irvwvRv6WA6sbChAkT8OzZM/j7+6NWrVpC\n6586dSp27twJIyMjoamMBXF1dUV6erqkd/kNDQ2Rnp6O1NRUyGQynY+h1RclucdBplQqtQ7W7tmz\np6b7SqlUonv37ti5c6fOgurbt2+erqu1a9fqrL7XNW/eHDKZDK9vGplMhmPHjgmLA1CN92jXrl2e\nO0SPHz9G+fLlhcWR8wc3ISEBLi4uOHjwoLD6IyIiULFiRWH1FWbevHn47LPPUL16dc1zon8Ely9f\njkuXLqFmzZoIDQ1F48aNMWLECKExHD58GIsXL4a1tTVevnyJmTNnomnTpkJjAFSpU0uXLsWDBw9Q\npUoV+Pn5wcXFRWgMly9fRlBQEIYPH449e/agdu3aOu+Zzc/FixcREBCA2NhYODo6Yvbs2cLjiImJ\nwdq1axEREQF3d3cMHz4ctra2QmMA8h8DI/oGiL5si6ysLOzcuRN37tyBm5sbunfvLvyctWnTJhw8\neBBPnjxBlSpV0LBhQ0lu/AQHB2u2Q7NmzYTWPWHCBJw5cwZJSUmwtrbO9dpff/0lNBZAdW0XEREB\nV1dXAJAkVenw4cOIjIyEra0tVq5cCR8fHyxfvlxoDFJYUaX4KXJf3v1OB5EUX5EaDt26dcOOHTtg\nYGAAhUKBnj17YseOHToLqk+fPtiyZUuurisp8v9CQ0Nz/eieO3dOeE59REQEDh8+jMzMTABAdHQ0\n5syZIzSG10VFRWHVqlVCf4SPHTuGX375BZmZmVAqlUhISMDevXuF1Z9Thw4dkJSUpPlbigYlAFy7\ndk1zQVKtWjXh9QOqC5K4uDiUKVMGhoaGksTwuujoaDg4OAit886dO5rJCxQKBf73v/9h2LBhQmOQ\n2tOnT+Ho6IgHDx4AeHWHGQAqVaokPJ5FixbptGe8qKKjo3P1ntetW1d4DFevXsXVq1fRv39/TJw4\nEYMHD4anp6fwOMLDw3Hnzh1UrlwZVatWFV7/8ePHce3aNYwdOxaDBw/G559/LkkvVEBAgF6kKoWH\nh8PU1DTXc1L0hKjPHRcuXEC9evWE1y+FZe7FbzhMuKcfDYcipSq1bdsWvXr1gpeXF0JDQzU5m7oi\nddfVxYsXER4ejg0bNmhyhBUKBbZs2YJ9+/YJjWXSpElo1aoVLl++DAcHB0mmkHuds7Mz7t+/L7TO\nFStWYM6cOdi2bRsaNGggPIc8JymnC965cyd8fX0RGBiouSi7c+cODhw4IGycw5w5c+Dv748ePXrk\nGd8hRQN/xYoV2LZtGzIzM5GWloaKFSti//79QmOYPn06li1bBplMBj8/P7i7uwutf+zYsfj222/z\nvQgSdSdzw4YNmDp1Kvz9/TX7hbrxIMVMQvfu3dOk0kll2rRpCAkJQWpqKtLS0uDi4qLTm24FmTNn\njuYu7pdffokpU6Zgy5YtQmPI2QMUHBwMIyMjODo6ok+fPnnuvuvKypUrNfviihUrMHToUKENhxMn\nTqBZs2aoWrWqZryaWo8ePYTFoTZjxgxJZ0sEAH9/f7i6umLw4ME4fPgwjhw5ovMJePSBPq3LUFxF\najgMGjQIH3/8Me7fv49u3brpfFrQPn364KeffsJHH32Epk2bwsfHR6f1vc7KygoxMTHIyMjQ5I7L\nZDJMnjxZaByAKn/9iy++QEREBBYuXCjZwKEJEyZoLgaio6NRpkwZofU7ODigbt262LZtG7p06SJs\nBqGc9OGCWT1DjHrwZX4pdbqmnoVk2bJlQustyIkTJxAcHIwFCxbg888/l2Saw8DAQEyYMAFpaWmY\nNm0aGjVqJLT+b7/9FoA06Q5q6gvDTZs2IS4uDlFRUXB1dZXswj08PBwNGjRA6dKlNcer6O1z69Yt\n7N+/H/7+/hg/fjzGjRsntH41IyMjVKhQAYBq7J4Ug2HT09Ph4uKCDz74AFevXkVYWBhKly4NPz8/\nYanIcrkclpaWAABLS0vh20E9Duz58+dC6y2Iubk5FixYkGu2RNENmBs3bmiyKGbMmIE+ffoIrV8q\n7+x0rDnvaqrduHEDAHR6d/P//u//AKgOsjZt2mgGgYri4eEBDw8P+Pr6omzZskLrfp1MJkNMTAyS\nk5ORkpIiWY+DetYWADAxMUHNmjWF1m9kZIQLFy4gKysLp06dQnx8vND6Af24YFbPJNS2bVvs2LED\nERERqFKlitDZY9RTfyoUCixZskQTgxQNawCwt7eHsbExkpOT4erqqknrEyHnXUNvb28EBwfj4cOH\nePjwoSR3EMPCwjBr1iw8f/4cTk5OmDNnjvD1X3777TesX78ebm5uuH//PsaMGaPzXur8SDX1aU62\ntraQyWRISUlB6dKlJYvDyckJy5YtQ506dRAaGio8lQ9QTaagPnc2btwYgwYNwpdffin0QrF27dqY\nOHGiZjuITtdq0KABnjx5gi5dugittyDqtLnY2FhJ44iPj4etrS0SExM5OLoEKLThoL6rGRMTAxMT\nE1hZWWHZsmU6n3bxwoULCAgIkHyxmjNnzuD7779HRkaGpstddC776NGjERQUhI4dO6JVq1aSLYzn\n6emJ1atXIzw8HBUrVoSrqytsbGyE1R8QEID79+9jxIgR+Oabb4QPBAZeXTDHxsZi//79uWbvUU+B\nKcqUKVPg7OyMRo0a4dKlS5g2bRoWL14sNIZp06ZhyJAh8Pb2xoULFzBt2jRs2LBBaAyAqhfm119/\nhZmZGQIDA5GYmCis7pyzWVlaWqJdu3aSzHClNn/+fCxZsgTu7u64ffs2Zs+ejV9++UVoDFu3bsUf\nf/wBExMTpKSkYMCAAZI0HPRhcHSNGjXwww8/wMHBAePHj8+1mKhICxcuxNatW/Hnn3/C3d1d6NoF\naklJSQgPD4ebmxvCw8ORnJyM+Ph4oTfDZs6ciaCgINy/fx9t2rRB8+bNhdUN5F2Hx8PDA3fv3oW9\nvT1+//13obEA0IsGzOjRo9G5c2fI5arLUX0Y+yHCOzsda+fOnQGoVi9evnw5KlSogA8++ABTpkzR\n6fzgK1askHyxGgBYv3491q5dq5mvXyT1zE6AKk/YyMgIJiYmOHnyJPz8/ITHM23aNNSrVw8dOnTA\n+fPnMWXKFCHdyzlXSlbP/FDYisEi+Pn5YejQoZLmTj9//lyTs9yyZUuhU/OqGRoaamZRat68OTZu\n3Cg8BkCVQvb06VO0bt0au3btErpYpHpV5sjISISFhaF9+/b4+uuvc/XQiWRiYqIZX1G1alVJpv+0\nsbHRXASYmppKdpyoGytKpRI3btxAdHS08BgmTJiA5ORkmJiYIDg4WPgMV2FhYahVqxYuXLgAd3d3\nzb5x/vx54YOC/f39MXnyZERHR6NcuXLw9/fHgQMHMHz4cJ3XrR5boO4htLa2RkxMDLZv3y60Z1Af\n1uHJafz48ZDJZFAoFHj8+DFcXV2Fj3nIyMiAQqGAkZERMjMzJVloVwrvbI+Dmuj8SJlMJvliNYDq\n36q+WBXt0KFDUCqVCAgIQM+ePVG7dm3cuHFDsoFM8fHx6NevHwCgevXqOHz4sJB69WGl5Ne5urpK\ndqdGvcZI+fLlNbN+3bp1S+hUteo8cTMzM6xfvx716tVDaGiopkdGtJSUFGzfvh3R0dFo1qyZJBfL\nfn5+mhl8mjZtiunTpwttSKkvSORyOWbPnq35TkSmearHQcXFxaFLly7w8vLCjRs38szaIoo6rQ8A\nmjRpInyBQgB49uwZli5diri4OLRu3RpRUVFCjxP1+ib5TRYguuFQu3btPHfVRa2joB5bIGVvYE76\nsA4PkDvVMjExETNnzhQew3fffYddu3ahTJkyeP78OYYPHy7JTFeiCR6a+FYVqeEgOj/S1dUVgYGB\niI+Pl2yxGkB1t2zIkCG5FhASdWdAPcf2o0ePNHepPD09hc9mpJaeno6YmBjY29sjJiYGCoWY9rK+\n3aEBVGNwxo8fDzc3N81z6jvPuta6dWvNgOhz587B2NgYGRkZMDExEVI/AM1FiI2NDe7fv6/ZJ6VY\n0AlQ9YY1adIEFy5cgJ2dHaZPn47NmzcLj6NOnToAgHr16gk7PtTUFx7qnOUHDx7A0tIy11ojupZf\nL0v79u01/x8VFSV0qsecA6FjYmIkGZA6c+ZMfP755/juu+80vfUiZ1VSTwlsbW0t+dS0u3fvxrp1\n63KleIpK/VVnTzx48EBoj2RBPv74Y/Tt21ezDk/Lli2lDgmWlpZ49OiR8HptbGw0k63Y2dkJH9Mq\nFQVKbs9KkRoOOfMj3dzcdJ4f+fz5c01alLm5OebOnavT+goixWJWr7O0tMSKFSs0K4/a29tLEseX\nX36JXr16wcLCAklJScK/E325QwMAW7ZswaeffipJCsbx48cLfX3btm06T5PRlic+a9YsoTMbJSQk\noFu3btizZw+8vb2FX7QDqpnYtm/frrm5IrqXVFvDddSoUVi9erVOY6hfv36hr0+dOlXotKw577Ib\nGxsLH98AAGlpaWjUqBHWrFmDypUrC23g56QPU9OuX78ea9askST1Vy0zMxO3bt1CpUqVJF3Bevz4\n8Zp1eDp16qRZh+fq1avw8vISFod6hkClUom4uDjhs8EBQKlSpTB48GDUq1cP169fR1pammYQvZQ3\nCHVN8a73OJiYmGDgwIE6DuWVr776Cr/99hsuX74Mc3NzPHnyRJJVgz/77DNs374d9+7dQ8WKFdGr\nVy/hMXz99dfYtm0bTp48CTc3N4wZM0Z4DIBqpWpjY2PNCo8zZswQOlBcn+7Q2NjY6O3iXgcOHJAs\nv15NvQCYSOHh4QBUDUwpFqJbtGgR1qxZg6NHj8Ld3R0LFiwQHkNhRA4YL4joaYO9vb1zjY37+eef\nUaNGDaExmJiY4NSpU1AoFAgJCZGsV049Na2tra0m1Vj01LRSpv6qPXjwINeNT6kW7wSAmjVr5pmd\nMDAwUGjjevHixZrUThMTE0n2z5y/5VLPYinSO5+qJJqbmxu++uorxMXFYf78+Wjfvj3q1auHsWPH\nCl1109/fH1ZWVvjoo49w/vx5zJgxA0uWLBFWP6C6uy5Fbu7rtm3bhvXr10vW4/H6HZqcaUKi2dra\nwt/fH56enpq7VlJMvZkf0Rdn+mDGjBmYNm0awsPDMXbsWKGzcqhXPH3x4kWuNVZevHgh6fSbr9OH\nAYeiYti3bx+OHz+Oc+fO4ezZswBUUwffuXMH/fv3FxKD2ty5c7F48WLEx8fjxx9/FD77mpo+TE0r\nZeqv2t69e5Gdna1Z7V6K9SwKI+r8HRMTg6SkJPj5+WHJkiVQKpVIS0uDn58ffv31VyExqKnTyN43\n73yqkmh//vkndu3ahfDwcHTs2BHTpk1DVlYWhg4dKnTV3sjISM3qmi1btpT8Tq6UbG1tJVmKXm39\n+vUYOnQoatasidu3b6N79+6SDo4G9GcRn5z04QJRtFOnTuVZhVWU11dLVv/wS7VaMqkGRdvb2yMh\nIUHToDcwMICLi4vwWH766SfN7GdSunz5MgICAhAbGwsHBwfMnz9f6PgXQD9Sf48ePYqFCxfC2toa\nSUlJmD17Nj766COpw9IQdf6+evUqNm7ciAcPHmgGRBsYGLwXg5Lpv9PLhsOePXvQq1cvNGjQINfz\notN00tPTkZqaCjMzM6Smpr43C5PkpM41zMjIwODBg3PdZRd5t+ju3bvYunUrUlJSsHv3bsnu3AEF\n55OLyCOnvP78808MHDhQkhQl9dTAn3/+ea454Q8cOCA8Fn0n6m6qtbU1GjRogAYNGuDMmTN4+PAh\nvLy8hK47o6YPYwsAYN68eQgMDIS7uzvu3LkDf39/Yavdq3322WcICwtDVlYWlEqlJNPjrl69Gjt3\n7sw1g48+NRxEadmyJVq2bIk///xTLxp076OSnByglw2HgmY9aNWqldA4BgwYgE6dOsHd3R337t3D\n2LFjhdavDypVqpTrv1JZtGgRJk2ahLi4OPz222+S5QoX5n3MI9eHGOLj49G4cWOUL18eMpkMMplM\n2EXRiRMncPnyZezfvx8hISEAVGkxx44dk2TRs4JYW1sLrzMhISHXxXrDhg2F1r9s2TI8ffoU4eHh\nMDY2xrp164Sv+q4PYwsA1SQb6jUcPDw8JJkid/To0cjMzER0dDSys7Ph4OCQa9YtEfR9Bh/R585y\n5cqhd+/eSExMRIcOHVClShU0a9ZMaAzvq3d+HYf3lbm5OSpVqoTk5GQ4OTlh9+7daNeundRhCSV1\n/qF61gdANSPG7du3NXnKou+YaSMyTSg7Oxs3btzItRJtvXr1MHnyZGExdOnSBR9//DE+/fTTXIP8\nfvzxR2ExABCyEGFBqlWrhoSEBJiYmGga1zKZTLLzxD///IN9+/blmvJy9OjRWLlypbAYzp8/jzlz\n5iA7OxutW7eGk5MTfH19MWrUKGExAMClS5ewZcsW9OvXD507d5ZkDRx9GFsAAGXKlMH06dPRsGFD\nXL9+HQqFQpPeJ2p8Vnx8PLZv347p06drpqkVTV9m8MnIyEB4eDiqV6+OoKAgNG3aFEZGRvjss8+E\nxQCoVppfuHAhZsyYgW7dumHIkCFsOAjyzs+q9L5asmQJ5s6dK3k38/tM9B3CkmLs2LFITEzUDFaX\nyWSoV6+e0JVpt23bhjNnzmDnzp2YN28evLy8MHXqVOELsGVkZGDJkiWIiIhAlSpVhK6sXq5cOXTu\n3BkdO3bMd6Cl6Klpx40bh0aNGkk65eU333yDzZs3Y8yYMRg+fDh69eqVa3YjUbKzs5Geng6ZTIbs\n7GxJBsLqw9gCAKhcuTIA1bg9CwsL1K9fX/iU1upejtTUVJiamkoyHqugGXxyNrRFmDRpEpo2bYrq\n1avjwYMHOHjwIAIDA9G9e3ehcQCqMXsymQylS5eWbLHd91EJbjew4VCYKlWqaJ2bnHRLPSD79RVY\nq1atKulgbanFx8fjl19+kTSG1NRUpKamQqFQICMjQ7LB4n5+fhg1ahS8vb1x6dIlTJkyBZs2bRIa\nQ0EXpaKnpi1VqpRmtXWpGBgYwMbGBjKZDCYmJpJdjAwcOBBdunRBXFwcfH19JbnDrQ9jC4DCx2WJ\n0qJFC6xatQrVqlVD9+7dYW5uLqxutYJ60Pv37y908pNnz56ha9euAIChQ4eiX79+wurOydraGtu2\nbUNqair279/Pm6QCKZQldyITNhwK0aJFC/To0UNztwbQvvgV6YbUK7AWhcg8cicnJ/zzzz+S3llu\n1KgRPDw8MH78eMkWaQQAMzMzzQC/Tz75BBs2bJAsFqlVqVIF+/fvzzXlpejxSRUqVEBgYCASEhKw\nbt06ODk5Ca1fzcbGBr/88gsiIyNRvnx5SabH1YexBYV5+fKlsLoOHz6smaWwadOmkqzNVBDRYwtk\nMhkePHiASpUqITIyUpJFKwFgwYIFWLt2LWxtbXHt2jXMnz9fkjjeR3owHPGNseFQiE2bNmHIkCGw\ntLSUOpT3nj6swHrw4EG0adMGKSkpWLlyJW7duoUaNWpgxIgRKFWqlJA8cvV0eRkZGTh06BCsra01\nF4iiB12ePHkSf/31F/bs2YONGzeiRo0amDhxotAYAFW60HfffafJ3zY2NtZsi/dtesGbN2/i5s2b\nmr+lmBY2ICAAO3fuhI+PD8zNzSVrVK5cuRJbtmwRmr73On0YW6AvZDIZRo0ahUqVKml66PRlZWDR\naVPTpk3D2LFjce/ePbi4uEiWkjtr1qwCJ6Mh3eLg6HeUnZ2dXs2M8j7ThxVYt27dijZt2mD+/Plw\ncXHBjBkzcObMGfj7+ws7+UoxI0tB7OzsUKFCBURERCAqKgpRUVGSxCGTyfDo0SM8evRIE9f+/fsB\nvH8Nh02bNuHly5eIioqCi4uLJGlCGRkZaNasGVq2bIkdO3YgJiZGkrRCfbhQ1YexBfpCnZpDwOPH\njzXHyZ07dxAeHp5nFWkRMjIycOvWLVSqVEnTeNLHGQvfRexxeEeZmppKunYBvaIvK7ACqosAdZeu\nm5sbjhw5IjyG11fANTIygqOjI0aMGIHy5csLiaF169aoV68ePv30U4wePVqyH5yFCxciOzsbSqUS\nITcEn54AAB81SURBVCEhqF27tt78+IlOgTh8+DDWrFmjmdFIJpNh5MiRQmMYO3YsevXqhcOHD8Pd\n3R3+/v744YcfhMYAFHyhmpGRIWz/GD16NJKSkgAAQUFBaNasmSRT4+oDqWfoK4zo43Tjxo34/fff\nUapUKSQlJWHAgAHo2LGj0BgAICIiAiNHjtQsXimTyXDs2DHhcbyPRPU4pKWlYfLkyYiNjUWpUqWw\nePHifNM2FQoFhg0bhhYtWqBXr16FfiYbDoXgtGT6w9HREWPHjkVkZCSqVauWa0YMUSIiIvDTTz9B\nLpfjxo0b8PT0RFhYGDIzM4XH4uzsDG9vb/j4+CAkJAQnTpxAnTp1MH36dGzcuFFIDIcOHUJwcDDu\n3r2LzMzMXDOWiDR//ny4ubnhyZMnuH79Ouzt7bFo0SKhMcTHx+P777/XzOw0bNgwWFpaCp+adsOG\nDdixYwcGDx6MkSNHomvXrsIbDmlpaWjevDk2btyIJUuW4O+//xZav1pBF6pDhgwRlr41fvx4fPLJ\nJ7hy5QoUCgWOHj2qV4tEvo+NGPWirtHR0XBwcAAAzTgUUWQymaY30MLCQpLUWwDYu3dvvs9v27ZN\n6GDx95Go6Vi3bt0KDw8PjBkzBvv378d3332HGTNm5Cm3YsWKIq9FxYZDIfT5Dsn7ZvPmzTh69Che\nvHiBzp07IzIyEv7+/kJj+P7773Ht2jVUrFgRt2/fhouLC+bOnStJ78eTJ080A/UrV66MvXv3wtfX\nF3/88YewGJYvX47IyEh4e3tj9+7duHjxIqZMmSKsfrWwsDBMnz4d/fr1w6ZNmzBgwADhMfj5+eGT\nTz5Bp06dcPHiRfj5+eG7774TPjWtoaEhjI2NNQvhmZmZCa0fUK23oh7zcu/ePaSmpgqPoTAi7y5H\nR0ejY8eO+PXXX7Fp0yYMHDhQWN05qVc4V1P3UM6bN0+SeKSyatUqZGRkYMKECZg3bx5q1qyJYcOG\nYdasWULjcHFxwaJFi/DBBx/g4sWLqFChgtD6tTlw4AAbDjom6ix06dIlDBkyBADQpEkTfPfdd3nK\nHDp0CDKZDI0bNy7SZ4qf2JroDezfvx8bNmyApaUlBgwYgKtXrwqPoXr16vD19cXs2bPRuXNnWFpa\nYseOHfD09BQeS2ZmJk6dOoWkpCQEBwcjKysLjx49EnqRduHCBXz77bcYOHAgVq5ciUuXLgmrOyeF\nQoFr166hfPnyyMjIQHJysvAY0tPT0bt3b1SrVg19+/YVOltNTj4+PpgwYQKePXsGf39/1KpVS3gM\nfn5+iI6OxsiRI3H27FlMnz5deAyFETkQNjMzE0eOHIG7uzvi4uIk2TcB1f7p4OCAtm3bwtnZGc+e\nPUNGRobQNU/0wfHjxzXpxt9++y2OHz8uSRwLFy6Ei4sL/v77b80NKH0iOnXrfaRQFv+hzc6dO9G+\nfftcj5cvX2om+ClVqlSe36Y7d+5g3759GDduXJFjZ48DlQjq/EspB3D169evwLQk0XOzL1q0CEuW\nLMGCBQvg4eGBBQsWICQkJM+dRV3KysqCQqGAgYEBFAqFJAs6AUDHjh0REBCABQsWYOnSpUJnq1Gv\n02Bra4sDBw6gXr16CA0NFTbO5HUTJkxAcHAwPD094ebmJkm6pbe3NxITE7F9+3ZUrFhR0lmNpDZk\nyBAcOHBAs7aI6LQxtbi4OM3MPY0bN8agQYPw5Zdfok+fPpLEIxWZTKYZ45KZmSnZBbJcLtfrbS/V\nufx9ootdz9fXN89im6NHj9bcsEhOTs6zVsfu3bvx7NkzDBgwAFFRUTAyMoKzszOaNGlSYD1sOFCJ\n0LZtW/Tt2xdRUVEYOnSoJPn0kyZNwowZM7B69WoYGhoKrx9QXazL5XI4OjrmmcLvs88+ExpLu3bt\n0KtXL3h5eSE0NFSyGcj69Omj+RHOeXd71apVBS589bbkTJfbtm2bJIt75RQbG4vg4GA8ePAAsbGx\n8Pb2Fp7HHhgYqBcpbAURebH46aef/n979x4VdZmHAfwZdUBuioIYykUE7y2roJEr4oqYrrtuXsCg\n1DStTMy8pOZlx0siaYd2NXXTTQ09Jagr2SatLdqB5Ui1UTq6ru4RLWzRIIWFGe7D7B+emWK9NR7n\nfd+ZeT6dOUfm52/epw7BfOf7XvDYY48BQKtP9ESfKG4wGFBSUoLw8HCUlJTAaDSisrIStbW1wjKo\nIDk5GePHj0fv3r1x6dIl6xQOItFELY6OiopCfn4+IiMjUVBQgOjo6FbXly5dav3zm2++CX9//7sW\nDQALB3IQ77//PkJCQvDUU08hPDwcffr0EZ7h5z//OR5//HFcuHABo0ePFj4+cHMaSEZGhnXHHAuN\nRoO8vDwhGTIyMqxjd+3aFZ988gn69euHGzduCBn/p/r888/tPoblhOqcnBzs3LkTDQ0NAOR9Yrdg\nwQKMGzcOiYmJKC4uxtKlS7Fjxw6hGf7xj39YC6inn34aU6ZMETr+vYheCHs7ok8U1+l0WLJkCcrL\nyxEYGAidTofc3FzMmTNHaA7ZkpKSMGrUKFy5cgXBwcFSDgV0BJyqZH+iFkenpKRg2bJlSElJgVar\ntW4dv2fPHoSEhGDUqFE2vyYLB3IIhw8fRklJCU6cOIG9e/fC398fW7duFZ5D9idUlv/p58yZg8zM\nTOuaBpE/6H98knpYWJiyu4+J/G/y9ttv46233pJ6kreFZSu9vn374q9//avw8X88hc0yxVCku03X\nS09PF74QVgXl5eU4dOiQ9TwLAFLWv8iyaNGiO34fuuIBaGVlZXe81q1bNyxZskRgGtck6reTh4cH\ntmzZcsvzM2fOvOW5F1988Se9JgsHcgj/+te/cPLkSXz66acAWr95dUVZWVnYuXMnunTpInxsR9lt\nTOQb1uDgYISGhgob70569uyJI0eOWE8q9vX1tX66HRYWJiTDuHHjpE5hs4y3f/9+DBo0CFFRUThz\n5gzOnDkjNIdKioqKsHnzZsTHxyMxMRHBwcGyIwnFHYJaW7hwIQCgqqoKRqMRvXr1wsWLF+Hv74+c\nnByXXpdE98bCgRzC1KlTERwcjIULF2LEiBGy40jXqVMnKafx0u21b98es2fPRr9+/aQeFnnp0iV8\n+eWXWL16NYKCgtCpUyfodDpoNBphZxc888wziI2NxaVLl5CYmIjevXsLGdfCsqXgnj178OyzzwK4\nudvU7T5hcxW/+93v0NjYiOPHj2PdunVoamrCO++8IzuWMI888giAmyc2Hzt2rNXuc5ZrriQ7OxsA\nkJqaio0bN8Lb2xu1tbU84FYgUVOV7IGFAzmEzz77DMXFxSgsLMTu3bvh5+d3y+JgV2D5d25sbOSp\n5vcgcqqSKsVsSkoKNm/ejF/84hf497//jcmTJ2PChAlCxv7x2heLc+fOAZDzvVlbW4uioiL87Gc/\nw1dffWVdf6ICGXPI9Xo9CgsLcf36dYwZM0b4+CpYvHgxhg8fDn9/f9lRlHDt2jV4e3sDADw9PVFR\nUSE5ketw5GUkLBzIIVRXV+O7775DWVkZ6urq0K1bN9mRpLBMNxE17cQRmEwmZGVl4eLFi+jRowdS\nUlLg5uaGTZs2CcugyvStzMxMHD58GF5eXjAYDHj66aeFFQ6W6YMVFRVwd3dHhw4d8MYbb+CZZ54R\nMv7/S0tLw+uvv47Lly+jV69e2Lhxo/AMBoMB27ZtQ0lJCXr06IG5c+fC19dX+Ini48aNQ9++fZGU\nlIS0tDQpp92roH379nbfac2RxMbGYurUqXj44Ydx+vRpKbsVuipRuyrZg8bM5fPkACZNmoSEhASM\nHj0avXr1kh2HFLJixQr4+PhgyJAh+Pzzz1FVVSW0aFBJcnJyqy1hn3zySbz33ntCM0yePBm///3v\nERISgitXruCVV17Bu+++K2x8y5bFjY2Nt1wTff7L/PnzMXjwYOv3ZlFREd566y2hGQBg+/btOHLk\nCJqbm2E2m6HVanHs2DHhOWSxrPPZunUrfvnLX2LAgAHW7pirfwhz9uxZfPPNNwgPD0ffvn1lx3EZ\n0/1++oFrFnuvb7ZDEtux40AO4fDhw7IjkKK++eYb6xvThIQEl14IGRwcjNdeew2DBw/GF198gZCQ\nEOEZtFqtddzg4OBWO/mIcLstiy27Ox0/flxolsrKSkyfPh3AzZPnZb1Z/+ijj7Bv3z788Y9/xNix\nY5GZmSklhyw/Pm9l586duHLlCoKCgtC5c2dha39UdO3aNezcuRMXL15EWFgYli9fLu3wSlfjyJ/Y\ns3AgIofW0NCAuro6eHh4oL6+HiaTSXYkadLT05GdnY2TJ08iPDwcixcvFp6hW7dueOONNzBw4EDo\n9XoEBAQIHd+yveaJEydgNptRWVkpbb/+hoYGVFRUoEuXLvj+++/R0iJngkJAQAACAgJgNBoRExMj\nZStrmSznreTm5rZaAzRp0iTJyeRatWoVUlJSrB2xlStXulxRKQsXRxMRSTJ9+nQ8/vjj1i0F58+f\nLzuSNO3atbOeoi1Leno69u/fj/z8fISHh2Pu3LlScuTn5+PVV1+Fj48PamtrsW7dOsTExAjN8NJL\nLyE5ORne3t4wGo149dVXhY5v4ePjg7y8PGg0GmRlZaGqqkpKDtlkrgFSUUNDg/UAsISEBJfaaUs2\nR14kwMKBiBzab3/7W8TFxeHbb79FUFAQfH19ZUdyae7u7pgxY4bsGNi6dSsOHDiAzp07o6KiAqmp\nqThw4IDQDMOGDcPf/vY3VFVVST2leP369SgtLcWiRYuwZ88erFq1SloWmTQaDby8vAAA3t7ecHd3\nl5xILpPJhAsXLqBPnz64cOGC7DguxZEXR7NwICKHdubMGaxevRoVFRXo3r071q5diz59+siORZJ5\neXlZ36x36dIFHh4ewjOo0PUAbr5J7t+/PwDglVdeET6+KlRYA6SSVatWYcWKFSgvL0fXrl2ldcRc\nUYsDtxy4qxIRObTk5GSsX78eERERuHDhAtauXSt8JyFSh+Wsk6+++gqenp6Ijo6GXq9HQ0MD/vSn\nPwnNkpSUhB07dkjtetAPmpubkZ2djZKSEoSHh2PKlCnQarWyY5ELSvK1fUrtwaotdkhiO3YciMih\nubu7IyIiAgDQp08fvhFwcbc768Qyjxu4eXiiqG1ZVeh60A9UWAOkgvnz52PLli2IjY295VphYaGE\nRK6Hi6OJiATLzs4GcPPNwJo1azBkyBDo9XrrSajkmu51GN/s2bPtvgWnpethMpnw/PPPW7seos+R\nILqdLVtufnL9+uuvY+jQoZLTuCazA2/IysKBiBxSRUUFAGDQoEEAbh7y5OPjg379+smMRYoTMTtX\npa4H0Z1s3bqVhYMk7DgQEQk2b968u15PTU3Ftm3bBKUhR2E5FM6eVOh6EN2LRqNBamoqwsLCrAc1\nLlq0SHIq18BdlYiIFFNdXS07AtFtcU8SUsHkyZNlR3BZjvwzoI3sAERE9iDik2VyPCr8wub3Jqlg\n/PjxaG5uRmlpKbp164YRI0bIjuQyWu7joQoWDkRE5DIsO3ARubrVq1ejrKwMJ0+ehNFoxLJly2RH\nIgfAqUpEROR0pk2b1uqTfa1Wi4ceeggvvPCCxFQ3qdD1ICotLUVaWhq++OILxMfHY+fOnbIjuQxH\n/hnAjgMROaWOHTvKjkASBQUFYfz48VizZg0mTJgAT09PDBw4ECtXrpQdjV0PUoLJZMKNGzeg0Whg\nMBisC6TJ/hx5qhI7DkTk0JYvX97qa8sny+vXr5eUiFRQVlaG9PR0AEDPnj3xl7/8BUlJSThy5Iiw\nDCp3PYgWLlyIJ554AlevXkVycjJWrFghO5LLaGHHgYhIjoaGBgQEBGDcuHHo3r07vvvuOzQ2NnK+\nrotramrC3//+dxgMBhQUFKC5uRlXrlxBXV2dsAwqdz2IKisrYTKZEBoaivr6erS0qPS5tnMz38c/\nqmDhQEQO7caNG1i4cCGGDx+OefPmoampCQsWLEBNTY3saCTRa6+9huzsbCQlJeHPf/4zNmzYgFOn\nTt3SobKnsrIyJCUloWfPnpg0aRIMBgOSkpJgMpmEZSC6k+3bt+PgwYM4evQosrKy8Ic//EF2JJfB\nqUpERJIYDAaUlJQgPDwcJSUlMBqNqKysRG1trexoJNEnn3yCtLS0VmtdgoODhWawdD0GDRqEL7/8\nUkrXg+hOfH194efnBwDw9/eHt7e35ESuo0WhDoKtNGZHXtpNRC5Pr9djzZo1KC8vR2BgIHQ6HfR6\nPfz9/TFmzBjZ8UiS3bt348MPP0RYWBimTJmCmJgY4RlKS0uxadMmlJSUoHfv3nj55Zdx6tQpBAYG\nYvDgwcLzEP1Yamoq6uvrMWTIEPzzn/9ERUUFHnnkEQA8QdreRng+b/M9+bU77JDEdiwciMih5eXl\nIT4+njuC0G3p9Xrs2rUL58+fx7Fjx4SOnZmZiQkTJnCHL1JSTk7OHa9NnDhRYBLXE+f5nM33FNSq\nsV0upyoRkUMrKirC5s2bER8fj8TEROHTUUhN9fX1OHbsGN5//32YzWa8+OKLwjOYTCbMnDlTateD\n6E5YHMjDqUpERBI1Njbi+PHjOHz4MJqamvDOO+/IjkSSPfbYYxgzZgwSExMRGhoqNYvMrgcRqecX\nnrNtvudk7dt2SGI7dhyIyOHp9XoUFhbi+vXrXNdAAIDc3Fy0a/fDr7jy8nIEBAQIzaBC14OI1KPS\n9qq2YseBiBzauHHj0LdvXyQlJWHo0KFoamqCVquVHYsk27x5M/bv34+mpibU19ejR48eOHr0qNAM\nKnU9iEgdMZ7P2HzPZ7W77ZDEduw4EJFD+81vfoMjR47g9OnTMJvN0Gq1nA5COHHiBAoKCrBhwwbM\nnDkTa9euFZ5Bha4HEamnRaPSyQy24TYkROTQPvroI+zbtw9xcXFIT09HeHi47EikgC5dusDNzQ1G\noxGhoaFoamoSnmHbtm149NFHER0djQEDBmDmzJnCMxCRelpgtvmhChYOROTQAgICEBAQAKPRiJiY\nGJ4YTQCAhx56CIcOHYKHhwcyMjJQXV0tPIOl6zF+/Hjk5uaia9euwjMQkXpsLxvU6VBwqhIROTQf\nHx/k5eVBo9EgKysLVVVVsiORAtatW4erV69i7NixyMnJQUZGBgDgP//5D7p37y4kgwpdDyJSj0od\nBFtxcTQROTSDwYDS0lL4+flhz549GDlyJPfLpzuaPn069u7dK2SsVatWYeDAgdDr9ejYsSMKCgpw\n5MgRIWMTkboivZ+0+R694T07JLEdCwciInIZ06ZNw759+4SM1dLSgqtXr6Jjx47IycnB0KFDERER\nIbTrQUTqceTCgWsciIjIZWg0GmFjtWnTBt27d4e3tzemTZuGiIgIAMDy5cuFZSAi9bTcxz+q4BoH\nIiIigdjoJ3JtKhUCtmLhQERELkOFN+0iux5EpB6VdkmyFacqERGR0/n/HYxKS0sBAI8++qiMOERE\nVi2aFpsfqmDhQERETmfx4sXW7kJWVhaeffZZAEBqaqrMWADU6HoQkTxc40BERKSQoUOHYunSpaip\nqUGHDh1w4MAB4Rmampqg1WqtX5eWliIkJIRdDyIXZ4ZJdoT7xo4DERE5jcbGRjQ2NmLy5Mno27cv\nmpubsX79enh4eAjPonLXg4jkYceBiIhIAWPHjoVGo2k1HehXv/oVAOD48eNCs6jQ9SAi9ahUCNiK\nB8AREZHTMZvNuHbtGgIDA6HX6xEZGSls7MbGRuuf9+3bh6KiImzfvh0A4ObmJiwHEakp1Ocxm+/5\npuZjOySxHQsHIiJyOjqdDqGhoZg1axbWr18PjUaDlStXChk7Pj7+lq6HZQtW0V0PIlJPsE+Czfdc\nqcmzQxLbsXAgIiKnk5iYiEOHDlm/fuqpp/Duu+8KzSCz60FE6gryibf5nm9rTth8T319PZYsWYLr\n16/Dy8sLGzduROfOnVv9nd27d+PDDz+ERqPBnDlzMHr06Lu+JhdHExGRU6qsrAQAVFdXw2QSv4vJ\n6tWrkZubCwD44IMPkJaWJjwDEamnBSabH/dj//796N27N9577z1MmDDBOmXSorq6Gnv37kVWVhZ2\n796NDRs23PM1WTgQEZHTSU1NxeTJkzFx4kRMmjQJc+fOFZ7h3LlzmDVrFgBg1apVOHfunPAMRKQe\nM1psftyP4uJiDB8+HAAQFxeHoqKiVtc9PDzQrVs31NXVoa6u7iedas9dlYiIyOmMHDkScXFxqKys\nhJ+f30/6hWgPlZWV6NSpk7SuBxGpp8X84H8WHDx4EJmZma2e8/Pzg4+PDwDAy8sLNTU1t9wXGBiI\nX//61zCZTHj++efvOQ4LByIichrr1q2DTqfDE088cUuxkJWVJTSLpevRsWNH1NTUQKfTCR2fiNR0\nvx2Eu0lKSkJSUlKr5+bNmwej0QgAMBqN6NChQ6vrBQUFKC8vt27aMGvWLERFRd11PRYLByIichqW\nKUkbN25sdWrzf//7X+FZVOl6EJFaRJ0cHRUVhfz8fERGRqKgoADR0dGtrnfs2BHt27eHm5sbNBoN\nfHx8UF1dfdfXZOFAREROw2w24/Lly1i2bBk2bdoEs9mMlpYW6HS6Vrss2ZNKXQ8icl0pKSlYtmwZ\nUlJSoNVqkZGRAQDYs2cPQkJCMGrUKJw8eRJTpkxBmzZtEBUVhWHDht31NbkdKxEROY28vDxkZmbi\n/Pnz6NevH8xmM9q0aYNBgwZhwYIFQjJ8//338Pf3x9dff31L16N///5CMhCRuvy8ou/9l/7PdWOx\nHZLYjoUDERE5nfz8fIwYMeKW5/Py8pCQYPvhS7aoqKiAwWC4peuxbNkyYV0PIlJXZ69BNt9zw/iV\nHZLYjlOViIjI6dyuaACAvXv32r1wOH36NDIzM3H58mXodDpr1yM2Ntau4xKRYzDbYVclUVg4EBGR\nyxDRZE9ISEBCQoLUrgcRqavFDrsqicID4IiIyGWI3Nnobl0PInJdZnOLzQ9VsONAREQkEJcWErk2\nUdux2gMLByIichkqvGnneQ5Erk2lDoKtWDgQEZHTqayshMFggI+PD3x9fa3Pz5w5U2IqIiL7nBwt\nCgsHIiJyGnq9HuvWrUNLSws8PT1hNBphNpuh0+kQFRWF+Ph42RGV6HoQkTzcVYmIiEgB6enpePPN\nNxEYGGh9rqysDC+99BIOHjwoNAu7HkR0O5yqREREpIDm5uZWRQMABAYGCl1X4AhdDyKSh1OViIiI\nFDBixAjMmDEDw4YNg4+PD4xGIwoLCxEXFycsg0pdDyJSDzsORERECpg3bx7OnTuH4uJiVFZWwtvb\nGy+//DIGDBggLIMKXQ8iUhc7DkRERIro378/+vfvL218FboeRKQuR14crTFzewciInIShYWFd7wW\nGxsrLIel62EwGODt7Y2oqCihXQ8iUpe2nZ/N9zQ1X7dDEtux40BERE7jwIEDOHv2LGJiYm65JrJw\nkN31ICJ1OfIaB3YciIjIaZhMJkydOhVpaWno2bOnlAyqdD2ISE3t2nay+Z5mU6UdktiOHQciInIa\nbdu2xaZNm1BbWystgypdDyJSkyMvjmbHgYiIXEZWVhaSk5PtOoYKXQ8iUlfbtj4232My1dghie3a\nyA5AREQkSm5urt3HsHQ9mpqa7D4WETkgc4vtD0WwcCAiIpchqskeHByMPn363PZaVlaWkAxEpCYz\nWmx+qIKFAxERuQwVDmET0fUgIpW13MdDDVwcTUREJBCXFhK5OAf+GcDCgYiIXIYKb9pV6HoQkTwt\n5kbZEe4bpyoREZHT2b59e6uvMzIyAABLliyREYeIyCmw40BERE7j4MGDOHToEEpKSlBQUADg5vao\nzc3NWLx4MSIjIyUnVKPrQUR0P3iOAxEROY3GxkaUl5djx44dmDNnDgCgTZs28PPzg5ubm9As27dv\nx9y5c61fZ2RkYPHixdDr9UoUMEREtmLhQERETqe2thbV1dVo164dsrOzMWHCBHTv3l3I2D/uekRE\nRAD4oeuRk5MjJAMRkT2wcCAiIqcze/ZsJCcn4+OPP0ZERAQ+++wz7Nq1S8jYKnU9iIgeJC6OJiIi\np1NfX49Ro0bh2rVreO6552AymYSN7ebmhqCgICxfvhxt27aFu7s7Dh8+jIqKCmEZiIjsgYUDERE5\nnaamJmRmZmLAgAG4ePEi6urqhGeYP38+zp49i02bNkGr1UKn0wnPQET0ILFwICIip7N06VKUl5fj\nhRdewKeffoqVK1cKzyCz60FEZA/cjpWIiJxOdHQ0goODYTAYMHLkSJSXlwvPoELXg4joQeLiaCIi\ncjorVqzAqVOnUFdXh7q6OoSEhODAgQNCMxQXF+P48eOYM2cOPvjgA0RGRnIbViJyaJyqRERETuf8\n+fM4evQoYmNjkZubC3d3d+EZoqOjMWPGDGvXg1OViMjRcaoSERE5HV9fX2g0GtTW1qJz585SMqjQ\n9SAiepDYcSAiIqfz8MMPY9euXQgICMCiRYtQX18vPIMKXQ8iogeJHQciInIaGRkZ0Gg0MJvNqKio\ngEajwddffy1lbYEKXQ8iogeJhQMRETmNnj173vJc7969JSRRo+tBRPQgsXAgIiKnMXHiRNkRlOp6\nEBE9SCwciIiIHiCVuh5ERA8Sz3EgIiIiIqJ74q5KRERERER0TywciIiIiIjonlg4EBERERHRPbFw\nICIiIiKie2LhQERERERE9/Q/QpkTAwOFubsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check feature correlation, to see what correlates with the close price\n", + "colormap = plt.cm.inferno\n", + "plt.figure(figsize=(15,15))\n", + "plt.title('Pearson correlation of features', y=1.05, size=15)\n", + "sns.heatmap(df.corr(), linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(15,5))\n", + "corr = df.corr()\n", + "sns.heatmap(corr[corr.index == 'close_bid'], linewidths=0.1, vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Start running datascience methods" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def check_shape(*argv):\n", + " for el in argv:\n", + " print(el.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "this creates training examples and actuals for the model\n", + "if nb_lookback_rows is above 1, X will have examples each of which is a 20 row dataframe\n", + "so the regression model needs to be able to use all those rows to train on\n", + "\"\"\"\n", + "\n", + "def create_training_set(df, nb_lookback_rows=1):\n", + " \n", + " dataX, dataY = [], [] # for training\n", + " \n", + " # it creates for each row a 20 row lookback dataset\n", + " # this expands the dataset by 20 faculty\n", + " for iRow in range(len(df)-nb_lookback_rows-1): \n", + " \n", + " df_lookback_rows = df[iRow:(iRow+nb_lookback_rows)] # from example 1 to 21\n", + " dataX.append(df_lookback_rows)\n", + " next_row = df[iRow + nb_lookback_rows] #get example 1+20, so the next point that is to be forecasted\n", + " dataY.append(next_row) \n", + " \n", + " return np.array(dataX), np.array(dataY) # convert to numpy arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Use Random Forest for feature importance:\n", + "Check which feature is most important, based on predicting the next closing price using just one example as training\n", + "Do this for each example, and check which features are the best on average\n", + "Looking back more than 1 example for each example requires a decision how to use the features. Do recent examples features get more weight?\n", + "\n", + "- scale all features to range 0-1 for faster convergence\n", + "- use random forest to find best decision tree to explain closing price" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# create random forest regressor - random decision trees, like weak learner, ada boost\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Scale and create datasets\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # predict this, should it be return?\n", + "df_np = df.values.astype('float32') # so regressor can use it\n", + "\n", + "# Scale the data\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "df_scaled = scaler.fit_transform(df_np) # scale features to between 0 and 1 for faster convergence\n", + "\n", + "# Set look_back to 100 which is 100 ticks\n", + "# look back is 1 period, to check which features predict best a 1 period return\n", + "look_back_rows = 1 # to work with more than one, use alternative reshape\n", + "X, y = create_training_set(df_scaled, nb_lookback_rows=look_back_rows) # look back only 1 row\n", + "y = y[:,idx_close_bid]\n", + "#TODO:X = np.reshape(X, (X.shape[0], X.shape[2]* look_back_rows)) # to get back rows and columns\n", + "X = np.reshape(X, (X.shape[0], X.shape[2])) # to get back rows and columns\n", + "# extend extra rows into columns, as all the prices during lookback periodd should be used as features." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n" + ] + } + ], + "source": [ + "check_shape(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "# fit model\n", + "forest = RandomForestRegressor(n_estimators = 100)\n", + "forest = forest.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature ranking:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
close_bidavg_priceohlc_pricehigh_bidlow_bidopen_bidlast_10_tick_avg_bo_spreadlast_10_tick_avg_bid_returnrangeavg_bo_spreadnb_tickspcaoc_diffperiod_returndayhourweekday15_minmonth
00.9355660.026430.0197240.014650.0025170.0005040.0000920.0000880.0000630.0000580.0000540.0000520.000040.0000390.0000380.0000380.000020.0000180.000008
\n", + "
" + ], + "text/plain": [ + " close_bid avg_price ohlc_price high_bid low_bid open_bid \\\n", + "0 0.935566 0.02643 0.019724 0.01465 0.002517 0.000504 \n", + "\n", + " last_10_tick_avg_bo_spread last_10_tick_avg_bid_return range \\\n", + "0 0.000092 0.000088 0.000063 \n", + "\n", + " avg_bo_spread nb_ticks pca oc_diff period_return day \\\n", + "0 0.000058 0.000054 0.000052 0.00004 0.000039 0.000038 \n", + "\n", + " hour weekday 15_min month \n", + "0 0.000038 0.00002 0.000018 0.000008 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# find feature with best explanatory power to predict close price\n", + "importances = forest.feature_importances_\n", + "std = np.std([forest.feature_importances_ for forest in forest.estimators_], axis=0)\n", + "indices = np.argsort(importances)[::-1] # get indices for importances\n", + "#print(indices)\n", + "\n", + "column_list = df.columns.tolist()\n", + "#print(column_list)\n", + "print(\"Feature ranking:\")\n", + "feature_dict = OrderedDict()\n", + "for f in range(X.shape[1]-1):\n", + " #print(\"%d. %s %d (%f)\" % (f, column_list[indices[f]], indices[f], importances[indices[f]]))\n", + " feature_dict[column_list[indices[f]]] = importances[indices[f]]\n", + "display(pd.DataFrame([feature_dict]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Try linear regression\n", + "- sklearn requires numpy arrays as input\n", + "- check how close we can get with linear regression\n", + "- resources: http://bigdata-madesimple.com/how-to-run-linear-regression-in-python-scikit-learn/\n", + "- problem: my features are note independent of each other, eg ohlc price, open bid, close bid etc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "hideOutput": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJLCAYAAACv2/w2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYlGX+x/HPcFJOaSoGC6FB2pE0WWrVTNYy8ZRHRHE1\n0rLM0kozO3j45TGzg6FZuVusrlaaaCBFlmlrZi6xyVJpmpY1E4N4SIeDDsj8/nBnVuQgKgMDvF//\n5Dz3/Tzzzfu69pr9dN/fx2Cz2WwCAAAAAAAALpFbXRcAAAAAAACAhoGgCQAAAAAAADWCoAkAAAAA\nAAA1gqAJAAAAAAAANYKgCQAAAAAAADWCoAkAAAAAAAA1gqAJaKCmTZumv/3tbxWOXXPNNTp69KhT\nvz83N1fDhw936ndcqtr4ezhbcnKyHnjggQrHnnnmGX355ZflrmdnZ6tHjx7OLg0AAAAAaoRHXRcA\noGG64oor9O6779Z1GfXG3Llz67oEAAAAALhkBE1APffee+9p5cqVcnNzU6tWrTR9+nRdddVVkqRv\nvvlGw4cP1+HDh9WuXTu9+OKL8vHxKXP/G2+8ofXr18vDw0Nt2rTRggUL5O/vX+n3jRo1SuHh4fr2\n22917NgxDRgwQBMnTpTRaNTIkSMVHh4uk8mkBQsWaMyYMfrmm29UUlKiF154QVu3bpW7u7tuvvlm\nzZw5U15eXlq2bJk2bdqk0tJSBQcHa+bMmbriiivKfOfw4cOVkJCgmJgYSdKiRYtks9mUkJCgJ598\nUseOHZMkde/eXY8++mi5mrOysjRnzhwVFRXJ09NTU6dOVefOncvMWbp0qdLS0uTu7q6rrrpK06dP\nV0BAgDZt2qRly5bJYDDI3d1dU6dOVVRUlCwWi+bOnau9e/equLhYnTt31tSpU+XhUfX/rObl5Wns\n2LE6dOiQgoODNXv2bAUEBGjUqFEaOXKkYmJitHr1av3973+Xn5+f2rdvX+XzAAAAAMCVcHQOqMd2\n7Nihv/71r1qxYoVSUlLUr18/TZgwQTabTdKZ42tvv/22Pv74Y+Xm5mrTpk1l7t+8ebOSk5P13nvv\naePGjQoJCdE//vGP837vb7/9pnfeeUfr16/Xhx9+qC1btkiSzGazHnroIX388ccKCAhwzF+9erW+\n++47ffDBB9q4caMKCgr04YcfasOGDdq7d6/Wrl2rDz74QN27d9ezzz5b7vtiY2O1fv16SdLp06eV\nkpKi2NhYrVmzRiEhIVq/fr1WrVqlgwcPymKxlLm3uLhYEyZM0IQJE7Rx40bNnj1b8+bNU2lpqWPO\nunXrtG3bNr3//vtKTU1Vu3btNG3aNEnSwoULNXPmTCUnJ2vSpEnauXOnJGnevHm64YYblJycrA0b\nNujYsWN6++23z/t399NPP2nGjBlKTU1V+/bty+1k2r17t5YsWaJ//OMfWrdunTw9Pc/7TAAAAABw\nFexoAuqxbdu2qU+fPmrRooUkafDgwZo7d66MRqMk6c4775S3t7ckqV27duX6Ee3YsUMxMTFq1qyZ\nJOmpp56q1vfGxcXJ09NTnp6eiomJ0RdffKF27drJw8NDHTt2LDf/yy+/1IABA9S0aVNJ0iuvvCJJ\nmjRpkrKzszVkyBBJUmlpqYqKisrd37t3by1cuFB5eXn6/vvv1aZNG7Vt21bdunXTuHHjlJOToy5d\numjy5MnldmPt3btXbm5uio6OliTdeOONSk1NLTPnn//8pwYPHuzY7TV69Gi9/vrrslqt6tu3rx5+\n+GF1795dXbt21f333y9J2rp1q7Kzs/X+++9Lkk6ePFmtv7suXbqoTZs2kqShQ4dq6NChZcZ37Nih\nrl27OoK6uLg4ffHFF9V6NgAAAADUNYImoB6z71w691pJSYkklTnGZTAYys13d3eXwWBwfD5x4oRO\nnDihkJCQKr/37OfabDa5uZ3ZHOnl5VXh0bFzrx0+fFilpaUqLS3Vfffdp/j4eEmS1WrV8ePHy93v\n4+OjXr16aePGjfrmm28UGxsrSbrpppu0efNm7dixQ1999ZViY2O1dOlSderUqdJ/R+lM+BQWFlbm\n3+FspaWljr/Dxx57TEOHDtUXX3yh5ORkvfnmm0pOTlZpaakWL16s8PBwx9/dud9TEXd39zLfe+7f\nzbnrdPZ8AAAAAHB1HJ0D6rHbbrtNH374oWOn0rp169S8eXPHjpnz6dKliz755BPl5+dLkhITE5WU\nlHTe+1JSUlRaWqrjx4/ro48+Ou9b0Tp37qyNGzfKarWqtLRUs2bNUlpamm677Ta9//77ju9fvHix\npk6dWuEzhg0bpuTkZH3zzTfq1auXpDO9ml577TXdeeedeuaZZ3T11Vfr559/LnNfWFiYDAaDtm/f\nLkn67rvvdM8995Q5OnfbbbcpOTlZhYWFkqSVK1cqKipKbm5u6tGjhwoLCzVixAjNnDlT+/fvV0lJ\niW677TYlJSXJZrPJarVq/Pjx1Tp2uHPnTv3222+SpHfeeUe33357mfEuXbpo+/btMpvNkuQ4MggA\nAAAA9QE7moB6rGvXrkpISHAEJy1atNAbb7zh2GF0Pt27d9ePP/6oESNGSJKuvvpqzZ49+7z3nTx5\nUkOHDlVBQYHi4+PVuXNnx3G9igwfPlwmk0mDBw+WzWbTLbfcolGjRsnNzU25ubkaNmyYDAaDgoKC\ntGDBggqfceONN8rDw0O9evVSkyZNJEn33HOPpk2bpn79+snLy0vXXHON+vXrV+Y+Ly8vJSYmat68\neVq4cKE8PT2VmJgoLy8vx5yhQ4cqJydHsbGxKi0tVZs2bbRo0SJ5eHjo6aef1pQpU+Th4SGDwaB5\n8+bJy8tLzzzzjObOnav+/furuLhYXbp00X333Xfev7v27dvr6aef1uHDhxUWFqbnnnuuzPg111yj\nJ554Qvfcc498fX110003nfeZAAAAAOAqDLaKzt4AQCXOfjsaAAAAAABnY0cTgDK++uorzZ8/v8Kx\nW2+9tZarqX/i4+NVUFBQ4diqVavk5+dXyxUBAAAAQO1hRxMAAAAAAABqhFObgWdlZWnUqFEVjhUV\nFWn48OHav3+/49obb7yhuLg4DR48WGvXrnVmaQAAAI1OZb/NPvvsMw0ZMkRxcXFas2ZNHVQGAAAa\nCqcdnVu+fLlSUlLk7e1dbiw7O1szZ85Ubm6u49rOnTv1zTff6J133lFRUZHeeustZ5UGAADQ6FT2\n26y4uFjz58/X+++/L29vb40YMUI9evRQq1at6qhSAABQnzktaAoNDVViYmKFryq3Wq1aunRpmbEv\nvvhC7du314QJE5Sfn1/pK87PlZdnqbGaAQCAa8g0Z2jatilKilmlli39dGWzK+u6pHqvst9m+/fv\nV2hoqJo1ayZJioyMVEZGhnr37l3l82w2mwwGg9PqBQAA9ZPTgqZevXpV+rrzyMjIcteOHTum3377\nTa+//rqMRqPGjx+v9PR0fsAAANCImCxnfjtM2zZFC7otkiQNem+Qvh73dV2W1SBU9tssPz9f/v7+\njs++vr7Kz88/7/MMBgP/wc/FBAT4syYuhjVxTayL62FNXFNAgP/5J1XAqT2aLkTz5s112223ycvL\nS2FhYWrSpImOHj1a12UBAAAnsAdKZ39OP5Cm+LRYSVJSzCpFBkYp2D9E6+PW10WJjYafn1+Zt2UW\nFBSUCZ4AAAAuhMsETZGRkdq2bZtsNptyc3NVVFSk5s2b13VZAACghpksRiWkj3SETZnmDA36oK/u\n/yRBhcWFkqRg/xDHfI7NOVd4eLgOHjyo33//XVarVV9//bVuvvnmui4LAADUU047Oneu1NRUFRYW\nKi4ursLxP//5z8rIyNDQoUNls9k0Y8YMubu711Z5AACglgT7hygpZpWkM6HT41snysPgqeU9kxQR\n0KFMyATnOfu32bRp0zR27FjZbDYNGTJEV1xxRV2XBwAA6imDzWaz1XURl4JznAAA1A/2HUzB/iFl\nmn3bVRYwXWx/ADgfv8NcCz1OXA9r4ppYF9fDmrimi/0NVms7mgAAQONishgd4ZHJYtSw1IHycPPU\nS9GvOpp9s3sJAACgYXGZHk0AAKDhOLcPk7kgxxEyRQZGOZp9AwAAoGEhaAIAADXm7ONxSTGrFOwf\nIpPFqGnbpjhCJvs4AAAAGh6CJgAAUCPO3sV09rE5e+jEDiYAAICGj6AJAABcNPsOJqns2+TOPjZn\nHwMAAEDDR9AEAAAuSvqBNEeglGnOkHQmUDr72BwAAAAaF4ImAABwwdIPpGncJ/dqcuRUmQtyNDil\nnyNsktjBBAAA0Fh51HUBAADA9Z3d5NtkMWr69qd1hU+QIgI6KNg/RMl3b6QHEwAAAAiaAABA1TLN\nGXp860RJ0uq+a2UuyFFuYY7e7Pm2Y+cSIRMAAAAkgiYAAHCWs98WZ/88bdsUvRT9qgJ9gxw9mNYP\nSCNcAgAAQDn0aAIAAJLOhEoVvS0uKWaVIgOjygRQhEwAAACoCEETAACNmMliLBMsTY6cWq6RN429\nAQAAUF0cnQMAoJHKNGdo4mfjVVhcpLE3jtPfvn1TR07mlTkWd+5ROgAAAKAq7GgCAKARSj+Qpvs3\nJeiX47/IVPCrnts5XYeKzJp/26IyIdO5R+kAAACAqrCjCQCARsIeGCVmvqIV37+lEpU4xlp7X6FF\n3V9RTFhfxzV7fyZ2NAEAAKC6CJoAAGgE7MfkzPlmWUpOyCCDJnWcon/sSdKzt85SdGiPCgMlQiYA\nAABcCIImAADqsap6KNl3MGXnZWn+v+boSNERWUpOSJICvFsrIWKMEiLGECYBAACgxhA0AQBQT9l7\nKCXFrJL0v91HJotR6/eu09p97+rYyaM6UnRYo667V6t/WKEZt87W5U0vr3QHEwAAAHApCJoAAKin\n7D2UJGlY6kCt6b9BknTn2tt15ORhDWsXr+R9a1SiEq3c/bYW3v6yRt4wui5LBgAAQANH0AQAQD0W\n7B+iTHOGDp74WeaCHO0wfakjJw+rmVdzZR/J0lsxKyVJAT6tHW+TAwAAAJzFqUFTVlaWFi1apJUr\nV5YbKyoq0r333qu5c+cqPDxckjRo0CD5+flJkkJCQjR//nxnlgcAgEs7X/8le8i0w/SlWvtcoT1H\nduv5r+doUscpSogY45jLETkAAADUFqcFTcuXL1dKSoq8vb3LjWVnZ2vmzJnKzc11XDt16pRsNluF\noRQAAI3N2f2Xzg2KTBaj+q/vpSFXx+m1rMUqthXLTW5a9PXzCvBurU2/fOQImip7BgAAAOAMbs56\ncGhoqBITEyscs1qtWrp0qcLCwhzX9uzZo6KiIo0ZM0ajR4/Wrl27nFUaAAAuz95/6eyAKP1AmlZ9\nt0KJma/ImP+rFu9apIc6TFKgT5D+4BcsH09vLb8rSav7rlWwf0iFzwAAAACcyWk7mnr16iWj0Vjh\nWGRkZLlrTZs21dixYxUbG6uff/5Z999/v9LT0+XhQRspAEDjZD8aJ0k7TF/quZ3Ty4xf7tVSCRFj\nqjwmR8gEAACA2uQyKc5VV12lNm3ayGAw6KqrrlLz5s2Vl5enoKCgui4NAIBaZ7IYlZT9lpbselmn\ndbrMWHOvyzXx5se1dt+7kgiTAAAA4DpcJmh6//33tXfvXs2aNUu5ubnKz89XQEBAXZcFAECtMlmM\nMhfkqH9yjEpUXGasa+Dt2n9inxbe/pJiwvpqUPshhEwAAABwKbUWNKWmpqqwsFBxcXEVjg8dOlRP\nPfWURowYIYPBoHnz5nFsDgDQaNgDptEfjtBx6+/lQqZh7eK1pOfryjRnaNq2KYoI6EDIBAAAAJdj\nsNlstrou4lLk5VnqugQAAC6ayXKmn2Gf5DtVaC3U8eLfy4z3aztA3x79j7w9fBxNvk0WY6MKmQIC\n/Ou6BFSC32GuJSDAnzVxMayJa2JdXA9r4pou9jcYW4YAAKgD9oCpX3Ivjb1xnHIKfpPbf18G2zXw\ndm03/1Mzbp2thyMnOebaw6XGFDIBAACgfiFoAgCglpksRsWnxSqiZQeZCn7V5oOfSJJ8Pf005oZx\nSogYI3NBjiIDoyQRLAEAAKD+cKvrAgAAaExMFqOy87J04tQJrd33jgwy6NBJs4a1i1eI/5WKCeut\n+LRYBfry1lUAAADUP+xoAgCgFkzbOkWHCnP1Td6/deRknt7s+bYkKcCntQJ9gxy9lwAAAID6jKAJ\nAAAnyTRnaM+R3drx25das2+14/rL3ZcoJqxvufn2I3L2pt8AAABAfUPQBABADTNZjNr6y2ea8vkk\nndZphfhdqWHt4iVJ90aMdfReqgwhEwAAAOorgiYAAGpQ+oE0Pf3FVB0qzFWpSiVJY24Yp0HthxAg\nAQAAoMEjaAIA4BKkH0jTkaIjig7toa2/fKZpX0yWrdSm529/Sde2vE57juxWdGgPJaSPVFLMKsIm\nAAAANGgETQAAXASTxaj1e9fpuZ3TJUktm7ZSfrFFC257Ude2vM5xPM7+T0ImAAAANAYETQAAVIPJ\nYlSwf4gyzRnKKzyk6duflrngNzX3ulxuBjdd3qSFXo5OrLDJt0TfJQAAADQOBE0AAJzDHiqd/Tk2\nZaA6tf6jNux/X6WlpQrwba0no57VgozZCvINVuIdy87b5BsAAABo6AiaAAA4i8lidPRTskvKfksH\njv+oH4/vlbe7j1r4NNORosO6+vKrFerflpAJAAAA+C+CJgAA9L9dTMH+IVrQbZG2/vKZlu56VSes\nx3WoKFduBnfJJhWdLtS49g8pJqy3IgOjFBHQgWNxAAAAwH8RNAEAGj2Txaj4tFiNixiva1tep/s3\nJciY/6su92opSWrVpLWaejaRu8FDA8OHaKtpsxIixkii9xLqh9LSUs2aNUs//PCDvLy8NGfOHLVp\n08YxnpKSorfffltubm4aMmSI4uPj67BaAABQnxE0AQAaLZPF6PhzboFZj33+sCSD/D39JUm/W4/K\nJpsmdZxSJlhKsIwhYEK98umnn8pqteq9997Trl27tGDBAi1btswxvnDhQm3cuFE+Pj7q27ev+vbt\nq2bNmtVhxQAAoL5yq+sCAACoC+kH0hSfFquea6I1/6s5OnrqyH9HbLIUn9DlTVrope6JCvQJUtpP\nKZL+t3uJkAn1TWZmprp16yZJ6tixo7799tsy49dcc40sFousVqtsNpsMBkNdlAkAABoAdjQBABqd\n9ANpuu/jexR1xZ+0++h3WrNvdZlxd7mrWZNmig7toWtbXqfHt06so0qBmpGfny8/Pz/HZ3d3d5WU\nlMjD48xPwXbt2mnIkCHy9vZWz549ddlll1XruQEB/k6pFxePNXE9rIlrYl1cD2vScBA0AQAaBZPF\nqOy8LB0pOqJ5O5+T1WbVdvM/HeNucpNN0kvdX9W1La9ToG+Qozn46r5r2cWEes3Pz08FBQWOz6Wl\npY6Qac+ePdq6das2b94sHx8fPfHEE/roo4/Uu3fv8z43L8/itJpx4QIC/FkTF8OauCbWxfWwJq7p\nYsM/giYAQINmD5ju33SvTpWerHCOp7x0dYt2ein6VUUGRtVyhYDzderUSVu2bFGfPn20a9cutW/f\n3jHm7++vpk2bqkmTJnJ3d1eLFi104sSJOqwWAADUZwRNAIAGxWQxKtg/RJnmDOUVHtKY9NEqUXGF\nc/8YcIvMRTlafleSYwdTRc9LSB+ppJhV7GpCvdWzZ09t375dw4cPl81m07x585SamqrCwkLFxcUp\nLi5O8fHx8vT0VGhoqAYNGlTXJQMAgHrKYLPZbM56eFZWlhYtWqSVK1eWGysqKtK9996ruXPnKjw8\n3HH9yJEjGjx4sN56660y1yvD9joAgF2mOUMPfnKfrm7WTpuNmyqd17JJKw0IH6wF0YscwVRVqjMH\nzkPPBtfF7zDXwtET18OauCbWxfWwJq7J5Y7OLV++XCkpKfL29i43lp2drZkzZyo3N7fM9eLiYs2Y\nMUNNmzZ1VlkAgAYq/UCaJm+dpLyTh3TQ8lOFcwxy099jVinAp7WmbZtS7QCJkAkAAACoHjdnPTg0\nNFSJiYkVjlmtVi1dulRhYWFlrj///PMaPny4Wrdu7ayyAAANTPqBNI1IGarR6SOUd/JQhXMMctOM\nW2fr36O+VUxYX0UGRnEUDgAAAHACpwVNvXr1crzN5FyRkZEKCgoqcy05OVktWrRQt27dnFUSAKCe\nyzRnOP68JHOxI2Cq6pjcpI5TdG2L6zSo/ZAywRIhEwAAAFDzXKYZ+Lp162QwGLRjxw7t3r1bTz75\npJYtW6aAgIC6Lg0A4ETVPb6Wac7QgA29NS1quvYc3a01+1ZXOtcgg2yyacz14/RMlxlKiBhDsAQA\nAADUAqftaLpQq1at0j/+8Q+tXLlS1113nZ5//nlCJgBo4OxvdDNZjFXOkaQ9R3bLWmrVczunVxoy\nGWRQoE+Q/h6zWm0vu0qPRD4qid1LAAAAQG2ptR1NZ79CFwAA6UwAVFWvJJPFqEEf9NWAsCFavGtR\nlc8yyKBQ/7Z6vedfFRkYpYiADgRMAAAAQC0z2Gw2W10XcSl4BSIANBz2Y3Qmi1HZeVk6UnREj33+\n8Hnvm3HrbHUO7qJA3yDCpQboYl+tC+fjd5hr4fXgroc1cU2si+thTVzTxf4Gc5keTQCAxs1kMSo2\nZaDirx2lZVmJlb5Bzu7l7kskSde2vE6RgVG1USIAAACA8yBoAgC4hPV712n/8X16buf0KufdEXKX\ntuf8k4AJAAAAcEEETQCAOmE/Jpd+IE1bf9mit75/s9K5bnJXwvVjFXttnCIDo5RpziBkAgAAAFwQ\nQRMAoFaZLEaZC3L0yObxir921Hl3MM24dbYGtR9SpvcSIRMAAADgmgiaAAC1JtOcofs3JehI0WEV\nnS6qNGQa1i5eQb5/0OvZieoc3IUG3wAAAEA9QdAEAKhxZ789Ltg/RJnmDAX6BikudbBOFB+v9L5w\n/6tlcHPTN3lfK/uIp5b3TGL3EgAAAFCPEDQBAGqMyWKUJCWkj9SCbos0bdsUTY6cqnvT/6IbWtxY\nYcjU1M1bTTy8NKvzXEWH9igzxk4mAAAAoH5xq+sCAAANQ6Y5QwnpI2UuyNGCboskSdHBd2jNnnd1\nWqf1n6NZ59xhUBv/q7R+4EZtjduh6NAeSkgfKelMwETIBAAAANQ/7GgCAFwyk8Xo2L30+NaJyi0w\n69ipo7LJVm5uE0MT3RbcXVNueVITPxuvQN8gR6iUFLOKgAkAAACox9jRBAC4IPbjcWcL9g/R5Mip\nigjooD/4BOvoqSPlQqY7Qu7Sy92XKOzyqzXllicV6BskDzfPcs8BAAAAUH+xowkAUG0mi1EJ6SOV\nFLNK5oIcRQZGadV3K3Ts5DHN/9dzMtjcZNWpcvcZZNCPx/cpOrSHrm15naZtm6KkmFVa3Xct4RIA\nAADQgBA0AQCqLdg/REkxq5Sdl6UxH4/WrVd01nbzPyucO6njFElSTFhvPfjJfXq9518dvZc4IgcA\nAAA0TARNAIDzMlmMCvYPUaY5Q29n/02p+zeoxFZcLmTy8/DX7K7z1dK7pSICOighfaQSIsZow8C0\nMsESIRMAAADQMBE0AQAc7IHSudeGpQ7UzQF/1Jp9qyu91yCDXrvzTQX4tFZkYJQkmnsDAAAAjQ3N\nwAEAkv7Xfyn9QJokKdOcofQDaZr/1Rzt+31vpSFT18DbNeb6cfJ089SRoiManNJPmeYMSexcAgAA\nABobdjQBACT9781xD3w6RiPaj9Jb379Z5fym7t56IGKCnukyQ5IUe22cIgOjdG3L6xw7mgAAAAA0\nLgRNAACHiIAO6tQq6rwhk7e7j5IHpJYJlOx/JmQCAAAAGi+CJgBoZCrrwzR0w93ab9kvyVbl/WOu\nH6dHIh/lWBwAAACAcgiaAKARsfdhsjfpNlmMSsp+S4t3Lar0Hm+Dt1r4tNL8bgslSTFhfWurXAAA\nAAD1DEETADQy9pDp4U8e1Np978hWxQ4mP09/FZdaNb/bQgImAAAAAOfl1LfOZWVladSoURWOFRUV\nafjw4dq/f78k6fTp03rqqac0fPhwjRgxQnv37nVmaQDQaJgsRsc/B33QV+v3rtP1fw3Tmn2rKw2Z\n3OSuFTHvaNvwndow4ENCJgAAAADV4rSgafny5Xr22Wd16tSpcmPZ2dkaOXKkfv31V8e1LVu2SJLe\nffddPfroo3r55ZedVRoANBrpB9KUkD5SJotRU7Y8qp9P/KTndk7XYevhcnOvbXadJnWcoibuTfRi\n98WKCeurYP8QmnsDAAAAqDanHZ0LDQ1VYmKipk6dWm7MarVq6dKlZcbuvPNORUdHS5J+++03XXbZ\nZc4qDQAahUxzhu7bdI8Ghg/VzSuvr3Luy92XKDq0h4L9QxQT1ptwCQAAAMBFcVrQ1KtXLxmNxgrH\nIiMjKy7Gw0NPPvmkPvnkE7366qvOKg0AGjSTxaitv3ymN3YtlbXUqjX7Vlc4b8ats7Xn6G499adn\nJcnRJJyQCQAAAMDFcrlm4M8//7ymTJmiYcOGKS0tTT4+PnVdEgC4DJPFqGD/kAqvS9L6vev0/L/m\n6pTtZJXPmXHrbD0cOanMNXuTcAAAAAC4WC4TNG3YsEG5ubl64IEH5O3tLYPBIDc3p/YqB4B6xWQx\nOnYd2QOhTHOGJOm+jxN09OQRFZ0urPR+D4OnJnSYpA3712lQ+yHlxgmZAAAAAFyqWguaUlNTVVhY\nqLi4uArH77rrLj311FMaOXKkSkpK9PTTT6tp06a1VR4AuLxg/xBHyGSyGGUuyFG/9XfJw+ChU6Xl\nX7xg5+3mo+SBqZKkyMAoJUSMIVQCAAAA4BQGm81W8but64m8PEtdlwAAtSr9QJqmfP6oQv3a6Ou8\nf1U4x0MeKlGJhrWL11N/epZgCfVaQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BuNsGgDU\nE5nmDI35cJRGp4/QoaLcSkOmgKatlTr4Y7Vr3p6QCQAAAECtcpkeTQCAitnfIvfY5w9XOc/Xw1et\nvFvr9Z5/VWRglNb030DIBAAAAKBWETQBgIuo6I1ySzIXa/7O2SqWtcJ7vAxe+st1CYoIuEnRoT0k\n/a+pNyGvEcaxAAAgAElEQVQTAAAAgNpG0AQALsD+RrmE68cqOrSH5n81R/859I32HN9d6T392g7Q\nhE4TFRkYVYuVAgAAAEDlCJoAwAUE+4doQNhgPf75I7Kp8nc0GGRQbLsR6hfeXxEBHZSQPtLxJjoA\nAAAAqGsETQBQR+xH5UwWo8wFOVqatbjKkKllk1Z6+c+Jignr67hGyAQAAADAlRA0AUAtM1mMkqT4\ntFiNixiv2V/N1IlTx1WiknJzL/Nspv/rMlfXtrxOgb5B5UIlQiYAAAAAroSgCQBqkcliVHxarJ66\n5VkdLsyr8E1ybnJXkHegxt70oAa1H0KYBOCSlZaWatasWfrhhx/k5eWlOXPmqE2bNo7x//znP1qw\nYIFsNpsCAgL0wgsvqEmTJnVYMQAAqK8ImgCghlT01rizr6UfSNOPx35UboFZj3z2oI5bj5d7xh0h\nd2nRn18hXAJQoz799FNZrVa999572rVrlxYsWKBly5ZJkmw2m6ZPn65XX31Vbdq00dq1a2UymRQW\nFlbHVQMAgPqIoAkAaoD9rXFn90w6+9r0bU9p488fVHjvTS06KLfokLqH/FlLer5em2UDaCQyMzPV\nrVs3SVLHjh317bffOsZ++uknNW/eXElJSdq3b5+6d+9e7ZApIMDfKfXi4rEmroc1cU2si+thTRoO\ngiYAqAHB/iGOkMm+i8lckHPekGlSxylKiBjjeAYAOEN+fr78/Pwcn93d3VVSUiIPDw8dO3ZM33zz\njWbMmKHQ0FA9+OCDuvHGG9W5c+fzPjcvz+LMsnGBAgL8WRMXw5q4JtbF9bAmruliwz+3Gq4DABot\ne8gUnxarJZmL1X99L92fnlBhyDSp4xS93H2JNv3ykeLTYuugWgCNiZ+fnwoKChyfS0tL5eFx5r83\nNm/eXG3atFF4eLg8PT3VrVu3MjueAAAALgQ7mgCghqQfSNPWX7bowO/79dzO6ZKkr/P+5Ri/ttl1\nuvry9prQaaIiA6MkSdGhPSSxmwmAc3Xq1ElbtmxRnz59tGvXLrVv394xduWVV6qgoEAHDx5UmzZt\n9PXXX2vo0KF1WC0AAKjPCJoA4BKZLEYlZr6it75/s9xYE0MTPdjhETVr0kwPR04qN15V83AAqCk9\ne/bU9u3bNXz4cNlsNs2bN0+pqakqLCxUXFyc5s6dq8mTJ8tms+nmm29WdHR0XZcMAADqKYPNZrNV\nNtijRw8ZDIZKb968ebNTiroQnOMEUJvODoIyzRlKP/CRlu5arBIVl5vr73GZ1ty93rF7qTrPPreh\nOACag7oyfoe5FnqcuB7WxDWxLq6HNXFNF/sbrModTStXrpTNZtPSpUt15ZVXavDgwXJ3d1dqaqqM\nRuNFfSEA1Df2cMnef+mu0N7a8ssn+s/RrArne8hTBoPU0qelAn2Dqv09ZzcUBwAAAID6qMqgKTg4\nWJL0ww8/aP78+Y7rY8aM0eDBg51bGQC4APsuo4Trx+rYyWP68eg+7T76XaXz+7UdoNnd5stckKNA\n36ALDo0ImQAAAADUZ9Xu0fTVV1/pT3/6kyTp888/l7u7u9OKAgBXcqVvqB77/OEq53i7+Whet4Ua\necNoSQRGAAAAABqnagVNc+bM0ZNPPqm8vDzZbDYFBwdr4cKFzq4NAGrFuQ24M80ZCvQNUmLmK/rH\n90myylrpvcPaxeveiLEXtXsJAAAAABqaagVN119/vVJTU3Xs2DEZDAY1b97c2XUBQK04twF3pjlD\nAzf00anSU1Xe1zXwdj3bZWa1G30DAAAAQGNQZdA0ffp0zZ49W6NGjarw7XMrVqyo8uFZWVlatGiR\nVq5cWW6sqKhI9957r+bOnavw8HAVFxfr6aeflslkktVq1fjx43XHHXdc4L8OAFyYYP8QLei2SJK0\n6rsVWvLvVyoNmTzkoQkdH1WzJs30wYHkC2r0DQAAAACNQZVBU1xcnCTpkUceueAHL1++XCkpKfL2\n9i43lp2drZkzZyo3N9dxLSUlRc2bN9cLL7yg33//XQMHDiRoAlDjMs0ZigyMksliVHbembfGPf3F\nVB0qOCSrrfJdTCF+V6qpu7diwnpr2rYpWtBtEUflAAAAAOAcVQZNN954oyTplltu0Z49e5SRkSEP\nDw/deuutCgsLq/LBoaGhSkxM1NSpU8uNWa1WLV26tMxYTEyMevXqJUmy2Ww0GwdQ4zLNGRqc0k9v\n3PmWnv5iqoz5v1brvhm3ztag9kMkndkBZT9mBwAAAAAoq1o9mlasWKFVq1bpz3/+s2w2m5KSkvTg\ngw9q0KBBld7Tq1cvGY3GCsciIyPLXfP19ZUk5efna+LEiXr00UerUxoAnJe92Xegb5DmdX1BPx77\nUTn5v1U6/4omV8jT00vL70rSniO7HW+SsyNkAgAAAICKVStoWrt2rdatWyc/Pz9J0kMPPaS//OUv\nVQZNFyMnJ0cTJkxQfHy8+vfvX6PPBtBwnfvWuLOvb/3lM72ZvUwvRb+q+z5OkKng/LuYkvqudrxF\njmbfAAAAAFB9btWZ5O3tLU9PzzKfvby8arSQw4cPa8yYMXriiSc0dOjQGn02gIbL/tY4k6XsDspM\nc4YGfdBXj33+sA4X5mnRv56vNGTydvfRpI5T1Payq7Qi5h1FBkaxawkAAAAALkKVO5qWLFkiSWre\nvLlGjBihPn36yMPDQ+np6Wrbtu0FfVFqaqoKCwsdDcbP9frrr+vEiRN67bXX9Nprr0k601C8adOm\nF/Q9ABqXinommSxGPb51osIva6efT/ykvJOHtNm4qcL7h7WLV/aRLCVEjFFMWG92MAEAAADAJTDY\nbDZbZYP2oKkyDz/8cI0XdKHy8ix1XQIAF5JpztAO05d6buf0Csc95KESndaMW5/TOz+s1Ks9linQ\nN0iSlJA+kkbfgAsKCPCv6xJQCX6HuZaAAH/WxMWwJq6JdXE9rIlrutjfYFXuaKpOkPTAAw/ojTfe\nuKgvB4CLdXZfJpPFKHNBjt7O/pvW7Ftd6T1uBje91WulAnxaKzIwSp2Du2jatimOcImQCQAAAAAu\nTbWagVclNze3JuoAgGozWYyKT4vV6r5rlZ2XpUc2j9fx4t+rvGfM9eP0T9NWRQR0cIRJkYFRZcIl\nQiYAAAAAuDSXHDQZDIaaqANAI1LZW+Kqy1yQo+LTxZq+7Slt/PmDSud5yFOpg9MlnQmVKvpewiUA\nAAAAqDmXHDQBwIWwvyXuQo+p2UOi9ANpjh1MPx7fW+n8l7svUXRojzLfQagEAAAAAM5F0ASgVl1M\nLyT7UTlPeeg/R7MqnXdTiw6acss0Rw8mAAAAAEDtuuSgqYqX1gFAhaobMtnfIHd508u1++h3lc67\nqUUHPR/90gWHS5d6hA8AAAAAUNYFBU3Hjx9Xs2bNylwbOHBgjRYEoHEzWYySpPV71+m5ndOrnBvu\nf7Vmdp1dpsH3hXzPxRzhAwAAAABUzq06k3bv3q2YmBgNGDBAubm56tmzp7777szugoSEBGfWB6AR\nyTRnKD4tVl1W/7HSkMnL4KU7Qu7Sy92XaMeofysioIMS0kc6AqrqupgjfAAAAACAqlUraJozZ46W\nLl2q5s2b64orrtCsWbM0c+ZMZ9cGoIGzh0Mmi1Fzv3xOQz8YoL1H96jodGGF84e1i9fOv+zSO3e/\nr5E3jJZ0aYERIRMAAAAA1KxqBU1FRUUKDw93fO7atausVqvTigLQsJksRmWaM5SQPlLpB9J088rr\ntXjXIhWcztdpnS4z11Ne8pCHAn2ClH2k4kbgBEYAAAAA4Bqq1aOpefPm2rNnjwwGgyQpJSWlXK8m\nAKgOk8Wo2JSBKijJV2nJaY1OH1Hp3Je7L1F0aA+ZC3IU6BskiVAJAAAAAFxZtYKmWbNm6cknn9S+\nffsUGRmptm3b6oUXXnB2bQAaGPtRuV9OHJTVdqrCOeH+V+vhTo+qpXdLxYT1lUS4BAAAAAD1RbWC\nptDQUL3zzjsqLCxUaWmpJMnPz8+phQGo/0wWo4L9Q5R+IE2S9MTnjyv/1IlKQiaDJnWcrISIMYpP\ni5Wki3qbHAAAAACg7lQraNqyZYu+/vprPfTQQ4qNjdXRo0c1ceJEjRw50tn1AainMs0ZmrZtiiID\novTW929WMdOgZl6XKbHH644dTC9Fv6pA3yBCJgAAAACoZ6rVDHzJkiUaPHiwPvzwQ91000367LPP\ntG7dOmfXBqCesR+NyzRn6PGtE9WqSUClIZNBBg1rF6+PBn+qAO8rNP9fc2SyGGWyGDVt25TaLBsA\nAAAAUEOqtaNJksLDw/XSSy/p7rvvlq+vr4qLi51ZF4B6wH40LtOcoUDfIMWnxWpcxHg9nzFXuYVm\n7T76Xbl7DDKotXegXuj+kmMH09q7N0j6Xy+mpJhV7GYCAAAAgHqoWkFTq1atNHv2bGVnZ+uFF17Q\nggUL9Ic//MHZtQFwYSaLUQnpI5Vw/Vg99cUUTf3jMzrw+4967POHy829I+Qu7Tm2W2NvHKfOwV3K\nHYs7N1QiZAIAAACA+qlaQdOLL76oTz/9VPfcc498fHx05ZVX6uGHy/+fSQD1j31X0sXMmRw5VZO3\nTpKnwUvP7Zxe4b1uclO/8Lu1KPQVAiQAAAAAaOCq1aPJ19dXBQUFWrRokR566CGVlJTIx8fH2bUB\ncDL7riR7b6XqzMk0Zyj9QJqi3+2i0ekjlHfykCwlJ8rdZ5BBwb5X6tlb/09Pb39C5oIcp/17AAAA\nAABcQ7V2NC1cuFAHDx7UkCFDZLPZlJycLKPRqGeeecbZ9QFwomD/kGr1Q0qKWSVJSj+QpjEfj1KJ\nraTCeV6GJmrWpJnGd3hEq/esVOIdyxQZGKXOwV0UGRhV4/UDAAAAAFxLtYKm7du3a8OGDXJzO7MB\nKjo6Wv379z/vfVlZWVq0aJFWrlxZbqyoqEj33nuv5s6dq/Dw8GrdA6DmVRQymSxGmQtyFOgb5OjD\ntOjr5/VbgVE22Sp8zqSOU5QQMcbxzEHthzieTcgEAAAAAI1DtYKm06dPq6SkRF5eXo7P7u7uVd6z\nfPlypaSkyNvbu9xYdna2Zs6cqdzc3GrfA6B2mCxGDfqgr3Lyf9Pyu5KUcP1YTfl8kk7rdIXzh7WL\n178Pfa2EiDFVNvgGAAAAADR81erR1L9/f40ePVorV67UypUrdc8996hv375V3hMaGqrExMQKx6xW\nq5YuXaqwsLBq3wPAuTLNGZIkc0GOPAye8vP016NbHtbjn0+sNGQK9r1ST/3pWa29ewPBEgAAAACg\nejuaHnzwQV133XX66quvZLPZ9OCDDyo6OrrKe3r16iWjseIGw5GRkRd8DwDnyTRnaHBKP83r+oJm\nfzVTl3tdriOnDpeb5yEPDW43TNt/26Ypf3xS0aE9CJgAAAAAAA5VBk0ZGRmOP/v4+KhHjx5lxqKi\n6LsCNASRgVHqf9UgTf58kkp1WkdPHVErr1Y6bP1f2OTt7qPkAamKDIySyWIkYAIAAAAAlFNl0PTq\nq686/nzkyBG1bNlSRUVFOnTokNq2basVK1Y4vUAAzmEPizLNGVr0r+e12bipzPjvJcclSTNunS1J\nZZp7EzIBAAAAACpSZdBkf/PbihUrlJycrJUrV8poNOr+++9Xnz59LuiLUlNTVVhYqLi4uIuvFkCN\nyDRn6JHN49Wp9R+1Zt/qcuNuctOEmyZp2X9eVefgLrw1DgAAAABQLQabzVbxu8rP0q9fP61du9bx\nNriioiINGzZMqampTi/wfPLyLHVdAlBvmCxGmQtyNPGz8dr/+48qVWm5Of3aDtCEThMVGRilTHMG\nIROAOhcQ4F/XJaAS/A5zLQEB/qyJi2FNXBPr4npYE9d0sb/BqtUMvLi4WJ6eno7PZ/8ZgGuzH5Ez\nWYwa9EFfeXv46KEOE/Vi5vPKyf9N0SF3qF/43Y75I28Y7fgzIRMANAylpaWaNWuWfvjhB3l5eWnO\nnDlq06ZNuXnTp09Xs2bNNGXKlDqoEgAANATVCpruvPNO3XPPPerdu7ckadOmTbrjjjucWhiAS2ey\nGDUsdaDW9N+g7Lws/WYxadot0/Vm9jItvytJkhToG6SE9JFKillF7yUAaKA+/fRTWa1Wvffee9q1\na5cWLFigZcuWlZnz7rvvau/evbzsBQAAXJJqBU1PPPGE0tPTlZGRIQ8PD40ePVp33nmns2sDcAlM\nFqOy87L0i+WgsvOy9NyOmbIZbFqx+y15GDwV6BvkCJYImQCgYcvMzFS3bt0kSR07dtS3335bZvzf\n//63srKyFBcXpwMHDlT7uRxrdD2siethTVwT6+J6WJOGo1pBkyTFxMQoJibGmbUA9Zr9iFpdf/+S\nzMU6fuq4NuxfJy93Ty3vmaSYsL6KCOggc0GOJJUJmSTeIgcADV1+fr78/Pwcn93d3VVSUiIPDw8d\nOnRIS5cu1ZIlS/TRRx9d0HPpp+Fa6HHielgT18S6uB7WxDU5tUcTgKqZLMY6O35mb/D9+NaJCr/s\nam38+QNJkrvBXYE+f1BEQIcyIZi9TgBA4+Hn56eCggLH59LSUnl4nPkZmJ6ermPHjmncuHHKy8vT\nyZMnFRYWpsGDB9dVuQAAoB4jaAJqQLB/iFNDpop2S5ksRklSbMpAldiKVWAt0O6j30mS3OSmVk1b\ny8fTW+aCHE3bNsVRH8fkAKDx6dSpk7Zs2aI+ffpo165dat++vWNs9OjRGj36zIsgkpOTdeDAAUIm\nAABw0QiagBrizJDp3N1SmeYMPb51osZFjFdRSZEkyd3NXZ5unnoqaoY6B3dRoG+Qo66z7yVkAoDG\np2fPntq+fbuGDx8um82mefPmKTU1VYWFhYqLi6vr8gAAQANisNlstrou4lJwjhMNmX0nk333UrB/\niCNk+vn4TzptK5Gt1KZWvgHy9fDTjM7/p5iwvnVcNQDULJqDui5+h7kWepy4HtbENbEuroc1cU0X\n+xvMrYbrAFBD7DuZ0g+kSZLi02KVac7QI5vH6w8+wSo6Xai7QnvrbzEr1LzJ5Uq8YxkhEwAAAACg\nTnF0DnAhZ/diCvYPUcL1YzV202gNCo/V0aKj2nNkt37NPyhJGtYuXkt6vi5JigjowJE4AAAAAECd\nI2gCXIR9B9PkyKmSpACf1nruqxkqLi3Wmn2rJUkvZj6v5T2TFODTWpGBUY57CZkAAAAAAK6AoAmo\nY2fvYooMiNK96X/RaZ2Wn6e/8ov/d055zPXj9Ejko5JUrjk4AAAAAACugB5NQB3KNGcoNmWgVn23\nQre9E6W3vn9Tp3Vakhwh0x0hd8nLzUux18Yp2D+k3FvkAAAAAABwFexoAuqAyWLU1l8+07Pbp6mg\nJF+Pff6wJMkgg2yyydfDT6dKTmpCx0f1TJcZyjRncFQOAAAAAODyCJqAWmQPmJ7ZPlWFJYXlxm2y\nqV/bAdp/4kc9dcuzjrfInR0yAQAAAADgqgiagFqSfiBN932cIKvtVKVzWjZtpdnd5kti1xIAAAAA\noP4haAKcxGQxylyQo7zCQ3pj1zJtN/+z0rkzbp2tzsFdFOgbVCZgOrtROAAAAAAAro6gCXACk8Wo\nO9Z009FTR6qcZw+YKjoaZ7IYebscAAAAAKBeIWgCLsK5O41MFqOkM8fdTBajpmx5tNKQycvgpRJb\niV7s/qpG3jC60u/g7XIAAAAAgPrGzZkPz8rK0qhRoyocKyoq0vDhw7V//35JUmlpqWbMmKG4uDiN\nGjVKBw8edGZpwEWz7zSyh0smi1GxKQM16IO+mvvlc4pa2UGbjZvK3edl8FKgT5D+2uvvCmt2taJD\ne5z3uwiZAAAAAAD1idOCpuXLl+vZZ5/VqVPlGx9nZ2dr5MiR+vXXXx3XPv30U1mtVr333nuaPHmy\nFixY4KzSgEsS7B+iBd0WSfrfW+ROni7Szyd+0uJdi1Si4nL32AOmy5u2UERAB629ewMhEgAAAACg\nwXHa0bnQ0FAlJiZq6tSp5casVquWLl1aZiwzM1PdunWTJHXs2FHffvuts0oDLonJYtTjWyeqqKRQ\nJ06d0NFTR+Qhz3Lzugberme7zNSeI7sVHdpDwf4higjoQMAEAAAAAGiwnBY09erVS0ajscKxyMjI\nctfy8/Pl5+fn+Ozu7q6SkhJ5eNBGCq4ntt1wLf73izpe/LskqUTF8jJ4qdRWKn+vZprR+f8c4dLZ\njb4JmQAAAAAADZnLpDh+fn4qKChwfC4tLSVkgksxWYwyF+RoaMoAFZTklxsP8gvW7K7zFBHQQZJ4\nYxwAAAAAoNFxmSSnU6dO2rJli/r06aNdu3apffv2dV0SIOlMwJSdl6XHt0zSsVNHdFqnJUnh/lfr\noOVnPX3rTHUO7qJA36AyoRIhEwAAAACgsam1oCk1NVWFhYWKi4urcLxnz57avn27hg8fLpvNpnnz\n5tVWaYCDyWJUsH+IMs0ZkqQdpi/1t2/fVE6BSaUqdczz8fDR+wNTZC7IKRcw2REyAQAAAAAaG4PN\nZrPVdRGXIi/PUtclwEXZQ6MLmR+fFqvYdsM1Z+cslf5355Kb3Bwh07XNrlNR6Um93vOvigyMksli\n5IgcADhZQIB/XZeASvA7zLUEBPizJi6GNXFNrIvrYU1c08X+BnOr4ToAl2APgEyWihvS29l3LqUf\nSJO5IEe/HD+oOTtnOkImSWri3lQvd1+il7svkcHdzREySWd2LREyAQAAAABwhsv0aAJqUmUB0Nm7\nnDLNGRqwobcGhg/Vmn2r5SFPlahYkuRp8FSxrVju8lCIf4iiQ3tIkt7MXqZA36By3wUAAAAAANjR\nhAasopApIX2k0g+kyWQxKq/wkIpLS7Rm32pJcoRMkvRQh0m63KulNg7+WGv6b1Cwf4iC/UO0uu9a\ngiUAAAAAACrBjiY0WPZjc8H+IY4/J1w/Vvd9fI/8vS5TYUmhbGc1+Jakfm0H6Ju8fyshYowSIsaU\nC5UImQAAAAAAqBxBExoce6g0LHWgPNw8NS5ivF7LelU2m5RXdEhWm1VHTh0+6w6D3A1uerjDY3qm\ny4wLbiIOAAAAAADO4OgcGhT7m+PMBTnycPNU58CumrrtMR0r+l3NvZrruPV3x1xvd295GjwV7Bui\nRbcv1lbTZkImAAAAAAAuATua0GB1Duyqt75/U5J0+NQhHc47JEnyMjTR+A6P6PXsRC28/WVFh/ZQ\n8H8bfhMyAQAAAABw8Qia0CDYj8uZC3I0LmK8Bn/QX0WnCx3jXgYveXv66IT1uAJ8WmvTLx9pec8k\nxYT1dcwhZAIAAAAA4NIQNKFeswdMsSkDlVd0SCesx2WTrcwcD3mq2FasaTdP1js/rNSrPZYp0DeI\nYAkAAAAAgBpG0IR6K9OcoYmfjVeftnfrlxM/y2qzlpvj7e6j1j5X6NFOkzXyhtEa1H4IARMAAAAA\nAE5CM3DUK/YdTJnmDMVvHKZ9v+/V4l2LyoRMzTyaySCD+rUdoGC/EHm5eyo6tIckjscBAAAAAOBM\n7GhCvWGyGDVwQ19FtLxJm35Ol1WnHGPucpcM0mnbabX2u0KzOsxV0vd/U+IdHJMDAAAAAKC2EDTB\npWWaMyRJO0xfas/R3Tpo+UkHLT+VmXNHyF36IudzLbjtRV3b8jpHsMRb5AAAAAAAqF0ETah1Joux\n0gAo05yhyMAoZZozlFd4SGM/Hq1iW3G5eR7y0Gmd1sSOk/VMlxmO+85GyAQAAAAAQO0iaEKtMlmM\nSkgfqaSYVeWCoPQDaXrg0zHqf9Ugrf9xrdwNHpWETJ5KHZyuvMJDejFzoWLMvcuFTAAAAAAAoPYR\nNKFWBfuHVBgymSxGzf/XHHVqFaU1+1ZLUrmQyU1u+nPInfol/2cF+gYpMjBKAT6tNW3blAqfCQAA\nAAAAahdBE5yiquNxZ1/PNGc4+i/tP7ZPu23fVXiPv+dlusyrmabc8qQe3zrRcT0yMIqQCQAAAAAA\nF+FW1wWg4bEfjzNZjFXOW5K5WL2T79BzO6drzb7Vstqs5eZ4yFNt/K/S0jve0GVNLlOgb5BW911b\nJlgiZAIAAAAAwDWwowk1rqLjcfYdTiaLUev3rtOeo7sdR+Qq0sStiZ6MelaD2g9xPDMioAOhEgAA\nAAAALoygCU5hD5WC/UOUac7Q41sn6qlbntXY9NEqVvkG33ZuclNSzKoKQyVCJgAAAAAAXJtTj85l\nZWVp1KhR5a5/9tlnGjJkiOLi4rRmzRpJktVq1eTJkzVs2DCNGTNGP//8szNLg5OZLEbFpgz8//bu\nP07Lus4X/2uYARyYETLROum4QuKxrEWws3mMMpK0pU1xskEUMt312z52j/2gEi0nd03EH53VyB9l\nmkdOCkhmgCtuiKbLVgskJKcfFhodSI0SkplRhmHu7x8eJkkBgYt7bmaez8ejx6Prvu4f78u3M9d7\nXn6u687CJ+/L3y/62zy5YXU+unDiDkOmflX9c95bLsjySaty6tBxQiUAAADYD+2zFU233HJL5s2b\nl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgsXLgwAwYMyJw5c/Lkk0/m8ssvz6233rqvyqNA\nL78sbltA9Pj6lfn1H5/MBd/7WF7c+uIOX1tdVZ3P/7fLMn54o3AJAAAA9nP7bEVTQ0NDZsyY8YrH\nV69enYaGhgwaNCj9+vXLqFGjsnTp0vzqV7/Ku9/97iTJ0KFDs3r16n1VGgXaduPvhU/el4n3nZnl\nzyzNt/7PHfnbB85NRzp2GDIN7v+6NP/V5Vkw/t/yj6M+IWQCgH2os7Mzzc3NaWpqyqRJk7JmzZrt\n9i9YsCBnnnlmJkyYkObm5nR2dnZTpQDA/m6frWg65ZRTsnbtK791rKWlJfX19V3bAwcOTEtLS445\n5pg89NBDOfnkk7Ny5co8++yz2bp1a6qrq/dVieyhl69cSpIpoz6XK//zS3nuhedy+nf+OptLm3f4\n2iMGHpF7z7g/iXsuAUC5LFq0KO3t7Zk9e3ZWrFiR6dOn56abbkqSvPjii7nuuusyf/781NbW5tOf\n/p3ukEwAACAASURBVHQeeuihvO997+vmqgGA/VHZbwZeV1eX1tbWru3W1tbU19fn5JNPzurVqzNx\n4sSMHDkyb33rW4VMFWjbCqbbT/1WkuRvvnNKOjo7UtramWc3P7vD173vsPdn1R8ez71n3C9gAoAy\nW758eUaPHp0kGTFiRFatWtW1r1+/fpk1a1bX7Q46OjrSv3//bqkTANj/lT1oGjZsWNasWZONGzdm\nwIABWbZsWc4///w8/vjjOeGEE3LJJZfk8ccfz29/+9tyl8Zr8Kb6wzJl1OfyTOvTufvns7O25f/u\n8jXnveWC3PXEzHzt5NtecS8nAGDfa2lpSV1dXdd2dXV1Ojo6UlNTkz59+uTggw9OksycOTNtbW05\n8cQTX9P7DhlSv+snUVZ6Unn0pDLpS+XRk56jbEHT/Pnz09bWlqampkydOjXnn39+SqVSGhsbc+ih\nh6Zv3765/vrrc/PNN6e+vj5XXHFFuUpjF9Zt+tMlkI+vX5nzHpiUjlLHTl9z3lsuyH1Pzc/U//b5\nnNQwJmf+16aMesM7tlsRJWwCgPL48xXlnZ2dqamp2W77mmuuyVNPPZUZM2akqqrqNb3v+vWbCq+V\nPTdkSL2eVBg9qUz6Unn0pDLtafhXVSqVSgXXUlb+ZSzWn3+D3LpNazPxvjOz4cXnUtOnJs+0PJ2O\n7Dhk6tunb259/x05dei4roDqz4MlK5oA2B3+C+fee+CBB/LQQw9l+vTpWbFiRb761a/mG9/4Rtf+\nL3zhC+nXr1++8IUvpE+f1/5dMeawyuIPtcqjJ5VJXyqPnlQmQRN7bdtqo+mjr82nH74wd467Ow//\nZnEeX/+T3PbTr+/wdbVVtXmh9ELeNPDwXDn66q6QSbAEQBEETXuvs7Mzl112WZ544omUSqVMmzYt\nP/3pT9PW1pZjjz02jY2NOf7447tWMk2ePDljx47d5fuawyqLP9Qqj55UJn2pPHpSmQRNFGLbKqSP\nzD897Vs2Z03rmp0+v77mwBx24OG54G1/n5MaxnStgnJ5HABFETRVLnNYZfGHWuXRk8qkL5VHTyrT\nns5gZb8ZOJVj+TNLM+oN70iy/aqjzzz0yfxy4xM7fW1VqvI/3zMjJzWMSZLtAqU31R8mZAIAAIBe\nSNDUC63btDbPtD6dM+Z9MF87+ba8bchf5sx5p2fkIcdn7i9npTOdr/q6YfVvzj+O/GReX/v6DBlw\nSFdI9WqETAAAAND7CJp6mZdf1vbZUZfkn3/wxQzuNzi/+uMT+dUfd7yKaXD/12Xu6fMESAAAAMAO\nCZp6oemjr83Dv1mcL/3oiztcvbRNVapy4Ygp+bff3F+m6gAAAID9laCpF1m3aW3OnHd6fvPHNWnP\n5h0+rzrVObDf4Gza8sdc8+7rcvZbJ+fct51nNRMAAACwU4KmHm7bt8g90/p0Fj55/04vj+tX1T9v\nrPsvuXnsN5IkFy7++1e92TcAAADAqxE09WDLn1mav33g3Pxx88a0dOz4qyKrU5PP/9UXM354Y5I/\nhUpz/uZeARMAAADwmgmaepjlzyzNGwa+Md954tu5YcX1+cPm3+/0+c1/dfkrAqZt9mXItG7TWiEW\nAAAA9DCCph5k4ZP35fyFk9Ovpn9aO1p2+tx/ec9X8/ra1+fUoeO2+ya6coQ/5f48AAAAoDwETT3A\nwifvyx9e+EO+vPyqbMmWbOnY8qrPq051BvQdmBve97WcOnRc1+Nvqj+srKFPuT8PAAAAKA9B035q\n26VnX11+ff75R5fu8HkDagbm5pO/kSEDDkmSvGHgG1814Cl36CNkAgAAgJ5H0LQfWrdpbc6cd3pG\nHnJ85vzyzh0+b3C/12VQ/8G58j+/lDvH3S3cAQAAAPYpQdN+YuGT92XIgEPyhoFvzOPrV+ZXf3wi\nv/rjE6/63Oa/ujxvft2bu56fWEEEAAAA7HuCpgq27fK4b/2fO/Kp7/9jkqS2ujYvbn3xFc+tSlUa\n6v8inxw5Jbf/9NZMH31tpj76GfdCAgAAAMpG0FShtn0z2/TR1+bz/35R1+MvbH3hFc/94F+clstH\nX5nkpZVLJzWMccNtAAAAoOwETRVm2yqmJJky6nP5x+/9f2nb2vqK59VWD8hnj784rzvgdTn7rZO3\n27ft9UImAAAAoJwETRVk+TNL8/eL/janDW3Mbau+npaOTSmltN1zqqtq8tFjzssPnlmSE9703zP1\n0c90rWB6LV4eZAEAAAAUSdDUzbYFP+s2rc3HFp6TZ9qezvUrru3af2j/Q/Ps5mfz9oP+Mn/c8nwu\nP3FaTh06rut1u3N53LbL8VxSBwAAAOwLffblm69cuTKTJk16xeOLFy9OY2NjmpqaMmfOnCTJli1b\nMmXKlEyYMCETJ07M6tWr92Vp3WLdprXb/f9twc+6TWvz+PqV2bD5udSk73avmfrOS3PHqXdl0YRH\nc+/p9+XUoeOS7Nnlce7bBAAAAOxL+yxouuWWW/KFL3whmzdv3u7xLVu25Morr8xtt92WmTNnZvbs\n2fn973+f73//++no6MisWbPyD//wD7nuuuv2VWnd4uWh0rpNa3PmvNPzTOvTmTLqc/nOE9/Ol5df\nnbOP/mi2piNJMrj/69L8V5fnpIYx+fLyqwu75E3IBAAAAOwr++zSuYaGhsyYMSOf+9zntnt89erV\naWhoyKBBg5Iko0aNytKlSzN8+PBs3bo1nZ2daWlpSU1Nz7qqb9tqomdan876tt9lzfNP5WMLz8nv\nX1ifjlJHPjHiM3l43YP5n++ZkdfXvj5X/ueXMn54o1VIAAAAwH5jn6U5p5xyStauXfuKx1taWlJf\nX9+1PXDgwLS0tGTAgAFZt25dPvCBD2TDhg25+eab91VpZfPyVUjrNq3Nw79ZnIse/XRqa2qTJDV9\nanJw7ZBUVVXl3Ledl3Pfdl7X89825C99exwAAACwX9mn92h6NXV1dWltbe3abm1tTX19fW6//fa8\n613vygMPPJDvfve7mTp16isuu6tEL7/v0p8/fu7Cs7P8maVZt2ltxs45KZ/+/v9Ie2d7/tj+x4x/\n85m55f2353UHHJTbTpmZN9Uftl2gJFwCAAAA9jdlD5qGDRuWNWvWZOPGjWlvb8+yZcty3HHH5cAD\nD+xa6TRo0KB0dHRk69at5S5vt7z8vkvbtl/u3Lecn08/fGEuffTi/H7z71JKKdVV1fnIURPzi40/\nyxsGvjF3jrs7o97wju4oHwAAAKBQZbsR0vz589PW1pampqZMnTo1559/fkqlUhobG3PooYfm3HPP\nzSWXXJKJEydmy5Yt+dSnPpUBAwaUq7w98vL7J63btDYT7zszd467O0ky/rvj8nTrb1NXU5+fPfd/\n8pGjJuaNA/9L7ntqXj72tvPzhoFvtGoJAAAA6FGqSqVSqbuL2Bvr12/q7hKSvLSa6W++c0puef/t\nSZL/8eDfp/mEf8qQAYfk7/7t3Mwf/0DeVH9Ylj+zNFMf/YwbfAPAazRkSP2un0S3qJQ5jJcMGVKv\nJxVGTyqTvlQePalMezqD9ayvdusmy59Zmm8+fmvWtvzfTLrvrAw+YHCqqv50Q+9tIVOSjHrDO4RM\nAAAAQI8kaNoL275J7jPf/0S25qX7ST2/ZWM+/87mnNQwZoffGidkAgAAAHoiQdMeWrdpbT4y//T8\n5vk1Obj2kGzt3Jr/+d7rkyRfXn51TmoY080VAgAAAJSXoOlVrNu09lVXHS1/ZmmSly5/e1P9YfnK\nmJuSJG8Y+MYkf1qptO2SOQAAAIDepE93F1Bp1m1am3MXnt0VKi1/ZmnWbVqbhU/el9O+84Gc/t2/\n7nps6qOf6fr2uJcHS0ImAAAAoDeyounPvKn+sEwffW2mPvqZnDb0jEz/z8tzyMBDU11Vk/9S/6b8\n83+fllFveEeSuKk3AAAAwMtY0fQyC5+87/+tXro/o4a8I1f+5z9na2lrOjo70rdP39x08jdy6tBx\nXc8XMgEAAAD8iRVNeSlgWv7M8nxlxZfTr0//bO58MUlSXVWdIQMOSV3f+sx4301dK5kAAAAAeKVe\nHTSt27Q233ni2/nnH12aJDmgT21e7HwhB/YblE8e95mc8Kb//oobfQMAAADw6npN0LTtm+TWbVqb\nJHl8/cr83b+dmy2dW7qe82LnCznvLRfkzP/aZPUSAAAAwG7q8UHTtmDp3IVnZ8qoz6X5Py5JR2dH\n1rWsTSmlruf1qeqT//GXn86//eb+/OCZJblz3N1WMQEAAADshh59M/B1m9bm3IVnJ0mmj742//yD\nL2bdprXZsrUjBx8wJEnyiRGfyR2n3pWhB745577tvNw57m4hEwAAAMAe6NFBU5JMGfW5PL5+Zda3\n/S7NJ/xTDh34htT3q88lf9Wcfn365dShH8ipQ8fl7g/dmzfVH9b1PwAAAAB2T4+8dG7b5XLjvzsu\n61rWdt2H6bC6w1NdVdP1DXL/9fXHdN2LSbgEAAAAsHd63IqmhU/el4n3nZnH169MqZRcPfpf8i/v\n+Wr+4sAjM+1dV2dA3wFd3yTnht8AAAAAxakqlUqlXT+tcq148mddq5GWP7M0p3/3rzOk9pBUV9Xk\nt61rc0T9kbn7Q/cmSde3zlm9BAD7jyFD6ru7BHZg/fpN3V0CLzNkSL2eVBg9qUz6Unn0pDLt6Qy2\n369oOnfh2V2Xyo16wzty72n/mvnjH8jNY7+RI+qPzIz33bTdfZeETABAb9PZ2Znm5uY0NTVl0qRJ\nWbNmzXb7Fy9enMbGxjQ1NWXOnDndVCUA0BPs9/douv3Ub223/fJ7Lm27wTcAQG+2aNGitLe3Z/bs\n2VmxYkWmT5+em266KUmyZcuWXHnllZk7d25qa2tz1llnZcyYMTn44IO7uWoAYH+03wdNr399XcbP\nHp/vNH0nhw86fLt9Q4Yc001VAQBUjuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQoSTJq1Kgs\nXbo0H/jAB3b5vi5rrDx6Unn0pDLpS+XRk55jvw+aDh90eJZdsKy7ywAAqFgtLS2pq6vr2q6urk5H\nR0dqamrS0tKS+vo/DfcDBw5MS0tLd5QJAPQA+/09mgAA2Lm6urq0trZ2bXd2dqampuZV97W2tm4X\nPAEA7A5BEwBADzdy5Mg88sgjSZIVK1Zk+PDhXfuGDRuWNWvWZOPGjWlvb8+yZcty3HHHdVepAMB+\nrqpUKpW6uwgAAPadzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ5/d3SUDAPspQRMAAAAAhXDpHAAAAACFEDQBAAAAUAhB0z60cuXKTJo06RWPL168OI2NjWlqasqc\nOXOSJFu2bMmUKVMyYcKETJw4MatXry53uXtsd46zvb09U6ZMyUc+8pGcd955+fWvf13mavfMjo4x\nSV544YVMmDChq2ednZ1pbm5OU1NTJk2alDVr1pSz1D22O8f4Wl5TiXbnGLds2ZLPfvazmThxYj78\n4Q/nwQcfLGepe2V3jnPr1q25+OKLM2HChJx11ll54oknylnqHtuTf1//8Ic/5D3vec9+8/t1d49x\n/PjxmTRpUiZNmpSLL764XGXuld09xq997WtpamrKGWeckbvvvrtcZfZquzqnvdq5nn1rVz1ZsGBB\nzjzzzEyYMCHNzc3p7Ozspkp7l9c6/1166aW59tpry1xd77SrnvzkJz/JxIkTc9ZZZ+XCCy/M5s2b\nu6nS3mVXfZk3b17Gjx+fxsbG3Hnnnd1UZe+0O3/X70pN0cXxkltuuSXz5s1LbW3tdo9v2bIlV155\nZebOnZva2tqcddZZGTNmTFasWJGOjo7MmjUrS5YsyXXXXZcZM2Z0U/Wv3e4e58KFCzNgwIDMmTMn\nTz75ZC6//PLceuut3VT9a7OjY0ySxx9/PF/84hfz7LPPdj22aNGitLe3Z/bs2VmxYkWmT5+em266\nqZwl77bdPcZdvaYS7e4xzps3L4MHD84111yTjRs35vTTT8/73ve+cpa8R3b3OB966KEkyaxZs/Kj\nH/0o//Iv/9Ij/33dsmVLmpubc8ABB5SrzL2yu8e4efPmlEqlzJw5s5xl7pXdPcYf/ehHeeyxx3LX\nXXflhRdeyG233VbOcnutnZ3TdnSuP/jgg7u56p5tZz158cUXc91112X+/Pmpra3Npz/96Tz00EP7\nxflrf/da5r9Zs2bliSeeyDve8Y5uqrJ32VlPSqVSLr300nzlK1/JEUcckbvvvjvr1q3L0KFDu7nq\nnm9XPytXX311FixYkAEDBmTcuHEZN25cBg0a1I0V9w67+3f9rs71VjTtIw0NDa8aFK1evToNDQ0Z\nNGhQ+vXrl1GjRmXp0qU58sgjs3Xr1nR2dqalpSU1NftHBri7x/mrX/0q7373u5MkQ4cO3S9WFuzo\nGJOXVmjdcMMN252Uli9fntGjRydJRowYkVWrVpWlzr2xu8e4q9dUot09xlNPPTWf+MQnkrw0jFRX\nV5elzr21u8d58skn5/LLL0+S/Pa3v82BBx5Yljr3xp78+3rVVVdlwoQJOeSQQ8pR4l7b3WP8+c9/\nnhdeeCHnnXdeJk+enBUrVpSr1D22u8f47//+7xk+fHj+4R/+IR//+Mdz0kknlanS3m1n57QdnevZ\nt3bWk379+mXWrFldfyh0dHSkf//+3VJnb7Or+e/HP/5xVq5cmaampu4or1faWU+eeuqpDB48OLff\nfnvOOeecbNy4UchUJrv6WTn66KOzadOmtLe3p1QqpaqqqjvK7HV29+/6XRE07SOnnHLKq4ZFLS0t\nqa+v79oeOHBgWlpaMmDAgKxbty4f+MAHcumll+43lyPt7nEec8wxeeihh1IqlbJixYo8++yz2bp1\nazlL3m07OsYkGTVqVN74xjdu91hLS0vq6uq6tqurq9PR0bFPa9xbu3uMu3pNJdrdYxw4cGDq6urS\n0tKSCy+8MJ/85CfLUeZe25Ne1tTU5KKLLsrll1+ev/mbv9nXJe613T3Ge+65JwcddFDXULM/2N1j\nPOCAA3L++efn1ltvzT/90z/lM5/5TI/7vbNhw4asWrUq119/fdcx+uLcfW9n57QdnevZt3bWkz59\n+nT9V+aZM2emra0tJ554YrfU2dvsrC+/+93vcsMNN6S5ubm7yuuVdtaTDRs25LHHHss555yTb37z\nm/nhD3+YH/zgB91Vaq+yq7+VjjrqqDQ2NmbcuHE56aST9ov/CNoT7O7f9bsiaCqzurq6tLa2dm23\ntramvr4+t99+e971rnflgQceyHe/+91MnTp1v75OeEfH2djYmLq6ukycODHf+9738ta3vnW/WSny\nWv35sXd2du5XgQx/8vTTT2fy5Mk57bTT9osAZm9cddVVeeCBB3LppZemra2tu8sp1Le//e38x3/8\nRyZNmpSf/exnueiii7J+/fruLqtQRx55ZD70oQ+lqqoqRx55ZAYPHtzjjnHw4MF517velX79+mXo\n0KHp379/nnvuue4uq8fb2TltR+d69q1dzRmdnZ256qqrsmTJksyYMcNqgDLZWV8WLlyYDRs25IIL\nLsjXv/71LFiwIPfcc093ldpr7KwngwcPzhFHHJFhw4alb9++GT169H5xFUJPsLO+/PznP8/DDz+c\nBx98MIsXL85zzz2X+++/v7tKJXt+rhc0ldmwYcOyZs2abNy4Me3t7Vm2bFmOO+64HHjggV0NGzRo\nUDo6Oip+pc/O7Og4H3/88Zxwwgm56667cuqpp+bwww/v7lILN3LkyDzyyCNJkhUrVmT48OHdXBF7\n4ve//33OO++8fPazn82HP/zh7i5nn7n33nvzta99LUlSW1ubqqqq9OnTs04N3/rWt/K///f/zsyZ\nM3PMMcfkqquuypAhQ7q7rELNnTs306dPT5I8++yzaWlp6XHHOGrUqDz66KMplUp59tln88ILL2Tw\n4MHdXVaPt7Nz2o7O9exbu5ozmpubs3nz5tx44437zX0Ue4Kd9WXy5Mm55557MnPmzFxwwQX54Ac/\nmDPOOKO7Su01dtaTww8/PK2trV03ol62bFmOOuqobqmzt9lZX+rr63PAAQekf//+qa6uzkEHHZTn\nn3++u0ole36ut8yiTObPn5+2trY0NTVl6tSpOf/881MqldLY2JhDDz005557bi655JJMnDgxW7Zs\nyac+9akMGDCgu8vebbs6zr59++b666/PzTffnPr6+lxxxRXdXfJue/kxvpqxY8dmyZIlmTBhQkql\nUqZNm1bmCvfero6xJ9jVMd588815/vnnc+ONN+bGG29M8tJN8vaXm0lvs6vjfP/735+LL744Z599\ndjo6OnLJJZf0uGPsCXZ1jB/+8Idz8cUX56yzzkpVVVWmTZu2362k3NUxvve9783SpUvz4Q9/OKVS\nKc3NzT1uRWwlerVz2q7O9exbO+vJsccem7lz5+b444/PRz/60SQvhRxjx47t5qp7vl39rFB+u+rJ\nFVdckSlTpqRUKuW4445z778y2VVfmpqaMnHixPTt2zcNDQ0ZP358d5fcK+3tub6q5AYHAAAAABSg\nZ10fAQAAAEC3ETQBAAAAUAhBEwAAAACFEDQBAAAAUAhBEwAAAACFEDQB+9zatWszZsyYV9139NFH\n79PPPu200/bp+wMAAPAngiagR/vud7/b3SUAAAD0GjXdXQDQ89x8882ZN29eqqurc+KJJ2bixIl5\n8cUX86lPfSq//OUvc+CBB+aGG27I6173uq7XbNy4MZ///Ofz5JNPpl+/fpk6dWpOOOGEHX7GmDFj\nMmbMmCxbtixJMm3atLzlLW/JpEmTMmjQoPzyl7/Mddddl9NPPz2/+MUvdvj+jzzySL7yla+ko6Mj\nhx12WC6//PLt6gIAAOC1s6IJKNT3v//9LF68OPfcc0++853vZM2aNXn00Ufz3HPP5WMf+1gWLFiQ\ngw8+OP/6r/+63euuv/76NDQ05P7778/VV1+d6667bpefNXjw4Nx777258MILc9FFF3U9fvTRR+eB\nBx7IMcccs9P3f+655/LlL385t956a+699968613vyrXXXlvcPwwAAIBeRtAEFOqHP/xhxo0blwMO\nOCA1NTVpbGzMD37wgxxyyCF5+9vfniR585vfnA0bNmz3uqVLl3bdT+noo4/O7Nmzd/lZH/nIR5K8\ntLrp2WefzXPPPZckXZ+zq/dfuXJlnn766UyePDmnnXZavvWtb2XNmjV7fvAAAAC9nEvngEJ1dna+\n4rGOjo7U1Pzp101VVVVKpdJ2z3n5/iRZvXp1jjzyyPTps+M8/OWv6ezsTHV1dZLkgAMO2Olzt73/\n1q1bM3LkyNx8881Jks2bN6e1tXWHnwcAAMDOWdEEFOqd73xn7rvvvrz44ovp6OjIt7/97bzzne/c\n5euOP/74rsvpVq9enb/7u79LVVXVTl9z3333JUm+973vZdiwYRk0aNBuvf/b3/72rFixIk899VSS\n5MYbb8zVV1/9mo4TAACAV7KiCSjUe9/73vzsZz9LY2NjOjo6Mnr06Lz3ve/NHXfcsdPXXXjhhfnC\nF76QD33oQ6mpqcnVV1+9y6Dpxz/+cebOnZva2tpMnz59t9//kEMOybRp0/LJT34ynZ2dOfTQQ3PN\nNdfs9jEDAADwkqrSn1+/ArAfGDNmTO64444cdthh3V0KAAAA/48VTUDFmjRpUp5//vlXPD5hwoRu\nqAYAAIBdsaIJAAAAgEK4GTgAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAheiWoGnlypWZNGnSKx5fvHhxGhsb09TUlDlz5nRDZQAAPZcZDADY12rK/YG3\n3HJL5s2bl9ra2u0e37JlS6688srMnTs3tbW1OeusszJmzJgcfPDB5S4RAKDHMYMBAOVQ9hVNDQ0N\nmTFjxiseX716dRoaGjJo0KD069cvo0aNytKlS8tdHgBAj2QGAwDKoexB0ymnnJKamlcupGppaUl9\nfX3X9sCBA9PS0rLL9yuVSoXWBwDQE5nBAIByKPulcztSV1eX1tbWru3W1tbthp4dqaqqyvr1m/Zl\naeymIUPq9aQC6Uvl0ZPKpC+VZ8iQXc8D7DkzWM/h91fl0ZPKpC+VR08q057OYBXzrXPDhg3LmjVr\nsnHjxrS3t2fZsmU57rjjurssAIAezQwGABSp21c0zZ8/P21tbWlqasrUqVNz/vnnp1QqpbGxMYce\nemh3lwcA0COZwQCAfaGq1AMusLfErrJY9liZ9KXy6Ell0pfK49K5yuVnpbL4/VV59KQy6Uvl0ZPK\ntN9fOgcAAADA/k3QBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQ\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAA\nFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0A\nAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAh\nBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAA\nAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhyho0dXZ2prm5OU1NTZk0aVLWrFmz3f55\n8+Zl/PjxaWxszJ133lnO0gAAeiwzGABQLjXl/LBFixalvb09s2fPzooVKzJ9+vTcdNNNXfuvvvrq\nLFiwIAMGDMi4ceMybty4DBo0qJwlAgD0OGYwAKBcyho0LV++PKNHj06SjBgxIqtWrdpu/9FHyvcu\nawAAEt1JREFUH51NmzalpqYmpVIpVVVVr+l9hwypL7xW9o6eVCZ9qTx6Upn0hZ7GDNZ76Enl0ZPK\npC+VR096jrIGTS0tLamrq+varq6uTkdHR2pqXirjqKOOSmNjY2prazN27NgceOCBr+l916/ftE/q\nZc8MGVKvJxVIXyqPnlQmfak8Bs+9ZwbrHfz+qjx6Upn0pfLoSWXa0xmsrPdoqqurS2tra9d2Z2dn\n14Dz85//PA8//HAefPDBLF68OM8991zuv//+cpYHANAjmcEAgHIpa9A0cuTIPPLII0mSFStWZPjw\n4V376uvrc8ABB6R///6prq7OQQcdlOeff76c5QEA9EhmMACgXMp66dzYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamNDU1ZeLEienbt28aGhoyfvz4cpYHANAjmcEAgHKpKpVKpe4uYm+5lrOyuL62\nMulL5dGTyqQvlcc9miqXn5XK4vdX5dGTyqQvlUdPKtN+cY8mAAAAAHouQRMAAAAAhRA0AQAAAFAI\nQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAA\nAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0\nAQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAA\nhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMA\nAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFAIQRMAAAAAhRA0AQAAAFCI\nmnJ+WGdnZy677LL84he/SL9+/fKlL30pRxxxRNf+n/zkJ5k+fXpKpVKGDBmSa665Jv379y9niQAA\nPY4ZDAAol7KuaFq0aFHa29sze/bsTJkyJdOnT+/aVyqVcumll+bKK6/MXXfdldGjR2fdunXlLA8A\noEcygwEA5VLWFU3Lly/P6NGjkyQjRozIqlWruvY99dRTGTx4cG6//fb88pe/zHve854MHTq0nOUB\nAPRIZjAAoFzKGjS1tLSkrq6ua7u6ujodHR2pqanJhg0b8thjj6W5uTkNDQ35+Mc/nmOPPTYnnHDC\nLt93yJD6fVk2e0BPKpO+VB49qUz6Qk9jBus99KTy6Ell0pfKoyc9R1mDprq6urS2tnZtd3Z2pqbm\npRIGDx6cI444IsOGDUuSjB49OqtWrXpNQ8769Zv2TcHskSFD6vWkAulL5dGTyqQvlcfguffMYL2D\n31+VR08qk75UHj2pTHs6g5X1Hk0jR47MI488kiRZsWJFhg8f3rXv8MMPT2tra9asWZMkWbZsWY46\n6qhylgcA0COZwQCAcinriqaxY8dmyZIlmTBhQkqlUqZNm5b58+enra0tTU1NueKKKzJlypSUSqUc\nd9xxOemkk8pZHgBAj2QGAwDKpapUKpW6u4i9ZYldZbHssTLpS+XRk8qkL5XHpXOVy89KZfH7q/Lo\nSWXSl8qjJ5Vpv7h0DgAAAICeS9AEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEE\nTQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAA\nQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAE\nAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAU\nQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAA\nAAAUQtAEAAAAQCEETQAAAAAUQtAEAAAAQCEETQAAAAAUoqxBU2dnZ5qbm9PU1JRJkyZlzZo1r/q8\nSy+9NNdee205SwMA6LHMYABAuZQ1aFq0aFHa29sze/bsTJkyJdOnT3/Fc2bNmpUnnniinGUBAPRo\nZjAAoFzKGjQtX748o0ePTpKMGDEiq1at2m7/j3/846xcuTJNTU3lLAsAoEczgwEA5VJTzg9raWlJ\nXV1d13Z1dXU6OjpSU1OT3/3ud7nhhhvy1a9+Nffff/9uve+QIfVFl8pe0pPKpC+VR08qk77Q05jB\neg89qTx6Upn0pfLoSc9R1qCprq4ura2tXdudnZ2pqXmphIULF2bDhg254IILsn79+rz44osZOnRo\nzjjjjF2+7/r1m/ZZzey+IUPq9aQC6Uvl0ZPKpC+Vx+C598xgvYPfX5VHTyqTvlQePalMezqDlTVo\nGjlyZB566KH89V//dVasWJHhw4d37Zs8eXImT56cJLnnnnvy5JNPvqYBBwCAnTODAQDlUtagaezY\nsVmyZEkmTJiQUqmUadOmZf78+Wlra3NPAACAfcQMBgCUS1WpVCp1dxF7yxK7ymLZY2XSl8qjJ5VJ\nXyqPS+cql5+VyuL3V+XRk8qkL5VHTyrTns5gZf3WOQAAAAB6LkETAAAAAIUQNAEAAABQCEETAAAA\nAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEET\nAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQ\nCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEA\nAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQ\nNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAAAIUQNAEAAABQCEETAAAA\nAIWoKeeHdXZ25rLLLssvfvGL9OvXL1/60pdyxBFHdO1fsGBB/tf/+l+prq7O8OHDc9lll6VPH1kY\nAMDeMIMBAOVS1gli0aJFaW9vz+zZszNlypRMnz69a9+LL76Y6667LnfccUdmzZqVlpaWPPTQQ+Us\nDwCgRzKDAQDlUtYVTcuXL8/o0aOTJCNGjMiqVau69vXr1y+zZs1KbW1tkqSjoyP9+/d/Te87ZEh9\n8cWyV/SkMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlDVoamlpSV1dXdd2dXV1Ojo6UlNTkz59\n+uTggw9OksycOTNtbW058cQTX9P7rl+/aZ/Uy54ZMqReTyqQvlQePalM+lJ5DJ57zwzWO/j9VXn0\npDLpS+XRk8q0pzNYWYOmurq6tLa2dm13dnampqZmu+1rrrkmTz31VGbMmJGqqqpylgcA0COZwQCA\ncinrPZpGjhyZRx55JEmyYsWKDB8+fLv9zc3N2bx5c2688cau5dsAAOwdMxgAUC5lXdE0duzYLFmy\nJBMmTEipVMq0adMyf/78tLW15dhjj83cuXNz/PHH56Mf/WiSZPLkyRk7dmw5SwQA6HHMYABAuVSV\nSqVSdxext1zLWVlcX1uZ9KXy6Ell0pfK4x5NlcvPSmXx+6vy6Ell0pfKoyeVaU9nsLJeOgcAAABA\nzyVoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYA\nAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQ\ngiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAA\nAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFo\nAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAACiFoAgAAAKAQgiYAAAAA\nCiFoAgAAAKAQgiYAAAAAClHWoKmzszPNzc1pamrKpEmTsmbNmu32L168OI2NjWlqasqcOXPKWRoA\nQI9lBgMAyqWsQdOiRYvS3t6e2bNnZ8qUKZk+fXrXvi1btuTKK6/MbbfdlpkzZ2b27Nn5/e9/X87y\nAAB6JDMYAFAuZQ2ali9fntGjRydJRowYkVWrVnXtW716dRoaGjJo0KD069cvo0aNytKlS8tZHgBA\nj2QGAwDKpaacH9bS0pK6urqu7erq6nR0dKSmpiYtLS2pr6/v2jdw4MC0tLS8pvcdMqR+10+irPSk\nMulL5dGTyqQv9DRmsN5DTyqPnlQmfak8etJzlHVFU11dXVpbW7u2Ozs7U1NT86r7Wltbtxt6AADY\nM2YwAKBcyho0jRw5Mo888kiSZMWKFRk+fHjXvmHDhmXNmjXZuHFj2tvbs2zZshx33HHlLA8AoEcy\ngwEA5VJVKpVK5fqwzs7OXHbZZXniiSdSKpUybdq0/PSnP01bW1uampqyePHi3HDDDSmVSmlsbMzZ\nZ59drtIAAHosMxgAUC5lDZoAAAAA6LnKeukcAAAAAD2XoAkAAACAQgiaAAAAACjEfhE0dXZ2prm5\nOU1NTZk0aVLWrFmz3f7FixensbExTU1NmTNnTjdV2fvsqi8LFizImWeemQkTJqS5uTmdnZ3dVGnv\nsauebHPppZfm2muvLXN1vdeu+vKTn/wkEydOzFlnnZULL7wwmzdv7qZKe49d9WTevHkZP358Ghsb\nc+edd3ZTlb3TypUrM2nSpFc87lzfPcxglcf8VZnMYJXH/FWZzGCVq9AZrLQfeOCBB0oXXXRRqVQq\nlR577LHSxz/+8a597e3tpZNPPrm0cePG0ubNm0tnnHFGaf369d1Vaq+ys7688MILpfe9732ltra2\nUqlUKn3qU58qLVq0qFvq7E121pNt7rrrrtJHPvKR0jXXXFPu8nqtnfWls7Oz9KEPfaj061//ulQq\nlUpz5swprV69ulvq7E129bNy4oknljZs2FDavHlz1zmGfe/rX/966YMf/GDpzDPP3O5x5/ruYwar\nPOavymQGqzzmr8pkBqtMRc9g+8WKpuXLl2f06NFJkhEjRmTVqlVd+1avXp2GhoYMGjQo/fr1y6hR\no7J06dLuKrVX2Vlf+vXrl1mzZqW2tjZJ0tHRkf79+3dLnb3JznqSJD/+8Y+zcuXKNDU1dUd5vdbO\n+vLUU09l8ODBuf3223POOedk48aNGTp0aHeV2mvs6mfl6KOPzqZNm9Le3p5SqZSqqqruKLPXaWho\nyIwZM17xuHN99zGDVR7zV2Uyg1Ue81dlMoNVpqJnsP0iaGppaUldXV3XdnV1dTo6Orr21dfXd+0b\nOHBgWlpayl5jb7SzvvTp0ycHH3xwkmTmzJlpa2vLiSee2C119iY768nvfve73HDDDWlubu6u8nqt\nnfVlw4YNeeyxx3LOOefkm9/8Zn74wx/mBz/4QXeV2mvsrCdJctRRR6WxsTHjxo3LSSedlAMPPLA7\nyux1TjnllNTU1Lzicef67mMGqzzmr8pkBqs85q/KZAarTEXPYPtF0FRXV5fW1tau7c7Ozq5/CH++\nr7W1dbt/EOw7O+vLtu2rrroqS5YsyYwZM6TRZbCznixcuDAbNmzIBRdckK9//etZsGBB7rnnnu4q\ntVfZWV8GDx6cI444IsOGDUvfvn0zevToV/yXHYq3s578/Oc/z8MPP5wHH3wwixcvznPPPZf777+/\nu0olzvXdyQxWecxflckMVnnMX5XJDLZ/2dNz/X4RNI0cOTKPPPJIkmTFihUZPnx4175hw4ZlzZo1\n2bhxY9rb27Ns2bIcd9xx3VVqr7KzviRJc3NzNm/enBtvvLFrCTf71s56Mnny5Nxzzz2ZOXNmLrjg\ngnzwgx/MGWec0V2l9io768vhhx+e1tbWrhshLlu2LEcddVS31Nmb7Kwn9fX1OeCAA9K/f/9UV1fn\noIMOyvPPP99dpRLn+u5kBqs85q/KZAarPOavymQG27/s6bn+lWujKtDYsWOzZMmSTJgwIaVSKdOm\nTcv8+fPT1taWpqamTJ06Neeff35KpVIaGxtz6KGHdnfJvcLO+nLsscdm7ty5Of744/PRj340yUsn\n2bFjx3Zz1T3brn5W6B676ssVV1yRKVOmpFQq5bjjjstJJ53U3SX3eLvqSVNTUyZOnJi+ffumoaEh\n48eP7+6SeyXn+u5nBqs85q/KZAarPOavymQG2z/s7bm+qlQqlcpQJwAAAAA93H5x6RwAAAAAlU/Q\nBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFELQBAAAAEAhBE0AAAAAFOL/B/kpfyDRnEyXAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot all against close_bid\n", + "fig, axarr = plt.subplots(2, 2, figsize=(20,10)) #1 row, 2 cols, x, y\n", + "#plt.figure(figsize=(20, 4))\n", + "irow, icol = 0,0\n", + "icol = pltGraph(\"ohlc_price\", \"close_bid\", irow, icol, df)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- we may have to address feature correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10202, 20)\n", + "(10202,)\n", + "(10099, 20)\n", + "(103, 20)\n", + "(10099,)\n", + "(103,)\n" + ] + } + ], + "source": [ + "from sklearn import linear_model\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_absolute_error, mean_squared_error, accuracy_score\n", + "\n", + "# df only\n", + "X = df.drop(\"close_bid\", axis=1)\n", + "y = df.close_bid.shift().values\n", + "cols = X.columns\n", + "\n", + "\n", + "#convert to numpy first\n", + "df_np = df.copy().values.astype('float32')\n", + "X, y = create_training_set(df_np, 1)\n", + "X = np.reshape(X, (X.shape[0], X.shape[2]))\n", + "idx_close_bid = df.columns.tolist().index('close_bid') # find index of columns in dataframe\n", + "y = y[:,idx_close_bid] # select column to predict\n", + "cols = df.columns # i have all here, because close_bid is included as features\n", + "\n", + "\n", + "# create train and test\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, shuffle=False)\n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAFlCAYAAADs50HhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9clGW+//E3DAgqkKDotzXthEWbGvk73VLXjHDbXFNp\nQdjppJ4e57G2/ujsQfwJGJVutp6SUFe2PXu2tLTWXDEfrqumtmGmpoi4alGhmEuaqPwemJnvH66T\nxoCgDODF6/mXc18z93zg6u491zUX1+3ldDqdAgAAxvJu7gIAAIBnEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHugmfXt21cFBQXKycnRtGnT6nzuoUOHlJSU1OD3eO6555SWlna9JTbYyZMnNXXq\n1Bs6h9Vq1ebNmz32/BtVUFCgvn37um176623tHLlSrdtl/sbaEo+zV0AgEvuvfdeLV26tM7nfP75\n5yosLGyiiq7f119/rS+//LK5y2g2EyZMaO4SgKsQ9kA97dmzRy+99JK6dOmikydPyt/fX4sWLVKP\nHj00a9YsnT9/XidPntSPf/xjTZ8+XS+//LL27t0ru92unj17at68eQoICNC+ffuUmpoqLy8v3Xvv\nvXI4HK7zp6amauPGjSotLdXzzz+vTz/9VBaLRQ8//LAmTJigpUuXqri4WLNnz9bChQu1fft2LV++\nXFVVVfL391diYqL69u2rkpISzZ07V0ePHlXnzp1lsVjUv3//q34eh8OhESNG6LXXXtO9994rSXr2\n2Wc1cOBAxcXFXfXcFStWaOvWraqsrFR5ebkSExMVGRmp6upqLV68WDt27JDFYlHfvn2VnJysefPm\nqbCwUJMnT9aCBQs0evRoHThwQNKlEfHlx2VlZUpJSdFXX32lCxcuqH379nr55ZcVFhZWaz+cOXNG\nycnJ+uKLL+Tt7a3Y2Fg9+eSTVz1n69ateu2112S32xUQEKDZs2crIiJCeXl5mjt3rmw2m5xOp6Kj\noxUfHy9JWr58ubZs2SKHw6GuXbsqOTlZXbp0qfO/CYfDoblz5yo3N1c+Pj6aN2+e+vTpo7S0NBUV\nFSkpKanW/gaaEtP4QAMcOXJEkyZNUmZmpsaNG6eEhARXW0VFhd5//30lJCRo5cqVslgsWrdunTZs\n2KDOnTvr5Zdfls1m0/Tp0zVr1iytX79e999/vyoqKmq8z9KlS1VZWalNmzZp/fr1+vTTT3XixAlN\nmzZNAwYM0MKFC/XVV1/pf/7nf7Ry5UqtX79eqampmjp1qsrKyrR06VL5+/tr8+bNevXVV92Osr29\nvTV+/Hi99957kqQLFy4oKytLo0ePvup5p06dUlZWlt58801lZmbq2Wefdc1ArF69Wrm5ufrLX/7i\n+pCyadMmPf/88+revbtef/31On+fu3btUlBQkNauXau//vWv6t27t1atWlXnaxYsWKB/+7d/0+bN\nm7VmzRqtXbtW+fn5rva8vDwlJycrLS1NmZmZmjZtmqZMmaKSkhK9/vrreuihh7Ru3TqtXLlS+/bt\nk8Ph0Pr163X8+HG98847+stf/qLhw4dr3rx5ddYhXerzBx54QOvXr9f06dM1Y8YM2Ww2V3t9+xvw\nNEb2QAP88Ic/1IABAyRJ48eP13PPPaeioiJJumrkvGPHDhUXFysrK0uSVFVVpY4dO+r48ePy8fHR\nkCFDJEmPPfaY2+/gs7KyNHv2bFksFlksFr355puSpHXr1rme89FHH+mbb77RU0895Trm5eWlEydO\naPfu3ZozZ468vLwUEhKiyMhItz/P+PHjFR0drVmzZmnjxo0aMWKEAgMDr3pO165d9Zvf/EaZmZnK\nz89Xdna2SktLXXWOGTNG/v7+kqRXXnlF0qVZivoYNWqUunXrpjfeeEP5+fn65JNPav0e/MrfzeUP\nWYGBgdq4ceNV7R9//LEGDx6sbt26SZKGDBmikJAQHT58WJGRkUpMTNShQ4c0ZMgQzZs3T97e3vrg\ngw+Uk5Oj8ePHS7o0Yi8vL79m/UFBQXr00UclSUOHDpXT6dQXX3zhaq9vfwOeRtgDDWCxWK567HQ6\nXcfatWvnOu5wODRnzhwNHz5cklRaWqrKykqdPn1a378dhY9PzcvQx8dHXl5ersenT592BeqV7zFk\nyBBXwF5+XufOnV211Vb3ZV27dlXPnj21Y8cOrVu3TnPmzKnxnNzcXE2ZMkVPPfWUHnjgAQ0cOFAL\nFixwW/vZs2drTFN7eXldVUtVVZXr36tXr9batWsVHx+v0aNHq0OHDtdcvPb9383JkycVHBzseuzu\ndh9Op1PV1dUaMWKE/vrXvyorK0u7d+9Wenq63n77bTkcDv3Hf/yH6+sLm82mCxcu1FmHdGl25Pvv\n4+vrW+vPfrl+oKkxjQ80wNGjR3X06FFJ0po1a9SvXz8FBQXVeN6DDz6oVatWyWazyeFwaP78+Vqy\nZInCw8PldDq1c+dOSdK2bdvchsqQIUP03nvvyeFwyGazadq0adq7d68sFouqq6slSYMHD9ZHH32k\nvLw8SdLOnTv1s5/9TJWVlRo6dKjeffddORwOXbhwQdu2bav1Z/r5z3+ujIwMVVRU1PheX5L27t2r\n3r17a+LEiRo0aJC2bdsmu93uqnPjxo2unzMlJUXvv/++LBaLK9SDgoJUVVWlzz//XJL0t7/9zXXu\nv//97xo7dqyeeOIJ3XHHHdq+fbvr3LUZMmSI/vznP0uSiouL9e///u/66quvXO2Xfy8nT56UJO3e\nvVunT5/Wfffdp1//+tfatGmTfvrTnyo5OVkBAQE6ffq0HnzwQb377rsqKSmRJL366quaOXNmnXVI\n0vnz5/XBBx9IkrZv3y4/Pz/dfvvtrvb69jfgaXzEBBqgU6dOeuWVV3Tq1CmFhITopZdecvu8KVOm\n6De/+Y3Gjh0ru92ue+65R7NmzZKvr6/S09OVkpKiJUuW6J577lHHjh1rvP5Xv/qVXnjhBY0ZM0Z2\nu12PPvqoHnnkEZ04cUKvvPKKnnnmGaWnp+u5557Tf/3Xf8npdMrHx0fLly9Xu3btNHXqVCUnJ+sn\nP/mJQkJCFB4eXuvP9NBDD2nBggV6+umn3bY/9thj2rJlix599FH5+vpqyJAhunDhgkpKShQbG6tT\np05p3LhxcjqdGjRokKxWq0pLS2WxWBQdHa133nlHCQkJevrppxUSEqJRo0a5zj1p0iQlJSVp3bp1\nslgs6tWrl44fP15nHyQlJSklJUWjR4+W0+nUf/7nf6p3796u9jvvvFPJycn61a9+JbvdLn9/f61Y\nsUKBgYGaMmWK5s6dqzVr1rgWPg4aNEgDBw5UYWGhfv7zn8vLy0u33nqrFi1aVGcdktSxY0dt2bJF\nr7zyitq2bau0tLSrRu717W/A07y4xS1QP1eulgeAmwkjewCoxYsvvljrYsPZs2dr8ODBTVwRcH0Y\n2QMAYDgW6AEAYDjCHgAAwxH2AAAYzsgFemfOFDd3CTeV4OB2Kioqa+4yWj36oWWgH1oG+qHhQkMD\na21jZA/5+LjfXQ1Ni35oGeiHloF+aFyEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACG\nI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8v\nV2xsrPLy8iRJVVVVSkhIUFxcnKKjo7Vt2zZJ0pEjRzR06FBZrVZZrVZt2rTJkyUDAGAcH0+dOCMj\nQxs2bFDbtm1rtOXk5Cg5OVmFhYWuYxs2bFCHDh20ePFinT9/Xo8//rhGjhyp3NxcTZw4UZMmTfJU\nqQAAGM1jI/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyTp8OHD2rFjh+Lj4zVn\nzhyVlJR4qmQAAIzksZF9VFSUCgoK3Lb179+/xrH27dtLkkpKSjRt2jTNmDFDkhQREaEnnnhCvXv3\n1vLly5Wenq7ExMQ63zs4uJ18fCw3+BO0LqGhgc1dAkQ/tBT0Q8tAPzQej4X99Th9+rSeeeYZxcXF\nafTo0ZKkyMhIBQUFuf6dmpp6zfMUFZV5tE7ThIYG6syZ4uYuo9WjH1oG+qFloB8arq4PRy1mNf7Z\ns2c1adIkJSQkKDo62nV88uTJOnTokCRp9+7d6tWrV3OVCADATanJRvaZmZkqKytTTEyM2/YVK1bo\n4sWLWrZsmZYtWybp0iK/lJQUpaamytfXV506darXyB4AAHzHy+l0Opu7iMbG1E/DMF3WMtAPLQP9\n0DLQDw13U0zjAwAAzyDsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj\n7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAA\nDEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2\nAAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDAcB4N++zs\nbFmtVrdt5eXlio2NVV5eniSpqqpKCQkJiouLU3R0tLZt2yZJys/P14QJExQXF6fk5GQ5HA5PlgwA\ngHE8FvYZGRmaN2+eKisra7Tl5OQoPj5eJ0+edB3bsGGDOnTooNWrV+v3v/+9UlNTJUkLFy7UjBkz\ntHr1ajmdTteHAAAAUD8eC/vu3bsrLS3NbZvNZlN6errCwsJcx0aNGqXp06dLkpxOpywWiyQpNzdX\ngwYNkiQNGzZMWVlZnioZAAAj+XjqxFFRUSooKHDb1r9//xrH2rdvL0kqKSnRtGnTNGPGDEmXgt/L\ny8v1nOLi4mu+d3BwO/n4WK639FYpNDSwuUuA6IeWgn5oGeiHxuOxsL8ep0+f1jPPPKO4uDiNHj1a\nkuTt/d3kQ2lpqYKCgq55nqKiMo/VaKLQ0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbjnz17VpMm\nTVJCQoKio6Ndx3v27Kk9e/ZIknbt2qUBAwY0V4kAANyUmizsMzMztWbNmlrbV6xYoYsXL2rZsmWy\nWq2yWq2qqKhQYmKi0tLSFBMTo6qqKkVFRTVVyQAAGMHL6XQ6m7uIxsbUT8MwXdYy0A8tA/3QMtAP\nDXdTTOMDAADPIOwBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAw/k0dwEA0Fwqq+w6c75ccjoVGtxO\nfr6W5i4J8AiPjuyzs7NltVrdtpWXlys2NlZ5eXl1vubIkSMaOnSorFarrFarNm3a5MmSAbQCZZVV\nWrHhsKa/uktJr3+ipD/s1bNpH+rNvx2T3e5o7vKARuexkX1GRoY2bNigtm3b1mjLyclRcnKyCgsL\nr/ma3NxcTZw4UZMmTfJUqQBagcoqu/75bak27zmhvce+keN7mV5hc2j7/lPy9bFoRJ8f6JYAP0b6\nMIbHRvbdu3dXWlqa2zabzab09HSFhYVd8zWHDx/Wjh07FB8frzlz5qikpMRTJQMwkN3h0Jt/O6Zn\n0z7Ugj/u055/1Az6K/11zwnN+t3HmvO7LK3eelz2up4M3CQ8FvZRUVHy8XE/cdC/f3/deuut9XpN\nRESEZs6cqVWrVqlbt25KT0/3SL0AzPT2ts+0ff8pVdgaFtpFJVXauq9Ab237zEOVAU2nxS/Qi4yM\nVFBQkOvfqamp13xNcHA7+fgw/dYQoaGBzV0CRD80tgsllfrw0OkbOsfuw//UL6P7yL9Ni//fpXG4\nHhpPi/+vd/LkyZo/f74iIiK0e/du9erV65qvKSoqa4LKzBEaGqgzZ4qbu4xWj35oHJVVdp27WKGt\n+wv06bFvZKu6sWn48kq7/vHZN7qtM8HTlLgeGq6uD0dNFvaZmZkqKytTTExMg16XkpKi1NRU+fr6\nqlOnTvUa2QMwW2WVXRdKKq9aRFdWWa23/nZcR08U6duLlY37hl5ejXs+oIl5OZ1OZ3MX0dj4NNgw\nfIJuGeiHa7M7HFqz/XMdOH5G5y5WKiTIT/fd1Ulekj7KOd3g7+Xrw8/XW69MG8rK/CbG9dBwLWJk\nDwB1cTda/7412z/X1n0FrsffXqzU9v2nPFpX/7s7E/S46RH2AJqVu9F63/BQxTx0pyze3q4PAW39\nfPTpsW9u+P1uae+rfuGhsjsc2pX9zzqf69/GorjI8Bt+T6C5EfYAmpW70frWfQVyOJ3y9vJyfQgI\nbOeji2XVN/ReP+r9/2SNult+vhbZHQ59ebpEJ7+pfe+OByNuVTs//jeJmx//FQNoNpVVdh04fsZt\n29+zv5at+rslRTca9P5tvBUXGe6akrd4eyvpqQFa/bfjOvDZWZ0vscnbS3I4pZBAP/W7+9LsAmAC\nwh5As7lQUqlztaycvzLoG4OtyqGSMttVI3WLt7esUT/Uzx/67quCtu39ZbdV8T09jMItbgE0m1sC\n/BQS5Nck7xUc6K9bAty/l5+vRZ2D2ymwXRvd2qk9QQ/jEPYAmo2fr0V9w0Ob5L36hncixNFq1TmN\nb7Va5VXHZhJ/+tOfGr0gAK1HZZVdI/p21YXSSu39h/vv7m9UxyB/9Q3vxPfvaNXqDPupU6c2VR0A\nDOPu7+YvHwto56v1H36pT499o3PFNo/VkBDbR2Fdb2FEj1avzrAfNGiQ699HjhxRWVmZnE6n7Ha7\nCgoKrmoHAKnuXe4OfnZW5y5Wyq+NRRU2u0frCAn0I+iBf6nXavzExEQdOHBAFy5cUFhYmI4ePap+\n/fopOjra0/UBuMnUZ5c7Twe9JPW7O5SgB/6lXgv09u7dq/fff19RUVFKTU3V2rVrZbN5buoNwM2p\nrr+bbyoWb+mh/l35jh64Qr1G9p07d5avr6969OihY8eO6ac//alKS0s9XRuAm0xdfzfvCV1C/FVd\nLZ27WKGg9m30w9uDZY0KVzs/3yarAbgZ1Cvsu3Tpot/97ncaMmSIFi9eLEkqK+Oe8UBr5m4B3uW/\nm2/0W8zWYtr4+xQS5H/NG+gArV29wv6FF17Qzp07FRERoUceeUQbN25USkqKh0sD0BLVdeOay383\nf+V39p7SMchPIUH+rg1xANSuXmF/8eJF9e3bV19//bVGjhypkSNHerouAC1UbTeukaS4h8Nd35Uf\nOH5WRcUVCg701313dfzXavxvVVRcoVva+6mopH6j/26dA9zerKZvOAvwgPqqV9j/4he/kJeXl5xO\np6qrq3X27Fndc889+vOf/+zp+gC0IHUtwDtw/KzGD+8hP1+L4h4O1/jhPWpMr0f/+Ls96J/74946\np/v921j0YMStiv5xmN7d8cVVHx7YJAdomHqF/fbt2696fOjQIa1atcojBQFouepagFdUXKELJZWu\nKXV30+tXHqttut/P11v97+6suMi7XAvtavvwAKB+ruuudxEREZozZ05j1wKgiblbZFeXuhbg1XWj\nGXdqTvf76YfdgzUhMtztPeT5bh64fvUK+9dee+2qx59//rk6duzokYIAeF5di+ws3t9tv/H9DwN1\nLcBr6I1mLN7ejNiBJnJdI/uBAwfqsccea+xaADSRay2yq+vDgLsFeDfyHTojdsDz6hX2Xbt21dix\nY686tmrVKsXHx3ukKACeU59Fdn/emVfnhwFG5MDNpc6w/+Mf/6iSkhK9/fbbOnXqu72t7Xa7MjMz\nCXvgJlTXIrtvL1bon+dKa/0w8OmxMxp23w8U2qEtI3LgJlLn3vi333672+Nt2rTRokWLPFIQAM+6\nvMiuNpv3nKz1w8C54kolv/6J5mV8rNVbj8vucHiqTACNqM6R/YgRIzRixAj95Cc/UWVlpXr27Kni\n4mIdPnxYAwYMaKoaATSCKxfbRdzZSR98esrt8z47eb7OLW+dqjmtD6Blq9d39u+9956OHDmiP/zh\nDyovL9eyZcu0b98+TZ061dP1AbhB7hbbhXfrUOvzi4or1feuTvXa3/7KjXQAtFz1usXtjh07lJGR\nIenSHfD+93//V1u2bPFoYQAax+WV999erHSNynfnFsq/jfuA9vKSDnx2Vv5tLLU+57LLG+kAaNnq\nFfbV1dWqqKhwPa6qqvJYQQCuX2WVXd8Ulamyyu563ND7yzucl6bqK2x2VdjsGtyzszrW8h1/QzfS\nAdA86jWNHxsbq3Hjxumhhx6S0+nUhx9+yEp8oAWp7e/iR/TtWutiu0qbXQ/0/n86euK8zl2skJfX\npaD/vs8KLiqiR0d9cODrGm0N3UgHQPOoV9hPmDBBVVVVstlsCgoKUnR0tM6cadhoAYDn1LZJjt3u\nqHWxXUiQv34Rdbck6YtTF/Ty2wfdnruouEIPD+gmi8Wbm9EAN6l6hf3UqVNVXl6uEydOaMCAAdq7\nd6/69Onj6doAfI+7vezrmqo/lHeu1pX3V47Kw7reUuee9yFB/mykA9zE6hX2X375pbZs2aIXXnhB\n48eP18yZMzV9+nRP1wbgX+ravvZad6J7uP9tsnh71Tkqr++e92ykA9yc6hX2HTt2lJeXl+644w4d\nO3ZMjz/+uGw2m6drA/Avde1lP354j0YZlTf2nvcAWo56hf1dd92l1NRUTZgwQf/93/+tb775hhX5\nQBOorLLrTFHZNfeyb4xROXehA8xVr7BPSUnRgQMHdOedd2rq1KnavXu3fvvb33q6NqBVqqyy69zF\nCm3dd1KH8r6tc3ObcxcrdOZ8eaOOypmqB8zj5XQ63fyxzc3tzJni5i7hphIaGsjvrAUICWmv19Ye\n0IHjZ+q1e91lfr5eeiDiB5ow8i5V252Mym8Q10PLQD80XGhoYK1t13U/ewCN7w+ZuW6n4q+lssqp\n7ftPydvLS3EPhzMqB1BDvXbQA+BZxWU2fZRdc9Oahvj02BnXznkAcCVG9kAzuvwndfuOfqPzJTf2\nFy5FxZW6UFLJyB5ADYQ90Iy+/yd1NyI40I996gG45dFp/OzsbFmtVrdt5eXlio2NVV5eXp2vyc/P\n14QJExQXF6fk5GQ5HA5Plgw0meu5SU1d7ruLfeoBuOexsM/IyNC8efNUWVlzVXFOTo7i4+N18uTJ\na75m4cKFmjFjhlavXi2n06lt27Z5qmSgSdW18931eLj/bY12LgBm8VjYd+/eXWlpaW7bbDab0tPT\nFRYWds3X5ObmatCgQZKkYcOGKSsryzMFA03slgA/hdRy69iG6hh0aac8AHDHY9/ZR0VFqaDA/XeR\n/fv3r/drnE6nvLy8JEnt27dXcfG1/+4yOLidfHyYzmyIuv4+E57zwH1dteHDLxrhPD/QbT/o0AgV\nQeJ6aCnoh8bT4hfoeXt/N/lQWlqqoKCga76mqKjMkyUZh80rms/oId1VVm5z7Xwnub+nfG3821j0\nYMStGj2kO33YSLgeWgb6oeFu6k11evbsqT179uj+++/Xrl27NHjw4OYuCWg0V+5Hb2njq7c2H9EH\nB9z/vb1/m3/d0tZmV3Cgn354e7DiIu9SOz/fpiwZwE2oycI+MzNTZWVliomJadDrEhMTNX/+fC1Z\nskRhYWGKioryUIVA8/HztSi0U3vFRYbLYvG+ao/7iB4henhAN9d38myHC6Ch2BsfTJe1EFf2Q2WV\nnVBvJlwPLQP90HA39TQ+0Bpx5zkAjYm98QEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6w\nBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAw\nHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gD\nAGA4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiO\nsAcAwHAeDfvs7GxZrVa3beXl5YqNjVVeXp4kyeFwKCkpSTExMbJarcrPz5ckHTlyREOHDpXVapXV\natWmTZs8WTIAAMbx8dSJMzIytGHDBrVt27ZGW05OjpKTk1VYWOg6tnXrVtlsNq1Zs0YHDx7UokWL\ntHz5cuXm5mrixImaNGmSp0oFAMBoHhvZd+/eXWlpaW7bbDab0tPTFRYW5jq2f/9+DR06VJLUp08f\nHT58WJJ0+PBh7dixQ/Hx8ZozZ45KSko8VTIAAEby2Mg+KipKBQUFbtv69+9f41hJSYkCAgJcjy0W\ni6qrqxUREaEnnnhCvXv31vLly5Wenq7ExMQ63zs4uJ18fCw39gO0MqGhgc1dAkQ/tBT0Q8tAPzQe\nj4V9QwUEBKi0tNT12OFwyMfHR5GRkQoKCpIkRUZGKjU19ZrnKioq81idJgoNDdSZM8XNXUarRz+0\nDPRDy0A/NFxdH45azGr8fv36adeuXZKkgwcPKjw8XJI0efJkHTp0SJK0e/du9erVq9lqBADgZtRk\nI/vMzEyVlZUpJibGbXtkZKQ++ugjxcbGyul06sUXX5QkpaSkKDU1Vb6+vurUqVO9RvYAAOA7Xk6n\n09ncRTQ2pn4ahumyloF+aBnoh5aBfmi4m2IaHwAAeAZhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAA\nGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPs\nAQAwHGEPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAM\nR9gDAGAsuyFhAAAJjUlEQVQ4wh4AAMMR9gAAGI6wBwDAcIQ9AACGI+wBADAcYQ8AgOEIewAADEfY\nAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhvNo2GdnZ8tqtbptKy8vV2xsrPLy8iRJDodDSUlJiomJ\nkdVqVX5+viQpPz9fEyZMUFxcnJKTk+VwODxZMgAAxvFY2GdkZGjevHmqrKys0ZaTk6P4+HidPHnS\ndWzr1q2y2Wxas2aNfv3rX2vRokWSpIULF2rGjBlavXq1nE6ntm3b5qmSAQAwksfCvnv37kpLS3Pb\nZrPZlJ6errCwMNex/fv3a+jQoZKkPn366PDhw5Kk3NxcDRo0SJI0bNgwZWVleapkAACM5OOpE0dF\nRamgoMBtW//+/WscKykpUUBAgOuxxWJRdXW1nE6nvLy8JEnt27dXcXHxNd87OLidfHws11l56xQa\nGtjcJUD0Q0tBP7QM9EPj8VjYN1RAQIBKS0tdjx0Oh3x8fOTt/d3kQ2lpqYKCgq55rqKiMo/UaKrQ\n0ECdOXPtD1HwLPqhZaAfWgb6oeHq+nDUYlbj9+vXT7t27ZIkHTx4UOHh4ZKknj17as+ePZKkXbt2\nacCAAc1WIwAAN6MmC/vMzEytWbOm1vbIyEi1adNGsbGxWrhwoWbPni1JSkxMVFpammJiYlRVVaWo\nqKimKhkAACN4OZ1OZ3MX0diY+mkYpstaBvqhZaAfWgb6oeFuiml8AADgGYQ9AACGI+wBADAcYQ8A\ngOEIewAADEfYAwBgOMIeAADDEfYAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAAAxH2AMAYDjC\nHgAAwxH2AAAYjrAHAMBwhD0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4wh4AAMMR9gAAGI6wBwDA\ncF5Op9PZ3EUAAADPYWQPAIDhCHsAAAxH2AMAYDjCHgAAwxH2AAAYjrAHAMBwhL2hsrOzZbVa3baV\nl5crNjZWeXl5kiSHw6GkpCTFxMTIarUqPz9fknTkyBENHTpUVqtVVqtVmzZtarL6TdGQfqjtNfn5\n+ZowYYLi4uKUnJwsh8Ph0ZpN1Bj9wPVw4xrSD1VVVUpISFBcXJyio6O1bds2SVwP18unuQtA48vI\nyNCGDRvUtm3bGm05OTlKTk5WYWGh69jWrVtls9m0Zs0aHTx4UIsWLdLy5cuVm5uriRMnatKkSU1Z\nvjEa2g+1vWbhwoWaMWOG7r//fiUlJWnbtm2KjIz0eP2maKx+4Hq4MQ3thw0bNqhDhw5avHixzp8/\nr8cff1wjR47kerhOjOwN1L17d6Wlpblts9lsSk9PV1hYmOvY/v37NXToUElSnz59dPjwYUnS4cOH\ntWPHDsXHx2vOnDkqKSnxfPEGaWg/1Paa3NxcDRo0SJI0bNgwZWVleaZgQzVWP3A93JiG9sOoUaM0\nffp0SZLT6ZTFYpHE9XC9CHsDRUVFycfH/aRN//79deutt151rKSkRAEBAa7HFotF1dXVioiI0MyZ\nM7Vq1Sp169ZN6enpHq3bNA3th9pe43Q65eXlJUlq3769iouLG79YgzVWP3A93JiG9kP79u0VEBCg\nkpISTZs2TTNmzJDE9XC9CHsoICBApaWlrscOh0M+Pj6KjIxU7969JUmRkZE6cuRIc5XYqnl7f3eZ\nlpaWKigoqBmrab24Hpre6dOn9eSTT2rMmDEaPXq0JK6H60XYQ/369dOuXbskSQcPHlR4eLgkafLk\nyTp06JAkaffu3erVq1ez1dia9ezZU3v27JEk7dq1SwMGDGjmilonroemdfbsWU2aNEkJCQmKjo52\nHed6uD4s0GsFMjMzVVZWppiYGLftkZGR+uijjxQbGyun06kXX3xRkpSSkqLU1FT5+vqqU6dOSk1N\nbcqyjXOtfqhNYmKi5s+fryVLligsLExRUVEeqrB1uN5+4HpoXNfqhxUrVujixYtatmyZli1bJunS\nIj+uh+vDXe8AADAc0/gAABiOsAcAwHCEPQAAhiPsAQAwHGEPAIDhCHsAN2zWrFlat26dCgsL9fTT\nT9f53NpuhFKbPXv2NPg1AK5G2ANoNF26dFFGRkadz/nkk0+aqBoAl7GpDtBK7dmzR2lpafLx8dHp\n06cVERGhX/7yl5oyZYqCg4Pl5+en119/XS+99JI++eQT2e12jRs3Tk899ZScTqcWLVqkHTt2qHPn\nzrLb7Ro0aJAKCgr05JNPavv27Tp16pRmz56tc+fOyd/fX88//7zeffddSdITTzyhd955R7t27dLS\npUtVXV2t2267TampqQoODtbf//53LVy4UH5+frrjjjua+TcF3PwIe6AVO3TokNavX6877rhD06dP\n186dO/Xll1/q97//vW677Ta99dZbkqT33ntPNptNkydPVu/evXX27FkdOXJEGzduVHFxsX72s5/V\nOPeCBQsUFRWl+Ph47dy5U8uXL9err76qN954Q++8847OnTun3/72t/rTn/6kW265RW+//bZefvll\nJScna9asWfq///s/9ejRQ3Pnzm3qXwtgHMIeaMUGDhzouq3omDFjtHbtWnXs2FG33XabpEt7wP/j\nH//Qxx9/LEkqKyvTsWPHlJeXp0ceeUS+vr4KCQnRsGHDapx77969WrJkiSRp+PDhGj58+FXt2dnZ\nrhudSJduwHTLLbfo2LFj6ty5s3r06CFJGjt2rF599VXP/AKAVoKwB1qxy/cIl767Z7i/v7/rmN1u\nV0JCgh555BFJ0rlz59SuXTstXrxYDofD9Tx3ty698pjT6VReXp7uvPPOq87dr18/rVixQpJUWVmp\n0tJSff3111ed+8oaAVwfFugBrdj+/ftVWFgoh8Oh9evX1xihDx48WGvXrlVVVZVKS0sVFxen7Oxs\nDRkyRJs3b5bNZtOFCxf04Ycf1jj3gAED9P7770uSsrKyNH/+fEmXwru6ulr33XefDh48qC+//FKS\ntGzZMr300ku6++679e233+ro0aOS5DoHgOvHyB5oxTp37qyZM2eqsLBQDzzwgH70ox9p5cqVrvbY\n2Fjl5+dr7Nixqq6u1rhx43T//fdLknJycvTYY4+pU6dOrin3KyUlJWnevHlavXq12rZtq+eff16S\nNHLkSI0ZM0br1q3Tiy++qBkzZsjhcKhLly5avHixfH19tWTJEiUkJMjHx0c9e/Zsml8GYDDuege0\nUnv27NFrr72mN954o7lLAeBhTOMDAGA4RvYAABiOkT0AAIYj7AEAMBxhDwCA4Qh7AAAMR9gDAGA4\nwh4AAMP9fzJ0kNjjsjViAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oc_difflow_bidlast_10_tick_avg_bo_spreadavg_pricelast_10_tick_avg_bid_returnnb_ticksweekdayyearday15_minhourmonthavg_bo_spreadpcahigh_bidrangeperiod_returnohlc_priceopen_bidclose_bid
linear regression coefficients-0.203845-0.01149-0.002238-0.002219-0.001859-0.001265-0.0000020.09.480864e-070.0000020.0000070.0000170.0006030.0012650.0070990.0186370.1838530.2001270.3005940.504454
lasso regression coefficients-0.0000000.00000-0.0000000.000000-0.000000-0.0000030.0000000.0-0.000000e+00-0.000000-0.0000000.000000-0.000000-0.0000000.000000-0.0000000.0000000.0000000.0000000.000000
\n", + "
" + ], + "text/plain": [ + " oc_diff low_bid last_10_tick_avg_bo_spread \\\n", + "linear regression coefficients -0.203845 -0.01149 -0.002238 \n", + "lasso regression coefficients -0.000000 0.00000 -0.000000 \n", + "\n", + " avg_price last_10_tick_avg_bid_return \\\n", + "linear regression coefficients -0.002219 -0.001859 \n", + "lasso regression coefficients 0.000000 -0.000000 \n", + "\n", + " nb_ticks weekday year day \\\n", + "linear regression coefficients -0.001265 -0.000002 0.0 9.480864e-07 \n", + "lasso regression coefficients -0.000003 0.000000 0.0 -0.000000e+00 \n", + "\n", + " 15_min hour month avg_bo_spread \\\n", + "linear regression coefficients 0.000002 0.000007 0.000017 0.000603 \n", + "lasso regression coefficients -0.000000 -0.000000 0.000000 -0.000000 \n", + "\n", + " pca high_bid range period_return \\\n", + "linear regression coefficients 0.001265 0.007099 0.018637 0.183853 \n", + "lasso regression coefficients -0.000000 0.000000 -0.000000 0.000000 \n", + "\n", + " ohlc_price open_bid close_bid \n", + "linear regression coefficients 0.200127 0.300594 0.504454 \n", + "lasso regression coefficients 0.000000 0.000000 0.000000 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reg_lasso = linear_model.Lasso(alpha = 0.1) # Lasso takes care of regularisation\n", + "reg_linear = linear_model.LinearRegression()\n", + "\n", + "reg_linear.fit(X_train, y_train)\n", + "reg_lasso.fit(X_train, y_train)\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg_linear.coef_), list(reg_lasso.coef_)]\n", + " , index=[\"linear regression coefficients\", \"lasso regression coefficients\"])\n", + "\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg_linear.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='linear regression coefficients', axis=1)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- what mae is acceptible as a result? If i invest based on my prediction, and it goes the other way i lose money. \n", + "- Therefore, check the directional error, not MAE. Compare close with next close. If my prediction - actual next close has the same sign and value of that measure, count as accurate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check regression errors" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def check_error_metrics(df, y_train, y_test, X_train_pred, X_test_pred, y_prev):\n", + "\n", + " #compute direction of next step\n", + "# if len(X_test.shape) >2:\n", + "# y_prev = X_test[:,0,idx_close_bid]\n", + "# else:\n", + "# y_prev = X_test[:,idx_close_bid]\n", + " err_list = []\n", + " \n", + " pred_directions = X_test_pred - y_prev\n", + " act_directions = y_test - y_prev\n", + " pred_returns = X_test_pred / y_prev-1\n", + " act_returns = y_test / y_prev -1\n", + "\n", + " \n", + "\n", + " sign_error = np.sign(pred_directions) != np.sign(act_directions)\n", + " actual_minus_pred = act_directions - pred_directions\n", + " abs_actual_minus_prod = abs(act_directions) - abs(pred_directions)\n", + " return_vals = act_returns - pred_returns\n", + "\n", + " # how often do you make a negative 1 percent return when a positive return was predicted\n", + "\n", + " err_list= [\n", + " [\"mse train all feature: \", mean_squared_error(y_train, X_train_pred)]\n", + " ,[\"mse test all feature: \", mean_squared_error(y_test, X_test_pred)]\n", + " ,[\"mae train all feature: \", mean_absolute_error(y_train, X_train_pred)]\n", + " ,[\"mae test all feature: \", mean_absolute_error(y_test, X_test_pred)]\n", + " ,[\"mean avg bo spread: \", df.avg_bo_spread.mean()]\n", + " \n", + "\n", + " ,[\"how often sign of price change is same: \", (sign_error==False).sum() / len(sign_error)]\n", + "\n", + " # if correct sign, how often larger than actual value, smaller than actual value\n", + " # generally good profit\n", + " ,[\"if same sign, how often is actual better than 0.1 percent in both directions: \"\n", + " , (abs(act_directions[~sign_error]) > 0.001).sum() / len(act_directions[~sign_error])]\n", + "\n", + " # positive surprise\n", + " ,[\"if same sign, how often is actual better than predicted in both directions: \"\n", + " , (abs_actual_minus_prod[~sign_error] > 0).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + " # positive suprise of least 10 bp\n", + " ,[\"if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: \", \n", + " (abs_actual_minus_prod[~sign_error] > 0.001).sum() / len(abs_actual_minus_prod[~sign_error])]\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions\",\n", + " (abs(return_vals[sign_error]) > 0.001).sum() / len(return_vals[sign_error])]\n", + " \n", + " ,[\"if not same sign, how often is actual worse than -0.1 percent return in both directions\",\n", + " (abs(act_returns[sign_error]) > 0.001).sum() / len(act_returns[sign_error])]\n", + " ] \n", + " # show histogram of returns if sign error\n", + " plt.hist(act_returns[sign_error], bins=20)\n", + " plt.title(\"returns if pred and act sign mismatches\")\n", + " plt.show()\n", + " \n", + " df_err = pd.DataFrame(err_list)\n", + " \n", + " for el in err_list:\n", + " print(el)\n", + " \n", + " \n", + " return df_err\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFXCAYAAADj40TtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHkFJREFUeJzt3XtYlHX+//HXMCDGQTwsVlvppV4iqWuiaXl5aFM3NTEi\nIzyhrGmWZJfaKq6r4CnTNjfTWt1aW/eizbNZuVtpYpqJZh5a1yx3TfGQl7KGCoKc5vP7w5/zlRUQ\nB/igw/Pxl8Pc9z2f+83Ik3vEwWGMMQIAANb4VPcCAACoaYgvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8YU1x48f15gxY6w/7qZNmzRr1ixJ0sGDB9WzZ09FR0frxIkTVf7Yo0aN0tq1a6vk2EuWLNGk\nSZMq5Viff/65Xn/99RvaJyoqShcuXKiUxy+v3/3ud9q+fXuVPkZ5nqcnTpxQREREla4D3s23uheA\nmuPHH3/UkSNHrD9ujx491KNHD0mXQ/zAAw/opZdesr6Om9n+/ft1/vz5G9rngw8+qKLVlM7G5626\nnqeoWYgvKmTnzp166aWXFBAQoJycHK1evVrbtm3TokWLVFBQoNq1aysxMVFt2rTRlClTdPr0aT39\n9NOaPn26+vXrp71790q6fCVx5fbatWu1evVq5ebmKigoSNHR0dq4caN8fHyUnp4uPz8/zZ07V2Fh\nYdqwYYMWLVokh8Mhp9OpiRMnqkOHDsXWuHbtWn366afq27evli1bpqKiIl26dEnz5s0rtl3Lli01\nbNgw7dy5Uzk5ORo/frweeeSRa9aTkpKiVatWadmyZXK5XKpbt66mTp2qZs2a6fTp05o0aZLOnDmj\nn//85zp79myJczty5IhmzJihnJwcnTlzRuHh4Zo/f778/f31i1/8Qs8884y+/PJLnTlzRkOHDlV8\nfLwKCgo0a9Ysbd++XQ0aNFCDBg0UHBx8zbFzcnI0bdo0HT16VOfPn1dgYKBeffVVNW3aVBkZGUpO\nTtYPP/wgHx8fDRgwQPfdd5+WL1+uoqIiBQcHa9y4ccWOt2DBAm3cuFF+fn6qV6+eXn75ZTVs2FAt\nWrRQWlqaQkJC9Morryg1NVXBwcFq06aNDh8+rJSUFMXFxalt27bas2ePTp06pfbt22vu3Lny8Sn+\noltcXJxatWqlHTt26OzZsxo6dKjOnj2rr776Srm5uZo/f75atGihuLg4DR48WD179tTMmTO1Z88e\n+fn56e6779bLL7+szMxMDRs2TA8++KD27dunwsJCTZw4UStWrNAPP/yg1q1b6w9/+IN8fHy0ePFi\nffbZZ8rLy1Nubq4SExPVvXv3Ys/TJUuWaPPmzZo/f75cLpcCAgI0ffp0BQUFqaioSElJSdq/f78u\nXLigiRMnqlevXpKkRYsWacOGDXK5XLrrrruUnJys22+/vVzPV9QQBqiAHTt2mPDwcHPixAljjDFH\njhwxkZGR5qeffjLGGHPo0CHTuXNnc/HiRbNjxw7Tt29fY4wxx48fN23btnUf5+rba9asMR06dDBZ\nWVnu2+3btzenTp0yxhgzY8YMM3HiRGOMMT169DB79+41xhjzxRdfmIULF16zxjVr1phnnnnGGGPM\nggULzPTp00s8l7CwMLNo0SJjjDEHDx407du3N2fPnr1mPTt37jSDBg0yOTk57sft06ePMcaY0aNH\nm9dee80YY8zRo0dN27ZtzZo1a655rDlz5ph169YZY4zJz883kZGR5pNPPnGvIyUlxRhjzP79+03r\n1q3NpUuXzNKlS83QoUNNXl6euXjxoomOjjaJiYnXHPvjjz82M2fOdN+eOnWqmTFjhjHGmISEBDN3\n7lxjjDEXLlwwffv2NUePHi11Lj/++KNp166dycvLM8YYs2TJErNx40b3Os+ePWuWLVtmBg8ebC5d\numTy8vLM8OHDzZAhQ4wxxgwZMsS88MILpqioyGRlZZkuXbqYtLS0ax5nyJAh5vnnnzfGGLNv3z4T\nFhZmNm3aZIwx5qWXXjJTpkxxb/fxxx+bXbt2md69exuXy2WMMeaVV14xu3fvNsePHzdhYWHms88+\nM8YYk5SUZB5++GGTlZVlLl26ZDp37mx2795tTpw4YeLi4kxubq4xxpj169ebyMhIY4wp9jzNyMgw\n7du3N99++60xxphPP/3UPP300+7HufI527Bhg+nRo4cxxpj333/fjB071hQUFBhjjFm+fLkZMWKE\nMaZ8z1fUDFz5osLuvPNO3XXXXZLkvlqLj4933+9wOHTs2LEbOmaLFi0UFBTkvt2qVSvdcccdki5f\noW7cuFGS1LdvXz3//PN66KGH1LlzZ40cObJC5zJkyBBJUnh4uMLCwrRr165r1vP5558rPT1dAwYM\ncO93/vx5nTt3Ttu3b1diYqIkqXHjxnrggQdKfJwJEyboyy+/1Ntvv62jR4/qzJkzysnJcd9/5WXy\nVq1aKT8/Xzk5OUpLS1NkZKRq1aqlWrVqqV+/fvr++++vOXbv3r11zz33KCUlRenp6frqq6/c/z65\nfft2TZgwQZIUHBys9evXlzmP22+/XeHh4YqOjla3bt3UrVs3derUqdg2W7ZsUVRUlPz9/SVJsbGx\nSklJcd//8MMPy8fHR0FBQWrcuHGpL2//6le/kiTdc889kqSuXbtKkho1aqSvvvqq2LZhYWFyOp2K\niYlRly5d1KtXL7Vp00YnTpyQn5+funfv7t43IiLC/blr2LChzp8/r3bt2mnu3Ln66KOPlJ6erm++\n+UYXL168Zk179uxR8+bNde+990qSHnnkET3yyCPux7lypRseHu5+lWPz5s3av3+/+vfvL0lyuVzK\nzc2VVPnPV9y6iC8qLCAgwP1nl8ulTp06af78+e6PnTp1Sg0bNtTXX3/t/pjD4ZC56m3FCwoKSj2m\nJNWuXbvEfceNG6cnn3xS27Zt09q1a/XWW29p7dq117ysWV5Op7PYuVy5/b/nGBUV5Y6Yy+XSmTNn\nFBIScs15+fqW/Fds/PjxKioqUp8+ffTLX/5Sp06dKrbflZA5HA5JKnZfSWu92nvvvaeVK1dq8ODB\n6tevn+rWrev+4TJfX1/3MaXLP1xUr169Uufh4+Ojd999V/v371daWppmz56tBx54QFOmTCn1HP93\n9qV97v5XrVq1it328/MrdV116tTRBx98oD179mjHjh0aO3ashg4dqp49e8rPz6/YOZZ0nAMHDmj0\n6NGKj49X586d1aFDB02fPv2a7ZxOZ7FjGWP0/fffKygoqNhxr97G5XJpxIgRGjRokCQpPz/f/Q1H\nZT9fceviM45K9eCDD+rLL7/U4cOHJV2+KnrssceUl5cnp9PpjmydOnVUUFCg//znP5LkvpK9EYWF\nherevbtycnI0cOBAJScn6/DhwyosLPR4/evWrZN0+YvzkSNHSvz3uM6dO+vvf/+7zpw5I0latmyZ\nhg0bJuny1dqKFSskXf7BnZ07d5b4ONu2bVNCQoIeffRRORwOffPNNyoqKipzbV27dtW6deuUl5en\nvLw8/eMf/yj12NHR0YqJiVGTJk2UmprqPnanTp20Zs0aSVJWVpaGDRumo0ePyul0lji37777TpGR\nkWrWrJlGjRql+Pj4a662H3roIX344YfKz89XYWGh3n///TLPozJs3rxZ8fHxioiI0JgxY/T444/r\nu+++K/f+u3btUuvWrfXrX/9aHTt21KZNm9wzuvp5et999+nw4cP697//LenyD+xd+aarNF26dNHq\n1auVnZ0tSXr99dc1ceLEKnm+4tbFlS8qVfPmzTVjxgyNHz9exhj5+vpq0aJFCggIUPPmzeV0OvXk\nk09q1apVmjBhgkaOHKn69eurd+/eN/xYvr6+mjx5sn7zm9+4r+hmz559zRXUjdizZ49Wrlwpl8ul\n1157TSEhIdds07VrV40cOVLDhw+Xw+FQUFCQ3njjDTkcDiUnJ+u3v/2t+vTpozvuuEPh4eElPs64\nceOUkJCgkJAQ3XbbberQocN1X5ofMGCAjh07psjISNWtW1eNGzcucbvhw4crKSlJa9euldPpVKtW\nrXTo0CFJUlJSkqZNm6Z+/frJGKNRo0apdevWKigo0JgxY+Tn56epU6e6jxUeHq4+ffqof//+CggI\nUO3atYtd9UrSE088oSNHjujxxx9XQECA7r77bt12221lnktFdevWTVu3blVkZKQCAgIUEhKimTNn\nlnv/yMhIbdiwQY8++qj8/PzUqVMnnT9/XtnZ2dc8T1999VUlJiaqqKhIQUFBeu2118o8dkxMjE6f\nPq2nnnpKDodDd955p+bMmVMlz1fcuhymtNeAgBrmyk/v1q9fv7qXckvZtm2bzp49q6ioKEnSrFmz\n5O/vf90rRKAm42VnABXSvHlzrVu3To899pj69u2rzMxMPfvss9W9LOCmxpUvAACWceULAIBlxBcA\nAMuILwAAlln5r0YZGVk2HsaKevUClJmZc/0NUSpmWHHMsGKYX8Uxw+sLDb32vdev4Mr3Bvn6lvyu\nQig/ZlhxzLBimF/FMcOKIb4AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwj\nvgAAWFau+H7zzTeKi4uTJKWnp2vgwIEaNGiQkpOT5XK5qnSBAAB4m+vG9+2339aUKVOUl5cnSXr5\n5Zc1duxYvffeezLGaNOmTVW+SAAAvMl149uoUSMtXLjQffvAgQPq2LGjJKlbt27avn171a0OAAAv\ndN3fatSrVy+dOHHCfdsYI4fDIUkKDAxUVtb1f2NRvXoBXvUm3GX9pgqUj7fMsN+LH1Tq8T6aF1Xu\nbb1lhtWF+VUcM/TcDf9KQR+f/7tYvnjxourUqXPdfbzp106FhgZ71a9IrA7MsHTlnQszrBjmV3HM\n8Poq9VcKtmzZUjt37pQkbd26Vffff7/nKwMAoAa64fgmJiZq4cKFio2NVUFBgXr16lUV6wIAwGuV\n62Xnu+++WytXrpQkNWnSRO+++26VLgoAAG/Gm2wAAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAA\nLCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGCZryc7FRQU\naNKkSTp58qR8fHw0c+ZMNWvWrLLXBgCAV/LoynfLli0qLCzU8uXLlZCQoPnz51f2ugAA8FoexbdJ\nkyYqKiqSy+VSdna2fH09uoAGAKBG8qiaAQEBOnnypPr06aPMzEwtXry4zO3r1QuQr6/TowXejEJD\ng6t7Cbc8ZliyG5kLM6wY5ldxzNBzHsV36dKl6tKli1588UWdOnVKw4YN00cffSR/f/8St8/MzKnQ\nIm8moaHBysjIqu5l3NKYYenKOxdmWDHMr+KY4fWV9c2JR/GtU6eO/Pz8JEkhISEqLCxUUVGRZ6sD\nAKCG8Si+8fHxmjx5sgYNGqSCggKNGzdOAQEBlb02AAC8kkfxDQwM1Ouvv17ZawEAoEbgTTYAALCM\n+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8A\nAJYRXwAALCO+AABYRnwBALDM19Md//SnPyk1NVUFBQUaOHCgYmJiKnNdAAB4LY/iu3PnTu3du1fL\nli1Tbm6u3nnnncpeFwAAXsuj+G7btk1hYWFKSEhQdna2Jk6cWNnrAgDAa3kU38zMTP34449avHix\nTpw4oeeee06ffPKJHA5HidvXqxcgX19nhRZ6MwkNDa7uJdzymGHJbmQuzLBimF/FMUPPeRTfunXr\nqmnTpqpVq5aaNm0qf39//fTTT2rQoEGJ22dm5lRokTeT0NBgZWRkVfcybmnMsHTlnQszrBjmV3HM\n8PrK+ubEo592bt++vb744gsZY3T69Gnl5uaqbt26Hi8QAICaxKMr34cffli7du3Sk08+KWOMkpKS\n5HR6z8vKAABUJY//qxE/ZAUAgGd4kw0AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhG\nfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy3yrewHwHsPnpFbq8d6Z1L1Sj3crqOwZSjVzjsDNjitf\nAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcA\nAMuILwAAlhFfAAAsq1B8z549q4ceekiHDx+urPUAAOD1PI5vQUGBkpKSVLt27cpcDwAAXs/j+M6d\nO1cDBgxQw4YNK3M9AAB4PV9Pdlq7dq3q16+vrl276q233rru9vXqBcjX1+nJQ92UQkODq3sJlaLf\nix9U9xLKNHxOaqUf86N5UZV+zJudtzxfKxtzqThm6DmP4rtmzRo5HA6lpaXp4MGDSkxM1KJFixQa\nGlri9pmZORVa5M0kNDRYGRlZ1b0MeKgmfu5q4jlfD3+PK44ZXl9Z35x4FN+//e1v7j/HxcVp2rRp\npYYXAAAUx381AgDAMo+ufK+WkpJSGesAAKDG4MoXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIA\nYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAA\ny4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLf6l4Aym/4nNTqXsItjxkCuBlw5QsAgGXE\nFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+\nAABYRnwBALCM+AIAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEF\nAMAy4gsAgGW+nuxUUFCgyZMn6+TJk8rPz9dzzz2nHj16VPbaAADwSh7F98MPP1TdunX1+9//XufO\nndPjjz9OfAEAKCeP4tu7d2/16tVLkmSMkdPprNRFAQDgzTyKb2BgoCQpOztbL7zwgsaOHVvm9vXq\nBcjXt3ID3e/FDyr1eB/Niyr3tqGhwdfdprLXB3iqPM/Xmsib5lIVX2/K8zXRm2Zom0fxlaRTp04p\nISFBgwYNUr9+/crcNjMzx9OHsSYjI6tc24WGBpd7W+BmwPP1Wvw9vr7rzYcZXl9Z35x4FN///ve/\nGj58uJKSktSpUyePFwYAQE3k0X81Wrx4sS5cuKA//vGPiouLU1xcnC5dulTZawMAwCt5dOU7ZcoU\nTZkypbLXAgBAjcCbbAAAYBnxBQDAMuILAIBlxBcAAMuILwAAlhFfAAAsI74AAFhGfAEAsIz4AgBg\nGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgCAGAZ8QUAwDLiCwCAZcQXAADL\niC8AAJYRXwAALCO+AABY5lvdC7hZDJ+TWt1LAKrEzf7cfmdS9+pewnXd7DOsiaric2LzuciVLwAA\nlhFfAAAsI74AAFhGfAEAsIz4AgBgGfEFAMAy4gsAgGXEFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCw\njPgCAGAZ8QUAwDLiCwCAZcQXAADLiC8AAJYRXwAALCO+AABYRnwBALCM+AIAYBnxBQDAMuILAIBl\nxBcAAMuILwAAlvl6spPL5dK0adP0/fffq1atWpo1a5YaN25c2WsDAMAreXTl+9lnnyk/P18rVqzQ\niy++qDlz5lT2ugAA8FoexXf37t3q2rWrJKlt27b617/+VamLAgDAm3n0snN2draCgoLct51OpwoL\nC+XrW/LhQkODPVtdGT6aF1XpxwRQc9zI1yW+3pSsKr62l9et/jnx6Mo3KChIFy9edN92uVylhhcA\nABTnUXzbtWunrVu3SpL27dunsLCwSl0UAADezGGMMTe605Wfdj506JCMMZo9e7aaNWtWFesDAMDr\neBRfAADgOd5kAwAAy4gvAACW1ej4Xrp0SWPGjNGgQYM0cuRI/fTTT9dss3LlSj3xxBN66qmntHnz\n5jL327dvn2JiYjRgwAC98cYbxY6Tm5urqKgo9w+qeQtbM5w7d65iY2PVv39/rVy50s7JVTGXy6Wk\npCTFxsYqLi5O6enpxe5PTU1V//79FRsb6z7n0vZJT0/XwIEDNWjQICUnJ8vlckkqefbewsb8li5d\nqpiYGMXExFzzd9ob2JjhlX1GjBihZcuW2Tu5m52pwd555x2zYMECY4wx69evNzNnzix2/5kzZ0xk\nZKTJy8szFy5ccP+5tP0ee+wxk56eblwulxkxYoQ5cOCA+1iTJk0yUVFRZsuWLZbOzg4bM0xLSzOj\nR482xhiTl5dnevbsac6dO2fxLKvGp59+ahITE40xxuzdu9c8++yz7vvy8/Pd55mXl2eeeOIJk5GR\nUeo+o0aNMjt27DDGGDN16lSzYcOGUmfvLap6fseOHTPR0dGmsLDQuFwuExsbaw4ePGj5LKtWVc/w\ninnz5pmYmBjz3nvv2Tq1m16NvvK9+p26unXrprS0tGL3//Of/1RERIRq1aql4OBgNWrUSN99912J\n+2VnZys/P1+NGjWSw+FQly5dtH37dknSkiVLFBERofDwcLsnaIGNGUZERGj27NnuYxYVFXnF/ysv\n653iDh8+rEaNGikkJES1atVS+/bttWvXrlL3OXDggDp27Cjp8jy3b99e6uy9RVXP74477tCf//xn\nOZ1OORwOFRYWyt/f3/JZVq2qnqEkffLJJ3I4HO59cNmt/xWsnFatWqW//vWvxT7WoEEDBQdffoeW\nwMBAZWVlFbs/Ozvbff+VbbKzs4t9/Mp+//uuX4GBgTp+/LjS0tKUnp6uGTNmaM+ePVV1elZU1wz9\n/f3l7++vgoICTZo0SbGxsQoMDKyq07SmrHeKK2tuJe1jjJHD4XBve2WeJR3DW1T1/Pz8/FS/fn0Z\nY/TKK6+oZcuWatKkib0TtKCqZ3jo0CGtX79eCxYs0JtvvmnvxG4BNSa+V/7d5mrPP/+8+526Ll68\nqDp16hS7/3/fyevixYsKDg4u9vEr+5W0bZ06dbR69WqdPHlScXFx+uGHH3TgwAGFhobq3nvvrapT\nrTLVNUNJOn/+vF544QV17NhRo0aNqpLzs62sd4orz9yu3sfHx6fYtqXN8+ovpre6qp6fJOXl5Wny\n5MkKDAxUcnJyVZ+SdVU9w3Xr1un06dMaNmyYTp48KT8/P911113q1q2bhbO7udXol53btWunLVu2\nSJK2bt2q9u3bF7u/TZs22r17t/Ly8pSVlaXDhw8rLCysxP2CgoLk5+enY8eOyRijbdu26f7779e8\nefO0fPlypaSkqGvXrpowYcItGd7S2JjhpUuXFB8fr/79+yshIcH6OVaVst4prlmzZkpPT9e5c+eU\nn5+vr7/+WhEREaXu07JlS+3cuVPS5Xnef//9pc7eW1T1/IwxGj16tFq0aKEZM2bI6XRaPsOqV9Uz\nnDhxolatWqWUlBRFR0crPj6e8P5/NfpNNnJzc5WYmKiMjAz5+flp3rx5Cg0N1V/+8hc1atRIPXr0\n0MqVK7VixQoZYzRq1Cj16tWr1P327dun2bNnq6ioSF26dNG4ceOKPd6kSZP06KOPetWTz8YMly5d\nqjfeeKPYNy2zZ8/WPffcU41nXnElvVPct99+q5ycHMXGxio1NVVvvvmmjDHq37+/Bg8eXOq7yx05\nckRTp05VQUGBmjZtqlmzZsnpdJY4e29R1fNLTU3V+PHj1bZtW/djjh8/XhEREdV41pXLxnPwioUL\nF+pnP/uZBg4cWI1nfPOo0fEFAKA61OiXnQEAqA7EFwAAy4gvAACWEV8AACwjvgAAWEZ8AQCwjPgC\nAGAZ8QUAwLL/B36M6wikk3reAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['mse train all feature: ', 4.4521161e-07]\n", + "['mse test all feature: ', 6.5240918e-08]\n", + "['mae train all feature: ', 0.00042638468]\n", + "['mae test all feature: ', 0.00020227849]\n", + "['mean avg bo spread: ', 3.9868658581951545e-05]\n", + "['how often sign of price change is same: ', 0.55339805825242716]\n", + "['if same sign, how often is actual better than 0.1 percent in both directions: ', 0.0]\n", + "['if same sign, how often is actual better than predicted in both directions: ', 0.98245614035087714]\n", + "['if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions: ', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions', 0.0]\n", + "['if not same sign, how often is actual worse than -0.1 percent return in both directions', 0.0]\n" + ] + } + ], + "source": [ + "df_err = check_error_metrics(df, y_train, y_test, reg_linear.predict(X_train), reg_linear.predict(X_test), X_test[:,idx_close_bid])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# log results\n", + "log=True\n", + "\n", + "if log:\n", + " \n", + " simname= \"linear regression\"\n", + " sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = pd.Series(reg_linear.predict(X_test) - y_test).describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345
simname500_epochs500_epoch_lookback_40linear regressionlinear regression500_epochs_40_lookback_pca_unshuffledlinear regression
sim_desc\\nkaggle params but with 500 epochs to account...500 iterations, lookback 401 row lookback1 row lookbackadded directional errors checking and pca as f...1 row lookback
MSE1.59188e-071.97246e-076.79626e-076.55241e-084.82937e-076.52409e-08
MAE0.0002857810.0003408460.0005363070.0002029050.0005944820.000202278
count102102103103102103
mean-9.29131e-07-3.83515e-05-5.08408e-05-2.90581e-050.000506372-2.31451e-05
std0.0004009530.000444650.0008268490.0002555660.0004782960.000255616
min-0.00135148-0.00127888-0.00317997-0.000772953-0.00072515-0.000772119
25%-0.000158489-0.000304043-0.000402606-0.0002006290.000192821-0.000199616
50%6.07371e-05-5.84126e-06-3.07747e-05-2.43187e-050.000540495-1.14441e-05
75%0.0002399680.000177890.000316920.0001162290.0008309780.000123918
max0.0007556680.001287820.003273720.00053370.001593350.000535846
mse train all feature:004.3917e-074.45245e-075.16241e-074.45212e-07
mse test all feature:006.79626e-076.55241e-084.82937e-076.52409e-08
mae train all feature:000.0004235650.0004267730.0005053850.000426385
mae test all feature:000.0005363070.0002029050.0005944820.000202278
mean avg bo spread:003.98687e-053.98687e-053.98687e-053.98687e-05
how often sign of price change is same:000.4466020.5339810.8823530.553398
if same sign, how often is actual better than 0.1 percent in both directions:000.15217400.6555560
if same sign, how often is actual better than predicted in both directions:000.97826110.3666670.982456
if same sign, how often is actual better than predicted by more than 0.001 USD per EUR in both directions:000.15217400.06666670
if not same sign, how often is actual worse than -0.1 percent return from predicted in both directions000.10526300.3333330
if not same sign, how often is actual worse than -0.1 percent return in both directions000.105263000
\n", + "
" + ], + "text/plain": [ + " 0 \\\n", + "simname 500_epochs \n", + "sim_desc \\nkaggle params but with 500 epochs to account... \n", + "MSE 1.59188e-07 \n", + "MAE 0.000285781 \n", + "count 102 \n", + "mean -9.29131e-07 \n", + "std 0.000400953 \n", + "min -0.00135148 \n", + "25% -0.000158489 \n", + "50% 6.07371e-05 \n", + "75% 0.000239968 \n", + "max 0.000755668 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 1 \\\n", + "simname 500_epoch_lookback_40 \n", + "sim_desc 500 iterations, lookback 40 \n", + "MSE 1.97246e-07 \n", + "MAE 0.000340846 \n", + "count 102 \n", + "mean -3.83515e-05 \n", + "std 0.00044465 \n", + "min -0.00127888 \n", + "25% -0.000304043 \n", + "50% -5.84126e-06 \n", + "75% 0.00017789 \n", + "max 0.00128782 \n", + "mse train all feature: 0 \n", + "mse test all feature: 0 \n", + "mae train all feature: 0 \n", + "mae test all feature: 0 \n", + "mean avg bo spread: 0 \n", + "how often sign of price change is same: 0 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 2 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.79626e-07 \n", + "MAE 0.000536307 \n", + "count 103 \n", + "mean -5.08408e-05 \n", + "std 0.000826849 \n", + "min -0.00317997 \n", + "25% -0.000402606 \n", + "50% -3.07747e-05 \n", + "75% 0.00031692 \n", + "max 0.00327372 \n", + "mse train all feature: 4.3917e-07 \n", + "mse test all feature: 6.79626e-07 \n", + "mae train all feature: 0.000423565 \n", + "mae test all feature: 0.000536307 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.446602 \n", + "if same sign, how often is actual better than 0... 0.152174 \n", + "if same sign, how often is actual better than p... 0.978261 \n", + "if same sign, how often is actual better than p... 0.152174 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "if not same sign, how often is actual worse tha... 0.105263 \n", + "\n", + " 3 \\\n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.55241e-08 \n", + "MAE 0.000202905 \n", + "count 103 \n", + "mean -2.90581e-05 \n", + "std 0.000255566 \n", + "min -0.000772953 \n", + "25% -0.000200629 \n", + "50% -2.43187e-05 \n", + "75% 0.000116229 \n", + "max 0.0005337 \n", + "mse train all feature: 4.45245e-07 \n", + "mse test all feature: 6.55241e-08 \n", + "mae train all feature: 0.000426773 \n", + "mae test all feature: 0.000202905 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.533981 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 1 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 4 \\\n", + "simname 500_epochs_40_lookback_pca_unshuffled \n", + "sim_desc added directional errors checking and pca as f... \n", + "MSE 4.82937e-07 \n", + "MAE 0.000594482 \n", + "count 102 \n", + "mean 0.000506372 \n", + "std 0.000478296 \n", + "min -0.00072515 \n", + "25% 0.000192821 \n", + "50% 0.000540495 \n", + "75% 0.000830978 \n", + "max 0.00159335 \n", + "mse train all feature: 5.16241e-07 \n", + "mse test all feature: 4.82937e-07 \n", + "mae train all feature: 0.000505385 \n", + "mae test all feature: 0.000594482 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.882353 \n", + "if same sign, how often is actual better than 0... 0.655556 \n", + "if same sign, how often is actual better than p... 0.366667 \n", + "if same sign, how often is actual better than p... 0.0666667 \n", + "if not same sign, how often is actual worse tha... 0.333333 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "\n", + " 5 \n", + "simname linear regression \n", + "sim_desc 1 row lookback \n", + "MSE 6.52409e-08 \n", + "MAE 0.000202278 \n", + "count 103 \n", + "mean -2.31451e-05 \n", + "std 0.000255616 \n", + "min -0.000772119 \n", + "25% -0.000199616 \n", + "50% -1.14441e-05 \n", + "75% 0.000123918 \n", + "max 0.000535846 \n", + "mse train all feature: 4.45212e-07 \n", + "mse test all feature: 6.52409e-08 \n", + "mae train all feature: 0.000426385 \n", + "mae test all feature: 0.000202278 \n", + "mean avg bo spread: 3.98687e-05 \n", + "how often sign of price change is same: 0.553398 \n", + "if same sign, how often is actual better than 0... 0 \n", + "if same sign, how often is actual better than p... 0.982456 \n", + "if same sign, how often is actual better than p... 0 \n", + "if not same sign, how often is actual worse tha... 0 \n", + "if not same sign, how often is actual worse tha... 0 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot residuals" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9slded5/HPee61MRgbOw2E1ECAFLolIUsg051xN9WW\nKOoozUgzYlIIVbRqo5l2dtSZaKsqUdQfkZIm2a40qoSizE5G/WOroqRpZ0dpaJVRQrJocdoNpMSA\ndwIDGGxDwYB//8C+vmf/ODzX917f3/fa9z6P3y8JCfv63vv8Ouc5z/me8z3GWmsFAAAAAAAAAAAA\nBJxX7Q0AAAAAAAAAAAAAKoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCIVrKm+LxuJ555hl9/PHHqq+v13PPPac77rgj8frBgwf1\n0ksvKRqNateuXfryl7+s6elpPf300+rr69PU1JT+6q/+Sg888IDOnz+vp556SsYYbdq0Sd///vfl\nebnjcf39I6VsNoAF0tq6TAMD49XeDAAoCnUXgKCi/gIQRNRdAIKK+guoDStXNmV9raQZX2+//bam\npqb02muv6Vvf+pZefPHFxGvT09N64YUX9OMf/1g/+clP9Nprr+nq1at644031NLSov379+sf//Ef\n9eyzz0qSXnjhBT3xxBPav3+/rLV65513StkkADUkGo1UexMAoGjUXQCCivoLQBBRdwEIKuovoPaV\nFPg6evSo7r//fknStm3bdOLEicRrZ86c0bp167RixQrV19drx44d+uCDD/THf/zH+tu//VtJkrVW\nkYirIE6ePKnPfvazkqTPf/7z6ujoKGuHAAAAAAAAAAAAsDiVlOpwdHRUy5cvT/wciUQUi8UUjUY1\nOjqqpqbZKWaNjY0aHR1VY2Nj4r1/8zd/oyeeeEKSC4IZYxJ/OzKSP41ha+syIutAjcs11RQAahV1\nF4Cgov4CEETUXQCCivoLqG0lBb6WL1+usbGxxM/xeFzRaDTja2NjY4lA2KVLl/TXf/3X2rt3r/7k\nT/5EklLW8xobG1Nzc3Pe7yeHKlDbVq5sYi0+AIFD3QUgqKi/AAQRdReAoKL+AmpDxdf42r59uw4d\nOiRJOnbsmDZv3px47c4779T58+c1ODioqakpHTlyRPfee6+uXr2qr33ta/r2t7+tP//zP0/8/ZYt\nW/Tb3/5WknTo0CHdd999pWwSAAAAAAAAAAAAFjljrbXFvikej+uZZ57RqVOnZK3V888/r66uLo2P\nj2v37t06ePCgXnrpJVlrtWvXLn3lK1/Rc889p1//+tfauHFj4nNeeeUVXbp0Sd/97nc1PT2tjRs3\n6rnnnkus/5UNEXWgtjHyBUAQUXcBCCrqLwBBRN0FIKiov4DakGvGV0mBr2qjYgFqGw0AAEFE3QUg\nqKi/AAQRdReAoKL+AmpDxVMdAgAAAAAAAAAAALWGwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHA\nFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAA\nAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAA\nQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcA\nAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAA\nAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKB\nwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAA\nAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAA\nAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAX\nAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAA\nAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABC\ngcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAA\nAAAAAAAAAEKBwBcAAAAAAAAAAABCgcAXAAAAAAAAAAAAQoHAFwAAAAAAAAAAAEKBwBcAAAAAAAAA\nAABCgcAXAAAAAAAAAAAAQqGkwFc8Htf3vvc97d69W4899pjOnz+f8vrBgwe1a9cu7d69Wz/72c9S\nXvvoo4/02GOPJX7u6urS/fffr8cee0yPPfaYfvWrX5WySQAAAAAAAAAAAFjkoqW86e2339bU1JRe\ne+01HTt2TC+++KJefvllSdL09LReeOEF/fznP9fSpUv16KOPaufOnbr11lv1yiuv6I033tDSpUsT\nn3Xy5El99atf1de+9rXK7BEAAAAAAAAAAAAWpZJmfB09elT333+/JGnbtm06ceJE4rUzZ85o3bp1\nWrFiherr67Vjxw598MEHkqR169Zp3759KZ914sQJvffee/rKV76ip59+WqOjo6XuCwAAAAAAAAAA\nABaxkmZ8jY6Oavny5YmfI5GIYrGYotGoRkdH1dTUlHitsbExEcz64he/qN7e3pTPuueee/TII4/o\n7rvv1ssvv6yXXnpJTz75ZM7vb21dpmg0UsqmA1ggK1c25f8jAKgx1F0Agor6C0AQUXcBCCrqL6C2\nlRT4Wr58ucbGxhI/x+NxRaPRjK+NjY2lBMLSPfjgg2pubk78/9lnn837/QMD46VsNoAFsnJlk/r7\nR6q9GQBQFOouAEFF/QUgiKi7AAQV9RdQG3IFoEtKdbh9+3YdOnRIknTs2DFt3rw58dqdd96p8+fP\na3BwUFNTUzpy5IjuvfferJ/1+OOPq7OzU5L0/vvv66677iplkwAAAAAAAAAAALDIlTTj68EHH9Th\nw4e1Z88eWWv1/PPP65e//KXGx8e1e/duPfXUU3r88cdlrdWuXbt02223Zf2sZ555Rs8++6zq6up0\n6623FjTjCwAAAAAAAAAAAEhnrLW22htRLKaSArWNKd8Agoi6C0BQUX8BCCLqLgBBRf0F1IaKpzoE\nAAAAAAAAAAAAag2BLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACE\nAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAA\nAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAA\nAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKB\nLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEQrTaGwAAAMKlr8+ooyOiwUGjlhar9vYZtbXZam8WAAAA\nAAAAFgECXwAAoGL6+oz274/KWiNJGhgw6u422rs3RvALAAAAAAAA845UhwAAoGI6OiKJoJfPWjcD\nDAAAAAAAAJhvBL4AAEDFDA6aon4PAAAAAAAAVBKBLwAAUDEtLZnTGWb7PQAAAAAAAFBJBL4AAEDF\ntLfPyJjUIJcxVu3tM1XaIgAAAAAAACwm0WpvAAAACI+2Nqu9e2Pq6IhocNCopcUFvdramPEFAAAA\nAACA+UfgCwAAVFRbm9Ujj8SqvRkAAAAAAABYhEh1CAAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAF\nAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAA\nAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQ\nIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAA\nAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAA\nAIBQIPAFAAAAAAAAAACAUCDwBQAAAAAAAAAAgFAg8AUAAAAAAAAAAIBQIPAFAAAAAAAAAACAUCDw\nBQAAAAAAAAAAgFAoKfAVj8f1ve99T7t379Zjjz2m8+fPp7x+8OBB7dq1S7t379bPfvazlNc++ugj\nPfbYY4mfz58/r0cffVR79+7V97//fcXj8VI2CQAAAAAAAAAAAItcSYGvt99+W1NTU3rttdf0rW99\nSy+++GLitenpab3wwgv68Y9/rJ/85Cd67bXXdPXqVUnSK6+8ou985zu6ceNG4u9feOEFPfHEE9q/\nf7+stXrnnXfK3CUAAAAAAAAAAAAsRiUFvo4ePar7779fkrRt2zadOHEi8dqZM2e0bt06rVixQvX1\n9dqxY4c++OADSdK6deu0b9++lM86efKkPvvZz0qSPv/5z6ujo6OkHQEAAAAAAAAAAMDiFi3lTaOj\no1q+fHni50gkolgspmg0qtHRUTU1NSVea2xs1OjoqCTpi1/8onp7e1M+y1orY0zib0dGRvJ+f2vr\nMkWjkVI2HcACWbmyKf8fAUCNoe4CEFTUXwCCiLoLQFBRfwG1raTA1/LlyzU2Npb4OR6PKxqNZnxt\nbGwsJRCWzvO8lL9tbm7O+/0DA+OlbDaABbJyZZP6+/MHsQGgllB3AQgq6i8AQUTdBSCoqL+A2pAr\nAF1SqsPt27fr0KFDkqRjx45p8+bNidfuvPNOnT9/XoODg5qamtKRI0d07733Zv2sLVu26Le//a0k\n6dChQ7rvvvtK2SQAAAAAAAAAAAAsciXN+HrwwQd1+PBh7dmzR9ZaPf/88/rlL3+p8fFx7d69W089\n9ZQef/xxWWu1a9cu3XbbbVk/68knn9R3v/td/d3f/Z02btyoL37xiyXvDAAAAAAAAAAAABYvY621\n1d6IYjGVFKhtTPkGEETUXQCCivoLQBBRdwEIKuovoDZUPNUhAAAAAAAAAAAAUGsIfAEAAAAAAAAA\nACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8\nAQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAA\nAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAg\nFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEA\nAAAAAAAAACAUCHwBAAAAAAAAAAAgFAh8AQAAAAAAAAAAIBQIfAEAAAAAAAAAACAUotXeAABAePX1\nGXV0RDQ4aNTSYtXePqO2NlvtzQIAAAAAAAAQUgS+AADzoq/PaP/+qKw1kqSBAaPubqO9e2MEvwAA\nAAAAAADMC1IdAgDmRUdHJBH08lnrZoABAAAAAAAAwHwg8AUAmBeDg6ao3wMAAAAAAABAuQh8AQDm\nRUtL5nSG2X4PAAAAAAAAAOUi8AUAmBft7TMyJjXIZYxVe/tMlbYIAAAAAAAAQNhFq70BAIBwamuz\n2rs3po6OiAYHjVpaXNCrrY0ZXwAAAAAAAADmB4EvAMC8aWuzeuSRWLU3AwAAAAAAAMAiQapDAAAA\nAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEv\nAAAAAAAAAAAAhAKBLwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAA\nAAAAAIRCtNobAAAAAAAAytfXZ9TREdHgoFFLi1V7+4za2my1NwsAAABYUAS+AAAAAAAIuL4+o/37\no7LWSJIGBoy6u4327o0R/AIAAMCiQqpDAAAAAAACrqMjkgh6+ax1M8AAAACAxYTAFwAAAAAAATc4\naIr6PQAAABBWBL4AAAAAAAi4lpbM6Qyz/R4AAAAIKwJfAAAAAAAEXHv7jIxJDXIZY9XePlOlLQIA\nAACqI1rtDQAAAAAAAOVpa7Pauzemjo6IBgeNWlpc0KutjRlfAAAAWFwIfAEAAAAAEAJtbVaPPBKr\n9mYAAAAAVUWqQwAAAAAAAAAAAIQCgS8AAAAAAAAAAACEAoEvAAAAAAAAAAAAhAKBLwAAAAAAAAAA\nAIRCtJQ3xeNxPfPMM/r4449VX1+v5557TnfccUfi9YMHD+qll15SNBrVrl279OUvfznre7q6uvT1\nr39d69evlyQ9+uijeuihhyqycwAAAAi2vj6jjo6IBgeNWlqs2ttn1NZmq71ZAAAAAACgRpUU+Hr7\n7bc1NTWl1157TceOHdOLL76ol19+WZI0PT2tF154QT//+c+1dOlSPfroo9q5c6c+/PDDjO85efKk\nvvrVr+prX/taRXcMAAAAwdbXZ7R/f1TWGknSwIBRd7fR3r0xgl9ACQgkAwAAAFgMSkp1ePToUd1/\n//2SpG3btunEiROJ186cOaN169ZpxYoVqq+v144dO/TBBx9kfc+JEyf03nvv6Stf+YqefvppjY6O\nlrtPAAAACIGOjkgi6OWz1nXcAyiOH0g+d87TwIDRuXOe9u+Pqq/P5H8zAAAAAARISTO+RkdHtXz5\n8sTPkUhEsVhM0WhUo6OjampqSrzW2Nio0dHRrO+555579Mgjj+juu+/Wyy+/rJdeeklPPvlkzu9v\nbV2maJQOD6CWrVzZlP+PAKDGUHfVllhMamzM/PuVKxd+e4Balq/+eustadmyub8/cULatm2eNgoA\n8qDtBSCoqL+A2lZS4Gv58uUaGxtL/ByPxxWNRjO+NjY2pqampqzvefDBB9Xc3CxJevDBB/Xss8/m\n/f6BgfFSNhvAAlm5skn9/SPV3gwAKAp1V+2JRqMaG5uboGDVqrj6+2NV2CKgNhVSf124UKexsbmz\nuy5csOrvn56vTQOArGh7AQgq6i+gNuQKQJeU6nD79u06dOiQJOnYsWPavHlz4rU777xT58+f1+Dg\noKampnTkyBHde++9Wd/z+OOPq7OzU5L0/vvv66677iplkwAAABAy7e0zMiZ1/SFj3LpEAIrT0pJ5\nLa9svwcAAACAoCppxteDDz6ow4cPa8+ePbLW6vnnn9cvf/lLjY+Pa/fu3Xrqqaf0+OOPy1qrXbt2\n6bbbbsv4Hkl65pln9Oyzz6qurk633nprQTO+AAAAEH5tbVZ798bU0RHR4KBRS4sLerW10VEPFKu9\nfUbd3SZl3TwCyQAAAADCyFhrA9dzwFRSoLYx5RtAEFF3AQiqQuuvvj5DIBlAzaDtBSCoqL+A2pAr\n1WFJM74AAAAAAMHS1mb1yCOsjwcAAAAg3Ah8AQAAAACARYvZkAAAAOFC4AsAAFQcHUgAACAI+vqM\n9u+PJta/Gxgw6u422rs3RtsFAAAgoLxqbwAAAAgXvwPp3DlPAwNG58552r8/qr4+U+1NAwAASNHR\nEUkEvXzWugE8AAAACCYCXwAAoKLoQAIAAEExOJh5YE623wMAAKD2keoQAIAKILXfLDqQAABAULS0\nWA0MzG2jtLQsznYcAABAGBD4AgCgTKwNkYoOJAAAEBTt7TPq7jYps9WNcYOYFhsGcgEAgLAg1SEA\nAGUitV+q9vYZGZPaSbJYO5AAAEBta2uz2rs3pg0b4mpttdqwIb4oBy+xRisAAAgTZnwBAFAmUvul\n8juQGDEMAACCoK3N6pFHYtXejKrKNZBrsR8bAAAQPAS+AAAoE6n95qIDCQAAIDgYyAUAAMKEVIcA\nAJSJ1H4AAAAIsmwDthbzQC4AABBcBL4AACgTa0MAAAAgyBjIBQAAwoRUhwAAVACp/QAAABBUrNEK\nAADChMAXAAAAAADAIsdALgAAEBYEvgAgoPr6DCMygYCgvAILj3IHAAAAAIsTgS8ACKC+PqP9+6Oy\n1kiSBgaMursN60rlQAcoqoXyCiw8yh0AAAAALF4EvgAggDo6IonOPJ+1LrBDepK56ABFNVFegfmX\nPrhhYECUOwAAAABYpAh8AUAADQ6aon6/2BF4QDVRXoH5lWlww4cfGm3aJDU1pQ5uoNwBQH5kSgAA\nAEFH4AsAAsiNZp/bedfSUpkH0rA97BJ4QDXNd3kFFrtMgxsaGqSeHqMtW1LLGeUOwGJWSBufTAkA\nACAMCHwBQAC1t8+ou9ukdPQZ4x5eyxXGh91cgYewBflQe+azvALIPIhhzRqrf/u31N9T7gAsZoW2\n8cmUgLDgOQ8AFjev2hsAACheW5vV3r0xbdgQV2ur1YYN8YoFpnI97AZVe/uMjEk9NsZYbdw4o/37\nozp3ztPAgNG5c57274+qr4+ZYKic+SyvADLP4mpulr7wBcodAPgKbeOTKQFh4Ad6ec4DgMWLGV8A\nEFBtbXZeRl2G8WHXDzykj/hjRCsWynyVVwDZZ1U+/HB1RnYzwhy1imuz+qp5Dgpt45OiGWHAcx4A\ngMAXgEDiwX3+hPVhN1PgIYxBvoVGWQRQbdkGN1Qr6BWEdMHU3YtPUK7NMKv2OSi0jU+KZoQBz3kA\nAAJfAAKn2g+NYbeYHnaDHuSrdsclZRFAsmrWSbUyq7JWR5gnnxtrrXp6jJqaqLsXk1q9NheTap+D\nQtv4tTSYAChEpvZH0J/zAADlI/AFIHCq/dA4n6odyJAKf9ithW0tV5CDfLUQdApzWayWMJQrLE61\nUCfVglocYZ5+brq6IhoYkLZujau52f0NdXf41eK1GQSVvC9X+xwUE9CqlcEEQD7Z2h87d8YC+5wH\nAKgMAl8AAqfaD43zpZY6DfM97CZv68iI0eHDRr/4RVRf+EKsamuqlCLII1prIegU1rJYLbVUBwDF\nqoU6qRbU4gjz9HMzOen+39trtGXL7HZRd4dbLV6bta7S9+VCz8F8DoIhoLVwGMy0MLK1P86ejQT2\nOQ8AUBkEvgAETlgf3IPUaehv68iI0fHjnuzNQ//++xEND892CAThgS+5AyAI2+urhaBTWMtitQSp\nDgDS1UKdVAtqcSZx+jloaLCamDA3A2Cz9fV81t3+/bW72+jKFU+rVsW1fn1t32fLUYvtiVq8Nmtd\npe/LhZyDWhsEU4vXchDU2nkMs1ztDwK9ALC4EfgCEDhhfXAPUqehv009PSYR9JLcKHK/Q6C9fSZQ\nD3xBe0CthaBTWMtitQSpDgDS1UKdVI5Kde7W4kzi9HOzdq3V4KBRQ8PsNs1n3e3fX4eHvcRgmVOn\njIaG4jV9ny1VrbYnqnltzkfwZCECMpW+LxdyDmppEEyuFHJnz9ZOHVeLauk8hl3Q2x8AgPlD4AtA\n4NRip1IlBKnR7m+rny7J53eiDQ6awD3wBW1704NOw8MubZUxRq+/Hl2QMhHWslgtQaoDsDgU07Ec\n5EB4pQMVtTbCPP3cNDVZbd06ozVr4vK8+a+7/ftr6mAZo95eo+Zm1ex9tlDp5eT6ddVse6Ia1+Z8\nBALL/cxC67ZK3JczfVeuc1BLg2AytY2Hhz3t21evNWusenvds8CBAxF985tT2rGD9oqvnPPILLvi\nBLn9AQCYXwS+AARSrXUqVUKQGu3+tvrpkhyrNWvcQ1lLi63Ig/tCPvjVUkdDIZKDTt3dRr29ntau\ndZ1r584t3OjyMJbFaglSHRBGpdY3Ye2gKrZjOciB8KANfChWtc+Nfx9NHyzjp1qs1ftsITKVkw8/\n9PSpT8XV3Jz6t0Hez3LMR/kq5zOLqdvKvS+XEqCrpUEwma7Znh6jgQHd3Eb3+sSE0b599frBD6YC\nUecvhFLPY63OGC1UNdpE1b7HAQBqV+SZZ555ptobUazx8alqbwKwqPT1Gb31VlQdHRGdPeuppcXO\neZhP1ti4JFTltNj9L1Vzs7R+vdXoqNHQkNTf76mx0WpkxMzbd5bK39bJSTfLqKnJatMmt43GWD30\n0Iz6+03GB+bbb7e666543u/wH/wGBjxNTrrPOnHC0/r1hR2LYs/b2bNeWdtbDc3N0l13xXXxoqe6\nOqMlS5JfNRodNTW77aWaz/JY7boruQ4wxl17Dz2U/8F9oeqoMCu1vim3nqplb73l9itV7nrFr5N2\n7IjrrrvmdvzXqo6OyJygjCQZI+3YEYw6NF/9lX5uRkbmt95IrpdOnfI0MyONj6fOFG9qslq5srbv\ns/lkKicDA0bDw9LKlal/G+T9LMd8lK9yPrOYuq3U+3Ip3+VrabE6ccKTH1Ry++W+d6HqVL/8vv9+\nRBcvuval38bs6fE0NCTV16cef2Pc80Cx13i1217zpdTzWMo1Uyuq2SYKavsDwRbW+gsImsbGJVlf\nY8YXgJyCNOqskBFmxY5CW+j9b2tz29TZGVV/v9TTE9HJk1adnUbf+EZtHfO2Nqu//MuYvvSlmYzH\ntNxRsgs1mtcX5Nk2QZutVqr5LI+uk0e6cKGuqiNFi51BF6Q6ulZkug+UWt+EeaZQpvpjZMTo3XfD\nN6K6lmZYpJuvtZHms95I//yGBun4cU8bNrjZXS7doZslHpT7bDaZysnatVanT6f+Lqj7WYnrbz7K\nVzmfWWxzE7v6AAAgAElEQVSbqZyZ7aW0z6o9eyW5/H7iE9LFi54GBqy2bnXBhIaGuJYvT13jV3Lp\nztP3K6wzogtR6nkMcps+zG0iAEAwEfgCkFNQGrCFdOKU0tGTvP/+GkqTk56uXPH0xBPFpfMo9OHv\nzTcj6uyMKDl9yMCA0ZtvWn3967GiP2++ZesQKPfBvZwHv1Ku22p3NJRjoTttq3XtzVd95NcNy5ZJ\nY2OmJoNH2Y55UOroWpHtPpBNvvqm3A6qWqnHM0mvV0ZGjI4f99TSEtfAQG2Wk1LV6sCHcgJUua6t\nbPXGgQMRtbaq7Osx/fPdmmLS5KT0uc/FdOWKp1Wr4lq/vrau+VJkuv82NVnt3BmvyLGspkoFSOej\nfLlBYkY9PW62/uiotHy5VUuL2+5c27eQbaZSvssvu93dJlFWpEhV2lqu7MZvpjc0+vf/fkYPPDCj\nffvqU/bLGBfwTd6v5OtneFg6fNjTL34R0c6dM/rSlyq3L7V8Hy0laFrLAzHyCULQrpavFwBA5RH4\nAhZQEBtaQWjASoV1iJfSQezv5/CwG63sB6N6etzDXDGLaBfaeZAc9Jpl9P77Ed1yi9umeNyqt9dT\nU5Pyfl4xKn2NljNKdiFH8/pybW8tl99snUobN87o9dejFdnm5I6YkyfdemJNTXbOtZftOGX6vaSi\njul81Ue1HjzKVX/UQh2dr2zUUtnJdq77+41Wrpy7Tfnqm3LqqVqfrZder/T0GFk7u5ajVFvlpBy1\nOvCh1Lop37WVbTbfhx9GtH27zfieYmT6/KYmq3XrrP7iL6aL+qxal+3+W8mO/Wqp1L1x/sqX0cSE\n0cWLnqJRqa7OqqdH2r+/+Bn+IyPS9evSK69UdtZ3sUE/v+wOD3s6ftyTtdKpU0ZDQ/EFuz+kl9+m\nJqstW6xaW2fbyN/85pT27avX5KSnhgartWutmpvjKfvlXz/pz1AdHUZDQ5WbrV/L99FS1OpAjELU\netAujNfLfKildjsAlIs1voAFEtR1QEpZ9yg51/FCrT1TSK7/UtYD8Pf/zBk308vnr0tRaL71YvK1\nHzgQ1chI6nbeuCH197v1IiYnjX73O08XLkTU0qKkdZ3Ky/8+39dosddCOWscVHq9roUqv5mOUSHr\nsGRag2L79hkdPFiZbU7e/64uTwMDnq5cMUnXn7v2WlpsxuPU0GD1xhvRxPuOHvX0T/8U1TvvRDQ9\n7R7uC9m++VqHza8b6uujmp6e7ViolfV9ctUfDQ2ZO5kXai2ZfGWj1u592e4Dy5dbGSMVW98UW08l\nl/EDB6KamandtfnS65Xr143uuGPuectXTirdDpivdkUtrg9STLslue2Vr82RqS49c8YFD1LXpSrt\neiynrg7amoXlrgFViGodk0quzVXp8vXWW1GNjxsNDkrRqFFjoxSJSFNTyts+Tz9nDQ1Ww8OStcWv\n8VhK+yzX9eGX3TNnPE1M+MfeaHo6935V8hoppPx+8pPSH/xBXE1NVqtWWd1xR3zOfvnXT/ozlDFG\nt99uE/uSaY0cf39+9auI/vmf6/TRR54uXpy7X5VeD6sW6p+FqFPmSy2sT5dLputlZMTT//k/EZ0/\n7wXinjPfaq3dXutY4wuoDazxBdSAWp9RkE05o84WclRVISPMShmF5u9/6gObS+chFT6rophZGdu2\nzejiRS8ld/7wsEl8p+SCX9a6Efhbtsz+vpxZHpmu0aEhox/9qF6rVsXLSk1UyrXQ1ma1c2dMr75a\nr6tXpVtvlfbsmS7oeys9WnIhym+mY9TZ6UmyamrKf9zSZ6u9/nq06G0uJJ2e3wmWfv0NDpqsx+nV\nV+u1cqVNGfXb3+9/XjyxbkS+7ZuvUbC1PkI1V/3x0EOxqo4Mzlc2au3el+1c+/VasSNci5nJkF7G\ne3qMJieNtm51nYe+Uuvx+Rihm1yvvP56VOfOpXcw5k/ZlbzP58+7dHp33RXXihVW1kqel392aDkp\ni4Os1LopX5sjU106OSl96lNzP7eU67HUujqo57ec2e35VPOY1PK90b8u0wNz/s/FzPD3Z8Yns9bo\nzTdnMy2UUxcVc33k3q/MszWzbcvOnTGdPVv8bOxCy2++/fKvn/R98QON773nvnvdOunuu82cY1vI\nrLd8dV0x98Vaqn8yHdsgzMKp1dnTvvTrxU/h3NBgtXJlaSmcg3BeilFr7XYAKBeBL2CB1EI6qlKU\n04BdyIZTIQ9ppXTE+Pt/5Yqnnh6TSOfhd1IW+vCfqfNgeFjq7/fmpFX50pdm1NPjqafHjbRqaHCL\nv2/aNDtysaHBamJi7sNkOZ0R6dfi8LB09GhEQ0NGsVhE0ai0YoWnHTtmin4oKOVa6OszOngwqpUr\nbWIE+sGDUa1enf97K/3gtRDlN9Mx6ulxga/k4GahZajYbS40nZ5/7UmpHTMtLZk7ZCTp6lU3Urm3\n18gfBRqLuU4cyej0aaOlS93nnT9vsp6r+Xqg9uuGZLWUViZf5+OKFVbHjnkyRrrnnhk9/HB5x6SY\nh/h819ngoElaH9HVZ2vWZL9Wiv3+YuW6D5TaeV3o+9LLuF+W0gcw5KvHk4+PtS54NDxsdOSICyob\n445zR4enf/fv4nMCS6Uq5R6avk6mH/g+csToxg23/Vu3xlM6ag8ezN6B++67EY2PS2vWzI48ruUO\nmXKv5VIDSPnqjEx16YoVcQ0NFRfYzKbUujpIHW4L1dlZzWMy3ynXyjmG/jWe3CaRXL3qv16oTPej\n4WHpww+j2r7dtb3TO8Tn67yUsl/ZBq7t21efuLdkSkudK8hTibaWf/0k74sxUmur1fHjnlpb3fdO\nTUmdndE5x9al1/U/zai316i5WSnH2Fqrrq5Ion3hP6O1tOTfx0KOY63UP7UUlMtnPgcClCv93uhf\nY375koo750E6L4UKap8VAGRDqkNggcxXiq6FUGx6En/KdyVTpBSyjfnSQvh/09Nj9K//6mloyGjd\nurg2b849dd/f/2vXXOe9n5aqmNQN6akfhoelEyc8tbVJ8bhS0gi0tVl9+tNxLV0qffKTVvfcE9ea\nNXFJrgP5zBmXdqC/36i52eqTn7RFb08m6dfoiRMuneL4uEtLEosZjY2512+/fTbdSq60IMmpSvr7\nXUqv5LReua6FctNR5Lpui01lshDlN1N56enxFIu570lWSBkqdJv9Y/E//2edLl5MP0dz0+ktWSJd\nueICWC7lp01ce/39JsuDkUtD5PbHD5pJnidFo9KlS0bRqLvGIhHp8mWTNaXGfKQj8+uGWKxeU1Ox\nBU8rk+96zJY6Zvv2Gb3xRlSTk55aWqSWFpfmyZ9BV+q2FJPiJN91duSIp8OHI5qcdOd+ctLoyhWj\nT30qrvvuy5yuaT5TrFQzhVB6GffLkp/2Scpfjycfn/5+T4cPR3X6tKcLF4zOnYvo+nWXrm50VOrq\nimh42Ki1VSUdx/Trcu1aF6TKd+yS3/eb30TkeW5fk9NdXbvmJdKk+im8JKP/+3+jWrYsdTsuXfL0\n059Gdf68246pKU/XrrlyMXs/zlwnVjNtVSWu5WKu1+R0O4Wkm0qvS2+/vbIpqkqpqxey3ViOhUwF\nNV/HpNg0fUNDbrBWY6NLwVyJlKXlHMOWFhcguXx5dqBYXZ30mc9YNTRkvm6z7XPm1J+uXZK69uNs\nCr35Oi9+2W1oMDfbWpJktWlT9v3KtC1+fZvafpzd/nwpAivR1vKvn4kJJdYl3rTJ6vJl6cYNT5s2\nuTq8vj6qqamZOcfWbwMntu5mHegfYzdAzj0TJLcvWlqs/uzPXOCumDSI2c7p0JB08aJX1fSHlU7p\nuFil3xvdNWYT16Kv0HIcxvMS5D6raiDVIVAbSHWIRauWpp4HeaHaUhWSIqWS56jQEWZDQ65T3f3f\ny7sItv/Z5Yx+TH9/f7+nrVttSnqr5BFm6fvS12f0939vdPx4RH5j3T10uaBDKekH06Vfo7//vZuR\nU1+f+nfu964jNddIN0mJ16x16SMuX5bq660GB93slM98ZkZ9fSbjdheTjkLSvKYyKab8lnpNZyov\nbgTi3PcWMpK5kG1OPhbXr3saHJROnZJWrXKjZf2ZOQ89FFNnp0mZhSi5B6Dkay/bd+7ZM31zFodV\nf/9sR0ZTk9XwsFEk4nf6uzSi1Rhh29ZmtW2b1N8/vWDfKUlHjxr98If1N8uV0erVcXV2Gn3jG7PX\nY7b6Zz5GJxf7mfmuM2Nc4Dw5dasx5uZ6WuV/fymqNRo5vYw3N7sg5Y0bRq2ttqD6Ivn4zI6GdzMl\nPc/9fmjI/U4yifpamnscS00pmOvYpb9vbMyN0t+6NZ7SoZh8PfgpvKTZ2aG+kRGj3/42olhMamy0\nmp52gfHbbvPU2zs7GzZTnVjtkdjZruVc6dMyKfV6bW626ux0acK2bZvRl76U/3vS65mNG4tP/1mO\nWk6tl2whZ4ZU4pikl/WNG2cyzqzMlqbP1fNuBr61RufOlV+WOjoiGh72Eilf/dk6xR1D1xaJROI3\nB2ZZNTXNaO/ezAH5bPVBttSfmzZlb5vO17WaXA6bmwtLM55pW2bbapm3v9BZHfnuE+mvSXPb41//\nekwPPzxbl1y75mnt2tQUv8nfnW/WWzxu9frr0cQM4A0b4hocTJ5VHldbW/aZ5dl+n3wcR0bcjLPB\nQaOxMekP/9Btb6XvI4U+MzALpzLS73Nr18a1ZMncQGah5bi726iry5sz4zDI52Ux9lkBCDcCXwit\nQjs8Fio4Vus5r+dDvoZTNTqlyumsKLezNPn9r7xSl/GBOVtDua3NNaZ7etzDeHLjev36ynTipl+j\nTU1WS5e6FFqTk1IsJt24IU1MGP3Lv3has8bq1Kl6NTQoYwDP/7/kghmXLxtdvOhpfNzN9HEz3Tz9\nl/9Sr//4H2cf6iV3no4d8zQ2ZhL7mS0dxZtvulkN/nd1dXn6h3+o0yc+EdfatdKePVPasWP2PW++\nGdHJk56S0641N+e+Bgotv+Vc05nKy9q1cfnpAH2FPnwUss3J5cFaqytX3CjIy5fjN4OVVmvX+sfE\nJP4tXeq2LX2/cn9nTEeO1CsW0820me49ExNWt93mHjKT04gG+aGxUEePGv3X/9qgixe9xKyYkRHX\n0bJmjdXXvz57PWaqf8rpCMl27yv2M/NdZ8a4oEd656bJEvkKcueOf0y7u03GzspMZXzFCqu9e12w\ntaMjol/9Klpw51dyIGlmxtWrUnIa0bmS1z3JVVeVeq9Mf9/atW6gQ2/vbCemMdLq1bOBsOQ6/dZb\nUz+vp8coFlMiON7cbDU56YJ7K1a4/cxWJ1Y7bVUp6dMKka/dmnxu77jDH+RTWPlJrmeq0UYLSoeb\nf27T07hmq9fKUe4xyXQeDxyIaO3azG23TGWjmLJU6HNVd7dJrN8kubbl4KBRc3O8oM/xt2ly0mjV\nKn/bjLq6IpKKrw/S72MtLa6Nmiw5Rbm1ViMjs2uwSsVfq9n2sdjnjUzXiLvXzv1bv0O/0MGJhQxu\n81/Lty7tI4/E1NdndOpUvU6fdtkE1qyxamxM/W5/f9z9wx/g4drrIyNWIyNeYhbWlSvuHrFhw4w2\nbYrLGKOPPorolVeMTp3y5jyjpO9jpuOYvLbYlSuuvXr8uJdYj7NS95Fi6tigDAoIglz3Oam4tcxP\nnvQS58Wvw7ZujWvDhnhNDcAuxmLsswIQbgS+EFqFPKRV6qG+r891vnd2RnKOrK3lnNfzIV/DqRqd\nUvPRqVpKw7bQB5jkzz52zLsZGEhNM1Buh3C27Y/Hrf7pn6KanpYGB6XpaZeGrq7O6Pr1iOrq4hoc\ndEGZrVvdNp06ZXT5sqe6urjWrLFas8YFVE6fdiMnBwZcwGv5cqm+Xhod9fSv/+qpoWFG1sZTHppb\nW616e40GB72k2QLuwTdZZ2ck0bl36ZLR//7fblbc6Kg0MSE9++wSffe7N7Rjh8v3/+670cQI0oEB\no48/djOccq0tJc2OevaPVUdHJGcgyVdMYDVTefE/d7Yz3aZ8d67rL1+dM/facT/PzPgdyq6TuqMj\noqYmacuW1Gsv035l+86zZyPascNq06ZYSkfh+vXShg2lzWpLF6SHzL4+t/5Gf7+neNwoHpdiMauG\nBjdD5he/iOqWW5RzMfpiOnWS3xeP20TaISn13ldK50qu68x9Xuo6dbk+L6idO357IrnD7NQpo6Gh\neM51UzZunNGbb0b07rtRNTS4QNHAgC2o8yt5NHxrq9XoqKuPo1H3nljMavXqzMc9X11V6r0y/fWm\nJpce8do1Nyr/5EklOmOPHDEaGjIyxlNXl9XatXHt2TOVMhNlctLtj3+tLlni6uvJSaNPfMJqw4Z4\n1hkIv/udp098Ym75yLQPmdZNK3dttEzXsgsApv7d0JDRj35Ur82b4ynfl202RbZ2qz9TrlIzzcq5\nn5VaF+e6D77+ejSl3Jw9W726vqXFtRn8Nesk1+l58qSyzmIvVKZjV04nZKaZVYOD7rXkenlkxOjd\ndzN/R7Yg7oEDbt09f33J++4rfCbZlSuzQS+fCzR4Kc9nIyNGhw+7e+KOHTE1N7uyeeyYp6tXpeSB\nQZI0Oekl2kjJxyx9HU+fn70g+f44MODKZVeXSawn6Kco37rVL9eunXn1qhscduut0p490zlnQ2UL\nUOc7VvlkKjcPPJB6LqTUDv1CAqq56gD//8lyrUvb3j57r7PWHbeJCU9dXdKnPy2tX6/Ed+ea9TYw\n4L7n6FHXBpqZkRoapAsX3PUwPGy0bJnV+Lgrp6dPe9q6dfY+kCuo4X/vj35UL8lqbMwoHndp5o1R\nynqclRiMU0wdG5RBAeVa6HZ8OUGejo6I1qxxbTa/HrJW6umR/vRPZwK99tdi67MCEG4EvhBahXTa\nVCLw4lLQRdXZOZuC7uJFl2/+G9+YDkTjZj7lajhVY2S/3xGVPkr3j/4odc2jQhrAfX1u1OzBg5HE\nqMVCG7bFpqGTpPFxd235Iw6T9ymTQvYj14P3fffN6J//Oaq6OrduQjzu/jU1uRk6LnAlNTZKnZ1G\nly659IOeZ9TU5NYDu3BBNz/X040bsw/JsZjbDmtdJ8Ply56keMpDc3Oz6yg9ccLTb37jZqBt2DB3\nnYHkjpMTJ2bLoR+8sdbo1VfrtWPHDXV0uHM1MCBdu+Y6NjzPKBazam2Na//+aNZzV0gnRa5rupDz\nka28ZEsztHNnrOBOpkySO2aNMbrtNquhIamuzqq11c3MGRpyHUzXr3spMw1z7W+2YyC59G6u42C2\nE0JSQQ/zpaZmy3Uskj9z3Trp7rvL67TMx/++d9+N6Nw512njcx0sVg0Nnm7csDp3zlNnp0nMkLLW\nzXz0R1MvWWJvjkLO3amT3on4/vuehoeNNmxwaxwmj2DOVTeV0iFRbGdNUDt3/PbEbPpBSXJBzOZm\nZeyI9dONHTkSSax/d+qU1X/4DzO6/fbMgeXk4zM7Gt5q+/a4/t//c53Xq1ZZLVniyu7mzbPnJ/k4\n5rv/lhqATH+fu9dKy5a5tV527pzS2bMukN/c7OoDN0vG1QmrV0s7d8b06qv1unpVmppyKVX92aiS\nC36tXj2jp5+eytmRXOg9M718uMClC9iVUo/4ZaOQ9GnDw24mwdKlbi0h//uy1e0rVtis7dZt29zP\nuWaabdpkEwGQAwci+uY3Z2dEJ89YPHvWU1eXkeRp9erZeiLb5ycfh3yB3FJSp/nnZ3hYevttT6dP\n12n5cumWW9z57Oxc2DZ3e/uMDhyYbW9IfqrezOW2UKWmGM31eQcORNTVFUnMtJ6YkC5edOsL+m3g\n+np7s/1kdeqUW5Mz+frIVK6PHPE0POwl1sDq7XXrLW3eXNhMslWr4jp1ygWQZlmtWhVP1Kez5VGa\nmjL6X/+rTitXurI5NmZ07pyn5ctdINyfTb52rRts0N2dehy7ukxilpufxm5y0qi1Na4LF+rU1OSX\nx0hipvLatS7Ycdddcd24kZqifHjYrYXT2jo7KOjgwahWr848Gyq9Hqn04L/M7cfZujQ9MFdIh3+x\nz2mzs5BTy2F3t1FnZ1Tvvx/RtWsu88PYmBvUsGSJ0cWLSqSgl1LrgfXrrfbuna3r//t/r9Px426m\nVzTqMlGMjrrr6Pp1dy+55Rb33DEw4J4bJieN1q3LnU44+TsvXHA/G2M0NmYViXianJSWLJnd70oM\nxinm+C6GWTjVSk9capDHzVB1KauT+xTuuiuus2erO+McADCLwBdqSjmjfNLfG4/Pjr5JltxQLTXw\nkj7i/sKF1Ac3N9rHC13jptBAyltvSRcu1OU9h5Uc2V/otdPePqPOztS1siYnjXp7XWeMlDl1x5o1\n8ZTR3/7fnTwZ0cSE0cSENDDgHsaT0+blSmNSaBo6P0g3OGh05YqbReB3VBnj1jP49reXJD3YTmn1\n6vwP3cnfkcxvmA8MuE7J8XEX5FqxwioWc6PV6+vdZzQ2SpOTVj09Ec3M6ObMFTcLYXra6ve/d4Gl\nZctm03B5nkvFNTPj74ObUTYyYlIemoeHpXPnPDU2ullHdXVuptPtt8fV0OA6S12qwhl1dbkFqfv6\npKkpPxhmbm6vS9koubLd2mr1u995GhoymplxndQTE36KLU9vvhlJSTFXyLHyy3lLi9WFC7Mjq+3N\nHvBly6wOH65PjBwu9mEu23e/+mp92sLrxc0eSO6YtdaNAp+ZcR1Ha9a4WQ8nT7oT565x13kUjUp1\nda6zp9DR7ZnK+/CwW+B81aq4+vuNVq2Kq7nZLVyenvJtPlKzpX/m1JTU2RktuYO2kPckr6k2PW0S\nAWVXLiTJyPOsVq+OJzrhenrcse7qcuXS1TOufN59d/5OnfROxOFhVzZ6elyAzZ+x6Y/2d+fABdsK\nmWmS6/wX21kT1M4dv90wOGjU3++ObzRqE0Gd48eNDhyo1+SkCyC3tlr9j//hBhacP29UV+dm1MZi\nbk2rBx6YKajza+3aGVnrRrnfuGE1OWm1bNns7Itss2Ly3X8zBW1GRqTr112q3mznJfl9flDHGLeO\nxrlzXlKarEiifpT8juiIvvMd18m9dq30mc9YjYy4z0hfw+Wb33QLiSfPAhoYSA2g+yOxk0fpZwqi\nJtcdyeum9fa69+WrR2bX6XN15erVs4GYXOnThoel3/zG07VrnjzPamLCU2urmymdqW631g1CSO4g\n9iVfK9lmmlnrjuXEhPvumZmInnxyif7bf7uRaDMMDRl98IGn/n6XarihQRoZiWh4OK777nMBxFyD\nbVy7yEu0i/y0T01Ns8HfYlKnuQCpTbmeLl3yNDTkaWzMzXJ03xPRgQNx/eVfLkybu63NdW6ePJma\nwjXb2i6F3i+uX5+9hpODM1eueHriiamC6sHkAObJk57OnnX1USzmAq+trbNpqycmrIaG3N9Eo1aR\niNHkpKfr161u3LDat69eP/jB1Jz6oLfXpYPzUxY7bk3BpUvnzvDNdEzWr7caGkrtMF6zxqXv9v8+\neSDB0JCfxtV9/9q1Vl1d7m88zyTuo5GI0XvvuTZpf7+rV5ubXQDEBdo8nTvnKRqVmpvjsla6dCly\ns/Pa7Yd7jjPasiWuLVvctra0xFPKVW+ve/abnJzdp1yzodLrkWxrA3V3m5R6Ldf9L1974+BBN2DK\nnw3qB+YKzQqQa7CgCy6l7mO2dWnPnvV08aJb28uvx6117fiZGTfgyp+VKkm//nVUY2OeGhvtnMC2\nP1NwctJdx5I0M2M1NuaeVZYsUdKsWvfs9LnPxfUXf5F9/dbkttnwsHTyZFQTE+4ZJxIxGh93gzfc\nOnKVW+O32OfgsM/CqUYmmHL45y99QF9yHZYuCGm7ASBsCHyhZpQzyifTe0dGpOQ849LchmopgZf0\n7+rpMeru9nTLLbPBAMkFU8LUuCnk/Ph/4z8c5DuHlVi3IPnhvpCgQltbtrWyNOdhdXhYOn3aU3e3\np6amuP7wD2dHf/ujrpPXWEnuKOvuNvqHf4hmnA22c2cspTPyoYcyH5/BQfcAdvRoRENDruPCzfiQ\n7rvPqrnZqrdXevrpBk1NuVlZS5dKJ04s0c6dsYIeHvxrNLmDpaHB6ve/tzp6NKKJiYiiURc48jty\nY0nPHq2trtPp8mWbSEkVjfrpqfyOXBc0aWqyN9cJcx0U1rqAlnswlV59NaJ43D20Xr3qHngloxs3\nXKfuypVSU5PRmTMRLVvmZoO1tkpHj0blrz01Pm40Pe0eqOvrpatXXWrG0VGrH/4wqu5uTydOeImA\nlx90MMY9kNfXW737rtHDD89NSfPeexFdu5a8LljqMZSkjRtn9NOfRm9eG9KlS26mW0uLledJly5Z\n/cEfuKBFIUGZfCm7rl5VokPDv2aLmT2wd69b1+LNNyO6ccN1UN9yi9XkpKfjx60aGqw2b3bpKi9d\nsrp0ybs5SldqbLQ6d87NeP3TP43lTTuVXt6T0wYNDRn197vytmSJEiPGkwPPnZ2RlDXf3DXr6fnn\nPf2n/zSTM41RNtkesg8ccGlrs81akDJ30OY6zpL0ox/Vq6fHBT6sddeQn5LT81w6Uc+T1qxxMyx6\nelI71vz6xq9nJBf8am3N3amT3okYidhER6ifku/GDZPUsWdkjE2pQ19/PVpyh0SxnTUL0blTiXQ6\nyfegd9+N6OpVT1evunpv6VIpGjW6csXNhj1+3AXxJSXK9OSkEsFPN1PWJurMnh6je+4prPPLv/cm\npwwdHjZavVrasSPzcfQHgfT0eIlOSD+96euvRxPp1Q4ciOjYsYjGx911aq2X8z6bHJh7772IWltd\nIN2vu/xrxr+/zQ7qMGpqcte4Cw4pMVNr61b3+899Lj4nEDs0ZBIdspcuSdu3W91++2zZ8Gdttbba\nxCy79POeXEf4ZWxqys0mmZx09V9Xl8naufzDH9br9OnZR6qREVenrV3rAjFzz5VL8Xj8uAt6jYwY\nNTYa9fS4YMPAgNXSpTalbvfv0X190vi425+Bgdl7dnv77HdkqmvPnXP3xqkpt2/RqP+ap3376vVH\nfybePdMAACAASURBVDQja92xvH7d3ByI4uqnZcvctezPfMnWRvPr0+R20WwAwSZSBGerc0+fjiTq\nR7+et9bdA+64wyYCDW52h7t3S/4sWenYsYik/PXG0aMmbRZM6jqghVq/3sra+Jzf55pRKOW+X3z4\noadPfcqtU5S8/lVnp9F//s9LdOutbt2mBx6Y0shI5kDa3/99nU6d8vTxx56mpoymptwMUH+2yuXL\nrn20alVcra0uIB2JuADEkiX+mlZG165JExOefvCDen3hCzMpbddly9zMUn8mlh+UmpqyunxZklID\nOi0t8TnBHP86dW0pt6MjIy6A/dFHrq2RXDZjMaNIJJ4om4OD7vocHTWqrzeqq7Oqq9PNwKi9GaRw\n9zK/PbZkiVU87srBkiXS9LSn69fdTLFTp9w17wYu6GYZng1mpj8zZlqjUMrd5vCDWt3dRm+9FVFd\nnWt3+msDbdjg6it/UIB/rWzdGtM779QXNMDNP0/vvZfaZpKKDyLkGix4333TBa9Le/26UX+/G3B2\n48ZsMNMfMDc0JB08GFF9fUQrVtib2R+Mrl1zAzoGB41++tO4NmxwaeQuXlTK2r7+IJPGRptI9Zt8\nnuJxmzOYmFwv9faam+0xF2xtaHDXx9hYXOPjVv39JmXmnO/oUZe+OjmIm2+mayVnuAcp1bcvfZtL\nacdXehuKOW65zp8bQFqZwb1hFcRrFkAwEfhCzShnlE+m9zY1ucZFa6vNekMtpcGZ/l0NDVae5zo5\nkjspGhqyj4r1pd/wq71mQa4GSCHnp9hzWOjI/kzb9fvf6+YDhqdr14wiEZs04yr39xpj5qxVJLmG\n9eCgEh1cbsFk98+t26LEjC5/1LW/xor/4H/1akQTE+7Bb+lSM2c2mOQejPxO62wBxI6OiI4dc2vF\nDA25zo8bN9wD4pIl0vCwe7A8dKhOQ0MuB30s5h76r12LaGxMevjheN6F1/0ZSkeOeIngmmQ1Oupm\nabl1h1wngDHu4S+auHO4B7t/+zejT386nuhA/f/svWuQXld5Jvqstfd36Xu3Wmqp5W5JLSwDxhZg\nATKmuNmQSQR1hhkOGZIfM3OKSoVKcA41OVOTk4RAhlsqVKZyipA4YaiZOScwJIbAGMvEgG8CyZaR\nZLkl69KtW9/v3V9/99ve6/x49rv3/m7drYstCb63ymW7++tv39Ze613v8z7Pk8kAADeasRg9iyIR\nbh67u/m5XM54hRY+q2KRoBUA5HJk/BSLLJjk88rvKs7lyDSybWB2VmNpySASoRn68jIByYUFAmoC\n0OXzPIfvfz+K/fsdLC6y6CHyjXJdLKaxQPJbvxVDuczP3HVXGdPTFubmLBSLlApaWXH9sRZ+zy9d\nsnDPPexgPn9eI5vluczMcKPvOAR3BgYM9u1z0dNTfzO3UckustSCkMJguBDTiBkWfkfoJeUilTIh\nAJSfk+N1dxtMTUlHNTw5NbJe1xrT4feXgLGB1iyC3Hsv/198Uubn+X4mkwR2CwW+h4ODDpRSfnGo\nr48SmOUyu8vFD05kjKrHeKMIF99lnLW2Kpw4QcC6EWtB7l84VlcVPvOZmD/+t21zsWePQWcnu5iT\nSRaOczl4cwbH3ubNBvPzfJ9d18XrXmfw9rezUJXPswgpz1PmG/G7E0BFa4OREd2wgCsFOynUdXYC\nCwvGf5fn5jS6utwK/7zqOfRW6l69Xj+m65XTCcvcGsNC6eIiDc4ti2B9Ps9mGMtiMbunx/jFvuVl\nFu9Z9GNHebHI97yjA17zADYsL1lv7RXmZ19fpT9K5d8LsMr3rLPTxeoqpVSPHFFYWdEYGSFg19bm\nwhiFU6fqr7P1zjORUHULP+KjI8XUhQWeA+dqrpNhwKSjw2DHDlMB7j76qO2DR2GPpR//GLjzTgJk\n0qDw5jc7vjTdV74SrWlG6eoKCrXxOBkwc3NkXl64AKyuEpCPRskK/e53LTz4IL1cjxyxMDtrVV2h\nwuqq8YGY6nsjUo4tLcpfg7JZ3k82iShEowZ33umgsxMVcm+bNrmYm9MYHqbEWi7HNTqXs/CBD1CK\n68gRC6kUpegSCSCb1XBdjjthzHR2GrS3y1jTGB4Gdu7kPVleZnFaIp+H52FifBC/XhFZ5oKw9xz/\nnv/d3V2/Cz6V4pwLBPPj3JwwT9m4smkTUNloFLDIA09K/v9a78zx4wqf/3zMf1+Wl4E//mM2C3EN\navSu1AJmDz1U9CRo195DrMXYjsdR0XRkTLCOy3yRSgFTU3wPs1nmuk891YL3vtdBf39lg8t//a9R\nHD1KwKNY5BzDhiOD3l4X0Sjnmr4++v8RkOR9yGR4zFgseC6RCLC8rHH5cmUR/9FHbRw8SOB8cpI5\nqNZcU86e5fOLx4GWFoUzZww2bSIQX91EEt4DJBIGIyMWTp3iXLq4GJxDLMb8KRYjUNXSwuaXTEbD\ntg0iEePlfS5aW8lqtiy+X45DZlu5rLx8kWMnlSKo6zguYjHOdZGI8d+RYlGkhF3fSzC8Z4zHmZ8O\nDtbPOarnPgGvBUi3LIW5OWDrVr7vxrAZaP/+Wqni730v7u8xl5fpXUuwu3bel3xsaSnImcK549Uw\nEtdqFrx0yaq7h5udRdV7UsLjj8eQzzMfNgYe2wsecApPglyhpwcYHeVzAnjMsTGOpZGRKPr62BTB\nJgzmj5EI90X8TlPFQuTnJic1VlfhP5e1ZMpXVriGc/ywYa9UArq7FfbsMdiyxdQw58SzdWVFFBKU\nv+9bj+l6IxjuN0si8Hqi3jmH5UjDsV5D8lr3r9q/Tyn4agYiN90IPF7vmUgdQxqE6HXI+sLtKtv9\nWsXtOGab0Yxm3L7RBL6accvE9RTVGn1GKYWPfaxxF3w94KVeN/BaeucDA2RChDc4SrEDfy1JoOoF\nf2xM4ZvftH39+Nc6AVgvAdnI87mWZ7heZ3+98xoeZrFdisIEbIC+vkomRKPN3cgIpegEnJTiXKlE\n7ydhWGSzlASS7n2yXYD773f9AsvgoMHcHDf5ABCLEdjp6HArCkfCBgPgnXeQ+FYXDx95JIKJCcqB\ncJPMoo7rBoWQ730vio98pIzlZYJhpRK/p1AQvXuNf/5nmkenUixK2LbB2BhgjI0rV5ig79zpYHgY\nnscWIyiYUDJUa+UV/diF/t73lpHLBcWhHTuAiQkLySRBI9fldWoNbN3KYtnKika5zMJhT4/rF9wz\nGZ572OfIGBa64nGCiYODQcGYzwUeCML/dxyFzZs1+voMdu3iJnd5Wb4L0JqFjHye71V3N/29ALKw\nKLXCjTSBCY6njg7+e3jYQlcXu6NZnFXYulVjctLUdL+L3vvAgMHPfw6/s7Vclu50eL4ULEps3752\n57xEI8muj3+8VLFpk8JCuBCTTAIvv6ywaVNjjy75d0eH8Twt+F3pNItDxlC2slxmJ2x7u/GLY7Oz\nCv39qu6YfuABxx/PQfe3i09+sgTA9je6YV82PisWjuWaLl+m1JkURo8csRGN8lilUiCFxvsT3Mf1\nNpnh4juPT2nBwUHHL7Lm87yH8/Mara3A5s0KmzahgoGXTALPPWfh0qXgPZqYUJifd/Gud7kYG7Ow\nc6epKAjz/Flk7+2ltGE+z/s5MkIfoHBhLZVS/hhViuczNcWC/Pbt7Fb//Odj+MxnCjXgl2zA5fjx\nOLBlC8EBpQiaC5gRjvXk0+TnjeLV6Oa8EX5MBw9aeOUVq0piamPePHJ88eVaWhLGAX8vEq6lEuee\nbNagVKL8nYypdBqgpCUAcFwDnNvKZYPeXoK5s7OUpgqzmqp9mYDatS4sMSgeOqOjGsmk69+fI0cs\ndHSIhKYwS3ic7m6DQ4ciKBaBaJTr4ZUrFnbsIFgyOakwMECw+exZym+GvefqAUphVvHgoIstWxwP\nNAjky4BwY0Ul0EHgvZIFu7SkUCyyoJnPk+nvusynLlzQeOEFztu//dulNaWJjaG0pzF810ZGxIeS\nDRmFAufwH/3I9n0mjxwhawuA32jB5hSufcZQHuvv/s7GE09YSKfpm9TTY9DTo7CywqYMehMpf8wU\nCmSu9PYanD6t/UaKoECsPKkwztO9vXwmExMW/t2/A7Zvj2L7duDcOY25OcoBUr5L+WsQIP6WnAOW\nlsisyGSYAxFIYlgWvMaVoLkrzLRLJBT+9m9t7N3r4MoVystx3uIaDsBruqnfBT8zo3DokOUzcLq6\nODfOzXEN2LLFoK2NUqGy5rS3GxQKAUBjWcwz9u511s1lv/3taMXaWihwLv3BDyLo6TF135U77jB1\nAbPR0Rg++clCXeYVEMx/3/0u2aDt7aYCkOU6G7C6pCGiUOC9k7WHICzzETZi8TxPn7bQ31/23nk2\noFy+rPwcLp9HVY6jsHWr6/nqwVtLLVy4IAAZ/zabZRNVJMLnQaCGOenzz1t45zsddHYaRKMuJict\nH2DjP8yBikVe1NISwa/FRbJnzp7V2LXLxZ49ASDAOQx48kkbxmgsLHAsplKyBnPdsm2DYpHHyWYV\n4nG+F1QXMJ70tvLnENflOyUNXADfIQFAolHe69ZW5tilEjwmJO8vrx0YGaH06hNP2BXNO+98p4vJ\nSa4dEuGco7roPTLCf584oTEzw33Fli08bleX8WW5q9dhNvnQB1fCGIVDh2y85z2VTXxcJ7jHkPU+\n3EQAbJyRKGOf85z8jfHZaImEqss+DssrplIKf/EXcWSzxp+LJFyX871lwR8/pRLzdT43frZcZv4j\nAJTrcixHo/TmpSIF0N/vQikyhEdGKLsJGAwNVXoBy/2rlimXeSmTIRAnexbvycJ1XT+3rtf4mc9r\n/511HDK/R0cVdu5szHSV77hehvvtJhEI1D/ngQFTk8eLxPJXvhKpaUwA1pbgrpawDPv3rawYHDxo\nVSh4AMFculaDanWsripfgnh1VeNb37pxoObtEleb79+OY7YZzWjG7RtN4KsZt0xcj9/TjSjIHTjA\nRfaRR+yKIu3wsMInPxkkO9XH6uwE3v52F0tLxit2ALt2OUilFFZXWQTdiKkxCxvK83K5NkmK64n1\nEpCN3OMb4dkVlo6an9dYWODPJTGlJ4aF2VnKLXV1wZPfY1Lb3c2NTjIJLCzoCuARAB55JILxcRbS\npZDU20vwiybJ3Fwlk9wAy8YZkIIcmV/velcZSlGaqbPTYHWVXYE7dtAAO5fjsxRQKhKBN9bgFVeC\nSCaBZ58NinmXLvHclpYE2AGkeKgUpbEyGRY2ZcMobCLppNRa4+xZ5RewRFLw3DmF5WXLT9AnJxXG\nxsiyohwIPBlCbty6u8ULgtJ2v/mbpRr/K5FuesMbgExGI5kM3oN3vIOb5NFRglG5nMLQEDuMz51T\nVeAgQ47f2cku3vC4YnFM+UVGgNdIaVPpYidTqFhksUM2ya4LzxPHRT5Pf4dYzGBxkUUbssj4fWGp\nFGNYpMxm2YVKhicwNIQaVhOLsdwEZbMByytccAxLA9FMvvb9TiRUjfzk7t0s+ohkl2wqtm0L+/2w\neCKAzPQ0cPQoZcrSaRakwt2/8m7KPU6l6O+ytESATmuOkd7ewDutXBaAVcCvSoZZ+BoOHrRw6pRV\nUdgTL5aeHoOxMbJLWNRiga1UYoe3+F0BLIx4d8/zpwqAo85OFqkSCcpwibb+ep2f3d18jlJ8lxCm\nYDzOeyJ+TbkcC1WzswodHZSi2r/fRX8/u8KvXNEVBfxSiQBWPg+0t7OYwvscgAGrqxpbtrCbnLJq\nHKfnz2vMziq8+90lr9BCgCeV4ljXmvMjO+Fr2X3bthUr5tFy2cX58xYSCZ7Hrl2B5KZSLrq6DMR3\nKBzhuftqu1erCw6HD+sKpsy1bv6v14+JhTnLByDDHfEb8VY5csRCMqn955XJcJ6XIjMBL865rst3\nvVAAEgnXe08CoDcSMejqYvMMr4lriuuy8Pbnfx71AA7LB/ktC/j939f4i7/I++BX+P0dGeE8z/fI\nYNs2Ap2FgsILL1jo7dV+8UhCAKZCgZJ4q6vanzOl8Kc1C/Dt7TyWSGL29BgcOWJXeM+JDKlSBtks\nPBnCwFPnzjsNTpywfFmvRILFX77LwPy8FNC5lnd1sSmpmgU7Oqr9eyLPwXGM57UV+Dd+4QtxvPvd\nbo008eioRksL54D773d8X7vWVgJF+bxGNsv3rVDgPZieZsGV8pCcH7q6CADIuVHel6yOS5ciXn6h\nsLxskEoZDA8TdCQ4QCCbgCnPmUCbwhvewAYapYz/DBMJAm5kllIaM5FQHmgBzM9bOHYMPrtbxp88\nQ2GYyXNPJOj5VCrRb4heO8FdYt7Dtbivz8Xjj1s4dkzj7Fmyysplnv/lyxa2bzeYnw/kxvr7WZR+\n4AEH+/Y5/pwkXf1zc8Bzz9nIZglicY0OxgHnYoM9ewhsLS1xLR4aooy5NKns2OHirrtcfPjDzrq5\n7OJi5XwgfodTU7wfliWglMLdd3MN6+kB/vt/t7GyotHZGTR95HIKf/d3MfzarzkVeaZI2b3yikZ3\nt8GlSwFzv7vbYHaWfml8NoFMIAFYoKuLkoHT09qXiuY8atDaarw8hM9G8oQrV7S3fsp7EDxvywqY\n2vm8wXveU8axYzbyeY5fx+E4iESUn28WCsab+7jmrq4C8/Mcx4cPc75cXWWzF9nyymevypon810q\nZVAs8v13HGB52cIrr2gcO+b49/f4cfFGJYM5DL7Kd5fL/PuWFo5r5tbGUzzgHFAocA62LIIo8rtw\nSJ4r4zseZx6RSgFKUVoZEEaS8d47HcrJgPe/v4wPf9gB0LhZMlz0dl2DQqHSTzSVolzk5s3Afffx\nmAsLtTmxgH7VIe91OCRfBIKGKTYPKd9f8qGH6jMSKe+uvPnT4NgxjXiccutK8VwjETYG9PUxfzxx\nIoaVFT6PN73J8Y4BX4762DE26DgOrznY08DfM5fLBu3tbAxwHO3dK4SaSaR5TPmy0PT4Yp795je7\nfkNXdzc920ZHKf07OGgwOqrx858bv9FHgLuzZ5lYVksOtrcDy8tsKIjFOP5tm4B1mIlU3fhpjMHC\nQsBALpd53123vl9n9Xc0iqkpqgYMDzOXfstbOJ+GGUk3QyLweqPeuXV2oiKPNyaQNRd2d7gxQWwH\nwhGe76slLKvZ5Pm8xuSkW+FJKO942KturbzyRoGat7Ps37WwtzbyTtzO96QZzWjGrRVN4KsZt0xc\nDyX8av5WEsh63i3GsCARls1ZWVF4/HHjb6hl097TA69jNzBalyLUo4/auHyZ3xHIaOkKc+rqBT9g\nF1T+/FqS1mtJFNZLQDZyj+Uz4bhazy7pJD51SqNY1BgbY0H82DGDrVtdZLOUiEqnlSf/Aq+rnBuj\neJyFsmPHaLo9OspO629+00Z3t8HcnEY0CmzaxG51FpWA/n54koksDBijUSzyvNiVz6JDuay8jQ18\neYPlZcqjDA4abN8OnDihMD0dFMC0VshkmGAvLBjcdRcT+Y4O43fm9/QA4+Mahw5ZXhEr6HYMhwBb\nxrBIdeedLpaWtL+JDxeswoWDQE+fnd2bN7uYmyOrTdgH1cHuShZ5cjmyx154wcLqKtDdHUhFPPCA\ng+3by/j7v2/xZBdZTFhZ0UinHbS1UZbmjjsAKaAND9solXTF+VYemwXMu+9m4Wx0VKGlhWyx2VkL\n6TTvKwuVxjsGi7aFAjvtg2tigYTFLYVf/VUXi4v0oVha4nG0ZvFH7mOpFIBpwc8C74tk0kVrK8cr\n/QjIdujtBU6e1H7XsXSn1nuOpRIlM48fVzWSGiL/VwkYKbzrXSXP/yZgVEnH7dSUgjGW5yvH73rx\nRXp3bd5s/Pmqr8/4Xi27dzt+ke7MGc5309PKN/BuayP7rlCgDJbjGE8CRnzXXGzbRpZYdXR3Gzzz\njFXzjI2hF8snPlHEN79po1gUSVF5X1gsk4JruQwPoGGx7ckn2VVbKBivAMaiaT7PjkvZZNaTkq31\nUwk8NUTqUGuCWgMDLs6f5/POZvksCX4pKEWmyZNPKtx7r4OLFzl+tK5kL5ZKNHR/y1scrKxorKwY\nDA25HmMjYFoJm4dFr8Bf4mc/i+DAgRLOnLEwP28wPR2A2aUS/76lhQUrggQKi4sKCwtR9PQAly+z\nWDc2Zns+PWSSUA6UoItS3Og//7z2GSkDA/xdeO7eqDStRLiYFpajE6bMtbKZ6/kxBf/dmO0bPi/K\nWAY/E5+zlhaNsLfK8DDB5PBcFzBxg87u6ndcwAUZ121t9Cz5lV9x/Hs3P0+23vy8yHEZRKNcw3p7\nCVpfvmwhleKcJmwiyuJp/Of/HMVf/zXzid27HXznOxZGRixvrHJdKxQUZmcpp7m4qDzPEnphdXeT\nxaMUPchSKRZio1EXxaL2QaRyOZC4TafJ0CHbRgq4lJEqlRSmpjTuu8/B/HwwdyWTXNu0Jms4FuP3\nLC4qjI9TUrelxfj+U/IeJpMsno+OKuzb5+Ib34gimw2aYAYGDI4dY1Faaz5PNqoor/kD3vmx6Pqz\nn2ns2eNgYUF7jAKDbFYkfQ3On+f1bNnC+7+0RDBAnq80MWQyChcuKGzbZhCPa/T0OFhZsbzf86Id\nh0w5gJKJ2Sw8Bo3y5MKUX5SPRHjupRKPH42yOLy0pHD0qIUPfKCEAwcMDh60kUjAAyqYH7iuwoUL\n0ijFfyxL+6Cr/FueBX/P/ybYBj+X3bIFaG0VZoXxwBLjM75iMc4n09Ms5i4vB36afP+A8XGe//Iy\n57HlZYV9+xwkEsD3vx/xmTGRiMFjj1lYXOQ1s+lBpC7Z4d/TY9DZ6VYwUXfudHHgQNnPxS9fJjDZ\n1gZfprUe+3F0VOHHP7bxzDMWJiYIanKNMUinA5lJYVQtLHBtEQnG++5jY4CwoGMx4zMM43E2lAwO\nGgwPa28O0n6ulE6HwRcBuTRGRw127XLw7LOcG8tl+M0yvb3cjywvB1J93lPz1w16lwI//znnkWwW\nvj8gYCrGrcg2k7Hv4N57AWO47pCtz/FUKLCBT2uOhVjMIBplMV/ehY4O1y8cFwrKY8fwZSsUOKYo\nVc3msXIZPjAmzTO5HCWFR0e5zr30EjzpV2m+UjV5g/jCcuxyrlSKUoXptPGAPoVYjOCf5AScB4Jm\nE3k/AR67VCKge++94iHnVkihHz9OOcUjR0QOlnPY889Tvvg3f7NxYTucm/3lX0Z9j6tolCxF5uME\nfk6cICj18Y8XcfhwZQOmZfF5SxOObVPOb88e12eqylhfXOS8eeYMWblDQy5efNFCJCLsZtTI9CUS\nCtPTwOHDFhIJ7QNLo6OqAoRcWOB3RCLA/LwLYyz/2ZRK/HutmY/v2eNiepr7Xs5FzLPDz9V1CZBb\nlsKuXfzM9HTQMOg4zE/kHML5lYC6pRLX6HQaXmMH2Y47dwZejwJIpVIE5GQPt2cPG46qJQfHxhRi\nsQD8FN/Ori42M8hzeec7g3ESNAlVzj+2TYbhwoKu8S+s/Lv6QRUQu6I2cemSxve+Z+Ntb+PfHj7M\nOXnbNu4vw+Dcrewn1ahZNpzHSyNSWBkiAK6Yt4qvpORuSpH13ci/M/zfoqoQBrn4fOvbIdSLq/15\nvRoNsDZzbSPfcTMBoWthb63XLN2UQmxGM5pxI8P63Oc+97mbfRJXG9ls8WafQjNehejsZLKTTgsQ\nYXDgwMYW8o3+rSyiJ05YSKW072vR3c3N+qFDFrSuXoRZSJybU552NxPyF1+0YFnsDBscZBfwrl3G\nk8ChhJIU/PJ5FlqyWW5ydu1i4bFSU5zJVkeHqfDi6e+nnFr4Gp580saRI5TV6u6upOjLNY6Nabzy\nisapUxYOHbIwOOhi+/bG9/DSJV03SZPjN7rHAPzzWVhQuO8+B/F4FMVi+aqeoXzPyorGxYsKyaSF\nuTl297GTm7JGAIvzsgmmvJ/yN/WbNxucPctryeU0xsZoHj8zw4SJnewshhUKLFq4LguDlNELiiLS\ngc3CAzf90SjHSiKhsGOHgx/+MIKlJRb9SiWFc+c0CgWRL+L4KZcNikUm1tu2sViRyXDcEXzT6O9n\n0URkY6oTyOqwbW4a77wzKNyEgTLZuIZDurwdBx5woP2u9UaRzyvvfsFn/zz/PN8h22ah4Xvfs/A/\n/kcUyaTlFcL4TNJpYHSUm+U9e4BEgkWz48ctj+lVWzCWsCwWVLNZFh83bWIBhoUu7TO5XFd5ne3G\nk3gU0KA+aJhOB2B0KiXyMcovGlZ/vhEw57oKS0sak5McW3Nzwbso/ihybfVYbeFjPP20jRdf1Hjl\nFctjI/Lz4+MBWMBnwUJYS4vyOvUVTp+m11wqxfc+n9dob+cYPnuWxvZaw/eT0ppA4cCAwb/+15RJ\nlHktFgNefFF7hWQCjbbNTl7Loo/bW9/q+KBMS4vBv/yXLPoQ6K0ExQ8ccPCzn1ne+1QZXV3iwyAM\nS75bW7bw2Stl0NdHkIYd2SxYaA288oqFlhYFxyHbI5mkz1dvr8G///dldHYG8+DKivbv1cGDNmKx\nQB4LgA94DQ4aDzCw4Dj06Bsa4rPMZHgMpZTHAuVc3tICf+zInMTxWHmtbW1S/FB+cXJoiMdrb+e1\nJxIsEheLlFNNpwWsBcbHFc6fJwAiY99xAqaTdLeT/aC8YjolXbUmUCEgM4vxwX1ubaXMF+UeNZaX\nle839fGPl/D611e+ANKNu2+f668LjULWwYsXRXpJxoZCfz/XkvDaBqy/vgGVa1XYt4xrJz8TXjer\nv/PKFeUDTuExu7SkcM89rj8+RBZncVGjowP++xaNGpw+bWF+XiOdrpw7+I4J6xY+q7S1lfJsu3YB\nQ0MuHEd5xWTO/5y7lT+n5nLwWCIsLBeLlXOl1mz+2LSJxb3HHrMxPa19OVLH4bMF4DMhcjntj81U\nymB62sLCgsbiIv2DpOHCtgnOCPPScWR88T2kxySLi21tnKfSafFpBC5e1J4MLfOdbFZ7Umi8xmSS\nQFtLi8bMDK89k6G32fw8JYu3bTN4y1tc9PWxeDoxoXH6tIUrVyyMjGi0tjKfmZmht5oUQcMg8f2z\n0gAAIABJREFUZPiZAAEjWtZ4AZ/ZKKGRTBIkXljQWFjQPrAjPjQSlGPlOzoxwXeToInyWSiWFcyd\nwtZhMZ/rYi5HUEUk27RGKF9gjkH5LkrE7d1bwj/9UwRTU/SNdF3eX/HIFLagzEdAJeBVHZZlQsV3\nzrHCSqfPE9+R9nbeg1iMDROuS8lngm+6Zv2WeyDzkMjnjY4yD9u8mUz2F16wkcmIXLXyn41l8WHF\nYmRxvf71Lubn2e2/sgIMDLh4//tdnxEwOUn5Ra2BM2c0nnjC8iQcCcKcPq3wwgs2JiZYNC4UmIMk\nEsrLMZTX/EJWpIA+AJlfuRznhdlZgjRLS3zvVldl3mHR1bIInF++zLHK/J5z9eoq72FbG9fNfB6+\nDKFtA4uL2gPI+CxbW/kspqe1p0BQXUwMvIdcl0X5TIZrZns7rzuT4XE4NuD7mApjmYV8voejozqU\nLyl/PNk2/PePa5f2pDi5Ls7M8L5ks1yHq5ntXV0cY5QjDcCsoAlLis4Be0vWs7VCVA/KZfhAuTTj\nRCL0ghOlAscxofOqn4fJcxEGcFsbGaOjoxovv8x/K8U5L5fjvcvlmHNv3cpzqbfWHD9O79xnnrHw\n3/6bjZ//nPNdNit5gKgRAHfcAX8vOTFBsPzCBTZQjo1ZKBTgN8XIe5ZMAm99axmxGNl+Fy8qvPyy\nhVJJe9KlGhcvMj8FFN7+dsdTDaAM7NNPWzh82MbLL/M8f/pTNvEVChyvMs9IriH/CNgt3sbyeZnf\nJf+fn9eezLqMW1VnThJvOO7F4nE2Bcmx5W+1FtCrsplPKT6vSIRSnPSlVZieJiO7t5cylDMzCsvL\nzEEIqHHe6e012L6d+7x0WuH++zm3vOUtLpaWFPr7mUv09bERhfsa7ctMj47yvi8tad8mwbYD1qRS\nlGIcHmb+lUjw2UndIR5nnly9hw/nKy+/rD1Z5iCHWl7m/q1c5jwhY5cSofzuWCzIw9fK025mdHdT\nzrd673DffQ4OH+Y9eOEFC1rDUy4If471l5MnOe7Sab47y8satq18udxo1Ph7MKmzAPBrLfE43+Ww\nRzvXGlOxVwBq6zES69VPwnH8uMKXvxzFqVMWZmY4p4yOaoyPV+bJ3lU2zJOr9zeyF7xZz1ry/epQ\nCti3r/5Gv9HzlzErNaGqb6x7T17LqLdP2bYt2qxPN6MZt0C0tcUa/q7J+GrGLRXr+T1Vx7XqCYcX\n5zDlvVAIikXVxwGC7rtcjklSd7fxOwPryQKOjmq/u9i26W0T9r4JM6gGBgwSCVPhzVPNltpI98uR\nI1Zdw/evfjWKhx8uNjRr3Qijq56We73zefhhIB5fZ/eK2ucnbDH6+wSfkw2TeHC5rvK7kKX7z3UN\nWlpcTE5qXLqk/OJUeBNCBhMLDj093EQVCiyaAywKjI+rhhtl8fHI58mK+dM/jSGbJRBHdhiLJyxe\nGt8nK/g5mV8iEbK0xPE2OEhvotXV2iLbWqE1PQOWlytZJkDt//M+Bv8tG4FGwFP4b2SzSWklJqHF\nIvD00wpAGc8/b3sdw5V/y+KXhakpg3/+Z3YPJxLa3zjTYLje9RrPs4xF00QCOH+eXZvidxbu/KMU\nUCA1VmyQe0rH/oULyvM1WhtcXC/K5aDwOjQETE4SUEqn+bv2duNJEQGNwMVymcbxwk64dEnj6FHK\nNb7udcbzRoE/7yhV3x9O/hvgho6G9dpjkwTG8/G4Qnu7g5kZhf/wH2JIpykVQt+uQB6rrS04R+mY\nzufZ2S6bmKEh158PRG5RpPX6+gyOHLGwc6fjy4sAgcTjpk3AM89Y6O3l9+3Z43oSO4Es0fw8N63s\n/uMgef55y5PD4f0VT7lkEnj44WJDKVmAwOvkJM3Wpet2YMDg9GkWKQkMcfzs3m3Q1eViYIDvrFLB\n3CN+epkMZacAskSmpmqBXBmPc3MaXV3sWqYPGAv309MsWon3RT4fdMVnMmQUZLMsrnIcVX6/MTyn\nVIrn7rq8L9PTypPbNT5ownsF7zkaXLyoMDSk/OcTjRp0dbFwEo9rXzKx2q9mo+utrIPVm2GRYZJC\nQVje9pVXtG9sHl7f5JmKZBQ7t8myEDkcYXyE161G5und3Xy3xANk2zYyPCYnpRnAYGZGeZ3GLKp3\ndpKd19XlYHmZY8+yApBLTNNjMd7zWEz577VIqU5MECiamdGeJJeqYOGUSgrLy4HniVKVY0qevxQB\nf/ADG88/b+HyZQsLCyLHyrUsk2FxVd4nrTmv0iOR/l+FgkG5rEPgEN8lPiPjeQMZ73OU9JOmhUKB\nuZMAF7z3fD/m5/kMWdDmOZAlyXcnm2W+1dLCeS2XY+G/q4vMRcmrzpxhofHKFfEQ4tz97LM22trK\n0JqSW4DxgGMgvG7LnC9MAWnkyOWCdU2aAoCgeYRyXAGTqjrIjoEnx6WwsMDvoESr8uXW+H7KvRGp\nNj7TSKTSC8ayTAXjuFwmG8IY4GtfiyMalTxI+QyKRuvKWuu6MMYLBYOdO10kk2RQz81x3BGgML5H\nHdcPF52dxsuX4AEZjb+fY4nXNjPDezQ3Z5BMctwT+FGhz/N8APqKDg6SjXzpUsByyOcVJic5z95x\nh/Fz3dFRAk6WRWB+ZcXgqacIMJTLgDFBwTuV4n3v7uZx8nkWSLVmoTiT4dqnFFkaV65oTwVA+cVl\nCfEkikQMxsfJ+KY8Fo9BNlEgBZnLGa+BiPNCKqXxwgvaX0+EKeU4QcG10T3m+ySNFsZnuc/MhNlS\nPF8B4B2Ha69t0/uO4EKtDKA8E7LMg2ctkn/STCPNV8IIFYah45ARRCCPfxOehyQoZ2eQTuu6DK9G\nIe+0XJ+8p8L8TCbJUoxG2RiQycBXIqjzbSiVKNGdzZI5OzxMFuHKivLkJwMwUVhlmQwZr6dOaV9x\n4vhx7rNkjpme5nMnO57ArVIia0oFiZYWrjuFApskz5yR+x1cE6CQyVj+PByNAps3u+jqAiYmbPT0\nGJw8aWFpie8VJduDec22gV27yNYEyHAqFLjOrKyw8Dw7S9llmRPX2xewkW/tqLcHWev7rlwBYjG+\nq1ornxFHsI3PCggAOLk2gH6Gtk1QXWvly9OeOqXR3+9AKfoNC6syHmfjVaGgfO+6Q4e4zoh3VJjd\nPjTkoqMDOH7cxuio8sHWVErhu9+N4NQpg+5uC3feyXy3q0vBGNeTCOU15fPGk6ylokA+jwobBaB+\nvnLihPbnleDeclzMzmqfHROPcz2VveXeve5rxgK6VvZRI5/1sDJDJsPmqdVV+J6abW2Ufp+YUJ53\nKvyGVYBz99vexvVRVEGMUb70p1LKr7V0drp4+OFyRW3koYcqzwEI8sp617pR1aGpKc4RAuZQVYh5\n5eXL2rcgCEc9QO1W9Ma6FquL9VQkNsqkey3Zb43qXr298ID3ZjSjGbdqNIGvZty2cT16wuLdIkWH\nRAIYGAD27GHBUDZg0tlIho5o+7PTsafH1BT0wrKAw8P0fJGiT6EQdPMoZfCxj5mqxNrgX/2rUkNg\nCthYspNIqIpCc3ButWatw8PUsteax3vwwfKax6+ORufz3HPAv/gX9f/m+HF60ExMsFP13nvZsS4F\nycFBPh+RiGIhy/gbwKCoYvzNt0h4TUzY6OjgMxUDbOm+liKBdMvmctxAZjIszp08qSDGylL8ly7y\n4Nq40UmnDaJR5bGFAsDBdQO5GTHFZtEIfnGA3dNMyiVJnJggo3BpKfDiWC9EkmdqyvI30xstHAD1\nvQHWj+BZuy43GgcP2n5xoF64LvyOUNdtXKirdxyyIgKQq1HHrnShbiS0VldVZFkvpLv9zBmD0VHL\nZ9EUCgrRqPK66U2D8+P9IFswvKGnDNbly+xGffvb6cclUjjhSKUUnnnG8lkFIqGSSrEYSEaKsJCU\n531nYfNm+EDr3ByLALEYC/ci00i5TR6nrY1AQdjjoqvL9ZoCOBcMD9P4vr0dGB+nz0yhwA0/CwAs\nCPX0GM9Tip25Q0OuL+sGBMXhfJ73MpWSIrzxfMeCeTwW47u/Y4frS80CtRujVIpdtiI7l8vxnevs\nZGHMGAJGmzYBW7aQybRpE/CHf1jE7/9+FJEIZauE/cnzVH6Bk/4bHKvhsWUMizcs9CuvIEdJ3Rdf\n5P1vb+d8Mj/PtUHYjADHQiolAEstEE8vKdcHT2Ix+qe4LouPgPb8guCBvSzUTkywgH3ihIWZGcpO\nAeyQtW0ylEZHFf7oj6Ies4tydh0d2LBflxQD4nE+a/Fmk3E0NORWrOOU2iTQLR50xtBjZ3U1XFQg\nWNXdbdDTozA46HjgU+26VW+N6umh7x2bV4L3Iho1PoC+sKCxshJI4ebz9PygRKTrg+1SgKM/kUJL\ni4uhIYP5+cBzSmtUFOKkeByARfDlYaU4LMzBAFSrvLelkvEL8+PjLA4JiMaOdpGWMt5YdWHbXEOl\nGUTYQgLOEfQI1sp43EW5zPeuVAJ27GAelEoFbBIp1hsDYPtROPv/CugaB1Z3oHjqUyiPvcNvMJAm\nBYDv9/IyJa4iEa7JjiNMeGAh+iLmd/81kjsnUG7bAZX6FGKL+z0gg3PUiRMamzbRQ3JuLpgX6gW9\n1sh24X0Iy8LVrp3hwvraEczdIh0oz6q68BsU7IN7IWNTnoecl7CTe3vhs3PYdBP+vqtr3Aj8vaSA\nrHDliuWvDQBZ1rZN0MC2meO2t3OdO3UqKCjbtmnYYFIdwubRmuAXYCreHWGBSB5DWU2D48fppdfa\nyiYFSnjBz3evXOH7JM1l5TKbT4SZFJZhBIQRy/mvrU3k/CgzJ+xz/pwAJEGfQIa3XoTlTCnXKQAJ\nC66WpfyifbHIcS4SvgBCoLA8Ux5zfh5+o0S94HNU/n1LpRqzmmTNEvnBQoGfr74/9WJxUePOO8l2\noXx0MI7lHQn8NwPWYqlkfElyMrTq3j2f8Xd9EeTfmQwBykjE+E1o6+WdVFgwGB8HrlyxfKlIYT47\njvLnVIBzPZvoyDD5X/9Led7DNmyb33X5svZZt+m0sM+CfYU0fRUK8NjZwZ6tVGIOEI/DazwI7qtl\nsUElmdTo6KBX7pkzZKcmk8G9CIfjUA51aoogjxSiXZfrFFntlb5nNyMch2MzaBaovBZKmwdronib\nRiLKb0oC4LP6s1myDc+cIfheKhns3+9iZQWYmyNQmE5rPx+JRNiEtn+/49cSwiDC178eQT7PMSYN\nV7JeTk8TYM/lgLvuIkgmkojlMhUreG5stLz7bkpUVhfrH3+c3nfSZDswwHG8uFjZjGZZBPFWVzmv\niS9hfz+b3np6rq6J+HrieuXoqhtqH32Udgci/53L8T0rFGTNY5NEZydzxHvu4Zry059qn73c1xfI\nPa6usrnv5Ek2+LzrXTzWlSsWlpcV9u51sW0bsG9f5f0KeydvRI5wIzLgZEVpD6gLml5GRxU2b+Zn\nAnuMWjlNievxi3u14lrtStZqeN8ImPZayCGGgbWREY1YrJJZt17dqxnNaMatEU3gqxm3ZYhe+sRE\nkBx2dm5cT7i722B4WPmduem0wtNPA7/7u3mcOxfByAglzFZWuImJRAhKLCwQ8ALYWeY4wJEjLC63\nt1MvXLpRBwZcdHS4vnQEOzgp2QIY/O3f2n6h7sCByo72RknTRpKd7u5aQA7g5os6/ExCUikWDYTt\ndi160o3OZ3m57o9x/LjCH/9xDKurgV/A/LzB/fc7KBaZsExOAvfcQ6kxek0ERWCtTaiTVTaEQeeu\n1gHgFS46SWFFCnxA0H1bLEq3e7A5li7NRsFuaTmPoGghoRTZINVFcAGIpqY0Hnss8EBJp4F8Xl9V\nh6R3JO98rvbvblxsBHCq7tDdaIS7lm9UXP09XjvC1yYeBAQ/jceu0V5hrTYiEeOxLoLvkn9bFosi\nq6sERimnSm+Qy5c1tm1zsX07Cyzd3XxBZmZYQOnqMlhaUl7HcnA8YT2I55wUc7Sm+XwspmBZLrq7\nuVmMRIQlxnllcLCM0VEL8TglNldXNR55JACkn37a8nzseDzLMujpAZaWWOiUYuTCgsIPf6iwfTtl\nbS5csNHaSmAomVR+xzuLFwapFN+V5WXXL95aFufteDwArNbanExMEORaXWXxeGWF9ycWc0OSJgo7\ndwZdxDK/bdrETvquLoPVVeOxcAKz+c5Osk0IbJuKsU5gk/8WYIGsSX5eKRZnolHjF8Ori0/CeK03\n9rQ2nhxg4LcibKBCIfBLCxfmLYvdsy0t9H2bmYHv6WbbLLYLM88YhVdekftBkPLSpaBIt5Zfl3Rz\nfvObFs6csfzvzucVTp0CPvIRpwKYyueVXxBYWeGxBgYMrlyxajphOzqUV9yprKg2YhGHY2VFeazb\nwKNT/L4SCbI3slnl/4z+Q/DkSxWeeML2ATF5DsZwHNg2gepUyuDoUQvZLJl3gPIAI/53NUgCAKUt\nRwEPODKrO6COfQqY3N9gfueYWF013jlyfAnLRD4TzCmWBz4ExwzLToXZtzJHtrTwHtu28tYo/jzw\nlwquH9uPAr/+MaB70j/D3O4fA8u7gC0jQCQHlFqAyXcAz/4pML0fIlccZq9oDWR7jmL17o8DXd53\nbQVwx3PA9x+FPbcfpRLX2IUFhfe8p4zjx7XPal17fucDkzmxet2+1gjP21ezFtd+PgDBpDieTMKb\nE2ubmYBGjOn6EZYcC9ak6u8MJFbpeynMRvpIsThN8Np1GzV01A/xRwsXxsJ5FkEfg9ZWFxMTllfQ\nZWG3pYXr3cSExtmz/HsyZyvXuFQqYBXWAzO1DuY/ARWM0R4TAx7rLLhPtq3WBPh4zvw32aPh38k7\nEjTvUNqSneHh97/6XMtl5fmkhRt/ao8t/14vVwreC3r+bSQcB15DjaxN1ZJTwedqwfnGYGFl3PhC\nbdBsFXjpNX5HgrxEfHXlmRGMD0DqSIRre7FIlmCpJP64wE9+YvvNeQTbRA6Q74+A//K+SjMc5UWD\n8Rqw+OCzu9hkwOPIWFSKe6WWFvhSnWuF43AOp3wnAQI2BNYysm9mrDV/uy58/zZKTgf+bmRj8joK\nBd5HyalGRiykUnxuhw8r3HWXg7k5zkUiNUpGtsHqKqUlu7s1jh/X+OhHHb9w/9JLGsPDYZl1ycEU\nFhf5nra0aOzbV8LQEJuKslkeI5kMvOHEG3BkhLmV5CBHjihcvhzkQ8IG2r3beGME/jXyuQsIq3xf\nwje+kQPltfT1ul72kfiuDw/TJ3NpSZryKAFLedmgUUFrMiW1VujvD+S2h4bI5gKC6yeIpHH33cbP\nIVMp1mDk/1dXNb71rdocth4g8+ij9prX+sADjp9/Hjxo1TRkiToBPeYkH6G8/b59Ra8u05jlLCG1\nrKARkWPogQduDtsLuHoP4I3ERsC0V5v9Vg2sTUxo5HKmwnsUaFz3akYzmnHrRBP4asZtF7IIcfGp\npIp3dq5NgTbGIJWiBFh3dyBNRb8ZhR//OIqPf7yIiYkobNtFVxcTi5UV7QMny8uBsXVXl/jwsBt8\n1y6DRx6xMThoPJNdg2TSoK0tOKd8nonW88/DB5zChtiSxBw8aOHhh4sVLIaNGIFKIbNYpOwLN/Pw\nZFDY8Tc4aHxj6suXtWe2zq7agwct9PRgzS6nsTGeH0NVGPUCLBTXe26f+UwMFy5YFX4WxSLws59Z\n2LOHf9/ezmP39DiYn7d9fW7ZEMZixi8OS3FG/JTCBb1whDe9ti3dcoE0XnV34ca6HoOiRG3RQrr3\naztNCcppzM6SkbF+sa4Zt1PI2CmXlc8kql+wlOffWEorHqevWSJhcOkSgRrKHSpMTnJT1dFh8IY3\nsOguHhCJBHypLSmIsLBt/C7xVEpVFLpZRGdRsKuLG0thSnZ1Gezd6yKft7BnD0GkCxc0RA6OEl8B\n4C4F8rY2dvgTJOJcKu+b+GV0dblwXc5bADe18m5ms5X+EoWC9nxzeB2RSNDFnky6eOSRCDo6+D3x\nOKWD7rmH60I+z7njnntcvPKK5XvBRaPK80tg8Wt8HNizR2HPHrLSvvUtG5s2EdBIpymBxAIVn590\n3K+u8pm3tgrDt7aoGS4+cowEjId6XkLhv20UlH/VSCYDOaswKzYe5/0RkJXHIHMik2FRIZsNCprl\nMgu4mYzBwAAABM/VGN7TcOdxIqHwyisWvvQljfe9z6nZ6N5xB73SfuVXyhVdrAMDBseOsdixtCTg\nk/EkAIUlwPGzbVv9CbneWl9P1lCkEyXyeYXubtdnPwMsUtHXitKSYb9E6eoGhDGh0dICD4CBP/47\nOw0+8hEWvRIJhTvuKOEHP7B9pne1B1zFOvPmbwAHfg+I5fwfmZ3PAf/4KDC9v+71Ayy+imRYLBa6\nH9sJornd40BiB3DpfcDuZ+F6bCwc/RT0LL83LB0VsILIjJSinVIEjdvbawE7AATsQqAXAKBjnv9I\nRArAXT8C+l8C/udjwHQA6sm/XRfAez8bgF4S3ZMoPfBZlL71zwB4fum0xsGDEWQyLBJvRH4rHDez\nYWS9KJWMB2DWBxskrv0a1r5X4YYOKfyHgQwC5Y3As8bnWT1uqtc/11VYXrb8745G+b5cuKCxvEzW\nYU+Pwcsv0/smk1GepF5Y5rgxk0mAO2meEMCBxzUeY4eM/Xx+Y8Di+s+g9v7k82QlNco1bybzJhyi\nhgCsfZ23yvlWR5hptV5Uzh+1zSauq9DaanwpR9eFv75mMsrzQpUGN+P7XlUywIM1Qxr4SqX6N1YU\nKyrPIfAoyuXgN6dsNMSLjcDkrQN4bTTYzAOQNSqAV+0cKY0qpRLljIVRPDurMD1toaPD+PtAznXB\n/TCG0rU/+xkbNP/+76mqsbKi/ecZBr4A7unKZc7ZJ07YeOihAuJxC62tzH8nJ4PG2f5+g0OHpLGW\neSxVTjRaWlQVaMX6xoEDZLULOAQQ9Jqe5h7etrkHYN7h1lgk1AMjbpQ83NWyj8LS1uK5mkgov15x\n8WLQTJfNBk1ZAJvcWlqYm2cywNmzzPG2bRPlmEDGMJVSeOEFhfZ2KnJInUKaj8P530aBkrWuNZx/\nSmOxMaxNSWNxZ2ftminKNmfOWGhpgcf0DGoyYZazhKgK8Rj8GZlxqgYku9bYyPio95l69/BGSmFW\n/608k2oQUJjt13ptEtXAGvcqfKfDY6he3asZzWjGrRVN4KsZt2SstSjJIiSLD8AE94UXNNrbmRQn\nEsCuXbVa0eFko1BgwhmN8nuXligR9YUvxLF5MwEN265lTZRK3AD19rq+5IsknTMzYm7Nz7KDXaFU\ncn2GQGen8ru+ZHMvIJ7IPAA0ov/qV6P44hcDj5W1ul/CSdd99xkcPUpN+Z4eFysr7Exsb6fXTCJB\nf425ORaDBUCcmGAxescO+MXJ4WEa9y4v855HIganT1ugGTg9bubmtO//IDr4yaRdkWALWCkdlSJB\n6DjSWc9rpHwFGXb07mDXFiUjKG/4+te7uHhR+ebu4QjLxlQHNyvG77av1xV8oyKfVw3Pg7G+iXcz\nbu9Ya2yF2Yn1wnHoR6I1MDYmm93AHFz+n54WFiYm+C7Oz7NQzc8EoBeAmkJHNdsgl2Mn6coKx2Y0\nyo1mKqXwk58oX4ZPZNqEhdDTw/kik1Ge5Bu/D2DxR2vjyyQBYYCaUkj9/exoJagUdFmHPyv3JCjG\nUuIsGqW8y+wsGS35PDA2pj0vFTYq3HOPgTGcBy9dsr1OfgJFuRxZeYUCZWgcBzh71sLlywZDQwot\nLWRjLSwo//wAzvkdHewAv3yZ8165rOp0vjeOasbHtc1Fyi9KF4vGYxpybYtEpEuWX9zWJh2vxpMe\n1XDdgAkIBECcyK0MDHANAbhG5HLK/56AFcb7Pjxs4eBBC296k+uvv5cuWXjiCY5fMrODOf2ZZ2zE\n48H3jo/DA0cDmbV8Hti6tf6VV3c11+v8HBgwHqs5+Fk87vp+YMHPDBYXORbi8UDKSgpcvE/GXzOE\nBSbhukBfn4uHHnI8uWBe3+Ki8t6BoDgv0nh+bD8KHPg/K0AvXuAkAaXvNQa+wk0bHE8G2P5iJftq\nJ4B7vg1Yoclm53Nw//FRYPodCOdFUiywLHiFOem0VyhvPYrld3wNxYgHph39VADKbTnd8BxromMB\n+M3/Dbj4K5XfIfdi97P1/273M/y9B5gVCgpTU1L0vP2KuGu/77f69dRnoF1tNJ4r+d0yj2tNBlRf\nn4tIxODJJy3MzmpPpi4An6s98WrD+FKS4rUm72YgRce1jMyh677EhrExttzNHgfr3c9bN27keUvj\nUCTiorWVgBYBd/jee+LlBtRnbofPK5ApBho/4/We/au3f7l1Q/xK2Si6Xrgu976838pn4LguGasi\nf1rvWRWLCsPDtj8/iDQuGy6rGZcGmYzxvEOBb387ioEBg7k5StVSapcKJwRE4fvKKmXQ0aE84JUq\nCeHnms8jJCfNYsTXvx7B+DgbcLZvF+sGsp7f+c7gjxvJwD34YLmiNsIGXAJGSlU2va4FEExNUV2h\nWn2HkuoaX/96xN9zr64S6Lp8WSGX0z4LT7zVCwWDLVuY01NRp5Ztu7REJYrFReN5mQafX1118eCD\nZXR3M3c9csRCKsVmtUKBTVQi2W3bBj09lFifnSUQNjSkNuxbKyFgS1ubwchIFPE4PHBN1As0fvpT\n5akXsIlQKYOtW0V9gtff10cPPgFi77nHQbFIn3hjDE6coKS9UsCmTQ4mJiycPMnGD/qiGezZ46Kj\n48YwnTYiH7hRicEbLYVZHd3dBuPj1SAg/YLrgYD1zids+yEMZ2HqVatGiK9wuIanlMF737vupTSj\nGc24ydEEvppxy8V6i2QiwW6aXI4MJkAYBgoTE0ygZmYU9u93cPCgVdPt3dHB4i6BJiYmksjGYi4i\nEe0VaVnsrN6cUrqKBeC2NnqhAPyuc+c0YjEWA9/6Vgdzc8qXv2CXPLWp83n4kok8f8qP0G8EFT8P\nJzGNul9mZ4EvfjGGuTmN1lYmTQ895GBkROHcOR572zbeu7k5ha1baT4PBFJgxSI7WGxoaVnUAAAg\nAElEQVTb9YGwmRkmrLmc9hO+K1eYeJZKLLC3tBivG5z3KR4HHnsMACL4q7+K4EMfKnl+V4GXCCCg\nV1BInJ9ncmrb1DJncqn8Z0OQiBsWdt2vb64OBKbbYTbYa9Xp+Mu3KW3GRmMj0o/0q7B82RwJy4LP\ndqJUnngRVgJeEhsZh1LYKRSUz1jMZvlPJEKZI2FayeclVlaM5wMDT2qPBaBUiqxH8ewTqb/Av4p/\nk05zA2lMcF1h8KvBGaOjg8XOlRXlyRuKBGHATsjlgB07HJw7Z3kADT/Dbn7jyXkF0nNAMA9xPifT\nIB6nl4RIc7kuQbV8XhoReLJhgO+1DpGN49zKc6a0F2V8RNpXmAwik1MtNyZFuXKZckp79xI0W1kx\naGkJPru6Ch/IyuWAp56iP8qlS+xsnp2NYNcurnfz8wpnzgBDQy727DGYnKRM5eAg/ZlWV8m843xv\nfJ+fTZuMPzbX8w6o143b2QkfiFvLuLynx8XIiMbiokImo3wvqXAELDDl+U34dw22zaLX979vI5VS\neO45FuaD99zAf9+3B5KGKLYAW4eBWIOB0zVR/+d1olhkEagu+8qqQtg9UE19//8NgcwsJsVifC8F\nsFOK8oOlD/860BkC0+79n0CuE5i6H+ioOt560b4AvPmbQJjVtv0o8L//BmA30JazS8D7/hT41hOh\nH95sYKAZr3bImiFr3ZUrNjIZXVEUpeTg2l6nwmIslxViMeUzk8N5pBS0Ke/46l1TM26f0Bp+kb2z\n0/hAhjRB5nJXD7IJWHK1LNVmSFw9u1fyO/Fidl3l7ysbRXivGG5UDCRMyfinNDfVFt78ZheLi8Ab\n38jGWplnxJ/XcTSWlkxIKpnSh7EY97b33utWydfVgjHGGL/QXyyKnDIZQiLd9+CDZc9Pu9YS4tvf\njiIWMz4L3xgq4UxMAHff7VYo0XR0NAYI+N3Mg5mDMydMJhX273cxNqZw/LiNuTkCxWwEhmcnoEL+\nxzxOMmn85tcK/9BQiDRpocA6QEsL/6GXF0HCP/qjKNraqFyQz2tkMnzOIg2dyTBfVSrIf0dGDB55\nJIJPfpIPuh7gJ83HyaTGyAgbnQGgv9/F4iK9JbdvdzE9rT25eI6VXM7GyIjBQw+V8OCDDo4cUejq\nUlhaoucsZdcNAEq7/+hHNjZtYg6cSrExmowig+Vl28/R2SRsUC4bz0NXobeXA/16ZAY3Ih8Y/kyY\nbTU/r/HpTxdrmtXX+q7riQcecHxZSYlikTWsL30pWqNEUX0+YduPwUHUMPWqVSM6Ovg7qeMReHTw\n3HPA+Hjkhkg8NqMZzXh1wvrc5z73uZt9Elcb2ewGHZWbcVvGk0/aWFmp7uRiUfdNb3Lx1FMaP/xh\nxNO/hweCsVuqtVUkDQjwWBaTwi1bKhegS5eo4y3dXpVSLuyYZydSbUedbII2bWLBltIJCtPTGrkc\ni6rCZLIs4ydonZ30NxGplT17SLmfmNBYWuImPCwhBXCB7esD9u0LdlVSyNu3z8Wb3uRidFTh85+P\nYWpKI5tlV+z581y4bZuJ5pYtgeGv41BeJRqlXEA8zvtIg2OFlhbKvAQ/IxCYyzFJy+XoaUbDZz6X\nTCa4xkSCCR916SmJNjOj0dXFpF7k2MRHy3V5P9vbecx8XmN+nslxLqdRKgXgo0gsJRIbl+moltK5\nWkP4taO5aW3Gqxmq7niV+UqkkhIJzoFi/HwtYYzILpHZFUgM8l2rBuqErSQyUSJNRyDb+MXK/v6g\n61Y8TwRcIXOGm1zxKRC/vUomXP1rknlafF3Ee0EYNWIKPz7O75YNszDW5H5Jx69lsXgRi5Hlls9z\n/chmg27cQkF+LkWRWjbxzQ7KucI3PL/jDnYhLy0JYMPnJMyH6ucCcH2IRtnY0dVF5lQk4iIapZyK\nUpR9EpBkclIjmeRasLKisbSkoZTyJGA0UinO47kcmXMiq3n5ssbYGH9PyUUWpdlQQu/Mvj6D3/md\nEtJpjo/+fkr/VG8sL13SdcGvoSFuRBcWlP+u3HefAxZCgDNnKJu2usrfry2NxfFazZZUiuzIqSmN\n06d5/Vy3qsaHeGHtOgx0jwO9F4F4uvHhXAVM3A+kBtY4p+A8XBfA/v+H371e5HuAk/9H1d8rn+kW\nZkSX3/9/AzsOVx3OANE80HsBiOau7RWIJwE7DyTv4H3pWee8Y0ngyP91DQf6ZYlbZx56NSKT0R77\n/+qvk00ALtrbmc/WY1uH5Uh9BuUv+D1txtohDXuSTzgO5eHDMszXEjd2L/KLEK/d/SDb83pZq/zb\n1lbu7eNxg95e5l1btnA/f+oUi+yxGBUURKqSDWainBCW7uc+enDQYNcuF319Lj76UcdvUJ2aUnjy\nSRtPP21hfDzwD5P5sLeXTWinT2v80z9FMD2tPfa6wvw8gaaJCYWXXyZTa2GBOdP0tPb3/93dwLFj\nGs8+a+PllzXOn2eNYnmZ+drKCpvOTpywMDam0ddn0NbG/CuTIcsmn9cYH6fqzOysheVl5kPSeCbK\nL4FKAnM++u8C2Wz9vU+958gaC/OWqSlKb589G1xPPg+/1hONAt3dLrJZ5pvyM4D1kTNnNH7wAwuP\nPWajUGCzWyKhcPq0RjxuMDzM+/7887wnbKJTXkM2Zcfn55WvjJHNKr9mVC6zhvJv/20JMzOs18zN\n8blkMqKYwyYwY7gGZTIEU0slAoeSR4syBpvZeByqE/E8ZmYIni0tMV8Oe1FtJI4csep6/ykV1KPk\nM6mUwrFjGtPTvCfz86zzvP71PO5Gvut6orMTGB0lg1Ap+HUveL66ExMaTzwR3ItTpyrP5+JF1u6U\ngufty78tleDXziYnWUeTiMcNfuu3Snjf+xx0dxs89piNVMrG1JSLY8esiuNd7b1vRjOacX3R1hZr\n+LtrYny5rovPfe5zOH/+PKLRKL7whS9g586d/u+ffvppfO1rX4Nt2/joRz+KX//1X2/4N2NjY/iD\nP/gDKKWwZ88efPazn4XW69PXm/GLG+tpKB8/bvkML6DSJyWXo6wWpYoU0mluWs+c0X731OCg8RIi\nFjfDnXqy4WWhs9YQmZIr7MyyLPqRSMcfP2u8LiTl+WpRxmtoyHgJmPK6oUhrl++3LNcHyGL++8oO\nrbB/V70OpG9/O+p3+q+sBDJhx49biMeB1lYXHR383nic/7S0MLEulQxOnKCMIe8pu9NmZphQp9NM\nvETGTBJ2ud8Bc4PJwtgYO8YF0OLzoQfD5KTC3r0G6bSLuTkmb+3tLrZscaGU9gqq1FSnfE1lcVG+\nL5BYa0Yzri024ttxO4QxnKduzPsQvNdS2N/oPWLXKYE4yzIe6MLNHqXepNvW+McRiRelCISUy6bi\nuWhNoCnstVQdAnCRlVI9l/Pf9LQQyRTlS7nJccJdvKUSZXIp/UdgiB4h8Hy7bj2Qq14Ia4rG9caT\n0jGIRCgjyI5b3gD6glUCmQG4wzVieprNFu3tGv39BgMDDiYnybCzbeX5bCqPPcdzKBQIfjoOP2NZ\nInGo0N/PtVEpjUuXlFcQCZ5ZOh0wDXM54P3vd9aVOwEaSwHv3u1UsMjHxzW+8x22+U5MaKysaGjN\n46413rxvrPtT1wXOnbMQjRqk07VMcT/qsbHWik1XCAit4/UlYYyih9dGYnWwwS8CBqPfKd+5DiB1\nPa9E18TG78svwLxdGU1gZaMhxdJrDaXo4cVmq7XZNsLoqGaaNuOXK4QxLflCNqtr9ibN+OUNehC6\niMVYD5iaAi5etPB7v5dDLmdXyd2zUWh1tTbPEMlVqtEYjI4CDz7ohiQOK9VwRJJ5cpJ5q2276Otj\njnrqFMEUx6GkXzIptgEKR49a6O7m70WqrasrUFCZmzNYWtKeXLjy5MiBuTkW+9vaDKJR/p2AB5OT\nBAosCx5rn6BPJgMsLNC3Spr1qq8ZCN6t6Wm5L1dXA6SMJI974YKFyUl4fms8r64uMqkAhc5OF297\nm4tTpzRGR7m/iMe5Z5meJkiVy2nE4wqHDmm85z1lbN8OTE9r/Kf/FMPmzQqLiwTEwo0T9PiTBmru\ny6SUGVYGaGsDjh2jh6V49CUSst8IlCck9xYAh9epqvYtwRgSv/NUivvBiQk2fD//vIVkcuOyghLr\n+cmHPzMyQgAvkCdWGB628PjjBr/92+UNfdf1xq5dxmtSMV69r1KKHYB/L6hSEZyPjON43Ph+vMHP\nTV3ViHoMstVVVMgtXuu9b0YzmvHqxTUBXz/5yU9QLBbxD//wDzh58iT+7M/+DH/zN38DACiVSvjy\nl7+M73znO2hpacFv/MZv4MEHH8SJEyfq/s2Xv/xlfPrTn8b+/fvxJ3/yJ3jqqafwwQ9+8IZeZDNu\njxBg56WXyDASDw6h4g8OGhhjQSmNLVsMkkku8JGI+IIE3ZrpNMGpSIQSemHZxJERhVyOJrf1gpR4\noLoYIQms47CTK5kUI2Pjd+dQO9yFZXERBHj8vj7KZNx5p4vOTnga11xE02mar1Knm91WIkvQ1RX4\ndz3yCD2yBMAbHlb4yEfKePllhcVFGueK9Iv4FUjyNT/PxFdAtXjcxUMPFfGVr8QwN2ehXGbhkRJn\nxk9Sk0mRmVJeQq7876/2piEAGeh1h/HrbJYdOYDB3r2kj+fzwPvfX0YyqZBMAiMj7M4RWYjG0SxC\nNOP64helaEGfgxv3PlzPfeHGjfNbKkVgQxhYjY5jTKVknDHwjN4FhGt8bfx9cP22vTEAMFzErJWy\nC66F/698OcnbqfNfWFzFIjfWuRwBSNtWvn+V+JV1dbnIZNgEwsIEN7AiBdzSopDPs4vxrrsA2QgO\nDtIjcnYWvo8VfTCM55VGWV87lGW2tXFty2Y1enpcLCwIoFivKBKMjQsXarX6GzWC1JMCrpZkOXZM\nY26O0p2lkvIbYK5n/EsHbiKxTlG0awNMrOrYgNdXRRz9FCUEw0CSY1XKHSYG+LmGUTXWNwqmXUus\nDm78vsy85dU7j5sSt8ec8osQwZxEdkEms96c3gQ4ftmDMmgcBLEYGwCvh+XVjF+skD336CgbabgX\nVvjLv2zFhz9cwK5dDs6c0bAsMlPEM7xe850xZI4tLWls3gyMjgJAsGaH8xhjjCetx30+QPlExzHo\n6VFewxFBrXyee2yAed/yMvM7aQabn5d6CdlG2az2WWgSlIdk4+uFCwZ79wY+6+JlPjkZMLmkXuK6\nym9iavTOBMe5vrXQdRUcJ5D8EwnDpSX4HpC2DU9m23h+WwQbR0e15zvONSEe5/mcPq3R0WFw9Chl\nvNvagu+3beOp3/DYYX9xNuKxCdu2mfd2dlL2/Qc/sGHbrMsI2w2o9HsmCGaqgNO1wxjj1aQklze+\nFPvVygqu5Sdf/Zm5OSo1eGfhMZwIfgHlDX3X9Ub4GAJkra7S2kRC7gXva9DQwnHMmuPkpPHrXCJN\nChBYa3T/pFl/bKxyjF/rvW9GM5rx6oUy5urTty9/+cvYu3cvPvShDwEA3v3ud+OnP/0pAODcuXP4\nyle+gm984xsAgC996Ut461vfipMnT9b9m3e/+904dOgQlFL4yU9+gsOHD+Ozn/3smsdfWEhd7Sk3\noyr27bvnZp9CRRQKgccLUJlwycJPqjj/OzxqKT1R+3lhZ0WjJkSrF2mu6ztf8QGo9/aIhF/ARKj0\nw4lEjJ/shNkGEi0txj9GLMakKZWCJ2VWKd0n/lXVSWp12HZwXkpRQrFYxA0p+NULuWZJ7rUOzsEY\nJhQtLfxZJsPnks/XGtk2oxnNaEYzri+kKUR8ASrZXUFXe6N1RAoIkQjXU4DSKyIPXL1+BN4V4UJA\nsAaJvK106q61/sjftLcbfxNbLocbVIIQUE+6p8Prp1wXpXMr78FrWsRsXQQidU5+vSjHgMy2jX/e\nKgCxFKDKgLGBUhyI5IP/L3QATmM5iJqIpIHWpas/741EvguwC5Q8XCuMBjJ9V3fezWhGM5rRjGa8\nxmFZ3M+LHHilpUJtBL5NwX7ZtoPmoWJRfLJNjVRruO4hLH6pPwSS5LUsq+rjN/pd9eeiUfheuvSD\nRd16xq0Ucn8ln5X7Uu95hPPWaDRQlwgDluF7G75n4fsodagwazT8N/XkdsPfczW5abjOJKoblFlk\nzSkMAm0kpCmtOp+u/szSUuDHJmNOzqG312z4u6435BgEnGr3MuF70dJS6RMv4zhcl5PPAmzaa3S+\nUsOiUlH9413tvW9GM8Jx/Pjpm30Kt1Vs2dL4hbumaSedTqNdDHkAWJaFcrkM27aRTqfREXrD29ra\nkE6nG/6NMZTjkc+mUuuDWj09rbDtpuvw9QRlpG6NcByRGKr8eRjckQVcQJ5wsiAFvUqZrEA2QMZX\noVD5vdcaG0kOKZVVmQTIzyMRdiJl63jZWxZg26rG6yvsWSNBdgSLfRtJnqJRMrHicXYTZTKVoNyN\nKv5VJz9A4IsWJPXK19VubQWSyVs/aW5GM5rRjNsxwsWOeoWPcEGkXsgGnpvbgPUb7uytZgCHCwyy\n2ZV1IQy0bTRKJeWvH2KOHj5/ekLCl9o1hmtsRwdzCJGsFP+q6pzhNYtCB2DlAX2V3a7mKtN1JwYU\nEIBfkfzVg13hiF4DWLfRiK+u/xnXBrKbm6BXM647ZC/RjGY0oxmvVtA3Vvn5jnjDrhfh3KZUUn6j\nEBCwtOrNX5Ificy41A3CeVogZ14bV5sLGUMAw7KYe9VrgrrVQnI+yROz2cbsO8kRw6CXfIfcU2nI\nrgeyyPcICCVNxgIU3sh7Vc0MqwRQaV1xtS4y0Wjgf7bWZ9ra6tezYrGg1riR77rekGO0trLZLZDY\nZ4TvRfX5OA4BLMcJGsQti4pSrJk1Pq4cT/ZI9Y7XdPBpxvXEWkBOM64urgn4am9vRybUbuu6LmwP\nCq/+XSaTQUdHR8O/Cft5ZTIZdG7ABXBlpc4M24yrip///NTNPgU/Hn3Uxne/a/v0YonVVYVt21zc\nd1+QUczMKBw+rLFpE6UGEwnS7wcHXR9AcRzqOH/sY2Vs2kQvLQA4eFBjdtbytZg3EtI9ZQw7r6JR\nFtJyOYNkUldQ2xkGW7bQU6urS7Swmax2dhLk3bTJxSc+QZnByms2uPdeFzt30jQzHL/zOzG89JJG\noRC8L7LQDg66SCapT10sBr+XImNbm8HWrS4+/elSBd36d383hpdesny/rXAipjVp4JKohZM+vrIu\nXFdXAI0EKA1+9VeLaG2N4/TpEubnFVpbDbZupZ7zwABp8D09vMapKYXHH7fwne/YOH1aw3FuRHZw\n+0iSNeOXJW7XMXnrnrdIpzTqnr32oK777RdyzmrNZgZjjMeEViiX15aHlIJNNOrirrvoX3ngAHd2\nx49rHD1KiRNpSAGU193o4t57Hdx1l4uJCY3ubsr6ikzvBz9YxKOPxpBKaZw719gPKxYDWlsNensN\n7rrLwYc+5CCRUDh5UqOnx3iymgqnTmnMzXHt7++nPMy997ro6DAYGnKxe7eDz38+BmMoCbywQKnd\n9naD5eXAm+BVj+1HKVnYfxTovQRYG6y+Jwbo8ZUNSR3Kd3WNU4bw6KcqPcC2H6U3WLfk3QUg0QP8\n47c35BVWcYwtp4GtE8DN6jfLtQP/34+B1AbP+5c6btf567UJpag4IB3azWjG2tE4B2oCqDc6fnHm\nLs4zLj7+cQc7dri4774yHn44jnRaI5kMPE1ZFKctQ2cn99BbtlASLx4PfIZ6euiTdOGCgjHaK9Jz\nXAoTv7fXYHDQ8f3EczmD6WkNrRV27XKxuqpw7pxGNttoPFOJJZttLPEaiRhs3uzijW/k8f7wD4u4\n4w6DRx+18eMfW/jRj2w4jgop39BXvVx2sbyskcspzztMjvnavEOWxXyyr8/F7t2sK125ovDyyxZS\nKTYCZ7PBeUUi9DMbGnI9SUkDywpyxXKZefG/+TdlAAaPPx5BLkc7B4mhIRdve1sZXV3AyZMWLlxQ\n6OkBtm+ndOLMjPYkx6vPNmAlFYt8zmspDGlNicPubsBxOJba2w3273e9fNi8qj5TtOKIVFhxDA66\n+OQnSzfN22pqSuHgQQtPP02ve6k91bsXV/PZtY733HPteOyx4jV/RzOa0SiaSndXFzec8XXffffh\nmWeewYEDB3Dy5EncReMHAMDrXvc6jI2NIZFIoLW1FceOHcMnPvEJKKXq/s3dd9+No0ePYv/+/Th0\n6BDuv//+azmlZtzGkUgEWtHhEEm8ZDLw+VpcVOjvd9HTA3R3sxvDtplMSaIIGLS0GHz4wyzQBdrC\n1ybrJybXxiiUStQCTqWCzo4wjb211WDPHoM3vclgYoJ63oUCtZxXV2k2urQEfPWrUQAGmQzQ3l4J\nCtUz/HzLWxwcP86qU0DnZtKzvKyxdavx7o/xfWkAJsOtrZRbEK8w8T9hN5qLUsnyu5cCQ+/qLv/g\nWuNxJlbijyCgmG0b7N7toFDQ2LuXiddTT2k/ATdGYWWF4N7QkMHx4wp//udRXL6skU7fyHaYZjGj\nGbda3F5jMmDjXPt5v9psGts2DQGTX8bQOpiPgbXkB+k9QLBq/fvnuuyMbGkBPvCBEnbt4poKGESj\n9OsKzoFeEbt2ufgv/4UFkXpeXEeOWBgaMjh8GFirqGjbBrGYQTzuIpcLmlgyGfpJ3Huvi8lJBfG0\nFCkSY4CJCYW77ybgdumShXvu4WcLBYWFBe3lDexIvRrm2TWHD0RNrv9ZAHAUsHQnMPOONUCt0Hft\n/hEws4/MrNUdQMtS7bGuxivsas/31YyJBzYO1jWjGetEo8JvM5pRG7VjJfD8rP/7ZjTDGIOODoNT\npzQ6Ohx88YsxLC+zWbS93XgMMAWlXGzbZvCe95Rx5Qr34lIPuHDBQqHAJmAZZ9GowsoK9/aFgqpQ\nw8nleOzBQWBiApiZ0YhEFPbvd9Dfb3DmjMb0NPz9eDiE3SSSb/VyokiENY73v9/B9u0EdiTHu3wZ\nOH+e3q2rq9pnncVibJiKxxV27wYKBRfnzyu4rvbu06v5FIIQVYPZWYVsVmFmRiMaFe8yAFCIxVhX\nMcagpcXFr/0ar/PIEYWZGeav4i0fjxs89FAZ//E/skn5wQed/5+9dw2O4zzPRJ+ve64YDGYGIO4A\nAZAEeBPvFCmRSiRRiuQV5RPJyrFlKbHlSiQ7dnzis7V2ks16400q2a3EldqU95xKzo9UspWoXCWn\nknIkZZVay5dd0ZZD0pIoSjJJgRcAJIjrYAaXuXV/58fTb3fPYAYESEqinHmrVDbJmZ7ur7/Le3me\n58Uf/3HI6R1P0PbQkI0jRyy8/HIA/f0ai4vA7KyB8+cVbrvNwuXLqsz/9MdMDQ1kC4VC7CNPsDZ7\nuVXKlQcCQHMzC3UHD9qIxbTj6/IdSf/b98q6uzU+97li1Z671axWf97V2mq+392t8cwzJRw9aq34\n2bExhWefDeD0aRNLS+x9J3mqpqbV9+fq7tb4zd8E7r67cEPPVre61e29tesqfP3CL/wCXnnlFTz+\n+OPQWuOP/uiP8I//+I9YXFzEJz7xCfz2b/82fvVXfxVaazz22GNob2+v+h0A+K3f+i189atfxZ/+\n6Z9iw4YNePDBB2/qA9bt1jdx8mZny5F1HR0WUikbp06Z7t9nMgqBgEJPj42mJo233mIxJR7ndajt\nq9HcDLz4YgDJpMaRIyUMD5vYsEFhetpwaem1kl2e8+Hp+7IfCZOFmQxcp01M+ojl8xpjY7zPgQEb\nAJlhgHIKVrbbCDYS0Whs5P360SHVGn4ePWrhO9+xMDxMdBIR+0xisgAF93DNZGyEw8opUilEozb+\n3b+jzuOzzwZch3fdOjreiYSNTIbOWjhMhlg2KxR95eogm6ZGQwOb5cbjGpcuefKELS0a7e1s3trb\ny78bGVG+xrrabRY7Oqrw6KMWvvGNEEZGTORybH77viQf61a3utW0QEC7vZekJ0F1k6bLtT/zXga0\n0oB6LY2fr9fInLWdItGtm+QKBJSbAJFeXf53IOAM2WcF7FDrPXlyH9zbd+yw8MQTlovu1Vpjbk7j\nrbc8kEQ4zGTPPfd4CMfu7uVNoS9cUHjzTRPz88oBTZRL8ti2RjBItGpvL6/jw1eht1cjnTZcQAzv\nV5pq0+TvhW3W1MSE0OioQjxOMMbSEuf8agqAN2wH/9vqikg2gGwH8PIfAK//qo/Z9RWP2VXtWvFJ\nIP4/vD8Xa+jKJEauzRZby/2+Hxa6Ru+vutVtlXarS3HV7YO15Wzp6oyvaFTDMJQroS+SaHW7lUzD\ne383/4yXYlE1xlIkotHdDeRyGidOUFmFCgXMBTQ2slChNXDggI0779R48sk8Xn7Zi9EJ/FVlfk0k\nohGPK0QiQKGgHeYYY/d43MbQEOPzbds0cjkD6TTw5psmrlzR0JpMsoYGr2e4SPHJs0grBhaAxLfT\njqSdxl13ldDV5eUqyPYJ4I03TESjlGZUir/T1GRjcZGFpqtXlXOf5X77e9FfvNY1czmRnDSQzdL3\ny+Xo/3nqBvz+unXA+LiJdFo7YC6y4VIphUjERm+vxs6d3g91dABDQxrRKNl8kQjn3PHjpvs+Jc+l\nNVlvfX0aly97sofivxeLnjSiqDPYNhWDpGfc0hLzP5GIxubNlqsuNDtL1YNt28gSXE3RBrjxYlQ1\nP7/W7/jzULOzChcuqDUxq9by/Wvd17FjfD/My4lqFBmVd9xhI51e276x2nGoW93q9sHYdRW+DMPA\n7//+75f93caNG93/f+TIERw5cuSa3wGAgYEB/M3f/M313Ebdfkbs0CELFy546G0pCn3xiwWcOGFi\ndtZD4UQiZDj96Ec8lMSRSCaBbdtsR/ZIobmZsgCzswpvvKHQ26uxbZuNmZkSzpwxoRQPOcpklR9s\n7EWiEQholEoK4bBGc7NGoaAwN8e5LAk6aXpKBKlGNEpHM5fjfe7bV0I6TUe3qUkjkaAzChDNs2OH\njZER3ueuXVZNZ6O7W+MrXyngt34rDKVMx2Hj/UciRBKRVq+hlI2lJQNTU3TeHovFgHYAACAASURB\nVH+8gH37JFnpPWs8Tsd8fh7YuFFjfl6jsVEjmdRIpWwMDxs4fVrYYHSG29s1tm618eabJlpbNYJB\nSsYEgywwMhHO38jlFEIhyhwuLpIxEIlobN9u48QJE+fPm5icJALf34T3w25r7V1Tt7qt1ljMBopF\nFtotq3pS5nrlQ5qaKAfCZr1eccmyytdmMKictc89srYMB69RiVC8XhNN/UiEMiPZrEI0imVs4Ztp\nWmuEwx7wQZ53hW/ggyiQWRZBDrbtSbHIf/7eXrLPWpbXX7XSKJViO/I7Gk8+WXQZ1M89F8CLL5pu\nf4dNmyxMTCiUSjy3777bQipV+/nHxhSOHzcwNqYwP+/NLemDYJpkkvX1aTz4oIX+fu1jbdPicSIy\np6eBhgbbOf+0wwjzkkaSnDl2zMSlSwZOnTIckAfPI9MkGjmffx/eV+LS6j5nAEiMA/f+J/753v9U\nXoDq+z6w2HLt6wRr6DkXIsuZXH3fp5Siv/i12vt9P2yu94O+g7rdAiZFcu5d3Gffl6J13f7VmN9X\nqSUZrDXPDDlTBYhTt1vFNAxDY/16C6apMDZmur5QNf9s7bGndthM9D1lzgDMG0QiBIN2dtqYnQXG\nxw3Mz1O2rljk70txIxYDWlrIZr9wQblA3QsX2CagVILrs0QiQCJBnyebJauIiXrG/5s322hs9J5N\na42JCcMBRbGIls+z4NPSYjuAUwEO2SgUGI8Hg/SPCBJmPuDTny6iqYkMeX9h5LnnAhgZod8VDgOt\nrRzIxUUCXwGq+uTzLPawt7i+qRKHoRDfYaHAMZUWFPJOpT+T+LwC5gKAixcVUimNYpG5HPZlYjGM\n4CiF+Xm+15ERw8ll8N8eecQL9I8dMxGPMw/ltzfeMN0C15tvGpieJquooQFobrYRiRiIRuXTysnD\nkBnmN1HVYdGTykEAsGGDjfZ25rsAD/AFVFcPqmY3Woxai0mhyW9ar55ZdaPfrzQpbGmtMTnpxQ+Z\njIFTp4De3noRq251+1my6yp81a1utWy1qJHKz4mz19dX/r2TJxW2baNzd+qUgVhMYX5euYfShg1E\nFgEivwTcdpvtIqT4PRMjI3RIdu4EACbqFhfpjKXTPDj9ElHS9NIwyMgKBplsy2ToQDY1MTmYyQAM\nvm0Eg8pJprHwFYspnD9vYGDARjptYMcOG2fPegc2kVurR+bs28dE4OnTcGQNpc+NdllkIyPAoUMa\nzzyTX/b9asiVZJJOur+PGsAk4oMPFvAf/2PElZIMhfj8V68qtLbaDhXc+05/PwBonD/vJR6JKmOB\nzBldABovv2y6jqZlec1j/RYIeP17lFouzXCrGmUi6oFw3W6+RaNEXobDZKtI4Fi5dtYeULK4UywS\nidrczH2sUJAg0usB6KFcyRadmfHk4irvgyhEBnJLS7zmwoJexphdrcXjGqYpvQw0pqYUlpYUJieB\n+XntSoMEAkxIiLyJN0ba1xvMW5/+IFyagrsj46AzAX0NFpzYB7fueY7JOGgHMarKxkAKTLX62xgG\n0N5uobeX59IXv0jghD84pmytwsQEEzEbN3JfT6U0Ojv1igH3s8+aGB42neKqdw+2TQS9UsIC59+T\nAW2654pYPK6xcydlXOS+GhsFPMPvHT1KP+LQIQsvvGA6z6+d3+W8ZLD7Ptjc+rV9PjkK3P2H1eUK\n7VW67qUQEPAVwNI9AIzaEoivwmOCNY2s7X6vZZYCcgmgFAXyjWSehVfB5Mo3kJFWt59pE8R9JWtG\nig9MlmqnL45CczMwM7PaPbludbu2mSaLC/k855VhEOSTq7JN+eMRFg/qPv+tYoYBtLUplEoGAgGq\nE4TDlINbWCCwS96XVxTx/m5l04jFbChlIJlk/C09sQIBMrGkN1QyqfHjHwdgWfSjFxfpSzO2pa+2\ne7eFeJwbmNaUZSYYmPJ409PKAceyuLVzJ5lb7E3K/XHnTgsPP0yAT6WfxOtqTE4q53k1Nm3SmJsD\nBgcBrW1cuGBAawNzc14rBWGGdXfb2LfPxpe/XD0/Ib1bK21xkT5mNMp/CwS4rgRsxXVGv+96YntR\nppAidTBIsJ7WyumZptz8QSCg3eIk+6FRpQdgX6xgkC00mLOgtGSpRIaX1uwjOzlpYGGBrLWlJY7N\nP/xDAB0d/JHvfc/E9DSLUqLgw7EHLl8GfvCDAEolFv5sm0o9yaSN1lYbpRLn365dGv39Fq5cMfHi\ni/wtUXDQmoo68TjQ2cnfDwYJRvYrJkk+rJZ6UDW72cWklawWg2q1zKob/X6lJZNe0dC/9lkAfX9U\nRepWt7q9f1YvfNXtptlqUSNrQZfYNnWpz59n8rGpiQwiScaeOkXmlzgZJ08qtLRIEEJZI8ALXOJx\njcOHgWTSwssvm/jRjwIIBOi0+gPuYlE5vVDozObzlDGMRpk0a2lhwS2bNZy+IgqhED/T0EAUlzTQ\nvvNOC6OjdFgiESZklYIr4QSsHpnT36+hNbOYmQxw/LiBiQnDuS7/GxlRGBtTy8ay/ICn9fayF5nf\nslmN2Vngr/86jEBAYWCASU06xSx83X8/Haq33vIYekrxHUoBsrdX4+pVhcuXmYymTCWvHYnI+HjO\nqd/8iWjT1K72+PXZexuQihwmCwLa7ZNWD4LrtlYjW7D63AmHNVIpgKhSr+i+WlsuL6KdPkoMBAcG\nGPQFgyxU796tcfGiwvS0wvi4glLU7U8khPnEPTOVspHJGO5+KUlIKZCZJgPeVIprfmFBIZ2uvvZX\nQt4GgyyobNxouXIu2SyTAm1tCjMz3HvDYZ4Vw8Ms1DMQhoPE1ejqAqanFbJZ7RZepDm0FIoqjX0O\nmaioNeYfNGPVNIkiZXLFhmEA8bjI4SindwMTH7EY2b3z8wZCIe2+y0BAY88eC3fdZaO/vxy4cuyY\niUzGwMiIQjqtMDnJBM7oKNDQwL29vd3GW28pKKXw3HOBqnr6zz/P5ueNjcDcnPYVv3iOxGIaLS08\nPyT4Fla4PziXwL67m82jBUiza5eNDRsoCyxyx4cOWdi+3cbp03yPExM2olHK7gpCuJbdtPf66m+Q\nWbUW+cDoTPW/zyVZxLrWtc7fAyy2ssg018t7eOAr1T/beno5E8wyAdOXPMlHgenNQCQNNF9Y/XMA\nwNVdwP930vtz16vAJ38RiE/U/k4hBLz4Z/X+Xv8KLBjkGZHNkk1jWdyPkknuaTybyPDSGpiaUg4r\nuZrJ39d9sLqtzkxTuwlyYRYmEuLnKMcH0C7op7rV/f5bwQh8YksCy2LPo4UFhUxGlFrod9BfJZjM\nMLBiz9hQSCMWo3+eSil0dVmYnWXfcUC5DDBhAs7NASMjpjN3PIYXCzX0Vfv6tNuXVCydVnjhBROn\nT7MNQD6vXWWa6WnmNhIJjV//9eKyGL/ST1JKoa2NijC5HH00Ks8o7N9vI5cD3n5bIRajX59IaFy8\naMAw6DMPDLAY9PjjBM9UApY3bLBw5oyBK1cUikXmZ8Jh3ktDAwtf0p5CcjQsTmm3lYJp8reqFZfF\nKhVhRMFAlHdMU7tFLa35nrQmi6tQIBPNNLVbSAoGvWv39rKf17ZtvPjJkybCYY39+5lXeust9oIl\nmBmQs2VpSWFkxMDzz5sYHTVw5oyJuTnlMMM01q2zoRTVh06eJJOIsqjcS0xT4eJF5quammzccYeN\nXbsEyKVw990l/K//ZWJhgePT1UXVoYYGjU2bLGzaRAZZby9zS6KYtH37ct/9WraaYtKNSiGKVctD\nyd+/H9+vNFkzSrGIKMXf3l4bQ0O1VTHqVre6fTjN/NrXvva1D/om1mqLizUkXOr2gdpLLwWW0bNJ\n3eZhvNrPjY0pvPQS5ZReecXEzIyBTMZAsUiauTTwLBSYsO3v9w682Vk6WkK3HxkxUCrRGUmn6ajM\nztJBu3jRwNSU6TaHFcYC5bQ0AgEPDUYqOpFElgV0dlIikHrWcHSX6QBrTXmo1lZqQP/O7xSxebON\n+XkWgLJZYHBQuygvpTQeesgqY0/VsmRS4803PVmBmRlKCrS1EW0/OKjR1LR8zCu/K0antgiRNAuH\ntZvEfu01A7kcUU6NjXDQRkTdplLA//7fAVy9yp5jpRLfzX33Wdixw0apFAJQxMwMKftKGU4gqTAx\nYUApjZkZA7mcX6pG2Bh07gMBBhJKaTeZfT1mmisnrK9tK39XKX/xS5B/xk2TcajbB2Pvt78rPfSC\nQQnI/Ul+2y2or1tHJOLEBPcbowphxTSZNHS+DUAkXOW5uL4EZd/YCDQ3c42nUmTSzM4qbN1KRujs\nrHIYXixaM0lARtfgoI3ZWQOWpcrmvDSAD4VstLRQmo4MGz4bUZflrB8/ul+eLRQSMAGLMv/23xZw\n+TKfXaRV1q+38eu/XkQiwYA0HCayV9hfwmiLxTypRIITPF3/xkb+bqlkVJUq9ebDrRkIhcO2e14F\nAkw8bN1qY8sWMpzZp9Hr5xAOUy4yEuH4HTpk48tfzmPLFoBFKCYF5Fx68UUTx4+brqwkG4UbiEaJ\nXI1ENEZHDWzaRCZVOq3w5psG+vu9a7z0UgA//rGBQsFw93evtxcD+A0bbOzdy7n77rsGzp1TDivZ\ngpxTnZ08M6WxemUy5uWX6WOQBW3g7//edBDPwKZNGgMD/B5lgrTzvivfq3YLhaZZPreFNcix5tkv\nhV757rLrZXuAS4eA+AgLUcYq0LjZTiCaXv73w/dBfefrMMM56MUUMNcOxKbKi1TpHuCF/xf4ly8C\nrz0FvPMx3sPAy0DHqeXXLEaAVIW8oaGBmX7g6k7g4l3AC/8P8L0/AHKNwIb/CQTWgEYZvo/34D5b\nD3Dx54BADsilgInNwEIrYBaAfAy4eBj4h78Gzn109b9xi5ph2A44iD5WKARfwXWtbJFrffbW3J9W\nssZG2+mJwvUYjZJ53NLCs2ZhwWMUGwaTyFyP5c8q4KNYjMnpQqH65+pWt0qLRCj1nEgwQZ1K0UdY\nWPCAGV7CXLk9eYDV+QaUQ1z5M34zDHvVn/3ZsRt/XgK5lFtwohQ/CxfFonJjdoB7STBIn1opVGUu\n0eibh0Ia69ZxTzl8mGCpyUnltj0gQxCueoLsafk8/VwpqEajbF/Q1KRdfyaTAd59l2Cc73zHxNWr\nBiYnFS5fpj8aCsEB4jJm37x5eaK/qYn5EOmdWiqxjxTvhfM5ECBorKeH/83MKMfPgbvv8vc0Dh+2\n8fGPF3D1qokXXzTxzW8GkMsxtr10SeFb3woikaCvNzNjuAoMhQKwfj3bPExNGSgUvLGJRPj7UoQS\nwJPEPNXiLiluERCrHDaO/53zrGhu1mhrI3Cvo8OGbYufK0AqAYixOKYUlYA+/WkvB1IqscgkPuvI\niIGZGeYfyouUCvG4xvi4wqVLbAmRzXIOSQuHaJTv48wZA4bBIhyZZ56CRiTCObm4yPjrIx+hvHco\nJGAPYP16vqstW2y3lcIdd9h45JGiK/PY36/x1FMlfOQjBHmtJp8kNjxsVC1+RSIaw8PGsndfzbdf\nrVXLQ11vDux6vl9psmbefttEPq/Q3q6xdy+Lh+Ew12ZlLq2WxWLhen66bnW7BSwWC9f8tzrjq243\nzVZLQV7pc342GNlEjCzYx0VQeCzA5HIGIpHyA6mnR+PcufLCztwcnRZBFC0tscfIlStEw2utyhKC\ngYAkSDXm5+kIRiJ0IuNxjWeeyeG110L4l39R6OjQTuILuHiRCQnbJlJQKQ8p5W94eSPImUp0e0uL\nwtCQ7RbRVhrjyu/6f3vfPt7bc88FMDcHZ8zJAAGIXmtt9a7z6quGGySUSgq5nMaWLXCp8bt3A5OT\nRbz2WhidnWSMiQUCCuPjBjo6OL7i8AqSVxw5CR5CIY7n4qKugbRkMU5rzpVyxokgdrzi2lqDKylm\n1TJhivCzXkEhFNJOYW9NP1e3W8CECWVZZAPVRoJqBx2pnTlcfX4ZBoM2KfL40YtsBM3G1KUSJepM\nk/tdqcT7aGykc06Wl3Z7+0kRQnpflUqcd2SG8c/ptHZl5ERepKFBPus1VZY1zqbUcJGDfX0M4M6c\ngYO0Y2JIKRajduzg5H/nHYIKBCEngWkkYqBY1OjpKQHQOHMm4Aa8ZCHBQUAy0CDoAL49jYnhzk4b\nsRgwPGy60rjV97ESnnsugKWloIPUpB7+wgIlSuJxhQMHLLzzjoGrVylJGw7bSCaB6WkW5tjboNr7\nvvbeIfuOXz735pjso9Ij0vuXYFC7Ek35PAuCLS0aQ0MaIyMKfX2UwTUMsids20A+r7FhA2UN//AP\neU6txMSemDDKnieXI1K4uRl44AEyvSIR5TbXBpbLpaTTPDOzWW+dKMX52NlpI5Xi/JmfZ78urYFU\nSrv9L/ys8LExhb/4iwC++92AW6SbndV44QXTlZphz0/DSTBwbGZnOWfXraPsJs9stUxiDfCaiweD\nXqKmoUE7TdwpBSq9ziQxz7UGlxVZNgcuHwSe/R9kOx38b2RZRdJAKQgkRoHwkvfZdA/w/d9d3uNr\nrgeh134D9pUDML/932G3/Rj6l/5PIOiTN85Hge/+nsuUKutVU415lu6hDGE1y6wH/up73p+7XuU9\n+e+1GAYu7wF0iD3EOl8rZ3Kle6rLFV4+APz9f/dJGV9/4vODZlwuN+3IWmk0NhKpXSxqWBbPE9nb\n/XKsqzEWzby9/2bf8/udbFeKLIlkksCIxUXKeMdiZKzOzvKZKYtVXVKXBX/+ZTTKOICJbl5PxrjS\nF5M5IwUMYRAA7+dcuj52mjArbHu5PGTd1m65nCefJlL3pRIZKcJcl/khc6N83S4vwgICpuT53NDA\nsy+fL2cvV1ogQLnphQXGqCsxkeoGVwJV3pUUxgV8ZZr0iQoF2d+4H2sNp3c3C1u1+k4Fg2S1R6ME\nUT74YAE7dwKjo6YLkvUXRSRP0d2t8frrplPsEIAMwWWpFCdRJKLdVg6iKjA9TcCuFHpKJfrag4Nk\nJg0Pm27MXmmVuYZnnw0gEjHKYgVRm0kmWcib8RHL43H63kNDNr70pUJZPmZ2lj3MyS6CI3lNgNX0\ntHJ8Io1wWOP0aRNtbSzsWRaZaz09GsGgjURCY3ycBTqtlQOuo38o743MSulrzPXAnrDaaZ+g3PfV\n2Kjxb/6NhdFRATbTb9y/38apUwZSKbgtM86eZTzT0ADs3u3JYct4VioSRSLaBQf6QXqiIDE1xfxR\nOAy0tWmMjrKgWihwnOJxAroWF1mYI4tP5i3/V3oETkwYZe8wnVaOhKFnnZ3lrTFqzYNqViv3VE1R\nIZul/5xOL3/3bPth4L/+1xCGhuw15bFWykOtxm70+7Wu6Z/rYmuRi6xb3er24bA646tuN81qoUYq\nERMrfY6MLB7+wtYyTTpoDQ1wdY07OymZ19PDZGk2q/Duu5T9S6Wor80A2Mbly+UHeqHApN38vAHT\npFSfbWuHJcHEc0sLETetrXQ4OzuZmDt6tITPfMbGAw9YiMXINmhvp5MWiTCwbmmxsWePjS98gb1R\nKk2Syvv22WtG5lR+f3GRvcquNea1fjubJbvu2DETw8OGI1PI60WjZMVJoBCPs6H43r0WpqcNl4EV\nCtGhCwTo+O3bZ7vIlxdeCCCbLb+/YJB91dra4F67UJAgRTnIOSZVw2HtFq/m56sHfw0N1OkOBCQB\nwiCESSWPOUJbewAZi2kn2VL+3UBAO2wy0Q2Xohf/VxrtClOQwXL133+/2UVk1AD/+hClqzcpQEnw\nCXgBGeCxqoJBCWA4l/2JNH6HjZRTKRbrhSEibCth56xfT+m+hQXlJoHZ80i5iEYyRllgmJvjvxmG\nrBNhb2n09jKABYgobG/X+NjHii7asKmJa1V6XRHhqRCP2xgc5J46MECnXxCt6TRcCZFCgcHxXXex\ngBAMAhcumE7ByGO/hEK8v8FBMnQzGYW5OcMdJ5Hfi8U0urpsbNyo0drKvgJdXQwYk0lPkrGvjwnf\nCxcMPPSQhXvuqY5uPHbMxJUrniSf1gaCQen/pbFli0ZXF9dAqQRs2mTjgQdKeOSRIr73vZDTA6Lc\nRE5lZVS3jDnnDxOSN77GhFUsTDwyYeH0IeEcLBSYpAsEFADDSSpot3BPaUHAsgxX7rClhSzhQgFl\nZ6/vl1328OuvG7h0yTsfZmakUTkLk7OzRLlOTRnIZlkAi0SYENi3j2fR8LCBYlE596HcnhfJpMaB\nA5bjFyiMjRkOul6789F/L5KcOHnSRDZLEMbEBPf9t982cemScmV5JVkRDAJbt1IuxrKI8u7stHHu\nHOdjZfJYkmVa83O2zWRKUxOTZiwuMrFumvQb4nEgGLTdIrfX9L7Csj1kP534LPDqb5KVNXw/EMwB\nSymyq/7562Q7XTrksaIu3YXgd7+OyPRB57zT0Ef+PezeV8qvHygBhSaXYUX2J+eBmu/xrplPwhj9\nOYS//3XYyQvQbVWYYBfvKmdq3f87QH/F75kWcPFu4JvfBk79cjmTS57l8kGX7dTTo7Fhg41wmD5a\nMKgQDConIVx+6fIxrAUs4Dyj9J1y3p//u+9PQYdofxvNzV7hOxzmfp7N8jMDA14/WIIlyvvwXcsM\nQ5KJQPVnWv1zmibvWUBflIFa/b2sPK6UBieApDaS3zC4llIpYN06nlu2TcACzzp/z0ZvfnjsYJ6L\nDQ1AWxvPjYceYjIwEGBi0s/yEAuHtbOPcv9qbASkTw+gXQDWey9rxz2byfuVryeMwUhEznH6pgIa\nW/MvV/25W12u7726v3KfTKTNKHHIOKC1lcVrgv6W3wN9BG//kZ6SyaTXU6ipSbvn5vICLuWcQyGq\nXFgWfMyYcr/Svesa6+rDaWu/cdMkyKelxXbaCChX2cCyRLqS12WcST8hGJT+0nwP8bj0/lKuOoJc\nPxRijNnZyeL8/v02PvWpEopF+h3pNP2MpSUW6LXW2LzZRnMzpfIsSzn9wuEyvNrbWcjavt3GxYvM\nRQwOapw5Y7rAiGJRubGFbVPpRnw/8alWMmGzLC0Bo6MG4nFPbUZYMv39Fn7wA7Ns7JXS+MIXCnjj\nDXNZPkbGkfLZHG9h1XG90B+icoJCY6NGLqddUNC+fTa2bNG4/XYbbW3eOguFKEEu789TJqBf1d9v\nu2C93l6Njg76r8Ui/YlNm7gvUgnDY0GlUjZuu8122Ve/9mslfOpTJRw9amHfvuWxQyVrrrfXdiXa\nyf7k9VtaNLZutRzgL/+OfczoyzQ1adx2G99RQwNw8aJCMinFbM69eBwOMAaODCcZeMePG/jJT0yc\nOWPAtpULchBbCwtJTHxmUULws7a6u3XZM3d2kjUnYOLKdx+JsFC7uMhze60MsJuZA7ue79e6ZuUY\niKrEaq3O+Kpb3W4NW4nxVS981e2m2WopyCt97tQp03UiZmc96YFgUGHrViZPEwmNPXtsfOQjJVy5\nYiCbNXDqFBFNpZJ2pQ8/9rES7r2XjVuzWTpC8bh2ixGRiHb6U3lMr0BA4957LezYQUcnFKKj1t+v\n0dZm47HHvGeR52CBjPJJO3ZY+NrXinjssRK6ut7DwV7FWF7LGajmCL31loFIhI5WPA40N9vIZol6\n2r6dznA6Tdkow1CIxz35BKUU9u5lIlocgLExhXPnzLLfDQQoZxWN0rmdnSXrAqDzTAeaCL7ubgaC\nc3Nw2X9+Mwz+/tCQhVxOIZWSgFO5vcEAtQypWWlsnO5JbxkGiw3r1tEBLBS8XkGS1I9EmKBnIoKF\njcZG20HoKQfd5y+M1U5QyPyrlXCqHch6hb21JD4Mwysw2vb7p2PNRNfq7lVQkmsNhgMB2/eur++5\nmEjTTqNg7hkSNMv7NwzOzWKR846Ickl6sFAvshrNzSzamKbtNHv2ZE4jEYXeXn5eCl/SU0IC5WhU\nY/167kkCBkgkWDCW/kSNjZQXaW6Go2nPtZFM2vjP/zmPJ5+0kMkwSJO5HokQHTs/z72PwSRRm0tL\nwF/9VQjnz3NPaG5mkHnXXTY6O4EtWxh4ZrMKP/0p91jT5PWU4t6pFO+1p0dj40YbxaLHrunsFDS+\nBM58nmBQoatL42tfKyAeB65epXQhZVzlDVWXcxUbHuae9s47DMDFolHg4EEWMSipZ+NLXyrivvss\nTE0ZmJgwMTYWwPw8550kvTheNgIBVYb6XD73vIS79Di4VjITkHlWPckqSZr2dhtPPlnCnXcWcPq0\niXyeSQHpgQMYbrGT12EipqfHRi6nsG4dUc2c35yz+/bZThKEZ201qR9Jsly+TOZUschkxdQUEAwa\njvQl2drptHITRVKMGhy03CRNMqlx9qyBlhayqBYXFaJRjTvvtNHVBWc9EYHc2Vn5zr17Eblkf0Ce\nz/O92zZcWZqREcOVuxR5Hzmrf+VXirh40cDYGMEjhQJQuV9EIhrbtmk8+WQJzc02JiYMF4UcizGx\nv3u37cpqsjeEBdvm3Jb9gNtr7b3MMIDAUjeC5z6G8NufhnX6Y9CZHn53vgd4+2Mw3ngKxk8fRbjQ\nDaUo0ZRIAIV9f4Ziw6XlF82nYLzxlG+/gpcUnO9Gw8WPIfrOU4heeBRJoxuhXDfy3S9BhzPefWV7\noP7n12HM93h79h1/BiSr/F4uRUlFwCvs+SQWGxo0urstbNhgI5Nh0TSZJPtOaxYoWDD03oOci4C3\ntmRf9xc+AgFPMlNkm+TfWlrY46WtjXN3ZfbE9TDCvQRdLMZiaDxOaW1h4goyPZnUTqKW/lWxqBAM\nkp3kST5X3o/8jgB61DUYI6sD17CXI+e4sIWFuVz7fNbueifiHVX3w0CA/lBzsxSGZZz812bhiX1n\nPHk5QHwl7lOA7DmVPf48+Syy63iePvZYEU88YWF8HHj99YDb31CeS87TSEQ784YMhdZWD7gkMYH4\nfbXG4mYVYGRtrlRwpOSqzGGuhaYmvi8pXlYDaNW+nsdwkiS/rKNg0CvevLeS3WTLSO/klcwve3yz\nGVBcv/yvsdErfq5bx2KHsHqvXlVYWjKqrlUBv61bZ7t9fsNhG42NymEG+B/GVQAAIABJREFU0xfJ\nZg33PfnXpGkSaLl+vY2ODvpiLNryPJc9Tfxisow4B2VvFBCV1iz6cI18OKpgfAe8V1mnQGUP5cpv\n2WhutvGZzxTR0ECfp1SCy8ABpHiknPEvB0UIUEt8BL9/J+eOaTIOjMU8nySZpB+STGqcP+8VvwhE\nolRefz9Bt4GAwvw83LMglWJMefhwCW1tVGK4ckWho4PnxpkzHuC3VNKuGk0qZWP3bm6enZ2MPfyg\n1WSyetGhqYmFujvvtBCNwpVvk6R+VxcwOGjhyhUDWmv09moXtHvsWPV8jFJe/oTqOxz3mRk4RS+4\ncXCxCESjbJcQDBLk9vjjRezdS1/QNJmL4DXI5CKITyGR4F4cjdpOgZ8xd2Mjz6x4nEWjeJxnyego\nlX0WFtiH/cABG48+auHee233fR07Zq5qzKSwsm+fjR07qE5z5Qqv39Ji4/77S/jMZywsLQFnz3o5\nGBmLvj4PXBePA9u3W2hsVE5Bif482XU8IxMJ5l3eecfE2bOGczayj1cy6c3n65X1u1aLkcpi0k9+\nUvvds+cm370oAV0rJvswmIxBRwdB+KdOrTxPKq1e+Kpb3W4Nqxe+6va+2GoREyt9zs8GC4e9PjaS\ntGprs/H5zxdxxx1MlEUiGn/3dwFMTCgXZbVuHeA/hC9fJtq/s5OH9Pi4gVKJiO8tW5hMDgbpUP3e\n7+XQ08PfHhy0MDhoI5Wq/iw3AyHyfo15NavmCInzKM5MPE42xFe/6hXzhodZZJR3IxaP23jqqRKa\nmjwHgA4EkfcXL1IrWyng4x/PIxplwp+JfgbziQTQ3S0IPr6j9nYmJQqFauw29nTZv59yEW1tdIDn\n5hhMA16xqTKIl+CHSWqNu++23ISS9FJqb6fOvqDaAC8BFYkAH/1oCffdZ2FoiGyCxUVgbs5wpQ6E\n/UM2mNzHcvlDssT4XzTqyT0KSrB2IsoLFFdrwp4R9LQkQ0WayTCYGFpLckGSUKapnb5N3r2JBYMa\nzc3a1TqvZaEQCxTxuHalwuS+rlU0M00Wa7u7OQdWKjowibo8eSWBdnOzja1bWajKZg1Xo59BmY2B\nASK0m5qY9CyVBB2sXFZqKsXnbWrS2LxZ49OfLmDjRpGBY5Klq4vjzQSuxuQkgygp3jExpZ0G0UTn\nSW8sYUEqpV1G0s//fAmFgsLMDJ9l584SFhcNnDxJBGE47EmhWhaDxHicAb1SBqanuQ9cumSUsWna\n21nAGhigzMaZM1z/775ruLr+ra0ekrZU8pLS7K3ARsJkdBGpPjfHPktSqMtmFWZmFDo6bNx3n4U7\n7uD+HY97gZ9/ztVCvSaTGmfO8Fr5PO8zFNI4eNBCZyfPkqefLrqsVz8AYGoqgEzGdgrZDLyTSRY4\nTFM7Dcarz6tgULsyt9JMm+/Q+7ysP5HaaWvT2LBBO0lIjaYm292volHOnfXrGbwnEhoLCyYKBeUg\ni0XGS8M0DTeBJ0wz02TwPzmpXGaXYXAeSdEL4FyNRKpL5Aq6VIpWra0slBoGC2stLfLugMVFA52d\nHvONjC0b+/fzPcl5VSwqtLUxSTc0xAIqAKdnG9HVorFf7V4kIeMPyGdnmWhJJvmcsRgcWRnlyAR5\n1+vs1LjjDgJa8nngzTdNJzHu7afhMPerTZv4znt7mdDyChxkqe3bp13fYv9+/vnjHy8inVauXGk4\nTMCOv7gmxTApmqxbp519wnL3uEhEu/uRSAI1NXHfisU0jh4tYir+PcwE31z23oyRu2Ce/RgaGji+\nIscUiXAP4brwpJwDi90YCB5Ecl0OyXASvfowkj/+Y4QmKJcojdlr9girZIbBOxdCIY1t20oYGtJY\nXDQRj/M5CgWFc+cMzM8TKS2JR69/mifjyYQ057mgx7nXegdCNKrddSNjxV6CGuk093BKKy+/fcDr\ngUdZMgE6eMViT87KYxLIeZlIwDnDRf7ZcBgbnnwsmW28PsACcigEl+XrFfacd2hwDvK++b788pnV\nk8G1i6vyPphM1O65wzFWjpRg9cJXMKjR0GDjjjssBAJM6sn+JuxGYbunUgRqSG+dhgaFhgZeRxjB\nkQh9LBbe+XfJpPfeW1ttt58IQVjcd6SAJT0CpZdlWxulXTs7gWPHDJw4YWJmxnQT3yJD3djIdVYq\nEczR3Q1s2MBCw4EDFuJxJvUaGujzSdGs2lxhoag6m221JkXRWjJr3ueUM3Y8f0TesaPDxuCgjXXr\nCEKRIsu1fjMS0b7zg38vvpbIhy0vVi6/jhQfV/ZTq31Xu3tsJKIcFkTtoq2MdypFxlStZ6z2LsJh\n7bLd/UVxj1mi3fVNmUOe/Z2dCgcO2Egk4IArjbJrcL9gst40bWzZYuMXf5GMFgDo6qIfVihQIaNQ\n8M5mggX9/SE9ZkksRnaIbbMXsoyL14vaK6rzHhRSKdstlMg+H49znYdClIcTMM4HY6spFHt+rxS/\nwmHGRFJMAeRM4Ry94w4bBw5onDxpYHqaAB9hAxUK2gHBqLIeUVKIB3iddeu0U/ySflPakbjjvt7f\nr7Ftm+34wswfbN9uo7ubfv1bb5nI5Qw3Xt69m/Hr3BzjAwGIdndr9PVp7NplIRzmGZHLKVy+rHDp\nEgsc+TwwM8OeUFIsCoXIkO7q4pzZu9fCt79dnb1TK0G/Ekumqwt44AELjzxi4YEHLBe0e618jPiV\ni4v0tTIZ7uFkrClH9YRnQ3s7/Y5t2zgP7riD8/0HPwggFDLQ3s5Cc2MjczG2zXM8keA7a2lhz3Se\n45RX7OkRMLPGT39qOuBY5eRvbDz6aLk0di3G07WKGtmswptvmtiwAbjtNo2NG7k37thhu3LiolrT\n1GQjEAB27tRlxaonnrDw2GMl/NIvWXjwQQtLSwobNxJgSCAJXN8BjgJBTw/9xnxeoadH31COyV/E\n9FutOGqldy9FSr9PvdK1Pkx2I/OkXviqW91uDasXvur2vtlqKci1PudnMIXDHgJ8+3Ymmv2H/tiY\nwre/HcDEhOkkN5Sr+euXA6hkRc3OErUzOEhHq7XVRjDI/9/VxeTsPfcQpb5//8rP8l5Qrtdq13sP\n1Rwh0akeGPCa7lY6WpIAFaRWJsOi4zPPFLB3Lz8nDgCTWzb+6Z+CLkosFgPOnDFx9ChRetPTTMRu\n3267aD2AAe727RY+//kiolGirbJZj/EiTAgpWv3yLxfR2QkMDGhs3VpCPM6ky/w8ky5LS+UBvCTl\nQyGiOvfssTE7C3R0MDErPYckQciCg3aDXUkeRyLsCxQOs3eZaVK2IB6n086gRyOZtF3WEFAuCScB\n38CAhUTC6+FERK/XoP1m9J0Q6ScmDCXZpp3gkPcqjI3VGJGy/I4wKiWJLL8VCGjcdx+ZlFNTyklc\neGMh7yIYZKI/meQ8keSmJMYk8F/JpD+f9AVcbbANSCKB73loSGPrVkpPLC56BeJYjKzSVIo9oTo6\n+J5DIUr5iayTYVDurb1d49AhFsEmJgw89piFT32qhAcesHD5soF83is8jY7yt6S4yt5XHoNoYQHY\ntInz4/Jlw0WYskjJtTE5aSCfBw4cIHLt1CkT586ZiET4bGfOGBgY4ESammKxZOdOkWcDpqcNVz5p\nfp6Jm0yGkoGtrWQniPb75KSBmRm+940bbczPM7ErRYhgkMEr+y8AXV1k4wlLdmmJ6zMSIeqRCVHt\n9NtS6O9ncL0aCV2/SYHl7FkTSil0dtrYvdt2Cyz+7/oBANmswoULpsOgYvJ2wwburffea6OtzcbJ\nk2ZNdDqlBrlHMoGj3ESiP5HT1cXguavLdtDEnO9HjpTwiU9Y6Ojgvba3a6xfb2P7dgZdZ84YSCSA\nCxcYlAYCnkScMO0aGjzkfk+PjaNHLbcJNqUyPbkbwEOQ9vauzB72gyzOnTPQ2Ai32bZSLMS1tjIR\nqxTcOS3MMv+78Z9XUkD1/+ZHP1rEhQu170WCcn9Anslw7EViRpKlhQJldeRcrHymw4dtjI9TynNh\nAc77g1OoAPbutZHLwUXdtrbCLXSlUsCv/EoJhw9T/vjwYT5TVxewZ4/tyGhqtw8Piztw9zO+P6Cl\nRaGvz8bjj5fwJ39SxMMPW5ieZl+FaJTnYyTCPbalxcaBAza+9rU8nnzSRne8E98d/Q5y2mNqIdOD\n8Pf/BK3hTtx1l+X6Q+EwpZmbmlh4yOW4127axPNva3cXvvaJo/i/730S93X9H7jwRi+Ghw3k83wX\ntg1grhvY9BIQ8X5PZXsQ/+HXYc12l+3VIt31yU8WsGWLxvHjAUxNsSBoWXAYgsqV6Zyb4xwVlpQU\nseJx6V0nZwrnOxPO3BtDIY2+Ppljksgk86G3l4xd9okS4EH5Gpb1QV9Qu/uvsLU5htqd72RMSxHb\nRkMDz9CWFp47nI/8TxDspqnR22u7wBB5zqkpzmF/Mj4YJJrdNCnLLWdUeWGs2i7kJYcliexnT4TD\ncBk2sRhBOOGwgaUlr99qZQFGGBSbNtn49rfzeOABAhh6eynrmEzaKBa5/gcHLXR1sajW0sJk+/y8\ncpN7whqNx5kIjUbJWO3rs33rnWdvTw/9heZmmQfsYxiLabegrBRcUNzWrZQCe/ddA+PjpiMtRV+E\ncmW8n3CYwCj2AYQjHehJbTc1EegwMKAduVRvbACuo6YmjYYG5QB0tAt2iERsp4jChLUAQQiy8YBU\nwtKhP6Pd919LEUDevcyRhgZKQ27aZCMYBPJ5ysiKxLcfKMS55wFopOhpWUzy+6WcZU5xnLxzTIBR\n/nuiQoPXG0lUEa4FThK2WlMTCwudnRwXyvMu/474ZVLkWVysXfgiaMwDcYVCLKzFYh47nr4QnHjE\ndpnSsRiL7M3NGm1tHKPWVmBkhPK7AqDxA1nEx2luJoBF+qTu2mWjtRU4d45xixSU5fm0JhPGL1Pd\n3Mx9YGGBv3X5Mv8sygz+orQAakQu1bZZwKHUHBlHwh7bvp3+hsS+tQqMN9sEzMU1sPJvevMMkD7J\npsl3EA6jTGZO4iatudd2dQGzswZKJQOZDNlFkYjHKNeakt+NjdoFU5Bdyvfd3q7dYk0opHDbbVz7\n4tdv3mzj/HlPVaarizGwyMRduWKgt5d9sQiO4TMtLrIw1NtL/7i3lyDOuTnDVXh4910D6bSBiQnu\nM0NDBHFaFmPRtjYbLS3MRUgOxC9B6BvBm864WSkfs2WL9vmVGtksC5FS1F1Y8KT+5SyTQonkZl55\nJeADJbPYPD1NNYI9eywEgxozMyyEbd3KHE0yCVeues8eFrdmZ5UTy3ixVDyOsvG4FuNpJVvpu3fc\nYWPzZp5jXV0ae/fa+KVfKrrg1WuBps+do2rC4CCL3B7Alt+lHLQH1LveHNNqW5GIrfTuAwE+a+W9\nXI8E461mNzJP6oWvutXt1rB64atuHxqrZDD192s89VQJH/nI8l4uckDRmZcDXTkBuHcIV9NsZtCr\n3Kay+Tyd2MXFtWkVf5itliMkjI5ahTQmzcqRWtu3a8zNKXfc/A7AX/xF2JFE8GQRmag08KUvFbF7\nt42rVxXiceU6V0pp/PzPW3jsMcuVO/znfw5gfl65xYBQiMmSri4mJ++/33YTqocP23j4YaLXjh9X\nZZJYYkrBCWw1tmyxEQ4r9PUxUdnbq52gXjnN6D35LKLyGHAOD5NFEwqxr1w2SyexoQEu0i8e55zb\nuRNOQKNcybfKJFYmY6C1lbIXzc1M1nV2Ut+8WISjYe9PNpQXjshqWxlZKY2229vh9hAAPERtLMZ7\nYe+7alfwEiAi+dXfz4QqwCBI2FHBIIO39nYyfMbHuebIBjLKnp+Ics6/ZFKju5vJfxZWPTbVSoUv\nScCEQnw+PzK48lkkGUn0PpMFsZhIVjKRVCoxwSbrJJlkIWRpSSGXY2DM5CcT7zLuDQ3alRrs6fHk\nV/0OtBQApqe5X4XDHJ+FBeUm4qT/SCjEObpli410mui/s2dZ+Jqf9xIikQivz2Ktdu6TTnyhwHtJ\nJIgy3rOHqMr1622MjhrI5bhGpqe5L0QiNq5cMWBZhiNPyCLYzIxy5BqZTJqd5f0wKGWSYXxcAeAz\nitRjJMI18/nPF929OJNR2LTJdhlEsRivE40yGJ6fVzh0yLouOddq41vtuwIAyGaV02DcQDZLWUPp\niZBIEGX7xhsBjI0ZTjK1fC6xvw8TFZs325ib4/NKfxmRW+Wa4DrZudPCM88UHUQnE7LpNJMhMm/8\n905gB/D220SfiwUC2gUExGLcnzs7bfzRH+Vx//2ejGA2y8Tu3ByTQH4wSTX2MJ/Zk4bp7SXCmhJt\n3NtaW4lELZWI1t22zWNAiazOtQqUly4pnDnDedffb2PvXkrg1WIyS1AeDlPuaWxMOZK5bGLe1QUn\nMU8WR39/bSAHwGJvWxsTLFJAk/OlpcXGwoLC+fMGZmc9SSxgdc9WLLJwNTHB4g4LwdrtbxcM8nka\nG4GhIdvtO3HxIgtE8Tjf5e23s+D1wAMWvvKVoovK3tTehUM9BzCbzWNphn3AOl//Y+xouR133sni\n6qc/XcTSksLMDBODmQwlG/ftI/q4r4/36h+bl14KYGZGYXRU+lMxadgR60J78U7YKo8wkmhbOoyD\n6f+C4NWDTsHGdooMNvbutfDJT5bw5JMW/vqvQxgfN52eggpTU3AKtspl75RKUrzkn9nrhkny1lYN\nkSFeWhLQinJYPDxzRcK0o4OJL8vi2RsMGohGgVSKyU0CbDzmNhkRXJ8NDWRqtLRo3Habhbk5rq94\nXLtyxfE4MDDAHiUEfAC7dpElyn5U/Jw/2RuJaPT08P21t3vgFjkPBcQgBTgyEbh/+eVa/SaFJAGY\nmKaCH0wSDvN9BIMagYCNWIyIdOkrBnjMY7I2DXev8pv4W7fdZuORR7h3yn6SShFk8dRTRWzZorF+\nPf2xX/u1ksNsYz9KYaPE42Sw7tnDpPbAgMbTT+fR1ka1AUlcip85NGQhm+U+0NLCPpDZrOHOCdPk\nfN2xQztqD5Q4zWaVAyjQTm8Yvu+BARayGxuZeE4kOB9GRgxcvcpzRhQNenpYfCMqn7/T2EgfUAAd\n3d3sLcZkvXL7vFiWMOsEvKIcVqAHhhApXSl6+cedhSvbJ0novS+RwdIaGBsznOIinMQ+fVHZC2Mx\nsl4ojUrAk1L87OCg7YB6PDlw8SUjEe7BDQ1M4EvhSPwpKdY0NcEB33g9byuLV1Ivk0IIGWfKGVvl\nskkXF3mtREK7DEGRoI/F6Bf4WVMecEw+y/sVMJDWnLeRCJPqQ0MWNm60sWuXjZ4eJqz377fcQmJz\ns8QoZPh8+tNFAExOT0wodw4Jc5SsHM7hjg7bLZY+9JCFoSHKqh0/bqJUMtx36y9Gk/HFOdLertHR\nweI89w6+83we7p5VqWAg4yygpaYm+ojt7UzE33efhd/4jRJGRxXeecfEwoLhnjsy91T5JSusdizh\nL5JW+x7ZpNoBouplUqV+80vYeu+SMVhjo0Y8LgBLKeDy30UpYMcOAhCnpwn8iUTIzlpcNJBKcd1Z\nFs/rzk4b27bZTs9d5Z5H0ajHwN2/30JPD0FHTz9dwFtvEQzl35v8vnytWLqvz14moawU9yR/iwYZ\ng3Saz7J7t4Vduyxs3qzdvdSfA1kre+d67Vr5mK4u+tiHD9M/KRbZSyyZJChqft5AsSiMOQ9sVcnc\nF5MCi2VRSn3nThttbWTxis9F8JHIVVNh5uRJssilgOb5+t543MiYXeu7lWAuGZfVgKbFlw6HUZbL\n8ssI3oyC0lrbYlzr3fvlHa91rQ+T3cg8qRe+6la3W8NWKnwFav5L3er2AVl3Nwsv1zJxNHt72U9B\ngoBcTkEpG4cOeRnyymuOjSkcO2bie98zkUoxOSJOmdb8t9Xcw4fZDh2ycOFCZd8EXTZutWx42HQk\nC7zPVo6bjPG//AsR3U1N5bT4qSn+b3e3xhNPlHDsmIl0WmHXLr47f3Kyu1vj3ntLuHIlCEAYV0ws\nRCK6atAh3zt82MLrr5P5URmQh0IaDz5YwiOPFPGXfxnCyAiLDj09dNQzGfYWCwSAuTkmoC5fJvq8\nqYkJLiYUFdraCti508J3vxvAwoLHGAOILjx1ykBLi41AwMbCgolczgs6iRTm/796lckVgAFvNqtx\n4IDGbbeV8M//bGJ62nQLPCLTItJcgkwWdli1BBaT8RyIjg6NiQkNaere3MzCiiTeBC1cLHpBNhOU\ngmJm8ujcOWD9eqJkx8fhJgCbmlgku3rVgGGwN9TFiwqFAiNmDynMsdiyxXJkqjS++MUCTpwwMTdn\nYG6OQercnHYCVT6j3yi5w+CqpcVGezuf4Z13lIsQrCw0SvKGfUJEWorvtFgEzp4l/bClhUGJZWmM\njRlO8ZLBxPQ0EaZLSwz2u7qA229nYLC0tDyx4J+rlXN/aIjSnZcvs9+eaUpixXad7u5uSrSNjlqO\npj0Dd0mGCZtgfNxAZ6f3wOLMNzWxX8DTTxfx3HMBvPBCeWNrkY6anS2/8UCAiU7KUXnX7e0lInrb\nNq7Jbds0LlzQTg+x8gWndfle/NxzAZw/b2B8nAVUMfleOq2WjVEyqZftD36TfUc+e+RICcPDtb+b\nTBIJPTIixUOyXksl7bBigEceKeGb3+T+0NtrO32ovEQMZYXIdjhyhL3Url41kM8zATU3B1duKxzW\nmJ7WOHSohM99zsKxY+ayhJB/TMWUIgshnTbQ2EgkrFhjI5nLhqHdIuTjj7NPg4zJs88G3N9pbeXf\nV9tn/fu3/zuzswoXLig88USp6tnR2+tnbHj3vJrzJJNR6OuTd27g2Wf5O7XOYJkTzz9v4uTJAHp6\nmDA6f97A+fMGGhuZbFBK4+jRa0vDyPN0dSkcOWK5vSL27bOQyRhYt46M46UlhdlZJoQTiWs/m388\n+/s13njDxKlTHoo2n2fivrWVTJUf/pD+yKFDFgxD3n/5vVeedWNjCsefvxO57/4cdka4984mef89\nPRYefliev4gzZygXHAxSTrS9Xfv+vdwuXGAh2LIMt/dSqcT526tux+75v8S//78Y5D/7bACldf41\nbGPHDttJinM9RiLcQ5iQJIJfKeUyjGdny8+sQIDnCaVGbXfMJBlr2wQ2hMNMGts21/HQkCTYKH+1\naZPG6CgT7KEQpe2EgSd7uIBibJvFqWIRuP12MpQ/+9kCjh838cYbJs6cUQ6DhICMUkkYgkxQaq1x\n7FgAlqXQ0CAJX55Lg4Ma+/fb+OxnS+7aymQ4X5UiM42FKpHFsvHVr+bx8Y9H3WS5sGl4LpNFMDrK\n/d+2yeahZBw/K0nnlhbKgL/zjuFIdSmnB6V2ZBqVw6DSbqHezxQLh8kgkeTbSnuDfy7Jurr9du5n\nuRyT0l/8orc3eVbC0aPWsn2e88vba956y0Brqze/3npLuQA4Oe8iERYiyBLkfp7JsAh4330laM21\nFg7TD5mcJJAjEGAvl1gMAFj03baNa2RyUmFyEmVo8HyeRSFhXEcilLqWAq5t83eV4rkrxU3T9MYZ\ngFP00mXS1kyQe58VZpbfnyC7hUAW3jPfczCo0NZWwsQEC76trRZyOeDKFfqyiQRceTIBkkUiHvts\n3TrtsEwsnD5toK/PxmuvGVhcNBwZOP6+1vQ5e3ttzM1xHkjRz/O3+FyGoR1JRGGFcN2bpsbFiwai\nUY3mZgJG5ueVu/aV4jyOx8msKZVYpLAs7TBFpUjItTs+bqBYNCCFYCkwHz5so7OTvlTluTI2pvDC\nCyZee82EUsDOnd6+uW8fP7u4CJw9y/fc2KhdGdtolJLohw5ZOHqU8/XYMRMXLiicOSM9/LQ7f2UN\ni+QoYGNgwJOebGoCJie1w5jXTvHcduaJ9/LFl5U4IBLh3iHrKpOh//riiwo//KHpsI21W5yVsW9s\nJOPUXwRTiv1A5+c9SfRKCwRE6lS7c4e958jYF2ZfMqmwtKSd3kvLJTGlMLm46Emm8vrKKXiymJ7J\neKoAMo6ArFUWCnbssDEyQqZcVxewYYOF8+cJsKOEMvewI0dK+Id/CDggLl57fl6ht9fCXXdZSCbL\nfcWTJ220ti6PMeUsrhVLP/ywNx/8e9qxYyZeeKF8XCMRFjj6+6+d/xCftdrff1DW3a3x2c+W8PDD\n3h6+dauFkRGCWsX8PmEyqXHxonLjGIJDNO65x6qIEVZ+1tWMx42M2Xs53v654+WyOA4Ax2vDBgvP\nPRdYVfxTy9YaR8l3qs3F67nWh8VuxbVVt7rV7eZZvfBVtw+tyQHld3hzOToPlQF4pcmBnk6rqodc\nrULKrWCVid3rdThW47zU+q1a4yN/PzICNzEibJhczuvBBcBF58q9VHOw/L8v/QyEwUKjg7iSU5JK\nsTAhBRYPJUkmxyOPFPHyyyxWLS2VJzdHR5no7+315tfJkwaCQa/5McCA7R//MYgnn7SwaRN79Fy4\nQPYCJezYOHhwkAm5xUXg3XdZVIlG4UgxehI2gkZMJJhMlKIsgybloAhZuGtpoWRMLqdw9qzhSglV\nFr2kkbtSykVJl0oad9/NZMP58wpzc4YbiPb22kinPUkVsrT4fhcXy2VXcjkmvpqbi+jrA0ZGTKfZ\nschT8n5ERtIfvLIApZFKUTNfEg8dHcDRoxZGRgyMjBjI5VjEamzUjkyW1+RcKWl0TImZ7dsZWGUy\nBubnyWgqFuH0j9EwDEEnK1fCCiA7KpvlmPp7OS0uEiFKBhTvPRhUGB9nwLq05PUq2brVQjzO5OjS\nklpW/Kmcq9WKDZ2dDMi5NxGZLSaB8aFDFp59NoDnnzcdRgatsVESud49AOVFKLmHQ4cs/O3fBjA5\nqZxknXZ6QjCpJglDSW5lMuyRePKkcuYIn3v7dgbssk8cPWrjlVeCy1hRu3eXFwok6PPfJ1m5uuw+\nVwuGWG1Ctto9lCNPmaSW4snLLwcwMmI40pksjHd12RgZYS+G7dvZZyWRYLLj+edNJBIac3NANqsR\niTARl0ppNzk7MmJifNzC975nYnraC/rJFF0+pv4kcDKpkc9rpxjKy54kAAAgAElEQVTPdzM0RAaZ\nf5xOnFD45jdDeP11Mkx37LDd378WwKNaQc7/nWpnh3xvLWfTtX6nlnV3s0i9d6+3NhobuU/Pzirs\n2mWt+mysBb44dszE+fMAUO5j5PMKR44Uaz5rtXNT5tmOHcDCguncL1lFV6/yutEocP68gTfeIPNy\nZqZ8XgDl+4fM99OnDefs4hm8YweBPM3NcO9peNh0kqL+8fDGufKeh4dZoBM2IcBkZCxmY+9eGwMD\ntnvtJ55gkp3AkeX3m07TLxsZoXSc9Jlhfyg4UmOUS1JK+nNpBwFuuyCIl182HbALxyuXsx1ZUf7u\nffdZGBjg2cukP8/eVMoDR4VCXFv5PJnUb75pIpNhwvbgQfY3yWSApSUD6bSN4WETDz9s4bOfLeG5\n5wL41rcCZWjnUolym+k0i2Gzs3AYyvz3vj4b+/ZZLoIa4JzPZIj4X1gg0IIAE+6/S0vcg4aHTaRS\nlMosFFDGGmloAB5+2MKJEwbOnjXQ0KAxOSnFLyauUyn2gTtyxMKJEyZOnybzJBwmw725maAXstqk\nrxn3fLFQiMwH6Ykn9y9rlgl2A+PjCt//vomPfrTkFg3862r9+mvvCbX2ef/ajMXK51dPj8bsrC7b\nv70ivHLXbEeH5RbcxsYU/umfTOfcI1uKjCiOuwCHeE0yV+i70jeUdx8OUy60t5eJfRbQWAxhPzKO\nqdbSQ0o77GLO8UJBuzJ2folJFiHI9kmluBaWlhTSabjrBmBhQZj2AJlmr75qoq+P4IbWVu2c+1Q9\n8NY+xy+XI9hpZka5TPlEglJuDz1UwjPPePtCoQCMjpK1t7TE4lQ4zLmxb5/GiRMKU1NUPZBxZZ8e\n7dwb75vFLz5bPs8YjpKlLHBcvsw5Rek+G6bJgmIqBezYUcKPfmRgcpKypwALb4WCjLNy3iGlbgsF\nvrNIhGdCV5ddFazQ3a3xzDMlANXPm0OHLLzxBuXUrl6F0zeOvk9vL5zxNfHnf84xjscJXMrlGHvI\nmhIlBPr89FcTCY3bb9cYGaG/Eonw3VkWv6M1i0dzc14xUf6TArcA2tJp5a7dU6cok9vayv3j6lWO\nIYFrfCeWxbGLRm23F55pihwo50M6LcoQ3nhI3JFOA6GQjVRKuUX0pSVgbs50ZSxDIe3IlJbw7rsB\nVzpeiqKJBKV2z5wxHHYbxysUEoUCYO9eC1orvPMO40jbVg6b0nYLBADc9zE1xc/NzpLhKUyahgZv\nL4nHlRvjpVJUOLjzTu7zlXatZPi1YunKPe3QIQt/93eV6Tfua6vJPdwIaHUtdj3+dC2QcbVx2bCB\n8Ydcn3ucxqOPFtf0rDfrM7XsvRzvyrnT22u5zHYqjFh4+eW1vYOVfutmAbpv5rVuxG5WPkzs/Vpb\ndatb3T4Yq0sd1u1Da5UaxK2tTEY+/XRx1QdfLYmCcFjj/HnDlXhKJm8N6cMbabxZzVbqD7bSb12r\n7853vhPG+DgdhYYGsnwAIkFjMToSX/hCwZVrWs2z5vMMGpeW4MhsaVeGbCWK/fCwgZ/8xHCTS9JE\nNhikRM0775h47bUAlpaYwJqf53+Tkwz2BgdFdoBJ69OniTr1s9eE2bNrF5H7XV0MwGIxYONG9onq\n69OuhFNHB1GuhqFcqRii6dkjZPt2G4uL/P35eaCtjd+jbKKF+++3MDTESHTrVjZSnphQmJ6mpI/0\n+/E3iWafBOX2+OjvJ6KYjZNZjOP3+H7iceDgQcrBPPwwE7ccf4X5ecAvHclCFuUJAwFgYsJEoUCJ\nIylosP+Xcvs/yX2JHE1jI5PL09MK586Z+MEPTGzfbuGee2wsLZFZduWK9/7CYeXKtlBai8+1ezdR\nzw89ZKFQYN+DVEo7SRQ4PW60Mx84psJus22iku+91y6T4IlEmPhaXKT8YUODF4Dz2ZhE5ZxQTsIJ\nmJigdGYtmb1q61HkJUQ335NWKf++fPbtt01cvaqc/j9eL7C+PsruTEyQWeHp63vXyGYVvvMd05U+\no3QlZUpKJSAWY4+yvXtttLRQYs+2ldsDbmKCheHNm+0yedT+fmn4zN/mWrXxxBOlsmeXZ1haokSK\nSAuyiLh26Yzr0Wf3xtHA4iKQSplobS1hYoLJwosXDSQSykXIA0w0tbZqHDzIMR4ctJHJGIjFiGB9\n5x0DU1OGIw/FcZA5JAXzfB544w0TxSKLw9548j1Vk5z1j9eVK9676e9ngtM/XidOKPzBH4QxPc17\nWVgwcPEiJdykp8lK8h1rlXeR+1trv8mbKUFTTQZntVbt3v3Xl2t3djJhSenD5WdjNlv93NyxgyyV\nQoGSbQCL9EzKkfUzOMiCzKlTnBf5vCe7lkwuf8cy3yulfAsF3utqpX46OvSye377bcOZt8rprwII\nG6Svzy67D09WVFWVFZ2cJNNsbo7PlMsBgHLZAUoxKWtZRHvHYlwn8TiZvx0d7EfIvY3fn5pSWLcO\nGBrimmhr03jySfYFef75AC5fVrh82XAl7AYGbLfvxpEjJXzyk0XE4xzb1layKdetgyt/TZksXfZu\ne3s1XnrJxMyM6RtBnr+AQnu7MMiEYURQSrHIAkw0auP0aQPf/S6LUJYFV5JLpMO0ppRsSwsTxuPj\nlOIMBpXbbywQ0Lj99hK2bxdZO0q8xeMaiYSJ1tYi9uwRmU8CaX78YxPDw6bLUiVrnf5AYyPQ3Gwj\nHGYhrK2N/kM0yjP94EG7zM+SuZTJACdOmLh0ief90pLC+DifdfNmveY9YWxM4aWXAsv8bv81Fhc9\nn0LWpfQE7enh+nz0UQv793OttbVRsvWpp0rYvJlxQTZLhs/Vq6bD7uaYJBIstgwOahQKLALt2cO5\nns3ydz05bo43pbkoIZfJEGDA3nTaYWyT6dvZCbcwIIwwAaeYpieLKfNA5N+iUeCeeyxEo7bLtE8k\nbHR1MekfCnnjR1a61zOH46PQ1sZ9RnqrSX/jiQkWZuJx7fQkY6Fg2zbvrJaxn5w00N0NbNignV5I\n0k8Vzp5IdnRXl3aKMhrRqHJ7vEmcJqy1aJTPt7DAMQsEgJYW+j6BAL/3cz9nYWaG31VKOeucBXfK\nV8JRV+AabmqCyxZrbeW8JtCJigSf//zy2LDWnPNbUxPnwg9/aLjS2/m8doAALIRNTHB/W1xUTl8w\nw71H6V0sCgOplMbWrVxXd95pufNY+lWSuWXj8mWFdeu8Pq4i2amUdueLMMiKRfpM6TT9ZNtWSKU4\nD7JZj7nV3s55JHLN0ah2emJRKjGR8PqcNTbSd8vlGJ8YBpmsHR3cC4tFvrP167XbS2xsTMEwKIEv\n/ZpFiUAKxCKBODjIPmQHD/K+5+cNGAaLat3dLA7u2MEelbEY+/ExhmHBNR7nOGSzyikkK5w6JbKF\n9KlmZ4HBQfpIe/awgC/7V2XPzoaG6j7HamTi1rLPNTWxP7Aw7fwSiquRtasmS11NwvlG7Ub6Hfnv\ntda4vPJKAIBye1/LOIRCcK+/mmddy2cqZbWHhq6dO3mvx9s/RpW95V955cbfwc+q3ex8GHBj77ou\ndVi3ut0aVpc6rNvPpN0MunU1dEc2S/3tuTn++UYQNjfbrhcdf7N/61qoGL8MV2enxt13Wzh1ikWD\noSFdJsO1lt/v7AS2brWQSmHV7/zQIQvf+pbp9D7ykIuhEJMlb79tukGlZcFp+s5Ak+jfcmtuBsbH\nGXBJ8aNQ0GhuZrLLL9uwfbsnKXf+vOe8NjXBZRRIIYfIeGBggGMliMjbbiPTQBgg/ucVRsfUFNDV\nxcTehQsmgkE4SHK4SQr2imIw2dWlXVZZQwPQ02Pj7NkA2tr4ObHZWYXDhy08/TQReKkU58Dly6ZP\nl5/BdzTKfhMf+YiFTEbYMF6hqrmZSYDWVo3xcSaWWLQS9pnC8eOGg+Rlge0b3wjhi18suFJoU1Ps\nbUU5PyJryagho+ngQRtNTZ5UZjVJG5Gh+du/DboJF8Dr4yLBvvSrIlOHPQMoA8j7k6KXbfP5lCKC\ndHaWCYeBAfZDWUlmr5pVMsBW2t+6uzX+w38o4M//POiw4shos20WW199lVKB27eXlsm3AFxjg4Ma\nuVy5TN3sLPC7v5t3kYbZrMKPfmQ6RWcm58Nhvv+REeBzn7OWPcPnPlebEVP52UqJlOtF7l2LiVrL\nurs1vvSlAp59NoBiMYhXX2WSQwq6p04xcV4pqZtI2DhyhIxR9iBS+OEP2axckMbpNJNxkQjKiuXz\n80AkYmBw0H9dyr5s374cme6fC83NGl/+cn7FufXNb4bc/dMvgXnqlIHOTk9qppa9X5Ift4oETbW1\nVuv6ExOGm1gWk7MRYA+1cvkeuGd05doeGyOrp7dXQ2uNH/3IQCbDIs+ePZaLVs/nFZ54ojxxK/Pa\nz5gEvALtaqV+qp21ySST9NEoARkLC2TbDA5WZ9Sv5I+Jv6AUk/KmSblg+Q2lFNrbKRPa319+tgMe\nezybZTFLa409eyyk0wpnzwJHjtiuzNg3vhHC1asEAwBM2BYKGj/9qcKTT5bKpC9Fxsx/No+OMvns\nZ8j6faz9+20AltPHkEXDoSGN0VF+tqkJDrOb5/bwsMK2bWRavvJKAErRr8hk6A+xxxYTwpQKo3Sj\nsKIPHACAEqamCN6JRjW2bi3h53+eZ1EqBfzyL3tyrrFYEG+/zeK21mRyf+tbJubmlOPnCJNZY2GB\nwKHeXu5/AFzJt8VFnukbNtjL/A6ZS6OjTPaLSf/WkRFjzT7pWuUT/fM1kdDL1gawnGkh9sILJvJ5\nA8GgRjConEIAk9H79nHstm+3y35bfrepyZMgVYrjd+wYi2LePgtHYlKhocF2ew4BLMpIAaSz00I+\nr3DpkpzdngSzUvRJenpspzcRpVeV8tYZpVO9M4nSm9plTIsZhsI991hl81xYrFRisDExwaJS5bsW\n8+8f/gK6rJOmJmD/fn7/wgUbf//3JubnAbJGPRWCcFg7ignKvV+ywTSuXPH6fLEPM1xWDvu/2tiw\nwcLx45zrb70lzHMyrkdH2YsrkxEZdDhsMRv33LP8mU6coI/pl1mrFesdP05J6P5+YHISKBapQjAz\nwxiHvU0NdHYS1CB7sgDhIhEb58+bSCSAO+6wXHCPXx4xkdCYmDDc90AWGOUpCwWNYtFwJDG108+X\neyelMikhnslwfEsl9ngDPFZkNEoA1MSEgXXr6OOyQMRxGhiwoZRygXwDA5YjHUw/LxTiXtrSwvgh\nEuFcFtZ1JsO9u1gk+1EYX2KHD7MflN+U0s6cIZChULBcBm9vr8aOHZ48IMdHIxq1cemS4bC9NEZH\neQ40N7MPoVLKty6W+1Rr9RveC2m3hx+23L5l/rFYLbPk/WDcXK8/LXat+CWd/v/Zu/sgu8rzMODP\n2V1pBasVK4RkYJGC/KHEJggjUYLFhwN47Ia4GWJXNqih4+mMa1JDE9ch7qRxII3d2O3g8Yxbx67H\nZTx0hAJ1MkkNHcYNLh4sxk5kY/ER2zGgINbGyGIX7QqtpN09/ePVuR/7eff73qPfb4YZdO/d3XPP\nx3ve8z7v+zzpWas2pfdkv7+R79ro/pgqrfZsnsuW0nyPQZkt1nhYs6xmAxaewBctbb43qMk6tP39\nEzsVzVL3ayk7QdP9rZkeBM4+Oz0oFdKD++ik+fUL4zvJBw5M/vezLIudO09O+t5kenvz+P3fPxH/\n+T+vjJdeSqlI0qzqFDBJRcuzSgqOrq70ML95c5pRm2rtVH/ftm0j8Xd/1xYvv9x+apVMfqp4fJr9\nXMzAPXYsi6efTt9rssGaN71pLN7znhPxN3+TAlfnnBNx/fXp30eO5HUpo84/f2Lu976+rDLgvn59\nmsV8+HCauT062hbnnjt26gE9q8xCL1JMpZRtKcXIJZekgffxg6cRaYCj9mEwpXxpiyxLQa3CihXV\nYuRr1qQBmtdei8rvO3myqGeQBvVGRsZOpU1M+214OA2aHTlSP6A8PNwWe/asrLy2ZUseR47kpwbb\n8jjzzLHYtCmPzZvTQ/tUgza150KxD/M8j7/8yxUxOppVasadPJnSKH73u+2R5yk4t3JlOg4vvpgG\n2EZGiloE+amaHWlWf56nVUtdXXnd9VAMrs5Fow98RZDpwIEUPMyyLM48MwV6i9mNv/ZrI5M+eNYO\nLtUGbLdvz+Pcc0fiwQfb47vfbY8TJ/JTgdGUGmvDhjT4cdFFY5Pu79m2zQvxsDGfQEjRpn3xixFn\nnFEdeClSEPX3Z5Om1B3/8FUMYPb3pwHvCy6IeOSRrDIgmuSVdmZ8qt4iHc/4lLOzTTlT1FCMiFOp\nUCMiqqslZhpkWaqUH8uZgqY2EP70022V9rbYv9ddNzLp79+wIZ/wwB2RrqeBgajU8Spe+9GPIn78\n46yyzUUauOJ8f/75tspKoxQQSZMpnn++7VTawpRqdarB6GJgM93H0t986KH2uPDCNOP91399dNp9\n9dBDEx8FLrggjx//OKsMnhafn02ao9rXa9MhbtqU2vDOziy6u9PAdAo0TGy7H3iget4Xdfgi0uze\nYsBs7dr0Nx54oCOGh6uTliLSAPuKFSlwUHyu1vj9kmrExoTgwYEDWTzwQEccOJDqJl1zTbUubETE\nOeekny+OY5Fqr7s7/c6f/jRtdxGkKFJInjiR0g4W9dFWrYpKHbGItBrgHe/I48ILU6BvbCylbyz6\nZ+PbgocfXlVZ0Tk4mFZfPfNM26mVXNV2oKMjrRzZvn207phOl/Jt/D4bHq5daZjug8U+nG2ftNFB\nrIUYhH7iifbKCs4jR4rVTimI9Qu/kE/6O6f6uxFpdc/AQHtNO1uksxuLl15KwZJi4sTwcMR1143G\nT39a1CZL/adUV6m6Cn50NK1Wv/DCPHp6Un9psmDyxRdH5d5x1llpolTteRkRlZ8bf/2vWTMWt97a\n2IS+2p+v9hXzulRztX3U555ri+9/Pz9VByud12nlU35q0kx+qq5XHj/8YUesXFms4E/1tF7/+uqK\njyIIGVENgr/5zfmp2lFFXb90zf7sZ/mpVWLFdqXA2GQTST73uZWV1RS1Kc4ne9bbv79aC7WoRTU2\nlp0K7qW/ldK0pv+vrT29dm0a3N+y5WRs3JhPOJYRkwdp+/sj/uIv2io16FavTivF29vTBLaUBSOt\nvFqxoprh4ayzUn+6vz9NFiz6eMePp2eEVAs3HZPiXFm1Kq1czbI8jh6NShrriLH49rfbK3WIi3T1\nRftYPOcV7V7x/FME1FKt3bF44xsnP8dqU3f/1V+tjKGh+vvNZJPYHnigI1avrv6+4j6QAtPpeEzX\np5pLv2GhB8NboU7SfPrTjfRZl7qe0lJOHF4oak5NTVAQmC2pDjntjV+K/93vzj310mKbKjVjI+kR\nFvpvTZfC4IILOuM73xmJ6VJDFPr6stizpyO++MUVlULEx46lwZpVq+pTCtb+/dk4//yIHTvSzNkt\nW1KQ4g1vyKO/P/29115LqX/yvLoq49JL03fasCGlziqWvb///SNx/HhKU9HZmdJWXXrpaLz0Ulsc\nP57qFbzySnaq8Hh62L/22rFJl89v25bHO985GjfeOBrvfOdovPGNEf/4j22xdm3UpYxK+6/+/KtN\nQzE4mJ1aUZdqYJ19dh4dHXm8850jsXlzmjW5Zk0eBw60R56n33/yZKrFcOONJyu1zYpUK4Xu7rH4\nwAdSyptikPjYsYiXXkoDW0VR7a6uNJB38cVjle1Os3nTwN/rXpcetLMsi82b83jzm0dj5crqe2vW\n5KcG9aIyaJf+floRsH59+ndnZwoQrliRBoVuvnk0Pvzhkbj55pG48sqpU4xMls5m69Y8XnklKqme\nVq1KA5Fbt6Yg4ehompl/xRWp3tgFF4zF6tVphv/PfpbqIYyOpgfYFLxLM11/4RfSoNB8Uy40qjZg\n/MILxaBvqpfw8stphn9KmRbxs59lddtUXOPjU75s3ly9xp97LtWKGBkp6oCl410M5hSfnWo/L2WK\n2EZS0kxnzZqIl17qjK6uk7F+fRrgKVIQpVRLYxNS6o5PIdffXwyep9UtnZ1Rqfd11lnVtDYnT0Zs\n3BiVv1Gk0SvS8dSaS8qZb32r41SdujQIVhSgX7t2LK69dnTG9B1LlU5nPn9nPj9bmyblmWfao7+/\nrS7VZBG4uOGG0Qm/f3Bw6lS/P/pRexw+nI5V9RpM95l162JCu1Ccs88+2xbDw6mO3OhoSnnb3l5N\nWzjZfa/42c7OtN1HjkS88EJqR9O9J6WNPXgwi8suS6kWJ9tXk93rOzsjfumXRuP88/MFOf616RDP\nOy+lyEop4/K45prRuPLK0di/v31C21F7fRXpwyKisk3F/2/fngasf/rTLH72s7a6mjTps2OxYcPE\nPtz4c2hkJE3sqQ0eDA5m8eMfp3t7W1tK3fzyy23R0xOV9LH/7J+djAMHqscxIs0uX7s2Hcef/zyr\nTP5YsSKLX/qlsfjZz1J7unJlqsc2OppWSbS355XUtBH1aU+ff74tXntt/LlXbQv+9m8748iR0Uqf\n4NixLH7+85RuNdULqn6vs8/O4w/+oPHU4OP32d//fXu8/HLaJ2efXd3e7u48tm4dm1U/bTYpT9es\nSd+jSLl96FA2q3vNQw91xJEj1XtZd3f6nZs35/Hxj5+Ysh8xVXrXX/zFtMrn+PG0GnfDhmpAdsuW\n1K8YGMji6qtH4/bbR2Lr1jz2708phrMsi3POSasgV6xIq/NHR1Mg9HWvK1YPRrznPSNxxRXV7SqO\nwUsvpUHlM86oTrIpVs2n/Ve9bufTns8mDXNESot8+HDq461YkVYAFamji0lS118/GuvWZdHbO1ap\n17p2barpdNZZ1dSVxXaOvw/296dnhaKNLPqH6VxIgcyrrhqdNKD+8MMd8eSTHeMmpKQ+3GTtxIMP\ndsTgYBEcr9a9bW8vUp2meoSvf30KZKcUnGml1kUXpZTIv/mbo3HttY2nAj733DwefTSlXS1WoZ53\nXkotmAJgWaWvnWXp3HnTm9LvL+79RRu5alUeH/zgyRgaSjXmalPjRqQ26YYbUu3OInV2RJzK3JD6\nJSdOpD59RLovbdw4FjfddDIiUnrn9vaU4nRwMAXChofTPnrrW0fjAx9I7eNUfbMUnOuMl18+OeP5\nOVVb8eqrKfV2RLVPtXp1Cqa+8kpWua/M91oozLe/O5fU0EtpPv3pRvqs8+2vz9Z80movl6XeR61k\nKcfDGiHVITQHqQ5pGQtdqHIumnmGzVIW3pzP39q4MRqazVYMPj79dPup4EvET39aTcHx4osRV1xR\n/3A91+9aO2OvSD2Y53klZ//Y2Fh0dBT546t/c/xKq4iItWuzeOc76ztWL7+cBmIOHy5S+6Xv8Mgj\n7ZX0So3MKmv0/Kvt8FVnwqcH4GKW/oUXRrz+9Sdjz56V8fTTxez60Vi1Kj1Er12bx549K2PDhrTi\npzorOb1/++0norc3nzB77+1vzyPPR+PIkbY4eTKlMNy2bSQ+9KGTlfR4xSqELCtm5OZ1aXpWr67u\nvzQzvZpGMH2Pak2AWkVqjOlWD9aabubhrbdWz9Ef/aitsgLnvPMiilm8F14YlRWGRft0/vlj8fLL\nbadSGLXFoUPpbxUrRiKWZibh+O928GBbPP98WnF55Eg1iDkykp1aiVS/TY1c48V5VjuDOaII7lRn\nUs9lVdJCW4hZtONXq9bOll67duJqgPHXa3HeF4PcESkNaW06sp6eNAhWW7Q6Yur2bS4zG2+66UT8\nyZ90Vn5/Z2dKafXxjx+fMc1sYTZpN+djPrOp5/qztbN/q4MhKS1SMYO8WN08fqVtf3/Ed7+bAhnF\nNV8cuwMHsviHf0iBrtprsJihPv4aLM7ZT35yZQwPp1o0R46M1c2cn+q8GH++p1XLed3gTkpHWk09\nN9m+mqodePe7F7b/NX57L7mk2n5M1XbUXl+1q5JrUxEW98aenrRK80c/yusGdtvb08qU6VJZ1Z7n\nX/hCRzzzTFvlPnjsWDUAUbtC9vDhiK1bq6l1zz23ehzzPLUBhw9np2rdVO9vxQD29deP1qSaa6tL\n4TVVn2emtqBov2r7BKtXx6kJEWkVRlH/7YYb5t42F+lhv/CFFfHkk+2VvzXVCpvxxrcneV5//y9M\ndszG32teeKEtHnywvVJfcqa2aevW0UpKy6o8tm6de9+ydqXc+NTWRfDh7LOrKxO7u6NuNeWWLVkc\nPjwaL7yQUnoWKTS7u/Np+xK1qbsi0t8866yxaGub2E4vRIaMRu8HF16Yx6uvpuvk0KG0Mj7L0mSh\nY8dSyscLLsijrS2lBH7jG0cqKxSPHGmLjo6xCefnwEBWl048z/MYHq5v7xpdxdZoloPCW986eirN\naprAMjycVl319IydWtFWrUdY7Jfx6a6LNPGNXnO9vXlcdtlYnHFGtU9erLR66aXqhJrh4SxGR6tt\nXLGKfHg4JvRZenryuhXChVWrqu1YbRvd1VXNPLF6dTUzQFdXdfXv9u0jMTCQVsUPDmaVGsyjo0UN\nsTzOPXf6Z8K+viyeeqqxFPbj+1zFeZNleTzzTBYbN6a/n4L/WfzyL49VVu3X9knncy00Q393sc2n\nP91In3WpV70189jOVFphZeByWcrxMKAcBL5oGs3SkWzmm+lSdoLm+7caebAoBh+LB9fh4YhDh9pi\ncLA6W6/Iz97IgEajUsq+tCrr+PFUWL6rK73X05Nm6UZMfdwn60CvXZvHa6+lh+Faq1ZFfO1r7XH2\n2Y091DV6/s1UcyEipf44cCClQ1y3Lotjx9LD7pvelAZcnnwyBXvWr08Pi6mW2MR9PVmKiNWrs+js\nHItzzkl/83Wvm/hwu3HjyKl6FZOn6Sl+Z3d3Hr/yK6Pxk59kkWVtlQf8NWvG4sYbRxoOEExmpvQW\nxTn6pS+tmPShaPyD2mTndCM/O1+TDTSN/26rVuXR3p7O69qZzB0d1dRZs33wLM6z8Sn5ilR/050j\ny5FGZL4DGm9/e8T+/fWp7KaqIRMx8XpdsyYNrE6W0mh82hrpZwkAACAASURBVMtzz22sfZ3LA/v2\n7Xl8/OPHKzUAzzknGqqtOJlmuTcvpNrroHYANLWl1UBKrdr98KY3pfbyxz/O4tprRypBogsvzE/V\nOMxOrfLJ46yz6n/XZDUsrr12NJ5/Pn2mdnB3/HU2Xu35/qUvrYiDB9snfGam1HPj24GxsRQYeeih\njmknrcylbzDZ9VmbzrAwWT3RavC9mmKt9l5QfPZXfiXi299ur9QQuvzy0TjrrNn04bKa/+LUSpXq\nd1uzJqXXWru2/rsUx/H73091Abu60gz3tFJ2LIaHU52dYvB6skH6mfbrTG1B0X4VK6FGRlIQbsOG\ntIo5y+JUTblqXbS5KtLsPvjgWDzxRHtkWWr7Lrts+nqNk7Ung4Pp/doV31Pd52vvNcXKtjyPePrp\n9F1napve/e4U+CrqYhZ1ot797oXp48806DvZ+93dacLVpZdGw32JvXvTqrHinlz0m84+uzpZZ7HM\ndJ+t1kSL+OEP04qFFStSRoL29lS76vHH06SwImBSrW2bsjDs3t1RdxzHxvJ48slqysFUhzPVYJ1s\nUsp0iiB57WSeiHQvmOyc+/VfH42DB9tOnTPp2o3IK3XNJktbuBD3zQsvzCPPJ65e+PVfH41nnmmP\ns85KffeUOrbaLta2LbVtSp6nCWjj01sXk9wiJp8kmH5nVOrbbd48Nmm7dPBgdmqSTURRH7e7e2J/\nu1axn848M+Lo0YkBqvFq7wnV8yZltogonmNSQPSXf7l+JdWrr2bx2c+ujC1bxub1/Nws/d3FNtf+\ndKN91oVOITmdZh7bmc5S7qOFsFQT2AUFgdkS+KJpNEtHstlvpkvZCVqsv1V0jB56KB3zYrbvkSMR\nEVmMjFQHHt/ylon1reart7eo35NHZ+dYHD2aZjCmguR5bNo0/UPRZB3ojRvHTj1Y1s8i7unJ4xvf\n6KgUgJ7poa7R86+Rmgsvv1ytmVV8Jq0ASNuY59VAWVpJNfkKt/GDLgcPplQoZ51VLWwdMfXD7b59\nWezZszIeeqi9MgA//jv+i39RLfI9/ns3GiCYTKOrZeYzG3CxZxJONoCyf38x4FUNFG7cmMdLL2Xx\nyitp1WER/DrrrOp5MdsHz9rzrFhtN1mtn7LkW290tWphPveLRtvXuT6wb9+ex/btx2f8/TNplnvz\nQqq9ZmsHQIv2cLL9W7sfaouyFys5IqrH6i1vqV6r49vlydqFon5i7WD8m940Frfe2ngqup6efNJV\nDKtWTb3aqVCcizMN1vb1ZfG1r7XHN77REatWpX3X3z9zsGE6s6knunHjaOR5TLmipfhssSp3w4bZ\nTZrZu7d9wmqcZ55pq1sJWJjqOD74YBqcX7kypatLNRHjVCrTkUlr/BRm0x4Xas/VjRsjrrtuJB5+\nuD1GRqr1K1NfZCzWrYu49trRBevTjl/t1Mhg/2TtSXd3FmedNdbQBKGpVrsXQeuZ2qYUsFu8Pv5M\n/YE8z+OZZ9rrglXd3dVrtNG+xIED9cGiY8eyU3U7lz9tV+21ePJk+6l0u/mp1Y/Jz39erX978GD1\nexTt5fjjWEyiqg9UZXHppSPxwQ/O7j40WY20VavG6gJA479PUUt1fI239CwzcZLAQtw3p7red+0a\njYjRuoDWZO3i+OuxCBpu3DgWv/ALCzcRr1r3r/75p7jvTdcPnO1+qj23vvGN9ujpGatbJVs8M/b0\njNVdS0UdsjPOyGL9+nxeE3jK0t9dLM0YZGr2sZ0yWOpJcq0WFASWl8AXTaOZOpKtcjNthtSQs1Xb\nMcrz1DE6cSot8uhoOtYdHdVUdxGLcw7UpgSstXZtyoU/nak60F/7Wh6PP14d0LjggjxefLFa26Mw\n/qFusuM40/lXuw1ZlsfTT09MkbRhQ3XlSm16k+rDaf2AbMTk+7oYyClSihSpvDZuHJvxZ/fty+pS\nrr3ySsSf/ElnfPzjxyf9jlM96I5/vdFzf6q0KF1dKeXQVKvQIhp/UFvsh7zxAwPFLNehoTy6uqoD\nXhdfPBb/5J+Mxc9/HnHsWMTzz2dx7rmp7kNtOrbZaPRhsRXTiExltu3/Yt8vlvuBvZnuzQtlfEA3\nrWaMaVcXzzZ9z1Tt8tTXYB7VlUW1/9/4d9q/Pzt1HWan/l40lHquMN0g5I4do6dSE7dVUhMX7U53\nd8w5EDpT2zGb62su12LtveR732uLdeuirsbXxo15/MM/1P/MdOknL7poLJ5+Ot1n164di8suS4GN\n1LeYXzvRSFvw3HPt8ba35fHkk3lNkCDVgfoP/2Hygf2F0sgg9lTXUVtb1tBKpUZWu8/UNi1mmz1d\nf6CvL/U/+vvT69V792jlfGqkL9HXl8Xjj7fHT36SapWtWZNqXOV5mvDUDIp9/OCD7bF/f7VNSvI4\n55y8cj7/p/+UVlIV/eaivaw9jlmW1a06L4KGWTb7+1DtdbRpU2P31PHnzEyDvAtx35zpep/pHP7a\n19rj7/6uPV56Kf3NIoVmo6sCG+17FJ97+eU0IWv8cZyuHziX/VQciyLF4mQ/O/6+UqQ3rW0n5jqB\np0z93cWw3H3W6barFcZ2WlUZJ8kB5SHwRdPQkZydVk0/VdsxKoIxK1emh5GTJ9OsvI0bxyr1DSIW\n5xyY7/k2WQf63e8ePVUzrPp7h4er9UFqFQ918zmOtdswVSq855+vpmAr0puceWZK7djZObEY83Sr\nEYrZxXmevlequTD9w+2ePSsn7Qjv2bNyzqtRZrPPaldSDAxk8fLLaUb0ZZfl8fzzbXU/N5+VO4v5\nkDfZirs8T7VbitWSxUq+iy4anTTFzXy2qZGHxWac4Vkmy/nAXsZ7c29vHtddN1KXCvL226dPBTmX\n9D2NXoNppVFWSSWVTD1gMNXvvfXWkfja1/LYvz/VXXrrW0crNSYb2Z7pBiHHpyaOiEq785a3TD3Q\nO5PlbDvG30teey3iJz9pOxXMq66Gvu66sVi7trF0xVOlJ1uo62WmtmBgoD417cBAFkNDEWecEbOu\nMzRbjQxiz7c9aWS1+3K2TdP1B1J9r2xCqrkLLqimjpupL1Gcs2NjKZVlquEZsWFDylqwYcPyr/iq\n9ba3jcZLL6XaXSn9aErF97a3peu7tzePX/3V0bq6aIXa45jOm7yhlZeNmO89daZB3oW6b851O/v6\nsvg//6cjXnihusxucDCPV1/NG14VONX9YqrXf/d3T4xbYTZzW75Y2RbG31dSvczqhMrCXO5b+rsz\nE2Q6/ZRxkhxQHgJfNA0dydlp1Zk1tR2g2mBMlqUUPS++2NZQnYf5WozzbbIBj56eiIGBqR/oF+o4\nTvaQMVn9oYsuGotdu9LnGn1A7e1NAzO19Z1STYGskgJqqp/9+c8n396DB1P9gLkEZWa/z9Jgcn9/\nNSXMZD83nwe1xXzIG/9wXww89/RUVxWOLzi+2Ns0XrPO8GT+Wu3e3Eiwqa8vi0ceSfUP169Prz3y\nSEece+7UEw7msh8avQZnM2AwU+D/Qx+qpp6bzc9FTD+QWGzL+HSKte3RXCxn2zH+XlJMximCeRHp\nGNcGD2ey3NdLbV3G9H1SvbFVq7IJkz0W629P9nphvvtnfqsql8ZU131xDdXWS4pIq91m+tlCcc72\n9ORx7FjEkSOpftvISLXm1FJppK2t1lTLp6yp1sg5sdzX1XgztdnLvb1797bH0aPjnz2yePXVvKFV\ngVPdL667rr7u7vj7yGzb8mI/1W1llsfrXz864zPCdPt4YprclAq4djVvxPT3ranOb/3d5tOKGXDK\npoyT5IDyaL/rrrvuWu6NmK3XXjux3JvAIlizJs2UHRpKQZDzzsvjhht0XKayd2/7uHzqSZZFbN++\nvDM+u7o6p7xOn3uure6BsbMzYv36iMsvH4t/+S9H4hd/cWxJzoHFOt+K4NL27WNx0UVjce65eTz1\nVCruXciy9LfWrFnc4zjdd5zt9//e91Ltk/POy+P88/M455yIEyfSdl5++dikP9vXl8Vf/mVH/OQn\n7TE8HLFiRRbt7RHHj0cMDUWsW5cGTQcGsnjqqba48MKJK9AmM5t99vDDHfHaa22xfn3E0FBbdHZG\ndHRkcfJkVAa8m+GamU5PT/051N+fVVYSrlmTvkeqHzMWV1yxfN9j/LnfyLFsNtO1XaerVro3F4N1\n/f1t07YtDz+cPhORUoc++2xbHDzYHn//922xbt1YfOtbHbF3b3s891xb9PSkn13M/TD+vlg477yU\nOq9W7bZXZTE0lE347Gx/bnxbE1G9Xx06lPZnZ2fEyy9XU5d1d6dVJsU9bS6Wq+0Yfy/p7Ez7YHQ0\nYvPmfE7HeDmvl66uzlix4njlGD77bKoDmWXpftHZGdHIuTJX050/xTFdiP1TnC9XXpnS+5482fxt\nU8TsrvOpFOfsqlURr7ySRVdXRHd3qrm6eXP9ddjXl8XDD09syxZCo23tmjURv/iLeZxxRsT55+ex\ndetY/OZv1h+jRs6JZrsPzXQsl3t79+5tjwMH2uLVVyPGX4+XXz4aV145/fk21f3iO9/piDPPHP/p\napsy27a82E8jIyvjxImROO+8PLZtG41HHmns3JpuH4/flh/9qD7l5vi2qdZM53cZ+rtl0WhbxOJq\n5P5fVp4doTl0dXVO+Z4VXzQVS+Mb16oza2aaBbnUq1TG5+yf6yqk6f7GdDMDF/s4Trc/Z7Ovi+08\nciTqUvRcccXk9ciKB5FNm8biwIG2Sjqe170uzVD+lV+p/36zWeU2m31WOzBRu1IhDXYuXirNhTT+\nHNqxYyQOHsyiu7s5Zj4vlulmcJrdubRa5d7c6GrQol0o6uUVq0D/4R9STcKLL04zw8fPZl+s/TCb\n1QFzTScz2xpl46+tYhvXrKlN1Za2fTYrouZisa73ye4la9ZEXHLJzHU2p7Oc10vtMfz7v2+PtWtT\nLaTalQ6LlXpoNjWBFmr/tErbFLEwq4BqV/TV1rzauLF+xfdip0Ofzcr7Ro7RQn1mqTRyLJc7RXFP\nTx7DwymFfJFmcuPGxlYFTtVG/PznabJVUS+3eBbIsrmfU729ebz1rRGHDqW6Yw880LGg51bxudms\n0mrVrCqnI8eqOVgJCTQzgS9oUcudRmOumrVjtBiDBOMH6264YfIaVK1wHFOtrCyefLI9itlcw8NZ\nvPhiyvc//nsVDyLnnx9xzTUj8dRTbXHsWBZnnJHHZZeN1gVtCo0OxjWyz4p9/8QTbXH0aBoU2rgx\npevK86gUuG7GfT2ZyYK0zXYNLaTprseIaMn6hiy+RoNCY2N5PPNMWzz/fFucOJGCHatWpZWoXV1Z\nHDwYlVR3SzGAMpv74lwnS8ylRtl023jJJWNL0u4s5r35wIEsnnkmq0uVNziYR39/xJe+tGLaVJnN\n3P7WHsOZaict5t+m3kL0fyfr/0Tk8cY31vdjFmswuDj3H3oo1RGsvXYi6tvaZr9O5qNZn2UKRX3b\ngYH26OwstimPLVvGGurzTnW/OOeciRNGjh3L4umn2yZ9FpiLxaoVNJu2Sb2i1uFYNQ/3f6BZCXxB\ni2r2h67pNGPHaKEHCRodrGuV49jbmwJHBw9GDA/HqToNeXR3x6T7qPaB4/zzI84/P6VVWbs2zUJ9\n/vm5r3KbaZ/V7vu1a1MNrIGBtrj44rFTM6RTipILL2zOfd2IRq6hVhx0Krb5//2/9krAslipUFyP\nxf/XMruTiMaCO319Wbz4YlsMDLTFsWNtMTIScehQHuvXj0VXV/rM+FSqSzGA0uh9ca6TJRZiksVy\n3LsX+968cWPEwYNFmq48BgerKcwmu28v9kqahdQqE2tOJ/O9hor+z4MPtsd3v9seq1bl8cY35vHq\nq22xe3f1PFyMweDacz/Ps+jvz6K/P608K4JfRVu7lNdJo3UdF7o/1IzPMoXe3jxuvfVkPPjgWDzx\nRHtkWcTWraPx7nc39r2najtuuulkfO5zK+tq5UakeoIL1QdrhowmzbANNMaxAmAmAl/Qwpr5oavV\nLPQgwUKngWkGWZbFW94ysS7AZPtougeRxR6Ard33a9ZEJS3X4cMR1147Grfe2vwBoKk0OnjTSoOz\nhdptPnw4i2PHUq7+iy8eqwS/prseze6kkbZl795Ur/Dii8fi6NEsXn01pYDq6Ul1aPr7s8qK0EIz\nDaDMdbJEq0yyGG+x783d3Xm85S1RSf+VauJU1d63+/qy+OxnV8bBg+kcKVa7NGvgvVWPOdPr7c1j\n7dqIbdumThm9GIPBtddOdQV9Fi++mMVb3pLXtbVLlX6skb5OK/aHFkJvbx7/+l+PRMTs9/d0bcdF\nF43F009HJc1h0Q4uVB+sGQL2zbANNMaxAmAmAl8AsfAzxsqYemE2+2i6B5HFHowbv4/XrElpy9au\nbY0A42T6+rJ48MH2eOSR9li1KqUXmm7wphVz3tduc1GPLc/Taowi7VxxrpndyWQaaVuK9qG7O9Uo\nLFI2ZVkWF1wwFgMDaTVroRkHUOY6WaJVJlnUaoZ788BAVhk8P3iwLY4dS+m9ale7NOu9vRWPOTOb\n6TxejMHg2r9ZW2MsyyI2b65PfbpUfeBG+jqt2B9qBlO1HRdemEee51HUyS0sZG3i5Q7YN8M20BjH\nCoCZCHxxWmjFlF8srYUaJCjOte99ry1ee21i/YOFejBcjnN6NvtopgeRxRyMK1vai2LA9emn2+PY\nsSyOHYuaAdfJB29aMfBau20psJdHRFZJO1d7rpndyVRmaltq24fawduurjwuuWQsfvM3T8Zzz82+\nbdXPWBwLPYA/0/1hqveKwfMiKH9qSyqrXVr1/kJrmuk8XozB4PF/M62WzGPz5rEJbe5s+mHzaTtr\n+w1HjkS8+GLqM/zjP2aV39NM/aEy3CeWYoVNMwTsm2EbaIxjBcB0BL4ovdM1xQWzsxCDBLXn2rp1\nET/5SVvdjPCFejBcrnN6tvtouR5Eypb2ohhwra87VB1wnW2qyWZVu821KSrPPHPibHKzO5mr8e1D\nd3dK3VTbfm7fPrt2Sz9j8Sz0AP5M94ep3nvoofTIVE3xlt4fHs4iy8Za9v5Ca2qkn7PQfbDZ9K0a\n/ex8286i33DkSMSTT7ZFRPo9R49G7N7dEbt2LU7ax7koy33CChsAoJW033XXXXct90bM1muvnVju\nTaCFPPxwR/T3t417NYuhoVTMvEz6+rJ4+OGO2Lu3PZ57ri16eupXGy2Vrq7OlrxO16yJuOiisdi+\nfexUofvZ/XztudbZGdHTE3HiRBajoxGXXjoWN9ww9YPhbI7dQp/Ts/nb891HS2HNmpSKZWgopeA5\n77x82n3f7PbubY/h4VRIvjb4VXy3887LJxz3np48nnqqOgiUPp/2QzMes4iJ29zZGbFhQx4f/vDJ\nuOKK+nNtsc7DVm27aNxitA+nUz9jOSzk9T7d8Z/uveeea4uBgazm3p7SY27cmMcHP3iyKe4v2q/T\nx3L0c2bzNxv97HzbzqLf8OyzbTE8nH5PlkW86U15rFwZMTSUVn41Q3+oTPeJhe6DLVTb1SzPwcDp\nQ98LmkNXV+eU71nxRek1U4qLxdRqMwlbMd3HTNs8/pwq0sDMVFtqtsduIc/pVjtvGlWmtBfFbOXx\nKw1WrcrnnGqyGbXiNtOaFrp9OF36GWUx3fGf6r3aFSzFvT3L8pa/V9K6lqOfM5u/2chn59t2Fv2G\nT35yZQwPp37Rxo15dHdXa401S9/CfWJxlfV5BgCYH4EvSq9ZUlwstlYq3tyKDyeNbPNcz7XZHrtG\n/k6jgcVWOm/KZDaB32LAtbs7KvWIhocj3va20Xj3u5sv1eR8NOM2t2KQnqV1uvQzTmfNMngOS2Gp\n7nsL0Xb29uZx7bWj8fzzE3+mtubZcvct3CcWl+cZAGAyAl+UXtnq/UyllWYStuLDyUzb3NeXRX9/\nxHe/m8WqVREXXJA3XNdrtsdupnN6NoHFVjpvymK2gd/xA65btxpwXSqtGKRn6Z0u/YzTXTMMnsNi\nW8r73kK1na3QBrfCNrYyzzMAwGTU+KL0ylbvZypF/YnxJqv/s9hmynVc1CwaL8sitm9vzjz3023z\nuefmsXt3RwwPt8Xq1VkcOZLFyy9n8Uu/NBrvfe/M59psj91M5/Rs6gg003lzuphLnYdWqK1WBuPb\nrjLV5GDxnC79DJqbOhMshKW87y1U29kKbXArbONyWYi2y/PM0lNTDfS9oFmo8cVp73SYpdtKMwlb\nMd3HdNtcuxqsqP0REXH22dHQA+1cjt105/RsZj220nlTFmaltg7Hanm0YnrJ06GfAcupFduFxbYY\n+2Sp73sL1Xa2QhvcCtvYqjzPLC0ZEQBoFQJfUBKtVH+iFR9Optvmhx6avCmdbXHuhTp2swksttJ5\nUxatGPg9XTlWS28pBlMMoLPQnFOLyyDrRIu1T9z3aEWeZ5ZWK5YtAOD0JPAFJdIqMwlb8eFkum1e\nqOLcC3XsZhtYbJXzZrks9IBmKwZ+F1MzDxg7VktvsQdTDKCz0JxTi88g60SLtU/c92hVnmeWjowI\nALQKgS9gWbTiw8lU29xsgwStGFhsVosxoOn4VDX7gPFSHqtmDgAupcUeTDGAzkJzTi0+g6wTLdY+\n0UcBZmJlKACtQuALYJ6acZCgFQOLzWixBjQdn6QVBoyX4lg1ewBwKS32YIoBdBaac2rxGWSdaDH3\niT4KMJ1mm/QJAFMR+AJYAAYJysmA5uKyf5NWCAAulcUeTDGAzkJzTi0+g6wT2SfAcmnGSZ8AMBmB\nL5gn6amYinOj9RnQXFz2byIAWLXYgykGi1lozqnFZ5B1IvsEWE7znfTpORmApSDwBfMgPRVTcW6U\ngwHNxWX/JgKA9RZzBa3BYhaac2ppLEa70OoDr7INAK3IczIAS0XgC+ZBeiqm4twoBwOai8v+TQQA\nl5bBYhaac6r1GHgFWB6ekwFYKgJfMA/SUzEV50Z5GNBcXPavACDAUjPwCrA8PCcDsFQEvmAepKdi\nKs4NYDYEAAGWjoFXgOXhORmApdK23BsArWzHjtHIsvoOmvRURDg3AACa1VQDrAZeARaX52QAlooV\nXzAP0lMxFefGRK1eRB4AKAe1FQGWh+dkAJZKlud5y91dDh0aXO5NAKaxfn2365Q644vIR6QBJkXk\naSbaLqBVab9mz4QcWH7aLqBVab+gOaxf3z3le1Z8AbDoFJEHAJqJ2ooAAFBeanwBsOgUkQcAAAAA\nloIVXwAsup6ePPr7Jwa5FJEHOL1ILwe0Mm0YAEBrEPgCYNEpIg/A+HqP/f1ZHDiQqfcItARtGABA\n65DqEIBF19ubx65dI7F581isXZvH5s1jBgkATjPT1XsEaHbaMACA1mHFFwBLQhF5gNObeo+L5+DB\niP/9vzukX4NFpA0DAGgdAl8AAMCiU+9xcfT1ZfFXfxUxNJSSeUi/BotDGwYA0DqkOgQAABbdjh2j\nkWX1A8TqPc5fSr9W/5r0a7DwtGEAAK3Dii8AAGDRFfUe9+5tl5JvAUm/BktDGwYA0DrmFPgaHh6O\nO+64Iw4fPhxdXV3x6U9/Os4+++y6z9x///2xZ8+e6OjoiN/+7d+Oa6+9dsqf+/rXvx6f/vSn47zz\nzouIiNtvvz0uv/zy+X87AGgCfX2ZQRKAUO9xMfT05PHyy5O/DiwsbRgAQGuYU6rD++67L7Zs2RK7\nd++OG2+8MT7/+c/XvX/o0KG49957Y8+ePfHlL385PvOZz8SJEyem/Lmnnnoq7rjjjrj33nvj3nvv\nFfQCoDT6+rLYvbsjnn++Lfr7s3j++bbYvbsj+vrMxAdg/lL6tfrXpF8DAABOZ3MKfO3bty+uvvrq\niIi45ppr4vHHH697f//+/XHppZfGypUro7u7OzZt2hQ/+MEPpvy5p59+Or761a/Grl274lOf+lSM\njJhBBUA5pNor9SOSaq8AsFB6e/P4V/8qYvPmsVi7No/Nm8di164RK4sBAIDT1oypDh944IH4yle+\nUvfaunXroru7OyIiurq6YnBwsO79oaGhyvvFZ4aGhuper/25K6+8Mt7xjnfEBRdcEHfeeWfs2bMn\nfuu3fmvKbVq79szo6DBgCM1s/frumT8Ep4GRkYiurslfX79+6beH6Wm7gFb1b/7NGcu9CQCzpu8F\ntCrtFzS3GQNfO3fujJ07d9a9dtttt8XRo0cjIuLo0aOxZs2auvdXr15deb/4THd3d93rtT/33ve+\nt/L/119/fTz88MPTblN//2szbTawjNav745DhwZn/iCcBjo6OuLo0YkLrDdsGItDh6xwbibaLqBV\nab+AVqTtAlqV9guaw3QB6DmlOty2bVs8+uijERHxzW9+M7Zv3173/tatW2Pfvn1x/PjxGBwcjGef\nfTa2bNky6c/leR6/8Ru/ES+99FJERDz++ONx0UUXzWWzAKDppNor9emm1F4BAAAAgMWR5Xk+6+Tv\nx44di4997GNx6NChWLFiRdx9992xfv36uOeee2LTpk1x/fXXx/333x9//ud/Hnmex4c+9KF417ve\nNeXPPfbYY/HZz342Vq1aFW94wxviD//wD2PFihVT/n0RdWhuZr5Avb6+VNNrYCCLnp4U9FJ7pflo\nu4BWpf0CWpG2C2hV2i9oDtOt+JpT4Gu5aViguekAAK1I2wW0Ku0X0Iq0XUCr0n5Bc1jwVIcAAAAA\nAADQbAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAA\nAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBS6FjuDQA4HfX1ZbF3b3sMDGTR05PHjh2j0dubL/dmAacpbRIAAABQ\nFgJfAEusry+L3bs7Is+ziIjo78/iwIEsdu0aMdAMa14z6wAAFcRJREFULDltEgAAAFAmUh0CLLG9\ne9srA8yFPE+rLQCWmjYJAAAAKBOBL4AlNjCQzep1gMWkTQIAAADKROALYIn19EyeOmyq1wEWkzYJ\nAAAAKBOBL4AltmPHaGRZ/YByluWxY8foMm0RcDrTJgEAAABl0rHcGwBwuuntzWPXrpHYu7c9Bgay\n6OlJA8y9vVZXAEtPmwQAAACUicAXwDLo7c1j586R5d4MgIjQJgEAAADlIdUhAAAAAAAApSDwBQAA\nAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApdCx3BsAAADNpq8vi71722NgIIuenjx2\n7BiN3t58uTcLAAAAmIHAFwAA1Ojry2L37o7I8ywiIvr7szhwIItdu0YEvwAAAKDJSXUIAAA19u5t\nrwS9CnmeVoABAAAAzU3gCwAAagwMZLN6HQAAAGgeAl8AAFCjp2fydIZTvQ4AAAA0D4EvAACosWPH\naGRZfZAry/LYsWN0mbYIAAAAaFTHcm8AAAA0k97ePHbtGom9e9tjYCCLnp4U9OrtteILAAAAmp3A\nFwAAjNPbm8fOnSPLvRkAAADALEl1CAAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAA\npSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAA\nAFAKAl8AAAAAAACUgsAXAAAAAAAApSDwBQAAAAAAQCkIfAEAAAAAAFAKAl8AAAAAAACUgsAXAAAA\nAAAApTCnwNfw8HDcfvvtsWvXrvjgBz8Yr7zyyoTP3H///fGe97wn3ve+98U3vvGNuve+/vWvx0c/\n+tHKv5944onYuXNn3HTTTfFf/+t/ncsmAQAAAAAAcJqbU+Drvvvuiy1btsTu3bvjxhtvjM9//vN1\n7x86dCjuvffe2LNnT3z5y1+Oz3zmM3HixImIiPjEJz4Rd999d4yNjVU+f+edd8bdd98d9913X3z/\n+9+PZ555Zh5fCQAAAAAAgNPRnAJf+/bti6uvvjoiIq655pp4/PHH697fv39/XHrppbFy5cro7u6O\nTZs2xQ9+8IOIiNi2bVvcddddlc8ODQ3FiRMnYtOmTZFlWVx11VWxd+/eOX4dAAAAAAAATlcdM33g\ngQceiK985St1r61bty66u7sjIqKrqysGBwfr3h8aGqq8X3xmaGgoIiJuuOGG+Pa3v1332dWrV9d9\n9uDBg9Nu09q1Z0ZHR/tMmw4so/Xru2f+EECT0XYBrUr7BbQibRfQqrRf0NxmDHzt3Lkzdu7cWffa\nbbfdFkePHo2IiKNHj8aaNWvq3l+9enXl/eIztYGwmT47/veN19//2kybDSyj9eu749ChwZk/CNBE\ntF1Aq9J+Aa1I2wW0Ku0XNIfpAtBzSnW4bdu2ePTRRyMi4pvf/GZs37697v2tW7fGvn374vjx4zE4\nOBjPPvtsbNmyZdLftXr16lixYkW88MILked5PPbYY3HZZZfNZbMAAAAAAAA4jc244msyN998c3zs\nYx+Lm2++OVasWBF33313RETcc889sWnTprj++uvjlltuiV27dkWe5/GRj3wkOjs7p/x9f/zHfxy/\n93u/F6Ojo3HVVVfFJZdcMrdvAwAAAAAAwGkry/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K\n+wXNYcFTHQIAAAAAAECzEfgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEqhY7k3AABaWV9fFnv3tsfAQBY9PXns\n2DEavb35cm8WAAAAAJyWBL4AYI76+rLYvbsj8jyLiIj+/iwOHMhi164RwS8AAAAAWAZSHQLAHO3d\n214JehXyPK0AAwAAAACWnsAXAMzRwEA2q9cBAAAAgMUl8AUAc9TTM3k6w6leBwAAAAAWl8AXAMzR\njh2jkWX1Qa4sy2PHjtFl2iIAAAAAOL11LPcGAECr6u3NY9eukdi7tz0GBrLo6UlBr95eK74AAAAA\nYDkIfAHAPPT25rFz58hybwYAAAAAEFIdAgAAAAAAUBICXwAAAAAAAJSCwBcAAAAAAAClIPAFAAAA\nAABAKQh8AQAAAAAAUApzCnwNDw/H7bffHrt27YoPfvCD8corr0z4zP333x/vec974n3ve1984xvf\nqHvv61//enz0ox+t+/c73vGOuOWWW+KWW26J73znO3PZLAAAAAAAAE5jHXP5ofvuuy+2bNkSt99+\nezz44IPx+c9/Pv7wD/+w8v6hQ4fi3nvvja9+9atx/Pjx2LVrV1x55ZWxcuXK+MQnPhGPPfZYvPnN\nb658/qmnnoo77rgj3vWud83/GwEAAAAAAHBamtOKr3379sXVV18dERHXXHNNPP7443Xv79+/Py69\n9NJYuXJldHd3x6ZNm+IHP/hBRERs27Yt7rrrrrrPP/300/HVr341du3aFZ/61KdiZGRkLpsFAAAA\nAADAaWzGFV8PPPBAfOUrX6l7bd26ddHd3R0REV1dXTE4OFj3/tDQUOX94jNDQ0MREXHDDTfEt7/9\n7brPX3nllfGOd7wjLrjggrjzzjtjz5498Vu/9VtTbtPatWdGR0f7TJsOLKP167tn/hBAk9F2Aa1K\n+wW0Im0X0Kq0X9DcZgx87dy5M3bu3Fn32m233RZHjx6NiIijR4/GmjVr6t5fvXp15f3iM7WBsPHe\n+973Vn7H9ddfHw8//PC029Tf/9pMmw0so/Xru+PQocGZPwjQRLRdQKvSfgGtSNsFtCrtFzSH6QLQ\nc0p1uG3btnj00UcjIuKb3/xmbN++ve79rVu3xr59++L48eMxODgYzz77bGzZsmXS35XnefzGb/xG\nvPTSSxER8fjjj8dFF100l80CAAAAAADgNDbjiq/J3HzzzfGxj30sbr755lixYkXcfffdERFxzz33\nxKZNm+L666+PW265JXbt2hV5nsdHPvKR6OzsnPR3ZVkWn/jEJ+K2226LVatWxRve8IZ43/veN/dv\nBAAAAAAAwGkpy/M8X+6NmC1LSaG5WfINtCJtF9CqtF9AK9J2Aa1K+wXNYcFTHQIAAAAAAECzEfgC\nAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWB\nLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS\nEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAA\nKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAA\nAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAA\nAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsA\nAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+\nAAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB\n4AsAAAAAAIBSEPgCAAAAAACgFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBSEPgCAAAAAACg\nFAS+AAAAAAAAKAWBLwAAAAAAAEpB4AsAAAAAAIBS6JjLDw0PD8cdd9wRhw8fjq6urvj0pz8dZ599\ndt1n7r///tizZ090dHTEb//2b8e1114bg4ODcccdd8TQ0FCcPHky/v2///dx6aWXxhNPPBGf/OQn\no729Pa666qq47bbbFuTLAQAAAAAAcPqY04qv++67L7Zs2RK7d++OG2+8MT7/+c/XvX/o0KG49957\nY8+ePfHlL385PvOZz8SJEyfinnvuiSuuuCL+5//8n/Gnf/qn8R//43+MiIg777wz7r777rjvvvvi\n+9//fjzzzDPz/2YAAAAAAACcVuYU+Nq3b19cffXVERFxzTXXxOOPP173/v79++PSSy+NlStXRnd3\nd2zatCl+8IMfxAc+8IG46aabIiJidHQ0Ojs7Y2hoKE6cOBGbNm2KLMviqquuir17987zawEAAAAA\nAHC6mTHV4QMPPBBf+cpX6l5bt25ddHd3R0REV1dXDA4O1r0/NDRUeb/4zNDQUKxZsyYi0oqwO+64\nI/7gD/4ghoaGYvXq1XWfPXjw4LTbtHbtmdHR0T7TpgPLaP367pk/BNBktF1Aq9J+Aa1I2wW0Ku0X\nNLcZA187d+6MnTt31r122223xdGjRyMi4ujRo5WAVmH16tWV94vPFIGwH/7wh/Hv/t2/i9///d+P\nyy+/PIaGhiZ8dvzvG6+//7WZNhtYRuvXd8ehQ4MzfxCgiWi7gFal/QJakbYLaFXaL2gO0wWg55Tq\ncNu2bfHoo49GRMQ3v/nN2L59e937W7dujX379sXx48djcHAwnn322diyZUv8+Mc/jt/5nd+Ju+++\nO97+9rdHRAqSrVixIl544YXI8zwee+yxuOyyy+ayWQAAAAAAAJzGZlzxNZmbb745Pvaxj8XNN98c\nK1asiLvvvjsiIu65557YtGlTXH/99XHLLbfErl27Is/z+MhHPhKdnZ1x9913x4kTJ+KTn/xkRKSg\n15/92Z/FH//xH8fv/d7vxejoaFx11VVxySWXLNw3BAAAAAAA4LSQ5XmeL/dGzJalpNDcLPkGWpG2\nC2hV2i+gFWm7gFal/YLmsOCpDgEAAAAAAKDZCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQ\nCgJfAAAAAAAAlILAFwAAAAAAAKUg8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAA\nAKUg8AUAAAAAAEApZHme58u9EQAAAAAAADBfVnwBAAAAAABQCgJfAAAAAAAAlILAFwAAAAAAAKUg\n8AUAAAAAAEApCHwBAAAAAABQCgJfAAAAAAAAlILAFzBr3//+9+OWW26Z8PojjzwS733ve+P9739/\n3H///RERcfLkyfjoRz8aN910U+zatSueffbZpd5cgIqp2q+IiGPHjsVNN91UaafGxsbij/7oj+L9\n739/3HLLLfGP//iPS7mpABWzabtOnjwZd9xxR+zatSv++T//5/E3f/M3S7mpABWzabsKhw8fjre/\n/e2eG4FlNdv264tf/GK8//3vj/e85z3xwAMPLNVmAtPoWO4NAFrLl770pfjrv/7rOOOMM+peP3ny\nZPzpn/5p/K//9b/ijDPOiJtvvjmuu+66eOKJJ2JkZCT27NkT3/rWt+Kzn/1sfO5zn1umrQdOZ1O1\nXxERTz75ZNx5553xs5/9rPLa//2//zdOnDgRf/7nfx5PPPFEfOpTn4o/+7M/W8pNBph12/XXf/3X\n0dPTE//lv/yXGBgYiBtvvDGuv/76pdxkgFm3XRHpmfKP/uiPYtWqVUu1mQATzLb9+va3vx3f+973\n4r777otjx47F//gf/2MpNxeYghVfwKxs2rRp0sDVs88+G5s2bYqzzjorVq5cGdu3b4+//du/jc2b\nN8fo6GiMjY3F0NBQdHSItwPLY6r2KyLixIkT8d/+23+L17/+9ZXX9u3bF1dffXVERLz1rW+Np556\nakm2E6DWbNuuf/pP/2n8zu/8TkRE5Hke7e3tS7KdALVm23ZFRHz605+Om266KTZs2LAUmwgwqdm2\nX4899lhs2bIlPvzhD8ett94av/qrv7pEWwpMxwg0MCvvete74sUXX5zw+tDQUHR3d1f+3dXVFUND\nQ3HmmWdGX19f/Nqv/Vr09/fHF77whaXcXICKqdqviIjt27dPeG1oaChWr15d+Xd7e3uMjIwI4ANL\narZtV1dXV0SkNuzf/tt/G7/7u7+7qNsHMJnZtl1/8Rd/EWeffXZcffXV8d//+39f7M0DmNJs26/+\n/v74yU9+El/4whf+f3v378r7Asdx/GVB8muRnVJGrBaDUQaKFInJaBAZjMo/IKPCaJCFlVgYbGal\nJJIU8vNzh1unzr23+z11zj3fc7/n8di+23N6L6/v5/PJ5eVlZmZmsre3l6qqqv86FfgXnvgCfoj6\n+vo8Pj5++f34+JiGhoasr6+nt7c3+/v72dnZycLCQl5eXspYCvBt/nrXPj8/jV7A/8LV1VUmJiYy\nODiYgYGBcucAlLS9vZ3j4+OMj4/n/Pw88/Pzubm5KXcWQEnNzc3p7e1NdXV12traUlNTk7u7u3Jn\nwW/P8AX8EO3t7bm4uMj9/X1eX19zenqarq6uNDY2fnkSrKmpKe/v7/n4+ChzLUBp3d3dOTg4SJKc\nnZ2lo6OjzEUApd3e3mZqaipzc3MZHh4udw7AN9na2srm5mY2NjbS2dmZlZWVtLS0lDsLoKSenp4c\nHh6mKIpcX1/n+fk5zc3N5c6C356/LQPfZXd3N09PTxkZGcnCwkKmp6dTFEWGhobS2tqaycnJLC4u\nZmxsLG9vb5mdnU1dXV25swG+ul//pL+/P0dHRxkdHU1RFFleXv7JhQB/V+p2ra2t5eHhIaurq1ld\nXU3y50faa2trf2YmwFdK3S6AX1Wp+9XX15eTk5MMDw+nKIosLS35xir8AqqKoijKHQEAAAAAAADf\ny6sOAQAAAAAAqAiGLwAAAAAAACqC4QsAAAAAAICKYPgCAAAAAACgIhi+AAAAAAAAqAiGLwAAAAAA\nACqC4QsAAAAAAICKYPgCAAAAAACgIvwBFIC5bdolSUwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg_linear.predict(X_train), reg_linear.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg_linear.predict(X_test), reg_linear.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "pred: 1.110524, actual: 1.110180\n" + ] + } + ], + "source": [ + "print(\"pred: %f, actual: %f\" % (reg_linear.predict(X_test[0,:].reshape(1,-1)), y_test[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try ridge regression, to be more robust to correlation in features" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "hideCode": true, + "hideOutput": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\lib\\site-packages\\scipy\\linalg\\basic.py:40: RuntimeWarning: scipy.linalg.solve\n", + "Ill-conditioned matrix detected. Result is not guaranteed to be accurate.\n", + "Reciprocal condition number/precision: 6.576732214380598e-11 / 5.960464477539063e-08\n", + " RuntimeWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFlCAYAAABhvHtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtAVWW+//EPbBBUoECx6VhOYVmpkfd0GnXMiKajmYqB\n0HZST7/OqfHSmUN4x8LUqcZTEeroNGdOpqU1ZmKectTUJszMCwqOOZKRmGNeULm5N7DX7w+HncrD\nRWXLBt6vf8a912V/v6xZ8eFZa6/Hx7IsSwAAAJfwre8CAACAdyIkAAAAI0ICAAAwIiQAAAAjQgIA\nADAiJAAAACNCAlDPunbtqry8PO3du1fjx4+vdt09e/ZoxowZl/0ZL7zwglJTU6+0xMt2+PBhjRs3\n7qr2Ybfb9fHHH3ts/auVl5enrl27Gpe98847WrRokXFZxfEGGgK/+i4AwHl33323Xn/99WrXOXjw\noI4dO3aNKrpy33//vQ4dOlTfZdSbkSNH1ncJQJ0gJAC1tG3bNr300ku64YYbdPjwYQUGBmru3Llq\n3769Jk2apNOnT+vw4cP6xS9+oQkTJuiVV17R9u3bVV5ero4dO2ratGkKCgrSV199pZSUFPn4+Oju\nu++Wy+Vy7z8lJUVr1qxRUVGRZs2apZ07d8pms+mBBx7QyJEj9frrr6ugoECTJ0/WnDlztHHjRi1Y\nsEClpaUKDAxUUlKSunbtqsLCQk2dOlX79+9XmzZtZLPZ1L1794v6cblcGjBggN544w3dfffdkqRn\nn31WPXv2VHx8/EXrLly4UOvXr5fD4VBJSYmSkpIUFRWlsrIyvfzyy9q0aZNsNpu6du2q5ORkTZs2\nTceOHdPYsWP1/PPPa/Dgwdq1a5ek83+BV7wuLi7WzJkz9e233+rMmTNq2bKlXnnlFUVERFR5HI4f\nP67k5GR988038vX1VVxcnEaNGnXROuvXr9cbb7yh8vJyBQUFafLkyYqMjFROTo6mTp0qp9Mpy7IU\nExOjhIQESdKCBQu0bt06uVwutW3bVsnJybrhhhuq/f+Ey+XS1KlTlZ2dLT8/P02bNk1dunRRamqq\n8vPzNWPGjCqPN9AQcLkBuAz79u3TmDFjlJ6ermHDhikxMdG97Ny5c/roo4+UmJioRYsWyWazaeXK\nlVq9erXatGmjV155RU6nUxMmTNCkSZO0atUq3XvvvTp37lylz3n99dflcDi0du1arVq1Sjt37tR3\n332n8ePHq0ePHpozZ46+/fZb/fd//7cWLVqkVatWKSUlRePGjVNxcbFef/11BQYG6uOPP9Zrr71m\n/Kve19dXw4cP1wcffCBJOnPmjDIyMjR48OCL1jty5IgyMjL09ttvKz09Xc8++6x7xGPZsmXKzs7W\nhx9+6A43a9eu1axZs9SuXTu9+eab1f48t2zZopCQEK1YsUKffPKJOnfurKVLl1a7zfPPP69bbrlF\nH3/8sZYvX64VK1YoNzfXvTwnJ0fJyclKTU1Venq6xo8fr6efflqFhYV68803df/992vlypVatGiR\nvvrqK7lcLq1atUoHDhzQe++9pw8//FD9+/fXtGnTqq1DOn/M77vvPq1atUoTJkzQxIkT5XQ63ctr\ne7wBb8VIAnAZ7rzzTvXo0UOSNHz4cL3wwgvKz8+XpIv+Ut+0aZMKCgqUkZEhSSotLVWrVq104MAB\n+fn5qU+fPpKkQYMGGe8xyMjI0OTJk2Wz2WSz2fT2229LklauXOle5/PPP9cPP/ygJ554wv2ej4+P\nvvvuO23dulVTpkyRj4+PwsLCFBUVZexn+PDhiomJ0aRJk7RmzRoNGDBAwcHBF63Ttm1b/fa3v1V6\nerpyc3OVmZmpoqIid51DhgxRYGCgJOnVV1+VdH5UpDYeeugh3XzzzVqyZIlyc3P15ZdfVnmd/8Kf\nTUU4Cw4O1po1ay5a/sUXX6h37966+eabJUl9+vRRWFiYsrKyFBUVpaSkJO3Zs0d9+vTRtGnT5Ovr\nq08//VR79+7V8OHDJZ0fISgpKamx/pCQED388MOSpL59+8qyLH3zzTfu5bU93oC3IiQAl8Fms130\n2rIs93stWrRwv+9yuTRlyhT1799fklRUVCSHw6GjR4/q0ulS/Pwqn4Z+fn7y8fFxvz569Kj7F/GF\nn9GnTx/3L+aK9dq0aeOuraq6K7Rt21YdO3bUpk2btHLlSk2ZMqXSOtnZ2Xr66af1xBNP6L777lPP\nnj31/PPPG2s/ceJEpeF0Hx+fi2opLS11/3vZsmVasWKFEhISNHjwYF1//fU13tR36c/m8OHDCg0N\ndb82TUdjWZbKyso0YMAAffLJJ8rIyNDWrVuVlpamd999Vy6XS//2b//mvszidDp15syZauuQzo/G\nXPo5/v7+VfZeUT/QUHC5AbgM+/fv1/79+yVJy5cvV7du3RQSElJpvZ///OdaunSpnE6nXC6Xpk+f\nrnnz5qlDhw6yLEubN2+WJG3YsMH4y6hPnz764IMP5HK55HQ6NX78eG3fvl02m01lZWWSpN69e+vz\nzz9XTk6OJGnz5s165JFH5HA41LdvX73//vtyuVw6c+aMNmzYUGVPjz32mBYvXqxz585Vum9BkrZv\n367OnTtr9OjR6tWrlzZs2KDy8nJ3nWvWrHH3OXPmTH300Uey2WzuMBASEqLS0lIdPHhQkvSXv/zF\nve+//vWvGjp0qEaMGKFbb71VGzdudO+7Kn369NGf//xnSVJBQYF+9atf6dtvv3Uvr/i5HD58WJK0\ndetWHT16VPfcc49+85vfaO3atfrXf/1XJScnKygoSEePHtXPf/5zvf/++yosLJQkvfbaa3ruueeq\nrUOSTp8+rU8//VSStHHjRgUEBOinP/2pe3ltjzfgrYi0wGVo3bq1Xn31VR05ckRhYWF66aWXjOs9\n/fTT+u1vf6uhQ4eqvLxcd911lyZNmiR/f3+lpaVp5syZmjdvnu666y61atWq0va//vWv9eKLL2rI\nkCEqLy/Xww8/rAcffFDfffedXn31VT3zzDNKS0vTCy+8oP/8z/+UZVny8/PTggUL1KJFC40bN07J\nycn65S9/qbCwMHXo0KHKnu6//349//zzevLJJ43LBw0apHXr1unhhx+Wv7+/+vTpozNnzqiwsFBx\ncXE6cuSIhg0bJsuy1KtXL9ntdhUVFclmsykmJkbvvfeeEhMT9eSTTyosLEwPPfSQe99jxozRjBkz\ntHLlStlsNnXq1EkHDhyo9hjMmDFDM2fO1ODBg2VZlp566il17tzZvfy2225TcnKyfv3rX6u8vFyB\ngYFauHChgoOD9fTTT2vq1Klavny5+4bQXr16qWfPnjp27Jgee+wx+fj46MYbb9TcuXOrrUOSWrVq\npXXr1unVV19V8+bNlZqaetFIQW2PN+CtfJgqGqidC799AABNASMJAFCF2bNnV3kT5uTJk9W7d+9r\nXBFwbTGSAAAAjLhxEQAAGBESAACAESEBAAAYNcobF48fL6jvEq5YaGgL5ecX13cZV40+vAt9eI/G\n0INEH94mNLSF/PzMD027GowkeBlPHOT6QB/ehT68R2PoQaIPb+OpPggJAADAiJAAAACMCAkAAMCI\nkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAA\nAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAA\njAgJAADAyKMhITMzU3a73bispKREcXFxysnJkSSVlpYqMTFR8fHxiomJ0YYNGyRJ+/btU9++fWW3\n22W327V27VpPlgwAAP7Jz1M7Xrx4sVavXq3mzZtXWrZ3714lJyfr2LFj7vdWr16t66+/Xi+//LJO\nnz6tRx99VAMHDlR2drZGjx6tMWPGeKpUAABg4LGRhHbt2ik1NdW4zOl0Ki0tTREREe73HnroIU2Y\nMEGSZFmWbDabJCkrK0ubNm1SQkKCpkyZosLCQk+VDAAALuCxkYTo6Gjl5eUZl3Xv3r3Sey1btpQk\nFRYWavz48Zo4caIkKTIyUiNGjFDnzp21YMECpaWlKSkpqdrPDg1tIT8/21V2UH/Cw4Pru4Q6QR/e\nhT68R2PoQaKPpsBjIeFKHD16VM8884zi4+M1ePBgSVJUVJRCQkLc/05JSalxP/n5xR6t05PCw4N1\n/HhBfZdx1ejDu9CH92gMPUj04W08FXS85tsNJ06c0JgxY5SYmKiYmBj3+2PHjtWePXskSVu3blWn\nTp3qq0QAAJqUazaSkJ6eruLiYsXGxhqXL1y4UGfPntX8+fM1f/58Sedvfpw5c6ZSUlLk7++v1q1b\n12okAQAAXD0fy7Ks+i6irjXkoaPGNPRFH96DPrxHY+hBog9v0+gvNwAAAO9CSAAAAEaEBAAAYERI\nAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAA\nAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABG\nhAQAAGBESAAAAEaEBAAAYERIAAAARoQEAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARoQE\nAABgREgAAABGhAQAAGBESAAAAEaEBAAAYERIAAAARh4NCZmZmbLb7cZlJSUliouLU05OjiSptLRU\niYmJio+PV0xMjDZs2CBJys3N1ciRIxUfH6/k5GS5XC5PlgwAAP7JYyFh8eLFmjZtmhwOR6Vle/fu\nVUJCgg4fPux+b/Xq1br++uu1bNky/eEPf1BKSookac6cOZo4caKWLVsmy7Lc4QEAAHiWx0JCu3bt\nlJqaalzmdDqVlpamiIgI93sPPfSQJkyYIEmyLEs2m02SlJ2drV69ekmS+vXrp4yMDE+VDAAALuDn\nqR1HR0crLy/PuKx79+6V3mvZsqUkqbCwUOPHj9fEiRMlnQ8MPj4+7nUKCgpq/OzQ0Bby87Ndaen1\nLjw8uL5LqBP04V3ow3s0hh4k+mgKPBYSrsTRo0f1zDPPKD4+XoMHD5Yk+fr+ONhRVFSkkJCQGveT\nn1/ssRo9LTw8WMeP1xyEvB19eBf68B6NoQeJPryNp4KO13y74cSJExozZowSExMVExPjfr9jx47a\ntm2bJGnLli3q0aNHfZUIAECTcs1CQnp6upYvX17l8oULF+rs2bOaP3++7Ha77Ha7zp07p6SkJKWm\npio2NlalpaWKjo6+ViUDANCk+ViWZdV3EXWtIQ8dNaahL/rwHvThPRpDDxJ9eJtGf7kBAAB4F0IC\nAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAA\nMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAaFIcpeX6Ib9YjtJy42sAP/Lz5M4zMzP1\nyiuvaMmSJZWWlZSUaPTo0XrxxRfVvn37KrfZt2+fnnrqKd1yyy2SpJEjR+rhhx/2ZNkAGqFyl0vL\nNx7UrgPHdeqsQ6HBzRTg76cSh1Oni8oUFtxM3e5oo9j7b5PNl7+fAMmDIWHx4sVavXq1mjdvXmnZ\n3r17lZycrGPHjtW4TXZ2tkaPHq0xY8Z4qlQATcDyjQe1/qs89+tTBU5Jzoter/8qTy7L0uNRd9RD\nhYD38VhcbteunVJTU43LnE6n0tLSFBERUeM2WVlZ2rRpkxISEjRlyhQVFhZ6qmQAjdTJs+e0cUde\nzStK2rTriIodZR6uCGgYPBYSoqOj5ednHqjo3r27brzxxlptExkZqeeee05Lly7VzTffrLS0NI/U\nC6DxKXe5tGz9ASUtzJDLqt02Lpf09idfe7YwoIHw6D0JdSEqKkohISHuf6ekpNS4TWhoC/n52Txd\nmseEhwfXdwl1gj68S1Pp45yzTPlnHQoNCdCStX+76BJDbR04fFrB1zVXYDPP/CeyqRyLhqKx9OEJ\nXh8Sxo4dq+nTpysyMlJbt25Vp06datwmP7/4GlTmGeHhwTp+vKC+y7hq9OFdmkIf50cN/q7dB07o\ndOH5GxOLHVf2jYVTBQ7lfHtSbUJbXE25Rk3hWDQkjakPT7hmISE9PV3FxcWKjY29rO1mzpyplJQU\n+fv7q3Xr1rUaSQDQOJ1zlumH/GJdFxSgAH+bHKXlOlPoUFCLZpr79g7lHS9yr3v+xsQrc31QM10X\nFFAXJQMNmo9lWbW8UtdwNORU2JhSLX14j4beR8XXF/fknNTx/BKFBjdT80B/FZWU6nShUz4+Ul3+\nl6zfPT/RE7/sWHc7vEBDPxYV6MO7NPiRBACoSsWIQMUIwaWWrf+7Pt15xP36VIFTumCkoK7/1Inu\n9dO63SHQQBESANSbSx9wFBYSoK4dwt0PNCp3ufTWJ/v1WeY/rvgzAvx8FdTCX/kFDvnbfOUoc1W7\nflhwM4WFBF7x5wGNCSEBQL259AFHJ8863K8f7XurZv3pK/0jv+SqPuNnkTfqsQG3ue9dWPXZN/rr\nnqM65zTf1NjtjjbG0QygKSIkAKgXjtJy7Tpw3Ljss8zvtXFHXq2fbVAVX19peP/2CvC3ub+pEP9A\nBz3a91a9/ZcD2vX1cTlKz48sBDaz6b67f6LY+2+7ug8FGhFCAoB6cabQoVNnHcZlFb+4r5blkgqL\nnWoRcPF/6loE+Ov/DeokR3S5jucXSz4+Cr++OSMIwCUICQDqxXVBAQoLCdDJKoJCXQgLCaz2q4wB\n/jbd1IYH6QBVYaozAPUiwN+myPatPPoZXTu0ZnQAuArVjiTY7Xb5+PhUufytt96q84IANG4Xft2x\nX5e2+nTX93X+GRdO+wzgylUbEsaNG3et6gDQQNX0jIMKlz42uZm/r1xXe2diFSaOuIfLCEAdqDYk\n9OrVy/3vffv2qbi4WJZlqby8XHl5eRctB9C01PSMg0vXfeFPX+nwDz9O9V5XNyde6vqWzRTugTkX\ngKaoVjcuJiUladeuXTpz5owiIiK0f/9+devWTTExMZ6uD4CXqu4ZB/EPdLho3WV/OXBRQPCkrneE\ncx8CUEdqdePi9u3b9dFHHyk6OlopKSlasWKFnM4rnzwFQMNW3TMOdh04IUdp+cXr/v3ENanrpvCW\nin/g9mvyWUBTUKuQ0KZNG/n7+6t9+/b6+uuvdfvtt6uoqKjmDQE0StU94yC/4JzOFDouWvd0oWf/\nqPDxOT8pU/LonpUudQC4crW63HDDDTfo97//vfr06aOXX35ZklRcXOzRwgB4B9ONidU94yA0+OJn\nE1wXFKBWHn4ewi+6tpX9wTs8tn+gqapVSHjxxRe1efNmRUZG6sEHH9SaNWs0c+ZMD5cGoD5Vd2Ni\ngL9NXTuEX3RPQoVLn00Q4G/Tne1C9XnWlU/SVCE0uJnujghT9qHTyi84p9DgQHXt0JqvOgIeUquQ\ncPbsWXXt2lXff/+9Bg4cqIEDB3q6LgD1rKYbEyt+Me86cKLGX9gjozpox4EfdM55dd9o6NvlJj16\n3y21/tolgKtTq5Dw+OOPy8fHR5ZlqaysTCdOnNBdd92lP//5z56uD0A9qOnGxIpJk+If6KDh/dvX\n+Au7RYCffh75L8aRhwB/X+PXIW2+Prqupb9OFzrdAWTM4E46daroogmbAHhOrULCxo0bL3q9Z88e\nLV261CMFAah/tbkxseKXdG1/YVc18mBZljbsOFJp/QHd2lYKIDYbNyUC19IVTfAUGRmpKVOm1HUt\nAOrJpcP3l3NjYm3ZfH2NIw/lLpd8fHyMly1svr6MGAD1qFYh4Y033rjo9cGDB9WqlWcnZgHgeZfe\nnHh9UIC6dGit+Adur/WNiZfr0pGHqsIDgPp3RSMJPXv21KBBg+q6FgDX2KU3J+YXOvTpziM6mHdG\nU0d1k1S7GxPrAvcZAN6nViGhbdu2Gjp06EXvLV26VAkJCR4pCoBnXHhZQVKVNyce/qFQyzcclD36\nTv7CB5qwakPCn/70JxUWFurdd9/VkSM/3lhUXl6u9PR0QgLQQJSXu7Rs/YGLnnlwR7vQKm9OlKRd\nfz+hR/s6VeIoIyAATVS1IeGnP/2psrOzK73frFkzzZ0712NFAahbf0zPrvTMg4ysfyjAz1eOMvOz\nC04XOjXzj9t1urD6GR4BNF7VhoQBAwZowIAB+uUvfymHw6GOHTuqoKBAWVlZ6tGjx7WqEcBluvSy\nwhdZR80r+lS/n/x/zsFQ3QyPABqvWt2T8MEHH2jfvn364x//qJKSEs2fP19fffWVxo0b5+n6AFwG\n06OU72gXquOnS4zrO0tdujGshY6eqt1cLBc+SAlA41erccNNmzZp8eLFks7PCPk///M/WrdunUcL\nA3D5Kr6tcPKsQ5Z+vKwQ2Mz890BYSKCm/qqHBnT9F10f1Ew+kq5r6V/l/i+d4RFA41arkYSysjKd\nO3dOLVu2lCSVlpZ6tCgANbv0AUjVPUpZsozvdu3QWi0C/GSPvlOP3X9+f/+37Ttt3v29cf0rfZAS\ngIapViEhLi5Ow4YN0/333y/LsvTZZ5/xzQagnlQ1O+OArm2r/LbCOUe57uv8E+3/rurZEyuetJj1\nzckqPzuyfRiXGoAmpFYhYeTIkSotLZXT6VRISIhiYmJ0/HhVf7EA8KSqZmcsL3dV+Sjl8NDmejz6\nDkmq9pkH1c3ZIEkP9Li5DjoA0FDUKiSMGzdOJSUl+u6779SjRw9t375dXbp08XRtQJN3OZcU9uSc\nUuRtrfXpzsqTJfXufKM7FFT3VMPq5mxoFRKosJDAK+wEQENUq5Bw6NAhrVu3Ti+++KKGDx+u5557\nThMmTPB0bUCTdSWXFPILzumB7jfJ5lt5sqSKKZZrEuBv89icDQAanlqFhFatWsnHx0e33nqrvv76\naz366KNyOp2erg1osq7kkkJo8Pm/9E2TJV3OFMtVTensqTkbAHivWoWE22+/XSkpKRo5cqT+67/+\nSz/88APfcAA85EovKVz4l/7VTJbErIwAKtQqJMycOVO7du3SbbfdpnHjxmnr1q363e9+5+nagCbp\nH6eKjCMFknSq4Jz63fMvcjrLtf+7fOUXODz2lz6zMgKoVUiw2WzuxzAPHDhQAwcO9GhRQFNUcR/C\nZ5mVRwkqWJY0+63tKi2XwoKbqXennyg+6na1CKj6AUgAcKWYqQXwEhX3IThKzQ8+qlBafv5/TxU4\nlZH1D6367NA1qA5AU0RIALxA9U9LrN6uA8flqEgOAFCHCAmAF6jpIUbVOXnWwXwKADyCkAB4geuC\nAhTQ7Mq+QeAjqXlArW4vAoDL4tGQkJmZKbvdblxWUlKiuLg45eTkVLtNbm6uRo4cqfj4eCUnJ8vl\ncnmyZKAeVX8vQnVblTjK6rYUAJAHQ8LixYs1bdo0ORyVh0H37t2rhIQEHT58uMZt5syZo4kTJ2rZ\nsmWyLEsbNmzwVMlAvTlT6NA555UF4JAWfszMCMAjPBYS2rVrp9TUVOMyp9OptLQ0RURE1LhNdna2\nevXqJUnq16+fMjIyPFMwUI+uCwpQq5Ar+0Xf8RZmZgTgGR67kBkdHa28vMrPf5ek7t2713oby7Lk\n4+MjSWrZsqUKCgpq/OzQ0Bby82u4/9EMDw+u7xLqBH1cnvvuaavVn31zWdv4+kgT47urZfNmNa7L\n8fAejaEHiT6aAq+/28nX98fBjqKiIoWEhNS4TX5+sSdL8qjw8GAdP15zEPJ29HH5Bvdpp+ISp3Yd\nOKFTBedk1eIWhV90a6viQoeKa/h2A8fDezSGHiT68DaeCjpeHxI6duyobdu26d5779WWLVvUu3fv\n+i4J8IhL50z4v2252rz7qHHdsOAAdbsjnEmXAHjUNQsJ6enpKi4uVmxs7GVtl5SUpOnTp2vevHmK\niIhQdHS0hyoEvEPFnAmPP3iH/P1s2vn18X/O0RCge25vrQe636SwkEDuQwDgcT6WVZtBzYalIQ8d\nNaahL/qoG47S8quejdEb+qgLjaGPxtCDRB/epslebgCaOmZjBFBfeOIiAAAwIiQAAAAjQgIAADAi\nJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQA\nAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAA\nI0ICAAAwIiQAAAAjQgIAADAiJAAAACNCAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADAiJAAAACNC\nAgAAMCIkAAAAI0ICAAAwIiQAAAAjQgIAADDyaEjIzMyU3W43LispKVFcXJxycnIkSS6XSzNmzFBs\nbKzsdrtyc3MlSfv27VPfvn1lt9tlt9u1du1aT5YMAAD+yc9TO168eLFWr16t5s2bV1q2d+9eJScn\n69ixY+731q9fL6fTqeXLl2v37t2aO3euFixYoOzsbI0ePVpjxozxVKkAAMDAYyMJ7dq1U2pqqnGZ\n0+lUWlqaIiIi3O/t2LFDffv2lSR16dJFWVlZkqSsrCxt2rRJCQkJmjJligoLCz1VMgAAuIDHRhKi\no6OVl5dnXNa9e/dK7xUWFiooKMj92mazqaysTJGRkRoxYoQ6d+6sBQsWKC0tTUlJSdV+dmhoC/n5\n2a6ugXoUHh5c3yXUCfrwLvThPRpDDxJ9NAUeCwmXKygoSEVFRe7XLpdLfn5+ioqKUkhIiCQpKipK\nKSkpNe4rP7/YY3V6Wnh4sI4fL6jvMq4afXgX+vAejaEHiT68jaeCjtd8u6Fbt27asmWLJGn37t3q\n0KGDJGns2LHas2ePJGnr1q3q1KlTvdUIAEBTcs1GEtLT01VcXKzY2Fjj8qioKH3++eeKi4uTZVma\nPXu2JGlbf3Y9AAAM20lEQVTmzJlKSUmRv7+/WrduXauRBAAAcPV8LMuy6ruIutaQh44a09AXfXgP\n+vAejaEHiT68TaO/3AAAALwLIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgR\nEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIA\nAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACA\nESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEh\nAQAAGHk0JGRmZsputxuXlZSUKC4uTjk5OZIkl8ulGTNmKDY2Vna7Xbm5uZKk3NxcjRw5UvHx8UpO\nTpbL5fJkyQAA4J88FhIWL16sadOmyeFwVFq2d+9eJSQk6PDhw+731q9fL6fTqeXLl+s3v/mN5s6d\nK0maM2eOJk6cqGXLlsmyLG3YsMFTJQMAgAt4LCS0a9dOqampxmVOp1NpaWmKiIhwv7djxw717dtX\nktSlSxdlZWVJkrKzs9WrVy9JUr9+/ZSRkeGpkgEAwAX8PLXj6Oho5eXlGZd179690nuFhYUKCgpy\nv7bZbCorK5NlWfLx8ZEktWzZUgUFBTV+dmhoC/n52a6w8voXHh5c3yXUCfrwLvThPRpDDxJ9NAUe\nCwmXKygoSEVFRe7XLpdLfn5+8vX9cbCjqKhIISEhNe4rP7/YIzVeC+HhwTp+vOYg5O3ow7vQh/do\nDD1I9OFtPBV0vObbDd26ddOWLVskSbt371aHDh0kSR07dtS2bdskSVu2bFGPHj3qrUYAAJqSaxYS\n0tPTtXz58iqXR0VFqVmzZoqLi9OcOXM0efJkSVJSUpJSU1MVGxur0tJSRUdHX6uSAQBo0nwsy7Lq\nu4i61pCHjhrT0Bd9eA/68B6NoQeJPrxNo7/cAAAAvAshAQAAGBESAACAESEBAAAYERIAAIARIQEA\nABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAY\nERIAAIARIQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABgREgAAgJGPZVlWfRcB\nAAC8DyMJAADAiJAAAACMCAkAAMCIkAAAAIwICQAAwIiQAAAAjAgJHpSZmSm73W5cVlJSori4OOXk\n5EiSXC6XZsyYodjYWNntduXm5kqS9u3bp759+8put8tut2vt2rWSpBUrVmjYsGF67LHH9Omnn3p1\nD88++6y7/vvvv1/PPvusJGnWrFkaNmyYe1lBQYFX9FHVNrm5uRo5cqTi4+OVnJwsl8sl6dodC1NN\nF6ptH3/7298UHx8vu92usWPH6sSJE5Ia3vGo73PDVNOFattHQzs/SktLlZiYqPj4eMXExGjDhg2S\nGt75UVUfDe38qKqPOjs/LHjEokWLrEGDBlkjRoyotGzPnj3W0KFDrZ/97GfWwYMHLcuyrE8++cRK\nSkqyLMuydu3aZf37v/+7ZVmWtWLFCuvNN9+8aPsffvjBGjRokOVwOKyzZ8+6/+2tPVQ4ffq09cgj\nj1jHjh2zLMuy4uLirJMnT9Z53Ze63D6q2uapp56yvvjiC8uyLGv69OnWunXrrtmxqMs+EhISrH37\n9lmWZVnvvPOONXv2bMuyGt7xqM9zoy77qNBQzo/333/fmjVrlmVZlpWfn2/179/fsqyGd35U1UdD\nOz+q6qOuzg9GEjykXbt2Sk1NNS5zOp1KS0tTRESE+70dO3aob9++kqQuXbooKytLkpSVlaVNmzYp\nISFBU6ZMUWFhofbs2aOuXbuqWbNmCg4OVrt27bR//36v7aFCamqqHn/8cbVp00Yul0u5ubmaMWOG\n4uLi9P7779d5/VfaR1XbZGdnq1evXpKkfv36KSMj45odi7rsY968ebrrrrskSeXl5QoICGiQx6M+\nz4267KNCQzk/HnroIU2YMEGSZFmWbDabpIZ3flTVR0M7P6rqo67OD7866guXiI6OVl5ennFZ9+7d\nK71XWFiooKAg92ubzaaysjJFRkZqxIgR6ty5sxYsWKC0tDTdeeedCg4Odq/bsmVLFRYWem0Pfn5+\nOnnypLZu3arJkydLkoqLi/X4449r9OjRKi8v16hRo9S5c2fdeeed9d5HVdtYliUfHx9J53/mBQUF\nKiwsvCbHoqqaKlxOH23atJEk7dy5U2+//baWLl3aII9HfZ4bVdVU4XL6kNSgzo+WLVtKOn++jx8/\nXhMnTpTU8M6PqvpoaOdHVX3U1fnBSIKXCAoKUlFRkfu1y+WSn5+foqKi1LlzZ0lSVFSU9u3bV2nd\noqKiiw58famqB0n6+OOPNWjQIHfKbd68uUaNGqXmzZsrKChIvXv39thfGHXF1/fH06WoqEghISFe\neyxqsnbtWiUnJ2vRokUKCwtrkMejIZ0bNWlo58fRo0c1atQoDRkyRIMHD5bUMM8PUx9Swzs/TH3U\n1flBSPAS3bp105YtWyRJu3fvVocOHSRJY8eO1Z49eyRJW7duVadOnRQZGakdO3bI4XCooKBAOTk5\n7vXrU1U9SOdr79evn/v1t99+q5EjR6q8vFylpaXauXOnOnXqdM1rvhwdO3bUtm3bJElbtmxRjx49\nvPZYVOfDDz/U22+/rSVLlujmm2+W1DCPR0M6N2rSkM6PEydOaMyYMUpMTFRMTIz7/YZ2flTVR0M7\nP6rqo67ODy43XCPp6ekqLi5WbGyscXlUVJQ+//xzxcXFybIszZ49W5I0c+ZMpaSkyN/fX61bt1ZK\nSoqCgoJkt9sVHx8vy7L07LPPKiAgwGt7kKRDhw65TzhJat++vYYMGaLHHntM/v7+GjJkiG6//XaP\n9yDV3EdVkpKSNH36dM2bN08RERGKjo6WzWarl2MhXVkf5eXlevHFF3XjjTdq3LhxkqSePXtq/Pjx\nDe54eNO5IV15H1LDOj8WLlyos2fPav78+Zo/f74kafHixQ3u/DD18fvf/77BnR9VHY+6Oj+YBRIA\nABhxuQEAABgREgAAgBEhAQAAGBESAACAESEBAAAYERIAXLVJkyZp5cqVOnbsmJ588slq161q4pqq\nbNu27bK3AVA3CAkA6swNN9ygxYsXV7vOl19+eY2qAXC1eJgS0ERt27ZNqamp8vPz09GjRxUZGan/\n+I//0NNPP63Q0FAFBATozTff1EsvvaQvv/xS5eXlGjZsmJ544glZlqW5c+dq06ZNatOmjcrLy9Wr\nVy/l5eVp1KhR2rhxo44cOaLJkyfr1KlTCgwM1KxZs9wT44wYMULvvfeetmzZotdff11lZWW66aab\nlJKSotDQUP31r3/VnDlzFBAQoFtvvbWef1JA00VIAJqwPXv2aNWqVbr11ls1YcIEbd68WYcOHdIf\n/vAH3XTTTXrnnXckSR988IGcTqfGjh2rzp0768SJE9q3b5/WrFmjgoICPfLII5X2/fzzzys6OloJ\nCQnavHmzFixYoNdee01LlizRe++9p1OnTul3v/ud3nrrLV133XV699139corryg5OVmTJk3S//7v\n/6p9+/aaOnXqtf6xAPgnQgLQhPXs2dM97eyQIUO0YsUKtWrVSjfddJOk8898/9vf/qYvvvhC0vnZ\nCb/++mvl5OTowQcflL+/v8LCwi6ad6DC9u3bNW/ePElS//791b9//4uWZ2Zmuiemkc5PCHbdddfp\n66+/Vps2bdS+fXtJ0tChQ/Xaa6955gcAoFqEBKAJq5h1UPpxLvrAwED3e+Xl5UpMTNSDDz4oSTp1\n6pRatGihl19+WS6Xy71exWyfF7rwPcuylJOTo9tuu+2ifXfr1k0LFy6UJDkcDhUVFen777+/aN8X\n1gjg2uLGRaAJ27Fjh44dOyaXy6VVq1ZVGhHo3bu3VqxYodLSUhUVFSk+Pl6ZmZnq06ePPv74Yzmd\nTp05c0afffZZpX336NFDH330kSQpIyND06dPl3T+l35ZWZnuuece7d69W4cOHZIkzZ8/Xy+99JLu\nuOMOnTx50j0Vb8U+AFx7jCQATVibNm303HPP6dixY7rvvvv0s5/9TIsWLXIvj4uLU25uroYOHaqy\nsjINGzZM9957ryRp7969GjRokFq3bu2+NHChGTNmaNq0aVq2bJmaN2+uWbNmSZIGDhyoIUOGaOXK\nlZo9e7YmTpwol8ulG264QS+//LL8/f01b948JSYmys/PTx07drw2PwwAlTALJNBEbdu2TW+88YaW\nLFlS36UA8FJcbgAAAEaMJAAAACNGEgAAgBEhAQAAGBESAACAESEBAAAYERIAAIARIQEAABj9f4fo\ndQYEqmhTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mse train all feature: 9.51813e-07\n", + "mse test all feature: 1.49011e-06\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABr4AAAI+CAYAAADq7novAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1wXOWB5/vfc7otydZby7YAI8sgM3iy2GbBZjI1nkt2\nhlxXpsykdqY8xOAUW5Ww87azM5Oq1Eyo1CTxvRCgdqtmp4rLJTvMsn+k8C4vWzUbxsxlA4Z4g0jA\ndoyRTbCxLVkSxpZttdR6s9R9nvvH49PqllpSq9VSdx99P1UpYnX36dPn5TnnPL/nxVhrrQAAAAAA\nAAAAAIAK55V6BQAAAAAAAAAAAIBiIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAA\nABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEK01CtQiL6+RKlXAUCGpqZV6u8fKfVqAMC8UX4B\nqFSUXwAqGWUYgEpF+QWUj+bm+hlfo8cXgAWLRiOlXgUAKAjlF4BKRfkFoJJRhgGoVJRfQGUg+AIA\nAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAA\nAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8\nAQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAA\nAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAU\nooV8yPd97du3Tx9//LGqqqr0+OOP65Zbbkm/fvDgQT3zzDOKRqPavXu3vvKVr2hiYkLf/va31dvb\nq/Hxcf3pn/6pvvjFL6qrq0uPPvqojDG6/fbb9b3vfU+eRx4HAAAAAAAAAACA+SkoYXrjjTc0Pj6u\nF198Ud/85jf11FNPpV+bmJjQk08+qeeff14//OEP9eKLL+ry5cv60Y9+pFgspv379+sf/uEf9Nhj\nj0mSnnzySX3jG9/Q/v37Za3Vm2++WZxfBgAAAAAAAAAAgGWloODryJEjuvfeeyVJd911lzo6OtKv\nnTlzRhs2bFBjY6Oqqqq0fft2vf/++/qd3/kd/eVf/qUkyVqrSCQiSTpx4oQ+//nPS5K+8IUvqL29\nfUE/CAAAAAAAAAAAAMtTQUMdDg0Nqa6uLv3vSCSiZDKpaDSqoaEh1dfXp1+rra3V0NCQamtr05/9\ni7/4C33jG9+Q5EIwY0z6vYlEYs7vb2papWg0UsiqA1gkzc31c78JAMoQ5ReASkX5BaCSUYYBqFSU\nX0D5Kyj4qqur0/DwcPrfvu8rGo3mfG14eDgdhF24cEF/9md/pr179+rLX/6yJGXN5zU8PKyGhoY5\nv7+/f6SQ1QawSJqb69XXN3doDQDlhvILQKWi/AJQySjDAFQqyi+gfMwWQhc01OG2bdt06NAhSdKx\nY8e0adOm9Gu33Xaburq6FI/HNT4+rsOHD+vuu+/W5cuX9fWvf11/9Vd/pT/4gz9Iv/+OO+7Qz3/+\nc0nSoUOHdM899xSySgAAAAAAAAAAAFjmjLXWzvdDvu9r3759OnXqlKy1euKJJ3Ty5EmNjIxoz549\nOnjwoJ555hlZa7V792599atf1eOPP65//ud/1saNG9PLee6553ThwgV95zvf0cTEhDZu3KjHH388\nPf/XTEjVgfJCaxcAlYryC0ClovwCUMkowwBUKsovoHzM1uOroOCr1ChcgPLCRR9ApaL8AlCpKL8A\nVDLKMACVivILKB9FH+oQAAAAAAAAAAAAKDcEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAA\nAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAA\nIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsA\nAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAA\nAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDw\nBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAA\nAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQ\nIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAA\nAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAA\nQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFQUPDl+76++93vas+ePXr44YfV1dWV9frBgwe1e/du7dmzRy+99FLWax988IEe\nfvjh9L9Pnjype++9Vw8//LAefvhhvfbaa4WsEgAAAAAAAAAAAJa5aCEfeuONNzQ+Pq4XX3xRx44d\n01NPPaVnn31WkjQxMaEnn3xSr7zyilauXKmHHnpI9913n9auXavnnntOP/rRj7Ry5cr0sk6cOKGv\nfe1r+vrXv16cXwQAAAAAAAAAAIBlqaAeX0eOHNG9994rSbrrrrvU0dGRfu3MmTPasGGDGhsbVVVV\npe3bt+v999+XJG3YsEFPP/101rI6Ojr09ttv66tf/aq+/e1va2hoqNDfAgAAAAAAAAAAgGWsoB5f\nQ0NDqqurS/87EokomUwqGo1qaGhI9fX16ddqa2vTYdaXvvQl9fT0ZC3rzjvv1AMPPKAtW7bo2Wef\n1TPPPKNvfetbs35/U9MqRaORQlYdwCJpbq6f+00AUIYovwBUKsovAJWMMgxApaL8AspfQcFXXV2d\nhoeH0//2fV/RaDTna8PDw1lB2FQ7d+5UQ0ND+v8/9thjc35/f/9IIasNYJE0N9erry9R6tUAgHmj\n/AJQqSi/AFQyyjAAlYryCygfs4XQBQ11uG3bNh06dEiSdOzYMW3atCn92m233aauri7F43GNj4/r\n8OHDuvvuu2dc1iOPPKLjx49Lkt59911t3ry5kFUCAAAAAAAAAADAMldQj6+dO3fqnXfe0YMPPihr\nrZ544gm9+uqrGhkZ0Z49e/Too4/qkUcekbVWu3fv1o033jjjsvbt26fHHntMK1as0Nq1a/Pq8QUA\nAAAAAAAAAABMZay1ttQrMV90JwXKC928AVQqyi8AlYryC0AlowwDUKkov4DyUfShDgEAAAAAAAAA\nAIByQ/AFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUoqVeAQAAgJn09hq1t0cU\njxvFYlY7dqTU0mJLvVoAAAAAAAAoUwRfAACgLPX2Gu3fH5W1RpLU32/U2Wm0d2+S8AsAAAAAAAA5\nMdQhAAAoS+3tkXToFbDW9QADAAAAAAAAciH4AgAAZSkeN/P6OwAAAAAAAEDwBQAAylIslns4w5n+\nDgAAAAAAABB8AQCAsrRjR0rGZIdcxljt2JEq0RoBAAAAAACg3EVLvQIAAAC5tLRY7d2bVHt7RPG4\nUSzmQq+WFnp8AQAAAAAAIDeCLwAAULZaWqweeCBZ6tUAAAAAAABAhWCoQwAAAAAAAAAAAIQCwRcA\nAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAA\nAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8AAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHg\nCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAA\nAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAACh\nQPAFAAAAAAAAAACAUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAA\nAAAAAAAACAWCLwAAAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAA\ngFAg+AIAAAAAAAAAAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEAoEXwAAAAAAAAAAAAgFgi8A\nAAAAAAAAAACEAsEXAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAAAAAA\nAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAKBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhEJB\nwZfv+/rud7+rPXv26OGHH1ZXV1fW6wcPHtTu3bu1Z88evfTSS1mvffDBB3r44YfT/+7q6tJDDz2k\nvXv36nvf+5583y9klQAAAAAAAAAAALDMFRR8vfHGGxofH9eLL76ob37zm3rqqafSr01MTOjJJ5/U\n888/rx/+8Id68cUXdfnyZUnSc889p7/5m7/RtWvX0u9/8skn9Y1vfEP79++XtVZvvvnmAn8SAAAA\nAAAAAAAAlqOCgq8jR47o3nvvlSTddddd6ujoSL925swZbdiwQY2NjaqqqtL27dv1/vvvS5I2bNig\np59+OmtZJ06c0Oc//3lJ0he+8AW1t7cX9EMAAAAAAAAAAACwvEUL+dDQ0JDq6urS/45EIkomk4pG\noxoaGlJ9fX36tdraWg0NDUmSvvSlL6mnpydrWdZaGWPS700kEnN+f1PTKkWjkUJWHcAiaW6un/tN\nAFCGKL8AVCrKLwCVjDIMQKWi/ALKX0HBV11dnYaHh9P/9n1f0Wg052vDw8NZQdhUnudlvbehoWHO\n7+/vHylktQEskubmevX1zR1aA0C5ofwCUKkovwBUMsowAJWK8gsoH7OF0AUNdbht2zYdOnRIknTs\n2DFt2rQp/dptt92mrq4uxeNxjY+P6/Dhw7r77rtnXNYdd9yhn//855KkQ4cO6Z577ilklQAAAAAA\nAAAAALDMFdTja+fOnXrnnXf04IMPylqrJ554Qq+++qpGRka0Z88ePfroo3rkkUdkrdXu3bt14403\nzrisb33rW/rOd76jv/3bv9XGjRv1pS99qeAfAwAAAAAAAAAAgOXLWGttqVdivuhOCpQXunkDqFSU\nXwAqFeUXgEpGGQagUlF+AeWj6EMdAgAAAAAAAAAAAOWG4AsAAAAAAAAAAAChQPAFAAAAAAAAAACA\nUCD4AgAAAAAAAAAAQCgQfAEAAAAAAAAAACAUCL4AAAAAAAAAAAAQCgRfAAAAAAAAAAAACAWCLwAA\nAAAAAAAAAIQCwRcAAAAAAAAAAABCgeALAAAAAAAAAAAAoUDwBQAAAAAAAAAAgFAg+AIAAAAAAAAA\nAEAoEHwBAAAAAAAAAAAgFAi+AAAAAAAAAAAAEArRUq8AAGB56e01am+PKB43isWsduxIqaXFlnq1\nAAAAAAAAAIQAwRcAYMn09hrt3x+VtUaS1N9v1NlptHdvkvALAAAAAAAAwIIx1CEAYMm0t0fSoVfA\nWtcDDAAAAAAAAAAWiuALALBk4nEzr78DAAAAAAAAwHwQfAEAlkwslns4w5n+DgAAAAAAAADzQfAF\nAFgyO3akZEx2yGWM1Y4dqRKtEQAAAAAAAIAwiZZ6BQAAy0dLi9XevUm1t0cUjxvFYi70ammhxxcA\nAAAAAACAhSP4AgAsqZYWqwceSJZ6NQAAAAAAAACEEEMdAgAAAAAAAAAAIBQIvgAAAAAAAAAAABAK\nBF8AAAAAAAAAAAAIBYIvAAAAAAAAAAAAhALBFwAAAAAAAAAAAEKB4AsAAAAAAAAAAAChQPAFAAAA\nAAAAAACAUCD4AgAAAAAAAAAAQChES70CAABUkt5eo/b2iOJxo1jMaseOlFpabKlXCwAAAAAAAIAI\nvgAAyFtvr9H+/VFZayRJ/f1GnZ1Ge/cmCb8AAAAAAACAMsBQhwAA5Km9PZIOvQLWuh5gAAAAAAAA\nAEqP4AsAgDzF42ZefwcAAAAAAACwtBjqEADKCPNHlbdYzKq/f3rIFYuxjwAAAAAAAIByQPAFAGWC\n+aPK344dKXV2mqzhDo1xASUAAEC5onEVAAAAlhOGOgSAMsH8UeWvpcVq796k2tp8NTVZtbX5BJMA\nAKCsBY2rzp3z1N9vdO6cp/37o+rtZahmAAAAhBM9vgCgTDB/VGVoabF64IFkqVcDAAAgL7M1ruKe\nBgAAAGFEjy8AKBMzzRPF/FEAAAAoFI2rAAAAsNwQfAFAmdixIyVjskMu5o8CAADAQtC4CgAAAMsN\nwRcAlAnmjwIAAECx0bgKAAAAyw1zfAFAGWH+KAAAABRT0LiqvT2ieNwoFnOhF42rAAAAEFYEXwAA\nAAAAhBiNqwAAALCcMNQhAAAAAAAAAAAAQoHgCwAAAAAAAAAAAKFA8AUAAAAAAAAAAIBQIPgCAAAA\nAAAAAABAKBB8AQAAAAAAAAAAIBQIvgAAAAAAAAAAABAK0VKvAAAAgCT19hq1t0cUjxvFYlY7dqTU\n0mJLvVoAAAAAAACoIARfAACg5Hp7jfbvj8paI0nq7zfq7DTauzdJ+AUAAAAAAIC8MdQhAAAoufb2\nSDr0CljreoABAAAAAAAA+Sqox5fv+9q3b58+/vhjVVVV6fHHH9ctt9ySfv3gwYN65plnFI1GtXv3\nbn3lK1+Z8TMnT57UH//xH+vWW2+VJD300EPatWtXUX4cAACoDPG4mdffAQAAlhJDMgMAAFSOgoKv\nN954Q+Pj43rxxRd17NgxPfXUU3r22WclSRMTE3ryySf1yiuvaOXKlXrooYd033336ejRozk/c+LE\nCX3ta1/T17/+9aL+MAAAUDliMav+/ukhVyxGhRIAACgthmQGAACoLAUNdXjkyBHde++9kqS77rpL\nHR0d6dfOnDmjDRs2qLGxUVVVVdq+fbvef//9GT/T0dGht99+W1/96lf17W9/W0NDQwv9TQAAoMLs\n2JGSMdkVR8a41tQAAAClxJDMAAAAlaWg4GtoaEh1dXXpf0ciESWTyfRr9fX16ddqa2s1NDQ042fu\nvPNO/fVf/7VeeOEFtba26plnnin0twAAgArV0mK1d29SbW2+mpqs2tp8WlEDAICywJDMAAAAlaWg\noQ7r6uo0PDyc/rfv+4pGozlfGx4eVn19/Yyf2blzpxoaGiRJO3fu1GOPPTbn9zc1rVI0SssqoJw0\nN9fP/SYAmEVzs3TXXaX4XsovAJWJ8gtYGhs2SOPjuf/e3Fyz9CsUEpRhACoV5RdQ/goKvrZt26a3\n3npLu3bt0rFjx7Rp06b0a7fddpu6uroUj8e1atUqHT58WI888oiMMTk/88gjj+g73/mO7rzzTr37\n7rvavHnznN/f3z9SyGoDWCTNzfXq60uUejUAYN4ovwBUKsovYOls2WJ0/Hg0a7hDY6y2bEmqr4/e\n6YWgDANQqSi/gPIxWwhdUPC1c+dOvfPOO3rwwQdlrdUTTzyhV199VSMjI9qzZ48effRRPfLII7LW\navfu3brxxhtzfkaS9u3bp8cee0wrVqzQ2rVr8+rxBQAAAAAAsBSCIZnb2yOKx41iMTcPKUMyAwAA\nlCdjra24OzVSdaC80NoFQKWi/AJQqSi/AFQyyjAAlYryCygfs/X48pZwPQAAAAAAAAAAAIBFQ/AF\nAAAAAAAAAACAUChoji8AADBdb69h7gcAAAAAAACghAi+AADzQriTW2+v0f79UVlrJEn9/UadnUZ7\n9ybZPgAAAAAAAMASYahDAEDegnDn3DlP/f1G58552r8/qt5eU+pVK7n29kg69ApY60JCAAAAAAAA\nAEuD4AsAkDfCnZnF47nDv5n+DgAAAAAAAKD4GOoQAJC3UoY75T7EYixm1d8/fTvEYuWzjgCAypTr\nGtjcXOq1AgAAAIDyRPAFACGy2OFQqcKdSpg/a8eOlDo7TVaPOGPcPgAAoFAzXQPXrJFqakq8cshS\n7o10AAAAgOWCoQ4BICSWYv6tHTtSMia7Amcpwp1KGGKxpcVq796k2tp8NTVZtbX5ZRXMAQAq00zX\nwJ/8pEQrhJyYBxUAAAAoH/T4AoCQmC0ceuCBZFG+Iwh3lro1c7GHWFysFtktLbZo2xoAAGnma93V\nq0u8IpjVUtyHAQAAAMgPwRcAhMRSzb9VinCnmEMsVsKwiaXEME2Vh30GhNtM18DVq0uwMphRKedB\nBQAAAJCN4AsAQmIx598qRsX6QpZRzPmzaJE9M0LBysM+A8Jvpmvgv/pXJVwpTFOqeVCB+aLBDAAA\nWA4IvgBgCSzFA2Yh4VA+61WMivWFLqOYQyzSIntmhIKVh30GhN9M18DWVqmvr9Rrh0AxG+kAi4UG\nMwAAYLkg+AJQMSq1dWIxHzBn2wbzDYemrldXl9GBAxFt3uzr1lsnP1uMivViLKNYQyzSIntmhIKV\nh30GLA/MIVn+SjUPKjAfNJgBAADLBcEXgIpQya0Ti/WAmc82mE/FWOZ6DQ5KH37oSTI6ccLIWj+9\n7IVWrPf2Gr31VkRXr3qqqbFqbbWqr7fzWkYx0SJ7ZoSClYd9BgDlg4AS5Y4GMwAAYLnwSr0CAJCP\n2cKjclesB8xib4PM7+/pMZLcv8fGTNayZ6pAz6diPQjrRkak0VEX1n34oadEwuS9jGILWmS3tflq\narJqa/MrIkBdCjt2pGRM9nYgFCxv7DNUgt5eo5dfjuq551bo5Zej6u2lghUAFqqQsnUh9/UAAACV\nhB5fACpCJbdOLFaPjGJvg8z1CsIuSaqpmVyveNxo165kwT2kgrBu/Xqr/n4rychaqbvbaPNmv2SV\n85ktsit1CM3FwDBNlYd9hnIztUzduDGlgwcrs8c2AMylVPeRhY6GwcgHWI543gOA5YngC0BFqOTh\nvIr1gFnsbZC5XjU1VqOjRsZIra2Ty4vF7IIq1oNQrqFB2rrVV0+P0diYUW2t1X33JadVjp49u7QP\nJJU8hOZiWc7DNFXqQ/Fy3mcoL7nK1AMHIlq/3qqhYfJ9xZxPplLPWwCVr5T3kYUOpU6DGSw3PO8B\nwPJF8AWgIlRy68T5PmDOVIlX7G2QuV7GGJ04IbW2Kj3/VuayC61YzwzrGhqkO+6wkqwaG/2sHgDn\nz3t64YWotmzx1dCwdA8kTPCNQDEeiqmAx3KXq0wdG/PU0+NfL/8nFaPHdq7z9vhxo9ZWK2PK8zws\nl3KiXNYDqGSlvI9cyEgQNJjBcsLzHgAsXwRfACpCsVonlqqiJ98HzLkq34vdQnOxh/ybKawzRll/\n6+527+npMenK0aV4IKnkITSRW6HH8UIfimlNCkwvOwcHpcuXpdFRT5Kf1fOr0N7Kmef4qVOeqqsn\nlzk4KH34YUTd3dIdd/hldx6WSzlRLusBVLpS3kdW8mgYwFLieQ8Ali+CL4QarVnDZaGtEyuhomeu\nyvfFbKG5GMtuaXFDGv73/16ly5eltWulBx+c0NGj2ZefYI4x91+3LwYHpbffXtzzd7ZKg4WUH5Q9\npbGQc3yhD8W0JgWyy1QXQnlascJoZETq7/fU32+1dauvxsbCeitPPce7uz2NjrplNjRIPT1GktHY\n2ORnyuk8LJdyolzWA6h0pQyfKnk0DGApERIDwPJF8IXQqoSQA0urEip6itUibWrwku/8WcUObHp7\njQ4ejKq52aq52f3t4MGoGhqspMnfFMwxVlMzGXp9+KGnpiZ37i7W+TtTpcHGjamCyw/KntJZyDm+\n0IdiWpMC2WVqEEJVV1v9+q+73ldjY0bXrhnt3TtRUHk49RwPrh1Bb+GgEUVwLQmUy3lYLuVEuawH\nUOlKGT4xVxeQH0JiAFi+CL4QWpUQcmBplXtFT2+vG7apu9tTTY1Va6tNz7c1nx5IU4OXri6jF16I\nautWt7ypQUyw3M5OoxMnvPRQVPkENnOtU+Z5mEgYdXe7is/Vq32tWeOrvt691tpqFY9L69e7z/b0\nGBlj1Nrqp5c12/lbaGA3U6XBQsoPyp78zeeYzud9CznHF/pQTGtSILtM/eijiJqaJq9l69a5c6Gp\nyc7rPM/8+y9+4WnNmsm5KN21w6R7C9fUuPCrtTV7+Ut1Hs5VVpVLOVEu6wFUulKHT8zVBcyt1Ocp\nAKB0CL4QWuUecmDp5aroGRyU+vo8PffcipJPMr9/f1TV1Vajo64Fezxurg/f5GvjxpR+8IOours9\njY25nlHHjxv9yZ9MD6WmBi89Pa4y3815kj1/1o4dkz2bTp70rveumhw2aq6waf/+qAYGXGv7sTGj\nV16JaPv2lJqa3ENFZ+dk6HX4sKeBAaNk0ujCBWnbNqv16315nlFbm6/f+73JXmmrVrnQK6jcDOQ6\nfxfawypXpcFCyo9yLHvKaejFqUFra6tyBrKZ7893/y6kMnehD8XFbk260H1WTvscy0tmmXrunDft\n9Vzn40zn+X33JXXw4OTfR0akTz/1tHWruz7U17vr1diYC9R+4zd89fRY1ddPLnupWnXnU1Ytdqvz\nfM/7UrV+p1wKF/anQ/gElD/OUwBYniL79u3bV+qVmK+RkfFSrwIqwNmzXs6K5nXrrDZv9nN8AoWq\nra2uiPMyFrPq6PAUDLE3OCh1dHhqaZF83wUTHR2ebr3V9XhaSq+/HlV/v6fqareeExPu77W10h/+\n4YTefjuHOdyuAAAgAElEQVSin/40qrExT8mkC5kuXjSyVrrnnuzjub09kh7uSXJzoCSTrgdVba3V\nmTNG3d2eLl0yGhyUxsa8jPdJktHEhNJDExojbd8+/Zz5b/8tqnfeiejIEbfu4+NGvb0RffKJp9Wr\nXXh38qSnmhqjU6eMzp+PKJk08n1XwTYx4WnTJl9/9EdJbd7s6+abpc2bfW3f7mtkxGhkJL/zN9h2\n2YyGhkxe53pvr9Hrr0fV3h7R2bOeYjGrvj5TcPmRq+xJJNz+6ury0t+xVMdYUBnb3+9C01Ie55nr\n4oJWdxzGYlJ1tZRrv81n/049xyV3rO3alZrxt2aWX65XYhAuu94k+W6jhgbp1luthoaMjHHHyq5d\nhVUCLnSfLdU+z3XuLPUxVWzl8psWYz2W+rfN53yc6Tx/772oVq2a/Et1tXTxotH4uFFzszu3amqs\n/vAPJ/Rbv5XSPff4+tVf9YtyHs5XPmVVMcsJKbv8ms95X+z1yEc5XYuwcOxPFEOlPEMCwFSUX0D5\nqK2tnvE1gi+EViEVoCjMUl30F1ppN7Wi59IlF3pl9ypaWGBS6LGVGVZVV7vQqa5OGhiQhoaM/uf/\njCqZ9BSJZH7KaHTU6P77s1toTw1e+vulsTGjaNTq009NOjyLRKTTp43q6oyqq5Wef0VSuiJMyh32\n9PYa/ef/XKXz5z1NTLjlXbnigrixMenyZSmRkIaGpFOnPPX2ekqljDxPkqxWr5aiUWlkZPr6S9LY\nmNWBA1F1d0fU3+9CiJqa3Ofv1KAvvXVmCOym/o6g4ubSJaMjRzy99lpEK1daJRJSdfX8y4+pZU8i\nYfThh0Y332xl7dJXDi0kGCz0GJ/pc5nrEgSykjQ+rnQl9tT9Np/9W0hlblB+ZR4LfX2eDh+O6LXX\norpyxS0nn9/d0DAZ3m7e7Be8f/PZZ7Ptm4WGwfkIY6XnQn5TMa8Hi7FtS7G/5nM+znSenz9v0o0w\nJKUbh6RSUlubzbnMYp2H85VvWVXM9cu8/5rveb/U22kpyiUsHfbn8lasax4VxwAqFeUXUD5mC74Y\n6hChle+wVQzTURkWOpxdIHOYg+eeW5FzWLR8hqQr1voEpg7R5sIST7GYr/5+o6Eh97cbb5SqqiaX\nb3N81dQhjNavt4rHgzdOBlutrVbd3VJ3t9Edd9j0XCnWupDJvS/30Eft7RHV1Eip1OQ6T0wYjYxY\nrVpllEh4SiTc32+4wS1rdNSqsdFqzRqppkbp9Ziqt9fo4MGo1q+36unxNTbmhmn88z/PvW0XMrxd\nMCzk4KD04YeTYdXJk26oxcZGNxTjQuYN6+sz2rIlu1JxvnN+LaScKnToxUKP8dk+l/mdNTWuV6Ck\nrMriqfttvvu30KFMgmMhOPeCc+vddyMaHCz83C7EXPtsrn1T7OE2cx1/YZzLrtDfVOzrwWJs24Uu\ncyHzKOaz/JnO87Vrp7+3oUH6l/8yVZTjrJj3gKWeN2sphtnNtb0kLdocjNyjl69yHNZ5OSrFOVLs\nax4AAMBiIfhCqM1V4ZLPjXuxHyh4iC/MYlQEFiMwKdb6TA2ruruNrLVav96ty003WfX3W3V3G61a\n5XpLNTZa3XXX9FBqavDS1mb1+78/of/yX6p09aqbH6y11c2Nsn699Mkn7juDuVJOnZJGR6VDhzyt\nXWt14EAk3SsrWOaxY56amqyiUZvuteP7VpJRdbXV+LhUVeX+nkxa/eqv+jp92tOKFZOhl2R15525\nQzVrjRoagjnJ3DY4ezai7dunb9uFzFUSVND09Bhl9g4dGzOqr5dWr5YeeGBizuVMVayAVVp4BUMs\nZnX+vKfubpOeH6611aqx0dfLL0dnLIva2yMaHJz+ueAYn6ksm+3cyDzn1q93x7RkZg1aZ9u/mevg\n+1bGSMYUVrYG+8Ode5N/Hxszix7oTN2W1rrtMlVQNs1V/sRiVl1dk3Pv1dS4sqStrfBhF6cefzOp\n5ErPQityi309WIwK5YUscyEheL73OzOd5w8+OJE1x1fw92LMRTX1d50/7+nAgYg2b/Z1663zL0NK\nNW9WINc9TSLhGl8UYx7TXMfB8eOeJKv6+sy/GbW2Wg0MGF265OmGG9z2DO4Rcq13vt9H5Xr5KHXQ\ni/mdI8V8/gxjwxcAABBOBF9Y1ua6cS/2QzcP8YVbjIrAYgQmxVqfqWFVba2rqA56Ca1bZ/XRR24u\nMldx5AKh7dtzr2tm8BI87BqjrNBLci3nf/u3k1q9WursdMMVDgxIAwOeGhrcMfraa54++shTXZ1U\nX++WPzxs1NMjbdniq6PDKJl0gZfvS9Fo9rFcV2e1aZPV4KDVyIjVypXBevj63d+dvv7z2bbBb5Ok\nvj6TrmDL94E+qLiZOjxVEMQUoxJ/oZVDC61g2LgxpRdemCx3RkeNPvtMGhrytG6de8/Usqi31+jA\ngYg++igiz3PHYU2NGx6tocHPu1dXpnjcaNeuZPqcM8YNYfnZZ1JTk1Us5uv++6fvt5l670pKr4Pr\nsReRMUZbt/rq77fzLluX4ljIJde2TCTcdwbnm5RdNs11juTa5/G4C8Dna6bjr69vco6lTJVc6Vno\nuVrs68FiVCgvdUOP+d7vzNZL/6ab5u69X4jM35XZ0/PECWlgwKZDsIaG/EL1fEcayGUhldLBZzs7\njU6eNOl7h2CY3S1bXM/xhVaK5zoOurtd8OUaqShdFp86JV275hoRnDplNDDga3hY+vTToOx39ziN\njTPfc+Vz3NGYrHRKHfQi/7K52M+fQVmT2bCmoaGyG74AAIBwIvjCsjZXZdV8HijyefCmhdyk+VZW\nFKMiMNd3FlpJtRgVk5lh1csvR3Xu3OTcCfG40bp1VqmU1dq1Nv2gObUX1NTfuHFjKt1avqnJqqfH\n6OJF73pFnpG1vm6/3Q3ndu6cq8AYHTVKpYz6+qyam61qalxF1vr19vrwiCY9hF9Nja/77kuqp8fo\n3DkXZIyOugo2a61uvNFtk/p6q3vu8TU2Jt1wg69Ll1yw1t4embbN8922wYP8wMBkz5a+Pk/33Tee\n94N8UHGTOexeMAxkru8sxEIrhxZaqX72bERbtvhZvX9GR6X+fk/r1k3OwxGURTt2pLR/f1S9vRFN\nTLiecJnHwqVLXt69ujLFYjZdMXzgQERHj7q51O691w0DOTAw8+/J1Xv35ZcnK3F6eozGxz0NDEj/\n+39HdOutflbvtExTz5Evf9n1Qsx1LEiTvS7nOhYKrYDNtS3r640aG32tXq2cy5vrHDl7NqKtW91Q\nppm99WbqNTmbmY6zG25wx04lVXrOtY8KPVeLfT1YjArlYjX0GBxUuizp6jJFvd+ZqZd+S8vk8Jrx\nuMl53ciU6zp49uz0/Z75uzJ7esbj5vr+NDp82GhsTHmH6oUMtbqQSunubukHP1ih7m5PFy8affqp\n0XvvSS0tvlpabF7D7B45YvT001UaG/PSZUWu759aFiQSRqdOeRoctDp3TrrppuB6YvTZZ653+sCA\nlEx66u83qq2VGhrcdWRszFNPj6/f//2JGX/jQod8xeLKJ+hd7GByuQef+d4fFvP5s7fX6MQJLz2/\nm7vndyNGFNKrHJjLcj/PAQALQ/CFZW2uyqp8Hijm8+DNePhOIZUVC60InO0756oYz3WDXcyKyVzf\nN3X5Y2NGK1dKbW2u5XY87qm31+iTT1Lp9ZE07TceOBBRa6sbxtBcn1Crq8uoqsrollt8DQ15On06\nokjEtc7u75fGx4O5w4wuX3ZzdKVSRiMjRidPTq732Jj0i194unbN6vbbpZ07r+nll6tVUyPV1koX\nLwYPw8G289XcbHXkiJsfrLrahWVT932+27a9PaKBAZM1N9foqKvA+/738wu/goqbf/qniN56ywV3\nQY+4zO9cyEPXfHoB5PqehVSq9/YavfVWRFevugrN2293v+3oUW9azyZJ6Upla12vwytXJLdtjQYH\nXeB6ww1+3r26ApnbsqXFqqlJ2rYte/1nq4TJtV0y1yEeN7p40f07mbTXzxHXO23qcqaeI88/L/3r\nf20yQjmrgwfdMRq0Yp7r3J663K4uk/eQaTNtS88zMw6zOdc5Eo8b1ddP9sKY67tmM9PxF/yuSqmM\nyOe6U2iPnflcD/IpSxbSc2i277rvvmTOAGguwTEwdS7E4WF3zVns+52Zhthbv97X4ODkcHoNDVaD\ng9KRI9F0WX7+vPT889F0Y4+aGqvjx43+5E+SWcd2Znl49aqbszKVMrp2TVq3zgVfP/tZRGvWuHLw\nwAGrP/qj4jRYmm+ldOZ+PXlS+uUvIxofD4YgdT3C43GjwUGjpia3XTJNvYd9+umqrErseNxo61ZN\n+/7M7ZVIGLW3e7pwwZPvW01MuP0Sibh7hokJpctkyfXIHhoyqq72s3qqnz0b0U035S5H5rr20Zis\n9GYLehc7mCT4zL/RRTHL4/Z291wRj2fOM+waoP3pn06e24QVKAbOcwDAQhF8YVmY6eZ7rsqqfB4o\ncj14DwwY/d3fVWnTJj/vh/jl9IBQaEvwfCoCZ5rz5xe/8HTlyuQQO01NVv39np54wtNv/VYqvayZ\nbrBzVRgG69PZGVS82Tlbok812/c1NlodO+bJGDcUXE2N1blznsbGpEuXXAXXwICnV14x+h//I6qm\nJqs1a2xW6+6xMaPubqm11VVYul5aRtGo1YULnhIJN0zhxIQbpvDatez9MjZmdOmS+y11da431OCg\nlExOto4/etTo3Dmr11+vke8b+b5UVSWtW5dSQ4OrQGxsTOnCBU8/+9kKDQy477940Q3V2NCQve/z\n3dednUaHDkV0+bJ3ff2s1qxxLcnzrfgKjhfPM/rt307mHM6qGA9d+fQCmO1YKCRkDZY3MuLmbHND\nHBo1Nlp99pkLPxMJkx72UnJlUVAREotZjY0F+9t9Z3AM1ta6XlLWul6E/f1Gw8MuKIrFInNWsM93\nOMtc26Wx0c0Xk0gY9fR4SiQkz5MaG93nrHW90zL90z9FdOKElzU8T23tZAVvS4urzL7//vkFOpll\nWmY4cOKE61U52/GSeV0YHJROn/b02Wduv/i+1e/+7vyDkWL2QJrpOrlx49zbqJyua/ledwrpsTOf\n61O+Zcl81yMYnvTYMTes7S23pJRIeOnhMhdSWRQcAz09k6FX0DN2pmt3Psdgob3lg2EJT51yPc/G\nxoyuXvWUShmNj1vdeKNRXZ0ry6y1unjRUzxuFYsZnT8vnTzprhv/9t+Op4/toKfn2JjV0NDk75yY\nkC5ccNe7mhqrVatcWXrwYCTn0Kyzyfy91lpZ6wLuX/zC05o1yiqLpfzKw+PH3b51vVSD9xsND7sy\nsqMjonXrpu+bYFmPP16lw4c9+b5rHBG9/mQ4PByZ1nAgsyw4dcodD8ZYeZ5RMumuE9XVVomEtGKF\naxwTuN7uRsPD2b+ps9OoszP3OZFPwJ9LMRuTZQ4jmTlfWZjv0YtlsYNJgs/8G10U854gaFizdauf\nNQfs5s1+1vzYlRxWlNO9y3LHeQ4AWCiCL4TeXDffs1VW5fNAETxgJxImPQTcpUtGN9zghgabOtF3\n5vwLwfI2bkyV5AGhVDf2hVZWzFURmLmvM+f8aWvzdfhwRMmk1Nxs5Xmejh93rZJjMencOS+9vXPd\nYA8Oenr66ap074npFTNRNTe7CsBcPZgy12/q9p4pOA2+79Zb3TISCTdPhrXS4KCr4Lp2za3b0JBV\nXZ1rfV9b63qFbdpkZa3V5cvS6Kinc+fcMq5enazkSyZdZZXkgpFck85LQUt4tzwXjE0Pxy5cmKwM\nraqSGhtdZePnPpfSzTf7evfdiN57L6LRUSkalVaudA/Lp09bbd8+vQdRPvv68OGgtbn77LVrrqKt\noWHmHklTl5F53klGxkz2ivjBD6I6cSKiK1dcJd6WLb5uvtm9s1gPXZmV1efPu6GgNm2anIPNWqOz\nZyMF9f4Ijq316636++31oSBdLwDX+8Hqww89bd3qq77eXj8+pOPHPQ0Pu6Ex43E3d9u1a+64vHbN\naM0aX9Zavf++J2O86wGTOy5WrPDV3q45eztNrYQJhk9btcro5ZejWaHj3/1dlbq7s+eRsNZVHCcS\nLmRKpdy5kUy6Y+DaNVdhfeyY0de+Vq21a6UvfnFcb70VTQ9jGAzPs2qVVFU1+/HX2+vWK58gr6dn\n8hwJepHMdrwE15mBAaMjRyK6eNHNmbNypfTaa1H19LjeKfMJRjKvXcG1aWxMamx087PNp5zPdZ3M\nHEJVyn3NKreKr8WuJM8nqFqsCpzeXqMf/GCF3n8/ooEBKZUy+slPPN1wg/Sbvxmc30bd3dMbe8y0\nvFzDAn//+1UaG5s+V2SubTjX/dNCessHwxJ+9plryHHhgivXrHUNXgYHXY/iVMqVAytWSJGIdPmy\nkedJ1dXSyZOe/vEfo6qvt+rsdOdcTY0bhi+RmAxt6urccH3B/w/U1EzvETXXPgp+74ULRj//ubsn\naWtz2+PcOS+rV1prq1Vbmz9tObmOIcmd3152zn99ni+bUQa4IN4Y6T/+xxU6fNjTqVNuSNvxcVcG\neZ5UVWU1NCQdPuxllReZQ9WeORPRtWvuel5T43p4+b6R51ndcMPkfUvQA23VKte4prZ2ct8mEm7I\ntKoqk3VMZZ4TSxXw5xLss8FBLz3/WzBf2VKWZZVaCV9omZvP753am32u8iis8m10MVt5XOjQ81N7\nlQfPK9LShBWLdV6U273LcsdoOQCAhSL4QujNdfM9W2VVPg8UsZjV+fOTD8UXLrjKg6DC+Oabrc6e\n9dTdLd1xh6/WVldpk1kpXIrWTPO5sZ/vw8Vc71+syorM7RhUPlsrdXREFI26XkqDg/Z6y2MXjjU2\n+jpyxOj8+YheeSWqmhqrm25yQ8IF4WRQaSy59XOV9J6+//0q1da6Fs5zzaEx0/aWNKVSyurCBTfE\n0uioq/QyxlUsSVJTk68LFzwND0uJhKvlci3epVTKvaejw+ijjzwlk66yzy1L1+drcoaHXUWfta5i\ncKbQa5IL2uZ6n7VuqMQrV4yiUaOXX3YVbcmkp0jEyBj3fcmkVX29q7iUcs/fldl74c47U1k9X9rb\nI5JcJVsQfLl1DAIjO2tQESwj87wLetscOFCjxkZXGRqJGCUS0sqV0qFDnr7whWQ6/FroQ1dQWf3h\nhxFZK50/747Jo0eldeustm1L6eab3fcU0gslWL+GBmnrVl8/+5mnaNSoqkr6tV/z0721rlyRWlt9\nJRKuB2EwF1w87qWH1uzsNNqwwWaFco2NVlevepqYcJXAjY1W4+NGP/5xRKtWGfX0+PqN3/Bz9pjc\nuHGyEubCBaOf/jSi4WF3HFy54hoL/N7vJXXwYFTd3V66x1owj0RDg+spsX69a3Hc3++Odcn9fWDA\n9SyoqzO6etXq6lXpnXdq1Nw8tYwx6uqSbr995l63+ZSVMw2ZFpy3kuvZMPWYlIJj2VXEX77seqxU\nVel6QCl1d+ffgzEwdS61mhqrX/kVq4EBT/v35+7BOluZPvX4y5xfLTC13Cu3VrqLXUmej8WowDny\n2fv67v/3Dzq1sltjd9VKsrLRUdn4Bo0c/zM1n7pHmzYpfY8yNiYdPx7JGU739hq98EJEBw5EJRmt\nvP1nGvzc/6snPzuvO29Zr83/x7/TrT2/Pm0dcm3Due6fguPjgnlPR6ueVb9/Xt7gBr3z/X+nWJN0\n8ob/W30rjsnKalX/3Yod+790w8SvZfVKlVz5NTzsrpm+r/R/JyZcmTAx4f7nAiX3qZER1xDgzTej\nam11jS8k6cIF6ehRT/G4205ufkqpv999bnLIQBfCz9QjK9dvDn5vIuFCr6CcOH/e08qVVpcvG12+\n7HpDp1KeTp2y+s3fHJ+2vOC+IXDzzVJ//+RQxpKr0A565a5b51+f60+y1jUKeeedFaquturu9jQy\nYhSNum0SbDtj3HoMDHg6cCAybUjHgQHXSCORcPdVo6Oux3Uk4q4Pu3Yldfq0+73Dwy4wdPc2bq6v\nkyfddcbNKzrZI9kNseiC2mDbzja/22LMhZcp2GeZ878FQ7oFc5QWMlT2fCzmvfpiK6TMzef35urN\nnnns5HP/Fyb53B/OVB5L04dIL8bQ84sdVixmODXXvUu5nWdhVw73bgCAykbwhdBbyM33XDe3vb2u\nwvXQIaPxcSkadfPMpFKuotwFXlaNjW74HEnXW8i5lnHBg0opWjPlWymZz9B/GzZIW7aYvCuJF6uy\nInN7ZVY+j4y4CisXDk32xhgddfNOXL7serh4nmuZ3NtrdeqU1aZNvm6/3V4fxsNVjLn5Q9zcUsa4\nluSe5+auClpqT60Qm63XSmen0aefetcDI6OLFz0lEq4H1+nTbrilG2+0Gh21GhiQ7rorJclodNR9\nxloplZJ837Vid0MMeRofdxVYnmdVXe2WLUnRqJXnucoqyVWy5y+/4zFYp1Qq+Iyr2A96lxnjWoZH\no+53njzphqAMevp89pn0H/5DlTo7I/I8t616ekxWz5d43H3GHXP2+m91rcmvXVO696U08wNx5j4K\nhqe7dMkolfLU1+drbMxTXZ3bXq5lu1FHh6ebb3bHQjGC2u5utx8TCV0fntOVHxcvWh08aNTWllJL\nS3YvqHxlPiw2NEhr17rt09Rk0z1A3LFkdfp05HqlsE0HZT09Luy8//7pQy1KrnJ0zRq3PqOj7hjr\n6Zkc6nJw0A1H1tamnD0m77svqSNHInrppaguX3Zzw1y5YjQ05D57+bKntjabHoLs+reqp8fojjts\nugL8jjusWlv9dMW+ZNXV5SpzM+e2SSZdeb16dea8FG7dg163g4NeOoQ+cCCiP//zcZ09O3dZmVmm\nBesbDAUnTYbl1k5ug+PHXfhcX++W7fvumF250p0rV65IfX3SwICnzZsne37Mdl2a+pq10u23u/Ph\nk0+89DCvTz9dpfXrXcCZ+Vu3b5/7+OrtNXr77YiuXMkuz6Tsc6rcWukudiV5ppn20dQKnAsXjDo6\nIpJ8nTrl6cEHZ98HU5db/7mf6dFf/Bt9eq1Xisn9L3CzNNHyEx1/8yXp1D3pY97ayRDspz81+l//\ny9N/+k/ueldVZdXREdXYmNG1te/p6u0PKbWqR5LU0yMdqfmp/k9vv9b5k+HX1G04133Tkc/e19Pv\n/b3eO9cr/1qtEvVHNbGiz73Y/I4+XfWm5I1LK+Lpz4w0/ViXP39Mn736I8XOf14TE1Jzc+p6w6OI\nkklXbvo3/1z+9v9Hajyv1MAGmaP/Xqb719PXh2TSXSt932h42MoY12NacsP8fvqpUSJhtXKlKz/c\nsHxWa9darVjhKxabLDs++SSia9eye1Bm3v8kEkZvvGH0zDMrrjcgkPr7I7p61S135Up3zU6l3Dlo\njE2H9a7skv7rf3VDZgdlhAuNTHreTkn6F/9C6uuzqq6213u0uUZXa9ZYjY+7MuDataBckmpqgt5y\nnpJJFwYGvduC7Mzz3HldXS0dOxaRNHlPGNw73nSTaxThruuu8U1trdVNN/m6//6UpNSUHvieVq92\njY3GxqQPP3S98c+d8zQ4OFled3dPlu9Tt2mwDaaO2pDdSGZ6L7lCBWXV1Pkwg17wU8uyYlbGB+fR\n229HNDxssno0zXavnusalk+5vhgKKXPzeTaZ2ps9aOTW3e22UyKRff8XjLoxdRjrsMtVFk8NyPJp\nxDJVPo1Cfd/q5MnsYaUbGooXVixmw5qZ7lE6O43+/u+jWXPA0hts8S3lvRsAIJwi+/bt21fqlZiv\nkZHxUq8CKsjZs17Om9h162y6MrG31+j116N67bWI/vEfV+iDDzx1dHg6eDCqkRE3dOGRI55eey2i\nq1eNbrrJPVjt3x/V2Jiny5c9DQy4ShNrXQV50EPG81wAcOONNqu3gTFKtzLOXMdEwujMGU/d3a7H\nzubNflZvomJpb49Me5iful6S9Prr0fSk54FEwtOPfxzRihXu4XpoKKqjR13L8fb2yLT3S25S82B7\nNzS44G9oyFUOr1tntWvXwh9Eg+04OOiGo7lyxT10rVjhWhzX1EgrVrggwxirlSvd0H1DQ264PGNc\ni2fXM8r9d2jIhUVtba4SqKPDS1e0RaOuwujiRe96xVIwJ5bRr/yKr3vu8dO9etrbo+rrc62dr151\ngUF1tfTppyY9zODVqyY9/KDvu7+NjroQwPddi+qPPvKUSHhZ+y6orAqCuFRK6eAr+B1uLhH3ejTq\nemWlUvZ6Jd7SV0QHLfJra31t22ZVXW2ut+b29NJLUX38cURDQ+74Gh11QbLvu//GYlYHDkT18ccu\n4Fu92g3bl0y6CrvaWmndOlepGEgkPP30pxF98IGXPsfPn3f7vbpaOnPGaGxssgJueNik5yurqXHb\nK1je5z7nvm/XLjeHWVB+tLdHdPasp1jMlQ9T/zb1PG5vj+j0aTfcVU+PUTLpXd9nLlRKJl15sG2b\n1ciIC91uvXX6cmYSi1l1dEzOVdPf746lSETq7HRlXDJpVFtrdfWqC2BjsSDA8jQ25noifPGLSb35\nZlTt7Z5On3bzxPX1ufnCxseNVq50w2ZevWquzxnnljEy4obW/OUvPV265LZpIuG247VrRh98ENWx\nY55++cuIfN+7Pnyhq8C21gXWzf8/e28aY9d5pgc+33fOXWpfWCyuRZG0SFsUtbREWRtitaTGuGEp\nge1AgeLMBMH0RG0D1sAZdJKZdtBOx+3+0W0kBmw4XloDTKetUZrtXmxRadsyJVJDSpRIiSqSRbGK\nrCrWvt+t7n7v+ebHc95zzr11a+NO9X0Bgaqqe8/6re/zPs+z0WB6Wjy8lMdKcxyD3/7tklfpHYkA\n7e2UJJuf11hYMGhsZHJZPGsWFymH1tnJBHMkQu+8z37WQjJZRl+fhbfe0pie1kgmyZDs69MIh4Fa\nfSQ4VqZSCpcvK/T3a5dBSQkgSVReusRkdbBNXrrE9rZxI3/+6CMLyaTyGCqOI9Jt7LcPPeR4804s\nxtELAqcAACAASURBVDEgHvfbRa2/vfGGhZERjWJRuTKQ/jXOz5PVNzND75q33rJw991lj9FYKyS5\nOj7O9yHjXXs7x7PgvLqWufdGxvWad6pDnlGtd9TT4/fJyUmFI0csly1DFs3Roxb27Kn9Dmod90eD\nf4DL5vjyFxNNoqxyKJ/9IpQiGz2RUMhkKFt66ZIw1DUGBzUuXbLcogQg+dD/hcKWYxWHS5dSKCGP\njqkvoLmZ82LwGa50762tBL3+1Wv/EqcX3kYmPIJs4yU4VqbymsNpIJTDkghnUGg9A+fU/4amJoI4\nSnGMcRxF0Ou5fwLseAdoHwE2n4Fz58+A0c/ASm932c/w5kKl4AFUsRjHhsVF9hPb5jpOwLJo1GDb\nNoOtW4G5Oe3O02T0Dwz49yfrpVSKUrwjIxbyeRZEXbpkeZ6apRL7DmV/WVzDuUehsZHnS6cVxse1\nWwyjMDXF9UNHBzA9DW/caGmx0dZWxGc+U8aOHVKU4cBxeK/z85xjikUyl8Jh3l8+z3WB4yiEw8Zb\n99g25V8BjhetrQaf/7yfYJS1Y3MzXCllGa8Iaj30kINCgUDDPfc4WFzkHGBZCnfdZdDZaZDJAMPD\nFj76SKFQ0FhcZJuMxfhctm1z8IUvlJY8U1kb83Mcf/msLbS3cw7I59c/Vy4XMoaxfWgsLPDfchno\n7gbuuMOpGMtqrZer179riWA/GhzkvXOc9ecQpYDNm423zjh0yEYioXDhgkY264/3vb0aDz10ffYR\nq8WVjLlr2ZvIZzjvG5fRSdb5nj0OjPHfgciez83R77B6TLqdotZac7l7WG0slljrXrA6Wlu5P33w\nQWfJPnV8XOHwYRsjI5RRlXVCR4eDL3yhvOSam5oiGBgorvnerua61xLS74NjzsQE9/hTU5a3B/PX\nPuvv47djrKf9Xcu4UWu3etTjSqKpKVLPTdejHrdINDVFlv1bnfFVj4997N5dxqFDVkXVWVvbUp+J\nag3/aNQgn6fUV2+vxvQ0AYSLFy2cP1/Cpz7leNVH7e0G4+MAwIp+Ss4JMMLjxONMokrVJr/jm2b3\n9TGhMTTksxaKRYOvfz28olfOlcZq0gFyba+9xqq6YLVpUPqPGwMgkbA94+9acSUeTtWeMitJcwn7\n7vhxsqaiUbhm6woNDY4LXBgcOOBAKYUzZ5QnTekELpngESV7lAI6OoB9+8pQiklokeYrlfh+kkkm\nEBMJgy1b5BjKA6MOHbJw5oyFYlG8hwgapNPAE084aGoCtm8nu2ZuzkIk4qCtDR7bBuD1LS4aLC5q\n2LaBZRGMC0oXAkziaW1QKAiryk/0KcX/tyzxRxJG1s0LxwFmZjR++UuCMaEQn9HcHBPDco2ZDFw5\nPVZWDg/bKBbJgovF2F8iEYJimzbRr0m8q+hxwp9zOYNk0kappGBZGvv3lzE7q3HPPX5Ft22ToZlI\nGBeAZGW3XFsoxKTiM88sL4PX28sEYksLvN/Vqghtb/fZTKUSk6yWxbZFBimZUytVea8U1VW527c7\n6OvTmJ/XyGQoCbi4SKnIqSmObzMzFhoaeE0ENoBf/rIBlqU8n5zxcaCx0WDDBgeWRZaBJI/p4aZQ\nLNKnJZ/nO8znNQYHDbZsMZicNG5/YCKhWGSSyrLgJmspX1YsKvz61xZaWwkMEBwkWBqL0Qfv+ecL\nXt8E2L/a2hw4DhMRMzPw/GaE1WAMZbqMMejpKeOLXwzhu9+tlB8rlRRmZ8n8GBqiHFg8rpBOEyjk\nGMT3QHCbkowyz2zd6ngV5mR5WRgY8L1IAI71ZEvws01NBtGoQjwuxRMAQNnDnh5fEnG5Kudaf0un\nyWjp7vZ/x3tT6Ooi41VAvWTSwne/G8a3vlVYdp6RKuueHrIdBDgfG2PSJ1iBeytW6V6JZOh6I1iJ\nHpSxnZnR+NrXCl6fPHrU9mRyRYLPGIVXXgnjwQfzKx5Xjj3e2Lf6BW08C8DB8LBGayv7iG0TaCuV\nOD8IawfgmqW5Gcg3jNQ83Lzu84p4ghKJx49beOMNC5kMKliAwXHrpbM/wnRufE3PsWb0vIvsp/5v\nhC79r2hqImCkNecCPP4NoGW28vMtszCf+Qasg3+PpibHY3bLWCPFSbkc51n6lwHhsAOluL4JhQhy\n7Nlj8M47ZAF3dFQyt1991UJnJ7z10tQUcPGiRqEAV06Y/UAp9metOafFYnCLO5Q713EcNYaAmG1z\nfJmeNi4gBrS1Kdx1VwmzsxpzcxwbPv/5osfqGR8v4eWXbZw7pxGLEcRPJuk7a1lwwXaDTZscJJME\n3AQoKZU414VC8MC9bBYVrDZhcsRiHGObm1lgUCgAbW18Hh9+qCqkNHfudCqYX7mcctli2i3UAQBe\nXzptILLSALwEtM/opbTd4cMWnnnm+kqFyxjW0WHQ2wuIX5llkbEWBATlWmvFelmuwXuSNYIwmoQ5\n7TimYu0xOqowMkKfuGCBRS538+RlgZWlKmtFrb1JKsU568c/Drl/N+jr8/d13J842LVrqb+ryJ7n\nAlj61baPmyF1t1424Vr7xfWQkTt+3EJLC5UDZP6LRsmAr3Wto6Prl1u8nvJ3jz1WRm+vrhhzCHLJ\nvkzCVyD4uPtN3WzfsxuxdqtHPepRj3p8fKMOfNXjYxO1NiJTU5TYise1J8kyPGzwuc8Vve+IBJ1I\nbTEBxURwezvwzjsas7PaW+wlEsCRIzYmJspeoqGjwyAe114SUCm4EnJMKm/YQGZNLCY69GVPWkuO\n29PDc4kUWXu7wdAQAYBz5+iTVGuReaUbsNWMjuXaKq+b+vki/SfJiFCIiYvRUYXZWV2R9JJYz2bk\n1CkmtWVT295u8NJLNtrafL+r3l5f9i54vZEIJfDSafoWRaP+d4wBTpzQiESA3/iNEkZGLFy+LICQ\n8QAw26ZkT2Mj7/voURsPPFB25dYIipVKQLmsPTZGscikVnu78RLeAPD22xZmZpggiseZcFQKmJsj\n+MbkuXaTGY63kWts5HMulQzKZT9JaVkEeATYAphEM8Z4ybJCwWcOBeWtAOO2TeBmMb0qQ7ngh3El\nI32/MQLIyr035fpvKRSLFvbupTxSZycAEHjJZoE77yzj3nuN6/nkb0hHR5WbvNMIh/kc83mFY8cU\n9uwpY24O2LDBIJ0Gdu82GBxU6O5WGB42XmV+NGrQ2Gjw6KNlJBL+c6uVXBgdZb/dt89HVIPJ0SCY\n29OjEY9bsG2yDx3HIBTiv+Uy7/viRUqp5nJkFa3Wx0+dYvJ8dJTMq7vvLqOlxeDoURvFIhlF+bxC\nucy2FYv5UpQLC3zm4bBxPWEsjyEh7ARpe93dBq2tBm+/baFcBopFXnuxSOBf3qewCuJxfqZc1i5T\nrLJ9ChBL4JaePWRwMlnsOLyfSITJh1iM9ylyhG+8YaG93cH27WRLHDnChFcyyePaNnDgQBmFgp+I\naWkxOHIEOHKEY6iAe9I+p6cVpqcJ3KXT/I5lKeTzTOiMj/O99vbScw4QLzKFT32qhGeeYRKav+ff\nRkeZyF1cZNJ+asr3hNyyxXGlSwkGRiIGzc0GZ84ofPCBjeZmgmPBQgRg+cRqUxMlUoNh2778YnAM\nsG2DXG5lPzE5T0uLqUhqNTYCTz1VWlKs0NZmcPq09nz6Dhwo3/CE4Y2OIHs7mDgbHeU89aUvlfDc\ncyW89poFy1r63ubm+O9q3k6jowqluxNLvl8doea4WxRBcEdAjvxSbM0NjpcquaPmXxfUACbVu9hi\nPu0lsWX+XVigH1/Qiy/4TMZSo6te74qhgPJnv4r4+TcRf++rCI89hGjUBW+3fFD7O5tPo1g0Hjs4\nmyXAxXlQWN4c/5Qy7njHubqlRUFrB4uLBLKKRfZTAR8AuL6MNvbsoWfWzAy9+sgo8yV+5QYKBVlv\nKFfm1menBCVYKbNIFnM0SllUpThfZrM2nnmmjI0bgaYm4PBhG5s3lyq8xMT7U5jDhQIZtOk01w97\n9xpMTxtcvMhrlfZRLCo4joNIxKCtjR5i3/kOJRcdx+CjjzTicTJ/KR1NIIjSiAoDA8otIFA4eVLh\n5EngwgWNUIgATj5PNjDllv0IhXgsrXm9cs7+fo2REVXxbACu1aV/1IprkYiW4pHvfCeMnh7H8ytr\nbyfwOTho4cEHrz2IELz2oJyfFGYoZTzGokQ0alwfW1SoS0Sj1yYpf6V7jfUmzKv3JhxHFfbv5/p4\nZETjvff4t0gk6O9V9gC24DuQZxb02wSuvH3cLABgvQDvWvvF9ShQCa4TgmNl0IcwGEeOLF/QU+ve\nxscVFhboxyiAWkuLuWaFNdu2Gc8/Vtb/XCux+Kmx0b8nkT39uPtN3WqerTcj6t5u9ahHPepx+0Yd\n+KrHxyJqsy40+vspX5bP00MHoCF1X5+FH/yAiYSBAUo9LSxwY71tm+MyNbjQnZri5l5YM6ykpPyB\nSNTMz5Pd4TiUcFGKyVGRSevocBCNOp4HVGurg1deCWNgQFcwCJqauEHet8+gr8+vxJeNW/Uic70b\nsOCizXFoAD087Ccln32Wi7ig5rtsusXge98+g2iUyWXxJ5Jg5WVlVSpQCaittmgcH1f4kz8JY3TU\n8iSHcrnKDb0kll991eB3f7fkLcgnJoCPPmKyh8ldgwcfNO7Gmc/PtjUWFoBDh8Kgv45xgRXlgZXR\nKKXlWluBkREm8F9/3UZ3N5NihYKBbTNZpTXf+4YNBu3tjnffwugbHOTGKZ8XNg+TXmTEUO4nEnEQ\ni2nE4/T0aWkx6OwERkcJhgDKS55JdTSZSAxKABrs2uVgdlYjEjE1JEB4XZkqValbIcpl9hXLIjAi\n0nJBDzMCLxqJhMG777K/RaOUvGCQMdnSwjYYjytvQxqPK4yPE+yhz5uf5JuZ0VDK4PHH6Tc1MQEA\nfO6WRTCS8ntMDpLBAy/h+8YbFhYWfO8mpcgibGjgNQXBWz85Kr+38PzzBfT0ODh82MK770ryD96Y\nEwoRaN+92yAcZtJSkue1+vipUwrf/GYE+TxZqgAl9ZTyfWXCYSa9CX75CUX513GWJiX5OyahwmEy\nA4aGFBxHQ2sfAM7nhS3gJ3aVgivfR+BSKUkimAqAtjqxWShoWBaLDTimcjwgM43AWy6nMTjIMXF4\nWOHcOe15WR04UMbgoEapxLF1717jtheOCf39Cn/3dzYuXWK/yGT43Aly8hrm5xU2bGDyGWDCtqOD\ngF9LC1kNP/852a7iUSNzRG+v5fqJ+V4k+TxlGwGCWgAribu7+b1o1ODuuw3icXp8EWRlYq+5md5v\nSimcPw9s3uwgGuXPPT0Gd95ZRjWYTRkeg4YGeG1x926yFZLJSkmutrbVk6TBxG4wqdXe7uDwYX/e\nuHxZ4Sc/sXHPPQY7d/IzY2MaY2Oqwq/oZnpjXK8khjyj0VG1ZH4MzuHRKDAzwzZnWT7zq6ur9tze\n16eW+KmZbBvQtPL1lMolb/xKJDhfiQzucmGMQUPvV7F4518D4Wzl8XQG74f/K57Jf9pjcFSzU4KV\n8PJMAGB7Sw8wueZHWTtCeZh7fwLsOIL8Xx5EfuJhYOsJIBqv/fnwIoxhEUk8Ds/vS8Zy775K7Ktc\nG/F3xSJ9wNJpYGGBTNxUSmHPHh/UGxsjUPjrX1O2cmGhEsivFT5be/Xku+Nw3Mnn4XmZVSfxJyY0\nXnghgkKBbWXbNge5HNd3slYoFlkQdNddZTz+OFns585Z2LEDXmGYSBAvLBDMVsrBkSMWCgXg3Xe5\n3mtsBO66y8H0tOWxaLT2n9nUFCVzUyngo494/lKJbLbqxGkwpLAnnVZ4/XULd97J9V4kYjA0ZKGz\nM8hk8r1UryfzA2ASfO9eBxs3Lj3H9QIRqu8pGjWYmuIzamtz8OyzZbz2mr+FT6XI2ltc5M+trbJX\n4XOqVnK43uBVMGR8CLJfo1GDQ4cMXnhhacK8mqk+O0vQS/rb6CiLX6JRx9uDUc3D8dhlvb3aY2DP\nzXFNIkxrCcfhXmd4WHlqFWtR1rhZAMB6Ad619ou1+HWtN9bbJxcWlv4umQTefHPpNQXb4p13Ui1j\nYAB46ilfieFahNYyf/F4fX1s901NosDAz3EN9vH3m7rVPFtvdNxsxls96lGPetTj6qIOfNXjYxHL\nsS6mpqj5n0z6IFIiQakYYYHMzHAjxspcVvDv2mWwebNxGQqV1bilEtyKYSaiKBnEBKWwVQiGMNFg\n2waTk/RUeeIJZnlPnaJEx8gIjz0/zwrkZFI2zJXARTDJEVxkHj9uVRhZi+RHrQ1YcNEmmvdK+Swu\nPqOl55DzT03xeT32mIMXXyzj8GEbFy8GP8cNtjCJhodVBaAGrE3K4tAhC0NDlpd4L5WYfLZtX7pQ\n5OjIsighHifodfSo7bKkmGjp69PYtauIeJwJgVCIOu1McvP4zc1lbN1aRi7ns/oiEdfjJCnMLuWa\nZdNnK51m8pueAkxIbdjgV/7JJuj4ccv1gyMIoN2mVCrBS6JMTLACmklPJrBzOYNUSkNr5Sbs/E2W\nADbBsG0CJt3dwKZNZfT3W0gmqysob93NiUgwisxdkIkg9xoOC+gJ13NDpAIpjSQSpdmshlKsyo9E\nCCBfukR/p3IZXgJYfE5Ep//cOQtbtgAnTjB56TgES+JxJuptm5XFv/iFjXvuKWNx0WB42EYmQ7mq\n2VmyvDZt4jVOTXFMiUbZ1k+eZPLl7FmFUEgAcI1XXqG03AsvlPAHfxDCoUMhpNO+V5sAlfPzrLzv\n6TErJlleeSUMY1QFyyeX49gUCvl+LNL+1xPyLujnojE+LtXn8NhbjkMmmdbGfafKY4jx70w4i8eM\nyDtWt+ng+QQkk74A8PrTaeD++8mE/eEPbRw6ZKNQUC74xO888kgZ993HA/X2Wujro+zszIzyQOiJ\nCbIBo1EgkzGu7Bavl4ld5RU9iF/Y1JTG8eMKsZj4Z/F4i4vwZFanpjTm56X4gf8ODxO4DoeNB9om\nk0A2yzlnz54y3nrLdkFFMtBiMd+/ZHGR40UkQk+wpiaDTZsM9uwxLqBmPGAJIOvV/52Aswaf/WwJ\n3/52BMmk5Y6nBOJ6elauXK6V2E2lmJiOxXw54bEx5RZLwAM/yISsrAC/WZJTteQpgyzi1Y5d628A\n8OqrFt55x8LQENtFayvftcyPAFwgXuSUpbCB0prd3Q6efrrgMtF9aUwB9KWo5GLmXfTe+UMUmy6v\neq/FUBzpNMcjy1Ku3O3K31HKoEcdwEh+L9LhD5f8PaXI3GpvrwRKgxKYMh9O6hPoi3wf/+1vRpHO\nFle93jVH+xjw8PeAEwD+2XNAaJljhzLAfS+h0Ps70Fp5UtTVIc9E5vygNGqhAKTTBH2KRbKPhfEf\njyuMjrKIqVSSApraUQvgX2vwmsiImp2l7+zWrQajo8Dp07Yr28j5k2tLA8tSCIc53mrNAp3HHy/j\nhRdKGB9XOHjQwtgY71V8ABkKs7PAzAzXqkoxkV0ucx4ZH1funCqyzpxnW1oImto23DW2gG6r37fj\nCMjH6+nrczAzY3nS05mMQXs7vDGmtRVe37vekqo3GkSQe0okyBqVwp577nG8tbpcU5BZumULWXwL\nC8CuXQ727KG0++7dZfzwhzbeeMP2GDKxmFlzoVx/v/ZkWSVqjd21xsXVpCqDUqnB78lxf/zjUE0G\nl1LCqudBta7cj3Afxfl2YYGFLnv3smAjleIae2xMVUjcj487FRKdtd7dagDA9S6oqPX7WlENAHIu\ncWr2i2stI7fePslCP/9nkUTt6OD6ObhfrLXfBxQGBiwA16/PS/FSezv7j0j+P/qoXzT6cY7rXWBw\nq0ed8VaPetSjHrd31IGvenwsotZGJAgc5XJMWtDDQcAFAmOtrcb1dSA44jiU1jpwwGBggMnGREK5\nCVt4Mi2UbSEbKZHgxlQi6Ksklb2TkwrHj2vXhNlUmKiLHFdbG68T8CunlaqsVAwuMoeHl24m43GF\n1lanQoJL/r5hAzd9onkf9AwILuBkgSubD0C5CQcu/hIJJpc7OhwAypWpMzh5UmNsjD4ie/fSt0Y2\n6WtdNJ4+bXkgV/BzmQxZXKUSK4InJphI/bf/NoLu7jLOnqXUWDQKr+pVa+DsWY2uLsoBTU4SXBQj\ndgBIpy1MTzvYtYtAiVJsT6ywFs8JPgNhvViWQUMDje6jUUpTSiVge7sDYwjyHTlieZ8HDEol7VU1\ni/8TZTOAhgY+r/5+heFhVlgTgKlMGNUCCAhkEOhrbnawsKCWBRNu1aC8W+3kmG0ThJqdZX8Rhlgy\nSSaXZfFdT03RG6qxkd+JRh2USgqZDKX1gErwpqWF/27eDNdzBJ6UJ9lJ/G9hQRgC7LunTlno7VXY\nuJHnuXxZAaD/2vw8jx+NwpPYm51VrmcWvZtyOcpr5fP0kJI+cM89Bv39BvE4wfJ0WphXHIMef7zs\nydstl3wRmbQgY4vMKwehEKufg2zBK31X5TLvRcZFgv4+8E1mpD8OynsVGUFKaxFgFPlJAC5zThiu\nlawJ//953nhcobeXY5htE9xMpdgGtm0j2DM2pvCVr1D29ic/IfA+OcmEYjZLAHtuDq58ovE8HEol\nzhuRiHLN2Y0H0AI09V5YQIVkVyQCr4hCKTJ3RkYsWBaZPY2N8EC1dJps0EjEoLubLMfBQYXz58NI\nJpnEYxKdY2soxHfb0MB7LRSMyyCGyz7zmTWU3iVzpb2dRRlklVUm8zZuzLuSsj7A0tpaOzEmUZ3Y\ndRwmEGMx7Uk5xmLG8zisnIfl/2++5NRy8pTCIl7u2E89RWbo4cMWolFJhpFhvrhI6TNh6I6MwPOJ\nfPhhP2kcixm8+GLE86Lk3CCgsHEBSQXbJnAWlBm++24DbHsXv5j5F8h2j63tQSle58hILRZw7Wff\n3W3wzDNlHIrsw3ksBb5aTE9FgUeQBSgSmE1NBmr7Cbye+xKmx67C12ulaBsl+NW+wrPQAJ74FsyH\nv+OOIau1N8q1WpYUM3HsUYrrgjvuoFdYRwel/xYWtOsV6nve1Q4e82q8NeUc4TBw+rTG22/zGik5\nWHkPAM8lDPhNm8hUVYrA67e/HcLQkHYLrpaeS6QW5Xhy3fk8PDax/M2XUHbQ0WEwMqKRzfprprWG\nUvAKfcplMqlbWnjsYtGgs5NzzMCASEvze9easVId60nkXwmIIPLEc3OcN55/vuBJLDY0qAoAXNbN\nAmwcPWq5Xo0szLr/frLxxLezubmMV16JIpvlvNLdbQJjCrz1R7UixEcfcVxnkR7HtK1bfTnvlpZK\n0Hu5MbO1leva6Wmf3cqCJYVvfSuM++8vY3R0eSZwLfZbNqtQzXqUvRH9pZQ3Nnd0kOk+P0/lhy1b\n4LFSs1l/bZLP0+ezuxs4eVLh3DmDn/7UwlNPlSuYRCsBAFejwrFau11rGwx6R/f3K+9zAgauFtcC\nuFsOAAaAgwftJcd+4gmgt9d49zY2plwmOxfsZAtq/PEfs3qwo4PXI/tToFJK+Fr0/ern3drKQk6R\nsr/33n9YUne3omfrjYxbnfFWl2GsRz3qUY+Vow581eO2jOoJPpgsFTmNyUkme1MpAheSnCyXfXkU\ngJXz3d0GySQBCqUMduxwcN99DtraFNragF/9SpLgvleS42jEYqaCESYJXmE4hEJBDxtuHstlbk6T\nSW4ko1EmRLnZd7Bhg/HYUtGog61b4VaWaUSjDp5+2l9kzszoJQkLY4ChIY0f/MCuSOxNTdHf4sAB\npyIZGY8r9PVxc3v+PJP8ySTZbNksvO8XCvC8cc6dYxV/VxfBhbGxEJJJjeFhmpVblsH0tEY8bnDP\nPfA2YX19PjNNKnal+l3e5+XLypXl8u+JSVTK3OTz8DyWHIdVz1NT2vXLIcDV3EwwUyqTSyXjMraY\n1BbmiYAZ2awvo2gMP5tOqwBLhe9Ka+NVfZdKlEQUwKSnp4zPf76Ev/1bPveBAY1cjufo7DQeI0SS\nR5cvK9xxBzeiInlZKvnyflr7AM9aolgkI00YT45z+y14l6sIL5cV0mmCRaEQn386LeylYNLOuHKS\nDhoa6F1FoFG58n7csGrNdyl9NJFgInFyUnxLfJBcKR/oYUhSVHsghshPas0xYtcuJpTm5wmml8vK\n/YyMIexb0SgwNKTw2mtEg3bvLiMatbCwYGFxkW3csozrA2QwMaE8ltBy0kWUWBSQmMfQ2nh96lqC\noewTvEZKJvoMsEjEZ5WxLfvPKhz2/UmY6BTpGCaj+P/VZ6vN0JifF/lKBctSCIUM0mmNCxfIbvjE\nJ3jDr7wSBkD2VCwG18cMyOW0C3CxXUWjjgs6EdizbSAe9xPLch+UM1NobNSulxnBScuS+zfemDE2\nRvZmJmNcxjDbYD7PsWVoiDKWbW1wgVrlyXvKf5SKgjdnhMMEvNrayCx74w2CW9Gog8ceM3j66QLO\nnLE9iamREYX33rOxc6eD4WG4fokKjz5ahlKUPVvrZjmY2D140EYiEZS447taXCRYHUxO8jNmyTyw\na9eVjVWHDlk4d86qYDsHE7krRXBu9MNnEVcXatBjUOPVVyMIhZQLtiv09/M9zM4SOG1t5d/Gx9kf\n6M9o8M47CkAZ09PA6GgI2SyZnyzyMK4nj8KFC5YLuBg0NbFtd3cbr0Bl506DNzq+j2x8jaAXgEbT\nheZmBx0d2pU6hAdM1g6De+5hQ3+g+GUstBzFdM4HrtqwHc9u/DK+9ETJkxYLJsQI0Dn40pdK+D/e\n/yam49cJ9AKA1hFg67urf65pdl2H9aUI/aDEIP+94w6Dz32uhB/8wMbkpBUAvSojCPr7MrbrupQl\nx7Nt48qy6tW/AN/Pkz6sGqdPG7z+ehjvv295TMCrDVn3lkosglhcNK5s5PqPI+t5KXIqlfyx5f33\n+RzDYWDnToPjx5kQ//KXi1dUdb9csrDW75cD166GdXr8uIUzZxT+/u9tdz6kosHZsxH80R/lXYnF\npceSZOviIguCBKCdm1OYn7ddgJPyuydP+mMKQDb4xo0OIhGyFmUNHgRsjh3T+OgjG01NbG+x5UpJ\nfAAAIABJREFUmHIZeXyvApy1tzsekNHfrz3fTP99KiQS9CuW9UguRzbhjh0s0iJzGhWegMGiuOrx\npaeHso/ZrHg8VTKZPD/BMX89IV6/gMLCgsHUlPakITdv5ryRTApQzMIjWWsdP85CmaeeKmFw0N/L\nBGVng0UA1fPG2JjGf/gPYXR1cX2Ry1FWsa3NrAj4Vcda2ITB98h5ljLXUjgBrMxQuZpiklr9QJ5J\nPK7w8ssWTp60oJRfaCPHvv/+SvC6sZGgF9l5LPDM5eDtSQsFzruplPZUQHp6nGvKwLka9ubHEYS4\nHpKYt1Pcyoy3ugxjPepRj3qsHnXgqx63bKy0Ia2e4FMpmdgrF8ilkkYmYxCJOK7UHDcrNEN3sHkz\nmV+RiJhBs1r5vvscPPdcCT/6kY3BQY2mJkqN+Qlc5RqhVyYNqtkNTK4aN3Fu3AU6XD8xbrKKRSYD\nm5rIFGpoUNi5k9mCixfJLimX6Sd2zz2VJubd3Y5b0Vcp8UEpP78SLpdjIiKVUigWNTZsIFOrUOAm\nmOwMSi8uLHBD29MDvPUWvRra24Xdxu8MDdGPanGR19/YSD8Hy2JyU3x52toU3nnHwsAAN+SWRYaC\nsAK4cTYV77O52WBykhV9fIcKDQ1kIjQ303NNku1KKdf0XMEY47H1uroMurvJsotGec7ZWd//QN6V\nyPZIwmZhAZiaIlgiskGFAllGsmlmwklkMTUyGR8I+/f/PoLLl7mhtm1eZy4HTEw4sCyROvSro6en\nmeTO59WSRNuVJMfEC0Qkgz4uYYxseAVEIkBdKFQn/iRxod33xqSZZUnbJBguUl8dHWwjc3PA6KiF\nSEQYOcrzwaklTeU4kgSCK9nn/61QIMvQssh40Np4oHmQ0eY4TOrl8xoXLrAN9/RoPP98Ab/3e1EX\nDBIghaDv1JQG4FR45lWPhZGIg0JBoaGBzCe2A+Mym6rHitqhlIFt+2yH1SISYfsn0KM8ZmatIKir\nPJ87+rmhQsZwfaFcpoFIkynPvyceBw4dsl2PMxYJLC4SdBFZTWPYPrJZAgybNgGAg4kJC8K0q30f\n/H0mA69fA0wMhkJsb8kkE3xkixhXbgweOBYEAx1Hed59UmBRLW8qIHwux/EqEiGAbllMRto2Zc3O\nnjU4diyK/fsdJBLKA9YjEY7ZH3zAtu5X7zv48peLV7RBliRjUOIOYAGCUkxuSTHK9DQwN6fR2Qlv\nHojHDb7whZUbWq21gDD4slnxVvOZUWupwF0u2S+/Dx5DmM+zs0yyZbPwCigAeP0sm2VhBecZ5a0F\nikUmdo8f19iwgX2Q/R8e8yGVUu6c5HsJJpME0i5fZhJ3aAh49lkHg+W1g14wwNZLv4/duw0AB4uL\nHJtkzqvV51paHJRKGm1tJfyLZx/A/2z9OV46+yOMpcawvWU7fmf/C3hw829A2AOSEAsyzO+/38GZ\nhfdwbPzo2q91vWEAdA5fv+NXn87wvSeTHL//+I/DuHBBV7SFWhcpICPHGym6uLL52XGMN86tJ4pF\nFgkUiwahkMF779koFPQVjrnLXRtZM3Nz4pV2pUfyix9E3lp+L36plI01mJ836O/XaGlx8O/+ne99\nu5bk7EqszqBfYTCJWJ1QP3VKuaxZH8hfC8NH/Ch7eoCjRy3MzGgUCsb1MlVIJCy89BLZUH19leC+\nMQazsxoffBBGf79GY6NBoUDp32JR1kBSBOLPrVK8YVncgwwNaezdS2/YIGCTTAL9/ZQbT6d9EBIQ\nFiBZd2fO8HPiXRyLqQr5dInhYQu7djno79dIJITFTHlhkR1tbAQGBiq9KJXbcarHl3Ra/DGD6xm/\nP0iCutrnNp1W0NpgYkJUJfisxse55xJ1hmTSlzQGeD2JBN+zyM2Kb+wjj5QqmD+15o1CgZLHnZ0G\nMzMWNm40aGgQL97lAb9asRqbMCh/PzDANU9bW6Xv8krz45XIuY2P0+v08GH/u0op/NVfWdi61WDL\nFhak/vrXLLCkn6mApzzn/fdX3tuPfmTj+HEbuZzG/DzHkliMa572dvpqj4zw51CI/yaTyitwvFax\nFvZm9Xize3d52fHjdgchrrUk5vWMaw0+3sqMt7oMYz3qUY96rB514Kset2SsVL1Sa4JvaVFoa3Nw\n8aIFY5is7Ogw0JoMolJJYd++MqJRbszTabKKHnywjJMn4W3ctm+nHr4klc+fV5iY4GK61ia+OtnB\nTStcUAxQynFZSMqtFApKesGTgdmwgYv3hgZf2oGbJhtKKa/ic2hIo7nZr2jfudMgkXBcjwblyu5R\nBiYW4wItGuVmzLII/ExMMCEeCvE6Ojt57ERC5Pd8U/qdOwkG7ttn8P77FgoFhelpbh5TKd5PJmOw\nZw/vo6nJeJvrXE55EjvGaIRCTHxu3GhceSeep6en0otqzx6DeNxBuaywY4dxWQL0LojHFeJxC+Uy\nNzqUr1SetKT4B8XjvB96rPD+6NckZvW+D1uhQP+IhQWypchcCb5bSejzd+EwXNk6gqpS6X3uXMgD\nx0olAiChEP/L5/kuLIsbdgG54nENrc1VVYBXR1Di7toEwYlS6WoSWdfgKtw24idrl692LxbZRgW8\ndBy+N/Y3kaIzuHgRLlsHAHxvMbYNVQFi14pKJpiE+AWSmSi+E9XPTtqYePskEgq9vTb6+5Une+Y4\nxmMmWRYB/F27HG8Dd/CgvWQs3LJFoamphHfesdHWxr6xcaNBIgE0NBhXfnH5NkJZPYPGRgL1BFmW\nZwVoTbaSMLxE4jDIgBD2kjwD26asKMEa9qcrTcDy/VXej5yH44HGpUuUjDOG4KGAlgxfwmtmRqOh\noYxkksC+1qoCoFouKt8twVYfMPOTuHzfBNr4TIzXnmsxTOT+gmxDX0JSef5v8l1hIM7P850dP26h\ntRUem1SYEwKe2TavKR63cOiQgxdeWP9LkCRjUOJO5ISff74QkAUkiCOMg4YGXzJrcNDCgw+uvQK9\nt1ejv59FGMKkDTKj7r13+U4ryZBMhsUQbW3iwcU5+/77yxX3BfjMAfog8X2wuMF4Y4W833zeBykB\neKA7WXBM8ALwQHbxYvTXDMIE5HlmZwGtNTo7DWxb46//OoTE0zuArcdWfzkOsPXS/4lt0/8KE+Dc\nuGMHx4CFBfqfZjIs/pE2HIkY/MY/fgeTu76P/0eN4MPzBLq+/1s/XvV0yaSwmDm3/eTwj1EIFVa/\nziuN9Ux1ia1r+lhwnKoVjkPQ4NQpyy0GguvTVjssS7lrIP5cLnPck/UEsD7Pr2shUzs5SW+uawl6\nAfLc1HUvupFCmEKBILRlKbz8cthTQ6iWb10u6bxcsvCVV8JLWFZBeUEBrgYHNT78kAVm4ispBV2H\nDlno6MASmbcgGycW4zwzPi5Auj9nJpMGx44pzM/TL1DA/akpSjweOGAwOqqRTFJiNpXyiyb8dYs/\nzovCgYxN+TyL0X7+cwvGlDEwQGlEKSTJZv0CL8uCV7hTLHLd1NRkkMlobNvmFzHMzCwFWZJJYGRE\neeNtcL2ez7PAzXG4LwEsdHWRRUU5To1kEpifJ3A0Pa2xaZNf5JhIGLS1UcFidJTS7r/7uz5DLMhC\nVorXPD0N91mKKgSZ1KOj7JMbN3Id09npv/tolPLw8Tjfl7yjxka4bMNCTRlEmTcSCbiewfw5meQe\naGqKksmy35KoVsFYT9I+KH/vOAb5vDDaK4HB5aIaNCJjTeH8eaoSSDsOSmKOjdFHLJHQrgQqGcyp\nlIWhITK6qQDC5+2ra/C579hRec7xcb7PWIw/i4e2qKPMz/NZSnuUvazjYNX5v1ZcDUBSa31y6JBV\nwQYU1t+3vhXGk0+WV/UKvd3BsVshrgcD6lZmvN0s38F61KMe9bidog581eOWjJWqV5ab4LVW2LvX\nwewsq8qSSb/SPhymMXRPj8GZMwqNjdx4GMOKx+3by9C6spr83/ybCC5d0p53zVqyLOI1FA4btLQ4\nrgyb8hJZIoEoCS5JfnR3E/wIVkoODGjXW4znlQRdcKMgGzwusEUSQnkMNfHCUkp5CdZ8HgiFWCWq\nNT0TOjqMx4gAfFP6nh76nAHc/NEjhNeayfisCfoKKc+3DIDrh0MPm85OXntHByv1RFbsvvucKkNq\nbu7vusvBxYtkuXV1AfffX8DPfhbG4KDypJrI1DIBoEp5XkMCboXDQCymkUiQbUHAjc+qVFLu++D7\nCfqxVUYlcFEoCPCiXPBv+WD7Y4JbQDFK2QiAQ5DhWiWK1srQWV8oFApiIL42xtD1j9WvQZ6pVNsL\nSFBdIVwL1KBM5LWRgFoNLDSGUqzsUwYnTtiBcUJ5gG4mA/zWb/kV5+PjCm++aWF+vlI6FKDE4yOP\nOG6yRmFhQWFujtJqKyV2WU3reOCuyEEyUVX7mYfDwCc/6SASMejttdxxd+mz0xquFyBZne3t7JOX\nL1+d501Q5nbp3+jNZVn0t7pwwfKSbkuDwNCFC5brhwGv4nw9gK+wdmqFjBtyvzJ+rhTBc68Gwgm7\naH4eLpuYxQH0Y+P9ZLNM0BIENt73Tp+mxJ/EWjfKwSrYlhYWSShlvATD4CDwwAP83vvva4TDBhs3\nsp1daQX66KjG1BTnvdlZf1xKJlGRZK6OYDJk+3aDqSkHiYRGdzc85tszz5SX3FcsRunk+XnOKSwE\n4PONRMR30FR43gXbGOVX+f+plPgV+UCljK08TvD3lcwXYU1HPnwR2PRTwFoZVGqZ/SzuGPwmVAML\nSPIb3sH4xv+KQsMIQtketF/4KhovPozJSccFaIDGPe/gnZ5/jkJoDCgBF/uB4xP/H176n/4cD25+\naMnzlDZSS+YsqUZWvL4bGpOfXvUjoZAvD1s7gkl3/p/IuS4XwlhiIUElezNYXHO951WtfYnU/n7t\nrUlv5yiXfdCxXFb4T/8pjGiUjG/A97wVVkl15buMO8JIleKxXI5jFOAn/uNxhV/9SuMnPyFbNh5X\nSCYV5uY0Ght94B1QOHqUKg179hjPZ2p4WKGtzfcwEjaSMb4vZDAch8fO5bg+F7DasgzCYY2BAYP5\nec5ZBK6N540mUtmy9pE5Q2Rz5WcWYCj87GdhZLMsBlSK5wmC91IQxIIh5So/8Fizs8YrZmtthTsG\n+8yxs2epmHHpkuVJPgdjbIzy1eK5BRi3QI3Faj/9aQi2rTyZ6sFBfz6zLKCry2DLFjLgTp+28MYb\nBBy7ukT2kGM7GfN8j1u2GHetQwUR6RebN/M5b97sQPpjPk8QcGxMI59X2LDBBPYRfHfBtkXfNcpv\nknHly9UuLPhtNcgElf2W/+59FYxUSuHYMYWf/tTGk0+W8OyzKyesg/L3ra3A5KRBPs/2196uKiQh\nq+PUKYX/8T8sTE9TZWPXLgczMwR2OzooV9nbqwEYT56xr08jHmd/kzFRwL18Hkil6H2bzXKsZDEV\npSXZV7m+GB0Ffv5zXzIzEiGAPDamMDtLpRLHYbGktE0p3OEczHN2dKDi/lZbx1wtQFJrfZLLaYyN\ncX0T9MnO5YChIR+IB1CXp7uCqPYvv//+Sg8+oPZ7SSQUvvOdMPbuda7Ku+5WZFBdS9/BetSjHvX4\nuEYd+KrHLRm1EmHJJPDmm1zoZDKoSPQCfhVbPK5co2cew7JYbSjHFI+u7dv5+ZYWoLMTeO45ogan\nTil87WsR9Pfb60p8U46MkhVPPlkEoHDihI35eR9QkSRt0F+qqclg82YHGzf6SaNUSmF4WC9hT23a\nxA223Gt1BdLQEIGmfJ7sLm4gtbcZlo2WVMh3dXGzcuAAgQ1ZOBkDz/ers9NBW5uDHTsMTp9WKJe1\n+yyVx0gZHWVFoTEEtEQ+saGB/gTJpHI9l1j93NVFaZbjxy309BgveUS/LerrNzQodHU5KJUM/uIv\nIojFlMvWUMswbYKh3YSCVNwzQeA4Co2NTkXSgc9jbUmnSqbI2j4vFbiAD7wJOCpA3a0fa/MSuRVD\nwMf1xY0D9yRJXigI0EW5H2GASOUuAPT1WTh4EJ6USjpNebWgdCgZPkzUFAqswBU/tFxu9WcRi2m0\ntjqYn2cfFxCuVmgNNDYa7NlDds/Xvx7xNqPV4TgEoFpamFDhRk27APaVP+/Vxmhj6DfV16dX7btB\nSS05tvFOcO3bxGqg19LPr/4ZkeDlvywMEJZSJGK8QgOtTYWcUybjm85LFTcZwCtvlFergg3O5cEK\n/GCybz0V6DI3zs9zvmxrY6Ka/n8GTz65/GY+mAxpbeW8NzZGqd7qSuygvFY8biGbVWhpIXAVZIAX\nCkBzs4OmJrK5ikWDdJrJaGF7SYEL5W7pCyk+ghLSz2rNa5bFPi1Jfh17GKG7nkRx5y+WfW5Ibofz\n6/+I0YxGZ6cDe+cJ9O3558hFXJnEVmCu8S3Y6W+g/Ok3YVpH4KR2wOqcQ6GhUkpxYnEcL539UQXw\nVZ1MEeAgWLzTanZgHGtgpl3vSG0ETnx1xY+wOMVxZSC1ByL4wYQ3vf/4rhoafC+r1SKXYzJ5KaMc\nuBHzDcFXrjlmZpQHwN3uESwoGxiw0NZGmWuJ5Vgl/C6lxIeHybxvbaUccjrNfm4M/z4/LwoKnO/E\nazaXExCbIPzCgr+2bm/nnDw1RXZzPG5hYYHAJ9uRQXu7QnOzWVKMIm1D1ovRKM8zNQUkkxqRCEHq\ncJhjUblslvj2SRuzLF+SOTi+8F45rpRKBDMA2ZeI3KoURvjAnPjUFQrGZa/6DKZolEzenh6CdbOz\nGvfcwy+++66/BwkyHQsFHwwTKWIy9I27htceWCcy8yzw8AtBcjmuWyzL4MIF7a4nLBw4UEZ7Oz10\n29sJ0GWzLCBYXITno7p9u0FPTxn79hnXD5PMqWyWn4lEtOvrSuliX7UCnqJGUMKyv19715lKESRc\nWPDfjWXxAWza5CCfVxU+mEr5/qdBb6tkUuHll0N4+20LL75YwIMPVoI3Mv+OjJA9J2tJ2UNSUnr5\nwrVTpxS++c0I8nntrilZYLJtG/tFRwfXUMPDBLIefZTjvIC2AmpJ5HLKldaHW4ijvHVePq8xOekg\nHDZoajIYGgL+y38BLIv7DLLHyMoTGXjLUt78J+8+HGYxleMYtz8YPPCAvxYxZnkPNYDrgTfesJbk\nE4whsNLZiVULf2rlKsT7GTBVPnN+fzp+3PL+PxgfZ3m6YB+ZmaHP3c6d62fYVfuXT0xoz+ex1roT\n8GVHGxqooPNxA39WkmGsyyDWox71qAejDnzV45aM6uoVWbQIa2tiQlckeoM6yz/8oY3g4t62uVFh\nYoMbsmoZgjff9JN2hw5ZGB2tnbxdKcJh4BOf8KuB4nFW1+VyXOBWJ8zk+CIf+OKLeU8XnLIb3GAz\neD+JBDdLwYo2qUAaH1f49a8jHkjGKlC1ZENdLTsmVXTi0ZLPM8FGHwkywsbGuDH+5CcdvP8+UCho\niFePHLdQULAsB5kME0IAN4r0BAAmJvh7yzLuPQMbN9JoenTUryocG2MCeudOtoH+fu1Wu/usLj8k\nebp84kg2zOI9FGSHXQtGz1pCa9kcGs9fRSlJWNy+oNLtEjfqPV9JOA48zzHHgdfnw2F4XlmlEtwE\nP305Dh2y0NMjJu9kH5TLGrEYExT0nuMmKBQSmSL2lXBYeX5pwRCJtVCISSRJ3Cx9dsbtS0w0dHU5\n6O528MorYY/9EpQ4lGOLx10uR6mwXbsM4nGyZIKMmPXEarJkgbtbN2srKBd1O4WA7cYYjwksLDfK\n7hoUi3Ar9DkWz8/Dq+zu6WH1dTyuK0CMlTbKK1XBBufyoA+YJIFW80gwxngeN8awiKJQYIFFPq+R\nzwvjwKCjw8Gzzy5/rOpkSGsrsG8f1wTV1y9Jmg8/tLB5s4NUiok3ynjKp3i8bFbDGFax79xJD56J\nCQfJJMf6hgbebz5PkNqylrJ8JZlbdfdQSvwElSe5a9sKoWP/EcXthwG7RuWEo4AP/xdk9n8P2fYR\nzOV2wInMoRCpBLScljEUnv7fgTAHhDKAxVLtbcFYamwJwysS8ddRAmoGZc4eKHwFF0N/hyIyNY95\nQyKxGfjvfwNMPLzsR8R3T2uCm/RdrQQnffat8diUDQ0cp9eiCkBZZVUDULsRYbzrXFi4OobtrRYy\nrgFMvheLlPAU+VLAZ5UEY3xceRJtLExTLnuJcsJHjmgsLGikUjw42VJSRGJQLmuPheQ4BEjyeYOm\nJuX6+cKVIvST9LEYjxEOEyC6fBnYssUvggsCQpZFxhPAPcrwsPZkVHM5oL8frpw7PxMOG3fcV978\n5TgOolEW0lDVQHngUbGoUCgYV84Qrvy3cT2TeP3NzQaLi74sp6wRhPXa0ECG5OKiwsICwbmmJuCx\nx0r43OfKiMdtnDunPRBgOWUDWfsA/pohn/elpxlLv0vJS0reyri4sKDQ3Mzvvv667fqPythv0N1d\nxtmzNlIp3k9jI9/LvffKMSkP+MlPOjh82EahQDn3zZs5j0WjPtAnBZTGkKGVSNDTmJKGxvXypbT5\nxATXYrZt0N7Oc+/da7C4yEK88+cVurqAp58u4mc/C2Nhgd5W5bLxCg1LJa7NvvvdML71rcISz2sy\nFy3X59fxikx6egw+8QkH+/bxIdeax//sz8KYmdEusC9zs3ILTBwcO8Y9sUhlZzIa+/c7mJggM7Fc\nNh4gpQNbGq35LrlvMx6reX6ev9u/3+DYMRuxGNDZabl+0gbT0xbiccdtE1xvptPB/RPB46YmvsMt\nW7gGSKU0hoZ47r4+C7EYlVQAuJYAGoODGl1dDlpaFBYWKBUazCckk8D779t44AF+rxokqTUP+scX\nkJi/kyJLpfgeJFZiua/mUXY7ytZJO00klMeAGxjQSCaddTPsJF8gweIGXdGuq3NIAkAGQeaV1rS3\n2zNeqQBtNRnEetSjHvX4hxJ14Kset2RUV6+MjbFarKfHqfASicUU7ruvslL7scfKeP11mtDbtkFb\nGyvdH320jJ07KdcgEQTUYjEe7+RJyzOYX5/3AqUFDx+2MTnpyztJNDTAM4oGZCNNffJ4HDh5kgDZ\n7CylIHbsoE+MMdxoSUX7iy8Wai7Ajh+3XK19VtjRm6f2tRaLUgEI7NzpoLER2LHDQU9PGR98YLkb\nPB8g7Osj8NXaapBO++9FGFCSXI9G/cROocCNnlwDN1QO2toMZmbg3hf1+20bWFxkZa5SBs3NvI/m\nZt8rKZut3CD7sXa2Fr1ZrizJfqUhlbm+JE/wr/WFZz38fmRZZLHk88oFKViRbdv0AeTGnpvt06eV\nl9ASo/bpaTJhCF5TPjEcNl6f0Vrk7YJVgZWyW8b4cm382f9/pZi4sG3j9nuDT33KIJnUePddC1NT\nlTJL1QnWxkbj+RrGYsBzz+Xxn/9zFMWigythFQZ9S+rhhzyPTAaerKwxTAzt3+8gm4Xnd8mxmCBQ\nLKa8BKEwJaq9R1aLWkbvQSlEzt1ATw9libu7jeedUy1BdOiQhddeo/RSaytlk3I5hY4Ox2UKshgk\nlwO2bHGWnRslVpKDqb6Hl1+2kUxqnDtnIZWi3wgTxUvbKQspDJqbHWzaRMZDKmXw7rtkoKTTlEoM\nJgWV8v1Al4+l4LMUr9gTnwaGngT2/HLp17QBHv4OTDgLAyAHAKVw7VOEq1Bwu/YF6VIDvvRXLyCp\nRtBqdqAx/lWEZx7ykoWUdDNeog8AtuIh/P59f4o/Oft7yJYD51kZI1p7pNuBUgPQNln77/HtwF8e\nXBH0Aghm0R+Jay8yWZYm6sVbTykm/EUSTlgaq41DN4vdLcBeJCLMk4/HukPmJelTnN8ULl4EOjo4\nZ4bDBtHoUnm348cttLRQgm5mxmfyRaMsxFpc1Ein2SbImDIuS58KEsLKYVGHL2lZKBhXUly5yXnl\nShWTGSigaSjEcXlujoB9sVi97+D5Zmfp8yegKeB7lU5NKY/x0tjI6xAGojBMHUe5awgHWhuvCMZx\nxHfOLwoplUT+kD8vLprAHKtcr8LK8YhAnL8nSKcNXnopgoMHHU/emyDb8u/xaufvIKu/XJZ+qTwF\nCa2phDE7q3D5so1w2FffWFykz/Fbb1HCkjKXBiMjlvduy2WO321tDgoFheZmoKPD8TyhEwnu34aG\nNBYXlbufUa6HmM9QMoZrOq05L87NaUxOarS3E8QcGQG+8Y0oIhHuFxMJhURCeQVFwhTL5fwkf5DN\nMTrKfdvMjIZlSdvgHH/gQO15XObZw4ct5PN8x7bNPXNjo0E6Dc8+IJNhOwyHjbvXJfuLcsraYwkK\nMCUFHtKGRNa9WIR3fZOTlMe2LJG9VF7faWhQHrPOcQjEsk9xHdvSojzwsqPDwb59ZQTXkaL+cvgw\n77e1Fa7kpUZbG9nJPgvd97YeG/PPKxH0+AsynaNR4L33eE7xUVMK2LWLSikbNrD/9fSYChlgWXOs\nZT0SjGshW3czQB1pp0EGnL/GXDv7KB5XFWsMiVxOVbTr6hxSLqeWgI9yvOq4UdKA1/o9LFeAttZ1\nbz3qUY96fNyjDnzV45aM6uqVxkYf9ALgeYlUV2qPj7P6TCrtQiGgtdXB3r0GO3dys3HokOUZX2ez\ncKuwDd5/X7vVQGaJJMdaolRSmJ+nL9X8PPCLXyi0tzvo6ODmq1SirOLiIo8bDnMTZFmURXr7bQv7\n9nHTNTurXClGLsI7OhSiUQePPlqukLgIBhlmwgDhhnel65fN/J49Du67j4mBQ4csXLxIPfVNm2Tj\najwW2cSEhjF6ybPhxo6fcxzjSTtGIvT+KZcV2tqYnAQULIuMsXRauRr83EAsLvJ9lEqyOaIsCcG2\ntb+L5aKWx8D1Dsvy/cTqUY9aIWCRJDa6ux0XKCUIEYkAly8Dc3MEvFIpjjexGDfkra3G9exTroya\nX1nL4/hJLvH5kP4U9PwABExiUkjGQUmcWhYrbltbjXtOVlqOjvqsMoK8S5NZjsNEDhliBNV/9asw\ntm+n8flKibGVgomSa5VJ/ziF8phfwsC9+24H//SflrF7dxmDg5T5aW8XFpafjEin6RMxW6zEAAAg\nAElEQVRZnWBYbaO8XMLgqadKGBzkXL5rl4PPf55SnS0tTNIODS2tqH75ZRvnzjFZ0tbGIpVSibJh\nXV0Ge/dSxqitjXK8X/96YQlwJusHxzEuSKbQ16fQ08M1BCvkycQ+fDiCXI73PzPD5NvkJJNWnN9U\nRQLTe8pK2FoKtu1AKYOFBeDeex389m8X8corYVy4oCuSywJmrTfha4zPMMlkFPDmHwI73wRCNTrP\nEkDrCjsYgBDC6J37EIuhWQDAOI4huu8t3Jn77xgbO4B9+1ggc889HLc6OkzAa+1fInN5P/524gcY\nTY2hsbADheaLWOw4sfYLKFtAZgMQ2wnkOoFwBkj0+PKF/+w5oD3AZiuGgaGngDe/sSroxVAV/0+2\ne2UE/bgEwBCvGfEu5Bi49ttae5grliaUYgW2u4/HOBmJGFhW0CeLa30WjLCvz84qJBIGmzYZfOUr\nSwFxSXi2txvv3ebzwKVLGpmMrpCpFv9X+tb6xSCShCdIymMo5SfeTcWi1Qe1KOUH1/PL/5vWJgBu\nUQ6spYUFcMsF26HyAJfgKcvlILvb8q7ZmEp5Tvl9uUwgyLZ5LYWCz/wWyURhphaLymV/kUVeLIrM\nI/8/m9WeN6iA9dcrZA1DyVsgmFgHBGz0/U0JQPuFeePj2pWqNa6fo/+efT807TL6DO6918EDDzhe\nYcef/mkYIyPct0hxHfdCvmS1FDk2NBg8+qioXPD5TE4Cvb3aK2AyxmBx0QeOWNxUya6V9htM3Ody\nfN+NjZwrBcRsauJcvGULG4fM4zLPnjxpefuuUknYqfCk7Ak2+CAuZblF7lNVeCNbFhnNoZBGqcRx\nq1TiHiif53MNhXyALZMJSPhqeg8Kg7ZQ4N87O8mkZHAM4/M0yOXIYs/lgCNHbOzdS8+3VEphZkZ5\nz6ShgUUN3d1+nxsY4DuYnFSu7DPXyrkcsGfP0rVOPK6WyMZRbpnMsQbXS5MgFy0Ufv/3CxVrIqCS\n5b6cPN1ycbWydTfL70naafWaUn5eK/uovd1USGZLRKOmYn1anUPq6eH3guCjHK86boQ04I18DyvJ\nINajHvWoxz+kqANf9bhlI1i9cvCgXcHUkgguWsbHFb797RDee48LHUnuUnbC8Xxxtm83GBujvMTI\nCBffCwsai4sAwIpNrZngBdaXyLBtVq2JBwCr0RU2bTLI57kY96vhuDnhZoifSyaNZ6Q9NqbwyCOO\nW3FPmcaVZJxY1cMKxEiEi/2VwDulDD796TLa2rh5+/a3Qzhxgh4v5TIQi1lIJh0cOMCquIkJJt79\n7/Nf//hS2edLMikFdHfzXLt2OXj/fRosU8JNNs4iw+L7HBUK3JwMDcnmee3vYPW4kYkfbj7z+Vtb\nbq8eNyOqk5AGra0O7rrLQWcnsHu3g8FBjVOntCs9SDm6YpFAMj0w+P1kUlWwCSyLfS4cZsJCKm4l\nkSMJkaBnnYxLgMgi+m1Wvh+NwvPnAigzRD9FyubNzwOAQmcnDeoFaJNrcxxgelohmdS4cIEeSJSk\n8pNS6w1+p3afvhZsMHkutyurTN5zaytZu0ND2gOj3nyTEoKLi37lvjAfQiEWlkisZaO8XMJgcLAy\nYXDwoL1iYkGOIxXbPhvDQUcH2d8tLY7HRtu1y1nWsJ6sbgtKscJ7+3bjev7w3/Z2g/feszAzo73C\nCPHqWU5eq9bP/J5GZ6fB9u2UOezttZDNwvP2KRT85OGVJYKrwI/xh4Hhp4A9f7+2r5fClQBYvhGI\nrC5DqJ1GLOrZit/lImOYuuP7UCNfwens95EOjaIptB3/+sC/RnvxEcTjypWNVmhpeRh7+h5B86TG\nTPhdJJ/8/NKTZDuAsgKaF5b8SZ17Hvrv/puXLJUxzYu/PAg8/D2gbdQHxNYEeNWOlfu68tgXfsIW\nrgfNFZ9ylbiywh+5Lkm6YwWPn9spmpqEVWJc1hXZKAJ6yXpy40ZKoB07FsLlyw609ivrpQpe5FdZ\n2MWiEmGp1GLoGWM8sItR+UyXerf583xQyjCd5t+jUXpdindtMMheWvl9BaXTV1My8Nmj/nXJ/Gbb\nLFgzhkyzbDaYKPWZOz7wwOeTy3Ft4rPCfXnx1YrvrlX4Molre1YS/vvlfqlY5DgtIJ73V+U/X66B\nymhvZ7L+z/4sjIkJf55i+6t8l1x3cZ4tFjVef537Hplf5+dZbJLPk5HU1KTQ3U3ZeLYT31dMWCuy\nBguyOaJRMpLJ2GJbTSS4rxJgIZUyiMWAH/84hPff15iYUDh3jhKHxSLHVwEGjeG5ZmZ4HSLZKV5s\n5fJSIF2kuY0xLshlPLl7mb/8+VytoMChPHnuZJLglzAh02kWS7a0OO79is+twpEjwBNPlDExwfeR\nSiHwPjkH9/Q4mJzUSCaVJxc6M0MP6WIRePDBElpa/L0uVRaU67NJYDEaZREK/byADRsMHnig7BbT\nUFJxeFjhscfKK3qgrvS3WnG1snU3y+9J2mk1aCXSg2tlHz32WBm9vcpt8z7DrqdnKas3mEOqBpr4\nvdpr2hshDXgj38NqPrz1qEc96vEPJerAVz1ui6hVsZJKMaH04x+H0N5Og9wTJ2yUy74EmGwctm93\nMDhouewIeGDSxASlJoKSNiLhtXmzg7k5X7NbNP4p47f0GkMh4+no2zaThgTeDAYGmPASMI0G0QSo\nCgWDLVu4URDta4Ayf2NjCnffvTYDWHlGSnGhUyxywyEVfIAvrxiJGNxxh4PHH/eZXidO2MjlmNQp\nFLixmZ/nIr6jw8HiolXhD1a9oZUNbzhsXO8v423uROZh926/WnZmht8rlci4y+WEZSDVvLgOoNeN\nDaXIRrmR0or1uF2ictOjFJmNrFClD0RzMzf8c3PwWJCS3KHskPGqjPN5v7/YNqt8i0XjendU+ogJ\nGFLtxeA4xvXEqEzcaM0q+0iEldNzc0ySURqM3hpkFhmXmUM5sGiUY7AkPCTpVigoz09MfB8A8aYK\nPpPV+3+wKh/gMSXxFg6jJntj2TfiFSU4CId5z6mUXjWhdiuHMawy37qVjKdf/pLSfX/xFzYaG5Xn\n8RKL0d9IpCyNMdi3r4SOjrVvlONxFUj8KK/6uTphsFpiQY4jFduAJNMUGhoMOjr879RKXgSTCiKt\nE5Ru3LfPYHZWY98+g1OnNMbGLM/XcmXWzvLtQCn224sXFWZmLPT08DlIYlzkxeSarxkA8cY3gI1n\nqxhPjUCoBqA19JtAdiPQ6gJEg78JPPWHQNvY0s8GwwnVVCItdZzF+bbnUWri9xMA/qj/LTy98P/i\n3s6HKjxW2B6A/P7voxSdXXIsPfkQ9JE/ROmLz1VeT2I7rFNfhbbEn5PtmYwKN7E+8TDwN1cOdFWH\nz4zx1yvBcUgk4eSzlEC8ZqevGauztfy/C9AlzDTAZ2msV8lgjVe3yrVd23PlcsB99znYvZtr5tFR\nhXxewxjlzSFKkTGSz9NTpr+f/XBqSuF73wvhH/2jIpSCJ7969KjlqTEEVQuCIXOn+L2tLWo/F7K0\nuBeQebn6mOtnhK7n0z4YJ2wvmZ8FnPePGbxffk+Arepz347rdekTSpGJVL2/k3HAGGD//jLef98C\nwELGU6fo6ZVOVz6PWsF1CZVBuroIKEUiqFDoKJUoF6mUwtatDj71KQenTmkPaNq9m1LBra0KBw/a\nFVLCPT0G/f0mIHPPQbtYNBgepqz98LCFt96iD9j0tD//yzsm+Me9aTRqXO86X3KX6ykfyFrmiaJQ\ngMvCXNog5DxBKfxaQfCZ+2nLIps4GmXRSiQCXLpkYdMmQEDohgZ6h/3qV5araMICMc7tvB/LonJJ\nJsN1cTJJj9xQCGhpUYjHNd57z8ZddznYsoWg18mTGtPTChs3kn05OEi5y82bHWhNxYO2NsAYgmli\nI5DJAC+/bONLXyotC2as5I9aK65Wtu5m+T1JfmL7dvqpCeje02PWxT7ats3gy18u4dVXDd5+28Lc\nnEJXF4uNglFLRnCt4M+NkAa80e9hve2sHvWoRz0+jlEHvupxW0R1xYoxBpOTCm+/bXkL2v5+X6KG\nyTv+P2UmFIaH6VUVTMhRe155nwWY5O3oMHjiCQfd3Q5efdWCZVH2aHExWKm9tFonm2XyF6CsYTLJ\njc3iom9Q39Rk3AQY76O93QSMuP1jtrczQbdz59oWLPKMZmYInkWjZYyMUPqRoBsTuU1NBlu3Gnzx\ni/5i/PRpy9uA2DYr2vJ5g0yG1bV33eVgYoImwGIKXavyXUAxMrrIWhFDZaUMHn3UQTzOzVgqRSPo\nRILnSKWMJ0dCqbQbUy16PWMtVbj1qAcg/nMaZ85QDlCYKUNDPjAflMssFOCCVBxLZHwxhtXZBLyF\nvWq8pEslsMRq13BYeYA/mQsOCgWRN2S1cWcnsLBAJuquXRxPUin2Y61puq41x6F8ngAYzdxRAb4D\nqBhr5N5EglHYVb4HCbBcgkXGIYJ6lPTTmj4UlkVJvMlJtWbgij4UQFcXK0hnZjgOkj17e41HQVAz\nm4U7Pyp0dIhEkUYqxQQSq90VUilK8/b0ONizx8GuXcBzz/m0h5U8CcbHFT74QOPUKQtaU5YpGlWu\nzEx5iSF8sShMC99Pctcuv/r32DFKHAaBy2gU3nmVWj55US3/xH+BoSHlyRzH48DIiMaHH2qPHX01\nAIbIf2Uy9JgZH/cZAD6zUrmyXNcwuTHxMPCXB6Ee+R7QPoJQZgdC47+JzEN/CNMaAJDi24EjfwiM\n+QBRY6NBObUfxQe+B90xgohqQLrtNNA0433GSm+HM3s3sPMXS06dMXEP9JIoN4/h2NQPsHHy0xge\n1l7x0YYNHKfyDSM1b0OFcgjNPAznpwdhDnwPRsC5974Ke+5hhCK+BFc4zDEpmxUZuGv3PIWNHwQi\nagESUhDlfqvmcYShEAqpmuyh9cfyABNZO5SSNoYybsEEvoyt117u8MYOikqxX507ZyGToVrBxITt\n+WwBPogRixEgaGwERkYsBO/78OEQHn645CZeFZTSaG4m4F4L9AJ8KeJruaZLpZbO7Tc6qgG2tRSL\nrA7K3dxikeV8RmtFsL8HZaCDxwqHga4ug0JBeSyV/n5KTCYSa5dQJ+hDqWiAEtYio8lzs2AokaAn\n1cyMwmc+4yAWI2h7/Lh2fYo0EgnjsbdPnrTQ12e5DCvAcSgfLXKTqZTCwYNhV5ZyNc81X9aX++21\n3Vt1lEqVkprVIczM5Y4vCgVa0/MaAKamuGZoa3PQ2KiQydATulAgCygS4XzDdY2BeGkWi/w+C6I4\nD1OlQEFrgmvlMo8/O6sxMkKGeDqtkE4bbNyICt+vXI7FQrkcixvn5oBEQkNrhW3bDMJhruGXY/HI\nemh4mJKm3d3rK3C9Utm6m+X3FMzh0Odbo6HBQTar0doK/OQnFoaHyZDv6gKef76wrK3Dtm1Uv0km\n/eeQSGi8/DKlAgEsKyO4llzKjZAGrPtu1aMe9ajHjY868FWPWypWSqwFK1Z++EMbg4P+RjabVZ5P\nCf1MKsMYg3PnLHehyiqv8+c10mlhKPkMiEiEm5x0GhgeZhXp/Lz2kriFgr9RlWrJcNg3WFaKwFk2\nK+wL5UpQ+ObUHR0Gts1F+X33OdiwwcHAgOVdb9CEdT0VQNu2GXzta76m+L33KvT2Gnz0kXb9zgj4\n7d3r4Jln/EWcbA6CCWnbZjXsb/5mGfG4wp49ZMBdvKgDsid+wlqSe8Ui77etzbhyEMZb0E9NAd/9\nru+xtn9/GefPcxOWSvG4mYxyte3XfNv1qMfHInwJGY2jRynTVCyyrwljS/qojCciP6S1bPAl4U7W\njlIcw2SskvNQDpHMzHLZ98ZobKTUTjrtoLWVRQMtLQSVGhoopROJ8DgdHZTOoUSPJB2YRNi502B2\nllJby/kZ+ewa37tI7nMtiTORdDSGY7BU9DoOQa/WVh5rYYHj9nLXIaGUQVMTE8YzMxpNTQ7uvbeM\njz6yvCrq5ZKit1r4SXtVkaSfnw+2A/peyLMvFjk37d1Lj4rg3LOSJwHARMP8vMhEaczNSdLJIBy2\nMDqq0dLCY5VKwNGjtiffxPnb4AtfIDrw2GNl/PSnNsJhg02bmAQslYAdOwwOHODcJesEMZwPJouq\n5Z9iMUpR8VzwpIQbGsSDRq0Z9CIwYirmwMBfvQRoqVQbDBGg+pqGy3gKhVhEUiopWCP7gYe/B9U+\ngvLCDjjvfBV64mEEL1lroC37aWR+9edwHAeABtreBT5N2UCd7IE+9VU+ly+eW8LEKuXbgcbLSy4n\nHx3BiTe5nimVKG1qWfQ/i2R3IFXjFqzFHq6Xph4GXn3YG9u0Bkoug6lc9qWyikWu1UQ2+VqGSDWv\nFCu1FfFFFLAzFDLetV95rH6PZN7ClcM13u9CIbJYSyXlFjk4boEAAGhobbxrvR7XdS2DcyDHreFh\nhf5+bmNLJd5DsEChVKJHrHhABfcGuZzCmTM2CgUHjY3Apk0Gc3M+O7RWXOt2JswXAcTrce2CBXhr\n+aTx1kLGoKZcKddRIhkI7N9PttfQkPbWMEGpR3pKqsDP/rFEatpnPCnXj9W4LHMWKAIGnZ0GGzZw\nHdPUZNDXZ6NYVLh8GZifN+jrAzo7HbzxhgVj4AFw2axeItUrP68VgKdk4dU1ypVAL1l3CiN6uXAc\n7sVPn7awYQOZVeGwQTLJOTubVfC99vjOm5sNNmwALl/WrqyiKJkYNDcbV71AobubxTelEtlZi4tc\n74pSx8AAP5PLsRhUoqkJnoyi49A/zLaNC4IB8bjBjh3AxYsWjDHo61MVOQ2A66VkUuPMGfpd9/cr\nJBLOqj5PVytbdzP8nqrzOsE1Y3MzPV2PHg3h/2fv3YPjuM4r8XNvzxOYGbxBvAlQAimJJkWJelCS\nZUn0WrZetbK1TvlR3lIqsVdZx1WubMXlsuNYFa/WrlSyldT+kvjxx2Z3HZVdcspbrpUS2ZZsSRZt\nRaQtizQlkeJLAAESAPEaYGYwM93398fpr7tnMAMMQJCixPmqWCTn0dN9+/a93+ucA1AWYnra4Gtf\ni+IrX1lCVxcqXutKVIHy70rvrVb4knMFqBNZa0FypdxVJavrbtWtbnWr28U3Zczae3kcx8Gjjz6K\nN954A5FIBP/1v/5XbN682Xv/2Wefxd/93d8hFArhoYcewu/93u9V/c6pU6fwxS9+EUopDA8P46tf\n/Sr0KhHA5GSlsLlu73SrxsFcyQn87GejGB0tnSdjY9TzaGwEfEfaYHjYxu7dNg4csPDaaxrz89rr\n7Bfu+njcD5LYEeZgyxYHZ85ojI+TP7ypSagTlUcnJkFNOGzQ0EBasmIRSKUcJBLK4xmnLgV1CJQi\ndWB3t0FLi4PHHmPr3d/8TQQjIzogjstrHhpy1gxRL3fCtmyxcfx4dafsW98K4Yc/DHloseDY/ff/\nnse+fRZefdXCiy9qHD+uXJozjnMsBpdixnhJwf5+BzffbKOnxz9/ub9zc0w6Sqd/S4uNl16KIJcj\nXUgmoy6gSHzd6nbpG7WvWHiamwNsW3uJlSAdoF90NgiFfN0NX8fLT8DI5yUxz/WPJokb0XaKxYwr\nRK7Q1mbQ0cFEjFJMzIgmIddGIltDISk+8ZgdHQa5nPE6aKVQEOzwlQQx4HjoL0lsVusEFo0J6rkw\nMSTrsdYsmnd2Oti5Ezh6VGNujutwJsPx0JrIXFKVMVEUCmkY4yAcZhI9lWLBMR43HnpVKe43Z8+e\nj0bThbNSPTMWKilQ71P1iklSUJoVfIpHjufVVzvYvdvB0BCpcPfts/Czn5Eeqa+PiTixpiYHb75J\nLSei64CzZ4mstix2Yy8sMFnV3m68ho75eaK+2tvh7Xk7d9olzS1BRHdfH+fyyAg8vc+uLoPhYQdN\nTaV+wunTCt/8ZggjIxozMwpvvqlgWdrtxDaYnOSePz7O8ZmdXZ2mSiw4bpeaaU2KVNGYiccNwmFq\namQyy1EJSnHsWVQycBzt6VGKf0OKScB0vwTs+f98msR/+2Pqau38p+XnceiTGNj/v9HWxqSWbTto\nbFSIxRw0bH0JR3Z9HAvaL6JFcn1IPvUEFt64CYJeld8lZR99QXmN13q+haTK4+eOjDc+633ORQcs\nEiGVazarPGQHf6v0eeX/ay+slK6PbGCQYwndNlFQor1q3IYFBa0dxOPcK7JZeNp26//9tZvQfa4f\ngWbcJLVP4Qv4iB3ZI6RJQ2t4VK62zaS1oIQBInmyWdL8vZOQvXWrZsYt6K5cWInFHGzebLCwYDx2\njHJErujJJRLGay5YWiI1dT6/HD1lWcalxa9clI9G6VOxucSgsZH7USbDAnkqZfDRjxagtcJbb5HK\n88gRhdOniSjSmo1KuRwppYOF9o0uzl48C65h5cY1gowEgs7m55WCu5aR1rChgXrSk5Okh0ynfd84\nlWJDZmMj9z1pgC0WSyUBAN7vhgYgGnUQjXKNbGiAqyWokEgYLC4aWJb22BWoecfz6unh705MkB1h\nxw4bW7dSxzeVMpib0zh8WJegflpaqFu6nphfrFoBJvg6C7NYETVf63FX+wwAzxdjA5ZPSwnQn/zV\nrzSmp1lsisUk3gB6e+mDVsoJPfVUqCJiSnTzKr0nTbjVrqFajuJzn6uOPgt+zxj6wIcOWVhcNLj2\nWgf//t/nkU5XZ0m4HHW33o3X3dGRrOem61a3S8Q6OpJV31sX4uunP/0p8vk8vv/97+OVV17BN77x\nDfzDP/wDAKBQKODrX/86fvCDHyAej+PjH/849u7di1//+tcVv/P1r38dn//853HzzTfjz//8z/HM\nM8/gAx/4wPqutG7vaFuL2GelwLStjUnKgQEmWwGFri4Hv//7efzjP0YxN6eQyYiINBMNDQ1M3M3M\nKA/lVCwysJmbU67Ys0IopLCwQASF6HRZFmkMpFuwtdXB+99PR+/cOQAgP3ooxM9PTAANDey2jccd\ntLTQoZINP4jUEltPB1A1p2L37uqO9P332xgdVThypHTsvvAFnt+tt9r4wQ94zGiUWmXSUSzJKUmg\nNjc72LPHwcyMxpkzyhP4lfsb1FgDgOeeC3mJ9Xxe4Y034InG161ul6NRd0G7VC3sjLUsn4rPcQRF\nwCA8n1ee7owkVgXBFew4luJ+kFLQ74o2HqqVWl8aCwsM5CcngaYmosC6u+EFsKRpUq4mlgbAotn0\nNAPAVMrgrrtsPP+88mgRy5PVkqwXXZrFRX6uWsJZKa7zbW3UZrnmGhPQlWLgvH27DRblWZijvhXQ\n2WkQjTrI5Yg0opi5QSikEQ7bmJvTyOeNVziwbeWioRxYloNcTnt7wKVW+AqOa2MjqXkmJvxEmHRX\ny+eC+omSKAbYmXz8uMENN7BhQvak6WlSAp49yyLW3Jx2qYoMOjsFvaBw7hw8BB7ARpGlJYN8XmNp\nyeDcOd6j9vbllGFBhFk5lQ21NhSmpoiI5GtEb+/ebVfwEzg343GFpiaFYpGd3s3N1P7h/s75tnJn\num9CGVrr5y++Ua/E1+3h8yz3WZ71ICVcLgcPLSp0X6X3hX6OGieqrMT3+hWAgedK9cVm++D86o+B\nkPESbI2NvBdKadzYfSM+f8f/xo/OfgvHz43CWhjA1swjGGu7Hm/1OThzRiGfJ0JdCtFEH5SO+YUo\nPJYek8/5egs8nG8Oenp4L6amFObnjZdUl98Kh4n0KBSMW8CpbW2pfk7KexaD6A5Bd3Lf0AiFWBSa\nn/f3ilrtfGj5BAUajwsrglq2DtR4pIpzIPia6OrRr1eYm+M9zWbhoovZsFUo6GXNAXV7Zxsbflae\nqJEIfYJPfaqA2VngxRdDOHDAWqa3xv2Rz2Umo9z4rrpJIbnafCoUuE6HQg4GBx2Mj2vMzfE9aV66\n4QY2ax48yPfeekuVsY3ItV2qe9FGGq+xfE2T14W5xRiD9nZq/42Pc09ra/PRrO3tRPQdOwaEw/Rv\nlTIeTXjQjGEjJv0Wv0krm+WfTIa+uNZw/U4WQPN5+ozptMHcnE+TefCghZERg5tvBk6eBDZvNh4N\ns1guxz3i5z9fX1GgGip/794inn02VDJnqjUVr+W45c1GlT5jjMGrr5KdZ2kJbnMtG+Q6OgxmZoxH\n9wrIPs9jHj2qMDhYOSe0GlVg+Xvz88DoqPYKb5WuYd8+C3NzqkRrPZtV+B//I4LHHssvKyDK/ZHc\nxvi4wnPPCRORwssvAy+9FMcdd9jo7jbLfvNy1N2qZS7VrW51q9uFsnUVvg4cOIDbb78dALBr1y4c\nOnTIe+/YsWMYGBhAU1MTAGD37t14+eWX8corr1T8zu9+9zvcdNNNAID3ve99ePHFF+uFr8vU1iL2\nuWuXjbExXRKcxGLA3r1FDA1hmVMSizFBppQgHfxu9J4egyuuIN2JUnRoMxlqoPgc4EwwF4vGQzRo\nzeSGbfNYN99seyitnTvZKf/Nb4Y8p6+zk7o3nZ0O7rmniPvvL3Voz5fCAKjdQa30G488Uv23e3vZ\nGctrJ4c8dcCCFJFMciWTwGuv+XRoIvBbzQqFUkqS2uhJ6la3d7cJsisU0rAsdvFHIhLEs1t4acmn\n/aqGQipP4MjzJUgmGgv/TU0MxrNZ///5PBMLU1OkM8zl4CIJNNJpJlnjcdLGhsMKp08rNDUZj2Lm\nxAmN/n4bk5Ma4bDCzIz2EvPSkU+UFvUHR0ep21Ctc9lxSEt1++1F9PQwEE4mjVtMpzU3K9x7bxFP\nPmnw7LMWWlqA3buJVDp8WGF4WFBLHLBjxziWHR0Gb72lPFSAaJ1kMsqlP2MB8lIvzBeLCtGo4+q1\n8Z5TD271JH6hQFQbYHDggN+MYozByIh2u+KZsGeymAi6TZsMmpqY4Jc1nQVcv+DmOEwOLSwoTE/z\n8/E4aYdEC0yst9dg794ivve9iKufwfkvyDuAxx8dpY7U9LQqocFJJuHpS8Zi2tX/YLL91Cl29bPY\nsDLCg4VW/h2Ps+B36ZiPlpEkq6wBHH/lFm+Nl9gPogO0ZvJfayn2+igaIEjhVfmIZbYAACAASURB\nVEWrxdUXw82kRsRcP/DSHyM0cRPynQ6mprhWhEJEwXd1cd1Kv74Hf//RG0oOdfp0Ho8/buGf/imM\nmRmZM7VTUG6MqZJ/n19xWyGTsTA25uDKKx10dztIp5fPHZmHkkBd0y+soSgnqKhikSj9YtFHBq7V\nRLvMPYs1fVc01ARxW/u9XR8yjA1uTEJns3C1fKQZoFT38u1CcZ4veq5uy82YlfWlJH6LRKil+vzz\nFkIh7e1b0gwSvC/Z7NpQptUQlMZwLo6NKSwtWchmDbJZMpG0thp0dxv85V9GMD5OtPriYikK7dJt\nvHh7TPayVApIJhXGxogompykL9jRwZt28iQbeCIRoSmknxOPG6TTQKX1RQptgvIrFskEQHkD+r3J\npNDjKndtM54euDRtaE0WgZ/8xML27TY2b2YDUDYbvK8GBw9qtLQwdl9rUaBa8/D3vhfxUFTB12uh\n/qt0XCkiPfZYBHfdZXt5lvl5ohNnZ5VHef7WW9RUi8Xo0xMpyWdvbo73h1Tkvj64yCVEIvTXg6j/\nVIr5nXvvLa5IFVj+3uioQn9/6XWVj4FQYJfPg1xOe5TalfIrYocOlepIZjJsvjt0yEJ3d3HN4/5u\ntLU0uNetbnWr20bbuqgOv/zlL+Puu+/GHXfcAQC488478dOf/hShUAj79+/Hd7/7XfzN3/wNAOBv\n//Zv0dPTg1deeaXid+6880784he/AAD88pe/xD//8z/jr/7qr1b8/TqcdG22e/d73u5TqMnoDC1/\nPRQS+kLfhF9bglahaRIqk6Cl03Q8RXMrOOOlY6uhwXi/IXR7wWA4mBwo73YVxBN52WmNjT56LJv1\ndcEiEVNCq7jRttoYFov8TLnJ+YoxKVKqexYUcBbR4SC9jLwu4yOUFOGwcSnWlCcOHjRSi/i/e6kh\nKepWt7fTqnXXCz3darpVtR5Xnt1yKsLgbwgdojz/YkF6KQBuMatUMF4C/yBVY1AXQyjNjMEy6qDy\n8xZtH0GplFtwzyhfyyqtj7mcKkl2Ba+7/LVLkeKuViulV6tupMArLZQuLQGV9EHkHgpqKEgZtNp4\nBb9rWdyHgzpgwb0qn1+uTxL8HcviHpxMwkN0+J9TXmJFvlfuC6x0jqLjGTzGO8VqTapX+9z5JOVl\n7OQ+C32i1iyql/sci4vw6KLeTYUAKf5d3CJe3cSC2pb1IlPdgubTLftr+9s1P2RultMS1602k5gz\nSKktzR5AKdJ5PVYe5wapw8t95kr3rdzflXOSY4kfzbyEf5KVciBiQf82n2eBrRxpWCiQIYK5DD9n\nEg6z+aja8cSnW1jwacq1Nh4drDH+mAdfD/rSwWuv1ecC/Psmx/fHgg0QluX/Hv2z0txKLX6//I74\nnOW5n+BnolGz7DiCzhZq+fK4JRg3xGL+uFTyf94Oq5TnWcs5ref7ootXbsH78E40Um/XHYu6XRg7\ncODQ6h+qm2cbTnWYSCSwGMhIOI6DkLvalb+3uLiIZDJZ9TtBPa/FxUWkguIRVaylpQGhkLWeU78s\nTet3RndYQwPcrqvlr5c7cpEI0NzMDlnZdGMx5XaRlpokaikkXFqsEYezocEXl25o4HGDWgxBxzS4\nactr4TCpNXge8M4jEvEpn2gX/l5US5QLhUal9wsF/zxJ5+G/J/+nDoj/GzKu4tjJWIhGCCDHVF5B\nq1BQJR2/0qWXyUhnXD0xUbe6BS1YVPL1bfj3WgLJ8uPJ94PBuFiQMrHcJNgtLwhJsM8CROl3WNSg\nllKwaBb8TUkESJdstYQPmwwAuDSOldaz4J5RvgZLcl1Mfk/OR4p87zbaKxkrKU6tZDJHgvtdtaRx\nMLkk+54kSVbTwgo2l3BO+ftw+V4VTGDJPSqfv4UCEYmhkI+CFM27YJEseJxaLKiH906ztSCCLkRx\nN/j7kiByHDbSkM6QPpPcb5lP76YGGCYlL2+/Zq3P3EZaMFEtFKB1q5tYeYPLxbTgnlr+d93WZqUa\nXf69DD7v5zO2wYJasBlMfi/oz1TzleS85JzEZ5L1SeLi8lxBJX+0PFYHROvMf99v9imnvoVXOJJz\nKD+eUEEHr1lieLlGYRFwHLUsLql0/Wuxcv9Tfj8c9s8DEN1fFRi71f1+MWoD89/luZ/gZ0Ihv/hn\n28xz2Lbv91Yr5sg9L//tTEYhmUTFnNXFsGp5ntXOSZgwCgX+kTGv9fvim1d6/Z0ec71Tcq11e+fZ\nSoWcuq3N1lX4uv766/Gzn/0M9957L1555RVs3brVe++KK67AqVOnMDs7i4aGBuzfvx9/8Ad/AKVU\nxe9cc801eOmll3DzzTfj+eefx549e1b9/ZmZzKqfqZtvL7988O0+hZrtQoheCv3f/LzGwYMauRxc\nykHqfVQSLj1wgLzOuZxGLGbQ309R2k98ghnDS1WY84knQjhxYrn3IGK53/lOuKog7Kc/XVjxGE1N\nDkZHtSdSy3GhUG9DQwyLi0sA4An2xuMGV17puGOukE4rNDX5WjvNzY439nLfv/3tEMbHLQ/RR40G\nP9ne1kaNlbk5dnxRQ0SEiVd2OsqRLOJUr80ZZ7dZ+fFq/U7d3t22MqJGJkvtc0HmvKBVGexRbDse\nJzVHsUgqs0KhtuNGozxmLifICgeRiPKKPY2NBsPDDo4c0Vhaooj3wgK844fDBomEwvw8dWk6O6nx\nBFBTatMmLNMllPVH1tWzZ7Un+p3PAzfdZOPKK/2H6cknQ5iagqfxFNTD+chHiuju5mdbWgzuvXdt\n9LDldLA//rGFc+dCsG0boRCRwXNzHNNwmM8uO2nh6XZIsLsSMu1SsGiUnbjJJDW1jHEwO6swN6eR\nzVZG1WhN2sJduxz09Tl4803qHRw/TuodapH4SQ6lgETCoKfHwX332VCKFIUHDlj45S8tPPecRqGg\nYVnKa1QJGotxBq2twHvfW8Tf/z33kfK9Kp1WePlljelphdZWgyNHtEeJ09/veN2ifX0OvvSlPL75\nzTD277dc2kbOVxrphSIRosAqBeFioRCPJ/tWPk8ayCDtVLm9XY0b/u/yx8NhVZJgY/LG8eiGlpuB\n1sZNTOjzRj/4STzjJQQaGw26u51AtzvnpdxDYxR+/OMQlpYUZmZ8NDiJKd7Ze+iFnRMK/v5yYS2o\nD7mWa7Isg9ZW4+45ykueXUijvg41IRMJ/nt2VnvUtXW7nM24esVwdT79hh9BZ1oWk+fVaPg35Cwq\nPEPvhvVu7XZ+a5hoaRUKvK+Ow6aKhgbua8JYcr401UE2AFkHw2HGoX6zkAmskark862tvMZIhLIJ\n4bDB0BBzDLkcllESAr7/XG7lsXo6TX2qaJR+3vw86YK7uhyMjSm0tsKTasjngVTKoL3d4NprbRgD\n/Pa3FjIZeFSLJ09q5PNAR4fjXd/4uMLiooFlae+6Fhc5rkILnc+XssMEm5akWFRt7+BneZxk0ng0\n3RLraE1932KRY6W18go4yaSDBx5YLiMBLPf7eS+X65z9678q/PVfx7z50tlpsGkTcxXHj1vYt8/C\nc89ZWFxUHh17KOTgjjtsnD2rcPQo8xzSwz85qdDf78B/nqlNnErxvgpN5MXOJwXnjq+RzHP9/Ofz\nFc8hOIaS5wleD1B9rlY6htha9OYuVevoSNbZyOp2waw+t9ZmKxUKrUcfffTRtR5wy5YteOGFF/Ct\nb30LL7zwAh599FG8+OKLeOWVV7Bz50709vbiz/7sz/CDH/wADz30EG655ZaK32ltbcX27dvxjW98\nA9///vfR1NSEz3zmMyUosEqWyVzi2aa6rdtSKWD7dge7dzvYvt3fTGux06cVnn46hH37LBw/rtHc\nTD7oVAoYHDSeo5dIUDj4fe9z8PDDRWzbtnyz7ekB+vsdjIxoZLN0qB94oIBt28x5neOFtuZmg0OH\nfGFWgE7FvffaSKWA48d1xSCuu9tg+3Zmuvbts5aJ7gLshvr4x4uIxxlMAExATkxoKGVBa3q6sRgw\nMcGE+fy8Qi6nMTMDNDVRo6WxER7f949/HMIvfmEhnQbe/34b4TAwNiYOlR8wCIxeKZ5HPA60tzuu\no2SwuFjK511qDErKne31JKKSSdIpsMMMQE0aFSsFWmsvhtTt7bbqSYmVExZqhfcq/46gKhMJHy2R\nShmEQsrtYFRecXilYwc7DwGgvZ1BN/WfFNraDCyLnaKxGGk9pqb4nYYGQXeyUKCU8hJDADA46CAe\n57Nx5ZVcQzo6Alftrj/ptMKPfhRCoQAcO8Y1KhQy6OkxyGQ0mpt9pFg6zXPbtMmUUIlcfbWNnTv9\nB66722DPHqem9Vj2h4MHLUSjBtGoQUMD8NprCq2tFhobHSwtsROTOh9cN5aWlHcfpLuVHa5vf3JK\nKd63ahR1TOSxQ7a3l2M5Py/abMvPXSkgHmdyYc8ejuVVV9mYm1M4dUp59MLBdS8Uok7Xe97j4Kab\nHNx7r41EApia0ujoYJPJ9LRy6Qcr/ya1MQy6ugwefJD7SPleFY0C7e3c49raDKanubf39vI+iiWT\nBh//eBFHjzIJlMko7746Du+nUNTUgnyLRklLUyjwOwsLK+01tdiFmDfBY/L+CEWzzFd5jowxXvfy\nsqMY7X33vM/ISHe06LvxPBcWqCE4McF7E41yTH/7WwtvvMHX5+b8pJLss3VbyS7e+KwHZQxIE5Nx\n1wB/fq5m54PA0ZrNbdddZyMS4fM7Obly4bpul4cppVxNIUD2M2HvSKV8arNMRrnFjIs5Zy7H+Xl+\n10zWFdnjgnuHT19XKJwvhS6bM8qReUSsswgQChmXJppat2RA8eeasJ3kcsqlR+PrExMKvb22W5iq\nHL+XW3msHo2SCefQIYWzZ/leJEJt3nRauRpybDRaWmKh49gxheefD+GllyxMTCgsLWm8/jobX9Jp\nNn1lswo7d9IpWFzk/+Nxnqf4dVKsKha5xsvYBFFYq+nuyZgqxTU6m+Xxia5SniZlLqcQDrN54swZ\nhakp5V3PxASLOJKrEUun6cMeOUK/cnDQwUMPlRaZTp9WeOaZEGIxg7Ex7lOFAnDllQZTUwrXX2/j\n8cfDyGa1d1+p/apQKCjceaeNK6900NPDRo+hIYNPf3oJZ85YKBTom4q+cDqtsH+/xlNPSQFKIZNR\nOHRIY3DQXPC8kswdKZZms2wGyWSAc+dUxXN4+ukQZmZ4M0dGtOs/c4wk5lMK2L27ugMp+biFBeZk\nurs5v9/JRS8AaGyM1nPTdavbJWKNjdGq760L8aW1xl/8xV+UvHbFFVd4/967dy/27t276ncAYGho\nCN/97nfXcxp1q5tn5V0k5aKwvb1mTcKZp08rPPtsCB0dxtvQn302hK6uS7srpbeXnTPVOohuvdVe\nURAWYGKxEiqsuZnjyGNwbIxRiEYNXnkF2LZNIZkkumDHDht9fQ5+9SsLLS2mpOiUz9MxBSQQMBgb\nI5LswQcLGBnRmJsDZmfpYEnXFZOX7OpqbuZ579gB/PCHFixLr5hEqZasqbU7X1ANsRgRD0qRMz0a\nZQKcyIHKXfSWVV1AXrro6nah7MIXJ0pRXhvzW1oTdTU3x27GWMyn3wuHGWgK/QZQioz0rRSdKOY4\nDBxDIXZNxuMs5p4751/HyIjGpk3G00cEKAIfLEA3NfGZaGkBrrnGcX/H4FOfKuD48eXrzxNPcH2e\nnVUuQownG4sBuRwF5q+5hq9t3crgcWZGo7OTSKX5+dKAqnzdWsmWdxkqD5n0L/9iYXyczyLAovri\nYilNCgt+pccUWr63U4MjFuO5lWuUAJwLQq+WyRgcPapcJK0q6UIOmmUZN3nCdVwpgxtusDE6qtHW\nxoA4FPLXM62J4tiyxcFjj7FLNDjW8/PA6dMajsNEhdADicmYWhaLV0Edi0p7VSrl4JFHuAd/+9sh\nPPVUuOQalAJ27bLdc+MzMTMjunK+/kStlkgYWBafgZtvtvGTn1iIx4mArPys17LeXIj1qLZjStGh\n8hjwGBtJA1dOFw0w0TI/72umHT7s0y0xseVfS13f5t1lRH76BdlaaFeB9aMoo1Ggq8tg61Yb//Zv\nwFtvhTyNG9GvCYf95HSdAvFyMq7V4gNFIkzaNzQQ3SINbpmM8opk9flxaVokwmKOrBPFYiltmjS5\nnP/9q9yULb5jJKLQ0OB4bAz5POns5uY412yb/ns67ccNkQiRXvSDNR55JF8zAkhi9fl5YHSUhZ9s\nlv67FGoLBRaOolH6+7GYwYkTbOjNZBQWFqRoRz9xdpbNbvPzxlufjQEOHbLQ1kb0E4tiGuk0PDYK\n0fVlUU+YWEqLYLVauT5rJuP7BLatXNkEH00nEgsLC8DCgoXRUYVUyuBP/5Sbi8/gQ4aAvj6DkRGN\n//f/6CfS37Xx7W9HcfasRi5n0NzM5l2APmR3t8KBAxYKBYNcjmPJpi/+LaizHTsMbr3Vv4fptIXN\nm20sLoaQy2mMjhq0tPAeLCywCWl+XuHVV0kT2NLCZuJqqKuNMpk7IyOl9ycWY15n3z5rWc4s2IgW\ni5E5AYBbfDXecVezYD7uQrA81a1udatbNXubpRXrVreNsX37rGWdRNU277fjeBfTViryrVYYA1Yv\njpWPTSoF7NoFzMwAAwOm5JitrcCJExqHDyuvmCaUUZGIgmXRwzWGzvrx4xYeeaSAXE5hZEScK3hd\nbS0tDq65xuDwYQYgySQRZAsLxkv+S0AhfNwStAKlRYogZcVKFokYhMNMcot+TLFoXMQLu/ukICFB\ngn/clbvnjTHu99ZfAGPMJZ10bz8K5dKyjR0L3tfSY1bj8z+f30gmDWxbeTQf3d0OYjGD2VlBSgD5\nvPF+P9iFCvhzMai/pTXFrYXqRGhDOjsdpNMaTU08wMICX9+500Fjo/EC6nPnSNOilB88KsXXW1pK\nn/vdu5evPxI0laNJl5YUYjFSsTQ2KuzcaeOTn/TXGlmntmyxKxbUarFK6/ncnMJf/mUEtg1MTwOS\nBJPxisX4eqWieSjkrzdvpxUKytVWNF4XcXnxSz6nFJsOJBER1HoDmDxqbSUieutWp4SGJZkkSnB8\nnEVBFl15z1tbHdxzj98QEhzr0VEWWkT/kVREpQURSR7EYgY7d/qZqdX2qvvuszEyspx69777eIyZ\nGYPjxzWKRb8ovJb7JQXeYtFgcdHg9dcVsllBD5eut5bFa8hk/DEN6lS9XfSHl4pxjTQeiovFd0BQ\n3YC/j13uY/VOs7XcL6INuTdRF0V5RbDq31nfeYlm4JkzGj/4QcT1CZVbyPZ9ROqUGK97vW7vbhP9\nGc4/A2OAWMyBbRN9urSkMTDAdejUKaKF3+naM+92y+fF3/WRXvJ8834bbBRiL6i5K//30dUsmFgW\nfXjxdeJxhXye/rcUSITFANA4eZIsKq2tfK/WHMOtt9p49VWFgwctwKXkPnKEbBBiuRyZGhoaDNJp\nhfFxjXxeuddAqsCgvpgUymIxMrosLvrNb4KsHxiw8fLLRIfJWIgP1tBgSjStSulsz+8eyF4T1I4N\nNqRZFp/X+XmNJ54IY8cOG2+9ZeEf/5FSF+EwJRhGRhh3S7Pd4cMazz0X8dBm6TQbXDdvZvOTIKN+\n/WsLoZBCLKZKil0Ai4VKMU4JNtmdOkVkl1JE32WzRJ01NdFnn5hgs8/CAikk02nuW48/Hrqg9H+S\n5+H84PWyMEpmh0rMQMGm6P5+xqNcP417L2pvRgRWb1jfCAsW1og49Iud9SJb3ep2+Vm98FW3d4VV\n42BfLzf7Ssd7p3eorIZ+Wy3hWGlsmprIAy46YWLiXPX1MREpyWWiKUqh9Lkc0SC9vQaf/3zec4gI\nxafT0tdH5/3kSYXmZoXDh0lZlkoppNN+8kISu5bFjiqhZQuHmbClw0pnvrmZjn42KwlN/73WVha9\nslmfklA6C0khYVwqFL4fifC3pfCwtOR+q0JySCmf2g0oFSJeSzJJKXarSmIxSG91OZifhL7wVm1M\npViyEYUQBtbKTQwDV15pQylgeNhgYcG4CBry8AsNSPB3pRCSSABEanEuEhlE+rpQiJSJu3c7OHnS\n8jSzAGB8nIUsdjkaF4VlcPIk6S+COgxjYwZnzmjs26fR3g5s2WKjt9c/l+BaeeSIRjRqyjoFiUDq\n6NDo6THYvJn0qMD6ugKrfa7SmnX0qMKJE7z2zZt5Lfk8Kfe6u4EzZ4BgYl6KN/JsnQ8F10aYUkRk\nNTby/orWm/suAOMibRQsi923Qjsj6yMAj2qnsdFg0yZgz54iHnmksGy9VwrYvNng7Fl+LxQy6O42\niMcN7r/fD3aDY53LKY+edmnJeB3ASvnFsHCY+pl79hS945Tfx3vvXR4I9/YaPPJIoeq8OHnScq97\nfeNbLBpXL4Rje/y49go2gtSVRBuT7ETJLSzw9cZG4xUii0Up6Fy+iXXHUSgUlq/VpbRR/lzz9VIu\n7nnWbXUT7azGRq7fti3P9cro+miUCWHLIrrApw3d+OdCUAGSnCNSuhT1QfpP5TY2mTqi5zKwcJh7\nXTbr09OJlqggcs6epW8/Oxukkq7bpWr0vVVJM49x/5HLUe9yI4ouiYTxaBODr8fjxmtCSibpF508\nqdHVRT8ynyfdoFLGm0vRKH10NpoxVs1kFL785Qi2b3cwOFibn3vunEYsxvOYnfUbSsSMYZyQzWqE\nQnzfX+d8lGsk4iPn2Mhj0NTkYG5Ou82qBrGYg+Fhg9FRjVRKucgn5RUYi0U+P11dDmZmFGZmLK8Z\ndCNsuV/AnEKQclJ0eAGF//bfolBKew1YlsWGwnPnFFIpB83NLPI8/7yFdFqjWBSNMvpq4+MGw8Ms\n7IyMsLC3Y4eD554j80FDg1CeG/T28sZ+73sRNyfBcxodVYhG+d143Lg0jYy/3npLYWZGe9q3WrMQ\ntbRkoFQIv/ylhVtusVecC+s1yfOcOKFx4oQFrcnekcsx39Lfv3wzDDZFk9nHwcgIVp2v1SzYJBfU\nGVsN8VZrPBhE+hnDZsdolOddrcj2Ts/v1a1udVvZ6oWvur0rbCV6vo08nuOYC96hcinYSsWxtYx1\nsIjW1EQIf0sLnUHLUh76BKBzKccoL77191N8d35e4Xe/U9i0yUEup3HmDAtjmYwIUTNZ6ThMssTj\nQrcAj5axs5OfmZtj5rexkRpKjY2kU8vnDSIRJkKWlpg47epyMD2tXBFsg4YGjUTCoKODyWdSBtCp\nloSuZcFNRCuvMAIwwBFqCHY/M3GktfIS6iLwy2R2ddSJJK+DOipCOUHu9bXddwaOvjCz1n4H5aWZ\niPR55TcqqSxBqARsodByijSip4KIyPMfH6VYBKBeFp+HpiY66UoxICgUGGTMz7N7cHycKJ7FReMG\n9/69a2oy2LTJIJUSWg0GYAMDDNREkDiddlyaFQZnQrlSjszatYtaTzLOY2PA88+HsGkT9bCmp4Gv\nfS2Kr3xlCbt3m2XdfLEYcPCgxuCg4xXB02kWzZViByGwHFlba1fgSp+rtGadOaNdfQ+eQzxOFOfY\nmPF0rISOLfgMOg7pS1e/z+tFXwaLV5VNAnuA82RuTrn330cgxmLU1JGuY6FmCYcpAA9IMM75fuWV\nNu6918Z995UGejJ2LFiyODY3x/cyGYWWFgawEiAGxzoWMy46jEmjVMrg3Dkgk+Gca2mhqPuePbYn\nSL6WLtCV9qlsFmhrM5iZYVNDaedxLSbrPdFcuZzB4qIuoRT112uKl0uhKxplsS8a5e/LHnC5NCNU\nMq6htT0P5RoqdbuUjAlb6epXintGLMaibyikKvoeUlyPxeBS6HItCjb81GJreY78Z1V5SJ+SK/EQ\nsfxM3d69Jv5VczP3BhZGhYrN1/EUf75Q8HUG63ZpW7Dw4b7iUczLOrXevURrB+GwgdYWQiGi4ufm\nxJ8gSisapQ9s26R9vuUWG88+ayGX027TpR9rFgqy7lEbSuJCxyFlYS6n8LvfMQ5bzc+dnwd+9zv6\n6oODjqv5W/1aqjUBFQqMaRh3MLa87jobJ05o2LZ2kVzAoUMaJ04Q6ZTNKq+ZgI1XcDVkqW1m2z6N\n4/loKgbvW7DYBcDTtw36C45jPBr3s2e1W9yW+FiaWJWrC25w8KDG4qLymgMLBdH4ZVFyYYF71siI\nQn8/m2/vuMP2dLEsy0E8zhjr1Vc1Jie1S2HJ+CqfV27zmYHWxr1HzC1QU82PLalfBuTzGm++yfE7\nc0ajs9PgySctfO5zeezevbHFr2uvtXH6dGlhWJBRlT4fzMsMDTl45JH1F4akSU50xuQ3R0Y4x/fu\nLZawfGzZYuPAAQvPPmshFgP6+kxJfACgBN31zDN8BgFqe+Zy1CIbHSXSb72xZt3qVrd3rlmPPvro\no2/3SazV6gKCdSu35maDQ4coECq2kijseo8nSeFSI0x9+/ZLqiJwwazS2ESjIXzgA0sVxzqVYrL+\nttsc3H23jRtvdHD2LLuugh3ew8MOPvzhoncM+d7u3fxzww0OxsZIV5BI0DmamBAKARaBUimDG25w\n0NrKopEkIi2LQUdrq8HWrQ62bjU4flyhoYEJ3bY2IJFw0NxskM9r9PcbNDUByaR0xBm0tRm0t/s6\nKeRuJ01AV5eDSMQvloi+Dh11osSk0/Sqqwy6u+ksZzLBhIxQZzEwikR8KjD/fb/A19lpPIHfIDJF\nEBxBIeFg4a2aUb+J6AtqRxkP0UAEEc8t2C146djaz0XGQ3TmZAyFtlK68iIRn6fepzfxx1Xun+jU\nrB5gE4UohVHRv0kkWABQiijG3l4H73mP4wqt08nv6mJXXns759fsrEJjo081YVks1sj86ekxHgc9\n54VxdZR8QeJQiEiu7m7qGSYSpN9IJoGODp/C4qGHbOzY4XiixAcOWIhG+ewF78P4uMbdd9slQsiA\nL7xtjMLVVztulyoTUcPDRMsE743oeZUfR36nfM1d6XO33movW7OOHlVIJpWrS6Bh2w4si7SS2SzX\nDqGwY4LXv79aK0+rppqFw/z9tSZcLIvrmz/fKs9tok6Vp/FFNBeLNZYleWydfAAAIABJREFUxXZ/\nTks3cqHgF2YiERZKP/KRPL761SLuustZtobncgZPPhnCzAwD9UhEdByINkwkGMwfPUpR7v5+f3+I\nRqkdt7io0NbmIz7uvNPGX/91Hn/8x0U8+KCNG27wf7fW+336tMLTT4ewb5+F48c1mptLEcQvvhhC\nOq28xMtqlGrBcZXkejhssG2bg5YWYGyMiQ45hnwuHnegFGDb2kWysZEhl+O84Vq8fv0gmXeXY+GM\nKCHuY5fbta/NLu5e3NHhuLTP9BOSSTYVDQ1JkpjPjsxbUn/5vtP8vIJS2n0mV7+3Svl72FrMsoy7\n/imXtnS1b6y3WaFul7o1NzvYto3Fgbk57frR8Gjf6AdyTmcy6ryS9XVbj61/vJevDSujT2s1yyLi\nJ5Wir00kt+hx8W+hBmxoMNi718bu3Q4+85kitmxx8OqrGnNzGoUC/S3L8n317m6hy1ZuQYSMA9ks\nr4eNYNX93Pl5NpKl06QuzGTImELNrbWNpTRENTUZDA3Z+Pznl3DqVAiZjPZois+c0SgWNQoFhWyW\nBRtB2gF+rGuMcrXDfE3XjaKZpJVSdQdRflozzm9oYGMri3KqZI8R9K/WwKZNzBPMzQk7gXL9duPG\ngIzru7pY+MvlNCYmFPr6yITR0+NgZERjZsbC3JzC5KRQaysUChoLC9RSKxRYpMxmtXuPNaanlUc9\nXm5kKlBerJHL0ad/9VWNG29c7qOfj/3mNxaKRYXRUeUiX4GrrjLo7CzVVBYL5mW2bz+/czl+XGN2\nVuHYMe2xgACMEWIxhZ/8xHJzHAojIxpPPBHCW29przFzYoIFsWiUaLH9+y0XQUdayqNHLZflh/SX\npFZm446wnKwn1qxkjY3Rem66bnW7RKyxMVr1vXrhq27vCkulgMFB4yVlu7tZ9Fpvl0a14735prUM\nCQGUbp7vdqs0Nh/7WBitrUs1f3/bNuNSMBAyf/vtxZq6avbt4/hHo9TfWVxUXtHggx+0cd11Bjfd\n5OC224r4+c9DyGaJwBL+7d5eJll37HAwNGR7jnJzMykcjhxhwpbFAZ7f7CyLBK2tvtMci1HTrFgk\n4sEYBg233VbExARRaABRGEJF2NTExP/mzQ6++MU8cjkWCbQWbSHldkUDgPG6FZk49ZEGSpHmjh12\nygtaRMuMSC1SdEkn82oFGSl6DQzYaGoCikUmcSkSzWAgkSBPfXOzOOw13e7zMiatqiejJLEv1GO1\nmiTkolGDeNxBQ4MEz8odC9GAYLFSOgb93+OYUePIuONuPHHn8mBGimzhMBEkcpzGRqCtjcdpbze4\n4w7H7TLm2Dc2kmJjZIQBVWur483/jg4T0LTjOYZCytMvSac5d8+cYeDQ2Gi865Rz6ulx8MADBZw8\nqTE/r3DsGIvJoRA7AVtaStfSYNDzr/9qYXpaY3SUweD8vHKDRYMHH7S9ZzVoUsD73OcKuPtuG8bw\nO9EyH6W723iBRqXjyPkH19yVPnfnnfayNaujw8H4uHbnAwtfSgF3313Ee97jeF2ttk1KE44d0XK2\n7WvFVJqb4bBxaVDk/pSiA6sVoeV16j3wGY5Gud6wcML1JBTia6LTEA77uhI+So3i3PK55mbSTCrF\nJPTQkMEVVxjs2eNg507+XW6nTyv86EchxGJ85kMh5QqIkz6ouZnnNDGh0NQEnD2rMDXFYHZyUqOt\nzWDXLgfDw6TrbGoyeO97bXziE9X35lrut3RmSpA7O6tw6BALbxKIt7U52LfPQjrNwDWI1KpmUiAU\ndEAqxfUvkSB1UaGgSpIsUnDkGqxcFK7yxOJtWzp811u48ZsP5Df5/MrzfqkhcFe31RowWPj396TG\nRu5vxtQpx6pbtUHd+EKOZTHpx2fDeAWC7m42C8Vivv8kBaeWFuMiHIjOLhaVW5z3aahXsmjUR+PU\nqmUqyG0pRgO1PCv1Yse70bQ2uO46B7t2OTh1ioWIxkYfCS2NLCyyU3e0bhfb1jfmEiMBpfv7RjSK\nhEJs9GlrY8GKGl4OkklpclRes6NtK/T2shjQ3Gzw6qsWIhEioBIJMgp0dDhob6f/Jk1stk1fXSnt\nNsiwqNTTYzyd0Up+7rFjLOAuLioXgcYmzkzGL6bU0vCoFCn42tsN/vAPC/jc54q4/nqDU6c0WlrY\nYPnKKyzkBMdWa+U9J8GmHjYYMIZZWlKe37rRFqTr5nX6fsPioiC3WECSBiSJ29raDDZvthEOaw95\nfO4cP08fSyGVMrjySoP2doWdOx0kk2wIDDYNSrxULFLDvHJjhfLiMykE+g1tK40LEXjijyaT/t8b\n2WR94IDGyy+HEA5LMxyLvMPD9gXPaUkT9ciIFRg749Fp5nLKK1BJcWxqKsgU5N+L11/XbjxCGxnR\nSKf5LDU2slAtDDrd3Q46Ovi59cSalaxe+Kpb3S4dW6nwVac6rNu7xlbTrtqI4200peI71crHpqMD\nmJxc2/f/038qAljb/QqOv1IKnZ0AYNDS4ic8CZ+38MEPOjhyxODsWULou7ocvP/9Nj7zmSCs3adu\no/nHWVggzJ3IBSbo83mDW24p4IUXwojFSOlAxAudtWuvBQYGinj88QjGxzknRMy9WDQIh41bODDo\n6ioimTR46qkwHEd5lGp01JSn3bS0xICcv++jvqTIFY+zCJJOk4KjWCR6Zts2B0eOKMzNWbBtH7Hk\na+uIPhQLNokEkXKARjTqIJNhMSOdJkVDYyOTTvm83zGnlPCh+yModH/S8U3EkcHk5GqOfukxSJNm\n3ESZ9q49aNIRFwr5emorG4OjcJhzaXjYxhe+kMf+/Rb+4R8iXtFL6BMBFi3a2sjNnssx+CUtoIOB\nAXj3OJvl/AAk6FYeLV4kQtHnRIIBFrs6mQjk50lLCDBJeOQInfxjxzT6+nwqqZERjkEyyWA5mwXG\nx5WHaBwf98dBAuqGBlL4JZPA1VeT2zyXI22HX2wuulzopDXp7+fzVUlbKTj28nwALLKePAn09/P9\nWtbKIGe8WLlAcq1r7mqfK1+zTp9WSKc1Rka0VywG+Aw1NREZOjxs8MILFrJZ3sv2dgawp05x3mnN\n54Tn7QfXiYSDxkYmN6amNNJpjo9lKbeQKoip5QVS0SHs73cAaIhWhVB1zM7yWPL8i66BZZF6dX4e\nLhWjgyuvdBCNcr7aNp/VgQGDrVtLEXbVNC337bMwP6897n12VwJnzqiy8acuwAsvhNHdzQJbXx/f\nFwrDWtf6SvcxnVaYnFT4znfC7vvLu5rLaUt27zb4yleW8NnPxhCPOwiH4dKFVrpW4xWjxcJhoLOT\nyC3phA0m02TtJeqL+8Diop/YILWu3xG+djMBCiWeWCjEtaC11WBpiYXcbHb9OmYX26RQaFmmYoIB\n4Lh1djqe9gl1UeqIr/VaOS3v+R9P4fXXLY+2sKvLuDS63DN27HBw5Ag/m8nw2RWUw6ZNxksQsuCw\n+u8JBZ1o6hFpu/r1OI5oC/pUZ1xL60WNy8VkPw2HuTZPT5M2vaND4cwZDds2LoqF8yMaZdJ8pcLq\nRj9PdVufhcMsUkoDYCUN5dqt/H4brxHRtkmNFg4DmzaRteRnP7Ogta+nZQz//eyzFu64I19Cl7Z9\nu8HBg/DYGwBSvfb1OTh9WuHgwZBXQKMPyRhU6Niq+bmCwAeUx0qwuAjEYo7bKKm8GM22HQ9tW26y\nhj/8cMGNyUt/J5k0LkUj530sBlerCpieNsuOKxpb8tsXY9+WeFia0bRmwVJYOKTAbVkGiYSDoSEH\nv//7eTzzTAQjIwotLQbhsIPTpy0UCoyVbr/dxvg4KfMOH9Zuw6Ef3w0NkYL+5EmrTDdtuYnkQbBp\naqUmDMsyHlJJ/g8wBlyvbn01q7Qv5nIGv/mNhe98Z206V2vVxxLqxIkJ7Wmo9fVx/kuM7Z9T5evm\n62bZ806pAIXpab7f1MRn1LL82GS9sWbd6la3d67VEV91q9sabKMpFd8tdjG6XU6fJtR/3z7tcvD7\nHTzDw8ZDjXR3iyg1u+aGhx1s3ep4tG/SuVMJuUYUCLnrBGVDp4ndV5al0NSkcN11tkcpKH9mZjTO\nnpUghLpjUpSJRBhgbN1KRJpQBNx2m4MPfMBGc7PBG29oLC2RviwUQoAPnEFXMinCw8ajGEsmSUkQ\nj/P82ttZ3PvoR2189asFaM3kOpEBvt5OJCIBEf/d2soCTTar0NFhsGMHaTcaG5l0ZXAkXPDS1cfE\nkiDgBI2QSPBco1HjddFS+F5QF6XoF7FgsKS18Sj+GHwqL7gtd3AbGnjtS0tCDSH85MuLCqT/Y0Fg\n82YHf/In5Ey/4QYHP/85+fgty0d75PMKs7PBMWCXplIGXV087uQkr4sJfxa5Nm1yYNs8Rmurg6uv\ntnHbbTbuuMPGwICD2VmgoYGd8Zs3E3F2zTUc8zfe0AiFlIco1JpBc1sbKR06O0mTeeCARjxOitDZ\nWYXxcQagMl4AO91ZnOV4NDYC11zjoKfHwac/XfCCkhdfDCEcVu4zIM/SyhQPP/xhCCMj5Wsh0N/v\n4MMftmtaK2tB6ta65q51bSby1EE8DrS2hjExYWNoiGOcyxHh1N/PhEFzM581y9KudiDPL5Egl393\nN9FWDQ2kivnIR4oYGDDYvJlzaWmJz3BHhwNjSKG5e7eNM2dKqU6kiDI05KC9HTh3TrvUK3wO5uaY\nSJb7S1Qpv9fRYTA46CAU4nP6vvc5Lh0L59iXvlRAOExts4kJ7ep28RkLdj0G7amnLOzfb3nFFaEc\nAeChOgAGlCdOaEQiTDgIDYmgwE6c0FUpCcut/D6S/1+hp4eF99lZhX37NBIJtQwpWN6Z2dNDKpdI\nRCGVIu1iuW5LMPku6FHLYhc01wzjrl3U+JLmAVmn+DxyLWWHM5sWjGHwXY3OZiUTXbFw2LhrANFk\noRCL58PDDnbudHD0aOWGgEvVREC9oQErUjJlMrx+reHSKgkl6Vr0QmQeXJjxWVti9UJb5ZMhClHQ\nyhvwK4r+CROJXCcpGE8k8tQU0aCpFHDNNcCOHRS9LxaByUmiE6Twz2IwEawraSlJ4VOSqIKwXJ06\n1HhU1ZKg5p54+VGGXs5mDOfB1VezOY1oBqI5LAsuQgYeUnppSVVlEPAT1pfUw/8usbXukcaNiZTn\n7xvD+0j/zKcXrrT2hcNCZ6cQDhtvfRH0XzzOQoc0GYmfMD6u8eabFhYWuJ4I4ksan06e1Ojs9H2T\nfJ5r5MgIz29w0MEnPlFEKmXwk5+EcO4c/QWJ1To7jctQwlilmp/72msa2SxPSmLRaFSho4NFtfl5\nhXicMS8ZQtSyAqFlCUVjEQ8/XN2fHh1VsG36voyjjafjGA4rV6fRH2RpVPB/a+OfF7kf0mgUDtPf\nXFqSOJlFK8Y+PnvHzp1saJub03jggQKWljhm7e3w0EO33cZ4a2yMFHnU+/PHcO/eIv7jfyxibEzj\nrbdYXBFqx0rmI5VXR+FFIsaL0VmsI0ItFOL6NThY2Vdfr/3mN5bXoCWFVxaTiPirxKZQyWphYahk\nwiJy7hzvgzw3MzNkB/H/7zffBX1A5kAMBgackkbCWIxNpu3tsk4Ara029u4toqurNNYU2vSTJxUO\nH9aIxfznt9b8Xh3xVbe6XTpWpzqsW902yDaaUvFi2GpaKBtxjAu96YtTlcsx4Tk/T3HaWIy0O4Je\nECdlclJV7IwqT/CW81UPDhJVk8/T2ZdEdGdnkE7D4MYbHU9rbGyMBbJi0Uc2tbQwYcvuUZ5HJALs\n2mWX6JjJOeze7aBYJJy/UPC1YWybx1SKjpzjwHPKhof5+uKicTV3iEzL54EPfaiInh4Was6dY6Af\niTAwymSUizQyMEZ7rzPRyELJ4KDxHM1cjuPa2Oh31m3aJCgxCZ44tm1txkvUM0hy0NdnkMlYsCwe\nI5vlmDBQYweWUBlJMEN9M1L5kZvbBGgtfNSb0FLE4/A0o3bvpkaW8NNrzeNFIkBjo4PmZmDnToMv\nfzmPRALevH71VfLlS4GO/Ow8dl8fA+CmJqJ+rruuCGNIu6A19bAWF5VbOGMB6b3vZdCZSBAx9id/\nUsBddzm46y52jfb1EVV0/fUO+vsdGONznVsWg+DGRl9nS/5uaGAgG48zUBAtrjfeYJDKLlhBiMBb\np4xhgfOmm5xla9Z6KB6+//2Qy43PZyIaddDbS/Tlgw/aNa+Vq3HGr+U4a12b5benp6NwnGJJIUWC\n/E9+soizZ0lLKuMaiwHvfa/j0Sfdc4+N3l4HnZ0sUg4OArfcYiMaVR7qYNMm0qUSPSkIUuXpELAb\nlfdoaIjPzews5ztRR1xTiFhSXgLYsvjvzk4H99zj4KabHHzykwUkEigZB4AdyadOaS9pLRz55WuS\n2P/9v2FXi9G3XI7PbkOD/9r0NOfrpk2+5h1AXYOTJy3E46g5GC6/j2fPsugV/PzMDPcAeSbEKhXw\nRkepPxYKKczOUjhcEhTSVSvUkaKvl0hwnYtGFTZtIpWkFP+I9GPirKUFGBhgksSy4GmKGaO8ZoeF\nBY7FyiboYBYGuO+wyCPnQd0HHkvoN2dmuJ4zmX9po1mUYld1SwsLhfk89TQrmXSrM9GkvaSaJCJr\nHc9wWHuJpvUXOziuQq8jRSSlgpqOb/fYV1q7jUuRuhaKSBkktSxBpxTXdrF8ngUCFpY0MhmiAyYm\nNI4e1a6GIjwfiXo4ykMrCx2o1sYrglU8I0MNnKBfoZRy50F143NqPO0WmQPGmECyvG5ioRAT7u+k\nQnotZlkKfX1cc86coX89Pc09pqeHCdNolIjdQkHW9krjwGc8SD1bt4202sdV1t5wWGFggI1johcY\nDlM3NpUyyOWImpeilK/RSh+a8YpBby/XykiEvlRLi/FodkXHUCi5T5zQXvOR0NFL014iYTy/jCwc\nCgcP0t8ipT7w9NMW/s//CeF//s+IFzuGQvSp6D+xSae/35Q0p4mJf7R/v4Vz55SnBQ1XI7qry+B9\n76MvPjurPLYIrQ0aGvwGEml4uu02G1/8YvXfWVhgM9/ICNfuhQXGOozJDGybWo3VGlJkna/1vgb3\nUt4vee6Wf1ZeM4bFOEEFFwraW/Obm/l6PG6wbRtw880OolGi+H/72xAaGw1OnKDmFpvgDLq6HAwN\nsZHt9OnSZjqyu1BzvLmZ352fpz9aee2k/1heGPSvN+hPcEy3byf7CinFiYy6+moHTU0b32R9/Lh2\nG179puFiUSOZNAH/enWdq/XqYwVRYpOTGomEwdCQwYc+VHSp6P2Ya2KCrCWbNsFjyLn9dhsPPWRj\n61aDffssHDtGFo9MhpSGN95oY/Nmg+uvt/GHf1jEPfeUxprBgh1cXeLRURagh4Zqz+/VC191q9ul\nY3Wqw7rVbQNtoykVL6TJpi7dRjMzpO+rRU9rI49xvrZvn+X9fjLJYhdAba6WFiyD1tdCoVbJensN\nHnmkgH37LExNsRsvlUKAU5qdYXL8kREdSKD4EPrRUYUbbyTV4JkzCoUC6cVSKTpnlSgA7r/fxlNP\nWThzxnLFcRnMNTYCg4M2FhdZBJLk1NycONsG09MMlJqbeQ7PPhtCVxfvz969RXzvexHkcgaFgoNb\nb2Vy6sgR5fGiA9QgM8bgzBn+v7+fTnBTk/GuMRajAz47q3DTTQ6mpuhgSmGuo8NBNqs92su+PoM3\n39QuWoGFymjUweysj64ibRfcDkJ27UWjTKRPTUkCS3lBkdBfScHNGBYKm5sN/t2/yyMcthCLMbCR\nDjBJTsZiDA47O+mIy7xmwpr0ISxUKA/tJ0FxLMaA+JprDFpaFP7oj/J47DEGr6dP87OLiwyIczmN\nrVtt9PcbjIxwfIL3vRLt3uOPq5Lik2X5yf7g683Ny+kuUik+C7OzLDCye095xcJYjEHAvffaFdeu\ntVI8nD6tcO6chmVptLT4r0ciBu3t/v83aq2s9Tjr/b3p6cqvz86qinQc/f1+sX1wUNabEDo62Nl5\n4oS/RgKWG7zz8yJKfuYMKVaE8kvQjQA8uo977ilifh548skwolGF9nZ+Np+X50B5NKTDw0yUiO3e\nXToOTzwRQjJJKrLRUeVSiRj09TlV1/HOTq5hEnzm8z5NmU/7wsTI1q0G5QieM2cUhoZKj1lOSVjJ\ngvfxO98JL5ubXFdKX6u2vt9/v43RUYUjRzSiUY1wmAlO0fmjDhAT9FIAm53leijJh/l5BvCxmPG6\nm0MhzvV4HPjTPyVd6hNPhDA2xjVaKenklgQ/6YIqIVGNUV7SIxo1LnWqchsf4FJywf1tFhBmZri+\nxeNMWC8ukkJpLXahqIgsy3jaHrIGUStNo6HBuLoNBoWCWUb3KYlJoaRkUo3HClIXrXTekmwTKtD1\n56qN21xhPMo9STLKv7necu6/ncUUSZ4JdXEoBLchw3iJSf8zlY+htV8kCzaihMN8FmIxNjosLjIp\nGA7zPhUK/Mzp0742aD4PPPusxvbtfCZjMWBoyEY8zqYN0u8ajIxoF2Fb+ZzkmWxu5rpD/ZbVxyMS\nMS4FrCpJNLJJqVQ7L2gyvy60CfLs4s4ZU3KPl71rVn7/Ypi/Jp1fMVkprustLWxk8H0o+r3NzaQq\nGxoy+KM/svHUUyE884zC8ePct6TJS7TlWDjh+BCtWpniu24XxqTY5RewgfZ2Inhef10jl6MPVSzy\nXg0NkWXh6aephSX7gGXRdxsedtDSYjx/OpdjMWx8nNqlLS0Gv/61RjZrPM3f06e1R20tFpwjmzbx\nb5lrgvICGN/85CcWZme15wdks4ypqM+qkMk42LyZvttK8XVvr8F997F5zm/sYbGvuZl018ePM/4l\nPTf3sHTaQSzGGOf2222kUo7ro9I/LI+jxQ/76EeB224r4q/+KgqlNFIp+pwTEywQnDgBrxBYbuUU\n0SuZUDnncsaLv3x9W5/SO4gADsY4sRjPYXaW48umJoNEgs2oEs+IDy6ovrExFrR37HA8v158+lgM\nXkzc1cV5Iz6d5AuefNLBE0+EcPQo50fwekMhNoTYtuNSZpcW8WRdaWigr5FMAnv3Ot55jo7yfl17\nrXNBKAfLcyVsFGH8H7TVKBarvb/S98pzS1Jok/Pt6ip61zE05ODBB20cP87/79xZel0Sg/vNOwaJ\nhAlQrVe2YG4JELQ6m3/fKXm+utWtbrVbHfFVt7q9i229XThrPcaF7naphkiJx4FPfaq4DC1SDf0h\n17MS+k1QINu22ThwwHI7/mhKGXz2s3ls20bH6KWXhBOciWeh5+vspMZWT4/Bjh022toM+voAoDrq\nIZ1WeOopC1NTlucck5KQicLGRrhBAbsHz51TLooCMIY0Qtdc47iFB96f5maDH/0o5CKy6FjOzChs\n3WpjZEQjHKYGVFubT7HQ3U1UEFFlNq66yvGKP1df7WDnToOHHy7ihhuYQO/oID1ESwuv/dOfJn0E\n6Q7hUvbx/ACiXoiOA7ZsYUItn1fo6iqlnZmfZzAlHYqka1Re53lfH3V7IhEisW680UYyyfPo7uZv\nTE/zferxsMtcEhS5HDvVASLtHIdJ5ELBuBSQvD/GsMCYy/G7AwO8H3v2UN/pyBGNqSkFY9gxtrTk\nJ2snJjSyWWDzZoNstjraRebra6+xkJhMGlx5pYN0mkUH6b5bCdG4uMjCREeHcWlAOQ+Epm/rVlIQ\nVuoWXCtN4NNPh7C0pHDqlAp8h12gX/jCEnp6ln/nUraxsSjOnrUxP0/B6pER7VJtsLPTp+NACR2H\njNG+fVbVNZJJFX9co1G/0NjUpNDaymQF6RBJVzg0xGM/9JCNdFqjo4P0dkRAKmSz2qMVJbKIHZIr\nCTDLGhqN8hoSCR7r9GmiyCqthWNj2issLy3xeWpqYhFV6P327i1i504mVKg54VsuR3TlapSEK9nx\n43rZXI9GgauustHTY1ZF95HS0uC11yyXCshBLke6FCbVjat3yMC5owOeplSxyI7puTl2ebP72dfh\nANhY8B/+g4PuboPDh0mrqDXRbkKb5DjK7VCXQoxfDJOOcRa/mCgRZG6xqDwaH9I4yRrKjmAWgJg4\ny+d5H1dKMPm/VfraRppSTDgIjS5pewFAubqRPhVtsehT3gX1vwCOmdBIiXEc1bKkc/k1WhY8jY/z\n0QcjUoBJsebmYJc5O8wFRSDd3NWoGy+8KW+suY+zYUcpuEUpzm0/aay86ys5Stn/BdkIsEjPPZjP\nX18fnxVSgZHauVDwk3osOpKyl80gwFVXOdiyhUm1664j2rmrCzh8mF3nlUxon6JR46FnBSm7kolu\njiQpl3fZL0cRyDXL54hS5PhuZIFKjls7befG2EpUfZblI/guDTTcWsYmmPDkmk6UMNf5piYVQCKz\nqLFzp8GnPlX04objxzVOnNCYnFQu8t+n7w6HSQmXSpE1gP6d8QrxZB9Yb8Hw7UaLXipWbQz4rEgz\ng9yXeJzrz+goiw2JhHGLUPR3BwaA++8v4uBBy9PADIcZx9x5p41du0yAMQG49VYHX/hCAbffbnu+\nzblzyqN0PntWY2lJeyiv4NqhNYtOPT0Otm0je0dHh9Dl8xomJohoId2g/2XGHXDplckYUAnpVW7N\nzQZHj2rXX+H8C4fJBMLGJvrzPlKWvk9PD5+NPXtsLyauhaLuN78Joa0NSKUcTEwonDrFYqMgsMXX\nAUzJngj4LAArFcCUgks5qRAOs8koFvOfvRtusNHS4mB6WnvHFJ+hrY0xD30vfp5Noywo9fezyC2S\nCMeOcXySSRYJJQ7M56X4QmrKX//awsKC9hpfJyeVG8cqb90QxpZsljF8ZyebVcWn6+w02LKFx4xE\nSAscjxvYtvFkDFpaWLTL5Rgfb93quPeM82hoiGtVLUivtVIOludKikU2+wU1gIHqdOhilfz01b63\nWm6pnA2kp6c6O8jTT4eQyWgPucY4bfVc13rYTipZHfFVt7pdOlanOqxb3S5T24hNvZZjXOhNfz1O\nVbnTlE6vzSHs6WHhZ3xcwxiiPD77WWpCyfGFNjCYDAfoqH70o0yDJddyAAAgAElEQVREHz+ukcms\nXnx8+ukQjh4NefpBUrhIJplUbWryg+y5OSbTFxelk5tUClNT7Cykjo8qceoB35Hets3gqqsYwAiF\nIeA7/tId9/7327jrLge33UZ6vttu8x3OlZxWoiaU95vnzrHwRD0xJm47OxnYJJPsyNWahT0KNMNF\nkvEYfvKUf19/PSnmIhEGrtdcw8IOi080oR+cnQXice19v63N4OqrSVHR3MzXJECNRknjuHkzu/oW\nFph8ZhKWRa2+Pr+A1Nxs8L/+V9ij7BJ0AIsKpEGTgmi1+14+X4XrPJnk8QsFvh6kXahUqBKuc6F+\nDIcNGhocXHWVg717bXziE9U739ZKE7hvn4VQiGNJrQMWRO64o4hPfvIitMtvsPX1RfHTnzJJkstp\n915zHLdt8wPcamO00hpZCaEXjQI7d7Ig3t3NYmp/P2l3du0qvdfBY8tzRT07X1Pu5pttPPzwyoFx\ncA0VCp5sVrmFn8prYTC5kk77WlNXX81Cfnc3x+H977dx5AiLA6Qg4br13vfaXrEmaKsF0UGrVpR9\n6CEbe/ZUp8gMWioFnDpFzYKBASYilOKcnZ1lA0A+D1ffDQAMMhnldnArFz3qa30kEryGVMrgPe/h\n+vz44yGMjSl3TLk3NDT4tK1tbbxfxaKBMcYVY/epikgdpLyiDVGnxpsvgvBjcovX3d1N9F9np8HM\nDOAn6P2xEuou0jEZD9FSWhAIPufnk4Tl2MZi1FVgswHpkURfxBgmjxYW+HwJPa9lKZc+knt1tSKS\ndO0Hz7WUdtDXPPHRWcZLRMnnOTbGTWL6+4z/vmhtKLf4w6RqLscka2cn54UkYst1Ti6mJRLK1SCk\nhgz3Dc5Fx2FDgqC+qmlsAqWoFaEIbmnhOG3a5GBoyEEqxUYZGftslvNrbq5c/47Hsm3jFdWlGUdo\ntoTe6NVXrapFW6ERIyLWYHqaY75S0YgNMT4tpvg3ggCUeSjn6idmjXevAa4bvI5gUeP8CxVC+3ix\nCkxBv6QcYQn4z1QkcnHPa6NMNJmoWUnWAGolGVd3MahJySa1WKw0BpK97tgx+oLyLIfDnK9CY6aU\ndn+Lx+Ua5mvMrt3qRS9a5XGQ5jbZs6TYUSwCLS0OMhnqXC4s8LXubq6HxaLC669rDA4CbW3UKL7i\nCiLEFhcZB3m/HGjyEr/+4EGNpiaFiQk2xY2NaQR1hmWNA1iU7+pysGePg44Og499rABA4exZ5Wkz\niW8ZLJzJfIlG+btXXeXgy1/O14TqKaUiJNp7eNh4KFrbVti2zSnxPcNhIoceeqiAmRmNgwctPPlk\nCLZdrpe6PE5hs6jC88+HkM1qLC2RUnBpSSGVcjzUrtA2Cl2xXKtQSmvtePda7mVw/5YmoUSCDY2b\nN9PHuvVW26OZVEoFkFJAfz/Xe7kfV1zBpoqmJjZo7NnDYmYyyfdlfIaHWZAUCnOlSDV97JjCr35l\nwbZ532dmWBA3hs1FW7ca7N+v8OabGr/+NZtoz57luiM+olBcO45PhQ9wvbjuOsfVz6LvSekBzt++\nPgcDA2srOgVtLc3OImFx8CBZUvbutbFnj13C8sBxWZ1ica3Nk8DGFZ3O51jryS1Vsnrhq251u3Ss\nXviqW90uU9uITb2WY1zoTX89TlW5rQf91tMD3H23jQcftHH33fYyJEst51WrQ7Zvn4XxcZ5POu3z\nvitFFM8jj+SxuMj3zp5l8lA6ToW+JZcj7RA1YYCjRxUSifKghr993322q2fmBya5HOkcjh5lUPT8\n8xb6+52KCJ6VrmvvXtsbF0G4OI7BLbfYuPpqG0NDBvPzTJT19ZEybGKCAVxvLzsSZ2YY/ITDfoKO\nCQ4Ht99uXApKdpoPDTl4/XULluVfazRKWsrJSbgFAmDzZgc7djA4nJtTXuFL9MwAFpD6+gxef526\nQG1tPtXG4CALE3fdxfuWSgHPPWdhbo7fjURIv9LczITJzTevDe1SXlwZHCS67kMfsldFNH74wzZu\nvZVInIEBgzvusPHJTxbQ0cGkzORkZVRP8LdX0toKmqwJySSDzKuucnDFFQ62bdtY4eVabCM0DLu7\no/jtbwuYmtJu0ca4SQSUrA/VxmilNfLWW+2qhZsdOxzvHm7e7FS818Fjy5ym5h7H+oMfLOLhh1en\nnQ2uVaIlJ0lAztHla2Fwnr35JotkpYVczuc777QxOGiQzzPheP31LMTt2HH+6/ZG6WqWj2Nzs6/n\n2NjI51YSJ/G48RCf09NMXti20CESfRsOG+zeTardyUmFmRmKvxP1xkKZaH11dTFZLo0FkYgc0y/K\nhEIsQFJfxm9yiET87matuV42NhJ1Go0CO3Y42L2bNKtLSwpdXYJg497R0MCmiUKBSAdB/7AAIMmp\nYKKj1kSsr3tCekYWR7q6mKwKh1mkmJ9XHm0hECw6MMl0xRWOi3ZkYSUcBtJpXbWwEQ77yWYK1juw\nLOUlJcVsW7mC9wbGOC6tEZNlgtSKxfyxEa08FiSlKcOnSjSGCVWAc3Jujsl0CsOzYBqk1avVyhF4\nazUWYhV27Cjgfe8r4rHHCh5ienraP/elpcp6akHzC4I+2qu1lev6Aw/Y+NrX8tiyhXvt0aNsKkkk\nWBQgzabyCksA524q5WBgQIqK9E86O33k8v79FiYmtKdFVjoWLOZRp0W5iVFT0sxT6RqkUCYoEBYu\npPBpPASlXKs/F1jQTyaZhEwm+cyyCGLcJO35FYaU4lpwMegU+Xv0aYhu0BVRSUoRsaL16qjRC3F+\nUkwUROzazHh6sURlGQ/5ePPNDgCi7VtaTBkzA5ufxG/o7ze44QYHx45ppNM8j1TKeLpPxaJBLgdk\ns9pjJWhoMN7cUqpW/cG6Vbbq40bkMxsQwmGuEQMD3Gsch01yCwvGRU0zbmpuZjxULJIJgygQ+nSi\n31PNn5BYkX4C58LEhCpBJ/sFHYPWVhZnbr+ddOLiB+/a5eDsWSK4f/c7NlxKYUQKaFrD0/L98peX\nsG1b7Q+f+KO33ebgxhsdL5YT1E5bmylpRurvN3jggQKefdZvAH3jDY2xMTYBBmOV8jjl+HGNf/kX\nC9msj7jK55XLPMDnt1BQnm4q41CijUWjMRQSWke/EUa00QChdfabU4SJ5Npr2eSTTLIxcXaWY5pM\nAv39DtrbHezcaSMcBq6/nmwsvM8O/vN/prZyU5ODf/u3EN56i8jzwUGOz8yMT4MaCpH2MJfTmJ3V\nmJ7WLtuB8fZ4IugMjh3jZ5JJNqMdPqy9wunEhHJRydzv8nmOARFejCHTae2h8eJxNmHt2mXDcZRL\nBS33YW3+cq35hmrIsB07nJK4pFZ/ez1++kYVnc7nWBuRWwLqha+61e1Ssnrhq251u0xtIzb1Wo5x\noTf9jUh+nk93UbXkevC85uaAyUmNxkaKGstnanXIjh+nA/r669rrQAPo+O/axW7ce++1kcsBr73G\nbu5oVLk6G34QxWQTu/8yGdKZ+SK1tGjUYGpKkt8Kw8MOQiHSrp04oT3USy6n8OqrGjfeuLwQstJ1\n7dnjVCzg7NjhYP9+dj5alsJbb7FTrrPTuIK1DApuusnBffcVcPSohcZG5SayiCL5L/8lh54eJh7f\nfFOhr88gGlUYG+PxGOgxuT8xweD1hhscvOc9pPmQ4G7zZgdTU8oNYFgYchyO88yMxtwcg9FEggnd\n664jEiceL50vExPsCkwk4Iph814MDJgS/atq973cai1AVfpc8DWhuawV4bgW26hg4XxtrbQe1ayx\nMYpf/IJUmZIg8ekMV18fVhqP3l5Tde2q5V6XHzsaBXp7HXzpSwV87GNFj4pxNau1iFV+rXKOExMK\nIyNMUs/MSHe9P5+rzceNKFqtpShbzSqN49wcsGMHkxqRCJ/fZJL0q3fdZWNyUntUkEJ7lUoZdHUx\nUTE4aDzkitBIisbG1BT3g3gcaGhggb5YBPbsseE4wNSU32ksdKxcu5kgaWjgeZNWkYnbzk7jdi6T\nyiWIfDt7lmugIB4SCeMWdNjA0d/PIp3jEAXhONq7JrG1UPWFQgZX/f/s3XtsXPd1J/Dv786QM3wM\nOXxKfMmkrLcs2bIc16Yfie0kNuyka8dQYajNblCsk3Qdd4ttsy2QLBIgbdFg4dZAiqBA0A2yAWzX\n2izSJnbXm43zQEzXgK3EkiU7sqwXSckiJZEcckjOcO797R9nfvfeGc6QM9SQnBl+P4BhmxzO3LmP\n3733d+45Z5eNAwdkrN+0SePOO4EdOySzbXhYMpLN5GM2raUUUUuLZBX19mrcfbeDN96QBw5ylb6T\ngJdMbofDsg1qa+V3ZnLPP6FoMr+6u5101rWcLxsb5R/piSnrs65Op8tbAvX18kS2BMOkjFogIJle\nN9wg+18iYaWfUpeSeiZzTOvFve6WslT5JyAzky2XcFijo0Ohvt7B5z+/gJ07pSTua68FMDYmk3yS\nlbv8MpnJXKXkfbdu1WhtlYzqpiYHr75q4e//PoSLF+VJ/2BQJvi6umzMz+t0fxPlTuxKmUWN9nZT\ntkqhqUnjqacW3Mzll18OprMqkS4rbQLQGps3a+zZ47gZSa2tkhG+OIPeYzJETCnDbdtsKIV0INrL\nnDRBvtpaWUbJltO4804pZbdrl4P5eZlUr6uTh3GSSeS8hiyEf90qtVbZgRoNDTJBnEzmPqYMqTSg\n0qVBTZ84lV7W1Vs+2S9luVbyOcGgZHtZlowjmzbJpLcZnxsb5Rjav1+7lRmmpyUIODurFk363nuv\njVQKuPFG4No1K11uVacfDPMy/xoa5Lrw6lXTO08jlbKWOFarraRhqb9P7vcyZd/NNmhokOz45mY5\n1m+8UeP8eQsLC5Yb+IrH5fidnlYYGbEwM6Myrln8FTmiUcmq99/bSXaWd51gMu1nZrzStiaAZc5d\nu3fbeOyxzGsb//XP2JhcD/jPUQDQ2OjglltsfO1rCbeayEpkXyOZrB2p8iFlGJ98cgHHjmWW5Z6Y\nkH6iXpk/kX2fEo1qPP98EKmUV92ipka2RzIJ7Nql3Qd1IhHTF1sCPY2NGvv322htlbFW+n3K+VaC\n1hq3327j2jXzUIxOZ2dp7NunsW+f415jRSLycGQoJA8gbdokD4XW1so13NSUvLe/asLoqHJL/nd0\nyNjw29/KQzEmUGWyyFIp2d+SSZUOWJn+k/KaQEDGgVhM1q3phRUOK4yMmLL4Vvp1wKZNck0hpYAl\nYLtpk/y/1gp33+1g/355cLC1tfAS3vkUOt+w1IPAd9zhrOh6u9jr9FLeR670vUp1j8LAF1H5YOCL\nqAilyCAoF6U4qRfyHmtx0r/eyc+VPhG03OS6vzSGTFZmvqavr7ALsmhU49QphWvXLPfJQvPUalub\ndjMrDh6Up9veeCMA27bSE19yIV1fLwG3gwelSa/JQDBPkE1PK7zzjsJ77wUwPGwhHJYJVaXkBkYa\nzUvt9suXgcuXFS5dsnD+vIUDB5xFy7vU98oOwgwNBfA//2dNenLWrDe5wbBtuOXaTMbLtm1SanJs\nzEJ9vUyA/df/msCDD8r2unhRykT4M7wuX5Y+Q++8E8Dly/IU+g03OG5ZQ39vprvusvHeexZiMTP5\nLBkK9fUKjY1Afb3csOze7aC31/vb7P1l82Yvc8TLFnJw+PACzp0rfXDIjE8vvxzAD39Yg7ffNk9s\nZo5Tpejvl0+pbhauV6m+Y0NDCMePL6z46cPl1kexY5f/HDQ+rnDrrTbkxvv61rVZDnkyd3EmaL7v\nOjqq8OqrAZw/7wXEx8ZkrHnssaVLLJYiaFUKubZRV5dkf2SWaNS4914bd91l49VXg+mgjUxWTU3J\nxNfCgpTh6elZ3HMvkZDeaPPzUsImGJSAgGVJkMf0DJqaMmWPVLoEkAQvAOXrZyJBgE2bJCNt3z4H\nyaReVPoUAH7960A6+8g8LS0PINx5p40HHrDR1KQxNiaTTJcuWW4Wlgkcmc9L/1fe9Wh6brS1AUpZ\n6bJ3wMyMld4nJJDU3g53IivXhLvJumprk880wbwTJ6x0oDEzK0YpCaiZsrgmCJhIIN1/0Ur3gpEJ\nUplclAmwhQXlTlYGArL8PT0SUOnsBG66SZ4qv+UWKTM0MyPrPB6Xyf/5eemZ1dKiceCABPmuXJH+\nVfX1pneW1yMpf1Ajc7JY5V/NAEw2t05nBZoJYO9vLUsm9uvqFJJJyWxpbnbwwx/W4Le/DeDKFTmf\nFxKIkwlJk4GgsWOHBHu2b5fA38WLCv/v/wURj1uYmpJtGggod99saZGMCJOxaEpd1dSodJBMshPv\nuEMCtYAck1evSnZaOCxZ4aY81Z49Dh580GwPK13qUEpImRKOudavybpTyvR3kQDb+LiVDkx4fxcI\n6PS+KvvD/ffb2LnTwebNDhoaFG68UR6EkeC1HMsTE/nLcC7F23Yr+/timUnocBhuGWdTbisXk4Hq\nLz9mMuNWLzst//LkOzbMz5XysmFNtmZTk3YfGDDXvyMjCn19DmIxy50Ql/5/2R/gTfqa7OXLl+UB\nArlGtNxjPJUC4nEL4+OW2+MumfTeJ3fwK/cXyjfmLjc25F4vqxtcM+NrIOCV312q5KhSsq5NdpwE\nEXM/fLjUcss+KUGPbds0Uil5gCES0enSxBbicbgBlbY2GYOuXJEH2mZm5GGda9cU2tu9a5Z893ah\nkM4IcJsewJ2dDmprNeJx6UVlSh3fdJODpqbc153m+mdw0EmXolewbTlHbdrk4N//+wX82Z+lisr0\nWk4xZbnNPaJS3n1irvuUpibgrbcCuHJFrodqa+V8HY1KYOvOOyUDb3ZWxulEQsb9lha519q5U7bH\ngQMS5AmFNFIpOUa3bJHxVUr2y31hd7dOlyeVhyb911gmmNfVJT1x33vPBPMke18pZPT09t93mn+i\nUenhlkjI2NHaKvtSJCIPjcZi8jBrKqXS/aYl07O+3it/Gwho3HijV466s1My71Mp+d67djmwbXkw\nqqkJuOceub4bG1PYv99OXyt567jYEt65FBoA8u8H09PyAOjwsDyIessta3OdXqr7yNFRhaGhgFs6\nOTvwWchyXO89CgNfROWDgS+iApUqg6CclOKkvtx7VMJJf6VPBBUyub7c01OFXNyZi8D337fSr3Nw\n880O2tvl9/5JaWnyauPsWYWGBoW2Nim30dAgQS/zfUIh7wkykyGVSgGplOWbvJYb0/FxC9euyTJf\nuiQNvs3TfdeuybFg+h35l3e57+U/ps6cCWB62ps0l3KFErQzJcP8AZylSk3muoELBjV+8xsr/WSe\nTj+ZrzAw4EBryQ4zy3nsWCCjGe7MjExytrTIpFskAoyNWeknIfPvL01N0geqrk5u1vbvd/DYY3Ij\nW+rgkFmXFy4E8OabAVy9qnDhgky0vP9+5jhVyvrpuZRDQKOUjYlrahLX9fRhqdZHrnPQuXMWHn7Y\nxsc+5pVBHB1VeP75IL773Rq89FIQo6NS5q6Qzy12LDSNo03POaVkQnDvXq/sZyXI3kabN8t6qK31\nJlLCYekN8a//WpPu+4X0U7zyYIHWMonf0qLxB38gGTaZZSTlid/paZVuBi/ZRUpJIMxkfExPywRJ\nKCTBn+5upMu9yaSYZMp4Zdd6eyVokKsc5uiowksvBXHunIVgUMZlE6w3T7f390s2bzIpk4TxuEx2\n1dbKBFMyKVlmra2OO3FbVycTQuGwKTMrPRrDYY1AQENry10+k9U1NSVPx0tvFDkOTe8z/2SuZcnE\nZUuLlBIKBKQ3ZTwupQ5lUlu5wZj6esftcxmNygRTPC6Zi7aNdLlEydprbJTzSjgs2XLhsDx9XVsr\nY3Q0KtvvwQftdNkzb7kiEeD2221s2+bg8mUrHQCQSdVwWP7e9FO8eFHWoUx2ef2j8k8Gy89ranS6\nt5sJcObK6tLpJ9Tl+/lLfdXWmrJ/pu+eglIO4nELp09buHrVwuXLkpVlgnGZAbPM/5eJadm27e0O\nvvnNecTjFubmkO7L6eDChQAuX5YJYFPG02Q9yGSjTDqHQtotgWWCKKGQwtycxpUrEiTzP6jR1aVx\n+bJCf78EIPfscbBtm4Pdux13bPeXIp6elvN0IqHcDHcJZMh+aoKbwaBkjAWDcl0Rj1vuMptMwIYG\n6Q/T1aXx0EMpd9Kxq8s7nsNhU75Ulu2DD6yM0p1+JoicL+vHHPurXUpQss41WlvtdLaEZHqmUjq9\nb2Yvv06X99QIhRzccIP8VII6K89QKyZ4Y8rH1dTIsWvbOmMframRCWo5FnW6J6DZ9rL/dndLKetk\nUqOvz8HIiIW+Pjmm/RPip0/nv27YvFm7k6hzcyo9nlnu95+ZkQxgEwyUCXDvIQIvCO71T1Q5VoQJ\nXIdCmeOFycKVkrCFrj2dLv26uoEvydBxUF+v3e8sGYK5Xy+9ASX7ymTkmH6I8h391x8qY1zyfu49\nABAO63T5O9m/t23TGBuz0tnDcMeUQAC4dEkyvVpbdbrHoZSdu+UWGw89tPR9m4xh8t+A6QFsso/k\nu3d0AL29cn7zVwfYvFnnrQ6yb5+MLQcOOHjkkRS+/OUFPPTQ6lw7F1qW22SpNzQg4/4o131KIODg\nF78IuuN+KCQlje++OwWTXRYMShlArZX7cFA8rrBrl42BAcd9XUeHrKt4XKGlBb4MO8mkNIHNvXsd\nPPSQnfeaNRTK7GOd/g0uXJAyurnuO03PvtFRYPduE8CT84yMF1K1JZGQn5kHlEz2dTAo10+mNLY/\nk9BUBTFlNScn5fzc1SUZ1OY6c2BAArClfniwkCo0/v3A3+83lZLtJ+fjtZnzut77Jv/9Unbgcy0f\nxKyEOTCijYKBL6ICrWaWRDUr5KS/3pl0K326qJDJ9eVeU2z5uqtXlVuWRd5n8aR0dzfwkY847iTc\nwICDujqZ6PM+33uCzGRIffhhZilFU+KisVGeZr54UZ6QNDf68qQzcOWKhZMnpTyM/2Zuue/lP6a8\nCSy5CQ2H5aJbnrxGUYHmXBl8w8My6dzert2ygyZT5sABKfVhljN7m8nNrffko3kqMJWSG5ql9pd8\n66HUwSGzLr0eTfL9zLr81a8kK+fMGZm0zLVPrqR+erkqZWPiQCBRMVlso6MK//APQfzqV0HEYhJk\nOX06gOHhzOB0PsWOheZYMRMWUg5SxoZSBFHXS/Z6CIVM70GFM2e88UH6RMkEZ1OTxgMPSE8zQLnH\ntVdG0kI4DLeUj2EmRRsbzWS8lPSTkpc63UdGyr5GIlKizDSEb27W+Mu/TOKOOxZvW3Pjbxqxz815\nEzzhsHfekOCllL3t65PsoPl55b5/KCSBli1bZBKxq0uCPFLuTs4NJhuotRVuFs+mTdLfS5rby/lD\nSgbJU/6mpKN/Er2+XrKYZT1JgGlqykpn/kiQoalJSt/W1Wls2WLj3nsdt1Td6KgEm5JJKVtUVyfl\nIUMhbzLKsjR+53dS6X5sErxpa/NKRe7d6+Dxx/P337tyxUr3MJQspNFRC/G4hStXZBsBOl3O0vTx\nkO/mBZmWyoRQ6aCVhm17GWPyO7P8wM6dOl0GWIJJpkTW/LxMxpnATzIpD3rMzloYGZHAmMnKMuc/\nU47RK7MlE7gmEKaUrJddu+QhEVMWqqEBOHrUwsyMhdlZmaSXIJ+ZqFTo6nIQDEqgsbZWgkw1NV6G\niGXJRGFNjcLsrIWzZy28/76F5mYHx47lflJ7x47cwadQSPY92zYPu8iEfygkD/E0Nsq+Y9uSBWeu\nA7yJPeVOpFuWxtatDrZvlwlZc+3hL08bCknm+fbtUqKqtVUyxTMDQV5mi+lVlnu7yzopVQaVUjLp\nGgzKQGOCo+GwTGZ3dmrcfLOMJXV1ErCZnV2ccWZZXnZec7ODnh558KexUY6/REJlBAIK4d/+S2cF\neUF1yXCVTD3HkWU2AVRZpzqdZWPDlBVtawMGBuQhhs2btVs5IJnMldUs51FTui5bKKTdyXIpa6jw\n1luyDzqOlKuVMrHe35jAmzm2olH576Yms2+acU+560QCPDI+W5aVldkq1QccJzPDMz+Nri4HmzbJ\nmJ4vKJvPcqVUs19bUyPnDRN4T6UWv072c9n/TMBrdlbOA5KF6PjeU6f7W1pu2V3/+jXZZbW1kiHV\n2irX4089lUQoJOe6QEACGF1djvtgzsSEBPIbGrwSxg0Ncnw+8ois8Hz3bfX1wGc+4wUlUik5F5pz\n78WLUgkjFlNulsz0tEJTk4PjxwNLVgdZ74fFcgWQwmGNJ59cyHiwKtvoqMJPfxpEc7OUE0yl5Jzz\nx3+cwMc/7r3n8LC5TgJuv10e+uzqkuzhBx6wF5WbbmmRjLmpKYVgUGP3bo2BAe8ac2BAL7rG8l+z\n5gtinzploblZ/jv7vrOjQ7L4gkHvoUazPCMjcu8dDsvDhKYHmfRGhftgh+yTcg71Vz/o69MYGrLc\nDKrhYXk4ZffuzH7PSsFd36XeH5arQmN+/8478qCMdy9pev5WzpxXuczZMfBFVD6WCnwF8/6GaAPK\ndTO01M+pMGZyztxwT0wonDuncPhwak0nlnt65On3YkSjMumX6+fFvMafjh+NagwO5p5o7unROHw4\nlfe1S73PUr8z+3A4rDNKT5mbhv5+jX37kviLv6hDIiEX5g0N8reJhMLUlMbVqwpnz1pFbTv/sdPX\nJ2UftJbPHR6WCYDeXu99tJbvsNx2Ghy0ce5c5iSO1FR3Ft0Izc+rjG0BLN5mZr2Ew97rIhHJ4Cp2\nn1ktZl1mf7/JSbmxMf1eJiYUpqdNCTHvdUrJPlEtcu0D1/MdVzI+lFoh56ChISlV6p+80FqCt4Uc\nO0Bx37WQ8a1S+dfDkSNBTE3Jz71xUmFyUqf7X2i0tEhgCsjcJv73OXtWgjjHj3vbKBqVLITeXgex\nmPSDqKmxUFtrygvJ2FVXJ+PhyIhM1oTDGnfeuXRQUmsp0bhvn5MO/ktGzP33L7jng9/8xkJLizcB\nd+edNt5/38HEhML27Rr9/TZiMYVIRLnLrpRye1jEYk56QlTb5DwAACAASURBVFJ+PzMjmVUtLZJp\nPDGh05NXZsm8MnkzM0BbmylHZvp/aGzdauONN4JwHMkOS6UUEgmN226z0dwszenHxix0dsoE2kMP\nLeArX6lzgw6OI+sxGtXYudNGezvw/vsyKXXvvSn8/u/bGBoK4OxZ/8SIfB8T4Dh8OIXnngvg5z8P\nYmFBAl0ffuht2+lpOedFIhqxmJRyGh6WnmmpVA1SKekDJBPO8t7ZZRqzyRPkktFWVyelu8zks2WZ\n0nQSMNq3z4HWMuE3MiKT5DU1EuxRSmFhQYKyExMqnbmHjOCGmXivqTGT89rNkJHyYLJOTGnfvj4b\nWmdOJIXDwKVLMsk9PZ1ei9pkp8j+KiXbpFxyMCjfKRiUye9Ll6Qn2uSkfHZTk8KHHwZw6pRy+9qY\n/jL+axb/dZAsF3DsWAChkAPbNoFbKYFp1qMps2XbMsk9OamQSnl9xmZm5PtaljcJ7e4ZvmuPpcbH\nS5cCePNN+YxAQJZ9ZkbOPUpJ2U9T8s4EYh1HuyUEA4Gl949CBQLyvYJBhdlZDceRSdrmZqChQQKY\nUupP48MP5TPr64G5OWQELBxH9l+lgKtXrfTvtDvhK6XjtFuCWynZ7tJD0MuEkFJ2Ztkk+NHQIJ+d\niz/oalkmiId0NqkEtiQQ5P39woKUKG1u1rjrLiejPJv/mnSp8+jDD6dyXjf4A9CAXP/198vyT09r\nJBKLe3jZtkyASzaTg85OOcY+/FChsVGyh+JxCwsLsi7N/rCwIMGcuTkpY2qCPSYbsbHRQSKhMDeX\nP5gq299Gf78cn01NwPz80oFGs97NNjNlQf1Bp1x/Lz3gvOAqYMqTmvKu3noMBoGtW6Wn7vCwfM/m\nZqTLEsrEuvRIk3PW9LTGG28EcO2aHKPxONzAfigkY1dPj43BQQfNzbKdAeDMGaC/38GJExa0lnPb\nnj0aSjkIh60cE+KZWYhLXdf4j3///ev0tDxUIOOIBNSlZJ6DubkAuru9QEs4rNOBkMKuydbCcveX\n+ZjrDCkR7Q1e09MB9PSk3Pd8990AWlrke5vrJECOu6U+e3TUzpgjABZfy+cak/NtQ/9xmn3fCUhZ\nw23bFldd2btXrjUmJxV27JDtm0gojI1p9PQgXf5QHoBobpaHAmZm5KHLoaEAtm6VsuTmHyltvdhq\nXzub7eWXfX47fDiFv/5raW0QDst53ATfymnOq5B5jWzltPxEVD4Y+CLyqeYJvvW03EVYOStkcn25\n1xQb+Ms36bLc+yw1WWP27d5emaQ0E7LhsExabd0qPW127rRx4kQAiYS5OZfXmie6geK2nf+Y8k/O\nmqCa/2LbyHfRmn0BfP/9KZw54/1/NAoMDwdw/Hhm+ZVweHEwJHub9fZqTE5qd6IXgLtejhwJFnWT\nuFrMuswOXs7MyKRnZtBOnt5ubUVZLPtqWOlNfCFGRxV+/OMAjh0LQGspkfPII6u//go5B5lG39nM\nU8alVuoAY7kx48rLL8t5qq9PZ0yWLCxIr5BUSo6x6WkJNGVfF4yOSt+no0clq2BgwDRll3Xo33/2\n7UvhmWfCiMUku+amm2w0NkrwIBJR2LNH/lspjU99yl60rGZ/P3cuc6JW/k62z6uveueKeFwmwfft\nc9zg18GDGgMDdsYEnxdoSKVLs8nnPPqojZ/+NICXX65Bba3C9u0OZmYU3ngjgM5OnR57JEDY0pI5\nibJzp0ZLi5MRzOvtlYnkzk5gbMwLlDQ3S/Bmxw7J0PU7ciSIvj6Ns2fNxKN8t1hMsp6+8pWE28xe\ntmcQjqMxPZ3/AYAPPwReey2IYFDOcRcvKnzjGyEMDkr5puFh2QekdKI8ob5nj8b//b/ypHFNjQTH\n0u+MYFCyVubnc/ezkc+XfwcC2s0Asiw5xqWMknxWMilPnYfDEoTo67PT/a0kAGVKsEmwTB5OaWmR\n9zfBjYUFOX/X1koPpFDIQSgk+3N9vQQvpLycg3vusXH1aiBjwhKQMsTHjsn7mL5qjuOgtdXBAw/Y\n2L/fW58//nHALXXZ1CSBrokJyW6sqZGg1Pi4rKO5uQAA7xrCf12Rb7LrrbdsfOMbIXR3K1y+LJOL\n8bjsd6GQBF8nJmR9NjXJMkspLJ0Oksh3m5pCOtMrUyHXHnV1wLZtMsEp/V9kXba2SjnO3/xGSiSn\nUnL9JMEd7WaU19TINl5ZyUMJlNTUSFAgHNZobnYwNyfjlgSVpc9gW5ucEyIRCRjEYnLsTUzodFa/\nV35RyoXK+pqakjEvldJoa5N92RwfWnsBNqUcJJMBJJNe/zwTNDOlLwHJvsxXKjEUkvc0urtl366t\nlWxRr6SevHd7u1QkaGzUOH5cvtu+fYvP+8sFNXJdN7z88uIpke3bnXQJOyl5m0opX5DHK2/a1qbx\n6KMLGBgAfv7zAPr6JDh+6pTC0aOABEK9PnqdnQ5mZyWoF4vB/Y6OI0HGzk7JmI3FZLuYEotaS0Ax\nEpH9KRKRLL5IRI7LaFTGQwlCeuvDZJ+Za3nTY0mysCS7prFRznmzs8DUlATqFhbkfNTY6AW96+rk\n+Kmrk22dSMjnmTK0H/+47QYk6+q8h7UkMCeZ+lorbNkiQf3ubuDTnwbefjuFDz8031P2RaWk36AJ\nSJhxxn8f1NcHnDql3F58t9ziYM8eG6+9ZgIQ8rmxmIxlR44EMThoF3xd499ffvazADZvdtK9sax0\n8FsyERMJhTfesNwg/tycSvd3Kv/MmeXkGhenpxV+9rPMYwhA1oMmwlwr5btHXem1fL5teMstDiYn\nZTmy7zsHBhw0NzuYmlq8nP393vJFo0H3u8Rikg0Wi8l57bbbZJsePy7tBubnFc6e1XjppYDbo9L8\n3fHjkvnlvzZb7WvnQgJCPT0aH/uYveT2Wm/LzXlwzo6IisFSh0Q+K+0DtdEtl+a92v2GVlMhZcGW\ne02p0vGv533Mvi0lgUyvHo1777Xx+OPS82piwnJvcOWG2HuqurXVwa5dXrmGQrdd9jElTYAd/Kf/\ntIBAABkBHCNXqbpCeh9t3qxx6pSUPJLSUwrBoIObb7YxMrK45r5/m/X3y8SFKUnW1aVx660SDCyX\nnn9mXYbDKl36CTBP0HplKrzX19cDn/1sal1Lq6y21WhMfL2lBK9HIeegM2csnD27OPhlMhRLXeKj\nVE2o14K/pO6bb1o4etTC0aNy7M/Pa7z2Wma53elpb1wZH1eYmLAwNqawaZM8kT41JZN8SsmkIpBZ\n2sbfZ+u554KYn7fQ2KgQi8l4cc89Np5+OoX77svsyfXTnwbR3q7dfk+pFPAf/sMCPvYxJ+96zjUG\nnjwp40Eoq7LD+LgpcyOkXNzSPQv9x9Jtt8m/zXHV3S2T6R0dEpSKRiWrwTwg0dEhJcp27/b6ixk3\n3CCTx/4ymeGwdntPmH5fDQ1ws2JuvTVzPx4dVfj+92tw4YLC9LTX3yoQkPe54QbpsxiN6ox1JGXa\nZFvW1S1ep3/3dyFcvbr4nOo40u9xeDjgy47xxti33pLJ2/l5CXyYrBVAJle1lnPs4vJwUv6rvl7K\nyJm+NyYIobUE/2ZmvBJf8/NSWuvgQTu9jiQTRDKbVDpjRKeDW0Bnp5QPi0Sk31EkIhPzN97oIBCQ\nQNTCggQD6+tl39iyRQJ6U1MqvZ97hodlsq+tTUozNjbKPvDYYza+/OWUO+42NQG33SYBtIYG72l4\nyaQ2vXpknczNScZgdvDJ9MnJ12v32LEAgMxSh62tsi1vv136OkmgT3rkhcMSBKyp0ejtddxspY4O\n6Q80MSH77/CwcssdZ59Hso+78XH5u1jM6/kXjUoW0sGDNqamVDrgJPtjd7fGzTfLpL7jeCVMk8ni\nHlKQAJpXAi8clnVl29LHpb4+M5M/kZAs0o4O4MMPJfi5ZYt2M+L8mUay7qU8oOnRBqh0eUvJwAqH\nNfr75TMbG1U6U0CCZnNzXoabOYYli1W7x2t2oM+yNCIRKa3Y1ibB8E2bnHSmmZQxNv2ETKlP6dMm\nQZTaWinB+NBDKRw7FsgY102mjSk5NjEhgbzGRo2jRwMYH1cYHMzsm5mrdLLpkzs9LfuhWW8eGX/u\nuy+FL34x5ZYVj0TkbxsbpaddKiUB5vZ2CcDefLON8XEJ4vn7B4VCErxsaHCQSgGDgw62btWIx5Hu\nMynfzSxDa6scw9LHzUJNjSmxq3xjpGxbQKUz62RDSBlCCWx1dkpJ28ZGCWh1dkqPYRnTZGAz5VJN\nec1kEumyqA5uuEEyGnftcrBjhzfBv327g0hEMoVM31wTbDOlCqNRjfb2ILS2ccstGrt2yXlk9275\n79tvd/Dkk944k30flEjIuamuTrKX5+clM6uhwXF/PzEh49ru3RqzszKe7NvnYN++/OdbP3NuNNv2\nyhW5lzKlZqenJet2YQFuiT0jHJZexeVgpX3Ms48N0xsqu0z9rbfaOHduZXMoK7mWz3dt6i+VC2Te\nd2b3ccy3nP5rcVPm23GAvXtlXZl+roBcv3R0yPXC7Kx3jWV6qNn28iXzS6nQMvDlPue13JxH9vJP\nT0uf3dpaZPQSXW0sdUhUPtjji6hAlTTBV4zV7q+13Em/VL141kshF+RLvaZUgb/reR//vh0OA/v3\nO/iP/9GbkPX38WlvlyejFxZkIm77dnmq1v+dCt12Sx1TxVx0FxL0M5+VTMrkX3+/ne7zoAqqud/d\nnfn/r71WHvXDDf/3a2qSCZLdux2Ew5k9CIx822i9++2Vm+zx65VXgnjzzcCiptnJpDxVvJrbvpBz\nUDSq8f77XsYDIGPA9u1ORjCm1Mu13v0pluOf1BkbU3jttQBOnw4gHJaJ3//1v2ogE4LeRM35897k\nhTzFLes0mTRZoMAtt0jvIROcaGyU4+q++7z9wD8+ySSJ19vijjsy9xfz2uyeaYDCHXc4eddzrjHQ\n35fCUEqnM2pVxusK7VmYj//888EHCrOzASQSMvnf1oZ09tbiZXn8cTvnBOP0tIzLXhBfRCIan/vc\n4qDi6KiFZFL6bAFe0CYUkie8w2G4wUs/KVVkuX3F+vq88e7554M5H76oqdH4z/95Ae++K72tIhEJ\nevmXyZRBsm1vUj8YhNtgvaVFls0EwKT/kmQm+wNOMzOyz5mgViym0N7uoK/PQU2NfHZjowQYens1\nxsakj5bJhqmpUaitddDQIJlALS3yunvucdDWBnz0ow527ZLSY++/b6WDFNr9e0CCFTfeKAHE7H5O\nw8MyoTwwAOzYIRkY3d35e/xJNqGDRx6xEY/L+VKeyvbeU8pKyjL5dXXpdKAi93nXBENMr7obb3Qw\nMKCxbZuDnTsdvP22BCdaW73Seabn3ic+4aC/30n3spKeeBMTCu++K/uxlCyT/byvT64HgMXHndf/\nRaV73CGdTSX//PEfJ9HXJ33Puro0PvrRFD7/eRuWJROjJuAgWV/LB79MlpDj6HQgQrlBsGRSAjq7\ndjk4d076Dpmsyvl5hQMHJDtlYkKOg+3bJWCdTEpmjbyn7L8miJhIKLeMoenlpDXQ3g7ce6+Nq1e9\nrLXJSWtRAK+xUbJzFhZUunegRjyuMrK+pIQh8MADNu64Qx4w2L1b9tvGRuDqVQkom7J7Wpt+WrJ9\nm5pkn00kFI4ds9zeU2Zc7+hw8N57VjpLSzIfR0floQT/+O+f8M93Pfr44zYCAckGlf56ss9KwFPj\nvvts/MVfLLhjqf9+R/oYaVy7BjQ1Odi2TY7Fjg7ZZsPDASwswA2MNTZKAFX6yWmcP69w5oxyg8az\nsxJksW2N9nbJFp6dVelMUFm+hobMPoO1tSbbTLlZZVL+VILwti3BmmhU49ZbHWzbZuPJJxcQj0um\n1/nzlrvPSY8y00/LQiik0dWFdMUBySLxn1/8AQjTm9ZkK5rg6sIC0NsbQG3tQsa69+8r/nEm+z7I\nBCBMf16z3vv6NPbv17h2TQKlu3f7y+/JeLLU+TYXs20nJqTX1diYckusJpMqfa4A/CV/d+92cNdd\nTllcd6/04cnsY0O2JbIetpMx/uGH7TWdQ8l1bbrcdfRKH2h96KEULl6U7+n1hfbWgylzafZDQPbF\nAwccfPazqTW7di703rrc57wK6Z9uln9qCjh9WqrahEJr+6AqA19E5YM9voiKUA59XkqpHPprVXup\nrOWUKh1/Je9TaG8x/3ubMliADaUcnDgRwOnTlluiqrm5uG1XivIWhZRuyP6uExOZJa6A4so0lmP9\n8FzrMvsYB/IfX+UwHpS7tS4lmG25c1BPj8YXv5jCj3+s17wUYznzl9QdGZHJCel9ZiZPpa+gKTmj\ntUya3nCDNxmyb5+U5FNKShUq5Z239uyRPk8jIwr/9m8BtLZ6PYmKGStWOq7k+n12Xwozhkpvq9wZ\ngSu9vvGfIyYnTeAV6fJpcmzs35/CwIDOOZ5nf665Lti3D25vsnDYwdNPJzP2Y7NdpfyklPObmvIy\nOG6/3XYbtk9OKrcs0fy8TPhOTiq0tCh0dOhF4117O3Dt2uLv2t4ux9mf/Eky59j64IMp/PSnQSST\nltsjKRCQhzlSKcloCocl2NjYKBOuExPK7aljyiJK1o4E7bw+nDJ5I+dgWQ/T08D773v7aDwOABYG\nBhxobWF8XAIWwaBMCpmSvbfcIhlIZvkbG4Fr16T31uQkIBNjEmzwl9X0n0fzlYXKd93hPw+fOmWh\nu1uOG9MfJRiUXmImM8S/XvOVnAPgO68vPg5Miapr15D+e+WWN7NtuZ55+GG51pA+flL+6vXXJXNv\nbEz2LynNqPCtb9Xir/4qmfPYjkRk/U1MyDgRiyk0N8Mda159NYjDh1P4/Ocz9/ff/30bly6lcPRo\n0M3AmpvL+VVdtbUabW1STm183AQftFsu07alzNrYmGSixGJSBnlqSsoxJhIKSjm4804HIyOSnbFv\nn4Nf/EKCGpYlmUSWpd1gkmQvygd4PcokcGtKfwKSfZRM6vT+pdPZaNJzLBSS43TzZmDbNgcvvmj5\netnJJLHJstq2zUY4DLccmNnHw2GN3/42gLo6CR6bTEVAju/eXqTLz8o+7B33Fl5/PYA9exy3ZOzJ\nk8rtK+sf//3Xgktdj27daiMWCyKVksBSQ4N8j49+dAF/9meZ107Z9ztdXRoPPGCjt9eBZWWWhTt5\n0sbEhIVLl7zeapKdq9DRoRCPSzB2dtYr76q1lCmcmJB9qKFBgqiplKwH83BHMOgvtQmkUpKVFQhI\nECyVkmv6tjYHU1MScBsYcNxla27WOHvWwvbt8pBCU5Ns04EBG+++G0Bzs7xOKa+f1ZYti0vUev2f\nlFsGVynljvn19cAf/iHwox/pRecsYPE4kz0GmGs1f6lvs1yHDi2kA1WFn4eXYrZtby9w6hRgAguS\n5WXGf3m4wdwv9ffrsrnuXum1R/ax0dDglTP2n2/Pn5dMynKYQynkOnq55cz1ms2bZT2cP68QjyOj\nn1lfn/S181uPuY5i7q3Lec6rkDkPs/xHjgQzyrsCldNSg4jWBgNfRFWuHPprrWYvnkpQqsBfse9T\n6M1Wdm8ac0MzPa0BWOjrA4aHgfl5CyMjDh57bKFk267Qi+7lLoClPF0Nhoct94nnyUlg377MJsux\nmPRgKGQ/rJT64cUcX+UwHpS7aFQv6qMGIJ2tUR7bvqdH4wtfSMHfI2ej80/e+AOX+f4bWNxnp6lJ\nJkYHBhz3ZtpMxpl+DYBM4J09a7njaTFjxUrHleUm/f1W42ET/3tKlhIA6HQvJVmXc3MWDh1KFPR+\n/nFry5bsZvde8OTXv5Z+RaZXRyikcPashbo6B/fcI0/9mu/24x8HcPy4lMMDpOTj/DwQjXpPs/vH\nuyeeSOIb3wgtWk9PPJF0l/H++1N44YVaXLkiAbEnnlhwe/6YyWGTDdjWJhkGDQ2AbUtvqUhEyhBK\nwE6CCbatcccdKSQSVkYmGQCcPGml91N/z0aN++930NICtwfbyIgEO1Ip4O23Nc6e1ejrk1JjkYj0\nh3vkES+Qde6cgmVJ0CaVgvtvKTmoM64L/PuTXEfIdvcmOSWoNzqqFl1L+K85wmHpg7Jrl+M+DW+C\nm5s3I+c5KxrVuHDB8gVDpW/c+LhCZ6eDkycV+vrgntenpyV4+Z3v1Lh9OS9etHDpUgDBoGyT9nbp\nC+QXiWi0t2vE4w5qaqx0P1MxP2+5+4g57qanvcn6mRkJWNbVZY4h4bBGLGbh2WdrsWOHA8fRbq88\nmZTTqKlx0NxspXtiSfBMsuu9EoFKSRDKZHNfvSrlMR1HZTzMEwxKhv78vOX290okgFBIghrhsMaJ\nExb27nXcUo8tLQrd3TbOnAmks2UU6up0uhebbNfZWdlPpQyrLPfsrJSSnpuT8qFS6k36xqVSEpQL\nBiXDamxMelyFw7JvS+85nS5dKH9rMuVOnpQg+qVLCpOTAbdU4W23Odixw8HwsIVLlxSuXDFZirL/\nXb4sJUxlnXtjMwBcuSKZTKanoRn3s8f/7An/fNejZ84EcNttGqdO2fjwQytdxtHB7t160XVWMddj\nTz+dxLe+VYvJSaQz+eU8Y8rlxeOSeSclVZEuiWiy5ySYvGOHZFm98YYXBAwGZawxmVXJpGR3WZaD\nmRkJ1Nu29G+bn5fAbV8f3P565hju75fylko5GePDkSNL93LKt069v/H6UQ4MOOjrK/yclf06k93o\n78/rX5ZSXsf7t+3p0wpXrsiDDdGoxq5d8v3CYSnV61/+crnuvp514d+Ocl1kLTru4nEZZ/MF9Ap9\nELOcmfUwOGgveiimqcnB009n9p7eutUu+DuXcv2Uc0CrUMVcx5bjg6pEVF5Y6pCoyq1Ff61C0rwr\noVTWailVOYFi36eQsha5etNcuCCTF1evSjPf5mYJhvlLcq11qb/lSjf8wz8E8a//WoPLl2WCamEB\nuHZNvocpp2Ru0gIBlVGXPl8phLWsf27KoLz8cgA//GEN3n7bKqpGeaHHlxkPYjEpESNlpWSC6667\nyrPs6FqXal2PUoJ0/fwlpiYmvEnOSER6HknfHe02nweA/n4HiQSQ7xj3jwFeSSV/iR8ZTwcH7YLH\nipWOK4X+nX/yZHzcQmOjTIxebwkb//nHPO3c2urv5+WVdcol13Hc06MXjVvZfUguXlS4cMFCNCrb\nsrtbJsY3bZLyfP7z4NGjFk6fdptJIRaTSeK2Np1RVs9c/3R3A9u327h0yYLW8r5PPZVMZ1vJsvzL\nvwRRXy9lKRsagHPnpD/Mbbc5iERkgqmzE7j9dhuNjQq7dkngdHZWXl9bKz1xpqbknN3e7qC1VdZj\nXR1QX5/Zoy0chtsn5NIlhddfD+CddyQz6YEHUvjUp2zcdpuU9puZUWhursFNNyXx2c8m0dUl28O/\nTsx+fPy4heZmhWvXpDRcMCjrYPt2ydLIt2+Y7X7hgsLRowEEgwoDAzJxm33+zL7mMCU2HUfKPd16\nq43PfS6FnTu1e87avFnKGx4/LvtFJCJZX3Nzcv6OxSycOGGhr0/6BZnynp2dMuEciwFay74ix7xM\nlNXVSSlCr8SZHA+SrSMmJqTvkClRaZisroMHpY/I0JAEVM0yOY6UHJYsG2//7+4GfvtbKY8ZCCCj\n3OqJEwFcumShtlYy0U25QaUkA0cpjbo6yZYypQAbGiQLLRaTQJQpKQfI72+4wUF7u1cC+coV6evU\n1iavGRuTQNX0NNDUJNlDn/lMCg895OBTn7Jx//02kklgYADo7XVQU6MxPy/HQWOjZLtJRg+QSFjp\nDCTp/zo3J7+T7yBl8Ey/qtpahWjUwcGD0vPn0iXZbj09ErxyHCknK72zLIyNSenXRELWWzIpAeba\nWpUuYyjvPTvr7VddXdI7Z88ex8308khJPek/6J0Pssf/Qkt2Dw0F4DhyLbljhxwz3d3SNzBfuU//\nuDY9nfsaprsb+MhHHDdrtqVFsrKCQS8gmkqpdOaevLfjSInKcFgCWnv22AgGFXbulPOA40ig1+sj\n5+1f7e3SSzEWs9y+X4GABCz27LFx//1OQfcNuc5F09MS4Dc9NbOv0/x/411/Slm4gYEatLYmCrq/\nyb4P6u2VALQ/IJzvHJ7r98Uy29aU+O3rk/si6eknx6i5XzLLXy59rku1Lsz7fPCB5R535rqothY5\nSyeutL9Yucp3P75zp3dNE41q/Mu/FPadq239lEIxcx7r2VKDpQ6Jygd7fBFtYGtxMcCT/vJKFfgz\nN3Lj4yo9sanyBgIKudnK7k0TCmlcvqwQDCq3SbQ0oPYmONf6Zg1Y+gJ4dFThb/6mFrOzFhxHau7H\n4/Ik+8yM9LUA5EbbPGHvr0ufr779WtU/Nzc8589bePPNAK5elYbsgMKpU6qkNz5nzli4cEEaU8/P\nS/kh2c4yAVNuN1hrcTOYPX41NQE7d+p0BotMlt1zT4rlIMtcdjPysTGZmJWMGhkz/cf+Uv2ncvWC\nkHKvMrnjzyJVCvjYx+yCx4qVjiuF/J3/eDF9o5RCycYt/6RffT3cTCfTA2vXrvx9BQs9jnMFTy5f\nlr5EZtI6HNZ48skFfOxjdsb59OjRQHpCWPr/TE5Kn6CrV+VcNj0tk/g33OC4y9ndDXzykzYefdTG\nJz9pu72dci2LyOwPc9ddDj75SRt33eXg/HnJ/jJN7RcWZP3MzQGDgw46OzUuXrSQSsnYu7AgvYP8\n59dwWOOJJxZw7pzC//k/Qdi29KiZm1P45S8D2L5dltFsi/vvD6G/f35Rj8pc/eFMICqZlEBCQwOW\nDHr5t7tk2Ul/Lf/588IFycAbGgrg9dcDCAQyA3nJpHKDftk91rL3i+FhCy++GITjqHTmkmSlNDZK\nYKWjw/TQk151dXXA7OzivndTUwq7dztZyyrZGRJAUO5rz5+Xnl+2rXDtmjz8I8Fix+0j8v77Cleu\nKHdf371bAqlXrsj+FInIRPc77wTS2UYac3NAKmUhkQCGhy1cviyl65JJCXDNz8t3NJlVNTUSrKip\nkeCMCVyEw5IxNT8vx1t7u06X0JSgz/btcjx2dMjYY0W/zwAAIABJREFUUFsrwaPZWQn+AHDHi3x9\nUf29X594YsHtfaaUBAXn5pR7fZhKyWstC0gkNLSWzEcZDzRaW6UHlFKSmReNyvKfPStBx1BIAtJT\nU9InLpEwJTClP2B7uylR6D1QMDwsDyw1NkoQua/PQXu7xt69Npqb4fbbMd91507Hve/p6pJ9INf4\nX+iE//XcRy039pmeeHfeKQGca9ckGLV9u2RkXrsmZRDNfjI/L8HPpibJZjxzRnrUJRIKmzcDmzZp\n3Hyz7QYvW1s1AgHZJvv2yfVyMmml+7pJP8jWVqCtTcbBQu4bss9FoZBkOmqdu5+u/29yBdBPnAii\nu3sh54MQufjvp/wPAay0n9NK5Aoi5TsvlUuf61I/hPlv/xZAKqXc87+5Lsp1j7jS/mLlbLn7+mK+\nczmvn/XsT1fo3MlaPqiajXNgROWDPb6INrCN3l+r2hRTK76QshbZN2OmN47cXDuYm/P65Hi9ETSO\nHAkuKsew2mUs8pVuGBrySlt55Dvs3GljYEAmQerrVfqp8cxlWqoUwlqUizBlUMy6B+Bb56UthzI4\naOOllzLXl/SEwZqVXSlmP1mvEjEsJVh5sktM9fWl3DJj0ajGY48tZJSgWar/VPb7Li7V5DHjaTFj\nxUrHleX+bq2OF3NdIRMKZrIr/3VFMcuVPR43NUk5rNOnLbz7rnLLDebvVanR1yfvU1encf68ZMHM\nzUnvrMlJB48+Wtj1T7Hlc7J7ZZoeQ+fPy7o6edIb4wHZN2+6ycb8vMKWLTpjv3zhhQC6ugB/yUOt\nFV54oRYHDxZWTjLX8kYiXpmxlpbFpdoKeQ8jFgOOHg26pb1mZ4GLFyUjLhLRmJ6WhyyiUSl1mH29\n4t8vzGtjMclGkyCnBDu0Nhmc+a9d/FSeX/X3e6XHJicVBgY07r57Ad/9bi3OnpXSiK2tEmwbHlZu\nKUfLUu629LvzTtmPpqbMsltIpaTP1dmzsuyTk/Igkck6laCxTBzG43KdEgrJ+waDUoLyIx9xcOyY\n9LWybcnWueMOB1NT8lBPT492+zoCcEtRmhK9SnnZYkBm/6NCyvu99Za8fn4e7nc2QQ3JOpMAWGOj\nRk0NMDcnDxd0d8s+NTcH1NV5n9PVpfHRj9rpIKOGZel04MxCMinbW9Yj0Nws23lyUrlj+tiYlL5s\nadG4/XZvgn1gQLan+b3pNQXIOp2elsDm/v32kuP/cq7nPqrQsS9XCbXt2zViMQncp1ISsI5GZX1a\nFtI/tzA2Jtt6clJh3z4Hra3AF77g9dry3zeYPn/BoMKmTRJMAzQ6O71sLv99gynx2dAg1/1mvWWX\nvpPeect/x9ZWrxSg99rru/4sRT+nlXxmoSUty+k+vFTroqdH4777bJw9m/s8nG0jlqJbi96vq61c\n+tMtZ6O31CCi5THwRVTleDGw+taybnkxE4iF3Gwt1Si6t1cmESWIZCanTHmazIvg++9P4dVX1+fi\neHJSYfNmne5J5n2XVAq44w57UV36bOvdt8msy+ynbM3/l/LGxzxRe+KE1z/FNGdeixusYm+iJidV\nRvNss1+u980glaflJnUOHlz5hE++8XTrVjvngwDFKNU5pJjJk+v5zGKvK4pZruxzUiwmAcf2dmD3\nbnn/V18NYvPmxWOG2UbDwxbm5qTHVzAoGTCOA1y+LH1/zpwJFLQvFNsTJd8+sn+/g6kpa9EY7/VA\nknKDfleu5F6mfD9fSq4+VeGwxuBg4cdDrnUxMqLc0nsA3GsG86DM8LD0turtzQzemesV//aX1wKB\ngHazd7SWzKX6ep0RvDHLAyDn9tm/30YslvvaJ9cYcf68jddfR8Y5JhLxlnOp/nqDgzaefbYWdXUS\n1AkEJKsoEJCs09paCXo1N3vZOs3NGnV1GuGwg2jUe7+6OmDrVgeAxvh4EKmUQiCg0+8lAcUtWxw8\n/LAcey+/HEQ0Kn3ozpwJQCmFEyeQ7suqcPmyhakpQCkLJ0/KuX5gYPnsgakpCZ7JtpWM8IkJyToK\nBJAOmDhoaZG+c2+8YaGhwTunX7q0uHRyV5fGnj2yn//3/16D//2/g1BKenFJlr4EY8x29j9Q8Cd/\nklzUT8e/Pf2/NwFUrTUOHHDSfbMkG2ql4//13EcVO6G9+AGOBSgl2+TnPw+gpkY+f24OuHpVrmdT\n6a9lHpjasmVxcNO85/nzCqGQ6UHlXev398t38Y9h/nXZ25vZ19L/3athgn8lCg0iVet9eDEBvUrp\nmVxKa9H7dbWVS3+6QlRDXzMiWj0MfBFtALwYWD1r/TRUMTeNhdxsLdUoOhKRScKRESlrNTDg4No1\nYGoqM3hknkL3904wP1+Li+NoVGPHDo2pKfnHtmWyaMsW6WOR77sC5ZH9aG54zNPaRvYEUKn092to\nvXjyay1usIq9iXIcjePHvQy1uTmVzujgeEZrK9d4unWrfd0B/1KeQwqdPCnFZxZzXVHMpE72OD0y\notJl07wxK9+YYbbRX/+1BJkCAem9YjJKgkF5aKPQSdZizxn5zrmAZOX4x3jJtM0/xre3A9euLf6M\n9vaCFn3R9zh2zEpPYsvP5uYys5oKeY/sdTE/D7eUMCBZbvv2OW6/ooYGmTDPLjVk1r9/vzBBwaYm\npB9iEQ0NkmnlD575t0Gu7WPO+4VONOfL6DLLKetPAqreAyOO+547dkhZRS9QIN/D9M9sbgZqazU2\nbZLMqPp6KT+aa5lGRxW+8pVaAFK+L5VSGB+X8ofDw3Jtlu/YPXTIy7xXSkolRyISEJmYUJicREHZ\njmNjFpqagPl5nV4GpD9PQykph71pk2yTkRGF3/kd2eZm3YTD8t0lY9Fj9nPz/uPjGqGQQiolDy0l\nk/Ke2cfYctey/t//7GcBRKNOxn5XimvRld5HrWRCO99n9fdr9+Gto0cDbpA46JvNmZ9XOd87V0aZ\n4V/fK1mX1TDBv9qq8T68UrPe1kox37lc1081BaqJaGNjjy8ium4bub7xWtflLrZW/HL1sZdrFB0K\nSemdp55awB13OPj1r3PX/79wQfozZFuLfmDRqMapU1ICq6ZGln3zZgf/5b8ksXNn5qTcWvTsKpap\nTW76EgHKbRQdDpe+Rvl61kIvtsn30aMWTp8OZL1WYccOp2T71UYev6hwuTKkjh0LXPf4X8pzSKHH\n9lqft4oZc7LH6atXpc9hdonafGNGU5NkCQ0PW0gkFBzH+8zaWo2GBim1Vcj3XMk5I9c517zP3Bww\nMmIhEvF6xeVbD21tDn75y+yytBpPPZXM6ENWyPiVq0+V9L4rfJvnWhddXXrRgwyhEHDggIPPfjaF\n2VmV8TCHYa5X/PuFCZwEgxo33eSky5RKObunnkoiFFq8DZbaPsX0VV3uump6WuHNNwPpUoYSaGhu\nBm67Td7X/L2/h1pNjWSqSW8z2da7djkYGNC4/XYHhw6lci7TK68Ecfx4EFoD8Tgg21/6hjU2Av39\nDubn8x+75ntfuWKhvl6CXmabb9smgaZ8ffhMH5f33pN+ZA0NUn5Qa+kX1t7uoK9PIxiUHmf33OOg\ntlb6jXV0yHft6JCHpsbGMgNf/v387bctXLpkobZWSmcHAoBlOdi2zcYnPuHkPMYKuZbdu9fBxYty\nfIWy2jysR29aoLTXW9nHy8KCwuyslOc0wa9IxMHnPpd73wIKG9OKXZeFfEezf507p3DypJXuGSe/\nC4WC+MQnEmXXY5aWV+g4u9L7r/XsL3W9ivnO5Xp/Wi796coZ7yGJygd7fBGto7Usg0drb62fhlqN\np8Kyn0Rcap/N97RmvqfQ1+IpTv9Th1u2LH2cleNTl/7lb27WGBuz0NnpuGWUSj1erGfZlWKf9lVK\nelb4y3P19WmofE1ciFZBvgypbKYs57vvSrC2kOOqlOeQpTKO/OUYcy37Sj/zepYr37rJ7h9TbIla\n08uwqUmn+xTJ92puRrrEX+Hny1L2RPnCF1L41KfsgtbDwYMa/+2/JfDCC7W4cgXp3mZJHDy4snF6\nuaymQr9D9rWC6S9lmOuR0VGFiQng6FEph2iyRvJllyilceKE5b6uu1tDKcfNQsxXpq4U22e566qh\noQAiEWDPnsyJPpP54v9700NNKb2oBHT2++YyOSnnuVBIobNTIxaTUna1tRr33ZeCZRV27E5Oqow+\nc/leBywe34zmZsli01pKNW7a5GT0hzt0KJU+PjP/LhLRuP9+KYOYaz/v79eIxZx03y6FcFgCavv3\n29e9Lcsto6iU11vZxwtgYfduKf1sro+efjq57HsXeswUui6X+47Z+5cpxbl3r1znfvrTWFTKlKpP\nsWN1pfSXWspa9H5dTeWaiUZEVCwGvohWUTVctNHS1vomey2CFktdfOe7CH7iiYWiJ3hKqRxvGIpR\n6PKXKpC+Xuur2JsoOb60O9nm/znRWslXonN8XLklXmMx4Phxeeq9pSV/P5RspT6H5A5OZF6HnDyp\n0NeHRVlUq3lcrXTMWcnES0+PTAB/61u1CIctxONSMi8adXJODK/lA0rFrIeDBzUOHkyU5HNX41pl\n6dKOss9t3y6T3KdPK9x3nwT+/OvWvz7W60Gx5a6rlgtOL/X3mzcXd70WjcrDHSaDzIwvLS3aDZrm\n2o6OozOC246T2fPU//7Zssc306utrg7Yvt1Jf15muUnzPvmOz0ceyf89zd/09VkYHpbyfMPDuqAy\njMspx4naUl5vlep4KeRvi1mXS33H7P1LgsMSAD10KIWODmB8vKDFpg2kkvpLVauVzjnwoW8iKjdK\na11xo9D4+PR6LwJRQfI9qTww4FTVRVtHR2TDHpe5npRVSld1cDPfBS0vdFdXtexrxewna/GdN/L4\nRYX5zndqck42y1P3Mhlz8qTCxIQFpaTPkQkqLXe+X+19PNd1iMlM8weUy3ksWem5pZC/K+X6X49z\nYKHj11qeP6rt2nctv4/ZTrGY5ct0loDtwYM653aUnmjKLVEtPwMAjUhk+e2da3yLxSRI3t/vZGTi\n5Xqflez3b72l8K1v1bqZSr29Gs3NpdkfeS26tGLGglKsy+98pwYXLliLMve3bHHw5JMLq3oNxn2h\ncuW77mpp0XjyyYV1WCIqRLXcqxaK95BE5aOjI5L3d8z4IlpFbApa/dazbNx6yfdkZ6VnXZW7ann6\nsdjSHxvt+KLyky9bxpQjHRoK4N13A2hpkQk9fybVcuf71d7Hc32+6cvR368r4rha6bmlkL8r1bha\n7hn+azmWVtu171pmES1XujnXdpyYWLxuIxEZt1palj/Gc41vTU3AzTdL6cHlggcrOT7PnAksKsNY\nqusZXosurZgxrxTrUmuN48ctmEet5+YUJicV+vpWNwuv3MdkWlq5lS2lwlTLvSoRVRcGvohWES/a\nNgbeZNNaqLbJxELx+KL1ttTEt3//LLYXlbGa+/hSQTseV6UbVythsmetxtJqu/Zd6wcwlttO2b//\nzndqcr5OKYVDh5bPjFgusLca+001Xc9UWlbRuXMKJ09aGdlXkYhetXWvtQS//KU3tdZYrZpDZnv8\n/OcBxOMq42GUchuTKb9yLFtKy6umsZ2IqgcDX0SriBdt5a/Sblhp46q2yUQio9zH4UImvsv1fF+u\ny1UuSjWucrLHU4373Ho+gLHc+Hi9+/BS41uh5UKLHb+r5Xqm0rKKRkcVTpyw3HVvsq/27XMwMOCs\nymdalrz/yIjKKG1pWaUfG/3b4+pVlfH9TPBrI47JlYgVHypTtYztRFRdGPgiWkW8aCtvlXbDSquv\nnCfgq3EykahSxuFCsjDK8XxfrstVLko1rnKyx7OR9zlzDXHunMLYmIXOTsctibqS71/I+FiKfTjX\n+FbIZ690/K6W65lKyPT0GxoKoLdXY2LCy8DSGhgeBr74xdVZ92ZszC5tuRpjo397hMMac3Mq/f28\nnpYbcUyuVKz4UHmqZWwnouoS+PrXv/719V6IYs3OJtd7EYgKZnppHDzoYO9ex20OXU0aGkIVeVy+\n8koQExPZpakUZmYU9u69vicfR0cVXnkliKGhAM6csRCN6qrc9tXETOBMTEgJmMlJhXfesdDfXx7b\nrqlJypPNzCgoBXR1aTz88MaYTFwN5hh9/fUavPeew2N0nVTTOFyu5/tyXa5yUKpxNRrVeOcdC/5y\nXkrJe63m+i7X66+NuM+Za4jz5y28+WYAV69aGB6WfeLUKbWia4lCxsfVujYo5LNXOn5Xy/XM0FAA\n8/OLA95KAQcPrk4G1fUwgaFoVGNhQZYzEtHYu9fBQw+tXuBrqbGxlGOYf3uEQsDYmAKgoJRCV5de\nkzGZaCOrlrG9UOV6DUa0ETU0hPL+jhlfRHRdZGIRuHChpuKe6l2t0kSVksFAmSrhyV0+/Vga/mO0\noQGIxy0eo+uE4zCtt1KMqxs5y4mEuYYYGZHJdgC+bJOVXUsUOj6udh+uWAxuqbrz55W7b5vXTE8r\nDA97peyUWllvw9XMul+N9660TE+zvE1NyMjA6u9fveVdy7HRvz2amuCWWKyvBwYGHI7JRGuA96pE\nVG4Y+CKiFTMTi/X1QDyuKm5icbVuWCshgEKLsUfLxsFjtHxwHKZqwcmeylSqgIi5VsjOADL/v5Jr\nifUMrJjPjsWA48e9jJ14HHjuuSAOH04hGtW4cMHC8eMWdHqR5uakj9ToqCpqPa7mwwqr9d6VVtZr\nvZZ3rcbG7O9nMk8r5b6UiIiISi+7NgERUcGWmlisBIOD9qKnUktxA8gASmXKN5FUrk/u0srxGC0f\nHIeJaL2YgMjZsxYmJhTOnrXw3HNBjI6uLEgFSG8hP/P/K7mWWK3xsZjP9mewKQX09Wn3Wn9w0Mbw\nMNygl9Do7dVF3wus5j3Far23yWYaGHDQ0qIxMFDeQZZKW95iVfv3IyIiouIx44uIVqzSJxZXq/xG\npZU+IVFpT+7SyvEYLR8ch4lovZQyM9RcQ/T2AhMTGtJbSAJFK72WWM8Smuaz/+qvajE/LwG8vj6N\nSEQ+e3JSMrr27nVw4gTcMoe9vdLLrNh7gdW8p1jN9660TM9KW95iVfv3IyIiouIw8EVEK1YNE4ur\ncYPEAEplYo+WjYPHaHnhOExE66GUARFzDfHSSwGMjChcuQK0t2v09dl45JGVX0us50R+T4/GfffZ\nOHt28bKba/3+fg2tvX5R2b8v1GreU1TD/QoRERERFY+BLyJaMTOx6MeJRQZQKhmfFN0Y/MdoKgV0\ndrLpebXhOExEy1mNgMjUlMKePV4gaGqqMqog5LPcQwRL/b6Y/mmr+bACH4QoX8PDwI9+FOR5moiI\niFaF0lpX3JXF+Pj0ei8CEaWNjiq8804jLlyY5w0LEVWcjo4IryuIqCJx/Lo+psdXdkBkpX2BjhyR\nfmHZBgacin6oZrkAVq7fA1h23Wb/3datNs6cWZ2HFYoJwtHaGB1V+Od/bsTMTML92fUcf0REa4nX\nYETlo6Mjkvd3DHwR0XXjSZ+IKhXHLyKqVBy/rl8pAyLf+U5NzgyylhaNJ59cuN5FrSjLBQFLHXRc\nDwymXZ8jR4IYG6tDPJ7I+HmlB4qJaGPgNRhR+Vgq8MVSh0RERERERFQViglIlLLEMXtJeZbrnzY0\nFMgIegGA1rLdKiHokR24m5hQOHdOVVTgbr2VssceERERUS4MfBEREREREVHFW8+AxHr1kirHzKPl\ngoCVHvSo9MBdOYhGNcbGcv+cKlc5jkdERLRxMfBFREREREREJbNek5/rGZDo6ZFSfWv5vcs182i5\nIGClZ8dVeuCuHAwO2vjnf8782VoEimn1lOt4REREGxcDX0RERERERFQS6zn5ud4BiVKWTixEuWYe\nLRcEXK/suFKp9MBdOejp0fjDPwR+9COH2UFVolzHIyIi2rgY+CIiIiIiIqKSWM/Jz40WkFjvQN9S\nlgoCrkd2XClVeuCuXPT1gQGRKlLO4xEREW1MDHwRERERERFRSazn5OdGC0hUcqBvrbPjSqnSA3dE\nq6GSxyMiIqpODHwRERERERFRSazn5OdGC0hstEBfOankwB3RauB4RERE5YaBLyIiIiIiIiqJ9Z78\n3EgBiY0W6COi8sXxiIiIyg0DX0RERERERFQSnPxcWxsp0EdE5Y3jERERlZMVBb7m5+fx5S9/GVev\nXkVDQwO++c1vorW1NeM1L774Il544QUEg0H80R/9Ee677768f/eTn/wE3/zmN9HV1QUAePrpp3H7\n7bdf/7cjIiIiIiKiNcXJTyIiIiIiWk8rCnw9//zz2LFjB55++mm89NJL+Pa3v42vfvWr7u/Hx8fx\n/e9/Hz/4wQ+QSCRw+PBh3HXXXXn/7p133sGXv/xlPPjggyX7YkRERERERNVidFRlZFF9+tNAOLze\nS0VERERERFR+rJX80VtvvYV77rkHAHDvvffi9ddfz/j9sWPHcODAAdTW1iISiWDLli1477338v7d\niRMn8IMf/ACHDx/G3/zN3yCV4tOBREREREREgAS9nnsuiLNnLUxMKJw9a+F//A/5OREREREREWVa\nNuPryJEj+N73vpfxs7a2NkQiEQBAQ0MDpqenM34/MzPj/t68ZmZmJuPn/r+766678PGPfxy9vb34\n2te+hhdeeAF/8Ad/cH3fjIiIiIiIqAoMDQWgdWaQS2v5OUsKEhERERERZVo28HXo0CEcOnQo42df\n+tKXEI/HAQDxeBxNTU0Zv29sbHR/b14TiUQyfu7/u8cff9z97wceeACvvPLKksvU0lKPYDCw3KIT\n0Rrq6Igs/yIiojLE8YuIyl0qBTQ05Pp5HTo61n55iIhKgddgRFSpOH4Rlb8V9fi69dZb8Ytf/AL7\n9+/HL3/5Sxw8eDDj9/v378ezzz6LRCKBZDKJDz74ADt27Mj5d1pr/O7v/i5eeOEFbN68Ga+//jr2\n7t275OdPTMyuZLGJaJV0dEQwPj69/AuJiMoMxy+i4mT3mRoctNHTo9d7sapeMBhEPJ5Zpb6hIYRg\ncA7j48z4IqLKw2swIqpUHL+IysdSQWiltS76TnVubg5//ud/jvHxcdTU1OCZZ55BR0cHvvvd72LL\nli144IEH8OKLL+Kf/umfoLXGF77wBTz44IN5/+5Xv/oVnn32WYTDYdx444346le/ipqamryfz8GF\nqLzwpE9ElYrjF1HhTJ8pf8k9pTQOH5bACwNiqyfXum9sDOHf/bsZrmciqki8BiOiSsXxi6h8lDzw\ntd44uBCVF570iahScfwiKtyRI0GcPWst+nlzs4NYTOUMiDEoUzrZ2Xaf/nQdwmGOX0RUmXgNRkSV\niuMXUflYKvC1olKHRERERES0sUxOqpw/P3YsgBtuyAxwaS1BmkOHWIavVHp6dMb67OgAxsfXcYGI\niIiIiIjK1OJHNomIiIiIiLJEo7mzt/LVj8gXKCMiIiIiIiJaTcz4IiKqUNklj9hPhYiIVtPgoI1z\n5xaXNLzlFgeTk4ufp8sXKCMiIiIiIiJaTQx8ERFVoOwm9xMTCufOKfZTISKiVdPTI327sh+6AIDn\nnlscEDO/IyIiIiIiIlpLDHwREVWgoaFAxgQjwH4qRES0+rL7TBm5AmJ8EIOIiIiIiIjWAwNfREQV\nKF/fFPZTISKi9ZAvIEZERERERES01hj4IiKqQNGoxsTE4iAX+6kQ0Vphn0EiIiIiIiIiKkcMfBER\nVaDBQRvnzrGfChGtD/YZJCIiIiIiIqJyZa33AhARUfF6ejQOH05hYMBBS4vGwIDDCWciWjNL9Rkk\nIiIiIiIiIlpPzPgiIqpQ7KdCROuFfQaJiIiIiIiIqFwx44uIiIiIipKvnyD7DBIRERERERHRemPg\ni4iIiIiKMjhoQ6nMIBf7DBIRERERERFROWCpQyIiIiIqiukzODQUwOSkQjQqQS/2GSQiIiIiIiKi\n9cbAFxEREREVjX0GiYiIiIiIiKgcsdQhERERERERERERERERVQUGvoiIiIiIiIiIiIiIiKgqMPBF\nREREREREREREREREVYGBLyIiIiIiIiIiIiIiIqoKDHwRERERERERERERERFRVWDgi4iIiIiIiIiI\niIiIiKoCA19ERERERERERERERERUFRj4IiIiIiIiIiIiIiIioqrAwBcRERERERERERERERFVBQa+\niIiIiIiIiIiIiIiIqCow8EVERERERERERERERERVgYEvIiIiIiIiIiIiIiIiqgoMfBERERERERER\nEREREVFVYOCLiIiIiIiIiIiIiIiIqkJwvReAiIiIiKgcjY4qDA0FMDmpEI1qDA7a6OnR671YRERE\nRERERLQEBr6IiIiIiLKMjio891wQWisAwMSEwrlzCocPpxj8IiIiIiIiIipjLHVIRERERJRlaCjg\nBr0MrSUDjIiIiIiIiIjKFwNfRERERERZJidVUT8nIiIiIiIiovLAwBcRERERUZZoNHc5w3w/JyIi\nIiIiIqLywMAXEREREVGWwUEbSmUGuZTSGBy012mJiIiIiIiIiKgQwfVeACIiIiKictPTo3H4cApD\nQwFMTipEoxL06ulhxhcRERERERFROWPgi4iIiIgoh54ejUOHUuu9GERERERERERUBJY6JCIiIiIi\nIiIiIiIioqrAwBcRERERERERERERERFVBQa+iIiIiIiIiIiIiIiIqCow8EVERERERERERERERERV\ngYEvIiIiIiIiIiIiIiIiqgoMfBEREREREREREREREVFVYOCLiIiIiIiIiIiIiIiIqgIDX0RERERE\nRERERERERFQVGPgiIiIiIiIiIiIiIiKiqsDAFxEREREREREREREREVUFBr6IiIiIiIiIiIiIiIio\nKjDwRURERERERERERERERFWBgS8iIiIiIiIiIiIiIiKqCgx8ERERERERERERERERUVVg4IuIiIiI\niIiIiIiIiIiqAgNfREREREREREREREREVBUY+CIiIiIiIiIiIiIiIqKqsKLA1/z8PJ5++mkcPnwY\nTz75JK5du7boNS+++CI+85nP4Pd+7/fws58W7shmAAATOUlEQVT9LON3P/nJT/Cnf/qn7v//5je/\nwaFDh/DEE0/g7//+71eySERERERERERERERERLTBrSjw9fzzz2PHjh147rnn8Oijj+Lb3/52xu/H\nx8fx/e9/Hy+88AL+8R//EX/7t3+LZDIJAPjLv/xLPPPMM3Acx3391772NTzzzDN4/vnn8fbbb+Pk\nyZPX8ZWIiIiIiIiIiIiIiIhoI1pR4Outt97CPffcAwC499578frrr2f8/tixYzhw4ABqa2sRiUSw\nZcsWvPfeewCAW2+9FV//+tfd187MzCCZTGLLli1QSuHuu+/G0NDQCr8OERERERERERERERERbVTB\n5V5w5MgRfO9738v4WVtbGyKRCACgoaEB09PTGb+fmZlxf29eMzMzAwB4+OGH8cYbb2S8trGxMeO1\nw8PDK/gqREREREREREREREREtJEtG/g6dOgQDh06lPGzL33pS4jH4wCAeDyOpqamjN83Nja6vzev\n8QfClntt9vtla2mpRzAYWG7RiWgNdXTkPsaJiModxy8iqlQcv4ioknEMI6JKxfGLqPwtG/jK5dZb\nb8UvfvEL7N+/H7/85S9x8ODBjN/v378fzz77LBKJBJLJJD744APs2LEj53s1Nv7/9u42ts66/uP4\np2zdxtqOAqmaIE2EpJGYDLclxkCH4jCoCULYytrGGqIxkVjECXULMZsYEBZTs8Q4pkYmGbK6ORMx\nJhLvwhxbEBcHomLiQkCmIRW6uFPGunXn/2ChseymtPzXmx+v17NzXddOv+fBvkn77tWrPrW1tXnh\nhRdy8cUXZ9euXenu7j7j1x8YeHUiYwNnSVNTQ/r7D419IcA0Y38BM5X9BcxkdhgwU9lfMH2cKUJP\nKHx1dHRk9erV6ejoSG1tbXp7e5MkmzdvTnNzc5YtW5aurq50dnamWq1m1apVmTt37mnf76677sod\nd9yR4eHhtLa25vLLL5/IWAAAAAAAALyN1VSr1epUDzFeqjpML37bBZip7C9gprK/gJnMDgNmKvsL\npo8z3fF1ziTOAQAAAAAAAGeN8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghf\nAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwB\nAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUA\nAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAA\nAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAA\nAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAA\nAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAA\nAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQhNlTPQAATJUDB2qye/esHDxY\nk8bGaq64YjgXXVSd6rEAAAAAgAma0B1fr732Wm699dZ0dnbmc5/7XF555ZWTrtm2bVtuvPHG3HTT\nTfnd73436tyvfvWr3H777aNeX3PNNenq6kpXV1f+8Ic/TGQsAHjTDhyoycMPz85zz52TgYGaPPfc\nOXn44dk5cKBmqkcDAAAAACZoQnd8bd26NS0tLbn11lvzi1/8Ihs3bsxXv/rVkfP9/f3ZsmVLduzY\nkSNHjqSzszNXXnll5syZk7vvvju7du3KZZddNnL9M888k56enlx77bVv/RMBwJuwe/esVKujI1e1\neuIOsLa2Y1M0FQAAAADwVkzojq+9e/dm6dKlSZKrrroqe/bsGXX+6aefzqJFizJnzpw0NDSkubk5\nzz77bJJk8eLF+drXvjbq+r/85S/ZsWNHOjs7c9999+XYMT9wBODsOnjw1Hd2ne44AAAAADD9jXnH\n1/bt2/Pggw+OOnbhhRemoaEhSVJXV5dDhw6NOl+pVEbOv35NpVJJknziE5/IE088Mer6K6+8Mtdc\nc03e/e53Z926denr68unPvWpiX0iAHgTGhurGRg4OXI1NnrGFwAAAADMVGOGr7a2trS1tY061t3d\nncHBwSTJ4OBgFixYMOp8fX39yPnXr/nfEPZGy5cvH3mPZcuW5dFHHz3jTOefPz+zZ88aa3RgEjU1\nnf7/OExH112XPPBAUv2fzlVTc+J4U9PUzcXks7+Amcr+AmYyOwyYqewvmP4m9IyvxYsX57HHHsvC\nhQuzc+fOLFmyZNT5hQsXZsOGDTly5EiGhoayf//+tLS0nPK9qtVqPvnJT6avry/vete7smfPnrzv\nfe8749cfGHh1ImMDZ0lTU0P6+w+NfSFMI/PmJddff+KZXgcP1qSxsZorrhjOvHnV9PdP9XRMFvsL\nmKnsL2Ams8OAmcr+gunjTBF6QuGro6Mjq1evTkdHR2pra9Pb25sk2bx5c5qbm7Ns2bJ0dXWls7Mz\n1Wo1q1atyty5c0/5XjU1Nbn77rvT3d2defPm5dJLL81NN900kbEAYFwuuqiatjbPlQQAAACAUtRU\nq9UZ9zATVR2mF7/tAsxU9hcwU9lfwExmhwEzlf0F08eZ7vg6ZxLnAAAAAAAAgLNG+AIAAAAAAKAI\nwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCII\nXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8\nAQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAF\nAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcA\nAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAA\nAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAAAABAEYQvAAAAAAAAiiB8AQAA\nAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAAAABFEL4AAAAAAAAogvAFAAAA\nAABAEYQvAAAAAAAAiiB8AQAAAAAAUAThCwAAAAAAgCIIXwAAAAAAABRB+AIAAAAAAKAIwhcAAAAA\nAABFEL4AAAAAAAAogvAFAAAAAABAEWZP5B+99tpr6enpycsvv5y6urqsX78+F1xwwahrtm3blr6+\nvsyePTu33HJLrr766hw6dCg9PT2pVCo5evRo1qxZk0WLFmXfvn255557MmvWrLS2tqa7u/v/5cMB\nAAAAAADw9jGhO762bt2alpaWPPzww7nhhhuycePGUef7+/uzZcuW9PX15Qc/+EG+9a1vZWhoKJs3\nb84HP/jBPPTQQ7n33nvz9a9/PUmybt269Pb2ZuvWrXnqqafy17/+9a1/MgAAAAAAAN5WJhS+9u7d\nm6VLlyZJrrrqquzZs2fU+aeffjqLFi3KnDlz0tDQkObm5jz77LO5+eab097eniQZHh7O3LlzU6lU\nMjQ0lObm5tTU1KS1tTW7d+9+ix8LAAAAAACAt5sx/9Th9u3b8+CDD446duGFF6ahoSFJUldXl0OH\nDo06X6lURs6/fk2lUsmCBQuSnLgjrKenJ3feeWcqlUrq6+tHXfvPf/5z4p8IAAAAAACAt6Uxw1db\nW1va2tpGHevu7s7g4GCSZHBwcCRova6+vn7k/OvXvB7C/v73v+fLX/5yvvKVr+QDH/hAKpXKSde+\n8f3e6Pzz52f27FljjQ5MoqamhrEvApiG7C9gprK/gJnMDgNmKvsLpr8xw9epLF68OI899lgWLlyY\nnTt3ZsmSJaPOL1y4MBs2bMiRI0cyNDSU/fv3p6WlJf/4xz9y2223ZcOGDXnve9+b5EQkq62tzQsv\nvJCLL744u3btSnd39xm//sDAqxMZGzhLmpoa0t9/aOwLAaYZ+wuYqewvYCazw4CZyv6C6eNMEXpC\n4aujoyOrV69OR0dHamtr09vbmyTZvHlzmpubs2zZsnR1daWzszPVajWrVq3K3Llz09vbm6Ghodxz\nzz1JTkSv+++/P3fddVfuuOOODA8Pp7W1NZdffvlExgIAAAAAAOBtrKZarVaneojxUtVhevHbLsBM\nZX8BM5X9BcxkdhgwU9lfMH2c6Y6vcyZxDgAAAAAAADhrhC8AAAAAAACKIHwBAAAAAABQBOELAAAA\nAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAA\nAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAA\nACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACAIghfAAAAAAAAFEH4AgAAAAAA\noAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOELAAAAAACA\nIghfAAAAAAAAFKGmWq1Wp3oIAAAAAAAAeKvc8QUAAAAAAEARhC8AAAAAAACKIHwBAAAAAABQBOEL\nAAAAAACAIghfAAAAAAAAFEH4AgAAAAAAoAjCFzCmp556Kl1dXScd/+1vf5vly5dn5cqV2bZtW5Lk\n6NGjuf3229Pe3p7Ozs7s379/sscFGHG6/ZUkhw8fTnt7+8ieOn78eNauXZuVK1emq6srzz///GSO\nCnCS8eywo0ePpqenJ52dnVmxYkV+85vfTOaoAKOMZ3+97uWXX86HPvQh30MCU2q8++u73/1uVq5c\nmRtvvDHbt2+frDGBMcye6gGA6e373/9+HnnkkZx77rmjjh89ejT33ntvfvKTn+Tcc89NR0dHPvKR\nj2Tfvn05duxY+vr68vjjj2fDhg359re/PUXTA29np9tfSfLnP/8569aty0svvTRy7Ne//nWGhoby\n4x//OPv27ct9992X+++/fzJHBhgx3h32yCOPpLGxMd/85jdz8ODB3HDDDVm2bNlkjgyQZPz7Kznx\n/eXatWszb968yRoT4CTj3V9PPPFE/vSnP2Xr1q05fPhwHnjggckcFzgDd3wBZ9Tc3HzKcLV///40\nNzfnvPPOy5w5c7JkyZI8+eSTec973pPh4eEcP348lUols2fr68DUON3+SpKhoaF85zvfySWXXDJy\nbO/evVm6dGmS5P3vf3+eeeaZSZkT4FTGu8M+9rGP5bbbbkuSVKvVzJo1a1LmBHij8e6vJFm/fn3a\n29vzjne8YzJGBDil8e6vXbt2paWlJV/4whfy+c9/Ph/+8IcnaVJgLH4iDZzRtddemxdffPGk45VK\nJQ0NDSOv6+rqUqlUMn/+/Bw4cCAf//jHMzAwkE2bNk3muAAjTre/kmTJkiUnHatUKqmvrx95PWvW\nrBw7dkzAB6bEeHdYXV1dkhO77Itf/GK+9KUvndX5AE5nvPvrpz/9aS644IIsXbo03/ve9872eACn\nNd79NTAwkH/961/ZtGlTXnzxxdxyyy355S9/mZqamrM9KjAGd3wBE1JfX5/BwcGR14ODg2loaMgP\nf/jDtLa25tFHH83PfvazrFmzJkeOHJnCSQHenDfutePHj4tewIzy73//O5/+9Kdz/fXX57rrrpvq\ncQDelB07dmT37t3p6urK3/72t6xevTr9/f1TPRbAmBobG9Pa2po5c+bkkksuydy5c/PKK69M9VhA\nhC9ggi699NI8//zzOXjwYIaGhvLHP/4xixYtyoIFC0buBDvvvPNy7NixDA8PT/G0AGNbvHhxdu7c\nmSTZt29fWlpapngigDfvP//5Tz7zmc+kp6cnK1asmOpxAN60H/3oR3nooYeyZcuWXHbZZVm/fn2a\nmpqmeiyAMS1ZsiS///3vU61W89JLL+Xw4cNpbGyc6rGA+FOHwDj9/Oc/z6uvvpqVK1dmzZo1+exn\nP5tqtZrly5fnne98Z26++ebceeed6ezszNGjR7Nq1arMnz9/qscGGLW/TuWjH/1oHn/88bS3t6da\nreYb3/jGJE8IcHpj7bBNmzblv//9bzZu3JiNGzcmOfGA9nnz5k3mmAAnGWt/AUxXY+2vq6++Ok8+\n+WRWrFiRarWatWvXes4qTBM11Wq1OtVDAAAAAAAAwFvlTx0CAAAAAABQBOELAAAAAACAIghfAAAA\nAAAAFEH4AgAAAAAAoAjCFwAAAAAAAEUQvgAAAAAAACiC8AUAAAAAAEARhC8AAAAAAACK8H9dl4+0\nTpgCWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg = linear_model.Ridge (alpha = .5)\n", + "reg.fit(X_train, y_train) \n", + "reg.coef_\n", + "\n", + "\n", + "df_coeff = pd.DataFrame(columns=cols\n", + " , data=[list(reg.coef_)]\n", + " , index=[\"ridge regression coefficients\"])\n", + "\n", + "\n", + "\n", + "# predict all examples and compare to actuals\n", + "plt.scatter(reg.predict(X_test), y_test)\n", + "plt.xlabel(\"predicted\")\n", + "plt.ylabel(\"actual\")\n", + "plt.title(\"predicted v actual close_bid\")\n", + "plt.show()\n", + "\n", + "\n", + "df_coeff.sort_values(by='ridge regression coefficients', axis=1)\n", + "\n", + "print(\"mse train all feature: \", np.mean((reg.predict(X_train) - y_train) ** 2))\n", + "print(\"mse test all feature: \", np.mean((reg.predict(X_test) - y_test) ** 2))\n", + "\n", + "plt.figure(figsize=(30,10))\n", + "plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train, c='b', s=40, alpha=0.5)\n", + "plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test, c='g', s=40)\n", + "plt.hlines(y=0, xmin=1.07, xmax = 1.17)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run LSTM Model to predict close bid in next 15 min\n", + "- scale features to range 0-1 to speed up convergence\n", + "- set a larger lookback windows, so LSTM has something to work with and can take a decision which part of history to prioritise\n", + "- todo: make it do error on the sign- for that need to get the sign between next and X[bid]\n", + "- 1% test size, 10% of 99% validation size\n", + "- try to also predict direction. y_pred - X_test close versus y_act - X_test close" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict sign only" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y_orig = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " #y_return_sign = np.sign(y[:,idx_close_bid] - X[:,0,idx_close_bid]) # these are the actuals\n", + " y_return_sign = y_orig[:,idx_close_bid] - X[:,0,idx_close_bid] # these are the actuals\n", + " y = np.sign(y_return_sign) # an array of -1, 1 and 0\n", + "\n", + " y = pd.get_dummies(y).values.astype('float32')\n", + "\n", + "\n", + "\n", + " # need to create a binarised vector, one positive class, one negative class\n", + " #y_pred_return_sign = # comes from model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict exact price value" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Scale and create datasets\n", + " idx_close_bid = df.columns.tolist().index('close_bid')\n", + " #idx_high = df.columns.tolist().index('high_bid')\n", + " #idx_low = df.columns.tolist().index('low_bid')\n", + " df_np = df.values.astype('float32')\n", + "\n", + " # Scale the examples\n", + " df_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " df_scaled = df_scaler.fit_transform(df_np)\n", + "\n", + " # Scale the actuals columns, but not the real values\n", + " y_scaler = MinMaxScaler(feature_range=(0, 1))\n", + " t_y = df['close_bid'].values.astype('float32')\n", + " t_y = np.reshape(t_y, (-1, 1))\n", + " y_scaler = y_scaler.fit(t_y) # create a fitted y scaler\n", + "\n", + " # Set look_back to 20 which is 5 hours (15min*20)\n", + " X, y = create_training_set(df_scaled, nb_lookback_rows=40)\n", + " y = y[:,idx_close_bid]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10163, 40, 20)\n", + "(10163,)\n", + "(10061, 40, 20)\n", + "(102, 40, 20)\n", + "(10061,)\n", + "(102,)\n" + ] + } + ], + "source": [ + "# Set training data size\n", + "# We have a large enough dataset. So divid into 99% training and val (10% of those 99%) / 1% test set\n", + "import sklearn\n", + "sklearn.__version__\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.01, shuffle=False) \n", + "check_shape(X, y, X_train, X_test, y_train, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.backend import categorical_crossentropy\n", + "# ensure there is a 1st derivative! else get none error\n", + "# it will check in which direction this error goesn down and walk there\n", + "# maybe it has issue because sign is not continuous...\n", + "# just use categorical crossentropy, it does exactly what i need much better\n", + "def ret_direction_error(y_true, y_pred):\n", + " \n", + " # this guy puts everything into numpy before working on it https://stackoverflow.com/questions/46411573/keras-custom-loss-function-not-working\n", + " \n", + " out = categorical_crossentropy(y_true, y_pred)\n", + " \n", + " return out\n", + " \n", + " # y_true is y_train, y_pred is what the model gives me\n", + " # so should set y_true to the return sign? and stop training on absolute value, but make sure sign is right" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_6 (LSTM) (None, 40, 40) 9760 \n", + "_________________________________________________________________\n", + "lstm_7 (LSTM) (None, 40, 20) 4880 \n", + "_________________________________________________________________\n", + "lstm_8 (LSTM) (None, 40, 10) 1240 \n", + "_________________________________________________________________\n", + "lstm_9 (LSTM) (None, 40, 10) 840 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 40, 10) 0 \n", + "_________________________________________________________________\n", + "lstm_10 (LSTM) (None, 5) 320 \n", + "_________________________________________________________________\n", + "dense_3 (Dense) (None, 5) 30 \n", + "_________________________________________________________________\n", + "dense_4 (Dense) (None, 1) 6 \n", + "=================================================================\n", + "Total params: 17,076\n", + "Trainable params: 17,076\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Activation, Input, LSTM, Dense\n", + "import keras.backend as K\n", + "import tensorflow as tf\n", + "\n", + "# create a small LSTM network\n", + "# shoudl first input number match nb of lookback rows?\n", + "model = Sequential()\n", + "model.add(LSTM(40, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) # does not take into account nb examples\n", + "model.add(LSTM(20, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True))\n", + "model.add(LSTM(10, return_sequences=True)) # a second layer of 10 really helps get the loos to 7 by 10th epoch\n", + "model.add(Dropout(0.2))\n", + "model.add(LSTM(5, return_sequences=False))\n", + "model.add(Dense(5, kernel_initializer='uniform', activation='relu'))\n", + "\n", + "# for price prediction\n", + "if not runLSTMBinary:\n", + " model.add(Dense(1, kernel_initializer='uniform', activation='relu')) # this compresses everything to one output in the final layer\n", + " #model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse', 'accuracy'])\n", + " \n", + " \n", + "# for direction prediction\n", + "if runLSTMBinary:\n", + " # need a softmax output for category predictions\n", + " model.add(Dense(3, activation=\"softmax\")) \n", + "\n", + " # loss: optimises this - https://keras.io/losses/\n", + " # loss will show up in the history under 'loss'\n", + " model.compile(loss=ret_direction_error, optimizer='adam', metrics=['mae', 'mse', ret_direction_error, 'accuracy'])\n", + " \n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "simname = \"500_epochs_40_lookback_pca_unshuffled_binary\"\n", + "sim_desc = \"added directional errors checking and pca as feature with unshuffled data\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00000: val_mean_squared_error improved from inf to 0.06875, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00001: val_mean_squared_error improved from 0.06875 to 0.01363, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00002: val_mean_squared_error improved from 0.01363 to 0.01334, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00003: val_mean_squared_error improved from 0.01334 to 0.01233, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00004: val_mean_squared_error did not improve\n", + "Epoch 00005: val_mean_squared_error did not improve\n", + "Epoch 00006: val_mean_squared_error improved from 0.01233 to 0.01223, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00007: val_mean_squared_error improved from 0.01223 to 0.00177, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00008: val_mean_squared_error improved from 0.00177 to 0.00150, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00009: val_mean_squared_error improved from 0.00150 to 0.00090, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00010: val_mean_squared_error improved from 0.00090 to 0.00043, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00011: val_mean_squared_error did not improve\n", + "Epoch 00012: val_mean_squared_error did not improve\n", + "Epoch 00013: val_mean_squared_error did not improve\n", + "Epoch 00014: val_mean_squared_error did not improve\n", + "Epoch 00015: val_mean_squared_error improved from 0.00043 to 0.00028, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00016: val_mean_squared_error did not improve\n", + "Epoch 00017: val_mean_squared_error did not improve\n", + "Epoch 00018: val_mean_squared_error improved from 0.00028 to 0.00018, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00019: val_mean_squared_error improved from 0.00018 to 0.00017, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00020: val_mean_squared_error did not improve\n", + "Epoch 00021: val_mean_squared_error did not improve\n", + "Epoch 00022: val_mean_squared_error did not improve\n", + "Epoch 00023: val_mean_squared_error improved from 0.00017 to 0.00012, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00024: val_mean_squared_error did not improve\n", + "Epoch 00025: val_mean_squared_error did not improve\n", + "Epoch 00026: val_mean_squared_error did not improve\n", + "Epoch 00027: val_mean_squared_error did not improve\n", + "Epoch 00028: val_mean_squared_error did not improve\n", + "Epoch 00029: val_mean_squared_error did not improve\n", + "Epoch 00030: val_mean_squared_error did not improve\n", + "Epoch 00031: val_mean_squared_error did not improve\n", + "Epoch 00032: val_mean_squared_error did not improve\n", + "Epoch 00033: val_mean_squared_error improved from 0.00012 to 0.00011, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00034: val_mean_squared_error did not improve\n", + "Epoch 00035: val_mean_squared_error did not improve\n", + "Epoch 00036: val_mean_squared_error did not improve\n", + "Epoch 00037: val_mean_squared_error improved from 0.00011 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00038: val_mean_squared_error did not improve\n", + "Epoch 00039: val_mean_squared_error did not improve\n", + "Epoch 00040: val_mean_squared_error did not improve\n", + "Epoch 00041: val_mean_squared_error did not improve\n", + "Epoch 00042: val_mean_squared_error improved from 0.00008 to 0.00008, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00043: val_mean_squared_error improved from 0.00008 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00044: val_mean_squared_error did not improve\n", + "Epoch 00045: val_mean_squared_error improved from 0.00007 to 0.00007, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00046: val_mean_squared_error did not improve\n", + "Epoch 00047: val_mean_squared_error did not improve\n", + "Epoch 00048: val_mean_squared_error did not improve\n", + "Epoch 00049: val_mean_squared_error improved from 0.00007 to 0.00006, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00050: val_mean_squared_error did not improve\n", + "Epoch 00051: val_mean_squared_error did not improve\n", + "Epoch 00052: val_mean_squared_error did not improve\n", + "Epoch 00053: val_mean_squared_error did not improve\n", + "Epoch 00054: val_mean_squared_error did not improve\n", + "Epoch 00055: val_mean_squared_error did not improve\n", + "Epoch 00056: val_mean_squared_error did not improve\n", + "Epoch 00057: val_mean_squared_error did not improve\n", + "Epoch 00058: val_mean_squared_error did not improve\n", + "Epoch 00059: val_mean_squared_error did not improve\n", + "Epoch 00060: val_mean_squared_error did not improve\n", + "Epoch 00061: val_mean_squared_error improved from 0.00006 to 0.00005, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00062: val_mean_squared_error improved from 0.00005 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00063: val_mean_squared_error did not improve\n", + "Epoch 00064: val_mean_squared_error did not improve\n", + "Epoch 00065: val_mean_squared_error did not improve\n", + "Epoch 00066: val_mean_squared_error did not improve\n", + "Epoch 00067: val_mean_squared_error did not improve\n", + "Epoch 00068: val_mean_squared_error did not improve\n", + "Epoch 00069: val_mean_squared_error did not improve\n", + "Epoch 00070: val_mean_squared_error did not improve\n", + "Epoch 00071: val_mean_squared_error did not improve\n", + "Epoch 00072: val_mean_squared_error improved from 0.00004 to 0.00004, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00073: val_mean_squared_error did not improve\n", + "Epoch 00074: val_mean_squared_error did not improve\n", + "Epoch 00075: val_mean_squared_error did not improve\n", + "Epoch 00076: val_mean_squared_error did not improve\n", + "Epoch 00077: val_mean_squared_error did not improve\n", + "Epoch 00078: val_mean_squared_error did not improve\n", + "Epoch 00079: val_mean_squared_error did not improve\n", + "Epoch 00080: val_mean_squared_error did not improve\n", + "Epoch 00081: val_mean_squared_error did not improve\n", + "Epoch 00082: val_mean_squared_error did not improve\n", + "Epoch 00083: val_mean_squared_error did not improve\n", + "Epoch 00084: val_mean_squared_error did not improve\n", + "Epoch 00085: val_mean_squared_error did not improve\n", + "Epoch 00086: val_mean_squared_error did not improve\n", + "Epoch 00087: val_mean_squared_error did not improve\n", + "Epoch 00088: val_mean_squared_error did not improve\n", + "Epoch 00089: val_mean_squared_error did not improve\n", + "Epoch 00090: val_mean_squared_error did not improve\n", + "Epoch 00091: val_mean_squared_error did not improve\n", + "Epoch 00092: val_mean_squared_error did not improve\n", + "Epoch 00093: val_mean_squared_error did not improve\n", + "Epoch 00094: val_mean_squared_error did not improve\n", + "Epoch 00095: val_mean_squared_error did not improve\n", + "Epoch 00096: val_mean_squared_error did not improve\n", + "Epoch 00097: val_mean_squared_error did not improve\n", + "Epoch 00098: val_mean_squared_error did not improve\n", + "Epoch 00099: val_mean_squared_error did not improve\n", + "Epoch 00100: val_mean_squared_error did not improve\n", + "Epoch 00101: val_mean_squared_error did not improve\n", + "Epoch 00102: val_mean_squared_error did not improve\n", + "Epoch 00103: val_mean_squared_error did not improve\n", + "Epoch 00104: val_mean_squared_error did not improve\n", + "Epoch 00105: val_mean_squared_error did not improve\n", + "Epoch 00106: val_mean_squared_error improved from 0.00004 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00107: val_mean_squared_error did not improve\n", + "Epoch 00108: val_mean_squared_error did not improve\n", + "Epoch 00109: val_mean_squared_error did not improve\n", + "Epoch 00110: val_mean_squared_error did not improve\n", + "Epoch 00111: val_mean_squared_error did not improve\n", + "Epoch 00112: val_mean_squared_error did not improve\n", + "Epoch 00113: val_mean_squared_error did not improve\n", + "Epoch 00114: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00115: val_mean_squared_error did not improve\n", + "Epoch 00116: val_mean_squared_error did not improve\n", + "Epoch 00117: val_mean_squared_error did not improve\n", + "Epoch 00118: val_mean_squared_error did not improve\n", + "Epoch 00119: val_mean_squared_error did not improve\n", + "Epoch 00120: val_mean_squared_error did not improve\n", + "Epoch 00121: val_mean_squared_error did not improve\n", + "Epoch 00122: val_mean_squared_error did not improve\n", + "Epoch 00123: val_mean_squared_error did not improve\n", + "Epoch 00124: val_mean_squared_error did not improve\n", + "Epoch 00125: val_mean_squared_error did not improve\n", + "Epoch 00126: val_mean_squared_error did not improve\n", + "Epoch 00127: val_mean_squared_error did not improve\n", + "Epoch 00128: val_mean_squared_error did not improve\n", + "Epoch 00129: val_mean_squared_error did not improve\n", + "Epoch 00130: val_mean_squared_error did not improve\n", + "Epoch 00131: val_mean_squared_error did not improve\n", + "Epoch 00132: val_mean_squared_error did not improve\n", + "Epoch 00133: val_mean_squared_error did not improve\n", + "Epoch 00134: val_mean_squared_error did not improve\n", + "Epoch 00135: val_mean_squared_error did not improve\n", + "Epoch 00136: val_mean_squared_error did not improve\n", + "Epoch 00137: val_mean_squared_error did not improve\n", + "Epoch 00138: val_mean_squared_error did not improve\n", + "Epoch 00139: val_mean_squared_error did not improve\n", + "Epoch 00140: val_mean_squared_error did not improve\n", + "Epoch 00141: val_mean_squared_error did not improve\n", + "Epoch 00142: val_mean_squared_error did not improve\n", + "Epoch 00143: val_mean_squared_error did not improve\n", + "Epoch 00144: val_mean_squared_error did not improve\n", + "Epoch 00145: val_mean_squared_error did not improve\n", + "Epoch 00146: val_mean_squared_error did not improve\n", + "Epoch 00147: val_mean_squared_error did not improve\n", + "Epoch 00148: val_mean_squared_error did not improve\n", + "Epoch 00149: val_mean_squared_error did not improve\n", + "Epoch 00150: val_mean_squared_error did not improve\n", + "Epoch 00151: val_mean_squared_error did not improve\n", + "Epoch 00152: val_mean_squared_error did not improve\n", + "Epoch 00153: val_mean_squared_error did not improve\n", + "Epoch 00154: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00155: val_mean_squared_error did not improve\n", + "Epoch 00156: val_mean_squared_error did not improve\n", + "Epoch 00157: val_mean_squared_error did not improve\n", + "Epoch 00158: val_mean_squared_error did not improve\n", + "Epoch 00159: val_mean_squared_error did not improve\n", + "Epoch 00160: val_mean_squared_error did not improve\n", + "Epoch 00161: val_mean_squared_error did not improve\n", + "Epoch 00162: val_mean_squared_error did not improve\n", + "Epoch 00163: val_mean_squared_error did not improve\n", + "Epoch 00164: val_mean_squared_error did not improve\n", + "Epoch 00165: val_mean_squared_error did not improve\n", + "Epoch 00166: val_mean_squared_error did not improve\n", + "Epoch 00167: val_mean_squared_error did not improve\n", + "Epoch 00168: val_mean_squared_error did not improve\n", + "Epoch 00169: val_mean_squared_error did not improve\n", + "Epoch 00170: val_mean_squared_error did not improve\n", + "Epoch 00171: val_mean_squared_error did not improve\n", + "Epoch 00172: val_mean_squared_error did not improve\n", + "Epoch 00173: val_mean_squared_error did not improve\n", + "Epoch 00174: val_mean_squared_error did not improve\n", + "Epoch 00175: val_mean_squared_error did not improve\n", + "Epoch 00176: val_mean_squared_error did not improve\n", + "Epoch 00177: val_mean_squared_error improved from 0.00003 to 0.00003, saving model to 500_epochs_40_lookback_pca_unshuffled_binary.weights.best.hdf5\n", + "Epoch 00178: val_mean_squared_error did not improve\n", + "Epoch 00179: val_mean_squared_error did not improve\n", + "Epoch 00180: val_mean_squared_error did not improve\n", + "Epoch 00181: val_mean_squared_error did not improve\n", + "Epoch 00182: val_mean_squared_error did not improve\n", + "Epoch 00183: val_mean_squared_error did not improve\n", + "Epoch 00184: val_mean_squared_error did not improve\n", + "Epoch 00185: val_mean_squared_error did not improve\n", + "Epoch 00186: val_mean_squared_error did not improve\n", + "Epoch 00187: val_mean_squared_error did not improve\n", + "Epoch 00188: val_mean_squared_error did not improve\n", + "Epoch 00189: val_mean_squared_error did not improve\n", + "Epoch 00190: val_mean_squared_error did not improve\n", + "Epoch 00191: val_mean_squared_error did not improve\n", + "Epoch 00192: val_mean_squared_error did not improve\n", + "Epoch 00193: val_mean_squared_error did not improve\n", + "Epoch 00194: val_mean_squared_error did not improve\n", + "Epoch 00195: val_mean_squared_error did not improve\n", + "Epoch 00196: val_mean_squared_error did not improve\n", + "Epoch 00197: val_mean_squared_error did not improve\n", + "Epoch 00198: val_mean_squared_error did not improve\n", + "Epoch 00199: val_mean_squared_error did not improve\n", + "Epoch 00200: val_mean_squared_error did not improve\n", + "Epoch 00201: val_mean_squared_error did not improve\n", + "Epoch 00202: val_mean_squared_error did not improve\n", + "Epoch 00203: val_mean_squared_error did not improve\n", + "Epoch 00204: val_mean_squared_error did not improve\n", + "Epoch 00205: val_mean_squared_error did not improve\n", + "Epoch 00206: val_mean_squared_error did not improve\n", + "Epoch 00207: val_mean_squared_error did not improve\n", + "Epoch 00208: val_mean_squared_error did not improve\n", + "Epoch 00209: val_mean_squared_error did not improve\n", + "Epoch 00210: val_mean_squared_error did not improve\n", + "Epoch 00211: val_mean_squared_error did not improve\n", + "Epoch 00212: val_mean_squared_error did not improve\n", + "Epoch 00213: val_mean_squared_error did not improve\n", + "Epoch 00214: val_mean_squared_error did not improve\n", + "Epoch 00215: val_mean_squared_error did not improve\n", + "Epoch 00216: val_mean_squared_error did not improve\n", + "Epoch 00217: val_mean_squared_error did not improve\n", + "Epoch 00218: val_mean_squared_error did not improve\n", + "Epoch 00219: val_mean_squared_error did not improve\n", + "Epoch 00220: val_mean_squared_error did not improve\n", + "Epoch 00221: val_mean_squared_error did not improve\n", + "Epoch 00222: val_mean_squared_error did not improve\n", + "Epoch 00223: val_mean_squared_error did not improve\n", + "Epoch 00224: val_mean_squared_error did not improve\n", + "Epoch 00225: val_mean_squared_error did not improve\n", + "Epoch 00226: val_mean_squared_error did not improve\n", + "Epoch 00227: val_mean_squared_error did not improve\n", + "Epoch 00228: val_mean_squared_error did not improve\n", + "Epoch 00229: val_mean_squared_error did not improve\n", + "Epoch 00230: val_mean_squared_error did not improve\n", + "Epoch 00231: val_mean_squared_error did not improve\n", + "Epoch 00232: val_mean_squared_error did not improve\n", + "Epoch 00233: val_mean_squared_error did not improve\n", + "Epoch 00234: val_mean_squared_error did not improve\n", + "Epoch 00235: val_mean_squared_error did not improve\n", + "Epoch 00236: val_mean_squared_error did not improve\n", + "Epoch 00237: val_mean_squared_error did not improve\n", + "Epoch 00238: val_mean_squared_error did not improve\n", + "Epoch 00239: val_mean_squared_error did not improve\n", + "Epoch 00240: val_mean_squared_error did not improve\n", + "Epoch 00241: val_mean_squared_error did not improve\n", + "Epoch 00242: val_mean_squared_error did not improve\n", + "Epoch 00243: val_mean_squared_error did not improve\n", + "Epoch 00244: val_mean_squared_error did not improve\n", + "Epoch 00245: val_mean_squared_error did not improve\n", + "Epoch 00246: val_mean_squared_error did not improve\n", + "Epoch 00247: val_mean_squared_error did not improve\n", + "Epoch 00248: val_mean_squared_error did not improve\n", + "Epoch 00249: val_mean_squared_error did not improve\n", + "Epoch 00250: val_mean_squared_error did not improve\n", + "Epoch 00251: val_mean_squared_error did not improve\n", + "Epoch 00252: val_mean_squared_error did not improve\n", + "Epoch 00253: val_mean_squared_error did not improve\n", + "Epoch 00254: val_mean_squared_error did not improve\n", + "Epoch 00255: val_mean_squared_error did not improve\n", + "Epoch 00256: val_mean_squared_error did not improve\n", + "Epoch 00257: val_mean_squared_error did not improve\n", + "Epoch 00258: val_mean_squared_error did not improve\n", + "Epoch 00259: val_mean_squared_error did not improve\n", + "Epoch 00260: val_mean_squared_error did not improve\n", + "Epoch 00261: val_mean_squared_error did not improve\n", + "Epoch 00262: val_mean_squared_error did not improve\n", + "Epoch 00263: val_mean_squared_error did not improve\n", + "Epoch 00264: val_mean_squared_error did not improve\n", + "Epoch 00265: val_mean_squared_error did not improve\n", + "Epoch 00266: val_mean_squared_error did not improve\n", + "Epoch 00267: val_mean_squared_error did not improve\n", + "Epoch 00268: val_mean_squared_error did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00269: val_mean_squared_error did not improve\n", + "Epoch 00270: val_mean_squared_error did not improve\n", + "Epoch 00271: val_mean_squared_error did not improve\n", + "Epoch 00272: val_mean_squared_error did not improve\n", + "Epoch 00273: val_mean_squared_error did not improve\n", + "Epoch 00274: val_mean_squared_error did not improve\n", + "Epoch 00275: val_mean_squared_error did not improve\n", + "Epoch 00276: val_mean_squared_error did not improve\n", + "Epoch 00277: val_mean_squared_error did not improve\n", + "Epoch 00278: val_mean_squared_error did not improve\n", + "Epoch 00279: val_mean_squared_error did not improve\n", + "Epoch 00280: val_mean_squared_error did not improve\n", + "Epoch 00281: val_mean_squared_error did not improve\n", + "Epoch 00282: val_mean_squared_error did not improve\n", + "Epoch 00283: val_mean_squared_error did not improve\n", + "Epoch 00284: val_mean_squared_error did not improve\n", + "Epoch 00285: val_mean_squared_error did not improve\n", + "Epoch 00286: val_mean_squared_error did not improve\n", + "Epoch 00287: val_mean_squared_error did not improve\n", + "Epoch 00288: val_mean_squared_error did not improve\n", + "Epoch 00289: val_mean_squared_error did not improve\n", + "Epoch 00290: val_mean_squared_error did not improve\n", + "Epoch 00291: val_mean_squared_error did not improve\n", + "Epoch 00292: val_mean_squared_error did not improve\n", + "Epoch 00293: val_mean_squared_error did not improve\n", + "Epoch 00294: val_mean_squared_error did not improve\n", + "Epoch 00295: val_mean_squared_error did not improve\n", + "Epoch 00296: val_mean_squared_error did not improve\n", + "Epoch 00297: val_mean_squared_error did not improve\n", + "Epoch 00298: val_mean_squared_error did not improve\n", + "Epoch 00299: val_mean_squared_error did not improve\n", + "Epoch 00300: val_mean_squared_error did not improve\n", + "Epoch 00301: val_mean_squared_error did not improve\n", + "Epoch 00302: val_mean_squared_error did not improve\n", + "Epoch 00303: val_mean_squared_error did not improve\n", + "Epoch 00304: val_mean_squared_error did not improve\n", + "Epoch 00305: val_mean_squared_error did not improve\n", + "Epoch 00306: val_mean_squared_error did not improve\n", + "Epoch 00307: val_mean_squared_error did not improve\n", + "Epoch 00308: val_mean_squared_error did not improve\n", + "Epoch 00309: val_mean_squared_error did not improve\n", + "Epoch 00310: val_mean_squared_error did not improve\n", + "Epoch 00311: val_mean_squared_error did not improve\n", + "Epoch 00312: val_mean_squared_error did not improve\n", + "Epoch 00313: val_mean_squared_error did not improve\n", + "Epoch 00314: val_mean_squared_error did not improve\n", + "Epoch 00315: val_mean_squared_error did not improve\n", + "Epoch 00316: val_mean_squared_error did not improve\n", + "Epoch 00317: val_mean_squared_error did not improve\n", + "Epoch 00318: val_mean_squared_error did not improve\n", + "Epoch 00319: val_mean_squared_error did not improve\n", + "Epoch 00320: val_mean_squared_error did not improve\n", + "Epoch 00321: val_mean_squared_error did not improve\n", + "Epoch 00322: val_mean_squared_error did not improve\n", + "Epoch 00323: val_mean_squared_error did not improve\n", + "Epoch 00324: val_mean_squared_error did not improve\n", + "Epoch 00325: val_mean_squared_error did not improve\n", + "Epoch 00326: val_mean_squared_error did not improve\n", + "Epoch 00327: val_mean_squared_error did not improve\n", + "Epoch 00328: val_mean_squared_error did not improve\n", + "Epoch 00329: val_mean_squared_error did not improve\n", + "Epoch 00330: val_mean_squared_error did not improve\n", + "Epoch 00331: val_mean_squared_error did not improve\n", + "Epoch 00332: val_mean_squared_error did not improve\n", + "Epoch 00333: val_mean_squared_error did not improve\n", + "Epoch 00334: val_mean_squared_error did not improve\n", + "Epoch 00335: val_mean_squared_error did not improve\n", + "Epoch 00336: val_mean_squared_error did not improve\n", + "Epoch 00337: val_mean_squared_error did not improve\n", + "Epoch 00338: val_mean_squared_error did not improve\n", + "Epoch 00339: val_mean_squared_error did not improve\n", + "Epoch 00340: val_mean_squared_error did not improve\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 21\u001b[0m \"\"\"\n\u001b[1;32m 22\u001b[0m \u001b[0mcallbacks_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mmagic\u001b[0;34m(self, arg_s)\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0marg_s\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpartition\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m' '\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2157\u001b[0m \u001b[0mmagic_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprefilter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mESC_MAGIC\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2158\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmagic_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2159\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2160\u001b[0m \u001b[1;31m#-------------------------------------------------------------------------\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py\u001b[0m in \u001b[0;36mrun_line_magic\u001b[0;34m(self, magic_name, line)\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'local_ns'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msys\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstack_depth\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_locals\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2078\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2079\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2080\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2081\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magic.py\u001b[0m in \u001b[0;36m\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[1;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 188\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 189\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\IPython\\core\\magics\\execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[0mst\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1180\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1181\u001b[0m \u001b[0mend\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1182\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\models.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1428\u001b[0m \u001b[0mval_f\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1429\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1430\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1431\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1432\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m32\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1077\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1078\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1079\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1080\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1081\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2266\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[1;32m 2267\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2268\u001b[0;31m **self.session_kwargs)\n\u001b[0m\u001b[1;32m 2269\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 2270\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1124\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m return self._do_call(_run_fn, self._session, feeds, fetches, targets,\n\u001b[0;32m-> 1321\u001b[0;31m options, run_metadata)\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1325\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1327\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1328\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1329\u001b[0m \u001b[0mmessage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;32mC:\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1304\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1305\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1306\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1307\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1308\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "\n", + "# Save the best weight during training. Cant handel custom functions for errors\n", + "from keras.callbacks import ModelCheckpoint\n", + "epoch = 500\n", + "\n", + "# write custom errors as string, they seem to refer to the key in err.history dict\n", + "if not runLSTMBinary:\n", + " #checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_absolute_error', verbose=1, save_best_only=True, mode='min')\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "if runLSTMBinary:\n", + " checkpoint = ModelCheckpoint(simname + \".weights.best.hdf5\", monitor='val_ret_direction_error', verbose=1, save_best_only=True, mode='min')\n", + "\n", + "# Fit\n", + "\"\"\"\n", + "it seems batch size controls convergence speed a lot! Batch size tells how many examples are propagated through the network.\n", + "Weights are adjusted based on results with these examples. This is useful if the full dataset takes too much memory\n", + "It also speeds up training, as you will converge quicker (dont have to wait for a full iteration of each example to adjust weights).\n", + "\n", + "With more features to train on, convergence seems slower. To get to the same level, i take more epochs.\n", + "\"\"\"\n", + "callbacks_list = [checkpoint]\n", + "%time err = model.fit(X_train, y_train, epochs=epoch, batch_size=100, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors\n", + "- it converges to a low number very fast - how can i get more detail\n", + "- but if i split using cross val split with random state, it takes ages to converge. Maybe i should only allow training on the past, as the model will always be used to predict the future. So training on random parts of the timeseries to predict other random parts might destroy historical trends that influence the future, and can be learned by the model.\n", + "- train it on directional error for more useful results. Need y_train - X_train[:,idx_close_bid] as feature and evaluate against y_true - X_train[:,idx_close_bid]\n", + "- it seems the model always predicts negative, so column zero\n", + "- its easier to optimise over mse than mae, because values bigger and would decline more, so better gradients.\n", + "\n", + "Issues:\n", + "- cannot checkpoint custom error functions\n", + "- cannot write custom error functions\n", + "- cannot debug custom error functions" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 4945.484375\n", + "dtype: float32\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
acclossmean_absolute_errormean_squared_errorval_accval_lossval_mean_absolute_errorval_mean_squared_error
00.0002210.1087670.1087670.0189830.00.1212100.1212100.019710
10.0002210.0756780.0756780.0094180.00.0640850.0640850.005192
20.0002210.0464990.0464990.0038530.00.0754620.0754620.006855
30.0002210.0398160.0398160.0027670.00.0238180.0238180.000790
40.0002210.0394820.0394820.0027680.00.0303280.0303280.001532
50.0002210.0339490.0339490.0022120.00.0319650.0319650.001608
60.0002210.0329270.0329270.0020760.00.0202860.0202860.000780
70.0002210.0322030.0322030.0019550.00.0211500.0211500.000868
80.0002210.0304790.0304790.0017980.00.0198700.0198700.000778
90.0002210.0305250.0305250.0017650.00.0190430.0190430.000673
100.0002210.0315370.0315370.0018420.00.0405430.0405430.002230
110.0002210.0297220.0297220.0016960.00.0202450.0202450.000786
120.0002210.0284030.0284030.0015800.00.0353590.0353590.001807
130.0002210.0276800.0276800.0015060.00.0384400.0384400.002015
140.0002210.0272890.0272890.0014640.00.0305350.0305350.001432
150.0002210.0269030.0269030.0013940.00.0203030.0203030.000738
160.0002210.0259390.0259390.0012880.00.0205240.0205240.000752
170.0002210.0266590.0266590.0012940.00.0230200.0230200.000686
180.0002210.0267420.0267420.0013020.00.0226340.0226340.000842
190.0002210.0236880.0236880.0010610.00.0190730.0190730.000619
\n", + "
" + ], + "text/plain": [ + " acc loss mean_absolute_error mean_squared_error val_acc \\\n", + "0 0.000221 0.108767 0.108767 0.018983 0.0 \n", + "1 0.000221 0.075678 0.075678 0.009418 0.0 \n", + "2 0.000221 0.046499 0.046499 0.003853 0.0 \n", + "3 0.000221 0.039816 0.039816 0.002767 0.0 \n", + "4 0.000221 0.039482 0.039482 0.002768 0.0 \n", + "5 0.000221 0.033949 0.033949 0.002212 0.0 \n", + "6 0.000221 0.032927 0.032927 0.002076 0.0 \n", + "7 0.000221 0.032203 0.032203 0.001955 0.0 \n", + "8 0.000221 0.030479 0.030479 0.001798 0.0 \n", + "9 0.000221 0.030525 0.030525 0.001765 0.0 \n", + "10 0.000221 0.031537 0.031537 0.001842 0.0 \n", + "11 0.000221 0.029722 0.029722 0.001696 0.0 \n", + "12 0.000221 0.028403 0.028403 0.001580 0.0 \n", + "13 0.000221 0.027680 0.027680 0.001506 0.0 \n", + "14 0.000221 0.027289 0.027289 0.001464 0.0 \n", + "15 0.000221 0.026903 0.026903 0.001394 0.0 \n", + "16 0.000221 0.025939 0.025939 0.001288 0.0 \n", + "17 0.000221 0.026659 0.026659 0.001294 0.0 \n", + "18 0.000221 0.026742 0.026742 0.001302 0.0 \n", + "19 0.000221 0.023688 0.023688 0.001061 0.0 \n", + "\n", + " val_loss val_mean_absolute_error val_mean_squared_error \n", + "0 0.121210 0.121210 0.019710 \n", + "1 0.064085 0.064085 0.005192 \n", + "2 0.075462 0.075462 0.006855 \n", + "3 0.023818 0.023818 0.000790 \n", + "4 0.030328 0.030328 0.001532 \n", + "5 0.031965 0.031965 0.001608 \n", + "6 0.020286 0.020286 0.000780 \n", + "7 0.021150 0.021150 0.000868 \n", + "8 0.019870 0.019870 0.000778 \n", + "9 0.019043 0.019043 0.000673 \n", + "10 0.040543 0.040543 0.002230 \n", + "11 0.020245 0.020245 0.000786 \n", + "12 0.035359 0.035359 0.001807 \n", + "13 0.038440 0.038440 0.002015 \n", + "14 0.030535 0.030535 0.001432 \n", + "15 0.020303 0.020303 0.000738 \n", + "16 0.020524 0.020524 0.000752 \n", + "17 0.023020 0.023020 0.000686 \n", + "18 0.022634 0.022634 0.000842 \n", + "19 0.019073 0.019073 0.000619 " + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#pd.DataFrame(model.predict(X_train))\n", + "print(pd.DataFrame(y_train).sum()) # classes are quite balanced\n", + "pd.DataFrame(err.history)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err.history[error_metric])\n", + " plt.plot(err.history['val_' + error_metric])\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Rerun LSTM with decaying learning rate:\n", + "\n", + "As seen from the above, the model seems to have converged nicely, but the mean absolute error on the development data remains at ~0.003X which means the model is unusable in practice. Ideally, we want to get ~0.0005. Let's go back to the best weight, and decay the learning rate while retraining the model\n", + "\n", + "We need this to get inside the average bid offer spread for EUR/USD, so 1.10115 - 1.10110. But lets not forget the data is scaled. Maybe it looks better when we unscale it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "# tune model by starting from best weights and rerunning with decaying learning rate\n", + "# Load the weight that worked the best\n", + "model.load_weights(simname+\".weights.best.hdf5\")\n", + "#epoch=60\n", + "\n", + "# Train again with decaying learning rate\n", + "from keras.callbacks import LearningRateScheduler\n", + "import keras.backend as K\n", + "\n", + "def scheduler(epoch):\n", + " if epoch%2==0 and epoch!=0:\n", + " lr = K.get_value(model.optimizer.lr)\n", + " K.set_value(model.optimizer.lr, lr*.9)\n", + " print(\"lr changed to {}\".format(lr*.9))\n", + " return K.get_value(model.optimizer.lr)\n", + "lr_decay = LearningRateScheduler(scheduler) # do sth to learning rate\n", + "\n", + "callbacks_list = [checkpoint, lr_decay] # checkin with these once in a while\n", + "err_decay_lr = model.fit(X_train, y_train, epochs=int(epoch/3), batch_size=500, verbose=0, callbacks=callbacks_list, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check testing errors after decaying learning rate\n", + " - here error chart resolution is better, as we start from the trained model" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest validation MAE: 0.0190429590761\n", + "smallest validation MSE: 0.000619442572553\n", + "decay lr: smallest validation MAE: 0.0123163131533\n", + "decay lr: smallest validation MSE: 0.000265824883329\n" + ] + } + ], + "source": [ + "print(\"smallest validation MAE: \", min(err.history['val_mean_absolute_error']))\n", + "print(\"smallest validation MSE: \", min(err.history['val_mean_squared_error']))\n", + "print(\"decay lr: smallest validation MAE: \", min(err_decay_lr.history['val_mean_absolute_error']))\n", + "print(\"decay lr: smallest validation MSE: \", min(err_decay_lr.history['val_mean_squared_error']))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hideOutput": true, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "for error_metric in list(err_decay_lr.history.keys()):\n", + " if 'val' not in error_metric:\n", + " plt.figure(figsize=(40,10))\n", + " plt.plot(err_decay_lr.history[error_metric]) # this is for train\n", + " plt.plot(err_decay_lr.history['val_' + error_metric]) # this is for test\n", + " plt.title(error_metric, fontsize=30)\n", + " plt.ylabel(error_metric)\n", + " plt.xlabel('epoch')\n", + " plt.legend(['train', 'test'], loc='upper left', fontsize=30)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "The variance should have improved slightly. However, unless the mean absolute error is small enough, the model is not usable in practice. This is mainly due to only using the sample data for training and limiting epoch to a few hundreds.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check scaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#simname = \"500_epochs_40_lookback\"\n", + "model.load_weights(simname+\".weights.best.hdf5\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " # Benchmark\n", + " model.load_weights(simname+\".weights.best.hdf5\")\n", + "\n", + " X_test_pred = model.predict(X_test) # predict on testset\n", + "\n", + " predictions = pd.DataFrame()\n", + " predictions['predicted'] = pd.Series(np.reshape(X_test_pred, (X_test_pred.shape[0])))\n", + " predictions['actual'] = y_test\n", + " predictions = predictions.astype(float)\n", + "\n", + "\n", + " fig, axarr = plt.subplots(1, 2, figsize=(15,5)) #1 row, 2 cols, x, y\n", + " i_row, icol = 0,0\n", + " fig.suptitle(\"predictions on test set\", fontsize=20)\n", + " predictions.plot(ax=axarr[icol])\n", + " axarr[icol].set_title(\"Predicted close vs actual over time\")\n", + "\n", + " icol +=1\n", + " predictions['diff'] = predictions['actual'] - predictions['predicted']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences: actual minus predicted')\n", + " plt.show()\n", + "\n", + " print(\"MSE scaled : \", mean_squared_error(predictions['predicted'].values, predictions['actual'].values))\n", + " print(\"MAE scaled: \", mean_absolute_error(predictions['predicted'].values, predictions['actual'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "## Check unscaled predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#unscale predictions and actuals\n", + "X_test_pred = model.predict(X_test)\n", + "X_test_pred_unscaled = y_scaler.inverse_transform(X_test_pred)\n", + "X_test_pred_unscaled = np.reshape(X_test_pred_unscaled, (X_test_pred_unscaled.shape[0]))\n", + "\n", + "actual = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + "actual = np.reshape(actual, (actual.shape[0]))\n", + "\n", + "predictions = pd.DataFrame()\n", + "predictions['predicted'] = pd.Series(X_test_pred_unscaled)\n", + "predictions['close_bid'] = pd.Series(actual)\n", + "\n", + "\n", + "# get low and high bid from untransformed dataframe\n", + "p = df[-X_test_pred_unscaled.shape[0]:].copy()\n", + "predictions.index = p.index # get the date index from the dataframe\n", + "predictions = predictions.astype(float)\n", + "predictions = predictions.merge(p[['low_bid', 'high_bid']], right_index=True, left_index=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " fig, axarr = plt.subplots(1, 4, figsize=(5,10)) #1 row, 2 cols, x, y\n", + " irow, icol = 0,0\n", + "\n", + " predictions.plot(x=predictions.index, y='close_bid', c='red', figsize=(40,10), ax=axarr[icol])\n", + " predictions.plot(x=predictions.index, y='predicted', c='blue', figsize=(40,10), ax=axarr[icol])\n", + " index = [str(item) for item in predictions.index]\n", + " #plt.fill_between(x=predictions.index, y1='low_bid', y2='high_bid', data=predictions, alpha=0.4)\n", + " axarr[icol].set_title('Prediction vs Actual (low and high as blue region)')\n", + "\n", + " icol += 1\n", + " predictions['diff'] = predictions['predicted'] - predictions['close_bid']\n", + " sns.distplot(predictions['diff'], ax=axarr[icol]);\n", + " axarr[icol].set_title('Distribution of differences between actual and prediction ')\n", + " #plt.savefig(simname+\"__histogram__actual_minus_pred.jpg\")\n", + "\n", + " icol += 1\n", + " sns.kdeplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol])\n", + " #sns.jointplot(predictions[\"diff\"], predictions[\"predicted\"], kind=\"kde\", space=0, ax=axarr[icol]) # must be by itself\n", + " axarr[icol].set_title('Distribution of error and price')\n", + " #plt.savefig(simname+\"__contour__error_v_price.jpg\")\n", + "\n", + "\n", + " icol +=1\n", + " predictions['correct'] = (predictions['predicted'] <= predictions['high_bid']) & (predictions['predicted'] >= predictions['low_bid'])\n", + " predictions.correct.value_counts().plot(kind=\"bar\", ax=axarr[icol])\n", + " axarr[icol].set_title(\"True (in high low range), False prediction counts\")\n", + "\n", + " plt.show()\n", + "\n", + " print(\"MSE unscaled : \", mean_squared_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " print(\"MAE unscaled: \", mean_absolute_error(predictions['predicted'].values, predictions['close_bid'].values))\n", + " #predictions['diff'].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## check binary predictions and confusion matrix\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if runLSTMBinary:\n", + " from sklearn.metrics import confusion_matrix\n", + "\n", + " #check_shape(y_test, model.predict(X_test))\n", + "\n", + " y_pred_class = np.argmax(model.predict(X_test), axis=1) # find position of largest argument\n", + "\n", + " y_test_class = np.argmax(y_test, axis=1)\n", + "\n", + " test_acc = 100 * np.sum(y_pred_class==y_test_class) / len(y_test)\n", + "\n", + " print(\"acc \", test_acc )\n", + "\n", + " confusion_matrix(y_pred_class, y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not runLSTMBinary:\n", + " df_unscaled = df_scaler.inverse_transform(df_scaled)\n", + "\n", + " X_test_unscaled = df_scaler.inverse_transform(np.reshape(X_test[:,0,:], (X_test.shape[0], X_test.shape[2])))\n", + " y_prev = X_test_unscaled[:,idx_close_bid]\n", + "\n", + " y_train_unscaled = y_scaler.inverse_transform(np.reshape(y_train, (y_train.shape[0], 1)))\n", + " y_train_unscaled = np.reshape(y_train_unscaled, (y_train_unscaled.shape[0]))\n", + "\n", + " y_test_unscaled = y_scaler.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))\n", + " y_test_unscaled = np.reshape(y_test_unscaled, (y_test_unscaled.shape[0]))\n", + "\n", + "\n", + " X_train_pred = model.predict(X_train)\n", + " X_train_pred_unscaled = y_scaler.inverse_transform(X_train_pred)\n", + " X_train_pred_unscaled = np.reshape(X_train_pred_unscaled, (X_train_pred_unscaled.shape[0]))\n", + "\n", + " #check_shape(df,y_train_unscaled, y_test_unscaled, X_train_pred_unscaled, X_test_pred_unscaled, y_prev)\n", + "\n", + " df_err = check_error_metrics(df\n", + " , y_train_unscaled, y_test_unscaled\n", + " , X_train_pred_unscaled, X_test_pred_unscaled\n", + " , y_prev)\n", + " #idx_close_bid\n", + " #X_test[:,0,idx_close_bid].shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Sim results:\n", + "- runing at 500 epochs converges a bit better. seems extra features need more time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check logs and compare to previous simulations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log = True\n", + "initval=False\n", + "#sim_desc = \"500 iterations, lookback 40\"\n", + "#simname = \"500_epoch_lookback_40\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "outputs": [], + "source": [ + "from collections import OrderedDict\n", + "list_stats=OrderedDict()\n", + "\n", + "if log:\n", + " #simname= \"linear regression\"\n", + " #sim_desc = \"1 row lookback\"\n", + " \n", + " dict_err= OrderedDict(zip(df_err[0], df_err[1]))\n", + " \n", + " list_stats=OrderedDict()\n", + " \n", + " list_stats[\"simname\"] = simname\n", + " list_stats[\"sim_desc\"] = sim_desc\n", + " list_stats[\"MSE\"] = dict_err[\"mse test all feature: \"]\n", + " list_stats[\"MAE\"] = dict_err[\"mae test all feature: \"]\n", + " \n", + " differences_described = predictions[\"diff\"].describe()\n", + "\n", + " list_stats.update(OrderedDict(differences_described))\n", + " list_stats.update(dict_err)\n", + " \n", + " results = pd.DataFrame([list_stats])\n", + " #results.to_excel(\"log_results.xlsx\")\n", + " if os.path.isfile(\"log_results.xlsx\"):\n", + " log_results = pd.read_excel(\"log_results.xlsx\")\n", + " log_results.loc[len(log_results),:] = list_stats.values()\n", + " log_results.to_excel(\"log_results.xlsx\")\n", + " #log_results\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.read_excel(\"log_results.xlsx\").T" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "celltoolbar": "Hide code", + "hide_code_all_hidden": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "toc_cell": false, + "toc_position": { + "height": "947px", + "left": "0px", + "right": "1568px", + "top": "67px", + "width": "264px" + }, + "toc_section_display": "block", + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/capstone_project/mine_initial.weights.best.hdf5 b/capstone_project/mine_initial.weights.best.hdf5 new file mode 100644 index 0000000..e1d8456 Binary files /dev/null and b/capstone_project/mine_initial.weights.best.hdf5 differ diff --git a/capstone_project/proposal.pdf b/capstone_project/proposal.pdf new file mode 100644 index 0000000..fbc92fd Binary files /dev/null and b/capstone_project/proposal.pdf differ diff --git a/capstone_project/sim_log.xlsx b/capstone_project/sim_log.xlsx new file mode 100644 index 0000000..5f59f5a Binary files /dev/null and b/capstone_project/sim_log.xlsx differ diff --git a/customer_segments/customer_segments.html b/customer_segments/customer_segments.html new file mode 100644 index 0000000..2cdb73e --- /dev/null +++ b/customer_segments/customer_segments.html @@ -0,0 +1,20007 @@ + + + +customer_segments + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Unsupervised Learning

Project: Creating Customer Segments

+
+
+
+
+
+
+
+
+

Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

+

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

+

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in monetary units) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.

+

The dataset for this project can be found on the UCI Machine Learning Repository. For the purposes of this project, the features 'Channel' and 'Region' will be excluded in the analysis — with focus instead on the six product categories recorded for customers.

+

Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

+ +
+
+
+
+
+
In [8]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from IPython.display import display # Allows the use of display() for DataFrames
+
+# Import supplementary visualizations code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the wholesale customers dataset
+try:
+    data = pd.read_csv("customers.csv")
+    data.drop(['Region', 'Channel'], axis = 1, inplace = True)
+    print "Wholesale customers dataset has {} samples with {} features each.".format(*data.shape)
+    print("It shows the spending per wholesale customer on that category per year.")
+    display(pd.DataFrame(data.head(2)))
+except:
+    print "Dataset could not be loaded. Is the dataset missing?"
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Wholesale customers dataset has 440 samples with 6 features each.
+It shows the spending per wholesale customer on that category per year.
+
+
+
+ +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
0126699656756121426741338
1705798109568176232931776
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Data Exploration

In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.

+

Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: 'Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', and 'Delicatessen'. Consider what each category represents in terms of products you could purchase.

+ +
+
+
+
+
+
In [9]:
+
+
+
# Display a description of the dataset
+display(data.describe()) # shows per column statistics from dataset. Columns contain usd values for spending.
+
+from sklearn.preprocessing import StandardScaler
+scaler = StandardScaler()
+
+# normalise columns around mean to check distribution
+norm_data = scaler.fit_transform(data)
+
+norm_data = pd.DataFrame(norm_data, columns=data.columns)
+# plot
+#norm_data.hist(bins=200)
+# they all seems quite biased to low values
+
+# describe
+#display(norm_data.describe())
+
+
+#norm_data.head(10)
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
count440.000000440.000000440.000000440.000000440.000000440.000000
mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
min3.00000055.0000003.00000025.0000003.0000003.000000
25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Selecting Samples

To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add three indices of your choice to the indices list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another.

+ +
+
+
+
+
+
In [27]:
+
+
+
# TODO: Select three indices of your choice you wish to sample from the dataset
+indices = [401, 338, 65]
+
+retailer = data[data["Frozen"]>=9000]
+#print(retailer)
+market = data[data["Detergents_Paper"] >= 8000]
+#print(market)
+
+
+# Create a DataFrame of the chosen samples
+samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)
+print "Chosen samples of wholesale customers dataset:"
+display(samples)
+
+
+# show samples values as bars, also show whole dataset mean values as bars
+import seaborn as sns
+samples = samples.append(data.describe().loc["50%"])
+samples = samples.append(data.describe().loc["mean"])
+samples = samples.append(data.describe().loc["25%"])
+samples = samples.append(data.describe().loc["75%"])
+
+
+samples_as_barchart = samples
+
+#samples_as_barchart = samples
+samples_as_barchart.index = indices + ['median', 'mean', '25%', '75%'] # add mean to x axis
+_ = samples_as_barchart.plot(kind='bar', figsize=(14,6))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Chosen samples of wholesale customers dataset:
+
+
+
+ +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
0132232716719029221282801
1156013550157021333
236851423242314582820959
+
+
+ +
+ +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 1

Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers.
+What kind of establishment (customer) could each of the three samples you've chosen represent?
+Hint: Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying "McDonalds" when describing a sample customer as a restaurant.

+ +
+
+
+
+
+
+
+
+

Answer:

+
    +
  • Example 401 is above median on Fresh, Frozen, Deli, and below on rest. This is could be a food market as it would be higher than the median in those categories .
  • +
  • Example 338 are above mean and median and 75 percentile on Frozen, above median on Grocery, below on rest so could be a fish shop selling frozen fish.
  • +
  • Example 65 is a high multiple of the IQR on Grocery and milk and detergents paper - it could be a very popular cofee shop.
  • +
+ +
+
+
+
+
+
+
+
+

Implementation: Feature Relevance

One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign new_data a copy of the data by removing a feature of your choice using the DataFrame.drop function.
  • +
  • Use sklearn.cross_validation.train_test_split to split the dataset into training and testing sets.
      +
    • Use the removed feature as your target label. Set a test_size of 0.25 and set a random_state.
    • +
    +
  • +
  • Import a decision tree regressor, set a random_state, and fit the learner to the training data.
  • +
  • Report the prediction score of the testing set using the regressor's score function.
  • +
+ +
+
+
+
+
+
In [ ]:
+
+
+
# TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature
+testDependentFeature = "Detergents_Paper"
+
+new_data = data.drop([testDependentFeature], axis=1)
+target = data[testDependentFeature]
+from sklearn.cross_validation import train_test_split
+
+# TODO: Split the data into training and testing sets using the given feature as the target
+X_train, X_test, y_train, y_test = train_test_split(new_data, target, test_size=0.25, random_state=5)
+
+# TODO: Create a decision tree regressor and fit it to the training set
+from sklearn.tree import DecisionTreeRegressor
+regressor = DecisionTreeRegressor(random_state=6)
+regressor.fit(X_train, y_train)
+
+# TODO: Report the score of the prediction using the testing set
+score = regressor.score(X_test, y_test)
+print("R-squared for explaining {} is {}".format(testDependentFeature, score))
+# Detergents_Paper seems to have highest R-squared.
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 2

Which feature did you attempt to predict? What was the reported prediction score? Is this feature necessary for identifying customers' spending habits?
+Hint: The coefficient of determination, R^2, is scored between 0 and 1, with 1 being a perfect fit. A negative R^2 implies the model fails to fit the data.

+ +
+
+
+
+
+
+
+
+

Answer: I attempted to predict Detergent_Paper. The prediction score was 0.6606. This means this feature can be explained with around 66% accuracy using all the other features combined. I would say it is still required as this is only slightly better than chance.

+ +
+
+
+
+
+
+
+
+

Visualize Feature Distributions

To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix.

+ +
+
+
+
+
+
In [ ]:
+
+
+
# Produce a scatter matrix for each pair of features in the data
+# plot each feature against each other feature in pairs.
+pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); 
+
+# feature against feature produces the distribution of that feature
+
+ +
+
+
+ +
+
+
+
In [ ]:
+
+
+
# check feature distributions
+data.Detergents_Paper.hist(bins=200)
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 3

Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?
+Hint: Is the data normally distributed? Where do most of the data points lie?

+ +
+
+
+
+
+
+
+
+

Answer: Yes, Detergents Paper seems to correlate with Grocery, and maybe Grocery with Milk a bit. This confirms my suspicions for Detergents ag Grocery by looking at the plot. Further, the data for these features is clearly not normally distributed, but heavily skewed towards lower values, so positively skewed. This means the median falls below the mean. This lack of normal distribution applies to all features in fact, probably due to the fact that there are a lot more small food shops than large ones.

+ +
+
+
+
+
+
+
+
+

Data Preprocessing

In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful.

+ +
+
+
+
+
+
+
+
+

Implementation: Feature Scaling

If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most often appropriate to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a Box-Cox test, which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign a copy of the data to log_data after applying logarithmic scaling. Use the np.log function for this.
  • +
  • Assign a copy of the sample data to log_samples after applying logarithmic scaling. Again, use np.log.
  • +
+ +
+
+
+
+
+
In [12]:
+
+
+
# TODO: Scale the data using the natural logarithm
+log_data = data.apply(lambda x: np.log(x))
+
+# TODO: Scale the sample data using the natural logarithm
+log_samples = samples.apply(lambda x: np.log(x))
+print(samples)
+print(log_samples)
+
+# Produce a scatter matrix for each pair of newly-transformed features
+pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');
+
+# now the features are much more normally distributed.
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
   Fresh   Milk  Grocery  Frozen  Detergents_Paper  Delicatessen
+0  27167   2801     2128   13223                92          1902
+1      3    333     7021   15601                15           550
+2     85  20959    45828      36             24231          1423
+       Fresh      Milk    Grocery    Frozen  Detergents_Paper  Delicatessen
+0  10.209758  7.937732   7.662938  9.489713          4.521789      7.550661
+1   1.098612  5.808142   8.856661  9.655090          2.708050      6.309918
+2   4.442651  9.950323  10.732651  3.583519         10.095388      7.260523
+
+
+
+ +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Observation

After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).

+

Run the code below to see how the sample data has changed after having the natural logarithm applied to it.

+ +
+
+
+
+
+
In [14]:
+
+
+
# Display the log-transformed sample data
+display(log_samples)
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
010.2097587.9377327.6629389.4897134.5217897.550661
11.0986125.8081428.8566619.6550902.7080506.309918
24.4426519.95032310.7326513.58351910.0953887.260523
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Outlier Detection

Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many "rules of thumb" for what constitutes an outlier in a dataset. Here, we will use Tukey's Method for identfying outliers: An outlier step is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign the value of the 25th percentile for the given feature to Q1. Use np.percentile for this.
  • +
  • Assign the value of the 75th percentile for the given feature to Q3. Again, use np.percentile.
  • +
  • Assign the calculation of an outlier step for the given feature to step.
  • +
  • Optionally remove data points from the dataset by adding indices to the outliers list.
  • +
+

NOTE: If you choose to remove any outliers, ensure that the sample data does not contain any of these points!
+Once you have performed this implementation, the dataset will be stored in the variable good_data.

+ +
+
+
+
+
+
In [15]:
+
+
+
# For each feature find the data points with extreme high or low values
+indices = []
+for feature in log_data.keys():
+    
+    # TODO: Calculate Q1 (25th percentile of the data) for the given feature
+    Q1 = np.percentile(log_data[feature], 25)
+    
+    # TODO: Calculate Q3 (75th percentile of the data) for the given feature
+    Q3 = np.percentile(log_data[feature], 75)
+    
+    # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)
+    step = 1.5 * (Q3 - Q1)
+    
+    
+    # Display the outliers
+    print "Data points considered outliers for the feature '{}':".format(feature)
+    print("Q1-step is {}, Q3+step is {}, the step size is {}".format(Q1-step, Q3+step, step))
+    # the ~ operator flips the booleans
+    outliers = log_data[~((log_data[feature] >= (Q1 - step)) & (log_data[feature] <= (Q3 + step)))][feature]
+    display(outliers)
+    
+    # add indices
+    indices.extend(outliers.index)
+    
+# OPTIONAL: Select the indices for data points you wish to remove
+outliers  = indices
+
+# Remove the outliers, if any were specified
+good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)
+
+from collections import Counter
+print(Counter(outliers))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Data points considered outliers for the feature 'Fresh':
+Q1-step is 5.51455083361, Q3+step is 12.2705718166, the step size is 2.53350786861
+
+
+
+ +
+
+ + + +
+
65     4.442651
+66     2.197225
+81     5.389072
+95     1.098612
+96     3.135494
+128    4.941642
+171    5.298317
+193    5.192957
+218    2.890372
+304    5.081404
+305    5.493061
+338    1.098612
+353    4.762174
+355    5.247024
+357    3.610918
+412    4.574711
+Name: Fresh, dtype: float64
+
+ +
+ +
+
+ +
+
Data points considered outliers for the feature 'Milk':
+Q1-step is 5.01673296722, Q3+step is 11.1987283614, the step size is 2.31824827282
+
+
+
+ +
+
+ + + +
+
86     11.205013
+98      4.718499
+154     4.007333
+356     4.897840
+Name: Milk, dtype: float64
+
+ +
+ +
+
+ +
+
Data points considered outliers for the feature 'Grocery':
+Q1-step is 5.27575998758, Q3+step is 11.672709891, the step size is 2.3988562138
+
+
+
+ +
+
+ + + +
+
75     1.098612
+154    4.919981
+Name: Grocery, dtype: float64
+
+ +
+ +
+
+ +
+
Data points considered outliers for the feature 'Frozen':
+Q1-step is 4.26035024816, Q3+step is 10.5252235842, the step size is 2.34932750101
+
+
+
+ +
+
+ + + +
+
38      3.496508
+57      3.637586
+65      3.583519
+145     3.737670
+175     3.951244
+264     4.110874
+325    11.016479
+420     3.218876
+429     3.850148
+439     4.174387
+Name: Frozen, dtype: float64
+
+ +
+ +
+
+ +
+
Data points considered outliers for the feature 'Detergents_Paper':
+Q1-step is 1.45874266385, Q3+step is 12.3636993597, the step size is 4.08935876094
+
+
+
+ +
+
+ + + +
+
75     1.098612
+161    1.098612
+Name: Detergents_Paper, dtype: float64
+
+ +
+ +
+
+ +
+
Data points considered outliers for the feature 'Delicatessen':
+Q1-step is 3.76959400251, Q3+step is 9.74900908097, the step size is 2.24228065442
+
+
+
+ +
+
+ + + +
+
66      3.295837
+109     1.098612
+128     1.098612
+137     3.583519
+142     1.098612
+154     2.079442
+183    10.777768
+184     2.397895
+187     1.098612
+203     2.890372
+233     1.945910
+285     2.890372
+289     3.091042
+343     3.610918
+Name: Delicatessen, dtype: float64
+
+ +
+ +
+
+ +
+
Counter({154: 3, 128: 2, 65: 2, 66: 2, 75: 2, 193: 1, 264: 1, 137: 1, 142: 1, 145: 1, 412: 1, 285: 1, 161: 1, 420: 1, 38: 1, 171: 1, 429: 1, 175: 1, 304: 1, 305: 1, 439: 1, 184: 1, 57: 1, 187: 1, 203: 1, 325: 1, 289: 1, 81: 1, 338: 1, 86: 1, 343: 1, 218: 1, 95: 1, 96: 1, 353: 1, 98: 1, 355: 1, 356: 1, 357: 1, 233: 1, 109: 1, 183: 1})
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 4

Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the outliers list to be removed, explain why.

+ +
+
+
+
+
+
+
+
+

Answer: There are 5 data points that are outliers in more than one dimension. We should remove them too as the would distort the data in more than 1 dimension. The points in the outliers list should all be remove given we use Tukey's outlier definition.

+ +
+
+
+
+
+
+
+
+

Feature Transformation

In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers.

+ +
+
+
+
+
+
+
+
+

Implementation: PCA

Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the good_data to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the explained variance ratio of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new "feature" of the space, however it is a composition of the original features present in the data.

+

In the code block below, you will need to implement the following:

+
    +
  • Import sklearn.decomposition.PCA and assign the results of fitting PCA in six dimensions with good_data to pca.
  • +
  • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
  • +
+ +
+
+
+
+
+
In [16]:
+
+
+
# TODO: Apply PCA by fitting the good data with the same number of dimensions as features
+from sklearn.decomposition import PCA
+pca = PCA().fit(good_data)
+
+# TODO: Transform log_samples using the PCA fit above
+# this applies dimensionality reduction to each sample
+pca_samples = pca.transform(log_samples)
+#print(pca_samples)
+
+# Generate PCA results plot, indicating how much each feature contributes to each dimension.
+pca_results = vs.pca_results(good_data, pca)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 5

How much variance in the data is explained in total by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.
+Hint: A positive increase (between examples) in a specific dimension corresponds with an increase of the positive-weighted features and a decrease of the negative-weighted features. The rate of increase or decrease is based on the indivdual feature weights.

+ +
+
+
+
+
+
+
+
+

Answer: Together the first and second principal component explain 72.52% of total variance. The first four pc explain 92.79% of total variance.

+

I dont understand the hint: dimensions are not increasing, they are new features that have values which are either high or low. Ah, maybe it means if you compare two examples, if a dimension increases this indicates that the positively weighted features in its portfolio increase and the negative weight features decrease. The rate of increase depends on the rate of the weight changes in its feature portfolio i guess..

+
    +
  • Dimension 1 is Detergents_paper, Milk, Grocery with some representation of Deli. This is probably consumer retail spending.
  • +
  • Dimension 2 is Fresh, Frozen and Deli, with some representation for Milk and Grocery. This is probably a hotel or restaurant.
  • +
  • Dimension 3 is Deli with some Frozen and Milk, with very low Fresh and low Detergents_Paper. This could be a speciality shop such as a butcher.
  • +
  • Dimension 4 is Deli with some Fresh but very low Frozen and low Detergents_Paper. This could be a market, where they sell fresh food and meat.
  • +
+ +
+
+
+
+
+
+
+
+

Observation

Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points.

+ +
+
+
+
+
+
In [17]:
+
+
+
# Display sample log-data after having a PCA transformation applied
+display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))
+display(pd.DataFrame(samples))
+
+
+# hard to see how it works...
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
0-2.40722.40790.5245-0.08480.5462-0.0377
1-3.4491-3.65866.7584-2.94390.69212.9431
25.3109-4.58452.02741.1669-0.03430.3363
+
+
+ +
+ +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
0271672801212813223921902
1333370211560115550
285209594582836242311423
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Dimensionality Reduction

When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the cumulative explained variance ratio is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a signifiant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign the results of fitting PCA in two dimensions with good_data to pca.
  • +
  • Apply a PCA transformation of good_data using pca.transform, and assign the results to reduced_data.
  • +
  • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
  • +
+ +
+
+
+
+
+
In [18]:
+
+
+
# TODO: Apply PCA by fitting the good data with only two dimensions
+pca = PCA(n_components=2).fit(good_data)
+
+# TODO: Transform the good data using the PCA fit above
+reduced_data = pca.transform(good_data)
+
+# TODO: Transform log_samples using the PCA fit above
+pca_samples = pca.transform(log_samples)
+
+# Create a DataFrame for the reduced data
+reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])
+
+ +
+
+
+ +
+
+
+
+
+
+

Observation

Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions.

+ +
+
+
+
+
+
In [19]:
+
+
+
# Display sample log-data after applying PCA transformation in two dimensions
+display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Dimension 1Dimension 2
0-2.40722.4079
1-3.4491-3.6586
25.3109-4.5845
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Visualizing a Biplot

A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case Dimension 1 and Dimension 2). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.

+

Run the code cell below to produce a biplot of the reduced-dimension data.

+ +
+
+
+
+
+
In [20]:
+
+
+
# Create a biplot
+vs.biplot(good_data, reduced_data, pca)
+
+ +
+
+
+ +
+
+ + +
+
Out[20]:
+ + + +
+
<matplotlib.axes._subplots.AxesSubplot at 0xe5c9ba8>
+
+ +
+ +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Observation

Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on 'Milk', 'Grocery' and 'Detergents_Paper', but not so much on the other product categories.

+

From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?

+
    +
  • First Dimension: detergents, grocery and milk (positively) - agrees with previous plot feature weights.

    +
  • +
  • Second Dimension: Deli, Frozen, Fresh, also positively. Agrees too.

    +
  • +
+

So the length of the arrow is the weight of that feature in the dimension, the direction indicates how much each dimension is exposed to that feature.

+ +
+
+
+
+
+
+
+
+

Clustering

In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale.

+ +
+
+
+
+
+
+
+
+

Question 6

What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?

+ +
+
+
+
+
+
+
+
+

Answer: The K-means algorithm will try to find clusters of points that are close to each other: a point can belong to only one cluster at a time. The Gaussian Mixture model allows points to belong to several clusters at a time, with a certain probability. Given wholesale customers might belong to several possible clusters, such as the "small place" cluster or the "deli" cluster at the same time, I would use the gaussian mixture model which allows this. Further, the mixture model incorporates the covariance information of the data (http://scikit-learn.org/stable/modules/mixture.html) which I believe is desirable, given we have some feature correlation. We should have enough points per cluster, so calculating the covariance matrix should work.

+ +
+
+
+
+
+
+
+
+

Implementation: Creating Clusters

Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known a priori, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the "goodness" of a clustering by calculating each data point's silhouette coefficient. The silhouette coefficient for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the mean silhouette coefficient provides for a simple scoring method of a given clustering.

+

In the code block below, you will need to implement the following:

+
    +
  • Fit a clustering algorithm to the reduced_data and assign it to clusterer.
  • +
  • Predict the cluster for each data point in reduced_data using clusterer.predict and assign them to preds.
  • +
  • Find the cluster centers using the algorithm's respective attribute and assign them to centers.
  • +
  • Predict the cluster for each sample data point in pca_samples and assign them sample_preds.
  • +
  • Import sklearn.metrics.silhouette_score and calculate the silhouette score of reduced_data against preds.
      +
    • Assign the silhouette score to score and print the result.
    • +
    +
  • +
+ +
+
+
+
+
+
In [23]:
+
+
+
# Use the ouput of PCA reduced to 2 components as input for the Gaussian Mixture Model
+
+nb_comp = [2,3,4,5,6,7]
+
+val_out = 2
+for val_comp in nb_comp:
+    # TODO: Apply your clustering algorithm of choice to the reduced data 
+    from sklearn.mixture import GaussianMixture
+    clusterer = GaussianMixture(random_state=5, n_components=val_comp).fit(reduced_data)
+
+    # TODO: Predict the cluster for each data point
+    preds_loc = clusterer.predict(reduced_data)
+    #print(preds)
+
+    # TODO: Find the cluster centers
+    centers_loc = clusterer.means_
+
+    # TODO: Predict the cluster for each transformed sample data point
+    sample_preds_loc = clusterer.predict(pca_samples)
+
+    # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen
+    from sklearn.metrics import silhouette_score
+    score = silhouette_score(X=reduced_data, labels=preds_loc)
+    print("Nb comps: {}, score: {}".format(val_comp, score))
+    
+    if val_out == val_comp:
+        preds = preds_loc
+        centers = centers_loc
+        sample_preds = sample_preds_loc
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Nb comps: 2, score: 0.447411995571
+Nb comps: 3, score: 0.359479670374
+Nb comps: 4, score: 0.312405270688
+Nb comps: 5, score: 0.3285065946
+Nb comps: 6, score: 0.28969365136
+Nb comps: 7, score: 0.328311049677
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 7

Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?

+ +
+
+
+
+
+
+
+
+

Answer: 2 clusters has the best silhouette score. I am guessing 1 cluster would be even better as it has no alternatives, but it throws an error.

+ +
+
+
+
+
+
+
+
+

Cluster Visualization

Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters.

+ +
+
+
+
+
+
In [24]:
+
+
+
# Display the results of the clustering from implementation
+vs.cluster_results(reduced_data, preds, centers, pca_samples)
+
+# the black X are my samples, the round circles the cluster centers.
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Data Recovery

Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the averages of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to the average customer of that segment. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.

+

In the code block below, you will need to implement the following:

+
    +
  • Apply the inverse transform to centers using pca.inverse_transform and assign the new centers to log_centers.
  • +
  • Apply the inverse function of np.log to log_centers using np.exp and assign the true centers to true_centers.
  • +
+ +
+
+
+
+
+
In [25]:
+
+
+
# This shows the cluster centers on the first 2 components of PCA.
+
+# TODO: Inverse transform the centers
+log_centers = pca.inverse_transform(centers) # recovers original features from pca dimensions
+#print("log centers", log_centers)
+
+# TODO: Exponentiate the centers
+true_centers = np.exp(log_centers) # recover original values from log values
+#print("true centers" ,true_centers)
+
+# Display the true centers
+segments = ['Segment {}'.format(i) for i in range(0,len(centers))]
+true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())
+true_centers.index = segments
+
+# order features, so can focus on comparison not retrieval
+tmp = true_centers
+ordered = pd.DataFrame(tmp.Frozen)
+ordered["Fresh"] = tmp.Fresh
+ordered["Delicatessen"] = tmp.Delicatessen
+ordered["Detergents_Paper"] = tmp.Detergents_Paper
+ordered["Grocery"] = tmp.Grocery
+ordered["Milk"] = tmp.Milk
+true_centers = ordered
+
+
+tmp = data
+ordered = pd.DataFrame(tmp.Frozen)
+ordered["Fresh"] = tmp.Fresh
+ordered["Delicatessen"] = tmp.Delicatessen
+ordered["Detergents_Paper"] = tmp.Detergents_Paper
+ordered["Grocery"] = tmp.Grocery
+ordered["Milk"] = tmp.Milk
+data = ordered
+
+display(true_centers)
+
+display(data.describe())
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
Segment 02196.09468.0799.0343.02624.02067.0
Segment 11068.05174.01101.04536.011581.07776.0
+
+
+ +
+ +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
count440.000000440.000000440.000000440.000000440.000000440.000000
mean3071.93181812000.2977271524.8704552881.4931827951.2772735796.265909
std4854.67333312647.3288652820.1059374767.8544489503.1628297380.377175
min25.0000003.0000003.0000003.0000003.00000055.000000
25%742.2500003127.750000408.250000256.7500002153.0000001533.000000
50%1526.0000008504.000000965.500000816.5000004755.5000003627.000000
75%3554.25000016933.7500001820.2500003922.00000010655.7500007190.250000
max60869.000000112151.00000047943.00000040827.00000092780.00000073498.000000
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 8

Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. What set of establishments could each of the customer segments represent?
+Hint: A customer who is assigned to 'Cluster X' should best identify with the establishments represented by the feature set of 'Segment X'.

+ +
+
+
+
+
+
+
+
+

Answer: Comparing the feature values for each segment with the statistical description of each feature, it seems that:

+

To be fair, i am not sure how to answer these very well, as I find it hard to get myself interested in food establishments and what they might buy. It might be more interesting to segment drivers for economic performance, predictors of burglary or maybe internet user groups. However, here my attempt.

+

PC:

+
    +
  • Dim 2 represents Frozen, Fresh and Deli. A higher value means more of these.
  • +
  • Dim 1 represents Detergents_Paper, Grocery and milk. A higher value means more of these.
  • +
+

Clusters:

+
    +
  • Segment 0 (any dim2, <0.5 dim1). Here I expect it to have any value for dim2 features be lower on dim1 features than Segment 1 and on the lower end of the distribution for those features. Thus, it would have low Detergents_Paper, Grocery and Milk, so low consumer retail spending. This could represent a restaurant, food market, hotel.
  • +
  • Segment 1 (any dim2, >=0.5 dim1). Here I expect any dim2 features and higher values on dim1 features, and also at the higher end of the distribution for those features. So high Detergents_Paper, Grocery and Milk, indicating retail spending like a supermarket.
  • +
+ +
+
+
+
+
+
+
+
+

Question 9

For each sample point, which customer segment from Question 8 best represents it? Are the predictions for each sample point consistent with this?

+

Run the code block below to find which cluster each sample point is predicted to be.

+ +
+
+
+
+
+
In [26]:
+
+
+
# Display the predictions
+for i, pred in enumerate(sample_preds):
+    print "Sample point", i, "predicted to be in Cluster", pred
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Sample point 0 predicted to be in Cluster 0
+Sample point 1 predicted to be in Cluster 0
+Sample point 2 predicted to be in Cluster 1
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: Point 0 is a market as it has a lot of frozen fresh and deli and little detpaper, grocery and milk. This matches the prediction in cluster 0. Point 1 an outlier(as found earlier) so was removed and 2 was and outlier on 2 dimensions so was removed as well. However, Point 2 was high on Det_Paper, Grocery and Milk, so would be correctly classified as retail in cluster 1.

+ +
+
+
+
+
+
+
+
+

Conclusion

+
+
+
+
+
+
+
+
+

In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the customer segments, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which segment that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the customer segments to a hidden variable present in the data, to see whether the clustering identified certain relationships.

+ +
+
+
+
+
+
+
+
+

Question 10

Companies will often run A/B tests when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?
+Hint: Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?

+ +
+
+
+
+
+
+
+
+

Answer: The distributor could call, survey etc a representative customer, or several, from each segment and ask them. They could use this to extrapolate to all customers from this segment and change his schedule by segment.

+ +
+
+
+
+
+
+
+
+

Question 11

Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a customer segment it best identifies with (depending on the clustering algorithm applied), we can consider 'customer segment' as an engineered feature for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a customer segment to determine the most appropriate delivery service.
+How can the wholesale distributor label the new customers using only their estimated product spending and the customer segment data?
+Hint: A supervised learner could be used to train on the original customers. What would be the target variable?

+ +
+
+
+
+
+
+
+
+

Answer: They can transform the estimated spending to principal components using the trained pca on the original data. This would allow them to assign new customers to their clusters.

+ +
+
+
+
+
+
+
+
+

Visualizing Underlying Distributions

At the beginning of this project, it was discussed that the 'Channel' and 'Region' features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the 'Channel' feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.

+

Run the code block below to see how each data point is labeled either 'HoReCa' (Hotel/Restaurant/Cafe) or 'Retail' the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling.

+ +
+
+
+
+
+
In [28]:
+
+
+
# Display the clustering results based on 'Channel' data
+vs.channel_results(reduced_data, outliers, pca_samples)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 12

How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?

+ +
+
+
+
+
+
+
+
+

Answer: It seems my cluster 0, or "small place" is gone. However, my two other clusters "supermarket" and "market" are still there. Just that market was Hotels in the end - i guess they also use less Det_Paper, Milk and Grocery than a retailer (to be honest i dont know). There are segments of purely retailers below -2.5 on dim1, and purely horeca above 2 on dim1. These classifications are consistent with my previous definition of segments, although there is a larger overlap region as expected.

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/customer_segments/customer_segments.ipynb b/customer_segments/customer_segments.ipynb new file mode 100644 index 0000000..68cb284 --- /dev/null +++ b/customer_segments/customer_segments.ipynb @@ -0,0 +1,1821 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Unsupervised Learning\n", + "## Project: Creating Customer Segments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in *monetary units*) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.\n", + "\n", + "The dataset for this project can be found on the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Wholesale+customers). For the purposes of this project, the features `'Channel'` and `'Region'` will be excluded in the analysis — with focus instead on the six product categories recorded for customers.\n", + "\n", + "Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wholesale customers dataset has 440 samples with 6 features each.\n", + "It shows the spending per wholesale customer on that category per year.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
0126699656756121426741338
1705798109568176232931776
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 12669 9656 7561 214 2674 1338\n", + "1 7057 9810 9568 1762 3293 1776" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the wholesale customers dataset\n", + "try:\n", + " data = pd.read_csv(\"customers.csv\")\n", + " data.drop(['Region', 'Channel'], axis = 1, inplace = True)\n", + " print \"Wholesale customers dataset has {} samples with {} features each.\".format(*data.shape)\n", + " print(\"It shows the spending per wholesale customer on that category per year.\")\n", + " display(pd.DataFrame(data.head(2)))\n", + "except:\n", + " print \"Dataset could not be loaded. Is the dataset missing?\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Exploration\n", + "In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.\n", + "\n", + "Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: **'Fresh'**, **'Milk'**, **'Grocery'**, **'Frozen'**, **'Detergents_Paper'**, and **'Delicatessen'**. Consider what each category represents in terms of products you could purchase." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
count440.000000440.000000440.000000440.000000440.000000440.000000
mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
min3.00000055.0000003.00000025.0000003.0000003.000000
25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen \\\n", + "count 440.000000 440.000000 440.000000 440.000000 \n", + "mean 12000.297727 5796.265909 7951.277273 3071.931818 \n", + "std 12647.328865 7380.377175 9503.162829 4854.673333 \n", + "min 3.000000 55.000000 3.000000 25.000000 \n", + "25% 3127.750000 1533.000000 2153.000000 742.250000 \n", + "50% 8504.000000 3627.000000 4755.500000 1526.000000 \n", + "75% 16933.750000 7190.250000 10655.750000 3554.250000 \n", + "max 112151.000000 73498.000000 92780.000000 60869.000000 \n", + "\n", + " Detergents_Paper Delicatessen \n", + "count 440.000000 440.000000 \n", + "mean 2881.493182 1524.870455 \n", + "std 4767.854448 2820.105937 \n", + "min 3.000000 3.000000 \n", + "25% 256.750000 408.250000 \n", + "50% 816.500000 965.500000 \n", + "75% 3922.000000 1820.250000 \n", + "max 40827.000000 47943.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display a description of the dataset\n", + "display(data.describe()) # shows per column statistics from dataset. Columns contain usd values for spending.\n", + "\n", + "from sklearn.preprocessing import StandardScaler\n", + "scaler = StandardScaler()\n", + "\n", + "# normalise columns around mean to check distribution\n", + "norm_data = scaler.fit_transform(data)\n", + "\n", + "norm_data = pd.DataFrame(norm_data, columns=data.columns)\n", + "# plot\n", + "#norm_data.hist(bins=200)\n", + "# they all seems quite biased to low values\n", + "\n", + "# describe\n", + "#display(norm_data.describe())\n", + "\n", + "\n", + "#norm_data.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Selecting Samples\n", + "To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add **three** indices of your choice to the `indices` list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Chosen samples of wholesale customers dataset:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
0132232716719029221282801
1156013550157021333
236851423242314582820959
\n", + "
" + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper Grocery Milk\n", + "0 13223 27167 1902 92 2128 2801\n", + "1 15601 3 550 15 7021 333\n", + "2 36 85 1423 24231 45828 20959" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAF8CAYAAAAOxG6WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlAVXX+//HXhXsBgYtbSI2JS4plpSJqG1pqZZtlVhqW\nmWI6KOaSioqC+xrmpOGWpZlCTlZTMzWVaDou4yiuuTRmJa6FO/t27++PftH4rbyXQg738Hz8M8Px\nzb3vz31zZ3hxzj0fi9PpdAoAAAAATMzL6AYAAAAA4Goj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIP\nAAAAANMj+AAAAAAwPavRDbgrMzPL6Bauqpo1/XX+fK7RbeB3Yn6ei9l5Nubn2Zif52J2ns3s8wsO\ntv/qcc74VBJWq7fRLeAPYH6ei9l5Nubn2Zif52J2nq2qzo/gAwAAAMD0CD4AAAAATI/gAwAAAMD0\nCD4AAAAATI/gAwAAAMD0CD4AAAAATI/gAwAAAMD0PGYDUwAAAKC89J2xrlwf743RHV3WnDp1Ur17\nRyksrGnpsYiINurT54Vy7QW/juADAAAAVJAGDRpq/vzFRrdRJRF8AAAAAIPs3LlDCxbMk81m06OP\nPq7atWtr8eIF8vX1VVBQdY0Zk6CdO3for39NkSRlZv6gOnVCNG/eIi1cOF979uySw+FQjx7PqGPH\nexUb219NmjTVN98cUW5utiZPnqlrr73O4FVWDgQfAAAAoIJ89923io3tX/r1o48+rsLCQi1ZslxO\np1Pduz+m5OTXFRxcR6tXp2j58qWKjR2qu+/uoJMnTyghYYzi4ydo69bNOnXqhBYsWKqCggINGNBH\nbdrcJkm66aabNWTIS1q06DV9/vmn6tXreYNWW7kQfAAAAIAK8n8vddu5c4dCQ+tLki5cuCB//wAF\nB9eRJLVsGa5Fi5IlSWfPntH48aM1dmyirr32OqWlfaavvjpUGqKKi4t1+vRJSSr9DFFISIjOnj1b\nYWur7Ag+AAAAgIG8vCySpBo1aig3N0dnzpzRNddco927d6pevVBlZWVpzJgRGjx4mG64obEkqX79\nBgoPb624uHg5HA4tW/a66ta9XpJksVgMW0tlRvABADdk7JrksiY0PKECOgEAmJXFYtGoUfGKjx8p\nLy+L7PYgjR07QYsXJ+vMmUy9+eYSlZSUyGazac6c+dq1K10DB/ZTXl6u2rfvIH//AKOXUKlZnE6n\n0+gm3JGZmWV0C1dVcLDd9Gs0M+bnudydHcGncuK959mYn+didp7N7PMLDrb/6nE2MAUAAABgegQf\nAAAAAKZH8AEAAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKbHPj4AAACocgatG1Wuj/dax1kua06d\nOqnevaMUFta09FhERBv16fNCmZ9v584d+tvf1mjixOll/t6qiuADAAAAVJAGDRpq/vzFRrdRJRF8\nAAAAAIPs3LlDCxbMk81m06OPPq6QkGu1eHGyvL299ac/1dWoUfE6efKEpk+fKG9vqxwOhxITp0iS\njh07ppdeelHnz5/TXXe1U3T0AINXU7kRfAAAAIAK8t133yo2tn/p148++rgKCwu1ZMlyOZ1ORUU9\noQULXlfNmrW0ZMkCffzxRyoqKtJNN92sgQOHaM+eXcrJyZYkFRYWavr0l+VwOPTEEw8TfFwg+AAA\nAAAV5P9e6rZz5w6FhtaXJF24cF5nz57R+PGjJUkFBQVq0+Y29e4drZUrl+ullwYrICBQAwYMkiQ1\nanSDfHx8JEne3vxa7wqvEAAAAGAgLy+LJKl69RqqU6eOZsyYo8DAQG3atEHVqvlr06YNatEiXH37\n9tfnn/9TK1cu1wMPPCyLxeDGPQzBBwAAAKgEvLy8NGTICI0cOUROp1P+/gEaP36icnNzNWVKopYv\nXyqHw6HBg4eXXu4G91mcTqfT6CbckZmZZXQLV1VwsN30azQz5ue53J1dxq5JLmtCwxPKoyWUAe89\nz8b8PBez82xmn19wsP1Xj7OBKQAAAADTI/gAAAAAMD2CDwAAAADTI/gAAAAAMD2CDwAAAADTI/gA\nAAAAMD328QEAAECV899+z5fr44W9vsxlzc6dO5SQMEYNGjSUJBUXF+upp6LUqdN9v1ofG9tfI0eO\n1f79+xQUFKTIyLvd7uf06dP6+uv/KjKyvdvfY3YEHwAAAKCCRES01sSJ0yVJubm5io3tr9DQUDVp\n0vQ3v+ehh7qU+Xl27tyuo0e/I/j8D4IPAAAAYAB/f3899lg3rV+fprS0z7Vnzy45HA716PGMOna8\nt7Ru6dJFql27th577Am98sosHTy4X0VFxYqO7q8772yn2bOn6YcfvtfZs2d0113tFR09QG+/vUz5\n+fm69dbmuu66upo7d7acTqeqV6+upKTZOn/+vBITx8jhcKiwsFAjR45RaGgDJSSMVk5OjvLz89W/\n/0C1bXu71q1bq3feWSkvLy81b95SMTGDtXTpIp06dVLnz5/X99+f0uDBw3XbbXcY+Gq6RvABAAAA\nDFKrVi2lpr6tsLCmWrBgqQoKCjRgQB+1aXPbL2o3bvxCFy9e0JIlb+nSpUt6552Vatw4TDfffKtG\njx6vgoICdev2kPr3H6hnn33+/5/xuVv9+z+vMWMS1LBhI/397x/o9ddfV6NGNyooqLrGj5+ob7/9\nVnl5eTpx4rguXryopKRXdf78eR07dlSXLl3UG28s0uuvr5Cfn58mTx6v7dv/LUmy2XyUlPSqtm//\nt1JSVhJ8AAAAAPy606dP6/77H9Snn36s2Nj+kn787M/p0yd/UZuRcVQ339xckhQUFKQXXohRTk62\nDh7cr507dyggIECFhUW/+L6jR79VUtIMSVJJSbEaN75BPXv21fHjGRo9+iVZrVb17h2tRo1u0GOP\nddOECfEqLi7Wk08+rePHj+nChfMaMeJFST9ennfixHFJUljYj5fn1alzrQoLC8r/xSlnBB8AAADA\nADk52froo/f1yCNdFR7eWnFx8XI4HFq27HXVrXv9L+obNGig9evTJEnZ2dlKSBitO+6IVGCgXaNG\nxev48WP68MP35XQ6ZbFY5HQ6JEmhofU1btwkXXvttdq7d7eKinK0a1e6ate+Rq+88pq+/HKvFi16\nTUOHjlRubo5mz/6Lzpw5o5iYvlq8eLnq1AnR3LnJslqt+vjjj9SkSZg2bvxCFkuFvlx/GMEHAAAA\nqCDp6TsUG9tf3t7eKikpUXT0ALVv30Hz57+igQP7KS8vV+3bd5C/f8Avvjcy8m7t2PEfxcREq6Sk\nRH36vKCQkGs1ceI47d+/TzabTddfX09nzmTqhhsa66233lBY2I166aUxmjIlQSUlJbJYLJo1a4ZK\nSqxKTByr999/t/Sxrr++nt58c7HWrVsrh8Oh6OgBqlmzpnr0eEaxsf1VUlKi6677kzp2/PW70FV2\nFqfT6TS6CXdkZmYZ3cJVFRxsN/0azYz5eS53Z5exa5LLmtDwhPJoCWXAe8+zMT/Pxew8m9nnFxxs\n/9XjbGAKAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj318AAAAUOUs\nmPFFuT5ezOh7XNbs3LlDCQlj1KBBQ0lScXGxnnoqSp06/fq+OEeOfK2srEtq2bJVebZ6RWvWvKMn\nnuhRpu9ZunSRPv/8U11zzTWyWCwqKipS//4D1apV66vU5e/jVvA5e/asunXrpjfeeENWq1WjR4+W\nxWJRkyZNlJiYKC8vL61evVqpqamyWq2KiYlRhw4dlJ+fr5EjR+rs2bMKCAjQzJkzVatWLe3evVtT\np06Vt7e3IiMjFRsbe7XXCQAAABguIqK1Jk6cLknKzc1VbGx/hYaGqkmTpr+o/eKLNNWuXbtCg8/y\n5W+UOfhI0tNP91TXrk9Kkr777ltNmjROb7yxsrzb+0NcBp+ioiIlJCTIz89PkjR9+nQNHTpUt912\nmxISEpSWlqaWLVtqxYoVWrNmjQoKCtSzZ0/dddddSklJUVhYmAYPHqx//OMfSk5O1rhx45SYmKh5\n8+apXr166t+/vw4cOKBmzZpd9cUCAAAAlYW/v78ee6yb1q9PU1ra59qzZ5ccDod69HhGt97aXJ98\n8ndZrTaFhd2ogoICLV6cLG9vb/3pT3U1alS8PvvsE/3jHx/K4XAoOnqATp8+qTVrVisoqLqsVps6\ndbpP99//oGbPnqbjx4/J4XDohRdi1LlzB/Xu/bRatmylI0e+liTNmDFHa9a8o0uXLurll2eoe/co\nTZ8+Ud7eVjkcDiUmTlFIyLVurevSpYuqVs1f0o9nkDZsWK+8vDzVqFFD06a9rM8//6f+9a8vlJub\nqwsXLqhPn366555O2rUr3eUaW7du+7tfb5fBZ+bMmXr66ae1ePFiSdL+/fvVtu2PT9i+fXtt3rxZ\nXl5eCg8Pl4+Pj3x8fBQaGqpDhw4pPT1d/fr1K61NTk5Wdna2CgsLFRoaKkmKjIzUli1bCD4AAACo\ncmrVqqXU1LcVFtZUCxYsVUFBgQYM6KN58xbpwQcfUe3atXXTTTcrKuoJLVjwumrWrKUlSxbo448/\nktVqld1u14wZc3ThwgW9/PIMLVu2SjabTS+++GdJ0kcffaDq1WtozJgEXbx4QYMG9Vfnzh2Uk5Oj\ne+/trGHDRmnixHH69783q3fvaK1Zs1ojRozWmjWrddNNN2vgwCHas2eXcnKyr7iO1NRVWrv2M3l7\neyswMFBxcfFyOBy6ePGi5s5NlpeXl4YPj9XBg/slSXl5eXrlldd04cJ5vfBCb0VG3q2ZM6decY1/\n1BWDz3vvvadatWqpXbt2pcHH6XTKYrFIkgICApSVlaXs7GzZ7fbS7wsICFB2dvZlx/+3NjAw8LLa\nY8eOuWy0Zk1/Wa3eZV+hBwkOtrsuQqXF/DyXO7PLKKfHQfnjdfdszM9zMbvLufN61KjhL19f22W1\n2dnn1bXrY/rwww81fPjA/3/UoYKCiwoI8FVgoJ+8vYt07twZTZ48TpKUn5+vO++8U/Xr11fTpk0U\nHGzXiRNH1LRpE9WrFyxJatu2tex2P3377X+Vnp6u4cMPlT72uXPn5O3tpTvvbC0/Pz81aFBPvr5e\nCg62y8vLouBgu/r0eVZLlizR6NFDZbfbNWzYsN9cY0CAr/r166uoqKhfWXOgpk9PlL+/v86dO6PA\nQB/Z7X666647FBJSXSEh1VWzZg05HLku1/hHXTH4rFmzRhaLRVu3btXBgwcVFxenc+fOlf57Tk6O\ngoKCFBgYqJycnMuO2+32y45fqTYoKMhlo+fP55Z5cZ4kONiuzMwso9vA78T8PFd5zo6fgYrHe8+z\nMT/Pxex+yZ3X48KFXBUUFJXW5uRkKyUlVY880lXNm7cqPUuybNnr8vevqby8Il26lKfiYquCg+to\n0qRZCgwM1KZNG1Stmr++//608vOLlZmZpYCA2jp8+GsdP54pm81H6em7FBz8J9WpU1f33FNTzz3X\nVwUF+Vq+/A3VqFFDJSUOnTmTLV/fIuXmFiorK1+ZmVkqKXEoMzNLaWmfqXHjZurRo7c+//yfmj9/\ngcaOTfzVdeXkFMjPL/8Xr8HXXx/WJ598qiVLlis/P1/R0c/qwoVcZWXla+fOPcrMzNK5c2d18WKW\nvL0DXK7RXb8Vkq4YfFau/PkDSb169dKECRM0e/Zsbdu2Tbfddps2btyo22+/Xc2bN9fcuXNVUFCg\nwsJCHTlyRGFhYWrVqpU2bNig5s2ba+PGjYqIiFBgYKBsNpsyMjJUr149bdq0iZsbAAAAoEpIT9+h\n2Nj+8vb2VklJiaKjB6h9+w6aP/8VDRzYT3l5uWrfvoP8/QPUtOlNSk7+ixo0aKghQ0Zo5Mghcjqd\n8vcP0PjxE/X996dLH7dGjRp65pneGjjwBQUFBamgoEBWq1WPPdZNM2dOUWxsf+XkZOvxx5+Sl9dv\n72jToEFDTZo0XtHRAzRlSqKWL18qh8OhwYOHl3mt119fT9WqVVNMTF9JUu3a1+jMmUxJ0rlzZzVk\nSIyys7P10ktx8vb2drnGP8ridDqd7hT+FHy8vLw0fvx4FRUVqVGjRpoyZYq8vb21evVqvfPOO3I6\nnRowYIA6d+6svLw8xcXFKTMzUzabTUlJSQoODtbu3bs1bdo0lZSUKDIyUsOGDXP5/Gb/qwJ/OfFs\nzM9zuTu7jF2TXNaEhieUR0soA957no35eS5mV/kUFxdr5crl6t07Wk6nU4MGvaD+/Qf+6h3hjJ7f\nxx9/pKNHv1NMzOCr8vi/64zP/1qxYkXpf3/77bd/8e/du3dX9+7dLztWrVo1vfrqq7+obdmypVav\nXu3uUwMAAAC4AqvVqvz8fPXt+4ysVpuaNbtFLVqEl9vjFxUVadiwQb84HhpaX6NGxZfb81xNbGAK\nAAAAmMCAAYM0YMAvw0l5sNlsmj9/cbk81kMPdSmXxymr377ADwAAAABMguADAAAAwPQIPgAAAABM\nj+ADAAAAwPS4uQEAAACqHHe2KSgLd7c0OHHiuBYseFU//PCD/Pz85Ovrq5iYF9Wo0Q3l2g9+ieAD\nAAAAVID8/HyNHj1ccXHjdMstzSVJBw58qTlzZpbbHdPw2wg+AAAAQAXYvHmjIiLalIYeSWrW7BbN\nm7dIU6dO0MWLF3Xp0kXNmjVXy5cv1d69uyVJ9933gLp3j9KxYxmaOXOKioqK5OfnpwkTpqmwsECz\nZk1TQUG+fH39NGrUWDkcDsXFDVNQUHW1atVa//znP5SS8p68vb2VnPyq2rQJV5s27Yx6GQxD8AEA\nAAAqwMmTJ1W3br3Sr0ePHq7s7GydPXtGdepcqzvvvEs9ejyjzZv/pVOnTmrx4mUqKSlRTEy0IiLa\naMmSZD377PO6/fY7tWnTBh0+/JX+/ve/6ckne+iOO+7Sjh3/0cKF89W//0CdO3dWS5e+LZvNppMn\nT+g//9mqtm3v0LZtWzRmzEhdvFhg4CthDIIPAAAAUAFCQkJ06NCB0q9nzJgjSerf/3nVqVNHoaH1\nJUlHj36rFi1aymKxyGq16uabb9V3332jjIyjpWeLIiPvliS9+mqSVqx4UytXLpckeXv/+Ov9ddf9\nSTabTZLUpcvjevfdVDkcTrVu3VY+Pj6Sql7w4a5uAAAAQAWIjLxbO3b8R19+ua/02PHjx5SZ+YNO\nnz4li+XHX83r129YeplbcXGxvvxyr66/PlT16zfUwYP7JUmfffaJ3n03VaGhDRQTM1jz5y/WyJFj\n1aFDJ0kqfSxJatGipU6cOK6///1vevjhxypquZUOZ3wAAACACuDv76+ZM1/RwoXztHDhWZWUFMvL\ny1uDBw/X1q2bSuvuuquddu1K14ABfVRUVKSOHe9V06Y3atCgIZo9e5qWL18qPz8/JSRM1h13RCop\naYYKCwtVUJCvIUNG/Opz33//A1q/Pq1K3z3O4nQ6nUY34Y7MzCyjW7iqgoPtpl+jmTE/z+Xu7Ny5\n7am7tzJF+eG959mYn+didp5n1aq3FBRUXY888pjp5xccbP/V41zqBgAAAJjY1KkTtH37Nt1//4NG\nt2IoLnUDAAAATCw+foLRLVQKnPEBAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmx80NAAAAUOWM\n3X64XB9vWpsmLmt27tyhF1/8syZMmKp77+1cerx376cVFnajcnJyNG3abMXG9tfIkWO1du2nql27\ntrp2fbJce62qOOMDAAAAVJD69RsoLe2z0q+PHPlaeXl5kqRp02Yb1VaVQPABAAAAKkjjxk10+vQp\nZWdnS5I+/fTj0v11Hn20869+z/Hjx/TCC8/p66/L9yxVVUPwAQAAACrQ3Xd31IYN6+R0OnXw4H7d\nckvz36zNyDiqiRPjlZAwRY0bu76cDr+N4AMAAABUoPvue0BpaZ9p9+6datEi/Iq1//73FuXn58vL\ni1/b/yheQQAAAKAC1a17vfLy8vTuu6mll7n9lu7do/Tii8M1deoElZSUVFCH5kTwAQAAACpYp073\n6YcfvldoaH2XtW3a3K4GDRpq5crlFdCZeVmcTqfT6CbckZmZZXQLV1VwsN30azQz5ue53J1dxq5J\nLmtCwxPKoyWUAe89z8b8PBez82xmn19wsP1Xj3PGBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAA\nmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwA\nAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDp\nEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAA\nAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpWV0VlJSUaNy4\ncfr2229lsVg0ceJE+fr6avTo0bJYLGrSpIkSExPl5eWl1atXKzU1VVarVTExMerQoYPy8/M1cuRI\nnT17VgEBAZo5c6Zq1aql3bt3a+rUqfL29lZkZKRiY2MrYr0AAAAAqiCXZ3zWr18vSUpNTdXQoUP1\nyiuvaPr06Ro6dKhWrVolp9OptLQ0ZWZmasWKFUpNTdXSpUs1Z84cFRYWKiUlRWFhYVq1apW6du2q\n5ORkSVJiYqKSkpKUkpKiPXv26MCBA1d3pQAAAACqLJdnfO69917dc889kqSTJ08qKChIW7ZsUdu2\nbSVJ7du31+bNm+Xl5aXw8HD5+PjIx8dHoaGhOnTokNLT09WvX7/S2uTkZGVnZ6uwsFChoaGSpMjI\nSG3ZskXNmjX7zT5q1vSX1er9R9dbqQUH241uAX8A8/Nc7swuo5weB+WP192zMT/Pxew8W1Wcn8vg\nI0lWq1VxcXH6/PPP9eqrr2rz5s2yWCySpICAAGVlZSk7O1t2+88vYEBAgLKzsy87/r+1gYGBl9Ue\nO3bsij2cP59b5sV5kuBguzIzs4xuA78T8/Nc5Tk7fgYqHu89z8b8PBez82xmn99vhTq3b24wc+ZM\nffrppxo/frwKCgpKj+fk5CgoKEiBgYHKycm57Ljdbr/s+JVqg4KCyrwoAAAAAHCHy+DzwQcfaNGi\nRZKkatWqyWKx6JZbbtG2bdskSRs3blTr1q3VvHlzpaenq6CgQFlZWTpy5IjCwsLUqlUrbdiwobQ2\nIiJCgYGBstlsysjIkNPp1KZNm9S6deuruEwAAAAAVZnLS93uv/9+jRkzRs8884yKi4s1duxY3XDD\nDRo/frzmzJmjRo0aqXPnzvL29lavXr3Us2dPOZ1ODRs2TL6+voqKilJcXJyioqJks9mUlJQkSZo4\ncaJGjBihkpISRUZGqkWLFld9sQAAAACqJovT6XQa3YQ7zHwdomT+ay3Njvl5Lndnl7Frksua0PCE\n8mgJZcB7z7MxP8/F7Dyb2ef3hz/jAwAAAACeiuADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABM\nj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAAAABMj+ADAAAAwPQIPgAA\nAABMj+ADAAAAwPSsRjfg6QatG+Wy5rWOsyqgEwAAAAC/hTM+AAAAAEyP4AMAAADA9Ag+AAAAAEyP\n4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAA\nAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9Ag+\nAAAAAEzPanQDAGCkSS995Fbdw52vciMAAOCq4owPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAw\nPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAA\nAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPYIPAAAAANOzGt0AAJjF2O2HXdZMa9OkAjoBAAD/F2d8AAAAAJgewQcAAACA6V3xUrei\noiKNHTtWJ06cUGFhoWJiYtS4cWONHj1aFotFTZo0UWJiory8vLR69WqlpqbKarUqJiZGHTp0UH5+\nvkaOHKmzZ88qICBAM2fOVK1atbR7925NnTpV3t7eioyMVGxsbEWtFwAAAEAVdMUzPh9++KFq1Kih\nVatW6fXXX9fkyZM1ffp0DR06VKtWrZLT6VRaWpoyMzO1YsUKpaamaunSpZozZ44KCwuVkpKisLAw\nrVq1Sl27dlVycrIkKTExUUlJSUpJSdGePXt04MCBClksAAAAgKrpisHngQce0JAhQyRJTqdT3t7e\n2r9/v9q2bStJat++vbZs2aK9e/cqPDxcPj4+stvtCg0N1aFDh5Senq527dqV1m7dulXZ2dkqLCxU\naGioLBaLIiMjtWXLlqu8TAAAAABV2RUvdQsICJAkZWdn68UXX9TQoUM1c+ZMWSyW0n/PyspSdna2\n7Hb7Zd+XnZ192fH/rQ0MDLys9tixYy4brVnTX1ard9lXWAkEB9tdF5WhDpUT84M7+Dkpf7ymno35\neS5m59mq4vxc3s761KlTGjRokHr27KkuXbpo9uzZpf+Wk5OjoKAgBQYGKicn57Ljdrv9suNXqg0K\nCnLZ6PnzuWVaWGWSmZnlsiY42O5WHSon5gd38XNSvnjveTbm57mYnWcz+/x+K9Rd8VK3M2fOqG/f\nvho5cqSefPJJSVKzZs20bds2SdLGjRvVunVrNW/eXOnp6SooKFBWVpaOHDmisLAwtWrVShs2bCit\njYiIUGBgoGw2mzIyMuR0OrVp0ya1bt26PNcKAAAAAJe54hmfhQsX6tKlS0pOTi69MUF8fLymTJmi\nOXPmqFGjRurcubO8vb3Vq1cv9ezZU06nU8OGDZOvr6+ioqIUFxenqKgo2Ww2JSUlSZImTpyoESNG\nqKSkRJE1rqmmAAAUCUlEQVSRkWrRosXVXykAAACAKsvidDqdRjfhjsp6Om7QulEua17rOMtljdlP\nOZod8/NcC2Z84Vbdw503uqxZWBzlsmZamyZuPR/cw3vPszE/z8XsPJvZ5/e7LnUDAAAAADMg+AAA\nAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPYIPAAAAANMj+AAAAAAwPavRDQAA\nAAC4skHrRrmsea3jrAroxHNxxgcAAACA6RF8AAAAAJgewQcAAACA6RF8AAAAAJgewQcAAACA6RF8\nAAAAAJgewQcAAACA6RF8AAAAAJgeG5jClPrOWOey5o3RHSugEwAAAFQGnPEBAAAAYHoEHwAAAACm\nR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAA\nAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHpWoxuorPrOWOdWXbW2V7kR\nAAAAAH8YZ3wAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAAmB7BBwAAAIDpEXwAAAAA\nmB77+AAAALcNWjfKZc1rHWdVQCcAUDac8QEAAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKZH8AEA\nAABgegQfAAAAAKZH8AEAAABgegQfAAAAAKZH8AEAAABgelajGwAAAABQuWTsmuSyJjQ8oQI6KT9u\nnfHZs2ePevXqJUk6evSooqKi1LNnTyUmJsrhcEiSVq9erW7duql79+5av369JCk/P1+DBw9Wz549\n9cILL+jcuXOSpN27d+upp57S008/rfnz51+NdQEAAABAKZfBZ8mSJRo3bpwKCgokSdOnT9fQoUO1\natUqOZ1OpaWlKTMzUytWrFBqaqqWLl2qOXPmqLCwUCkpKQoLC9OqVavUtWtXJScnS5ISExOVlJSk\nlJQU7dmzRwcOHLi6qwQAAABQpbkMPqGhoZo3b17p1/v371fbtm0lSe3bt9eWLVu0d+9ehYeHy8fH\nR3a7XaGhoTp06JDS09PVrl270tqtW7cqOztbhYWFCg0NlcViUWRkpLZs2XKVlgcAAAAAbnzGp3Pn\nzjp+/Hjp106nUxaLRZIUEBCgrKwsZWdny263l9YEBAQoOzv7suP/WxsYGHhZ7bFjx1w2WrOmv6xW\nb/dXVokEB9tdF5WhDuWjvF9v5gd38HNS/nhNK5+yzIT5eS5mV/mU53svo5yfrzIo880NvLx+PkmU\nk5OjoKAgBQYGKicn57Ljdrv9suNXqg0KCnL5vOfP55a11UojMzPLZU1wsN2tOpSf8ny9mR/cxc9J\n+eK9Vzm5OxPm57mYXeVU0e+9yvoz8FuBrMy3s27WrJm2bdsmSdq4caNat26t5s2bKz09XQUFBcrK\nytKRI0cUFhamVq1aacOGDaW1ERERCgwMlM1mU0ZGhpxOpzZt2qTWrVv/gaUBAAAAwJWV+YxPXFyc\nxo8frzlz5qhRo0bq3LmzvL291atXL/Xs2VNOp1PDhg2Tr6+voqKiFBcXp6ioKNlsNiUlJUmSJk6c\nqBEjRqikpESRkZFq0aJFuS8MAAAAAH7iVvC5/vrrtXr1aklSw4YN9fbbb/+ipnv37urevftlx6pV\nq6ZXX331F7UtW7YsfTwAAAAAuNrKfKkbAAAAAHgagg8AAAAA0yP4AAAAADA9gg8AAAAA0yP4AAAA\nADC9Mt/OGgCAP2LQulFu1b3WcdZV7gQAUJVwxgcAAACA6RF8AAAAAJgewQcAAACA6fEZHwAAUGll\n7JrksiY0PKECOgHg6TjjAwAAAMD0CD4AAAAATI/gAwAAAMD0CD4AAAAATI+bGwAAAAAos7HbD7tV\nN61Nk6vciXsIPkAF4c5EAAAAxuFSNwAAAACmR/ABAAAAYHoEHwAAAACmR/ABAAAAYHoEHwAAAACm\nR/ABAAAAYHoEHwAAAACmR/ABAAAAYHpsYAoAADyaO7vHV5ad4wEYhzM+AAAAAEyP4AMAAADA9Ag+\nAAAAAEyP4AMAAADA9Ag+AAAAAEyP4AMAAADA9LidNQDA1DJ2TXKrLjQ84Sp3AgAwEmd8AAAAAJge\nwQcAAACA6RF8AAAAAJgewQcAAACA6XFzAwAAAKAKmfTSRy5rHu5cAY1UMM74AAAAADA9zvgAACBp\n7PbDLmumtWlSAZ0AAK4Ggg8AAABgoL4z1rmsqda2AhoxOS51AwAAAGB6BB8AAAAApselbgAAQBKX\n21QFg9aNclnzWsdZFdAJUPEIPgAAwBBV9Za6AIxB8DEh7kwEAAAAXI7P+AAAAAAwPYIPAAAAANMj\n+AAAAAAwPT7j40Eydk1yszLqqvYBAADgiru/t4SGJ1zlToAfccYHAAAAgOlxxqcC/Lff8y5rgv+2\n5uo3AgAAANNy53dOSVJjN+tMhjM+AAAAAEyPMz4AgHLTd8Y6lzXV2lZAIzAUf3VGWbD/ICoKwQeA\nabn1yxe/eAEAUCVwqRsAAAAA0yP4AAAAADA9LnUDAFRK3BETAFCeCD4AAI816aWPXNY83LkCGgEA\nVHoEHwAAAA/nzh0VJe6qiKqN4ANcgbu3ZOVyGwAAgMrNsODjcDg0YcIEffXVV/Lx8dGUKVNUv359\no9oBAACA+HwdzMuw4LN27VoVFhbqnXfe0e7duzVjxgwtWLDAqHaASsGdTdwkNnIDABiLz9fBExkW\nfNLT09WuXTtJUsuWLfXll18a1UqlwP+AAGUzaN0olzVDKqAPAADgGSxOp9NpxBPHx8fr/vvv1913\n3y1Juueee7R27VpZrXzsCAAAAED5MmwD08DAQOXk5JR+7XA4CD0AAAAArgrDgk+rVq20ceNGSdLu\n3bsVFhZmVCsAAAAATM6wS91+uqvbf//7XzmdTk2bNk033HCDEa0AAAAAMDnDgg8AAAAAVBTDLnUD\nAAAAgIpC8AEAAABgegQfAAAAAKZH8AEAAABgemycA/xB+/btU1ZWlu68806jWwGqBKfTqX379qmg\noKD0WJs2bQzsCGWRnZ2tjRs3qrCwsPRY165dDewIZZGfn6+PPvpIubm5evDBB1WnTh2jW0IZVPX5\nEXwM8L//Y/9/+fj4VGAn+D3Wrl2radOmycvLS7169dLatWtlt9u1efNmjRw50uj2cAWffPKJHnzw\nQeXm5mrevHk6dOiQbr75ZsXExCggIMDo9uCmwYMH6+zZs7ruuuskSRaLheDjQQYOHKg6depcNj94\njrlz56pVq1aqXr26hg8frrffftvollAGVX1+BB8DdOnSRWfPnlX16tXldDplsVhK/zMtLc3o9uDC\nokWL9MEHHyg3N1dPPPGE1q9fLx8fHz399NNGtwYXUlJS9OCDD2rq1KmqV6+exo0bp61btyohIUFJ\nSUlGtwc3nTlzRqmpqUa3gd/J6XTq5ZdfNroNlMHIkSM1YMAANW7cWMXFxZIkLy8vlZSUGNwZ3MH8\nfkbwMUBKSoqio6O1bNkyVa9e3eh2UEYlJSWlZwcsFkvpXysdDoeRbaEMjh49qqlTp0qSbrjhBn32\n2WcGd4SyaNiwob7//nuFhIQY3Qp+h6ZNm2rPnj266aabSo9xtUPllpiYqEWLFikvL0+9e/fWli1b\nlJeXp7lz5xrdGtzA/H7GBqYG2bRpk7y9vXXHHXcY3QrK6I033tCKFStUt25dhYSE6MyZM/Lz89Mt\nt9yiwYMHG90erqB9+/bq27evvvjiC40aNUrNmjXT3r17NX36dKWkpBjdHtzUuXNnHTt2TLVq1So9\ntmnTJgM7Qlk8+uijys7OLv2aqx08x7Fjx7Rw4UKFhoaqT58+BFYPw/wIPsDvkpWVpWrVqkmSNm7c\nqOrVqysiIsLgruDKwYMH9eWXX2r//v1q0aKF7r77bg0YMECTJk267K/PAICf/e1vf9O7774rPz8/\nxcbGyuFw6M0331THjh25MYUHYH4/41I3g6xdu1Zbt25VVlaWgoKCFBERoQceeIAPeXoAh8Ohbdu2\nyW6368Ybb9Rnn30mLy8v1a9fX9dcc43R7eEKDhw4oO+//15PPvmkRowYoWXLlikvL0/nz583ujWU\nwe7du/Xee++pqKhIkvTDDz9o6dKlBncFd6WlpWnVqlUqKiqS0+nUhQsX9NFHHxndFq4gJSVFqamp\nKiwsVFxcnF555RWFh4fr448/Nro1uIH5/YzgY4CJEyfK4XCoffv2CggIUE5OjjZu3KhNmzaVfu4A\nlVd8fLwkKTMzUxcuXFCPHj0UEBCgcePGaeHChQZ3hytZtWqVVqxYoZiYGC1YsKD0syIDBw7kduQe\nZMKECerXr58+/fRThYWFXfFOmah85s6dq0mTJik1NVW33XabNm/ebHRLcCEsLEyxsbEqLi5Whw4d\nSo8/9NBDBnYFdzG/nxF8DHD48OFf3D6wU6dO3BXMQxw9elSrVq1SYWGhunTpoqeeekqS9M477xjc\nGVyx2Wzy9/dXQECA6tWrJ0kKCQnhTKuHqVmzph555BFt3rxZgwcP1rPPPmt0SyiDOnXqKDw8XKmp\nqerWrZvef/99o1uCC5MmTdKFCxfk6+tbepk3PAfz+5mX0Q1URQ6HQzt27Ljs2Pbt22Wz2QzqCGWV\nnp4uHx8fvfnmm5J+DEP81bny69ixo2JiYtSkSRMNGDBAy5YtU3R0tG6//XajW0MZeHl56fDhw8rL\ny9M333yjixcvGt0SysBms2n79u0qLi7Wv/71Ly419QCffPKJatSoIafTqZkzZ6pPnz56+eWXlZOT\nY3RrcAPz+xk3NzBARkaGpk+frgMHDsjhcOj8+fNq166d4uLi1KBBA6Pbgwtff/215s6dq3nz5sli\nsSg/P1+DBg3S4MGD1bJlS6Pbgwv/+c9/tGnTJp0/f141atRQRESE7rnnHqPbQhkcPnxYhw8fVkhI\niKZOnapHH31Uzz//vNFtwU3ff/+9vvnmGwUHB+svf/mLHnjgAT388MNGt4UreO655/TWW28pPj5e\n9erV03333aetW7dq165d7IHmAZjfz7jUzQAlJSUaNWqUfsqccXFxl32Nys/hcGjs2LHq0qWLxo0b\nJ4vFonPnzhndFtzQtm1btW3b1ug28DsUFxfLarWqfv36ql+/viSxkakHCgkJ0TfffKP09HQNGjRI\nDRs2NLoluIk90Dwb8yP4GKJPnz7y8/NTnTp15HQ6dfToUSUmJkqS3nrrLYO7gyuJiYkaMmSITpw4\noRdffFGffvqpfH191a9fP3Xs2NHo9gDTiouLU1JSUukdMH/6YxH7wHiWOXPm6PTp0zpy5Ih8fHy0\nePFizZkzx+i2cAXfffedli1bJm9vbx04cEDNmjXTvn37Su+siMrtp/lZrdYqPz+CjwHWrFmjxMRE\nRUVF6a677lKvXr0IPB7E4XCUnjHYtm2bateuLUmyWnk7AVfTT5dkrFu3zuBO8Eekp6dr5cqV6tWr\nlx5//HE2D/YAixYt0v79+9WoUSN99dVXqlevniZPnqwxY8YY3RrcsGjRIn355Zdq0KDBZfObOHGi\n0a1VOH5TM0Dt2rU1d+5czZw5U/v27TO6HZRRw4YNFR8fr8mTJ2vGjBmSpMWLF7OHD3CV9erV61fv\nwGexWLR8+XIDOsLvUVJSooKCAlksFpWUlMjLi/ssVXanTp3Sa6+9JqvVqtatW8tut2v16tWlnx1B\n5fb0009r3LhxmjBhQumx1atXG9eQgQg+BrFarYqPj9d7773HZ3s8zJQpU7Ru3brL/s86JCREvXr1\nMrArwPx++uvka6+9pk6dOikiIkJ79+7V+vXrDe4MZfH888/riSee0Llz5/TUU0+pT58+RrcEFxYu\nXKgPPvhADodDQ4YMUWFhoR5//HF+f/EQN954ow4ePKjnnntOgwcPVps2bYxuyTAEH4N169ZN3bp1\nM7oNlIGXl5fuvffey4499thjBnUDVB2NGjWSJJ05c6Z047377rtPK1asMLItlJHNZlO9evVUu3Zt\nWSwWffjhh+rSpYvRbeEKbDabqlevLklKTk5W7969dd1117EHmofw9fVVQkKC9u3bp8WLF2vSpEm6\n/fbbVa9ePT333HNGt1ehCD4AAI/z17/+Vc2bN9euXbvYA83DzJo1S5MnT1ZQUJDRrcBNdevW1fTp\n0zVkyBAFBgZq/vz5io6O1qVLl4xuDW746czcrbfeqnnz5ikrK0vbt2/Xt99+a3BnFY99fAAAHiUz\nM1MLFy7Ud999p8aNG+vPf/6zatasaXRbcFNsbKzmz59vdBsog+LiYn344Yd68MEHVa1aNUk/nnld\ntGiR4uPjDe4Orrz//vt6/PHHjW6jUiD4AAA8zpYtW3Ts2DG1aNFCDRs2lK+vr9EtwU3vv/++UlNT\nSy9dlKTp06cb2BGAqoJL3QAAHoV9YDzbihUr1K9fP9ntdqNbAVDFEHwAAB6FfWA82zXXXFN6cwoA\nqEgEHwCAR2EfGM/m5+en6OhoNWvWrPSuYMOHDze4KwBVAcEHAOBR2AfGs3Xo0MHoFgBUUdzcAADg\nUdLS0vTuu+8qNzdXFotFNptNS5YsMbotAEAlR/ABAHiUzp07/2IfmBtvvNHAjgAAnoBL3QAAHqVJ\nkyZq27at0W0AADwMwQcA4FE6deqkHj16sA8MAKBMCD4AAI/CPjAAgN+D4AMA8CjsAwMA+D0IPgAA\nj8I+MACA34PgAwDwKOwDAwD4PbidNQAAAADT8zK6AQAAAAC42gg+AAAAAEyP4AMAAADA9Ag+AAAA\nAEyP4AMAAADA9P4fBQGBMNIkuQIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Select three indices of your choice you wish to sample from the dataset\n", + "indices = [401, 338, 65]\n", + "\n", + "retailer = data[data[\"Frozen\"]>=9000]\n", + "#print(retailer)\n", + "market = data[data[\"Detergents_Paper\"] >= 8000]\n", + "#print(market)\n", + "\n", + "\n", + "# Create a DataFrame of the chosen samples\n", + "samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)\n", + "print \"Chosen samples of wholesale customers dataset:\"\n", + "display(samples)\n", + "\n", + "\n", + "# show samples values as bars, also show whole dataset mean values as bars\n", + "import seaborn as sns\n", + "samples = samples.append(data.describe().loc[\"50%\"])\n", + "samples = samples.append(data.describe().loc[\"mean\"])\n", + "samples = samples.append(data.describe().loc[\"25%\"])\n", + "samples = samples.append(data.describe().loc[\"75%\"])\n", + "\n", + "\n", + "samples_as_barchart = samples\n", + "\n", + "#samples_as_barchart = samples\n", + "samples_as_barchart.index = indices + ['median', 'mean', '25%', '75%'] # add mean to x axis\n", + "_ = samples_as_barchart.plot(kind='bar', figsize=(14,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers. \n", + "*What kind of establishment (customer) could each of the three samples you've chosen represent?* \n", + "**Hint:** Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying *\"McDonalds\"* when describing a sample customer as a restaurant." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** \n", + "- Example 401 is above median on Fresh, Frozen, Deli, and below on rest. This is could be a food market as it would be higher than the median in those categories . \n", + "- Example 338 are above mean and median and 75 percentile on Frozen, above median on Grocery, below on rest so could be a fish shop selling frozen fish.\n", + "- Example 65 is a high multiple of the IQR on Grocery and milk and detergents paper - it could be a very popular cofee shop." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Relevance\n", + "One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign `new_data` a copy of the data by removing a feature of your choice using the `DataFrame.drop` function.\n", + " - Use `sklearn.cross_validation.train_test_split` to split the dataset into training and testing sets.\n", + " - Use the removed feature as your target label. Set a `test_size` of `0.25` and set a `random_state`.\n", + " - Import a decision tree regressor, set a `random_state`, and fit the learner to the training data.\n", + " - Report the prediction score of the testing set using the regressor's `score` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature\n", + "testDependentFeature = \"Detergents_Paper\"\n", + "\n", + "new_data = data.drop([testDependentFeature], axis=1)\n", + "target = data[testDependentFeature]\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# TODO: Split the data into training and testing sets using the given feature as the target\n", + "X_train, X_test, y_train, y_test = train_test_split(new_data, target, test_size=0.25, random_state=5)\n", + "\n", + "# TODO: Create a decision tree regressor and fit it to the training set\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "regressor = DecisionTreeRegressor(random_state=6)\n", + "regressor.fit(X_train, y_train)\n", + "\n", + "# TODO: Report the score of the prediction using the testing set\n", + "score = regressor.score(X_test, y_test)\n", + "print(\"R-squared for explaining {} is {}\".format(testDependentFeature, score))\n", + "# Detergents_Paper seems to have highest R-squared." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "*Which feature did you attempt to predict? What was the reported prediction score? Is this feature necessary for identifying customers' spending habits?* \n", + "**Hint:** The coefficient of determination, `R^2`, is scored between 0 and 1, with 1 being a perfect fit. A negative `R^2` implies the model fails to fit the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** I attempted to predict Detergent_Paper. The prediction score was 0.6606. This means this feature can be explained with around 66% accuracy using all the other features combined. I would say it is still required as this is only slightly better than chance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize Feature Distributions\n", + "To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Produce a scatter matrix for each pair of features in the data\n", + "# plot each feature against each other feature in pairs.\n", + "pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); \n", + "\n", + "# feature against feature produces the distribution of that feature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check feature distributions\n", + "data.Detergents_Paper.hist(bins=200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "*Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?* \n", + "**Hint:** Is the data normally distributed? Where do most of the data points lie? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Yes, Detergents Paper seems to correlate with Grocery, and maybe Grocery with Milk a bit. This confirms my suspicions for Detergents ag Grocery by looking at the plot. Further, the data for these features is clearly not normally distributed, but heavily skewed towards lower values, so positively skewed. This means the median falls below the mean. This lack of normal distribution applies to all features in fact, probably due to the fact that there are a lot more small food shops than large ones." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preprocessing\n", + "In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Scaling\n", + "If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most [often appropriate](http://econbrowser.com/archives/2014/02/use-of-logarithms-in-economics) to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a [Box-Cox test](http://scipy.github.io/devdocs/generated/scipy.stats.boxcox.html), which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign a copy of the data to `log_data` after applying logarithmic scaling. Use the `np.log` function for this.\n", + " - Assign a copy of the sample data to `log_samples` after applying logarithmic scaling. Again, use `np.log`." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 27167 2801 2128 13223 92 1902\n", + "1 3 333 7021 15601 15 550\n", + "2 85 20959 45828 36 24231 1423\n", + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 10.209758 7.937732 7.662938 9.489713 4.521789 7.550661\n", + "1 1.098612 5.808142 8.856661 9.655090 2.708050 6.309918\n", + "2 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAHsCAYAAAD8YBPrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmMZdl93/c5d3/7q1dVXUvv3bP0THNmmuQMKZKiFmtI\niaYMioEkm0gABQEkZwMcRDAc2ElgCPAfSRxASBwDFmDDNKXICGWNbck2SQ3FVbPvM90z01vt66u3\nv7vfe07+uK9qqquruqun95n3/aeruu6779x7fuec3/r9CaUUQwwxxBBDDDHEEEMMMcQQH3Vod3sA\nQwwxxBBDDDHEEEMMMcQQdwJD42eIIYYYYoghhhhiiCGG+FhgaPwMMcQQQwwxxBBDDDHEEB8LDI2f\nIYYYYoghhhhiiCGGGOJjgaHxM8QQQwwxxBBDDDHEEEN8LDA0foYYYoghhhhiiCGGGGKIjwWGxs8Q\nQwwxxBBDDDHEEEMM8bHA0PgZYoghhhhiiCGGGGKIIT4WGBo/QwwxxBBDDDHEEEMMMcTHAsbdHsC1\nMDY2po4dO3a3hzHEPYDZ2VmGsnD/IZWKRCoMTaBr4qbvN5SD+wO3et53YigH9weGcvDxwe2e62th\nKAf3Nu6kbLz66qsbSqnx6113Txs/x44d45VXXrnbwxjiHsCTTz45lIX7DB0v5j+8vUyqFLoQfPWx\naSp586buOZSDex+3Y953YigH9z6GcvDxwZ2Y62thKAf3Lu60bAgh5vZz3TDtbYh9YXbD5Yfvr7Pe\nC+72UIbYAx0vZmbDpePFd3soADS9iFQppso5UqVoetHdHtIQN4H9ytdw3ocAmGu4rHVDyrY5lIN7\nALfzfBiu+fsLd1JXuFdl456O/Axx9+FFCf/gmXd45vUlAAxN8N//tQf4O7/0IELc2dD2EHtjN+8K\nZBtPLW/dUS/cJmp5C10IVro+uhDU8tYdH8MQtwbX8951vHhL1obz/tHG9rnea1/peDEvzza5vNFn\nZqPP44eqQzm4i1hoeDzzxiKOqVO0jVvufR+u+fsHHyYSs581vxfuVdkYGj9D7Ik4lfz2v3qF5y81\n+O9+8SRffHCcf/3SPL//7AWkgv/xSw/d7SHeU7iZDeJm0fQi+kFCwTHoBwlzTZd3ljr0g4QgkXz9\nzEEOj+bv6JgqeZOvPjZ9Vw2wjwtuRPY+jJxu996tdH3mGi4lz9w6yHYepsN5/2hgp6xsV5zCWPKZ\n4zWO1gpXzXHTi7BMjadPTfDuSpdDI7m79AQfDdzM2dLxYv745XneXe0wXnB4YKJI04uuus/NfMdw\nr79/sHMv300WtmNzzW/qEk+fOkCiFCg4Onr12t+Je1U2hsbPEHvi9589z19dbPB//Prj/MaThwH4\n7PEahq7xf33/Al84OcpnT4ze5VHeG7jTea07DypDCM6tdEgkSCkZLdps9ELq/ZD1XkjLDfmvvnDi\nrhhA98pm91HFjcjeta7dlClDCBKlrjioanmLKJa8s9xG1zRenm1imRq6EHxiunLVYXp87PqH4hB3\nHvuN2jS9CD9MePa9tSuiBZuKU9k2+f7MGv0w5kDJuUrmNr29a92A1a7PfNOi6S7f8VqQjwJu9myZ\na7hcrvfpeAnLrRaWIVhp+fT8eEt5vRXn13Cvv/fR8WJ6fkwUy6siMXvtDXMNl/mGR8uLaHsxr842\nyNkGlq7x+KEqv/Hpw/sygO412RgaP0PsircW2/zTH17iN588tGX4AAgh+L2vnebFmQb/4N++w3f/\nh5+748wudxL79Ybt15vyYb1r2z8HV3vaE6V4dLqChuCV+Sbn13pcrPeRStH1Ytww4Y9fmudv//zJ\nq5Tde8Ebcy+N5V7Etd7PtWRv5+e2X3u53uetpTaPH6wCmUz1w4Rzyx0enapQdD5Ij+n6MY1+hEQR\nJwl9XePRqTLdMAbBLUtrGMrB/rCboQrXTnPdj4K75eUNE16caaAUlByDg5Ucz1/aoJwzCWPJ5Z6L\nAo6PFumG8VX73aa3962lNgg4MVbcl5f5fsTtltn9nC3XHMPW8axIUsX5tR4b/VkATowX+cZTR0iU\noh8mCAQb/ZC5hsvj+eotf5Ybwb28F9ytsd1sBPDbry7QCxJMXfDUtqjtXmnzc02XH12oc36tR70f\ncngkT6LA1DRKjkkvSG5a17lb73Jo/AxxFZRS/KP/8C61vMX/8quPXvX3vGXw97/yCP/NH73Gn725\nzK998uBdGOXtx414w3bmtRpCMLPhXrGg96t87KbUbP/cTk/72eUOXT8mSiSJlMSJRNcER0dyrPdD\n1joBmiaY2ehvHWo7Q9l3Ki1upxG3+aw/uVi/a0xB9zquF625lifvT15doBfGlGyTX//04S05vVzv\n88ZCi6YX8eZCmwfGi9R7IQBeJLP0yTDhraU2o3mLb7+6yHLbp5I3WesEBGnKXMPlyWPZAXq0Vtj1\nALvRdLxNxTuIU75+5tAdj1TeDez3HS00PGabLqN5izcW2/TDhDfmWxypFSg4BnlT34rG7baGNlNj\nNSHYcK9WcDtezLPn1nhzsc2hag6poNEPWekEnFvqcn6tR842eHiixGeP1yg7Bt0w3tPgreRNHj9Y\nZaHp7dswvt8U3puJmGzO57Fa4Zpyvhl1fWWuiSbA2FFru3PdfPbYKJGUW/c9WitwYrxIkEgmSjl6\nYVbk3nQjwrTDM28s8vSpCd6Yb7PQ8hAiM3i3pzTd6XnZ/l6jWPLUsdq+Uqxu5zi3n81347y6FRHA\ntxbbA6Ml5uceHN/6/NmlDu+t9nhkskQvSHj+8gYX1vsstXxmG30eHC/SDWKqOQNQxFLSC2KOjxV2\nXdP7HevNPtPNzPfQ+BniKvzg/XVenGnye187TcnZXaB++fQkpyZL/N9/eYGvnZn+SJIf3Gg054sP\njJMotefmeL37bXpmNnoh802PM0eqFG2DY7UCa92QE2OFqzztHS/mD1+YQ9MEUiq+cHKUtU7AWjdE\n1+A3P30YP0qo5W2CVG55ATcVoXMrXZY7Pm0v5O/80sN7Pt9c070ix3e/B/fO+2w/0BRgmxotN8Yx\ntY+0d/hmsJfcbH+fCnjiUPWK+ou5psvLc01MTcOLEw6O5PjciTG++tg0z1/e4LWFFo1eyHOXNlia\nKnNupUutaFPvBJxdarPcDnhroc1S26dgG8SppONH1PsRx2p5vCjm0any1hgNIbaYfD5MKk3Ti+iH\nCQtNn5YX8cwbS/zW547dt7JwrTTC7ddcLw2xlrfo+jH/51+8RyLBj1MeP1ShYBostHx0XcNdS3ho\nssiTR0f33FtW2j4vzzZZbPukg54b29OevvXCLP/p7RVaXkQpZzJasBgt2miAGybkbYOSY5JISdE2\neOp4bc+8/+1j/+ID41t7xX5qC/bjHLobHvfdxnYjUdftWGh4W/MppeLXzhxksursWj8F2ZyfX+th\n6RrfO7fKr29LNdpcNxfX+8w3XP79m8ucHC+SMzV+90unODya51cfm8KPUhxTY67h0g9T/Djl2GgB\nBZxd6TJRtjF0gVBQ7wfMNTPjOCNLWMIxtCuiwdd7xpvB9vTKZ2fW6AYJE2X7Q6f03iy237vlRjiG\nzonxO3te3Witzvaxb8qIGvyfgi1d4NxSh3/240vU+yHPX9ygaBucPFDg3EoPgWCh2efiep+xgk0s\n4ZOHR3AsjZPjJU5PV7b2j+1OzbeWMufM9c70D/tMm891M/M9NH6GuAr/zw8ucbiW4xufObLnNZom\n+O0vnuB3v/0mz19u8PmTY3dwhHcG+2Ep2W0B7rWgt7zuG32COL3Kg3d2ucOPztcRKOr9iE8eGaHe\nC3lnqUPDjZjZ6PPgRAkUfPGBcVp+xOtzLRKpeGi8yGzDZa7pYZsah2oFukFML0yYquSIpeKhsRJH\na4WtZ5truvz0Yh1NQL0X8jMnxvjy6cmrnu9bL8zy6nwLW9d48liNz58Y5Q9+colEgqGxdcBeD9tJ\nGeq9ENvUOTZawQ9Tgji959hg7hXsJYc75azkXJlX3Q8SlgfK8XrH54WRBostnyO1PO+tdGl7EShQ\nCqp5m8lKjoOVHH0/4mLd5VK9B1LgxwkHqzlGizZxKknSlPV+SCoVa92AV+aa+HHKhbUejx2sommC\nBw8UKTvmlgJzecO9bipNLW8RxCktL2Ikb+IY2n1lCO+WmrpbGiF8kJ52FZFEMyOS2HSgbHrzD1Zy\nJBKOjRa4sNaj7Ub4ZoqUijiRCAFRonh7qUPJMa6I/p1d6vDTSxv4YcJqxyeIEoq2ybsrHc4ud5iq\n5uj5MUstH6EJJisOqVT8wkMHaPsxXpiw1PaJE0k3iJmsOFfUfB0dLWy9g4WGx9mVDhfW+1TzWYqc\nACxTY6Hp8dXc3grKfpxDu6Xm3Oq5uxElba+1eT3FbLbp4seSsmPy1mKLf/HcZcZLDg9PlPi5B8ev\nMEqfv7TBUstjNG9hmTq9MN6Sk1reYr0T8PzFBvMtF0PT6AcJZcek4Yb82VvL/MJD47yx2Gaq6tD2\nYr706CT9MGFmw6WSN5mp9xEK1rohYZJS74ccTHO8NNNkJGfxzBuLnF/rM5I3OTySv8L58ievLlDv\nh0RJytOPTG4pwzeLzfc60+gjYMvxd6394GYU6eth+739KCXYJdJ+s7ieDG6XtSiW9Px4i6p6r8/t\nJCh5eKJEP0yo5AwMIfje2VX+1fMzLLQD8obGSsenaJtEqaQXJOgaGIaGqWvkLIMXLzd5bb5Fwdb5\n8qPZfG/PMDA0DcfUkVJxbqUDQNE29nxH258pjLNoUseL9zVvNzvft9X4EUJMA38OPAoUlVKJEOLv\nAl8D5oD/Uil1bzQlGQKAd5Y6vDrX4n/+6iOY+rXbQH318Sl+78/P8UcvzN8Xxs+Neqn2w1Ky2wLc\n60Cs5E2++MD4wIum85OLdb6a+yC39pnXlnh/tYuhCaSCmXqPxU6AlIqxgs1IwcCPUt5cam9FTrww\nYa3rk0hJGKestFzmmj6zGx4lx6Dvx7S9iGrepmgbzDVdjlKg68esdHy8MEEIgR9JvvvOKo9Mlmn5\nmVI8krd4abbBD99fJ1UKU9Oo90LOrnS3FLHZhsts092X8bOTlOHR6QorXZ+iY/CVB6Z29Y7fy2kw\ntwrXe8a95PB6xnnRMRgv2fSjBMcy0BB8/91VltsBbpiQSMXhkRwTlRyOlSmyby21mW/6aECrn6AL\nkEDLiwkSScHSaboxjqmTSvjOO6u4cUK9G5JIiRelNPoR0yMOOcPg+HiBl5tNFFCeNbYU5d2et5I3\n+fqZQ1d4me8VQ/h6c7RT2f3EwQr9MMGPUvw4SyNMldpiYdy87osPjF+h0Lw009yKhioUG72Ilhex\n3g1p9kPaXkzZMfiNTx+m7cdcWu8TJhJDE+QtHSEUAuj6MS/NNPjuO6ssdzxafjaXS+2AII4pWpli\n8x/fXmG0aJNKyUrHp9EL6YcJo0Wb9V5AJW9hGYKxks2njoxQHLBJvjTboIzJ2fUetqHx9COTW9Gp\nTpDVh33jqSNsBAlCKD4xWr2ugnI9ed5tr70VuFZk43pj22ttXk8xG81brHZ8Lq71aXsRh0YK2IbO\n6/NN4lQxUbY5c6jKn7+1wvtrXVY6WX+9I7U8UxWHH5+vZ/UWbsibC226QUzHjzkxViSVkvNrPRr9\ngCiV/ORinTOHq5yaKPPaXIv3VzsUbJOjI3lsXWMkZ3F0tIBj6tiGxuyGy8FaHikVs00Xx9QZyVu0\nvIjxktx69s3I8nLbZ7UT8PZih6eOj/KNp47cVLrq9kyKlh9RtJvXTK+83hzdCmy/d9E2+Mrp8T2j\nuR8G+4libMraXNPlpZkmL8w0+M7ZVXKWTjVvXvW5hYbHCzMNFloeh6p5pFI8NFHi+UsNoiThf/o3\nb7HWC+iHKalUJKkEBYae4oYpCkWSQN9PCHRJy42wdMFIwUZJnUv1XpYRAryx2KbsmMw3XMbLNsdH\ni4zkLEbzNg9OFPd87q1nari8PNvkzcU27yx19hXFudn5vt2RnybwS8AzAEKIA8AvKqV+Vgjx94Bf\nA759m8cwxA3gm8/NkjP1K0gO9oJj6vz6pw/xzedmabkRI4V7Q1HZDR82RHo9lpLdFuC1jKZEKUYK\n5tah+OJMZlysdgLOLXeBLA1irGxzoOyw1A5Y6wRcWO3y4GSZzxyrMVXO8c5ymyCSjJVsjtYKdKOI\ngm1ycb2PpWt0wwQtTLBMnYYbIxH85Xvr+FGCYxp0vYRWPwYhUBIcRyeMU/7lczOs90PiRJJIhRtm\nHmHD0CjaBromOD1V5q8u1pltuBgaHKsV9no9V2CTlKFgGbhRws+cGKXkmDdUoL39bx8Fo2i/crmb\nHF7POB/JWdiGTtuLaLkR3393jQ03RNcEXpSiC8FS2+fpRyf5xYcOcKSa55//1QwCaLgREpAKdCCI\nUwSKnKkjlUIpCJKUpbZPvRcQp4pESrpeTKLgzOER3CjhQMnG1MVWYfwWBfsedT2HR/P81ueO3bK5\nvRVysp852qnsXl7v88P319CERi+IafRCxko2KK64LlFqaw57fsybS+3MuxymrHSy9D+pFGeXO4DC\nMnVOjFcoOSYNL+ITByuMFW3mmx7G4D2/sdDkH/3Hc5xb6dIPEkwd8pa5NYcoQSdI0LsBQdzgoaky\nyy2fyZLDFx4c44WLTaYqNufXejwyVeGpYzVWuj5T1RzrnYBvPjfLSjdTeDVN8Pp8m7NLXU4frJBI\neGCsxEavwburPY7U8gjYl4JyPXm+lrJzM0Qye0U29ju23dbm9RSznG3whZNjnF3uIoRiseUSpikl\ny+DEWIG1XsC3X11ktuHSDxMePFBE1wRPHK4yVcnxp68t0hxkA3T9BMfSCWPFpY0+VccEFGNFGyVh\nox/y/XfXeW22iRcnHKoWCBPJK/MtTE3QDmLmWx4PT5b5+QfHeX2hRX0hwtDgZx8YQxeCRKaA5LPH\nah88qwI3TNnohUSpZL7pIVWWWPW3f+4kcH0Cjv3UUO1VT7gT+3FWfljcznvD/qMYlbxJyTORSrHQ\n9Flsuwgl+NqZg8w2XL53bpWfOT7Kctvn979/niSVzDY8jo7kGSlaXFjt885Sm8W2RxBJpALT1DB1\nQSohZ2kkUgKKzx8fpR0kuLMJJcdgvRuQSsFqx6fjR4wUTL7zzipnDlWJE0mjF7LaCVhs+7xwqUHJ\nMVls+zTcGu8s723QbD6TZWo3FMW52Tm5rcaPUioAgm31IE8CPxz8/CzwnzM0fu4ZNN2If/fmMr/x\n6UNUcvsTpF87c5B//tMZvnt2lb91jTS5u43bFRK/0QVoCEHLjfHDlG4Q86evLjLf9Oj6caZoamAb\nGoeNHPV+yELTY6ntEafQn2/hhTFBnIXdL2/0WX4/oNEPGclbTJRtun5MKhVCQN7U6HghvSAjQzB0\nwcszLXphjB9LDAEoRaoUUikaXkQ3jDhQzpTRVjegmrOYqkiEEDw8Wdry6v3ul07dcM1PLW9RtDMP\neNE29sxv38Rent47TSt+O/Fh5HKn0rDX9YlSHBvNs9jy8KMEN0wIU/XB31GEXsL/+8IsPz2/jkLg\nhjGxVKQKNLKoj66BVIqWl9APE+IkqwlIpKLrRYAADRSCWGUexFfmmjw8UeLURJkXZxus9QKKtgGK\n69b1XM/hsF/cKjmZa7hX1NztNkfbld32gDig5SaYhuDJIyN88ujIFqveO8udq5wlm2lE7yx3srTY\nJOVXTk/xZ28u88PzddwwxjZ0jo/leX2+xfm1HoeqOeZaHk8crDJesgnilH//1hIX11zafkQqJUkq\nSSWZgmzqBHFKLBUaWd5/P0o4u9Sl40estoOMzS1N6fgxUsIDB+RWVOr5i3X+yQ8u0RmsQ00TjJcs\nOn7Eq/MtukGURZ+7AYdH8vzKo5OcPlgB9t9s+Vpzv9deezPz3PSiPSMb1xvbtQyu/RhyjmVQypl8\nqlwjiFN0AYahs9YNCJKUnKmRM7Pf13shpiGYb3i8Mttkox/gR5KOFxNJCP0EASSpIkolsw0Xx9BI\npY8mBP0wYV5lUcGFZkDO0rF0jTOHqozkLdb6AVIpXpxtcny8SME02HBDFts+by12eHm2gaFp/OPu\n+/zX4UnGSzar3YCRnIWua+iJxI0S/Fhyqd7n7FKH2aZ7zabI+62huhHa/Fu1d9yue+8lM9cz7Oca\nLgg4WitgCMFK22etG3Cg6NDxY96Yb/HaQota0eaZ1xfpBQmrnSBb72nKSlejE8V0vBaNXky6bUwy\nluimwDYE5ZxFN0gYL1k8N9PA1nXCWGIb2T4SyyzjRItT+kHCWwttun5EKhXdIEYBh0ZytN0sdS2R\naivqfa2a6b1Ie66Hm5mTO13zUwW6g587g9+vgBDid4DfAThy5N5Vpj+K+NcvzxMlkt/6/LF9f+YT\nB8scHc3z52+t3NPGz42GSG/Ek7hzAW7vpq0LwVPHatnh6kf8+HwdN0yod2LW3ZBGPxykIGXKSJqC\nQDKSt7F0gVIKmfUTw4skF9Zcglhx5kiFfhgTxhJT1/CihPWeIkozxRWg5WbkCImEJEpxDI2Vtsvg\nv1HARNlitGRjCMHnT45xbrlDww3RAF0TJFIyUrCYKDv8F589yuHRPB0vJlGKxw9Wb2jj2U0huNZ7\n3m+ty/1UF7ITH0Yu91sUfnm9z08u1JlveETpQIh2wVo/Zq3fQQA5U8Mxs6LnTSHRtSzKm8iEMAEh\nIEkUYSJJJGgCHFNDAQXLoFbJcXyswNOPTPDibEaXHMSSr5weB9g6uCfK9r7rej6MZ/9WyEnHi3l5\ntsnljT4zG30eP1S9ao52Ep68v9rlncUOExWbjV6EgivWymbqymYz4hE/U7wRcOZQlWffW8cxdN5e\n7rDSCeh4IVJA383SnBRgGRoVx2S6kmO+6fGffeoQ/TDhh+/XUUqRJJIolR/sK1KhaZJEKXRNkKYK\nL8oiQbYhCaKU1MgifMkgOqRp8NjBCjlL5+2lDj9+f531XsBWMnQKK4O0XA1BrWhxfLTAZ47VOD1d\nucIpcqvW527Kzs3M86ZD5nAtx3jJ4utnDu7rs/tNU9oc3/bfN3/++pmD/PHL86x3Q16aaaAG6y2M\nU7525iD/5rVFumFEwTYYG/Rt+87ZVRxDJ5WSZhARyQ++z9SySG2UKqSSWIYGCmKl0DTQESSpwg2y\nSJEXJaz3QxxLp2BlNSCzG33yls67boQbprx0ucFMw8WLU1Sq6AYRv/fnZzk2WqDlRzi6hpKKWt6m\n7YUcreUxDY2VbsB802W04KC4WvHdPmeXNz6g3N/vfni/Rf43SYM201p3ysy1DPtvv7rAW4ttwkQy\nVrRwDB1NCHphzAPjBQ7X8kRJSjlnoRQsdQKCIMkcXgMBafohLU8QJRK5Y2ybx0IQKZoqi/idW+6R\nKIlMQRfQ9qJsryfb7/0kK5GYrORIleLURImDI6M8f3mDMJGIgRPXNnTcINkzhfl6pD23E3fa+OkA\nhwY/l4H2zguUUn8A/AHAk08+ucdxPcStRpJK/vD5OT53YpSHJkr7/pwQgr/x+DT/9IcX2eiHjBXt\n2zjKD4/reeKu1UdnO4vbtfJ8Nze477y9ynzLI2/pdIOYei9kteuTs3Rem2txZCTPxQ2XimMQJhIp\n1dYGZOmCgq2z1gs4ULYp5QzS5gcbVC9KWWp7HCjb1LsR3TABpSg7JkpBztCQQJhmW5wQULQ13Ehi\n6QI/ye5jaBDLrGbIMQ1ypoZUikcPVrA1jfPrPY46Bp0gRkdQckyeu5yFsvdL87nbAbVdebmeAvFh\na13uJ2x/RkOILIe6sTeD1vVYdDbfab0X8u9eX6IXREQD63nT22dpXKE0bUIBXiyJkuxnx9DQNSg7\nZkZuIQaK8eA6QwPLFFiahpSKWsHEjRMKtsbxsQIvzzZpuBEHSg6HazlafsRLM00gU/DGija6JrYK\nd68lRx+m0P1WyEnTi7BMjadPTTDT6POZ4zWALRp74CrK+NNTFb5jrUAEExXniiaAm3vEj8/XeWep\ngxumaBoYmkApqBUtTE3jiUNV3l7q8OZia0uByeZEkA5IKlp+nJFZ9EMsQ5AzDRr9kLYXESYyM0p1\niNMsghcN/s/SIQYKpoZtGsSpohnFRKnE0DQqeYOJqoMgU3BSqbhcd8mZehZdGJBGTlcdJisO9V6I\npmmUHZPJssPDU+U7SlG+SQX9znKbkm3e0DzfSOR++352rWjgTkryvfa38oBR78Jal1hKagWbjX7I\n+2t9vvXibLZGSk7GvufovLcS0nYjyjmTsZI96MuTrerMIBYkSmQ+CyXo+wl5W8dEEKMIE4WmCYSW\n9WlBKT57vMaj0xW++dws/9+r82hC40ApW5e1vMVsP0ITAiVVNu9CkKSSjh+jFLSDLCI5XXUYL1nY\nps6hkRznVjr85MIGuiY4PlrgK6enrniXmxkQzX6WuociI8R4bPq67IC3k/jidmBzvOu9gMt1l186\nNbGVArxJWrF5Lu5m2PeCBMvQWWx6vL/aRdc0qjmTct6k7cfkbQNd06j3guydAF6UEETyCsNG17Jz\nYKdSLQBD14jSFFD4kUKS7TGKTIfYtJhS2LqBInOMGbpGzjawLY3PnRzLGEBVVnM6kreuqTNdj7Tn\nduJOGz8vA/8t8L8DTwMv3OHvH2IPPPvuOsudgP/1b5y+4c9+9fEp/skPLvIX59auyRB3t7FXiPSq\nYuVtfXQu1/tbUZzdmj/uvMd6L+D9tS62obPc8rFMjbGSzfn1Hkstn0Y/yrzBQiEUaEJg6gJDyyI2\nOVvH1DMv+uyGx8FqnrmmR8fPDjkBpFKy0PAIk5TyoFbHj1Pyjk2KQqaZd8bUNeJY4scSXUCtZKOA\nhQ1vy/sjhIZSCkPTUTIrlH57uU3Ti8mZGgjoBymfOlJlpeMzkrO2Dv21brDlsdsZxYGrG7F+GI/t\nh6l1ud+wOf4/eXWBNxbbCLiqc/b2vkxvLLRouhHjRXvXovB+kLDQ9FjvB2hCEAwYt/IGeEnmHYZs\n8092GY8hIFCZgQNgGWnWH8TPog66gFRmsqsQRGmKqWskUpE3DXShsdYNaPQjGm5InErGSxZrnYDn\nLm0wWrCD9hbDAAAgAElEQVTIWzqHqnlafsSbS+1r5oR/2EL3WyEnmwZUN4w5UHIYyVlXyPWx0QLz\nDY+mF+FFKc+8schvfe74rmmh2/eIFy816QzSRPpBjGPoxKnk9fmYWsHm9fkWSZoxOm2uVQ2y2iqV\n/evo4IcpfpLyVxcbPDJZJpUK09QQUYomyKIJIqvbMnSBpWsDj2xmxKhYcqBk0/KiLBVOgFAaU2Wb\nXphwdqVLNW+y3PFxLJ2SYxAlEtvSGCvbjBVtynmTOJWcHCtseXg/jGf+Zrz5ikzh/zDe0v2kzuxk\nzQridNdo4HYKaz9OePxgldPTFS5v9Hn23TVAMVXJcXq6smVYnzk8wqvzbdY6PqlSdP2IMEnphwmG\nppFKST+QpFKSKkXbC/GjlJylY2oDBRWYruap5UwuNTImuShVBLGk4hiM2Ta6piOUYsOL0DVB3rL4\nzPFRirZBGKfomoahZYxfhqYRJ3Ir8yBn6HgqJWdo9IOM1asbJhRMndGSlRlVEnKmTtuLuVjvAYo4\nUeQsndlBYfz2VhCOqbHS9jkxVtyijZ5ruLyznBGC7MUOeLuIL241NuV5pe2z3guYKDlcqrtc3nAp\nO8auUaCd9Ph+mBCnkrWOTz9KyFsmfpxQ70ZMlB1sQ6PeDzg6UmC64jBT94jTlEiqD874wb/pNodX\nltkBQkGsoBukKLJ646zi5wPs5iiDzWyUlDMHK/zmoFHu9RzEO3E3HZm3m+3NBP4T8ATwXeDvAz8W\nQvwUmAd+/3Z+/xD7xzefm+VgNcfTjxy44c+emixxsJrjL99bv6eNn72wczPd3kcnSCSOmaUFJJI9\n81c371G2TRZbHiN5C8vUOD1ZxgsTFhoeXpTgRZl3BQRdsvqdqZE8mhCM5LM0lq4fZ/13Uh8vSrEN\ngU7mdVFklLYrXR8QVISBG0s0TeGFOpahM1WzkWQbi6bBctNHN3RqeRMpJZ28QRRLYiRRmrLWzehN\nw7MJcaoo2UZWpN2XlByTfpDQcCNMXePsSod6P+T91S6aECAyj90XHxjfigiFseTQSI76oMi7v0cX\n6JvZ+G5nbvfdQNOL6IUx5UFfrZ2dszfla6LsIBUEUWbwbrL3bR6cWS+XBpfW+/ihxLYyhVAB4cDS\nyZsCP1K7Gj4A4Y7DrukmHKwKCo5J7GbknBpwuJZnqeWDyNgJvXiQWtkNmW+6FC0ThMAfNF780YU6\n9V4WmSjaBgiFvY8i17spJzsNqCvSdep9fnpxg/PrPeq9kEemyjimvlWnsN3oyTy4Mf0gQdc0ljsB\n3TDG1jWSNGWjn6WaxlLx4ESRlU6IYwh0XaBJhaGzVacjB5GcFAiSBCUVjX7Iy3NNxvImYSJQ4oNr\nTT27jy40NKHoBAmGBmGsyNk6LQ+qOR0vkjimxqERh16QsNjyWW77mLpOwdY4VM0RJ5K1no+tGxRt\ng6cfmeTByYzZabemzGEs+cy2TvJ74WbrdmxT49ho5balwW6f97eXOgihrogGbn7fbNP9gJJ8vUfb\ni7m80eflmSYLTY9uEDOSt/jKY1N87YmDRLHk7eUOo3kLIQSpkmiaYDRvc2Gty7mVDraenT1hLDEN\ngRsqpEpwowTHFFiaTqwk672sIe1YwaJgCzb6IUmS4sUpOdvI9uRuiKULgjjlQMnKavCChEreZL0X\nsuGGCKXI2wZLbZ+pisNk2eHoWIGltsd0Jcdy20fTQDUzBrpK3qTk6NS76aDA3me55dMLs3qT4HJm\ngDW9iEenKoMzVWOi5NB0Q4Lkg1qPfpDcUH3dvRr539549o35NkopLtVdjtbyPDJZopwzubTRv8qA\n++AzLSbKDmvdgIenyjw4UWKykuPtxTZumK351bbHQssjSSV/1lnODB4pydsGOV0HsvrMzf1/E6aA\noqMTJylhmjm7Upn9mzkRsus0AaYmiFK1q1NB1wXTlRyfe2BsKx3+268u0AsygoTtzru9cDcdmbeb\n8CAmi/Bsx4vA/3Y7v3eIG8P7qz2ev9zg7/3KKYzr0FvvBiEEv3hqnD99bYkwSbEN/TaM8vZh52a6\nvWP99n4bhsae+au1vEXbi3nuwgYAIwWbU1MlfvHhAyy3faoXDDbciDiVKAUCRV8CmqLjRohBk1LH\n0Dm/3qMfJgNvuiSJso0oVdkGlUgAhaFnOdy2rpEqxUY/RCmFaeiUHYPRgs1owaLtJ0yXHRr9kEre\nYrSY0uiFhLFE1xSpBKFURssbpVmneD1Lg3NMjSCGrhfz+OEqk2WHJw5VeXW+Rd76oDHpZnFr2Tb5\n/swaSy2P1+ZbTJRz5C2Nr3xi6qr3/lGL4NwManmLkm1yqe4i4KrO2ZsyOtPoYxkapybLPHd5g0RK\nDpScLeNzvulxfq1Pa1Ab4kcqo6velvbWj9RVed+2AbapY2raoKbrg78pYLnlk6Io2DqJVCiR1ZGk\nSmHqWcqWJrIUiDSRtN0EP5IcrOb45KEqkZRUcyYPjBc5u9KhYBssdwJypr4v9q6blZMbiSrsRSix\nuR9sd4xU8yZffmSS7727Sq1gXdXTYrtS3/Fizi136AYJQZxQdQw6fowmBBoCxxJEXsrFeh9T03jg\nQBkvysgHCk5GVd4JIsI0K1yXEmIlt5w1UZyw2JE4pkAXoGsaAolj6ViGhlCw0Y9IFISD8TmGRpyS\nFU7r2d4WppKFls8ggYowSRgr5SnYBjlTJ28aaALiRFJw9CsMm+2pmRMlh+/PrNEfRM2uZdDcbN3O\n7VaGt39HyTEyOvHBcx3dxnZ5rFbA0GC24aIL+PzJUbp+gm1oCCGwTZ1ISmbqWYuARybLLDQ9SpaB\nNeiPMtt0ieOURCriVNKXCWvdIDNmt43JNnSOjuYp50xm6i79ICJIMsdcNW9SdQzcWENKSduLCaM+\nbpySphJDh7VOyI8v1Bkv2ZyaKqMLwcW6hlCKbpgR8JSczKFmGwLL0LBNHdvUCCNJztKwDJ0wSglN\nnX6UMNf0spS5goWlpzS8CCFgruUjlcJPUoSCthdnRiTw4ESJJw5mxAvfO7d6zfq6TXxiurJFAHAv\nnhtNL9qiuk+V4qmjNTbcEKmg7oYstX0UV7Igbq4BDcHshkfTjen6MZ86UqM2bjFetPHjmMWWjgbM\nN72sRi+VhGkW4ZGAH8cYWmbQbMtYQx/8LIEgUcTJQKfQstQ204BB2yAEm9Fitmp9JNn15kBFnC7l\nGClmex5kxDCvzDYxjSxq+JljtWv2ddvE3XJkDpucDsE3n5/FMjT+5lPXp7feC3/t1AH+8IV5Xrzc\n5OceGr91g7sD2Eu52ipQzmV/+8rpvXvRzDVc2m6ErmsUbZMgSWm7ESM5i36Q0PKSjGZWQN7S8eOU\nVEoMIdA0jVohKxb205SRnEUYZ40/0/RKr41Ug/x9CYmUW31YdLH5u+D9lR6GLpiqOHz59CR+lDLf\nzOgpo0Sx0HBJZfY509CRcYoY1G1U8haHRnKs9wLAph/FfPpIjQNli9PTFdpeRDeMr6KwPVYrsND0\nuLzhooCDI3mWOwGPTpXJWTqJ2s139NGL4HxYVPImv/7pwzx1vAbq6pqfTRmda7oYWp33Vru4Ydas\nsh8kW8anIQTr3YB4UEemawPegm253rtlMaQJBDJFmjBSMGn04yuu6wZxlhc+YAbSFSx3fMJEkaYK\ny9A4UHKy6GacsZxV8xa2aYBgSz4myhk70ZcenSBRiicOVa+iO98rCvBh5eRGogp71RPsVQP4k4t1\nYiX5/MmxXSMc25X6jV7EkdECG72Qi+s9qjkThWCqYjPf8OgFCYYhyJsGSmWNh0s5g0re5EDZxg1S\nKqHJhfV+powM0mTdMFNogwRMXZJoGgfKDo1eQJRC7CVbSsxmyuMm4YkbpgiRYhmCSs7EjySWbuDH\nKbauEaXgRwmLTY+WG1PLZ8X3Wa2SYL7p0XSX+epj03T9mGfeWAKluLzRp1HOyB42ac5vpsfPtXAn\nnCg7vwN2Z7DbZMJ8aabBuZUu7650B2s1ZaMf4IYplqHxRtrKHFQlm9GSTdOLCFLJmUNVfu3MQb71\n4ixLnYCmm7EpKhSayBwMiRzUcamsya1janhRSpAqEILRos0D4yX8OOH8ag8vUUgtY+oqDxpMSyVx\nRdZwuh8ltNyIsZLDQsujH0ncMMUxNS5veExWHML1LFqTEZXkeHOhzXzTI0oUtiEYKzocHy+QpIqH\nJ0voCJ59fy3rWScVG70AN0qxNI2cpfHXH5vG1LWtCE8pZ5IodVV93W51j9vX4tF9tlm40zCE4Nxy\nBy+SrHV9vCghbxk42yLdu+19uhBc2sh6NCGg40cstj0emihhahrnlnqs9wPiRJIO2hBE8srozmZK\nWyJBG1gtm1HjnKltjWO5nRnU8eDv2xUNRZYO5wiNogW6rg2o8rOmpXlb51Atz6eOjGz1buuHCcsd\nP2OIS7O0zXsZQ+PnY46OH/PMa0t87YlpajfRp+dzJ8awDY2/fG/9vjN+4PoUq9vzcbdjczNe62a0\noGNFk9VOSt9PqOYtvntuFTmgHzV0DUvXMHSNZJBjmyaKasHk4Yki7672iFJJP4iZKNk0vRjblLS8\nDzaR7fn/uganpsusdyPKtkE3iGn7MbHMcoM7fszrCy2CKMVVMUpCyTGwDZ2cpeNHKdWcRbGqU3QM\nUgXT5Ry2mbmCDCFY6wocKzsEQVC0DE4fqnB6qkI5Z17pnc9N89JMg3rfp9mPMqpWS79mh+chPkAl\nb17TU1bJm4z4Fl6UEiWSpbbPD99fJ2fqHBst0PFizq/3gKxAWQFIqBbM7CBSCj/d/d5CZAZS0dIZ\nKdp4YYobf2D+WLpGKWfi6imGJoiSlDCV6AACDtVyPHawShBn6XrrnZAURZSkLDR9ekG81cxuvJTV\nkwRxZujvLI6/1Wx+N3K/veoJ+sFAUQwSEqU4PpYd+JuOkc1c953YGTFwOzE/uVCnHyREic+DBwpU\ncxaMQaMbEStJkigSJVluB4wULFpeiKPr9OMUP4xxjMybn9VdaWgiJR44RcJUEacpmhCMljJD09QE\nfpI1Mtw0ekwNynmDsmOjpMQydHRNcKBk86VHJ/mrS3WCWOLoPkYuq+NKU4mu6xRNnYcmbA6P5pko\nOcw0+pxd7vDKXHOrX86JsSIPTZQ4ULL31aDyZg2YO+FE2fkde9WPtryISxt91gZpZKmETx+r0XRD\n6r0QU9doe1lvnYYX8beeOsLPPzi+FcloehGPH6qiJDx3eQMvyBZtMtBwBWAZYBk6DTfKerWRNbpN\nU0WcSCbLNm8vBwRpmhlEBZNqziRKFN0goZo3sXWNlVZGzmCbBmXHYKqaw9I0Xgwa5G2DthfhGDot\nP+JkvkjJMXh3ucNaz89SpTRByTbohwltLyZv6fzyo5PkbJ1ESc6vZo0ww0RysJLjqWM1JIrJisNC\n02Om0b+CpCKKJTP97P92M2zuF6bPRCkenapQcAw2eiGfPDrCsVqBn1ysZ1T2u+x9lXzWBP2dpQ7V\ngoWhCU5OFPmZE6OcnqrwL567jFSgaRqGpghjhaZn63kz0qMNFvim0zQZbOH6IKWtmjMYKznMNdwr\nnap8ENUxNA1/8EE/Tik5JtMVh3YQc2qyRJgovvzoBCfHihSdzIToeDHdIKaaszB0KGNsRYTuVWa+\nofHzMce3X1nAj9MborfeDTlL5/MnR/nB++v8Q26cNOFex/X6EpwYK3B+tcuGm1HWlnMGEyWHv3h3\nldVuSBCnlB2DA8WsSPj1hRaJVESJJIpTCo5BNW+y2gkwNI1izqSaz7qst72sh4MQ2Sam6wJNZGkI\nuhDkLI1IZfngUma7nhfF5EyDimMxUkzouDFukimmYZyF4gVwfLSQRZiUpOsnPHSgyFovRBMw3w6o\nOibn17p0vJTVToAg6w1yfq3P188c3FICO17Mi5cb/NFLc+hCsK6F/PbPnuRAxbnnNr37FZsNGeeb\nHqnMCpEFWaPS5y5tZNE6BWJQSxOnklre5OHJMkGcUu9HLDS9K1LaNpVhRRYVcMOUkYLKojZxSi+I\n0chqEVp+hKYUkRBEcXaTTU90oxdydrnNdDVHztQ5UstTd0M2+gFLA2rrfzggUzlcy/PGfJtqPmMO\n3FnUfKvSmLYXD+/3frsxh2U1eJ2M8U7jihTOzXHvFVnayeb3rRfmSJTk4EjGfve5E2N85sQol+o9\nvv/uOgstnzCNOVR1WGz79IOYrhdzMe0zVrTxY5kZPiqLBijINoZB755NhEnCqGGTyoyyWA32jqmy\njWno/MJD4zw4UeTfvrHMQtPFT1LK+QKfPjZCL4pJpGIkb+LYJi03wktjHFPniUMVTF3j5x4c593V\nLs++t4aAQQRA29Yvx+FzJ8cAMgbDfTAR3O9R4O2OsKyoPXNAJUrhRTFFJ2PWa3gRYZrtp4dreYqO\nweOHrnR6FG2DJ45USZXi/FoPP0rpeGEWqZebZAbZXr/aCUBojOZ1JIpHpius9bL+bmXHotEPyZk6\nnz05RseLsE2BUoJHpkukEhzDwA0zA0uminaUMbhpCGxDJ2/puFGKF8d0gpjFto8XpESDtCo/llRy\nBkVbR6Dxowt1vvHUEWpFm8XWOr0gydL9UsmGG3KklmckZ+HHWUaChs9Sy+PgSP66xBX3Q70PDCjU\nB/XB4yV7ixToi4zzzBtLOIa+696X9WYrkErFej/g+GiR6Uq2V4zkLExD4IfJ1lofZL1SdgziNOvr\npYmsvlOQGTOxBLLyXLpBzIGyTTVvEUT+Vn2nbWRplEoqgoHho5MZVG4QsyayxrwFyyBnwcnxIudW\nuvSCBFMX5EydDTdkpeMzWrCoFWxGBsQn92pPvqHx8zFGKhXfemGOJ4+O8IlBM7qbwc8/NM4P3q+z\n0PQ4XLtzVKd3AtsJDS5vuMw1XB7Pf9CXoBvGHB8rZkXpJZufXNrg5dkmCy0fx9AwNS3j6S/Z2eJX\nWQGrJjKGnGDQh6c5qP+Za3h86kiVcr5E24uI0qw/R8kxyFsGiVR86kiVX3pkAl0IXplrESeSH12o\nE8cpkZR85vgoE0WbNxfbuFHWRMw2coyXbGxTx7F0umGMFyWAQCqFJgSr3YCcoREnKePlPLMzLv0w\npuNnKXrvLHWwDYMgTrc6eX/71QWefXeVuYbHyfEiBd0gknLLOBri5rG9IeNMvY8Y1OC0fYEQgo6f\nMFlxmCjnSKUikZKSY1DOmRRsg8cOVfmTVxbohB8wBxYsQRBlDGKmnkUGzxyp8tzFJpGfRT1sWzBW\nyAEZJX6SKhoyJEwzg0kD3ChhTClOTZZ5a7FDztJo9EM6XoIQcGG9xz/+i/ewdJ0wlTi6xq98YmrX\ndKgPSz+8ky1pOyX7ZqrafgzxnQpYohSPTlcoWAZulFwR4dkP/fh2A6kfJiSpwgsllq5xdKzAbMOl\n4WZz+5XTk7y51OZQNU/DjVnv+ggBaSrpBTG9ICZVYBuZAivIFK04yf6+qcyESeaAaXs6SSq30t1S\npfjrpyaYrDqcXe7Q7AeMF20OlG2O1AocHyvw6mwLXRNICWMFi7JjYhkaLTficqNPzshSGR+ZKtMN\nkoz5sRcQxPKqfjkdL87ospW6JqPfRwHbHWEzG31qhSyF+OlTE7S9mEvrLuvdCKkU05UcjqkzXc3t\nGuE4NlrYUiSFyAzdUt4iShRKCAyVomkaqYIkzlKqEgVT1RzVvMl8w6PtJ1i6IG/rHB8r8oWTY7yz\n3CFKFPV+SJrCZMXJmhWv91BS48unJ1ho+dTyJu+v9ShrJhL4wolRTk1n9UmLLR8/TtGkwtRgtGhR\ndEwurPWYqOa4VO/T8iO8MGGjH6LrmYMmbxlog7XY8iJen29lxCyxZK7p8jtfPHld4or7pU50tzTJ\nmQ2Xnh8zUjD3jFxlJEWCkbxFwTaoFSxeuNyg7cdoIovMm7o2qOWRTFdztN0Iy9BI0oyO3DEyPWGz\nMbKQCiXlVq3PpXWXgmOQswWhn20MYQKmljJWyoNSrHd94kGWQK1gopRAppL1XsCnj9ZY6QS8Mttk\ntGiz0vE5UsvTcjMWwIJj8vBkiWRADHWvRuqGxs/HGM++u8Zcw+Pv/vLDt+R+X3gg8/Q9d2mDv1m7\n/1jfroVa3iKMJd+fWUMB5Vljqy5ju2f3e+dWeX2xjaNnBa6TZTtLH7F0SrbOZNmhM/CEJUqRt3Ti\nVLE+8NTZhsbBap7Vrk/eMjk+XmC8YOMlCbrQsIyMrjZnGXzjqSNbLCtzTY9L631sQ+PBAyXafsiv\nPjaNRPH6QovZhiSIJAstD10IbMtA1wQ6WREuCtrdiPfWuqDgzOERfnR+nZdn23T8GEPPUp9CKZnZ\ncCnYJrYpmGu4lHImG72QvGlgaIK1XsCRWoFjtcI9G/K+H7G9IWPJ0dGpEitFIhWXNnrMbvTZ6IWY\nWsYc2PJiolRxqd7HNDTytkGlYGKYWQ6EH2WpmPmcoh+mlGwTKcD1JVMVB0MX1PImfpxStDOvdb0X\n0PJChBCYQhEPCmbDNCumf+5Sg24Q8+CBIqgsNuEYOmEima17GIbGkZEcUZpyecNlonw1XTfcOP3w\npoGzafC03CxdZ5NCd3uq2rWwG3PYpoOj3g+uSNHZTj9+bqUDsCvhQdOL6Pkx6aCvylLLwzIED0+W\nOTle5M2lNsdHi1yqu+i6xs8/dIDPHK8xWXH4l8/NIFPw0wRL05keMVlueYSJpDBg8LJNnZ4fk7d1\n1roho0Wbrh8hFDiGjidi4jQzbkfyFqemS1ys9/nx+Tr1foRSKqvhEVlB+3ovoOPHrMchlZzBY4fK\nWLrGTMPlE9Nlzi53eWm2Qck2KTkG3TCmaBt85fTVBua9rPzcamx3hD1+qHpFDdjMhstTx2s8dqjK\n85fqgCJnmYzsSDXf3tSyHyQkMqu16fpZ08jpmoVp6ixsuAgNKjkr69Vmm3hhTJpmxBpHankSKYml\n5MRokUemykDWYLgTxBwayTFWzM6mtU7AfMunmk/54ft1njhc5choniCR/OzJMdb7IZoQeHGKrmuM\nF7NokqkLyjmd0YKNZWisCkhTRZJKXrjU4JnXlrIoQpoxjB2vFagOansQ4IUpsQSpFI1+xHfPrnKg\n7OCH6Z5NMeH+iRBuT5ff3KeiWF5FdLATAnAsjf+fvTePjuvK7zs/79V7tW8oFHaCAEFIpEiKpDZ2\na+vF6k3TctqyIzvtfYntGc/xZBwfx55M4mTimZPx0p54HNsTd8d2Nnecti2307bV3ZJ70dKWKLUo\niqS4Yt+B2ve3zh+vqlgoFIDCXgDe5xweUQTqvVvv3fu793fv7/f9iZqVL3U7nmUhUyLqc3Ksw0/J\nMMkUVGJZS1TBwBJJkCUrLyenmPjdBsNdAToDTu7pDPDFSzOWnH2NoptpOpAdGmY5XE4UHCTyCg5B\nwO2S6XBLFBVLNlvXrY3QY9EAhglXppKMLOVwlUP5FU0nXVQRRcgVNEqqUf1urXpSZzs/h5jPvTzC\nkTYPnzjdvS3XG+700xlw8crtGN/3yMFyfkJemQvHImRL6ooE3lpj/Mhg5O5uaNoqVKob1oQAMJUs\nUFR0Ah4rvnohXcAhwodPdDKZyOF1WUfl7QEXjwy2oZkmH7y3g2xR45Xbi7hkByXVmpSCHvmu2ELe\nSi5u88rkShpOh8jXby7w1MkuFN2s1hSpKHB1Blyomo5TFgnLMqmCRm/IzbGo30puzpcAgWA5phfT\nEmqQHFbVAK8sWflHgpXcORHPs5gt4XVJnOkN8ROPHyPokVv2yHs/UokJr9SPqeRczSYKfOXaHG0e\npyViIVhSx/5sietzaZYyBk7ZUgbsCriZiOesmh5uKzEewyRV0Dga9aLpBu0BGbdLJKdo+D0yF4ba\nSeQUJuMF2n0ucoqGYVonhZmChiiCoFmhF5PxHE6HyEyyQF+bl/aATkExSBcVsiWVYs4glS/xzLk+\nnjrZ2bCYa7PUL6wrog89QQ8FRaeoGhuedFcLq2kUjlPd6e/wA3A04iXolqvy45YAgFUjzCFYn02j\n8uS9HdWFMcCVmRTzmSL9bV5O9wbpDlkKYqd6ggTdMrGsgiSI6BhEfS6KigvDtBY3XUEPnX4XyYKK\n0yHwxXdm0A2dnrCHD57o4C/fmUXICxiYOBwipmkVrZ1PFSnpBmGPE728wHZLVjK0opsIpknALXGi\nO8B3ne8D4OJYnHRRQ5bEqg1slLTdzPM8iKx1KlF5DoZpcF9PCKckcl93cMXJZ6WoZcAto+kGI4sF\n/C6JhwcjyKJAPKcwtpRDEKzC00+f6WEikefyVIqOgAu/S6Ld72Qw6uNou5e8ohP2yJR0g1duL+GR\nLbXGDr+LaMAKwb61kKarHJ5cUAwCLokHj7YR9buRZRGv04FbctATtE5/n33gCH/+7SkKqo6mmxR1\nHckh0ul345ZFCqrON24ukCmqOCURRTNwOETms0UKYzpnekP0R7w8NNjGfLqAVs5FTeQVogEnRU3n\n6eGefTlXNNrsq7dTa42ZSu2nM+1hRpayjMWyvDebxiM7SIjQHXSDaUWLDEZ9tHktBc23JhIkcipO\nv/W8e8JuLgy209fmse4dcpEpKqi6peDmlq0TeIdghcwLIii6jsch4ZREfE6JD57oIJ1XmUzkMU0T\nv0cGrNpDyYKKQxSYzxZ5fLiDCwMRfvcbt9F0g3hBsYQWaO2TOtv5OaR8eyLBxbEEv/zMqU3JWzdC\nEAQeO97OK7eXME0TQRDW/9A+YiDiozPgbpjAWzF6bV4nXUErydfvlnj6zF2FuOlEns+8eBNJFMmX\ndHTDipUvqAavjizx2FCU5x46ykQiz62FbDUpXCqHtd1eyFmStoal8vPi9XnAUmO6OBZnoN2HYULE\nKzOTLnB5KsV0skDYK+MQREysYpdW6IwlwvDAkRAfO93DxfE4b44leO32EgG3TGfATWc5Md0nW6pS\nbkkgXdQRMAl4ZB462lZN0D1/NMwDR9uI5Yr8D/f3cqovxOhS7tDs+u4GqbxaPdmoVEOvSGJ/ezLB\nRM8vHo8AACAASURBVCKP0yFyoi9ESdF5dypFtqhbE5fLyVQijyAIiAIoaglBFJiI6Qy0e/ngySii\nKBBwybhlB66SxsnuIMc7fHzgng4yRY1/8ZfvUtSMqlCGgYnskPE7ZRYyRebTRRTNxCEJCAIMdwX4\nofcP8p9eH6eo6KSKKgMRL36Pg0cGI5ztX18GdS3qF9YVRbnZdGHVk4j659lI4bF+sh5dyjUMx6m9\nvygK3FrIcms+gwmc6AqQL+lMlGt+9Uc8nOkNkS6oBD1y9UQglVcZjPh45c4Sbknkr9+d4VRviIuj\ncfKqXpXQ98sSsijikiQ+fLKDVF7j7ckE0/EigggdfheT8TwO0RJBeP9QlJPdIV66sUjQI2OgEnBZ\nRUq7Qm6+7+GjvDNpFTMuqTrpgsrF8QR3lnIEXA6WsioOUSNTUPn7D/Zzqi/EQLuP8ViO4JhUtYHr\nSQ238uJnJ1jrVKLiQEd8TjyyoxwqaNn3ChGvk4Bb4sp0kuuzadxOiWRRZTDq5Z2pJOmCTiJXwu10\nkCmpfPPWIie7g3QFXXQH3GRKGg8NRLiny191rsdjOV64Osd7c2l03cBTDps+HvXz7kwK04R4toSi\n6siiyFymSKqo8pGTXXhcUjWEtDLOnjzRgaIbTCXy3JjLEPU7uTqTps1nbfSZpkmmqFFQrU0XSYQj\n5TyfiWSeb9xaZKDdy/c9fJRzR8J87eY8LtHBUl7hvu4Q6ZK6qjpoK7NafoskCCRyCgXFOkFfa8zU\n2hS/S+LD93YxlyrR7nNS0gwe7I8QcFu5N5cmk+QVlb8bjRF2OxH9VvHioNfJia4Az9zfi2aYvDOV\nIFmwwiQd5VDp4Y4Afze6hKpZ4XCSAYYABUUnU9RICSW+clVHEKxcIFEUUA2TvrCb8fJG54kuP90h\nNx+8t4OAW+a+niAhjyWkITmEhpvDrYTt/BxSPvfyCEG3xPduQd66EY8NR/mLSzPcmM9wsju4rdfe\na1abyBuF3zRadI3HTIY7/ET9Lvrb3MykisRzKmCylFU4GvFyqi/Eqb4Qp2P5amLki9cXKCgaqYJC\nPKdgmuB2OLi1mEEv5wItpIvkVQNfuWJ0XtFpryycXA6CbgfpooEoCFUZXQGTV0fiJAoqAZeTzqAb\npyTSF/bgc0vMpgr4XA7csshwhx+xnLckiQKPDLZxT2cAuBuOpZsmR12+6qR7mHZ9d4O1Qog8soN7\nuwKIAnzqXB+JgkJW0bgxn+a92QzpoopuWGGWDodIrgSCAapgsJBRSOU1esMeiqqViI2JdWqUK/Gt\nkRgP9IfpCHpI5VVyJZ1IwEUypyBgkC6qOAQrF8EwTdCtpNnhDj8l3aAr6GYo6uNr1+dxOUW6gx5O\n94S2HBLZaDxW1NfWc3jqc4LqRQqaFWA40xeq1CzmpfcWCJSL1C5mi3hkqRx+qBBwS3x7IsHNsnN0\n/kiYR4faefH6PHlFZyZZ4OyRsFVI2SkxmciRVwyeuCfKaCxHqqDgdjooaRqKZqIaVo5gwC0xly6R\nFK3d1oGQD8khki9pfOXaPPmiRlEz0TQT1bDUPedSRe7rDvLhk5184+YiuaKKzy3jkkSiAReSILCU\nUwl5rLZ/8+YSfW3eqhrhQPvdGmgVNbz1HKBWXPzsJvXhlMfb/bw5kViR+B7yyjz3UD+yQ6CoGdzX\nHeTOUpbZVAnDAMkhIIgCqm7idIiE3DJ+t8T9fWF0wySn6Ewn8kwnC3zkpIDHZeVnmZjcmElXbcid\nhQzvTCV46GiE7zzXR3/ES8BtqbbNJIoUVB0Q+JFHBxuOq4+d6uZvr88zGc+TzKvE8yoBj5OSpjGT\nVFA0o6wqKBLwOGjzWUW/MUEUBCv3zTStvNSgm2xR4725dFPKgGuxl2HWqylFvnx7EbfkIJlXOdOz\nfm51xaZUJKTH4/lq4dALxyKUdJ35dAnJIeJzySykVXKKRme5IO2HTnQiAF96d5awR+bmfIZkQaFU\nqW9hwJE2N10xD5PxHBhgipZ4gqGb6CaIDiz7LkLE50Iyrbp/08kiDw+08c3bi7R5nByN3J3vo34X\nM8kCRd1YFh7cqjTt/AiCcC/wC8BA7edM0/yOHWiXzQ4yEcvzwpU5fvqDx6tyhNtFJe/n1duxA+f8\nQOOJvN7oJfIKAc/K+gQXx+KMx3LcWshwujuIIAhMxguouhW///ZkggvH2gmVF0y6YVarPCdy1m57\nxOcimVdYypfwuyQKqkGuqOKUHYiYFBSrwvNMqsBsukCupJN0iDgdEm0+S6VLM02KZbGFoqbx7Ykk\nvnIiZZtXRtUNxmM5HIJIm0dmMOpDEASmEnlMYLArQCKv8s50sprEvFqdpMO067udNJrEV1uEV0Il\nHh6IVPNbBiI+7ukK4JEdxLIqRUWnoFp/DNMoC4SZyIJIQdMZj+UoqDq3FrLIkoAIlDQTM11kKasQ\nz5ZIFTUkUcDnkkA3KKp6WbbXiiW3BDNAdogE3DKpvEZR0SmVM2fP9rfx9JluLgy2b1tIZCP54dWu\nU7tJUZ8TtNapZKN+3GjDI+CWuDmXRtF17usJEfY6iXiddAQMTnYHeO32khUjLztYzBb5wrcnWcwo\nSKJAMq8yHc8jibCUKzERs4pCji5p+F0OJNHaTV3KqUAOTTdRdCtXIq9qOATIKjpOhyU3PJsuIAoC\ngbLYxWK2xH09QaaTBV65vcT1uQySQ+T8kTB3lnLE8wqKptMRcNERdFm7u5ki6YLK12/NI0lCtWL7\negp3rUYr5B1WckbfnU4RcEv43dKaie/3dAZ4fSReLmSpMdTuI1vSSCXyeGQJryzgdUkIguVMPHN/\nD7G8wtvjCRazJRbSJS5PWfOJKAhMl+u8GaaJaVhyxpqOpSJWcnJPV4DzR8J85sUbzKdK+FwOzHLC\neu3ufSqvcnkyycWxOAuZEpPJAsmcQr6kcmchgygKlFQdUQCnJNDuc9ETdnOqJ4hhmowAI0tZHDGB\nwXYfE/E8rvKG3aND7cTyCoObLFy618pijexzZW3QFXRzZSbFG+MxxuK5hm2rzw0CywF67qH+FRs8\n47Ecqm7w3lwaySGgGEY1/+b1kRijsRyLmVI518s6iRfKha4dopW/VVQ1DBPMshKc5LBOd0wTFB0w\nDQTTyuH1yA7cTiss+s2JBGGvE4/LwZPDHdV+cWEwwqnuIH7P2qdbrcJGVr5fAP4/4LPcLRZusw/5\ng1dHcYgCP7pFeetG9IU9DLZ7ee32Ej/xxLFtv34rUmv0knmVF67OEfbK+F3ScklswyTokVnIlMip\nOmGfk4hPIp7XONEVwCU7uDydZDDi4+JYfFml6+ce6ufF6wu4JZGSbpDIKcykCqiaQVISmEgUyCkG\nJVUnni0SclvFET2SxHS6QLqgEXa7KSpWKM070wmM8ih2iAJH2rzIDoGPnuqhI+Dkr9+dJa1rTCUL\nHOvw8+lHjpLIK1Vt5Hemk8sm7mPRxsbO3vXdOGsV+azUyqEmorTRpFvJD/q9b9wuF9e1FsKnjwS5\nryvIN24tMp0oYJomPtmBohlcm01RUAzu6fSzmCuRLChkiwK6dZhDp9+Nbhg8cDRMuqiRm0iQLCg4\nRIj4nGSLKh6nRMjrJOiWWMoVeX3Mqmf14RMd3NcdxOOSqrlKux0SWXvPjeYE1ffj+vZrpsnHT3UT\nz1njPOx18vFT3dViqF+5NsdcpshMokBv2EPI46fNI5HIqVybTVuhUC6J5x7uJ5ZX8EgOuoJuvnlz\nkWxBQ9ENkgUFj1RW+DJMVN1S9BMEK6evzesk4HbwzNk+CprOdLzAe3Np/C5LRt9yVgXu6w6QKWoU\nVSjqBn6XA0yZoQ4fnQEPz5ztwSU5eGsiTpvXyZE2H5mitiI3ZT+EtO71grgWq1yBVWKgbZWNjNr2\nDnX4iOcUhjv8jMWyhDwSssNPX9jDwwPhssJalrBH5rWRGKd6ghQ1g0Rexe0UKSjWKaKByVCHl9dG\nJJy6FZKWLakMdfj4xKkeFMNgMOKzig73hbnjylFUrJCn+tDuu1LeWR4baifgcpApiQTdEgXNwCtL\nloiPpmMiEA04eXw4yqfO9TEWz9HmdeJ1Srw1HufVO4skcipPnexiLJ7jC29N0RO26v/US0A3w173\nyap9rpF2r9jmSvHvtQr+1irKvjg6T7qo0RV08cn7e6uOVOU+Z71hCorO2xMJIl7ZqimVLZJRNAQE\n2nxW8euFTInekJt7O3zcWsxTUq08Tt2AhwfauDKdpqDqBD0yiVyRpWy5rAZWqLvsEFA0K2JA03U6\nAgE6Aq5qvppmmi01xjbCRpwfzTTN39uxltjsCsm8wp9cnOTvneujK+jekXs8NhzlLy/NoJULex50\nao3eC1fmmIjnyRStOP/a/ICiZpBXdPrbvDglAUkU+e4H+/nKe/OEvTKji1k8koO3J5K4aypdnyov\nGp8931cNp4O79TNuLWT5wpsTKLrBu9Np7ixZSefDXQGWymFy5/vDtHlkBFGgqOhMJQpkiwqqYSJi\nkld0+sIePnBP1FKhu7lYNrglnhiO0t/uvassF8uhbCKZ3KY51pvEr8yUpYOn70oHNzph00zL2Q54\nnHidBi5Z5NOPDHBpMkmb10nYLZMuqhhALKvgdVpiGtZOpYsH+8MsZBRGYznyis5gu4+ugIsL5aJ7\n//XNCb52bZ5RJWfVAxIFhqI+hjsD3Ncb5PXROIPtlpSzzyVxaSq57KRkt0Mi6+Pp18sJqqf2BGG1\nXd6wR8bnlsjVFEMdXcrhlEWePt3De3Np7unw0xP28NZEgli2BJj0BN2WEpZhEvLIiKLAfNrKvXCI\nkC/o9IQ8OBBIFq2keM3UCbmdJPImumnZ2mjATbvfxXQyT1/EQzTg4onjUUv+uJxLqJlmNR9xMpHn\nS5dniOUUPE6ZsE/G45L4sceO4ZYd3FnMomg6gTr1rf0S0rrXC+LadlQS2SvOcqMxW9veWLZER8DN\n/X0hDNOq63OyO8hrI0vE8gqJgkrYK9MVdPPS9XmyJUsOOeiWCHtkZlIFS7TEJfGxUz1cnUlbRVFN\nk2cf7Oeho228NhIjU9S4MZfh46e6iQZcuGUHRc2oypVDjaR7Wczn5lya6/Npjkf9zKVL6FgKYi7J\ngVMWifi89Ld5ef9QlAuDEfrbvQQ9MpPxvBWyJYmc7Ary2kiMa7Npbi9mkAQRzTCXzZsboVX6ZL20\ne2XDqjZXrlHbKu0fjWURgKGoj3TJmm8rNr/iXAC8PhYn4JZxiNZmiFFWd1Q0nWxRI+J3MhT18cz9\nvXzp3VlEMU48p6DqJrOpPG1eFx+/v5uionP2SJgvXpri3SnrJKmoGET9Thyila8U8bkpaTpPHI9S\n0HTSJat0RqagVpUs93qMbZR1nR9BECLlv/53QRB+BngeKFV+bppmfIfaZrMD/JfXJyioOj/5gZ07\nlXn8eJQ/fn2Cd6ZSPDTQtmP3aSVCXplA3qqinSmHrXUEnFUjF/LKPHu+b4X6k2aaPHE8Sl/Yw0Q8\nz1CHn5FFqwK0JSEr895cmjux7IpdlbNeK2FcEgWyRY3FbAnDMHE5HCDA2b4wxzv9vHJryTqJckuc\nPxLmC29NcjTqIVOQafe78MgOZEngnq4Al6aSPDncwfkjYRYzJTqCbvrbrJpNtTs8BVWnr83K3dgP\nhm4/sdYkvtpirtEJW8TrJOp3EfU5UXSdB45GEIB3p5PkFY1sSaM74OH+I0FeuDKPWxaRHFZOzg+9\nf4A7S1kWsyVLMlezQiENTKYTBR4divIPHj5KQdHgDiTyVvXvEz0BPjDcCQJ8606MsVgOSbQUxhaz\npWqdrERe2fWQyK2EYTba3ay/1mrFUGslkKNlZba8plNQ9GoOYLKgMp8u8o1bi2i6ieQQ6A16kESB\n9oCbdEnjg/d2YmByaz7DUqZEUTXIlDT8bhlFs45xS6rObKqAW7IWsBU5fIBTfSEerQsBqxRVdIjC\nMpsV8sr89AeOVzdY6lX59ktIa6ssiFc7nW00Ziu/F3DJVVnkjoALExiL5cgWNbrK4gZF1aieKnQF\n3HxrJEZv2IPb6eCnnjyOpyy9HvLK/PIzZ7g6myLoljndG2I8luPyVJKAW2Z0KcuFwciaOa3ZkiXp\nXlR1BEFAMAXmMiW6gm4yRc2q8eR388hgGz0hy7mfiOdJ5JVqyGStI6CZJuePhK0cU6eDxWxpxby5\nESqn3RU1zL1ycuvt87Gob1mu3GrjpXYT1e+KVx0lBBrmErklka6gi8lEAclhqbzNpYq0+2Q+/chR\nusqqkSGvbOUimvD2ZIJYrkR30MOxqI8HBtoYjPj4yrU5xHJorW6YhH0yLoeDNp+EaUBfyA0CHO/0\nW8In8RxvjMZ5ZzrZlHx3K9LMyc9bVFM6ASvvp4IJDG13o2x2hpKm80evjfHkPdEdzcd59Hg7AK/d\nXjo0zg/crerc3+alI7B85wygv93Ljzx6bFnhs+V/n7F2pd0STw9bKnGZoso7U8kVi93aXehkQcXv\nsRJbMwUFWRLwOiWOd/h5bDjK6d5Q9XfjeYWesIecovPerLXLc7zTT9grV4s0TibyhL1OppN5Qi4n\nz1+a4tnzR9BMs3osf3E0jmYYxHPKpkIUbFZnrYXlRhZzleTpC4MREKDN4+TzFydI5lVkUaDd76S/\n3WOFtIVcOASB3rDHkqwPuTnZE+TydNIqyKsZvDOV5OGjEXTT5PJ0kpBHJuixFlJj8TwIVojEK3cs\nZ/tUb5DhDj9tXieJgsJ8qsjFeHxZnazdLoJbm7swupRreuG+2qKm9rOrFUOtfZ+zyQJvjMU45vdT\n8FoOy2y6CAIUNZ1r0ykifheZokpvyIMsiVahQgRuzKU50RPkZz44zIvXrXpjqby1AzuZyFHULYnb\nWKZEb5sXtyyuUM1qJOawms2qhNes9yxbmVZx0pptR/3vwd05Il1Q+fzFCWRJ5FsjMc4eCfORk51M\nxPPIDoG5dAkTqiFJHpe0YnzdnM/glh2MxXIMtvuq0u0mgLB2TutQ1JJ0b/M6cTsdiAjcXsgS8cqW\nwIFplbu4MNjO1ZkUV6dTtPtdVcdqAGvxP9Duqy6gMa3rVQo4N5o3m2WFGuYezEtr2edmxktVVCTi\nW9YHrkynVlzT75aI+i2FPVEQWMyWcEsiQ51+hrsCy9590CNztj9EXtXIK16SeZVEWWmyMq8/OhTF\nIzvIlVTyis54PA8CVtFVn7Pq+IS8MsQhW1Lp8PtJs77kfSuyrvNjmubhSNw4BHzx0gyLmRK/+b3n\ndvQ+EZ+TUz1BXr2zxM8+dc+O3quVaGaCa5SgXWG1Xbd6w1e7C11SDWYSlrCBIAp43U5CbpnusIf+\niHfZvdPlI2qHIDDc6Sfqd/LEcAf9bV5evr3IyGKWuXSRb95YRDNM5tNF7u0KoBkmz1+a5tnzfavG\nLwN7vsA4SKw2UW50MVe7gB1dyhH2WJKkC5kSQ1EvEZ8LVTc50x0ip6p0hTzVQp0hr8xgxMefvTVJ\numhVa59J5YnnFEu1SbRCNzMlDbfsIOp3kS6oTCUKdAXd9Ec8BD0yn784jmZYEutDUR/n+9tWjXvf\nDTYTo16fsL5a2EpF9bC22Gmtwty12TQjiznuLOY4fyTME8ejOCWBY+1+rs2mmUsVAGsx2hN0c/5I\nmKlEDtM0mU0VKWkG33Wub9kmytWZFF++NstAm49XR5a4PJXGJSXob/Py9OmeNb9XqzgHO0mrOGnN\ntmO1OcLauHJzoitghUP3BKuhpABH2zzIDmHVUgzPX5rm5ny2Kr3ud1mRAJmSNS4rql311C/o+0Ie\n5tJFrs6kSBdVXLKLc0dCPHC0jfu6g7x8e5GJeJ6JskAOQLakrRAIqYSHraWQuhE2GuK4E0IY2zWe\n6vtAo2s+OdzB85emGWz3UdINgh65mmtc/+6/8NYki5kS04kCHX4nJU2nzSvz5WtzHI14uTSRRBQF\nFM2oCqmomokkCkT8Tj54ooNHh6LVjaM3RuPL7Nh+EDioZyNqb88BL5immREE4Z8BDwK/Yprm2zvW\nOpttwzRNPvfyCCe7AzxRVmTbSR4fbuc/vDZOQdHxOB07fr9WYSsTbf1nK8a5fmKorZ/z7nTKKpjX\nE2Q8luOeTj9PnezCMM1lyYiVKvTHOvxWkdTyiVDVkNLB85emyCs6c+kiD/S3MZ3MMxnPcyTigfL1\nGsUvS4KwLxMe9yub7WOSIJAsWLk9p3qCPDEc5c5SlqBL5qXr8/SGPAgIVQUfsE4zhqJ+7ixl6Q17\nSOY1hqL+qkraqZ4g8VzJUitL5nHLDnIlDYCOgLVbrRkw2O7j1nwGYMtytltls3kgtQnrjahd+FRk\noNMFazc6W9KYTRYIe508dbKLkaUcjwxGGGj3MRbPkS6pdARcBNwRNMOgJ+TG75YsSeEb8/zdaAK/\nW7IWnbMpPnGmp7oQuTabJpFTmYgvoWsGp7oD6KYlPtNMvZRWcQ5s1qa2XkxnwF11tGtP4v0umXMN\nFqPjsRz5kobP6aiGllVOYJo9jaqEOt2JZSkoOoMRH+8bjHBzPotLcpBXdV68Po9bcjAQ8SKYVo5x\nu88F5vLQrdqCxJUcqK2eAm/kVHwnk/R3Yjw1uqZmmssUAz94TwcBz8rTl0p4o1NyMBHPo+pWuYrO\ngJvXRpa4vZAhW1R55Fg7uZJGSbOUZW/MpxHFiix/dJkT7pLFZXZsP9qPjQge/HPTNL8gCMITwEeA\nX8dSf3vfjrTMZlv5xs1Fbs5n+cxz53al+Ohjw1E++/Iob47HefKejh2/30FjMpav5gfVqsZBXVy4\nWyLoloj4rPwOB5ApadXd6cpCz+eWSBc0Lk8lkQQRt+zgdO/dmgOaaeKWHfSFPVyeSjKZyNMb8lDS\nDYqKwchSFkkQ7h7L19T6GIvnyJa0atjcfkl4bCV2Wo53Mpbn8xfHuTFn1Zl58Ggb/W1exmK56kne\nfT3BFQUGI14nCFYCbNAt0RV0Qc0CYz5d5NpsGp9TIpFXOdbuRBZFesMenj1/BIAXrs4yFsvhcYo8\n91D/sjyEvWAzeSD1Ceur9fHKv92V1FYxMVnKKCxkikwkCnicVrHRihdVH+ZUG0+fzKvouoFhmORL\nlgJX0LVcda6yELk2m0bVDBZzJQQBogHXlh3M2n5Zud9BPSHabTYy5ishXW7JQVE1ePp0B0GPzJWZ\n1IqT+IDbyj+rKIcGPTIXx+JMl9VBhzr8PHv+yLLwxvWo5LS6ZLGqlpjMq7w9afVRMBju9FtiCapB\nPlOkO+TmRHcAt+TA75ZWLUi8XRshGzl1aRUhjLVYr3/U2rGSaoBA49pbgnWSnCmqZIoqXUEXM4ki\nb4zHUHQDURFIFFTenkjw4EAbUdlFm9dJrqQx1OEjXPduanMYu4LW724khLhV2IjzU5G3/iTw+6Zp\n/pUgCP/nDrTJZgf47MsjdAVdfOe53l2534XBCJIo8Ort2LY6P61Qs6FZ1mvraj9vFKJQa5xXiwuv\nSOpmSmp1d7piqJYyJWaSeRBEQh4Jamo4ABRKGm+MxhAFkc6Ak/cda6cr4OL6fIao34WJuWxRXLvI\nq5wqASuO3G2W0+id77RU6GQszx+8NsKt+SyKZtAdcrOUKVVFB9ZSIgp5ZT5yspPLUwkKCsymCtVE\n6kJJ41dfuM54LI8kWnlmXQEXbX4Xz57vq0paf/qRAa7PpekJe6rFMveSRoukZhYaimpwZSa5bgG/\nZZLaJUuAIJFX6Ay46PC7ONrmZTpZ4O9GYnz9xgLPnj+ybNe7sshUVZO/eHsav8uBaZj0t3k41unn\ndN/dTYvahchAu5cnhztIFJRluRSV77xR6sNrBcBZrsmyn093W2EOSeVV/vStSTIllYBL5u+XBQFW\no5p3Uz5x1Uzz7olM3fgtlDR+/+U7VeGN733oKM4a9dALA+3VqICNfP96tcQzPSG+eWsRURC4s5jl\nr67McrYvzDP395DMq1ydTnNtNoNXFnn2gSPLxAj6273rFiTeDM2eutQ7Dpmiuu7z2K5+08x1mimc\nXvv+L47F+bs7Ma7NpjjVG1q2YToQ8XH+SJhbCxl8TomlrFKWsxboDXlYyJQ41ROkzevkA/d0MNDu\n4/J0ErfTsWxDE+5uftSecK9WLLrV2YjzMy0Iwr8DPgr8qiAILuDg6xgfAK7OpHj1doxfevokTml3\nXpnPJfHg0TZeu7O0bdfczCJxrya61draTIX5eF7BLYnV6vCN1G8axYVXJHXPtIcZWcpyeTrJ2b4w\nn7y/l8vTSQqazkyiQFEzoGaROxnL859fHydbtJSjHKLIfLrAt0aWkBwCsymr+nx9G2onZLBODs72\nhfeN8dttVusTW92FXKuPW470FOOxPPG8gqIYpAsKgx1+Lo7FGWj3cbY/vCwBuR6PS7KKJSKwlCtV\nQ1RevrWIS7ZCXGbTJU50Bnn2wSPVyuRfeGuSpWyJOwtZHKKALIlMxvPrLvR2g9rx06xdMQHTFBo9\nomUsWyS6JZ4bvlujy++26hxdmkoSzynkFZ3PX5zgE6e7q88tU1CZTxX52o1FFtJFNL8LTINowMl3\nnetbMe7rHbl+vNviUNf2y3enUwiCue7JV6uz2zVJVhubV2dSfOPGIl6XFRL+yLG7ggCNxvFqp5X1\nJ/ERr5PL08lqqOlYLFd1itZTD12PRptub04k0AyT41E/sZxCoaTx4vUFTnYFcDgE3LID1TCYjOer\nEQJvTyR49vwR+tv3biOk3nF4Zyq5rHRAPdvVb5q5zjJZ8Q4/I0tZnr80TZtPpqQaXDgWqYY1Vk7k\nnLKIKAhohlXbSTdNxuM5AnkZSRB4ZDBCxOfkxlzGqvnnlekMuhiO+nHLVi6o3y1VBQ3O9oWXncw1\nCm2vyPi3+gnaamzE+fle4BPAb5immRQEoYflym82LcrnXh7F53Tw6QtHd/W+jw2381sv3drwDtNq\nbCahca9yURq1NV2wTnTckkhR01etML+eatxqVCbIkaUs12ZSYGKp3tzfWzVmbV4nRVWvXjOVFxcx\nzQAAIABJREFUtxSE3p5MUihpODIKnUEn8+kSsaxCf8RDb9jDhWMr43rrF3m247M2q/XfrcjxrtfH\n43mrzlOupGEa4JQFhjp8PH7c2kms7Xf19SnqwywvTSURgDdG4wxEfAxGfEiiQLqo4ZYE+qOe6uR5\neTLJ5akkYIVxDUX9BN0ymT0UOliNZuxKJbxssD20ru0JeeUVu9x9bd7qpseXr81xcz7DYqbE8bK0\n/UvXFwi6JUzAMEzenU6BaSKKkMgpGKb1b1++NleVDa69X6P2bnVRUh9eK7D/5Gzr2c1wp7U2wF56\nb57bixlkh4jfJTGXKi4TAKgfx40cj9pQo9o+YI1LqjLzp3tC1VPY1dRDm6W+r1XKN+QVnZKmk1N1\nFuczlnCHaamMZYoq6ZJKtqQxGbdOQZ+/NM2PPDq4p3ag1nFY73lsV79Z7zr1suJAda0QdMm8NGrV\ncwq45GrOYGWcZosakgg5RcMhCLwxGscwTa7NpBiK+rk8ncTvkjFME69L4tZ8hjaPk3afs3qt1aJL\ndmLu2muadn5M08wLgrAAPAHcArTyf21amNlUgf/+zgw//OggIc/uGprHh6P8mxdv8a2RGJ84073l\n6210oG3FYG31xKi+rZIg8PylqXIom0zU76KoNS4UupHY5Voqn7s8naSo6PjcEtlyZfZjUd+qRfUM\n0yDgkvDIIg5BpC/sJVPU8Lkc6AZ4nY6GSkCbbedhZa3d240+x0r/XK/AXMTrRBAEQh7r9DCnaOQV\ng9dGYpyvOc1ba6yEvNZEmy4XOKwotUXKyftvjFvXWuZMlePM3Q4RSRTJKRpyUWQo6mu5CbIZu7LR\nZOpGkrshr8zlqSTZksoTxzt45c4ibtmBYZoMRX2MxrKYpkBn0IVbctAT9pDKK5R0g66Ah742H5ny\neF6vj2zHomS18Nr9PNZ3c7EWzytki9oyO1w56ZUcIt0hN6pm0uZzYpTlhteaqyp9aL0Nj/52Lz//\n0ZPLnO/K5xuph26FSvmG8XiOF96dYyJhbbBFA07CXut7hdwyR9u83JzPkMgrtHll3JLYEpsgzfaH\n7eg3qbyltrpWgfBqNEX0bjTFYMRnqbHW1HN6bSRGuqjRFXQtqzn29JlyiYyCyjvTSUSs0yBTAFEQ\nifhEvE4rj/hou7e6+Roorw1Xc6iBbZu7WoWNqL39C+Bh4ATwh4AM/Gfg8Z1pms128EevjmECP/b4\n4K7f+9yRMF6ng9fuLG2L87PRgbZZg7UdJ0aNdk7csgOv7GAqYRWw+/SFo6vKezYbu9zovhV54psL\n2WXFFhtdM+J14nPJuCQRFyIXhtp56kSnVUfEBEEQ1jx52mw7DyNr9d+NPMfa/rlegbmQ1yquCya5\nks5MqsBjQ+3MpUvLVHoaOeu1E+FAu4+uoGuFwl+2qFFSdavYpkuqfq7N46zK6A5EfTx4tM0Kq2hR\nSdQzvSEQWLV9G7E9qzmSqbzKN28ucnkqhdMh8sDRNh462sa12bSVqF4uapkrajhEAU0zONLuxTAg\n4JZQNH1Vme2ttHe969T30/3Mbi7WLGnzxkVvOwIuOgNuSrrBQ0fbON0T4uXbi03NVbX9a2Txbnhz\nvQNUcXpq2YnvXwm9a/M4l4n0nD8Srs4jL15f4H2D7YBQDf9shU2QRs+j0cbnVp9brc02oaEiH6zM\nq6q810967uZ2zWeKCMBQ1Md8ulh9/7V5g6m8ypWZFNmSdRokmOB1ihzr8CMAHznZxaWp5JphbWud\nPG527molNhL29izwAPBtANM0ZwRBCOxIq2y2hUxR5Y9fn+DpM90rar7sBk5J5MKxCK/e3r68n40M\ntM0arO064q5vqygIpIsqCOB1OQh6NldwcT1WK7a4Gl7Zwem+IKIg8l3n+paF6ey33ZxWZzsmivr+\nuV6BuerubDm+XTNNuoKuao5JpV31SazZokZRs8Iu+9u9DcMgavO9KjuUlQn0Y6e6t1y7Y6ep3+hY\nrdYJbC6ZunYhOx7LcXM+Q7vPSSyn8NDRthVFiMF6v2d6Q7w+FrcWOJkiRyNeekOeZaEp61F7UrAf\n1Zh2it1arK1V9La2+HBlEVwRAGio2FVDNbx5MWuFRgl3w5ub+V479f3ri3hbuasOJhN5EnkVMKvF\nslupL9Y+j7U2Prfy3OptdsC9sTpuFQezkpvpd8XLSpuN33/tdZ4+bZ0GSYKw7NnXzvGV9gVdMiNL\nOcZjuRUFjverk7MaG3F+FNM0TUEQrGLAgrC7pbltNswfvz5BpqTxUx8Y2rM2PH48yv914z3mUpb0\n5W6zmQG7E6ERIa/MhWMRsiV1RXHQ7c5LingbF1uEleF88bwl4fvwQDsjS1nG4rmqU1bbjlZQSLKx\nqO+fzZym1E6eq73HyjsfXcqRLWrVRcvnL47zidM9DLT7qruL6YJKIqdSKOnVfK/xeI6FTLHav7ej\ndsdOsxM5IKvtJs+kCpQ0g4BbxueS8Lul6u/X76RGvE7em0szGssScMnLCgxuxJHZy7zHw85adrgy\nHmupvJf13lelf12eToLAnpYYqBXwqSysa23EbLrAQqZEZ8CNW3a0vE3YqZywjawpVluzVJ71QMQq\nSFsRMfI5JbKlleGw66196n+ezKt87foCskMkWCN+cFDZiPPz38pqb2FBEH4S+HHgszvTLJutUlR1\nPvfKKE8MRzl7JLz+B3aIx4bbAXj19hLf89CRPWvHRtip0IiBiI/OgHuZpPBuLb6g8UKoXiShqOi8\nPZGs7vav9rn12mg7SzvHVvpnM5sBEa+TomaQyKt4nQ5GlnK8dH2hGl8OWDVHZJGiqvP0sBXO88Zo\nnOuzGS5PpnhgoG1F6FwrslM5IJXvWxE6qZykOQSBgNvBUNTX8JSpdjFZry63mXG4mwn+NsvZzDht\n9n2FvCsVuXY7jGxZcv5MilM9IfxuaZmNCHucjCzk0HSrLpAk7HyNwa2wk/Zgs3mdlTbUj/1KePut\n+XJ4++meLbWxoOiYWDlaep0YzkbZD/P/RgQPfkMQhI8Caay8n182TfOrG72hIAiDwOvAe1inSR/b\n6DVs1ufPvz3NYqbEv/m+83vajvu6g0R8Tl69s3+cH9i+I956I9DIAG6Xsa2/V337G02sFSGEikjC\nYrZEoiyP/COPHqueDu0Xlb3Dwmb7ZzOTUsgrL1NxKqr6MqEDoJqUW6k5Es8rGIZJyCOzkC2SyCl8\n+dochmmW1QWPNMxB2Gu2e6OjkZR9IqdUlR0B7uttLAlfO24qn7m/z1KXG4/lSBXVDRcT3s9qTAeB\njY7T9XLv6q+9l8nmlXnB55QsieWysMPl6SQhj7WAHmz38e5UktFYjmRebahW2Ers5DNtpi+sVgrj\nTG9oxRwMcKonhM8tkSuuHd6+nt2P5xXCHpkjYS+JvEpR1TdtK/bL/N+U8yMIggN40TTNDwMbdnga\n8FXTNH9wG65j0wDdMPl337zDuSMhHjvevqdtEUWBR4faee12DNM0EVp852c7Wc0I1B9Nb4exbcbg\nNFoIVYziYMTH2xNJEnmVNq8Tt+zYtJylvdvcmmxkUqpVcXpjNL6iAGqj/lDUDHKKzpGwD6ckspgp\nkVd0EnllWS2bVusL27nRcdd5UXHLIkNRPwVFp1hWeFpLEr42bLD2MyXV4OJYHN0wN1xMeK8XyDYb\no/Z9NVNAci/zMCrzQiWpPpYpMbKUBcHKbxWAkUwOHegPe3HKjqpaIbSucuBePdPV7MdsugBCY5vr\nd5fDKtcQkGh2bbBWeY2NnOTsl/m/KefHNE1dEARDEISQaZqpbbjvhwVBeBn4c9M0/59tuJ5NDX9z\nZZbxWJ7/7QcfbAln44l7ovzVu7PcWshyb9fh0cjYSAjDVo1DM/eqXwjB8qP09w1GSORKhH3OZYur\njS6g7N3m1qSZPlI/yZ31WqpE9e++UX+onBa5ZQcOQSCWU0jkFSt0rlzLphI614qTYTOstQiofb6F\nknViVlFtevr0ygrt9dd9YzTOyGKOO4s5zh8J8+z5Pku2tqY2C2y8mPBeLpBtNk5t7t1OLiK3GppU\nOy88fbqHsXgOt9NRXbCf67PC7WWHwI35DCXd4FjUt66y2F5+p71kNftRyets1g6vdd1m1wb1js9G\n3td+mf83kvOTBd4VBOGrQK7yj6Zp/i8bvOcscC9QAr4oCMJLpmlervxQEISfAn4K4OjR3S3KeRAw\nDJPf+dodhjp8fOzU1uWlt4MPn+gE4MX35g+V87ObRqDZe9XmImSKd2vEjCxmeX0sRk/IQ1EzeHK4\nY0PJk/X3sHebW4/1+shaJ5XN7DjXqz2lC1YB3XjO2umtDZ3bj31ivUWAJAjLRCCeHu5pWtkqnreK\nqD51souRpRyPDEaW5dxVarPYxYQPDzs5f2xXaFKtHQh65GU5SJVT3oF2H1dnUqQLKqd7Q2hN1DTa\ny++0VyyTuV7Ffmzm5G+tfrReqDxs/CRnv8z/G3F+/rz8Z0uYplnCcnwQBOFLwBngcs3Pfx/4fYCH\nH354bY1emxX81buzvDeb5t9833lEce9PfQC6Q27O9AX52/cW+JkPDe91c3aN3TQClXuNx3Owxqip\nnSBKqlGt2l7UDNyyY1kex1bb06pG77CyXn/cSrhC7SRaq+YUKRdwTBdU5jPFpsO19ppGO8hrPZ9K\nYdNaEYiN5DhVFijpkrqmDHkrLyZstpedfO+bHetrnays1d6xmHWK9fLtRZ4c7tgRp67Vw63WO5Xa\nqfe92nWbdRY344Tvh/l/XedHEISjpmlOmKb5H7bjhoIgBEzTzJT/93Hgt7fjujag6ga/+dWbnOwO\n8PfO9e51c5bx1MkufvtvbxHPKUR8rb/42S522whcmU6hmyZXZlINjVn9BHGuL0zAI1fjyzc7Ie3n\ncIPDxFr9cbM7zatNopXTjIcHIkS8zlXDtXai72zlmqt9n7WeT2VcbXbzYL2Fz35YTNhsPzv13jcz\n1ptZLDdqb/2co5lmU4v8jY7hVg63atbR2Kn33cx7GY/lCORX1os7qJsvzZz8/AXwIIAgCH9mmub3\nbPGeTwqC8CtYpz8vm6b5+havZ1PmC29OMbqU47M//HDLnPpUeOq+Tn7rpVt8/cYC3/3g/lF92080\ns/O1okZMTQJ6pcjeRg3cfg83sLHY7CS3Wr+rD+NYT+Fsu/rOVq+52vdZ6/lsx8LLdnBsdovNjPXN\nnqw0Ghvr9fXNjOFWXqS34qlU7XupiKo4ZbHh8z6ItqkZ56d2Fb3lapmmaf418NdbvY7NchI5hV//\n8nUeGWzjI/d17nVzVnCmN0RnwMVL123nZ6doZgG21gSxWQPXiobdZnNspg+s1u+aWYzsRN/Z6jXX\nGkerPZ9WXnjZ2DRio2N9sw7+bjparbpIb8VTqdr3Uiuqcljm8GacH3OVv9u0EL/6wnXSRY1f+a4z\nLaHwVo8oCjx1Xyf//Z1ZiqqOW3bsdZMOHM1OMts9QbSiYbfZPbbiUO9E39nqNTfryLTqwsvGZjvY\nioO/W45Wq9KqmyOV91IrqnIQnnczNOP8nBMEIY11AuQp/53y/5umaQZ3rHU2TfHVa/P814uT/PQH\nhjjZ3bqv45P39/L5Nyb52vUFnr5/a9WIbRqzFwuwVjXsNrvHZvvdTvSd7bim7cjY2Kxkt8bFQZxT\nWtmmHMTnvR7rOj+madpb9C3MeCzHL/zpO5zuDfKPP3bvXjdnTR493k7U7+Iv35mxnZ869rtgQCsb\ndpu9pRmVo+3uOztxzf0+Rm1sdpPtqCN0mMbZXtuXw/a8NyJ1bdNizKeL/NC/fwMB+Lff/yAuqbX9\nVIco8MzZHj7/xgSZokrAfXgG2lrYggE2B5WD0rcPyvewsdkN7PGyMezntfuIe90Am81xbSbNd//u\nayxlS/zBjz6yrLZGK/Od53ooaQZfuTq/101pGWqTO3XTJJ5X9rpJNjbbwkHp2wfle9jY7Ab2eNkY\n9vPafWznZ5+RKar85ldu8KnfeQVVN/hvP/0oDxxt2+tmNc2DR9sYaPfyJxcn97opLcNBS+60salw\nUPr2QfkeNja7gT1eNob9vHYfO+xtnxDLlvjDV8f4j98aI13U+NT5Xn75mVO0+1173bQNIQgC33/h\nKP/6b65zYy7Die7AXjdpz9lMsuFexwfbHF420vcOSiJt5XuMx3LLiz/Y2BxiVrMFB2Xc7xbNPC97\nzt9ebOenxRlZzPK5V0b5s7emUHSDj5/q5n/60HHO9Yf3ummb5rmH+/nMV2/yX14f51996sxeN6cl\n2Eiy4XbGB9sG1WYjrNf3GvWng5RIe2UmhW6aXJlO7Xlcvj12bfaSWlugqAaPDEaWFc0+SON+N1jr\nee3HnKBWt0+289OizKeLfOYrN/jCW1PIDpHvebCPn3hiiOFO/143bctEfE6eub+HP//2ND//0RMt\nOTBame0qDLkfDarN3rJW3zvo/amVivke9Gdt0/pUxkPQJfPi6DzpokZX0GX3xR2glWxPM+wH+2Tn\n/LQYRVXnt168xYd+/es8//Y0//CJY7z6i9/Bv/7uswfC8anwD58cIlvS+INXR/e6KfuO7YoPtpMs\nbTbKWn3voPenVorLP+jP2qb1qYyH0VgWARiK+uy+uEO0ku1phv1gn+yTnxbBNE2+fHWeX/nSNaaT\nBZ4+080vPX2Sgfb9oeK2UU71Bvn46S7+4NVRfvyJY4Q8rbUr0MpsVzz1fjOoNnvPWn3voPenVspj\nOOjP2qb1qebBxXP4XXHSJdXuiztEK9meZtgP9sl2flqAdyaT/MZXbvDyrSVOdAX4/E++n0ePt+91\ns3acf/TUvXz56sv89ku3+GfPnNrr5uwrtiOeer8ZVJvWYLW+dxj6U6vkMRyGZ23T+oS8Mme9YQYi\nPrsv7jCtYnuaYT/YJ9v52SN0w+TV20v8waujfP3GImGvzL/8zlP84PsHkByHIxrxVG+QT1/o5w9f\nG+N7HjrCfT3BvW5SS7CbiYL7yaDa7D3r9c3D1J/2OqH3MD1rm9aivu8f5r6413agVWn1PmE7P7uI\naZrcnM/ypcsz/OlbU8ymikR8Tv7JJ07ww48O4ncdvtfxi584yVeuzvNzf3KJ53/mcTxOx143aU/Z\nD4mCNocTu2/exX4WNocVu+/fxX4W+5fDt9reZUzT5OpMmr+5MsvfvDvHyFIOUYAP3NvBP3/mFE/d\n14lLOrwL/rDXyWe+9xw/9kcX+afPv8tnnjuHKB7eQhr7TdXF5vBg98272M/C5rBi9/272M9i/2I7\nPzuAYZhcmkrywpU5/ubKLJPxAg5R4P1DEX7siWN8/HQXnQH3XjezZfjQiU5+7iP38ptfvYnP5eD/\n+HtncBxSB2g/JAraHE7svnkX+1nYHFbsvn8X+1nsX2znZ5soKDp/NxLjazcW+MrVeebSRWSHwOPD\nUX72w/fwkVNdRHz2wFiNn/2OYXKKxr/7xgjjsTyfee4cncHD5yDuh0RBm8OJ3TfvYj8Lm8OK3ffv\nYj+L/Yvt/GwCwzBZzJa4Npvmnckkb40neH00jqIZuGWRJ+/p4BfvP8F3nOyyJZybRBAEfukTJznW\n7uOX//IqT33mG/zRjz/CQwORvW7artPqiYI2hxe7b97FfhY2hxW779/Ffhb7k33h/Hx7IsGvvXAd\np+TA6RBxySJuyYHHWfmvA7fswCWJmCYoukFJM1DKf0qaTkkzKKrWf0uaQUm9+29K5d80HdO0FuIO\nEURBsP6I4Cj/XTdNZlNFFM0AQBDg3s4AP/T+AT50ooNHBiO45cObw7MVBEHgH1w4yvuG2vmdr93m\nVE9or5tkY2NjY2NjY2NzgNgXzo9pmuiGSSqvWE6NblBSLceloOoUVR3DXPk5p0PEKYm4ZRGXZDlH\n1v9bfw96ZDoCrur/OyURUQDduHtPwwTDNMt/QAA+cdrNkTYPxzv9nD0SPpQqbTvJsaiP33ju3F43\nYwWtKGnZim2yOXik8irj8RyYMNDus/vaFjno4/YgfL9W+g6t1Bab/UFtnwHs/lPHvli1PzQQ4Qv/\n42Or/tw0TRTdoKgaiAI4JRGnQ0QQDmfSvM3204qSlq3YJpuDRyqv8qdvTXJpKokAnD0S5rmH+u2+\ntkkO+rg9CN+vlb5DK7XFZn9Q22dKqoEAOGXR7j81HIhqmoIg4JIchDwyAbeMS3LYjo/NtlIraamb\nJvG8stdNask22Rw84nmFTEkl6Lbsa6ao2X1tCxz0cXsQvl8rfYdWaovN/qC2z2SKGpmSavefOg6E\n82Njs9O0oqRlK7bJ5uAR8ToJuGTSRZVMUSXgluy+tgUO+rg9CN+vlb5DK7XFZn9Q22cCbomAS7b7\nTx2CaTZIlmkRotGoOTg4uNfNsGkC3TBJFVRMrLyokEfe1lo9Y2Nj2H3Bxu4H+5vtshOHrR/stH3d\nrxy2fnDQ2Ww/t/tB8xx0W/LWW2+Zpmmue7DT0jk/g4ODvPnmm3vdDJsmGF3K8crtxWql4yeGOzgW\n9W3b9R9++GG7L9jY/WCfs1124rD1g522r/uVw9YPDjqb7ed2P2ieg25LBEH4djO/19LOj83+oZmj\neVuxZncpqjpfvDTN164vMpnI45YdPDzQxg+8b4Cj7d69bp7NIWQ9O2HbiMa0QuiT/W5sdprafl5S\nDTJFlVRetfvbNrJbtqTV7YXt/NhsC+tVOrYVa3YP0zT54qUZfuVL14jlFPrCHk50B8gWNf79K6P8\n4Wtj/LNP3scPPzq41021OWSsZSdsG7E6e11J3n43NrtBpZ+Px3JcHIvzzlSSK9Mpu79tI7thS/aD\nvbCdH5tNU+/ZN6p0XPmdTFGtqo/MpgvE80rLDYaDQFHV+aU/u8xfXJrhfH+Y3/2BB7lwLFJVP5xL\nFfmnz7/LL3/xKtmSxs98aHiPW2xzkGm0+7daRfRahaJ6G9Hqu4gHnbXezXZiv+fVOSzPJuSVCeRl\nnLK4an87LM9ip1jNBjdDM89+P9gL2/mx2RTNePaNtOZtxZGdI1NU+fE/usjFsQT/+KP38j9/eHhF\nImN3yM1nf/hhfu5PLvFrL9zgns4AHz3VtUcttjnIbHT3b7VwjEbXOWzs9U7qboTK7PV3bGUO27NZ\nq7/Z9mDvaLYf7gd7YTs/NptiNc++1hOP5xWyRQ2fW8IwTN4/1E7AI9u7NTtAQdH5iT96k7cnkvz2\npx/gO8+tPiE4RIFf+/tnGVnK8k/+9B3+9uc/RJvPdkZttpeKjQi6ZEaWcozHcpz1hlf9/WrISzwH\n5srr1Nqaw8Z27qSut1u62mndTofK7NZu8X6klZ/NTpzC1PY3SRCqYz7klW17sIvUv9tm++Fm7MVG\n+9FWx4Tt/Nhsikaefb0nfv5ImGuzKTQDJBGePtNDv51ov+2UNJ2f+k9v8uZ4nN/6B2s7PhXcsoPf\neO4cn/x/X+FXX7jO//09Z3ehpTaHiYjXSUk1eGl0HhMIjkkMtPvWnaCuTKfQTZMrM1asfysk++81\n2/UM1tstXevnWwmVaQb7Pa9Oqz6bnTyRqlyn/vqt+iwOGo3e7Uae/UbsxWb60Vb7ge38HFI2s1tT\n/5l6z350KbfME4/lFU71hvA5JXKKhtZkTSk7nrd5NN3gH33+Ei/fWuLXvudsU45PhZPdQX788UE+\n98ooP/HEMe7pCuxgS20OE5UxfKonSLakcqzdz3ymyOXpJGf7wqvm8jTazTsW9e1psn8rsNWTl2ru\nZWH13MtUXuXydJJsSWMo6t+WE4aN2PK9FnVoZVr12dSO15Gl7IrxvREqfUUSBDTTrEaP2PZgd2jG\nFke8Ts70hkCAgcj6G1mrXbuezZzibHVM2M7PLtIqi/qNeNm1Bunl24srPlP7uXpPfDDiYzKeRzdN\n/K7mqsIfttjmrWCaJv/781d44eoc//yZU3zvI/0bvsbPfGiYP359gt966Rb/9vsf3IFW2hw2KmM4\nW9RI5lW8LgfzmSLXZlJgws25DI8MRmjzOlfYlNV283b61KFVWGuO2OwzqLWpimqQV3Vi2RIBl7wi\nrypb1Lg2mwJo2mY3c99mbflhec+boRWfTWW8jixlq+N7Mp5veKK4XqjlX707w2K2xOWpJOf6wkQD\nLp4c7jjU9mC3aOaURxKEZb8zEFlZG6iRAwsrT+/q391mT3G20g921PkRBKEX+BJwCvCbpqkJgvAL\nwKeAceBHTdNUd7INrUIrLepX87InY3nG4jkGIz762713J8SSxmyyQNjr5HRvaFXPvJEn/knPxjzz\nVo5tbjV+7cs3+JM3J/nZ7xjmJ544tqlrtPmc/Ojjg/zu1+/wvy5kGe70b3MrbQ4LtcqOi5kSI4tZ\nCqrBcKff6lcmdAXdvHh9noVMCUXTV9iUw7yr2+wcsZXY+JGlLAVFR3aItWlV1d8Z6rDG/309weoO\n/lr3W+tnti1vPbZ7A7Yy51+eToIJQx0rTwxX69cr8oNLGtdnMkzE8jgdDh6QHWimeWjtwW6y2gle\n7bOvH8/j8RyB/N0c7lRe5U/fmmQxW2IiluN8fxt+t8SZ3tC6dmAvTjZ3+uQnDjwFPA8gCEIn8GHT\nNJ8QBOEXge8CvrDDbdhxWkn6rxnqvexCSePP3prkhStzuGQHkgg//9GTaKZJtqQxGS8wncxzfT4D\nAnT4Xat65vWe+EY9czued31M0+TXvnyD3/v6Hb7/fUf5xx+9d0vX+/HHj/HZb47yH781xr/61Jnt\naaTNoaJ2o2QuVeT6XJp0QcMlifSG3ATdMn63xHuzaZLlncG8qjORKAAglHcWYXt2dVvllH0jNDNH\nrOcg1W9gwXKbWlR1wh6ZoQ7/skVO7e/43dIyx2e1+63XFtuW7wyb7ds7tQEb8sqc7QszGc83VGq8\nPJ0kW9SWOUZA9aSxqBl85GQnybzCWCyHopuML+XoCbrJFFUiXifHoitPGWy2h1ReJVNUSeZVphN5\nJmKFZSd4tc++Mp4V1eCN0TguWaz2pavTKb5+YwETiOcUHhyIoJsmCDRlB3b7NG9HnR+kVuxoAAAg\nAElEQVTTNItAsVJjBHgY+Hr57y8CP8A+d352U/qv0ZHiZjpLVVUplmMuXeTffu02S7kSU/E8H7mv\nm3heYSye42xfmKKqM58ukitp+FwSybzCd58/smOdtFVjm1sFVTf4l395lf/y+gSfvnCUX/nUGWrG\n16Zo97t45lwPf/bWFL/w8RME3PYzP2jstDMQzyssZkuMLGSJ5VRME3pCbqaSBcYTed6bTXOmN8SV\n6RSabnB7Mct9/z97bx5k2Xme9/3Ofu6+9L7OCmA27ABJ0AQlmaREiZQl2JQi2ZbkKClVkso/KVUq\nJZecSjnlcpyUUlalKrElWVYkOZKthaIkiuBmkcRCgEOQg8HMYDBr79vdl7MvX/4491509/QMuoHp\nmQExTxVqpi9u33vmnO97v3d53uedyDOcMWjaPhPFFC9cqfCZ1Ht3yO6lKvtesJszYrOCZtcNB45k\n3fZxvJDfeuHqQGDmVz91jJmh9A3KWS9cqexIU9rJ7s7XLTY6LoeGsrS9YEtA9k7B2n1bfvvxXqqD\n+5mA3elZL9ZsPn9mCQG8tdqhbvsM9xKn/XW82LBp2AEgeHymxMW1DllDpWEHSBL3h5zeZmxfF5uT\nVm+utMmnNGIhGMubN+z3zc+44wS8vtwcVIq+fbXKC1cqXN7oAkmCdrlu88B4jgPlDAfKmXvODtzp\nnp8i0O79vdX7eQskSfoV4FcAZmdn79yVvUvsp/TfZmznZJ+YLJA11PdkFM6ttHhrvc1iw+bERJ6l\nus1b620mCiYHe81szz02zVrrCrYXMZw1mMindi1c8G5xn8+7M9bbLv/9//c9Ts81+G9+6Aj/06cf\nes+BTx//5KMH+fPvLfMn313il98lhe4+7k28m2Bgr8GSKkm8sdRkreVhqDLFtMZQ1iAWMZ88PkbH\nDXn+/CptN2Qsn0Lr+pQzOqauUMxot63BHu6tKvtesJszQpWkLQqaHzs6zBevVomE4Fqli+3HPDiW\nY65mMVe3BtWfzTb1M6mdaUrbg62WHfCd63WuVSyuViwemy5uec9ugrX7tvz24r1UB3fzvN5LkmTz\ns27ZAZ8/s8yl9S5pTcELI5wgRMIAkrXjhjENO6CU1jE1hbGCyUePDNNxQ6ajmGJae9/t4XsZO62L\n/nrK6CqyLHF0NMvrS02uVS3G8jcyfPrPeLFm07AC6l2f69UudcvnWqWLIkEMpHSVU1NFPnlibEvw\ndC/hTgc/LWC69/c80Nz+BiHEbwG/BfDUU0/tr5d9G7Bf0n/bMVikpkoYQ0ZXiYQYGIW98rL7n3eg\nlOGVqzXmazYHh9P8xKlJfujB0cGhmU9pTBZTrLcdOk6ALCf0lOtV65YGsmUHzNesPauC3MeNiGLB\nf3h1nv/jy28RRoLf/LnH+KnHpm7rdzwyXeTRmSJ/fHqB//LvHLxtQdV93H3sNRjY3iD/9MHyO0pU\nh0LwwGgOAfhBkjn84YdGWazbhELghjGmruAGIXUr4PhEjo8/MAIC3lxr3zZqVJ/C4QXxvtOt3ouj\n+G5/NxRii4JmbdOzbXR9Fus2czULVYaD5cxNZ/Zspyltb2buO0aGJvOJY2Ncq1o8fbC868rOflUa\n3490xtuJdxr+2e+522m/F9Iazx4dGdAiNwcqtxI1ejeo2z4IgSJLrLRcNFXiiZnyoJpwaDjDc49N\n8XsvX6fh+Ky3JEopnZ95cmbLtex1D3/Q10fLDgZz0jbb7JvRD8tpHT+IqXQ94jgmjgWPTRcHgjT9\nyvL2vf3ClQqmJrPadDg8nOXAUIbzKy1MTcHQFAopjYmieU8/gzsd/JwG/jvgfwc+Cbxyh7//tuNO\nlfb7Rq/rhqgyWH44UOPpN5p1vICcofG5J2d25GV7QcyHDpU5UM4MFv135urkTQ0viHh8tjRY7H30\nDecnj49zcb3NbDn9jgayZQf8yWuLnF1qIoDHpotbruk+do+zS01+/S/OcXapxd85OsT/+lOnBk3J\ntxs/8+Q0v/4X5zi33Obh6cK+fMd93HnslXLbD5byhsbXrq/3qjXGLSk2qw2H+ZqNiKHScTg1nafa\n9Xjm8BALDRsZ+LPX1pirOcgSpDSZ1xYaFNMaAnh0uviekySbbZ0EPDpV3NVcoff6XXt1FG/VAH4z\nO95HOa2TNVS6XogbRAyl9UEQkzZUfvbJWWIEs6U0DdvnKxfW0Dfx8jcHQJsd4VCIHWVtFUmi7QWM\n5Q0ODN3Yd7FTQm+/aIc7fe4HDTfzN7af8xLs2H/TP7sX6zafSSX3r/97DSvA1OQ9VWFvFmyoksTF\ntQ5tNyQWMScnSqx3XNwgGvT2ddyAN1fbrDZdFEUirSn81x8/Mugx2atY0vuV7nq70Lcf35mrE0Qx\nj8+W+MWPHAQYUNsGSo5m4ju2nYBaN/H5TkwWODVZIJtSUSWJz59ZxlRlsuZWhlH/fBjLmdQtDzeM\naXsBHz40xGrZZqHukNFVLqy2OTlZuGefwX6rvWnAl4BHgS8D/xT4liRJLwILwL/ez++/U9hrRefd\nZCc2G70fPzWxpefn7FKTM0tN8qbG1YrF04fKg0nqmx2Z5y+vstiwmC1l+NyTMxwfz/PSlSq5lMa1\nisXF9TaGprDWdvjsw1OcnCy8HSQtNQnCmG+8tcF43uTAUOamU9vrtk+14+GHMQCVjne/bL1HtN2A\n3/jyW/zBK/MMZQ1+8+ce4+89OrmvFZmffGSSf/7XF/iz7y3dD35+gLDXBE3f6X1ztY3lhUzkTQIR\n36Dg1M/QfvnCGgt1Gy+MODaRQ0hgqgpXNjp89cIa622Xhh3Q9UKEgEJKo+tFVDoex8fzrLYdcuZ7\np0dtr3DlUvtHudot/WinHs2b/e583dpix49P5IHEFpycKAz6d549OtJzTBTOLDV59ugIDdvn9Fyd\nN9fbrLcchtIGsiJzrdrlk8fGaHvBFnUmYOAIv7XWYbaUZrXp4njRwDF6t4m9/aId7vS59zL2qwqx\nk7+x/d48OlUkl9K2fPfN7l//NceLcINo10mSlh3wB6/MUe14DOcMfuEjBwff1XB83DACBH4QockS\nc7UuRdPg82eW+fDBMn/46hxzdRs/iDA1ldPzDT61yZ/Yq1/1fqW73gqb1xBwy/WU9F26NCwfIeA7\n12o8MJplspgaBCuraQdDlXn26AhtJ+B3X7rOStNhNG+Q1hS+fnEdyw9ZqNvkDI3RvMFMKc187W3b\noUoSq02XlypVdFXmgbHcINE0X7P4+sUNDg9nbugZutew34IHAUmFZzNeBf7Vfn7vvYy9ZiduRlnr\nb4brVYuuG9J3iSVgs4bpwJFZa7PccsiYGmeWmhyfyNN2A8I4Zr3tstFyaHQ9dE1msaqz1vL46JFh\nfuzEOFOlFEsNG9uPWGu7XF7v8vpSk7Sh3jC1vZ8FPrvc5Mp6B1mWiGIxyPbcxzvj+XOr/LMvnKfa\n9fiFjxzgV3/0IQqp/TcghbTGp46P8Zevr/BPf+I4uirv+3fex53BXhyJvoP9R415dFXm5WtVHtnU\n7zGQNO14VDseK22HWAjW2x6ltM5aw+H5hs1iwyaIIIgFMqDIgJBo4mOoMnlTva3UtDupLrbTDIzN\nVODNzd7XK11OTBQGGdSbXqdgYMfDMOY/nl7k7HITWYKxnMk/+eghPnx4iIbtE8VvNyWHQpBLaXT9\nkJev1KhbHrIk8XNPzyAB12tdVFnm+TfWMDUZJImnZkuDpNiXLq/y8tUqmiJzZCTLx44Ob6G77DWx\n13EC/H2gHb6f1ONuVxXiZgHU9te335udKp43u3+bVf5+/OjErsSUWnbA195c569fX0FTJeIYHhrL\ncXQshypJvL7Q5FrFwvZCul7IUtMlpSkossRIVueFSxs90YOEoqqpMhlDeXsDvAu8X9bHboPi7fRj\nARiavIXBs/n3y2kdWZJxesFmzQo5s9BkqeHQtH2+OL9KpeOxULfpeCG2H7HcdGg5PkEcs9H2uFrt\nIgEtJ+D4RJ7rFZtKx+PSeoeZoTQZXUUCYiHwo5gffnCUQMSDRNMBMozlDdpesKNdvJdwf8jpHcZe\nM4abKWbPHh0Z/NzfDLEQNO2AsaxBEAseHMtxYCiz5TNOTRaIIjFwoIMw5sXLVQSC+aqNH8UoikQQ\nx/hujCrLZA2V5YbN7750jWJG51rVwg0iwligyhItO+Sx2RJRvLXv6E9fW+TSRofVpksxY6DKEtMl\nc99FEn4Q4AYR/+KLb/IHr8xzairPv/ulp3hk+gZNkH3FP3hyii++sco33trgR0+O39Hvvo+7j77d\nWG066KrMDz0wwnrH5UOH3u73mK9bvHy1ykbHp9ZxqdkeqiwjhODiukLd8rG8ECtI9rwgaYKNIsgZ\nEg9NFHjqYIkfPTlOztRu28G4nxTk7Q7L5u/abKf9IOb4eJ4Xr1ZZqNsoEjhBTMZ8u0fzZrOMDgxl\neGS6SMcN8cOYFy9X6PohYRhTszx+96XrvLXRQQKuVbtcr3Z5cCzHatPB8kIur3do2D5pXaFlh7yx\n0ma6lOZAOcPpuTprPdXOYlrHDSLKGZ1rHQs/jClnDQxVJhYxX7u4QSmjvSc63+2iMm7GnaKY3w7c\njirEreiRO71+Mzrc5td2es/m1/rXvtPvbr+u787XWW05lDMGThDx5fNrXFht8+r1Gk0roNJ2cAOB\nJCfVy7YTIBC0nIDRvAFIDGd07CDkydkij8+WdxycuVu8H9bHXtT6NvfonFtpIoREVjf526sbVDse\nIzljSz9mIa3x808nImFrTYdK1+fgUIa2G7DacllpOPhR0t+z3LAxNZmUpuD4Mk4QohoaGy2XbErD\n8SPWWg5dL8LyQmRZYixn8NhMkbGCyYFymrfWO1yvWRwYSg/Wzs3s4r1IQ7wf/NxhqJJEwwq20As2\nY/PmWG26xEJwfDxP2wuYq1sDg3pupUnTCmjYPm0vJI4FxydypDSFtpNwe7teyIWVFoeHs1xc66Ar\nMhttl5GsAQhWmg66LkMAaiijqaAAuiKx0nSodjyypkbDCrC9ECeIcP2Yclan6fh8b6FOwdT48VMT\nAJxfbvHNtyoEcYTlhwzrBooskdK1ezYLc6+g64X8V793mlev1/mVjx/mf/yxh9CUO195+fgDIwxn\ndb5wZuV+8PMDjJ0cm82yp2cWmgghBipffaekZQdcXu8yX7OxvYia5eNFEJD0GVxc6RD1Khib0x0y\nkDcVpobSPDFbYqbnlN/uw3BzpeLdDufcjps5LP3/+tV3WZb47lyd+brNRttFkSWWWg6GqmC54RZ7\nv1NFpZDW+JknZ5ivWfzOC9ew/CQ7K2JQZEEprVHpeJQzGp88Nsaba23qls/vf3uOlaaDoUpUOx6S\nlMxNmqt0MFWJv/h+E0WRqXZ9nCDE0GRsP+RjR4fJGiqqInF5vYMXRhRSGqYqvyun/Qba4W2gMm7H\nXitRdwu3owpxswCqLxO9We5883rs41brdjP6r+3UN7S5X6x/TatNh4W6TUpTMTUFWQZdkWlYPm+t\ndZivW4RhjBsKYkCOwQ9jFMA0VCIR0ej6hLEAKRFK+YcfPnhb+kPu9fWxF7W+Ssfj7HILN4jIGRpO\nEPGVN9eodDzypsZczbqhH3NmKM3PPz3LH52exw4jXr5WZbqUxlATi+yFEesth2OjOdad5FrCWHB4\nOEO190xcP6ErdtyAWEg4fgiSxHUvJBaCZx8Y4WqlhqnIg6T8Tve8cY/TEO8HP/uInTTV+yoZTTvg\n1OSNfRX9zdGXjkVKqG3TxRRjWXOgYhREgvOrbbpuiKbKDGV1hjImHS/g/GprIF8YxiAkkGWJ4+N5\nvrtQx9AkLm0kTkre0Ih0QRAJdFVCQiJjKowXDFw/RlMkziw2UGSJ2XKaN1ba+FGMH8ecGM9TSOuE\nQrBYs/mz7y9xaaODKktIwOHhLLO9zXgvLfp7DbYf8o9/51XeWG7ti5LbXqAqMp8+Nc6fvraE7Yek\n9fsm4gcNN3OK+k6VE0ZEseDUVIFa1+P4RJ5CWuPVqzX+4NU5/DAmEgInDPGjJMSJ+x8u3v5DBrK6\njBPE5EwVXVN4fLrIZx6euKmS0O3+N/aFAZ57bHqgYLlXStJmm/z6UgtDkfnkifHB7/Tlp5tOSKXt\ncmQky3yPUiLLErmCxqmpwhbn7mZcfoCVlkOl6yIEyAIUFYYyJm4UkzdV/DBmveOS1hUQoKkyhqZg\nqDIpTUZT5aQ670Sstj3WWh5jRZO0ptCyfdZaHk0rYDib9Gn8Yo+r33VDkODCaptr1e6W5vTd4P1C\nO7oT2E0V4p0C8Jvdz+1y5/3k43a8k6O9/fs3v/+7c3XsIOLJ2RJtL+DV6zW+fbWKqStcWe+wUHcI\n45iUppIzNHwl4sWrNSDGDxlIHkPypyGDrqlMFVM4QcSDo1nCWOBHgqPDGSaKqdsminEvV372Mstr\nuZkMJV5ru/y3P3SUhuPT9UKGswYbHQ9Zgom8yWrb3dJ7HQrBRDHFQ2N5rte6fOjAEC9erZI1NVK6\nSkpXeHimSMPycYOIxYbDS1dq1B0fL4hBxMiyRNMOgRgvAhmBJIHlRTTtgKliapCUD4XYka3UZydd\nq3Rxw/iea334QHs2+7lRdjp8+4o6YzmTN5ZbvDpXZ65ubcmqqJKEH8R89VKF9Y6blC2dgEt+xEbX\n46GxHCcm8qw2XXKmmmTrTI04Fnx3vo6hyihyUs6MhcALIuarFl034LX5BnXLZzxv8sBYjpYdIAMt\nJ2Q0p3OgnOHSepuMpqLKClbgU+16KIpESlVYajpICMYLJhtdj5oVMFVKD5RB1tsumiKRNTWyuszT\nh0o8faA82Bz3ojG624hjwf/wH89wdqnJ//2PnuTTp+5+teWzj0zyh68s8J8vbvDZRz54iko/6Ngs\ngnK91mW+nhycfafK9mMW6hZtN9mzb662USSJX//CG6y3XUQcIysSmiTfUOHpQwKypkwpbaB5IQ+O\n5QgiwccfGOXAUGbfVZnqduIoLNYdGrbP588s80vPHATYUfL1nfopmnbA82+s0rB9zi41WWm7AyWl\nubrFoZEsMhJfOrfKhdU2dhAylNV5eKrIWtslEmKQADu/0uLFK1WK6YRa1ufyN+2ApuXTsAM2Oj6T\nxRRNO/nzyEiOR6fzrHc8bD+iaVt84tgYry3Usb0QL4hQJImUoaArCrYfocqQUhS6XoBpJ9SWmVIK\nQ1PQFJmuFw5oeAd4+5m4QYTtRRTTGl94fZmjo9mB4MKt8H6gHb0X7NVfuFUVYjcB+M3u53a584bj\nE1Zv7NPZ7Gh7QUzHDQbn8Pbvf/boyKBX6/xKK9nzikTT9pktp/nahXVqXR9ZBkmAF8YgBJqqkDMV\n3ly1iaLELqiSQJYhjJLrkIGJUpqCoTJVSlFI68gSvHo9SarmDPW2OMa7UUvcb7yTQMFu9kg5rdN0\nEiW8lKZQt30ajs+BcoaRrIEXRAxndEopnW9c2sAPY1RFotRLRKuSNFBpHM2ZnJwqUExrLNVtFusW\n5YzORsvl4nqHtbZL2wlo2B5RDBHghmAogrShoioqQvSERUTyX8cN0TWJ9bZL1lS3yORvVgy8Vu0y\nlDa4Wu1QTOu3bYj17cIHNvjZb1nEnQ7f5x6bQpEkrte6vcpIoogxX7M4t9IaXMtsOY0AskZS2swb\nGtOlFLqqEMZJ1rWY1pgqplFlmaliimcOD3F+tc143mC943JiogTAN9/aYKPjEoYRsiKjKjIXVtuU\nMwaffWSSr1xYI6x0eXPNYqHuoCoSiixzab1DWpdJ6SojOYPzK22alocfQ2uxQSGlo8oMlIYaXQ9F\nTn6XOMYNJd5YbPLi5SpHRrMMZw1+7MT4rpopP0j47Reu8eXz6/yzz564JwIfgKcPlhnJGfz166v3\ng58fQPQVHL92fT0JUow6B3pyxxOFFC0n4evbQYDmySw3beZr3aQyAHR9gSoJBPHbFZ9tECTUK0OT\nsT1wgpChjMGZpSbZXv/LftIhyr2+lobtU0onVK75usW55daOkq993OxceGA0y4umSiGtE4QxlY43\nsNtdN+R6pct4IcVsOc2TB8o0LI9LG4lzsXnmzp++tsjLVytsdHyOj+cpZ3UQMJwzePlKlarlkes1\nFedNlelSiomCia4qvLnW5ttXakiShBtEnFlscGI8T1pT+clHhhjOGvzNuVWcIKKQjjk1XiSIY2aH\nM1TbLhUrYLXpoioyozkDudeQDFurBLWuh6bKaIrEn31vhZGsQT6l8Y8/coCTPbbCzZy3nRz+ez0b\nvxv0xzd03JCcqfIz79Gx3l6V2aymtflzd7qffbnz/hr95qUKURzf4PD3He35msW3Llf4m7OryLLE\nzz89u0Xa/Fq1O5A17jvDpq5QMDXKWQ1Vlug6EVlDoW4HtB0fy42S71cEC7UuftSr9oYCU5PJmwrr\nnSBpjgfWWy5qMUUxbTCSM/jeQoNyWqOU1nloInfTAG4vmK9bnJ6vo8kyQRxvUb29E9ic8G7aAWld\noZDWbujXeqe9UEhrfOzoMBfX2gxl9F6gmfy/uu3z5mqHjKFgajKWFzJWSHF+uUXT8smaGjlT3eJr\nAbx8rZa0SLghhbTOctvB0CQKKQ0hSNR5o4Tq2K/aRXFCW8yYGm07II5hvePSvhpwcCiNhMRnTk3S\ncN5ey33FwGvVLhdWWowXUiw3HR4ay99z6m8f2OBnP2UR+4o3TdvfcviGQiTGqG6RNeoDRQwktlxL\nP7gZzxmsdxxmy1naboAbxhweznCwnGGxbjNTTjGS03nusWRu7JmlJt+8VEEiGTRYTKlcrXRRJZma\n7WGoChLJgFSAYkrjWjXh70sw2KiKIqMCU8U016oWTcuj7QT4SbIHWZaYLpo0nZDfeeEaDcfnwkqb\nphOgKxJuAJEIqHRcYgGKLDFftahbPhNF855sfrsbuLTe4Te+cokfOznGL/+dg3f7cgZQZImfODXO\nH59epOsl86Tu4/2D3fS6JGqPIcWUynzN5vxKi2JK4+Wr1V5lIUCRYCF2OLvUZCRrUO149DQMiEWS\nJbwZNAlEDFlDxfVjSmmdoYzBQt3mxctVhrL6vtKjCmmN5x6b3jKrApHY2cPDyZys4xN5HpkqbrlH\nNzsXTk4UyJsaC3ULVZYZyRkDu92fu5XSZdpOgB2ETJfTfPaRSWq2z8FyhpmhNNerFpWuh6YklZdK\n1yNrqqy1XM6ttFhuuORMBUWWmSyY/NRjUyiyxJfO9eXCfdY7LkGYCAqstj0WaxaaprDQsDlQTjOc\nNTgymiWOBSNZg+vVLilNoWYFeH5EKARGJEjrKgeG0oOq/ObBsP3+gi+fX6PtBpTSGlcrHf7ktQVe\nvpomjqGY1m6Y/7ETflBmr8zXLM4uNcmZGterXT50cPeO9U77cXtV5luXK4Q7BDA7YXP1YLXh8Puv\nzKGpMkF4o8NfSGtQh3PLLepWkpBdbzv82MkJ/CDmWrXLatNBliSuWh61ro8kSeRNlfm6hSBNpeOx\n2rYJoph8SuPkZIFrFYua5eF48cAmQOI0F1MapazORjcYOO3TpRSqJOP4IcPZPKaqUExrRDF4QcR3\nrtcxdphHtRd03ZCVhoOhKXhBNEjW3ClsTngvNWxkSfD3Hp0eOP3AritTJycLfPTI8CDYPjCUYb5u\ncWG1jRdFWJ0QRZawg7BX0fOx/IjZcvrt9TlTHAgnVDsepYzBtWqXs8st0poCgOOHuEGMLIOGjCBG\nlkCVJUYLBpW2RxwLJEkiZcjYQUTXi7i43mG97aIrMlOlNE4QUe345EyV5x6bZq43aHUsb7LSdLhe\n6zKaM+8pKuwH1qvZL37yZmOf1lVmy2mKKW3L7IRH0kVKKX0wYC6f0ji33Bpcy8mJAssNh44XcGwi\nv2lQoMR4wQRI+oUkBo3IX3xjhVgILD8piS40bN5cC7HcAEmScQOBHyZzNrwoxgsiFho2mixjagpt\nN8SzfUopnRhBxw64VukQxIKMoaBIEr2xPcShYKXlcqWSCDAgBIamICER95pt05qCG0aEvZ4AP0r6\nCO7V5rc7DSEEv/bnb5A1Vf7Fcw/v6/yed4PPPjrJ//vteb7+5vpd7UG6j73hVs7mZlqIKsvEUczn\nv7+MADY6Lp84Ns54IUXB1Hj5SpW2GxADfhixUA+RZAYRz60Cnz4yhkLLCUnrCn4Y03SSYZnFtMbT\nB8s3zCG53ZgZSvNLzxzcQkM5t5LY2ayh3hD4wK3PhZlSmpypUkzr/PSjU1vsth/FnLnaJIoF6x2P\nX/3kg5yYSqokLTvg5StVzi+3+N58na4XJZX/mSKfOD7G6fk6F1c6mLqHF8YMZRUeni6QT2n89gtX\nuVqx6HohMgKEhNQLLAXQ8QVyEIKwWG445FIqy02b2aE0f3lmGSSJpuMTRhGxEAghQIlpOyGXNzps\ntFz+6vUVEAI3jPnY0WFOThaYr1tUux5BJKh0PTpuiOvFfPXCGiO5FIeG08yU0nvqI3lf233pbXqn\n6P28G9xKdGAQwDQd/uj0wo5z+rZ/1nbFwdWmk4hd3MrhF+BHMUGUUN/OLLZoWAHHJ/MIASlN4Stv\nrhPHkDMVDEXmjaqNpiQU/FJG5/GZMi9e3UCRJK5sdHHCCMePtgQ+fTRtD1lObpjU48Wutz1SmsKF\n1TajBZOUnlCjkCSeOlDiarX7ntdI1lSZLKYGgWDWvLPu7eZq80jOoOMEW5z+7XO8blWZ6oufbAma\nawmFsN4NcMOQjhMk9FW3SyGloysSfm8NdN1wSyXqaqVLpeNhexGSLOGFEbIsEwowdJmcodH1AvAF\nxAIrEFxZtxLBit41RVE0sPt+BBUr4Hq1Symt44YxuirhBBENxx8k6NtewCPTxR2lue82PrDBz37x\nkzcbe0jUs7Yf8jdMWn548oZr+Vxv4fcbyLYrt80OpRjJmhwoZwbfeXw8z+X1pAIzXUojI1AVhajX\nrKbIScY2FoLvLTTQFZn1totEEunHwHQ5je2HyD0uuipL2H6MKgs0GTRFJqUrlDAYmpUAACAASURB\nVNIafhgjCwkvCAdqRy6gqUlJNqdrjI3oHBzOoMgSQiTNb4os0XHe5h9/EPH8uTVem2/wL//+wwxn\njbt9OTfgydkS43mTvz67ej/4eR/hZoMM+07WmaUmpiKz3vEYzuhEccypqSIbXY+31lvEscAOIkbz\nBk3XJwgFYcRN6W3boUpgajKTJZPPPTHLStPh2HiejU4y6HSiYJI11R3nkGzGXmZh3Op922lD72Tz\ndzoXWnbAv3/5GudW20wWUoznE+n+ze99a7XNxbUOh0eyzNUsar37vliz+TffusLLl2u0vQCAY+M5\nDpTTPH2ozEwpzYtXKjhhxImJPMW0xsNTBRp2wH++uMGVikUYRQghkGUJ01BxvJAAgYhBVZJqvBAS\nmpp45JYXsdRwCAUcGc7grCXUmCAS1C2XjKFxaDjNA6M5nj+/ykrLpWn7ZHQVxw8HSnwPjuVI6Qpv\nrrbxgxhVk4ligeUGXF7voMnyFju+k6Pfp1ieW2mSM96/qp8Hyhkemy7S8QIOD2d2Lcl8q+CvvzY7\nTrBlTl/XCW+YjbJdie1Dh8qUUjptN2Akb/TWgKDrhYP39/0HJDgylOXFxgZ+GGGqMkEkmK91KWfM\npIrZkydvOyGyBJIkGC+ayMh0vJBrlS5xDG4Y03YDfD9CkWETI2sAL0x62FQ5+TfGQlBOGzxzZJj1\ntsvh4Sz/8OkDW2hZczVrT8NVd9rDB8oZnj5YHlRW3ukZ3W465vZqsyxLW53+Glue847Nkts+r5BO\nZoadXW4ylNZ5aDyPFybVGS+KKaV0NEUmZ2p4YcRaxyWtq7y51qbrh5xdapHRZbqeT9ZQkKREjMry\nQtKaQhDGCFmiGfnIEsRIuNtEbASgyQkjRAoFUe81XZFoOAENx2eikGIsZ/L1i+tEccxozuTZoyO7\nnhl1N2ixH9jgB/ZHFnE3w8Z2MoiHhre+r39t16vWFuU2N4xYbNgoisRy0+Xp3ubqN7g9PlvG9iMM\nTWahZjGUNfCCmCBw8SKBJEBWJVq2z1+9sYLtJbF8qped3Wg7pDUFywuw/d5gLVXCUFRkI5kBdGQk\njRsK2m5Ib59gyonTI0uJ8txE3uSJAyWeOTxMSlc4PVcnEoKm7aMg8fWLGzdwUz8ogVAQxfyr5y/y\nwGiWn3ly+m5fzo6QZYmfeHiCP3xlno4bkDM/GM/m/Y6dhm/2qz1tJ8T2Qua7HssNhzgSRCJmte0m\njaxOQNZQ+fSpCa5VupxfaRP2eN9wo3z1dmgSyBIUUol4yseODnNmqUkgYoZzBs89Pr3rw3C3szD2\nSqnajc3f/p7zKy1euVZPgoq6TTmj3yBZrUoSf/n6MudWWqQ1edDj80en53npSpWalQwmVWSJxbqD\nKkss1GyWGgnlSJaSOV8zpQIPjOZ4fblJOaMTRDFxBEGUOBuGKlNOpxBCom77pDUFSRaUMgbLDYfA\niSmYGiNZg/mazbVql5Sq8OEjQ8Sx4MxiImEuehX6Ykanbvk0rISmjcRAHOLZoyP8+5euU07r1Cwf\nQ5HouCENJyCOY+wgwgkipkopfuEjB3c818ppPemTFtI7+Xp3FbsJoj+3PRO/C+yGYbJ5vtN4weTC\nWpurte4NSox9xcG/vVpluWHTsH0OD2dx/YjFuk1KV/mL7y8zXUxxZikR9biw2uLQcJazy3UqXR/b\nj6hbARsdD0OVOTqa4+xSk44bUs4abLRdJgoGXS+m1g2YKqX48VNjfONShbmqRcNJgvqI5JlKJEnR\nME7sgyyDrsp4fkxEz8nWVUbzBnXbJ6XLfOTQ0A3iGbtNRN9qz+/lGe0XHXN7tXlLcLbpOR8aznBg\n6MbgbPs6XKzZ/MZXLw6U/X7+6QOYmoIQgrfW2sQiUYttuwFTRRNdkfjhB0fY6Hr8uxeuJoNmg5CM\noXJwKAMSGIpMJxJEGoRxTNbQkWSwvYgo2jnNJctJksUwZPwwRggwdRlDkfj0iQnOrbR4baGBF8Yc\nGsqy3nGZq1s7VtfvxHPYDT7Qwc9+YLdqHjsZxJ2UQvrKHV0vRJXB8SMkCQxVwQ+TLsPt3wmJohEi\nKQW/erWGripomkCXZUxVJhISeVNGV2U6TkjeUPFVge3H5EyNyVIKRZFxg5hCWmMsa3BisoATRJyc\nzPPKtSqrLZdqx08ONVkiiJKmoK4b8paTSGnP1Sx+4uFJKh2P4ZxBw/YT6e5Shq4bUO/6TJQ+WH1A\nXzizwlzN5nd+8SnUuzDLZ7f4zCMT/O5L1/nqhXX+/hP3ZpB2H1ux3RZsplrULI+MrnHVtXoU1UTg\nYKPjISKp5wT7LDVsnj+/ShBtDXwkKVF62ul4lICMqaBIMs8cSZrv+z2Oe3UYd0uVulOUqrYToPSG\nNVe6HoeHM1tkult2kv08MpylaiVDRvvXFwvImxr1rkcYx2QMjYyhMFVMcXgkyxvLLcJI8PhMieWm\nw0wpTdcNWW26OF7IZCGFKkssNmyKKYMgDImBh8azFNMas+UMh0eyrLddvvD9JWw/wg4iNjoeP9Jz\ngj5xbIynDpQ5v9piteWSM1Rqts/jM0UqXQ83iHhjuYWiSFheiOgNY7281uGlqxXSmooXxTw0mmWm\nmKZi+VhewJX1bjJyYaXFE7MlTk4WbjjX6raPockcHCrcs7S33Tpg7yZZuht/oE9xmq9brDQcFhr2\nDWu6nNZp2QHfvFihbntIPb8gravJTJ5eH1oUC07P12nYPllDI4yh5fhcWrex/XCwp6NY4EWCIBYo\nEqQNleGMQRBGlDMGxQyMZg3+i6dmOT1fxwkiMrqCqaUIwoilpks+pRHFMcMZjaYTDapOfTGGoYxG\nKW1gagqfPjXBwV6/8k6qgbu9t++052/X57wX3Er041bJ3p3W4VzdIozh4FCGuZqFH8eD4Mrxkllf\n375ao+2GhBFoisJ6x2Wj7VLtBpi6itNTglxuOsiALEmYuoosJQFNywuYyJuEkSAWgjiIiQUYioSq\nSAjRe10SlEyDck6j60aM5A0yukoUJ1XDtJa0R8zVLa5XuiAYMJtudm/vJi1218GPJEn/XAjxP2/6\nWQF+Xwjxj/blyt5n2ImPezPcjFrRX/h9ffR+A+CzR0doOD6nJpI+n3LWIIwEOVOllNYHJfJyWk/m\nNXhhIlwgS0giMWxpQ2GpYRNJJIpsQtB2AmRZYiijU0jridKHAs8cHub0fJ2cERNFfqIsoitoqtwb\ncBpQs3xqlj9whPxQMJzVMDQFx4/wopjhrIHtR3zl/BqX1jsEkcALQzRFJo6TDFHMDwAffA+IY8Fv\nfesqx8ZzfOL46N2+nFvi8ZkikwWTL55dvR/83EPYE9WrBmGYcP0lAdMlk7NLydyGIAhpOwqmqhAr\nyVA6RZJ4/twqLdvfEuRIJJTZPmSSIEiXE3UgU1cZL5p0nIDlpo0fxXzrUoWPP8ieud677cfcz7ky\nm+/xbDmZYB6J5N/SdAJevFIZ2OYXrlTY6LhcqXTJpTTWOx6fP7PEc49NM5I1mCyl0NWEPpzRFVK6\nwnLL5bX5Oh034NJ6m6YTEUQxl1fbFHM6Wk/F82MPDLNQT2bwmLqMHcR4YcxG26WU0Wk7IXNVK1GX\nMlRMXaVqeRiKwnQpzVzd5puXKiw3HZ6YKaGpMrqmoCsykRA8e3SEubqFJJLZbw3Lp+0EqJLENy5t\n0HRC3EBgaDLDORNJkXDDCKQkG6zJEpYXcXapycnJwo6O/r0+++fdOmC7pevs1iE/t9yi2vF4fbmJ\nE0SMZI0t96th+dSdZDbL1fUO5YzOS1eqWH5ASlNYb7uU0hrnltssNWzCKO4Nyo6RpIQ22adquGGM\nFMast12emC1SSIcUUxqVrkvLCfGjmB9+YJTXlxp8/cIafpRIoB8dzXFyMs/fXtogjpN+wIfGC8zX\nuhwaHmKl7fLodJHvLzRYa7t03ABVlmg6AY9MJf0t2yl9e7mft2vP38mZVIOhpV2PpuUnSoHDN1Z9\nNq/DRJggobqpMlze6BDGMUOb7s2fvrnOQsNio+OSMVSaTsDR0Sx/99gY6y2X1xdbOEEichIDkpCY\nKqZYbbn4UYQXgKnIxDLUuonaGwIMFTK6xlQpRcMOaVoedhARxtBwfAxdToJqO6TjhKy2XQxN5vhE\nHi9IqkeHhrM3HSVwt57Dduyl8jMjSdKvCSH+pSRJBvCfgO/v03W9r7CbzNFOwdHm92xe+OdWmggh\nDbJlDdvfIoX9049ODfTcX7hSoeuGNJ0AWYI3V9ssNhyGMjpRLMgaySwgqafiNl1KUUrrtN2E450z\nNKbLKcJYcGGliRAyX72wmig+OT4SEvWuT1pX6bg+c9UuQ1md4xMFLiy3afVoc31Haa2VDOeLBby+\n2OTAUIpc0eSh8RxVy8f2Q3KGRscNODCUqBPdq0Ow9gPfuLTBpfUu/+fPPnrPiRxshyxLfOaRCX7v\n5bkPdH/WvYS90gQqHY+lhoOhSqiyzJnFBtWuTxwn6mSmKjOSN1hqOBDCaMHEUCScYGt9Z/NPMlBK\na2iqREpL6LKWH1FpewjoVTKKfH8xod6kDZXnHpt6xzkxfey2H3O/+jZ3mnT/xMESTctP+hY67sBR\nnqsntORDQ1neWGpS6cRMl9KYmkLD8Xn6YJnjE3myhkrXC/nqhUS5reNFvHKtBkCl6+F4UTJY0PIZ\n8kJOTOZ7s3gCmlaAoiQN5FEMjhdx1bOww5hyymAkp+P4MZfWOyiSTNv1CcOYi+stum7EaM7g9cUm\npZTGY9NFKh2PhuWxULepWz7PHh3hdaPJatMhiAULdbtXadIxFBk7CFBljZYb8NSBEggYL5i8tdam\n4wa4QcTpuTqaIvO5J2c41HPs+mfeY9PFgerdvWhD3o0D9m7oOrdy7vuDLStdD1WSaVoBnzo2Nqgw\nztcSypksJTN2/DDGDSOuVS2CMEbXEtWtIBa8vtTE6s1+OjScpZjSeXA0x/W6RVv4RHHSu2vqco+q\nLvHEbImCqXK9YrHUtLG8iP/rby8Pvk/v9fpe2ejSdgM0WULTZFpxkkT1IsFaxyOtKUSx4KNHhymm\nNM6vtHl0ukAoxA0jPbaLsey2+nY79vx+2Y6dULd9Kl2Pl6/UsLyQhYbD//LZkzfYw3JaxwtiTs/V\nWazbA+bOzz99gOfPr1FMa5zpKQ6eX21xer6OrihcrXSZKaXJmBqffXiCE1MFWuWAJw6UObtYJ2+q\nGKqcKPfaHkEoUJVEtMCPxGAgdZLEUhAklabHZ0ustV1Oz9WwgwhBshbWmw6KqhBECrmetPZqy+HL\n59ao2z4TeRNDTZI8WUO95X66k89hO/YS/Pwy8B8kSfo14EeAvxFC/Ov9uaytuNfnBLxT5mg3G3uz\nAc4ZWk/K1NlRCjsUgkPDGa5XLaodj6vVLrWujxvE2H6I7UbUrQ6IpEqUNTWOjmQ5v9Jkpemw1HBQ\nZfjo4WE6foiqyIwXDF6bb1BIy6y1E05nFEMsYpQgZrFuU+0kh7YsBEdGcyhK0jzX1/IXIhFIKGUM\nIhEzWTJ57vFpzi61WG+5aJpM3kgaILOGwkQhxUcPD/G1i+uYmnLPDcHaD/zbb15jsmDyk4++P+bn\nfPaRSX77het8+cIaP/vUzN2+nA889pKlvrDc4n/70ptJRUeWSGkqVSuhYgkS4RM3TDLBth/hhzFz\nNQtNlojFzTs0+oHQTDFN0wsYL6ZYrDmkjWSOmCLLzNds/DCmbvssNR0+f2aJX3rm0K739m6z5fvR\ntzlfs1hvJ/S2ax0LSRKcmiyy2nYYz5tUu97ANm9WNer3W/aHl26X7207AQsNh/WWSxjHdHrzVNqO\nTxj1GoolaDo+l9ba5A2N+YaN21PpAgkJCVNXCKKI1aZNFAkubbRwg5hYCExNRVcVpoppLqy2CKKY\npYaDkAR/fHqRX//MCfw4pryqDwYRztUtJgomI3mT2VKKxabNasvB1BWOjGWRJRjLGmiKxKmZEqWM\nzvGJPI4X8fy51STJltLobJrjMVCa6vWdnJgsJBSYW9j3u3XOvxsHbK/Vop3mBPU/p8/acMOYhh0w\nmjcpZjT++uzqYN7SetvhO9fr1LoeUSRImwqen1TVNDVhUhwbzbHUtGmEAVEs0NWk/zZrahwZy9L1\nQ3RFIQgjcqZG2w0SNb+Ox0QxRaPH5ui4IZKUKL2ldJlySqPtJpQ5M60kktl+SBjGhLFgtenw5IES\nk6UUsiSR0mXSmsIPPziKIkuEPb9nux+z+Z7t5X7erj2/H7ZjJ5TTOk3Lx/JChnM6ao8atlMySALc\nMKGejuVN2l6AH8ccHs0wkU9xYaXF//PNK7hBxELNZracJp/SeWK2RDGtk+qNpbi42uaVqxWCKKE9\nOmFMGMWEcdKXSZyIGAQxaGqiHhnGSd+hLCdV4DCOQZLQFAVTUwi9CCHACgWjhsxQJlHuzBoqtpdU\nrk1FppQxGO7ZiHfq+YE79xy24x2DH0mSntj0428C/xZ4CfiWJElPCCG+t18XB3emIeq9Gt13yhzt\nZmPv1LezRaJ1kxR2/zVVknhtocFK0yGtq2iyhB9GxAjiGAxVxlBlLDdkuWkjSTKqFKPrPWpaL6Mj\nS8mQKwkoZ3TWmi5uEBGEca+RMSllWl5ibAtpDUOTOTae57WFOj2qb8IfliWcIERXJI6MZFhqOqy0\nHUTPUfjwoSEurLU4NJSl7QXUbJ9SRv9AUN8urXd49XqdX/vxYz06wr2PR6YLzJRTfPHs6v3g5x7A\nXrLU37pUpWH7qLJEx0sUHOPobZlqOxAIkVAgJAnGCwY1KyCKY0xNJYoDgmhnkQNdlXjmyBDnVtuU\n0xpzFYuWE6PK8MzhIT5xbIwXr1RZqNuU0jpmb1L5vb63W3bA6bk616pdrle7ieKZpg7udymtc2qq\nAIKBmM1nUjfa7Y4T8Ppy8wbVvQdHs4RhxLWKhRfFRB7oikIxrRBHoCoSR8dyTJdSHBnOcqXSYaXu\n0LAD1J5apxtE5EwVTVEopXW6XkDG0LC8kDBK5Kzna9Ygo+uLGFNVccOY5y+s8ssfPcxi3R4MIuyL\nXfhhxOn5BpoisdJy+eSxUUAk4xGCROxmte0klT43ZLac5sRUgbNLTdpuooKmShLXqxYdN0iEesxE\nqCejJ30gN1sDd3se0F4dsL1Wi7bPCToxked7Cw0qXZeRrMkvfOQgzz02xefPLGFqCk07kREu95gR\nyw2HoDeEMmOqlDMGlY6bnOFqUsERQMsJiCJBECWztWw/4tJaB8sPqVsBsgyhgOlyiq6rM1FMkTNV\nul6AqaocHslQs7xE+Usk4bahq5SVZO03nRDbD4l6qpBpTcYXsNH1ODqWo5jSBnSn7T1/sLMf827u\n5/sNzxwZ5lrVwlAUUnoiiLIdddtH12SemCnzpdYq319oMF1ODxIsF1ZavHC5QssNyRpJhU2TJUZz\nSV9Vf5xKyw74T99dpOtHDGUMOp5PHAl0RSKMxUC6WlNlfD8mCBMbbyq9lggJQGKx4VBK62QNGVU2\ncAK7pyoI3cDnsJnhQ4eHyBoqxbTGwaEMF1bb1C2PY+O5XQU+dxO7qfz8xrafG8CJ3usC+Lu3+6I2\nY78bom6H0X2nzNFuN/Z2A7z57zt9fsNJHJuUphBEiWStqSo4QchcLZnhkzSi9SRKFQknSHptTFWm\nmNV4YCTHj54Yp+H4ZE2VIBKMZQzOrbRpWC5IIBFTSKVo2D6dIMSLEo9optwbuNqwk8GpMjwyXSKl\nqckU9zjhkg5lDIYySak9FoKcoQ0GvPY39g+q0duMP/7OIpoi8Q/uUYW3nSD19sTvvHCNhpUEqvdx\n97DZ1qiStKXxfjNadsBi0yKIYoJYRlcVxvIGdpBUhvvzOZwQRByQT2ustTyCKEaTJUxDJmOYpDQZ\np5f1rVjBQNHJDmK+8PoyP3p8nCcPlRnNpUASOF7ETz06xSMzRWZK6YEz9070h3sFfQfkk8fGuF7r\n8vEHRwbjBPo04/5Z0Vdr2slut+xgMFOob9faTsBqyyGKJQxV4fhEnpYTECN46kC5R2eKyBgJlaTl\nBiAlM1pUBVRZJqXLZHWNwyMZ/ChmLG8iREzNCsibGjlT4yOHyyw2LBbrDi0noNb1KZgq5YxGSlWZ\nq1uDXh/XTzK9lytdxvMmsRB8/OgIbTfkzbU2s6U035mrM5Y3MTWFsZzJt6/UuLjWQZXhV549wocO\nlkGCUkof3J+mHeD4EYaaSB5bfnjLNfB+mwe052rRtjlBVysdvnJhDUNRsIIGE4UUnzw+xi89c2gg\nS7/YsAEIoxhZlsgqSYbdUBR0WWKmlMLt0VMfGs8xktXJGiqThRR2EPGRQ2VeulplrmrT9QLCSFDK\nJGvkw4eGCeKY88stVloBJyfyFNM6aaOEH8WU0wbFtMqTs2XaXsB6y6WcNTizWGet5ZExFE5fb2D7\n8UDW+rGZ4paq6E79zze7Z3eT/rSf2OxfPnWwzAOjWU5OFHas+qiSlPR1dRN6o6knQ+nzKY1nj47w\nuy9dJxbJMFdDlSlndHKmxtGxHEjw7NERCulEIbiY1pAlqUejlNBVUBSFlAh5dLZIo+vTtJLBxpoq\nEcXwkcNDLDZsul6i4tvqnS15U+Mjh8o03YC2HWBqEkXD4OMPjPLzHz4AJPPTjoxkGcoafOzIMCen\nCvf8M3zH4EcI8SN34kJuhv3OCNwuo3urzNHt2Ng7fr6ATO9Aqdk+n3l4kpOThcFB3bB9VloOZxeb\nvHq9ThTFBJGglDLImgpPHyjzoYOJ7OQMyWyHV6/V+Ks3llltOfhhMhvIj2Ct7SQa8VKSxRPAQt3C\nj2IkSWIknyKMYz51fBwnSOS4N9oebhCSMlSCMGYpFqR0hYyh8uh0cdAIvTlzeq9vmHcLL4z48+8v\n8akTY/fkXJ9b4bOPTPBvvnmVL59f4+c+NHu3L+cDj/4euVXSZr5ukTM1PnRwiMVGohiESCrD2+HH\nAAJVltBUhbSuUkypqLLCI9N5Xl9sEQGmoeD6EW4vQLK8iLrjc3KiQN3ybwgKEtnXQ++rvd0/b9pe\nwGjOHNiovlOxF2rOdptft31OTBSQJyVem69zYCgJYA4PJ4ptM6U0X7mwRscLsP2QYkrno0dGWG95\ndL0AJ4jI6kmPZkZXabUcul6EHwlmyimQ4PBwllJa5/JGh6GswVQxhSorCGJmShlWWjbfm5f5/kKT\nkxN5Xl9u4gWCtuvz049OYQcR375WZ6Pj8uULa0AyBPPUVIGpYopzy01absDx8TxrbZea7fPsAyMA\ng/uTNzS+c73OVCGFJEn8yrNHSBnqLdfA+zHzv5dq0fY5QWldQwjQVIlm0+e7c3W8MOIzD09yaDhD\nOa0P3l9KD3H6eo267TNVNNE0hSCIWWu75FJJUH1msclrCw2iGGbLKUbz5qASlNJVFFlio+PhBAKJ\nkLG8wWQhxWrTASERx/DwZAE/jvnUsTFCIQbVzbYT8BtfvchCwyGO4ZlDQ3S8kLYT0nGTz8+ndMbz\nJh8+NLSnuVvv9n6+X7DZvwR4aDy/Y+DTn/1oqgpztf+fvTePjuy+7js/b6v36tUGFPatgUZ3s1c2\nSXERV8myFltSLImOFMeOY1k6jmJPPJmZKJk5npxJohNPxsdz4sSOPV4jR44cOZJjRrYcyTJlyRZF\nUiSbbDZ7I5uNxr4Wal/e/uaPh6oG0AU00FgKQNf3HB42lir86v3uvb/f3b63RFdc42R3nPxSKSlA\ni64APp4XzHO6r7+FjphKRJVJFUwyZYuBNp2K6TCWLtEbV0mXbcJKCCNbwbRdBpIRfvB4N89emSNv\nBhl/LSTh+zCWKeN7QWqnVVcomwE51ULRIFW2GGrVmaCMLElEwhJnB25mdvaj47qRsrd/st7Pfd//\nle1bzq3Y6YjAbhndnVDs5bzxx3vitYnb1ec00KYz2BbhwmSOsu0G9IaiwGC7TrZsMZEpYzperQ57\nKlPmd58b4fp8gYrl4vjgLg04DHp7fCRJIFOySZeCgX0RVSYcEoGgD+merhjfH00znzfRQiJHOhIc\n6YhybjxotE4Vg0nPMe3m8ziIRm81/uLSHNmyzd99eP85D6d74wy16XztwkzT+dkjWC9okyvbvHQj\nzXS2gul5mI7PTK6C4/g43Dqc3gMWiw4hWcR3fUKyh+X4RCMCs3mT+wYSdMQ0JtMVTMfj+ZEUIVlE\nkSTimrIupfV+0+31zpvNnhWrP3tSDxHVgotKayTEQGuY711fZL5g8tdvLfDgYCumG8zJuDIbDKtu\n0RUG23QgmAV0T2eMy7M5biyWGE+Xgt4q1yOiymiySKZo88SxdjqjGpbrUTQdfMHnUDJCTJXJViSm\nskFG6IWRBcKyTEyTUBWVnOHQm9AYsctULJeS5Sz1igWvmcsb2I7H9fkCc1mD3mSYkCiuYBuVBIEb\ni0UE4GRPcHkLq3KNBOFOnvt+RD2Co48v0Vmz1Bs70KqzWDJp1UPc0xVlLm8ytljirB5cKj9wqpvR\ndAnL9nj2yhzZskXRDCinO+NhCpUgQu+4HhXLCTrChGC2TlSVOT+RJVO2yFccQopIRJU42q6TKTt8\n68ocBcPBxadQsYmHFd6az/PI4TYkQaixzb40mqZVV2jVFXpbIvj4PDrcVmvGf30yKJt84FBrrQx0\nv+/ddmKjNqNqz7viGq+OZ7Bcj1QpIAupvkYQoD2q0RpRiWsyJ7tjfPPyXDCnDXDdwCH+zpvzlMxg\nHpcgwFy+gmm5uH5AZvKtKzPM5kwc10NYGt52b2+CnGmzWLAo2h52yQQI2OJcn7Ai0RoNoYZE8AUe\nHAqo7fczNlL2FtvxVdwGO6lQ+9HoLjesn1ga6rW6JKMaCU7oCk8eaeeNqSyCH1AmjqZK2J5HVyyY\nVF6NLHzl1QnmciYlK7gwwcpUPQQT3J2leR+2T9AcCRQqRebzBkXD5pGlKcs+CtO5Ck8e7WCo3UIS\nRTJli46Yty8ie9uJP3ppnP7WME8ebW/0UjYNQRD4W2d7+f++8zapornvuPhk4AAAIABJREFUMlcH\nEesdqtXZKo8Pt/PH5ybIVawasQHU7+HxANf3ginulossiszPmshS0PD86NE2DNdDlgQOterYrktX\nS5j+Vn1D9P6NRr2+zrV6Pdf6LFs9KxJ6wLb2K8++iSiIfO2NGcJKQEn97JVZ0kWLku3QGlHQlWAo\nYSQUODGeF8xP60mEmc2bgI8giDXiCsvxcL2AGOErr1ToiKqc6knQElG4pyPGS6NpypbDXN5EEgUG\nkzqyKCKIQcnL8a4Y7xxK8sL1FGOpEnNLmX5ZEogoOoNJHcvxuTyTQ9cUSrZNR7SFL708xqmeBFFN\n5sP39vLhe3sZS5eIqulaafNGbf1el6GNYr1S+otTudo4i6cf6CNv2IwulHhtIosPxEflWub0Ly7P\nkiqaXJzKs1gySZcCZ6diO1hOCVkS0BWJnONjOx6SBJ7j4zgelu2hyhI/fLqXc+NpRGAma3AjXcGy\nHbqLQVbA9XxKloPhePQmgoziQtHA9wU6ohG+fm2GkumQM2ymcyaPDAVD1QFa9RCne+KIYsBAexD2\nbruR0JVaiel6bIdVez6SKqHIIu++p4PZvMnDQ8naa56+vx/DHmdkoRiMELkyR8myKRk2CT3Et99a\n4NWJLEUzCE6XTWeJUMXB9pbGE3g+c3mLmZyB590kvnE8n9mMQcGyEQUBXVawbBvP93F9n9cncwy1\n6XzoTC9HOqOc7k2ssKON7Ne7U2yk7O1zu7GQ7cZmSAz2utFdPfx0taBVmd9WR4IhuAi16AoxNRhy\nGA+HeHQ4yfWFEmPpEnpIrvUOhGUZ23PxvKCOWF5qelxOc6urMqbtYNo3nSMfQAhoYS/N5CmaDrbn\n89hwGx7UDsGBZJiOWIin77+7DOXYYonnry/y2fffE8xa2If48Nkefv3bb/ONi7P85KODjV7OgcNm\nSVfWu4gHtePB4ef6AXPjepCAkAS+KOJ5HrIkkStb2K6PLgREJhXLQw9JXJzMoasSp/uSfOjenhWH\n4F5FvcMZ1i8bXAvLz4o7IcpZLFtoS47NpZlgDsel6SyO6zHQpvPGZJZ8xcWyfUYo8dLoIiXTpVUP\n4QIJXWagNUyu4uB64Dgu1fEtrgetUZWQKNKd0JgtGDiuy9XpAookMNQWQQ8FtLS6KjGRLhPVZFRF\n4m/d2xuUJ/s+3XGVsuUQDkm06CE+cn8f3QmN3/3udaYyZTxfQJEENFkkZ3hEtJtkBofbI5zVW2p9\nUvsloLidqJeVhWDweNF06IppPHtjjoWiiR6SuXegBUkWaiRAVcKMF66nmMxUmM0ZlAwHlyBr6xPs\ndzKiosgiPYrERKaMBHhLcwBncpWArQtoj4SwXJ/OBMzkDEKyRK7i4Pg+rbpMRJWIayGkpd6sKtvs\nSKqE5Xh0JcJ0xzXCqly7jF+YyJI3nFp2z7mdkTnAWM8OVMvZXN9fl+2was/HFkvER2Uc36crrtYc\nYQjKiH/4dDffujpPVJV5ZTSN5XhYnh9U6ngeuqpRsQPmTkEMGCQTmkzBcvE8H9cL2CTh5r0uX3G5\nOJ0lqiqEFRnH88hWLERBJCSJ6KpMT0LD9WGxbCItCiuyPvutX6+KjZS9/e++7/+yIAj/gTpBQ9/3\n//GOrGwL2K+eaD2s/ixn+hJ1BW11JFgWhNrrMiWLE90x9FAr58bSKLLI6b4EFctFkyW+eXmWgaTO\nfMGgO6YhEQw8dHwfwQtoEEUh4IEPSQIhSUGWXAwr6B+wXLBd8DwX2Q9YYSYyZd6cK2DYwe8JgsCT\nR9v3xWVpu/FfX55AFODjD+0fooPVONEd40hHhK9dmG46P9uMO7VX1d9ZTnqQK9t88/IsZcthdLHE\n2GKFknVrn08VITFoqFUkgZLlEldDIIBhB5PfwyGZkCzSqitLUUCP3tYoecMmqsr7QpfXuoxu5cC+\n0z0bSkaQRRhdLJHQZH7ykUG+en6KdNnm/HgG34dISKRguISWythMx6Vg2rSEQ2iyxGNH2jnVHQcB\nZrIV3pjOEQ3JvDKeAT9g4bLcgNWpbLlkSjam6wY0uq5HR1RFIBhYnQiHsN2AsrhiOlyZzrNQtHB9\n6IiqPHq4Dcv1uDidRxJEOmIaeSOgSx9JlWjVFUqGQ1STa0xv+yETuJNY6yyu0n6nE8EcptmcQbZi\nky1bJCMhrszmEAWRiulwba7AyNIoC8vxCGsCBcOvjZbobwnz0FCS0cUyPQmV2YKBIIjYlsNUroJl\ne/Qnw7RFQzwy1M03Ls9SNF1USSQWlgmHJE51xOmMaWiyCILA+0501nqzIAjayZLAtbkCPnAiGZTR\nr2ZEPLusNOtuw+3swFq2Z62M81m9hcG2tQMHg20RuuJqMMheFAhJIlFVDpjfJJHpTIWYJpOMhNBD\nMobjklAl5osW80vlcflK0OsD1OSpSsISUSVSBQtdDSEIAftkSA744QSfFdVC1bXtx3492FjZ25Wl\n/7+ykwvZTmyXJ7oX5gut/iz49Sdmr2aBGk2XKJoOw+1RKpaLYXuoIZEHh5I8cjgJPrw+lSWuKnz9\n4gzfeWs+ICiwgvhSf6uOszTSPVWycFwPz/PojGkYjsvx7jjpkkXZcoMSCYI0eLZsc3EqhyQKjKVK\ntERCvDqepUVX0BRp39eJbha26/GVc5O853gnPYlwo5dzx6iWvv3aX11jvmDQGdMavaQDg61MmF99\n8I6lS5yfzCL68Np4Gg+IazKppR49WCp/AGQRZEmkJaxwqjfBtfkCIARNzIqMQHDwveeeTn7q8SEu\nzeSYyRsBW+MSE9lG1ljtc6j2BOw21jqc72SwZfU82Mhst3pnx0Cbzmfff6JWBpMpWyDAia4Yb0zn\nkASRbMXBcT2KhkDBDBrKZSnQvx843kmrHsLxfZJ6iNO9iYAy2/d5X6Sr5hQBfO2NKWZuVDAcF9fz\nmc+bHOmK0hXXKBoOluOhySKW63FtvsD1hRKiFGR1qlHnx460c32xyHA0wpuzecqOg+PJHOuMcaQz\nyruOddDTEl6z7PpuxOqsbFVWhjuiABxq0ykaNi+NpomqMmOLASHOTNZAEGA0VaIrruK4QXO74/kI\njkBHROFIRzSgD3d9UkWLXNlCkQU0RUJXZGYth2zJRlWC2T/xsExnXGO4PUJEkcD3EEQBQfDpiWn8\nnYcP1WRp9X5VL+JjiyUQqJF/3EiVVjAinuqJ12Wd3Av3p53G7ezAekHpeoNeq89reY/c6udYla2h\ntgjfu77Asc4oL4+lkQQR0/Nojag8OJREWRpjck9njK+cm6BkuZQtB8v1UUVqaUTTBct2mS8YREIS\nkiSgqxKiKHK8O8p7T3RxcSrHVLbC8yOLK/qQYOvlwI2Sk42Uvf3Z0v+/sPPL2R5shye6V+YLrf4s\ng22RNSMDy1mgqlEmAFEQgsncVfiBoyIJAldm8mQrFnpIJhKSMB2XsukS12WS0RBl06FgLjHDiwKW\n62G5Po8MJbk6W+A7b83j+lC2PAzHQJNE4ppCf1LH831CskSmZNCdUNFkcd+kRLcL3746z0LBPBBE\nAX/rbA+/+q1r/PmFGT71xOGGruUgHax3aq/qRhV9sB2P6VwF2w16AXxBRARUKTjooiGRghXM8HI9\nj4lMmcVyEM3vjqu06iF6EhqG7RLXFE70xImHFR4bbmcqU6kxVg3WmVWxHLmyzR+fm+D8ZBYBONvf\nwiceHNj1/VrrcN7Mgb36PHjqaMeae1b93AXTJqYGje6rHaAq41OmYuEDsiwSCQX9P7oazGwznSBC\na3vBPlZsl5dG0whAaGl46lNHO26ZOwQwsVjmZHeCc6NZDDvI/BmOwwsji0RUCdP2ON4VZSJTxvPh\n228usFg0UWUxIFoIK8znDeYKBpmSTcV0OdOXoD0aYixdQRIFoqpco69udOnLXrMHqzNfVVmJajKn\nexK8dCMNgOP65Co2ibBMT0uYvGGTKdkMtem0RxQqS0P0VEVEVURO9sZpjagYloPhuKRLFiFJAh9S\nRZMgXhlkiBaLFlPZCufGM+ALjKfLCMBcrkJXIszbC0UyZStwcNIlWLw1QFHNRizHckbEmKpweSbP\n9VRxxT3pIFXfrIfb2e61HOHVerLW85pYLPPM+Sk0Waz11VWf43i6zFzO5EaqxHzewLAdJFHCtFz6\nExqnBuPENYU35wpLfYEu+D7C0pBrXVUQgZDjByVygkBvS5iFoonl+CQigYM73BEMyD3b38JIqlQr\nfaxH6rFZNFJONlL29qfr/dz3/Y9s33K2B9tBYrCX5gud6U2siLzArXM9Vq97uCOKYQdzFvKGw8Xp\nHOfHM0uDy+Bwe5R339PB2/NFXNfnxkIRb4k5RhACw2naHkc7Y4RkiVTRJCSJLBZMdE3hT1+fwrQD\nhbKXhpxaLuB72Ev1v3EtqG0HONIerQ3hupvwRy9P0BlTec/xjkYvZcs41hXjdG+cPz432VDn56Ad\nrJu1V9VDRxaEW6KKCBBXZa6bLrIoEI2ouL6PGhIISUG/R8HyavXLAuB5UKg4qIpIqmji+wKG7eJ6\nHoosIknB33jXPR184FT3mpHi1UiXLQpmMH8GAnKURgU/6h3OmzmwV58H6zHcVbNvcU3h+kKJhw8n\naxfIaiasuFQq1hoOKI0XigaG5SIt9QQe7ohi2sHlNlN2aNUVBpM6s3kTQfA509bCpekcn//eCD0t\nYaKqXCtJujSV4/efv0HFdimaNqYdTGa3HBdVlumJh5nLmxxKRrmeKrCQt5hIl7Fdn454MDDRA24s\nlvnSS2M8OJQkU3K5r78F2/U509vCjcUSZdPl9aksF6dz6zqDO429ag+WXw5XV2Uk9GDG3qWZPB3R\nYLiwV7BwPZ+FoskbQMlySegKTikgGpElkbfnixxth7cWCiwUTfIVB1kS6IiplMwgw5cpW9iuh+vZ\nvDlTYLFgkdBDZCs2vu8jiyIV26VkuhRNZ1MBiupneupoB47v1x3mm9CVhjvDu4WN2O7l5cmrbfby\nwcj1yuOeOT/JW3NF9JBEUg8xli4xSIQLU1lKpsNwR4SZXAVNEckbgOOSKpq8MZ0LhssjIADvOJTE\nsF1SRYuCYdOzRHNuOD6G4yEJAZvcfF5EDUmYVjDO4C8uzXKkM4rnQyXs1jLC26VzjZSTjZS9PQZM\nAF8Cvs+Gih0aj63WHO/mfKGRVJELU9lbJuKuFrDbRVqXr3tkochIqkh3QmM6a3BvXwtlOyhzSJUs\nDCfI+Exmy8FkcA9iqozjuszkAprDTMmiYrlUHA/DCqhwEUTiYnCRCabA35wYHxKDGtG+hMZH7+/l\nZHecsCrXZg7tD8nZPszkKnznzXl+7geOIEvi7V+wD/BjDw/wL756iYtTuSDi3AAcxIN1o/aqXgbC\n8f1a2dFCweT8ZJZUycJ2XaKagiZKlC0fz/OWIsMBqs3T1YGnguNhOR6KBK4vEA7JKJKA58Or4xmc\npbLX1QfdWlH3pB4ipgYOQBBwiezJ4MedZOCX/+4tJT/+TVMnLH1d/Tt/fG6Cl8fSTGcq9LaEeXgo\nWXMol9vJ1nCI//76FPgCFdPBtB2evTLHA4eCIdLBmZFDFgUcDwaSYS5N53hlLMNoqsSl6RzdCY2K\n5dEWCVG0XFzXx3Y98oYD+NiuT64czA8qWTYRVUHC53B7mDemCkiCwNhimXhYQRJFrqem0EMSN1JF\n+lt1WsJKTQczZatukG43sBftQb3LYVIP1aoy3pwpkC6bhGSBzpga9GYs9cp2JzQEwQdBIBlRmM1V\nUGSRsulybizDxakcgihwtD1CoRL09gmApkhIokBSV2iJqEwslkiXLBaKFkc6dOKaTK5iY7kumiuj\nKoGUFkwbTRIxXY9UMaDbjpWVW/Rhrc+0epgv7N8+ELgz8pn1fm8tm738/es9r3TZCsoZQxJXZvLB\nTJ+3ZMJKmnTR4i+vzBIJSczljYC5b8nOFAyH2bxZmyN2dbaAYXv0JMJ84sEBvvbGDOmiieuDpoiU\nHQ9l6Xri4tMeCbHgWxiOx3i6TLZic99AAsNx+eDRnlrpY9F0iIRkiuadB7UaKScbcX66gfcDPw78\nBPDnwJd837+0kwtrNLYje7QeblIbFrk8HXDlT6TLKxRjbLHEXN5kuD1SY4G53Tqq637heorFksVg\nUudGqsz1hSKKCOWlaE97VKVYsRlZKIEvBFFeSaQ1ojCWraDLEpbjBc2wjovn+xQNF0l0mXYCR0iW\nRCKajG0HzpOmSLTqIe7tTVC2Xc5PZmvMStV68ItTuT0TmdtpfPnlSTwffuyh/V/yVsVH7+vjF//8\nCl95ZaJhzs9+Pli3iuU2YS5vMJoucbavpXYBRADX82mLKCyWgrIqwQ9Yfyp20PSuyAKm4yOL4Hg3\nnSCBgNAkElZIFSyKXqDnJcMmmgivYKNaXqe+VgQwoQclXw8v9Rg2qudnPWw0glnvPFjrtYNtwbyz\nVMHknq5YjbGpmgmzHA/DcbFdj8ISU1a1xr9aDncjVcL1PBJ6MC5AC8mULYd7umJ0xzWmcxUMy+VG\nqsTlmSy5ssXY4tLcH2eJwMD2kERw3IDiNq4rtEdV2iIh+lo0pnMGtueD4OO4AamNh8A9nQkm0wat\neoiRxRLpkh0MUfXhoUNJipbNI0NtjC6WmMlXMG2Pl0fTtVK85UG63ShHu509aERJXFUf46rCSKoU\nOBRhpVaVMZOrIAqBw5at2IiCz6m+BEUrYFudWWJ4K1RsEARM28N1g1JVVQgqNGbyFYqmg6pI2I7L\nQFKnM6bRosu8fCNNxXERxKAILq6FuG+ghblCBd8XONIexcMPiCpEkTfnC/g+VCyXv7m2QEJXbtGH\nek7m4fZI3XvSTt+fdgo7kUWslzVePfdq9fMCKFSWqOIjITpiKh842c3oYonpTIWZbIXFokVGCHo4\nRXwUkZpDo8liQJhRNJEEAT0kMdQWIRlRecehVt6aCzKH3pL9F4Ugs6grEpYTlE0WDAfTcTBtl8Fk\nL47v11j9ZEHg8nQOxwt6Rz94uueOnk0j5WQjPT8u8A3gG4IgqARO0HcEQfic7/u/vtMLbCR2krGm\nuukXprLgw3BHlJFUkWfOT9EaUbBsj7Lt3jGjylS2wnSuwthiCdfzaQkr9LeG6WsJ899fm8KwXd7O\nlFEksUaTWLQdPN/Dc32KrrPEA+9hOtWDEXRFChrpRB/fF4iEZA51xeiIaZzqTTDcEWGuYGwrs9J+\nhOv5fPmVCZ482s6hOhOd9ysSusIPn+7mv5+f5hc+dBJNkRqyhv14sG4Vy1mW3pzNIy6VuVWDJqbt\nMZerUDAcKraLabuEJCGY5eIL+F6gw9XDrScRJlWsUFniQvCA/tYwtgdexEdTAgrc4Y4YQx2RunNb\nbhd1r9czsJewmazB6vNgvdeGFYmWiEJ4mX4k9RCO63N5Ok/FcsiVbboTWlCuuArVrFnZDGhrIyqE\nJJHz41l6WjVM28N0PS7P5EmXLVJ5C1EScF0f03UJKxJH2qN0xlRUWeTqTIF7uqMUDZeeRBjb8xlf\nLGNYbkBt7MOxjigJPcQ7BlsZT5epOA6ne+IMd0RpCSuMpIp4+HTGNE73JjjdmwgcOsPm9clbS592\nqxxtPXvQqJK4pB7CtD2+dWOuNr/nA6e6a1UZc3lzaWaPTVskRFdCw/N8fN9jIlvBcQOnVFzKwLpL\nxAfgUzIDevNISKFouCiiQMHxSBUtoqpMZ0zlUFuU8XQFxwVBCKL57znRSWs4tIKYYjAZ4V3Hgotu\ne1QlVTRxPK+uTK/lZK51T9rJ+9NOYSeyiBsN1lWf13KZ9YF3HeugPaqSN2zG0yUyZZtrcwVsNyhn\nVWURVZYCuQAs28NyPW4sFBEFEESRN+cKlKxgTtR0rsKjh9u4Nl/EsFw6JBFBDPrPFFkkoknc0x1j\nJlchrEh4vs/cEslRde2O73OqJ0FEkykZzpaozhslJxvJ/LDk9HyYwPEZAn4NeGbnlnXwUC/6lNAV\nzva1MJEuM5OvYNgB9XRPPMzF6Sy+L/D4cBtXZguc6o5vqj69ysby6kSasCLz0GCSmXyF9pjKE0fb\ng6iQAJocpE1d3+dMb4zzEzmOdkZxPQ8Q0VWJ6/NFbM+r1QuDjyrLhBToiOic6I3x6ceHGWjTa4q7\nVWal/Y7n3k4xla3wCx860eilbDv+zkMD/Onr0/zFpVk+en9fQ9awHw/WrWK5Xp8bz6CHRIbbo4ws\nFGszYxRZZLAtcGCKRlAKkS0FjFDJiELBsPG8gF0qospULAXDtpGWaE0fGGxDEKiVNZzsiXO0I8qj\nR9qIabeWwuz3LNxW1l/vtbmyzYWp7JI9bVlxgUroCmd6E5wfzxEPy1yezZMtW3zz8uwtpAjVrNlA\nUuc/PX8jcHQR0BSxdjHrjKlEVZmIKlMybYpmQFCRkBTO9MV5x6EkmbJFTJUpGA7Zsk0irDCVq+C6\nPgldQQtJAYVtXOPsQCsdMZV3Hm7jZHe8xkgXDyu1foXV5TrVy9rFqVtLn3azHG0te9CokriErvDI\n4SRF065lTDNlizN9Ca7NFRlI6nTFNJ67vkB7LERSD/HwUJK2qMrXLkxztCPK1dkCc4UKsiMSloOz\nuGK5ZEoWluvj4yOKAp7voYcC+uqS5aBIIo8cTvLWbAFf8EloCq1RlZimMNCm8xQrh24OEmGwTado\nBPTJkijW1Ye7Iei0nj240wziZp5b1X5UmXpn8hV6WsKc7k1wYSpLxXHJlSymMmUEIegL8wn6wnMV\nB00RmMoaqIqEX7bxBQHB9zGdgN0xqso4jsdYpsRwewRVkjBcFz0kEVdlhjtjeJ7Pmd4Er4yn0RQJ\nURB45HByRTlrUg8RXZrvtV97uTdCePAHwBngfwCf833/4o6v6oDhdqUhy5shv/v2AjP5CjFVoWK7\nvDCyiA9cmc1zum9jM3KWs7Ecao3gQ02Zh5IRJtJlMANCgt6EvjT4rsxLoxkKFYe2qEoirCCKAmFF\nIhdVsR2fWFgiJEt4nocoClhOkAZ97HA78fDa6e5c2W5YPXij8EcvjdOqK7z/VFejl7LtePxIG0Nt\nOp//3igfua8XoU7kuontxwq9TuoIwMhCkcszOWZyZcbSFZ480s5szqSyNNQuqspEQzKaIgWzfAwb\nY4n1J6wIvPueDv7swgyiGBAfzOUN/ukHjpOt2Dz3doqWsEJUk9fU2/1+IdrK+uuVqqxm2oyqKy8G\np3sTtMcUUgUb23GRBZHzk9kVpAjLEQ5JvHO4jfaIymS2TKZiMbJQRBQF2iIhypaz1MgOg0mdkCIR\nCUkc7Yjx6OE2/uLyLC+MLCKLApIo8b6TXSwUTGbzFeYKJlPpClFN4Wx/gg+f7antc0JXaiV41c+6\n2We4FxzjRq5hMBmhM6aRN21M2+Nvri1QNByuLxSQJJFr8wVCssjJ7kTAnBZWeGQoyXevzTOeLiMK\ncN9ACxOLFSKqxKnuOIsVk5H5EjM5E12RGW5TSEZDVBy3JgNRTcbzfIbadUqmTSIclE1VnfN6Qzef\nOtrBM+cnaVkqd7uvr6VumepBDzqtJcu3Y3DcyPve7ver98R69iOhKwwlI/y3cxNUbI+QItEZ14iE\nZCzX457uGJOZCtmyGbB8VmwUWcTzfQQBDicjLJRsvn9jkbim8MSRDsZby3heQHjwvhOdnJ/M1u6o\np/sSnO5LrGkX97vdh41lfn4SKAH/C/CPl110BMD3fT++Q2s7MNhIaUj16w+HbwrUWLqE43l1a+1v\nhzO9iYBRKBwwCi2P2FX/xpNH2nn26hxt0RDzeYPuuIaAScl00BSRE51R3nVPJyXT4eXRdDDRu+IE\nteqWgyRAyXR5dSJDqmTWnLrln6ceacNeoyXdbswXDP7y8hw//fgQqrz7ZWE7DVEU+PSTh/kXX73E\nq+MZHhxMNnpJBwbLmdzqRdmfOtrBpZkccVVhIKkzmi5RcVxuLBQZS5UolB3eeSTJ48PtzBcMXlrS\nW8PxONkT5/sjId6aL9AaDgUkHIJId1wjXbGJhEVs1+cr5yb59BOH+YfvOrIhPd3vF6KtrH/5a2+k\nSivmuZzsiddIbJbbvM++/wR/dXWO714TiIaDbNzq8eFVu7lQMHljKsuhpM5Yusxga4TRxRLJSIiC\n4dDbGuax4XYMx+HBwTZ64hrR8E1ntZp96Bpu44WRxVr5yvtOdvE31xYom/N0RjVGUgED3Waew8Ri\nuZZBGGjTG3pBWutMaeQlbfnfnslW+I/PjVAyXdJlix8520vJdBBFVpSTJnSFzzx1hC9+fwzTdilU\nHD56fy9ji2VO9yc41Krz316dRBCyKKLEw8NtfOy+PiYyZZ69PIe/NNT8ncNtmK5Xy+b80KluErpS\nk9HVdxHH92mNhGrfj4U3pxMH6UyvZw/WY3BcC5t9JqvnQa22H6PpEsPtUdpiKv0tYTJli664hiAI\n9LcEfYA+cLw7StlyGGjVmchUwPdJFW0kSSCmKRzviXGsK8Y7D7etWF9fq163OilXtlcML15rHtF+\nw0Z6fg4GTVUDsZno03LFG+Rm5Ggzg/iWRw9O9SaIqnKNeKAqxIfbI9xIlWiNhBhMKrw9X2AyU8Hx\nACEog8hWHM5PZEhGVLrjGufGM8iSEAzGWqJPLZoO6VIwoXq1c1ZL4RpO0OSZD3qQLk7n9hwt6Xbi\nD18cx/F8fuKdB4foYDU+/mA///abb/G7f3ODB/9+0/nZDqynu9VD55uXZ1fQ0v7QqW5euL7I5ZkC\nJcvFI8j6DCR1XhnPMJM3WCyatEVUWnSFw20RxtNlyrZLMiRyKBnmVM9h/uz1KWRJxHJdprIVnjk/\nyScfO7yvD7fdxnI7H9XkFReX1Zn/jz3Qj+35FAyHw+2RGilCFemyRdF0SBUtXB9eG88S1WQuzeRQ\nJJHZvMEHTnZzIyUTUgTSZZfFoonpuCtsajX74Pg+Z/tbeORwElkQePbqHLO5CgsFi5Lp4ePz3NsL\nnO7dWHXBxGKZf/uXV2sNz599/4kVmaIqdsMxvl1fTyOd8+rffntUw/WYAAAgAElEQVSuwNWZPAgi\nRTNwhs70J3jqaAeZirXC+XU8PyAykEWmsxXemiuQKVuMp0NMZSq0RkKc7U8iiQIfu6+PgTadTMVi\nKlcJGFptl4rtMtQe4eRQstZkDzd7kd6YyhFbVq60lQzZXqUa31asweC4Fu7kmdzOfhRNh5FUEYDF\nkklvIsyb8wUGW3X+4MUxbDdwfNujKj0JjXcf71qyCR7feXOBqCZhOA6m7dWdzVNPT+ox1R2UYcYb\n6vlpYmu40+jTnbyuGj2IaDKOB5FQUJc5li5xcWql07G8jOZ4d5xDSZ1kROV7b6dIlUwGkxE8P2iG\n7IyriCLoIZm4puB4HgICnu9TtlwM272lPraqsLUUriYHbFQHmPzAsF3+8PtjvPdEZy2CcxChh2T+\n3jsP8Zt/fZ0bqVLzkrwNWEt3l8/OKJg2qhwMI14omDi+z/0DLXz9jWkUUcD3fTzfZzRdAt9nsWix\nUDAREFAVifcc7+Sxo+3kDZtDrXqt1OG9p7qYzlZIFYNooqZIB043dxpr2eu1WLI+8eDAmrY9qYcw\nbJdM2SKuBce0KMBCwaIzFkIQYCZvcLa/hf7WMON6uRZgWr5v9UrzvvDCKJem87Xm9nzF4v6BVlr0\nWwNYa2E0XcLxYKgtyESNpkt1nZ/dwF6kul4N1/eJh0NosogiCRxq029lQp0OmFAJ4ouEZIne1jBD\n7RF6nDDD7dFaL/DDq5wafLBdD98PyDZUWcSw3brOjEBAgrC8WHkrGbL98Py3isG2CGf7W9YMVqzG\nnTyT29mPrphGOmGS0BVO9SaIqDLjmQoeAAKRkEjREGmLKbxjqJVjXVGyZYtL0zkM26Fo2nTGVMKh\njVejrP4co+n6mcP9iKbzs0u40+jTZl9XdWiKhoMsQslyiKoy+Lc6HctpKqv9RkUzGL5nOl5wQUrq\naIpEyXAIyzKW41EwbI51xQImkKWa0afv71uxzloKt31lCheo2xx7UPBnr0+TKlp8+snGDQHdLfz0\nE0N8/ns3+PfPvsWv/t0HGr2cfY+1dHd5dFYWRd6ay+P74LrBbJjuuMZwR5SFYlDvHVZkhpIRXhvP\n0h4NAT5t0RACt/bcLS91yFdsnjk/iaZIt/SqNLEx1LPXm2XJqv7s6fv7eeb8FPg+I6kiST3EVLqM\nLImoksg7Dyc53RvQzadLt5LM1FvTjVQJTRbRFBHT9jjWGcOwXbpb1E3t+VAygizC6GIJWQy+bhT2\nQm/R7XC6J0F/q8ZYukIkJC0xt9W/JA8mI9zf30LBtBluj/CDx7tW9AIv7+GtftbBtggPHGrltbEM\nIVmkr1Xnh+oMJK6Sppxpa6nrKN/JHWU/PP+tIqEr6wYrVuNOn8la9sOyPZ69MYcARNSARbK0dE4E\nzq5APBzCcj3u72+lI6oGlPM+5A2H070JXp1I8/hwB1pI3LDTsvpzVHvGD8JeN52fA4bl0YMPnump\nGT/glmFkq2tSPxy+Sb3dFQ/qwN91rIPBtkjt/aop+uWzK9aKXNZSuKq8YoDrfm+UWwu+7/P5741y\nvCvG40faGr2cHUdnTONTTxzmt/76Oj/77iOc7Gm2/20Fa+nu8svJu451BHO6Iire0tyFwbYIjx1p\nZ6FgIokCP/7wIQbadN53opNMyeJEVwwtJN8SoKi+5/L3/+Rjhw+kbjYSdxpVH2jT+eRjQ7Xg1Gi6\nRIseoi2mUjIcelrCt7Wpq218laXpSHuUoulypi+IIK9mc9rI2j77/hMren4ahUb29WwUA206n3pi\nmG9emuVEd5y8EZSEDyUjdYfnfnzVRXt5LzDceu4mdIWfenSId9/Tse5MrZ1wVPbD898ObMY53Moz\nWa2zCV3h4aEkecOpzXy8r7+FmKbUzokfOdvLYtmiTQ8RXkaSMEiErrga9PNpCj7+pp2x1Z9juSzu\n573eF87PQWqm2w2spaT1mImWl8EBJDQFSQxK4brias2IVt9vAH1DDW/rKX8ja7B3En91dZ4rM3l+\n+eNn7xoGtH/4rmG++OIYv/yNq/z+px5p9HL2PdbTjVw5GMjTEVUJKSKW7VGo2CT10C1RyVzZ5vxk\nlp4WDcN2efr+vg1dUG/395t2+M6wHZn/eFjhrdkCCwWDmKrcQkO82ukZWyytGD5arc+v2uWnH+i/\nxcHeDAba9DVlardlZSfOlDv5DNXnXo/Z9HRvgtHFEnnDDkrBhVsHm6+Vhan39Wok9NvP1NopR+Wg\nnulbwZ08k/UGJ3fF1Vr/d3WQcG0f69zDqvL71NGOgGa9N7GCDOVOP8dB2es97/zcFc10u4TV5Q/L\n0+3Le4J84L7+lrpKkivbfOXcBAXDIabJfGIdyseDoiQbge/7/Ptnr3EoqfP0A42ZfdMItOghfv49\nR/l/vn6Vv7g0yw+d7m70kg4kVg++O9Ie5fJMntensrVegeWBiHTZomg4RLSg5HUrQ+hW//2mHd5d\nLGcA9AHfF9btt67u1VzeZCRV5H0nulawhe60XT4IsnInn6F6Nr4ymsZyPB4YbOWnHh1a4dDUBpsL\n1Oa4OL6/qz2Td9O5vJdRz7leq1dotdMKtwavVwc/qj83bQ8BakGQwQaWqO4l7Hkmt+XCUG3+bWLr\nWJ3+Xt4TpCoiMa2+gRxbLHFhMkuqaHJhMhtEuTaAKl1iNXp90PCtK/O8MZXj53/wKIq059VqW/Hp\nJw9zojvGv/rTSxRNp9HLOZAYS5eYLxjEVQVVEXF9H3Vp4GU9uygLApdncktMcDnkLWYim3a4Mahe\nYp57e4Fnzk/ieT739iVQlaBuv55dvdlvGUEAbiwWd7U+/yDIymY+Q3UPxhZLpAom6ZJFwXB4bTxz\ny/mY0IPB5lFVPhB9E3crtnqfWa7Xf/7GdO191itLTOgKh9uDgPTt5HP5zwuGQ8G097U+7gT2fObn\nbmimq2I3SwXqRRJW9wTVxRITjel4FExnQ5fdgxAJXA+26/FL37jKUJvOj95FWZ8qFEnk/376Xj7+\nW8/zi1+7zC/97bONXtKBQq5s89KNNCMLJa4vlLi/v4U2PcRr41kqpnvLhO3qTIjDHVHaIyoly9ly\n5udussN7BatHBVQsF8P2ansgC0Jdu7qcxfNsfwuneuIB6c0u4SDIykY/w/KzzbI9bNejYruEFQlF\nEikazooZKbC9pWfNUtTdx53eZ5bv1UYzPGv1791OPpf/PKbJCNxKknG3Y887P3dLM10jHITV6e+N\nPOfBZITjXTFeG0+jSRKXZ/K3nQ1x0Kkwv/D8KG/PF/m9n3ooGBx5F+LBwVZ+9t1H+M3vXOeJo+38\nyH29jV7SgUG6bKEqIu890cVIqsTJnjjnJ7NoSkBn+8GjPTV9Wj4r6MZCkfA2MbfdLXZ4r2CtUQEf\nPH2zP2QjF6gqi+dyKuXdDqztR1nZ6GdYvQfvPdGFqkh4vkdEVbgym+f6UuZt+bPfjtKzgx5U3Ku4\nk/tMvXk562V46rUbrN7r9eSzXnB7P+vjTmDPOz9wd9So7gUH4XbPuRp5eMehVmzXrzGP3G6tByES\nuBamsxV+9dlr/MDxDt57srPRy2ko/sn77+H7I4v8wp+8wbGuKCe6m+xvm8FaUdzlkfyuuEpUk2s0\n8itmfbD+lPCt4m6ww3sFa40KWP38b2dXMw06Vw6CrGyE/EMWhBV7cLovwem+RDCTy7B5fTK7Y89+\nL9wZ7kbcyX1m9V45vr+pAMFas8LWe91aJBnNbGGAfeH83A3Y6w7C6vR+TJNrzCO3W+tBiATWg+v5\n/JMvn8f1fT73kdN3DcPbWlAkkV//iXfwsd/4Hp/+/Zd55h89QVdca/Sy9gXWi+LWLVFdY1bWCop5\nTd42x6eJ3cV6owKqWMuurrbV9ebCNHHnqBfFr8fWlivbOzrTbq/fGQ4q7uQ+U2+vNhMg2K69bmYL\nb2LXnR9BEIaA7wNXAMv3/Q/s9hr2Iva6g7A68lDlmd/oWg9CJHA1fvVb13hxJM0vf/zsbSc+3y3o\nbQnz+Z9+mB/77Rf45Odf4r/8g0dJRpqH8u1wuyjuRktU97odaWJj2Og+1rOrW7XVTayPelH8emxt\nO62LTV1vHDZ7n9nqXm3XXjezhTfRqMzPX/q+/5MN+tt7FnvZQVgdedgsV/xBw5dfnuDXvnWNTzzY\nzyce7G/0cvYUzvQl+K2//yA/84VX+PHfeZEv/sw76YipjV7WnsZmI3vr2Yq9bEea2DjudB+btnpn\nsRld3WldbOr6/sFW92o79rqZLbyJRjk/7xEE4bvAn/i+/+8atIYmNoGNRB7ullrS//S9G3zua5d5\n6lg7/+ZH773ry93q4aljHXz+px/mZ77wCn/nt1/g9z75EEeW+lCaWInlw+i2MnSyiSbg9rb6brHT\nG8Vmn0cz49LEfkA9uW7K7k00wvmZAe4BTOCrgiB8y/f9C9UfCoLwGeAzAIcOHWrA8ppYC7drAD3o\ntaR5w+ZffvUSz7w2xQdOdfFrP/7AXTfTZzN44mg7X/yZR/jMH5zjY7/+PX71x+/nB090NXpZewp3\ng940sftYy1Y35W0l7vR5NDMuTexl3K6HtCm7DRhy6vu+6ft+yfd9B/gacGbVz3/H9/2HfN9/qKOj\nY7eXt2ew34aCHoTBdmvBcjy+8Pwo7/l/v8Ofvj7N//q+Y/zmTz6IpkiNXtqex4ODSb76808wkNT5\n9H96hX/+zBuUmoNQa9gOvdlvtqKJzWE79/cg2+k7wU4/j6ZuNrFZbIfMNPX89mgE4UHM9/3C0pdP\nAP9ht9ew17Efo3MHsZY0U7L4Ly+N88UXx5jJGTw6nOSff+gU9/YnGr20fYX+Vp0/+Z8e51f+8i1+\n97sjfPvqPJ/9wHGefqAPUby7Swa3qjf70VY0sXFs9/4eRDu9Fezk82jqZhObxXbJTFPPb49GlL09\nJQjCvyYoe/uu7/vfb8Aa9jT2IyPHQaolvTyd5z+/OMqfvDqF6Xg8ebSdX/rbZ3nXsfZmf88dQlMk\n/s8PneQDp7r43J9d5rNfeZ3f/e4IP/PUMD9yXw+qfHdm0baqN/vRVjSxcWz3/h4kO70d2Mnn0dTN\nJjaL7ZKZpp7fHrvu/Pi+/z+A/7Hbf3c/Yb967fu5lnS+YPDnF2b443OTXJrOo8oiP/qOPn768cMc\n7441enkHBg8NJfnqP3qCP7swzW98+23+6Vde55e+fpWP3d/LR+/v40xf/K5zMLeiN/vVVjSxMezE\n/u5nO70T2Knn0dTNJjaL7ZSZpp6vj+aQ0z2Ipte+szAdl8lMhSszeS5O5Xnu7QUuTuUBuLcvwec+\ncpqP3NdLa3M+zY5AFAU+en8fH7mvl+feTvEHL4zxhRdG+b3nbjDYpvMD93Twrns6eHS4jYjaNFHr\noWkrDjaa+7t/0dy7JjaLpszsHpo3iz2Kpte+PhzXw3A8DNtd+i/4t+m4VCyPxZLJQsFkvlD9v8F8\nPvg6V7nZSCiLAvcPtPDPfug47zvZ1czy7CIEQeCpYx08dayDXNnmG5dm+MbFWb78yiRfeGEMWRQ4\n3Zfg599zlPefarLErYWmrTjYaO7v/kVz75rYLJoysztoOj97HM2ZDDcxnzf4wX/71xi2i+P5G3pN\nSBbpjKl0xlSGOyI8OtxGR0ylJ6FxsifOsa7oXdtvspeQ0BV+7OFD/NjDhzAdl3NjGZ67luKV0QwH\niROhqc97E819uXvQ3OsmlqMpD3cnms7PHkaTLWYlIqrMJx7qR1MkwoqEpohoioQmS6jVfy/9LBlR\n6IhpxDX5rush2e9QZYnHj7Tz+JH2Ri9lW9HU572J5r7cPWjudRPL0ZSHuxdN52cPo8kWsxIRVeZf\n/sjpRi+jiSbuCE193pto7svdg+ZeN7EcTXm4e9EcT7+H0WSLaaKJg4OmPu9NNPfl7kFzr5tYjqY8\n3L0QfH9jvRONQHt7uz80NNToZTSxBlzPx/F8ZFFA2uHGjNHRUZqycPCwWRlqykETcHfKwW7a2/2C\nu1EOmrhVF5pysHvY63bo3Llzvu/7t03s7Omyt6GhIV555ZVGL6OJOtjtWtmHHnqoKQsHDHciQ005\naALuPjlo9ibUx90mB03U14X3vuuxphzsAvaDHRIE4dWN/F6z7K2JNZEr29xIlciV7Vt+trxW1vV9\n0mWrAStsYiNYbx8biaYMNQ5zeYNvXJxhLm80ein7Ao3WoaauNNFEgLF0ifmCQVxVmrqwDdiMbTtI\ndmhPZ36aaBxu5+FvtFZ2OY0k0KSU3GXstUjNcnlYLkOm7VEwbHJluykbO4wXRxb51O+/TMV2Ccki\n/+bpe/n4g/2NXtaexV7Qoe3sTbhTat8mJXATu4mqvMmCgOP7NZl/6UaakYUS1xdK3N/f0uzT2QJu\nZ9tW6/xm7NBetxdN56eJurgdC8pGJhEvVyzT9hCAkCLuiUv43YK9xGZTz9B++N5exhZLvDya5vXJ\nLBenck3Z2EGULYf/7b+ep6dF4xc/dobf+Pbb/NOvvI4iCXz0/r5GL29PYi/o0HZNfr9TR24vOIBN\n3D2oylvRdLg8neNUT4KoJnOmN4GqiLz3RBcjqRIPDyWbcrgFrGfb1tL5jdih/WAvmmVv24BGl0Ts\nBOp5+Ks/Z0JXONweWVOolytWwXAomPaBSJfuJ+wWm009HVj9vXop84SuEAsrhBSxKRu7gP/8whgz\nOYNf+tGzPH6knf/4yYd5dDjJZ7/8On/z1kKjl7dt2E6bvFcYoW5nbzeC9cpWmmXOTewF5Mo2F6ay\nLBRNKpZL2fKIaDKu74MAkiCQN2264iqDbZFGL3dfY63qC6iv8xvN5uwHe9HM/GwR+8HDvZP042oP\nH9hUehRWKlZMkxGg4ReIuw2bidRsRkZWlzOulo1631vrErlXLpcHHZ7n86WXxnlkKMkjh5MAaIrE\n7/zUQ/zYb7/Iz37xHH/0mUc529/S4JVuDcttsmV7PDyUZLDtzp2GtXRor5d11MNaurZdZc5NNLFR\n5Mo2Y+kS+NT0syqHqYLJX12doy2qslg0SRVMOmIqg8kIg8nIvtO7RmMtW1W1bfWqL1brvCwIa9qI\nrZTHNQpN52eL2AslEethM87ZagGu/l66bFGo2LXPOZIqcmEqy9m+lhUGq2g4GI7H0/f3MdCm13Wg\nmkZr97F8L+thsw78xGKZZ85PoikSUVXmTF/iFtlIhBWKhkNEkykaDumyxeH2SN1L5HoO2n68YO5V\nvDaRYXSxzP/8g8dWfD+uKXzhUw/zo7/5PH/v977PL//ts/zwmW4EIaAxNWyX6wtFri+UsByP/tYw\n7zjUSkjem4UDVZscVxWevTFH3nDoiqtbCkyt1qGtBr3uRK63QxcSusJTRzsYTZcYSkZW2Pj1yl/S\nZYunjnbUei+autjEVpAr2/zxuQnOT2axHY/hjig//vAhJtJlLkzm0EMiyajKfQMtCD48MNhau28A\nTfnbBOrZKlh5F4uVb1ZfVPU/qYc405sAgZrDWc9GLH//bNnmWGeU0z2JbSnT3UnsqPMjCEIv8DXg\nFBD1fd8RBOGfAR8FxoCf9n1/X9eK7RUPt15zYEJX1hXYscUSCNAaDjGRKfPctRQtukJUk2+J3ufK\nNpmSxfW5IvMFE3yYSJdrAl40HCYyZTJlm2fOT/LJxw7XLgyrIw1N7A1UZaZg2Os68MsvXfmKzW/+\n9duMLBRJRlSOd8fAD37n8lSOVNECHyzX4/J0DtcDx/d58mg7sLYjVu/7axntJu4M37oyjyQKvO9U\n1y0/64xrfOkfPMrP/eE5fu4PX6WvJUxvi8Zc3mQiU2b1OLjuuMa/+shpfvhM9y6tfuOo2uQbi0UE\nYLg9Qt60tzUwtZWg13qO02oHZ7ld/+7bC7X+yVM9caKqXCv7WSvAtPpcWP4+E+kyHw73rhup3Q+V\nDU1sHI0KJq3O8owtlhhLl6mYLuOZMqmCwUS6zFSmxHTOBKA1rMBAC+0xdYXjc7u/0+gLd6PXsPrv\nr7ZVY4slLk7nKBoO2YrNAwMtRFSZXNkmVbCIafItWZ7BZGRNG1F9f1kQ+PobMzynybRFVH7hgyc5\n3L53yxJ3OvOTBt4LPAMgCEIn8B7f958UBOH/AD4GfGWH13DH2IgQ366saCuKsNxBGUzeWrZRNShF\nw+HKTB7X91c0B65OXebKNm/O5qmYDs+PLHJhMkvJcqhYDr4PRdPlZE+cox3RWo1mNYL6vWspSpaL\n47roIZmuuFa7UCT1EIbjkSnb6IpEyXQZWyxxVt/f5TO7id02mMuzddmyja5KQFBPXTEdvnttgTY9\nRLZi89zbKVRFJFe2mc5WuDydJ2/YaEqZkunw6OE2Lk/nSJUsSoZDXFOYyRt0xjUyJYuK7fHs1Tn6\nWnVg49m/ehfMJu4cf3V1nocGW0mE6z/3gaTOn/zcE3z1/BTffnOeTMnmvoEWfvQdfRztjHK0M4qu\nyFyeyfPr377Gz37xHP/m6Xv5iXce2uVPsj5qpRzpElE1Td60tyUwtRZT4Wbfey3HaXVG9f7+Fp69\nOo8mi2QrFp4Hg2063xtN88L1BSKqwrGuGGFFqulnumQRkkQ6YiqPDbfx7NU5fB9upIqc6k1g2C6a\nLDHcEa1laYeSERzfr2V2ZEGo6dper2xoYuPYKUd2rcDrxGKZ0XSJNj3ECyOLPD+SIle2OdweJRGW\neWMiw9XZPIIgIIkiE1kDy/WIqzJ6SOZkd4x3HGrdlOPTaEd9I2tY66zfjjtAvb+f1EOYtscro2lE\nUeBIu0PRcHh7ocjFyRx/dWWWvqSOCPS36tiux9XZPHN5sxY4GlssATCUjBANy7SGQzUbUbWFr0/m\nyJYtWvQgmH5pOsdAm76pte/mHWhHnR/f9w3AqJZPAA8B31n697PA32OPOj+bUaR6JRF1o3XdcaJh\nua4jsxoTi2W+9NI4N1JFZFnk/v4WPv7gwIoIYTVtXDIdQrLIQ4eSOB61UqMXRlL0JsI8dbSDiUyZ\nL744ytXZAhXb4VCrTkiWGE2VSBctBFFAk0UuTWXxXJ8PnukhHlZqEVTL9WiNKJiWRMV2uTKbRw/J\nVEyHNPC+E50YtsvIQpGK4/LyaPqWqGTz0KyPXNnmK+cmKBgOMU3mE8v2ebPvs7qGeq3fuzCVZaFg\nkiqazOdNYprMY0fa6G/R+Z3vXidvOIymSoRDEobtBtmdio3puHg+iIJAJCQx3KEznikjiiInumK8\neGOR1yez9LWGsRyPiu3RFdfQFKkWcarq1O3KaPZKVvUgYDZncHW2wC988MS6vxeSRT7x0ACfeGhg\nzd851KbzA8c7+If/+Rz/11cvcrw7xoODrdu95C0hoSuc1Vu2rT9gLabC1VmW9YJVVaxFJvPM+Sku\nTefRZJHeljDX5gosFC30kMRkukzJcjk3msb2PdoiKgA35ot0xjVO9sT55qVZxlNlREmgJazw2kQG\ny/EJh0QqlkckFBz3hu0xkipyeTqHYbn8t3MTHG6PIggC7zvRyQsjixRMm5iq8IFT3buqg42Omu9l\nbPXZ7IQjW72HLBQNxhcrnOiOgSBwuifOH7w4Sr5iUzJd4qrI9VQZ2/O4NlsgogWy6HogSwKu52E5\nHrIIRdNBVSSGO6Mbdnx26vNtFrdbw1r3ytXfXx6I2EypabpsUTQdIiGZounU5GU2V+HF62nCIRFR\nAM8nqOARQEDEdDzwYDZvkK84vDaRJqGFeHM2T3tU5cJ4jtm8QUSVONOXQFsKuCy3ha7n88roIobl\n4Ho+JcvZ0OiKqt18eTS9aTbgrejEbvf8tAD5pX/nlr5eAUEQPgN8BuDQocZFFO9UkZYLcaZkoyki\nXTGNr1+b4fnrKSJLEb2Pr3PBzS2Vjl2ZzVM0HXrjGuOZEmPpm9mUdNmiYNrENQVNEpktmLy9UMTz\nfBYLJldnC5wbz6DKImf7W+hvDeN40BlRKFsOpu2RLpnkDYecYeG4Ho4HuiZhOj6///wNPvX4YT58\nby+XpnOkChavjWfwgagqUTRsworE73z3Oqd6E0RVmSePthOSBQ63RZkrGLwwkmIqU9lVgd6PGFss\ncWEyS0xTuJEq8shQctNZs+XOsAAc64rx7mMdtzhByzM+F6Zy+J5PumTx1pzFWKrEYFuEnOGQL9vM\n5gxEQcBxXSwPWCp9UmUBV/CJaTL9rRFO98T59tV5XpvIIksitueRLlm0hBUms2UkMcgoIbCiN+iZ\n81O0RpQ1ZWOjZA1N3B6vjWcAeHS4bVveT1Mkfv0nHuCH/t3/z96bBtmVnvd9v/fsd+17b6/oBtDY\niFmA4YDizHARSVPUiDKlWA5VkWJbUlRxqexErqRSlS8pf0iqklSlHFdSqVQ5sl1J5MRSVBEd05Jp\n06SGFEVxGwwXzAyAAWYANBrofbn72c9533x47+1pNBpANwbAYIbzVE3NTPfpe957zrs8y//5/7/N\n3/+Xr/OV//xT2Oa73wO0W9/ig5g3uzkV25nXhgmM1xbaKLjnHn96ZuSWJMVrC21afsxGLyLOFGv9\nmKemKuS54sJih9VexETFY7EV4ZgGC60IU8ATUxWiTBJnORu9mNV+hFCw0ArIcknRtchyC8OADT9G\nAC8+OclmoOGpJc/iwlKXa+t9cgUrnZBNP2Gs7HJ13ef5o413tAb3s5c/Dpn7x9WG+/swKN2ZCN3L\nM34YyaT5ps+5hTYAV9Z79OMMyxB89fUlbjYDwkSy7ehAAJ4FYS/HMgWZBJCUXT1Hy65NrWDzH33i\nCJ97anJf7/9xSJbdawx38iu3//zael9XgC2Ti8udLf9qL+shjDNenmtiCYFpwOnpEd5a6fGty+ts\n+gm5VPSjlN/6xBGiNGO5HdKLUiSKom2w2Am3IM7HT5R5fanLtfUezSDBs20mKg4LLYfJqseR0ZFb\n+oPiTDI7WqIdpkxUXDb7Cf/m9aVde4yGNlzzq92Yaxt9Xnxycs8Q5Xe6Xzzq4KcDDNX0qkB75wVK\nqX8K/FOA5557Tu38/QMdzF02jftdSNsncRjnuhqyoRuFG4SdWUQAACAASURBVGUXoRTzzeA2WNj2\nseiJZjJedlntRlxa7XIsL3N2rrmVUWwUHSzDYKUTALpqUytaHKwXODFeJkgzelEOQC/KaPZjLq90\nubwiqLgmv/HCLEudkOX2PK5lIpXAQOKZJnGWc2Gpwx+dvcGZQzXOLbSJ0gypFFXXIssF882AI2Nl\nXWlydKWpG6WUXZvVXsS5Gy2urfu0goRfOn3gkU3o96SJtw8HNfj//dr2YDjOJD+Zb5HlaqvRe+ua\nMGWjF6OE7tu4utbjZtsnSSVxJokySZBmtIOEKJUAyMGQhsOyLUGt4HJ8osznn57i0GiR3/zYLH/y\n2iJjJZfXF1ts9hPGyy62YYDS36teeHtNDeE390ouPCjn9afdzi91sAyhe7QekFU8m//6rz3Nf/IH\nP+bLP1nk1+9SLXoU9k7IXe5llhBcXOqQSbAM+MKpA7d8Ti9M2ejrXgXPNOgNoSJNbglyNLRtEc8y\nKHu6Z6cTpJyda+oeiEQyO1bkQLXA1fUe672EVpCAEriWgRLgOiYeEGeSQ40CSkI3ylAClATPtTCy\nHM82qRUcRksOp6arXFjuUis4/IsfLXB0vEQn0jC5MMtRwGTVwxKQ5nrdC/TY97MG78UCebfPeRwy\n94+bDZ/ncjvk3EKbqmdzaaXHTL3AJ47pPsr9IFQeeDJJs0+TZIr1bowf5biWwYYf00/kLZca6LPE\nMAxMQ/+NbQqEgFODxvoXjo3imgZnZuv7Ht/jkCzbPobt8NHhWPbCeBplEs82MRB0wgyBuEUaYrvt\nXG8vXVrFMgSG0PvDt99cZ7EdkOgokzDJWO7B1y6u8hsfm0UpEEKw3otZboc0/QQpJVLBS2+sEmcK\ngSLOJLlKafqCTObIXPL6YoeKZ235rK5t8OJTk7w816ResJmsesxt9rmw1OH6pr/rHB2u+WNjJeY2\n+sxt9pmoeHvyt9/pfvGog59XgN8F/kfgReAHj/j+W3avg3K/C2k71G04icuexRdOHKAVJFim4MJi\nh6VOyIGRAt9+S2tqDKFhO0ueZdfixGQZy9SH3plD9a0AAuDCUoemn3C4XiLOJZMjHqcOjHBtow9C\nZ1AW2xECKFoGX3pzjV6UAYqSW+Cbl1fJpMK1DSqehSIlzgRxKsmlYqzscnm1y49vNmn6KUGc4ic5\n86nkcKNIP4FXb7TpRSlX13rMtwJaYUKSSmxD0ArSAdbc59zNJh+arO46oe/VnPfTcADONkqcOVij\nF6ccG9NUnnu17fOu4tr8eL7FWjdmtORwoOqx3I24sNThjeWuhrn5MecXO4Cg2Y/JZE4n0M5Plie0\nghTHEvTjnO1Hl0A7fY5lcLhR5MREhfGKSytMOESRWtFmox9zfcNns59wcrLCuh8hEHzksJ67mVK3\nHAx/eWX9A0jbI7Lzi10+NFnBs80H+rm/eGqKU9NV/rc/v8KvfmQG6xFXf3Ymjfayd9wPLj9TimNj\nZZQAoTSJx/bP6QQpV9f6rHQjhICJEY+vXVzhjaWuhiQfafCLT0/x5XMLvLnap160NZxksc2IZ+Pa\nBp9/aoqvv7HC7GiJomNxlDIFO6LkGNxohcS5pDKArtmWQTdM+d6VTUwhGKu4fPr4OBu9GNMwsA04\nOVVlxLMxDHjp8hpLrYA0V7QCDaUrORY/e3yMZ6dH8NMc29RnQaPi0o8yRgo29Xvs2cAdg53tLJB7\n2cv3knD8aUIFbJ9fy62INJMkWc5SK+TcjTZNP9nzM95+Ttzpd3v1c7ZDq2dHS0xUXL52foUwlcRZ\nTJYrdsQ9wNtJtPGyh2vBej+h5Fo4lsnPfmgMyzS2oFT3ex48Dsmy4f137jHdMOV60+fMwRoF17oj\n46klBF+7uMKPrjfZ9GN+NN/kuSONW0hIhtd9/eLKVjXw+aMNPNtkouJxsxWQD9Z6P8mxTR0QGYJB\nD1DO9XWfaxs+fpwyvxliAEGcbfmccaYwUPSjnEwplILMkniWyatLHWZGCqS5TTdMaRQdklRydqG9\nBWO7utGnVnRIUkWtZHNsrHzbHB2u+W6c8uGDNV442thTW8j2v71fH+Jhs73ZwFeBZ4GvAX8f+LYQ\n4jvADeB/eZj3v5vt5aDc60K6E15zOLkPjRaZHS3x/WsbnLvZYrZR4nvXNkkHmfmdG1grSLZgEV84\ndUAfoitdDARrnYgvvXKT15d0c9lTB6ocrBVoBykvvbHC5oBty7NN/ubzh3ljqcufvrbISicc9Gso\nFppayK7oGLTClImyi1IKz1TYtsFo0WGk4LDZ71Mruqx2NDzONAykUoNmd5OVboRlCV6Zb+JaBt++\nvK6rB2lOmOY4psB1LHpRzqdPjO+JzetxKF0/bNsNmvMffPTQvg/1nc/vyGiJP2yFJIli0+/zb88v\nM1K06UUpV9b6rHVDNvoJCsVExaMbJiQa6gtAmClAEe7Cv+hagrJn8fxsg6Jr0QoTZDvi7FyTesHZ\naqzuxxmmAb0o5eRkhVrJuaXhfPua+uXCB5C2R2FKKc4vdvjckxMP/LOFEPy9nzvB7/7hj/nW5fVd\nmeQelu227+7UpZjb8G/T5nltsU0/yjg2fvthDNxWnfnlZ6YJ44wf3WiRS0XVs/niIKs73LcXWyFj\nZYdnD9boxRlTFY8/ObdIkOR4jslGL+bCcocgySk6JovtkCvrmo1OGIK2n2CbBqemqpw6OEKSSi4s\ntXn9ZodNP8E0oOJavHCswaXlLgsD+JsptEez3o+5ttHjC6enaAUadlIrOjx3uMHZ+U0qrk17sO9I\nqXst4lRScC0qBZsccCxBwTYHRAmaaOEvr6xvMcLtfOZxKhGwBWs+PX3rOYZiX3v5XsiDfprYH3ei\nSI6NlwnijOlagacOVOnG6Z6e8fC5rfdiXl9s88zBGuPltxEBd6NBBraCnXrR4esXV3jlepNOkDJT\nL3J0rMj/96ObtML8nt/HEDBRtpkccTncKLHYDjAQVAt6jVUL9vvmPNjpX15Y6vDHP7xBmEgypfgv\nXzzJyA4mtO1n4wtHG2z0Y56eHqHpxxysFwC9N/2z780RJDmmEKz78RZE9VC9SDtIMYVmuBTAQjuk\n6lp8ZLbGufkOQZxxs6XJr4Ikpx2kJHlOnCXkuUEuIZcKA4lhKKRUJFIhgFxKMiV5daFDqx+z0g6Z\nqHjADf7uZ47z/JEGC82ApVZIN8xoBSmfPTlJJrVPuNscfSfVunda6XvYhAcpusKz3V4G/sHDvO9e\n7EE62TsneqbUbRR/I0WbTxwbo+knrPaiWyhYhxvYtY0+7SClE6wzUrS3DvQozbm82sNAV3xyBX6S\nYZuCtV5M2bW40QzoRSm9KONznkWmFKvdiH/87av4UUqUKQyhM/e1okMnyujHilwqFjsRWSZJc4Vn\nC4qOxdxGj26YstgO6McpSSbJ8hxDQD/KMAxB0TGY2wiIs5xM6oWCUIMgCTphxqGCQz/OaAXJFvPH\ndqjIzgD0Tlow7xe7U9b5fqAlO5/fy3NNenHKWMkl6KZEac5nD47zg7kNXl9o048z8kGws+n39zXu\nXCo822S6XsAyDJpBwiePjZEqyfWmj2ebVDyLta7g+HiFw6MFfumZ6bs2nD8OWbqfBlvpRmwOssQP\nw37h6UkmKi5/dPbGIw1+dtt3d1YWdxPe7ccZF5c7AJQHsI2hDfsth9WZQ/Ui85s+/+7CCuu9GMsQ\nOJZBK0yYbZS29u0bmz5SgZ/0ODlZ4fJql4VOSJLKQSW1woWFDq/ebNOPU1CCsarLQjtksx8T5xKh\nwDQEy92Y715ZxxSw0o01VEjC/EaAUIJ2lBCnOVGS0o8NXNvkYL3IZMVjtOiQ5vChiQq9KNOJB8Ng\nraehpiaghHZksDRhjWeb1IpvZ2ZvtAJyqZiseqx2o1s03bY/89cXOwihOD1a08GOuNURH1YGhiQQ\ne7G77Qk/beyP232UsmfxhdMaRfLK9Sar3Ygok9SLzj3Py2G/2rWNPiudmJLTp2CbtzG6vrHc5aU3\nVmkFCVJqzRbDgPlmoCsChoECbmz63GgF/HC+SbpLhedO5pmCgmNzZLTE8fEyXzwzQ47iSKO05Rs8\nCAKGx8F32OlfdsOUMJHEec5GL+FLP7rJf1Ev3nGM9YImKQgSyWo3pF50WGiFXN/o881La9imgWEI\npqouY2WXNJO8PLfJUjskyXOePDDCdNXjtQE0LezljJQsolSjNVzLYLUb4ScaVhcmYBj6ZRoG+KnC\nRDEMaRUQ57DaTdjsJ7oC3ouJM40emm/qfmEMDbebGvFoBQlvrvWYrhV48cnJ26pdQ3snfsA7+duf\nWpHTe2Ez92N7DaSG97yw1CHJFKu9aEuroV50+PK5RaRSXF7tbTV+XW/6ZFIyPVKgG2mtnapn0wkT\n6kWbY2NFJsoeC62QD8/U+MHcJm+s9HhyqsIbSz2iNMe2TIIswxR6Ypc8C4HATzKiNCPOMnKls/th\nKrm2rh1j0xBIqah6DscOuLy22MV1TIqORdW1eHWhg59kIHVWx3Mt0iRHGArPNnAsg6pn0gkTrq73\nqRTsW5ySJJUouO25vZ+d4v3C+nZu5kM63DDN6QQJo0WXMM5phykrXe1sLbYj8jwnTDL+3x/eZLUT\n0Ysy7p2b290EYJsGrqVpzD9+rMZiJ2S5GzFZdTnSKHGzGXBsrIwfZzxxoMJ42d0qX79f3+V7xc4v\nao6Z0zPVh/L5tmnwa88d5Pe+dZWldsh0rfBQ7rPTdtt3h/NtbsPf1VHOB/A1gKcOVG9jk2oGCUqB\nacBaN2a84oHQWHnLECggSDRV7HA/f22xDYotjPuJiTL9OOPASIEozSnaJk9MVfnW5TVuNAP6cUbF\nNTk+Xma9FxOmGQfrJfphylvrPZZaAd0wZaLqbfUCSqWTFtc2fEwDygWLXiixhcIQAqkU5xa0dkeS\n5/zkRosDIx7NoEqaS/JcJ6U8V5ClkomRAp97YpxfeXaGetHZgqAmqeSttT7XNvpcXumSScWmn3B5\npcevffQQlhC0/JQwzql4FoK39+/ZRum2ZEcnSLcYHofK8fe7H7zbqIBH7Vjvltk+NFoc+AqaEv0v\nr6zz6RPjd/2cRtFhtROx0AwBxaaf0g7SrecXp5KvvrXMUifk3M0Wea6olRx6YUaYZ9Q8m8urfeI8\nQ0oI4nxfQQ9A0RJ8/MQoR0fLTFY9yp7FqZmRB/ocHxRr6jsdw/B9bX933TDlSz9eYKOnoX61krMr\nE9zw+laQMFUtYBgCAYxWXK6s9nhtoUOUSmxT9wSNlz1MQzBdK2BbWhg2SXNeW2jz41zSjzNqBZvp\nmiZSyJTCNg1yqft7tY8H1YJFlEpyKZGDd7ubv6CAVOr+LQX0Y02MNNwPf+1nDnGzGWAIg6JjUnRM\nlFK8dGmNL56ZuSsk81EHrO+J4OdhqWHfCZv5sBvtrm/61Ao2USr5wqnxrYxavWQz2yiy1A4HVNIm\nHz1Up+LaXF33STNJ1bN5YqrCkbESZw7VuDHIyqx2QzIpaZQcPnVijI8dHeUrry4CijSXGEC1YCKl\noB9mPDfb4PJql36kK09SQZjq8qYhFGkOQihMAUGacGVDL4U0kwhXq8Kv9WJsQ5AonSEoWAYFy6FR\ndmn5KbmRc3U9oFGy+T/+8hq/cHoKASgFY2WXXCnNPqW4ryb/R20PYpFuP8DjVNKL0tvoIHejSjeF\n4MzBGl/68U3eWuuz0AzxbJNGyeapqSphkjHfDJga8VhqRxQ9GyHAjzMylW85UfcyAzAFeI5BlMoB\nrbVugo7SjI1+zGo34szBGs8faWw1cg8hbL/6kYMfqMA/ZnZ+sYMhtLP/sOzXnzvEP/rzq3zltSX+\nzmeOP7T7bLe77bt3cpS3MumutSuNrobK9TVLlZK8+OQEFc9mtRsTZxom8sRUhTeWuxyqF8mU0npY\nwzVrCPw4wxaCqYpLkud85HCD42Nl/tUABmcbgjCTZLnkwIiHYcBiO6IXJvSiDAFEmWS5qxnd8gFh\niAXUyg5+nCKUwDYNDtYLrPWiQeVJYRgGtYKDAPpRznIr5OXrTbphQq4gzRQjJYuxosMvPKUFalth\nwpmDNd5Y6eKHGVIqXnxyku9f2+T6Rp+lthZGfPpAleubPp5tEKU5XzxzkGrBvqWyMww+O0HKazfb\nLHVC1vsxYyV3iyXvnWR5HyUq4J2QN+z38+/mo+z8XaYU9ZLDgWqBC8sdfu8vrlAt6B6y7Q7/UGfH\nMQxuNH2afkI3SpEKrq71ubTc5WPHR3nhaIMbzQDXNHhro8/CZjCAM5oUbJP5jYB4QEPtWOKegY8A\nyp6BH+vzwx6wEv7Op45zanrkob2/B8Gaej92p/P6l5+ZvgUB9B8+d4hvXV5jcsRjvOzeVnHeDieN\n0pzFTkg6CFAWmyHfvbLBUjskTPVZ/NRUhWrBpmiblD2LMM1ZHvyNAhzTwI8yLq/0ODJW4vhEmUZJ\n+21ZDp0wwRCCOM/JczCQKAW7vV5LQLbNiZAM9qOiTaPkUh5Ql8/Ui/ztnz1GN9TkS+eXOtxsBbQG\nFfXf/sTR23ydd4vg6rEPfu4nmt/PA31QDfZ7zXAP7zfMEg4bxrc3fp2crGisuGVybqHN55+e0hjf\nMOVwo0gmBxQrCq5v+IxWXJ6bbbDaixgvudxsBtohziSnZ2ostyO6UYJSglTmRJlkoR3w2ScmWOyE\nxInWcbEN3deR5op2mGnHF6gWHDzLZEMp/DinGyS0PYswyYkzpTe4AT+/ZQm6gabOLjgWgcw4Mlpm\nsR2y0okAxVI7ouLZWAZ86vgY5xbbDyQz+DDtQS3S4QE+5LV/daF9y/e+lSo92RIkvLjU4X//zjVa\nYcp6NyJMciYrLlIqLq10WWgFrPdi4lShAD/O6UcpWa7ueVhZQIaeUo4lsA3BZNUjSnJc2yRIMoQQ\n/K0XZrEsY9eM+QcVnsfXzi92OD5epug8vO1+drTEhw+O8G9eW35kwQ/ced7dyVG+l/OcKcXT0yOU\nHAs/ySi4GkJ85nCNI6MlXl1s85mTE+RSbdHRnrvZJs5y/DijE6YcbpQwDfjVnznI5IhHvaBF/8bL\nDvObPo5pYhrgpzmHikWurPapFxzKjq7IR5mk5JiYhsHPHK5zZaPH/Eagk1hC09ifPlDllfkWYSLx\n45yya+lMrtIJFc92yGTOpdUevSghyxWuY5JmOUXLohMl/PEPb5JKiZ9k9MKUTqjhzCbwC6emKDkm\n3Tgjlxoec/ZakyjPeGpqZIvABLitsgNs0X77ccZqJ2KmUaRgG1sseQ/6fT9o27nf75e8Yb+ff6/z\nZDeB3WsbfX58vcV6P6bkWoyVnC2H/+Jih//ppTexBj6FZQgKrslaN2JuQErz3/zr8/zPv3aG2UaJ\nw40i31jpsdyOyKUkzhWpVJRsk6rnsNIJdC9ofOfv5Bhas+fYaIkzsw3iTFcgTk5WefZQjVPTIw/3\n/T0A1tT92p3O6+1zZPs1x8fLtyQNhzb0C6uuzU9WW3iOyYtPTjK32eeFI6MstkMqcxZjZZcg1UyO\nY5UC7TAlyTXVvRCCkxMV0lzSjVO+fmFlwNwomB5xeWs1oR/lOJZBmGT4SY4arGGVK+KhE7AtyDGA\nRsnGMgWr3WTrV7YBJdeiXrR54ZgmKdhJx37q6RF+eKNFK0ipFx28AdRyt+/9bhBc7fk0FEKMKqU2\nH+ZgdrP7ieb380AfdSl9yIrx0tzqgL1FUS84HBotbh3MvSjl1YX2LQQIQ6rAxXaIgi1F74tLXQxD\n0ItSTEOQFBTnFtrUig69KOPzT0/yzctroDT+0xCCasGmXLCZHPE4OVlhbt1HKYVEUHK1DpBjQZrp\nilA/ykjsHD/OMQW4jkWYSmzLIFOKNNdLQghB0bLJZI5pCOI0H8AmYtb7MWevNbFMmKoWOHOopjWJ\n3iPsbg9qkQ4PMdCNwgeqBS4sdfj6xRU+fnSUTKm3m1wHDYnffGOV15Y6lB0ThaBedIlSRa4krX7K\nhp8QJBlK3lqqjlNduYPb9rQtE4AQYCiwTbAMg2rR4jMfmmCpGzJV8UhySck2iXOFYws+PKPX385m\n8g/s8bTzSx0+eXzsod/nl585wP/w1UvcbAYcauxd2fth2W6O1r2cr0bRoexa5EpRdt/uByq7+qgc\nLzv4cUY7SKmVbEqDjGvZs4hzSZDmVIs24YDoYLZR4v/+wXVNPS8lhxslwlT//dxGHykla/2Eww1B\nkOTMjBRY7cU0ig7OgDI4TCW1oo1jmiAUJyfKIASfPjHG9c2ATpjgWAZ+nGFZBrYpqHoWq52YTpTh\nWiZJlpEOKK0TmbPpS1a7EY5jsNKOaIcpKMXR0RLCMKgVbQ7Wi8xt+timQXcj5eXrmzSDhFfmWnzi\n+ChhnPH1603W+zGnDmjNj/mmTydMWWgGulplGpQ8i+mRAvWivRUwPUrbS4XlXqyj+yVvuNd9d37+\n/KZPJbB3ZdAbJspypftwPnV8jE+fGOfs9SaubQz0ciTr/YhXF9qsdCL+9LVFbm4G1Eq2JkrqR9xs\narRBDox4GhHyrTfX+Y2PzfLJY6O8MtfENQ38iK0G926cEqVyTzC3kmdjGpqueqZe5PkjDepF55Eh\nAd4Ja+r92i2kFElOlMrb5sjOd10p3L4HaQY2yTfmVkkyneRolBwmKh6npkc4VC/yldeWtrQcHdNg\nrGLjx5IfXW/hWIKya/GZJyZwTYNSbDJWdhkruVxe63NxuYdCDSBzBmkmMQw0C5wpiHJJpt4G4RRN\nSKRuhUil0vBdxyDJJWmu/c+JiscvPn2AX39e63F+/9oGr8w3GS29rRH2xTMzWxDN7fvp9u/9bkFZ\n95MK/IEQ4hzw+8BXlXpEu9h9RPP7eaCPupQ+UrR5/kiD9V5MK0i40Qz4o1du8FdPTTE7WuLomI6g\nzy92tsa/XRzy/FIbpQRHRkfY7MccahQ53ChyZVXTTQNkmeTCUof1fkw7SFjravpTgcaGg6JgGTw/\nq8vdulSqKLoWz83WeGWuTS9ISNHlzV6UIyM9/kxB7qea7jWXmEKRC/BsA8OAtV60dZ0pwLHAtQxm\nGwXSXDFR0fCH9V7M7Ghxq1/kcWd3exCLdHsVM5O6xHxpqcN33tpkvOLw55fW+O1PHKHlJ4QDNpde\nlPHnb64RJBmeZXJ0rMSx8TKnZ6o0+wlZriEnax2Fn9+K0pXo4BV2D3wAPEvPL1spHNvGFHBktMRU\nzaNRdjgxXuZwo7il+i6Abpjyl1fW6UcZUSb54pmZrYbVD+zxsrVexGo35tT0w4O8De2XBsHPV15b\n5j/97KOr/rxT2+mk7nYefPrEONebPs/O1Hj5epN60ebaep8oyZFS0Rnss0kqubDQYabuYQotb/CT\nGy0NZxMwXfOY3/AxFHTDjCtrPo5tsN6LiBKNuX/yQJmCY3PmYI3vXN3AMg2a/QTPMZnf9Hl5rgUC\nxksOG/2YVErySMNjKq5FkOZYhkHBteglGbZpMF52EMJACPAsgyTXibTeAAY1WnbphgmLnYiZmsf8\nZoBraXibKQSNkkPJNpkLEvw45/tX1jk719wiwAEoOxZn55oEccYPrzeR6HPLULDUDmkF8a5Uyw/7\n3e6F1vxerKPDvtzrTZ8je6Divdd9d8Kfh+r22xn0hj2xG/2Yi0sdyq7FzVbIpeUuT01XeXOlx3wz\nYLMfUbAtPNvgD38wT5jqfs8gydn0tdM5WXa4LuXWObDWTyhEKdc2fP7Jt6+y3o3Z6GlJDlBIqdEA\nMsxwLHHL+WEKnTCzDIgyLVrq2ibPzzbIpOT4RAWJolKwH+m5MFK8P9bUnbYfePstpBSuxRdOjd8W\n7O3Fdxgp2prhrRczVnEJ4uwWhMVI0ebvfvo4/8/Z6zSDFFMYXNvwaftaX8yxDBZaPivdmCenKvy1\nD09jmat044yya5Jlglzq4McQOpLNFcSJ9ge3mwL8XFd3klwh8kz7fYPLLDQMPkhSzl7f5GdPjPG9\na5tcWetzczOg4lpkmWSpFTLbKPHbnzh6V9Kjd4vgaj/Bz0k0c9vfBv5XIcQfA/9MKfXmQxnZwO4n\nmt/vA31Ypdg7LaLZ0RJF12KhHVK0Ta6u9/nGpbUtQcqd4we2gqGKa2+RBFRcm7ILEsVMo0ij4uJH\nGUopRgo2zx6s8WcXV1hq6eqREJod5ImpCn/rY7PM1IuaFtsyKTmCJFOcnWvixzkYAjGY7dvVmRW6\nuhBnKYYwEcLAVlogE/QCGVYbCrYxaB42mB0t8ZObLa6s+xxuFLeY7A6NFt8TlMd7mVP32jSHVUzH\nMrm41GGq6vHaQpsgzfGTjJVOzP8p53h6ukqUSp6aqvCV15bohSlxJkkySTfM+OzJCa43fUYKtmYI\n9FNyJbdE5HYzA93ErdA6JQrde2UITbVbdV0+eqSGbZr81VNTlD2L77y1wY1mwJtrfTzb4PS0ZnW6\n3vTpR9ldsbwf2ONhF5aGZAcPh+ltux1qFHn2UI2vnn/vBD93Y1/cfs0Qy7/cisiV4ukDVRTQDhM+\nOltnpRNxfJAoeHO1R9GxuLrRZ7mtk0FCQJjmCASmIRCmQck0GC07HKoX6cUZk1WTfpyhELi2wVTN\no+pZvLoQ0fVTKgWLjV6MRGEMsoL9OKdedGgHCSXXxLVNulHG9WZA1bOYrHqkmWJyxEUOMratIKVk\nKKarBa5t+IRJTtk18WyPAyMu7SDj4pImT+gnOfWCRdG1eGutT5DkjBRMbjRDklxRL9qYpkHNs/nI\n4TqvLrYpOC4z9SLHx8u0Ai1++KGJCn6SPfLKz14q9rtds5N1FNiaAzebwS303/dz3+3nyXakxw+v\nNwnSnKenqrzV7GOi4ZErA6hzxbOpeBZzG33WepEmFjLNQdN7kdWuFqqMsxwpNRlJ1bPZDFKGbu6W\nZptj8uqNFpYJaz3NANYOUgwB0njbOUwytXX2e6Zuvh8rORhCsOmnVAsWo2WX0zNVrm308ZNs1yz/\ne8H2C0e8m19wJ/KDO31eveCw0g1ZaIdYBnzxIwdvi/yeDgAAIABJREFUufbUzAgnp6q8udqn6JjM\nrfu0Q528CBONWTOFYKMX8/L1TT56qEY3zviZQ3X+r+9fZ72nMYtpDqYpsAyd3BBov22n77C92mcJ\nHQwJoOSaRJmkWnBZ6cZ8+811Lq50cSxT+4dKIYTgRiug+frSbb1Puz3Dd8N32HPwM6j0/BnwZ0KI\nnwP+APhdIcSrwH+llPr+wxjg/Ubz73YPwt0W0UjR3ioHBklGlOVbtNd30hvayRwyzEBt58bvhtoR\nFQa8vthmrRtyabVHOMB0Vzwbie43GjYeSqUoOpamMkxTQDA1UuD6Rh/XFqSZ3Gq4HR5bBtBPQKBh\nFOVB1UdKhUJtNcblSmEbgrGyuyWq1yiYTI141LZBIN7td7VXu9s476T1ZAmxlQnqxxm9OMOIMpp+\nQj/SXPuZlHRSSYeUVOZYhuDZwzVWBs3CcaZhB1ppOWejH3N2rsncep84k1QLFqmUgCRLb3Uu7EHD\ntDGozlmmScHSu1jJsVjshJQck1xJ1vsxExWPy2s9wiTnRiugF9uMl91bePqPNEr85Eb7rljeD+zx\nsAuLmtL5UVR+AD7/9CT/8GuXWetGTFS9R3LPvdidEhP7cY6rrs33NjaIcslyJ+RgvciBaoFj42U8\nxyRKJZZlcKBWwLPMLX2WJ6eqSKUhzoaAjV6MbWZMVT0+eWKMn39igpcurdEJEr76+hJLrRDPMTh9\nYITzix1a/QSpJAKLkmOSSoUaQCBkLvGlRCmlaewlHBvXScI4k1Q8i2sbfbqhpr4HXR0qDnqaQDFW\ncmiHKRXXQindCJ2kipVepEVPS1qtvTQIgDpBSpbnJLmiFSgNlS3YzI6WOD8ImgqOQa1k0yhr8gWJ\nelcc4r1k3e90zfb9fjf2wHvBJ+923509PGfnmnz3yjqXV3sopXj52gaNskOWQaWgYYMXl7ukfsKl\nlR4jBYuFVkgY5xgGjHgWb670yKQkV4qCo7PvjmXQi3R1INkGDMhy6AcZ0QBhoP0Aj1xJPNskT3I8\n2yDN9fs9Xi+gBHz8aJ1fPKX7us5e32Sy4rHSjfnYkQYH6oVbzrtHfR68kz6q4XV32w/utIfs5hds\nH0uSyl37fHbazn7DoX+0/b4fOzLK9U0fSwhMEyqeTob7kcRAkErJph/z7Tc3OD1dxU8yfrLQomCb\neJaBgEEfEEiloW/5HWhg3UGyNJNgmZBk6CqSVAh0q0XVsyh5FvGAZGFqxOPZgzXiTO4qavo42b56\nfoDfBH4LWAX+M+BPgTPAl4CjD2OA8N5xjrfbvQ7VQ6NFfvsTR5lv+pyda94iBHm3bOT2LOTNZnAL\nzWWmtBbLQjOkH+Xc2GyhlMKxTRxbIoSGndVLeiO2hGC1G+Mn2qFG6s9o+gmWaTBTL9APM9phiiKn\nG+nFuJ37HaCfSuwBfnT4byHg+HiZJw9UKTs2QZrTKDuMllyCRJMuvBczQ3ey7e/72kafP3rlBrnU\n7+jMoRoLzYBrmzpzGiY5UkrSgQOT528/yyCRnJ1vUnRNlNKZO8swSKUkk7DSDfmDl+f1hpdkGELQ\nCTP6kT4EBTBSsDCFIMlzDZ1QOvA5Olbibzw/SzdMudHyERh899oGB2sF8lxxZLTIx4+NMbfZJ5eK\n+oByc7zi8cUzM7ccavfC8n5gj4e9vtjh6FiJivdo9s/PPTnBP/zaZb55aY2/8cLhR3LPe9ndnKL9\nOMfXNnwsy+DzJ8dZ7UW8MHBEdkJehgrtrw80Nv7m84fJlGK5HfJHr9ygVrDpxwkfPzbKXzk5zky9\nyG9/4gj/6twC5YLDSMHGjzK+/dY619YDcqXoR5pmWKGrSN5AhV0qRZhoyFvZNakUTE5Pj7DQClAC\nmpsJK50IeyCIGsuc6ZqHQnBqusqNzYDlrk+c5DRKmrUul1rsWgOlIUolBcegF0HJNghNgyNjpYH4\npaJWdHh9QKoxTPp84fSBrf0C2Hfy8kHZXir2e7lmv7Dne1UEtjN7PX2gSitIeGOlS9PXlZcoVXSD\njHrJoeknNHu6r9M0DawIagWbRslhPvTJM0gyDVkrOiZV18Y0BcpWxJmklSUMOZIsAanSqIxMSrJc\ngaG2zhahIJc5tmlQ9mwmKi6uKaiVPIqOwe986gSHRot0gpTrmz6Z0kLtD5q2+n5sP325d9oT7vSe\n9xtYbU+YvDS3SjfKbkH27Ga79Rtuv297wKAYpjlJliOEpqx2DINGo0ic6p5DzzLpRAln55pgKGSu\n2SOjQSnHtQSmgFQqbEND411TEKdK93rnGspoWRauZeDZBgXX5saGT62ofbnjYyUyqTg6VubkRIW/\neHOdta4msnp+tsG5hfZj38qwH9jb94F/Dvz7SqmFbT//oRDiHz/YYb33ba84zw8Xa7dpI9wty7TT\nyf7yuUXqpbcFUdtByhsrXQSQSS1iGiQ5JceiYBuMV7Qm0IXFDuWCxWTVoR269MOUQOYUbIOmn2Jb\n8NZqj5JjEaQZMtcbpyF0OXQneCGV4JgC14KSazM7VuJ3PnWMczfbXFnrIwdMcYfqJgfrhTtyvr9X\nbfv7bgcp19b72JbBzVbAaEnrMkipmfFKrkU/TpFSOzKOCQiNn86kxMTkZlOzO0mpcGyDNNeZFSkV\nK50QIQRxkiEMA8vQkDbL0JlfxxJMVnWD8fUNrSvSKDnkuSBXikwpzi91yXJdmZuouEzXCtSKDqu9\niGSQMR4tO4xXnF17eobB++MOV/xpt/OLXT5y+OHTvQ7tyakKM7UC33iMgp87OUXDjOrQYb+Xczy/\n6VO9rtnfho3Iu1H3doJ0QCSi6zPVQYNzL0wJ44y31nziLOcrry4RZTlxKjk6ViJOJbahEyJC6GrD\nph/pfUDpSu2xsSKbfkaaSzb6MZZpYCtFybGolVyemakRZpl2eoOUXpjgJ5KyK+ilKQrB9Q0fz7GQ\ngyqBZwpidKU+yjJGCg5RqpipezimwfiIy5FGmYXmBqlUWqixGzFWcqkXHE2v3wn5t+eXKToWXzwz\ns4VIGD6/d3N/2Mv973XN/fQm3Okzh/MxyyT/7vwy37myTj/MGK+4dMIMP8pwbZ3wklIONFW0TpMf\nZfhhxoYfo6RuSgfIpXZmpcwYK1tMVT0W2iGmIYhiXXE0hM7g5xlgaEIjA5DKwLM0YVG95BAkGUdG\nixyfqPIrz05zqF7cQppsFyN93MTI9xOg3mlPuNP32i/h0XAsc5t90kxSdq17Ur3vdu+5DQ0xL3kW\nc2t9bjR9pkYKbPopRdtkulZgvRPps9w0iHxdJZaSgQi6hrOJwT+GgDhTW/5bOki8FmyBMBSuZWIY\nipJrUfFsPv2hMTIpWe0khHHOTM1jrRdzsFFko59Q8Sy+fnEFNWAwTjNJJtVjNzd2sz0FP0IIE/jX\nSqn/brffK6X+wQMd1fvAduvbuRM71vZNshOk9KKUeMAasl0LBvSETga/iwZRftW1ubbhc7MVcHy8\nxE/mW1iWYK0XM1726IQ+aS7Z7GfcbAYUXZPLK11+ZrbOfDOkFaTYliAJc93Ai95MMwl5uE0c8/be\nuFsskZqlxBKCMNHUr65tsNmPWRrAq4wDFV58cpJMqdv0bd7Ltv19L7dCbrYCDAX9MOP71zZRUuHZ\nFq0gRZFhInAdgUCzPA2rP2GqSLMEUMS5zgwmmdyCEoYZxFlGwRb46bADSwc+mdRBUC51ltkSmno0\nSDN6mymeLfjyjxc4MlbiyGiZOMu3+PhrRYdPHhvlpUtr1AoOpiHuWap/t52aD+zu1vITFtshv/WJ\n2Ud2TyEEn3tygn/xowW9P9nmI7v3nWw3p2g/mdxhkDQ7WmJ2tHTbob4zq//aYpt+kjFe9vCTTFdI\nmgwEBx0sI6BccvDTnL+4vM7Npg8I6iWbsZLLZNVDoFjp6ExqO0yQmaIVJFqRXQgsQxAmGcIQOIZB\nydVZ+oJtgDLohKlOoGQSYUCSZZimybGxAn6sHep2mNIJU9JckuaatKHs2hiGwBC6ahCkOe0go91P\naYXpAEKdEaY5Y8AzB0ewDINeL6XpJ1xb91npBEzXtHr9fmQB3i2xw73afva73b7Lzc2AC8sdDAQ3\n1gO+en55oA0Ftmmy2NHz0zYNGgWHm22fxWZIKqUWspWaiEACWfb2vYb9OAqIcljuRnSiFDFIhiWZ\nhEHwYw6Eo6TUWPaCa5BLretnmdCLU0q2xTMzNU5MVrboqXcjLnjc9v/9BGR3C5R2+15DNrZhNXev\nlb8LSx3eXOnz6kIby2DfVO9hnPHy9U2kgrafkA9EZuM0pxem9BNNJW8IvfcaA9FSqcQtfTzb+722\nM78O/92L9ZX9WLcymEZGkGR8/1pT0+M7AkPouTVW0hD+JJP0o4yVXoRAUPFsulEK4vGbG7vZnoIf\npVQuhPjkwx7M+822Q9X2ctBuv04Ax8fKvLHc5dWFNq/MNbcorsM0Z6Ze4KOH6nzv2ibfuKTpEd9a\n7TI76B3yMpORgs0LR+oYArpRiimgHWZEac7VjT6mIfil0wf46vllVjqaZWboZGd3UPkVQMGGKL29\nQS7P9c+6cUo7Svn9787x3JE6BVvz0x8bK+FYJi9dWtuqVj2uuj73Y8P33Sg6nLxZ4btvrROkGWYu\nSHNFmOqm0zxXJArU4GEb6OBl2GCYK2iFKUVHP5dsR8Ap0UESgIl+R2qQ3skUtHwtlFgr2BwdLdEL\nU4I0Z8SzafkpEp8wyQYHhMNHDtfpximbgRbavRsl5wf23rEh2cEzj4DsYLv9/FMT/PMfzPP9a5v8\n3BMTj/Teu9mdMqp7yeTutnffqXl3eO1GL+abl1ZplLQO12o3Yq0XDyCpDoYBUZqz3glJlCLN9L6a\nZJKiY7HZj5mpeTSDFNfUOP2iY6CAomsRxjlS6SqyqRQVz+LvfOYoExWPb11e443lHmu9GNc2UUpT\n0yYKrDxnsR0xVnaJcomLZn0TSuFaMF7RivJaQ8yhGaT0/RQJpJ2csmMSZxLTgIprYxkGcZozWnNZ\n7oRs9DSEOkgyVroxf/3ZmTv2se7lOb9X957dvks3TPlvv3KB+aaPELoxvRdrcqI4B8NQWtDS1jpq\nBvDWep8w0zALQ6g7ClDuzEeqARGGQCfDDENr+GUSZK4/Z+gAG4aBQCEswceONnhztc/p6RFqJZdP\nnxjfd8/Mu217dbrvp3K1vZq717EcqGlZj5Jn4UcZrSC5Y5V5t77hly6tISU0/YRqwaLgmDSKmhgh\nTDK6cUqaKioFk06YY5vgFmySNNt1rghu9+m221YrQ6SRJotNn1xpUXrHErqPsGBzda2PUppBruJZ\nzI4WqRbsR0Yx/iBsP7C3c0KIP0X39/jDHyql/uUDH9X7zPZaMt15XTdKWe9HjJY8Nn3N1DFWcrmw\n2CGTkqaf8PSBKv04pezanLvZxrNMDtaLzNQ83lju0g4Typ5JO9QUpbkCmYGUOaudiLfWe0xWC6z1\ntbbE/KZ/m7O93QwY9KJAvGMVDRdbkilsU9AKEoJE6kDHgH6ckmQujaLx2Ov67Md2OwSmRzw822Si\nWqBRsvFsEz/JMNHvuWgYRLkkl/p5DrMyw2eYZtCX6Ra95E7bntEZmmXqjKBtgiEMcjTTXrXoEHdD\n+mlG3TaZqRXoBBmTIy5HB8HykMhgv7Tjj+MB+IFpe/0Rkx0M7ePHRinYJt94Y/WxCH7gdqdorxCZ\n/cBdhteOVlxGSy5iAC26sNThYL2EaxmYAp470iBOcwwBK92IfNAsnEm9b3qOiT8IcFphgkAghKGF\nowdNy3kuKbgWx0ZLVAoWvSjj5blFLix1td6X1H0D3fDtPcQ0dPa/4lgE/YhummOgKHsOYZoj0U5X\nlinW+7oiFGU5tmHiZymNkkPB0oKKYZJRtA0qrs3TB6oUXZP5jQDbyhgp2HRDTaM8WXX3tI+8m2KH\nD9p2+y6XV7pcWe0T5ZoaveRa2KYgl4I8V6RZjuXYKCVo+jGWYZBk2ZZUgbzDOSDQ/Rkye1t/dHip\nZHBeA1GmEAPyGxMoexaCjImyy0y9wHJHV4uqnsWnToyRKnlXZr73Q7C6n+pEM0hwbIPTo7V9zc9G\n0aHs6T4ewxBblOa7PbOd8+Z608ezDKqexUonwrEMTk5UsA3BQitEINjoxwgGfX8Cyq5NLjXbmiN0\nknW73c23Az3PthNbJVKS5xBlOUGiqHg2tmngWNqPSKVidrTEi09NAm/rob0XbD8j9YBN4HPbfqaA\nD4Kfe9heD9rt1yWp5Pxih+9d3UQpGC052KbBZdlj04/5zEmNUy+7FhMVj36UYRmA0FTT85sB3TAD\nIlzL4JmZEYSCZhiT5Iok1Qfrty6v85sfm+Wt9R7tIMGzDcJU3rIItptCQ+JqJYtWP7ultCoA1wIl\noGCbtIOEH1zbxLMMKgWbU2NV6iUHw3h3RK3u17Y7+HBr8+5u2Zo/eXWRl+c2WWlH9GKt6TM14rHU\nCllqhzoDZ+hnjALThImyi1KKtV5CNnimjgEig2SXMVlAtWBhGoJ+nBJn+r0YDNhZDIWSik4Y48cZ\ntmVqlr8DI4RZztHxEocaBT5+bJSKZ7+tcbIP2vH3wwH4frbzSx0O1nUv16M0zzb51IfG+OYba6i/\nrg/ix832mvndTx/B8Np+lGEYOvEwWrfZ7Mds+jEV12K2XmRto0+utABoo+SS5Zo+u2ibFGyTfpgR\nmtCPUg1DVlpTzbENokyS5ArPNMlVjucYNP2Eb7yxxtxGnyjTzrVtWbocvG0Tj3MG+i8pSir8WFei\nGyWbVFp85sQ4V9b7OJbB9U2f01NVzl5val0XafLMzAivL3U52CjgRzknp8r0k4yXLq1y5mCN3/nU\nUV66tIZnGXuCzd7vc37czRLiVq22MGWxGbLW0+9ZKbV1jppCUPY09CyTEnJJkOSMlg0GaLW7Ic0R\nA5XqVLx9YA8TaQZQsk3tExiCgmMSJBLXFMzUi3i2wZNTVSarHnEumR7xWO5EpEred8/M+9Xud35u\n32d2itfPN98Wtt1OtnBtvU87SJmseBiGYLpW4NJqD6W0Xzdd8wiznN6grWC06NCJUqRSRGlGLjXz\n450CHRNdDVQDLaehDQPloUk0msc0YbZRBAQHRjxGyxq188RUhTjLKToW55c6XFzq8PSBEc4vdd4T\nvsB+qK7/44c5kPez7fWgvWWhhCnfvLzKExMVokxSci1GCjZjZZcfzTdZ7UVMVLxbcOhDhp3l2QZf\nv7BCo+QQpZJenHHmcJ1ulNJfyshljmEoLEPQDVO+emGFv/dXTvDlnyyy1os0/XaqaPmR7vsZrAgD\nGKs6rHUTmoEWvhq6NQJdcah4NuMlh3LBZq0XM1Mr0I00g82HJrX42bMHa7c43I+jDQMeS4gtdr2h\n6Jy7LXOz8xC4sNzhJzeaRImkUrB4cqrKc0frfGiiwj/68yusdiM8xyRNM4qOqbOthkGj7DJd9Xh9\nscNyN9bU49ntmr4WgAEjns3xiRIH60XOLXRY7USDTKJitu7x7OEGjqmdpXrJBbR46Wc+NM4PbzRR\nSrM41QvOLXju/WbDfpoOwPeaXVjscHr60ULehvbzT07wZxdXubTS46kDj7bytFfbayP8XuEx26/9\n1ImxrUDg5GSFpw9UdVZUQOXqpnZqqh7HJsps9mNutAJmRgqcnW9yuFbgzdUeaT7ovxx4szXPxbMN\nagWD8aqmnz89XSOXkhvNAIUgTIaMTmqrmXloFcdgYqRAJ8nJlW5uLlgC0zJ48eQEnzw+xuYrNxAK\noiRnvZfQKLpUCjbtIOGt1f5AqLXAWi+iXnI4c6jOtQ2f5480eHpmhJl68b4qwY9jA/392JCN1bNM\nVjoRAvjqgNTAc0wc00AiGfFsLNMgzjS19DAgQqqBuKxEKEXJ0f+905H1TFBCM/5ZhiDLMq3jprRj\nWy/aBElOnOc0ii4lz2J0oM3z7314mkbZ4dSBEaoFm/lNLZQ9hCu9056Z96O9k/m5vf3h/GJHa/MF\nKe1gndqOvrhPnxjn9783x1trPa5u9HlmZoRnD9Yo2CZF1+LqWh8/yTlUK6BySSoVM/UCC82Qgm2w\n2AmpFRwyKenGWhi9G94KgcvREhiOZxAMen2KrkHJsejF+YA2X4FSTNeL9OKUKM2YGilyYqIMQvBr\nHz2sRZTDlFcX2xhoWGVpUOV6L/gC+6G6Pgn8HjCplDothPgw8CtKqf/+oY3ufWT7waIOF0rFtYly\nHyFgpl6gYJu4tsFzRxq8cLTB7Dal6Z2QjovLXV5baJNKSdE2kFJxeqbGwVqJNM/52sUVglhTWnaD\nhE6U8NEjdb5xcZW5XgxK6/UMK9/DDFQ8EMVyDAFSYRp6A06komSb1EsuHz8xxsePjfKlH95kpRsh\npaLq2VviZ7N7UMh+N217RaPlp3i2wbGxMueX2iglODI6suXs7zwEqp6NY5ogctJMcWi0yOeemORm\nK6AXp6RS8f+z9+ZRcl3nYefvrbVXdVfvaDS6GwsBAiAEESRFSYQpSookioplZSTbsj322CMpXuJR\nMj6yJ4k94zOekzO2J05y7EwS+UzsKLalRKttKZYiipREigtAkAAIggAJoBvovau7uvZ69bY7f7yu\nYnWj97W6+/3OwUEv1a++ust373fvt1gVz51Bkr10b21RnXhQJVexKdtOLXmBrnoBq0FFQtMUDMNG\nny1q190c5kxfkmMdcUazZXJl00tPqis8dLCN/vYIpuVSni2gKoC2mJeStCcZnk1TLfPMjdSyBfsW\nY68tgDuJnGExOF3i42f2b8v7P3bMc3d7+vpkwxo/K2U1BwL1r13IEMiWLM4NpLk8nEEA+22X/+H+\nHv771XGeu5miVHGQJZl7OhJM5StYjkXZEuiKjCILklGNQsUhXTTpaQ7zD97ezfeuT/LczWnKpjVb\nz0tCCChZLqrsZQRTJIgENWSgKagxki0jI9HVHKIprPGug62c2Jfg1P4m7qRLHG6Pcag9yqvDWbKG\nSXNYJ6DIHE5GmSqahHWViVyFiZxBRzxAb0tk1W21nnZuVKoHQh3xIC8OTFGxIF8xKVUcdFUmrCnE\nQgHiQQ3DchHYJIIqYV1BIEhGAp7rIqCqMs0hnbzpUDYtTPutzF2eZ4BX6NawnJo7m5AgpCoENBVF\n9pKVn+5p4kBrmM54kLxh4yBmY0i8tr4ymsURgisj2WULUlbZLcbqaljP+Kwepp7e3zQbxyN4YyLP\n+491zImLmymbDE4VMUyXimVSqFjsaw4xnClzeThDsWJzZ9qLw0kXvcL1FavoFaot2Dgu5AyvsLAm\nyzRHdISAvOHtAWQJz101qGHYLk0hBU2TebA3yfvv7eCPn36TbNnEcSCkKwRUheaITm8yTHssyPF9\n3t4nFFDpb414Bt1olkLF8zwqGjbRFSSEaARW4/b2p8DngP8AIIS4LEnSXwG+8bMJJMJecdcH+5Mg\nqC0uKz2B/MSZHh7qS4LkVQ62haBcsWunkaYjePHWNAKBYTucG0xzpC1GPKR66Q4BSbIxHYFwIBLw\nfM27m8JEdZOS5aApAl2V6YwHCekKh9tiNEV0PvngAXpawtzbGee1sSzxoEZPc3hO3YfFMt81AvU3\nGuWKUyvwGQt4BcXqN/vVReD2tJeSslCxaYnqhHSVppDGR+7r4pkbKSbzBhFd4UAyTLZsUTBs4iGd\nsmmjKRIBTeHtPc1YtsNY1iBVqKArCsm4zr2dcZoi3mmO60J/a9gzniQvucQjh9s43BbFdj0j+Sfe\n1j2nretP9hJhLwVtc0Rf943NXlwAdwqvjXjJDk5ucbKDKl4h5ThPX5vkV99zeFtk2G4W2iwlwhoP\n9ScpVCz6W6LkKha2EDzYlyRVqNASNSmZDgeSYT58ah8v3ppmOFMmGtDoTgb57HuPetkccwZd8SDd\nzWEevaeNgakCYV1mNGOgyjIugnhII1M0KVsuh1vD7EuGyJYdOmMBNNWrEbKvyStEGw2qtXXjtZEs\nf/HibSbzFTRVoiUSYH9TCMNxebi/hTszZQ62RhicLtIc0Xm4v8Wf+7PUpzjWFYWAKjFdrBAJauxr\nCtMeC/CTD/RwZTRLqmAgSzIfua8Le7YQT8GwyRuDXryV5dCd8IqItndGuTZeACAWVDFtl6awRtl0\niIdU0gUTR0DZcjjSEaMjrqMrXlxR0XQIza4vl0Yyteywt6eLxELamm/vd4OxuhXMPUw1CaoKvUnv\n0HJgukB7LPiWsSBAV2UkyetLWZJrN3LV2G4hIJWvMJE1CGherS9JUgjrEp3xICB49+F27u2KEdIU\nNEXmi+duc3HIOwwPqgrtiQAFw+Ge9hiG4/DTDx3gXYdbOdwe5fxgmq6mEImgxrdfG6cprBENqLW9\nT30G4vo9wOMnupYsGdBorMb4CQshzs3z37YXe7HP+qilV513S7IaxXQq/FZ9j2zJ4ls3pwhqMobl\n8A9/7CCxgMqzN6eIh1SKFYc70yUqliCoetfxAVUlosNMycJFIqYrfPrsQboSIf760gjMVpJ+370d\nc4ybqow9LeFaQbT6mJmtjBNZS0B+/Y1GNKjy+OHlC/adG0zz0mCaO+kSruvVAelvi5ApWUzkKnTG\ng8RDOpqiEA+aDGfKqLJESFe5pyPOPZ0xdEWmPe65Mr4xWaC3JcSxzgQfnTVmqi54BcPGsF3ef6yd\nUF2B0cU+Z/04mP/51ntj4y+Ajclro9VkB9tj/AA8drSd//f7N8iUzC2PO2pkepMR2mPBOYWtk2Gd\nA8kwybCOYbu1WjkP9E3xw+spEhGNkKrQnvA2SoPpIjenC1wdz3EgGSZXtrFdaArrHO2I0RELMpwp\nkQnrIAne2d9KJKBSthwsR9CRCHJ9PE/FcQipKs2z6b/TJZNoSOX0gSYiusrITInMbDr8tliAh/pb\nqDgpJnIGA1MFQrqyrtvj3UbtMCxdJBrQSBdMZkom93Z6B4MfO72feEgjFPBiu6JBle7m8JybwZPd\nCV6+M8PB1gjNEQ1Z9tbstliAsC7T3xqjZNp02mDpAAAgAElEQVQ81JfkmZtT9DWHGc6UkYAbqQKx\noIrrwsHOSM31uTqezg2m+d7ABAKID6p84Hinf3u/ycw5TDUdDMslV7E4tb/pLg+e3pYIJ7sTjMyU\nCesKn3zwAImwRi+RWmx3PKSSjGiM5Qx0RfKK1bou+bJNpmTRGgvwvmPtvONQS02Gezpi/NlzA2RK\nFcK6ypneJFdGsmiKTGssUFsnjncnOF53YHasK15z/58pmRQMm9fHvQzE1ZvCnboHWI3xMyVJ0iFm\n3YglSfo4MLYpUu1RFooz2SgDoToBD7ZGa9eWH76vi9FcmWQkQGG2LoDtej7IHYkAR9pjHGmPceH2\nDNGASkc8yNsONNPfGqlNiuWMivlB8Se7E1sWJ7LWgPyq7+38wm6LGVJeMKONNhvoq8iQiHhV2p+9\nOcXQTInr4zm6m7wEA9GAyo9uTjFdMAlrCr/47n7P9zpdxJytudHfFuXH7mm7y/g9S9usy5rCxeHM\nnM+0GsPYv7HZ3VwZydIZD9IWC2ybDI8da+dPnr7BD95I8dHT3dsmR6Ox2Pyb/7NsyTM6MmWL3Kxb\nSblic3nGK1zcEQvyvYEJhmaKaLLEB453UqzYfPi+LnpbIrUb3+rNf/0hSd6wiIc0IrpK0bSZKZu1\nNadieQHvxYrNaLZMf1sUCfjA8U56WsI8EdrH5ZEMSNTWk6VShe8lPVN/aNkc0vni+Tsc7YgR1NWa\n4fOtV0cpVOwFA8QTYc1LZuS69LdEmcgZ6EqR0axBX2uE7uYQRztiDM+U0TSZRw61cm9XnJfvzJAq\neAkV3nmwFVcIHj7UUst+UC20u9Cto78WbC71iQzmH1ou1N4hTSER1pDr7hnm3LCc7GKmbJII64xn\nDWQZYgGVkXSZkaxBa1TnxcFpjnXFa8+3haC/LUJXvJVbqQJDMyU6EkEMy+GDxzuXjEMH7goD2A1x\nvqsxfn4N+DxwTJKkEWAA+LlNkWoPstDV6MG2pReWpZ41X5nNzySXL1v0JMO861ArecMmb6jcni4S\nCqhQNLm/J0ki4i28+my16XBAmXPdWV2gl3Jhmx8Uj2DLTprWGpBfDVp1hGAoXeKJ0D5g8RsrVZKw\nHJdSxaZs2ZgW5EoWPc1hmsIaPc0tPPn6OLoqM5Qu8WBfkidOdjFdMucYV7GS16a1OjvBu09UbCGW\ndVlbyYZjp57W+KyMK6M5TnZvb6zN6Z4mkhGd71/3jZ/5LOYSV38D8K1XR5nMG7hCcKwjzkyxwldf\nHkZTZe5Ml+hJhhFAb3OE4XSJomlzoCVcy7A2/8a3/n2qwdeOEMiSxGjGq9PTEgvMxocmGMl4hs+J\nLs/Pv5r6OBHWONXdtGxa/N2eDXK+np3/efuSEYZnSsSCGsMzJWZKpncQNpGjNRJYNEC8/mYwGlT5\nuXf08uS1CYKaUosrPd7luSJVkx0lpgr0NIdJFyfIV2w64gGaQ3ptHaue0i9067gRa8FeM3JXQ/Uw\ndbFDy3qqe5ZixWGmZPL1iyP8wjv7ALxiyQKawzoI75bXS23tUjYdXElCV96K86kfU/X7P2M2yUb1\n4GKmbGJPLe6utlgYwE6/KVxNtrdbwPslSYoAshAiv3li7T0WuhpdywBbbMGpv44/N5Dm0kgGRZL4\n4PFObCG4MZHnpcH0rCwVXhvPEguonOpu4v3HOnh9PEfJdLg0nOHcQJqH+pNzlOtii9v8U4/msL5l\nJ01rde+q74tbUwUuj2RIBDUKhk0kqFIw7JpiqRpKTSGNrkSIvGEhSxJIgkePtHFzqsBE3iAS0OhN\nhnnu1jST+QoTuTLHuxI14yoR1lYk73Kv2e0bDp/lKVZsbqYKPHHf6qqJbzSKLPHoPW18//okzmxy\nFJ+VUdVB/S1RXh/Lc/HODJbzVm03IQT3dMTQFIkf3UwhISHPptqv6qWldGx9rOL5wTTXJ/I8dW2C\nzngIRZaoOC4BRWYgVSCkKUQDc4OYV3J7vJuzQdbrWdNyebAvCYAjRC2mJqAqtWx7Aq+m0zdeGWFo\npoQjBN2J0IIB4gu1bXdzmNvpIj98I8WXzt9BAKf3N9HbEqmtCbmKxen9TbUU4wu1f39rZMPX3724\n5qzW2FvJoSV467theYZPc1gjqMq1OXpxOINlu8iSxIFkmJFsmXcdbOH5W9PsawrS1xzCcR0cFwam\nCqjzSgyc3Jeo3QQ/cyNVOwg/N5Cek8F2sT3cQmEAO7mfV5Pt7V8AfyCEyMx+3wz8hhDitzdLuL3E\nnAEWUHn8RNuaBthSC04irBEraQTqri1tIehvjZA3vKwiFdvFsF3uP9BMUFVgVqmGdYWgqhAPaHxv\nYIJCxUKW5FomtMUm9PxTj2dupFacUWa9rNW9q2awTRW4OpoFARXH5fXRHLIsocrw+ElvY1lzJ2yL\nMpopEw5onNyXYHC6iOm6df7fXnpyCa9a8kimfNep30rkXe41u3nD4bMyroxkEQJO7d++eJ8q7zna\nxtdfGeHiUIYzvc3bLc6OoX5De6gtiusKwgGV714dx3BcVFWmKxHkZqqAKyTaYgGaQhq2ECvejFbX\nA12TadUCdMRDHO+OUzZtbEdwb2cUgHu74pzqblrypmqpz7AbTonnU9Wz8YDGkwMT5AybeNCLqTo/\nkPaytSkSRzti2K7LwdYIrusVuny4v4UbqQIfOtHJ/X3JBfX4/Lat9pXleIUmAfKzWcKWMmgWav+N\nvvXfa2vOWoy9lc6FRFjjY6f38/WLIwRVmWjQS4+fr3gusDnDS5bUGgswmi3z+ngeAdzbmeDWVJFI\nyEsuVTTt2k3tQvLWl1S5NJJZsu92q5v8atzeHhdC/LPqN0KIGUmSPgz4xs8GsFEDbLlJttjve5MR\nHuz1Mg6FZlNsRoMqZw+3zQm2vzVVREDNH3klV6ArPfXYDNai6Kt9cXkkAwIOtkV5dSTLgZYQPc2R\nOYqlvj1bYwEm8waD00VUGfqSb7mf9CYjNSPIFWLRtJArkXep1+zmDYfPynh1xEt2cGr/wm5PW8mj\n97QhS/D965O+8bMK6teDWqKTik1Pc4juRIi2WIBoQKUprLG/OcxMycSwXZJhfVWb0Vph1opNWJcJ\nqQpR/a3MTtGguqDhs9rPsJs2TTA3q5sEHGyNkKtYdDeHavE6uYrF27qbiIW8W/1c2eLbr40xljNI\nhFQe6m+ZU2NtJe8ZC6oMTBUQs++5lEGzVe2/19actRh7q+mLnpYwv/DOvjlJomIBjZupIpbtEtIU\nXFdwan8TxzvjvD6eI1exiAVV4qi4iDk3tYvdANbcX0ezKzLKdtP8hdUZP4okSQEhRAVAkqQQsH3R\ntLuQjRhg8xfNdMms/Xz+7+snYSLspdau/t1Ct05PhPbx2mgWy3GZyBkrvgLdicpxvl/7Yoplfnvf\n39PMWNagqylYq6NQe96sEbSZaSF384bDZ2VcGs6yL7G9yQ6qNIV1zvQ289S1SX7jA0e3W5xtYy0x\nEfXrwROh2eKph1prsYLxkMaV0Sw9yRBtMZ2Pne6uvX6l+rZeX9TrJFhZWYXVfIbNZKtjTurdyKOB\ndC2G5kRXgnTRrH1fjb+q8pMPHCBXtjixL7Eqw6f6nvUlLFZSL28r2n+vrTlr3c+spi/mv7a+7Elz\neG4Ck2hIXbIcylLyrqTvdms812qMn78EvidJ0p/Nfv+LwH/aeJF81kt1gC52NbvYJFxucubKFi/d\nnvEqUNsOjx/uWpEC3wnKcaEJPl9uWHhDUN/eBcPm6liW47Oub/OvxLdqMWrENvbZGi4PZxri1qfK\nY8fa+YNvX58tiBncbnG2nI2IiajpmJtTbyViqXNfma+36rNVrnWDvFN0yHbEnNRndaseaFX7oGqo\n1vfJfBnrD8ZWQ/UQrdHYS2vOduxnFur3+WOqamgvdwMIc+ssLtV3uzmeS17pC4UQv49X0PTe2X+/\nJ4T4g80SzOctqhnVsiVrxX9Tf9VZjStZrwxfvzjMGxN5pgoVgqpSc/1aiZyJsFa7at0uFpOvOsGf\nvZHiW6+Ozvl9vdxLfYZqe0eCqpfFR1fX1e5r6XMfn2zJ4vZ0iVM92x/vU+Wxo+0APH1tcpsl2R7W\no4vr9cBCz1lIJ1WTsAxOF3nmRmpBfbebdMt617rVtsf89QKY0wcL9clCMu62fthLNMJ+pn5MFSo2\nl0cyc8ZS/fiqygssutdZ7j02Yh/ZSKzm5gfgFUDDS17yysaL4zOftVreG+1qli6ZBDWF5rDOTMmk\nLebOeWajnxAsJd9GBGzWfOcNrx5H0bTvypC0EbL6+CzF5ZEMAG9roJufY50xuhJBnr4+yU8/dGC7\nxdly1qqL5+uBs4fbVvScpfTZbtQt61nr1tIea1kv5suoStKu6wefrWWhxEzVG2FY2PNntWN3J4Ys\nrJTVZHv7SeAPge8DEvDHkiR9TgjxldW8oSRJfcCLwOuAKYT4wGr+fq+x1o35Rl/NJsM60YC6oH/5\neuTcKpaSbyMm+Bzf+ZPri+dp9Lb0aVwu3J5BkuC+Bsj0VkWSJB471s5fvzJCxXYIqMp2i7SlrFUX\nz9cDKy1IuZQ+2426ZT1r3UYYMitZL+bLuBv7wWdrqY6p+sRM1bEELDi+Vjt2d0LIwlpZzc3PPwce\nFEJMAkiS1AY8CazK+Jnlu0IIv0DqClAliZmiRbni3JUZbDk20g93uUmwVScEaw2+W2/Q30rYqPbe\nzactPpvLi7fSHO+KEw821iL13qPt/NWLdzg/MMMjR1q3W5y72Oyg3rXohoX0wEqes5Q+2626ZTXt\nW9/XG2HIrDWIfTf2w05kJwf0J8KLFxxeLM35asfubo3nWo3xI1cNn1mmWUXM0DwekyTpGeBrQoh/\ntcZn7HqqvttBTcawvAQD2zkIl5oEW3FCsB6XjeXka6QJvptPW3w2j4rt8PKdGX72Hb3bLcpdvOtw\nC7oq89S1yYYzfhrVFWw9emCpJAZ7WbcsVfNkPYbMatnr/dAoNOrcXw2LjaXFxlcj7XW2k9UYP9+W\nJOk7wBdnv/8p4L+t4T3HgHuACvDXkiR9TwhxufpLSZI+A3wG4MCBvecfXk+tgOZsEdH5CQYajc2e\nVOt1FdhJk34nyerTGFwezlKxXR7qT263KHcR1lUePtjC969P8r///ePbLc4cGtkFaTP0wF7WLUvV\nPNlq9nI/NAqNPPdXw0JjyR9fS7OabG+fA/4DcGr23+eFEL+12jcUQlSEEEUhhA18Ezg57/efF0I8\nIIR4oK2tbbWP31XsVheFteK3h4/P4rxwcxqgIY0fgPcebePWVJHBqeJ2izIHX6/sHfy+9qnHHw97\nlxXd/EiSpABPCiEeA762njeUJCkmhMjPfvtu4I/X87zdjH81Phe/PXx8Fufp65Oc2p8gGWnMBfy9\nxzr43b+9ylPXJvmlR/q3W5wavl7ZO/h97VOPPx72Liu6+RFCOIArSdJGpBA6K0nSBUmSngNGhBAv\nbsAzdy2NkE++kfDbw8fnbqYLFV4ZyvDeY+3bLcqiHGgJc7AtwtPXG6/ej69X9g5+X/vU44+Hvclq\nYn4KwKuSJH0XqPktCCH+l9W8oRDiv7G2WCEfHx8fnwV4+noKIeB9xzq2W5Qlee/Rdr7w/G2KFZtI\nYLVl5nx8fHx8fNbParK1fQ34HeCHwEuz/y5shlA+Pj4+Pivnby+Nsi8R5MS++HaLsiTvPdaO6bj8\n6MbUdovi4+Pj47NHWfboTZKkjwL7hRD/dvb7c0AbIIBVJzzw8fHx8dk4JnIGz7yZ4lfecwhZlrZb\nnCV5oC9JNKDy9PVJPnCic7vF8fHx8fHZg6zk5uc3gb+p+14HzgDvAX55E2Ty8fHx8VkhX7kwjCvg\nH9y/f7tFWRZdlXnkcCtPX0shGjx1v4+Pj4/P7mQlxo8uhBiq+/5ZIURaCHEHiGySXD4+Pj4+y2BY\nDn/+3CDvPtzCobbodouzIt57rJ3xnMHrY/nlX+zj4+Pj47PBrMT4aa7/Rgjxj+q+3duFeHx8fHy2\nkS+/NEQqX+FX33N4u0VZMe855i0bT12b2GZJfHx8fHz2Iisxfl6UJOnT838oSdI/BM5tvEg+Pj4+\nPsuRKZn80Xff4KG+JO861LLd4qyY9liQB3qb+drLI77rm4+Pj4/PlrOSXKP/BPiGJEk/A7w8+7Mz\nQAD4ic0SzMfHx8dncf7vv7tGtmzxuz9+Aklq7EQH8/nJB3v4za9c5qXbMzzYl9xucXx8fHx89hDL\n3vwIISaFEO8Cfg8YnP33fwoh3imE8P0WfHx8fLaYb10e40vnh/jMjx3ieIOnt16IJ+7rIhpQ+dK5\noeVf7OPj4+Pjs4GsuM6PEOIpIcQfz/57ajOF8vHx8fFZmJupAv/b1y5zuqeJ3/jAPdstzpqIBFT+\n/tv28c3Lo0wVKtstjo+Pj4/PHmI1RU59fHx8fLaRmaLJ//zn59EVmT/+5NvRlJ2rwj91th/TcfmP\nzw5styg+Pj4+PnuInbty+vj4+OwhTNvll//iAqNZg8///Bl6kuHtFmldHGqL8uGTXXzh+dv+7Y+P\nj4+Pz5bhGz8+Pj4+DY7jCj73lUu8OJDmDz9+ijO9uyNJwD/5e0cwLIff/7tr2y2Kj4+Pj88ewTd+\nfHx8fBoY1xX89jde5a8vjvKbHzrKR093b7dIG8bh9hifOnuQL18Y9uv++Pj4+PhsCb7x4+Pj49Og\nlEybX/url/niuSF+/b2Hd1Qx05Xyj99/hBP74nz2Sxd5fSy33eL4+Pj4+OxyfOPHx8fHp8GwHJe/\nvjjCB//1D/n2a+P89hP38r/+vZ2Z2W05gprCv/+5M0R0lZ/+/As882Zqu0Xy8fHx8dnFrKTIqY+P\nj4/PJjKeNXhxYJpLQ1leHclwZSRH2XI43B7lS59+mHccbNluETeVnmSYL//yO/nFPz/P//j/nePj\nZ/bz2fcd2fFJHXx8fHx8Gg/f+PHx8fHZYqYLFV64lea5m1M8f3OaW1NFAIKazIl9CX7qwR4ePdrG\no0fakGVpm6XdGnqSYb7564/wr777Bn/23CBff2WER+9p4xNn9vPYsXaCmrLdIvr4+Pj47AJ848fH\nx2fHYTkuqiwhSY1vGFRsh4GpItfG8pwfTHNuIM2bkwUAIrrCOw628DPvOMDDB1s41hlD3cG1e9ZL\nUFP4px++l198dz9feH6Qr748zFPXJglpCp86289vfODodovo4+Pj47PD8Y0fHx+fHcfZ33+aVKFC\nSFMI6QqxgEospBEPqsSCKrGARjykEtZVJAkkpNn/qd2kSBII4T1PCIErvO8FwvtfCATez9y6r9/6\nuZj93dy/sV1BumgyXTCZzBvcSZdwZ98nGlA509vMT7y9m3ceauG+7sSOLlS6WXQmgvzmh47xGx84\nyvM3p/nOa+Psbw5tt1g+Pj4+PrsA3/jxWTfZkkW6ZJIM6yTC2naLs6Pw225tfOpsPzMlk7LpUjJt\n8hWbXNkib9iMZsrkDZu8YVO2nHW9jySBLElIs19L9V8jIc//mSShyhLNEZ2WiM6J7gQ//rZ9HO6I\ncaQ9ypH26J6+2VktiizxyJFWHjnSut2i7Gp2uh7a6fL7+Gw1e33O+MaPz7rIliy+9eoojhAoksQT\n9+3bkxNpLfhtt3Y+dfbgil5XvZ2p3dTw1k1OlbkGzlxDxsdnt7PT9dBOl9/HZ6vx54yf6tpnnaRL\nJo4QdMVDOEKQLpnbLdKOwW+7zUeSJGRZQpElVEVGU2R0VSaoKbV/AVVBU2RURUaRvdf7ho/PXmGn\n66GdLr+Pz1bjzxnf+PFZJ8mwjiJJjOXKKJJEMqxvt0g7Br/tfHx8tpudrod2uvw+PluNP2dAEnXu\nH41Ga2ur6Ovr224xfNaA4wqyZQuBF2SeCGko60jZOzg4iD8WGoON7tvV4I+DxmSrx4Q/DnzAHwfr\nZTt1+Ubij4PGoBHG04ULF4QQYtmLnYaO+enr6+Oll17abjF81sDAVJFnb6ToiocYy5V55HAb/a2R\nNT/vgQce8MdCg7DRfbsa/HHQmGz1mPDHgQ/442C9bKcu30j8cdAYNMJ4kiTp5ZW8rqGNH5+di3+t\nunvx+9ZnPv6Y2BoMy+FL5+7w7dfGGc8aJEIap/Y38b572zl7pG1Hntr7bB/+vPXZSHbSePKNH59N\nIRHWeOK+fXs6leJuxe9bn/n4Y2LzGZwq8ukvvMSbkwXu7YpzsjtBumjy1ZeH+c8v3KYjHuDn39nH\nzz3cSyLkt7/P8vjz1mcj2UnjyTd+fFbEWnLCV19XzSTSyBNhJ7Md+foTYW3d77XX6wxsB5vZ5guN\nCb+PN4axbJmf+dMXKFsOf/6LD/Keo+2131Vsh6den+Svzt3hD79znX///Zv8wrv6+JX3HCIS8Jf4\nRmG9c2Gz5tJG6HKfvcFKxuBWjqf1zAlfM/osy1pzwvu55DefndrGO1XuncxWt7nfxxuD4wo++8WL\nZMsW//WX38mJfYk5vw+oCo/f18Xj93VxZSTLv/v+Tf7k6Rt85cIw/8ffP87j93Vtk+Q+VdY7F/y5\n5LPdNNoYXK88fqprn2VZa054P5f85rNT23inyr2T2eo29/t4Y/izHw1wbjDN7/3EybsMn/mc7E7w\nb3/2fr76K++iJarzK3/5Mr/zjStUbGeLpPVZiPXOBX8u+Ww3jTYG1yvPpho/kiTtkyTpZUmSDEmS\n1NmffU6SpGclSfpLSZL8o4sdwFqD2HZS8NtOZae28U6Veyez1W3u9/H6mS5U+DdPvsljR9v42Nu7\nV/x3Z3qb+cavvZtPn+3nP79wm0/9p5comfYmSuqzFOudC/5c8tluGm0MrleezXZ7SwPvA74OIElS\nO/CYEOIRSZJ+C/gJ4MubLIPPOllrENtOCn7bqezUNt6pcu9ktrrN/T5eP3/81A1KlsM/f+JeJGl1\nmdw0ReafP3Gco51xfvMrl/if/uw8X/ilhwhqyiZJ67MY650L/lzy2W4abQyuV55NNX6EEAZg1Cnt\nB4Dvz379JPCz+MbPjmCtQWx+MOXms1PbeKfKvZPZ6jb3+3jtpPIV/urcHT5+/34Ot8fW/JyPn9mP\npkh89ksX+dxXLvNvfuo0sp8Se8tZ71zw55LPdtNoY3A98mx1woMmIDf7dXb2+zlIkvQZ4DMABw4c\n2DrJ9jCbkUVmqWf6GaA2h8Xa1e8Ln7VQPzaAOePEHzebzxeeH8RyXD7z6MF1P+ujp7sZyZT5g29f\n51hnjF977PD6BfTZMSw1lxd6jT+nferJlixuTxcpVGyiAZXelsiOHyNbbfxkgf2zX8eBzPwXCCE+\nD3we4IEHHhDgT8rNZLmMGWtp+6WeudDvYGdsrNYj12Z/pmzJ4isXhshXLGIBjY+f6am15Wr6YqNl\na9S+3A1sZtvWjw3TchFAqWIzUzb50PEubk4Vlhw3fr+vj2LF5gvP3+YDxzs41BbdkGf+yqOHeG00\nxx999w3eeaiF+w80b8hzdyu7YQxXN63nB9M4riBTtgjrComwNmfubsRasBvaq1HYiLbcqEPPbMni\nyxeGuDCYZiRbZl8ixAN9ST4xu8fYqs+z0Wy18XMe+FXgD4D3Ay8s9weNll5vt1GfMWMsVyZdMhfc\nHJuWy4N9yRVZ/OmSSaFiE9FVChV7zjPnv9/tdJErI9la/5493MYzN1IN19/rGYcbPYYXUiS300Uu\nDmeIBzVupoo82J/kVLhpyf5d6ndrkWGzP7fPW2z2ZqU6NuIBjZcn01iWy82pIsWKw7XxPA8fbOFE\nV2LBceP3+/r5m0ujZMsWnz67/lufKpIk8S8+dh8X72T47Jde4e8++2NE/TpAC7KVY3ijNobzn1P9\nDBO5CtfHc8RDGpP5CrIEH31bN7mKVZu761kLqu/tz/mNYaN0+0oPPc8ebsMWYtGbwLxhkTdsNFUm\noChoqkzesFc8Rhp1bGyq5pvN5vZ3wNuA7wD/DPihJEnPAneAf73cM9Y7KX2WZqGMGdVBP5YpM5k3\n6IgFOTecIWfYdMQDyw7ecsXm2RspXBfiQZXHT3Qt+n4I5vTvYLrYkP29nnG42r9d7sSmqkgqlstD\n/Ul6kxEQUPXilwCE93V9e5uWS75skS1ZJMLairOlLLaoLqfM/Lm7eazXcH1tJMuzN6doCmlEg+pd\nfVjVA09dm0QBsmWbQsWb/7IkkSmai46b2+kik3mD/pbonA2Wz8r50vkh7umIcqZ3Y29nEiGNf/PT\np/nEf3ie/+c71/ndHz+xoc/fLWyF7sqWLG6ni5wbSBPQ5FV5XqxEJ1c/w8HWCK+OZJjMV2iPBcgZ\nFreminTEA7W5q0oSM0WTsukQDairzpzl6/qNYyPacqWHnq+NZfmPz92iKx4iGlRrhpAqSXzn6jh5\nw8ZxXUqmQ6liU3EcLNslFlz5GGnUsbHZCQ8svBueel4Efn+lz2i09Hq7jfkZMwC+9eoohYrNxTsZ\nhBC8OpxBUxQOtkbmbGYW8iNWJYlvvjrKVM5EUWQCqsxM2aSH8KLvd2U0W+vfvmSEoXSp4fp7PeNw\nKQNkPssZFvUn8t8bmKBQsWiPBTl7uI1T+5tI5SskQhrNs/JV27u6yF4ayXBlNFt77nLZUpZaVJdT\nZv7c3TzW2rZVF4bnbk6Rylc43BalIx7k9nSRU+G5IZiligMCktEAB5IRXh3JYguXuK7ziTM9hGY3\nSfM3ZecG0txKFbmZKnJ6f5Pf76vk9bEcl4Yy/M5Hjq86w9tKeKAvyc8/3Mt/en6QHz+9z3d/W4DN\n1l1VvTqZN7iVKvK+Yx13HRQsthbU/zxTsjjSHiUe1O7SydXPkKtY3H+gmZJp0zT7s3ovjmzJ4pkb\nKYKqgmG5PH6ibdWbU1/Xbxwb0ZZLPaP6u1tTBV4dzqBIMrYjaI0G+PrFEZojGmMzBremCkSDGm9M\n5DhzoJnelgiPHm3jUGuME91evbGBqeKyN5aNOjYa/s670dLr7UaqGTOyJYvLIxkKhk0koCLLEqf3\nNzNVrCDPKtH626EvXxgila9gOy7NEftcNJUAACAASURBVK9vBlJFhtNlVEUioMneBYRY+r3n9+8T\nocbr75UaCgv9fjkDpJ7FDIvqs1VJmlVcRQTUTtdtIfjg8U6+eP4Oriv471fH+fiZHsA7iR+dKeO6\ndz93uWwpC8mzlDKb3wb+3N0cFjpEWGwhqu+T29NFhtMlYrpKRja5MpZlumAiyxLNYZ2eFu+QIl0y\nCWoy8ZBGtmzRGgvw0MEkecOmLRaguzm84PtcHsnguoL3Hevg1lSRB/uSfr+vkv9yfghdkfkHq6jr\ns1o+96Fj/PerE/zTr77K3/76I+iqX++8ns3WXVW92t8S5WaqyOtjOcIBFbXO2K3XvbdSBS6PZOhL\nRhhMe4HnqiTzt5dGaY8FiQcVjs8WwK3q5IV0xO10EQT0tkQAT2fky5Z3Q9QWZSxXxhZLLNiL4Ov6\njWMj2jIR1jh7uI3BdJG+ZOSu/cjZw228MDDNkfYYhYrDTMm79dMUmfZoABdBxXHRbAchIBkJ8OZk\nnlhIpWLnQIKX78xgOYJYUF0y/qdRx0bDGz/QeOn1dhoruTqHt258ro5l2ZcIUbYcSqbNgWT4Lr/Q\ny0MZXhpMky6aTBdNmsM67zzYwg+vT2K7ULZsuppCnOiM1xRt9T0XOs2aPzkbsb+XkmuxhAP1fxsr\naQQ0eVHDJhnWFzQshqZLfP3iCEFVrl1Nz5RM1Dc9I6h6BX07XWRopkQ8qDGSLdPTHObicIZbqQKW\n42K7AsNyaI0FVnz6spA8iymzlfStz8ZRf2ixEv/uiuViWA7jeYOh6RKyJBFUZGJBlTvpEl+/OMzH\nTu9npmRyM1Xgwu0ZXAG263KkPUrBtHl7z8K3fdX3qeoPgI54YM7c91kew3L42svDfPBkJ82RzTsh\njQZUfu+jJ/nUF17iT5+55Wd/W4DN1F31tzL3dMQomw5BTeaZGymeCHlJgPKGRcVyuZUqcHUsS9l2\n+OqFIQ62Rrk2nmcyXyZvWLTHAjgCDrdH2ZcI1fyfF3KNq8bXnh9MIwB3NgmCAkzlzQXdmVYak+Tr\n+rmsJ5arvi3XmnSqGjs9lC7xRGjumvDMjRQFw2YsW6a/LYquSNxM5ZkuWrw2muXRI20c74ozVajQ\nEQ9SNG0EEA/oPHszxdXRLDcmCxztiFFxXI53xelqCi2atKoRx8aOMH581s5Krs4VSeLkvsSsf3CU\nsumQKZmc2p/AsFxaowGGZkpEZ0+m0iWT8ZzBeM4gU7LIGybZksngVAGA/c1hKAm6m4I0zVvAF0p4\nECtpDXUisBYWSzhQz2LxVfNjeKrGDRKMzJT4ixcHuZkqEguo7E+GOdmd8DaVb6Y8I0iZXe3q4n4s\n2+U7V8cZzpQwKi6264IEN1J5HuhNkiuvfEFbyNBZSJk1qm/vbmepOVXvJvnCyDQCeKg3SbZkki1Z\nTBcrZAybU/sSzBRN/v0PbjCULjGSM3AcF1mSSIY1roxk2dfkPb9iueSNua6b9XE+7IN7u+Kc6m7y\n+3+VfPvKODnD5pMP9mz6e73/eAcfPNHBnzx1g594ezfdTaFNf08fj3q9mjcsLg1nFkwCJAEHWsKU\nbc8FtWy5tMQCHLAcZFlQNByG02XiIZXrY3nOD6TpSAQ5P/CWcWPYLie64lyfyJM3LI51xrkwMYMi\nge0KJvMVDMvm3s4E8eDcLWGjBqs3OhvVbmvNxnt7ushErsLB1ggTOYPLIxlOdTeRK1s8dW2Cweki\nRzviNId0mkIa+5tCTOQr9CQjXJ/wbngyZZvmkE5rNEBnPEjBsHj6jQkyJQt5duwYjotluzx7I0VX\nU6ihk1bNxzd+dghrPUVYbEM650p9qsBotlw7ZcqUTZoiOn3JCH/32hivjmTJlk3aogECqsLRrhgv\n355hKF0kX7YxXQipEpYjSIS9W4dEUOWR2dui6nsOTZe4PpYjW7IAMC13yWDPHcUiCQfqWcgNoepm\n2BEP1mJ4ogENCXBcwdNvTDI6UyJTsnGFYHC6RGs0wP09Nm9O5IkFNd6cyHN7ukhvS4R7OmJM5Su0\nRnXGcgaW5XoGkOWSCKmcL1TQFZWZssnR9hhBXeFjp7tr7k4LsdJTm/X49jZiKsydwvyYsvo5dfZw\nGxXL5dtvjnE7XcJ1BTcnC9iOQ6ZsUTZdMiWDS65gfzLMVL6CpsoUDYuy5WLbLhXLQVdztMUCHEiG\nuZMucWk4w5WRbC1V/fw4n7UaPnt9HHzx3B0OJMM8fLBlS97vdz5ynPf/0Q/4v755lX/3c2e25D19\nPOpvbs8PpLkymiEW0O5KAiQjcXk4gxAwmTW4MZ4nGlCpWALTFWTKFXKGyX9+4TaqAg8fbKEprFOx\nXBwhGM2W+csXBomHNQplmyMdWUK6imE5BDWFoCojhEprLEC+4iVhqB7cbeeB1k7WBcu5r6/0My11\nsAUsmI0X4PxgmltTBa6P55AlCSS4NJTh0lCG2+kS6aLJD4IpgprCaM7gcHuUiuVwcaiI6wq++/ok\nAVWmLeolyLg6lsN2BLYjONQWpWQ6tMZ0uhMhZFmiKazdlbQqHtAYmC7MGU+NhG/87ADWc4rgZXGx\nKFcconVX2vVBb1dHsyAgZ1ikCyZBTeHFW9O8cidNtmSTjOgEFIWK7ZIp2oR0mYlsGUWWCekqluEV\nvspXbLoSIYKawrHOKPasvMmwztWRLP/yyeuosozrCj50sotDrUFuThV2xU1Bb0uEU/ubyBs2/a2R\nRd196he8r1wYIlUwuDFZpC0awLRd+lui3JoqUrFtZElmbMagZDm4QhBQZXpbwhQMmzdTeQoV7yra\ntN2a5RXSFIK6Qipvg4CeZJjpooWMRUs0wGS+UitWNpU3SEYDjGfLfOS+fZzoTqyr/ZfyM14K/3Rx\nbdQvpLVT5LLFCwPTyEgUZuvy7G8OcSOlcUSJMjBdJG/YGLaXvc10XBTJM7QPt0bIli1s2yVXtlEk\nUBSJsK5yM1VAkiXO357hno4o+5vCpAoVLo9kSAQ9d87VxPkstAnY6+PgVqrAiwNpPvfBo8jyxic6\nWIj9zWF+/b1H+MPvXOcHb6R49J62LXnfvcBKCotWEYAQEgJonneYcXE4gyrJKIpEMqrjSgIH6G4K\nefE5QpAtW2iK9/cDUyV0tYwqyRRMG1WWMB1vM2rZAlmSeLA3yXSxgmE5NEV0rgxn+MF1b8NrWoLm\nkBf/t9iB1mYZJvWxrWu5PWgUg2k5L4+VfqalDrZaowGuT+TobY5wsS4b78nuBLom8/5jHVy4M0NY\nlznYGuXJa+OMZsrYjoskwUzR5HB7hHhARVMkPnSii1dHMkQCKt99fQKAsYxBc0RnX1MI03IoIuiM\nB7148J4mOuNBmsM6z9xI1WRUJKmW+EYCooE0vUvsB7arz3zjZwdQ77qyGks6W7L4ztVxihWbTMnl\n4ZYW74aASO0W4vJIBgR0xIP88EaKsuFiODYTOQPHEaiKTLZsIVxwERQNm9vpAq4QWI5LWFcwLFAV\niURI49T+Jg62RXjXwRamSyZ9Sc8I+PKFYSayFSIBhamCyUuD0xxujyGg4bKArIVEWOMTZ3pWPImr\nbnJBRWY0WyYeVJAlmMgZqIrEmxNlcmUbw3ZIBHVsu0JQU8mVvaDyvBFmaLpES1QnGQnQHHrLxSld\n9NwSLctLUanK4ACZokVEVwjoMhVHomQ6VDJl7kx5SSoeOpjkx460rap68/wFfjE/46Xw3eVWz0IL\naX9rhKHpEldHs9guuK6Labvoisx03mQ8azCSKRPWZRAShungClBk0BSZkuWQDHu1QOJBlYCmeBeY\nkiAR0jnUGuGNiTwvDc5wM1xkIldGEhAJqAhgwjRQZGqZBlcj+/zb6L04Dv7LS0MossQnzuxf/sUb\nyKfO9vOVC8P87t+8xrf/8VkCqrKl778bWahI8GIeDumSSUCT6WtJ1BIOzD/MSIQ0bqeLBBSFYx1x\nbk+XkGWJgCLjAiXTQZYdQpqCEC4BVSeoKdiug2G5lE2ba2M5VEWiJaxybjCNK1w++WAvluuSyhkM\nTpeZKVvcSBX4+sVhfuGd/Qu6Pa+kUPl622ymaBHUvE37SnVBIx2eLNRuA1OrL+Mxxz2ybHFpJFNL\nUf3NS6NM5Cs8bafoaw3XsvEiqMWTHUiGkYBbUwWm8yZlyyGVr8x6lrjcTBWZKdq0J4JoisRoxkCW\noGhYJKMByq5Dd1OQgekCQkBnPMjRjhhvpgoMThWZKlQ4e7iNk/sSs/GeOW5OFShVHPYlQhzvii9Z\n7mA7+8w3fnYAybCOabk8OTCxIku6yu3pIpeHM+iqwtWxLDcmCoQDCgfbonzywQP0tITpS0Z4/uYU\n18ZzpHIVVFliLGsgyRAPee5XAUWioyXEjfEi4YBKxXG4py1K2XRpiwZQZJme5hDvONhCSFcYy5b5\n3vVJmsIaQ+kSJ/claAprKDK8OVFAlsCYvZJ/+GALseDOj/mB1QV8jmcMUnkDTZaxHZeuRAhHCFqi\nASIBBeEKwgEVWRbMFE3aYgE0xXtt1rBJF0wsR6BrMsc6Y7VkFJmSyetjOUKagiJLxAIalZAz+yz4\nyTM9TM/Wc3hpcIZUwUAIyBgm526lsRwxp5bTSmsOKZLEye7Essp9oec1airMRqWWlbFiz9kcAAym\ni/S3RmmNBXhzIs9UvsKxzjiuEFQcB9sVOI7wCtZpCroq47iCpohKSFO9WyHLi/UpVGz2JYLc2xln\nslDhlaEMFdulMx7gcFsU23ERkueic3JfgpduzxBUlVrQdnX83J4ugkRNZy1m5OzlcWA5Ll+9MMxj\nR9tpjwe39L0DqsLv/vgJfuE/nuNPf3iLf/TeI1v6/ruR+jF+ZTSDEBJ9LQluTRVq8RdL6b96D4Ef\nvOmdqssyyLLgB2+kAGiN6tx/oBldkYiHVGSgPRYkFlR5Y7LIVMEkFlA50uGlwr46a/xMFUyao0Fc\nF/7q/B2OtEW91wZVMiXT8x7QlEUzgs4/jH3q2gSXRzJefEhs+TqAK2mzcsXBsJxV6YJGOzyZn7Qg\nX7YwLXfV+q1+LFwZzXJrqsCb43km8wYIKJk2+bJ3YB0NqvS2eJ4n893rDdPhno4Y37s2ge0KLMvF\ndFwCusxwusTXLgzjCk8X9baE2N8cwXJdHuhLEtZV9jWFEEJweSRDqmCSD2tz0mNXDdZa/9kOE3kD\nw3LmZDGsJ10yvezCQZWpfOWuubGZrNj4kSSpDfg00Ff/d0KIX9p4sXzqSYQ1HuxLkjPsu2rtLIlX\nQ5SK7WA7LkiC0UyZguEQ1Eb42OluvnFphCsjOXKG5QVXJsOULAfLccmUTDRVAUlCVxTKlo0kQcV2\ncQU8cqiVdNnk9nSJOzMCfUjmVqpIrmKSylX4qQcOkDbt2ZoiBroiEQ2oxEMqJdNTbisx4nYT1QKT\n//XCEDNFk+mCRTyo8vT1FF2JIDcni3Q3hxiZKXOoPUpnLMRIpoyuKKQKBsc64hiOSSpnoGsKUzmT\nTNlTrMmwztt7mjk3kCYWUEGCeEhlKOOiKRItkQD37W+iN+kpxrcfaOYvXhikUPFcoCzdK15WmK3e\nDCx5KlMfVFl/4lRV7qokzUm/vFQ2uEZMhdmIVFPMT+Ur3EmXKFsOEl5h4W/dnKJg2AxMFUCCyZxB\nxXa5NpHDcQRBTSEaUCibLg52LaA6rKt0xcPMlEyKs65wjuMlyUhGAxzujPGOSCs/upEipCmM5QxK\nps10scLVkRwhXebkvgTNEW3OxgPgyxeGvHgF4PT+Jj5+pmfOZm9+8oS9Og6+9/okUwWTTz60+YkO\nFuLRe9p4/GQnf/L0DT56upue5OIxgD4eSx0M1Y/xWEBDwBwX86F0aU4G1cXGfa5sMZYpYzkOzaEA\nTRGdiu3Vinv5doYbk0V0TUaVZO/nhs1MyaJo2GiqRG9LmERIYyhdxBWCsK5TrFjMFD13WMNyaY0F\nGM2WaYnolEybZERbsoRB/WFsqWLzrUtjKIpMIqTy7kOtazY6aq74qQKG7fL+Yx0L1hJb7u8b7fCk\nft0TwNtm1+C1ZIA7e7iNr18cIR7UvCx9kueWfGxfnHv3zU0yU//8vmSEr14Ywna925vpYoWxTBnH\n9YKTB6QiluOyvznCnXQRGZnWqI4sSV55hJkSg9MF2qIhokEZVYbhTAnHFfS1RO4yWKNBlUf2t/Lk\ntcm7DsTqUSXJy2RouoznygjJmxtbcQO0mpufvwaeAZ7E86Lx2UJ6WyJ0xANzau0sRr3fbE9zmLJp\nkU+EGJopU6h4mx7DdHhtNMsrd2Yomw4yEA9qBHWFj5zsIhbUeOnODImwyrNvTPHaaJaCadGVCBOT\n4F0HW9FVmRcGpihWHFKFCnnDwhEuiqSQM2z+9tIoZdtBRsJ0XJrDGvcfaKZsO+xrCvKx0/t33QZn\nJTcl18bzTOQMDrXFKJtZuptClCyH5rDO5ZEsrhCMZQ1aYjougoCq0BzWmSmZlCybppCGZbn0tYbJ\nlExM2+XSSIbzg+lavv68YXEgGeHHjrRxe7qEoni+3gXDJlf2Ek7c2xnn0Xvaa303katwcSiDKsPj\nJ7vmnPDdmirOKYSZLVm1oMqBqQKn9jfNOXFayGd7qZO51abCbBTf7q3mtdEsz92coiWsU7EdJrIG\nfS0Rb5HRZA62RQFojuhIAoYzZSoZl4ppYzmCzkQQ03ZxXIGESdly0RXBZN5guuDV9lEAwxVEA54L\nXKZk0RkL8spQBk2R0GWZx+5pJxnRaYkFKBpefNn82MLb6SJ30iV0VSGgyuRnD236WyNe3avpIucH\n03OSJzRiStSt4L+cv0NHPLCtMTe//ZHjfP96it/75lU+//MPbJsca2Gr9cFy7jqLJbdBwMG2KLem\nCrUT83q31fnv8fWLI4zlDMazJtmSQ7NhYTuCiZzhFaaM6ZQqFqoi0xQO0BTSGcmUCWgyM0WTyVyF\n3tYIjxxpYyJXIR7y4jtaowEve2PWq/92an8TxzvjXBiawXbEnHw98134HuxLcm9nnJxhkzcsBqaL\nxHWFYsVhpmzWDr1USZpTHmM53trcDxPUFC4OZ1a1CW7Uw5P5614suHYdZwtBc0SjLapzfjBNybQJ\nBRRaIp7h99pIlmhIvcu4soWgvy06q6dNdEUmW7IpWQ6m42LZDhXb4UYqh+0KTMfhymiW3mSEq+M5\nXEcwljcIKUWiQc2LPwtpSBKYjlszeB4/3FXr83TJvOtAbP7ntoXg+L4EZctBAK2RgOe6vwW3dqsx\nfsJCiN/aNEl8lmSlE7tWb8Pw6m30t0YJakFOdTfzd6+NcWOygGm7XJ/McaQ9Sr5skZ7NvtYS1gio\nCkIC03WRZXhjPE9QU2iNapRMm5aoRkTXeH5gipLh8GaqgATYjkuhFEBWJHRFJhnWaQpryGWJaFAl\nV7FRZJnOpiBhXeFjp/cvmWFsJ7LQItEc1ucog0LFJhZQKZQtLhdmmClbFAwLJImJXBnHhXHZC1w9\n1BojXawQSXsFCO/rTvDh+7pwXbg2luXmdJGQrjKeLdPbEmG6aGCYLvfuS1CxHVojGq8Mz5CM6Ciy\nRKFi8TeXRsmVLU73NBENqnzgeCe2EDXf8oiuUjTtmswVy+V7AxOegnQcVFkiFFDJl61aUOXAdIGH\n+pPAW37fqy2OutZ23m7f7q0kW7J49kaKVL5CwbAJqF4R0oNtUe+0tO7U7URXnKujOTIli/7WKNGA\nQrZsEVBkxnIGt1IFZElCVyQc4ZLKm+QMC9mA9lgAWYFDrVEqtufz/cWXblOoWOiKQktzgLZ4AEWR\ncIRAliVeH88R1GQyJZOT3QlyZS/gdTJncGemRDygElQTNfeHRNire6UvUPdqrzGaKfODN1L86nsO\noyrbV2y0uynEr7/vMH/w7es8fW2Sx461b5ssq2E79MFKXKzmG/KnupsYSpcYy5W9TGuqsuDfVw25\nvGEhhECWQFdk9jWH6IgFeX00g+0IMmWTkRmFzkQAAaiyzFTRi6tNhDTyhk1IV5gpmAR1hb7WMOmi\nRUc8wIl9cZAkPnP2ELbrpSotlG0c16UzHmQ8V6kddtUfgj05MEHOsIkFVVTFuxWoWA4F2aYzHuRD\nx7u8GjIVm6ujWY53JYgG1SXdqOt/5m3u9TXrhEY8PNnIG6lqAquZYoWupgD3dXdSrNiUTYcvPD/I\naLZMVyLEQ33Jt4qcTxcZzxlcGc5iuwIhBGXTJl00MB2Brkic6evkSMliKFMmHlBJFSpM5k00WaZQ\ntslVbIyKg6sKwrpKRFdpjgTIlm0SIacWK5wrWwzPlFBnP+dynzsZ1okGVBAQ1mWKppc8aytu7VZj\n/HxTkqQPCyH+26ZJ47MkK5nYVUUVCarYLrRGAxRN2/MVTRXJli3aojq9yTDP3ZpmYLqI64KuSsQD\nCo7jcnUsx4FkmHhQY5wyMyWTvGFjWi7TBRM9ITOZMwloEpbtoikyqiITCqgENZmpfIX2eNDLYIPL\n8EyZoCbzyMEW/t7Jzl3n6laNaxjNlmvGzdM3phhOl5gpm7UF4FBrlB/dmGIyX8EFbOGSjATIli0S\nQS/OpycZRpZAkSVGM0UmciYP9rZStm0eOdTGhTszOK6X7eee9hjtsQDfuDTCczenCGkKB9sijOcM\nTNuLx2oKadiOYCBVIlUwCOkqo5ky9x9oxhGiZuTkDQtZknARNeWTCGs81J9kqlAhXTS5MVnkXz75\nBu/oS6LMGmg5LNpjQZpD+pwNSDXF8qsj2VrhvLVmg5tPo/l2bxXpkklTWOferjiTec/dsDUamI0H\nkHigN0k0oNay7zSHNa5P5NCLXirbB/uS/OjmFNfH86TLFSqmIB5UKFsu6ZJBWFcwbZdoQEWSJO6k\nS/Qkw7xwaxrLEggXMhUTVZY40Pz/s/emwZZd53nes/Z85nPnsW+P6EYPAJoYOYCDSEgULFIyLVGK\nhlgJ46QSV2LJPxJncJXk2KkkpXLKjqRE5UiqKKKLsiSLZWoyJdKgOIAYCaCB7kZPt7vvfO+Zhz0P\nKz/WuQe3Gw10NwigL0h+v4Bbfc5e++y1v/UN7/e+eT5wQEFc1ts+z1xpMFVyeHm1w9OXm2r+x9T4\n6OEJvvTiGkkmWW37fPnMBp8cJNyGEO8qk9RutT96TmHtf/rBOwN522l/79EDivzgT0/zgYNjOObu\nJz+4E/7grQa0J+YqILmGIWsn9BNegxp3vJhzG12kBKHB4ckivSBmvRciM3W6vm+hSsk26ISqOxsm\nGX6c0vNVgPzMlQa6EHzy+BRjg7MmStQ8aZZJkkzyylqHfpjw4lKbMEn5D/0tZio5yoP5ke17vdxQ\nhc5tmPP8SI40y/jQwXGuND1+9Ng0kxWH87UeBUvFH4UBjPrUapt9o4XXoQF23q8uBCfnq6/rIL/X\n/cHb1ZHaFieVSBZrLpaus9TyFLonTIiTDCkV+2utH3K16fL18zWevtyg7ca0vZD5kQJJlmEZAtsw\nyGRCmEi+ebHOXZMlPnRonOeuttjqh9i6gjgHcUqWZmgCpe+TKrKrphuyMFagmjMp5Uy6fsz/+pdn\n8ZOEnGHwPzx+9Kb3vfO3efzEzG11Cr9bu53k55eA/1EIEQERilxXSinL78jKfmBvybYdVT9IMDRw\no4S2F9PyImxDwzY04gw6fsLVhotjGgggzjJafsLVpqcSmH44mMvJEEjiVLUlm15MrR9iDxIegWKL\nilJo+QG5xMSx1Xe6YUIGOLbGsekyPz0gWeh48TWzIO+WvRNOdHsG49RKewgnCmKloeKYGumOA+Df\nn14nHbBST5Zs6n3QNA2QaEAnSukFCUXHYE81hxdnZFJyZLrEZjfgq2c3Fe3pgFf/xGyVbhgzV8nx\nwN5RMik5MVchk5DJjKKt7tEQgoKtIzSHkmOSZh6Xan0OThbxw4Tfe2kVx9TRheDgWBGEYqPbS4GR\nnOr+1HshQoCU6n4yKblvvjokq7g+AGl5EQIQQg71j95Mdfp2bLdiu9+q3eq+3K6SHZosMj+S4zMn\n5ynnzCF87FK9PxQs7gcJQijyksVanwx4db3HZi8kyTJ0qWFqGQLBZNFmpe3jGBpxmhGmGQcnCjTd\niKJt0PYS1joBSSaxTZ1yzuDZq83hs//q2U0Way5PLTYI4ozJok2WSYQmWJUZhiGYL+XUjFov5Isv\nrjAygGnsnHt4s7mw71VLM8kfPrfMo4fGWdgFnXDL0PgnP36c//h3nuFffX2Rf/CJ3U9+8N36g1t9\n/67/d7cT0N5oX98I+rktNj5TzlHvRSyMFtgzlqfRC5mr5ji32aNo6ZRyFuttnyDOuNpsU+/HWLrA\n1DQ+fGSCpYanukFCw4tjXlnrEqeqw7Pa7POnL60xV80NSWoKloGmCY5Ml8g2JA/uHcUytWthqk2X\not0cQu+Pz1RoumpgfbxoU82brLd91ts+tqmTZZLTK12uNJSOYN7SqeYsDkxcS9Iy1Bus9fnKq5s4\npk4Qpzx+aAZ487nTt/os3227lcL1jchhtv++zfaWSsl4waaUMzkyVaLWD7lrsshfn9lkpe2x0QmI\n4oycqfHKSps/O7VGvR/ihwlhKvEiRTTlmBp+nGIZOqYuqeZNxoo2985VWe8oMiZD1+h4EZNlmyRT\n8Vwlb5I3NXRN0HBjCnbI4akSo3mLby/WWR50+ddaPZ650uQnH7j5aMOd6tbdcvIjpSy9kwv5gb09\ndn0m3fIivn6hxnonYLMbUM1bTJRsjkyVWGv7yCzDjTNyhuCuySJerBihHEPn/GaPjY6PG2akAxBw\nSQMpJTlTx9A1PEN1ANI0o+uCb2YYmkYYp+gCskxQyRmsdwNafkTZM+9IcPNOBVXNQVes5KjvSjMJ\nQjKT5mgPnJUbJLT9GJDkTY3z/QDfNDENjX3jBQqWRr0fEadq6M/yNHQBC6MFJHB2XRFSNNyIbpCg\nIQiSjF94f5WibRAlUnVsHIOiYzBTdYbitRudgCstDw1wDJ2SrTFXzeEYGpfrfZ673FQOK2dydKZE\nox+x0lYH55EpRUUeJAlLLZeZH7RwsgAAIABJREFUcp5uEFHvhUyU7Nd18HYGIAiwTI39xeJwXqiU\nM9+WCu1uxXa/FbudfflG9309fExRjnZYbvrUegElyyCIMoIkJU5T+oGCNU6XHDIJQZKhIfGjlNG8\nhaVpTJcd3Cil4YYkmWS0YOKFCVXH4NJWn9/71hW+fHqD/+SD+8mkZLJoDzHoF7d6TBYd9ozlOTBW\nwDZ0umGCCBPlO6zX4D6JlNfMOny/dfW+fqHGatvnHz1+951eytA+fNcEP3bPDL/5xEU+877dT37w\n3fiDW33/3oys5VbshmKVjjn0k2Xb5OxGF1vXCAeMYCVHzefUegFxKvnTU2u0vJi2F1OwDQ5OFNAE\nNPsJcaLWVbJ0HEMnbxsIAZmUpBnkDB03DAGI0pR+qGQUtklq+qEqljqGTs7QabghE8IeJpKVvMm9\n+dfIcgwhaHkR40WblZZHEKf8ypdOk7d0cpbObDVHwdF59mqdlqeuNZK3ODJdfl2Sun1utD11Xu4d\nVZ2lbYH0W/UH7+XCyc4i6k5yGLhWyNSPVYE0jNXMtmVoXNjqc2SmxHTZ4fmlJg/sHQEJn39qiaWG\nSxBLMlSw70YJSSrRNSVPoLp/GWtNDyGh6YbMV/PcM1vlxZU2OctA1zQKlsaJ2RL3zY9wel3NBc2N\nQMHWeHi/0nUr2yZZJlluBySpWt9jR6d27TO4HbY3Afw8sF9K+U+FEHuAGSnlM+/Y6r7H7Z2qUux0\nyomUWIY2dDRhkmIbGsstl14QE6cZtiEwDY2NTkDBUdCXxbpLww1xAzX7g1QsF16kmMMESkckiFWw\nn0kwDYFjGERJShSnlByThh+CUFXgvp/cseDmdq/7Rs/m+r+P5i1KjsHleh8JHJ4qkTd1RSoRpzyy\nb4yWF7F5tcnFmstK06NgGSyM5ZDAbCWHJgRdP8XUU7wwxY0SLE3BTQ5NFonSjK1uwKW6ixfGTJRs\n5kdyFC2DKw2Xas5ksxMwNlum1g1Z3OrTdCPCgc7PeN7CMnVKtsHBySLVvM9q2x/OZMSDlvbVhsv9\nCyPkBlCXsxsdul5KtWBi6jr3zJdxDJ3DUyVmR3LX/F43GvB95nKTr17eRALlK2q+6O3q2OxGbPdb\nsdvdlze67+sr3wBT5RymrnGx1qcdJCRpxnLTJ0xSsky9rwLBWMFQIrqZhR9nzFVzVAsWQZKydyTP\nS6tt3DBlsqz2e8uP8WPJWten1g/5k+dXSGXGhS2XrhcjNMgyBoxxcGi6xEw1x1jB5sy6IvM4t6Go\n2HeKLr/RvbzXu3o3s9978grjRZtPHp+600u5xv7xp47yxLkt/smfnuG3f3H3kx+8VX9wq+/fd3tu\nbTOkvbLWxtA0vn6+RpzKoTDpkxfqrHZ8Lmz2mKk4vG9hlNmyyVdf3UQgWGq6nFnrUnQUU2qUZMxO\n5TA1DdvU8OOEIJI0peTMepcwSTk4XsCNMkYLFp88Mc0Tr27RcCNKOQvL0IiTbDiP0/QiHj8+Q8uP\n0DRBPCA96PrXnnfb9/z7T13hO0stkkSCJmn0I7a6Aaah89DeEdpexAvLbbwowQsT3DChYJscHC9y\n11RxqCXX8WJOzKlOdceLObfZY73jc+989XXJ0c38wXu5cLKziBrFKUstd5ggb9/T6fUOyw2PLJM4\nlsZ4webknhE2uwFtP2at6yMlXNzq03Jj+qHq7ARxAkCGSoYtQ5AzTaIkwI8yEglenNAPulyquzhG\nixNzI8xUHEYLFot1l5ylMZKzuVx3qfUCav2QmUqOo9Oj7B1oOR6fq3ByT5VX1jrMVcpMV5xhd283\nFipvB/b2f6F+v48D/xToA78JPPQOrOt73m6lSvF2JEdK+yWm7oaMF22KttLu+falBr0gpR+mTJRs\nolTN5mQyQ9M0BJJeoGBraQYaYAowTY2cqZNkij0sUbkPEogSSZrG6LqgoGukUlLNWRyeKmEa2jDY\nuRPBze1c942ezXLDGzLRFO3Xhjg/+8AeHt43OmxXA9cwnl1teDx7pclE0UbTNPaPFwgSVYExdY2X\nltv0gpgwVpg4IaHhKrGx+dE8aQZ5x6Bkq/mdkmPyvoURELDZVRDEr52v8dTlBk034tBECU1zWRjN\nsdryaLgRC6N59o8XOD5T5oWlFuc2uqRpBqhBWVNXmLaNbkg/iAbXMeiFKQVHx9QFWQZ522C17VNz\nw2sYuuD1AcjD+0fphzH7x4rDSt73Ssfm7bLb3Zc3+u12Jp6GEPzBc0t852qLRj8EmZEkal/5SUKS\nqPm+JJE03BBNR1FcBwlpBuc2e3zw4BiWoXOp1qfsmCy3fExdUxXHSMFf00SimZKWHzFXzXFwojAQ\nU47QNaGSLDLcIEHT1KZeafuMF20yYGFMzQzdaEj8+2WPXKr1+dq5Gr/82F27Tlh0ppLjH3ziLv63\nv3yVr57d5BNHd1dy9nbZrb5/3817ug1n8uIUKQVNN2Kt7TNWtGn0Q07uGaFSMDENnZWWy3LL41LN\nZbMbDHVX4iSjG8REaUqYZHhhwnOXm4wULJJMEiQp4wWbsZLNidkKZ9Y6zM5V6AUxozmLThBzeLrE\nctNT87tJimMqFtFriqV1SSWvGLpOr3X43ScXmSnn0DTBsekyxZyCcH9nqUUvUAQJUaK6xgXbpB/E\nrLYD9o3msXWBsAy8MEUIDcfQaHgh4VrK3rHCDUVNdxLobK/pVv3Bbi2c3Eoct11EPb/RZbXjM1G0\n+fevbPDRuyZouTHNfsR3llpsdHy8KEXXNGarDtW8hRAwV3FYa/t87PAEz1xtYhuCTKakmcTQFFw9\nBZIUdCFxwxghNDIU028KeCkYWYofpZxeb3P3dJnJko0fpTx6aIK/PrtB148ZL9kcnixxz3yFjx+5\ntrMzU82x3g3IhBzKXezWbtztJD+PSCnvF0K8ACClbAkhdsfueg/azaoUt9OO31ltv9FLlrcU/nat\n7ZO3YrQBdM0xdCJTHzrDom0QpoI0VTM+aQaOqYQ1t7kv0yQjBEzbwI/Vi5MNrqMPhjsKlhJPHCvY\nnJirMFa0KQ2GJ+9UcHOz6+78HW/0bAC++OIq5zf7jOQt9ozmrhGB26aA3nm9bUXn8aKNlGDqGgVb\nZ7JksdrOiLKEP3xuCT9Kydk6lhRYpoap6wgEC2N5NjvBgMUrwDZ0Htg7wnTZ4f6FEc6udzm30eXM\nWpeWF5G3DXpBTJAkyExyYStlfqQAAn746DQP7x/ly2c2WGn5rLYDMqmCYg21tlLe4oeOTPC1czX8\nWM17gaTtRZycqzJTdSg7Sml8f7F4jd7UjRz83tECkyXnGnr275WOzdtl1ycu23vtRvvzZtS6lbzJ\nkxfqfOOCqiq3/IicaeDFEUkKjiaIkASJepmTLKPnqyTc0ITyCwI2eyEjBZNGPxoM0KaAJGdqFG2b\nhhuq75DQ6IdDQd3pgUr43rE8pqbzC+/fixclfOXsJo6hsd7xcXSNKMkovwnd6/fLHvm9J69g6Ro/\n/8jeO72UG9rnPrSfP3pumV/909N86ND4e4L84HbtVs+jG3W2bzS3ev17+uFDE3zjYo3Nbshivc9j\nd09xdqNDlGSESabYucoOXS+hG8b0w4TiQBeo5UWYukY/iHFMA9vUiNIMHcgG1fpCzuTIVJEoyZgf\nzVPvh6y1fVW0TCFO4WrLR9c0Vto+/TDG1AX7xoucmK+QSHnNfe7U2nl5tY2uabhhSqMf8uSlOgXb\nYKJoq4QrzkjSjBNzZVbbPvW+ImQ5MlXk43dPUeuHuFFMxTH52JEJ/CRlanAebLPZLTU8xks2DJAS\n3VAR6GwXEbd/+1vxB7uxcHKrcdx2EXW+muPpxQZenHJpq8/ptTb7x4tEScp8Na+YPsOInKn88mY3\noJqz+MIrS2TAmfUuowWTasGm5SfMWAYtL6Lvx2gINCGZKuVwbJ3lpjscZ9g2OUDwlGyD6YrDibkq\nOcvgYq3PYq1PmGQsNT0mSjZ7xvLX6PdsxwI/cd8ci3WXh/aNkki5a7txt5P8xEIInUEYPBA9zd78\nIz+wN7KbVSlupYW7jRPtBQmmLsiZOpapXfOSbX/uoX1jbLkRU0WbtbZPisCPUwqmPsD+ShquCrwM\nTaBrimLT1ARCaFQcAzdK1dAkYBqKlhABhoQE9dIkqWILM3WdQ5NFfu7hBXK28brA7k68AG903Rsd\nWNc/m6YX4RgaI3mTlhcxUbJuWlnafsYSyZ6RPFNlm7JtULRNDk0YXNjqgxDomoZAMDJIFtteRDdU\nrWrFoy/REHhRQsHS0DTBejsgzSQP7htlvesTpxmJlIRxxvkNF5AsjOUI4xRL1yg4Oi0vot4PidOM\nkm0wXrQGtKI2c9UCUZYRZxmGLuj1YrwoZbJsM1fJcaXlsdL2WW55zFRyXKq5nBxAE3bSqwdJxmdO\nzrFnLL8rD6PdaNu/y5sdkrcK6eiGsYLTaIIkzQjjFDnozCptHzB1FRSVHJMkU0mNm0l0YKbscO9s\nhYOTRZaaAR03JBsMu4apZL5kU7ANmv2QomMyW80xU3UQCPaM5llteRycKDFRsqnkTH7ty6/ScEOE\nEMxVHDb7au7w7HqX47OV79s90Q1i/vj5FT513wwTJftOL+eGZhka//NPnODnf/tpfutvLvHLjx2+\n00t6R+x2z6OuH7+OtWz789e/p6fXO2z1AqbLDpfrfS43+kwUHQp7Ter9gLlKjpMLCro0VrQ5s9Zh\nre1T7yv/bhuqUGkI0LeTTw28JGEsZ+OGCUstRZ0dJxl5U+fYbJn1TsDSgLwICdWixeWmp2iK7YQw\nzhBwQza1H7tnllOrbfwkpd6LWGl5dIOYSs4kSjK6fkSrHxGnKeWcyX/6wf2stHz+4pV17p2rkGSS\n0+sdDk4WePZyi33jBV5Z66JrgtV2wMn5KoYQ/NXpDZ44t4muaewby/Nf/9BdtyVq+nY8y3fabgeK\nV8mbfODgOKdWO1xuehgabHUjyk5EnGXMVnJUcib1fsh4ySJnGpQdE4QkTDPumiyy2goI4wxdpJga\n/MxDC7yw1OabF+v4cUIYw0bHB02QZhJTgziDoinI2RpBpJKVphtT74V8+1KdiZJNN1C018JUIvea\ngCBSs2Pbcd1622e9FeDnU6bKNnvHVAK7G7txcHvJz/8JfBGYFEL8L8BPAf/4HVnV94HdLDB8s+Ro\n21mtt31OrbQpOSZLDY+5kRz3zVfY7AWcXutQtA02uoFihUlSoigdZO8px2bKVPIWXT/mcsOjkrfp\n+hGVnMVmN8BXsTd+nJIzlWhpnKjA2NA1emE0YBOL1YCkFyMQ2IbGoYkSCRl7xvK8uNIeVr92Y+sT\nXu+g3gieVXQM9ozkmSipAP9mnbidz/jRg+P82++scGq1TZypA22q7KikUleaD48fn+HvfnAfLT+i\nP3gA//Y7K6y0Wpi6hmkIvnO1TbVg8spqGzFg3Jmr5NCBtXbASN7A0DWiJGWlFWDrGn6ScW6zx8Wt\nPi8PWIXCOKXjRRyaLHJ8rkIxZ/DhQxOcXe/y56fWlXZAnCKwCdMMQ1NDsf1BUjZXyfHQvtFhh6vW\nC1ms9fEH3aJf/MD+4UG0m571brWbHZLDimxd6fls6+XstI6n6MrTNKPWjUgyBl0dVdETQmAbMFWy\n6YVqABng4GSRq02PfhAPK30b3QANWG4HIKDtxVQLFqam0YoiemFCw4vZ6voEUYVHBzoPjqlz12SR\nu6ZKPHmxQcsP8eJsSMP6wQNjfOiu8eEw8/fr3vjC00t4UcrnPrT/Ti/lTe1Dh8b51L0z/N9fu8Rn\nH9zDXDV38w99D9qNIFoHxouve1d3ntthnHFhq89izeVSzeXwVImPHp4YdjWuNl2euazY04qOwWNH\np3js6BRXGy4Xtvp86cVVpFQU8bou2OyGOIZOwTawDA1dA8/PwFZzvcstD8fQuVJ3+ZFj0zx9pQlS\nsljvg1SFzKtNjzTNKDoZj92toIzXF/4SKRnLWwhgvGRh6oJXN7q8ut4lk6o4GiSpIjZKJec2ejS8\niExKXlhps2ckj21qXNpyWel49AMlxPm3TswQZ5KH9o3S8iPOrHUp2AZJqqB2DS/i3pH8e94n7IwB\n3goUL2/paEIVnDSh0DcigceOTvGBA2N8+fQGJdtgtGQjgGcvN2m6EU9dblBxTPaM5rlnvsp3rrR4\neU2RJTmGRj9UyY5uqIJrnEmEBE3LODRVIs0kXpTixyn9MOa5Ky1MXTA/kufQZJEgSfHihDhW1bT/\n8OoWBycKPHpwnN8/tcbzSy004Mh0mcdPzNw2bPHdttthe/vXQojngU+g2Hr/tpTy7Du2snfB7jQt\n4psFhm+UHO10wuttnyjJiOKUphsSpyln1jtMFO0BZ39Gx4+ZqTiM5C3umauw3vFYbQds9iI0TWN+\nROnCJInEMDR6UcyAEVNRFEvVYkcOkW+MFx3qbohj6cSZ5MB4nlwnZLaawzQ1Hj4wStuP2TdgbTm9\n3mGp6TFesMnYfUHPjRzU9rPZSct9s5f4Ri3ubUsySduLafsJhtCQZDiGzkcOT9DxEj5xdJIfulvh\nZ/eQH37fk4t1vrME/SgmZ2r4YUqUZQRRynTFwY8TfvT4DL/+xAUMTRtQbEsKtompayyMFXAjhQev\n9QPyto5jaGiaYvmquxHn1nswo8gxcrbOdCU31Iuo9QOOzpbpBQk9P8E2dHRdkLeNYWXHEIJTqx02\nOwEF2xhQou+uZ7zb7VYOyX2jBb55qU41Z14DN+h48TCQ6gUJYwWbimNSd0NqvZBMSoRQLGumLrAM\nnQ8vjPLg3hGuNFyCOOUVP6FsG7y01OKhfSNsDj5nCKiWHXp+jJRwbksVTzTANnQsQ2AagrYfc+HV\nTbpezPNXWjy4f4SuH6PGypSQnm1q1L2QJxcbw67h96MFccr/843LPHpoXOm+7HL77x+/m786s8k/\n//I5/o+fOXmnl3Pb9nac8zuLE36YDgWFt+cadkLgts+JXhDz0kqbT9w9xWLd5aN3TXDvfHW4nr2j\nhSF72jVwYZRffXD/KLVeSN42mKvm+JMXVvEjNfMzW83RCxLcOKFVj6kMyGzcKOHcRh8/XuVjRyaZ\nLjt85n3zJFJydLrM7z91hYJlIAW0/ZilVp2lhsfRmTJXGy6/+63LVPMmrwz02ao5i8eOTmHpGmXH\nxItStro+SZoRpxl+P+XzT13l5EKVe+er1Hsh79tT5cunN3h5tUMYZzTTkFFh0QsT9o7l2TtW4GrD\nxTI0DE2RNay1fM6udZUEwi4rjt7I3owQ6UaU5re6/3ZCx86sd0nSjKJjUhoUXr9xscbh6RJBnPK3\n75tjuenxzGKDkbxF042YLDl4UcrXz9VoeRFbvYC8ZWBbOoavRhiyVAmdFiwdQ1PF7CiTdF2FOLFN\nnSiBNEuwDI0rTZc4SZkqOxQsjXNbfaoFC9vUmCo5LLU8Xlhq0vdThFAIg2SgU7V93zsZPXeL3Q7b\n2+8Avy6l/M0df/tVKeWvvhMLe6ftvUCLeKPk6BonHKUcmFAV+fnRPMdnK7yw3GS67PCtxQZISZRk\njBdsNrsBQZRwueEhEYRxyp5qjgypMLyppBBpbHTDIZZRoirGSZRiCAV1i9OM9Y6PAHp+MqS8fvjA\nKGMFm6JjkAzmi1bbPkemSmy1A75xvkacSfaO5nn8+My7/VO+qd1Korm9R97sJd5+NmXbZLHucnqt\nw5WGOxSsu9xwaXsRCIGpSYqOzkY34J75Kg034mpDaevshFBMVRx+6oE9fOHZq/RDNYzY9iMEgpJj\nUi1YrLR9hFCkCGYQ48cpRcsgSVOqOZNMStwooWSb5E2DbpCQZJJUwkrDo+PF1PoBP3z3FPtGC1iG\nQBsIUJZsk412wN953zynVttDrZ/H7p58bUhWSo5MllSijBzCKX5gt25v1gne3odbvYCVlseRqakh\nbh5U5Xap6XF+s8eHDykSATdM0HyNgq1mBbpBQskyaPsRgZnR9iOuNl1WWh6n17v4UYoQCscfpZJT\nKx16fkSUKua2gm2QZBlIBYeNU0mWpIQxvLLeo5KzyVsGa+0u3SAhSjNOzJY4MlXiSl0FOrahc3Ci\niKVpw67h96P9m2eXqfdD/puPv+9OL+WWbH4kz+c+tJ/f+ptLfO7R/e+JhG3b3q5zfmdxougYPH5o\nZijUeyNUw3ZR4pXVDt0wHsKA3uhM2S6ybX9fP0jww5RHD41zfrPHqxs9sgFNvGFojBdtgiSl7Fi4\nYUylYBJlGX6ckWUxLy6HrHcDHj04zk89sIdK3qTnx4wULEqOSbMf8hcvr3Fpy6XWDzm73kUKiWMY\nLLdcXlntMlGySTPJ/okCBcfANDTywFjRphMkuEGMzCSX6j2WWi53T1fQNNB1QTbwEyMFaxCnFDk8\nVWSmojqHe8cKPLhvlHovpBvETJUdpsrOUBbh+hna3WRvtqdu1MHfP37rgt6GEEOCg4Kt89jds0Mo\n4PZ3b3ccW36kYM6ZxDQ0LF1wpelCJtWIQiaxDQ0hQzRdafOAxvxojqmizYHJIgsjef7s1Dotb/A9\nukacqARbAnGUoUUZhhYSJxmVnIWla1i6RpxKcraC3lm6DiKlFyb0ghg/TPjzS/VdHV/fDuztk8CD\nQoh/LqX8/wZ/+3HgV9/2Vb0LdqdpEd9qNeoaJ2wbip7Si3j2SpNUSnKGwaWaixcobv0kk7y60WHv\nWJ7D02Vq/YiCbRBlGZcH2ivGYF5ore0PSQwEYJtgGjpZktKLIY5VWmRJSTlv0g9TwiSlvRLihgkT\nh9Qg/qV6f1jtOjRR5OsXtgiSTLFAxSktL2LPLhD022k3SzSH2gye+Yb0136YsN4O+FatDkCt7zNV\nznF8pkKjHzJbcWh5EVGcYho686N5lps+edPgxZU23SBhqmwPHcX2s673AmDQjRMKq1uwdDIgjDP2\nTxVo9COCKMVPMhxD/euPHZng4f1j+JEaJH1o7yjVvMmzlxs0vZg0kURSzR94Ucbnn7rKp+6b5b94\n9CC/+63LvBglxCk0XJWEfW7fAb744iqOofHiSpu5AUTBEIK1joehC5JM8si+sTcc3L/e7nT3dTfZ\nzgP0+v9PpWT/WJFLNZez613ytoEfJpxqedT6IU03otYL+cbFOvcvjHD/nhH6YcLTlxts9UJeWG5j\n6krV+8G9IyzW+/zZS6v0Q9VF1HWBrimyEwXZSUglGJoS4n3/gTGWWx7r7ZAoVbC7NM3wk5Qslbyw\n3KLsqOFaEDTdkCfO+cxUciyM5Xlw7yhPvLrFS8sddA0+++Ce2/ptvlf2SZRk/NbfXOLhfaM8cmDs\nTi/nlu3v/9BB/s2zS/yzPz/DF/7z9yNuALu8k/ZG++PtOuffqDixTWrzRmfE9Z85tdJmqxewf6zI\nZi/g1GqbfaOFYQLVciOCKGO149PzY9p+RN7S2ex4CvqsqaLXvrE8ILm41cfUVQX+h49N8dRig/VO\nSIakbBn0dpDS7B0rcO98lV6Q4BgaZ9Y7rHVUh7fhhtwzX8XQNM6sdUgyxRS22Qv4xoUa40Wbjx+Z\nZKrs8PxSC8vQeGqxiakrynxNEwRxim0Jzq53eWBhlOevtgnilJJjEMQJf31mE8vQuHe+ymcf2MMn\nj01zpekylrd4crHBV199TRZhmxzpdp/3O2nXi43eaE99N4xz2yLgEsmp1Tb3zSmtne14oOvHtNwI\nP0rRheBvztdYb6kicyYl3SBG1zTSLCPLGMxzQt4yyNk6tq6x1gnwo5TFhovQBBe3+ug6aAIsXado\nC3phgqWl6JrAS5RGkBskTJYd5kdyeIMY0TZ1PnXPDHMjeR7YN8pq02Ox4TJVcZRYraFfI2i72/z2\n7SQ/W8APAZ8XQjwC/BKwuzzgbdi7TYt4PSvbW6W5ruRNPnxoYug0Wr4KlH7k2DSJlJyYqfDXZzdI\ns5QLNRdTQBBnrHdCoIdlaEPu+EOTBbwwpdYLCSJVRRCoAX1n8NI4pk4rlWhkw46QH0uMMCGMJXGm\n8HDLbZ+DHZ8LWz16gZoLmSrbjOQtnr3SUorBmsZ0xX7P7JqdeySKM5653MS+jlBi57D/mfUOOUun\n3o+YKtk0ejFbXcWGZWgaYZINGZMmiiZiEFw23AABTJdtNnsBV5uq8rX9rL9ztQWZUsLOWRpxJjgx\nV0bXNO6aLPLU5QbTFYe1locfA2h0gpiul/Lc1SZfO7eFBL55oc7fe/QA+yaKtK42h/eZZIq16/ml\nJps9nw8enOAnH5jHi5NhhQdUh2ekYL7O6SdScmy2QsEyqLshT19pMlIwb1rxebfo3t8r9ka/x/Y+\n7IYxh6dKKkDqh/zGExe5e7rEqdU2utA4OlNmNG/xkcMKXgMwP5Ljn/3FaWxdG0IdTq0oavW2F6MJ\n0DSF488yycGJArauEyWSQa0DLVSaEdWcyV2TRaKBoOJXX92kH2YYOkhfYmsKUhemCjcuJWz1IoRQ\nCfTMSI7ZSo61js/p9e4weX4rv8t71f74+RXWOwH/+0/ee6eXcltWdkx++bHD/MqXTvPVs1s8dmz3\nUF+/mR95O8/5GxXIbuWM2Ikk+Pr5GqdWOry80lH05hJeWGoPZ4iabsQLyy3aXowbJTTdCEPXmKvk\nSTLQhODIdJH/8qOHWG56/LtTq8xXFQrk9JoSSW25IYaucbnpctd06Zp73pZk6AcJ57Z6gCqolRyT\nkbxJNW/hxwmbvYD1TkCUpLyy0qacV2fTf/bBA9iGRs40KFg6fpQSxAlJprPacpkfzeP6CV85u4FE\nacrsHy8Mz5AoyQYsZq+hIpabHsdmykNZhM2uSgrvnaveNrz8dux2zpad14xi1RW50Z76bkh+thP1\n8YJNzjQYK9mKfMCL6PoxX3xxFaSK5+6eKvEnL6yw2g6I4oyRoprRcgydpaaHpinJDFPTqBZU16gT\nxyRZRsEx0FBogM0Bi2w/jLF0jZavxiiiDET2GhWcnyg0z7HpCraZUrCNAdmGx9xIns8+sIdTq21m\n1rscGC8OZlOzXUl0sG072WlEAAAgAElEQVS3k/wIKWUH+LQQ4leBrwHvnf73dfZuMlFd/7KemKvc\nlOZ6m8XN0AV3T5VIpeT4TIXyAO/fDxJeXG6RAZb+WjVlqxPw6maPOFUVGVMXhGR4cYoXZ1TzFvvG\nC5g61HpKqyXOJDlDR0MFuDpgGgb7BvosINCECoAALB1MXSdJVHVYCvDDlK9fqLPS8bF1jZ9//z4e\n2T/GqdU286N5So5J24uYr+avobF8p+27CZ6398jVhstax2ep4b3umW07rIJj4McZYSxpuSF1N+Tk\nfIX942UWRvNKJDaT3Ddf5ekrDfZU87SDiI8dnmRyUE372vkacZqhaxojOYtESi5u9tjshRQcHTdO\nmChYTFVy3D1TQtc0nnh1i1MDAoMokQgBQgNNE4yWDF5a7lB3IzTgXNLj1c0uHzo4znNXmtfca5ym\nhIlG0TbphTHTZYcjUyWevdrE1gR/9tIaP3Fy7oaBxGjeomgbpFIOHLB2S5XWt0L3/r1qHS/m1Gqb\nfpi8bpB6p69ab/n8wXNLSGC55XH/wghHJsts9HzGCzaOpTOSU89lueHxtfM1/IFwbpSkjOZtcpZG\nkklaXkySgakLHEtnouSQtw3CJKNoG+hJSpJmmIZOEKd4UcpHDk9wcKLE73xzEYmqCkYpimRBRhyf\nLeFFGbalBp7r/ZA0yziz1kVKSZxKtnoBl2t9/vzltVuCQ7wR9fx7zbwo4V9+9Tz3L1T58F3jd3o5\nt20/98gCv/fkFX7ty+f4+N2TSr9pF9ib+ZF3+py/ZsbHj3lptT2EPW/DmLevfbXhcn6zx1jBYrml\nmNfWOj4agmrBHJIk7B/Pc6XhUncVogIgZ2lMlx32jxf52YcXKOdMijmDuyZLeGHCty81qLsRtiEQ\nAj50cBzT0Lh/YWQYPH/5zMYwpnhgYYST89WBrIXkgb0j/MyDC7T8iLYXM1/N0ehFhGmmRLd1Vby7\nUOux0Qno+jHTlRwNNySMUpIso+nHtFe7mAY4hoJDmYbqCGma6pL1gphq3kLTVNwyV82TScUQO1ly\n2OwGnFnvgOAN53/eDn9wu3DI669533yVkvN6FMj2nrjVos7OfbmdSNf6IX6c0OiFjJdsDCH4wrNX\nObPeY7JkM1fNsVhz2eiohNsaQN4MXcM2dRxLp5ozSbOMvKnGEFr9EFC+eqnughAIKQkTxfap6xrH\npgtc2OojpE6YSoRUBTABGDpUciaTFYvllo9AUO+HvLjUpulGQ4bcthezWO8PUEmKPGO3Fi5vJ/n5\n0vZ/SCl/dUB+8A/f/iW9e/ZuMVFd/+L0/WTYvizar6mcb78MFzd7PHmpTskyOL3e4Y8SKDo6+8by\n/MIj++iHCX6S0vETRgcY3l6QKFGyby3SdpWWz/xIjnovwIskWaZob0fzJnlL41sXG/hRih+rQKcb\nqkAok2DoAikltqlxz1iFxbpSGr601QchyYTAjxLcgV4IElKZEcuUxZpLNW/y7cU6R6fL6EKQM3Ss\nosZIweIXHtn7rrap3yree/tZGELwylqHfqg6O8A1yvTbDqsfJCSDdnPRMej6MatNn/mRPKstn1RK\nLtf7TJdzFCyDjh9zodZjuRnw0cMTHJks8cJVBR16ZrFJqx9RzZt840KNphsRp5KqY3F8tsrnHt1P\nIiV/+OwSLyy36AYxaSbRhMQ2BDIDwxC4YUaSpsNKVZSEPHmxzosrLXQBpqYEbB1LMFawEQK2BonW\nlboaoF9v+4RpRsNNuNzs88sfP8JkxbnGoe0MALYx67dS8XkrdO/fi3Z99xC4xi/Aa76qF8RIQJOK\ncnSx7uJFMTPVHOc3u9wzV+UbF2ucDKr8xhMXudp0Ob/RA6lo00s5ixxKONEa0MBV8xZSQtuLWG25\n6LqqXDumjpVTxBmX6y5JlvGVM1tMvT9H24+R8rXgN0Wt59xmn7unS6iGsMAyNPKmwWRZVTP7Ucxc\nJUcvTOgHyS3BIXareOHt2u9+8zKb3ZDf/Ln7dx1s7FbM1DV+6bG7+KU/eJE/f3mdT9+3O4oRN9sf\n7/Q5v3PG55krTb56WcG3jAsCLtSGgtELI3ncMMbWFbX5U4sNDF2gC/jvPnkUy9DY7AT0wpQ4VuyI\njqWTZpIfOTbFffMjQ5KZ7eKoF8RcbXnU+gFNN8bUBKapIZFMlGyeX2qRXG5S7wcsNXxG8yaXmy5u\nkFB0DI7OlLF0jZG8RTmnuvjVvMnCqCLKKQoDP07oRzFNN+DqRImllkcqJaYuGMmbrEYJXpypOVEN\nZCaI04zVgajxRMnhMyfn+MaFOlu9gJJtcKnWp+VGWIbOnpE8j5+YGVJsI7ghk96tPu9bsduFQ15/\nzb2jtz7Hs207Y4qWH92wS/jhQxN88cVVjkyWaHkxjx2douVHLNZdun7ElVqfct6gZJmsdwISKSk7\nJgXb4J65Cuc2uxwYy+PGKQujJYIkoe8nSJQMCahkJssyUqmRSIkbZehaxvktFy9Mh0XubQ+1LXQf\np5IgUtIZW10lxHp0psxmN+ALz15lueWTJBn7x4s8fnxm1402XG+3w/b2K0KIKeChwZ+ellJ+/J1Z\n1veW7RQOa/sxHS/GMXSCOOPx4xOvg09961KNjU5IkmXU+0pfxk4F3SBhvRtwZq2DH6mhZcfSEAJG\ncyZPLTYIk4ypsk29H7F/rIChCUw9JB444JW2TzeMabkhe0bziL6qwORNg4miw2rLI80ygjjj5dXO\nkN56TzGHbQi2eiEdPybLMgyhnHOSpEyUHHRNqVcLYZIzDL744gojBYtjs2UOTRQ5Plt5V1+It4r3\nvpbWNBpiVwGOzpSvacfvDPwfPTTOHz2/ghBgaBq2ZdB0I8o5kwPj6vMLo3miNOObF2uEsaQfJtT7\nIfPVHJahMLkNN6QXRkwUHPphiiKPlhyaKnF4uqQIJTo+l2p9JIIsU12+St5ESnUAzY3kSDPJntEC\nLS8mkxJd02i6MWkKQtMwyLAMnYf2VUnkQMA2Tthoh/zaX71Ksx+RSEiSjJwZYXka/+7UCv/Rg3uH\nuk07mfG2f5Mfy6lu2c3gjTeryn6vBL03s+Eg6xvssZ22d7TA4akSLyy1mB/JAZL940XGizbLTZ/x\nAVTi2StNLtb6tN2QbJD4aBp0vQhDU0PIOUtHSpgqOyy3fZIsQ9M0KnmL6bKDY+ic3FNhseZydqPL\nZCmPpgnOrCm/4EfJNWuTEhzToJKzKNiGIllJMnKmwUYnYKyonl/O0tnshkyUnFt6pu9ml/6dskY/\n5Lf+ZpEfPjbFg/tG7/Ry3rJ9+t5ZfvOJi/yLr5znb90zMxiivrO2W/ZHJW/y8P5R+mHMVMnh1EqH\nlZbHwliBcxtd1ts+pq5T9yIqjsVIPmK2mmOt7fO181tMlBzOb/V4cGGETCrqmJmRHFGScd+ekSGU\n9dRym1MrbWxD49RKB8fUSDNFSGQbKjB/ZP8YZcfkD55bwjJ0nl1sEKWq0JkBBdsgTiXlnMGJ2erw\nfNzu4s+N5DB0wdHpEpfrLlu9kI2Oj2Pq6EIlPQ1XQaGQAkMoWHaQSFVYk6oLMTeS44GFEQq2gkTX\n3YjNXshYweTuqTKZgNlKjkQquut756osN7039fk3I4e5lX1wu2fLre6xm7HAbRe4pivquX/i7qlr\nxMITKXEMjVovoeXFfOXVTR7cO4qQSragNyA4SHIwWXKo5kxKOZOF0Tx7xvK0/YTDUyWevdwgZ+h4\nYYImBELsUDMdsBZpQj2rTCqkiBcl2Ib2WvIjoJozCKIUTdPImzpr3YAfOzHL5YZLnGRcbvSJEkkm\nFTQW1D5sedGu7vrA7bG9/TTwayi4mwB+XQjx30op//gdWtv3hG2/DCfnq3zl1U0yKTm/2Rtu+m2F\n5Z3wKU1oGJrAjzJ0ITA1jX6YMKMpEcJjMxUKjkGjF3J4uoQuBF98YQU/ybhc67N/osh0xebT981y\nZr3LYr1Psx/TD2LmqjkcQ8MNUnqh6jwdm6mw1VcYX4RieXNMRYu42vZxLINqzsTU1UsjUHMiyaD6\nbOsasxUH09SRUnBitgoCHFNnpqzYXY7MlN/1SsBbDZ6vZ9Tbxq4WbeOGQenOwP9zjsnvPrnImh4w\nWXIYL1pDWtSibfCBA+OUbZMLWz36oYIVaQiOz1Y4tdqh7TUxdY2OF9PzU0UnnmSkmSRMMqI049kr\nTWr9gE6QMFow0VAsa/MjOba6IWkmuVTr03RjPnJonI8fnUJmSu8hk2I4y2UbOvfvq2IIjeeuNMjb\nBrVeyMJYkTRT8LmcptHPMoQQ5E2NzU7IX7y8zkbX59hshaJt3LCj9spah1RKXlntvGnH7c2qsrsl\nqHmn7XomqTdKfED9Jh89PEGaZcOh6SBW0BRDU4Op+kDArumGRIka3BECdE2xRBmGhmNpFC0lcmoZ\nOpMlm412QEJGratm0AqmjtCqLIzl6fgxmiaodQO+dTFmqxdSzZkEvWhIgY9QQscTg+LLRNnB0ASV\nvMFYwWY0b/PE+S2yTGBb4hrGwJvZu9Wlf6fsX3zlAn6c8o9+9O47vZTvyjRN8A8fO8x/9a+/w5de\nWuUz75u/00sCds/+2DtaoGibfHuxQduLaXgRU5UcYZphGhqPn5hhse6ybzTP//vty9T7EUITVPMm\nLTdioxPwpZdW2TOSp1qwmKs6TBQd9o4WhrFEP0gIk0zN1kqYKNn4caaID8o298xXOT5boeWrd7PV\nD2n5Ibahs9b2GC85nFnrcHyuQs40Xnc+7hsrsNLy2DdeoBMkLLd8VTT1I06vtQEFkx0r2Gx1QiQJ\nmmYgEEyVbdwwI83SYTcpSDJeWG5jGwq9Us2baEKw1lE6dBMle3jtW/X5N3ret4P0eCtny8322K2w\nwBUcAy9SZ/52536q/Nr9j+YtgiSj5cWM5C0cU6foGOwfL9L0IuZGFITejRJ0TSPvGBybLeOYOm6Q\nkA0gbroG7SBSKJ4YDk+UaXghzX5IksnhSIQGRJlkvGDhRiluFGPqoAG6oeGYOvEgaS7nTMX22w2Y\nLNn4sRK9z1saAKttxQI8U3F49koT67qu1m6z24G9/U/AQ1LKLQAhxATwFeAHyc8b2OuF0XT2jhZY\nbfs33PTb8Cldg9GizVjRJskyVYU1dX7hkb3MjeS50lSDguMlmw8cGOfbi3X8JOXQeAmAh/aO8ul7\nFSTh7EaXAxNFRvMxQkgafUWF/JHDExyfKTNTzXF8tsKr610+//QVpko2p9e6WIbACyVelJFkMa+s\ndbF1gRQCXdcoaBqZlByZLnHvfJVPHJ2iG8S8vNrB1JWI1s7E43othHfD3mrw/HpGvVvHru4Zy/O5\nDx7giy+uKMdlG0PhuO3PH5+r8NHDk9R6Ibom+NmHFtgzludT98zw7JUmUaqIEXRdI0tVwjNSsPAG\n2OteGLN3tMCeEY9qXhELOIZOpWBycbPHmbUujmkggFhK/s775kHARifg6cUGmlBJ611TBSxdZ7Mb\nIDSNuUqOzW7ActOjkjOwDQWfODieZ/94mVJOp+FGjJdsVto+BcsYDmS+EwxL289wNzrOt9Nud5/u\nHS0wWXKUOOKO/fn48ZkhnKLpRozkLCSSwMmIkxTL0PHjhCSQaJqg5cecnK9weLqMHyW8ut4jkZJa\nN2S8YGMP1OFNQ+PHT85S60Wc3+rScWNsI8I2Bd0wIooVYUK5YPL3P3qQk3tG+O1vLhI5JvMjOUq2\nwbmtHhvdACHhkQOjamjavp3j571rp1bafP7pq/zd9+/l0GTxTi/nu7ZPHp/m2EyZf/mVC3z63lkM\nXbvTS9o1dn335+vnaxRsjX1jIzimPqS9/vjRKWarOZ5fanFkqsTp9Q5bvT77xwp0g4RHDowjpWSs\naFGwDFZbHt9ebFDrh/SCiDBOh/N6hydLLIwWmC6rmZmpssOXz2xwbLrMkakSZ9c75C2TybLNetvn\noX2jFByd+xdGOD5beR0R01LT48Jml8eOTrMZBYwXbXRNEKcOEyWHj989yasbXVpuxEpLQeeW2x5p\nKpFCzSeNFRzu21MlZ+k8uDDKK2sdpsr2MKjPWwYlx0RD8Mlj068jdXorPv92z523+2x5s+tvxxQr\nTY+rTZc4y8gZOo/sG+X4XOUaJMlnTs5dEz/sHS3wsw8vgIDFWh8JzFdzPHJgjOmKgyEESy3vNe2/\nSM1iT5ccumGCG6bsGcuh6SrhsgyFFipaBifmKlyp9bEsnXovYrmVwIBR9uRchfcfGOfUSocLWz3i\nVOIM1lx0DF5abb82AzVX5SOHJ1TlXMBLK+07xqR8q3Y7p4+2nfgMrIFKEH9gb2A3EkbrhjEn56s8\ntG/0GjrHnQHQffNV/tU3FzGEIJMaHzo0zsP7xoadk52BEsCFrT6NfkS912DPSJ6PHZ4YBkGOodP2\nYg5NFvirM5tomkAT8FP3z3NsoNfQ8WKevtJQbfaqakF7UYIAWv2IIMnoeIoNpOiYkMVEmaJHbHpK\nO2Dbidb64TUvRClnvqEWwrthb8XBfbcdhz1jeX7xA/uH0K9y7vUUxp99YM/rvj/JJGVHsag03Yjp\nioMQOuMlGzdICeOIv3xlnbGCxSXb5Z65Ch+5awJDE/zGExc5v9Xjcq1PNxhw9msa5zd7GJrgxZU2\nqZTYps7R2TJ7R/P89dlNJJKcadDzYy7U+vz/7L13mGT3Wef7OafqVI5dncNM9+Sk0UijnHCQZMv2\nYgtLYJNsWGy4sAbWhuWyXO7eBS4Xc68JhkswaQEbgw0e1oAtyzLYHiErjTSSJmhS59yVw6k6ef84\nXTXVNZ2qp3u6uqe+z6NH0xV/dc77e39v/L5Rn4v3Hevh+M4oaVkjq2gVoo3yIE3TtOwsg6pf05sC\nN0+52nqiHjldTj71uN2rd7ArxHCiYDcXC/Z7RAS+9OoYSVlFM+z9e24qx3ff2oNLEhEFgfFUcZ72\nVGQur3B6PE0yr3Df7lYuz+bJK3a/okeyyyDagz6bwl43uGeglf7WAM8NJuiP+cmUMrQG7F6yW3si\n+NxOXh5OYlgmAY/rppALw7T4pRNnaA24+cQ79m/2ctYFoijwnx/Zx0f+6mW+9MoE33tnfbTl2x3l\n4IRuWRzvb+GugZYKyU/1uX0lnscpCpydynJ3fwy77MLO0FtYKIbJN87PIooC2ZIGQEk1SOQVgh6J\ntx/swLIs9nUGGU8VySsac3mFve1BnhuMk1c0Am6J9x7rRdUtiqqB5jcZT8sABNwSh7vDldl1Q/GC\n3YdXUJnNqTx9fobjO6K0+l2cncxgAW6nSG/ES2fYQ76oEwu4yc8PWxUFAY8k0hn08MjhTroi3spv\nHU4W6Iv6CHo0drcFSOQV7tjZwlS2WKl+uV5s9LmzUkndct8f9kkc643w8nCS9oCHkEdid6ufrqj3\nms8q2w+1ZeU//tDuik1R7jkaS8h86utvUtRMhhMFeiJeWv1uRGy7MFPUcDlFAopd0uZ32eMIfC4H\npmXRFvTQHfGSLKi0+lWbWl1ykFMMYj43Q/E8HSEPI/E8O2I++7M8NhX5mcnM1R6oKlu2PN+q0c//\nepyfpwRB+Brw+fm/vw/4yvov6VpsVbrbpQajLfU7qg2guwdaUDSDF4eTXJrNkZK1ihKtft1Q3CYY\n+OCdO3htPMPh7iDPDSbIKxqDcwXu29XKK6MpXhlLkinqDMT8HOgMLoi6JmUVj+TAJzmYyyn0Rnz0\nhG3mp1dGU7wxnibslSgoGpppM7s4RQdhn0Rb0MWe9kBlPdW0n+VrsNkzldaC9YgKlUu/XhxKUtLK\n102sOCyJ+ebHyvcI4HM76WvxoZsm9+9u5cpcnomUjKIb+Fx2n5jL6aA77OWhvW3sjPn5zpU4qj7P\nuCOrWJZdg9sSkNjfYTeolmdLFL0GJd1gOqsgOUTCHonJTInOkIdDPXbz6619kYpjXI2jvgg7W/yM\nJAsc6QnbSnCRxs+bpVxtM7GUfJZ1zky2xK62AA/sbqWvxcfT56Y5M5lGRMCyrg4wzqs6f/jNy9y6\nI0Jgfkq82ymSljV2tPgoagZFVWc2qzA4l7eZIkU3jxzuxOdy8JU3pnA6RDJFlaDXyYvDCd6cynFH\nfwu39oS5bWd0wRyTwz1h9rYHONwVvink4nMvjPDGRIbf/cCxSk38dsDDB9u5tTfM737jEu+7rccm\nz2gCWF7/lf/9+nia0YRMUlaRVQOwePxYb2Vwqm5ZXJjOcmE6R3/Mz8sjCdIFDQuLTFFDNUxeHU1x\n/55WQh6JeD6Fz2UPN35hOIGqm3QEPUxnFTpDHv7P9xxmOFlgNF7gL58fIeBycPLSHPfvbuW+PTbz\nYLnkKiNr9EV9dITc3N4XJato5FSd3qgPWdF55s0Zon5bz7z31h6GkwW8bjtzkJJVogE3h7vt86N8\nDd59S3cleJYoKAvIg9arKmQjz53VlNSt1Iv0zJuz5BUD1TApaQYs4xhUl8uV/w77JI76IhV7GGyn\nUjftfhtZMZjNKWi6hWFZKLpOSTPoiXpwO0WCHif7OoJ88805Ah4HokOgP+ZjOqvQHrJZ5J4fTKIZ\n9nDUjrCHK/ECLX4XXrcTv2feZhRWlvGtcP7XQ3jw84IgfA/wwPxDn7Es68TGLOsq1mtC82agHiHI\nyBojyQJYEJ03YF4dTZOWNaYzJYbjMnlFoz3oWXAN7InAKpYFJU1nIl1iMl3k3l0xrswVeHM6i6qb\ntAe9qFqBREGhpPkXbLoWnwtRsKNLJV3ntTGZM5MiIhBwOxAEgXRBQRAEHAiEfPbkZ82w+wUOd4UX\n/N6yknttIs2ZyUyFBrHRIwHriWqH7+WRJBdmcsT8bi7OZJlMlzg7mbYZ1kSBTzy8j0M9YXa2+DnW\nG2Eur+AQbGrJvW0BUgUFl0OgoOgEPU4M08IhQl7R+ftTY8zmFCazJRyAaYLLKaJoJi7JQcDl5NJs\nnsG5AlfmChzrjfDwgQ5GkzKSQ8CwLMbTsp0dGk3TF/Px0nBy2SFzZyYylf24FG35zVCu1ogI+8qM\nQeNEfJIdcW3xYQGReQpsa35+jwlYpslcQeG18QyGafGhe3ayo9WPqpl8+l8vUtQMptMlxhJ2ZNnv\ndtIWcuNzORHBHopsGLgdNr1qYJ7mN18yaA1KPH5bL30xn02CMa8X5vIKJy/P8W7v1tHla8FIosBv\nfPVNHtzbync3CDPaekEQBD7+6H4+9Ocv8oWXx/jBe3Zu9pIaCsvpv4ys8eJQkouzOeZyCge77J4N\n3bIqWRiwz/anzkxxacaened1ObgwnUMU7XkunWEvB7tCnBpN8dyVhD1Lx7RoD3nIl3S+dXEOySkS\nGnbyxPE+HtzbxlPzPYEOh0hR0cnag+EqBvXd/S2cGk5iYKKlTF4ZS+FyiKRlm5yB+exOV8jLYDzP\ncLJAf4ufsaSMV3LQFnTx+LEewC6hyys6aVnjgT2tBNxO3PPvBZvYpTowsh723UadO6sN4C71/UnZ\nJq7qCNlMf91hmwFvORlZzO6tfbwj6GEmW2QmoxDPl+yqkbzCwc4gY4o93uTV0TRhjwvVNAh4JPwe\nB28/2MGVuTwzuRJBj0RJM/jOUIKAR6I96MYhwqXZHGlZwyFAZ8hDT8SD3301u7NSv26j6/ZVOT+C\nIDiAZyzLeivwpY1d0kJsxaxBNZYSgtqhp39/aozT42kE4GhvhEOdIeZyCm1BN7M5BQRsQc+VODuR\noSvqrZSTeZwOprJFBtoC9M/3FE1nFfZ1BOkOewl4nJyfypIp6bQFXfjcjmvW0xv1Es/7EAnw9fPT\nBNxOO1thCOyI+eadHXsSvKobHO2JkFd0fujunQuIDMI+iaAsVZRcOa29FSIB64WMrJEraSjzRAki\nAm6HiKLbgx+xLFTdIq/qyIrBF0+N8bPzAx+fmC+Hq47+DSVl9neGeGEowe62AJ1hLz6XgxeGkgzG\n89zWGwHL7u9xOQViAQ/Zksr+zhAGdqnCvbtivDScYiwlc/7fs/TFfPhdTqI+F+c9WfBAJp7nUFcY\nlyQuuc+2+n7cKriebLc9jNZVuUfDyQJuSeT+PW3E8yovDMZxiiIF1WBvm4/xjIKiGRRUg398bZJH\nDnUwlS4SC7gJeJwUVRO/W8TrciAIUFQNvvLGJCOJAopm0hfzsa/DT0kzOT0+h1MUCHodDLQGKiUt\ni+mF7Sw7hmnxiS+8hkMU+OT7j25JauuV8NDeVu7sj/J7/3qJJ473VgY4N7E4yns6V9RwSyKPHuzk\n6fPTtPhdi5YP98V8fOKRAzw/lGAyUyRTUJnJKgS9TkRBwC0JBDxODNNkf3uQZEFFMSyOdIcZSxWQ\nVZPjO6IL2MR2tPhwAOmiilsU2dHiW2BQT6VLOBwCIbebVEElr+jcsdNmJzzYFSLmc/HMmzOcGk1y\naSZHUTUYS8oc642QkFX6W/z0xXx2ZitZYDpT4spcgQvTGW7b0YJHciwgD9oq58n1ltS1+FwEPE76\nor4K9fdyBFBLXZfqx89OZvja2Wm7pFEz6Ax5MBEQgLFUEUU38ToFZEsAwcIhCpiGic9jz/65o7+F\nQ10hAm6bjfPZS3F8Lptc62BniLaQm/4WP1PZEncPtBBwO3lpOMlr4+kViYy2Albl/FiWZQiCYAqC\nEJ4fdHrDsB37BxYbeppTtEpZRG6eg39HzEeL30XM70YU4bnBBJpucnE6z7EdEUqasYCGuaRf7Sk6\n2BXi/FQWWdPxSA6iPheKYdAdsus2RxIFgvLVfpx8SWc6U6Ir4sXtsDeACDgkC8OAaMCNZhh0hT0I\nlkBv1Edvi4+7BmLX/L4Wnwtlnio7OD8TZytEAtYD1fdWwO51eMteF187N81cTsEw7LkqJha5ok7I\nK1UmMJevUfV1Kkf/krLG7rYgT9zeV2k2DLklhuJ5RlIFdrT4ONwd5qXhBG6niGn5eeRgBzPZEjOZ\nEl8fT3N5roCiGThEgV1tft52sIPeqBfJKeJx2MwuBUWnNXBtP0b1jILtth8bDdeb7a7VmeXI7GA8\nj2HalOmyonNLbylXsIYAACAASURBVJgH97bzP54bsgMtfhdBjxO/y0nE72IwXmA2bTtGim4gCgJB\nj5OBWIBEQaGoGuQVnUszOSSHyA/cvRNZs2vLTdPODtRmmG8W2fmjb13h5ZEUv/N9x+yI+TaEIAh8\n/JH9fPBPnudzL4zyHx8Y2OwlNRRqA5zlPV2eu4YE9+1uXVDOXou+mI+QV+LvT43x+ngaAQvLgvaQ\niydv76Mn6iPoligZBZvqWhIoqDptAQ8WkFW0yl7LzLPPPbi/DY/TAQJ43c4FBvVEsgjYZVSabrOS\nlcv2y1kay4LTo2m8LgfxvF1+VS6FG0vKPEgbLw4lOTuRZTxVnLcBbPKmuwbarhkOuhV0wvWWctX7\n/qV0ZfXjM5kSszmFqM+FIEBJtwCT7rCXgTYfzw8msUyb3KakGZgWyIpOR8iDQxC4b1es0gs8PFew\nZUUUyZd0ju+MgCCgWfbolHJPt6uc9ZvL8/pEellm0kZHPT0/eeANQRC+DhTKD1qW9dPrvqoqbJX6\nwdWiMsm9pLOrzR7khQVBt8SVuQK6bhL2SETn62Srp0N/481ZnKLAK2NJBOwhhBUa5pqeoqSsciWe\npyvkJZG3JwWX52sMxwuouknYJ107x6Y7xH+4pZvRlIwoCLw+nubcVBa3y4GAxe077AhALWHDWEJm\nOFkg5nOhW3YkQtEMNMMkW9S2/H1bLWojNkGvRF/Mx5PH+xhJFsgXbcf2u/a18dTZKTwuBwJQVPRF\n657L0b9yeUFfzI7UnZnMkFU0O0s4X/pgmCZ3DsQ4viPKuaksWcWmJ1Z0g8lMCUWz+fsdDrunI11Q\nOdwVZiJVtBnkWv3s7whiWFblnmVkjbOTGZ69HLfLmjzXstc1sb643mjoYjrz3d5uvjMYZ3iugGaY\niIgEPS4Odob48H0DfPPNWSI+iclM0aZRFQR6o17Ssoph2QaY5BDpCnnwup2MpmQ0w8TvtmnTDcMk\nnlOYzSrkSvb7a6mst5suXwrPXorzqacv8B9u7ea9x7ZXuVst7t0d4/49Mf7wm5f5wJ19+G8SBr+V\nsFiAM6/oFYbMe3bFrnEClkLYJ3FnfwvZks4Du1sZScjcv6e10rf7xPE+7hxoqZTMl3UzcI3zlS/p\njMRldsS8tAWuztlSNZMzk2n8Hie37YiiG3YJ3jsOdS6wKQzLojXgJuSV8EgOJtIyM5kSe9r9hFrs\nktezkxlM037dZLpETtGZySnsaPVf4+RtJZ1wvQHcekltHtzTVjn3y++rbi3AgtPjaTTdpDXg5p6B\nKINxmV1tfjySk12tfhyiSLqg2Cx8koPZnMpD+9qJ+CUS87Tpfo8T07QIe5wUFHu8xni6xHtu6SIh\nq8Tm73058HluMsNrExmKmp3126oZoHo01Ze4wSVvZWyHrEFG1hhJFHhpOIlhWQsa/nbG/OyM+TnY\nFbKNTJ9k18Tf0l2pAd6Jn6DHZktK5FVeHklyV38Ljx/ruUbZwcIIQdAtEXDbwj+akCnpBmcmMjx2\npGvhHJuqGSOHesIMxQvM5ErsbQ8yGC9w90BLhcGl+n5UGEdUk+lskdt3RJnKlGySBNXgxOlxPnTv\nwJa/h6tBbcSm3MzpFIQFvTLvvqWb7oiXE6cnwLL4zMkrS87N6Yv5riktrGX8OzeVJVey8EoOe5js\nPCW6A4G5nEIs4CJf1CnqOl7BQU/Ey5PH++iL+XjieB8jiQLT2RInXh1HFEWeOjPFRx/czXODCZ67\nEq/Upu9pC1xTm97E+mI9MiSL6czLs3leHE6SKWp0RzxYllUZRLy7PcCd/S1EfS5SRZWn3pgmU9Tx\nuyRCPnvavGaYKKbBO/d28cCeVv7ljUnOTWYZnM0jKwZ/evIKHWEPrUEPmm6im9eyOG0HXb4cxpIy\nH/v8K+xpD/Ab33PLtix3q8XHH9nP+//wOf7yO8P85Fv2bPZyGgK1AYx8UefcZAbdBKcIjx3uWtXc\nu3L2KOpz0RGyBxj3tvgYTcpM50qVs6Q8ALUW1cRIhmXREfJgWvYIi+rdaVdj2yVTt++I2hTLNQxe\n5VJu07LwSiIxv4sL01laA26+fXGOCzM5fG4nkkNAVgw00+KWnjAzuSLdUQ++Jcoit7tOqAfVFRbl\nXqixpHxNf+SZiQypgkrEJ9EZ9BANuJhKl3A7HYwki7znli7GUjIhj4TbKdId8SI5RMaSMm6nPYYk\n5nNxbsqWSUUzaAt4cAj22eCWRJ55cxaPU+TcVKZimxzrjfDFU2M4BIF4XsErORq2VHElrOj8CIKw\nw7KsUcuy/vJGLGg7oLZevxwFmskqDMbzPHygA7qvneTeFfHSFfEsGvEN+67OD/iufW1MZxXu7G+p\nKNDaSNODe9o40h2u0CICPHN+hpdHUuimPZn5/FSWHTHfknNsykZYeTZBNYNLeU1wlXGkLeRmJCmj\naCYFRUcxDHojfjxbeIPUi2rHpFqB2XOeRHa1Bir3FiDqtwe+XZzNLzk3Z6nvqT7Y3JJIfyzMVLbI\nSKJQYZrLyBq6YdIWcONzOQh7JQ53hemJeglWsU+dmcxwcTrHWKrIbX0RBuMFnjozhWpaxPwu8iWd\n2ZxCb9TXsKUJ2wUbEQ1Nynb9vs/lQFZ18opBpqgt6A0qZyn1uEXEJ5EoOJjNl9gVC3BLT5gTp8eZ\nTit85tlBPvHwPv7LOw7yZ88Oki3q7G4PcGE6S7qg0RO19U1e0Xl9PA0WyxJobBekZZUf+8uX0U2L\nP/6hO26aLMjxnVHedqCdP/7WID94z84tyWq33oyytQGMgMdZGU5eKOmronde7EzXLYtcSat7jkp5\nPYNxuzyuuhcIwC2JtAX8fOPNGXTTpD3oYWfMv2Ad+ZJOumiTFzx2uIvnhxKMpYrs6whyejxJ0CPx\n1v3tZBWN23dEeXkkSUExMLDY1xZkJGVnhe7b07plGXw3EtfOhVxoL1QzwOVLOnPzlOcel0hbwMN4\nqsjejiDDiQJel4NjvRFyisauVj+Pzmfwyr3E5UzeQGsARTO5OJPF73YyV1BoDbgQAI9TxO9xUtRM\niqpdNTKaknFLDnsor6zRFjS3rD2wGu38j8DtAIIg/INlWe/f2CVtbSxWr1+OAu1q9TMUzzOUyNMe\n9FxTL7lSxLd6fkBHyF1RTrAw0jQYz3Pi9ARRv7SAkevKXJ60bA9Iawu5ObYjwuGucGVT1Do1tYZ8\nOXNVntxbVsYxnwunaE/4zZdUpnMl3JKDHS0+OsOeRZs5tzPKjkk52lY956k6I5QqqnYkbYW5OSuh\nVm4QIF/SEUU729Tf6md/R4gH9rYS8Up85uQVLs7mOXlpjo8+uLuS/j7QGeKl4ST/fiVOSTMQBXA7\n7XkAtiL2L8tQ08T6Yb2joS0+l01zjc3c4/c4eev+dubyyjX6xikIpIsa8byCYAlE/C48Lgcep5OC\nqjOTLvHZF0b4hXce5J2HO/nX8zNcns2haAadQTfjSZnDPXYp5sWZXIXE5cnjfdtWdmRV50f/x0sM\nxQv8xY/cedNlRj/+yD7e83vP8mcnh/jPj+zb7OXUhY1glF0sO18OSAU8q9PxtdmjcsZ9LXNUKuVS\niQKhYeeCXiAARTN5dSaFapgMxAILSBLKxvZYSiYla7w8kuRwd5h7BmL825uznJ1K43U66Yl6GUrk\nCc7PD+qL+jg7lUEfNvnH1yawLJjLqkS8UqXXZKsx+NaD2p6vlZy9xeZCLnaPnfNn/WzOzryMp0pg\nwXTG7tfySiKHu8Lcu6t12e/MFjWG4nkyRZ2ZbImARyLolihqBu852s3p8TTxnMJ0pohl2RnLnKwx\nmS6iGuaWtwdW4/xU5+13bdRC1hubFVlYrF6/OoNytDeyZIPjShHf5Z6vNoDLRAjlNYwkC2SKGh6n\nPfxwNqewvyPI4a5wheygOrVZrYzK/6/NXM3kSgscrI8+uJuzU1mGOoL0tPgolHS7rtm7urrm7Yil\n5jxVZ4QE4J5dMR470rWgfLGeuQe1cpEtapybypAu2rSXb9nXjmaZdEW8jKdkdBP6Y34uzeT44qkx\nuiJe+/53hblnV4zpXBGnYA+0dc1PhQ56JNqC7srA1mbkbmsh7JMqU8IN06It6K6QldRmqU9ensO0\n7LKYRw51oFsWIY9ESTe4PJvHIcBYyp5UvrPFz1sOtHNxOkdB0WkPeUiXVIqqgSTqC0hcaiPU20WG\nciWNj/7VKU6PpfmDHzjO/fNzU24mHOkJ887DnfzZs0P84D07aQu6N3tJq8ZGMY7VBjDqzeYuFQxd\na2Y47LPnxOyM+a/Z8wLgkRyIwEyutCAIV57/k5I1oj4XHslR6TkZaPOTK9kjGLySA82wbKKFolY5\n44qqQcjt4mBXkKlsibNT2QWB2q3eOL+YHqt2qBXNRIBK0HgpZ281cyHL+jnidTE4lydbUsmXDDrD\nHu7f3cpAW4B7BmKViqDq910zVN2yONQdRkDg25dmSRft+U5dES/eeTvw9Yk0FtAadDOWkBEdIm8/\n0MFgvMDbD7SvqnSzUbEa56e2NPS6IAhCP/ACcB5QLct69Ho/sxabORtoMYVVj7JaKeK71POLlVuV\nh42+OJTEnJ8cvas1QG/UV+kVMiwLv8eJbrJk2VVt5ur8dAZFM4n4rpbMeN1OHj3UWbnu5V6mrarQ\n1gNL3ffqjFB1uRGsXXar5SIpqxzqDqNoJi8NJxlO2mxwLT4XTkHAKcJwooBuWUT8Lna1zpNddIV4\n7EgXT5+b5vR4mlxJozfioysiXVOut1Vnb93M6Iv5+PGHdl8jj4vt9YOdYYbjMhemc/TOMwm+79Ye\nfjdxiaDXSaaokS/aDk1H2MPe9iD/8/QE6ZJKb8RPa9BmfMyWbMNqoHXhbLGtPL+tGvG8wof/4kXO\nT+X4re89xjuPdG72kjYNP//O/Tzz2zP8f1+7wCefOLrZy1k1bhQLYb3Z3MXOj2ojdq3Zxdp1lFm8\n7uhvocXvuqYcP+yTePxYDydOj+ORHDgEgReHkuRKOqNJmYcPdDCUyKMZdo9PmV6/fMYlCyozOYWp\nbAmnCIe7QpweTzMYz3NuMgMWW7Zxfik9Vu1QvzGRQRAsjsQiK84IWslOLH/u4e4wRdUgU1QxTJBV\nA0/UtsFq37fUGlt8NsW6YVncPRBDVnUivqu062GfxNGeCGNJGcOyA2ZlBsGgxwnC1Xk/WxGrcX5u\nFQQhi50B8s7/m/m/LcuyQmv43q9blvWDa3jfqlBvJGepCORaIpO1TkjthN71wmJrq/6Od3u7KzMF\nXptILxgsVlZsGdlOfedL+rJlV9WZq70dQYqqQdTnZDCex+tyLNgsW4W55UZhsfu+2GFbmQFR0lYl\nu8vJZvnzL87m8LkciPMliuW1lNnjYj4Xp8fTlbkLMZ+L4WSBe3fFFrAHlR3p8lq3ymyGJq7FSnrI\nHpqskcqriAIVNkKA3e0BDnQGsSy7zAuu0toP5goc6g5hWhDxSQTcNitgqqhWGA6rsR1k6Nxklp/4\n7ClmcyX+5IeP87YDHZu9pE3F7rYAP3J/P386n/25pTe82UtaFRr53Krer+sdMFhsfEE16VE1+mI+\nPnTvwAKboi3g58J0llfGkgTcEpZlMTiXr9BiX5zOcWYyTdAt8YmH9y2YA9QT9fH6hN0PWGa9XQ8d\ncKOzyUvpsQWEUx4nAqzoXK+09oyskStqqPMEVW1BN61BN6ZlUdKMJUvQllpj2FfFKLfXT8grLWpT\n1pZvltsftvq8nxWdH8uyNmJy2VsFQTgJfMmyrN9e7w+vJ5Kz2km69dzg6lKx9VBUSxEoVH82LCxf\nKf9XpkWuHixWHUEq9+08dqSLlKwuKHKs/t7yBqh2pjyS45ooURMrYzGFUpsiX052V5LNsO8qNequ\nVr89GHcqw1hKJuBxEvW6KsQFPVEfSVllNlPit565gCiI+Fwin3jkQEUZLkZtvRVmMzRRH8olFR5J\nZDiepz3k4WBnqFL/vzPm53BPmJeGkoDAK2MpHKLA4Fwet1OgN3q1sbYsEylZ5fx0FpckcmYysyDq\nuJwMNXpJ3IlXx/nFL71B2CvxNx+5h9t3RDd7SQ2Bj719LydeneC//9NZvvgT924Ztrv1Dk5uBNYS\nMFiq7wRYlExhuf1WvkZjCZlUQSOZVxEFAdESGJorsL8rSEk3eGxPFyGvREpWmUwV6Y566Yn6ONQT\nXvBZ5axCvefIcsHqG51NXm1pIizf87Pc2quZgl2SiAXc2hsh6nVVbLal5kTVrlHVTHJFjYysAdht\nD4rOq6MpHj/WW+kpKzPUlmWiOssYlKXKvJ+tGriC+qiu1wtTwD5AAf6nIAjfsCzr9fKTgiB8FPgo\nwI4dO9b0BfVEcpZSKNcbmVyvyOZyBArVPT21NMpLee7LOU/lGt0zExke3NNW+bv8mkqzZdmZmo/w\nlLNb0CyHWi2qD9vaMrhbeyLL9kotJ1u11KgzuRKnR1O8MJiwB1mG3LgdIsf6ogQ8dl1vi8/FX31n\niOmMzfQCcHYqQ7KgrlqmmtgaWM6pKMtVR9DDK6MpVF0hUVA51hupvP74jiivjqaI+V28OpriWxfm\nKGoGfreTiN+9oCm7tk+wuol6ORlq5JK4kmbwf//Lef76+RHuHmjh97//9i3V37LRCHkkfv4d+/mF\nf3iDL748zvfe2bfZS9o2WG1QdzG65Nq+kyM94UXJFFZCdYBkKl3kQGeQWNDNXEGl1e/GxEK3LM5O\nZPj2pTncDgeX43nu29XKfXsX9sKt5RxZTjdsRjZ5ud9Q61CvxQ4t/97RpMylmSwPH+wESQRYYJ+V\nSa2WW+NIssCLQ0lem0hzZjJTmT01liySklVOnJ7g8WM9FYfo3KTdB1y2E8rrv1FlohuNG+78WJal\nYDs+CILwz8AR4PWq5z8DfAbgjjvuWHOP0WojOUvdyHpvcK1RsV4CshyBQoXdy2LZTb9YjW/t62Hh\nZwwnC5UBWPmqZuXasr7qDXikO3zDlc92QO39XKlXqvb11bOEnj43TU7RCLolHj3UyXCyQDKvMpEp\n4i7p9pRnzcTvudrfBRD1uvC77YndnWE3IY/EXF5ZtUw10fhYyakoy9VQIo/LIfKWve1MZUvc2d+y\n4HUCFliQV3UcIrQGXcxkFEbmZRCu7RMsM1xW68GlZKhRS+LOTWb5mb99lUuzeT7y4AD/5Z0HkBzi\nZi+r4fDk8T6+9MoEv/ov53hoXxudYc9mL2lbYDXOwkK65KsDzGv7TrDWlr0fSRaYzZUYiNl9omlZ\nYywhY5rWgrL5C9NZLAt8bgelgkFW0Zb8TesVVN4so3y1v2E1peq1ay8z7SULKrM5la+8McUtvRF2\nt+p16ciwTyIoS7irMjZYdjAnJatEfRIep1jp1fK75vvAPdf2gW+X4OcNd34EQQhalpWb//N+4Pdu\n9BqqsdSNrOcGL2VUrIeArIZAAahkY1az6Rf7zGxRI1WwWZrK/R/lAVhOER470rXgmoV90jUZC4Rm\nOdRaUK+sLOWATqWLDM4ViAXcXJkrcOdAC0d7IlyczjGcKKBoBiGvE7dTpFCy+zDKlNs+t5P7d7eS\nKqo8eXsfPVEfw4lC815uI6zkVFRHCAPuJJplLqDUz8ga56aySA4HcVnllu4wwwmZfFFHN006Q157\nOLO3e0Gf4HIMl4uh0SKLpmnx5/8+xG8+dYGwT+KvfvQuHtrXtqlramSIosAn33+Ud/7ut/mlE2/w\npx+6Y8uUvzU6VjK0q/d49QDz2r6T8mD1erMuLw4lGZwrcGWuwP6OIF6Xg4Ki0Rn2cKQ7zOHuMGGf\nPUuuL+qjqOv0RX0c7lqf/q/ldEMjG+WrKVVfbO1lpj1ZNdjTFiBeUCiqOs9ensPnss331erIxYKs\njx/r5cTpCTxOsVLJM5aUySvzfeDzdkLt52+H4OdmlL09KAjCr2Jnf05alvXCJqxhAZa6kau9wcs1\nlF2vgCznnFV/9lqN57JQn7w8h8fpoKSZlaGnh7rD+F32bI/FhrJds5la/OxsqU+hNmGjXllZzAGd\nSNn8+zDfumXZr3vieB93DrSQn1dkUa9rUcrtt+xvX5B1atSDpIm1YTVORdg3T4e7yD5OyipuSeSx\nI10Mxgvc3d/CqbEUV2bz+D0O9ncGK6VtA63+NctPIxkxM9kSP/fF1zh5Kc4jhzr45PuP0uJvBgJW\nQn+rn59/xwF+9Z/P8bkXRvnBe3Zu9pJuClTv8YDbuWCAOVzbd1Jv1sUtXaU63tMWYDQlM5s1Sckq\nL4+kKoPQ+2I+fvGxg3Yz/TzJwXpgJd3QqEb5arLZi6097LvKtFdQDGTNoKAYzOVVdrT4eGhv26pZ\ndRe7dmGfxIfu7V/wWJks67HD11JtbydsRtnbV4Cv3Ojv3Uhcb6RyuXToaht/12o8w9WekzLrSlng\nyzSISw3eXM4x2yg0eiP0StjISeJtATcBtxPNsOu3yxH7skFbi8Uot5ulbRuLzZTf63UqqrM5HSE3\nAY+TiM+e6v7MmzMMxgt0hNwLmn7X+hs3W/Ysy+Jf3pjil//xDEXN4Ncfv4UP3tXXzGDUgR+5r59v\nX5zjV/7pHMf6IhzpaQz2t61+hlSj9resxjlYK2r3/+HuMBdncwvKpqqN+r6Yb0PmwKy3bliMUGq9\n5eN6bMQy095IosBTZ6cZTcpEfRIRr3TNmb0SlnKwbsZzfzMyP9sO12NUrMTysVyqtJ5NWm+96Wp/\n043cKI3cCL0a1Lv+1dzfxbJ4q5WJpRTydjIOGgmNIL/V+7Ve1qSlym2zisax3gh39rcQ9bkqfWRb\nVXZmsiV++R/P8PS5GY72hvmt7z3GnvbAZi9ry0EUBX77+47x7k+f5H/73Cn+8SfvJxbYXHKIRtiD\n64XVsL6uJxazCWrLplp8ri11ftRew8WInq73N9Qy667lupQDmFGf65rrvR7YSvdsvdB0ftYJa3UC\nlkuHrsTqtVolvtZ600aLADRqI/RqUc/667m/i0VuVoPF7vt2Mg4aDY0kv2tlTVqu3Ba2NtujrOr8\n2ckh/vjbg2iGyX991wF+9P4BnE1SgzWjxe/iD37gdj7wmef50b98mc9/5O5Kr8JmoJH24PWiHtbX\n9ULt/rezEv1bVgfUXsPq4azrIR/rfZ7WXu/1uLY365nf1OqbjOXSocs9V71pq1m7apGRNV6fSJMv\n6cu+NuyTGGhdXe3oZqHRGqHrRT3rX+39vV6EfTYzYVJWK9GfG/G9NyMaSX6Xu8/1rLNafkYShS0p\nO7PZEr/zzEUe+s1v8qmvX+S+3TG+9rMP8dGHdjcdn3XAbTui/P73384b42l+/K9PUVSNTVtLI+3B\n68VyrK+btf+22vlRew37W/zrKh8bcT3W21ZbbI3lWT/leUDbEc3MzyZjufKy5Z5bjRIve/R5Refc\nVAagrlRpo6VCr7dnYbNRz/pbfC4UzeSNiQzBdUxv12KxtP92MQ4aDY0kv4vpj8WGGtfDdKlqJhYr\nTzLfbMiqzrnJLK+Mpnjm/CwvDycxLfiufW187G17uKO/ZbOXuO1QJov4hX94nR/6sxf40w/dQWQT\n5KNR9uB6nK1LlaHeyP231c+PxeSh3PC/HvKxFZzt2jU6BWHRTFCj2YPXi6bz0wBYrrxsqedWo8Sv\nztqw69UPdoU42hNZleBuRH/KeqDRSvHqRT3rFwBBsJnYNgplGQm5JQbjBVKy2hDGwXZFo8jvYoZT\n7X5fzdDD2rKRW3sjBD1LD+gt40bpi1RB5fxUlnPz/52dyHJpNoc5T155oDPIf3rrHh6/vXdVv7eJ\ntePJO/rwu5387N+e5t2ffpZPf/A2ju+M3vB1bPYeXM8yo+XKUG/Eb6zd/7pl1RU4aYRzZiMb/hvF\n2V4OtWtcrDQUli9nbJR7WQ+azs86YLNu/EqbtJb2cjnHp/Y3bFR/ShOrQ1JWcUliZSjdRtWmlzNM\n3xiawQJCw06ia4hObUXld7OjWn/UMv+tVt6cgkCqoFFUDAIe56pm+SwWLV4vStW8ovP8lQQnL81x\n8nKcwblC5bn2oJtD3SHecaSToz1hjvaGaQ81B3DeSLzrli66I14+9vlXePKPnuP77uzjZ96+76Ya\nhLqRfUc32rFbiiypuje5HlKVamyXM2Wzne3VIlfSyBU1oovc0/XqP28krMr5EQTBAXzSsqyf2+D1\nbDk08o1fTdQhI2uMJAu8OJTELYmV37DW/pSt3kTaKLhR6fKwT+KugRbyisZALMBMtsSJ0+NE/a5V\nH0qNvAeaWB3WIm8ZWbPng0kiJc3gsT1dqyqPqNYXg3P5FeVtORimxevjaZ69FOfkpTivjKbQTQuP\nJHLPrhhPHu/jSE+Ig10hWjeZaawJG8f6IvzLTz/I7z5zib98bpgvvDzOwwfbefRQJw/ubd32DulW\nKIVaLZazMcYS8gJmstWSqkBj21WNjLU4jBlZ4+9PjXF6PI0AHO2N8I5DndcEpFbTf76V7L9VOT+W\nZRmCIDyw0YvZimj0G79c1KGsYGZzJQbnCrz9QMeahhRuJ2XeKLiR6fKdLX7agx6yikZJN/FIjroO\npUbfA02sjLXIW3VZbbnkZTVGS7W+WEneVsKH/+JFTl6KA3CkJ8RHHtrFg3tbOb4zitvpqO8iNHHD\nEPJI/PJ7DvHh+/r57PMj/MMr43zt7AwArQE3BzqD9LX46A576Ip46Q576Ax76Ah58Lu3dsHKViiF\nqgeL2RgZWePE6XEuzuSJ+iT6or4Fe3slm6F5ptSPtTqMSVklp2iEPPZrcyV7qH11GfD19p83IurR\nIq8KgvBl4ItApZbAsqwvrfuqthC26o0HGEkWmM2V6Ah6uDJXWPOQwu2mzBsF65kuXy4iVH3/nILA\nyctzdR1KW3kPNHEV9cpb9X1XNZNcUSNX0lY1yXy18rYSfvCenTx5Rx/3745t+gyZJupHX4uPX3zX\nQX7hnQc4N5Xl+cEEb07nuDiT42tnp0kWrmXHOtob5sv/aWvHYrdKKdRakZRVLOxswUxWoS3oWbC3\nV7IZmmdKXsUDuwAAIABJREFU/Virw9jicxF0S5yfyqEZJp1hz6LX+3r6zxsR9Tg/HiABvK3qMQu4\nqZ2frXrjM7LGi0NJBucKXJkrsL8jyEN729gZWxuF4nZX5lsZq4kIVd+/5dhulqrx3op7oInrQ/m+\nl8tmX5tIo2gmAiszvq1W3lbCOw53Xu/PaKIBIIoCR3rCHOkJL3i8pBlMZUpMpYtMZ0vM5hR8rmZG\nr9HhFASG5vKUdBPDMnn4QPuyZ04tmmdK/Virwxj2STx6qJNEQcU0LbxS/ftrK9p/q3Z+LMv6kY1c\nyFbGVrzxSVnFLYm8/UAHg/ECD+1t42hfZLOX1cQGoN6I0FoOpa24B5q4foR9EkFZwi2JVxnfeiIE\nvSszvlV/RlN2mlgMHsnBQKu/ycS3xaBbFoe6wvg9TgolHe8aShWbeqE+XI/DqFsWXRHPTVVmuGqJ\nFARhH/CHQIdlWUcEQTgKfLdlWb+2YatrYsNQjhJkFY2OkJudsebhsl2x3iUEzUOpiWrUytdas8dN\nNNHE9kCLz0XA48SwrLpmCzZxfVjr2XwzlhkKlmWt7oWC8C3g54E/tizrtvnHzliWdWSjFtfa2mr1\n9/dv1Mc3sQIM00I3LZyigEO8dtrMSs+vJ4aHh2nKwtpwI+9Tvah3bU05uDlQKxe1f99oOWiEPdQI\na2g0NPVBE9CUg+tBvXql0fXQqVOnLMuyxJVeV08u0mdZ1ouCsODH6nWvrA709/fz8ssvb+RXNLEE\nVuoTudFUlHfccUdTFtaARqYMXcvamnKw/bHYHKCTl+cWyMnbH7r3hslBI+yhRlhDI6KpD5qAphys\nFWsZZt/oekgQhFdW87oVvaMqxAVB2I1NcoAgCE8AU2tYWxNbANV9IoZlVab8rvb5JhoDjXyfGnlt\nTWweauViOFnYVDlpBDlthDU00XhIFVSeOjPNl14Z5+xkhtVW8jTRBNSvV7aTHqon8/NTwGeAA4Ig\nTABDwA8s9wZBELqBfwYOAQHLsnRBEH4eeC8wAnzYsixtTStvYkOxUg3oamtEt8uU5q2KRqvlrZaH\nRltbE40BpyCQKmgUFYOAx0l/i5+xpLxpctIIcrqea2jq5K0P07T4w29d4ff+9RIlzaw8frArxC8+\ndoCH9rVt4uqa2CpYSa/U6opG0IXrhXrY3gaBhwVB8AOiZVm5VbwtCbwdOAEgCEI78FbLsh4QBOEX\ngPdhzw3a0tiOh8lKzCGrYRZZrHyldmpwExuLG0UZupo9sFjKvHreSzmK1JSNmwvVspMtapw4PYFl\nWZR0g8f2dNEX89VNh72eOrkRaHfXaw3XU7ayHc+5rQjTtPjEF1/jxKsTvOuWTv7jAwNEfC5eHEry\nmW8P8sN//iI/cn8/v/Sugzgd9RT3NHGzoXbmWvUZvJSuWK0eanR9UQ/bWwz4b8ADgCUIwrPAr1iW\nlVjqPZZllYBSVZ/QHcA35//9DHbmaEs7P1uhBnK1qBXW8u+oTm3WPl/bB1T9fHWKdHAuz4nT40T9\nri1/nbYaNpqdrXoPqJrJnf0t7Iz5yRY1hpMF+lv89MV8i1Julylsl9pDja5Am6gfYwmZs1MZQh6J\niFfimTdn8EgOREEgWVAYTRYrU+H1+TKeemR4I3TydmE4TMoqeUXH73KSV/QFlLZL7bWMrDGSKPDS\ncBKXJDb19ybjd75xiROvTvDxR/bxsbftoWxf7W4L8PhtPfzGV9/kL/59mLFkkd/74G14m3ORmqjB\nYnu9Vmcudl4Dy57HYwmZ4WSBmM/F6fF0Q9vF9ZS9/S3wbeD983//APB3wMN1fEYEyM7/OzP/9wII\ngvBR4KMAO3bsqOOjNwdrnap7I7Cc4Vj73GIGA7DAqLUA9xKH32Lvr06RlnQTj+RoyOu0nbAZzkJ5\nD4TcEs8MzZAt6UgOgXOTGQzTniHwiYf30RP1LZoyX2oPLSWTTWwNLKZjzk5m+It/H2I6W8I0LSI+\nCb9boiPkwedyIAgQ9blIySptQXNNZRWNrJPXiqX2wmr3evleFBWdc5MZdBOcIjx2uGvJz6/egzNZ\nhcF4nocPdJBVtG1xTbciXhlN8fv/eonvub1ngeNThkdy8H9992F2tfn5b18+y0989hR/8sN34HI2\nM0BbCRt5ji+215OySr6k4/c4yZf0yndXn9dOQVg2qDSWkPnU199EN6GoGRztDXO4K9ywOrge56fL\nsqxfrfr71wRB+L46vy8D9M7/OwSka19gWdZnsHuLuOOOOxq+e6/RaiDLm8YpCNcwJFVH+Goj9cCi\nXn75sTOTaSxLoD8WZjCe5/WJNEd7IguyQ4tF9atTqicvzzXMddqOWAtzS70KNiNrjCQLYFGZ51Le\nA0OJPAKwq9XPq6MpskUdp1MgnlP54qkxfvbh/YumzJfaQ0tFnppofNTK4rHeCP/8xiSXZ3O8OZ2j\nO+yloBmUNJPWgEhKVgl6fMT8Llr8Fm1BF48f69m2Myvq3Xu1e2EkWeDMROaabOtK5cepgsqu1gCx\noJt4TmE4WSDklZZ0GMuP72r1MxTPM5TI0x70NOQ13e4wTItfOnGGzpCH//7dh69xfKrxw/f243KI\n/O9feoOPf+E0n/7AbYgNSEu8HXG9jstGVxMtttedgsC5qatBkQf2tDJS0uiP+Ql4nOxs8a8YVBpO\nFtBN6I/5uTSTI11QG1oH1+P8PC0IwgeAL8z//QTwtTq/7yXgJ4HfxM4YPV/n+xsOm10PXr3RgKpD\nTsMjiexqDTA4t9BZqY3Uz+UUcoqGolqkYiqtQXfl8xyCwGA8j6pbeF0ig/E85yYzYMFYUq5sTLtJ\nWaWoGgTcV4eaVZeL1Fu330R9qCfivVw/VvmzqiP2ZQX59LlpXhpOUlAN9rUH+PB9A/TFfDy4p42z\nUxmcoshMrmTPZsEindPwu51E/K6KQ7za/rGtYMQ2cS0yssZ3BuOMJmQOdoUYThT4g29d5s2pHOmi\nhqzo5EsGQa+TrqCH7ogXr8vJ48d6Kob49eiI5erY1xNrNXLqMW6q9155L6iayWSqSF7R6Qh6KtnW\njpCbY70RErJaKTXNyBqvT6TJKzq7WgMUVdvhLCg6Q/E8XsnBWFLmwT1ti+616mHYR3sj3DXQws6W\n5hDbzcCJVyc4P5Xl0x+8jaBn5ev/gbt2kC5q/MZX32RXW4CPP7LvBqzy5sZ6OC7Xm7leTC9V65Fc\nUUPVzAUZneFkgYHWAK0BN+Npmc++MEJSVnE5RI72RtjZ4l9wHquaSa6okZG1io3gQMA0LYYTBbwu\nkSeP9+GdtwUbUV/U4/x8BPhZ4LPzf4tAQRCEHwcsy7JCtW8QBEECvgrciu0o/Vfg2/P9QqPA71zH\n2hsGy9WD38j05ZGecGXTpPIqU+kSJdVgMJ4H4aqzUh2p13STsaTMq2MpXE6RkaSHn3t0f2WtD+5p\n48TpCSJeCdUwcTtth2pXW2BBNP7k5Tk8TgclzeSxw22L/tbtUjffqKjHWah2gM9PZfl8apSuiKdS\n3miaFiXd5OED7Tw3mCBX0tF0k5SsMpqUyZV0ZrJF3JKDD965o5JlBEgXNLuMSXKQkBU6wl7aAu5l\n17OYbGx2YKGJ+pGRNf7+1BgvjSQZS8icGkmiGxa6YTKVLqLP6ypRgLBHIuh1IiDw+LEe+mI+YH2c\nlKXq2NdLhpYrE1tJXpcr86wNOnzx1Bi5kk7Q4+QdhzpJFVVeHEoympQ5N5UhGVYr2dbhRIFPPXMB\nr+TENC3ed1sPY0kZw7Q4N5UBIOB28tjhNobns7dlPa5b1qJ7rbkHGwOaYfLbX7/I0d4w77mla9Xv\n+/GHdnF5Ns+nv3GJw90h3nG4cwNX2cR6lNxeT9CvrH9zikbQLfHE8T7A1oP5ks65qQyHusOIgsDu\nWACAp89NY1gWQ/E8ABdnciiqiWqY7Iz5iOcUvjMYpzvs5cE9bRUd9NpEmjOTmQVz2A52h9jbHuBw\nV7iizxsV9bC9Bev98Hka69qeoBeAT9b7WVsR68Gs4xSEJRnSajca1nymZi7PYDzPQFuAVEGlK+zF\n73Iyl1MqGaB339LNSLKAqlucGk0iCiKiIJAuqjx1booDXSHCPgndsoj67czO18/PsLPFS0rW8EgO\nAh7bq6+URlQdpE3ceIR9Eg/uaauQDCwnay0+F4pm8o2hGdKyBpj0RbtJKFolMjybVbg4k6WoGrT4\nXYylimSLGtOZEiYWUb8Pw1w4hyWRV5CcYkUWHjncSdArrdlwajrMWwflLMNcXiHoso+W0WQBURRR\nNAPVMDFMcEgCJhbtITcdYS+SU9wQnbGRvT9LlWSuRt+XjZvBuTwl3cQpCIueFWcnMzx3JU7M5yKv\n6PRGvHRHvLglkZBbIllQ2dtuR2uzikZa1nCKIl0hD88PJXjqjSk0y+LhAx2ATYNczv6HvFKFPlzR\nTHIljRafq0JAUo3mHtx8fOWNKSbSRX7lvYfrKl8TBIFfe98RLs3k+PjfnebLH3uA3W2BDVzpzY3l\nHJfV2HRwfQGHkWSB0+NpQh6JK3MF7hxoIeiRMCwLRTeZypTY0xbE5RR5eTRJQTG4OJvj0YMdHOoO\nE/W5EIDxdJHzU1mmswppWWMoUcDttLNAd/W34JbEiu6rPv8B9neGGt7xgfoyPwiCEAX2Ap7yY5Zl\nfXu9F7XVURbyXElbWKedKBCUVzYEywdhtacecDuvOUxr52HsjPnZGfPz+kQaBNjVGuDsVIbXxzMM\nzhWYSMmkZZWL0zmeON7HzhY/D+xpZTZXYjJVQlYNeiJeol5X5TDPlexD9dWRFHN5hVa/m4G2AAe7\nQwt6fprlSZuPjKxVIjBjSZl3exc3vsqMLDuidlRHFASuzOV5+vwMx3dEEbGYSBeJ5xVEICVr+N0S\nuZKKBbT4XaRlFZ/koC3opr/Fz4XpHG9MZHA6RLySo2LYRX2uLaEIm7g+lLMUEymZCzM5NN1kJltC\nN02Kmo5pWpjz/o3kFIn4XGi6Ra6kMdDq3xCdsZFlk4t99tnJDBdmshzoCKHPDwBcyrixM+rjeCQH\nJy/PcaQ7XMnEDsYLnJ3M8OzlOeZyCmlZpaAY/NvFWfqiPkqawb9NzuJyirQG3bzjUCe6ZXG8L8rv\n/9tlXp9IY5oWR3oinB5PcX4qi8/tXBAQKRtYZRa318bTnJnINCQr080Oy7L4k5OD7Grz89b97XW/\n3yM5+KMfOs67fvckP/35V/nST96H27k+DHAFRefLr01yaSbPQJufx2/rIeCuy6zcVljKcVmtTVf9\nOeXs71C8sHonyIKyayzM/93iczGbLvHVs1PkSwa50hT37ooR8knMZEpMpGS+emaS79rXweGuEFOZ\nEr0RL60BN7vbAlyazZIrGQDE8wqTGTtgUtZ91XPYyoGUsYTc8GNN6qG6/jHgZ7AJC04D9wDfAd62\nMUvbmqiO4CmaiQAVoXhpOIkxX05UXeZRfl+5kRzBJhrwe5zoJvhdzso03erNdPLyHB5JpKTZ8zDK\nzx3tiVSEUQBu7QlT0g1GUzLxgkq8oHKwM8RwskBe0cnIGnvb/ExkinRHvKRljcszOUbnSyam0kW6\nwl7CXom5QonWeYO3upa+WRqx+VhALb4IKQUsZGQxTYvOsIdsSaPF76Ir6Ob2HVFmMiVOXpojq2iU\nVAPdNEjkSvjdEiYW+zuCdEe8vPfWbh4+ZJdRCICiG2gG3LWzhReGExXDbiknrImtjTIFcl7RmUqX\n+M6VOHM5hWReJeyXMCyTbNGgPILRic0WGXA5uH93jHcd6a4EbTZKPo70hBeQc6wXanVetqjx2edH\nGEvJvDqa5tFDnTgF4RrDpRx4cCAQ9buuZu0FKplYC7vMyS05ONgV4vJsHt20MA2LMxMZJKdAQdUJ\neb2YpoVuWQy0+snIGt0RD7Ki4/QJ6KbJvo4gsqrjkUSePjfNwS67Oj3gtq970Cvhms8kDcYLjCQK\nHPVdQ8LaxCbi+cEkZyay/Prjt6yZtKAr7OWT7z/KR//6FP/vUxf4P95z6LrX9eJQkp/+/KtMZ0u4\nnSKKbvJH37zCn3/4TvZ31l0otG2wWKa0fDYvZ9PVYiwhc+L0BB6nSMCzuKNUWyq7M+bnaG+EXEmn\nM2znKLJFjURRQRAEdsa8OB0ODnWFuBLPcyWeJ+B2UlQt5rIl/ubFESSHgNcl8cE7bbblK3N5pjN5\nVMPC47SDm4pu8sCeVg53h21d6O2uBGz+7cIsQ3N5DnWFl1x3I6AeF/1ngDuB5y3LeqsgCAeAX9+Y\nZTUG1tKvU1sOcWtPhKBXIlfSeP5KgrGUTErW+PxLo7zzcCc7Y3aZwd+fGuP0eBoB2NcRxCs5MEwL\npwjxgmJ72qliJXpZ3cQ6lS0ylpIXzFSpZVk7M56mUNJIF1T8bidT2RKXZrLE8ypvTmfxuZykZJVX\nR5IEPBLnp7NgQUfYg6wa5BUNTTfRDYvZXIkvvDSK6BAJepw8OV9X2sTasR69YZVymkVIKSZSMmen\nspRUg2xJJ+BxkpF1OkImF6dzWCZcmM4yli6iGSZ5RSeeU1B123Q1TDDRQBCwLNuovGsgRtgnMRQv\nkFdtA7ioGRTVabrCnopsNiLNZRPXh4ys8dfPD/ONc9NMZor4JCfpokZB0dFMmMqUMGrfJEL3fOnW\nu27p5r49reuyjqXIOarZLst69npwbiLD2aksh7tCHOoJL2C6vDCVRRQF7hmIcXkuT1fYy8nLc+QV\nnZJm8PixXnIljU89cwGnKGKaFn1R39WsfYu9vryiMRALMJMtkS5q+F0OWgMuAm4HLslBYt7ZlJwO\nrszl6Q57cQoCr4+leX4wwTcvzOF1OZBVA6/LwT19MV4bT+MUBL782iT//PoksmrQHnJz90CM997a\ns8DpCg1vrDPaRP347AsjRHwS33N7z3V9zqOHO/mhe3byp88O8eC+Nr5rX9uaP+tbF+f4yF+9TG/E\nyxd/4l7u2Bnl1EiKn/qbV/j+P3mef/rYA3RHvNe13q2Oat1UPpvzJR2nCAVVX0AMVft6gM+/NMr5\n6QztAQ+72wLXnKO1/T2PHuokJasc6gqBBa+MpfjKG1NkSxoCAi6HyES6RNTnojfqI+iVeHEoheSw\nS3DHUzLZokYs4Ka/1cep9gCvjacRBNBMk7aAm0xRYzJdJF3UKKo6fVFfZU0vj6QYTdrZoJJu4ves\n7OBtJupxfkqWZZUEQUAQBLdlWW8KgrB/w1a2yVhrv05tOUT5IBlLyExlSsxkFSJeiStzeb7x5iwd\nITdHesLkFI3QPINLvqSzpz1Ad9jLA3ta+ec3phicyzOWktk/FsQjOTBNi9NjaZIFBaco8p3LcURR\nxCnCJx45QF/MVzEGWgNuLkznKSgG5yaz7Ix5efbiLCcvx5FVA90wCfskRFHELTkRRIFMUUPWDBKy\nwqHOMMmCvXYLgfRICocAt+2Iougmh+YZnRp5oFUjYz2pLY/0hJlMFRc0M78wlOD//7dLqLpFXtEo\nqgaCIFBUdSbTMqmCgm5aaAakCklCXgclzaCgXu3DcArgEEWcDpG5XIlbd0QqWR2nIPD6eJqZjILf\n7WB3m5+SbjbLILcxRhIFvnVhlnNTORTDArQFz1/j+AAup8itfREOdYU43B2+7jUsxlhYdnhSBRWP\n07GAmKXWcKgn2HBuIsMvnnjd7lkS4f95/Cg9UV/l+zOyhmlaTGVLhL1OusIezkxmGEsWSckqn39p\nlHRBZSZj6/+ErBILuCnpV7P2O/HTHvSQVTRUwyQjq4ylimimSaFk9/PM5lQU3cApGvS2eNjbEeDz\nL45yYSbL5dk8ibyCR3LgEEXOT2V5y752VM3k6YuzXJmzqehLuoUo2DNjHtrbxl0DLcRzCq1BN4bZ\nuMbKzYi0rPL1szN8/9078EjXX6r2S+8+yItDST7xhdf46s88SFvQXfdnXJ7N8VOfe4U9bQE++2N3\n0+K39fsd/S187sfu4b2//yw/+3en+duP3HPT0msvdqaXA9KPHen6X+y9eZCc933m9/m9d989PTeA\nwUmQIACSEC+RMnVYh3VYdizbsi1HjrzJxvEm3k0lW6kt71VblWwqSZVTtVl7vevErrKzWduSbR22\nbMmiTlIHD5EgcYPAzGDuo+/u9z5++ePtbg2AATkgBgRA4/mHwLCn+8Xb7/t9v8fzfZ6rKGFXvn7v\ncI6L611sL+Z0p81wTzBoY9zauN9zZrnDUtNlvesjgbG8yWzNpuNFtNwAP0zwwphGrzn/u9++wMHR\nPG4QseKGuGGMqgicMCFse7S8gJWWh6oqGKpCIaMxXrJY7wQsNj3COEFK+PzxRT7z5F7qToClKQxl\ndVbbPrFMsHtN1tv1+X89xc+CEKIMfAH4mhCiAVy6OYf11uD1HoBvdll2MwpYn6I2lNWZa9jkTAUv\nUtg/kqPthyChYKYLamGU0LADKnmDxYbLznKGREqG82mQWu96lDMm+0dyJFLiBAlRHBElcO9oqvhz\narlFJOVAmvi56RrTNZusodL1QtpexPOXGigKGKqCoQqQoAsQCoRRgq4pHJko0vZDLEPF0jVyRkTD\nDQEFqSh4YQICllsuax0v7Vh2vE3pVtv1vdzu2I5p4ZtJPq70blIUMaBbnlxs4oQxpqbQ9mNIErKG\nhgCabkgs08mOooAqoGFHRFfsnysiTV5HCyYjBYuRnDno6gA8tLPMRdPG63WcP3Fs5+AavFlSw39X\n8VbfH5t9XteLaLkhyRaFCgwF7hsv8MT+YX7i8MS2HPeV983Gxdu+pPO1Fo+vt9lwarlNnKT0uUs1\nm1PLbTKmdtnnfeD+MXKGxpEdJYoZnWcvVFloOIwWTJJEYuoKOVNlteshEDy0q0QkU9pa/xy/+55R\nGk7AF44v8Np6F9uL0i5rGDPf8Mhogl3lLA0nIKtrfPdClZWWT9sLyBkath4RSxjPp9/VbN3uUec6\ntNyQ1ZZHEEZ4oY4QgIChjMFK22Wh6abGp0e3rib2RriTY/ntgC+9skQQJ/z8I7ve+MVbgKWr/F+f\negc//dvP8j9+9jh/+Pcev64CpeWE/P0/fBFLV/l/PvPooPDp456xPP/ypw7zT/78BF98ZZFPvGN7\njvtOw7V8D99IAbJPPzVVFVNT2D2co277HNtVHuznxVLihTH3TxQH+z1hnOAE8UAC3Q4jHD9GyrRp\n6UchThCTSHCCmHOrbQxN5fCOImttn1cWmjhBjAA0RRBFCR0vwtQVWlHCSitV7FSEYDhn4EepQbXj\nR1yq2+yppH5AU0NZRgsWHzw0lorY9B4Pt2McuB61t0/0/vivhBDfBErAV27KUb0FeKMH4I0sy17J\n+exf2Id3lLB0ld3DWV5bSw3jCqY+ECp4bF+FpabLXN1J/RvOrrLW8QfL4zlD5ejO9D3OLLcJooT7\nJwqsd3zWOh6zNRs/jHhhps5czaHphhyfazBXt7G9EC9IaUtZQ0UiiOJ0GdnUFXRV4cjOMoWMxn1j\nBWbrNoaiMFGyeGBniRcUyWLTwfYjMppKNpfSMXKmxumlNotNlxOLLVw/4vxym785scyn37mHwzuv\nr8N7sw2+biZuZFrohwknFlsU3kSnZODl4UWMFy2mOzbv3Fshb2l857V1qh2fhh2ClIRRjB8mtL04\njUtBgkpa+AiRdoUlqY59AqikBfH9kwUMTeWBnSXqTnDV2H6kYGLp6mX7bDfqSn8XV+Otvj/61Ir1\njo+iCN57cJSFpsPLcw0sTSFMXv/3VQFSpklX14840lOR3A5cGaM3Lt72JZ0367D275VrTYX6ezl9\nCjHAkckiSMn51TamqnBksngVzfTwZAnfSihm0vfKGiqKkHTckNGCSUbReHj3EC03ZChnDGS/XT/i\nD19ZGnD791ZyLLU8oihhsekQRAm6ohAlCV4gUYQAJfVVW2y6KIAXxUgE+0ayIAQP7Cyx3HQ5s9RG\nVQQjORNDVZBINFUQJxIFwVDGoOEGTJQshnMWEsl8w+HUcouipQ84/W8Gd3Isv13wuRcXuH+ymO6u\nbRPumyjwr376CL/5Fyf4d9+6wG+8/+CWfi+KE37jj19isenyx//1E9ektX3ykSn+03Nz/O9/c46P\nPTC5beIKdxKulT9eqwjYqL4qAU0VHBwvEMWSPcNZ5nq09ZNLTYQEL0poOiH3jhcI43R3VwAnF1tp\nXrijyEjO5PRyG00FN4gJE4kbxnhhjCIEl6o2hq6gCcG9Y6ky8EzNIZYJpiYIE4nnRjh+SN7SmF23\nOThRoJTRccOEWtfHC2Oen6mzp3K5oX1fDtvUFZ6frSMAQ1c2jQNbVcHbbrxh8SOEsIBfB+4BTgC/\nL6X89s0+sJuNy5bD169eDt/OJf6NN0Le0tg9lOXV+RYJkt5Ah1JW58FsaiZVt5eYqaUUhX29TuPO\ncoZKTuf9943RdEK+3lxF1xS+fX6d/aN5PvXYHhaaDq+tdljt+ARxghvEnF/tECVpQisR6D1K266h\nLPnRPKeWWgxldZZbPk4Ysdx2KRgaCw2XlhOgq4K5us2ucpZiRmckZ1LM6OweyrJ/JM9zszUcP6aU\n0VmputTskLMrXXRN4VLN5r/78YPX9QC9mfK0Nxs3cuwCEEKyWQ9us4DZT9CGswbHF5rMNxxenG2Q\n0RVKWQNNFewoWZxcbDGcN9k/nGWl7RLEMd6PGjJASlHSRNrx0RQI4vQ4RAJZS6VgaDy6b5gkkRzZ\nWWKylBnsKfSPZ7N75SpX+prNyaXW3WToBnAj19j1dN/6r11uuLwwW6duB6x3ff7sxTmSBLwwQVGu\nPfUxFHjyQIWzK13cMCKjK4zmTaJka5OirWCzGP16RsoDxSU/+pHvzRXNho2CIBspxDuHsrzv0Bgz\nVZtyVqNg6YPP//7FKnU7YLyYUtb6Sp9dL+LY7gr1jo+UUM7oNN2Qjz+4g6mh7GAy+vnjC5xf7TKU\n1RnJm4RxgpCpquKFKkgkbT/GUFOGgKYoWKZC108n8bqSSho/srvC1HCWjz8wSc0JOLPUZv9oanJd\ndwMPcmtjAAAgAElEQVRsPyIIJXlTJ29p7BrK0HACnp+ts9T0WGx6jBdMfvvsGg0nRFdFb09k75u6\nT+/kWH474OxKmxOLLf7lNogTXIlfemyKH0zX+D+/dp7H9lZ45/7hN/yd//Wvz/LMa1X+j597kEf3\nVq75OkUR/E8fPsSnf/85/uKlRT71+O7tPPQ7AlfGJoBXF5qDguDK518pq19GP00SyRP7h9N9cTfk\nlcUmQSg4tdDEDSWljIapKTyxf5iMobK3tzOYTncSKlmDJ/cPc3RHCUURvLLQ5KVLDS5VbSRp3Fvv\nekQJ5E2VclZn3Q4QAhQEcQJIiZQSoQiiOKXM+2HMcssjo6s4fsxDU0MkPQZIXyb/yyeWWOt4TK/b\nfODQONMdGyEkR4fLV8WB61XB205sZfLzh6SE7meAjwKHScUPbmu80YN+o9fC6eXWZSagGy/I7fgC\nNt4I/YfdXMNhKKsPfHKukiCt2+TNOsttD11TeHL/MKsdj6fPrhEnkrWuzzv3VvjuxXXcIOIvX11k\nKGswV3eoZE0aToiQUMjouEGMG0aoqsJQzkBTFCaKGd51zwhuGDFXd3GDkNmqjaYqLLc8zq60CcKU\n/rbeCRgrWNheTCuJcIKY/cN5vvTqAiutIF3erWTRFRVDjeiS0ulW2j5fPb3MbM1+0ztTtytfdDO8\n2WOvOwGGrgyCw0ZJdLjaO6TthoMEre2FjOYNLqx1adgBiYQPHylwarHFYsNhqZkq/vlJwp5KHn+9\nQ9sLrjqGOEkLINPQCOMQS1fY0ZM9X2p5fPnVJcoZg4WGy2O9qVJ/SRs2v1euPB99FcO7ydCbx5u9\nxq6nC7/xtctNj5Yb0nQDVlsezhuNekgLn3vG8xyaLONHknaPPpExFDat7m8AV153rxezB35kI6nP\nyUbfmz5m6zZRAnuHUwrxbN1majhL3QkoZnQqOZOGE/D544t84thOGk7AhfUui02XpabLg7vKaELw\nnfPrfO9iNZWGz+o8sqdCwdL4/kyNOEm7uX1PLilhKGuw2vZYank8uLOEG8YsNl1MTWU0ZzJfdzB6\nfkhhnEAkWKw7aKpAEQpjxXR/aKXp8sO5BgdG8gPq62rb49RiCy+MSUiQqIRJQsbQQKQKfB84NM7p\n5TZLTYf1rg8STF1nseG+aRrznRzLbwf82YsL6KrgZ95xY0IHm0EIwb/+xAOcWGjxG3/8Mn/xD97F\nVOXalgSffWGeP/juDL/6rr38wmNvLHD0Y/cM8+CuEv/h2xf5hUenUN+i3Z9bQa+61mdulKu+siDo\nN0k2vn4z+mmfQfHt19b54suLtL10R1tX0yb28bkmk0MW83WHoztLTJatgdrrX726jK6lolS/9Ohu\nPnxkgum1Lk+fWWOm2iVOJEKkanACSSIlQ1kDO4jxw5gwjpCJJJaQ0wUKqSKl7XvsHs4yV7dRpwUj\nBYOPHkmpsv0Yu284z8V1m+mqja4KnCBher17VbPpzajgbRe2UvwcllI+ACCE+H3g+Zt6RNuArTzo\n+0XGRk+cG0nI3uim698IM1UbS1cZyho0nIDRQnLVQ2HjFOhSzaY4q6Wyw2GMpakULZ0Ti03Or3XJ\nmTo7y1mWmh5+5NFwQhIJD+4qc2i8wNmVFoqAjK5SyZm4YUw5q7N7OMtkySJKJF0vRFUU2k6IFPA9\n26frpvxPVQHfVDm53ML2Iw6O51MzVQXm616POhezX83xyN4hTiw06fgRmiowNeUNPS82O093qmz2\n9R77xnFvP0noS6L3R8R9/4+NBcNCwyFKYKJoMb3WZbmZJjhFS6flBHzz7BqKAp94xy6Wmi5nVzoo\nCizW3dftvLuRRCjRYAetZGkIIdLA5CSUszpRIres4rJZ9+vkYutuMnQDeLP3x/V04Te+tm4HKAJq\nto+7hcJHE3Bossg/+9hhMkZqhHxqsYUfJ7xj99BlBfNbjcsm8Ka2aUK/t5JDU1KX80QmDPeuUU0I\nlpvpbuNYwQQp+fzxBeIEpqtd3tVrTj2+r9IrUCT3TRTwwoS8pbLScXlxtkHDDRjNmWQNdeDzM1Pt\nsm8kj6akRdCe4RwvXqqTNVUcP6LhhGk81TVUJaW86JqKrghGCxmcMEJIeHm+QZxIvnuxygM7Sxya\nLLJvOE/bC1lp+3hRuqQ8kjd5574Kn3psN8WMzsnFFqsdjyCKGc1bLFkuSy0PiaTa9Tmz3L6qMbgV\n3Mmx/FYjjBO+cHyRDxwav2qvZruQNzX+w688ws/97vf4L/7geT773zy5qQDC06dX+WdfOMG7D47w\nz3/y/i29txCCX3/vAf7b/+8lvnl2jQ8eHt/uw78Kt4JmuZXP7MfT8YLFKwstTi+32TOcver5F/VW\nI3KGhh1EA+PnUlbn4FieUkbHD2PW7YAwkcS9PcKiqTNT67LSMmnYAW4Qp8ak1S6VvMlMtcvhySJ5\nS6NqB9w7nmexaaMqCk4QISXoqoKppQUQMkk92XqFj4ReTqcQxgmxhCBKsHSVeyfyTBQzg2Ptx9i2\nH3JsV5n7J4ucWW5jaFdbsmx8/eup4N0sbKX4Gcj4SCkjIW5/9Y6tPuhLWf0yT5w3m5Bdz01XyRrk\nTY2pSobRgsEnju285msHRdBwbpAkf/X0Ct+brmKoCllDZddQKogQSYkMU/nU8YLJUwdGeHGuwa7h\nHEmckt52ljPM1B3esavMaMEk3zO+q3UDwiih5gaUTY2OF6FrqaSxIK3Gj+4o8nLUImNohFECCOIk\nwY8SkkQSJgmTRYuH3rkXBKy1PaarXTp+ejFv5nlxLWzXxO1WYKvHvplSVSRT08dXFppX+X9s3Ady\n/Qg3jDm73EZTBUd3lvn62TUUAVKkyZEbxnzr3Bq7h3MkUlC0NJ55bR1DU1BEuouhCMjqKlJAJWv2\nxDR0TF1jOG8wWjBouTEZXaUFgyL6elRcrjwfd5OhG8ebuT+upwu/0TxZkCbL3nzCGxHWdAX2j+T4\nh+8/yDsPpDSavkAAgstokrcCW0nGp4az/Nq7D/C5l+YZyqSU0oKl88yFdcpZg7mGy2jeBCGwdIXx\ngsVMtculmkO2F+c6XkoZ86OEMEloOQljRQsp4J7RPE6YJieT5VQO3g1jdpQyfOj+cb43XeMH01Wi\nOGHfcB5dqDQcn5yZwfZjxksmta5PJWfgRzGjOYNuINhRzvDKfAtTU3CDmKrt8eJsTLUbsNxKC7Yw\nSbA0lU8/sZcP3j8++PenhquLZHSNc2sdHto1xH2TEfdPpBOozRqDW+2w38mx/Fbim2fXqHYDPvno\nzRUMODhe4A9+9TE+/fvP8Yl/913+/acfGewXSSn50xfm+RdfPMnhySK//csPo6nKlt/7Q4fHGS2Y\n/MkLc29J8XMraJZb+cxK1iAIE55faGKpyuB5v9nr8j0RlSsLgCOTJcaLFk03JN/b/T48WcKPEp4+\nu0oYJZxf6Q4aLgfH8pxbaRGEMUGc8OyFKoYmmF63eXL/MA9NDTGUM1hr+YRSUsmkjKBSVuPiWoeL\n1dTjURH0dhFVSlmDkbzJWsdnteViGipLTY8d5exl+d3GGFt3Ai5Wu4Pz0y+S+tgYkzdTwbuZ2Erx\n85AQot37swAyvb8LQEopizft6N4krudBvx3dqeu56d7M5218gDy+rzLwgmj7IQ/tKlOwdB7aVeb/\nfvYiUSJpuAH0Ltpd5QwNJ2R3JctHjk4wlDEGF1i7R2dRFYGbpOetYGm4YQyhRAhB1kjfo2AajBVM\nah2fYlbHDkPiBII4LX5OL7eo2wH3jBb4jR+/h2rXZ6KYwQsTnjpQvsxz4+6ux9XXzEajwo3TkaGM\ngRfGNF0fXRW03ZDjC00e3FViteWS04vMNx1G8iZCpEajLTdAEYK1TsBHjkzQdNPFaEgXKQWQMVSy\nusbBiTzLTY+GEyAl2GFMyw1RRFowHdtZIkxSqs0HDo0zVcneUIC6mwzdGmw17vSVKaWUzNZs9o/k\n+e5r6zjB6099FODh3UOMlSzGe+Z6/c+9nUwzt3L9ZUyN/aP5q1TkjuwokTFS49G9lRzPXEiNgPtG\nohLJ7z1zkcOTJTK6yi89tpu2FzJXcxgvWtTsgPGShYLg2FSZ+YbDdLXLzHqXjKbyvekaTSeVkm27\nEboaoAiJpir4UYyiwI5yFjeIGclZHJ0s8ci+CruHspxZbjNXd6naAV6YMFN1mSik92mcJORMlYyR\nmhhvLHwg7ThbWiphrykCieQfvOcgxYzOl08sbbq0fVfI4Obicz9cYCRv3pAXz1bx6N4Kf/JrT/Jr\nf/QiP/3bz/KB+8eZGsrywmydE4stnrpnhN/5zx+mlLm+71hXFX7h0V387rcustxKjdJvJm4FzXIr\nn1nK6jy2t0LbiwYKv1cWAf3XXStGTw1n+c2P3s/zszVevtRMm495g8MTRZ6brVOwNI7PNxnJm9h+\nxGtrXXRVpeoE7BvOUc7ojBctzix3+NrpVfKWxpGJEocmwA9jvnN+HQmcWQ1IpMTUBH4kAYGqCcJY\n4ocxr6110FUVIQQ//dAkqio4PFkc5HdBmPDY3splXmFbOT+3In68YfEjpdySVIcQYkhK2bjxQ7px\nXG+BcaMn/3pvuhv5vD2VH3lBqEJc1k19fN/wYGSat7QN0oM/UuDaiLoTcGz3EIcmS8xWu2QMFUNR\nuJQzWWw4VO30RvCimKmhDNVuQJS4jORMbD9mOG/gN2K8ROL6CQVTxw3jVBZWyoGaUu3u4utVuNY1\nc+W1e6luc261g6mpzNUbTJasNBGbLFHJGYzmTXIrKu+9d5QTi02+cnIVP0zQVQVFgYtVmwd3lpmr\nO6hCst4NyRoKOUNFIJAJ7B3JodUEeUtD1xScIObHDoxgGgr3jRfYUcrcNT58G2ArcafuBHS9iHMr\nHV5ZaPKNM2u0veiyqY8qGFBfwwSKGZWSpbNvNM/BsfwtpbZtB95IRa5Pl+uLK/SntQqC11a75CyN\nREomyxmOZEvU7aWraCCrXQ8J7K5kB55cJxZbVLtpbCxndVRFYGoZokTiRzGGKji/0qZm+zTtgLHS\nOEUzFVGYLGd4Yn+FM0tdVFWSJJKcpXOh2mU4Z3B4ssgHDo1zZOfV4jOVrIEXJTSckLGCxWQ5pbFc\n6zl6V8jg5qLa9fnm2TX+y6f2Xdek5UZwbKrM3/4P7+F3v3WRL59Y5tnXqhwYy/G//ewD/MKjU2/a\nr+cXH93N73zzIp99YYH//oNbU5V7s7gVNMutfuae4RzjRXOQt10rR9y4J3QlU2ZqOBWdajohHT9E\nAFOVLLN1+zLamBelFPWPHp1kupoqv55ZaTNT67KrnEFXFe6fTG1MDozkOT7fZDhnEiNpuQEg0ml/\nlKArAkNTiZOEsUJqb4EUXKrbfG+6yseO7hhMq4qmztMzq7S9iPGiOWiK3K5sj+vx+XkjfB14eBvf\n74bwVlaTb+UXfK3PunJkuqeSG+wMIaCY0a+iKlSyBooQXFjrIIEhXcUNYiZLGeZqvUU1P2a96/Mn\nL86TM1TcMGYuTkikxA0iwiRBUwVJIllteQM1u4vVLsttlyBMUIWg5YTUuj4FU39LOjK3MzZ6emw2\nRbns2q2lvkurLQ83TE1qd5Qzg8TsyGSJuh3Q8aO0OI0ThEgncqqA8ZLF3koOieThqTJfP7vKqwsR\nfiRRlISModLxQ/wkQQQxShizo5xBCsmJhSZIqNsBe4bv7IT2Ln6EzShL/Z+5fsT51Q4/mK7R8dL9\nwViCpYEXpRMerVf0GAogYCxvMVwweGxv5aqpwp2IzWLsZipyGxOVk4stun4vAdlAC72qmVGzWd+g\n6LSjlO5VTVe71Loe0+ttOl660Pzeg6MYhjrYmTIVhaWWi5DgJDHPTdc5v9KlbvsM50zuncjzzgMV\nTE3h3EqHhuMDkomiRSmjE29CXOx/7x88NAZILF19Q879XSGDm4svvLxIlEg+uU3ePltFOWvwmx+7\nn9/82Nb2eraC3cNZ3nVgmM+/vMA/+sA93Oy1iVsxRdjKZ15Pjvh6k9UrxZEiKa+ijfX9HWdqXfRe\n8dy0A6p2gKrAUM6g7Yf4YcKZ5TZhnKRKblGMF0aoikrTDcgZOk6QRo2hrMFoweJS3Wal5WGqKoai\ncv9EkT3DOU4utZipdQmjhIKl0fWiQVPkjc7PrfIA2s7i5/ZfBrqJeKuLrSs/a7Obq+WEA2nh52dS\nrfU4kZd5sfRpdOMFi6+dWUUiGctbDOUMOn4EQuCHCXM1m0rOpONFVHI6pYzBAzvL/GC6RiVvEEWS\nA+M5Hpoa4mK1m5r19bTeTy62OL3UZqxgEkSSxYZD3dFuu07AzcCVN/b1Ukb2DOfYP5rHj9rsLGfQ\ntbRrM1nODN7z3aScfdePsf0YBCQ90YJwAyf4VNJGUwQZQ2PfSI65us1Ky8XUVaYqWR7bU8EOIh6e\nGuL7M1VUoVDtBmQMddPu7u1oXHYXr49reS/90Q9mWWy41Lo+pqYQROnSa5+dYaqpZ03RUnBD0JOU\nBjeWMQgSia6qNJyrVQTvVFwZY18vvm+MvU8dGKHmBOzdMJHfWCR99fQK3zi3hqoI9g3n+OjRSd59\nzyh//MIcc3WXjp+wayjDzqEMH+rRlF0/JkGy1EiLjRgIkwQ/ignjhJYXoQjBdNXm7z+1n8lyhuWG\ny7dfW6dhB7S8kFcWW1iGeplwQd/DqeOHFEydDx4av+zYrzRO3khnuVYi93qF9d048caQUvK5Fxd4\naKrMwfHCrT6cbcF/dmwH/+TPT/DqQouHpm4fCuxbja3miK83WXX9iOk1m3o3IGdqdLyQStYYyExD\ner/J3n+n122WGi6vLDQxdZUwTjA0lfccHAUBryw0OTKc7njZXsgLs3UkgvWOz/7RHE0npOlE2GFM\nxwsJo9RnLJ/R0LRUwbUfD04ttji/0uX4fHPLZsm3kkK7ncXP9hk43MWbQv+iuVS3ocZl0sInFlv4\nYUzdCVjr+HhhxKce28NKy2Ot7dO0Q3RVoWT1aBSlDHYQs9r28MMYSCURJekC/oxjs971GC2YHN1V\nIqur5C2dvZUNnFYJHS+i0FMHazghy22P33r6PO/cV3nL9NxvFTa7sTc6Oc/UupxaapE3tWsuhJey\nOp96bDd//PwcM9UuszWbIIr54P0Tg45req4lXT9C6bEkNFWQIKnbATvLGVQh+NqZFYZzBm0vYGYd\nukFIwdApZw2klMQyYXcly0QplcuMYtlTJDSu6u7O15yBWtXb/Xu8E3GthPNSzWa17bN/JJ0Kf+H4\nAn6Y8FevLBHFCS034sfuGUaQFj8CMHUYKZo03YAgEYRxjJSpMlDbi7hvIs9PHp2k7YdvWhb5TsXG\n81zJGnz5YpVYSs6vdK7ivl+q25xZapPT1VT9qWgMuP+GJhgvmHhhTCQTKjljMLnXNYX9IzkyukrV\n9vHDJJW7RjLfsGm7ESVLI4rTOL1vJEcla6Q+YHmD5aZLOWtcJVxwqW7zwqU6uqLghBE1O2CynMrm\n9iddXT9CIHjxUn1AZ7nWxPpahfV2Jjdv90LqxGKLc6sd/pefOXqrD2Xb8JEjk/yLL5ziS68s/Z0u\nfraKVHAmVW3bKBbl+hG/98xF3DBhutrl4Fievz6xhCKUgXJjn4abJOmzv2YHSCROEBMkCXlTx9AE\nhUzKwDm52GK62kUIOLyjxA9m60gp8eMYN4jYWc5w77gOJCy1POpOgACqHZ+hrM6Z5fbAx3FyKMOx\n3WUEgprt0XADpri2fDrcWgrtdhY/d3EF3upA3e/kHV9oIoB7xwtkdDU1LrXSLsGZ5TYZXeXcaod/\n/50LnFhsEcaSoYzO4R1FokSy2nGZLOWZDCxypsZS00VXBJJ0ea3tpdKrGUPj2K4S771vjAtrXU4t\ntji91OKesQKPTA3xwmyd6Wo6Cu14IbaIyOgqfhCnRlpvkZ77rcJmN3Zf+eXpmd40ZjGdxmiawrFd\nZX7+kamrzkcxo3NgNM9K28MLYl6YbTBbc3jXgRE++cgUmhC8stik7YWYavo9aZrCeCGDoSp0vZCz\nyx3aXoSqKFRyJnlDQ1UEddcnQjKWNzk8WWKiaDGUNa7aF7syyfn88cWeMaPBVCXztv4e7zRcq5vW\ncsLBPXlyscls1SaIJWEc03FDNEXFCSK+fX4dicBQJZqmkDc18oZOHEtMXWWp6aAqGgVLYzinc3C8\nQNsPOb3UAnm1X9rbCRtjOlye2B/dWXpd7jsSDE1B1xSiMCZj/IgCXDB1vNimkjPYP5rnE8dSylP/\n+5qpdnlwV5l//rHDzDUcvn5mlRdnG6iKku7qqYKsoXN6QzKy0VvumQvrV9HUul7EUiOd/HbcgN1D\n2R8ZEtdtVlsez15YJ+n5ib3v3lE6XsTnjy8wlDNoOiEHx/IcmSwNvJCujHewfd5e1yqu3k743IsL\nmJrCTz309vm3lbI677tvlL98ZYl/+rH7b6rnz51eHPcFZyxNvUosanqtixskHBwvcHyuyQ9n68QS\nokTi9ejqpq7ghwlNN6TTa4b2TcuTBBw/IogSXD+iDhzbVebps2tYmsqJxRamqmIHEcM5g93DeX7u\n4V2UMzq/9fR5VtoeUSwZyunECbzrnlEMXRnc03067PGFJlGU8JUTKwxljKt2zTfiVlJo79LebhK2\na5x3PTdz3Qno+CFFK31dGEvec7BCIaOjCcG3z6/x6kKDibJF14toOiGmqpI3BX4U07RD8pZGRk/3\ndqbXbJCSjKaQMVQ0VWHXUKoY0h+hxrFkte3RsAPCWDLfcHH8GCRMlC0+eGicM8ttun7IXN1mru4g\ngO+8ts7j+ypvG774Zt/TRsngjTsAfeUXXUmTkqGsgaUqvLbW5fsXqzx5YOQyysjnfjjP9y9WeW2t\nQxzDcN5kOGvQ6fFqIS10q52AOAEniCjndKarXeqOR8eLSZK0wM3qCpqAUk5HUcANFXaULe4bK3B2\npc1qx7tMenuz667uBFiawlBWv+Zk6C7eWmy8/q7VTas7AXEiuXeswLfOrrHa8lBUQRjFRAlImVIm\nXT9KKW+A6F03e0ayzNfTB+lTB0epdgIKlkYxo/Hpd+6h5gSDxf236xL8lTH9Sg8uZNocuhb3fc9w\njqM7Syw2XLKGyscfmEyn9BKe3D/MzqEMRUsfFC8z1VRl7sGdZWp26iF0eGeJKJEsNBxabohEkjNS\ndbr33jt2mXnixj2B/v2sCTGIGQDljEHWVMnoCn6UdpTVnknrS3MNVlo+wzmDcsboeQGlE7+8kfC1\n0yu8NGdQsnT+8YcOXTORCcKEk0vNG973vFZx9XaBF8Z88fgiHzk6cd3Karc7fvrYDv729CrPTdd4\n1z0jN+UzbjaF6q0orAZGzJuIRdXtgLmGy2zNJiGh7oTpbi+wUHeRUrKznKVq+xwaL3B+tc1wzsSP\nIn780BgA37tYZaHh8tvfvMCxqXLq/UWq7DtTs4niBDuMOTpR5L6JApPlDB03ZDxv0HFNwiihaGmM\n5C3Mnmz3RrGmx/ZWWO/6vWNN2SGfeXLflijDt+3OjxDiALAgpfSFEO8DHgT+SErZ7L3kAzfh+O5Y\nbMc4bys380ajzLR7q9D2UiWQfSM5hrIG83WHzx9f5Mxym7YboKkqD0wWcaKYC+tdOs2QrKGxbvjs\nGckx33B49mIV2WMyVnIGiy2Xcs6kaBn8+L3jnF3r4AURxxcaaWey5mCoCl4UUzA1ziy38aK0CMqa\nqSzjeNHiW+fXKJg6QgicIN6u031Lca2O5DMX1rH0q8299gznKFgaL87W6XgRLSckShKiWHKpZnNh\nvcuvPLE3pabUbC6udVlueXhhnKo++QprHR9dU3D9CIDVlkcxo1HKaKy2PSo5k7MrbRqOT8dNDcp0\nTbCzZHF4ssya7fPI7goX17vsHsoCAktXr5Le3gyVrIGiCHKmRsHU+cSxXXf5/bcQm3lGbZZwakJw\nfL7JxfUOCw0HO5QoISSkHj2qkt6//btSCFCEIIzh/EqblhdhKAotR+PX33sAQ1cYzhpkTI29ls65\nlc5lflTXOtY78fpoOSmlr+tHA/oY4nIZ1z3DOfYM567ivj91zwgzVRtNCDK6ynjJRFMUvn5ujfOr\nHcIoQRGCY7vLKZ/e0thDDk0ITi+1cMMEL4x5eLfHnkoIAnRVkDNV4kQyWjCxdJXZmo0QAq0nMHNq\nqcWzF6qUszp5U+Pd94zyt6dX6PghUSxx/BghJOtdj4KpM1G08MKE+ycKfOPsGl6Q0HFD4liyq5Lh\n8GSJ86sdzq92OD7XIIwlU+Us802HU8stPnJ0ctO9UwlIKW6YF/92F1r42ul0WvjJR6Zu9aFsOz5w\naJycofLF40s3rfjpK1Xmrmg6bAfeqt2UzZQmz690BrH8H3/wXmpOQK3j8zvfvEDHi/DDmOWWy3zD\nJpFVJKnX2L1jBUxDxQti/CjhO+fXWe+kthaljM79k0VWWg6vrdqoCqx1fEbyBoqEtY5L282x3HT5\nxtlVnp9p0PHTPPGesQIfOjxB3kgVhfvnp+4EDGUNsobGQsNNm7r65vvCG3ErRCrg+iY/fw48KoS4\nB/g94IvAfwI+BiClrG//4d252I5Afa0CamPB88yFdbpexOnlFod3lLB0lU89tpu8qTGUNfjq6RWe\nPr3CicUmsQRdUciZATHpjokfJiRI7hnJ85XTK7w0XydJUrPCkbzFn74wR8sJCZOEOIHTS23ee98o\nR3YUCcKEvzm1TBhL2m5IxlBJEokfJQRRwGRo0nRDPv7AJN+frnFyqU3Hi+l6EQdGC5iactl+0q02\nQXyzeD26Rz9R2qjrX8rqA6GJ9947yncvrnNyoY0bxszXXZ6bqfOeg6MMuQZfObXC2eUOs1UbXVHI\nWwZ7h3N0vZD5hsM//cKr5AwNRSjM1V32j2RRFQUhUlqLlJDK9SdEPtTtECEga6gc2VEka6Zqb0Ec\n03RSt/qtOCwLwNIVCqZOMfOjwueu/8dbjyuvv4YbbJpwzjccolhi9yaBkE53NAUyukLS+/vgd/dw\nDK4AACAASURBVCT4QcJ83UYooCkqmqYQ1R3+9MV5/qsf28fxhSaxlGlMsn0MTaV4jcfKnXp99I+7\nH2eByxQ1ryzm+tz3nKFRtX2ePrvGUE6nYYdYusLRHWVOLjWp2+mUvu2GdIMQgeD7F6ucWmqys5zl\n6I4SO0pZZms2ax2fP3lhjrm6w4cPT/D4vhESasRxyuMvZ4x032pXma+eXsELY56fqbHS9jg8WeTw\njhKnllu8cKmOlHBxrcNw3iRKJFGc7guOFSzaXsj3p2u8NNdgqekSS4mpKYzmDJKeq/xIzsQLYhIJ\nL883EQJeW+vypBNelsj0C0bHjxgrmtg3mJDeyi7xW4HP/XCBneUM7+oZBL+dkDFUfuLIBF85tcL/\n/DNHMbTtl/DWhOD0cosoYcsL91vFVpvZNyr4ceU1DlwWy3cOZTm8s8T3LlRRFDGQIM8YCkki6PgR\nOV1ler2LoakULJ0kkdw7niNnavixge2F1LoBf31iGduPEKSNrpYX0XJDMrqCROfEQgvbj/jexSpS\npK3wkbzOfMPhW+dWWWi6HBjJU8mbZHUVQ08nQdejHHkrcT3FTyKljIQQnwD+rZTy3wohXr5ZB3an\nYzsC9WYF1MYEomEHWJpKztKIEsgZGgmpv8S+kRwzVZuOl3b9BQpxki4qN90Q2RutIsALE9peRE7X\n2Decxw9TeeuTi810sVakTr+2HzFbs4nOJkwUM4wWDKJYstB1CRPAj8kaKroiaLoBTiDThEvKAdXr\nwZ0lvvTKIm0v5NxKmyhKuNRwkHDNnZfbHdcqdDf+zPUjnnltnb2VHMWMTteN6LgRLafNWjug7YV4\nYYKpS6I4oetHfOv8GhfWunhhhKkpCEWgawqGqmAZKgt1l/WujyLg4FgBP4pZabsULB3R6w6HUZrK\nhjFYempW1vGj9OEjBJfqDpaqcG6tySO7h7B0lY8eGb2syL7y+r1SbvMyWtVd/4+3DBubIBuvta4b\n0fVDJooWK22fSzWbIdfgP/7gEmdX2qy0PTbU4iiApas03BAFiEkfDAmga6nim0AQRDFuFON6IRd1\nhX/zjXM8sW+EPcM5vnl2jUTC1FCWSm7zXb479froL/7nTI19I3nunyxeJupw5b9ho+2AIDWbnixm\ncP0YL4yZrnYJevSRS3WHME7IaBrT6x3OrqRUledn6qw0fS7VbYIoIaMpA7XNSEp+5Ym9vOfeUZYa\nLnN1h5ylMddwGMmlDuzz9S7VboAbJD15/Cz7hgVLDRcJdP2YoRystXwkEktX+PLJZaaG0j3BvcO5\nnuCJTzcIeXWpjWWq/HC2QcNJnx8P765Qyuo8tKtEdMX+Zv85Nd9w+ObZNSbLGUqWdsMJ6a3qEt9s\nzNcdnnltnX/4/oNv2lPndsfHH5zk8y8v8uyFdd5/aHzb3z+SksM7SgOvw82MRN8sttLM3i7Bj1I2\nbYi8uthEFQJTV9g7XLoqZlqGQj7WMDUlVWSMJJJ0f1hXFHaVs5QyGudWO6x2fJqOT72TricIkVqV\nmIaa2pGoCpamkDE0VAGljJkqw+oacSJpuRGuH3Fupctw3qRphzTdkIYdMZTVObyjwKN7hlluu2RM\njc88ue+2b1JcT/ETCiE+BXwG+Knez27Pf9VtghsN1FcurV6qp7KFfeqFG8R4YQIbDK42VtqVrEHB\n0lAEqKpAlwoFK5U5zhjawLTvqQNl/uylBVp+yLMXqnTckImSxVzNQVMZPMQh/fNq2yeKEo7sKLJ3\nOMvJxRBVS5MoVRWsd32cIOLkYov7JvJ03dT3omhpdPyQfSN5HtlToWb7dPyIQm9HqbOBr34n4Voy\n40d3lECkHanfe+YiUQJJkrB/NM+FtS7z9T5VMKGcNej6Eaamsn80R9sLkRIyugqKYKJk4UYJ5YxO\nIaOxUHdYbrkIIfDjhIW6g66rJAjabkTB1KjkDNwwoWWHCAVMTaGU1RnKGhwYyzNZtBCAHydImbrH\nW4ZC1OvkXytob3wQBGFKjWk54duelnI7YTOqW3+n46un02nhN86uMVnKULQ0kkQyV7NRBJAqlCIk\nFAyFIEnSOCLTDq0bxBha6uUjU5NvLEPBCRLUJO0A5kwdU9NouAFxFQxVoZh5/R2wO/X6cP2I52bq\nKW3NUPjZd+x63Rh1LbGBvKXx1K4Rnj67RjljoCqCd+0fSb8MCa8uNCllWpi6SpTAYsuh7YU4QdpU\n6nohBaswiDEPZstoQvDcTJ2MowyeAZoqWGn7NJwABUHO0Dg2VWa8ZLGjnOn5ekTYfkTN9gEoWBpD\nQYSpKqx2fKIkQVMhZ+mYqsKBkRwNO41JuqqQSFhquwzldDp+dFWHt18wLjVcBAJFwL7R/LYmpG8n\n/McfXEIRgl9+fPetPpSbhncfHKVoafzVK8s3pfi50utwO+PLVprZ2yX4MV9z+K2vnR3kC4d3lNLG\nSZQMKK0vzTXwggSnd+9ZmspDO4tcXO+yfzSlzJ5f73JuJWStk8aBfo5RUjWark9Cyg5RAVNXKVga\nowUTIQTjRYv1jkfTCQgjia5ArCvkdBVNEXhhgiJAUwRBlNB2o8tYI3dCk+J6ip+/B/w68K+llDNC\niH3A/3tzDusu+uhfQH0VtyhKBkZheVPjo0fSpOejRydTnw1x+e9++PBE6g+hKCw2HB7YVebwZJGf\nODwxWGi/VLeJEsnuoRzLLQc/UpkoWSw0HfKmQTkryBkqLTdkvePTcgK6Xsi3z6c+EgkQRBJdSyWW\nC6ZOxtCQUpIzVZ69WKWc0VEUweN7h8mbOqauMCpM3DDm/Gpqsrq/J9F6J2Kjl8er801emK0PxsCV\nnEGUwETR4tXFJopI5WsNTcUNItY7PomUFK1Ucc8PE56fqXFhvctozmSop6RSswPGe7z8obyO2UoX\nld0gYWooQywlF6tdhFBYF4LJkkU5K8gbGl4Uk9E1xksmP/XQDo7sSLX9H1wpU+36RLFEIgdJ6et1\n6fsPgkt1m+dn6ryy2OTkUouffGDH25qWcjvhyu+nfy/3aUb7R3N0/ZhH91RYbDr87alV6naAFyao\nSk/MAPCTBAVB1uiJmigKlp5SUhw/IkL2uN06goCsptF0QwSSUkbjkw9PESWSoqVd5iG22Xd/u9GW\ntkJHaTkhT59dRVMElq6wf2RrCfzGh/9Gg9S+WEjO0lIz1IzGycXUi60bRJSzKU2laKXxs5TRuW+i\nSMZQ+PH7xlJT415S1XbDgfStG0b87LFd7B/LgwSZpEII01WbXEbj/GqHvKlxYCzPmeU2IzmDmhOS\nM1RimZoiSwT3TRRBtBkvZnj/fWN88fgSNSdgumozkjfw44SmE5A1VGwvnUh7YTKYFvdRyRp4YZqw\nFTMamlAQvZ/fxeXwwpg/fXGeDx8ZZ6Jk3erDuWkwNIWPHJ3gr0+ktExLV7f1/W92fHmjhH6rgh9v\nFHdm6zZRAnuHc8zWbCZLFotNF0tXeebCOkd3lIiShAd3luj4EaoiGMubqTk5KaPn+HyDphOw0vYI\no4RXFpvcO5YnkanCaxhJTC2NaSN5i51DGaaGsrzv3jFeXWyy1PRouSGmpqLrCpomiGTaqM6Zfb8g\nA1VVKJjaYF/wyjhwO+N6ip8PSSn/Uf8vvQLIuwnHdBdX4EoVN0MVDGUNntg3PJAR7EskxlLywkx9\n4DHRcAMWWy62H6GqCqam8BOHJwaa8G035PmZOosNh7Mr7Z4UdcR6x6No6miKoOUGIPW0rhIJqqKk\nlKpYEsaSnK6SJBF5Q0VBUHMCNAV2lCxMTeXieqogNF4weXxvhU8+MnUZp/VSzb6jd3766Hfj5+oO\np5faPLa3ko6sKzn8MOY7r60hExBSYukaThARhAkZXSFrpsnjyaUWqiKI4pRq2OgG6JoCSIRIEx5F\ngKGo5HQFL0opK+/YXSFnqax3A5wgIkwShCL4xUeneG6mzlzNYaxo8sDOUkpB6Z3n/nehCXGVutsb\njvndkOSKAmnfyJ39Hd4pqGQN/DAZCAxoQvDlE0usd3y+dmqFvKXRckPOrbR4ea5Jx4swdIETgkq6\nB6YAcQyKBm6YoKuC/cM5spbKy3MthBDISKIrClJKxgsWMSnv/Bcfn+LxvT+KP3uGr9592Qy3S0dw\nq/tHdSfA0lXGClavuXT9E6uN/+a2G3J6uYUTJCQyYaxgstr2mSiaXKo73DdeAAFPHRjlh3ONgWiJ\noVnMVW1emKkzXrRS9cheU2VqKMtzMzWem6lzfq3LsV1lsqbGrqEMDSfkvrECJ5dSSwMpYc9QloYV\nst5p4kUxOVNDU1R2ljN86/wac3WH4bzJ3qEMGUNlh5Gqgx4cL/Dw7iE+++I8lqqhKXDfeJFQJpsW\nhI/uqeCFCVaPYnutovjvOr70yhJNJ+RXnth7qw/lpuOnHtrBZ19c4Fvn1vnI0Yltf//riS/XK77y\nRq+/FgNk485O2/1RnnatuLO3kkNTYLZmoykwWczghDGTxQzT1S5LLZcoltTsACGgYJn8cL7J18+u\nYegKp5ZatNyQphPiBBETpQxtN2KtE1CyNHJGWryoAgoZnUf3DmGoKp98ZIpISv7i5S5LTZe1jp+q\nyQnYVclxqeYM1IAVRbJvJI8fJUwULQ7vKDFd7TJbtylmbo8Y/0a4nuLnM8C/ueJnv7rJz+5im1HJ\nGhRMnYvr9mDyM1kOeObCOu8mnfx0vPAyj4m1jk/OVDk0XiTs0ZoKpkbRSqkpfaGE5bZLOWPwjqkh\nqt2APZUMqy0Py1SRiWSh6VG3g1QWW1fJ6BqFokHTCah2PdpuTBjFKAp0vRhDk1RyJl4YAYJLVRs/\nTljr+BQsneGCya8M5y5TEnsw+/YwPuurzay2PC6sdVhpu9wzmuepAyNMVbKstX38OEbXVUYLJk/d\nM8KJxRavrXURQjDf6CJlKjspZYJlaNhBTNIzMM0aKrVuwHrXJ5Zp0XnfRI6xgoWiCqYqOYoZjWrX\nx1DTcXTfBbrthXhRzINTKVXm1YUmyDRp7XekNwb11+uiXWsB/G5X961FuqiaUlIbvUlQuveXUpOi\nWPLD+SZrLQ87TOivGKsCQtLpTyQhDiVhGKNrgksNh+G8TiVnstSwiSU4YSqBfWSySCIFH39wkgem\nygOhC7g86bgTFN22un/Up9JMVdIdxxtN4COZ7mSeX+kQxJLPH1/E0lVOLCYYqsKxqSHafsj+sTyT\nJYuFmsuFZpuzy22+dW4dTYFH9lSYGsoykjfRFLiwnkprL7VSJ/cTC032DGfxowQniHjmwjq6ovC+\ng2PM1R0Wmx5uGLFnJIOpKSiKYEfZYiRv0HDCgULliaUWLS8ib2gESWqs+oPpGl4Uo6uCKNGYrduM\n5E06Xkp97Sd8/cKykjN4fF/ljm9s3SxIKfmj789y73ieJ/ZXbvXh3HQ8uX+Y4ZzBX766dFOKn63i\nesVXtvr6K4uvuhNctrMzW7evGXc2xs1//KFDzNZt9lbSPOnFuTp1O2BmvYsbxEyvd5komczWHF5b\nbXNxrYsiBFlDxVTFwP/LDmLW2z6KKvCjhF1DGU4vt+l6EQgIk4SXLzU5trvCN86tUbLS/CFKJEGU\n0LRDdE2wu5J6gEUk7CxnObfS4Z6xAnYQ4YUJp5ZavLrYwgviO8bn7Q2Ln96ezy8D+4QQX9rwvwrA\nXYW3bcBWOgo//8gUj+2rpAuuDYf9I3mmq10+f3yRoZyOHyYIYKabPggbdsBiM8YLEu6fLHJmqZ0a\n7CmCl+cbrLY8On7EWsdnes1GIql2PRq2T8eP2Vm2aDghuqL0ON4SmUiG8xaHJoqcXGpR7QQgE0IJ\natxTjpKSlpt2HKQQeEHMrrLFaN5k33COKEnuiL2eN5PAVbIGXpQajE0ULUaLFrsrOWo9aUkpJLVu\ngOvHxHHCzqEs4wUTP4oHwgWKouAG6ckURmouaKgKa21/QF/zgxhNU+j6aXcnZ2jM15102d2LUtNU\nVWU4Z7Da9qnZQdph7vpYqsLfnl65ygi3T9G70t/n9bjN+0fzAFctgN/FzceVohN92eVqb4dDCnD9\nmE6UmtoBKCLd4en36HurJmkRBMSRxAkTZCdACEHW1NC1hFLWoJTRqTkhBUvj9787zQcOjTNSMK96\nyN0pim4bKSp+mFyWvG/EdlNpNCF4bbXDattHUVLPrkf3VKjZHopQaPshak+u+s9fWuDVpQZdL8Lv\n+QbFUvL/s/fmwXFd953v59yl9wXdAAiAAAiAi8RFIqmFWmxJTmzJsZ+XjJzkZezY5UwytvOSycvL\nZPIyM5Wp5CWZV+XUeCaZTDZnmaSSSWYSv9iOI8eLHFuWrIWWLEoUJZESAYLYCXSj9+7bdznvj4tu\nNUA0gAYBohvoT5VKZLNv9+l7fud3z/L7fX+vTmcolm26w14++eAhnnpzni+8OM3YfI6y7fZuoewq\n+g3FAxi2G5P/8mSaCzMp/LrG5fksEZ9bciAe8PDA4S7mMgZCuPXhkK66p2M7VdvqCXv55muuBLZh\nlekJC+J+D8m8wTcvXsMwHR441EVoqZ2VCV7Y1xo7wTvBc2NJXpnK8Bv/7LZqOPtuRlMV3nt7L597\nYZL8kojITrDW5sdqz/7NirWsJl09kSxcF1Gxmt988Eg3Ewm3TAkS5jIlArqGYbljsyfqZyZTwrAE\nHlVBCLdwvKIomJYDUhD2qqhCpSuskyq4IfamJd2xDcznLFKFHLmyjSYEUb9OumSSL7sF6Y/0hDi8\nL8SpwQ5emUrz6kyG+YyBV1NYyBsI4N7hTr5yYQZNcfO9NyJv3QxsxPKeBmaALuAzNa9ngZe3o1F7\niXqJyysftJUE16F4kOT5aWYyRTduVnurNsup/g4QkC1ajC7k6Q576Qjo3Hewkx840cvotRx/d24S\ndVZhfCFP2KdxsMtNfE8VTXRV5ZWpRbJFkyu2jXQcQl4PUjoYFjiOTbrgTuzPjibJlEyWno14dddx\nCyEomBYS6PDrpIHOsJeQV8cR3HChu5vBZidw0YDOw0f3MZsuuqFpmkJ32C1IOrcUe1swLMq2Q2ne\n5sxQnOfGk0S8rmpewKOiKgplWxLzawQ8GtKBoEfFsB1iIY87wbEcSraDVxEoqkJHwMO+sI9UsUy+\nbLsiCKZN0bTpiXgp2w4LOQMp4eK1DF0hXzWEciFr0BHUua2zg9H5XLV6e61azcoHQa1DD/m06sKn\nFXb8W516Cm9D8SAxv4ezY0len3Enx/mytaTWiLuYXlr84K6FKv+rIoFcySS6lBSvKmBYkoJhuUIb\nPo39UT/XMgZySUr95anUsoXveDLPtWyJkc7QsoKbzUY1by2R57tXkrw0meKVqfSqY30zoXr1xoIl\nJbf3dxD05lzlNschkTfoDvl49/Heat7mRLLApWtZLBsMy1mq4u4Q9Wv0Rr08crwHS0pSBZOzV5IY\ntk2qaKIKhflMiZ6oD9N2uDibRQroCnqYzRbxaxoHOgPM5ww6/BoBr0aqYPLYyzNEAzp9UR8jXQGm\nUwaacFBU14d5lkQOyraDpriTrIBH40oiz0K+TCJvUCjbvD6T4c4hVzWy1YQtdoLf/9ZlukIefviu\ngZ1uyk3jAyf385fPXuUbr1/jg6f270gb6uXn1Hv2b1asZbXNk9ocwLUWVwCfPzfJpbkcAY/KXLrE\nbKYICMq2jUdXMEwHXXXzNN3wXC/vOtrDdKaE36NyfjLNXKbEeLKApggCXl/1RKiC6cB8tuRugjkS\n07ZRhEBVBI6UBL0a+ZLNm9dydAY8JApl3n28l6uLRXyawnNXknQsheDOZUpoioK2tJBv5jnBuosf\nKeU4MA7cv/3N2XvUGn3tSc5qk+6KIdUqOz355jyj8zlKlkMs4CHi14kFPSiJHImcQVfQW339f569\nymSyhEcVJCq5Ibbk7Qe7CHpVXpp0cwMk4DgSTdUY6PAxk4GFnBv7nim5uu8F00IV7gRKEeDVBLqm\nkSuZhLxukbG8adMZ8PBDdwzSE3UHXSuEP2x2lyddMDk3mWK4K0hHwFMNd/vqq7NMLhaYTpWQUuJV\nBVLCY+dnMB2H0wMdzGVVhroClMo26UKZaMDLYt5w1eIUhWymyGyq6CqzLU1mu8M+jvVGCHtVzk0u\nMp8x3HpLuoqqCDoCOvOZEl7FnSh3hj1EvB4yxTLJgnuiVDn5mckUKVnOskKn48l8NRm71h7rxTY3\numBsZsfYjKQLJp97YYKsYRL26stES8AtqnstW8KnqxzsClEo21xdLGBY7qmwRwHLAaNOvr6+NI6l\ndAVM+qLupkhPxMct+0LM5QyuZQ13UVR2GJvPVSfqlYWyu/jK8tJkmrsOxNCEYGwh35R9HA3ohAs6\nHl1paKyvZ7f1JG8ri9ZKDTZdUYj5PSBhbCHHty5dI1U06QjozKRKeFSFeFCnZJoMhHwc6YnwzqP7\nWMiXsaTEMB3emM9Sshy8moqiCOKVfD1FcCAe4upigUzBVYybSZdwpGQ6XcCRsCgl06kSZcsh4NUw\nHcdVgCq66qGW6eaXFssWdx7upr/DT8jnCtc4jmSoM4hXU1CXchH9unvabDkO94x0E/bpDff7XvIJ\nr0yleeLSPL/4A7duefJ/M3NmOE5PxMuXXprescVPvRPdes/+GzkBXrl5stpmymqLq0q+YSzgYWKx\ngGHbHOwOMZ4oYi+p6R6IBRiI+7l/pIvSUomSmUyJaxmDoc4AjpSkCmWyJYuAppDMl8kZZvXUXwEU\nxT3ZtW2HQtmmZFnsC/nYF/HiSMnrsxmmUwWm00Vu3Rcm6NWwHbAdSU/Ex1ymRKpYRlWgZLnS15WU\njPXym26UG/EXGz5zFEJ8CPg0sI+lcHNASikjDX3jJtjNDrHW6Fee5KxWN2GlIT1IN58/N7lMCSQa\n0Hn4WC9fe20OW0qefHPeVQ5ZyLOQK7lhVcBwVwRdFcxkSnSHPAQ9GgFdo2SaGJbEdizGF4ukiyam\nA8K08eoq06kiRcPCsN8qdhnyeeiPBnhzPstQPMB8tsxdB2LEwx7GF/MkC+VqDZ9m78/N7vKMJ/LM\nZQwOdgXxe1T6Yv6lfCyLaMBDd9jLdKrg3k8bUku7O9+6NM/BriA/dMcQ+bLFF85NYUmJrqmMdHp4\ndixBseyQwUbAkiKUQzyokyuZ5IomVxN5pBBoiju5KjsOVxIFJhJFEJIOv07EpzO+WOBUf5SOgJtz\nVFF9WynLqwoBsr5M52qxzY0sGFslPKqZGE/mOTeZIuJz8//OjMQ5OeDmy708kXITUr0qhbLFy1OL\nZIomJcPCWQp1y1vXf2blIQjuhNm1O4Ft2Iwn3Ppbpi05NdjBj97ag4PkQCxAolDmtRm9WsS3slNZ\nUS2czxks5st87dXZakhlM/Zxo2N9I3a7cizUbiIYpquWdnk+T9GwueY1CHs1XpxY5MnLCUK6ykfv\nG6JjSeWtO1wmGvDwvtv6MKXDqQMxiobFd8eTLBbKOI5kdC5LyZbkSxaOI9FVgQMECiY+TaGoKEyk\n8pimJODVKEroi3jxaAo9ER85w6ZsWRTKNlHHlbB1HFgsmgx3BjjaG+HOAzG+c3mBqF8j5FU52hch\n5tO5nMhj25LusBe/rlKyHcJefVObXHvNJ/z+E5cJeTU+et/QTjflpqIobt/+5bPjpIsmUf/O9PFG\nFyFrvX+jbEYsAajmG4Z9KiqCC7MZLMcm5NPxaiqaKnh1KsPLToZEvkTJsumN+Al6FAK6StijkSlZ\nOA5kyg5508CnCYIeBcNy0FTFzeXWFDRVoTOoM5UqksiXSBYMDEvSE/XRGfTQEdDxezV6fBoXZtJM\np4qMLeQ40hMm4NEoGDYBXWOoM0jGMNfMb9oKbtRfNBJw+ZvAB6SUrzXcyhtgtzjEesZfa/QrJ58r\n6yasZkiWlMSCnurrlfjsuWwJn6rQHfK6wgbpEom8gU9TsWwHj6qSKlooAsJ+C5mVpAoGWcNVJ/Fp\nAq+qLAkpuG0oO+BXBF5NpbfHx+WFHNKB3g4/QkB/zE8ib5AolPH7VCxsrizk6Y36q5O1IYJN35+b\n2eVJF0y+eyXJ6EKOsYUcJwc6iAc8ZIompu2QLpTJltwcKttxEEhUxS0+apiOe2o0sciF6TSG5RDy\n6fR3+HluLIlhvhWgJIFs0eTUQISP3jfC+ek03x1LMJ818C/t/g7E3R2fqF9nMV/GdCRRn4fusIfh\nziDH97vJl7Wqb5X/1x7JA7wynWZ0IUfJtKtH2avR6CSyVQte7ijyLSV7sfR3cG3v22/M88zoApYt\nKZk2+8Je4iEP05nimh+p8lb4mwNouEqShulgO66ctU93a//M5UqoQnD/wS76Y4FVY9dLpht+FfFp\nOFKSNczriuE2E42O9fXsNl0wyRZNyqaz6ibC+ak0C7kyhmljOw4TiwaaIrAchy6vD8OyeG02y9He\nsFu+oFjm7FgSUzrVYsmfffIy6aUq7Y8c6+FAZ5BcyWYO92RPAIMdfiJ+nbH5nJvXZEmEBDxuzabe\nDj9F08K0HGzHIR70UDIdTMvN2Uzk3TDZuXSJM8NxcktFmjUhKNoOtywpyHUGXQn+j943srSQcuuO\nbIa95BPGFvL84/kZPvnQoR2b/O8kHzjVx59+Z4yvvzrXVCF/W53jB42JJQDVjaSVbQG4MJ3m8dfm\nGE/kmVoscjFbqoY3l00HCZTNPPGgB59H50A8gKDGx0t38ampKpomCHl1juwLo6mChaxBrmyjqgrC\nkiiKwHIsimWLRQT7oz5ODXRwYTrFtWyZiN892T2yL8R8zmAwFuAbr88xlsixL+yrm9+0Vdyov2jE\nS81txcJHCDEMPAe8BpSllO9e6/27wSHWM/7aBVFF/Wy1eFCoP7lc+fpQPMhQPMiF6TSXZnOcm0yh\nKfC/3b6fgVgAxylUi6EGPQqDsSC2dHh9LoMtIehV8Tlu4n3Yo2HYBobtDh0JdAY8ICBj2G7xOhWS\nOQNVUUgWy+yLeIkFPWiKYCFnci1bIhb0VidrrdKfje7yVH7Xqf4OplIFBmL+qqxlh19nEAfkpAAA\nIABJREFUoCOAriq8eHURaUlsoGS5IYNl2xWBODeZIpErowrBlUSBWEB3czZ4y3mFPQohv84jJ/Zz\neijGxWsZvEvJjiYSn67y8NF9lB3Jhak0lpT0hL3c0hPh/Sf7ODeZWtMZrfzdDx7udhWpNPdk8X3+\n+o67kYdGqxa83EmGOoOcHOggW7IY6Qoy1On6DLegpMn+iL/6IIwFPUwk8qjCFTNYDY/iJiA7jkPZ\nBp/mCps4jmR/1Md0ukSiUCaguzaxUtJ8tf5++GgPL02mKZkOcxmDzpC36fu4kbG+lt3W+nkJnBpw\nczTB3URwk/81siWVomkvhYm5IW7FssN4Msdt+6O853gvJ/rdE/xIwW1Xruj24nfHkxTKDoMdASYX\ni1yczeHVFWxHLoWjOdiWw+RikV4pcaQbt6+4azDKtkNc9yAEeFWFvogXVXFrs0kk44kCB4djnL2S\n5ERvlFTJ5PC+EI7jymSHAzqmI3GkdGsDSTe3sSfqYyj+1sZWpe5XIz50L/mE33r8Eh5N4SceGN7p\npuwIpwc7GIj5+dJL0021+IGtk+OvzO+yRXNDc55688Ta975tKVrjwnSav/veFG9cy2CmHcpLIghC\nAdN26Ap58ahiqSyKzny27Ia5Car13AplyULOYD5ToivspTfqYzDmJ5FXGJ3PowKawC1oik0yX+bS\nXJbpdImIT6dQthmIaZzoi/Lkm/NkDJOTAx3L1B3rzWe3ghv1F40sfp4XQvwv4AuAUXlRSvl3DX2j\ny9ellB/dyBt3g0Osl8xWz9AbmVzWe72vw8+tveFqXEtvxMfpAzHSBfckYqgriGk5XEnksGw3XOVo\nT5iLc1k0RUEIeOBIJ8+NJRldKKBKVxa3LCVeRWEk7qds2gQ9KpmyxemBGA/d0s3UYoHZTIl82VWM\n82qu/OLR3nB1stbq/bkamhC8Ou3W75jLFIkFPFyay7mFEbtDFC2b81NurQ2/R0OzbQK6ilfXMEwb\n05ZML5bcELWAjmHaqKqHgmES9usUyxZCCLqjPsJejYeOdKEJwdVEkcWSha4IukI++qI+DnQGObE/\nykNHuskZ7qQp5NPojwXojwUackbuyaK+ocVqIw+N7dhh2+1EA/qyGlmVe1axg6l0EVtKukNeypaD\nrql0BDwYlsNi4a0lUG2om6YKgn4PBdPBq7qJ7NGARt5w8OoKQa9KZ8iL4Poxu1p/+70a9w7Hq0U8\n7zvYSdjfeO5Hs7KW3a7087UqZ7XXZIomPl3Fka4KW8TvIeLVmVgs8p4TffTF/MBbk6H5rMELVxfR\nFffcbyJZYHQ+CwiSeYPTgzFKlk1fh49r6TIhv1vSwKsLZtNJDOut8OQzQ3Hed2o/IPn6q3P4PRoz\nqSKdIQ/HejtI5Mt4VDdkpmDadPjdyQ249YSKps1gLMAdgzFenkyRNSwCupu7dKMbW3vFJ7w2k+Hv\nX5rmp95xiH3h3VvUdC2EELz/5H7++MlRkvky8eDumAdUqF3IVE5k1pvzbHT8RAM6fR1+bukJuXk2\npuOq8UrwagqG7SzlYas8cqyXBw5385mvXyS9dCJ/uDtM0KvyxKV5iqaN6UCmYBLxasymS5TKDqoi\n8OsavWE/ubLl1owslAl6taVcRA8DMZVHT/cz2Bmou8jZqoXkatyov2hk8RMBCkDtSY0ENrP4+X4h\nxJPA30kp/8tab9wNDrFeMtt64ROrLXTqDYaVr7uJxjksBzQFPnTHAO+4pZu8YZLMmVzLGTgSjvZG\n3HoQhsWtfRFGukPsC3sxbIcTfVEcKSiVHUqWG7oV1BVSRYvZtJsgnzdtgrpKzjBJ5Aym00X6on4u\nXcvRGfTSGfLywKGu6k4m0PL9uRqWlBzvi1K03LyczrCXfMmiZNrMZIoI4NbeMMm84e7AWoK+qA8Q\n5MoWR3vCLBbLFMo219IGpuNQKjtoqkosqBOM+emL+ri1J8x7buvjeH+UsYU8pwc7OLY/wtNvLNDX\n4VZZvrpYYCpV5MywWw+kknRYUbOq2F+maK6qLFjLdm4+bKdj3K2sds8sKTk92MGdQzEWsgZH9oV5\n41qW2UyJTMkkXzbw6wJNVSiU3Hw/G1z5NwSnB2OYjmR8IU/Rsgn7vBTNIhGvTk/Ut1R0s4u+mH/d\nMRsPeKpSxyGfG/+92/q4nt1uNF8gGtD51EOHSBbK1TA2y5H0RLzMZkt88dwkYa/Osd4IVxMFribz\nzCxVeD/YFcSrqZi2G9vv1VX6434cKXn4WA/Pjyfx6SqKEEyniliORFPcB7WuCPbH/Dx8rIfxRJ4n\nLs0D7slNRWa7snP7I3cNkiiUGY4HGewMkC6YfPS+ITJFkxP7o0s2F0NR3HCZxUKZoc7gDfuKveAT\n/tNXLxLyavzUQ4d2uik7ygdO9fEHT1zmK6/M8pF7D+x0c7aUlfO7UwMdhH06mhDLwtpqaeRZW/Gz\nh7pDdIa8dPh0vv7aLI6EVLHMPSOddAQ8VZ/98w/fwlcvzLpqkgqoqgDhihZICQXTYTJdRBMKKNAT\n8nG8P8It+8Kcm0gR9mqkCq5I1srTncpv2YlxeyPfu+HFj5TyX2zqG65nBrgF9/Toi0KIb0gpq5LZ\nQohPAp8EOHDAHRCt7hDrLeA2Ej6x2bwYS0qO748S9GjkyxaWlAzFgxyIB4kHLbrCHlTcooa6pnCm\nv5N33NJdDdN4bElO+3B3iJCu8exYAttxyBg2XlUh7NO5mnTVxxzpFsSybIeR7hAn+qL4dJW5TImI\nX+O12Qwn+qPL7kcr9+dKKnH+7m6Jit+jkC9ZhHwa7z3chyUlRcPiH87PcHhfmHTRJOB1q8bPZw38\nHoVowENnyMPl+Rxm0IMiBEGvSjwQQFVVMkUToQiiAQ9hn87YQt5VjvJp+KXk4eM99Hf4ubpYoCfs\n4/HX58iULFRFuKdPS4np44k8r0ynqwVKj++PEvJqa8Yh78bF6m6idsFxoDPAPSNxptLuxHekK4Qm\n3JoMtiMRwj0BKJYdIn6NfSEPibyBEIKiZePTFGbTRXy6guIRlCyHgK4wGA8w2BlYty172V4a+e3V\n+H7gkw8eIlFw63996fw0EZ/O6zNZplJFrizkmc2UCHhUTFsylSpSth2CHo1rOYPukLfqa07sj3Ji\nf7SaP3p2LMn3xhcxLVf2POzT8GgKmaIJwq3xZdqSka4gP1CjHLiy3SufR5XitoriFkuWwHevJBnq\nDC7LX603ydvLvDCe5BuvX+MXf+DWPX9fjvdFONgV5EsvTe+6xc9q6QiwerRPhUb9x8rT5HOTKTJG\nGcNUAUGqaPLGbJZL17KYtpsD3BX2cKw3yly2xKmBDp55cwFzqYajbYMhXZnrhZxBQFc52d+xJH8t\nGeoK8tDSHHE32G4jam+3AL8P9EgpbxNCnAQ+KKX8jUa+UEppsBQ2J4T4B+A2auoFSSk/C3wW4O67\n764jytp6rJzwrxc+kStZKIpgKlngcW2OIz2hhoyuUpm8MtCyRZN4wHPdgLkwkybi1ZedzMDy05kL\n02neTOQYiPmZTZdQhGQ+78aQBr0qPl1lIVcma1gsLroPvLlMidlMCSH8XJpbQFMF77y1Z0MTqGZm\n5Yncyjj/+w528t4TfcsmEumCyWOXF+gI6BzaF2KkK8jYQo7JxRIRn0a+LPBpCqri7s7risDnUTgQ\nD/DRe4dZLJY5N5HiWG+EuWypKoeeLpj0RXyE/Tq9ER+xpROdsUQOARzsCjKXKVVPn1SxtNsjJUGf\nhuVA0OPayHgyT7iwenjSblusNiObVUBcKX9fuf7R0/382dNjXJjJULYd/LqCpigoArpDvqVwV0mq\naFG0JP0xPwGPxlA8gOW4Mte9EV/1BNOScsNt3Mv2spHfni6Y1fpCHl2hbDqcGY6jClEVtCjbDh5N\n4a6hGF++MENvxEdX2EN30MfL02niQS+JvMGHzxzgSE/4uj557Pw0uZLlhtBaNj5N49SgW4+p4j/8\nuspDR+LV07lK/1Z+R4XVohRGuoLcMxInZ5jLajrFAx6yJZOzY0m8TazytxNIKfnNr1ykK+TlX7x9\neKebs+MIIXj/qf38zj+9wbVMiX2R3RMCuNr8bmxhffWz6qbIinG4XiTQeDLPgU4/ncEYybxBqlhm\nLlvi7FiSXMnk9oEouZLFSLc7VkNejX/xthE8msIb17JkCyYFy0Y1pSv9H/VjmJKvvTpLyKfxtqXi\nxbtl4QONhb39EfCLwB8CSClfFkL8FdDQ4kcIEZZSZpf++nbgdxq5fjdR70GpCcG5iRRjiTypfJln\nRhMMdwc5MxSvykVv5LPfd/t+xpN5zo4leWkqVU1CHekKki6Y1XCoZL7Mif7osgKKlTpCyUIZJIS9\nGmGfjmE7HIgHCHo0Hjs/DVIghGQwHuD0YIwriTypQhmvqrCQM/CoKhdnM5RNyYtXF/mFR4627AJo\ntRO51eL8a39fumDy8lSKnGHRE/ZxfipN2KcT8GgYlo1tSzIlk6O9fVxN5imVHTyaoFgWdIe8PHcl\nwcNHe0jmy2QMsyqHrguFr12YJeLTyRom7zzWQ3fIy4OHu1kslgl5k66Tqzl9qiq4TbknP5oC+bKF\nurRL3J6s7AybPemtXJcrWZQsh0dP91evi/h1tz+XTv6yJZOAV6CqgnSx7Apk2JKyJSlbJp6uEJoq\nCPs0eqN+3n+7K45RCV/ThGh6lca1aBZ5/UqfzWUMRhdyvO1gJ2cnU2RKFhGfVj2N6Yv6KJk2j70y\nQzJXpmDYGFaAfWE/Pk2lK6RzrDfMsd4Illy+R1jxST0RH35d5VhfhJlMkY6gm0vY4X9LHTTs16/b\nxFnZv/XCcYbiQfaFfWQME1WIqo1cy5YYnc/zrqM9TV3o9mbzzYvXeG4syf/zwRMEPJtTxNttfPBU\nH//1G2/wxXPTfOKhgzvdnC1l5fxuI2Ft9WqEreV70wV3s2E6VeLKQoF4SEciyBYtCmXTnTuULDya\nwgOHu+jr8FeVhQ/tC4GEiVSBbNEkVTQZ6Qww1BXi1ek0Aa9G3rAolm16Ij6+dXG+mufT6jQyAgNS\nyrNiudxtPSGhtXhQCPHruKc/T0opn9vEZ+xqLCk50Omv5o+oikBXFLKbeJCkiyaOU1NzIuHu8LsS\n1m+9fmE6zfPjSSTwymQar66ymDe4d6STgFfjQDzAdKpI0KMR8mr0RH388F2D9EX8hH2aW0zPMBEC\n+iJ+eiI+ZjIlLMch4vdwrC/MTKbElWS+ZQfOajug8SVZYHdRoxEPeJhIFLgwk0YVgotzWXIli6vJ\nPAc6g9UTmddm0/RF/fTH/FyYSnMlkefN+Swhv+Yqsug6ibzJtVyZUtnhgcNdhPwaMb+HJ9+c5/XZ\nDBLoi/lJTJaZS5coGjaL/WVOLqlM1ZvsVRZt773NXRRliyYvTaWaXoFvt1JPEKVe/00kClxJ5lGF\nIFeymFgssFgw+fy5ST5+/wjRgE6yUKYj4CHi1ZhYKBLx6wzE/Bi2w9X5PLoqMB0HVVEJeHU6Ahqq\n8LMv7CMe9FwnjtEqKo2rsVPlEmoXXMAy5aeDS6e/r89lqj4hY5icGYlXi4M+/toc+hvz9Hf4yBqW\nW6jQ4/ri04MdVZWletXoRxfyaJrCbfujLGTLGKarAqUqoloYuyJff11tosTyk+CNiO1UPmOkM8Tl\n+TyjC3l6It4N5/40ywJ1OzBth9947DUOdgX58D27K8TrRji8L8xdQzH++rtX+ZcPjrBifrmr2EhY\nW71ngS0lEa/O6EKeC1Ppai4PwMtTKQqGxZF9Yc5eSdKr+rg0myWRMwh53aL3Qd0VvwGqYzVnWEwt\nFpnNlvCqKu883UNyac6XNywuzmYJ6CrpYpnFYpmy7XAt49Zv+4m3j7TsPK5CI4ufBSHEIZaEgoQQ\nP4ybv9MQUsovA19u9Lq9RDzgoTvkY2yh4Gq0OxLTcYvHNfIgeez8NDnDze0AN0a7EmphmG7V95lM\nEcN0eOrNBa4mC5RMm5cnU4CkWHZwJNwxGCNdKvPSZBqJe1LxtkOu5OLKY9nKjkLGMLl7OM6BeIAv\nvDjFTKaEpsDwUuxrK1Jv50YAQkgEMLVY4L998w0mFosUyxaqonD7QAeOhCP7QnSFvMxlS1xNFHGk\nJF+2uK0/yuF9IfxelYVsmWuZEhmzTKJQoivoY2whh0cX7Av7eN/t+3nf7fsZ7kxzLVsikTNIFcq8\nML6IV1OWHU3Xm0DUHq3HAx7iAU9Vinc3KfC1Civtaq1TlolEgc98/XUsBxzHoS/qZ7FgEgt48Olq\n9WGZLZkYlkOqWCZbLiNMyBsWmhAk8mXEUiHLeMDDO4/3cHt/lKuJAge7Q8tCm2ptqFVVGndi4Va7\n4Kr42kqImwQyuOICx/sivDqTqZ6eVMZuumAyky5SMh1m00W8ugoSnh1dIODV6F70sr/Dv2Y1+gvT\nabJFk29dvMZi0aSvw4dHVTjWF6kKI1Tk62tt0DCd6nNCFeK6kMpaVvoZVQgyhsnpgQ7ODMc3LHix\nW+r51eMvnx1ndD7Pn3z8bjyastPNaSo+fM8B/s3fvsSzo0nuP9S5083ZVtYLi603xzBMh2+MzWFY\nDhem0xzeFyLk1fDrKjnD4p9enyPs85AplTkQ28dEskAs4MHvUbmnJ4aNW4T9j54a5a4DMX7wVD+p\nQpnXZjLoqqBkOuQMiyM9Ye4/1EWmaPKN1+comA5D8QAxv4fJxSKpopvuULvR1qo0svj5GdxcnKNC\niClgDNiQXHWbjVG78/Xu4730x/woQhDyag3HW1Ye+Ae7QgAc64sQ9eu8NPnWDv+p/g7CfvcU6NnL\nCbIBnQvTBSzbrQSeKxlMLhZAQKffg2VLPKpgNl1kJl2ir8OVZK0M6Kqam38/44k8CDc04lhvhCvJ\nfFU56GZyo7kU68mKjy3k8ehKtZDjhZkMBdMhHvBwzZYULRvDsvFoCkf2hYkFPDw7lqhKf48u5Hno\nSDdDnUGS+TJ+XSXs0xi0bEbn8yTyZYJedVlc/UhXkLcd7mIwFuDZsQS9ES/Zko1PVzBtue7kbrWJ\nxno7Urt5V3anqbeDvtpk/Uoyj+VAX8THm/M5hruCeHXVrfOyYuE0ly6SK1n0Rl1Zel1V8OkqOdPG\np7oVvX/wjn4+fI9bYT6Zn1720F3Z560qZLAT5RJq+/D58SRF0+LOwTgZzKryU+U+VkQKau9rsuBK\nTr/9cCfPXUlytCeMV1XQNJW7DsTIGCbI6xektZtQVxJ5dE3BEXCoO0i+bFOyHEI+bVlh7JV1m7Il\ns/qcGJ3P8flzk8SCnnUXJTdiI618srgeqUKZ33r8DR480sU7j+7b6eY0He8/2cevfekCf3X26q5e\n/GzkGRoN6Dx4uLs6X6q8r5JfpwrB116dI+BxFz239IQZjAfoifg53B3i8kKOq8k8Aa/Gw8d6mMuW\nONob4cWrKRYLZUxLcnYsyUO3dPPA4W5en83SGfCQMyzuGOxY5ov+3XuPV9sB8KffGUMCPRFfdaOt\nlcdoI2pvo8DDQoggoNTk7bTZAlbTha/kYNw70tmwkdU+8ENejZP9HYCb71FVIKlJdH1lKs1gzC3E\nqSsK48kCHk1wsCvEif0RrmUNTNtGouJF8MzlBRJ5o65S2CvT6WXyyg8e6d6qW7VhbjSXYq2itPXi\n4U/0Rfjm63NMLBZRBAzHA+yP+ukOe4kF3JC1nGExupAD3JDG2IrJZSUM7fb+Dl5bSlgfXchXw+oq\nDHYGiPj1qtKLYTnXvWc16iUw17s3u31XthlYbQd95WQ9XTBREZRMm2fHEgjhCov4PSq2454uLC6F\nMwgEb87nKJQdbMet2RMPedAUBZ+m4NEUDnWHlvXlymri6xXcaxV2YuFWDT2bz3E1UcCRksfzc5xe\nCkldKX6zMoZ/ZrHIuYkURcsmnS+zmDfx6QrH9wfeOiXqdAvdrtZnM6kSjpQMdwaYSRfpjfoIeDQe\nPd1PxK8vew6srNtUeR7MZNxyBlKCshRiud6EZ7M2shvq+dXjtx5/g2zJ5Jffd3xXh3VtFp+u8qE7\nB/gfz42TyB2nM+Td6SZtORt9htbmYk8kC9Wi4pX8uvFEoVqgOA9kimUWsioBj0JHUOeeUJxjfRFe\nm8mQLVkoQuFALMBTb8wzuVjAq2k4UpIrWZzYH+Vth7rIllwlyBP7rw+jrZ23/cTbR/j8uUl8ukrI\nu/48o9lpRO3tX6/4O0AaeEFKeW6L27XnqJ2QvjKdQkrBcGd007tg9R74a8VujyfzrsqcgLLlkCqZ\naKqgM+Tl/Sf3E/HppIrlaiFTRQgO94Sua1+z7OJtth3Xxb8n85CEJy7NYy+FH1aEJ1a7z//uvcdd\nFT2fzmAsUA0ZqT2NK5o2i3k3FKUSerJs8jGdJmOYdIW9lEwba2lyu5JowG3LmZE4SDYUZtLoRKNZ\n+nOvsJpN1T48D8QDdIU83LIvzPhiHtOWnBmOM5MpumGu02nSJZNU3mQg7scwbQ52h/jovUOkikuf\n48BAzF+VLa58b6VfN6JM1Erc7IVbpQ9fnkqBgJ6wj9GFPGeG4xs6lZ3LGNhScqwngmk5HOgMEAt6\nuPNADFvKZbvCK/ss4tX5zvwCZdthKlXklp5wtYzBWs+BlW2vrUP0xrUcmgLvva1vW+9XK54srsWb\n13L8xbPjfPieA27R8Tar8mP3HuDPnr7CXz13lZ9915Gdbs6Ws9G8znrP2uocLeFuguYMi1SxjFdT\nMSyHTz54CP/SgiQacOcdlYXKM6MJAMJeDz5doTfqI+TTiAaWF81e7zk/2Bng4/eP7Jox2kjY291L\n/31p6e/vx5Wo/ikhxN9KKX9zqxu3l6idkIa9+oYqAq/Hag/8tSYBr0ylmcsYjC3kONQTRiAJejTO\nDMc53h/l52IBnrm8wOdemCBdsnhtNkNX+PqE1mbZxdtsO2qvK5sOZ8eSLORKPH05wa37wpTsPGdG\n4pwMuKdpK+/pYGf9miiVzxVAX9RXrb9T62iWnQLVhKCsJY9ZactGaHSi0Sz9uZdYaVO1D6aiYZMq\nlnlxMoVlOQhRpjPkStuHvBrH+6IYlsNX0jNYjqvW9tF7h6qFcY/2RdZd1LT7/MaJBnRO9ncwkXTF\nYHoiXoY61855fGuDxBVEKJoW2ZLJTKrEtUwJVQiiAX3ZrnCFSp+NJXJ4NIXvu2UfM5kS7zjSzcmB\n5f5hvcVg5d/HFvLX1YvbLlr1ZLEeUkp+9e8vEPCo/OtHbtnp5jQ1R3rCfN+t3fz5M1f4xEMH8enq\nTjdpS9loXudafrfynB/qDPLM6AJXFvKUbcnCYgFLuvW6KlhSVkNbX5lOEfLp3DUc41rW4NbecLXu\n0EYiDmrZTWO0kcXPAHCnlDIHIIT4FeAx4CHgBaC9+LkBVk5Iob7a03ZQ+9C9NJshkTcIezVu7Q1U\nH9jRgM7+mB+/V1uqKWPwwOGuNXcOa3eub/aOwWZ3E2uvm1kscnY8QdCjISWULAchWJL92Hx7KsIQ\n9RzNaiEoWzkJbcSJ7dZd2VZCE4LFfJli2Sbk07itP8pzY8lqLadjfZG3Qlun0+QzBoOdAe4+EMdB\n4ve6rn6ji5p2n28Nm91oyBiuIMJAzE8s4KEz7GUiUXBlsNfYPa6c4Ie8SUzpbGjBtV57KvXidkOo\ny83kSy/P8NSbC/zaD57YlaFcW82nHjrEh//oWf6/703yY/cO7XRz1qTR+cxKP7DeCc9anx0N6OyP\n+qvCGQKum4+s3EwPed3XBmKBZSUR1mrjbvf5jSx+9rFUnHQJE7fgaVEIYdS5pk0DrJyQ3kzjq33o\n3jUc53hfhJBXWxZGlS6YgFsZ3HYcjvZFGIwFGFvIXzdYan/LTuaMbHSSv9KZVa75xmtzjM7nMSyH\n3oiP/g4/XeHNTyhqP/t9/vUdzWYc0nYsNHfTjk+zUq/fKnHgPk2lZDo8cKgDS0rCPq1ay+lkf8ey\nkKbxRJ6IT6sqdtXmdTRSRbzd5zfOjWw0ACTz7kSpO+xdFhFQb/f4ZKCDmN9zXdL0emxU5KXN+qSL\nJr/+D69yciDa9BP5ZuG+g3FODUT5o2+P8s/PHEBVmjM/arPzmY2esmzEXwx1Bjk50EG2ZDHSFbxu\nPrLWZjqwbM5Wb+6z22lk8fM/gOeEEF9c+vsHgL9aEkB4dctb1uamst5DrnbAB3SVM8Pd1QT+9ZxA\ns+eM1HNmyUIZr67wrqM9jC7kuXc4XtXX34r2b9TRNOKQ2uIErcla/VY9le0OMTqf4/HX54gFPQjg\nVH/HdXleteERq43nvfSAa0VW9k+9SUw9v1ovaXot1rK/tr00zme+dpFEzuBPP36maSfxzYYQgp96\nxyH+j//xPb54booP3Tmw001ala2Yz9zopkI0sDxfp95Jzkq/v3KcP3i4e0NzuN3IhgXnpZS/DnwS\nSC3991NSyl+TUuallD+2XQ1sc/OIBvS6ql+VAR/x6mQNE4QbV1pxAraU1TCMWtIF0605YjpNmz9Q\n68xqf0ftaVhPxMuJ/uiaqmjNQL3fUo+JRIEn35hnIlG4SS1ssxpr9VttCEPJcvDpKn0RPx5dIexf\nu57TZu01XTAZW8hXT3s3+m9ttp7afqz982ohjOmCyctTKXKGtaot1eu7Rv1Gm/o8N5rgL54d52P3\nDXH7QHSnm9NS/MCJXm7rj/CZr13CsOyGr78Zvmmr8iFvxD9v9vqV4/xKMr/hcb/b/P6GTn6EECpw\nQUp5FHh+e5vUphmJBzyUTYfHx+YQQMib5AeO967pBGp3GertUjcD9ZxZK4Z8NOKYawtmagr8wiNH\nW75qc6uyXqLrRnPFtoK1TgHaJ4vNw2qhLY+dnyZXequwdW2ezlp91xa42BpyhsW/+dxLDMYC/N/v\nObrTzWk5FEXwS+85ysf+5Cx/+exVfvKBkQ1fe7N8UyvOCyqsHOfD8SATycK64343+v0NLX6klLYQ\n4qIQ4oCU8up2N2ol7QKLO080oHNmOE6mZHGwK0jGMLGkXNMJrDweXmuXeidZy5ngEcxqAAAgAElE\nQVStzF1qdjtsxDFXCmYOdwa5kshzJZlvL352iPX6rdFcsRthrXCqyqnCaiqFbW4+tXZRkbo+2P1W\nYevaXLC1wnW2ekLXCr5yO/iPj73K5GKRv/nU/QS9jWQVtKnw4JFuHjjcxe/80xs8ekc/8eDGFuI3\nM7y+FUJBN5rDt5HnSbOnLmyGRkZnDLgghDgL5CsvSik/uOWtqmE3rjhblaHOID0Rb7XI3noJcq20\nm7ieM2slO9yoYx6OB9EUuJLIoylUKzm32Rm2IwdsM9QLp1rrVKHNzlPbbytFMFb++1oKkzdKK/nK\nreTzL07y12cn+NQ7DnJmOL7TzWlp/sP7j/O+//okv/HYq/zn//30hq5ppfnGdtNIDt9Gxv1uvLeN\nLH7+w7a1Yg1244qzVWl0d7CVj4dXshvtcLAzwC88crSqCtU+9WkDq4/b9U4V2uw8Gzk9vBn+eDf6\nyvW4MJ3m3/3dee4ZifNv3n3rTjen5bm1N8yn3nGQ3/3mZT50xwAPHOla95rdNN+4UbZ6DO7Ge7vh\nxY+U8gkhxBBwREr5uBAiAGx7JarduOJsZTZyQrJSNnE3DJRWtcP1wk/WKsjaZu9SGyoF658qtGmO\nUK/1/O3N8Met6is3y+RigX/5588T9ev87kfuRFc3rCPVZg1+9p1H+Mfzs/zC357jH3/uoQ2Fv+2W\n+UYjrOZ3tmMM7rZ7u+HFjxDiE7hqb3HgENAP/AHwru1pmstuXHHuViYSBT5/bgqfphDyaU0X7nAj\nk5NWtMO9Gn7SajTDpHklq9lOq9n/zaSVxtp221sr+srNci1T4mN/cpacYfG/Pnk/3eF2MdOtwqer\n/M5H7uDR332aX/ibc/zJx8+gtGXDl1HP70QDOg8e7m641tdeopEtip8B3g5kAKSUb+AWPt12blQS\nsM32ky6YfP7cJJfmskwsFsiVrKaSS604iafenOex89ObkmtsNTtsy9c2P1thl9vBarbTavZ/M2mV\nsXaz7G0v2Mqb13I8+ntPM5cp8d9//AzH90d2ukm7jhP7o/zy+4/xzYvzfPqrr+90c5qOen6nUuvr\nSiLPk2/ON81zpZloZPFjSCmrHl0IoQFy65vUppZW0VZPFsr4dJVYwMNiwaRkOdsmw7uZ+9Eqk5Ot\nZK+Fn7QCK+23We1yr9nOjfrZVrlfzWpvrcYXz03x6O99B8Oy+Z+fvI+72wIH28bH7hviY/cN8YdP\njPKnT41t+ee3yhxrNer5nfY4X59GBA+eEEL8e8AvhHgE+GngS9vTrDbQWqEU8YCHkFdjMO6nO+zh\n0dP9W97WG7kfrTI52Ur2UvhJK7Ca/TarXe4l29kKP9sq96tZ7a1VePNajk9/5XW+/uocdx7o4Lf/\n+R0Mxts5k9uJEIJf/eAJrmVL/No/vErJsvnp7zu8JZ/dSnOs1ajnd9rjfH0aWfz8W+AngfPAp4Av\nSyn/aFta1Qa4McWOm51HcDMe/jdyP5plcrIT/dJKznw3s5r9jnQFm8Iu9zJbpYy0E2OtUX/SLH6w\nlShbDk9fXuCvz17l8deu4ddVfuk9R/nEgyNobXGDm4KqCP7bR+7kF/7mJX7zKxeZSBb5lQ8cx6ff\nmObWblAmXM3vbGacN2Pu6XbSyOLnZ6WUvw1UFzxCiJ9beq3NNrDZ1ftO7WbsRP2RRtjphUCr7zK1\nuTHq2e9O2+Vq7CVbbdVd0s32UTPaW7NgO5JEzuDiXJYL0xm+N77Id95cIF+2iQc9fOLBg3ziwRE6\nQ21hg5uNrir8lx89TX/Mz+9/6zIvT6b485+4h64b6ItWHfsboZFxvpf8fYVGFj8fB1YudH58ldfa\nbBGb3aXbDbsZq9Hqu5a7tV/abIxWst+9ZKut1C+17KU+2iy2I1kslEnkyiTyBsl85c9lknmj5s9l\nEjmDVNFE1mQyD8T8fPB0P99/azfvuLUbr7bt1T3arIGqCH7pPUe560CMv3l+gg7/jdl7q479rWYv\n+pJ1Fz9CiA8DHwFGhBB/X/NPYSC5XQ1r47KZXbr2bkZzspv7pc3GaBX73Wu22ir9Uste66O1ePry\nAk9cmmc+ayz7L1koL1vMVBACYgEP8aD73y09IeIH43QGvXSFPBzaF+J4X4SOPXxPm5mHj/fw8PGe\nLfmsVhz7W81e9CUbOfl5GpgBuoDP1LyeBV7ejka1uTG2czdjtbjQvRYrWo/17sNq/dK+d5tjt963\nZvld7R3R5mSlfWxVHzWL3W2WF6+m+O9PXaE77KUr7GUgFuCOAzG6Qx46Q17iQQ+dIQ+dQS+dIQ8d\nfr2dr9NmT7NRX9LqvqEe6y5+pJTjwDhwvxBiCDgipXxcCOEH/LiLoDZNxnbsZqwWFwrsuVjR1dho\nzGxtv+zFONutYLfet2b7Xe0d0eZirYKG2/G5rcQnHzrIT3/fIYRoF8Fs02Y9NupLdoNvqMeGtz6E\nEJ8APgf84dJLA8AXtqNRbZqT1bTj23ryLpu5D+17tzl2633brb+rzdawXfaxG+xOV5X2wqdNmw2y\n0TG/G3xDPRo59/0Z4O1ABkBK+Qawbzsa1aY5WS0udC/Giq7GZu5D+95tjt1633br72qzNWyXfbTt\nrk2bvcVGx/xu9g1CrpYNuNobhXhOSnmvEOJFKeUdQggN+J6U8uR2Na6rq0sODw9v18e32WZsR5Iu\nmkhAAFG/jqpsbnfuypUrtG1h97BZ22jbQeuwleN/JW072H1sxl72ih1s51jaDewVO2izPi+88IKU\nUq57sNOI1PUTQoh/D/iFEI8APw18abMN3AjDw8M8//zz2/kVbbaRsYU8T705X5VPfOBwNyNdwU19\n1t133922hV3EZm2jbQetw1aO/5W07WD3sRl72St2sJ1jaTewV+ygzfoIIb63kfc1svj5t8BPAueB\nTwFfBv648aa12Svs5iPTNjdG2zZ2P+0+btMIbXupT/vetNlqypbDnzw1xhdenCJftnjolm5+/uFb\n6A7vjQK+G178SCkdIcQXgC9IKee3sU1tdgltudw29Wjbxu6n3cdtGqFtL/Vp35s2W0m6aPKTf/Zd\nnh9f5N6ROAe7g3zu+Un+6bVr/M2n7udAZ2Cnm7jtbKTIqQB+BfhXLAkkCCFs4HeklL+2zrX7gX8A\njgMhKaUlhPhF4Adx5bN/XEpp3thPaNPMtOVy29SjbRu7n3Yft2mEtr3Up31v2mwFZcvhp/7iBV6a\nTPE7H76DD5xyS5ZcmE7zY3/8HD/+Z2f5h599gICnkcCw1mMjam8/j6vydkZKGZdSxoF7gbcLIX5+\nnWuTwLuAZwGEEPuA75dSPoBbIPWfbbrlbdq0adOmTZs2bdq02RC/9fglnhlN8OkfOlld+ACc2B/l\n9z5yJ6Pzef7z1y7tYAtvDhtZ/HwM+LCUckwI8TYhxEeAB4C/B35urQullCUp5WLNS3cD31r68+PA\n/Y03uU2bNm3atGnTpk2bNhvl5ckUf/DEZX7krgE+dOfAdf/+tsNdfPieQf7s6StcTRR2oIU3j40s\nfnQp5YIQ4i+A/4S78DkDHAXCDX5fB0t1goD00t+XIYT4pBDieSHE8/Pz7dSiViNdMBlbyJMutKMZ\n21xP2z72Hu0+by3a/dWmEdr20hpIKfmVv79AV8jLL7//eN33/V8P34KqCH77G2/cxNbdfDYS1Fcp\n6Xo3cFzWFAYSQry9we9LA5XlZgRIrXyDlPKzwGcB7r777o0VIWqzY6QLZjUJE+Cx89PYUqIKwftu\n31+NUa59Xztu+Xq28/40y71PF8y69tGmdWjEniYSBT5/bhKfrhLyau0+b3LSBZPPvTBB1jAJe3Xe\nfbwXS8od9x1tbg6NPitW2ssP3zXYtpMm5SuvzPLi1RSf/qHbifrr91FPxMeH7znAXz47zi+951b2\nRXw3sZU3j40sfk4JITKAH8gIISoLEgE0ele+i1sf6DeBh1nKBWrTmqyczN7WH8WWslqLIFkoEw3o\n7UnvOmzn/Wmme58slFe1jzatQyP2lC6YfP7cFJfmcsQCHgbj/nafNznjyTznJlNEfDqvzWRJ5Mv0\ndfh23He02X4286yotZfL83nOjMQ5GbguoKfNDmPZDr/51Yvc0hPih1YJd1vJx982zJ89fYX/+d0J\n/s93HbkJLbz5rBv2JqVUpZQR4CnAAp7Bzdv5JvCPa10rhNCFEI8Dp4CvAiPAt4UQTwGngS/cUOvb\n7Ci1k1lbSpCsWotg5fuShfI6n7y32M7700z3vl2rovVpxJ6ShTI+TSEW0FkslCmZdrvPmx3p7moC\nmLaD4zSH72iz/WzqWVFjL2Lp722ajy+/MsvYQp5//citaOr62S4jXUEePNLFXz13FdvZnZ3aiJbd\nrzb64Usy1g+vePk54NONflab5mPlZHaoM8hQZ/C6Y/P2pHdttvP+NNO9b9eqaH0asad4wEPIpzEY\nC9Addnj0dH+7z5ucoc4gJwc6yJYseqM+/LraFL6jzfazmWdFrb2MdLnP/zbNhZSSz377Mge7grz7\neM+Gr/vRM4P8q796kedGE7ztcNc2tnBnaKTI6RNCiCHgiJTycSFEAFC3r2ltdoJGYn7rTWZXXtfo\npLdZclRuFtu5KGjks7fjvq/8zHatitbntv4oSHfis1bIW7JQ5sHD3e2ckR2mUZ/+I3cNLsvjvBGf\nsNd8eSuz2WdFxV40IaqnRe2+bh6eGU3wylSG//fR21EUsf4FS7zraA9Bj8rfvzS9txc/QohPAJ8E\n4sAhoB/4A9w6Pm12AZuJ+V05ma33sNvopLeZclRuJtu5KNjIZ9e77zcyedmrfblbWdmfsYBnVdto\n93vzcKN9cSN+qW0H28d2LSo3+6yIBzztvm5SPvvtUbpCHj50Z39D1/k9Ko8c7+EfX5nl137wNjza\nRsShW4dGfs3P4BY7zQBIKd8A9m1Ho24WN1uisdklIW80P+TVqTS/9Y2LfOncFI+dn77ud27k9zdT\njkqrs5H7XXnPeDJfve85w+LlqRQTiQKPnZ/mqTfnV+3P9b775akUuZK1ob5s9rGx11itP2rHZs6w\n+Py5qWW2kS6YvDyZ4pnLC+QMi4hXZy5jMJ7I39D37iUa+f2b8afjyfya11QmtquN+ZXft973t335\n9rBWH23msxodb6vZ1DOjC1xNFIh49VX7ejPfs9d9wVZwcTbLty7O8/H7h/HpjQdqffD0ftJFk+9c\nXtiG1u0sjeT8GFLKshDusZkQQqOF09tu9q5UM+6CVXaPNCGwpKRoWCzmyxTLNiGvhiYEL0+kQEDM\n71kzfGUiUeDTX3md6XSRiE/nHbd0M57MEy7o68pg19JMOSqtSG2fPvnm/LL7DctDWGpt0jAdBDC6\nkOPV6TRIePHqIj5N5WB36Dp1tpU7j+mCyYXpNDOpEmG/xkSysLSISlMybbrC3rp92YxjYy+zsj8q\noWu1/qFk2vg0tarcN57I8+035nl2LIFjO3g0tfqwNW2HWMBDxK9XbXOxWL4udG6v28FGf3+6YDKe\nzHN2LIlXV9Y8qdWEqPaZKgRnx5I4UlIybR4+2oPluBnrQ3G3H1ZTZAQYT+T57pUknqXve/Bw93X+\nZWVbt8OXt8PoXIW1a9kSI50hMoa5aQXFir3lDIuSafPo6QEGOwPXla9YK4e3bDo8cWmeC9NppheL\nXEnkOTMcr15bsdVvX5rHtCVhn8aPrCGHPZEocCWZpzPg4dxkas/6gq3ij54cxa+rfPS+oU1d/7ZD\nXQQ8Kt94bY7vv7Wlzzquo5HFzxNCiH8P+IUQj+BKVn9pe5q1/dxs2d2dkPld60FRqb8hgbH5HCNd\nIS7OZukJe/F7NR441MVXX53l5ckUZdtBAU4Pxgj5Vq/VcXYswWSqgJQwnS5yYTrDbKZEb8RHV9hb\nVwZ7Je2k+OvZyAM/XTCrExTbkcxkivg0lYF4gFzJYjyR55XpNLaUlE2HM8NxgGqfjM7nOBAPuJI9\nEg52hxhdyFEynesmL6tNjr/40hRfPj9DqlAm4NHY3+GjN+pHFYLFQplH7xio2/a2BPb2spb9rNwA\niQc8jCfyzGUMDnYFuZLI86dPjxLzexhdcP1EyXR4+GgP5yZTVdvIGRZnxxaYSJQAiAd04t1eNFVw\nNVngr797lc6gB1tKzl1dxLAcJHDngRgfu2+47sT7Ru2glSbLdRceyXx1oQjuJtK1bInR+TzvOtpD\nxnAnmLlpi6feXKDDrxPyadUFik9TKZkOdx+I8cpMmolkkblMiReuLBLwqGiawumBDn74rsHrFiya\nEDx2fpq5jMHoQo6Hl77vwnS6aiP1JuBb7ctXWxzuJSo+/ok35hmdz3N5Ps/pgQ53k3IytW4eXuUz\nKv2RLJTJGRYTySKLhTKfPzfFo6f7q4vasumOUceRlCxXsGSwM7CsX7NFk3+6OEdn0EvYqxH0aJwZ\nji/bXLuaKPD05QVu7Q1jWA73DLty2CvH5kSiwGe+/jqWA0XT5uRAlBN90fYzYZPMpkt88dwUH7nn\nALHg5jYefLrKA4e7+KfXriF/UFI5/NgNNLL4+bfATwLngU8BXwb+eDsadTO42ScMW/F9jTzI19pF\nrK2/oQoomg6G6TCxWEBTBRTKXE0WyJYswj6dTNEka1gEfVr1SHtljP+rMxmKZRtFKOiqwky6wFSq\nyGVvjrcf6qorg70a7aT4t9jIbnDlPXMZg4uzGSJ+nYWcwfRigQOdIQIepbr4jHh1Hh+bI1OyiPg0\nJDA6n+PVmTQIUIRAVdx+Cnk13nvi+oT12kna6EKOZ8cSTC4WUBVB0KOhaQrpkomiKAzGAvR1+LFk\n/UPi9mnf9lHd3S1ZyyYwy/7NsHh1Os3xviiKIiiZNqMLOS7NZiiUbXwelWTepGQ6dIW8OEj8SwVL\nK/5oPJEHKZCAQOLzqPh0hUzJIhbwYDuSrGHSHfKRLlpkSiY+XeV7Vxd56Eg3JwMdW24HrXaStNrC\n43MvTHBuMoUATg50cM9IHFtKRjpDXJ7PM7qQJ+LT+Paleb53dZH5rMGxvgiHu0NcWQplrZzchnwa\nJdNmsVDGrysUyv8/e28eY+l1nvn9zrff/dbWtfXezSa7myIp06QsiZQ0Ni1bsceObGtmgpnAMDAZ\nIwMEg0GAJMAgSBAMECCA80+CTMaeiRHHywRyohkv8UZZEkVJ3NVNdje72Vt17cvdl2//zskf597b\n1cXqjeyixOUFGmRV3eXc+53vPe/yPM+bYVsGJc+mO0hgjkwWbr2ugy7DTNnjeq3H9XqPomtzZavH\ntVqP67Uej+2v3vZaPUhffrvk8ONg2338tVqPzx2dYL2jr/VfX1i/ZY987ckDwLs7NrsVrYb7YSxv\n41nGaM/MlnOcW20RJpJ+lNL0E75xZplf/+yRW4Rr2r4ebnp1q48AHp7Jj5L04fWaLLkoIEykLq6J\n3e/NhUafVMLhiQKXN7q0+vEnZ8L7sN/9/nUyqfjHzx59X6/z3Mlp/vrCBm+vdTk1V35Aq/vR2/2o\nvUngd4DfEUKMA/uVukNE82NuH3SH4f2+390O8p2J0Z2qqNvnbyy3AqIkpRVEN6s9Aso5m5Jncb3W\nw09SpJLUuxGTJRdLCK7X+qNqcTdMKOdsTs9VaPQjJouenhGhFLVeTDOIb5HB/jirwuyWwN4pqb2X\navjwMUcnC7y10mKzG1HJWUyWPSYKDq5tjJLP6/UeApgpu2x0Q54+PKFnNAk4OqmDpMfnq5Ry9m07\nBd0wIUok51fbvLnS5uF9Jeq9mCiVdOOUojJ56uAExZxNNe9QdK27JrufdPv2xhp+TC9MWWr6owDm\nq0/sJ1WKtVbAYqOPwCBIJAXPYrMTIYTic0cnePHqFiXPJu+YtIOEVEn6cTqCxG6HxiDg4ekSQSKx\nTMHnj0/y0w/v4/mLG3i2iSEEAujHKZYJWaYQNjimMRoU8qD3wV51FPeSbP7s8SkWGn0Ojxe0b40S\nyp5+D13Q0FCjDglP7K+OOrjfvLjJRMGhF6ZsdiP2j+U5PF5gqeHfMorgq0/s5xtnVlBKkWRdklRS\n72t/EUQp12t9xvMORyYLtP2EF97Z4s3lNo7V5fRchS+emALg7HKL5x6Z5u31NvvHcnSCve+wfZyL\nJDf3ssdbKy1u1H0ODooYi80+nmng2CbdHV3+YazQCRJeul5nqemzv5qnF6WkSo32g2cZFD2LibzD\nDxebBHFGybWJk5imnzCWd/Bsc9d76KnD45yc1UFx0bsZUg6vl5SKA2M55sdyTBVdDo0Xdr03D48X\nsAxYqPfJOQZfe/IAucHZ8cmZcH/WDRP+8KVFvvKpWQ6M59/Xa/2dRzTc7Ztvb3w8kx8hxLeBXxo8\n53VgUwjxfaXUP9+jte25fdAdhvfzfrc7yLfDnZxt+O+h47m21SNMJda2duV43sEwdGUxSjIOTxQQ\nCPYVXSKZkbP0bI7TcxVOzZZ58UoN1zJoBwljBZt/f3YFqRRvLDSZKnlEaUo3THEtk6Jn88UTk3zr\n0iZ+kGGbgsfnq6PPD/D115cGXaU7438/bHa3oOh2sI07JbX3cuAPH9OJEk7PlFnrhICg3o1o9GIs\nQ1ByLD57bJLDEwVqvYj/+7VFKp5NL9TB7FY3AqUPr7G8c0unZjceUZBkbHRCLEPQjRI+NV/hCyem\nOLvUouRazI/n+dzRCeqDQ+1uksjDgOsTe292u703nncIUzkKYJSCb5xZxrNNXr3eYLUVoNDKN/Vu\nhG0KGv2Yt1barDQCokwyWbB4bP84v/oTOmm6ttnjX33nCpWcrRPeMCVTkkYv5vi09iU//fA+Ts1X\nmB/Lj2Bbw331zLFJ/uytNaRUOlhSev13kkJ/LwnHXnFO7rWbNOQ73Ascafj44f211PB59vjUqKqe\nppLNTohS4BiC0wNI0IGJPEt1n16YsN6J8ByTuYrLc4/so5yzR7Lk25X5vvrEPOdX25ycLSOAHy61\n8CyD//VbVzgwnmeq5PK1Jw9wfrXNG4tNSq5FN0p58uAYj+3XcKVzK20WGn0ub/YwEPzluTVOzVZ2\nhUU/qGTx41wksYRgrRVybauHYxkYBjyxv8r3r9XZaEestgPmKzlmKx6r7YBemI46fudX2/z+SzfY\n7AbcqAc8PFtisuDwldOzHJjI8+ufPXyLf1cKFmp9vvTwPh6dq/CX59eoFhwMIeiGyehebfvJ6CzP\npEQqqOZtzq20R2fbo3MVelHKo/N6bxzadhbEieTcaouSe7PQ9l/+7COcX2tTdm3mx/L3dG58nPbB\nvdq/e2WJbpTym194f10fgKmSy+MHqnzr0ib/xc889ABW9+Nh9wN7qyilOkKIfwz8nlLqvxNCvLlX\nC/vEbr3BdzvId7bCh3jsIXzh2eNTo0Dnu1e2eBYNYbIGVdggzWgFCUmqaPghRyYKHJ8p0Q9Tmr7u\n2HSChGrexjYEf3p2le9dEURpxr6Sx5WtHnHaQCAwTXhkpoxAcHmzRztI8eOURCr+6vw6tX7M1548\nwI16n9cXGtiWQbIN//tht3sJim4H27hddfpus1KG5FDHMHAtg0Yv5kbT1xAkga7m5RxcU/DqYoNE\nKkxT8O1LW3SDBNs0OLvcRqGwTYOfOz3DP3z6EH91YX2UnP7cqZlRQNbsxyMBhFo3ppyzMA2Dph8z\nVfJ4/EAVBCMO0fMXNxgrOCw1fH4hd3u43ocFlvTjanf7Hn/y0BhhklHN27T6CZlSGAg6YcJMxSPv\nWEwWHOarOS6sdWj5KZvtiExqIYz1TsIhP+HKZo8/f2uVi+s9emFCpsAUkiCRFD0bJRVxJil5Ns9f\n3GB+TFccX7neuLXYMVkYJUWvXG9wdqXFudX2HQn+74XrsT1YflDd5jt1k3YSxXdC1m4HR7rda6dK\n8WtPHuDkbJk3l9u8tlCn0Yu4tNElUYpGP+ZZpvirC+ustALCgRDF/qrHX7y1RiOICGJJzjGYrehA\nMkokQZJxeaOLAg6M5akOkthLGx26YULBtQZFry22uhG9MGW84NxS1T88UeDcShtLGCzU+3SCDGNO\nvAsWvT1Avlux614C2h8lJPr9Btx3ExK43eOHSYlUkjiT/OzJaVKlWGz61HoRp+cqzFY8Hp2vstYO\nOLPUZLEeECYZCMFV2eV6vU8wEDbohSkPTRVp+vGIwwPwg6s1Lm90afoxV7f6LDcCip7JoYkCizWf\nnGMgleLcSptnj09xfq3NawsNip7Nm8stxvI2M2WPo/uKo+5TL0y5sNbmyFQRAXz1iZvcTwWoAVR2\naOWcTaMfs9WLWGj07wjz/rhyv+5mcSr5ty9e57NHJ3hs/4OJrb7w0CT/27ev0glvdqI/7HY/yY8l\nhJgF/h7wL/ZoPR85e68Oc7cbfGfV63qtP4I7bcdjd8NkFBgroOBYLDV9/tV3rlDO2RhCUM3bHJsq\n8eZym7VOiJSSREo2O7r6+8LlLS5tdElTSSdMWGz4bHQjXFMQJ5KNTohUiiQDqbQje/V6E8c26EUp\n9V6MYer3iTPJhZU2L4/n6YYJNxo+BcciyjLWOyGlAdTiwxz4DsmjBceiF6W7wgN2w/Q3g5hom6jA\ndkjhduLpdgUd0LLi//Pzl4hSydWNLjnHohUk+FGKQOE6GsNt9mI6YULRtRnPuzR6EbVupDs2YYIC\nHFMQCslWJ+L1xSbPv73OeM6lG6f0woSNbshYzkUJzehY6wSUPIsyFuMFxVRJV5PLOV31W+sEhKnE\ns817gut9InRw0+7XX4wkxaN0BFvc3hUe+pCJgsPJ2TLfu1rj7EKLzU6olb6Aw5N5TsyU+OFSi5cX\n6jjCYLUTkKSSTCnyjsG5tTbPX9xAKUWYSBKpGDwdA0hljJJwdbPHRMllvODw8rU6a52AH1ytMV5w\nqPdjTs2W+dzxSSp5m5Jv49rGXa//++F6DF/vQSXZt+sm7eRW/eShMbZ6upvq2oaGIzX6nFtp77qO\ntp+w1gpYa4YEUUaUSS6tdxjLObx2o0GjF7PaCWkHmn9hCJ1ofPudTV6+VvxIZ98AACAASURBVEcp\n8OOUzW5ItqTohyndOEUpMAUcmSzw5dOz1HoRQZJRGgQwQZTS8mPeXm2z1gpo+Tq4eXO5hWubHJsq\nstoOmKvmODReYKnu80ev3qDRT9jshpQ9i3c2eqRS8fqNBqfmK3SDm92BG/U+r91Dsev9FkL2uhPw\nINY3fP5ISGCgujdUWdv5+D9+fYmtXkQnSJiueJycqbDSClmo+5gG3Kj1eWWhgVI6if3sMYtvv9PF\ntUwafsSVTcFsNcdmOySIM/pxilKKzXbAGwoKrjXi5/zeSwu8cq3OaidESkXONrEtQSdMubzZ5epm\nH0MI4kwxX83xu9+/xkY35Mpmj6mSQxin1LKM9U7EajtkfzWn9z/QDlKubfbIFHzjzAq//tnDnF9t\ns9zweWSmTKLk6N6/H5j3x5H7dS/2p2dXWe+E/I+/+qkH9prPHJ/kf/nbK/zgap2fOz3zwF73R2n3\nk/z8D8BfAS8qpV4VQhwFLu/Nsj4a9n4c5m43+BAWNLzZt8OdHttf5dRMmbfXO7x0tc6FtTazlRzf\nv1qjnHNYrPsIASXPYixv8+h8Fdc2UFKx1gqxTUGqelQ6EZ5jUHRtUKAEXK/12epGJBLiVEc8hlRY\nBmTbyja2aZCmkqubXVIlMIWiG8SsNgLGCg7vbHR5bH8FBIwXHdJMcmaxxUY3/NBX/i0huLDaJpVg\nGfCV07PveszOSvQwudHV2hwHx/PbuiwJnm0wXfL4i8trnF/r4FkG/+gzhyh5Nv/me9dYrAcIoQhS\nSTEnyKQiTBUC8NOEvC0oezZBnCEVvLLQQMqMKFUkKORgXdHgIrb6IX96ZpmrNZ9UdjENwaW1Nv04\nI+9aTBdd/ttfPE3ONW+BMW0POHZ+vt2CxDt1Mz/Odr/+YnvAfWGtDXALv2rI9yl4FplUdIKEq5s9\nGn5M3Y8xhSBnG3SDlAPVHK9caxAnkm6aEmcZWQZhpoiSjH7cQ0rI2wZxpkZQOTn4F2fDNcXEmaLj\nb/HytTolz2K9HTJTziFRPP/2BsVB0HWnRGJ7IPt+98mDTLJvB73aya3a7ARcq/Vo+SmWofk2qG3q\nirUeb660eGwACf6/Xlrg9cUmBjBb8djoRJxbaXN1q0vVsym4Fv0wYaXhk2SKf//GEk8fneDCSoe6\nHxMlGWXPQiDw45QwzTCEAmEghGKzG/P9qzVytslE0ebqVg/HNCi6FpW8zWYnJJPo5C3OuLKhuZ5R\nJvWeKjh0goQ/enWR716uYZuCfpRhTeSZKDr8nRP72OyFtPox37y4iW0KvnBiivVOyGo7wDVNoiyj\nF6UP/Bp9EB3k97uHtj//3GqLIJY0Bx2Otp/wy5+evwUSdqPR59VB0tsLUybLes9XPIt6N6KYs1hs\n+BwZLyAFzFVySKlIUslGO6Tei9joRESZJIxTyjmTth+jlKIZJFTzLi9c3uJzxyYpehY/vNEkTCSu\nZdLxI5SEhbpPxTNZbiYEicREFzc6fsKljQ6G0MJG7SAmySRxqsg5Jn6U8IMrdS5vdSnnbJabAfur\neQ5P5vEsg/MrbX7/5QWWmoEWPDkxNUqYb4dweZD+4KNsSil++4VrPDxd4ksDft6DsE8fHCPvmHzv\nSu3jl/wopb4OfH3bz9eAX92LRX1U7P04zDvB3LY7+WePT3F+ta2hDFtd6r0Y1zEIYl15L3sOTT/G\njxOCOCOILZr9mJ8/PcOBiQIbrZC1bkgYZ1xa72IIiKXEMQ1Krk0iJXEqMQVsHzUmgJ1yF4mUmAbY\nlompFLZp4piCJFPYpiBIJDnb4uBYnn1lj6JrUc3ZH4nKf6oUp2YrFDyLfpjeUd0MYKnps9kNmS55\nnFtpU+tGvLnSppqzNVa7GbJQ7/HOepdLG13iVAtILNT7nJwps9WJ2eppDkCYptR7EKUppgDTBClB\nCEGUKcwBBC7OMnKmgW1kxIPMx0QnuCYQS02U1F2hFMcUBEohpU7uCp7FcstnpRWOCLI7A43tweBO\nuN69dDM/zna//mIkdDFVBODkbJnH5quj51hC8MpCg26YkLNNcs4+/bq9iCjJSDKFazn0k4wLax0M\noZOnKImQg/1hCH2fh4ObX0qJs63oIbdtc4H+fZRk2IbmDnlWjkxKojRj/3ieG/U+37y4yXTZ3fX6\n3y6QfT/7ZLsvjRJ5C2/hXm0nf2cnP207typvm9yo+xiYHJ5wmS65fOHEFIfGC5xbbd8yS2up4TNZ\ncHnxco04zbBMg5ylxSXKtkO9F7PVjfT3PPApQ2jZcHbKRNEllZIMiDJJHEhKjoVtWXSCBNc2mRvz\n+PyxSRr9iPNrHSzDpBsmzI/lmKvkQQit9InAELpbNVkq0A4Sju0rIqXi/Fqb9XZANpgNlElF0bOx\nDINUKQxhsNLqUfISLq136YUphtBc0rxrkaQ6kbrbNbrfgPaD6CC/34B7+/NLrk03CHhrtY0A1loB\ntmlwcCJ/058q6EcZQZJhmwaeZXFmsUWtG+HHKceminT9hG6QMlF0dCfes5mr5vS4AddkrRWy2tS8\nvcMTeaJE0QpiukGK65ikmWStHVIITYQAISDJMmbLHnlPI0jG8g5NP8ES0AlTJrKMq1td1tq6YBml\nipyjcEyDcLDWfpTSiRIcUwswTBZsUimZKroUPYtOpJVAnzhQ5fxqe+QThrDI7fc67N61/eTc2N2+\n/Y5G7PzW1x5/oLLUjmXwmSPjvHj5ozPs9H4ED/4n4F8CAfCXwGPAP1dK/f4ere1DY3ciG9/JYd6p\nVb/bDT6EuY0GCw4w8z+4WuPiWoecbdFPUo7vK9HoRzgWXN3s4icZfpySZeDHMeW8zV+dX+effukh\ntnoRK82AXpgQphlSSqIUbDMjyTLytpZBTXeJ5ROlq7+mATnb4OGZClGS0ok09lxKHWgIYXCt1qfo\nWlze6vLQvhI/c3KaA2P5XbsDH0Ybz2tMfKY0iXu3z7JdWvjMYgulFK8vNNnq6tkoaSY5NFFgrR3w\n6vUG1QFfJs4kYaIDh5VGSCYVnm1imwLXMlGh7h6ZwsSwM1xLV/onix5hkhIkeg5Lmin6KiPbtiZD\n6OSn4tm0w5StTjgKbIJMjf7uJynNfsLfXNhAKdhXdjkwlr8FYrWzo7WzCnu7buYnh5e2+w2wtj++\n6Fm3JD6gA+ulpk8UZ7T8mK4fc6PuE6Ry1MFt9GOSTLHW9llt+eRd/XxDQH9bW9dA3+OGEEyUdCGm\nGdxaxR/G50NZ6yhVmoRvmSgF3SghiHRwNYS67Oxm3y6QvV+ux07f+gufmhsJw5xdbo1I2fcKLdyN\nv7Mz6f/qE/N848wyfqylvCs5m36ckXOt0TjwX/jUHG+utEaztC6stvn+1RpbvZB+lOGYJuMFBynh\ntYUG3SBFCEjlaAQXCg1la/qp5m4mPpYAAy1g4w6UPH/xsXkubXZJkoy1TkSjHxMkEsMQTJdczi4H\nXK/12exEuLaJFab0kwzHNHjleoPj00XWWyHr3ZCcZbLc6HN2uU13kFAdnSzwxYem2OiEnJwtYyK4\nVutRG+ypyZKLlIoTM2Vs06Dk3YRZ7bT3E9B+EJ2A97K+3fbg8OeXr9X57pUapqG5d6Yh2OhE3Kj3\nGQscLm90kVLixxm9MKHej+hGGraGglo/puzZzJQcHEvL01+t9zCBWl+jNKI0w7MMxgsOnm3owpYw\nMAT0goSxgsP1Wm8Ehd8/luPQRJ4ozbi43sOzDDqB5gWmmUK2Ag5UC/zgeo0kU0RKd4DbfooxiLON\nwWdfqve50QiwTD3+4KdPTnFipsRcNYclBFJKziy1COIMP+rh2ebNGUAHqqMz5XaQ3h8l9+vH2f71\nd64yW/H4u48/eB7U549P8q1Lb7PSCpiv5h7463/Qdj+wty8rpf4rIcRXgQXgV4AXgI918nOnlvud\nHOZwyKhnmxQHMzPgVhLkzht8p5PvhSnLDZ8kk5imiWMLwlRX2jIpubimoQtxKpGSUdCbphr/+82L\n6/SihP1jOdaaiiBN6QX6MUpCN5T0Qo3btQxuCZqHYZFlQCZ1ZWC84NCNxEAyN6bpxygFBddExnBq\ntgRKYFuaJHt6rvKRqeDcy+E45AUFcUaQZhwZ11ytKFPUB9wc0xREiSTJFLOVHBudiHLOYrEesNUN\nkBLqfkjZs3FMk5myRyfUHADHNDAMA1NAKgRxlvHIbImlRshWN6Qn01F1fmiWAYZh4FgG662AQVEX\n24I0AcvUFUHTMAjTjDNLTWbK2vFNlbx3dSS3iyKsdQJu1PuUfPsTmNs92L0GWNuDqjs9fq0T0PYT\ngiSjG2a8s9UjjiWGKUaBtFQQJhkbnQghdNV/W5NhZIahk3PXNmj2E5JMstNsQ/+LMw2pdE1Bmkmw\nTZSAnGVgKMFCvc/Bifyu3exnj09plcpajzDJblGpvNt3sZ0/s9tso5Jv4ww4RtthZ3fzOw1fd1kB\nHEtXs3d2F9p+QqoUzz0yzWLTp+jaOKZBK0jIOSYvXa/z7Xc2ee6RaUwErSDhwmqbsytt+lEyWGtG\nlEr8JGUs55CmCtuEMNX3ZN4xSKQiSnUArIBqziRIMizDIEolYaqIs4zldkjONTg4nueFy1tstAL+\nv3Mhf/exOVZbAYu1PmGS8cuPz7PZjdg3klAOmCm7BHHKawsNhBDEUnFypsjlzT6VnIVrGhydKnJw\nQnfymkHMM8cnKXk2BpCkEsOAfpQyVXL5yqOzuwq27LT3GtDe7b55kGpz96pid7u4YPi4marHgbEc\nUSpJUskr1+tYhsF6y2e9G5Fl0AwSPnNknLNLLdp+Qib1Y03TwFJgGYJ+IlmsB2x2I3758XkSqZgu\n55gqOHz/WkqcKaZci59+eJqtbkwqJVIqMiVRSnF5s8eXTkxhDgpp7SAhb1u0/Jjpikc/znhoX4kz\nS02CJOOVhTpSKvKO3neGADGAx6MgTDMqeYtMgcwkfgp+kvHaQpOZSp6tXoQpBF/99H6+d6VGwbV4\n4fKW5hFmktV2cMsw390gvZ8ove1uby63eOlag3/xH53EsYy7P+E+7dmHpoC3+d7lGn/vqQMP/PU/\naLsvwYPBf38B+LpSqv1Rmvb6Xu125LudScx22z5kdCzvcGA8d0cy7NBGFcxGn412yPNvb2j4VCci\nSlLCWHdhFpt9mv0E0wCEwDZNwuRmlbYfazJtlsF6J8SxDPwkpeK6ZFlEnGi8vwKEoSFUaXYT47/d\nhvApMagcfeedLt0woeUnuLahK5OxfrHlVkjONjk8Xril8vtRcWB3O7wtITiz2KTRj7m21eP6YDCc\nlIoky+iGCeeW2zi2SWdAQm75MVNFF8OAnGWBAQXHJpUZ4wWXXpySpoo4lcSGxDQ0zNAQ+nvvV7MR\ndDF5d7yKYRoUXJNOlCCVwjAEQaIwM33tXdvCMgSuZTBb9lhphSRKUvQsfvLgGHArt0TD8OQIYrRT\ngv2jkuzuld1tD+0WVN1OIny2kqPo6sGWQqDhZwq2t3HNQVJzdbMHwqAT6oHGcXJr9qMhMZBFkhTJ\nbkerZQiU0ERumYFlQc61mK/kiKRkqRlQdm22ehG/9Pjcrt3sVKmBSuUKnqVVKndTCrzddzEkTe+c\nbfTrnz1yU/5/B+zsbh0gSwgW6wHX630yqZgpu7ck7sN1bPUi3lpu8an5KkXX4uRMmU6UcGmjy1Ij\nYKXl893LNcqehWUaTBQcDo3leW2xSSr1vTtT9qh4jg4sDV10UEgEDDgZBpiKas5is5fSDzMkYJu6\nmm4AriUoOiZ5x+bsYpvL6106kS5d/ZsXrvLwbJlyyQMUW91o4BskSaqwDUGtH5NlkrxtkUpJJ4jp\nhhl51yQLFUpIyjmLJw+O8Uev3sAQBr/93av8wqfmODhRYLLg0ujHzFVz/NSRiXeR+ffCbnff7BUf\n6G6ve7e4wBKCZKAUVPFMar2YnGvyF+daIyECP8o4t9Km3o9IpMIQAsvQcOOKZ7PZjaj3FI5lkndM\n/uTsCsemiuRtg3aUMFlyeeahSVKpBh1ZqYeXRynC0Ap/fpxydrlNnErmqjm6Ucq+istE0aXq2ghD\nMZ63B0I64McZJdfENo0BJFYRpZIs0wUSpUBmim6WEstBvJDBatPn3HKLpw5PIFE8Ol/hxEyJWjdi\nrOBQci1agR6u3uiv8uhcZVdILzw48ZKPmv3r71yj5Fn8g6f3JjE5MV1kquTy3Ssfv+Tnz4QQF9Gw\nt/9cCDEFhHuzrA+P7abgdS+Sx8Mho1om2LmFDLuzYr7z+a9cb2ioRDfiwFieU3Nl9pU82kHMiekS\nFze6LAqfKMvwghTbEPhROsLnCzQ0JVVa9nSzG2EIkDmo5mw2kgwlhhAW/XgJWIJRZ2B7IiQAP0r5\nwdU69X5ClkmiDKQaHOgFh+PTRSzDoB+nrHVCprcFEB+XSk4z0INAU6mr43mlSDJFM4gJ4pRenGEa\ngsxPsC1BP9bXbrHRJ5ES1zSQmf59ybWo5iyubPUxDLAHlZ4wkaPropSewdINYh1ICQ1nygaHkm2A\naQikhLJrUUtT0kzztvYVXVoDUvwjMyVWWiEb3YhUSvKWSSdIOLeqZ308sb/KhbWbYg//5Nlj5FyL\nbphwdrm1JzC3j8ue2Wn3ym9o+wkoeHSuzPev1REC/OTdrxcOaiKpn2KaAsvQKlAoRbotATLQnD/F\nsMMjcGyDdpCN/p6zTfwkQ+fogrxnYhsG/URzF7JMEVuSt1ba/PEbS/yzsfyu3cCGHzNWuDsX8Hbf\nxc7ZRsPhjEcmC++Cnd0LRyRVikdmSoCiE2a38JyG6+hFWtFqvR1RcHscnSry2mITzzJ4c7mlO7b9\niH6YEaUZJ6bLlHM2UZpR8Wz8vEsmlYY6JVp0IEwzDVMDPEvg2IKCY+MnGf1EUnR10DtUbtvohCRZ\nRpZqkYrVls9WNxolPgBBBuvtgH3lHJ5t8Npik4Jr4kcpjmXw2HyFxYaPVIpgIJ3t2SalnMVsyaPu\nJ1ze6FLJ23zz4gZhInlkpshiw+db72zQDTNu1PoIIXBtg2+cWRl13vbSbucP9ooPdLfXvVNcECWS\nRj/SIyccg7xr0gr7dPyUMJGkMuXttS5RnFKzNJ9qquigBklO0TUHEtEhYZLRjzKiVJ+tU0WPxw+M\nMVvxuF7rc2WzRyvQYhf1bkQQZfo8V4p+nHJ4Mo9pKBzL4MJqW183y2B/NUeQZhQcm3ovRiE0d9Q2\nOTVfoejYRJlkudGnG2WstjVkJEwlsxWPomdT62nuoC0gkfDmSpvVdsiBsRzPHJvk8HiB5WbAk4fG\naPVjHq6UR/A2BLtCencWSz7MPOEHaQu1Pn9xbo3f/OKxkT940CaE4Jnjk7zwzhZS6kLph9nuR/Dg\nvxnwftpKqUwI4QO/vHdL+3DYzpb7vTjbIT/kwFieqZK8KRO82r5txRy0w+0GCVvdCMfUXZUrWz32\nj+U4OlWk6Fm0w4SpokvBsZBKcWpWstL2CZKMfpQQpJoQHydwaa07griYhp6+HsYZwhC4BrcEP6ZA\nD0ZVCs80yJQkS29i0INEsdjo4cc3VcQs02Aib/PYgaruTKSSx/ZX+cyR8dHMiB+XWS8fRDDdC1K2\nBmTzOJW0gpj+IDDxbD24DhSmARXPASG0ktOgUp+kktmqx7HJAk0/4eJGT8MOhEHe1YnP9rhMKtjq\nhrR9jZsRwHjeHnA+JAqFUJBzTHpRRt4RFByXMM1wbYOCa2mp1F7MRMGmnLeZKec5Mlng7HJLq4gp\nRd2POTJVHLQKdbV/OCF+KH39XmFud4I1/aj3zIO2e9mD90LeH85WeXO5xVozQCCo5CyafvquwH1o\nKSAyRYYujOQdCz+5mS0N1dwUOpCp5E0mCi5xGpBkEkMIDENo+KVlYAmDfUWXzx2bZLaS48J6h2ub\nPZp+jJSKN5fbnF9t87njk7t2A+8FHnk7GOV2/s0QVrz9b4/NV1lq+PfFrUIIDMPgyKRHddBdGq51\nPO8QJhlhKim4JmEsafVjZivaL4dJxsJAbdM2Evwko96PODlT4vBEgUvrHWYrHsIQ/PypGTphwjvr\nXbpBwjlf+2g/VViWoWcquRZxJjEH870U6Gp81aMbpDSChFaQ8tsvXCXvWNgGt3R9e3FGJ4hZbqaj\nwanC0KIoQzW2IMkwTD30+NBEfjDEOqbWi1BKcnmjix/pz9EOEsYLNjOlMp85XOCNpQaGEtR60S2d\nt726R+/kD/YKamsJQbOvOWy7cTzvFBe8tdLGH0hP96OMSs5iIm+x1onIuRaeZRDG2egcTTNFP8rI\nOyYHxvN0ghQpM4TSXDAJdCOJiCQvXtliquTyhYe00tfrC02a/Zi1dkiQDIprUpGzLSo5B9swqfcS\nvnhiio1uyNOHJ5it5njq0DgvLzQ4Olng4nqHuYarxTxci6OTRVzL5PJml6afkGYaVu9YumJ6aKLI\nWN7i0noXP071OAVLcHq2Qs41mSw4PH9xg36U8c5mly+fnCZnm4SDkQ9xIkGx63y7T6DTu9vvfPca\nlmHwG58/vKfv88zxSb7xwxXeXu9weq6yp++113Y/ggd54J8CB4F/AswBDwN/tjdLu2k/7lXenS33\nu92ct8MoD3/XDRNeulrHGPB6zq+0eW2xgQI6fsLF9Q5bvYgwkUwUHJ49PkmSKVpBQib1dPBHZkqj\nKoxUisZYwnIT4izBs0yEDanU0pYtPyXOwAEsVxCHcgRncy2DbNANSDIdmA9J/TJMibclQL1YR1Zi\n8K/omBybLvEPnz7Edy7rIW052+TCWgfXNji30ubR+cqPvJLzIILp2+3R7b8vehZjOYeVKMC1TQwU\nFc8mQw3kqBWOZSFlRjeMkYhR4gP6O04zPWNlX9llvR1QdG1SGQOa66O2AROLnslk0aUdJANZcsFk\nyaMdJAhgsxsihK7YO6bm/UyUXA6N53XFrx9hAC9fbzBTckkzSc42UGiZ836YUvQsJvIO17d6o87P\nkKfxflV5bjfM7qM4H+he9+DtyPvbAwXtQzQccq0TEMQpwtA8nztZyhDiKhHCwDb0fbwTLmkLODFV\n5vBUHhA6oY9TrUxlCQwE89Ucx/YV2OiGI+L1oYkC3SghVgo/znjxco3Tc5V3+c973Td3epyeXH9k\n17/d774cJlN/9OoNpOJdfl3/fT+woitJQvDcI/s4s9xirROQdy2efWiSVxcaHJko0PZTTswUOTCW\n5/UbTTzLQhhwaCzP+bU2l9Z7tP2YdqDncFmD5EUOuvVhqohTcCyFgeLJQxOMF2zOrXao9bTssFQg\nE4VpSBxTB7ySQed3AHNMlRoVpfKOyf5qjjhjIIusOwwb3Yi1dkjOT9hsB9R6CZ0owaz5jBccfuXT\n+9nshnz++KSeSRMlHBwrUO9rCNP2ztte3aN38gfv1wftZm0/4btXtvBsrXD2leOzt71Xh+sLopS1\nVshyQ89Iyzs6+ZgpmxzdV+DUTJlvvbPB5fU+DT9iupzjymaHeACH1BBExdWtHr0wxTENogHvbrsQ\nRttP+c6lLcI0o+0nLDV8UqlGe6LgGEipoZHdICFRktVWwI26z8GJPKfnKnQCfY0tU7DRDVlrBzxz\nfB+tIOapw+MUHIs/eOUGq60A0zSYKDnEmcKzjYH0vRbgcW1dTEuU5KmD40ig1tWweiGgF2bUuhHP\nv73O545N8dUn5mkG8Wjw8W5+cC+u54fdtroRX399mV99cp59JW9P3+uZhyYBRr77w2z3A3v7XeB1\n4HODn1fQ0td7mvx82Kq8t7s5dwbHu2GUh79bqvucWWriJxLb0HCG5cEAOgHUehFzVY/FRoBnm/xw\nqcX+ap5qwabgWKy09IF7Ya3BWytt6oNhY0maYhmaC6IVRw0c0yDvCGSmME2I4gzPFggEmZQoobHG\nOceg0c8wJERSEfd1hXC749WvqDtLOdvkU/ur/IOnDpJzTWar3mjGQTdUHJ6o6Pa2urcq717a/UCJ\n7ke8YhigOrZBlEgOjudJpEQImCm5CCEIUl1SD5OMQ2N51johm21NfrZMcQu8UCe/MZfWOxwaL1D0\nLMo5i0pOz+kI5U0IkmHo4bbNIEG3fQSOIZADnHk7Sih5DqYB3SjVcsiOPmB/47NHeHu9w4tXttjs\n6OA1k5Jy3uH4PvipIxM8c2ySuh9zeLxwR5nv96PKczvc/Eex+ncve3D7/ivlbiXvf+PMCmMFeyQa\nIDPJKzfqA6K0DqBv1/UZmkIHx7ZpEqdaNcwxBUEqCbd1gW3LoJSz8WyL/WM5/DilF2hQnClMPNfk\nyGSBVxcaoDRx+9RsibG8y6m5Ms1+wlw1h2sbtxUduNd9c6fHvde/7WblnM14waUbpiNft/166GTr\n8C3+YX5MCwK8cHmLv720iR/pBBGleGu1yXjB0dLAcaahUN2Yej8mkbqTNj+Wox8lI2W+fixxLTAz\nG4FktpxHoK/tXDXPxfUOmVKkA4ehFKRZRs6xKHmCaACr8yyDTCm6gQ6iU6kLWuvdiLytr70fpySZ\nxUzJpR9nhImkHaRESYaUCssSjOUdokxyYqbE00cmgJuclk6Q7Np52wu7mz94Pz5oNxtJzA8gWjvH\nGuxUvhyqe/ajlCjL+MlD4/zip2Z5/uIGnm1iCMF0xeMfPX2Y1xeb/MVba7iOSSfI4cdaWS/NMpr9\nVMPRM8VMxWNiIEOdKi2CYcCIG/bStQZRKukl6QiiJKQiiiWmKUil5nvN9HNU8w4PTRd57uQMnSDh\nt/7mIn4siZKM505Oc2q2wtGpIte2eiw1NSTSMgSHJwqstAJKrslE0UEgcCzB+eU2nTCmF+li2XTF\n42dPzfD6YoMrm10aPYOrtT4HxvMcmyri2SYnZ8ocmMiT1tRdBx8/6Ov5Ybf/8/sLJJnkP3v26J6/\n13TZ48R0kRev1PjNLx7b8/fbS7uf5OeYUurvCyH+EwCllC8+AMWDIZ664Fj0oner7Pw42m6qMPeT\nwDWDGAkjEqCUuqrSj1ImCja2ZWAaWjr0c8cnyaTk6cMTLNT79CKd4i0DrAAAIABJREFU4NS6EXEm\nGSvY9KOEejdGKYOiZxAMJn9PVz3iNOPQRJEwTtnoRpobEClsC5BgmDpg7vgZJjqozqQ+WIfKUNtN\nAnnD5HPHJjk9X2GjF7LY9PU8g8GMAzX4f1Po4X+HJgofSCXnvUqSD5/7x68v0Y0SSq7Nrw2kbm8n\nXvHq9QY3Gj4bnZAvnZjiewsNfrjYJEklUyWXjU7IVMnlJ6aqHBwvcHmzyxuLLdpBomVtByo6OcfA\ns006fqJnqGQQ+ilB0mWi4HBqroxnmfzJ2VXUIBWV6OcWPJuCbTKed1htBYCWJvUcg34isE2BZ5mY\ntmAs51DwLFxTV2lTKTkwlh/MeMlIMj2noZK3QcCZ5RaZ0l3GZ49P3VXm+73YnWBNH6XqX9tP6AYJ\n8QD2cTtZ/N1U0dY6geZlWOYtogGn91cYu+DQ6id6COkuYhdD7t6QEWKgOwwtP8GxBHNjOUwhyCRs\ndAJ6sSbeC6EIkpS8Y/LUoXEyqYOhRj8mGXQSLm90iRKJberOcS/MmCgIvnRimpVWgFKK67UeOdu8\nJ9GBH7U1/BjXNkZFmxv1PudW3y1Qs7NKXfJtDSUbVIjafoI/4POkg6GxrmUxXXFREpZaPigIEkkl\nZ3Fwssi1zS4i09crTmG8YBAl0OhFIKC9mLJQ79PwE6o5hzDOiFNdzFJKYRqCMFOkaUqUKjqBrrwr\nBbYtSE0oeTanZspU8g6OZTA/ltPzoFJJvR+P9tqNuo8wBsHvZIGTsyVOz1Zu6bQM7Usn9oHgluGd\ne2EPosN8t679vZ4X25UG1zoB1ZzDZNGlE6R0wgjXsji/1uHLp2f49c8e4fxKmxev1vjWpU2ub/WY\nKeco5Wx+8tA4h8fzhIkk55j8+VurJFKNChjLrRDbgKMTeZRhUOtGtMME29BjCWzLIk5TPMvEEoJ+\nklHNO/SjFNfSw7PbQcJ6O+DQeJ6mn9AJEl66Xqfej4kSSSdMeXujzdHJkvYzqZ4dWHIt3lRtpkoO\nUyWXLz28j4pn8x/OrnB+tY2fZIP7QiuLxgM1yUwqxgouedskSjKKthZjkUpxYb3D6fnKR7KwtZfW\nj1J+7wcL/NypmZE4xF7b549P8ocvL474gB9Wu5/kJxZC5BjEu0KIY0C0J6vaZpYQXFi9Sab+yunZ\nvX7LB273DdNR4Jgaz02guTbHJov0ooyH9xUp1H2myy4528A1DYoFh9NzFU7PVWj4MV85PUsziCm+\nY/HydT0leqj21A11RdezTI5OFIikZLac47UbDZRSyAE8Ik71f00p8RwTpTQXaDjdHW5KJg+7PwA5\nCw5O5vnZk9P4aTb6zI/PVynl7JEz23mo7HXg814lyYd2o9HnzHKLsmdzdavPU0fGeSxf3VW8ohek\nnFlu4ZmGntmz0NRETamo9yM9+8DWhO6SZ2tSp2Oxr+RQ9kze2eiSSjCE4OBYnljqKlx/EMGaBuRt\nk+rgu1xuhrT9ZHQweiZUB3DIH1yr0/Rj+lGKYwuWmj4TBZuD43lyjsn+ap5K3ubVhQZhkjFVdDk9\nW2ajE46kTGcrHlu9ENMUXN/q8dTB8XcpdO1FMnKn6/JRqf5t35cKeHx/dddgcacP2f6dDyvM2wOG\n07MVXFsPL3xXhWJgw47tsIIl0QlQ0dMHmmUIZso59pVdvnc5xY8HwigKDk8UuLDaYabsst4JCVLN\nQSkWLH7lJ/az1g7424tbdMJkIKctSZXi6cPjlHM2b660yNnmPYsO/KhtZ1CG4J58ulaK63O95msB\nEVPQ6kUgDLpBwnw1Rz+OKOUtojSj4FgjoZOCY/LZo5P8H/X+gFc1WEvBxUCw1Q/xTJONjlbRlFIh\nhKCYs+mFKZW8TZhIMiVJswypdGVepRJ7oArppxk52ySTilgqjk4VNAzW1mp0T+yv8vzFTTzLYLbj\nYQkwDZNMSUqexVYvepci305fe2h8dzXCB2nv1R/c7lx4r+fFdqXBzW7EUsPnU/NVTFPzcywpSTPJ\neltrRX3z4gbXan08S0PGJksuq+2AfpywfyyPQhcybXMAax5InHu2wDYNTsxWaAYxlZzNStPnoekS\nlzd6g2GmGnpW8RwKroFQeiSFZ5tkSlHybCbyLuNFFz9K+caZZVr9mAurnRFyoOq5PH1kHBT0opQ3\nFpv8YKUOAlbaIU8eHKPWi/jMkQlyjsn/+8YycSK5sqWLdY6hcGyTjW5ArafPoTDJODCW45eemOPc\naoejkwU6UXKLKMlHpbC11/bvXl2iE6b85hf3vusztGcfmuR3v7fAawvNEQzuw2j3k/z89+jhpgeE\nEH8AfB74jb1Y1Ha7E6Tmw2L3W804NFHgxHSJNxabFBwLzzE5MVPiuZPT5FwLSwhSpUb/HTqJ9kDO\nqZyzOTCRxxKCd9a7XJda5nj/uFbcOTJZRCrFsX0F3UFyLTphhClguRWgtg2C0QRoHXQXPAMjkgSp\n7jGYaKKsUjfVc/OuxUTBYbaaY6Hev6XDszN4/SDtbgnoXQ9PdTNIFIOf4d3iFc89so+31zu0+jHT\nlRxTRZeSa+EPBk0GcYZn6U7L9VqfN5dbjBX0FHgQTJVcMgmTg2nYjiV4baEFQqvtiYFaW5hmxElG\nwbbpWFpmOpMZcQrVvM2xqeJITte2DPw4o+DoIOf4dInHD4wRJZJnjk1Szducmi0DYhScerbJydky\naSY5NVdhpekzUXKpdyOu1Xq8vd6m2YuZLLm3lXR/EPZRSXJuZzv3Zcnb/fOOZJq3eoSpxBJi9N20\n/YTDEwU6QTLCYTf9mP/48Tn+93ZAo5e8S6J+aI4tSBI16v5YJniOSZRo6FUiJb/2EwfIOwZ/eW6T\n2YrHatvnlYU6tmliGoKiY3NiXwmpYLrsUsrpbsdPn5zmRq1PkGQcnszxn37myMh/36/owL3aXvFD\ndwa8wB3FPJbqPguNPiaCJw6McWiywFtLbcYLDi+8szWQlE/JOSYqkYznHYRS9MIUhKBUMinnHJab\nAWN5G8tMyTKJZenhxq2Bml8v0oNL19sB1bzDkckClgmXN/scGMuz3NRCC0kaI8mQA/VOwxAUbBPH\nEByfLhHEKU8erPLLj2vxnZ3wvRFvpR3gJxIlBdXc7op8HyZO3u3W+l7Pi+1Kg/tKHpMlh584OMbP\nnpzm/3ljmXc2uwgBf/DyDeYrOc4ut3BsrbZX9rSk9EPTJeYqOWbLWlzj7fUOj9XLvBSldMN0gLxQ\nWIYuroWp7tK3g4SFmk8/SkkycGyDas5htpJjvGhT7yWMFywqeRcBHJsqYBgmTT9mvRvgmCYb7YhK\n3kYp2F/N4zkmYzlnNLi60Y/JOxYP7StyaaPHRMmlF6a8udLi8HiBEzMlfVZZmmcWxpqX/MSBMWYr\nOX6+6FJwTU7Paj/1w6UWF9Y6TJVuqr9+1H3+g7Ikk/zb717j6SPjfHowduKDsM8cmcA2dcHtY5H8\nKKX+WgjxOvBTaP/5z5RStT1b2cCGweWDhtR8kPZeCLZfODFFKiXTJY8X3tmiFyWsjBVGcKudtr1S\nFSeSk7NlXrxSoxOljBc8UikpexZHp4r84mNzHBjLs9Tw+f2Xb9DsR5xdbpOkciRlPawIKyAcZDYt\nPxvJJVsM1F1At+Oz4SwQxcMzpVs6UT8OFZz3204/NFHgsf1VumHKkcnCaBDb9mtrCcF/OLvC965s\nsd6OiBJJJW/r+QdSy88i9PfVCmKWm77G2ncirtcMcpaJYcD8WI7DkwVOz5X5wZU6nYFAAQL2lVyi\nTPLZo5OMFx3ynsUz+6a4stmjH6dYhuDJw+N8+dQMRcei6Fm8dr2BZegp4FNlj5OzFZ46NM6FtQ7n\n1tpcWG1zarYy4BDZI4jPU4fHWesEPDRdJEozemHKWyvtAWwJ9pUD/uufO/kjv7YfZtstqdnNKnl7\nMP9G8yiG1XaAP359iTPLLT0scaGBIeBarY9tGnz+2CQvXaux1dWFkZ1JUJRoroAldOJT8mwOjOVZ\nqPcJU8lGO+RP3lwZdB00LK/o2jw6WyFVigtrXVp+TD9JOTJR4MunZnh5oUE177DR6VLOWZQ8i8MT\nRc6ttnG2uns282mv+aE7g7I7DbD+rb+5qJW4pOLkXJmxvEM5Z7PWDkmVIkskaaqo9ROCKOX1G83B\noGib+WqOTMH+sRy1boRjmcznHITQQhLLLZ9uFNMLM+JMX78ozfCTlLyrA95+lNEPtazxwbE8edci\nGkhXR6mGL7qWiWUKwjilO5gpU/RsvvbkgVtmRw0/95vLLQ6OF5gsufQjnaTt5k8/TNCl2631vX6G\noTjGdr7TkNPW8hP6sSb5r3dC4kxzqSaK+vs8vq9AmGaYCL7zziZxKsmkHl1wo+ZjmQLHFChDq/A9\neWiC6YqLH2estgI82yBKM0o5i1aQgBxA4GzB3//Jg/zhq4uEieTtq1scnizSDRM+f2ySkpfDRHB+\nvcNaK2QsZ1PJORyaKPDVJ+b1fh0UWy9vdEHo4oopxKgYhmAEgX50vkLJsfjbS5sIQ9CLUm7U+0yW\nXJ47OT0q2Hz99SWub/WIs4ySN76HV/mjaX96dpXVdsi//OqjH+j7FlyLTx8c48XLNfjKB/rWD9Tu\nR+3tm0qpnwH+fJff7Zl9VPD9u/GAtn+mnT8fGi+wr+Rxo+Gz0g4oeDZnllsjuNXO1+mGCZlSlF2b\n569vsNTwWWr6WIaesl7JWwg0Sef5tzd47uQ0nSghTDPN8cgkwoCyaxPEKVIphGCk5gYMlI70QL2p\ngkMpZzFXKXBps0Ojp1vvMxWPA4MO049TBef97qNKXgcFd4Jgvbnc4pVrDZabWv63Gxmcmi/zxIEx\nziw19XC5AfxwqO6WpiCNDKUkrikQGLT9lLdXOwRxxtV6D8sQOKaFQUbBsyigK5aTJRfbFCRK8ouP\nzzFb8Si5NotNn4WaDl5Pz5ZZa2l1uWY/5EsPT5NISSfUQ2gNBEEsCdKMsJuNKnjbD/5D4wUOjRd4\nc6XF9VqPVpCQt03EQIr7E3vvdqekZudeS5XCs81b+I8A3SjBtUw22iFb3ZBaLyHvmuQsg4dnS5Q8\nm1o3GVUzTHQBwzA0tM0ydUcw5xgUPZu8ZZJKaPsxlil4Y6HBVDnH/9/em4fHdZYH37979n2k0W7L\ntrwl3mKbJA4J2SCEJQ0F0ia0tFDa0gIF2gLd6P6+fH35+pWtbGV52wJlK4WGpSUkoQmBJGRxVsdx\nEseW5F2ypJFmNPv2fH+cM+ORPCPNyCPNSHp+16XL1tHMOfc5z32e7d4uWdvOqakEN1/SRwGYjKcJ\nee1s7vBis1vo9Dp4fjRKIpNle2+QZDZHIlPgsvXtDI7HmU5n2dXR1vCaT0WW2uJQbukocmwizpMn\nJklmC2zt9jM8EWdrt481QTcdXgd3PXuGgNNKJJXDYbcQTabxOew4bUJ3wAkKNnR68DhsbOsJcPtT\nJwm67cQyOfYNhIz05skcbrsdh8VKJJXF7bAyncqSzOQ5PZViwmxru12IhI2A+Ew2T8jjpCfowm6B\n4YkEHT4nE/E0qWyeoMtGNJVjbDpdup/Z49OjQ2FOR5IMh+Ns6vTyukvW4DaTGczuD5fLmF2U9Vg4\nPsM99ELuoVKmwUgiyxMnJjk2ESMczxoZ8GIZEEhmsqxrd3Plpk6GJmJMxbP4XXaiqSzhaAYrRhxe\ntlCgoBROm412r5PegJN2rwMLGV4YmcZigcl4hnaPA1VQ+MxSBZeva6cr4OSlG0MMjcc4Hk7gc9qw\nWy1s7PJxcY+fhwcneMm6dpLpcfraXPQG3bx533rWdXiIJIx4xPuOjjGVzLKly0d3wMVl69uJpLIo\nYUbyh939bZyeSvLkySn6gsa7aLNauHZL14x3ZjqVI+RzAkbm2Va2ELYaSim+8NNBLu7x84qLu5f8\n+tdu6eRjPz7MRCxNh9mGy415Fz8i4gI8QKeItHPO+ycArF1E2Uq00iS6EVQKXi6alTPZAvsGQmzo\nMHxfHzo6zvB4HKfNQiaXn9FBl58nnTV284ZiMXK5Al6njZFIinavg86Ag2s3d/Hw0ATPj0YZiaR4\n8ew027oDHA8niCQzWMSI54kkstht0OF1kMopLGIU2ivitNvwu6x0+l10+Bw4bRau39rFzwcn6A04\nmU7meGEkyhd+drTUebYKi65HCrKFAvF0DoUYBQrFSBe6Y02QvDLSUqZzQiqbI583i8dajPieeCaP\nSB7BQiZfoD/kJuC0k/bnCMdz5AoFJhMZun0u8gWFw2rBbbeyZ21bya1waDzO8yNRjo7HiKZyPDQ4\nRsDpoM1tJ18o8MTxMF6nnXxOkceo/D0STZIpFAjH0ijO7eBNJjMlfQt6jPooT5+Y4tnT0ZLf9sAS\n+POvdHJK0e51zChwXCmYfnb84zWbjertNouFiXiaWDqHz2kjns4STxuWnrUhN3vWtTGVzBFPZ8nn\njUDkXN7YzFDKzARlMdxhrRZI5nK4rMKEOUkbLWRw2a3YbVYQYf/wJJdtaMftsHPZhhDHwwlyuQIn\nJ5McDycYi6UZGk9wydognT4r0XQWv8tWSnqyWNaAxbQ4zFdvKpM1CkYfHp0mns5xeipJPJ0n4LKx\nvt3DUyenOBFO8MzJKMlcgWzeiLW0WIU1QTdD4zEUKTaEvFy3tZuda4Icm4jjsFro7/BwNpJi34YQ\njx0PM53OkcnljdT0XjsFJeTsynChU4arot0iRFM5svkCE7EMvQEXa9s99ARdjEZSBDx2Ov1OoukM\nuYKFXEERyxhpsm0ipeQuNouFS9e1E01nKSjFyzZ1cvdzIxQKRtKTuVKyL6cx++Ap4307eDoyI3nF\nhSRPKKadByNm9IXRabr8bibixmInkc1zzeYuzsZSWESM98Rpx2axcHh0mmyugM0iDI3HiaYy5vgC\nNqsRO3oqkuS1u/p48KjhRumzW5kiS8h0O+9v83Bxr594OkcslcMqwrHxBBPTKR5NZek2C42/eHaa\nR4fDWEWYTmXZ5vbR4TUslWC05b6BEGOxNB2+DAmzGPfxyQSFgmJozEhcUp7Vb327h+lUlol4hulk\nhkvWBGfEhoU8Dvwum6n3sKnT29IWwlbjvhfGeGF0mo/dtoclyDt2HtdsNRY/Dx6d4PV71iz59RtB\nLZafdwLvw6jr8zjnFj9R4DOLJNeKZvYO5XA4PsNqE03l6Ak4ufmSNVy1uZOTU8nz3K0qnWfP2jZi\n6RyHR2IcOhNFAVds7MBlt7Au5OGhoQkyeYXdasVuszCeSLO3v42z02lOTSYZiRpZmCwiTCUy2KwW\nbBbjWkUXuKDLylVbOvE7bXgcVs5EUly6oZ1ff+kG9h8Lc89zoxw5GyeZjQKKd163ZcZkYTnsBlai\nFpeaDR1edvQFOBNNYcVwX7tkTZADpyIEXHZcVqMIpFUUKMFiUdgBv9OOx2kzsuDkCmzs9CIWcNis\nuBxW1od8FApxo5ChzYrTYcHtMGJyRqdTRFJGpp6iX/7TpyKMRlJYLELAbcSMJbJ5egIuAm47AyEv\n9x0+i8dhJZ7Osz7kwWdOTjv9TvJKMZnMlCYEjw6HuWJjiA0hL2+9coBL17cTTWXZ2RdsqcXtcqXW\nYPpi/KPFIpycTPDfz5yhr82Fy27l9bvX8L2nThFLZUlm8zhsRtKCZDpPIGhjY8jDyakEsXSOTF5R\nQOF1WEEpw3qYVxRUAbtY2dLtR0RK1kG/y06b10kik2Ntm8tYNAm0ue3sWhtkU2eKExNxjocTWKwW\nQh4HbqeN67Z2zcjkCOdbsxpJoywOlazyld798v73seEwo9MpnDYLTquRVavb52Bjt6/kNuQyk5Rc\nFHBwZDTOxi4vHoeNnoATqwj7NoVwWi30tbkN6z9e1oc8PDw4jt1qYf+xMMcnkvQGXYxNp+kJONnU\n6cNutZDK5hieSOC0C/vWh4hn8xw6HaEQdOOxW+jyu9i3IcSLZ2P0BlxGRj8rOK1W8hYYS6bp9bto\n9zo4MZlg/7EwSsHQeJxHBidw2IwF0qZOL16nje19gVKQ+nLry2fTKIthpc3IYpmDdredbK6Az2Wn\nx29YYdJ5hd0urA95ZtTpAsOCGEvlzGKgOfJ5hd1qIZbJszbo4kw0RTiW5Zv7j7FvIGSUsMga5RHW\nhzxs7fHzwsg0dx8aQQS8Lhvbevxk8gX8bqMvcViEf3t4GIsFRqNpdvQGcNothLxOHHbLDAtgu8fB\n+pCHkMfBVDLL5k4fJ6cSdPqdrAl6aPc42NkXKH3H7bRxw7YeJhMZjk8k6G/3GDFD5rMtelJcMRBa\nkoyAK43P//QofUEXv9ikhcfu/jYCLhsPvDi2chc/SqlPAp8Ukd9XSn16CWRacpZ6Um5UhzaC331O\nGwMhLyfCCYYmYgjQFzA6t2MTcXava6vqbjV70lScaFzc6yedLWAVKKgCPqeR/enS9TEeGQqTzRcY\nmUohQcPikCsUmIinKZgLH6sIaQUem4V4Oo9dIOCxEUvn2djpp8/v4okTkxw5a+zajERS/NXNO3jJ\nunZ+engMlTWKmRYUpc5uudVrmq0Tcw2Q5Z999Y5eDpyKYEVw2qwcPB1hLGak+UznjQmQscDMY7cb\nySG29HhJZhW9AScT8Qxv3ree4+EE0+ksLpuF4Yk4HqeNkUiS9X4nO/qCWBEeHhxnPJZhKp7ly2eH\n2b02SDpXoMfvwGk1LU8W2NzpnVF4cdicqNqswkgkhVJGClK71fDh7jSDWEejafoCLvafDDMeS+Nx\nWLllbz8v27J8gxxbkVqD6UMeB1aL8POj44zHM7S57Fzc4ydKlk6/k6u3dDI6leLoWAzMCffR8Tjp\nXIGL+vy0+5w8dyZCMpMnbS1gs1oQoDfgJBzLIghWiwURwWG34rTbSok+1ra7OD2VIp7JMRpJE01m\ncNisnJ1OMTQe59h4AsTIJrUu5GFbX6BkjVzKRCcXanEoxiJMp3L4XTZuu2wdxybijEbTbOr0MhpN\nlWoTlcdrHQ8bz3lsOk2bx0Gbx8H1F3cTTWdLtcwQw2347HSGNo+dTZ0+br2sn1xBleqBFds7ksjy\n7OkIxycSTCayeB02Dp0yNpQKBcMisCHkYUu3j3S2QF4peoNubtzew04zQcnHwnEEODGVJFdQjEZT\neJ02btrVh8tuxWm3cCaSNgpdpzJctcVIfnJmKsXpySQKxWQiQ5/fqG/ksBmbMxf3+I1Cpy0ez1Mr\njbIYlo8Rz5yKIKLY6PNxz9Aoa4Ju8gXFqXACm81CJJXjDXvWzkhYVM5uTxtD43F6Ay4u7g2QzRtu\nqS6blUgyi8NqwWY1xt7pVJ6rt3TyzIkp+tvd9Ld72NjpJZ7K4XJYcdqs5PJGf+Cx23DYrDiAvEA+\nDxd1+zk9meTRoTC5QoEfPTvCL+zqwyZynodKsQjpqakE9z4/isMinJlOc9n6du569gxbu/24HTZu\n3NZNl9+J2241YgIzufPqPQU99hku/JraePL4JI8Mhfmrm7fjKO5OLzFWi/CyzZ088OI4SqmmWJ8u\nlHoSHnxaRHYBOwBX2fF/WwzBloqlnpSXqkPbrKSyBW7a2cW6Dg83uw2/Y5tljJ8PjqOAwLCNdo+j\nagdZaaczmswyNB4jVzAsB1cMdJSqqL/1ygGu29rFi2enOXgyQsjnYHA8TiKTo9PrJJzIkMrmyaGw\nApFkDqsYig5C0G03UjlnckSSRsBr0d3la48c4/eu38Kl69t54rgRvNvlc87Y8V0uGYAq6US1AXL2\nbl84brSFy2El5LFjt1rwOqwcOBUhky+YRQmFroAbl81C0G1nXbuXdq+DWDpHl8/Ftt4AV2zsIJzI\ncGYyyTcfO24k/nDYeMNL1rC9N8BnfvIi4/EMUTPD32gkxfNWIZMroMyUptv7Arzukj7cThvJdI6J\nRIa9/W2EvA6ePR1hKpnFZhF8Tgdr291sCHl4yYZ2BkJe7j40wuB4jGdOTSHAyFSKSDpDKlvgnddt\nbtm2W67UEkwf9Bgpyr/9WAK7zcqRs9M8dWKSrT3+0gbKaaVw2IyNh0w6h8MqtHud2KzC9Vs7GRyP\nlXale/0urFajmPFUKkNhStHucXDL3rU47cag6rRa6PY76fQ52dXXxneeOEE2rzg9lcZhFaaTORKZ\nHOlsgYDHzrbeAK/e2cNVmzorxjK2OscmjAyMfpedofEYO/oCPHcmygujUZ44PonLZikFdxeTNhw4\nZWRj7PG7eO5MlK09PqNuirlAKK9ltr3XSESzvddPTincTlvJol+++P3O4yf4+dExBscSJDI5UmbN\nJKtAu8dJQRmWZq/ThtWSJ1co0O10ss7MzFaMvXh8OEwym+fsdJo8kCsonjw+SX/Iw9ZuP48dm8Rl\nNdIfJzJZOn0O+oIu1rS5AaPkQTyTI51XDHR4Gej0smtNkLxSDKyQ3fpGWQzLx4iim+fgeBwFbO8L\nkMrleX4kSq/fyeHRaU5MJugzn3O18/lcNrZ0+ej0Oo3MWgrufm6EJ49PMjyRIFcwkiKIWOjwueny\nGzXd7DbD3bqYwMhvul9u6faRLeSxWSxc3Ovn9FSKM9EUHrsNlw229fk5O51mS9c5i2V5en2/y47T\nbsHtMOr1HD5r1PO69/lROrwuzk6n6Q0YFVFu2dtPTilu2tU3w4Vac2F84aeDBFw2fvWK9U2V45qt\nndz57AiD43E2L1GNoUZST8KDvwVejrH4uQMjz8MDQF2LHxEZAB4BngMySqlX1/P9RrPUk/LyXcRo\nOltK/Vq+C5IrFNjY4WN0OlWq3J7OFkquR3Ol3MwpxY41wVK9iKILRfk12j0O7nnuLI8dnySdK5DP\nF4hn8tissM7v5uJuPyciSV44E6XN48BmESOY3u0gkcnjdljN1Jlp4hkjcHckmmIymSktsGabspdT\nBqBKOlGt/sDs3b6CKtAdcDGZyOB22Ah5jfvsC7i4ZksnZ2Mp1ra5GR5PMDwRJ5sz6rvs2xDikeGJ\nc0Hvl6xho+kHvXekjel0lm19AW7c3suBU1NYLBZ2r23jZy+hHiDdAAAgAElEQVSOEU6k8TqNgGWn\nzcKrdvQwOp3ihm097Fgb5MREgi/ef7QUK/KOazdzxaYOHh2cIGP6lTttFjp9hvvNs2cMd7cbt/Xw\n3EiU8ek0L4xO47ZbGRyLGRZJvWO3qFSzYOSVwm4zCtfm8ooBUy+DHjs3u9cQ8oxzYjIBwOBYHL/L\nzvBEjGzOjddu57otnSRzeWIpI6haAQ8emcDvtAFCwG1nc4+PywdCpSQMFhEzXieFx2HF77QSSxdw\n2o1YIyNWTfAUrLR77KWJ83Kz9gJQVrhZAdFiIhmXncl4BsHIwFlel6SYtjuazrK+w8ON23sBo68v\nOokX2zPkcTAeSzOdys3I7lfe3kNmcgifw042r8jkFbl8ni39Piwi7F3fBgou3dBO0G3n6ZNT9AXc\nDI7HSuNFJJFlNJIiky/gtdsoAIlUDr9ZOkGAde0e9vYbfcv6Ti/XX9RVqsmzbyDEdDrLzrVBLu72\n89TJKdo8diwiPHcmisNuMRaA7mXQpjXQiBilShbcYxNxAsM2ouksHoeVNrcDh93KdCbHA0eM5ALV\n3o1Ki7JIIstwOE4mmyeRnsRqEZI5RTKT5qKeAFPJLBZRbO8NEvI6WR/ysCbopt1jpKvubXPhcli5\nZksnO9cEiSYNC+Njx8I8Ohzm0Jko69o97FwTJOC2VxyzrSLETP21iAWPw0I8myOvCmRyCrfdistu\nZTKZwe+yM53Kct8LY7hslhkxVZr6GRyLcdehEd798s34nPVUqmk811/UBcBPnj+7shc/wK3AHuBJ\npdRviUgP8LUFXvfHSqm3LPC7DWUpJ+WRRJb9w2EGx2MMjcfY3d923vWKWd5Gp1OcmUoaKVKddu4Z\nGiWWNmoHzNV5hDwOfE5bacIxncwSSWTPWyCt7/BQUIp4Ok+mkOf6viDJTJ4btnUzFkvTH04QTWQN\ns7nVgs1qMXyKBd6wZyMHT0cIOIxihTvWtBlpr1V1U3azMgAtZOe5mk7Mzu5UnMyU7/YFsBHyKrr8\nDm7Z20/AbefYRByfyxgAu3wuXr+nn2PhOHccOEM4keHsdJo7nz1DX9BdyppT7ht96yy3x4GQF5vF\n2H3u9DrY1OWlK+Ainc2XEiz4nfbSRGY4HCdXMApTDk/EmUhk+I0rB7h+a5dRfd7kieOT/Pv+42Ry\nRkHFi/sCeMyBMhzPGEkw8oVzUX+aJWdnX9AMli7Q3+5ia7e/FO8V8jhmxAhu6vAaqWZTeV66KcSx\niTiHzyZw2W0ks4otPW68dhtPn4iA006ukGd7n7+0aVGesQqMiZzdKjxxfJLj43EcVjEqvrtspHMF\ntvX6afM6ePrkFAdPRRgIeTk7nWJjh2/ZxIdsCHlLC4JNnV529gU5PDpNIpNnQ4eX6WSWoYkY3X7X\njH6h0iS1mLTi4KmZQfSVsvvNdmf2O+2Ek0bK+bVtPtL5AmvaXCQzedw2Kz6X4S49mciQyRopyFPZ\nPC6blYDTzv6hMF4zvXWHz4HLbmVt0M26Tg87+4KlnfzZfUuR2cdfuqmjlFW0uNiqZbNwuVn+LpTZ\ni6gNeEsBsy/f2s3dh0bM7IwWCmac71zvRiW30Wu3dHFyMkmHz8HxcIJOnwunzUqP32nEjjqMJCM+\np2HtmUhkiKVz5JUqjS/FTdFiLOFYPM3mLh/Pj0Z5zY6+Upa3XWuDRgbCsjp9RV3f3OXjI3c/TzZX\nQAReuqmTyUSaTd1GttBHh8IUCopHhyewWgwLctEyWeleV5uuLIT/e/8QdquF33zZxmaLYrg39/r5\n8aFRfufapSuy2ijqWfwklVIFEcmJSAA4C6xb4HVfISL3A7crpT5R/gcReQfwDoD16xffrLdUk/JI\nIsuBU1OlHfWhiRhXbAxV3O0xBsdTtHkcDI7HSGTyKKhpElG8n2PhOI8OhXn61NSMgPXihN3ntHF6\nKkk2r7BYjODlLd0+rtjYUdoNiqazHBmNky8UGI9lWNvuJpc3/MtvvWwd+wZC/PTFMXJ5hd9lm5GM\noVJHttQZgBa681xNJ6qdb/Zu3+xJEBi7yEpJaVd5Q8iLx2njpLnAbfMaxfEqLcLLn1uxeOIv7l7L\nA0fGaPMG8DpsRpFSBU+cmCSbV6XrRBJZrAiFgmJ4Io7NQsldpXyROjQeJzsUxu8yrmMUUszQF3Az\nEc/wkg3t5AuFGYsqzdKzrsPDn9+0g2fPRDhyNsbBUxH+47Hj7FgTxOe0cfMla7jtsnU8MjTB1x8e\nxmKxEI6n6Q06QYStPX7T5daoAVNAMdDhoSfgwu2w8eZ9689zVwNDpzd0eHmrWYD5roMjpHMFBsdj\nXNTtI5rKcf3WbhK5fMkK8cDRcU5OJjg6FjfcLVvY2luk0mbDLXv7+e5Tp3DZLFgsMqcFPpLIGpYb\n02JUaZEwO7tfpQKar97Ry6mpJLm8IprM0ht00e5x8NaXrjEys6Vz3HVoBKfdggI2d/qgAw6NRBkc\nj5PJF7Bk8qTzCo9D2N4X4NZL+7n3hbPcf+QsXT7XnMWJK026S4u6OYq7lrMsLX8NpNL932rGkP3s\nRSNb1+mpZMVN0PJzVEp539fm4g3ta/nRwdN0+ty0e+y8clsPO9caxUOLyW+KFv9CwShWDZzXbsUY\nZJfdysU9AXauCZ4ne/nYXm7F/MCNF3MmmmRbT4DuoKvkXm1FODoRwyKCRSy4bBYmE1m6/IWK97ra\ndaUWzk6n+M8nTnLrZf10+VsjvfSrd/TwmZ8cMdz9va3fv5dTz+LnMRFpA/4vRta3GPDQAq55BrgI\nSAPfN2sFHSj+USn1ReCLAJdffvmSeIlWGwAatRNRfLFjqRyHzkRgDXT7XVUnkcbgaFTPdjusrA95\n6Jp01hxkGvTY8ScM39xqVqPrLuoilsqVCta9ZEM7u9cak+H7j4wxGk1zZipJf8hDLJUlnMgyNp0G\n4IEj4+xcE2T3urYZvurzLRKWmgtxaaykE9XOV2miAOeew2jUKAR347aeGe4y5cXwrGJMUHwuW9XM\nN+XFE5PZPLv7g+zsCzI4HuOxY5MUVIHBsTivNK9TnjJ5+5oAW7t9VTO0zU49uq7dTZvbwaYuY6dw\n38YQfpdd78q1AOs6PMZubSxtJiwBr8NWyqYU8jh4aHCcibgRwxHyOulrc7OzL3Ce+6PbaeOmnX0z\n4gpnp3BWgNMMxr92SxfPj0yTzhfwOKz0Bl0EPA4u6W/jio0d3H9krGSFaHPbubinh0NnoqydI7ah\n1Zj9Pht1WwZKbmzV3s9K2b4WWgQ0pxQbu7ysCbp54Og4V23uxGk3Mq4dPB3h7HSq9K6PplM8dixM\nu9eBAC/dGCKbz3PozDQ+p40NIQ9+l1Fk89DpKMlsnrFohmgyW/e7XM9m4XKK81wMqrlP+xOGfs21\nCQrVx9Gi/uSU4oqNnSTSedo8dobDcXauDZb09/4Xx2ZY/Ld0+7i4N3DeWD07BjnoMUomzNV25bLZ\nrRa29QUA+OHR8ZL+p7JGYWybBTZ1+xDglr1rK97rateVWvjyg8Nk8wV+t4WsLK/e2cun7j3CPc+N\nctvlC7WFNId6Eh682/zv50XkTiBQvmip4zxpjIUPIvLfwC6g7vMsNo2cwBdf7E2mX+T2vkCp6nMl\nygdHn9PGVZs6S+epdfJZykRkBlzOthptCHlZ32Gkn/Q4nCV5ip3epk4vh0eiTMTTuKwWegNORIya\nFG0ee9WJf/n9Nrsja7RLY73nK7V7p5eh8dh57jLFYnhFK93R8VipqGglyt3XXhydZiqemeHu0hPw\ncHQszuB4nJ6Ac0bKZICLewNVU1MHPTNTj7a7HaWJbFEmPRi1DkVdLE4uyrMphRMZ2t0OvE4r47EM\nvUEnV27sKKXK9rpsxFO5UrD9bMrf34Onp1BKGOgIltLyu2wW2j12JhNZtvUGeO3O3pJbzM1uY2Js\nEzE2UaZTjEaTHA87CCdOL+sd3UpubOVUKj3gd5+/YVDLAqLYvgUUbW4bhYKakQZ9Y4ev9K5bLYb7\nYfG6fW1u3rxvA9/cf5zBsRjpfAG/6XZrsQg71wQZnogzHI4vKFV9rRb85RTnuRhUu//i8ai5IVmt\nv59rs62oP9PJLE+fquyGWHSPLlr8K218lc9Niq6Qc8k+l2xwbrwZHI+RSOdx2q3sWBPkOjOerJY5\nz2rUlfmIpXN89eFjvHZnb8U+u1nsXBNgTdDF3YdW8OJHRG4B7lVKRZRSwyLSJiJvVEp9r54Liohf\nKTVt/no10JLpsxs5gZ+xmHHZ5lz4QPXBsZ7rl9zfygIuZ8evVLpGecd82UCIHX0BfE4bNovwP8+P\nlqwUlWKJKt1vMzuyRrk0llsA6zlf+bPc3d9W1V2maKWbT9fKBzO3w8Jtl63D7bSVJprRdJa9/W2l\nIrlQOWVyNWa7whUnstra03qU6/ZNu/rOywjZ6Xdy2foQo9EUb7p8XcmH3+cyLEQ+l62qPsyIY3Ma\nSRGKOlTMKreu3UOXv8Ate9fOmFCVT4xvdpuZ0BSlydVy3dGtZTyoVHpgLvfkWseAazZ3MpHIMBDy\nEnDbOXgqMuNdLwazl7/nQY+dd163mWPheClmI5rMcufBMzPcXxeTpXIpbzXmGy9qfS5zjaMz3BBP\nV+7j13V4+KNXbWM4HGcg5K1q8a8W3zqXjNW+VzyWyhrWqOJ773fVru+rSVdq5ZuPHGc6leNd129u\ntigzEBFetaOHf99/gng6h7fJSRjqQZSqzbNMRJ5SSu2ddexJpdRL6rqgyC8A/w+G9ed+pdSfVfvs\n5Zdfrh577LF6Tt8wGu26tVAXuka43tV6juLnbKZJvdwNpni8mOffaRZvqzShb5Tc5Vx++eU0Qxcu\nVA9qeQ6z3YyKi5dqrm+VBrNq16lWmb5SOy9E9qWmWXqwnCjWiHngyBhtZnxfUW+r6U+lc8wVx1bt\nb5XOU3T5TeXOXywtlKXWg1r7gYW8M3P1u0WrcNHt8OZLjIKC1d7p+a5ba/s34r6WglbrDxY6XtTT\nf8/1Xai/kHAj5ibF6xZ1uLghV/4cFiJbrbSaHjSSdC7P9f9wHxs6PHzrnVc1W5zz2D8c5rbPP8TH\n37SHX7q0v9niICKPK6Uun+9z9SzTKlVTqnuZp5S6AyNVdktT707EfB1ILa4CtVYWbyTlA+/szqqS\nDLvWBEuxRD968QzHwwnWhzzcdtm68ywarTRI1kvxuUwnqwcu10K15zC7rWcnqaiWEnRdh6fipKV4\nnRMTCQ6cmqLD48BtukGVm8lnx5+VB8pX8+nWAaitR7VFbVGHplM5TkwmubgnUHJ3BUrv+Hxpimfr\nbaVJNjBj0V4pZi3omT+7WSsy+/nONR5U+myt1zg2EWf/cJi8Uhw6HWFHXxCfy8a1W7q4+9AIxyfj\nnI2kee2uvhnxgrOvUet1q/Ufc90/oPuCGpltITw2EcefmDtWcq6+tvhv8f2da25xIQl+LmShVGmB\nXu4CW65DsXSOVDbPLXv7G7IJshq4/YlTjERT/MOtu5stSkUu39DOupCb25841RKLn1qpN+HBx4HP\nmr+/ByPxwYql1k6hERPFSudohOtdabJbodMpv+ZkPIPLZj3PPaVchsHxGKcjSTLZAs+Fo5yOJPG5\n7Bw4OcUVA6EVU/ulUsB3I134qunLbPe3Y+G5B87ZA1ExIUIyU2AkmuSG7T10+Zwz9LHYnl6X7bxA\n+fJrtErcluZ8KukPGJOLYiD8yzZ1nhdndt7EbJZ+zbeBU2kjJG+m6/3RkTM8eHQcr9PG3v42bi3b\nDJkvu1mzmGu3vdL7WWk8uJCd/vJkKLvXthnvo+mW+OyZCE+dnMJps3IqkuS5kSjrQ566+p8L2dGf\n0c5rg7ovqJFyd7B0tsD+4TCOWYuC2czV19ajX+GEkdLa67ARS+dK52l04qaiLNdu6eL+I2Mzkm+U\nxxWXvy9D43Fi6RwnwkkmExm++9Qp3nbVgNajecjlC3zuvqPs7g9y7dbOZotTERHhlpf08+l7X2Qk\nkqI36Gq2SDVRyZpTjd8HMsC3zJ80xgJo1VPeeRUnko04RyNiZ4od4olwksOjRhG8Yvrl8mu67NYZ\nqZZtIgyNx7GJGIUvT0d4ZCjM4ZFpFLC1x0df0I3TZqRaXUm1X8qfi8Nu4YqNIa7Z0jXvxKaY5rb4\nfGs5f7m+lLd3Jlvg0aEwDxwZ44fPnD7vnMWBqPzvxYQIXQEn+QKgOE8fi9eIm4Hy47E0k/Fsqdji\n7M81O25Lcz6V9Kd4bGOHz1ysp9jd38YN23rOyxJVSb9OTCT44TOn+fGzI3zloWFOTCTmvS5i+PgP\nTcTI5Ap0eBy4rBaOhRNGZjSTVtSlSu9PkXr682PhOGenUwSc9rr6/vJkKAJMxFNG4opUDqsIAacd\nAZw2C2uCbvb2t9W1qTbX/dUqW6mdFRXbr9b+bjVRtBBes6WLKzaGcJibWXPpRqX3o/hsj03Ea9ZF\nmwiHTkd4aHCCQ6cj2EQuSA9mM1svhsPxGX3O4Hi8qn6EPA5S2TyTiQztHjsum2VB86TVxg+fMbxr\n3vOKLYi07iTrlpesRSn43lOnmi1KzdST7S0OfHARZVm2NGJwr3SOhQQBzt7lqdbpzJ4M+Zw2btrZ\nVdFfd29/G99+/AQ2izAWS7PObmVrt5+pRLZUDHAl1X45L3C5hkxn9ezQ1RJkOlcWH6i8W1hMiDAW\nTWO1UJqczg6ULV5jT38bdz57hjav4zx3JB2A2rrMFWw8O+nFbNe1avo1HI4TS+U4MZlgMpHlu0+d\n5G1XbZzx/UrvxYaQl2PhODaLhYOnIpyOJOkLutk/HC5dv9ytkyUpXjA/c+2219qfRxJZHh0KMzgW\nr7uWUaVkKO1uRynmB2D3SBvTqRwbO71ctbmzppiP2RbehVhrKiVumF3SQLvFVqfcDa2WhDOz+1pg\nQZ4Hs7M55szF0mIkbipPflKpz6mkH+X1smYnXGnVmLJmki8oPvuTI1zU4+NV23uaLc6cbOz0cvmG\ndr756HHece0mLJbWXagVmXfxIyL/qJR6n4j8FxWGLqXU6xdFsmVEIyaK1c5Rrz9upQGp2OmgFKlc\nobTLX+2as3P8TyQy9LW5yRVgMpGhy1+oOCCuFBbSnvUMMnOdf8bAWSWLD1RfLBez+5TH/FSKDwD4\nr6dPMxbLkCsYxw+cmpqRiXC5x22tVKrpTy06W02/BkJenjw+xWQiS7vHgctuPU+HKy1igh4jQ+CG\nkJeHBsd56sQk23uDFYsxHzxlpoquEs+2lMyXSauWZxlOZHDaLbxyWw+D43H2DVSu11KJatconwTe\nNqvYaiXmqwWzkA25ucai8nvXrnBzU884MttFbEbK9P62mmqshTyOitkcrSIMjsVmjP2Nup9qGUEr\n6cfGTi9vu2qgos7rhfT53P7ESQ6PxvjMr71kWSwm3vayAX7/m09y3+Gz3LCttRdrUJvl56vmvx9d\nTEGWO42YKF7oOaoNSOs6PGUFNS0zdvkrXbPaDs+6kJsuv2NGobKV2knV2xb1TjbmO/98A2e1v9ca\n0BxOZEr1Ws5OpzgTSeC2WY1AeD34tDyV9Kcena2kP+VFd4s1gypRaRET9Ni5alMn4XimYjHmVpss\n1/J+zSdfufWmJ+AspZevR4bya1SaBM5X06Pac73QDbn57r8VXRlbkYWM6QvxPCheq1KbNzLhyOz7\nqXZ/c3k3zP58q/UNrUAqm+fjPz7Mnv4gN1/S12xxauK1u3rpCTj50oPDK2Pxo5R63Pz3p4svTuNY\njWbUuQakeoKO69nh0Rg0wvpXpFx355r8XMhiubhLuK7dg80qtLkdy74Wi6Y+ZutPsejuXDp8bCLO\naDTNpk7vedadud6BVpwsN2LDateaIAgNKQK8kEngfBasxXqPG9nfaWZyIc+2UpsvRsKRWrLb1noP\nrdg3NJt/fXCIM5EUH3/T3paO9SnHbrXw1is38NG7D3N4dJqLevzNFmlOanF7e4bKntoCKKVUy+Xf\nW61m1EZOPmrd4amV5boYrUfuRkw2lkp3y3WlGOOlB5/WZanen7l0OJLIsn84zOB4jKHxGLsrxLhU\n+/5KmyzPfk8bEfO40EngrrXBUiHTpXyui7m4Wk4sxrvZyGfb6MVFrWNUrfew0vqGC+VEOMGn7znC\njdt7uGpzR7PFqYtfe+kG/um+o3z63iN8+s11lQBdcmpxe3vdokvRYFazGbUVJx/LdTHaDLmXUnfL\ndUVb9lqXVnl/wokMDruFG7f1MDQR44qNtce4wMqaLC/Ge1pvH33eAqxOtzvNhdMq7+ZcNHrsXyzd\nb7Xn1gyUUvzl9w5iEfjQG3Y2W5y6CXkd/ObLBvjcT4/y3lds4eLe1rX+zJvqWil1rPhjHtpq/v8s\nEF5U6RbISjKjNjKdaNBjr1ggb7EpusrUmw622VxICvNIIsuBE1McODlVV9s1S3ebpRua+WlEKv1y\nqvUp8/U15TEu3X7XisrwWC+NeE8rPe+53sPZn2+0Xmjqp5XaYK73t1yvLnROsZLmV63Glx4c5meH\nx/jT125jTZu72eIsiN+9dhNeh41//J/DzRZlTmpOdS0ivwu8AwgBm4F+4PPAKxdHtIWzUsyoy2FX\naT5qcZVpVRbayUcSWb79+AkOnJxCwXlFH+dipeiupnE0crJRrU+ppa/RunmOC30W9fbtlT6vJ6HN\np1XaoFZ9asScQvcDi8P+4TAfvuM5XrWjh9+4akOzxVkw7V4Hb79mI5+850UeHpzgyk2t6bpX8+IH\no6DpFcAjAEqpF0Wke1GkagArwYy6Etz3LtRVppkstJMPJzJMp3L4Xcbnpyuk/Z3vusvlGWkWn0ZO\nNqr1KbX2NVo3z3Ehz6Levr1a6mA9CW0urbIQqFWfGjWn0P1AYzl4KsJvf3k/60IePnrbnmWT5KAa\n77p+M995/CR/+/1n+eEfXIPNOq+T2ZJTj0RppVTJpisiNlqmZN3yppoZulV2lS6E5e4qsxB3sJDH\ngd9lYzqVJZrK4nfaS22nq6JrFkKj3BKr9Smzj9tEVo2eNuOdrLdvnyt1sHZXbS7NbIOi7tpEatKn\nlTCnWEkopfjhgTP8yhceIuCy87XfeSlB9/J/l90OK3/9uh28MDrNvz441GxxKlKP5eenIvIXgFtE\nXgW8G/ivxRFr9TCXGbpVdpUuhJVwD/US9Ni57bJ1XDEQmpEGdyW4MWqWN9Xex0rZ/1aDnjbrnay3\nX1yN/ahmbmbr7rVbusgpNW+RY61HzUUpxYtnYzx0dII7D47w0OAEe9a18fm3XEpfcHnG+VTiNTt7\neNWOHj5612Gu3drF9r5As0WaQT2Lnw8CbweeAd4J3AH882IItZpYCa5t89FIE/lySZkd9BiV78tZ\nDW2tmZtW0N+5MkIGPfbzKsyvZD0tvpMBp53B8TjHJuLnvbeLRb39onY1agyt8A42gtnjSU6peYvi\ngtajZnB6Ksl9L4zx86PjPDw4wXjMcKJa2+bmr1+3g9+4agP2FnQNuxBEhL//pUt47Sfv5w///Ulu\nf/fV+Jz1LDkWl5olUUoVROR7wPeUUmOLKNOqYi4z9FzBySuh866X5W45aZbLwWrVl1ajlfW3XEdW\nk2tMyOMgnS1wz9AoCggM25a8Xk4t6He4MbTyO1gv5e9pJltgOpklksgu2/tZaaSyeb775Cm+9vAx\nnj0dBaAn4OTarV1ctamDqzZ3sC7kabKUi0uHz8kn3rSXt33pUd7z9Sf4l7dd3jLxP7UUORXgb4H3\nYsYIiUge+LRS6kOLK97KZy4zdCVLAbBiOu96We6Wk2a4HKykwX6506r6W0lHVotrTNBj54qNIWLp\nLBs7fETrTE6yFOh3uHG06ju4EIrjybFwnEeHwjx9aoqDpyNaP5rM2HSarz40zNceOU44nmFHX4A/\nv2kbr9zezeYu37JPZlAv12zt5O/euIs/v/0Z/vBbT/HxN+3BabM2W6yaLD/vB64G9imlhgBEZBPw\nORF5v1LqE4sp4Gqgmhm60g7sSuq862Ul7EgvtcvBataXVqNV9bdaJrHVoicbQl66/S6i6WxLtUsR\n/Q43jlZ9BxdK0GPHn7DjtFu0fjSZ50eifOmBYb771Cmy+QKv3NbD26/ZyJWbQqtuwTObN1+xnulU\nlg/f8Txj0TQf/5U99Lc31+pVy+LnrcCrlFLjxQNKqUEReQtwN6AXP4tENUvBSuq860EHa9bPShvs\nlzOtqr+rXUdatV2KrPb2aSSt3tYLQetHc4imsjx1fIrHhsPc9ewoL4xO47JbuO2yft5+zUY2dfma\nLWJL8Y7rNtMTcPEXtz/Daz7xM37r6o38xlUb6A64miJPLYsfe/nCp4hSakxEln/P0eLMthSsxM67\nHnSwZn2sdn1pNVpRf7WOtGa7FNHt01haua0XgtaPc4xEUvz86DgOmwWXzYrfZSPgths/Lhtehw2L\npboVJpcvkMzmjZ9Mnol4hvHpNOOxDGenUxwPJzg+kWB4IsF4LA2AReCyDe186A07ed3uNYS8evFZ\njTfsXcul69v58B3P8ZmfHOGz9x1h30CIl23u4LIN7exZ10bAtTT6W8viJ7PAv2kWiZXWeWsWF60v\nmvnQOtLa6PbRzIXWD4ODpyJ84D+ervp3i4DfZSfgtuGyWUnl8qSyBVIZY8GTK8xdurI34GJDh4dX\nbutmfYeH3f1B9q5rKxU018zPupCHz73lMgbHYvzg6dPc/ewon7rnRYqPfm2bm4t6fFzU6+eibj99\nQRddfidtHgcOqwWbVbDOWsA6rJY5F7WVqGXxs0dEohWOC9Ace9UyYSkz9FS7VrOzBDX7+pq5iSSy\nHAvHQUG7xzFvnYjy7+l2XXnU0q7Fz9hEataXes7fyiy2/K12/uXeXo1kJTyL8nsAFnw/rfosrt7S\nyU/++OVkcgVS2TyxdI5o0ig2Hk3mzH+zRFM5kpk8LrsFt8OKy278uM0fl92Cy26lw+eg0+ek0+ek\nw+doiUD9lcKmLh/vu/Ei3nfjRUynsjx9IsKBU1McHuA12+QAABOASURBVJnm+ZFpHjgyTjY/92K0\nyA/eezW7++srUTDv4kcppVt7ASxlhp65UmI3M0tQs6+vmZtIIst3Hj/BUyenyOYKWETYu74Nn9M2\nZ1vpdl2Z1NKuxc/E0jkOnY6woy+IzzW3vtRz/lZmseVvtfMv9/ZqJCvhWZTfQyZbQAFOu6Xu+2nl\nZ+F2WGuqdaRpLfwuO9ds7eSarZ2lY9l8gePhBGejacZiaaYSGbJ5Rb5QIJtXFHNICELvAuKGWqfi\n0ApjKTP0VLtWs7MENfv6mrkJJzJMp7MEXHaiySyxTBavw0ZeqTnbSrfryqSWdi1+xuuwkSuA1zW/\nvtRz/lZmseVvtfMv9/ZqJCvhWZTfw8HTUyglDHQE676flfAsNK2P3Wphc5ePzYuUOKI1qg2tQJYy\nA0u1azU7C0yzr6+Zm5DHgd9pJ5rKks0XcNtsxDO5edtKt+vKpJZ2LX4mnslhs0A8Nb++1HP+Vmax\n5W+18y/39mokK+FZlN+D32nH77It6H5WwrPQaESp2nzqmoGIjAHHmi3HghGLFZFulDqLKuQX+1pi\ntdlUPpebca1qxxeHTmBmZsDGXf9S4Imq12kOy18OsVjF5nACqEI+JyJSU1tVb9fFfiblerCcaRXd\nmUkt72vxM0qpmvWleL+L0x8sHYvdpzfm+VTXrXrPvzjjRyN1f7H0YDHHsoVdvxGU3wMwz/00To8W\nRj3PYKWMC+W05hixdCz0/jcopbrm+1BLL35WAiLymFLq8mbLsRQs1b22yjPVcpxPK8nSyqy257SS\n7rfV70XLd+E0W8ZmX78VZGj29ZuNvv/FvX/t9qbRaDQajUaj0WhWBXrxo9FoNBqNRqPRaFYFevGz\n+Hyx2QIsIUt1r63yTLUc59NKsrQyq+05raT7bfV70fJdOM2WsdnXh+bL0OzrNxt9/4uIjvnRaDQa\njUaj0Wg0qwJt+dFoNBqNRqPRaDSrAr340Wg0Go1Go9FoNKsCvfjRaDQajUaj0Wg0qwJbswVYyYjI\nLmAXcFQptb/Z8qwEROQ9SqnPNuG6fUqpMyIiwBuA7cAQ8B2lVG4J5bADrwUmlFI/F5G3AEHg60qp\nqaWSQ7MwdJ+wfBERH9AGTCmlYs2WZ7kgIjZgG+azA55fyj5zuaD1S+tKET1OLD464UGDEZE7lVKv\nFZH3Aa8EfghcDZxUSv15c6VrLCJiBd4IXMW5zuph4HuN6LBE5H6gqKBi/rsTOKiUuu5Cz1+nLPcq\npW4QkU8CSeBeYC9wuVLqTUsox3eB/RjP+zLgDowqyL+mlHrNUslhyrKo7b9SWE19Aqw8vRCRG4C/\nBqLmTwDwAx9WSv1Pk2V7n1LqH0VkD/BpjP7SBnxQKXV/M2UDEJG3Ar8DPMW5Z7cH+Fel1L81U7Yi\nzX6GraBfzX4GpgwtryuLyWobJ2az1OOGXvw0mLJJ8k+BVyilCubxB5RS1zRZvIYiIl8FDgD3ABGM\nzupGYI9S6i0NOP/7MTq/Lyul7jOP/UgpddOFnnsBsvyPUurG4r9lx3+ilHrFEspRup6IHFRK7WqG\nHOY1F7X9VwqrqU+AlacXIvIA8GqlVKLsmBe4Wyl1dfMkm6FbdwPvVkodEZFO4PvNls2U737gOlU2\n0TAnOT9tFd1v9jNsBf1q9jMwZWh5XVlMVts4MZulHje021vj2SEi/wZsBpwYVgIAV/NEWjQGlFJv\nnXXsSbMTu2CUUp8QEQfwdhF5F/CNRpx3gXxFRP4ZOCEiXwN+CuwGHltiOeIi8leAF5gQkT8CwkB6\nieWARW7/FcRq6hNg5elFGuNdf7js2CVAqjnizCBkWg5CSqkjAEqpcRFplV3NSeBXReTHnNvNv9E8\n3io0+xm2gn41+xnA8tCVxWS1jROzWdJxQ1t+GoyIbCj79bRSKmv68l6rlPpRs+RaDETkj4GXA/dx\nrrO6HviZUuojDb6WDXgrcLFS6oONPHcdMqwBXgP0YOxM/Fwp9fQSy+DGiPk5CrwIvA3DJfAbSqnI\nEsuyZO2/nFlNfQKsPL0QkT7ggxgTUgtQwNih/IhS6lSTZfvbsl8/qZSaEhE/hmzvapZcRUw9/13g\nSs65sjwE/ItSarqZshVp9jNsBf1q9jMwZWh5XVlMVts4MZulHjf04kdzQYhIF3A5RmcVwYhHGdBB\neqsD3f6aSmi90Gg0Gk09LOW4oRc/mgUjItVSpd+llHrVkgqjWXJ0+2sqsVr0QkQ+pZT6g2bLUQkR\n+aRS6g+bLUc1Wl0+aL6MraBfzX4GrSKDZvFZ6nFDL340C0ZEEsz0UwbDBWu3UqqjCSJplhDd/ppK\nrGS9aLUUtCLyeuB/yoPlNfUjIjuBvFLq+bJjVyqlZuvxYsvRFP3SeqRpNks9bujFj2bBiMjjwA2z\nY01E5McraYdXUxnd/ppKrDS9mCMF7Qml1F80WbbTwDFgFPgu8AOlVMsEiC91+tqFICIfw4jjzAKd\nwG8rpcaK2beW4PpN169W0KPloCuaxWOpxw29+NEsGDNQc0IplZl13KY7q5WPbn9NJVaaXrRyCtpi\ninsR2Qj8EvCLGNnDvq+U+qdmygbLI+25iPxMmXXjRGQ38Cngj4F/WKLFT9P1qxX0aDnoimbxWOpx\nQ6e61iwYpdSZKseX3QRHUz+6/TWVWIF60fIpaJVSQ8DHgI+JSA/whiaLVGQ5pD23iohDKZVRSh0Q\nkVuAr2EU1F4KWka/mqxHy0FXNIvEUo8b2vKj0Wg0Gk0VWjkFrYi8Ril1VzNlmIvlkPZcRK4AhpVS\nZ8uOWYHblFL/vgTXb7p+tYIeLQdd0awc9OJHo9FoNBrNoqDTnmtqReuKZqmollpOs0iISF5Enir7\nGWjAOYdFpPPCpdM0CxFRIvK1st9tIjImIv9t/v56Efmg+f//Ze6SISL3icjlzZFaUw8i0iMi3xCR\nQRF5XEQeMl1sNJoViZm+dgK4C/gWcKf5+4ebKZem9VgJulI2v3tWRJ4WkT+aI4Vz8TsDInLQ/P/l\nIvKpBV77fSLiWch3VyM65mfpSSql9lb743INCtZcMHFgl4i4lVJJ4FVAqbq3UuoHwA+aJZzmwhAR\nAb4HfEUp9WvmsQ3A62d9blHef92vaJpEjCrpa5sgi6a1WQm6UprfiUg38A0M972/reXLSqnHgMcW\neO33YcSq6XTlNaAtPy2AiPymiPxARO7FyHSCiPyJiOwXkQMi8r/NY14R+aG5o3BQRH6l7DS/LyJP\niMgzIrKtGfehuWDuAG42//9m4JvFP5g68plqXxQRi4h8WUT+bpFl1CyMG4CMUurzxQNKqWNKqU/P\nfv/F4CPmO/5M+XsuIn9mHntaRP7ePLZZRO40rUn3F99/Ux8+LyKPAP8gIi+abiVFfTlS/F2jWSSe\nA25RSt1Q9vMK4IlmC6ZpOVaUrpgxZO8A3mv26VazXy/O6945+zsi8vIybw+fiHzJ7O8PiMgvm8c/\nJyKPmdal4tzwD4A1wE9E5CfmsVeb3gVPiMi3zTgyROTvReSQec6PmsduM8ebp0XkZ+axivKaMt4n\nIt8RkedF5Ovm5t6yQlt+lh63iDxl/n9IKVV0e7kUo5hTWEReDWwFrsDY+fiBiFwHdGEERN4MICLB\nsvOOK6UuFZF3Y6Tp/J2luBlNQ/l34G/Mzm838K/AtTV8zwZ8HTiolPo/iyifZuHsZO5BvPz9/2Vg\nL7AHo+7IfnNA2ouRfemlSqmEiITM734ReJdS6kUReSnwTxiLLYB+4GVKqbyIRIBfB/4RI4Xs00qp\nscbepkYzg9dxLntZOTcttSCalmfF6YpSalCM5BndGH13RCm1T0ScwIMicjdQLfD+r83PXwIgIu3m\n8b80xwkrxmbZbqXUp0TkAxip0sfFCIP4K+BGpVRcRP4M+ICIfBa4BdimlFIi0mae82+A1yilTpUd\ne3sVeQFegjGmnQYexKhL9cCFP7GlQy9+lp5qbm8/VkqFzf+/2vx50vzdh7EYuh8jBeX/B/y3Uqo8\nBeTt5r+PY+Tp1ywzzDSrAxhWnzvq+OoXgP/QC5/lgzkIXQNkgM8y8/2/BvimUioPjIpR/2MfRuaj\nLxWrsJsDoA94GfDtss03Z9mlvm2eB4zF9PcxFj+/DXxpse5Po4EVmfZcs0isAl15NbBbRG41fw9i\nzOsOV/n8jcCvFn8pKzr7JhF5B8b8vQ/YgVEfqZwrzeMPmuOCA3gII4lECvgXc5P1v83PPwh8WUT+\ng3NzyWryZoBHlVInAczN/AH04kezQOJl/xfg/1VKfWH2h0TkUuAXgL8TkXuUUh8y/5Q2/82j23U5\n8wPgoxgpPztq/M7PgVeIyMeUUqnFEkxzQTwL/HLxF6XUe8zduaJ/d7zit+bHAkzNEUdYOq9S6oSI\njIrIDRhW5V9f4DU1Go1GMw8isgljTnYWY173+7NTiksdSa/EKEL7x8A+pdSkiHyZyvWgBGND7c0V\nznEF8ErgVuC9wA1KqXeZXgM3A4+LyGVzyPtyzs03YZnOOXXMT2tyF/DbZT6aa0WkW0TWAAml1NeA\nj2C4ymhWFv8K/G+l1DN1fOdfMCxF/yEiy64TWiXcC7hE5PfKjlXLzHM/8Cumz3UXcB3wKPBj4LfE\nzOgjIiGlVBQYEpHbzGMiInvmkOOfMYJiyy1CGo1Go2kgZt/9eeAzyqgpcxfweyJiN/9+kYh45zjF\nj4H3lJ2vHSN5QhyIiFGEttwlcBrwm/9/GLhaRLaY3/Wa1/MBQaXUHcD7MVyrEZHNSqlHlFJ/A4wB\n6xYg77JCT5RaEKXU3SKyHXjINFnGgLcAW4CPiEgByAK/V/0smuWIaUquO9WlUurjZgzYV0Xk15VS\nhcZLp1kopn/1G4FPiMifYgwwceDPAPesj38XuAp4GsMf/E+VUiPAnSKyF3hMRDIYC96/wLDgfE5E\n/gqwY8SOPV1FlB9guLtpl7cmIyJ5oHyT441KqeEmiaPRaC6cYky3HcgBXwU+bv7tnzHcw54wEwSM\nAW+c41x/B3xWjDTYeYxN0dtF5EngeeAEhrtakS9ijBGnlVKvEJHfBL5pxuuAEQM0DXxfRFwYlp0P\nmH/7iIhsNY/dgzF+HKhT3mWFLnKq0Wg0qwQxakJ9QilVSyINzSIiIjGllG+Ov+v05E2gbFFanMD+\nG8Y7U3VDyXRdeplS6htLIWOjZSi7ZxtG1rW3FWMLNZqViHZ702g0mlWAGEVy/xP482bLoqmM1Jj2\nXEQ+JOcKZZ8SkS+Zx98iIo+ax79gZoRCRGIi8n/ESGX7sOkyo6lMUim1Vym1E6Pe2k3MX6dlAPi1\nei6yCC7KdctQRvGed2EEtL+rYVLNQrtma1oBvfjRaDSaVYBS6u+VUhuUUssqK88Kxl22gPlu2fFL\ngVuVUtdjZO4spj2/EcM9pU8p9TdmkouXA2HgM6ar9K8AV5t/y3MuqYUXeFgptQf4GfC7S3B/y546\narX8PXCt2Zbvr/Y5MWqk3C8iPwAOmcf+WkReEJEHROSbIvLH5vG56nd9SkR+LiKDci4b12wZdpYt\nhA+Ybk21cD+Giz0i8j3z+s+KkWEM83hMRD5hHr9HztUPq6nm2ELbQ6NpFHoFrtFoNBrN0lNL2YNq\nac9/YPrhfw34uFLqcRF5L3AZRl0oMGLJzprnyXAure3jGBYNTQ3UWKvlg8AfK6VeB2AuFKrVSLkU\n2KWUGhKRfRhZIPdguNk9gdE+MHf9rj4M3diGEcf3nQoyfBr4pFLq6yLiAKzz3atplbkJuNM89Ntm\nSn03hl79p1JqAmMx/ZhS6v0i8jcYlrH3ziNzqebY/E9do1lc9OJHo9FoNJrWoda05/8LOKmUKiav\nEOArSqlKbo1ZdS7Ad1mmpm0R5qp9UuvnHlVKDZnHrwa+b5YoSInIfwHI/PW7vmfGIB2aw4XxIeAv\nRaQfuF0p9eIc91VefP1+jAyiAH8gIsVC7OvMe5gACsC3zONfA26vQWadYVLTMugOUKPRaDSa1uR+\n4J0i8hUghJH2/E9E5Bcx3OBeUfbZezAyOX1CKXVWREKAXyl1bMmlXkFIbbVaXj77a3N8rpbF7Xz1\nu8rrrEilDyilvmG6md0M3CEi71RK3VvlfOdZIU1ZbwSuUkolROQ+KteUASMrZc01xzSaZqNjfjQa\njUajaU2+i5Fy9mmMWlHFtOcfANYCxZiODymlDmGks71bRA5g1Anpa5LcKwKpvVZLeY0V5vjcbB4E\nflFEXKbl5HUAC6jfxWwZzEXboFLqU8D3gd113n4QmDQXPtuAK8v+ZsEokglGkoUHFiizRtMUtOVH\no9FoNJolplKaa6XUl4Evl/2ugD8xf8o/9woqoJT6FufckSpeSyn1HYwYEU1lFlKr5QCQF5GnMdrv\nk1U+NwOl1H4z+cEBYBQj3XTE/HM99buoIIMTeKuIZIER4MN1Poc7gXeJyHPACxiFM4vEgStM2c5i\nJNpYiMwaTVPQdX40Go1Go9FomoCI+JRSMRHxYGTie4dS6olmyzUXMk+NKo2m1dGWH41Go9FoNJrm\n8EUR2YERT/OVVl/4aDQrAW350Wg0Go1Go1nBiEgHRlKM2bzSTF+t0awa9OJHo9FoNBqNRqPRrAp0\ntjeNRqPRaDQajUazKtCLH41Go9FoNBqNRrMq0IsfjUaj0Wg0Go1GsyrQix+NRqPRaDQajUazKtCL\nH41Go9FoNBqNRrMq+P8BgiKWD2uC/EAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Scale the data using the natural logarithm\n", + "log_data = data.apply(lambda x: np.log(x))\n", + "\n", + "# TODO: Scale the sample data using the natural logarithm\n", + "log_samples = samples.apply(lambda x: np.log(x))\n", + "print(samples)\n", + "print(log_samples)\n", + "\n", + "# Produce a scatter matrix for each pair of newly-transformed features\n", + "pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');\n", + "\n", + "# now the features are much more normally distributed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).\n", + "\n", + "Run the code below to see how the sample data has changed after having the natural logarithm applied to it." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
010.2097587.9377327.6629389.4897134.5217897.550661
11.0986125.8081428.8566619.6550902.7080506.309918
24.4426519.95032310.7326513.58351910.0953887.260523
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 10.209758 7.937732 7.662938 9.489713 4.521789 7.550661\n", + "1 1.098612 5.808142 8.856661 9.655090 2.708050 6.309918\n", + "2 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the log-transformed sample data\n", + "display(log_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Outlier Detection\n", + "Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many \"rules of thumb\" for what constitutes an outlier in a dataset. Here, we will use [Tukey's Method for identfying outliers](http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/): An *outlier step* is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the value of the 25th percentile for the given feature to `Q1`. Use `np.percentile` for this.\n", + " - Assign the value of the 75th percentile for the given feature to `Q3`. Again, use `np.percentile`.\n", + " - Assign the calculation of an outlier step for the given feature to `step`.\n", + " - Optionally remove data points from the dataset by adding indices to the `outliers` list.\n", + "\n", + "**NOTE:** If you choose to remove any outliers, ensure that the sample data does not contain any of these points! \n", + "Once you have performed this implementation, the dataset will be stored in the variable `good_data`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Fresh':\n", + "Q1-step is 5.51455083361, Q3+step is 12.2705718166, the step size is 2.53350786861\n" + ] + }, + { + "data": { + "text/plain": [ + "65 4.442651\n", + "66 2.197225\n", + "81 5.389072\n", + "95 1.098612\n", + "96 3.135494\n", + "128 4.941642\n", + "171 5.298317\n", + "193 5.192957\n", + "218 2.890372\n", + "304 5.081404\n", + "305 5.493061\n", + "338 1.098612\n", + "353 4.762174\n", + "355 5.247024\n", + "357 3.610918\n", + "412 4.574711\n", + "Name: Fresh, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Milk':\n", + "Q1-step is 5.01673296722, Q3+step is 11.1987283614, the step size is 2.31824827282\n" + ] + }, + { + "data": { + "text/plain": [ + "86 11.205013\n", + "98 4.718499\n", + "154 4.007333\n", + "356 4.897840\n", + "Name: Milk, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Grocery':\n", + "Q1-step is 5.27575998758, Q3+step is 11.672709891, the step size is 2.3988562138\n" + ] + }, + { + "data": { + "text/plain": [ + "75 1.098612\n", + "154 4.919981\n", + "Name: Grocery, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Frozen':\n", + "Q1-step is 4.26035024816, Q3+step is 10.5252235842, the step size is 2.34932750101\n" + ] + }, + { + "data": { + "text/plain": [ + "38 3.496508\n", + "57 3.637586\n", + "65 3.583519\n", + "145 3.737670\n", + "175 3.951244\n", + "264 4.110874\n", + "325 11.016479\n", + "420 3.218876\n", + "429 3.850148\n", + "439 4.174387\n", + "Name: Frozen, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Detergents_Paper':\n", + "Q1-step is 1.45874266385, Q3+step is 12.3636993597, the step size is 4.08935876094\n" + ] + }, + { + "data": { + "text/plain": [ + "75 1.098612\n", + "161 1.098612\n", + "Name: Detergents_Paper, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Delicatessen':\n", + "Q1-step is 3.76959400251, Q3+step is 9.74900908097, the step size is 2.24228065442\n" + ] + }, + { + "data": { + "text/plain": [ + "66 3.295837\n", + "109 1.098612\n", + "128 1.098612\n", + "137 3.583519\n", + "142 1.098612\n", + "154 2.079442\n", + "183 10.777768\n", + "184 2.397895\n", + "187 1.098612\n", + "203 2.890372\n", + "233 1.945910\n", + "285 2.890372\n", + "289 3.091042\n", + "343 3.610918\n", + "Name: Delicatessen, dtype: float64" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({154: 3, 128: 2, 65: 2, 66: 2, 75: 2, 193: 1, 264: 1, 137: 1, 142: 1, 145: 1, 412: 1, 285: 1, 161: 1, 420: 1, 38: 1, 171: 1, 429: 1, 175: 1, 304: 1, 305: 1, 439: 1, 184: 1, 57: 1, 187: 1, 203: 1, 325: 1, 289: 1, 81: 1, 338: 1, 86: 1, 343: 1, 218: 1, 95: 1, 96: 1, 353: 1, 98: 1, 355: 1, 356: 1, 357: 1, 233: 1, 109: 1, 183: 1})\n" + ] + } + ], + "source": [ + "# For each feature find the data points with extreme high or low values\n", + "indices = []\n", + "for feature in log_data.keys():\n", + " \n", + " # TODO: Calculate Q1 (25th percentile of the data) for the given feature\n", + " Q1 = np.percentile(log_data[feature], 25)\n", + " \n", + " # TODO: Calculate Q3 (75th percentile of the data) for the given feature\n", + " Q3 = np.percentile(log_data[feature], 75)\n", + " \n", + " # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)\n", + " step = 1.5 * (Q3 - Q1)\n", + " \n", + " \n", + " # Display the outliers\n", + " print \"Data points considered outliers for the feature '{}':\".format(feature)\n", + " print(\"Q1-step is {}, Q3+step is {}, the step size is {}\".format(Q1-step, Q3+step, step))\n", + " # the ~ operator flips the booleans\n", + " outliers = log_data[~((log_data[feature] >= (Q1 - step)) & (log_data[feature] <= (Q3 + step)))][feature]\n", + " display(outliers)\n", + " \n", + " # add indices\n", + " indices.extend(outliers.index)\n", + " \n", + "# OPTIONAL: Select the indices for data points you wish to remove\n", + "outliers = indices\n", + "\n", + "# Remove the outliers, if any were specified\n", + "good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)\n", + "\n", + "from collections import Counter\n", + "print(Counter(outliers))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the `outliers` list to be removed, explain why.* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** There are 5 data points that are outliers in more than one dimension. We should remove them too as the would distort the data in more than 1 dimension. The points in the outliers list should all be remove given we use Tukey's outlier definition." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Transformation\n", + "In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: PCA\n", + "\n", + "Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the `good_data` to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the *explained variance ratio* of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new \"feature\" of the space, however it is a composition of the original features present in the data.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Import `sklearn.decomposition.PCA` and assign the results of fitting PCA in six dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAHyCAYAAADYwk6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYlXW99/H31wFTJA8Yap4Cd+5E5ZCMeCjMB1LZaKCV\n5THUfNRSszKLdl1m1n7Csu3epUlUbt2lxZPnU+Upz6YiD6A0JGSUmFtRy8JTDnyfP9YNLse5ZxYy\na9aCeb+ua11zH37rXt+b9WPN+szvPkRmIkmSJEl6o/UaXYAkSZIkNSsDkyRJkiSVMDBJkiRJUgkD\nkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBViYjlETGn6jH1TW7n4oj4cDdtzo6I97+5St+wrdsjorXD\nsq9ExDc6LBsVEW2rue0eq3NtYT+ob51rC/tBfetcW9gP6lvn2sJ+UN861yb2hfrW2az6NbqAJvNS\nZo7qjRfKzDPr/BI/BX4JfLFq2WHF8ppEREsv1NmM7AdV7Af1Zz9oavaDKvaD+rMfND37QpW+0hcc\nYepGRGwSEb+LiHcV8z+NiP9dTC+LiPMiYn5E3BoRgzt5/pkR8WBEPBIRMyIiiuWr/rIQEYsj4qsR\nMTsiHo6InYrlG0XERRHxQET8v4iYXCzfMCJ+FhFtEXEVsGHH183MR4G/RMQeVYs/QvGfICIujIhZ\nRe1frap3cUScExGzgUM71Fm2L7cXz3kgIh6NiLHF8paIOLdoPy8iTi2Wj46IOyLioYj4VUS8fY3e\npF5gP7AfgP3AflBhP7AfgP3AfvAa+0If6AuZ6aN4AMuBOVWPjxbL9wPuo5K6f1nVPoEji+kzgfOL\n6YuBDxfTg6ra/xj4QCdtFgOnFtOfBH5YTP8f4KhielPgUWAj4LPARcXyEUA70NrJ/nwOOK+Y3hOY\nVbVuUPGzBbgdGFFVy+er2tWyL7cD3y6mJwK3FNOfAC4H+q18PtAfuBcYXCz76Mp9aZaH/cB+YD+w\nH9gP7Af2A/uBfcG+sPLhIXmv1+kwa2beHBGHAhcAI6tWrQBmFtM/Aa7sZJv/KyI+Dwyg0gnmA9d1\n0m7lcx8CPlhM7w9MiojPFfMbANsD+wDfKWqbFxHzSvZnJnBvRJzOG4dYPxIRJ1A5LPPtwM7AvKrn\ndaarfamuf0gx/X5gema2F7U+FxG7ArsCNxd/dGgBnix5vUaxH7z2vM7YD+wH3e2L/aDCfvBa/UOK\nafvBa+wHa18/APtCn+wLBqYaRMR6wDDgRWAzYElJ0+zwvA2A71FJ9I9HxFlUOnJnXil+Lue19yWA\nD2Xm7zpst6a6i9f8A/A+4EPAXsXzh1L5i8LumfmXiLi4Q10vdNxWDfvSWf2dCWB+Zu5V0040EfuB\n/QDsBzXui/3gNfYD+wHYDzrW35m1th+AfaHGfVlr+4LnMNXmM0AbcATwXxHRv1i+HrDyCidHAHd3\neN7KTvJMRAysalurXwGnRqw6/vPdxfI7i9ejSOEjutjGT4HzgMcyc+V/3o2pdPTnI2JL4F9qqOXN\n7MvNwIkR0a+odRDwO2BwRKz8D9k/InapYVvNwH5gPwD7AdgPwH4A9gOwH4D9YCX7wjrcFwxMr7dh\nvP5SkdOicgLf8cDpmXkXlQ745aL9C8CYiHgEGAecXb2xzPwr8APgESod+sHVrOdrVI7jnBcR84t5\ngAuBgVG57OPZVIY2y/wc2IWqIdbMnAv8P2ABcBlwT3eFvMl9+SHwp6L+ucARmfkPKv+BzimWzQH2\nrmFbvcl+UMJ+YD9Yg32xH2A/wH4A2A9Ye/sB2BdKrct9ITKz+1bqVEQsy8yBja5DjWU/ENgPVGE/\nENgP9Br7wrrBESZJkiRJKuEIkyRJkiSVcIRJkiRJkkoYmJpERAyNiPsjYlFEzIyI9btou3FELImI\n86uWjYvK3Z8fiYhLqq42sllEXBWVuyc/UFwphYjYoJifGx3u4KzGqaUfRMSoiLiveN/mRcRHq9Zd\nGpW7jT8SlTt/9y+W7xsRz1edpHpm1XNOK9rPj4hP986eqiu1fh5ExC8j4q8Rcf3qPD8ido+I9iju\nzF4ssx80mdXoB1MiYmHxmFK1vOz3whlVnwWPRMTyqFyZioj4TNEHHomIn0blMsFqoDXtB1XrvxMR\ny6rmN4mI66q+Bxxbtc5+0IR64DOh7DvC5OL7xJyImBUR7y2W+11xpZ66A66PNXsA/xc4rJieDnyi\ni7b/SeWKJSvvFr0e8Djwz8X82cDHi+lvAV8ppncCbi2mAxhYTPcH7gf2bPS/Q19/1NIPgH8Gdiym\nt6ZyM7dNi/mJxXsbVK5284li+b7A9Z1sa1cqV7MZQOWeCLcA72z0v0Nff9T6eQCMBz7Q8b3t6vlU\nbgB4G3Ajr92Z3X7QhI8aPw8GAY8VPzcrpjfr6vdCh+d/ALitmN4G+AOwYdXrH9Pof4e+/liTflC1\nvhX4MbCsatm/AucU04OB54D17QfN+1jTvtDFd4SBvHaazghgQTHtd8Xi4QhTE4iIoHKpycuLRZcA\nB5e0HQ1sCdxUtXhz4B+Z+WgxfzOVm49B5a7MtwFk5gJgSERsmRUr/9LUv3h4QlsD1doPMvPRzFxY\nTP8ZeJrKLzsy88bivU3gAWDbbl52GHB/Zr6Ylbts38Frdw9XA6zO50Fm3gr8fTWffypwBZV+s5L9\noMmsRj84ALg5M5/LzL9Q+fyfQNe/F6odTtWlhKkE5g2L0agBwJ/XdF/05vVAPyAiWqj88fTzHZ6T\nwFuL1xhIJTC1F+vsB02mJ/pC2XeEzFxWLAPYiOL7oN8VX2Ngag6bA38tvqhA5e7Q23RsFJW7SH+b\nyp2Xqz0D9IuI1mL+w8B2xfRcii8+ETEGeAfFf5CIaImIOVS+ON2cmff32B7pzaipH1Qr3tP1gd93\nWN4fOBr4ZdXivYsh91/EazeAewQYGxGbR8QAKn992g410mr3g1qfHxHbAIdQuT9HNftB86m1H2xD\nZSSJDu26+r0AQPFeT6ASoMnMJ4BzqdwT5Ung+cys/uOcet+a9gOAU4BrM/PJDs85n8ofS/4MPAyc\nlpkr7AdNqyf6AtD5d4SIOCQiFgA3AMdVLfe7Igamtc0ngRvztbswA5W/AACHAedFxANU/uK8vFg9\nDdi06OynUrkJ2fLiecszcxSVADUmivObtHaIiLdTOcTi2Mxc0WH194A7s3IDPYDZwPaZOQL4LnA1\nQGa2AedQGbH8JZWbwy1H66r/AL7Qsb/YD9Y93fxeWOkDwD2Z+RxUznkFJgNDqRzuu1FEHNV7Vaun\nRcTWwKFUPvc7OoDK//WtgVHA+VE5R9p+sO7r+B2BzLwqM3eiMmr1tarlflfEwNQsnqUSavoV89sC\nT3TSbi/glIhYTOWvPx+LiGkAmXlfZo7NzDFU7jD9aLH8b5l5bNHZP0bl0K3HqjealTsz/5piyFYN\nU2s/ICI2pvJXoC9l5m86rPsKlff5syuXFf1gWTF9I9A/It5WzP8oM0dn5j7AXyj6jhqm5n7wJp7f\nCvys+Az5MPC9iDgY7AdNqNZ+8ASvHzla1a7s90KVw3j94XjvB/6QmUsz81XgSmDvNd4TrYk17Qfv\nBt4JLCr+3w+IiEVFm2OBK4vDrhZROW9pJ+wHzWqNPxOg8+8I1TLzTmCHld8Rqpb36e+KBqYmUPwl\n8NdUvsAATAGu6aTdkZm5fWYOoXJY3n9n5lSAiNii+PkW4AtUTgYkIjatuorK8VT+ovC3iBgcEZsW\nbTYE9gMW1GkXVYNa+0Hxfl5F5f2/vMO646n81fDw6lGEiNiqOP555WF861H58K3uO9tTOXzzsp7d\nM62OWvvBm3l+Zg7NzCHFZ8jlwCcz82qwHzSb1egHvwL2j8oVUTcD9i+Wlf5eKJZtAryvwzb/BOwZ\nEQOKz4vxQFtP7pdWz5r2g8y8ITO3qvp//2JmvrN4zp+ovMdExJbAu6j8QdV+0IR66DOh7DvCO6u+\nI+wGvAV41u+KVbIJrjzhIwF2oHIC3iLg58BbiuWtwA87aX8MxVXyivlvUflA+x3w6arle1H5q+Lv\nqPyVaOWVUkZQOTxvHpXzF85s9L+Bj9r6AXAU8CqVQylWPkYV69qpnM+0cvmZxfJTgPlUzmn7DbB3\n1WveBfy2WDe+0f8GPmr/PCjeu6XAS1SOUz+gq+d3eI2LKa6SZz9ozsdq9IPjijaLqByiu3J5p78X\ninXHAD/r5DW/SuUL0SNUDvl9Q9/xsXb1gw7bqr5K3tZUDsN9uHi/j7IfNPejBz4Tyr4jfKH4jjAH\nuA94b7Hc74rFY+UlBCVJkiRJHXhIniRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSV\nMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSV6NfoAurhbW97Ww4Z\nMqTRZUiSJElqUg899NAzmTm4u3brZGAaMmQIs2bNanQZkiRJkppURPyxlnYekidJkiRJJQxMkiRJ\nklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxM\nkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTCwCRJkiRJ\nJQxMkiRJklSiX6MLkCRJkrTmhl8yvOa2D095uI6VrFscYZIkSZKkEgYmSZIkSSrR0MAUERMi4ncR\nsSgipnayfpOIuC4i5kbE/Ig4thF1SpIkSeqbGhaYIqIFuAD4F2Bn4PCI2LlDs5OB32bmSGBf4NsR\nsX6vFipJkiSpz2rkCNMYYFFmPpaZ/wB+Bkzu0CaBt0ZEAAOB54D23i1TkiRJUl/VyMC0DfB41fyS\nYlm184FhwJ+Bh4HTMnNFZxuLiBMiYlZEzFq6dGk96pUkSZLUxzT7RR8OAOYAWwOjgPMjYuPOGmbm\njMxszczWwYMH92aNkiRJktZRjQxMTwDbVc1vWyyrdixwZVYsAv4A7NRL9UmSJEnq4xoZmB4EdoyI\nocWFHA4Dru3Q5k/AeICI2BJ4F/BYr1YpSZIkqc/q16gXzsz2iDgF+BXQAlyUmfMj4qRi/XTga8DF\nEfEwEMAXMvOZRtUsSZIkqW9pWGACyMwbgRs7LJteNf1nYP/erkuSJEmSoPkv+iBJkiRJDWNgkiRJ\nkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKtHQq+SpOVxw0m01tTt5+rg6VyJJkiQ1F0eYJEmSJKmE\ngUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmSJKmEgUmSJEmSShiYJEmS\nJKmEgUmSJEmSShiYJEmSJKlEv0YXIEmSpE6ctclqtH2+fnVIfZwjTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUM\nTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIk\nSSUMTJIkSZJUol+jC5BUP207Dau57bAFbXWsRJIkae3kCJMkSZIklTAwSZIkSVIJA5MkSZIklWho\nYIqICRHxu4hYFBFTS9rsGxFzImJ+RNzR2zVKkiRJ6rsadtGHiGgBLgD2A5YAD0bEtZn526o2mwLf\nAyZk5p8iYovGVCtJkiSpL2rkCNMYYFFmPpaZ/wB+Bkzu0OYI4MrM/BNAZj7dyzVKkiRJ6sMaGZi2\nAR6vml9SLKv2z8BmEXF7RDwUER/rteokSZIk9XnNfh+mfsBoYDywIXBfRPwmMx/t2DAiTgBOANh+\n++17tUipM0Om3lBz28XTDqxjJZIkSXqzGjnC9ASwXdX8tsWyakuAX2XmC5n5DHAnMLKzjWXmjMxs\nzczWwYMH16VgSZIkSX1LIwPTg8COETE0ItYHDgOu7dDmGuC9EdEvIgYAewBtvVynJEmSpD6qYYfk\nZWZ7RJwC/ApoAS7KzPkRcVKxfnpmtkXEL4F5wArgh5n5SKNqliRJktS3NPQcpsy8Ebixw7LpHea/\nBXyrN+uSJEmSJGjwjWslSZIkqZkZmCRJkiSphIFJkiRJkkoYmCRJkiSphIFJkiRJkkoYmCRJkiSp\nhIFJkiRJkkoYmCRJkiSphIFJkiRJkkr0a3QBkqS107c/elDNbU+feX0dK1Ej2Q8krescYZIkSZKk\nEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIk\nSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSph\nYJIkSZKkEgYmSZIkSSphYJIkSZKkEv0aXYCktc+3P3pQTe1On3l9nSuRJEmqL0eYJEmSJKmEgUmS\nJEmSSnhI3lpk+CXDa2778JSH61iJJEmS1Dc4wiRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklTC\nwCRJkiRJJQxMkiRJklTCwCRJkiRJJQxMkiRJklSioYEpIiZExO8iYlFETO2i3e4R0R4RH+7N+iRJ\nkiT1bf0a9cIR0QJcAOwHLAEejIhrM/O3nbQ7B7ip96vsBWdtUnvbodvXrw5JkiRJb9DIEaYxwKLM\nfCwz/wH8DJjcSbtTgSuAp3uzOEmSJElqZGDaBni8an5JsWyViNgGOAS4sBfrkiRJkiSg+S/68B/A\nFzJzRXcNI+KEiJgVEbOWLl3aC6VJkiRJWtc17Bwm4Algu6r5bYtl1VqBn0UEwNuAiRHRnplXd9xY\nZs4AZgC0trZmXSqWJEmS1Kc0MjA9COwYEUOpBKXDgCOqG2Tm0JXTEXExcH1nYUmSJEmS6qFhgSkz\n2yPiFOBXQAtwUWbOj4iTivXTG1WbJEmSJEFjR5jIzBuBGzss6zQoZeYxvVGTJEmSJK3U7Bd9kCRJ\nkqSGMTBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkD\nkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJUgkDkyRJkiSVMDBJkiRJ\nUol+jS5AkiRJa2b4JcNravfwlIfrXIm07nGESZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSB\nSZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSBSZIkSZJKGJgkSZIkqYSBSZIkSZJK9Gt0AZKk\n+mrbaVjNbYctaKtjJZIkrX0MTJIk9YIhU2+oue3iaQfWsRJJ0urwkDxJkiRJKmFgkiRJkqQSBiZJ\nkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQS\nBiZJkiRJKmFgkiRJkqQSDQ1METEhIn4XEYsiYmon64+MiHkR8XBE3BsRIxtRpyRJkqS+qWGBKSJa\ngAuAfwF2Bg6PiJ07NPsD8L7MHA58DZjRu1VKkiRJ6ssaOcI0BliUmY9l5j+AnwGTqxtk5r2Z+Zdi\n9jfAtr1coyRJkqQ+rJGBaRvg8ar5JcWyMh8HflG2MiJOiIhZETFr6dKlPVSiJEmSpL6s28AUEadF\nxMZR8aOImB0R+/dGcVU1/C8qgekLZW0yc0ZmtmZm6+DBg3uvOEmSJEnrrFpGmI7LzL8B+wObAUcD\n03rgtZ8Atqua37ZY9joRMQL4ITA5M5/tgdeVJEmSpJrUEpii+DkR+HFmzq9atiYeBHaMiKERsT5w\nGHDt6144YnvgSuDozHy0B15TkiRJkmrWr4Y2D0XETcBQ4IsR8VZgxZq+cGa2R8QpwK+AFuCizJwf\nEScV66cDZwKbA9+LCID2zGxd09eWJEmSpFrUEpg+DowCHsvMFyNic+DYnnjxzLwRuLHDsulV08cD\nx/fEa0mSJEnS6qrlkLybM3N2Zv4VoDiP6Lz6liVJkiRJjVc6whQRGwADgLdFxGa8dt7SxnR9+W9J\nkiRJWid0dUjeicCnga2Bh3gtMP0NOL/OdUmSJElSw5UGpsz8T+A/I+LUzPxuL9YkSZIkSU2h24s+\nZOZ3I2JvYEh1+8z87zrWJUmSJEkN121giogfA/8EzAGWF4sTMDD1Md/+6EE1tz195vV1rESSJEnq\nHbVcVrwV2Dkzs97FSFKfdtYmq9H2+frVIUmSVqnlsuKPAFvVuxBJkiRJajZdXVb8OiqH3r0V+G1E\nPAC8snJ9Zk6qf3mSJEmS1DhdHZJ3bq9VIUmSJElNqKvLit/Rm4VIfZrnrkiqVutngp8HklR3tVwl\n7+9UDs2r9jwwCzg9Mx+rR2GSJEmS1Gi1XCXvP4AlwGVAAIdRucz4bOAiYN96FSdJkiRJjVTLVfIm\nZeb3M/Pvmfm3zJwBHJCZM4HN6lyfJEmSJDVMLYHpxYj4SESsVzw+ArxcrPPeTJIkSZLWWbUEpiOB\no4GngaeK6aMiYkPglDrWJkmSJEkN1e05TMVFHT5Qsvruni1HkiRJkppHVzeu/XxmfjMivksnh95l\n5qfqWpkkSZIkNVhXI0xtxc9ZvVGIJEmSJDWbrm5ce13x8xKAiBiQmS/2VmGSJEmS1GjdXvQhIvaK\niN8CC4r5kRHxvbpXJkmSJEkNVstV8v4DOAB4FiAz5wL71LMoSZIkSWoGtQQmMvPxDouW16EWSZIk\nSWoq3V5WHHg8IvYGMiL6A6fx2gUhJPWy4ZcMr7nt/61jHZIkSX1BLSNMJwEnA9sATwCjinlJkiRJ\nWqd1dR+mzTLzL5n5DHBkL9YkSZIkSU2hq0PyfhcRzwD3APcC92Tmo71TliRJkiQ1Xlf3YdoiIv4Z\n2Lt4nB4Rg4HfUAlP3+ylGiVJUidW55zGh6c8XMdKJGnd1eVFH4oRpUeBiyPin4CJVC76sD9gYJIk\nSVqLtO00rOa2wxZ4jS8Juj6HaeXI0l7AdsBjVEaXjgJm90p1kiRJktRAXY0w3U0lGJ0HXJWZL/ZO\nSZIkSZLUHLoKTFvz2vlLJ0ZEPyoB6j7gvsx8rBfqkyRJkqSG6eqiD/8DXFk8iIgBwHHAV4GhQEtv\nFChJkiRJjdLVOUybUDl/aeUo07uBhcB1VC41LkmSJGkt5AVAatfVIXmLKA6/A84GHszMl3qlKkmS\nJElqAl0dkje4NwuRJEmSpGazXqMLkCRJkqRmZWCSJEmSpBIGJkmSJEkq0W1gioh/johbI+KRYn5E\nRHy5/qVJkiRJUmPVMsL0A+CLwKsAmTkPOKyeRUmSJElSM6glMA3IzAc6LGvviRePiAkR8buIWBQR\nUztZHxHxnWL9vIjYrSdeV5IkSZJq0dV9mFZ6JiL+CUiAiPgw8OSavnBEtAAXAPsBS4AHI+LazPxt\nVbN/AXYsHnsAFxY/JUmS1jpDpt5Qc9vFG9SxEEk1qyUwnQzMAHaKiCeAPwBH9sBrjwEWZeZjABHx\nM2AyUB2YJgP/nZkJ/CYiNo2It2fmGgc2SZIkSepOl4EpItYDWjPz/RGxEbBeZv69h157G+Dxqvkl\nvHH0qLM229ADI1ySJEmS1J2oDN500SBiVma29vgLVw7tm5CZxxfzRwN7ZOYpVW2uB6Zl5t3F/K3A\nFzJzVifbOwE4AWD77bcf/cc//rGnS67Zag23TzuwLjW07TSs5rbDFrTVpQatXS446baa2548fVwd\nK1n31PqZsDqfB8MvGV5z24enPFxzW/vBumt1fi/ctu8FNbe1H6y7Vufz4OW//HvNbU+fef2bKWed\nsnqHZh5R+4bPev5NVNO9WvvC2tYPIuKhWnJOLRd9uCUiPhcR20XEoJWPHqjxCWC7qvlti2Wr2waA\nzJyRma2Z2Tp48OAeKE+SJElSX1fLOUwfLX6eXLUsgR3W8LUfBHaMiKFUQtBhQMcIfS1wSnF+0x7A\n856/JEmSJDWfZhg1qoduA1NmDq3HC2dme0ScAvwKaAEuysz5EXFSsX46cCMwEVgEvAgcW49aJEmS\nJKkz3QamiPhYZ8sz87/X9MUz80Yqoah62fSq6eT1I1uSJEmS1GtqOSRv96rpDYDxwGxgjQOTJOnN\nWZ0LOUiSpDevlkPyTq2ej4hNgZ/VrSJJkiRJahK1XCWvoxeAupzXJEmSJEnNpJZzmK6jclU8qASs\nnYGf17MoSZIkSWoGtZzDdG7VdDvwx8xcUqd6JDWIN5+UJEl6o1oOyZuYmXcUj3syc0lEnFP3yiRJ\nkiSpwWoJTPt1suxferoQSZIkSWo2pYfkRcQngE8CO0TEvKpVbwXuqXdhkiRJktRoXZ3DdBnwC+Ab\nwNSq5X/PzOfqWpUkSZK0jlo87cDaG59VtzJUo9LAlJnPA88DhwNExBZUblw7MCIGZuafeqdESZIk\nSWqMbs9hiogPRMRC4A/AHcBiKiNPkiRJkrROq+WiD18H9gQezcyhwHjgN3WtSpIkSZKaQC2B6dXM\nfBZYLyLWy8xfA611rkuSJEmSGq6WG9f+NSIGAncBl0bE08AL9S1LkiRJkhqvlhGmycCLwKeBXwK/\nBz5Qz6IkSZIkqRl0O8KUmS9ExDuAHTPzkogYALTUvzRJkiRJaqxarpL3v4HLge8Xi7YBrq5nUZIk\nSZLUDGo5JO9k4D3A3wAycyGwRT2LkiRJkqRmUEtgeiUz/7FyJiL6AVm/kiRJkiSpOdRylbw7IuJf\ngQ0jYj/gk8B19S1r7bZ42oGNLkGSJElSD6hlhGkqsBR4GDgRuBH4cj2LkiRJkqRmUDrCFBHbZ+af\nMnMF8IPiIUmSJEl9RlcjTKuuhBcRV/RCLZIkSZLUVLoKTFE1vUO9C5EkSZKkZtNVYMqSaUmSJEnq\nE7q6St7IiPgblZGmDYtpivnMzI3rXp0kSZIkNVBpYMrMlt4sRJIkSZKaTS33YdJaaNiCtkaXIEmS\nJK31arkPkyRJkiT1SQYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKk\nEgYmSZKmCXpwAAAgAElEQVQkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKk\nEg0JTBExKCJujoiFxc/NOmmzXUT8OiJ+GxHzI+K0RtQqSZIkqe9q1AjTVODWzNwRuLWY76gdOD0z\ndwb2BE6OiJ17sUZJkiRJfVyjAtNk4JJi+hLg4I4NMvPJzJxdTP8daAO26bUKJUmSJPV5jQpMW2bm\nk8X0/wBbdtU4IoYA7wbur29ZkiRJkvSafvXacETcAmzVyaovVc9kZkZEdrGdgcAVwKcz829dtDsB\nOAFg++23f1M1S5IkSVK1ugWmzHx/2bqIeCoi3p6ZT0bE24GnS9r1pxKWLs3MK7t5vRnADIDW1tbS\nACZJkiRJtapbYOrGtcAUYFrx85qODSIigB8BbZn5771bniRJkiSAk6ePa3QJDdWoc5imAftFxELg\n/cU8EbF1RNxYtHkPcDQwLiLmFI+JjSlXkiRJUl/UkBGmzHwWGN/J8j8DE4vpu4Ho5dIkSZIkaZVG\njTBJkiRJUtMzMEmSJElSCQOTJEmSJJUwMEmSJElSiUZdVlyS1IT6+qVjJUnqyBEmSZIkSSphYJIk\nSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSph\nYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIkSSphYJIkSZKkEgYmSZIk\nSSphYJIkSZKkEgYmSZIkSSrRr9EFSJKk5nLy9HGNLkGSmoYjTJIkSZJUwsAkSZIkSSUMTJIkSZJU\nwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUoiGBKSIGRcTN\nEbGw+LlZF21bIuL/RcT1vVmjJEmSJDVqhGkqcGtm7gjcWsyXOQ1o65WqJEmSJKlKowLTZOCSYvoS\n4ODOGkXEtsCBwA97qS5JkiRJWqVRgWnLzHyymP4fYMuSdv8BfB5Y0d0GI+KEiJgVEbOWLl3aQ2VK\nkiRJ6sv61WvDEXELsFUnq75UPZOZGRHZyfMPAp7OzIciYt/uXi8zZwAzAFpbW9+wPUmSJElaXXUL\nTJn5/rJ1EfFURLw9M5+MiLcDT3fS7D3ApIiYCGwAbBwRP8nMo+pUsiRJkiS9Tt0CUzeuBaYA04qf\n13RskJlfBL4IUIwwfc6wJEmS1HxOn+nFjLXuatQ5TNOA/SJiIfD+Yp6I2DoibmxQTZIkSZL0Og0Z\nYcrMZ4HxnSz/MzCxk+W3A7fXvTBJkiRJqtKoESZJkiRJanoGJkmSJEkq0aiLPvS6V199lSVLlvDy\nyy83uhT1gg022IBtt92W/v37N7oUSZIkrcX6TGBasmQJb33rWxkyZAgR0ehyVEeZybPPPsuSJUsY\nOnRoo8uRJEnSWqzPHJL38ssvs/nmmxuW+oCIYPPNN3c0UZIkSWuszwQmwLDUh/heS5IkqSf0qcDU\naC0tLYwaNWrVY/HixWu8zSFDhvDMM8+seXGSJEmS3qDPnMPU0ZCpN/To9hZPO7DbNhtuuCFz5swp\nXd/e3k6/fn32LZEkSZKajiNMDXbxxRczadIkxo0bx/jxlXv5futb32L33XdnxIgRfOUrXwHghRde\n4MADD2TkyJHsuuuuzJw5c9U2vvvd77LbbrsxfPhwFixY0JD9kCRJktZFDmf0opdeeolRo0YBMHTo\nUK666ioAZs+ezbx58xg0aBA33XQTCxcu5IEHHiAzmTRpEnfeeSdLly5l66235oYbKiNjzz///Krt\nvu1tb2P27Nl873vf49xzz+WHP/xh7++cJEmStA4yMPWiskPy9ttvPwYNGgTATTfdxE033cS73/1u\nAJYtW8bChQsZO3Ysp59+Ol/4whc46KCDGDt27Krnf/CDHwRg9OjRXHnllb2wJ5IkSVLfYGBqAhtt\ntNGq6czki1/8IieeeOIb2s2ePZsbb7yRL3/5y4wfP54zzzwTgLe85S1A5aIS7e3tvVO0JEmS1Ad4\nDlOTOeCAA7joootYtmwZAE888QRPP/00f/7znxkwYABHHXUUZ5xxBrNnz25wpZIkSdK6zxGmJrP/\n/vvT1tbGXnvtBcDAgQP5yU9+wqJFizjjjDNYb7316N+/PxdeeGGDK5UkSeuyk6ePa3QJUlOIzGx0\nDT2utbU1Z82a9bplbW1tDBs2rEEVqRF8z9Usar2NQS23J5DerLadav88HLagrY6VSFotZ22yGm2f\n776NVomIhzKztbt2HpInSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJU\nwsDUiyKCo446atV8e3s7gwcP5qCDDgLg2muvZdq0aQCcddZZnHvuuQDsu+++dLxMuiRJkqT667s3\nrl2da9rXtL3ur3u/0UYb8cgjj/DSSy+x4YYbcvPNN7PNNtusWj9p0iQmTZrUs3VJkiRJetMcYepl\nEydO5IYbKjex/OlPf8rhhx++at3FF1/MKaecUvrcFStWcMwxx/DlL3+57nVKkiRJ6ssjTA1y2GGH\ncfbZZ3PQQQcxb948jjvuOO66665un9fe3s6RRx7Jrrvuype+9KVeqFSSJEkNV8NRTKovR5h62YgR\nI1i8eDE//elPmThxYs3PO/HEEw1LkiRJUi8zMDXApEmT+NznPve6w/G6s/fee/PrX/+al19+uY6V\nSZIkSapmYGqA4447jq985SsMHz685ud8/OMfZ+LEiXzkIx+hvb29jtVJkiRJWsnA1ADbbrstn/rU\np1b7eZ/97Gd597vfzdFHH82KFSvqUJkkSZKkapGZja6hx7W2tmbH+xa1tbUxbNiwBlWkRvA9V7MY\nMvWGmtotnnZgnStRX9a2U+2fh8MWtNWxEklqDhHxUGa2dtfOESZJkiRJKmFgkiRJkqQSBiZJkiRJ\nKmFgkiRJkqQSBiZJkiRJKmFgkiRJkqQSBqZe9NRTT3HEEUewww47MHr0aPbaay+uuuqqRpclSZIk\nqUS/RhfQKMMvGd6j23t4ysNdrs9MDj74YKZMmcJll10GwB//+Eeuvfba17Vrb2+nX7+ef1vqtV1J\nkiRpXeYIUy+57bbbWH/99TnppJNWLXvHO97BqaeeysUXX8ykSZMYN24c48ePJzM544wz2HXXXRk+\nfDgzZ85c9ZxzzjmH4cOHM3LkSKZOnQrA73//eyZMmMDo0aMZO3YsCxYsAOCYY47hpJNOYo899uDz\nn/88O+64I0uXLgVgxYoVvPOd71w1L0mSJOmNHHLoJfPnz2e33XYrXT979mzmzZvHoEGDuOKKK5gz\nZw5z587lmWeeYffdd2efffZhzpw5XHPNNdx///0MGDCA5557DoATTjiB6dOns+OOO3L//ffzyU9+\nkttuuw2AJUuWcO+999LS0sImm2zCpZdeyqc//WluueUWRo4cyeDBg3tl/yVJkqS1kYGpQU4++WTu\nvvtu1l9/fU4++WT2228/Bg0aBMDdd9/N4YcfTktLC1tuuSXve9/7ePDBB7njjjs49thjGTBgAACD\nBg1i2bJl3HvvvRx66KGrtv3KK6+smj700ENpaWkB4LjjjmPy5Ml8+tOf5qKLLuLYY4/txT2WJEmS\n1j4NCUwRMQiYCQwBFgMfycy/dNJuU+CHwK5AAsdl5n29V2nP2WWXXbjiiitWzV9wwQU888wztLa2\nArDRRhu9qe2uWLGCTTfdlDlz5nS6vnq72223HVtuuSW33XYbDzzwAJdeeumbek1JkiSpr2jUOUxT\ngVszc0fg1mK+M/8J/DIzdwJGAm29VF+PGzduHC+//DIXXnjhqmUvvvhip23Hjh3LzJkzWb58OUuX\nLuXOO+9kzJgx7LfffvzXf/3Xquc999xzbLzxxgwdOpSf//znQOXiEnPnzi2t4/jjj+eoo4563ciT\nJEmSpM41KjBNBi4ppi8BDu7YICI2AfYBfgSQmf/IzL/2WoU9LCK4+uqrueOOOxg6dChjxoxhypQp\nnHPOOW9oe8ghhzBixAhGjhzJuHHj+OY3v8lWW23FhAkTmDRpEq2trYwaNYpzzz0XgEsvvZQf/ehH\njBw5kl122YVrrrmmtI5JkyaxbNkyD8eTJEmSahCZ2fsvGvHXzNy0mA7gLyvnq9qMAmYAv6UyuvQQ\ncFpmvtDd9ltbW3PWrFmvW9bW1sawYcN6aA/WXrNmzeIzn/kMd911V6NLqTvfczWLIVNvqKnd4mkH\n1rkS9WVtO9X+eThswVp7QIck1SwiHsrM1u7a1W2EKSJuiYhHOnlMrm6XlcTWWWrrB+wGXJiZ7wZe\noPzQPSLihIiYFRGzvFR256ZNm8aHPvQhvvGNbzS6FEmSJGmtULeLPmTm+8vWRcRTEfH2zHwyIt4O\nPN1JsyXAksy8v5i/nC4CU2bOoDIiRWtra+8Pm60Fpk6duureTZIkSZK616hzmK4FphTTU4A3nHST\nmf8DPB4R7yoWjadyeJ4kSZIk9YpGBaZpwH4RsRB4fzFPRGwdETdWtTsVuDQi5gGjgP/T65VKkiRJ\n6rMach+mzHyWyohRx+V/BiZWzc8Buj0RS5IkSZLqoVEjTJIkSZLU9BoywtRXtbS0MHz48FXzV199\nNUOGDGlcQZIkSZK61GcD0+rcj6IWtdyzYsMNN2TOnDml69vb2+nXr8++JZIkSVLT8ZC8Brv44ouZ\nNGkS48aNY/z48WQmZ5xxBrvuuivDhw9n5syZAJx55pmMGjWKUaNGsc0223DssccC8JOf/IQxY8Yw\natQoTjzxRJYvXw7AwIED+dKXvsTIkSPZc889eeqppxq2j5IkSdLaysDUi1566aVVoeeQQw5ZtXz2\n7Nlcfvnl3HHHHVx55ZXMmTOHuXPncsstt3DGGWfw5JNPcvbZZzNnzhxuv/12Bg0axCmnnEJbWxsz\nZ87knnvuYc6cObS0tHDppZcC8MILL7Dnnnsyd+5c9tlnH37wgx80arclSZKktZbHf/WiskPy9ttv\nPwYNGgTA3XffzeGHH05LSwtbbrkl73vf+3jwwQeZNGkSmclRRx3FZz/7WUaPHs3555/PQw89xO67\n7w5UAtkWW2wBwPrrr89BBx0EwOjRo7n55pt7aS8lSZKkdYeBqQlstNFGNbU766yz2HbbbVcdjpeZ\nTJkyhW984xtvaNu/f38iAqhcbKK9vb3nCpYkSZL6CA/JazJjx45l5syZLF++nKVLl3LnnXcyZswY\nrrvuOm655Ra+853vrGo7fvx4Lr/8cp5++mkAnnvuOf74xz82qnRJkiRpneMIU5M55JBDuO+++xg5\nciQRwTe/+U222mor/v3f/50nnniCMWPGADBp0iTOPvtsvv71r7P//vuzYsUK+vfvzwUXXMA73vGO\nBu+FJEmStG6IzGx0DT2utbU1Z82a9bplbW1tDBvWs5cSV3PzPVezGDL1hpraLZ52YJ0rUV+2OrfT\nqOVWGZK0touIhzKztbt2HpInSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIkSZJUwsAkSZIkSSUMTJIk\nSZJUwsAkSZIkSSX67I1rLzjpth7d3snTx3XbpqWlheHDh/Pqq6/Sr18/Pvaxj/GZz3yG9dYrz62L\nFy/m3nvv5YgjjujJclfLmtSwcp/b29sZNmwYl1xyCQMGDKhDlZIkSVLPc4SpF2244YbMmTOH+fPn\nc/PNN/OLX/yCr371q10+Z/HixVx22WWr9Trt7e1rUmaP1LDSyn1+5JFHWH/99Zk+fXqP1latp/db\nkiRJMjA1yBZbbMGMGTM4//zzyUyWL1/OGWecwe67786IESP4/ve/D8DUqVO56667GDVqFOedd15p\nu9tvv52xY8cyadIkdt55ZwC+9rWv8a53vYv3vve9HH744Zx77rkA/P73v2fChAmMHj2asWPHsmDB\nAgCOOeYYPvWpT7H33nuzww47cPnll3daw/z58xkzZgyjRo1ixIgRLFy4sKZ9Hjt2LIsWLQLg4IMP\nZvTo0eyyyy7MmDFjVZuBAwfymc98hl122YXx48ezdOnSbms+6aST2GOPPfj85z+/Ru+JJEmS1FGf\nPSSvGeywww4sX76cp59+mmuuuYZNNtmEBx98kFdeeYX3vOc97L///kybNo1zzz2X66+/HoAZM2Z0\n2g5g9uzZPPLIIwwdOpQHH3yQK664grlz5/Lqq6+y2267MXr0aABOOOEEpk+fzo477sj999/PJz/5\nSW67rXKI4pNPPsndd9/NggULmDRpEh/+8IffUMOpp57KaaedxpFHHsk//vEPli9f3u2+tre384tf\n/IIJEyYAcNFFFzFo0CBeeukldt99dz70oQ+x+eab88ILL9Da2sp5553H2WefzVe/+lXOP//8Lmte\nsmQJ9957Ly0tLT37BkmSJKnPMzA1iZtuuol58+atGtV5/vnnWbhwIeuvv37N7caMGcPQoUMBuOee\ne5g8eTIbbLABG2ywAR/4wAcAWLZsGffeey+HHnroqm2+8sorq6YPPvhg1ltvPXbeeWeeeuqpTmvd\na6+9+Ld/+zeWLFnCBz/4QXbcccfS/XrppZcYNWoUUBlh+vjHPw7Ad77zHa666ioAHn/8cRYuXMjm\nm2/Oeuutx0c/+lEAjjrqKD74wQ92W/Ohhx5qWJIkSVJdGJga6LHHHqOlpYUtttiCzOS73/0uBxxw\nwOva3H777a+b76rdRhtt1O1rrlixgk033ZQ5c+Z0uv4tb3nL616rM0cccQR77LEHN9xwAxMnTuT7\n3/8+48Z1ftGLlecwdaz1lltu4b777mPAgAHsu+++vPzyy50+PyK6rbmW/ZYkSZLeDM9hapClS5dy\n0kknccoppxARHHDAAVx44YW8+uqrADz66KO88MILvPWtb+Xvf//7queVtevoPe95D9dddx0vv/wy\ny5YtW3U43cYbb8zQoUP5+c9/DlRC0dy5c7ustWMNjz32GDvssAOf+tSnmDx5MvPmzVutfX/++efZ\nbLPNGDBgAAsWLOA3v/nNqnUrVqxYNXp22WWX8d73vvdN1SxJer1hC9pqfkiSXtNnR5hquQx4T1t5\neNrKy4offfTRfPaznwXg+OOPZ/Hixey2225kJoMHD+bqq69mxIgRtLS0MHLkSI455hhOO+20Ttt1\ntPvuuzNp0iRGjBjBlltuyfDhw9lkk00AuPTSS/nEJz7B17/+dV599VUOO+wwRo4cWVp3xxpeeeUV\nfvzjH9O/f3+22mor/vVf/3W1/h0mTJjA9OnTGTZsGO9617vYc889V63baKONeOCBB/j617/OFlts\nwcyZM99UzZIkSVJPiLLDrtZmra2tOWvWrNcta2trY9iwYQ2qqDGWLVvGwIEDefHFF9lnn32YMWMG\nu+22W6PL6tLAgQNZtmxZj2yrL77nak5Dpt5QU7vF0w6scyWSJGmliHgoM1u7a9dnR5j6ghNOOIHf\n/va3vPzyy0yZMqXpw5IkSZLUbAxM67A3e7PZ1fXss88yfvz4Nyy/9dZb2XzzzVdrWz01uiRJkiT1\nBAOT1tjmm29eegU7SZIkaW3mVfIkSZIkqYSBSZIkSZJKeEieJNWZV7+TJGnt5QhTL2ppaWHUqFHs\nsssujBw5km9/+9usWLGiy+csXryYXXfdFYBZ/7+9u4+xqs7vOP7+7IAOUDoLYbDgmAqNLgoOCINC\nhxooC1hKll3qQ1XMYjVUAyWpytZWExSwQYsjRYxKV6NpXayiSKvriiBjdtnyuPIgyIIPo7IiIEGQ\nZxi//eMexxHmwgwO3JlzP6/k5J7H3/mdM59M7u/8zjl35UomTJhwSvueMWMG+/fvP6VtzczMzMzy\nVd72MD107YhGLe+O/37lpOu0atWq5uUI27dv5/rrr2fPnj3cd9999dpHWVkZZWUnfVV8nWbMmMHo\n0aNp3br1KW1vZmZmZpaP3MOUIx07dmT27NnMmjWLiKC6upqJEyfSt29fSktLeeKJJ47bprKykhEj\nMg29vXv3ctNNN3HJJZdQWlrKiy++CMBtt91GWVkZ3bt3Z9KkSQDMnDmTTz/9lEGDBjFo0CAAFixY\nQP/+/enduzdXX311zeu877rrLi6++GJKS0u58847AXjhhRfo0aMHPXv25IorrgDIWt/KykoGDhzI\nVVddRbdu3bjhhhtI448jm5mZmVl+yNsepqaga9euVFdXs337dubPn09RURErVqzg0KFDlJeXM3To\nUCTVue2UKVMoKipi3bp1AOzatQuA+++/n/bt21NdXc3gwYNZu3YtEyZMoKKigsWLF9OhQwc+//xz\npk6dysKFC2nTpg0PPPAAFRUVjBs3jnnz5rFx40Yk8cUXXwAwefJkXn/9dc4999yaeU8++WSd9QV4\n++23Wb9+PZ07d6a8vJwlS5YwYMCA0306zczMzMwanRtMTcSCBQtYu3Ytc+fOBWD37t1s3ryZCy+8\nsM71Fy5cyHPPPVcz3a5dOwCef/55Zs+ezdGjR9m6dSsbNmygtLT0W9suXbqUDRs2UF5eDsDhw4fp\n378/RUVFFBYWcvPNNzNixIia3qzy8nLGjBnDNddcw6hRo05Y37POOovLLruMkpISAHr16kVVVZUb\nTGZmZmbWLLnBlEMffPABBQUFdOzYkYjgkUceYdiwYd9ap6qqqt7lffjhh0yfPp0VK1bQrl07xowZ\nw8GDB49bLyIYMmQIc+bMOW7Z8uXLWbRoEXPnzmXWrFm8+eabPP744yxbtoxXX32VPn36sGrVqqz1\nrays5Oyzz66ZLigo4OjRo/U+BjMzMzOzpsTPMOXIjh07uPXWWxk/fjySGDZsGI899hhHjhwBYNOm\nTezbty/r9kOGDOHRRx+tmd61axd79uyhTZs2FBUVsW3bNl577bWa5W3btuXLL78EoF+/fixZsoT3\n3nsPgH379rFp0yb27t3L7t27GT58OA8//DBr1qwB4P333+fyyy9n8uTJFBcX88knnzS4vmZmZmZm\nzZF7mM6gAwcO0KtXL44cOUKLFi248cYbuf322wG45ZZbqKqqonfv3kQExcXFvPzyy1nLuueeexg3\nbhw9evSgoKCASZMmMWrUKC699FK6devGeeedV3PLHcDYsWO58sor6dy5M4sXL+bpp5/muuuu49Ch\nQwBMnTqVtm3bMnLkSA4ePEhEUFFRAcDEiRPZvHkzEcHgwYPp2bMnpaWlDaqvmZmZmVlzpDS+ways\nrCxWrlz5rXnvvvsuF110UY5qZLngv7mZmZmZZSNpVUSc9Dd7cnJLnqT2kt6QtDn5bJdlvX+UtF7S\nO5LmSCo803U1MzMzM7P8latnmO4CFkXEBcCiZPpbJJ0LTADKIqIHUAD87RmtpZmZmZmZ5bVcNZhG\nAs8k488AP86yXguglaQWQGvg0zNQNzMzMzMzMyB3DaZzImJrMv4ZcM6xK0TEH4DpwMfAVmB3RCz4\nLjtN4/NaVjf/rc3MzMysMZy2BpOkhcmzR8cOI2uvF5lvtsd9u02eaxoJdAE6A20kjT7B/sZKWilp\n5Y4dO45bXlhYyM6dO/1FOg9EBDt37qSw0I+8mZmZmdl3c9peKx4RP8y2TNI2SZ0iYqukTsD2Olb7\nIfBhROxItnkJ+HPgv7LsbzYwGzJvyTt2eUlJCVu2bKGuxpSlT2FhISUlJbmuhpmZmZk1c7n6Hab/\nAX4KTEs+59exzsdAP0mtgQPAYGBlHevVS8uWLenSpcupbm5mZmZmZnkoV88wTQOGSNpMpidpGoCk\nzpJ+CRARy4C5wO+AdUldZ+emumZmZmZmlo/y5odrzczMzMzMvtakf7jWzMzMzMysOUhlD5OkHcBH\nua5HjnUAPs91JSznnAMD58AynAMD58C+4SzAn0ZE8clWSmWDyUDSyvp0MVq6OQcGzoFlOAcGzoF9\nw1moP9+SZ2ZmZmZmloUbTGZmZmZmZlm4wZRefgW7gXNgGc6BgXNgGc6Bfc1ZqCc/w2RmZmZmZpaF\ne5jMzMzMzMyycIPpNJJULWm1pPWS1ki6Q9L3kmVlkmbmqF6/baRyrk6O7StJfstKFnmQg3+TtFHS\nWknzJH2/McpNozzIwpQkB6slLZDUuTHKTZu056BWeXdICkkdGrPctEh7DiTdK+kPyTGuljS8McpN\nm7TnICnrH5LvCeslPdhY5Z5JviXvNJK0NyL+KBnvCPwCWBIRk3Jbs8Yh6SLgK+AJ4M6IWJnjKjVJ\neZCDocCbEXFU0gMAEfFPOa5Wk5QHWfjjiNiTjE8ALo6IW3NcrSYn7TkAkHQe8HOgG9AnIvL9t16O\nk/YcSLoX2BsR03Ndl6YsD3IwCLgb+OuIOCSpY0Rsz3W9Gso9TGdIEo6xwHhlDJT0CtRchXlG0q8l\nfSRplKQHJa2T9CtJLZP1+kh6S9IqSa9L6pTMr5T0gKTlkjZJ+otkfvdk3urkqu8Fyfy9yaeS3oF3\nkn1dm8wfmJQ5N7ki8Kwk1XFM70bE78/E+UuLlOZgQUQcTSaXAiWn9yymQ0qzsKfWZBvAV+ROIo05\nSDwM/AxnoF5SnANrgJTm4DZgWkQcqnWMzU9EeDhNA5krK8fO+wI4BxgIvJLMuxf4DdAS6AnsB/4q\nWTYP+HGy7LdAcTL/WuCpZLwSeCgZHw4sTMYfAW5Ixs8CWtWuF/A3wBtAQVKnj4FOSd12k/ni+z3g\n/4ABJzjOSqAs1+e7qQ75koOkrP8FRuf6nDfVIR+yANwPfAK883XdPORXDoCRwL8n41VAh1yf86Y4\n5EEO7gU+AtYCTwHtcn3Om+KQBzlYDdwHLAPeAvrm+pyfytACaypei4gjktaRCeWvkvnrgPOBHwA9\ngDeSBnwBsLXW9i8ln6uS9SET3rsllQAvRcTmY/Y5AJgTEdXANklvAX2BPcDyiNgCIGl1UuZvGuVI\n7d8K+OwAAAJpSURBVESabQ4k3Q0cBZ5t8FFbXZplFiLi7mQf/wyMB1JxW0kONascSGoN/Asw9Dsd\ntR2rWeUg8RgwhUwv4xTgIeDvTuHY7RvNMQctgPZAv2S75yV1jaQ11Vz4lrwzSFJXoBqoqzvy667K\nr4AjtYL0FZmwCVgfEb2S4ZKIGHrs9kn5LZKyfgH8CDgA/FLSXzaguodqjdeUad9dGnMgaQwwgsxV\nqmb1TzCX0piFWp4lc2XSTiJlOfgzoAuwRlIVmavPv5P0Jw3YR15KWQ6IiG0RUZ3U+T+AyxpQft5K\nWw6ALWQaYhERy5O6NrsXwbjBdIZIKgYeB2ad4hfK3wPFkvon5bWU1P0k++wKfBARM4H5QOkxq/wa\nuFZSQVK/K4Dlp1A3q6c05kDSlWSeVfhRROyv/6Hkt5Rm4YJakyOBjfXdNl+lLQcRsS4iOkbE+RFx\nPpkvS70j4rMGHVWeSVsOkvI71Zr8CZnbdO0E0pgD4GVgULKvC8nc9tfsXgLjXoPTq1XSRdmSzK1K\n/wlUnEpBEXFY0lXATElFZP52M4D1J9jsGuBGSUeAz4B/PWb5PKA/sIZMl/nPIuIzSd3qUydJPyFz\n72sx8Kqk1RExrCHHlSdSnQNgFnA239wCsDT8ZrRs0p6FaZJ+QOYK4keAc1C3tOfA6iftOXhQUq9k\n2yrg7+t7PHkm7Tl4CnhK0jvAYeCnzfFOFL9W3MzMzMzMLAvfkmdmZmZmZpaFG0xmZmZmZmZZuMFk\nZmZmZmaWhRtMZmZmZmZmWbjBZGZmZmZmloUbTGZmZmZmZlm4wWRmZmZmZpaFG0xmZmZmZmZZ/D8v\nMucZ7RipCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Apply PCA by fitting the good data with the same number of dimensions as features\n", + "from sklearn.decomposition import PCA\n", + "pca = PCA().fit(good_data)\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "# this applies dimensionality reduction to each sample\n", + "pca_samples = pca.transform(log_samples)\n", + "#print(pca_samples)\n", + "\n", + "# Generate PCA results plot, indicating how much each feature contributes to each dimension.\n", + "pca_results = vs.pca_results(good_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5\n", + "*How much variance in the data is explained* ***in total*** *by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.* \n", + "**Hint:** A positive increase (between examples) in a specific dimension corresponds with an *increase* of the *positive-weighted* features and a *decrease* of the *negative-weighted* features. The rate of increase or decrease is based on the indivdual feature weights. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Together the first and second principal component explain 72.52% of total variance. The first four pc explain 92.79% of total variance.\n", + "\n", + "I dont understand the hint: dimensions are not increasing, they are new features that have values which are either high or low. Ah, maybe it means if you compare two examples, if a dimension increases this indicates that the positively weighted features in its portfolio increase and the negative weight features decrease. The rate of increase depends on the rate of the weight changes in its feature portfolio i guess..\n", + "\n", + "- Dimension 1 is Detergents_paper, Milk, Grocery with some representation of Deli. This is probably consumer retail spending.\n", + "- Dimension 2 is Fresh, Frozen and Deli, with some representation for Milk and Grocery. This is probably a hotel or restaurant.\n", + "- Dimension 3 is Deli with some Frozen and Milk, with very low Fresh and low Detergents_Paper. This could be a speciality shop such as a butcher. \n", + "- Dimension 4 is Deli with some Fresh but very low Frozen and low Detergents_Paper. This could be a market, where they sell fresh food and meat.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
0-2.40722.40790.5245-0.08480.5462-0.0377
1-3.4491-3.65866.7584-2.94390.69212.9431
25.3109-4.58452.02741.1669-0.03430.3363
\n", + "
" + ], + "text/plain": [ + " Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 \\\n", + "0 -2.4072 2.4079 0.5245 -0.0848 0.5462 \n", + "1 -3.4491 -3.6586 6.7584 -2.9439 0.6921 \n", + "2 5.3109 -4.5845 2.0274 1.1669 -0.0343 \n", + "\n", + " Dimension 6 \n", + "0 -0.0377 \n", + "1 2.9431 \n", + "2 0.3363 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
0271672801212813223921902
1333370211560115550
285209594582836242311423
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 27167 2801 2128 13223 92 1902\n", + "1 3 333 7021 15601 15 550\n", + "2 85 20959 45828 36 24231 1423" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after having a PCA transformation applied\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))\n", + "display(pd.DataFrame(samples))\n", + "\n", + "\n", + "# hard to see how it works..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Dimensionality Reduction\n", + "When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the *cumulative explained variance ratio* is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a signifiant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the results of fitting PCA in two dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `good_data` using `pca.transform`, and assign the results to `reduced_data`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# TODO: Apply PCA by fitting the good data with only two dimensions\n", + "pca = PCA(n_components=2).fit(good_data)\n", + "\n", + "# TODO: Transform the good data using the PCA fit above\n", + "reduced_data = pca.transform(good_data)\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "pca_samples = pca.transform(log_samples)\n", + "\n", + "# Create a DataFrame for the reduced data\n", + "reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Dimension 1Dimension 2
0-2.40722.4079
1-3.4491-3.6586
25.3109-4.5845
\n", + "
" + ], + "text/plain": [ + " Dimension 1 Dimension 2\n", + "0 -2.4072 2.4079\n", + "1 -3.4491 -3.6586\n", + "2 5.3109 -4.5845" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after applying PCA transformation in two dimensions\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing a Biplot\n", + "A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case `Dimension 1` and `Dimension 2`). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.\n", + "\n", + "Run the code cell below to produce a biplot of the reduced-dimension data." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAH2CAYAAAAPlcMwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FEX6B/BvJSSEJIBKuE8VRMT1IgIiIiAiHihRURQV\nRcSVVZTDVRR/oKKiAoK4ogurKOLigeAB4klUFKMBjxXwQAGJRiDhygW56vfH2z3dmcxMZiZzz/fz\nPHmmprunu+bITL9db1UprTWIiIiIiIiIfJUQ7goQERERERFRdGJASURERERERH5hQElERERERER+\nYUBJREREREREfmFASURERERERH5hQElERERERER+YUBJRD5RSl2vlNK2vyKl1HdKqVuVUg2ctk1S\nSo1TSn2ulNqvlDqslNqmlHpOKXVqgOvTKRD7iwRKqcVKqe22+52UUtOVUse42Ha7UuqlkFaw5vG1\nUmq6H4/rbzy2f+Br5ThGjdfRw3atlFJvKaX2GnW6Iwh1uV4pNTrQ+40m3r4ffu57mFJqoovlQf+c\nERHFuwZ1b0JE5NJwAHkAmhjl+QBaAPg/AFBKpQF4F8DpAJ4B8DCAYgCdAYwE8DGAI0Ne6+jwIIB5\ntvudAEwDsA7Ab+GokAdnQD4HvtpoPHZzYKvjl/8DcDaA6wHkA9gehGNcD/nNfS4I+44Wzp/rQBoG\nYBCAOU7LI+lzRkQUkxhQEpG/vtVabzXK7yuljgVwO4yAEnLi2AtAf631etvjPgHwH6XUsNBVNbpo\nrX8Ndx3qopRqqLU+rLX+0p/Ha60PAvDrsUHQDcB3WusV4a6IL5RSSQAqtdY6Go4fjs91hH3OiIhi\nElNeiShQcgE0UUq1UEq1BjAKwEKnYNJBa73S086M9Lg8pVQfpdTXSqlDRnrnbXVVRCk1Qin1sVJq\nj1KqWCn1jVJqlIvttFJqhlJqvJGKW6SU+kQp1d3Ftpcqpb406qE9/PW2PWaSUqpUKZVsW7bc2G6Q\nbdlNSqlKpVQT23PfbpT7A1hrbPqB7Tj9XTznLUqpEqVUrlKqb12vk/G4IUqp9UqpMqXUAaXUSqVU\nV6dtspVS65RSQ43X8jCAcbbXcLrT9lcppX40Xqv/KaUuNvaRbdumViqi7TiDlFIbjdfuB6VUltP+\nOyullhjvWZlS6jel1AKllE8t3kYqsQbQH8BZtte2k7H+aKXUUuNzdFgp9a0/dTGe99kAzrQdI9tY\nN92og3PdXKU9ayUp5I8ppf4EcBjAEd7W1c1rYKaM9zPe+2KlVKFS6l9KqUY+HL+nUupD4/ElSqmP\nlFI9PT0nY1mqUupR4/UrN27vVUolOG3XXCn1tFJqp/H8dhqve0Ol1GLI901b2+u73Xicq8+ZUkpN\nUEr9ZBwzXyn1lDL+/2zbefX9oJQ6Tyn1hZL/n2Jjv/8HIqI4wRZKIgqUYwBUQdJah0G+X96q5z6b\nAHgFwKMAtgIYAeBJpVSR1nqxh8cdC2AlgMcAVALoB2CRUqqR1voZp22vAfATpHU1GcDjAN5USh2v\nta4EAKXU3wEsAPA8gBUAZgI4CDmhvgfAIdv+ttrKawE0AtAbwKdKKQUJXsoADATwobHdQAAbjNYU\nZxsB/APAvwCMB/C1sdyewncWgK4A7jPq8iCAd5RSnbTW+929SEqpIQBWQdKPrwSQDuABAOuUUqdo\nrf+wbX4cgCeNff8GYK+bfZ4LYCnkvZ8IoDmAuQBSAPzsri42x0Jatx8BUABgEoDXjPfDfG3bAPjT\nWFcI4GjI+7Aakt7orXxj+2chn91x5nKlVHsAOQB2A5gAYA/kNVqulBqmtTY/297UZRyAlwAkArjZ\nWObqvfbGvZDPwFhjf4d8qKsnLwF4FcDTAHpCMg3SIKm6dR3/JEjmwWZjew3gbgCfKKV6a62/c3VA\nJX2u3wNwAuRz9T/I/8p9AI6CvKYwgvMvjGUzAHwPSa+/BPI/+yDkc3Y6gIuN3R/28FwfAjAF8j/1\ntu34JyulztZaV9u29fj9oKRf81sAXof875QD6AL5PiQiig9aa/7xj3/88/oP1gljV0jQeCTkJLkK\nwEpjm7vMbepxnMXGPkY4Lf8AwA4Ayqk+ndzsJ8Go50JIWqN9nQbwC4Ak27LLjeV9jPvpAA4AeM64\n399Y/zDk5PEOD88hARJ4TTPu9wFQDenntd62XT6AmU7PfbvtvnnMQS6OsR3APgBH2pZlGttfXcdr\nnGs8/wa2ZUcDqAAwx7Ys26j3KS72oQFMt93/AsAP5vtjLOthbJft4jn1dzpOBYAutmUtjM/WPR6e\nRwMAfY39nerudfTw+HX2uhnL/gMJzJq5+Px960ddsgGsc7H9dADazeff/hnoZOxzo/21rU9dnf5/\nnnFafq/xuh/nxfFfB7AfwBG2ZU0gn/03PDyna4199nNx7HIALYz7Dxh1OdXD81gMIM/F8hqfM0hQ\nehjAYqftrjG2u9jps13X94N5v0ldnzP+8Y9//IvVP6a8EpG/foSc/O+FtGosBRDoUSyrACx3WrYM\nQAcAbd09SCnVRSn1X6XUH0YdKwCMgQTBzj7QWlfY7v/PuO1g3J4BOTlearSoJBrL90Neg34ujt/Z\nSGO8B8CvACYrpQ5BAsnvAbwGIFMptUoptR9AKwAjlKTIJtj2M8jYj6uUV62UusZYvh7AASUj7W4E\n8Kmx/AGl1Nmu6qaUuh/AaZCAuVgp9adSaiaAnQA+h6Ro2m3XWn/r4vWz7zsREswu11o70ji11hsA\nbPP0WJtftNa/2B67G9LyZr4fUEolK6XuUZJWWwZ5fz8zVrt6j/0xBNLKeEAp1cD8g7Sonays9ORQ\n1MVupf219aWudXjV6f4yyAWRnk7LXR2/H4B3tK01XEtr+1uo/TlyrvcOAF841ft9AEmQ1koAGAzg\na631N148j7r0hrQ0Oo+MvAySzeBc37q+H76FvOfLlFKXK6VaBKCORERRhQElEfkrC5JidjyANK31\ndVprMw1yp3HbsZ7H2Od0MgcAu4xblwGlUiod0jJzMiTt7iyjns8BaOjiIc6pm2aqXIpxa54gfgg5\ncTTTVB8F8DcALZVSGcZfY6d9XQ5Jp2sESf9sAAkOlVHuBwkGqyBppLMgabWmHyCtOA8b92ca938w\n7puvxV5IQD8Pkp53p7E8HcBHSqkLXTzvi416fANJk/wB0rI8EcBfkJYcu3wX+3CWAQkEdrtYt8vF\nMldcpdIehvV+AJIOOx0SFFwICXouNdalIDBaALgO1gUJ8+9xY32zENbFztX74G1dPXF+f9z9n7k6\n/lFulv8FzyM5t4B8RzjX+ytjfTPbrT8jCbtifq5r1FdLenshan/uPX4/aEnDPg9yPrUEwF9K+lp7\nCqSJiGIK+1ASkb9+0FafNmfZkCBpKKS1wV9HKqWSnILKlsbtH64eAGlR7AjgLK31OnOhcpoj0weF\nxu31ADZB0jft/TD7QNINAenvOcK2rhuAyyD9tH6F9K26H8ATkDS51yGtn18COMe4fx2ANQCgtf4L\nwEvGgCL3APgIEqCeCGC21voD6ZaJDpDA+Uat9XPG830KwL8h78FcSF9Juy5GHTZorRcopZ41nt9t\nRl2dT6S9GcmzABIQuGqlaQngdy/24Y0RAF7UWs8wFxgXEgKpENLS+Kib9X8GqC6HjMcka63Lbcvd\nBYGu3gdv6+pJS8j7b78P1P4/c3X8vZBWdmetIOnY7hRCWq6vcLN+u3FbAA8ZCT4yP9etYHu+xvdD\nM7jpG+yJ1notgLVKqYYAzoSk6K4y+jAX1L/KRESRjS2URBRwWus/IX2axiqlXA6SorybNiQREpDZ\njYAEJu4CylTj1hGEGoN6XOLF8Vz5AkARgM5a61xICyAgwdq5Tn8znB77NiSQ2wNpNUwzHt8Tkvp6\nCiTFbq2RRmi2RDq37JqtImdB0mbfBPBP2/qjISm4b5utpcbyFADvAOhsDB5itxzABgDDlVKJWgYi\nyQbQDhIkZ3t6UVzRWldB+mVeZgxABABQSvUw6hgoqbC9v4YbArh/QIL6kwBs0lrnuvgz3xNv63IY\n0lLtbIdxe6K5QCl1BOQ9CHRdPXEO6kZA+s3mePHYTwBcYG+hN8pD4flztAZAewDFbuptBmPvA+ip\nlDrZw77cvb7OvoT0zxzhtPxKyEV2T/X1SMs0Oh9DBgNLQ2A/80REEYstlEQULHdARgb9SCn1DCRV\ntBgy+uFISF87j1OHQAK5x4wA6RcAV0EmL7/eRT8u0xeQETT/pZSaBjmxmwpp5Wjq65PQWh9USt1p\n7K85rHTedMhJeLbW+mU3D/9Za21OETEcMjpmc2Pdl7BG/PzYuDVHbk2HnMw79gPp33UPZBTZWcbz\nKjLWNwXQGLVTTe+0lVtC0mpNvwH4LyTgfUcp9TSsVqYiALPdPKe6TIMEACuUUv+GpMFOh6Q/Vnt4\nnC/WABillPof5PW4FL4FYN74P0jq5adGa+92SPrmiQCO0Vqb/YW9rctmAOOUUldCWoCLtNY/AXgX\nMujTQuPz2hBysaA4CHX15AKl1OMwgjfI+/iivT+rBw8CuAjyv/4opBXzLkiw/YCHxy2FBN8fKaVm\nA/gO0r/xWEhK9jCtdSmkRf9qAB8qpWZA+jFmQC4S/V1rXQR5fY9SSt0CuahxSGv9P+cDaq33Gsea\nopQqgfQ97Qa5GLQOtVvyPTJGgO5n7GenUa8pkFbhH4xtzoZkF4zWWr/oy/6JiKIBA0oiCgqtdbFS\n6hzI9AIjIYPipEBaFj+CMSVAHQ5CWhLmQfor7gJwu9b6BQ/H3aNk/r3ZkBTSP43HHwU5SfbnuTyr\nlNoJCdCuNRYPhrRAehqoptS4XQsJKD+2rfsLkg6YCulH6UlDSJDXBEBnSHrjANRsTfnLVjdA+pEu\nAWCewNqnGQGAKq31GqN/5TTIoCxmq2KW0crsMyMNd6SxzxWQIGsSJOg54M8+XbgNUteHjPurIRcb\nvnL7CB9prX9XSmVCguGHIRcCCiFBgv3z521dHoUM0rMIcsHgE8jIo/uVUhdBgqZXIX0FH4BcOOkf\n4Lp6cg3kfboF0oK3EMBkL4//vZGW/ZBxPAW5YHK2rj1liH2wpgql1HmQvs5jIS16JZCAe5VRDxiv\n0ZmQoO9uSGrqLsj/k5kmvAgy4M7DkLkxd0BGpnXlXkjWwN8hU7oUQv5PpuiaU4Z44zsA50P60raA\npMyuAzBSa11mbKMg2RbMCiOimKTcX+QnIgofJZOVD9Jatwt3XeyME+e1AO7UWs9ys01nSIvqffa+\ndca61pAg9zWt9RVO606DpKHO01rfYSxLg4za2hXSL7TWSJdKqdWQlNumRouOp/p7qtsMyMl2e611\noAZBgVKqHSSwfEhr/WCg9kv1p5S6HjIQVBcPfaIDdaw3AHTQWmcG8zhERBRavFpGRBRCWut8SOvV\nMKVUN3O50edwinF3hbEsAcDLkL6WV3uYNuFFSMbJQ65WKqVaulruiW16kak+Pq6RUmqBUuoypdTZ\nSqkbIK2lpZBWJIozSqk2SqnhkFb1L8NdHyIiCiymvBIRhd54SCvnOqPvYhNjmSnbNqYNIK2WTWzz\nTpo+11pv01ovU0qdD+AOI/VxNaTPaDvIqJMdIP1ZQ6EK0hfzKUhqYgkkRXe4EUxT/LkCMrpxNjz3\nqSQioijEgJKIIpLW+vpw1yFYtNY5Rp+w+wHcChlgB5A5Ic0pRQCZx/ISyFQlS1zs6lrItAvQWo9S\nSn0M4CZIS2cSpF/lBtSc5iSojKkvskJ1PKofrfViyIjMwTzGXMjUNUREFIPYh5KIKMy86Zfp4bGN\njVEuA10nt30tiYiIiEzsQ0lEFAXsfRqVUlcppTYqpQ5BWjTNbdoqpZ5RSu1USpUrpf4w7mc47auZ\nUmqeUuo3pdQhpVShUipXKTXRzbEvUUptMLb9Uyk105gInoiIiOJcVLdQZmRk6E6dOoW7GkRE9VJU\nVISff/4ZrVu3RosWLWqsU0ohMTERhw4dwqZNm9CoUSOUl5ejefPmSE5ORmJiIo466igcPnwYP/74\nIwAgIyMDycnJOHz4MPbs2YOkpCR069YNiYmJAICffvoJJSUlyMjIQGpqKqqqqnDo0CFUVFSgc+fO\nAOA4XmpqquN4SUlJ2LdvH4qKitC2bVu0atUKREREkW7Dhg0FWuvmdW9J/ojqK8ydOnVCbm5uuKtB\nRFQv2dnZGDBgAPLz85GfX3PcmiuvvBLLli3D1q1b0aVLF1RVVWHz5s047riaY+xceOGF2LNnDzZu\n3Ig2bdo4lufk5KBPnz647LLLMHXqVOzduxfNmjXDbbfdhieffNJtnczjKaXw66+/okOHDgCA6upq\ndO/eHcXFxfz+JSKiqKCU2hHuOsSyqA4oiYhiydixYzF8+PAay5xbAYcOHVormCwsLMS7776LsWPH\nIjk5GQUFBY51xx57LI4++mi8//77mDp1KlJTU5GUlIQvv/wSO3bsQMeOHT3W6bLLLnMEkwCQkJCA\n/v3745lnnkFZWRkaNWrk79MlIiKiGMCAkogoQnTp0gWDBg3yuI1zMAlICqvWGs8++yyeffZZl48z\n011TUlIwZ84cTJw4EZ06dUL37t0xcOBAZGVlYcCAAbUed8wxx9Ra1qxZMwDA3r170bZt2zqfFxER\nEcUuBpRERFEkNTW11jKzL/yoUaNwzTXOU1XWftytt96KrKwsrFq1Cp9++ileffVVzJ8/HyNHjsRL\nL71U43FmIOpKNPfBJyIiosBgQElEFOU6d+4MpRQqKirqbOE0tW3bFmPHjsXYsWNRWVmJkSNHYunS\npZg0aRJOPfXUINeYiIiIYgWnDSEiinItW7bE4MGD8dprr+Hrr7+utV5rjT179gAASktLUVZWVmN9\ngwYN8Le//Q2ApLESEREReYstlEREMeDZZ59F37590bdvX1x33XU49dRTUVlZiW3btmHlypW48cYb\nMXXqVGzevBmDBg1CVlYWunfvjiOPPBKbN2/GggULcOyxx+LMM88M91MhIiKiKMKAkogoBnTs2BEb\nN27EzJkz8dZbb+HFF19Eamoq2rdvj2HDhuHyyy93bDdq1ChkZ2djxYoVOHz4MNq1a4ebb74Zd911\nF1JSUsL8TIiIiCiaqGgeVCEzM1NzHjQiIiIiInJHKbVBa50Z7nrEKvahJCIiIiIiIr8woCQiijb5\n+UBJSbhrQURERMSAkogo6syfD5x7LsARWYmIiCjMGFASEUWTqirgxReB9euBs84C8vLCXSMiIiKK\nYwwoiYiiyUcfAX/8IeXNm4EzzwR++im8dSIiIqK4xYCSiCiaPP98zfu//w707QtwxGuiiFJSAuze\nze7ORBT7OA8lEVG02L8fWLGi9vKCAmDAAFk3aFDo60VEDgUF8q/45ZfWst69gawsICMjfPUiIgoW\ntlASEUWLV14BDh92va64GLjgAuDVV0NbJyJyKCgAZswAcnKANm2A9u3lNidHlhcUhLuGRESBx4CS\niChaLF7seX1FBTBiBLBgQUiqQ0Q1rVgh13batQMSE2VZYqLcLy52nWBARBTtGFASEUWDH3+smUPn\njtbAuHHAAw9ImYhCoqRE/kVbt3a9vnVrWV9aGtp6EREFGwNKIqJo8MILvm0/bRowfnxw6kJEtZiD\n75gtk87M5cXFoakPEVGoMKAkIop05tyTvvr889rLHngAOHiw/nUiohrS0uS2qsr1enN5enpo6kNE\nFCoMKImIIt0HHwB//un99u3bAwMHAv/8Z83lP/4oLZdDhjCoJAqwtDQZzTU/3/X6/HxZn5oa2noR\nEQUbA0oiokjnajCeVq2As86y7l9/PfC//0kHrd9/Bz76SAbosXvySbldvx447zzgwIFg1ZgoLmVl\nSQtkXp7VIllVJffT02U9EVGsUTqKB23IzMzUuZzMm4hiWUUF8I9/AB06AF26WH+NG8t6peS2eXOZ\nRd2dfftkqEn7iCC9egHvvQc0bRq8+hPFGVfzUJ5xBjBsGOehJAoXpdQGrXVmuOsRqxhQEhFFs0sv\nteYi8PR9/vjjtVNgAaBnTwkqjzgiOPUjilOlpTIAT3o601yJwo0BZXAx5ZWIKJo9+qhVdtfPsrIS\neOop1+u++goYPBjYvz/wdSOKY6mpQIsWDCaJKPYxoCQiimZduljl++5zvc3KldKv0p2vvwbOPVfS\nYomIiIh8wICSiCjaJSXJ7XPPuV4/b17d+8jNZVBJREREPmNASUQU7ewBY3V1zXUbNgDr1nm3nw0b\ngEGDgL17A1c3IiIiimkMKImIot2YMVZ55cqa67xpnbTbuFGCysrK+teLiIiIYh4DSiKiaGemvALA\nHXdY5fx8YNky3/d3+DDQoEH960VEREQxj2cMRESx4IILgNWrgZ07rWVr1sg8lnVp317muTT/zjsv\nePUkIiKimMKAkogoFjz+uASUALB7t8xXMHIksGSJ9Ins0KFm4Hj11bLtnDnAhAnhqzcRERFFNaU9\nTYQd4TIzM3Vubm64q0FEFBmUkttbbgGeftq7bdu39zylCBERUZRTSm3QWmeGux6xin0oiYhizYIF\ndW/Tp4/c2lNkiYiIiHzEgJKIKFbMmWOV68o+mTzZ+22JiIiI3GBASUQUK8aNs8rvvut526FDrfKn\nnwanPkRERBTzIi6gVEolKqW+UUq9E+66EBFFlYYNrfLtt3ve1j4tyOzZwakPERERxbyICygB3A5g\nS7grQUQUlQYOlNutW+veNi1Nbt9+O3j1ISIiopgWUQGlUqodgAsBLAp3XYiIopK9tXHvXs/b2vtR\nEhEREfkhogJKAHMB/BNAdbgrQkQUlU45xSrPmOF521tuscp//RWc+hAREVFMi5iAUil1EYDdWusN\ndWw3VimVq5TK3bNnT4hqR0QUhZ54wvP6li2tcl3zVhIRERG5EDEBJYAzAVyslNoOYBmAgUqpl5w3\n0lr/W2udqbXObN68eajrSEQU+R55xCp7OyXIrFnBqQsRERHFtIgJKLXWU7TW7bTWnQCMAPCx1vqa\nMFeLiCj62Ed4/fhjz9teconclpUFrz5EREQUsyImoCQiogBp1Mgq33GH520nTbLKlZXBqQ8RERHF\nrIgMKLXW2Vrri8JdDyKiqHXmmXL7ww+et+vb1yq/9Vbw6kNEREQxKSIDSiIiqqc5c6zygQPut1PK\nKrMfZUhlZ2dDKYXFixc7lm3fvh1KKUyfPj1s9SIiIvIFA0oioljUs6dVnjnT87adOsnt+vVBq040\nMgM+8y8xMRFHHnkkTjzxRIwaNQpr1qyB9nbQowizf/9+TJ8+HdnZ2eGuChERRbkG4a4AEREF2cyZ\nNUd+dTZ5MnDrraGrT5S56qqrcMEFF0BrjaKiIvz0009YuXIlXnzxRQwaNAivvfYajjjiiIAcq2PH\njigrK0ODBsH9ed6/fz/uv/9+AED//v2DeiwiIoptbKEkIopV06ZZZU8taaNGWeWffw5efaLUaaed\nhmuuuQbXXnstxo0bh3nz5uG3337DxIkT8eGHH+Kqq64K2LGUUkhJSQl6QElERBQoDCiJiGLV5MlW\n+fPP3W+Xnm6V584NXn1iSGJiImbPno2+fftizZo1WLdunWPdgQMHcNddd6Fz585o2LAhmjdvjquu\nugq//fZbnfv11Idy+fLl6N+/P4444gikpqaia9euGD9+PMrLywEA1dXVeOihh9CvXz+0atUKycnJ\n6NChA2655RYUFhY69pOdnY2jjz4aAHD//fc7Uno7manPhldeeQV9+/ZF48aNkZqail69euH111+v\nVa9Vq1bh7LPPRkZGBho1aoQOHTrg0ksvxc+2ixM7d+7E6NGj0bFjRzRs2BAtWrRAnz598MILL9TY\nl9YaCxYsQI8ePZCamor09HQMGDAAa9eudfs6vfPOOzj99NORkpKC1q1b484770QlRywmIgoZBpRE\nRLHKHihOmODdYxYsCE5dYtSNN94IQIIqQILJPn364Omnn8aFF16I+fPn49Zbb8XHH3+MXr16YceO\nHX4d595778Xll1+OPXv2YMKECZg7dy6GDRuG1atXo7S0FABQXl6Oxx9/HF26dMGdd96JJ598Euee\ney7+85//oH///o7As1u3bnjiiScAAFlZWViyZAmWLFmCubaLCVOnTsWIESPQuHFjPPjgg5g5cyZS\nU1MxfPhw/Otf/3Js98knn+Diiy/G/v37MWXKFDz11FO46aabUFhYiK1btwIAKisrce655+K1117D\niBEj8PTTT+Puu+/Gcccdh88++6zG87z22mtx6623onPnznjsscdw//3348CBAzj33HPxlotRiFev\nXo3Ro0fj/PPPxxNPPIGTTz4Zs2bNwmOPPebX60xERH7QWkftX48ePTQREXnQo4fWkvDqebsxY7zb\nLo6sXbtWA9CPP/642202bNigAehLL71Ua631+PHjdUpKiv72229rbLd9+3bduHFjPWrUqFr7f/75\n5x3Ltm3bpgHoadOmOZbl5ORoAHrAgAG6rKysxn6rq6t1dXW1o1xaWlqrjosWLdIA9CuvvOLxOM7P\nacqUKbXWXXLJJbpx48b64MGDWmutJ0yYoAHoXbt2uX6BtNbfffedBqAfffRRt9torfUbb7yhAehn\nn322xvKKigrdo0cP3alTJ8dzNeufmpqqt23b5ti2urpad+/eXbdq1crjsYgovgDI1REQu8TqH1so\niYhimdESBQAoLna/nb0F02jxoro1adIEAHDw4EForbF06VL069cPbdu2RUFBgeMvLS0NvXv3xvvv\nv+/zMZYuXQoAeOSRR5CSklJjnZmuapYbNWoEAKiqqsL+/ftRUFCAgQMHAgBycnK8Pp5SCqNGjarx\nHAoKCnDxxRejqKgI640RgZs2bQpA0nHdpZma26xduxa7d+92e9yXXnoJjRs3xrBhw2occ//+/Rg6\ndCi2b9+OX375pcZjhg0bViNVVymFAQMG4K+//kKxp887EREFDHv9ExHFsr59rfLs2TUH6rE74QSr\nvGQJcPPNwa1XjDh48CAACSz37NmDwsJCvP/++2jevLnL7RMSfL+O+8svv0AphZNPPrnObV999VXM\nnj0b33wEEdV6AAAgAElEQVTzDSoqKmqs27dvn1fH27JlC7TWOP74491us2vXLgDArbfeijfffBPj\nxo3DXXfdhb59+2LIkCG46qqrHK9Bx44dce+99+KRRx5B69atccopp+Ccc87B8OHDcfrpp9c4blFR\nEVq2bOnxuMcdd5zj/jHHHFNrm2bNmgEACgsLkW5P+yYioqBgQElEFMuM1isAwPTp7gNKu1mzGFB6\n6fvvvwcAdO3aFZJVBQwaNAh33XVXQI9jb4l054033sCVV16Jnj17Yt68eWjfvj1SUlJQVVWFIUOG\noLq62qtjaa2hlMK7776LxMREl9t0794dgARvX3/9NT777DN88MEH+PTTTzFhwgRMmzYNq1evxhln\nnAEAmDFjBkaPHo1Vq1bhs88+w6JFi/D444/jn//8Jx599FHHcZs3b46XX37Zbd1OPPHEGvfd1c/c\nHxERBR8DSiKiWHf33TIXZV0yM4HcXMAYTIXq9p///AcAcOGFF6J58+Y44ogjcPDgQQwaNChgxzju\nuOPw7rvv4rvvvkPPnj3dbrdkyRKkpKRg7dq1SE1NdSz/8ccfa23rKTjt0qUL1qxZgw4dOqBbt251\n1i8xMRH9+/d3zGf5/fffo0ePHpgxY4ZjsCJAWhNvu+023HbbbTh06BDOO+88PPbYY5g0aRJatGiB\nLl264Oeff0bv3r3ZskhEFEXYh5KIKNbdfbdV/uor99vZpxlh645HVVVVmDx5MtatW4cLLrgAZ555\nJhISEjBy5Eh89dVXLqfXAOCxD6E7V199NQDgnnvucYzUame2xCUmJkIpVaMlUmuNGTNm1HqMGbDt\n3bu31rprr73Wcbyqqqpa6810VwAoKCiotf74449Ho0aNHPs+cOBArfTblJQUR7BqpuJed911qK6u\nxpQpU2rt0/m4REQUOdhCSUQU64xBUQAAEycCtjkTa7j0UquckwP07h3cekWJjRs34qWXXgIAFBUV\n4aeffsLKlSuxY8cODB48uEaK5kMPPYTPP/8cV1xxBa644gr07t0bycnJ2LFjB1avXo0ePXpg8eLF\nPh2/Z8+euOuuu/Doo4/itNNOw5VXXolWrVph27ZteP311/HVV1/hiCOOwOWXX47ly5dj4MCBuO66\n61BRUYGVK1c6phWxa9asGTp37oxly5bh2GOPRcuWLZGWloahQ4fi9NNPx/Tp0zF9+nSccsopGD58\nONq0aYP8/Hxs2LABq1evdgS2N910E/Ly8jB48GB07NgRZWVleOWVV1BUVITrrrsOgAzGM3bsWFx2\n2WXo2rUr0tPTsWHDBixatAi9evVC165dAQCXX345brjhBjz11FPYuHEjLrroImRkZCAvLw/r16/H\n1q1bvZrLk4iIQizcw8zW54/ThhAReal7d+3VtCDmNpdfHpp6RTBzWg/zLyEhQTdp0kSfcMIJ+rrr\nrtPvvvuuy8eVlJToBx54QJ944ok6JSVFp6en6+OPP16PGTNGf/nll7X2X9e0IaaXX35Z9+nTR6en\np+vU1FTdtWtXffvtt+vDhw87tvn3v/+tu3Xrphs2bKhbtWqlb7rpJl1YWKgB1JiyRGuZjqRPnz46\nNTVVA9AdO3assf6dd97RgwcP1kceeaROTk7W7dq100OGDNELFixwbLN8+XI9dOhQ3bZtW52cnKwz\nMjJ0v3799Ouvv+7Y5rffftM333yzPv7443Xjxo11amqqPv744/V9992n9+/fX+t5vvjii7pv3766\ncePGumHDhrpjx446KytLL1u2zKvXadq0aRpAjelEiCi+gdOGBPVPyWscnTIzM3Vubm64q0FEFPk+\n+ggw+/WVlgLG9BK1JCUB5vQPUfz7QEREZFJKbdBaZ4a7HrGKfSiJiOKBMRchAODJJ91vZ+9HSURE\nRFQHBpRERPHAPqqnfZAeZ7feapVdDLhCREREZMeAkogoXtxxR93btG1rlZ99Nnh1ISIiopjAgJKI\nKF7cd59V/vbburefNSt4dSEiIgBASQmwe7fcEkUjThtCRBQvjjrKKk+aJAP1uDJkCLBmDbB/f2jq\nRcFVWQk04M89UaQpKABWrAC+/NJa1rs3kJUFZGSEr15EvmILJRFRPOncWW4//tj9NpMmWWUXE9tT\nlKiuBubM4UBLRBGooACYMUOm/G3TBmjfXm5zcmQ5u7BTNGFASUQUT+bNs8qHD7vexj4i7Jo1wa0P\nBccffwDnnScXB+zNH0QUEVasAIqLgXbtgMREWZaYKPeLi2U9UbRgQElEFE/OP98qL1jgepsE208D\n+1FGn+XLgZNOAj78UO5//z1bmokiSEmJXOdp3dr1+tatZX1paWjrReQvBpRERPHEPn3IhAnut2vV\nSm6zs4NaHQqgoiJg9Gjg8suBvXut5WVlwM8/h69eRFSDOfiO2TLpzFxeXBya+hDVFwNKIqJ4c8st\ndW/DfnfR5csvgVNPBZ5/3vX6b74JbX2IyK20NLl1lzhgLk9PD019iOqLASURUbyZPt0qb97sepsb\nb7TK27YFtTpUN7fTClRWAvffD/TtC/z6q/sdMKAkihhpaTKaa36+6/X5+bI+NTW09SLyF8cRJyKK\nNy1aWOU77wRWraq9zRFHWOV584C5c4NfL6rF47QCB38DrrkGWL++7h15M+8oEYVMVhawaROQlyd9\nJhMTpWUyP19aJrOywl1DIu8prXW46+C3zMxMnZubG+5qEBFFn/bt5UwGANz9Dtj7W0bxb4W3Skrk\nLy3NSkkLJ3NageJipxPOPzUG7nwBI764DQklXnayatYM2LOn5ntKMSvSPsvkmqsLRmecAQwbxnko\nA00ptUFrnRnuesQqtlASEcWjefOAyy6TckUFkJRUe5trrgFeeim09QqDSJ1c3D6tgCkxEeiR9D2u\n/uAG33ZWWCgXENq3D2wlKaJE6meZXMvIAG66CRg5Uv7X09OZ5krRiX0oiYji0bBhVnnRItfbTJxo\nlQ8dCm59wiRSJxf3NK1AYbPjUJXgx/Vgpr3GtEj9LFPdUlOlJwKDSYpWDCiJiOKRfa7J2293vc0p\np1jlZcuCW58widTJxT1NK1CZ1AizJv2F+eesROnNE4AePWq+n+5wYJ6YFqmfZSKKfQwoiYji1Q1G\n2mRFhev19v52s2YFvz4hFsmTi9c1rUBxw2b4tuMlwJw5QG4usG6dtbJJE6CBixZMBpQxK5I/y0QU\n+xhQEhHFqxkzrPLWra63OfFEud20Kfj1CbFInlzc52kF+vSxVh44AOzfD3z4IXDffcDZZwMNGzLl\nNYZF8meZiGIfA0oionjVpo1Vvusu19tMnmyVY2yk10ifXDwrS46dl2fVpapK7teYVmDnTutBZkty\nWhpwzjnAAw8A2dkSYL74Ysy9hyQi/bNMRLGNASURUTxr3lxu33jD9foRI6xyjKVMRvrk4hkZwNSp\nQK9ewJ9/Stz4559Sp6lTbaN2nnSS9SD7QEp2KSnAWWdx2pAYFemfZSKKbZw2hIgons2bB1x9tZQr\nK2v3vWvY0CrPmRNz04hE+uTidU4rUFgorY+AtCYzYIxbkf5ZJqLYpXQUp79kZmbq3NzccFeDiCh6\nVVdbHayee84aqMfOHqSE4Tcj2JO0R/Xk4iecAGzZIuWqKu9Ge6WYFdWfZaIgUkpt0FpnhrsesYoB\nJRFRvDMDxsaNgYMHa6+fOBF44gkph/A3I9STtJeWRtnk4qWlVoR99dXA0qXhrQ9FjKj7LBMFGQPK\n4OKlTCKieGemvBYVuV4/frxVNtMrgywck7RH3eTiF19slRcvDls1KPJE3WeZiKIaA0oionj38MNW\neceO2us7dbLKixYFvToAJ2mvU0UF8NFHUh4wAEhKCm99iIgobjGgJCKKdx07WuUpUzxva05LEUSB\nmKS9pATYvduany/mjB5tld9+O3z1ICKiuMdRXomISPpPFhUB//0v8PLLtdcPGACsXQvs2hX0qvgy\nSbtzSl+o+12GRXW1Ndru8ccHZ6QiIiIiL7GFkoiIgCeftMrV1bXXT57seX0A+TtJezj6XYbF3Xdb\n5XXrwlcPIiIiMKAkIiIAuPZaq7xsWe31551nlc2+ewYzvdT8q2+aqb+TtMdFv0utgccfl3KTJkCz\nZuGtDxERxT0GlEREVDO/9PbbPa+fPRuAtPgtXAiMHSsppX37ApdeKvcXLqxfi2BWlrRA5uVZLZJV\nVXLf1STtgeh3GRXmzrXK//tf+OpBRERkYEBJRETi0kvl1l0keNRRcvvee4700k8+AbZulUCtRQu5\n/eUXWV6fNNOMDGDqVKBXL+DPP4GdO+W2d29Z7twf0pd+l1Ft4kSr3KFD+OpBRERkYEBJRETi0Uet\n8h9/1F5v60dpppceOACUlwNNmwINGkgWZmWlLK9vmmlGBnDTTcD8+cAjj8jtmDGuB9fxt99lVLEP\nlsTWSSIiihAMKImISHTubJXvu6/2+rFjHcWfPspDs2aSgtq4cc3NzFTVjIzApJl6M0m7v/0uo8rI\nkVb5xBPDVw8iIiIbBpRERGRJTpbb55+vvc42AMzAzU85BntNcPolMe+brYKhSjP1td9lVHn/fav8\n2WfhqwcREZETBpRERGSZN88qe5ge5LwfZjkCR+fNzPtmv8VQpZn62u8yqthH2e3bN3z1ICIictIg\n3BUgIqIIcuONwC23SHnlSmugHtMVVwCvvopEXYXCQpmSIy9P+lCazKk7CgpCn2Zq9rscOVLqkZ4e\n5WmuAJCba5VXrgxfPYiIiFxgCyUREVmSkqyyq+lDbKOMNm1UjqZNJUv2wAEZjOfgQRmcp2nT8KaZ\netPvMmqcfrpVvuSS8NWDiIjIBQaURATAmpy+vpPSUwy48EK5zcurva5nT0dx2t+W4+yzZSyf1FT5\n/KSmAl26AP37R26aaVR91n/5xSovXBi+ehAREbmhtNbhroPfMjMzda49FYiIfFZQIFM7fPmltax3\nb2lZisRggEJgyxbghBOk/NdfQMuWNdcrJbennQZs2IDSUkkvTUiQ/pORmmYalZ/1hATA/J2O4t9r\nIqJwUkpt0FpnhrsesYp9KInimDk5fXEx0KaNDKJSVQXk5ACbNkVuCxMFWbdujmLFvdOx7+EFSEuz\n5nrEcccBP/8MbNwIQILHUAaQJSXyV6NOdYjKz3p+vhVEPvhgeOtCRETkBlsoieLYwoVyQt2uXe11\neXkyWuZNN4W+XhQBzFZIADeOlt8JR2veioXWnJQh/A2pTwtjVH7W27aVYWoBafq1vSdEROQ9tlAG\nF/tQEsWpkhI5MW/d2vX61q0DMyk9RZ+CAmBFvycc99u302jTRgKyGTOAgvNGWhv/8EO9juVtf0az\nhTEnR1oY27dHzToVeD5G1H3WDxywgslx4xhMEhFRxGJASRSnzBN4c65AZ+byUE1KT5FjxQrgvWNu\ncdzvsvVdJCZK615xMbDiPVt+6xNPuNhD3QoKpNVw/HhgyhS5XbjQfWC4YoU1HYn52axRpxXujxWV\nn/VzzrHKTz4ZvnoQERHVgQElUZwy+55VVbleby4P1aT0FBnM1rzm7Ro6lg1ZY00fYrbmOTz3nM/H\n8LW1sb4tjL5+1sM+CuyhQ8CGDVIeNsx9JExERBQBGFASxRBfToTT0qT/WX6+6/X5+aGflJ7Cz96a\n99vR0krWbO9Wx3oztim9YZzfx/C1tbG+LYzeftZLS31rNQ2aK66wysuWhfjgREREvmFASRQDfE0f\nNGVlSatMXp7VSlNVJffDOSk9hY+9Ne+9wbMdyxuVFjqWA4C64w7rQUVFXu/fn9bGQLSm1/VZ79fP\n/z6aAVVVBbz9tpR79QIaNvS8PRERUZgxoCSKcvUZrCQjQ6ZL6NVLxv/YuVNue/eO0GkUKOjsrXm7\nWp3sWN7v0xkArNa8Rid1sR60eLHX+/entTEQrel1fdY//dT/PpoBNc7W8vv++yE6aHCFPYWYiIiC\nitOGEEW5QE2HYE5OH6mT0lPo2OdsXPQfa3TRMTdqpKfbLjaYI4926ADs2OHVvktKpAXdnAvSWVWV\nBHrz59f8HNrr1Lq1NY9kfj5q1skLzp91f+sUcFoDCcZ1Xh9e00hVn2leiIgCidOGBBdbKImiWCCn\nQ0hNBVq0YDBJNVvzXs+c6Vjeu5euGbj16SO3v//u9b79bW0MZGu682c9YkaBvf9+q/zVV0E+WHDV\nJ3OCiIiiS4NwV4CI/OfLiTADRfJFRoa0bJdeOh7IuBsAMOboj4CMQdZGkycDl14qZa29nisxKwvY\ntEla0F21Nrrru2vWaeTIwLam2/toumuhBEIw4rEZUDZoALRsGeSDBZd94CWTmUKclyfrvcmcICKi\nyMcWSqIoFo6pP9gfKjZ4+z6mNmtk3bEPxAMAQ4da5c8+8/rY9W1tDHRrekSMePzMM1b5xx+DeKDg\nC2TmBBERRT62UBJFMfNE2F0fykCeCLM/VGzw630880zg88+lWdGuge0nZPZsGSrVS8FqbfSXv62m\nAXPLLVb52GODfLDgYuYEEVF8YUBJFOVCcSJsHxDFHLikqkoC2U2bOCJstPD7fXziCaBnTykfOAA0\nbWqtS02Vpqa33vKrTqmpkRFUmK2mzsH2GWcAw4YF+fP9xhtWecOGIB4oNCImhZiIiEKCKa9EUS4U\nU3/4OhE9RSa/38fTT7fKM2fWXDd5clDqGg5mq+n8+cAjj8jtmDEhuFhy2WVW+bTTgnyw4IuIFGIi\nIgoZThtCFEOCMfVHxEypQPVS7/fRPuCO/Xdj1y6gVSsp5+dbZfLOJ58A/ftL+cMPgXPOCWt1AiWQ\n07wQEdUXpw0JLrZQEsWQYEz9ETFTKlC91Pt9nD7dKtsDSvtopE8/7W/14pcZTAIxE0wCocmcICKi\nyMA+lETkEftDxYZ6v4+TJllB5bp1wFln1d5m1izggQfqW9X48f33VnnZsvDVI0gibeAlIiIKDrZQ\nEpFH7A8VG+r9PtojzQkTaq67+GK5LSurdz3jysknW+UrrwxfPYIsGJkTREQUORhQElGdsrIknsjL\ns1qyqqrkfkimVKCAqPf7mGl0P3EeiXTSJKtcWRmw+sa07dut8rx5YasGERFRfXFQHiLyiqv5C0My\npQIFVL3eR3uqa1GR1WqpNZBgXJ9cvhy49NKA1zvmpKdbHVurq2sOekRERAHFQXmCiwElEfkkGCPJ\nUuj59T7aA8dp01By53SUlEg6bVq6ERCdcQbwxRdBqXPM2LNHckABYMoU4OGHw1sfIqIYx4AyuBhQ\nEhGR92wtaTeOtn4/5q7siMZ7f5c7Ufy7EhJdugBbt0qZrZNEREHHgDK42IeSiIi8Vnr7FEe5TRug\nfXu5ffu4yWGsVRQpLraCyVGjGEwSxZGSEmD3bivbnShWMKAkorjHH3nvvXrM3Y5yh/wcADINyfb+\n11sb/fyzX/uOi/fhggus8qJF4asHEYVMQQGwcCEwfrxkuY8fL/cLCsJdM6LA4DyURBS3XA1Q07u3\njHbKgYZqKykBPvuuCa437p/3/kQ8N/pzAEB5w8aO7SpmzUXSv5/2er9x8z6UlwOffSblwYOBBvwJ\nJop1BQXAjBmSnNCmjVyAq6oCcnKATZuAqVNj7HuO4hJbKIkoLpk/8jk5NVM3c3JkOa8c12a2HO5q\n8TcAQIedrgffSVq4wOt9xtX7cN11VnnlSr92ERetuEQxZMUKCSbbtZNgEpDbdu1k+YoV4a0fUSAw\noCSiuMQfed+lpcntqnPnOpY1qChzlHNPudHnfcbN+1BdDbzyipT/9jegUSOfHs6UOaLoU1IimRet\nW7te37q1rC8tDW29iAKNASURxZ1A/MiHs6UoXMdOS5NU1C8aDnAs650zz1F+65gJ1sZenCHF1cnW\npElW+ZNPfHpoXLXihgFbfSlYzM+UebHMmbm8uDg09SEKFnbgIKK448uPvPMcjeHs7xcJfQ2zsoBN\nm6yRSQd9NAWfnHE38vOB9PbdrQ1fegkYO9bjvurzPkQVrYG5RqtuRgZw5JE+PdzeimsyW3Hz8mT9\nTTcFsL5xIhL+nyi2mVkdVVWuv+eqquQ2PT10dSIKBrZQElHcsf/Iu+LuRz6cLUWR0kqVkSGDSPxv\nkNUa+eefciI+daptw1mz6tyXv+9D1HnsMav8zTc+PTSuWnFDKFL+nyi2mVkd+fmu1+fny/qovmBG\nhAgKKJVS7ZVSa5VSm5VSm5RSt4e7TkQUm/z9kQ9nf79I6muYkQH87RUrenxqzLcYM8Zo1enRQxb+\n8kud+4mbk627ralWajQzeiFYKXPxnuYZSf9PFNuysuSiWF6edZGsqkrup6fLeqJoFzEBJYBKAJO0\n1icA6A3gH0qpE8JcJyIKoEg6ifX1Rz6cLUUR2Up11FGOYqOptv6BkydbZa3r3E3Mn2y98IJV3rLF\n54cHuhWXg/tE6P8TxSwzq6NXL8nm2LmzZlYH06spFkRMH0qtdT6AfKNcpJTaAqAtgM1hrRgR1Vsk\n9lUyf+Sd63XGGcCwYbXrFc7+fhHb17BLF2mJ/Phja9lll1nlr76SsygPMjKACROA118Hvv/emprR\n3fsQda6/3ioff7zPDzdbcXNyXDdu+tKKy/nwRMT+P1HMysiQfs4jR8rnKj2dny2KLRETUNoppToB\nOBVATnhrQkT1Fcknsb78yIdzcIWIHdhh7lzgwgulfPgw0LAhkJRkrZ89G3j1VbcPd3Wh4YQTgOHD\ngQ4d3B+2pET+0tKs1yYirV5tldev93s3MhCStNq2bm39D+Xn+9aKy8F9RMT+P1HMS01lIEmxKZJS\nXgEASql0AMsB3KG1Puhi/VilVK5SKnfPnj2hryAR+SQa+iqlpgItWnj+oQ9nf7+I7Wt4/vlW+emn\nrbLZzPjaa24f6mpQlA4dJCt0zhzXKZiRnK7pMp3bDLYBeYP8FIiUOaZ5WiL2/4mIKEpFVAulUioJ\nEkwu1Vq/4WobrfW/AfwbADIzM+vuoEMUhaKmBaYO5klsmzau15snsSNHBu7kLZivXaBaiiLh2AF5\nnZQ1fQgmTpTcVUD6Uc6c6fGhvraWRWpLt7t07uHtv8QR5oJ33qn3ceqbMsc0z5rC+b9MoRcrv6lE\nkSpiAkqllALwHwBbtNZzwl0fonCIxL6G9RHKk9hQvHa+9rsMpEAdO+Cv07hxNVsnAeDWW62AsrAQ\naNasxmp/LjREYrqmpyD3prFnWBvaWyrryVPKnKeTZqZ51hTO/2UKnVj7TSWKVBETUAI4E8C1AP6n\nlPrWWHaP1nq1h8cQxYxIbYGpj1CdxIbytQvn4Ar1PbY3r1OjRj5eyZ82zQooN2+WTpBt21rrn30W\nuOeeGg/x9UJDOFq6veEuyD0l5UdrwfPPB70e3pw0B3Jwn1jBgVJiW13fdxMmyPcdWy2J6i9iAkqt\n9ToAqs4NiWJUJLbA1Je7k9jycqCiQvqc9e1b/5O4cLx24Rxcwd9je3qdtm6VrFX7mDpeXclv0cJR\nrJwwGQ3ec7oGOGtWrYDS1wsNkZiu6SnIvfVf3Rzl0iuuRzCr5MvFFKZ5usaBUmKTu++7o44CvvgC\nuPpqa+BltloS1U/EDcpDFI9iecAM+zyDRUXAhg3AqlXAW28BubmyrD6DqsTyaxdInl6n0lLg558l\nCGneXAbIadNG7s+Y4f79MQfJKUxrDwBo8P671iA5Q4bIRvv21Xqcr4OiBHouxkBwF+Q2PviHo/x6\n5kwUFwe3Hr4MesX58CheuPu+Ky0FPv1U/jdKSoBWrbz7riMizxhQEkUAX1pgoo15Etu9O7BmjQQu\nSgFdu0rMsXlz/X7IY/m1C5SSEmD7dmkVdvU6bdkCVFZKAGcGZ3WNxGsfpfW98+c5lueur8CMGcCB\nMZOsjV1EgvYLDebqqiq579xaFqhROV2OxOond0Hu35891VF+92//DGqQ68/FFDPNc/584JFH5HbM\nGAaTFFvc/S5s2SIZMkccIb9D5eWRN+o4UTSKmJRXongW6wNmZGRI3U8/XVrAkpOt1MrGjeuXlhoL\nr12wRiC0962rqJDbwkIJ7s3gq7xcXv+0NKlDcnLNfbjrn2hvGfu57TDH8qG7FmFlwi14tWAgHG/n\nmjW1BqbxdVCU+qRrBmNgDlfp3Cll+5BWKtNZfdD9dvQ+QwU1lbI+qcBM86RY5up3wfyua9wYqK6W\nZfbvu3D1xSaKBQwoiSJArA+YYbaktG/v+uS3Pj/k0fzaBXMEQld96woLpa9kYSHQr5+8JhUVsn1J\nibx+9j6UgOugpFb/Qdv0IeevuR0599yCL79KsALKWbNcjnTqy6Ao/o7K6a6P4bp1knJ9zz1Ax45u\nX0aPnIPc61/o71i3+pw5uDfIfRJj4WJKvON0FsHh6nfB/K5LSAAOHKj9fRdvU+cQBRIDSqIIEcsD\nZgR7UJVofO2CPTKtqwEpuneXYHLfPjnG6afLyVVpqaSAdetWez+ughJX7+fGU0bjtG+fQ2J1hWN5\nVYtWSNz9F5Cd7bGu3raW+TMqp/PrUFoqaW+//y7Lv/8eGD3avyDeHuRuWFeGVru+BwD8lnkF7r0v\nIehppNF8MSXecTqL4HP+XUhKkpbJAweAhg1rf9/xAgyR/9iHkihCxPKAGcEeVCUaXztfBlPxlbu+\ndamp0jLZuTPwyy/Atm1yYturF9Cli+vAw1VQ4ur9XDvwQUe56Z5fZP0dk/1/Eh6kpsrgst70mbS/\nDqWlwEcfAd99B+zaJa/zzz8Dzz0H3Huv1Y/Xl76WZpD7rz+tqxbHfL4kZJ85X/qiUmSw9z9u08b7\nQbDIN86/C7t2SbprWpqVoWHHCzBE/mMLJVEEidV50ULRklLf1y6UqWfBnlfRU4twaqq0TGZkAP/8\nJ3D00RJozZjhfQuvq/ezqLH1ZM5edRfS730DycNvBO4xgspt2+RgIeT8Onz3nVxsSEiQFgqlgEOH\nZKThzz+X6TTN197kVatRZSUSP3xPymedVbsjahD5mwpM4ROLU0RFKuffhUOHgDlzgL175TvA/K77\n/Y1E8zcAACAASURBVHcgJQUYPDjcNSaKTgwoiSJQLA6YEaq0VF9fu3CkngU7BdibvnUNGkh8Z75e\nvgYlrt7P4rQWSC/ZjdN2rECHLEgerenJJ4EnnvD9ydSD/XWoqpIRhRMS5MSxulqWaQ0ceSSwfz/w\nzDNyQmn29fU6BXnsWKu8erWbjYLH08UU9tGLLMG+mESu2X8X7N91hw4BO3bI8o4dgQceYOoxkT+U\n1jrcdfBbZmamzs3NDXc1iMhLroK3cLak2Psxugpyg5UuW1ICjB9v9Z10VlUlKVrz5/t/UvnUU8D6\n9XKS5NxglpcnaWCuWkFKS71v4XV+P3v+tgw3Z18ldyoqJGq1DdiDMPzeLFwoQWFaGvDSS0CjRkBZ\nGXD4sLzOSUkyF11lpTyf0aNrxsGA59cLWkuUCgDHHiujHkUA9tGLTLt3A1OmyEULd3bulCldWrQI\nXb3i0e+/y/d/eXnNi0jB/v6n8FBKbdBaZ4a7HrGKfSiJKGQibQ68YPZj9CRQ8yq6UlAgQdT69cC3\n3wLLlwNffy2Bojd967ztnwjUfj+vffsKa+WLL8rtNdf4/iQCyOxj+Ndf8vwPHJBWCUCCySZNZNlf\nf1lxoTNX8zk6TJ1qldevD3j9/cE+epEr2P3JyXvvvSeZCp06hfb7nygWMaAkopDzJWgJFn8mhQ+k\nYAymYg8kjjlGZuro3FkazVatAn77LTgDFTnez3TbT8rtt8vtxInWMjOSCwFzYJ1GjeT5nnWWnDyW\nl0ujacOGQNOm0oianCyvfUKC67RQewpyDVoDDz8s5dRUmWQ1AoTrQgnVLZgXk8h74f7+J4o17ENJ\nRHEp2P0Y6xKMwVScB/swB+A55RRg+3bZ95gxAam+eyNHAkuXWtHXKadY6155BRg1KqiHd5fqOXQo\nsHixjA3UoIH0o1RKYkIzyExJcb1Pt61GTz1llX/4IZBPw2/soxf5onGao1gT7u9/oljDgJKI4lIk\nTAofyFF9PQUSSUnSYvnNN3LFPagnSA8/LAElIKNddOxorZs1q94BpadBZjzN7Zmba1Vl925pLDUD\nyoYNgZYtJdAsL6852TngodVo/HirHOIRbN3hiXLk48i84RcJ3/9EsYQBJRHFpUiaFD4Qo/pGTCDR\noYNVnjIFePll4MQTpQWvHq143gwy42k6hm3bpJ/k2WfL3JM7d1onkx06yDaffALs2SMtlXW2Gr3y\nilX+7ju/n1eg8UQ5OsTqFFHRIpK+/4liAftQElHcisZJ4c2+gWYAaYqowT6aNJHb//5XbidPttb5\nMdKrN4PM1NUnqkMHaZEsLAR69JD+pQMHAv37S7xbXg7ceCNw5pkywu7OnXLrts/piBFW+aSTfH5O\nwcI+etElEvqTx6to/P4nilRsoSSiuBVNqWd1tdBF1BX3efOAG26QclUVcOWVwPXXy/1vvwVOPdWn\n3XkzEfwll1jLXUlMtKZQ2boV2LdPAkatZRqRdu2AO+8Eunb1otXo44+tcna2T88lFNhHj6hu0fT9\nTxTpOA8lERF8m38x1LydLzNc82rWUlUlHRIB6U959dXWfJTXXAMsWeL1rryds3PmTODuu+ve7rbb\npMF0505JbU1IANq2lbknzRPMOl+jMM+t6Y1Im/OVKJJF8vc/BQbnoQwuBpREREHgafAYXy1c6L7l\nMS8P6NVL+mMBERRImEFXRoZ0TPQzCPNlIvg336z7dQJkm5YtJc01OdkahMf5tXTpm2+A006T8uuv\nA5dd5vVzCQeeKBMRMaAMNqa8EhEFkDeDx/jC12kgImawj8suA5YvlxcEAO64A5g71+fd+DLITF2p\nnoMHAw88YLViOo/m6tWUGmYwaT7HCBeIAZ+8EcgLKEREFF0YUBJR3Aj2Sa+naSs2bfIv5dTX0Vvt\nz7FFC/+fS709+qgElADwxx+St2oGlPv3S46pF3zpG5qa6rlPVHW13Pd7JNxff7XKTz/tVf1jXaAv\noBARUfRhQElEMS9UJ73eDB7jLp3SXbCblgZUVgIHD0qfv+Tkmo8zW+gOHZLU2Ig5sT/2WKs8dSrw\n/PPW/UWLao78WgdfBpnx1EJrBud+T6nRrZtVvuUWr+sfq4JxAYWIiKIP+1ASUUwL1UA13g4eM39+\nzdYvT8EuIOsWL5btUlMlOO3WzdpHXh7QvTuwY0cEDMbjLCUFOHxYylpb/ShbtpRJIX0QqL6hvvRH\nrWHXLqBVKyn/3/8B99/vU/1jkd+vZYxhui9R5GMfyuBiCyURxbT6tBr6wtfUVMBzC495rayqSgLM\nzz+X2GznThnj5swzgQMHJGDUOjTP0Wfz5gF//zsAoKSoGmn9+8s0G7t2+byrQPUN9XtKDXNEHwCY\nPt33A8cYX/v2xiKm+xIRiYRwV4AoVNxNCE+xq67J7s2T3tLS+h/LPniMK67SKe3BrhlwmoHgpk3y\n164d0Lgx0K+flJWSORRzcuTkdcIE2S4Uz9EXBQXAourRjvsvDFuBNSfa0lzNDo0+qu9E8ObUIL16\nSYvxzp1y27u3h5bcoiJpAgYkqrWPWBunfLmAEovMi0E5ORJUt28vtzk5stwci4qIKB6whZJiHq8i\nxy9/Wg395cvgMWbd3LXwlJdLDKMUUFEho5GmpgI9egAnnQSUlQGFhTK9o3nCHorn6C2r5TUJY4xl\nI7++HZM77sAQc6OPPgLOPTc0FXLic2vn4MFWecGCoNcvGvgy+q4voiV9NFSZD0RE0YAtlBTTeBU5\nvpknpGVlcpJaXl5zvb8nve5kZcm+8vKsfVdVyX3ndEpPwW5FBZCQIAGlc52TkoAmTYAGDeSE1p+W\n0WCzn2z/dNxFAICmRX+gbQfbk509O3QVcqOu1s6SEmD3zsPW1aiLLnIfuccZ8wJKfr7r9c4XUOpS\nUCB9MsePl3lHx4+X+5H4HR3KzAciomjAgJJimqeUwuJiWU+xq6xMgrOVK4EPPwTefRfYsME60fP1\npLcuvqRTegoEk5IkI1Tr2qO62h+Tnh74E/v6cj7Z/mDQY451acW7UJZiTBfy3nuhqZAf7MHNzrOu\nspYveC2MtYo8vlxA8cSfC3+B6MLg7z7iPd2XiMgZU14pZnHQiPhmnqRWV8uUh+XlEnz98YeMCXPc\ncRLgeXvSWxd7qp436ZSeUmSTk6XfJCDBpTPnINHvgWaCwPlku6C5NdVG/+zp+KLPnTjn43tDVyEf\n2QdKatuqCj12yFWn7Rk9MHdWCqfCsDEvoNR39F1f0kcD0YWhvvsIVrovEVG0YkBJMSuU/eco8pgn\nqZ07y0WFLVvk5BSQ0VGrq4GbbwYaNfJtv859vDydnLZo4XlfngLB7t1lG2/nXgzEiX0geDrZPn3D\nM3h4YoEVUOblue5wGkb24OaC1bc7lv/3xo9QXMC+cc7qO/quLxf+SkvrP+9lIObO9LW/NBFRrGNA\nSTGLV5Hjl/NJqn1Am/37gV9/lWk5Zs6UvojetE64ChxPPBH48Uf5LPlzclpXIAh4HyQGalqN+nJ1\nsv3ukHk4f40EZ7/tP8ra+Kmn5E2IEDU+N1qj59f/AgAUpbfG4ZSmYc1qiPTBalJT/XtNfLnw9+ab\n9R8IJ1CD6URSVkCg9O/fH9u3b8f27dsdy66//nq88MILsM9Z7moZEcU3BpQUs3gVOX65O0mtqJA+\nlOXl1oAsKSl1B4CuWjXKyoBly4CDB4GhQ2v30fX25LSuQNDXINHfE/tAcj7Zzs38uyOg7Fmw2tpw\n1qyICygBeQ/P+vRhx/Jnx25wLAdCP2JuLI9S7enCX3k5cOgQUFkpA1TVtwtDILtBRFJWgF12djYG\nDBgAAPjHP/6Bp556qtY2u3fvRrt27VBRUYGzzz4b2dnZIa4lxbpIvwBGgceAkmJaLF5FJs/MH7LK\nytonqVu2yElqo0YSCALeBYD2Vo3SUtnP77/LY7QG1qwBhgypeRLqa2uWp0AwEoJEX9Q+2bZGFrrx\n+9uB4cOB115zPzRtmNiDm3PWTnUsL27c2rEcCF1WQyDSMyOdqwt/5v9YXp6UMzKAF1+U4LI+XRgC\n3Q0iUrICXElJScHLL7+M2bNno2HDhjXWLVmyBFprNGhQ8xTw/fffZ6sj1UusXwAj9zjKK8U0vyYx\np6hkH5lzxgxg61Zg7VprRNfycmD7dpnf8ccfJfX1ww+tUV/dDfVvH7W0tBT49FMZ2Cc1VQbMSU+X\n+/ZjARzp0TzZnj8feOQRoGrAIABA4vZfgYkTrQ2d50UJIzO46Zy9yLFs/q0/OcqhzmrwZpTqQIx2\nGm720WKLiuR/bOdOWXfkkfKaf/898O23st4Vb4L9YE2xU9f0M+GQlZWFffv24c0336y17vnnn8cF\nF1xQK9BMTk6utYzIW5ymLb4xoKSY53xiO38+MGYMg0lfRfKJq6sfst69JWhctUpOQg8ckIBg715J\nc+3QQUZS/eMPOYE9fFj25RwA2ls1zBZOcx5IQFLxkpMlBXbLFutx7KMrzJPtxCdmWQs7d7bKb7wR\n+kp5kJUFjFpnNVMXNjvOr6kw6quuuQ6bNgUWLwbGjYv8eRvrYr/wl5MD7Nsn/1ft2wP9+sn/6dFH\nS3CZk+N6H94E+5E2xU4wnXbaaTjppJPw/PPP11j+1VdfYdOmTbjhhhtqPaZ///7o1KmTX8crKyvD\nJZdcguTkZCxdutSvfVB04zRt8Y0prxQ3oi1tMFJEQwqL80Ab5eVAQgIwaJAMvpOTIwFeRYUENy1a\nWNNxNGki6a+bNgGtWtUOAM1WjbIyCSrM6TwSE63HAnKCn5cnA/8kJcXWyWlAnHyyVZ4xwyrPmgWM\nGBH6+riR8cVbjvKDQ79ytJSFum+cp/TM0lLg888l8OrVSz6H0Z4Km5EBXH01sG4d0LOnpKU7T5nT\nq5ekl2/fLsGmP10Y4qkbxOjRozFx4kT88ccfaNu2LQDgueeeQ4sWLXDRRRcF7DiFhYUYOnQofvjh\nB6xevRqDBg0K2L7/n73zjo+izv//c9J7QhI6hCJIiQoIikoVaeJZsLdTORX19OvZEMHzJ6igKGIH\n71AET06w6ykWVBAR9ZSiZ4x0CAEFQiCk1/n98c5kZzezu7O7s5tNmOfjsY/sTqZ8pn9en3ezaR7Y\nZdpsvApKRVGGABcAh4F/qaq6R/e/VsDbqqqOCl4TbWxsmopwiuFyF+Svf5HpY680OnSA2FixKKam\nSg1K145qUpK4yE6Y0Phlp1k1tLwVETq/jtatpVMfH+/o+JeXyzZaWufUUp55Bnr2hK1bxec4nDj/\n/Iavdy87pcli4zwlq8nNFYt6QoKj7I0/mUrDjdJSuU9TUoz/n5wM/fvDiSfCr786pvsi9sM1mU4w\nuPrqq7n33ntZsmQJ06dPp7y8nGXLlnHDDTc0ip/0l127djF+/HiKior46quvGDBggCXrtWle2GXa\nbDw+URRFORd4F1gPJANTFUW5QlVVLU1fDDAiuE20sbFpKqxKsR8I3iyk2ousstLhupqcLMKvrk5i\nZsvKpMTHSSfJPEVFzvMUF0tHdpSbobGJEyV+q6xMOvpRUbJcWRl06QIZGfDHHyImDx2CYcNaXufU\nEubMgalTATh6492k3HtzEzfIhW++cXz/9NMm9Wpwl6W6qsqRDKpz58aDI83ZEmCm1FNcHNxyi/z2\nV+yHczIdK8nIyOC8885j8eLFTJ8+nXfeeYeioiL+8pe/WLL+TZs2MWHCBJKTk1m3bh3dunWzZL02\nzQ+7TJuNtxjK+4GHVFUdrKpqX2A68IaiKPa4u41NC8dbDJe7JDZWYibIX3uR5eSImExNdVgRIyJE\nONbWirCMjZWYrE6dHHGVxcXQsaNYPrp0MW5HZibMnCkudwcPOpbr3FlE6Omnw4ABcNNNsGCBHaPr\njoIrb2/4/spnHRu+H16b0xTNaczQoY7vY8c2XTvq0Ser0TpkFRVyb8bFQZ8+jZdxlwwqnGOgNXyJ\ncbQiEU44JtOxmkmTJrF161bWrl3LokWLOPXUU+nbt68l6x4+fDiKovDNN9/YYvIY51iKT7Yxxpug\n7Au8pv1QVfUF4FrgNUVRLgpmw2xsbJoWX1xYgoWZIP/ERBFz27Y54hv1lJRAr16y3J498kIbOFDc\nW0ePlr/t2sHIkZ5fdpmZMG+eLNO3L4wbByefLCI1Px/S0uDaa+0XpjsKCuCRuXENv6/46b6G77/d\n/FTTJ5PJ0Yna115zP18IMcpSXVAgImjIEONrzdUSoM9+7C15TziITiMR3RRJkZocVZV01EVF8t1P\nxo0bR8eOHZk5cyarVq2yzDoJcOWVV7Jv3z6effZZy9Zp03yx791jG29O9BVAOrBDm6Cq6tuKoijA\nq8B97ha0sbFp3jS1C4svQf5nnSWWQc19TXNlLSmRDKzZ2ZLNNSbGkYwjOlrm8yUZh2ap1LvgVleL\ndfOii2yrpCe0wYHdWcPokvc1bQ46BNzpOS+z8N2Xmjbu74QTHN+vuqrp2uGCkXvm0qVipTcaQNFb\nAszGQIdT4q1jKcbRI88/L+of5GR26CCfjh0d3/W/27c3HGGIjIzkmmuu4dFHHyU+Pp4rrrjCsiYu\nWLCA6OhoHn74YaqqqnjssccsW7dN88O+d49tvAnKjcAo4Ef9RFVV31IUJQKd9dLGxiYw3CWdaSrc\nxXBpBNuFxRcLaVaWiLojR8SSo9G5M/TuLVbEuDh52X36aWAvO62DP24cvPmm1MfLyZFPuGW/NaIp\nrjP94MCn4+YxeeEpAKzvfz0DN70MNHHcX16e4/uTTzZBA7yjj+c0m6nUTAz0xInhk3hL41iJcfTI\n6687vpeViQvGtm2el0lLE59/F26++WZiYmLo3r07Ke4yHvmBoig899xzREdHM2fOHKqrq3kyTO8f\nm9Bg37vHLt4E5Yu4Sbqjquob9aLyJstbZWNzDBFO1gFXmjLFvi8W0oQEcVn9/nsRllVVYo3UEpbk\n58sxzcqy5mVXUCDur5qYDVUnPBAx2JTXmX5wYF+HQQ3TVV3K3NjqEkpKkpqm83HSSY7vd97ZBA3w\nDTOWALMW/srKpk+85Q5/kiKF28Cc39xxB3z7rW/LHDkiH3A8IIGsrCxmzJhhXdtcmDdvHjExMQ2i\n0naBtbHLtB17eBSUqqq+i2R5dff/ZcAyqxtlY3OsEE5lOYxoShcWXy2kmvjdv9+7+A30ZRfq7LeB\nisGmvs7cDQ4M2rCw4fuQrYtJSroteI1wx6FDEqcGMGUKKEro2+AH3iwBniz8VVXiql1RAevWwXHH\nGW+jOWWMDeeBOb+46CI5Mdu3N3VLAGehbsRjjz1GdHQ0jzzyCNXV1cyfPx+lmdxLNjY2gaOoAQR7\nNzWDBg1Sf/zxR+8z2tiEKQsXuhdM+fmSjCNc6smVlYXehUUvhIxEoqsQMupUWi1+S0sltEkTZq5o\nGWWfe86a4+TrMTAiHK4zfRtGfPUQZ65+0On/xRldSC7YFdxGGNG3rxR2BDmwEd5y1TUPjK5TfZ1W\nrVxO27ZS5sbdtbpnDzz6qCQC8mXbobQSWnGPhBV1dfCf/8iDyxfat4dXX5XMYRbR4oS6zTGLoijr\nVVUd5H1OG39oGW9OG5tmSDiU5fCFpkixHx8vpTj693dkudy3Tzo0Rp1EzWrz3HPSCX7uOetLePiT\n/TaQ7JlmMt16a284XGf6DIBfn3p3w/T8tGwAkg/tDm4DjNAUFogZroWISWicxr+sTGqw7t3rqMF6\n/PFQWAirVxuff18Tb/mSUdZKAr1HmpyKCvjnP6FrV7GQR0b6LibPO08Cui0Wk97KNtnY2NiA9xhK\nGxubIOGLMAl3dzOrMRoVP/lkqfnYpYv342Hk0mqV1cSX2M5AR/d9yXTr7piEy3Xm7D7tOAEpUeWO\nmVQ1tC6n557r+P7KK6HbbojQx0D//ru4uiYliWUyNlZCR6OjYcsW0dUDBzov70viraZyq7biHgkV\nDc+gqsMkLn4BZs+G8nLvC3oiLg6eekpG3iy+d0Lt2m9jY9N8aTnDsTY2zQC9pUovTIwIdlmOcMXd\nqPjGjfCPf/huSbPaamK2gHNZWeCj+1bUAg2n60xvQa7uL5leUwp2OGb4+uvgN0Kjuhq+/FK+jxrl\nyODUgtBEfP/+sHWrw821c2cYPlwEVp8+khx0yxYxlIF/teOaykoYDvVyvVG4KY+cUf9HYpJCm7YK\niZ3T4YEHjMXksGGwYoWcBFWFw4eN68MA9OsH69fDzTdbLibDxbPBxsameWALShubEGAkav79byl9\n502YNPWouoY/bpv+LGNlxzRYLltmCjhbsR/+ikHXgQszAjiU11lCAkQ//1Tjf4Sy5MCkSY7vH3wQ\nuu2GmMxMuPRSiSUeMwYmTBBrv3a+ExJgxAiZb88e727lRjSl+AinAZMGNm2Sg64ooCikD+hC9qrn\nDWet/NNF8OOPIh5VVfySzz7b4X6dlibWR1fuvFMeZH37BmUXmoNQt7GxCR9Mu7wqijIYOAtog4sQ\nVVX1dovbZWPTYvDkChYZKZ+mKMvhS/t9ddv019XTave1YLlsect+Gx9vzX74munW3XEfPrzpyr+4\n5YwzHN+joqCmJnTCrq4Oli6Vr736UFCaSCLNvMyEBxIT5RDHxRkLhNhYqdc6Z44cGl8TbzWlW3VT\n18tFVWHlSnFf/eorr7P/MOgWvjljCkdadXMkxBroZaE77oBnnhGretu2sHgxjB9vSfPd4Ytrv42N\njY0pQakoyj3A48A2YB+gTw3bfNPE2tiEAG+ipm9f8WgKdVkOM/gTFxVILJWVHdNgx1Z5Kttw4IB1\n+2G2Fqi3437LLWL8CJvrTO+iV1MT2m1Pndrw9Y6BX1M6Tb631OyVZkWXv/vd1OIjpPVyq6th+XIR\nkFpCJzeoMTG8n30/v555K1XJGY3+b/oZ1LEj/PnP8McfEuvrS8pdP2lyoW5jY9OsMGuh/Btwu6qq\nxj4bNjY2hpgRNTk5ElPmrp5cU+KPhS8Qq6CvHVNPiXZCZTUxSgBkZQfbbC1Qb8d9zRrPdQubhOnT\npWOu548/oF274G1TVWHuXADKYlJJ7Z5BepjVfw0GwRRdvoiPYJQUCWq93OJiycA6e7akxPVE585y\nTV97LcTHc/AA/GcadHYTAunTM2jePEhJ8StWsqKigkWLFvHWW2/xv//9jyNHjpCYmEjPnj0ZNWoU\nkyZNonfv3o2WC6lQt7GxadaYFZQpwIpgNsTGpiXii6gJdUkOb/hj4QvUKmi2Y1pWJh6Lnlxqm9Jq\nYvXovpki9r4cd61jf+BA6GoFGjJ1amNBuWABzJwZvG0+5Yjd/Mdff24U39pSs1eaFV3+Cj5v4mP4\ncIkjD1Y9Q2/3iGn++EPE2xNPeJ934EARkOefb/iQ8eUZ5PW4p6aa3wcdO3bs4E9/+hO5ubmMGDGC\nO++8k/bt21NSUsKmTZtYtGgRc+fOJS8vj44dOzotG1ShbmNj06IwKyhfB8YD84PYFhubFkdTu4IF\ngj8WPiusgmY6pmZcaq0SdcHqYPszum9kDdXaCOaOe1lZGBUqT0lpPG3u3OAKyrsdNTCLUrMa/Tuc\nykxYjSfRZTbu2d394El8DBsm4wShKCni7h5xS26uBI8uWeJ93rPPFgE5ZIgpS6GZZ1B2tvfBMX8p\nLy/nnHPOYfv27bzzzjtMNHjoVFRU8NRTT6G42R/tmrn00mqKimrJzIzzWKLIauuzWYqLi0l2lw3X\nxsYm6JjN8roHmKkoylJFUaYqinKX/hPMBtrYNGfCMcOmWfzJnmhFxkWtYzp4sGSbdM06uWaN+eyp\nZrKxuiPQciPe9sNK8Wb2uFdUWJ/11p9Mvk6ceKLz72DWIahPxAPwwi2/GM5yLGSvTEhw9ogwkw3Z\nzP2gLwvz6KPy94YbfLtng4qqSmmaCRMaMrDSt697MTlpkghOLQPrihUwdKhPbqeenkGRkbB5s/VZ\nqDVeeuklfvvtN6ZMmWIoJgHi4uKYNm0aHXTuDTNmzEBRFHJycrjrrrvo1KkT6elx7NjxXcM189JL\nL3HyyScTHx9PSkoqffuO5dJL1xpeG6tWreKcc84hIyODuLg4unfvzvXXX0+Byw4uX76coUOHkpyc\nTEJCAoMHD+att95q1GZFUbjuuuv44osvGDp0KElJSZx77rkNwnjlypWNlqmsrCQjI4NRo0b5eTRt\nbGw8oaiq95w6iqLs9PBvVVXV7tY1yTyDBg1Sf/zxx6bYtI2NafTJUowsVeEcr7VwofvR9YYMhTcG\nvow7ysqcLSmlpdJZ0awcrtTWimh77jnPlhdvLltWnzPX/QgGZo47WHdu/M3k24gvv4SzznKeVl0t\naUmtRicEHvi7avoaaul4u3ays2H3bv/uB3/uWcuorYX33hO36g0bvM8/dapkVLU4htfdM6i4WCy0\nVtyPRowYMYI1a9awY8cOunXrZnq5GTNmMHPmTPr160d8fDyXXnopiqJw9tln06tXL6ZOncrjjz/O\nqaeeyrnnXs5HHxXz88//pKJiP5df/j7du09ouDY6d/4HU6bcQseOHbn22mvp0qULeXl5/Oc//2Hx\n4sX0798fgL///e/MmjWL8ePHM27cOCIiInj33XdZvXo1zz//PLfeemtD+xRFITs7m927d3PjjTfS\np08fAC688EI6duzIxIkTef311532admyZVxxxRUsXbqUK6+80v+DatNsURRlvaqqg5q6HS0VU4Iy\nXLEFpU1zwR9REw74I6ysFmN6N6rSUrGOdO7ceL6qKtEh+/eL16SWCFFbXlHEyGBG1FkpikOFt+N+\n553w0EPWdOwtPceq6qi5p/HOO9Zn/Pj004ZSCx9M+ZoPCoc2m/MbTFdCM4Jv1Sro0QO6dm38f2/H\n68AB9/esxp49YtEMOHlpeblkQZ09G/bu9TxvRoa4r06eHLKYA/3AkqoGX2hnZGRQU1ND0axZ0KeP\nxHympVFbW8vhw4ed5k1MTCQ+Ph5wCMoRI0bw+eefE6Ub3Nm8eTN9+vThjDPO4Msvv2TJkhi+YdkU\nKwAAIABJREFU/x5SU/fxwgt9iYtL4/bbtxMREcnmzfm89dZx9Ox5HOvWrSMtLc1pm3V1dURERLBh\nwwYGDhzItGnTmO0SU33BBRfw5Zdfsnfv3gaXVs09d+XKlYwePdpp/iuvvJJ33nmHffv2kZ6e3jB9\nzJgxrF+/nn379hEXF+ffAbVp1tiCMrj4PASsKEoSYpX018HJxuaYw7KEESHGn6QMViVyMBLhAwaI\n26Y+JrWsTLzS8vOlk1ZWBm++CaNHNy6ToVnQPB37YJcb8Ya/4sHbca+rk9+BxLdqbXvjDQvrexq5\nD86da72g1NXtO+PeoXz5SPhnr7TMCuwBb/G3tbUiCk891fj/ZhJtaeuxPI780CFRXLNny2iSB+p6\n9SHigfvh0kshOtqPjQWOPr7TytJC7jh69Cjt2rWDjz6C//s/mdizJ7k9enDixx87zfvEE09wzz33\nOE274447nMQkwPvvv4+qqtx7771UV8c0PCsjIzvQv/8kvv/+af74YyMdOgzi0KE3qamp4r77Hmwk\nJgEi6geSli5diqIoXHvttY3cYM877zzef/99vv32W8aOHdswvV+/fo3EJMDkyZN5/fXXWbp0Kf9X\nv8+7du3iiy++4NZbb7XFpI1NkDAtKBVFuRWYCnSs/50PzFFV1U7UY2NjEp8TRoQB/ojhQAW0u5qK\nmzZJEkZFEYtJWZmIxspKqeVZUgI9e8K338JLL4mrXrdu1tbCrK0VUbt/v6zbG2YFohXiwdNx1/bL\nn469vm3V1fK3Z09IT298Xv0S3HfdJZk1NdatM7mgSX74wfH9/fcbxPeyZbKpqCjRGOHkNRBIPVdf\n8Cb4Kirkb73xqhHehI+lGY937oTHH4cXX/Q6a9XQM/l80DTeLhrdMGhxWhlMLAqP8xuKhG0pKSkc\nPXpUXMo/+UQmbt1Kt61b0aIMfwLuAbkZYmNh0KAGcX788cc3WufOnRIBlZ2d3ehZ2aZNNgCHD++g\nQ4dBHD68FYCePQd4bGdubi6qqhqWLtHYv3+/02+jtgGMHDmS448/npdffrlBUL7yyiuoqsoNN9zg\nsR02Njb+Y0pQKooyHZgGzAXW1k8eBjymKEqKqqqPBal9NjY2YYI/YthfAe2ppmJFhYjKuDjpjOrF\nZEyMiMjcXBGbRUWNk4D4WwtTs4Tm5Yln3YwZkp/DneDzRSBaLR7c1cb0p2Pv2raKChEX+/aJgWj4\ncOdl/LKs3H+/s6C0Gr157bzzGs7Nxo0iJGtqxG0zXMQkBFbP1Re8XReHDkHr1o29kjXMlL7wK+Ox\nqsL69eIL+847Xvej8oLLiH3wPujf33HNFkOHjubvp1BmKbW6tJARJ5xwAmvWrGFnnz7ox74SAc22\n19AJXL9ePtAgwBNmzoRLLoGLL3a7D+BeFGsRVd72QVVVFEXh448/JtLNSF52drbT7wQPK73xxhuZ\nMmUK69evZ8CAASxevJhBgwbRr18/zw2xsbHxG7MWypuByaqq6qOcv1AUZSswG7AFpY2NjSV4cznt\n1k06Kn37inUyPl6SW3TuDL17i7UpP186wfn5cNJJzh5unixoWodywACxhmodPc0SWlUlHetevSAr\ny30H1VeB6K948LUD7E/H3rVt0dFyDJKT5bjn5kpoloZflhVdrFMDW7aAzgrhd2d/yxbH94UL3Z6b\njRth69bwSJIVardrT9dFq1Zw0UXw66/+lb6Ijxd36zvvhM8+8+AGX1cnVrTZs+Gbb7y2+dtT/o/v\nzribwuQujtjdTpCJ7/dTKFyLjQhGaSE9F198MWvWrOGlb75hVmam+bSxmhJ84w15aOkEZffukoMx\nJyeH4447zkkUHzz4KwCtWsk8UVFy/27evIl+/YwtigA9e/bkk08+ISsrqyHBTiBcd9113H///bz8\n8sucf/755OXlMW3atIDXa2Nj4x6zgrIN8IPB9P8Cba1rjo2NzbGOO5dTLelOdLRYJ8eNg59+kkQe\nMTEO0agtr4X+VFU5C0ojC5prh1KzglZUiIDNzZXviiJeYX36eO6gmu3QaiU3vv4aunQxPh5G4sHf\nDrCv8a1GwiYmRvZj714Rla6i3W/LyvHHO4u/Z56BF14IvLPfq5fj+w038O7C0Fj+AsGKeq6+4O26\nABHhRsJHK31RW+ss0L/6CpYvh7Zt5X4FOW8PPii/k2KqSHjv33DGbFHynoiPh/vvZ0niX/n6l1bO\n5w7nc3fllb6J8VC5FhthVby5IXV13HDGGcxv04YnHnuMQaqKoSHY23o6dxaBWW+1PO+885g6dSpP\nPPEEZ599NhMnRpOTA1u2/M6mTa+QmtqF1q0H1GcHvpiNG6cyc+ZMhg0bT2RkitOAkGaZ/POf/8xz\nzz3H9OnTeeuttxpZKffv30/btua7mpmZmVxwwQX8+9//Zs+ePSQkJNiZXW1sgoxZQbkFuBJ4yGX6\nlcBmS1tkY2NzTOPqRqVPugPSt0lMlP9FRUnnVN//0IRNTY38jYlxXr+rBc1dh1JRRFRWV8Nvv4mQ\nzMqCE05w7sS7dlBdRZheCMfEyPyrV8v0DRvEffbHH+HwYRGqrgLBVTwE2gH2Jb7VnbDp0wcOHpTl\nVdVhuQ3IsvL001IfUGP+fApmvhBYZ19fAPbhh5s84ZJZQhFf50p8PJx/vggZo2zI7oSPUemLykrY\ntk2u6dhYOOUUiCo7Sqt/LqD1bbOJrzrquTFdu4ob9NVXN6jR0lJYc7v3czdmjPz2NCAFjvvJ3eBP\nmzZSKmXZMrjtNs/NDYSA4s3LymDtWli5Usy/P//s9O944CPgT8CFwEhgLNAOOAr8BixHRLlhEt75\n8+Hmm50SZ/Xq1YspU6bw+OOPM3z4cC677DLi44v55JN/UllZwrBhS/njj8h6UdyJ3r2fZurUW+nZ\n80R69LiGpKQupKfvZdeu93n11UX079+fU045hRkzZjBjxgz69+/PJZdcQocOHfj9999Zv349K1as\noKqqyqfjOnnyZN544w0+/PBDrr32WlJSUnxa3sbGxjfMCsoZwBuKogwHNF+UIcAI4JIgtMvGxqYZ\nYWXskT62KD3dOelORAQcOSL9mxdfFHHn2pnVLGiax6RrQkdXC5q7DmWPHvK9rMzRsdcsMnrh5yr4\nNBFWWekshEG20aWLuNMCdO8u69bc3g4ebByT6CoerIqtMxPf6k7YJCRIO3NyxLh04ICI+4AsK7os\nrBoB76veF/f++yk96FiHEVZb/vwlFPF1Gp4swPr1GwkffekLPbm5kFqylztL53HZinmwwksjBg+W\nEh5/+pPbYE1PVltNLNbUOLw13Q1I1dXJs6SiwtgCr5+/rs6Rz+nyy4Pr/mp4P6qqNOTzz0Uwrlwp\nQa0+0B1YDywC3gKeBIqQOMoewA3A9UCDHb9NG0nMs2IFnH22YRbmOXPm0KNHD+bPn899991HTEwM\ngwcP5t57/02/fsMaRHFBAezdewtjxx7Hli1P8Ntvz1JTU0lCQgeyss4iIcEhYx988EEGDRrEs88+\ny9NPP01paSlt2rThhBNO4Nlnn/VpnwFGjRpFjx492LZtG9dff73Py9vY2PiGKUGpquo7iqIMBu5E\nBrsAcoFTVVXdGKzG2djYhDfBij3SYovWrRNhlpoqnbujR8VgccYZUFjosKS4uuKlpkqHJjXV0bE0\nik3yZLEqKxNReviwLJOaKtP37nUWfq6CLzFROqtffSUdXU0I19VJO3/5RX537SrtiowUy+fevQ4R\nqtdBevEQagubJ2GTkCDbmzBB8nYEXArHoOO6YW0Z7bOMV+p1X4uKHBbKv/4VFKVJLH/+Yia+LtCB\nHE/W7k2bxDKXleW8bnelL9oc+IWhax/jpP8t9brdTZ3PpfeSacSNPM24bEw9RvvnrmRQXZ1Y+z/6\nyDHQpA1I6e/DoiJZdt48uOkmR/u19bnOryiSNXrbtiC5v9bUSDKclSvls2aN/+tKShITrfY57jhQ\nFOKBW1WVW7t1E7OrEQkJcM89cM89zEhOZoaXTd14443c6GY0R3Pl18oLnXbaWE47bazTPPn58ozU\nJ2s955xzOOecc7zuppn66YqiEBMTQ69evRg2bJjX+W1sbALDdNkQVVXXA1cHsS02NjZNiK+d02DG\nHmVmShKPq66SjqLWCdQS7yQkiCtdTo7EZH36qbOoHTkSHnigcR1KVwuaJ6tHbq709ZKSJMHPwYMi\nKlNSRNhqws/VWqS54x45IkJAIyJC1rVjh3TS9ZZTzYW0okKKvJ90krELaahj68C7sLnsMgs72bfe\nCi+80PDztG2vsbPbZMNZve7rWWc5vtdbOMxY/gYMcLjyBjvTpyc8xdcNG2bNQI6RBbiyUkribNki\nMcq9ehmsW1Vh9WoyHp7Ny6s+97qdTzrdwILke8mL7QnI+XqpHfRxoyXdDVTpPRJcxV9xsZSy2bTJ\nMVCzbp3cU2lpjudIbKxjQOqLL2TdmkjNzZX1ad6RdXUiKLt2lWPid3zt4cOwapXDNXXHDj9WItT0\n6MXmzmP4InIsW9oNpzwm1dy5VxQpzvvyy87TIyPhhhvkQap/YPlB0MsLmaS0FD755Et+/fVX5s6d\na+3KbWxsDHErKBVFSVdVtVD77mkl2nw2NjbND3+tjMEuaxAfL53Zdu2kk6dPvKNtC8Ri6S4GqVcv\nz7FJ7ixWVVWyD4mJ0jnJzhYrRVGRdF6TkqR8SEaGdFb1MYOlpQ4r6dGjMq9moTxyxBHTqY/n0lxI\nc3MlwcnOnbL/mgCOj3dYg4zaq58O1lrYgpo4xJUHH3QSlON+mcsLoyb7vq8VFY4SCBMnOh0sdwJ5\n506JmS0vl4yvEJpMn54wcjMtK7NmIMedu6fmYt66tczTujX88G0NMe++zVV5s4nKccTpuRnXYGHb\n+/lP19vZVdaG4mK5R5KTITVCBmkOHoTnn4eZM30roaMJxfx8Ef9VVXJMiotFKGZny72Uny8u67/8\nIut0NyC1cSOcfLL8bdNGlktOdrSluFieZ9HRXgSQqsqNq1kZV650FPD0h1GjYOxYsTL269dw/eqP\nTfv2kOnruXcVlBdcIGVZPNR/NEtIyguZaMOjj37J999v56efHiUurjXR0TdSUND0mZttbFo6niyU\nBxVFaa+q6gGgAONkYEr9dHfvFRsbmzDGXyujL66XquqfW542b0SE8XKugsJdTKCnWEF3Fqv6ut6U\nlsr01FSH4NNiscrLxZJ4zTXOx6i0VETuyJGNYyg7dxZDgaI0zj6bkAD9+8to/syZ0sEtK2ss5Kqr\nRfxoMZ56rIyt0xNQ4hBfaN3a6We7o1v5/Xc/4ggv0YX2v/6607+MBHJFhVig2rWTrL6hzPRpBv01\nvHSpNQM5Rtbu3FwRk22Sypjwx8tctWsWmZv2G6+gnrrWbXmv73Q+73I9GVmJREZK3OG2bXKt6t3F\nQa7p44+X7Ri11dtAVd++MiizZo0cE33JIO0YtW8P//uf3COdOnkekBo1SuKAd++WQR9t8EcTqVoV\ni9i6cvrsW4c6dSWsWykZtfylXTuHW+pZZ7l/kLoQ8CDeqFHy97TT4IknpJAu1sTAh6S8kAe0d9ny\n5Q+xf/9aWrfuy/jxS/j55xR27Gj6e9jGpqXjSVCOAjTL45khaIuNjU2ICaT+oTavEZGR0klfsEDq\n12n4YvEJVWISI4tVRIR0fNPSHB3KhATpEJ10kojJQ4ckAaI7q2dsrGN+fYdWUaSz7Zp9VtunoUPF\nxc6d2N+5U9oLzuLHqtp1njCTyCdgsrLE/FtPUqJKfr5ivk5fbS18+KF8P+00OREuuArkN95wrjsK\n4VdKBKyNodVb55MrDnLKumf4f+tmE+GlkERd9olE/H261CaMiiICGF4Ah3QCPS1N2rhnj0NM1tXJ\nsY6JkXsqNrZxW83sX06OuLP/8EPjkkEaWgbo6mrvA1JduojYWPa6St63+xh6+AtOK1nJ0NLPSKs6\nAN97Po5uGThQBOPYsWLO12qn+Ikl575NG/HzPfNMUBTLYuBDWl7IDdq77KabVjf6XzjdwzY2LRW3\nglJV1a+MvtvY2LQMAumgeHIVra4WMblpk3QeOnf23+IzcaKsZ+tW6ZzEx3sWFP6MtLtarGpq5DNw\noHRGXfc9OlqsWUOHGneGXIVwdLRzh7dVKzkm+/d7LmbuLftsRIS4k2kExQW1KXjmGacTO2PCf3kz\nb7B5d9tbbnF8/+wzj5tKSBAL+saN4V9KBCyMod22jcQ5c3h50Utet7m9+2i+HjqdXV1Hsidf4dFH\nRZfoMbJg797tqLWq4WpJdG2r2f1TVeOSQRq1tfL/U05xHihQ6mpp/8dGum9fScfclfT5fRUsggTg\ntvqPaeLjnRPgHH+8xwRDgWLZua+3UloZAx/S8kJutt8cygHZ2LRkTCXlURSlL1Crqurm+t9jgGuB\nHOBxVVVrg9dEGxubYBBIB8VVNLmm5t+3T0al27RxrMdXi482en7kCOza5bBIdOkiA+x6QRHoSHtm\npsxbWSmJPKKjRVT+8Yf8350l0J2A9ZTIJjPTe8Igbx2kbt3kGM+ZI5afoLmghpCGYzn6fPRjAWkv\nP8mNb7xhzt1WVWHhQvmeleUcEOdhuxD+pUTAz/qUqio36qOPwgcfeN3Gp62v4uWMqeSlnugU92bG\nRVFvwc7Kkhjm1q1lWVdLotH6zO5f27aSPOnbb+V5oLf2x1YUkbx+NZfXrKTXVyuJ2r7F6z6741B6\nD7Z1G8OPaWPI7zGSux9p1WQDNlZnKLYyBj6k5YUMaE73sI1NS8VsltdFwNPAZkVROgPvA6uBW4EU\nYFpQWmdjYxM0Au2gaKJp2zbpLFRVyTqLi0XkxMWJaHJNxmBmtFg/et69u2QK1DKgpqU1FpOBjrTr\n13HccY51KIqIQFV1eKyZybJpJpGNp4RBZjtIdXWNrUXhgC+W4saDAQpOeSjffBMw6W47Y4ajDav+\nS+kB721oTqVETLmBn1pHwhcfwaxZMqMXym++k3e73cWnOZ347TfJftqnJwx3sST66qLoj8u6mWWy\n+6r8Z942Et9fyaTNKzmj5DMS1DJzjTJixAiHa+qAARQciTK8b++2WAD56klhZQiA1Ra9kJYXcrN9\naB73sI1NS8WsoOwNaBHoFwPfq6o6QVGUM4FXsAWljU2zI9AOiiaa7rpLrIhancR27UToZGQ4l9fQ\nMDNabDR6HhcnwtJ19NyKkXZP7qVxcZIs59JLfcuyaSaRjZFI0jqb1dXeO0iKIqP+gSTT0G8z0PX4\nail2Nxjw9fHXM2zLy40X8MZDDwFQGxnN7bPammpDqGJ1rcLV+h2jVnLipn8x5KtZtC7ZBZ4OW3Iy\nTJ8ubsH1wY2lBVD6rvy7Uye5ZwsLHddYIPG5ZmppGi3z20+VJPzwHYOLPqPHzpV03PeDbxvW07o1\njBlD5YixFJ96Fgk9O5KQ6N41NZgJqFzvj5oaiSu8+GKxtHrDn+NpRDAseiEtL+RCc7uHbWxaImYF\nZSRQVf/9LGBF/fftQFvDJWxsbMKeQDso8fHixnbOOWJBTEyU3wcOOFwxXZMxeBst9jWDbKAj7Wa2\nt3Ej/OUvsg5fs2yaTWTj2tncsUM+Z5zRePmdOyUW6b77HNP8SaZhVVIObV2+WordCfnv//Qww+bp\nlNGhQzJC4YkXX2z4+vcLc32yVlvVUQ8FmVFHmJXwAjELZhNd5cUy16MH3H8/XHmlYRYo/TnLypL9\n7tpVjtcnn8hASlyc/y6Kniz1E0//g4xPv3CU2agPCM4EnvRtM+xr258N6WOoHTWG8x8fQqma0GiA\nJLb+YxarE1Dpj3VamtT5zMuT47JoEVx/feOM0a5YVcInGBa9kJYXMqA53cM2Ni0Rs4LyF+AWRVE+\nRASlZpHsiJQUsbGxaYa46wScfLLkboiP97x8Xp6UX9Mn3ujUSdwwDxxwZHjUl8jwNlrsy+i56zRP\n81qxPSsErBFGYiwtTTr1K1bAuHFiXNJnec3ODiyZhpVJOcB3S7EnIV+S7FJg/R//EMuaJ3TJeGL7\nHmeqDRpN3Rn2SF4ePPkkPPtswyS3RuQhQ+Q4jR8vIw5eMDpnyclSrnDXLjjxRDmsfgmr2lr4+Wcy\nV67kxpUrufHzzx3/W+TbqtSYGGpHjeHNw2M42H8Mh9v2RlWc96+2VgZg9ixy1BGFpq8lqqEd6/R0\nCQWoqpLnY6tWUifznXfkVHu776ywoAbLohey8kJuth2297CNzTGAWUE5FXgPuAdYoqrq/+qnnwf8\nNxgNs7GxCQ36TsDu3ZJVfsMGR5k1dx2yggIpTn7woHiVRUWJVXLvXnHFjIyUjlJdnRhHzI4Wa6Pn\n5eWybHS0s3FFP3quqo5p/o60+zJar4lYq5M/aJ3NNm3E0hsdLR37c86RJEHffeeoPR4RIWJSX4fS\nn2QaViblMGtVvuACOWeJid6FfEliW5JK62sgzp1L6d+mu3fLffvthq/zbzCuD+hN7DdlZ9iJn36S\nBDrLl3ufd+JEmDYNBg3yOcOot3PWubNzyR9DiotFHX32mVgZc3N9aoMT3bo5YhlHjnSySCtA4QH4\nfBp0bme8eGWlZHQFibsOp1qi+mO9aZOIyZQUx/+1Wo1Hjpi77/Qu6v5eo8G06Plq3bXK5T5s7mEb\nm2MQU4JSVdU1iqK0BlJUVT2s+9c/gACi4W1sQodVL62WSlmZGILMWqzefVc6cccfL52S1FQROykp\nEoelZSsFR7ZUM6PF5eUSP/jee47OQKdOkoI+IaHx6HkgI+3aNTFgQOM6hEbrsELAGrVh9WrpTK5f\n75iu7fOZZ4rl4oEH5Lq9777ALaRWJ+XwJg4rK8WS/be/OazeAwaIeHZ3LD8a+wyXvXu5/Dh8mNtv\nd/yv0SDHxRc3/O9AxwGGbTAr9kNSa1NDVWUEZ9YsuQi8cdNNMGWKZI4KEFOWeVWl7JedJGxc6XBN\nPXrU/40OHeooszFoUOMCkh7wNvCTkyMxiV27+p9ZOlhox7q2VtrimnxYMyanp3u+76x0UQ8Hi56V\n+6MnpPewjY0NYN5CSX1pkMMu03ZZ3SAbG6sJ1kurpeGLxUovSNLTxUpZVCQdJa12465d4jo3darE\nYZkZLdbcMOvqRKDW1Mgy+fniQtuzp6PEh4Y/I+2u10RFhYjeigr3JUIgOK5ieXkiZmNjHcdPs/Qe\nPChZcqOinAVtoBZSq5NyeOrsl5WJVioqEj0RFyfzbdokx1xRnK2tGp+3uoTLuLzhd8d2tURERzYe\n5MhxlEmeO/7z8M70WF0Nb7wBs2d7N/9FRUn84223BeVB1TCoVlVF1u/fc9yOlXTfsZLO+d85z/iK\nDytNT3cIxtGjJTDTotqMnu69qirJNt2jh7FGtaoOob+Dktq8FRXy19Ubua5O/sbHy31idN9Z7aIO\nTWvRC8b+2NjYNB1m61DGAX9D4ifbAE6PQ1VVT7K+aTY2gRPql1ZztYL6arHSCxKt1pi+DiWIG+xt\nt0mf0iyaqO3RQ9qiX+eRI9IRcz1n+pH2r78WERoVJW0yGml3d00oiggc1xIhruuw2lXsiy+kzRkZ\njo6m3tKbkyOZc61y8QXrk3IYdfarqkQ/5eRIJ/n44x3HVRuo0IR8XJzBsUx27nX32vUpW3tOaDzI\nMXlkwzypF57Fb+GU6bGkROpizp4tF54nOnaU+MfrrrO+kQcPyoWmWRn37CERzwlh3XLiiQ7X1KFD\ng/qgc32eurv3du+Wez4723g9gdYhDHRQUrs/1q6V33V1zqKyuFiuWW2a0X1npYu6K2Ytela+34K5\nPzY2NqHHrIVyPjAReBNYB6hBa5GNjYW8+y4cPiyxaVrnORgvreZuBfXVYuUqSBISpDTISSeJkIiM\nlD6smVT4+jboRa27dWodn9JSsVqCoyOmGUMUxSG+XPFWImTAAM/10qx0FSstlQQiPXpIkkstiZFG\nUpJYXiZMsMbFV8ObtWf3btkfXzrf+rqkhw/L/tTUyLoyMoyvhW7d5DwNGOCI2QXZ9pgx8O2HV3H6\n9qUAnLFuLlt7TmiYp317yF/xs2OhZcuYeFYTZ3rcvx+eegrmzPE+74ABIiAnTnR/45mlrk52XItl\nXLnSYfbykVolkl87jmF7tzGMeGQMrYZmm0rwYyWenqdG994ZZ8jfWDdpXN0NkJgRSFYNSmr3R2Ki\nDBSlpckpKi6Wdvfp4/7+9cdF3UrxZ/X7zddM3s1xkNbG5ljDrKC8ALhEVdXPvc5pYxMm7N4NixfL\ny0gTGvpYPKvcoFqC646vFit3giQ6Wj75+b5bg9yJWm2dGrt3S/bTt98WQVlbK26VWVliMNGyoRod\nfzMdmQ0bYNIkz223ylVM2+fsbKmMoXcb1jqbUVGScVfDKgup63oqKx2CMKr+zRAba77TmJkpGUH/\n+ldZpxYrmZIi7frxR7Ea649TZKSI+EsukWOuP5YHDsA7A2c3CMpuu1Y5bS8yEma8188x4bLLyCTE\ncWG//SbicfFi7/OOGycCctgw/9xAS0rEBK8Jxl9+8X0dGllZDa6ph/qN4p2vWxser1ZN8Nwy8zw1\nuvdiYswPtPgikKyypGkDUf/6F7z0krQpPl5ORc+eUvvT3f3ry4BfWZm14i8Y7zcz+1NRAQsWOHuG\nN6dBWhubYw2zgrIM2BPMhtjYWElBgeS5KCiAtm0dHfT8fEdcmta58NcNSqMluO74ExtoteunGVFb\nUQFz50pnKTpaXEF//12sajt2SEKfUaNk9N9d7CdYFzsYaPKHhhp5scZuwx07itVSb92zykKqX8/q\n1RLTWFMjndu+faVNvnYa16wRq+Npp8k5Afj8c0cWy9xcsTpr6AcqXI9lYiIUJrn3l04+tMvxQ1dS\nI2hxYaoK33wjGVhXrPA+/7XXwr33ysE0u/7du+WAaaLx8GHvy7lDM/OOHQunnGJYhxIgA7ixd/hk\nxjT7PHW9XlyfR9rz4tAhKc2hPY98EUhWJ6/KzIQ774SLLoI334Sff5bBmyNHPN+/Zge0+pEpAAAg\nAElEQVT8Kipg3jxrxV8w3m/e9qe4WJ5H0dGSbbg5DtLa2BxrmBWUjwN3KYpys6q6cySzsQkftAyk\n+pd8RIR0zouKpGPbv79MDyRJh9UdjqbEV4Hoa+yiN8yI2shIyRYaGyuWr9paOZ+aW9SOHdI569dP\nLNGuxz8YBb0DwXWf9S6+MTHiQTl4cONrxyrRpK2nslJ+d+3qbA32pdOovxciIx3r6dRJEgwlJ8u6\nTjrJXE1S7diU/SuFhGrJLJp2ZBdH0roCcNuLuoC5225rtHzAmR5ra+GDDyT+8ccfvc8/ZQrccYf7\nhwFIUOmPPzpcU7/5xv/2paY6J8Dp1i2gBDjhkBkzkOep9jx69VXxXjh4UKa3aSMCTsPX5GPa/43w\nNzYzKwvuvlusiWbuX7MDfp9+aq34C9b7zdv+fP+9DAJ07WrNftjY2AQfs4ERY4DLgF2KonysKMoH\n+k8Q22dj4zPaSzArS15AWu1ADa1ju2dP4Ek6fOlwhDtah2zwYIl/27NH/p52mvcRYTOxi2aYOFE6\nV/n5DnGnpdqPjRXhU1zsEHwVFXJsq6ocbpoVFdL2NWscQkk7/lpHRrNqlpY6LGnQNIlbXPc5Olrc\nQPfv927pTUiQDrOnsigHDjiuU3fzbNwotfs8Zcgs81Igyt290KePiOOSErk2qqoc59Tb/k2cCO+O\ndFgfB3/3NLW1cGTrQWJr6hs0fbo1mUQrKuDFF8UkoihyQV14oaGYrEtrxR93P8HB7Udlp1QVHn9c\net6HDon5afJkh8jTPjExEvA3Y4Y5Mdm3r9Ra+fBDCbzTtqWqMnKibad7d8uyqTYlVjxP8/LEyv6n\nP4kr9ZlnykDZI4+IAfi77+SaNsL1WtcPQBkR6ACUt/tXj6dnY1KSGKJ92TczBPP95m5/du4Uw/zg\nwcbL+bMfNjY2wceshbIAeDeYDbGxsQr9S7BPHxmpPnpUXl5abomyMunb+ZOkwyjZQbhYvALFF8uX\n3nUsK8u6NPbu3DmHDIGHH5ZzqJ3HI0ekbx0ZKf1pLQ9JQoK4v+ozpGoMHy4147/+WoRbRITogFat\nGpcksRqjaycY9eB8iRGzygrj7l7QsgDn5MDWrSJwo6LM7V9mJoz719XQ7joATv/+GV7Kfpp5K093\nzPTII+5X4InCQnjuObFA6kcVjOjVC+6/n80DLmf2nEgOrPmNIUtWMnTB5QytWElUXbV/bQCHlXHs\nWDjhhMAT9LihOWSgDvR5qlkf9ZYtcFi23npLfvuSfMyTJS0vTyzuofDb8vac0J59VlpTg/l+c7c/\n/fqJt4trrU6NQDP22tjYBAdTglJV1UnBboiNjVXoX4JGJS3q6qSkha+Cx10n/YQTpLMcNqUKLMCM\n+1uwYkfdidrSUrGg1dXJp6ZG3F3j4sSTUOtoKIp8T06WBDNnn+2cjGPBAhGZsbFigVVVma9zZ3jg\nAc/XhNlOuet83gSelXF/vibRsKrT6KnzrSXBmjDBcwZdIzLbOjfquUdLSFi0XX5cd515y9yuXfDE\nEzB/vvd5hw6Vxh46JDGNP/0E11xDL65hibmtOejY0SEYR42SoO4Q0pwyUAdS59WMe+bP9UmBfbnW\njUIBiouljYcPy3Po9ttDc0w9PSe0gSErxV8w6u7qMdofVZXj2VIGaW1sjhXMWigBUBRlEHAc8KGq\nqqWKoiQClaqq1gSldTY2fuD6EnQtP3HwoFi7fKmP6KmTrpUiabJSBUHEnYAKReyoUZKWoUMlseau\nXeKhWFwsFsbaWoe7aGqqaIySErGEnXWWYx36OpcgQlQfr7hmjRijXDHbKTea74QTpM21td4FnhVx\nbL4KfV87jZ5Etbc43MsuM9fhbrSN0aNF2AEJF453zLhwofuVbNggCXQ0s5QnYmKcrZRr1zqKBprg\np7hT2dVjDOc/P0YOlrv6FW4IlvWwOWag9jfZlxlLe1SUeBHn5poXSK6WtIoKSRjTqhWMH+85q3Sw\nMHpOBEv8WZ18zQjX/QmmiLWxsQkOpgSloihtgfeBU5EalD2BHcA8oAL4mxWNURRlPPAMEAm8pKrq\nY1as1+bYw+glGBEhI8ppab6/BL110vv2lY5FSEoVhABvAipYySq8MXy4JPQsLhbxqJ1XzWIZHy99\n+eLixhlSjUSwviSJOxFstlPubr633xbX3AkTHMclWAkm/BX6ZjqNZkS1r+67Zi25F81aQPrnPWWC\nFns4bpwjcFZVJSPJrFk+CcEGvLi81iUm8Tlj+LntGDZmjmFv3HFOltGaGnHlHZINmT5oyWBbD5tj\nBmotE+pbbzmyoIL356lZS/sll0gmVF8Ekt6StmCBPDPCMWFMMMSfdk8vWwbr1sn5iI4O7vstFCLW\nxsbGWsxaKJ8C9iMZxvN0098EnrOiIYqiRAIvIAmA8oEfFEX5QFXVXz0vaRNqmkMsjtXF57110nNy\nJBwrXFLvB4IZAdVUsaNr1kiMTYcOYmUoLZXEO3FxkJ4uMbMDBhhnSC0tFYtkRYV0iFyrKLgTwWY7\n5Ubz1dY6XHVdS2aA9VmA/RX63u4XMG/pMuO+aySksrMlg6+xJbcHT7vuzEUXial5+3ZfDpF7evVy\nuKYOHy6jEfXk5sBtE90/AzTRs3+/+WdLsK2HzTEDtdF10beviEBvHiVmLXRZWf6/G1RV6iJ27mz8\n/6Y+psGMx964UZ5jNTXyXA3mYGkw9sPGxia4mBWUZwFnqap6WHGOV9kO+OA46JFTgW2qqu4AUBRl\nGXA+YAvKMKE5xeKA9cXnzXTSzWbsC2fMCqhQuyVpHeRu3URHDBok1+R//ysdvaQkCXmLjGycIbWg\nAN54Q5ZPSBDjUqdOIkC1NhqJ4NJSSd6TmelwjdWjdSAvuMC4815dn6vFqGQGWG/JNRL6VVXSDs2i\n67qPGpmZcOWVoqlUVUL9tDYtXOi7pcud+647IfXOO+JBcM45xpZcFXB6+0ye7OPRQVJ+jhsnO9mv\nn+kEOK1by1+tNI4rNfVBH76ERwbbethUXgT+4u66yM0Vi6IZgW3WsuXvu8HfQSlP67NicFa/nlDE\nY2/cKAm2guneG7R6sjY2NkHBrKCMB4x8glojLq9W0BHYo/udDzRKHK0oymRgMkCWL0FwNgHRHGNx\nNKwqPn8sJAnwxaoRarck1w5ydLRsd8wYR9Kl0lIpGXLmmY6RbP2127Ono335+RJPO3y4XB+uIrig\nAJYskf3VrgFXEaq15cAB598armU4qqqcp1l97eitNOnpzsmotP9feKE5i6E2WBQfb62ly19L7oGk\nbrQt2el9A55YtUo+993n02Jt0tL4uiadA3nplCekUxyVztHoDI7W/91Tmk7bPulkbk2HQ+ly8JOT\nxf/aIGlQsKyHzTkDtRUC28iyVVMjYwcXXdT4HeXLu8HfQSl367JicNbbekIdjx0MwqE+qo2NjXfM\nCso1wHXA9Prfar2L6lTgiyC0yy2qqv4T+CfAoEGDQpCs2wbC48XSVAQ701044as1NpRuSZ7KUgwc\nKC6TeXnwzDPO29Zfu+npYsUsKZH+fnGxiOL27RtbNB95RCxm8fGOFPauIlTrQLZpY9y2mBjZ7p49\njjKEeoJx7UycKKUTV6wQgaa1/ehR2Z/Nm2X/tGPkbbDopptkPissXe6ElGbJTUkxtuTW1sLLAxcw\n7esJKFp9hFBy5AhtOUJbdkClm3n+AM4wt7pE4GUP/6+MSaI4JoPoH9KhbYZcuB4+h9R03l+dyroN\ncahKBDU1cgx79pQMxuH+3LJSYGuWrXHjpEznzz/LdZyT479Hjb+DUt7WFcjgrD/r8cUi2hxdpm1s\nbJoOs4LyXuArRVFOAWKBJ4FsIBUYYlFb9gL6yIRO9dOaBc0hrtBf7BfLsZMkwFerRijdkrwJ+4IC\nsUzqO1Gu165rGZm6OnHdmjDBOQOpJkK7dZNyhXv3ithJTZVSJZoVTetAtm7tvm19+sCOHZIVUquf\nWV4u2/cnQZQ3MjOhd2+5XktLRTSDxI717i37ox8A8jZY9EX9kKEVli53AxbuLLllZXKs8/KgvHwc\nm6+uZehQP0SBqspKi4tFVRcWOj6HDjn/NpoWYmKrSoitKoH/7Yb/eZ8/A/hL/ccnXkb8fRISvIpW\nMjLko/1OS5PRFu2iDgCr3XMLCsRN1qoauf4MSplZl37/fB2c9WU9/lhEm5vLtI2NTdNitg7lr4qi\nnAjcgozPxiEJeV5QVfV3i9ryA9BTUZRuiJC8HLjSonUHjeYWV+gP9ovl2EkS4K81NlRuSb4Ke6Nr\n17WMzIEDkvRDO4euIrRPH7FCHD0q20hOFotjRoazIHTXtsJCKXfSqxesXy8lTw4edFg1333X2udF\naSn88ouI67o6R+ynJtpiYx0DQKrqfbBo40Y4+WT5G6ily92AhWbJ1dxzY2JETK5ZI+2PiJDjl5Xl\npyhQFNnx2FhLDnRBgcTptm3rYXXV1XIy3IjV/31VSPHuQjIiCokvl09C2SHiywuJUGsDbqNPlJXJ\nR+8fHUxiYpzEanpaBpM2i2itSEinPN75UxKTTlxVK5LiEjDTbbHSo8bfQSkz63LF7OCsL+spK/PP\nItrcXKZtbGyaFtN1KFVV/QN4MFgNUVW1RlGU24BPkbIhi1RVzQnW9qygOccV+oL9YhGOlSQB4WyN\n9VXYu167+gQ1MTEiVKKiGifiAce17tqBBOmknXQSXHON+ZIZIAlJu3aFYcMkM62/zwtPHhH69kdG\nNrb+6QeAXKe5ok0fNUo6zYFeE54GLPr0gZ07RaRHRMjxrqhwaME+fcLHzT4z08S5io6WnUlLg+7d\nG/27/S3wcv37w+iYmrkeSkulCHyHDvDzhhoK88voEH+Y5OpCUmoKSaoqJKakkF5tCjmuVSF9Wh8i\nuqSQqCIXS6yXsimWU1UFf/whH6QjMhRgq5flXjO3+hvrPxp1SiRlCRmUx6dTFpfO4c/SqVmdTlQb\nD9bY9HRITKS0VG4gXwal3GHV4Kwv63n/ff/E9bEU6mFjYxM4pgWloigxwAlAG8DJx0VV1RVWNKZ+\nPZasKxQcK3GF9ovFmZaeJCDcrbG+CHvt2v3qK3FV1RtgOnUSF9YRI5yXNxpA0Xcgy8ulH37zzY23\nq2/b/v0ihlq3lnUuXCglTnr2dMzv6/PCjEeELwNAqmpu3i5drLsmPFlyhwwRt9xNmyTWMyFBSjT0\n7u18rFuCm70V95kmLGprIW9fFMmpKeyPSGF/XJeGeYri4MwR8EmRlDaKsup41dbKzVBUZOwqbORK\nrH3KyixqhDki1FqSSg+QVCrZs7oA/Nvcsm3wHO/awKsuvw2EaqvkdM7bkEHk3gwqDSyx5ZFJoMaQ\nlNQ4kZMes/e4ogRmEQ3nwUUbG5vwwpSgVBRlDPAv5NnqiopYFI8pjrW4QvvFcmzRHKyxZoX98OEw\nf770YVu3FotkTQ1s2SLLP/CA8/yeBlCio0UoDh3qfttGom/AAPj2W0NDFWDueWHWI8LXASCz8yYk\nWHNNmBFSu3bB9OkSw+pqYYWW42Yf6H2mCYuK+lzrruGMWv6i+HjRfZYer8hIaXBSEnTsaMkqje6d\nhusivU529OhRj4K15kAhm78rpFXdIRLqXYljq4otaZ9PGMTfRiO10Lzyiud/GyV1qohNqRemGRRG\nZBDXIZ3EqelcsCGd6HwD8RqfTmVsCqhxlJQohtdFuA8u2oSIgwcdtZNsbNxg1kL5AvAh8DCwHxGR\nxzTHWlyh/WJpWpoq6VNLsMauWSMZYF0tlL16SaKdNWvkux5/B1Dcib5vvxWrW8eOxsfTzPPCF48I\nX9rv675acU14E1KtW3vO99LS3Oz9Paba4MHatfK7rs75mBUXy/WhTQv34+X5uohwHKh27dyuIwpY\nt9D9IEl+PgwebMJ7SFXFpaC4mMPbC1nyVCHK4UI6xheSVHmI2NJC1EOFpNYWcmKHQ8SU6ITtkSN+\nHgH/ias8SlzlUVod2UUHkEwUP8C5Zhb2IGAzaexCzCLgziTfEzmlpoqvvwWJnI5VVq9ezZlnntnw\nOyIigpSUFDp27MjAgQO54oorGDduHIpBuSIzbNq0iffee4/rrruOrl27ykOlc2cpEHzzzXDWWS3q\n/CmKcgdwRFXVxUHcxkhglcvkUmAz4tvwvKqGOnDeeswKyvbAbFVVdwezMc2JYzGusDlYrVoax0LS\np2CieRJ06yb3qRbzpCWpqa01tgz6O4DiKvq0mM327aWUR04OnHJK4+W8PS989Yjwpf1NOVjkTkjZ\nbvbe0QaZxo6V6yoxUYx3aWnSBywudsSeNrfjFeighSUeNYoi4icujlatW3P1C3KPfGxwj8T4UYak\n0f12msoF51STGVfiPQuxZo09WEj1/kJiSw4REepx/pIS+eTlhWZ7cXHeBavrJy1NLiR3I//NmCuu\nuIIJEyagqirFxcVs3ryZ9957j1dffZXRo0fz5ptvkpaW5vN6N23axMyZMxk5cqQIyqNHZWDlnXfk\n0707TJ4MkyY5Mss1b+4AdgGLQ7Ct15GwPgXogJRjfBqpmjE5BNsPKmYF5YdIha0dQWxLs+JY7vC0\nBKtVc6ClJX1qCiurqydBdLSzC6Uny6CvAyh60aeVu9BbRGNiJC6wf//Gbpzenhf+eET40v5wHCyy\n3eyNMRIj2dnSr162TI5PfLxkxO3ZU7THsXa8gjFIYuU9YrwuBYgB6sWQCaLqP2Vl7tukf4+43kcp\n8dXcf0cpGRGH3ce7uouLranxb+f9paIC9u2TTyiIivIuWI0+iYmybJA5+eSTufrqq52mzZs3j3vv\nvZd58+ZxxRVX8PHHHwe+ocOHnX/v2AH33SexIhdeKIWKR46UARgvqKpKaWkpSS3J0uIbG1RVbUgt\npijKAiAXuEFRlAdUVd3fdE3zjqIoyaqquo0fMHvV3wwsVRRlIPALUK3/p6qqruHoxwR2h8cmmASa\n9MlIwDWFqGtKK6sVngRmB1A00VdZKW60lZVSYiQiQixGR47Iu/m336BvX9+eF4Hshy8DQOE0WGS7\n2TfG3SDTr7/KuV+6VOqG/vyz9GmPHDl2j1ewBkmsvEesWpen9Xi+j6LJyEwD0sSNwyLcvmdqa0X9\nHjniWxKnwkJHoHCoqKmRgPn9IerjR0R4dx9OT3eMUmrHKylJRigVhcjISJ588kn++9//8sknn7B2\n7VqGDh0KQFFREbNnz+btt99mz549pKSkMHr0aGbNmkX3+uD+GTNmMHPmTAAnt9prcZjvKpFC9Eur\nq9m+fDlxy5czLDGRhyZPZsD990s7cbjmvvLKK5SWlvLCCy+wfft2pk2bxowZMwB4++23eeihh9i8\neTNt2rTh+uuvZ8iQIYwZM4ZXXnmF6667rqENlZWVPPnkkyxdupTt27cTFxfHsGHDeOihhxgwYEDD\nfPrtqqrK3Llz2bZtG+3ETb6t/pAriqKZ9bvovgN0U1V1l6IoZwAPAAOANOAQ8BPwkKqq3xEgqqoe\nVRTlW+AioDuwX1GUDsDdwFlI/rB4xJi3BJird41VFOU6xGF9DJIoexLQDnGlna2q6jLXbSqKMgi4\nHxgGJCPW2VeBOaqq1ujmWw10BUYBj9f/bYVYVw0xKyjH1e/cBKAM5xhKlcb5zY4J7A6PTbAIJOmT\nOwuGokh9Qo1QiLqmtrKG0pNA6zjl5IiYTE11/C8iQryvSkvFDVE/yG7meXGsekSEo+W0KfE2yPTD\nD3D33Y0tVqWlUtoi1DHYvhKMAa9wGiRpKkJ1H3kdPIyMlFG25GSJyws2dXWOTMTeBKurqNVGCENF\nXZ0cwIICc/M/9ph8DLgeWAt8NGwYQ4EixMUwD/gL4l/5e0EB85cvZ/Abb/BjdjZdOnTgQkXh9+xs\n/pmTw/QxY+jTvTv8/jvHffABIJak8cA64M/AbfXrXlhaypCnnmLN888z6LLLxGpZn0L86aef5tCh\nQ9x44420a9eOzvXnffny5VxxxRUcd9xxPPjgg0RFRbFkyRI+/PDDRvtTXV3N+PHjWbduHX/+85+5\n7bbbKCoqYuHChQwZMoQ1a9YwaNAgp2VefPFF9u/fz/XXX09aWhqvvfYaeXl5nRRFuVJVVS3H85+B\np4ACYJZu8YOKovQCVgJ/AM8g+WPaIsKtHxCwoFQk0LVH/U/txJ8EXAi8C2xHcnmNBx5DROdNBqua\ng+Tqml//exLwuqIocfrYUEVRzgHeAbYh4wKFwOnAQ0B/4BKX9SYBXwHfICLUo4+zoqre/e4VRckD\nlgMzVFUN8V3mnkGDBqk//vhjUzcD8OxyYmPjKwcOwLRpnt+5e/bAo486hzEYuTcVF8Onn8rzffx4\neZf7Wu/OXxZakRwjQDy5fFm9/88/L6UZ2rZtnLfg6FHZfrt2MGeO9B98eV6Ecj9CjSYkNJpC+DRV\n4iuz6GtOurNS79sn1592TTWXGOzm0k4b97Tk55NpVNU5E7EZ12Htc/SoqU2sBs4EngDucTPPBmAg\nokreBv4G/BNRQP108+0GTqyfb3H9tMWIGlkFjHRZ71PAXcAniJVJ4yhSU7B7ffsAVnftypm7dtGq\nVSt+++032ug6KjU1NXTp0oWamhp+++03WrVqBUBJSQknnXQSO3fudLJQPvXUU9x111188sknjBvn\n2PLRo0c54YQT6N69O6tXy5Y1C2X79u3Jzc0ltX5kt6ysjMTExBrgR1VVT9fWoSjKLmCXqqpOu6so\nyu2IkBysqup/XY+xL+iS8jyIiD4FyU3zf8ANwHdamxRFiQcqVBdxpijKv4ArgU6qqv5eP+06xEKZ\nB5ykqmpR/fRU4GfEAtlRVdVyRVHiEGvkFmCUizXyTmAecKaqqqvrp60GRgCzVFX9u5n9NGuhTANe\nDCcxGW7Yo6A2VuKvi6ORBWPLlgaPGLZskXqKoaiXGi6ldULpSXDWWbBggWNwSXN3LSmRGMrsbOlL\n1NX5ns+gJXpEaEJi9WopFXLwoByXLl0kLCcUgqKgQGIPv/1W7ovo6PAUM77G0Ta1d4BZmks7bTxz\nrNTl9oiiSABzfLyMKgaD1avhzDPhiSfEHaGqSkaNdWI1JTcXpkzhaLduqBMmsPSllxielETHrCwK\ntNiLI0dIBE4DPjO56deA3ohYdbWjjkF8MssRH0127QLgmmuucRKTAOvXr2ffvn3ce++9DWISICkp\niZtvvpmpU6c6b/e11+jduzcDBw6kwMWCO2bMGJYsWUJ5eTnx8fEN0ydNmtQgJgESpJNRCvTEHEX1\nf89XFOVnVVWt8LmeWf/RqAM+QJeQR1XVcu27oigxiJUwAvgUuBoYBPzHZb0LNDFZv44iRVFeBGYj\n4wIfI6eoLTANSHPJArwCEZRjcYwJaMw1u3NmBeXbwGjE/GpjYxNk/HFxNBJwVVXyMk9Olt/5+ZLp\nVEsKE0xRF06ldULl8pWVJUl3jhxxdmvt3Bl69xZ3V/A/+3NLcgHVhERBAWzbJtdqmzbi7bF1q/TN\ngi0oNm+GW28Va79WzaBDB/jqq/AQM0ZWU7ODTM2lg99c2mnjnnAZPDzmUBR5qcTGOj2ojrZvD0DK\ngAEc/H//j0MvvMBnlZW0PnTIcDURERGOB8jixZLBddUqGdWbPRvuvx+Q7DHlgKeKlAVA53795EW4\nZAnHH398o3l27twJQC/Xel1upuXm5lJeXk5rD7UwCwoKGtxpgYa4UBdqgAwPzdezDBFw04E7FUX5\nDhF1ywKoePFP4E0kVLAU2KKqqlOxWkVRooD7gGsQd1jXmMVWNCbXYNqv9X+1A9Gn/u8iD+1zHQU5\nqKqq6RpIZgXlDmCWoijDETOqa1KeeWY3aGNjYw5fkz4ZCbjq+jtV735ZVeUQlMEUdeFYWseTJ4Ev\nLo/u5k1MlHfw99/L+1RfogTkXFoR69gSPCI0IXHokIQ5pabKdZKSIt5fRUUi8oIlKAoK4K9/lXOi\nuSjX1cn9pfW7Qilm9NdUebmxC2h2tiTg8TbI1Fw6+M2lnTaeCafBQxv4+eefARFnmufk6NGjG1n+\nTKHL8qoiLrKGHf4TToChQ2l9++1Sq2j1aliyRLMMBoSqqpx44onMm+deariKzcgAS8WoqloJjFEU\n5VTEw3c4Ems4oz4O810/VrtVVdXPvcwzD3GFXY7EdR5ANNfJSKykv0VANWE6BdjkZh7XFMplvmzA\nrKD8C1CMxPWe4fI/FTfXl42Njf/46uJoJOA0IVNX55gvJsbxPZiirrkkkvElfsvMvNpAwP79LTf7\nc6DxhqWl0t8oKJD6nFFREjeckgKtW8txys8XARUsQbFsmbOYBPmrCdrDh0MjZlyvqYoKuXbatXPU\nT9VcQCMj5eNtkKm5dPAPHBDx7G7QKVzaaeOZcBw8PJZ5+eWXATjnnHNo3bo1aWlpHD16lNGjR3td\nVnEt/1HoMKD1BA4i6T4jYmJgzBh56Jx7rk8xHF27dgVg8+bNjf5nNK1nz54cPHiQUaNGiTXVWjwm\nkqmPn/wvgKIonYGNwCNI0pxg8Gdgjaqql+snKorSw838INbH912m9a3/q5V73Fr/t9SEqPULU4JS\nVVXr8knb2NiYxhcXR03ArVrlqOeclORwHVMU+a6vgWhW1PkrIDRxtXOnZBOPi5MOR7iIK1/it8zO\n2xJjHTWsSp6SlwebNomAi46W60JVJRSorExiKMHREd2/33HtWZEwp7QU1q2TUCej/klSkrgsZ2YG\nV8wYXVM//CAuuNo0rS67dh9nZ0v7PF1b4d7B166jr7+WAYWcHHEX79PH+Vg3dTttzNFcBg9bOrW1\ntUydOpW1a9cyYcIEhgwZAsBVV13FCy+8wFtvvcXFF1/caLkDBw40xDlqNSILNSGpE5TXxMYypbKS\neVdfzT3z5ztiaerZv38/bU3Ejg4aNIj27duzePFi7rvvPqekPC+++GKj+a+55hqmTJnCvHnzuOee\nxqmIzG7XDSVAo8KviqJkqqrqGiqaj2hqc4Vi/aMWFzdXRVESgTs9LHOLoigLXH2d5g4AACAASURB\nVJLy3AwcQbK0grjrHgDuUxRluYGrbTwQ5anOpDeCX33VxsYmYMy4OG7eDCtXwmefSedc64QOHCiC\nTlVBC2cwazGzQkBkZUkn+dtv5XebNnDxxXD11U0vrnyJ3/Jl3pYU66hhRlDHx5sbePjiCynzlpkp\niXhU1REOVFkplqukJPm+eTPMmOGoFW5FwpzSUlmfooj13lVUau6vNTXBFTOu11RVlQjZtm1lem6u\n3L8a7dtL6Z/nnvN8bQWzgx+odVp/HXXpIpbg/HzYu1euheHDHe2yhUjwsSq7sV2XO7Rs2LCB1157\nDYDi4mI2b97Me++9x+7duxk7diz//ve/G+adNWsW33zzDZdeeimXXnopp512GjExMezevZsVK1Yw\ncOBAFi9eDMApp5xCREQEs2bN4vDhwyTu30+3Cy5g8M0387ehQ1l54YVMee01vjx0iFGjRpGSkkJe\nXh5ffPEFcXFxrFq1ymvbo6KimDt3LldddRWnnnoq119/PVFRUSxevJj09HR27tzpZCn929/+xsqV\nK5kyZQpffvml39t1w3fA9YqiPIzEItYhSW/+rijKWOBDYCci8s5F8hI97u/GTPAWcJOiKMuBz5G4\nxr8gNTDdUQB8ryjKK/W/JwFZwA2qqpYBqKpaqijKNcB7wGZFURYh5UPSkH26EJhI46Q8pnErKBVF\neRaYVt+IZz2tRFXV2/1tgI2NTeBs3gyXXy7WnV69pJNWVAS7d0tHbfJkEXK//CIJY8C7xSzQ7Iv6\n5UeNcpQEKyxsSAAXdDx1lnyJ31JV32K99Nv1NZtruOJJUG/bBnfd5Wz9dif8Skth40bo0UPEU2qq\nuJhqCYtiYuQa6dJFhGerVjIoYWX2z8REaWuHDo426KmrE9fTM84Inpgxuv70Mc+a268+iZbeBbRN\nG89tmzhRrMBbt8o5io8PrINvlXXa9Trq00eEZGWlHPPcXIk/toVIcLG6VEtL9swIR15//XVef/11\nIiIiSEpKolOnTowYMYIrrriC8ePHO82bmprKN998w5NPPskbb7zB+++/T1RUFJ06dWLo0KHccMMN\nDfNmZWWxaNEi5syZwy233EJ1dTXXXnstg8eNIxr46KOPmD9/Pv/617948MEHAejQoQOnnnoq1157\nren2X3nllURHR/Pwww/z4IMP0qZNGyZNmsSAAQO48MILnTK2RkdHW7ZdA+5HLI63IuJKAbohwqs9\ncCki6soRt9EbgZcD2aAX7kJCDC8Fzgf2IMl8fkAEphFTgWHIPrRFSoNcpau3CYCqqp8qinIKkvTn\naiS/0mEk4eo8JEeO37itQ6koyipgoqqqR+q/u0NVVXVUII3wl3CqQ2lj05Rcc410tOuTuwHSeayt\nlc7a6afDq6/6Vi810BqSTVmD0kxnyZdan2Bu3nvugbVrW149PU81EMvKJB6yqEj2My7Oc/057bhn\nZMCaNbLuwkIRcdHRYqWrqRERWVUFEyY0vlatuH4WLpRsrtu2iZhJTnZYJvfvl3O9bFnwzpvR9VdV\nBR9/7GhLURGMHu3swupaa9IIfTmW3btlW61bQ9euUnHA1w6+VTUG3V1HZWUiJPfske+nnw7DhtlC\nRMPqGqnBrhlp1+X+/+3de5TdZX3v8c8zyeSyc4VMAsFMSNSIAaEgUxMEUZdI1dPTmlq1B463LrCw\narHa1lNF6+VoUVu1bbBZLT0t2FJ7rDTLVa3XUzHSwtSAXMRUBALJkDHJALnM7CSTTJ7zx3d+3b/Z\n+e3bb/9ue+/3ay3WZvZvZ+9n9v7t3zzf5/s8zxdxfeYzn9Hv/u7v6u6779bGjRsTfW7n3L3e+6FE\nnzRHoTqU/1U/Mk81M5Te+1dG/T+AYtm3zwKY6kxYsIHHGWfY8bEx6yQ08we+3d0Xk9y9sdXOVLOZ\n1VbWmQXjbvUee/SodPPNFpx0Wz29epu87NhhAWCpVHnP6pV9CN73uXNteuOO6Q3PDxyofM7z59vx\nV74y+vxIYvfPYIqeZBn9PXvscz5yxIK8z38+3c8r6vybM6fyvgXLk8KbaDUzBTR8/j/3udK6dXZu\n7t5ta6vjBGlJlfaodR6VSja194ILbHr+Rz9qwW+vSzqLGEi7VEs37EKNdE1OTmrWrFkzdmMdHx/X\n5z//eS1btkwvfvGLc2wd4mANJdDh9u+329k1vs3B/Xv3Nt8JaXeXyCR2mYzbmWq2sxReZ7ZihU03\n7O+vdOCrO++N1qTNmmXBZNTr7twp3XabdN11yWQYslYr+J6YsOnLCxda0BIOfqTowK96fV8QSExO\n2prGp56yHegfffSUPR/+SxK7f1ZP0RsYsHPg0kulN785/eC/1jrHYAro3r02Lbi/v7WpqlHn/7x5\nFljGCRaSHBxqNIjT12eDCa1ME086e9eupNrT7pKDeu2jVAvy9vjjj+u1r32tfu3Xfk1r167V6Oio\nbrvtNu3cuVNbtmzRnOo/JgXjnJuj5jbn2e+9n0q7PUXQMKCc3vnnfZLeICuQ6WXb0P6jpM9474+k\n2kIAdQXll06ciA4qT5yw21Y2QWt3l8h2/33czlSrnaXLL7dpjd//vnVknbN/u2iRlY+48srKv623\n6cTcuZbZCk85lmZO5bv7bunBB6XLLuu8KbDVwU/wez3xhGX2JOk5z6kE5YFagV/1e9nfb8HE6Kid\nz1ddJX3sY+nvUpr35klR59TcuRZIjo5aRnH3bntsM2vR0ggWkixBkuRmQWll7+JKuj1pZRE7paQM\nutvy5cu1ceNG3X777dq3b59mz56t888/X5/85Cf1pje9Ke/mNeOlkprZCWitpCfSbUox1A0onXOz\nJf2rrKDmNyR9TbZg9VxJfyDptc65l3vvT6TdUADRVqyodNKqAxrJsh0bN7bWqWm349fuv6/XmaqX\n7Wuls1QuS1u22Hs2b54FRpOTVsZg1izbkOVjH5Muukh61atsTV+tTScuvVT64z8+dV3Ytm2WtVy8\n2ILVZcs6dwpsEPw8+qj0yCMzd0CdO9emi27bNnOXzlqBX70NPF79agvuL7rINpXJogxBXlP0ar0P\nr3iFBY+lUmuBbhrBQtIlSJLYDTTJHYeTkHQ2Mc0sYtFLyqA3LFu2TF/84hfzbkY7HpD06iYe97O0\nGuC9v1XSrWk9f6saZSjfKen5kl7svX84fMA59yJZdH6tpC3pNA9AM2680XZ5DTI8s2dbh3//futw\n3Hhj68/Zbscv7r+v1ZkKsmK7dtXO9rXSWbr9dusAPn+6XPDBgxYQBUH54cOWddy82QLPCy+0jv6m\nTadmtIKOfPh1d+ywYHLJEtvoRbJO7uLFyaxTyloQ/Lz3vfZelUo2zXXVKgsmTz/d7g+XuqgX+FVn\nB48elb75TQviJfv5Zz+z27VrTz1/rrzS1g8XZapjXI2ypK0EDGkEC0mXIEliN9CkdhxOStLZxDSz\niNSMBNrnvX9WtXdd7UmNAspflfSJ6mBSkrz3P3LO3STpjSKgBHJ1zjk2dfMTnzi1k/aBD9jxVrXb\n8Wv13wdrj6I6U0G2b3LSArS+vuhsX7OdpagyII8+aoHf0qUWCN53n03jPOMMCy4PHJj5euF1XtWv\nOzk5c2OVoLMZdHI7dZ3S/Pn2O2zaZMHJnDk2zXXbNiv9sWCB/d7nnWdZm2YGHkol+3w/+9lTMzzO\nWVDpvWWRJVtfKVUCT6k7dtJNIkuaVrCQdI3BdqYa18velctWJuXAgZk7Dqc5KyCNbGLaWURqRgJI\nWqOA8jxJv13n+Hdk9UwA5Oycc6w0yNiYbehxxhntd56Cjt/rX2/ZoBUrKms2W/n39TqO1WuPTpyw\n4G7p0kpAtmOHBWmLFzfO9jXTWaoOWqsDwKefttcplSx4XbTIpsReeKG9t1EZh/DrLl5cuf/QIQu8\n1q+v3Nep65SC9y0I7iQLMIPdWkdG7DG7dlnt0XYzTs9/vr3WRRdJb3yjZSujAs9OnUachjSChbRq\nDJZKNlgwPm63zWSaG+04PDnZ/I7DSUgrm3juuTYLY+3aU4+1m0WkZiSApDUKKE+TtL/O8f2yQqAA\nCmJgILkOQVIbTdTKvtRae/TYYzb98XWvs+m74WDv8OH62b6BAek975G+/GXpgQcqjwt3lqqnqIYL\nyk9N2dTN/v5KZ7Cvz24nJ2tnHMKdtO9/317j5Enp7LOlF75w5mM7dZ1SrcxJUPbhvPNsE5k//dPW\ndhRulOG57z7pHe+QvvKVdMsdNNveIu0qWi2tYCHpDYziXltqnYPBoNCCBfb5NLPjcFKOHrXp8aFa\n7P+lle96+D05etTWED/2mNVcXbQo2Sxi3htSAegujQLKWZLqbbhzcvoxALpMWtvWh9XKTL30pdLX\nvib9+79LL3lJ5djBg7YBTK1sX7k8s5PqnI30v/GNtqlOoHpqYH+/BX9Hj1qm5MQJm1IbPHeQFZ0z\np37GIdxJ27JFeuih6Hp6rWYYihLENJpSOTZm60xb3YBEapzh2bs333IHRdtVtJ40g4Ukpua2c22p\ndQ4Gg0Ll8swBp0CzmcJmv2vh8+GJJ2wzrxe8wK5N4ecPT7OPWvMbvN6RI9LnPjfzPTnzTPs9v/EN\nmx0xb17yWURqRgJIQqOA0kn6O+fcsRrH5ybcHnSZonSE0bq0i1/Xy0yVStJrXmOdqb177bHeW1BY\nK9tXazrkgw/arqQf+IBlCwPhXUuffVZ65plKcBOs1QyEs6LNZBxKJeltb7NOc7u7WRYtiEl6SmWz\n68Wcs9s8yh1kMbiShqIGC+1eW6LOwb4+CyaXLJk54BRoplRRs9+16vNh2TLpe9+z68zevTaoMndu\npT7t4cPSDTfMfN7LL7e1x8Hr/eQndvvSl1bO5UWLpCuusID1/POl668v5ucJAI0CytuaeI4vJNEQ\ndJcidoTz0KkBdRbFrxtlphYtsnWhH/qQdMcdjbN93/zmzE5qsCvsyIj9/49+JL397ZVzcGDAOmi/\n+Zs2TXPxYgtK582z/558Unre8+y+cFZ0dNTW9O3daz+vWBH92bY79bCoQUzSUyqb3UgmWLubR7mD\ntAdX0lS0a1AS15Za5+CGDZW1z9XqzQpo9btWfT6UStLLX27Xm0cesZkV55xjQeCOHdKPfzzzeb/3\nPenP/9ymiK9da/dt325BcXXpHUkaHLTnAICiqhtQeu/fkVVD0D2K2hHOUqcH1FkUv242M7ViReNs\n35VX2q6fQSc1vCvsokX236FD0r/928xzcNs2C1I3bLDHBhsCPfmkBZmPPy79/M/btNm5c+3Yrl0W\n3P7Zn9lrLV8uveEN0lvfeupn287UwyIHMUlPqWwm69lM4HnRRa1t8NKMLAZX0lDUa1BS15aoc7Bc\njjcroJXvWq3zIbyOeNcu6VOfsn83NXXq8x48aG09eNB+PnrUgsklS04tvdPKewIAeWmUoQRaVuSO\ncBa6IaDOovh1KyUOSqX6WbFgjWO4BmSwK2zAOQv+nn3Wnueqq+y5Bgbssf391qaLL5YuuMCmwN5/\nv01ne/pp6/Tt3m3roObNs/VNkk1n++u/tilrn/hE9Gfb6tTDTglikppS2WzWs1bguXOnlRc5ckT6\n4Q/tsUkFT1kMriStyNegpK8t4XOw0XUi6ndu9bvW6HyYN8825zl8OPp5g82Dli+3wPN5z6us9zx5\n0ga/RkbsGhTc36mbeAHoHQSUSFSndITTVISAut1pbvWCvclJy+Bdckn7n2Er6/HqZcXCu7ZOTc3c\nFVaaualOcA5efLEFgffdV3ncqlWVTTXOOMMykx/6kP38j/8offGL9v/hQDXIKjz8cHKfbScGMe1q\nJusZFXgePWrTj88806YPJh08ZTG4krQiXINqSatWZqDV7Hmr37V21/weP24zIfbts4Gq73ynsinY\ngQPS6afb44JBLqn99wQA0kZAiUT1Ykc4LO+AOslpbtXB3rFjlU1sZk9fOebObS8LFGc9XlRWLNxJ\nPe00uy8o9SGdWmrk6FFp82Zp/37LFMyebR26p56y+y6/3H43yabcei/9x3/Y84Q36wkEU2rvuiuZ\nz7YTg5ikNMp6VgcMX/qSZZLTCp7SDoCSlvc1qBlp1Mqs1mz2vNXvWrtrfo8ft2x6X59dj047zYLP\nAwcsyDx50q5Hc+Yk/54AQFoIKJGoXu4IS/kG1ElPcwsHe3feaZ32EyekdesqawqTyAIltR4v6KQG\nnbIgK3n48MxNdaambNfEdetsm/+REQsS+/os83jokE2ZPeOMSqCwb591BPv6Zgaqgb4+6xQeP17/\ns202c1y0IKZoG7tI9rt7b1Nc0w6esgiAWlXrM+mEQb20amXGEee71s6a38cesymxExP2ewafR5CZ\nLJft2vOzn9nPebwnANAqAkokqmgd4awEnbtA3IC6nY57GtPcgmDv2HThoDVrZtZ3S3IKXa2MQrPv\nSbiT+thjNg2yVLIdEsOlRnbtsuBvcNCyj/v325TVRYssMCyVbKfG1asrgcKCBZVpaSdPnhpUnjxp\nwU1/f/RnGydzXIQgJo2NXZIMTrMKnooUADX6TDplUC/NWpmtavW7FnfN79SUXX+WLLHBpzlzKteT\nkyftdefOtTXZp52W73sCAK1w3vu82xDb0NCQ3759e97NQJVwpizqj3MnbErTrKjO3fHj1jl4/vNP\nffzIiO0oWh18tdtxn5iwOmdBZrLa1JS0Z49N82y1g5Lmc9fTznuya5edg5OTFjiGz8G+Pvud1q2z\nx4bLiwQWLJBuuWVmPbtbbpFuu80eH15DKVlAumCB7UYb9dnG/T5EvQdZBTGttLuZIDGt4DTrc7Nc\nzi8AavYzueWW2oN6ta5B3STOoEXc71qj8yH8vEePSj/4gQ1wrV5ta9HD153BQRvY+tznbLALQHKc\nc/d674fybke3IkOJxBVpND9NtaaY7txpo9LSzE1Cao12JzFVNc1MTR5T6Np9T1avlv7wD6PPwVe/\n2kqMBBmcYLv/Cy6wAHTWLMtann32zOfctMlqxd11l613CoLKw4dtEOG886Kzhu1kjvPM4jTT7k2b\nmgsS09p1NI8ZEUntbBtHs+dSEbLbeWhn0CLud62VNb9790of+Yhdn2bNsmPBdWfOHBvs2rMn/+wx\nALSKgBKpKNJ0prTU6twFmcmgcxCoFVAnMVU1zWlueUyh27rVynusWFF53aj3pF4mot45GBWE9Pfb\nfyMj0UHIwICVBfnbv5XuuKOyxmnFCqtD+Za3nPrZJrVBStZBTDPtDtbVHjvWOEhMc9fRbgiemsmo\ntXIu9cqgXlhSgxZpfddKJRtgvOyymdee4Loj1b72AEDREVAiVXmO5qepUedu7VoLJj/1KZv+Wiug\nTirgSDNTk3UW6MknpVtvtfcm2Ho/XM4jCGaOHavUHJRqZyKizsG4QcjAgPSe90i/8Ru2UY9kAWW9\nTXikdLO7rU7vazZ4Cbev2qxZtrHRmjWVqcPB/VFBf5q7jnZy8BSVUbvoIulVr7IsVjub7TQ7qFfE\nDZfiKHKplLBuGAABgGoElEAMzXbuTp6svxYmyYAjzY5KVp2gsTHLAo6N2U6HwWYVIyOVch6SZcYk\n6bnPjZeJaDcIKZUsmGokzexuq9P7Wnl8o3YfOWKfx8teFt22cJCYRVDdiTMiqjNqQVmezZulLVuk\nCy+UXvGK9jfbqTWol8aa1rx0QqmUQCcPgABALQSUQAxJBQpJBhxpdlSy6gRt3Wod63Cnr6/PdkU8\neNA2zzl50sqXrFlTec/iZCKyCELSyu62Or2v1cc3avfIiA2UzJsX3b5wkJjllOlOmhERzqiVy9K2\nbXbun3GG3X/gwKmfT1LnUlprWvPSCaVSwjpxAAQA6omoqAagkaDDPToafbzZzl1SzxMIOiqbN0s3\n3WS311yTTOcwzeeWKlmG1autwzw+PvP4okW2e+sjj9g61XD5kkCQiSiXm3/dUqn+tNV2bdpkHcaR\nkUrwNDVlP8fN7oaDkeqgenzcjrfz+EbtXrrUNi0K7q8WDhKTPse7QXCur1xpP+/YYcFkUA914UKb\nMh8El8Hnk9S5FOd8yMvEhE0vD5dlqhYetIhSlFIp1dK+9gBAVggogZiS6tylEXCk2VFJ67nDWYb1\n623Xw0OHLCMZGB+3Dvd550U/RzgTURRBdnfDBgsSdu+2240b42WCqoORatVBdauPb6bdH/2oTcds\nNkhM4xzvZOFzfXLS3odFiyrHgzqnk5MzP58kzqW450PWxsas/MkNN0jvf7/d3nKL3V8tqUGLZoJX\nAMCpmPIKxJTUNNC4z9Mtm2kEwlmGUsnWS4brQwbrUVevtuLfUYqaiUhyilur0/viTgecmLD3/Kqr\notvdyrraVs7xbjuvo4TP9ePH7f/7QsO7wSDKnDnxN9uppROmh8aZktvOOu9uWk8KAHkgoATakFSg\n0MrzdGvnp3rdXnV9yP37pUsvtcdmWXcwSUms8Wt1TWKrj693foXb3upASKNzvMjnddJBbvhcDzbt\nOnlS8t4+j4kJGzjp7299s51mXlvKtgxQq+Ls2Bp3YK7b1pMCQB4IKIEEJLUZSKPn6fbOT1SWoa/P\nalIuXVrJMnTbtvutBCytbvTTyuNbPb/iDKhEneNFPa/TDHKDc33fPnuun/zE1lGeOGHn/Jln2rTT\nZ55JdpAk6zJArWpnx9Y452OnlBsBgCJjDSXQQTppM404mlkjlvSaxDy1sk4srJk1ieH1YM2uYYx7\nfrW7rraI53UQ5A4PW3AzOGi3w8N2f6PPqJHgPD7vPNts6vBhm/66bJltOrV3r/S1r9n7kPQgSZHX\ntLYyJbeWZs/HTllPWg/rPgEUARlKoEN0Uq21djSTZeiGbffbycrVm973spdFZ9Wuv95KU9SaDpjX\n+bVvn3TnndHZsjRft5YgW/ylL6WfuRoYsHP3kkssc7hzp2UIjx6VnJNOO00655zkB0mKXAsxyym5\nnbCetJYiTxEH0HsIKIEO0Uzn5/hx65SuWdP5G5o0M424k+oOVmt3ql1UUF0uNw5SawXhWXeugw7x\nd78rbd8u/fjH9ruvXz/z+bPq1Ic76MeP2+26ddLpp5/6ukkFuUEQPzhov+fy5fbak5O2IU9fn31u\n5XLyv3tRB2WynJLbCetJo0QNRh05YgMz999vuzATVALIEgEl0CHqdX7KZet4/vSn0qc/Lc2ezWh1\nkSWZDQwH1bff3lyQGvWcWXauwx3iwUHbzXfBAumpp2zzpcsvr7Qxi059dQf96FFp/nybSv300zPb\nIyUX5EYF8f39p9ZYTTOYLuKgTDs7trai6OtJawkPRpXLM3fDLpdt+vRnP8u1H0B2WEMJdIhatdbK\nZZvK+OijllFZuzbZtV4wSa5VSmKdWNRztrMeLKlafs0Id4jnz7fbiQlp8WLLzu3Ykc7rNtOeWbMs\noOvrs9qQx47NbI+UXJAbDuKjFDVDlrYs10kXeT1plPD3PLj2P/WUnatLlliWe3hY+vCHufYDyA4Z\nSqCDRI3cP/yw7YJ62mm2wYfELoVJSmOtUhrZwCSmrGaRGYrKzq5fb5nJgwftvRkZsXN5bMxe98or\nLZhPqmxHeFdd6dT2zJlj35+goz4yYuVrgsxhUkFuETNkRakDmtWU3CKvJ40S/p7v2GEDMIsXV47P\nnm3v04EDXPsBZIeAEokrSoekG1V3fo4ft2muL3iBdO656a316lVplbNII5BIIkhtpXMd93seFfiW\nSjatNJi6NzFhWamf/3mrz/ixj1Ue204wHzU4cO65NsW1+j0LgtzxcasPOTlpWcukp11mNb2zkaJu\n8pLFlNyirieNEnzXjhyxc2bRopnHT56028FBrv1FQZ8IvYCAEonJs0PSSxfscOdn505bM7l2bfRj\ni7xLYSdIs0Zd0oFEUkFqo851u9/zWoFvqSRdfHGljMYf/IG0ZUtywXytwYEHH7SNTM48c2bnPAhy\ng7XJ+/ZZ9ifpzFURMmRFrQOatSKuJ60WfM/vvNN+7qtauHT4sH3/582zn7n256eogzRAGggokYi8\nOiS9fMEulWw319mzO2+Xwk6QdhmNNAKJJIPUqM51Et/zRoHv2Jj0ylfa2rAkg/lagwNr10qPPWbt\nueKKU9+DlSul171OeuMb0512mWeGLM2BEyRv0yYbBCmX7fs0e7ZlJg8flubOtew61/58MUiDXsOm\nPEhEHoXJ0y483gnS2kilSMWy82pLGhvnVAsCic2bpZtusttrronf0Uh7M5OkvueNNkK58spkC843\n2rBowwZbh/zEE9HtefObpRUr0g/ySqVsXies3c2ckL2BASsNsmFDZe3x4cP2NzDYkbioO9T2ijz6\nRECeyFCibXkVRGdU3SSZlUo649vOVOS8s89ZltFIcqpdWtmuJL/njbKzwTqwpGpiNhocWLRIuvBC\n6fzzrR5mdXu6OZOQdf1RJGNgwEqDfPjDtgHP4KBNcy3yDrW9Iq8+EZAnAkq0LY8OSZoX7E5bj5nU\n1Mkkp+i0GwwWYbpQEXfgDDRzjia9Hizp73m9wDd4raSC+WYGB+bNk66/vvI7FHljliRlOXCCZAWZ\nyk7ZobZXMEiDXkRAibbl0SFJ44Kdd0asHUlkpZLK+CYRDLbblqQGBfLagbNW+/M8R9P6nkcFvkkH\n860+Xy918oo8cILGkrj2d9ogatExSINeRECJtuXRIUn6gl2EjFgS4malksz4JhEMxm1L0gFX1jtw\n1mu/lO85mvX3POlgvijlOYqoSO8NwU08ca79nTyIWmQM0qAXEVAiEVl3SJK+YPf6esykMr5JBKZx\n25LWoEBWO3A2av/ZZ+d/jmb5PU86mC9CeY6iKsJ7Q3CTrW4ZRC2qIg3SAFkgoEQi8uiQJHXBZgF9\nchnfJALTuG1Je1Ag7Rp19dq/c6e0fbuV04iS1Tma9fc86WA+7/IcRZbne0Nwk72sBlF7NeNchEEa\nIEsElEhMrQ5JUPYh6T8oSV2wWUCfXMY3icA0TlvyGBRIsqPUqP3Llkl38DeadgAAH1RJREFU3227\nn0a9r1meo3kEHkkH851QwD4vebw3vT5DJGtZXC/JODOAhd5CQInEBR2SsTHp9tvT/YOSxAWbBfQm\niYxvUoFpq23JclAgjY5So/bPm2e3R45I/f0zj01OSkePSsePZ3uOEpQhCcwQyV7a10syzjNxrUQv\n6Mu7AehOwR+U4WH7gzI4aLfDw3b/2Fiyr9dOQfAgCBodjT7eKwvog4zvhg3Snj3S7t12u3Fjax2A\nRkXrmwlMg7ZceKH02GPS44/Xb0t4UCBKUoMCaZ3Xjdo/a5a0fLn0zDOV+8pl6d57pa9/XfrqV+09\nuv325L9bQJpaCW6QjLSvl+GMc/D5BRnn8XE7DqC7EFAiFZ32ByWJIKgbBBnfzZulm26y22uuaW00\nOYnANMgC/vCHlpGbmpJe/OLaU5mzGhRI67xupv1veIO0dKmdk4cPS9u22f97L51+ur3faQ3YdKNg\nKn4Q0CAfWQ0GoSLN62WQcV65Mvp4kHEul1t/bgDFxZRXJK4TpzCxgH6mdqfotDMVudZ0qR/+UPrp\nT2sHpWnvqtfMOsc777TzZfny1p+/Ufvf+lZ73Nat0q23Ss8+a+/p6tXSC19o/79oEWvOGml3ynKv\nbjKSFkos5COt6yV7EgC9iYASievUPygsoE9enMA07gYdaQ8K1Dqvy2Vpxw5r28SE9O53226sra6p\nbLb9V10l3XWXZSTnzz91TWURB2yKop21XWwykh5KLGQvreslexIAvYmAEonr9D8oLKDPT7vZ7TQH\nBaLO63LZpp5OTlaOr14df/OJZto/MSHNni0tXhz9HEUdsCmCuIMVbDKSLmaI5CON6yUZZ6A3sYYS\niWOTG8SV1AYd7WzSVEvUeb1jhwWTixdb21etsh1Z211TWa/9rDmLp521XZ22JrwTJbF+G/Ekfb1k\nTwKg9xBQIhX8QUEcRQ+Wwuf1kSN2WypJBw9Kc+dK69dXHpvW5hMM2MQTd7CiXiAaDCbcdRebjCQl\njcEgZCupHcMBdA6mvCIVTGFCHEWYLlVv05XweX3nnZUgZXCwsjFOIM2pp9VrzqamrBbl009Lp53G\ngE2UuFPxowLR8LrZ4DFbtkhvexvXNkBiTwKg1xBQIjX8QUEceW3Q0eymK8F5/frX2wY8q1fbNNdq\naWZTg8D2C1+Q7rhD2r/f7l+xwsqL4FRxByuqA9HwutlFi+yY99JDD9k6SzIwFeyIC/YkAHoDASVS\nxx8UtCKP7HacTVeWL7fdXPPMpu7aJa1bV9nxta/P2ktgEy3OYEV1IBpeNyvZdOfBQWnNGkq2BDph\nR1yCXQBIjvPe592G2IaGhvz27dvzbgaAlJTL2WS3b7mldmA4MmIBW6PdP6MClDSDurht7nVRwU6j\nwYrgc372Wen++6UlS+z+w4dt7ezll9v5OTVla8U2b+7dQbQ8vxPNtq/owS6A5Dnn7vXeD+Xdjm5F\nQAmgp01MSDfcUMlMVmsUJMQJUPJuM1ofrBgbk267TfqLv6hktKLWzu7ebbuUrliRTruLrsgDHUUP\ndgGkh4AyXUx5BdDTWtn9M+val7W022a0PhV/YEC67jrpwQelZctsinF//8zH5L0Lcd7arSObtrh1\nSLPEVFwAnYiAEkBPi7v7Z7Us1won1Wa0ZsEC6bLLLAMXrKEM6/WSLUUe6Ch6sMtUXACdjDqUAHpa\nJ9Z17MQ2dwtq7NZW5DqyceuQZiGYijs8bAHv4KDdDg/b/WNj2bcJAFpBQAmg53VikNCJbe4GFG2v\nrcgDHUUOdsNTcYPANpiKOz5uxwGgyNiUBwCUz+Y67Wq1zUmtz2Kdl8lqF+JOUuSNb4q4YRAbbAHZ\nYFOedLGGEgCUz+Y67Wq2zUmtz2Kd10zU2D1VHnVkmxWnDmnairzuFACaRYYSALpYUhmjImeeUEyt\nZHCzynoXbSYCGUogG2Qo00WGEgC6WFKlEjqh5AKKpZkMbtZZ72az+lkFuMG601pTcdlgqzlMwwfy\nRUAJAF0qqVIJRS+5gM4UznoHGbqpKQuuHn443ax3rWA3jQC3UbCT9lTcbg62mIYPFAMBJQB0qaTW\nZ7HOC2koWtY76QC32WAnrXWn3R5s5TkgAWAmAkoA6FLhUgm11mdJjUslJPU8QKCIWe8kA9xWg52k\nNwXrhWCraAMSQC+jDiUAdKmk6gIWub4gOlMrWe+s2nPPPRbIRgkC3HK5ueeLW1uyVJJWrGj/u9Tt\ntS2T/rwAtKcQAaVz7o+cc//pnHvQObfVObc07zYBQDfYtMmyHSMjlqGYnJQOHZJ27mxtfVb180h2\nOzKSX8kFdK5w1jtK1lnvJAPcvIOdvF8/C0UbkAB6XSECSknflvQi7/0Fkh6R9P6c2wMAXSFYn3Xu\nudK//qv05S9LX/2q9Nhj0tlnt/48GzZYGYPdu+1248bumD6HbBUt651kgJt3sJP362ehaAMSQK8r\nxBpK7/23Qj/eI+lX82oLAHSjXbukdessIJw/X+rrs7VUH/948wFh0uu80NvS3t20FUmW78h7zXHe\nr58Fyq0AxVKUDGXYr0v6et6NAIBuEaynWrNGWrxY6u9vbz1VUuu80NuKlvVOalp33tnXvF8/K0zD\nB4rDee+zeSHnviPpzIhDN3rvvzL9mBslDUn6FV+jYc65d0p6pyStXr364ieffDKlFgNA55uYkG64\nobLTY7WpKevEb97c+R1MdK5yuRhZ76hSG3HKd4R3WY3KvqYdMOf9+llJ6vNC93PO3eu9H8q7Hd0q\ns4CyEefc2yX9hqRXee+bWio+NDTkt2/fnmq7AKCT7dsnvf/90uBg7cfs3i3ddJNlHYFOMTFh/y1Y\nUJnmmZQkAty8g528Xz9LRRmQQHERUKarEGsonXOvkfQ+SS9vNpgEADTWC+up0Lw0g7CsRAVKGzfa\nFMekAqVSqf3AJO81x3m/fpaS+LwAxFeIgFLSzZLmSvq2c06S7vHeX5dvkwCg87F5BaRsgrAshKdy\nBtO4p6bs/H744WJO5Ww22Ekr2CfYApC2QgSU3vvn590GAL2jG7I0rSjSbpqoLa3zshODsFqCDabC\ngyPBBlMjI3b82mvza18c3RLsA+hdhQgoASALvdpxC3bT7JX1VJ0m7fOyW4KwiQl7j846K/r4ypV2\n/OqrOycj103BPoDeRUAJoCf0esetl9ZTdZK0z8tuCsImJuw2ai1w+P7x8eL/LoFuCfYB9LYi1qEE\ngMSFO25Bx7OdWoztmJiw3VeDDnKWqCFZLGmfl60EYUUX3mAqSqdtMBUE+ytXRh8Pgv0yWxUCKDgy\nlAC6XlGyNL065RbRsjgvu2mX327bYKobM64AehMZSgBdrwhZmmBq4/CwBRCDg3Y7PGz3j42l99oo\npizOyyAIGx2NPt5pQdimTRb8joxUguGpKfu50zaY6raMK4DeRUAJoOsVoeOWx5TbPKfWorGszss8\ngrC0zr1gg6kNG6Q9e6Tdu+1248bOWwfdbcE+gN7FlFcAXS/vqXJZT7ntpqm13VziJavzMstdfrM4\n97ppgylK+gDoBgSUAHpCnh23LNdK1ds19P77pXe9S1q9OrngLM3aid0SFNeT1XmZRRCW9U7KpVLn\nBpIBSvoA6AYElAB6Qp4dtyw3RokqQ3DsmLR3r/TII9IDD0jnnNN+cJZmwNdLJV6yPi+TCsKiBhIo\ngRFPN2VcAfQm573Puw2xDQ0N+e3bt+fdDAAdplzOvuN2yy21pzaOjNiasHY72xMT0g03VIIwyX7X\nbdssqFywwB7zC79gQdvChfGCs3DAF5VVazfgy+K9KqI8zstW1RpIuPJK6WMfm3nuhU1N2VrHzZvz\n/d26eQo1gNqcc/d674fybke3IkMJoOfkMVUui6mNUVNrd+ywYHLJksp9U1PtZY3SzEQVpcRLHoo+\nhbNe5vgHP5COHi1uCYxemUINAHlgl1cAyEAWu1NW7xo6OWkB3qJF9vPJk3Y7Z47dximcnnYx9iKU\neEG0ejsVHzsmPflkMUtgULIHANJFhhIAMpL2WqnqXUOPH7f7+6aHDoNgoL/ffo6TNUp7g6Es15ui\neY0yx6tXS48+agMla9acejzPEhis7QSAdJGhBICMlUrSihXpdK7DNQeDQPLECenQIctMrl9feWyc\n4Czt2onU5iumZgYS1qyR5s7Ntt5lI2ln1AEABJQA0FXCU2vHxizw2r/fsjGXXz4zEIsTnGUR8IWD\n4qIEJr2umYGEefOkG29Md1p3q7KcQj0xIe3bV3lNAOgVTHkFMsQOg8hCeGrtk09KN99sa9zmzrXj\n7W4GlPYGQ9TmK57q6dTVgoGE1avzLYFRfY3NYgo1G/4A6HWUDQEyQIcDeYo6/9oNztJ4ziidUEqj\nV4yNSR/+sHTggAWV8+cnWy6m3bbVusZu3ZpeGZp6JXTmzpXe9S4LshlABPJF2ZB0EVACKUu7Zh/Q\nrDSCMwK+3hAEbHfeaVnvffuk5ctt3eQrX5lv5rjRNfb666UtW9K5BkfVTC2XrVzPI4/Y877whQwg\nAnkjoEwXU16BlLHDIIoijTqHRa+dmLVunNYeDtie+1xp3TqrObl7t7R0af7TkBtdY7dtS2cKddTO\nt+Wyvd7kpAXcExN2Ozxs08QZQATQjQgogRT1cpF2oJd087T2qIBt3jwLLPMeFGvlGpv02s6oDX92\n7LBgcvHiyn1TU/be7dwp3XabdN113TPYAAASASV6QJ4Zg7Rr9gHIXziDd9ZZlSmV3ZCVKvqgWKvX\n2HYy6o02/JmctAB70SK7/+RJuz1xQrr3Xsvo3n239OCD0mWXdcdgAwBIBJToYkXIGFCkHeh+3Tyt\nveiDYnGusa0OMtb7WxLe+fb4cTsW1H89fNjqzd59t+2yvHix5Jy0bFl3DDYAQICAEl2pKBmDZrfa\nJzsJdKaiZ/DaVfRBsVausXEGGRv9Lbn++koJnWXL7N+cOGHnRVCm59gxacmSSsZy/nwLLjt9sAEA\nAn15NwBIQzhjEHSCgozB+LgdzwpF2oHu1UoGrxMFAdvoaPTxIgyKNXONDQLD4WELDAcH7XZ42O4f\nG4t+7kZ/S4INfzZssOdYsEDav9+ef+NG2w03mAIbPE9/v/0cDDaUy+m+PwCQNgJKdJ0gY7ByZfTx\nrP+IB0XaN2yQ9uyxdTR79lhng+lOQGcLZ/Ci5J3BS0LRB8WaucbGGWRs9m9JqWRZxs2brYzIFVfY\nVNe+UA/r0CFpzhxp/frKfZ0+2AAAAaa8ousUcc3PwEDyOwwCyF8vTGsPAraky24kqd41Nu605Dgb\n/qxfL330o/Zeff/79hwnT0pnn231KMPP3w2DDQAgEVCiCxV5zQ81+4Dus2lTZR3dypWVdXajo8XI\n4CWhUwbFoq6xcQcZ4/4tCb9XW7ZIDz0krVlz6r/vhsEGAJCY8oou1AlrfgB0j16a1l4q2XTOTrp+\nxp2W3O7fklJJetvbpKVLiztdGACSQIYSXakXMgYAiqNTMni9KAgM77rLguH+flvPGKgXGLb7t6QT\npgsDQLuc9z7vNsQ2NDTkt2/fnnczUFBRW8TzRzxaq3XZAKBTjI1Jf/u30l/9ldWKLJVsF9YXvEA6\neNACw3qZ5KT+lpTLDDYAeXHO3eu9H8q7Hd2KgBJdjz/itcWpywYAnSJcR3LJEumRR6Rdu6SjR6XZ\ns6VrrpHe8pbmrnf8LQE6FwFlupjyiq7HRjjRGhXs7ra1XwB6T7hciCRdfLF0wQXS5KTVi1y4sPnr\nHH9LACAam/IAPSpOXbbAxIQV7A52TwSAoqlVR7K/36b2Dw5mW5MYALoVGUqgB8Wty8YUWQCdoog1\niQGgGxFQAj0oTkeLKbIAOkmRaxIngc3UABQFASXQg+J0tKrXIkmVKbIjI3b82mvTazMAtCIoFzI8\nPPO6FYhTk7gIQVyzM0WK0FYAvYGAEuhBrXa04k6RBYA8JVWTuCjT/ZuZKSIVo60AegcBJdCjWulo\nsRYJQCcaGLAgq506kkWa7t9opsgXvmBlUYrQVgC9g4AS6FGtdLS6fS0SgO41MGDT8a++Ol4dyaJM\n929mpsgdd0jr1klr1uTbVgC9hYAS6GHNdrTSWIsEAFmKU0eySNP9G80UmZqy2pobNkQfZ2kCgLRQ\nhxKASiVpxYr6nYxNmyzgHBmpZCSnpuznVtYiAUCnaGW6f9rCM0WiHD1qt/PnRx/Psq0AegsBJYCm\nBFNkN2yQ9uyRdu+2240bWZcDoDs1CuKynO4fzBQZHY0+/vTTNjDYV6Nnx9IEAGlhyiuAprW7FgkA\nOknRpvvX20zttNOkN7zBjhehrQB6BxlKAC1rZoosAHSDvKb7T0xI+/ZVpt1KjWeKvOUtLE0AkD3n\nvc+7DbENDQ357du3590MAADQxaLqULZSeqTd14qqI1kuR88UybKtQKdwzt3rvR/Kux3dioASAACg\nCbWCuKSEa15G1QduZb162m0FOgkBZbqY8goAANCEtKf7h2teBruyBnUkx8fteFHaCgABAkoAAICc\nBTUvV66MPh7UkSyXs20XADRCQAkAAJCzItW8BIBWEFACAADkrEg1LwGgFQSUAAAAOQtqXo6ORh+n\njiSAoiKgBAAAKIC8al4CQDtm590AAAAAWEmQD36QOpIAOgsBJQAAQEEMDEjXXitdfTV1JAF0BgJK\nAACAgimVCCQBdAbWUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsBJQAAAAAgFgJKAAAA\nAEAsBJQAAAAAgFgIKAEAAAAAsRBQAgAAAABiIaAEAAAAAMRCQAkAAAAAiIWAEgAAAAAQCwElAAAA\nACAWAkoAaMHEhLRvn90CAAD0utl5NwAAOsHYmLR1q3TPPZX7Nm6UNm2SBgbyaxcAAECeCCgBoIGx\nMenjH5fGx6WzzpJmzZKmpqThYenhh6UPfpCgEgAA9CamvAJAA1u3WjC5apUFk5Ldrlpl92/dmm/7\nAAAA8kJACQB1TEzYNNeVK6OPr1xpx8vlbNsFAABQBASUAFBHsPlOkJmsFtw/Pp5NewAAAIqEgBIA\n6liwwG6npqKPB/cvXJhNewAAAIqEgBIA6liwwHZzHR2NPj46asdLpWzbBQAAUAQElADQwKZNloEc\nGalkJKem7OeFC+04AABAL6JsCAA0MDBgpUGq61Becon0+tdTMgQAAPQuAkoAaMLAgHTttdLVV9sG\nPAsXMs0VAACAgBIAWlAqEUgCAAAEWEOJTE1MSPv2VUoxAAAAAOhcZCiRibGxU9efbdxom5mw/gwA\nAADoTASUSN3YmPTxj9u6s7POskLwU1PS8LD08MO22QlBJQAAANB5mPKK1G3dasHkqlUWTEp2u2qV\n3b91a77tAwAAABAPASVSNTFh01xXrow+vnKlHS+Xs20XAAAAgPYVKqB0zv2Oc84755gA2SWCzXeC\nzGS14P7x8WzaAwAAACA5hQkonXODkq6UtCvvtiA5CxbY7dRU9PHg/oULs2kPAAAAgOQUJqCU9DlJ\n75Pk824IkrNgge3mOjoafXx01I5T1w8AAADoPIUIKJ1zvyzpKe/9A3m3BcnbtMkykCMjlYzk1JT9\nvHChHQcAAADQeTIrG+Kc+46kMyMO3SjpA7Lprs08zzslvVOSVq9enVj7kJ6BASsNUl2H8pJLpNe/\nnpIhAAAAQKdy3uc7w9Q5d76k/ycp2OdzlaQ9kl7ivf9ZvX87NDTkt2/fnnILkaRy2TbgWbiQaa4A\nAABIn3PuXu/9UN7t6FaZZShr8d4/JGlF8LNz7glJQ977sdwahdSUSgSSAAAAQLcoxBpKAAAAAEDn\nyT1DWc17vybvNgAAAAAAGiNDCQAAAACIhYASAAAAABALASUAAAAAIBYCSgAAAABALASUAAAAAIBY\nCCgBAAAAALEQUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsBJQAAAAAgFue9z7sNsTnn\n9kt6Mu92IBUDksbybgQKgXMBYZwPCHAuIIzzAWHV58PZ3vvleTWm23V0QInu5Zzb7r0fyrsdyB/n\nAsI4HxDgXEAY5wPCOB+yxZRXAAAAAEAsBJQAAAAAgFgIKFFUf5l3A1AYnAsI43xAgHMBYZwPCON8\nyBBrKAEAAAAAsZChBAAAAADEQkCJQnPO/Y5zzjvnBvJuC/LjnPsj59x/OucedM5tdc4tzbtNyJZz\n7jXOuZ845x51zv1+3u1Bfpxzg8657zrnfuyce9g59+6824R8OedmOed+6Jz7at5tQb6cc0udc1+e\n7jPscM5dknebegEBJQrLOTco6UpJu/JuC3L3bUkv8t5fIOkRSe/PuT3IkHNulqTPS3qtpHMl/Q/n\n3Ln5tgo5OiHpd7z350raKOk3OR963rsl7ci7ESiEP5X0De/9CyX9nDgvMkFAiSL7nKT3SWKhb4/z\n3n/Le39i+sd7JK3Ksz3I3EskPeq9f9x7PynpHyT9cs5tQk6896Pe+/um//+wrMP4nHxbhbw451ZJ\n+m+S/irvtiBfzrklki6X9H8kyXs/6b0/kG+regMBJQrJOffLkp7y3j+Qd1tQOL8u6et5NwKZeo6k\n3aGfR0QAAUnOuTWSLpI0nG9LkKM/kQ0+n8y7IcjdWkn7Jf3N9BTov3LOLci7Ub1gdt4NQO9yzn1H\n0pkRh26U9AHZdFf0iHrng/f+K9OPuVE23e32LNsGoHiccwsl3SHpt733h/JuD7LnnPtFSfu89/c6\n516Rd3uQu9mSXizpt7z3w865P5X0+5I+lG+zuh8BJXLjvb8i6n7n3PmyUaYHnHOSTW+8zzn3Eu/9\nzzJsIjJU63wIOOfeLukXJb3KU++o1zwlaTD086rp+9CjnHP9smDydu/9P+XdHuTmUkm/5Jx7naR5\nkhY75/7Oe/8/c24X8jEiacR7H8xY+LIsoETKqEOJwnPOPSFpyHs/lndbkA/n3GskfVbSy733+/Nu\nD7LlnJst24zpVbJA8geSrvLeP5xrw5ALZyONt0l6xnv/23m3B8UwnaH8Xe/9L+bdFuTHOfd9Sdd4\n73/inPuIpAXe+9/LuVldjwwlgE5ws6S5kr49nbW+x3t/Xb5NQla89yecc++S9E1JsyT9NcFkT7tU\n0lskPeScu3/6vg947/8lxzYBKIbfknS7c26OpMclvSPn9vQEMpQAAAAAgFjY5RUAAAAAEAsBJQAA\nAAAgFgJKAAAAAEAsBJQAAAAAgFgIKAEAAAAAsRBQAgAS45y70zl3c97taMQ59wrnnHfODeTdFgAA\nOhkBJQCgLufcrdPBl3fOHXfO7XPOfdc595vOuf6qh/+KpPfn0c4W/buklZKeTvNFnHMrnXN/75z7\nT+fclHPu1jRfDwCArBFQAgCa8R1ZALZG0pWS/lnSRyV93zm3IHiQ9/4Z7/3hXFrYAu/9pPf+Zz79\nYsxzJY1J+qSk4ZRfCwCAzBFQAgCacWw6AHvKe3+/9/6zkl4h6cWS3hc8qHrKq3PuCefcH0xnOQ87\n53Y7597snFvqnPsH59y4c+6nzrkrwy/mnDvXOfe16X+zzzn3RefcmaHjtzrnvuqce7dz7inn3LPO\nub9xzpVCj7ncOXfP9GscdM79h3PuRdPHTpny6pz7FefcQ865Y9PtvNE556p+lw865/7COXfIOTfi\nnPu9em+a9/4J7/0N3vtbJT3T+tsOAECxEVACAGLx3v9I0jckvaHBQ39b0n/Igs8vSbpN0t9L+hdJ\nF0raJunvnHPzJJsmOn3fjyS9RNIVkhZK+opzLvx362WSXjR9/M2SNkl69/RzzJb0FUl3Sfo5SRsk\n/YmkqagGOuculvSPkv5J0vmSfl82dfddVQ99j6SHpn+XT0n6tHPukga/PwAAXYuAEgDQjh9Lem6D\nx3zTe//n3vufSvqwbBroo977L3jvH5X0vyUtlwWHknS9pAe89//Le7/De/+gpLfKgsuh0PMeknTd\n9GO+JQsIXzV9bLGkpZL+2Xv/mPf+P733f++931Gjje+V9D3v/Ye9949472+X9MeS/lfV477lvb/Z\ne/+o936zpEdDrwkAQM8hoAQAtMNJarQO8cHgf7z345LKsixfYO/07Yrp24slXT49VXXcOTcuaff0\nseeF/t2PvffhjOOe4Dm8989IulXSN6enzr7XObe6ThvXS/q3qvvukvQc59ziqN+l+jUBAOhFBJQA\ngHacK+nxBo85XvWzr7ovCEj7Qrdfk02HDf+3TtJXGzzvf/1d896/QzbVdZukX5L0E+fcLzRoa5Rw\nwFz3NQEA6DWz824AAKAzTW9w8xpJH0/4qe+T9CZJT3rvqwO4lnjvH5D0gKRPOee+Lultkr4Z8dAd\nki6tuu8ySSOdsGstAAB5YVQVANCMuc65M51zZznnfs45915Jd0q6V7bWMEmfl7RE0v91zm1wzj3X\nOXeFc+4vnXOLmnkC59xa59wnnXMvdc6d7Zx7paQLZGs+o3xG0sudcx9xzr3AOXe1pN+R9Ol2fxnn\n3IXOuQtl6zpPn/753HafFwCAIiBDCQBoxhWSRmW7pB6Q7cD6EUl/6b2fTPKFvPd7nHOXSrpJtovs\nPEm7JH1L0rEmn6Ys6QWyjXoGZOs0b5ftzBr1mvc5594oq635genHf1LSzVGPb9EPq37+75KelNX0\nBACgo7n0azoDAAAAALoRU14BAAAAALEQUAIAAAAAYiGgBAAAAADEQkAJAAAAAIiFgBIAAAAAEAsB\nJQAAAAAgFgJKAAAAAEAsBJQAAAAAgFgIKAEAAAAAsfx/yFta0qMSR5wAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create a biplot\n", + "vs.biplot(good_data, reduced_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "\n", + "Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on `'Milk'`, `'Grocery'` and `'Detergents_Paper'`, but not so much on the other product categories. \n", + "\n", + "From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?\n", + "\n", + "- First Dimension: detergents, grocery and milk (positively) - agrees with previous plot feature weights. \n", + "\n", + "- Second Dimension: Deli, Frozen, Fresh, also positively. Agrees too.\n", + "\n", + "So the length of the arrow is the weight of that feature in the dimension, the direction indicates how much each dimension is exposed to that feature.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Clustering\n", + "\n", + "In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "*What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The K-means algorithm will try to find clusters of points that are close to each other: a point can belong to only one cluster at a time. The Gaussian Mixture model allows points to belong to several clusters at a time, with a certain probability. Given wholesale customers might belong to several possible clusters, such as the \"small place\" cluster or the \"deli\" cluster at the same time, I would use the gaussian mixture model which allows this. Further, the mixture model incorporates the covariance information of the data (http://scikit-learn.org/stable/modules/mixture.html) which I believe is desirable, given we have some feature correlation. We should have enough points per cluster, so calculating the covariance matrix should work." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Creating Clusters\n", + "Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known *a priori*, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the \"goodness\" of a clustering by calculating each data point's *silhouette coefficient*. The [silhouette coefficient](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html) for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the *mean* silhouette coefficient provides for a simple scoring method of a given clustering.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Fit a clustering algorithm to the `reduced_data` and assign it to `clusterer`.\n", + " - Predict the cluster for each data point in `reduced_data` using `clusterer.predict` and assign them to `preds`.\n", + " - Find the cluster centers using the algorithm's respective attribute and assign them to `centers`.\n", + " - Predict the cluster for each sample data point in `pca_samples` and assign them `sample_preds`.\n", + " - Import `sklearn.metrics.silhouette_score` and calculate the silhouette score of `reduced_data` against `preds`.\n", + " - Assign the silhouette score to `score` and print the result." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nb comps: 2, score: 0.447411995571\n", + "Nb comps: 3, score: 0.359479670374\n", + "Nb comps: 4, score: 0.312405270688\n", + "Nb comps: 5, score: 0.3285065946\n", + "Nb comps: 6, score: 0.28969365136\n", + "Nb comps: 7, score: 0.328311049677\n" + ] + } + ], + "source": [ + "# Use the ouput of PCA reduced to 2 components as input for the Gaussian Mixture Model\n", + "\n", + "nb_comp = [2,3,4,5,6,7]\n", + "\n", + "val_out = 2\n", + "for val_comp in nb_comp:\n", + " # TODO: Apply your clustering algorithm of choice to the reduced data \n", + " from sklearn.mixture import GaussianMixture\n", + " clusterer = GaussianMixture(random_state=5, n_components=val_comp).fit(reduced_data)\n", + "\n", + " # TODO: Predict the cluster for each data point\n", + " preds_loc = clusterer.predict(reduced_data)\n", + " #print(preds)\n", + "\n", + " # TODO: Find the cluster centers\n", + " centers_loc = clusterer.means_\n", + "\n", + " # TODO: Predict the cluster for each transformed sample data point\n", + " sample_preds_loc = clusterer.predict(pca_samples)\n", + "\n", + " # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen\n", + " from sklearn.metrics import silhouette_score\n", + " score = silhouette_score(X=reduced_data, labels=preds_loc)\n", + " print(\"Nb comps: {}, score: {}\".format(val_comp, score))\n", + " \n", + " if val_out == val_comp:\n", + " preds = preds_loc\n", + " centers = centers_loc\n", + " sample_preds = sample_preds_loc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7\n", + "*Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** 2 clusters has the best silhouette score. I am guessing 1 cluster would be even better as it has no alternatives, but it throws an error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cluster Visualization\n", + "Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters. " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAH/CAYAAAB6lW32AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcHFW5//HPM8nIQDIQdhMyMeyEEMMlQyIiEkGMrIL5\nsSigeKMGl3DjT829ivzcUDR6LyAuBEWjEAwxCAgIuIGCYMLEm5BAWCQskwXCljABBjIz5/fHqc7U\n9PRS3V3dXd39fb9e85pMd3XVqWUm9dQ5z3PMOYeIiIiIiEgjaap2A0RERERERCpNgZCIiIiIiDQc\nBUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0HAVCIglkZl8zs2ur3Y4kM7MtZrZP\ntdtRz8zsbjP7eIW3Od/MLq7kNhuNmT1kZlOzvDfVzNZWuEk5mdlTZvbeGNaTc9/MzJnZfqVup9LM\nbGzQ9qHVbotIrVEgJFIlZvZhM+sIbug3mNntZvauGNcf+3+OSfoP1zk33Dm3ptrtyCUIJLqDc/yC\nmf3WzEaG3p9sZr83s01m9pKZLTWzj6WtY28z6zOzn0TY3nwzezPY3ktm9kczO6gc+1YNZnaemfUG\n+7fFzJ40s1+Y2QEFrKPsgZaZ7Whml5nZM0E7nwh+3i2GdZccFDjnxjvn7i61LWHBcXVm9oG01y8N\nXj8vzu0lWXCdOjObk/b62mwBqIhUhwIhkSows/8LXAZ8G9gTGAP8CDilmu0Kq2awY2ZDqrXtMvis\nc244cAAwArgUwMyOAP4C/BXYD9gV+BTw/rTPfwR4GTjTzLaLsL25wfb2AtYBV8exEwlyf7B/OwHv\nBV4HlpnZIdVtlmdmbwH+DIzHn8sdgSOAF4DJFdh+NR9SPIa/XsNtOQN4opiVJeGBSwleAuaYWWu1\nG1KIGj/mIgVTICRSYWa2E/AN4DPOud865151zm11zt3qnJuTYflBwznCT4WDXoUOM3vFzJ4zs/8J\nFvtb8H1T8FT6iGD5fzez1Wb2spndaWZvC63XmdlnzOxx4PEC96vJzP4rePr9opktMrNdQu//xsye\nNbPNZvY3Mxsfem++mf0k6B15FXhP8NqPzOw2M+sysyVmtm9aW/cLfT7Xsu8zs0eDbf/YzP5qWYZ8\nmdl2wdP79cHXZakAJHUuzOzzZrbRfE/exzKtJ51z7iXgBiB1w/494JfOue86515w3jLn3Jmhthj+\nxvIrwFbg5CjbCrb3OrAIODRt/3Kd/+PM7JHgOP0QsNB7A4ZrWlrvoJntEvTOrA/WfVNo2ZPMbLn5\nnq/7zOztoff+zcz+GZy364GWiPvX65x7wjn3aXww+bXQOjNea2b2SeBs/A3qFjO7JXg9dd12mdnD\nZnZalDZk8RH8g43TnHMPO+f6nHMbnXMXO+d+H2xvlJndYGbPm+/VuiDU9q8Fvzu/CtrzkJm1B+9d\nE6z7lqD9c0LnYYaZPYMPrjGzU4LPbjLfMzkutI3w34/tg9+fl83sYeDw8M6Y2X+a2bqgLY+a2bE5\n9v0W4F1mtnPw8/uBB4FnQ+vb18z+EvyNeMHMFpjZiLS2/aeZPQi8amk35mY2LjhmH4pwLHPuWxYn\nmNmaoG3fM/937S3me1gnhNa9h5m9Zma7Z1nPauB+4P9metPSeiYt7e98cBy+aGYPmtmrZna1me1p\nfuRAl5n9KXScU/49+P3bYGZfCK0r69/mbNePSKNQICRSeUfgb/ZujGl9lwOXO+d2BPbF3/wCvDv4\nPiIYRna/+WErXwY+COwO3AP8Om19pwJTgIMLbMes4LNHA6PwvRg/Cr1/O7A/sAfwT2BB2uc/DHwL\naAXuDV47C/g6sDPwr+D9bDIua3440mLgS/hel0eBd+ZYz4XAO/ABxET8U/yvhN5/K743Yi9gBvCj\nDDckgwTtmA78r5ntgL8OFuf52LuA0cBC/Hn9aL7thLY3DPgQ/likXst6/oP2/Ra/r7vhn+IfGXV7\nwDXADviekD3o7/n6N+DnwEz88Z8H/M58wPkW4Kbgs7sAv8Efo0L9Fjgq9HPGa805d1Xw77nB70Qq\nsHwi+PxO+GvoWgsNYSzQe4E7nHNbMr1pZk34gGEF/ho6FphtZtNCi52CP+cjgN8BPwzafy7wDHBy\n0P65oc8cDYwDppkfKvhrYDb+PP8eHzy9JUOTvor/u7EvMI3QNWZmBwKfBQ53zrUG7z+VY9+7gZvx\nv4vgg8JfpR8C4BL834hxQBuhIDbwIeBE/N+unlB7DgPuBGY5534d4Vhm3bccTgPagcOADwD/7px7\nE38+zklr45+dc8/nWNdFQXt2ybFMLtOB4/C9ySfjr+sv489pE3BB2vLvwV/37wP+0/qHUOb72wyh\n66fItorUJuecvvSlrwp+4Z9IP5tnma8B1wb/ngqsTXv/KeC9wb//hr952y1tmbGAA4aGXrsdmBH6\nuQl4DXhb8LMDjsnRrkHrDL23Gjg29PNIfC9GpmVHBOvZKfh5PvCrtGXmAz8L/XwC8EjoZwfsl29Z\n/M3Y/aH3DOgEPp5lH58ATgj9PA14KnQuXk87phuBd2RZ193B8d2EH6a2AH8Ts1fQ/oPyXAc/A24K\n/n1EcDz3yLH8fPzN6CagD3gSeHuU8x8cp3+kHae1qeMUvibTr4XgXPcBO2do00+Ab6a99ij+xuvd\nwHrAQu/dB1ycZf/OA+7N8Pr7ga1ZPpPpWsu4/tBnlgMfyPe7nOWzfwS+k+P9KcAzaa99CfhF6Dj/\nKfTewcDroZ+fIvjdTzsP+4ReuwhYlHae1wFT09cBrAHeH1r2kwR/b/BDNjfig7vmPPs9H7gYH7zf\nHxz354Dt8Q82zsvyuVOB/03bv39PW+Yp/N+4tal9iHgss+5blra4tOU/jQ92tm0rda0CHcAZ+a5T\n/AOM7wb/3tb+9OuQtL/zwT6fHfr5BuAnoZ9n0f+3IXUNHBR6fy5wdfDvrH+bM10/+tJXI32pR0ik\n8l4Edksf8lGCGfgnho+Y2QNmdlKOZd8GXB4Ml9mEH8du+BvzlM4i2/E24MbQulcDvcCeZjbEzL4T\nDM14hf6nyuHk8UzbfTb079eA4Tm2n23ZUeF1O+cc/oYkm1HA06Gfnw5eS3nRhZ5SR2jXBc65Ec65\nvZxzZzv/BPllfOCQtdfBzLYHTqe/N+N+/I3Yh4P3v2z9RQOuDH30+865EfgbnNeBA0Pv5Tr/mY5T\n1GuhDXjJOfdyhvfeBnw+tc1gu23B9kYB64JtpTydYR357IXfFyJeawOY2Uesf+jeJvzwxYzLh475\nFjMbk2GRF8lxXvHHY1Ta8fgyPlcwJf1abonw9yJ8rgZcw865vuD9vdI/RNp5T/vcv/C9Sl8DNprZ\nQjMbRQ7OuXvxwf6FwK3OD9HcJhjetTAYbvcKcC2Dj3Wm6+584D43sMhDvmOZdd9ySF9+VLBfS/Dn\nYqr5AiT74Xvr8vl/wKfMbM+8Sw72XOjfr2f4Of3vTsa2k+Nvc5bPijQMBUIilXc/8Ab+SWgUr+KH\nHAHbCglsG5funHvcOfch/DCg7wKLg2FRLn1F+P/sZgY35qmv7Z1z94WWyfS5KDqB49PW3eKcW4e/\nef8A/snyTvibdAjloJSw3Xw24IeX+Q2aWfjnDNbjbxxSxgSvxcY59xr+Osg1DOw0fKL9j83nuzyL\nv5H9aLCObzs/PGq4c+78DNt4BvgPfOCzffByrvO/AR+gANuOU1tolQOuQ/wQwZROYBcL5Xqkvfet\ntG3u4Jz7dbDNvYJtpWQKLvI5DT/MD/JfawOuM/M5Uj/FDwHbNQgiVzHw2twmdMyHB8c43Z/ww9OG\nZWlrJ/Bk2vFodc6dEGVH09uf5fUB13DoXK7L8LkB55204++cu845965gfQ7/Nyafa4HPM3hYHPgC\nMQ6Y4Pxw3nMYfKwz7eP5wBgzuzT0Wr5jmXPfskhfPvy7/8ugvecCi51z3flW5px7BD9088K0t3L9\nPhUrW9tz/W3e1tQYti9ScxQIiVSYc24z/inhj8zsVDPbwcyazex4M5ub4SOP4Z8In2hmzfgcjm3V\nw8zsHDPbPXjquyl4uQ94PvgenmvnSuBL1p88vpOZnV7EbmxnZi2hr6Zg3d8Kbiwxs92tv5RuKz74\nexH/n/+3i9hmsW4DJgTHeijwGXLfdPwa+ErQ/t3w56occzrNAc4znxC9K4CZTTSzhcH7H8Xn1kzA\n5ysdis/ZmWihpO1cnHN/xN8MfTJ4Kdf5vw0Yb2YfDI7TBQw8TsuBd5vZGPMFP74U2s4G/LC7H5vZ\nzsH1nMpR+ylwvplNMW9YcC234oPBHuCC4DMfJGJltaDnZ28zuwI/rOjrwVv5rrXnGPg7kXpo8Hyw\n3o/RX9CiGNfgbzxvMLODzCeq7xr04J0ALAW6zBcE2D7Yj0PMLEoif6b2Z7IIONHMjg3+Znwef0zu\ny7Lsl4LzNho/5ArwOUJmdoz5YiHd+F6Ivght/AE+t+VvGd5rBbYAm81sL+CLEdYH0IUfAvluM/tO\n8Fq+Y5l133L4YrB8G/5BwvWh967FB93nkDnIy+brwMfwwwVTluMLM+xiZm/F97yV6qLg/5PxwfZS\nbc/1t1mkoSkQEqkC59x/46sJfQV/A9aJfyJ9U4ZlN+PHqv8M/0T3VQYO7Xo/8JCZbcEXTjjLOfd6\n0OvwLeDvwZCIdzjnbsQ/0V0YDEtZBRxfxC5swd8Upb6OCbb9O+APZtYF/AM/rh78TcPTQfsfDt6r\nCOfcC/ghZnPxN8cH48f3v5HlIxcH7z8IrMQn28c+70zQC3NM8LXGzF4CrgJ+H9wgHgtc5px7NvS1\nDLiDAoom4KvTzTGz7XKd/9Bx+g7+OO0P/D3U3j/ib6weBJYBt6Zt51x83sEj+LyS2cHnOoBP4BP+\nX8YXbzgveO9NfOGG8/BD287EPz3P5YjgWn8Fn4O1Iz6Zf2Xwfr5r7Wrg4OB34ibn3MPAf+ODsufw\ngeffKZJz7g18b9Qj+HyhV/A37LsBS5xzvcBJ+MD2SXxZ7Z/he6+iuAQfqG+yUGWwtDY8ir9ZvyJY\n/8n4AgtvZlj86/jj9STwB3wgl7Id/np4AT9cbw9CAXA2zrmXnHN/ThvyGN7eYcBmfPCd73yH17sJ\nH2Adb2bfjHAsc+1bNjfjr+/lQfu2lZ93znXi/x44+nsgo7T7yWDb4V7Ca/BFHp4K2nb94E8W7K/4\n368/44fI/iF4PdffZpGGZpn/TomI1Keg92otPhH5rmq3R0Rqh5n9HFjvnPtK3oVFJPE0cZaI1D3z\n5XSX4HuvvojPSahYr5SI1D4zG4vvwfy36rZEROKioXEi0giOwJfFTg0TOjW9mpWISDZm9k38UNLv\nBUPdRKQOaGiciIiIiIg0HPUIiYiIiIhIw1EgJCINycyOMrN/mZ8YM9cktBVnZvuZWeK7683sYjOb\nX+12JI2ZvdfMnoppXdea2deyvPdxM7s7ju1EaEfJ57pWrmsRaRwKhESkYoKgI/XVZ2avh34+u8LN\nuRi4NJgYM70UdKKZ2bvN7H4z22xmL5nZvWZ2WLXbVQgzWxs6/5vM7O9m9kkzyziRaYbPl3RTbWZD\nzcyZ2QbzkxSnXn+Lmb1oZj3FrrsWBddQd3A+NpvZX4P5aKrZphFmdrmZPRO0619m9j8WzLslIlIq\nBUIiUjFB0DHcOTcceAY/t0nqtQXpy5uf2LNc3gY8VMwHy9yufNveGT8nyP8AuwCj8UFdpjliku74\n4FoYi5/v6Mv4uZQq6RXgfaGfT8IX1ShKNa+NGJwfnI9d8XMp/bJaDTGzFuAvwEH487Mj8E78/EPt\nGZav5eMuIlWiQEhEEiMYfnO9mf06mPjvHDM7wsz+EfQabDCzH5hZc7B86qn+zOBp8ctm9oPQ+g4w\ns78FT7hfMLPrgtefAsYAtwdPmoeY2WgzuzXoYXnczP49T7suNrOFwWtbzGyFme1rZl8xs+eDp9jv\nDa1jhJn9ItiHtWb2jWBOI4LtXxr0RKzBT5KbzYFAj3PuN865Xufca865O5xzq4J17W9mdwX78YKZ\nXWNm2ybrDLb9BTNbFbT7KjPb08zuNLNXzOwPZjYiWHa/4Ph+wszWB1+fy3H+jgydq+Vm9u4o5905\nt8k5dxPwIWCGmR0UrO+UYD2vBMfzotDH/hYsk+pRPDzfvmdxDfCR0M8fwU/KGt6vj5vZajPrMrMn\nzOzjoffea2ZPmdmXzexZ4KcZjsvnguM9KrRfK4LjdK+ZHRJadlKwz11m9mv8pKa5NJnZj4NrfLWZ\nvSdYz4fMbElaO+aY2Q151odzrgdYiJ98eBAzazKzxWb2bLAPd5vZuND7OwTX8zNBu/5mZoP2w8zO\nMLMnzSzTds4D3gqc5px7xDnX55zb6Jz7unPuzuDza83si2a2Ej/RNGY23nxv1iYzW2lmJ4a2d1Lo\nPK5NXctmtoeZ/T74zEtm9rd8x0hE6oMCIRFJmtOA6/Czw18P9AD/AewGHIkPEmamfeYEYBJ+fo9z\nQgHIt/Czw++M7zn5EYBzbiywnqBHIpih/nr8DPSjgDOBuWZ2dI52AXwAP/P8CHzv0p+C9o4ELgF+\nEvr8Nfh5jPYN2noi8LHgvU/hn3pPBA4HzshxfB4FhgRB1ftTQUuI4XuI3oq/kd0HuChtmdOAY/BP\n26cHx2gOsAf+xvszacu/G9gPOB74iplNTW+UmbXhe6q+iu+p+i/gt1bAMCbn3P3As8BRwUtbgLPx\nx/dk4D+sP5/r3cFnUj2KD0Tc93S/BY4xsx2Dtr4DuCVtmefw52tH4BPAFWb29tD7o4Hh+OD60+EP\nmtk3gn042jm33swOxwdLH8f3vPwcuNn8kLztgJuD13YJ/n1qnva/E3gE//vxTfwxHwHcBBxoZvuH\nlj2XtCAvEzN7S9DmXHNt3Qrsjz/Wq/DXd8qlwNuBKcF+fBnoS9vGx/G/n8c65x7OsP73Arc7517L\n09yz8NfliKDdt+Kv592BzwHXm9l+wbK/AGY451qD9v01eP2LwJrgM28FNFmqSINQICQiSXOvc+6W\n4Anw6865B5xzS5xzPc65NfihU0enfeYS59xm59xTwN3AocHrW/HDrkY657qdc3/PtEEz2xuYDPxX\nsNw/8TdN52ZrV/Da3c65PwVP0H+Dv+mbG3qivp+ZDTezvfA3dp8LenCeAy7D38SBD3wudc6tdc69\nCHwn28Fxzr0MvAv/9/tq4Hkzu8nMdg/ef8w592fn3JvOuY34m9L04/WD4On6WuBe4H7n3ArnXDf+\nBjp9wsivB+1egR8u9aEMTfsI8Dvn3J3BMboDWEHu3q1M1uOPI865vzjnHgrWtwJ/TNP3ZZuI+57u\nNeB24PRgv24kbZhhcN7XOO8vwJ/pD9bAB79fC7abujbMzC4Ptn9McF4BPgn8OLiue51zPw9ePxwf\n6DvgCufcVufcQuB/87R/Q2j56/DB/PFBO34DnBM05lB8gP77HOv6sZltwgegnwS+kWmh4HzMd851\nBdfM14BJZjbMfL7VecAFzrkNwT7e65zbmvq8mX0BmI0PDtdkacuuwb7lc3nwe/M6/vi9BT/Xz1bn\n3J/w5zb1e7YVONjMWp1zLwW/56nXRwFjgnOoHiGRBqFASESSpjP8g5kdZGa3BcNwXsHfnO2W9pln\nQ/9+Df90HuDzQDPQEQyT+WiWbY4CXnDOvRp67Wlgr2ztCjwX+vfrwPPOub7QzwRteRu+p+W5YPjN\nJnzv1J6h7YfX/3SWdgIQBAcfdc7thX+yPQafM4SZvdXMFpnZuuB4zWfw8Upvd/rPwwcuPqhtozI0\n623Ah1L7F+zjO7Ism8tewEvBvhwRDLt63sw243tR0vdlm4j7nsmv8IHcoGFxwXpPMrMlwbCpTfje\nu/B6n3POpedo7Rq091vOuVdCr78N+M+04zQy2O9RwFo3cIK/nNdCluVTx/yX+J4d8AHR9eGAJINP\nO+dGAC34nqibLEPBBPNDOeea2ZrgOP8reGs3/DX9FvwExtl8ER+8rc+xzIv445JP+NocBTyT4Xik\nfo9PA04BngmuqynB698Jlvuz+aGPX4ywXRGpAwqERCRp0iuBzcMPvdnPObcj8P/wQ6Dyr8g/kf64\nc24kfrjXVUHvT7r1wG5mNiz02hhgXY52FaITH6Dt4pwbEXzt6JxLDa/aALSlbTsS59xq/M17Ks/k\nu8AbwITgeJ1HxOOVQ3rbMt3AdgK/CO3fCOfcMOfc96JuxMzegb+Rvjd4aSFwA9DmnNsJ+Bn9+5Lp\nfBS773fhA5QRwfC8cJu2BxbjhzruGQQKf0hbb6a2vIC/6b422K+UTnwPW/g47eCcW4S/DkanrSff\ntZBp+fUAzrl7g304EvgwA4evZRX0+PwV37t0XIZFPoIfjnoMfqhoauiZ4YPqN/FDQLM5DviameUa\n9vcn4Pjg+Odsbujf64E2swGVB7f9Hgc9y6fgh4Deir++cM694pz7nPNDZk/FB6r5ehJFpA4oEBKR\npGvFV4p6NUjITs8PyipIxk49Dd6Ev2nqTV/OOfck0AF828y2C4YRfQy4ttTGB+vvxOcjfD/IRWky\nX4ggVUxgETDbzPYK8lT+M8c+HWxm/ze1X2Y2Bj/0J5XP0YpPHN8c5O18IYZduMjMtjezCcBH6c+R\nCrsGOM3Mjgt6DFrM7D0WFAjIxcx2MrNT8DlY84PgLrUvLznnuoNg4qzQxzYCzsz2Cb1W1L4HPQgn\nkTkfZzt8D8fzQG+Qo3RsxPX+GR803GxmqUpnPwU+Y764gwVDJ08OgvB78cUPPmu+EMgZQL6y6CND\ny5+FD0DuCL1/DT5XbYtzLlfOzwBB8HQQmSsrtuIDzheBHfC5Pql97sX3xF0W9NANMV9Eozm0zIP4\nnKt5FipmkGY+vqf3BjM7MDhWu5nZRWY2Lctn7sMPU/y8mTWb2TH4gO364Pr9sJntGPSKdRHkLQXH\nf98ggNqM/xvRl2UbIlJHFAiJSNJ9Hn/z3YXvHcp0E57NFOABM3sVnxT/GefcM1mWPROf/P0svgfg\ny865u4ttdAbnAMOAh4GX8fkbbw3e+wk+72Ql8ECw/Wy6gCPo36/78Hkkc4L3v4rPd9qML16Qt0pY\nBPfik8n/gM/H+kv6As7nZ52GL07wPL48+ufJ/f/M7Wa2JVj2v/AltD8eev9TwCXmK/V9GR8wprbX\nhe+lWRIMMWunhH13zq1yGZL2nXOb8En3N+KH7P0ffG9C1PXegS+wcKuZHRoEI5/Cn/OXgccI8nic\nc2/gj+EngvdOw+ds5XIfMD5o29eA6c7nkaWkeguj9AZdaUEVPnwg8p/OuT9mWO4X+N6X9fhA6b60\n9z8HrAaWBe36Nmk9c0F+zsnAL8zsfWmfJ8g9OgY/7O5P+Ov+H/geqAcyNT44fifji5i8APwA+LBz\n7vFgkY8CTwfD+WYQHHd8Jca/4HOj/o7PO7on0zZEpL7YwKG0IiIinvlqW48750odWidVEvQ0bQQO\nCXo+RUQkoB4hERGR+vUZ4O8KgkREBtNMzCIiInXIzNbiS0N/oNptERFJIg2NExERERGRhqOhcSIi\nIiIi0nAUCImIiIiISMOpqRyh3XbbzY0dO7bazRARERERkYRatmzZC8653fMtV1OB0NixY+no6Kh2\nM0REREREJKHM7Okoy2lonIiIiIiINBwFQiIiIiIi0nAUCImIiIiISMOpqRwhEREREZF6sXXrVtau\nXUt3d3e1m1KTWlpaGD16NM3NzUV9XoGQiIiIiEgVrF27ltbWVsaOHYuZVbs5NcU5x4svvsjatWvZ\ne++9i1qHhsaJiIiIiFRBd3c3u+66q4KgIpgZu+66a0m9aQqERERERESqREFQ8Uo9dgqEREREREQa\n1LPPPstZZ53Fvvvuy6RJkzjhhBN47LHHeOqppzjkkEOKWuf8+fNZv359Se1yznHBBRew33778fa3\nv51//vOfJa0vEwVCIiIiIiINyDnHaaedxtSpU3niiSdYtmwZl1xyCc8991xJ6y0mEOrp6Rnw8+23\n387jjz/O448/zlVXXcWnPvWpktqUiQIhEREREZFa0LkBZl0Mk8/03zs3lLS6u+66i+bmZs4///xt\nr02cOJGjjjpqwHLz58/ns5/97LafTzrpJO6++256e3s577zzOOSQQ5gwYQKXXnopixcvpqOjg7PP\nPptDDz2U119/nWXLlnH00UczadIkpk2bxoYNvt1Tp05l9uzZtLe3c/nllw/Y5s0338xHPvIRzIx3\nvOMdbNq0advn4qKqcSIiIiIiSde5ASaeBlteg609sHw1LLgVVtwIbSOLWuWqVauYNGlS0U1avnw5\n69atY9WqVQBs2rSJESNG8MMf/pDvf//7tLe3s3XrVmbNmsXNN9/M7rvvzvXXX8+FF17Iz3/+cwDe\nfPNNOjo6Bq173bp1tLW1bft59OjRrFu3jpEji9vXTBQIiYiIiIgk3dyr+4Mg8N+3vOZfv+IrVWnS\nPvvsw5o1a5g1axYnnngi73vf+wYt8+ijj7Jq1SqOO+44AHp7ewcEM2eeeWbF2ptOgZCIiIiISNIt\nWdkfBKVs7YGlK4te5fjx41m8eHHe5YYOHUpfX9+2n1Mlq3feeWdWrFjBnXfeyZVXXsmiRYu29fSk\nOOcYP348999/f8Z1Dxs2LOPre+21F52dndt+Xrt2LXvttVfethZCOUIiIiIiIkk3ZQI0p/VhNA+F\nyROKXuUxxxzDG2+8wVVXXbXttQcffJB77rlnwHJjx45l+fLl9PX10dnZydKlSwF44YUX6OvrY/r0\n6Vx88cXbKru1trbS1dUFwIEHHsjzzz+/LRDaunUrDz30UN62nXLKKfzqV7/COcc//vEPdtppp1iH\nxYF6hEREREREkm/ODJ8TlBoe1zwUhu/gXy+SmXHjjTcye/Zsvvvd79LS0sLYsWO57LLLBix35JFH\nsvfee3PwwQczbtw4DjvsMMDn8XzsYx/b1lt0ySWXAHDeeedx/vnns/3223P//fezePFiLrjgAjZv\n3kxPTw+zZ89m/PjxOdt2wgkn8Pvf/5799tuPHXbYgV/84hdF72fW/XfOxb7Scmlvb3eZkqlERERE\nRGrN6tXhc8TXAAAgAElEQVSrGTduXPQPdG7wOUFLV/qeoDkzii6UUC8yHUMzW+aca8/3WfUIiYiI\niIjUgraRVSuMUI+UIyQiIiJSis5umPUYTF7mv3d2V7tFIhKBeoREREREitXZDRM7YEsPbAWWd8GC\njbCiHdpaqt06EclBPUIiIiIixZr7TH8QBP77ll7/uogkmgIhERERkWIt6eoPglK2OljaVZXmiEh0\nCoREREREijWlFZrTXms2mNxaleaISHQKhERERESKNWcMDB/aHww1Gwwf4l8XqQHPPvssZ511Fvvu\nuy+TJk3ihBNO4LHHHuOpp57ikEMOKWqd8+fPZ/369SW165FHHuGII45gu+224/vf/35J68pGgZCI\niIhIsdpafGGEmaN8L9DMkSqUIDXDOcdpp53G1KlTeeKJJ1i2bBmXXHIJzz33XEnrLSYQ6unpGfDz\nLrvswg9+8AO+8IUvlNSWXBQIiYiIiJSirQWuOACWTPLfFQRJucRcqv2uu+6iubmZ888/f9trEydO\n5Kijjhqw3Pz58/nsZz+77eeTTjqJu+++m97eXs477zwOOeQQJkyYwKWXXsrixYvp6Ojg7LPP5tBD\nD+X1119n2bJlHH300UyaNIlp06axYcMGAKZOncrs2bNpb2/n8ssvH7DNPfbYg8MPP5zm5vSxp/FR\n+WwRERERkaQrQ6n2VatWMWnSpKKbtHz5ctatW8eqVasA2LRpEyNGjOCHP/wh3//+92lvb2fr1q3M\nmjWLm2++md13353rr7+eCy+8kJ///OcAvPnmm3R0dBTdhlIoEBIRERERSbpcpdqvOKAqTdpnn31Y\ns2YNs2bN4sQTT+R973vfoGUeffRRVq1axXHHHQdAb28vI0eO3Pb+mWeeWbH2plMgJCIiIiKSdGUo\n1T5+/HgWL16cd7mhQ4fS19e37efubj8kb+edd2bFihXceeedXHnllSxatGhbT0+Kc47x48dz//33\nZ1z3sGHDim5/qZQjJCIiIiKSdGUo1X7MMcfwxhtvcNVVV2177cEHH+See+4ZsNzYsWNZvnw5fX19\ndHZ2snTpUgBeeOEF+vr6mD59OhdffDH//Oc/AWhtbaWrywdoBx54IM8///y2QGjr1q089NBDRbc5\nTuoREhERERFJujljfE5QanhcDKXazYwbb7yR2bNn893vfpeWlhbGjh3LZZddNmC5I488kr333puD\nDz6YcePGcdhhhwGwbt06Pvaxj23rLbrkkksAOO+88zj//PPZfvvtuf/++1m8eDEXXHABmzdvpqen\nh9mzZzN+/PicbXv22Wdpb2/nlVdeoampicsuu4yHH36YHXfcsej9HbT/zrnYVlZu7e3trlrJVCIi\nIiIicVq9ejXjxo2L/oHObp8TtLTL9wTNGdPwVQozHUMzW+aca8/3WfUIiYiIiIjUglSpdomFcoRE\nRERERKThKBASEREREZGGo0BIRERERKRKailfP2lKPXYKhEREREREqqClpYUXX3xRwVARnHO8+OKL\ntLQUXyyi6sUSzGwI0AGsc86dVO32iIiIiIhUwujRo1m7di3PP/98tZtSk1paWhg9enTRn696IAT8\nB7AaiK8ouIiIiIhIwjU3N7P33ntXuxkNq6pD48xsNHAi8LNqtkNERERERBpLtXOELgPmAH1VboeI\niIiIiDSQqgVCZnYSsNE5tyzPcp80sw4z69D4SRERERERiUM1e4SOBE4xs6eAhcAxZnZt+kLOuauc\nc+3Oufbdd9+90m0UEREREZE6VLVAyDn3JefcaOfcWOAs4C/OuXOq1R4REREREWkc1c4REhERERER\nqbgklM/GOXc3cHeVmyEiIiIiIg1CPUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0\nHAVCIiIiIiLScBQIiYiIiIhIw1EgJCIiIiIiDUeBkIiIiIiINBwFQiIiIiIi0nAUCImIiIiISMNR\nICQiIiIiIg1HgZCIiIiIiDQcBUIiIiIiItJwFAiJiIiIiEjDUSAkIiIiIiINR4GQiIiIiIg0HAVC\nIiIiIiLScBQIiYiIiIiUW2c3zHoMJi/z3zu7q92ihje02g0QEREREalrnd0wsQO29MBWYHkXLNgI\nK9qhraXarWtY6hESERERESmnuc/0B0Hgv2/p9a9L1SgQEhEREREppyVd/UFQylYHS7uq0hzxFAiJ\niIiIiJTTlFZoTnut2WBya1WaI54CIRERERGRcpozBoYP7Q+Gmg2GD/GvS9UoEBIRERERKae2Fl8Y\nYeYo3ws0c6QKJSSAqsaJiIgkSecGmHs1LFkJUybAnBnQNrLarRKRUrW1wBUHVLsVEqJASEREGk9S\ng43ODTDxNNjyGmztgeWrYcGtsOLGZLRPRKSOaGiciIg0llSwMW8RPLDSf594mn+92uZe3R8Egf++\n5TX/ukg6TdApUhIFQiIi0liSHGwsWdnfrpStPbB0ZXXaI8mVmqBz3np4oMt/n9ihYEikAAqERESk\nsSQ52JgyAZrTRq03D4XJE6rTHkkuTdApUjIFQiIi0liSHGzMmQHDd+hvX/NQ//OcGdVtlySPJugU\nKZkCIRERaSxJDjbaRvrCCDPP8IHZzDNUKEEy0wSdIiUz51y12xBZe3u76+joqHYzRESk1qWqxi1d\n6QOOpFSNE4kqlSOUGh6XmqBTc9OIYGbLnHPt+ZZT+WwREWk8bSPhiq9UuxUixUtN0Dn3GT8cbnIr\nzBmjIEikAAqERERERGqRJugUKYlyhEREJBk6N8Csi2Hymf57Eub1ERGRuqUeIRERqb7UJKep+X2W\nr4YFt6pQgIiIlI16hEREpPqSPMmpiIjUJQVCIiJSfaVMcqohdSIiUgQNjRMRkeqbMsEPhwsHQ1Em\nOdWQOhERKZJ6hEREJJpy9rwUO8mphtSJiEiR1CMkIiL5pfe8dKyCnyyEc06Gb15Qeu9L20jfi1Po\nJKelDKkTEZGGpkBIRETyS+95cQ56HVzzO/jdXfEMRStmktNih9SJiEjD09A4ERHJL1PPC0Cfq+5Q\ntGKH1ImISMNTICQiIvlNmdAfbKSr5lC01JC6mWf4XqCZZ6hQgoiIRKKhcSIikt+cGb4a26YuPywu\nrNpD0YoZUiciIg1PPUIiIpJfquflI6fAkCZoMv+6hqKJiEiNUiAkIiLRtI2E+ZfAk3+ET39IQ9FE\nRKSmaWiciIgURkPRRESkDqhHSKQRlXNiTJEk0bUuIiJZmEtPek2w9vZ219HRUe1miNS29IkxUzke\nGt4k9UbXuohIQzKzZc659nzLqUdIpNGkT4y5tae688BIciSx96SUNulaFxGRHJQjJNJoMk2MWc15\nYCQZ0ntPlq/25bLj6j3p3OADkCUr/ZxEc2bkX2+pbdK1LiIiOahHSKTRZJoYs9rzwEj1lbP3JBXQ\nzFsED6z03yeelr93p9Q26VoXEZEcFAiJNJo5M3yeROoGUfPACJS396TYgKbUNulaFxGRHBQIidSq\nYnMnUhNjzjxD88BIv3L2nhQb0JTapijXehLzokREpCJUNU6kFpWxGpZzDjOLbTmpEeWssDbrYj8c\nLhwMNQ/1gUmu+YjKXfVNVeVEROqSqsaJ1LMy5XN0d3dz0kknsXDhwpzLLVy4kJNOOonu7u6SticJ\nUs6ewmKHqJW791JV5eLV2Q2zHoPJy/z3Tv19EJFkU9U4kVpUhnyO7u5uTj31VO68807uuOMOAM46\n66xByy1cuJCzzz6bvr4+Tj31VG666SZaWlqK3q4kSNvI3D00pax3xY0+wFi60gc1UarGlbNNoKpy\ncershokdsKUHtgLLu2DBRljRDm36+yAiyaQeIZFaFHM+h3OO6dOnc+eddwLQ19fH2WefPahnKBwE\nAdx5551Mnz6dWhpiK1WSCmiWXO+/J2HomarKxWfuM/1BEPjvW3r96yIiCaVASKQWxVwNy8w499xz\naWrq/5OQHgylB0EATU1NnHvuucoVSjIVA8hOVeXis6SrPwhK2epgaVdVmiMiEoWKJYjUqtQElYUO\nNcohY7Bjxsk7jeSWzRvoC/29aGpqYsGCBRmHz0lCqBhAfmX4PWpIsx6DeesHBkPNBjNHwhUHVK1Z\nItKYohZLUCAkIgNkCobSKQiqEcVWaxMpVHqOULPB8CHKERKRqlDVOBEpyllnncWCBQtoyjLcrclM\nQVCtUDEAqZS2Fh/0zBwFk1t9T5CCIBFJOAVCIjLIWWedxck7ZR4edPJOIxUE1QoVA5BKamvxw+CW\nTPLfFQSJSMIpEBKRQRYuXMgtmzMn1d+yeUPeeYYkIVQMQEREJCsFQiIywLYcoSz5g33OZSytLQlU\n7glJRUREapgmVBWRbaJWjUuV1obMk65KgpRzQlIREZEaph4hEQGyzxO04LrruOnldSy47rqc8wyJ\niIiI1BIFQiKCc45rrrlmcBAUqg63rZpcWjB0zTXXUEtl+EVERERAgZCIAGbGDTfcwLRp04Ds8wSl\nB0PTpk3jhhtuwLKU2pY60bnBz0k0+Uz/vTNzIQ0REZFaoglVRWSb7u5upk+fzrnnnpsz92fhwoVc\nc8013HDDDbS0qERuXevcABNPgy2v+TmIUpXnVHRBREQSKuqEqgqERGQA51ykHp6oyyVK5waYe7Wf\naHTKBF9GWjfzuc26GOYtGjgxa/NQX4GulCIMOhciUq86u2HuM7CkC6a0wpwxmlerwqIGQqoaJyID\nRA1uajIICvdsLF8NC25Vz0Y+S1YODILA/7x0ZfHr1LkQkXrV2Q0TO2BLD2wFlnfBgo2wol3BUAIp\nR0hEGsPcq/tvvMF/3/Kaf12ymzKhf0LWlOahfl6iYulciEi9mvtMfxAE/vuWXv+6JI4CIRFpDOXo\n2WgEc2b4nKBUMJTKEZozo/h16lzkpwIVIrVpSVd/EJSy1cHSrqo0R3JTICQijaGUno1q3ZQm4Wa4\nbaQfsjbzDH+sZp5R+hC2cvQy1ZPU0MF5i+CBlf77xNMUDJWqsxtmPQaTl/nvnd3VbpHUoymt0Jz2\nWrPB5NaqNEdyU7EEEWkMxVY/q1bVtHqu1lbP+xaHchWoaGTpeRvNwPChytuQ+A261gyGD9G1VmFR\niyVUrUfIzNrM7C4ze9jMHjKz/6hWW0SkARTbs1GtfJZ6zqMpRy9TPdHQwfgpb0Mqpa3FBz0zR/le\noJkjFQQlWDWrxvUAn3fO/dPMWoFlZvZH59zDVWyTiNSztpGFP1Gv1k1pvd8MF3MuGsWUCb6SXnqP\nUDFDB1XG11PehlRSWwtccUC1WyERVK1HyDm3wTn3z+DfXcBqYK9qtUdEYpSE3Ja4VCufRXk0jSuu\nAhWpITrz1sMDXf77xI7GzI1R3oaIZJCIHCEzGwv8DTjEOfdK2nufBD4JMGbMmElPP/10xdsnIgWo\nt/wP5QjFSxOpRpM6TktX+uC3mOM06zEf/IR7QprND9VptKfVytsQaShRc4SqHgiZ2XDgr8C3nHO/\nzbWsiiWI1IB6TPSO46a0lrZbLsUEdwqcijd5me8JGvR6KyyZVPn2VFtqmODSLn8MGnWYoEgDiBoI\nVTNHCDNrBm4AFuQLgkSkRlQqt6WSN8jVymeptzyaXAUgMu1neuC0fDUsuLW6vWK1FJhNafWz2qf3\nCDXqcDDlbYhImmpWjTPgamC1c+5/qtUOkaqrp3waqExui+ZZiS5J11ehQXLSKufV2nU3Z4wvEZ3K\njUkNB5szpqrNEikbzRUlBarmhKpHAucCx5jZ8uDrhCq2R6Tyau3GKoq4Er1zSdoNclLlur6qESAV\nGiQnrXJeUq67qOdOZXylkWQrDrJks4IjyapqQ+Occ/cCVq3tiyRCoUOFakFqjphy5rYk7QY5qbJd\nXxf9AH53V+WHnM2Z4beTniOULUiOs4x0HJJw3RU6XFDDwaRRZJwrqgeOXg59zv+8vAsWbNQDAdmm\nmj1CIpKEG6tySOW2LLne3+TOvTrengeVlo4m2/V1+73F92yU0pNU6ESqlehdLEQSrruk9EqJJE3G\nuaKAN5wm0pWsqlosQaThJe2Jd9zKlexeaM9Co0hP5D94n8zXF664ADyO81lIAYhiexfLVdAgCddd\nvT48ESlVpuIgmWgiXQlRICRSTUm4sSqncg39q8Twu3Ip1016piBlhxb/9Vr3wOvr+KPgutsKD8Cr\nMZSz0Mp55aw0l4Trrt4fnogUa84YP+wtPFdUE9DrIPzsoJErJ8ogVZ9HqBCaR0jqUr3NFRM2+Uyf\npD/o9Ql+2FyjKeckqdnmb/rwidA6bOD1BcW1oxbOZ6bj0GSw285wxvtr//erXifarXepOYyWdPme\nC81hVB7pc0Wdsyccv1IT6TagmphHSESov7liwvT0eqBy9qhkGzK1ek3mIKWYno1aOJ+ZjkOfg40v\nwY9+Ddf8DlbeXLtBQxJ6paQwqWpmqZtxJeyXT6biICvaNZGuZKVASETKJ6lD/6o1KWY58zsKDVKK\nCcCTej7DMh2HFOdg8xZfNW/+JbU1OWpYPT88qUcZq5kFCfuq6Fd+4eBIPXOSRkPjRKS8kjb0r5pD\ni7INX5t5Ruk3tpXar6Sdz3TpxyGTPXaBjt9oiJlUxuRlfl6bQa+3wpJJlW9Po0rvmWvGTzisnrm6\nFHVonMpni0h5hUtpX/GV6t9kVrP8cDnLQRdamrqU7STpfKYLH4chQzIv09dXf2WoO7s1aWRSTWn1\nN91hStivvFw9c9KwNDRORBpLNcsPlyu/I32I1+LLkhegVFIqWPvj/fDok4Pf33Xn+ipDrRyUZMtU\nzWz4EP+6VE7GeYZUSrvRKRASkcZS7YT/uPM7ylkuuhbkyvPZ7i2ZP9PylupfB3FSDkqytbUoYT8J\nMs0zpJ65hqehcSLSWMo5PK0a6m2IVyFSQeC8Rb6s97xF/ufODf79d0+CoWnD44YOgaMm1dd1oCfd\nyZdK2F8yyX9XEFR5c8b4nKDUMEX1zAkKhESk0VQql6ZS6mmIV7rODb7AxOQz/fdUgJOSLwicM8PP\noRQOdlqH9fca1ct1oBwUkfxSPXMzR/nfjZkjNXxUVDVORKSmlbMSXTVFqYIXZYLXpFe5i8Ogalia\nNFJEGpuqxomI1Lp8PSJQX0O8wqIM+ZsyoX+/U9LzfNpG+mMxeYLvPZt7debjWMv0pFtEpCjqERIR\nSaJC5gWqx16PqL09+Y5RNeeNEhGRqlCPkIhILSukCELS5/YpRtTennx5Po1cTEJERHJS+WwRkVLk\nKt9cinoughDFnBm+DHh6T076kL985cgb/TiKiEhW6hESkfoTJbcmru3kKt9ciig9IvUsrqpujX4c\n49bZDbMeg8nL/PfO7mq3SESkaMoREpH6UsmckGIrtuXqRUq997dl8Oga6O2Dnt7B+1Gunqh6oxyh\n+AyqToefl0WFGUQkYaLmCGlonIjUl1w5IXGXky5m2FX6jfny1X4I2Iob/fvh94YOgSFNMH5/OOqw\n/mAn1zp0cz9Qqmep3opJVMPcZ/qDIPDft/T61684oJotq4zObr+vS7r83E1zxigAFKlxCoREpL5U\nMidkygQfhKT3COUadpUveT/8Xk8vmPkgKBzEVTLYiyrJPVT58ogkmiVd/UFQylYHS7uq0pyKSu8N\nW94FCzaqN0ykxilHSETqSyVzQoqZwydXoBY1iEtaAYBy5kpJckxp9cPhwprNz11U73L1holIzVIg\nJPWpUsnykjyVnGC0mIT+XIFa1CAuaQUAVKK6McwZ43OCUsFQs8HwIf71QtVa0YVG7g0TqWMqliD1\nR8nRja1zA1z0A7j9HsDg+HfBNy9IzrnPdX1CtGs3add4lMlPkyzJw/qSJpUns7TL9wQVkydTi0UX\nZj0G89YPDIaaDWaObIz8KJEaowlVpXHp6XTjSgUI190GG1+ClzfD7+6qdqsGytWLFLWHKa7S0nFJ\nWg9VITSsrzBtLf7Gf8kk/72YwKWQYWZx9BzFsY44e8NEJDHUIyT1p9afTkvxii1nXQj1HgyWtB6q\nQlTimpGBJi+DBzIMKZvc6gOslDh6juLsfYqjN0xEKkLls6VxFVPJS+pDtiICi+4sLnBJD3rOORmO\nn6my1elquUR10gpPNIIprb7qWvows/SiC3GU646z5HeqN0xE6oYCIak/c2b4m9P0p9PlSJaXZMkU\nBAM8/xJsfLGwwCXTXD0//U3/BKeQjLLVSVGrJaqT9uCkEXoc54zxpae39dJkGWYWR4ECFTkQKZ86\nmFtLOUJSf5KWPyHlk14d8JyTB1aMazL/PTUEuJB8sUy5Zm9s7Q+CUtR7UNsqWWUwn0bJV2pr8UPT\nZo7yvUAf3gNO2RWmPzQwhyeOct2NXPJbpJxSw07nrfdDXeet9z8nvQJkGuUIiUhtypaXcvs8uPYW\nH5w80Qkvbhr82Sj5YtlyzdIpn6T2pXphqj2srxHzlXLl8EDae0HPUUk5QkWsQ0QGS3glReUIiUh9\ny1Yd8Npb/E1j5wbY//2DPxd12NOUCbBsFfRleFhk5nuZNOyyPiRlWF+ufKU6GIKSUb4cnhXtpRUo\nSPU+qciBSLzqZNipAiERGahWchSy3TTes8z/e+7VPp8nXZNFC1zmzICfLAQyBEK77wJjR9VWUQBJ\nvmz5SuMmDezVWN7lc2zqoVcj381UHAUKVORAJH5Ri54knHKERKRfUnIU0nN/Mm1/ygQYOmTw64+s\n8csvWTk4nwfgoH2iBS5tI33OkdnA15uHwhnT/NC6K76iIEjiky1fifdFn3en1iiHR6Q21cncWgqE\nRKRfEiajjRqMzZkBQzL8Cetzvr3ZJvk8atLgz2TzzQtgRGsyEulrUZSAVvplK/TycG/0IShxTB5a\nSXVyMyXScNKLnswcWZO91BoaJyL9kjCnSq5gLJzH0TbS9+6seDRzexdfVnoZ9VqeH6faMpUf15xL\n+WXKV5rSFW0ISnphgFoYQqccHpHaVQfDTtUjJCL9svWiVHJOlUKCsaMmZW9vXGXUUzemGgpXmCT0\nLtaLqL0muQoPhCWt1yh1M7Vkkv+uIEhEKkQ9QiKVluRiBEmYjLaQCS7ztTfOamBJPm9JlITexXoR\ntdckShWnWuw1EhEpEwVCIpWU9OFCSRgKVkgwVqn2VuO8lRp4VTtwKySglfyiDEGJUsUpX7nqWlGv\n5cRFpKI0oapIJTXihInFSMoElymVPm/ZJouNGniV+vk4JKENjSbT5KRNBgfuAO/eyQcL0x/ys8Cn\nm9zqh6bVglyTsCoYEhGiT6iqHCGRStJwoWiSlpdT6fNWan5NEvJz4srRkujCVZwmDvNBUK+DB1/1\nM8BP7ICDd4ivXHW1co2i5kJJ4ZKWPyZSZhoaJ1JJGi6UXbWHcuVS6fNWauCVlIA7zhwtiSY1hG7W\nY/Dwq5C6DFLBAvjek229KUWWq65mrlGdzGifOMofkwakHiGRSso2YWKjz0sT90Succ9fU8h5i2Pb\npVbvS0L1P6mubMHC6tfimfujmr0ySZ+EtVZ7VdTTJg1IOUIi5ZKthyNp+S9JEGcOTrlyU6Kct7i2\nXQ85QlJdsx7zw+HSCyfMHBlPUYTJy6qXazQoRyjo1UpCz0Ut5y9V85yKxCxqjpCGxomUQ74qY0ke\nLlTMELVSh7XFOZQr6oSshYpy3uLadtRqeNmOexKq/0l1zRnjhzWVOgQumygV6solyZOw1nJVvmqe\nU5EqUSAkUg7luhkvt2LKRMdRWjrOHJxq5sfEue18gVe+4570gLvSkpyDVg7lDhbKHWjlk9QZ7Ws5\nf6na51SkCpQjJFIOSUlWL1Qx1cbiqFAWZ+5UNfNjKrntJFSGqxVx56DVilSwsGSS/x5nj0m4Ql0p\nuUb1Jun5S7nonEoDUiAkUg61mqxeTAAXR9AXpdRy1CIE1SxIUclt12qwXQ0KGssjV6BVqwUDSjVn\njM8JSgVD6b0qST8u5QyeRRJIQ+NEymHODD9MKT1ZPenV4YoZohbXsLZcQ7kKGX5XzfyYSm476nFv\ntCFhmShoHKyz2w+bW9LlezHiHDbXyGWYcw1JbOTjIpJQqhonUi61WB2umGpjlahQFmdVuWxqLWCI\nctzjPDe1dnzCKnH91JIolc1KCZTKXbGuVtXLcSlnEC0Sk6hV4xQIichAxQRw5Q76Jp/pczsGvT4B\nllxf+vprtdx0vuMeVwBQq8cnpdbbH7d8N+SlloBWGebM6uG41HJ5cGkoKp8tIsUpptpYuSuUZRoG\nBvD6G/4mNzw/UzE9FrVa5S/fcY9rSFitHp+UWionXomn7fkqm5VaAlplmDOrh+NSy+XBRTJQICQi\nyZEtmEnlXHW9Cj29/cuvfsI/6b99Hhw/s/gS3tXKISn3cLNi87fS2/W3ZbWfY1ML5cQrlUOS74a8\n1BLQ1SjDXAvDteqhPHUtlwcXyUBV40QkGXKVOE490R+378DP9PT64OcTXy2tKli2Kn+vv5G/Sl24\n/VGq2kXZ37gUU8UuU7seXQNDhwxcrhaqIKYUem6qJdfT9jjlq2xWagnouMsw56u0lgog5633Q8/m\nrfc/J7EiW62Xp67l8uAiGShHSESSIUo+S7ZcoWHbw6uvD349ag5RphySnh4YMsQHW/lySorJQalU\nAn+h+VvZ2tVk0OdqL8emlvKDKplDkupByTTZ6qA8kCBQSt20V7L3JUpOSjFFCGqhBymJ8l0bIgkR\nNUdIPUIikgzZhqctuqP/CX62npt92gqbtym9hwAGzmN00D79QVCqHbl6mIqZp6aQ4Xil9GikhoQt\nud5/z3fzn61dB+2be56nuMTde1NLcwhV8ml7rvlicvVcZOt9WbK5PPPjROklK3S4Vq30ICVRPfRq\niYRkzREysx2BLwGjgdudc9eF3vuxc+7TFWifiDSKbAURXnjZP9FfcWP2+Zl++vWBOUK5hoDlmpMo\n3PMUzkWC3Dkx+YKaTLlAhcwDFHUOpThka9dRh5U/x6Yc+1pLcwglKYckFSilyxiY9MDRy4MeQ+LN\nbfqMVAUAACAASURBVIoS5GTKeQJ4vdcHN+ltUMJ/abJdG6CeNqk5uXqEfgEYcANwlpndYGbbBe+9\no+wtE5HkKWeuRSqfxWzg632u/wl+KlcovWdiysTMr2e6ec7VQ5Dav6fX+aFgYbl6mDL1VJnBuH2y\n5wKdc3K0/J1K92gUk1cUl3Lsa7ZexCTmN1XiaXu+fJt8MgYmwBuuPLlNmXrJoD/Igf6cp/RHu6tf\ny9zTky24WvS8eoVKoZ42qUFZc4TMbLlz7tDQzxcCJwCnAH90zh1WmSb2U46QSBVVIteicwO0nw4b\nXxr8XlxzBmXLM5p4EDyzfuCNeEqUHKEJH4DNWwa+vtNwOPVYuO62zLlAc2bkz98p9xxKmVRrMuBy\n7Gst5QiVW6Z8mx2GwKm7wcOvRXuCnykfJ5uouU25ehFSbe7qgfCv5VCgdejAIXsnPggrXxu47ky5\nQtn2wYARmhMnsvTz1tUL1z1X+xPGSl2II0doOzPb9r5z7lvAT4G/AbuW3kQRqZpienYq0TPRNhLO\neH95n+Bn6yHo6xscBJnBHrvmz4lpG+kDnvRepNe64fZ7sg/NipK/U40ejULziuJSjn3N1otYS0FQ\nqb04KZmGhG3uhWuei/4EP1PFue0s80D7cK9NNvl6EVK9ZON2GPi5Hgb2OrW1QEtaZUPInCuU2of0\nOyBHfD1ZcYnr3Mct03m79rnMPW0qrS0JlisQugU4JvyCc24+8HngzTK2SUTKqdiyzZXKtSj30Kxs\n6zcbvH/OwdhR0YKBh9f4YXxhqfVFvbnPFKBWc6hapZVrXzMFdrVSUjvO4UaZhoQB9AXfowxpyzR8\n76+H+t6ZqEPTwqIUQ4ga5EQtNpHah90yjLlL0o17koeaZTpvDt+rFlbO0tpJDRKlpmQNhJxzc5xz\nf8rw+h3Ouf3L2ywRKZtie3aiPK2P4+ay3E/ws63/3ZNK643IdnyOPyrazX22ABVqv0cjqkr13lRi\nDqe4xDm3ULZ8m7AogUB6xbkpO0XrtckkasW3KEFOvvmR0vfhjN2TPSdO3PNKxRk4ZDpvffi7yijH\nv1RJDhKlpmgeIZFGU2weRr5ci1rPxSi1/bk+D/lzbio1r5DU1rGOc26h9Bwhwz/FDyslp6OYtkad\nAyjq/DW55kdKl/Q5ccp57jPNx1SIbOftw3tA65Box78UxcwdJQ0lao5Q1vLZIlKnopZtTpd6Wp+6\noR+3j399+my/zq5Xs/c0Rb25zFRmOltxgijLFbqt8P4VWiQg/fikfz7fMailMs+1rpaOdabS0MX2\nWqSGhKUChXE7wE0vwGu98ZTrLqatUUuGp7c92012rtLO6aKus1riPPdxlwzPdt6+uXdljl+hc0eJ\nZKEeIZFGE0fPTaZ19PVBb9/gZaNW/IrarnK1P9864gi+cqmlXopSlftY5lNLxzruXov0Sl/n7OmT\n3OMIBIpta65enEaelybOcx9n71K4fdUKItUjJHlE7RGKFAiZ2TuBsYR6kJxzvyqlgcVQICQSk1LL\nI2e6kTTzQ23CBQMKubmMenMax01soeuoVOnwSgwtjDMIKWZdce9nEtpQbnHdcMY9PKqcba1Ue8sp\njiAuruNZb4FD0oc1StXFFgiZ2TXAvsByIDXVunPOXVByKwukQEgkAXLN9TOkCZqairu5jJq7FMdc\nM4WuI2Lg1NPTw2233UZHRwdbtmxh+PDhtLe3c+KJJzJ0aIaRyOk38eecDNfeMjhAjSt4iTMAKHZd\ncfbGlLI/1ZorqZpq7WY4X3uT3FuUfqPehH9QdM6elRs+lqs99RA4VLNHShIvzhyhduBgV0tj6ESk\nPFI3npsyDLFoHgofPhFahxV3cxk1d6nYHKdS1pEnp+TVV1/l0ksvZd68eaxdu3bQx0ePHs3MmTP5\n3Oc+x7Bhw/yL6Tfxy1fDglvzDwXMtlwUuSoGFhqEFLuuOPNzStmfVEntRlJreRW52pt+Y7+8y+es\nJOXGPj0nJzVq+FfPwe9erHw7k54PVYxC8sFEssg1j1DKKuCt5W6IiFRJISWvUzee6c9Fmsw/if/m\nBcVPxBl1Dpk45popdB05Sodv3LiRqVOnctFFF7F27Vr2339/LrzwQv77v/+bCy+8kP3335+1a9dy\n0UUXMXXqVDZu3Og/H7WMeZwT2cYZhORaV65rKl8Z9kKux1oqepAEUefZSYpc7Y27tHTcss3ZVMik\nrXHPk5Ne9ryWgyCRmETpEdoNeNjMlgJvpF50zp1StlaJlKraydi1otDehkw3ngC77Qwdvyk9x+OU\n9/jXVq/J3qOUrzpblO1MmQC3z8s8DC2TOTP8cUkbgvXqZz/EiSeeSEdHB3vvvTfz5s3joEnv5Fu3\nreb6RzbSZMYHLzmdKds/x+c/ez4dHR2ceOKJ3H333Qy7Z1m0m/g4b/bj6E3Lt65x++S+prIcS+bM\nKPx6jHN/GkHUCm1Jkau90x9Kdu9WpopvKVHamfQer2IkeSijNKwogdDXyt0IkVjFOZSo3hU6tCjb\njecZ748nZ2X56mg5HoUOayr1msgSfF36y6u3BUH33Xcfw3fejaO/dxcvbXmTJjN66eP6jrX8c4/h\n3HPv3znqXUfS0dHBZV//Jhc+smbwdso1FDAlVxAS17og9zWVK5CddXFh12Oc+9MIam14VK72xlla\nOl0cN+ypIG5zT/+wuELaGXe562qrx8BO6kLUqnF7AocHPy51zm0sa6uyULEEiaRSpXHrodep0KIB\ncVfbKvZcFXrsy3BN9PT0sPfee7N27Vr+8Ic/cNxxx/HL+57kW7c9QlMTXP/JI3jptTeZec0yhjYZ\nPzr7MLY+vZxp06bRNnwn1rw+mqHp5ca3a4bH74i/XHhYnEUCOjfART+A2+8FHBx/FPzvI/Dgo4OX\njVLMophCGI1Y9KDeFBN4lCv5P85KdZ3dcNGTvjx5H35YXNR2lqPcdVTl6LmptUIdUvNiK5ZgZmcA\n3wPuxtc8ucLMvuicW1xyK0Xi1rkBFt1R/ryBeul1KrS3odhhadlEHfa1ZAV84quwphNGvxXWPwfd\nb0Y/9mXIJbnttttYu3YtBxxwAMceeywAdz3yPG/29vHeA/ZgYtsIAN62yw48vnEL9/3rBb50/HvZ\nf//9efzxx/k9rZxC2lPhg/aJbyhgNnEXCfjdXf2/B9fd5vPFhg6Bnt7+ZaL2YBXT+9WIRQ/qSbE9\nBYX0bhVyYx9nT0xbC8wf56vEFdoLF7XHK+6gpVw9N/kKdWjYnFRJlKFxFwKHp3qBzGx34E+AAiFJ\nllRwsjlLRbM48wbirL5VTcUMLYrzxjPKje+SFXDEh/zTVIBHnxy4jijHvgy5JKne6dNPP52mJl93\n5uENrwAwYa+dti13wJ6tPL5xC8ue3kRTUxOnn3463/72t+loepNTwh1CzUPhqCxPestxsx9Hj2am\n34Pmob6Mulnhw9U01K3xlBJ4RKkaVuiNfTkq6xVT3SxKPlc5gpZyDcnLFdhp2JxUUZSqcU1pQ+Fe\njPg5kcpK3ZT1pQ33NIv/ZqpeqlWlehtmnuGDgplnVLZXK0r1tk98tT8IyibfsY+j0lyaLVu2ALDL\nLrtse+2Nnj6GNhmtLf2lrnYe5v/92ps9A5bvam6KtT0FST00mLfID0Wbt8j/nKtCWybZfg8O2re4\na6ra16NUXqmBR77KaoVWl0tKZb1Uj9fMUX7bM0cODgzKUTmvXCXW54zxQwxTxzYc2CW9AqDUtSg9\nQneY2Z3Ar4OfzwR+X74miRQpW0Wz3XeBjkXx3kzVU7WqYgoPxJUbFWXY15rOaOsat09p2ynQ8OHD\nAXjppf6JZbcb2sTm1x1d3f13Ei+/6v+9w1uGDFi+9fyzoHfX6uS2xNWjme334KjDiu/BStJQt3rI\nA0y6UooeROlJKPTGPkmV9fL1JJUjaClXEYpcQxlrbX4rqSt5AyHn3BfNbDpwZPDSVc65G8vbLJEi\nZK1oNi3+m5dGHcJTjtyofDe++7TByseKW3dKGW5o29t9DuaiRYv4xje+QVNTE+NG7sjGrudZuW7z\ntuUee87/Z37YmJ3p6+vjN7/5jf/8Me+BU2KchaCQfYyrR7Oefw9S13rXqz7f6YGV8NPfwF9/BVMm\nVrt12dVarkUpgUeUYVyF3thnumE/Z89kHtNyBC3lDASzBXblrAAokkekqnFl27jZ+4HLgSHAz5xz\n38m1vKrGSU5xV9dKrTPbzWUjVquqVEW+sPQcoWwqVeku0NPTw95jxrB2w4a8VeOGNBk/DleNa2tj\nzZo1DB0apVM+gkL3Mc7zWK+/B7MuhiuvH1j0ATJX9kuKOCueVVIqeCu0pHeUymqlVpdL8jEtZ+W8\nSpZYL9d+SEOLWjUua66Pmd0bfO8ys1dCX11m9koMDRwC/Ag4HjgY+JCZHVzqeqWBxZ1fkC+PItWT\nseT6/vlR6l01cqOmTISbfgi77OQrkm33Fp+MH5ZrWGKuYWDZdG7wN8KTz/TfM+TODN3wPDNf9sPd\nZs6cybPPPsv0SW20bj+UN7b28cEf38eM+Q+wtbePtp2358Ade5k5c+a25WMLgorZx6g5UxGOQ0m/\nB1HWXy1LVg4OggDe2Jr72sklXz5LqWo11yLVU7Bkkv8e9eY3Sj5PlFybXJJ8TEvdt1zrLeZ8lLK9\ncuyHSARZ/yd2zr0r+F6uvsnJwL+cc2sAzGwh8AHg4TJtTxpBnPkF9VIZLqooQ6uqkRvVuQHO+3J/\nIYzeXujr6y/RnG84VqHBW9Thf3Ov5nM9O3EzL9Dx5JO8853v5Morr+SmTx/Jt37/CH9e/RxN1sQH\n/20Uh7c8y7uOPJKnnnqKww8/nNmzZ8dzbIrdxyg5U3EPg0y/vs45GY6fmdwS9FMmZJ7TCIoL/CtR\nGavWci1KHcYXdRhXMVXbUpJ+TEvZtySpl/2QmpO3+puZ7Wtm2wX/nmpmF5jZiBi2vRcQzoJeG7wm\nSZLkJ7blVi+V4aKIWkWsDNXX8koPSHt6YcgQGLdv7p6/1LX79DpfOTAsjh6kJSsZ1tPHbbTRTgtP\nPvkk06ZN49h3/Bu7rv4t5++ymv/j7uWGL53O9JPez5NPPsnhe+zFbbfdxrBhw0o/LmFTJvSfkyj7\nCPl7corpScsm0/V19Ed8/k0c6y+HOTP8MLh0Q4cUF/hXomchKRXPokgFhvPW++Ft89b7nwvpJatE\nT0ItHdM4lLvXUiRhoozNuAFoN7P9gKuAm4HrgBPK2bAU+//t3X+cXHV97/H3Z7O5LISUSgGJsinQ\nB8hFA7Ysm3Ipyq1ilCQQTAlRjFebW9Y+aqxW71KLPKo0pY/ifYhKvWW1VNsQDcGUQPgVhQKlpS5s\nNCFCgFgoLrKKFoUlYTGb/d4/zhx2Mntm5szM+X1ez8cjj2VnZ+d8Z+YknM98Pt/Px+wSSZdI0vz5\nKXRtKbOiDA1tV5E6wzUTNvsVQ/e1poIC0sn90sEHBe8Jkmaeu9UalYFddZ301ZvCBcCV8+OofdK9\n+nV9Xs/rWv1Cu3fv1pVXXnnAXXs1WwM9r9VH/+VezTnyyJBPvAWDq6V1t0gv7pGc8wK/Q3rqB6hh\nsn9RfhAQdH4FydIHDb3zvMYIb32/Vw4neUHQ3DntBf5JZBay1PGsmajm1cSVSfCzVfe/UBkS7KRJ\ntfeaRtXAIu5GGMzzQQmFCYSmnHOTZnaBpGucc9eY2fciOPaPJPVWfX9M5bYDOOe+LC8AU19fX3qd\nHcqobKVhtYrcEatWKxe9Sbc3bicgrT13Je9i5ojXSCve2bwMrFbQ8arOjzn7JnXZ7KN16ZzjdPv/\n/UONPP2kxp/9seY+vFt9v9inc885R91/ekn8HyCYvKYS1uA+YT/giPKDgHqt7Wtl7YOGhad6jRGi\nCPyj7IxV74K4UYvirIk6MIwySKgNCLolzTLpjYdIZx3W2mNHFVwkEaTENUwVyLAwgdA+M3uPpP8l\naWnltoB6gZY9JOkEMztOXgC0UtJ7I3hcRKVMpWFB0sh+pCXL2a92AtKgc3fKSce+PjiICwqcfPWO\nF3B+dA+u1nm98xRhU+xwrrpO2jsxPUx4ynnfB31oEfYDjig/CAg6v7pneU0vptz04x/S45XL9V+U\nnbk9UQX+UWVrai+IvzcufWVMesMh0lsqF+l5uGiNOjCMMkioDQgm5X24cNZhrb+2UQUXrTxOu0Fh\n1vdDATFoukdI0gclnSHpL51zT1UCl3WdHtg5Nynpw5K2StolaaNz7pFOHzcRZdk3086+g6IpS2e4\nNPb+hNVON8BWz916GYs5Bzc+XrPzI6l/K1r50CLsfaPswhh0fs2d45We+Y//3sXez75+W+N9ankV\n1X6WoIv0V5z08J729tmkZXC+14ba/1i1kzK+qPdfRRkQRPVYYR+nk71XZdsPBSjcQNVHJX2k6vun\nJP11FAd3zt0u6fYoHisxZdo3U6bSsLLLevar1U/lWz1362XEPnhB+9mAJP+taCWj18p9o8qGNDq/\n/OGka9Z6Wawil+JGsZ8l6ILYl6dSpojK+CYnJ3XbnVs0sm+HXtLLOlQHq08navG+M9TdbiYjymxV\nVI8V9nE6yUDlaY8ZEJGmA1XN7ExJn5b06/ICJ5PknHPHx766GpkYqJrGQMk0FXVYIoptdEy6/IvS\nHfdLMuldvyP9xUfqn7txDF2N4t+KME0NWl1/TANmO9Z/UXC76nqDcstqzRPep/z1giHpwIGiBbVn\nzx5dffXVGhoa0jPPPDPj58foSA0sfK8+dvdftt6lMcoBn1E9VtjHCTNkttlx8rDHDGgi7EDVMHuE\nrpP0MUnbJAVMlyuZsu2bSXpjPNCpoAv9W+7xAqF6OsmI1QtWOv23opWMUivrz2r2L8v71LKk9lP7\nWiUoZXruuee0ePFi+R+MnnDCCVqxYoUOP/xwPf/889q4caN2796ty4e/oJvP/jfddtttOuqoo8If\nIMqmE1E9VtjH6TQDxTwflEyYjNCwc25hQutpiIwQCi9sBgD1Jfl3tFF25arrOltH2f6tyWqmKouq\nWzs/tlfaX9PaucDtjvfs2aOzzz5bIyMjOu6443Tdlz6ns/f9s+yH/y49/5Q0tU9Tb/+M7n75jRoY\nGNBTTz2lvr4+3XvvvdHP78qiKLNZQI6FzQiFaZZwj5l91szOMLPf8v9EsMZ8yvKmcuRb2KGmaCzJ\nrG2jDmyd/ltRxuxzVM0ZiiRowKX/qf3206XdC6UPxThQNGOuvvrqV4OgBx54QP/zTa+Tfe966b9+\nIHV5lzRdL/9C55xzjh544AEdd9xxGhkZ0ec///mUV56QJIbMAgUSpjTOzwZVR1VO0u9Gv5wcyGpZ\nCfKvSHOb0sxsJVliVS9YuX+b95518m9FGUvFKMU9UJi20CUqZZqcnNTQ0JAkaWhoSEcffbT0opNO\nfKf0ujdL3/lbafKVV+9/9NFH69prr9WiRYs0NDSkSy+9VN3dYS57cq5E5wTQqaalcVmSidI4IC6d\nbBbPUkld2iVOSR5/zVrp2hukyZrtkwfN9gZxdnK8tF9HpC+oMcJs8z7lL+GF7s0336xly5bpxBNP\n1K5du9TVVVPUcvWbpBdGpTM/Jp3zaUnS1NSUTjrpJO3evVs333yzzjsv8SlfAFIQWWmcmb3WzK4z\nszsq359sZtSBAVFrd25TvZK64R3pzLtqlNlKQpIlVoOrvaGgtaZc58+XUjG0OoMmqIwui9pcp/9B\n6IUXXjgzCKqjq6tLF1544QG/j4jk5XwDGgiTI/6apK9Kuqzy/ROSbpDXTQ5AVNqd2xQUeIzvkd76\nfu+CPOl5V1nY25JUiVXvPOmk46Udjx94e1TPt2ilYn7m8l+2Sc5JXSaddVryGcwsZVAbaaUDWJgy\nuizoYJ0vvfSSJOnwww9v6ZD+/cfH25wrhJnycr4BTYT5SOUI59xGSVOS5JybFG20gei1mwEICjwm\n90uv7EsnK9NuZiuvzjqtXM+3XX7m8tobpIcfl3Y+4QWQ196QXFOQ0THpA5+UjjtH+n/fyH5TksH5\n0qHd0uzK940GXDYapJklHazz0EMPlSQ9//zzLR3Sv//cucVuK56ovJxvQBNhAqE9ZvZr8hokyMx+\nW9ILsa4KKCs/AzB8g/c1zKfUQYFHkKSyMmXrrFi259suP3NZu59qcn8yQbofiP3jLdL+KS9bKiVf\nuhm4tjolRq10AGu1jC4tHayzr88r99+4caOmpqZCHW5qako33njjAb+PCOTlfAOaCBMI/YmkWyT9\nhpn9m6R/lLQm1lUBCC/oQvyg2VL3rAPvl1SWIut7W0bHWts71ez+WX++WXH/tpmZS18SQbofiAU1\nCEqydLM26Bl+wSsxGnpWemjc+3rqyIHB0DUnSsOneV/rlR0tnDudOfJlcbhqB+tcvHixjjnmGO3e\nvVt333339A/Gfyw9/6Q0Vbkyn/iF9/3Ei7rrrru0e/du9fb26txzz43ueZRdXs43oImmHyM7575r\nZm+V9AZJJulx51zQPGsASRveIf3Bn0sTv5TmzpFee4T0toXS+5ZK7xpofb9RFLK8/6K2E1uzvVNh\n71+0vTzVong/R8ekx56s//MkgvSgEtIkjy8F76v4ytj0QFTpwBKjVjrDDc739mjUDtIMKqNLmj8A\ndnhcOvkQ6ZBZ0t79La+zu7tbAwMDuvzyyzUwMKAHHnhARx/5a9LnTpZm90h+lmjnRmnHN/TKUado\n4K9+IEkaGBgoR+vspGT5fANa0LR9tpnNkrRY0rGqCpycc5+LdWUBaJ8NVBneIZ3xnkrRaoVJ+vdv\nSAtPnb6AbXWGTScXvllv+bxmrbcnpHY2z8CK4ECm1fsXTb33844h6fot4c+Rem3GpQPPESm+IDro\nvZS8hg2HzU3mHA1qh11P/1wvC9QKP+B4cNz7/cH57W9crw5eFnbwWLXB32x5gdCyI6Rde1te5549\ne3T22We/OlR16G+/pLeP/L5s394Z9717dLbe/vf/pdNPP1333HOP5syZ0/r6iyKq9zPoMaM434CI\nhW2fHSYQul3ShKSdqjRMkCTn3Gc6XWSrCISAKqcs8zac11pwovTw5vYes9NAJuuBQ6uzmjqZ7VQE\n9d7PLpvuSBjmHKn3Oh7cI61+93SmMs4guvbcNvOex/uWSn/xkWQC9f5tXvlbM2nPCgoKXg7tbq8j\nWAyzkJ577jktXrz41XbYJ5xwgi688EIdfvjhev7553XjjTdq9+7dkqTTTz9dt912m4488si2jlUI\nUb6fQE5ENkdI0jHOuXc75/7cOfcZ/08EawTQiSdHW7s9jE5nAKXVOjvsvp9WO9qFuX+re47ypN77\n2WpHwnqv4+p3TzcFiXv+VO1erj96j/TUt6Wv/VVy2cqgfRXdkg6ycJ3hGolypkuUHcFi2FR/1FFH\n6d5779XatWtf3TN05ZVX6hOf+ISuvPLKV/cErV27Vvfcc09+gqC45vLQ4Q2oK0zB7B1m9g7n3Ldi\nXw2A8I7vDc4IHd/b/mN2GsgsXODto6nNIITdf9FOWV4r+35andXU7P6t7jnKm6D3M0izcyTM655E\nEJ32Xq56+yruWCBd/5P2S4yinukSZfDSyiykFsyZM0eXXXaZLr30Ut1+++0aGRnR+Pi45s6dq76+\nPp177rn52hMU51weOrwBdYXJCH1H0k1m9rKZvWhm42b2YtwLA9DEVz7j7QmqZpXb29XpDKBOWkn7\nQcXQxtbmu7SSSeid5+1vOel4ac7B3tc7huoHLc06wtUbZrv4D4uRIfLfz+oOhF1d0qya/3U0O0fC\ndNYrw/ypeu2wFx4WrjNcPVF/4h9lR7BWZiE1Uidb0t3drfPOO09XXHGFrr76al1xxRU677zz4g+C\nos7exJm1ocMbUFeYPUJPSTpf0k7X7M4xY48QUMPvGvfkqJcJ+spnvEYJ7Yqi2UG7TRra3V/Uyj6e\n2ufXPcu7qD/peG8waqub8+sdu3r9WWoW0Y7hHdJb3++Vw0ne6zU1Jc2a5TU/iOo5Zr3RRpbV23vU\nTsMFKWBPSSV4aTc70emm+qztcYljPVG/h9Wifj+BHAi7RyjMRyajkr6fdhAEIMDCU9tvjBDE/+S+\nnUCm+jHaKT+qVxr11Uo3sXrraKUcrzaDM7nf+7PjcemRH0hfuVF6w/HSW0IGRc1Kx6qzU1loFtGO\n67dMDx+VvGGks7u94PHgg9o7R3y1pZB+N7p2z72yirr8zM9cRdURzJ+F1K5G2ZJrToynI1on62lH\nTCWEkqJ/P4ECCZMR+pqk4yXdIekV/3baZwOIVL32xlLj7EArmYRmGZwwx2t07Hry3GUurs55Yd+3\nLM+lyoqif+LfKFvyzTcmny2KI3tT9PcQSFiUXeOeknS3pP8maW7VHwBFk1QHtKDj1O4vqtZs30+z\n/Se+oH0oQcJ2LKs99oITD9xPI+V/n0tce3fC7O1qd99Y2dTbe5SlC+hO9tQ02uOSRke0OPbc5OE9\nBAqoaUYoS8gIATFKao9Go+NI3oXwV2+S9rw883ejzkI00+rxirjPJa7nFCbTlOZcKjJR0el0T02j\nbMnyR+LbW9POelrd+5RkSR9QIh1nhMzs85WvW8zslto/US4WQAbEPcclzHH8/UUfvCB8FqKVLFZ1\nBufUN0gHzZ6ZwWl2vEZayU7Vk7W5RFE8pyBhMk1pzqUiExWdTrM2jbIlSXVEq85oXfVDr+V50Hrq\nZb5qbx9+wQumhp71ArmhZ73vo5odBCCUuhkhMzvNObfNzN4a9HPn3H2xriwAGaGM4xPUfItrL0g7\nx2ll/0ir2Yrq8/Tk473btj8uPfYfXiOAKDuhtaqIGaV6wjzXtDJCaWaiiiiLHdFaycaEzWjVu98d\nC6R37Tzw9i6T9jupOs6fbV5Q1UljCQCSIsgIOee2Vb7eJ+lRSY865+7z/0S3VBRC2T9Bzdqn+O1I\nao5LmOOEzUIEZZd+/qI3xyfoPag9T79+m3TLPdKWL0m775Q+dNGBx5OkD3xSeu3veH8+8Ml4n5fE\negAAIABJREFU39uksnJZEOY97mQuVSfSykR1Iuq5NlGKM2vTzt4aP2AJm40Jm9Gqd78/eHzm7a/U\nBEESQ06BFDTcI2Rmn5b0YXkBk8n7a3uNc+6KRFZXg4xQhpX5E9SifIqfhT1CrR6nURe41/zKzMds\n5TwdHZMWnC+98NKBtx92qLTz5nje26SycnlSby5VnBnovP17lrU5O7Wy1hFtzRNe8FPbqrpeNiZs\nRqve/eZ0SXummq+LjBAQmSj2CP2JpDMlne6cO9w59xpJCyWdaWYfi26pKIQ8foIalaJ8ih/XXpA4\nj9OoC1zQe3D/tvDn6VXXSeN7Zt7+4p743tuksnJ54u8bG77B++oHQXFmoNPKRLUrjc5prchaR7Th\nmnk9UuNsTNiMVr37HXPQzKut2ZIOsun7+8Hh4PywzwJABBq1z14l6T3Ouaf8G5xzT0p6n6T3x70w\n5EyZL+DSDAKjLsmrveiU4in5C7q4bYd/wRqk9j0YHZMee3Lm/eqdp8M7Dxwk6nMuvvc2bxfgaYn7\nw4ekPhSISqsX9mnwh6oOn+Z9TTNT1Wqp3uB8L8PWLGgJut8hXdKzr0i1CaFDZkn3vTk7wSFQUo0G\nasx2zv2s9kbn3E/NrPafEJTd4Gpp/a0zy53KcAG3cIG0fdfMMpq4g8DaErPtu7z3IKoLtrgfPwr+\nBeviP5R2PnHgz2rfg6uu85oh1Oqy4PN04QJp2/dnBkNmzd/bdsu2/OcTVAqGaUl8+OAH63mwcK60\nfXxmqVfUndOKYnC+tP65maV69bIxfkbrqh96wWV/neYKQfcb3y99/ScH3s8kLTtCWniY9wdAahpl\nhH7Z5s9QRnn7BDVK7XyKH0UmJ+5PxdMo+WvndemdJ932t96eoEbvwfBOryNcrZOODz5PB1dLc+fM\nvP1X5jR/bzsp24oqW9auPDT+KFsGulkjhLAZC3jaKdULm9Gqvd+je2dm65ykXXujejYAOtCoffZ+\nSQEF8jJJPc65xLNCNEtAJgR92i+F/xQ/qmYBcW+sT3rjfqevS71N9b52NsCPjkmXf1G6418lOeld\nZ0l/8ZHG68nbRvtqUTayiLOZQVEalITRSuvmZhmLosnDQNJWGzMAiETYZgl1S+Occ3WmDAIl1qhc\nLOxFbqNMSysXynGX5CVd8tfp69KslKmd8s3eedLX/qq155HnxiHN3oOwwU3cZZVlKiFs1Aih+kLa\nz0SURW2AuH3cK3fL2j6bVsvwACSqUWkcgFpRlItFdaEc98b6JDfuj45JG+9s/Lp0WrKVVPlmnsu2\nGp2brZT8JVFWmXYJYTvamfWTh0YIach6pzxf1jrmAThAo2YJAGpFEcRElWmJ+1PxpD519y+wXwi4\nsPNfl6gyDElsgI+rcUicpWa+RudmKxm7PGfF4lKbwfjeuPSVMemkQ6SzDqtf1hVlI4Q8lJKFlacA\nsWzZOiBHCISAVkQRxER5oRz3hX0SgYN/gR3Unc1/XaIqJ0xCHAFku4Fgq8FTo3Nz+UfDBzdpdVLM\nstoMxqSkSSft2CM9uqd+WVdUpVV5KSULi055ACJAaRzQiijKxcrcYS9IUPZAko48fPp1yVuGIeqy\nrXZKzdrpXtfo3Gyl5I95SDMFZTB8jcq6oiqtykspWVh0ygMQATJCQCui+rQ/TzNK4lYve7Bi0fTr\nWvYMQzuBYLtZtHrnZiuZzDI1MwgrKINRrVFZVxSlVVkvJWu1bC/sbB8AaIBACGhVGkFMEvtD0hLm\nArvMA3ul9gLBqLNorQY3BPsHqi1xqxV3WVeWS8naLdtrN0As0l4pAB2pO0coi5gjhFIqw8yUZjOA\nwt6nqNo5B1qZZ5RGoF3k4L4e/wL87p9Lj78sTVVurzcbKOpjHzCPqFJKloU9QknO2gk7lwlAroWd\nI0QgBGRdngd0IjqtBoJhg6c0Au2sBvdJZAr8C/HxSa9hgiQdZNJ9b5YWHhbtsYKOncVSsv5t0kMB\nJXr9c6Xh06I9FgNOgVLoeKAqgIzIW6MA1NdJFqTVUrOwpWxpdOTLYhfApLqq+U0Lqv9KT0m6/ifx\nB0JZbeOcZNle1vdKAUgUgRCQdWVvFFAUUc1CqvfYQQFWmOApqUC7eo1P/yh7wX2jrmpRBg9ciM8U\nVYvwMLK8V6oR9jUBsSAQArKuXqOA9y31yubKtMciz+LKgnQaYCURaNeu0WzmfdII7qsvLp+eSCZA\nyeuFeJyS7ACXZNAVlaLNgAIyhEAIyLqgEqf3LZXeNRBPdgHxiCvz0mmAlURHvto1+ntTu8wbpJtG\nF8Dai8ugqXpxBCh5vBBPQlJle3lsux2Urfz5pLT4Yem2U7K9diDjCISAPKgtcVqzNnt7LNBYXJmX\nTgOsJGb+1Buae8RrpGNfn04XwNqLS7+Dm0lyii9AyeOFeNFkda9UPfWG8e7c6wXzZIaAthEIAXlE\nA4X4xNXWOa7MSxQBVtwzf+oOzX1nvK28Gz1WvYvLI2dLx/bEG6Bk4UKcPSf50WgYbxz72IASoX02\nOlPGWSBZQEvteMTd1jmOWUhJtKLu9O95Gq28mz1WmdsoM0snX/z36+cBWVUpnjbjaB0fLmQKc4QQ\nv7TmjxB4ZXcOS97lNcCMc9hsVOdamDVG+fo3e6wsDxiNW5mDwLwanfD2BO3ce+DtvG/ZwIcLmcMc\nIcQv6VkgcbYfzpsk9nWUUV5LDuMsbYvq73nSrbybPVaZ9+rQwjt/enu8xghBwXvZG21kQVLt9xE5\nAiG0L+mLxiwOYUxTFBe/Se3HSHot7WJm00xJ/j2P8vUP81hZ2KuTBlp451OZg/es48OF3CIQQvuS\nvmjM66f1WRVlhq3Tx8pKti+JVtJ5k+Tf8yhff97L+mjhnV9lDd6zjg8XcitocgIQzuBq78JidiWe\njvtCY+GC6WP5Or0gGx3z9hL0X+R9HR3rbI150ijDlvRjdfL7Ub6HfsnhwArvvBpYkW7pZRbOzyT/\nnkf5+mftvcwSP7Mw8DrvQm1gHnsZgE4Mzvf2BM2ufM+HC7lBswR0Js5N2kHHirJBQNkbDvRfJD0U\nkE3rXyAN35DsY7X7+3l/DxuVA2bpuSX59xzlQIet5PGax8t/fSlbzASaJSAZcc8fqT1WlA0Cyr7n\nKOn9GHH8fp7fw2blgFl6bkn+PUfx1XbY2j7uleqRlYoPr3n8KFvMJUrjkC/+BdnwDd7XTj6VLvue\noyhLnjp9rHZ/P8/vYbNywDw/N6CRRh22EA9ecyAQgRCik4X9DK2IY89RnmRpP0a7v5/UexjHud0s\n0Cn7+YniosNW8uJ+zUcnvPlU/du8r6MT0TwuEDP2CCEaWdrPEFYe14wDJfEexnWMpgM/A457SI+0\n7G3So0+We6Aw8o2BrsmL8zVnmCgyKOweITJCiEaUHciSQlep7Gg345LEexjXud2sHLD2ub13sXf7\n12/zGksMbfQCpaxnXoFadNhKXpyvOWV3yDEyQohGlB3IUC5Zz8zFeW630o2tWQYJweiUlU102Epe\nXK95/zbpoYASu/650vBpnT8+0Aa6xiFZSQ9XRXFkqTtakHrn9suveEFSJyVqrXRjo3lC6zrplEUA\nFS86bCUvrtecYaLIMUrjEI2kh6uiOLJ+gR90bk9OSrv+I9kSNZontK7dkh0/gBp61vuke+hZ73s2\ngAMzUeqIHCMQQjTYb4N2Zf0Cv/bcPul4adYsaXK/9/Ok9sPxYUPr2u2UxZ4HILzeHi/LOvA6Lws0\nMI9GCcgNSuMQHYYuoh2Dq71BorV7hLJ0gV99bvdfNB0E+ZLIYEU9ULgM2i3Zob0z0BpKHZFTZIQA\npCutbGK7neqykMHKT4+bdLVbsrNw7vTv+Lok/ecEM1IAoEDoGgegfDrpVJdWl7usd9fLqnY6ZdU2\nWajGjJSZaCwBIGOYIwQA9XQyGyitDFYeZ3VlgV+yM3ya9zXMBXr1noejZktW9TP2Cx0o640lRitZ\nvP5tZPMAzMAeIQDl02mnujT2w2W9u17RvBpAjUvP1aSF2C80rVFjibT3jHTSPh1AKZARAlA+Wdjn\n06o8rrkIgvYLMSNlWpYbS9D9D0ATBEIAyiePrajzuOYiYEZKY1kOFLMcpFGyB2QCgRCA8snj3Ks8\nrrkImJHSWJYDxawGaVnfVwWUCF3jAABA+9rpzJfUuqr3CPlBWtqB7JonvOCndr7VwLz091UBBRG2\naxzNEgAAwUbHvK50wzu9PUoMcEWQrA7T9LN5WQvSslyyB5QMgRAAFE0UAUzt3KLtu6T1t1KOh3zJ\nYpC2cK7Xwa42I5R2yR5QQuwRAoAi8QOYoY3SQzu9r6de4N3eCuYWIQ40Ccj2viqgZAiEAKBIogpg\nmFuEqGWxSUAagRkNONpHII2IURoHAEUSVQCzcIFXDlf9WMwtQieyNnw16oGrftOI4XGv/K3RfqQ4\nSvZaOX4eMSAXMSAjBABFEtXgVeYWIWpZaxIQ5cDVtLNdaR8/CQzIRQxSCYTM7LNm9piZPWxmN5nZ\nr6axDgAonKgCGOYWIWpZm+sTZWCW9kV62sdPQtYCaRRCWhmhb0t6k3PuFElPSPpkSusAgGKJMoDp\nnSdd8ylp+AbvK0EQOpG1JgFRBmZpX6SnffwkZC2QRiGkEgg5577lnPMLz78j6Zg01gEAhdQ7z8sA\n9S/w9gxddV3rXeOAqGWtSUCUgVnaF+lpHz8JWQukUQjmnEt3AWZbJN3gnLu+2X37+vrcyMhIAqsC\ngByrnQHkl8dR2gYcyG8w0OnA1dqN/P5FelKBXtrHT0pU7xcKz8y2Oef6mt4vrkDIzO6SdHTAjy5z\nzt1cuc9lkvokvdvVWYiZXSLpEkmaP3/+aU8//XQs6wWAwliz1psfVNvxbWCFV+IGIHppX6SnfXwg\nQ1IPhJoe2OwDkgYkvc05tzfM75ARAoAQ+i/yhqnOuH2Bt98HAIACCxsIpdU17p2SBiWdFzYIAgCE\nFFULbQAACiytrnF/I2mupG+b2XYzuzaldQBA8TADCKMT0ponpP5t3tc8z5Mp0nMBkCmpN0toBaVx\nABDS6JjXLe7BnV4maHA1jRLKYsbGeXndtvK4cb5Iz8Xn7+UZHve6vbGXB4hc2NK47mZ3AIDc8oOB\n4Z1euViZggF/BhCyJ+4L4UbDNa85MbrjJKFIz0WaGdhtH5fWP5fvwA7IMQIhAMVU20J6+y5p/a20\nkEa6krgQLtJwzSI9F6l4gR2Qc2ntEQKAeF113XQQJHlfX9rr3Q6kpdGFcFSKNFyzSM9FKl5gB+Qc\ngRCAYhreeeAcHcn7/sGAttJxGR3zZvr0X+R9HR1L7tjIpiQuhAfne/to/ADCH645OD+6YySlSM9F\nKl5gB+QcgRCAYkq7hbRfmje00ZvpM7TR+55gqNySuBDu7fFK7QZe5z3uwLz87kEp0nORihfYATlH\n1zgAxVS7R8hvIZ3UHqE1a73gpzorNbtbGlhBE4Mym9EFrXIhnOeLe7TGb5bx4LgX3NE1DogcXeMA\nlFvvPC/oSauFdJKleUXpjleU59GIn+EoyoUwraBb19tDYwQgI8gIAUAcksoIBWW+DumRlr1NevTJ\n/AQUaWfw0LoizvgBUAhhM0LsEQKAOAyu9i7k/X1K/oX94OpojxPUHe+Fl6R1t0S7Nynuxg90+cuf\nJDrgAUCMCIQAIA5+ad7ACq8sb2BFPNmNoBI8SZqqZPujCCiSaPyQhS5/mGl0QlrzhNS/zfs6OjH9\nsyy3gm60bgCoYI8QAMSld178jREWLvCGxQYFQ75OA4pG2Zqonl/Q80iyyx9majb8deFc77bqYCgL\nraCTGFoLoBDICAFAntWW4JnNvE+nAUUS2ZqkSgkRXrPSt6y2gqZkD0BIBEIAkGe1JXjvP0867NBo\nA4okZjIlVUqI8JqVvmV1xk+WS/YAZAqlcQCQd7UleH4b6qjahg+ultbfOrOjW9TZmiRKCRFemNK3\nLLaCzmrJHoDMoX02AKC5qIMrZF+Wh782ml8U97qZnQRkXtj22QRCQBzKMBgSQHH5F/v3v+B1IOwy\n6azDsnHRH2Z+kb/+qIfWMjsJyIWwgRClcUDUagdDbt/llRWx3wFAHtS72M9CECQ1bobgl+nFVbIX\neOxJafHDUs8sMkRAztAsAYgagyEB5FnWu66l2Qwh8NiSdu6VHhqXhp71gkjmFgG5QCAERI3BkEDx\nFXlgZ9a7ri2cO92y25dUM4SgY1fbJ2m8kiEq4rkBFAyBEIpldExas1bqv8j7OjqW/BqSaDUMID1+\n6djQs8XMAqQZaISRxPyieoFu7bGDTIoMEZATNEtAcdTuzfFb/Ca9Nycr6wAQjzVPeBe4te2ZB+Zl\nr5V0O7LcLc4XphlCu93dmjVEqD72y/ulXXu94KeeIp0bQE7QLAHl02hvTpKzSfzBkLQaBoop66Vj\nnfIHpcbRdS0qzZoh1AYz28el9c+FC+aaNWOoPnbtcYIU6dwACoZACMWRpb05DIYEiqsMAzuzOCi1\nFWE6y9XTSqBbGzQGZYiKdm4ABcIeIRQHe3MAJCGJPSroTCdZu1b3SPlB4/Bp0m2nSHM5N4C8IBBC\ncQyu9vbi+MGQvzdncHW66wJQLH4WYOB13sXxwLxs7Z9BZw0fOgl0OTeAXKFZAopldIy9OQBQdp02\nfAjTjAFAZoVtlkAgBAAAiodgBigtusYBmMnPmA3v9PZUkTEDUDS1bbO/+UYCIACBCISAsqidb7R9\nl7T+VuYbASiOTtpmAygdmiUAZdFozhIAFEGjttkAUINACCiLducsjY5Ja9ZK/Rd5X0fH4lsjAHSi\n6MNuAUSK0jigLBYu8MrhqoOhZnOWKKcDkCdFHHZbu+eJpg9AZMgIAWXRzpwlyukA5EnRht36e56G\nnpUeGve+njri3Q6gYwRCQFn0zvMyOQMrvCzQwIrmmZ12y+kAIA1RDTQdnZDWPCH1b/O+phV4hNnz\nlJW1AjlEaRxQJr3zpGs+Ff7+7ZTTAUCaenuka05s//ez1Hmu2Z6nLK0VyCEyQgDqa6ecDgDyLEud\n5xbOnS7z81XvecrSWoEcIhACUF875XQAkGdZ6jzXbM9TltYK5BClcQAaa7WcDgDyLEud5/w9T1f9\n0Atu+mu6xmVprUAOmXMu7TWE1tfX50ZGRtJeBgAAKKrafTd+FiaL+27ytFYgQWa2zTnX1+x+lMYB\nAAD4ouo8l4Q8rRXIIErjAAAAqnXaea4VnQ5MTXKtQMEQCAEAAKSB9tdAqiiNAwAASAPtr4FUEQgB\nAACkgfbXQKoIhAAAANLQbGAqgFgRCAEAAKSh2cBUALEiEAIAAEgD7a+BVNE1DgAAIC20vwZSQ0YI\nAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAAAJQOgRAAAACA0iEQAgAAAFA6BEIAAAAA\nSodACAAAAEDpEAgBAAAAKB0CIZSecy7S+wEAACD7CIRQahMTE1qyZIk2bNjQ8H4bNmzQkiVLNDEx\nkdDKAAAAEKfutBcApGViYkLLli3T1q1bdeedd0qSVq5cOeN+GzZs0MUXX6ypqSktW7ZMmzdvVk9P\nT9LLBQAAQITICKGUnHNavny5tm7dKkmamprSxRdfPCMzVB0ESdLWrVu1fPlyyuQAAAByjkAIpWRm\nWrVqlbq6pv8K1AZDtUGQJHV1dWnVqlUys8TXDAAAgOgQCKG0Vq5cqfXr1wcGQ8uWLQsMgtavXx9Y\nPoeCGh2T1qyV+i/yvo6Opb0iAAAQEctTiU9fX58bGRlJexkomKDMTy2CoBIaHZNOvUB6aa+0b1Ka\n3S0deoi04yapd17aqwMAAHWY2TbnXF+z+5ERQukFZYaqEQSV1FXXTQdBkvf1pb3e7QAAIPcIhAB5\nwdDSpUsDf7Z06VKCoDIa3jkdBPn2TUoP7kxnPQAAIFIEQoC88rgtW7YE/mzLli1N5wyhgBYu8Mrh\nqs3ulvoXpLMeAAAQKQIhlF6zPUL1Wmuj4AZXe3uC/GDI3yM0uDrddQEAgEgQCKHU6rXIPv/88xu2\n1kYJ9M7zGiMMrPCyQAMraJQAAECBdDe/C1BM9YIgvzFC7c/9YEgSe4bKoneedM2n0l4FAACIARkh\nlJJzTuvWrWs4J6jenKF169YpT23nAQAAMBOBEErJzLRp0yYtWrRIUv0W2bXB0KJFi7Rp0yaZWeJr\nBgAAQHQojUN8Rse8mSvDO70OXIOrM7W/oqenR5s3b9by5cu1atWquuVu/u3r1q3Tpk2b1NPTk+Qy\nAQAAEAPLU4lPX1+fGxkZSXsZCGN0TDr1gumBlH7HrQxuNnfOhcrwhL0fAAAA0mNm25xzfc3uR2kc\n4nHVddNBkOR9fWmvd3vGhA1uCIIAAACKg0AI8RjeOR0E+fZNSg/uTGc9AAAAQJVUAyEz+7iZOTM7\nIs11IAYLF0wPovTN7vbmsQAAAAApSy0QMrNeSe+Q9MO01oAYDa729gT5wZC/R2hwdbrrAgAAAJRu\nRuhqSYOS8tOtAeH1zvMaIwys8LJAAysy2SgBAAAA5ZRK+2wzO1/Sj5xzO5ptQDezSyRdIknz589P\nYHWITO886ZpPpb0KAAAAYIbYAiEzu0vS0QE/ukzSn8kri2vKOfdlSV+WvPbZkS0QAAAAQGnFFgg5\n594edLuZLZB0nCQ/G3SMpO+aWb9z7sdxrQcAAAAAfImXxjnndko6yv/ezP5TUp9z7mdJrwUAAABA\nOTFHCAAAAEDppNIsoZpz7ti01wAAAACgXMgIAQAAACgdAiEAAAAApUMgBAAAAKB0CIQAAAAAlA6B\nEAAAAIDSIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAA\ngBJxzkV6v7wiEAIAAABKYmJiQkuWLNGGDRsa3m/Dhg1asmSJJiYmElpZ8rrTXgAAAACA+E1MTGjZ\nsmXaunWr7rzzTknSypUrZ9xvw4YNuvjiizU1NaVly5Zp8+bN6unpSXq5sSMjBAAAABScc07Lly/X\n1q1bJUlTU1O6+OKLZ2SGqoMgSdq6dauWL19eyDI5AiEAAACg4MxMq1atUlfX9OV/bTBUGwRJUldX\nl1atWiUzS3zNcaM0DgAAACgBvwyuOtipDoa2bNkyIwhav359YPlcERAIAQAAACVRLxi6+eabD7hf\n0YMgidI4AAAAoFRWrlyp9evXH1AmV60MQZBEIAQAAACUzsqVK7V06dLAny1durTwQZBEIAQAAACU\njr8nKMiWLVuazhkqAgIhAAAAoESCusNVq9dau2gIhAAAAICSqNci+/zzz2/YWruICIQAAACAEqgX\nBK1fv16bN2+e0UCh6MEQgRAAAABQcM45rVu3ruGcoKBuclNTU1q3bp2cc4mvOW4EQgAAAEDBmZk2\nbdqkRYsWSarfIrs2GFq0aJE2bdokM0t8zXFjoCoAAABQAj09Pdq8ebOWL1+uVatW1W2R7d++bt06\nbdq0ST09PUkuMzGWpzRXX1+fGxkZSXsZAAAAQG4550JleMLeL2vMbJtzrq/Z/SiNAwAAAEokbHCT\nxyCoFQRCAAAAAEqHQAgAAABA6RAIAQAAACgdAiEAAAAApUMgBAAAAKB0CIQAAAAAlA6BEAAAAIDS\nIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAoHQIhAAAAAKVDIAQAAACgdAiEAAAAAJQOgRAA\nAACA0iEQAgAAAFA65pxLew2hmdlPJT2d9joQuSMk/SztRSAzOB/g41xANc4H+DgX4Kt3Lvy6c+7I\nZr+cq0AIxWRmI865vrTXgWzgfICPcwHVOB/g41yAr9NzgdI4AAAAAKVDIAQAAACgdAiEkAVfTnsB\nyBTOB/g4F1CN8wE+zgX4OjoX2CMEAAAAoHTICAEAAAAoHQIhZIqZfdzMnJkdkfZakB4z+6yZPWZm\nD5vZTWb2q2mvCckys3ea2eNm9gMz+9O014N0mFmvmd1jZo+a2SNm9sdprwnpMrNZZvY9M7s17bUg\nXWb2q2b2zcr1wi4zO6PVxyAQQmaYWa+kd0j6YdprQeq+LelNzrlTJD0h6ZMprwcJMrNZkr4k6V2S\nTpb0HjM7Od1VISWTkj7unDtZ0m9L+iPOhdL7Y0m70l4EMuELku50zp0k6VS1cV4QCCFLrpY0KImN\nayXnnPuWc26y8u13JB2T5nqQuH5JP3DOPemc+6WkDZLOT3lNSIFzbsw5993Kf4/Lu9B5fbqrQlrM\n7BhJiyX9XdprQbrM7DBJb5F0nSQ5537pnPtFq49DIIRMMLPzJf3IObcj7bUgc35f0h1pLwKJer2k\n0arvnxEXv6VnZsdK+k1Jw+muBCn6vLwPTKfSXghSd5ykn0r6aqVU8u/MbE6rD9Id/bqAYGZ2l6Sj\nA350maQ/k1cWh5JodD44526u3OcyeaUx65NcG4BsMbNDJW2S9FHn3ItprwfJM7Mlkp5zzm0zs7PT\nXg9S1y3ptyStcc4Nm9kXJP2ppMtbfRAgEc65twfdbmYL5EX2O8xM8sqgvmtm/c65Hye4RCSo3vng\nM7MPSFoi6W2OPv9l8yNJvVXfH1O5DSVkZrPlBUHrnXP/lPZ6kJozJZ1nZudK6pH0K2Z2vXPufSmv\nC+l4RtIzzjk/Q/xNeYFQS5gjhMwxs/+U1Oec+1naa0E6zOydkj4n6a3OuZ+mvR4ky8y65TXJeJu8\nAOghSe91zj2S6sKQOPM+HfsHSc875z6a9nqQDZWM0Cecc0vSXgvSY2b3S/rfzrnHzezTkuY45/5P\nK49BRghAFv2NpIMkfbuSJfyOc+5D6S4JSXHOTZrZhyVtlTRL0t8TBJXWmZJWSdppZtsrt/2Zc+72\nFNcEIBvWSFpvZv9N0pOSPtjqA5ARAgAAAFA6dI0DAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEAAAAo\nHQIhAAAAAKVDIAQA6JiZ7Tez7Wb2iJntMLOPm1lX5Wd9ZvbFlNb1QESPc2HluU2ZWV8tU9CgAAAC\nsUlEQVQUjwkASBftswEAHTOzl5xzh1b++yhJX5f0b865P093ZdEws/8uaUrSkLxBjiMpLwkA0CEy\nQgCASDnnnpN0iaQPm+dsM7tVkszs02b2D2Z2v5k9bWbvNrOrzGynmd1pZrMr9zvNzO4zs21mttXM\n5lVuv9fM/trMHjSzJ8zsrMrtb6zctt3MHjazEyq3v1T5amb2WTP7fuVYF1VuP7vymN80s8fMbL1V\npvjWPKddzrnHk3j9AADJIBACAETOOfekpFmSjgr48W9I+l1J50m6XtI9zrkFkl6WtLgSDF0j6fec\nc6dJ+ntJf1n1+93OuX5JH5XkZ5w+JOkLzrk3S+qT9EzNMd8t6c2STpX0dkmf9YMrSb9ZeayTJR0v\n6cx2nzcAID+6014AAKB07nDO7TOznfKCpTsrt++UdKykN0h6k6RvV5IzsySNVf3+P1W+bqvcX5L+\nXdJlZnaMpH9yzu2uOebvSPqGc26/pJ+Y2X2STpf0oqQHnXPPSJKZba885r9G8kwBAJlFRggAEDkz\nO17SfknPBfz4FUlyzk1J2uemN6tOyfuAziQ94px7c+XPAufcO2p/v/L43ZXH+rq8DNPLkm43s99t\nYbmvVP33q48JACg2AiEAQKTM7EhJ10r6G9deR57HJR1pZmdUHm+2mb2xyTGPl/Skc+6Lkm6WdErN\nXe6XdJGZzaqs7y2SHmxjbQCAgiAQAgBE4WC/fbakuyR9S9Jn2nkg59wvJf2epL82sx2Stkv6H01+\nbYWk71dK294k6R9rfn6TpIcl7ZD0z5IGnXM/DrsmM7vAzJ6RdIak28xsa9jfBQBkE+2zAQAAAJQO\nGSEAAAAApUMgBAAAAKB0CIQAAAAAlA6BEAAAAIDSIRACAAAAUDoEQgAAAABKh0AIAAAAQOkQCAEA\nAAAonf8PUbL7DMWbB6EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the results of the clustering from implementation\n", + "vs.cluster_results(reduced_data, preds, centers, pca_samples)\n", + "\n", + "# the black X are my samples, the round circles the cluster centers.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Recovery\n", + "Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the *averages* of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to *the average customer of that segment*. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Apply the inverse transform to `centers` using `pca.inverse_transform` and assign the new centers to `log_centers`.\n", + " - Apply the inverse function of `np.log` to `log_centers` using `np.exp` and assign the true centers to `true_centers`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
Segment 02196.09468.0799.0343.02624.02067.0
Segment 11068.05174.01101.04536.011581.07776.0
\n", + "
" + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper Grocery Milk\n", + "Segment 0 2196.0 9468.0 799.0 343.0 2624.0 2067.0\n", + "Segment 1 1068.0 5174.0 1101.0 4536.0 11581.0 7776.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FrozenFreshDelicatessenDetergents_PaperGroceryMilk
count440.000000440.000000440.000000440.000000440.000000440.000000
mean3071.93181812000.2977271524.8704552881.4931827951.2772735796.265909
std4854.67333312647.3288652820.1059374767.8544489503.1628297380.377175
min25.0000003.0000003.0000003.0000003.00000055.000000
25%742.2500003127.750000408.250000256.7500002153.0000001533.000000
50%1526.0000008504.000000965.500000816.5000004755.5000003627.000000
75%3554.25000016933.7500001820.2500003922.00000010655.7500007190.250000
max60869.000000112151.00000047943.00000040827.00000092780.00000073498.000000
\n", + "
" + ], + "text/plain": [ + " Frozen Fresh Delicatessen Detergents_Paper \\\n", + "count 440.000000 440.000000 440.000000 440.000000 \n", + "mean 3071.931818 12000.297727 1524.870455 2881.493182 \n", + "std 4854.673333 12647.328865 2820.105937 4767.854448 \n", + "min 25.000000 3.000000 3.000000 3.000000 \n", + "25% 742.250000 3127.750000 408.250000 256.750000 \n", + "50% 1526.000000 8504.000000 965.500000 816.500000 \n", + "75% 3554.250000 16933.750000 1820.250000 3922.000000 \n", + "max 60869.000000 112151.000000 47943.000000 40827.000000 \n", + "\n", + " Grocery Milk \n", + "count 440.000000 440.000000 \n", + "mean 7951.277273 5796.265909 \n", + "std 9503.162829 7380.377175 \n", + "min 3.000000 55.000000 \n", + "25% 2153.000000 1533.000000 \n", + "50% 4755.500000 3627.000000 \n", + "75% 10655.750000 7190.250000 \n", + "max 92780.000000 73498.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# This shows the cluster centers on the first 2 components of PCA.\n", + "\n", + "# TODO: Inverse transform the centers\n", + "log_centers = pca.inverse_transform(centers) # recovers original features from pca dimensions\n", + "#print(\"log centers\", log_centers)\n", + "\n", + "# TODO: Exponentiate the centers\n", + "true_centers = np.exp(log_centers) # recover original values from log values\n", + "#print(\"true centers\" ,true_centers)\n", + "\n", + "# Display the true centers\n", + "segments = ['Segment {}'.format(i) for i in range(0,len(centers))]\n", + "true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())\n", + "true_centers.index = segments\n", + "\n", + "# order features, so can focus on comparison not retrieval\n", + "tmp = true_centers\n", + "ordered = pd.DataFrame(tmp.Frozen)\n", + "ordered[\"Fresh\"] = tmp.Fresh\n", + "ordered[\"Delicatessen\"] = tmp.Delicatessen\n", + "ordered[\"Detergents_Paper\"] = tmp.Detergents_Paper\n", + "ordered[\"Grocery\"] = tmp.Grocery\n", + "ordered[\"Milk\"] = tmp.Milk\n", + "true_centers = ordered\n", + "\n", + "\n", + "tmp = data\n", + "ordered = pd.DataFrame(tmp.Frozen)\n", + "ordered[\"Fresh\"] = tmp.Fresh\n", + "ordered[\"Delicatessen\"] = tmp.Delicatessen\n", + "ordered[\"Detergents_Paper\"] = tmp.Detergents_Paper\n", + "ordered[\"Grocery\"] = tmp.Grocery\n", + "ordered[\"Milk\"] = tmp.Milk\n", + "data = ordered\n", + "\n", + "display(true_centers)\n", + "\n", + "display(data.describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8\n", + "Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. *What set of establishments could each of the customer segments represent?* \n", + "**Hint:** A customer who is assigned to `'Cluster X'` should best identify with the establishments represented by the feature set of `'Segment X'`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Comparing the feature values for each segment with the statistical description of each feature, it seems that:\n", + "\n", + "To be fair, i am not sure how to answer these very well, as I find it hard to get myself interested in food establishments and what they might buy. It might be more interesting to segment drivers for economic performance, predictors of burglary or maybe internet user groups. However, here my attempt.\n", + "\n", + "PC:\n", + "- Dim 2 represents Frozen, Fresh and Deli. A higher value means more of these.\n", + "- Dim 1 represents Detergents_Paper, Grocery and milk. A higher value means more of these.\n", + "\n", + "Clusters:\n", + "- Segment 0 (any dim2, <0.5 dim1). Here I expect it to have any value for dim2 features be lower on dim1 features than Segment 1 and on the lower end of the distribution for those features. Thus, it would have low Detergents_Paper, Grocery and Milk, so low consumer retail spending. This could represent a restaurant, food market, hotel.\n", + "- Segment 1 (any dim2, >=0.5 dim1). Here I expect any dim2 features and higher values on dim1 features, and also at the higher end of the distribution for those features. So high Detergents_Paper, Grocery and Milk, indicating retail spending like a supermarket." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 9\n", + "*For each sample point, which customer segment from* ***Question 8*** *best represents it? Are the predictions for each sample point consistent with this?*\n", + "\n", + "Run the code block below to find which cluster each sample point is predicted to be." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sample point 0 predicted to be in Cluster 0\n", + "Sample point 1 predicted to be in Cluster 0\n", + "Sample point 2 predicted to be in Cluster 1\n" + ] + } + ], + "source": [ + "# Display the predictions\n", + "for i, pred in enumerate(sample_preds):\n", + " print \"Sample point\", i, \"predicted to be in Cluster\", pred" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Point 0 is a market as it has a lot of frozen fresh and deli and little detpaper, grocery and milk. This matches the prediction in cluster 0. Point 1 an outlier(as found earlier) so was removed and 2 was and outlier on 2 dimensions so was removed as well. However, Point 2 was high on Det_Paper, Grocery and Milk, so would be correctly classified as retail in cluster 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the ***customer segments***, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which *segment* that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the ***customer segments*** to a hidden variable present in the data, to see whether the clustering identified certain relationships." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Question 10\n", + "Companies will often run [A/B tests](https://en.wikipedia.org/wiki/A/B_testing) when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. *How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?* \n", + "**Hint:** Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The distributor could call, survey etc a representative customer, or several, from each segment and ask them. They could use this to extrapolate to all customers from this segment and change his schedule by segment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11\n", + "Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a ***customer segment*** it best identifies with (depending on the clustering algorithm applied), we can consider *'customer segment'* as an **engineered feature** for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a ***customer segment*** to determine the most appropriate delivery service. \n", + "*How can the wholesale distributor label the new customers using only their estimated product spending and the* ***customer segment*** *data?* \n", + "**Hint:** A supervised learner could be used to train on the original customers. What would be the target variable?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** They can transform the estimated spending to principal components using the trained pca on the original data. This would allow them to assign new customers to their clusters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing Underlying Distributions\n", + "\n", + "At the beginning of this project, it was discussed that the `'Channel'` and `'Region'` features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the `'Channel'` feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.\n", + "\n", + "Run the code block below to see how each data point is labeled either `'HoReCa'` (Hotel/Restaurant/Cafe) or `'Retail'` the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAH4CAYAAACPEOhlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX/BvD7DDMwbIoo4paJay6oJeZKllta4p6mpLmU\nu20/NTQV1yIhNSU1ffNNqdwxy15NwyX3RFOx1BTTzABxA4VhmOX8/jBGBmaGGZid+3NdXZfMnDnn\nmTOHOPc83+d5BFEURRAREREREbkhiaMbQEREREREZCsMPERERERE5LYYeIiIiIiIyG0x8BARERER\nkdti4CEiIiIiIrfFwENERERERG6LgYeIyq2///4bjRs3Rp8+fXT/9e7dG1u3btVto1QqsXTpUvTt\n2xd9+vRBREQEVq9ejaIz+ickJKBRo0Y4c+aMyWMuX74cbdu21Tte586d8dFHHxXbZ0l2796NYcOG\nWfSa0khJSUHnzp0NPteoUSNERETo3kvv3r3xxRdfmLXfLVu24Ouvv7aoLYmJiRg7dqxFrzlx4gR6\n9epl0WsAoHPnzkhJSbHoNfPmzcPy5cuLPb58+XLMmzfP4jYUGDZsmN5+t2/fjsGDB6NPnz546aWX\nMGvWLGRnZ1vlWNZQ+Jx37twZiYmJDm0PEZVvUkc3gIjIkeRyOXbs2KH7OSMjA7169UKzZs3QqFEj\nTJgwASEhIdi0aRO8vLxw7949jB07Frm5uXjnnXd0r9u4cSMiIiKwbt06tGzZ0uQxX3rpJcyePVv3\nc1ZWFnr37o2OHTsiPDzc+m/SxtatW4fAwEAAwN27dzFu3DgIgoBRo0aZfN2pU6fQoEEDezTR5cnl\ncnh7ewMAVq1ahZ9//hmfffYZqlSpApVKhQ8//BDjxo3DN9984+CWFle47UREjsDAQ0RUSHBwMJ58\n8klcu3YN2dnZuHr1KlavXg0PDw8AQKVKlbBo0SLcvHlT95oTJ04gKysLU6dORbdu3ZCWlobq1aub\nfczbt28jLy8PFStWBACkpqZi4cKFuH//PjQaDYYNG4aBAwcCAD799FN8//33CAgIwJNPPqnbR1RU\nFBo0aIDRo0cX+/nPP//E7NmzcffuXUgkEowfPx4vvfQSMjIyMG/ePKSlpUGlUuHll1/GuHHjAADf\nfPMN1q1bBz8/PzRs2NDs9xIYGIioqCi89dZbGDlyJO7cuYPZs2fjzp07yMzMRM2aNbF06VKcPn0a\n+/btw5EjRyCXy/Hiiy8a3K5y5cpmH3v//v34/PPPkZ+fj7t376Jv3766UJqbm4u33noL169fR4UK\nFTBv3jyEhIQgPz8fcXFxOHnyJDQaDZo0aYKZM2fCz89Pb9/79u3DypUroVKpIJfL8f777+Ppp5/G\nw4cP8cEHH+DixYuoWrUqPDw80KpVK4PtS01NRWRkJLKystC4cWNER0fj0qVLeO+997B//35IJBIo\nFAp07twZO3fu1HvvzzzzDEJDQ5Gbm4vPP/8c27dvR5UqVQAAMpkM06ZNw969e5Gfnw8AuHr1KoYN\nG4bMzExUqVIFixcvRtWqVY2eoxMnTmDJkiV44okncPnyZeTn52P27Nlo27YtoqKi4Ofnh0uXLiE9\nPR1169bF4sWL4evra/JaLdC6dWs0adLE7M+RiMjaGHiIiAr59ddf8ddff6FFixbYtWsXmjdvrgs7\nBerUqYM6deroft6wYQMiIiIQHByMtm3b4quvvsLUqVONHuN///sfTp06hby8PNy/fx9NmjTB3Llz\n0bx5c6jVarz11ltYtGgRmjZtigcPHmDw4MGoX78+bt++jT179uDbb7+FXC7HxIkTzXpP7733HgYO\nHIjIyEikpaVh2LBheO655zB16lSMGDECnTt3hlKpxJtvvonatWsjJCQE8fHx2LFjB4KCgvR6o8zx\n1FNPITMzE/fu3cMPP/yAli1bYsyYMRBFEWPGjMGOHTswatQoJCUloUGDBoiMjNT1jBnazhyiKGLt\n2rWIiYlBnTp1kJGRgRdeeAHDhw8HAKSlpSEuLg7PPPMMNm3ahGnTpmHLli26MJuYmAhBELB48WLE\nxcVhzpw5un1fu3YNS5Yswfr161GpUiVcvnwZI0eOxJ49e7Bs2TLI5XLs3r0b9+7dQ79+/YwGnr/+\n+gvbtm1DpUqVMHXqVKxcuRJTp05FQEAADh06hE6dOuGHH35Au3btigW98ePHAwDOnz8PuVyud/0B\ngLe3N3r37q37+caNG9iyZQsCAwMxYcIEbNmyBRMmTDB5js6dO4fo6Gg0btwYa9euRXx8PNq2bas7\n7vr16yEIAgYNGoTdu3ejT58+Rq/VwubOnWvWZ0hEZCsMPERUruXl5aFPnz4AAI1Gg0qVKiE2NhbV\nq1eHRCIpcVxNZmYmfvrpJ2zbtg0A0LdvX8yZMwcTJ06Ej4+PwdcUlLTl5+dj/vz5uHz5Mp577jkA\nj26u//rrL8yYMUOvjb///jtSU1PRrVs3Xe/DgAEDkJCQYLJ99+/fx8WLF/HKK68AAKpXr46ffvoJ\nubm5OHnyJLKysvDpp58CeNQLcvHiRaSnp6NDhw4ICgoCAAwePBiHDx82eZzCBEEAAHh5eeH1119H\ncnIy/vvf/+LatWu4fPkyWrRoUew15m5n6pirVq3CgQMHsHPnTqSmpkIURSgUCgCPxho988wzAIB+\n/fphzpw5ePDgAQ4cOIAHDx7g6NGjAACVSlUsbBw5cgS3bt3CiBEj9I73119/4dixY5gxYwYEQUBg\nYCC6detmtI3dunXTlf4NGDAAixYtAgBERkZi8+bN6NSpky6MGSORSKDVaks8Hx06dNAd66mnnsLd\nu3dLPEc1atRA48aNAQBNmjTB9u3bdfsLDw+Hp6cnAKBhw4bIysoyea3Wq1evxDYSEdkLAw8RlWtF\nx/AU1qJFC6xbtw4ajUavl+fcuXNISEhAbGwstmzZAuDxN/BarRYPHz7E9u3b0bVrV4wZM0b3utWr\nV+vt39PTE7NmzcKAAQMQGxuL6OhoaDQaVKhQQa9Nt2/fhr+/P2JjY/UCWOE2CYKg95xKpQIASKVS\n3fMFrl69iqCgIIiiiI0bN+rGV9y9exdeXl7YvHmz0eOYIyUlBbVq1YKvry9iY2Nx7tw5DBgwAG3a\ntIFarTYYIs3dzpjc3Fz069cPXbt2RVhYGAYMGICffvpJtw+JRH+OHkEQIJVKodVqMWPGDHTq1AkA\nkJOTA6VSqbetVqtFu3btsHTpUt1jaWlpqFq1KgCYfa4KPyeKou6ziYiIwOLFi3H8+HHk5uaidevW\nRvdRv359qNVqXL9+Xa+kUalUYtKkSViwYAGAx597wXsVRbHEcySXy4u9poCh50xdqyVN3kFEZE+c\npY2IyIinn34adevWxUcffaS7Cb59+zYWLFiAWrVqQaPRYPPmzZg7dy727duHffv24cCBAxg7dizW\nr1+PqlWrYseOHbr/goODix3D09MT0dHR2LRpE3777TeEhITAy8tLdxOZlpaGXr164fz58wgPD8fu\n3buRnZ0NrVard6NZqVIlnD9/HsCj4JKcnAwA8PPzQ9OmTfHtt9/q9jdkyBDk5eWhZcuW+O9//wsA\nyM7OxpAhQ5CUlIT27dvjyJEjSE9PBwC9b/pLkpGRgbi4OF0p2uHDh/H666+jb9++qFy5Mo4ePQqN\nRgPgUQBQq9UlbmeO69ev4+HDh3jnnXfQuXNn/PLLL8jPz9f1hly6dAkXLlwAAGzatAmtWrWCt7c3\nOnbsiK+//lq37axZs7B48WK9fbdt2xZHjhxBamoqAODgwYPo3bs3lEolwsPDsXXrVmi1WmRlZSEp\nKcloG/ft24esrCxoNBps2rRJ16tXUI42Y8YMvPrqqybfp6enJ958803MmDEDt2/fBgDk5+fjww8/\nhEKhMHiNmXuOLGXqWiUicibs4SEiMmHZsmVYsmQJ+vfvDw8PD2i1WvTt2xejR49GUlIStFotIiIi\n9F4zYsQIrF+/HgcPHsTzzz9f4jHCwsIQERGB+fPnY8OGDVixYgUWLlyI//znP1Cr1Xj77bd140Iu\nXbqEAQMGoEKFCnjqqadw7949AI+mLZ4yZQpefPFF1KpVC88++6xu/5988gnmzp2LhIQECIKAhQsX\nIigoCHFxcZg/fz4iIiKQn5+PXr166caBTJ06Fa+//jp8fX3RvHlzk+1//fXXIZFIdD0YAwYMQGRk\nJABg4sSJWLRoEVasWAEPDw8888wz+OuvvwAAzz33HObPn1/idkUdOnQITz/9tO5nf39/HDhwAM8/\n/zx69uyJChUqoHbt2qhfvz6uX78OT09P1K1bF/Hx8bhx4wYqV66MmJgYAMCECRPw8ccfo1+/ftBo\nNGjcuDGioqL0jtegQQPMmzcP7733nq5nZuXKlfDx8cHkyZMRHR2Nnj17IjAw0OQED/Xq1cPYsWOR\nnZ2NVq1a6fX+9e/fH5s3b0bfvn1NnmsAGDduHLy9vXUTVCiVSjz77LNYsWKFydc1atTI5DmylKen\np9Fr9cSJExbvj4jIVgTR0oUfiIiIyGpEUcSaNWtw8+ZNDvAnIrIB9vAQERE5UJcuXRAYGIiVK1c6\nuilERG6JPTxEREREROS2OGkBERERERG5LZa0ERFZyYIFC3Dy5EkAQGpqKmrWrKmbznfTpk16U/ta\n24ULFzB58mT4+/tj+fLlqFWrls2OZcrdu3fRrl07XLp0qdhzt27dwocffqib7Uwul2Ps2LHo2rWr\nzds1bNgwREZGokePHma/pnPnzpDJZJDL5bppmDt37oy3335bb9pnQw4cOICzZ8/i7bfftqidSqUS\nK1euxIEDByCKom5SjDfffBOCIOCDDz7Ayy+/jPbt25u1v7///hsRERH49ddfLWpHr169MGvWLLRp\n08ai1xEROSMGHiIiK5k5c6bu3507d0ZcXBxCQ0PtcuykpCS0adMGCxcutMvxSmPmzJlo3769bj2b\nK1euYMiQIQgJCXHahSoLf4a5ubmYMmUKPvroI8yaNcvk61JSUpCVlWXRsURRxIQJExASEoJNmzbB\ny8sL9+7dw9ixY5Gbm4t33nnHqT9fIiJnxcBDRGQnzZo1Q5cuXXDx4kXExcXh0qVL2LRpE1QqFbKy\nsvDmm29i6NChSExMxN69eyGRSHD9+nXIZDJ8/PHHaNiwIfbs2YOVK1dCEAR4eHhg2rRpSEtLw4YN\nG6DRaJCXl4dPPvkEn332GX744Qd4eHggJCQEs2bNQlBQEIYNG4aKFSvi6tWrGDJkCPbs2YOmTZvi\n+PHjuHPnDoYPH447d+7gl19+gUKhwNKlS9GoUSM8ePAACxcuxB9//AGVSoV27dph2rRpkEql2LNn\nD5YsWQJvb280a9bM6PvPzMxEXl4etFotJBIJ6tevj5UrV6JChQoAgK1btxo9H3v27EFeXh5u3ryJ\n6tWrIzIyEl999RWuXbuGkSNHYtSoUUhMTMQPP/wArVaLjIwMBAcHIyYmptjaNKdPn0ZcXBwUCgUE\nQcDkyZPxwgsvlPj5+fj4YPbs2ejatSveffddSCQSzJkzB9euXUNWVhZ8fX0RFxeHBw8eYOPGjdBo\nNPD398fYsWMNble3bl29/Z88eRJXr17F6tWrdVN8V6pUCYsWLcLNmzcBPO6patasGSIjI1GvXj3c\nvHkTCQkJ+O2337B06VJotVr4+Phg7ty58PPz0zvGypUrsWfPHmi1WtSsWRPR0dEIDg7GlStXMGPG\nDCgUCtStWxe5ubklX9BERK5CJCIiq3vhhRfEc+fO6T3WsGFDcfv27aIoiuLDhw/FQYMGiXfv3hVF\nURR//fVXsWXLlqIoiuK2bdvEVq1aiWlpaaIoiuK8efPEadOmiaIoil26dBF//fVXURRF8dChQ+Ly\n5ctFURTFZcuWiXPnzhVFURS3bt0qDh48WMzJydE9N2rUKFEURfG1114Tp0+frmvTa6+9Jk6aNEkU\nRVE8c+aM2LBhQzEpKUkURVFcuHChOHPmTFEURTEqKkpcv369KIqiqFarxSlTpoirV68WMzMzxVat\nWomXL18WRVEUV61aJTZs2NDgOTl69KjYoUMH8dlnnxXHjRsnrlmzRkxPTzf7fPzzzz+iRqMRX3rp\nJXHy5MmiRqMRL1y4IIaGhooajUbctm2b2LJlS/Hq1auiKIpibGysOHnyZN373LVrl3j//n2xe/fu\n4o0bN0RRFMX09HTxueeeE2/evGnWZyiKotimTRvx7Nmz4q5du8T58+frHp81a5Y4b968Yp+Hqe0K\n++KLL8S33nrL4LkrUPA+bty4ITZs2FA8efKkKIqi7nP4/fffRVEUxR9//FEcPXq0eOPGDd153L59\nu/jOO++IKpVKFEVR3Lhxo/jGG2+IoiiKffr0ETdv3iyKoigmJyeLjRo1Eo8fP26yLUREroI9PERE\ndhQWFgYA8PX1xapVq3Dw4EFcu3YNFy9e1PtWvWnTpqhWrRoAoEmTJti7dy8A4OWXX8akSZPQqVMn\ndOjQAW+++WaxY/z888/o378/fHx8AADDhw/HqlWrkJ+fr9eGAt26dQMAPPHEEwCA8PBwAEDt2rXx\nyy+/AHg0JiUlJQVbt24FAOTl5QEATp06hYYNG6J+/foAgMGDB2Px4sUG33u7du1w4MABnDlzBsnJ\nydi/fz8+++wzrFu3Ds2bNzd5PkJDQ1G9enUAQK1atdCxY0dIJBI88cQTUCqVUCgUAIAOHTogJCQE\nADBo0CD06dNHrw1nzpxBZmYmJk6cqHtMEARcunQJNWrUMNjuogRBgLe3N3r06IEnnngCCQkJuH79\nOn755Re9BVELmLudRCKBaMHEqVKpFC1btgTwqNeqQYMGaNy4MQCge/fu6N69O/7++2/d9vv370dK\nSgoGDBgAANBqtVAoFLh37x4uXbqkW/S0VatWaNCggdntICJydgw8RER2VBBC0tPTMXjwYAwaNAit\nWrVCjx49sH//ft12hSc4EARBdyP87rvvYuDAgTh8+DASExOxevVqJCYm6h2j6E2zVquFWq0u1oYC\nnp6eej/LZLJi7dZqtfj00091Y22ys7MhCAKOHTumdzxjg/nv3LmD5cuXY9asWQgLC0NYWBjGjRuH\nDz74AN9++y2qVq1q8nwUbaOx4xSUghW0ufDPAKDRaFCvXj1s2bJF91hGRgYCAwMN7q+omzdvIjc3\nF7Vr18Y333yDzZs3IzIyEhEREQgICNALGAXM3a5FixZYt24dNBqNXrvPnTuHhIQExMbG6m3v6emp\nOw8eHh4QBEH3nCiKuHTpkl5Jm1arxRtvvIGhQ4cCAPLz85GVlaV7nTmfIxGRK+K01EREDnD+/HkE\nBgZiwoQJCA8P193cazQao69Rq9Xo3LkzcnNzMWTIEERHRyM1NVUvzABAx44dkZiYqOshSUhIQOvW\nrYuFBkt07NgRX375JURRRH5+PsaPH4+vvvoKYWFhuHLlCi5evAgAxcJXgYoVK+Lo0aNYv3697sZa\noVAgLS0NTZo0KdX5MOT48ePIyMgAAGzcuLHY2JyWLVvi+vXrutn0Lly4gBdffBG3bt0qcd/Z2dmY\nP38+IiMj4eXlhcOHD6Nfv3545ZVXEBISgn379una6+HhoftcTG1X2NNPP426devio48+glKpBADc\nvn0bCxYsKHHWvRYtWiA1NRWXL18G8GgSi6lTp+pt07FjR2zduhUPHz4EAHz66aeYNm0aAgIC0LRp\nU10I/O233/DHH3+UeD6IiFwFv8IhInKADh06YOvWrejRowe8vb3RvHlzBAYG4vr160ZfI5VKMWPG\nDEyZMgVSqRSCIODDDz8sFmQGDhyItLQ0vPLKK9BqtXjyyScRFxdXpvZ+8MEHWLhwISIiIqBSqdC+\nfXu88cYbkMlkiIuLw5QpUyCTydC6dWujbf/iiy8QGxuLhIQE+Pj4QBAE9OvXDwMHDoRCobD4fBgS\nHByMqVOnIjMzE/Xr18e8efP0ng8MDMSyZcuwaNEiKJVKiKKIRYsWoWbNmgb3N2XKFMjlcnh4eECj\n0aB79+4YP348AGDUqFGYPXs2EhMT4eHhgaZNm+qCQrt27TB58mTIZDKT2xW1bNkyLFmyBP3794eH\nhwe0Wi369u2L0aNHm3zfVapUQVxcHN5//31oNBr4+flhyZIletu88soryMjIwKBBgyAIAqpXr46Y\nmBgAwOLFizF9+nRs3LgRtWvXLjahAhGRKxNESwqGiYiInFRiYiJ+/PFHfP75545uChERORGWtBER\nERERkdtiDw8REREREbkt9vAQEREREZHbYuAhIiIiIiK35fSztGVmPnB0E8gGKlXywb17uSVvSG6N\n1wEV4LVAAK8DeozXAgGWXQdBQf5Gn2MPDzmEVOpR8kbk9ngdUAFeCwTwOqDHeC0QYL3rgIGHiIiI\niIjcFgMPERERERG5LQYeIiIiIiJyWww8RERERETkthh4iIiIiIjIbTHwEBERERGR22LgISIiIiIi\nt8XAQ0REREREbouBh4iIiIjcgjQ5Bd7xCZAmp5R5X6dPJyM6erreYytXLsf//ve9we3T09Nx+PDP\nZu9v9uzp+PPPq+jevRMmTRqDSZPGYMyYEXj77QnIzs62qK3Z2VnYs2e3Ra8pq9TUKzhz5rTu56VL\n43Dz5t/Izs7GRx/Nw6RJYzBu3ChER0/Hw4cPje5HrVZj8uSxGDdulMXv21wMPERERETk8nyjYhHQ\nfyL85sUjoP9E+EbF2vX4p0+fRErKWbO2VSqV0Gq1kMvlqFMnBPHxqxEfvxqrV3+Jxo2bYOfOHRYd\n+8qVyzhy5GBpml1qBw4k4dq1q7qf//nnJmrWrIU5cz5A+/bhiI9fjVWr1qJJk2aIjV1odD+3b99G\nTk4OVq1aiwoVKtikrVKb7JWIiIiIyE6kyefg/c33EPKUAAAhTwn5hp1QDuwBdVio1Y+3fPkSnDt3\nBgDQrVsPDBgwCF999SXy8vIQGtoc1avXxNKlsRBFERUrVsT06dF6rz99+iSeeSas2H5FUcStWxmo\nVasWAGDr1o3Yu/dHCIKALl2645VXXsXBg/vw1VfrIJVKUaVKEObO/RDr16/FlSuXsWNHIkJDm2P5\n8iXQarW4f/8+pkyJQmhoC/Tu/SK+++5HAEB09HT06TMA6elp+OGH76DVajF69Fhcv/4nDh7cD4VC\ngYCAAHz4YRz27t2NY8eOQKnMw82bfyMy8nW0bt0Gu3bthFQqQ8OGT8Hb2wd16tRBenoa7t69g06d\nXtC9p4EDX4VCoQAAbNu2qdj+4+I+xN9/38CiRQsxYcLbiImZh6ysLADA3LnRCAysUebPi4GHiIiI\niFya7PhZXdgpIFHkQXbiTJkCz6lTyZg0aYzu53/+uYnIyOFIS/sHq1d/CY1Gg/HjR6NVq9Z47bUR\nuH79Gjp27IQxY0Zg+vTZCAmpi507v8XXX69D69ZtdPs5evQIIiNfhyhqce3an5g0aQwePMiGUqlE\nt2490KNHL/z551UkJe3FihX/AQC8++5EtGnTFnv3/oihQ4fhhRe6YteuncjJycHw4aOwY8c29OnT\nH0lJezBp0ruoV68+9uzZjf/973uEhrYw+h79/f0RE7MYWq0W586dwdKlKyCRSPDee5Nw4cJvAICc\nnIdYvDgeN278hffffxcvvRSBnj17oXLlymjSpBm+/nod2rcPx+3bmaheXT+geHh4wM/PD1qtFllZ\nWcX2/3//F4Xo6BmYNu0DrFixDK1aPYt+/Qbixo2/MGfOHCxbtrrUn18BBh4iIiIicmmqti0hyr30\nQo/WWw5Vm5Zl2m+rVmGYO/cj3c8rVy6HUqlEixYtIQgCpFIpmjYN1SvtAoDr1//EJ5/EAAA0GjVq\n1aqt93xGRjqqVauGtLR/dCVtSmUepk17D4GBlSGVSnH1aioyMtLx9tvjAQAPHjzAjRs3MHnyu0hI\n+BLbtm3Gk0/WwXPPPa+37ypVquLLL/8DLy8v5ObmwtfXt9j7EsXH/65d+0kAgEQigUwmw5w5H8Db\n2xu3bt2CWq0GANSv3xAAULVqMPLz84vt7/z5c3j11ddw9+4dZGbe0ntOrVZj37696N69p9H9F7h6\n9QpOn05GUtKef99zVrFjlQYDDxERERG5NHVYKBRDI3RlbVpvOfKG9LJJOZuXlxdOn07G4MGRUKvV\nOH/+HHr27IWrV69AFLUAHoWImTPnoVq1ajh37gzu3Lmte/2VK5dRr159A/uVIzp6PkaOHIpmzZqj\ndu0nUadOXXzyyTIIgoBNm75GvXoN8N132zF69BhUqhSIRYsW4uefD6B69RrQah+lmE8/jcXs2QtQ\np04Ivvjic6Sl/fPoHKnVyM3NhUwmw59/puqOKwgSXbt+/vkA1qxZh7y8PIwe/VqhbYRi7ZVIJNBq\nRWRnZ8PHxxceHh4ICqqKihUDcOjQAYSHPw8A2Lx5Ay5c+A1169Y3uv8CTz5ZB927N0H37j1w795d\n7Nu3y9KPxyAGHiIiIiJyeTkxU6Ec2AOyE2egatPSJmEHALy9fVC9ek2MHTsSKpUKnTt3RaNGT0EQ\ngPXr16Jhw6fwf/83HQsWzIZGo4EgCIiKmoXbtzMBAEePHkL79h0N7jswsDImTnwHsbEfYtWqtQgL\na40JE0YjP1+Fxo2bIigoCI0bN8W0ae/Ax8cX3t7eaN++I/Lz83H16hVs3vwNunfviVmz3oe/fwUE\nBVVFVtZ9AMCgQUMwduwI1KhRE9WqVS927Fq1noC3tzfGjx8FAKhcuYquzYY0atQYK1Z8Cj8/P7Rp\n0173+KxZ87B48cfYsOErqFQq1KxZC++/PxNSqdTg/guXwA0fPgoxMfPx3XeJyM3NwTvvvG3hp2OY\nIIqFO7WcT2bmA0c3gWwgKMifny3xOiAdXgsEOP91IE1Ogez4Gaja2u5mmh5x9muB7MOS6yAoyN/o\nc+zhISIiIiqBb1SsrlxKlHtBMTQCOTFTHd0sIjID1+EhIiIiMsHYlMfWWNySiGyPgYeIiIjIBFNT\nHhOR82PgISIiIjKhYMrjwqwx5TER2QcDDxEREZEJBVMeF4QeW055TETWx0kLiIiIiEpgrymPicj6\nGHiIiIgmt71JAAAgAElEQVSIzKAOC2XQcXLJ0gwcl6WjraoawtTBZdrX6dPJmD17OurUCYEgCMjJ\nyUGNGjURHb0AMpms2PapqVfw4EE2WrZ8xuD+Ll++hMOHf8bIkW+id+8X8d13P5apfWQ+Bh4iIiIi\ncnlRvofxjfcl5AkayEUPDFU0QkyO4QU+zdWqVRjmzv1I9/OcOR/g8OGDeOGFrsW2PXAgCZUrVzYa\neBo0aIQGDRqVqT1UOgw8REREROTSkqUZurADAHmCBhvkf2CgskGZe3oKqFQq3LlzG/7+FbBqVTzO\nnv0VWq0WgwdHIjS0OXbt2gmpVIaGDZ9CRkY6EhO3QK1WQxAEfPhhHK5evYIdO7bpBajU1CtYujQW\noiiiYsWKmD49Gn/8cRErVy6HTCZD79790KPHy1Zpf3nGwENERERELu24LF0XdgooJGqckKWXKfCc\nOpWMSZPG4P79exAEAb1794dKpUJa2k2sXPkFlEolxo4dieXLP0fPnr1QuXJlNGnSDMnJvyA29lPI\n5XIsWrQQv/xyDFWqBBXb/8cfL8D06bMRElIXO3d+i6+/XofWrdsgPz8fa9asK3W7SR8DDxERERG5\ntLaqapCLHnqhx1srRRtVtTLtt6CkLSvrPt59dyKqV6+Bq1ev4NKli5g0aQwAQK1WIz39H73XVaoU\niAULouHj44Pr16+hWbPmBvd//fqf+OSTGACARqNGrVq1AQC1az9ZpnaTPgYeIiIiInJpYepgDFU0\n0pW1eWulGJLX0GrlbBUrBmDWrPl4661xmDDhLTz9dBjef/8DaLVafPnlf1CzZi1IJBJotSIePnyI\nL774HNu27QQAvPvuRIiiaHC/tWs/iZkz56FatWo4d+4M7ty5DQCQSASrtJseYeAhIiIiIpcXk9MR\nA5UNcEKWjjZWmKWtqJCQuhg4cDCOHDmE4OBgTJjwBhSKXDz33Avw8fFFo0aNsWLFp6hTJwShoS0w\nbtxIeHhI4e/vj9u3M1G9eo1i+/y//5uOBQtmQ6PRQBAEREXNwu3bmVZtNwGCaCxyOonMzAeObgLZ\nQFCQPz9b4nVAOrwWCOB1QI/xWiDAsusgKMjf6HMSazWIiIiIiIjI2TDwEBERERGR22LgISIiIiIi\nt8XAQ0REREREbouBh4iIiIiI3JZDAs+dO3fQqVMnpKamOuLwRERERERUTtg98KhUKsyePRtyudze\nhyYiIiIionLG7oHn448/xquvvoqqVava+9BERERERFTOSO15sMTERAQGBiI8PByrV6826zWVKvlA\nKvWwccvIEUwtEEXlB68DKsBrgQBeB/QYrwUCrHMdCKIoilZoi1kiIyMhCAIEQcCFCxdQp04drFy5\nEkFBQUZfw1V23RNXUCaA1wE9xmuBAF4H9BivBQIsuw5MBSO79vB8/fXXun8PGzYMc+bMMRl2iIiI\niIiIyoLTUhMRERERkduyaw9PYQkJCY46NBERERERlRPs4SEiIiIiIrfFwENERERERG6LgYeIiIiI\niNwWAw8REREREbktBh4iIiIiInJbDDxEREREROS2GHiIiIiIiMhtMfAQEREREZHbYuAhIiIiIiK3\nxcBDRERERERui4GHiIiIiIjcFgMPERERERG5LQYeIiIiIiJyWww8RERERETkthh4iIiIiIjIbTHw\nEBERERGR22LgISIiIiIit8XAQ0RERERkBcnSDMR7n0WyNMPRTaFCpI5uABERERGRq4vyPYxvvC8h\nT9BALnpgqKIRYnI6OrpZBPbwEBERERGVSbI0Qxd2ACBP0GCD/A/29DgJBh4iIiIiojI4LkvXhZ0C\nCokaJ2TpDmoRFcbAQ0RERERUBm1V1SAXPfQe89ZK0UZVzUEtosIYeIiIiIiIyiBMHYyhika60OOt\nlWJIXkOEqYMd3DICOGkBEREREVGZxeR0xEBlA5yQpaONqhrDjhNh4CEiInIAaXIKZMfPQNW2JdRh\noY5uDhFZQZg6mEHHCTHwEBER2ZlvVCy8v/keQp4SotwLiqERyImZ6uhmERG5JY7hISIityZNToF3\nfAKkySmObgoAQJp8Thd2AEDIU0K+YafTtI+cDxezJCob9vAQEZHbcsaeFNnxs7qwU0CiyIPsxBmW\ntlExXMySqOzYw0NERG7JWXtSVG1bQpR76T2m9ZZD1aalg1pEzoqLWRJZBwMPERG5JVM9KY6kDguF\nYmiELvRoveXIG9KLvTtUDBezJLIOlrQREZFbKuhJKRx6nKUnJSdmKpQDe0B24gxUbThLGxlWsJhl\n4dDDxSyJLMceHiIickvO3pOiDguFYuIwp2kPOR8uZklkHezhISIit8WeFHJ1XMySqOwYeIiIyK2p\nw0IZdMilcTFLorJhSRsRETmEs62PQ0RE7ok9PEREZHdF18fB6P5A9DuObhYREbkh9vAQEZFdGVof\nB//dzp4eIiKyCQYeIiKyK0Pr4yDXvPVxWAZHRESWYkkbERHZlaH1ceBT8vo4RcvgFEMjkBMz1cat\nJSIiV8ceHiIisitD6+NgZD+TM6kZKoOTb9jJnh4iIioRe3iIiMggaXIKZMfPQBPgD4/7D6Bqa711\nbIquj1OpZ3sg84HR7Q2VwUkUj8rgOOU0ERGZwsBDRETF6JWPARAAq5eRWbI+jqEyOK13yWVwRERE\nLGkjIiI9xcrH/n3ckWVkhsrg8ob0Yu8OERGViD08RESkx+Asav9yZBlZ0TI4hh0iIjIHAw8RWZVW\nK+LqP9kQBCCkRgVIBKHkF5FTMTiL2r8cXUZmSRkcERERwMBDRFZ05nImdh69jqtp2QCAejUqoHfH\nEITWrezglpElCsrHio7hYRkZERG5IgYeIrKKu9l5+GrvH5B5SDCkSwOIAJJO/Y2vfryED4aHoYKv\np6ObSBYoXD6mqegPj6wHLCMjIiKXxMBDRFbx89l/cDdbicFd6qNb6ycAAGqNFlsPpOLAmZvo3SHE\nwS0kS7F8jIiI3AFnaSMiq/jnTg585FJ0aFZN91j7ZtUg9/RA2p0cB7aMygtpcgq84xO4GCkREelh\nDw9ROVCwgKQ1F44s6m5WHnzlMvh5Py5dq+jrCV+5FHeyDM/4RWQteusGWXm9ICIicm0MPERuzl43\ngiqNFp5S/U5jQRDgKfOAWqO1+vGobOwRgu2l2LpB/64XpBzYw+XfGxERlR1L2ojcmLEbQVuU/Mg8\nJMhX6wcbURSRr9JA6sH/1TgT36hYBPSfCL958QjoPxG+UbGObhKA0pekGVo3qGC9ICIiIt6FELkx\ne94IBlaUIydPhYeKfN1jWTn5yMlTo3JFL6sfj0rHHiG4VMFl0vxSh7CCdYMKc/R6QURE5DwYeIjc\nmD1vBGtU9kVunhpHzqfrHjt6Ph15+RpUr+xr9eNR6dg6BJem90iafA5Ym1jqEFawblDBtc71goiI\nqDCO4SFyEaUZc1F0AUlTN4IXLvyOCxd+w8OHD+Hr64vGjZuiSZOmZrevU8saOJyShgOnb0ICAaIo\n4uCZf1ClohzPt6xp9n7ItgpCcOHQY60QXNqxNLLjZwGF4RBm7rVeeN0gY+sFudO4JSIiMh8DD5EL\nKMvEA6ZuBFUqFb79dhvWrl2DU6dOFnttq1ZhGDHiDfTrNxCenqYXDq3kL8dr3Rpi57Hr2JB0GQBQ\nv2YFRLSvw0VHnYglIdhSpnqPTO1f1bYl4O2lF3pKE8JMrRvEWdyIiMovQRRF0dGNMCUz84Gjm0A2\nEBTkz8/WTNLkcwjoP6nYN/JZ2+LLdJOamZmJ4cMH49Sp5BK3bdnyaSQkbEZwcHCJ22q1Iq7+kw1B\nAEJqVIBEEIxuy+vAcaTJKSZ7Q0q7z4D+E0t1rQbNXQrxi0S9EGatQGKr3yGyPv4/gQrwWiDAsusg\nKMjf6HPs4SFycqX91tyUe/fuom/fnrh8+Y/Hx5HJ0KnTCwgOroZbtzJw8OB+5Oc/moDgzJlf0bdv\nT/zww14EBlY2uW+JRED9WhVL1S6yH1O9IWXZZ6l7j+Jn4f7LXawewgDb/A6VdywPJCJXwsBD5ORs\nMebirbfG68KORCLB22+/hzfeGI+goCDdNrdv38Z//rMKS5fGQavVIjX1CiZOHIMNG7aV/s2Q2zNn\nLI0xtghhgG3HLZVHLA8kIlfDWdqInJy1Z6C6dOkifvxxl+7nlSv/g+nTZ+uFHQCoUqUKoqJmYvXq\n/+oeS0rai99//61Ux6XyQx0WCsXEYU7zzT9ncbMee67tRURkLezhIXIBZfnWvKh1677Q/btnz17o\n12+g3vNFS1V69+6HXr0SsXPnDt3rP/54camPT7bFUiPDrPk7VJ6xPJCIXBEDD5GLsFa5z/btW3X/\nHjXqTb3njJWqjBr1pi7wJCZuRUzMJxBMTEZAjsFSI9NsVTJXnrA8kIhcEUvaiMqR/Px83LlzB8Cj\nsTvh4Z10z5kqVenQIRxS6aPvR7Ky7kOhUNi/8WQSS43IHlgeSESuiD08ROWISqXS/Vsmk0Eiefyd\nR0mlKl5ecqjVD//dTz4AH7u0mczDUiOyF5YHEpGrYeAhKkd8fHzg5eUFpVIJpVKJq1dTUbduPQCm\nS1WuX7+GnJxHYUcqlcLfv4JD2k/GsdSI7InlgUTkSljSRlSOCIKgV8a2fv3jGdhMlaoU3i48vJNe\nzxA5B5YaERERGSaIoig6uhGmcJVd98QVlB1n797diIwcBADw8/NHUtIhhITU1T0vTU7RK1W5fv0a\nOnfuiAcPsgEA69dvRI8eL1mlLbwOrK/o5+cqeC0QwOuAHuO1QIBl10FQkL/R5/g1LVE507lzN9Sp\nEwIAePjwAQYO7I1z587oni+8hkpKyjkMGNBbF3Zq134S3bq96JB2k3mcbQ0cIiIiR+MYHqJyxsPD\nA/HxqzFgQC8olUrcuPEXunZ9DuHhndC//ysIDg7GrVu3kJi4FT//vF/3Oi8vL8THr4aHh4cDW09E\nRERkGQYeonLo2Wfb4Msvv8bo0a8jNzcHAHDo0EEcOnTQ4PY+Pj5Ys+ZLtG3bzp7NJAfh4qVERORO\nWNJGVE516dId//vfT3jppQijkxBIJBL06PEydu7ci27deti5heQIvlGxCOg/EX7z4hHQfyJ8o2Id\n3SQiIqIyYQ8PUTnWpElTfPnl17h5829s2PAVLlz4HQ8fPoCvrx+eeqoxhg4dhlq1nnB0M8lOjC1e\nqhzYgz09RESFJEszcFyWjraqaghTBzu6OVQCBh4iQs2atTBlSpSjm2F1/INkGVstXsoSOSJyJ1G+\nh/GN9yXkCRrIRQ8MVTRCTE5HRzeLTGDgISK3xD9IlrPF4qW+UbG6XiNR7gXF0AjkxEy1RnOJiOwu\nWZqh+9sCAHmCBhvkf2CgsgG/WHNiHMNDRG7H2B+kZGmGg1vm3Ky9eKmxEjlpcorV2uwOkqUZiPc+\ny+uTyAUcl6Xr/rYUUEjUOCFLd1CLyBzs4SEit2PqD5I538A5qgTLGUq/cmKmQjmwh1UWL7VViZw7\nYU8kkWtpq6oGueih9zfGWytFG1U1B7aKSsLAQ0Rupyx/kBxVguVMpV/qsFCrBBJblMi5E5bG2A7H\n75GthKmDMVTRSPe7662VYkheQ15nTo4lbUTkdgr+IMnFR4ukmvsHyVElWO5a+mXtEjl3w9IY24jy\nPYz+ATsxz+8E+gfsRJTvYUc3idxMTE5HJN7vheiHbbAt62X2yroAu/bwqFQqzJgxAzdv3kR+fj7G\njx+PLl262LMJRFROxOR0xEBlA5yQpaONmd/yOqoEy51Lv6xZIudurF0a4wwlkY7GXjOylzB1MK8p\nF2LXwPPdd98hICAAsbGxuH//Pvr27cvAQ+QmnPFmy9I/SI4qwXL30i9rlci5G2uWxjhTSaQjlXX8\nHhG5J7sGnh49euDFF18EAIiiCA8PD3senohsxF1utgpKsArei71KsBx1XFtzxhDsbErTE1kUF4x9\njAPKicgQQRRF0d4HffjwIcaPH49BgwYhIiLC5LZqtQZSKYMRkdM6dgboMhJQFCrJ8pEDSf8F2rZw\nXLvK4vhZ4NApILyVfd+Do45rC5PmA2sTH10X3l7AqP5A/CzTrzl+FjiUDISHuf77t6fYL4BpnxR/\nfNEUYOoo+7fHwSYhCWtxHgqo4QMpRqIZ4sFqEqLyzO6ztKWlpWHixIkYOnRoiWEHAO7dy7VDq8je\ngoL8kZn5wNHNICvw3n0Ufgr98SfIzcPD3UegqFfX5Gud9jqoV/fRfwBgz/Y56rhWJk0+h4AvEh+X\n6CmU0K7djqyXuxjtcQiauxTiv69xll5CV+mhkjZrjAADJZFZzZ6C2sWuI2v8PyEaz+Jl6ZN6vWaZ\ncK3zQE7894HsypLrICjI3+hzdg08t2/fxqhRozB79my0a9fOnocmciquciNlDnuNP3Gnc2ZLznCe\nLJ2EQZp8Dlib6FQlWa5UpumuJZFlwQHl7o3TjpOl7Bp4Vq1ahezsbKxYsQIrVqwAAKxZswZyudye\nzSByKFe6kTKHPW623O2c2Yqp82TPIGRpCJYdP6tfEgnHzlLnTGNizP3cOBselRdcrJdKw66BZ+bM\nmZg5c6Y9D0nkVJzpRsqabHmz5a7nzNpMnSevrbvtGhgtDcGqti0fjfNROMcsdc4yTbilQZ+z4ZG7\nMzXtOAD2+pBRXHiUyI5M3Ui5OnVYKBQThwEAvOMTrLZopjufM2sydp68tu0q9aKm0uSUUn+WOTFT\ncT/xMzyMnoSsbfEl3qhjVH+nWaC0oIeqMHsHMHddjJaoLIxNOx7te4yLzZJJdp+0gKg8c/f1VmxR\neubu56wsCpc7GTtPEIVS9VZY47O0qMchfhbuv9zF4l5CW5TqOcOYGGfpZSJyJoamHfcSJTgjy4RK\neDTpMBebJUMYeIjsyBlupGzFVqVnrn7ObDV2xlAgMXSelAN76H0uQMmB0VFlhJaWZNlybJejx8Qw\n6BMVZ2ix3mbqQJz0vKW3HRebpaIYeIjszNE3UrZiy2+kXfWc2eqG3FggydoWb/A8WRoYXaF3wdA5\nOHPlGPbe2Y1ng5+2yo2OI8fEuHrQJ7KVoov1AkB/2U4uNksmMfAQOYA7Di629TfSrnbObNlLYiqQ\nKCYOK7Z/SwOjK/QuFD0Hk5a1w9pRDaDw/Qty8aZbzNzkqkG/PON0yfZRdNrxor0+Q/Ia8vyTHgYe\nIrIKfiOtz5a9JKUJJJYERlf4LAufg2Ntgv4NOzIAj2r4N3peKFbD7wxrFFnK1YJ+ecbpkh2naK8P\nww4VxcBDRFbjrN9IO+JG15a9JPYIJM76WRYofA4Oh1fThZ0CuVIRv+7diLAX3gbAtZzItkxNl8yb\nb/so6PVJlmYg3vsse9lIDwMPEVmVs30j7agbXVuHEnsEEmf7LIsqOAet/j4F7/x8KDwfP+eTk4/n\nPzsIqX9nAKJbreXkij1V7s7YdMkcOG9f7GUjYxh4iMhtOXrRUluEkqI3u+X9hlcdForQsFC8/u18\nrHs5EApfGXxy8jFy7RW0//kmHr5wBhDh9JMwmIs9Vc7J0HTJHDhvX+xlI1MYeIjIbTnDbGPWDCW8\n2TVMmnwOK17bjdefroRD4cEIP5SBtr9kQvSS6UoInX0SBnM4OsCTcYamS+bAeftiLxuZwsBDRG7L\nFWYbMxdvdo2XcsmOn4WgUqPtL5lo+0um7nFV86dKPTW3M3KGAE/GceC8Y7GXjUxh4CEit+UKs42Z\ny91vdo/jH+zyvmp0oLGp3i2DwdZThpy5b+t+dvZJGMzhTgHeXRWdLpnsh71sZAoDDxG5NXe40QXc\n+2Y3yvcwNuAPKPzUBgcal9S7ZW6wdfUxT+4U4Ilsgb1sZAwDDxG5PVe40S1p5i13vdnVDTSG8YHG\n5vRuuUuwLUl5eZ9EpcVeNjKEgYeIyMHMnYzAHW92zRlobG7vVsH5kB0/o/ezu3GFAE9E5EwYeIiI\nHMjSyQjc7WbXnIHG5vZucRY7IiIyhIGHiMiB3H0ygpIUDDTe4PMHFFAbHWhcUu8WZ7EjIiJjGHiI\niCxg7VXu3XkyAnPF5HTEmz4tsPvhVZMDjU31bpX34GgLydIMHJelG505j4jIVTDwEJHLs3YIMaa0\nJVOm2mduuZa93qOjtEUN1FP4l/r1DI7WFeV7WDe9r6GZ84iIXAkDDxG5NHuN2yhtyZSp9hWEGOXA\nHibLtTg2pWTuOoudI+hmzhOMz5xHRORKGHiIyGXZc9xGaUqmTLXPa+tus0KMs45NccZyJ3ecxc4R\nzJk5z9054/VNRKXHwENELsue4zZKUzJlrH1e23bB+5udZoUYZxyb4szlTu42i50jmDNznjtz5uub\niEpH4ugGEFmLNDkF3vEJkCanOLopZCcFIaQwW43bKCiZKjieOSVTxtoHUTAaYszdh6PGphgrd0qW\nZjikPWR9BTPnyUUPADA6c5474vVN5J7Yw0NugWMcyid1WCiUXdvDa/chCGq1zcdtWFoyZWxciXJg\nD70yNcB4iHG2sSmuXu7k7pM/WEtMTkcMVDbACVm6yZnzzOFK5WGufn0TkWEMPOTynHWMA9meb1Qs\nvH46CkGthij1gLJLO5sHXUtLpoyFJEtCjDONTXHlcid+MWKZMHVwmW/yLSkPS5Zm4Dwuopm0UqmO\na40w68rXNxEZx8BDLs8ZxziQ7RULumoNvJKOIS85xaqfuzVuogyFpNL0FjnD9VxQ7lRwE+sq5U78\nYsT+LJntTReMoIE8wPJxM9YKs656fRORaQw85PK4/kb5ZHxCgN2lDihFw42tewScJcRYyprlTvbC\nL0bsz9zysLJOg23tMOuK1zcRmcbAQy7P2cY4kH0YCrqihwe8138LQaW2OKAUDTfKru3g9dMx9ggY\nYY1yJ3tyxi9G3H08kbnlYWUdN2OLMOtq1zcRmcZZ2sgt5MRMxf3Ez/AwehKytsWzLr8cKDprmugl\nAyBCUKkBPA4o5szaZ+gbYq9dh8yeSY2cX2lm2bMl36hYBPSfCL958QjoPxG+UbEOaYctGZrtrUt+\nLRyXpevNelYQjAqzZNyMs81kSOROkqUZiPc+6/IzFbKHh9yGq5YHkfmKfiNeeByM5EY6fNZu1dve\n3G95DX1DLGg0EAVAEB8/xpso1+Yskz+Up/FEhcvDTnlk4Cf5DeyUX9ObwKCs42bYy09kG+60JhUD\nDxG5BGPjaQqCrjQ5Bd7rEiFotLrXiB4eZgUUVduWED1lEPJVRZ4RIMo8IKhsP+U12YczfDFSUgmW\nu5W6FQSXj32TjY7TKQhG5yvdQ7Msy2dpc5YwS+Quyjq2ztkw8BCR099gmfeNuFjsdcUfMUwdFgpV\ni6fgeVK//E0QReQO7wttrWq8iSKrMTWeyF2nzjZnnE6YOhg9UR+Z6gelOoYzhFkid+Fua1JxDA9R\nOecMYwmkySnwjk8wOt7G1DfietsU6t0BAIlGY/aYm5y5b0OU6X8HpPWWQzmgBxQTh/FGiqzG2Hgi\nQDQY7M0Zh+bsyjpOh4jsy91+Zxl4iMoxYz0n9rzBMidwGRqULAKQnvrN5DaWjLlRh4VCMayv0wxq\nd0UlBVd6zNBEK+YEe1dlaAIDrm9D5Lzc7XeWJW1E5ZjD1yY5dsaswdvqsFDkdWkP+Q/7Ifz7mADA\nM+kYpP8uNGqNgcscB1B67lqKZUtFS7AsnTo7WZqB47J0tHWRtWK4vg2Ra3Gn31kGHqJyzOFrkxw+\nZXbg0rRqCuGH/Sa3tUZg4TgAy5WnWcdsyZLQbu7sSc4Wiri+DZFrcZffWQYeonLM4dO5hoeZHbjM\nDWfWCizOPpGDM3F4T6EbMSe0mzt7kjtNKUtEVBYMPER24Mw3zw4t42rbwuzAZc9wxvIsyzi8p9DN\nlBTazZk9yd2mlCUiKgsGHiIbc4WbZ0eWcVkSuOwRzhxVnlXWUOzIUO3wnsJypmD2pMKhp+jsSe40\npayzleURketh4CGyIY5tMI8lgcvW4cwR5VllDcXOEKo54YP9FMyeVNCD462VIvJGZYSv3aMLvOaE\nIlfAsjzrY4Ck8oiBh8iGOLbB9di7PKusodiZQjUnfLCfwrMnPb/0J3Ra+KVe4A2LmVosFJVlSllH\n3CSzLM/6GCCpvGLgIbIhjm0wTpqcApy/AGmzxmW+SbZmOZel5VllPXZZQzFDdfkVpg5G2+MZCFi4\nw2DgjQmzzpSyjrpJdqeyPGfAAEnlGQMPkQ1xbINhBSVYyFMioIwlWLYo5zK3PMsaxy5rKGaoLt9K\nCrxlnVLWkTfJzl6W52qlYQyQVJ5JHN0AIndiaKV5Qyuql2fGSrAKnzNH7KsodVgoFBOHmejZsc6x\nC0KxKPcCAItDcVlfT66tIPAWZs3Aa+om2daceaX3KN/D6B+wE/P8TqB/wE5E+R52dJNKVBAgC3Om\nAElkS+zhIbISU9/2O/vYhtKUZZW2lMuaJViOLOey5rHN7VEyds45YYA+Z54G3tps3Yvs6F4WZ1zp\n3VVLwwxNduEsAZLI1hh4iKzAmQaOW6o0ZVllKeWyZgmWI8u5rH3skkJxSefc2UO1vTjDjHX2ZsvA\n6ww3yc620rsrl4Y5Y4AksgeWtBFZgalv+51ZacqyylrKZc0SLEeWc9nz2LYs3XMn5fk8lVSCWRYx\nOR2ReL8Xoh+2wbasl4tNWJAszUC891kkSzOsfmxn5OqlYWHqYExUtGDYoXKFPTxEVuCqA8dLU5Zl\njVKugm+kK52/iKxmTxl8nbllSY4s57LXsTkTm3l4ngyzRomfsV6W8jjNsTm9Xq42oQGRu2PgIbIC\nV52NrTRBzVrhTh0WCvRsD3Xmg2LPWVqWVJpyLmuN87BHKZkl57w8jV8pylW/eLAlc36XSntz7qpj\nWazBVGmYu4RAhjZyJww8RFbiigPHSxPUbB3u7DEeytXGeZh7zq35vlwxOLnqFw+2Ys7vUlluzl15\nLIs1GOr1cpcQ6C6hjagAAw+RFbniwPHSBDVbhjtblyW56gQTJZ1za74vVwuEhbniFw+2UtLvUllv\nzrpQiy8AACAASURBVB09g5szcocQ6C6hjagwTlpARKUa8GyVQdLHzxZbt8jguiKeMkhupOttZ2jN\nI3O46gQTgOlzbq335Q4D/205gN+abD3Yv6Q1esq6xo4zr5PjKK4+oQHg2LWXiGyFPTxE5BC+UbHA\nhu/hp9DvRShWluThAUGjgc/arfD+5nsohkYAgFNMi20pW5aJleV9FW6Xqw/8d5VSPHuUDJVU4meN\nHhpHTHPszGNLnGEa77Jizx25I485c+bMcXQjTMnNzXd0E8gGfH29+NmWY9Lkc/CfufRxL4JaA4+L\nV6EKD4O2RjBUXTsgPzwMopcnZOf/gKDW6LaT/n4ZsrMXIeSrDL62JNoawRAybkN6IRWCWqO7CVQO\n7wdpcgq8EvcAEkmJ+7JkW+BRwPOfuQReSccg3/YjhIzbUHXtUOLrzGXqfVnSLtFbDo+/0nTnHHgU\nnHLfG2XW+ywta/w/wdbn2FqSpRmY6X9Md0OpFkRc9LiHcFUN1ND6WfVYBb9Lmvq1kfveKL3roYbW\nDxlCLi5I70ItiLqb8+HKJhYdo4bWD8+qq5W57cnSDHzrnQp1vsbovqJ8D2Om/zEked3ANvkVZAi5\n6KqqXabjWltXVW2E59dEfU0A3st9xuLz6WjWui7KivcJBFh2Hfj6ehl9jj08RGR35vQiqMNCITt+\nRhdsCghK/Z8NvbYkhsZ5WDJuxdIxLpaOryltL4Wl41cMtcsz6RjyuraH/KejLjXw35XGZtl7nIep\nsYUl9dAY6k2xRQ+LrscLGsgDDPd4lWZsiaN6g5xtsVRLcYFScjcMPERkdwbLr6RSaCr6l7id6CUD\ntCIElfrxa0so3TIUIArfBFpys1yaG2tLysTKOmGAJRNnGGuXplVT3J8QafOB/4U/F/RsX6Z9uVIp\nnrOVDFmyxg4Aq5fimRtkLA2KnGmsbEyFNmcuKyQyhIGHiOyuYGyBz4bvAYUSIgCJWo0KMxZDcf6y\n7gbf2BgEAGZPPWwqQBTccEv+Tjf7ZtmcG+uiAcvc8TX27qUw1S5bzzhY9HPB6P5A9Dul3p8rrcFj\nr3EeZbkpNRRCvva+CC1EqARR95g1Zu8yN8gYCooyUUBFjadZ7U/wvoBmqsp4Lb9xqdtKDJLkmjiG\nhxyCtbmuw9KxKuZSde0A35DqEHcdhqDVAjA8HsfQGART4xL02258rJD3svW68R7S838AAiCIou61\nRsetSCSPxocUGuMiAhD9fZHfp6vBcSTK4f3MGl/jlbgHXknH9B4T1Gpo6teG+tkWpTrPppR23E9Z\nGfpc8NsV5Hc0bxyWIY56L6Vl63EeZR3rkuiViiSvG3qPaQQRWkF/O7WgRX1NAJ5Vl753SgIB2+RX\noBYe//55iRI8qamAANFLN56n6NgSiIBWAA563Sz2/gy1XysASV43kCkonG7cj6uw5/gz3icQYL0x\nPEYDj1qtRkJCAnbv3g25XI4aNWronlu+fDnatGljWYtLiRe7e+L/yFyDrQeB+x4/DeHHI3qPGbrB\n19YIhvrZFno3w4YeK8pYgBDlMnh/s/PxDbdWC1EiAWRSCBqtyZtlbY1gSM5dgvTyNRTc+wkAJDfS\noalSCX6frjMYsJTD+5Uc0gyEKVtPGGBueLQmQ58LVGUPdo54L2VhaLB/sjQDiV6pkEAo9Q2ksZvS\nII0cP3v+Y9a+jYUQCaAXeqRaCSLyQtBcE2RWuwy9t6JBxkMUoIWI056ZxcJaV1VtBKm9keR1Q9cO\nQzfdhtqPf9tuqxv0srDG524rhdt2XJZeLEhaI/QawvsEAuwwacHs2bOh1WrRsGFDTJs2DYMGDcK4\nceMAAPv27cPkyZMtbDIROUppBsHbpbwqPMymZUjGypwgCsXL0jQa5I7oB22taiWOW9G0agrhh/36\nr1fkQb7rgMlyt6JlYkU/l5KmEbYVey+Ya+hzgY91PndD76W8TVVtrERsWoXDUAuiWfs2VnYHPB7D\nAxFQS7SYUeEozivumNxfSe+tYJD8D5WuYTXOQfVvmDFUNnffI79YkClaAlfQ/vXeF0rc1tGcuUSs\naNu6Kp+w6/gzjhUiazEaeM6fP4/vvvsOANC3b1+MGDECcrkcI0aMgCiKxl5GRE6mtIPgSzNWxWJt\nW9j0Bt9YgFAO7KEX5oBHQUg5wLwwZyxI5b30PDwPnzYrwBn7XCydac0VGfpcJCP72eS9lnUSCHux\n5ur2hsa6QITuxt/cfRubqaupKhDvVzhi9v7MfW9h6mCcxz3dGKECRQOKuZM+xOR0RDNVZV3QM7Wt\no1jzcy+8T2uEBENtS/L8G13znsBP8hs2X2doEpLwRUCKUwZBcj1GA48oisjNzYWPjw8CAwOxZs0a\nDBkyBJUrV4YgCMZeRkROpCy9NCUNArfWjaStb/CN7b8sQctYkMp/rS8U5y+XuN+SPhd797g4QtHP\npVLP9kDmA6seo7xOVV20d0aqlUAt0ZZq34Zm6sryUFnUa2LJewtHzRLDjCWTPryW3xjnFXecdiFQ\na09Rbs3eImNta6UJxoT7LWw6ZXWyNANrcd6qQZDKN6OB57XXXkO/fv0wZ84ctGvXDsHBwVizZg3e\neOMN3Llzx55tJKJSKstUvcVu6j1lUDdrAMCKN5LHz8J71xGo2raEYuIwo5uVtSfJUIAoa9Ay9npz\n9utKUyjbkq2DnSudZ2tPVV24d6aixhMzKhy12r4tbasl27dFDbPCjCXrxDjzmjLW/Nyt3Vtkqm22\nXmfouCwdCqj1HnO2UkRyLUYDz+DBg9GmTRt4ej6e7rFevXrYuXMntmzZYpfGEVHZlHWq3oKbd9/o\nTyE7exGeJ1Mg6z8RqtCGZb6R9I2KBTZ8Dz+F6R4ia/UklbQWT2kYe31J+/3/9u4+sKnq/h/4O03a\nNE0LRSwwENxEEH6CoFSoKKIgE0SsdCiI1KHOzQ3UTb64/piC4kQc0/md3fBhgjwo208KCKgoottA\noTOMh+IjiFNRKVWh0JK2SXN/f3QJSZqne3PuY96vv9o0ufckOUnP537O+RwzlVA2MzO9zmqUqg4f\nlIrMcshtayr3D07DGoezUg5Q5Ay6jboRqMj3XXS2SKvy6bGU+LrBBUdE0GOkqYhkPjbJ4Aty6gRP\ncSBjKCoq4HurkfCAITjFSk7A4PDsRWHZzMhBY042bABsLb5Tt7lyUV9VmVIAEfOYMR6f6v2SURI0\nqb3QPd33RQ9KXpNU1xOo9Z1gttfZ46gVlomIfu1FHltJW+PdP3walgsO3HCyr6nWaohYMyPivfE4\nalFWuLFdRqaqfnzaa3n0yI49UPQvPCvVRARbZuoXJIac/w1FRQVx/8aNR4ksLt2pWzGnBbX40HLh\nQGTXfKxoDUyqU41ETElSMv1Oi4Xuid4XUcGWyKBNyWuiRvUpuc/JbEUgRGUi4r32Igesctsa6/7R\n07C88JtqrUb465wjZWGQ73Q80HiRonVX6T5ftTIyemXHKjEa44+dacipiGQ+DHiIMkA6U7daCwsg\nORyw+U9NLQi4ctH4wF0AoGggmepUIxFTkuQGTWoudI9Vhjr6mKKCLZFBm5LXRI3qU0qfUyYUgQin\nxmuvllSmYRm1NHH069xiC+DdnCMozV6Pcm9/XbIRRl6vpIRRpyKS+SQNePx+P7Zt24Zjx45F3H7t\ntdeq1igiUo+cK+ShAabfDwltG2xGZ3OUFhHwTp2AvFUbAG/8DJGIfWnkBk1qLXRPZbAuKtgSHbQp\neU1ErycwU8U1vYl+7dWUbNG+kfeoifU6A4DPJukaYDJIIGovacAza9YsfPXVV+jdu3dEOWoGPETm\nI+cKebsBJoCAw4ETD/0KLdPS+/w7PDUInNEN+OMcNByqS5ghSndKktygSY2F7g7PXrhWvhRa8xRv\nsC4q2BIdtCV7TWIF0alWnwo+FuMuBnqfpdlzsjLRFd/UFD0NKw8OTPnvNCyjZ6pi7nf0X3ICTKNm\nsJSy2vMha0ga8Hz00UfYtGmTFm0hSotZdlPXi9wr5DEHmH4/7PXpLSwPD7rgciLrhgnwz0heIlvu\nexreH+QETSKyStHc8/4YUeABiD1YFxVsiQ7aEr0m8YLoVNYTRPSFRc/AfUP8ANxMFdf0pmd1LSXC\np2GNzT8LvRvbFh4bPVMVfJ1Xuj5Eiy1yn6NUA0wjZ7CUsNrzIetIGvD07t0bR44cQZcuXbRoD5Ei\nWu2mbuagSu4VctUyHWFBF7zqTEuK1x9SPYfIhe4Oz15k7/6g3e2SM7vdaykq2FIjaIv1miQLohOt\nJ5DbF9R4TlZmtrUcwWlYRfkFqEPbRRUtMlXpZiOCr/M893bszq6DzyalHGAaPYMll9WeD1lL0oCn\nqakJY8eORd++fSP25Fm+fLmqDSNKlVZz+7UKqtQiN4BRY4CZatAVHVjKCTRF9QdRC92zd+yBzedv\nd7vvvH4xjy8q2FKtOlnYRgapvJ/x1hMomaJmtoprejPiWg45n2W1M1WishHF/q54uf5a2eWb9c5g\niZ56ZuYCFGR9SQOen/3sZ1q0g0gx5+rXVJ/bb4UF00oCGNEDzFSCrojA0uFAa48usNd+m3KgabS1\nHjGfc052qMpdLKKCrfDjpJudjBXwN08aqzgLqDSDmGkV16xEyUUjOZkqOYNpNbIRcgNMORks0YGC\nGlPPzFyAgqwvK9kdhg4dCq/Xi7feegubN2/G8ePHMXToUC3aRpSUu2IRXCtfane76Ln9iQbRZtK4\ncDaOrfkTGubNRH1VZcolfb0zyoUNwL1TJ0DKdbbdkBcZdLULLP1+2D/7ql2g6fDUxD1HcCAdTs+1\nHtHPOeDKRdO0Uk0H7e6KRSgsm4H8+ZUoLJsBd8UiWY+PF/ADaP/cUswCJusLZC3x+lCiz3JQsb8r\nZngHJRzoV7i3oaxwI+bnV6OscCMq3NsSHjNRNkIrwQxWrmQHgLgZLLnPLZl4wZ7HUZvWcRM9H7XO\nSZSqpBmeZ555Bq+//jomTJgASZLw5JNP4sCBA7j99tu1aB9RXKF/oFGLwQM52cIHTlZaMC33Crno\ndUvhWaP8sRejMawyV6zA0hb1+GTZGiOu9dBzKpaI7GSigD+d55aoL5C1iMi8xstyKMnWGKWSXbIM\nlhqZKDWn0sV7PnpP3yNKGvCsX78eL774InJzcwEA119/PcrKyhjwkO5i/QMFgKbyUjQ+LHZtjREH\n0VpQa91SMOjKLyoA6k5VffOVDG63yWk0CUBrx4KEx2+eNLbtBxvQ/CNjTDvUayqWiIFmsoA/necW\nry9ozeOoxb9qd2HE1sM4/4whhugzVpLuRaNE06GUDKaNVMku0VQ4NQIFtYO9WM/HKAEmZa6kAY8k\nSaFgBwCcTiccjqQPI1JdvH+gzT8am9Zx42U0Mm3BtB7rlvzFA9E8dgScG99ql9kJsgEJS2NHB2mQ\nlG2OKpeWFfzknEtEdtLqAX+FextW2d+Dt58Nrp4+3Lx8KRat/p7hi5KYqWpkOn0oWZZD6WA6OhsB\nAJWuPYZaUK9GoKBHsGekAJMyU9LIpaSkBHfccQcmTpwIAFi3bh2GDRumesOIklFlv5QkGY1MWjCt\n1+L/E0sWAtf+HM4du2ALSJAQOa0t0WBdaZCW6sAx3v20rOAn91yiPidWDfg9jlqsyvkAXkdbL/O6\ns/HcTWfhxr++if6eGsM+TzNWjVTah5JlOdIZTAcfb9QF9WoFCnqULTdbqXSylqQBz29+8xusWrUK\n69atgyRJKCkpweTJkxWdLBAI4P7778dHH32EnJwc/Pa3v8WZZ56p6FhEgPj9UsxeiU2OZIN8vdYt\nuSsWwfnv99qCnagqbckG60qCtFQHjvHup2W/UXquVD4nqQR96QT8Rs1G7Mg+DK9DirjtpDsHb1/Y\nCeelEdyr+XzN/F2lpA+lkuVIZzBt9P1j1AoU9ChbbsRS6ZQZ4gY8dXV1KCoqwtdff43LLrsMl112\nWehvR44cQffu3WWf7I033kBLSwv+9re/Yffu3Vi4cCEWL16sqOFEQUL3SzFQOWM1pTLI12MaU6wq\nbVlHvsPxBXfDXn8iaVArN0hLdeCY6H5a9pt0zpXocyI6WxA92DdyNqLE1w0uvy0i6MlrbMHF7x6F\nr0JZcK/28zXjd1U6ZZVTzXIoHUybYUG96ECB++FQpokb8Nx777146qmnMG3aNNhsbal+SWr7h2Cz\n2bBlyxbZJ9u5cydGjBgBABg8eDD27dunpM2kAaNejVWTlSqxJSLn6rDW05jiDeTs9SfgnVGe8LHB\nPtt0xXDkvvGO0IxQovtp2W/UOJfobEH0YL9p9HDkbnnHsNmIYn9X3NDSH6ta34PXaUNeYwumL/8U\ng8++CI0K2qdF9sVs31UipoupOR3KaAvq1Q5GjDp9j0hNcQOep556CgDw5ptvCjtZQ0MD8vPzQ7/b\n7Xb4/f6ERRA6dcqDw2EX1gZKwcwHgSVrAG8z4HICt5QBlfcJP01RUeJKW5obNxy4tezUc8/LRdbN\nE9Fp3HC9WybWvg+BGIP3Tvs+bHsNoo0bHvt2QSL6wbiLgUXPtL3+QXm5yB97cVsVr3ii++z4kcCw\n85A1YgjySgYhL9ZjduwBvv0OyHEALWFV4WKdL0G7UDJIu34T3UcdDmRdNSL5uXbsAbZ6gBHFbe0N\nJ7c/JLJ9N7BqQ+h4tqZmuF7bCkRV3Yt3fL2+E57FONyGQdj6mQcjth5GyflXAT+P02+SEfl6ArHf\nOxN9V23Hl1iFj9GEU9PF/pr3MW7LG4QSxJ4pEq8fjEMBxuFsoe3bga+wD0cxHmfhFXwKL/zIgwM3\nZw3AuE4yz5Xoc5aimdiCJdgHL/xwwYFbMACVGK3oWLEoeT/0ZLhxAulCRD9IuoZn79692LlzJ268\n8UbcfvvteP/99/HAAw/gyiuvlH2y/Px8NDY2hn4PBAJJK74dPXpS9nlIOYdnLwqfXXPqyqG3GYEl\na1E/frTQq7FFRQWo07EEbVzzfgnH+NGRGQ0jtjMNjgH9URjj6nD9gH7wa/xc2/WD3mfBfUPUNLop\nV7ftzxKnbTH77Cv/RP2t18Mf53ERWQh7FmDPgq01EP98ydqlZb+Z90sUfHYYzk1bYfP7Ib38T3hv\nnRt3ylSy6VUi+4Nr0zvI90YO9uH3tys1Hjw+Xn0nlEnuNG64rt8JvVGA3nmXA1cCdYDi90/k65nw\nvTPJd9Um16fw5kcGvCfhx6aGg+jtbT+ISeV/g6gMSHSm44rmnhji7xrKINUh9ddTxDRGj6MWzxbW\nhDJNXvixJLAP4+vPFJbpkft+6Mmw4wTSlJx+kCgwykr24N/+9rc499xz8dprr8HpdGLNmjV4+umn\nU29pmAsuuAD//Oc/AQC7d+9G3759FR1HDw5PDVyVK1LaFdrMEk3dyRT+4oHwzig3xHQbNUTvcG+0\nEsONC2fj2Jo/oWHeTNRXVSYdNMjts+2mHLUGAIcdJ2+dlPB8ydqlVb9xePbC+cY7oQAi0Y71qexu\nL7I/BKdahQu4ctE8dkS74ztXb0Jh2Qzkz69EYdmMtiydBYh6PWO9d7sPbMefv90U2p3eDN9Vweli\n4dKZLlbh3oaywo2Yn1+NssKNqHBvU3ScWIUKtuQcUjRdLpXPWSoSrSWK9xwqXXtC/SEVot8PIrNI\nmuEJBAIYOnQoZs2ahSuvvBLdu3dHa2trsofFNGbMGLz99tuYMmUKJEnCggULFB1Ha0ZecCua2eaG\nkzJGLzEspxCF3D4bK0CyNfsQOKNbWgv/AW3WvslZsJ7qfUX1h3iFLhoXzobXUxM6PiChsGxmxAAR\nS9fCITiTrBcRr2f0ezfzjxdhyS194HV/jlzpS9OsuxBZVllkNTWRhQpEFZGQs5ZI6Toc7odDmSpp\nwONyubBkyRLs2LEDc+fOxbJly+B2uxWdLCsrC/Pnz1f0WL2YufynElbfYJBOscqeQv7igWi+Ynho\nileyPqtWUK/VhRE57ZdzX1H9Id5gP/z4rsoV7QaIOGnsKmNypft6hr9324cV/TfYyQZgvLLJyYgq\nOCAySBFZqEDUd0qqwUi6gR/3w6FMlHRK2+9//3ucPHkSTzzxBDp27IgjR47gscce06JthpCJU7zk\nTiki0pO7YlFoipfksKN59EUpbcQpckqfqCktqUxRkdN+vaYvJptqFWvqG/KYSQ4X/t5tG9EtFOwE\nJZrqZETF/q6Y4R2U1uBa5HSsYHARPF46mQ6Rn7OFjZdgzbGrMa9hGKrqx8fM2sid+haLiPeDyExs\nUrDWdAL79+9HfX09wu964YUXqtqwIL0XrDk8NSgsm9F+AWpVpWWuROqBixEJSL8fODx7I6ZGAal/\nPh1hU6zkfJZjTVtzVa5A/vzKdvdtmDczaTntILlTVOS0X+lzVVN4RizgykXWLRNRN++XejfLcBye\nGuw6tBNX3+yL2CvIFXCgqn685Qasyb4Twj8nwSAlnal9HketsEyHVp8zj6MWZYUb22WnrNYfOE4g\nQFzRgqRT2h544AG89dZb6NmzZ+g2m82G5cuXp3Rys+MUL1JbJu55JIpaG3HGE2/aWrpTWpRMUZHT\nfiNOX4ye+tZp3HBDVhnTm794IAYWD8QNLdvwgp3rLkRPxxK5oadWnzOuwyGSL2nA8/bbb2PTpk3I\nzc3Voj2GZPQF3mRemVQQQw1aFtmIOW1t5Uuh9XzpXBgxw07vajBiIKanROWWue7iFJFBilmxPxDJ\nkzTg6dmzJ1KY9WZ5/MdMolmpIIZeWSotM7Axs0ktPrjn/S/qX/5LWhdGjLbTO2kvlSmNHOhTOPYH\notQlDXg6duyI8ePH4/zzz0dOTk7o9ocffljVhhFZXTrTsWIFGHoFHXpnqbTKwPpKBkPKdsDmi9y0\nL3vvh3B4akIXRZScn1NUMpuSKY2iNt8kSoZ9jawgacAzYsQIjBgxQou2EGUUpdOxYgUYAHQJOoyS\npdIiA+svHgjf4P7IeTey8pqt2SeknDKnqKjDDGvk5E5pVLoHix44WDY3M/U1okSSBjwTJ07EoUOH\ncODAAVxyySX4+uuvIwoYEJEySqZjxVtHYgNga/Gduk2joEPUhntm0fjAXci+9ueh1xoQu2bIalNU\ngsFGa2EB7MdOZFz2MVVypjSK3HxTbRwsm5uZ+hpRMkkDnldeeQWLFy9GU1MT/vrXv2LKlCm45557\nUFpaqkX7iCxN7nSseOtIomkVdGhZNMAI/MUD4Z1WyqqNKYgINgDYAO2zjytf0uVCgFxypjSapcAF\nB8vmZ5a+RpSKpBuPPvPMM1i1ahXcbjc6d+6MtWvX4umnn9aibUQZIdkmjeFibdgYyMmGlBO5KaFW\nQYdeG1vK4fDUwFW5IuVNQJPdnxvzJtcuE/nf25VuyKqEe94fIzJxgDE2jY63uWwqG04CYjffVJOI\nzTFJX2bpa0SpSJrhycrKQn5+fuj3Ll26ICsraZxERCqINw0OgG5ZByOXbZc7pSnV+7NqY2KxMpFB\nWmQfHZ69yN79QbvbJWe2ptnH6PVDyaZ4pTKl0cgFLsKfb0kJKw+anZH7GpFcSQOePn36YOXKlfD7\n/fjggw/wwgsvoF+/flq0jYii5KxcB/tnX6Lhp5Nh69QhIsDQK+gw6qJwuQUVjFKAQU+i3kv7v98L\nTWOLFp59DD8fxg1XfL5o2Tv2tKumBwC+8/pp9l5GB89/v7cUL8wpFDLFy4gFLqKf78ipEzD1iYs4\nWDY5I/Y1IiWSBjxz587F4sWL4XQ6MWfOHJSUlODXv/61Fm0jojCFI6fC8cEnsAHI2bId/v694Z1R\nHvq70qxDOoNcIy8Kl1tQIdMKMERL9F7K6SMOz17kvvFORLATDH7Cs4/R58OtZcC8Xwp5LjHXluVk\no/GBu4QcP5lYwfO/GvajyXZBxP3SWQ8hssBFupXU4l0s+P2ksZhUcjUHyxpSoyqe1YqpUGZKGvDk\n5eVh1qxZmDVrlhbtIaIYclasDQU7QNvg0fHBJ8hZuQ4t065VfNx0Aha9MyLJBuFyCyqken+jZrTS\nkei9dK7eJKuPxAocbQCaxwzHyV/dAn/xwJjnw9K1cIwfLeQ11XJD2lhivQYj3zwEV8sF8J7azk7x\nFC+Rg1oRldQSXSwoLi7nYFkjrIpHFF/SxTjPPfcchg4div79+6N///7o168f+vfvr0XbiOi/cl/5\nR7vpQTYAua/+Q/Ex4w1yU11QnmiQozZ3xSIUls1A/vxKFJbNgLtiUbv7yC2okMr9UzmvGcV7L51V\nr8ruIzELa7hyQ8FOvPPhpNi+o2dxiVivwdCaE7jx666hReBKp3hVuLehrHAj5udXo6xwIyrc2xS3\nM14lteiCCsnEe8+tWq0xXfEKV6R7TBHvJZFVJc3wLF++HOvWrUP37t21aA8RxdA0/jLkbNnebppQ\n07iRio+Z7hQuISWpd+yB69W3ZWVL5GSW5BZUSHR/vTNaaor3XkKyye4jqWRXYp0PeeIHyHoVl4j3\nGizIK0XZsVrFU7xEl3oWVXZY74ya2oyWUYuFJaSJEksa8PTu3Runn366Fm0hojhapl0L/zP/LzSt\nTQLg7987rels6QYs6Q5y3BWLgFUbkO+VN51OUaAmpdQkAPEHyfGzIJtMP8Ut+r2UnNnwD+gD34A+\nivpIskAzVt/JunmiaV+/WOK9BumshxA9qJWz4WkyIqs1qrEORSmRAYqaexOJfC+JrChpwFNeXo4J\nEyZg0KBBsNtP1WN/+OGHVW0YEUU69o8XkLNyHXJf/Qeaxo1MK9gBxFyVVTrICWZLEJYtcT3/EgAk\nzZjICdSi1yg1XTEcrRec21YVDJAVqMQ8r90O14q2zS2NVrRBruB76Z73v8je/QFy3q1Bds3H8P/g\nDDg+PSS7j0QHjtFrn6L7Tqdxw4G6E2o+Rc2JzjCJHtSKLjss4vnOxBY8W1gTM8DQOhAyakYtFpaQ\nJkrMJklSwmufV155JSZMmIAePXpE3D5x4kRVGxZUZ7F/gNSmqKiA761BODw1mpezdlWuQP78x3Eb\nQwAAIABJREFUyph/k7tfTnAQHn1/h2cvCstmRgQowWphkr1t+aKtNSArUIk4b042bK2tsLUGQn8P\nuHJRX1Vp2kxFrNcs4MrFiYd+BXv9CcV9JJXiGPxOSE14xiE4qE13SpTHoXyanUgeRy1+1OlleHGq\npLgr4EBV/Xisdu7XfEF+pWsP5udXt7t9XsMwzPAOkn08j6MWZYUb2wWsVfXjhVbcM8J7KQK/EwiQ\n1w+Kigri/i1phicnJwczZ85MvWVEZCparHOIvrofcw3Hf6WyNiaVzFK8amEAIoIUOWtxws+b9cVh\n5C1ZHfF3s5exjjdtz15/IqIEuhxy1j5ZsQKeaGrsi2KUssM7sg9HBDtAWwYkPNgBxE4FS8ToGbV4\n5zDCe0lkNEkDnuHDh2PhwoW49NJLkZ2dHbr9wgsvVLVhRKQNtQeZ8a7ue6dOQN6qDYC3fdCTSuCQ\nLFBLFFQpOV/0eR2emoiBPGD+ylRCClFESXnN1cwHUfjsGkPu6WQ0Rh/UKp16VuLrBhcc7TI8AHRZ\nkK9GgMKNPIn0kTTgef/99wEA7733Xug2m82G5cuXq9cqItKE2huHJrq637hwNvJu+xFO/qUKruXr\nYPOdGuQkGmSnGqC1W4gPtCvtncr5Uj2+FSpTqfGcUgmiHJ69wJI1ht3TiVKXziL/Yn9X3IIBeFaq\niQgwJjX3icjwAOotyI8O1kQEKNHHNHrASmRFSQOeFStWaNEOItKYFmWWk17dLxmExt5nARJSGmTL\nDdAaF86Gb0Af5L7yd8DbjJyd77U91m4HIMHWGkhrUC+iMpXRBtsiq20BqQVR2Tv2tMv0aTU9UO2g\nP5OIWORfidEYf+zMdgGG0kyLnGxTvGAtXoAS69jRt3EzUCJjiBvw3HfffXjwwQdRXl4Om639dVFm\neAgw3mCNUpfuPjypSHWKVCqD7FgBmmvFOvgG9IlbsS5mlbYh54bOL2JQn84aKKMOtkWv60r2/vpK\nBgMuZ0TQo8X0QCvvraQHUVXIYgUYSjItcoINucFarGMDiLjtiuaeeMP5heZrj4iovbgBz+TJkwEA\nd9xxh2aNIXMx6mBNK2YP9tRYrxFNzhSpZIPsmEUIfH50uOd38O7bH7NKW/Rg1rllO+p/cWPoPLEW\nzTtXbwKQvDx2ujJtsJ3o/fUXDwRuKYP03zU8Wk0P1CLoV4OR9qkJp/ZeMHKmgskNYOQEa7GO/bzr\nQwQgwWeTQre95vws9HuyYxKRuuIGPAMGDAAAFBYW4uDBg8jNzUXv3r3Rs2dPzRpHxpVpg7VoVgj2\ntFqDImqKVLwiBDZ/a8y+J3cw665YBNeyNaEKbq5la+D9cZlq76tZB9uqqbwPx8aPjtlP1Lq4oEXQ\nL5qRp0gZaS8YudkmOcFarGM32wLt7uezSXBINvjDgh5uBkqkj7gBz7fffos777wT+/fvx5lnngmb\nzYZPP/0UgwcPxqOPPooOHTpo2U4ymEwerFkp2IsORoC2PXJEDyxFTJEKBWjL18HmjyxdG6vv+UoG\nQ8rJhq3FF7ot3mDW4dkL18qXIstVtwaQu/Il1d5XMw621Rarn6h5ccFshSdEb4SpBqNUIZObbZIT\nrMU6tlPKQisC8IetAHAFHBjdfAbeyP1C9wCQKNPFDXgefPBBDBkyBM8991yoHHVLSwueeOIJLFiw\nAAsXLtSskWQ8mTxY0zvYE321OzjINEPWKliEoMM9v4PNf2qwEavvOVdvAlpP3Uey2+MOZrN37IkI\njIKyWnyqva9mG2zrQYuLC6KLNKhJ1BoZtRmhCpmSbFOqwVqsY3+/tQAfO46G7mOXbKFNYT1N1tkM\nlMis4gY8H330ER5//PGI23JycnD33XejtLRU9YaRsWXyYE3PYE+toMRMWauWadfCu29/wr4Xej5h\nGRvJnoXmSWNjHjNWNggAAjnZKb2vSoNQMw229aDVxQUtNt9NRbJ+pPYaGatRkm1KNVgLP3bH1hzM\n6fAOWsOyO3bJhknNfWQdk4jUEzfgcTqdMW+32WzIyspSrUFkHpk6WFMa7KWbmVEzKNEta7VjD1yv\nvi08UIj5fBJka/zFA+GdVhqxhidgt6NpWmnSdqUbhOo52DZ64Y1MyiSn0o+MtEbGLNQMNoLHrnTt\naZd5a8kKGC7zRpTJ4gY8sUpRp/I3yixGuTKqtuiBodxgT0RmRs2gRI+BpbtiEbBqA/K94gMFJc8n\n+J46q/5bpe1HyQNJM2XGoonOFqoRPGVKJllOPzLKGhktGbUqXRAzb0TGFzfg2b9/P0aPHt3udkmS\nUFdXp2qjiIwk3sAw1WBP1KBYzaBE64Fl8DWBSoGC0ucjN4DXez2XUqn2yVSDGDXXf2VCJlluP8qk\nKVJGrkoXxMwbkfHFDXhee+01LdtBZEgighVRg2K1gxItB5bO1a8lfU3SzRho8XzMOuUqlT6ZahCj\nRZbLjJlkOVkJs/YjtZmhKl1QJmbeiMwkbsDTo0cPLdtBZEgighWRgxm1B/FaDCzdFYvgWvlSu9vD\nXxNRGQO1n4+aQaiSgC/VxyTrk3KCGLNmudQUnZWY9vnp+MOS43HfF9H9yOhrs1Jllqp0QZmUeSMy\nm7gBDxGJCVZED2bMeLU7KDSQjlENLfiamG1djBpBqJKAT85jkvVJOUEMsxORYmUlXjj9EG7d9CqG\n/e6ZuO+LqH5khvLyqeLaGCISheXWiBIIDgyl3LaqhUqDlcaFs3FszZ/QMG8m6qsqTTsASVesgTQA\nNJWXhl6TRINto/IXD4R3RrmgzE7sgM/hqRH6mER9MhjEhIsXxIj6jFhFrKzESXc2to7omvR9Sbcf\nKekHRhZcG5Mr2QGAa2OISDFmeIiSEHXl1cyZGVHiZQOafzQ26X0yJWOgZIqY0mll8fqk3KxkJhQW\nSFWsrEReYwtGbK0FoO50P7NML5Qz5Y5rY4hIBAY8RCnQI1ixyjz8cNEDaeTlomlK5EA6U0oRx6Mk\n4FMjSJQbxDCgbxNdsSuv0YeblxxAyb/aqpuqGbyb4WKBkil3StfGGL2cNRFpx37//fffr3cjEjl5\nskXvJpAK3G4n39sE3BWLUHDvH+Dcsh25Va/BVvsNfFdcrHezhPBdcTFaRhSj9exeyHnwDhy7/uqE\n9zl59y1ovmmiDi3VR6B7V9hqv4Hjg09g87eGAr5Er4Gcxzg8NXCueR3IykKge+JBYKB7V/iHDkp6\nv1QkO6/W3wlyXge5rvD1woiWHji7tRD3znsXP5+/DbZAIKX3Mh1K+o6WHJ69KLj38VNT7vytsH94\nEL4RxaH3QFQ/qHBvw70F27HF+QWqcg+g1nYSV/h6pX1c0g7HCQTI6wdutzPu32ySJEmiGqWGuroT\nejeBVFBUVMD3Ng6HZy8Ky2a2u0pbX1VpuSvo7AfxOTw1sqeIJXuMXgvaUzmvln1Bq9ch4jwOO5rG\nXoqGJQuFnyeakr6jBVflCuTPr2x3e8O8mfDOKAcgph94HLUoK9zYrthBVf14ZnpMhP8fCJDXD4qK\nCuL+jUULiAzGjIv2KTaHpwauyhWKFo0rWcCe6DF6LWg32kJ6rdrT7jz+Vji3bNfkeYssoiGSnGIY\n6UhUzpqIMhMDHiKD0WpQQOpyVyxCYdkM5M+vRGHZDLgrFgk5rtIgSutAOtjORJvM6kGr14EXLtrT\nqqJfsHBEOLOUs/Y4alHp2gOPo1bvphBZCosWEBlMvEX7QNuUECsVMbAqtfYSSmcqlpYL2iPame2A\nZM+CrTWg+nkTCRYBaS0s0OR1MEMBAT1oUdEvunCEWcpZh29YmyNlYZDvdDzQeJHh201kBgx4iAwo\nelDgXL0JhWUzLLGZYCZQozxwukGUVtXv2rXT50fAbgdysmFr8elSdS86UPT/4Aw4Pj2k6uuQ6dUG\nE9Giop/ZyllHb1jbYgvg3ZwjKM1ej3JvfyxsvETnFhKZGwMeIoMKDgrUyhZQGzXKf6txdV9EEKXF\n1fWY7WxtxcnpExE4o5vmC+ljfX7s//kSxxfcDXv9CVXbw/2J9KW0nLUeYq07AgCfTcKq3I8xqbmP\naZ4LkREx4CEyOLNsJmhGalXrUuPqvqggSu2r64k2l40+b3iwiXHD0zpvvMA13ufHXn8iVBlMTUbY\nn4j70RhfrA1rg4IFF/je6Y+fJfNiwEOyWXFDTCPjWgB1qJ05E311X7spael9vlNtZ3SwiVvLgHm/\nVNTmRIFrpn9+wteF5Ep2TPWew+lRBhRcd7TS9SFabIGIv5ml4ILV8bNkbtx4lGQRtSGmnI2k1Nwg\n0AyMvplgOvTcWM655nU4t2yPuM3m96P17F7wDx0k5BwiN+4E1N+QVdTnO1k7Y21AifcOoOWSYtmv\nVbLNLK38+UnG46jFvQXbQ1kDv03Ch/ajGOHrju6BfJ1bF1smbzZ5ha8XLm3pgY/tR1GXdRIBG0IF\nF25q/j96N09zRuoLZvwsWYWojUeZ4aGU6bGWRK+NEo2GawHEM+uVf7WmSIn+fCdqZ6xpZjipbJpm\nKlM+M/Xzk2g/Gk7HMaZif1e8XH8tPI5a0xRcyAT8LJkf9+GhlGm/j4exNizUm6jNBNPZDFP4cXbs\nEdIWJbTaE8QstPx8x9prCnnKgs1U960y6macajLzfjSZrtjfFTO8gziYNgh+lsyPGR5KmdZXxLlY\nXzxRGTMRx3FXLAJWbUC+V7/sndGu/Ou5Pk7Lz3esdT5ZN09Udc1QJjLrfjRERsPPkvnZJEmS9G5E\nInV1J/RuAoUJH+gGBxZKBqlFRQVJ31uHpya090xQwJWL+qrKtAYzmVp0weHZi8KymWm/niKOk84x\nrPr+GWH6pqjPd6ocnppQsNlp3PC0vu/Dj2WlfiGCmaZHpfK/gTKDEfuCmT5LViGnHxQVFcT9GzM8\nJIuWV8TVuHJrhEGlXkRlzEQcR+kxzP7+xQvWjLLXktYZL5HrkYxQ/tmo9NyPxqoXKIyMpZPVY6a9\nnSgSAx6STcuBhcgBmFEGlXoRNWVJxHGUHMPs71+iYM1I0zcZOJAoZr9AYUYsnUwUG4sWkOGJWmys\nddEFoxG1SF/EcYLHgCv1Y5j5/UtWgCPVhfdEZsGiM9rzOGpDwQ4ANNlasSr3Y3gctULPUenaI/SY\nRFpghofSZpYpC2YtQyySqIyZiOM0LpyNvNt+hIZNb6d0DC3fP9F9OlkGhwvvyWqMlLXMFGqXTmb2\niMyMAQ+lxUxTFjiobCNqypKQ45QMgrf3WSmfT4v3T40+nUqwFiuINMvFBKJovMCkvWDp5PCgR1Tp\n5HjZo0nNfbimhUyBAQ8pZsY1FUYrQ5zJHJ4aYN8HcAzon/L7oPb7p1afTjVYCw8izXQxgSgaLzBp\nT83Sydx4k8yOAQ8pZtYpC1yUrb/gYB5NzSiUOZhX8/1Ts0/LCdbMeDHBKJgVMw5eYNLewsZLMKm5\nj/DSyWpmj4i0wICHFOOUBVLCyIP5eH26tWMBXJUr0h5EpxqsmfVigt6UZsVYxlc9vMCkPTVKJ3Pj\nTTI7BjykGKcskBJGHszH6tOt3++BDnMe03RqGS8myKc0kOZCbKLUqJU9ItICAx5KC6cskFxGH8yH\n9+nWjvnoMOcPmmejeDFBPiWBNBdiE8nDjTfJrBjwUNo4ZYHkMMNgPtinXZUrdMtG8WKCPEoC6XgL\nsd+t3YURq+q4DoiIyCIY8BCR5oKD+U77PkT9gH6aDCqVLGY3RDZK0u5UZqYkkI61EDuvWcKYnz6N\n/K1fsjoeEZFFMOAhIl34iwcC44bDX3dC9XMpXcyuZzaKZanlk5sVi16Inee3YfqSD3HR1i8BGKug\nhlGwwAMRmREDHiKytHSrwukxtczIleyMTu4U2/CF2Jeu2oVRv3g74u9GKahhBEYu8MBAjIgSYcBD\nRJYmoiqc1uvUjFzJzoqCC7EdZ2TpP4XRoIxc4MHIgRgRGUOW3g0gIlJTcB1OOKMPYs3YZisITmEM\nvvZGLKihl3gFHqqzD+vUojbxAjGPo1bXdgV5HLWodO0xTHuIMhUzPERkaWaoChfNjG22ClbHiy1W\ngQdXwIFhvm46tipxIMbMExEFMeAhIssz4yDWjG22Cpbaby+6wIMr4MANTX11DyqMGogZeQogUSZi\nwENEGcGMg1gztpmsK7zAwzCDFAcwaiBm5MwTUSZiwENERACU7VVEmSVY4MFIjBiIGTXzRJSpGPAQ\nEZmciECF+/6QmRktEDNq5okoUzHgISIyMRGBCvf9ITVk+t44Rsw8EWUqBjxERCYlKlDhvj8kmtEq\nlOkVfBkt82QWHkct9uFDDHB04utHQjDgISIyKVGBSnDfH264SSIYrUKZ6OBL78yV3udXW+j9Qity\nC/UPlskauPEoEZFJidqglBtukkhG2qRU9MakFe5tKCvciPn51Sgr3IgK9zaRzTX8+dVm9I1kybwY\n8BARmZTIQKVx4WwcW/MnNMybifqqShYsIMWCFcrC6VWhTGTwpfdgXO/za8FIwTJZi6ZT2k6cOIHZ\ns2ejoaEBPp8PFRUVOP/887VsAhGRpYjcoJT7/pAIRqpQJrI8tN576+h9fi2wnDepRdOAZ+nSpSgp\nKcH06dNx8OBBzJo1C2vXrtWyCURElhMMUrJ37I74nUgvRqlQJjL40nswrvf5tWCkYJmsRdOAZ/r0\n6cjJyQEAtLa2wul0JnkEERElwz10yIiMUqFMVPCl92Bc7/NrJfh+7et0FAPqWaWNxLBJkiSpceAX\nX3wRy5Yti7htwYIFOO+881BXV4fbbrsNc+bMwdChQxMex+9vhcNhT3gfIqKMtX03MPpmwBtWrS0v\nF9iyFCgZpF+7iCxqB77CVnyJEeiBEnTPuPMTmZFqAU88H330Ee6++27cc889GDlyZNL719Wd0KBV\npLWiogK+t8R+IICrcgXy51e2u71h3kx4Z5Tr0CJl2BcIYD+gU9gXCJDXD4qKCuL+TdMpbQcOHMBd\nd92Fxx9/HP369dPy1ERElsQ9dMgquNkkEalF04Dn0UcfRUtLCx566CEAQH5+PhYvXqxlE4iILCVY\nmjq4hod76GQeK2xEyc0miUhNmk9pk4vpTGtiqpoA9gORHJ4aIaWp9cK+oEwoULC1IlcyZ6DgcdSi\nrHBju+pjVfXjTRvAAdYIRPXE7wQCTDqljYhITQ5PDbJ37IavxJyD/nRwDx1jUrNPxtuIclJzH1MN\nsK24v4wVAlEiK2HAQ0SWwNLMZDRq90mrBApW21/GKoEokZVk6d0AIqJ0OTx7QwNLALA1NSN31UY4\nPDU6t4wylRZ9MhgohDNjoBDcXyb4XMy+v0yiQJSI9MGAh4hML3vHnogqZQCQ5W1CdvVuTdvh8NTA\nVbmCgRZp0ietFCgsbLwEa45djd/hUlTVjzf19C+rBKJEVsIpbURkekYozcwpdRROqz4Z3JW+Ovsw\nhpl8cXyxvyvG4WzU+c29UD0YiAantZk5ECWyCmZ4iMj0gqWZpVwnAGhemplT6iialn2y2N8VM7yD\nVB1QM3spTzBjNa9hmOkzVkRWwAwPEVlC48LZaJ40VpfSzImmL6nRDitUo7PCc0hGzz4pErOXyhT7\nuzKrQ2QQDHiIyDL0Ks2s5ZS6WIPP5kljTRU8xHoOeHa+3s1ShdnLhcfLXjZPGmvq50VEmYVT2oiI\n0qTV9KWYg89la1F47c+RP78ShWUz4K5YJOhc6kxhijeAxo49Qs9DYhilIAgRUTqY4SEiEkCL6Usx\nB5+trUBrWwlcUVff1ZzCFG8Aja07gd5nCTkHKeNx1GJH9mGUhBU/MEJBkERitZmIKBoDHiIiQdSe\nvhRr8Bkt3bVDak9hijeAzhoxJO1jk3IV7m2hqmK5kh1TvedgYeMloexlsE9oXRBESZuJiKJxShsR\nkUm0mzqXkw3JHvk1nu7Vd7WnMMWb/oeSQUKOT/J5HLWhwAEAmmytWJX7MTyOWgBt2ctja/6Ehnkz\nUV9VaYiCBcnaTEQUjhkeIiITiZ4651y9SejVdy2mMMWa/pcn7Ogk147sw6HAIcib5Ud19uHQNDGj\nFV9Ipc1EREEMeIiITCZ88OkvHih07ZBWU5iMNoDOZCW+bsiV7BEBhCvgwDBfNx1blZgZ20xE+mHA\nQ0RkcqKDB6vsH0OpKfZ3xVTvOaEpYq6AAzc09TVMpiTWnk1atZlFEYisgQEPkSCZsJEiZQ5mYDKH\nw1OD/93xKSZf2Q/vnJePYQYa3CeqGLiw8RJMau6D6uzDqrSZRRGIrIMBD5EA3ImciMwo/LtrzO+c\nuMRA312pVAws9ndVJTiLVxRhgK8zjtlbmPEhMhlWaSNKU7x/yqI3bCQiEsno3116bnoaryjCPR22\nYX5+NcoKN6LCvU31dhCRGAx4iNLEnciJrM3jqEWla4/lSh4b/bsrWDEwnFabngaLIkSQAL9NAtCW\n8VmZ+yEq3Nss1y+IrIgBD5mew1MDV+UK3a5K6vlPmYjUVeHehrLCjZa8qm/07654ezaJXFsWL5gN\nFkUIBj3Zkg2wRT62JSuAJXnvW65fEFkR1/CQqRlh7YyRdyInIuXireOY1NzHEus3zPDdlUrFQKWV\n1JIVJQgvitCxNQdzOrzTbpobYL1+QWRFDHjItFJZ0KoVlvElsp5M2NzSDN9diSoGKq2klmowG14U\nYZ/324jHhLNavyCyGgY8ZFqJ5p/r8U+bZXyJrCVTNrc063dXOhk4JcFsMONT5dyPFa4P0WILhP5m\nxX5BZCVcw0OmZfT550RkbtHrOIy2IWemSxS0JBOrKEEqQUuxvysebrwE07z92C+ITIQZHjItM8w/\nJyJzU3tzS1IunQxcMJgNZojkBi3sF0TmYpMkSdK7EYnU1Z3QuwmkgqKiAmHvrcNTY+j55xSfyH5A\n5sa+QID8fhC+hicYtKSyhifI46hl0GJQ/E4gQF4/KCoqiPs3ZnjI9Mw6/5yIiNKTbqYlvCgBEVkX\nAx4ii3N4apC9Yzd8JcyAEZF1BL/bSkoGo7h4kN7NISIDY8BDZGFG2KeIiEg0frcRkRys0kZkUfH2\nKXJ4anRuGRGRcvxuIyK5GPAQWVSifYoScXhq4KpcwcEDERmS0u82IspcnNJGZFHBfYrCBwbJ9ini\nNBEiMjol321m4HHUYkf2YZSwYhyRcMzwEFlUcJ+i4OasyfYp4jQRIjIDud9tZlDh3oaywo2Yn1+N\nssKNqHBv07tJRJbCDA+RhTUunI3mSWNT2qco0TQRMw8kiMh65Hy3JWKEKpYeR21oLyEAaLK1YlXu\nx5jU3Cci08MMEJFyDHiILC7VfYqsOk2EiKwp3T3YjDKFd0f24VCwE+TN8qM6+3AosAnfYDVXsmOq\n9xxZG6wSZTpOaSMiANacJkJEFIuRpvCW+LohV7JH3OYKODDM1w1A/AyQx1GreVuJzIoZHiIKETVN\nhIjIyIw0hbfY3xVTveeEghpXwIEbmvqGsjupZICIKDEGPEQUId1pIkRERme0KbwLGy/BpOY+qM4+\njGFRa3SCGaDwoCc8A0REyXFKGxEREWUUI07hLfZ3xQzvoHZZm2AGKDjtLToDRETJMcNDREREGcdM\nU3gTZYCIKDkGPERERJSRtJzCm25Z6WJ/VwY6RAox4CEiIiJSEctKE+mLa3iIiIiIVMKy0kT6Y8BD\nREREpJJEZaWJSBsMeIiIiIhUkmxjUSJSHwMeIiIiIpWwrDSR/li0gIiIiEhFLCtNpC8GPERp8rX6\n8NnxL9Do9+IHHXqig7OD3k0iIiKDYVlpIv0w4CFS6HjLCTy9dxm+azqG+pbjAICys6/G6F6X6twy\nIiIiIgriGh4ihXytfnj9Tfh+h17oW9gbAGDTuU1EREREFIkZHiKFOrs64b6S/wEAbDj4Gj4+9onO\nLSIiIiKiaMzwEBERERGRZTHgISIiIiIiy2LAQ0RERERElsWAh4iIiIiILIsBDxERERERWRYDHiIi\nIiIisiyWpaaM9Pnnn+GFF5Zj374aNDQ0wO12o1+//4OpU6ehd+8+KR/nna/+hebWFnzV8DUA4NP6\nz/HWF9tQkJ2P4m6D1Wo+EREREaWIAQ9llPfe24eHH56PzZtfgyRJEX/bvPk1PPHEHzBy5OX4v//3\nPlxwQXHS423+7O844v0m9Pu/6/bi33V78f0OvRjwEBERERkAAx7KGFu2vI5bb70JJ0+eTHi/f/zj\nLWzf/jb+/OdncM01ExPe9/pzrkVLq6/d7XkOV1ptJSIiIiIxGPBQRvjXv6oxffqNaG5uDt12+eWj\n8aMfXY9u3b6Hb76pw9q1q/H665sgSRJaWlpw++23okOHjrjsslFxj9v/tL5aNJ+IiIiIFGLAQ5YX\nCARw5523h4KdXr3OxNKlz2PgwPMi7ldWdh327/8Y06dPxf79H8Pv9+OOO27Hzp37kJOTo0fTiYiI\niChNrNJGlvf3v7+Jgwc/AQC43flYvXp9u2AnqE+fvqiq2oDTTjsNAFBbexivvrpRs7YSERERkVgM\neMjynnvuL6Gfp037Mb7//R8kvH+3bt/Drbf+LPT70qV/SXBvshKHpwauyhVweGr0bgoREREJwoCH\nLG/r1n+Gfi4vn57SY2666ebQz9u3v42WlhbRzSKDcVcsQmHZDOTPr0Rh2Qy4Kxbp3SQiIiISgAEP\nWZrP50NjYwMAICsrC336pFZkoGvXbujUqRMAQJIk1NfXq9ZG0p/DsxeuFzbA1tS2zsvW1IzcVRuZ\n6SEiIrIABjxkaXa7HTabDUBb8QKfr30J6VgkSUJTU1Po95ycbFXaR8aQvWNPKNgJyvI2Ibt6t04t\nIiIiIlEY8JClZWVl4Xvf6x76/a23tqT0uOrq7fB6vQCA/PwCFBR0UKV9ZAy+ksGQcp0RtwVcufAN\n4+axREREZseAhyyvrOy60M9Lljyd0mOeffbU/crKrkNWFj8qVuYvHgjv1AmhoCfgykXTDVfDXzxQ\n55YRERFRujiKI8u76aabQ9Pa3nprC55/fnnC+69fvxYvvbQm9Pv06beq2j4yhsaFs3GU7RmfAAAQ\nWklEQVRszZ/QMG8m6qsq0bhwtt5NIiIiIgEY8JDlff/7P0Bp6cTQ77/61Uzcd18FvvzyUMT9amsP\n46GHHsBPf3qqQtvll4/GgAG8yp8p/MUD4Z1RzswOERGRhdgkSZL0bkQidXUn9G4CqaCoqEDT9/bE\nieMoLb0K+/btDd2WlZWF4cMvQdeu3VBXV4d33tkKv98f+nvv3mfj5Zc347TTOmvWzkyjdT8g42Jf\nIID9gE5hXyBAXj8oKiqI+zeHqAYRGVlBQQesWbMB06ffiHfe2QagrWrbtm3/jHn/Cy4YguXL/8Zg\nh4iIiMjkOKWNhDLyTvWFhZ1QVbUBzz67AiNGXBbzPsOGXYQnn3wWGza8ji5dumjbQCIiIiISjhke\nEsZdsSi0eaOU64R36gTDLfy22+2YMKEUEyaU4tNPD+L9999DQ8MJuN35OOecfilvTEpERERE5sCA\nh4SIt1N986Sxhl0A/oMfnIUf/OAsvZtBRERERCrilDYSgjvVExEREZERMeAhIbhTPREREREZkS4B\nzyeffIIhQ4agubk5+Z3JFLhTPREREREZkeZreBoaGvDII48gJydH61OTyhoXzkbzpLHIrt4N37DB\nDHaIiIiISHeabjwqSRLuvvtu/OxnP8MvfvELvPrqq3A6nQkf4/e3wuGwa9RCIiIiIiKyEtUyPC++\n+CKWLVsWcVv37t1x1VVXoV+/fikf5+jRk6KbRgbAHZQJYD+gU9gXCGA/oFPYFwiQ1w+Kigri/k3T\nDM+YMWPQrVs3AMDu3btx3nnn4fnnn0/4GHZ2a+IXGQHsB3QK+wIB7Ad0CvsCAeICHk3X8GzevDn0\n86hRo7BkyRItT09ERERERBmGZamJiIiIiMiyNK/SFvTmm2/qdWoiIiIiIsoQzPAQEREREZFl6Zbh\nISIiIiIi4/MdO4aWLz5HVkEBcnudCVuWuXImDHiIiIiIiKid49U7cGzLZjR/eQhSczNgsyGne3d0\nvPQydBo9Ru/mpYwBDxERERERteM9sB8Bnw8dLxkJx+md0Xr8BE68W41vql6Es0dP5MnYW1NPDHiI\niIiIiKidTmOuRJcpU2Gz20O3OToVou6FlTjx7g4GPEREREREZF45Xbq0uy27cxEAQAoEtG6OYuZa\ncURERERERLqQJAnHt28DbDbkndNf7+akjAEPEREREREl9d2G9Wj49064z78ABcNK9G5OyhjwEBER\nERFRQt+9/hq+ffVluPr0QbdbboPNZtO7SSljwENERERERHEd3fIGvn1pDXLPPBPf+/kdsOfm6t0k\nWRjwEBERERFRTMfe2oJv1q6Gs8cZ6D7jDjjy8/Vukmys0kZEREREZDGff/4ZVqx4Dhs3voTa2loE\nAgGcfvrpGD16DG6++Tb065e86ED9O2+jbs1q2PPy4B54Hk68+27obzldusI9YICaT0EYBjxERERE\nRBZx9Oh3mD37V9iwYR0kSYr42+efN2Lp0r9g6dK/YMSIy/D445Xo2bNX3GN5P/4QktcLv9eLb19a\nG/E396DzGfAQEREREZF2amsPo6zsauzf/3HS+27d+neMGzcaVVUbcM45sTcQ7TRmLNyDzo/5t+xO\nndJqq5YY8BARERERmZzX68WNN14fEeyMHHk5pk//CYYPvxh2ux27dv0by5cvxcaNL0GSJBw5Uosp\nU8rw+uv/QFFRUbtjOnv0gLNHDy2fhipYtICIiIiIyOReeGEF9u7dDQCw2+146qklePHFlzB+/AR0\n6nQaOnToiJEjL8ezzy7H2rUvw+1uKz7w5ZeH8MQTf9Cz6apjwENEREREZGKSJOG55/4S+r2i4l5M\nnDgp7v2HD78Ejz32x9Dvf/3rSni9XlXbqCcGPEREREREJlZdvQMfffQhAMDtzsctt9yW9DGlpWXo\n1ev7AIBjx45h/fq1iR9gYgx4iIiIiIhMbO/eXaGfx40bj4KCDkkfk5WVheuumxz6fc+eXQnubW4M\neIiIiIiITOz48eOhn884o2fKjwsvSX3ixAmhbTISBjxERERERCaWl+cO/Xz06NGUH/ftt9+GHSNP\naJuMhAEPEREREZGJnX322aGfX311I1paWlJ63IYNp9btnH12H+HtMgoGPEREREREJnb55Vega9du\nAIAjR2qxbl1V0sfs2LEdu3e3rdtxOp0oK7te1TbqiQEPEREREZGJZWdno7x8euj3OXPuSViE4PPP\nP8OMGacquZWWlqFz585qNlFXDHiIiIiIiEzu1lt/FsryHD9ejwkTrsT999+L//zn09B9amtr8dhj\nv8OYMZfiiy8+B9C2/ueuu2bp0mat2CRJkvRuRCJ1ddatGJHJiooK+N4S+wGFsC8QwH5Ap7AvKFNT\nsxdlZVejvv5YxO09epwBu92OQ4e+QCAQCN2ek5OD5ctXYdSoMVo3NSVy+kFRUUHcvzHDQ0RERERk\nAQMHnoeXX96MPn36Rtz+5ZeH8Pnnn0UEO127dsPq1esNG+yIxICHiIiIiMgi+vY9B//8ZzVWrvwb\nrrjih7DZbBF/v/DCYVi8+C/weGpQUjJcp1Zqy6F3A4iIiIiISBy73Y4f/nAcfvjDcWhoaMA339Qh\nEAigc+fO6NixUO/maY4BDxERERGRReXn5yM/P1/vZuiKU9qIiIiIiMiyGPAQEREREZFlMeAhIiIi\nIiLLYsBDRERERESWxYCHiIiIiIgsiwEPERERERFZFgMeIiIiIiKyLAY8RERERERkWQx4iIiIiIjI\nshjwEBERERGRZTHgISIiIiIiy2LAQ0RERERElsWAh4iIiIiILIsBDxERERERWRYDHiIiIiIisiwG\nPEREREREZFk2SZIkvRtBRERERESkBmZ4iIiIiIjIshjwEBERERGRZTHgISIiIiIiy2LAQ0RERERE\nlsWAh4iIiIiILIsBDxERERERWRYDHiIiIiIisiwGPKSbTz75BEOGDEFzc7PeTSGdnDhxArfffjum\nTZuGyZMnY9euXXo3iTQUCAQwd+5cTJ48GeXl5fjss8/0bhLpxOfzYfbs2Zg6dSomTZqELVu26N0k\n0tG3336LkSNH4pNPPtG7KaSjp556CpMnT0ZZWRlefPHFtI7lENQmIlkaGhrwyCOPICcnR++mkI6W\nLl2KkpISTJ8+HQcPHsSsWbOwdu1avZtFGnnjjTfQ0tKCv/3tb9i9ezcWLlyIxYsX690s0sH69etR\nWFiIRYsW4dixY7j22msxevRovZtFOvD5fJg7dy5yc3P1bgrpqLq6Grt27cKqVavg9XqxZMmStI7H\nDA9pTpIk3Hfffbj77rvhcrn0bg7paPr06ZgyZQoAoLW1FU6nU+cWkZZ27tyJESNGAAAGDx6Mffv2\n6dwi0svYsWNx1113AWj7H2G323VuEenlkUcewZQpU9ClSxe9m0I62rZtG/r27YsZM2bg9ttvx2WX\nXZbW8ZjhIVW9+OKLWLZsWcRt3bt3x1VXXYV+/frp1CrSQ6y+sGDBApx33nmoq6vD7NmzMWfOHJ1a\nR3poaGhAfn5+6He73Q6/3w+Hg/+aMo3b7QbQ1ifuvPNO/PKXv9S5RaSHNWvW4LTTTsOIESPw9NNP\n690c0tHRo0fx1Vdf4cknn8ShQ4fw85//HJs2bYLNZlN0PP5XIVVdd911uO666yJuGzNmDKqqqlBV\nVYW6ujrccssteP7553VqIWklVl8AgI8++gh333037rnnHgwdOlSHlpFe8vPz0djYGPo9EAgw2Mlg\nX3/9NWbMmIGpU6diwoQJejeHdFBVVQWbzYbt27fjgw8+wK9//WssXrwYRUVFejeNNFZYWIizzjoL\nOTk5OOuss+B0OvHdd9+hc+fOio7H/yykuc2bN4d+HjVqVNrzMsm8Dhw4gLvuuguPP/44M34Z6IIL\nLsBbb72Fq666Crt370bfvn31bhLp5JtvvsEtt9yCuXPn4qKLLtK7OaST8Iuf5eXluP/++xnsZKgh\nQ4Zg+fLluPnmm3HkyBF4vV4UFhYqPh4DHiLSzaOPPoqWlhY89NBDANqu+HPReuYYM2YM3n77bUyZ\nMgWSJGHBggV6N4l08uSTT+L48eP485//jD//+c8AgGeeeYYL14ky1OWXX453330XkyZNgiRJmDt3\nblpr+2ySJEkC20dERERERGQYrNJGRERERESWxYCHiIiIiIgsiwEPERERERFZFgMeIiIiIiKyLAY8\nRERERERkWQx4iIhIkUOHDmHAgAEoLS1FaWkprrzyStx555345ptvAAA1NTX4zW9+o3m7brvtNtTW\n1go5ls/nw49//GNUV1cLOR4REWmPZamJiEiRQ4cO4aabbsKbb74JAJAkCY899hh27tyJF154QefW\npe/gwYOYM2cO3n//fTzzzDMYNmyY3k0iIiIFuPEoEREJYbPZcMcdd+Diiy/Ghx9+iPr6elRWVmLF\nihUoLy9H//79sX37djQ1NeHee+/FihUrcODAAUyfPh3Tp09HY2Mj5s+fj/3796O1tRW33XYbrr76\naqxZswZbt25FfX09vvjiC1x88cW4//77cfjwYfzP//wPTp48iaysLNx7770YPHgwRo0aheXLl6N7\n9+5YsGABtm/fDpvNhmuuuQY//elPUV1djaeeegq5ubn45JNPcM455+D3v/89cnJyIp7P6tWr8ZOf\n/ATLli3T6RUlIiIRGPAQEZEwOTk5OPPMM3Hw4EF07ty53d83bNiAyspK/Pa3v8X69evx3Xff4dpr\nr8X06dOxePFinHvuuXjkkUfQ0NCAKVOmYNCgQQCAXbt2YePGjbDb7Rg7dixuuOEGbN68GZdddhl+\n8pOfoLq6Gjt37sTgwYND51q1ahW+/vprrF+/Hi0tLSgvL0ffvn3hcrmwa9cuvPrqq+jSpQuuv/56\nbNu2DaNGjYpo6z333AMADHiIiEyOAQ8REQlls9mQm5vb7vZLL70UANC9e3cMGjQILpcLPXr0wPHj\nxwEA77zzDpqamlBVVQUAOHnyJPbv3w8AOP/885Gfnw8A6NmzJ+rr63HRRRfhjjvuwAcffICRI0di\n2rRpEeerrq7GxIkTYbfb4XK5MGHCBGzfvh2jRo1Cnz590K1bNwBA7969UV9fr86LQUREumPAQ0RE\nwrS0tODTTz/F2Wefja+//jrib9nZ2aGfHY72/34CgQAWLVqEc889FwDwzTffoGPHjtiwYQOcTmfo\nfjabDZIkYciQIXj55Zfx97//Ha+88grWrl2LpUuXRhwvnCRJaG1tBYCYxyMiImtilTYiIhIiEAjg\niSeewKBBg9CrVy/Zjy8pKcGqVasAAEeOHME111zTLmgK97vf/Q4vvfQSJk6ciLlz5+L9999vd7x1\n69ahtbUVXq8XGzZsYOEBIqIMxAwPEREpduTIEZSWlgJoC3j69++PRx99VNGxZs6cifvvvx9XX301\nWltbMXv2bPTq1Qsejyfm/cvLyzFr1iysXbsWdrsd8+bNi/j75MmT8Z///AelpaXw+Xy45pprMGbM\nGJaYJiLKMCxLTURERERElsUpbUREREREZFkMeIiIiIiIyLIY8BARERERkWUx4CEiIiIiIstiwENE\nRERERJbFgIeIiIiIiCyLAQ8REREREVnW/wdxorZRUavoTwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the clustering results based on 'Channel' data\n", + "vs.channel_results(reduced_data, outliers, pca_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 12\n", + "*How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** It seems my cluster 0, or \"small place\" is gone. However, my two other clusters \"supermarket\" and \"market\" are still there. Just that market was Hotels in the end - i guess they also use less Det_Paper, Milk and Grocery than a retailer (to be honest i dont know). There are segments of purely retailers below -2.5 on dim1, and purely horeca above 2 on dim1. These classifications are consistent with my previous definition of segments, although there is a larger overlap region as expected." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/deep_learning_examples/__init__.py b/deep_learning_examples/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/cross_entropy.py b/deep_learning_examples/cross_entropy.py new file mode 100644 index 0000000..f8d5f5d --- /dev/null +++ b/deep_learning_examples/cross_entropy.py @@ -0,0 +1,26 @@ +import numpy as np + + +# Write a function that takes as input two lists Y, P, +# Y is a list of labels, P is the list of probabilities +# and returns the float corresponding to their cross-entropy. +def cross_entropy(Y, P): + # get prediction for each point using model + + # get probability for each point + + # get -ln(prob) for each point, and sum them + val = 0 + for i in range(len(P)): + val += Y[i] * np.log(P[i]) + (1-Y[i]) * np.log(1-P[i]) + + cross_entropy = -val + + return cross_entropy + + +# Trying for Y=[1,0,1,1] and P=[0.4,0.6,0.1,0.5]. + +Y = [1,0,1,1] +P = [0.4,0.6,0.1,0.5] +print(cross_entropy(Y, P)) \ No newline at end of file diff --git a/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py b/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py new file mode 100644 index 0000000..5cc8a4b --- /dev/null +++ b/deep_learning_examples/example_keras_neural_networks/XOR_neural_network.py @@ -0,0 +1,50 @@ +import numpy as np +from keras.utils import np_utils +import tensorflow as tf +#tf.python.control_flow_ops = tf + +# Set random seed +np.random.seed(42) + +# Our data +X = np.array([[0,0],[0,1],[1,0],[1,1]]).astype('float32') +y = np.array([[0],[1],[1],[0]]).astype('float32') + +# Initial Setup for Keras +from keras.models import Sequential +from keras.layers.core import Dense, Activation, Flatten + +# One-hot encoding the output +y = np_utils.to_categorical(y) + +# Building the model +xor = Sequential() + +# each of the .add() functions is listed in the model architecture + +# input and first hidden layer, specify input values, output nodes, and activation function +xor.add(Dense(8, input_shape=(2,))) # can also put function here +xor.add(Activation("relu")) + +# output layer with 2 output nodes +xor.add(Dense(2)) +xor.add(Activation("sigmoid")) # add sigmoid to output + + + +xor.compile(loss="categorical_crossentropy", optimizer="adam", metrics = ['accuracy']) + +# Uncomment this line to print the model architecture +xor.summary() + +# Fitting the model +# Hint: This next line is where you can change the number of epochs, it's set to 10 now. +history = xor.fit(X, y, nb_epoch=100, verbose=0) + +# Scoring the model +score = xor.evaluate(X, y) +print("\nAccuracy: ", score[-1]) + +# Checking the predictions +print("\nPredictions:") +print(xor.predict_proba(X)) \ No newline at end of file diff --git a/deep_learning_examples/example_keras_neural_networks/__init__.py b/deep_learning_examples/example_keras_neural_networks/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/example_keras_neural_networks/basic_examples.py b/deep_learning_examples/example_keras_neural_networks/basic_examples.py new file mode 100644 index 0000000..2f2874f --- /dev/null +++ b/deep_learning_examples/example_keras_neural_networks/basic_examples.py @@ -0,0 +1,45 @@ + + + + + +def buildNNInLayers(): + from keras.models import Sequential + from keras.layers.core import Dense, Activation, Flatten + + #Create the Sequential model + model = Sequential() + + #1st Layer - Add an input layer of 32 nodes. So there are 32 inputs. + model.add(Dense, input_dim=32) + + #2nd Layer - Add a fully connected layer of 128 nodes + model.add(Dense(128)) # convert 32 inputs to 128 nodes. + + #3rd Layer - Add a softmax activation layer + model.add(Activation('softmax')) + + #4th Layer - Add a fully connected layer + model.add(Dense(10)) # there are 10 final output nodes + + #5th Layer - Add a Sigmoid activation layer + model.add(Activation('sigmoid')) + + + # compile the model, using as loss (or error) function cross entropy and performance metric accuracy + model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=['accuracy']) + + + # see the model architecture + model.summary() + + # fit model to data + model.fit(X, y, nb_epoch=1000, verbose=0) + + + # evaluate model performance using accuracy score as defined on compilation + model.evaluate() + + + +buildNNInLayers() \ No newline at end of file diff --git a/deep_learning_examples/logistic_regression_algo/__init__.py b/deep_learning_examples/logistic_regression_algo/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/logistic_regression_algo/data.csv b/deep_learning_examples/logistic_regression_algo/data.csv new file mode 100644 index 0000000..c4324e9 --- /dev/null +++ b/deep_learning_examples/logistic_regression_algo/data.csv @@ -0,0 +1,100 @@ +0.78051,-0.063669,1 +0.28774,0.29139,1 +0.40714,0.17878,1 +0.2923,0.4217,1 +0.50922,0.35256,1 +0.27785,0.10802,1 +0.27527,0.33223,1 +0.43999,0.31245,1 +0.33557,0.42984,1 +0.23448,0.24986,1 +0.0084492,0.13658,1 +0.12419,0.33595,1 +0.25644,0.42624,1 +0.4591,0.40426,1 +0.44547,0.45117,1 +0.42218,0.20118,1 +0.49563,0.21445,1 +0.30848,0.24306,1 +0.39707,0.44438,1 +0.32945,0.39217,1 +0.40739,0.40271,1 +0.3106,0.50702,1 +0.49638,0.45384,1 +0.10073,0.32053,1 +0.69907,0.37307,1 +0.29767,0.69648,1 +0.15099,0.57341,1 +0.16427,0.27759,1 +0.33259,0.055964,1 +0.53741,0.28637,1 +0.19503,0.36879,1 +0.40278,0.035148,1 +0.21296,0.55169,1 +0.48447,0.56991,1 +0.25476,0.34596,1 +0.21726,0.28641,1 +0.67078,0.46538,1 +0.3815,0.4622,1 +0.53838,0.32774,1 +0.4849,0.26071,1 +0.37095,0.38809,1 +0.54527,0.63911,1 +0.32149,0.12007,1 +0.42216,0.61666,1 +0.10194,0.060408,1 +0.15254,0.2168,1 +0.45558,0.43769,1 +0.28488,0.52142,1 +0.27633,0.21264,1 +0.39748,0.31902,1 +0.5533,1,0 +0.44274,0.59205,0 +0.85176,0.6612,0 +0.60436,0.86605,0 +0.68243,0.48301,0 +1,0.76815,0 +0.72989,0.8107,0 +0.67377,0.77975,0 +0.78761,0.58177,0 +0.71442,0.7668,0 +0.49379,0.54226,0 +0.78974,0.74233,0 +0.67905,0.60921,0 +0.6642,0.72519,0 +0.79396,0.56789,0 +0.70758,0.76022,0 +0.59421,0.61857,0 +0.49364,0.56224,0 +0.77707,0.35025,0 +0.79785,0.76921,0 +0.70876,0.96764,0 +0.69176,0.60865,0 +0.66408,0.92075,0 +0.65973,0.66666,0 +0.64574,0.56845,0 +0.89639,0.7085,0 +0.85476,0.63167,0 +0.62091,0.80424,0 +0.79057,0.56108,0 +0.58935,0.71582,0 +0.56846,0.7406,0 +0.65912,0.71548,0 +0.70938,0.74041,0 +0.59154,0.62927,0 +0.45829,0.4641,0 +0.79982,0.74847,0 +0.60974,0.54757,0 +0.68127,0.86985,0 +0.76694,0.64736,0 +0.69048,0.83058,0 +0.68122,0.96541,0 +0.73229,0.64245,0 +0.76145,0.60138,0 +0.58985,0.86955,0 +0.73145,0.74516,0 +0.77029,0.7014,0 +0.73156,0.71782,0 +0.44556,0.57991,0 +0.85275,0.85987,0 +0.51912,0.62359,0 diff --git a/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py b/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py new file mode 100644 index 0000000..40b2789 --- /dev/null +++ b/deep_learning_examples/logistic_regression_algo/logistic_regression_algo.py @@ -0,0 +1,105 @@ +import numpy as np +# Setting the random seed, feel free to change it and see different solutions. +np.random.seed(42) + +def sigmoid(x): + return 1/(1+np.exp(-x)) +def sigmoid_prime(x): + return sigmoid(x)*(1-sigmoid(x)) + +#prediction with sigmoid +def prediction(X, W, b): + return sigmoid(np.matmul(X,W)+b) + +# cross entropy function +def error_vector(y, y_hat): + return [-y[i]*np.log(y_hat[i]) - (1-y[i])*np.log(1-y_hat[i]) for i in range(len(y))] + +# error function +def error(y, y_hat): + ev = error_vector(y, y_hat) + return sum(ev)/len(ev) + +# TODO: Fill in the code below to calculate the gradient of the error function. +# The result should be a list of three lists: +# The first list should contain the gradient (partial derivatives) with respect to w1 +# The second list should contain the gradient (partial derivatives) with respect to w2 +# The third list should contain the gradient (partial derivatives) with respect to b +def dErrors(X, y, y_hat): + + # this does all the partial derivs at the same time + # so each points partial deriv wrt x1, wrt x2 and wrt b + DErrorsDx1 = (y - y_hat[:,0]) * (X[:,0]) + DErrorsDx2 = (y-y_hat[:,0]) * X[:,1] + DErrorsDb = (y-y_hat[:,0]) + + """ + seems to be some issue with the quiz - above gives an error + DErrorsDx1 = [X[i][0] * (y[i] - y_hat[i]) for i in range(len(y))] + DErrorsDx2 = [X[i][1] * (y[i] - y_hat[i]) for i in range(len(y))] + DErrorsDb = [y[i] - y_hat[i] for i in range(len(y))] + """ + + return DErrorsDx1, DErrorsDx2, DErrorsDb + +# TODO: Fill in the code below to implement the gradient descent step. +# The function should receive as inputs the data X, the labels y, +# the weights W (as an array), and the bias b. +# It should calculate the prediction, the gradients, and use them to +# update the weights and bias W, b. Then return W and b. +# The error e will be calculated and returned for you, for plotting purposes. +def gradientDescentStep(X, y, W, b, learn_rate = 0.01): + + # this does the prediction for all points at the same time + # TODO: Calculate the prediction + y_hat = prediction(X, W, b) + + # gets partial derivs for each point + # TODO: Calculate the gradient + grad = dErrors(X, y, y_hat) + + # update weights for equation, must be sequentially after using each points + # partial derivs + # TODO: Update the weights + # actually, could also update weights with sum * learning_rate + + # see: weights are changed even for correctly classified points. + for iPoint in range(len(y)): + W[0] += learn_rate * grad[0][iPoint] + W[1] += learn_rate * grad[1][iPoint] + b += learn_rate * grad[2][iPoint] + + # This calculates the error + e = error(y, y_hat) + return W, b, e + +# This function runs the perceptron algorithm repeatedly on the dataset, +# and returns a few of the boundary lines obtained in the iterations, +# for plotting purposes. +# Feel free to play with the learning rate and the num_epochs, +# and see your results plotted below. +def trainLR(X, y, learn_rate = 0.01, num_epochs = 100): + x_min, x_max = min(X.T[0]), max(X.T[0]) + y_min, y_max = min(X.T[1]), max(X.T[1]) + # Initialize the weights randomly + W = np.array(np.random.rand(2,1))*2 -1 + b = np.random.rand(1)[0]*2 - 1 + # These are the solution lines that get plotted below. + boundary_lines = [] + errors = [] + for i in range(num_epochs): + # In each epoch, we apply the gradient descent step. + W, b, error = gradientDescentStep(X, y, W, b, learn_rate) + boundary_lines.append((-W[0]/W[1], -b/W[1])) + errors.append(error) + return boundary_lines, errors + + + +import numpy as np +raw_data = open("data.csv", 'rt') +data = np.loadtxt(raw_data, delimiter=",") +X = data[:,[0,1]] +y = data[:,2] + +print(trainLR(X, y)[1]) \ No newline at end of file diff --git a/deep_learning_examples/perceptron_algorithm/__init__.py b/deep_learning_examples/perceptron_algorithm/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/deep_learning_examples/perceptron_algorithm/data.csv b/deep_learning_examples/perceptron_algorithm/data.csv new file mode 100644 index 0000000..c4324e9 --- /dev/null +++ b/deep_learning_examples/perceptron_algorithm/data.csv @@ -0,0 +1,100 @@ +0.78051,-0.063669,1 +0.28774,0.29139,1 +0.40714,0.17878,1 +0.2923,0.4217,1 +0.50922,0.35256,1 +0.27785,0.10802,1 +0.27527,0.33223,1 +0.43999,0.31245,1 +0.33557,0.42984,1 +0.23448,0.24986,1 +0.0084492,0.13658,1 +0.12419,0.33595,1 +0.25644,0.42624,1 +0.4591,0.40426,1 +0.44547,0.45117,1 +0.42218,0.20118,1 +0.49563,0.21445,1 +0.30848,0.24306,1 +0.39707,0.44438,1 +0.32945,0.39217,1 +0.40739,0.40271,1 +0.3106,0.50702,1 +0.49638,0.45384,1 +0.10073,0.32053,1 +0.69907,0.37307,1 +0.29767,0.69648,1 +0.15099,0.57341,1 +0.16427,0.27759,1 +0.33259,0.055964,1 +0.53741,0.28637,1 +0.19503,0.36879,1 +0.40278,0.035148,1 +0.21296,0.55169,1 +0.48447,0.56991,1 +0.25476,0.34596,1 +0.21726,0.28641,1 +0.67078,0.46538,1 +0.3815,0.4622,1 +0.53838,0.32774,1 +0.4849,0.26071,1 +0.37095,0.38809,1 +0.54527,0.63911,1 +0.32149,0.12007,1 +0.42216,0.61666,1 +0.10194,0.060408,1 +0.15254,0.2168,1 +0.45558,0.43769,1 +0.28488,0.52142,1 +0.27633,0.21264,1 +0.39748,0.31902,1 +0.5533,1,0 +0.44274,0.59205,0 +0.85176,0.6612,0 +0.60436,0.86605,0 +0.68243,0.48301,0 +1,0.76815,0 +0.72989,0.8107,0 +0.67377,0.77975,0 +0.78761,0.58177,0 +0.71442,0.7668,0 +0.49379,0.54226,0 +0.78974,0.74233,0 +0.67905,0.60921,0 +0.6642,0.72519,0 +0.79396,0.56789,0 +0.70758,0.76022,0 +0.59421,0.61857,0 +0.49364,0.56224,0 +0.77707,0.35025,0 +0.79785,0.76921,0 +0.70876,0.96764,0 +0.69176,0.60865,0 +0.66408,0.92075,0 +0.65973,0.66666,0 +0.64574,0.56845,0 +0.89639,0.7085,0 +0.85476,0.63167,0 +0.62091,0.80424,0 +0.79057,0.56108,0 +0.58935,0.71582,0 +0.56846,0.7406,0 +0.65912,0.71548,0 +0.70938,0.74041,0 +0.59154,0.62927,0 +0.45829,0.4641,0 +0.79982,0.74847,0 +0.60974,0.54757,0 +0.68127,0.86985,0 +0.76694,0.64736,0 +0.69048,0.83058,0 +0.68122,0.96541,0 +0.73229,0.64245,0 +0.76145,0.60138,0 +0.58985,0.86955,0 +0.73145,0.74516,0 +0.77029,0.7014,0 +0.73156,0.71782,0 +0.44556,0.57991,0 +0.85275,0.85987,0 +0.51912,0.62359,0 diff --git a/deep_learning_examples/perceptron_algorithm/perceptron_classification.py b/deep_learning_examples/perceptron_algorithm/perceptron_classification.py new file mode 100644 index 0000000..7ae41a7 --- /dev/null +++ b/deep_learning_examples/perceptron_algorithm/perceptron_classification.py @@ -0,0 +1,70 @@ +import numpy as np + +# Setting the random seed, feel free to change it and see different solutions. +np.random.seed(42) + + +def stepFunction(t): + if t >= 0: + return 1 + return 0 + +# this does one prediction for one point only +def prediction(X, W, b): + return stepFunction((np.matmul(X, W) + b)[0]) + + +# TODO: Fill in the code below to implement the perceptron trick. +# The function should receive as inputs the data X, the labels y, +# the weights W (as an array), and the bias b, +# update the weights and bias W, b, according to the perceptron algorithm, +# and return W and b. +def perceptronStep(X, y, W, b, learn_rate=0.01): + # Fill in code + + for iPoint, point in enumerate(X): + predicted = prediction(X[iPoint], W, b) + + # Learning in perceptron is only applied to misclassified points (compared to gradient descent) + if predicted != y[iPoint]: + if predicted == 1: # predicted 1, real 0, subtract + W[0] -= learn_rate * X[iPoint][0] + W[1] -= learn_rate * X[iPoint][1] + b -= learn_rate + + elif predicted == 0: # predicted 0, real 1, add + W[0] += learn_rate * X[iPoint][0] + W[1] += learn_rate * X[iPoint][1] + b += learn_rate + + return W, b + + +# This function runs the perceptron algorithm repeatedly on the dataset, +# and returns a few of the boundary lines obtained in the iterations, +# for plotting purposes. +# Feel free to play with the learning rate and the num_epochs, +# and see your results plotted below. +def trainPerceptronAlgorithm(X, y, learn_rate=0.01, num_epochs=25): + x_min, x_max = min(X.T[0]), max(X.T[0]) + y_min, y_max = min(X.T[1]), max(X.T[1]) + W = np.array(np.random.rand(2, 1)) + b = np.random.rand(1)[0] + x_max + # These are the solution lines that get plotted below. + boundary_lines = [] + for i in range(num_epochs): + # In each epoch, we apply the perceptron step. + W, b = perceptronStep(X, y, W, b, learn_rate) + boundary_lines.append((-W[0] / W[1], -b / W[1])) + return boundary_lines + + + +import numpy as np +raw_data = open("data.csv", 'rt') +data = np.loadtxt(raw_data, delimiter=",") +X = data[:,[0,1]] +y = data[:,2] +trainPerceptronAlgorithm(X, y) + + diff --git a/deep_learning_examples/softmax.py b/deep_learning_examples/softmax.py new file mode 100644 index 0000000..6b823b4 --- /dev/null +++ b/deep_learning_examples/softmax.py @@ -0,0 +1,16 @@ +import numpy as np + + +# Write a function that takes as input a list of numbers, and returns +# the list of values given by the softmax function. +def softmax(L): + # first do softmax function as e^(z_i) / (sum(e^(Z)) + sumE = np.sum(np.exp(L)) + res = [] + for elem in L: + res.append(np.exp(elem) / sumE) + + return res + + +softmax([1,2,3,4]) \ No newline at end of file diff --git a/examples/testdb_kai.sql b/examples/testdb_kai.sql new file mode 100644 index 0000000..ba39580 Binary files /dev/null and b/examples/testdb_kai.sql differ diff --git a/finding_donors/finding_donors.html b/finding_donors/finding_donors.html new file mode 100644 index 0000000..43d3e2f --- /dev/null +++ b/finding_donors/finding_donors.html @@ -0,0 +1,15124 @@ + + + +finding_donors + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Supervised Learning

Project: Finding Donors for CharityML

+
+
+
+
+
+
+
+
+

Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

+

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

+

Note: Please specify WHICH VERSION OF PYTHON you are using when submitting this notebook. Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.

+

The dataset for this project originates from the UCI Machine Learning Repository. The datset was donated by Ron Kohavi and Barry Becker, after being published in the article "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". You can find the article by Ron Kohavi online. The data we investigate here consists of small changes to the original dataset, such as removing the 'fnlwgt' feature and records with missing or ill-formatted entries.

+ +
+
+
+
+
+
+
+
+
+

Exploring the Data

Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, 'income', will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database.

+ +
+
+
+
+
+
In [2]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from time import time
+from IPython.display import display # Allows the use of display() for DataFrames
+
+# Import supplementary visualization code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the Census dataset
+data = pd.read_csv("census.csv")
+
+# Success - Display the first record
+display(data.head(n=3))
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-govBachelors13.0Never-marriedAdm-clericalNot-in-familyWhiteMale2174.00.040.0United-States<=50K
150Self-emp-not-incBachelors13.0Married-civ-spouseExec-managerialHusbandWhiteMale0.00.013.0United-States<=50K
238PrivateHS-grad9.0DivorcedHandlers-cleanersNot-in-familyWhiteMale0.00.040.0United-States<=50K
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Data Exploration

A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following:

+
    +
  • The total number of records, 'n_records'
  • +
  • The number of individuals making more than \$50,000 annually, 'n_greater_50k'.
  • +
  • The number of individuals making at most \$50,000 annually, 'n_at_most_50k'.
  • +
  • The percentage of individuals making more than \$50,000 annually, 'greater_percent'.
  • +
+

Hint: You may need to look at the table above to understand how the 'income' entries are formatted.

+ +
+
+
+
+
+
In [3]:
+
+
+
# TODO: Total number of records
+n_records = len(data)
+
+# TODO: Number of records where individual's income is more than $50,000
+n_greater_50k = len(data[data["income"] == ">50K"])
+
+# TODO: Number of records where individual's income is at most $50,000
+n_at_most_50k = len(data[data["income"] == "<=50K"])
+
+# TODO: Percentage of individuals whose income is more than $50,000
+greater_percent = 100 * len(data[data["income"] == ">50K"]) / float(len(data))
+
+# Print the results
+print "Total number of records: {}".format(n_records)
+print "Individuals making more than $50,000: {}".format(n_greater_50k)
+print "Individuals making at most $50,000: {}".format(n_at_most_50k)
+print "Percentage of individuals making more than $50,000: {:.2f}%".format(greater_percent)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Total number of records: 45222
+Individuals making more than $50,000: 11208
+Individuals making at most $50,000: 34014
+Percentage of individuals making more than $50,000: 24.78%
+
+
+
+ +
+
+ +
+
+
+
+
+
+
+

Preparing the Data

Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as preprocessing. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.

+ +
+
+
+
+
+
+
+
+

Transforming Skewed Continuous Features

A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: 'capital-gain' and 'capital-loss'.

+

Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed.

+ +
+
+
+
+
+
In [4]:
+
+
+
# Split the data into features and target label
+income_raw = data['income']
+features_raw = data.drop('income', axis = 1)
+
+# Visualize skewed continuous features of original data
+vs.distribution(data)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

For highly-skewed feature distributions such as 'capital-gain' and 'capital-loss', it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of 0 is undefined, so we must translate the values by a small amount above 0 to apply the the logarithm successfully.

+

Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed.

+ +
+
+
+
+
+
In [5]:
+
+
+
# Log-transform the skewed features
+skewed = ['capital-gain', 'capital-loss']
+features_raw[skewed] = data[skewed].apply(lambda x: np.log(x + 1)) # applies column wise, incr x by 1
+
+# moves values closer together so algo doesnt get confused
+
+# Visualize the new log distributions
+vs.distribution(features_raw, transformed = True)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Normalizing Numerical Features

In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as 'capital-gain' or 'capital-loss' above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.

+

Run the code cell below to normalize each numerical feature. We will use sklearn.preprocessing.MinMaxScaler for this.

+ +
+
+
+
+
+
In [6]:
+
+
+
# Import sklearn.preprocessing.StandardScaler
+from sklearn.preprocessing import MinMaxScaler
+
+# Initialize a scaler, then apply it to the features
+scaler = MinMaxScaler()
+numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
+features_raw[numerical] = scaler.fit_transform(data[numerical])
+
+# Show an example of a record with scaling applied
+display(features_raw.head(n = 1))
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-country
00.30137State-govBachelors0.8Never-marriedAdm-clericalNot-in-familyWhiteMale0.021740.00.397959United-States
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Data Preprocessing

From the table in Exploring the Data above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called categorical variables) be converted. One popular way to convert categorical variables is by using the one-hot encoding scheme. One-hot encoding creates a "dummy" variable for each possible category of each non-numeric feature. For example, assume someFeature has three possible entries: A, B, or C. We then encode this feature into someFeature_A, someFeature_B and someFeature_C.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
someFeaturesomeFeature_AsomeFeature_BsomeFeature_C
0B010
1C----> one-hot encode ---->001
2A100
+

Additionally, as with the non-numeric features, we need to convert the non-numeric target label, 'income' to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as 0 and 1, respectively. In code cell below, you will need to implement the following:

+
    +
  • Use pandas.get_dummies() to perform one-hot encoding on the 'features_raw' data.
  • +
  • Convert the target label 'income_raw' to numerical entries.
      +
    • Set records with "<=50K" to 0 and records with ">50K" to 1.
    • +
    +
  • +
+ +
+
+
+
+
+
In [7]:
+
+
+
# TODO: One-hot encode the 'features_raw' data using pandas.get_dummies()
+features = pd.get_dummies(features_raw) # creates a non sparse matrix
+
+# TODO: Encode the 'income_raw' data to numerical values
+income = income_raw.map({'<=50K':0, '>50K':1})
+
+# or, good for multiple classes. Also provides easy reverse transform.
+from sklearn.preprocessing import LabelEncoder
+le = LabelEncoder()
+income = le.fit_transform(income_raw)
+print("income one hot", income)
+print("income rev transformed", le.inverse_transform(income))
+
+# just be careful: it gives unecessary order to things.
+
+# Print the number of features after one-hot encoding
+encoded = list(features.columns)
+print "{} total features after one-hot encoding.".format(len(encoded))
+
+# Uncomment the following line to see the encoded feature names
+#print encoded
+#print(income.head(10))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
('income one hot', array([0, 0, 0, ..., 0, 0, 1], dtype=int64))
+('income rev transformed', array(['<=50K', '<=50K', '<=50K', ..., '<=50K', '<=50K', '>50K'], dtype=object))
+103 total features after one-hot encoding.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Shuffle and Split Data

Now all categorical variables have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.

+

Run the code cell below to perform this split.

+ +
+
+
+
+
+
In [8]:
+
+
+
# Import train_test_split
+from sklearn.cross_validation import train_test_split
+
+# Split the 'features' and 'income' data into training and testing sets
+X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0)
+
+# Show the results of the split
+print "Training set has {} samples.".format(X_train.shape[0])
+print "Testing set has {} samples.".format(X_test.shape[0])
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Training set has 36177 samples.
+Testing set has 9045 samples.
+
+
+
+ +
+
+ +
+
+
+
+
+
+
+

Evaluating Model Performance

In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a naive predictor.

+ +
+
+
+
+
+
+
+
+

Metrics and the Naive Predictor

CharityML, equipped with their research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \$50,000 accurately. It would seem that using accuracy as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that does not make more than \$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \$50,000 is more important than the model's ability to recall those individuals. We can use F-beta score as a metric that considers both precision and recall:

+$$ F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\left( \beta^2 \cdot precision \right) + recall} $$

In particular, when $\beta = 0.5$, more emphasis is placed on precision. This is called the F$_{0.5}$ score (or F-score for simplicity).

+

Looking at the distribution of classes (those who make at most \$50,000, and those who make more), it's clear most individuals do not make more than \$50,000. This can greatly affect accuracy, since we could simply say "this person does not make more than \$50,000" and generally be right, without ever looking at the data! Making such a statement would be called naive, since we have not considered any information to substantiate the claim. It is always important to consider the naive prediction for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \$50,000, CharityML would identify no one as donors.

+ +
+
+
+
+
+
+
+
+

Question 1 - Naive Predictor Performace

If we chose a model that always predicted an individual made more than \$50,000, what would that model's accuracy and F-score be on this dataset?
+Note: You must use the code cell below and assign your results to 'accuracy' and 'fscore' to be used later.

+ +
+
+
+
+
+
In [9]:
+
+
+
#from sklearn.metrics import accuracy_score, recall_score
+import numpy as np
+
+income_all_true = pd.Series(np.ones((len(income),), dtype=np.int))
+#print(income_all_true.head())
+#print(income.head())
+
+# TODO: Calculate accuracy
+#accuracy = accuracy_score(income, income_all_true, normalize=True, sample_weight=None) # normalise=True means show percentage
+#recall = recall_score(income, income_all_true)
+
+income_pred_naive = income_all_true
+
+# by hand
+tp = sum(income==income_pred_naive)
+fp = sum(income_pred_naive) - tp
+fn = sum(income) - tp
+accuracy = tp / float(tp + fp)
+recall = tp / float(tp + fn)
+
+
+
+# TODO: Calculate F-score using the formula above for beta = 0.5
+beta = 0.5
+fscore = (1+beta**2.0) * (accuracy * recall) / float((beta**2.0 * accuracy) + recall)
+
+
+# Print the results 
+print "Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]".format(accuracy, fscore)
+
+# accuracy matches the share of >50k incomes, if you predict true always.
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Naive Predictor: [Accuracy score: 0.2478, F-score: 0.2917]
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Supervised Learning Models

The following supervised learning models are currently available in scikit-learn that you may choose from:

+
    +
  • Gaussian Naive Bayes (GaussianNB)
  • +
  • Decision Trees
  • +
  • Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)
  • +
  • K-Nearest Neighbors (KNeighbors)
  • +
  • Stochastic Gradient Descent Classifier (SGDC)
  • +
  • Support Vector Machines (SVM)
  • +
  • Logistic Regression
  • +
+ +
+
+
+
+
+
+
+
+

Question 2 - Model Application

List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen

+
    +
  • Describe one real-world application in industry where the model can be applied. (You may need to do research for this — give references!)
  • +
  • What are the strengths of the model; when does it perform well?
  • +
  • What are the weaknesses of the model; when does it perform poorly?
  • +
  • What makes this model a good candidate for the problem, given what you know about the data?
  • +
+ +
+
+
+
+
+
+
+
+

Answer: The three supervised learning models are Decision Tree, KNN and AdaBoost with Decision Tree as the weak learner.

+
    +
  • Decision trees are applied in finance, for example, where they have been used to model investment decision making: http://www.cfapubs.org/doi/pdf/10.2469/faj.v50.n6.75. In this paper, they are considered superior to a weighted combination of features, as they more closely model the thinking of a portfolio manager when selecting securities. Decision Trees are helpful as they can visualise the path taken to arrive at a classification. They perform well on datasets with nominal, ordinal, interval and ratio data instead of just one of the types. The weaknesses are that they can overfit if too many nodes are allowed, and that they perform poorly on unbalanced datasets, such as ours. However, we can address this by tweaking the fbeta score to give more emphasis to accuracy and checking our final accuracy against the accuracy by predicting the same outcome every time. We can also limit the number of nodes allowed, or set the minimum examples required per leaf to stop the tree from growing too deep and overfitting.
  • +
+ +
    +
  • Ada Boost is applied in industry to predict whether customers might leave and preventatively offer them enticements to stay. https://www.cs.rit.edu/~rlaz/PatternRecognition/slides/churn_adaboost.pdf. Advantages are that instead of trying to find a a strong model that fits the weight distribution of the entire dataset we only have to find weak learners, i.e a model that performs better than chance. Each subsequent iteration will apply a weak learner to a slightly changed distribution, increasing the weights of examples we got wrong. We will also have continuous information gain, as each learner will improve on the previous. We also dont need any prior knowledge of the dataset, due to information gain guaranteed by the weak learner. Weaknesses are that a weak learner needs to exist for AdaBoost to work. A weak learner that is too complex, such a huge neural network, can lead to overfitting. It also seems that AdaBoost is sensitive to uniformly distributed noise (http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf). For our problem, we will use AdaBoost with a Decision Tree as the weak learner. By controlling leafs and node splits, as above, we should get an improved solution to using just a Decision tree, as we can focus on difficult examples.
  • +
+ +
+
+
+
+
+
+
+
+

Implementation - Creating a Training and Predicting Pipeline

To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section. +In the code block below, you will need to implement the following:

+
    +
  • Import fbeta_score and accuracy_score from sklearn.metrics.
  • +
  • Fit the learner to the sampled training data and record the training time.
  • +
  • Perform predictions on the test data X_test, and also on the first 300 training points X_train[:300].
      +
    • Record the total prediction time.
    • +
    +
  • +
  • Calculate the accuracy score for both the training subset and testing set.
  • +
  • Calculate the F-score for both the training subset and testing set.
      +
    • Make sure that you set the beta parameter!
    • +
    +
  • +
+ +
+
+
+
+
+
In [10]:
+
+
+
# Import two metrics from sklearn - fbeta_score and accuracy_score
+from sklearn.metrics import fbeta_score, accuracy_score
+
+# a generic learning function for any algo
+def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): 
+    '''
+    inputs:
+       - learner: the learning algorithm to be trained and predicted on
+       - sample_size: the size of samples (number) to be drawn from training set
+       - X_train: features training set
+       - y_train: income training set
+       - X_test: features testing set
+       - y_test: income testing set
+    '''
+    
+    results = {}
+    
+    # Fit the learner to the training data using slicing with 'sample_size'
+    start = time() # Get start time
+    # we want the same samples every time, not shuffled, so we can compare the learners.    
+    learner = learner.fit(X_train[:sample_size], y_train[:sample_size])
+    end = time() # Get end time
+    
+    # Calculate the training time
+    results['train_time'] = end-start
+        
+    # Get the predictions on the test set,
+    #       then get predictions on the first 300 training samples
+    start = time() # Get start time
+    predictions_test = learner.predict(X_test)
+    predictions_train = learner.predict(X_train[:300])
+    end = time() # Get end time
+    
+    # Calculate the total prediction time
+    results['pred_time'] = end-start
+            
+    # Compute accuracy on the first 300 training samples
+    results['acc_train'] = accuracy_score(y_pred=predictions_train, y_true=y_train[:300])
+        
+    # Compute accuracy on test set
+    results['acc_test'] = accuracy_score(y_pred=predictions_test, y_true=y_test)
+    
+    beta = 0.5 # place more emphasis on precision, as there are very ">50k" examples in the dataset.
+    
+    # Compute F-score on the the first 300 training samples
+    results['f_train'] = fbeta_score(y_true=y_train[:300], y_pred=predictions_train, beta=beta)
+        
+    # Compute F-score on the test set
+    results['f_test'] = fbeta_score(y_true=y_test, y_pred=predictions_test, beta=beta)
+       
+    # Success
+    print "{} trained on {} samples.".format(learner.__class__.__name__, sample_size)
+        
+    # Return the results
+    return results
+
+print(int(round(len([1,1,1,1])*0.63)))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
3
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Implementation: Initial Model Evaluation

In the code cell, you will need to implement the following:

+
    +
  • Import the three supervised learning models you've discussed in the previous section.
  • +
  • Initialize the three models and store them in 'clf_A', 'clf_B', and 'clf_C'.
      +
    • Use a 'random_state' for each model you use, if provided.
    • +
    • Note: Use the default settings for each model — you will tune one specific model in a later section.
    • +
    +
  • +
  • Calculate the number of records equal to 1%, 10%, and 100% of the training data.
      +
    • Store those values in 'samples_1', 'samples_10', and 'samples_100' respectively.
    • +
    +
  • +
+

Note: Depending on which algorithms you chose, the following implementation may take some time to run!

+ +
+
+
+
+
+
In [11]:
+
+
+
# TODO: Import the three supervised learning models from sklearn
+from sklearn.tree import DecisionTreeClassifier
+from sklearn.svm import SVC
+from sklearn.ensemble import AdaBoostClassifier
+from sklearn.naive_bayes import GaussianNB
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.linear_model import LogisticRegression
+
+
+# TODO: Initialize the three models
+clf_A = DecisionTreeClassifier(random_state=5)
+#clf_B = SVC(random_state=5)
+clf_B = KNeighborsClassifier()
+clf_C = AdaBoostClassifier(random_state=5)
+#clf_A = GaussianNB()
+#clf_A = LogisticRegression(random_state=5)
+
+# TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data
+samples_1 = int(round(len(y_train) * 0.01))
+samples_10 = int(round(len(y_train) * 0.1))
+samples_100 = int(round(len(y_train) * 1))
+
+# Collect results on the learners
+results = {}
+for clf in [clf_A, clf_B, clf_C]:
+    clf_name = clf.__class__.__name__
+    results[clf_name] = {}
+    for i, samples in enumerate([samples_1, samples_10, samples_100]):
+        
+        # bundles up useful algo metrics
+        results[clf_name][i] = \
+        train_predict(clf, samples, X_train, y_train, X_test, y_test)
+
+# Run metrics visualization for the three supervised learning models chosen
+vs.evaluate(results, accuracy, fscore)
+
+# Compared to the naive predictor (25% accuracy), we have improved considerably.
+print(results)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
DecisionTreeClassifier trained on 362 samples.
+DecisionTreeClassifier trained on 3618 samples.
+DecisionTreeClassifier trained on 36177 samples.
+KNeighborsClassifier trained on 362 samples.
+KNeighborsClassifier trained on 3618 samples.
+KNeighborsClassifier trained on 36177 samples.
+AdaBoostClassifier trained on 362 samples.
+AdaBoostClassifier trained on 3618 samples.
+AdaBoostClassifier trained on 36177 samples.
+
+
+
+ +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
{'KNeighborsClassifier': {0: {'pred_time': 0.4960000514984131, 'f_test': 0.59304818869202103, 'train_time': 0.0009999275207519531, 'acc_train': 0.8666666666666667, 'acc_test': 0.80464344941956878, 'f_train': 0.74999999999999989}, 1: {'pred_time': 3.5820000171661377, 'f_test': 0.6270768571122306, 'train_time': 0.032000064849853516, 'acc_train': 0.85999999999999999, 'acc_test': 0.8180210060807076, 'f_train': 0.72368421052631571}, 2: {'pred_time': 27.072999954223633, 'f_test': 0.63166816232924516, 'train_time': 1.7300000190734863, 'acc_train': 0.87333333333333329, 'acc_test': 0.82012161415146489, 'f_train': 0.75320512820512819}}, 'AdaBoostClassifier': {0: {'pred_time': 0.07000017166137695, 'f_test': 0.61047338962147801, 'train_time': 0.1099998950958252, 'acc_train': 0.89666666666666661, 'acc_test': 0.81039248203427305, 'f_train': 0.81168831168831157}, 1: {'pred_time': 0.07699990272521973, 'f_test': 0.7018820838099199, 'train_time': 0.21799993515014648, 'acc_train': 0.83999999999999997, 'acc_test': 0.84986180210060802, 'f_train': 0.68014705882352933}, 2: {'pred_time': 0.07000017166137695, 'f_test': 0.72455089820359275, 'train_time': 1.678999900817871, 'acc_train': 0.84999999999999998, 'acc_test': 0.85760088446655613, 'f_train': 0.71153846153846156}}, 'DecisionTreeClassifier': {0: {'pred_time': 0.0, 'f_test': 0.5187038764950378, 'train_time': 0.019999980926513672, 'acc_train': 1.0, 'acc_test': 0.76174682144831396, 'f_train': 1.0}, 1: {'pred_time': 0.0, 'f_test': 0.60533669881907515, 'train_time': 0.019999980926513672, 'acc_train': 0.9966666666666667, 'acc_test': 0.80751796572692092, 'f_train': 0.99719101123595499}, 2: {'pred_time': 0.007999897003173828, 'f_test': 0.62747080996598326, 'train_time': 0.3990001678466797, 'acc_train': 0.96999999999999997, 'acc_test': 0.81835268103924819, 'f_train': 0.96385542168674709}}}
+
+
+
+ +
+
+ +
+
+
+
+
+
+
+

Improving Results

In this final section, you will choose from the three supervised learning models the best model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (X_train and y_train) by tuning at least one parameter to improve upon the untuned model's F-score.

+ +
+
+
+
+
+
+
+
+

Question 3 - Choosing the Best Model

Based on the evaluation you performed earlier, in one to two paragraphs, explain to CharityML which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \$50,000.
+Hint: Your answer should include discussion of the metrics, prediction/training time, and the algorithm's suitability for the data.

+ +
+
+
+
+
+
+
+
+

Answer: I believe AdaBosst is the best model for finding individuals who make above 50k USD. It is not the fastest trainer, but all models train below 2 seconds on the full datasets which I believe is acceptable, and prediction time is negligible. It has the best accuracy on the testing set, so you get better generalisation than KNN or Decision Tree. However, given that we have an unbalanced dataset, with only around 25% of people sampled earning above 50k, we need to also check the F score, given recall should influence our prediction, as it is important to measure how many of the true positives are found. Here AdaBoost does quite a bit better than the other models on the testing set. Further, it addresses the overfitting issue with the Decision Tree by training several of them (like basis splines) and weighting them according to the prediction accuracy they give.

+ +
+
+
+
+
+
+
+
+

Question 4 - Describing the Model in Layman's Terms

In one to two paragraphs, explain to CharityML, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.

+ +
+
+
+
+
+
+
+
+

Answer: AdaBoost is trained using in this case a Decision Tree on the dataset. A Decision Tree attempts to seperate a dataset into two classes (here income >50, below 50k) by asking a serious of questions to its features, such as whether or not some is degree level educated. It will ask questions first that improve the dataset separation by the most.

+

To run, AdaBoost will set the weight of each person the same initially. It will then calibrate a decision tree to that data and check how large the error is. Next it will iteratively increase the weights of people that it got wrong, and focus on getting those right in the next iteration. In contrast, people that it got right will have their weight reduced. Predictions are made using a weighted combination of all those fitted decision trees, where higher weight is given to those trees that have make more accurate predictions.

+ +
+
+
+
+
+
+
+
+

Implementation: Model Tuning

Fine tune the chosen model. Use grid search (GridSearchCV) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:

+
    +
  • Import sklearn.grid_search.GridSearchCV and sklearn.metrics.make_scorer.
  • +
  • Initialize the classifier you've chosen and store it in clf.
      +
    • Set a random_state if one is available to the same state you set before.
    • +
    +
  • +
  • Create a dictionary of parameters you wish to tune for the chosen model.
      +
    • Example: parameters = {'parameter' : [list of values]}.
    • +
    • Note: Avoid tuning the max_features parameter of your learner if that parameter is available!
    • +
    +
  • +
  • Use make_scorer to create an fbeta_score scoring object (with $\beta = 0.5$).
  • +
  • Perform grid search on the classifier clf using the 'scorer', and store it in grid_obj.
  • +
  • Fit the grid search object to the training data (X_train, y_train), and store it in grid_fit.
  • +
+

Note: Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!

+ +
+
+
+
+
+
In [12]:
+
+
+
# TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries
+from sklearn.grid_search import GridSearchCV
+from sklearn.metrics import make_scorer
+
+
+
+dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
+dt_stump.fit(X_train, y_train)
+clf_knn = KNeighborsClassifier(n_jobs=8)
+clf_knn.fit(X_train, y_train)
+
+# TODO: Initialize the classifier
+clf = AdaBoostClassifier(base_estimator=dt_stump, random_state=5)
+#clf = AdaBoostClassifier(base_estimator=clf_knn, random_state=5)
+
+#clf = clf_knn
+
+# Create the parameters list you wish to tuned
+parameters = {
+    "n_estimators": [1, 3, 9, 30, 90]
+    , "learning_rate": [0.003, 0.009, 0.1, 0.03, 0.09]
+    , "base_estimator__max_depth":[1, 3, 9] # use __ to access nested parameters of sub classifier
+    , "base_estimator__min_samples_leaf":[1, 3, 9, 30, 90, 300, 900]
+    #, "base_estimator__criterion" : ["gini", "entropy"]
+    #, "base_estimator__splitter" :  ["best", "random"]
+    
+    #"n_neighbors": [3, 5, 7, 10, 13, 15, 20]
+    #, "weights": ["uniform", "distance"]
+    
+    #"base_estimator__n_neighbors": [3, 5, 7, 10, 13, 15, 20]
+    
+    
+    
+
+}
+
+# TODO: Make an fbeta_score scoring object
+scorer = make_scorer(fbeta_score, beta=0.5)
+
+# check this, which is the right score?
+stratifiedShuffling = False
+if stratifiedShuffling:
+    # make sure test labels are evenly split labels between validation set, given dataset is unbalanced
+    # this ensure none of them has a large concentration of >50k or <=50k earners.
+    from sklearn.cross_validation import StratifiedShuffleSplit
+    cv = StratifiedShuffleSplit(y_test, n_iter=10, test_size=0.25, random_state=4)
+    grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8, cv=cv)
+
+    
+# base case
+else:
+    # TODO: Perform grid search on the classifier using 'scorer' as the scoring method
+    # default uses 3 fold cross validation
+    grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8)
+
+    
+
+# TODO: Fit the grid search object to the training data and find the optimal parameters
+grid_fit = grid_obj.fit(X_train, y_train)
+
+# Get the estimator
+best_clf = grid_fit.best_estimator_
+
+# Make predictions using the unoptimized and optimised model
+predictions = (clf.fit(X_train, y_train)).predict(X_test)
+best_predictions = best_clf.predict(X_test)
+
+# Report the before-and-afterscores
+print "Unoptimized model\n------"
+print "Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions))
+print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5))
+print "\nOptimized Model\n------"
+print "Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
+print "Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Fitting 3 folds for each of 525 candidates, totalling 1575 fits
+
+
+
+ +
+
+ +
+
[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    2.0s
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    7.5s
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    8.3s
+[Parallel(n_jobs=8)]: Done  25 tasks      | elapsed:   10.3s
+[Parallel(n_jobs=8)]: Done  34 tasks      | elapsed:   11.6s
+[Parallel(n_jobs=8)]: Done  45 tasks      | elapsed:   13.3s
+[Parallel(n_jobs=8)]: Done  56 tasks      | elapsed:   15.7s
+[Parallel(n_jobs=8)]: Done  69 tasks      | elapsed:   18.0s
+[Parallel(n_jobs=8)]: Done  82 tasks      | elapsed:   20.3s
+[Parallel(n_jobs=8)]: Done  97 tasks      | elapsed:   22.6s
+[Parallel(n_jobs=8)]: Done 112 tasks      | elapsed:   25.4s
+[Parallel(n_jobs=8)]: Done 129 tasks      | elapsed:   28.1s
+[Parallel(n_jobs=8)]: Done 146 tasks      | elapsed:   30.6s
+[Parallel(n_jobs=8)]: Done 165 tasks      | elapsed:   34.2s
+[Parallel(n_jobs=8)]: Done 184 tasks      | elapsed:   37.2s
+[Parallel(n_jobs=8)]: Done 205 tasks      | elapsed:   41.4s
+[Parallel(n_jobs=8)]: Done 226 tasks      | elapsed:   45.2s
+[Parallel(n_jobs=8)]: Done 249 tasks      | elapsed:   49.4s
+[Parallel(n_jobs=8)]: Done 272 tasks      | elapsed:   52.8s
+[Parallel(n_jobs=8)]: Done 297 tasks      | elapsed:   57.5s
+[Parallel(n_jobs=8)]: Done 322 tasks      | elapsed:  1.0min
+[Parallel(n_jobs=8)]: Done 349 tasks      | elapsed:  1.1min
+[Parallel(n_jobs=8)]: Done 376 tasks      | elapsed:  1.2min
+[Parallel(n_jobs=8)]: Done 405 tasks      | elapsed:  1.3min
+[Parallel(n_jobs=8)]: Done 434 tasks      | elapsed:  1.4min
+[Parallel(n_jobs=8)]: Done 465 tasks      | elapsed:  1.4min
+[Parallel(n_jobs=8)]: Done 496 tasks      | elapsed:  1.5min
+[Parallel(n_jobs=8)]: Done 529 tasks      | elapsed:  1.6min
+[Parallel(n_jobs=8)]: Done 562 tasks      | elapsed:  1.8min
+[Parallel(n_jobs=8)]: Done 597 tasks      | elapsed:  2.0min
+[Parallel(n_jobs=8)]: Done 632 tasks      | elapsed:  2.2min
+[Parallel(n_jobs=8)]: Done 669 tasks      | elapsed:  2.5min
+[Parallel(n_jobs=8)]: Done 706 tasks      | elapsed:  2.7min
+[Parallel(n_jobs=8)]: Done 745 tasks      | elapsed:  2.9min
+[Parallel(n_jobs=8)]: Done 784 tasks      | elapsed:  3.1min
+[Parallel(n_jobs=8)]: Done 825 tasks      | elapsed:  3.4min
+[Parallel(n_jobs=8)]: Done 866 tasks      | elapsed:  3.6min
+[Parallel(n_jobs=8)]: Done 909 tasks      | elapsed:  3.9min
+[Parallel(n_jobs=8)]: Done 952 tasks      | elapsed:  4.2min
+[Parallel(n_jobs=8)]: Done 997 tasks      | elapsed:  4.4min
+[Parallel(n_jobs=8)]: Done 1042 tasks      | elapsed:  4.7min
+[Parallel(n_jobs=8)]: Done 1089 tasks      | elapsed:  5.5min
+[Parallel(n_jobs=8)]: Done 1136 tasks      | elapsed:  6.3min
+[Parallel(n_jobs=8)]: Done 1185 tasks      | elapsed:  7.2min
+[Parallel(n_jobs=8)]: Done 1234 tasks      | elapsed:  8.1min
+[Parallel(n_jobs=8)]: Done 1285 tasks      | elapsed:  9.1min
+[Parallel(n_jobs=8)]: Done 1336 tasks      | elapsed: 10.0min
+[Parallel(n_jobs=8)]: Done 1389 tasks      | elapsed: 11.0min
+[Parallel(n_jobs=8)]: Done 1442 tasks      | elapsed: 11.7min
+[Parallel(n_jobs=8)]: Done 1497 tasks      | elapsed: 12.6min
+[Parallel(n_jobs=8)]: Done 1552 tasks      | elapsed: 13.2min
+[Parallel(n_jobs=8)]: Done 1575 out of 1575 | elapsed: 13.6min finished
+
+
+
+ +
+
+ +
+
Unoptimized model
+------
+Accuracy score on testing data: 0.8576
+F-score on testing data: 0.7246
+
+Optimized Model
+------
+Final accuracy score on the testing data: 0.8651
+Final F-score on the testing data: 0.7448
+
+
+
+ +
+
+ +
+
+
+
In [34]:
+
+
+
score = pd.DataFrame(grid_fit.grid_scores_).mean_validation_score
+params = pd.DataFrame.from_records(pd.DataFrame(grid_fit.grid_scores_).parameters.values)
+resGrid = pd.concat([params, score],axis=1)
+resGrid = resGrid.sort_values(by=["mean_validation_score"], ascending=False)
+
+
+import datetime
+st = datetime.datetime.utcnow().strftime("%A_%d_%B_%Y_%I_%M%p")
+print(st)
+
+
+"""
+importances = best_clf.feature_importances_
+indices = np.argsort(importances)[::-1]
+print(X_train.columns[indices[:5]])
+"""
+
+#print(pd.DataFrame(best_clf.feature_importances_))
+clf_name = best_clf.__class__.__name__ 
+# create excel sheet of parameter grid
+writer = pd.ExcelWriter(
+        clf_name + 'resGrid.xlsx'
+     , engine="xlsxwriter"     
+    )
+ 
+pd.formats.format.header_style = None    
+ 
+resGrid.to_excel(writer, sheet_name="elem", index=False)
+workbook = writer.book
+worksheet = writer.sheets["elem"]
+formatObject = workbook.add_format()
+formatObject.set_text_wrap(1)
+formatObject.set_bold(1)
+
+worksheet.set_column("A:F", 30)
+worksheet.set_row(0, 60, formatObject)
+ 
+writer.save()
+
+#open excel
+import os
+import win32com.client
+
+cwd = os.getcwd() + "\\"
+
+xl=win32com.client.Dispatch("Excel.Application")
+xl.Visible = True
+xl.Workbooks.Open(Filename=cwd+clf_name+"resGrid.xlsx")
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Monday_05_June_2017_09_33PM
+
+
+
+ +
+
Out[34]:
+ + + +
+
<COMObject Open>
+
+ +
+ +
+
+ +
+
+
+
In [35]:
+
+
+
# close any excel sheets without asking questions and quit excel
+map(lambda book: book.Close(False), xl.Workbooks)
+xl.quit()
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 5 - Final Model Evaluation

What is your optimized model's accuracy and F-score on the testing data? Are these scores better or worse than the unoptimized model? How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in Question 1?
+Note: Fill in the table below with your results, and then provide discussion in the Answer box.

+ +
+
+
+
+
+
+
+
+

Results:

+ + + + + + + + + + + + + + + + + + + + + +
MetricBenchmark PredictorUnoptimized ModelOptimized Model
Accuracy Score0.29170.85760.8687
F-score0.24780.72460.7430
+ +
+
+
+
+
+
+
+
+

Answer: The optimised model's scores are better than the benchmark and the unoptimised scores. Accuracy improves beyond just predicting ">50k" for all points, and especially the F-Score improves, showing the model is adding value. However, i believe that the benchmark predictor does not illustrate the issue of unbalanced datasets well, as we will see a large improvement by using as benchmark the prediction of the less frequent part of the dataset across the entire dataset. However, if we were to predict the more frequent part as a benchmark, i believe it would be a lot more difficult to achieve such performance gains, given we have already 75% accuracy.

+ +
+
+
+
+
+
In [24]:
+
+
+
from sklearn.metrics import confusion_matrix
+import seaborn as sns
+%matplotlib inline
+
+# confusion matrix best
+pred = best_clf.predict(X_test)
+sns.heatmap(confusion_matrix(y_test, pred), annot = True, fmt = '')
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
C:\Anaconda3\envs\udacity\lib\site-packages\IPython\html.py:14: ShimWarning: The `IPython.html` package has been deprecated since IPython 4.0. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
+  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)
+
+
+
+ +
+
Out[24]:
+ + + +
+
<matplotlib.axes._subplots.AxesSubplot at 0x9b297b8>
+
+ +
+ +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+
+

Feature Importance

An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \$50,000.

+

Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a feature_importance_ attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset.

+ +
+
+
+
+
+
+
+
+

Question 6 - Feature Relevance Observation

When Exploring the Data, it was shown there are thirteen available features for each individual on record in the census data.
+Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?

+ +
+
+
+
+
+
+
+
+

Answer: I believe the important features would be:

+
    +
  • Capital Gain - most important as a large capital gain can provide income for years to come, and reduces reliance on intelligence, hard work or biological properties like race or attractiveness.
  • +
  • Age - also important as usually people tend to get better at what they do with age.
  • +
  • Education Level - fairly good predictor as it can replace experience and is sometimes a proxy for family wealth which would have a positive effect on income.
  • +
  • Work class - private sector pays better
  • +
  • race - biological attributes might provide some noise
  • +
+ +
+
+
+
+
+
+
+
+

Implementation - Extracting Feature Importance

Choose a scikit-learn supervised learning algorithm that has a feature_importance_ attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.

+

In the code cell below, you will need to implement the following:

+
    +
  • Import a supervised learning model from sklearn if it is different from the three used earlier.
  • +
  • Train the supervised model on the entire training set.
  • +
  • Extract the feature importances using '.feature_importances_'.
  • +
+ +
+
+
+
+
+
In [28]:
+
+
+
# TODO: Import a supervised learning model that has 'feature_importances_'
+
+clfAda = AdaBoostClassifier(random_state=5, n_estimators=30)
+
+# TODO: Train the supervised model on the training set 
+model = clfAda.fit(X_train, y_train)
+
+# TODO: Extract the feature importances
+importances = model.feature_importances_
+
+# best fit features
+best_clf.fit(X_train, y_train)
+#importances = best_clf.feature_importances_
+
+# interesting - my best fit has a different feature order - it includes marital status! A hidden feature.
+# other ways of feature selection: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
+
+
+#print(importances.shape)
+# importances show the contribution of each feature to the model.
+# There are 103 features, as we did one hot encoding on the enums.
+
+# Plot
+vs.feature_plot(importances, X_train, y_train)
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 7 - Extracting Feature Importance

Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \$50,000.
+How do these five features compare to the five features you discussed in Question 6? If you were close to the same answer, how does this visualization confirm your thoughts? If you were not close, why do you think these features are more relevant?

+ +
+
+
+
+
+
+
+
+

Answer: It seems that race is not even listed, and age is the most prominent feature. However, it does seem right that capital gain and education are both fairly important as expected. Interesting is that Age dominates compared to capital gain, but i suppose this makes sense as an income as low as 50k can be achieved irrespective of capital gain, education and other predictors if you live long enough. I would suspect capital gain and loss taking over at higher incomes.

+ +
+
+
+
+
+
+
+
+

Feature Selection

How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of all features present in the data. This hints that we can attempt to reduce the feature space and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set with only the top five important features.

+ +
+
+
+
+
+
In [29]:
+
+
+
# Import functionality for cloning a model
+from sklearn.base import clone
+
+"""
+    Reduce the feature space - could also use PCA for this,
+    in order to reduce dimensionality while maintaining other features' information
+"""
+X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]
+X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]
+
+# Train on the "best" model found from grid search earlier
+clf = (clone(best_clf)).fit(X_train_reduced, y_train)
+
+# Make new predictions
+reduced_predictions = clf.predict(X_test_reduced)
+
+# Report scores from the final model using both versions of data
+print "Final Model trained on full data\n------"
+print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
+print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
+print "\nFinal Model trained on reduced data\n------"
+print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_predictions))
+print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_predictions, beta = 0.5))
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Final Model trained on full data
+------
+Accuracy on testing data: 0.8651
+F-score on testing data: 0.7448
+
+Final Model trained on reduced data
+------
+Accuracy on testing data: 0.8420
+F-score on testing data: 0.7020
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 8 - Effects of Feature Selection

How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?
+If training time was a factor, would you consider using the reduced data as your training set?

+ +
+
+
+
+
+
+
+
+

Answer: The final model's accuracy is 0.8433 and its F score is 0.7032. This is only a little bit lower than the metrics for the model trained on the full data. If training time was a factor i would consider reducing features, as the accuracy and f score are almost unchanged. It would depend how expensive it would be to get a few classifications wrong, in terms of letters sent out.

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/finding_donors/finding_donors.ipynb b/finding_donors/finding_donors.ipynb new file mode 100644 index 0000000..72394e9 --- /dev/null +++ b/finding_donors/finding_donors.ipynb @@ -0,0 +1,1382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Supervised Learning\n", + "## Project: Finding Donors for *CharityML*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to the second project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Please specify WHICH VERSION OF PYTHON you are using when submitting this notebook. Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features. \n", + "\n", + "The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Census+Income). The datset was donated by Ron Kohavi and Barry Becker, after being published in the article _\"Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid\"_. You can find the article by Ron Kohavi [online](https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the `'fnlwgt'` feature and records with missing or ill-formatted entries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Exploring the Data\n", + "Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, `'income'`, will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-countryincome
039State-govBachelors13.0Never-marriedAdm-clericalNot-in-familyWhiteMale2174.00.040.0United-States<=50K
150Self-emp-not-incBachelors13.0Married-civ-spouseExec-managerialHusbandWhiteMale0.00.013.0United-States<=50K
238PrivateHS-grad9.0DivorcedHandlers-cleanersNot-in-familyWhiteMale0.00.040.0United-States<=50K
\n", + "
" + ], + "text/plain": [ + " age workclass education_level education-num marital-status \\\n", + "0 39 State-gov Bachelors 13.0 Never-married \n", + "1 50 Self-emp-not-inc Bachelors 13.0 Married-civ-spouse \n", + "2 38 Private HS-grad 9.0 Divorced \n", + "\n", + " occupation relationship race sex capital-gain \\\n", + "0 Adm-clerical Not-in-family White Male 2174.0 \n", + "1 Exec-managerial Husband White Male 0.0 \n", + "2 Handlers-cleaners Not-in-family White Male 0.0 \n", + "\n", + " capital-loss hours-per-week native-country income \n", + "0 0.0 40.0 United-States <=50K \n", + "1 0.0 13.0 United-States <=50K \n", + "2 0.0 40.0 United-States <=50K " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from time import time\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualization code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the Census dataset\n", + "data = pd.read_csv(\"census.csv\")\n", + "\n", + "# Success - Display the first record\n", + "display(data.head(n=3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Exploration\n", + "A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \\$50,000. In the code cell below, you will need to compute the following:\n", + "- The total number of records, `'n_records'`\n", + "- The number of individuals making more than \\$50,000 annually, `'n_greater_50k'`.\n", + "- The number of individuals making at most \\$50,000 annually, `'n_at_most_50k'`.\n", + "- The percentage of individuals making more than \\$50,000 annually, `'greater_percent'`.\n", + "\n", + "**Hint:** You may need to look at the table above to understand how the `'income'` entries are formatted. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number of records: 45222\n", + "Individuals making more than $50,000: 11208\n", + "Individuals making at most $50,000: 34014\n", + "Percentage of individuals making more than $50,000: 24.78%\n" + ] + } + ], + "source": [ + "# TODO: Total number of records\n", + "n_records = len(data)\n", + "\n", + "# TODO: Number of records where individual's income is more than $50,000\n", + "n_greater_50k = len(data[data[\"income\"] == \">50K\"])\n", + "\n", + "# TODO: Number of records where individual's income is at most $50,000\n", + "n_at_most_50k = len(data[data[\"income\"] == \"<=50K\"])\n", + "\n", + "# TODO: Percentage of individuals whose income is more than $50,000\n", + "greater_percent = 100 * len(data[data[\"income\"] == \">50K\"]) / float(len(data))\n", + "\n", + "# Print the results\n", + "print \"Total number of records: {}\".format(n_records)\n", + "print \"Individuals making more than $50,000: {}\".format(n_greater_50k)\n", + "print \"Individuals making at most $50,000: {}\".format(n_at_most_50k)\n", + "print \"Percentage of individuals making more than $50,000: {:.2f}%\".format(greater_percent)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Preparing the Data\n", + "Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as **preprocessing**. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Transforming Skewed Continuous Features\n", + "A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: '`capital-gain'` and `'capital-loss'`. \n", + "\n", + "Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAF2CAYAAAD+y36TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xe8PUV9//HXmyrFggqIoIKE2BUFEYNRsIEVWwxG9Ivd\nqIlG/UWsYMEaNRBjixJQiYpYQEQREexIERREKQooHbHQpM/vj5nDd7+HW/Z+v/fcdl7Px+M87tnZ\nPbsze87d2c/O7GxKKUiSJElSH6vNdwYkSZIkLR4GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk\n9WYAIUmSJKk3AwjNqyRPS/L9JJcm+WuS85J8LckunWX2SFKS/M185nVldfK/+TTLHdCWK0luTvKX\nJKcn+XSSh6/seif4zAtnmP8Dkpzbmd68bffFM1nPyuRrZcq4kCRZLcl/Jrmofadfm2b59ZK8McnP\nklyZ5NokZyT5ryRbjjCfeyd59ATpK3z3S12Suyf5SJKz2r6/KskJSd6U5Pbznb9R6Rx3SpIbklyW\n5AdJ3ppko1VY74S/q1XM695D+e2+RlJHrMxxU1rq1pjvDGh8JflXYF9gf+ADwNXAlsCTgEcD35q/\n3M2by4CntvfrAfcCdgd+nOQ9pZQ3dZb9BvBw4KIZrH8P6v/9/jP4zDup39Mo7cHE+VqZMi4kzwJe\nDbwO+Alw+WQLJtkE+A5wV+AjwA+B64H7Ai8AHgE8eET53AvYB/juUPpcfPcLQpJHAocBlwL7AacB\nawLbA68ENgT+bd4yOHoHAJ+gXli8E7Xc/wL8a5JdSyk/Xol1Tva7mg2PAG4aSvv9CLYDK3fclJY0\nAwjNp9cDXyulvKiT9l3gf5KMa+vY9aWU4zrTRyf5GPBh4I1JTiqlfBmglHIZNeAYiSRrl1KuK6X8\nZlTbmM6oyzgH7tP+/mcp5eZplv0ssAmwXSnlrE76McB/J3naKDI4lfn87udSkg2AQ4BfAY8tpVzd\nmf3tJB8E/m5eMjd3Lhg69nw9yX7AD4CvJLlnKeWaecrbRH5aSrlxvjOxspKsCdxYfJqvFqlxPUnT\nwnBH4OKJZkx3spVk2ySXJPlKktu0tDVa949fJ7kuyYVJPjiY35Y5NcmnOtO3T3JjkvOH1v+jJF/q\nTE+77rbcPZN8I8k1rRvAvsDaM9kpE+yLAvw7cAnwms62btW9J8k/JTm5db24opX3ZW3escCjgB06\nTf7HDq3rkUm+lOTPwE/bvMm6sayV5EOp3c+uSXL4cFejts69h9IGXaD2mEG+umVcM8m7kpyb5Pr2\n912tQh7exsuSvCO1C9Gfk3w9yWZD+Zl0n00lyS5JfpLa9e4vqV3v7tWZfy4wKPtN3TJPsK6HAo8B\n3j0UPNyilPK1zvKztg+SDE5g3tzZ/3u3eZN1X+uzX6f97jvpuyf5eWq3oT8k+Wxqi8yM15fkoUmO\nSnJ5+25+m+SjE+3TjhdTWxj+ZSh4AKCUcnUp5ajONtZN8r4k57T9f06SN6dz4SPJji1vT03tFvWH\n9vpckjsMlePVSX7V8vunJCcmeXpn/rlJDhjO1/A+SfK3Sb7a/ievTfK71P/nlbpYWEq5BPh/wMbA\nczrbeXySI9r3f02S05K8Lsnq3by1txP9rh6a5JAk57cyn5Hk3UnWWZl8TiTJFkkOSj0OX5fklO4+\nbcv8TfutndP5rXwsNaAcLHMskx+f9u6Us7veyf5vXpHk/UkuBK4D7jCDvM7qdyutKn94mk/HA8uS\n/BY4tJRyZp8PJXk88GXgIOCVpZRBM/bngKcA7wN+TL36+05gc+CZbZljgCd3VrcjtZvIpkn+tpRy\nZpL1gYdSu54MTLvuJGsBRwHrULs8XAq8DHhGn3JNpZRyfZKjgWclWWOiK29JHtHyuR+10l8NuDet\nkgJe0eav3vIFcMXQag4CPk/tejPd8eGNwCnU7jUbAe+mXq29XynlhhkUr0++ug4Ent2290PqleE3\nA/cE/mmCPP4YeGHL4wfbtnaEXvtsQqn36HyD2mL2j8D6wDuAHybZupRyAfB04F+p3R8G97BMdkX/\nce3vYVNtt2PW9kHL209Y3oUFYIWAegLTrbO3JC9t2/1iW+9dW7keluQhpZSrZrCu9YEjqceWPYAr\nqf+j07UePA64qJRyYo9trNG2cV/qMeBUaneft1Ivirxu6CP7AodTv5d7Ae+ndr1Z1tb3XOr+ewf1\nav86wAPbumbqG8CfgH8G/gBsCjyRVbtY+G3gRmAH4NMt7Z7AscBHqV1Pt6UGyxsCe7Zlpvpd3YO6\n3z4L/Bm4H/C2tt7deuZr9STd6ZsHF56S3I16AeRSarezy6j/p19O8rRSyuD/7K7AhdTv7HJgC+BN\nwBEs/5+d6fFpKm8GTgBe2tZ37QzyOorvVlp5pRRfvublBfwt8AugtNcfqCevjx9abo82/2+A51JP\n+N8+tMzft2WeP5T+3Ja+dZt+epu+R5v+T+pJ21nAy1raLm2Ze89w3S9p09t3llkN+GVL33ya/XEA\ncP4U89/T1rPx0H7ZvE2/HvjjNNs4FvjhBOmDdX14knyd25nevC17OrBaJ32Hlv6iTloB9h5a3+Dz\ne8wgX4My3n+Sdb6lpT9waBvHDi33+pZ+1777bJL9eGL7zazRSdsCuAH4UCftXbRGpGnW97GWr7V7\nLDur+6DzPb1rBt9933VO+d1TT6IuAY4ZWu4Rbbl/neH6tu3ugxl8n78CftJz2ee1bTxyKP3N1GPT\nRm16x7bcgUPLfQS4Fkhn+mfTbPNc4IAJ0m/ZJ8Cd2/RTV+L3POH335l/EfDNSeaFerHhzdQT3NX6\nrnfo87sDNwN3mmb5vVleZ3Rfn+ss82nqifidhj57FHDKFOteo/Pbe3An/VgmPj7tzQT/31P83/xs\n8L3PJK+r8t368jWql5Gr5k2pLQ4PpjYP70O9mv104Mgkb5ngI6+hHphfXUrZa2jeLtTK+5DU7kZr\ntCuF327zH9n+HkutpAYjgzyaehX5u0NpF5VSfj3DdT8c+H3p9CMu9YrYwT12Rx+Dy21lkvknABu0\nLhJPHu4m0dNXZ7DsIaXT1ayU8iPqFcZbjRg1iwb7+nND6YPpRw2lHzE0fWr7e/f2d8b7LMl6wEOA\nL5ZOS1Ap5RzgRxPkYbbN9j5YGbO1zntRWzAO6iaWUn4InMfM9+VZ1Cvan0jtFnW3GX6+j12oefvx\nBMeDwU3XXd8Ymj6V2q1x4zZ9ArB16khbj02y7krm63Lgt8B7k7wkyVYruZ6JhM5xJ8kmST6R5Dzq\nsfEGarB8B+r3OfXKktuldgH7DbUrzw3U1ogAffO9PbWlePB6a2feLtTf6F+GvqMjgQcluV3Lx1qp\nI2z9OslfWz5+0NZxL2bf10opw8fvPnkd5XcrrRQDCM2rUspNpZTvl1LeUkp5LLUJ+1Rgr24/1GY3\n4AJq96VhGwFrUZvTb+i8Lm3z79S29yfg58BOSe5MvZp7THvt2JbdqU3PaN3UG2AvmSBvE6WtjLtR\nK+s/TjSzlPI94B/acl8FLkvynSQPnME2ZjLa0WRl3XQG65ipQbeO4XxePDR/YHhfXdf+3gZWep9t\nQD3RmWhfXTxBHvoYjB5zjx7Lzuo+WEmztc7JygIrsS9LKX+h/v9eSO1e87vWP/+ZU3+S39Nv30M9\nHtyDFY8FN1C7TcHy48HAdPvqM9RuKQ+jnjT+MfXers175ge45V6px1Fbx94DnNn69P/zTNYzrN2X\ncGfad5R6n8dh1K6g76JecHko9SIQ9PsN/C/wcmrXwce1z79yBp8HOKmUcmLndU5n3kbA87n1d/SB\nNn/wHb2H2orwOerof9uxvMvpqvx/TGai3/m0eR3VdyutCu+B0IJSSrkw9SbnfalXoo7vzH4m8Eng\n2CSPLqV0b8C+nNot4O8nWfWFnffHUPuP79Q+9wvqgX2jJDtQW0U+0Vm+77ovovblHbbxBGkz0u6v\neCxwXJli5JFSyiHUlpL1qQHR+4BvJdmsTD8KEEzeujGRicq1MbUlaeA6avDVNXyCNRODk7G7sOL9\nBHcZmt/bSuyzP1H3010mmHeXlckDdfjWfaj32XxwmmVnfR+MSJ/vvluWYXcBTprh+iilnAI8s13F\n3ZZ6X8XBSR5USjltkrx+B3hckm1KKSdNsszA5cA51GPIRM6d5vPD+S3U480n2kWTx1N/A1+kBhVQ\njz8rlD3JRGX/LfD81JsDHgS8CvhoknNLKd+cSb46dqZ2Nfthm96Sul+fV0q5pRUsyVP6rCx14Ild\nqV2v9u2kP2Al8zeRy6ktCe+bZP7gmL0b8JlSyrs6+Vh/Btu5tn1mrVLK9Z30yY5xEx1fe+V1RN+t\ntNJsgdC8ydAoKx33bn+HR2i6gHqCtxpwzNDnv0W9YnT7oatSg1c3gPgusBn1hrhjS3Up9V6Ft1Mr\ny2NWYt0/Ae6W5JYuDO1q3WQnGr20CuP91CtVH+7zmVLKVaWUw6knJpuwvEK7jnqT5mx4VlYcdWYH\n6n79SWeZ86itPF1PmmBdffP1/fZ3+EbL57a/x/ZYx4Sm2GfDy11NPbH9h6w46sw9qDfrzjgPpZTj\nqb/LN2WSh2El2bW9HcU+uJ7Z+10M9Pnuz6C2Wq1QliR/R73Kf+wM13eLUsqNrTvhW6nHjPtMtizw\nKeo9WB9pXdRWkDrq0mPb5LeoLVZXTXI8+MMU25lSKeVPpZQvUrs9dss607KXFki9tiUNf7aX1IfI\nvZ96ceQLLXnQxeqGznJrsvz31zXR72pt6jF2eKCFPVYmj5P4FvVG9F9O8h0NWoHWnSAfL5hgfZMd\nn85rf2/Zv60b5EyG/O2bV2D2vltpVdkCofl0WpLvUPt/ngPcjjqqxMuBg0spvxv+QCnloiQ7Uk+2\njmktEReWUo5N8nnqleQPUVsubqbevPZE4A1l+ShPP6COgvIYljebQw0aXgX8rnTGv5/Bug+kjkDy\nlSRvonZxenkrV19rdQKQdVn+ILmHU29GnPRJxkneQW0BOIZ61Woz6ihAp5T6PAWoNz6/Isk/Uq9e\nX1lKOWMG+eu6LfC1JJ+gjr7yHmof9M90lvkC8JYkbwaOo7biPGd4RX3zVUo5rX0Xe7crzD+m7pu3\nAp8vpZw6/Jmp9NxnE3krtW/74alDhK5PDT7/wvQtCJPZnXol/IQk/8XyB8ndmzra0ZrU0cpmdR80\npwNPSvItagvLhUNB98qY9rsvpdyU5G3Uq++fo3Yl2ZTaGnMWKz64a9r1JXkydYSbr1GPKetRv88r\nWTGwXUEp5Y+tm9NhwM/a/h88SG476v/xIdTv5yDqSebRqc+H+Dm1dWBL6kMgn1Zm8LyEJJ/s5O9S\n6uASz2P5PVaDsu+f5MPUEZ0exNAJd+t2ty+15eJs6kn6HtQRlPo8yG3TduxZjdp1bHvqwBABnlJK\n+Wtb7lfUE+d9ktxEPQGf7AF7E/6ukhwHvC7JRdTA7YXMbtfHt1GP099P8hFqq9AG1JPte5ZSBk+V\n/hZ1JMBTqfvsGUx88j/Z8emb1P/5/0myFzU4+neg98hhffI6C9+tNPvKAriT29d4vqiV8mHUyuha\n6j0GJ1MPwGt1ltuDNgpTJ20j6r0SZwKbtrTVqEOv/ryt7y/t/fuprQfdbf+UzkhLLW0wQtMBE+S1\n17qp93AcAVxDHVljX2pLxy0jCU2xPw5g+YgiN1NPKn5FHaVj+wmW36O7XuoVySOpVwuvo/br/jQr\njoxzl5a/K+mMpjPRPh7K17md6c3bsq8APtTKeQ31hHqLoc/epu2Di9o2v0g9Ibtl5Jye+dq8s+xa\n1L7X51FPXs5r02tOkMcXD+Vnx5a+Y999NsX3tQv1pO+v7fdwKHCvoWV6jcLUWX596jCSJ1P/H66j\nXqXfl3oyMev7oKXtQG1VuZYVR/aZ7Lvvs85e331bdnfq/9N11C4dnwU2melviRpwf5EaPFxL/W0e\nATys5/6/B3VUpMHNvVdRb3LeE7jdUF72Bn7dlvtjW25v2shcnX3y2Gn+b5dRW1oubes6h9rS2N3e\natQTzfOo/2tHUgOW7ne1EfUixpltmT8C3wN27lHu7mhGN1BP6n9IHdlrwwmW37rNv4Y6cMI7qM/S\nGP5fnex3tTn15PvKVu6PUP8XV/gNTZLXvdtya0yz3GbUlqULqIH4RdSRjXbvLHNnanD2p/Y6iHo/\nRq/jU5v3iPbdX9P2/e70/L/pm9dV+W59+RrVazCMnCRJkiRNy3sgJEmSJPVmACFJkiSpNwMISZIk\nSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAoQklOSDJ4bOw\nnr2TnDYbeZpmO5snKUm2HfW2xl2SPZJcNaJ1H5vkI53pc5O8fkTbGlk5pHEwl/XEbG1LozPK+n64\nLmj1/bNGtK05OW9Z7AwgFoF24Nx7jjf7amD3Th5WOLFbgH4PbAKc0vcDSXZMcu40y5zbDlTd159X\nMa/D25j3fdv2xaB8Nye5IskvkuybZIuhxb8I3LPnemca2D0DeONM8t4zHxNVNr3LIS101hOzp11c\nOHaaZYbrhZKkd/3TMx8ju4Aygzzs0SnfTUn+nOTEJPsk2Who8f8AHtVzvYM65849s/JQ4KMzyXuP\nPExWP/UuxzhbY74zoIWplPKX+c7DTJRSbgIuHtHq3wF8rDN984i2s8qSrFlKuWEVVnE/4I/A+sCD\ngNcApyZ5UinlewCllL8Cf13lzHYkWauUcn0p5Y+zud6pjKIc0jhZbPXECLwE6LaKrMqxd2SSrAak\n1ZMr4xpgSyDA7agn828AXpLkUaWUXwGUUq4CZrVVt1M3XDab653KKMqxFNkCsQglWSvJu5Ocl+S6\nJL9N8q9t3upJPp3knCR/TXJWkn9vB5DB5w9IcniStyS5JMlVSf43yTrDywzeU6PxV3auRGzeZ1s9\ny7Neks+0fFyU5P+1/B3QWWb3JCckuTLJpUm+lGTTzvwVriR0rm48JslPk1zTrpo8ZCV2+ZWllIs7\nr0s72719kk+2PF2Z5HvdqxlJ7pTk80nOb/vol0le0Jk/2b691dWZKcr4xCTHJ7ke2LnNe0qSk5Jc\n276ffZKs1aOsl7Yynl1K+TKwI3AysH+S1du6V+j6k+RuSQ5N8se2n3+dZLc2+5z294SW12MH5W7f\n8RuSnA+c39InuoK5fpLPtd/HxRm6IpcJWhfSuXKX5a1MX2rLnjtROVray5KcneT69vclE2zrpe33\nd3X739sdaYHJEqsnJijf2kn+s+Xt2iTHJXlEZ/6aSfZLcmEr/++TvLcz/xmprax/bceu7yXZeIbZ\n+PNQ3XB5Z/2bJvlCkj+11zeSbNWZv2U7bl7cjiU/S/LkzvxjgXsAHxjsz5Y+0XFrhfpisEyrG04D\nrgfu0+a9IMnpbZ+dmeTfenwXpZXvolLKGaWUzwEPB/4MfLyTjxW6/iR5QJKjU1u0r0ry8yQ7Jdkc\nOKYtdlnL+wGDcif5WJL/SHIZ8KOWPlFrzF3afr2m/c67rWETti5kxfpisvppuByrJXlr+w1dl+TU\nJLtOsK1nJjmq5ef0JI+bZr8uagYQi9OBwPOB11IPCsuAP7V5qwEXAM9u894MvAl4wdA6HkW9wvwY\n4JnA44H3TbK9VwM/Af6X2k1oE2qXob7bms4HW36eDjwW2Ab4+6Fl1gL2anl+MnBn4PM91v0eYE/g\nIcDlwEFJMsP8Tait5xvApi1PDwa+D3w3ySZtsdsAP2vz7wfsC3wiyWPa/Mn27Uy8D3gLcG/gp0l2\nBg4CPtK2+ULgWcC7Z1rGdsXqw9SuPg+eZLGPAusCO7XtvYZasQBs1/7uQi3bMzqfexTwwDbvMUzu\ntcCvqN/hXsC7kzxjiuWHPbT9fUnLw0MnWijJ06n77D+B+1O/q48mecrQom8DDqX+Fr9IDa7uPoP8\nSHNhqdUTw94P/CP1+PZg4FTgW51j779S65TdgK3asmcAJLkL8AXqProP8Ejgs6uYn1skWZd6gnwt\ndR8+HLgI+E6bB7WV95vA46j7+MvAV5Lcu81/BvXCyjtYvj9n4jbAW4GXAfcFzku9IPJu6jHsPsDr\nqC0Jr5hpGdtV+o8Dj0yy4SSL/R+13NsBWwN7U/fJ76m/J6h1xibU38/A7tTWjr+n/oYn83bgsLbu\nTwKfGQ4YpjFV/dT1auD/UffVA4CvUr+rrYeW2wfYj/p9ngB8Icn6M8jP4lJK8bWIXtQDYQF2mcFn\n3gt8pzN9APUEb/1O2u7AdcB6nWUO78w/FvjISmxrb+C0KZZfn3p1ZLdO2nrUiu6AKT5377YfNmvT\nm7fpbdv0jm16585nduh+pue+O7ftl6s6rze1eY9u0+sMfeYU4N+nWOcXgE9NtW87+b9zJ22yMj5z\n6LPfB946lPa0ltdMkqdbbW+Cff3sNr0HcFVn/i+AvSZZ7wp5HvoNXgasPZS+wr5o+/+ooWU+Bfyw\nM12AZ03wvb1+mmWGy/EjYP8J8jm8rfd0ptegNu/v3vc35cvXqF8ssXpieFvUOuJ64Pmd+asDvwHe\n1ab3A46e6JhHvRhRgHuswj4u1C6Q3brhuW3eC4Gzuttu+bt8cBydZJ3HAW/pTK9wHGtpKxy3WtqO\ndI7fbZkCbDO03O+A5w2lvQY4fYo83Wp7nXm7tO1sN9H3CFwBLJvksyvkeeg39IsJll9hX7TP/s/Q\nMt8BPtfeb87Edc8tdcEUywyX4wLgbRPkc3hbL+vM37SlPWJlf2ML/eU9EIvPg6l98I+ZbIEkLwde\nTG3+XAdYEzhvaLFflHoFYeAn1Kv8W1JPCHvpua3Bsn9PveIy8DLgtPaZ4weJpZSrMzQCQmrXo72o\nVxruSL06AXB3WveXSXTLcmH7u9E0nxn2IeDTnelBP/1tqFfeLxtq1LgNdT+S2u1nT+rVr02Btan7\n+dgZbH86Jw5NbwNsl+QNnbTVqN/PXahXhGZiULgyyfx9gY8n2YVaYX+1lHJSj/WeVkq5rsdyP5lg\neiYtEH3dB9h/KO2HwFOH0m75TZVSbmzN7MM3E0rzaUnVE6WUg4YW27Kt40eDhFLKTUl+Qr3aDjXg\nOAo4M8m3gSOAb5ZSbgZ+Tj3ZPK3N+w5wSJl5P/v/B3yrM31J+7sNsAVw5VDdsC7L64b1qHXak6lX\nv9ek1h299+s0bqQzqEhrJbgbtQW8e0/fGiw/xs/UdHXDh4BPJVlGrRu+XEr5dY/19qk/YOK64Uk9\nP9tLktsBd6XzW2t+CDxxKG2y840lyQBiiUnyj9QuGK8Hfky9AvBKalPufG/rRGoAMHAJPUbBaQfa\nI6kH+ecBl1K7MP2AWplNpXtT2+AgN9Oue5eXUs6eIH01ahmGu1tB3RdQ983rqE2gp1KvUr2b6Q8q\ngxu1uwf2NSdZ9uoJ8vV24EsTLLsyN6INKuTfTjSzlPLpJEdSD6aPBX6c5D2llL2nWe9wvldW4dYV\n4GT7amXX3zV8o2TB7qBaRBZhPTET9TJzKT9rfe13pnbBOhD4eZLHtWDj8cD21G5ZLwLek3pD8M9n\nsK2Lp6gbTqF2nxo2uAD1H9Qr+K+ntlZcA3yG6eu0m+l3vLuurHjT9OAY9XLq9zAb7kvd3+dONLOU\nsneSg4AnUL+HvZK8vJQyfKFm2GzUDbeqQ5PMZr0AU9QNpZTSgsclWzcYQCw+p1B/kDux4pWPgUcA\nPy2ldMfS33KC5R6QZL1SyuAfdXtqk/BvJtnu9dQm2JXZFnDLqDcrHGyT/Ib6T/dQ2glq6yN6/05e\n7k0NGN5USjmnLTOKK9Az9TNgY+DmUsqEJ9fUffT1Uspn4Zb7Jv6W5fcIwMT7dnCiv0nn/XB/y6ny\nde9JKrYZaS0or6F+F5MOUVhKOZ/aB/WTreXj1dRm4OvbIsPlm4ntJ5j+VWf6Mjr9g1NvhBzuL3xD\njzz8itrNrdva9Ajg9JlkVloAllQ9MYHftG3tMMhLO1Y9nNrvfrCuK4FDgEPaTbrHAX8DnFlqP5Of\nAD9J8g7gl9SW4pkEEJP5GfAc4A+llMmG/X4E8JlSB6sgyaDl+szOMpPVDesmuV0pZXChatq6oZRy\nSZILgS1LKZ/pX5SJtb79Lwe+N1XLTSnlLGqAtF9r+XgxtaV3tuqG/YemB3VDtw4dGN5P0+ahlHJF\n2287UFtRBsa+bjCAWGRKKWcmOZjaLPhq6oFqM2DzdpJ6JrBHkidQD8K7UW/i+tPQqtag3vz5Dmrz\n3Hup/Qkni/zPpXaL2Zx6Ff2PM9jWVOW5Ksn+wPuS/IHaveYt1MpvEN3/jtrv9lVJ/pva1eSdfbcx\nQt+hNmsemuTfgV9TuwjtQu3f+wPqPvrH1NFB/gD8C7Vp++TOes7l1vv2bOqNZnsn2ZPax/ItPfP1\nDuDwJOcBB1Obsu9P7af679N8dqMka1DvTXkg8G/U7hBPLJMMAZhkX2qXgzOpQ/ztwvID66XUfsI7\np45+dG2Z+dCP2yd5I/VEYEfqTXXP7cz/LnXklx8DN1FbeK4dWse5wGOSfI96ZW6i3+gHqCM1nQR8\nu5XjuYymu5Q0MkutnpigfFe3k9FBvXEO9Vi1Me1ZAUleS61PTqFeQPgnauvH+Um2p7aWHklt4Xgw\ntXvPbJ0QHkRtWTg0yduoddjdgF2Bj7eT6jOBpyc5tOVvL2oXpq5zgb9P8jnqcesPwE+pV+jfk+TD\n1Bt2+94EvRfwX6nPMjqC2nLxEGDTUsp7pvhc2o3nALdn+TCut+fWXTwHH1iH2srypVaOjWnBZFvk\nPGod/6QkXwf+OtRdro9nJDmB2iX4WdSWpodBDUSTHAe8oV2ovD11UJWuvvXTB4B3JDmL2r1qd2rP\ng5UZ1XHJWLJNK0vc86lXWfajnrQeQP3nAPgE9aTx/6ijAGxOHeVo2PeoV1yOoY4o8F1gqpPL/6BG\n66dTI/u7z2Bb03k9tTvSYS0/p1Kbsa8FaFc3llFvBD6dehB87UpsZ1a1K1hPpO67/6GO8HEwcC+W\n9398F/X+jm9Sb26+mlq5dN1q35b6LIfdqF28fk7tkvSmnvk6ktoPdKe27eOp92H8rsfHf0mtdE+m\nBiInAw8Y0nTYAAAfqUlEQVQspXx/is+sBvxXy/9R1Ap5WcvLjdTRUF5M3SeH9inDkA9Rg5mTqfvz\nbaWUQzrzX0dtvTqWGmR8iloxMLTMTtSg7GQmUEr5GjXA+7dWllcDryilfH0l8izNt6VWTwx7A3UU\ntP+lBgkPpN40PrjH60rqPQrHUwOorYEnlFKuAf5CvaJ8OPXq+AeBd5Y6POkqa9t4JPW49CXq/j8Q\n2IDlgdNrqcepH1Drh+Pa+663UQOP39CuqJf6rJznUkdvOhV4KXW0pT75+hT1Bu/nUeuVH7TPnzPN\nR9el1gsXUvfna4GvA/cv7RkQE7iJWt4DqHXjV6ktPq9tebmAWpfvQ60zVuYBhHtTR3P6BfDPwAtK\nKSd05r+w/T2B+jtc4SLcDOqn/ahBxPup920+nTp4yWy0Vi1aqedAGietKffOpZQnT7fsfEiyNvXq\nxAdKKbNR0UiSZmCh1xOS5pddmDTvkjyY2i3peOC21CtLt6VeXZIkSdICMm9dmJIclOSMJKcl2X9w\nd3yq/VKfAvuLdJ4cnGSX9pmzW7/wQfodU5/+d1b7u8F8lEmr5LXUriXfpfaVfGS7MVfSmLF+kKSF\nbWQBRI+D9EHU0XUeQB0X+sUt/QnUh+BsRe2b97G2vtWB/27z7ws8J8lgeMk9gaNLKVtR75K/pfLQ\nrZVS9lhIzdKllJNLKduWUm5bStmglLJTz+cISFqErB8WvoVWT0haWEbZAnFiu4r06DZ05QpKKUeU\nhtp1ZbM2a1fq0GallHIccIfUR9NvB5xdSvltKeV66tN8d+185sD2/kDqzbaSpIXJ+kGSFrFR3gPx\nt9SrQa8C/jvJZ4EDSikXdhdqTdPPo454AvVpvb/vLHJ+S5so/WHt/cadkRcupnaBuZUkL6VetWK9\n9dbb5t73vveMC3XS5ZfPaPlt7nSnGW9DkkbppJNO+kMpZcN5zMKSrB9gZnWE9YOkhaZv/TCyAKKN\nGX84dTz6Danj7/4uyd+VUo7vLPpR4PttzPzZ2G5JMuHQUqWUT1IfdsW2225bTjzxxBmvPwceOP1C\nHScuWzbjbUjSKLVnhMybpVo/wMzqCOsHSQtN3/phpKMwJbk9dSz7PahjQ7+QOl7vYP5ewIbAyzof\nu4A67vHAZi1tzUnSAS5Jskkp5aLWnD08BrwkaQGxfpCkxWuUN1F/jvrwli2A55dSHlVK+Uwp5do2\n/8XAzsBzSik3dz56GPD8NtrG9sBfWvPzCcBWSbZIsha14jms85nBpZxlrNzDqiRJc8D6QZIWt1G2\nQBwM7NGe9DeRj1MfFvaTdg/dV0op76A+Xv2J1EfeXwO8AOoTA5O8ivro+dWB/Uspv2zrei9wcJIX\ntXU+ezRFkiTNAusHSVrERnkPxGHTzJ9w223UjVdOMu8IagUynH458JiVyKYkaY5ZP0jS4jZvD5KT\nJEmStPgYQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3\nAwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1ZgAhSZIk\nqTcDCEmSJEm9GUBIkiRJ6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJ\nkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYA\nIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1\nZgAhSZIkqTcDCEmSJEm9GUBIkiRJ6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmS\nJPVmACFJkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAk\nSZIk9WYAIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN4M\nICRJkiT1Nq8BRJL9k1ya5LRO2t5JLkhySns9sTPvjUnOTnJGkp076dskObXN2y9J5roskqTZY/0g\nSQvXfLdAHADsMkH6h0spW7fXEQBJ7gvsBtyvfeajSVZvy38MeAmwVXtNtE5J0uJxANYPkrQgzWsA\nUUr5PvDHnovvCnyhlHJdKeUc4GxguySbALcrpRxXSinAZ4CnjSbHkqS5YP0gSQvXGvOdgUn8S5Ln\nAycCryul/AnYFDius8z5Le2G9n44fUHIgQfOaPmybNmIciJJS8KSqR8kabGa7y5ME/kYcE9ga+Ai\n4IOzteIkL01yYpITL7vsstlarSRpblg/SNICsOACiFLKJaWUm0opNwP/A2zXZl0A3K2z6GYt7YL2\nfjh9onV/spSybSll2w033HD2My9JGhnrB0laGBZcANH6rA48HRiMwHEYsFuStZNsQb0Z7vhSykXA\nFUm2b6NrPB84dE4zLUkaOesHSVoY5vUeiCSfB3YE7pzkfGAvYMckWwMFOBd4GUAp5ZdJDgZOB24E\nXllKuamt6hXUETvWAb7ZXpKkRcr6QZIWrnkNIEopz5kg+dNTLL8PsM8E6ScC95/FrEmS5pH1gyQt\nXAuuC5MkSZKkhcsAQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMI\nSZIkSb0ZQEiSJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3\nAwhJkiRJvRlASJIkSerNAEKSJElSbwYQkiRJknozgJAkSZLUmwGEJEmSpN6mDSCS7JBkvfZ+9yQf\nSnKP0WdNkrSQWT9I0njq0wLxMeCaJA8CXgf8BvjMSHMlSVoMrB8kaQz1CSBuLKUUYFfgI6WU/wZu\nO9psSZIWAesHSRpDa/RY5sokbwR2Bx6ZZDVgzdFmS5K0CFg/SNIY6tMC8Y/AdcCLSikXA5sBHxhp\nriRJi4H1gySNoWlbIFql8KHO9O+wj6skjT3rB0kaT5MGEEmuBMpk80sptxtJjiRJC5r1gySNt0kD\niFLKbQGSvBO4CPgsEOC5wCZzkjtJ0oJj/SBJ463PPRBPLaV8tJRyZSnlilLKx6gjbkiSxpv1gySN\noT4BxNVJnptk9SSrJXkucPWoMyZJWvCsHyRpDPUJIP4JeDZwSXv9Q0uTJI036wdJGkNTjsKUZHXg\n6aUUm6QlSbewfpCk8TVlC0Qp5SbgOXOUF0nSImH9IEnjq8+TqH+U5CPAF+n0bS2l/GxkuZIkLQbW\nD5I0hvoEEFu3v+/opBXg0bOfHUnSImL9IEljqM+TqHeai4xIkhYX6wdJGk/TjsKU5PZJPpTkxPb6\nYJLbz0XmJEkLl/WDJI2nPsO47g9cSR2q79nAFcD/jjJTkqRFwfpBksZQn3sgtiylPLMz/fYkp4wq\nQ5KkRcP6QZLGUJ8WiL8mecRgIskOwF9HlyVJ0iJh/SBJY6hPC8Q/Awd2+rX+CdhjZDmSJC0W1g+S\nNIb6jMJ0CvCgJLdr01eMPFeSpAXP+kGSxlOfUZjeneQOpZQrSilXJNkgybvmInOSpIXL+kGSxlOf\neyCeUEr582CilPIn4Imjy5IkaZGwfpCkMdQngFg9ydqDiSTrAGtPsbwkaTxYP0jSGOpzE/VBwNFJ\nBmN7vwA4cHRZkiQtEtYPkjSG+txE/b4kPwce25LeWUo5crTZkiQtdNYPkjSe+rRAAPwKuLGU8p0k\n6ya5bSnlylFmTJK0KFg/SNKY6TMK00uAQ4BPtKRNga+NMlOSpIXP+kGSxlOfm6hfCewAXAFQSjkL\n2GiUmZIkLQrWD5I0hvoEENeVUq4fTCRZAyijy5IkaZGwfpCkMdQngPhekjcB6yR5HPAl4OujzZYk\naRGwfpCkMdQngNgTuAw4FXgZcATwllFmSpK0KFg/SNIY6jOM683A/7QXAEl2AH40wnxJkhY46wdJ\nGk+TBhBJVgeeTR1V41ullNOSPBl4E7AO8OC5yaIkaSGxfpCk8TZVC8SngbsBxwP7JbkQ2BbYs5Ti\nMH2SNL6sHyRpjE0VQGwLPLCUcnOS2wAXA1uWUi6fm6xJkhYo6wdJGmNT3UR9fevfSinlWuC3Vg6S\nJKwfJGmsTdUCce8kv2jvA2zZpgOUUsoDR547SdJCZP0gSWNsqgDiPnOWC0nSYmL9IEljbNIAopRy\n3lxmRJK0OFg/SNJ46/MgOUmSJEkCDCAkSZIkzcCkAUSSo9vf941q40n2T3JpktM6aXdMclSSs9rf\nDTrz3pjk7CRnJNm5k75NklPbvP2SZFR5lqRxZ/0gSeNtqhaITZL8HfDUJA9O8pDua5a2fwCwy1Da\nnsDRpZStgKPbNEnuC+wG3K995qPtaagAHwNeAmzVXsPrlCTNHusHSRpjU43C9DbgrcBmwIeG5hXg\n0au68VLK95NsPpS8K7Bje38gcCzwhpb+hVLKdcA5Sc4GtktyLnC7UspxAEk+AzwN+Oaq5k+SNCHr\nB0kaY1ONwnQIcEiSt5ZS3jmHedq4lHJRe38xsHF7vylwXGe581vaDe39cLokaQSsHyRpvE3VAgFA\nKeWdSZ4KPLIlHVtKOXy02bpl2yVJma31JXkp8FKAu9/97rO1WkkaS9YPkjSeph2FKcl7gFcDp7fX\nq5O8e4R5uiTJJm3bmwCXtvQLgLt1ltuspV3Q3g+n30op5ZOllG1LKdtuuOGGs55xSRon1g+SNJ76\nDOP6JOBxpZT9Syn7U29Ae/II83QYsKy9XwYc2knfLcnaSbag3gx3fGvOviLJ9m10jed3PiNJGh3r\nB0kaQ9N2YWruAPyxvb/9bG08yeepN8TdOcn5wF7Ae4GDk7wIOA94NkAp5ZdJDqZe5boReGUp5aa2\nqldQR+xYh3pznDfISdLcsH6QpDHTJ4B4D3BykmOAUPu67jkbGy+lPGeSWY+ZZPl9gH0mSD8RuP9s\n5EmS1Jv1gySNoT43UX8+ybHAQ1vSG0opF480V5KkBc/6QZLGU68uTK0f6WEjzoskaZGxfpCk8dPn\nJmpJkiRJAgwgJEmSJM3AlAFEktWT/HquMiNJWhysHyRpfE0ZQLRh8M5I4mM5JUm3sH6QpPHV5ybq\nDYBfJjkeuHqQWEp56shyJUlaDKwfJGkM9Qkg3jryXEiSFiPrB0kaQ32eA/G9JPcAtiqlfCfJusDq\no8+aJGkhs36QpPE07ShMSV4CHAJ8oiVtCnxtlJmSJC181g+SNJ76DOP6SmAH4AqAUspZwEajzJQk\naVGwfpCkMdQngLiulHL9YCLJGkAZXZYkSYuE9YMkjaE+AcT3krwJWCfJ44AvAV8fbbYkSYuA9YMk\njaE+AcSewGXAqcDLgCOAt4wyU5KkRcH6QZLGUJ9RmG5OciDwU2rT9BmlFJuoJWnMWT9I0niaNoBI\n8iTg48BvgABbJHlZKeWbo86cJGnhsn6QpPHU50FyHwR2KqWcDZBkS+AbgBWEJI036wdJGkN97oG4\nclA5NL8FrhxRfiRJi4f1gySNoUlbIJI8o709MckRwMHUPq7/AJwwB3mTJC1A1g+SNN6m6sL0lM77\nS4BHtfeXAeuMLEeSpIXO+kGSxtikAUQp5QVzmRFJ0uJg/SBJ463PKExbAP8CbN5dvpTy1NFlS5K0\n0Fk/SNJ46jMK09eAT1OfLnrzaLMjSVpErB8kaQz1CSCuLaXsN/KcSJIWG+sHSRpDfQKIfZPsBXwb\nuG6QWEr52chyJUlaDKwfJGkM9QkgHgA8D3g0y5uoS5uWJI0v6wdJGkN9Aoh/AO5ZSrl+1JmRJC0q\n1g+SNIb6PIn6NOAOo86IJGnRsX6QpDHUpwXiDsCvk5zAin1cHaZPksab9YMkjaE+AcReI8+FJGkx\nsn6QpDE0bQBRSvneXGREkrS4WD9I0njq8yTqK6mjagCsBawJXF1Kud0oMyZJWtisHyRpPPVpgbjt\n4H2SALsC248yU5Kkhc/6QZLGU59RmG5Rqq8BO48oP5KkRcj6QZLGR58uTM/oTK4GbAtcO7IcSZIW\nBesHSRpPfUZhekrn/Y3AudRmaknSeLN+kKQx1OceiBfMRUYkSYuL9YMkjadJA4gkb5vic6WU8s4R\n5EeStMBZP0jSeJuqBeLqCdLWA14E3AmwgpCk8WT9IEljbNIAopTywcH7JLcFXg28APgC8MHJPidJ\nWtqsHyRpvE15D0SSOwKvBZ4LHAg8pJTyp7nImCRp4bJ+kKTxNdU9EB8AngF8EnhAKeWqOcuVJGnB\nsn6QpPE2VQvE64DrgLcAb64PGQUg1JvkbjfivEmSFibrB42FHHjgjJYvy5aNKCfSwjLVPRAzekq1\nJGk8WD9I0nizEpAkSZLUmwGEJEmSpN4MICRJkiT1NuUwrlrYvLlLkiRJc80WCEmSJEm9GUBIkiRJ\n6s0AQpIkSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEiS\nJEnqzQBCkiRJUm8GEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKm3BRtAJDk3yalJ\nTklyYku7Y5KjkpzV/m7QWf6NSc5OckaSnecv55KkUbJ+kKT5tWADiGanUsrWpZRt2/SewNGllK2A\no9s0Se4L7AbcD9gF+GiS1ecjw5KkOWH9IEnzZKEHEMN2BQ5s7w8EntZJ/0Ip5bpSyjnA2cB285A/\nSdL8sH6QpDmykAOIAnwnyUlJXtrSNi6lXNTeXwxs3N5vCvy+89nzW9oKkrw0yYlJTrzssstGlW9J\n0mhZP0jSPFpjvjMwhUeUUi5IshFwVJJfd2eWUkqSMpMVllI+CXwSYNttt53RZyVJC4b1gyTNowXb\nAlFKuaD9vRT4KrXJ+ZIkmwC0v5e2xS8A7tb5+GYtTZK0xFg/SNL8WpABRJL1ktx28B54PHAacBiw\nrC22DDi0vT8M2C3J2km2ALYCjp/bXEuSRs36QZLm30LtwrQx8NUkUPP4f6WUbyU5ATg4yYuA84Bn\nA5RSfpnkYOB04EbglaWUm+Yn65KkEbJ+kKR5tiADiFLKb4EHTZB+OfCYST6zD7DPiLMmSZpH1g+S\nNP8WZBcmSZIkSQuTAYQkSZKk3hZkFyZJkqTZlgMPnH4hSdOyBUKSJElSb7ZASJIkzYKZtHCUZcum\nX0haoGyBkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEiSJEnqzQBCkiRJUm8G\nEJIkSZJ6M4CQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3AwhJkiRJvRlASJIkSerNAEKSJElS\nbwYQkiRJknozgJAkSZLUmwGEJEmSpN4MICRJkiT1ZgAhSZIkqTcDCEmSJEm9GUBIkiRJ6s0AQpIk\nSVJvBhCSJEmSejOAkCRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb2tMd8ZkCRVOfDA\n3suWZctGmBNJkiZnC4QkSZKk3gwgJEmSJPVmACFJkiSpN++BWGBm0gdakiRJmmu2QEiSJEnqzQBC\nkiRJUm8GEJIkSZJ68x4ISZK0aHnvoDT3bIGQJEmS1JsBhCRJkqTeDCAkSZIk9WYAIUmSJKk3AwhJ\nkiRJvTkKkyRJ0gI309GmyrJlI8qJZAuEJEmSpBmwBUKSJGmO+fwKLWa2QEiSJEnqzQBCkiRJUm8G\nEJIkSZJ6M4CQJEmS1JsBhCRJkqTeHIVJs8LxqSVJksaDLRCSJEmSejOAkCRJktSbXZgkSZKWmJl0\nLbZbsWbKAEKT8imZkiRJGmYXJkmSJEm9GUBIkiRJ6m3JdGFKsguwL7A68KlSynvnOUuSpAXA+mFx\nsfustPAtiQAiyerAfwOPA84HTkhyWCnl9PnNmSRpPo1r/eCzeSSN0pIIIIDtgLNLKb8FSPIFYFdg\nSVcQkqRpLdj6YVxO8m1RWHoc4UlLJYDYFPh9Z/p84GHzlBeNwCgPVuNSiUtjyvphBAwK1NdirmMX\nc95HLaWU+c7DKkvyLGCXUsqL2/TzgIeVUl41tNxLgZe2yXsBZ6zE5u4M/GEVsruYjEtZLefSYjmn\nd49SyoazmZmFao7rBxif39903A/LuS+Wc18st1D3Ra/6Yam0QFwA3K0zvVlLW0Ep5ZPAJ1dlQ0lO\nLKVsuyrrWCzGpayWc2mxnBoyZ/UD+L0MuB+Wc18s575YbrHvi6UyjOsJwFZJtkiyFrAbcNg850mS\nNP+sHyRpli2JFohSyo1JXgUcSR2mb/9Syi/nOVuSpHlm/SBJs29JBBAApZQjgCPmYFOr3MS9iIxL\nWS3n0mI5tYI5rB/A72XA/bCc+2I598Vyi3pfLImbqCVJkiTNjaVyD4QkSZKkOWAAMQNJdklyRpKz\nk+w53/npI8ndkhyT5PQkv0zy6pZ+xyRHJTmr/d2g85k3tjKekWTnTvo2SU5t8/ZLkpa+dpIvtvSf\nJtl8rsvZ8rF6kpOTHN6ml1wZW17ukOSQJL9O8qskD1+KZU3yb+03e1qSzye5zVIoZ5L9k1ya5LRO\n2pyUK8myto2zkozPgOVzIIuwfpipUf92F4vMQb26WLTj8vFJft72xdtb+tjtCxjteciCU0rx1eNF\nvfnuN8A9gbWAnwP3ne989cj3JsBD2vvbAmcC9wXeD+zZ0vcE3tfe37eVbW1gi1bm1du844HtgQDf\nBJ7Q0l8BfLy93w344jyV9bXA/wGHt+klV8a2/QOBF7f3awF3WGplpT786xxgnTZ9MLDHUign8Ejg\nIcBpnbSRlwu4I/Db9neD9n6D+fodL6UXi7R+WIlyjvS3u1hezEG9ulheLd/rt/drAj9t5Rm7fdHK\nMLLzkIX2mvcMLJYX8HDgyM70G4E3zne+VqIchwKPoz4kaZOWtglwxkTloo5c8vC2zK876c8BPtFd\npr1fg/pglMxxuTYDjgYe3fnHXVJlbNu+PfXEOkPpS6qsLH968B1bHg4HHr9UyglszoonYSMvV3eZ\nNu8TwHPm+je8FF8skfqhZ1lH9ttdrC9GUK8uxhewLvAz6pPex25fMOLzkIX2sgtTf4MTmoHzW9qi\n0boyPJh6hWDjUspFbdbFwMbt/WTl3LS9H05f4TOllBuBvwB3mvUCTO0/gX8Hbu6kLbUyQr1ScRnw\nv62Z9FNJ1mOJlbWUcgHwH8DvgIuAv5RSvs0SK2fHXJRr0R/DFrBx3rez+dtddEZYry4ardvOKcCl\nwFGllHHdF6M+D1lQDCDGRJL1gS8DrymlXNGdV2qYW+YlY7MgyZOBS0spJ022zGIvY8ca1C4EHyul\nPBi4mtoseoulUNbWT3RXasB0V2C9JLt3l1kK5ZzIUi2Xlr5x++0u5Xp1JkopN5VStqZegd8uyf2H\n5i/5fTFm5yGAAcRMXADcrTO9WUtb8JKsST3IHVRK+UpLviTJJm3+JtQrBzB5OS9o74fTV/hMkjWo\n3Wwun/2STGoH4KlJzgW+ADw6yedYWmUcOB84v13hATiEGlAstbI+FjinlHJZKeUG4CvA37H0yjkw\nF+VatMewRWCc9+1s/nYXjTmoVxedUsqfgWOAXRi/fTEX5yELigFEfycAWyXZIsla1JsTD5vnPE2r\n3b3/aeBXpZQPdWYdBixr75dR+3AO0ndLHcllC2Ar4PjWBHdFku3bOp8/9JnBup4FfLdF2nOilPLG\nUspmpZTNqd/Ld0spu7OEyjhQSrkY+H2Se7WkxwCns/TK+jtg+yTrtvw9BvgVS6+cA3NRriOBxyfZ\noLXwPL6ladUtyvphlszmb3dRmKN6dVFIsmGSO7T361DvBfk1Y7Yv5ug8ZGGZ75swFtMLeCJ1tIXf\nAG+e7/z0zPMjqE1mvwBOaa8nUvtEHw2cBXwHuGPnM29uZTyDzt3/wLbAaW3eR1j+IMLbAF8CzqaO\nHnDPeSzvjiy/eWmplnFr4MT2nX6NOqLOkisr8HZqRXQa8FnqaBWLvpzA56n3ddxAbVF60VyVC3hh\nSz8beMF8/YaX4otFWD+sRBlH+ttdLC/moF5dLC/ggcDJbV+cBrytpY/dvuiUY0dGcB6y0F4+iVqS\nJElSb3ZhkiRJktSbAYQkSZKk3gwgJEmSJPVmACFJkiSpNwMISZIkSb0ZQEirIMkxSXYeSntNko9N\n8ZmrRp8zSdJ8sn7QUmYAIa2az1MfGtO1W0uXJI0v6wctWQYQ0qo5BHhSe/osSTYH7gqcnOToJD9L\ncmqSXYc/mGTHJId3pj+SZI/2fpsk30tyUpIjk2wyF4WRJM0a6wctWQYQ0ioopfyR+rTfJ7Sk3YCD\ngb8CTy+lPATYCfhgeyz9tJKsCfwX8KxSyjbA/sA+s513SdLoWD9oKVtjvjMgLQGDZupD298XAQHe\nneSRwM3ApsDGwMU91ncv4P7AUa1OWR24aPazLUkaMesHLUkGENKqOxT4cJKHAOuWUk5qTc0bAtuU\nUm5Ici5wm6HP3ciKrYCD+QF+WUp5+GizLUkaMesHLUl2YZJWUSnlKuAYalPy4Oa42wOXtsphJ+Ae\nE3z0POC+SdZOcgfgMS39DGDDJA+H2mSd5H4jLYQkadZZP2ipsgVC/7+dOzZBAIaiKPr+BC7nYOIO\nIthYuIZgoYKdhVvYxEJBsPqFIso5ZSCQFCFcCOE9lknWef64sUiyqap9km2S0+uEMcalqlZJDknO\nSXaP8WtVTZPMq2qS+zmdJTl+fBcAvJv7gb9TY4xvrwEAAPgRnjABAABtAgIAAGgTEAAAQJuAAAAA\n2gQEAADQJiAAAIA2AQEAALQJCAAAoO0Ga7UEP7pgqRcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Split the data into features and target label\n", + "income_raw = data['income']\n", + "features_raw = data.drop('income', axis = 1)\n", + "\n", + "# Visualize skewed continuous features of original data\n", + "vs.distribution(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For highly-skewed feature distributions such as `'capital-gain'` and `'capital-loss'`, it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of `0` is undefined, so we must translate the values by a small amount above `0` to apply the the logarithm successfully.\n", + "\n", + "Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAF2CAYAAAD+y36TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4JGWV+PHvYUAERERFRECHRVZEjIyIogiiC0ZMi7ii\nMyb0Z8I1AgZYs2taMaCssoyCsMiughgRBdeAZCUIgjJIBjEw5HR+f7xvMzU9fe+tvnN7uu/t7+d5\n+rm3q6qrTlV11+lT71vVkZlIkiRJUhurDTsASZIkSbOHBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsI\nSZIkSa1ZQEiSJElqzQJizETEoojIiHjoCMRyQEQ8bdhxTCUiXhURF0bEbRHxt2HHs7IiYn59Dyya\nYrrOe6XzuDEilkTEtyJi94iI6cy36zU71vdB62NRI675jWFLIuKwtvOYblzTWcdR08/7OYqXRcQJ\nEXFdRNweEZdFxJERseMAY1wUEa+aYPhy+34ui4h1ImLfiDgjIpZGxC0RcUFEfC4iNh92fIMSESc2\njjt3RsRfI+Ksut6PWIn59nxfrWSsO3YdJ5uP18zksrqW2ddxU5ppvvk0TPsDI11ARMSDgIOBX1Ji\nffpwIxqKfwaeCDwLeB9wK3AEcHxErNWY7so63Xf7mPeOlPdBP8ei79blXNnHa/q1I73jms46jox+\n3s8RMQ84ClgMLAFeDewMvBu4J/CTiFhvQKEuAnp90VsV+34kRMRGwCnAuyjr/WLgmcCBlG1w9PCi\nWyV+S1nP7YGXAF8DdgLOiog3THOei+j9vpoJb6HE23wcM6Bl7Uj/x01pRq0+7ACkNiJizcy8dQiL\n3gKYByzOzJ+v7MwiYg3gjpxdv+B4VmZe1Hj+9Yj4JvBN4N+BNwPU/XPyoIJobLtrgWsHtZzJDHod\nV4F+3s/7Ur60vjgz/6dr3OER8Qzg9gHEOKFh7vsh+DqwEbBtZl7YGP5T4AsR8fzhhLXKLM3M5mft\nRxHxOcrJi89FxKmZeeqQYuvld13xziq1RXmNzLxt2LFolshMH2P0oJyBSeChU0y3J/Ab4Bbgz9Rk\n1jXN2sBBwHXADcC3gCfV+S+aYv7Z43FAHXcocBnlDM4vgZuBz9ZxewA/oXyJuAE4E1g4wfw/RDkr\ndDGwFDgJeETXdLvUZfy9zu8C4P2NOLpjPLSOW6POfwlwW/37IcoBuDPv+fU1b6B80b4CuAtYv7Ef\nnkQ5y7sUuBrYt75217puNwKnAtv0WMcXUr7M3gT8jfKF/sE99tEXG/voWODJLffRpO+Vur9vAdbu\nWt9FjWkeDxxfl38z8Efgi3XcAb3eB31su/mN5SwBDgNeC1xU4zoD2Kkr5hOBE3usy5LGvm0T16Ku\n17f5vHRi3AP4Xd23pwFP7ppuwm02xf56WN0nf6uvOxnYtTH+0B7rdegE87oH8FfguD6OLTOyDeo+\n6o7zxK73ZK99P9V2nXLfN4ZtC/yY8pm5ETiB8kW+7/kBD6S04lxBab27EjgOeMAk2/LxdT3f0cf2\n36tr+38VuO9MHxcb76UlPWJYbpsA9wI+B/yprvs1dbtuOcW6nAj8fIJxD6jz+npj2EPr++1iln1m\nDgLWb/m+2gD4MvB7yvH0UuAbwMYttvuOdV5Pn2K6tYGP1xhvq3/fA6zWmOaewGeAc+p2vwr4TnN7\nMfnxqRPLjl3LXsTEn5tXAedTTga8oI9Yp7Vvfcydhy0QWkFE7EU5mP435Szkg4CPAE+IiMdl5g11\n0oMp3VsOoCTsnYHDWy7micCvKInoy3XYZY3x6wFHAp8E9qMkBYDNgW9TvlTeAewAfCUi1srML3Ut\nY09K4tub8oXoE8AxEbFlZt4REf9A+UJ9NPAByoFyC+Af6us/CJxO6TLwRsoX0s7Zz8XA7nW7/JxS\nCLynvvZfuuJ4D6UI2Ity9veWxrjFlKb5zrb8SETch9Jd6MOUJPLvwLcjYvOsZ4ci4vWUBPlfNfZ1\nKfvhpIh4VGYurfP/MqX5/99qDM+gJMaZ8D3g+cAC4GfdIyPiXsAPKd0wFlG+rMynbCuArwCbULrG\nPBm4s8cyJtt23XYEtqmvuZXS1eb7EfHozLygj/VqE9fd+vi8ADyF8kX/fXVdPggcFxHzM/NvLbbZ\nRDE8iPI+XAq8ifLF743AdyPiOZn5fSZ/P3dbANyH8vmY0kxuA0rReBhlf7+uvub6KUKYap6tRcSj\nKF+qz2PZF699KJ+t7TLzN/3Mj/LF9iHAOylfTDekHCvXnuQ1z6h/227/jwFvp+zbdwIbUwqFrSPi\nSZnZfA+v7HGxH58Bnkc5hl8I3I/SJek+05gXAJl5TUScVufT8SBKgfZ2SuG9WV3m9yi5BiZ/X92X\nsp7vpZzI2ajO6xd1u0x23OlYLSKa36mys93r8B8CW1Hem2cD21Her/etywJYE7g38FHgcsoJkzcA\nv4qIh2fmVfR5fJrCTsBjKPnhGmBJH7HO+L7VLDPsCsbHqn0w9VnleZQD6E+7hnfOWr+lPn8Y5Yzw\nu7qmO5AWZ7frtAl8qMfwQ+u43aZ4/WqUbnj/Cfymx7wvZPkWgRfX4U/qen7vSZbxdLrO6ABb02gx\naQx/bx3+qPp8fn1+BhAT7IfmWb3VKQfx24HNGsOfV6d9an1+L8oXxEO65rkZJQm+tbGP7gT26Zru\noDb7qMV7ZZc6/iVd67uoPl/Q3B4TzOOAOs3qXcPbbLv5jWFL6rpv2hi2LvAXlj9TeSLtzhpPFVdn\nHVt9XhrL+CvLnxXtbKN/abvNJtiOn6QU1A9tDJtH+aJ4xmTv5wnm95I63S4tlj2j26Cxn1Y4Az3J\nvm87zzb7/mhKK859GsPuXd9L/zuN+d3Q3AYt92fnM7pmi2nnUz7n7+8avn2dx/Mbw2bquHgo7Vog\nzgE+3c+6T7b/G+OPAG6eZPzqjfffY9vOt+s9vWl9/QummHZHereoX9aY5uV12A5dr30P5bjVszWq\nxrE25cTAvzaGH0Dv41Mnlh27hi+i9+fmJuCBXdO2inW6+9bH3Hl4AY66PYzSRLxcS0KW/tKXAE+t\ng54ABKXbTNNyF/bVu7is3njMaxnH7ZRm/uVExBYRcUREXF6nuR14TY272/GZ2eyjfXb9++D696z6\n+iMj4sUR8YCWse1Q/3bf9afz/Kldw7+dWY64PXy/809m3kHpfvP7zLy4Mc359e+m9e8TKV9oDm9u\nW8rZzfMb8T2BUmQd1bXMIyeIpV+duzBNtG4XUr6IfTki9oyITSeYbjKTbbtuJ2fmpZ0nWVphOhfd\nDkrbz0vHrzLzr43n3e/J6W6zHSjrf/e1KlnOfh4BPCYi7t1yPtMx09tgOmZynjtQum7d3XKRmddT\nzsp3r0sbpwLvjIi9I+KRta/5THoG5XPefTz4NeWL5w5d0w/quNjLqcCiiNgvIhb0cfyfStA47kTE\nPeoyzo+Imynx/18d3Ss3rDjDiP8XEb+JiBsoxfif+nk9pVXv8Y3HsxrjdqV8Fn7ZtY9+ROkOu10j\njt0j4tdR7pB2B6UL3b36iKMfJ2dp1WhqG+ug9q1mCQsIdbtv/dvrLidXNcZvVP9e0zXN1V3PF7Ls\ni/7twB9axnFtLt/s3ukSczzwaEqXgqdQDtSHUJp+u/2l63nnIux7AtQvW7tQPgdfB66KiJMjYqov\nCRNto6u6xjPBdE1/7Xp+2wTD7o6b8mUNSn/T27sej6Q0JcOyfdS9T7qfT1fny23P9cvMv1OayK+g\nXIfxp4g4JyJe1Mcy+rnbTq/1uprSnWNQ2n5eOpZ7T+ayGwN03pPT3Wb3nSSGoHSF6EenEHtIi2ln\ndBtM00zOc7Jt2e92hNKacyzlbkq/BS6PiPdPcQvOfrZ/53hwESseD9Zl2fGgY1DHxV7eTOna9irK\nF85rIuIzETFZ9602NmX5ffRRyln5w4BnU65heWEdN+V7ICLeTPm8/bi+bluWfVFu+x76fWae1nj8\ntjHuAZR92b1/Tqnj71fjeC6lG+DvKF1hn0DJcdf2EUc/er3PW8XK4PatZgmvgVC3TnJ5YI9xD6T0\noYZlB54HUC6w6tiw6zXfoRwAO9reSanXWecnUg5sT8nGHWS6+p32JTN/Cvw0ItakNPl/gNJvfH5m\n/nmClzW3UbMgemDX+LsXM934JnBd/bsIOLfH+M71D519tCHlokIaz2fCsyn9zU+faILMPAt4Ud1H\nCyj944+q1yWc02IZ/Wy7Xuu1IaUvccctlNabbt1fcttq+3lpbZrb7C+TxJCsWJRO5TRKS8hzKdfn\nTGbGt8GAtN33k23L5nZsNb/MvIZydvqNEfEwykmVf6N8KTxoglh/TLkG6rnApyaYpqNzPPgneu/n\n63oMm1SL4+ItlOsnut2vubws177sC+wbEQ+hdI/6GOWkyLv7jQugtogsYPmW1D2Ar2XmhxrT3auP\n2e4BnJCZnf79RMRm04lvAtdR8uTuE4xf0ojjosxc1IhjDdofnzrXanTvm+4isqPX8bVVrIPYt5pd\nbIFQtwsoZ233aA6MiCdRvryfWAedQjn4/HPX65d7npnXdZ2VObsx+jZgLdrrnNm4u/k9ItYHdutj\nHj1l5q2Z+RPKBcvrUK4nmEjnguE9uoa/rP49cWXjmcIvKUXCQ7u2befRuWD415TrVLoTQXfcfatn\nxJ8HfCkzb5pq+sy8I8stDt9HOe48vI7qFJT9vA8msl2zy09ErEspcn7VmOYS4B8j4h6N6XagnKlt\nahtX289L3ybZZr2cRFn/+Y0Y5lHOfp9Zu+D0s+zbKF9cnzNR60dEPKOebRzENriVmXlPNLXd9ycB\nz6rvn85061K+zJ84jfndLTMvyMz9KF/0t55kulMod5vbLyb40c+I6Bz3jqd8zh88wfHg4l6vb2OS\n4+IlwIYRsUEjns2ZpJtNZl6SmZ+idJmacN0nU79Mf5Fy8vPAxqi1WfGWwq/sMYuJ3ldtXz9dP6C0\nmtwwwT7qnKxam9JtqenllGshmiY6Pl1S/3Zv32cPINa7zcS+1exjC8T42jUiuvs+/j0zj4+I91P6\nYB9GaRLemHI27EJKdyEy8/yI+AbwwdoUfzrlh6meW+d1V4sYzgOeHRE/oCTUKzLzikmm/yXlrhlf\niIj9KQntvZRbFvb9g1ZR7mS0A+VOHZcC96ecUbmCcoFYT5l5TkQcARxQzxL/ktI68j7giK4iacZl\n5vUR8U7KdtiAch3F3yn76amUixi/kZkX1H30gbqPTqWcpXzWRPOewGMi4v6Us1oPBp5DKRSPp2yv\nniLiOZS7J32bckZrHcrtI5ey7Ev9efXv2yPi+8CdmXlan/F1XE25V/wBLLsL0zqUO4l0HFljOiQi\nDqV8IXobZfs1tYorM+9s83lpq+U26+UzlBap4+tn43rK3Vv+kf6+PDR9lNJd8L/rtvoO5ez8JsCL\nKF091s/Mm2ZyG1TnAW+IiJdQWvmWZn930uql7b7/IOU9fkJEfJxyouTdlC93H+hnflF+aO/HlOtD\nOrfK3I3SFepHU8S7Z33tqVF+/+DnlJMuW1K6jawBHJOZf6hxfr62cJxEORO9KeX6iK/UFoVWWh4X\nv1m302ER8enGNH/umtevKN23zqZcTP5UyntqcYtQ1o2ITjeidSndM19JKVLekJnNlq0fAAsj4mxK\nV64X0vvOZRO9r34AvDsi9qOcHHsa5Yz6TDm8xn5CRHyKcrvde1DuKvg8yoXuN9U4nh8Rn6FcA7iA\n0lWo+05iPY9PmXllRJxEaRX4M6WL8Z70dwetVrGu5L7VXNDvVdc+ZveDZXdj6PU4pzFd557ut1Ka\nNCf7HYi/sOw3Bp5Nizso1ddvTyk8bqFxVyPq70BM8JqnUX4f4WZKAngL9Y4UXdMlXXd4YsU76HR+\nKfRSlt2f/ZvAwxqv6XnXGsoB9UOUMz63178T/Q7EaybZDw/tGn4iXXcJmWg+lELgp5Qvizex7Mva\nVlPso87dWRb1+V65ua7ntygFRPfdkbq378Mo/Xkvrvv4WsqXkic0XjMP+AIl0d3V2Y8tt938xrAl\nlC+ur6nvi1vr++RpPV7/urqtbqYUf9uw4p1zpoprUdc823xelgCH9Yin+d6fcptNsr8eRik8/l5f\nu9zvQEz2fp5knlHX7SeUIv92yu2Wj6B0JZzxbVCfP7Cu99I67sSp9v1U82y77+t0T2CK34FoMz/K\ntVlfpnQ1vIHyWT2Vxt2hptj+96LcJrPzmzC3Ulp8Pgv8Q9e0L6/7/Ma6rN8Bnwc26domK31crNM9\nn1JQ3Fz3+z+x4l2YPl5j/3uN62xa3JGK5X+z4a76+rMovzvwiB7T359S0P21Pg5n2W9pLGpMN9H7\nai3KcfLaOu44SkG4wnuox7J3rNNN9TsQ96TkqvPrdv1LfS8cQL2bEqWl8UOUYu0mSjH4WFoen+q4\nTSjF/t8o1+18hHJcbPW56SPWae1bH3PnEfWNIM2IiHgHpbl7fmb+aarpJUmSNLvYhUnTVrtbbE05\nM3QX5a5I7wCOsniQJEmamywgtDKWUpqx96H01b6ccmHb/sMMSpIkSYNjFyZJkiRJrXkbV0mSJEmt\nWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgNKGIODQijpuB+RwQEefMRExT\nLGd+RGRELBj0ssZdRCyKiBsGNO8TI+LzjedL6i+cD2JZA1sPaS5blflhppalwRlknu/OATXPv3hA\ny1ol31fmAguIWaIeQA9YxYvdG9izEcNyX+xG0KXARpRfxm4lInaMiCVTTLOkHrCaj7+tZKzdyxj6\ntq3borN+d0XE9RHx24j4bERs1jX5fwP/0HK+/RZ2LwT27Sf2lnH0Sjqt10MaVeaHmVNPKpw4xTTd\n+SAjonXeaRnHwE6c9BHDosb63RkRf4uI0yLiwxHxgK7JPwk8teV8O7nm/i1DeTzwxX5ibxHDRHmp\n9XqMO3+JWhPKzL8PO4Z+ZOadwFUDmv0HgIMaz+8a0HJWWkSskZm3r8QsHgH8BbgX8GjgrcDZEfHs\nzDwJIDNvBm5e6WAbIuIemXlbZv5lJuc7mUGshzQOZlt+GIDXAs1WkZU55g5MRKxG+dHgO6c5i5uA\nzYEA7k35Mv9u4LUR8dTM/B1AZt4AzGhrbiMnXDuT853MINZjrrIFYpaKiHtExEci4pKIuDUi/hgR\nb6nj5kXEVyPi4oi4OSIujIh31QNJ5/WHRsRxEfHeiLg6Im6IiP+KiLW6p+n8T6nK39g4IzG/zbJa\nrs86EfG1GseVEfHOGt+hjWn2jIhTI2JpRFwTEd+MiI0b45c7o9A4y7FzRPw6Im6qZ08eN41NvjQz\nr2o8rmksd72IOLjGtDQiTmqe1YiI+0XEERFxWd1G50bEKxvjJ9q2K5ylmWQdnxURp0TEbcAuddxz\nI+L0iLil7p8PR8Q9WqzrNXUdL8rM/wF2BM4EDomIeXXey3X9iYhNI+KYiPhL3c7nR8QedfTF9e+p\nNdYTO+td9/G7I+Iy4LI6vNeZzHtFxGH1/XFVdJ2Zix6tC9E4gxfLWpm+Wadd0ms96rDXRcRFEXFb\n/fvaHsvaq77/bqyfvT2RRkTMsfzQY/3WjIj/qLHdEhEnR8STG+PXiIgDI+KKuv6XRsTHGuNfGKV1\n9eZ6zDopIjbsM4y/deWE6xrz3zgijoyIv9bHdyNii8b4zevx8qp6DDkjIp7TGH8i8BDgE53tWYf3\nOl4tlyc609SccA5wG/DwOu6VEXFe3Wa/j4h/bbEvsq7flZl5QWYeBjwR+BvwpUYcy3X9iYhHRsQJ\nUVqyb4iI30TEThExH/hpnezaGvuhnfWOiIMi4pMRcS3wizq8V2vMA+t2vam+z5utYT1bF2L5PDFR\nXupej9Ui4n31PXRrRJwdEbv1WNaLIuL4Gs95EfGMKbbrrGcBMXstBl4BvI1ycFgI/LWOWw24HNi9\njnsPsB/wyq55PJVyhnln4EXAPwEfn2B5ewO/Av6L0k1oI0qXobbLmsqnajwvAJ4ObAM8pWuaewD7\n15ifA9wfOKLFvD8K7AM8DrgOODwios/4eqrz+S6wcY3pscDPgJ9ExEZ1snsCZ9TxjwA+C3w5Inau\n4yfatv34OPBeYEvg1xGxC3A48Pm6zFcBLwY+0u861jNXn6F09XnsBJN9EVgb2Kku762UBAOwbf27\nK2XdXth43VOBR9VxOzOxtwG/o+zD/YGPRMQLJ5m+2+Pr39fWGB7fa6KIeAFlm/0HsDVlX30xIp7b\nNen7gWMo78X/phRXD+4jHmmQ5lp+6PbvwEsox7XHAmcDP2gcc99CySV7AFvUaS8AiIgHAkdSttHD\ngR2Ar69kPHeLiLUpX5BvoWzDJwJXAj+u46C07n4feAZlG/8P8L8RsWUd/0LKCZUPsGx79uOewPuA\n1wFbAZdEORHyEcqx6+HA2yktCW/odx3rWfovATtExAYTTPYNynpvCzwGOICyTS6lvJ+g5IqNKO+f\njj0prR1PobyHJ/JvwLF13gcDX+suGKYwWV5q2ht4J2VbPRL4FmVfPaZrug8DB1L256nAkRFxrz7i\nmX0y08cse1AOiAns2sdrPgb8uPH8UMoXvHs1hu0J3Aqs05jmuMb4E4HPT2NZBwDnTDL9vShnSfZo\nDFuHkvAOneR1W9btsEl9Pr8+X1Cf71if79J4zfbN17Tcdkvqdrmh8divjntafb5W12vOAt41yTyP\nBL4y2bZtxH//xrCJ1vFFXa/9GfC+rmHPr7HGBDGtsLwe23r3+nwRcENj/G+B/SeY73Ixd70HrwXW\n7Bq+3Lao2//4rmm+Avy88TyBF/fYb++YYpru9fgFcEiPOLuX9dHG89Upzfx7tn1P+fAxqAdzLD90\nL4uSG24DXtEYPw/4A/Ch+vxA4IRexzrKSYgEHrIS2zgpXR+bOeFlddyrgAuby67xXdc5fk4wz5OB\n9zaeL3f8qsOWO17VYTvSOG7XaRLYpmu6PwEv7xr2VuC8SWJaYXmNcbvW5Wzbaz8C1wMLJ3jtcjF3\nvYd+22P65bZFfe1/dk3zY+Cw+v98euecu3PAJNN0r8flwPt7xNm9rNc1xm9chz15uu+x2fDwGojZ\n6bGUPvg/nWiCiHg98BpKM+hawBrAJV2T/TbLmYSOX1HO8m9O+ULYSstldaZ9CuXMS8frgHPqa07p\nDMzMG6PrTghRuh7tTznjcF/KWQqAB1O7v0yguS5X1L8PmOI13T4NfLXxvNNPfxvKmfdruxo17knZ\njkTp9rMP5SzYxsCalO18Yh/Ln8ppXc+3AbaNiHc3hq1G2T8PpJwZ6kdn5XKC8Z8FvhQRu1IS97cy\n8/QW8z0nM29tMd2vejzvpwWirYcDh3QN+znwvK5hd7+nMvOO2tzefVGhNAxzKj9k5uFdk21e5/GL\nzoDMvDMifkU52w6l4Dge+H1E/Aj4HvD9zLwL+A3ly+Y5ddyPgaOz/3727wR+0Hh+df27DbAZsLQr\nJ6zNspywDiWXPYdy9nsNSs5ovV2ncAeNm4nUVoJNKS3fzWv5VmfZsb1fU+WETwNfiYiFlJzwP5l5\nfov5tskb0DsnPLvla1uJiHsDD6LxXqt+Djyra9hE3zPmLAuIOSgiXkLpgvEO4JeUMwFvpDTpDntZ\np1EKgI6raXEXnHrA/SHlYP9y4BpKF6b/oyS1yTQvbusc7PrtvnddZl7UY/hqlHXo7m4FZVtA2TZv\npzSFnk05W/URpj64dC7Ubh7g15hg2ht7xPVvwDd7TDudC9I6ifmPvUZm5lcj4oeUg+rTgV9GxEcz\n84Ap5tsd93QlKybCibbVdOff1H3BZGKXUM0CszA/9KOcZs48o/a134XSBWsx8JuIeEYtNv4J2I7S\nLevVwEejXBD8mz6WddUkOeEsSvepbp0TT5+knMF/B6W14ibga0ydy+6i3XHu1lz+ounOsen1lP0w\nE7aibO8lvUZm5gERcTjwTMp+2D8iXp+Z3Sdous1ETlghd0bETOYDmCQnZGbW4nFO5wQLiNnpLMob\ncyeWPwPS8WTg15nZvJf+5j2me2RErJOZnQ/sdpSm4T9MsNzbKE2x01kWcPddb5Y76EbEHygfvsdT\nv6DWvqJbN2LZklIw7JeZF9dpBnEGul9nABsCd2Vmzy/XlG30ncz8Otx93cQ/suwaAei9bTtf9Ddq\n/N/d73KyuLacIMH1pbagvJWyLya8VWFmXkbpi3pwbfnYm9IcfFudpHv9+rFdj+e/azy/lkY/4SgX\nRHb3G769RQy/o3Rza7Y2PRk4r59gpSGaU/mhhz/UZW3fiaUeo55I6XffmddS4Gjg6HqR7snAQ4Hf\nZ+ln8ivgVxHxAeBcSgtxPwXERM4AXgr8OTMnut33k4GvZblJBRHRabH+fWOaiXLC2hFx78zsnKCa\nMidk5tURcQWweWZ+rf2q9Fb79r8eOGmylpvMvJBSIB1YWz5eQ2nhnamccEjX805OaObOju7tNGUM\nmXl93W7bU1pROswJWEDMSpn5+4g4itI8uDflgLUJML9+Sf09sCginkk5GO9BuZjrr12zWp1y8ecH\nKM10H6P0K5zoDMASSreY+ZSz6H/pY1mTrc8NEXEI8PGI+DOle817KUmwU+X/idL/9k0R8QVKV5MP\ntl3GAP2Y0rx5TES8Czif0kVoV0o/3/+jbKOXRLlLyJ+BN1OauM9szGcJK27biygXnB0QEftQ+lq+\nt2VcHwCOi4hLgKMoTdpbU/qrvmuK1z4gIlanXJvyKOBfKd0inpUT3AowIj5L6Xrwe8qt/nZl2QH2\nGkp/4V2i3P3oluz/FpDbRcS+lC8EO1IurntZY/xPKHeA+SVwJ6WF55aueSwBdo6Ikyhn6Hq9Rz9B\nuVPT6cCP6nq8jMF0l5Jm3FzLDz3W78b6ZbSTLy6mHKM2pP5WQES8jZJHzqKcOPgXSuvHZRGxHaWV\n9IeUFo7HUrr3zNQXwsMpLQvHRMT7KblrU2A34Ev1S/XvgRdExDE1vv0pXZialgBPiYjDKMerPwO/\nppyh/2hEfIZywW7bi6D3Bz4X5TeMvkdpuXgcsHFmfnSS10W98BxgPZbdxnU9Vuza2XnBWpRWlm/W\n9diQWkybS3/1AAAfU0lEQVTWSS6h5PZnR8R3gJu7usu18cKIOJXSFfjFlJamJ0ApRCPiZODd9QTl\nepSbqTS1zUufAD4QERdSulftSelxMJ27Oc4pc7p5ZY57BeVsy4GUL62HUj4kAF+mfGn8BuVuAPMp\ndznqdhLlzMtPKXcW+Akw2ZfLT1Kq9vMoFf6D+1jWVN5B6Y50bI3nbEpz9i0A9SzHQsqFwOdRDoZv\nm8ZyZlQ9k/Usyrb7T8qdPo4CHsayfpAfolzf8X3Kxc03UpJM0wrbNstvOexB6eL1G0qXpP1axvVD\nSn/QneqyT6Fch/GnFi8/l5J8z6QUImcCj8rMn03ymtWAz9X4j6ck5oU1ljsod0V5DWWbHNNmHbp8\nmlLMnEnZnu/PzKMb499Oab06kVJkfIWSIOiaZidKUXYmPWTmtykF3r/WddkbeENmfmcaMUvDMtfy\nQ7d3U+5+9l+UIuFRlIvGO9d2LaVco3AKpYB6DPDMzLwJ+DvljPJxlLPjnwI+mOX2pCutLmMHyvHo\nm5TtvxhYn2WF09sox6f/o+SFk+v/Te+nFB5/oJ5Rz/IbOS+j3L3pbGAvyt2W2sT1FcoF3i+n5JP/\nq6+/eIqXrk3JB1dQtufbgO8AW2f9DYge7qSs76GUnPgtSovP22osl1Ny+IcpuWI6P0B4AOVuTr8F\n/h/wysw8tTH+VfXvqZT34XIn3/rISwdSioh/p1yv+QLKTUtmorVqVovy/Ufjpjbp3j8znzPVtMMQ\nEWtSzlJ8IjNnIuFIkloY9fwgafjswqSREBGPpXRLOgVYl3KGaV3KWSZJkiSNiKF1YYqIwyPigog4\nJyIO6VwhH8WBUX4B9rfR+NXgiNi1vuai2ie8M/y+UX4B8ML6d/1hrJNW2tsoXUt+QukzuUO9MFfS\nmDA3SNLoG1gB0eJAfTjlzjqPpNwb+jV1+DMpP4SzBaV/3kF1fvOAL9TxWwEvjYjOrSX3AU7IzC0o\nV8rfnUDUW2YuGqXm6cw8MzMXZOa6mbl+Zu7U8ncEJM0i5obRN2r5QdLoGWQLxGn1TNLT6m0rl5OZ\n38uK0m1lkzpqN8rtzTIzTwbuE+Xn6bcFLsrMP2bmbZRf8t2t8ZrF9f/FlAttJUmjx9wgSbPcIK+B\n+EfKGaE3AV+IiK8Dh2bmFc2JavP0yyl3O4HyS72XNia5rA7rNfwJ9f8NG3dfuIrS/WUFEbEX5cwV\n66yzzjZbbrnltFbs9Ouuaz3tNve737SWIUmDdPrpp/85MzcYwqLNDZgbJI2mtrlhYAVEvV/8cZR7\n0W9AuQfvnyLiSZl5SmPSLwI/q/fLn4nlZkT0vLVUZh5M+aErFixYkKeddtq0lhGLF089UXXawoXT\nWoYkDVL9jZBVztxQmBskjaK2uWGgd2GKiPUo97FfRLk/9Kso9+ztjN8f2AB4XeNll1PufdyxSR22\nxgTDAa6OiI0y88rapN19/3dJ0ogwN0jS7DbIi6gPo/yAy2bAKzLzqZn5tcy8pY5/DbAL8NLMvKvx\n0mOBV9Q7bmwH/L02QZ8KbBERm0XEPSjJ59jGazqncxYyvR+qkiQNmLlBkma/QbZAHAUsqr/218uX\nKD8U9qt6Hd3/ZuYHKD+x/izKz97fBLwSyq8GRsSbKD8/Pw84JDPPrfP6GHBURLy6znP3waySJGkl\nmRskaZYb5DUQx04xvuey65033jjBuO9Rkkj38OuAnacRpiRpFTI3SNLsN7QfkpMkSZI0+1hASJIk\nSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBI\nkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1Z\nQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1CwhJkiRJ\nrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmS\nJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsI\nSZIkSa1ZQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1\nCwhJkiRJrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIk\nqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLU21AIi\nIg6JiGsi4pzGsAMi4vKIOKs+ntUYt29EXBQRF0TELo3h20TE2XXcgRERq3pdJEkzw9wgSaNt2C0Q\nhwK79hj+mcx8TH18DyAitgL2AB5RX/PFiJhXpz8IeC2wRX30mqckaXY4FHODJI2s1Ye58Mz8WUTM\nbzn5bsCRmXkrcHFEXARsGxFLgHtn5skAEfE14PnA92c+YknSoJkbJM02sXhxX9PnwoUDimTVGHYL\nxETeHBG/rc3Y69dhGwOXNqa5rA7buP7fPVySNLeYGyRpBIxiAXEQ8A/AY4ArgU/N1IwjYq+IOC0i\nTrv22mtnaraSpMEzN0jSiBi5AiIzr87MOzPzLuA/gW3rqMuBTRuTblKHXV7/7x7ea94HZ+aCzFyw\nwQYbzHzwkqSBMDdI0ugYuQIiIjZqPH0B0LkLx7HAHhGxZkRsRrkg7pTMvBK4PiK2q3fYeAVwzCoN\nWpI0UOYGSRodQ72IOiKOAHYE7h8RlwH7AztGxGOABJYArwPIzHMj4ijgPOAO4I2ZeWed1Rsod+1Y\ni3KBnBfJSdIsZW6QpNE27LswvbTH4K9OMv2HgQ/3GH4asPUMhiZJGhJzgySNtpHrwiRJkiRpdFlA\nSJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmt\nWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIk\nSa1ZQEiSJElqzQJCkiRJUmsWEJIkSZJas4CQJEmS1NqUBUREbB8R69T/94yIT0fEQwYfmiRpVJkb\nJGl8tWmBOAi4KSIeDbwd+APwtYFGJUkadeYGSRpTbQqIOzIzgd2Az2fmF4B1BxuWJGnEmRskaUyt\n3mKapRGxL7AnsENErAasMdiwJEkjztwgSWOqTQvES4BbgVdn5lXAJsAnBhqVJGnUmRskaUxN2QJR\nE8OnG8//hP1cJWmsmRskaXxNWEBExFIgJxqfmfceSESSpJFlbpAkTVhAZOa6ABHxQeBK4OtAAC8D\nNlol0UmSRoq5QZLU5hqI52XmFzNzaWZen5kHUe66IUkaX+YGSRpTbQqIGyPiZRExLyJWi4iXATcO\nOjBJ0kgzN0jSmGpTQPwLsDtwdX38cx0mSRpf5gZJGlOT3oUpIuYBL8hMm6UlSYC5QZLG3aQtEJl5\nJ/DSVRSLJGkWMDdI0nhr80vUv4iIzwP/TaN/a2aeMbCoJEmjztwgSWOqTQHxmPr3A41hCTxt5sOR\nJM0S5gZJGlNtfol6p1URiCRp9jA3SNL4mvIuTBGxXkR8OiJOq49PRcR6qyI4SdJoMjdI0vhqcxvX\nQ4CllNv17Q5cD/zXIIOSJI08c4Mkjak210Bsnpkvajz/t4g4a1ABSZJmBXODJI2pNi0QN0fEkztP\nImJ74ObBhSRJmgXMDZI0ptq0QPw/YHGjb+tfgUUDi0iSNBuYGyRpTLW5C9NZwKMj4t71+fUDj0qS\nNNLMDZI0vtrchekjEXGfzLw+M6+PiPUj4kOrIjhJ0mgyN0jS+GpzDcQzM/NvnSeZ+VfgWYMLSZI0\nC5gbJGlMtSkg5kXEmp0nEbEWsOYk00uS5j5zgySNqTYXUR8OnBARnft7vxJYPLiQJEmzgLlBksZU\nm4uoPx4RvwGeXgd9MDN/ONiwJEmjzNwgSeOrTQsEwO+AOzLzxxGxdkSsm5lLBxmYJGnkmRskaQy1\nuQvTa4GjgS/XQRsD3x5kUJKk0WZukKTx1eYi6jcC2wPXA2TmhcADBhmUJGnkmRskaUy1KSBuzczb\nOk8iYnUgBxeSJGkWMDdI0phqU0CcFBH7AWtFxDOAbwLfGWxYkqQRZ26QpDHVpoDYB7gWOBt4HfA9\n4L2DDEqSNPLMDZI0ptrcxvUu4D/rA4CI2B74xQDjkiSNMHODJI2vCQuIiJgH7E65s8YPMvOciHgO\nsB+wFvDYVROiJGlUmBskSZO1QHwV2BQ4BTgwIq4AFgD7ZKa36pOk8WRukKQxN1kBsQB4VGbeFRH3\nBK4CNs/M61ZNaJKkEWRukKQxN9lF1LfVPq5k5i3AH00QkjT2zA2SNOYma4HYMiJ+W/8PYPP6PIDM\nzEcNPDpJ0qgxN0jSmJusgHj4KotCkjRbmBskacxNWEBk5iWrMhBJ0ugzN0iS2vyQnCRJkiQBFhCS\nJEmS+jBhARERJ9S/Hx/UwiPikIi4JiLOaQy7b0QcHxEX1r/rN8btGxEXRcQFEbFLY/g2EXF2HXdg\nRMSgYpakcWZukCRN1gKxUUQ8CXheRDw2Ih7XfMzQ8g8Fdu0atg9wQmZuAZxQnxMRWwF7AI+or/li\n/UVUgIOA1wJb1Ef3PCVJM8PcIEljbrK7ML0feB+wCfDprnEJPG1lF56ZP4uI+V2DdwN2rP8vBk4E\n3l2HH5mZtwIXR8RFwLYRsQS4d2aeDBARXwOeD3x/ZeOTJK3A3CBJY26yuzAdDRwdEe/LzA+uwpg2\nzMwr6/9XARvW/zcGTm5Md1kddnv9v3u4JGmGmRskSZO1QACQmR+MiOcBO9RBJ2bmcYMN6+5lZ0Tk\nTM0vIvYC9gJ48IMfPFOzlaSxY26QpPE15V2YIuKjwN7AefWxd0R8ZIAxXR0RG9VlbwRcU4dfDmza\nmG6TOuzy+n/38BVk5sGZuSAzF2ywwQYzHrgkjQtzgySNrza3cX028IzMPCQzD6FchPacAcZ0LLCw\n/r8QOKYxfI+IWDMiNqNcEHdKbdK+PiK2q3fYeEXjNZKkwTA3SNKYmrILU3Uf4C/1//VmauERcQTl\norj7R8RlwP7Ax4CjIuLVwCXA7gCZeW5EHEU503UH8MbMvLPO6g2Uu3asRblAzovkJGnwzA2SNIba\nFBAfBc6MiJ8CQenvus9MLDwzXzrBqJ0nmP7DwId7DD8N2HomYpIktWJukKQx1eYi6iMi4kTg8XXQ\nuzPzqoFGJUkNsXhxX9PnwoVTT6SVYm6QpPHVqgtT7Ut67IBjkSTNIuYGSRpPbS6iliRJkiTAAkKS\nJElSHyYtICJiXkScv6qCkSSNPnODJI23SQuIeiu8CyLCn+aUJAHmBkkad20uol4fODciTgFu7AzM\nzOcNLCpJ0qgzN0jSmGpTQLxv4FFIkmYbc4Mkjak2vwNxUkQ8BNgiM38cEWsD8wYfmiRpVJkbJGl8\nTXkXpoh4LXA08OU6aGPg24MMSpI02swNkjS+2tzG9Y3A9sD1AJl5IfCAQQYlSRp55gZJGlNtCohb\nM/O2zpOIWB3IwYUkSZoFzA2SNKbaFBAnRcR+wFoR8Qzgm8B3BhuWJGnEmRskaUy1KSD2Aa4FzgZe\nB3wPeO8gg5IkjTxzgySNqTZ3YborIhYDv6Y0T1+QmTZTS9IYMzdI0viasoCIiGcDXwL+AASwWUS8\nLjO/P+jgJEmjydwgSeOrzQ/JfQrYKTMvAoiIzYHvAiYJSRpf5gZJGlNtroFY2kkQ1R+BpQOKR5I0\nO5gbJGlMTdgCEREvrP+eFhHfA46i9HP9Z+DUVRCbJGnEmBskSZN1YXpu4/+rgafW/68F1hpYRJKk\nUWZukKQxN2EBkZmvXJWBSJJGn7lBktTmLkybAW8G5jenz8znDS4sSdIoMzdI0vhqcxembwNfpfzC\n6F2DDUeSNEuYGyRpTLUpIG7JzAMHHokkaTYxN0jSmGpTQHw2IvYHfgTc2hmYmWcMLCpJ0qgzN0jS\nmGpTQDwSeDnwNJY1U2d9LkkaT+YGSRpTbQqIfwb+ITNvG3QwkqRZw9wgSWOqzS9RnwPcZ9CBSJJm\nFXODJI2pNi0Q9wHOj4hTWb6fq7fqk6TxZW6QpDHVpoDYf+BRSJJmG3ODJI2pKQuIzDxpVQQiSZo9\nzA2SNL7a/BL1UsqdNQDuAawB3JiZ9x5kYJKk0WVukKTx1aYFYt3O/xERwG7AdoMMSpI02swNkjS+\n2tyF6W5ZfBvYZUDxSJJmGXODJI2XNl2YXth4uhqwALhlYBFJ0kqKxYv7mj4XLhxQJHOXuUGSxleb\nuzA9t/H/HcASSlO1JGl8mRskaUy1uQbilasiEEnS7GFukKTxNWEBERHvn+R1mZkfHEA8kqQRZm6Q\nJE3WAnFjj2HrAK8G7geYJCRp/JgbJGnMTVhAZOanOv9HxLrA3sArgSOBT030OknS3GVukCRNeg1E\nRNwXeBvwMmAx8LjM/OuqCEySNJrMDZI03ia7BuITwAuBg4FHZuYNqywqSdJIMjdIkib7Ibm3Aw8C\n3gtcERHX18fSiLh+1YQnSRox5gZJGnOTXQPR169US5LmPnODJKnND8lJ0pT89WdJksaDBYSkoei3\n4JAkSaPBpmhJkiRJrVlASJIkSWrNAkKSJElSaxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1\nZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmS\nJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqbWQLiIhYEhFnR8RZEXFaHXbfiDg+Ii6sf9dvTL9vRFwU\nERdExC7Di1ySNCjmBkkavpEtIKqdMvMxmbmgPt8HOCEztwBOqM+JiK2APYBHALsCX4yIecMIWJI0\ncOYGSRqiUS8guu0GLK7/Lwae3xh+ZGbempkXAxcB2w4hPknSqmdukKRVaJQLiAR+HBGnR8ReddiG\nmXll/f8qYMP6/8bApY3XXlaHLSci9oqI0yLitGuvvXZQcUuSBsfcIElDtvqwA5jEkzPz8oh4AHB8\nRJzfHJmZGRHZzwwz82DgYIAFCxb09VpJ0kgwN0jSkI1sC0RmXl7/XgN8i9LsfHVEbARQ/15TJ78c\n2LTx8k3qMEnSHGJukKThG8kCIiLWiYh1O/8D/wScAxwLLKyTLQSOqf8fC+wREWtGxGbAFsApqzZq\nSdIgmRskaTSMahemDYFvRQSUGL+RmT+IiFOBoyLi1cAlwO4AmXluRBwFnAfcAbwxM+8cTuiSpAEx\nN0jSCBjJAiIz/wg8usfw64CdJ3jNh4EPDzg0SdKQmBskaTSMZBcmSZIkSaPJAkKSJElSaxYQkiRJ\nklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIkSVJrFhCS\nJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJCkiRJUmsW\nEJIkSZJas4CQJEmS1JoFhCRJkqTWLCAkSZIktWYBIUmSJKk1CwhJkiRJra0+7AAkSZKkUROLFw87\nhJFlC4QkSZKk1iwgJEmSJLVmASFJkiSpNa+BkNSTfT8lSVIvFhCSJEnSKtTvSbpcuHBAkUyPXZgk\nSZIktWYBIUmSJKk1CwhJkiRJrVlASJIkSWrNi6glaYT0c2HdqF1UJ0kaD7ZASJIkSWrNAkKSJElS\naxYQkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJas0CQpIk\nSVJrFhCSJEmSWrOAkCRJktSaBYQkSZKk1iwgJEmSJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJC\nkiRJUmurDzsASatOLF487BAkSdIsZwuEJEmSpNZsgZCkPvTbipMLFw4oEkmShsMWCEmSJEmtWUBI\nkiRJas0CQpIkSVJrFhCSJEmSWvMiammEeIHucHh7W0mS2rMFQpIkSVJrFhCSJEmSWpszXZgiYlfg\ns8A84CuZ+bEhhyRJGjJzgzR32f10eOZEC0REzAO+ADwT2Ap4aURsNdyoJEnDZG6QpMGYKy0Q2wIX\nZeYfASLiSGA34LyhRiUNmGdfpEmZGyTNCaN2k5W5UkBsDFzaeH4Z8IQhxaJZZtQ+lJpbLPKGytwg\nzbBBH9PMsbNDZOawY1hpEfFiYNfMfE19/nLgCZn5pq7p9gL2qk8fBlwwzUXeH/jzNF87SubKeoDr\nMormynrA3FyXh2TmBsMOZpDMDSPBbdKb26U3t8uKVvU2aZUb5koLxOXApo3nm9Rhy8nMg4GDV3Zh\nEXFaZi5Y2fkM21xZD3BdRtFcWQ9wXWYxc8OQuU16c7v05nZZ0ahukzlxETVwKrBFRGwWEfcA9gCO\nHXJMkqThMjdI0gDMiRaIzLwjIt4E/JByq75DMvPcIYclSRoic4MkDcacKCAAMvN7wPdW0eJWuql7\nRMyV9QDXZRTNlfUA12XWMjcMndukN7dLb26XFY3kNpkTF1FLkiRJWjXmyjUQkiRJklYBC4g+RMSu\nEXFBRFwUEfsMO57piohNI+KnEXFeRJwbEXsPO6aVERHzIuLMiDhu2LGsjIi4T0QcHRHnR8TvIuKJ\nw45puiLiX+t765yIOCIi7jnsmNqKiEMi4pqIOKcx7L4RcXxEXFj/rj/MGNuaYF0+Ud9jv42Ib0XE\nfYYZ41wwV3LDTJpreWYmzZWcNZPmUv6bSaOcSy0gWoqIecAXgGcCWwEvjYithhvVtN0BvD0ztwK2\nA944i9cFYG/gd8MOYgZ8FvhBZm4JPJpZuk4RsTHwFmBBZm5NuXh1j+FG1ZdDgV27hu0DnJCZWwAn\n1OezwaGsuC7HA1tn5qOA3wP7ruqg5pI5lhtm0lzLMzNpruSsmTQn8t9MGvVcagHR3rbARZn5x8y8\nDTgS2G3IMU1LZl6ZmWfU/5dSPqgbDzeq6YmITYBnA18ZdiwrIyLWA3YAvgqQmbdl5t+GG9VKWR1Y\nKyJWB9YGrhhyPK1l5s+Av3QN3g3o/PzqYuD5qzSoaeq1Lpn5o8y8oz49mfLbCJq+OZMbZtJcyjMz\naa7krJk0B/PfTBrZXGoB0d7GwKWN55cxBw6GETEfeCzw6+FGMm3/AbwLuGvYgaykzYBrgf+qTdtf\niYh1hh3UdGTm5cAngT8BVwJ/z8wfDTeqlbZhZl5Z/78K2HCYwcygVwHfH3YQs9yczA0zaQ7kmZk0\nV3LWTJoz+W8mjXoutYAYYxFxL+B/gLdm5vXDjqdfEfEc4JrMPH3YscyA1YHHAQdl5mOBG5k93WSW\nU68P2I2SFB4ErBMRew43qpmT5dZ1s/72dRHxHko3k8OHHYvmrtmeZ2bSHMtZM2nO5L+ZNOq51AKi\nvcuBTRvPN6nDZqWIWINyUD88M/932PFM0/bA8yJiCaXbwNMi4rDhhjRtlwGXZWbnDN3RlAPqbPR0\n4OLMvDYzbwf+F3jSkGNaWVdHxEYA9e81Q45npUTEIuA5wMvSe3mvrDmVG2bSHMkzM2ku5ayZNJfy\n30wa6VxqAdHeqcAWEbFZRNyDciHLsUOOaVoiIih9DX+XmZ8edjzTlZn7ZuYmmTmfsj9+kpkjU533\nIzOvAi6NiIfVQTsD5w0xpJXxJ2C7iFi7vtd2ZvZfEHcssLD+vxA4ZoixrJSI2JXSheJ5mXnTsOOZ\nA+ZMbphJcyXPzKS5lLNm0hzLfzNppHPpnPkl6kHLzDsi4k3ADylXwh+SmecOOazp2h54OXB2RJxV\nh+1Xf7FVw/Nm4PD6JeSPwCuHHM+0ZOavI+Jo4AxKF5kzGdFf0uwlIo4AdgTuHxGXAfsDHwOOiohX\nA5cAuw8vwvYmWJd9gTWB40tO4uTMfP3Qgpzl5lhumEnmGfVjTuS/mTTqudRfopYkSZLUml2YJEmS\nJLVmASFJkiSpNQsISZIkSa1ZQEiSJElqzQJCkiRJUmsWENJKiIifRsQuXcPeGhEHTfKaGwYfmSRp\nWMwNmussIKSVcwTlB4Ga9qjDJUnjydygOc0CQlo5RwPPrj9+Q0TMBx4EnBkRJ0TEGRFxdkTs1v3C\niNgxIo5rPP98RCyq/28TESdFxOkR8cOI2GhVrIwkaUaYGzSnWUBIKyEz/wKcAjyzDtoDOAq4GXhB\nZj4O2An4VP0p+ilFxBrA54AXZ+Y2wCHAh2c6dknSYJgbNNetPuwApDmg01R9TP37aiCAj0TEDsBd\nwMbAhsBVLeb3MGBr4PiaV+YBV8582JKkATI3aM6ygJBW3jHAZyLiccDamXl6bW7eANgmM2+PiCXA\nPbtedwfLtwJ2xgdwbmY+cbBhS5IGyNygOcsuTNJKyswbgJ9SmpM7F8itB1xTE8ROwEN6vPQSYKuI\nWDMi7gPsXIdfAGwQEU+E0mwdEY8Y6EpIkmaUuUFzmS0Q0sw4AvgWy+66cTjwnYg4GzgNOL/7BZl5\naUQcBZwDXAycWYffFhEvBg6MiPUon9P/AM4d+FpIkmaSuUFzUmTmsGOQJEmSNEvYhUmSJElSaxYQ\nkiRJklqzgJAkSZLUmgWEJEmSpNYsICRJkiS1ZgEhSZIkqTULCEmSJEmtWUBIkiRJau3/A1O7qgqy\nlt95AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Log-transform the skewed features\n", + "skewed = ['capital-gain', 'capital-loss']\n", + "features_raw[skewed] = data[skewed].apply(lambda x: np.log(x + 1)) # applies column wise, incr x by 1\n", + "\n", + "# moves values closer together so algo doesnt get confused\n", + "\n", + "# Visualize the new log distributions\n", + "vs.distribution(features_raw, transformed = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Normalizing Numerical Features\n", + "In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as `'capital-gain'` or `'capital-loss'` above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.\n", + "\n", + "Run the code cell below to normalize each numerical feature. We will use [`sklearn.preprocessing.MinMaxScaler`](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html) for this." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageworkclasseducation_leveleducation-nummarital-statusoccupationrelationshipracesexcapital-gaincapital-losshours-per-weeknative-country
00.30137State-govBachelors0.8Never-marriedAdm-clericalNot-in-familyWhiteMale0.021740.00.397959United-States
\n", + "
" + ], + "text/plain": [ + " age workclass education_level education-num marital-status \\\n", + "0 0.30137 State-gov Bachelors 0.8 Never-married \n", + "\n", + " occupation relationship race sex capital-gain capital-loss \\\n", + "0 Adm-clerical Not-in-family White Male 0.02174 0.0 \n", + "\n", + " hours-per-week native-country \n", + "0 0.397959 United-States " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import sklearn.preprocessing.StandardScaler\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "# Initialize a scaler, then apply it to the features\n", + "scaler = MinMaxScaler()\n", + "numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']\n", + "features_raw[numerical] = scaler.fit_transform(data[numerical])\n", + "\n", + "# Show an example of a record with scaling applied\n", + "display(features_raw.head(n = 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Preprocessing\n", + "\n", + "From the table in **Exploring the Data** above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called *categorical variables*) be converted. One popular way to convert categorical variables is by using the **one-hot encoding** scheme. One-hot encoding creates a _\"dummy\"_ variable for each possible category of each non-numeric feature. For example, assume `someFeature` has three possible entries: `A`, `B`, or `C`. We then encode this feature into `someFeature_A`, `someFeature_B` and `someFeature_C`.\n", + "\n", + "| | someFeature | | someFeature_A | someFeature_B | someFeature_C |\n", + "| :-: | :-: | | :-: | :-: | :-: |\n", + "| 0 | B | | 0 | 1 | 0 |\n", + "| 1 | C | ----> one-hot encode ----> | 0 | 0 | 1 |\n", + "| 2 | A | | 1 | 0 | 0 |\n", + "\n", + "Additionally, as with the non-numeric features, we need to convert the non-numeric target label, `'income'` to numerical values for the learning algorithm to work. Since there are only two possible categories for this label (\"<=50K\" and \">50K\"), we can avoid using one-hot encoding and simply encode these two categories as `0` and `1`, respectively. In code cell below, you will need to implement the following:\n", + " - Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_raw'` data.\n", + " - Convert the target label `'income_raw'` to numerical entries.\n", + " - Set records with \"<=50K\" to `0` and records with \">50K\" to `1`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('income one hot', array([0, 0, 0, ..., 0, 0, 1], dtype=int64))\n", + "('income rev transformed', array(['<=50K', '<=50K', '<=50K', ..., '<=50K', '<=50K', '>50K'], dtype=object))\n", + "103 total features after one-hot encoding.\n" + ] + } + ], + "source": [ + "# TODO: One-hot encode the 'features_raw' data using pandas.get_dummies()\n", + "features = pd.get_dummies(features_raw) # creates a non sparse matrix\n", + "\n", + "# TODO: Encode the 'income_raw' data to numerical values\n", + "income = income_raw.map({'<=50K':0, '>50K':1})\n", + "\n", + "# or, good for multiple classes. Also provides easy reverse transform.\n", + "from sklearn.preprocessing import LabelEncoder\n", + "le = LabelEncoder()\n", + "income = le.fit_transform(income_raw)\n", + "print(\"income one hot\", income)\n", + "print(\"income rev transformed\", le.inverse_transform(income))\n", + "\n", + "# just be careful: it gives unecessary order to things.\n", + "\n", + "# Print the number of features after one-hot encoding\n", + "encoded = list(features.columns)\n", + "print \"{} total features after one-hot encoding.\".format(len(encoded))\n", + "\n", + "# Uncomment the following line to see the encoded feature names\n", + "#print encoded\n", + "#print(income.head(10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shuffle and Split Data\n", + "Now all _categorical variables_ have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.\n", + "\n", + "Run the code cell below to perform this split." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set has 36177 samples.\n", + "Testing set has 9045 samples.\n" + ] + } + ], + "source": [ + "# Import train_test_split\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "# Split the 'features' and 'income' data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0)\n", + "\n", + "# Show the results of the split\n", + "print \"Training set has {} samples.\".format(X_train.shape[0])\n", + "print \"Testing set has {} samples.\".format(X_test.shape[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Evaluating Model Performance\n", + "In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a *naive predictor*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Metrics and the Naive Predictor\n", + "*CharityML*, equipped with their research, knows individuals that make more than \\$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \\$50,000 accurately. It would seem that using **accuracy** as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that *does not* make more than \\$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \\$50,000 is *more important* than the model's ability to **recall** those individuals. We can use **F-beta score** as a metric that considers both precision and recall:\n", + "\n", + "$$ F_{\\beta} = (1 + \\beta^2) \\cdot \\frac{precision \\cdot recall}{\\left( \\beta^2 \\cdot precision \\right) + recall} $$\n", + "\n", + "In particular, when $\\beta = 0.5$, more emphasis is placed on precision. This is called the **F$_{0.5}$ score** (or F-score for simplicity).\n", + "\n", + "Looking at the distribution of classes (those who make at most \\$50,000, and those who make more), it's clear most individuals do not make more than \\$50,000. This can greatly affect **accuracy**, since we could simply say *\"this person does not make more than \\$50,000\"* and generally be right, without ever looking at the data! Making such a statement would be called **naive**, since we have not considered any information to substantiate the claim. It is always important to consider the *naive prediction* for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \\$50,000, *CharityML* would identify no one as donors. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1 - Naive Predictor Performace\n", + "*If we chose a model that always predicted an individual made more than \\$50,000, what would that model's accuracy and F-score be on this dataset?* \n", + "**Note:** You must use the code cell below and assign your results to `'accuracy'` and `'fscore'` to be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Naive Predictor: [Accuracy score: 0.2478, F-score: 0.2917]\n" + ] + } + ], + "source": [ + "#from sklearn.metrics import accuracy_score, recall_score\n", + "import numpy as np\n", + "\n", + "income_all_true = pd.Series(np.ones((len(income),), dtype=np.int))\n", + "#print(income_all_true.head())\n", + "#print(income.head())\n", + "\n", + "# TODO: Calculate accuracy\n", + "#accuracy = accuracy_score(income, income_all_true, normalize=True, sample_weight=None) # normalise=True means show percentage\n", + "#recall = recall_score(income, income_all_true)\n", + "\n", + "income_pred_naive = income_all_true\n", + "\n", + "# by hand\n", + "tp = sum(income==income_pred_naive)\n", + "fp = sum(income_pred_naive) - tp\n", + "fn = sum(income) - tp\n", + "accuracy = tp / float(tp + fp)\n", + "recall = tp / float(tp + fn)\n", + "\n", + "\n", + "\n", + "# TODO: Calculate F-score using the formula above for beta = 0.5\n", + "beta = 0.5\n", + "fscore = (1+beta**2.0) * (accuracy * recall) / float((beta**2.0 * accuracy) + recall)\n", + "\n", + "\n", + "# Print the results \n", + "print \"Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]\".format(accuracy, fscore)\n", + "\n", + "# accuracy matches the share of >50k incomes, if you predict true always." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Supervised Learning Models\n", + "**The following supervised learning models are currently available in** [`scikit-learn`](http://scikit-learn.org/stable/supervised_learning.html) **that you may choose from:**\n", + "- Gaussian Naive Bayes (GaussianNB)\n", + "- Decision Trees\n", + "- Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)\n", + "- K-Nearest Neighbors (KNeighbors)\n", + "- Stochastic Gradient Descent Classifier (SGDC)\n", + "- Support Vector Machines (SVM)\n", + "- Logistic Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2 - Model Application\n", + "List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen\n", + "- *Describe one real-world application in industry where the model can be applied.* (You may need to do research for this — give references!)\n", + "- *What are the strengths of the model; when does it perform well?*\n", + "- *What are the weaknesses of the model; when does it perform poorly?*\n", + "- *What makes this model a good candidate for the problem, given what you know about the data?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The three supervised learning models are Decision Tree, KNN and AdaBoost with Decision Tree as the weak learner. \n", + "\n", + "- Decision trees are applied in finance, for example, where they have been used to model investment decision making: http://www.cfapubs.org/doi/pdf/10.2469/faj.v50.n6.75. In this paper, they are considered superior to a weighted combination of features, as they more closely model the thinking of a portfolio manager when selecting securities. Decision Trees are helpful as they can visualise the path taken to arrive at a classification. They perform well on datasets with nominal, ordinal, interval and ratio data instead of just one of the types. The weaknesses are that they can overfit if too many nodes are allowed, and that they perform poorly on unbalanced datasets, such as ours. However, we can address this by tweaking the fbeta score to give more emphasis to accuracy and checking our final accuracy against the accuracy by predicting the same outcome every time. We can also limit the number of nodes allowed, or set the minimum examples required per leaf to stop the tree from growing too deep and overfitting.\n", + "\n", + "\n", + "- KNN. An industry application is concept searching. https://www.kcura.com/relativity/Portals/0/Documents/8.0%20Documentation%20Help%20Site/Content/Features/Analytics/Concept%20searching.htm. Based on a search query, Knn will find documents that contain a similar topic, rather than exact word matches. It works by setting up a feature space of related words, and checking for nearest neighbours in that space. Strengths are that it is non parametric so can fit any decision boundary. Further, it is resistant to correlated attributes, which our dataset may have. Overfitting is not a problem, as it finds locally optimal solutions for points that do not affect points elsewhere through any global parameters. We also don't have any missing data, so KNN should work well. Weaknesses are that all features are equally important. This assumption is ok, as we dont have an a priori idea what features matter in our dataset. Further, it is not obvious what K should be, so we would have to tune this.\n", + "https://www.quora.com/Classification-machine-learning-When-should-I-use-a-K-NN-classifier-over-a-Naive-Bayes-classifier\n", + "\n", + "\n", + "- Ada Boost is applied in industry to predict whether customers might leave and preventatively offer them enticements to stay. https://www.cs.rit.edu/~rlaz/PatternRecognition/slides/churn_adaboost.pdf. Advantages are that instead of trying to find a a strong model that fits the weight distribution of the entire dataset we only have to find weak learners, i.e a model that performs better than chance. Each subsequent iteration will apply a weak learner to a slightly changed distribution, increasing the weights of examples we got wrong. We will also have continuous information gain, as each learner will improve on the previous. We also dont need any prior knowledge of the dataset, due to information gain guaranteed by the weak learner. Weaknesses are that a weak learner needs to exist for AdaBoost to work. A weak learner that is too complex, such a huge neural network, can lead to overfitting. It also seems that AdaBoost is sensitive to uniformly distributed noise (http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf). For our problem, we will use AdaBoost with a Decision Tree as the weak learner. By controlling leafs and node splits, as above, we should get an improved solution to using just a Decision tree, as we can focus on difficult examples.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation - Creating a Training and Predicting Pipeline\n", + "To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section.\n", + "In the code block below, you will need to implement the following:\n", + " - Import `fbeta_score` and `accuracy_score` from [`sklearn.metrics`](http://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics).\n", + " - Fit the learner to the sampled training data and record the training time.\n", + " - Perform predictions on the test data `X_test`, and also on the first 300 training points `X_train[:300]`.\n", + " - Record the total prediction time.\n", + " - Calculate the accuracy score for both the training subset and testing set.\n", + " - Calculate the F-score for both the training subset and testing set.\n", + " - Make sure that you set the `beta` parameter!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "# Import two metrics from sklearn - fbeta_score and accuracy_score\n", + "from sklearn.metrics import fbeta_score, accuracy_score\n", + "\n", + "# a generic learning function for any algo\n", + "def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): \n", + " '''\n", + " inputs:\n", + " - learner: the learning algorithm to be trained and predicted on\n", + " - sample_size: the size of samples (number) to be drawn from training set\n", + " - X_train: features training set\n", + " - y_train: income training set\n", + " - X_test: features testing set\n", + " - y_test: income testing set\n", + " '''\n", + " \n", + " results = {}\n", + " \n", + " # Fit the learner to the training data using slicing with 'sample_size'\n", + " start = time() # Get start time\n", + " # we want the same samples every time, not shuffled, so we can compare the learners. \n", + " learner = learner.fit(X_train[:sample_size], y_train[:sample_size])\n", + " end = time() # Get end time\n", + " \n", + " # Calculate the training time\n", + " results['train_time'] = end-start\n", + " \n", + " # Get the predictions on the test set,\n", + " # then get predictions on the first 300 training samples\n", + " start = time() # Get start time\n", + " predictions_test = learner.predict(X_test)\n", + " predictions_train = learner.predict(X_train[:300])\n", + " end = time() # Get end time\n", + " \n", + " # Calculate the total prediction time\n", + " results['pred_time'] = end-start\n", + " \n", + " # Compute accuracy on the first 300 training samples\n", + " results['acc_train'] = accuracy_score(y_pred=predictions_train, y_true=y_train[:300])\n", + " \n", + " # Compute accuracy on test set\n", + " results['acc_test'] = accuracy_score(y_pred=predictions_test, y_true=y_test)\n", + " \n", + " beta = 0.5 # place more emphasis on precision, as there are very \">50k\" examples in the dataset.\n", + " \n", + " # Compute F-score on the the first 300 training samples\n", + " results['f_train'] = fbeta_score(y_true=y_train[:300], y_pred=predictions_train, beta=beta)\n", + " \n", + " # Compute F-score on the test set\n", + " results['f_test'] = fbeta_score(y_true=y_test, y_pred=predictions_test, beta=beta)\n", + " \n", + " # Success\n", + " print \"{} trained on {} samples.\".format(learner.__class__.__name__, sample_size)\n", + " \n", + " # Return the results\n", + " return results\n", + "\n", + "print(int(round(len([1,1,1,1])*0.63)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Initial Model Evaluation\n", + "In the code cell, you will need to implement the following:\n", + "- Import the three supervised learning models you've discussed in the previous section.\n", + "- Initialize the three models and store them in `'clf_A'`, `'clf_B'`, and `'clf_C'`.\n", + " - Use a `'random_state'` for each model you use, if provided.\n", + " - **Note:** Use the default settings for each model — you will tune one specific model in a later section.\n", + "- Calculate the number of records equal to 1%, 10%, and 100% of the training data.\n", + " - Store those values in `'samples_1'`, `'samples_10'`, and `'samples_100'` respectively.\n", + "\n", + "**Note:** Depending on which algorithms you chose, the following implementation may take some time to run!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DecisionTreeClassifier trained on 362 samples.\n", + "DecisionTreeClassifier trained on 3618 samples.\n", + "DecisionTreeClassifier trained on 36177 samples.\n", + "KNeighborsClassifier trained on 362 samples.\n", + "KNeighborsClassifier trained on 3618 samples.\n", + "KNeighborsClassifier trained on 36177 samples.\n", + "AdaBoostClassifier trained on 362 samples.\n", + "AdaBoostClassifier trained on 3618 samples.\n", + "AdaBoostClassifier trained on 36177 samples.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAIuCAYAAAAv/u6UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXXx78n2ZRNJZUUEkIKoSZ0EVGKiqJUkRaRJigo\nICAC4quAgkhHEUHhJxCQDooFadJEQBCQEnogBUiAhJZAeub9Y2bDzbJJNiEQyvk8z31278zc6TN3\nzsyZuSSEAMMwDMMwDMMwjDlYlHUEGIZhGIZhGIZ5dGABgmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EB\ngmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EBgmEYhmEYhmEYs2EBgnlgEFFPIhKaK4WIDhHRACLSlXJY\nTxPRP0R0S4VVqzT9fxIgojEq79KIyNmEfQ9NWQaX0P/mxXwmhogWFDeskvAg6pAmj4u6ehJRgPrf\np7TjUdoQUS0iWk1EcUSUQUQJRLSViAaVddxKA0O5PcDwDGXfswh3hj622O2xLHmQ7doo3AUqv84T\n0V3jISIarWmDpfKO0pRRQAmeFUQ0pjTiwTD3SqkO2hjGTDoCOA/ASf2fCcATwKelGMb/AKQBaA3g\nNoBTpej3k0YWgNch81RLDwApABxL6O9oAOMBbCnGM+0B3CxheMXlQdSheQDWa+5fBfB/uNNGDEQD\nsL8P4Zc6RFQfwF8A/gEwHEAigAoAGkOW39dlF7tSw7jcmHvjQbZrY24D8AbQDMCfRnbdcW99HMM8\ntrAAwZQF/wkhzqj/G4koCMD7uEcBgogsARCAXAChAMYLIYozOC3IXwJgJYTIvFe/HlHWAHgTGgGC\niPwANAWwEEDP+x0BIrIRQmQIIQ7e77BUeBZ4AHVICHEeGkGBiKqov9o2YrArsQDxgOvwQADXAbQQ\nQmRozBebmuV9WDDUMXPcGpcbc4eS1LUH1a4L4BqAE5B9XJ4AQUSNAVQCEAk5WcIwjIaHtjNnnij+\nBeBERJ4GAyJ6W6k3pRNREhH9j4hctQ+p5dzxRDSSiM4ByIQcvORA1u1PlJsYzTPdjPxdRETeRv7G\nENFiIupNRCeUv69q1Aj6EdEEIkpUaliLiciOiIKJaAMRpRLRGSLqYeRvsArvnFILOktEs4nIxcjd\nArWkXpuI/iKi20R0moj6GWccEVVSfiYqVZGzRPSVkZsmRPSniustFccaxSifSADPEVFFjdmbAGIB\n7DD1ABG9RkR7VNyvE9FKIvLX2BvUPz7WqAiMMUr/00S0i4jSAExSdnepOhSVB0RUn4g2EVGyJt+/\nLSixJNVE7ksdKijMYmJJRJ+RVAu6TkS/ElEFc8NXdXWiqoeZ6vdj48E9EXkQ0RwiuqDy9QQRvW1G\n/FwBXDM1GBdC5Gr8b6rytqlRuHepeGjS01e1rXQiOkBEzYzDMKe+E9E2ItpJRK2J6CARZQB4l4ii\niGiNCT8bqDi1V/d3qTAR0ftEdFzVsWtE9K/BvcZNoe1CubEjom9VfU0lol8gV3BKDTPzqAURrVP1\n7DYRHSWiD0hO1GjdFdVfvmNmfV2guTfUgYZE9CMR3SSii0T0NRHZGj0bqOJ5m4guE9FUku+P4qgJ\nRQLoQER2GrPukCtpMSbyz4qIxql4Z6rfcURkZSJuv6u4XSHZL9mYigCZ8c4z8UxlIvpJpTudpMrg\nSipllWCGMYkQgi++HsgFOVMtAAQbma8CkA3ATt1/Cak2MxVACwC9AFyAVImw1DwnlPlfADoAeBlA\neQDPKLt5ABoCqK3cv63MlwF4BUAfAJchVVMcNP7GKH+PAugK4HkAQQAC1POxkDPvLwEYouIaCeAI\ngEEAXoSctc8FUF3j73MAJgJ4DUATlR+nAOw2yo8FkMv5xwG8o/xbosJupnFXCcAVFZ+3IZfgewD4\nUePmVZW3awG0VdcuyFk3vyLKa4wK0wrAWQCjNHbHAXxuqkwB9FNmP6h87qzcnwPgqNw0VG7mq/8N\nAVTQpD9FpWsg5ErHU5qyWWBuHgBwAHAVUt2ktfKrJ4DvC0m3B+5THSppG1F2AcouRtWHliqtSQC2\nGbk1GT7kqvNfAJIBDFbmHwNIBzBV87wTgJMA4gD0BfACgMmQgtXAItLwqYrnHAANAOgKcNdUuWta\nQB4EGKXnvKpHnQG0A7BbxTu0uPUdwDZVbucA9FZxCQMwUvnpYhSnmSrPrLVtQ2P/hgr3U8g6+Iry\n663itAvlbhHkIPxjyP5vsioHAaBnSetPCfKoH6QKWiuVpg8h2+WXZta1ABSvvi4wkY7TAD6DrH+f\nQNa/sRp31pDqfeeV369A9r2xMKpDBeTFAvWsPYBUABHK3Fblx1u40w/qNM8tUXn4mSqjMZDvgSUm\n4nYR8h32KoBfAMQbxw3Fe+eN0dyfBrAX8v3XBEAEgMVQ9ZQvvu7nVeYR4OvJuTQvhVDIgYwL5AA5\nB8DPyk2Auv/U6FnDgK6dxkyozllv5FZnoqO1BHAJwFYjt42V20EasxhIvVgvI7cByu0WI/M1yryb\nxsxFvWBGF5IfOk34tTXmC3C3sGADOYD5XmMWqV56PoWEcQbAn0ZmTpAv8RlFlFfei1O9KI8r8wbK\nPARGAxbIAfsNAD8Y+VUJclA02Kj8xpkI15D+tibsYpB/oFFoHgCop/wKK2ZdvS91qBhtpDABYpuR\n+TBl7lNU+JArRwLAc0bmH6vy8VT3n0AOpEOM3M1VdcekUKDc6AH8pMIRKh4bIQURC427piieAJGJ\n/ANcR0jhcFFx6zukAJELoJaRWz/I/ucdjZkVpJD6rXHb0Nx/A+BAIXliVruA7BtzAIw0cjcbpSdA\nFLtPgFQN1al6cs2oHAuqa8WtrwtMpGOs0bO/ATiluTcI9A2M4nrIuA4VkK4FAM6r/5EA1qv/nVSa\nnGAkQACoAaO+QZn/HzR9DWR9FwAaatxYAIjSxg3Ff+eNUf/d1X2bwtLIF1/362IVJqYsOAE523IV\nwLcAfoScBQTkbLsFgB+JSGe4IGdiUiBn8bWsF0KkmRFmKORG7R+1hkKInZCzVU2M3O8RQiQW4Ncf\nJtIDABs0/l6DnOH0M5gRkTURjVKqIGmQefCXJn5abgshtmr8y4Cc5daqO7QA8JsQ4qKpSBJRCORM\noHFe3oacvTXOy8KIBFCF5AbZ7pD5c9qEu6chX7rGYcZD5pO5YWZBDhaKotA8gJyhuw7gO5KqR34F\nuDOH0qxD98I6o/sj6tffyNxU+C9DxnWXUflshBwoN9S4+wfAOSN3GwC4AahWUOSEEGlCiPYAqkPO\nWv8BKch9D+APIqJipNU4PfGacFIA/A5Z50pS32OEEP8ZxT0eUrh4U2P8MuRgbVEhcdsHoBYRzSSi\nF4xUYQDz28VTkP3fCqPnlxUSttkUJ4+IyJuIviOiWEghJwvAOADlINuBlsLqurn11RS/m3hW+1xD\nAHFCiL0GAyGEALDaDL+NiQTwAhF5QfZxa4UQpjZ2G/JosZG54d7QDzwNIF4IsUcTt1zcXbbFfecZ\nSIZcGf6SpGpfSJEpZJhShPXkmLKgPeSycQqAWCFEusbO8GI6c9dTEjej+wQzwzTokppyn6ixN8ff\na0b3mYWYa/V1J0Cq5HwGqTKQAqnbvMbInSm/ACDDyJ0bCt/IacjL/+HuE5QAqRZhFkKIM0S0G3JJ\n/3XIGerCwtxcgL2pdJniihAixwx3heaBEOIGST35TyCFVUciioJcGSruIKM069C9cNXo3rDXwLgO\nmQrfE0BFyMGgKdw07oLNcFcgQohjAI4BgNJbnwugG6QqhznCoTGXCjDzVf+LW98LKp9FAOYTUSUh\nxDlIYeKMEGJ3IXGLhMz/twC8CyCLiNYBGCqEiIH57cKwl8Y4rabSXhLMyiOS+2F+AeADOQN/AvJE\nsnaQqxDm1DUD5tZXc5/V7iHwhpyoMaYk+bUFMh1DINVT2xTgrqB+INHI3ruAeBibFfedB0AKSkT0\nImT5TADgRnIv4GQhxOwC/GKYUoMFCKYsOCqMTpjRkKx+W8D0YDPZ6F6YGabhReRlws4LwP4S+lsc\nugCIFEKMMxgQkcM9+JeEO4MnUxjy6iOYHrgU90SeSACzIFWzCpoRNYTZE3Kp3pgUM8MyN/+LygOo\nWeYOalavHmR+rCCicCHEUTPDAR6OOlQcTIWfDKlz36mAZ2I07i5Dno5mipPFiogQ6UQ0GVKAqAYp\nQBgmDqyNnBcknJQvwOyC+l/c+l5Q+ayGrOfdiOhryL0zEwpwKz2Ss97fQa50uUD2X1MBLIdcVTC3\nXRgGpeUhZ5ehuS8NzM2jIMi28qYQIm+mnYhaF+BvWdX1BJheDSt2fgkhconoR8hVs8uQq3Km0PYD\n0RpzLyP7BMhVuKLiVtx3njbOZwF0V6t64QAGAPiWiGKEEMYr5QxTqrAAwTxsbILUTfYXQmwqRX9P\nQs78dEH+40gbQc7ITi3FsArCDnfP6Pa6B/82AniNiLyFEKZmAE9CDgirCyG+vIdwDCyHnJk7rFS0\nTGFYWQkWQiwswr9MSH35e6GoPMhDCJENYA8RfQI5u1gVcuOnuTwMdeheWQ+54TJVCHGiCHcDIdVD\nTM3wFkghZWE4otZgF6t+ayD/YK2g06oaEpGfQY2JiByVW4OaS6nUdyFEChH9DCnsXISc8TZWVyns\n+WsAlhPRU5B7vADz28U/kP1fJ8iNtQa6mJ+CQjE3jwwqWHn9lTph6I1SikdpsQdALyJqYFBjUoPp\nDiX07wfIerqpkBVQw8lzXSC/Y2PAkDfb1O9uFbeGBjUmtbJjLLzf8ztPCbD/EdFQyFWwGrhb1ZZh\nShUWIJiHCiFENBFNBPANEYUC2A45U+kHqSs6T7s3oBj+5hDRp5AzhIshBwS+kC+A05AvjvvNegA9\niOgI5HL1awAa3YN/oyFPHdlFRF8oP30BvCyE6KaWuN8DsJaIrCF1b5MgZ8AaQQ4Op5kbmBoYtS/C\nzU0i+hDALCLygHyJ3VDxagK5oXKJcn4M8rjH9ZAzbxcL2ctQEIXmARG1gtxo+TPkzLs95ElZKZAv\neLN5SOrQvfIjpND6JxFNhdxsag0549wGcsPmbQDTIU8J+ouIpkMOPO0hB1fPCiHaFhLG90TkBDmT\nfxRy83l9yBN9oiE3WEMIkUBE2wF8RERJkLO+3QAEFuDvJcjvxoyBVGUZoeL0ufKvNOv7IsgTbcYC\n+FvN9BYIEX2PO3XqMoDKkKpPG1XczGoXQoiTRLQEwGdqsLkPcmb6FTPjbeBlIjLek3BDCLHJzDw6\nDingjSeiHEhBYkgx4/AgWABZD9YQ0ceQm937QB5iAciBudkIIU5BqmkV5uYoES0FMEatau6C3O/w\nCYClQgjDHo+FkCdxrSGiUZD1oh/kXhitfyV65xFRGICvICd2zkC2s56QK8T3/O0ahikKFiCYhw4h\nxCgiOg7gPXUJyM2Gf0IO1Erq7/dEdBtyiXot5Ok96wAMF0LcuueIF81AyBNCDLNW6yCPPdxb4BOF\nIISIIaKGkBsbJ0Ce9HIBMm0GN+uI6DlIveV5kDP+iZAzd8tLlowi4/UdEcVD5nMEZD9jOG5Xu2l1\nAORXiX+FnOUdC6nPW5ywisqD05C6259A6iSnQA7KXhTyY2DFTVtZ16F7QgiRRUQvQQ5s3oY8BegW\n5MD+dygVFrV3pBHksaQjIAe61yEFiaL2jnwDWe7vQerQW0PuU1kM4HMhRKrGbTfIE4a+hhw0/QBZ\nlnNN+Lsdcnb3C8i9Q8cAtFSDPkP6Squ+b1LP+ULuWSqKvyEFszcBOEOuXCyGFHANcTO3XbwDWa+G\nQebdFuV+ZzHiP9OEWRSAGubkkRAik4jaQZZlJKRazg+QeyRMlU2ZoOLZAjK9cyDzbQnkSs6XkELa\n/aAnpIpZb8jTly5CHtE91ihuL0Lm4beQ7WwJZDubY5SOkrzzEiHLYyhke0iH3GTeSghhrE7JMKUO\nyZUvhmEYhnk4Ifkhv51CiG5lHRfm4YeIfgNQVQgRVNZxYZjHFV6BYBiGYRjmkUTp/adCztQ7AugI\nuTemf1nGi2Eed1iAYBiGYRjmUSUDcn+GP+Q+gJMA+gghTB1TyzBMKcEqTAzDMAzDMAzDmA1/iZph\nGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNh\nAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZh\nGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZh\nGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAYJhGIZhGIZhGLPRlXUE\nmDscOHDgJZ1ON1oI4QUW7hiGYRiGYR5lcokoMTs7e2ydOnU2lHVkShMSQpR1HBhI4cHGxuabgICA\nTL1en25hYcEFwzAMwzAM84iSm5tLaWlptjExMdYZGRkDHichgme5HxJ0Ot3ogICATHt7+zQWHhiG\nYRiGYR5tLCwshL29fVpAQECmTqcbXdbxKU1YgHhIEEJ46fX69LKOB8MwDMMwDFN66PX6dKWe/tjA\nAsTDgwWvPDAMwzAMwzxeqPHdYzXmfqwSwzAMwzAMwzDM/YUFCOaRpEGDBqGdO3euWJxnOnToENCo\nUaPKhbkZOnSoj7+/f417i9395eTJk9ZEVHfDhg0ODypMIqr77bffuhrur169avHiiy8GOTo61iKi\nuidPnrQuSZkw9x9z6v3jytdff+2m0+nqPqjwfvvtN0ciqhsdHW1lMNu7d6++Zs2aVW1sbOr4+vrW\nBO5uT8yjja+vb83hw4d7m+O2LPrvh41WrVoFNmvWLPhBhffuu+/6hoSEVNeazZ4929XX17empaVl\n3YiICP9Vq1Y5EVHdhIQEPp3UTDijHnKWubuHZyQnP9BysnFzy+6SlHSoOM906NAhICEhwXrXrl2n\nDGY7duywa9++fUj9+vVT+vTpk9SxY8cQb2/vzDNnzhy1s7PLU9dq1KhRZW9v78zVq1fHmBver7/+\nesbKyuqxVPlavny588yZMz2PHj1qn56ebuHl5ZXZqFGjmyNHjrwUFhaWURZxio2NPeTu7p5juJ86\ndarnwYMHHf7888+TXl5eWT4+PtmPcpm4L1sWnpyR8UDbmZuNTXZSly7FamcAcO7cOavQ0NCa5cqV\ny75w4cJhKyuroh8qJr6+vjUvXrxobbh3cXHJrl27duqUKVMu1K5d+4Ht1YqOjrYKDg4O+/XXX0+1\natUqRWuXlZWFSZMmeS5btszt7NmztkQEPz+/jDZt2lwdNmzYFQ8Pj5yC/L1fvPDCC6mxsbGHfH19\nsw1mw4YNq+Do6Jhz+PDho46OjrnA3e3pUcJ9mXt4csaDfSe52bhlJ3Up/jtpzZo1bgBgaWkpHB0d\ncwIDA9Nbtmx5ffjw4VecnJxySyt++/btO+7g4GCWf0FBQZmxsbGHypcvX2rlP3ToUJ/p06cXKsB8\n9dVXMYMGDUourTAL4sKFC7rRo0d7bd68uVxCQoK1g4NDTlBQUHqvXr2u9O3b96pO9+CHnRMmTEj4\n9NNPEw33t2/fpiFDhgS8++67iYMGDbri5OSUY2dnJ1S5ZBfmF3MHXoF4yHnQwkNphblq1Sqnl19+\nOfTVV1+99vvvv5+1tbUVAHD16lWrcePGlb9X/8uXL5/j6upaai+A+016ejqZ427YsGHeERERwZUq\nVcr48ccfzxw+fPjo999/f87a2lqMHDnS937HsyD8/f2ztULfmTNnbEJCQtIaNGiQ5u/vn63T6Uql\nTMzNp9LmQQsP9xLmrFmz3Js1a3bD0dExZ+nSpeVKO14G+vfvnxgbG3soJibm8OrVq0+npKTo2rRp\n88BmDQsjIyODmjVrFjJhwgTf9u3bX123bt3J/fv3R40ZM+bCvn37HGbPnu1WFvGytbUV/v7+2ZaW\nlnlmMTExNs8880xKaGhopo+PTzZwd3sqCWXXVh78O6mkYdatWzc1Njb20JkzZ45s2LDhVKdOna7+\n73//8wwLC6sWHx9faunw8fHJNlcg0el08Pf3z7axsSm1yZbRo0cnxsbGHjJctWrVutW6deurWrPe\nvXtfNX4uNzcXWVlZpRUNnDhxwrpOnTrVNm/eXG7UqFEXdu/efWzr1q0nIiIikqZOnep95MgR21IL\nrBg4Ozvnenl55QlsZ8+etc7IyKC2bdteDwgIyHJ1dc01tF0Li5IPi0s7Px92WIBgSp1vvvnGrWvX\nrsHvv/9+QmRkZJz2ZfrWW29dmjlzpldRy4Tjx4/3rFSpUnUbG5s6FStWrDFixAgvbcM0VpdJTU2l\nrl27VnR0dKzl5ORUq0ePHn4DBgzwNaWONGXKFHcfH5+aDg4OtZs3bx5s6kUyZ84c1woVKtS0sbGp\n06hRo5CTJ09aa+1nzpzpFhQUVN3KyqpO+fLlwwYNGuRjHL9OnTpVfP/99308PDzCKlSoEAYAixcv\nLle1atVqer2+tqOjY62aNWtW/fvvv/UA8Ndff9lNnTrVZ8SIERcWLVoU9+qrr6ZWrlw5s0WLFrcW\nLFgQv3DhwtiC8mvgwIG+gYGB1fV6fW0vL6+wiIgI/+Tk5LyMv3r1qsXrr78e4O7uHm5tbV3Hy8sr\nrE+fPhUM9hs2bHCoU6dOFXt7+9r29va1Q0NDq61evdrJYK9VufD19a25YsUK9z179jgSUd0GDRqE\nmioTc8rR19e35qBBg3y6devmX65cuVoGvxjT5OTkYMmSJe49evRI6tKlS/K8efM8tPaXLl2yfPXV\nVwP1en1tNze38EGDBvkYf+vnp59+cmrQoEGos7NzLUdHx1r169cP3bp1q51xWA4ODrn+/v7ZFStW\nzGrWrNntwYMHJ54/f97mypUrefXqzz//tK9Xr16ora1tHScnp1qtW7eudOHChXztqai2UljdCw4O\nDgOA1q1bVyaiugYVoC+++MJz165dTj///POpzz777FKTJk1uh4aGZnbu3PnGli1bzvTv39/kTOuV\nK1cs27ZtW8nb27umra1tnYCAgBqjR48un5t7Z+z377//2jZu3DjE0dGxll6vrx0YGFh91qxZeepG\n06ZNcw8MDKxuY2NTx9nZuVa9evVCDSpLWhUmg6pKfHy8zZQpU3yIqO7QoUN9gLtVmG7cuGHRq1cv\nP09PzzC9Xl+7atWq1RYuXJgnHBr8mj17tmuTJk2C9Xp97SFDhviYSiNzB2tra+Hv758dEBCQ1aBB\ng7QRI0Zc2bVr14lr167phgwZktf/FdVPZWVl4YMPPvD28/OrYW1tXcfT0zOsR48efgZ7YxWmwvp5\nUypMhw4dsmnatGmwnZ1dbTs7u9rNmzcPPnr0qI3B3qCKt3HjRvtq1apV1ev1tatXr151+/btdoAc\nIPv7+2cbLisrK6HX6/OZOTg4iEmTJnnY2dnVXr16tVNoaGg1a2vrOuvXr3cE5Mp3eHh4FVtb2zrl\ny5cP69KlS0VtWweAWbNmuVauXLmaQR2vX79+FVJTU/ME2d69e1ckIhw6dOjY22+/fa1OnTrpYWFh\nGYMHD04+cuTIseDg4ExT5bRlyxb7Z555JsTFxSXc3t6+dlhYWJW1a9c6at3Mnz/fJTQ0tJper6/t\n5ORUq1atWlX27dtnCwBpaWnUs2dPP09PzzBD+bz22msBhme1KkyTJk3yqFmzZg0AaNq0aVUiqvvn\nn3/am1JhOnjwoO3zzz8f5OjoWMvZ2bnWs88+G7J///48Iaiw/HwSYAGCKVVGjRrlNWTIkIrTpk2L\nnTBhQqKx/aBBg664u7tnjRw5ssDl1qFDh/rMmjWr/NixYy8cOnTo6KRJk+IjIyM9hg0bVuALc8CA\nARU2btxYbs6cOef++uuv4w4ODrkLFy70MHZ35MgRu+3btzuuXbv29M8//3zq5MmT+oEDB/pp3Vy5\ncsVq7ty5HkuWLIneuHHjidTUVMv27dsHGQYZy5Ytcx48eHBAp06dkvfv3x81bty4+AULFngax+/3\n3393vXLlim79+vWn1q1bdyouLk7Xq1evwA4dOiQfPHgwavv27Sfee++9SwYVlPnz57vZ2trmfvrp\np5dMpbEwlQy9Xp/77bffxv73339R33333bndu3c79u3bNy9dQ4cO9T1y5IjdihUrzkRFRR1dtGhR\ndNWqVdMB+XLs1KlTcJ06dVL37NlzbM+ePcc+/vjji/b29iZn1Pbt23f8lVdeuWaY3fv111/PmHJn\nbjn+8MMP5T09PbN37NhxfP78+TEFpZEBVq5c6ZyZmWnRsWPHG3379k3evXu3o1a47datW8CRI0fs\nli9ffmbDhg0nY2NjbTZu3Oii9SMlJcXi7bffvrxjx47jW7duPREYGJjerl27yomJiZZ3hyhJSkqy\nXLp0qWtgYGC6oR7GxcXp2rZtW9nb2ztzx44dx1euXHnm5MmT+rZt2wYZniuqrRRV93bu3HkMABYs\nWBAdGxt7aN++fccBYPny5W4NGzZMeeGFF26Zim9BbSUtLY2qV6+etnLlyuj//vvv6PDhwy9OnjzZ\nZ+bMmXkrFhEREYEuLi7Z27ZtO7F///6oL7/8Mt7V1TUHkEL+8OHDKw4dOjTxyJEjRzdt2nQyIiLC\npLCiUVXJMqzmjB49+q4+MTc3Fy1atAiOioqyW7Ro0dn9+/dHvfXWW5f79OkTaDyIGjNmTIUuXbpc\nPXjwYNT7779/paDyYgqmUqVKWe3atUvesGFDuZycHLP6qc6dOwfMnz/fc+TIkRcPHjwYtXLlyjNB\nQUEm1UmL6ueNSU1NpZYtW1bOyMiw2LBhw8kNGzacvHXrlsUrr7wSol1lys3NxahRoypMmzYtfteu\nXcfd3NyyIyIigoo7452ZmWkxduxYnxkzZsQdOnQoqn79+rdXrFjh1LNnz8CIiIjkf//9N2rp0qXR\np0+ftm3Xrl2g4blJkyZ5/N///Z/f0KFDEw8ePHh0zpw5MZs2bXLu06ePvyHdu3fvdnr77bcvOTs7\n3/Xu0OvooB4+AAAgAElEQVT1wqDCZ8zNmzctIiIikjdv3nxy165dxxo1apTaqVOnkBMnTlgDwOnT\np6379u0b2K1bt6SDBw9Gbd269UTfvn0vGyYnx44dW37Tpk3lFi5ceDYqKuro8uXLz9StW/e2qbDe\nfffdpPXr158EgFWrVp2OjY091Lhx47vcnjt3zqp58+ah/v7+mVu2bDmxbdu2E35+fpktWrQI1QpW\npvKzWAXyCMN7IJhS499//3XYvXu34zfffHPuvffeu2u5FAB0Op34/PPPL/Tq1Stw2LBhl2vWrJmv\nE05JSbGYPXt2+UWLFkW//vrrNwGgSpUqmVeuXLn40Ucf+X311VcXjf28efOmxZIlSzwmTpwY98Yb\nb9wAgFmzZl3YuXOn47Vr1/LVcSsrK7FixYoYvV4vAKBnz55Xvv/+e0+tm/T0dIuFCxfG1KhRIwMA\nFi9efC48PLzGr7/+6ti2bduUyZMne7300kvXDAJSWFhYRmJiotX48eMrTJw4McGgruXh4ZG1aNGi\nvBWYv//+W5+dnU1vvvnmtdDQ0EwAqFOnTp4+eXR0tI2fn1+G4fniMGnSpATD/9DQ0MwbN25c6NOn\nT2BOTk6MpaUl4uPjrWvUqHG7efPmtwAgJCQk88UXX7wFANevX7e8efOmZbt27W4YysO4XLT4+Phk\n29ra5hpm90y5KU451qxZ89a0adPuKlfmbubOnevevn37ZCsrKwQEBGQ1bNgwZdasWe5ff/31xaNH\nj9ps3ry53Jo1a063adMmBQCWL18e4+/vX1PrR/fu3a9r75csWRLr4uLi8tNPPzn3798/r93OmDHD\n+5tvvvESQiA9Pd3C19c38/fff8/b4zR16lRPe3v7nJUrV8YY6uzChQvPNWrUqNoff/zh0LJly9Si\n2kpKSopFYXXPy8srGwDc3NxytHUtNjbWpmHDhvn2RJiDv79/9hdffJE3iK9SpcrVffv22S9fvtz1\n/fffTwaAhIQE6wEDBlyqW7duOgBUq1Ytb9b03Llz1nq9PiciIuKaQV2vQYMGaabCMqiqWFpaCsNq\njil369atc/zvv/8cLl68eMjNzS1HhZn0zz//OMycOdOzbdu2eens3r37FW0ZMSWjevXq6ZGRkZZn\nz561LqqfOnr0qM1PP/3k9sMPP5zt1avXNYMfTZo0MTlQjI+Ptyqsnzdm7ty5bteuXdPt37//uLe3\ndzYArFq16mxISEjYvHnzXAcMGJAMAEIIzJgxI94w2B0zZszF559/vsqxY8dswsPDzd4bl5OTg5kz\nZ8Zp4z9+/Hif/v37XxoxYoRBKM2YP39+THh4eI2DBw/ahoeHp0+ePNl77Nix5/v163cVkO0iKysr\n/vXXXw+ZO3dufFRUlK0hb82Ni4F27drla8tz5sw5v379+nJLly51GTt27KXY2Fir3NxcdO/e/VrF\nihWzAMDQPgEgLi7OJigoKP2ll15KtbCwQEhISGazZs1Mlo+Dg4Pw9PTMBgAPD4/sgtrl5MmTPUNC\nQtLnz58fbzBbtGhRrI+Pj/P8+fNdhw8ffqWg/HxS4BUIptSoVKlSemBgYPq0adO8Y2JiCtzZ2a1b\nt+u1atW69cEHH1Qwtjtw4IBtenq6xZtvvhlkWM61s7OrPWzYsIqpqamWFy9evEvojYqKssnKyqJn\nn302VWter169u2YnAwMD0w3CAwD4+PhkJicn54uri4tLtkF4AOSgp1y5ctlHjhzRA8CZM2f0jRs3\nztfhPf/88ykZGRl07NixvGXnmjVr3tKqbz311FNpjRs3vlm7du3qL774YtDnn3/ueebMmbywhRAl\n1mleuHBhuXr16oV6enqG2dnZ1X7nnXcqZWVlUXx8vBUAvPvuu1f++OMPl5CQkOq9evXyW7FihVNO\njpyk9fDwyOncuXPSa6+9FvLcc8+FjBo1yuvQoUM2hQZYBMUpxzp16picRWbyc+7cOavt27eX69u3\nb96Md7du3ZKXLVvmnpWVhUOHDtkCwPPPP5/XDmxtbUVYWFi+/D1x4oR1u3btKvn7+9dwcHCo7ejo\nWDs1NdUyNjY2n5pe9+7dL+/du/fYvn37jq1fv/5kcHBwWps2bUKuXbtmAQDHjx/X165dO1Ur8D79\n9NNpDg4OOYcPHzarrZS07pW0reTk5GDUqFFeVapUqebi4hJuZ2dX+8cff/S4ePFiXpj9+vW7NHTo\n0IAGDRqEDh061Gfnzp156l1t27a9WaFChczAwMCwVq1aBU6ZMsX9Xk9t+eeff+yysrLIz88vTNtW\nfv75Z9eYmJh8OuMNGzbktlIKGNT6Ll68qCuqn9qzZ48dALRt2/aGOX4X1c8bExUVZRsUFJRuEB4A\nwM/PLzsgICDdMCgHACJCw4YN8wap/v7+mSoNxTpFwdLSEs8880yeP7m5uYiKirKbNWuWlzYPGjZs\nWA0Ajh8/bnP27FmrpKQkqxEjRvhr3bzxxhtBQggcP37cRqsGWFzi4uJ0ERERFQMCAmo4OjrWsrOz\nqx0fH29j6JOaNGlyq379+inVq1ev8dJLLwWNHz/e89y5c3npfuedd64cPnzYvlKlSjW6devmHxkZ\nWS4jI+Oe9ggdPHjQ/sCBA/ba9Do6OtZOSkqyOn36dF5/YZyfTxK8AsGUGm5ubtmrVq06+/zzz1d+\n7rnnQjdv3nyqcuXKJnUep0yZEt+sWbOqxkfZ5eTkEAAsWLDgrKmZDMPMgSmIiu4vrK2t883uExGM\ndcRLCzs7u3w9qk6nw/bt209v377dbsOGDU5r1651GT9+fIX58+dHd+3a9UZwcHD6vn37HNLT06k4\nqxBbtmyx7927d9B7772XMGnSpPPu7u7ZO3bscBg4cGCAoRPt0KHDzcaNGx/++eefnbdv3+749ttv\nB06ZMiVt165dJ3U6HZYtWxa7b9++S7///rvzli1bnCZNmuQzYcKEuA8//DCpJGkvTjkWpCrF5GfW\nrFnuOTk5aNSoUTWteU5ODpYuXVrO0tLSrDrTqlWrEBcXl+zp06fHBQQEZNrY2IimTZtWyczMzDeh\n5OrqmmMQpGvUqJFRrVq1GH9///D58+e7Dh06tET1whQlqXsBAQHpp06d0hc3rDFjxpSfOXOm1+ef\nfx5fv379287OzrkTJ04sv2XLFmeDm8mTJyf06tUr+ZdffnHetm2b48yZM6v0798/8euvv77o7Oyc\ne+TIkWObNm1y2LBhg9MPP/zgMXbs2Arr1q079eyzz5ZoEJGbm0sODg45u3btOm5sZ7zR1tyTfpjC\niYqK0js4OOTcy/umIIrq50saZwsLC2hPMDK87wxpMBdra+tcrT9CCAghaMiQIRe6det2zdi9v79/\nVmJiog4AJk+eHNe0adNUYzdBQUGZBrUeJfQUK52dO3cOvH79um7ChAnxwcHBGXq9Xrz22mtBmZmZ\nBABWVlbYvXv3qa1bt9pv2LDBafXq1a7jxo3zXbJkSXT79u1vNmnS5Pa5c+cOr1271mnLli1Ow4YN\n8x8/fnz2vn37TpT0tK3c3Fw0adLkxldffXXe2M6wUgjcnZ9PErwCwZQqPj4+2Tt27Djp4uKS3aRJ\nk9AjR46YnE1s0qTJ7VdfffXq8OHD861C1K1bN83GxkZER0db16hRI8P4MtVQq1evnmFlZSV27NiR\nTxjZv3+/fUnScO3aNV1UVFRevA8fPmxz/fp1XY0aNdIAIDg4OG3nzp35dJP//PNPR1tb29xq1aoV\nupRsYWGBZs2a3f7yyy8T//3335P169dPWbBggTsA9OzZMzk9Pd3is88+M3lKlfGGNgPbt293KFeu\nXPbXX399sXnz5rfCwsIyzp8/f9esVPny5XPeeeedq0uWLIldvXr16X379jkcOHAgbxBWv3799DFj\nxlzasWPH6U6dOiUtWLDgrj0k5lKScmQKxrB5esCAAYm7d++O0l6tWrW6Om/ePI/w8PB0APjzzz/z\n2kF6ejodPnw4rx0kJiZaRkdH23744YcJHTp0uFm3bt10vV6fe/Xq1SILxLCalpaWZgEAVatWTTt4\n8KCDVk979+7d+tTUVMvw8PBitZWC6p5BkDaslhno1KlT8p49exw3b95sso0X1Fb+/vtvx+eee+7m\n4MGDk5955pm0GjVqZJw9e/auPqpatWqZI0eOvLJ+/fqzH3744cXIyMg8NUedToeWLVumzpgx4+LR\no0ePe3h4ZEVGRpb4mw4NGjS4lZKSYpmWlkbG7SQkJMTkBAxTcs6dO2f1888/u7788svXzemnDLP+\na9eudS7KbwOF9fPGVK9ePT06OtpWu5IVHx+vi4mJsTW8c+4nlpaWqFq16u3jx4/rTeWBk5NTblBQ\nUKarq2v2qVOnbEy50ev1wt/fP/vpp59O+e6778rfuHHjrrFlWloapaSk3GWem5uLf//916Ffv36X\nunbteqN+/frp3t7e2dpVQUDm6fPPP39r0qRJCQcOHDhRs2bN2/Pnz8/bu+Ti4pLbs2fP65GRkXF/\n/fXXiVOnTum1fWFxqVWr1u1Tp07pg4ODM43Tq10tepLhtzhT6nh4eORs27btVIsWLUKaN28e+scf\nf5wy5W7KlCkXwsLCalhYWAhvb+9MQJ4mMXDgwIQvvviiAhHhlVdeuZmVlUUHDhzQHzx40G727NkX\njP1xcnLKjYiIuPLFF1/4eHl5ZVWvXj197ty57tHR0baurq7Fbui2tra5PXr0CJg2bVo8AAwaNMi/\nSpUqaQa98uHDhydGREQEjxo1yqtLly7X9u7dazd58mSft99++1JhKwebNm2y37hxo1PLli1v+vn5\nZR07dszm5MmT+q5duyYBwHPPPXd78ODBCRMnTvSNj4+3joiIuBoUFJQZFxdntXTpUteEhASrdevW\nnTX2t0qVKunXrl3TTZ8+3f2ll166uWXLFsf58+fn29cxcOBA33r16t2qVatWmoWFBSIjI13t7Oxy\ng4KCMo8ePWoza9Ys93bt2t2oVKlSZlxcnNXevXsda9SoUeJl2ZKUI1MwK1eudE5MTLQeNGjQFeNB\nZa9evZI7duwYYmVlJZo3b359yJAh/jqdLtbHxydr3LhxXrdv384bTHt4eOS4uLhkz5s3z6NKlSoZ\nly9f1o0YMaKCjY3NXbN0qampFnFxcToAuHDhgtXYsWO9bW1tc1u3bn0DAIYNG3b5f//7X/mOHTsG\nfPrppwlXr17VDRw40L9u3bqpL7/8cipQdFspqu55eXll29nZ5a5fv96pdu3aaXq9Xnh4eOR8/PHH\nlzdv3uzUrl27ykOHDr34wgsvpHh5eWUfPnzYds6cOR5NmjRJ+eSTTy4bpyk4ODh99erVbr/++qtj\nxYoVM+fNm+d2+PBheycnpxxAnoY0YMCACh07drxWuXLljOTkZMvNmzc7BwUFpQHydJ3o6Gjr5s2b\np3p5eWXv3r3bLjEx0bpatWol/jZG69atU55++umbHTt2DP7888/P161b93ZycrJux44dDra2trkf\nfPBBqa32PGlkZmZSXFycLjc3ly5fvqzbunWrw4wZM7xcXV2zp02bdt6cfqpGjRoZbdq0ufrBBx/4\np6WlUZMmTW4lJSVZ7tixw8FUHSuqnzemb9++yZMnT/Z+7bXXAidPnnxeCIFhw4ZV8PT0zHzrrbfu\nWhG4H4wdO/ZC586dQ/r375/ZvXv3q46OjrlRUVG2y5cvd1mxYkWMTqfDqFGjLowaNcrf0dExt337\n9tctLS1x+PBh282bNzstWrQoDgDmzZsX07Rp0yrh4eHVRo0adaFevXppVlZWYtu2bQ5ff/2114oV\nK6KNvyNjYWGBgICAjKVLl7o988wzt9LT0y1GjRqV78jy3377zXHnzp32L7300s0KFSpkHzlyxPbM\nmTO2zZo1uwEAH330kVdAQEBmvXr1buv1+ty5c+e663Q6YTgopCSMHDny0qpVq9xatmwZ9NFHHyVU\nrFgx69y5c9a//PKLc5cuXa4999xzT6TakhYWIJj7gouLS+7WrVtPtWzZMvjFF18MHTx4cIKxm9DQ\n0MyePXte/v777/PNuE+ePDnB29s76/vvv/ccM2aMn42NTW5AQED6G2+8UeBHcL755pvzGRkZFn37\n9g0kItGmTZurr7/+evLff/9d7CPVPDw8snr37n2la9euQUlJSVZ16tRJXbZs2VnD+dCdO3e+cfny\n5Zjp06d7TZ482cfFxSW7R48eV6ZMmVLoRmAXF5ecvXv32s+fP9/z5s2blu7u7lnt27e/OnHixLy8\nmT59+sX69evfmjVrlmeXLl2C09PTLby9vTPr1auXOm7cOJP+d+3a9caePXsSxo0b5ztq1Ci/Bg0a\npHz22Wfn+/XrV8ngxtbWNnfcuHG+Fy5csLa0tBRVqlRJW7NmzWk3N7ec1NRUi+joaNvu3bu7Xbt2\nTVeuXLns5s2b35g1a9ZdS7fFoSTlyJhm7ty57mFhYbdMzUi3bt36ppOTU/asWbPcf/zxx5jevXtX\n7NSpU7CtrW1uREREUosWLa4lJiZaA3K2cdGiRdFDhw71r1+/fnVvb+/MMWPGnP/000/v2o80e/Zs\nr9mzZ3sBgLOzc07VqlVvr1mz5rThY4Z+fn7Za9euPTVixIgKzz77bDUrK6vcpk2b3pgzZ07epsOi\n2oqjo2NuYXXP0tISEydOjJswYYLP3LlzvcqXL5954cKFIzY2NmL79u2nv/zyS8/ly5e7TZ482cfS\n0hJ+fn4ZL7zwwg3tPhEtEyZMSDh//rx1165dg3U6nWjduvXV3r17X161apUbIA9ZuH79umX//v0D\nkpKSrOzt7XOefvrplK+++ioekGqa33zzjeeMGTO8b9++benl5ZU5ePDghCFDhpR4kG9hYYGNGzee\nGT58uM/IkSP9Ll++bGXI7w8//PCuU5sY89m/f79DxYoVwy0tLaE+aJb21ltvXdZ+SM6cfmrFihUx\nw4cP9x4/frzv+++/b+Xq6pr96quvmhzcm9PPa3FwcBB//PHHqUGDBvm1aNEiFACeeuqplHXr1p0u\nyYEaJaFDhw4316xZc2r8+PHeCxcu9ATk/sCmTZveMLz3PvjggyRXV9ec6dOnl586daqPTqcT/v7+\n6W3bts3Lh2rVqmXu37//2JgxY7zHjRvnm5iYaG34gF+/fv0u1axZ0+SAfsGCBWf79+9fsXHjxtXc\n3d2zhg4dmnDr1q281Qo3N7fsv//+23Hu3LnlU1JSLD08PLK6du2aNG7cuERAqvbNmDHDKy4uzgYA\ngoKC0hYvXhxdpUqVEq/gVapUKeuvv/46Pnz48AqdO3cOvnXrlqWHh0dWgwYNUnx8fJ6cjz0UAt0v\n/W+meBw6dCgmPDz8rpfQo/Il6oeRhg0bVnZ2ds7ZsGFDdFnHhXm4eZS+RM0wZcmj8iVqhnnYOHTo\nkHt4eHhAWcejtOAViIecx2Eg/yDYu3ev/p9//rFr0qRJakZGBv3www9u//zzj+PKlStPl3XcmIcf\nHsgzjHnwQJ5hGIAFCOYxgYjEvHnzPEaNGuWXm5tLlSpVSo+MjMw725thGIZhGIYpHViAYB4L6tev\nn37o0KETZR0PhmEYhmGYxx0+xpVhGIZhGIZhGLNhAYJhGIZhGIZhGLNhAeLhITc3N/eePr3OMAzD\nMAzDPFyo8d1j9SV5FiAeEogoMS0tzbas48EwDMMwDMOUHmlpabZE9Fh914UFiIeE7OzssTExMda3\nbt3S80oEwzAMwzDMo01ubi7dunVLHxMTY52dnT22rONTmvCH5B4iDhw48JJOpxsthPDCAxLucnJy\ndJcvX/b19vaOA1BoZbh9+7bD7du3Hdzd3e+7FJ2RkWF78+ZNVw8Pj0K/7lxctwzDPJlcvnzZ19nZ\nOdnGxsbk13BL6vZBkZGRYXv9+nW38uXLXyjruDDMgyI5Obm8Xq9PtbOzu1Wabh8U2dnZlseOHatQ\nvXr1l+vUqbOhrONTmrAA8QhBRDEAfAD4CCGSNOYHAdQCUEkIEVNMPwMAnANgJYTILsJtTwB9hBCN\njcyfBfCH4RaAHQBtA64mhIgrTrwY5l4gom0AwgF4CSEyyjg69wUiagtgLIBAAJkADgN4Swhxrkwj\nVgoQURSAiupWDyALgKF/+kII8UWZROweISIbABMBdATgBCAJwBohxAdmPPsCgHlCiIBSjtN5AN2E\nENtK098nDfV+Lg8gR2NcWQjxxExsEdEfAJ5VtzaQk5KZ6n6xEKJfmUTsHiEiAvAxgD4A3AFcB7BD\nCBFhxrPBAE4LIUpVs4SIdkL2BwtK09/iwN+BePQ4B6ArgJkAQEQ1IQfsZYYQ4i8ADio+AZBxLFeQ\nQEJEFuq5x2pDEfNwoOrgswBuAGgDYOUDDFtXlCBeSuEEA4gE8BqALZDtrwXyD17uNQyCnGR64O1U\nCFFdE49tkIOPeQW5f1D5Xgr8H4AwAHUBXAIQAOCZsowQU6q0FkJsLutIEJGlEKLU+gJzEUK01MRh\nAYDzQoj/K8j9I9RuewPoAqC5EOIsEXkDaFXGcSpzeA/Eo8ciAN019z0gBxJ5EJEzEUUS0RUiiiWi\n/zMM2onIkoimEFESEZ0F8KqJZ/9HRAlEdIGIxhGR5b1Gmoh2EtHnRLQbcnXCn4j6ENFxIkohomgi\n6qNx/4Ka0THcnyeioUR0hIhuENFSNZtXLLfK/iMiSlTp60tEQg06mceD7gD2AFgA2T7yICI9EU1V\n7eKGqpd6ZdeYiHYR0XUiilcrbiCibUZ1s6ea/THcCyJ6j4hOAzitzL5Sftwkov1qlc7g3pKIRqk6\nn6Ls/YhoFhFNNYrvL0Q0xEQaawE4J4T4U0hShBCrDSt9BYWh7BoR0T6V/n1E1EgT3jYiGk9EfwO4\nDSCwOH0CEdkQ0QwiuqiuGZp22lS1zQ+I6LLyr1fhRWka1XfsIKKviegqgP8johAi2kpEV1X/toiI\nnDXPnCeipur/ONUvLFb5c5SI6pTQbT0i+k/ZLSOilUQ0poCo14dccUhU5XZOCLFY+aMz7otUmPn8\nIqJPiSiZiM4RUReNeSu605+e19YbImpDRIdU3d5JRDWU+VLIVe0/iCiViIYWqyCYEqH6kLOqrM4R\n0Rsau76acjxmqGtEVFW1z+tEFEVEbTTPLCCi2US0johuAWim2uIUIoojoktENIdUX2ciPhYkxwmx\nqm1GGtoOEQWoetlD+ZVERB+XMN0vEFGM6psSAcwlIjcV7ytEdI2IfiUiX80zO+lOX9yHiLYT0XSV\nD2eJqEUJ3QYp9ylEtFHl34ICol4fwHohxFkAEEIkCCHmavzK6y/U/Thjv1S5GvpFbdtsSEQHSL4r\nLhHRZI3dM0S0R8X/PyJ6TplPBPA0gDmq3c4wtwxKFSEEX4/IBSAGwAsATgKoCsASwHnIpX4BIEC5\niwSwFoAj5AzXKUjVBgDoB+AEAD8ArgC2qmd1yv4nAN8BsAfgCWAvgHeUXU8AO4uIY4DWP435ThX/\nqgCsIFe/WkOqXxCA5gDSAIQp9y8AiNE8fx5yUOgFwE2lqU8J3LYCcFHFwx7AUm3e8fXoXwDOAHgX\ncpY3C0B5jd0sANsA+Kr20whyqb0igBTI1T0rVW9qqWe2GeqPus/XDlT92aTak16ZdVN+6AB8ACAR\ngK2y+xDAEQChqu6HK7cNVN20UO7cIQfx5U2kMRBAOoDpAJoBcDCyLygMVwDXALyp4tZV3btp0hoH\noLqyt0IhfYKJeH2m2p4nAA8AuwB8ruyaQqohfab8fUWlz6WI8syX/8qsj/KrvypHPYDKAJ4HYK3C\n/xvAFM0z5wE0Vf/HQfY3L6nnJxuVqVluVd05D2CASlNHyDo3poC0jAEQq+JdA0qNWNnpYNQXAVhs\n8Auyn8tW4dtA9pm3AQQr+ysAGqn/rgDqqP/1IVc76qv49wYQDcDaOK183VO/EwPgBTPc2QO4CSBU\n3XsDqK7+dwRwQZUVAQiG7JusIPu1Uap+N4fsrwx+LIBccX0GcmLYFrJv+EXVBUcAvwKYUECceiv/\nAyFXM9cAWKTsAlS9nKvaWTiADABVi0jnAgDjjMwMdfgLlQ49ZD/RXv13UmGv0jyzE0BP9b+Pal+9\nVV0eCCC+hG73QaoTWgN4TuXnggLS0hNAMoBhkO8VSyP7fG0Iss9YoP4Hq/xbBKktEq78aqqJR1f1\n3xHAU+q/n3L3kirTlyFVHt2M01pmdb6sGx1fxSisOwLE/wGYoCrUJmhePKqhZELuOzA89w6Aber/\nFgD9NHYt1LM6SP3NDKhBkLLvCmCr+t8T9yZAfFrEs78BeE/9NyUUdNHcTwPwTQncRkINaNR9FbAA\n8dhcABqrl4a7uj8BYIj6bwE5EAw38dxHAH4qwM9tKFqAaF5EvK4ZwoWcAGhbgLvjAF5U/wcAWFeI\nnw0BrIAcOKZDvrAdCgsDUnDYa2S2G3deutsAfKaxK7RPMOF/NIBXNPcvGdompACRpu0bAFwG0LCI\nvMuX/8qsD4CzRTz3OoB9mntjoWC9xi4MQGpx3UIO5OKMwt2DggUIHeRAZpfK1wuQ+w8MdkUJEJkA\n7DT2awB8pP5fVPniaBTmXACjTZTTM8Zp5avkF+T7ORVSP/46gJ8LcGev7Dto25Wy2wDgfRPPPAs5\nCWGhMVuqqRsLAERq7AhypT9IY/Y05KqlqTj9CeBdzX0oZD+qw513egWN/V5o3rEF+LkApgWIdCjh\ntYDn6gG4ork3FgpOaOycVNzci+MWUlAy7teWoQABQtm/qfLpFpQwobEzR4AI1thPA/Cd+r8LwKdQ\ngoHGzccA5psopzeM01pWF6swPZosAhABOZCJNLJzh5ytiNWYxULOuAJyuTreyM6AYaYjQS2ZXYec\nefQspXhrwzUsuf9DUuXgOqQw417I89rTn25D7bsoplvj9OeLE/PI0wPARnHnkIEluKPG5A45Mxdt\n4jm/AszNxbhuD1NqCDdU3XbGnbpdWFgLIVcvoH4XFRSgEGKPEKKTEMIDcoDxHORLp7AwfJC/zQP5\n+3Uc5I8AACAASURBVAfjtBS3TzD2P1aZGUgW+XWei2rHhWGc515EtIKkmtVNyAFMcfoT+xK49YEc\nPBQYLy1CiGwhxEwhRCMA5QBMArCAiCoXEraWZCHEbc29Nn/bQ+75iVOqLk8p84oARhjKT5WhN/KX\nOVM6tBNClFNXOwBQqkOp6holhLgFoDOkNkACEf1ORFXU84W123iRfz9SYe3WA3K2e7+mzNcrc1OY\nareGSUUDxXn/FsYlIYRhYzWIyIGI5in1qJuQk5zFabcoJC4FufWBbEtpGvtCxwJCiEVCiOch2+17\nACYQ0fOFPWOE8bjL0G57AagG4CQR7SWiV5R5RQBdjdptQ+TvT8sUFiAeQYQQsZAblV+BnIHSkgQ5\nc1BRY+YPOdMFAAmQnZTWzkA8pFTurukEnYRmQ+O9Rt3wR+liroJcSSkvhCgHYCPkzMn9JAFABc29\nX0EOmUcLVac6AWhCco9LIoAhAMKJKByybaQDCDLxeHwB5oCccdIeVOBlwo22bj8LYLiKi4uq2zdw\np24XFtZiAG1VfKsC+LkAd/kDF2IfZF9Qo4gwLiJ/3wDk7x/ypQXF7xOM/fdXZvcDYXQ/ETKuNYUQ\nTpATLA+iPzEeiJvVpwgh0oQQX0HOWldVglUGCq9rbkZ67Hn5K4T4RwjRBlK4+w1yRhWQZThWU37l\nhBB2QogVhqiYE1+mZAgh+gkhHNT1hTLbIIR4EVKQOwG5SgQU3m79SO1lVBTWbpMgV/uqa8rcWQhR\n0EDbVLvNhlR9K22M69uHACoBaKDabfP7EKYxCZBtSfvxXnPbbZYQYhmAKNzpb815RxiPuwzt9qQQ\nogtku50KYLWKVzzkCoS23doLIQx7JMq83bIA8ejyFqTaRL7zjoU8eWEFgPFE5EhEFQEMhRyYQNkN\nIqIKROQCYKTm2QTIQfxUInJSG6uCiKjJfYi/DaTu4RUAOUTUClJ/+X6zAsBbRBRKRHYAPnkAYTIP\nhnaQpxBVg9xkXAtyEP4XgO5q9u4HANOIyIfkRuOnSW7y/RHAC0TUieRmVjciqqX8/Q/Aa0RkR/L0\no7eKiIcj5Mv3CgAdEX0KuXxuYB6Az0lu+iUiCiMiNwAQQpyH1IldBGC10QxZHiQ3fPclIk91XwVy\n9nlPEWGsA1CZiCJUOjur/PrNVDgl6BOWQm5o9iAid8il+cUFuC1tHCFf5DdIbhgf9gDC3AlZxv1V\nfnaA1JE2CRENIaLnSG7m1xFRb8hVsf+Uk0MA3lB181VIlTwtFgDGEJE1yU2bLQGsUv5FEJGTECIL\nUp/bMFs9F8B7RFRf1QUHImpNRIZVlEuQKh3MA4CIyhNRW5X/GZACpKGs5gEYRkR1VVkFq3f4P5Az\n6MOJyEqVfWvcERLzofq6uQCma/oIXyJ6qYBoLQUwhIgqEZED5B6F5eLBnJDkCJm2a6qP+vR+ByiE\niIbcIzZataXGMDpQRgsR9SaiV9SYykK1zVBIVS5Att8uqk03gDwdz5hPVDutCbkqvlz5/SYRuasy\nuwEpGORCvgPaE9GLqj+wJaJmRGRYgSjzdssCxCOKECJaCPFvAdYDIV+kZyFfcEsgB06A7FQ2QL6o\nDuDuFYzukAP7Y5B626sgZ0lKFSHEdcjZ4Z8AXIXUVzY5iCnlcH8FMBvADsgTc/5WVo/ltwKeMHpA\nztjECXnKTaIQIhHAN5CDMh3koPII5CD9KuSstYWQpxe9Arnh+SrkCyFc+TsdUvf8EqSK0Y9FxGMD\npLrAKcil6nTkX76eBinIboTcTPk/yA2EBhYCqIlC1JcgdajbADhCRKkqvJ8gVWIKDEMIkQx5kMAH\nkHq8wwG00qh8maI4fcI4AP9CfpPiCGQfM64Qv0uT0ZAb0W9Abh5dfb8DFPIbI+0h1VGuQa46rUPB\n/Uk6gBmQdSkJcn/aa2pVGQAGKf+uQ26o/cXo+fOQfXsCZD3pI4Q4rex6AIglqQbyFpQqnBBiD+Sm\n7dkqjqdwR00OkIPFsSTVJAYXMwuY4mMBOal3EbKvaQJZPhBCrAQwHvKdnQK5AumqVH5aQwqMSQC+\nhZwUOVFIOCMgN0bvUXViM+Sg1xQ/QPY3OyC1G9IhxxEPgmmQKp7JkPsB/ijceanRFVLtMxmy71iO\ngtvtTci9p/GQbegLAG8LIXYr+48h91Neh5yUXGLCj52QY7KNkJvZtyjzVwAcJ6IUAFMAdBZCZAr5\nTa/2yr8rkIdbfIA74/YZuKPiNK3YqS8F+ENyzBONmg04AMBG8HcpmIcAkkf1LQZQUXAH/chBRPsB\nzBBCFCYAMgzzEEFEqwH8J4T4vKzj8qjAKxDMEwcRtVfLlq4AvgSwloUH5mGAiKwAvA/5hVEWHh4B\nSH7forxSX3gLciZyQ1nHi2GYgiGiBkply4LkxuVWMHPPGSNhAYJ5EnkPchn4DORS7XtlGx0GAIjo\nB5IfMTpagD2R/HDYGSI6TJqPeT0OEFFVyCVwb8jlaebRoCqkytZ1SBWkDkKIy2UbpceHJ71fYO4b\nPpAqWymQaqp9hRBHyjZKjxaswsQwzEOBUt1JhTzPvIYJ+1cg9XJfAfAUgK+EEE8Zu2MY5vGB+wWG\neTjhFQiGYR4KhBA7IDcVFkRbyEGEUBtDyxFRqW/wZxjm4YH7BYZ5OGEBgmGYRwVf5D/N6Dz4Y1gM\n86TD/QLDlAG6so5AaeLu7i4CAgLKOhoM89Cxf//+JPXF4icCInobwNsAYG9vX7dKlSpFPPFg2J+8\nv9T8qutW4OcGGMYsuF/gfoFhjDG3X3isBIiAgAD8+29Bn0ZgmCcXIoot2tVDzwXk/5pnBeT/Emse\nQojvAXwPAPXq1RMPS79AC0vvw8j/9ng40lQcSjP9ACB68B6+e4H7hYejDXG/wP3Cw4S5/QKrMDEM\n86jwC4Du6tSVhgBuqC8lMwzz5ML9AsOUAfdtBYKIfoA8V/dyAScnfAjgDU08qgLwEEJcJaIYyKO1\ncgBkCyHq3a94MgzzcEBESwE0BeBOROchvw5qBQBCiDmQX/h9BfL43dsAepVNTBmGeVBwv8AwDyf3\nU4VpAYBvAESashRCTAYwGQCIqDWAIUII7UkLzYQQSfcxfgzDPEQIIboWYS/A3+xgmCcK7hcY5uHk\nvqkwmXH0mpauAJber7gwzP+zd+dxclTl/sc/X5IgWyAIATEkJAKCoAZ1WOSigAoErhJxYREloBhQ\nRPS6oSLgjgsiXpAQAROUxY0l+gu7IG5ckrAJATSGJQlrWBNAIPD8/jhnkkqnZ6ZmpnuqZ+b7fr36\nNV2nln6qp+vpPnVOnTIzMzOzxqj8ImpJawETgE8VigO4WtJLwJn5wiczM7N+rZEXjPpiUTOrSuUV\nCOA9wF9rui/tEhGLJG0EXCXprtyisYrisGxjxoxpfrRmZmZmZg3SH08stMIoTAdS030pIhblv48A\nFwM7dLRyREyNiLaIaBs5ctAMZ21mZmZmVolKWyAkrQfsCny4ULY2sFpELMnP9wS+UVGI1uKmq3G1\n9knh7gBmZmZmXWnmMK5dDb0GsB9wZUQ8U1h1Y+BipR+GQ4HzI+LyZsVpZmZmZmblNa0C0dXQa3mZ\naaThXotl84HxzYnKzMzMzMx6oxWugTAzMzMzs37CFQgzMzMzMyvNFQgzMzMzMyutFe4DYdYSNH16\nQ7cXkyY1dHtmZmZmrcAtEGZmZmZmVporEGZmZmZmVporEGZmZmZmVporEGZmZmZmVpovojYz60Sj\nL643MzPr79wCYWZmZmZmpbkCYWZmZmZmpbkCYWZmZmZmpfkaCDMzG1CmSw3b1qSIhm3LzGygcAuE\nmZmZmZmV5hYIMxvQHpszp3dnpKdNa1gsZmZmA4ErEGZmA4y78JiZWTO5C5OZmZmZmZXWtBYISecA\n7wYeiYjX15m/G3ApcE8uuigivpHnTQBOBYYAZ0XESc2K08zMrCO+kaCZ2aqa2QIxDZjQxTJ/jojt\n8qO98jAEOB3YG9gGOEjSNk2M08zMzMzMSmpaC0REXC9pbA9W3QGYFxHzASRdCEwE5jYuOjMzK8Nn\n4M3MrFbV10DsLOk2SZdJ2jaXjQIWFJZZmMvMzMzMzKxiVY7CdBMwJiKWStoHuATYsrsbkTQZmAww\nZsyYxkZoZmZmZmYrqawFIiKejoil+flMYJikDYFFwOjCopvmso62MzUi2iKibeTIkU2N2cyaR9IE\nSXdLmifp2Drz15P0e0m3SrpD0mFVxGlmfcd5waw1VVaBkPQqKQ1WLmmHHMtjwCxgS0njJK0OHAjM\nqCpOM2u+koMnHAXMjYjxwG7AyTlHmNkA5Lxg1rqaOYzrBaSDeUNJC4ETgGEAETEF+ADwCUnLgOeA\nAyMigGWSPgVcQRrG9ZyIuKNZcZpZSygzeEIAw/OJh3WAx4FlfR2omfWZls0LHlzABrtmjsJ0UBfz\nTwNO62DeTGBmM+Iys5ZUb/CEHWuWOY3UGvkAMBw4ICJe7pvwzKwCzgtmLarqUZjMzMraC7gFeDWw\nHXCapHXrLShpsqTZkmYv6csIzayv9SgvPProo30Zo9mA4wqEmbWCMoMnHEa6Y31ExDzSXey3rrex\n4uAKw5sSrpn1gablBQ+6YtY7rkCYWSsoM3jC/cA7ASRtDGwFzO/TKM2sLzkvmLWoKu8DYWYGQETU\nHTxB0pF5/hTgm8A0Sf8ABHwpIhZXFrSZNZXzglnrcgXCzFpCvcET8g+E9ucPAHv2dVxmVh3nBbPW\n5C5MZmZmZmZWmisQZmZmZmZWmisQZmZmZmZWmisQZmZmZmZWmi+iNjMzM7MBbbrUsG1NimjYtvor\nVyDMzMxsUHlszpze/aCcNq1hsZj1R+7CZGZmZmZmpbkCYWZmZmZmpbkCYWZmZmZmpXV5DYSktwIf\nBt4GbAI8B9wO/D/glxHxVFMjNDMzMzOzltFpBULSZcADwKXAt4FHgDWA1wK7A5dK+lFEzGh2oGZm\nZmbWMx6FyBqpqxaIj0TE4pqypcBN+XGypA2bEpmZmZmZmbWcTisQ7ZUHSWsDz0XEy5JeC2wNXBYR\nL9apYJDXOQd4N/BIRLy+zvyDgS8BApYAn4iIW/O8e3PZS8CyiGjr4f6ZmZmZmTWMpk+vOoTKlb2I\n+npgDUmjgCuBjwDTulhnGjChk/n3ALtGxBuAbwJTa+bvHhHbufJgZmZmZtY6ylYgFBHPAu8DfhoR\nHwS27WyFiLgeeLyT+X+LiCfy5A3ApiVjMbMWJ2kXSYfl5yMljas6JjMzM2uM0hWIPBrTwaTRlwCG\nNDCOjwGXFaYDuFrSHEmTG/g6ZtZkkk4gdU/8ci4aBvyyuojMzMyskbocxjX7DOnHwMURcYek1wDX\nNiIASbuTKhC7FIp3iYhFkjYCrpJ0V27RqLf+ZGAywJgxYxoRkpn1zn7Am0gDLRARD0gaXm1IZmZm\n1iilWiAi4k8RsW9EfC9Pz4+IT/f2xSW9ETgLmBgRjxVeb1H++whwMbBDJ7FNjYi2iGgbOXJkb0My\ns957ISKC1JLYPgiDmZmZDRBd3Qfi9+QfAfVExL49fWFJY4CLSEPF/rNQvjawWkQsyc/3BL7R09cx\nsz73a0lnAiMkfRz4KPCzimMyM7MG8ShE1lUXph/mv+8DXsWKfswHAQ93tqKkC4DdgA0lLQROIPWF\nJiKmAMcDGwA/Vbq5SftwrRsDF+eyocD5EXF5t/bKzCoTET+UtAfwNLAVcHxEXFVxWGZmZtYgXd0H\n4k8Akk6uGU7195Jmd7HuQV3MPxw4vE75fGB8Z+uaWWuSNAS4OiJ2B1xpMDMzG4DKjsK0dr5wGoA8\nJKP7NZvZSiLiJeBlSetVHYuZmZk1R9lRmD4LXCdpPunO0ZsBRzQtKjPrz5YC/5B0FfBMe2EjBl4w\nMzOz6pWqQETE5ZK2BLbORXdFxPPNC8vM+rGL8sPMzMwGoLItEABvAcbmdcZLIiLObUpUZtZvRcR0\nSasDr81Fd0fEi1XGZGZmZo1TqgIh6RfA5sAtwEu5OABXIMxsJZJ2A6YD95K6PI6WNKmjm0GamZlZ\n/1K2BaIN2CbfHMrMrDMnA3tGxN0Akl4LXEBqxTQzM7N+ruwoTLeT7gNhZtaVYe2VB4B8o8hhFcZj\nZmZmDVS2BWJDYK6kG4HlF0/35k7UZjZgzZZ0FituPHkw0Ol9Y8zMzKz/KFuBOLGZQZjZgPIJ4Cig\nfdjWPwM/7WolSROAU4EhwFkRcVKdZXYDfkxq0VgcEbs2KGYza0HOC2atqewwrn+StDGwfS66MSIe\naV5YZtaPDQVOjYgfwfK7U7+isxXyMqcDewALgVmSZkTE3MIyI0gVkQkRcb+kjZq1A2ZWPecFs9ZV\n6hoISfsDNwIfBPYH/k/SB5oZmJn1W9cAaxam1wSu7mKdHYB5ETE/Il4ALgQm1izzIeCiiLgfwCcx\nzAY85wWzFlX2IuqvAttHxKSIOIR0UH+teWGZWT+2RkQsbZ/Iz9fqYp1RwILC9MJcVvRaYH1J10ma\nI+mQhkRrZq3KecGsRZW9BmK1mlr9Y5SvfJjZ4PKMpDdHxE0Akt4CPNeA7Q4lDQX7TlKrxt8l3ZBH\neVqJpMnAZIANGvDCZtaynBfMKlC2AnG5pCtIY7kDHABc1pyQzKyf+wzwG0kPkG4k9ypSzujMImB0\nYXrTXFa0EHgsIp4hVVKuB8YDq/xQiIipwFSAcZLvX2PWPzkvmLWoshdRf0HS+4BdctHUiLi4eWGZ\nWX8VEbMkbQ1slYvujogXu1htFrClpHGkHwgHkvo2F10KnCZpKLA6sCNwSuMiN7MW47xg1qJKVSDy\nwTszIi7K02tKGhsR9zYzODPrPyRtDyyIiIci4kVJbwbeD9wn6cSIeLyjdSNimaRPAVeQhms8JyLu\nkHRknj8lIu6UdDlwG/AyaUjH25u+Y2bWEHk0x+8Ar46IvSVtA7w1Is6ut7zzglnrKtuF6TfAzoXp\nl3LZ9vUXN7NB6EzgXQCS3g6cBBwNbEfqNtDpyG0RMROYWVM2pWb6B8APGheymfWhacDPSQOzQOpm\n9CugbgUCnBfMWlXZC6GH5iHUAMjPV+9sBUnnSHpEUt0zAUp+ImmepNvy2cr2eRMk3Z3nHVsyRjOr\n1pBCK8MBpK6Ov4uIrwFbVBiXmbWGDSPi16SWAiJiGemEpJn1M2UrEI9K2rd9QtJEYHEX60wDJnQy\nf29gy/yYDJyRt91+45i9gW2Ag3Izp5m1tiG5HzKkEVH+WJhXtrXTzAauZyRtAASApJ2Ap6oNycx6\nouyX+pHAeZJOJx34C4FOx1qOiOslje1kkYnAuRERwA2SRkjaBBhLvnEMgKT2G8fM7XBLZtYKLgD+\nJGkxadjWPwNI2gL/SDAz+B9gBrC5pL8CI+mia6OZtaayozD9G9hJ0jp5emkXq5TR0Q1i6pXv2IDX\nM7MmiohvS7oG2AS4Mp8cgNTSeXR1kZlZ1SStBqwB7EoaoU2UG6HNzFpQ2VGYujVyQl8q3hhmzJgx\nFUdjNrhFxA11ylYZj93MBpeIeFnS6RHxJuCOquMxs94pew3ENNIwaq/O0/8k3SyqNzq6QUyZG8cs\nFxFTI6ItItpGjhzZy5DMzMysSa6R9H5JqjoQM+udshWIZoycMAM4JI/GtBPwVEQ8SOHGMZJWJ904\nZkYvX8vMzMyqdQRpCPgXJD0taYmkp6sOysy6r+xF1N0eOUHSBcBuwIaSFgInAMNg+RjOM4F9gHnA\ns8BheV7dG8d0b7fMrCqSjgZ+GRFPVB2LmbWOiBhedQxm1hhlKxDdHjkhIg7qYn4AR3Uwb5Ubx5hZ\nv7ExMEvSTcA5wBWFC6rNbBDLQ8K/PU9eFxF/qDIeM+uZUl2YIuIm0sgJO5OaILeNiNuaGZiZ9U8R\ncRzp/i5nA4cC/5L0HUmbVxqYmVVK0knAMaRh2ecCx0j6brVRmVlPlKpASPogsGbuSvRe4FfFO0eb\nmRXlFoeH8mMZsD7wW0nfrzQwM6vSPsAeEXFORJxDutnsf1cck5n1QNmLqL8WEUsk7UK6w+zZ5DtH\nm5kVSTpG0hzg+8BfgTdExCeAtwDvrzQ4M6vaiMLz9SqLwsx6pew1EO0jLv038LOI+H+SvtWkmMys\nf3sl8L6IuK9YmMeBf3dFMZlZ9b4L3CzpWtKN5N4OHFttSGbWE2UrEIsknQnsAXxP0iso33phZoPL\nZcDj7ROS1gVeFxH/FxF3VheWmVUpIi6QdB2wfS76UkQ8VGFIZtZDZSsB+5OGVd0rIp4knWH8QtOi\nMrP+7AxgaWF6Ke7yaDboSdoPeDYiZkTEDOA/kt5bdVxm1n1lR2F6NiIuioh/5ekHI+LK5oZmZv2U\nisO2RsTLlG/tNLOB64SIWH4PqXxC8oQK4zGzHnI3JDNrtPmSPi1pWH4cA8yvOigzq1y93xw+uWDW\nD7kCYWaNdiTpnjGLgIXAjsDkSiMys1YwW9KPJG2eH6cAc6oOysy6zzV/M2uoiHgEOLDqOMys5RwN\nfA34VZ6+CjiqunDMrKdKVSAkvQ/4HrARaeg1ke4VtW4TYzOzfkjSGsDHgG2BNdrLI+KjlQVlZpWL\niGfIw7ZKGgKsncvMrJ8p24Xp+8C+EbFeRKwbEcNdeTCzDvwCeBWwF/AnYFNgSaURmVnlJJ0vaV1J\nawP/AOZK8oiOZv1Q2QrEwx6/3cxK2iIivgY8ExHTSTeg3LHimMysettExNPAe0n3ixkHfKTakMys\nJ8peAzFb0q+AS4Dn2wsj4qKmRGVm/dmL+e+Tkl4PPETq/mhmg9swScNIFYjTIuJFSdHVSmbWespW\nINYFngX2LJQF4AqEmdWaKml94DhgBrAO6cJJMxvczgTuBW4Frpe0GfB0pRGZWY+UqkBExGHNDsTM\n+j9JqwFPR8QTwPXAayoOycxaRET8BPhJ+7Sk+4Hdq4vIzHqq0wqEpC9GxPcl/S+pxWElEfHppkVm\nZv1ORLws6YvAr6uOxcxal6Q/RMS7gWVVx2Jm3ddVC0T7hdOze7JxSROAU4EhwFkRcVLN/C8ABxdi\neR0wMiIel3QvaeSWl4BlEdHWkxjMrM9dLenzpLHelw/RGBGPVxeSmbWYUVUHYGY912kFIiJ+n/9O\n7+6G8xjPpwN7kO5GO0vSjIiYW9j+D4Af5OXfA3y25kfG7hGxuLuvbWaVOiD/Ld4gKnB3JjNb4eaq\nAzCznuuqC9PPgJ9ExD/qzFub9EPh+Yg4r87qOwDzImJ+Xv5CYCIwt86yAAcBF3QjdjNrQRExruoY\nzKx1SBoTEfcXy3xjSbP+rav7QJwOfE3SnZJ+I+mnks6R9Gfgb8Bw4LcdrDsKWFCYXkgHTZaS1gIm\nAL8rFAepK8QcSZNL7IuZtQBJh9R7lFhvgqS7Jc2TdGwny20vaZmkDzQ2cjNrkkvan0j6XWcL1nJe\nMGtNXXVhugXYX9I6QBuwCfAccGdE3N3AON4D/LWm+9IuEbFI0kbAVZLuiojra1fMlYvJAGPGjGlg\nSGbWQ9sXnq8BvBO4CTi3oxXKdHksLPc94MpGB21mTaPC89JdGZ0XzFpX2WFclwLXdXPbi4DRhelN\nc1k9B1LTfSkiFuW/j0i6mNQlapUKRERMBaYCtLW1+YY0ZhWLiKOL05JGABd2sVrZLo9Hk1oqt8fM\n+ovo4HlXnBfMWlRXXZh6YxawpaRxklYnVRJm1C4kaT1gV+DSQtnakoa3PyfdwO72JsZqZs3zDNDV\ndRFddnmUNArYDzijodGZWbONl/S0pCXAG/PzpyUtkdTZjeScF8xaVNk7UXdbRCyT9CngCtIwrudE\nxB2Sjszzp+RF9wOujIhnCqtvDFwsqT3G8yPi8mbFamaNI+n3rDjLuBqwDY25L8SPgS/le010FcPy\nro0bNOCFzaznImJIEzfvvGBWgW5VICStFRHPll0+ImYCM2vKptRMTwOm1ZTNB8Z3JzYzaxk/LDxf\nBtwXEQu7WKdMl8c24ML8I2FDYB9JyyLikprlVuraOE5y10az/sl5waxFlapASNoZOAtYBxgjaTxw\nRER8spnBmVm/dD/wYET8B0DSmpLGRsS9nayzvMsj6QfCgcCHigsUh4eVNA34Q70fCWY2YDgvmLWo\nstdAnALsBTwGEBG3Am9vVlBm1q/9Bni5MP1SLutQRCwD2rs83gn8ur3LY3u3RzMbXJwXzFpX6S5M\nEbGgpn/hS40Px8wGgKER8UL7RES8kAdS6FSZLo+F8kN7G6SZtT7nBbPWVLYFYkHuxhSShkn6POls\ngJlZrUcl7ds+IWkisLjCeMzMzKyByrZAHAmcSho+bRHpZi1HNSsoM+vXjgTOk3Ranl4IdHknajMz\nM+sfyt5IbjFwcJNjMbMBICL+DeyU72DffiNKMzMzGyDKjsI0jnSnx7HFdSJi347WMbPBSdJ3gO9H\nxJN5en3gcxFxXLWRmZmZWSOU7cJ0CXA28HtWHl3FzKzW3hHxlfaJiHhC0j6AKxBmZmYDQNkKxH8i\n4idNjcTMBoohkl4REc9Dug8E8IqKYzIzM7MGKVuBOFXSCaSLp59vL4yIm5oSlZn1Z+cB10j6eZ4+\nDDi3wnjMzMysgcpWIN4AfAR4Byu6MEWeNjNbLiK+J+lW4F256JsRcUWVMZmZmVnjlK1AfBB4TfHm\nUGZmHYmIy4HLASTtIun0iPDQz2ZmZgNA2QrE7cAI4JEmxmJmA4SkNwEHAfsD9wAXVRuRmZmZNUrZ\nCsQI4C5Js1j5GggP42pmAEh6LanScBDpztO/AhQRu1camJmZmTVU2QrECU2NwswGgruAPwPvjoh5\nAJI+W21IZmZm1mhl70T9p2YHYmb93vuAA4FrJV0OXAio2pDMzMys0VbrbKakv+S/SyQ9XXgskfR0\n34RoZv1BRFwSEQcCWwPXAp8BNpJ0hqQ9q43OzMzMGqXTCgSwNkBEDI+IdQuP4RGxblcblzRB0t2S\n5kk6ts783SQ9JemW/Di+7Lpm1poi4pmIOD8i3gNsCtwMfKnisMzMzKxBuurCFD3dsKQhwOnAI0ed\nsgAAIABJREFUHsBCYJakGRExt2bRP0fEu3u4rpm1sIh4ApiaH2ZmLWEZ6czGqYWyQ4Hd8t9244HP\nAqcAt9Zu5LrrYNq0FdPHHANjx8JnC5d+7borHHYYnHAC3HdfKhsxAn78Y7j4Yrj00hXLnljzF2Ai\nsB+pPffJXLYZ8HXg50Cxg/kp8Pvf/559910xvs2ZZ57J5MmTkVb0Ju1on6YB1+W/y3cJGJuXX75L\n7U9K7dOJK/8FmDgR9tsPPvMZePLJLveJe+nWP0qHrtjXiGDq1KkcccQRXe7TYaQLfvMeMQL4MXAx\nUNij9O+5994S+7QZfP3r8POfw58KO3XKKWn9Uws71cU+decf1b7/H//4x5k6dSpvectbuOmmdN/n\nTTbZhAceeIATTzyRr3/968tXnz17NgBtbW2UpYiO6wiSFgI/6mh+RHQ4T9JbgRMjYq88/eW8zncL\ny+wGfL5OBaLLdetpa2uL9jfBBofpalwX+0OLXwQNEJMmNXR7vSFpTkSUzwwDyDgpTuzF+o39XBza\nsC3FpI5zd+seF4c2cFsdvwetu//QV5+BMpwXeq5VjwvnBeeFvsoLXXVhGgKsAwzv4NGZUcCCwvTC\nXFZrZ0m3SbpM0rbdXNfMzMzMzPpQV12YHoyIbzTx9W8CxkTEUkn7AJcAW3ZnA5ImA5MBxowZ0/gI\nzczMzMxsua5aIHrT3rMIGF2Y3jSXLRcRT0fE0vx8JjBM0oZl1i1sY2pEtEVE28iRI3sRrpmZmZmZ\ndaWrCsQ7e7HtWcCWksZJWp00PvyM4gKSXqV8ZY+kHXI8j5VZ18zMzMzM+l6nXZgi4vGebjgilkn6\nFHAF6VqKcyLiDklH5vlTgA8An5C0DHgOODDSVd111+1pLGZmZmZm1hil7kTdU7lb0syasimF56cB\np5Vd18zMzMzMqtXUCoSZWdU83rvHe/d4770b793MrFan94Hob3wfiMGnlcd19n0gWoPHe++dVt1/\n8Hjvvg9Ezzkv9E6r7j84L7TKfSDMzMzMzMyWcwXCzMzMzMxKcwXCzMzMzMxKcwXCzFqCpAmS7pY0\nT9KxdeYfLOk2Sf+Q9DdJ46uI08z6jvOCWWvyKExmTaLpjbtgq7cXRbU6SUOA04E9gIXALEkzImJu\nYbF7gF0j4glJewNTgR37Ploz6wvOC2atyy0QZtYKdgDmRcT8iHgBuJA0sOlyEfG3iHgiT94AbNrH\nMZpZ33JeMGtRrkCYWSsYBSwoTC/MZR35GHBZUyMys6o5L5i1KHdhMrN+RdLupB8Ku3SyzGRgMsAG\nfRSXmVXHecGsb7kFwsxawSJgdGF601y2EklvBM4CJkbEYx1tLCKmRkRbRLQNb3ioZtZHnBfMWpQr\nEGbWCmYBW0oaJ2l14EBgRnEBSWOAi4CPRMQ/K4jRzPqW84JZi3IXJjOrXEQsk/Qp4ApgCHBORNwh\n6cg8fwpwPKnnwU8lASyLiLaqYjaz5nJeMGtdrkCYWUuIiJnAzJqyKYXnhwOH93VcZlYd5wWz1uQu\nTGZmZmZmVporEGZmZmZmVporEGZmZmZmVlpTKxCSJki6W9I8ScfWmX+wpNsk/UPS3ySNL8y7N5ff\nIml2M+M0MzMzM7NymnYRtaQhwOnAHqS7R86SNCMi5hYWuwfYNSKekLQ3MBXYsTB/94hY3KwYzczM\nzMyse5rZArEDMC8i5kfEC8CFwMTiAhHxt4h4Ik/eQLpJjJmZmZmZtahmViBGAQsK0wtzWUc+BlxW\nmA7gaklz8u3nzczMzMysYi1xHwhJu5MqELsUineJiEWSNgKuknRXRFxfZ93JwGSAMWPG9Em8ZmZm\nZmaDVTNbIBYBowvTm+aylUh6I3AWMDEiHmsvj4hF+e8jwMWkLlGriIipEdEWEW0jR45sYPhmZmZm\nZlarmRWIWcCWksZJWh04EJhRXEDSGOAi4CMR8c9C+dqShrc/B/YEbm9irGZmZmZmVkLTujBFxDJJ\nnwKuAIYA50TEHZKOzPOnAMcDGwA/lQSwLCLagI2Bi3PZUOD8iLi8WbGamZmZmVk5Tb0GIiJmAjNr\nyqYUnh8OHF5nvfnA+Npyay5Nn96wbcWkSQ3blpmZmZm1Dt+J2szMzMzMSnMFwszMzMzMSnMFwszM\nzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzMSnMFwszMzMzM\nSnMFwszMzMzMShtadQCtRNOnN2xbMWlSw7ZlZmZmZtYq3AJhZmZmZmaluQJhZmZmZmaluQJhZmZm\nZmaluQJhZmZmZmaluQJhZmZmZmaluQJhZmZmZmalNbUCIWmCpLslzZN0bJ35kvSTPP82SW8uu66Z\nDSy9yRdmNjA5L5i1pqbdB0LSEOB0YA9gITBL0oyImFtYbG9gy/zYETgD2LHkugZMlxq3sWnTGrct\ns27oTb7o61jNrG84L5i1rmbeSG4HYF5EzAeQdCEwESge+BOBcyMigBskjZC0CTC2xLotTdMb98M+\nJkXDttVXGrn/0D/fA+uWHueLiHiw78M1sz7gvGDWoprZhWkUsKAwvTCXlVmmzLpmNnD0Jl+Y2cDk\nvGDWoprZAtEnJE0GJufJpZLurjKegg2BxY3YkA5t7Nn8Dh16aCO31rD9hz56Dxq7/9Ban4HNGhFH\nf1GbFw6FnueFFj0unBecF5wXusd5oYFadP/BeaGv8kIzKxCLgNGF6U1zWZllhpVYF4CImApM7W2w\njSZpdkS0VR1HVQb7/oPfg27qTb5YhfNCaxrs+w9+D7rJeWEQGOz7D/3zPWhmF6ZZwJaSxklaHTgQ\nmFGzzAzgkDyKwk7AU7nfYpl1zWzg6E2+MLOByXnBrEU1rQUiIpZJ+hRwBTAEOCci7pB0ZJ4/BZgJ\n7APMA54FDuts3WbFambV6k2+MLOByXnBrHUpDVxgjSZpcm4uHZQG+/6D3wNb1WD/TAz2/Qe/B7aq\nwf6ZGOz7D/3zPXAFwszMzMzMSmvqnajNzMzMzGxgcQWiFySdI+kRSbcXyr4n6TZJ5xbKPizpM9VE\n2Vgd7PMrJV0l6V/57/q5/L/yezFb0pa5bISkKyX1q89ed/Y7z/uypHmS7pa0Vy57haTLJd0u6ZOF\nZadKenPf7pE1i/PC8jLnBecFy5wXlpc5LwyQvNCv/iktaBowoX1C0nrAmyPijcALkt4gaU3SRV2n\nVxNiw02jsM/ZscA1EbElcE2eBvgc6eK2zwBH5rLjgO9ExMvND7WhplFyvyVtQxotZNu8zk8lDQH2\nAv4CvBH4SF52PDAkIm7qg32wvjEN5wVwXnBesKJpOC+A88KAyQuuQPRCRFwPPF4oehkYJknAWsCL\nwOeB/42IFysIseHq7DPARGB6fj4deG9+/iLpfVgLeFHS5sDoiLiuD0JtqG7u90Tgwoh4PiLuIY0O\nsgMr3o9hQPudXr4JfK2JoVsfc15YznnBecEy54XlnBcGSF5wBaKBImIJaUi5m4EHgaeAHSPikkoD\na76NC+NuPwRsnJ9/FzgX+DJwGvBt0hmFgaKj/R4FLCgstzCXXQWMBW4AfiJpX+CmiHigb8K1Kjgv\nAM4L4LxgBc4LgPMC9OO80Mw7UQ9KEfF94PsAks4Cjpd0OLAncFtEfKvK+JotIkJS5Oe3ADsBSHo7\nKUlK0q9ItevPRcTDlQXbQMX97mSZZcCHACQNI41tPlHSj4AxwLkR4RsmDkDOC84LnSzjvDBIOS84\nL3SyTMvnBbdANImkN5Gane4GPhgR+wObt18cNMA8LGkTgPz3keLM3ER7HKn57QTgi8DPgE/3cZyN\n1tF+LwJGF5bbNJcVfZJ0tmUn0pmnA0h9QG0Ac15YwXnBecES54UVnBf6T15wBaJ52vuqDSPdQRNS\nn8e1KouoeWYAk/LzScClNfMPAWZGxOOk/X+ZgfFedLTfM4AD8ygK44AtgRvbV8qjL7yblBDa348A\n1uyjuK06zgsrOC84L1jivLCC80J/yQsR4UcPH8AFpGa2F0n91j6Wy98LnFhY7ofAP4Dzqo65GfsM\nbEAaVeBfwNXAKwvLrwVcCwzL02/L78UcYKuq96eJ+/1V4N+kM0p712zrFGC3/HwN4ErgDuDoqvfT\nj+Z8VnK588KK5Z0XnBcG1cN5wXlhoOUF34nazMzMzMxKcxcmMzMzMzMrzRUIMzMzMzMrzRUIMzMz\nMzMrzRUIMzMzMzMrzRUIMzMzMzMrzRWIfkbSBpJuyY+HJC0qTK9echs/l7RVF8scJengBsU8Mcd3\nq6S5+U6bnS3/Dkk7dTBvE0kzC9uakctH5ztWmg06zgvOC2a1nBecF5rJw7j2Y5JOBJZGxA9rykX6\n375cSWArx/IK4B6gLSIeyNObRcQ/O1nnW8DiiPhxnXlnAzdFxOl5+o0RcVuTwjfrd5wXnBfMajkv\nOC80mlsgBghJW+Qa9nmkm4xsImmqpNmS7pB0fGHZv0jaTtJQSU9KOinX0P8uaaO8zLckfaaw/EmS\nbpR0t6Sdc/nakn6XX/e3+bW2qwltPUDA4wAR8Xx7MpC0saSL8no3StpJ0ubA4cAX8lmInWu2twnp\nxizk7d1W2P9b8vOfF86yLJb01Vx+bH6d24rvh9lA5bzgvGBWy3nBeaERXIEYWLYGTomIbSJiEXBs\nRLQB44E9JG1TZ531gD9FxHjg78BHO9i2ImIH4AtA+8F0NPBQRGwDfBN4U+1KEfEIcAVwn6TzJR0k\nqf1z9xPg+znG/YGzIuLfwFnADyJiu4j4W80mTwOmS/qjpK9I2qTOax4WEdsB+wGP5uX3AcYAOwLb\nATvXSTZmA5HzAs4LZjWcF3Be6A1XIAaWf0fE7ML0QZJuAm4CXgfUSwjPRcRl+fkcYGwH276ozjK7\nABcCRMStpDMZq4iIQ4E9gNnAscDUPOtdwJR8JuASYH1Ja3a8exARM4HNgbPz/twsaYPa5SStBfwG\n+GRELAT2BPYGbia9H1sAr+3stcwGCOeFzHnBbDnnhcx5oWeGVh2ANdQz7U8kbQkcA+wQEU9K+iWw\nRp11Xig8f4mOPxPPl1imQ7np8DZJ5wN3kpodleMrxoCkrrb1GHAecJ6ky0mJqTYZTQUujIhr2zcL\nfCsizu5u7Gb9nPPCCs4LZonzwgrOCz3gFoiBa11gCfB0brbbqwmv8VdSUyKS3kCdMxaS1pX09kLR\ndsB9+fnVwFGFZdv7Qy4Bhtd7QUnvbD/rIGldYBxwf80yxwDDai4WuwL4mKS18zKbStqw5H6aDRTO\nC84LZrWcF5wXus0tEAPXTcBc4C7SAfjXJrzG/wLnSpqbX2su8FTNMgK+LOlnwHPAUlb0mzwKOEPS\nYaTP4rW57FLgN5LeBxxV069xe+A0SS+SKsBnRMTNkrYoLPN54Nn2i6SA0yLiLElbAzfkMxZLgA8B\ni3v9Lpj1H84LzgtmtZwXnBe6zcO4Wo9JGgoMjYj/5CbQK4EtI2JZxaGZWUWcF8yslvPCwOMWCOuN\ndYBrcmIQcISTgdmg57xgZrWcFwYYt0CYmZmZmVlpvojazMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxK\ncwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXCzMzMzMxKcwXC\nzMzMzMxKcwVikJA0VlJIGlpi2UMl/aUv4urqtSUtlfSaHmznYElXNjY6M7NE0r8lvbXqOMysHEl/\nlHRA1XEMFK5AtCBJ90p6QdKGNeU350rA2GoiW6kisjQ/7pV0bLNeLyLWiYj5JWMaWljvvIjYs1lx\n2cAk6TpJT0h6RdWxNIukiZJukfS0pMX5S3Vc1XE1gqQ7CrnpJUn/KUx/pRfbvVDSccWyiNg8Iv7e\n+6hXea01JP1E0qIc93xJ3y+57kmSzmp0TNYc+fvzucJndKmkV1cdV1+SdFlh31/Mv33ap6f0Yrur\nHAsR8Y6I+FXvo17ltSTphPz/XCppgaRflFz3SElXNzqmvtDl2WirzD3AQcD/Akh6A7BWpRGtbERE\nLMtn4K6RdEtEXF5cQNLQiFhWUXxm3ZIr5m8DngL2BX7Th6/dJ8eKpC2Ac4H3AX8E1gH2BF5q4GsI\nUES83KhtlhUR2xbiuA74ZUT0tx/UJwCvA94MPAKMA9zSMXC9JyIq/wEpaUhENCwPlBURexdimAYs\njIjjOl6jJU0G3g/sHhH35ErgPhXH1HRugWhdvwAOKUxPIn3xLydpPUnnSnpU0n2SjpO0Wp43RNIP\n8xnG+cB/11n3bEkP5jNd35I0pLtB5jNwdwCvz9sNSUdJ+hfwr1y2taSrJD0u6W5J+xfi2EDSjHw2\n9EZg85o4I//oQdKakk7O+/qUpL9IWhO4Pi/+ZK79v1WrdoWKXNP/l6QnJZ2ef+i0v1cn5/fqHkmf\nqm3RsEHhEOAGYBrpeFuuk88eknaR9Lf8uVog6dBcfp2kwwvbqPeZrD1WTs3beFrSHElvKyw/RNJX\nlLrOLMnzR+fP8sk18c6Q9Nk6+7gdcE9EXBPJkoj4XUTc39lr5Hk7S5qV93+WpJ0Lr3edpG9L+ivw\nLPCa7uQYSa+Q9GNJD+THj5VbgSTtJmmhpM9JeiRv77DO/5Udk3REzkOPS/p/kkYV9v30nE+fknSr\npK0kfZr04+BrOb/8Ji//kKRd8vOTJJ0n6YL8vt0mabvCa+6Qt7dE0vmSLlJNi0bB9sDvIuLh/D+a\nHxHnFbY1WtKlOV/Nl3RkLn8v8D/ApBznjT19j6z15PwxP3+G7pF0cGHexyXdmefNlfTmXP66fGw+\nqdQ6t29hnWmSzpA0U9IzwO75OPyhpPslPSxpSnueqxPPakq/Oe7Lx+W5ktbL89p7BUzK21os6au9\n2Pf98jH1pKQ/S9qmMO9rOSc8nd+Dt3V0LEi6QdKH8/MjJV2j1Nr3ZM557ypsd0ulvL5E0uWSzlTH\nrXvbAzMj4h6AiHigeOJC0ivz+/OQUn4/Ib9/bwJ+DOyW43yop+9RJSLCjxZ7APcC7wLuJp2JGgIs\nBDYDAhiblzsXuBQYDowF/gl8LM87ErgLGA28Erg2rzs0z78YOBNYG9gIuBE4Is87FPhLB7GNbd8O\nIOC/SD8Y3pnnB3BVfs018/YXAIfldd4ELAa2yctfCPw6L/d6YFHxtfP2tsjPTweuA0bl92Rn4BXF\nmArrHVpnO38ARgBjgEeBCYX3ai6wKbA+cHXt9vwY+A9gHvBJ4C3Ai8DGhXkdffY2A5aQWguHARsA\n2+V1rgMOL2yj3mdy+bGSyz6ctzEU+BzwELBGnvcF4B/AVvnYG5+X3QF4AFgtL7dhPiY3rrOPrwH+\nA5wC7A6sUzO/o9d4JfAE8JEc20F5eoPCvt4PbJvnD6OTHFMnrm+QKm8bASOBvwHfzPN2A5blZYaR\nzuw9C6zfxf9zpfc/lx0A3Am8Nm/rW8C1ed5E4O/AuqSTa9sCG+V5FwLH1WzrIWCX/PykHNMe+fNx\nCnBdnrcm8CApz7S/dy/Wbq+w3W+RWqCPBLatmTck/3++BKye9+N+YNdCHGdVfSz5Ue5B/q4vsdza\nwNPAVnl6k/bPBvBB0vfm9vmY3YKUl4aRctpX8mflHaRc1b6NaaTW1v/Kn/c18ud2Rj7ehwO/B77b\nQUwfzdt/Dakl8yLgF3neWFJ++1n+/I8Hngde18V+TgO+VVO2Uz5+3pI//5NJv3WG5u3OBzbO+/4a\nYFxeb5VjgZRjPpyfH5mPw0Pydj8L3JvnCbgZ+HZ+73YDnuno2AIOJ/2m+B9Sy+GQmvmXkXqTrJX/\ndzcDkwpxXF31Z7FHn9+qA/Cjzj9lRQXiOOC7wATSD42h+aAcmz/wL5B/iOf1jmDFl9YfgSML8/Zk\nxQ//jfPBvGZh/kGs+CI9lK4rEE+SfkDcCXy6MD+AdxSmDwD+XLONM0nN9EPyAbx1Yd53qFOBICW4\n54DxncTUVQVil8L0r4FjC+/VEYV576rdnh8D+wHskj+LG+bpu4DP5uedffa+DFzcwTavo+sKxDu6\niOuJ9tclnVCY2MFydwJ75OefIp0N62ibO+XP/6OkysQ0ckWio9cgVRxurCn7O3BoYV+/UZjXaY6p\ns/1/A/sUpvdixZf5bvn9Lx7fjwA7dfHerfT+57JrgYML08Py/31jUsXkDlKFbLWa9cpUIP5QmPdm\n4Mn8fE9gfs26s2u3VxPTMfn9fZ508uigPG9X4F81y38dOKMQhysQ/eRB+q5fSvo+fRK4pIPl1s7z\n3188pvK8K4Bj6qzztvwZXa1QdgFwYn4+DTi3ME+kH8mbF8reSmqxrBfTNcAnC9Nb5WNpKCu+kzct\nzL8ROLCL92Maq1Ygfg58tabsPmBHUiX/QdLJkKE1y5SpQNxemPfKHPMIUsX8OeAVhfm/7ejYyu/d\npJxfniWdJG3//tgsv6/DCssfBlxWiKNfViDcRaO1/YLUPWccNd2XSGcZh5EOpHb3kc6QAryadOa/\nOK9d+9mJB5V68UD6kVRcvisbRsd9tovb2QzYUdKThbKhpH0bmZ93FOdKr0c6Q/LvbsRYq9g8+Czp\nrAms+l51532wgWEScGVELM7T5+eyU+j8sze6g/KyVvqsSfo88DHSZzJIZ8PbB1Po7LWmk1ovrsp/\nT+3oBSPiBmD//HrbA78CvkqqDHX0Gq9m1WOzmG9q96W7OaZ2+/flsnaP1eSb4vHbHZsBUySdXihb\nRmp9vAzYmnSCY5Sk3wJfjIilJbfdWX5ZWLNshzkmIl4k/f9OlbQW6QfGubkbxmbA2Jp8OoTUamr9\n03uj5hoIpYuHP5wnvxMR31EaPejzwNlKXQU/FxHtvQw6OmYXxMrXInV2zI4knSGfUzhmRfp81VPv\nmG0/Qdmuo2OiOzYD9pf0hULZ6sCoiLhIaRCXbwNbS7oM+J+IeLjktmvjI8f4auDRiHi+MH8BqVVm\nFZFqAtOB6ZJWBz6Qn99EyuNrAI/W5MJ5JWNsWb4GooVFxH2kpux9SM2DRYtJtf3NCmVjSE2ZkGrl\no2vmtVtAOrO1YUSMyI91o3ABYm9Dr3mtPxVeZ0SkkZU+QToDuqyTOIsWk86Wbl5nXtQp644HST8g\n2o3uaEEbeHIf3/2BXXMf1YdIzdnjJY2n88/egg7KIZ11Kg588Ko6yyz/7Cpd7/DFHMv6ETGC1MWg\n/Vuns9f6JTAxx/s64JIOllv5xSNmkXLL67t4jQdYOdfAyvlmpX2h+zmmdvtjclmjLSC1mhTz0ZoR\nMSeSH0XEm4A3krpHHJPX602Oqc0vUDLHRMSzEfEj0nu5dY7/rpr4h0fEfg2I01pERByZvyfXiYjv\n5LIrImIPUheYu0jdg6DzY3a08nWRWWfH7GLSWfdtC5+t9SKiox/99Y7ZZUDZH+9lLQCOr/nMrxUR\nFwFExPSI2JnUfWkNUhdA6P0xO1Irj8ZX9ph9ISLOJ7Xmvj7Hv5Sc0wu58M0NiLNSrkC0vo+Rujk8\nUyyMNFrCr4FvSxouaTNS/7tf5kV+DXxa0qaS1geOLaz7IHAlcLKkdfPFPJtL2rUJ8f8BeK2kj0ga\nlh/bS3pd3oeLgBMlrZUvjJpUbyP5LMo5wI8kvVrpgse35gP8UeBlUgLpiV8Dx0gaJWkEqX+xDR7v\nJY1CtA3pIuPtSD/C/wwc0sVn7zzgXZL2lzRUaVCA9otnbwHelz/bW5CO5c4MJ30BPwoMlXQ8qQWi\n3VnAN/PFfZL0RkkbAETEQmAWqWXvdxHxXL0XULrg++OSNsrTW5NGnLqhi9eYSTqOP5T384D8fv2h\n3uv0IMdcABwnaaTS8NXHsyKXNdKU/DpbAUhaX9L78/OdJLUpDZ7wDKmLaPvZ24fpeX65HlhT0uT8\n3u1PqpzUpXSx+NuUhnMdJmky6SzwrcBf8jKfyfOH5v9R+4+Rh4FxKpzqtP5P0sZKwy+vTapMLmXF\nZ/Ms4POS3pKP2S3y74H/I51V/2L+HO0GvIfUHW8VOc/9DDilkB9GSdqrg7AuAD4raZykdUjdj3/V\nSc+EnpoKHJ2PTUlaR9K+7b8ZJO2ac/Fz+VE8Znt6LPyTVAE4Lr93byd1Ja9L0uGSJuTYVlO6WH0L\nUrfPe0j59fv5t9pqOb/uUohztKRhPYizUq5AtLiI+HdEzO5g9tGkL7r5pC+W80k/dCAlgitIXzo3\nsWoLxiGkZsC5pH7WvyWd2WioiFhC6gN8IOmMxUPA90gXoELqr71OLp9G6u/Ykc+TLiCcBTyet7Na\nRDxLasL8q9JoCjt1M8yfkX7s3Ea6uGkm6Ydcnw9pZ5WYBPw8Iu6PiIfaH8BpwMH5B2VHn737SS2E\nn8vlt7Dix+EppB+hD5Oat8+jc1cAl5O+vO4jtXoUuxj8iFTZvZJ0QeXZpAsU200H3kCqRHTkSVKF\n4R+SlubXuxhov89A3deIiMeAd+f9fIzUUvLuQpeverqTY75Fui7gNtL7fBMrziQ2TERcQPq/XiTp\nadL/a488ewQpBz1Jyqn3saIr2FRg+5xf6v4A6+Q1nyMNm3s06X14L+l//XwHqzwP/IR0nccjpP7S\n742Ihbl70z6ki/jvI1U2z2BF15ALSa1ej0v6W3fitJa2GukE4QOkPLMr8AmAiPgN6fvvfNJF0pcA\nr4yIF0gVhr1JrQs/JZ0QuauT1/kSqWvNDfn4uJp0bUM957Cim/U9pHx1dM93sb6I+CvwaVLXwidJ\n+fFDpDP3awInk/bvQdJx8LW8ao+Phdwl6QDS9ZBPkC5E/w0dH7NLSNd1LszLf5M0oM2sPP8gUn65\ni/T/+xUrunpdTroW5hFJtV0dW5rS+2Rm7STtDUyJiNouG2YtK58l+yWwWTixtzRJtwIn5QqNmbU4\nSZcCN0TEd6uOpVW4BcIGPaUx/vfJ3QFGkc4kXFx1XGZl5ebvY0ijhLjy0GIk7S5po0KXpM1JF7yb\nWQuStKPS/SxWk/QeUhemS6uOq5W4AmGWLlL9Oqnp8WbSkJjHVxrRICTpHKUbEt3ewXwm3aYGAAAg\nAElEQVQp3fRnntJNhd5cb7nBRtLrSE37m5BuSmStZ1vgdlKO+STwvi66f1nmvGAV2ZTUNXwJ8APg\noxExt9qQWou7MJlZS8hdcJaSxiZ/fZ35+5D62O5DGgP81IjYsW+jNLO+5Lxg1prcAmFmLSEiridd\nYNaRiaQfEZHvZTBCUsMv/Dez1uG8YNaaXIEws/5iFCuPSrSQlW+KZGaDj/OCWQUG1J2oN9xwwxg7\ndmzVYZi1nDlz5iyOiJFVx9FX8oWqkwHWXnvtt2y99dYVR2TWepwXnBfMapXNCwOqAjF27Fhmz+7o\nlglmg5ek+6qOoQEWsfLdQDdl5buqLhcRU0lj99PW1hbOC2arcl5wXjCrVTYvuAuTmfUXM4BD8qgr\nOwFP5Tsem9ng5bxgVoEB1QJhZv2XpAuA3YAN8x05TwCGAUTEFNIdwvch3Sn1WdIdes1sAHNeMGtN\nrkCYWUuIiIO6mB/AUX0Ujpm1AOcFs9bkLkxmZmZmZlaaKxBmZmZmZlaaKxBmZmZmZlaaKxBmZmZm\nZlaaL6K2fm261LBtTYpo2LbMzMzMBiq3QJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZ\nWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmuQJiZmZmZWWmVVyAkjZZ0raS5\nku6QdEwuP1HSIkm35Mc+VcdqZmZmZjbYDa06AGAZ8LmIuEnScGCOpKvyvFMi4ocVxmZmZmZmZgWV\nVyAi4kHgwfx8iaQ7gVHVRmVmZmZmZvVU3oWpSNJY4E3A/+WioyXdJukcSetXFpiZmZmZmQEtVIGQ\ntA7wO+AzEfE0cAbwGmA7UgvFyR2sN1nSbEmzH3300T6L18zMzMxsMGqJCoSkYaTKw3kRcRFARDwc\nES9FxMvAz4Ad6q0bEVMjoi0i2kaOHNl3QZuZmZmZDUKVVyAkCTgbuDMiflQo36Sw2H7A7X0dm5mZ\nmZmZrazyi6iB/wI+AvxD0i257CvAQZK2AwK4FziimvDMzMzMzKxd5RWIiPgLoDqzZvZ1LGZmZkWa\nPr2h24tJkxq6PTOzKlRegTAzs9bVyB/Q/vFsZjYwVH4NhJmZmZmZ9R+uQJiZmZmZWWmuQJiZmZmZ\nWWmuQJiZmZmZWWmuQJiZmZmZWWkehcnMWoKkCcCpwBDgrIg4qWb+esAvgTGk3PXDiPh5nwfaD0xX\nvZGxe2jatMZtq4+08v5reuNii0nRsG21KucFs9bkFggzq5ykIcDpwN7ANqQbSW5Ts9hRwNyIGA/s\nBpwsafU+DdTM+ozzglnrcguEmbWCHYB5ETEfQNKFwERgbmGZAIZLErAO8DiwrNmB+T4IjdPIs+8w\nOM7AD3ItmxfMBjtXIMysFYwCFhSmFwI71ixzGjADeAAYDhwQES93teHH5szpXZeWftiFx2yAaFpe\nMLPecRcmM+sv9gJuAV4NbAecJmndegtKmixptqTZS/oyQjPraz3KC48++mhfxmg24LgCYWatYBEw\nujC9aS4rOgy4KJJ5wD3A1vU2FhFTI6ItItqGNyVcM+sDTcsLI0eObErAZoOFKxBm1gpmAVtKGpcv\ngDyQ1C2h6H7gnQCSNga2Aub3aZT2/9u79zhJ6vLe45+vyyqKIKgrIVxkRdTgUVAXJMZ4iVHR4wHR\niKDRBS8LERE88YKJCh6NQaPiDYUVkCVBUSPImiAXiUA0GllBEVAUEeQqoCIXL7DwnD+qZred7Oz2\nztRMd8983q9Xv7rr11W/fqp3+tl+uqp+P2kmmRekIeU1EJIGrqpWJnk9cCbNcI3HV9WlSQ5onz8a\neDdwQpLvAwHeWlW3DCxoSdPKvCANLwsISUOhqk4HTh/XdnTP4+uB58x0XJIGx7wgDSdPYZIkSZLU\nNwsISZIkSX3zFCZJmiFdTqTmJGqSpEHxCIQkSZKkvllASJIkSeqbBYQkSZKkvllASJIkSeqbBYQk\nSZKkvllASJIkSepbJ8O4JvlT4K+BPwe2AH4LXAL8O/AvVfXrtWy7NXAisDlQwNKq+kiSBwOfA7YF\nrgL2qqpfdRGvJEmSNBlZtqzT/mrx4k77mwlTPgKR5CvAa4Azgd1oCogdgLcDGwKnJdl9LV2sBP62\nqnYAdgUOTLIDcChwTlVtD5zTLkuSJEkaoC6OQLyiqm4Z13YHcGF7+2CSh060cVXdANzQPr49yQ+A\nLYE9gGe0qy0DzgXe2kG8kiRJkiZpykcgxoqHJBsluU/7+FFJdk8yv3eddUmyLfAE4L+BzdviAuBG\nmlOcJEmSJA1QJ9dAtM4H/jzJZsBZwAXAS4GX97NxkgcCXwQOqarbkqx6rqoqSU2w3RJgCcA222wz\npR2QJEnS2nV5DcAonv+vbkdhSlX9BngR8Imqegnw2L42bI5UfBE4qapOaZt/nmSL9vktgJvWtG1V\nLa2qRVW1aMGCBVPeCUlTl+SpSfZrHy9IsnDQMUmSpG50WkC0ozG9nGb0JYB5/WwEHAf8oKo+1PPU\ncmCsLF0MnNZhrJKmSZLDaK5XelvbNB/4l8FFJEmSutTlKUyH0HxhOLWqLk3yCOBrfWz3Z8ArgO8n\n+W7b9nfAEcDnk7wauBrYq8NYJU2fPWmuZboQoKquT7LxYEOSJEld6ayAqKrzgPN6lq8E3tDHdl8H\nMsHTz+omOkkz6K7e65aSbDTogCRJUnemXEAk+TLNBHBrVFVrmwNC0uzz+STHAJsmeS3wKuBTA45J\nkiR1pIsjEB9o718E/BGrz3XeB/h5B/1LGiFV9YEkzwZuAx4NvLOqzh5wWJIkqSNTLiDaU5dI8sGq\nWtTz1JeTrJhq/5JGR5J5wFer6pmARYMkSbNQl6MwbdReOA1AO2yj5z5Lc0hV3QPcm+RBg45FkiRN\njy5HYXojcG6SK2kuin44sH+H/UsaDXfQjKp2NnDnWGNVrXNQBUmSNPy6HIXpjCTbA49pm35YVb/v\nqn9JI+OU9iZJkmahLo9AADwJ2Lbtd8ckVNWJHb+GpCFWVcuS3Bd4VNt0eVXdPciYJElSdzorIJL8\nM7Ad8F3gnra5AAsIaQ5J8gxgGXAVzemMWydZXFXnDzIuSZLUjS6PQCwCdqiqCeeEkDQnfBB4TlVd\nDpDkUcBnaY5QSpKkEddlAXEJzTwQN3TYp6TRM3+seACoqh8lmT/IgCRprluWdNfZCSd019cMGeb9\nz7LuYqvFM/M7fpcFxEOBy5J8G1h18bQzUUtzzookx7J6UsmXA84JI0nSLNFlAXF4h31JGl1/AxwI\njA3b+p/AJ9a1UZLdgI8A84Bjq+qINazzDODDwHzglqp6ekcxSxpC5gVpOHU5jOt5STYHdm6bvl1V\nN3XVv6SRsQHwkar6EKyanfp+a9ugXeco4NnAtcAFSZZX1WU962xKU4jsVlU/S/Kw6doBSYNnXpCG\nV5ejMO0F/BNwLs3IKx9L8uaq+teuXkPSSDgH+EuaCeUA7g+cBTxlLdvsAlxRVVcCJDkZ2AO4rGed\nlwGnVNXPAPyBQpr1hjYvZNmyzvqqxYs760uaKV2ewvT3wM5jH94kC4CvAhYQ0tyyYVWNFQ9U1R1J\nHrCObbYErulZvhZ48rh1HgXMT3IusDHNUQ6HiZZmL/PCHNDlBcQwcxcRz3VdFhD3GVf5/wK4T4f9\nSxoNdyZ5YlVdCJDkScBvO+h3A5qhYJ9Fc1Tjm0m+VVU/Gr9ikiXAEoCHdPDCkobWpPLCNttsM6NB\nSrNNlwXEGUnOpBnvHeClwFc67F/SaDgE+EKS62lOZ/wjmnywNtcBW/csb9W29boW+EVV3UlTpJwP\n7Aj8jy8KVbUUWAqwMPHnKGk0TWtemNKwniM4jKnUpS4von5zkhcBT22bllbVqV31L2k0VNUFSR4D\nPLpturyq7l7HZhcA2ydZSPMFYW+ac5t7nQZ8PMkGwH1pTmU4srvIJQ0Z84I0pLq8iHohcHpVndIu\n3z/JtlV1VVevIWl4JdkZuKaqbqyqu5M8EXgxcHWSw6vqlxNtW1Urk7weOJNmuMbjq+rSJAe0zx9d\nVT9IcgZwMXAvzZCOl0z7jknqRDtS43uBP66q5yXZAfjTqjpuTeubF6Th1eUpTF/gD0dZuadt23nN\nq0uaZY6hGX2JJE8DjgAOAnaiOW3gr9a2cVWdDpw+ru3occv/RDPam6TRcwLwaZpBV6A5zehzwBoL\nCDAvSMOqy4ucN6iqu8YW2sf37bB/ScNtXs9RhpfSnMb4xap6B/DIAcYlaTg8tKo+T3OkgKpaSfNj\no6QR02UBcXOS3ccWkuwB3NJh/5KG27z2PGRoRkT5j57nujzaKWk03ZnkIUABJNkV+PVgQ5I0GV3+\np34AcFKSo2iSw7XAKzvsX9Jw+yxwXpJbaIZt/U+AJI/ELwmS4P8Cy4HtknwDWMA6Tm2UNJy6HIXp\nJ8CuSR7YLt+xjk0kzSJV9Q9JzgG2AM6qqrHhU+9Dcy2EpDkqyX2ADYGn04zQFvoboU3SEOrsFKYk\nmyc5DvhCO/PsDkle3cd2xye5KcklPW2HJ7kuyXfb2/O7ilPS9Kmqb1XVqe2Y7GNtPxqbVE7S3FRV\n9wJHVdXKqrq0qi6xeJBGV5fXQJxAM9TaH7fLP6KZUKqf7XZbQ/uRVbVTezt9Dc9LkqTRcU6SFydT\nmcFN0jDosoCY1OgKVXU+MOH48JIkaVbYn2Z497uS3Jbk9iS3DTooSeuvywKi69EVDkpycXuK02ad\nRChp2iU5yM+spPGqauOquk9Vza+qTdrlTQYdl6T112UBMX50hROZ/IWTnwQeQTMB1Q3ABydaMcmS\nJCuSrLj55psn+XKSOrQ5cEGSzyfZzdMVJI1JsnuSD7S3Fww6HkmT01kB0V4k+XSa2aj3Bx5bVRdP\nsq+fV9U97UVXnwJ2Wcu6S6tqUVUtWrBgwWReTlKHqurtwPY0s8vuC/w4yXuTbDfQwCQNVJIjgIOB\ny9rbwUn+cbBRSZqMzoZxTfIS4IyqujTJ24EnJnnPZEZfSbJFVd3QLu4JXLK29SUNl6qqJDcCNwIr\ngc2Af01ydlW9ZbDRSRqQ5wM7tT8OkmQZcBHwtoFGNWBZ1t1B2lpc615J6kCXpzC9o6puT/JUmllo\nj6M5FWmtknwW+Cbw6CTXtkO/vj/J95NcDDwTeGOHcUqaRkkOTvId4P3AN4DHVdXfAE8CXjzQ4CQN\n2qY9jx80sCgkTUmXM1GPjbj0v4FPVdW/J3nPujaqqn3W0Hxch3FJmlkPBl5UVVf3NlbVvZ7zLM1p\n/whclORrNBPJPQ04dLAhSZqMLguI65IcAzwbeF+S+9HtEQ5Jo+Er9AzNnGQT4E+q6r+r6geDC0vS\nIFXVZ5OcC+zcNr21qm4cYEiSJqnLL/h70Uwk99yqupXmV8g3d9i/pNHwSeCOnuU76ON0RkmzW5I9\ngd9U1fKqWg78LskLBx2XpPXX5ShMv6mqU6rqx+3yDVV1Vlf9SxoZqapVV/K1F0x2ebRT0mg6rKpW\nzQ/V/th42ADjkTRJnmIkqWtXJnlDkvnt7WDgykEHJWng1vSdwx8XpBFkASGpawfQzAdzHXAt8GRg\nyUAjkjQMViT5UJLt2tuRwHcGHZSk9WflL6lTVXUTsPeg45A0dA4C3gF8rl0+GzhwcOFImqwuJ5J7\nEfA+4GE0w7OFZj6pTbp6DUnDL8mGwKuBxwIbjrVX1asGFpSkgauqO2mHbU0yD9iobZM0Yro8hen9\nwO5V9aCq2qSqNrZ4kOakfwb+CHgucB6wFXD7QCOSNHBJPpNkkyQbAd8HLkviaI3SCOqygPi5Y7xL\nAh5ZVe8A7qyqZTSTSz55wDFJGrwdquo24IU088UsBF4x2JAkTUaX10CsSPI54EvA78caq+qUDl9D\n0vC7u72/Ncn/Am6kObVR0tw2P8l8mgLi41V1d5Ja10aShk+XBcQmwG+A5/S0FWABIc0tS5NsBrwd\nWA48kObCSUlz2zHAVcD3gPOTPBy4baARSZqUzgqIqtqvq74kjaYk9wFuq6pfAecDjxhwSJKGRFV9\nFPjo2HKSnwHPHFxEkiZrygVEkrdU1fuTfIzmiMMfqKo3TPU1JI2Gqro3yVuAzw86FknDK8m/VdUL\ngJWDjkXS+uviCMTYhdMrOuhL0uj7apI30Yz1vmqIxqr65eBCkjRkthx0AJImb8oFRFV9ub1fNvVw\nJM0CL23veyeIKjydSdJqFw06AEmTN+VhXJN8KsnjJnhuoySvSvLyqb6OpNFQVQvXcFtn8ZBktySX\nJ7kiyaFrWW/nJCuT/FW3kUuaDkm2Gd/W78SS5gVpOHVxCtNRwDvaIuIS4Gaa2We3pxmZ6XjgpA5e\nR9IISPLKNbVX1Ylr2WYeTS55NnAtcEGS5VV12RrWex9wVncRS5pmXwKeCJDki1X14n42Mi9Iw6uL\nU5i+C+yV5IHAImAL4LfAD6rq8qn2L2nk7NzzeEPgWcCFwIQFBLALcEVVXQmQ5GRgD+CycesdBHxx\n3GtIGm7pebw+pzKaF6Qh1eUwrncA53bVn6TRVFUH9S4n2RQ4eR2bbQlc07N8LeNmr06yJbAnzbCP\nflGQRkdN8HhdzAvSkOpyIjlJWpM7gYUd9PNh4K3tULFrXTHJEmAJwEM6eGFJU7JjkttojkTcv31M\nu1xVtckU+jYvSANgASGpU0m+zOpfGe8D7MC654W4Dti6Z3mrtq3XIuDk9kvCQ4HnJ1lZVV8a31lV\nLQWWAixM1ucXT0kdq6p5k9zUvCANqc4LiCQPqKrfdN2vpJHxgZ7HK4Grq+radWxzAbB9koU0XxD2\nBl7Wu0JVrTqKkeQE4N/W9CVB0qxhXpCGVGcFRJKnAMcCDwS2SbIjsH9Vva6r15A0En4G3FBVvwNI\ncv8k21bVVRNtUFUrk7weOBOYBxxfVZcmOaB9/ugZiFvSEDEvSMOryyMQRwLPBZYDVNX3kjytw/4l\njYYvAE/pWb6nbVvrBY5VdTpw+ri2NX5BqKp9pxaipFFgXpCG05QnkutVVdeMa7pnXdskOT7JTUku\n6Wl7cJKzk/y4vd+syzglTasNququsYX28X0HGI8kSepQlwXENe1pTJVkfpI3AT/oY7sTgN3GtR0K\nnFNV2wPntMuSRsPNSXYfW0iyB3DLAOORJEkd6rKAOAA4kGbc5uuAndrltaqq84FfjmveA1jWPl4G\nvLC7MCVNswOAv0vysyQ/A94K7D/gmCRJUke6nEjuFuDlHXW3eVXd0D6+Edi8o34lTbOq+gmwazs7\n/dgkk5IkaZbo7AhEkoVJPpTklCTLx25T7beqirXMXJlkSZIVSVbcfPPNU305SVOU5L1JNq2qO6rq\njiSbJXnPoOOSJEnd6PIUpi8BVwEfAz7Yc5uMnyfZAqC9v2miFatqaVUtqqpFCxYsmOTLSerQ86rq\n1rGFqvoV8PwBxiNJkjrU5TCuv6uqj3bU13JgMXBEe39aR/1Kmn7zktyvqn4PzTwQwP0GHJMkSepI\nlwXER5IcBpwF/H6ssaouXNtGST4LPAN4aJJrgcNoCofPJ3k1cDWwV4dxSppeJwHnJPl0u7wfcOIA\n45EkSR3qsoB4HPAK4C+Ae9u2apcnVFX7TPDUs7oLTdJMqar3Jfke8Jdt07ur6sxBxiRJkrrTZQHx\nEuARvRNISZqbquoM4AyAJE9NclRVrXNYZ0mSNPy6LCAuATZlLRc8S5obkjwB2Ifm9MOfAqcMNiJJ\nktSVLguITYEfJrmAP7wGYveJN5E0WyR5FE3RsA/NzNOfA1JVzxxoYJIkqVNdFhCHddiXpNHzQ+A/\ngRdU1RUASd442JAkSVLXupyJ+ryu+pI0kl4E7A18LckZwMlABhuSJEnq2pQnkkvy9fb+9iS39dxu\nT3Lb1EOUNAqq6ktVtTfwGOBrwCHAw5J8MslzBhudJEnqShczUW8EUFUbV9UmPbeNq2qTDvqXNEKq\n6s6q+kxV/R9gK+Ai4K0DDkuSJHWki1OYqoM+JM1CVfUrYGl7k6ShsJLml42P9LTtSzOr7b49bTsC\nbwSOBL43vpNzz4UTTli9fPDBsO228MaeS7+e/nTYbz847DC4+uqmbdNN4cMfhlNPhdNOW73u4ePu\nAfYA9qQ5nntr2/Zw4F3Ap4Hek8ePhC9/+cvsvvvqsWuOOeYYlixZQrL6bNKJ9ukE4Nz2ftUuAdu2\n66/apbEHfe3T4X94D7DHHrDnnnDIIXDrrevcJ65ivf6hsu/qfa0qli5dyv7777/OfdqP5mLedo/Y\nFPgwcCrQs0fNP89VV/WxTw+Hd70LPv1pOK9np448stn+Iz07tY59Wp9/qLH9f+1rX8vSpUt50pOe\nxIUXNnM6b7HFFlx//fUcfvjhvOtd71q1+YoVKwBYtGgR/UrV1L7/t7NHf2ii56tqwue6tmjRohp7\nEzQ3LEt3p9gvnuJnYZgl+U5V9Z8ZZpGFSR0+he337f2CMGX7dtZTLZ7477XLz8Ww7j9M/B4M7/7D\nTP0N9MO8MHnD+rkwL5gXZiovdHEEYh7wQLxYUpIkSZr1uiggbqiq/9dBP5IkSZKGXBcXUXvkQZIk\nSZojuiggntVBH5IkSZJGwJQLiKr6ZReBSJIkSRp+XRyBkCRJkjRHdHERtSQNLcd7d7x3x3uf2njv\nkjTelOeBGCbOAzH3OA9EfxzvffKGdbxzx3t3vHfngZg888LUDOv+g3lhpvKCpzBJkiRJ6psFhCRJ\nkqS+WUBIkiRJ6psFhKShkGS3JJcnuSLJoWt4/uVJLk7y/ST/lWTHQcQpaeaYF6ThZAEhaeCSzAOO\nAp4H7ADsk2SHcav9FHh6VT0OeDewdGajlDSTzAvS8LKAkDQMdgGuqKorq+ou4GSagU1Xqar/qqpf\ntYvfAraa4RglzSzzgjSkLCAkDYMtgWt6lq9t2ybyauAr0xqRpEEzL0hDyonkJI2UJM+k+aLw1LWs\nswRYAvCQGYpL0uCYF6SZNdQFRJKrgNuBe4CVc3XCG2kOuA7Yumd5q7btDyR5PHAs8Lyq+sVEnVXV\nUtpzoRcms3eGQGl2My9IQ2qoC4jWM6vqlkEHIWlaXQBsn2QhzReEvYGX9a6QZBvgFOAVVfWjmQ9R\n0gwzL0hDahQKCEmzXFWtTPJ64ExgHnB8VV2a5ID2+aOBd9KcefCJJOBRSWlWMy9Iw2vYC4gCvprk\nHuCY9vCjpFmoqk4HTh/XdnTP49cAr5npuCQNjnlBGk7DXkA8taquS/Iw4OwkP6yq83tX6L0oaptt\nthlEjJIkSdKcMdTDuFbVde39TcCpNGNCj19naVUtqqpFCxYsmOkQJUmSpDllaAuIJBsl2XjsMfAc\n4JLBRiVJkiTNbcN8CtPmwKntRVEbAJ+pqjMGG5IkSZI0tw1tAVFVVwI7DjoOSZIkSasN7SlMkiRJ\nkoaPBYQkSZKkvllASJIkSeqbBYQkSZKkvg3tRdTqz7JmlKpOLK7qrC9JkiTNTh6BkCRJktQ3CwhJ\nkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3\nCwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJktQ3CwhJkiRJfbOAkCRJ\nktQ3CwhJkiRJfbOAkCRJktS3oS4gkuyW5PIkVyQ5dNDxSJo+6/q8p/HR9vmLkzxxEHFKmjnmBWk4\nbTDoACaSZB5wFPBs4FrggiTLq+qyibb5xXe+w7Jk0q+5uGrS20qavD4/788Dtm9vTwY+2d5LmoXM\nC9LwGuYjELsAV1TVlVV1F3AysMeAY5I0Pfr5vO8BnFiNbwGbJtlipgOVNGPMC9KQGtojEMCWwDU9\ny9cyzb8qZNmyzvqqxYs762umuP/d7T+M5nswQP183te0zpbADdMbmqQBMS9IQyo1pKftJPkrYLeq\nek27/ArgyVX1+nHrLQGWtIuPBi6f0UAn9lDglkEHMUBzff9huN6Dh1fVgkEHMZF+Pu9J/g04oqq+\n3i6fA7y1qlasoT/zwnCa6/sPw/UemBeGwzD9TQzCXN9/GK73oK+8MMxHIK4Dtu5Z3qpt+wNVtRRY\nOlNB9SvJiqpaNOg4BmWu7z/4Hqynfj7vfeUEMC8Mq7m+/+B7sJ7MC3PAXN9/GM33YJivgbgA2D7J\nwiT3BfYGlg84JknTo5/P+3Lgle2oK7sCv64qT1OQZi/zgjSkhvYIRFWtTPJ64ExgHnB8VV064LAk\nTYOJPu9JDmifPxo4HXg+cAXwG2C/QcUrafqZF6ThNbQFBEBVnU6THEbR0B0mnWFzff/B92C9rOnz\n3n5BGHtcwIEzHVfH5vrfxFzff/A9WC/mhTlhru8/jOB7MLQXUUuSJEkaPsN8DYQkSZKkIWMBMQVJ\njk9yU5JLetrel+TiJCf2tP11kkMGE2W3JtjnByc5O8mP2/vN2vY/a9+LFUm2b9s2TXJWkpH621uf\n/W6fe1uSK5JcnuS5bdv9kpyR5JIkr+tZd2mSJ87sHmm6mBdWtZkXzAtqmRdWtZkXZkleGKl/lCF0\nArDb2EKSBwFPrKrHA3cleVyS+9Nc1HXUYELs3An07HPrUOCcqtoeOKddBvhbmovbDgEOaNveDry3\nqu6d/lA7dQJ97neSHWhGC3lsu80nkswDngt8HXg88Ip23R2BeVV14Qzsg2bGCZgXwLxgXlCvEzAv\ngHlh1uQFC4gpqKrzgV/2NN0LzE8S4AHA3cCbgI9V1d0DCLFza9hngD2AsWmclwEvbB/fTfM+PAC4\nO8l2wNZVde4MhNqp9dzvPYCTq+r3VfVTmtFBdmH1+zEfSLvuu4F3TGPommHmhVXMC+YFtcwLq5gX\nZklesIDoUFXdTjNaxEXADcCvaWbN/NJAA5t+m/eMu30jsHn7+B+BE4G3AR8H/oHmF4XZYqL93hK4\npme9a9u2s4FtgW8BH02yO3BhVV0/M+FqEMwLgHkBzAvqYV4AzAswwnlhqIdxHV9CJYQAAAXdSURB\nVEVV9X7g/QBJjgXemeQ1wHOAi6vqPYOMb7pVVSWp9vF3gV0BkjyNJkkmyedoquu/raqfDyzYDvXu\n91rWWQm8DCDJfJqxzfdI8iFgG+DEqnKyxFnIvGBeWMs65oU5yrxgXljLOkOfFzwCMU2SPIHmsNPl\nwEuqai9gu7GLg2aZnyfZAqC9v6n3yfYQ7dtpDr8dBrwF+BTwhhmOs2sT7fd1wNY9623VtvV6Hc2v\nLbvS/PL0UppzQDWLmRdWMy+YF9QwL6xmXhidvGABMX3GzlWbTzODJjTnPD5gYBFNn+XA4vbxYuC0\ncc+/Eji9qn5Js//3Mjvei4n2ezmwdzuKwkJge+DbYxu1oy+8gCYhjL0fBdx/huLW4JgXVjMvmBfU\nMC+sZl4YlbxQVd4meQM+S3OY7W6a89Ze3ba/EDi8Z70PAN8HThp0zNOxz8BDaEYV+DHwVeDBPes/\nAPgaML9d/vP2vfgO8OhB78807vffAz+h+UXpeeP6OhJ4Rvt4Q+As4FLgoEHvp7fp+Vtp280Lq9c3\nL5gX5tTNvGBemG15wZmoJUmSJPXNU5gkSZIk9c0CQpIkSVLfLCAkSZIk9c0CQpIkSVLfLCAkSZIk\n9c0CYsQkeUiS77a3G5Nc17N83z77+HSSR69jnQOTvLyjmPdo4/teksvamTbXtv5fJNl1gue2SHJ6\nT1/L2/at2xkrpTnHvGBekMYzL5gXppPDuI6wJIcDd1TVB8a1h+bf9t6BBPaHsdwP+CmwqKqub5cf\nXlU/Wss27wFuqaoPr+G544ALq+qodvnxVXXxNIUvjRzzgnlBGs+8YF7omkcgZokkj2wr7JNoJhnZ\nIsnSJCuSXJrknT3rfj3JTkk2SHJrkiPaCv2bSR7WrvOeJIf0rH9Ekm8nuTzJU9r2jZJ8sX3df21f\na6dxoT0ICPBLgKr6/VgySLJ5klPa7b6dZNck2wGvAd7c/grxlHH9bUEzMQttfxf37P9328ef7vmV\n5ZYkf9+2H9q+zsW974c0W5kXzAvSeOYF80IXLCBml8cAR1bVDlV1HXBoVS0CdgSenWSHNWzzIOC8\nqtoR+Cbwqgn6TlXtArwZGPswHQTcWFU7AO8GnjB+o6q6CTgTuDrJZ5Lsk2Ts7+6jwPvbGPcCjq2q\nnwDHAv9UVTtV1X+N6/LjwLIk/5Hk75JssYbX3K+qdgL2BG5u138+sA3wZGAn4ClrSDbSbGRewLwg\njWNewLwwFRYQs8tPqmpFz/I+SS4ELgT+BFhTQvhtVX2lffwdYNsJ+j5lDes8FTgZoKq+R/NLxv9Q\nVfsCzwZWAIcCS9un/hI4uv0l4EvAZknuP/HuQVWdDmwHHNfuz0VJHjJ+vSQPAL4AvK6qrgWeAzwP\nuIjm/Xgk8Ki1vZY0S5gXWuYFaRXzQsu8MDkbDDoAderOsQdJtgcOBnapqluT/Auw4Rq2uavn8T1M\n/Dfx+z7WmVB76PDiJJ8BfkBz2DFtfL0xkGRdff0COAk4KckZNIlpfDJaCpxcVV8b6xZ4T1Udt76x\nSyPOvLCaeUFqmBdWMy9MgkcgZq9NgNuB29rDds+dhtf4Bs2hRJI8jjX8YpFkkyRP62naCbi6ffxV\n4MCedcfOh7wd2HhNL5jkWWO/OiTZBFgI/GzcOgcD88ddLHYm8OokG7XrbJXkoX3upzRbmBfMC9J4\n5gXzwnrzCMTsdSFwGfBDmg/gN6bhNT4GnJjksva1LgN+PW6dAG9L8ingt8AdrD5v8kDgk0n2o/lb\n/FrbdhrwhSQvAg4cd17jzsDHk9xNUwB/sqouSvLInnXeBPxm7CIp4ONVdWySxwDfan+xuB14GXDL\nlN8FaXSYF8wL0njmBfPCenMYV01akg2ADarqd+0h0LOA7atq5YBDkzQg5gVJ45kXZh+PQGgqHgic\n0yaGAPubDKQ5z7wgaTzzwizjEQhJkiRJffMiakmSJEl9s4CQJEmS1DcLCEmSJEl9s4CQJEmS1DcL\nCEmSJEl9s4CQJEmS1Lf/D/FCACf0YnbeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'KNeighborsClassifier': {0: {'pred_time': 0.4960000514984131, 'f_test': 0.59304818869202103, 'train_time': 0.0009999275207519531, 'acc_train': 0.8666666666666667, 'acc_test': 0.80464344941956878, 'f_train': 0.74999999999999989}, 1: {'pred_time': 3.5820000171661377, 'f_test': 0.6270768571122306, 'train_time': 0.032000064849853516, 'acc_train': 0.85999999999999999, 'acc_test': 0.8180210060807076, 'f_train': 0.72368421052631571}, 2: {'pred_time': 27.072999954223633, 'f_test': 0.63166816232924516, 'train_time': 1.7300000190734863, 'acc_train': 0.87333333333333329, 'acc_test': 0.82012161415146489, 'f_train': 0.75320512820512819}}, 'AdaBoostClassifier': {0: {'pred_time': 0.07000017166137695, 'f_test': 0.61047338962147801, 'train_time': 0.1099998950958252, 'acc_train': 0.89666666666666661, 'acc_test': 0.81039248203427305, 'f_train': 0.81168831168831157}, 1: {'pred_time': 0.07699990272521973, 'f_test': 0.7018820838099199, 'train_time': 0.21799993515014648, 'acc_train': 0.83999999999999997, 'acc_test': 0.84986180210060802, 'f_train': 0.68014705882352933}, 2: {'pred_time': 0.07000017166137695, 'f_test': 0.72455089820359275, 'train_time': 1.678999900817871, 'acc_train': 0.84999999999999998, 'acc_test': 0.85760088446655613, 'f_train': 0.71153846153846156}}, 'DecisionTreeClassifier': {0: {'pred_time': 0.0, 'f_test': 0.5187038764950378, 'train_time': 0.019999980926513672, 'acc_train': 1.0, 'acc_test': 0.76174682144831396, 'f_train': 1.0}, 1: {'pred_time': 0.0, 'f_test': 0.60533669881907515, 'train_time': 0.019999980926513672, 'acc_train': 0.9966666666666667, 'acc_test': 0.80751796572692092, 'f_train': 0.99719101123595499}, 2: {'pred_time': 0.007999897003173828, 'f_test': 0.62747080996598326, 'train_time': 0.3990001678466797, 'acc_train': 0.96999999999999997, 'acc_test': 0.81835268103924819, 'f_train': 0.96385542168674709}}}\n" + ] + } + ], + "source": [ + "# TODO: Import the three supervised learning models from sklearn\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import AdaBoostClassifier\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "\n", + "# TODO: Initialize the three models\n", + "clf_A = DecisionTreeClassifier(random_state=5)\n", + "#clf_B = SVC(random_state=5)\n", + "clf_B = KNeighborsClassifier()\n", + "clf_C = AdaBoostClassifier(random_state=5)\n", + "#clf_A = GaussianNB()\n", + "#clf_A = LogisticRegression(random_state=5)\n", + "\n", + "# TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data\n", + "samples_1 = int(round(len(y_train) * 0.01))\n", + "samples_10 = int(round(len(y_train) * 0.1))\n", + "samples_100 = int(round(len(y_train) * 1))\n", + "\n", + "# Collect results on the learners\n", + "results = {}\n", + "for clf in [clf_A, clf_B, clf_C]:\n", + " clf_name = clf.__class__.__name__\n", + " results[clf_name] = {}\n", + " for i, samples in enumerate([samples_1, samples_10, samples_100]):\n", + " \n", + " # bundles up useful algo metrics\n", + " results[clf_name][i] = \\\n", + " train_predict(clf, samples, X_train, y_train, X_test, y_test)\n", + "\n", + "# Run metrics visualization for the three supervised learning models chosen\n", + "vs.evaluate(results, accuracy, fscore)\n", + "\n", + "# Compared to the naive predictor (25% accuracy), we have improved considerably.\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Improving Results\n", + "In this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (`X_train` and `y_train`) by tuning at least one parameter to improve upon the untuned model's F-score. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3 - Choosing the Best Model\n", + "*Based on the evaluation you performed earlier, in one to two paragraphs, explain to *CharityML* which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \\$50,000.* \n", + "**Hint:** Your answer should include discussion of the metrics, prediction/training time, and the algorithm's suitability for the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** I believe AdaBosst is the best model for finding individuals who make above 50k USD. It is not the fastest trainer, but all models train below 2 seconds on the full datasets which I believe is acceptable, and prediction time is negligible. It has the best accuracy on the testing set, so you get better generalisation than KNN or Decision Tree. However, given that we have an unbalanced dataset, with only around 25% of people sampled earning above 50k, we need to also check the F score, given recall should influence our prediction, as it is important to measure how many of the true positives are found. Here AdaBoost does quite a bit better than the other models on the testing set. Further, it addresses the overfitting issue with the Decision Tree by training several of them (like basis splines) and weighting them according to the prediction accuracy they give." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4 - Describing the Model in Layman's Terms\n", + "*In one to two paragraphs, explain to *CharityML*, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** AdaBoost is trained using in this case a Decision Tree on the dataset. A Decision Tree attempts to seperate a dataset into two classes (here income >50, below 50k) by asking a serious of questions to its features, such as whether or not some is degree level educated. It will ask questions first that improve the dataset separation by the most. \n", + "\n", + "To run, AdaBoost will set the weight of each person the same initially. It will then calibrate a decision tree to that data and check how large the error is. Next it will iteratively increase the weights of people that it got wrong, and focus on getting those right in the next iteration. In contrast, people that it got right will have their weight reduced. Predictions are made using a weighted combination of all those fitted decision trees, where higher weight is given to those trees that have make more accurate predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Model Tuning\n", + "Fine tune the chosen model. Use grid search (`GridSearchCV`) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:\n", + "- Import [`sklearn.grid_search.GridSearchCV`](http://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html) and [`sklearn.metrics.make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).\n", + "- Initialize the classifier you've chosen and store it in `clf`.\n", + " - Set a `random_state` if one is available to the same state you set before.\n", + "- Create a dictionary of parameters you wish to tune for the chosen model.\n", + " - Example: `parameters = {'parameter' : [list of values]}`.\n", + " - **Note:** Avoid tuning the `max_features` parameter of your learner if that parameter is available!\n", + "- Use `make_scorer` to create an `fbeta_score` scoring object (with $\\beta = 0.5$).\n", + "- Perform grid search on the classifier `clf` using the `'scorer'`, and store it in `grid_obj`.\n", + "- Fit the grid search object to the training data (`X_train`, `y_train`), and store it in `grid_fit`.\n", + "\n", + "**Note:** Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 3 folds for each of 525 candidates, totalling 1575 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 2.0s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 7.5s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 8.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 10.3s\n", + "[Parallel(n_jobs=8)]: Done 34 tasks | elapsed: 11.6s\n", + "[Parallel(n_jobs=8)]: Done 45 tasks | elapsed: 13.3s\n", + "[Parallel(n_jobs=8)]: Done 56 tasks | elapsed: 15.7s\n", + "[Parallel(n_jobs=8)]: Done 69 tasks | elapsed: 18.0s\n", + "[Parallel(n_jobs=8)]: Done 82 tasks | elapsed: 20.3s\n", + "[Parallel(n_jobs=8)]: Done 97 tasks | elapsed: 22.6s\n", + "[Parallel(n_jobs=8)]: Done 112 tasks | elapsed: 25.4s\n", + "[Parallel(n_jobs=8)]: Done 129 tasks | elapsed: 28.1s\n", + "[Parallel(n_jobs=8)]: Done 146 tasks | elapsed: 30.6s\n", + "[Parallel(n_jobs=8)]: Done 165 tasks | elapsed: 34.2s\n", + "[Parallel(n_jobs=8)]: Done 184 tasks | elapsed: 37.2s\n", + "[Parallel(n_jobs=8)]: Done 205 tasks | elapsed: 41.4s\n", + "[Parallel(n_jobs=8)]: Done 226 tasks | elapsed: 45.2s\n", + "[Parallel(n_jobs=8)]: Done 249 tasks | elapsed: 49.4s\n", + "[Parallel(n_jobs=8)]: Done 272 tasks | elapsed: 52.8s\n", + "[Parallel(n_jobs=8)]: Done 297 tasks | elapsed: 57.5s\n", + "[Parallel(n_jobs=8)]: Done 322 tasks | elapsed: 1.0min\n", + "[Parallel(n_jobs=8)]: Done 349 tasks | elapsed: 1.1min\n", + "[Parallel(n_jobs=8)]: Done 376 tasks | elapsed: 1.2min\n", + "[Parallel(n_jobs=8)]: Done 405 tasks | elapsed: 1.3min\n", + "[Parallel(n_jobs=8)]: Done 434 tasks | elapsed: 1.4min\n", + "[Parallel(n_jobs=8)]: Done 465 tasks | elapsed: 1.4min\n", + "[Parallel(n_jobs=8)]: Done 496 tasks | elapsed: 1.5min\n", + "[Parallel(n_jobs=8)]: Done 529 tasks | elapsed: 1.6min\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 1.8min\n", + "[Parallel(n_jobs=8)]: Done 597 tasks | elapsed: 2.0min\n", + "[Parallel(n_jobs=8)]: Done 632 tasks | elapsed: 2.2min\n", + "[Parallel(n_jobs=8)]: Done 669 tasks | elapsed: 2.5min\n", + "[Parallel(n_jobs=8)]: Done 706 tasks | elapsed: 2.7min\n", + "[Parallel(n_jobs=8)]: Done 745 tasks | elapsed: 2.9min\n", + "[Parallel(n_jobs=8)]: Done 784 tasks | elapsed: 3.1min\n", + "[Parallel(n_jobs=8)]: Done 825 tasks | elapsed: 3.4min\n", + "[Parallel(n_jobs=8)]: Done 866 tasks | elapsed: 3.6min\n", + "[Parallel(n_jobs=8)]: Done 909 tasks | elapsed: 3.9min\n", + "[Parallel(n_jobs=8)]: Done 952 tasks | elapsed: 4.2min\n", + "[Parallel(n_jobs=8)]: Done 997 tasks | elapsed: 4.4min\n", + "[Parallel(n_jobs=8)]: Done 1042 tasks | elapsed: 4.7min\n", + "[Parallel(n_jobs=8)]: Done 1089 tasks | elapsed: 5.5min\n", + "[Parallel(n_jobs=8)]: Done 1136 tasks | elapsed: 6.3min\n", + "[Parallel(n_jobs=8)]: Done 1185 tasks | elapsed: 7.2min\n", + "[Parallel(n_jobs=8)]: Done 1234 tasks | elapsed: 8.1min\n", + "[Parallel(n_jobs=8)]: Done 1285 tasks | elapsed: 9.1min\n", + "[Parallel(n_jobs=8)]: Done 1336 tasks | elapsed: 10.0min\n", + "[Parallel(n_jobs=8)]: Done 1389 tasks | elapsed: 11.0min\n", + "[Parallel(n_jobs=8)]: Done 1442 tasks | elapsed: 11.7min\n", + "[Parallel(n_jobs=8)]: Done 1497 tasks | elapsed: 12.6min\n", + "[Parallel(n_jobs=8)]: Done 1552 tasks | elapsed: 13.2min\n", + "[Parallel(n_jobs=8)]: Done 1575 out of 1575 | elapsed: 13.6min finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unoptimized model\n", + "------\n", + "Accuracy score on testing data: 0.8576\n", + "F-score on testing data: 0.7246\n", + "\n", + "Optimized Model\n", + "------\n", + "Final accuracy score on the testing data: 0.8651\n", + "Final F-score on the testing data: 0.7448\n" + ] + } + ], + "source": [ + "# TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries\n", + "from sklearn.grid_search import GridSearchCV\n", + "from sklearn.metrics import make_scorer\n", + "\n", + "\n", + "\n", + "dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)\n", + "dt_stump.fit(X_train, y_train)\n", + "clf_knn = KNeighborsClassifier(n_jobs=8)\n", + "clf_knn.fit(X_train, y_train)\n", + "\n", + "# TODO: Initialize the classifier\n", + "clf = AdaBoostClassifier(base_estimator=dt_stump, random_state=5)\n", + "#clf = AdaBoostClassifier(base_estimator=clf_knn, random_state=5)\n", + "\n", + "#clf = clf_knn\n", + "\n", + "# Create the parameters list you wish to tuned\n", + "parameters = {\n", + " \"n_estimators\": [1, 3, 9, 30, 90]\n", + " , \"learning_rate\": [0.003, 0.009, 0.1, 0.03, 0.09]\n", + " , \"base_estimator__max_depth\":[1, 3, 9] # use __ to access nested parameters of sub classifier\n", + " , \"base_estimator__min_samples_leaf\":[1, 3, 9, 30, 90, 300, 900]\n", + " #, \"base_estimator__criterion\" : [\"gini\", \"entropy\"]\n", + " #, \"base_estimator__splitter\" : [\"best\", \"random\"]\n", + " \n", + " #\"n_neighbors\": [3, 5, 7, 10, 13, 15, 20]\n", + " #, \"weights\": [\"uniform\", \"distance\"]\n", + " \n", + " #\"base_estimator__n_neighbors\": [3, 5, 7, 10, 13, 15, 20]\n", + " \n", + " \n", + " \n", + "\n", + "}\n", + "\n", + "# TODO: Make an fbeta_score scoring object\n", + "scorer = make_scorer(fbeta_score, beta=0.5)\n", + "\n", + "# check this, which is the right score?\n", + "stratifiedShuffling = False\n", + "if stratifiedShuffling:\n", + " # make sure test labels are evenly split labels between validation set, given dataset is unbalanced\n", + " # this ensure none of them has a large concentration of >50k or <=50k earners.\n", + " from sklearn.cross_validation import StratifiedShuffleSplit\n", + " cv = StratifiedShuffleSplit(y_test, n_iter=10, test_size=0.25, random_state=4)\n", + " grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8, cv=cv)\n", + "\n", + " \n", + "# base case\n", + "else:\n", + " # TODO: Perform grid search on the classifier using 'scorer' as the scoring method\n", + " # default uses 3 fold cross validation\n", + " grid_obj = GridSearchCV(clf, param_grid=parameters, scoring=scorer, verbose=10, n_jobs=8)\n", + "\n", + " \n", + "\n", + "# TODO: Fit the grid search object to the training data and find the optimal parameters\n", + "grid_fit = grid_obj.fit(X_train, y_train)\n", + "\n", + "# Get the estimator\n", + "best_clf = grid_fit.best_estimator_\n", + "\n", + "# Make predictions using the unoptimized and optimised model\n", + "predictions = (clf.fit(X_train, y_train)).predict(X_test)\n", + "best_predictions = best_clf.predict(X_test)\n", + "\n", + "# Report the before-and-afterscores\n", + "print \"Unoptimized model\\n------\"\n", + "print \"Accuracy score on testing data: {:.4f}\".format(accuracy_score(y_test, predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, predictions, beta = 0.5))\n", + "print \"\\nOptimized Model\\n------\"\n", + "print \"Final accuracy score on the testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions))\n", + "print \"Final F-score on the testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5))" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Monday_05_June_2017_09_33PM\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "score = pd.DataFrame(grid_fit.grid_scores_).mean_validation_score\n", + "params = pd.DataFrame.from_records(pd.DataFrame(grid_fit.grid_scores_).parameters.values)\n", + "resGrid = pd.concat([params, score],axis=1)\n", + "resGrid = resGrid.sort_values(by=[\"mean_validation_score\"], ascending=False)\n", + "\n", + "\n", + "import datetime\n", + "st = datetime.datetime.utcnow().strftime(\"%A_%d_%B_%Y_%I_%M%p\")\n", + "print(st)\n", + "\n", + "\n", + "\"\"\"\n", + "importances = best_clf.feature_importances_\n", + "indices = np.argsort(importances)[::-1]\n", + "print(X_train.columns[indices[:5]])\n", + "\"\"\"\n", + "\n", + "#print(pd.DataFrame(best_clf.feature_importances_))\n", + "clf_name = best_clf.__class__.__name__ \n", + "# create excel sheet of parameter grid\n", + "writer = pd.ExcelWriter(\n", + " clf_name + 'resGrid.xlsx'\n", + " , engine=\"xlsxwriter\" \n", + " )\n", + " \n", + "pd.formats.format.header_style = None \n", + " \n", + "resGrid.to_excel(writer, sheet_name=\"elem\", index=False)\n", + "workbook = writer.book\n", + "worksheet = writer.sheets[\"elem\"]\n", + "formatObject = workbook.add_format()\n", + "formatObject.set_text_wrap(1)\n", + "formatObject.set_bold(1)\n", + "\n", + "worksheet.set_column(\"A:F\", 30)\n", + "worksheet.set_row(0, 60, formatObject)\n", + " \n", + "writer.save()\n", + "\n", + "#open excel\n", + "import os\n", + "import win32com.client\n", + "\n", + "cwd = os.getcwd() + \"\\\\\"\n", + "\n", + "xl=win32com.client.Dispatch(\"Excel.Application\")\n", + "xl.Visible = True\n", + "xl.Workbooks.Open(Filename=cwd+clf_name+\"resGrid.xlsx\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# close any excel sheets without asking questions and quit excel\n", + "map(lambda book: book.Close(False), xl.Workbooks)\n", + "xl.quit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5 - Final Model Evaluation\n", + "_What is your optimized model's accuracy and F-score on the testing data? Are these scores better or worse than the unoptimized model? How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in **Question 1**?_ \n", + "**Note:** Fill in the table below with your results, and then provide discussion in the **Answer** box." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Results:\n", + "\n", + "| Metric | Benchmark Predictor | Unoptimized Model | Optimized Model |\n", + "| :------------: | :-----------------: | :---------------: | :-------------: | \n", + "| Accuracy Score | 0.2917 | 0.8576 | 0.8687 |\n", + "| F-score | 0.2478 | 0.7246 | 0.7430 |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer: ** The optimised model's scores are better than the benchmark and the unoptimised scores. Accuracy improves beyond just predicting \">50k\" for all points, and especially the F-Score improves, showing the model is adding value. However, i believe that the benchmark predictor does not illustrate the issue of unbalanced datasets well, as we will see a large improvement by using as benchmark the prediction of the less frequent part of the dataset across the entire dataset. However, if we were to predict the more frequent part as a benchmark, i believe it would be a lot more difficult to achieve such performance gains, given we have already 75% accuracy." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Anaconda3\\envs\\udacity\\lib\\site-packages\\IPython\\html.py:14: ShimWarning: The `IPython.html` package has been deprecated since IPython 4.0. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", + " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAD3CAYAAADIQjUAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE79JREFUeJzt3XuYFNWZx/Fv9wwwGGZABESFxXg7mgsRwSsieOERiRuU\nJEpQo1FBEUWSjaIRAlEQRCWuRFFRIt4SjEqiCCSuiwioQTCumNWz4i0xBkVXAUGQgdk/ZmAHxJkh\nzNBVle/Hp59n+nR11Rkf/fU7b1WdzlVUVCBJKqx8oScgSTKMJSkRDGNJSgDDWJISwDCWpAQobsid\nd+zQ3Us19DmLljxS6CkogRqX7Zbb0X1sT+a89PbcHT5efbIylqQEaNDKWJJ2plwuUcXudjGMJWVG\nLpfeP/YNY0mZkcfKWJIKzjaFJCVA3jaFJBVemivj9H6MSFKGWBlLyoyiXFGhp/APM4wlZUaa2xSG\nsaTMyKc4jO0ZS1ICWBlLyoxciutLw1hSZhTlDWNJKrhcPd4OHUK4EvgW0Bi4FZgL3A1UAC8Dg2OM\nG0MIA4ALgHJgdIxxRgihKXAf0AZYBZwdY1xe0/HS+zEiSQ0khNADOAroCnQH2gMTgOExxm5ADugT\nQmgLDKna7kRgbAihCTAIWFK17T3A8NqOaRhLyox8Ll/nRy1OBJYA04HHgBlAZyqrY4BZwAnAYcCC\nGOO6GOMKYCnQETgamL3VtjWyTSEpM+rxOuNWQAfgZODLwKNAPsa46ZtEVgHNgTJgRbX3bWt801iN\nDGNJmVGP1xl/CLwaY/wMiCGEtVS2KjYpBT4GVlb9XNP4prEa2aaQlBm57finFvOBXiGEXAhhT+BL\nwJNVvWSAk4B5wEKgWwihJITQHDiIypN7C4DeW21bIytjSZlRX0toVl0RcQyVYZsHBgNvApNDCI2B\nV4CHYowbQgg3Uxm2eeCqGOPaEMIkYGoIYT7wGdC/tmPmKioa7guc/XZobYvfDq1tqY9vh+7d8Xt1\nzpyZL/0qUfdOWxlLyow0r01hGEvKjPq86WNnM4wlZYZLaEpSAtimkKQEsE0hSQmQ5m+HTu/MJSlD\nrIwlZYYn8CQpAYpS3KYwjCVlRpqvpkjvx4gkZYiVsaTMsGcsSQmQ5jaFYSwpM7zpQ5ISwMpYkhLA\nnrEkJYCVsSQlgD1jSUoAK2NJSgB7xpKUAFbGkpQAVsaSlABpPoHnQkGSlABWxpIyI5/ewtgwlpQd\nRfn0/rFvGEvKjDSfwEvvx4gkZYiV8Q4676Iz6NGzK40aFTPt3t8yfdpMAHr3OYHvndOXs069iPCV\n/bj8pxdvfk/HTl9h6MDhhK/sR9fuhwFQWtaMVq1bctyhfQvye6hhbNiwgVFjxvHW238hl8sx4orL\naNlyV0aNGcfKVavYuGEj1/5sBO3bteNXDz7M72Y8Ti6X4+wz+9Or5/GFnn7q5FN8NYVhvAO6HHEw\nB3f+Gt/vO5iSpiWcM/B0AA786v6cenrvzf9ZxP9eynn9hgLQs3cP3n/vAxbMXciCuQuZMukBACZO\nGcvPx95WiF9DDeipefMBuPeu23l+8QvcPOl2ykrL+GavE+nV83gWLlrMm2+9TbNmzXjw4Ud48P6p\nfLZuHX1OO4MTTzgu1X92F0Ka/33VuU0RQrClsZWjjjmU1159g5vuGM3EKWOZ++SzNG9RxpDLBzD+\nZ7/43PZNm5Zw0Y9+wHWjJm4xfnyvbqxc8QnPzlu0s6auneT4Ht0Z+ZNhALz792WUlZby4ksv8d77\n73P+RUN4fPYf6NL5EHZt0YLf3D+VRsXFfPDh/9KkSeNUB0uh5HO5Oj+SpsbKOISwDzAB6AKUVwXy\nEuCHMcb/2QnzS7RdW7Zgj7125+Jzr6Bd+z2YOGUcb7z2Ftdfcwvr1q773Pannv5Nnnj8KT7+aMUW\n4+dddCbDLrl6Z01bO1lxcTFXjbqGJ5+ay4RxY5g5+w+UlZZy5603M2nyFKZMvY+LLxxAcXExDzz4\nELfecSdnnP7dQk87lRKYsXVWW7V7JzA2xtguxrh3jPFfgGuAXzb81JLv449W8MzTCylfX85bb/yV\n3fdoTYd92jN89A8ZP/Gn7LP/3lv0ir95ygk8/OsZW+xjn/07sGrlJ/z17b/t7OlrJxozagQzHprG\nqDHjKC0t5dhjugHQ45iu/PmVVzdv1/+07zBn1mMsfuFFFi5aXKjpplaaK+PawrgkxvjH6gMxxuca\ncD6p8qfnl9C1++EAtG6zG+8vW07fnudwXr+hXH7J1bzx2luMv7qyXdGs9Es0atyI9/6+fIt9HNG1\nC/Of+uPn9q1seGzmLO785T0AlJSUkM/n6dzpYOY98wwAi194kf32+TJvvvU2Qy+7koqKCoqLi2nU\nuDG5nJ3B7ZXbjn+SprYTeP8VQpgCzAZWAKVAb+Clhp5YGjz9n8/S+fBv8MCjt5PP57h2xE1s3Lhx\nm9t2+HJ73n1n2efG9963vb3iDDv+2B6MuHoMZw8cRHl5OZf/6FIOPGB/Ro4ex7SHptOsWTOuGz2K\n5mVlhAP248xzB0IOjj7ySA7t3KnQ00+dNPfZcxUVFV/4YgghB5wCHA2UASuBBcD0GOMXv7FKxw7d\na91G/3wWLXmk0FNQAjUu222Hk3R4r5/UOXNGz742UcldY2VcFbjTqx6SlGgpLoy9zlhSdiTxxFxd\nGcaSMiOJJ+bqyjCWlBlWxpKUACnOYldtk6QksDKWlBkuLi9JCZDmNoVhLCkzPIEnSRkUQmgDLAZ6\nAk2BGcBrVS9PijFOCyEMAC4AyoHRMcYZIYSmwH1AG2AVcHaMcfnnDlCNYSwpM+rzOuMQQiPgduDT\nqqHOwIQY443VtmkLDKFymeESYH4I4QlgELAkxjgqhNAPGA5cWtPxDGNJmVHPCwXdANwGXFn1vDMQ\nQgh9qKyOhwKHAQtijOuAdSGEpUBHKtfzGV/1vlnAiNoOlt5Tj5K0laJ8rs6PmoQQzgGWxxh/X214\nIXBZjPEY4A1gJJULqFX/tohVQPOtxjeN1cgwlqTPOxfoGUJ4CjgYuAeYFWPctOL/dKATlStZllZ7\nXynw8Vbjm8ZqZJtCUmbUV5uiqvoFoCqQLwR+F0K4JMa4EDieyhN7C4ExIYQSoAlwEPAylUsN9656\n/SRgXm3HNIwlZUYt3YcdNQiYGEJYDywDBsYYV4YQbqYybPPAVTHGtSGEScDUEMJ84DOgf207N4wl\nZUZDfNNHjLFHtaddt/H6ZGDyVmNrgO36VlnDWFJmpPieD8NYUnZ4B54kJYCLy0tSAqS4MDaMJWVH\nmtsU3vQhSQlgZSwpM/INfKFxQzKMJWVGQ1xnvLMYxpIyI8WFsT1jSUoCK2NJmWGbQpISoLZ1ipPM\nMJaUGWmujO0ZS1ICWBlLyowUF8aGsaTsSHObwjCWlBkpzmLDWFJ2pHmhIMNYUmakOIsNY0nZYc9Y\nkhIgxVlsGEvKjjRXxt70IUkJYGUsKTNcm0KSEiDFXQrDWFJ22DOWJO0QK2NJmZHiwtgwlpQdfju0\nJCWAPWNJ0g6xMpaUGSkujA1jSdmR5jaFYSwpM1KcxQ0bxgueur0hd6+UWvHKq4WeghKo9eFdd3gf\nab4d2hN4kpQAtikkZYY9Y0lKgBRnsWEsKTtyKe4ZG8aSMsPKWJISwJ6xJCVAirPYMJaUHVbGkpQA\nKc5ib/qQpCSwMpaUGbl8/dSXIYQiYDIQgArgQmAtcHfV85eBwTHGjSGEAcAFQDkwOsY4I4TQFLgP\naAOsAs6OMS6v6ZhWxpIyI5er+6MW/woQY+wKDAfGABOA4THGbkAO6BNCaAsMAboCJwJjQwhNgEHA\nkqpt76naR40MY0mZkcvn6vyoSYzxt8DAqqcdgI+BzsDcqrFZwAnAYcCCGOO6GOMKYCnQETgamL3V\ntjUyjCVpG2KM5SGEqcBE4H4gF2OsqHp5FdAcKANWVHvbtsY3jdXIMJaUGfXYpgAgxng2cACV/eOm\n1V4qpbJaXln1c03jm8ZqZBhLyoxcLlfnR01CCGeFEK6seroG2AgsCiH0qBo7CZgHLAS6hRBKQgjN\ngYOoPLm3AOi91bY18moKSZmRr7+Fgh4BfhlCeBpoBAwFXgEmhxAaV/38UIxxQwjhZirDNg9cFWNc\nG0KYBEwNIcwHPgP613ZAw1iSthJjXA2cto2Xum9j28lUtjGqj60Bvrs9xzSMJWVGmu/AM4wlZYZr\nU0hSEqT4kgTDWFJmWBlLUgKkOIsNY0nZYWUsSQmQ4iw2jCVlSIrTOMXnHiUpO6yMJWVGvii9lbFh\nLCkzPIEnSQmQ4iy2ZyxJSWBlLCk7UlwaG8aSMqO277ZLMsNYUmakOYztGUtSAlgZS8qMFLeMDWNJ\n2ZHmNoVhLCkzvOlDkpIgvVlsGEvKDitjSUoAw1iSkiDFF+saxpIyI82VcYo/RyQpO6yMJWWG1xlL\nUgIYxpKUBPaMJUk7wspYUmakuDA2jOtLeXk5I2/4d/7+3nvk80UMHzqYtes+44cjr6H9nnsC8J2T\ne9Gh3V7ceNtdm9/38quRG0b+hKO6HFKoqauB/Pn115k07SF+8ZNhvPm3vzF+ylQA2u2+O8POO4fi\noiIANm7cyGUTbqLbIZ045bhj+WTNGkbeehufrl1Ho+JifnrhQHZr0byAv0l6pPnSNsO4nsx/fjEb\nNmxgys/H89wLL3LL3ffRtcshnNG3D2d++5Qttr3j+jEA/MfTC2jTqqVBnEH3Pz6L3y94hpImTQC4\n4zePcMF3v83BBwbG3HEXC/70It27dAZg8sPTWbV6zeb3zpy3gH3bteOifqfx6Jy5PDBzFpf071eQ\n3yNtckXp7bymd+YJ02GvPdmwYQMbN25k9Zo1FBcX8crS15m/cBEDfnwlV0+YyOo1//8/3Kdr13L7\nfQ/w4wsHFHDWaih7tWnNmCEXb34+eshgDj4wsL68nA9XrKDZLrsAMGfhInK5HId//Wubt923fTvW\nrF0LwOq1n26uoJVthnE9adq0hHffe5/vDBjMmJtuoV+fk/lq2J9Lzz+HyTeMZa89dmfy/dM2b/+7\n2U9wQreutGheVsBZq6H0OLTLFiFalM+z7IMPOOvK4axYtYr92rfnjXfe4Ylnn+P8vlv+5VTW7Ess\nfPnPnHnFVfxq5mxO7n7Mzp5+euW245EwNbYpQghzgCZbDeeAihjjUQ02qxR64JFHObJzJy4+9/ss\nW76cQcNGMPmGsbRquSsAxx51BNdPmrx5+1lz5nLd8GGFmq4KoG2rVvz6+nE89tTTTHzg17RsXsby\njz5iyLjrWfbBBxQXFdO2VSsenTOX/r1P4pTjerD0L39l+MRbmDrm6kJPPxWy3DO+ApgMnAqUN/x0\n0qusWTOKiysroealpZSXb+BHI0dz+cUX8LVwAAtffIkD99sXgE9Wr2b9+nLatm5dyClrJxr285u5\n+Hun077t7uxSUkI+n+Oifqdtfv2uR37Lbi2ac0THrzNn4fM026UpALuWlbH6008LNe3UyexNHzHG\nP4YQ7gU6xhin76Q5pVL/vt/i6gkTOf/frmR9+XoG/+BM9m7XjvGT7qC4qJjdWrbgqiGDAXj7nXfZ\nY/c2BZ6xdqYzT+7NtZPvori4mJLGjRl23jlfuO2Ab5/KuLvuZvqTcygv38Cwc794W20pl09v5zVX\nUVHRYDtf9earDbdzpdba9z8s9BSUQK0P77rDZe07M2fXOXPa9e6VqDLaS9skZUei4nX7GMaSMiOz\nPWNJSpUMX00hSamR5UvbJCk9bFNIUuFZGUtSEqQ3iw1jSdlR35VxCOFw4LoYY48QQidgBvBa1cuT\nYozTQggDgAuovEt5dIxxRgihKXAf0AZYBZwdY1xe07EMY0nahhDC5cBZwOqqoc7AhBjjjdW2aQsM\nAboAJcD8EMITwCBgSYxxVAihHzAcuLSm4xnGkrKjfk/gvQ70Be6tet4ZCCGEPlRWx0OBw4AFMcZ1\nwLoQwlKgI3A0ML7qfbOAEbVOvT5nLkmFlMvn6/yoTYzxYWB9taGFwGUxxmOAN4CRQBmwoto2q4Dm\nW41vGquRYSwpM3K5XJ0f/4DpMcbFm34GOgErgdJq25QCH281vmmsRoaxJNXN70MIh1X9fDywmMpq\nuVsIoSSE0Bw4CHgZWAD0rtr2JGBebTu3ZywpOxr2po9BwMQQwnpgGTAwxrgyhHAzlWGbB66KMa4N\nIUwCpoYQ5gOfAf1r27lLaGqncwlNbUt9LKG5/Ln5dc6c1kccnairkq2MJWWG3w4tSdohVsaSssO1\nKSSp8FwoSJKSwDCWpMLza5ckKQmsjCUpAQxjSSo8T+BJUhKkuGfsTR+SlABWxpIyI5dLb31pGEvK\njLosGp9UhrGk7LBnLEnaEVbGkjLDS9skKQkMY0kqvFxRUaGn8A+zZyxJCWBlLCk7bFNIUuF5Ak+S\nksA78CSp8FxcXpKSwDaFJBWePWNJSgJ7xpKUACnuGaf3Y0SSMsTKWFJm2DOWpATI5dO7NoVhLCk7\nUnwCL70zl6QMsTKWlBnegSdJSeAJPEkqvDSfwMtVVFQUeg6S9E/PE3iSlACGsSQlgGEsSQlgGEtS\nAhjGkpQAhrEkJYBhLEkJ4E0fDSyEkAduBb4BrAPOjzEuLeyslAQhhMOB62KMPQo9FxWelXHDOwUo\niTEeCVwB3Fjg+SgBQgiXA3cCJYWei5LBMG54RwOzAWKMzwFdCjsdJcTrQN9CT0LJYRg3vDJgRbXn\nG0IItof+ycUYHwbWF3oeSg7DuOGtBEqrPc/HGMsLNRlJyWQYN7wFQG+AEMIRwJLCTkdSEvnncsOb\nDvQMITwD5IAfFHg+khLIJTQlKQFsU0hSAhjGkpQAhrEkJYBhLEkJYBhLUgIYxpKUAIaxJCXA/wFH\n3IYB7nYI4QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "# confusion matrix best\n", + "pred = best_clf.predict(X_test)\n", + "sns.heatmap(confusion_matrix(y_test, pred), annot = True, fmt = '')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "## Feature Importance\n", + "\n", + "An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \\$50,000.\n", + "\n", + "Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a `feature_importance_` attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6 - Feature Relevance Observation\n", + "When **Exploring the Data**, it was shown there are thirteen available features for each individual on record in the census data. \n", + "_Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** I believe the important features would be: \n", + "- Capital Gain - most important as a large capital gain can provide income for years to come, and reduces reliance on intelligence, hard work or biological properties like race or attractiveness.\n", + "- Age - also important as usually people tend to get better at what they do with age.\n", + "- Education Level - fairly good predictor as it can replace experience and is sometimes a proxy for family wealth which would have a positive effect on income.\n", + "- Work class - private sector pays better\n", + "- race - biological attributes might provide some noise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation - Extracting Feature Importance\n", + "Choose a `scikit-learn` supervised learning algorithm that has a `feature_importance_` attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.\n", + "\n", + "In the code cell below, you will need to implement the following:\n", + " - Import a supervised learning model from sklearn if it is different from the three used earlier.\n", + " - Train the supervised model on the entire training set.\n", + " - Extract the feature importances using `'.feature_importances_'`." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFgCAYAAAArYcg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYHVX5wPFvkg2QmKCLhCIKEZAXfhZAggRBehNQCYqo\nIE2agJUiTYhIE1GKUqVJFBEFpRdBQGlKiYIoryCgKAkklCQQWkh+f5zZ5Gazu9kke7Mh8/08zz57\n78zcM2fmTHnnnDMzfaZNm4YkSZLqo29vZ0CSJEnzlwGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWM\nAaCkWUREn97Ow4LCdTF7C/M6WpiXrU0dllGzauntDGjBEBG3AesAH8rMR9uNWwMYDWycmbfN/9zN\nXkQ8CVyTmQdExEbArcDamXlfE+d5ETAsMz/QwbgPAA8BX8zMnzUMbwGeAxYHVsrMxxvGfQT4E7BN\nZl7XjfmPBA7KzEFzkOdpwMGZeXIX0+wFrAAc2d10O0hjDeBiIIAbM/OTc5tWB2lfBOzaxSQDgOHM\n4zYQEYsCJ1Xp/LaTaYYCT3SRzPcy89Bq/3opM7edm7x0RzWPDYErMvPTHYwfAIwD3kYP7hsR8X7g\nR8AmXUwzEji63eDXgf8BVwJHZubLPZGfDuY7fR9pPE5047ezlP+c/H5uNZRjR57JzGV6cF7vAM4A\nfgjc31Pp6q3BAFCNFgPOBTbu7YzMoweAdYF/9GIeHqacbIcDP2sYvg7lBDwR2Bw4p2Hc+sAbwB+6\nOY/zgGvnOaezOgK4Zh7T+DawJPAJykm+pz0O7NTJuNfomW1gWeCrwB+7Me3hlEChvbZl3w94cx7y\n0l3TgK0iYkBmvtJu3NaUba+n7QB8pBvTvcLMQeKilG3+GOA9wGd6PmuzGAG80M1pOyr/Ofn9vLgT\nOKiD4a/38HzWAL4AnNLD6eotwABQjSYAG0XEnpl5Xm9nZm5l5kTgnl7Ow7TqSn7ddqM2A/4KPMWs\nAeB6wJ8z86VuzuO/wH/nPbdNsQQwOjNvalL6r2RmV2U8v7eBR7vKT2b+fT7l48/AMGAr4Dftxu0A\nPAh8aD7lpb2pHayj26ta1C9FxLKZOaaZGcjM0b35+znw4my2b2meGQCq0R2UGoTvR8Q1mTm2swmr\ng/ZJwEaUJrffU5paHq3GjwS2pVw9fwn4F+Xq+Ynq/wHAR4GxlCvdRyjB0FpAAntn5r1VWv0pzZGf\npzRNTqbUtnwtM5/qIG8bVePXBsbTeRPdTzNzt+o3mwPHUk6OzwEXAN/JzDer8S3V+N2AgZTat36d\nrZ/KbcCIiBiYmZOrYZtXw/8NjIyIvpk5tRq3Hg0BYUQsBZxMWY+LUNbx1zLziWr8SGZu3lqMUiaf\no9TmXgY8C3whM4c25OudEfGLKt3XgFHAIZn5RtXEtQKwf0Tsn5l9IuJtwGnANsA7KLVqx2bmFR0t\ndNXM3Ph548y8LSI2qNbhGpTaoF8Bh7YFvFXA/M9q/hsA52XmV7pexR1r3w2gs7Qj4mBgH+DdlNq6\ni4DjgOWZsd38KiJuz8yN5iYvVX5uo2oCjojHgZszc++G8a3AM8CXM/P8ap2fCHyW0l3gT8A3uhGA\njAduBz5NQwBYNf9uC5xAuwCwG+WyDHA6pfZuIKWp8MjMvL2xabcq690z86I5WjmltnZPyjofU6Vz\nBKWGdyiwR2b+MiLWomzf6wIvA5cC32rYt4iIg4CvUGqfrwCebresT9LQhBsRKwDfp1yYQdlmvkHp\nHz9L+bf9HjiEsm8dn5nHN6T/fuBvwGaZecvs9uF50Z20I2JLSu30h4H+lOPsMZl5RcM+AnBvRPw0\nM3frqJtIRPwWeEe1DoZW6+br1bpqpXRbuaMbx9EATqWUYV/gLsqx58F5XR+ac94Eovb2p1wY/Kiz\nCSLi3ZSahvcBXwZ2B94L3BER72qYdPXqbwQz9yc7H7gJ+CSlButiysnqUsqJa3FmbjY9hXJQPxHY\ngnJy2JRyIJmdMZSDTePfuZTmuFHV8mwKXM+M4PT7wIGUk16bUynNQSdSAtHVgR1nM+9bKety7Wo+\ngylNwL8DbqYcOIdV41YGlgZuqb4PqH6/frXsXwSWAf5QBQsduYASoH6H0qyzMvDNDqY7hBIofAo4\nm3Ig37caN4ISlP+aGbWXp1FO/l+lNCP+nXJSXK2TfKxL6TN6Z/X5gYj4eLU8Yyjr7egqj9dGRONx\naHfKSepTlO2iUxHR0v6vq+nbpx0ROwPfpfR/2pIS1H8H2KvK5/bV7w6nNOF2pW8H+ens+HopsF1E\nNF5AjKBcfF1edci/ihLIH0mpuXsVuC0iVppNPgAuB7atLpzafBx4kXLCna6b5fIzyra0O2XdTa7G\nL0FZZ+dTAsd1mbsuCe+r/jcGRUdStrtdKcv9f5SuEdMoQfG3qvxe1rAsB1H2z4sox5FFKAFKhyJi\nccpF74co5bsrsCrlWNBl+VdB51XM2my9Y/XbW+dyH27Tp6vtuztpV32Kr6MEpJ+q8jYZuCQihlAC\n7/2rJHen7Atz4tuUcvgKJYDs8jhabU9XU46JO1K27yUp29LsLqbVBNYAaiaZ+Z+IOAI4LSI+mZlX\ndTDZNyi1fptn5niYXsPxOGWHP7CargU4sK3WorpyBLgsM0+qhvUDbgB+nplnVMOOB86LiHdk5ovA\nEEpN1wXV72+vriQ76wPWuDyv0dAUGBHrUoKkozLzlmrwscA9mfm56vsNEfE8cFFEfJ/SnLgvcERm\nnlqlcwulFq+ref8jIsZSToy3U2pLpwJ/yMzJEfE0pUbwz5QD+eSGvO5CuYHiA5n5SLt5foXSb2q6\niFiFEphOr4GJiN/Tce3n7xpq1n4fEZ+k9Pv8UWaOjojXKJ3N2/KyfvWbX1Xp3kmprerw+JGZ90TE\nREqN1z3Vb46lNG9PD5oj4glK2W9DOTEATKLUdE2la++n9JecSUR0dXPDTGlHxJeAJ4GzMnMaZbt6\nA3g6M1+LiLbatke70YT7yw6GXUupnWnvEuAwyvbQtg1+Frg+M1+sam02oexfN1d5vYHSr/QIYI/Z\n5OUKygXcppT1CyWIvJwSQDXqTrmsT6nFuboa/zfKhcXbMvOpiPgvHTfvzqJdkL4E5YJuH+DKzHy2\nYdzvMvPcht+dSrkw2TozX6+GPUoJeDagBHLfAn6SmW01kjcCfwE6C5p3pwRNqzTUqj9FuRhdmXIR\nA52X/yXA1RGxUmb+qxq2A+X4NjUi5mgfbmdrOt6+h1TH3O6k/X7KDUH7N/z+P5TAb53MvCYi2pbr\nbw3L0F0/z8zp2321j3d1HH2VEuwfnZk3NuTnC8AgShckzUcGgOrIjynB1RlVYNfeBsCtbcEfQGaO\nrw5A7e9e+2cHv/9zw+dnqv+NJ+3nqv/voPSF2REgIpajHPRWo5yUFu3W0lSq2snLgRspTWFExEBK\nB/Yj2p2cbqDUkG9MOfH0o1zdApCZr0bEdVS1e124nRk1aZsBdzU0Wd1COUkfVy3PH9tObtV8HwUe\na8jXZEqT+qbMevJoW+/T71atgsxrmfXuzLvafX+Ssq4780dgr4hYltL8dU1mHtjF9DOJiEHAmrTr\n1J6ZN0bEC1Xe2wLAx7oR/EHpUvC5DoZ3Fai1T/uPlODj3oj4NWW5Or07eja+RWmCa/RiRxNm5t8i\n4iFKsHBLVZO2KbBzNcnGlLK+vd022VZr3qXMHBsRd1FqwW6I0jVgW0otYGMtUnfL5Y/AMRHxIUpQ\ne11mHjy7fHTgbcwa1Eyl1FLt034x2n3fmLJtT21YJ3dTLs42pdxwtSQz76PTIuIKoLO8fhR4uLHJ\nNDP/QmnNaLxg7cyNlGPVDsCJ1fpZlXKB2ZbnOdmHG91Bx7WXbdvUbNPOzAuBC6N0J1gNWIUZx4I5\nOnZ2YnoZdfM4+lPK+eAnEbEZpdxvzMzDeyAvmgsGgJpFdfW6J+VK8QTgJ+0maaVcWbf3DOWqs83L\n2fGjHSZ1MGxyB8MAiIiPAmdRmmomUK7MXwG6/eyqiFiEEvy9AuxS1fhAWZa+lOU8oYOfLkvpJwel\n2bRRp30kG9zKjKaVzYGfN4y7GTi7aqpbj9KE2+adlJPJLLUAlAN/e0sCb1Q1po2e6WDa9ut6Kl13\nB/kqpS/VFyl39U6tgt/dGy8CuvAOSll1lJdnKU3+jd+749Uuavo6M1Pamfnz6mS1P3A8cEJEPAh8\naS7SfnwOf3MJ8M2I2J/S1PgqpUkRStkPpOM7PjvaHjrya+DwiNiHckPIREqTfOMFWnfLZUfgKEot\n5eeANyLiUmCfnPVO4668Qrl4hFIT+Srwn8zs6HjQfjt4JyVIbB8oQtlH25pU52QfXaKD+XRb1Wf2\n11QBIGX9/Csz/9SQ5znZhxtNmM32NNu0q8DvHGZ0VUlmHLd74rl/jetutsfR6ryyGTAS2I5Sk/1K\nRJxNaeHpzoWfepABoDqUmQ9V1faHUpqeGj1P6a/W3jLMqL3rERHxdkqt0x3ApzPzsWr4SZRO6911\nRjX9uu2CpInV/2MpzyNr72ngg9XnpZi5U/k7uzHfW4EhEbEO5Sr85oZxN1M1pVNqNm9pGDeBcrfw\nnh2k+VoHw/4H9G9oNm8zpBt57FJ1kj8aOLpqev8Mpf/Pdyl9QGfnRcoJf75sM3MiM38K/DRKh/pP\nUJZzFKWsmulSStD5MUoAcWVDMDWBcnLdZh7Sv4LSd/ZjlPL6dVUj1jhNt8olM5+n9BP9epTnO+5E\n6ebxMPC9OcjT1LkIrNtMoOyfZ3UwbjwzarSWajeuq310Ah00D1f9Ih/oZr5+AexT1RbuQCnXxvTn\nZB+eE91J+0eUJvatKd1OXqv6Us626wyzXhDO7lmj3TmOkuWmvS9FedbocEr+v0G5yamjbhRqIm8C\nUVeOoTS1tb+iuwPYOCKWbBtQfd6UUsvQk1alXF2e2hD89aUETd26io2IL1MONPtXTTzTVbUPf6U8\nlPm+tj9K7csJlOeT3U05qG7fkGZLlYcuZeY/KQe/r1JOuPc1jHuackftnpRnizXm7Q5KU9STDXm6\nn3Kw7Khf2V2UmrzpTYRVredWs8tjB6Y/ry4i+kXE3yLi61WeMzOPo6yT5buTWJa7Sf9COUFOV/V1\nezs9v810S0ScV9XgkJnPZub5lBsa2parac/ty8wnKetwJ0qz3C8aRt9BCdxfardN7sSMZuLZpf8U\ncC+lVmpbyp297aeZbblExJIR8Z+I2L76zV+q5t9/Mx/WU4M7KMeC+xvWx1OUmrcPUJoWn6ZhH61s\n3UWadwEfiHInMABRbmy6jnKTV3eW6w+UG9kOoTSxti/HOdmH50R30l4XuCEzf5elLzTMOB60HTs7\nWsaJwPSb+aqaxDW7ykx3jqMR8aGIGBMRH87MqZl5F+WGqyl081iinmUNoDpV9XPbm1n7Np1C6efy\nu6rjL5S79l6ne3fmzolHKE3G345yw8gASpPd6sC0iOjT0Jw7i6r5+DRKLeLoqiau7eD3WpYbVI4C\nfhsREygdwJekXMlOBR6q+tJ9Hzg0Il6hNEF/mVJL0p2O07dRTrLXZPU4hAY3U24wuapdE8gFlKDx\ndxFxAqXWdW9Kv65PtJ9BZj4WET8HTq8O2P+ufr8ss7lZpQMvAmtFxIaUE9yfKLV/r1LKYzilZqmj\n5rjOHA1cGRG/BC6kHPCPpwRB13f1wya6nXI38PGUO7PfQynXtsfbtHVK3ywiHs3Mv/bw/C+hbJsv\nUvr3tbmaErxdFxHfAf5DqcXbjxl3a3fHryn9S8fReZDdZblk5pvVzRanVdvVU5SayRWY8ZiZF4GB\nEfEpyg0lzXiW33cpAdtlEXEB5TFH36aU2eiqdvMoSv+yZyjl+VnKY6U6C+QuoARM10bE0dV036X0\nUf49pRkeuij/ar6XVuk8mJmNrSVztA/Poe6kfS/wyYjYlbINbcKM/pBty9bWWrBNRLxU3VByPbB7\nRDxAqYk+hFlvHupIl8dRyvlhImWfG1nleddqfDMeaK/ZsAZQXcrMW5m5b1pb7cLHKFfcP6XUmjxJ\naV7t0QcTZ+YEykGtldJH6gxKk88OlO13ndkksQXl+VfbUpp17qGc3O6mOoFludP5U5RHslxFCWLv\npjy/rq2/3FGUviv7U/oSTqA8TqY7bq3ycHMH426uxjU2/7Y9zHoDSsB1NqVZZQXgU9n5a+K+TGmC\nOq76/29KzU+3Hizd4HjKXZDXA8tRTjSjKHeg3kjpu3NgVWPWLVnuIN2uSvdKyuNWfgFs2UFQPF9k\n5ijKHZMjKLU+J1GCpi9X4ydSmji/SPXIoB52GeXE+uvMnN6Xq1ofW1KCmJOqvH2M0ufynI4S6sTl\nlG3r8s4ukrpZLp+nBEQnUcp/S2CnrO5Qpmxr91O2tS/OQf66LTPvpwQwQyjLdT6l28NGmfm/aprz\nKUHQiGpZlqbsC52l+SJlH3uU8uiY8yg1op/IzClzUP6XUG4Sa6z9m9t9uFu6mfaBlG3oVMpFzaaU\nGtJ/MuPGtIerZTuM8tgWKMHsrVW6F1Wff9qNPHV5HM3MKZQa2UcpTfnXUmp1t83596B0NegzbVp3\nAntJC7KqCX4L4OrGTvXV3aBjM7N905gkqcZsApYWDq8AZwI7VHfVTaHUkg6nG30VJUn1YhOwtBCo\nHrezBeVuvUspTTCrU5qzbunqt5Kk+rEJWJIkqWasAZQkSaqZt0wfwHHjJtWmqrK1dSAvvNDpizH0\nFmbZLpws14WT5bpwqlu5DhkyuMNn5loDuABqaenX21lQk1i2CyfLdeFkuS6cLNfCAFCSJKlmDAAl\nSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlm3jIPgpY0fy113eI9mt6zW0/s0fQk\nSXPPGkBJC4QxY55miy025IAD9p7+d+GFP5njdK688gqmTJnSI3m64YZrOfnkE6d/P+mk49hllx2n\nf7/uuqs57bQfdPr7ww8/uNNxY8Y8zd577zbL8LFjx3LHHX+YuwxLUjdZAyhpgTF06Hv58Y/Pnac0\nRo26kK222oaWlnk/vA0btg6/+MWo6d8feeTvtLYuwdixY1hmmWV54IH72GyzLTv9/fHHf3+O5/nA\nA/fy738/yfrrbzBXeZak7jAAlLTAO/vsH/PXv45m6tSp7LjjTmyyyWaMHn0/F174E6ZOncorr7zC\n0Ucfy4MPjub5559j5MjD2WGHz3PllZfzne+cAMAnP7klV111I8cdN5IJEyYwceIETjrpVC655OJZ\n0m6z5JJLAn2YOHEC48aNY/nlh7LKKqty1113sP32O/CPfzzMwQcfxqRJkzjyyEOYMGECAF//+sGs\ntNLK0+f597//jR/+8CQGDhxIa2sriyyyKHvssTcvvvgChx12IOPHj2flld/HQQcdxs9+dhGvvvoq\nH/zgh1h//Q17Y3VLqgEDQEkLjCeffIIDDth7+vejjz6Wxx57lDFj/sdZZ53Pa6+9xj777M7aa6/D\nE088zlFHfZcllxzCxRdfwK233syuu36Jiy46n5Ejj+fhhx/qdD5rrTWMHXfcibvvvrPDtAcPHjx9\n2mHD1ubBB//Kv//9BMOHf5RVVlmVs8/+McOHf5Sll16WRRddjLPPPpu11voII0Z8hqee+g/HH/8d\nzjrr/OlpnHzyCRx55DGsuOJKnHPOGYwfPw6AyZNf5rDDjmbQoEHsuOMIJk6cwM4771bVABr8SWoe\nA0BJC4yOmoBvuul6Mh+ZHhhOmTKFsWOfZsiQIZx66vcZMGAg48Y9ywc/uHqXaU+bNm365+WXXwGA\nxx9/rMO0Bw+O6dMOG7YOo0ffR+YjjBx5PK2trYwb9wyjR9/P8OHrAvDPf/6TZ5+9i1tuuQmASZNm\nvuFl/PjxrLjiSgCsvvqa06dbdtnlWHzxcrNNa2srr7766hysLan3LHXdFU1N/9mtt29q+jIAlLSA\nW2GFoay55jC+9a0jmDp1KhdddB7LLfduvvGNA7jsst8ycODbOPbYo6dP36dPX6ZNm8YiiyzKc889\nB8DYsWOYOHHCTNN0lXajNdb4MKNGXQiUIA1gtdXezzXXXMmhh34bgBVXXJGNNtqCLbbYihdeeJ6r\nr/7tTGkstdTSPPHE47z3vSvOVDPZp0+fWZa3T58+TJs2da7XlyR1hwGgpA4tKI9tWW+9DRg9+n72\n229PXnllMhtssDEDB76NLbf8OPvttxcDBixGa+s7pzerrr76Ghx00Fc59dQzGTRoEHvttStDh76X\nZZddrttpNxowYAAtLS2svvqa04cNH74e9977J1ZYYSgA++67Lwcf/C2uuuoKJk9+mT322HumNA48\n8FuccMIxDBgwkP79WxgyZKlOl3ellVbm4osvYJVVVu3yBhNJmhd9GptFFmTjxk16a2S0BwwZMphx\n4yb1djbUBJbtwml25Xr55ZexySab09rayrnnnkn//v3Zffe95mMONTfcXzv3Vm4Crlu5DhkyeNam\nBqwBlKSmW2KJJfjmN/dnwICBDBo0iCOOGNnbWZJUcwaAktRkG2+8GRtvvNnsJ5Sk+cQ3gUiSJNWM\nAaAkSVLNGABKkiTVjH0AJXWop+/y88GukrTgsAZQ0gLj8cf/xcEHf42vfGUf9txzF84//xya8aiq\n444byT333NXp+H/96zH+8pcHADj66MN444035mo+Y8Y8zRZbbMgBB+w9/e/CC38yx+lceeUVTJky\nZa7y0N4NN1zLySefOP37SScdxy677Dj9+3XXXc1pp/2g098ffvjBnY4bM+Zp9t57t1mGjx07ljvu\n+MPcZVhSU1gDKGmBMGnSJEaOPJzjjvs+73nP8rz55pt8+9uHcuWVl7Pddp+Zr3m57bZbeOc738ka\na3yY73znhHlKq6PX282pUaMuZKuttqGlZd4P2cOGrcMvfjFq+vdHHvk7ra1LMHbsGJZZZlkeeOC+\nLh9Affzx35/jeT7wwL3V+403mKs8S+p5BoCSFgh33HE7H/7w2rznPcsD0K9fP4488jv079+fBx64\njyuvvHx6MPbJT27JVVfdyHHHjaSlpYWxY8fwxhtvsOmmW3DnnX/gmWfGcuKJP+SZZ8Z2+Ls2L7/8\nEieeeCwvvTSJ8ePHsf32n2X99Tfg+uuvoaWlP6ussipHHXUYF198KbvvvhMXXfQLBgwYwCWXjKJf\nv75stNGmnHTS8UybNoU+fVo45JDDWXrpZbq1vGef/WP++tfRTJ06lR133IlNNtmM0aPv58ILf8LU\nqVN55ZVXOProY3nwwdE8//xzjBx5ODvs8PlO18OECROYOHECJ510KpdccvEsabdZcsklgT5MnDiB\ncePGsfzyQ1lllVW566472H77HfjHPx7m4IMP46WXXuLEE49hwoTyCr2vf/1gVlpp5enz/Pvf/8YP\nf3gSAwcOpLW1lUUWWZQ99tibF198gcMOO5Dx48ez8srv46CDDuNnP7uIV199lQ9+8EOsv/6G87yt\nSJp3NgFLWiCMHz+Od71r5te1DRw4kP79+3f5u2WWWZZTTjmDFVYYypgx/+Pkk09no4025c47Z9/k\n+N///pfNNtuCU045g1NOOYNf/vLnDBmyFB//+LZ87nNf4P/+7wMA9OvXwoYbbsJtt90CwM0338BW\nW23DGWecxmc+syOjRo3i85/fmbPP/vEs83jyySdmagIeN+5Z7r77TsaM+R9nnXU+p59+NhdffAGT\nJk3iiSce56ijvsuPf3wuG264MbfeejPbbrsdSyzxTkaOPL7LZVlrrWGcffYFPPzwQx2m3WjYsLV5\n8MG/cs89dzJ8+EcZPvyj3HPPXTz99P9YeullWXTRxbj44gtYa62P8KMfncMhhxzBySfPXBN68skn\ncPjhR3P66WfzrnfNeH/y5Mkvc9hhR3POORdy3333MnHiBHbeeTc233wrgz9pAWINoKQFwtJLL8s/\n//nITMOefvp/PPvsM7NM29gvcJVVVgVg0KDB09/NO3jwYF577fUufwflDR2XXXYJt99+KwMHvq3L\nfnaf+MR2nHzyiaywwlDe854VePvb38Hjjz/GqFEX8qtf/ZzXX59Cv36zHlI7agK+6abryXyEAw4o\n7wyeMmUKY8c+zZAhQzj11O8zYMBAxo17lg9+cPVO89N+eZZffgUAHn/8sQ7THjw4pk87bNg6jB59\nH5mPMHLk8bS2tjJu3DOMHn0/w4evOz2dBx64j1tuuQmASZNmfjf0+PHjWXHFlQBYffU1p0+37LLL\nsfjiiwPQ2trKq6++2uUySOodTQsAI6IvcCawOvAasGdmPtYw/hvAnsC4atA+mZnNyo+kBdt6663P\nqFEXMGLEZ1huuXczZcoUfvSjU1h77XVYZZVVee655wAYO3YMEydOmP67Pn06fM0lAIsssminvwO4\n9NKf8YEPfIgRIz7DAw/cx9133wFA3759mTp15mCxNE1P45JLRjFiROmTuPzyQ/n853dmk03W5777\nHmL06Pu7tawrrDCUNdccxre+dQRTp07loovOY7nl3s03vnEAl132WwYOfBvHHnt0wzL2Zdq0aV0u\nT58+fbtMu9Eaa3yYUaMuBEqQBrDaau/nmmuu5NBDvz09nS22+D+22GIrXnjhea6++rczpbHUUkvz\nxBOP8973rsjDDz/UkI9Zy6NPnz5Mmza1W+tG0vzRzBrA7YDFMnPdiBgO/AD4VMP4tYBdMrN7R0xJ\n89X8fmzL2942iCOO+A7f+96xTJ06lcmTJ7Peeh9jxIjP8OabbzJo0CD22mtXhg59L8suu9zsEwRW\nXXW1Ln+33nobcMopJ3HLLTcxaNAg+vXrx+uvv07Eapx55mkMHfremabfZptPcf75Z/PhDw8DYP/9\nv8YPfnAiF1xwNi+99DJf+9pB3crXeuttwOjR97PffnvyyiuT2WCDjRk48G1sueXH2W+/vRgwYDFa\nW9/J+PHl+nj11dfgoIO+yqmnnjnb9dBZ2o0GDBhAS0sLq6++5vRhw4evx733/ml6Leouu+zBiSd+\nl6uuuoLJk19mjz32nimNAw/8FieccAwDBgykf/8WhgxZqtPlXWmllbn44gtYZZVVu7zBRNL806cZ\nj1gAiIhvUu9RAAAZ5klEQVQfAn/OzEur7//LzOUaxv8DeBhYBrg2M7u81W7cuEnNyegCaMiQwYwb\nN2n2E+otx7JdONWxXC+//DI22WRzWltbOffcM+nfvz+7775Xb2erR9WxXLurp58T2l4zL0DrVq5D\nhgzusJmkmTWAiwON7S1vRkRLZrZ1srkUOAOYCPwmIrbNzGs6S6y1dSAtLf2al9sFzJAhg3s7C2oS\ny3bhVLdyHTp0OQ455KsMHDiQwYMHc+KJJ9LauvCtg7qV64Ki2evdcm1uADgRaFzDfduCv4joA5ya\nmROq79cCawKdBoAvvDC5iVldsNTt6qROLNuFUx3Lda211uMnP1lv+vcpU1jo1kEdy3VB0cz1Xrdy\n7SzYbeZjYO4Etgao+gA+1DBuceBvETGoCgY3AewLKEmSNB80swbwN8DmEXEX0AfYPSK+AAzKzHMj\n4nDgVsodwrdk5nVNzIskSZIqTQsAM3MqsG+7wY80jB8FjEKSJEnzlW8CkSRJqhkDQEmSpJoxAJQk\nSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNA\nSZKkmmnp7QxIkhZeS113RVPTf3br7ZuavrSwsgZQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCS\nJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwA\nJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrG\nAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSp\nZlqalXBE9AXOBFYHXgP2zMzHOpjuXOD5zDy0WXmRJEnSDM2sAdwOWCwz1wUOBX7QfoKI2Af4YBPz\nIEmSpHaaVgMIrA/cAJCZ90TEsMaREfFRYB3gHGDV2SXW2jqQlpZ+zcjnAmnIkMG9nQU1iWXbsT4/\n/WnT0p62665NS7uN5do7mr3eLdfeYbk2XzMDwMWBCQ3f34yIlsycEhHLAkcDI4DPdiexF16Y3IQs\nLpiGDBnMuHGTejsbagLLtnc0e51brr2nmevdcu09lmvP6SzYbWYAOBFonGvfzJxSfd4BWBK4DlgG\nGBgRj2TmRU3MjyRJkmhuAHgn8AngsogYDjzUNiIzTwdOB4iI3YBVDf4kSZLmj2YGgL8BNo+Iu4A+\nwO4R8QVgUGae28T5SpIkqQtNCwAzcyqwb7vBj3Qw3UXNyoMkSZJm5YOgJUmSasYAUJIkqWYMACVJ\nkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQ\nkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYM\nACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJq\nxgBQkiSpZgwAJUmSasYAUJIkqWYMACVJkmrGAFCSJKlmDAAlSZJqxgBQkiSpZgwAJUmSasYAUJIk\nqWYMACVJkmrGAFCSJKlmZhsARsRyHQz7v+ZkR5IkSc3W0tmIiFii+nhdRGwE9Km+9weuBN7X3KxJ\nkiSpGToNAIFfAJtXn59rGD4F+E3TciRJkqSm6jQAzMwtASLigszcY/5lSZIkSc3UVQ0gAJm5R9UP\ncClmNAOTmQ909buI6AucCawOvAbsmZmPNYz/NHAoMA34eWaeNldLIEmSpDnSnZtAvgs8Rmn2vbz6\n+3U30t4OWCwz16UEej9oSLMfcCKwGbAusF9ELDnHuZckSdIcm20NIPBFYGhmPjOHaa8P3ACQmfdE\nxLC2EZn5ZkSslplTImIpoB/weleJtbYOpKWl3xxm4a1ryJDBvZ2FBVKfn/60qelP23XXpqYPlm1v\nmB/r3HLtHc1e75Zr77Bcm687AeC4uQj+ABYHJjR8fzMiWjJzCkAV/G0PnAFcC7zcVWIvvDB5LrLw\n1jRkyGDGjZvU29mopWavd8u2d1iuC69mrnfLtfdYrj2ns2C3q8fAfLj6ODoiTgMuAd5oGz+7PoDA\nRKBxrn3bgr+GNK6IiN8CFwG7ABfOJk1JkiTNo65qAC9v9/2TDZ+nASvOJu07gU8Al0XEcOChthER\nsThwNbBFZr4WES8DU7uda0mSJM21rh4D8955TPs3wOYRcRfl7uHdI+ILwKDMPDcifg78ISLeAB4E\nfjaP85MkSVI3zLYPYERc0G7QNGAy8DfgvMx8s6PfZeZUYN92gx9pGH8ucO4c5VaSJEnzbLaPgaHU\n3n2Y0oT7F+D9wPLAlsCpzcuaJEmSmqE7dwGvBnwsMycBRMR5wE3Axyi1gJIkSXoL6U4NYGtb8Fd5\nBXh7Zk5jNs/ukyRJ0oKnOzWA90TEz4DzqW7mAP4UER9nNs/ukyRJ0oKnOzWA+wJPAacAJwGPAwdQ\nHvS8T/OyJkmSpGaYbQ1gZr4CHFb9NfplU3IkSZKkpurqTSB3ZOb6ETGJ8uiXNn2AaZm5eNNzJ0mS\npB7XVQ3gDtX/D8yPjEiSJGn+6LQPYGaOqf7/G1gb2AsYB3y0GiZJkqS3oNneBBIRhwJfBj4LDACO\njohvNztjkiRJao7u3AX8OWBr4OXMfA4YDnyhqbmSJElS03QnAHwjM19r+5KZLwJvNC9LkiRJaqbu\nPAj6qYjYBpgWEYsCBwH2AZQkSXqL6rQGMCIGVx8PAL4JfIjy5o+PA/s3P2uSJElqhq5qAMdHxB3A\ntcB+lLeB9Gv3XmBJkiS9xXQVAL4b2ATYlFLjNw24NiKuBW7LzNfnQ/4kSZLUwzoNADNzHOV1b78E\niIgVgM2A7wErA4M7+60kSZIWXLO9CSQihgKfArYA1gQeAM5tbrYkSZLULF29C/g44JOUmr7rgTOB\n32fmK/Mpb5IkSWqCrmoADwOuAk7MzHvmU34kSZLUZF0FgAF8AjghIlYBfgdcA9zoncCSJElvXZ0+\nBzAzH83MH2bmxsD7gRuBEcDfI+J38yuDkiRJ6lndeRUcwPLAEGAx4HVgStNyJEmSpKbq6iaQrwIb\nARsCz1FuBDkPuDUzX50vuZMkSVKP66oP4FaUoO+QzHxsPuVHkiRJTdbVg6C3np8ZkSRJ0vzR3T6A\nkiRJWkgYAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLN\nGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzbQ0K+GI\n6AucCawOvAbsmZmPNYz/PPB1YArwELBfZk5tVn4kSZJUNLMGcDtgscxcFzgU+EHbiIgYABwLbJyZ\n6wFvB7ZtYl4kSZJUaWYAuD5wA0Bm3gMMaxj3GvDRzJxcfW8BXm1iXiRJklRpWhMwsDgwoeH7mxHR\nkplTqqbeZwAi4ivAIOB3XSXW2jqQlpZ+TcvsgmbIkMG9nYVamh/r3bKd/yzXhVez17vl2jss1+Zr\nZgA4EWhcw30zc0rbl6qP4EnAKsCnM3NaV4m98MLkrkYvVIYMGcy4cZN6Oxu11Oz1btn2Dst14dXM\n9W659h7Lted0Fuw2swn4TmBrgIgYTrnRo9E5wGLAdg1NwZIkSWqyZtYA/gbYPCLuAvoAu0fEFyjN\nvfcBXwL+CPw+IgBOy8zfNDE/kiRJookBYNXPb992gx9p+OwzCCVJknqBQZgkSVLNGABKkiTVjAGg\nJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0Y\nAEqSJNVMS29noFmWuu6KJs9htyanv+B4duuJvZ0FSZLUg6wBlCRJqhkDQEmSpJoxAJQkSaoZA0BJ\nkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEA\nlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqmZbezoC0IFnqusV7OwvzzbNbT+ztLEiSeok1\ngJIkSTVjAChJklQzBoCSJEk1YwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTVjAChJklQzBoCSJEk1\nYwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTXT0qyEI6IvcCawOvAasGdmPtZumoHA74AvZeYjzcqL\nJEmSZmhmDeB2wGKZuS5wKPCDxpERMQz4A7BSE/MgSZKkdpoZAK4P3ACQmfcAw9qNXxQYAVjzJ0mS\nNB81rQkYWByY0PD9zYhoycwpAJl5J0BEdCux1taBtLT06/FMavaGDBnc21lQE9SpXJe6bvHezsJ8\nM23Xab2dhfmq2dtxnfaTBYnl2nzNDAAnAo1ruG9b8Dc3Xnhh8rznSHNl3LhJvZ0FNYHlunCqW7k2\nc3mHDBlcu/W5oLBce05nwW4zm4DvBLYGiIjhwENNnJckSZK6qZk1gL8BNo+Iu4A+wO4R8QVgUGae\n28T5SpIkqQtNCwAzcyqwb7vBs9zwkZkbNSsPkiRJmpUPgpYkSaoZA0BJkqSaMQCUJEmqGQNASZKk\nmjEAlCRJqhkDQEmSpJoxAJQkSaoZA0BJkqSaMQCUJEmqGQNASZKkmjEAlCRJqhkDQEmSpJpp6e0M\nSJI0t5a6bvHezsJ88+zWE3s7C/ON5dp81gBKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWM\nAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElS\nzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqS\nJNWMAaAkSVLNGABKkiTVjAGgJElSzRgASpIk1YwBoCRJUs0YAEqSJNWMAaAkSVLNGABKkiTVTEuz\nEo6IvsCZwOrAa8CemflYw/hPAEcBU4ALMvMnzcqLJEmSZmhmDeB2wGKZuS5wKPCDthER0R84BdgC\n2BDYOyKWbmJeJEmSVGlmALg+cANAZt4DDGsYtxrwWGa+kJmvA3cAGzQxL5IkSar0mTZtWlMSjojz\ngMsz8/rq+3+AFTNzSkSsD3wlM3esxh0D/Cczz2tKZiRJkjRdM2sAJwKDG+eVmVM6GTcYeLGJeZEk\nSVKlmQHgncDWABExHHioYdw/gPdFxBIRsQil+ffuJuZFkiRJlWY2AbfdBfwhoA+wO/BhYFBmnttw\nF3Bfyl3AZzQlI5IkSZpJ0wJASZIkLZh8ELQkSVLNGABKkiTVjAGgJElSzRgASvMoItaIiKOqzyMi\n4l1dTDsyIvadx/kdGhEfmZc01D09UbYR8WRELNbMfNZRRJwYEbv1UFojIuJdEbFMRJzZE2lqVhGx\nW0Sc2Nv56C0RcVtErNrb+WjTtHcBS3WRmX8B/lJ9/RqwL/B0E+dX2wPo/Da/y1a95mvAvpn5CLBf\nb2dGmh8MAHtBRCwOnAe8A3gXcAZwf/V/EvAs8Gpm7hYRXwG+AEwDLs3M03sn1wu3iBgAXAisACwC\nfBPYn4YyysyzIuI24BFgVcrjjXasPu8LjALWAC6u3nbzHcorEN8J/DUzd+9i/tsCxwATgBeAB4Hv\nAucA7wGWBa7KzCMj4iLgUmAZyrM2BwIrAd/LzIt6ZIUsRHq7bBvyMRS4gHLcnQZ8NTP/GhEXAisD\nA4DTMnNURBwHbFxNe3lmfq8HVsVbSvXO+LOB91Faq46krO8jgXGUsnwkIjaiBG+fq343NjOXiYj3\nUY6ziwCTgc8BSwM/BPoBSwJfBlqZUbY7Axdn5vCI2Bw4FngVeA7Yo5ruW8DrwIqUY/Jx7fK9UUfT\ntO23mXlDRGwFfK46xj8G3AWsAtwCvB34CJCZ+cUeWp0LkuERcRMwBDgLeIKO13NHZXoRZRt4J/Ap\n4JeUbWOxavq/NM6oo306M8dGxAnAxyjbwQ8z81fVtM8CSwBbZuabVRpfA/pn5skRcTbwemZ+NSKO\nqPL+EHB6lf5zwB6ZOaGjeTTk6xOU49CIzOy1l2DYBNw7VqYcCLYAtqBsCGcDu2XmJsC/ACLi/ygn\nofUpG9J2ERG9k+WF3r7Ak5m5LuVEsRazllGbuzJzI8rB5/C2gZl5LaW2aBfKAemFzNycEigMj4jl\nOppxRPSjHEA+npkbA69Uo94D3JOZW1JOCB01Hb89M7cFPgkcOjcLXgO9VrbtnEwJ8Dag1DidHxGD\nKQ/C3x7YCnizmnYnyoXfx6jvW5L2BMZX6+tTlAvkHwKbAVtSgrqunAycUJX7acCawPuBAzNzU+B7\nwO7tyvZ1gIjoA5wLbJ+ZGwK3UwJPKBcSnwaGA4d0Mu/uTNNmaJX2x4CvUp6fuw6wfkS8Yza/fSt6\ng1J+I4Bv0Pl67szvM/OjlGPic8DHKRd0b+tk+pn26Yj4OPDezFyfcpF1RMN6/kVmbtYW/FV+Q9k3\nAYJSNlTDrgF+AuxfzeM64JDZzGN74ABg294M/sAawN7yDPD1iNie8lq8/sC7MvPhavwfKSeqD1AO\nJLdUw1spV8M5f7NbCwFcD5CZj0bEL4ET2pVRm99X/++inJg68gqwVET8AngJGNSYRkQcAHym+roT\nMDEzn6m+/5FSu/c8sHZEbFzlYdEO5tN2xfsUJTDRrHq7bNusBvyhysdfIuI9mTkpIr5OOQkuDvys\n4XcnUraD6+d4iRcOHwQ+FhFtJ9xFgKmZ+RxARNzVye/6VP+D6g1TmXlV9Zv1gW9HxCuUV5BO7CSN\nJSn75P+q738Ajqec8B+qXms6pUqHiLiGsh08BFze0TSd5BHgucz8T5XOy5n59+rzBBbOffqBzJwW\nEWOB5YHHOlnPjRrXV9v573rK+fBKSlB5bER8hhJcARxY/W+/T/8XWKuq8YOy7w5tTDsijqVUvABs\nCgys+l3/A1g+ItYGJmTmxIhYDTizqpvpDzxK2XY7m8emlH39jU7X0HxiDWDvOBC4OzN3Bn5F2bif\nqmr8oFw1QtkYHwY2rq4uLqI0Darn/QNYGyAiVgR+xKxl1Gat6v96lPJpNJWyX30ceE9mfp5SkzSg\nMY3M/HFmblSV6xhgcEQMqUa3lf9uwIuZuRPwA8pBqDEfUJoS1bVeK9uGE1tbPj5W5WMNYGxELAus\nlZkjgG2AkyJiUWAH4POU2oPdImKFeVwHb0WPUGpkNqKs818CNOwna1f/X6V0kaBaT0tUwxvLfaeq\nO83pwNGZuSslWGsrt7aybTMeWLwqH4ANgX9Wn2fZ5zJz26q8v9LZNI35pLwViy6mXZg1Lm9n67mz\nMoVSVgAbAWOqmvxjgeMz89cN+9791XTt9+lHgFur7WoT4DKqVre2tDPzyIZ03gSuBU4Cbqr+fkSp\nGYRynt6lSu8QSvDa1Tz2B26kdPnpVdYA9o6rgR9FxOcozTtTKFctF0TES5RmiP9V/YNuAe6oTgp/\nBv7XWaKaJ+dQ1v/tlD4bVwL7N5ZRVQZQTsjfBF4Gvki52mtzF3AxpUn22xHxB8oB73FKf7NZZObU\nqtbouuqqvy/lKvIW4JKIWBd4rRrW6V2o6lSvlW07BwE/iYiDKDUCXwLGAstUtVlvAidn5msR8Txw\nD6W28SbgP3O99G9d51DW1+2UGpMzKcfJG6v101aDch/wYkT8iRL0PVENPxg4JyKOpDQX70xZ77+K\niBcoNUFLVtO2le3eAFUN1V7AFRExldIvdzdKq8zcOo+yHe7EjGCy7qYBHa3nF+m4TBv9Fbg0Ir5M\niWU6C6ja79PPAxtFxB8ptba/qWriu8rnFcBIyr6/LKUrwrbVuC9T+o+29e39EuVY3dU8jgH+HBHX\nZOYdXc24mXwV3AIiIvYHLsvMcVX18+uZ2etXCJpZVaXfdrdgT6Z7GKWj8GsR8TPgpsy8uCfnoa41\nq2wl9Q736a5ZA7jgeAa4qaoBnADs2sv50fw1CbgnIiYDT1I1d0mS1AzWAEqSJNWMN4FIkiTVjAGg\nJElSzRgASpIk1Yw3gUiqnYiYBvyNGW/eALgvM/ecy/TWBr6UmR29rUWSFjgGgJLqauPMHN9Dab0f\neHcPpSVJTWcAKEkNqlc7nUZ54Xw/4PTMvCAi+gKnUN7UMpjyFok9KQ9pPgZ4e0RcCPwU+HFmfqBK\nb6O27xExEliX8jDZBzNz5+ql8p+mdMl5EtgvM5+eT4srqaYMACXV1a0R0dgEvAXlLQG/Br6YmQ9E\nxNuBuyPi75SA713AutXbWw4FDs3MT0TEUcBnMnP3KuDrygrABzJzSkTsQnnbyEeq73tT3hixdY8u\nqSS1YwAoqa5maQKu3se9EuWVXW2DBwBrZuZZ1WvF9omIlSjvIp00F/O9JzOnVJ+3BT4C3FfNrx8w\ncC7SlKQ5YgAoSTP0A17MzDXaBkTE0sCEiNiG0jT8A8r7hB+hvF+2vWmU2sI2i7Qb/1K7+X0vM8+q\n5rUo0DqvCyFJs+NjYCRphgRejYidASLiPZS7hdcCNgeuroK1e4HtKAEcwBSgf/V5HLB8RCwVEX2q\n6TpzI7BnRCxefT8GGNWDyyNJHTIAlKRKZr4OfIoSlD0I3AR8OzPvBM4GNqyG3w38C3hvdXPI3cCq\nEfGbzPw7cA5wH3APMKaLWZ4HXEN5D/TDwIeA3ZqycJLUwHcBS5Ik1Yw1gJIkSTVjAChJklQzBoCS\nJEk1YwAoSZJUMwaAkiRJNWMAKEmSVDMGgJIkSTXz/1Ik4EFeBBSHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Import a supervised learning model that has 'feature_importances_'\n", + "\n", + "clfAda = AdaBoostClassifier(random_state=5, n_estimators=30)\n", + "\n", + "# TODO: Train the supervised model on the training set \n", + "model = clfAda.fit(X_train, y_train)\n", + "\n", + "# TODO: Extract the feature importances\n", + "importances = model.feature_importances_\n", + "\n", + "# best fit features\n", + "best_clf.fit(X_train, y_train)\n", + "#importances = best_clf.feature_importances_\n", + "\n", + "# interesting - my best fit has a different feature order - it includes marital status! A hidden feature.\n", + "# other ways of feature selection: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection\n", + "\n", + "\n", + "#print(importances.shape)\n", + "# importances show the contribution of each feature to the model.\n", + "# There are 103 features, as we did one hot encoding on the enums.\n", + "\n", + "# Plot\n", + "vs.feature_plot(importances, X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7 - Extracting Feature Importance\n", + "\n", + "Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \\$50,000. \n", + "_How do these five features compare to the five features you discussed in **Question 6**? If you were close to the same answer, how does this visualization confirm your thoughts? If you were not close, why do you think these features are more relevant?_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** It seems that race is not even listed, and age is the most prominent feature. However, it does seem right that capital gain and education are both fairly important as expected. Interesting is that Age dominates compared to capital gain, but i suppose this makes sense as an income as low as 50k can be achieved irrespective of capital gain, education and other predictors if you live long enough. I would suspect capital gain and loss taking over at higher incomes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Feature Selection\n", + "How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of **all** features present in the data. This hints that we can attempt to *reduce the feature space* and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set *with only the top five important features*. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final Model trained on full data\n", + "------\n", + "Accuracy on testing data: 0.8651\n", + "F-score on testing data: 0.7448\n", + "\n", + "Final Model trained on reduced data\n", + "------\n", + "Accuracy on testing data: 0.8420\n", + "F-score on testing data: 0.7020\n" + ] + } + ], + "source": [ + "# Import functionality for cloning a model\n", + "from sklearn.base import clone\n", + "\n", + "\"\"\"\n", + " Reduce the feature space - could also use PCA for this,\n", + " in order to reduce dimensionality while maintaining other features' information\n", + "\"\"\"\n", + "X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]\n", + "X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]\n", + "\n", + "# Train on the \"best\" model found from grid search earlier\n", + "clf = (clone(best_clf)).fit(X_train_reduced, y_train)\n", + "\n", + "# Make new predictions\n", + "reduced_predictions = clf.predict(X_test_reduced)\n", + "\n", + "# Report scores from the final model using both versions of data\n", + "print \"Final Model trained on full data\\n------\"\n", + "print \"Accuracy on testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5))\n", + "print \"\\nFinal Model trained on reduced data\\n------\"\n", + "print \"Accuracy on testing data: {:.4f}\".format(accuracy_score(y_test, reduced_predictions))\n", + "print \"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, reduced_predictions, beta = 0.5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8 - Effects of Feature Selection\n", + "*How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?* \n", + "*If training time was a factor, would you consider using the reduced data as your training set?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The final model's accuracy is 0.8433 and its F score is 0.7032. This is only a little bit lower than the metrics for the model trained on the full data. If training time was a factor i would consider reducing features, as the accuracy and f score are almost unchanged. It would depend how expensive it would be to get a few classifications wrong, in terms of letters sent out." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/git commit and push with dummy message.bat b/git commit and push with dummy message.bat new file mode 100644 index 0000000..03ef02d --- /dev/null +++ b/git commit and push with dummy message.bat @@ -0,0 +1,2 @@ +git commit -am "latest commit dummy message" && git push +PAUSE \ No newline at end of file diff --git a/git pull.bat b/git pull.bat new file mode 100644 index 0000000..d258290 --- /dev/null +++ b/git pull.bat @@ -0,0 +1,2 @@ +git pull +PAUSE \ No newline at end of file diff --git a/git rebase fetch.bat b/git rebase fetch.bat new file mode 100644 index 0000000..7e6b912 --- /dev/null +++ b/git rebase fetch.bat @@ -0,0 +1,3 @@ +git fetch --all +git reset --hard origin/master +PAUSE \ No newline at end of file diff --git a/smartcab/agent.py b/smartcab/agent.py new file mode 100644 index 0000000..e6db273 --- /dev/null +++ b/smartcab/agent.py @@ -0,0 +1,406 @@ +import random +import math +from environment import Agent, Environment +from planner import RoutePlanner +from simulator import Simulator +import numpy as np + +class LearningAgent(Agent): + """ An agent that learns to drive in the Smartcab world. + This is the object you will be modifying. """ + + def __init__(self, env, learning=False, epsilon=1.0, alpha=0.5, epsilon_scalar=0.01): + super(LearningAgent, self).__init__(env) # Set the agent in the evironment + self.planner = RoutePlanner(self.env, self) # Create a route planner + self.valid_actions = self.env.valid_actions # The set of valid actions + + # Set parameters of the learning agent + self.learning = learning # Whether the agent is expected to learn + self.Q = dict() # Create a Q-table which will be a dictionary of tuples + + """ + Q has this structure: + + { 'state-1': { + 'action-1' : Qvalue-1, + 'action-2' : Qvalue-2, + ... + }, + 'state-2': { + 'action-1' : Qvalue-1, + ... + }, + ... + } + + as the agent encounters states, it will take various actions and record their q values here. + the q value is the rewards received at this state, for taking this action. + + + + """ + + self.epsilon = epsilon # Random exploration factor + """ + + this factor should decay to 0 between trials, as the number of trials grows. This is because the agent is expected to learn, + and do less exploring as it matures. + + """ + + self.alpha = alpha # Learning factor + + ########### + ## TO DO ## + ########### + # Set any additional class parameters as needed + + self.nb_trials = 1.0 + self.epsilon_scalar = epsilon_scalar + + print(self) + + + def reset(self, destination=None, testing=False): + """ The reset function is called at the beginning of each trial. + 'testing' is set to True if testing trials are being used + once training trials have completed. """ + + # Select the destination as the new location to route to + self.planner.route_to(destination) + + ########### + ## TO DO ## + ########### + + + + # Update epsilon using a decay function of your choice + #self.epsilon = self.epsilon - 0.01 # reduce epsilon by 0.05 after each trial + + # math.pow(self.nb_trials, 2) # decays too fast + #self.epsilon = math.pow(self.alpha, self.nb_trials) # get to 30% + #self.epsilon -= 0.05 # get to 10% but bad rating, doesnt get there on time + #self.epsilon = math.exp(-self.alpha*self.nb_trials) # goes to below 10%, smoother decay + #self.epsilon = math.cos(self.alpha*self.nb_trials) # goes to 25% + #self.epsilon = math.exp(-self.epsilon_scalar*self.nb_trials) # make epsilon independent of alpha + # negative of gompertz function decay + g_a = -1.0 # flips to negative, converges to 0 + g_b = 40.0 # controls x direction displacement, higher goes left + g_c = 4.0 # controls slops of transition between 1 and 0, higher is steeper + g_val = self.nb_trials / 700 + self.epsilon = (g_a * math.exp(-g_b * math.exp(-g_c * g_val))) + 1 + + # like this you exponentially slower decay, so you have enough time to learn from q after exploring + # but alpha decrease should only affect how much q is updated with new info, not how much epsilon decays + + if self.nb_trials % 300 == 0: + #self.alpha -= (self.alpha * 0.50) + pass + # problem is, makeing alpha smaller increases epsilon again, so it will wobble + + + # Update additional class parameters as needed + self.nb_trials +=1.0 + + + + # If 'testing' is True, set epsilon and alpha to 0 + if testing: + self.epsilon = 0.0 + self.alpha = 0.0 + + return None + + + + # figure out what state i am currently in + def build_state(self): + """ The build_state function is called when the agent requests data from the + environment. The next waypoint, the intersection inputs, and the deadline + are all features available to the agent. """ + + # Collect data about the environment + waypoint = self.planner.next_waypoint() # The next waypoint, or direction the smartcab should drive to get to the destination at some point + # this is relative to the current heading of the smartcab + + inputs = self.env.sense(self) # Visual input - intersection light and traffic + + """ + inputs has: + light + left: where vehicle to left of smartcab wants to go + right: where vehicle to left of smartcab wants to go + oncoming: where vehicle to left of smartcab wants to go + + these values are None if there are no vehicle in those positions of the intersection + + """ + + deadline = self.env.get_deadline(self) # Remaining deadline in units of remaining number of actions until out of time + + ########### + ## TO DO ## + ########### + # Set 'state' as a tuple of relevant data for the agent + + # i think we need light and oncoming for safety, and we need deadline, waypoint for efficiency. + + #state = (waypoint, inputs["light"], inputs["oncoming"], deadline, inputs["left"], inputs["right"]) + # forward from left could make problems if you run over a red light specifically then. What about crashes when they go left? + + # a priori knowledge approach: not reinforcement learning. Left=forward because in U.S you can turn right on red if no traffic. + state = (waypoint, inputs["light"], inputs["oncoming"], inputs["left"]=="forward") + + # reinforcement learning: use everything and let it figure out whats useful. Deadline can lead to recklessness. + #state = (waypoint, inputs["light"], inputs["oncoming"], inputs["left"], inputs["right"], deadline) + + return state + + + def get_maxQ(self, state): + """ The get_max_Q function is called when the agent is asked to find the + maximum Q-value of all actions based on the 'state' the smartcab is in. """ + + ########### + ## TO DO ## + ########### + # Calculate the maximum Q-value of all actions for a given state + + # break ties between max q if they are the same values. Else you might always prefer a certain action, and will keep picking it, although a different one is better + # say the first action reward is net 0, but the second action would start accumulating positive Q thereafter. If you never pick it, you have a problem. + # implement this in choose_action + maxQ = max(self.Q[state].values()) + + return maxQ + + + def createQ(self, state): + """ The createQ function is called when a state is generated by the agent. """ + + ########### + ## TO DO ## + ########### + # When learning, check if the 'state' is not in the Q-table + if self.learning: # need to remember Qs when learning... + if state not in self.Q: + self.Q[state] = {} + for action in self.valid_actions: + self.Q[state][action] = 0.0 + + # If it is not, create a new dictionary for that state + # Then, for each action available, set the initial Q-value to 0.0 + + return + + + def choose_action(self, state): + """ The choose_action function is called when the agent is asked to choose + which action to take, based on the 'state' the smartcab is in. """ + + # Set the agent state and default action + self.state = state + self.next_waypoint = self.planner.next_waypoint() # ask planner for next waypoint + action = None + + ########### + ## TO DO ## + ########### + # When not learning, choose a random action + if not self.learning: + action = random.choice(self.valid_actions) + + # When learning, choose a random action with 'epsilon' probability + # Otherwise, choose an action with the highest Q-value for the current state + else: + + # there is also a random.random() function that generates uniformly random numbers between 0 and 1. Much easier than below ;) + + outcomes =['random', 'highest'] + positive_epsilon = abs(self.epsilon) # if epsilon is 0 its -0.0000 + prob = [positive_epsilon, 1-positive_epsilon] + + if np.random.choice(outcomes, p= prob) == "random": + + action = random.choice(self.valid_actions) + else: + + # pick best action as dictated by Q, if its a tie pick a random action + maxQ = max(self.Q[state].values()) + maxQs = [key for key, m in self.Q[state].items() if m == maxQ] + action_with_highest_q_value_in_current_state = random.choice(maxQs) + action = action_with_highest_q_value_in_current_state + print(action) + + # you will check this action against reality next, and get a reward for it. + # later this reward will influence your Q learning for this round. + + + return action + + + def learn(self, state, action, reward): + """ The learn function is called after the agent completes an action and + receives an award. This function does not consider future rewards + when conducting learning. """ + + """ + we are given the type . At this point, the agent has already chosen an action, and received a reward for it + + the content of state will be the state the agent was in before chosing this action (old state). + + we do not have access to the new state. + + Q for this state has not been updated yet with the reward of the current action. + + """ + + ########### + ## TO DO ## + ########### + # When learning, implement the value iteration update rule + # Use only the learning rate 'alpha' (do not use the discount factor 'gamma') + """ + the q function is : + Q(s, a) = R(state) + gamma * sum_s_prime[ T(s,a,s') * max_a_prime Q(s',a') ] + gamma is the discount factor of future rewards, T the transition probability for each state,action,next state tuple. + max a prime means chose best action after getting to s' to maximise Q in state s prime. + notice that we are leaving state s via the specific action a. + + q needs to be updated by the current learning rate alpha + + alpha decreases to 0 over time, so that the learned value converges to the expected (average) value + also, things you learn earlier matter more than those you learn later + + the idea is to move to the expected q value over time, but problem is q is also changing over time. + but it still works (proven somewhere) + + + """ + + current_q = self.Q[state][action] + + reward_for_current_action = reward # reward we got at this state for chosing action + + gamma = 0 # complete discounting here, we dont use the max q at this state, only the current reward + + """ + this is the best Q (future rewards) you can get based on current knowledge of Q, if you are in the current state + there is an associated action to this max Q, which is the action you took in this step (so its already done). + + """ + max_q_at_this_state = self.get_maxQ(state) # should this be the max q of the next state s prime? + """ + what i do now is just pick the best action at the current state and add its q to current q. I am also adding it again through reward, but this is the real world reward, wheras Q is the learned reward. + so i keep updating Q with information from real reward, as well as historical rewards that accumulate in the Q dictionary for this state,action pair + + we give a weight of 1-alpha to current_q, so that we are not yet completely certain, but as alpha is small it gets a fairly large weight. + + """ + + updated_q = ((1.0 - self.alpha) * current_q) + (self.alpha * (reward_for_current_action + gamma * max_q_at_this_state)) + + """ + so somehow the max_q_at this state tells me what action is best to do next based on future rewards + but as we dont use it, the current reward is what i learn + the action chosen was done using max Q, so max Q is also current q, so dont have to add it again in function. + maybe max Q could somehow help with the future? + + """ + + # now we update the q value for this state,action pair with the Q from the best action + self.Q[state][action] = updated_q + + return + + + def update(self): + """ The update function is called when a time step is completed in the + environment for a given trial. This function will build the agent + state, choose an action, receive a reward, and learn if enabled. """ + + state = self.build_state() # Get current state + self.createQ(state) # Create 'state' in Q-table + action = self.choose_action(state) # Choose an action + reward = self.env.act(self, action) # Receive a reward + + if self.learning: + self.learn(state, action, reward) # Q-learn + + return + + +def run(): + """ Driving function for running the simulation. + Press ESC to close the simulation, or [SPACE] to pause the simulation. """ + + ############## + # Create the environment + # Flags: + # verbose - set to True to display additional output from the simulation + # num_dummies - discrete number of dummy agents in the environment, default is 100 + # grid_size - discrete number of intersections (columns, rows), default is (8, 6) + # reward_late - gradient of late punishment, not needed if deadline not part of state variables + env = Environment(verbose=False) + + ############## + # Create the driving agent + # Flags: + # learning - set to True to force the driving agent to use Q-learning + # * epsilon - continuous value for the exploration factor, default is 1 + # * alpha - continuous value for the learning rate, default is 0.5 + # * epsilon_scalar - multiplier in epsilon decay function, controls speed of decay + agent = env.create_agent(LearningAgent, learning=True, epsilon=1, alpha=0.01, epsilon_scalar=0.001) + # nb of trials before testing is controled by epsilon decay rate + """" + epsilon_scalar = 0.0005 gives 10k trials, with A+ rating for safety and reliability + 0.001 gives about 5000 trials + + it seems with epsilon scalar 0.05, and only 100 trials, but removing deadline from state, you get A rating! + this is because the feature space is much smaller, so all states can be visited fairly quickly + + + """ + + ############## + # Follow the driving agent + # Flags: + # enforce_deadline - set to True to enforce a deadline metric + env.set_primary_agent(agent, enforce_deadline=True) + + ############## + # Create the simulation + # Flags: + # update_delay - continuous time (in seconds) between actions, default is 2.0 seconds, smallest 1 millisecond + # display - set to False to disable the GUI if PyGame is enabled + # log_metrics - set to True to log trial and simulation results to /logs + # optimized - set to True to change the default log file name + sim = Simulator(env, update_delay=0.001, log_metrics=True, optimized=True, display=False) + + ############## + # Run the simulator + # Flags: + # tolerance - epsilon tolerance before beginning testing, default is 0.05 + # n_test - discrete number of testing trials to perform, default is 0 + sim.run(n_test=10, tolerance=0.01) + + # reliability gets worse as epsilon goes below alpha + # key is to increase nb of trials, this improves reliability a lot. But need to find optimal stopping point + + +if __name__ == '__main__': + run() + + # you need to run this from a command prompt inside the smartcab folder. From there call: + # python smartcab/agent.py + # just set up the working directory to parent in config for pycharm, then it works + + import sys, os + #sys.path.append("D:/Python Projects/machine_learning/udacity_ml_projects/machine-learning/projects/smartcab/") + root_dir = os.path.dirname(os.path.dirname(__file__)) + sys.path.append(root_dir) + + import visuals as vs + #vs.plot_trials("sim_improved-learning.csv") + vs.plot_trials("sim_improved-learning.csv") + diff --git a/smartcab/logs/sim_default-learning.csv b/smartcab/logs/sim_default-learning.csv new file mode 100644 index 0000000..8199437 --- /dev/null +++ b/smartcab/logs/sim_default-learning.csv @@ -0,0 +1,31 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.5, 'e': 0.95}",20,0,-99.77425496299104,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +2,False,"{'a': 0.5, 'e': 0.8999999999999999}",25,0,-184.17438505776124,"{0: 14, 1: 2, 2: 5, 3: 1, 4: 3}",0 +3,False,"{'a': 0.5, 'e': 0.8499999999999999}",25,0,-93.59244660561683,"{0: 13, 1: 4, 2: 7, 3: 1, 4: 0}",0 +4,False,"{'a': 0.5, 'e': 0.7999999999999998}",20,0,-86.20542885364848,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +5,False,"{'a': 0.5, 'e': 0.7499999999999998}",30,0,-125.81904908326409,"{0: 23, 1: 0, 2: 3, 3: 2, 4: 2}",0 +6,False,"{'a': 0.5, 'e': 0.6999999999999997}",20,0,-169.7754900391223,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 4}",0 +7,False,"{'a': 0.5, 'e': 0.6499999999999997}",25,0,-101.96242417600288,"{0: 14, 1: 3, 2: 5, 3: 3, 4: 0}",0 +8,False,"{'a': 0.5, 'e': 0.5999999999999996}",20,0,-51.669021382597236,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +9,False,"{'a': 0.5, 'e': 0.5499999999999996}",30,0,-114.6857068012144,"{0: 24, 1: 2, 2: 1, 3: 0, 4: 3}",1 +10,False,"{'a': 0.5, 'e': 0.4999999999999996}",25,0,8.523929218718036,"{0: 22, 1: 2, 2: 1, 3: 0, 4: 0}",0 +11,False,"{'a': 0.5, 'e': 0.4499999999999996}",20,6,2.6372405042559306,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 0}",1 +12,False,"{'a': 0.5, 'e': 0.39999999999999963}",20,12,3.885614862099901,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +13,False,"{'a': 0.5, 'e': 0.34999999999999964}",20,6,-82.49861561860719,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 2}",1 +14,False,"{'a': 0.5, 'e': 0.29999999999999966}",25,5,-30.325002712884658,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +15,False,"{'a': 0.5, 'e': 0.24999999999999967}",20,4,-7.753947988884446,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +16,False,"{'a': 0.5, 'e': 0.19999999999999968}",20,0,17.135866450902693,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +17,False,"{'a': 0.5, 'e': 0.1499999999999997}",35,5,-21.04164919169808,"{0: 27, 1: 0, 2: 2, 3: 0, 4: 1}",1 +18,False,"{'a': 0.5, 'e': 0.09999999999999969}",25,1,15.181717259316402,"{0: 23, 1: 0, 2: 0, 3: 1, 4: 0}",1 +19,False,"{'a': 0.5, 'e': 0.049999999999999684}",35,15,33.86188035362803,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +20,False,"{'a': 0.5, 'e': -3.191891195797325e-16}",20,15,10.035833471014122,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1,True,"{'a': 0.0, 'e': 0.0}",30,20,19.121080280295335,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",25,13,-23.739057300270957,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3,True,"{'a': 0.0, 'e': 0.0}",25,20,9.768667094901527,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",20,4,23.904146087827254,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",20,16,6.958688575491094,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",35,3,47.84290493713636,"{0: 32, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,8,19.40669845167018,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",25,16,14.768318913000536,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",25,1,32.27705221109443,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",20,0,29.9382788888541,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 diff --git a/smartcab/logs/sim_default-learning.txt b/smartcab/logs/sim_default-learning.txt new file mode 100644 index 0000000..b719c7f --- /dev/null +++ b/smartcab/logs/sim_default-learning.txt @@ -0,0 +1,256 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -19.59 + -- right : -10.38 + -- None : 1.08 + -- left : -30.48 + +('right', 'green', None, False) + -- forward : 0.55 + -- right : 1.38 + -- None : -4.03 + -- left : 0.40 + +('forward', 'green', 'left', False) + -- forward : 0.00 + -- right : 0.97 + -- None : 0.00 + -- left : 0.31 + +('forward', 'green', None, False) + -- forward : 1.62 + -- right : 0.89 + -- None : -4.16 + -- left : -0.14 + +('left', 'red', 'right', False) + -- forward : -14.46 + -- right : 0.68 + -- None : 1.92 + -- left : 0.00 + +('forward', 'green', 'forward', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.65 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'forward', False) + -- forward : 0.56 + -- right : 0.00 + -- None : -2.48 + -- left : 0.00 + +('right', 'red', None, False) + -- forward : -32.47 + -- right : 2.08 + -- None : 1.80 + -- left : -9.65 + +('left', 'green', None, True) + -- forward : -0.20 + -- right : 1.36 + -- None : -2.96 + -- left : 0.00 + +('right', 'green', 'forward', False) + -- forward : 0.00 + -- right : 1.97 + -- None : -2.90 + -- left : -15.16 + +('right', 'red', 'left', False) + -- forward : -4.83 + -- right : 1.51 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', None, False) + -- forward : -9.68 + -- right : 0.76 + -- None : 1.66 + -- left : -7.36 + +('forward', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('left', 'green', 'right', False) + -- forward : 1.26 + -- right : 0.00 + -- None : 0.00 + -- left : -9.83 + +('forward', 'red', 'forward', True) + -- forward : -19.64 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', 'left', False) + -- forward : -7.81 + -- right : 0.87 + -- None : 0.57 + -- left : -7.86 + +('forward', 'green', None, True) + -- forward : 2.19 + -- right : 0.00 + -- None : -3.58 + -- left : 0.89 + +('left', 'red', 'forward', False) + -- forward : -7.37 + -- right : 0.96 + -- None : 1.08 + -- left : -5.19 + +('forward', 'green', 'forward', False) + -- forward : 1.93 + -- right : 0.41 + -- None : -2.49 + -- left : -9.81 + +('left', 'red', None, True) + -- forward : -20.39 + -- right : -9.60 + -- None : 1.66 + -- left : -30.13 + +('left', 'green', 'left', False) + -- forward : 0.55 + -- right : 0.00 + -- None : 0.41 + -- left : 1.53 + +('left', 'green', 'forward', True) + -- forward : 0.00 + -- right : 0.46 + -- None : -2.06 + -- left : -10.49 + +('right', 'red', 'forward', False) + -- forward : 0.00 + -- right : 1.46 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', 'right', False) + -- forward : 0.00 + -- right : 0.93 + -- None : 0.00 + -- left : 0.00 + +('left', 'red', 'left', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.97 + -- left : 0.00 + +('left', 'green', None, False) + -- forward : 0.88 + -- right : 0.40 + -- None : -3.57 + -- left : 2.17 + +('right', 'green', 'left', True) + -- forward : 0.00 + -- right : 0.61 + -- None : 0.00 + -- left : 0.00 + +('right', 'green', 'forward', True) + -- forward : 0.00 + -- right : 1.08 + -- None : -2.13 + -- left : 0.00 + +('right', 'green', 'right', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : 0.00 + +('forward', 'red', None, True) + -- forward : -19.94 + -- right : -14.41 + -- None : 2.29 + -- left : -19.94 + +('right', 'green', None, True) + -- forward : 1.60 + -- right : 0.00 + -- None : -2.05 + -- left : -0.20 + +('forward', 'red', 'forward', False) + -- forward : -22.75 + -- right : 0.00 + -- None : 1.99 + -- left : 0.00 + +('right', 'red', 'right', False) + -- forward : 0.00 + -- right : 1.55 + -- None : 0.00 + -- left : 0.00 + +('left', 'red', 'forward', True) + -- forward : 0.00 + -- right : -9.87 + -- None : 0.00 + -- left : -20.03 + +('forward', 'green', 'right', False) + -- forward : 0.00 + -- right : 0.00 + -- None : 0.00 + -- left : -10.12 + +('left', 'red', None, False) + -- forward : -24.17 + -- right : 1.06 + -- None : 1.95 + -- left : -17.00 + +('right', 'red', 'forward', True) + -- forward : 0.00 + -- right : 0.00 + -- None : 2.00 + -- left : 0.00 + +('left', 'red', 'left', False) + -- forward : -30.32 + -- right : 0.51 + -- None : 0.00 + -- left : -7.41 + +('right', 'red', None, True) + -- forward : -29.54 + -- right : 0.00 + -- None : 1.51 + -- left : 0.00 + +('right', 'green', 'left', False) + -- forward : 0.28 + -- right : 0.00 + -- None : 0.49 + -- left : 0.37 + +('right', 'green', 'right', False) + -- forward : 1.36 + -- right : 0.00 + -- None : -3.49 + -- left : -9.60 + diff --git a/smartcab/logs/sim_improved-learning.csv b/smartcab/logs/sim_improved-learning.csv new file mode 100644 index 0000000..22cca5b --- /dev/null +++ b/smartcab/logs/sim_improved-learning.csv @@ -0,0 +1,1462 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.01, 'e': 1.0}",25,0,-108.96780636635536,"{0: 17, 1: 2, 2: 4, 3: 0, 4: 2}",0 +2,False,"{'a': 0.01, 'e': 1.0}",25,0,-79.44208005231125,"{0: 14, 1: 6, 2: 3, 3: 2, 4: 0}",0 +3,False,"{'a': 0.01, 'e': 1.0}",25,0,-71.26535670961611,"{0: 19, 1: 0, 2: 4, 3: 1, 4: 1}",0 +4,False,"{'a': 0.01, 'e': 1.0}",30,0,-118.62828529207832,"{0: 20, 1: 2, 2: 6, 3: 0, 4: 2}",0 +5,False,"{'a': 0.01, 'e': 1.0}",20,0,-176.2321540821477,"{0: 10, 1: 3, 2: 3, 3: 1, 4: 3}",0 +6,False,"{'a': 0.01, 'e': 1.0}",20,0,-101.06856112572181,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +7,False,"{'a': 0.01, 'e': 1.0}",20,0,-160.12334839012843,"{0: 11, 1: 3, 2: 2, 3: 1, 4: 3}",0 +8,False,"{'a': 0.01, 'e': 1.0}",25,0,-47.2862905706929,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +9,False,"{'a': 0.01, 'e': 1.0}",25,0,-126.98979744496599,"{0: 17, 1: 0, 2: 5, 3: 1, 4: 2}",0 +10,False,"{'a': 0.01, 'e': 1.0}",20,0,-52.955842538919626,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +11,False,"{'a': 0.01, 'e': 1.0}",25,0,-180.79863248488812,"{0: 14, 1: 1, 2: 4, 3: 4, 4: 2}",0 +12,False,"{'a': 0.01, 'e': 0.9999999999999999}",25,0,-110.6186934862661,"{0: 15, 1: 1, 2: 8, 3: 0, 4: 1}",0 +13,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,0,-148.7739488468915,"{0: 11, 1: 4, 2: 2, 3: 0, 4: 3}",0 +14,False,"{'a': 0.01, 'e': 0.9999999999999999}",25,0,-95.76464261045741,"{0: 15, 1: 3, 2: 6, 3: 0, 4: 1}",0 +15,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,0,-98.03746155492769,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +16,False,"{'a': 0.01, 'e': 0.9999999999999999}",20,5,-16.55328191935883,"{0: 12, 1: 2, 2: 0, 3: 1, 4: 0}",1 +17,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-112.05363146068042,"{0: 12, 1: 0, 2: 6, 3: 1, 4: 1}",0 +18,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-92.06018285540392,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +19,False,"{'a': 0.01, 'e': 0.9999999999999998}",20,0,-66.15076014526754,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +20,False,"{'a': 0.01, 'e': 0.9999999999999997}",25,0,-172.84638028424484,"{0: 13, 1: 2, 2: 6, 3: 2, 4: 2}",0 +21,False,"{'a': 0.01, 'e': 0.9999999999999996}",20,0,-134.21634678453134,"{0: 11, 1: 0, 2: 7, 3: 0, 4: 2}",0 +22,False,"{'a': 0.01, 'e': 0.9999999999999996}",35,15,-116.98209042275873,"{0: 11, 1: 3, 2: 4, 3: 0, 4: 2}",1 +23,False,"{'a': 0.01, 'e': 0.9999999999999994}",20,0,-169.64357986425009,"{0: 10, 1: 2, 2: 5, 3: 0, 4: 3}",0 +24,False,"{'a': 0.01, 'e': 0.9999999999999993}",20,0,-129.21595031363003,"{0: 12, 1: 1, 2: 4, 3: 1, 4: 2}",0 +25,False,"{'a': 0.01, 'e': 0.9999999999999991}",20,0,-113.98824938232467,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",0 +26,False,"{'a': 0.01, 'e': 0.9999999999999989}",25,0,-73.27414358840714,"{0: 19, 1: 2, 2: 2, 3: 1, 4: 1}",0 +27,False,"{'a': 0.01, 'e': 0.9999999999999987}",25,0,-162.83063202861362,"{0: 13, 1: 2, 2: 7, 3: 1, 4: 2}",0 +28,False,"{'a': 0.01, 'e': 0.9999999999999984}",20,7,-54.652256405060136,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 1}",1 +29,False,"{'a': 0.01, 'e': 0.9999999999999981}",25,0,-101.79003872952535,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 1}",0 +30,False,"{'a': 0.01, 'e': 0.9999999999999977}",20,0,-42.703308831712945,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +31,False,"{'a': 0.01, 'e': 0.9999999999999972}",30,0,-187.0427907308196,"{0: 15, 1: 3, 2: 9, 3: 1, 4: 2}",0 +32,False,"{'a': 0.01, 'e': 0.9999999999999966}",20,0,-140.23607505584158,"{0: 9, 1: 1, 2: 8, 3: 1, 4: 1}",0 +33,False,"{'a': 0.01, 'e': 0.9999999999999959}",25,0,-128.35398010580616,"{0: 15, 1: 2, 2: 3, 3: 5, 4: 0}",0 +34,False,"{'a': 0.01, 'e': 0.999999999999995}",20,0,-18.252238540540105,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +35,False,"{'a': 0.01, 'e': 0.999999999999994}",25,0,-36.70860351309524,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +36,False,"{'a': 0.01, 'e': 0.9999999999999928}",20,0,-166.53539182336664,"{0: 11, 1: 2, 2: 3, 3: 1, 4: 3}",0 +37,False,"{'a': 0.01, 'e': 0.9999999999999913}",25,0,-260.2427088824185,"{0: 8, 1: 6, 2: 4, 3: 4, 4: 3}",0 +38,False,"{'a': 0.01, 'e': 0.9999999999999896}",25,0,-74.36599580970785,"{0: 14, 1: 4, 2: 7, 3: 0, 4: 0}",0 +39,False,"{'a': 0.01, 'e': 0.9999999999999875}",20,0,-100.98690379070258,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +40,False,"{'a': 0.01, 'e': 0.9999999999999849}",20,0,-29.41290642262633,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +41,False,"{'a': 0.01, 'e': 0.9999999999999819}",20,0,-103.18379193207518,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +42,False,"{'a': 0.01, 'e': 0.9999999999999784}",20,0,-62.60749622121086,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +43,False,"{'a': 0.01, 'e': 0.9999999999999741}",20,0,-103.8866122748918,"{0: 10, 1: 3, 2: 6, 3: 0, 4: 1}",0 +44,False,"{'a': 0.01, 'e': 0.9999999999999691}",30,0,-233.84871207769189,"{0: 15, 1: 3, 2: 6, 3: 3, 4: 3}",0 +45,False,"{'a': 0.01, 'e': 0.9999999999999631}",30,0,-216.7227291511513,"{0: 14, 1: 3, 2: 8, 3: 3, 4: 2}",0 +46,False,"{'a': 0.01, 'e': 0.9999999999999559}",20,0,-171.3938230562424,"{0: 9, 1: 4, 2: 3, 3: 1, 4: 3}",0 +47,False,"{'a': 0.01, 'e': 0.9999999999999476}",20,0,-126.33066364116605,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +48,False,"{'a': 0.01, 'e': 0.9999999999999376}",30,0,-118.72368544178637,"{0: 19, 1: 1, 2: 8, 3: 1, 4: 1}",0 +49,False,"{'a': 0.01, 'e': 0.9999999999999257}",20,0,-226.3626057572194,"{0: 8, 1: 1, 2: 7, 3: 0, 4: 4}",0 +50,False,"{'a': 0.01, 'e': 0.9999999999999118}",20,0,-12.55149071477506,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +51,False,"{'a': 0.01, 'e': 0.9999999999998953}",25,0,-153.89634124979844,"{0: 17, 1: 0, 2: 3, 3: 3, 4: 2}",0 +52,False,"{'a': 0.01, 'e': 0.9999999999998759}",30,0,-138.07562229077638,"{0: 19, 1: 4, 2: 4, 3: 1, 4: 2}",0 +53,False,"{'a': 0.01, 'e': 0.999999999999853}",25,0,-101.25625003775188,"{0: 15, 1: 3, 2: 6, 3: 0, 4: 1}",0 +54,False,"{'a': 0.01, 'e': 0.999999999999826}",20,0,-38.838260442743184,"{0: 15, 1: 3, 2: 0, 3: 2, 4: 0}",0 +55,False,"{'a': 0.01, 'e': 0.9999999999997943}",20,0,-72.17017896381708,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +56,False,"{'a': 0.01, 'e': 0.9999999999997571}",20,0,-59.318358736030895,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +57,False,"{'a': 0.01, 'e': 0.9999999999997133}",25,0,-42.224720968582204,"{0: 17, 1: 4, 2: 4, 3: 0, 4: 0}",0 +58,False,"{'a': 0.01, 'e': 0.999999999999662}",30,0,-91.7095043223214,"{0: 22, 1: 4, 2: 2, 3: 0, 4: 2}",0 +59,False,"{'a': 0.01, 'e': 0.999999999999602}",25,0,-216.6501475963622,"{0: 14, 1: 2, 2: 4, 3: 1, 4: 4}",0 +60,False,"{'a': 0.01, 'e': 0.9999999999995317}",25,0,-124.4603138000312,"{0: 11, 1: 3, 2: 10, 3: 1, 4: 0}",0 +61,False,"{'a': 0.01, 'e': 0.9999999999994494}",20,0,-44.37307152097844,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +62,False,"{'a': 0.01, 'e': 0.9999999999993534}",20,0,-139.78319474531597,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 3}",0 +63,False,"{'a': 0.01, 'e': 0.9999999999992412}",30,0,-212.92277622837292,"{0: 18, 1: 2, 2: 5, 3: 1, 4: 4}",0 +64,False,"{'a': 0.01, 'e': 0.9999999999991104}",25,10,-85.12144621650658,"{0: 10, 1: 2, 2: 1, 3: 0, 4: 2}",1 +65,False,"{'a': 0.01, 'e': 0.9999999999989581}",20,0,-107.2658028142508,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +66,False,"{'a': 0.01, 'e': 0.9999999999987806}",20,0,-83.81566326761974,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +67,False,"{'a': 0.01, 'e': 0.9999999999985744}",30,0,-240.21180129866255,"{0: 15, 1: 3, 2: 8, 3: 0, 4: 4}",0 +68,False,"{'a': 0.01, 'e': 0.9999999999983347}",25,0,-129.31307169172828,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 2}",0 +69,False,"{'a': 0.01, 'e': 0.9999999999980563}",25,0,-124.52878674890424,"{0: 14, 1: 2, 2: 7, 3: 1, 4: 1}",0 +70,False,"{'a': 0.01, 'e': 0.9999999999977336}",25,0,-125.85929629307923,"{0: 12, 1: 5, 2: 7, 3: 0, 4: 1}",0 +71,False,"{'a': 0.01, 'e': 0.9999999999973594}",30,0,-136.2449357065508,"{0: 18, 1: 4, 2: 5, 3: 2, 4: 1}",0 +72,False,"{'a': 0.01, 'e': 0.9999999999969262}",20,0,-67.42724910031566,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +73,False,"{'a': 0.01, 'e': 0.9999999999964251}",20,0,-157.14391803457784,"{0: 8, 1: 5, 2: 4, 3: 1, 4: 2}",0 +74,False,"{'a': 0.01, 'e': 0.9999999999958458}",25,0,-281.5015465460724,"{0: 11, 1: 3, 2: 2, 3: 5, 4: 4}",0 +75,False,"{'a': 0.01, 'e': 0.9999999999951767}",25,13,-40.24727125383142,"{0: 7, 1: 0, 2: 5, 3: 0, 4: 0}",1 +76,False,"{'a': 0.01, 'e': 0.9999999999944047}",25,0,-50.19919173863054,"{0: 17, 1: 2, 2: 6, 3: 0, 4: 0}",0 +77,False,"{'a': 0.01, 'e': 0.9999999999935145}",20,0,-206.67828231553108,"{0: 9, 1: 2, 2: 3, 3: 3, 4: 3}",0 +78,False,"{'a': 0.01, 'e': 0.9999999999924891}",20,0,-82.68088776210459,"{0: 12, 1: 3, 2: 4, 3: 0, 4: 1}",0 +79,False,"{'a': 0.01, 'e': 0.9999999999913088}",20,0,-165.92818396811384,"{0: 8, 1: 2, 2: 6, 3: 3, 4: 1}",0 +80,False,"{'a': 0.01, 'e': 0.9999999999899515}",25,0,-201.44070251720498,"{0: 12, 1: 2, 2: 7, 3: 1, 4: 3}",0 +81,False,"{'a': 0.01, 'e': 0.9999999999883917}",20,0,-145.99408928739967,"{0: 12, 1: 0, 2: 4, 3: 2, 4: 2}",0 +82,False,"{'a': 0.01, 'e': 0.9999999999866008}",30,6,-120.25652767409166,"{0: 12, 1: 4, 2: 6, 3: 1, 4: 1}",1 +83,False,"{'a': 0.01, 'e': 0.9999999999845464}",25,0,-254.1120369884296,"{0: 11, 1: 3, 2: 5, 3: 2, 4: 4}",0 +84,False,"{'a': 0.01, 'e': 0.9999999999821914}",30,0,-91.02115148753492,"{0: 22, 1: 3, 2: 2, 3: 2, 4: 1}",0 +85,False,"{'a': 0.01, 'e': 0.999999999979494}",30,0,-116.75963691065552,"{0: 19, 1: 2, 2: 8, 3: 0, 4: 1}",0 +86,False,"{'a': 0.01, 'e': 0.9999999999764071}",30,3,-219.7231481431657,"{0: 14, 1: 4, 2: 4, 3: 1, 4: 4}",1 +87,False,"{'a': 0.01, 'e': 0.9999999999728771}",20,0,-128.07142409947767,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",0 +88,False,"{'a': 0.01, 'e': 0.9999999999688438}",20,0,-82.16631219692964,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +89,False,"{'a': 0.01, 'e': 0.9999999999642389}",25,0,-189.32429828244744,"{0: 10, 1: 5, 2: 7, 3: 1, 4: 2}",0 +90,False,"{'a': 0.01, 'e': 0.9999999999589857}",25,0,-159.92710499959074,"{0: 16, 1: 1, 2: 5, 3: 0, 4: 3}",0 +91,False,"{'a': 0.01, 'e': 0.9999999999529976}",25,0,-83.34714418475642,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 1}",0 +92,False,"{'a': 0.01, 'e': 0.9999999999461769}",20,0,-137.51817043248514,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 3}",0 +93,False,"{'a': 0.01, 'e': 0.9999999999384142}",20,0,-58.76350456343984,"{0: 14, 1: 1, 2: 3, 3: 2, 4: 0}",0 +94,False,"{'a': 0.01, 'e': 0.9999999999295858}",20,0,-153.4041026111344,"{0: 10, 1: 1, 2: 6, 3: 1, 4: 2}",0 +95,False,"{'a': 0.01, 'e': 0.9999999999195532}",25,0,-99.02344025916832,"{0: 17, 1: 1, 2: 5, 3: 1, 4: 1}",0 +96,False,"{'a': 0.01, 'e': 0.999999999908161}",20,0,-114.21554261725491,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +97,False,"{'a': 0.01, 'e': 0.9999999998952347}",20,0,-80.1972323534148,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +98,False,"{'a': 0.01, 'e': 0.9999999998805785}",20,0,-171.74040511886673,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +99,False,"{'a': 0.01, 'e': 0.9999999998639737}",25,0,-135.15447939436984,"{0: 17, 1: 0, 2: 3, 3: 4, 4: 1}",0 +100,False,"{'a': 0.01, 'e': 0.9999999998451748}",20,0,-65.69384696639054,"{0: 12, 1: 2, 2: 5, 3: 1, 4: 0}",0 +101,False,"{'a': 0.01, 'e': 0.999999999823908}",20,0,-116.58357639129174,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +102,False,"{'a': 0.01, 'e': 0.9999999997998668}",20,0,-102.47274498949355,"{0: 8, 1: 4, 2: 7, 3: 1, 4: 0}",0 +103,False,"{'a': 0.01, 'e': 0.9999999997727089}",20,0,-57.71964494945738,"{0: 14, 1: 4, 2: 1, 3: 0, 4: 1}",0 +104,False,"{'a': 0.01, 'e': 0.999999999742053}",25,0,-86.25537968166287,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +105,False,"{'a': 0.01, 'e': 0.9999999997074733}",20,0,-98.52216302622057,"{0: 14, 1: 0, 2: 2, 3: 3, 4: 1}",0 +106,False,"{'a': 0.01, 'e': 0.9999999996684957}",20,0,-63.694774296727175,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +107,False,"{'a': 0.01, 'e': 0.9999999996245922}",20,0,-65.85908530418217,"{0: 12, 1: 0, 2: 8, 3: 0, 4: 0}",0 +108,False,"{'a': 0.01, 'e': 0.9999999995751754}",20,0,-100.73978969901974,"{0: 12, 1: 2, 2: 4, 3: 1, 4: 1}",0 +109,False,"{'a': 0.01, 'e': 0.9999999995195923}",30,0,-176.9823870374266,"{0: 16, 1: 3, 2: 8, 3: 1, 4: 2}",0 +110,False,"{'a': 0.01, 'e': 0.9999999994571172}",25,0,-132.57703523240698,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +111,False,"{'a': 0.01, 'e': 0.9999999993869447}",20,0,-121.71035653146086,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +112,False,"{'a': 0.01, 'e': 0.9999999993081812}",20,0,-142.8423214773593,"{0: 11, 1: 1, 2: 5, 3: 1, 4: 2}",0 +113,False,"{'a': 0.01, 'e': 0.9999999992198357}",20,0,-117.36616202160656,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +114,False,"{'a': 0.01, 'e': 0.999999999120811}",30,0,-82.7954311510346,"{0: 22, 1: 1, 2: 6, 3: 0, 4: 1}",0 +115,False,"{'a': 0.01, 'e': 0.9999999990098914}",20,0,-129.07460937841768,"{0: 10, 1: 5, 2: 2, 3: 1, 4: 2}",0 +116,False,"{'a': 0.01, 'e': 0.9999999988857329}",20,0,-130.45514193201103,"{0: 10, 1: 3, 2: 5, 3: 0, 4: 2}",0 +117,False,"{'a': 0.01, 'e': 0.9999999987468488}",20,7,-63.626829024849876,"{0: 8, 1: 3, 2: 0, 3: 1, 4: 1}",1 +118,False,"{'a': 0.01, 'e': 0.9999999985915969}",25,20,8.402315709271504,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +119,False,"{'a': 0.01, 'e': 0.9999999984181641}",30,0,-213.99593411544444,"{0: 15, 1: 3, 2: 9, 3: 0, 4: 3}",0 +120,False,"{'a': 0.01, 'e': 0.9999999982245497}",30,0,-174.90149275210715,"{0: 15, 1: 6, 2: 6, 3: 1, 4: 2}",0 +121,False,"{'a': 0.01, 'e': 0.9999999980085479}",20,0,-69.36052590715323,"{0: 10, 1: 4, 2: 6, 3: 0, 4: 0}",0 +122,False,"{'a': 0.01, 'e': 0.999999997767728}",30,19,-10.386356336505889,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +123,False,"{'a': 0.01, 'e': 0.9999999974994135}",20,0,-33.15866789091677,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",0 +124,False,"{'a': 0.01, 'e': 0.9999999972006594}",20,0,-163.23565070219635,"{0: 9, 1: 0, 2: 9, 3: 0, 4: 2}",0 +125,False,"{'a': 0.01, 'e': 0.9999999968682265}",25,0,-138.2010808124994,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +126,False,"{'a': 0.01, 'e': 0.9999999964985555}",20,0,-47.31783915183648,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +127,False,"{'a': 0.01, 'e': 0.9999999960877369}",20,0,-76.74589932092601,"{0: 12, 1: 0, 2: 7, 3: 1, 4: 0}",0 +128,False,"{'a': 0.01, 'e': 0.9999999956314802}",25,0,-164.08400969842887,"{0: 16, 1: 3, 2: 2, 3: 1, 4: 3}",0 +129,False,"{'a': 0.01, 'e': 0.9999999951250788}",20,0,-85.68292180613734,"{0: 12, 1: 3, 2: 4, 3: 0, 4: 1}",0 +130,False,"{'a': 0.01, 'e': 0.9999999945633737}",30,0,-170.16197571749788,"{0: 16, 1: 7, 2: 3, 3: 2, 4: 2}",0 +131,False,"{'a': 0.01, 'e': 0.9999999939407135}",20,0,-67.78278662691035,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +132,False,"{'a': 0.01, 'e': 0.9999999932509107}",25,0,-51.619985844565996,"{0: 20, 1: 1, 2: 3, 3: 0, 4: 1}",0 +133,False,"{'a': 0.01, 'e': 0.9999999924871961}",30,0,-71.6966883539773,"{0: 20, 1: 4, 2: 5, 3: 1, 4: 0}",0 +134,False,"{'a': 0.01, 'e': 0.9999999916421677}",25,0,-160.06003249238447,"{0: 16, 1: 0, 2: 6, 3: 0, 4: 3}",0 +135,False,"{'a': 0.01, 'e': 0.9999999907077372}",30,13,-30.536953063552247,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 0}",1 +136,False,"{'a': 0.01, 'e': 0.9999999896750715}",25,0,-261.5673480712713,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 5}",0 +137,False,"{'a': 0.01, 'e': 0.9999999885345304}",20,0,-56.05485715653717,"{0: 14, 1: 3, 2: 2, 3: 0, 4: 1}",0 +138,False,"{'a': 0.01, 'e': 0.9999999872755988}",25,0,-70.063109056121,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +139,False,"{'a': 0.01, 'e': 0.9999999858868144}",20,0,-62.79201633703102,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +140,False,"{'a': 0.01, 'e': 0.99999998435569}",25,0,-194.4978452837426,"{0: 11, 1: 3, 2: 7, 3: 2, 4: 2}",0 +141,False,"{'a': 0.01, 'e': 0.99999998266863}",20,0,-47.962521027443174,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +142,False,"{'a': 0.01, 'e': 0.9999999808108407}",25,0,-120.03795974221899,"{0: 13, 1: 3, 2: 8, 3: 0, 4: 1}",0 +143,False,"{'a': 0.01, 'e': 0.9999999787662344}",20,0,-173.20796924418582,"{0: 10, 1: 2, 2: 4, 3: 1, 4: 3}",0 +144,False,"{'a': 0.01, 'e': 0.9999999765173262}",30,0,-120.27386109070548,"{0: 16, 1: 4, 2: 8, 3: 2, 4: 0}",0 +145,False,"{'a': 0.01, 'e': 0.9999999740451244}",20,0,-106.3527572128891,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +146,False,"{'a': 0.01, 'e': 0.9999999713290121}",35,0,-241.22220269530953,"{0: 20, 1: 3, 2: 5, 3: 4, 4: 3}",0 +147,False,"{'a': 0.01, 'e': 0.9999999683466212}",20,0,-81.18837960681245,"{0: 12, 1: 1, 2: 5, 3: 2, 4: 0}",0 +148,False,"{'a': 0.01, 'e': 0.9999999650736977}",25,0,-101.43604948170199,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +149,False,"{'a': 0.01, 'e': 0.9999999614839579}",20,0,-132.82526969829038,"{0: 10, 1: 2, 2: 5, 3: 2, 4: 1}",0 +150,False,"{'a': 0.01, 'e': 0.9999999575489346}",20,0,-94.26657811816511,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +151,False,"{'a': 0.01, 'e': 0.9999999532378131}",20,0,-114.74392631728388,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +152,False,"{'a': 0.01, 'e': 0.9999999485172567}",20,0,-110.46138870671601,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +153,False,"{'a': 0.01, 'e': 0.99999994335122}",25,0,-92.93297690771504,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +154,False,"{'a': 0.01, 'e': 0.9999999377007511}",20,0,-192.03411062408495,"{0: 7, 1: 2, 2: 7, 3: 2, 4: 2}",0 +155,False,"{'a': 0.01, 'e': 0.9999999315237802}",20,0,-111.40743293922003,"{0: 12, 1: 2, 2: 4, 3: 0, 4: 2}",0 +156,False,"{'a': 0.01, 'e': 0.9999999247748952}",30,23,6.2465368629280515,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +157,False,"{'a': 0.01, 'e': 0.9999999174051029}",20,0,-118.93410575880772,"{0: 11, 1: 2, 2: 4, 3: 2, 4: 1}",0 +158,False,"{'a': 0.01, 'e': 0.9999999093615753}",20,0,-113.6817958776609,"{0: 10, 1: 3, 2: 5, 3: 1, 4: 1}",0 +159,False,"{'a': 0.01, 'e': 0.9999999005873813}",30,0,-178.63914631385475,"{0: 14, 1: 4, 2: 8, 3: 3, 4: 1}",0 +160,False,"{'a': 0.01, 'e': 0.9999998910211995}",25,0,-79.42794044198531,"{0: 18, 1: 0, 2: 6, 3: 0, 4: 1}",0 +161,False,"{'a': 0.01, 'e': 0.9999998805970158}",20,0,-114.66686399737692,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +162,False,"{'a': 0.01, 'e': 0.999999869243803}",20,0,-162.72849424449385,"{0: 10, 1: 1, 2: 5, 3: 2, 4: 2}",0 +163,False,"{'a': 0.01, 'e': 0.999999856885179}",20,0,-23.715468751350087,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +164,False,"{'a': 0.01, 'e': 0.9999998434390479}",25,0,-49.97073837138853,"{0: 21, 1: 1, 2: 1, 3: 1, 4: 1}",0 +165,False,"{'a': 0.01, 'e': 0.9999998288172176}",25,0,-148.60825769009264,"{0: 15, 1: 1, 2: 6, 3: 1, 4: 2}",0 +166,False,"{'a': 0.01, 'e': 0.9999998129249976}",35,0,-125.3324793829127,"{0: 24, 1: 4, 2: 5, 3: 0, 4: 2}",0 +167,False,"{'a': 0.01, 'e': 0.9999997956607721}",25,0,-109.60602236306165,"{0: 14, 1: 2, 2: 6, 3: 3, 4: 0}",0 +168,False,"{'a': 0.01, 'e': 0.9999997769155503}",20,0,-162.4446852789915,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +169,False,"{'a': 0.01, 'e': 0.9999997565724907}",25,0,-113.13805066409181,"{0: 19, 1: 2, 2: 1, 3: 0, 4: 3}",0 +170,False,"{'a': 0.01, 'e': 0.9999997345063999}",25,0,-68.50630505221386,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +171,False,"{'a': 0.01, 'e': 0.9999997105832034}",35,2,-251.869151174484,"{0: 18, 1: 3, 2: 6, 3: 2, 4: 4}",1 +172,False,"{'a': 0.01, 'e': 0.9999996846593879}",20,0,-62.12271848561861,"{0: 13, 1: 1, 2: 5, 3: 1, 4: 0}",0 +173,False,"{'a': 0.01, 'e': 0.9999996565814147}",25,0,-84.83109398623367,"{0: 14, 1: 4, 2: 6, 3: 1, 4: 0}",0 +174,False,"{'a': 0.01, 'e': 0.9999996261851002}",25,0,-80.55971352561444,"{0: 21, 1: 1, 2: 0, 3: 1, 4: 2}",0 +175,False,"{'a': 0.01, 'e': 0.9999995932949661}",35,0,-76.53438427197716,"{0: 26, 1: 2, 2: 6, 3: 0, 4: 1}",0 +176,False,"{'a': 0.01, 'e': 0.9999995577235546}",30,2,-121.17915071365981,"{0: 19, 1: 2, 2: 4, 3: 1, 4: 2}",1 +177,False,"{'a': 0.01, 'e': 0.9999995192707085}",20,4,-74.82194054437207,"{0: 10, 1: 0, 2: 5, 3: 0, 4: 1}",1 +178,False,"{'a': 0.01, 'e': 0.9999994777228159}",20,12,-10.268383552785352,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +179,False,"{'a': 0.01, 'e': 0.9999994328520164}",25,0,-166.64463823746493,"{0: 16, 1: 1, 2: 4, 3: 1, 4: 3}",0 +180,False,"{'a': 0.01, 'e': 0.9999993844153677}",20,0,-154.2156672081972,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +181,False,"{'a': 0.01, 'e': 0.9999993321539725}",20,0,-104.15971888089942,"{0: 15, 1: 1, 2: 1, 3: 1, 4: 2}",0 +182,False,"{'a': 0.01, 'e': 0.9999992757920618}",30,0,-260.5970117420161,"{0: 13, 1: 3, 2: 10, 3: 0, 4: 4}",0 +183,False,"{'a': 0.01, 'e': 0.9999992150360355}",25,0,-117.133286734264,"{0: 13, 1: 2, 2: 8, 3: 2, 4: 0}",0 +184,False,"{'a': 0.01, 'e': 0.999999149573457}",20,0,-49.8549238325637,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +185,False,"{'a': 0.01, 'e': 0.9999990790720014}",20,0,-106.99535992647418,"{0: 10, 1: 2, 2: 7, 3: 0, 4: 1}",0 +186,False,"{'a': 0.01, 'e': 0.9999990031783542}",20,0,-58.378745441551814,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +187,False,"{'a': 0.01, 'e': 0.999998921517061}",30,0,-253.53309053696694,"{0: 16, 1: 3, 2: 4, 3: 3, 4: 4}",0 +188,False,"{'a': 0.01, 'e': 0.9999988336893244}",25,0,-89.332576825314,"{0: 18, 1: 4, 2: 1, 3: 0, 4: 2}",0 +189,False,"{'a': 0.01, 'e': 0.9999987392717475}",20,0,-115.84268353944256,"{0: 11, 1: 0, 2: 7, 3: 1, 4: 1}",0 +190,False,"{'a': 0.01, 'e': 0.9999986378150223}",20,0,-167.76200347863428,"{0: 10, 1: 2, 2: 5, 3: 0, 4: 3}",0 +191,False,"{'a': 0.01, 'e': 0.9999985288425614}",20,0,-127.05857951305889,"{0: 14, 1: 0, 2: 2, 3: 2, 4: 2}",0 +192,False,"{'a': 0.01, 'e': 0.99999841184907}",20,0,-93.7194611039427,"{0: 14, 1: 1, 2: 2, 3: 2, 4: 1}",0 +193,False,"{'a': 0.01, 'e': 0.9999982862990586}",25,0,-132.5043994741267,"{0: 16, 1: 3, 2: 2, 3: 2, 4: 2}",0 +194,False,"{'a': 0.01, 'e': 0.9999981516252924}",25,0,-124.17700159919607,"{0: 13, 1: 4, 2: 6, 3: 1, 4: 1}",0 +195,False,"{'a': 0.01, 'e': 0.9999980072271772}",30,0,-161.85475065877884,"{0: 17, 1: 4, 2: 6, 3: 1, 4: 2}",0 +196,False,"{'a': 0.01, 'e': 0.9999978524690797}",25,0,-105.13840620499316,"{0: 14, 1: 3, 2: 7, 3: 0, 4: 1}",0 +197,False,"{'a': 0.01, 'e': 0.999997686678579}",25,0,-153.05650340318905,"{0: 13, 1: 5, 2: 4, 3: 1, 4: 2}",0 +198,False,"{'a': 0.01, 'e': 0.99999750914465}",30,0,-225.56745006321438,"{0: 13, 1: 7, 2: 5, 3: 2, 4: 3}",0 +199,False,"{'a': 0.01, 'e': 0.9999973191157749}",30,0,-273.95516909534604,"{0: 14, 1: 2, 2: 9, 3: 1, 4: 4}",0 +200,False,"{'a': 0.01, 'e': 0.9999971157979815}",35,0,-260.1684897623991,"{0: 17, 1: 5, 2: 7, 3: 3, 4: 3}",0 +201,False,"{'a': 0.01, 'e': 0.9999968983528068}",20,0,-73.14086031625,"{0: 14, 1: 0, 2: 3, 3: 3, 4: 0}",0 +202,False,"{'a': 0.01, 'e': 0.9999966658951842}",25,11,-34.58567318475107,"{0: 9, 1: 1, 2: 4, 3: 0, 4: 0}",1 +203,False,"{'a': 0.01, 'e': 0.9999964174912518}",20,0,-24.73103020312185,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +204,False,"{'a': 0.01, 'e': 0.9999961521560803}",20,0,-123.31995078782187,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +205,False,"{'a': 0.01, 'e': 0.9999958688513197}",25,0,-118.55048217820247,"{0: 13, 1: 5, 2: 5, 3: 1, 4: 1}",0 +206,False,"{'a': 0.01, 'e': 0.9999955664827617}",30,21,3.2472421137002674,"{0: 7, 1: 2, 2: 0, 3: 0, 4: 0}",1 +207,False,"{'a': 0.01, 'e': 0.9999952438978162}",30,0,-188.95384488393634,"{0: 21, 1: 1, 2: 3, 3: 1, 4: 4}",0 +208,False,"{'a': 0.01, 'e': 0.9999948998829015}",20,0,-44.89026898835402,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +209,False,"{'a': 0.01, 'e': 0.9999945331607449}",20,0,-135.79210563785267,"{0: 10, 1: 4, 2: 3, 3: 1, 4: 2}",0 +210,False,"{'a': 0.01, 'e': 0.9999941423875931}",25,0,-120.61180176806768,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +211,False,"{'a': 0.01, 'e': 0.9999937261503303}",30,0,-113.05609050624713,"{0: 21, 1: 1, 2: 5, 3: 2, 4: 1}",0 +212,False,"{'a': 0.01, 'e': 0.9999932829635031}",20,0,-72.95148040432947,"{0: 13, 1: 4, 2: 1, 3: 1, 4: 1}",0 +213,False,"{'a': 0.01, 'e': 0.999992811266249}",25,0,-90.10277276670013,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +214,False,"{'a': 0.01, 'e': 0.9999923094191291}",20,10,-40.85422560530587,"{0: 6, 1: 0, 2: 3, 3: 1, 4: 0}",1 +215,False,"{'a': 0.01, 'e': 0.9999917757008628}",30,0,-177.80515652202953,"{0: 13, 1: 5, 2: 9, 3: 2, 4: 1}",0 +216,False,"{'a': 0.01, 'e': 0.9999912083049619}",20,0,-147.88347926325832,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 3}",0 +217,False,"{'a': 0.01, 'e': 0.9999906053362642}",20,0,-79.20697866851546,"{0: 15, 1: 1, 2: 1, 3: 2, 4: 1}",0 +218,False,"{'a': 0.01, 'e': 0.9999899648073652}",35,11,-112.23075084593016,"{0: 16, 1: 0, 2: 5, 3: 2, 4: 1}",1 +219,False,"{'a': 0.01, 'e': 0.9999892846349465}",20,0,-55.59907720610081,"{0: 12, 1: 1, 2: 7, 3: 0, 4: 0}",0 +220,False,"{'a': 0.01, 'e': 0.9999885626359986}",25,1,-168.87522623940848,"{0: 12, 1: 3, 2: 5, 3: 2, 4: 2}",1 +221,False,"{'a': 0.01, 'e': 0.9999877965239387}",25,0,-119.2474439715214,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 3}",0 +222,False,"{'a': 0.01, 'e': 0.9999869839046224}",25,0,-145.15720808444655,"{0: 14, 1: 1, 2: 7, 3: 2, 4: 1}",0 +223,False,"{'a': 0.01, 'e': 0.9999861222722467}",20,0,-111.80870063685151,"{0: 10, 1: 2, 2: 7, 3: 0, 4: 1}",0 +224,False,"{'a': 0.01, 'e': 0.9999852090051451}",20,0,-47.89270749887937,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +225,False,"{'a': 0.01, 'e': 0.9999842413614736}",20,1,-182.88642736496854,"{0: 10, 1: 3, 2: 2, 3: 0, 4: 4}",1 +226,False,"{'a': 0.01, 'e': 0.9999832164747865}",25,0,-237.3960434541189,"{0: 11, 1: 2, 2: 8, 3: 0, 4: 4}",0 +227,False,"{'a': 0.01, 'e': 0.9999821313495021}",25,0,-96.54654406230001,"{0: 16, 1: 1, 2: 7, 3: 0, 4: 1}",0 +228,False,"{'a': 0.01, 'e': 0.999980982856257}",30,0,-145.7120775541966,"{0: 19, 1: 3, 2: 5, 3: 1, 4: 2}",0 +229,False,"{'a': 0.01, 'e': 0.9999797677271501}",25,0,-129.04075010756404,"{0: 15, 1: 3, 2: 5, 3: 0, 4: 2}",0 +230,False,"{'a': 0.01, 'e': 0.9999784825508734}",20,0,-147.72682320640195,"{0: 8, 1: 3, 2: 6, 3: 2, 4: 1}",0 +231,False,"{'a': 0.01, 'e': 0.9999771237677324}",30,0,-193.138108703594,"{0: 16, 1: 0, 2: 11, 3: 1, 4: 2}",0 +232,False,"{'a': 0.01, 'e': 0.9999756876645547}",20,0,-21.254377461142486,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +233,False,"{'a': 0.01, 'e': 0.9999741703694859}",20,0,-105.96277691856592,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +234,False,"{'a': 0.01, 'e': 0.9999725678466748}",25,0,-150.74439785313766,"{0: 14, 1: 2, 2: 6, 3: 1, 4: 2}",0 +235,False,"{'a': 0.01, 'e': 0.9999708758908472}",25,0,-177.26477997366703,"{0: 11, 1: 4, 2: 7, 3: 1, 4: 2}",0 +236,False,"{'a': 0.01, 'e': 0.9999690901217688}",25,0,-104.19875787805212,"{0: 17, 1: 0, 2: 6, 3: 1, 4: 1}",0 +237,False,"{'a': 0.01, 'e': 0.9999672059785979}",20,4,-38.75313820355494,"{0: 10, 1: 3, 2: 2, 3: 1, 4: 0}",1 +238,False,"{'a': 0.01, 'e': 0.9999652187141285}",25,0,-173.8966948311798,"{0: 12, 1: 4, 2: 6, 3: 1, 4: 2}",0 +239,False,"{'a': 0.01, 'e': 0.9999631233889249}",20,0,-9.189377351646812,"{0: 15, 1: 5, 2: 0, 3: 0, 4: 0}",0 +240,False,"{'a': 0.01, 'e': 0.9999609148653483}",30,0,-188.58426155321405,"{0: 13, 1: 7, 2: 6, 3: 3, 4: 1}",0 +241,False,"{'a': 0.01, 'e': 0.9999585878014771}",25,0,-70.81970127538328,"{0: 16, 1: 5, 2: 2, 3: 2, 4: 0}",0 +242,False,"{'a': 0.01, 'e': 0.9999561366449211}",25,0,-71.15375068684794,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +243,False,"{'a': 0.01, 'e': 0.999953555626533}",20,12,-52.64191724623552,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 1}",1 +244,False,"{'a': 0.01, 'e': 0.9999508387540157}",20,0,-152.79110126292744,"{0: 13, 1: 1, 2: 2, 3: 1, 4: 3}",0 +245,False,"{'a': 0.01, 'e': 0.9999479798054303}",30,0,-99.96882169269978,"{0: 22, 1: 2, 2: 4, 3: 0, 4: 2}",0 +246,False,"{'a': 0.01, 'e': 0.9999449723226047}",25,0,-183.11042839872195,"{0: 15, 1: 1, 2: 5, 3: 1, 4: 3}",0 +247,False,"{'a': 0.01, 'e': 0.9999418096044451}",20,0,-71.63645753210213,"{0: 13, 1: 3, 2: 3, 3: 0, 4: 1}",0 +248,False,"{'a': 0.01, 'e': 0.9999384847001522}",25,0,-107.19784029125938,"{0: 14, 1: 5, 2: 4, 3: 1, 4: 1}",0 +249,False,"{'a': 0.01, 'e': 0.9999349904023467}",20,0,-67.31489101440597,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +250,False,"{'a': 0.01, 'e': 0.9999313192401021}",20,3,-84.00704501539215,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +251,False,"{'a': 0.01, 'e': 0.9999274634718931}",20,0,-206.96184579144622,"{0: 7, 1: 2, 2: 6, 3: 3, 4: 2}",0 +252,False,"{'a': 0.01, 'e': 0.9999234150784565}",30,0,-131.2681691201786,"{0: 17, 1: 3, 2: 9, 3: 0, 4: 1}",0 +253,False,"{'a': 0.01, 'e': 0.9999191657555722}",25,0,-146.11053227736676,"{0: 15, 1: 2, 2: 5, 3: 1, 4: 2}",0 +254,False,"{'a': 0.01, 'e': 0.9999147069067652}",25,0,-223.1879722305433,"{0: 14, 1: 3, 2: 1, 3: 3, 4: 4}",0 +255,False,"{'a': 0.01, 'e': 0.9999100296359319}",25,0,-229.96953134433363,"{0: 12, 1: 2, 2: 6, 3: 1, 4: 4}",0 +256,False,"{'a': 0.01, 'e': 0.9999051247398945}",25,0,-185.8458074519629,"{0: 12, 1: 1, 2: 9, 3: 1, 4: 2}",0 +257,False,"{'a': 0.01, 'e': 0.999899982700887}",25,0,-102.10462242451715,"{0: 15, 1: 4, 2: 4, 3: 1, 4: 1}",0 +258,False,"{'a': 0.01, 'e': 0.999894593678977}",20,0,-106.62483200343463,"{0: 12, 1: 0, 2: 6, 3: 1, 4: 1}",0 +259,False,"{'a': 0.01, 'e': 0.9998889475044263}",25,8,-31.389117737826083,"{0: 11, 1: 2, 2: 4, 3: 0, 4: 0}",1 +260,False,"{'a': 0.01, 'e': 0.999883033669994}",20,0,-65.64257432679355,"{0: 11, 1: 3, 2: 6, 3: 0, 4: 0}",0 +261,False,"{'a': 0.01, 'e': 0.9998768413231889}",30,0,-116.63751693919792,"{0: 21, 1: 1, 2: 6, 3: 0, 4: 2}",0 +262,False,"{'a': 0.01, 'e': 0.9998703592584715}",20,0,-119.86020395467415,"{0: 10, 1: 2, 2: 6, 3: 1, 4: 1}",0 +263,False,"{'a': 0.01, 'e': 0.9998635759094139}",30,0,-106.11383417407126,"{0: 22, 1: 1, 2: 5, 3: 0, 4: 2}",0 +264,False,"{'a': 0.01, 'e': 0.9998564793408201}",20,0,-175.0064566978836,"{0: 8, 1: 5, 2: 4, 3: 0, 4: 3}",0 +265,False,"{'a': 0.01, 'e': 0.9998490572408113}",25,0,-136.683069622398,"{0: 16, 1: 2, 2: 4, 3: 1, 4: 2}",0 +266,False,"{'a': 0.01, 'e': 0.999841296912883}",20,0,-69.72731347563251,"{0: 12, 1: 4, 2: 2, 3: 2, 4: 0}",0 +267,False,"{'a': 0.01, 'e': 0.9998331852679374}",20,0,-122.77757748651791,"{0: 14, 1: 1, 2: 1, 3: 2, 4: 2}",0 +268,False,"{'a': 0.01, 'e': 0.9998247088162959}",20,0,-153.57298973813835,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +269,False,"{'a': 0.01, 'e': 0.9998158536596993}",20,0,-75.50504089426593,"{0: 15, 1: 0, 2: 3, 3: 1, 4: 1}",0 +270,False,"{'a': 0.01, 'e': 0.9998066054832985}",35,0,-221.24600535339624,"{0: 17, 1: 5, 2: 10, 3: 0, 4: 3}",0 +271,False,"{'a': 0.01, 'e': 0.9997969495476435}",20,0,-144.86417882548017,"{0: 10, 1: 3, 2: 4, 3: 1, 4: 2}",0 +272,False,"{'a': 0.01, 'e': 0.9997868706806755}",20,0,-105.11819648129654,"{0: 11, 1: 4, 2: 2, 3: 2, 4: 1}",0 +273,False,"{'a': 0.01, 'e': 0.9997763532697268}",20,0,-167.99241317763514,"{0: 11, 1: 2, 2: 3, 3: 1, 4: 3}",0 +274,False,"{'a': 0.01, 'e': 0.9997653812535371}",20,0,-48.66315646664607,"{0: 13, 1: 3, 2: 3, 3: 1, 4: 0}",0 +275,False,"{'a': 0.01, 'e': 0.9997539381142903}",20,0,-87.79787442872096,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 2}",0 +276,False,"{'a': 0.01, 'e': 0.9997420068696781}",30,0,-196.67862695852284,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 3}",0 +277,False,"{'a': 0.01, 'e': 0.9997295700649981}",20,0,-82.4432108617424,"{0: 13, 1: 1, 2: 5, 3: 0, 4: 1}",0 +278,False,"{'a': 0.01, 'e': 0.9997166097652911}",20,0,-36.322497261404735,"{0: 13, 1: 3, 2: 4, 3: 0, 4: 0}",0 +279,False,"{'a': 0.01, 'e': 0.9997031075475249}",20,0,-165.94761296750224,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +280,False,"{'a': 0.01, 'e': 0.9996890444928314}",20,0,-101.29363174510885,"{0: 13, 1: 2, 2: 1, 3: 3, 4: 1}",0 +281,False,"{'a': 0.01, 'e': 0.9996744011788034}",20,0,-88.44782852116904,"{0: 11, 1: 2, 2: 5, 3: 2, 4: 0}",0 +282,False,"{'a': 0.01, 'e': 0.9996591576718572}",25,0,-134.4701423119537,"{0: 16, 1: 0, 2: 5, 3: 3, 4: 1}",0 +283,False,"{'a': 0.01, 'e': 0.9996432935196692}",20,0,-148.83711860996712,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +284,False,"{'a': 0.01, 'e': 0.9996267877436923}",20,0,-101.37615400084718,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +285,False,"{'a': 0.01, 'e': 0.9996096188317588}",20,0,-88.37247096909556,"{0: 10, 1: 2, 2: 7, 3: 1, 4: 0}",0 +286,False,"{'a': 0.01, 'e': 0.9995917647307776}",20,0,-119.13372569667038,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +287,False,"{'a': 0.01, 'e': 0.9995732028395332}",30,0,-161.20227059341872,"{0: 19, 1: 2, 2: 5, 3: 2, 4: 2}",0 +288,False,"{'a': 0.01, 'e': 0.999553910001591}",25,0,-120.27723365351723,"{0: 16, 1: 3, 2: 4, 3: 0, 4: 2}",0 +289,False,"{'a': 0.01, 'e': 0.9995338624983191}",20,0,-135.72042242358924,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 2}",0 +290,False,"{'a': 0.01, 'e': 0.9995130360420322}",25,0,-206.4029491475348,"{0: 12, 1: 4, 2: 4, 3: 2, 4: 3}",0 +291,False,"{'a': 0.01, 'e': 0.9994914057692639}",30,0,-151.46903507611276,"{0: 20, 1: 3, 2: 4, 3: 0, 4: 3}",0 +292,False,"{'a': 0.01, 'e': 0.9994689462341764}",25,0,-105.88397800624597,"{0: 14, 1: 3, 2: 7, 3: 0, 4: 1}",0 +293,False,"{'a': 0.01, 'e': 0.9994456314021138}",20,0,-160.03932256707762,"{0: 9, 1: 2, 2: 6, 3: 1, 4: 2}",0 +294,False,"{'a': 0.01, 'e': 0.9994214346433057}",25,2,-20.120052858806957,"{0: 17, 1: 3, 2: 3, 3: 0, 4: 0}",1 +295,False,"{'a': 0.01, 'e': 0.9993963287267281}",20,0,-60.7357563206027,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +296,False,"{'a': 0.01, 'e': 0.9993702858141315}",30,3,-164.34491573496308,"{0: 15, 1: 3, 2: 6, 3: 1, 4: 2}",1 +297,False,"{'a': 0.01, 'e': 0.9993432774542378}",30,0,-292.49695566104157,"{0: 13, 1: 4, 2: 7, 3: 1, 4: 5}",0 +298,False,"{'a': 0.01, 'e': 0.9993152745771194}",25,0,-108.35425777119409,"{0: 13, 1: 4, 2: 6, 3: 2, 4: 0}",0 +299,False,"{'a': 0.01, 'e': 0.999286247488762}",35,0,-108.20695945342798,"{0: 24, 1: 3, 2: 6, 3: 1, 4: 1}",0 +300,False,"{'a': 0.01, 'e': 0.9992561658658218}",25,0,-37.370056466965515,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +301,False,"{'a': 0.01, 'e': 0.9992249987505818}",25,0,-90.18233064920045,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +302,False,"{'a': 0.01, 'e': 0.9991927145461152}",25,0,-353.2693446018085,"{0: 10, 1: 4, 2: 3, 3: 0, 4: 8}",0 +303,False,"{'a': 0.01, 'e': 0.9991592810116625}",30,0,-173.13217389619646,"{0: 18, 1: 3, 2: 6, 3: 0, 4: 3}",0 +304,False,"{'a': 0.01, 'e': 0.9991246652582276}",20,0,-102.17753869409745,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +305,False,"{'a': 0.01, 'e': 0.9990888337444024}",20,0,-101.73932218817032,"{0: 12, 1: 1, 2: 5, 3: 1, 4: 1}",0 +306,False,"{'a': 0.01, 'e': 0.9990517522724225}",25,0,-123.58774952917821,"{0: 15, 1: 2, 2: 5, 3: 2, 4: 1}",0 +307,False,"{'a': 0.01, 'e': 0.9990133859844645}",20,0,-83.54422259535626,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +308,False,"{'a': 0.01, 'e': 0.9989736993591878}",35,21,-0.6599227026687737,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +309,False,"{'a': 0.01, 'e': 0.9989326562085287}",25,2,-124.80520381259916,"{0: 13, 1: 0, 2: 8, 3: 1, 4: 1}",1 +310,False,"{'a': 0.01, 'e': 0.998890219674753}",20,0,-108.2269158143673,"{0: 10, 1: 1, 2: 7, 3: 2, 4: 0}",0 +311,False,"{'a': 0.01, 'e': 0.9988463522277725}",30,0,-133.76092974320943,"{0: 17, 1: 6, 2: 4, 3: 2, 4: 1}",0 +312,False,"{'a': 0.01, 'e': 0.9988010156627302}",25,0,-162.0186347235251,"{0: 12, 1: 3, 2: 6, 3: 3, 4: 1}",0 +313,False,"{'a': 0.01, 'e': 0.9987541710978626}",30,0,-206.38710782272628,"{0: 15, 1: 3, 2: 9, 3: 0, 4: 3}",0 +314,False,"{'a': 0.01, 'e': 0.9987057789726415}",30,19,6.770987489836055,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +315,False,"{'a': 0.01, 'e': 0.9986557990462025}",25,0,-91.72135287357338,"{0: 18, 1: 3, 2: 2, 3: 0, 4: 2}",0 +316,False,"{'a': 0.01, 'e': 0.998604190396065}",30,0,-119.52409343842176,"{0: 17, 1: 2, 2: 9, 3: 2, 4: 0}",0 +317,False,"{'a': 0.01, 'e': 0.9985509114171481}",25,0,-118.12860218787455,"{0: 14, 1: 1, 2: 9, 3: 0, 4: 1}",0 +318,False,"{'a': 0.01, 'e': 0.9984959198210881}",25,0,-61.77192838968415,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +319,False,"{'a': 0.01, 'e': 0.9984391726358613}",30,0,-82.48733174382504,"{0: 21, 1: 4, 2: 1, 3: 4, 4: 0}",0 +320,False,"{'a': 0.01, 'e': 0.9983806262057177}",25,0,-117.63687803330623,"{0: 15, 1: 4, 2: 4, 3: 0, 4: 2}",0 +321,False,"{'a': 0.01, 'e': 0.9983202361914283}",25,0,-187.8293889366448,"{0: 15, 1: 1, 2: 4, 3: 2, 4: 3}",0 +322,False,"{'a': 0.01, 'e': 0.9982579575708522}",20,0,-115.30793512092359,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +323,False,"{'a': 0.01, 'e': 0.9981937446398251}",20,0,-89.0468221957576,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +324,False,"{'a': 0.01, 'e': 0.9981275510133739}",25,0,-140.33594670411574,"{0: 15, 1: 3, 2: 2, 3: 4, 4: 1}",0 +325,False,"{'a': 0.01, 'e': 0.998059329627262}",25,0,-72.06727872436555,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +326,False,"{'a': 0.01, 'e': 0.9979890327398656}",30,0,-201.26236871814132,"{0: 15, 1: 3, 2: 8, 3: 2, 4: 2}",0 +327,False,"{'a': 0.01, 'e': 0.9979166119343876}",20,0,-119.96340692757231,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +328,False,"{'a': 0.01, 'e': 0.9978420181214084}",25,0,-105.48041980083308,"{0: 15, 1: 2, 2: 7, 3: 0, 4: 1}",0 +329,False,"{'a': 0.01, 'e': 0.9977652015417792}",25,0,-102.50499047006728,"{0: 17, 1: 4, 2: 0, 3: 3, 4: 1}",0 +330,False,"{'a': 0.01, 'e': 0.9976861117698579}",25,0,-126.21390424928867,"{0: 17, 1: 1, 2: 4, 3: 1, 4: 2}",0 +331,False,"{'a': 0.01, 'e': 0.9976046977170907}",25,9,-82.07059582332191,"{0: 6, 1: 3, 2: 6, 3: 1, 4: 0}",1 +332,False,"{'a': 0.01, 'e': 0.9975209076359415}",20,0,-113.40278567705508,"{0: 11, 1: 1, 2: 6, 3: 1, 4: 1}",0 +333,False,"{'a': 0.01, 'e': 0.9974346891241697}",20,6,-65.9163110192138,"{0: 9, 1: 2, 2: 1, 3: 1, 4: 1}",1 +334,False,"{'a': 0.01, 'e': 0.9973459891294587}",25,0,-209.76899635289075,"{0: 14, 1: 1, 2: 4, 3: 3, 4: 3}",0 +335,False,"{'a': 0.01, 'e': 0.9972547539543966}",30,2,-43.29171333978293,"{0: 22, 1: 3, 2: 2, 3: 0, 4: 1}",1 +336,False,"{'a': 0.01, 'e': 0.9971609292618074}",30,0,-171.4224684937884,"{0: 14, 1: 1, 2: 14, 3: 0, 4: 1}",0 +337,False,"{'a': 0.01, 'e': 0.997064460080438}",35,0,-270.4015535761975,"{0: 22, 1: 0, 2: 7, 3: 1, 4: 5}",0 +338,False,"{'a': 0.01, 'e': 0.9969652908109957}",20,0,-33.55076777887672,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +339,False,"{'a': 0.01, 'e': 0.9968633652325415}",20,0,-56.70864037824692,"{0: 10, 1: 7, 2: 3, 3: 0, 4: 0}",0 +340,False,"{'a': 0.01, 'e': 0.9967586265092359}",20,0,-63.21117837283439,"{0: 13, 1: 0, 2: 6, 3: 1, 4: 0}",0 +341,False,"{'a': 0.01, 'e': 0.9966510171974376}",25,0,-129.42058826217993,"{0: 16, 1: 1, 2: 5, 3: 1, 4: 2}",0 +342,False,"{'a': 0.01, 'e': 0.9965404792531556}",30,0,-194.21610500315563,"{0: 16, 1: 4, 2: 6, 3: 1, 4: 3}",0 +343,False,"{'a': 0.01, 'e': 0.9964269540398515}",20,0,-51.314944365954595,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +344,False,"{'a': 0.01, 'e': 0.9963103823365933}",20,0,-122.83890373235319,"{0: 10, 1: 3, 2: 4, 3: 2, 4: 1}",0 +345,False,"{'a': 0.01, 'e': 0.9961907043465583}",25,3,-73.93562454807598,"{0: 13, 1: 3, 2: 4, 3: 2, 4: 0}",1 +346,False,"{'a': 0.01, 'e': 0.9960678597058824}",20,0,-70.24876378988068,"{0: 11, 1: 3, 2: 5, 3: 1, 4: 0}",0 +347,False,"{'a': 0.01, 'e': 0.9959417874928564}",30,0,-169.136840402032,"{0: 17, 1: 5, 2: 4, 3: 2, 4: 2}",0 +348,False,"{'a': 0.01, 'e': 0.9958124262374644}",25,0,-183.85175097893332,"{0: 14, 1: 4, 2: 2, 3: 2, 4: 3}",0 +349,False,"{'a': 0.01, 'e': 0.9956797139312638}",25,0,-55.04479627828604,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +350,False,"{'a': 0.01, 'e': 0.9955435880376043}",30,0,-115.74204568855413,"{0: 19, 1: 3, 2: 6, 3: 1, 4: 1}",0 +351,False,"{'a': 0.01, 'e': 0.9954039855021813}",25,0,-88.89358538704013,"{0: 16, 1: 2, 2: 6, 3: 0, 4: 1}",0 +352,False,"{'a': 0.01, 'e': 0.9952608427639225}",20,0,10.013980660295399,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +353,False,"{'a': 0.01, 'e': 0.9951140957662026}",20,0,-48.352575873822516,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +354,False,"{'a': 0.01, 'e': 0.9949636799683854}",20,0,-89.35126215975143,"{0: 8, 1: 4, 2: 8, 3: 0, 4: 0}",0 +355,False,"{'a': 0.01, 'e': 0.9948095303576853}",25,0,-54.23208068863278,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +356,False,"{'a': 0.01, 'e': 0.9946515814613472}",20,0,-95.18134646777558,"{0: 10, 1: 5, 2: 2, 3: 3, 4: 0}",0 +357,False,"{'a': 0.01, 'e': 0.9944897673591406}",30,0,-96.63319299459512,"{0: 19, 1: 2, 2: 8, 3: 1, 4: 0}",0 +358,False,"{'a': 0.01, 'e': 0.9943240216961606}",25,0,-34.13909002644933,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +359,False,"{'a': 0.01, 'e': 0.9941542776959346}",30,0,-190.17760069831792,"{0: 15, 1: 3, 2: 9, 3: 1, 4: 2}",0 +360,False,"{'a': 0.01, 'e': 0.9939804681738268}",20,0,-103.23363016797306,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +361,False,"{'a': 0.01, 'e': 0.9938025255507373}",25,0,-172.33930697496766,"{0: 13, 1: 2, 2: 6, 3: 2, 4: 2}",0 +362,False,"{'a': 0.01, 'e': 0.9936203818670895}",35,0,-104.07236982840253,"{0: 19, 1: 6, 2: 10, 3: 0, 4: 0}",0 +363,False,"{'a': 0.01, 'e': 0.9934339687970994}",25,0,-170.70022787112347,"{0: 11, 1: 1, 2: 10, 3: 2, 4: 1}",0 +364,False,"{'a': 0.01, 'e': 0.9932432176633245}",20,0,-187.51240929393714,"{0: 8, 1: 5, 2: 3, 3: 1, 4: 3}",0 +365,False,"{'a': 0.01, 'e': 0.9930480594514801}",25,0,-163.22753505887454,"{0: 16, 1: 2, 2: 3, 3: 1, 4: 3}",0 +366,False,"{'a': 0.01, 'e': 0.9928484248255242}",25,0,-95.50267419909623,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +367,False,"{'a': 0.01, 'e': 0.9926442441429985}",25,0,-100.35261905847892,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +368,False,"{'a': 0.01, 'e': 0.9924354474706218}",30,0,-284.32313110495085,"{0: 18, 1: 2, 2: 3, 3: 1, 4: 6}",1 +369,False,"{'a': 0.01, 'e': 0.9922219646001302}",25,0,-59.66253713758722,"{0: 17, 1: 3, 2: 4, 3: 1, 4: 0}",0 +370,False,"{'a': 0.01, 'e': 0.9920037250643534}",30,0,-149.23433095434902,"{0: 20, 1: 3, 2: 4, 3: 0, 4: 3}",0 +371,False,"{'a': 0.01, 'e': 0.9917806581535238}",20,0,-85.9635559224643,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +372,False,"{'a': 0.01, 'e': 0.9915526929318095}",20,0,-28.008048780682348,"{0: 16, 1: 1, 2: 2, 3: 1, 4: 0}",0 +373,False,"{'a': 0.01, 'e': 0.9913197582540637}",25,0,-167.31335826369065,"{0: 14, 1: 3, 2: 5, 3: 0, 4: 3}",0 +374,False,"{'a': 0.01, 'e': 0.9910817827827837}",25,0,-114.08471979569536,"{0: 17, 1: 0, 2: 5, 3: 2, 4: 1}",0 +375,False,"{'a': 0.01, 'e': 0.9908386950052709}",25,0,-112.33840069613787,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +376,False,"{'a': 0.01, 'e': 0.9905904232509857}",20,0,-75.43323527553703,"{0: 11, 1: 4, 2: 3, 3: 2, 4: 0}",0 +377,False,"{'a': 0.01, 'e': 0.9903368957090867}",20,0,-116.68014585471182,"{0: 10, 1: 4, 2: 3, 3: 2, 4: 1}",0 +378,False,"{'a': 0.01, 'e': 0.9900780404461491}",20,0,-37.73192014469274,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +379,False,"{'a': 0.01, 'e': 0.9898137854240523}",25,0,-136.62945003455093,"{0: 15, 1: 1, 2: 7, 3: 0, 4: 2}",0 +380,False,"{'a': 0.01, 'e': 0.989544058518029}",20,0,-90.88704532162232,"{0: 11, 1: 5, 2: 2, 3: 1, 4: 1}",0 +381,False,"{'a': 0.01, 'e': 0.9892687875348666}",30,0,-249.80665536543452,"{0: 14, 1: 3, 2: 7, 3: 3, 4: 3}",0 +382,False,"{'a': 0.01, 'e': 0.9889879002312549}",20,0,-145.65252468855374,"{0: 10, 1: 2, 2: 6, 3: 0, 4: 2}",0 +383,False,"{'a': 0.01, 'e': 0.9887013243322682}",30,12,-22.489714649012736,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 0}",1 +384,False,"{'a': 0.01, 'e': 0.988408987549976}",20,0,-152.7212801432749,"{0: 11, 1: 0, 2: 5, 3: 2, 4: 2}",0 +385,False,"{'a': 0.01, 'e': 0.9881108176021713}",25,7,-181.93955510146017,"{0: 5, 1: 6, 2: 4, 3: 0, 4: 3}",1 +386,False,"{'a': 0.01, 'e': 0.9878067422312107}",25,13,-3.7385271862497595,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +387,False,"{'a': 0.01, 'e': 0.9874966892229532}",20,0,-168.04514383244626,"{0: 12, 1: 0, 2: 4, 3: 1, 4: 3}",0 +388,False,"{'a': 0.01, 'e': 0.9871805864257939}",25,0,-53.31741778994148,"{0: 20, 1: 0, 2: 2, 3: 3, 4: 0}",0 +389,False,"{'a': 0.01, 'e': 0.9868583617697787}",20,0,-84.07063545872634,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 1}",0 +390,False,"{'a': 0.01, 'e': 0.9865299432857954}",25,0,-100.83281837649095,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +391,False,"{'a': 0.01, 'e': 0.9861952591248283}",25,0,-145.69157051093248,"{0: 14, 1: 3, 2: 5, 3: 1, 4: 2}",0 +392,False,"{'a': 0.01, 'e': 0.9858542375772709}",20,10,-125.53018440607246,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 3}",1 +393,False,"{'a': 0.01, 'e': 0.9855068070922844}",25,0,-213.18327805574881,"{0: 14, 1: 2, 2: 4, 3: 1, 4: 4}",0 +394,False,"{'a': 0.01, 'e': 0.9851528962971958}",25,0,-128.81707438035752,"{0: 12, 1: 3, 2: 7, 3: 3, 4: 0}",0 +395,False,"{'a': 0.01, 'e': 0.9847924340169235}",35,0,-287.99467220828603,"{0: 16, 1: 4, 2: 9, 3: 2, 4: 4}",0 +396,False,"{'a': 0.01, 'e': 0.9844253492934247}",20,0,-206.98815292059524,"{0: 9, 1: 1, 2: 6, 3: 0, 4: 4}",0 +397,False,"{'a': 0.01, 'e': 0.9840515714051531}",20,0,-125.17240663681672,"{0: 11, 1: 3, 2: 3, 3: 1, 4: 2}",1 +398,False,"{'a': 0.01, 'e': 0.9836710298865177}",25,0,-116.58255315087314,"{0: 14, 1: 5, 2: 3, 3: 2, 4: 1}",0 +399,False,"{'a': 0.01, 'e': 0.9832836545473361}",25,15,0.2133505304096599,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +400,False,"{'a': 0.01, 'e': 0.9828893754922708}",35,0,-180.0036318672481,"{0: 23, 1: 2, 2: 5, 3: 3, 4: 2}",0 +401,False,"{'a': 0.01, 'e': 0.9824881231402404}",20,0,-66.66188808350644,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +402,False,"{'a': 0.01, 'e': 0.9820798282437971}",25,0,-95.07000984643449,"{0: 14, 1: 2, 2: 8, 3: 1, 4: 0}",0 +403,False,"{'a': 0.01, 'e': 0.9816644219084611}",20,0,-149.49870706605984,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +404,False,"{'a': 0.01, 'e': 0.9812418356120038}",30,0,-168.4274011685765,"{0: 16, 1: 4, 2: 7, 3: 1, 4: 2}",0 +405,False,"{'a': 0.01, 'e': 0.9808120012236693}",20,0,-54.813534759913,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +406,False,"{'a': 0.01, 'e': 0.9803748510233277}",25,0,-130.5483782427864,"{0: 15, 1: 3, 2: 4, 3: 1, 4: 2}",1 +407,False,"{'a': 0.01, 'e': 0.9799303177205503}",20,0,-175.4966025825197,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +408,False,"{'a': 0.01, 'e': 0.9794783344735979}",20,0,-123.53006986869157,"{0: 13, 1: 2, 2: 1, 3: 2, 4: 2}",0 +409,False,"{'a': 0.01, 'e': 0.9790188349083143}",25,0,-77.29662483128666,"{0: 17, 1: 1, 2: 5, 3: 2, 4: 0}",0 +410,False,"{'a': 0.01, 'e': 0.9785517531369163}",30,0,-282.6169100174704,"{0: 15, 1: 1, 2: 8, 3: 1, 4: 5}",0 +411,False,"{'a': 0.01, 'e': 0.978077023776672}",25,0,-98.22053344593589,"{0: 14, 1: 5, 2: 5, 3: 0, 4: 1}",0 +412,False,"{'a': 0.01, 'e': 0.977594581968459}",20,0,-131.07514965408677,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 3}",0 +413,False,"{'a': 0.01, 'e': 0.9771043633951942}",25,0,-103.31787392834623,"{0: 18, 1: 0, 2: 4, 3: 2, 4: 1}",0 +414,False,"{'a': 0.01, 'e': 0.9766063043001277}",20,0,-102.77391804205214,"{0: 11, 1: 0, 2: 8, 3: 0, 4: 1}",0 +415,False,"{'a': 0.01, 'e': 0.9761003415049928}",25,8,-92.17855371813289,"{0: 10, 1: 1, 2: 4, 3: 1, 4: 1}",1 +416,False,"{'a': 0.01, 'e': 0.975586412428003}",20,6,-87.12335488920432,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 2}",1 +417,False,"{'a': 0.01, 'e': 0.9750644551016904}",25,0,-78.59276501680958,"{0: 18, 1: 1, 2: 3, 3: 3, 4: 0}",0 +418,False,"{'a': 0.01, 'e': 0.9745344081905762}",25,0,-133.10774889537248,"{0: 16, 1: 3, 2: 2, 3: 2, 4: 2}",0 +419,False,"{'a': 0.01, 'e': 0.9739962110086671}",35,0,-176.47801038433107,"{0: 20, 1: 4, 2: 6, 3: 4, 4: 1}",0 +420,False,"{'a': 0.01, 'e': 0.9734498035367685}",20,0,-150.76951376320406,"{0: 11, 1: 3, 2: 3, 3: 0, 4: 3}",0 +421,False,"{'a': 0.01, 'e': 0.97289512643961}",25,0,-38.76083496600148,"{0: 20, 1: 0, 2: 4, 3: 1, 4: 0}",0 +422,False,"{'a': 0.01, 'e': 0.9723321210827733}",35,0,-182.3597695655694,"{0: 20, 1: 6, 2: 5, 3: 2, 4: 2}",0 +423,False,"{'a': 0.01, 'e': 0.9717607295494182}",25,0,-82.19489725714509,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 1}",0 +424,False,"{'a': 0.01, 'e': 0.971180894656797}",20,0,-90.28663848699533,"{0: 12, 1: 1, 2: 6, 3: 0, 4: 1}",0 +425,False,"{'a': 0.01, 'e': 0.9705925599725539}",20,0,-56.13665527107514,"{0: 14, 1: 3, 2: 0, 3: 3, 4: 0}",0 +426,False,"{'a': 0.01, 'e': 0.9699956698308004}",25,0,-212.7172039273095,"{0: 14, 1: 0, 2: 7, 3: 0, 4: 4}",0 +427,False,"{'a': 0.01, 'e': 0.9693901693479618}",25,0,-48.45242113664402,"{0: 18, 1: 1, 2: 6, 3: 0, 4: 0}",0 +428,False,"{'a': 0.01, 'e': 0.9687760044383881}",20,0,-133.895828419874,"{0: 11, 1: 0, 2: 7, 3: 0, 4: 2}",0 +429,False,"{'a': 0.01, 'e': 0.9681531218297229}",20,0,-145.83051137999945,"{0: 10, 1: 3, 2: 4, 3: 1, 4: 2}",0 +430,False,"{'a': 0.01, 'e': 0.9675214690780263}",30,0,-119.9260968234016,"{0: 19, 1: 4, 2: 4, 3: 2, 4: 1}",0 +431,False,"{'a': 0.01, 'e': 0.9668809945826428}",25,0,-310.37777123396654,"{0: 11, 1: 3, 2: 3, 3: 2, 4: 6}",0 +432,False,"{'a': 0.01, 'e': 0.9662316476008126}",30,12,-38.401709906239866,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 1}",1 +433,False,"{'a': 0.01, 'e': 0.9655733782620177}",20,0,-60.351258595257384,"{0: 15, 1: 2, 2: 1, 3: 1, 4: 1}",0 +434,False,"{'a': 0.01, 'e': 0.96490613758206}",25,0,-171.2279752886967,"{0: 14, 1: 2, 2: 4, 3: 3, 4: 2}",0 +435,False,"{'a': 0.01, 'e': 0.9642298774768644}",20,0,-115.18763695990123,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +436,False,"{'a': 0.01, 'e': 0.963544550776004}",25,0,-201.23702594503825,"{0: 14, 1: 4, 2: 2, 3: 1, 4: 4}",0 +437,False,"{'a': 0.01, 'e': 0.9628501112359411}",20,0,-120.60560349963768,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +438,False,"{'a': 0.01, 'e': 0.9621465135529805}",20,0,-40.99021338221495,"{0: 16, 1: 0, 2: 2, 3: 2, 4: 0}",0 +439,False,"{'a': 0.01, 'e': 0.9614337133759312}",30,0,-28.399752825490136,"{0: 25, 1: 1, 2: 3, 3: 1, 4: 0}",0 +440,False,"{'a': 0.01, 'e': 0.9607116673184701}",25,8,-59.006320021379764,"{0: 9, 1: 4, 2: 3, 3: 1, 4: 0}",1 +441,False,"{'a': 0.01, 'e': 0.9599803329712078}",25,0,-118.40024680121664,"{0: 13, 1: 4, 2: 5, 3: 3, 4: 0}",0 +442,False,"{'a': 0.01, 'e': 0.959239668913448}",30,0,-98.06512397542288,"{0: 17, 1: 8, 2: 4, 3: 0, 4: 1}",0 +443,False,"{'a': 0.01, 'e': 0.9584896347246411}",20,0,-90.53375429907074,"{0: 13, 1: 1, 2: 2, 3: 4, 4: 0}",0 +444,False,"{'a': 0.01, 'e': 0.9577301909955256}",20,0,-24.308938538876777,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +445,False,"{'a': 0.01, 'e': 0.9569612993389558}",25,0,-91.63791458789251,"{0: 16, 1: 4, 2: 3, 3: 1, 4: 1}",0 +446,False,"{'a': 0.01, 'e': 0.9561829224004125}",25,0,-173.49581410668313,"{0: 11, 1: 4, 2: 8, 3: 0, 4: 2}",0 +447,False,"{'a': 0.01, 'e': 0.9553950238681933}",25,0,-252.2719761178048,"{0: 10, 1: 3, 2: 7, 3: 1, 4: 4}",0 +448,False,"{'a': 0.01, 'e': 0.95459756848328}",25,0,-182.51913799176603,"{0: 12, 1: 2, 2: 8, 3: 1, 4: 2}",0 +449,False,"{'a': 0.01, 'e': 0.9537905220488812}",30,0,-169.93958321368245,"{0: 19, 1: 1, 2: 7, 3: 0, 4: 3}",0 +450,False,"{'a': 0.01, 'e': 0.9529738514396466}",20,0,-106.67352999952895,"{0: 13, 1: 0, 2: 4, 3: 2, 4: 1}",0 +451,False,"{'a': 0.01, 'e': 0.9521475246105532}",25,9,-11.205657472239032,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +452,False,"{'a': 0.01, 'e': 0.9513115106054575}",20,0,-132.74073140094652,"{0: 13, 1: 0, 2: 3, 3: 2, 4: 2}",0 +453,False,"{'a': 0.01, 'e': 0.9504657795653166}",30,0,-72.69657314271385,"{0: 22, 1: 3, 2: 4, 3: 0, 4: 1}",0 +454,False,"{'a': 0.01, 'e': 0.9496103027360734}",20,10,-44.29973953166131,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 1}",1 +455,False,"{'a': 0.01, 'e': 0.9487450524762047}",25,0,-159.02027456196905,"{0: 11, 1: 5, 2: 7, 3: 0, 4: 2}",0 +456,False,"{'a': 0.01, 'e': 0.9478700022639327}",20,0,-154.57049452761254,"{0: 12, 1: 1, 2: 4, 3: 0, 4: 3}",0 +457,False,"{'a': 0.01, 'e': 0.946985126704098}",20,0,-90.16328314492573,"{0: 9, 1: 3, 2: 7, 3: 1, 4: 0}",0 +458,False,"{'a': 0.01, 'e': 0.9460904015346914}",20,0,-51.744797547457594,"{0: 13, 1: 1, 2: 5, 3: 1, 4: 0}",0 +459,False,"{'a': 0.01, 'e': 0.9451858036330476}",25,0,-135.61972580065222,"{0: 15, 1: 2, 2: 6, 3: 0, 4: 2}",0 +460,False,"{'a': 0.01, 'e': 0.944271311021696}",30,0,-172.57933193649134,"{0: 19, 1: 1, 2: 5, 3: 3, 4: 2}",0 +461,False,"{'a': 0.01, 'e': 0.9433469028738721}",25,0,-124.54602194875571,"{0: 11, 1: 2, 2: 11, 3: 1, 4: 0}",0 +462,False,"{'a': 0.01, 'e': 0.9424125595186856}",25,0,-167.4633766325,"{0: 13, 1: 2, 2: 7, 3: 1, 4: 2}",0 +463,False,"{'a': 0.01, 'e': 0.9414682624459486}",20,0,-59.2192268728768,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +464,False,"{'a': 0.01, 'e': 0.9405139943106617}",30,0,-169.37273490163454,"{0: 22, 1: 2, 2: 2, 3: 0, 4: 4}",0 +465,False,"{'a': 0.01, 'e': 0.9395497389371583}",30,0,-118.06210530608581,"{0: 20, 1: 4, 2: 4, 3: 0, 4: 2}",0 +466,False,"{'a': 0.01, 'e': 0.9385754813229101}",30,0,-83.94752255390698,"{0: 20, 1: 6, 2: 2, 3: 1, 4: 1}",0 +467,False,"{'a': 0.01, 'e': 0.9375912076419907}",25,0,-89.64384563959732,"{0: 17, 1: 1, 2: 6, 3: 0, 4: 1}",0 +468,False,"{'a': 0.01, 'e': 0.9365969052482003}",30,1,-111.24178119908316,"{0: 21, 1: 1, 2: 5, 3: 0, 4: 2}",1 +469,False,"{'a': 0.01, 'e': 0.9355925626778525}",25,10,-42.52143057647066,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 1}",1 +470,False,"{'a': 0.01, 'e': 0.9345781696522235}",20,0,-102.76408258773864,"{0: 13, 1: 3, 2: 2, 3: 0, 4: 2}",0 +471,False,"{'a': 0.01, 'e': 0.9335537170796644}",25,0,-103.95079093860372,"{0: 13, 1: 6, 2: 5, 3: 0, 4: 1}",0 +472,False,"{'a': 0.01, 'e': 0.9325191970573792}",30,14,-83.64585182734956,"{0: 8, 1: 1, 2: 5, 3: 2, 4: 0}",1 +473,False,"{'a': 0.01, 'e': 0.93147460287287}",35,0,-145.5661630614413,"{0: 23, 1: 4, 2: 3, 3: 4, 4: 1}",0 +474,False,"{'a': 0.01, 'e': 0.9304199290050486}",20,0,-79.07737190785902,"{0: 13, 1: 1, 2: 3, 3: 3, 4: 0}",0 +475,False,"{'a': 0.01, 'e': 0.9293551711250201}",30,0,-133.53827388095814,"{0: 20, 1: 1, 2: 7, 3: 0, 4: 2}",0 +476,False,"{'a': 0.01, 'e': 0.9282803260965373}",20,13,-33.25608466282155,"{0: 4, 1: 0, 2: 2, 3: 1, 4: 0}",1 +477,False,"{'a': 0.01, 'e': 0.9271953919761288}",20,0,-76.93391563735244,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +478,False,"{'a': 0.01, 'e': 0.9261003680129034}",20,0,-25.236950657817726,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +479,False,"{'a': 0.01, 'e': 0.9249952546480336}",25,0,-64.18714340632552,"{0: 18, 1: 0, 2: 5, 3: 2, 4: 0}",0 +480,False,"{'a': 0.01, 'e': 0.9238800535139181}",20,0,-53.60692971586265,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",0 +481,False,"{'a': 0.01, 'e': 0.9227547674330292}",25,9,-107.62895726608855,"{0: 10, 1: 2, 2: 1, 3: 1, 4: 2}",1 +482,False,"{'a': 0.01, 'e': 0.9216194004164453}",35,0,-70.48627603635056,"{0: 28, 1: 0, 2: 5, 3: 1, 4: 1}",0 +483,False,"{'a': 0.01, 'e': 0.9204739576620717}",30,0,-147.40285597862214,"{0: 16, 1: 3, 2: 9, 3: 1, 4: 1}",0 +484,False,"{'a': 0.01, 'e': 0.9193184455525533}",25,0,-95.2937227089029,"{0: 13, 1: 3, 2: 9, 3: 0, 4: 0}",0 +485,False,"{'a': 0.01, 'e': 0.9181528716528818}",20,8,-20.760401054691815,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 0}",1 +486,False,"{'a': 0.01, 'e': 0.9169772447077007}",30,0,-183.3561608529749,"{0: 16, 1: 2, 2: 9, 3: 1, 4: 2}",0 +487,False,"{'a': 0.01, 'e': 0.9157915746383097}",20,0,-124.55929374400361,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +488,False,"{'a': 0.01, 'e': 0.9145958725393748}",20,0,-158.39288107361187,"{0: 10, 1: 0, 2: 7, 3: 1, 4: 2}",0 +489,False,"{'a': 0.01, 'e': 0.9133901506753439}",30,0,-79.12373964044991,"{0: 20, 1: 4, 2: 4, 3: 2, 4: 0}",0 +490,False,"{'a': 0.01, 'e': 0.9121744224765755}",20,0,-82.29507763928267,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +491,False,"{'a': 0.01, 'e': 0.910948702535179}",25,0,-122.65813909925876,"{0: 15, 1: 5, 2: 3, 3: 0, 4: 2}",0 +492,False,"{'a': 0.01, 'e': 0.9097130066005754}",25,0,-80.55818751892177,"{0: 18, 1: 1, 2: 4, 3: 1, 4: 1}",0 +493,False,"{'a': 0.01, 'e': 0.9084673515747783}",25,0,-125.20066695566955,"{0: 13, 1: 7, 2: 3, 3: 0, 4: 2}",0 +494,False,"{'a': 0.01, 'e': 0.9072117555074012}",20,0,-2.784333358134701,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +495,False,"{'a': 0.01, 'e': 0.9059462375903932}",20,0,-142.29255149124776,"{0: 9, 1: 0, 2: 9, 3: 1, 4: 1}",0 +496,False,"{'a': 0.01, 'e': 0.9046708181525095}",25,18,-0.5188286910287778,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +497,False,"{'a': 0.01, 'e': 0.9033855186535173}",30,0,-129.0653503725178,"{0: 17, 1: 4, 2: 7, 3: 1, 4: 1}",0 +498,False,"{'a': 0.01, 'e': 0.9020903616781457}",20,0,-53.748785283468116,"{0: 16, 1: 0, 2: 3, 3: 0, 4: 1}",0 +499,False,"{'a': 0.01, 'e': 0.9007853709297787}",20,0,-74.07665823877556,"{0: 11, 1: 2, 2: 6, 3: 1, 4: 0}",0 +500,False,"{'a': 0.01, 'e': 0.8994705712238998}",20,0,-15.559959521786197,"{0: 15, 1: 3, 2: 2, 3: 0, 4: 0}",0 +501,False,"{'a': 0.01, 'e': 0.8981459884812897}",25,0,-148.48157179116706,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 3}",0 +502,False,"{'a': 0.01, 'e': 0.8968116497209826}",25,14,3.377918229380145,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +503,False,"{'a': 0.01, 'e': 0.8954675830529867}",20,0,-80.10517174705879,"{0: 12, 1: 1, 2: 5, 3: 2, 4: 0}",0 +504,False,"{'a': 0.01, 'e': 0.8941138176707689}",20,0,-89.21935351836208,"{0: 12, 1: 2, 2: 5, 3: 0, 4: 1}",0 +505,False,"{'a': 0.01, 'e': 0.8927503838435148}",20,0,-32.863484040283616,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +506,False,"{'a': 0.01, 'e': 0.8913773129081624}",20,0,-29.18072226094853,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +507,False,"{'a': 0.01, 'e': 0.8899946372612175}",25,0,-188.06600976045115,"{0: 14, 1: 1, 2: 6, 3: 1, 4: 3}",0 +508,False,"{'a': 0.01, 'e': 0.8886023903503549}",25,0,-61.31874163526837,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +509,False,"{'a': 0.01, 'e': 0.887200606665809}",30,0,-135.91166321954438,"{0: 20, 1: 2, 2: 5, 3: 1, 4: 2}",0 +510,False,"{'a': 0.01, 'e': 0.885789321731559}",20,0,-110.89561227894151,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 2}",0 +511,False,"{'a': 0.01, 'e': 0.8843685720963146}",25,9,-28.369277681505245,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 0}",1 +512,False,"{'a': 0.01, 'e': 0.8829383953243045}",25,0,-183.08628247260035,"{0: 14, 1: 2, 2: 4, 3: 2, 4: 3}",0 +513,False,"{'a': 0.01, 'e': 0.8814988299858748}",25,0,-165.96616585936152,"{0: 15, 1: 1, 2: 6, 3: 0, 4: 3}",0 +514,False,"{'a': 0.01, 'e': 0.8800499156479002}",20,0,-180.604104917569,"{0: 10, 1: 1, 2: 5, 3: 1, 4: 3}",0 +515,False,"{'a': 0.01, 'e': 0.8785916928640145}",25,0,-47.67400118498065,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +516,False,"{'a': 0.01, 'e': 0.8771242031646634}",25,0,-149.36252628338343,"{0: 16, 1: 1, 2: 4, 3: 2, 4: 2}",0 +517,False,"{'a': 0.01, 'e': 0.8756474890469857}",35,0,-358.08816177631724,"{0: 17, 1: 0, 2: 10, 3: 2, 4: 6}",0 +518,False,"{'a': 0.01, 'e': 0.8741615939645283}",25,0,-74.75969901504666,"{0: 17, 1: 3, 2: 4, 3: 0, 4: 1}",0 +519,False,"{'a': 0.01, 'e': 0.872666562316797}",20,0,-150.472902218535,"{0: 11, 1: 1, 2: 4, 3: 2, 4: 2}",0 +520,False,"{'a': 0.01, 'e': 0.8711624394386511}",20,5,-69.03763718753558,"{0: 10, 1: 1, 2: 2, 3: 1, 4: 1}",1 +521,False,"{'a': 0.01, 'e': 0.8696492715895456}",25,0,-173.96253463618905,"{0: 13, 1: 3, 2: 6, 3: 0, 4: 3}",0 +522,False,"{'a': 0.01, 'e': 0.8681271059426243}",20,0,-73.82988638776723,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +523,False,"{'a': 0.01, 'e': 0.8665959905736709}",25,0,-117.50300530953528,"{0: 16, 1: 0, 2: 6, 3: 2, 4: 1}",0 +524,False,"{'a': 0.01, 'e': 0.8650559744499218}",25,0,-147.65904939766503,"{0: 15, 1: 3, 2: 3, 3: 2, 4: 2}",0 +525,False,"{'a': 0.01, 'e': 0.8635071074187454}",25,0,-163.6739816685214,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 4}",0 +526,False,"{'a': 0.01, 'e': 0.8619494401961929}",25,0,-99.70422328191941,"{0: 17, 1: 2, 2: 3, 3: 2, 4: 1}",0 +527,False,"{'a': 0.01, 'e': 0.8603830243554254}",35,0,-94.65824071074174,"{0: 25, 1: 0, 2: 9, 3: 0, 4: 1}",0 +528,False,"{'a': 0.01, 'e': 0.8588079123150218}",20,0,-32.908626937527806,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +529,False,"{'a': 0.01, 'e': 0.8572241573271739}",30,0,-106.82504684251435,"{0: 20, 1: 1, 2: 7, 3: 1, 4: 1}",0 +530,False,"{'a': 0.01, 'e': 0.8556318134657691}",20,0,-16.267527835409734,"{0: 15, 1: 4, 2: 1, 3: 0, 4: 0}",0 +531,False,"{'a': 0.01, 'e': 0.8540309356143722}",25,0,-87.95721655734665,"{0: 13, 1: 7, 2: 3, 3: 2, 4: 0}",0 +532,False,"{'a': 0.01, 'e': 0.8524215794541039}",20,0,-57.30727330135923,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +533,False,"{'a': 0.01, 'e': 0.8508038014514271}",30,1,-66.39630179398272,"{0: 23, 1: 1, 2: 3, 3: 1, 4: 1}",1 +534,False,"{'a': 0.01, 'e': 0.8491776588458393}",20,0,-32.2796318346858,"{0: 14, 1: 3, 2: 2, 3: 1, 4: 0}",0 +535,False,"{'a': 0.01, 'e': 0.8475432096374821}",20,0,-76.5233070431432,"{0: 15, 1: 1, 2: 1, 3: 2, 4: 1}",0 +536,False,"{'a': 0.01, 'e': 0.845900512574667}",25,0,-52.94567633990202,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +537,False,"{'a': 0.01, 'e': 0.8442496271413265}",20,0,-181.5143360491656,"{0: 12, 1: 1, 2: 1, 3: 3, 4: 3}",0 +538,False,"{'a': 0.01, 'e': 0.842590613544391}",20,0,-96.60348724636907,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 2}",0 +539,False,"{'a': 0.01, 'e': 0.8409235327010998}",20,0,-107.36810577620598,"{0: 10, 1: 4, 2: 4, 3: 1, 4: 1}",0 +540,False,"{'a': 0.01, 'e': 0.8392484462262467}",30,0,-152.95803010168405,"{0: 14, 1: 6, 2: 8, 3: 1, 4: 1}",0 +541,False,"{'a': 0.01, 'e': 0.83756541641937}",20,12,1.4999704152140587,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +542,False,"{'a': 0.01, 'e': 0.8358745062518844}",20,12,-39.52497763067685,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +543,False,"{'a': 0.01, 'e': 0.8341757793541661}",25,0,-100.35678323035468,"{0: 14, 1: 6, 2: 3, 3: 1, 4: 1}",0 +544,False,"{'a': 0.01, 'e': 0.8324693000025902}",25,9,-68.30438840968742,"{0: 9, 1: 2, 2: 3, 3: 2, 4: 0}",1 +545,False,"{'a': 0.01, 'e': 0.8307551331065279}",25,0,-26.685749538090125,"{0: 17, 1: 6, 2: 2, 3: 0, 4: 0}",0 +546,False,"{'a': 0.01, 'e': 0.8290333441953053}",20,0,-11.141768281387364,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +547,False,"{'a': 0.01, 'e': 0.8273039994051308}",20,0,-9.302134493742926,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +548,False,"{'a': 0.01, 'e': 0.8255671654659922}",20,0,-83.37550678553781,"{0: 12, 1: 0, 2: 6, 3: 2, 4: 0}",0 +549,False,"{'a': 0.01, 'e': 0.8238229096885301}",25,0,-97.13387186074947,"{0: 17, 1: 2, 2: 3, 3: 2, 4: 1}",0 +550,False,"{'a': 0.01, 'e': 0.8220712999508903}",20,9,7.769594895728068,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +551,False,"{'a': 0.01, 'e': 0.8203124046855597}",25,0,-66.00137343043824,"{0: 19, 1: 1, 2: 2, 3: 3, 4: 0}",0 +552,False,"{'a': 0.01, 'e': 0.8185462928661886}",20,0,-42.84894925019811,"{0: 14, 1: 2, 2: 3, 3: 1, 4: 0}",0 +553,False,"{'a': 0.01, 'e': 0.8167730339944063}",20,2,-18.246185330007172,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +554,False,"{'a': 0.01, 'e': 0.8149926980866289}",25,0,-53.826611161757334,"{0: 20, 1: 2, 2: 1, 3: 1, 4: 1}",0 +555,False,"{'a': 0.01, 'e': 0.8132053556608694}",30,0,-192.02684412968716,"{0: 20, 1: 2, 2: 4, 3: 0, 4: 4}",0 +556,False,"{'a': 0.01, 'e': 0.8114110777235461}",25,0,-82.85098367432651,"{0: 18, 1: 3, 2: 1, 3: 2, 4: 1}",0 +557,False,"{'a': 0.01, 'e': 0.8096099357563025}",20,0,-129.58728392672512,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +558,False,"{'a': 0.01, 'e': 0.807802001702832}",20,0,-103.20034084287566,"{0: 10, 1: 5, 2: 3, 3: 1, 4: 1}",0 +559,False,"{'a': 0.01, 'e': 0.8059873479557205}",20,9,-34.815764163460585,"{0: 8, 1: 0, 2: 1, 3: 2, 4: 0}",1 +560,False,"{'a': 0.01, 'e': 0.8041660473433025}",20,4,-44.66184637595348,"{0: 11, 1: 1, 2: 2, 3: 2, 4: 0}",1 +561,False,"{'a': 0.01, 'e': 0.8023381731165407}",30,0,-143.12537950177736,"{0: 19, 1: 3, 2: 5, 3: 1, 4: 2}",0 +562,False,"{'a': 0.01, 'e': 0.8005037989359268}",30,0,-37.85910606483458,"{0: 21, 1: 5, 2: 4, 3: 0, 4: 0}",0 +563,False,"{'a': 0.01, 'e': 0.7986629988584124}",25,0,-110.41895511993752,"{0: 14, 1: 2, 2: 8, 3: 0, 4: 1}",0 +564,False,"{'a': 0.01, 'e': 0.7968158473243684}",30,0,-59.56542389828126,"{0: 21, 1: 0, 2: 9, 3: 0, 4: 0}",0 +565,False,"{'a': 0.01, 'e': 0.7949624191445789}",30,8,-36.91019063810145,"{0: 14, 1: 4, 2: 4, 3: 0, 4: 0}",1 +566,False,"{'a': 0.01, 'e': 0.7931027894872722}",20,0,-58.334362947525385,"{0: 12, 1: 2, 2: 6, 3: 0, 4: 0}",0 +567,False,"{'a': 0.01, 'e': 0.7912370338651923}",20,0,-54.75184017280973,"{0: 14, 1: 3, 2: 2, 3: 0, 4: 1}",0 +568,False,"{'a': 0.01, 'e': 0.789365228122713}",20,0,-175.4094045217673,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +569,False,"{'a': 0.01, 'e': 0.7874874484229981}",20,0,-62.623231102987695,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +570,False,"{'a': 0.01, 'e': 0.7856037712352119}",25,0,-86.02641690682893,"{0: 14, 1: 3, 2: 7, 3: 1, 4: 0}",0 +571,False,"{'a': 0.01, 'e': 0.78371427332178}",30,0,-114.48706367139026,"{0: 22, 1: 1, 2: 4, 3: 1, 4: 2}",0 +572,False,"{'a': 0.01, 'e': 0.7818190317257068}",25,10,-55.92511088907673,"{0: 10, 1: 2, 2: 2, 3: 0, 4: 1}",1 +573,False,"{'a': 0.01, 'e': 0.7799181237579491}",30,0,-93.96820062303647,"{0: 22, 1: 3, 2: 3, 3: 0, 4: 2}",0 +574,False,"{'a': 0.01, 'e': 0.778011626984851}",35,0,-189.74704771194726,"{0: 21, 1: 2, 2: 9, 3: 0, 4: 3}",0 +575,False,"{'a': 0.01, 'e': 0.7760996192156411}",30,0,-135.6456870083256,"{0: 18, 1: 3, 2: 7, 3: 0, 4: 2}",0 +576,False,"{'a': 0.01, 'e': 0.7741821784899956}",20,0,-98.67539489196956,"{0: 10, 1: 1, 2: 7, 3: 2, 4: 0}",0 +577,False,"{'a': 0.01, 'e': 0.7722593830656697}",25,0,-137.68267444782978,"{0: 14, 1: 2, 2: 6, 3: 2, 4: 1}",0 +578,False,"{'a': 0.01, 'e': 0.7703313114061993}",25,10,-16.91082021459451,"{0: 11, 1: 1, 2: 3, 3: 0, 4: 0}",1 +579,False,"{'a': 0.01, 'e': 0.7683980421686747}",30,16,-53.10865557153303,"{0: 9, 1: 0, 2: 3, 3: 2, 4: 0}",1 +580,False,"{'a': 0.01, 'e': 0.7664596541915913}",25,0,-63.16946660701595,"{0: 19, 1: 1, 2: 4, 3: 0, 4: 1}",0 +581,False,"{'a': 0.01, 'e': 0.764516226482777}",25,0,-80.18629140309704,"{0: 15, 1: 2, 2: 7, 3: 1, 4: 0}",0 +582,False,"{'a': 0.01, 'e': 0.7625678382073977}",30,2,-13.068728231873356,"{0: 24, 1: 0, 2: 3, 3: 1, 4: 0}",1 +583,False,"{'a': 0.01, 'e': 0.7606145686760486}",25,0,-40.73542501803011,"{0: 19, 1: 4, 2: 1, 3: 0, 4: 1}",0 +584,False,"{'a': 0.01, 'e': 0.7586564973329255}",20,0,-92.98599533598605,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +585,False,"{'a': 0.01, 'e': 0.7566937037440843}",20,3,-15.526954334791174,"{0: 13, 1: 0, 2: 4, 3: 0, 4: 0}",1 +586,False,"{'a': 0.01, 'e': 0.7547262675857882}",20,8,-0.07450671811468013,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +587,False,"{'a': 0.01, 'e': 0.7527542686329445}",20,0,-102.4166058809852,"{0: 11, 1: 2, 2: 6, 3: 0, 4: 1}",0 +588,False,"{'a': 0.01, 'e': 0.7507777867476328}",20,0,-113.43258112580165,"{0: 12, 1: 0, 2: 5, 3: 2, 4: 1}",0 +589,False,"{'a': 0.01, 'e': 0.7487969018677287}",25,0,-107.84566320396569,"{0: 16, 1: 4, 2: 3, 3: 0, 4: 2}",0 +590,False,"{'a': 0.01, 'e': 0.7468116939956202}",20,0,-99.62563833683387,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +591,False,"{'a': 0.01, 'e': 0.7448222431870224}",20,0,-32.50193154040236,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +592,False,"{'a': 0.01, 'e': 0.7428286295398923}",25,0,-56.20066206041736,"{0: 19, 1: 1, 2: 2, 3: 3, 4: 0}",0 +593,False,"{'a': 0.01, 'e': 0.7408309331834402}",20,0,-49.263582212651706,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +594,False,"{'a': 0.01, 'e': 0.7388292342672469}",20,0,-58.98463796084392,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +595,False,"{'a': 0.01, 'e': 0.7368236129504808}",20,0,-108.00849170757881,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +596,False,"{'a': 0.01, 'e': 0.734814149391222}",20,1,-49.40139021465258,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 0}",1 +597,False,"{'a': 0.01, 'e': 0.732800923735891}",25,0,-110.63077190951628,"{0: 15, 1: 2, 2: 6, 3: 1, 4: 1}",0 +598,False,"{'a': 0.01, 'e': 0.730784016108784}",25,0,-29.96486754101824,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +599,False,"{'a': 0.01, 'e': 0.7287635066017193}",25,3,-154.18594568740318,"{0: 11, 1: 3, 2: 4, 3: 2, 4: 2}",1 +600,False,"{'a': 0.01, 'e': 0.7267394752637903}",20,0,-67.65861938390987,"{0: 11, 1: 4, 2: 4, 3: 1, 4: 0}",0 +601,False,"{'a': 0.01, 'e': 0.7247120020912314}",20,6,-36.133881289324115,"{0: 9, 1: 2, 2: 2, 3: 1, 4: 0}",1 +602,False,"{'a': 0.01, 'e': 0.7226811670173943}",30,0,-75.07403977894087,"{0: 22, 1: 2, 2: 5, 3: 0, 4: 1}",0 +603,False,"{'a': 0.01, 'e': 0.7206470499028387}",20,8,-33.60338159298831,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +604,False,"{'a': 0.01, 'e': 0.7186097305255356}",20,0,-33.21305559440806,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +605,False,"{'a': 0.01, 'e': 0.7165692885711861}",30,0,-220.08816321660228,"{0: 16, 1: 4, 2: 4, 3: 3, 4: 3}",0 +606,False,"{'a': 0.01, 'e': 0.7145258036236553}",25,0,-116.56538516809884,"{0: 15, 1: 3, 2: 4, 3: 2, 4: 1}",0 +607,False,"{'a': 0.01, 'e': 0.712479355155523}",25,0,-68.39949726887595,"{0: 17, 1: 3, 2: 4, 3: 0, 4: 1}",0 +608,False,"{'a': 0.01, 'e': 0.7104300225187518}",35,8,-28.111614795026505,"{0: 23, 1: 2, 2: 1, 3: 0, 4: 1}",1 +609,False,"{'a': 0.01, 'e': 0.708377884935473}",30,12,-32.026238720650575,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 0}",1 +610,False,"{'a': 0.01, 'e': 0.7063230214888916}",20,0,-115.97321020034128,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",0 +611,False,"{'a': 0.01, 'e': 0.704265511114309}",20,0,-65.7145794617005,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",0 +612,False,"{'a': 0.01, 'e': 0.7022054325902681}",20,0,-19.737829655937585,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +613,False,"{'a': 0.01, 'e': 0.7001428645298167}",25,10,-23.30680676724259,"{0: 11, 1: 2, 2: 1, 3: 1, 4: 0}",1 +614,False,"{'a': 0.01, 'e': 0.6980778853718923}",30,11,-24.213736617391163,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 0}",1 +615,False,"{'a': 0.01, 'e': 0.6960105733728295}",30,0,-78.48752122485504,"{0: 23, 1: 0, 2: 5, 3: 1, 4: 1}",0 +616,False,"{'a': 0.01, 'e': 0.693941006597987}",20,11,-7.871667870201506,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +617,False,"{'a': 0.01, 'e': 0.6918692629134992}",20,11,16.603300404042493,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +618,False,"{'a': 0.01, 'e': 0.6897954199781476}",30,0,-9.819122128805791,"{0: 24, 1: 3, 2: 3, 3: 0, 4: 0}",0 +619,False,"{'a': 0.01, 'e': 0.6877195552353573}",20,0,-82.2169593955893,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +620,False,"{'a': 0.01, 'e': 0.6856417459053142}",20,10,-59.01685032996081,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 1}",1 +621,False,"{'a': 0.01, 'e': 0.683562068977208}",20,0,-70.10256976253865,"{0: 11, 1: 3, 2: 5, 3: 1, 4: 0}",0 +622,False,"{'a': 0.01, 'e': 0.6814806012015957}",25,7,-134.68916687588268,"{0: 9, 1: 2, 2: 2, 3: 4, 4: 1}",1 +623,False,"{'a': 0.01, 'e': 0.6793974190828906}",25,3,-29.88442361021562,"{0: 15, 1: 3, 2: 4, 3: 0, 4: 0}",1 +624,False,"{'a': 0.01, 'e': 0.6773125988719737}",25,0,-119.68556421763293,"{0: 17, 1: 1, 2: 4, 3: 1, 4: 2}",0 +625,False,"{'a': 0.01, 'e': 0.6752262165589291}",25,8,-129.22649045976777,"{0: 9, 1: 1, 2: 4, 3: 1, 4: 2}",1 +626,False,"{'a': 0.01, 'e': 0.6731383478659025}",25,9,-85.19817831955062,"{0: 10, 1: 0, 2: 4, 3: 1, 4: 1}",1 +627,False,"{'a': 0.01, 'e': 0.6710490682400837}",20,0,-115.68789464982187,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",1 +628,False,"{'a': 0.01, 'e': 0.668958452846812}",25,0,-26.00177300790014,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +629,False,"{'a': 0.01, 'e': 0.6668665765628059}",25,15,6.6889598930296525,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +630,False,"{'a': 0.01, 'e': 0.664773513969514}",30,11,-102.36023438969731,"{0: 13, 1: 1, 2: 2, 3: 1, 4: 2}",1 +631,False,"{'a': 0.01, 'e': 0.6626793393465917}",30,10,-123.83470830477593,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 3}",1 +632,False,"{'a': 0.01, 'e': 0.6605841266654985}",20,11,-6.911170104818888,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +633,False,"{'a': 0.01, 'e': 0.6584879495832175}",20,0,-79.4886238682363,"{0: 9, 1: 4, 2: 7, 3: 0, 4: 0}",0 +634,False,"{'a': 0.01, 'e': 0.6563908814361004}",20,8,-18.02737182961309,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +635,False,"{'a': 0.01, 'e': 0.6542929952338308}",20,4,-59.1988344909012,"{0: 9, 1: 1, 2: 5, 3: 1, 4: 0}",1 +636,False,"{'a': 0.01, 'e': 0.6521943636535112}",20,10,-17.90574360350539,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +637,False,"{'a': 0.01, 'e': 0.6500950590338709}",20,8,-37.10308450158017,"{0: 8, 1: 0, 2: 3, 3: 1, 4: 0}",1 +638,False,"{'a': 0.01, 'e': 0.6479951533695942}",20,0,-86.70710575898688,"{0: 14, 1: 3, 2: 1, 3: 0, 4: 2}",0 +639,False,"{'a': 0.01, 'e': 0.6458947183057712}",30,5,-142.94137600991303,"{0: 14, 1: 0, 2: 8, 3: 2, 4: 1}",1 +640,False,"{'a': 0.01, 'e': 0.6437938251324646}",25,0,-108.55790706154028,"{0: 18, 1: 1, 2: 3, 3: 1, 4: 2}",0 +641,False,"{'a': 0.01, 'e': 0.6416925447794015}",25,1,-42.65521098725855,"{0: 19, 1: 1, 2: 2, 3: 2, 4: 0}",1 +642,False,"{'a': 0.01, 'e': 0.6395909478107789}",20,7,-5.2792578793172495,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +643,False,"{'a': 0.01, 'e': 0.6374891044201922}",25,5,-53.72978616730339,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",1 +644,False,"{'a': 0.01, 'e': 0.635387084425679}",30,18,-63.91091351559415,"{0: 8, 1: 0, 2: 2, 3: 1, 4: 1}",1 +645,False,"{'a': 0.01, 'e': 0.6332849572648812}",20,0,-70.7037274361402,"{0: 13, 1: 3, 2: 3, 3: 0, 4: 1}",0 +646,False,"{'a': 0.01, 'e': 0.6311827919903239}",25,11,-45.262918507728315,"{0: 10, 1: 2, 2: 1, 3: 0, 4: 1}",1 +647,False,"{'a': 0.01, 'e': 0.6290806572648111}",20,0,-7.240648636309761,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +648,False,"{'a': 0.01, 'e': 0.6269786213569365}",20,2,4.766887857888361,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +649,False,"{'a': 0.01, 'e': 0.6248767521367091}",30,13,-6.7785568885872465,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 0}",1 +650,False,"{'a': 0.01, 'e': 0.6227751170712936}",20,10,-14.408699849970729,"{0: 7, 1: 1, 2: 2, 3: 0, 4: 0}",1 +651,False,"{'a': 0.01, 'e': 0.6206737832208638}",20,0,-73.42164305966558,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +652,False,"{'a': 0.01, 'e': 0.6185728172345699}",25,0,-121.05806454953127,"{0: 16, 1: 4, 2: 2, 3: 1, 4: 2}",0 +653,False,"{'a': 0.01, 'e': 0.6164722853466162}",25,11,-23.153451702422633,"{0: 10, 1: 0, 2: 4, 3: 0, 4: 0}",1 +654,False,"{'a': 0.01, 'e': 0.6143722533724525}",20,0,-59.760325468976546,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +655,False,"{'a': 0.01, 'e': 0.6122727867050738}",25,2,-94.40959788795718,"{0: 16, 1: 2, 2: 3, 3: 0, 4: 2}",1 +656,False,"{'a': 0.01, 'e': 0.6101739503114315}",20,9,-63.91379060036833,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 2}",1 +657,False,"{'a': 0.01, 'e': 0.608075808728953}",25,13,-4.8011372840860815,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +658,False,"{'a': 0.01, 'e': 0.605978426062169}",25,0,4.556159136286096,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +659,False,"{'a': 0.01, 'e': 0.6038818659794493}",20,0,-75.22476391731296,"{0: 14, 1: 1, 2: 3, 3: 1, 4: 1}",0 +660,False,"{'a': 0.01, 'e': 0.6017861917098439}",20,13,-14.253597633310216,"{0: 4, 1: 1, 2: 2, 3: 0, 4: 0}",1 +661,False,"{'a': 0.01, 'e': 0.599691466040031}",20,2,-36.93725184564439,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +662,False,"{'a': 0.01, 'e': 0.5975977513113686}",20,0,20.18795802629019,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +663,False,"{'a': 0.01, 'e': 0.5955051094170505}",25,12,-9.201249616649177,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 0}",1 +664,False,"{'a': 0.01, 'e': 0.5934136017993656}",20,0,-33.91334643606055,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +665,False,"{'a': 0.01, 'e': 0.5913232894470588}",20,0,-83.42269062568465,"{0: 11, 1: 6, 2: 1, 3: 1, 4: 1}",0 +666,False,"{'a': 0.01, 'e': 0.5892342328927926}",25,0,-69.68206407341977,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 2}",0 +667,False,"{'a': 0.01, 'e': 0.5871464922107106}",30,0,-51.73207628568437,"{0: 21, 1: 2, 2: 7, 3: 0, 4: 0}",0 +668,False,"{'a': 0.01, 'e': 0.5850601270140978}",20,4,-62.29536493781249,"{0: 11, 1: 2, 2: 1, 3: 1, 4: 1}",1 +669,False,"{'a': 0.01, 'e': 0.5829751964531417}",20,2,-1.4527884336052148,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +670,False,"{'a': 0.01, 'e': 0.5808917592127885}",25,0,-138.6109185108479,"{0: 17, 1: 2, 2: 3, 3: 0, 4: 3}",0 +671,False,"{'a': 0.01, 'e': 0.5788098735106978}",25,10,-44.30894297889635,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 1}",1 +672,False,"{'a': 0.01, 'e': 0.5767295970952901}",25,14,7.3275940283601075,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +673,False,"{'a': 0.01, 'e': 0.5746509872438916}",20,12,0.8063024723027346,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +674,False,"{'a': 0.01, 'e': 0.57257410076097}",30,12,-79.49691685253303,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 2}",1 +675,False,"{'a': 0.01, 'e': 0.5704989939764638}",20,0,-64.29602069011116,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +676,False,"{'a': 0.01, 'e': 0.568425722744203}",25,0,-32.115949018270896,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +677,False,"{'a': 0.01, 'e': 0.5663543424404194}",20,14,13.484475269725948,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +678,False,"{'a': 0.01, 'e': 0.5642849079623473}",20,0,4.36352543173697,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +679,False,"{'a': 0.01, 'e': 0.5622174737269111}",20,0,-29.75820079755317,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +680,False,"{'a': 0.01, 'e': 0.5601520936695019}",25,8,-52.42496222108379,"{0: 13, 1: 0, 2: 2, 3: 1, 4: 1}",1 +681,False,"{'a': 0.01, 'e': 0.5580888212428389}",20,7,13.675818093537869,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +682,False,"{'a': 0.01, 'e': 0.5560277094159163}",25,10,0.7948968424772882,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +683,False,"{'a': 0.01, 'e': 0.5539688106730352}",20,6,-39.61723341569601,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +684,False,"{'a': 0.01, 'e': 0.5519121770129171}",25,8,-47.370820662186794,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +685,False,"{'a': 0.01, 'e': 0.5498578599479003}",20,0,-44.28835645935467,"{0: 15, 1: 0, 2: 3, 3: 2, 4: 0}",0 +686,False,"{'a': 0.01, 'e': 0.547805910503218}",20,12,5.762332893148759,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +687,False,"{'a': 0.01, 'e': 0.5457563792163553}",20,3,-9.672044855518074,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +688,False,"{'a': 0.01, 'e': 0.5437093161364845}",30,16,-70.39344172864335,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 2}",1 +689,False,"{'a': 0.01, 'e': 0.5416647708239803}",20,1,-11.42227589423493,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 0}",1 +690,False,"{'a': 0.01, 'e': 0.5396227923500097}",35,2,-167.22797330128347,"{0: 24, 1: 1, 2: 4, 3: 0, 4: 4}",1 +691,False,"{'a': 0.01, 'e': 0.5375834292961987}",25,7,-125.76815321231439,"{0: 13, 1: 1, 2: 0, 3: 1, 4: 3}",1 +692,False,"{'a': 0.01, 'e': 0.5355467297543735}",25,8,-37.778656193164274,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +693,False,"{'a': 0.01, 'e': 0.5335127413263752}",20,5,-12.589886752987448,"{0: 12, 1: 1, 2: 1, 3: 1, 4: 0}",1 +694,False,"{'a': 0.01, 'e': 0.5314815111239465}",20,0,-11.071585348521502,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",0 +695,False,"{'a': 0.01, 'e': 0.5294530857686913}",20,0,-2.729353071781344,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +696,False,"{'a': 0.01, 'e': 0.5274275113921033}",20,15,-3.3037290074114916,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +697,False,"{'a': 0.01, 'e': 0.5254048336356644}",25,5,-5.221471614188683,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",1 +698,False,"{'a': 0.01, 'e': 0.523385097651011}",20,0,-35.649768177770724,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 1}",0 +699,False,"{'a': 0.01, 'e': 0.5213683481001699}",20,0,-17.644809794357702,"{0: 15, 1: 3, 2: 1, 3: 1, 4: 0}",0 +700,False,"{'a': 0.01, 'e': 0.519354629155856}",30,0,-103.56752863932743,"{0: 25, 1: 1, 2: 1, 3: 0, 4: 3}",0 +701,False,"{'a': 0.01, 'e': 0.5173439845018404}",20,4,-77.20117115030008,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 2}",1 +702,False,"{'a': 0.01, 'e': 0.5153364573333773}",20,0,-70.40516780822142,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +703,False,"{'a': 0.01, 'e': 0.5133320903576992}",30,18,18.45673682298338,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +704,False,"{'a': 0.01, 'e': 0.5113309257945692}",20,0,-144.5270624796443,"{0: 12, 1: 2, 2: 3, 3: 0, 4: 3}",0 +705,False,"{'a': 0.01, 'e': 0.5093330053768991}",25,8,-49.60298338595943,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +706,False,"{'a': 0.01, 'e': 0.5073383703514225}",20,0,1.0929368820740166,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +707,False,"{'a': 0.01, 'e': 0.5053470614794325}",20,0,13.145038278843089,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +708,False,"{'a': 0.01, 'e': 0.503359119037571}",30,2,-55.56095720775426,"{0: 21, 1: 1, 2: 4, 3: 2, 4: 0}",1 +709,False,"{'a': 0.01, 'e': 0.5013745828186802}",25,0,-28.488266874263743,"{0: 21, 1: 0, 2: 2, 3: 2, 4: 0}",0 +710,False,"{'a': 0.01, 'e': 0.49939349213270856}",25,13,-6.8495875508706,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +711,False,"{'a': 0.01, 'e': 0.4974158858076687}",25,0,-95.47142579588244,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +712,False,"{'a': 0.01, 'e': 0.4954418021906545}",30,0,-66.78312474278314,"{0: 25, 1: 1, 2: 1, 3: 2, 4: 1}",0 +713,False,"{'a': 0.01, 'e': 0.49347127914890576}",25,2,-8.970234460221528,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 0}",1 +714,False,"{'a': 0.01, 'e': 0.4915043540709281}",25,11,24.193068823265577,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +715,False,"{'a': 0.01, 'e': 0.48954106386766394}",20,0,-135.95494356006486,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +716,False,"{'a': 0.01, 'e': 0.48758144497371037}",20,0,-63.41766340705738,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +717,False,"{'a': 0.01, 'e': 0.48562553334859004}",20,12,-8.245027102987523,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +718,False,"{'a': 0.01, 'e': 0.4836733644780655}",20,0,10.559226028109006,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +719,False,"{'a': 0.01, 'e': 0.4817249733755061}",20,16,7.250936920210732,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +720,False,"{'a': 0.01, 'e': 0.47978039458329524}",30,0,-167.51886764345142,"{0: 23, 1: 0, 2: 2, 3: 1, 4: 4}",0 +721,False,"{'a': 0.01, 'e': 0.4778396621742863}",25,14,10.046606435108519,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +722,False,"{'a': 0.01, 'e': 0.4759028097533029}",25,0,-40.79695695574178,"{0: 20, 1: 2, 2: 2, 3: 0, 4: 1}",0 +723,False,"{'a': 0.01, 'e': 0.47396987045867933}",25,2,20.003717251773008,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 0}",1 +724,False,"{'a': 0.01, 'e': 0.47204087696384756}",25,0,-88.28315009964227,"{0: 16, 1: 1, 2: 7, 3: 0, 4: 1}",0 +725,False,"{'a': 0.01, 'e': 0.47011586147896134}",20,0,-56.1811205199407,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 2}",1 +726,False,"{'a': 0.01, 'e': 0.46819485575256437}",30,0,-45.95008727340183,"{0: 21, 1: 3, 2: 6, 3: 0, 4: 0}",1 +727,False,"{'a': 0.01, 'e': 0.46627789107329554}",25,18,12.543636411874013,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +728,False,"{'a': 0.01, 'e': 0.4643649982716337}",25,7,1.3595739211403899,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +729,False,"{'a': 0.01, 'e': 0.46245620772168183}",20,0,-52.89886838318654,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +730,False,"{'a': 0.01, 'e': 0.46055154934298415}",20,5,-6.074699204543344,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +731,False,"{'a': 0.01, 'e': 0.4586510526023838}",25,3,-46.42541800939267,"{0: 17, 1: 2, 2: 2, 3: 0, 4: 1}",1 +732,False,"{'a': 0.01, 'e': 0.45675474651591164}",20,0,11.14880207330662,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +733,False,"{'a': 0.01, 'e': 0.45486265965071304}",20,0,6.971869241724759,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +734,False,"{'a': 0.01, 'e': 0.4529748201270043}",25,13,11.19952966562465,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +735,False,"{'a': 0.01, 'e': 0.45109125562006447}",30,14,4.7405211493625625,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +736,False,"{'a': 0.01, 'e': 0.4492119933622586}",25,11,-81.49287052434333,"{0: 7, 1: 2, 2: 4, 3: 0, 4: 1}",1 +737,False,"{'a': 0.01, 'e': 0.44733706014508945}",25,15,2.7403854672835997,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +738,False,"{'a': 0.01, 'e': 0.44546648232128294}",20,0,-39.20121059626249,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +739,False,"{'a': 0.01, 'e': 0.4436002858068997}",20,0,-23.233950687065693,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +740,False,"{'a': 0.01, 'e': 0.44173849608347626}",20,11,19.761865485484616,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +741,False,"{'a': 0.01, 'e': 0.43988113820019537}",20,9,3.9478272037731097,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +742,False,"{'a': 0.01, 'e': 0.4380282367760797}",25,18,14.440297893094844,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +743,False,"{'a': 0.01, 'e': 0.4361798160022159}",20,0,7.8751870763984115,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +744,False,"{'a': 0.01, 'e': 0.4343358996439993}",20,7,-13.824619766464853,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 0}",1 +745,False,"{'a': 0.01, 'e': 0.4324965110434077}",20,0,-78.456525203732,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +746,False,"{'a': 0.01, 'e': 0.43066167312129544}",20,12,3.5807346606939134,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +747,False,"{'a': 0.01, 'e': 0.42883140837971223}",30,19,-2.2168811450750896,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +748,False,"{'a': 0.01, 'e': 0.42700573890424465}",20,0,-63.67530201178618,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",1 +749,False,"{'a': 0.01, 'e': 0.42518468636637674}",25,14,-4.556348028081204,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +750,False,"{'a': 0.01, 'e': 0.42336827202587535}",20,12,-27.89431897846918,"{0: 5, 1: 1, 2: 1, 3: 1, 4: 0}",1 +751,False,"{'a': 0.01, 'e': 0.4215565167331913}",25,8,-79.79081765673882,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +752,False,"{'a': 0.01, 'e': 0.4197494409318835}",25,1,-22.48828448994389,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 1}",1 +753,False,"{'a': 0.01, 'e': 0.4179470646610596}",25,11,-15.070068246970107,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 0}",1 +754,False,"{'a': 0.01, 'e': 0.416149407557835}",20,0,-90.56751786059414,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 3}",0 +755,False,"{'a': 0.01, 'e': 0.4143564888598116}",25,16,-11.39343146455034,"{0: 6, 1: 2, 2: 1, 3: 0, 4: 0}",1 +756,False,"{'a': 0.01, 'e': 0.4125683274075683}",25,0,-113.7245179840595,"{0: 18, 1: 0, 2: 4, 3: 1, 4: 2}",0 +757,False,"{'a': 0.01, 'e': 0.4107849416471734}",20,0,4.635923201814507,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +758,False,"{'a': 0.01, 'e': 0.40900634963270655}",20,12,2.761852164689545,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +759,False,"{'a': 0.01, 'e': 0.4072325690288009}",30,16,-45.84177551484462,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 1}",1 +760,False,"{'a': 0.01, 'e': 0.4054636171131948}",35,20,9.210847988179667,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +761,False,"{'a': 0.01, 'e': 0.40369951077929933}",30,3,-52.5608184069427,"{0: 22, 1: 1, 2: 2, 3: 1, 4: 1}",1 +762,False,"{'a': 0.01, 'e': 0.40194026653877923}",20,12,2.768788356638118,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +763,False,"{'a': 0.01, 'e': 0.40018590052414305}",25,0,3.080501997478077,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +764,False,"{'a': 0.01, 'e': 0.39843642849134897}",30,18,-12.290645207814855,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +765,False,"{'a': 0.01, 'e': 0.3966918658224172}",25,3,-60.75792926963582,"{0: 16, 1: 1, 2: 4, 3: 0, 4: 1}",1 +766,False,"{'a': 0.01, 'e': 0.39495222752805714}",30,4,-75.73186821887303,"{0: 20, 1: 1, 2: 2, 3: 2, 4: 1}",1 +767,False,"{'a': 0.01, 'e': 0.39321752825030165}",20,0,24.145092817662977,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +768,False,"{'a': 0.01, 'e': 0.3914877822651506}",20,14,6.071529759005793,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +769,False,"{'a': 0.01, 'e': 0.3897630034852252}",20,1,-38.90606314257549,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 0}",1 +770,False,"{'a': 0.01, 'e': 0.38804320546242776}",20,11,10.996844340234889,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +771,False,"{'a': 0.01, 'e': 0.3863284013906121}",30,12,9.76992237153356,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +772,False,"{'a': 0.01, 'e': 0.384618604108258}",30,2,-25.238195766952106,"{0: 24, 1: 0, 2: 2, 3: 2, 4: 0}",1 +773,False,"{'a': 0.01, 'e': 0.38291382610115365}",30,16,-12.984041631556583,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +774,False,"{'a': 0.01, 'e': 0.38121407950508623}",25,17,-7.506822045343468,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +775,False,"{'a': 0.01, 'e': 0.3795193761085328}",30,14,-5.401564919755444,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 0}",1 +776,False,"{'a': 0.01, 'e': 0.37782972735536213}",25,0,-67.19553056618436,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 2}",0 +777,False,"{'a': 0.01, 'e': 0.3761451443475361}",35,18,26.250260657955668,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +778,False,"{'a': 0.01, 'e': 0.3744656378478195}",35,19,19.02996748406047,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +779,False,"{'a': 0.01, 'e': 0.3727912182824893}",25,11,14.205405953431185,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +780,False,"{'a': 0.01, 'e': 0.3711218957440495}",20,7,26.306366921157334,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +781,False,"{'a': 0.01, 'e': 0.3694576799939493}",20,0,-24.93828475593337,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +782,False,"{'a': 0.01, 'e': 0.3677985804653001}",20,10,0.7240829188444182,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +783,False,"{'a': 0.01, 'e': 0.3661446062655985}",30,22,15.080266843564655,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +784,False,"{'a': 0.01, 'e': 0.36449576617944657}",20,0,8.282549257183192,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +785,False,"{'a': 0.01, 'e': 0.36285206867127606}",20,16,6.934794676189505,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +786,False,"{'a': 0.01, 'e': 0.3612135218880712}",25,8,-67.26229661002348,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 1}",1 +787,False,"{'a': 0.01, 'e': 0.3595801336620922}",30,8,-3.666288912498011,"{0: 19, 1: 0, 2: 2, 3: 1, 4: 0}",1 +788,False,"{'a': 0.01, 'e': 0.35795191151359906}",25,3,-23.551656590605116,"{0: 18, 1: 0, 2: 3, 3: 1, 4: 0}",1 +789,False,"{'a': 0.01, 'e': 0.3563288626535722}",20,12,-17.599876264166923,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 0}",1 +790,False,"{'a': 0.01, 'e': 0.3547109939864357}",30,18,24.803485164970212,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +791,False,"{'a': 0.01, 'e': 0.35309831211277454}",25,7,15.663711138106402,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +792,False,"{'a': 0.01, 'e': 0.3514908233320533}",25,4,7.451022484693091,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 0}",1 +793,False,"{'a': 0.01, 'e': 0.3498885336453318}",30,11,-19.469989269973908,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +794,False,"{'a': 0.01, 'e': 0.34829144875797624}",30,0,-4.4398274160953015,"{0: 27, 1: 0, 2: 1, 3: 2, 4: 0}",0 +795,False,"{'a': 0.01, 'e': 0.3466995740823703}",30,5,-0.03897616461851605,"{0: 20, 1: 3, 2: 2, 3: 0, 4: 0}",1 +796,False,"{'a': 0.01, 'e': 0.3451129147406189}",25,12,-29.937954299039667,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +797,False,"{'a': 0.01, 'e': 0.34353147556725316}",20,8,8.357254827476275,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +798,False,"{'a': 0.01, 'e': 0.34195526111192653}",25,2,22.651325503216846,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 0}",1 +799,False,"{'a': 0.01, 'e': 0.34038427564210916}",25,11,16.037075388540742,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +800,False,"{'a': 0.01, 'e': 0.33881852314577765}",35,9,-82.47206678980787,"{0: 20, 1: 0, 2: 4, 3: 0, 4: 2}",1 +801,False,"{'a': 0.01, 'e': 0.33725800733409794}",20,0,6.748592662058182,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +802,False,"{'a': 0.01, 'e': 0.3357027316441047}",25,13,0.709230074946565,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +803,False,"{'a': 0.01, 'e': 0.33415269924137325}",20,0,7.851309642090462,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +804,False,"{'a': 0.01, 'e': 0.3326079130226882}",20,6,-7.905745427327881,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +805,False,"{'a': 0.01, 'e': 0.3310683756187025}",25,6,22.77779898759889,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +806,False,"{'a': 0.01, 'e': 0.329534089396592}",20,8,-43.713883130835946,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 1}",1 +807,False,"{'a': 0.01, 'e': 0.3280050564627037}",25,17,14.501230742503875,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +808,False,"{'a': 0.01, 'e': 0.3264812786651943}",20,13,15.1366318477615,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +809,False,"{'a': 0.01, 'e': 0.32496275759666504}",30,23,11.926175521381648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +810,False,"{'a': 0.01, 'e': 0.32344949459678485}",25,2,-19.33884813682291,"{0: 19, 1: 0, 2: 3, 3: 1, 4: 0}",1 +811,False,"{'a': 0.01, 'e': 0.32194149075490963}",20,13,-37.750715465708645,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 1}",1 +812,False,"{'a': 0.01, 'e': 0.3204387469126899}",20,0,-13.04246968613377,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +813,False,"{'a': 0.01, 'e': 0.3189412636666724}",20,6,27.712009198867086,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +814,False,"{'a': 0.01, 'e': 0.3174490413708929}",25,0,-1.2917458074325265,"{0: 22, 1: 0, 2: 3, 3: 0, 4: 0}",0 +815,False,"{'a': 0.01, 'e': 0.31596208013945826}",20,6,11.49152218688877,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +816,False,"{'a': 0.01, 'e': 0.31448037984912225}",20,15,2.97339825109463,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +817,False,"{'a': 0.01, 'e': 0.3130039401418496}",20,1,33.196211492907715,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +818,False,"{'a': 0.01, 'e': 0.31153276042737177}",20,1,-29.795556585847926,"{0: 16, 1: 0, 2: 1, 3: 2, 4: 0}",1 +819,False,"{'a': 0.01, 'e': 0.310066839885734}",30,17,10.279860565692541,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +820,False,"{'a': 0.01, 'e': 0.3086061774698293}",20,12,12.203995168744049,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +821,False,"{'a': 0.01, 'e': 0.30715077190792683}",25,13,-21.02565476856723,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +822,False,"{'a': 0.01, 'e': 0.30570062170618506}",20,12,3.0960075798855167,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +823,False,"{'a': 0.01, 'e': 0.3042557251511594}",35,20,15.025358373991162,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +824,False,"{'a': 0.01, 'e': 0.30281608031229434}",20,10,7.403869296692442,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +825,False,"{'a': 0.01, 'e': 0.301381685044409}",20,12,11.898224049147016,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +826,False,"{'a': 0.01, 'e': 0.29995253699016944}",20,0,-22.945735947872297,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +827,False,"{'a': 0.01, 'e': 0.29852863358254944}",25,5,-50.93257210776709,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",1 +828,False,"{'a': 0.01, 'e': 0.29710997204728173}",20,8,23.94080510261545,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +829,False,"{'a': 0.01, 'e': 0.2956965494052961}",30,14,-51.79486339898598,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +830,False,"{'a': 0.01, 'e': 0.2942883624751471}",20,5,-35.00398093170737,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 1}",1 +831,False,"{'a': 0.01, 'e': 0.2928854078754287}",25,14,-2.7007059058601186,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +832,False,"{'a': 0.01, 'e': 0.291487682027178}",20,1,5.869372467978878,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +833,False,"{'a': 0.01, 'e': 0.29009518115626765}",25,11,-12.311908112657242,"{0: 10, 1: 2, 2: 2, 3: 0, 4: 0}",1 +834,False,"{'a': 0.01, 'e': 0.28870790129578305}",30,6,-35.07773730686557,"{0: 19, 1: 2, 2: 2, 3: 0, 4: 1}",1 +835,False,"{'a': 0.01, 'e': 0.2873258382883913}",25,0,-22.650327922682926,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +836,False,"{'a': 0.01, 'e': 0.28594898778869426}",20,15,-10.79236208413611,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +837,False,"{'a': 0.01, 'e': 0.2845773452655713}",20,10,1.9437095630880823,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +838,False,"{'a': 0.01, 'e': 0.28321090600450805}",20,3,6.279607405680126,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +839,False,"{'a': 0.01, 'e': 0.2818496651099127}",20,2,-19.366275498662354,"{0: 13, 1: 1, 2: 4, 3: 0, 4: 0}",1 +840,False,"{'a': 0.01, 'e': 0.28049361750742086}",25,0,-21.59391289440501,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +841,False,"{'a': 0.01, 'e': 0.27914275794618415}",20,8,21.929042679360307,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +842,False,"{'a': 0.01, 'e': 0.27779708100114997}",25,2,-39.99841729858513,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 1}",1 +843,False,"{'a': 0.01, 'e': 0.27645658107532367}",25,0,-1.3582332170258966,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +844,False,"{'a': 0.01, 'e': 0.2751212524020209}",20,5,-17.408088114438367,"{0: 12, 1: 1, 2: 1, 3: 1, 4: 0}",1 +845,False,"{'a': 0.01, 'e': 0.2737910890471057}",20,11,8.12715433058624,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +846,False,"{'a': 0.01, 'e': 0.27246608491121294}",25,15,11.178000289077271,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +847,False,"{'a': 0.01, 'e': 0.27114623373196156}",20,4,17.595362167458212,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +848,False,"{'a': 0.01, 'e': 0.26983152908614905}",20,14,11.500733798188676,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +849,False,"{'a': 0.01, 'e': 0.26852196439193765}",25,11,16.23139204592138,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +850,False,"{'a': 0.01, 'e': 0.2672175329110218}",20,0,11.26278757563464,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +851,False,"{'a': 0.01, 'e': 0.2659182277507851}",25,0,-18.5522496799545,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +852,False,"{'a': 0.01, 'e': 0.26462404186644317}",30,5,-34.05342669600836,"{0: 20, 1: 0, 2: 3, 3: 2, 4: 0}",1 +853,False,"{'a': 0.01, 'e': 0.26333496806317}",25,6,-13.71436802682869,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +854,False,"{'a': 0.01, 'e': 0.26205099899821427}",25,17,13.870922946180865,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +855,False,"{'a': 0.01, 'e': 0.26077212718299747}",25,11,2.4403913615641297,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +856,False,"{'a': 0.01, 'e': 0.25949834498520197}",20,0,-14.229405406250073,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +857,False,"{'a': 0.01, 'e': 0.2582296446308413}",35,13,4.5392612565537895,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 0}",1 +858,False,"{'a': 0.01, 'e': 0.25696601820631915}",30,0,9.797498143686678,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +859,False,"{'a': 0.01, 'e': 0.25570745766047287}",25,11,0.8775123282277253,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +860,False,"{'a': 0.01, 'e': 0.25445395480660205}",20,9,19.158458770766504,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +861,False,"{'a': 0.01, 'e': 0.25320550132448516}",20,1,20.02373207187317,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 0}",1 +862,False,"{'a': 0.01, 'e': 0.2519620887623786}",25,14,-37.55072259792682,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 1}",1 +863,False,"{'a': 0.01, 'e': 0.2507237085390054}",20,13,-29.05317629767267,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +864,False,"{'a': 0.01, 'e': 0.24949035194552505}",25,7,20.46031469565138,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +865,False,"{'a': 0.01, 'e': 0.24826201014749294}",20,3,12.393878322445843,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +866,False,"{'a': 0.01, 'e': 0.24703867418680403}",30,11,-46.72126920985489,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 1}",1 +867,False,"{'a': 0.01, 'e': 0.24582033498361988}",30,13,33.04271995494138,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +868,False,"{'a': 0.01, 'e': 0.24460698333828623}",20,10,11.268662720101165,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +869,False,"{'a': 0.01, 'e': 0.24339860993323026}",25,13,-3.4163037233633444,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +870,False,"{'a': 0.01, 'e': 0.24219520533484817}",20,10,0.4171683112805784,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +871,False,"{'a': 0.01, 'e': 0.2409967599953765}",20,15,2.755181748988516,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +872,False,"{'a': 0.01, 'e': 0.23980326425474763}",30,12,-21.80094265614823,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +873,False,"{'a': 0.01, 'e': 0.23861470834243426}",25,7,17.93818923430383,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +874,False,"{'a': 0.01, 'e': 0.23743108237927502}",20,15,7.908211821148903,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +875,False,"{'a': 0.01, 'e': 0.23625237637929042}",20,0,-40.85312508994896,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",1 +876,False,"{'a': 0.01, 'e': 0.2350785802514801}",20,7,-15.495243332451288,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +877,False,"{'a': 0.01, 'e': 0.23390968380160793}",20,6,-0.8980089223484582,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +878,False,"{'a': 0.01, 'e': 0.23274567673397362}",30,24,8.976708393385108,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +879,False,"{'a': 0.01, 'e': 0.2315865486531663}",20,10,7.434772907559121,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +880,False,"{'a': 0.01, 'e': 0.23043228906580804}",20,11,15.5621389189445,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +881,False,"{'a': 0.01, 'e': 0.22928288738227942}",20,11,16.195219162328723,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +882,False,"{'a': 0.01, 'e': 0.22813833291843344}",20,3,31.99302356419462,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +883,False,"{'a': 0.01, 'e': 0.22699861489729278}",30,22,2.8841366438025964,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +884,False,"{'a': 0.01, 'e': 0.22586372245073438}",25,0,29.752545492697728,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +885,False,"{'a': 0.01, 'e': 0.22473364462115974}",20,15,8.573542573629908,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +886,False,"{'a': 0.01, 'e': 0.22360837036314907}",20,3,-26.47204076231206,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +887,False,"{'a': 0.01, 'e': 0.22248788854510382}",20,10,19.487283852455413,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +888,False,"{'a': 0.01, 'e': 0.221372187950873}",25,0,-54.62295316644518,"{0: 19, 1: 0, 2: 4, 3: 2, 4: 0}",0 +889,False,"{'a': 0.01, 'e': 0.2202612572813657}",25,7,-4.931798287034175,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +890,False,"{'a': 0.01, 'e': 0.2191550851561509}",20,5,-13.126849608259386,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +891,False,"{'a': 0.01, 'e': 0.21805366011504057}",30,11,7.551220191931568,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +892,False,"{'a': 0.01, 'e': 0.21695697061966168}",25,9,-2.86369950031434,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +893,False,"{'a': 0.01, 'e': 0.2158650050550105}",30,2,-22.592302196768273,"{0: 25, 1: 0, 2: 2, 3: 0, 4: 1}",1 +894,False,"{'a': 0.01, 'e': 0.21477775173099756}",30,0,-9.78884085582136,"{0: 28, 1: 1, 2: 0, 3: 0, 4: 1}",0 +895,False,"{'a': 0.01, 'e': 0.2136951988839737}",35,14,25.142462053023714,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +896,False,"{'a': 0.01, 'e': 0.21261733467824573}",30,23,13.527227149938817,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +897,False,"{'a': 0.01, 'e': 0.2115441472075772}",25,17,7.6543672704854915,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +898,False,"{'a': 0.01, 'e': 0.210475624496674}",20,14,13.736368379306445,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +899,False,"{'a': 0.01, 'e': 0.2094117545026587}",25,18,13.24161618428595,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +900,False,"{'a': 0.01, 'e': 0.20835252511652813}",20,7,-21.085741223519108,"{0: 10, 1: 1, 2: 1, 3: 1, 4: 0}",1 +901,False,"{'a': 0.01, 'e': 0.20729792416460047}",25,8,30.546353223055124,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +902,False,"{'a': 0.01, 'e': 0.20624793940994546}",25,14,-14.011637552376305,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +903,False,"{'a': 0.01, 'e': 0.20520255855380332}",20,7,13.542562055956989,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +904,False,"{'a': 0.01, 'e': 0.2041617692369897}",30,20,10.241019995995945,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +905,False,"{'a': 0.01, 'e': 0.2031255590412856}",20,8,21.181005185533486,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +906,False,"{'a': 0.01, 'e': 0.20209391549081623}",20,2,13.78563150147853,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +907,False,"{'a': 0.01, 'e': 0.20106682605341386}",25,19,11.358727013395946,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +908,False,"{'a': 0.01, 'e': 0.20004427814197}",20,3,-6.72451226035097,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +909,False,"{'a': 0.01, 'e': 0.199026259115772}",20,12,16.600656663377258,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +910,False,"{'a': 0.01, 'e': 0.19801275628182713}",25,10,16.58465180599423,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +911,False,"{'a': 0.01, 'e': 0.1970037568961749}",25,10,18.841567814430594,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +912,False,"{'a': 0.01, 'e': 0.19599924816518344}",25,19,-30.39356450681143,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +913,False,"{'a': 0.01, 'e': 0.1949992172468359}",20,9,22.18527795295183,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +914,False,"{'a': 0.01, 'e': 0.19400365125200092}",25,7,31.984928553593242,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +915,False,"{'a': 0.01, 'e': 0.19301253724569223}",25,7,30.913082096007066,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +916,False,"{'a': 0.01, 'e': 0.1920258622483152}",20,10,15.372334944067061,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +917,False,"{'a': 0.01, 'e': 0.19104361323689878}",25,20,7.759359517147451,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +918,False,"{'a': 0.01, 'e': 0.19006577714631723}",30,20,18.616811427855637,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +919,False,"{'a': 0.01, 'e': 0.18909234087049664}",25,8,-0.5332287039836119,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +920,False,"{'a': 0.01, 'e': 0.18812329126361105}",25,20,9.187042061048288,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +921,False,"{'a': 0.01, 'e': 0.18715861514126442}",20,8,18.59059397095973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +922,False,"{'a': 0.01, 'e': 0.18619829928166065}",20,0,6.020112542164984,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +923,False,"{'a': 0.01, 'e': 0.18524233042676153}",20,0,8.92258368237329,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +924,False,"{'a': 0.01, 'e': 0.18429069528343112}",35,1,29.923072332753392,"{0: 33, 1: 0, 2: 0, 3: 1, 4: 0}",1 +925,False,"{'a': 0.01, 'e': 0.1833433805245701}",20,0,6.357422401603255,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +926,False,"{'a': 0.01, 'e': 0.18240037279023447}",25,10,-3.9331910126931637,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +927,False,"{'a': 0.01, 'e': 0.18146165868874575}",20,9,10.092741381290162,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +928,False,"{'a': 0.01, 'e': 0.1805272247977866}",25,13,6.662346525626604,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +929,False,"{'a': 0.01, 'e': 0.17959705766548462}",30,19,-44.408764639591155,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 1}",1 +930,False,"{'a': 0.01, 'e': 0.1786711438114862}",25,19,14.431260903125285,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +931,False,"{'a': 0.01, 'e': 0.1777494697280152}",20,0,22.370843469443546,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +932,False,"{'a': 0.01, 'e': 0.1768320218809234}",25,17,14.737291683857139,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +933,False,"{'a': 0.01, 'e': 0.1759187867107258}",20,11,16.229916115850887,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +934,False,"{'a': 0.01, 'e': 0.1750097506336269}",20,12,14.207698998230189,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +935,False,"{'a': 0.01, 'e': 0.17410490004253387}",25,15,4.306452782830839,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +936,False,"{'a': 0.01, 'e': 0.17320422130805835}",25,15,18.70519916325297,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +937,False,"{'a': 0.01, 'e': 0.1723077007795082}",25,0,17.465708484148635,"{0: 24, 1: 0, 2: 0, 3: 1, 4: 0}",0 +938,False,"{'a': 0.01, 'e': 0.17141532478586474}",25,17,12.103648644322837,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +939,False,"{'a': 0.01, 'e': 0.17052707963675295}",25,4,5.2361851870843825,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +940,False,"{'a': 0.01, 'e': 0.16964295162339604}",25,0,-77.73875744073153,"{0: 21, 1: 0, 2: 1, 3: 1, 4: 2}",0 +941,False,"{'a': 0.01, 'e': 0.16876292701956186}",20,0,23.2344881745389,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +942,False,"{'a': 0.01, 'e': 0.16788699208249758}",20,11,15.828544646258534,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +943,False,"{'a': 0.01, 'e': 0.16701513305385218}",20,3,-21.642972789853843,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +944,False,"{'a': 0.01, 'e': 0.1661473361605894}",25,11,-22.64946769142606,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +945,False,"{'a': 0.01, 'e': 0.1652835876158888}",20,9,9.104758604939814,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +946,False,"{'a': 0.01, 'e': 0.16442387362003685}",25,8,18.71643731833999,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +947,False,"{'a': 0.01, 'e': 0.1635681803613065}",25,7,26.586938338544687,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +948,False,"{'a': 0.01, 'e': 0.16271649401682642}",35,18,0.06071172624782584,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +949,False,"{'a': 0.01, 'e': 0.16186880075344023}",25,17,11.231971331010573,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +950,False,"{'a': 0.01, 'e': 0.16102508672855398}",25,13,20.63690181143565,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +951,False,"{'a': 0.01, 'e': 0.16018533809097435}",30,18,25.51949252484294,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +952,False,"{'a': 0.01, 'e': 0.1593495409817357}",30,20,18.480695075607414,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +953,False,"{'a': 0.01, 'e': 0.15851768153491752}",20,16,7.535725182268314,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +954,False,"{'a': 0.01, 'e': 0.15768974587845086}",20,5,5.091603382125614,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +955,False,"{'a': 0.01, 'e': 0.1568657201349153}",20,10,22.85338245723212,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +956,False,"{'a': 0.01, 'e': 0.1560455904223257}",25,16,16.043207985936018,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +957,False,"{'a': 0.01, 'e': 0.15522934285490875}",25,16,-21.634497155211452,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +958,False,"{'a': 0.01, 'e': 0.1544169635438698}",20,13,2.199533665800133,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +959,False,"{'a': 0.01, 'e': 0.15360843859814932}",25,13,24.461456978582238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +960,False,"{'a': 0.01, 'e': 0.15280375412517122}",35,20,24.983241428047577,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +961,False,"{'a': 0.01, 'e': 0.1520028962315788}",25,8,-2.9125391302152286,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +962,False,"{'a': 0.01, 'e': 0.15120585102396367}",25,11,-24.887800856805207,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +963,False,"{'a': 0.01, 'e': 0.15041260460958372}",30,10,38.64146451325732,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +964,False,"{'a': 0.01, 'e': 0.14962314309707203}",20,10,-22.52299576190186,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +965,False,"{'a': 0.01, 'e': 0.1488374525971361}",25,14,11.936500609569329,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +966,False,"{'a': 0.01, 'e': 0.14805551922324833}",20,0,-9.339710278471587,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +967,False,"{'a': 0.01, 'e': 0.14727732909232616}",25,13,21.66722331188653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +968,False,"{'a': 0.01, 'e': 0.14650286832540504}",20,1,33.48082331570289,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +969,False,"{'a': 0.01, 'e': 0.14573212304829986}",20,4,4.735389445787965,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +970,False,"{'a': 0.01, 'e': 0.144965079392259}",30,3,40.245692563311515,"{0: 26, 1: 1, 2: 0, 3: 0, 4: 0}",1 +971,False,"{'a': 0.01, 'e': 0.14420172349460902}",25,16,18.112875185474554,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +972,False,"{'a': 0.01, 'e': 0.14344204149939066}",20,9,21.20452759461311,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +973,False,"{'a': 0.01, 'e': 0.14268601955798477}",20,8,20.882792045177887,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +974,False,"{'a': 0.01, 'e': 0.14193364382973173}",25,11,10.371777609595846,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +975,False,"{'a': 0.01, 'e': 0.14118490048254073}",30,16,-13.3520275072059,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +976,False,"{'a': 0.01, 'e': 0.14043977569348987}",20,0,22.341338042075147,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +977,False,"{'a': 0.01, 'e': 0.13969825564942018}",20,0,37.10135216786027,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +978,False,"{'a': 0.01, 'e': 0.138960326547518}",20,16,5.987351209484513,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +979,False,"{'a': 0.01, 'e': 0.13822597459589214}",25,7,11.552413821641597,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +980,False,"{'a': 0.01, 'e': 0.13749518601414001}",35,18,30.84150202553068,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +981,False,"{'a': 0.01, 'e': 0.1367679470339075}",25,11,4.630212540434815,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +982,False,"{'a': 0.01, 'e': 0.13604424389943992}",20,10,17.157627489971777,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +983,False,"{'a': 0.01, 'e': 0.13532406286812448}",20,7,7.6825584540414535,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +984,False,"{'a': 0.01, 'e': 0.13460739021102563}",35,0,20.247331295419635,"{0: 33, 1: 0, 2: 1, 3: 1, 4: 0}",0 +985,False,"{'a': 0.01, 'e': 0.1338942122134118}",20,10,-25.09176630709178,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +986,False,"{'a': 0.01, 'e': 0.13318451517527474}",25,16,10.719071631328626,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +987,False,"{'a': 0.01, 'e': 0.13247828541184037}",20,5,14.471734747194537,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +988,False,"{'a': 0.01, 'e': 0.13177550925407255}",20,11,-25.31195915919449,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +989,False,"{'a': 0.01, 'e': 0.1310761730491693}",25,10,28.698240082875905,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +990,False,"{'a': 0.01, 'e': 0.13038026316105045}",20,0,26.167240564452545,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +991,False,"{'a': 0.01, 'e': 0.1296877659708393}",20,6,14.01385258360073,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +992,False,"{'a': 0.01, 'e': 0.12899866787733505}",20,3,13.581082944526996,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +993,False,"{'a': 0.01, 'e': 0.1283129552974791}",20,15,7.8018719756896235,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +994,False,"{'a': 0.01, 'e': 0.12763061466681425}",25,1,14.95085005596269,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 0}",1 +995,False,"{'a': 0.01, 'e': 0.1269516324399349}",30,14,28.613301747820557,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +996,False,"{'a': 0.01, 'e': 0.12627599509093268}",20,11,-0.46313346825356505,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +997,False,"{'a': 0.01, 'e': 0.12560368911383202}",20,12,1.917780415845042,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +998,False,"{'a': 0.01, 'e': 0.12493470102302173}",30,8,32.90125919040618,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +999,False,"{'a': 0.01, 'e': 0.1242690173536769}",20,1,20.95907005562416,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1000,False,"{'a': 0.01, 'e': 0.12360662466217542}",25,13,12.420952029529296,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1001,False,"{'a': 0.01, 'e': 0.12294750952650757}",25,18,14.341189974319281,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1002,False,"{'a': 0.01, 'e': 0.12229165854667823}",30,12,29.603802769372358,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1003,False,"{'a': 0.01, 'e': 0.12163905834510291}",20,8,20.00535880741419,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1004,False,"{'a': 0.01, 'e': 0.12098969556699646}",30,17,27.981191863766913,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1005,False,"{'a': 0.01, 'e': 0.12034355688075649}",25,7,21.024033399460215,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1006,False,"{'a': 0.01, 'e': 0.11970062897833855}",20,4,23.620817035501826,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1007,False,"{'a': 0.01, 'e': 0.11906089857562585}",20,3,-3.8826320707166198,"{0: 14, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1008,False,"{'a': 0.01, 'e': 0.11842435241279348}",25,11,28.618523870067044,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1009,False,"{'a': 0.01, 'e': 0.11779097725466359}",25,7,6.208911032590073,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1010,False,"{'a': 0.01, 'e': 0.11716075989105756}",20,3,28.740858654084487,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1011,False,"{'a': 0.01, 'e': 0.11653368713713952}",25,20,9.734859021270308,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1012,False,"{'a': 0.01, 'e': 0.1159097458337549}",20,8,18.827520603936676,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1013,False,"{'a': 0.01, 'e': 0.11528892284776227}",25,18,11.60871329689325,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1014,False,"{'a': 0.01, 'e': 0.11467120507235995}",30,13,25.911194153416584,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1015,False,"{'a': 0.01, 'e': 0.11405657942740621}",35,17,27.803218201973802,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1016,False,"{'a': 0.01, 'e': 0.11344503285973284}",30,16,15.923484772342844,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1017,False,"{'a': 0.01, 'e': 0.1128365523434548}",25,0,30.981962537365966,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1018,False,"{'a': 0.01, 'e': 0.11223112488027176}",20,15,8.690824351920224,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1019,False,"{'a': 0.01, 'e': 0.11162873749976576}",30,18,8.869749226739579,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1020,False,"{'a': 0.01, 'e': 0.11102937725969231}",20,8,19.98841020049251,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1021,False,"{'a': 0.01, 'e': 0.11043303124626591}",25,12,15.059060287334985,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1022,False,"{'a': 0.01, 'e': 0.10983968657444088}",35,13,17.287771859484344,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1023,False,"{'a': 0.01, 'e': 0.10924933038818518}",30,18,27.095431655692305,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1024,False,"{'a': 0.01, 'e': 0.1086619498607504}",25,16,15.634990283514021,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1025,False,"{'a': 0.01, 'e': 0.10807753219493499}",25,11,11.41204227477299,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1026,False,"{'a': 0.01, 'e': 0.1074960646233436}",20,8,21.462623605798754,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1027,False,"{'a': 0.01, 'e': 0.10691753440863971}",20,9,23.289329179947813,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1028,False,"{'a': 0.01, 'e': 0.10634192884379434}",25,11,21.85926958178881,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1029,False,"{'a': 0.01, 'e': 0.10576923525232884}",25,3,37.779771669405434,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1030,False,"{'a': 0.01, 'e': 0.1051994409885525}",20,4,18.784266470768053,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1031,False,"{'a': 0.01, 'e': 0.104632533437796}",25,8,19.47944175673809,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1032,False,"{'a': 0.01, 'e': 0.10406850001663892}",20,7,21.488523320758397,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1033,False,"{'a': 0.01, 'e': 0.10350732817313268}",20,15,8.860628900906399,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1034,False,"{'a': 0.01, 'e': 0.10294900538701923}",25,17,16.286165737179132,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1035,False,"{'a': 0.01, 'e': 0.10239351916994366}",30,11,29.021232309925864,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1036,False,"{'a': 0.01, 'e': 0.10184085706566326}",20,8,21.583462915694405,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1037,False,"{'a': 0.01, 'e': 0.10129100665025104}",20,6,-14.538652995107169,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1038,False,"{'a': 0.01, 'e': 0.1007439555322952}",25,5,10.112363134069874,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1039,False,"{'a': 0.01, 'e': 0.10019969135309348}",20,8,24.263160495006154,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1040,False,"{'a': 0.01, 'e': 0.09965820178684348}",20,10,20.616245920238715,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1041,False,"{'a': 0.01, 'e': 0.09911947454082792}",30,18,15.624072574346755,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1042,False,"{'a': 0.01, 'e': 0.0985834973555958}",30,12,24.19756643739418,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1043,False,"{'a': 0.01, 'e': 0.09805025800513956}",25,0,3.381688252260454,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +1044,False,"{'a': 0.01, 'e': 0.09751974429706656}",30,18,24.220816648542982,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1045,False,"{'a': 0.01, 'e': 0.09699194407276801}",20,6,25.209070351496173,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1046,False,"{'a': 0.01, 'e': 0.09646684520758242}",20,5,14.004034305261527,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1047,False,"{'a': 0.01, 'e': 0.09594443561095478}",20,12,16.8955786421104,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1048,False,"{'a': 0.01, 'e': 0.09542470322659324}",20,15,9.382080137496986,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1049,False,"{'a': 0.01, 'e': 0.09490763603261898}",20,7,-41.40668495220717,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1050,False,"{'a': 0.01, 'e': 0.09439322204171474}",20,11,17.495307370144147,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1051,False,"{'a': 0.01, 'e': 0.09388144930126752}",35,12,19.595987078218485,"{0: 22, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1052,False,"{'a': 0.01, 'e': 0.09337230589350787}",25,16,18.1975632453185,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1053,False,"{'a': 0.01, 'e': 0.09286577993564604}",20,13,10.9843865430126,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1054,False,"{'a': 0.01, 'e': 0.09236185958000254}",20,5,15.555313965413252,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1055,False,"{'a': 0.01, 'e': 0.09186053301413677}",30,20,21.60404109071732,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1056,False,"{'a': 0.01, 'e': 0.09136178846097065}",25,8,17.90197543690961,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1057,False,"{'a': 0.01, 'e': 0.09086561417890882}",25,11,2.5352657524461932,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1058,False,"{'a': 0.01, 'e': 0.09037199846195543}",20,12,13.358967812874049,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1059,False,"{'a': 0.01, 'e': 0.08988092963982675}",20,0,-12.337457750568065,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +1060,False,"{'a': 0.01, 'e': 0.08939239607806126}",20,8,19.90294194900425,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1061,False,"{'a': 0.01, 'e': 0.08890638617812452}",20,1,32.07801391931591,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1062,False,"{'a': 0.01, 'e': 0.08842288837751222}",20,12,6.5666374226364965,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1063,False,"{'a': 0.01, 'e': 0.0879418911498484}",25,12,-16.62459683740444,"{0: 11, 1: 0, 2: 0, 3: 2, 4: 0}",1 +1064,False,"{'a': 0.01, 'e': 0.08746338300498147}",20,11,2.8112847097000726,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1065,False,"{'a': 0.01, 'e': 0.08698735248907596}",25,20,11.448588603065092,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1066,False,"{'a': 0.01, 'e': 0.08651378818470112}",20,2,11.362551582119462,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1067,False,"{'a': 0.01, 'e': 0.08604267871091675}",25,2,35.63226032365368,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1068,False,"{'a': 0.01, 'e': 0.08557401272335485}",25,8,18.003687466549014,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1069,False,"{'a': 0.01, 'e': 0.08510777891429888}",20,0,30.18840400307681,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1070,False,"{'a': 0.01, 'e': 0.08464396601275981}",20,6,26.667033880206887,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1071,False,"{'a': 0.01, 'e': 0.08418256278454794}",20,11,16.098281595577483,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1072,False,"{'a': 0.01, 'e': 0.08372355803234366}",20,7,14.56663461225693,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1073,False,"{'a': 0.01, 'e': 0.08326694059576267}",20,14,13.860950828496495,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1074,False,"{'a': 0.01, 'e': 0.08281269935142088}",20,4,25.582525244071444,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1075,False,"{'a': 0.01, 'e': 0.08236082321299365}",25,11,29.45901656659007,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1076,False,"{'a': 0.01, 'e': 0.08191130113127432}",25,17,19.11418858055569,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1077,False,"{'a': 0.01, 'e': 0.08146412209422838}",25,11,21.27911794569332,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1078,False,"{'a': 0.01, 'e': 0.08101927512704576}",25,17,13.372542037812789,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1079,False,"{'a': 0.01, 'e': 0.0805767492921895}",35,18,35.77361996538167,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1080,False,"{'a': 0.01, 'e': 0.0801365336894424}",20,8,23.044614645425956,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1081,False,"{'a': 0.01, 'e': 0.07969861745595008}",35,13,37.74940681154342,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1082,False,"{'a': 0.01, 'e': 0.07926298976626212}",20,10,-21.183061668219505,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1083,False,"{'a': 0.01, 'e': 0.07882963983237024}",20,16,6.492402169124967,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1084,False,"{'a': 0.01, 'e': 0.07839855690374342}",25,15,7.122615560071003,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1085,False,"{'a': 0.01, 'e': 0.07796973026736131}",20,5,18.502852794464435,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1086,False,"{'a': 0.01, 'e': 0.07754314924774419}",25,17,14.850162524816163,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1087,False,"{'a': 0.01, 'e': 0.07711880320698083}",20,3,26.072303657047474,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1088,False,"{'a': 0.01, 'e': 0.07669668154475417}",20,10,18.81570246329118,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1089,False,"{'a': 0.01, 'e': 0.07627677369836361}",30,22,15.838826443072954,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1090,False,"{'a': 0.01, 'e': 0.07585906914274565}",20,13,15.16550438373643,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1091,False,"{'a': 0.01, 'e': 0.07544355739049236}",20,10,5.373824038349319,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1092,False,"{'a': 0.01, 'e': 0.07503022799186632}",20,3,-8.792819479311856,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1093,False,"{'a': 0.01, 'e': 0.07461907053481454}",25,3,35.25823311468217,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1094,False,"{'a': 0.01, 'e': 0.07421007464497908}",30,13,21.51830884743907,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1095,False,"{'a': 0.01, 'e': 0.07380322998570621}",20,0,26.457863445950505,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1096,False,"{'a': 0.01, 'e': 0.07339852625805288}",25,8,14.981835347963866,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1097,False,"{'a': 0.01, 'e': 0.07299595320079066}",20,0,30.941669759141007,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1098,False,"{'a': 0.01, 'e': 0.07259550059040887}",20,2,26.97398154094694,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1099,False,"{'a': 0.01, 'e': 0.07219715824111328}",25,9,30.75940996212405,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1100,False,"{'a': 0.01, 'e': 0.07180091600482552}",20,14,10.444667128831616,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1101,False,"{'a': 0.01, 'e': 0.07140676377117783}",20,13,4.531794903434335,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1102,False,"{'a': 0.01, 'e': 0.07101469146750772}",25,17,3.3955678669798486,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1103,False,"{'a': 0.01, 'e': 0.07062468905884889}",20,14,9.369022664538873,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1104,False,"{'a': 0.01, 'e': 0.070236746547922}",30,14,16.407666216512013,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1105,False,"{'a': 0.01, 'e': 0.06985085397512203}",20,11,18.937145528852508,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1106,False,"{'a': 0.01, 'e': 0.06946700141850415}",25,10,18.01612229704691,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1107,False,"{'a': 0.01, 'e': 0.0690851789937682}",20,10,6.941773371225155,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1108,False,"{'a': 0.01, 'e': 0.06870537685424039}",20,2,17.085510990903895,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1109,False,"{'a': 0.01, 'e': 0.06832758519085402}",20,3,27.104310650437125,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1110,False,"{'a': 0.01, 'e': 0.06795179423212783}",20,6,27.132368053713414,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1111,False,"{'a': 0.01, 'e': 0.06757799424414279}",20,10,17.52278669520186,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1112,False,"{'a': 0.01, 'e': 0.06720617553051722}",20,14,9.751033680901662,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1113,False,"{'a': 0.01, 'e': 0.06683632843237963}",20,13,10.9199217788983,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1114,False,"{'a': 0.01, 'e': 0.06646844332834079}",20,9,19.28174345549649,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1115,False,"{'a': 0.01, 'e': 0.06610251063446326}",30,16,-14.553411461476344,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1116,False,"{'a': 0.01, 'e': 0.0657385208042297}",20,2,26.86955858324122,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1117,False,"{'a': 0.01, 'e': 0.06537646432850974}",25,10,25.72404992100097,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1118,False,"{'a': 0.01, 'e': 0.06501633173552424}",25,13,18.079492781842823,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1119,False,"{'a': 0.01, 'e': 0.06465811359080964}",20,6,25.984571569864414,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1120,False,"{'a': 0.01, 'e': 0.06430180049717926}",25,13,22.71518579247235,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1121,False,"{'a': 0.01, 'e': 0.06394738309468373}",20,0,32.23973475988012,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1122,False,"{'a': 0.01, 'e': 0.0635948520605698}",25,12,20.60206381344801,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1123,False,"{'a': 0.01, 'e': 0.06324419810923798}",25,19,13.00460739880784,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1124,False,"{'a': 0.01, 'e': 0.06289541199219817}",25,14,15.506253625242426,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1125,False,"{'a': 0.01, 'e': 0.06254848449802419}",25,9,-9.062037036829981,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1126,False,"{'a': 0.01, 'e': 0.062203406452307264}",20,13,14.145750599126545,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1127,False,"{'a': 0.01, 'e': 0.0618601687176068}",20,4,29.555923741604687,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1128,False,"{'a': 0.01, 'e': 0.06151876219340191}",20,16,7.167307841795409,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1129,False,"{'a': 0.01, 'e': 0.061179177816039654}",25,16,17.418171149424133,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1130,False,"{'a': 0.01, 'e': 0.060841406558682865}",30,21,15.803548859248586,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1131,False,"{'a': 0.01, 'e': 0.060505439431256636}",30,16,25.41736811767189,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1132,False,"{'a': 0.01, 'e': 0.060171267480393587}",30,17,20.471749651234205,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1133,False,"{'a': 0.01, 'e': 0.05983888178937746}",20,8,24.207824667321177,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1134,False,"{'a': 0.01, 'e': 0.05950827347808629}",20,13,10.712780878511172,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1135,False,"{'a': 0.01, 'e': 0.059179433702933104}",20,9,21.984491552497126,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1136,False,"{'a': 0.01, 'e': 0.05885235365680708}",20,14,-1.0631031657477665,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1137,False,"{'a': 0.01, 'e': 0.05852702456901204}",20,9,24.018901814182964,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1138,False,"{'a': 0.01, 'e': 0.05820343770520453}",30,3,1.5370607047581315,"{0: 23, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1139,False,"{'a': 0.01, 'e': 0.05788158436733115}",20,10,17.62884303914817,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1140,False,"{'a': 0.01, 'e': 0.05756145589356365}",20,14,12.811913443668526,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1141,False,"{'a': 0.01, 'e': 0.057243043658234294}",25,13,22.18765859127382,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1142,False,"{'a': 0.01, 'e': 0.056926339071768584}",25,13,16.13298530850949,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1143,False,"{'a': 0.01, 'e': 0.05661133358061898}",30,12,30.18788871323172,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1144,False,"{'a': 0.01, 'e': 0.05629801866719564}",20,13,12.895416362315352,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1145,False,"{'a': 0.01, 'e': 0.05598638584979709}",30,18,24.991316017882152,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1146,False,"{'a': 0.01, 'e': 0.05567642668254025}",20,6,28.772008292512293,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1147,False,"{'a': 0.01, 'e': 0.0553681327552884}",25,11,18.96017682352176,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1148,False,"{'a': 0.01, 'e': 0.05506149569357954}",25,13,24.515840390732745,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1149,False,"{'a': 0.01, 'e': 0.0547565071585524}",25,20,7.434445163982425,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1150,False,"{'a': 0.01, 'e': 0.05445315884687296}",20,14,10.074320731523006,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1151,False,"{'a': 0.01, 'e': 0.05415144249065906}",25,14,24.999003647795742,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1152,False,"{'a': 0.01, 'e': 0.05385134985740425}",20,6,28.554131000364357,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1153,False,"{'a': 0.01, 'e': 0.05355287274990139}",20,13,11.696072416737952,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1154,False,"{'a': 0.01, 'e': 0.053256003006165065}",25,14,21.11413610569779,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1155,False,"{'a': 0.01, 'e': 0.052960732499352514}",20,16,7.79875646166753,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1156,False,"{'a': 0.01, 'e': 0.05266705313768516}",30,18,25.594003498041392,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1157,False,"{'a': 0.01, 'e': 0.052374956864367994}",20,14,11.318075772147443,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1158,False,"{'a': 0.01, 'e': 0.052084435657508976}",25,17,11.732620747582448,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1159,False,"{'a': 0.01, 'e': 0.051795481530037435}",25,10,14.799367153043983,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1160,False,"{'a': 0.01, 'e': 0.05150808652962191}",20,3,-10.870204436002314,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1161,False,"{'a': 0.01, 'e': 0.051222242738586554}",30,22,11.760773685864415,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1162,False,"{'a': 0.01, 'e': 0.05093794227382831}",25,15,17.461012667419194,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1163,False,"{'a': 0.01, 'e': 0.05065517728673141}",25,7,33.157866641452905,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1164,False,"{'a': 0.01, 'e': 0.050373939963083036}",20,8,15.0528571458627,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1165,False,"{'a': 0.01, 'e': 0.05009422252298734}",20,2,17.266056407258844,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1166,False,"{'a': 0.01, 'e': 0.04981601722077866}",30,19,20.18164527664773,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1167,False,"{'a': 0.01, 'e': 0.049539316344934914}",30,8,30.390351855237626,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1168,False,"{'a': 0.01, 'e': 0.049264112217989764}",20,6,20.03176324109552,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1169,False,"{'a': 0.01, 'e': 0.04899039719644416}",25,17,17.84375908895999,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1170,False,"{'a': 0.01, 'e': 0.048718163670677495}",20,9,18.330379169038583,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1171,False,"{'a': 0.01, 'e': 0.04844740406485848}",20,7,25.20625446109747,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1172,False,"{'a': 0.01, 'e': 0.04817811083685475}",25,14,18.650492634243584,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1173,False,"{'a': 0.01, 'e': 0.04791027647814228}",20,7,13.67277587270611,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1174,False,"{'a': 0.01, 'e': 0.047643893513714564}",20,0,-11.153647059636754,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +1175,False,"{'a': 0.01, 'e': 0.04737895450199081}",25,8,29.587655076568286,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1176,False,"{'a': 0.01, 'e': 0.04711545203472378}",30,22,11.7845943343642,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1177,False,"{'a': 0.01, 'e': 0.046853378736907314}",20,11,9.99904165039063,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1178,False,"{'a': 0.01, 'e': 0.04659272726668284}",20,15,8.070849018434265,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1179,False,"{'a': 0.01, 'e': 0.04633349031524636}",25,12,22.164005007580275,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1180,False,"{'a': 0.01, 'e': 0.04607566060675394}",20,3,27.621891899337115,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1181,False,"{'a': 0.01, 'e': 0.04581923089822748}",20,10,22.821656075509953,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1182,False,"{'a': 0.01, 'e': 0.04556419397945932}",30,16,27.120805379273122,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1183,False,"{'a': 0.01, 'e': 0.045310542672917786}",20,8,24.310721784996538,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1184,False,"{'a': 0.01, 'e': 0.04505826983365058}",35,18,31.464430913691746,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1185,False,"{'a': 0.01, 'e': 0.04480736834918908}",20,14,13.740582259866796,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1186,False,"{'a': 0.01, 'e': 0.044557831139451554}",25,16,17.49768199604239,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1187,False,"{'a': 0.01, 'e': 0.044309651156646535}",20,7,25.937970280764567,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1188,False,"{'a': 0.01, 'e': 0.04406282138517548}",35,20,29.84329473549057,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1189,False,"{'a': 0.01, 'e': 0.043817334841534605}",20,10,-19.460000930048746,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1190,False,"{'a': 0.01, 'e': 0.043573184574217994}",20,10,20.089524047733367,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1191,False,"{'a': 0.01, 'e': 0.0433303636636182}",30,14,33.83442462170408,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1192,False,"{'a': 0.01, 'e': 0.04308886522192823}",25,10,24.021805983381267,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1193,False,"{'a': 0.01, 'e': 0.042848682393042625}",25,20,13.466952282936422,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1194,False,"{'a': 0.01, 'e': 0.04260980835245798}",20,14,9.51627164443508,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1195,False,"{'a': 0.01, 'e': 0.04237223630717357}",30,12,34.082217620916545,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1196,False,"{'a': 0.01, 'e': 0.04213595949559157}",20,12,-7.274626021169073,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1197,False,"{'a': 0.01, 'e': 0.04190097118741709}",30,19,21.23179154867458,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1198,False,"{'a': 0.01, 'e': 0.041667264683557415}",20,7,22.42464532225459,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1199,False,"{'a': 0.01, 'e': 0.04143483331602216}",30,18,19.805227538086665,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1200,False,"{'a': 0.01, 'e': 0.041203670447821916}",20,10,18.83195776783008,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1201,False,"{'a': 0.01, 'e': 0.04097376947286724}",25,16,14.956276981796627,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1202,False,"{'a': 0.01, 'e': 0.04074512381586781}",30,18,22.98314428923944,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1203,False,"{'a': 0.01, 'e': 0.04051772693223055}",25,7,30.174319416260175,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1204,False,"{'a': 0.01, 'e': 0.04029157230795821}",25,7,35.194875295943206,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1205,False,"{'a': 0.01, 'e': 0.040066653459547186}",30,20,6.822956121847688,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1206,False,"{'a': 0.01, 'e': 0.03984296393388598}",20,6,20.172012427468136,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1207,False,"{'a': 0.01, 'e': 0.03962049730815265}",20,0,33.08491955969674,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1208,False,"{'a': 0.01, 'e': 0.03939924718971244}",30,3,48.121605533108365,"{0: 27, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1209,False,"{'a': 0.01, 'e': 0.03917920721601531}",25,3,28.519655843207882,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1210,False,"{'a': 0.01, 'e': 0.03896037105449324}",20,11,19.11416613218747,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1211,False,"{'a': 0.01, 'e': 0.038742732402457514}",30,8,20.781900359102526,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1212,False,"{'a': 0.01, 'e': 0.038526284986995396}",30,12,32.062528946090005,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1213,False,"{'a': 0.01, 'e': 0.038311022564867736}",30,18,22.477716550464777,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1214,False,"{'a': 0.01, 'e': 0.038096938922404844}",25,20,10.456515270126975,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1215,False,"{'a': 0.01, 'e': 0.03788402787540379}",30,13,31.794069804921268,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1216,False,"{'a': 0.01, 'e': 0.037672283269025275}",25,8,32.4324697286906,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1217,False,"{'a': 0.01, 'e': 0.03746169897768925}",20,0,34.93517576092568,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1218,False,"{'a': 0.01, 'e': 0.0372522689049718}",20,12,18.576284263741794,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1219,False,"{'a': 0.01, 'e': 0.037043986983501864}",20,6,23.519671270393758,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1220,False,"{'a': 0.01, 'e': 0.03683684717485658}",25,14,23.16713568969309,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1221,False,"{'a': 0.01, 'e': 0.03663084346945844}",20,10,15.852584273194509,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1222,False,"{'a': 0.01, 'e': 0.03642596988647062}",20,3,25.137579825799406,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1223,False,"{'a': 0.01, 'e': 0.03622222047369372}",30,22,10.984185884679643,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1224,False,"{'a': 0.01, 'e': 0.036019589307461186}",20,8,23.08671888076999,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1225,False,"{'a': 0.01, 'e': 0.035818070492535825}",20,14,12.234878525990124,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1226,False,"{'a': 0.01, 'e': 0.03561765816200568}",20,12,15.533510750868173,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1227,False,"{'a': 0.01, 'e': 0.03541834647717945}",20,0,31.549711997225053,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1228,False,"{'a': 0.01, 'e': 0.03522012962748344}",20,9,20.902349702325726,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1229,False,"{'a': 0.01, 'e': 0.03502300183035656}",30,8,29.107128797429283,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1230,False,"{'a': 0.01, 'e': 0.03482695733114649}",20,6,4.288463016498197,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1231,False,"{'a': 0.01, 'e': 0.0346319904030058}",20,3,32.199807944502155,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1232,False,"{'a': 0.01, 'e': 0.03443809534678788}",25,16,13.002574357575226,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1233,False,"{'a': 0.01, 'e': 0.03424526649094273}",20,16,6.652634723378804,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1234,False,"{'a': 0.01, 'e': 0.03405349819141268}",30,18,21.863745031928943,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1235,False,"{'a': 0.01, 'e': 0.033862784831528825}",30,10,22.830405358452552,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1236,False,"{'a': 0.01, 'e': 0.03367312082190699}",20,13,12.167018933926212,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1237,False,"{'a': 0.01, 'e': 0.03348450060034358}",30,20,19.404595380107487,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1238,False,"{'a': 0.01, 'e': 0.03329691863171147}",25,11,24.908377064920384,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1239,False,"{'a': 0.01, 'e': 0.03311036940785661}",25,15,22.388552716462723,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1240,False,"{'a': 0.01, 'e': 0.03292484744749424}",30,18,20.768955190521933,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1241,False,"{'a': 0.01, 'e': 0.03274034729610453}",25,15,16.556930701527527,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1242,False,"{'a': 0.01, 'e': 0.03255686352582954}",20,14,13.27092716079464,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1243,False,"{'a': 0.01, 'e': 0.032374390735369185}",20,12,14.069817496680344,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1244,False,"{'a': 0.01, 'e': 0.03219292354987813}",25,8,8.761494452108701,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1245,False,"{'a': 0.01, 'e': 0.03201245662086161}",20,12,16.402238789767164,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1246,False,"{'a': 0.01, 'e': 0.03183298462607287}",20,0,33.27383622277735,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1247,False,"{'a': 0.01, 'e': 0.03165450226940936}",20,10,18.646620892338323,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1248,False,"{'a': 0.01, 'e': 0.031477004280809684}",20,3,30.81323343531934,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1249,False,"{'a': 0.01, 'e': 0.03130048541615027}",25,0,44.55271761128662,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1250,False,"{'a': 0.01, 'e': 0.031124940457142758}",30,8,38.63830022480495,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1251,False,"{'a': 0.01, 'e': 0.030950364211230985}",20,15,11.14603440680303,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1252,False,"{'a': 0.01, 'e': 0.030776751511487954}",20,5,23.093739540994104,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1253,False,"{'a': 0.01, 'e': 0.03060409721651325}",25,12,25.0066368457375,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1254,False,"{'a': 0.01, 'e': 0.030432396210331003}",25,14,20.841496805075785,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1255,False,"{'a': 0.01, 'e': 0.03026164340228632}",30,15,29.249009095609633,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1256,False,"{'a': 0.01, 'e': 0.03009183372694446}",30,16,23.01985286092125,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1257,False,"{'a': 0.01, 'e': 0.029922962143987264}",20,11,16.424055172400298,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1258,False,"{'a': 0.01, 'e': 0.029755023638112}",25,0,38.85891183218618,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1259,False,"{'a': 0.01, 'e': 0.029588013218929343}",20,9,19.176118732846522,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1260,False,"{'a': 0.01, 'e': 0.029421925920861236}",30,18,13.083994952995498,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1261,False,"{'a': 0.01, 'e': 0.02925675680303963}",20,7,27.242639998544846,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1262,False,"{'a': 0.01, 'e': 0.029092500949205014}",30,22,16.870924255187308,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1263,False,"{'a': 0.01, 'e': 0.02892915346760494}",25,14,23.41482826880157,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1264,False,"{'a': 0.01, 'e': 0.028766709490892994}",25,14,18.24571329613243,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1265,False,"{'a': 0.01, 'e': 0.028605164176027875}",20,2,4.451550561349178,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1266,False,"{'a': 0.01, 'e': 0.028444512704172253}",20,1,21.222250107386127,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1267,False,"{'a': 0.01, 'e': 0.02828475028059274}",25,17,18.187563458489137,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1268,False,"{'a': 0.01, 'e': 0.028125872134558638}",20,11,18.55708485774758,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1269,False,"{'a': 0.01, 'e': 0.027967873519242348}",25,20,10.983448552250236,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1270,False,"{'a': 0.01, 'e': 0.027810749711618787}",20,5,25.921750085117093,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1271,False,"{'a': 0.01, 'e': 0.02765449601236547}",30,9,36.648586631960114,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1272,False,"{'a': 0.01, 'e': 0.02749910774576314}",20,10,19.079437581244726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1273,False,"{'a': 0.01, 'e': 0.02734458025959563}",30,21,16.574749852179366,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1274,False,"{'a': 0.01, 'e': 0.027190908925050827}",25,8,25.80595274828345,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1275,False,"{'a': 0.01, 'e': 0.027038089136621646}",25,5,34.43097381882745,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1276,False,"{'a': 0.01, 'e': 0.026886116312006547}",20,7,12.306632542614768,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1277,False,"{'a': 0.01, 'e': 0.026734985892010954}",20,8,16.45347207866842,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1278,False,"{'a': 0.01, 'e': 0.026584693340448884}",20,3,28.338408686005646,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1279,False,"{'a': 0.01, 'e': 0.02643523414404436}",25,20,10.08005914664831,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1280,False,"{'a': 0.01, 'e': 0.026286603812333054}",20,11,17.530049052624804,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1281,False,"{'a': 0.01, 'e': 0.026138797877564568}",20,8,26.213350658316422,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1282,False,"{'a': 0.01, 'e': 0.025991811894604644}",25,2,41.32683753458496,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1283,False,"{'a': 0.01, 'e': 0.025845641440837452}",25,10,18.599141692551783,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1284,False,"{'a': 0.01, 'e': 0.02570028211606834}",25,15,15.613763616992264,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1285,False,"{'a': 0.01, 'e': 0.02555572954242702}",20,7,23.438865912495203,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1286,False,"{'a': 0.01, 'e': 0.025411979364269865}",30,13,31.544096680042156,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1287,False,"{'a': 0.01, 'e': 0.02526902724808411}",30,12,31.429760840549534,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1288,False,"{'a': 0.01, 'e': 0.025126868882391018}",25,9,30.95190313580915,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1289,False,"{'a': 0.01, 'e': 0.02498549997764954}",25,13,13.076514210550119,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1290,False,"{'a': 0.01, 'e': 0.024844916266160588}",20,7,25.51768813316271,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1291,False,"{'a': 0.01, 'e': 0.02470511350197102}",30,6,39.16557321074306,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1292,False,"{'a': 0.01, 'e': 0.024566087460778485}",20,3,27.914347744562683,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1293,False,"{'a': 0.01, 'e': 0.024427833939835608}",20,5,15.77171163495311,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1294,False,"{'a': 0.01, 'e': 0.024290348757855407}",25,20,11.477713387042089,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1295,False,"{'a': 0.01, 'e': 0.024153627754916362}",20,16,6.345000558054683,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1296,False,"{'a': 0.01, 'e': 0.024017666792367498}",25,5,39.933798471854686,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1297,False,"{'a': 0.01, 'e': 0.023882461752734563}",20,11,18.287447384356305,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1298,False,"{'a': 0.01, 'e': 0.023748008539625776}",20,9,22.799248246454326,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1299,False,"{'a': 0.01, 'e': 0.023614303077637788}",25,18,17.546098696944636,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1300,False,"{'a': 0.01, 'e': 0.023481341312262205}",35,18,31.852947759471995,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1301,False,"{'a': 0.01, 'e': 0.023349119209792435}",20,8,19.174017611118686,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1302,False,"{'a': 0.01, 'e': 0.023217632757230433}",30,22,14.064722819743327,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1303,False,"{'a': 0.01, 'e': 0.023086877962193886}",30,14,30.097841921382248,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1304,False,"{'a': 0.01, 'e': 0.022956850852823507}",30,12,30.136920916852663,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1305,False,"{'a': 0.01, 'e': 0.022827547477691}",20,10,22.809651825581618,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1306,False,"{'a': 0.01, 'e': 0.022698963905706693}",25,15,19.04396097466077,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1307,False,"{'a': 0.01, 'e': 0.022571096226028042}",30,17,24.395278538766892,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1308,False,"{'a': 0.01, 'e': 0.022443940547967722}",25,7,32.69495039323872,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1309,False,"{'a': 0.01, 'e': 0.0223174930009028}",25,12,-19.77125281689474,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1310,False,"{'a': 0.01, 'e': 0.022191749734183253}",20,12,14.614957790245214,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1311,False,"{'a': 0.01, 'e': 0.02206670691704149}",25,11,18.214036561075066,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1312,False,"{'a': 0.01, 'e': 0.021942360738501643}",30,16,27.34974414111634,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1313,False,"{'a': 0.01, 'e': 0.02181870740728975}",25,13,21.299748656408717,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1314,False,"{'a': 0.01, 'e': 0.021695743151743274}",30,14,29.9005885835035,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1315,False,"{'a': 0.01, 'e': 0.02157346421972184}",20,6,27.03468348801578,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1316,False,"{'a': 0.01, 'e': 0.02145186687851741}",35,18,33.94588529490517,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1317,False,"{'a': 0.01, 'e': 0.021330947414765822}",25,16,16.329362734035957,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1318,False,"{'a': 0.01, 'e': 0.02121070213435683}",20,7,23.26682235461999,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1319,False,"{'a': 0.01, 'e': 0.02109112736234675}",20,12,13.688632973839896,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1320,False,"{'a': 0.01, 'e': 0.02097221944286909}",30,4,48.13795648060272,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1321,False,"{'a': 0.01, 'e': 0.020853974739047154}",20,7,24.806518440562257,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1322,False,"{'a': 0.01, 'e': 0.020736389632905916}",25,13,19.963009396664766,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1323,False,"{'a': 0.01, 'e': 0.020619460525284627}",30,12,35.02349115703218,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1324,False,"{'a': 0.01, 'e': 0.02050318383574956}",25,9,24.114226759004097,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1325,False,"{'a': 0.01, 'e': 0.0203875560025073}",20,10,21.136403377808584,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1326,False,"{'a': 0.01, 'e': 0.02027257348231759}",25,14,22.329748948124365,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1327,False,"{'a': 0.01, 'e': 0.020158232750407512}",25,18,11.886690161290913,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1328,False,"{'a': 0.01, 'e': 0.020044530300384777}",30,8,37.25081680408771,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1329,False,"{'a': 0.01, 'e': 0.019931462644152464}",25,13,23.501615710614175,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1330,False,"{'a': 0.01, 'e': 0.019819026311823196}",20,16,8.390067420673425,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1331,False,"{'a': 0.01, 'e': 0.01970721785163365}",20,13,14.77917860030897,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1332,False,"{'a': 0.01, 'e': 0.019596033829860193}",20,0,27.225010201641666,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1333,False,"{'a': 0.01, 'e': 0.01948547083073371}",20,7,20.75536146862731,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1334,False,"{'a': 0.01, 'e': 0.019375525456355125}",25,5,9.296170736525882,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1335,False,"{'a': 0.01, 'e': 0.019266194326611585}",25,3,37.92306098541361,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1336,False,"{'a': 0.01, 'e': 0.019157474079092518}",20,3,26.903966677881062,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1337,False,"{'a': 0.01, 'e': 0.019049361369006035}",35,23,22.892110785736914,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1338,False,"{'a': 0.01, 'e': 0.018941852869095666}",25,3,35.606339750464514,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1339,False,"{'a': 0.01, 'e': 0.0188349452695572}",30,2,42.5325879041111,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1340,False,"{'a': 0.01, 'e': 0.01872863527795654}",30,14,35.438453000617294,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1341,False,"{'a': 0.01, 'e': 0.018622919619146527}",35,19,-13.116851088026216,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1342,False,"{'a': 0.01, 'e': 0.018517795035185358}",25,8,33.9122283652828,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1343,False,"{'a': 0.01, 'e': 0.018413258285254752}",25,17,15.040671994608484,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1344,False,"{'a': 0.01, 'e': 0.018309306145577908}",25,11,26.73049504977678,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1345,False,"{'a': 0.01, 'e': 0.018205935409338903}",20,11,17.571403037650526,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1346,False,"{'a': 0.01, 'e': 0.018103142886601198}",25,13,22.328218444539196,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1347,False,"{'a': 0.01, 'e': 0.018000925404227375}",30,22,17.673614687027744,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1348,False,"{'a': 0.01, 'e': 0.017899279805798196}",25,11,29.011105667940523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1349,False,"{'a': 0.01, 'e': 0.017798202951533226}",25,8,30.557804796568693,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1350,False,"{'a': 0.01, 'e': 0.01769769171821034}",20,6,27.308801207336877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1351,False,"{'a': 0.01, 'e': 0.017597742999086563}",25,10,28.404040452505143,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1352,False,"{'a': 0.01, 'e': 0.017498353703818914}",25,10,24.282858440917494,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1353,False,"{'a': 0.01, 'e': 0.017399520758385023}",20,13,12.549290854074718,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1354,False,"{'a': 0.01, 'e': 0.01730124110500486}",25,13,22.34654192186298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1355,False,"{'a': 0.01, 'e': 0.01720351170206258}",20,7,23.02807219385128,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1356,False,"{'a': 0.01, 'e': 0.017106329524027686}",25,10,29.462508216398234,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1357,False,"{'a': 0.01, 'e': 0.017009691561377993}",20,0,32.624824073885925,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1358,False,"{'a': 0.01, 'e': 0.016913594820521682}",25,10,22.83785187078497,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1359,False,"{'a': 0.01, 'e': 0.016818036323720364}",25,15,22.320144370675465,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1360,False,"{'a': 0.01, 'e': 0.01672301310901203}",20,14,11.763937264146278,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1361,False,"{'a': 0.01, 'e': 0.016628522230134557}",20,9,21.096117044456772,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1362,False,"{'a': 0.01, 'e': 0.01653456075644899}",20,12,13.568862625619431,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1363,False,"{'a': 0.01, 'e': 0.01644112577286405}",25,11,20.487413882249864,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1364,False,"{'a': 0.01, 'e': 0.016348214379760195}",20,3,26.772103090052003,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1365,False,"{'a': 0.01, 'e': 0.016255823692913673}",20,12,15.80121032299691,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1366,False,"{'a': 0.01, 'e': 0.016163950843422148}",20,12,18.188945793689065,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1367,False,"{'a': 0.01, 'e': 0.016072592977629307}",20,10,18.054442464755518,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1368,False,"{'a': 0.01, 'e': 0.01598174725705037}",30,8,40.65140014468502,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1369,False,"{'a': 0.01, 'e': 0.015891410858297705}",30,16,24.85622518777923,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1370,False,"{'a': 0.01, 'e': 0.015801580973007212}",20,4,24.76907693321467,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1371,False,"{'a': 0.01, 'e': 0.015712254807763837}",20,13,12.789842801246015,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1372,False,"{'a': 0.01, 'e': 0.01562342958402907}",30,18,24.358886203279596,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1373,False,"{'a': 0.01, 'e': 0.015535102538066892}",25,15,19.56703848719643,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1374,False,"{'a': 0.01, 'e': 0.015447270920871725}",35,25,18.972794670803566,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1375,False,"{'a': 0.01, 'e': 0.015359931998095155}",20,13,12.587824334067307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1376,False,"{'a': 0.01, 'e': 0.015273083049974212}",25,11,27.42467716457614,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1377,False,"{'a': 0.01, 'e': 0.015186721371259093}",25,16,18.684911693680295,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1378,False,"{'a': 0.01, 'e': 0.015100844271141223}",25,18,14.249444129374998,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1379,False,"{'a': 0.01, 'e': 0.01501544907318253}",25,11,21.210510188218944,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1380,False,"{'a': 0.01, 'e': 0.014930533115243505}",20,15,7.9341331423338675,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1381,False,"{'a': 0.01, 'e': 0.014846093749412925}",20,14,11.213679973660543,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1382,False,"{'a': 0.01, 'e': 0.01476212834193713}",20,0,34.06926784739895,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1383,False,"{'a': 0.01, 'e': 0.014678634273149527}",25,7,31.588754348032825,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1384,False,"{'a': 0.01, 'e': 0.014595608937400972}",20,5,28.8557355871431,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1385,False,"{'a': 0.01, 'e': 0.014513049742989725}",30,9,35.815859094078036,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1386,False,"{'a': 0.01, 'e': 0.014430954112092276}",20,14,5.035263914830354,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1387,False,"{'a': 0.01, 'e': 0.014349319480694067}",20,8,20.002130362870147,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1388,False,"{'a': 0.01, 'e': 0.014268143298520775}",20,13,13.489974839248532,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1389,False,"{'a': 0.01, 'e': 0.01418742302896936}",30,15,26.349814342834865,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1390,False,"{'a': 0.01, 'e': 0.014107156149040234}",30,7,32.83749975417698,"{0: 22, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1391,False,"{'a': 0.01, 'e': 0.014027340149269318}",25,1,36.75567829601171,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1392,False,"{'a': 0.01, 'e': 0.013947972533659647}",20,13,13.486769582569547,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1393,False,"{'a': 0.01, 'e': 0.013869050819614648}",20,7,23.00007481757514,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1394,False,"{'a': 0.01, 'e': 0.013790572537870638}",20,6,22.835060481892583,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1395,False,"{'a': 0.01, 'e': 0.01371253523242999}",25,8,21.900444561760644,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1396,False,"{'a': 0.01, 'e': 0.013634936460494518}",25,13,11.897547768585998,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1397,False,"{'a': 0.01, 'e': 0.013557773792399086}",20,8,26.14125844165046,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1398,False,"{'a': 0.01, 'e': 0.013481044811545995}",20,11,14.556672069664437,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1399,False,"{'a': 0.01, 'e': 0.013404747114338478}",20,8,25.225373858253068,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1400,False,"{'a': 0.01, 'e': 0.013328878310115977}",20,11,17.881156985222976,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1401,False,"{'a': 0.01, 'e': 0.013253436021088416}",25,11,29.76998557127509,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1402,False,"{'a': 0.01, 'e': 0.013178417882271365}",20,7,26.804067544992726,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1403,False,"{'a': 0.01, 'e': 0.013103821541421645}",30,15,20.65922316876076,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1404,False,"{'a': 0.01, 'e': 0.013029644658972828}",20,13,13.941076618520993,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1405,False,"{'a': 0.01, 'e': 0.012955884907970838}",20,10,19.850371609126913,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1406,False,"{'a': 0.01, 'e': 0.012882539974010454}",20,9,21.492986707378705,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1407,False,"{'a': 0.01, 'e': 0.012809607555171798}",20,3,31.1795254906815,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1408,False,"{'a': 0.01, 'e': 0.012737085361956946}",30,14,32.85161690405128,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1409,False,"{'a': 0.01, 'e': 0.012664971117226642}",20,2,34.42126118376929,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1410,False,"{'a': 0.01, 'e': 0.01259326255613824}",20,0,34.29284603047597,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1411,False,"{'a': 0.01, 'e': 0.01252195742608242}",20,10,18.554563195287308,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1412,False,"{'a': 0.01, 'e': 0.012451053486621677}",20,13,13.043231130738413,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1413,False,"{'a': 0.01, 'e': 0.012380548509428158}",20,0,34.081354079287344,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1414,False,"{'a': 0.01, 'e': 0.012310440278221924}",20,12,12.557509557947064,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1415,False,"{'a': 0.01, 'e': 0.012240726588709672}",20,6,13.320972393326771,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1416,False,"{'a': 0.01, 'e': 0.01217140524852367}",25,16,14.367411051218134,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1417,False,"{'a': 0.01, 'e': 0.012102474077160585}",20,12,15.436337943396087,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1418,False,"{'a': 0.01, 'e': 0.01203393090592153}",35,15,35.61108302488062,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1419,False,"{'a': 0.01, 'e': 0.011965773577851224}",20,9,19.476063008072146,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1420,False,"{'a': 0.01, 'e': 0.01189799994767815}",20,7,24.037473095513313,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1421,False,"{'a': 0.01, 'e': 0.011830607881754829}",30,22,18.161097946424892,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1422,False,"{'a': 0.01, 'e': 0.011763595257997972}",30,0,44.798622757893376,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1423,False,"{'a': 0.01, 'e': 0.011696959965829978}",25,12,27.052122349991492,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1424,False,"{'a': 0.01, 'e': 0.01163069990611909}",20,0,35.43648638150181,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1425,False,"{'a': 0.01, 'e': 0.01156481299112111}",20,16,6.124497153608251,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1426,False,"{'a': 0.01, 'e': 0.011499297144421106}",20,10,16.071800841229134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1427,False,"{'a': 0.01, 'e': 0.011434150300874801}",30,8,37.98898990500734,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1428,False,"{'a': 0.01, 'e': 0.01136937040655095}",20,9,19.839893268980717,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1429,False,"{'a': 0.01, 'e': 0.01130495541867349}",25,2,38.28965712395873,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1430,False,"{'a': 0.01, 'e': 0.011240903305564265}",30,4,43.47074750510962,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1431,False,"{'a': 0.01, 'e': 0.011177212046585727}",20,13,12.567749985856336,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1432,False,"{'a': 0.01, 'e': 0.0111138796320841}",25,17,13.784477546168537,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1433,False,"{'a': 0.01, 'e': 0.011050904063332978}",30,17,26.686600697158788,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1434,False,"{'a': 0.01, 'e': 0.010988283352476369}",20,13,12.128093881916175,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1435,False,"{'a': 0.01, 'e': 0.010926015522473076}",25,17,1.5438536208312659,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1436,False,"{'a': 0.01, 'e': 0.010864098607040629}",20,9,18.73825849385846,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1437,False,"{'a': 0.01, 'e': 0.010802530650599662}",25,18,14.433055503959444,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1438,False,"{'a': 0.01, 'e': 0.010741309708218738}",30,16,28.920115052149523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1439,False,"{'a': 0.01, 'e': 0.010680433845558834}",20,14,11.63370926705957,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1440,False,"{'a': 0.01, 'e': 0.010619901138818943}",20,6,25.083314067804523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1441,False,"{'a': 0.01, 'e': 0.010559709674680895}",35,18,36.69170778876012,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1442,False,"{'a': 0.01, 'e': 0.010499857550255731}",25,17,10.84547817155854,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1443,False,"{'a': 0.01, 'e': 0.010440342873029085}",30,24,12.93778209738799,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1444,False,"{'a': 0.01, 'e': 0.010381163760807222}",20,0,34.12673200703016,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1445,False,"{'a': 0.01, 'e': 0.01032231834166375}",35,21,25.564248672008993,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1446,False,"{'a': 0.01, 'e': 0.01026380475388644}",20,14,11.055833276139854,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1447,False,"{'a': 0.01, 'e': 0.010205621145923494}",25,16,15.683955847899902,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1448,False,"{'a': 0.01, 'e': 0.010147765676331022}",35,21,24.74456605204462,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1449,False,"{'a': 0.01, 'e': 0.01009023651372043}",20,10,16.94754059285982,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1450,False,"{'a': 0.01, 'e': 0.010033031836706008}",20,3,34.05901635449409,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1451,False,"{'a': 0.01, 'e': 0.009976149833852865}",20,7,22.716400147985727,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1,True,"{'a': 0.0, 'e': 0.0}",20,10,19.62537736103818,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",25,9,30.67095725223201,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3,True,"{'a': 0.0, 'e': 0.0}",25,13,23.22037616969927,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",25,12,23.559397510423857,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",30,13,33.89727489897414,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",30,21,16.333634294102367,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,14,14.099413707846358,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",20,12,14.160381947784604,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",30,14,32.008362107071896,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",30,17,26.825034128726344,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 diff --git a/smartcab/logs/sim_improved-learning.txt b/smartcab/logs/sim_improved-learning.txt new file mode 100644 index 0000000..b61a23c --- /dev/null +++ b/smartcab/logs/sim_improved-learning.txt @@ -0,0 +1,292 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -7.59 + -- right : -3.34 + -- None : 0.68 + -- left : -7.58 + +('right', 'green', None, False) + -- forward : 0.60 + -- right : 1.89 + -- None : -4.80 + -- left : 0.74 + +('forward', 'green', 'left', False) + -- forward : 1.85 + -- right : 0.52 + -- None : 0.50 + -- left : 0.43 + +('left', 'green', 'right', True) + -- forward : 0.09 + -- right : 0.05 + -- None : -0.68 + -- left : -0.99 + +('forward', 'green', None, False) + -- forward : 1.82 + -- right : 0.76 + -- None : -4.70 + -- left : 0.69 + +('forward', 'green', 'right', True) + -- forward : 0.32 + -- right : 0.00 + -- None : -0.30 + -- left : -0.60 + +('left', 'red', 'right', False) + -- forward : -2.77 + -- right : 0.23 + -- None : 1.22 + -- left : -12.38 + +('forward', 'green', 'forward', True) + -- forward : 0.66 + -- right : 0.07 + -- None : -0.61 + -- left : -2.94 + +('left', 'green', 'left', True) + -- forward : 0.14 + -- right : 0.12 + -- None : 0.16 + -- left : 0.87 + +('left', 'green', 'forward', False) + -- forward : 0.72 + -- right : 0.34 + -- None : -2.76 + -- left : -10.86 + +('right', 'red', None, False) + -- forward : -12.38 + -- right : 1.63 + -- None : 1.81 + -- left : -12.19 + +('left', 'green', None, True) + -- forward : 0.48 + -- right : 0.46 + -- None : -2.70 + -- left : 1.55 + +('right', 'red', 'right', True) + -- forward : -2.70 + -- right : -0.79 + -- None : 0.25 + -- left : -0.79 + +('right', 'green', 'forward', False) + -- forward : 0.34 + -- right : 1.59 + -- None : -2.61 + -- left : -12.31 + +('right', 'red', 'left', False) + -- forward : -10.00 + -- right : 1.83 + -- None : 1.29 + -- left : -9.28 + +('forward', 'red', None, False) + -- forward : -12.14 + -- right : 0.69 + -- None : 1.81 + -- left : -13.31 + +('forward', 'green', 'left', True) + -- forward : 1.06 + -- right : 0.15 + -- None : 0.08 + -- left : 0.18 + +('left', 'green', 'right', False) + -- forward : 0.13 + -- right : 0.44 + -- None : -1.44 + -- left : -6.68 + +('forward', 'red', 'forward', True) + -- forward : -4.93 + -- right : -2.64 + -- None : 0.80 + -- left : -4.17 + +('forward', 'red', 'left', False) + -- forward : -9.09 + -- right : 0.73 + -- None : 1.87 + -- left : -9.62 + +('forward', 'green', None, True) + -- forward : 1.68 + -- right : 0.35 + -- None : -2.43 + -- left : 0.35 + +('forward', 'red', 'left', True) + -- forward : -4.53 + -- right : -2.47 + -- None : 1.04 + -- left : -4.56 + +('left', 'red', 'forward', False) + -- forward : -8.35 + -- right : 0.55 + -- None : 1.82 + -- left : -8.68 + +('forward', 'green', 'forward', False) + -- forward : 1.86 + -- right : 0.30 + -- None : -2.18 + -- left : -10.04 + +('left', 'red', None, True) + -- forward : -16.59 + -- right : -9.61 + -- None : 1.44 + -- left : -16.05 + +('left', 'green', 'left', False) + -- forward : 0.57 + -- right : 0.52 + -- None : 0.44 + -- left : 1.78 + +('left', 'green', 'forward', True) + -- forward : 0.32 + -- right : 0.10 + -- None : -0.45 + -- left : -4.30 + +('right', 'red', 'forward', False) + -- forward : -8.58 + -- right : 1.21 + -- None : 1.83 + -- left : -9.31 + +('forward', 'red', 'right', False) + -- forward : -3.86 + -- right : 0.26 + -- None : 1.48 + -- left : -10.40 + +('left', 'red', 'left', True) + -- forward : -8.87 + -- right : -3.70 + -- None : 0.82 + -- left : -3.81 + +('left', 'green', None, False) + -- forward : 0.68 + -- right : 0.63 + -- None : -4.73 + -- left : 1.82 + +('right', 'green', 'left', True) + -- forward : 0.13 + -- right : 0.82 + -- None : 0.12 + -- left : 0.08 + +('right', 'green', 'forward', True) + -- forward : 0.10 + -- right : 0.56 + -- None : -0.43 + -- left : -1.53 + +('right', 'green', 'right', True) + -- forward : 0.09 + -- right : 0.34 + -- None : -0.15 + -- left : -2.09 + +('forward', 'red', None, True) + -- forward : -20.60 + -- right : -6.76 + -- None : 1.56 + -- left : -14.52 + +('right', 'green', None, True) + -- forward : 0.35 + -- right : 1.43 + -- None : -2.81 + -- left : 0.45 + +('forward', 'red', 'forward', False) + -- forward : -8.90 + -- right : 0.46 + -- None : 1.89 + -- left : -7.98 + +('right', 'red', 'right', False) + -- forward : -5.16 + -- right : 0.55 + -- None : 1.17 + -- left : -12.99 + +('left', 'red', 'forward', True) + -- forward : -3.82 + -- right : -3.47 + -- None : 0.69 + -- left : -3.45 + +('forward', 'green', 'right', False) + -- forward : 1.35 + -- right : 0.15 + -- None : -1.48 + -- left : -5.52 + +('left', 'red', 'right', True) + -- forward : -3.07 + -- right : -1.34 + -- None : 0.31 + -- left : -2.34 + +('left', 'red', None, False) + -- forward : -12.62 + -- right : 0.70 + -- None : 1.82 + -- left : -12.65 + +('right', 'red', 'forward', True) + -- forward : -4.54 + -- right : -2.94 + -- None : 0.78 + -- left : -3.45 + +('forward', 'red', 'right', True) + -- forward : -3.11 + -- right : -0.59 + -- None : 0.31 + -- left : -3.81 + +('left', 'red', 'left', False) + -- forward : -9.33 + -- right : 0.56 + -- None : 1.82 + -- left : -11.30 + +('right', 'red', None, True) + -- forward : -18.70 + -- right : -7.89 + -- None : 1.27 + -- left : -15.31 + +('right', 'green', 'left', False) + -- forward : 0.49 + -- right : 1.60 + -- None : 0.45 + -- left : 0.40 + +('right', 'green', 'right', False) + -- forward : 0.13 + -- right : 0.98 + -- None : -0.99 + -- left : -4.65 + diff --git a/smartcab/logs/sim_improved-learning_ref.csv b/smartcab/logs/sim_improved-learning_ref.csv new file mode 100644 index 0000000..b1f1809 --- /dev/null +++ b/smartcab/logs/sim_improved-learning_ref.csv @@ -0,0 +1,4617 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.01, 'e': 0.999000499833375}",20,0,-178.49150325455474,"{0: 10, 1: 3, 2: 2, 3: 2, 4: 3}",0 +2,False,"{'a': 0.01, 'e': 0.9980019986673331}",20,4,-95.1914127075524,"{0: 8, 1: 2, 2: 4, 3: 1, 4: 1}",1 +3,False,"{'a': 0.01, 'e': 0.997004495503373}",20,0,-122.45348240831251,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +4,False,"{'a': 0.01, 'e': 0.9960079893439915}",25,0,-162.3966739253609,"{0: 16, 1: 2, 2: 1, 3: 4, 4: 2}",0 +5,False,"{'a': 0.01, 'e': 0.9950124791926823}",20,0,-102.59536664940768,"{0: 11, 1: 6, 2: 1, 3: 0, 4: 2}",0 +6,False,"{'a': 0.01, 'e': 0.9940179640539353}",25,0,-79.27854313768684,"{0: 16, 1: 1, 2: 7, 3: 1, 4: 0}",0 +7,False,"{'a': 0.01, 'e': 0.9930244429332351}",30,2,-73.3985218864617,"{0: 19, 1: 0, 2: 8, 3: 1, 4: 0}",1 +8,False,"{'a': 0.01, 'e': 0.9920319148370607}",20,7,-74.72429464502727,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 1}",1 +9,False,"{'a': 0.01, 'e': 0.9910403787728836}",25,1,-138.8187215170798,"{0: 15, 1: 1, 2: 5, 3: 1, 4: 2}",1 +10,False,"{'a': 0.01, 'e': 0.9900498337491681}",25,0,-186.5781285997533,"{0: 11, 1: 3, 2: 8, 3: 1, 4: 2}",0 +11,False,"{'a': 0.01, 'e': 0.9890602787753687}",30,0,-207.7067781473322,"{0: 16, 1: 3, 2: 5, 3: 4, 4: 2}",0 +12,False,"{'a': 0.01, 'e': 0.9880717128619305}",25,0,-104.31743173435834,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 1}",0 +13,False,"{'a': 0.01, 'e': 0.9870841350202876}",20,0,-60.44636634873586,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +14,False,"{'a': 0.01, 'e': 0.9860975442628619}",30,12,-53.62995865381042,"{0: 10, 1: 3, 2: 5, 3: 0, 4: 0}",1 +15,False,"{'a': 0.01, 'e': 0.9851119396030626}",20,0,-178.84438714756263,"{0: 8, 1: 0, 2: 9, 3: 1, 4: 2}",0 +16,False,"{'a': 0.01, 'e': 0.9841273200552851}",20,0,-40.15076136033493,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +17,False,"{'a': 0.01, 'e': 0.9831436846349096}",30,0,-281.83811374206107,"{0: 14, 1: 3, 2: 8, 3: 0, 4: 5}",0 +18,False,"{'a': 0.01, 'e': 0.9821610323583008}",30,0,-131.5350060967923,"{0: 19, 1: 2, 2: 7, 3: 0, 4: 2}",0 +19,False,"{'a': 0.01, 'e': 0.981179362242806}",30,0,-122.93425544271498,"{0: 20, 1: 4, 2: 3, 3: 1, 4: 2}",0 +20,False,"{'a': 0.01, 'e': 0.9801986733067553}",25,14,-20.1453098124629,"{0: 7, 1: 2, 2: 2, 3: 0, 4: 0}",1 +21,False,"{'a': 0.01, 'e': 0.9792189645694596}",25,0,-116.38046872122807,"{0: 17, 1: 0, 2: 6, 3: 0, 4: 2}",0 +22,False,"{'a': 0.01, 'e': 0.97824023505121}",25,0,-149.59847984275493,"{0: 17, 1: 0, 2: 4, 3: 2, 4: 2}",0 +23,False,"{'a': 0.01, 'e': 0.9772624837732771}",20,0,-173.26408781438906,"{0: 8, 1: 4, 2: 4, 3: 2, 4: 2}",0 +24,False,"{'a': 0.01, 'e': 0.9762857097579093}",25,0,-191.30968082435217,"{0: 15, 1: 1, 2: 4, 3: 2, 4: 3}",0 +25,False,"{'a': 0.01, 'e': 0.9753099120283326}",20,0,-83.23763644876692,"{0: 13, 1: 2, 2: 2, 3: 3, 4: 0}",0 +26,False,"{'a': 0.01, 'e': 0.9743350896087494}",35,0,-149.68527107687785,"{0: 20, 1: 5, 2: 5, 3: 5, 4: 0}",0 +27,False,"{'a': 0.01, 'e': 0.9733612415243368}",30,0,-132.69172084885815,"{0: 19, 1: 2, 2: 6, 3: 2, 4: 1}",0 +28,False,"{'a': 0.01, 'e': 0.9723883668012469}",25,11,-44.86882759681556,"{0: 8, 1: 0, 2: 6, 3: 0, 4: 0}",1 +29,False,"{'a': 0.01, 'e': 0.9714164644666048}",25,0,-137.22146949727832,"{0: 13, 1: 1, 2: 9, 3: 1, 4: 1}",0 +30,False,"{'a': 0.01, 'e': 0.9704455335485082}",25,0,-134.13619500647496,"{0: 14, 1: 3, 2: 5, 3: 2, 4: 1}",0 +31,False,"{'a': 0.01, 'e': 0.9694755730760259}",20,0,-41.52630969286112,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +32,False,"{'a': 0.01, 'e': 0.9685065820791976}",25,0,-139.42320369126762,"{0: 14, 1: 2, 2: 7, 3: 0, 4: 2}",0 +33,False,"{'a': 0.01, 'e': 0.967538559589032}",20,0,-112.55924727109948,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +34,False,"{'a': 0.01, 'e': 0.9665715046375066}",20,0,-65.98233842660478,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +35,False,"{'a': 0.01, 'e': 0.9656054162575665}",20,0,-89.09271404780974,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +36,False,"{'a': 0.01, 'e': 0.9646402934831231}",20,0,-114.4990675636612,"{0: 11, 1: 1, 2: 6, 3: 1, 4: 1}",0 +37,False,"{'a': 0.01, 'e': 0.9636761353490535}",20,0,-117.77785030165006,"{0: 11, 1: 0, 2: 7, 3: 1, 4: 1}",0 +38,False,"{'a': 0.01, 'e': 0.9627129408911995}",30,13,-124.42428031838526,"{0: 7, 1: 1, 2: 7, 3: 1, 4: 1}",1 +39,False,"{'a': 0.01, 'e': 0.9617507091463667}",25,0,-55.14165379479535,"{0: 17, 1: 1, 2: 7, 3: 0, 4: 0}",0 +40,False,"{'a': 0.01, 'e': 0.9607894391523232}",25,0,-74.87666601980054,"{0: 16, 1: 3, 2: 4, 3: 2, 4: 0}",0 +41,False,"{'a': 0.01, 'e': 0.9598291299477989}",25,0,-45.41103977271092,"{0: 17, 1: 4, 2: 3, 3: 1, 4: 0}",0 +42,False,"{'a': 0.01, 'e': 0.9588697805724845}",30,0,-203.08325979600986,"{0: 16, 1: 3, 2: 7, 3: 1, 4: 3}",0 +43,False,"{'a': 0.01, 'e': 0.9579113900670306}",30,0,-116.17839955787149,"{0: 17, 1: 6, 2: 6, 3: 0, 4: 1}",0 +44,False,"{'a': 0.01, 'e': 0.9569539574730467}",20,0,-40.753569741565286,"{0: 16, 1: 3, 2: 0, 3: 0, 4: 1}",0 +45,False,"{'a': 0.01, 'e': 0.9559974818330998}",25,0,-9.055916644063515,"{0: 21, 1: 2, 2: 2, 3: 0, 4: 0}",0 +46,False,"{'a': 0.01, 'e': 0.9550419621907147}",20,0,-82.83141723506604,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +47,False,"{'a': 0.01, 'e': 0.9540873975903712}",35,24,-43.92297145992029,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 1}",1 +48,False,"{'a': 0.01, 'e': 0.9531337870775047}",20,0,-91.9307063353987,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +49,False,"{'a': 0.01, 'e': 0.9521811296985049}",20,0,-122.53438015115002,"{0: 11, 1: 2, 2: 5, 3: 0, 4: 2}",0 +50,False,"{'a': 0.01, 'e': 0.951229424500714}",25,0,-154.6431008116864,"{0: 15, 1: 1, 2: 3, 3: 5, 4: 1}",0 +51,False,"{'a': 0.01, 'e': 0.950278670532427}",25,0,-118.92431471413867,"{0: 12, 1: 5, 2: 7, 3: 0, 4: 1}",0 +52,False,"{'a': 0.01, 'e': 0.9493288668428895}",20,14,-19.794502688903798,"{0: 4, 1: 1, 2: 0, 3: 1, 4: 0}",1 +53,False,"{'a': 0.01, 'e': 0.9483800124822982}",35,23,-98.87162425492052,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 2}",1 +54,False,"{'a': 0.01, 'e': 0.9474321065017983}",25,0,-77.16970355194078,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 2}",0 +55,False,"{'a': 0.01, 'e': 0.9464851479534838}",30,0,-215.9198150622482,"{0: 16, 1: 5, 2: 5, 3: 0, 4: 4}",0 +56,False,"{'a': 0.01, 'e': 0.9455391358903963}",20,0,-114.04577785946157,"{0: 10, 1: 3, 2: 4, 3: 2, 4: 1}",0 +57,False,"{'a': 0.01, 'e': 0.9445940693665233}",20,0,-52.68391707879264,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +58,False,"{'a': 0.01, 'e': 0.9436499474367985}",25,10,-47.61163757248417,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 1}",1 +59,False,"{'a': 0.01, 'e': 0.9427067691570997}",20,0,-152.96119952492597,"{0: 11, 1: 2, 2: 3, 3: 2, 4: 2}",0 +60,False,"{'a': 0.01, 'e': 0.9417645335842487}",25,5,-151.9750806024648,"{0: 12, 1: 0, 2: 5, 3: 0, 4: 3}",1 +61,False,"{'a': 0.01, 'e': 0.9408232397760097}",30,0,-214.19772933847574,"{0: 18, 1: 2, 2: 6, 3: 0, 4: 4}",0 +62,False,"{'a': 0.01, 'e': 0.9398828867910889}",25,0,-253.74734000226223,"{0: 11, 1: 0, 2: 9, 3: 1, 4: 4}",0 +63,False,"{'a': 0.01, 'e': 0.9389434736891332}",25,0,-89.9411630482745,"{0: 16, 1: 3, 2: 5, 3: 0, 4: 1}",0 +64,False,"{'a': 0.01, 'e': 0.9380049995307295}",20,0,-122.64273837904639,"{0: 9, 1: 2, 2: 8, 3: 0, 4: 1}",0 +65,False,"{'a': 0.01, 'e': 0.9370674633774034}",25,0,-84.10946862071673,"{0: 16, 1: 2, 2: 5, 3: 2, 4: 0}",0 +66,False,"{'a': 0.01, 'e': 0.9361308642916188}",25,0,-126.968672503088,"{0: 18, 1: 0, 2: 4, 3: 1, 4: 2}",0 +67,False,"{'a': 0.01, 'e': 0.9351952013367766}",25,0,-166.89375921306197,"{0: 14, 1: 0, 2: 8, 3: 1, 4: 2}",0 +68,False,"{'a': 0.01, 'e': 0.9342604735772135}",35,0,-133.57236819493775,"{0: 22, 1: 3, 2: 7, 3: 2, 4: 1}",0 +69,False,"{'a': 0.01, 'e': 0.933326680078202}",25,0,-133.98661925281363,"{0: 14, 1: 4, 2: 3, 3: 3, 4: 1}",0 +70,False,"{'a': 0.01, 'e': 0.9323938199059483}",30,10,-78.93839971089976,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",1 +71,False,"{'a': 0.01, 'e': 0.9314618921275921}",20,10,-17.294271492257366,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +72,False,"{'a': 0.01, 'e': 0.9305308958112057}",20,0,-194.29655425514025,"{0: 8, 1: 3, 2: 5, 3: 1, 4: 3}",0 +73,False,"{'a': 0.01, 'e': 0.9296008300257927}",25,0,-189.0324544234493,"{0: 14, 1: 2, 2: 4, 3: 2, 4: 3}",0 +74,False,"{'a': 0.01, 'e': 0.9286716938412872}",20,0,-171.19777194180526,"{0: 9, 1: 2, 2: 5, 3: 2, 4: 2}",0 +75,False,"{'a': 0.01, 'e': 0.9277434863285529}",20,0,-76.78071927265731,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +76,False,"{'a': 0.01, 'e': 0.9268162065593822}",30,0,-53.71971021289332,"{0: 21, 1: 2, 2: 7, 3: 0, 4: 0}",0 +77,False,"{'a': 0.01, 'e': 0.9258898536064953}",25,0,-48.08589889296618,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +78,False,"{'a': 0.01, 'e': 0.9249644265435393}",20,0,-116.30669223381526,"{0: 12, 1: 2, 2: 2, 3: 3, 4: 1}",0 +79,False,"{'a': 0.01, 'e': 0.9240399244450868}",20,0,-143.18707210121417,"{0: 12, 1: 1, 2: 3, 3: 2, 4: 2}",0 +80,False,"{'a': 0.01, 'e': 0.9231163463866358}",20,0,-161.5660479029457,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 3}",0 +81,False,"{'a': 0.01, 'e': 0.922193691444608}",25,0,-164.0139487271798,"{0: 12, 1: 2, 2: 7, 3: 3, 4: 1}",0 +82,False,"{'a': 0.01, 'e': 0.9212719586963487}",25,0,-89.6570883724732,"{0: 14, 1: 7, 2: 3, 3: 0, 4: 1}",0 +83,False,"{'a': 0.01, 'e': 0.9203511472201247}",20,0,-53.05692397923885,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +84,False,"{'a': 0.01, 'e': 0.9194312560951247}",25,0,-9.367131034881497,"{0: 20, 1: 2, 2: 3, 3: 0, 4: 0}",0 +85,False,"{'a': 0.01, 'e': 0.9185122844014574}",20,0,-92.20123939463758,"{0: 12, 1: 1, 2: 6, 3: 0, 4: 1}",0 +86,False,"{'a': 0.01, 'e': 0.9175942312201509}",20,0,-49.024094791955456,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 1}",0 +87,False,"{'a': 0.01, 'e': 0.9166770956331523}",20,0,-25.583982453153094,"{0: 15, 1: 1, 2: 4, 3: 0, 4: 0}",0 +88,False,"{'a': 0.01, 'e': 0.9157608767233256}",25,0,-94.43184823286379,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +89,False,"{'a': 0.01, 'e': 0.914845573574452}",20,0,-186.93157186428522,"{0: 6, 1: 5, 2: 5, 3: 2, 4: 2}",0 +90,False,"{'a': 0.01, 'e': 0.9139311852712282}",20,0,-65.61812587655164,"{0: 16, 1: 1, 2: 0, 3: 2, 4: 1}",0 +91,False,"{'a': 0.01, 'e': 0.9130177108992658}",20,0,-167.95866989033462,"{0: 12, 1: 2, 2: 1, 3: 2, 4: 3}",0 +92,False,"{'a': 0.01, 'e': 0.9121051495450904}",30,0,-133.7166825002433,"{0: 19, 1: 3, 2: 4, 3: 3, 4: 1}",0 +93,False,"{'a': 0.01, 'e': 0.9111935002961405}",20,0,-98.68500300274442,"{0: 13, 1: 0, 2: 5, 3: 1, 4: 1}",0 +94,False,"{'a': 0.01, 'e': 0.910282762240767}",20,0,-158.31863644565044,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 4}",0 +95,False,"{'a': 0.01, 'e': 0.9093729344682314}",30,0,-99.03418060888029,"{0: 20, 1: 4, 2: 3, 3: 2, 4: 1}",0 +96,False,"{'a': 0.01, 'e': 0.9084640160687062}",20,0,-56.27922321763691,"{0: 13, 1: 2, 2: 4, 3: 1, 4: 0}",0 +97,False,"{'a': 0.01, 'e': 0.9075560061332727}",20,10,-2.214674787520931,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +98,False,"{'a': 0.01, 'e': 0.9066489037539209}",20,0,-36.22767179713148,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +99,False,"{'a': 0.01, 'e': 0.9057427080235485}",20,0,-96.96353232726409,"{0: 11, 1: 2, 2: 6, 3: 0, 4: 1}",0 +100,False,"{'a': 0.01, 'e': 0.9048374180359595}",20,0,-159.1501900234158,"{0: 10, 1: 1, 2: 5, 3: 2, 4: 2}",0 +101,False,"{'a': 0.01, 'e': 0.9039330328858641}",20,0,-38.29356922689755,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +102,False,"{'a': 0.01, 'e': 0.9030295516688768}",20,0,-31.11186974046451,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +103,False,"{'a': 0.01, 'e': 0.9021269734815165}",25,0,-88.67577928882729,"{0: 16, 1: 2, 2: 6, 3: 0, 4: 1}",0 +104,False,"{'a': 0.01, 'e': 0.9012252974212047}",25,0,-125.92334370449439,"{0: 14, 1: 2, 2: 6, 3: 2, 4: 1}",0 +105,False,"{'a': 0.01, 'e': 0.9003245225862656}",20,0,-142.431923842872,"{0: 12, 1: 0, 2: 4, 3: 2, 4: 2}",0 +106,False,"{'a': 0.01, 'e': 0.899424648075924}",20,0,-62.55206669430394,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +107,False,"{'a': 0.01, 'e': 0.8985256729903055}",20,0,-101.1233292241487,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +108,False,"{'a': 0.01, 'e': 0.8976275964304349}",30,0,-104.74652484842055,"{0: 19, 1: 4, 2: 5, 3: 1, 4: 1}",0 +109,False,"{'a': 0.01, 'e': 0.8967304174982355}",20,8,-31.538754032709015,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 0}",1 +110,False,"{'a': 0.01, 'e': 0.8958341352965282}",20,3,-42.41799769531749,"{0: 11, 1: 3, 2: 2, 3: 1, 4: 0}",1 +111,False,"{'a': 0.01, 'e': 0.894938748929031}",20,0,-41.714487585927245,"{0: 12, 1: 5, 2: 3, 3: 0, 4: 0}",0 +112,False,"{'a': 0.01, 'e': 0.8940442575003572}",20,0,-96.58580076557315,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 2}",0 +113,False,"{'a': 0.01, 'e': 0.8931506601160155}",30,4,-144.88943570896544,"{0: 16, 1: 1, 2: 6, 3: 1, 4: 2}",1 +114,False,"{'a': 0.01, 'e': 0.8922579558824083}",35,0,-112.1470588771504,"{0: 21, 1: 2, 2: 11, 3: 1, 4: 0}",0 +115,False,"{'a': 0.01, 'e': 0.8913661439068313}",25,0,-96.5790870661946,"{0: 15, 1: 4, 2: 4, 3: 1, 4: 1}",0 +116,False,"{'a': 0.01, 'e': 0.8904752232974726}",20,12,3.139370238552335,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +117,False,"{'a': 0.01, 'e': 0.8895851931634113}",20,0,-179.7057820590596,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 3}",0 +118,False,"{'a': 0.01, 'e': 0.8886960526146174}",25,0,-88.7383855724386,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +119,False,"{'a': 0.01, 'e': 0.8878078007619501}",25,13,-64.25395758312713,"{0: 7, 1: 0, 2: 4, 3: 0, 4: 1}",1 +120,False,"{'a': 0.01, 'e': 0.8869204367171575}",25,0,-109.65990196636136,"{0: 13, 1: 3, 2: 7, 3: 2, 4: 0}",0 +121,False,"{'a': 0.01, 'e': 0.8860339595928756}",30,14,-87.5248159753057,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 2}",1 +122,False,"{'a': 0.01, 'e': 0.8851483685026271}",20,0,-26.26372039302241,"{0: 14, 1: 3, 2: 3, 3: 0, 4: 0}",0 +123,False,"{'a': 0.01, 'e': 0.8842636625608209}",20,11,-56.95893402639179,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 1}",1 +124,False,"{'a': 0.01, 'e': 0.8833798408827509}",20,0,-130.426957419226,"{0: 9, 1: 3, 2: 5, 3: 2, 4: 1}",0 +125,False,"{'a': 0.01, 'e': 0.8824969025845955}",20,0,-139.10047384814163,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 3}",0 +126,False,"{'a': 0.01, 'e': 0.8816148467834161}",30,0,-118.15514618426239,"{0: 21, 1: 2, 2: 5, 3: 0, 4: 2}",0 +127,False,"{'a': 0.01, 'e': 0.880733672597157}",30,2,-112.06567490420503,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 1}",1 +128,False,"{'a': 0.01, 'e': 0.8798533791446438}",20,0,-177.17090433328772,"{0: 12, 1: 2, 2: 2, 3: 0, 4: 4}",0 +129,False,"{'a': 0.01, 'e': 0.8789739655455832}",30,0,-139.5448620045635,"{0: 19, 1: 2, 2: 6, 3: 1, 4: 2}",0 +130,False,"{'a': 0.01, 'e': 0.8780954309205613}",30,0,-168.72087214837381,"{0: 17, 1: 1, 2: 9, 3: 1, 4: 2}",0 +131,False,"{'a': 0.01, 'e': 0.8772177743910435}",20,0,-150.09148353873246,"{0: 11, 1: 0, 2: 6, 3: 1, 4: 2}",0 +132,False,"{'a': 0.01, 'e': 0.8763409950793732}",30,3,-161.74106911477355,"{0: 17, 1: 2, 2: 4, 3: 1, 4: 3}",1 +133,False,"{'a': 0.01, 'e': 0.8754650921087711}",25,0,-178.2045857109432,"{0: 11, 1: 3, 2: 8, 3: 1, 4: 2}",0 +134,False,"{'a': 0.01, 'e': 0.874590064603334}",20,0,-102.32799530005138,"{0: 11, 1: 1, 2: 7, 3: 0, 4: 1}",0 +135,False,"{'a': 0.01, 'e': 0.8737159116880344}",20,0,-171.79868938370848,"{0: 12, 1: 1, 2: 2, 3: 2, 4: 3}",0 +136,False,"{'a': 0.01, 'e': 0.8728426324887193}",25,0,-114.72603495302175,"{0: 13, 1: 3, 2: 8, 3: 0, 4: 1}",0 +137,False,"{'a': 0.01, 'e': 0.8719702261321094}",20,7,-56.476239131474884,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 1}",1 +138,False,"{'a': 0.01, 'e': 0.8710986917457983}",20,10,-3.2098319029859677,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +139,False,"{'a': 0.01, 'e': 0.8702280284582515}",20,5,-75.79911514686194,"{0: 8, 1: 1, 2: 4, 3: 2, 4: 0}",1 +140,False,"{'a': 0.01, 'e': 0.8693582353988059}",25,11,-21.354086578570023,"{0: 10, 1: 0, 2: 4, 3: 0, 4: 0}",1 +141,False,"{'a': 0.01, 'e': 0.8684893116976679}",25,12,-85.7333887431537,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 2}",1 +142,False,"{'a': 0.01, 'e': 0.867621256485914}",25,0,-93.31951507305739,"{0: 15, 1: 2, 2: 6, 3: 2, 4: 0}",0 +143,False,"{'a': 0.01, 'e': 0.8667540688954889}",30,0,-208.78068079844545,"{0: 12, 1: 5, 2: 8, 3: 4, 4: 1}",0 +144,False,"{'a': 0.01, 'e': 0.865887748059205}",30,13,-19.463719453062257,"{0: 12, 1: 2, 2: 3, 3: 0, 4: 0}",1 +145,False,"{'a': 0.01, 'e': 0.8650222931107413}",20,0,-125.68179722126042,"{0: 11, 1: 3, 2: 4, 3: 0, 4: 2}",0 +146,False,"{'a': 0.01, 'e': 0.8641577031846428}",35,14,-110.29480440940699,"{0: 15, 1: 3, 2: 0, 3: 0, 4: 3}",1 +147,False,"{'a': 0.01, 'e': 0.8632939774163194}",30,0,-118.98731836684624,"{0: 19, 1: 5, 2: 4, 3: 0, 4: 2}",0 +148,False,"{'a': 0.01, 'e': 0.8624311149420455}",25,0,-121.98215255484443,"{0: 19, 1: 1, 2: 2, 3: 0, 4: 3}",0 +149,False,"{'a': 0.01, 'e': 0.8615691148989583}",30,2,-77.25395431144337,"{0: 20, 1: 2, 2: 5, 3: 0, 4: 1}",1 +150,False,"{'a': 0.01, 'e': 0.8607079764250578}",20,0,-142.44542343129578,"{0: 11, 1: 1, 2: 5, 3: 1, 4: 2}",0 +151,False,"{'a': 0.01, 'e': 0.8598476986592055}",25,0,-99.40750394717557,"{0: 18, 1: 1, 2: 3, 3: 2, 4: 1}",0 +152,False,"{'a': 0.01, 'e': 0.8589882807411234}",25,0,-239.19259569296614,"{0: 10, 1: 1, 2: 9, 3: 2, 4: 3}",0 +153,False,"{'a': 0.01, 'e': 0.8581297218113938}",30,0,-116.41313217040408,"{0: 22, 1: 2, 2: 3, 3: 1, 4: 2}",0 +154,False,"{'a': 0.01, 'e': 0.8572720210114575}",20,0,-111.97823500117089,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 2}",1 +155,False,"{'a': 0.01, 'e': 0.8564151774836135}",20,0,-71.00403291149793,"{0: 12, 1: 1, 2: 6, 3: 1, 4: 0}",0 +156,False,"{'a': 0.01, 'e': 0.8555591903710185}",30,0,-29.208505632486073,"{0: 26, 1: 2, 2: 1, 3: 0, 4: 1}",0 +157,False,"{'a': 0.01, 'e': 0.8547040588176851}",20,0,-84.08399234703947,"{0: 11, 1: 4, 2: 4, 3: 0, 4: 1}",0 +158,False,"{'a': 0.01, 'e': 0.8538497819684817}",30,0,-102.23210376333623,"{0: 20, 1: 2, 2: 7, 3: 0, 4: 1}",0 +159,False,"{'a': 0.01, 'e': 0.8529963589691315}",20,0,-94.17977266567519,"{0: 11, 1: 3, 2: 5, 3: 0, 4: 1}",0 +160,False,"{'a': 0.01, 'e': 0.8521437889662113}",35,0,-187.75538956562073,"{0: 25, 1: 1, 2: 5, 3: 0, 4: 4}",0 +161,False,"{'a': 0.01, 'e': 0.8512920711071511}",20,0,-135.7987569987369,"{0: 12, 1: 3, 2: 1, 3: 2, 4: 2}",0 +162,False,"{'a': 0.01, 'e': 0.850441204540233}",25,0,-74.80128054464085,"{0: 18, 1: 2, 2: 3, 3: 1, 4: 1}",0 +163,False,"{'a': 0.01, 'e': 0.8495911884145902}",20,0,-85.01666231382795,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +164,False,"{'a': 0.01, 'e': 0.8487420218802068}",30,0,-106.07179604801233,"{0: 21, 1: 2, 2: 4, 3: 2, 4: 1}",0 +165,False,"{'a': 0.01, 'e': 0.8478937040879159}",20,0,-49.59590173004258,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +166,False,"{'a': 0.01, 'e': 0.8470462341893996}",25,0,-57.02653472775248,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +167,False,"{'a': 0.01, 'e': 0.8461996113371882}",20,0,-114.79629814571275,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 2}",0 +168,False,"{'a': 0.01, 'e': 0.8453538346846587}",20,0,-164.62094547520917,"{0: 8, 1: 3, 2: 6, 3: 1, 4: 2}",0 +169,False,"{'a': 0.01, 'e': 0.8445089033860343}",20,0,-47.69468691390337,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +170,False,"{'a': 0.01, 'e': 0.8436648165963837}",25,0,-95.37107967121796,"{0: 17, 1: 3, 2: 2, 3: 2, 4: 1}",0 +171,False,"{'a': 0.01, 'e': 0.8428215734716199}",25,0,-86.71673480886874,"{0: 18, 1: 0, 2: 5, 3: 1, 4: 1}",0 +172,False,"{'a': 0.01, 'e': 0.8419791731684999}",20,0,-56.18563039911665,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +173,False,"{'a': 0.01, 'e': 0.8411376148446232}",20,0,-35.64380766723787,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +174,False,"{'a': 0.01, 'e': 0.8402968976584314}",25,6,-72.22447913415924,"{0: 13, 1: 2, 2: 2, 3: 1, 4: 1}",1 +175,False,"{'a': 0.01, 'e': 0.8394570207692074}",25,0,-85.3980752312526,"{0: 17, 1: 2, 2: 4, 3: 1, 4: 1}",0 +176,False,"{'a': 0.01, 'e': 0.838617983337074}",35,0,-130.40599581155217,"{0: 25, 1: 2, 2: 5, 3: 1, 4: 2}",0 +177,False,"{'a': 0.01, 'e': 0.8377797845229938}",30,0,-174.541328756873,"{0: 17, 1: 5, 2: 5, 3: 0, 4: 3}",0 +178,False,"{'a': 0.01, 'e': 0.8369424234887681}",30,12,-45.324109274340536,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 1}",1 +179,False,"{'a': 0.01, 'e': 0.8361058993970355}",30,0,-154.0651577239231,"{0: 22, 1: 1, 2: 3, 3: 1, 4: 3}",0 +180,False,"{'a': 0.01, 'e': 0.835270211411272}",20,0,-46.47859676240329,"{0: 14, 1: 0, 2: 6, 3: 0, 4: 0}",0 +181,False,"{'a': 0.01, 'e': 0.8344353586957896}",30,0,-140.80173299892382,"{0: 17, 1: 4, 2: 6, 3: 2, 4: 1}",0 +182,False,"{'a': 0.01, 'e': 0.8336013404157353}",30,0,-71.89887722259886,"{0: 19, 1: 6, 2: 4, 3: 1, 4: 0}",0 +183,False,"{'a': 0.01, 'e': 0.832768155737091}",30,0,-130.45331082038956,"{0: 20, 1: 3, 2: 4, 3: 1, 4: 2}",0 +184,False,"{'a': 0.01, 'e': 0.8319358038266718}",30,0,-241.97232557636016,"{0: 14, 1: 3, 2: 6, 3: 5, 4: 2}",0 +185,False,"{'a': 0.01, 'e': 0.8311042838521256}",20,3,-30.226999667397013,"{0: 12, 1: 3, 2: 1, 3: 1, 4: 0}",1 +186,False,"{'a': 0.01, 'e': 0.8302735949819326}",25,0,-74.62018999930464,"{0: 15, 1: 6, 2: 3, 3: 0, 4: 1}",0 +187,False,"{'a': 0.01, 'e': 0.8294437363854039}",30,2,-66.39773562877276,"{0: 20, 1: 1, 2: 6, 3: 1, 4: 0}",1 +188,False,"{'a': 0.01, 'e': 0.8286147072326806}",20,0,-183.3105723022379,"{0: 10, 1: 5, 2: 1, 3: 0, 4: 4}",0 +189,False,"{'a': 0.01, 'e': 0.8277865066947336}",20,0,-169.37995885919486,"{0: 11, 1: 1, 2: 4, 3: 1, 4: 3}",0 +190,False,"{'a': 0.01, 'e': 0.8269591339433623}",25,8,-19.42967938288815,"{0: 13, 1: 2, 2: 1, 3: 1, 4: 0}",1 +191,False,"{'a': 0.01, 'e': 0.8261325881511938}",25,0,-145.27428648233,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 3}",0 +192,False,"{'a': 0.01, 'e': 0.8253068684916823}",30,0,-72.31065134698902,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",0 +193,False,"{'a': 0.01, 'e': 0.8244819741391082}",20,0,-82.0049479711965,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +194,False,"{'a': 0.01, 'e': 0.8236579042685769}",25,0,-177.93946971563184,"{0: 14, 1: 1, 2: 7, 3: 0, 4: 3}",0 +195,False,"{'a': 0.01, 'e': 0.8228346580560184}",20,0,-114.70642255397769,"{0: 11, 1: 4, 2: 3, 3: 0, 4: 2}",0 +196,False,"{'a': 0.01, 'e': 0.8220122346781865}",30,6,-80.69806424566674,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 1}",1 +197,False,"{'a': 0.01, 'e': 0.821190633312658}",20,5,-39.899052444038944,"{0: 8, 1: 5, 2: 1, 3: 1, 4: 0}",1 +198,False,"{'a': 0.01, 'e': 0.8203698531378311}",20,0,-53.61426772009775,"{0: 12, 1: 4, 2: 3, 3: 1, 4: 0}",0 +199,False,"{'a': 0.01, 'e': 0.8195498933329256}",30,13,-48.46629509620798,"{0: 11, 1: 0, 2: 5, 3: 1, 4: 0}",1 +200,False,"{'a': 0.01, 'e': 0.8187307530779818}",25,0,-82.22171552488732,"{0: 17, 1: 4, 2: 2, 3: 1, 4: 1}",0 +201,False,"{'a': 0.01, 'e': 0.8179124315538594}",25,5,-28.18162817967057,"{0: 15, 1: 2, 2: 2, 3: 1, 4: 0}",1 +202,False,"{'a': 0.01, 'e': 0.8170949279422366}",20,0,-47.748334163851894,"{0: 13, 1: 3, 2: 3, 3: 1, 4: 0}",0 +203,False,"{'a': 0.01, 'e': 0.8162782414256099}",25,0,-58.87220599747477,"{0: 20, 1: 1, 2: 2, 3: 1, 4: 1}",0 +204,False,"{'a': 0.01, 'e': 0.8154623711872927}",35,0,-295.3711044884525,"{0: 19, 1: 5, 2: 2, 3: 4, 4: 5}",0 +205,False,"{'a': 0.01, 'e': 0.8146473164114145}",25,2,-36.59806490870928,"{0: 20, 1: 1, 2: 0, 3: 1, 4: 1}",1 +206,False,"{'a': 0.01, 'e': 0.8138330762829207}",20,0,-114.79772052243754,"{0: 11, 1: 2, 2: 4, 3: 2, 4: 1}",0 +207,False,"{'a': 0.01, 'e': 0.813019649987571}",20,0,-89.7936487823705,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +208,False,"{'a': 0.01, 'e': 0.812207036711939}",20,0,-99.79765845418716,"{0: 15, 1: 1, 2: 1, 3: 1, 4: 2}",0 +209,False,"{'a': 0.01, 'e': 0.8113952356434114}",35,0,-164.58212268102804,"{0: 22, 1: 3, 2: 7, 3: 1, 4: 2}",0 +210,False,"{'a': 0.01, 'e': 0.8105842459701871}",25,0,-131.93886170241407,"{0: 14, 1: 1, 2: 8, 3: 1, 4: 1}",0 +211,False,"{'a': 0.01, 'e': 0.8097740668812763}",20,10,-1.9245478601027437,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +212,False,"{'a': 0.01, 'e': 0.8089646975664998}",20,6,-61.076174799088406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 2}",1 +213,False,"{'a': 0.01, 'e': 0.8081561372164884}",30,0,-166.00292065436435,"{0: 16, 1: 4, 2: 7, 3: 1, 4: 2}",0 +214,False,"{'a': 0.01, 'e': 0.8073483850226815}",20,0,-113.40067026349594,"{0: 12, 1: 2, 2: 4, 3: 0, 4: 2}",0 +215,False,"{'a': 0.01, 'e': 0.8065414401773269}",35,0,-130.64493938595945,"{0: 25, 1: 2, 2: 5, 3: 1, 4: 2}",0 +216,False,"{'a': 0.01, 'e': 0.8057353018734796}",20,0,-59.58518208305725,"{0: 13, 1: 3, 2: 2, 3: 2, 4: 0}",0 +217,False,"{'a': 0.01, 'e': 0.8049299693050015}",20,4,-50.38571183417453,"{0: 11, 1: 2, 2: 2, 3: 0, 4: 1}",1 +218,False,"{'a': 0.01, 'e': 0.8041254416665596}",25,10,-17.272502631866292,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +219,False,"{'a': 0.01, 'e': 0.8033217181536265}",20,0,-33.25877954942402,"{0: 14, 1: 1, 2: 5, 3: 0, 4: 0}",0 +220,False,"{'a': 0.01, 'e': 0.8025187979624785}",20,2,-8.338178813167016,"{0: 13, 1: 4, 2: 1, 3: 0, 4: 0}",1 +221,False,"{'a': 0.01, 'e': 0.8017166802901953}",25,0,-41.74580066135553,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 0}",1 +222,False,"{'a': 0.01, 'e': 0.8009153643346592}",30,2,-112.21862490979498,"{0: 18, 1: 1, 2: 7, 3: 1, 4: 1}",1 +223,False,"{'a': 0.01, 'e': 0.8001148492945541}",20,0,-116.24475844497564,"{0: 10, 1: 3, 2: 5, 3: 1, 4: 1}",0 +224,False,"{'a': 0.01, 'e': 0.7993151343693651}",30,0,-83.08267768556662,"{0: 22, 1: 2, 2: 4, 3: 1, 4: 1}",0 +225,False,"{'a': 0.01, 'e': 0.7985162187593771}",30,1,-136.481781880905,"{0: 20, 1: 2, 2: 3, 3: 2, 4: 2}",1 +226,False,"{'a': 0.01, 'e': 0.7977181016656743}",20,0,-195.30359363911685,"{0: 8, 1: 3, 2: 3, 3: 4, 4: 2}",0 +227,False,"{'a': 0.01, 'e': 0.7969207822901396}",20,0,-123.85973989933403,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +228,False,"{'a': 0.01, 'e': 0.7961242598354538}",25,0,-94.37509284603433,"{0: 14, 1: 3, 2: 6, 3: 2, 4: 0}",0 +229,False,"{'a': 0.01, 'e': 0.7953285335050939}",30,0,-66.0197117967113,"{0: 24, 1: 1, 2: 3, 3: 1, 4: 1}",0 +230,False,"{'a': 0.01, 'e': 0.794533602503334}",20,13,-12.515425352432118,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +231,False,"{'a': 0.01, 'e': 0.7937394660352427}",20,12,-17.61642998092322,"{0: 5, 1: 1, 2: 2, 3: 0, 4: 0}",1 +232,False,"{'a': 0.01, 'e': 0.7929461233066837}",25,0,-59.69458526335364,"{0: 18, 1: 5, 2: 0, 3: 1, 4: 1}",0 +233,False,"{'a': 0.01, 'e': 0.792153573524314}",25,0,-56.00873682027303,"{0: 19, 1: 1, 2: 3, 3: 2, 4: 0}",0 +234,False,"{'a': 0.01, 'e': 0.7913618158955839}",20,0,-133.1019827828845,"{0: 11, 1: 3, 2: 3, 3: 1, 4: 2}",0 +235,False,"{'a': 0.01, 'e': 0.7905708496287356}",20,13,0.8186537125332867,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +236,False,"{'a': 0.01, 'e': 0.7897806739328027}",25,0,-60.692857657133146,"{0: 16, 1: 1, 2: 8, 3: 0, 4: 0}",0 +237,False,"{'a': 0.01, 'e': 0.7889912880176096}",30,0,-121.13177001435764,"{0: 20, 1: 3, 2: 5, 3: 0, 4: 2}",0 +238,False,"{'a': 0.01, 'e': 0.7882026910937704}",20,0,-47.5664948167299,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +239,False,"{'a': 0.01, 'e': 0.7874148823726879}",25,0,-154.06354554824264,"{0: 17, 1: 1, 2: 3, 3: 1, 4: 3}",0 +240,False,"{'a': 0.01, 'e': 0.7866278610665535}",25,0,-59.22041462140241,"{0: 17, 1: 4, 2: 2, 3: 2, 4: 0}",0 +241,False,"{'a': 0.01, 'e': 0.7858416263883455}",20,0,-109.88357664119278,"{0: 11, 1: 2, 2: 5, 3: 1, 4: 1}",0 +242,False,"{'a': 0.01, 'e': 0.7850561775518295}",20,0,-88.70361899589555,"{0: 11, 1: 2, 2: 5, 3: 2, 4: 0}",0 +243,False,"{'a': 0.01, 'e': 0.7842715137715565}",25,16,-8.472190892791204,"{0: 6, 1: 2, 2: 1, 3: 0, 4: 0}",1 +244,False,"{'a': 0.01, 'e': 0.7834876342628625}",25,0,-232.3579160198603,"{0: 12, 1: 1, 2: 7, 3: 2, 4: 3}",0 +245,False,"{'a': 0.01, 'e': 0.7827045382418681}",20,2,-153.16262484517608,"{0: 8, 1: 5, 2: 2, 3: 0, 4: 3}",1 +246,False,"{'a': 0.01, 'e': 0.7819222249254772}",30,18,1.158734703623547,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +247,False,"{'a': 0.01, 'e': 0.7811406935313765}",35,0,-68.62282145303297,"{0: 27, 1: 1, 2: 6, 3: 0, 4: 1}",0 +248,False,"{'a': 0.01, 'e': 0.7803599432780343}",30,1,-145.3795607362817,"{0: 18, 1: 2, 2: 6, 3: 1, 4: 2}",1 +249,False,"{'a': 0.01, 'e': 0.7795799733847004}",20,4,-9.323679634239719,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 0}",1 +250,False,"{'a': 0.01, 'e': 0.7788007830714049}",20,0,-12.821504899847058,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +251,False,"{'a': 0.01, 'e': 0.7780223715589573}",30,17,-28.576077414965685,"{0: 8, 1: 2, 2: 3, 3: 0, 4: 0}",1 +252,False,"{'a': 0.01, 'e': 0.7772447380689461}",20,9,-7.565488852231982,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 0}",1 +253,False,"{'a': 0.01, 'e': 0.7764678818237378}",30,0,-121.90010366739605,"{0: 18, 1: 6, 2: 3, 3: 2, 4: 1}",0 +254,False,"{'a': 0.01, 'e': 0.775691802046476}",30,5,-34.89250353588923,"{0: 19, 1: 3, 2: 2, 3: 1, 4: 0}",1 +255,False,"{'a': 0.01, 'e': 0.774916497961081}",20,0,-57.80010336644233,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +256,False,"{'a': 0.01, 'e': 0.7741419687922484}",25,0,-125.50638202609308,"{0: 12, 1: 2, 2: 9, 3: 2, 4: 0}",0 +257,False,"{'a': 0.01, 'e': 0.7733682137654491}",20,0,-140.07939613251114,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +258,False,"{'a': 0.01, 'e': 0.772595232106928}",20,0,-142.29989469929126,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 3}",0 +259,False,"{'a': 0.01, 'e': 0.7718230230437034}",20,0,-106.61531365723545,"{0: 11, 1: 3, 2: 4, 3: 1, 4: 1}",0 +260,False,"{'a': 0.01, 'e': 0.7710515858035663}",20,0,8.67958017345148,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +261,False,"{'a': 0.01, 'e': 0.7702809196150792}",25,7,-45.88038600269814,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 1}",1 +262,False,"{'a': 0.01, 'e': 0.7695110237075758}",25,0,-121.10112650810134,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 2}",0 +263,False,"{'a': 0.01, 'e': 0.7687418973111603}",30,11,-71.26463666020001,"{0: 14, 1: 2, 2: 0, 3: 2, 4: 1}",1 +264,False,"{'a': 0.01, 'e': 0.7679735396567061}",20,2,-29.304317676410612,"{0: 12, 1: 3, 2: 3, 3: 0, 4: 0}",1 +265,False,"{'a': 0.01, 'e': 0.7672059499758557}",20,0,-76.22440049538436,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +266,False,"{'a': 0.01, 'e': 0.7664391275010192}",20,0,-118.30866031895063,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +267,False,"{'a': 0.01, 'e': 0.7656730714653739}",20,0,-64.48857163608322,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +268,False,"{'a': 0.01, 'e': 0.764907781102864}",25,0,-204.26511797786293,"{0: 13, 1: 1, 2: 6, 3: 2, 4: 3}",0 +269,False,"{'a': 0.01, 'e': 0.764143255648199}",25,0,-93.48162712981554,"{0: 18, 1: 2, 2: 2, 3: 2, 4: 1}",0 +270,False,"{'a': 0.01, 'e': 0.7633794943368531}",20,0,-113.303581667433,"{0: 11, 1: 3, 2: 3, 3: 2, 4: 1}",0 +271,False,"{'a': 0.01, 'e': 0.7626164964050653}",25,5,-64.06656392916032,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",1 +272,False,"{'a': 0.01, 'e': 0.7618542610898376}",30,0,-0.699748838843167,"{0: 26, 1: 1, 2: 3, 3: 0, 4: 0}",0 +273,False,"{'a': 0.01, 'e': 0.7610927876289343}",25,0,-171.71534381978773,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 4}",0 +274,False,"{'a': 0.01, 'e': 0.7603320752608821}",25,5,-165.35771991662102,"{0: 11, 1: 0, 2: 4, 3: 3, 4: 2}",1 +275,False,"{'a': 0.01, 'e': 0.7595721232249685}",25,3,-32.25012855973634,"{0: 16, 1: 3, 2: 2, 3: 1, 4: 0}",1 +276,False,"{'a': 0.01, 'e': 0.7588129307612413}",20,6,-6.6607127742133665,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +277,False,"{'a': 0.01, 'e': 0.7580544971105083}",30,0,-11.386046834200693,"{0: 24, 1: 3, 2: 3, 3: 0, 4: 0}",0 +278,False,"{'a': 0.01, 'e': 0.7572968215143355}",20,0,-29.588325220537463,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +279,False,"{'a': 0.01, 'e': 0.7565399032150474}",25,17,-2.826147580481508,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +280,False,"{'a': 0.01, 'e': 0.7557837414557255}",20,12,-42.63056364692741,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +281,False,"{'a': 0.01, 'e': 0.755028335480208}",20,2,-47.73889202397585,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 1}",1 +282,False,"{'a': 0.01, 'e': 0.754273684533089}",25,16,-23.462180093281383,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +283,False,"{'a': 0.01, 'e': 0.7535197878597172}",30,0,-107.68691388378359,"{0: 25, 1: 0, 2: 2, 3: 0, 4: 3}",0 +284,False,"{'a': 0.01, 'e': 0.7527666447061963}",25,0,-7.083054745920254,"{0: 22, 1: 0, 2: 2, 3: 1, 4: 0}",0 +285,False,"{'a': 0.01, 'e': 0.7520142543193826}",20,0,-83.48942411575327,"{0: 13, 1: 0, 2: 6, 3: 0, 4: 1}",0 +286,False,"{'a': 0.01, 'e': 0.751262615946886}",20,0,-91.83717312443144,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +287,False,"{'a': 0.01, 'e': 0.750511728837068}",20,0,-165.33806106966188,"{0: 9, 1: 0, 2: 9, 3: 0, 4: 2}",0 +288,False,"{'a': 0.01, 'e': 0.7497615922390413}",25,9,-27.960134473607727,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 1}",1 +289,False,"{'a': 0.01, 'e': 0.7490122054026693}",25,0,-103.80432381301594,"{0: 18, 1: 2, 2: 2, 3: 1, 4: 2}",0 +290,False,"{'a': 0.01, 'e': 0.7482635675785653}",30,0,-42.43048365155697,"{0: 25, 1: 2, 2: 2, 3: 0, 4: 1}",0 +291,False,"{'a': 0.01, 'e': 0.747515678018091}",25,0,-6.064029766907028,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +292,False,"{'a': 0.01, 'e': 0.7467685359733571}",30,13,9.699367864786563,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +293,False,"{'a': 0.01, 'e': 0.7460221406972215}",25,0,-68.62728255450814,"{0: 17, 1: 2, 2: 4, 3: 2, 4: 0}",0 +294,False,"{'a': 0.01, 'e': 0.7452764914432887}",25,0,-58.12451464463362,"{0: 17, 1: 5, 2: 2, 3: 0, 4: 1}",0 +295,False,"{'a': 0.01, 'e': 0.7445315874659094}",20,0,-63.783310322787024,"{0: 11, 1: 3, 2: 6, 3: 0, 4: 0}",0 +296,False,"{'a': 0.01, 'e': 0.7437874280201796}",20,12,-7.450448745020395,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +297,False,"{'a': 0.01, 'e': 0.7430440123619398}",20,0,-46.30779998532292,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +298,False,"{'a': 0.01, 'e': 0.7423013397477743}",25,13,-21.103980987654857,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 0}",1 +299,False,"{'a': 0.01, 'e': 0.7415594094350105}",30,16,-34.616312946160214,"{0: 9, 1: 2, 2: 2, 3: 1, 4: 0}",1 +300,False,"{'a': 0.01, 'e': 0.7408182206817179}",20,0,-95.55706247989207,"{0: 13, 1: 2, 2: 2, 3: 2, 4: 1}",0 +301,False,"{'a': 0.01, 'e': 0.7400777727467076}",25,0,-54.426286126244996,"{0: 18, 1: 1, 2: 5, 3: 1, 4: 0}",0 +302,False,"{'a': 0.01, 'e': 0.7393380648895319}",20,6,-68.38928326045988,"{0: 8, 1: 1, 2: 4, 3: 0, 4: 1}",1 +303,False,"{'a': 0.01, 'e': 0.7385990963704826}",20,0,-143.69575454771217,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 3}",0 +304,False,"{'a': 0.01, 'e': 0.7378608664505911}",20,0,-111.55868311061353,"{0: 14, 1: 0, 2: 3, 3: 1, 4: 2}",0 +305,False,"{'a': 0.01, 'e': 0.7371233743916278}",20,0,-120.68499482484125,"{0: 12, 1: 1, 2: 5, 3: 0, 4: 2}",0 +306,False,"{'a': 0.01, 'e': 0.7363866194561001}",20,11,-36.17432414396597,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +307,False,"{'a': 0.01, 'e': 0.7356506009072533}",35,11,-31.873980697299093,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 1}",1 +308,False,"{'a': 0.01, 'e': 0.7349153180090687}",20,8,-13.958218716822243,"{0: 9, 1: 0, 2: 3, 3: 0, 4: 0}",1 +309,False,"{'a': 0.01, 'e': 0.7341807700262634}",20,0,-48.709132109921796,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +310,False,"{'a': 0.01, 'e': 0.7334469562242892}",25,0,-55.391408793358366,"{0: 19, 1: 0, 2: 4, 3: 2, 4: 0}",0 +311,False,"{'a': 0.01, 'e': 0.7327138758693325}",20,13,0.6665996057666133,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +312,False,"{'a': 0.01, 'e': 0.7319815282283126}",25,0,-34.65416329143733,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +313,False,"{'a': 0.01, 'e': 0.731249912568882}",30,0,-131.42120669324478,"{0: 23, 1: 0, 2: 4, 3: 0, 4: 3}",0 +314,False,"{'a': 0.01, 'e': 0.7305190281594249}",25,2,-83.59937972159086,"{0: 16, 1: 1, 2: 4, 3: 1, 4: 1}",1 +315,False,"{'a': 0.01, 'e': 0.7297888742690568}",25,0,-77.34301663328114,"{0: 17, 1: 2, 2: 5, 3: 0, 4: 1}",0 +316,False,"{'a': 0.01, 'e': 0.7290594501676237}",20,1,-34.45495685886435,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 0}",1 +317,False,"{'a': 0.01, 'e': 0.7283307551257017}",25,7,-52.68791956870314,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 0}",1 +318,False,"{'a': 0.01, 'e': 0.7276027884145955}",25,19,7.94006207883172,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +319,False,"{'a': 0.01, 'e': 0.7268755493063382}",25,0,-71.17490447702599,"{0: 15, 1: 5, 2: 3, 3: 2, 4: 0}",0 +320,False,"{'a': 0.01, 'e': 0.7261490370736909}",30,10,0.911361981507602,"{0: 16, 1: 3, 2: 1, 3: 0, 4: 0}",1 +321,False,"{'a': 0.01, 'e': 0.7254232509901412}",30,1,-133.62465891862698,"{0: 18, 1: 2, 2: 5, 3: 3, 4: 1}",1 +322,False,"{'a': 0.01, 'e': 0.7246981903299029}",20,10,-26.49438841345206,"{0: 6, 1: 0, 2: 4, 3: 0, 4: 0}",1 +323,False,"{'a': 0.01, 'e': 0.7239738543679153}",20,10,17.55502976830392,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +324,False,"{'a': 0.01, 'e': 0.7232502423798424}",20,3,-36.22666104151378,"{0: 12, 1: 2, 2: 2, 3: 1, 4: 0}",1 +325,False,"{'a': 0.01, 'e': 0.7225273536420722}",25,0,-25.88343551335904,"{0: 19, 1: 2, 2: 4, 3: 0, 4: 0}",0 +326,False,"{'a': 0.01, 'e': 0.7218051874317158}",25,3,-21.801477627721912,"{0: 16, 1: 3, 2: 3, 3: 0, 4: 0}",1 +327,False,"{'a': 0.01, 'e': 0.721083743026607}",25,10,-21.13767092426492,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +328,False,"{'a': 0.01, 'e': 0.7203630197053014}",20,0,-47.19042358689654,"{0: 15, 1: 2, 2: 2, 3: 0, 4: 1}",0 +329,False,"{'a': 0.01, 'e': 0.7196430167470754}",25,4,-7.190235683210485,"{0: 18, 1: 0, 2: 2, 3: 1, 4: 0}",1 +330,False,"{'a': 0.01, 'e': 0.7189237334319262}",30,9,-36.61800025404221,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 1}",1 +331,False,"{'a': 0.01, 'e': 0.7182051690405703}",30,14,-29.054581940308076,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 1}",1 +332,False,"{'a': 0.01, 'e': 0.7174873228544433}",30,0,-130.18560533276715,"{0: 21, 1: 2, 2: 3, 3: 2, 4: 2}",0 +333,False,"{'a': 0.01, 'e': 0.716770194155699}",20,0,-133.09017438515622,"{0: 12, 1: 0, 2: 5, 3: 1, 4: 2}",0 +334,False,"{'a': 0.01, 'e': 0.7160537822272085}",20,0,-127.9600278628391,"{0: 10, 1: 5, 2: 2, 3: 1, 4: 2}",0 +335,False,"{'a': 0.01, 'e': 0.7153380863525599}",20,3,-11.077917934047766,"{0: 14, 1: 1, 2: 1, 3: 1, 4: 0}",1 +336,False,"{'a': 0.01, 'e': 0.7146231058160573}",25,0,-134.26515575417775,"{0: 16, 1: 0, 2: 7, 3: 0, 4: 2}",0 +337,False,"{'a': 0.01, 'e': 0.71390883990272}",20,0,-53.30286495439025,"{0: 16, 1: 2, 2: 0, 3: 1, 4: 1}",0 +338,False,"{'a': 0.01, 'e': 0.7131952878982822}",30,4,-167.98923082034415,"{0: 18, 1: 1, 2: 3, 3: 0, 4: 4}",1 +339,False,"{'a': 0.01, 'e': 0.7124824490891918}",30,0,-139.0223981319199,"{0: 20, 1: 1, 2: 6, 3: 1, 4: 2}",0 +340,False,"{'a': 0.01, 'e': 0.7117703227626097}",20,14,4.04663187325524,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +341,False,"{'a': 0.01, 'e': 0.7110589082064097}",30,5,-103.60557244440214,"{0: 18, 1: 1, 2: 3, 3: 1, 4: 2}",1 +342,False,"{'a': 0.01, 'e': 0.7103482047091773}",20,0,-73.25558268382514,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",0 +343,False,"{'a': 0.01, 'e': 0.7096382115602087}",25,2,-159.28228177119684,"{0: 13, 1: 1, 2: 5, 3: 2, 4: 2}",1 +344,False,"{'a': 0.01, 'e': 0.7089289280495107}",20,5,-76.78167311695441,"{0: 9, 1: 0, 2: 5, 3: 0, 4: 1}",1 +345,False,"{'a': 0.01, 'e': 0.7082203534678}",25,0,-31.49236367887367,"{0: 17, 1: 5, 2: 3, 3: 0, 4: 0}",0 +346,False,"{'a': 0.01, 'e': 0.7075124871065017}",25,7,-45.396672323905186,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +347,False,"{'a': 0.01, 'e': 0.7068053282577494}",20,0,-158.57143393760774,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +348,False,"{'a': 0.01, 'e': 0.7060988762143844}",30,18,-11.207817486506626,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +349,False,"{'a': 0.01, 'e': 0.7053931302699543}",20,0,-85.8963366445714,"{0: 14, 1: 0, 2: 3, 3: 2, 4: 1}",0 +350,False,"{'a': 0.01, 'e': 0.7046880897187134}",20,12,-29.633666388700924,"{0: 4, 1: 0, 2: 4, 3: 0, 4: 0}",1 +351,False,"{'a': 0.01, 'e': 0.7039837538556208}",20,0,-121.92456038650371,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 2}",0 +352,False,"{'a': 0.01, 'e': 0.7032801219763409}",30,0,-73.83530955079398,"{0: 23, 1: 2, 2: 2, 3: 2, 4: 1}",0 +353,False,"{'a': 0.01, 'e': 0.7025771933772416}",20,2,-15.399259489118492,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +354,False,"{'a': 0.01, 'e': 0.701874967355394}",35,0,-232.74068748048475,"{0: 25, 1: 0, 2: 3, 3: 2, 4: 5}",0 +355,False,"{'a': 0.01, 'e': 0.7011734432085724}",25,0,-238.30152614906402,"{0: 11, 1: 4, 2: 5, 3: 1, 4: 4}",0 +356,False,"{'a': 0.01, 'e': 0.7004726202352524}",30,18,7.902710640509875,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +357,False,"{'a': 0.01, 'e': 0.699772497734611}",25,0,-68.94821579769058,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 1}",0 +358,False,"{'a': 0.01, 'e': 0.6990730750065257}",25,0,-85.43529894582619,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +359,False,"{'a': 0.01, 'e': 0.6983743513515736}",30,3,-121.1407553820593,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 2}",1 +360,False,"{'a': 0.01, 'e': 0.697676326071031}",30,8,-87.81543701671688,"{0: 14, 1: 1, 2: 6, 3: 0, 4: 1}",1 +361,False,"{'a': 0.01, 'e': 0.6969789984668727}",20,0,13.975494257572015,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +362,False,"{'a': 0.01, 'e': 0.696282367841771}",20,5,-12.40935855485856,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +363,False,"{'a': 0.01, 'e': 0.6955864334990951}",30,8,-36.80152182714745,"{0: 17, 1: 3, 2: 1, 3: 0, 4: 1}",1 +364,False,"{'a': 0.01, 'e': 0.6948911947429106}",20,12,15.201288505606623,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +365,False,"{'a': 0.01, 'e': 0.6941966508779789}",20,12,11.318618370420406,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +366,False,"{'a': 0.01, 'e': 0.6935028012097558}",20,12,-26.89689346107936,"{0: 6, 1: 0, 2: 0, 3: 2, 4: 0}",1 +367,False,"{'a': 0.01, 'e': 0.6928096450443917}",25,3,-65.35333526220919,"{0: 18, 1: 0, 2: 1, 3: 2, 4: 1}",1 +368,False,"{'a': 0.01, 'e': 0.6921171816887304}",25,0,-59.47464052695863,"{0: 18, 1: 3, 2: 3, 3: 0, 4: 1}",0 +369,False,"{'a': 0.01, 'e': 0.6914254104503085}",25,0,-4.354433166823178,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",0 +370,False,"{'a': 0.01, 'e': 0.6907343306373547}",20,2,-1.06738702307657,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +371,False,"{'a': 0.01, 'e': 0.690043941558789}",20,0,-67.28804111866886,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +372,False,"{'a': 0.01, 'e': 0.6893542425242224}",20,4,-91.22638492707337,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 2}",1 +373,False,"{'a': 0.01, 'e': 0.6886652328439558}",25,0,-55.64394746493771,"{0: 16, 1: 3, 2: 5, 3: 1, 4: 0}",0 +374,False,"{'a': 0.01, 'e': 0.6879769118289795}",25,0,-89.68699622690012,"{0: 18, 1: 0, 2: 5, 3: 1, 4: 1}",0 +375,False,"{'a': 0.01, 'e': 0.6872892787909722}",20,0,-116.0274392944452,"{0: 13, 1: 1, 2: 3, 3: 1, 4: 2}",0 +376,False,"{'a': 0.01, 'e': 0.686602333042301}",25,13,-43.820357455963276,"{0: 9, 1: 1, 2: 0, 3: 1, 4: 1}",1 +377,False,"{'a': 0.01, 'e': 0.6859160738960202}",30,0,-105.32448757714612,"{0: 22, 1: 2, 2: 4, 3: 0, 4: 2}",0 +378,False,"{'a': 0.01, 'e': 0.6852305006658703}",25,0,-56.76874504779387,"{0: 16, 1: 2, 2: 7, 3: 0, 4: 0}",0 +379,False,"{'a': 0.01, 'e': 0.6845456126662782}",20,3,-79.81866540687219,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 2}",1 +380,False,"{'a': 0.01, 'e': 0.6838614092123558}",20,0,3.2474488683546334,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +381,False,"{'a': 0.01, 'e': 0.6831778896198997}",25,11,-103.08395129891375,"{0: 8, 1: 1, 2: 3, 3: 0, 4: 2}",1 +382,False,"{'a': 0.01, 'e': 0.6824950532053901}",20,8,-5.38525568248147,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 0}",1 +383,False,"{'a': 0.01, 'e': 0.6818128992859905}",20,0,-124.26541633220013,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 2}",0 +384,False,"{'a': 0.01, 'e': 0.6811314271795471}",25,5,-31.145520907931733,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",1 +385,False,"{'a': 0.01, 'e': 0.6804506362045877}",20,14,-13.767988930726487,"{0: 4, 1: 0, 2: 2, 3: 0, 4: 0}",1 +386,False,"{'a': 0.01, 'e': 0.679770525680321}",20,0,-95.1470257919197,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +387,False,"{'a': 0.01, 'e': 0.6790910949266368}",25,0,-65.26078948107977,"{0: 21, 1: 1, 2: 1, 3: 0, 4: 2}",0 +388,False,"{'a': 0.01, 'e': 0.678412343264104}",25,7,-42.17068990364127,"{0: 14, 1: 0, 2: 1, 3: 3, 4: 0}",1 +389,False,"{'a': 0.01, 'e': 0.6777342700139711}",30,0,-92.32003652344756,"{0: 21, 1: 2, 2: 5, 3: 1, 4: 1}",0 +390,False,"{'a': 0.01, 'e': 0.6770568744981647}",20,5,-42.641102406998286,"{0: 9, 1: 0, 2: 6, 3: 0, 4: 0}",1 +391,False,"{'a': 0.01, 'e': 0.6763801560392891}",20,0,-21.580407262744615,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +392,False,"{'a': 0.01, 'e': 0.675704113960626}",35,24,-37.90414926629901,"{0: 8, 1: 2, 2: 0, 3: 0, 4: 1}",1 +393,False,"{'a': 0.01, 'e': 0.6750287475861332}",20,0,-136.69845863313645,"{0: 12, 1: 1, 2: 3, 3: 2, 4: 2}",0 +394,False,"{'a': 0.01, 'e': 0.6743540562404442}",20,2,-69.5103208920554,"{0: 11, 1: 2, 2: 3, 3: 2, 4: 0}",1 +395,False,"{'a': 0.01, 'e': 0.6736800392488677}",25,7,-34.91631763184031,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +396,False,"{'a': 0.01, 'e': 0.6730066959373864}",30,20,-5.55813458098952,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +397,False,"{'a': 0.01, 'e': 0.6723340256326572}",30,0,-165.9643238338785,"{0: 19, 1: 1, 2: 6, 3: 2, 4: 2}",0 +398,False,"{'a': 0.01, 'e': 0.6716620276620098}",25,0,-80.75278067205342,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 2}",0 +399,False,"{'a': 0.01, 'e': 0.6709907013534459}",20,11,-38.68775443222956,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +400,False,"{'a': 0.01, 'e': 0.6703200460356393}",25,0,-44.344307395762904,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +401,False,"{'a': 0.01, 'e': 0.6696500610379346}",35,0,-122.49606731940641,"{0: 26, 1: 1, 2: 5, 3: 1, 4: 2}",0 +402,False,"{'a': 0.01, 'e': 0.6689807456903467}",20,0,-96.89000248928635,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +403,False,"{'a': 0.01, 'e': 0.6683120993235603}",30,9,-75.6667278695389,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 2}",1 +404,False,"{'a': 0.01, 'e': 0.6676441212689289}",30,20,-6.790302333101121,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +405,False,"{'a': 0.01, 'e': 0.6669768108584744}",20,9,-31.551617925353312,"{0: 7, 1: 0, 2: 4, 3: 0, 4: 0}",1 +406,False,"{'a': 0.01, 'e': 0.6663101674248864}",25,0,-36.55493356724011,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 0}",0 +407,False,"{'a': 0.01, 'e': 0.6656441903015212}",20,4,-51.6694106513917,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +408,False,"{'a': 0.01, 'e': 0.6649788788224019}",20,12,-38.46065463062993,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +409,False,"{'a': 0.01, 'e': 0.6643142323222168}",25,0,-105.2660821460501,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",0 +410,False,"{'a': 0.01, 'e': 0.6636502501363194}",25,0,-26.685726078598,"{0: 20, 1: 2, 2: 2, 3: 1, 4: 0}",0 +411,False,"{'a': 0.01, 'e': 0.6629869316007274}",25,5,-54.46426577982272,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",1 +412,False,"{'a': 0.01, 'e': 0.6623242760521222}",25,3,15.179746503759384,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +413,False,"{'a': 0.01, 'e': 0.6616622828278483}",20,0,-87.49173994413013,"{0: 13, 1: 0, 2: 5, 3: 1, 4: 1}",0 +414,False,"{'a': 0.01, 'e': 0.6610009512659124}",25,0,-32.21075295557664,"{0: 20, 1: 0, 2: 4, 3: 1, 4: 0}",0 +415,False,"{'a': 0.01, 'e': 0.6603402807049829}",20,0,-91.006013381632,"{0: 12, 1: 3, 2: 3, 3: 1, 4: 1}",0 +416,False,"{'a': 0.01, 'e': 0.659680270484389}",25,13,-108.66412410542004,"{0: 7, 1: 0, 2: 2, 3: 1, 4: 2}",1 +417,False,"{'a': 0.01, 'e': 0.6590209199441207}",20,0,-36.299714078937775,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +418,False,"{'a': 0.01, 'e': 0.6583622284248272}",20,10,-17.24522793428394,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +419,False,"{'a': 0.01, 'e': 0.657704195267817}",20,9,-2.45092806562617,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +420,False,"{'a': 0.01, 'e': 0.6570468198150567}",25,0,-98.37581166233736,"{0: 19, 1: 2, 2: 1, 3: 1, 4: 2}",0 +421,False,"{'a': 0.01, 'e': 0.6563901014091712}",25,14,10.106723340724464,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +422,False,"{'a': 0.01, 'e': 0.6557340393934418}",30,5,-36.1780553864002,"{0: 19, 1: 1, 2: 4, 3: 1, 4: 0}",1 +423,False,"{'a': 0.01, 'e': 0.6550786331118063}",25,11,-33.51628751053105,"{0: 10, 1: 0, 2: 3, 3: 1, 4: 0}",1 +424,False,"{'a': 0.01, 'e': 0.6544238819088586}",20,5,-67.31657108333218,"{0: 9, 1: 0, 2: 4, 3: 2, 4: 0}",1 +425,False,"{'a': 0.01, 'e': 0.6537697851298473}",25,11,-43.408991912285806,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +426,False,"{'a': 0.01, 'e': 0.6531163421206756}",25,5,-25.602473500680016,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +427,False,"{'a': 0.01, 'e': 0.6524635522279004}",25,16,17.902130051076288,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +428,False,"{'a': 0.01, 'e': 0.651811414798732}",25,7,-18.328955431754,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +429,False,"{'a': 0.01, 'e': 0.6511599291810325}",30,16,0.5688481776671701,"{0: 11, 1: 2, 2: 1, 3: 0, 4: 0}",1 +430,False,"{'a': 0.01, 'e': 0.6505090947233165}",30,14,-0.8529805612881214,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +431,False,"{'a': 0.01, 'e': 0.6498589107747496}",20,0,-126.38762249840052,"{0: 12, 1: 1, 2: 4, 3: 1, 4: 2}",0 +432,False,"{'a': 0.01, 'e': 0.6492093766851474}",20,1,16.610772045353812,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +433,False,"{'a': 0.01, 'e': 0.6485604918049761}",30,0,-36.85270271067129,"{0: 26, 1: 0, 2: 3, 3: 0, 4: 1}",0 +434,False,"{'a': 0.01, 'e': 0.6479122554853506}",25,9,-85.4993058243382,"{0: 10, 1: 1, 2: 2, 3: 2, 4: 1}",1 +435,False,"{'a': 0.01, 'e': 0.6472646670780347}",20,2,-31.29122764390581,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 1}",1 +436,False,"{'a': 0.01, 'e': 0.6466177259354396}",30,1,-176.09147436148365,"{0: 20, 1: 1, 2: 4, 3: 0, 4: 4}",1 +437,False,"{'a': 0.01, 'e': 0.6459714314106245}",20,6,-61.05718832355584,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 1}",1 +438,False,"{'a': 0.01, 'e': 0.6453257828572946}",20,0,-52.6074525092417,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +439,False,"{'a': 0.01, 'e': 0.6446807796298013}",25,14,-5.595766281571513,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +440,False,"{'a': 0.01, 'e': 0.6440364210831414}",20,0,-88.51884612428424,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 2}",0 +441,False,"{'a': 0.01, 'e': 0.6433927065729562}",25,0,-122.59578129326854,"{0: 12, 1: 5, 2: 5, 3: 3, 4: 0}",0 +442,False,"{'a': 0.01, 'e': 0.6427496354555312}",30,0,-97.78138135362731,"{0: 22, 1: 1, 2: 5, 3: 0, 4: 2}",0 +443,False,"{'a': 0.01, 'e': 0.6421072070877952}",20,4,-61.21071957034616,"{0: 10, 1: 3, 2: 2, 3: 0, 4: 1}",1 +444,False,"{'a': 0.01, 'e': 0.6414654208273198}",30,12,-18.687358404872743,"{0: 13, 1: 4, 2: 0, 3: 1, 4: 0}",1 +445,False,"{'a': 0.01, 'e': 0.6408242760323187}",20,14,-0.4116959935095248,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +446,False,"{'a': 0.01, 'e': 0.6401837720616471}",25,11,-134.62320494803464,"{0: 8, 1: 0, 2: 3, 3: 0, 4: 3}",1 +447,False,"{'a': 0.01, 'e': 0.6395439082748009}",20,11,-47.33016818820583,"{0: 5, 1: 3, 2: 0, 3: 0, 4: 1}",1 +448,False,"{'a': 0.01, 'e': 0.6389046840319162}",25,11,-6.773223244544518,"{0: 10, 1: 3, 2: 1, 3: 0, 4: 0}",1 +449,False,"{'a': 0.01, 'e': 0.6382660986937688}",35,8,-100.39757653776367,"{0: 18, 1: 1, 2: 6, 3: 1, 4: 1}",1 +450,False,"{'a': 0.01, 'e': 0.6376281516217733}",20,2,-103.50643164568784,"{0: 10, 1: 2, 2: 3, 3: 2, 4: 1}",1 +451,False,"{'a': 0.01, 'e': 0.6369908421779825}",25,0,-95.47375400093894,"{0: 17, 1: 5, 2: 1, 3: 0, 4: 2}",0 +452,False,"{'a': 0.01, 'e': 0.6363541697250871}",30,7,-33.32684420839206,"{0: 16, 1: 4, 2: 2, 3: 1, 4: 0}",1 +453,False,"{'a': 0.01, 'e': 0.6357181336264143}",25,0,-20.5811641192417,"{0: 20, 1: 2, 2: 2, 3: 1, 4: 0}",0 +454,False,"{'a': 0.01, 'e': 0.6350827332459281}",30,16,-56.490349450444555,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 1}",1 +455,False,"{'a': 0.01, 'e': 0.6344479679482282}",25,0,-116.4727480753483,"{0: 16, 1: 2, 2: 5, 3: 0, 4: 2}",0 +456,False,"{'a': 0.01, 'e': 0.633813837098549}",35,0,-82.25795672682273,"{0: 24, 1: 4, 2: 6, 3: 0, 4: 1}",0 +457,False,"{'a': 0.01, 'e': 0.6331803400627598}",25,16,0.9316443036224729,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +458,False,"{'a': 0.01, 'e': 0.6325474762073634}",20,0,-51.52108875451744,"{0: 15, 1: 2, 2: 2, 3: 0, 4: 1}",0 +459,False,"{'a': 0.01, 'e': 0.6319152448994959}",30,0,-68.10159543051043,"{0: 25, 1: 1, 2: 2, 3: 0, 4: 2}",0 +460,False,"{'a': 0.01, 'e': 0.631283645506926}",20,4,-34.71134223975304,"{0: 12, 1: 1, 2: 1, 3: 2, 4: 0}",1 +461,False,"{'a': 0.01, 'e': 0.6306526773980542}",20,0,-50.889564957845415,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +462,False,"{'a': 0.01, 'e': 0.6300223399419123}",20,0,-7.409383821983095,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +463,False,"{'a': 0.01, 'e': 0.6293926325081629}",20,2,-113.35684924935016,"{0: 11, 1: 1, 2: 4, 3: 0, 4: 2}",1 +464,False,"{'a': 0.01, 'e': 0.6287635544670984}",20,11,-15.46071328503092,"{0: 6, 1: 1, 2: 2, 3: 0, 4: 0}",1 +465,False,"{'a': 0.01, 'e': 0.6281351051896408}",25,0,-31.409292568225695,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +466,False,"{'a': 0.01, 'e': 0.6275072840473407}",30,13,-16.976615403747974,"{0: 12, 1: 3, 2: 2, 3: 0, 4: 0}",1 +467,False,"{'a': 0.01, 'e': 0.626880090412377}",30,0,-68.84194958989087,"{0: 24, 1: 0, 2: 4, 3: 1, 4: 1}",0 +468,False,"{'a': 0.01, 'e': 0.6262535236575559}",30,0,-92.39670419647764,"{0: 23, 1: 1, 2: 4, 3: 0, 4: 2}",0 +469,False,"{'a': 0.01, 'e': 0.6256275831563107}",20,10,-47.3185276831142,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 1}",1 +470,False,"{'a': 0.01, 'e': 0.6250022682827008}",25,5,-68.30844010297697,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 2}",1 +471,False,"{'a': 0.01, 'e': 0.6243775784114112}",20,14,-1.9600069559195212,"{0: 4, 1: 2, 2: 0, 3: 0, 4: 0}",1 +472,False,"{'a': 0.01, 'e': 0.623753512917752}",30,16,13.98522645715261,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +473,False,"{'a': 0.01, 'e': 0.6231300711776578}",20,13,-1.8596208117074822,"{0: 5, 1: 2, 2: 0, 3: 0, 4: 0}",1 +474,False,"{'a': 0.01, 'e': 0.6225072525676867}",30,17,25.796495717629174,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +475,False,"{'a': 0.01, 'e': 0.62188505646502}",20,0,-154.2375349192832,"{0: 12, 1: 2, 2: 2, 3: 1, 4: 3}",0 +476,False,"{'a': 0.01, 'e': 0.6212634822474616}",20,8,-60.14938569343406,"{0: 8, 1: 1, 2: 1, 3: 1, 4: 1}",1 +477,False,"{'a': 0.01, 'e': 0.6206425292934373}",25,9,-35.7511761824895,"{0: 11, 1: 1, 2: 3, 3: 1, 4: 0}",1 +478,False,"{'a': 0.01, 'e': 0.6200221969819939}",20,10,18.388390073505505,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +479,False,"{'a': 0.01, 'e': 0.6194024846927992}",20,0,-6.318199510883709,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",1 +480,False,"{'a': 0.01, 'e': 0.6187833918061408}",20,5,-11.718757693307872,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +481,False,"{'a': 0.01, 'e': 0.6181649177029258}",25,8,-58.85568974752996,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 1}",1 +482,False,"{'a': 0.01, 'e': 0.61754706176468}",25,7,4.240782693382648,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +483,False,"{'a': 0.01, 'e': 0.6169298233735474}",20,16,8.042564295864647,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +484,False,"{'a': 0.01, 'e': 0.6163132019122897}",20,0,-12.368102758069188,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +485,False,"{'a': 0.01, 'e': 0.6156971967642851}",20,12,3.8769610772163206,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +486,False,"{'a': 0.01, 'e': 0.6150818073135287}",25,3,-53.12421411671168,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 1}",1 +487,False,"{'a': 0.01, 'e': 0.6144670329446308}",35,6,11.553098758329375,"{0: 25, 1: 2, 2: 2, 3: 0, 4: 0}",1 +488,False,"{'a': 0.01, 'e': 0.6138528730428171}",25,16,-10.939837667488526,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +489,False,"{'a': 0.01, 'e': 0.6132393269939275}",25,3,-18.899294720355176,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +490,False,"{'a': 0.01, 'e': 0.6126263941844161}",25,0,-90.94313527922388,"{0: 17, 1: 3, 2: 2, 3: 2, 4: 1}",0 +491,False,"{'a': 0.01, 'e': 0.6120140740013499}",25,0,-53.235725015293745,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +492,False,"{'a': 0.01, 'e': 0.6114023658324087}",35,15,-61.61587961579288,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",1 +493,False,"{'a': 0.01, 'e': 0.6107912690658842}",25,0,-44.30699364861377,"{0: 19, 1: 3, 2: 2, 3: 0, 4: 1}",1 +494,False,"{'a': 0.01, 'e': 0.6101807830906798}",25,0,-23.88238805580357,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +495,False,"{'a': 0.01, 'e': 0.6095709072963093}",20,6,21.227547419701583,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +496,False,"{'a': 0.01, 'e': 0.6089616410728969}",30,8,-99.0691017550475,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 2}",1 +497,False,"{'a': 0.01, 'e': 0.6083529838111763}",20,0,-47.07593989630085,"{0: 12, 1: 3, 2: 5, 3: 0, 4: 0}",0 +498,False,"{'a': 0.01, 'e': 0.6077449349024902}",20,6,-0.7001889151285614,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +499,False,"{'a': 0.01, 'e': 0.6071374937387897}",35,0,-78.22500693156549,"{0: 24, 1: 5, 2: 4, 3: 2, 4: 0}",0 +500,False,"{'a': 0.01, 'e': 0.6065306597126334}",20,6,-200.09615042467584,"{0: 6, 1: 0, 2: 3, 3: 1, 4: 4}",1 +501,False,"{'a': 0.01, 'e': 0.6059244322171875}",25,15,17.768397124727823,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +502,False,"{'a': 0.01, 'e': 0.6053188106462243}",30,0,-169.8630329862961,"{0: 19, 1: 3, 2: 4, 3: 1, 4: 3}",0 +503,False,"{'a': 0.01, 'e': 0.6047137943941221}",20,0,5.461633670325517,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +504,False,"{'a': 0.01, 'e': 0.6041093828558647}",30,8,-6.342421471786864,"{0: 18, 1: 2, 2: 2, 3: 0, 4: 0}",1 +505,False,"{'a': 0.01, 'e': 0.6035055754270405}",25,4,-37.73023469885156,"{0: 15, 1: 1, 2: 5, 3: 0, 4: 0}",1 +506,False,"{'a': 0.01, 'e': 0.6029023715038421}",20,0,-8.253741322733612,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +507,False,"{'a': 0.01, 'e': 0.6022997704830654}",20,0,-88.38635277500174,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +508,False,"{'a': 0.01, 'e': 0.6016977717621094}",20,15,7.181696873297881,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +509,False,"{'a': 0.01, 'e': 0.6010963747389753}",30,11,-10.012789439658391,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 0}",1 +510,False,"{'a': 0.01, 'e': 0.6004955788122659}",25,0,-44.41780224768406,"{0: 18, 1: 2, 2: 4, 3: 1, 4: 0}",0 +511,False,"{'a': 0.01, 'e': 0.5998953833811855}",20,0,-19.816223984939402,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +512,False,"{'a': 0.01, 'e': 0.5992957878455384}",20,0,-4.025991034196834,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +513,False,"{'a': 0.01, 'e': 0.5986967916057292}",20,0,-19.610543016726627,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",0 +514,False,"{'a': 0.01, 'e': 0.5980983940627613}",25,7,-7.6715967881323746,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +515,False,"{'a': 0.01, 'e': 0.5975005946182375}",25,14,9.557705171910593,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +516,False,"{'a': 0.01, 'e': 0.596903392674358}",20,0,-122.95317474594448,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 2}",0 +517,False,"{'a': 0.01, 'e': 0.596306787633921}",20,0,-155.96565003399448,"{0: 13, 1: 0, 2: 3, 3: 1, 4: 3}",0 +518,False,"{'a': 0.01, 'e': 0.5957107789003212}",25,11,-57.0983982736456,"{0: 9, 1: 1, 2: 3, 3: 0, 4: 1}",1 +519,False,"{'a': 0.01, 'e': 0.5951153658775501}",20,2,-31.59729046609453,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 1}",1 +520,False,"{'a': 0.01, 'e': 0.5945205479701944}",20,0,-102.10033894108093,"{0: 14, 1: 1, 2: 2, 3: 1, 4: 2}",0 +521,False,"{'a': 0.01, 'e': 0.5939263245834361}",20,7,22.331703330301586,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +522,False,"{'a': 0.01, 'e': 0.593332695123052}",20,3,-86.79090924171513,"{0: 11, 1: 1, 2: 2, 3: 2, 4: 1}",1 +523,False,"{'a': 0.01, 'e': 0.5927396589954125}",20,7,-1.411453963370356,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +524,False,"{'a': 0.01, 'e': 0.5921472156074813}",20,13,3.542076332972484,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +525,False,"{'a': 0.01, 'e': 0.5915553643668151}",25,0,-55.458429926207536,"{0: 19, 1: 2, 2: 3, 3: 0, 4: 1}",1 +526,False,"{'a': 0.01, 'e': 0.5909641046815626}",20,12,5.658389689423194,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +527,False,"{'a': 0.01, 'e': 0.5903734359604639}",30,2,-77.00783966876175,"{0: 20, 1: 2, 2: 4, 3: 1, 4: 1}",1 +528,False,"{'a': 0.01, 'e': 0.5897833576128504}",20,2,-19.55977354157129,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +529,False,"{'a': 0.01, 'e': 0.5891938690486437}",20,14,0.057861494927845314,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +530,False,"{'a': 0.01, 'e': 0.5886049696783552}",25,8,-62.5257144500824,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 1}",1 +531,False,"{'a': 0.01, 'e': 0.5880166589130854}",20,0,-66.59660423905532,"{0: 14, 1: 0, 2: 5, 3: 0, 4: 1}",0 +532,False,"{'a': 0.01, 'e': 0.5874289361645234}",25,0,-46.20355612791772,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 2}",0 +533,False,"{'a': 0.01, 'e': 0.5868418008449466}",20,0,-66.09766649695833,"{0: 14, 1: 3, 2: 1, 3: 1, 4: 1}",0 +534,False,"{'a': 0.01, 'e': 0.5862552523672196}",25,0,-63.509036250643156,"{0: 17, 1: 1, 2: 6, 3: 1, 4: 0}",0 +535,False,"{'a': 0.01, 'e': 0.5856692901447937}",25,0,-83.92693458524677,"{0: 19, 1: 2, 2: 2, 3: 0, 4: 2}",0 +536,False,"{'a': 0.01, 'e': 0.5850839135917069}",30,0,-92.07866370525106,"{0: 21, 1: 2, 2: 5, 3: 1, 4: 1}",0 +537,False,"{'a': 0.01, 'e': 0.5844991221225824}",20,6,-18.926076763769576,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +538,False,"{'a': 0.01, 'e': 0.5839149151526287}",20,10,-66.86210031118345,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 2}",1 +539,False,"{'a': 0.01, 'e': 0.5833312920976388}",30,18,-5.03204873843271,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +540,False,"{'a': 0.01, 'e': 0.5827482523739896}",20,0,-58.38758352832589,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +541,False,"{'a': 0.01, 'e': 0.5821657953986414}",20,13,-6.493802024004286,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 0}",1 +542,False,"{'a': 0.01, 'e': 0.5815839205891371}",25,11,-7.026793110234724,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +543,False,"{'a': 0.01, 'e': 0.5810026273636019}",35,19,-19.253820209079795,"{0: 12, 1: 0, 2: 4, 3: 0, 4: 0}",1 +544,False,"{'a': 0.01, 'e': 0.5804219151407424}",25,0,-28.69317511318479,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +545,False,"{'a': 0.01, 'e': 0.5798417833398464}",25,6,-85.51836509713225,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 2}",1 +546,False,"{'a': 0.01, 'e': 0.579262231380782}",20,3,-36.83578176166194,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 1}",1 +547,False,"{'a': 0.01, 'e': 0.5786832586839974}",20,10,-119.466352303418,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 3}",1 +548,False,"{'a': 0.01, 'e': 0.5781048646705196}",25,0,-49.7744932368794,"{0: 20, 1: 1, 2: 1, 3: 3, 4: 0}",0 +549,False,"{'a': 0.01, 'e': 0.5775270487619547}",25,1,-61.60577507607233,"{0: 18, 1: 0, 2: 5, 3: 0, 4: 1}",1 +550,False,"{'a': 0.01, 'e': 0.5769498103804866}",25,7,-36.90963135957539,"{0: 13, 1: 0, 2: 4, 3: 1, 4: 0}",1 +551,False,"{'a': 0.01, 'e': 0.5763731489488771}",20,0,-34.13140285569666,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +552,False,"{'a': 0.01, 'e': 0.5757970638904645}",25,14,-28.40942473163329,"{0: 7, 1: 2, 2: 1, 3: 1, 4: 0}",1 +553,False,"{'a': 0.01, 'e': 0.5752215546291638}",30,13,-36.63473993087827,"{0: 12, 1: 0, 2: 4, 3: 1, 4: 0}",1 +554,False,"{'a': 0.01, 'e': 0.5746466205894657}",20,0,-12.946609014469605,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +555,False,"{'a': 0.01, 'e': 0.574072261196436}",25,0,-116.59911172386495,"{0: 17, 1: 2, 2: 3, 3: 1, 4: 2}",0 +556,False,"{'a': 0.01, 'e': 0.5734984758757153}",25,9,-34.757254473471406,"{0: 12, 1: 0, 2: 3, 3: 1, 4: 0}",1 +557,False,"{'a': 0.01, 'e': 0.5729252640535184}",25,12,-19.113969389742003,"{0: 10, 1: 2, 2: 0, 3: 1, 4: 0}",1 +558,False,"{'a': 0.01, 'e': 0.5723526251566332}",35,6,-37.618588169773865,"{0: 25, 1: 1, 2: 1, 3: 1, 4: 1}",1 +559,False,"{'a': 0.01, 'e': 0.5717805586124209}",25,0,-50.12983246289345,"{0: 19, 1: 2, 2: 3, 3: 0, 4: 1}",0 +560,False,"{'a': 0.01, 'e': 0.5712090638488149}",25,0,-102.9565761044989,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",1 +561,False,"{'a': 0.01, 'e': 0.5706381402943203}",25,13,-10.789873350759763,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +562,False,"{'a': 0.01, 'e': 0.5700677873780134}",20,0,-91.833814981888,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +563,False,"{'a': 0.01, 'e': 0.5694980045295416}",20,8,-31.760644143685443,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +564,False,"{'a': 0.01, 'e': 0.5689287911791218}",20,14,-1.6755009569429546,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +565,False,"{'a': 0.01, 'e': 0.5683601467575404}",20,0,-58.560701531243936,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",0 +566,False,"{'a': 0.01, 'e': 0.5677920706961532}",20,0,-33.721520559469155,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",1 +567,False,"{'a': 0.01, 'e': 0.5672245624268841}",20,0,-79.06540728688795,"{0: 13, 1: 1, 2: 5, 3: 0, 4: 1}",0 +568,False,"{'a': 0.01, 'e': 0.5666576213822246}",20,0,-43.93931144232756,"{0: 15, 1: 0, 2: 4, 3: 1, 4: 0}",0 +569,False,"{'a': 0.01, 'e': 0.5660912469952337}",25,17,-26.960324112466438,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +570,False,"{'a': 0.01, 'e': 0.5655254386995371}",25,15,0.8705852078113017,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +571,False,"{'a': 0.01, 'e': 0.5649601959293262}",30,17,11.332835961305715,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +572,False,"{'a': 0.01, 'e': 0.5643955181193583}",20,11,-15.98431919577871,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +573,False,"{'a': 0.01, 'e': 0.5638314047049556}",20,6,3.621066558936625,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +574,False,"{'a': 0.01, 'e': 0.5632678551220046}",20,0,-46.44256398700396,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 1}",0 +575,False,"{'a': 0.01, 'e': 0.5627048688069557}",20,0,-29.48802834806328,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",1 +576,False,"{'a': 0.01, 'e': 0.5621424451968224}",20,7,-12.74722469057142,"{0: 10, 1: 0, 2: 3, 3: 0, 4: 0}",1 +577,False,"{'a': 0.01, 'e': 0.5615805837291813}",30,1,-64.43628666787075,"{0: 22, 1: 3, 2: 2, 3: 1, 4: 1}",1 +578,False,"{'a': 0.01, 'e': 0.5610192838421706}",20,9,-12.41565545658884,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +579,False,"{'a': 0.01, 'e': 0.5604585449744904}",20,0,-40.573002003346126,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +580,False,"{'a': 0.01, 'e': 0.559898366565402}",30,0,-139.3362460409918,"{0: 20, 1: 2, 2: 4, 3: 2, 4: 2}",0 +581,False,"{'a': 0.01, 'e': 0.5593387480547268}",20,1,-83.36200417696497,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 1}",1 +582,False,"{'a': 0.01, 'e': 0.5587796888828463}",20,0,4.211578835547552,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +583,False,"{'a': 0.01, 'e': 0.5582211884907012}",20,11,8.75722862478112,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +584,False,"{'a': 0.01, 'e': 0.5576632463197913}",20,13,12.04067720191111,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +585,False,"{'a': 0.01, 'e': 0.5571058618121739}",20,8,9.884753528971775,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +586,False,"{'a': 0.01, 'e': 0.5565490344104649}",25,4,-20.413842719335786,"{0: 16, 1: 1, 2: 4, 3: 0, 4: 0}",1 +587,False,"{'a': 0.01, 'e': 0.5559927635578367}",20,15,-0.2312953839406673,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +588,False,"{'a': 0.01, 'e': 0.5554370486980182}",20,0,27.025962600521385,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",0 +589,False,"{'a': 0.01, 'e': 0.5548818892752949}",20,10,-15.419954295495323,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +590,False,"{'a': 0.01, 'e': 0.5543272847345071}",25,17,14.564793438742711,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +591,False,"{'a': 0.01, 'e': 0.5537732345210501}",35,9,6.774320378127484,"{0: 23, 1: 0, 2: 3, 3: 0, 4: 0}",1 +592,False,"{'a': 0.01, 'e': 0.5532197380808739}",20,10,-10.857693158407741,"{0: 7, 1: 2, 2: 1, 3: 0, 4: 0}",1 +593,False,"{'a': 0.01, 'e': 0.5526667948604818}",20,16,8.077040791270893,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +594,False,"{'a': 0.01, 'e': 0.5521144043069306}",20,0,-54.594304913062814,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +595,False,"{'a': 0.01, 'e': 0.5515625658678298}",20,8,-0.6764834348771116,"{0: 9, 1: 2, 2: 1, 3: 0, 4: 0}",1 +596,False,"{'a': 0.01, 'e': 0.5510112789913407}",20,7,-0.12874229163817885,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +597,False,"{'a': 0.01, 'e': 0.5504605431261766}",20,13,-13.16922414448905,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +598,False,"{'a': 0.01, 'e': 0.5499103577216016}",25,19,13.14956072617229,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +599,False,"{'a': 0.01, 'e': 0.54936072222743}",20,0,8.849760186705277,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +600,False,"{'a': 0.01, 'e': 0.5488116360940265}",25,0,-85.34866761596689,"{0: 18, 1: 1, 2: 3, 3: 2, 4: 1}",0 +601,False,"{'a': 0.01, 'e': 0.5482630987723047}",30,13,-73.10118863124988,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 2}",1 +602,False,"{'a': 0.01, 'e': 0.5477151097137275}",20,14,-0.06477845278312344,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +603,False,"{'a': 0.01, 'e': 0.5471676683703055}",20,9,-12.25349331738413,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +604,False,"{'a': 0.01, 'e': 0.5466207741945976}",30,14,-38.8007181719042,"{0: 11, 1: 1, 2: 3, 3: 1, 4: 0}",1 +605,False,"{'a': 0.01, 'e': 0.5460744266397094}",30,12,9.572903516129122,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +606,False,"{'a': 0.01, 'e': 0.5455286251592933}",25,13,-31.442380108733822,"{0: 8, 1: 1, 2: 2, 3: 1, 4: 0}",1 +607,False,"{'a': 0.01, 'e': 0.544983369207548}",25,17,2.3832927152610486,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +608,False,"{'a': 0.01, 'e': 0.5444386582392171}",25,2,-79.38469844213722,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 2}",1 +609,False,"{'a': 0.01, 'e': 0.5438944917095899}",20,11,-19.23236439654618,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +610,False,"{'a': 0.01, 'e': 0.5433508690744998}",20,0,8.443208809407068,"{0: 17, 1: 2, 2: 1, 3: 0, 4: 0}",0 +611,False,"{'a': 0.01, 'e': 0.542807789790324}",20,6,11.765059325384684,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +612,False,"{'a': 0.01, 'e': 0.5422652533139832}",25,1,-95.8376532207822,"{0: 18, 1: 1, 2: 2, 3: 1, 4: 2}",1 +613,False,"{'a': 0.01, 'e': 0.541723259102941}",20,12,-33.25181331739511,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +614,False,"{'a': 0.01, 'e': 0.5411818066152029}",20,4,14.416356557164228,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +615,False,"{'a': 0.01, 'e': 0.5406408953093166}",20,11,-15.131466284681956,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +616,False,"{'a': 0.01, 'e': 0.5401005246443706}",25,11,9.19880138058289,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +617,False,"{'a': 0.01, 'e': 0.5395606940799943}",25,2,-21.461401086960528,"{0: 17, 1: 2, 2: 4, 3: 0, 4: 0}",1 +618,False,"{'a': 0.01, 'e': 0.539021403076357}",25,13,-35.90160783267561,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 1}",1 +619,False,"{'a': 0.01, 'e': 0.5384826510941678}",20,0,-62.85547592390705,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +620,False,"{'a': 0.01, 'e': 0.5379444375946745}",20,2,-0.1616367306455997,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +621,False,"{'a': 0.01, 'e': 0.5374067620396636}",30,12,7.425129937966592,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +622,False,"{'a': 0.01, 'e': 0.5368696238914595}",25,16,10.996735656792175,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +623,False,"{'a': 0.01, 'e': 0.5363330226129241}",20,13,-10.2235569452175,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +624,False,"{'a': 0.01, 'e': 0.535796957667456}",20,6,8.894001866664015,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +625,False,"{'a': 0.01, 'e': 0.5352614285189903}",20,0,-111.60028681268466,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 3}",0 +626,False,"{'a': 0.01, 'e': 0.5347264346319975}",25,5,-125.81157720600052,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",1 +627,False,"{'a': 0.01, 'e': 0.5341919754714841}",25,9,-67.27067055108955,"{0: 11, 1: 1, 2: 2, 3: 1, 4: 1}",1 +628,False,"{'a': 0.01, 'e': 0.5336580505029906}",30,6,-18.55047747771292,"{0: 20, 1: 0, 2: 3, 3: 1, 4: 0}",1 +629,False,"{'a': 0.01, 'e': 0.5331246591925921}",30,9,-39.24516887203486,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 1}",1 +630,False,"{'a': 0.01, 'e': 0.5325918010068972}",30,0,-49.436260463025576,"{0: 23, 1: 3, 2: 3, 3: 0, 4: 1}",0 +631,False,"{'a': 0.01, 'e': 0.5320594754130477}",25,20,8.492897743339837,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +632,False,"{'a': 0.01, 'e': 0.5315276818787179}",25,3,-1.1838944016354958,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 0}",1 +633,False,"{'a': 0.01, 'e': 0.5309964198721143}",20,0,-7.606675761635235,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +634,False,"{'a': 0.01, 'e': 0.5304656888619749}",30,10,-48.37193368614036,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",1 +635,False,"{'a': 0.01, 'e': 0.5299354883175685}",35,12,-46.04666451408711,"{0: 18, 1: 1, 2: 3, 3: 0, 4: 1}",1 +636,False,"{'a': 0.01, 'e': 0.5294058177086945}",20,0,10.113645553824467,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +637,False,"{'a': 0.01, 'e': 0.5288766765056825}",20,4,1.8884623402053036,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 0}",1 +638,False,"{'a': 0.01, 'e': 0.528348064179391}",20,12,-47.97708671080848,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 1}",1 +639,False,"{'a': 0.01, 'e': 0.5278199802012077}",20,6,-58.407808812475864,"{0: 6, 1: 2, 2: 6, 3: 0, 4: 0}",1 +640,False,"{'a': 0.01, 'e': 0.5272924240430485}",25,14,-39.659514544318306,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 1}",1 +641,False,"{'a': 0.01, 'e': 0.5267653951773574}",20,0,-101.32961915344146,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 2}",0 +642,False,"{'a': 0.01, 'e': 0.5262388930771054}",20,8,-60.590754517403234,"{0: 7, 1: 1, 2: 3, 3: 0, 4: 1}",1 +643,False,"{'a': 0.01, 'e': 0.5257129172157903}",20,0,-80.64424996804233,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 1}",0 +644,False,"{'a': 0.01, 'e': 0.5251874670674361}",25,13,-88.53141224540248,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 2}",1 +645,False,"{'a': 0.01, 'e': 0.5246625421065929}",25,0,-12.729812526656985,"{0: 21, 1: 0, 2: 4, 3: 0, 4: 0}",0 +646,False,"{'a': 0.01, 'e': 0.5241381418083354}",25,7,-9.281206323405563,"{0: 14, 1: 2, 2: 2, 3: 0, 4: 0}",1 +647,False,"{'a': 0.01, 'e': 0.5236142656482635}",25,7,-25.63913190042787,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +648,False,"{'a': 0.01, 'e': 0.5230909131025008}",20,0,-85.55861825607394,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 2}",0 +649,False,"{'a': 0.01, 'e': 0.5225680836476948}",30,0,-106.10948064093161,"{0: 21, 1: 0, 2: 6, 3: 2, 4: 1}",0 +650,False,"{'a': 0.01, 'e': 0.522045776761016}",35,18,-77.2793575064625,"{0: 9, 1: 1, 2: 5, 3: 2, 4: 0}",1 +651,False,"{'a': 0.01, 'e': 0.5215239919201575}",25,9,-37.922804308574335,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 1}",1 +652,False,"{'a': 0.01, 'e': 0.5210027286033344}",35,13,-69.4245444776545,"{0: 15, 1: 1, 2: 5, 3: 0, 4: 1}",1 +653,False,"{'a': 0.01, 'e': 0.5204819862892832}",20,0,-19.793841996191652,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +654,False,"{'a': 0.01, 'e': 0.5199617644572618}",20,0,-34.7290680564656,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +655,False,"{'a': 0.01, 'e': 0.5194420625870482}",25,0,-57.110149270280466,"{0: 20, 1: 0, 2: 3, 3: 1, 4: 1}",1 +656,False,"{'a': 0.01, 'e': 0.5189228801589404}",25,0,-44.27870977845341,"{0: 21, 1: 1, 2: 1, 3: 1, 4: 1}",0 +657,False,"{'a': 0.01, 'e': 0.5184042166537559}",20,0,-16.24864308117614,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",0 +658,False,"{'a': 0.01, 'e': 0.5178860715528314}",20,0,-7.850826936570752,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",0 +659,False,"{'a': 0.01, 'e': 0.5173684443380216}",20,15,-10.75159150873161,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +660,False,"{'a': 0.01, 'e': 0.5168513344916992}",30,12,-74.2512074401234,"{0: 11, 1: 1, 2: 5, 3: 0, 4: 1}",1 +661,False,"{'a': 0.01, 'e': 0.5163347414967544}",25,0,-99.62897409365479,"{0: 18, 1: 1, 2: 4, 3: 0, 4: 2}",0 +662,False,"{'a': 0.01, 'e': 0.5158186648365941}",25,16,-2.6732443514916193,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +663,False,"{'a': 0.01, 'e': 0.5153031039951417}",20,0,-76.23852047563233,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +664,False,"{'a': 0.01, 'e': 0.5147880584568362}",20,0,-98.7043007741741,"{0: 15, 1: 0, 2: 2, 3: 1, 4: 2}",0 +665,False,"{'a': 0.01, 'e': 0.5142735277066319}",20,0,-33.71632332604156,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 0}",0 +666,False,"{'a': 0.01, 'e': 0.5137595112299983}",20,6,-17.59996756654824,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +667,False,"{'a': 0.01, 'e': 0.5132460085129188}",20,10,-46.175736396172056,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 1}",1 +668,False,"{'a': 0.01, 'e': 0.5127330190418905}",25,2,-45.140765102883606,"{0: 16, 1: 3, 2: 3, 3: 1, 4: 0}",1 +669,False,"{'a': 0.01, 'e': 0.512220542303924}",20,0,-21.440564943401014,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +670,False,"{'a': 0.01, 'e': 0.5117085777865424}",20,9,-74.46607015557021,"{0: 5, 1: 1, 2: 4, 3: 0, 4: 1}",1 +671,False,"{'a': 0.01, 'e': 0.5111971249777814}",25,0,30.740602876071776,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +672,False,"{'a': 0.01, 'e': 0.5106861833661879}",20,7,-7.103680829973895,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 0}",1 +673,False,"{'a': 0.01, 'e': 0.5101757524408203}",20,13,-16.16173908807365,"{0: 5, 1: 1, 2: 0, 3: 1, 4: 0}",1 +674,False,"{'a': 0.01, 'e': 0.5096658316912476}",20,9,-36.2879127973414,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 1}",1 +675,False,"{'a': 0.01, 'e': 0.5091564206075492}",20,0,-69.68418858457004,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 2}",0 +676,False,"{'a': 0.01, 'e': 0.5086475186803137}",20,6,-0.46844583620999414,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +677,False,"{'a': 0.01, 'e': 0.5081391254006393}",20,10,-40.16073722261511,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +678,False,"{'a': 0.01, 'e': 0.5076312402601327}",30,4,-73.65116629884406,"{0: 18, 1: 2, 2: 5, 3: 0, 4: 1}",1 +679,False,"{'a': 0.01, 'e': 0.5071238627509086}",25,15,3.664300385951873,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +680,False,"{'a': 0.01, 'e': 0.5066169923655895}",20,3,-11.033915838730973,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 0}",1 +681,False,"{'a': 0.01, 'e': 0.5061106285973052}",30,15,1.00179283946955,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +682,False,"{'a': 0.01, 'e': 0.5056047709396915}",20,0,-37.65606633730899,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 1}",0 +683,False,"{'a': 0.01, 'e': 0.5050994188868908}",20,0,-19.801775519920405,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 0}",1 +684,False,"{'a': 0.01, 'e': 0.5045945719335512}",25,0,-140.06113059571126,"{0: 17, 1: 0, 2: 5, 3: 0, 4: 3}",0 +685,False,"{'a': 0.01, 'e': 0.5040902295748255}",20,0,-131.88301447165836,"{0: 12, 1: 0, 2: 6, 3: 0, 4: 2}",0 +686,False,"{'a': 0.01, 'e': 0.5035863913063714}",20,0,-53.29509278636922,"{0: 15, 1: 0, 2: 4, 3: 0, 4: 1}",1 +687,False,"{'a': 0.01, 'e': 0.5030830566243506}",25,0,-43.180925881657444,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +688,False,"{'a': 0.01, 'e': 0.5025802250254283}",20,3,25.016742797882728,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +689,False,"{'a': 0.01, 'e': 0.502077896006773}",20,11,-4.138513340022335,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +690,False,"{'a': 0.01, 'e': 0.5015760690660555}",25,13,-42.547354603759345,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 1}",1 +691,False,"{'a': 0.01, 'e': 0.5010747437014489}",30,0,25.570920909739566,"{0: 28, 1: 0, 2: 2, 3: 0, 4: 0}",0 +692,False,"{'a': 0.01, 'e': 0.5005739194116277}",25,0,-125.54897751956676,"{0: 19, 1: 0, 2: 3, 3: 0, 4: 3}",0 +693,False,"{'a': 0.01, 'e': 0.5000735956957676}",25,14,21.086281623284066,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +694,False,"{'a': 0.01, 'e': 0.4995737720535449}",20,9,-34.139002520363256,"{0: 7, 1: 0, 2: 3, 3: 1, 4: 0}",1 +695,False,"{'a': 0.01, 'e': 0.49907444798513595}",20,11,15.120558013578592,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +696,False,"{'a': 0.01, 'e': 0.4985756229912165}",20,0,2.895089649160843,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +697,False,"{'a': 0.01, 'e': 0.4980772965729616}",25,12,-30.683084267299748,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +698,False,"{'a': 0.01, 'e': 0.4975794682320448}",20,7,-56.23392592633112,"{0: 9, 1: 0, 2: 3, 3: 0, 4: 1}",1 +699,False,"{'a': 0.01, 'e': 0.4970821374706377}",20,7,-13.300384465439716,"{0: 11, 1: 0, 2: 1, 3: 1, 4: 0}",1 +700,False,"{'a': 0.01, 'e': 0.49658530379140947}",25,8,-2.0480277547584005,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 0}",1 +701,False,"{'a': 0.01, 'e': 0.49608896669752645}",25,4,-41.87509492607174,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 1}",1 +702,False,"{'a': 0.01, 'e': 0.4955931256926514}",20,16,7.254328537726759,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +703,False,"{'a': 0.01, 'e': 0.4950977802809434}",20,0,4.7200674464393,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +704,False,"{'a': 0.01, 'e': 0.494602929967057}",20,0,-81.93385169045511,"{0: 15, 1: 0, 2: 2, 3: 2, 4: 1}",0 +705,False,"{'a': 0.01, 'e': 0.4941085742561417}",25,11,-22.08343375061414,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 0}",1 +706,False,"{'a': 0.01, 'e': 0.4936147126538418}",30,0,-62.09350470039004,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",1 +707,False,"{'a': 0.01, 'e': 0.49312134466629576}",20,0,-27.177788320716026,"{0: 17, 1: 0, 2: 1, 3: 2, 4: 0}",0 +708,False,"{'a': 0.01, 'e': 0.49262846980013547}",20,0,-67.63385324354454,"{0: 14, 1: 1, 2: 4, 3: 0, 4: 1}",0 +709,False,"{'a': 0.01, 'e': 0.492136087562486}",20,11,9.541457175354543,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +710,False,"{'a': 0.01, 'e': 0.4916441974609651}",25,18,12.872689265220494,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +711,False,"{'a': 0.01, 'e': 0.49115279900368264}",20,3,11.111413751738292,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +712,False,"{'a': 0.01, 'e': 0.4906618916992401}",30,7,-76.13726967127096,"{0: 16, 1: 2, 2: 3, 3: 1, 4: 1}",1 +713,False,"{'a': 0.01, 'e': 0.4901714750567302}",30,0,-98.27184152226302,"{0: 20, 1: 4, 2: 4, 3: 1, 4: 1}",0 +714,False,"{'a': 0.01, 'e': 0.4896815485857362}",25,5,25.076074295825645,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",1 +715,False,"{'a': 0.01, 'e': 0.48919211179633154}",30,14,18.07413646999539,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +716,False,"{'a': 0.01, 'e': 0.4887031641990795}",30,11,-3.631211650004132,"{0: 15, 1: 3, 2: 1, 3: 0, 4: 0}",1 +717,False,"{'a': 0.01, 'e': 0.4882147053050323}",20,3,12.10523263950563,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +718,False,"{'a': 0.01, 'e': 0.4877267346257312}",25,20,7.099485928091806,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +719,False,"{'a': 0.01, 'e': 0.48723925167320525}",25,1,-19.903255046324485,"{0: 19, 1: 0, 2: 5, 3: 0, 4: 0}",1 +720,False,"{'a': 0.01, 'e': 0.4867522559599717}",30,0,-32.42842946250414,"{0: 26, 1: 1, 2: 2, 3: 0, 4: 1}",0 +721,False,"{'a': 0.01, 'e': 0.4862657469990346}",25,13,-22.886865514908095,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +722,False,"{'a': 0.01, 'e': 0.485779724303885}",25,11,7.987426870963574,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +723,False,"{'a': 0.01, 'e': 0.4852941873885002}",30,0,-159.4049059608989,"{0: 19, 1: 4, 2: 3, 3: 1, 4: 3}",0 +724,False,"{'a': 0.01, 'e': 0.48480913576734325}",25,13,7.008645504134092,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +725,False,"{'a': 0.01, 'e': 0.48432456895536247}",20,14,11.223698243253144,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +726,False,"{'a': 0.01, 'e': 0.483840486467991}",20,0,-53.40785974555012,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +727,False,"{'a': 0.01, 'e': 0.48335688782114633}",25,0,-70.90298041520876,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 2}",0 +728,False,"{'a': 0.01, 'e': 0.48287377253122976}",20,9,-0.5534284785344092,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +729,False,"{'a': 0.01, 'e': 0.4823911401151259}",25,19,6.769798859868583,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +730,False,"{'a': 0.01, 'e': 0.48190899009020244}",35,18,-16.398238454031873,"{0: 14, 1: 0, 2: 2, 3: 1, 4: 0}",1 +731,False,"{'a': 0.01, 'e': 0.4814273219743092}",25,0,-27.90096101136737,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +732,False,"{'a': 0.01, 'e': 0.480946135285778}",25,16,16.475928604878927,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +733,False,"{'a': 0.01, 'e': 0.48046542954342225}",20,9,-59.96232183555022,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 1}",1 +734,False,"{'a': 0.01, 'e': 0.479985204266536}",30,12,-72.70426504436075,"{0: 12, 1: 1, 2: 3, 3: 1, 4: 1}",1 +735,False,"{'a': 0.01, 'e': 0.4795054589748941}",20,13,-23.549387931955604,"{0: 5, 1: 0, 2: 1, 3: 1, 4: 0}",1 +736,False,"{'a': 0.01, 'e': 0.4790261931887511}",25,13,-12.564824163797999,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +737,False,"{'a': 0.01, 'e': 0.4785474064288412}",25,0,-30.785785973317896,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +738,False,"{'a': 0.01, 'e': 0.4780690982163776}",20,13,10.988751824907137,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +739,False,"{'a': 0.01, 'e': 0.4775912680730521}",20,7,4.125619590699035,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +740,False,"{'a': 0.01, 'e': 0.4771139155210344}",30,0,-92.10605749834679,"{0: 23, 1: 2, 2: 2, 3: 1, 4: 2}",0 +741,False,"{'a': 0.01, 'e': 0.47663704008297203}",25,9,-33.2952052163386,"{0: 12, 1: 3, 2: 0, 3: 0, 4: 1}",1 +742,False,"{'a': 0.01, 'e': 0.4761606412819894}",35,20,-43.91819877750564,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 1}",1 +743,False,"{'a': 0.01, 'e': 0.4756847186416878}",20,0,-38.21930514352048,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",0 +744,False,"{'a': 0.01, 'e': 0.47520927168614446}",20,0,-10.236584146694156,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +745,False,"{'a': 0.01, 'e': 0.4747342999399124}",20,0,-70.9857670634928,"{0: 13, 1: 1, 2: 4, 3: 2, 4: 0}",0 +746,False,"{'a': 0.01, 'e': 0.4742598029280199}",20,0,-78.33550829055058,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 2}",0 +747,False,"{'a': 0.01, 'e': 0.4737857801759698}",20,13,-49.505394376087835,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 1}",1 +748,False,"{'a': 0.01, 'e': 0.4733122312097393}",35,13,-26.372164841975213,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 1}",1 +749,False,"{'a': 0.01, 'e': 0.47283915555577954}",20,0,-32.27355178867468,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +750,False,"{'a': 0.01, 'e': 0.4723665527410147}",20,11,0.70913324077916,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +751,False,"{'a': 0.01, 'e': 0.471894422292842}",20,0,-32.164164286180295,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +752,False,"{'a': 0.01, 'e': 0.4714227637391309}",25,18,1.2091448848033368,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +753,False,"{'a': 0.01, 'e': 0.4709515766082228}",35,21,-12.842385007541056,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +754,False,"{'a': 0.01, 'e': 0.47048086042893056}",35,0,-84.55355223927819,"{0: 31, 1: 1, 2: 0, 3: 0, 4: 3}",0 +755,False,"{'a': 0.01, 'e': 0.47001061473053796}",30,15,14.560906402779208,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +756,False,"{'a': 0.01, 'e': 0.46954083904279925}",30,15,-6.270188993598236,"{0: 12, 1: 1, 2: 2, 3: 0, 4: 0}",1 +757,False,"{'a': 0.01, 'e': 0.4690715328959387}",20,14,-2.6142453395568896,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +758,False,"{'a': 0.01, 'e': 0.46860269582065023}",20,11,-6.802672307694337,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +759,False,"{'a': 0.01, 'e': 0.4681343273480965}",30,0,-48.297073811974585,"{0: 24, 1: 1, 2: 4, 3: 0, 4: 1}",0 +760,False,"{'a': 0.01, 'e': 0.46766642700990924}",20,9,-63.759752607069245,"{0: 7, 1: 1, 2: 1, 3: 1, 4: 1}",1 +761,False,"{'a': 0.01, 'e': 0.4671989943381879}",20,8,19.151179341575194,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +762,False,"{'a': 0.01, 'e': 0.46673202886549986}",20,2,-1.9463886023186407,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +763,False,"{'a': 0.01, 'e': 0.46626553012487953}",25,0,-57.22919635919849,"{0: 17, 1: 2, 2: 5, 3: 1, 4: 0}",0 +764,False,"{'a': 0.01, 'e': 0.46579949764982825}",30,7,-35.2498982889332,"{0: 19, 1: 1, 2: 2, 3: 0, 4: 1}",1 +765,False,"{'a': 0.01, 'e': 0.4653339309743134}",20,0,-38.485761274676115,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +766,False,"{'a': 0.01, 'e': 0.46486882963276827}",20,6,19.271327786874885,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +767,False,"{'a': 0.01, 'e': 0.46440419316009157}",25,13,10.508788526836886,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +768,False,"{'a': 0.01, 'e': 0.4639400210916467}",35,0,0.4262899244944707,"{0: 30, 1: 2, 2: 3, 3: 0, 4: 0}",0 +769,False,"{'a': 0.01, 'e': 0.4634763129632616}",20,0,-75.13432839884766,"{0: 13, 1: 3, 2: 2, 3: 1, 4: 1}",0 +770,False,"{'a': 0.01, 'e': 0.46301306831122807}",20,10,10.353383070652477,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +771,False,"{'a': 0.01, 'e': 0.4625502866723014}",25,13,-35.34406262301337,"{0: 7, 1: 0, 2: 5, 3: 0, 4: 0}",1 +772,False,"{'a': 0.01, 'e': 0.4620879675837}",20,3,6.103654972237223,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +773,False,"{'a': 0.01, 'e': 0.4616261105831047}",20,0,-61.16261411151724,"{0: 14, 1: 2, 2: 3, 3: 0, 4: 1}",0 +774,False,"{'a': 0.01, 'e': 0.4611647152086584}",25,14,-1.6700732779342695,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +775,False,"{'a': 0.01, 'e': 0.4607037809989658}",25,11,0.6417984469187077,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +776,False,"{'a': 0.01, 'e': 0.46024330749309256}",25,11,13.763432032932949,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +777,False,"{'a': 0.01, 'e': 0.4597832942305652}",25,0,-33.90021668459071,"{0: 21, 1: 1, 2: 2, 3: 0, 4: 1}",0 +778,False,"{'a': 0.01, 'e': 0.45932374075137034}",20,14,11.363167651475319,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +779,False,"{'a': 0.01, 'e': 0.4588646465959545}",20,0,-15.754544697047628,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +780,False,"{'a': 0.01, 'e': 0.4584060113052235}",30,12,-28.007061375660086,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +781,False,"{'a': 0.01, 'e': 0.45794783442054204}",20,0,-13.306482891362378,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +782,False,"{'a': 0.01, 'e': 0.45749011548373314}",30,16,-4.026347306944275,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +783,False,"{'a': 0.01, 'e': 0.4570328540370779}",35,0,-34.34107086865133,"{0: 28, 1: 1, 2: 5, 3: 1, 4: 0}",0 +784,False,"{'a': 0.01, 'e': 0.4565760496233147}",35,2,-85.75329398901992,"{0: 26, 1: 2, 2: 2, 3: 1, 4: 2}",1 +785,False,"{'a': 0.01, 'e': 0.4561197017856392}",20,6,-15.69262208709663,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +786,False,"{'a': 0.01, 'e': 0.4556638100677035}",20,0,-41.18431004863677,"{0: 14, 1: 0, 2: 6, 3: 0, 4: 0}",1 +787,False,"{'a': 0.01, 'e': 0.45520837401361586}",20,0,-54.84613471979444,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 1}",0 +788,False,"{'a': 0.01, 'e': 0.45475339316794017}",25,15,0.6421334823532936,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +789,False,"{'a': 0.01, 'e': 0.4542988670756955}",20,11,-51.23186194010919,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 1}",1 +790,False,"{'a': 0.01, 'e': 0.45384479528235583}",20,0,12.509879817562306,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +791,False,"{'a': 0.01, 'e': 0.4533911773338492}",20,10,-74.42311462912406,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 2}",1 +792,False,"{'a': 0.01, 'e': 0.4529380127765577}",30,0,-87.84863285991995,"{0: 27, 1: 0, 2: 0, 3: 0, 4: 3}",0 +793,False,"{'a': 0.01, 'e': 0.4524853011573167}",30,15,-20.626371921901065,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +794,False,"{'a': 0.01, 'e': 0.45203304202341466}",20,0,-0.2984211158197161,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +795,False,"{'a': 0.01, 'e': 0.4515812349225922}",30,0,3.788873874428426,"{0: 26, 1: 1, 2: 3, 3: 0, 4: 0}",0 +796,False,"{'a': 0.01, 'e': 0.45112987940304233}",20,11,-16.735940116696238,"{0: 7, 1: 0, 2: 1, 3: 1, 4: 0}",1 +797,False,"{'a': 0.01, 'e': 0.4506789750134095}",30,0,-60.689488017973936,"{0: 26, 1: 0, 2: 2, 3: 0, 4: 2}",0 +798,False,"{'a': 0.01, 'e': 0.45022852130278923}",25,12,20.333230156826012,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +799,False,"{'a': 0.01, 'e': 0.44977851782072775}",20,7,-33.18298828695635,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +800,False,"{'a': 0.01, 'e': 0.44932896411722156}",35,5,-95.28945294241329,"{0: 23, 1: 0, 2: 5, 3: 0, 4: 2}",1 +801,False,"{'a': 0.01, 'e': 0.448879859742717}",25,20,9.774309061331895,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +802,False,"{'a': 0.01, 'e': 0.4484312042481095}",25,18,2.672526833840066,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +803,False,"{'a': 0.01, 'e': 0.44798299718474366}",25,16,4.358786527325079,"{0: 7, 1: 2, 2: 0, 3: 0, 4: 0}",1 +804,False,"{'a': 0.01, 'e': 0.44753523810441237}",20,5,5.638717307212121,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +805,False,"{'a': 0.01, 'e': 0.4470879265593564}",25,0,-17.910048292370995,"{0: 21, 1: 1, 2: 2, 3: 1, 4: 0}",0 +806,False,"{'a': 0.01, 'e': 0.44664106210226434}",20,14,11.779091108773052,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +807,False,"{'a': 0.01, 'e': 0.44619464428627154}",20,0,-76.36520449935557,"{0: 14, 1: 0, 2: 4, 3: 1, 4: 1}",0 +808,False,"{'a': 0.01, 'e': 0.4457486726649602}",25,13,-28.855742625573782,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +809,False,"{'a': 0.01, 'e': 0.4453031467923587}",25,1,-53.65805204100573,"{0: 18, 1: 3, 2: 1, 3: 1, 4: 1}",1 +810,False,"{'a': 0.01, 'e': 0.4448580662229411}",20,2,-7.276637010258435,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +811,False,"{'a': 0.01, 'e': 0.4444134305116268}",20,7,-8.778390696030332,"{0: 9, 1: 3, 2: 1, 3: 0, 4: 0}",1 +812,False,"{'a': 0.01, 'e': 0.44396923921378006}",25,14,17.367412148781316,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +813,False,"{'a': 0.01, 'e': 0.4435254918852095}",25,4,-70.87339208791194,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 2}",1 +814,False,"{'a': 0.01, 'e': 0.44308218808216776}",20,0,2.7852327801357597,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +815,False,"{'a': 0.01, 'e': 0.4426393273613511}",20,2,-15.85386710419256,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +816,False,"{'a': 0.01, 'e': 0.44219690927989863}",25,5,-51.4631750603727,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",1 +817,False,"{'a': 0.01, 'e': 0.4417549333953923}",25,10,1.3384728361116556,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +818,False,"{'a': 0.01, 'e': 0.44131339926585617}",25,9,28.013916994143223,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +819,False,"{'a': 0.01, 'e': 0.4408723064497561}",20,6,-111.42847460301444,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 3}",1 +820,False,"{'a': 0.01, 'e': 0.44043165450599925}",20,5,-35.40553536854716,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 1}",1 +821,False,"{'a': 0.01, 'e': 0.43999144299393356}",20,10,-18.946038177559625,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +822,False,"{'a': 0.01, 'e': 0.43955167147334756}",25,12,-18.233088936276303,"{0: 9, 1: 1, 2: 3, 3: 0, 4: 0}",1 +823,False,"{'a': 0.01, 'e': 0.43911233950446965}",20,0,-40.76551539749954,"{0: 13, 1: 2, 2: 5, 3: 0, 4: 0}",0 +824,False,"{'a': 0.01, 'e': 0.4386734466479678}",30,4,8.691506071013922,"{0: 23, 1: 0, 2: 3, 3: 0, 4: 0}",1 +825,False,"{'a': 0.01, 'e': 0.4382349924649492}",20,9,-2.5438533348024963,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +826,False,"{'a': 0.01, 'e': 0.4377969765169596}",25,6,-2.1640568001437925,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +827,False,"{'a': 0.01, 'e': 0.437359398365983}",20,0,-49.77105874601476,"{0: 14, 1: 2, 2: 2, 3: 2, 4: 0}",0 +828,False,"{'a': 0.01, 'e': 0.43692225757444114}",30,11,-32.429246666210545,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 0}",1 +829,False,"{'a': 0.01, 'e': 0.4364855537051933}",25,0,3.2438611830675477,"{0: 23, 1: 0, 2: 1, 3: 1, 4: 0}",0 +830,False,"{'a': 0.01, 'e': 0.43604928632153556}",20,10,16.015668004519796,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +831,False,"{'a': 0.01, 'e': 0.43561345498720044}",20,6,18.82448782488005,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +832,False,"{'a': 0.01, 'e': 0.43517805926635666}",25,0,-49.55122336108215,"{0: 20, 1: 2, 2: 1, 3: 1, 4: 1}",0 +833,False,"{'a': 0.01, 'e': 0.43474309872360845}",35,4,-59.41479239659913,"{0: 26, 1: 2, 2: 1, 3: 0, 4: 2}",1 +834,False,"{'a': 0.01, 'e': 0.4343085729239951}",25,16,10.150088854214832,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +835,False,"{'a': 0.01, 'e': 0.4338744814329909}",30,18,17.078781852920393,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +836,False,"{'a': 0.01, 'e': 0.4334408238165043}",25,0,-30.31574498425836,"{0: 20, 1: 1, 2: 3, 3: 1, 4: 0}",0 +837,False,"{'a': 0.01, 'e': 0.43300759964087765}",25,0,-51.36954120033076,"{0: 18, 1: 3, 2: 2, 3: 2, 4: 0}",0 +838,False,"{'a': 0.01, 'e': 0.43257480847288665}",20,0,-24.67508969304525,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +839,False,"{'a': 0.01, 'e': 0.43214244987974026}",30,0,29.012250445948148,"{0: 28, 1: 1, 2: 1, 3: 0, 4: 0}",0 +840,False,"{'a': 0.01, 'e': 0.43171052342907973}",25,16,4.351536035198807,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +841,False,"{'a': 0.01, 'e': 0.43127902868897855}",20,3,-13.106799827440206,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +842,False,"{'a': 0.01, 'e': 0.43084796522794205}",20,13,15.047659789990204,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +843,False,"{'a': 0.01, 'e': 0.43041733261490667}",20,7,15.74602990900702,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +844,False,"{'a': 0.01, 'e': 0.4299871304192398}",25,12,-52.710088873792685,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 1}",1 +845,False,"{'a': 0.01, 'e': 0.42955735821073915}",30,0,-40.09674003580599,"{0: 26, 1: 0, 2: 2, 3: 1, 4: 1}",0 +846,False,"{'a': 0.01, 'e': 0.42912801555963254}",30,16,-86.70221784016815,"{0: 8, 1: 0, 2: 4, 3: 1, 4: 1}",1 +847,False,"{'a': 0.01, 'e': 0.42869910203657724}",20,10,5.444881825158334,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +848,False,"{'a': 0.01, 'e': 0.4282706172126597}",25,11,5.953078487232628,"{0: 12, 1: 2, 2: 0, 3: 0, 4: 0}",1 +849,False,"{'a': 0.01, 'e': 0.427842560659395}",25,2,-62.584590021939775,"{0: 17, 1: 0, 2: 5, 3: 0, 4: 1}",1 +850,False,"{'a': 0.01, 'e': 0.4274149319487267}",35,26,13.907817161051073,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +851,False,"{'a': 0.01, 'e': 0.4269877306530259}",25,3,-41.64345258926882,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 1}",1 +852,False,"{'a': 0.01, 'e': 0.4265609563450914}",25,4,-11.941671791133958,"{0: 17, 1: 1, 2: 3, 3: 0, 4: 0}",1 +853,False,"{'a': 0.01, 'e': 0.4261346085981487}",20,7,16.405125933096954,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +854,False,"{'a': 0.01, 'e': 0.4257086869858502}",30,9,-54.529521895146246,"{0: 16, 1: 2, 2: 1, 3: 1, 4: 1}",1 +855,False,"{'a': 0.01, 'e': 0.42528319108227414}",30,13,-3.1666396180374594,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +856,False,"{'a': 0.01, 'e': 0.42485812046192456}",30,12,7.828162817939138,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +857,False,"{'a': 0.01, 'e': 0.4244334746997309}",25,15,-16.988591683512503,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +858,False,"{'a': 0.01, 'e': 0.4240092533710473}",35,26,6.4580577948952,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +859,False,"{'a': 0.01, 'e': 0.4235854560516524}",30,22,-35.577107235062556,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +860,False,"{'a': 0.01, 'e': 0.4231620823177488}",20,1,-46.09364829726735,"{0: 13, 1: 1, 2: 4, 3: 1, 4: 0}",1 +861,False,"{'a': 0.01, 'e': 0.42273913174596284}",20,0,-131.62618337564575,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 3}",0 +862,False,"{'a': 0.01, 'e': 0.42231660391334386}",30,13,30.024690151345595,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +863,False,"{'a': 0.01, 'e': 0.4218944983973639}",30,2,-3.069644993946187,"{0: 24, 1: 1, 2: 3, 3: 0, 4: 0}",1 +864,False,"{'a': 0.01, 'e': 0.42147281477591764}",20,3,-10.244451696136787,"{0: 13, 1: 1, 2: 3, 3: 0, 4: 0}",1 +865,False,"{'a': 0.01, 'e': 0.4210515526273212}",25,8,-123.25252339718753,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 3}",1 +866,False,"{'a': 0.01, 'e': 0.42063071153031245}",30,22,13.649940222087132,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +867,False,"{'a': 0.01, 'e': 0.4202102910640503}",25,7,-35.74768725246751,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +868,False,"{'a': 0.01, 'e': 0.41979029080811425}",25,19,10.789068251684515,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +869,False,"{'a': 0.01, 'e': 0.41937071034250395}",20,11,16.15415142587702,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +870,False,"{'a': 0.01, 'e': 0.418951549247639}",20,8,-11.52066570511968,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +871,False,"{'a': 0.01, 'e': 0.41853280710435814}",30,7,-19.69284709369229,"{0: 19, 1: 1, 2: 1, 3: 2, 4: 0}",1 +872,False,"{'a': 0.01, 'e': 0.41811448349391933}",25,19,13.608825536447787,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +873,False,"{'a': 0.01, 'e': 0.4176965779979988}",20,0,-43.63283703607279,"{0: 14, 1: 0, 2: 5, 3: 1, 4: 0}",0 +874,False,"{'a': 0.01, 'e': 0.41727909019869114}",25,17,14.560162612324447,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +875,False,"{'a': 0.01, 'e': 0.4168620196785084}",30,0,-41.682135629751855,"{0: 24, 1: 1, 2: 3, 3: 2, 4: 0}",0 +876,False,"{'a': 0.01, 'e': 0.41644536602038007}",20,0,10.91339593176005,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +877,False,"{'a': 0.01, 'e': 0.4160291288076525}",30,12,1.1186301297489532,"{0: 15, 1: 0, 2: 3, 3: 0, 4: 0}",1 +878,False,"{'a': 0.01, 'e': 0.41561330762408843}",20,5,-43.268385958524746,"{0: 9, 1: 2, 2: 3, 3: 1, 4: 0}",1 +879,False,"{'a': 0.01, 'e': 0.4151979020538666}",25,5,10.07190381544618,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +880,False,"{'a': 0.01, 'e': 0.4147829116815814}",20,0,15.454312304929438,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +881,False,"{'a': 0.01, 'e': 0.41436833609224244}",25,20,10.695428013243923,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +882,False,"{'a': 0.01, 'e': 0.4139541748712741}",20,9,-21.586441748042596,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +883,False,"{'a': 0.01, 'e': 0.41354042760451515}",20,0,4.049886975725295,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +884,False,"{'a': 0.01, 'e': 0.4131270938782182}",20,3,-68.6093790800968,"{0: 13, 1: 0, 2: 1, 3: 2, 4: 1}",1 +885,False,"{'a': 0.01, 'e': 0.4127141732790497}",20,12,3.728145430244367,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +886,False,"{'a': 0.01, 'e': 0.41230166539408875}",20,0,-76.18932521086936,"{0: 14, 1: 2, 2: 1, 3: 2, 4: 1}",0 +887,False,"{'a': 0.01, 'e': 0.4118895698108276}",20,11,9.589400097369724,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +888,False,"{'a': 0.01, 'e': 0.41147788611717057}",20,9,-11.09795822799256,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +889,False,"{'a': 0.01, 'e': 0.41106661390143395}",25,2,11.728761530159693,"{0: 21, 1: 0, 2: 2, 3: 0, 4: 0}",1 +890,False,"{'a': 0.01, 'e': 0.4106557527523455}",30,10,-36.948511222587435,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",1 +891,False,"{'a': 0.01, 'e': 0.410245302259044}",20,14,-0.5256127478676591,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +892,False,"{'a': 0.01, 'e': 0.40983526201107895}",25,0,-49.54276892947466,"{0: 18, 1: 4, 2: 2, 3: 0, 4: 1}",0 +893,False,"{'a': 0.01, 'e': 0.40942563159841006}",30,0,-36.376362013268135,"{0: 26, 1: 0, 2: 2, 3: 1, 4: 1}",0 +894,False,"{'a': 0.01, 'e': 0.4090164106114069}",25,9,28.406776852632255,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +895,False,"{'a': 0.01, 'e': 0.40860759864084845}",30,0,-14.33980698889561,"{0: 27, 1: 2, 2: 0, 3: 0, 4: 1}",0 +896,False,"{'a': 0.01, 'e': 0.4081991952779227}",20,10,-4.6374545504826425,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +897,False,"{'a': 0.01, 'e': 0.4077912001142262}",20,6,-1.513144783172442,"{0: 11, 1: 1, 2: 2, 3: 0, 4: 0}",1 +898,False,"{'a': 0.01, 'e': 0.4073836127417638}",20,16,7.530531321690843,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +899,False,"{'a': 0.01, 'e': 0.40697643275294815}",20,15,-3.5110811355056684,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +900,False,"{'a': 0.01, 'e': 0.4065696597405991}",20,0,-5.966529866841582,"{0: 16, 1: 2, 2: 2, 3: 0, 4: 0}",1 +901,False,"{'a': 0.01, 'e': 0.4061632932979437}",25,0,-37.84854904693864,"{0: 19, 1: 0, 2: 5, 3: 1, 4: 0}",0 +902,False,"{'a': 0.01, 'e': 0.40575733301861544}",30,18,-16.77027532726376,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +903,False,"{'a': 0.01, 'e': 0.405351778496654}",20,13,-9.97182052445109,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +904,False,"{'a': 0.01, 'e': 0.4049466293265049}",25,3,-37.472744560965126,"{0: 19, 1: 0, 2: 1, 3: 1, 4: 1}",1 +905,False,"{'a': 0.01, 'e': 0.4045418851030188}",20,15,1.0349655501717496,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +906,False,"{'a': 0.01, 'e': 0.4041375454214515}",25,16,0.9141720183683497,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +907,False,"{'a': 0.01, 'e': 0.4037336098774634}",25,10,-33.32617947837301,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 1}",1 +908,False,"{'a': 0.01, 'e': 0.40333007806711874}",30,22,-5.2223312398125366,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +909,False,"{'a': 0.01, 'e': 0.40292694958688574}",20,0,-51.52467906436269,"{0: 16, 1: 1, 2: 1, 3: 1, 4: 1}",0 +910,False,"{'a': 0.01, 'e': 0.40252422403363597}",20,3,-24.830877949264803,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +911,False,"{'a': 0.01, 'e': 0.40212190100464373}",25,13,-97.35107620795533,"{0: 5, 1: 0, 2: 5, 3: 1, 4: 1}",1 +912,False,"{'a': 0.01, 'e': 0.401719980097586}",25,0,-108.05298055191288,"{0: 15, 1: 5, 2: 3, 3: 0, 4: 2}",1 +913,False,"{'a': 0.01, 'e': 0.4013184609105419}",20,0,1.1582775111657388,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",0 +914,False,"{'a': 0.01, 'e': 0.4009173430419921}",20,10,5.29899534915104,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +915,False,"{'a': 0.01, 'e': 0.4005166260908188}",35,0,-113.31433459293525,"{0: 23, 1: 4, 2: 6, 3: 1, 4: 1}",0 +916,False,"{'a': 0.01, 'e': 0.40011630965630496}",25,7,-3.799069919735045,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +917,False,"{'a': 0.01, 'e': 0.3997163933381341}",20,0,16.733766431552127,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +918,False,"{'a': 0.01, 'e': 0.3993168767363899}",25,13,3.4131609130946403,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +919,False,"{'a': 0.01, 'e': 0.39891775945155566}",30,8,9.755703177128769,"{0: 19, 1: 2, 2: 1, 3: 0, 4: 0}",1 +920,False,"{'a': 0.01, 'e': 0.39851904108451414}",25,0,-31.624195681667175,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +921,False,"{'a': 0.01, 'e': 0.39812072123654696}",25,13,-10.204376378152629,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +922,False,"{'a': 0.01, 'e': 0.39772279950933415}",25,14,-46.93418287584641,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 1}",1 +923,False,"{'a': 0.01, 'e': 0.397325275504954}",25,13,-9.63244678180276,"{0: 10, 1: 1, 2: 0, 3: 1, 4: 0}",1 +924,False,"{'a': 0.01, 'e': 0.39692814882588245}",20,0,4.740253523059098,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +925,False,"{'a': 0.01, 'e': 0.39653141907499284}",25,19,4.919530327449195,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +926,False,"{'a': 0.01, 'e': 0.39613508585555535}",30,23,14.47969316170277,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +927,False,"{'a': 0.01, 'e': 0.3957391487712367}",30,3,-24.385636522999523,"{0: 23, 1: 1, 2: 2, 3: 0, 4: 1}",1 +928,False,"{'a': 0.01, 'e': 0.3953436074260998}",25,0,-32.905877232531566,"{0: 19, 1: 2, 2: 3, 3: 1, 4: 0}",0 +929,False,"{'a': 0.01, 'e': 0.39494846142460327}",20,8,7.803212568226259,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +930,False,"{'a': 0.01, 'e': 0.3945537103716011}",20,0,-123.6349783556566,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 3}",0 +931,False,"{'a': 0.01, 'e': 0.3941593538723422}",20,0,-26.64902971640558,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +932,False,"{'a': 0.01, 'e': 0.39376539153247}",20,12,14.840431062579292,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +933,False,"{'a': 0.01, 'e': 0.3933718229580221}",25,11,6.407529257312363,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +934,False,"{'a': 0.01, 'e': 0.39297864775542996}",25,14,4.555619014872401,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +935,False,"{'a': 0.01, 'e': 0.39258586553151836}",25,0,10.9041239987023,"{0: 23, 1: 1, 2: 0, 3: 1, 4: 0}",0 +936,False,"{'a': 0.01, 'e': 0.39219347589350495}",30,12,-61.03456187114645,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +937,False,"{'a': 0.01, 'e': 0.39180147844900015}",25,18,15.19052686094432,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +938,False,"{'a': 0.01, 'e': 0.3914098728060065}",20,0,-29.241462167829805,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +939,False,"{'a': 0.01, 'e': 0.3910186585729182}",20,14,5.290833407636671,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +940,False,"{'a': 0.01, 'e': 0.3906278353585211}",25,16,7.311737989870123,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +941,False,"{'a': 0.01, 'e': 0.39023740277199187}",20,7,5.5976443138150955,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +942,False,"{'a': 0.01, 'e': 0.38984736042289797}",20,0,-3.636238604562971,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +943,False,"{'a': 0.01, 'e': 0.38945770792119694}",30,0,-38.85612817841384,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 2}",0 +944,False,"{'a': 0.01, 'e': 0.3890684448772363}",30,20,-17.201396692370274,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +945,False,"{'a': 0.01, 'e': 0.388679570901753}",20,10,-22.87091978629038,"{0: 7, 1: 1, 2: 1, 3: 1, 4: 0}",1 +946,False,"{'a': 0.01, 'e': 0.38829108560587294}",25,11,-14.179116362106985,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +947,False,"{'a': 0.01, 'e': 0.3879029886011109}",20,14,13.829896292506437,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +948,False,"{'a': 0.01, 'e': 0.3875152794993697}",25,13,14.712368351729882,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +949,False,"{'a': 0.01, 'e': 0.38712795791294036}",30,10,9.237211017412521,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +950,False,"{'a': 0.01, 'e': 0.3867410234545012}",25,0,3.6032362397907933,"{0: 21, 1: 2, 2: 2, 3: 0, 4: 0}",0 +951,False,"{'a': 0.01, 'e': 0.3863544757371177}",20,13,-0.3024587745008711,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +952,False,"{'a': 0.01, 'e': 0.3859683143742421}",30,24,11.118915804870227,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +953,False,"{'a': 0.01, 'e': 0.38558253897971306}",25,10,10.235262262784111,"{0: 13, 1: 1, 2: 1, 3: 0, 4: 0}",1 +954,False,"{'a': 0.01, 'e': 0.38519714916775516}",25,0,-4.913491543122171,"{0: 22, 1: 1, 2: 1, 3: 1, 4: 0}",1 +955,False,"{'a': 0.01, 'e': 0.3848121445529785}",20,0,0.7601879540554815,"{0: 18, 1: 1, 2: 0, 3: 1, 4: 0}",0 +956,False,"{'a': 0.01, 'e': 0.3844275247503785}",25,8,-23.606163639900846,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +957,False,"{'a': 0.01, 'e': 0.3840432893753353}",30,9,7.398065345835397,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +958,False,"{'a': 0.01, 'e': 0.38365943804361335}",20,5,15.506058477544094,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 0}",1 +959,False,"{'a': 0.01, 'e': 0.3832759703713615}",30,16,29.105915432192216,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +960,False,"{'a': 0.01, 'e': 0.38289288597511206}",25,16,14.358746660584064,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +961,False,"{'a': 0.01, 'e': 0.38251018447178037}",20,4,-82.61713275631593,"{0: 10, 1: 0, 2: 4, 3: 1, 4: 1}",1 +962,False,"{'a': 0.01, 'e': 0.38212786547866506}",30,20,-1.085674176165619,"{0: 7, 1: 3, 2: 0, 3: 0, 4: 0}",1 +963,False,"{'a': 0.01, 'e': 0.3817459286134471}",20,14,12.442977415544116,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +964,False,"{'a': 0.01, 'e': 0.38136437349418956}",30,17,5.679566987493172,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +965,False,"{'a': 0.01, 'e': 0.38098319973933725}",25,7,26.619688736693973,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +966,False,"{'a': 0.01, 'e': 0.38060240696771647}",25,11,-76.09701710881076,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 2}",1 +967,False,"{'a': 0.01, 'e': 0.38022199479853436}",20,2,-20.088764222069887,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 1}",1 +968,False,"{'a': 0.01, 'e': 0.3798419628513787}",30,0,8.355103289428326,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +969,False,"{'a': 0.01, 'e': 0.37946231074621756}",20,13,4.401566901438171,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +970,False,"{'a': 0.01, 'e': 0.37908303810339883}",25,1,-6.5437460809917996,"{0: 20, 1: 1, 2: 3, 3: 0, 4: 0}",1 +971,False,"{'a': 0.01, 'e': 0.37870414454364976}",25,14,-56.230079800018466,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 1}",1 +972,False,"{'a': 0.01, 'e': 0.3783256296880768}",25,17,15.597798147773107,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +973,False,"{'a': 0.01, 'e': 0.37794749315816506}",20,0,-135.0261363758754,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 3}",0 +974,False,"{'a': 0.01, 'e': 0.37756973457577797}",20,0,-19.38902029522276,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +975,False,"{'a': 0.01, 'e': 0.37719235356315695}",30,11,18.707335398197888,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 0}",1 +976,False,"{'a': 0.01, 'e': 0.37681534974292086}",20,8,-14.888418740949717,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +977,False,"{'a': 0.01, 'e': 0.37643872273806595}",30,0,-88.82588678764589,"{0: 24, 1: 1, 2: 2, 3: 1, 4: 2}",0 +978,False,"{'a': 0.01, 'e': 0.37606247217196515}",30,0,-37.59267223383858,"{0: 25, 1: 1, 2: 3, 3: 0, 4: 1}",0 +979,False,"{'a': 0.01, 'e': 0.37568659766836787}",25,3,-15.398171731885675,"{0: 18, 1: 0, 2: 4, 3: 0, 4: 0}",1 +980,False,"{'a': 0.01, 'e': 0.37531109885139957}",25,0,24.306972678564687,"{0: 23, 1: 2, 2: 0, 3: 0, 4: 0}",1 +981,False,"{'a': 0.01, 'e': 0.37493597534556133}",30,6,-5.176728279490052,"{0: 19, 1: 3, 2: 2, 3: 0, 4: 0}",1 +982,False,"{'a': 0.01, 'e': 0.3745612267757298}",20,10,20.46110463751577,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +983,False,"{'a': 0.01, 'e': 0.37418685276715613}",20,2,-23.7732029888484,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 1}",1 +984,False,"{'a': 0.01, 'e': 0.3738128529454665}",30,12,-12.124518836994541,"{0: 14, 1: 0, 2: 4, 3: 0, 4: 0}",1 +985,False,"{'a': 0.01, 'e': 0.37343922693666093}",20,0,11.108014674713743,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +986,False,"{'a': 0.01, 'e': 0.3730659743671134}",25,5,-66.62422577613302,"{0: 13, 1: 2, 2: 4, 3: 0, 4: 1}",1 +987,False,"{'a': 0.01, 'e': 0.3726930948635714}",20,13,-10.03749344910468,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +988,False,"{'a': 0.01, 'e': 0.3723205880531552}",35,23,-1.4831177580802506,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +989,False,"{'a': 0.01, 'e': 0.3719484535633582}",35,0,-12.173962237483458,"{0: 27, 1: 7, 2: 0, 3: 1, 4: 0}",0 +990,False,"{'a': 0.01, 'e': 0.3715766910220457}",20,16,6.590506790052938,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +991,False,"{'a': 0.01, 'e': 0.37120530005745517}",25,0,-23.85283101459399,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",1 +992,False,"{'a': 0.01, 'e': 0.37083428029819565}",20,2,-46.60833422992413,"{0: 12, 1: 2, 2: 3, 3: 1, 4: 0}",1 +993,False,"{'a': 0.01, 'e': 0.37046363137324734}",20,11,-5.500762158133454,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +994,False,"{'a': 0.01, 'e': 0.37009335291196127}",25,11,-62.34039464033758,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 1}",1 +995,False,"{'a': 0.01, 'e': 0.369723444544059}",25,0,-26.04620304633902,"{0: 19, 1: 1, 2: 5, 3: 0, 4: 0}",0 +996,False,"{'a': 0.01, 'e': 0.369353905899632}",25,0,15.505391521749797,"{0: 22, 1: 2, 2: 1, 3: 0, 4: 0}",1 +997,False,"{'a': 0.01, 'e': 0.3689847366091418}",20,0,11.888835296984402,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +998,False,"{'a': 0.01, 'e': 0.3686159363034188}",25,14,-1.1168991009297269,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +999,False,"{'a': 0.01, 'e': 0.3682475046136629}",30,6,2.9121931154649143,"{0: 20, 1: 3, 2: 1, 3: 0, 4: 0}",1 +1000,False,"{'a': 0.01, 'e': 0.36787944117144233}",25,17,3.438575745616106,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1001,False,"{'a': 0.01, 'e': 0.3675117456086935}",20,2,-3.168213213958384,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1002,False,"{'a': 0.01, 'e': 0.36714441755772104}",20,0,-7.777749623174216,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +1003,False,"{'a': 0.01, 'e': 0.3667774566511966}",35,17,-28.691262206918886,"{0: 15, 1: 0, 2: 1, 3: 2, 4: 0}",1 +1004,False,"{'a': 0.01, 'e': 0.3664108625221595}",25,13,-4.004169916646954,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1005,False,"{'a': 0.01, 'e': 0.36604463480401533}",20,14,-37.559753647245785,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1006,False,"{'a': 0.01, 'e': 0.36567877313053654}",25,13,-27.900526294200187,"{0: 8, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1007,False,"{'a': 0.01, 'e': 0.3653132771358613}",25,10,14.626346952579587,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1008,False,"{'a': 0.01, 'e': 0.36494814645449375}",25,14,18.15627948331325,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1009,False,"{'a': 0.01, 'e': 0.3645833807213029}",20,9,16.38462190206005,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1010,False,"{'a': 0.01, 'e': 0.3642189795715233}",20,16,7.101477695586116,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1011,False,"{'a': 0.01, 'e': 0.3638549426407535}",25,7,3.334609814937492,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1012,False,"{'a': 0.01, 'e': 0.3634912695649568}",20,16,6.876113067139661,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1013,False,"{'a': 0.01, 'e': 0.3631279599804599}",25,19,9.596859790872234,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1014,False,"{'a': 0.01, 'e': 0.36276501352395324}",25,14,-5.358183132912024,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1015,False,"{'a': 0.01, 'e': 0.36240242983249027}",25,13,16.891307495249187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1016,False,"{'a': 0.01, 'e': 0.36204020854348745}",20,8,16.13050590893926,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1017,False,"{'a': 0.01, 'e': 0.36167834929472326}",35,16,-11.797757244568002,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1018,False,"{'a': 0.01, 'e': 0.36131685172433853}",30,4,11.415827654249904,"{0: 23, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1019,False,"{'a': 0.01, 'e': 0.3609557154708356}",25,19,-11.332698318331918,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1020,False,"{'a': 0.01, 'e': 0.3605949401730783}",25,18,2.281838614783842,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1021,False,"{'a': 0.01, 'e': 0.3602345254702911}",25,5,31.395940753549237,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1022,False,"{'a': 0.01, 'e': 0.35987447100205955}",25,19,11.284156894451153,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1023,False,"{'a': 0.01, 'e': 0.35951477640832885}",30,0,-107.74756100167562,"{0: 19, 1: 4, 2: 4, 3: 2, 4: 1}",0 +1024,False,"{'a': 0.01, 'e': 0.3591554413294046}",20,3,23.325973741604596,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1025,False,"{'a': 0.01, 'e': 0.3587964654059516}",30,7,-77.99102336534652,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 2}",1 +1026,False,"{'a': 0.01, 'e': 0.3584378482789939}",30,0,-59.73499838045542,"{0: 23, 1: 1, 2: 5, 3: 0, 4: 1}",0 +1027,False,"{'a': 0.01, 'e': 0.35807958958991437}",25,20,8.269348999276655,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1028,False,"{'a': 0.01, 'e': 0.3577216889804542}",25,19,13.761634747172346,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1029,False,"{'a': 0.01, 'e': 0.3573641460927129}",25,5,21.018734083267645,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1030,False,"{'a': 0.01, 'e': 0.3570069605691474}",25,7,13.486378635042948,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1031,False,"{'a': 0.01, 'e': 0.35665013205257223}",25,11,3.757856453849743,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1032,False,"{'a': 0.01, 'e': 0.3562936601861588}",20,10,-33.548413685925304,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1033,False,"{'a': 0.01, 'e': 0.35593754461343535}",25,19,13.890566926393381,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1034,False,"{'a': 0.01, 'e': 0.35558178497828613}",25,13,-10.516203655197694,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1035,False,"{'a': 0.01, 'e': 0.3552263809249515}",30,12,-12.835359865624541,"{0: 14, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1036,False,"{'a': 0.01, 'e': 0.3548713320980274}",25,11,11.294989191041084,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1037,False,"{'a': 0.01, 'e': 0.35451663814246503}",25,18,-41.03751792600009,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1038,False,"{'a': 0.01, 'e': 0.35416229870357024}",25,6,-31.105666794961262,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1039,False,"{'a': 0.01, 'e': 0.35380831342700375}",20,0,-0.2514903745848096,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1040,False,"{'a': 0.01, 'e': 0.35345468195878016}",25,5,-24.657123791313555,"{0: 17, 1: 2, 2: 0, 3: 0, 4: 1}",1 +1041,False,"{'a': 0.01, 'e': 0.353101403945268}",20,11,16.469841937729967,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1042,False,"{'a': 0.01, 'e': 0.3527484790331891}",20,10,21.207638390604874,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1043,False,"{'a': 0.01, 'e': 0.35239590686961875}",20,3,0.6245369686723332,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1044,False,"{'a': 0.01, 'e': 0.3520436871019846}",30,8,-54.017302272280176,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 2}",1 +1045,False,"{'a': 0.01, 'e': 0.3516918193780669}",30,20,15.609347534423648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1046,False,"{'a': 0.01, 'e': 0.3513403033459978}",20,0,-7.087521601021273,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1047,False,"{'a': 0.01, 'e': 0.35098913865426146}",25,13,5.81285175680776,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1048,False,"{'a': 0.01, 'e': 0.35063832495169295}",30,9,-68.47384746496083,"{0: 15, 1: 1, 2: 3, 3: 1, 4: 1}",1 +1049,False,"{'a': 0.01, 'e': 0.3502878618874786}",30,11,-12.71985979643722,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1050,False,"{'a': 0.01, 'e': 0.3499377491111553}",20,0,-37.94484361811896,"{0: 15, 1: 1, 2: 2, 3: 2, 4: 0}",0 +1051,False,"{'a': 0.01, 'e': 0.3495879862726104}",25,15,-5.3208794409360625,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1052,False,"{'a': 0.01, 'e': 0.3492385730220808}",20,0,-52.56340310845206,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 2}",0 +1053,False,"{'a': 0.01, 'e': 0.34888950901015336}",20,8,13.5890878110536,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1054,False,"{'a': 0.01, 'e': 0.348540793887764}",20,0,-20.258448562189727,"{0: 15, 1: 3, 2: 2, 3: 0, 4: 0}",0 +1055,False,"{'a': 0.01, 'e': 0.3481924273061976}",25,9,18.006335568276143,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1056,False,"{'a': 0.01, 'e': 0.3478444089170874}",20,9,-88.56774548468736,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 2}",1 +1057,False,"{'a': 0.01, 'e': 0.34749673837241524}",20,9,1.9429633887685556,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1058,False,"{'a': 0.01, 'e': 0.3471494153245103}",20,0,-94.36872051255312,"{0: 11, 1: 2, 2: 4, 3: 3, 4: 0}",0 +1059,False,"{'a': 0.01, 'e': 0.34680243942604977}",20,8,-9.489548184145756,"{0: 9, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1060,False,"{'a': 0.01, 'e': 0.3464558103300574}",20,11,-24.33479107893493,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1061,False,"{'a': 0.01, 'e': 0.3461095276899044}",20,0,-132.22959013033685,"{0: 15, 1: 0, 2: 1, 3: 1, 4: 3}",0 +1062,False,"{'a': 0.01, 'e': 0.34576359115930777}",35,15,-34.61413084511009,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1063,False,"{'a': 0.01, 'e': 0.3454180003923312}",25,12,-42.464635670238984,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1064,False,"{'a': 0.01, 'e': 0.34507275504338375}",25,0,-16.623997724826832,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1065,False,"{'a': 0.01, 'e': 0.3447278547672202}",20,11,-40.02694416009079,"{0: 5, 1: 2, 2: 0, 3: 2, 4: 0}",1 +1066,False,"{'a': 0.01, 'e': 0.34438329921894}",25,0,-91.44272194268977,"{0: 15, 1: 5, 2: 3, 3: 1, 4: 1}",0 +1067,False,"{'a': 0.01, 'e': 0.34403908805398786}",25,19,12.974661344458228,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1068,False,"{'a': 0.01, 'e': 0.34369522092815236}",20,0,29.39084970587644,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1069,False,"{'a': 0.01, 'e': 0.3433516974975665}",25,2,-57.61906282673613,"{0: 18, 1: 0, 2: 4, 3: 0, 4: 1}",1 +1070,False,"{'a': 0.01, 'e': 0.34300851741870664}",20,0,-5.794137656102147,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",0 +1071,False,"{'a': 0.01, 'e': 0.3426656803483929}",25,0,12.23342248914022,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1072,False,"{'a': 0.01, 'e': 0.34232318594378797}",20,7,-35.33242739236544,"{0: 9, 1: 2, 2: 0, 3: 2, 4: 0}",1 +1073,False,"{'a': 0.01, 'e': 0.3419810338623976}",35,23,19.45478118827501,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1074,False,"{'a': 0.01, 'e': 0.34163922376206945}",20,12,3.5472530883099362,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1075,False,"{'a': 0.01, 'e': 0.3412977553009937}",20,11,-7.525428000893216,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1076,False,"{'a': 0.01, 'e': 0.34095662813770156}",20,12,3.3708799043223907,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1077,False,"{'a': 0.01, 'e': 0.3406158419310661}",20,12,-26.8897529113011,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1078,False,"{'a': 0.01, 'e': 0.3402753963403008}",25,11,-38.56356203523748,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 1}",1 +1079,False,"{'a': 0.01, 'e': 0.33993529102496034}",20,10,-38.38381178506314,"{0: 5, 1: 2, 2: 2, 3: 1, 4: 0}",1 +1080,False,"{'a': 0.01, 'e': 0.3395955256449391}",20,0,9.3799774572438,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1081,False,"{'a': 0.01, 'e': 0.33925609986047195}",25,11,1.3082319496383854,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1082,False,"{'a': 0.01, 'e': 0.3389170133321328}",30,22,0.31787552842829503,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1083,False,"{'a': 0.01, 'e': 0.3385782657208353}",20,9,-17.782569264107423,"{0: 7, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1084,False,"{'a': 0.01, 'e': 0.3382398566878317}",25,14,-3.397028906852479,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1085,False,"{'a': 0.01, 'e': 0.33790178589471304}",30,19,15.116904343512594,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1086,False,"{'a': 0.01, 'e': 0.33756405300340836}",20,4,0.4857178334029588,"{0: 13, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1087,False,"{'a': 0.01, 'e': 0.33722665767618487}",20,0,17.533392173841634,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1088,False,"{'a': 0.01, 'e': 0.33688959957564707}",20,11,5.721256006966669,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1089,False,"{'a': 0.01, 'e': 0.336552878364737}",25,12,-24.788506366405674,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1090,False,"{'a': 0.01, 'e': 0.33621649370673334}",20,9,19.032240480045093,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1091,False,"{'a': 0.01, 'e': 0.3358804452652514}",35,14,29.77682903875806,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1092,False,"{'a': 0.01, 'e': 0.3355447327042427}",20,11,-5.489583101370618,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1093,False,"{'a': 0.01, 'e': 0.33520935568799465}",20,0,-19.437053231915407,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1094,False,"{'a': 0.01, 'e': 0.3348743138811302}",25,17,14.542136621778653,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1095,False,"{'a': 0.01, 'e': 0.3345396069486076}",20,16,9.328001758459873,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1096,False,"{'a': 0.01, 'e': 0.33420523455571977}",25,16,-77.25749000298896,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1097,False,"{'a': 0.01, 'e': 0.3338711963680944}",30,15,10.472176423779494,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1098,False,"{'a': 0.01, 'e': 0.3335374920516932}",20,12,17.66105946774598,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1099,False,"{'a': 0.01, 'e': 0.33320412127281185}",20,3,1.5902645284386474,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1100,False,"{'a': 0.01, 'e': 0.33287108369807955}",20,10,-0.21206665148163673,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1101,False,"{'a': 0.01, 'e': 0.3325383789944587}",25,8,26.519857687875085,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1102,False,"{'a': 0.01, 'e': 0.33220600682924445}",25,12,7.373155488905991,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1103,False,"{'a': 0.01, 'e': 0.3318739668700649}",20,12,14.587080314157431,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1104,False,"{'a': 0.01, 'e': 0.3315422587848797}",20,12,-28.17497074890691,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1105,False,"{'a': 0.01, 'e': 0.331210882241981}",25,8,25.048091099651256,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1106,False,"{'a': 0.01, 'e': 0.33087983690999206}",30,4,-47.14839400687543,"{0: 21, 1: 0, 2: 4, 3: 0, 4: 1}",1 +1107,False,"{'a': 0.01, 'e': 0.3305491224578677}",20,11,14.771328050519204,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1108,False,"{'a': 0.01, 'e': 0.3302187385548933}",25,14,-5.613053889878165,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1109,False,"{'a': 0.01, 'e': 0.329888684870685}",20,13,12.689095202056093,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1110,False,"{'a': 0.01, 'e': 0.32955896107518906}",25,0,-23.87279501210477,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1111,False,"{'a': 0.01, 'e': 0.32922956683868165}",20,0,-43.259654214224916,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 1}",0 +1112,False,"{'a': 0.01, 'e': 0.3289005018317685}",30,22,12.201533577971539,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1113,False,"{'a': 0.01, 'e': 0.3285717657253846}",20,16,8.163333634471863,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1114,False,"{'a': 0.01, 'e': 0.32824335819079375}",30,18,18.891935688510053,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1115,False,"{'a': 0.01, 'e': 0.32791527889958855}",20,14,2.4422428186179705,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1116,False,"{'a': 0.01, 'e': 0.3275875275236895}",30,14,4.164126891759928,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1117,False,"{'a': 0.01, 'e': 0.3272601037353453}",30,20,13.207703101718957,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1118,False,"{'a': 0.01, 'e': 0.3269330072071321}",30,3,-56.17899156694076,"{0: 21, 1: 2, 2: 2, 3: 1, 4: 1}",1 +1119,False,"{'a': 0.01, 'e': 0.3266062376119534}",25,17,-7.51129472462989,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1120,False,"{'a': 0.01, 'e': 0.32627979462303947}",25,17,-7.935105730853225,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1121,False,"{'a': 0.01, 'e': 0.32595367791394736}",20,12,-4.898055972627617,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1122,False,"{'a': 0.01, 'e': 0.32562788715856034}",30,21,11.337946830903853,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1123,False,"{'a': 0.01, 'e': 0.3253024220310876}",20,0,15.548708226980743,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1124,False,"{'a': 0.01, 'e': 0.324977282206064}",25,19,-1.3301855839625107,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1125,False,"{'a': 0.01, 'e': 0.32465246735834974}",25,2,-35.98677633835902,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1126,False,"{'a': 0.01, 'e': 0.3243279771631298}",25,6,-32.333485532533274,"{0: 16, 1: 0, 2: 0, 3: 3, 4: 0}",1 +1127,False,"{'a': 0.01, 'e': 0.32400381129591416}",30,13,0.6388755961466168,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1128,False,"{'a': 0.01, 'e': 0.3236799694325367}",25,13,24.61513844648315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1129,False,"{'a': 0.01, 'e': 0.32335645124915574}",25,8,8.94661509511064,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1130,False,"{'a': 0.01, 'e': 0.3230332564222529}",20,6,-15.40057134962142,"{0: 10, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1131,False,"{'a': 0.01, 'e': 0.3227103846286335}",25,13,-3.9063445662368035,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1132,False,"{'a': 0.01, 'e': 0.3223878355454255}",25,15,-4.780590951766398,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1133,False,"{'a': 0.01, 'e': 0.32206560885008}",25,16,-6.895945381420156,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1134,False,"{'a': 0.01, 'e': 0.32174370422037013}",20,0,-5.035792855700894,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1135,False,"{'a': 0.01, 'e': 0.32142212133439135}",20,12,14.122673590613896,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1136,False,"{'a': 0.01, 'e': 0.32110085987056064}",20,13,11.373280717908541,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1137,False,"{'a': 0.01, 'e': 0.3207799195076166}",20,8,1.089313752151103,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1138,False,"{'a': 0.01, 'e': 0.32045929992461875}",25,9,14.118600930509839,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1139,False,"{'a': 0.01, 'e': 0.3201390008009476}",20,3,-47.252244765211884,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1140,False,"{'a': 0.01, 'e': 0.31981902181630384}",25,19,11.867905040553438,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1141,False,"{'a': 0.01, 'e': 0.31949936265070866}",20,3,5.037323091366917,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1142,False,"{'a': 0.01, 'e': 0.31918002298450265}",20,12,0.6906863179143137,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1143,False,"{'a': 0.01, 'e': 0.3188610024983463}",30,21,7.008806362768584,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1144,False,"{'a': 0.01, 'e': 0.31854230087321894}",30,0,-77.04815544802064,"{0: 24, 1: 1, 2: 2, 3: 2, 4: 1}",0 +1145,False,"{'a': 0.01, 'e': 0.3182239177904191}",20,3,20.442983225083086,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1146,False,"{'a': 0.01, 'e': 0.3179058529315635}",25,5,-6.449256471994225,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1147,False,"{'a': 0.01, 'e': 0.31758810597858733}",25,19,9.006415513392191,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1148,False,"{'a': 0.01, 'e': 0.3172706766137436}",20,3,-28.733031210534183,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 1}",1 +1149,False,"{'a': 0.01, 'e': 0.31695356451960294}",25,18,14.409270956277986,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1150,False,"{'a': 0.01, 'e': 0.31663676937905316}",20,8,-19.34484653845012,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1151,False,"{'a': 0.01, 'e': 0.3163202908752992}",20,10,12.89535295767686,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1152,False,"{'a': 0.01, 'e': 0.31600412869186245}",30,12,-11.231178246365005,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1153,False,"{'a': 0.01, 'e': 0.3156882825125808}",35,21,16.432804287114042,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1154,False,"{'a': 0.01, 'e': 0.31537275202160797}",30,15,-20.322804105886277,"{0: 11, 1: 0, 2: 4, 3: 0, 4: 0}",1 +1155,False,"{'a': 0.01, 'e': 0.3150575369034133}",30,16,-7.4261704646049544,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1156,False,"{'a': 0.01, 'e': 0.3147426368427819}",25,13,18.802126112565112,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1157,False,"{'a': 0.01, 'e': 0.31442805152481357}",25,12,10.044849282527057,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1158,False,"{'a': 0.01, 'e': 0.31411378063492296}",25,17,8.50521821021599,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1159,False,"{'a': 0.01, 'e': 0.3137998238588391}",20,10,-4.587879687245311,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1160,False,"{'a': 0.01, 'e': 0.3134861808826053}",20,6,-17.532188330514884,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1161,False,"{'a': 0.01, 'e': 0.3131728513925785}",30,17,-5.782677281812062,"{0: 11, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1162,False,"{'a': 0.01, 'e': 0.3128598350754292}",30,9,5.023461471725996,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1163,False,"{'a': 0.01, 'e': 0.312547131618141}",25,11,17.336959228157276,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1164,False,"{'a': 0.01, 'e': 0.31223474070801055}",30,16,23.631579943270168,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1165,False,"{'a': 0.01, 'e': 0.31192266203264674}",25,13,19.252159637711383,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1166,False,"{'a': 0.01, 'e': 0.31161089527997105}",20,11,-13.218054404365773,"{0: 6, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1167,False,"{'a': 0.01, 'e': 0.3112994401382165}",25,17,-28.339883439875315,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1168,False,"{'a': 0.01, 'e': 0.3109882962959281}",20,7,7.50847138553133,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1169,False,"{'a': 0.01, 'e': 0.31067746344196184}",25,13,-0.10104525654950391,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1170,False,"{'a': 0.01, 'e': 0.31036694126548503}",20,4,-53.25678143379801,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1171,False,"{'a': 0.01, 'e': 0.31005672945597523}",30,5,-15.555085576502265,"{0: 21, 1: 0, 2: 3, 3: 1, 4: 0}",1 +1172,False,"{'a': 0.01, 'e': 0.3097468277032208}",30,24,8.60824344281586,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1173,False,"{'a': 0.01, 'e': 0.30943723569731985}",20,9,-23.23926115685945,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1174,False,"{'a': 0.01, 'e': 0.30912795312868047}",30,17,-19.918831895127973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1175,False,"{'a': 0.01, 'e': 0.30881897968801986}",20,3,-34.75020427496057,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1176,False,"{'a': 0.01, 'e': 0.3085103150663647}",25,16,-3.627588914166651,"{0: 7, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1177,False,"{'a': 0.01, 'e': 0.3082019589550503}",35,2,-23.300119845862838,"{0: 28, 1: 1, 2: 3, 3: 0, 4: 1}",1 +1178,False,"{'a': 0.01, 'e': 0.3078939110457206}",25,10,9.387194810616553,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1179,False,"{'a': 0.01, 'e': 0.3075861710303276}",20,0,18.612591173172333,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1180,False,"{'a': 0.01, 'e': 0.30727873860113125}",25,14,6.452991388462329,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1181,False,"{'a': 0.01, 'e': 0.30697161345069907}",25,10,6.493055469793261,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1182,False,"{'a': 0.01, 'e': 0.306664795271906}",25,8,-9.35904135103537,"{0: 13, 1: 2, 2: 2, 3: 0, 4: 0}",1 +1183,False,"{'a': 0.01, 'e': 0.30635828375793367}",20,6,-28.201077675229122,"{0: 10, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1184,False,"{'a': 0.01, 'e': 0.3060520786022707}",35,23,25.206239242513583,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1185,False,"{'a': 0.01, 'e': 0.30574617949871175}",30,16,25.04762102751435,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1186,False,"{'a': 0.01, 'e': 0.3054405861413579}",20,8,21.34490830124239,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1187,False,"{'a': 0.01, 'e': 0.3051352982246155}",30,8,15.075161356545209,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1188,False,"{'a': 0.01, 'e': 0.30483031544319683}",20,7,2.2384120313543696,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1189,False,"{'a': 0.01, 'e': 0.304525637492119}",20,9,-8.651925656152846,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1190,False,"{'a': 0.01, 'e': 0.3042212640667041}",25,18,-4.6054857759112915,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1191,False,"{'a': 0.01, 'e': 0.3039171948625785}",20,3,-41.17447211161817,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1192,False,"{'a': 0.01, 'e': 0.30361342957567317}",20,4,8.38536011335754,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1193,False,"{'a': 0.01, 'e': 0.30330996790222264}",25,18,3.8237212936410456,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1194,False,"{'a': 0.01, 'e': 0.3030068095387654}",25,15,1.4096628174295436,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1195,False,"{'a': 0.01, 'e': 0.30270395418214285}",25,8,3.9735774772543495,"{0: 14, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1196,False,"{'a': 0.01, 'e': 0.3024014015294998}",20,13,-9.953600675378333,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1197,False,"{'a': 0.01, 'e': 0.3020991512782834}",20,7,-8.638120812319334,"{0: 11, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1198,False,"{'a': 0.01, 'e': 0.3017972031262435}",35,5,-22.975118591226824,"{0: 26, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1199,False,"{'a': 0.01, 'e': 0.3014955567714318}",30,8,-23.545503708928194,"{0: 19, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1200,False,"{'a': 0.01, 'e': 0.30119421191220214}",20,11,-18.43490224265423,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1201,False,"{'a': 0.01, 'e': 0.30089316824720935}",20,13,14.441539609003907,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1202,False,"{'a': 0.01, 'e': 0.30059242547541}",20,0,-35.20166317917672,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 1}",0 +1203,False,"{'a': 0.01, 'e': 0.30029198329606105}",25,18,12.43215097660106,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1204,False,"{'a': 0.01, 'e': 0.2999918414087205}",20,13,1.3331385517201781,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1205,False,"{'a': 0.01, 'e': 0.2996919995132463}",20,8,22.28090583787283,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1206,False,"{'a': 0.01, 'e': 0.2993924573097967}",20,14,11.887015040766851,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1207,False,"{'a': 0.01, 'e': 0.29909321449882925}",25,9,-49.47755739526634,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1208,False,"{'a': 0.01, 'e': 0.29879427078110127}",20,1,3.8708890286302946,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1209,False,"{'a': 0.01, 'e': 0.2984956258576689}",20,13,13.38685812388434,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1210,False,"{'a': 0.01, 'e': 0.2981972794298874}",25,0,-10.538673403672085,"{0: 23, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1211,False,"{'a': 0.01, 'e': 0.2978992311994101}",25,12,17.750878610654674,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1212,False,"{'a': 0.01, 'e': 0.29760148086818883}",25,0,-38.50212037955403,"{0: 21, 1: 0, 2: 3, 3: 0, 4: 1}",0 +1213,False,"{'a': 0.01, 'e': 0.2973040281384732}",20,10,-22.35059055249771,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1214,False,"{'a': 0.01, 'e': 0.2970068727128105}",25,5,9.111313115546196,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1215,False,"{'a': 0.01, 'e': 0.29671001429404525}",20,16,9.11974353727252,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1216,False,"{'a': 0.01, 'e': 0.2964134525853191}",20,10,7.863924791534108,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1217,False,"{'a': 0.01, 'e': 0.29611718729007014}",25,8,22.268742523704123,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1218,False,"{'a': 0.01, 'e': 0.2958212181120332}",20,0,-18.71416965731178,"{0: 15, 1: 2, 2: 3, 3: 0, 4: 0}",0 +1219,False,"{'a': 0.01, 'e': 0.295525544755239}",30,10,-9.957061213766089,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1220,False,"{'a': 0.01, 'e': 0.2952301669240142}",25,17,4.727490337529897,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1221,False,"{'a': 0.01, 'e': 0.2949350843229809}",25,8,25.235489154611052,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1222,False,"{'a': 0.01, 'e': 0.29464029665705654}",25,15,-0.9124881496000212,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1223,False,"{'a': 0.01, 'e': 0.29434580363145335}",25,18,15.739100478096827,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1224,False,"{'a': 0.01, 'e': 0.29405160495167837}",20,1,-44.522677525715686,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1225,False,"{'a': 0.01, 'e': 0.29375770032353277}",25,12,13.616562013677738,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1226,False,"{'a': 0.01, 'e': 0.2934640894531121}",30,19,-19.202908707989764,"{0: 8, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1227,False,"{'a': 0.01, 'e': 0.2931707720468052}",20,15,-0.2806679865178585,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1228,False,"{'a': 0.01, 'e': 0.2928777478112949}",20,10,8.005291784178855,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1229,False,"{'a': 0.01, 'e': 0.29258501645355667}",35,2,14.247415054566071,"{0: 31, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1230,False,"{'a': 0.01, 'e': 0.2922925776808594}",25,8,-46.07678746350241,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1231,False,"{'a': 0.01, 'e': 0.2920004312007641}",20,0,-34.63029443059935,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 1}",0 +1232,False,"{'a': 0.01, 'e': 0.2917085767211244}",20,6,-36.208103177544224,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1233,False,"{'a': 0.01, 'e': 0.2914170139500857}",20,12,8.647847092442756,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1234,False,"{'a': 0.01, 'e': 0.2911257425960852}",25,13,-1.4614976774930577,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1235,False,"{'a': 0.01, 'e': 0.29083476236785155}",25,7,11.62157168338768,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1236,False,"{'a': 0.01, 'e': 0.2905440729744046}",30,3,-56.87891341051374,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1237,False,"{'a': 0.01, 'e': 0.2902536741250547}",35,22,25.278409279569754,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1238,False,"{'a': 0.01, 'e': 0.2899635655294032}",20,0,14.123094949833922,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",0 +1239,False,"{'a': 0.01, 'e': 0.2896737468973414}",30,7,-36.42941090951078,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1240,False,"{'a': 0.01, 'e': 0.2893842179390506}",20,0,-33.38838373973786,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1241,False,"{'a': 0.01, 'e': 0.28909497836500186}",25,0,30.303409845515926,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1242,False,"{'a': 0.01, 'e': 0.28880602788595566}",20,2,-62.549082160819324,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1243,False,"{'a': 0.01, 'e': 0.2885173662129613}",20,9,-18.17243904414379,"{0: 7, 1: 2, 2: 2, 3: 0, 4: 0}",1 +1244,False,"{'a': 0.01, 'e': 0.2882289930573573}",30,14,15.639332497855372,"{0: 14, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1245,False,"{'a': 0.01, 'e': 0.2879409081307702}",25,11,-64.03786359765448,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 2}",1 +1246,False,"{'a': 0.01, 'e': 0.2876531111451154}",20,6,-1.047502750196915,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1247,False,"{'a': 0.01, 'e': 0.28736560181259563}",20,13,5.619638478138777,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1248,False,"{'a': 0.01, 'e': 0.28707837984570167}",25,16,15.57267345477764,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1249,False,"{'a': 0.01, 'e': 0.2867914449572114}",20,11,-61.09773133389753,"{0: 5, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1250,False,"{'a': 0.01, 'e': 0.2865047968601901}",20,14,-13.46340541347232,"{0: 4, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1251,False,"{'a': 0.01, 'e': 0.28621843526798946}",20,12,3.139003040941942,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1252,False,"{'a': 0.01, 'e': 0.285932359894248}",25,11,23.059858064566292,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1253,False,"{'a': 0.01, 'e': 0.28564657045289016}",35,5,-53.9823055995367,"{0: 26, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1254,False,"{'a': 0.01, 'e': 0.28536106665812666}",20,6,23.834995009572705,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1255,False,"{'a': 0.01, 'e': 0.28507584822445353}",20,14,-30.443586806744708,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1256,False,"{'a': 0.01, 'e': 0.2847909148666525}",25,10,15.974463920345016,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1257,False,"{'a': 0.01, 'e': 0.2845062662997899}",20,0,16.411188839522442,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1258,False,"{'a': 0.01, 'e': 0.28422190223921745}",25,6,4.6833141166493935,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1259,False,"{'a': 0.01, 'e': 0.28393782240057086}",25,13,-23.98457380521916,"{0: 8, 1: 2, 2: 1, 3: 1, 4: 0}",1 +1260,False,"{'a': 0.01, 'e': 0.2836540264997704}",20,8,0.5574169822767221,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1261,False,"{'a': 0.01, 'e': 0.28337051425301996}",20,13,13.417311953163516,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1262,False,"{'a': 0.01, 'e': 0.2830872853768075}",20,6,-9.117329792041318,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1263,False,"{'a': 0.01, 'e': 0.2828043395879039}",20,13,15.384322258610773,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1264,False,"{'a': 0.01, 'e': 0.2825216766033636}",20,13,-12.79120239200517,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1265,False,"{'a': 0.01, 'e': 0.2822392961405233}",30,0,15.227686826928023,"{0: 28, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1266,False,"{'a': 0.01, 'e': 0.28195719791700274}",25,7,-46.65687417861131,"{0: 13, 1: 0, 2: 3, 3: 2, 4: 0}",1 +1267,False,"{'a': 0.01, 'e': 0.28167538165070355}",20,3,-18.836887204609965,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1268,False,"{'a': 0.01, 'e': 0.2813938470598095}",25,8,20.27785985190564,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1269,False,"{'a': 0.01, 'e': 0.281112593862786}",25,10,-12.891508360857655,"{0: 12, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1270,False,"{'a': 0.01, 'e': 0.2808316217783798}",20,9,18.965121927716766,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1271,False,"{'a': 0.01, 'e': 0.2805509305256187}",25,13,0.06814274969523049,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1272,False,"{'a': 0.01, 'e': 0.28027051982381157}",25,12,-27.37440475120477,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1273,False,"{'a': 0.01, 'e': 0.27999038939254756}",25,10,0.15936200273999113,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1274,False,"{'a': 0.01, 'e': 0.27971053895169634}",25,3,-92.67023358120288,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 2}",1 +1275,False,"{'a': 0.01, 'e': 0.2794309682214073}",20,15,9.159902307691807,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1276,False,"{'a': 0.01, 'e': 0.27915167692210985}",20,10,-4.896182410202646,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1277,False,"{'a': 0.01, 'e': 0.2788726647745125}",25,7,18.486753000227367,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1278,False,"{'a': 0.01, 'e': 0.27859393149960326}",20,13,0.5752588595661638,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1279,False,"{'a': 0.01, 'e': 0.27831547681864865}",25,16,16.974080236902882,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1280,False,"{'a': 0.01, 'e': 0.27803730045319414}",35,12,38.38883644800422,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1281,False,"{'a': 0.01, 'e': 0.2777594021250632}",20,0,16.434012404853018,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1282,False,"{'a': 0.01, 'e': 0.2774817815563575}",20,5,-1.2370128092736035,"{0: 13, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1283,False,"{'a': 0.01, 'e': 0.2772044384694566}",20,13,14.376775383524336,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1284,False,"{'a': 0.01, 'e': 0.2769273725870171}",20,10,19.693969418581062,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1285,False,"{'a': 0.01, 'e': 0.2766505836319734}",25,6,11.891240167251835,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1286,False,"{'a': 0.01, 'e': 0.27637407132753633}",25,9,22.608928727160496,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1287,False,"{'a': 0.01, 'e': 0.2760978353971936}",25,13,16.879403301872497,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1288,False,"{'a': 0.01, 'e': 0.27582187556470933}",20,8,19.52859204828288,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1289,False,"{'a': 0.01, 'e': 0.2755461915541236}",25,20,9.957423341727576,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1290,False,"{'a': 0.01, 'e': 0.27527078308975234}",20,3,-48.15464416705794,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1291,False,"{'a': 0.01, 'e': 0.27499564989618713}",20,12,14.672030140409985,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1292,False,"{'a': 0.01, 'e': 0.2747207916982947}",25,11,11.876200693575349,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1293,False,"{'a': 0.01, 'e': 0.27444620822121696}",25,0,-2.8266714130665767,"{0: 21, 1: 1, 2: 3, 3: 0, 4: 0}",0 +1294,False,"{'a': 0.01, 'e': 0.2741718991903702}",20,8,20.07492862935444,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1295,False,"{'a': 0.01, 'e': 0.2738978643314456}",25,11,14.682514927144751,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1296,False,"{'a': 0.01, 'e': 0.27362410337040804}",20,5,-63.108877134116696,"{0: 11, 1: 0, 2: 2, 3: 1, 4: 1}",1 +1297,False,"{'a': 0.01, 'e': 0.27335061603349675}",30,8,5.808432769393073,"{0: 20, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1298,False,"{'a': 0.01, 'e': 0.2730774020472242}",20,7,15.791318168839032,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1299,False,"{'a': 0.01, 'e': 0.2728044611383765}",25,13,8.656336050567823,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1300,False,"{'a': 0.01, 'e': 0.2725317930340126}",20,3,27.623987187303683,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1301,False,"{'a': 0.01, 'e': 0.2722593974614645}",20,16,8.364300699800745,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1302,False,"{'a': 0.01, 'e': 0.2719872741483365}",20,4,7.896534633695572,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1303,False,"{'a': 0.01, 'e': 0.27171542282250544}",20,12,-25.514165495185352,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1304,False,"{'a': 0.01, 'e': 0.27144384321211973}",20,4,-22.589335999165808,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1305,False,"{'a': 0.01, 'e': 0.2711725350455999}",30,4,-18.760800954999873,"{0: 23, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1306,False,"{'a': 0.01, 'e': 0.27090149805163766}",20,10,-5.578037757033284,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1307,False,"{'a': 0.01, 'e': 0.2706307319591961}",35,23,11.976648593156206,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1308,False,"{'a': 0.01, 'e': 0.270360236497509}",30,16,21.51942748913727,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1309,False,"{'a': 0.01, 'e': 0.270090011396081}",25,4,4.639576844908412,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1310,False,"{'a': 0.01, 'e': 0.2698200563846868}",20,6,24.59788590896102,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1311,False,"{'a': 0.01, 'e': 0.2695503711933716}",25,0,17.01445925620714,"{0: 23, 1: 1, 2: 0, 3: 1, 4: 0}",0 +1312,False,"{'a': 0.01, 'e': 0.26928095555244996}",20,8,-56.805103987161054,"{0: 8, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1313,False,"{'a': 0.01, 'e': 0.2690118091925064}",25,1,-26.84997749414526,"{0: 18, 1: 3, 2: 2, 3: 1, 4: 0}",1 +1314,False,"{'a': 0.01, 'e': 0.26874293184439435}",30,16,22.256793226700882,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1315,False,"{'a': 0.01, 'e': 0.2684743232392366}",20,13,-12.530397755170727,"{0: 5, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1316,False,"{'a': 0.01, 'e': 0.2682059831084244}",25,13,-21.424132909771334,"{0: 9, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1317,False,"{'a': 0.01, 'e': 0.26793791118361776}",20,0,-26.79077505197708,"{0: 16, 1: 0, 2: 3, 3: 1, 4: 0}",0 +1318,False,"{'a': 0.01, 'e': 0.26767010719674456}",30,14,-16.619766975749926,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1319,False,"{'a': 0.01, 'e': 0.2674025708800009}",20,3,27.479206943091334,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1320,False,"{'a': 0.01, 'e': 0.26713530196585034}",30,18,-1.0970031465409908,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1321,False,"{'a': 0.01, 'e': 0.2668683001870241}",25,17,13.17159637525749,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1322,False,"{'a': 0.01, 'e': 0.2666015652765202}",25,14,22.075451809690204,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1323,False,"{'a': 0.01, 'e': 0.2663350969676039}",30,18,25.6084851235037,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1324,False,"{'a': 0.01, 'e': 0.26606889499380665}",30,15,29.437454533883596,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1325,False,"{'a': 0.01, 'e': 0.2658029590889266}",25,11,-15.539698453293926,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1326,False,"{'a': 0.01, 'e': 0.2655372889870278}",25,18,0.37976219081535123,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1327,False,"{'a': 0.01, 'e': 0.2652718844224401}",20,9,19.660586655325954,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1328,False,"{'a': 0.01, 'e': 0.2650067451297589}",20,11,-47.27444535998978,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1329,False,"{'a': 0.01, 'e': 0.26474187084384504}",25,11,11.691065922813685,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1330,False,"{'a': 0.01, 'e': 0.26447726129982396}",35,22,10.251734700559176,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1331,False,"{'a': 0.01, 'e': 0.2642129162330863}",20,13,9.550706428996536,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1332,False,"{'a': 0.01, 'e': 0.2639488353792868}",20,0,-43.71237430513238,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 1}",0 +1333,False,"{'a': 0.01, 'e': 0.2636850184743448}",30,7,-65.05577341430566,"{0: 19, 1: 1, 2: 1, 3: 0, 4: 2}",1 +1334,False,"{'a': 0.01, 'e': 0.2634214652544431}",30,21,14.172318253409024,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1335,False,"{'a': 0.01, 'e': 0.2631581754560287}",25,4,10.279227415665229,"{0: 20, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1336,False,"{'a': 0.01, 'e': 0.26289514881581166}",20,15,3.9036751833319343,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1337,False,"{'a': 0.01, 'e': 0.26263238507076536}",35,8,3.4993874554414903,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1338,False,"{'a': 0.01, 'e': 0.262369883958126}",25,16,6.393645885849356,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1339,False,"{'a': 0.01, 'e': 0.2621076452153925}",25,15,19.453390813407083,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1340,False,"{'a': 0.01, 'e': 0.261845668580326}",20,2,27.839153835434825,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1341,False,"{'a': 0.01, 'e': 0.26158395379094995}",20,13,11.756512213341201,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1342,False,"{'a': 0.01, 'e': 0.2613225005855494}",20,11,-47.25065997540425,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1343,False,"{'a': 0.01, 'e': 0.2610613087026713}",20,3,26.985506700443025,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1344,False,"{'a': 0.01, 'e': 0.26080037788112365}",25,0,-15.893606309022339,"{0: 20, 1: 1, 2: 4, 3: 0, 4: 0}",0 +1345,False,"{'a': 0.01, 'e': 0.2605397078599756}",25,8,10.245989145330721,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1346,False,"{'a': 0.01, 'e': 0.2602792983785571}",20,0,-21.70096452281863,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1347,False,"{'a': 0.01, 'e': 0.26001914917645874}",25,5,20.212747739775573,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1348,False,"{'a': 0.01, 'e': 0.2597592599935311}",20,2,-67.94746277385812,"{0: 14, 1: 0, 2: 1, 3: 2, 4: 1}",1 +1349,False,"{'a': 0.01, 'e': 0.25949963056988523}",20,12,-3.90793028191997,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1350,False,"{'a': 0.01, 'e': 0.2592402606458915}",25,17,1.2487824669179421,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1351,False,"{'a': 0.01, 'e': 0.25898114996218}",20,8,-24.62329577007642,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1352,False,"{'a': 0.01, 'e': 0.25872229825964005}",20,8,3.5652316263384645,"{0: 9, 1: 3, 2: 0, 3: 0, 4: 0}",1 +1353,False,"{'a': 0.01, 'e': 0.25846370527942}",20,6,6.129821094622591,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1354,False,"{'a': 0.01, 'e': 0.25820537076292666}",20,10,0.07322684844684124,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1355,False,"{'a': 0.01, 'e': 0.2579472944518257}",20,15,4.780426460130891,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1356,False,"{'a': 0.01, 'e': 0.25768947608804055}",20,0,-35.1705683080659,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 1}",0 +1357,False,"{'a': 0.01, 'e': 0.2574319154137531}",30,23,12.87315762425023,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1358,False,"{'a': 0.01, 'e': 0.2571746121714024}",25,8,25.711355349639106,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1359,False,"{'a': 0.01, 'e': 0.25691756610368544}",30,7,9.584394679654423,"{0: 20, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1360,False,"{'a': 0.01, 'e': 0.2566607769535559}",20,0,-23.775349770673383,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +1361,False,"{'a': 0.01, 'e': 0.2564042444642247}",25,0,8.261847920382484,"{0: 22, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1362,False,"{'a': 0.01, 'e': 0.2561479683791593}",25,8,-74.78416148202942,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 2}",1 +1363,False,"{'a': 0.01, 'e': 0.25589194844208374}",20,9,-21.364094695729253,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1364,False,"{'a': 0.01, 'e': 0.25563618439697783}",30,3,-50.0480409147999,"{0: 21, 1: 1, 2: 4, 3: 0, 4: 1}",1 +1365,False,"{'a': 0.01, 'e': 0.2553806759880777}",20,3,4.3790175272426115,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1366,False,"{'a': 0.01, 'e': 0.2551254229598748}",20,12,3.563937550804286,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1367,False,"{'a': 0.01, 'e': 0.25487042505711616}",20,10,-6.729160554779098,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1368,False,"{'a': 0.01, 'e': 0.2546156820248037}",20,1,-21.077946210880583,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1369,False,"{'a': 0.01, 'e': 0.25436119360819465}",30,12,-17.56053524339816,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1370,False,"{'a': 0.01, 'e': 0.25410695955280027}",35,13,-51.917797288395676,"{0: 18, 1: 1, 2: 0, 3: 2, 4: 1}",1 +1371,False,"{'a': 0.01, 'e': 0.2538529796043867}",25,9,-4.290207641875073,"{0: 13, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1372,False,"{'a': 0.01, 'e': 0.25359925350897383}",25,16,10.938558645394739,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1373,False,"{'a': 0.01, 'e': 0.25334578101283567}",20,8,-36.516755837105386,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1374,False,"{'a': 0.01, 'e': 0.25309256186249957}",30,15,-9.112458002845793,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1375,False,"{'a': 0.01, 'e': 0.25283959580474646}",20,14,1.0950650271724558,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1376,False,"{'a': 0.01, 'e': 0.2525868825866102}",30,9,-30.976886393907492,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1377,False,"{'a': 0.01, 'e': 0.25233442195537764}",20,16,7.434488620169845,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1378,False,"{'a': 0.01, 'e': 0.25208221365858796}",20,1,21.889229877158918,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1379,False,"{'a': 0.01, 'e': 0.25183025744403303}",20,16,5.582246983707327,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1380,False,"{'a': 0.01, 'e': 0.25157855305975646}",20,0,16.07912713484534,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1381,False,"{'a': 0.01, 'e': 0.251327100254054}",25,20,10.167093979872792,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1382,False,"{'a': 0.01, 'e': 0.25107589877547265}",30,8,-18.359483318838198,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1383,False,"{'a': 0.01, 'e': 0.2508249483728111}",25,20,8.981054235794208,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1384,False,"{'a': 0.01, 'e': 0.25057424879511875}",25,12,16.25485421291706,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1385,False,"{'a': 0.01, 'e': 0.2503237997916961}",20,3,-66.9902995367989,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1386,False,"{'a': 0.01, 'e': 0.2500736011120941}",35,17,32.26427257125151,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1387,False,"{'a': 0.01, 'e': 0.24982365250611405}",30,19,-9.834010462127416,"{0: 8, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1388,False,"{'a': 0.01, 'e': 0.24957395372380728}",25,10,1.9260946377315586,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1389,False,"{'a': 0.01, 'e': 0.2493245045154751}",30,8,18.454820016146837,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1390,False,"{'a': 0.01, 'e': 0.24907530463166816}",20,9,21.254730979983616,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1391,False,"{'a': 0.01, 'e': 0.24882635382318666}",25,5,15.591451684407199,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1392,False,"{'a': 0.01, 'e': 0.24857765184107966}",30,19,17.0673519126621,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1393,False,"{'a': 0.01, 'e': 0.24832919843664528}",30,0,36.711017567480184,"{0: 29, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1394,False,"{'a': 0.01, 'e': 0.24808099336142997}",20,4,8.121439784358186,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1395,False,"{'a': 0.01, 'e': 0.24783303636722875}",20,10,5.172914075813967,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1396,False,"{'a': 0.01, 'e': 0.2475853272060845}",30,0,14.969503680103198,"{0: 27, 1: 1, 2: 2, 3: 0, 4: 0}",0 +1397,False,"{'a': 0.01, 'e': 0.24733786563028812}",25,14,-4.198799112019837,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1398,False,"{'a': 0.01, 'e': 0.24709065139237796}",20,8,20.07260412084174,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1399,False,"{'a': 0.01, 'e': 0.24684368424513983}",30,13,24.1919833446082,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1400,False,"{'a': 0.01, 'e': 0.24659696394160643}",30,18,3.0217693607668332,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1401,False,"{'a': 0.01, 'e': 0.24635049023505762}",20,2,12.584824671780357,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1402,False,"{'a': 0.01, 'e': 0.2461042628790195}",25,15,-11.995147725761761,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1403,False,"{'a': 0.01, 'e': 0.2458582816272648}",25,12,-42.840055515983046,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1404,False,"{'a': 0.01, 'e': 0.2456125462338122}",30,15,27.519759044905374,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1405,False,"{'a': 0.01, 'e': 0.24536705645292634}",30,20,-24.24233421530722,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1406,False,"{'a': 0.01, 'e': 0.24512181203911731}",20,6,11.256774023899863,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1407,False,"{'a': 0.01, 'e': 0.24487681274714082}",20,8,-2.6311249596500774,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1408,False,"{'a': 0.01, 'e': 0.2446320583319975}",20,9,15.740634893047016,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1409,False,"{'a': 0.01, 'e': 0.2443875485489328}",30,19,-0.12432912640083948,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1410,False,"{'a': 0.01, 'e': 0.2441432831534371}",20,11,19.049598121214785,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1411,False,"{'a': 0.01, 'e': 0.24389926190124483}",25,17,13.911907925614331,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1412,False,"{'a': 0.01, 'e': 0.24365548454833486}",25,15,7.691807172045889,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1413,False,"{'a': 0.01, 'e': 0.24341195085092968}",35,28,12.595553402034078,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1414,False,"{'a': 0.01, 'e': 0.24316866056549566}",20,7,10.411825796643845,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1415,False,"{'a': 0.01, 'e': 0.24292561344874244}",25,19,-1.3761468883689043,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1416,False,"{'a': 0.01, 'e': 0.24268280925762298}",35,17,-10.007681206258802,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1417,False,"{'a': 0.01, 'e': 0.24244024774933293}",25,10,26.522444248393885,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1418,False,"{'a': 0.01, 'e': 0.2421979286813109}",25,11,18.519309528701903,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1419,False,"{'a': 0.01, 'e': 0.24195585181123766}",20,9,18.324958928980383,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1420,False,"{'a': 0.01, 'e': 0.24171401689703645}",25,12,20.70771375998956,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1421,False,"{'a': 0.01, 'e': 0.24147242369687225}",20,0,-14.102634710391294,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",0 +1422,False,"{'a': 0.01, 'e': 0.24123107196915192}",25,11,12.148077204184283,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1423,False,"{'a': 0.01, 'e': 0.24098996147252358}",30,13,-44.42747669929471,"{0: 13, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1424,False,"{'a': 0.01, 'e': 0.24074909196587688}",20,16,7.315308659660849,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1425,False,"{'a': 0.01, 'e': 0.24050846320834213}",30,0,6.790037884377366,"{0: 27, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1426,False,"{'a': 0.01, 'e': 0.2402680749592907}",20,6,-31.473052534426333,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1427,False,"{'a': 0.01, 'e': 0.2400279269783342}",25,11,26.162913377572156,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1428,False,"{'a': 0.01, 'e': 0.2397880190253247}",30,13,20.754812508162548,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1429,False,"{'a': 0.01, 'e': 0.2395483508603542}",20,14,2.406522066338205,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1430,False,"{'a': 0.01, 'e': 0.23930892224375455}",20,15,4.3944037376829845,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1431,False,"{'a': 0.01, 'e': 0.23906973293609704}",25,10,-14.826557325510857,"{0: 11, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1432,False,"{'a': 0.01, 'e': 0.23883078269819244}",20,12,-5.542329157077724,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1433,False,"{'a': 0.01, 'e': 0.2385920712910904}",20,13,13.605839608532847,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1434,False,"{'a': 0.01, 'e': 0.23835359847607956}",20,0,19.665068000548402,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1435,False,"{'a': 0.01, 'e': 0.23811536401468703}",30,22,-31.213156805032966,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1436,False,"{'a': 0.01, 'e': 0.2378773676686784}",20,12,13.420608115816316,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1437,False,"{'a': 0.01, 'e': 0.2376396092000572}",25,7,10.498387312962917,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1438,False,"{'a': 0.01, 'e': 0.23740208837106508}",20,9,16.98311919946745,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1439,False,"{'a': 0.01, 'e': 0.23716480494418105}",35,21,10.740232390902964,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1440,False,"{'a': 0.01, 'e': 0.23692775868212176}",25,9,14.865934581877472,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1441,False,"{'a': 0.01, 'e': 0.23669094934784088}",20,13,13.392361883313995,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1442,False,"{'a': 0.01, 'e': 0.2364543767045291}",25,14,-2.5361578986949445,"{0: 8, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1443,False,"{'a': 0.01, 'e': 0.23621804051561368}",25,15,-1.8977354784979186,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1444,False,"{'a': 0.01, 'e': 0.23598194054475852}",25,17,0.7429166747964422,"{0: 6, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1445,False,"{'a': 0.01, 'e': 0.23574607655586352}",20,10,-36.46318824693695,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1446,False,"{'a': 0.01, 'e': 0.23551044831306475}",20,0,6.5309455610392995,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1447,False,"{'a': 0.01, 'e': 0.2352750555807339}",20,6,24.373765488733728,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1448,False,"{'a': 0.01, 'e': 0.23503989812347828}",20,13,12.227964791824496,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1449,False,"{'a': 0.01, 'e': 0.2348049757061403}",25,16,-36.7088867974976,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1450,False,"{'a': 0.01, 'e': 0.23457028809379765}",20,7,5.148612570043731,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1451,False,"{'a': 0.01, 'e': 0.23433583505176261}",30,22,16.71825170088153,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1452,False,"{'a': 0.01, 'e': 0.2341016163455822}",20,10,19.818643748513846,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1453,False,"{'a': 0.01, 'e': 0.23386763174103756}",20,16,6.628194638573639,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1454,False,"{'a': 0.01, 'e': 0.23363388100414423}",20,12,0.5843824912720579,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1455,False,"{'a': 0.01, 'e': 0.23340036390115132}",25,0,-81.3675417054158,"{0: 20, 1: 0, 2: 3, 3: 0, 4: 2}",0 +1456,False,"{'a': 0.01, 'e': 0.2331670801985418}",25,3,14.57395388280503,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1457,False,"{'a': 0.01, 'e': 0.23293402966303187}",35,21,22.838523153374705,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1458,False,"{'a': 0.01, 'e': 0.23270121206157107}",20,7,7.745165130576312,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1459,False,"{'a': 0.01, 'e': 0.23246862716134165}",25,8,-6.717945103665819,"{0: 14, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1460,False,"{'a': 0.01, 'e': 0.23223627472975883}",20,1,-18.918294038817088,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1461,False,"{'a': 0.01, 'e': 0.23200415453447004}",20,15,3.549971856207425,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1462,False,"{'a': 0.01, 'e': 0.23177226634335515}",30,0,-43.2311896539375,"{0: 24, 1: 0, 2: 4, 3: 2, 4: 0}",0 +1463,False,"{'a': 0.01, 'e': 0.2315406099245259}",30,15,0.5668218677705896,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1464,False,"{'a': 0.01, 'e': 0.23130918504632592}",20,13,13.928972339302177,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1465,False,"{'a': 0.01, 'e': 0.23107799147733019}",20,6,18.167765646807638,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1466,False,"{'a': 0.01, 'e': 0.23084702898634524}",25,12,26.46906125014844,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1467,False,"{'a': 0.01, 'e': 0.2306162973424085}",25,0,-21.35203432797474,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +1468,False,"{'a': 0.01, 'e': 0.23038579631478834}",30,18,22.22019513700769,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1469,False,"{'a': 0.01, 'e': 0.23015552567298364}",20,4,-25.336632424223854,"{0: 12, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1470,False,"{'a': 0.01, 'e': 0.22992548518672384}",20,7,4.9112212822716685,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1471,False,"{'a': 0.01, 'e': 0.22969567462596835}",20,3,1.5181351720710483,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1472,False,"{'a': 0.01, 'e': 0.22946609376090668}",30,4,25.144774045813165,"{0: 24, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1473,False,"{'a': 0.01, 'e': 0.22923674236195785}",25,17,13.111016734214788,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1474,False,"{'a': 0.01, 'e': 0.2290076201997705}",20,6,13.505693822078477,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1475,False,"{'a': 0.01, 'e': 0.22877872704522242}",30,16,-14.673737885120527,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1476,False,"{'a': 0.01, 'e': 0.2285500626694205}",35,20,16.225589681174405,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1477,False,"{'a': 0.01, 'e': 0.22832162684370022}",25,11,0.13257195374224362,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1478,False,"{'a': 0.01, 'e': 0.22809341933962587}",30,19,9.333917385963977,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1479,False,"{'a': 0.01, 'e': 0.22786543992898983}",25,20,7.601796786659003,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1480,False,"{'a': 0.01, 'e': 0.22763768838381274}",20,11,15.605681392784101,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1481,False,"{'a': 0.01, 'e': 0.22741016447634296}",20,12,-5.559307648048381,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1482,False,"{'a': 0.01, 'e': 0.22718286797905665}",25,15,16.869349067221478,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1483,False,"{'a': 0.01, 'e': 0.22695579866465723}",25,16,18.095650351134537,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1484,False,"{'a': 0.01, 'e': 0.22672895630607542}",20,4,8.782274729570112,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1485,False,"{'a': 0.01, 'e': 0.22650234067646874}",30,12,7.9671575531385725,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1486,False,"{'a': 0.01, 'e': 0.2262759515492217}",20,11,2.552771516468286,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1487,False,"{'a': 0.01, 'e': 0.22604978869794498}",20,13,1.2143014237018415,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1488,False,"{'a': 0.01, 'e': 0.22582385189647586}",25,6,0.33860945370220263,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1489,False,"{'a': 0.01, 'e': 0.22559814091887742}",20,7,1.5387174585773795,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1490,False,"{'a': 0.01, 'e': 0.22537265553943872}",25,8,22.385042477123577,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1491,False,"{'a': 0.01, 'e': 0.22514739553267432}",30,13,23.665977957466787,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1492,False,"{'a': 0.01, 'e': 0.22492236067332425}",25,11,11.722116488887162,"{0: 12, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1493,False,"{'a': 0.01, 'e': 0.22469755073635353}",20,12,7.2633206914140525,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1494,False,"{'a': 0.01, 'e': 0.22447296549695234}",20,5,26.985764838899446,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1495,False,"{'a': 0.01, 'e': 0.22424860473053532}",20,6,28.268089079850448,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1496,False,"{'a': 0.01, 'e': 0.22402446821274175}",20,14,8.254899509038463,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1497,False,"{'a': 0.01, 'e': 0.223800555719435}",30,10,31.990352724900326,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1498,False,"{'a': 0.01, 'e': 0.22357686702670268}",25,10,21.948871061830687,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1499,False,"{'a': 0.01, 'e': 0.22335340191085598}",25,15,18.501048906537658,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1500,False,"{'a': 0.01, 'e': 0.22313016014842982}",20,16,6.936593236825971,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1501,False,"{'a': 0.01, 'e': 0.22290714151618238}",25,13,0.4222250806689387,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1502,False,"{'a': 0.01, 'e': 0.22268434579109508}",30,6,24.98078178659032,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1503,False,"{'a': 0.01, 'e': 0.22246177275037207}",20,7,24.78445319239554,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1504,False,"{'a': 0.01, 'e': 0.2222394221714404}",25,16,16.448419289102638,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1505,False,"{'a': 0.01, 'e': 0.22201729383194937}",30,16,-11.712756730524768,"{0: 11, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1506,False,"{'a': 0.01, 'e': 0.22179538750977074}",25,18,-9.257393298017092,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1507,False,"{'a': 0.01, 'e': 0.22157370298299803}",25,2,-7.6344682580341,"{0: 20, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1508,False,"{'a': 0.01, 'e': 0.22135224002994683}",25,7,30.117692607000215,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1509,False,"{'a': 0.01, 'e': 0.22113099842915407}",20,8,-30.767815899078553,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1510,False,"{'a': 0.01, 'e': 0.2209099779593782}",30,13,18.852911412646797,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1511,False,"{'a': 0.01, 'e': 0.22068917839959865}",20,1,3.724275245873576,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1512,False,"{'a': 0.01, 'e': 0.22046859952901593}",25,17,4.360068134300719,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1513,False,"{'a': 0.01, 'e': 0.22024824112705108}",20,0,28.449138665232315,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1514,False,"{'a': 0.01, 'e': 0.22002810297334574}",25,3,-43.43035744111968,"{0: 18, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1515,False,"{'a': 0.01, 'e': 0.21980818484776168}",25,5,25.04237820295493,"{0: 19, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1516,False,"{'a': 0.01, 'e': 0.21958848653038082}",25,20,10.924724873217967,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1517,False,"{'a': 0.01, 'e': 0.21936900780150476}",25,6,-41.293236400035646,"{0: 16, 1: 0, 2: 1, 3: 1, 4: 1}",1 +1518,False,"{'a': 0.01, 'e': 0.2191497484416548}",20,12,-25.9074426696951,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1519,False,"{'a': 0.01, 'e': 0.2189307082315715}",20,2,5.310636206843242,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1520,False,"{'a': 0.01, 'e': 0.21871188695221475}",30,0,-96.6949028470536,"{0: 25, 1: 0, 2: 1, 3: 2, 4: 2}",0 +1521,False,"{'a': 0.01, 'e': 0.21849328438476312}",30,0,22.913678227471337,"{0: 28, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1522,False,"{'a': 0.01, 'e': 0.21827490031061414}",25,0,16.820168385682962,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1523,False,"{'a': 0.01, 'e': 0.2180567345113836}",25,8,22.423555157766998,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1524,False,"{'a': 0.01, 'e': 0.21783878676890578}",20,13,-9.556938927512675,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1525,False,"{'a': 0.01, 'e': 0.21762105686523284}",20,15,12.224360919464575,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1526,False,"{'a': 0.01, 'e': 0.21740354458263497}",20,6,13.791491125328333,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1527,False,"{'a': 0.01, 'e': 0.21718624970359973}",20,0,-17.29554656105921,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +1528,False,"{'a': 0.01, 'e': 0.21696917201083235}",25,20,9.501573610203874,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1529,False,"{'a': 0.01, 'e': 0.216752311287255}",20,9,-20.042803353675584,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1530,False,"{'a': 0.01, 'e': 0.21653566731600707}",20,0,29.81323891650483,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1531,False,"{'a': 0.01, 'e': 0.21631923988044444}",20,15,-10.759540532875091,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1532,False,"{'a': 0.01, 'e': 0.21610302876413975}",20,10,16.962849166218685,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1533,False,"{'a': 0.01, 'e': 0.2158870337508818}",25,11,15.979969457996337,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1534,False,"{'a': 0.01, 'e': 0.21567125462467565}",25,13,-1.7469959079457489,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1535,False,"{'a': 0.01, 'e': 0.21545569116974203}",20,16,8.172679126159606,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1536,False,"{'a': 0.01, 'e': 0.21524034317051757}",20,11,8.889978684410417,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1537,False,"{'a': 0.01, 'e': 0.21502521041165426}",25,15,6.149174661657528,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1538,False,"{'a': 0.01, 'e': 0.2148102926780192}",20,5,2.2525460783799263,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1539,False,"{'a': 0.01, 'e': 0.21459558975469478}",20,3,27.63361324247682,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1540,False,"{'a': 0.01, 'e': 0.21438110142697794}",20,13,1.5228296528948224,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1541,False,"{'a': 0.01, 'e': 0.21416682748038046}",20,0,-7.9853799192684445,"{0: 16, 1: 1, 2: 3, 3: 0, 4: 0}",0 +1542,False,"{'a': 0.01, 'e': 0.21395276770062824}",25,12,22.581046565682158,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1543,False,"{'a': 0.01, 'e': 0.2137389218736616}",20,4,-12.63099616060438,"{0: 12, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1544,False,"{'a': 0.01, 'e': 0.2135252897856346}",35,23,20.561882265784707,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1545,False,"{'a': 0.01, 'e': 0.21331187122291523}",30,18,10.622644252628067,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1546,False,"{'a': 0.01, 'e': 0.21309866597208482}",30,15,14.572645401787598,"{0: 13, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1547,False,"{'a': 0.01, 'e': 0.21288567381993817}",30,13,29.889092925828436,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1548,False,"{'a': 0.01, 'e': 0.21267289455348304}",25,8,16.6645784161622,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1549,False,"{'a': 0.01, 'e': 0.21246032795994024}",30,18,21.664667984889526,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1550,False,"{'a': 0.01, 'e': 0.21224797382674304}",25,13,16.558712519507743,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1551,False,"{'a': 0.01, 'e': 0.2120358319415374}",20,5,-14.603808103027756,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1552,False,"{'a': 0.01, 'e': 0.21182390209218135}",20,3,2.7834838115961453,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1553,False,"{'a': 0.01, 'e': 0.2116121840667451}",30,2,18.57973168376288,"{0: 25, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1554,False,"{'a': 0.01, 'e': 0.21140067765351048}",30,1,-3.1355483080326048,"{0: 27, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1555,False,"{'a': 0.01, 'e': 0.21118938264097117}",20,3,-16.90521266403426,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1556,False,"{'a': 0.01, 'e': 0.21097829881783206}",20,12,-8.563145792601063,"{0: 6, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1557,False,"{'a': 0.01, 'e': 0.2107674259730094}",30,7,35.79836398858136,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1558,False,"{'a': 0.01, 'e': 0.21055676389563024}",30,8,41.67856571869585,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1559,False,"{'a': 0.01, 'e': 0.21034631237503254}",25,11,24.3939563347199,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1560,False,"{'a': 0.01, 'e': 0.21013607120076472}",25,13,9.929212881577133,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1561,False,"{'a': 0.01, 'e': 0.20992604016258565}",20,13,13.801351641381771,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1562,False,"{'a': 0.01, 'e': 0.2097162190504642}",30,13,34.45081418325615,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1563,False,"{'a': 0.01, 'e': 0.20950660765457932}",20,14,11.22472486600654,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1564,False,"{'a': 0.01, 'e': 0.20929720576531952}",25,0,10.904393445897748,"{0: 23, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1565,False,"{'a': 0.01, 'e': 0.20908801317328293}",20,12,2.574649950310918,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1566,False,"{'a': 0.01, 'e': 0.20887902966927693}",25,13,8.706269604686057,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1567,False,"{'a': 0.01, 'e': 0.20867025504431805}",25,6,-1.1829165272410231,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1568,False,"{'a': 0.01, 'e': 0.20846168908963153}",30,23,11.01086351605243,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1569,False,"{'a': 0.01, 'e': 0.20825333159665155}",25,0,-9.722509365413716,"{0: 21, 1: 2, 2: 1, 3: 1, 4: 0}",0 +1570,False,"{'a': 0.01, 'e': 0.20804518235702046}",20,6,11.308030082019014,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1571,False,"{'a': 0.01, 'e': 0.20783724116258911}",20,13,13.179388245160808,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1572,False,"{'a': 0.01, 'e': 0.2076295078054162}",30,8,8.609195742902353,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1573,False,"{'a': 0.01, 'e': 0.20742198207776844}",20,13,-6.675502618037663,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1574,False,"{'a': 0.01, 'e': 0.20721466377212}",25,11,27.678569710606425,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1575,False,"{'a': 0.01, 'e': 0.20700755268115265}",25,8,11.657512815302798,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1576,False,"{'a': 0.01, 'e': 0.20680064859775515}",30,8,-1.967951368848415,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1577,False,"{'a': 0.01, 'e': 0.20659395131502356}",20,7,-27.598770998495958,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1578,False,"{'a': 0.01, 'e': 0.20638746062626045}",20,9,20.526953469365623,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1579,False,"{'a': 0.01, 'e': 0.20618117632497523}",25,13,20.191040592502034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1580,False,"{'a': 0.01, 'e': 0.20597509820488344}",25,9,24.486014406656594,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1581,False,"{'a': 0.01, 'e': 0.20576922605990708}",20,12,14.416937481537644,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1582,False,"{'a': 0.01, 'e': 0.2055635596841739}",20,0,-0.7081158381571806,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",0 +1583,False,"{'a': 0.01, 'e': 0.20535809887201756}",25,3,9.543355071907339,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1584,False,"{'a': 0.01, 'e': 0.20515284341797715}",30,8,27.220701297324478,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1585,False,"{'a': 0.01, 'e': 0.2049477931167973}",25,17,18.346077463337032,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1586,False,"{'a': 0.01, 'e': 0.20474294776342764}",25,15,-19.501785482466154,"{0: 7, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1587,False,"{'a': 0.01, 'e': 0.2045383071530228}",30,16,25.316431609814405,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1588,False,"{'a': 0.01, 'e': 0.20433387108094214}",20,14,0.1137412967110214,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1589,False,"{'a': 0.01, 'e': 0.20412963934274964}",25,5,18.9906241406868,"{0: 18, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1590,False,"{'a': 0.01, 'e': 0.20392561173421342}",25,7,30.569632732292966,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1591,False,"{'a': 0.01, 'e': 0.203721788051306}",35,14,-19.416060225507362,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1592,False,"{'a': 0.01, 'e': 0.20351816809020354}",25,15,21.541739125173876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1593,False,"{'a': 0.01, 'e': 0.20331475164728618}",35,23,22.16865295456767,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1594,False,"{'a': 0.01, 'e': 0.20311153851913738}",25,10,3.5966116413925393,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1595,False,"{'a': 0.01, 'e': 0.20290852850254407}",20,0,5.695354396333492,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +1596,False,"{'a': 0.01, 'e': 0.2027057213944961}",20,14,-32.48900552908498,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1597,False,"{'a': 0.01, 'e': 0.20250311699218648}",20,3,19.208260918896276,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1598,False,"{'a': 0.01, 'e': 0.2023007150930107}",30,8,33.05233014481575,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1599,False,"{'a': 0.01, 'e': 0.2020985154945669}",20,14,10.265466770925462,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1600,False,"{'a': 0.01, 'e': 0.20189651799465538}",25,11,-12.369421732564405,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1601,False,"{'a': 0.01, 'e': 0.20169472239127875}",20,11,-4.401187479255853,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1602,False,"{'a': 0.01, 'e': 0.20149312848264125}",20,13,14.257599314795392,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1603,False,"{'a': 0.01, 'e': 0.2012917360671491}",25,16,19.251895512212947,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1604,False,"{'a': 0.01, 'e': 0.20109054494340972}",20,7,-19.97843733867531,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1605,False,"{'a': 0.01, 'e': 0.20088955491023208}",25,18,11.376193268594655,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1606,False,"{'a': 0.01, 'e': 0.20068876576662606}",25,19,-0.5532009896007708,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1607,False,"{'a': 0.01, 'e': 0.20048817731180257}",20,10,9.51949170942813,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1608,False,"{'a': 0.01, 'e': 0.20028778934517305}",20,15,1.3814226187066312,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1609,False,"{'a': 0.01, 'e': 0.20008760166634962}",25,17,17.636177352932037,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1610,False,"{'a': 0.01, 'e': 0.1998876140751445}",30,22,15.25643685691304,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1611,False,"{'a': 0.01, 'e': 0.19968782637157012}",20,8,10.400163418501165,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1612,False,"{'a': 0.01, 'e': 0.19948823835583873}",25,13,12.15736891151916,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1613,False,"{'a': 0.01, 'e': 0.19928884982836237}",30,24,11.471699536539369,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1614,False,"{'a': 0.01, 'e': 0.1990896605897524}",20,10,16.184267705461597,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1615,False,"{'a': 0.01, 'e': 0.19889067044081962}",35,2,-18.94707632902825,"{0: 26, 1: 2, 2: 4, 3: 1, 4: 0}",1 +1616,False,"{'a': 0.01, 'e': 0.19869187918257386}",30,7,-0.6058766590537636,"{0: 19, 1: 1, 2: 3, 3: 0, 4: 0}",1 +1617,False,"{'a': 0.01, 'e': 0.19849328661622387}",25,20,9.575338405517819,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1618,False,"{'a': 0.01, 'e': 0.19829489254317698}",25,3,27.16908905557604,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1619,False,"{'a': 0.01, 'e': 0.19809669676503922}",25,15,20.309450296391876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1620,False,"{'a': 0.01, 'e': 0.19789869908361465}",35,11,-14.757611244439241,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1621,False,"{'a': 0.01, 'e': 0.19770089930090573}",35,22,27.37532592157686,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1622,False,"{'a': 0.01, 'e': 0.19750329721911256}",20,0,-6.565269970110087,"{0: 17, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1623,False,"{'a': 0.01, 'e': 0.19730589264063308}",25,13,14.614436164091897,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1624,False,"{'a': 0.01, 'e': 0.19710868536806264}",25,16,-2.179472114832121,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1625,False,"{'a': 0.01, 'e': 0.19691167520419406}",20,6,-36.631662968057036,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1626,False,"{'a': 0.01, 'e': 0.19671486195201704}",20,13,13.147786704262192,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1627,False,"{'a': 0.01, 'e': 0.19651824541471838}",30,13,-18.844367338390317,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1628,False,"{'a': 0.01, 'e': 0.1963218253956815}",25,19,9.034744507960777,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1629,False,"{'a': 0.01, 'e': 0.19612560169848642}",20,3,10.317889720252689,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1630,False,"{'a': 0.01, 'e': 0.19592957412690934}",30,11,-8.485240094902414,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1631,False,"{'a': 0.01, 'e': 0.19573374248492273}",30,17,-17.196872169119146,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1632,False,"{'a': 0.01, 'e': 0.1955381065766949}",20,14,-11.2562232901918,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1633,False,"{'a': 0.01, 'e': 0.19534266620658997}",25,16,6.880245535819395,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1634,False,"{'a': 0.01, 'e': 0.1951474211791675}",20,14,8.344403735420974,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1635,False,"{'a': 0.01, 'e': 0.1949523712991825}",20,6,12.34218053312038,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1636,False,"{'a': 0.01, 'e': 0.194757516371585}",20,1,-26.69963914613434,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1637,False,"{'a': 0.01, 'e': 0.19456285620152014}",20,12,-2.9292249355128837,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1638,False,"{'a': 0.01, 'e': 0.19436839059432767}",30,12,32.48577486139599,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1639,False,"{'a': 0.01, 'e': 0.19417411935554202}",20,12,-4.923259108458904,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1640,False,"{'a': 0.01, 'e': 0.19398004229089189}",20,10,8.025177027198563,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1641,False,"{'a': 0.01, 'e': 0.1937861592063002}",35,18,18.23998682871977,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1642,False,"{'a': 0.01, 'e': 0.1935924699078839}",20,10,18.223983523846737,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1643,False,"{'a': 0.01, 'e': 0.19339897420195362}",20,8,20.249680830297248,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1644,False,"{'a': 0.01, 'e': 0.19320567189501364}",25,18,13.29478690178438,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1645,False,"{'a': 0.01, 'e': 0.19301256279376172}",25,17,6.231733203927625,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1646,False,"{'a': 0.01, 'e': 0.1928196467050886}",25,18,14.982733673397622,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1647,False,"{'a': 0.01, 'e': 0.19262692343607832}",20,10,6.957375309796641,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1648,False,"{'a': 0.01, 'e': 0.19243439279400748}",30,6,16.811868283108243,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1649,False,"{'a': 0.01, 'e': 0.1922420545863455}",25,0,37.47482612166182,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1650,False,"{'a': 0.01, 'e': 0.19204990862075408}",20,6,10.48365178750198,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1651,False,"{'a': 0.01, 'e': 0.19185795470508735}",25,13,20.798609337713554,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1652,False,"{'a': 0.01, 'e': 0.19166619264739126}",30,8,32.389593637665826,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1653,False,"{'a': 0.01, 'e': 0.19147462225590384}",20,10,8.266466428415436,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1654,False,"{'a': 0.01, 'e': 0.19128324333905458}",30,8,14.056779111664985,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1655,False,"{'a': 0.01, 'e': 0.19109205570546464}",25,13,-13.707742284826747,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1656,False,"{'a': 0.01, 'e': 0.19090105916394629}",20,14,9.175434423856993,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1657,False,"{'a': 0.01, 'e': 0.19071025352350304}",25,9,8.442855767917598,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1658,False,"{'a': 0.01, 'e': 0.19051963859332918}",25,19,13.558032907703447,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1659,False,"{'a': 0.01, 'e': 0.19032921418280985}",30,13,16.661697420679506,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1660,False,"{'a': 0.01, 'e': 0.1901389801015205}",20,5,17.425081055523407,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1661,False,"{'a': 0.01, 'e': 0.18994893615922714}",20,14,14.94614196573413,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1662,False,"{'a': 0.01, 'e': 0.18975908216588572}",30,20,7.618278212925011,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1663,False,"{'a': 0.01, 'e': 0.18956941793164234}",20,12,-38.7998730827173,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1664,False,"{'a': 0.01, 'e': 0.18937994326683263}",20,12,13.672961563307716,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1665,False,"{'a': 0.01, 'e': 0.18919065798198204}",20,12,16.268857428045145,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1666,False,"{'a': 0.01, 'e': 0.18900156188780515}",25,13,21.50179208698298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1667,False,"{'a': 0.01, 'e': 0.1888126547952059}",25,8,7.857572539366734,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1668,False,"{'a': 0.01, 'e': 0.1886239365152772}",30,13,4.114361256285431,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1669,False,"{'a': 0.01, 'e': 0.18843540685930069}",25,13,14.27851882069042,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1670,False,"{'a': 0.01, 'e': 0.1882470656387468}",25,6,24.87356619687068,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1671,False,"{'a': 0.01, 'e': 0.18805891266527416}",25,16,4.4606165715084565,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1672,False,"{'a': 0.01, 'e': 0.18787094775072993}",25,14,6.764813464205446,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1673,False,"{'a': 0.01, 'e': 0.18768317070714904}",30,9,38.528140587946844,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1674,False,"{'a': 0.01, 'e': 0.18749558134675456}",25,15,22.287527285826535,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1675,False,"{'a': 0.01, 'e': 0.18730817948195702}",20,0,28.52808964988507,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1676,False,"{'a': 0.01, 'e': 0.1871209649253546}",20,7,24.056205690501535,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1677,False,"{'a': 0.01, 'e': 0.18693393748973264}",25,8,-4.533552923385848,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1678,False,"{'a': 0.01, 'e': 0.1867470969880638}",30,16,-60.91818662481022,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1679,False,"{'a': 0.01, 'e': 0.18656044323350748}",30,1,-7.686512159679778,"{0: 25, 1: 2, 2: 1, 3: 1, 4: 0}",1 +1680,False,"{'a': 0.01, 'e': 0.18637397603940997}",25,7,16.260064518679705,"{0: 16, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1681,False,"{'a': 0.01, 'e': 0.186187695219304}",20,6,27.104238808952047,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1682,False,"{'a': 0.01, 'e': 0.1860016005869088}",20,10,17.624302927728273,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1683,False,"{'a': 0.01, 'e': 0.18581569195612965}",25,13,-17.61300776981644,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1684,False,"{'a': 0.01, 'e': 0.18562996914105798}",20,16,8.97897799095284,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1685,False,"{'a': 0.01, 'e': 0.18544443195597088}",20,15,9.757657143111162,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1686,False,"{'a': 0.01, 'e': 0.18525908021533122}",20,9,13.123643334477684,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1687,False,"{'a': 0.01, 'e': 0.18507391373378718}",20,15,9.746854010121565,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1688,False,"{'a': 0.01, 'e': 0.18488893232617234}",25,6,12.813220974606617,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1689,False,"{'a': 0.01, 'e': 0.1847041358075052}",35,27,14.43142661270867,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1690,False,"{'a': 0.01, 'e': 0.18451952399298926}",20,8,23.83142295408644,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1691,False,"{'a': 0.01, 'e': 0.1843350966980127}",30,10,2.8975973685578245,"{0: 17, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1692,False,"{'a': 0.01, 'e': 0.1841508537381482}",25,17,14.56801849981622,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1693,False,"{'a': 0.01, 'e': 0.18396679492915277}",20,13,14.648016937887968,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1694,False,"{'a': 0.01, 'e': 0.18378292008696764}",30,2,20.709721377639656,"{0: 26, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1695,False,"{'a': 0.01, 'e': 0.18359922902771786}",25,9,-61.255835060311306,"{0: 12, 1: 1, 2: 0, 3: 2, 4: 1}",1 +1696,False,"{'a': 0.01, 'e': 0.18341572156771246}",25,20,11.105956363308643,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1697,False,"{'a': 0.01, 'e': 0.18323239752344386}",25,11,4.91446696461491,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1698,False,"{'a': 0.01, 'e': 0.18304925671158812}",20,12,15.888736951484182,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1699,False,"{'a': 0.01, 'e': 0.18286629894900427}",25,15,22.567935152920164,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1700,False,"{'a': 0.01, 'e': 0.18268352405273466}",25,9,27.60324655367323,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1701,False,"{'a': 0.01, 'e': 0.1825009318400043}",20,6,31.174850313965713,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1702,False,"{'a': 0.01, 'e': 0.182318522128221}",30,16,8.788190385897485,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1703,False,"{'a': 0.01, 'e': 0.182136294734975}",20,10,4.985208395181507,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1704,False,"{'a': 0.01, 'e': 0.18195424947803895}",25,8,-7.717113380811768,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1705,False,"{'a': 0.01, 'e': 0.1817723861753675}",20,10,18.707473714626566,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1706,False,"{'a': 0.01, 'e': 0.1815907046450974}",20,13,11.548171246918251,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1707,False,"{'a': 0.01, 'e': 0.18140920470554706}",20,9,20.68768130544627,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1708,False,"{'a': 0.01, 'e': 0.1812278861752166}",25,14,23.275231723005284,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1709,False,"{'a': 0.01, 'e': 0.18104674887278735}",20,0,11.99820921810667,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",0 +1710,False,"{'a': 0.01, 'e': 0.1808657926171221}",30,18,24.981741609839595,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1711,False,"{'a': 0.01, 'e': 0.1806850172272645}",20,13,5.04158342187504,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1712,False,"{'a': 0.01, 'e': 0.18050442252243923}",20,13,14.104613310732798,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1713,False,"{'a': 0.01, 'e': 0.18032400832205148}",20,10,15.502389631855007,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1714,False,"{'a': 0.01, 'e': 0.1801437744456871}",30,0,6.951130388583762,"{0: 28, 1: 0, 2: 1, 3: 1, 4: 0}",0 +1715,False,"{'a': 0.01, 'e': 0.17996372071311217}",20,0,15.88786901714491,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +1716,False,"{'a': 0.01, 'e': 0.17978384694427296}",25,7,15.230858398690506,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1717,False,"{'a': 0.01, 'e': 0.17960415295929566}",20,6,24.911384639513944,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1718,False,"{'a': 0.01, 'e': 0.17942463857848634}",20,15,10.350360898018968,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1719,False,"{'a': 0.01, 'e': 0.1792453036223305}",20,10,-22.996078296500144,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1720,False,"{'a': 0.01, 'e': 0.17906614791149322}",20,15,3.724565594585061,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1721,False,"{'a': 0.01, 'e': 0.17888717126681877}",30,12,-12.883208739499196,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1722,False,"{'a': 0.01, 'e': 0.17870837350933053}",20,15,-32.97261138340501,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1723,False,"{'a': 0.01, 'e': 0.17852975446023064}",20,8,-21.951214195947742,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1724,False,"{'a': 0.01, 'e': 0.17835131394090015}",30,17,24.588831103543196,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1725,False,"{'a': 0.01, 'e': 0.1781730517728984}",20,16,8.933567766820184,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1726,False,"{'a': 0.01, 'e': 0.17799496777796334}",20,9,9.883099715124011,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1727,False,"{'a': 0.01, 'e': 0.17781706177801082}",20,13,-3.292882019591957,"{0: 5, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1728,False,"{'a': 0.01, 'e': 0.17763933359513495}",20,0,28.356913020393275,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1729,False,"{'a': 0.01, 'e': 0.17746178305160745}",25,13,22.39485965390161,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1730,False,"{'a': 0.01, 'e': 0.17728440996987782}",25,13,-29.386951868621246,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1731,False,"{'a': 0.01, 'e': 0.17710721417257289}",20,9,-26.784423001447852,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1732,False,"{'a': 0.01, 'e': 0.17693019548249692}",35,20,16.516986406844477,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1733,False,"{'a': 0.01, 'e': 0.17675335372263115}",20,12,16.934909217957106,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1734,False,"{'a': 0.01, 'e': 0.17657668871613388}",20,16,7.522431102764807,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1735,False,"{'a': 0.01, 'e': 0.17640020028634}",25,10,16.060534409482678,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1736,False,"{'a': 0.01, 'e': 0.1762238882567611}",30,12,-63.48826811567855,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1737,False,"{'a': 0.01, 'e': 0.17604775245108517}",30,16,-26.860102508583587,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1738,False,"{'a': 0.01, 'e': 0.17587179269317638}",20,8,-18.288667639690235,"{0: 9, 1: 1, 2: 1, 3: 1, 4: 0}",1 +1739,False,"{'a': 0.01, 'e': 0.17569600880707487}",25,18,14.438723351281102,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1740,False,"{'a': 0.01, 'e': 0.17552040061699686}",30,10,-6.743436950969085,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1741,False,"{'a': 0.01, 'e': 0.17534496794733406}",20,11,3.230004072279038,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1742,False,"{'a': 0.01, 'e': 0.17516971062265388}",20,8,24.20369596025034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1743,False,"{'a': 0.01, 'e': 0.17499462846769887}",25,9,27.986650872261883,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1744,False,"{'a': 0.01, 'e': 0.17481972130738693}",35,15,33.344642027087,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1745,False,"{'a': 0.01, 'e': 0.17464498896681085}",20,12,14.641768025458369,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1746,False,"{'a': 0.01, 'e': 0.17447043127123832}",20,8,9.893438038975448,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1747,False,"{'a': 0.01, 'e': 0.17429604804611157}",20,8,-17.48613233773128,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1748,False,"{'a': 0.01, 'e': 0.1741218391170474}",20,0,32.26046807549434,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1749,False,"{'a': 0.01, 'e': 0.17394780430983683}",30,22,11.390884845370762,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1750,False,"{'a': 0.01, 'e': 0.17377394345044514}",30,18,-11.037405670281169,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1751,False,"{'a': 0.01, 'e': 0.1736002563650113}",30,19,21.897124598052955,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1752,False,"{'a': 0.01, 'e': 0.17342674287984836}",25,7,15.889906559243949,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1753,False,"{'a': 0.01, 'e': 0.1732534028214427}",30,16,20.230267980658294,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1754,False,"{'a': 0.01, 'e': 0.17308023601645434}",30,22,15.024208432208226,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1755,False,"{'a': 0.01, 'e': 0.17290724229171636}",20,12,16.2347173679096,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1756,False,"{'a': 0.01, 'e': 0.17273442147423515}",25,14,22.497218843088373,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1757,False,"{'a': 0.01, 'e': 0.17256177339118975}",25,13,22.766273744388442,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1758,False,"{'a': 0.01, 'e': 0.17238929786993218}",25,13,2.985563921154922,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1759,False,"{'a': 0.01, 'e': 0.1722169947379868}",20,14,0.17350375158851117,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1760,False,"{'a': 0.01, 'e': 0.17204486382305054}",20,13,2.2924427413953135,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1761,False,"{'a': 0.01, 'e': 0.1718729049529924}",25,16,15.917565428578174,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1762,False,"{'a': 0.01, 'e': 0.17170111795585358}",20,12,4.760513316062327,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1763,False,"{'a': 0.01, 'e': 0.17152950265984698}",20,0,-50.789573844989846,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",1 +1764,False,"{'a': 0.01, 'e': 0.17135805889335737}",20,8,21.467420980268024,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1765,False,"{'a': 0.01, 'e': 0.1711867864849409}",20,16,7.223586301328523,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1766,False,"{'a': 0.01, 'e': 0.17101568526332522}",20,7,1.4813913391486189,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1767,False,"{'a': 0.01, 'e': 0.170844755057409}",25,13,-1.1784263575812615,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1768,False,"{'a': 0.01, 'e': 0.17067399569626215}",20,8,17.39249729487653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1769,False,"{'a': 0.01, 'e': 0.17050340700912517}",30,11,-15.30956649612365,"{0: 16, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1770,False,"{'a': 0.01, 'e': 0.17033298882540943}",20,8,-1.0690855650874727,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1771,False,"{'a': 0.01, 'e': 0.1701627409746967}",20,11,18.221545202103826,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1772,False,"{'a': 0.01, 'e': 0.16999266328673912}",20,16,8.067934520020039,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1773,False,"{'a': 0.01, 'e': 0.16982275559145898}",20,14,6.549340783560105,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1774,False,"{'a': 0.01, 'e': 0.1696530177189486}",25,12,12.694816900601216,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1775,False,"{'a': 0.01, 'e': 0.16948344949947006}",20,16,4.048928646358128,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1776,False,"{'a': 0.01, 'e': 0.16931405076345518}",35,23,26.553710193701885,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1777,False,"{'a': 0.01, 'e': 0.16914482134150513}",25,0,34.89032269608299,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +1778,False,"{'a': 0.01, 'e': 0.16897576106439058}",25,5,23.86762607509219,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1779,False,"{'a': 0.01, 'e': 0.1688068697630511}",25,14,19.217347530305503,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1780,False,"{'a': 0.01, 'e': 0.1686381472685955}",25,7,5.3834005507600295,"{0: 15, 1: 2, 2: 1, 3: 0, 4: 0}",1 +1781,False,"{'a': 0.01, 'e': 0.1684695934123012}",25,15,15.676396383743297,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1782,False,"{'a': 0.01, 'e': 0.16830120802561438}",20,5,19.290356325681262,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1783,False,"{'a': 0.01, 'e': 0.16813299094014955}",20,8,-19.659165819594534,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1784,False,"{'a': 0.01, 'e': 0.16796494198768974}",20,15,9.910617735693723,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1785,False,"{'a': 0.01, 'e': 0.16779706100018585}",25,12,-20.440638742801692,"{0: 10, 1: 0, 2: 2, 3: 1, 4: 0}",1 +1786,False,"{'a': 0.01, 'e': 0.167629347809757}",25,20,9.359281399699045,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1787,False,"{'a': 0.01, 'e': 0.1674618022486899}",20,12,16.533525647032636,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1788,False,"{'a': 0.01, 'e': 0.167294424149439}",20,0,-22.733148913778535,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1789,False,"{'a': 0.01, 'e': 0.1671272133446262}",25,13,-0.4854981721502172,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1790,False,"{'a': 0.01, 'e': 0.1669601696670407}",25,9,-38.42580130275447,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1791,False,"{'a': 0.01, 'e': 0.16679329294963874}",35,18,-11.737120418079751,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1792,False,"{'a': 0.01, 'e': 0.16662658302554365}",30,15,27.96315318735366,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1793,False,"{'a': 0.01, 'e': 0.1664600397280455}",20,14,-9.902190871173584,"{0: 5, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1794,False,"{'a': 0.01, 'e': 0.16629366289060088}",30,22,17.31535225770047,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1795,False,"{'a': 0.01, 'e': 0.16612745234683307}",20,11,-17.394444710004613,"{0: 6, 1: 0, 2: 3, 3: 0, 4: 0}",1 +1796,False,"{'a': 0.01, 'e': 0.16596140793053138}",25,14,4.371227029010265,"{0: 9, 1: 2, 2: 0, 3: 0, 4: 0}",1 +1797,False,"{'a': 0.01, 'e': 0.16579552947565152}",20,14,11.002305877777827,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1798,False,"{'a': 0.01, 'e': 0.16562981681631492}",30,17,-0.0038163647303242065,"{0: 11, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1799,False,"{'a': 0.01, 'e': 0.16546426978680895}",20,0,12.924393270889823,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1800,False,"{'a': 0.01, 'e': 0.16529888822158653}",20,8,6.712853491199336,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1801,False,"{'a': 0.01, 'e': 0.16513367195526615}",30,20,5.923632397139144,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1802,False,"{'a': 0.01, 'e': 0.16496862082263145}",20,10,18.79816772661497,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1803,False,"{'a': 0.01, 'e': 0.16480373465863135}",20,15,6.853624762204094,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1804,False,"{'a': 0.01, 'e': 0.1646390132983796}",20,10,14.851223961524514,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1805,False,"{'a': 0.01, 'e': 0.1644744565771549}",20,14,14.50227450523722,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1806,False,"{'a': 0.01, 'e': 0.16431006433040046}",30,22,15.414645690774822,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1807,False,"{'a': 0.01, 'e': 0.16414583639372407}",20,9,21.42807360974983,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1808,False,"{'a': 0.01, 'e': 0.16398177260289773}",30,21,-2.870390323809864,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1809,False,"{'a': 0.01, 'e': 0.16381787279385768}",20,12,14.963714607941638,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1810,False,"{'a': 0.01, 'e': 0.16365413680270405}",20,6,26.707050725574224,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1811,False,"{'a': 0.01, 'e': 0.1634905644657009}",25,13,23.71652538219105,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1812,False,"{'a': 0.01, 'e': 0.1633271556192758}",25,12,19.73903272752626,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1813,False,"{'a': 0.01, 'e': 0.16316391010001996}",20,12,-7.618185844672483,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1814,False,"{'a': 0.01, 'e': 0.16300082774468777}",20,6,-43.35698235956503,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1815,False,"{'a': 0.01, 'e': 0.16283790839019696}",20,2,28.92963104571316,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1816,False,"{'a': 0.01, 'e': 0.16267515187362808}",20,15,4.094406417327931,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1817,False,"{'a': 0.01, 'e': 0.16251255803222467}",20,2,-66.40281443258897,"{0: 14, 1: 0, 2: 1, 3: 2, 4: 1}",1 +1818,False,"{'a': 0.01, 'e': 0.16235012670339277}",20,14,9.394537826852531,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1819,False,"{'a': 0.01, 'e': 0.16218785772470118}",20,14,7.911576414508992,"{0: 5, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1820,False,"{'a': 0.01, 'e': 0.16202575093388075}",25,17,16.807792815042454,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1821,False,"{'a': 0.01, 'e': 0.16186380616882481}",20,13,12.827756663766703,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1822,False,"{'a': 0.01, 'e': 0.1617020232675885}",30,24,12.101021440521382,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1823,False,"{'a': 0.01, 'e': 0.16154040206838896}",20,13,15.503591017541705,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1824,False,"{'a': 0.01, 'e': 0.16137894240960493}",20,15,-12.151126792425963,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1825,False,"{'a': 0.01, 'e': 0.16121764412977677}",30,16,30.931664517107432,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1826,False,"{'a': 0.01, 'e': 0.16105650706760616}",25,17,14.95760104189241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1827,False,"{'a': 0.01, 'e': 0.16089553106195606}",30,18,10.366349432136587,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1828,False,"{'a': 0.01, 'e': 0.16073471595185038}",30,20,21.143198954240876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1829,False,"{'a': 0.01, 'e': 0.1605740615764741}",30,5,48.282817980477965,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1830,False,"{'a': 0.01, 'e': 0.16041356777517274}",25,18,12.273222265256088,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1831,False,"{'a': 0.01, 'e': 0.16025323438745256}",30,20,18.01219188752438,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1832,False,"{'a': 0.01, 'e': 0.1600930612529801}",25,8,1.3865380330738253,"{0: 15, 1: 1, 2: 0, 3: 1, 4: 0}",1 +1833,False,"{'a': 0.01, 'e': 0.15993304821158225}",20,8,24.662446187746635,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1834,False,"{'a': 0.01, 'e': 0.15977319510324592}",20,11,-8.607902736173662,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1835,False,"{'a': 0.01, 'e': 0.15961350176811803}",30,17,13.548800372668872,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1836,False,"{'a': 0.01, 'e': 0.15945396804650516}",20,10,7.56334080201233,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1837,False,"{'a': 0.01, 'e': 0.1592945937788737}",20,3,16.532410406781437,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1838,False,"{'a': 0.01, 'e': 0.15913537880584921}",20,8,13.883627526419831,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1839,False,"{'a': 0.01, 'e': 0.15897632296821687}",30,11,16.5236416401985,"{0: 17, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1840,False,"{'a': 0.01, 'e': 0.15881742610692068}",20,6,27.86170694903754,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1841,False,"{'a': 0.01, 'e': 0.15865868806306388}",20,12,17.64880413809126,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1842,False,"{'a': 0.01, 'e': 0.1585001086779083}",20,14,12.7069817950482,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1843,False,"{'a': 0.01, 'e': 0.1583416877928747}",35,25,19.42453906807763,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1844,False,"{'a': 0.01, 'e': 0.15818342524954201}",30,2,-4.116456745344556,"{0: 24, 1: 1, 2: 2, 3: 1, 4: 0}",1 +1845,False,"{'a': 0.01, 'e': 0.1580253208896478}",20,14,11.195405539226412,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1846,False,"{'a': 0.01, 'e': 0.1578673745550876}",20,6,16.878056895612993,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1847,False,"{'a': 0.01, 'e': 0.15770958608791516}",20,7,23.96553472868662,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1848,False,"{'a': 0.01, 'e': 0.15755195533034191}",25,17,17.467818324821167,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1849,False,"{'a': 0.01, 'e': 0.15739448212473714}",20,3,24.813156544116975,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1850,False,"{'a': 0.01, 'e': 0.1572371663136276}",25,13,0.9087463527200634,"{0: 10, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1851,False,"{'a': 0.01, 'e': 0.1570800077396975}",25,14,5.78038689220387,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1852,False,"{'a': 0.01, 'e': 0.1569230062457882}",20,10,3.5519311862757394,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1853,False,"{'a': 0.01, 'e': 0.15676616167489826}",25,5,-4.8840066981507,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1854,False,"{'a': 0.01, 'e': 0.156609473870183}",35,21,25.69806446336811,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1855,False,"{'a': 0.01, 'e': 0.15645294267495474}",35,28,10.102884567347376,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1856,False,"{'a': 0.01, 'e': 0.15629656793268212}",20,5,-48.859291537252645,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 1}",1 +1857,False,"{'a': 0.01, 'e': 0.15614034948699052}",25,7,22.178895434461488,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1858,False,"{'a': 0.01, 'e': 0.15598428718166135}",25,10,29.512492322281794,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1859,False,"{'a': 0.01, 'e': 0.15582838086063242}",35,13,16.655832030378964,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1860,False,"{'a': 0.01, 'e': 0.1556726303679973}",25,11,1.62544778585824,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1861,False,"{'a': 0.01, 'e': 0.15551703554800556}",30,16,27.090380979048604,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1862,False,"{'a': 0.01, 'e': 0.15536159624506227}",30,16,23.171548470614503,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1863,False,"{'a': 0.01, 'e': 0.15520631230372822}",25,15,-2.3730364674378177,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1864,False,"{'a': 0.01, 'e': 0.15505118356871936}",20,9,21.42684775960198,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1865,False,"{'a': 0.01, 'e': 0.15489620988490704}",20,14,11.094287611872787,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1866,False,"{'a': 0.01, 'e': 0.1547413910973175}",20,7,-39.57771356355506,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1867,False,"{'a': 0.01, 'e': 0.15458672705113194}",20,13,17.784936051938978,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1868,False,"{'a': 0.01, 'e': 0.15443221759168632}",25,10,13.661895439020668,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1869,False,"{'a': 0.01, 'e': 0.15427786256447115}",20,15,2.8190833136714057,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1870,False,"{'a': 0.01, 'e': 0.1541236618151314}",25,15,21.86342763520844,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1871,False,"{'a': 0.01, 'e': 0.15396961518946634}",20,8,23.536170591208034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1872,False,"{'a': 0.01, 'e': 0.15381572253342926}",20,7,24.482475748166962,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1873,False,"{'a': 0.01, 'e': 0.15366198369312759}",20,0,-10.37978957187569,"{0: 17, 1: 0, 2: 2, 3: 1, 4: 0}",0 +1874,False,"{'a': 0.01, 'e': 0.15350839851482234}",20,16,7.528491004136336,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1875,False,"{'a': 0.01, 'e': 0.15335496684492847}",30,12,-34.55023747554752,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1876,False,"{'a': 0.01, 'e': 0.15320168853001417}",20,14,0.7533814701320733,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1877,False,"{'a': 0.01, 'e': 0.1530485634168012}",20,11,6.337469655841499,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1878,False,"{'a': 0.01, 'e': 0.15289559135216438}",20,7,23.293065775830225,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1879,False,"{'a': 0.01, 'e': 0.15274277218313168}",25,13,14.92883052907005,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1880,False,"{'a': 0.01, 'e': 0.15259010575688386}",25,13,-2.024210101066431,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1881,False,"{'a': 0.01, 'e': 0.15243759192075454}",25,11,18.248528993846563,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1882,False,"{'a': 0.01, 'e': 0.1522852305222298}",20,6,30.791951807138513,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1883,False,"{'a': 0.01, 'e': 0.15213302140894833}",30,13,-19.88061899323413,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1884,False,"{'a': 0.01, 'e': 0.1519809644287009}",30,13,5.528615675396572,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1885,False,"{'a': 0.01, 'e': 0.1518290594294306}",25,19,8.739866979401445,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1886,False,"{'a': 0.01, 'e': 0.15167730625923234}",30,23,11.261528150896279,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1887,False,"{'a': 0.01, 'e': 0.15152570476635302}",25,16,17.189468820300267,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1888,False,"{'a': 0.01, 'e': 0.1513742547991911}",25,0,41.2733040507632,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1889,False,"{'a': 0.01, 'e': 0.15122295620629655}",20,13,11.236666983882337,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1890,False,"{'a': 0.01, 'e': 0.15107180883637084}",30,13,12.276350064974684,"{0: 15, 1: 1, 2: 1, 3: 0, 4: 0}",1 +1891,False,"{'a': 0.01, 'e': 0.15092081253826656}",25,19,12.181688554673082,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1892,False,"{'a': 0.01, 'e': 0.15076996716098734}",25,7,1.66358254773387,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1893,False,"{'a': 0.01, 'e': 0.15061927255368793}",20,16,8.756292114379596,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1894,False,"{'a': 0.01, 'e': 0.15046872856567356}",20,14,-1.5278459720820838,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1895,False,"{'a': 0.01, 'e': 0.15031833504640033}",20,14,10.323632824242457,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1896,False,"{'a': 0.01, 'e': 0.15016809184547464}",20,3,5.676349595999013,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1897,False,"{'a': 0.01, 'e': 0.15001799881265335}",20,0,-26.627759181091857,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 1}",0 +1898,False,"{'a': 0.01, 'e': 0.14986805579784332}",20,12,-19.693911073785067,"{0: 6, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1899,False,"{'a': 0.01, 'e': 0.14971826265110164}",25,7,23.005407828526543,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1900,False,"{'a': 0.01, 'e': 0.14956861922263504}",25,14,-45.268285432322934,"{0: 8, 1: 0, 2: 2, 3: 0, 4: 1}",1 +1901,False,"{'a': 0.01, 'e': 0.14941912536280016}",20,16,7.684198766077512,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1902,False,"{'a': 0.01, 'e': 0.14926978092210305}",20,9,23.889008210350852,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1903,False,"{'a': 0.01, 'e': 0.14912058575119935}",25,2,-16.97342309632748,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1904,False,"{'a': 0.01, 'e': 0.1489715397008938}",30,11,4.803965646018897,"{0: 16, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1905,False,"{'a': 0.01, 'e': 0.14882264262214037}",20,10,-44.821638729649834,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 1}",1 +1906,False,"{'a': 0.01, 'e': 0.14867389436604195}",30,15,16.004901891671462,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1907,False,"{'a': 0.01, 'e': 0.14852529478385032}",25,14,-26.40290834517412,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 1}",1 +1908,False,"{'a': 0.01, 'e': 0.14837684372696583}",25,15,14.863883075837311,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1909,False,"{'a': 0.01, 'e': 0.14822854104693745}",25,15,7.122796309285395,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1910,False,"{'a': 0.01, 'e': 0.14808038659546244}",20,13,6.944923411286856,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1911,False,"{'a': 0.01, 'e': 0.1479323802243864}",25,15,17.645744602785392,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1912,False,"{'a': 0.01, 'e': 0.14778452178570287}",25,16,19.047935316229143,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1913,False,"{'a': 0.01, 'e': 0.14763681113155347}",25,11,26.15092247601291,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1914,False,"{'a': 0.01, 'e': 0.14748924811422748}",25,11,24.1753125036397,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1915,False,"{'a': 0.01, 'e': 0.14734183258616193}",20,16,8.415156060770382,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1916,False,"{'a': 0.01, 'e': 0.14719456439994122}",25,9,-1.5802422085145027,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +1917,False,"{'a': 0.01, 'e': 0.1470474434082972}",30,18,24.906112718343934,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1918,False,"{'a': 0.01, 'e': 0.1469004694641088}",30,23,13.214909317938803,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1919,False,"{'a': 0.01, 'e': 0.14675364242040215}",25,14,20.082679400768217,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1920,False,"{'a': 0.01, 'e': 0.14660696213035015}",25,11,13.706017838285616,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1921,False,"{'a': 0.01, 'e': 0.14646042844727247}",20,11,19.97459728024443,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1922,False,"{'a': 0.01, 'e': 0.14631404122463545}",25,4,28.65813540559082,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1923,False,"{'a': 0.01, 'e': 0.14616780031605184}",25,15,20.900435434423134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1924,False,"{'a': 0.01, 'e': 0.14602170557528074}",25,11,28.574136264166253,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1925,False,"{'a': 0.01, 'e': 0.14587575685622736}",30,8,-11.15464831227871,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1926,False,"{'a': 0.01, 'e': 0.14572995401294303}",30,18,25.344981259042868,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1927,False,"{'a': 0.01, 'e': 0.14558429689962482}",20,10,7.498636243302622,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1928,False,"{'a': 0.01, 'e': 0.1454387853706157}",20,10,16.330761107193457,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1929,False,"{'a': 0.01, 'e': 0.145293419280404}",20,6,-50.60471318099989,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +1930,False,"{'a': 0.01, 'e': 0.14514819848362373}",35,18,19.485514588723323,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1931,False,"{'a': 0.01, 'e': 0.145003122835054}",30,20,9.12955911099183,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1932,False,"{'a': 0.01, 'e': 0.14485819218961926}",25,10,-24.129433053111356,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1933,False,"{'a': 0.01, 'e': 0.14471340640238872}",35,21,-14.427324174475293,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +1934,False,"{'a': 0.01, 'e': 0.14456876532857668}",20,8,6.923219703803559,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1935,False,"{'a': 0.01, 'e': 0.14442426882354198}",20,14,9.82529168133969,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1936,False,"{'a': 0.01, 'e': 0.14427991674278817}",30,3,-10.75206166997826,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 1}",1 +1937,False,"{'a': 0.01, 'e': 0.1441357089419631}",20,12,14.46468653354331,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1938,False,"{'a': 0.01, 'e': 0.143991645276859}",25,10,23.620158944345334,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1939,False,"{'a': 0.01, 'e': 0.14384772560341216}",25,6,31.266664147317655,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1940,False,"{'a': 0.01, 'e': 0.14370394977770293}",25,10,2.702233154217992,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1941,False,"{'a': 0.01, 'e': 0.14356031765595542}",20,9,10.265724357821206,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1942,False,"{'a': 0.01, 'e': 0.14341682909453757}",30,21,17.565584178458842,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1943,False,"{'a': 0.01, 'e': 0.14327348394996073}",25,10,21.06881437820722,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1944,False,"{'a': 0.01, 'e': 0.14313028207887982}",20,0,29.237947819436936,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1945,False,"{'a': 0.01, 'e': 0.14298722333809288}",35,22,14.363657196457655,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1946,False,"{'a': 0.01, 'e': 0.14284430758454122}",25,14,-3.0619897715709152,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1947,False,"{'a': 0.01, 'e': 0.14270153467530902}",25,13,25.040869389424973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1948,False,"{'a': 0.01, 'e': 0.14255890446762343}",35,20,2.278444700887552,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +1949,False,"{'a': 0.01, 'e': 0.14241641681885414}",25,15,21.503791676470048,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1950,False,"{'a': 0.01, 'e': 0.1422740715865136}",25,4,-26.36714158043043,"{0: 18, 1: 1, 2: 1, 3: 0, 4: 1}",1 +1951,False,"{'a': 0.01, 'e': 0.1421318686282564}",35,12,-19.599857294534427,"{0: 19, 1: 0, 2: 3, 3: 1, 4: 0}",1 +1952,False,"{'a': 0.01, 'e': 0.14198980780187978}",25,10,26.41034533771335,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1953,False,"{'a': 0.01, 'e': 0.14184788896532272}",25,13,23.05249251534391,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1954,False,"{'a': 0.01, 'e': 0.1417061119766665}",20,16,8.737421354603274,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1955,False,"{'a': 0.01, 'e': 0.14156447669413402}",25,18,4.096933351128378,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1956,False,"{'a': 0.01, 'e': 0.14142298297609007}",20,10,18.02047465865089,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1957,False,"{'a': 0.01, 'e': 0.14128163068104085}",25,16,16.303029032553972,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1958,False,"{'a': 0.01, 'e': 0.1411404196676341}",20,13,13.528015854490217,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1959,False,"{'a': 0.01, 'e': 0.14099934979465875}",35,25,18.937658839219026,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1960,False,"{'a': 0.01, 'e': 0.140858420921045}",30,22,15.622338379063148,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1961,False,"{'a': 0.01, 'e': 0.14071763290586387}",25,3,26.24794504150158,"{0: 21, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1962,False,"{'a': 0.01, 'e': 0.1405769856083274}",20,15,10.62734332795312,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1963,False,"{'a': 0.01, 'e': 0.1404364788877882}",20,15,1.801344178359678,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1964,False,"{'a': 0.01, 'e': 0.14029611260373964}",20,16,6.677470191805161,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1965,False,"{'a': 0.01, 'e': 0.14015588661581535}",25,15,17.734411556441472,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1966,False,"{'a': 0.01, 'e': 0.1400158007837894}",20,9,21.98488402989642,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1967,False,"{'a': 0.01, 'e': 0.13987585496757585}",20,12,4.803375799512822,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1968,False,"{'a': 0.01, 'e': 0.13973604902722894}",20,5,29.369676984182135,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1969,False,"{'a': 0.01, 'e': 0.1395963828229427}",20,16,6.148927831650102,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1970,False,"{'a': 0.01, 'e': 0.13945685621505094}",20,5,13.424646656797954,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1971,False,"{'a': 0.01, 'e': 0.13931746906402698}",25,14,14.37807719588513,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1972,False,"{'a': 0.01, 'e': 0.13917822123048373}",25,13,-66.84186080554583,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 2}",1 +1973,False,"{'a': 0.01, 'e': 0.13903911257517326}",25,4,34.069154203891365,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1974,False,"{'a': 0.01, 'e': 0.138900142958987}",20,14,8.562515844643595,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1975,False,"{'a': 0.01, 'e': 0.13876131224295524}",25,4,7.174007200509673,"{0: 18, 1: 1, 2: 2, 3: 0, 4: 0}",1 +1976,False,"{'a': 0.01, 'e': 0.13862262028824732}",25,3,33.425809868382245,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1977,False,"{'a': 0.01, 'e': 0.13848406695617121}",25,17,13.379703187800734,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1978,False,"{'a': 0.01, 'e': 0.13834565210817362}",20,13,13.90777513678236,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1979,False,"{'a': 0.01, 'e': 0.13820737560583965}",20,14,8.059922676567744,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1980,False,"{'a': 0.01, 'e': 0.13806923731089282}",20,13,13.043244416215257,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1981,False,"{'a': 0.01, 'e': 0.13793123708519478}",20,2,26.96191059703422,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1982,False,"{'a': 0.01, 'e': 0.13779337479074535}",20,0,34.58718891242537,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1983,False,"{'a': 0.01, 'e': 0.13765565028968216}",25,3,13.590820110418708,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1984,False,"{'a': 0.01, 'e': 0.13751806344428075}",30,16,15.263854718519115,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1985,False,"{'a': 0.01, 'e': 0.13738061411695424}",20,11,10.690373940895288,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +1986,False,"{'a': 0.01, 'e': 0.13724330217025332}",20,10,17.68791140170638,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1987,False,"{'a': 0.01, 'e': 0.13710612746686596}",20,15,9.69659305603428,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1988,False,"{'a': 0.01, 'e': 0.13696908986961753}",20,8,8.104574203045134,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1989,False,"{'a': 0.01, 'e': 0.13683218924147036}",25,10,-69.30893929176233,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 2}",1 +1990,False,"{'a': 0.01, 'e': 0.13669542544552385}",30,21,16.880370194367586,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1991,False,"{'a': 0.01, 'e': 0.13655879834501417}",25,20,8.905160133640813,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1992,False,"{'a': 0.01, 'e': 0.13642230780331424}",35,25,18.30878109844221,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1993,False,"{'a': 0.01, 'e': 0.13628595368393343}",25,13,11.705753493866426,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1994,False,"{'a': 0.01, 'e': 0.1361497358505177}",20,14,0.0748544136211109,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1995,False,"{'a': 0.01, 'e': 0.13601365416684916}",25,14,22.132568273519635,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1996,False,"{'a': 0.01, 'e': 0.13587770849684613}",30,20,8.726019113841868,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +1997,False,"{'a': 0.01, 'e': 0.13574189870456288}",25,13,-4.452087476844408,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +1998,False,"{'a': 0.01, 'e': 0.1356062246541897}",20,11,16.3103059744569,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +1999,False,"{'a': 0.01, 'e': 0.13547068621005243}",20,0,-9.401106359734387,"{0: 17, 1: 1, 2: 1, 3: 1, 4: 0}",1 +2000,False,"{'a': 0.01, 'e': 0.1353352832366127}",20,7,-0.34254332512388186,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2001,False,"{'a': 0.01, 'e': 0.13520001559846748}",20,0,-45.82654081771745,"{0: 17, 1: 1, 2: 0, 3: 1, 4: 1}",0 +2002,False,"{'a': 0.01, 'e': 0.13506488316034906}",20,6,-20.405662702310263,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2003,False,"{'a': 0.01, 'e': 0.13492988578712511}",20,16,7.847976115084147,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2004,False,"{'a': 0.01, 'e': 0.1347950233437982}",20,12,12.24899924857576,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2005,False,"{'a': 0.01, 'e': 0.13466029569550586}",20,0,22.90675042374131,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2006,False,"{'a': 0.01, 'e': 0.1345257027075204}",35,27,14.172753836570067,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2007,False,"{'a': 0.01, 'e': 0.1343912442452489}",30,16,23.137260369019348,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2008,False,"{'a': 0.01, 'e': 0.13425692017423285}",30,12,23.520412651300806,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2009,False,"{'a': 0.01, 'e': 0.13412273036014816}",20,4,14.34446542445427,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2010,False,"{'a': 0.01, 'e': 0.13398867466880493}",20,8,9.932689586741201,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2011,False,"{'a': 0.01, 'e': 0.13385475296614763}",20,12,15.219273895250241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2012,False,"{'a': 0.01, 'e': 0.1337209651182544}",35,17,0.8688194262149551,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +2013,False,"{'a': 0.01, 'e': 0.13358731099133747}",20,5,24.90440868157158,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2014,False,"{'a': 0.01, 'e': 0.1334537904517426}",25,4,29.27350691128377,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2015,False,"{'a': 0.01, 'e': 0.13332040336594936}",30,13,-15.109013706502571,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2016,False,"{'a': 0.01, 'e': 0.1331871496005706}",30,23,13.838886941102565,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2017,False,"{'a': 0.01, 'e': 0.13305402902235253}",20,16,10.916559595631316,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2018,False,"{'a': 0.01, 'e': 0.13292104149817452}",30,8,39.444580609178566,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2019,False,"{'a': 0.01, 'e': 0.13278818689504915}",30,12,-10.453777499848973,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2020,False,"{'a': 0.01, 'e': 0.13265546508012172}",25,17,16.935987002202214,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2021,False,"{'a': 0.01, 'e': 0.13252287592067044}",25,13,23.063240192702814,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2022,False,"{'a': 0.01, 'e': 0.13239041928410605}",25,15,21.912980583167236,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2023,False,"{'a': 0.01, 'e': 0.13225809503797206}",25,0,-17.99150149354977,"{0: 22, 1: 1, 2: 1, 3: 0, 4: 1}",0 +2024,False,"{'a': 0.01, 'e': 0.1321259030499441}",20,4,0.2798676862288063,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2025,False,"{'a': 0.01, 'e': 0.13199384318783022}",20,3,15.504164009218968,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2026,False,"{'a': 0.01, 'e': 0.13186191531957048}",30,20,20.23962167608763,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2027,False,"{'a': 0.01, 'e': 0.13173011931323708}",25,20,8.646383897374493,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2028,False,"{'a': 0.01, 'e': 0.131598455037034}",25,6,22.968848089231912,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2029,False,"{'a': 0.01, 'e': 0.13146692235929688}",20,12,14.708243161262988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2030,False,"{'a': 0.01, 'e': 0.13133552114849303}",30,16,24.708469603766286,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2031,False,"{'a': 0.01, 'e': 0.13120425127322136}",30,13,35.25987863500254,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2032,False,"{'a': 0.01, 'e': 0.13107311260221188}",25,11,3.70543109823113,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2033,False,"{'a': 0.01, 'e': 0.13094210500432593}",25,20,9.006723950959437,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2034,False,"{'a': 0.01, 'e': 0.13081122834855582}",30,11,19.883089588216446,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2035,False,"{'a': 0.01, 'e': 0.13068048250402503}",20,12,10.90507725721065,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2036,False,"{'a': 0.01, 'e': 0.13054986733998764}",25,11,1.8087193843169729,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2037,False,"{'a': 0.01, 'e': 0.13041938272582848}",20,12,14.137811537398608,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2038,False,"{'a': 0.01, 'e': 0.13028902853106283}",25,13,17.522244816752234,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2039,False,"{'a': 0.01, 'e': 0.13015880462533663}",20,10,17.94660929905844,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2040,False,"{'a': 0.01, 'e': 0.1300287108784259}",25,12,25.512502025347416,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2041,False,"{'a': 0.01, 'e': 0.12989874716023692}",20,10,17.97841059752292,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2042,False,"{'a': 0.01, 'e': 0.1297689133408058}",25,13,6.9257326081916,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2043,False,"{'a': 0.01, 'e': 0.12963920929029896}",30,18,18.5428102214125,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2044,False,"{'a': 0.01, 'e': 0.12950963487901218}",35,19,21.299059141213093,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2045,False,"{'a': 0.01, 'e': 0.12938018997737108}",20,13,12.427643325945951,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2046,False,"{'a': 0.01, 'e': 0.12925087445593067}",25,8,31.750311507819625,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2047,False,"{'a': 0.01, 'e': 0.12912168818537556}",35,18,25.26402684775369,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2048,False,"{'a': 0.01, 'e': 0.1289926310365194}",25,12,-19.963191474599906,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2049,False,"{'a': 0.01, 'e': 0.12886370288030502}",20,1,26.877234006448845,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2050,False,"{'a': 0.01, 'e': 0.12873490358780423}",20,16,8.064636789429095,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2051,False,"{'a': 0.01, 'e': 0.12860623303021773}",20,16,7.689975973106375,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2052,False,"{'a': 0.01, 'e': 0.12847769107887502}",25,17,12.699912721884335,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2053,False,"{'a': 0.01, 'e': 0.12834927760523412}",25,13,-3.532523191627349,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2054,False,"{'a': 0.01, 'e': 0.1282209924808815}",20,0,6.894778147794967,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2055,False,"{'a': 0.01, 'e': 0.12809283557753198}",25,11,5.178227343413598,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2056,False,"{'a': 0.01, 'e': 0.1279648067670288}",20,11,0.23370539471385676,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2057,False,"{'a': 0.01, 'e': 0.12783690592134303}",25,14,20.4116330547063,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2058,False,"{'a': 0.01, 'e': 0.12770913291257383}",20,11,18.144128283796192,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2059,False,"{'a': 0.01, 'e': 0.12758148761294813}",20,13,14.07886689954026,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2060,False,"{'a': 0.01, 'e': 0.12745396989482075}",30,10,-13.927214781134516,"{0: 16, 1: 0, 2: 4, 3: 0, 4: 0}",1 +2061,False,"{'a': 0.01, 'e': 0.12732657963067387}",30,4,30.05584839111474,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2062,False,"{'a': 0.01, 'e': 0.12719931669311724}",20,8,21.689830778017036,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2063,False,"{'a': 0.01, 'e': 0.12707218095488781}",20,16,7.530459037197378,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2064,False,"{'a': 0.01, 'e': 0.12694517228885002}",20,13,14.052111941349612,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2065,False,"{'a': 0.01, 'e': 0.1268182905679951}",20,10,4.703753683919734,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2066,False,"{'a': 0.01, 'e': 0.1266915356654413}",25,17,7.827118570835839,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2067,False,"{'a': 0.01, 'e': 0.12656490745443366}",35,21,22.012067627188674,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2068,False,"{'a': 0.01, 'e': 0.1264384058083441}",30,11,12.43525685689358,"{0: 17, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2069,False,"{'a': 0.01, 'e': 0.12631203060067087}",25,13,21.175428368183564,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2070,False,"{'a': 0.01, 'e': 0.12618578170503877}",20,8,-12.407036875477864,"{0: 9, 1: 2, 2: 0, 3: 1, 4: 0}",1 +2071,False,"{'a': 0.01, 'e': 0.12605965899519883}",25,11,21.00426293223221,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2072,False,"{'a': 0.01, 'e': 0.12593366234502845}",30,8,-13.143067407772534,"{0: 20, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2073,False,"{'a': 0.01, 'e': 0.12580779162853092}",20,12,17.59678207263115,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2074,False,"{'a': 0.01, 'e': 0.1256820467198355}",25,9,18.26061075541321,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2075,False,"{'a': 0.01, 'e': 0.1255564274931972}",20,12,4.141341366757174,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2076,False,"{'a': 0.01, 'e': 0.12543093382299692}",25,12,26.399152101688838,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2077,False,"{'a': 0.01, 'e': 0.12530556558374092}",20,6,20.709131312394415,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2078,False,"{'a': 0.01, 'e': 0.12518032265006093}",30,12,28.891604865129374,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2079,False,"{'a': 0.01, 'e': 0.12505520489671398}",25,13,9.500304252256496,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2080,False,"{'a': 0.01, 'e': 0.12493021219858241}",20,11,19.631445949577802,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2081,False,"{'a': 0.01, 'e': 0.12480534443067345}",30,20,-22.41040066965236,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2082,False,"{'a': 0.01, 'e': 0.12468060146811931}",30,18,-17.94280396377164,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2083,False,"{'a': 0.01, 'e': 0.12455598318617699}",25,13,25.659054411943238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2084,False,"{'a': 0.01, 'e': 0.12443148946022826}",20,15,9.007632037494872,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2085,False,"{'a': 0.01, 'e': 0.12430712016577938}",20,8,24.624314845038942,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2086,False,"{'a': 0.01, 'e': 0.12418287517846102}",20,8,21.30307951640159,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2087,False,"{'a': 0.01, 'e': 0.12405875437402814}",20,0,22.073761987733583,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2088,False,"{'a': 0.01, 'e': 0.12393475762836002}",20,10,22.173191094647855,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2089,False,"{'a': 0.01, 'e': 0.12381088481745986}",20,4,27.86467970045194,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2090,False,"{'a': 0.01, 'e': 0.12368713581745483}",25,9,19.641778471036954,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2091,False,"{'a': 0.01, 'e': 0.12356351050459588}",25,14,14.589982790111282,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2092,False,"{'a': 0.01, 'e': 0.12344000875525778}",25,13,-2.516037310485845,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2093,False,"{'a': 0.01, 'e': 0.12331663044593871}",20,6,27.90314503511945,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2094,False,"{'a': 0.01, 'e': 0.12319337545326038}",20,13,14.889384363638811,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2095,False,"{'a': 0.01, 'e': 0.12307024365396771}",20,13,12.953368411165041,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2096,False,"{'a': 0.01, 'e': 0.122947234924929}",25,13,15.088316286640424,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2097,False,"{'a': 0.01, 'e': 0.12282434914313546}",20,11,4.117777236912035,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2098,False,"{'a': 0.01, 'e': 0.1227015861857013}",20,11,17.1306957978221,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2099,False,"{'a': 0.01, 'e': 0.1225789459298635}",25,11,14.083274896772336,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2100,False,"{'a': 0.01, 'e': 0.1224564282529819}",20,8,22.203485028798163,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2101,False,"{'a': 0.01, 'e': 0.12233403303253876}",30,22,-5.458777376749392,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2102,False,"{'a': 0.01, 'e': 0.12221176014613884}",20,5,4.296795178665208,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2103,False,"{'a': 0.01, 'e': 0.1220896094715092}",35,18,32.14221983193053,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2104,False,"{'a': 0.01, 'e': 0.12196758088649925}",35,21,27.998675182164867,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2105,False,"{'a': 0.01, 'e': 0.12184567426908036}",25,17,-26.60138709497101,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2106,False,"{'a': 0.01, 'e': 0.12172388949734589}",30,20,18.17763165005958,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2107,False,"{'a': 0.01, 'e': 0.121602226449511}",20,10,-14.318314677117296,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2108,False,"{'a': 0.01, 'e': 0.12148068500391276}",20,4,5.719477648382941,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2109,False,"{'a': 0.01, 'e': 0.12135926503900965}",25,10,12.944410340883996,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2110,False,"{'a': 0.01, 'e': 0.12123796643338168}",20,4,21.317969486984612,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2111,False,"{'a': 0.01, 'e': 0.1211167890657302}",30,7,36.18698937749919,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2112,False,"{'a': 0.01, 'e': 0.12099573281487792}",25,18,15.027275608528186,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2113,False,"{'a': 0.01, 'e': 0.12087479755976856}",25,11,6.1933086746946335,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2114,False,"{'a': 0.01, 'e': 0.12075398317946681}",30,12,6.386212100831268,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2115,False,"{'a': 0.01, 'e': 0.12063328955315826}",25,17,14.73586476993988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2116,False,"{'a': 0.01, 'e': 0.12051271656014938}",20,10,16.61622450024009,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2117,False,"{'a': 0.01, 'e': 0.12039226407986708}",20,7,25.65822096965594,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2118,False,"{'a': 0.01, 'e': 0.12027193199185891}",20,11,0.6078894435555915,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2119,False,"{'a': 0.01, 'e': 0.12015172017579269}",30,6,20.050544288566442,"{0: 22, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2120,False,"{'a': 0.01, 'e': 0.12003162851145673}",30,8,45.06027193123996,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2121,False,"{'a': 0.01, 'e': 0.11991165687875927}",20,2,33.69464991315173,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2122,False,"{'a': 0.01, 'e': 0.11979180515772868}",35,19,33.91127243470023,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2123,False,"{'a': 0.01, 'e': 0.11967207322851317}",25,16,12.66400920754852,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2124,False,"{'a': 0.01, 'e': 0.11955246097138093}",20,2,29.329750063645402,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2125,False,"{'a': 0.01, 'e': 0.11943296826671962}",25,7,29.33902276507611,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2126,False,"{'a': 0.01, 'e': 0.11931359499503652}",25,20,9.927471672970222,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2127,False,"{'a': 0.01, 'e': 0.11919434103695832}",20,6,23.795917289079075,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2128,False,"{'a': 0.01, 'e': 0.11907520627323114}",25,17,16.289858827167684,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2129,False,"{'a': 0.01, 'e': 0.11895619058472015}",25,10,14.960917263063214,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2130,False,"{'a': 0.01, 'e': 0.11883729385240965}",30,12,31.853681507979882,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2131,False,"{'a': 0.01, 'e': 0.11871851595740286}",30,7,-25.439568195980915,"{0: 21, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2132,False,"{'a': 0.01, 'e': 0.11859985678092198}",20,8,13.815648636439558,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2133,False,"{'a': 0.01, 'e': 0.11848131620430775}",30,15,24.664439955414622,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2134,False,"{'a': 0.01, 'e': 0.11836289410901962}",25,17,13.630323102883983,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2135,False,"{'a': 0.01, 'e': 0.1182445903766354}",20,11,-2.817387738441552,"{0: 8, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2136,False,"{'a': 0.01, 'e': 0.11812640488885146}",20,3,27.23137869687874,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2137,False,"{'a': 0.01, 'e': 0.11800833752748224}",30,20,17.315744965567696,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2138,False,"{'a': 0.01, 'e': 0.1178903881744604}",30,13,27.304150392404306,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2139,False,"{'a': 0.01, 'e': 0.1177725567118365}",20,14,13.542973920911784,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2140,False,"{'a': 0.01, 'e': 0.11765484302177918}",20,5,25.482439341084206,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2141,False,"{'a': 0.01, 'e': 0.11753724698657468}",30,8,14.26744893474744,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2142,False,"{'a': 0.01, 'e': 0.11741976848862698}",25,17,18.235855218689956,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2143,False,"{'a': 0.01, 'e': 0.11730240741045748}",20,8,20.918265418580074,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2144,False,"{'a': 0.01, 'e': 0.11718516363470523}",25,3,15.902418623434684,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2145,False,"{'a': 0.01, 'e': 0.11706803704412637}",25,11,-15.841877558604883,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2146,False,"{'a': 0.01, 'e': 0.11695102752159432}",25,15,12.72268757590399,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2147,False,"{'a': 0.01, 'e': 0.11683413495009948}",20,16,7.672142994622025,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2148,False,"{'a': 0.01, 'e': 0.11671735921274938}",25,17,17.229709665200886,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2149,False,"{'a': 0.01, 'e': 0.11660070019276822}",25,16,17.02938813300166,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2150,False,"{'a': 0.01, 'e': 0.11648415777349697}",30,11,8.720012201284735,"{0: 18, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2151,False,"{'a': 0.01, 'e': 0.11636773183839315}",25,17,14.689188001075848,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2152,False,"{'a': 0.01, 'e': 0.11625142227103091}",20,16,6.016625183579581,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2153,False,"{'a': 0.01, 'e': 0.11613522895510063}",25,11,15.170220844576168,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2154,False,"{'a': 0.01, 'e': 0.116019151774409}",25,17,-27.02227355470815,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2155,False,"{'a': 0.01, 'e': 0.11590319061287874}",25,11,12.218729134095764,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2156,False,"{'a': 0.01, 'e': 0.1157873453545488}",20,6,-23.570711301787696,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2157,False,"{'a': 0.01, 'e': 0.11567161588357389}",20,10,5.897178519208506,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2158,False,"{'a': 0.01, 'e': 0.11555600208422448}",25,16,15.75090172948197,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2159,False,"{'a': 0.01, 'e': 0.11544050384088674}",25,11,26.422299045554354,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2160,False,"{'a': 0.01, 'e': 0.11532512103806251}",20,13,13.251367435656547,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2161,False,"{'a': 0.01, 'e': 0.11520985356036893}",20,3,15.80622001742023,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2162,False,"{'a': 0.01, 'e': 0.11509470129253851}",20,5,21.815009694940755,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2163,False,"{'a': 0.01, 'e': 0.11497966411941893}",25,16,16.586307683866632,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2164,False,"{'a': 0.01, 'e': 0.11486474192597308}",20,0,27.60531888868429,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2165,False,"{'a': 0.01, 'e': 0.11474993459727875}",20,10,17.765259469249116,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2166,False,"{'a': 0.01, 'e': 0.11463524201852858}",20,9,19.31154829121431,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2167,False,"{'a': 0.01, 'e': 0.11452066407502992}",20,9,17.720969150508353,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2168,False,"{'a': 0.01, 'e': 0.11440620065220493}",25,17,16.761442859521814,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2169,False,"{'a': 0.01, 'e': 0.11429185163559014}",20,14,14.019470677187002,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2170,False,"{'a': 0.01, 'e': 0.1141776169108365}",25,11,15.628462692858065,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2171,False,"{'a': 0.01, 'e': 0.11406349636370923}",30,22,14.083546625541615,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2172,False,"{'a': 0.01, 'e': 0.11394948988008788}",20,11,16.80338034918773,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2173,False,"{'a': 0.01, 'e': 0.11383559734596592}",25,19,12.41301019597844,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2174,False,"{'a': 0.01, 'e': 0.11372181864745078}",20,2,30.091340145638426,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2175,False,"{'a': 0.01, 'e': 0.11360815367076371}",30,4,31.34377497966377,"{0: 25, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2176,False,"{'a': 0.01, 'e': 0.11349460230223983}",20,15,9.834483164493053,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2177,False,"{'a': 0.01, 'e': 0.11338116442832771}",25,9,21.49018334945675,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2178,False,"{'a': 0.01, 'e': 0.11326783993558948}",20,8,16.898913665451325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2179,False,"{'a': 0.01, 'e': 0.11315462871070062}",20,10,17.896024827668494,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2180,False,"{'a': 0.01, 'e': 0.11304153064044985}",30,23,15.697768615658466,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2181,False,"{'a': 0.01, 'e': 0.11292854561173918}",20,6,25.407658010732554,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2182,False,"{'a': 0.01, 'e': 0.11281567351158354}",25,11,26.101766984612823,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2183,False,"{'a': 0.01, 'e': 0.11270291422711082}",20,13,12.185845906872293,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2184,False,"{'a': 0.01, 'e': 0.11259026764556165}",30,18,15.873644340978116,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2185,False,"{'a': 0.01, 'e': 0.11247773365428958}",25,13,11.922670530372208,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2186,False,"{'a': 0.01, 'e': 0.11236531214076052}",25,16,13.866305857728939,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2187,False,"{'a': 0.01, 'e': 0.11225300299255297}",20,4,22.42924553372426,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2188,False,"{'a': 0.01, 'e': 0.11214080609735771}",25,3,27.014522370640243,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2189,False,"{'a': 0.01, 'e': 0.11202872134297796}",30,8,20.592446858049097,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2190,False,"{'a': 0.01, 'e': 0.11191674861732888}",25,10,12.999742910909182,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2191,False,"{'a': 0.01, 'e': 0.11180488780843774}",30,23,7.132066690831616,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2192,False,"{'a': 0.01, 'e': 0.11169313880444368}",25,11,26.91729244300291,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2193,False,"{'a': 0.01, 'e': 0.11158150149359779}",30,19,2.8012109841424744,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2194,False,"{'a': 0.01, 'e': 0.11146997576426268}",30,23,12.42911274594502,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2195,False,"{'a': 0.01, 'e': 0.11135856150491262}",20,11,14.852883335781343,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2196,False,"{'a': 0.01, 'e': 0.1112472586041333}",20,14,11.179302215122839,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2197,False,"{'a': 0.01, 'e': 0.1111360669506219}",30,7,25.41295240548881,"{0: 22, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2198,False,"{'a': 0.01, 'e': 0.11102498643318673}",35,23,23.431089800334178,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2199,False,"{'a': 0.01, 'e': 0.11091401694074722}",20,8,26.801074459445495,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2200,False,"{'a': 0.01, 'e': 0.11080315836233387}",30,18,24.135672669988203,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2201,False,"{'a': 0.01, 'e': 0.11069241058708815}",20,13,12.608313423352714,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2202,False,"{'a': 0.01, 'e': 0.11058177350426224}",30,13,30.56144881853337,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2203,False,"{'a': 0.01, 'e': 0.11047124700321906}",20,16,9.591588981647162,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2204,False,"{'a': 0.01, 'e': 0.11036083097343202}",20,10,16.63028783835833,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2205,False,"{'a': 0.01, 'e': 0.11025052530448522}",25,7,32.353052293228714,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2206,False,"{'a': 0.01, 'e': 0.1101403298860729}",25,13,26.65446742809811,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2207,False,"{'a': 0.01, 'e': 0.11003024460799965}",25,3,25.417311301108654,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2208,False,"{'a': 0.01, 'e': 0.10992026936018012}",25,15,19.179648632261742,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2209,False,"{'a': 0.01, 'e': 0.10981040403263917}",20,6,9.905593969639707,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2210,False,"{'a': 0.01, 'e': 0.10970064851551141}",30,8,40.46127832017098,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2211,False,"{'a': 0.01, 'e': 0.10959100269904129}",20,16,7.91105735752854,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2212,False,"{'a': 0.01, 'e': 0.10948146647358296}",20,7,23.38528289231413,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2213,False,"{'a': 0.01, 'e': 0.10937203972960027}",20,16,7.86808800381846,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2214,False,"{'a': 0.01, 'e': 0.10926272235766643}",20,0,34.42113859267642,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2215,False,"{'a': 0.01, 'e': 0.10915351424846406}",20,13,11.7472709103534,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2216,False,"{'a': 0.01, 'e': 0.10904441529278498}",30,14,32.36082952396762,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2217,False,"{'a': 0.01, 'e': 0.10893542538153032}",20,5,16.149172792636733,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2218,False,"{'a': 0.01, 'e': 0.10882654440571013}",25,11,15.552904445904188,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2219,False,"{'a': 0.01, 'e': 0.10871777225644341}",20,0,13.657149602857386,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2220,False,"{'a': 0.01, 'e': 0.10860910882495796}",20,4,-21.33879551473184,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2221,False,"{'a': 0.01, 'e': 0.10850055400259043}",20,13,2.1016204165946437,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2222,False,"{'a': 0.01, 'e': 0.10839210768078596}",20,9,21.969461121512126,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2223,False,"{'a': 0.01, 'e': 0.10828376975109819}",25,13,11.9651863636334,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2224,False,"{'a': 0.01, 'e': 0.10817554010518914}",20,14,9.13936528903204,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2225,False,"{'a': 0.01, 'e': 0.10806741863482926}",20,15,9.18218202133109,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2226,False,"{'a': 0.01, 'e': 0.10795940523189702}",20,11,3.025706234019075,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2227,False,"{'a': 0.01, 'e': 0.10785149978837902}",30,9,-37.96779730975955,"{0: 18, 1: 0, 2: 1, 3: 1, 4: 1}",1 +2228,False,"{'a': 0.01, 'e': 0.10774370219636975}",20,12,7.169335908032091,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2229,False,"{'a': 0.01, 'e': 0.10763601234807169}",25,9,-16.899211822504945,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2230,False,"{'a': 0.01, 'e': 0.10752843013579495}",25,10,5.274901726405225,"{0: 13, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2231,False,"{'a': 0.01, 'e': 0.10742095545195732}",25,12,21.43549189953016,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2232,False,"{'a': 0.01, 'e': 0.10731358818908403}",30,16,-16.8075507973952,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2233,False,"{'a': 0.01, 'e': 0.10720632823980793}",25,16,17.87962966123895,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2234,False,"{'a': 0.01, 'e': 0.107099175496869}",20,16,6.837037176598031,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2235,False,"{'a': 0.01, 'e': 0.10699212985311449}",30,18,23.297454857798122,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2236,False,"{'a': 0.01, 'e': 0.1068851912014987}",30,18,25.232918488128178,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2237,False,"{'a': 0.01, 'e': 0.10677835943508306}",30,16,16.33783065939351,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2238,False,"{'a': 0.01, 'e': 0.10667163444703576}",30,16,27.426076754336993,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2239,False,"{'a': 0.01, 'e': 0.1065650161306318}",20,7,20.3947415939138,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2240,False,"{'a': 0.01, 'e': 0.1064585043792528}",25,15,18.614531616792107,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2241,False,"{'a': 0.01, 'e': 0.1063520990863871}",35,15,37.2850181734775,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2242,False,"{'a': 0.01, 'e': 0.10624580014562934}",20,8,21.915311149787456,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2243,False,"{'a': 0.01, 'e': 0.1061396074506806}",30,24,12.707422184756215,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2244,False,"{'a': 0.01, 'e': 0.1060335208953481}",20,14,11.599123265297873,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2245,False,"{'a': 0.01, 'e': 0.10592754037354536}",20,1,18.430972020227895,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2246,False,"{'a': 0.01, 'e': 0.10582166577929185}",20,12,0.7673132320152334,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2247,False,"{'a': 0.01, 'e': 0.10571589700671291}",30,16,14.524599970243052,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2248,False,"{'a': 0.01, 'e': 0.10561023395003975}",20,1,30.69975882807177,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2249,False,"{'a': 0.01, 'e': 0.1055046765036094}",25,14,-9.631563520865816,"{0: 9, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2250,False,"{'a': 0.01, 'e': 0.10539922456186433}",20,12,13.43409050291864,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2251,False,"{'a': 0.01, 'e': 0.10529387801935262}",20,16,5.600455976574006,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2252,False,"{'a': 0.01, 'e': 0.10518863677072765}",20,0,22.659688145854158,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2253,False,"{'a': 0.01, 'e': 0.10508350071074826}",20,13,14.366501963963646,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2254,False,"{'a': 0.01, 'e': 0.10497846973427834}",20,13,14.053186244485879,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2255,False,"{'a': 0.01, 'e': 0.1048735437362869}",30,18,10.047745715189455,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2256,False,"{'a': 0.01, 'e': 0.10476872261184789}",20,15,9.887147424153278,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2257,False,"{'a': 0.01, 'e': 0.10466400625614027}",35,13,24.88022577774595,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2258,False,"{'a': 0.01, 'e': 0.10455939456444763}",20,14,10.709805586273673,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2259,False,"{'a': 0.01, 'e': 0.10445488743215826}",20,13,10.483503227870024,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2260,False,"{'a': 0.01, 'e': 0.104350484754765}",20,10,16.648973165900305,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2261,False,"{'a': 0.01, 'e': 0.10424618642786522}",20,9,13.308571728353142,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2262,False,"{'a': 0.01, 'e': 0.10414199234716055}",25,13,11.046962182247245,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2263,False,"{'a': 0.01, 'e': 0.10403790240845692}",30,17,25.663624633767032,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2264,False,"{'a': 0.01, 'e': 0.10393391650766431}",25,13,21.591528473635652,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2265,False,"{'a': 0.01, 'e': 0.10383003454079692}",30,14,-6.430405158952235,"{0: 14, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2266,False,"{'a': 0.01, 'e': 0.10372625640397273}",20,15,-13.584004541612442,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2267,False,"{'a': 0.01, 'e': 0.10362258199341358}",25,11,20.56605467614716,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2268,False,"{'a': 0.01, 'e': 0.10351901120544502}",20,7,25.206456209378842,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2269,False,"{'a': 0.01, 'e': 0.10341554393649634}",30,8,35.0956454967282,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2270,False,"{'a': 0.01, 'e': 0.1033121800831002}",25,10,27.499763663469622,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2271,False,"{'a': 0.01, 'e': 0.10320891954189276}",30,23,11.41870666912714,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2272,False,"{'a': 0.01, 'e': 0.10310576220961341}",30,20,19.185802319947648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2273,False,"{'a': 0.01, 'e': 0.10300270798310492}",20,8,23.783717920919084,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2274,False,"{'a': 0.01, 'e': 0.102899756759313}",25,18,13.061602581571886,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2275,False,"{'a': 0.01, 'e': 0.1027969084352864}",20,12,13.509565899202787,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2276,False,"{'a': 0.01, 'e': 0.10269416290817676}",20,12,16.411931507091246,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2277,False,"{'a': 0.01, 'e': 0.10259152007523863}",20,8,11.48271132191752,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2278,False,"{'a': 0.01, 'e': 0.10248897983382912}",30,17,24.937682512185475,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2279,False,"{'a': 0.01, 'e': 0.102386542081408}",20,14,12.474631465982199,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2280,False,"{'a': 0.01, 'e': 0.10228420671553744}",30,15,16.731139448838263,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2281,False,"{'a': 0.01, 'e': 0.10218197363388216}",25,16,7.646037648579199,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2282,False,"{'a': 0.01, 'e': 0.10207984273420903}",20,0,33.897648451609584,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2283,False,"{'a': 0.01, 'e': 0.10197781391438715}",25,14,18.56952766053588,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2284,False,"{'a': 0.01, 'e': 0.10187588707238764}",25,20,8.298457861532228,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2285,False,"{'a': 0.01, 'e': 0.10177406210628373}",25,16,16.51036386069101,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2286,False,"{'a': 0.01, 'e': 0.1016723389142504}",25,15,16.205774148655692,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2287,False,"{'a': 0.01, 'e': 0.10157071739456447}",30,5,36.8880461156445,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2288,False,"{'a': 0.01, 'e': 0.10146919744560434}",20,9,16.275423325485953,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2289,False,"{'a': 0.01, 'e': 0.10136777896585017}",25,0,37.6045606532055,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2290,False,"{'a': 0.01, 'e': 0.1012664618538834}",20,16,7.039050740941633,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2291,False,"{'a': 0.01, 'e': 0.10116524600838693}",20,14,11.017196734856082,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2292,False,"{'a': 0.01, 'e': 0.10106413132814486}",20,3,5.591154584238665,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2293,False,"{'a': 0.01, 'e': 0.10096311771204257}",20,14,10.474893261582837,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2294,False,"{'a': 0.01, 'e': 0.10086220505906641}",25,13,23.139182309992854,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2295,False,"{'a': 0.01, 'e': 0.10076139326830373}",20,10,17.8086629588802,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2296,False,"{'a': 0.01, 'e': 0.10066068223894266}",30,23,10.467212797703578,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2297,False,"{'a': 0.01, 'e': 0.10056007187027226}",30,20,20.642547234917952,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2298,False,"{'a': 0.01, 'e': 0.1004595620616821}",35,15,7.989314021289104,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2299,False,"{'a': 0.01, 'e': 0.1003591527126624}",30,8,16.201527016225377,"{0: 21, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2300,False,"{'a': 0.01, 'e': 0.1002588437228037}",35,21,6.653045807451846,"{0: 12, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2301,False,"{'a': 0.01, 'e': 0.10015863499179714}",25,6,-20.799978467155164,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2302,False,"{'a': 0.01, 'e': 0.10005852641943393}",25,6,29.638404826889882,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2303,False,"{'a': 0.01, 'e': 0.09995851790560545}",35,23,19.61876456250599,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2304,False,"{'a': 0.01, 'e': 0.09985860935030318}",20,14,10.177604384507806,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2305,False,"{'a': 0.01, 'e': 0.09975880065361863}",20,6,12.099329480813209,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2306,False,"{'a': 0.01, 'e': 0.09965909171574303}",25,20,10.373573456931359,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2307,False,"{'a': 0.01, 'e': 0.09955948243696745}",25,0,40.92652646961046,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2308,False,"{'a': 0.01, 'e': 0.09945997271768262}",35,15,38.41506668340465,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2309,False,"{'a': 0.01, 'e': 0.09936056245837875}",20,5,21.057915933819704,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2310,False,"{'a': 0.01, 'e': 0.09926125155964566}",25,0,32.76407024902777,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2311,False,"{'a': 0.01, 'e': 0.09916203992217239}",30,9,-4.117793227423465,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2312,False,"{'a': 0.01, 'e': 0.09906292744674731}",20,16,10.079143934921914,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2313,False,"{'a': 0.01, 'e': 0.0989639140342579}",25,13,1.4345166616073302,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2314,False,"{'a': 0.01, 'e': 0.09886499958569081}",20,12,3.4643249131628617,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2315,False,"{'a': 0.01, 'e': 0.09876618400213154}",30,22,12.814139395823615,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2316,False,"{'a': 0.01, 'e': 0.0986674671847645}",25,13,-10.332459461558209,"{0: 10, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2317,False,"{'a': 0.01, 'e': 0.09856884903487283}",20,14,12.726655965875326,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2318,False,"{'a': 0.01, 'e': 0.09847032945383845}",20,7,15.886590995196435,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2319,False,"{'a': 0.01, 'e': 0.09837190834314173}",25,5,23.533864297589563,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2320,False,"{'a': 0.01, 'e': 0.09827358560436154}",20,6,13.266823682482105,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2321,False,"{'a': 0.01, 'e': 0.09817536113917512}",20,6,-1.4110211544143423,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2322,False,"{'a': 0.01, 'e': 0.09807723484935806}",25,13,10.648113520665023,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2323,False,"{'a': 0.01, 'e': 0.09797920663678401}",20,0,28.979648428907574,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2324,False,"{'a': 0.01, 'e': 0.09788127640342477}",25,12,27.848114617426155,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2325,False,"{'a': 0.01, 'e': 0.09778344405135005}",20,6,23.254418170235283,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2326,False,"{'a': 0.01, 'e': 0.09768570948272756}",20,13,12.726496671791413,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2327,False,"{'a': 0.01, 'e': 0.0975880725998227}",20,11,13.397124679852896,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2328,False,"{'a': 0.01, 'e': 0.09749053330499859}",20,8,24.66777785054849,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2329,False,"{'a': 0.01, 'e': 0.09739309150071584}",20,15,10.088624241031347,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2330,False,"{'a': 0.01, 'e': 0.09729574708953276}",20,16,7.528987949922739,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2331,False,"{'a': 0.01, 'e': 0.09719849997410487}",25,3,-28.67229284580323,"{0: 19, 1: 0, 2: 2, 3: 0, 4: 1}",1 +2332,False,"{'a': 0.01, 'e': 0.09710135005718508}",25,12,-2.3628101917207815,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2333,False,"{'a': 0.01, 'e': 0.09700429724162336}",25,13,24.172829595570303,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2334,False,"{'a': 0.01, 'e': 0.09690734143036704}",25,8,31.34801624601556,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2335,False,"{'a': 0.01, 'e': 0.09681048252646021}",30,18,-24.194754550696977,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2336,False,"{'a': 0.01, 'e': 0.09671372043304398}",25,3,12.55711382669245,"{0: 20, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2337,False,"{'a': 0.01, 'e': 0.09661705505335619}",25,8,21.032751300579935,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2338,False,"{'a': 0.01, 'e': 0.09652048629073155}",20,4,26.101697316951643,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2339,False,"{'a': 0.01, 'e': 0.09642401404860125}",20,8,14.620299383051819,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2340,False,"{'a': 0.01, 'e': 0.09632763823049303}",25,14,-4.2968184542835175,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2341,False,"{'a': 0.01, 'e': 0.09623135874003103}",30,16,-46.67383804138965,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 1}",1 +2342,False,"{'a': 0.01, 'e': 0.09613517548093582}",20,9,20.405109373162073,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2343,False,"{'a': 0.01, 'e': 0.09603908835702411}",25,13,23.16300923809592,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2344,False,"{'a': 0.01, 'e': 0.09594309727220877}",20,11,11.414146965477423,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2345,False,"{'a': 0.01, 'e': 0.09584720213049865}",25,7,5.13681095164954,"{0: 16, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2346,False,"{'a': 0.01, 'e': 0.09575140283599869}",25,17,16.29939336991295,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2347,False,"{'a': 0.01, 'e': 0.09565569929290954}",20,16,7.2128686804648074,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2348,False,"{'a': 0.01, 'e': 0.09556009140552765}",35,18,20.86917403845745,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2349,False,"{'a': 0.01, 'e': 0.0954645790782451}",20,10,21.873954407900648,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2350,False,"{'a': 0.01, 'e': 0.09536916221554961}",20,8,7.651370055925216,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2351,False,"{'a': 0.01, 'e': 0.09527384072202429}",20,8,19.5718794507303,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2352,False,"{'a': 0.01, 'e': 0.09517861450234763}",25,18,13.69976530920809,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2353,False,"{'a': 0.01, 'e': 0.09508348346129337}",20,5,27.291474041746397,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2354,False,"{'a': 0.01, 'e': 0.09498844750373053}",30,0,25.762984728158873,"{0: 28, 1: 1, 2: 1, 3: 0, 4: 0}",0 +2355,False,"{'a': 0.01, 'e': 0.09489350653462311}",30,11,0.7650609055044697,"{0: 17, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2356,False,"{'a': 0.01, 'e': 0.09479866045903014}",20,5,3.3967881669492117,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2357,False,"{'a': 0.01, 'e': 0.09470390918210547}",30,18,18.879116107030683,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2358,False,"{'a': 0.01, 'e': 0.09460925260909793}",20,14,9.682753911164138,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2359,False,"{'a': 0.01, 'e': 0.09451469064535088}",25,17,18.005866734115166,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2360,False,"{'a': 0.01, 'e': 0.09442022319630235}",20,9,7.073537550624834,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2361,False,"{'a': 0.01, 'e': 0.09432585016748485}",25,13,23.036708847677367,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2362,False,"{'a': 0.01, 'e': 0.0942315714645254}",20,6,22.984914025267813,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2363,False,"{'a': 0.01, 'e': 0.09413738699314529}",20,16,7.595006114509696,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2364,False,"{'a': 0.01, 'e': 0.09404329665916}",25,16,-3.786185662725961,"{0: 7, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2365,False,"{'a': 0.01, 'e': 0.09394930036847918}",25,15,18.60035663148515,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2366,False,"{'a': 0.01, 'e': 0.09385539802710659}",20,6,21.466705510122644,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2367,False,"{'a': 0.01, 'e': 0.09376158954113986}",30,20,16.700794546968798,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2368,False,"{'a': 0.01, 'e': 0.09366787481677047}",20,0,33.11755892774858,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2369,False,"{'a': 0.01, 'e': 0.09357425376028367}",30,14,20.910271494682917,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2370,False,"{'a': 0.01, 'e': 0.09348072627805847}",25,11,28.670661619446033,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2371,False,"{'a': 0.01, 'e': 0.09338729227656732}",20,5,-17.733903310395853,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2372,False,"{'a': 0.01, 'e': 0.09329395166237625}",30,20,8.101274804811986,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2373,False,"{'a': 0.01, 'e': 0.09320070434214457}",20,10,-10.688918873341526,"{0: 8, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2374,False,"{'a': 0.01, 'e': 0.09310755022262504}",25,15,18.569841708037167,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2375,False,"{'a': 0.01, 'e': 0.09301448921066349}",20,5,15.915240044070295,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2376,False,"{'a': 0.01, 'e': 0.0929215212131989}",30,17,22.1650141735479,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2377,False,"{'a': 0.01, 'e': 0.09282864613726323}",30,11,22.74366591998209,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2378,False,"{'a': 0.01, 'e': 0.09273586388998147}",20,7,15.551060403440966,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2379,False,"{'a': 0.01, 'e': 0.09264317437857132}",25,7,31.00369840262415,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2380,False,"{'a': 0.01, 'e': 0.09255057751034329}",20,8,12.655927567224623,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2381,False,"{'a': 0.01, 'e': 0.09245807319270043}",30,8,45.26543300762644,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2382,False,"{'a': 0.01, 'e': 0.0923656613331385}",20,1,22.606190857743382,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2383,False,"{'a': 0.01, 'e': 0.09227334183924561}",20,10,8.752350557043373,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2384,False,"{'a': 0.01, 'e': 0.09218111461870225}",25,18,12.615715498769225,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2385,False,"{'a': 0.01, 'e': 0.09208897957928115}",30,13,31.321523203648013,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2386,False,"{'a': 0.01, 'e': 0.09199693662884734}",25,18,13.443665765218853,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2387,False,"{'a': 0.01, 'e': 0.09190498567535783}",20,9,15.192292571921278,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2388,False,"{'a': 0.01, 'e': 0.09181312662686165}",20,14,11.65592605499302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2389,False,"{'a': 0.01, 'e': 0.09172135939149971}",20,8,22.50129041729901,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2390,False,"{'a': 0.01, 'e': 0.09162968387750484}",25,16,17.795392839426093,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2391,False,"{'a': 0.01, 'e': 0.09153809999320149}",20,14,10.261213593792128,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2392,False,"{'a': 0.01, 'e': 0.09144660764700575}",20,11,8.251606200536191,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2393,False,"{'a': 0.01, 'e': 0.09135520674742525}",35,25,19.777909384618678,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2394,False,"{'a': 0.01, 'e': 0.09126389720305915}",20,16,7.015998841948232,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2395,False,"{'a': 0.01, 'e': 0.09117267892259785}",30,17,21.670333998486907,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2396,False,"{'a': 0.01, 'e': 0.09108155181482308}",20,10,14.815236821103264,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2397,False,"{'a': 0.01, 'e': 0.09099051578860767}",20,13,13.726396245067164,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2398,False,"{'a': 0.01, 'e': 0.09089957075291567}",20,9,24.091984990909094,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2399,False,"{'a': 0.01, 'e': 0.090808716616802}",25,12,24.927419932664144,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2400,False,"{'a': 0.01, 'e': 0.09071795328941251}",25,14,16.49371886851841,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2401,False,"{'a': 0.01, 'e': 0.09062728067998384}",20,16,8.71473778277757,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2402,False,"{'a': 0.01, 'e': 0.09053669869784343}",30,0,46.46710643917093,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2403,False,"{'a': 0.01, 'e': 0.09044620725240926}",30,18,22.567625947490793,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2404,False,"{'a': 0.01, 'e': 0.0903558062531899}",20,12,3.053145931644396,"{0: 6, 1: 2, 2: 0, 3: 0, 4: 0}",1 +2405,False,"{'a': 0.01, 'e': 0.09026549560978427}",20,16,7.801556719721683,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2406,False,"{'a': 0.01, 'e': 0.0901752752318818}",20,8,9.548047799588053,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2407,False,"{'a': 0.01, 'e': 0.0900851450292621}",30,11,31.28413187176335,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2408,False,"{'a': 0.01, 'e': 0.08999510491179491}",20,8,9.571295591689111,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2409,False,"{'a': 0.01, 'e': 0.08990515478944011}",25,5,30.824418513815225,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2410,False,"{'a': 0.01, 'e': 0.08981529457224763}",30,8,1.6440345294467587,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2411,False,"{'a': 0.01, 'e': 0.0897255241703572}",20,6,12.22156959115232,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2412,False,"{'a': 0.01, 'e': 0.08963584349399842}",20,14,10.679626790738645,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2413,False,"{'a': 0.01, 'e': 0.08954625245349057}",20,15,8.343604887505412,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2414,False,"{'a': 0.01, 'e': 0.08945675095924267}",25,13,-20.028967099580463,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2415,False,"{'a': 0.01, 'e': 0.08936733892175319}",25,19,11.386982611443461,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2416,False,"{'a': 0.01, 'e': 0.08927801625161007}",20,12,6.101069227089605,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2417,False,"{'a': 0.01, 'e': 0.08918878285949061}",20,6,23.851775374474965,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2418,False,"{'a': 0.01, 'e': 0.08909963865616147}",30,14,-25.256338313234288,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2419,False,"{'a': 0.01, 'e': 0.08901058355247843}",25,13,26.550837889442274,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2420,False,"{'a': 0.01, 'e': 0.08892161745938634}",30,18,20.8545280516759,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2421,False,"{'a': 0.01, 'e': 0.08883274028791908}",20,9,22.580828823890737,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2422,False,"{'a': 0.01, 'e': 0.08874395194919957}",20,13,11.94069629264232,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2423,False,"{'a': 0.01, 'e': 0.08865525235443938}",20,16,7.136888182575471,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2424,False,"{'a': 0.01, 'e': 0.08856664141493896}",20,16,8.324081476713971,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2425,False,"{'a': 0.01, 'e': 0.08847811904208727}",20,13,14.835978787862793,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2426,False,"{'a': 0.01, 'e': 0.08838968514736205}",20,13,11.07105286981265,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2427,False,"{'a': 0.01, 'e': 0.08830133964232935}",20,9,19.159881807743563,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2428,False,"{'a': 0.01, 'e': 0.08821308243864363}",20,6,27.541451986614245,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2429,False,"{'a': 0.01, 'e': 0.08812491344804767}",20,10,20.522902862714602,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2430,False,"{'a': 0.01, 'e': 0.08803683258237255}",20,11,16.838903235740972,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2431,False,"{'a': 0.01, 'e': 0.08794883975353733}",20,13,12.123941238536297,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2432,False,"{'a': 0.01, 'e': 0.0878609348735492}",30,18,19.171765578199597,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2433,False,"{'a': 0.01, 'e': 0.08777311785450327}",20,10,20.486694568234398,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2434,False,"{'a': 0.01, 'e': 0.08768538860858248}",20,8,21.409190203803238,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2435,False,"{'a': 0.01, 'e': 0.08759774704805763}",20,11,16.174996418679648,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2436,False,"{'a': 0.01, 'e': 0.08751019308528712}",20,0,7.654359000455442,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2437,False,"{'a': 0.01, 'e': 0.08742272663271701}",30,4,45.1240029062153,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2438,False,"{'a': 0.01, 'e': 0.08733534760288077}",20,12,17.044469115818032,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2439,False,"{'a': 0.01, 'e': 0.08724805590839944}",25,13,14.047658375909128,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2440,False,"{'a': 0.01, 'e': 0.0871608514619813}",35,15,37.54493913798297,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2441,False,"{'a': 0.01, 'e': 0.08707373417642188}",30,16,25.29734990657047,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2442,False,"{'a': 0.01, 'e': 0.08698670396460385}",20,7,2.0241054042649758,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2443,False,"{'a': 0.01, 'e': 0.08689976073949708}",25,20,10.462309166797498,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2444,False,"{'a': 0.01, 'e': 0.08681290441415829}",25,11,26.65767622708164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2445,False,"{'a': 0.01, 'e': 0.08672613490173114}",20,8,21.3495169223316,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2446,False,"{'a': 0.01, 'e': 0.0866394521154461}",30,4,46.841797255556905,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2447,False,"{'a': 0.01, 'e': 0.08655285596862042}",20,2,22.297391818488,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2448,False,"{'a': 0.01, 'e': 0.08646634637465792}",20,11,16.780565648935614,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2449,False,"{'a': 0.01, 'e': 0.086379923247049}",20,10,18.95380939924982,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2450,False,"{'a': 0.01, 'e': 0.0862935864993705}",30,22,15.361139211970745,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2451,False,"{'a': 0.01, 'e': 0.08620733604528572}",25,20,8.814423056747973,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2452,False,"{'a': 0.01, 'e': 0.08612117179854416}",25,15,18.29915902868833,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2453,False,"{'a': 0.01, 'e': 0.08603509367298158}",25,13,21.114371276024997,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2454,False,"{'a': 0.01, 'e': 0.08594910158251981}",20,6,15.274904733285194,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2455,False,"{'a': 0.01, 'e': 0.08586319544116683}",20,5,28.961037660698807,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2456,False,"{'a': 0.01, 'e': 0.08577737516301644}",20,7,-3.372749541586085,"{0: 11, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2457,False,"{'a': 0.01, 'e': 0.08569164066224835}",20,6,-5.197733512202592,"{0: 12, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2458,False,"{'a': 0.01, 'e': 0.08560599185312803}",20,16,6.578734375150956,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2459,False,"{'a': 0.01, 'e': 0.08552042865000674}",20,12,13.786636757740062,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2460,False,"{'a': 0.01, 'e': 0.08543495096732123}",30,23,6.321536682859564,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2461,False,"{'a': 0.01, 'e': 0.08534955871959381}",30,14,18.906240591230222,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2462,False,"{'a': 0.01, 'e': 0.08526425182143217}",20,12,19.32900305874354,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2463,False,"{'a': 0.01, 'e': 0.0851790301875295}",25,20,8.632960785401767,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2464,False,"{'a': 0.01, 'e': 0.08509389373266411}",20,12,7.485757249048737,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2465,False,"{'a': 0.01, 'e': 0.08500884237169956}",25,20,8.375147386052054,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2466,False,"{'a': 0.01, 'e': 0.08492387601958441}",20,13,15.171733540713166,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2467,False,"{'a': 0.01, 'e': 0.08483899459135241}",20,14,9.963387784205327,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2468,False,"{'a': 0.01, 'e': 0.08475419800212207}",20,16,7.0944931272156095,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2469,False,"{'a': 0.01, 'e': 0.08466948616709678}",20,13,13.871709235739381,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2470,False,"{'a': 0.01, 'e': 0.08458485900156469}",25,3,25.515165591617077,"{0: 20, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2471,False,"{'a': 0.01, 'e': 0.08450031642089868}",20,11,12.347826272629094,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2472,False,"{'a': 0.01, 'e': 0.08441585834055614}",20,8,26.284380434716635,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2473,False,"{'a': 0.01, 'e': 0.08433148467607897}",25,18,13.14239319470751,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2474,False,"{'a': 0.01, 'e': 0.08424719534309347}",25,13,20.381699525303592,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2475,False,"{'a': 0.01, 'e': 0.08416299025731036}",20,10,15.720970840948288,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2476,False,"{'a': 0.01, 'e': 0.08407886933452453}",20,14,10.613677676471323,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2477,False,"{'a': 0.01, 'e': 0.08399483249061504}",20,4,26.003310137394127,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2478,False,"{'a': 0.01, 'e': 0.083910879641545}",25,13,25.15608403876751,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2479,False,"{'a': 0.01, 'e': 0.08382701070336164}",25,15,-2.2779204631558994,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2480,False,"{'a': 0.01, 'e': 0.08374322559219596}",25,13,23.722025040869315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2481,False,"{'a': 0.01, 'e': 0.08365952422426286}",25,8,27.70741834861216,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2482,False,"{'a': 0.01, 'e': 0.0835759065158609}",25,11,12.402601466683414,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2483,False,"{'a': 0.01, 'e': 0.08349237238337248}",25,18,14.909906141658885,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2484,False,"{'a': 0.01, 'e': 0.08340892174326339}",30,18,26.595343926071937,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2485,False,"{'a': 0.01, 'e': 0.083325554512083}",25,13,23.724579466920893,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2486,False,"{'a': 0.01, 'e': 0.08324227060646401}",20,0,8.899139387429212,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2487,False,"{'a': 0.01, 'e': 0.08315906994312262}",20,10,18.5982733766309,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2488,False,"{'a': 0.01, 'e': 0.0830759524388581}",20,12,14.99521211892406,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2489,False,"{'a': 0.01, 'e': 0.08299291801055293}",25,7,34.605577418136846,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2490,False,"{'a': 0.01, 'e': 0.08290996657517266}",30,19,21.513247470937646,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2491,False,"{'a': 0.01, 'e': 0.08282709804976592}",20,7,7.587715024540764,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2492,False,"{'a': 0.01, 'e': 0.08274431235146412}",20,2,32.12358032255705,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2493,False,"{'a': 0.01, 'e': 0.08266160939748157}",25,17,9.887789829155789,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2494,False,"{'a': 0.01, 'e': 0.08257898910511527}",20,11,17.026523160478035,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2495,False,"{'a': 0.01, 'e': 0.08249645139174498}",25,14,21.980415369556447,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2496,False,"{'a': 0.01, 'e': 0.08241399617483297}",25,18,13.116732368527723,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2497,False,"{'a': 0.01, 'e': 0.08233162337192401}",20,15,8.313461159656121,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2498,False,"{'a': 0.01, 'e': 0.08224933290064523}",25,17,15.750200836079134,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2499,False,"{'a': 0.01, 'e': 0.08216712467870625}",30,12,23.024465818216704,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2500,False,"{'a': 0.01, 'e': 0.0820849986238988}",30,7,36.00118830699733,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2501,False,"{'a': 0.01, 'e': 0.08200295465409681}",20,4,31.242685920928018,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2502,False,"{'a': 0.01, 'e': 0.08192099268725626}",20,16,7.272620757585155,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2503,False,"{'a': 0.01, 'e': 0.08183911264141527}",20,12,16.388209212039783,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2504,False,"{'a': 0.01, 'e': 0.08175731443469375}",25,7,31.886359540763436,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2505,False,"{'a': 0.01, 'e': 0.08167559798529346}",25,18,13.92496622121691,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2506,False,"{'a': 0.01, 'e': 0.08159396321149794}",30,23,12.968663629570859,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2507,False,"{'a': 0.01, 'e': 0.08151241003167246}",30,15,26.858287704839213,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2508,False,"{'a': 0.01, 'e': 0.08143093836426381}",25,12,23.13680414727093,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2509,False,"{'a': 0.01, 'e': 0.0813495481278003}",25,8,17.647026516027815,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2510,False,"{'a': 0.01, 'e': 0.08126823924089167}",20,12,16.382733790196987,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2511,False,"{'a': 0.01, 'e': 0.08118701162222909}",25,12,22.29390569291453,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2512,False,"{'a': 0.01, 'e': 0.0811058651905849}",20,13,13.530827560613199,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2513,False,"{'a': 0.01, 'e': 0.08102479986481265}",20,3,22.915635416513986,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2514,False,"{'a': 0.01, 'e': 0.08094381556384699}",25,17,18.433992724686508,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2515,False,"{'a': 0.01, 'e': 0.08086291220670366}",25,13,22.668634277219358,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2516,False,"{'a': 0.01, 'e': 0.08078208971247929}",25,19,12.534883668153459,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2517,False,"{'a': 0.01, 'e': 0.08070134800035135}",30,16,-26.043066555431675,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2518,False,"{'a': 0.01, 'e': 0.08062068698957811}",20,13,15.012189996417362,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2519,False,"{'a': 0.01, 'e': 0.08054010659949862}",25,15,-2.938226566344193,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2520,False,"{'a': 0.01, 'e': 0.08045960674953244}",35,13,32.3314427533565,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2521,False,"{'a': 0.01, 'e': 0.0803791873591797}",25,6,33.60146334052855,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2522,False,"{'a': 0.01, 'e': 0.08029884834802099}",20,13,7.543247872174064,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2523,False,"{'a': 0.01, 'e': 0.08021858963571736}",25,6,35.855329031327635,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2524,False,"{'a': 0.01, 'e': 0.08013841114201005}",30,21,18.186147632227875,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2525,False,"{'a': 0.01, 'e': 0.08005831278672054}",20,13,5.154089218332945,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2526,False,"{'a': 0.01, 'e': 0.07997829448975048}",20,9,12.154755353654902,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2527,False,"{'a': 0.01, 'e': 0.0798983561710816}",20,6,17.262003034593327,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2528,False,"{'a': 0.01, 'e': 0.07981849775077554}",20,5,18.500691540544604,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2529,False,"{'a': 0.01, 'e': 0.0797387191489739}",20,16,7.503544787129154,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2530,False,"{'a': 0.01, 'e': 0.07965902028589801}",25,15,20.797362403337836,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2531,False,"{'a': 0.01, 'e': 0.07957940108184908}",20,16,7.730053019172201,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2532,False,"{'a': 0.01, 'e': 0.07949986145720786}",20,12,13.95869142811357,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2533,False,"{'a': 0.01, 'e': 0.07942040133243472}",20,12,15.932859519639454,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2534,False,"{'a': 0.01, 'e': 0.0793410206280695}",20,14,11.643475932533141,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2535,False,"{'a': 0.01, 'e': 0.07926171926473155}",20,12,14.406532299449392,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2536,False,"{'a': 0.01, 'e': 0.07918249716311948}",25,7,31.639299590001315,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2537,False,"{'a': 0.01, 'e': 0.07910335424401117}",25,13,22.26993517529398,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2538,False,"{'a': 0.01, 'e': 0.07902429042826366}",25,5,33.27571432002753,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2539,False,"{'a': 0.01, 'e': 0.07894530563681319}",30,16,21.630311046294405,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2540,False,"{'a': 0.01, 'e': 0.07886639979067495}",25,17,19.68715598390984,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2541,False,"{'a': 0.01, 'e': 0.07878757281094306}",20,9,18.599141525584823,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2542,False,"{'a': 0.01, 'e': 0.07870882461879052}",20,4,15.7375421173844,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2543,False,"{'a': 0.01, 'e': 0.07863015513546918}",20,11,19.261094189390466,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2544,False,"{'a': 0.01, 'e': 0.07855156428230954}",20,11,17.636244787428026,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2545,False,"{'a': 0.01, 'e': 0.07847305198072073}",25,9,-16.860495546797246,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2546,False,"{'a': 0.01, 'e': 0.0783946181521904}",25,15,-21.15624320465717,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2547,False,"{'a': 0.01, 'e': 0.07831626271828479}",20,11,19.770651105779564,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2548,False,"{'a': 0.01, 'e': 0.07823798560064842}",25,15,19.074840279614683,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2549,False,"{'a': 0.01, 'e': 0.07815978672100418}",30,17,5.599975534608385,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2550,False,"{'a': 0.01, 'e': 0.07808166600115313}",20,16,7.162559973190464,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2551,False,"{'a': 0.01, 'e': 0.07800362336297463}",20,10,3.4054790345319956,"{0: 8, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2552,False,"{'a': 0.01, 'e': 0.077925658728426}",25,17,9.45702518770031,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2553,False,"{'a': 0.01, 'e': 0.07784777201954257}",20,14,13.862951189081596,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2554,False,"{'a': 0.01, 'e': 0.07776996315843764}",25,3,31.78887538483904,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2555,False,"{'a': 0.01, 'e': 0.07769223206730236}",25,0,19.737350725516666,"{0: 23, 1: 1, 2: 1, 3: 0, 4: 0}",0 +2556,False,"{'a': 0.01, 'e': 0.07761457866840563}",25,20,11.31646710029731,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2557,False,"{'a': 0.01, 'e': 0.07753700288409404}",20,5,27.950480191472636,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2558,False,"{'a': 0.01, 'e': 0.07745950463679176}",30,16,25.986266614724634,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2559,False,"{'a': 0.01, 'e': 0.0773820838490006}",35,20,28.810469162757673,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2560,False,"{'a': 0.01, 'e': 0.07730474044329974}",25,9,25.386589971850558,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2561,False,"{'a': 0.01, 'e': 0.07722747434234577}",25,16,21.0814767548123,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2562,False,"{'a': 0.01, 'e': 0.07715028546887258}",35,13,-17.30069459823025,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2563,False,"{'a': 0.01, 'e': 0.07707317374569124}",20,7,13.306390687653886,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2564,False,"{'a': 0.01, 'e': 0.07699613909569011}",25,15,21.590159679890675,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2565,False,"{'a': 0.01, 'e': 0.0769191814418345}",20,12,15.304768308977721,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2566,False,"{'a': 0.01, 'e': 0.07684230070716673}",20,12,8.717045921058467,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2567,False,"{'a': 0.01, 'e': 0.07676549681480604}",20,13,10.181422138249347,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2568,False,"{'a': 0.01, 'e': 0.0766887696879486}",20,0,36.17316373695595,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2569,False,"{'a': 0.01, 'e': 0.07661211924986724}",20,13,11.05037259482678,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2570,False,"{'a': 0.01, 'e': 0.07653554542391151}",20,12,16.776719470278366,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2571,False,"{'a': 0.01, 'e': 0.07645904813350755}",30,16,8.117354365862157,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2572,False,"{'a': 0.01, 'e': 0.07638262730215813}",20,10,16.6542753002876,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2573,False,"{'a': 0.01, 'e': 0.07630628285344238}",20,8,11.968819168225167,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2574,False,"{'a': 0.01, 'e': 0.07623001471101583}",20,11,18.978565791062195,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2575,False,"{'a': 0.01, 'e': 0.07615382279861033}",20,16,7.501933214301032,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2576,False,"{'a': 0.01, 'e': 0.07607770704003398}",25,1,39.53493961679373,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2577,False,"{'a': 0.01, 'e': 0.07600166735917104}",20,12,7.361850204183135,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2578,False,"{'a': 0.01, 'e': 0.07592570367998178}",30,19,21.527926110248227,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2579,False,"{'a': 0.01, 'e': 0.07584981592650249}",25,13,21.566979635091084,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2580,False,"{'a': 0.01, 'e': 0.07577400402284548}",35,21,27.041738918924857,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2581,False,"{'a': 0.01, 'e': 0.0756982678931988}",25,12,19.15404650075527,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2582,False,"{'a': 0.01, 'e': 0.07562260746182634}",20,14,13.027242865386178,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2583,False,"{'a': 0.01, 'e': 0.0755470226530676}",20,2,20.807046353134105,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2584,False,"{'a': 0.01, 'e': 0.07547151339133784}",25,13,21.002076078578295,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2585,False,"{'a': 0.01, 'e': 0.07539607960112776}",20,4,16.25616482222702,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2586,False,"{'a': 0.01, 'e': 0.07532072120700357}",20,13,14.660673298179232,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2587,False,"{'a': 0.01, 'e': 0.07524543813360683}",25,18,0.6536412132658973,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2588,False,"{'a': 0.01, 'e': 0.07517023030565453}",30,18,11.91922379211385,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2589,False,"{'a': 0.01, 'e': 0.0750950976479388}",20,12,16.504000251822408,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2590,False,"{'a': 0.01, 'e': 0.07502004008532698}",20,10,21.34728778306748,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2591,False,"{'a': 0.01, 'e': 0.07494505754276144}",25,14,-1.3592206466067873,"{0: 9, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2592,False,"{'a': 0.01, 'e': 0.07487014994525974}",25,13,25.346640922320656,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2593,False,"{'a': 0.01, 'e': 0.07479531721791423}",30,14,-10.963640385134337,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2594,False,"{'a': 0.01, 'e': 0.07472055928589216}",20,13,13.710608645146356,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2595,False,"{'a': 0.01, 'e': 0.07464587607443557}",20,9,17.639905856431753,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2596,False,"{'a': 0.01, 'e': 0.07457126750886131}",25,14,24.181307351652453,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2597,False,"{'a': 0.01, 'e': 0.07449673351456078}",20,11,6.0125184982698325,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2598,False,"{'a': 0.01, 'e': 0.07442227401699995}",20,15,8.104707598606446,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2599,False,"{'a': 0.01, 'e': 0.07434788894171933}",20,16,8.358188517625722,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2600,False,"{'a': 0.01, 'e': 0.07427357821433388}",25,13,10.987244127585967,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2601,False,"{'a': 0.01, 'e': 0.07419934176053282}",20,12,12.584832106589856,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2602,False,"{'a': 0.01, 'e': 0.0741251795060797}",20,10,15.399560556169616,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2603,False,"{'a': 0.01, 'e': 0.07405109137681225}",20,13,16.252205497879952,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2604,False,"{'a': 0.01, 'e': 0.07397707729864236}",25,8,9.206877592707471,"{0: 15, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2605,False,"{'a': 0.01, 'e': 0.07390313719755595}",20,9,19.55321850335313,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2606,False,"{'a': 0.01, 'e': 0.0738292709996129}",25,6,34.29845819430516,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2607,False,"{'a': 0.01, 'e': 0.07375547863094695}",20,0,29.062929613993447,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2608,False,"{'a': 0.01, 'e': 0.07368176001776583}",25,11,10.83168534378367,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2609,False,"{'a': 0.01, 'e': 0.07360811508635084}",20,13,11.018383395128813,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2610,False,"{'a': 0.01, 'e': 0.0735345437630571}",20,7,25.292436483051194,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2611,False,"{'a': 0.01, 'e': 0.0734610459743132}",20,10,19.232816385583654,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2612,False,"{'a': 0.01, 'e': 0.07338762164662144}",20,14,14.600666077375429,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2613,False,"{'a': 0.01, 'e': 0.07331427070655744}",20,11,15.893061035097496,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2614,False,"{'a': 0.01, 'e': 0.07324099308077024}",25,17,14.982437799424,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2615,False,"{'a': 0.01, 'e': 0.07316778869598221}",25,9,20.108134206074723,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2616,False,"{'a': 0.01, 'e': 0.07309465747898901}",20,9,20.091405580774058,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2617,False,"{'a': 0.01, 'e': 0.07302159935665936}",25,17,8.096397688777556,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2618,False,"{'a': 0.01, 'e': 0.07294861425593517}",25,17,15.702968536850438,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2619,False,"{'a': 0.01, 'e': 0.07287570210383128}",35,13,39.38491299689547,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2620,False,"{'a': 0.01, 'e': 0.07280286282743559}",30,18,24.255936955339052,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2621,False,"{'a': 0.01, 'e': 0.0727300963539088}",25,15,16.807219016547915,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2622,False,"{'a': 0.01, 'e': 0.07265740261048442}",20,16,8.519249804049737,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2623,False,"{'a': 0.01, 'e': 0.07258478152446868}",25,16,14.214954669685547,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2624,False,"{'a': 0.01, 'e': 0.07251223302324053}",20,13,14.327664989767749,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2625,False,"{'a': 0.01, 'e': 0.07243975703425146}",30,22,15.453467758162654,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2626,False,"{'a': 0.01, 'e': 0.07236735348502546}",30,16,14.480973019129326,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2627,False,"{'a': 0.01, 'e': 0.07229502230315894}",20,6,28.561244774383105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2628,False,"{'a': 0.01, 'e': 0.07222276341632078}",35,27,15.615607552590578,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2629,False,"{'a': 0.01, 'e': 0.07215057675225206}",35,24,23.396965180188474,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2630,False,"{'a': 0.01, 'e': 0.0720784622387661}",20,14,12.449375063868821,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2631,False,"{'a': 0.01, 'e': 0.07200641980374836}",30,18,21.115719964489596,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2632,False,"{'a': 0.01, 'e': 0.07193444937515645}",30,17,15.304146733045608,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2633,False,"{'a': 0.01, 'e': 0.07186255088101991}",20,11,15.86420682214331,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2634,False,"{'a': 0.01, 'e': 0.07179072424944025}",20,10,21.505876553557357,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2635,False,"{'a': 0.01, 'e': 0.07171896940859077}",20,8,22.41710839574081,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2636,False,"{'a': 0.01, 'e': 0.07164728628671672}",25,12,27.015609072524796,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2637,False,"{'a': 0.01, 'e': 0.07157567481213492}",25,11,27.165323288126988,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2638,False,"{'a': 0.01, 'e': 0.0715041349132339}",20,11,21.378502203356064,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2639,False,"{'a': 0.01, 'e': 0.07143266651847373}",30,24,9.879654203517374,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2640,False,"{'a': 0.01, 'e': 0.07136126955638605}",25,14,19.98765061150873,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2641,False,"{'a': 0.01, 'e': 0.07128994395557388}",25,14,5.878912754055888,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2642,False,"{'a': 0.01, 'e': 0.0712186896447116}",20,12,15.462610489147306,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2643,False,"{'a': 0.01, 'e': 0.07114750655254487}",25,15,22.05660948077364,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2644,False,"{'a': 0.01, 'e': 0.07107639460789066}",20,16,8.116088131770722,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2645,False,"{'a': 0.01, 'e': 0.07100535373963698}",20,7,21.834635111517912,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2646,False,"{'a': 0.01, 'e': 0.07093438387674295}",30,17,25.093387771065263,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2647,False,"{'a': 0.01, 'e': 0.07086348494823869}",20,8,21.595989647452004,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2648,False,"{'a': 0.01, 'e': 0.0707926568832253}",25,0,29.48421276076698,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +2649,False,"{'a': 0.01, 'e': 0.07072189961087469}",20,9,18.005474565120593,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2650,False,"{'a': 0.01, 'e': 0.0706512130604296}",30,13,27.203292234384197,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2651,False,"{'a': 0.01, 'e': 0.0705805971612034}",20,11,19.17667722158416,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2652,False,"{'a': 0.01, 'e': 0.0705100518425803}",25,12,14.036095408929668,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2653,False,"{'a': 0.01, 'e': 0.07043957703401492}",20,12,15.954054400338903,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2654,False,"{'a': 0.01, 'e': 0.07036917266503243}",25,11,23.027783771171716,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2655,False,"{'a': 0.01, 'e': 0.07029883866522844}",25,15,20.5220956760356,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2656,False,"{'a': 0.01, 'e': 0.07022857496426901}",20,11,15.643257507105261,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2657,False,"{'a': 0.01, 'e': 0.0701583814918904}",35,21,22.511879907341147,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2658,False,"{'a': 0.01, 'e': 0.07008825817789911}",20,15,0.7896448139989467,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2659,False,"{'a': 0.01, 'e': 0.07001820495217183}",25,20,8.201212971676451,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2660,False,"{'a': 0.01, 'e': 0.06994822174465536}",20,8,18.40129801165515,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2661,False,"{'a': 0.01, 'e': 0.06987830848536646}",25,20,10.409712356815028,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2662,False,"{'a': 0.01, 'e': 0.06980846510439187}",30,9,21.35305478206465,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2663,False,"{'a': 0.01, 'e': 0.06973869153188816}",35,23,22.524433370126932,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2664,False,"{'a': 0.01, 'e': 0.06966898769808184}",20,12,15.238236452160978,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2665,False,"{'a': 0.01, 'e': 0.06959935353326901}",20,10,19.013802291425776,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2666,False,"{'a': 0.01, 'e': 0.06952978896781553}",25,14,19.7502640227867,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2667,False,"{'a': 0.01, 'e': 0.06946029393215677}",20,6,23.927732333152,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2668,False,"{'a': 0.01, 'e': 0.06939086835679777}",20,7,26.491607973028454,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2669,False,"{'a': 0.01, 'e': 0.0693215121723129}",30,20,18.990954067580486,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2670,False,"{'a': 0.01, 'e': 0.069252225309346}",20,9,8.342403937868443,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2671,False,"{'a': 0.01, 'e': 0.06918300769861012}",20,16,9.375407967872395,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2672,False,"{'a': 0.01, 'e': 0.06911385927088776}",30,20,19.41933024493416,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2673,False,"{'a': 0.01, 'e': 0.06904477995703041}",20,16,5.819046608478266,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2674,False,"{'a': 0.01, 'e': 0.06897576968795878}",25,10,29.46880449054324,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2675,False,"{'a': 0.01, 'e': 0.06890682839466256}",35,21,21.77029011287422,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2676,False,"{'a': 0.01, 'e': 0.06883795600820049}",25,15,17.58229097606359,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2677,False,"{'a': 0.01, 'e': 0.06876915245970018}",25,13,26.357683284949513,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2678,False,"{'a': 0.01, 'e': 0.06870041768035805}",20,8,10.252980897455094,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2679,False,"{'a': 0.01, 'e': 0.0686317516014393}",25,13,20.515255489183026,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2680,False,"{'a': 0.01, 'e': 0.06856315415427791}",20,13,11.010143247171484,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2681,False,"{'a': 0.01, 'e': 0.06849462527027637}",35,16,12.46510206458297,"{0: 16, 1: 2, 2: 1, 3: 0, 4: 0}",1 +2682,False,"{'a': 0.01, 'e': 0.06842616488090583}",20,11,17.736643752848952,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2683,False,"{'a': 0.01, 'e': 0.06835777291770583}",20,0,16.276516687087632,"{0: 18, 1: 0, 2: 2, 3: 0, 4: 0}",0 +2684,False,"{'a': 0.01, 'e': 0.06828944931228448}",30,16,21.54006196665906,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2685,False,"{'a': 0.01, 'e': 0.06822119399631812}",25,13,21.813168235531304,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2686,False,"{'a': 0.01, 'e': 0.06815300690155146}",20,1,32.28682076754356,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2687,False,"{'a': 0.01, 'e': 0.06808488795979734}",25,18,1.8083457195556212,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2688,False,"{'a': 0.01, 'e': 0.06801683710293688}",20,12,16.499095516593,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2689,False,"{'a': 0.01, 'e': 0.0679488542629192}",20,11,15.853664595301135,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2690,False,"{'a': 0.01, 'e': 0.06788093937176144}",20,11,19.614193165663206,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2691,False,"{'a': 0.01, 'e': 0.06781309236154871}",20,13,15.18089961345073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2692,False,"{'a': 0.01, 'e': 0.06774531316443397}",30,18,8.671675939229505,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2693,False,"{'a': 0.01, 'e': 0.06767760171263805}",30,19,19.495730655581998,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2694,False,"{'a': 0.01, 'e': 0.0676099579384495}",20,16,8.483699912432451,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2695,False,"{'a': 0.01, 'e': 0.06754238177422452}",20,12,13.252702213516828,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2696,False,"{'a': 0.01, 'e': 0.0674748731523869}",20,16,9.378019247095825,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2697,False,"{'a': 0.01, 'e': 0.0674074320054281}",25,0,43.99562854478798,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2698,False,"{'a': 0.01, 'e': 0.06734005826590692}",20,10,17.21197712316047,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2699,False,"{'a': 0.01, 'e': 0.06727275186644961}",20,16,9.456927201640113,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2700,False,"{'a': 0.01, 'e': 0.06720551273974976}",20,8,19.628490451984767,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2701,False,"{'a': 0.01, 'e': 0.06713834081856826}",20,11,6.534081373724427,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2702,False,"{'a': 0.01, 'e': 0.06707123603573319}",25,20,10.24538215455189,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2703,False,"{'a': 0.01, 'e': 0.06700419832413973}",20,12,1.7354944706533524,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2704,False,"{'a': 0.01, 'e': 0.06693722761675015}",20,10,21.51157843784405,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2705,False,"{'a': 0.01, 'e': 0.0668703238465938}",20,3,26.17845424977367,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2706,False,"{'a': 0.01, 'e': 0.06680348694676687}",30,20,21.04403084388056,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2707,False,"{'a': 0.01, 'e': 0.06673671685043246}",20,10,20.694270041372516,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2708,False,"{'a': 0.01, 'e': 0.06667001349082043}",25,16,16.688432719363426,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2709,False,"{'a': 0.01, 'e': 0.06660337680122747}",20,8,22.01203333573334,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2710,False,"{'a': 0.01, 'e': 0.06653680671501686}",30,12,34.42158322387855,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2711,False,"{'a': 0.01, 'e': 0.0664703031656185}",20,12,17.461544145597063,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2712,False,"{'a': 0.01, 'e': 0.06640386608652883}",30,19,20.66496320504418,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2713,False,"{'a': 0.01, 'e': 0.06633749541131082}",25,10,15.572440371273238,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2714,False,"{'a': 0.01, 'e': 0.06627119107359372}",20,9,21.10091158618091,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2715,False,"{'a': 0.01, 'e': 0.06620495300707324}",35,24,24.356331423622713,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2716,False,"{'a': 0.01, 'e': 0.06613878114551125}",25,20,10.259422396960822,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2717,False,"{'a': 0.01, 'e': 0.06607267542273594}",20,13,12.28631476123212,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2718,False,"{'a': 0.01, 'e': 0.06600663577264156}",20,14,13.031448503694493,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2719,False,"{'a': 0.01, 'e': 0.06594066212918846}",25,9,19.402497909635823,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2720,False,"{'a': 0.01, 'e': 0.06587475442640295}",20,9,23.385742527380646,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2721,False,"{'a': 0.01, 'e': 0.06580891259837739}",35,25,18.292794742246787,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2722,False,"{'a': 0.01, 'e': 0.0657431365792699}",30,0,43.15042976974986,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2723,False,"{'a': 0.01, 'e': 0.06567742630330448}",20,12,-35.519298962689966,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2724,False,"{'a': 0.01, 'e': 0.0656117817047708}",25,10,25.53484469948639,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2725,False,"{'a': 0.01, 'e': 0.06554620271802433}",20,10,17.50647825601726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2726,False,"{'a': 0.01, 'e': 0.06548068927748603}",35,25,18.984723660174712,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2727,False,"{'a': 0.01, 'e': 0.06541524131764247}",30,13,33.103966501148754,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2728,False,"{'a': 0.01, 'e': 0.06534985877304565}",20,16,6.5298730046187705,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2729,False,"{'a': 0.01, 'e': 0.06528454157831308}",25,13,23.088078386617997,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2730,False,"{'a': 0.01, 'e': 0.06521928966812753}",20,9,22.11157066508842,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2731,False,"{'a': 0.01, 'e': 0.06515410297723707}",20,16,9.082618304892197,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2732,False,"{'a': 0.01, 'e': 0.065088981440455}",20,11,17.030384821674474,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2733,False,"{'a': 0.01, 'e': 0.06502392499265983}",20,9,14.416011354765692,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2734,False,"{'a': 0.01, 'e': 0.06495893356879505}",20,2,0.35140763912577966,"{0: 15, 1: 1, 2: 2, 3: 0, 4: 0}",1 +2735,False,"{'a': 0.01, 'e': 0.06489400710386926}",25,0,38.26721153695814,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2736,False,"{'a': 0.01, 'e': 0.06482914553295596}",25,8,17.8655427037046,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2737,False,"{'a': 0.01, 'e': 0.06476434879119362}",20,6,26.458148187858686,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2738,False,"{'a': 0.01, 'e': 0.06469961681378547}",25,7,29.22210145368259,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2739,False,"{'a': 0.01, 'e': 0.06463494953599953}",20,8,22.999038097830315,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2740,False,"{'a': 0.01, 'e': 0.06457034689316847}",20,10,20.88097541850041,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2741,False,"{'a': 0.01, 'e': 0.06450580882068972}",20,15,9.084112528846719,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2742,False,"{'a': 0.01, 'e': 0.06444133525402518}",20,6,1.2601705938090157,"{0: 12, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2743,False,"{'a': 0.01, 'e': 0.06437692612870125}",20,6,28.52360665007944,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2744,False,"{'a': 0.01, 'e': 0.06431258138030878}",25,17,11.71458005299305,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2745,False,"{'a': 0.01, 'e': 0.06424830094450308}",20,10,15.813572364465784,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2746,False,"{'a': 0.01, 'e': 0.06418408475700368}",20,8,10.446339688743194,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2747,False,"{'a': 0.01, 'e': 0.0641199327535944}",35,26,21.88062446074894,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2748,False,"{'a': 0.01, 'e': 0.06405584487012317}",35,22,1.9054504426264711,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2749,False,"{'a': 0.01, 'e': 0.06399182104250219}",20,13,11.752725251399303,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2750,False,"{'a': 0.01, 'e': 0.06392786120670757}",25,15,19.817372111633293,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2751,False,"{'a': 0.01, 'e': 0.0638639652987795}",20,9,20.861575507146384,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2752,False,"{'a': 0.01, 'e': 0.063800133254822}",20,8,23.31207214859957,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2753,False,"{'a': 0.01, 'e': 0.06373636501100312}",30,14,28.56042520003239,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2754,False,"{'a': 0.01, 'e': 0.06367266050355457}",20,8,23.987484305332444,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2755,False,"{'a': 0.01, 'e': 0.0636090196687718}",20,12,14.978106398775754,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2756,False,"{'a': 0.01, 'e': 0.063545442443014}",30,14,10.126722160807855,"{0: 14, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2757,False,"{'a': 0.01, 'e': 0.06348192876270395}",20,10,16.34956109551917,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2758,False,"{'a': 0.01, 'e': 0.06341847856432796}",30,14,-23.141181689888057,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2759,False,"{'a': 0.01, 'e': 0.06335509178443581}",25,13,23.81804461012251,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2760,False,"{'a': 0.01, 'e': 0.0632917683596407}",20,16,6.301273826662882,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2761,False,"{'a': 0.01, 'e': 0.06322850822661927}",20,14,11.444641060605669,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2762,False,"{'a': 0.01, 'e': 0.06316531132211131}",30,15,19.665833615929625,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2763,False,"{'a': 0.01, 'e': 0.06310217758291994}",30,17,25.066654814016612,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2764,False,"{'a': 0.01, 'e': 0.0630391069459114}",30,23,15.421729927281097,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2765,False,"{'a': 0.01, 'e': 0.06297609934801507}",25,19,10.690924866467345,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2766,False,"{'a': 0.01, 'e': 0.06291315472622334}",20,13,11.942248093865755,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2767,False,"{'a': 0.01, 'e': 0.06285027301759159}",25,13,-0.44352461890920125,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2768,False,"{'a': 0.01, 'e': 0.06278745415923806}",25,11,26.98188554220436,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2769,False,"{'a': 0.01, 'e': 0.06272469808834395}",25,11,13.716699195585191,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2770,False,"{'a': 0.01, 'e': 0.06266200474215315}",20,12,14.778549891109565,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2771,False,"{'a': 0.01, 'e': 0.06259937405797232}",20,11,16.777399264436944,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2772,False,"{'a': 0.01, 'e': 0.06253680597317074}",20,8,-31.029120329767153,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2773,False,"{'a': 0.01, 'e': 0.06247430042518036}",20,12,20.73372690496255,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2774,False,"{'a': 0.01, 'e': 0.06241185735149562}",20,12,18.31308057034772,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2775,False,"{'a': 0.01, 'e': 0.06234947668967343}",20,3,30.28097729406225,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2776,False,"{'a': 0.01, 'e': 0.0622871583773331}",25,14,-45.9850925239088,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2777,False,"{'a': 0.01, 'e': 0.06222490235215636}",20,10,16.742299629716772,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2778,False,"{'a': 0.01, 'e': 0.062162708551887165}",25,3,27.59087244020582,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2779,False,"{'a': 0.01, 'e': 0.0621005769143317}",20,12,13.759149204983666,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2780,False,"{'a': 0.01, 'e': 0.06203850737735829}",25,15,-16.20824257238602,"{0: 8, 1: 0, 2: 1, 3: 1, 4: 0}",1 +2781,False,"{'a': 0.01, 'e': 0.061976499878897466}",30,16,12.236749674557998,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2782,False,"{'a': 0.01, 'e': 0.061914554356941674}",30,8,43.77993659193883,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2783,False,"{'a': 0.01, 'e': 0.06185267074954541}",20,6,-2.816761824116909,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2784,False,"{'a': 0.01, 'e': 0.061790848994825016}",20,10,21.218615090226162,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2785,False,"{'a': 0.01, 'e': 0.06172908903095879}",20,4,12.611414293093484,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2786,False,"{'a': 0.01, 'e': 0.061667390796186744}",25,8,22.01812407715879,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2787,False,"{'a': 0.01, 'e': 0.061605754228810636}",20,8,22.454623006109394,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2788,False,"{'a': 0.01, 'e': 0.06154417926719386}",25,7,31.123364816304786,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2789,False,"{'a': 0.01, 'e': 0.0614826658497615}",30,16,-3.1366663574134694,"{0: 12, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2790,False,"{'a': 0.01, 'e': 0.06142121391500013}",20,8,21.654149294391406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2791,False,"{'a': 0.01, 'e': 0.06135982340145778}",20,15,8.422384544642647,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2792,False,"{'a': 0.01, 'e': 0.061298494247743925}",25,14,17.05134406875508,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2793,False,"{'a': 0.01, 'e': 0.061237226392529445}",25,8,32.46068661800596,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2794,False,"{'a': 0.01, 'e': 0.06117601977454647}",20,16,7.934029094472864,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2795,False,"{'a': 0.01, 'e': 0.06111487433258836}",25,12,25.266891792957612,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2796,False,"{'a': 0.01, 'e': 0.06105379000550965}",20,7,27.492337753082126,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2797,False,"{'a': 0.01, 'e': 0.06099276673222606}",30,18,1.9873263180718168,"{0: 11, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2798,False,"{'a': 0.01, 'e': 0.06093180445171429}",25,11,27.459020455184042,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2799,False,"{'a': 0.01, 'e': 0.06087090310301205}",35,18,31.687633651452444,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2800,False,"{'a': 0.01, 'e': 0.06081006262521795}",25,18,16.904421219430773,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2801,False,"{'a': 0.01, 'e': 0.060749282957491574}",35,13,-2.40867934093792,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2802,False,"{'a': 0.01, 'e': 0.06068856403905322}",30,17,23.123678221624036,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2803,False,"{'a': 0.01, 'e': 0.06062790580918396}",20,11,16.22876636066964,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2804,False,"{'a': 0.01, 'e': 0.060567308207225536}",25,20,10.91509877954633,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2805,False,"{'a': 0.01, 'e': 0.06050677117258039}",35,23,8.322665992834834,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2806,False,"{'a': 0.01, 'e': 0.06044629464471146}",20,10,11.463505755436428,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2807,False,"{'a': 0.01, 'e': 0.06038587856314221}",25,13,18.066150357116598,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2808,False,"{'a': 0.01, 'e': 0.06032552286745654}",30,16,26.7853674167796,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2809,False,"{'a': 0.01, 'e': 0.060265227497298776}",25,13,12.223126068783442,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2810,False,"{'a': 0.01, 'e': 0.06020499239237354}",30,14,-14.051296904529142,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2811,False,"{'a': 0.01, 'e': 0.06014481749244571}",20,4,-15.104558595343688,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2812,False,"{'a': 0.01, 'e': 0.06008470273734036}",30,13,25.435871585599873,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2813,False,"{'a': 0.01, 'e': 0.060024648066942785}",25,12,21.720640382320173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2814,False,"{'a': 0.01, 'e': 0.05996465342119827}",20,11,16.192389506190462,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2815,False,"{'a': 0.01, 'e': 0.05990471874011218}",25,19,9.898526033717065,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2816,False,"{'a': 0.01, 'e': 0.059844843963749825}",25,13,17.814828681534753,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2817,False,"{'a': 0.01, 'e': 0.059785029032236384}",25,18,11.394370596152335,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2818,False,"{'a': 0.01, 'e': 0.05972527388575699}",20,12,13.635440476555285,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2819,False,"{'a': 0.01, 'e': 0.05966557846455646}",20,11,16.033979372242783,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2820,False,"{'a': 0.01, 'e': 0.05960594270893937}",20,12,17.470007052327865,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2821,False,"{'a': 0.01, 'e': 0.05954636655926992}",20,14,12.122220940277003,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2822,False,"{'a': 0.01, 'e': 0.05948684995597202}",25,3,-9.43231495677248,"{0: 20, 1: 0, 2: 0, 3: 2, 4: 0}",1 +2823,False,"{'a': 0.01, 'e': 0.05942739283952904}",20,9,20.953896331733187,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2824,False,"{'a': 0.01, 'e': 0.05936799515048385}",25,9,8.602623700746484,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2825,False,"{'a': 0.01, 'e': 0.05930865682943872}",20,5,22.11074242590253,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2826,False,"{'a': 0.01, 'e': 0.0592493778170554}",20,15,9.30279487921075,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2827,False,"{'a': 0.01, 'e': 0.05919015805405483}",25,8,23.641707420623174,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2828,False,"{'a': 0.01, 'e': 0.05913099748121725}",25,18,14.222397387551357,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2829,False,"{'a': 0.01, 'e': 0.05907189603938205}",20,13,12.883413289871598,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2830,False,"{'a': 0.01, 'e': 0.05901285366944784}",30,12,34.815959315386976,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2831,False,"{'a': 0.01, 'e': 0.05895387031237222}",20,11,16.864319824919658,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2832,False,"{'a': 0.01, 'e': 0.05889494590917182}",20,8,20.97480833901115,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2833,False,"{'a': 0.01, 'e': 0.05883608040092221}",30,19,19.97845726854121,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2834,False,"{'a': 0.01, 'e': 0.058777273728757934}",25,17,13.285132215940422,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2835,False,"{'a': 0.01, 'e': 0.058718525833872284}",20,4,7.086198198969631,"{0: 14, 1: 0, 2: 2, 3: 0, 4: 0}",1 +2836,False,"{'a': 0.01, 'e': 0.05865983665751736}",25,16,16.03707425824618,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2837,False,"{'a': 0.01, 'e': 0.058601206141003954}",20,13,10.60537968452734,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2838,False,"{'a': 0.01, 'e': 0.0585426342257016}",20,8,21.382438089701008,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2839,False,"{'a': 0.01, 'e': 0.05848412085303835}",20,9,19.046250384568584,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2840,False,"{'a': 0.01, 'e': 0.05842566596450083}",25,19,13.743230402036092,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2841,False,"{'a': 0.01, 'e': 0.058367269501634116}",30,13,26.656646752296904,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2842,False,"{'a': 0.01, 'e': 0.05830893140604179}",25,17,16.616119266585073,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2843,False,"{'a': 0.01, 'e': 0.05825065161938573}",25,12,24.781370364923497,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2844,False,"{'a': 0.01, 'e': 0.05819243008338615}",30,20,17.601162916991203,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2845,False,"{'a': 0.01, 'e': 0.058134266739821465}",30,15,25.853597114106023,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2846,False,"{'a': 0.01, 'e': 0.0580761615305284}",30,12,11.743189206512325,"{0: 17, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2847,False,"{'a': 0.01, 'e': 0.058018114397401704}",35,18,36.24258118039501,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2848,False,"{'a': 0.01, 'e': 0.057960125282394234}",20,10,19.805040452329646,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2849,False,"{'a': 0.01, 'e': 0.057902194127516855}",25,12,-44.75440742790232,"{0: 10, 1: 0, 2: 2, 3: 0, 4: 1}",1 +2850,False,"{'a': 0.01, 'e': 0.057844320874838456}",25,8,26.424608449663104,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2851,False,"{'a': 0.01, 'e': 0.057786505466485755}",20,14,15.155593626343311,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2852,False,"{'a': 0.01, 'e': 0.05772874784464333}",20,10,20.279561086317745,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2853,False,"{'a': 0.01, 'e': 0.057671047951553533}",25,19,10.915639046326266,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2854,False,"{'a': 0.01, 'e': 0.05761340572951652}",25,19,13.162799443102537,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2855,False,"{'a': 0.01, 'e': 0.05755582112089005}",25,11,23.50894457252934,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2856,False,"{'a': 0.01, 'e': 0.057498294068089484}",20,15,9.314113700188045,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2857,False,"{'a': 0.01, 'e': 0.05744082451358776}",25,12,24.38137707235724,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2858,False,"{'a': 0.01, 'e': 0.05738341239991535}",20,8,25.117435816168946,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2859,False,"{'a': 0.01, 'e': 0.05732605766966013}",20,6,27.981246956756685,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2860,False,"{'a': 0.01, 'e': 0.05726876026546736}",30,1,19.285404674729023,"{0: 27, 1: 1, 2: 0, 3: 1, 4: 0}",1 +2861,False,"{'a': 0.01, 'e': 0.0572115201300396}",30,8,-24.97310153197165,"{0: 20, 1: 0, 2: 0, 3: 1, 4: 1}",1 +2862,False,"{'a': 0.01, 'e': 0.05715433720613676}",25,17,13.740388987705863,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2863,False,"{'a': 0.01, 'e': 0.05709721143657589}",20,13,14.090605707906949,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2864,False,"{'a': 0.01, 'e': 0.057040142764231215}",20,14,13.521678261635548,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2865,False,"{'a': 0.01, 'e': 0.056983131132034036}",20,12,15.69176515126514,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2866,False,"{'a': 0.01, 'e': 0.056926176482972754}",20,10,20.249491810030666,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2867,False,"{'a': 0.01, 'e': 0.056869278760092706}",20,16,8.823937592421363,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2868,False,"{'a': 0.01, 'e': 0.056812437906496156}",25,16,15.466485411737404,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2869,False,"{'a': 0.01, 'e': 0.05675565386534222}",35,28,15.92938379795304,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2870,False,"{'a': 0.01, 'e': 0.0566989265798469}",25,13,25.001340496770187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2871,False,"{'a': 0.01, 'e': 0.056642255993282896}",20,0,9.572615777068954,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +2872,False,"{'a': 0.01, 'e': 0.056585642048979604}",30,12,32.5286480965469,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2873,False,"{'a': 0.01, 'e': 0.05652908469032304}",30,23,15.6526015423012,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2874,False,"{'a': 0.01, 'e': 0.05647258386075591}",25,11,27.028695248894472,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2875,False,"{'a': 0.01, 'e': 0.05641613950377735}",20,9,21.84776445366516,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2876,False,"{'a': 0.01, 'e': 0.05635975156294299}",20,12,15.108165739273435,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2877,False,"{'a': 0.01, 'e': 0.05630341998186487}",30,20,20.772539609442674,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2878,False,"{'a': 0.01, 'e': 0.05624714470421144}",25,3,26.147781238418734,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2879,False,"{'a': 0.01, 'e': 0.056190925673707405}",25,19,13.346249405275866,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2880,False,"{'a': 0.01, 'e': 0.056134762834133725}",20,6,22.78210549995889,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2881,False,"{'a': 0.01, 'e': 0.05607865612932754}",20,8,22.459732686876155,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2882,False,"{'a': 0.01, 'e': 0.05602260550318217}",25,20,10.250303699702538,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2883,False,"{'a': 0.01, 'e': 0.05596661089964698}",20,12,15.067425000266228,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2884,False,"{'a': 0.01, 'e': 0.055910672262727355}",20,13,14.212183485438008,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2885,False,"{'a': 0.01, 'e': 0.05585478953648462}",25,4,26.206297130488437,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2886,False,"{'a': 0.01, 'e': 0.05579896266503611}",20,0,31.903688334436712,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2887,False,"{'a': 0.01, 'e': 0.055743191592554905}",20,6,28.43319011963243,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2888,False,"{'a': 0.01, 'e': 0.05568747626326995}",25,15,19.78990096118009,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2889,False,"{'a': 0.01, 'e': 0.055631816621465865}",25,15,-31.051282638933944,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 1}",1 +2890,False,"{'a': 0.01, 'e': 0.05557621261148306}",25,11,15.289030142615708,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2891,False,"{'a': 0.01, 'e': 0.055520664177717505}",20,14,0.03408069465839558,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2892,False,"{'a': 0.01, 'e': 0.05546517126462075}",20,9,20.56447620873003,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2893,False,"{'a': 0.01, 'e': 0.055409733816699856}",20,9,8.695060967586086,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2894,False,"{'a': 0.01, 'e': 0.05535435177851743}",30,0,39.56257125333257,"{0: 30, 1: 0, 2: 0, 3: 0, 4: 0}",0 +2895,False,"{'a': 0.01, 'e': 0.05529902509469138}",30,19,20.1526989225981,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2896,False,"{'a': 0.01, 'e': 0.055243753709895045}",20,13,13.516690604975897,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2897,False,"{'a': 0.01, 'e': 0.055188537568857}",20,14,13.454198575690434,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2898,False,"{'a': 0.01, 'e': 0.05513337661636114}",20,14,11.636992316982443,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2899,False,"{'a': 0.01, 'e': 0.05507827079724649}",20,16,9.134400995587704,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2900,False,"{'a': 0.01, 'e': 0.05502322005640723}",25,8,25.175850850997097,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2901,False,"{'a': 0.01, 'e': 0.054968224338792594}",20,9,3.630985240095429,"{0: 9, 1: 1, 2: 1, 3: 0, 4: 0}",1 +2902,False,"{'a': 0.01, 'e': 0.05491328358940689}",25,13,-22.563491792474462,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +2903,False,"{'a': 0.01, 'e': 0.05485839775330936}",20,11,16.57203047464593,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2904,False,"{'a': 0.01, 'e': 0.054803566775614154}",25,17,8.125361234480406,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2905,False,"{'a': 0.01, 'e': 0.054748790601490266}",25,17,17.742574028838334,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2906,False,"{'a': 0.01, 'e': 0.05469406917616156}",20,7,24.837891617846907,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2907,False,"{'a': 0.01, 'e': 0.054639402444906594}",20,12,17.630891487317587,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2908,False,"{'a': 0.01, 'e': 0.054584790353058625}",25,18,12.345880841938556,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2909,False,"{'a': 0.01, 'e': 0.054530232846005534}",25,7,32.66754721328435,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2910,False,"{'a': 0.01, 'e': 0.05447572986918986}",20,6,11.207309184932543,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2911,False,"{'a': 0.01, 'e': 0.05442128136810859}",30,23,4.916012480351659,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2912,False,"{'a': 0.01, 'e': 0.05436688728831322}",25,12,21.035810879896818,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2913,False,"{'a': 0.01, 'e': 0.05431254757540965}",20,10,22.598420826316286,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2914,False,"{'a': 0.01, 'e': 0.05425826217505821}",30,13,33.89073857300059,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2915,False,"{'a': 0.01, 'e': 0.054204031032973464}",30,16,28.132844533419604,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2916,False,"{'a': 0.01, 'e': 0.05414985409492427}",25,19,12.107658961765754,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2917,False,"{'a': 0.01, 'e': 0.054095731306733646}",20,12,16.214098189576678,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2918,False,"{'a': 0.01, 'e': 0.054041662614278875}",25,15,20.700632006411073,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2919,False,"{'a': 0.01, 'e': 0.05398764796349122}",25,20,8.344782760370032,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2920,False,"{'a': 0.01, 'e': 0.05393368730035602}",20,14,12.32679384934791,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2921,False,"{'a': 0.01, 'e': 0.0538797805709126}",25,14,24.875932120653395,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2922,False,"{'a': 0.01, 'e': 0.05382592772125425}",30,20,16.832449850615134,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2923,False,"{'a': 0.01, 'e': 0.05377212869752812}",25,18,13.667747723000758,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2924,False,"{'a': 0.01, 'e': 0.053718383445935165}",35,21,18.48059082369622,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2925,False,"{'a': 0.01, 'e': 0.05366469191273011}",20,10,7.170508122469069,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2926,False,"{'a': 0.01, 'e': 0.053611054044221465}",25,2,36.35245481704786,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2927,False,"{'a': 0.01, 'e': 0.053557469786771325}",35,21,18.697593450628556,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2928,False,"{'a': 0.01, 'e': 0.05350393908679544}",25,5,20.771981721411667,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2929,False,"{'a': 0.01, 'e': 0.05345046189076308}",20,10,18.94333802517973,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2930,False,"{'a': 0.01, 'e': 0.053397038145197084}",20,13,13.85132330753459,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2931,False,"{'a': 0.01, 'e': 0.05334366779667368}",30,13,29.511207888009782,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2932,False,"{'a': 0.01, 'e': 0.053290350791822524}",25,17,12.643243987105265,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2933,False,"{'a': 0.01, 'e': 0.05323708707732657}",25,9,26.009847694365615,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2934,False,"{'a': 0.01, 'e': 0.05318387659992216}",25,16,19.274747024977483,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2935,False,"{'a': 0.01, 'e': 0.05313071930639878}",25,12,23.7384535047821,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2936,False,"{'a': 0.01, 'e': 0.053077615143599134}",20,16,6.958285902692332,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2937,False,"{'a': 0.01, 'e': 0.05302456405841903}",20,10,18.408998486774323,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2938,False,"{'a': 0.01, 'e': 0.052971565997807425}",20,14,10.627958181182596,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2939,False,"{'a': 0.01, 'e': 0.052918620908766235}",30,23,12.697834726408832,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2940,False,"{'a': 0.01, 'e': 0.05286572873835037}",20,10,18.932759833013066,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2941,False,"{'a': 0.01, 'e': 0.05281288943366762}",20,10,17.444219208858957,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2942,False,"{'a': 0.01, 'e': 0.052760102941878724}",30,24,11.741229377704627,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2943,False,"{'a': 0.01, 'e': 0.05270736921019717}",35,23,25.417781617758237,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2944,False,"{'a': 0.01, 'e': 0.05265468818588921}",20,8,24.142927342065512,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2945,False,"{'a': 0.01, 'e': 0.05260205981627384}",20,14,10.223614491694034,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2946,False,"{'a': 0.01, 'e': 0.05254948404872264}",20,3,8.874150312761408,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2947,False,"{'a': 0.01, 'e': 0.05249696083065988}",25,10,8.239217032405938,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2948,False,"{'a': 0.01, 'e': 0.05244449010956234}",30,18,23.628348116642773,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2949,False,"{'a': 0.01, 'e': 0.052392071832959276}",30,17,22.56283870526744,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2950,False,"{'a': 0.01, 'e': 0.05233970594843238}",20,11,18.511078846171717,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2951,False,"{'a': 0.01, 'e': 0.05228739240361583}",30,19,20.87996172432439,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2952,False,"{'a': 0.01, 'e': 0.05223513114619603}",30,21,15.588021416762821,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2953,False,"{'a': 0.01, 'e': 0.052182922123911735}",30,15,30.167561726955316,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2954,False,"{'a': 0.01, 'e': 0.05213076528455389}",25,10,27.236274938156917,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2955,False,"{'a': 0.01, 'e': 0.05207866057596569}",20,13,14.305558818181893,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2956,False,"{'a': 0.01, 'e': 0.052026607946042414}",20,16,6.262497142586708,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2957,False,"{'a': 0.01, 'e': 0.05197460734273142}",25,8,18.231179287631182,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2958,False,"{'a': 0.01, 'e': 0.05192265871403207}",25,13,7.917344331392554,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2959,False,"{'a': 0.01, 'e': 0.051870762007995785}",30,8,-15.104744893669201,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2960,False,"{'a': 0.01, 'e': 0.05181891717272583}",20,10,15.803735030320357,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2961,False,"{'a': 0.01, 'e': 0.051767124156377374}",20,12,9.640353672149237,"{0: 7, 1: 1, 2: 0, 3: 0, 4: 0}",1 +2962,False,"{'a': 0.01, 'e': 0.05171538290715736}",25,12,23.681428642316863,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2963,False,"{'a': 0.01, 'e': 0.05166369337332458}",20,2,16.732476202953006,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2964,False,"{'a': 0.01, 'e': 0.05161205550318949}",25,17,16.12228103837017,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2965,False,"{'a': 0.01, 'e': 0.0515604692451142}",20,16,6.8249515724849585,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2966,False,"{'a': 0.01, 'e': 0.051508934547512424}",25,12,22.60779675567379,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2967,False,"{'a': 0.01, 'e': 0.051457451358849514}",30,14,27.89967176049877,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2968,False,"{'a': 0.01, 'e': 0.051406019627642255}",25,17,14.415202866630057,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2969,False,"{'a': 0.01, 'e': 0.051354639302458906}",30,18,25.021099561479666,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2970,False,"{'a': 0.01, 'e': 0.05130331033191911}",20,9,21.50222052727669,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2971,False,"{'a': 0.01, 'e': 0.05125203266469395}",30,18,22.126824542070953,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2972,False,"{'a': 0.01, 'e': 0.05120080624950572}",25,10,-28.257583173798768,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 1}",1 +2973,False,"{'a': 0.01, 'e': 0.05114963103512801}",30,14,28.610343489930578,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2974,False,"{'a': 0.01, 'e': 0.05109850697038558}",25,11,25.342007949240223,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2975,False,"{'a': 0.01, 'e': 0.051047434004154395}",20,10,-1.622981403901338,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +2976,False,"{'a': 0.01, 'e': 0.050996412085361466}",30,18,22.293270589571964,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2977,False,"{'a': 0.01, 'e': 0.05094544116298488}",25,17,-0.3015848306923299,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2978,False,"{'a': 0.01, 'e': 0.05089452118605367}",35,17,25.900928836413097,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2979,False,"{'a': 0.01, 'e': 0.05084365210364792}",20,13,14.328319973390673,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2980,False,"{'a': 0.01, 'e': 0.0507928338648985}",20,12,16.561040713735526,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2981,False,"{'a': 0.01, 'e': 0.05074206641898719}",25,13,22.25244712689835,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2982,False,"{'a': 0.01, 'e': 0.050691349715146494}",25,8,16.863151913940523,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2983,False,"{'a': 0.01, 'e': 0.05064068370265976}",25,18,14.488806150069271,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2984,False,"{'a': 0.01, 'e': 0.05059006833086096}",30,6,46.522485636246,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2985,False,"{'a': 0.01, 'e': 0.050539503549134696}",25,13,9.008817258862168,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2986,False,"{'a': 0.01, 'e': 0.05048898930691617}",30,18,21.39850304447255,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2987,False,"{'a': 0.01, 'e': 0.05043852555369119}",20,9,23.19978509813239,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2988,False,"{'a': 0.01, 'e': 0.05038811223899596}",25,19,11.019082575553064,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2989,False,"{'a': 0.01, 'e': 0.05033774931241717}",20,16,9.51663978734857,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2990,False,"{'a': 0.01, 'e': 0.050287436723591865}",20,9,17.142022248596,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2991,False,"{'a': 0.01, 'e': 0.050237174422207494}",20,3,27.919590105063843,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2992,False,"{'a': 0.01, 'e': 0.050186962358001734}",30,17,25.829955834949494,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2993,False,"{'a': 0.01, 'e': 0.050136800480762515}",20,3,23.584965676161932,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2994,False,"{'a': 0.01, 'e': 0.05008668874032793}",20,13,14.892700714122817,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2995,False,"{'a': 0.01, 'e': 0.05003662708658628}",20,5,13.601902174070705,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +2996,False,"{'a': 0.01, 'e': 0.049986615469475894}",30,17,20.96568399954949,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2997,False,"{'a': 0.01, 'e': 0.049936653838985136}",25,7,31.800397419822783,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2998,False,"{'a': 0.01, 'e': 0.04988674214515236}",25,20,12.083271746160154,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2999,False,"{'a': 0.01, 'e': 0.0498368803380659}",25,18,13.386359550801634,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3000,False,"{'a': 0.01, 'e': 0.049787068367863944}",25,17,15.615652041116874,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3001,False,"{'a': 0.01, 'e': 0.0497373061847345}",30,12,35.88956597369877,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3002,False,"{'a': 0.01, 'e': 0.04968759373891536}",25,11,23.34914074072675,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3003,False,"{'a': 0.01, 'e': 0.04963793098069413}",20,16,5.324588481352557,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3004,False,"{'a': 0.01, 'e': 0.049588317860408}",25,20,7.15563307470653,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3005,False,"{'a': 0.01, 'e': 0.04953875432844388}",20,7,12.348407989555405,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3006,False,"{'a': 0.01, 'e': 0.04948924033523819}",25,5,37.415384736736044,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3007,False,"{'a': 0.01, 'e': 0.049439775831276976}",25,13,24.49750346487071,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3008,False,"{'a': 0.01, 'e': 0.049390360767095715}",20,11,14.395879906980916,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3009,False,"{'a': 0.01, 'e': 0.04934099509327934}",25,12,21.557120007173292,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3010,False,"{'a': 0.01, 'e': 0.04929167876046215}",30,12,34.08956779897955,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3011,False,"{'a': 0.01, 'e': 0.04924241171932785}",25,13,22.992844981013352,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3012,False,"{'a': 0.01, 'e': 0.04919319392060936}",25,17,17.201410064902902,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3013,False,"{'a': 0.01, 'e': 0.04914402531508891}",25,15,19.196857156479645,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3014,False,"{'a': 0.01, 'e': 0.04909490585359783}",25,17,14.470340469223778,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3015,False,"{'a': 0.01, 'e': 0.04904583548701673}",25,17,18.006482284532925,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3016,False,"{'a': 0.01, 'e': 0.0489968141662752}",20,14,11.865918104250634,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3017,False,"{'a': 0.01, 'e': 0.048947841842351916}",25,16,18.21565712902675,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3018,False,"{'a': 0.01, 'e': 0.04889891846627454}",20,11,15.361110076966433,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3019,False,"{'a': 0.01, 'e': 0.04885004398911972}",20,11,6.076516308134452,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3020,False,"{'a': 0.01, 'e': 0.04880121836201296}",25,15,20.76027352615398,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3021,False,"{'a': 0.01, 'e': 0.04875244153612863}",25,13,23.520692797725967,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3022,False,"{'a': 0.01, 'e': 0.048703713462689875}",35,23,26.558371388063854,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3023,False,"{'a': 0.01, 'e': 0.04865503409296867}",20,16,9.646269040796497,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3024,False,"{'a': 0.01, 'e': 0.048606403378285604}",20,6,21.029231615097494,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3025,False,"{'a': 0.01, 'e': 0.048557821270009974}",25,9,23.66058391345166,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3026,False,"{'a': 0.01, 'e': 0.04850928771955963}",25,10,12.940283535231625,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3027,False,"{'a': 0.01, 'e': 0.048460802678401076}",20,14,10.183539147601913,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3028,False,"{'a': 0.01, 'e': 0.04841236609804924}",35,22,26.408822866028494,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3029,False,"{'a': 0.01, 'e': 0.04836397793006753}",20,11,21.92900629081884,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3030,False,"{'a': 0.01, 'e': 0.04831563812606777}",25,7,18.212955628326398,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3031,False,"{'a': 0.01, 'e': 0.04826734663771017}",20,13,13.891777015258526,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3032,False,"{'a': 0.01, 'e': 0.04821910341670324}",20,8,24.779848830361047,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3033,False,"{'a': 0.01, 'e': 0.048170908414803745}",30,21,19.017891624529113,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3034,False,"{'a': 0.01, 'e': 0.048122761583816655}",25,20,10.998789877319041,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3035,False,"{'a': 0.01, 'e': 0.04807466287559518}",25,9,9.429212859420094,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3036,False,"{'a': 0.01, 'e': 0.048026612242040585}",25,14,23.904904420832555,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3037,False,"{'a': 0.01, 'e': 0.04797860963510223}",20,9,22.828599339154575,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3038,False,"{'a': 0.01, 'e': 0.0479306550067775}",20,12,15.341539988863483,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3039,False,"{'a': 0.01, 'e': 0.04788274830911178}",35,26,16.976307988937176,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3040,False,"{'a': 0.01, 'e': 0.04783488949419837}",20,15,9.587835119214791,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3041,False,"{'a': 0.01, 'e': 0.04778707851417843}",35,24,18.590237595077042,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3042,False,"{'a': 0.01, 'e': 0.047739315321240976}",30,10,11.924449896898917,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3043,False,"{'a': 0.01, 'e': 0.047691599867622836}",20,10,18.10721661893565,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3044,False,"{'a': 0.01, 'e': 0.047643932105608536}",25,15,17.264614739692817,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3045,False,"{'a': 0.01, 'e': 0.04759631198753032}",25,17,15.675423066111843,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3046,False,"{'a': 0.01, 'e': 0.04754873946576803}",30,21,14.29918216069291,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3047,False,"{'a': 0.01, 'e': 0.04750121449274919}",25,11,24.402950943034945,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3048,False,"{'a': 0.01, 'e': 0.0474537370209488}",25,12,28.162682779711364,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3049,False,"{'a': 0.01, 'e': 0.04740630700288939}",25,12,25.39165045226292,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3050,False,"{'a': 0.01, 'e': 0.04735892439114091}",25,18,13.993509765282147,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3051,False,"{'a': 0.01, 'e': 0.047311589138320786}",30,12,24.72573923460533,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3052,False,"{'a': 0.01, 'e': 0.047264301197093746}",20,14,10.864971231945248,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3053,False,"{'a': 0.01, 'e': 0.04721706052017184}",30,13,20.87883632565108,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3054,False,"{'a': 0.01, 'e': 0.04716986706031437}",20,8,23.725035829330267,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3055,False,"{'a': 0.01, 'e': 0.04712272077032791}",20,6,25.891256692963164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3056,False,"{'a': 0.01, 'e': 0.04707562160306615}",20,12,15.840446366067786,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3057,False,"{'a': 0.01, 'e': 0.04702856951142992}",20,12,18.27481233906242,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3058,False,"{'a': 0.01, 'e': 0.04698156444836709}",35,21,29.92981467165299,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3059,False,"{'a': 0.01, 'e': 0.04693460636687265}",20,6,25.81058576208238,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3060,False,"{'a': 0.01, 'e': 0.046887695219988486}",25,13,22.9263986603869,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3061,False,"{'a': 0.01, 'e': 0.04684083096080345}",25,17,12.906686435444675,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3062,False,"{'a': 0.01, 'e': 0.04679401354245326}",25,18,13.174223799077808,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3063,False,"{'a': 0.01, 'e': 0.046747242918120525}",20,12,10.891675083393796,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3064,False,"{'a': 0.01, 'e': 0.04670051904103461}",25,11,-7.809487996924111,"{0: 11, 1: 0, 2: 3, 3: 0, 4: 0}",1 +3065,False,"{'a': 0.01, 'e': 0.04665384186447163}",25,15,9.858630277255156,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3066,False,"{'a': 0.01, 'e': 0.04660721134175438}",30,21,16.90288201091673,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3067,False,"{'a': 0.01, 'e': 0.046560627426252374}",20,14,-2.1456096597893204,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3068,False,"{'a': 0.01, 'e': 0.04651409007138167}",25,16,13.507631489561927,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3069,False,"{'a': 0.01, 'e': 0.04646759923060492}",35,23,22.807187502635216,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3070,False,"{'a': 0.01, 'e': 0.04642115485743125}",25,16,18.38959000201861,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3071,False,"{'a': 0.01, 'e': 0.04637475690541633}",20,13,0.00922715153596676,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3072,False,"{'a': 0.01, 'e': 0.046328405328162174}",25,8,28.713880172874568,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3073,False,"{'a': 0.01, 'e': 0.04628210007931721}",25,14,19.909031175462793,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3074,False,"{'a': 0.01, 'e': 0.046235841112576184}",20,1,31.70762391225243,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3075,False,"{'a': 0.01, 'e': 0.0461896283816801}",25,17,18.300866006566984,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3076,False,"{'a': 0.01, 'e': 0.04614346184041627}",30,4,41.31191132597047,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3077,False,"{'a': 0.01, 'e': 0.04609734144261812}",20,13,10.251728979106122,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3078,False,"{'a': 0.01, 'e': 0.046051267142165266}",20,15,9.699534395009492,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3079,False,"{'a': 0.01, 'e': 0.04600523889298336}",25,20,10.271791942337277,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3080,False,"{'a': 0.01, 'e': 0.045959256649044204}",20,12,12.732470939363246,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3081,False,"{'a': 0.01, 'e': 0.04591332036436553}",20,14,10.714046310723457,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3082,False,"{'a': 0.01, 'e': 0.04586742999301104}",30,16,24.899726828009246,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3083,False,"{'a': 0.01, 'e': 0.045821585489090357}",25,14,21.459358579892005,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3084,False,"{'a': 0.01, 'e': 0.04577578680675899}",20,14,10.092102897703219,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3085,False,"{'a': 0.01, 'e': 0.04573003390021825}",30,16,26.421579861613882,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3086,False,"{'a': 0.01, 'e': 0.04568432672371522}",35,24,22.168373242562424,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3087,False,"{'a': 0.01, 'e': 0.0456386652315427}",20,16,6.850665392629659,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3088,False,"{'a': 0.01, 'e': 0.045593049378039235}",20,6,22.779973590178678,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3089,False,"{'a': 0.01, 'e': 0.04554747911758895}",25,13,25.488212259938773,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3090,False,"{'a': 0.01, 'e': 0.04550195440462157}",20,13,-27.81651835264669,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3091,False,"{'a': 0.01, 'e': 0.04545647519361237}",20,11,17.038399096377432,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3092,False,"{'a': 0.01, 'e': 0.04541104143908218}",25,16,12.504814316239003,"{0: 8, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3093,False,"{'a': 0.01, 'e': 0.0453656530955972}",35,25,20.777468673825307,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3094,False,"{'a': 0.01, 'e': 0.04532031011776911}",20,8,26.049354939452265,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3095,False,"{'a': 0.01, 'e': 0.045275012460254886}",25,16,14.39383439329859,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3096,False,"{'a': 0.01, 'e': 0.04522976007775692}",20,14,13.252270487483571,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3097,False,"{'a': 0.01, 'e': 0.0451845529250228}",25,12,25.2931812226632,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3098,False,"{'a': 0.01, 'e': 0.04513939095684536}",20,8,26.21743704848001,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3099,False,"{'a': 0.01, 'e': 0.04509427412806263}",30,20,-20.653177140909172,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3100,False,"{'a': 0.01, 'e': 0.0450492023935578}",20,0,32.458545738835355,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3101,False,"{'a': 0.01, 'e': 0.045004175708259125}",20,4,25.15585044232182,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3102,False,"{'a': 0.01, 'e': 0.0449591940271399}",30,8,42.249937493886684,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3103,False,"{'a': 0.01, 'e': 0.04491425730521843}",20,11,14.608117624269774,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3104,False,"{'a': 0.01, 'e': 0.04486936549755804}",30,22,14.056058475807014,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3105,False,"{'a': 0.01, 'e': 0.04482451855926687}",25,20,12.921778656055931,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3106,False,"{'a': 0.01, 'e': 0.044779716445498004}",25,14,16.862414243858098,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3107,False,"{'a': 0.01, 'e': 0.04473495911144929}",25,11,28.303305862478346,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3108,False,"{'a': 0.01, 'e': 0.04469024651236344}",25,8,29.162580631418404,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3109,False,"{'a': 0.01, 'e': 0.04464557860352782}",20,13,13.456778891352956,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3110,False,"{'a': 0.01, 'e': 0.044600955340274535}",25,14,23.442535276595347,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3111,False,"{'a': 0.01, 'e': 0.04455637667798028}",20,8,12.002169429084175,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3112,False,"{'a': 0.01, 'e': 0.04451184257206644}",20,12,15.066183270235708,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3113,False,"{'a': 0.01, 'e': 0.04446735297799888}",30,15,8.038569829290775,"{0: 14, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3114,False,"{'a': 0.01, 'e': 0.044422907851287996}",30,20,-3.0353262113656845,"{0: 9, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3115,False,"{'a': 0.01, 'e': 0.04437850714748865}",20,2,30.177677624667773,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3116,False,"{'a': 0.01, 'e': 0.04433415082220017}",20,14,10.947835207647795,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3117,False,"{'a': 0.01, 'e': 0.044289838831066214}",25,15,19.276125533803857,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3118,False,"{'a': 0.01, 'e': 0.04424557112977477}",20,8,21.844051206188936,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3119,False,"{'a': 0.01, 'e': 0.04420134767405813}",30,20,20.317877074950847,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3120,False,"{'a': 0.01, 'e': 0.04415716841969286}",25,13,14.343283907185592,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3121,False,"{'a': 0.01, 'e': 0.044113033322499696}",20,10,17.956360203372313,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3122,False,"{'a': 0.01, 'e': 0.04406894233834353}",30,14,28.793223946288258,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3123,False,"{'a': 0.01, 'e': 0.04402489542313335}",20,14,8.232879238204703,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3124,False,"{'a': 0.01, 'e': 0.04398089253282229}",20,11,20.260920607144904,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3125,False,"{'a': 0.01, 'e': 0.04393693362340742}",25,10,-9.146273256304172,"{0: 13, 1: 0, 2: 1, 3: 1, 4: 0}",1 +3126,False,"{'a': 0.01, 'e': 0.04389301865092984}",25,13,22.364518979594493,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3127,False,"{'a': 0.01, 'e': 0.04384914757147454}",25,11,22.67805955131784,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3128,False,"{'a': 0.01, 'e': 0.04380532034117049}",20,10,8.205482042951749,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3129,False,"{'a': 0.01, 'e': 0.04376153691619043}",25,8,28.59744276054153,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3130,False,"{'a': 0.01, 'e': 0.04371779725275094}",25,3,36.30921564573023,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3131,False,"{'a': 0.01, 'e': 0.04367410130711232}",20,15,9.453020587655342,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3132,False,"{'a': 0.01, 'e': 0.043630449035578674}",25,17,15.123015482632288,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3133,False,"{'a': 0.01, 'e': 0.04358684039449769}",25,0,40.37137265646452,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3134,False,"{'a': 0.01, 'e': 0.04354327534026074}",20,6,11.231705041034274,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3135,False,"{'a': 0.01, 'e': 0.04349975382930273}",25,17,12.747817176030228,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3136,False,"{'a': 0.01, 'e': 0.04345627581810221}",30,22,12.650494931448652,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3137,False,"{'a': 0.01, 'e': 0.043412841263181116}",25,7,29.29427202480574,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3138,False,"{'a': 0.01, 'e': 0.04336945012110491}",35,24,22.58389876927823,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3139,False,"{'a': 0.01, 'e': 0.04332610234848241}",20,14,-28.791713737418533,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3140,False,"{'a': 0.01, 'e': 0.043282797901965896}",20,0,-11.434649117487012,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 1}",0 +3141,False,"{'a': 0.01, 'e': 0.043239536738250886}",20,13,12.992675586345094,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3142,False,"{'a': 0.01, 'e': 0.04319631881407622}",25,0,29.2065154497747,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3143,False,"{'a': 0.01, 'e': 0.043153144086223956}",30,15,29.390135652050027,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3144,False,"{'a': 0.01, 'e': 0.043110012511519386}",20,13,11.492252387052222,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3145,False,"{'a': 0.01, 'e': 0.04306692404683092}",30,20,18.308249710462462,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3146,False,"{'a': 0.01, 'e': 0.04302387864907009}",35,22,15.386368479254097,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3147,False,"{'a': 0.01, 'e': 0.042980876275191475}",35,18,29.582645600549114,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3148,False,"{'a': 0.01, 'e': 0.042937916882192735}",20,9,18.567557137290336,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3149,False,"{'a': 0.01, 'e': 0.04289500042711446}",25,15,19.741608848363043,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3150,False,"{'a': 0.01, 'e': 0.04285212686704019}",20,13,14.066386487683667,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3151,False,"{'a': 0.01, 'e': 0.04280929615909633}",20,16,8.452719162304223,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3152,False,"{'a': 0.01, 'e': 0.04276650826045222}",30,20,17.14867263169773,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3153,False,"{'a': 0.01, 'e': 0.04272376312831993}",25,11,27.28751837268479,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3154,False,"{'a': 0.01, 'e': 0.04268106071995433}",25,9,26.541569491830423,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3155,False,"{'a': 0.01, 'e': 0.04263840099265299}",20,12,14.112349743007703,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3156,False,"{'a': 0.01, 'e': 0.042595783903756214}",25,13,22.50563167120693,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3157,False,"{'a': 0.01, 'e': 0.04255320941064689}",25,20,9.838393397611544,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3158,False,"{'a': 0.01, 'e': 0.042510677470750526}",25,20,12.138170622099235,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3159,False,"{'a': 0.01, 'e': 0.042468188041535154}",20,10,16.532141980401825,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3160,False,"{'a': 0.01, 'e': 0.042425741080511385}",30,8,35.39197560271886,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3161,False,"{'a': 0.01, 'e': 0.04238333654523223}",25,18,12.573937360015956,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3162,False,"{'a': 0.01, 'e': 0.042340974393293145}",30,21,17.628178510013043,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3163,False,"{'a': 0.01, 'e': 0.04229865458233197}",20,11,16.902997840131743,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3164,False,"{'a': 0.01, 'e': 0.042256377070028925}",30,18,19.297876184690693,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3165,False,"{'a': 0.01, 'e': 0.042214141814106466}",25,20,8.696065725722557,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3166,False,"{'a': 0.01, 'e': 0.04217194877232933}",25,15,21.68034888574534,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3167,False,"{'a': 0.01, 'e': 0.04212979790250448}",20,1,27.310170174751764,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3168,False,"{'a': 0.01, 'e': 0.042087689162481054}",20,14,10.7092843516944,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3169,False,"{'a': 0.01, 'e': 0.042045622510150295}",25,16,14.571253977181062,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3170,False,"{'a': 0.01, 'e': 0.04200359790344555}",20,16,7.865919916527773,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3171,False,"{'a': 0.01, 'e': 0.041961615300342196}",35,23,23.712420182043406,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3172,False,"{'a': 0.01, 'e': 0.04191967465885765}",30,20,-24.42998738552834,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3173,False,"{'a': 0.01, 'e': 0.04187777593705126}",25,15,15.335987936047818,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3174,False,"{'a': 0.01, 'e': 0.0418359190930243}",20,16,6.994222194664502,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3175,False,"{'a': 0.01, 'e': 0.041794104084919896}",30,13,29.706957662077787,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3176,False,"{'a': 0.01, 'e': 0.04175233087092308}",25,13,23.675000608040484,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3177,False,"{'a': 0.01, 'e': 0.04171059940926062}",20,15,8.936068768991642,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3178,False,"{'a': 0.01, 'e': 0.04166890965820104}",20,14,13.303633689689166,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3179,False,"{'a': 0.01, 'e': 0.04162726157605457}",25,1,37.73609187599424,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3180,False,"{'a': 0.01, 'e': 0.04158565512117316}",30,11,31.58869499415065,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3181,False,"{'a': 0.01, 'e': 0.04154409025195034}",30,15,27.10178360780925,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3182,False,"{'a': 0.01, 'e': 0.04150256692682124}",20,12,19.534153734255174,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3183,False,"{'a': 0.01, 'e': 0.0414610851042625}",30,16,28.048099152218523,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3184,False,"{'a': 0.01, 'e': 0.04141964474279235}",30,19,-2.822755014203832,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3185,False,"{'a': 0.01, 'e': 0.04137824580097038}",25,12,23.769973412018288,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3186,False,"{'a': 0.01, 'e': 0.041336888237397666}",25,13,22.716031992492034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3187,False,"{'a': 0.01, 'e': 0.04129557201071661}",25,15,21.007250359723447,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3188,False,"{'a': 0.01, 'e': 0.04125429707961103}",20,5,27.833415130896135,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3189,False,"{'a': 0.01, 'e': 0.04121306340280596}",25,17,15.74126918662115,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3190,False,"{'a': 0.01, 'e': 0.04117187093906774}",25,13,21.923363795307488,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3191,False,"{'a': 0.01, 'e': 0.04113071964720386}",25,16,17.008538042118776,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3192,False,"{'a': 0.01, 'e': 0.04108960948606308}",30,18,11.524202775218527,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3193,False,"{'a': 0.01, 'e': 0.041048540414535206}",25,13,24.094316521292086,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3194,False,"{'a': 0.01, 'e': 0.04100751239155117}",30,18,15.988393974820134,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3195,False,"{'a': 0.01, 'e': 0.040966525376082925}",25,15,19.794904021510284,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3196,False,"{'a': 0.01, 'e': 0.04092557932714349}",20,7,19.590978613554302,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3197,False,"{'a': 0.01, 'e': 0.04088467420378679}",20,14,13.056518297832241,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3198,False,"{'a': 0.01, 'e': 0.0408438099651077}",20,3,5.425350188653758,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3199,False,"{'a': 0.01, 'e': 0.04080298657024196}",25,0,34.4279538618268,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",0 +3200,False,"{'a': 0.01, 'e': 0.04076220397836621}",20,15,8.432779006138333,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3201,False,"{'a': 0.01, 'e': 0.04072146214869783}",30,13,-12.00436969502388,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3202,False,"{'a': 0.01, 'e': 0.040680761040495}",20,6,18.804934010536428,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3203,False,"{'a': 0.01, 'e': 0.0406401006130566}",20,6,26.39191611323902,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3204,False,"{'a': 0.01, 'e': 0.04059948082572218}",20,9,12.601193946816764,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3205,False,"{'a': 0.01, 'e': 0.040558901637871986}",25,13,20.992348384085336,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3206,False,"{'a': 0.01, 'e': 0.040518363008926805}",25,20,8.117939481313698,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3207,False,"{'a': 0.01, 'e': 0.040477864898348016}",20,15,9.560015136247594,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3208,False,"{'a': 0.01, 'e': 0.04043740726563748}",20,15,-11.092367173522536,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3209,False,"{'a': 0.01, 'e': 0.0403969900703376}",25,7,28.620108769142007,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3210,False,"{'a': 0.01, 'e': 0.04035661327203115}",20,14,12.974263699284604,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3211,False,"{'a': 0.01, 'e': 0.040316276830341335}",20,6,13.316570313697808,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3212,False,"{'a': 0.01, 'e': 0.0402759807049317}",20,14,12.151768792545171,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3213,False,"{'a': 0.01, 'e': 0.04023572485550614}",20,7,28.5675343872946,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3214,False,"{'a': 0.01, 'e': 0.040195509241808786}",25,10,28.031241832427906,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3215,False,"{'a': 0.01, 'e': 0.040155333823624025}",20,12,16.535214599548056,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3216,False,"{'a': 0.01, 'e': 0.040115198560776416}",20,15,9.84106653086403,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3217,False,"{'a': 0.01, 'e': 0.04007510341313073}",25,15,8.753821702058275,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3218,False,"{'a': 0.01, 'e': 0.040035048340591795}",25,18,16.7337177681648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3219,False,"{'a': 0.01, 'e': 0.03999503330310454}",25,15,18.46106563492104,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3220,False,"{'a': 0.01, 'e': 0.039955058260653896}",20,8,26.570344833507416,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3221,False,"{'a': 0.01, 'e': 0.03991512317326487}",25,17,3.1542474387929484,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3222,False,"{'a': 0.01, 'e': 0.039875228001002336}",20,13,13.141089254585598,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3223,False,"{'a': 0.01, 'e': 0.03983537270397113}",35,11,34.493668183055796,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3224,False,"{'a': 0.01, 'e': 0.039795557242315927}",20,16,6.472572633412184,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3225,False,"{'a': 0.01, 'e': 0.039755781576221304}",25,7,30.707861689294013,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3226,False,"{'a': 0.01, 'e': 0.03971604566591157}",20,15,10.064600269754155,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3227,False,"{'a': 0.01, 'e': 0.0396763494716508}",20,12,17.34216053494593,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3228,False,"{'a': 0.01, 'e': 0.0396366929537428}",20,11,16.384978520186518,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3229,False,"{'a': 0.01, 'e': 0.03959707607253108}",20,12,14.991728507187478,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3230,False,"{'a': 0.01, 'e': 0.039557498788398725}",30,11,25.75948610694524,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3231,False,"{'a': 0.01, 'e': 0.039517961061768456}",25,14,19.860675153280187,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3232,False,"{'a': 0.01, 'e': 0.039478462853102525}",30,20,19.400832996361743,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3233,False,"{'a': 0.01, 'e': 0.03943900412290276}",25,15,18.87522867975847,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3234,False,"{'a': 0.01, 'e': 0.03939958483171039}",25,16,17.245241695699196,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3235,False,"{'a': 0.01, 'e': 0.03936020494010615}",20,11,19.43132814495021,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3236,False,"{'a': 0.01, 'e': 0.039320864408710104}",20,6,23.271780573507954,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3237,False,"{'a': 0.01, 'e': 0.03928156319818176}",20,9,23.199307968996347,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3238,False,"{'a': 0.01, 'e': 0.03924230126921989}",20,12,13.682282960557679,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3239,False,"{'a': 0.01, 'e': 0.03920307858256256}",20,10,20.63187878253209,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3240,False,"{'a': 0.01, 'e': 0.039163895098987066}",25,20,12.087077943942193,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3241,False,"{'a': 0.01, 'e': 0.03912475077930995}",20,8,24.884320629382714,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3242,False,"{'a': 0.01, 'e': 0.03908564558438687}",30,18,22.742220022109485,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3243,False,"{'a': 0.01, 'e': 0.039046579475112635}",25,5,31.829402020954873,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3244,False,"{'a': 0.01, 'e': 0.03900755241242111}",20,12,4.045404286171798,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3245,False,"{'a': 0.01, 'e': 0.03896856435728526}",25,15,18.473680602439558,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3246,False,"{'a': 0.01, 'e': 0.038929615270717026}",20,4,20.507621223854738,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3247,False,"{'a': 0.01, 'e': 0.0388907051137673}",20,9,20.40890201007526,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3248,False,"{'a': 0.01, 'e': 0.03885183384752591}",35,25,18.17796797084074,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3249,False,"{'a': 0.01, 'e': 0.03881300143312163}",35,18,23.17132639215164,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3250,False,"{'a': 0.01, 'e': 0.03877420783172201}",30,19,19.35469621112667,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3251,False,"{'a': 0.01, 'e': 0.03873545300453345}",25,15,20.135508132278385,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3252,False,"{'a': 0.01, 'e': 0.038696736912801115}",30,22,14.83343673098343,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3253,False,"{'a': 0.01, 'e': 0.03865805951780893}",25,5,32.908880135312586,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3254,False,"{'a': 0.01, 'e': 0.03861942078087949}",20,16,11.273762893320004,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3255,False,"{'a': 0.01, 'e': 0.03858082066337404}",20,16,9.540679124101358,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3256,False,"{'a': 0.01, 'e': 0.03854225912669246}",20,12,16.061820540905742,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3257,False,"{'a': 0.01, 'e': 0.038503736132273224}",25,10,28.23965469729664,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3258,False,"{'a': 0.01, 'e': 0.03846525164159334}",25,8,18.26915425716964,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3259,False,"{'a': 0.01, 'e': 0.0384268056161683}",30,19,22.79582999996767,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3260,False,"{'a': 0.01, 'e': 0.038388398017552054}",35,5,44.02464106643165,"{0: 29, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3261,False,"{'a': 0.01, 'e': 0.03835002880733705}",20,8,24.048786678893308,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3262,False,"{'a': 0.01, 'e': 0.03831169794715405}",25,17,15.336792421130621,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3263,False,"{'a': 0.01, 'e': 0.03827340539867218}",20,10,16.32310163847838,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3264,False,"{'a': 0.01, 'e': 0.03823515112359889}",20,16,7.2934604033835475,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3265,False,"{'a': 0.01, 'e': 0.038196935083679925}",20,10,17.633135247465155,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3266,False,"{'a': 0.01, 'e': 0.038158757240699226}",25,18,14.097639842558948,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3267,False,"{'a': 0.01, 'e': 0.03812061755647895}",20,10,18.244434222993974,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3268,False,"{'a': 0.01, 'e': 0.03808251599287939}",25,15,16.47464112202233,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3269,False,"{'a': 0.01, 'e': 0.03804445251179901}",20,11,18.66906090216965,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3270,False,"{'a': 0.01, 'e': 0.038006427075174314}",20,14,13.370680581206916,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3271,False,"{'a': 0.01, 'e': 0.03796843964497986}",30,20,10.167084391716669,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3272,False,"{'a': 0.01, 'e': 0.0379304901832282}",25,12,24.344885452125077,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3273,False,"{'a': 0.01, 'e': 0.0378925786519699}",20,16,7.659961436593354,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3274,False,"{'a': 0.01, 'e': 0.03785470501329341}",20,5,29.764507361452154,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3275,False,"{'a': 0.01, 'e': 0.03781686922932508}",20,8,26.105680745938393,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3276,False,"{'a': 0.01, 'e': 0.037779071262229125}",20,14,13.60037934369478,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3277,False,"{'a': 0.01, 'e': 0.03774131107420759}",20,2,28.38690977707942,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3278,False,"{'a': 0.01, 'e': 0.037703588627500284}",30,17,15.903299145938254,"{0: 12, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3279,False,"{'a': 0.01, 'e': 0.03766590388438474}",20,16,7.0513140110051165,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3280,False,"{'a': 0.01, 'e': 0.0376282568071762}",20,13,1.491202856056137,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3281,False,"{'a': 0.01, 'e': 0.037590647358227626}",25,13,23.58557815114361,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3282,False,"{'a': 0.01, 'e': 0.03755307549992954}",30,17,11.072589032795456,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3283,False,"{'a': 0.01, 'e': 0.03751554119471008}",35,23,20.494691702614762,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3284,False,"{'a': 0.01, 'e': 0.03747804440503493}",20,9,-21.035370821635308,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3285,False,"{'a': 0.01, 'e': 0.03744058509340732}",25,15,16.266218590739605,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3286,False,"{'a': 0.01, 'e': 0.037403163222367926}",35,23,20.758402117444728,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3287,False,"{'a': 0.01, 'e': 0.03736577875449487}",20,3,27.21895347864693,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3288,False,"{'a': 0.01, 'e': 0.03732843165240367}",25,12,24.32878104259273,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3289,False,"{'a': 0.01, 'e': 0.037291121878747245}",30,20,18.02658836189997,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3290,False,"{'a': 0.01, 'e': 0.03725384939621581}",20,12,17.31543991864544,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3291,False,"{'a': 0.01, 'e': 0.03721661416753687}",25,7,28.581556951504894,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3292,False,"{'a': 0.01, 'e': 0.03717941615547519}",25,17,13.53826216383451,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3293,False,"{'a': 0.01, 'e': 0.03714225532283277}",20,8,19.043678143668973,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3294,False,"{'a': 0.01, 'e': 0.03710513163244877}",20,10,19.609303291753726,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3295,False,"{'a': 0.01, 'e': 0.0370680450471995}",20,12,15.76663187216702,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3296,False,"{'a': 0.01, 'e': 0.037030995529998355}",25,13,16.683818965470298,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3297,False,"{'a': 0.01, 'e': 0.036993983043795836}",30,11,36.7971313298473,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3298,False,"{'a': 0.01, 'e': 0.03695700755157944}",25,12,23.10598655754058,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3299,False,"{'a': 0.01, 'e': 0.03692006901637368}",30,21,19.82078490468156,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3300,False,"{'a': 0.01, 'e': 0.036883167401239994}",25,14,20.264240226097712,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3301,False,"{'a': 0.01, 'e': 0.036846302669276805}",25,16,17.632290083154835,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3302,False,"{'a': 0.01, 'e': 0.03680947478361935}",25,19,9.880020969304685,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3303,False,"{'a': 0.01, 'e': 0.036772683707439746}",20,8,23.19554381261267,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3304,False,"{'a': 0.01, 'e': 0.0367359294039469}",20,13,16.439172352443066,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3305,False,"{'a': 0.01, 'e': 0.03669921183638653}",20,16,6.284161204308538,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3306,False,"{'a': 0.01, 'e': 0.03666253096804106}",20,12,14.245656040661087,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3307,False,"{'a': 0.01, 'e': 0.036625886762229616}",25,18,11.119375357908766,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3308,False,"{'a': 0.01, 'e': 0.03658927918230796}",20,5,25.784033509462002,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3309,False,"{'a': 0.01, 'e': 0.036552708191668566}",20,2,24.902228754511118,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3310,False,"{'a': 0.01, 'e': 0.0365161737537404}",30,15,30.77230772063136,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3311,False,"{'a': 0.01, 'e': 0.036479675831989036}",25,11,27.739787858747746,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3312,False,"{'a': 0.01, 'e': 0.036443214389916524}",25,11,12.813009230289703,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3313,False,"{'a': 0.01, 'e': 0.036406789391061456}",30,12,24.515412542734545,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3314,False,"{'a': 0.01, 'e': 0.03637040079899881}",25,10,18.80729662141239,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3315,False,"{'a': 0.01, 'e': 0.036334048577339996}",25,16,17.77604741413667,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3316,False,"{'a': 0.01, 'e': 0.03629773268973277}",20,6,26.11321688011783,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3317,False,"{'a': 0.01, 'e': 0.03626145309986128}",20,12,16.974087318589298,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3318,False,"{'a': 0.01, 'e': 0.03622520977144591}",25,10,28.399434007292548,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3319,False,"{'a': 0.01, 'e': 0.03618900266824332}",35,23,23.16023622300609,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3320,False,"{'a': 0.01, 'e': 0.03615283175404641}",35,7,41.29723720381904,"{0: 28, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3321,False,"{'a': 0.01, 'e': 0.03611669699268428}",35,20,18.26126046658862,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3322,False,"{'a': 0.01, 'e': 0.03608059834802215}",35,21,26.960819323857425,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3323,False,"{'a': 0.01, 'e': 0.03604453578396138}",25,14,20.6515018409489,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3324,False,"{'a': 0.01, 'e': 0.036008509264439374}",30,20,19.3162359602228,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3325,False,"{'a': 0.01, 'e': 0.035972518753429654}",20,13,13.49710409700694,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3326,False,"{'a': 0.01, 'e': 0.03593656421494168}",20,14,11.59031865132423,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3327,False,"{'a': 0.01, 'e': 0.03590064561302092}",20,16,8.799543078153592,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3328,False,"{'a': 0.01, 'e': 0.03586476291174875}",30,15,28.289940083300415,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3329,False,"{'a': 0.01, 'e': 0.035828916075242495}",20,10,20.48463956788037,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3330,False,"{'a': 0.01, 'e': 0.0357931050676553}",20,16,6.6220532551229425,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3331,False,"{'a': 0.01, 'e': 0.03575732985317615}",20,14,11.362808689362495,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3332,False,"{'a': 0.01, 'e': 0.035721590396029845}",20,7,19.416934077812122,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3333,False,"{'a': 0.01, 'e': 0.03568588666047689}",30,12,36.17971523419021,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3334,False,"{'a': 0.01, 'e': 0.035650218610813585}",20,12,17.5595371183932,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3335,False,"{'a': 0.01, 'e': 0.03561458621137186}",35,13,40.83722321054545,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3336,False,"{'a': 0.01, 'e': 0.03557898942651932}",30,15,28.579617781840017,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3337,False,"{'a': 0.01, 'e': 0.03554342822065915}",30,21,15.754049544100921,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3338,False,"{'a': 0.01, 'e': 0.035507902558230185}",30,24,12.657946483170939,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3339,False,"{'a': 0.01, 'e': 0.03547241240370673}",20,11,7.348911495366137,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3340,False,"{'a': 0.01, 'e': 0.03543695772159864}",20,16,8.60075820547518,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3341,False,"{'a': 0.01, 'e': 0.03540153847645121}",20,11,14.756246938298077,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3342,False,"{'a': 0.01, 'e': 0.03536615463284522}",30,21,14.515962266825863,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3343,False,"{'a': 0.01, 'e': 0.035330806155396806}",20,7,23.186723450425813,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3344,False,"{'a': 0.01, 'e': 0.03529549300875749}",20,8,20.58171962303615,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3345,False,"{'a': 0.01, 'e': 0.03526021515761412}",20,16,7.927545103327995,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3346,False,"{'a': 0.01, 'e': 0.035224972566688856}",20,15,9.35307768603043,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3347,False,"{'a': 0.01, 'e': 0.03518976520073909}",25,20,8.313997790790165,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3348,False,"{'a': 0.01, 'e': 0.03515459302455746}",30,18,25.02641123804402,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3349,False,"{'a': 0.01, 'e': 0.03511945600297177}",30,18,25.071075365621617,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3350,False,"{'a': 0.01, 'e': 0.035084354100845025}",30,16,1.8390246151821243,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3351,False,"{'a': 0.01, 'e': 0.035049287283075305}",20,16,5.268981290833784,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3352,False,"{'a': 0.01, 'e': 0.035014255514595784}",25,18,14.993132808512307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3353,False,"{'a': 0.01, 'e': 0.034979258760374686}",20,2,-16.06587725130425,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3354,False,"{'a': 0.01, 'e': 0.03494429698541527}",25,13,21.69131878680868,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3355,False,"{'a': 0.01, 'e': 0.03490937015475576}",30,18,23.279225391995034,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3356,False,"{'a': 0.01, 'e': 0.034874478233469314}",20,16,7.185253018561404,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3357,False,"{'a': 0.01, 'e': 0.034839621186663984}",30,20,20.778701902465784,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3358,False,"{'a': 0.01, 'e': 0.03480479897948277}",25,18,15.156238571339172,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3359,False,"{'a': 0.01, 'e': 0.03477001157710343}",25,14,22.744580296107383,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3360,False,"{'a': 0.01, 'e': 0.03473525894473856}",20,8,22.69521136285887,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3361,False,"{'a': 0.01, 'e': 0.03470054104763552}",35,17,35.00378197961246,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3362,False,"{'a': 0.01, 'e': 0.03466585785107644}",20,7,20.216969922131938,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3363,False,"{'a': 0.01, 'e': 0.034631209320378095}",20,16,8.511850769786362,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3364,False,"{'a': 0.01, 'e': 0.034596595420891954}",20,14,11.15413318567848,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3365,False,"{'a': 0.01, 'e': 0.0345620161180041}",20,11,16.43233266754009,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3366,False,"{'a': 0.01, 'e': 0.034527471377135265}",20,0,35.77782275269653,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3367,False,"{'a': 0.01, 'e': 0.03449296116374068}",25,13,26.759623016755576,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3368,False,"{'a': 0.01, 'e': 0.034458485443310136}",20,11,16.84603787800089,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3369,False,"{'a': 0.01, 'e': 0.034424044181367894}",25,14,22.304127911988704,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3370,False,"{'a': 0.01, 'e': 0.03438963734347271}",30,16,27.45846569806164,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3371,False,"{'a': 0.01, 'e': 0.03435526489521774}",25,19,10.920843461571508,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3372,False,"{'a': 0.01, 'e': 0.03432092680223053}",20,9,21.372531490725247,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3373,False,"{'a': 0.01, 'e': 0.034286623030172964}",20,6,29.53411405578767,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3374,False,"{'a': 0.01, 'e': 0.0342523535447413}",20,13,11.22117703554104,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3375,False,"{'a': 0.01, 'e': 0.03421811831166603}",20,10,23.348530842876524,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3376,False,"{'a': 0.01, 'e': 0.034183917296711934}",20,9,6.605338157324147,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3377,False,"{'a': 0.01, 'e': 0.03414975046567796}",20,10,17.5650405432138,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3378,False,"{'a': 0.01, 'e': 0.03411561778439732}",20,11,17.116147772538916,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3379,False,"{'a': 0.01, 'e': 0.034081519218737304}",25,17,14.205497653138988,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3380,False,"{'a': 0.01, 'e': 0.034047454734599344}",30,19,17.0022924914081,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3381,False,"{'a': 0.01, 'e': 0.03401342429791895}",20,16,8.597664257939645,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3382,False,"{'a': 0.01, 'e': 0.033979427874665694}",20,13,12.742223147914551,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3383,False,"{'a': 0.01, 'e': 0.03394546543084315}",20,8,24.202323527414727,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3384,False,"{'a': 0.01, 'e': 0.033911536932488856}",25,11,24.896552112347095,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3385,False,"{'a': 0.01, 'e': 0.033877642345674315}",30,11,30.940608471092915,"{0: 18, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3386,False,"{'a': 0.01, 'e': 0.03384378163650495}",20,12,12.38377272695043,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3387,False,"{'a': 0.01, 'e': 0.033809954771120046}",20,1,17.1786045190702,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3388,False,"{'a': 0.01, 'e': 0.03377616171569273}",30,21,16.542134824483806,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3389,False,"{'a': 0.01, 'e': 0.03374240243642994}",20,6,26.210124886181966,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3390,False,"{'a': 0.01, 'e': 0.033708676899572396}",20,14,10.562630389879573,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3391,False,"{'a': 0.01, 'e': 0.03367498507139457}",30,21,17.623351599587053,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3392,False,"{'a': 0.01, 'e': 0.03364132691820462}",20,12,15.318566441366244,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3393,False,"{'a': 0.01, 'e': 0.03360770240634438}",25,18,12.864884193301187,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3394,False,"{'a': 0.01, 'e': 0.033574111502189356}",25,15,15.974547391858627,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3395,False,"{'a': 0.01, 'e': 0.033540554172148636}",30,11,34.26754126244624,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3396,False,"{'a': 0.01, 'e': 0.03350703038266488}",25,15,20.492411824546547,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3397,False,"{'a': 0.01, 'e': 0.03347354010021429}",30,23,13.843741999070197,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3398,False,"{'a': 0.01, 'e': 0.0334400832913066}",25,18,13.988484668114115,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3399,False,"{'a': 0.01, 'e': 0.03340665992248499}",20,12,12.504612445479598,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3400,False,"{'a': 0.01, 'e': 0.03337326996032608}",25,11,23.853895388922226,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3401,False,"{'a': 0.01, 'e': 0.033339913371439905}",25,15,21.83770222578286,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3402,False,"{'a': 0.01, 'e': 0.03330659012246989}",20,6,27.6740770719025,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3403,False,"{'a': 0.01, 'e': 0.03327330018009277}",30,19,22.498074068586686,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3404,False,"{'a': 0.01, 'e': 0.03324004351101861}",25,15,15.734419903950078,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3405,False,"{'a': 0.01, 'e': 0.03320682008199072}",25,17,16.140126979157632,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3406,False,"{'a': 0.01, 'e': 0.03317362985978568}",20,9,6.360939655818574,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3407,False,"{'a': 0.01, 'e': 0.033140472811213274}",30,20,19.726753430585433,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3408,False,"{'a': 0.01, 'e': 0.03310734890311644}",20,9,21.13708152994211,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3409,False,"{'a': 0.01, 'e': 0.03307425810237125}",25,13,20.30230036221152,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3410,False,"{'a': 0.01, 'e': 0.03304120037588693}",20,0,31.704573281169175,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3411,False,"{'a': 0.01, 'e': 0.03300817569060575}",25,16,15.632003741737527,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3412,False,"{'a': 0.01, 'e': 0.032975184013503}",25,11,26.02908880917894,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3413,False,"{'a': 0.01, 'e': 0.032942225311587005}",25,15,19.62990368081707,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3414,False,"{'a': 0.01, 'e': 0.03290929955189908}",20,9,20.965511983430442,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3415,False,"{'a': 0.01, 'e': 0.03287640670151345}",20,4,24.32707518263427,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3416,False,"{'a': 0.01, 'e': 0.03284354672753726}",35,17,38.8375979483718,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3417,False,"{'a': 0.01, 'e': 0.032810719597110516}",20,14,10.610777079157977,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3418,False,"{'a': 0.01, 'e': 0.032777925277406125}",20,12,13.150688403546201,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3419,False,"{'a': 0.01, 'e': 0.03274516373562974}",20,5,23.944108821839716,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3420,False,"{'a': 0.01, 'e': 0.03271243493901982}",35,23,13.938724797941182,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3421,False,"{'a': 0.01, 'e': 0.03267973885484755}",25,0,34.3832201563233,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3422,False,"{'a': 0.01, 'e': 0.03264707545041687}",20,4,17.418531079456866,"{0: 15, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3423,False,"{'a': 0.01, 'e': 0.03261444469306436}",20,10,18.47769073155846,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3424,False,"{'a': 0.01, 'e': 0.03258184655015926}",35,13,45.13382989104197,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3425,False,"{'a': 0.01, 'e': 0.03254928098910342}",25,3,36.891884674012694,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3426,False,"{'a': 0.01, 'e': 0.03251674797733129}",20,7,23.96344987909823,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3427,False,"{'a': 0.01, 'e': 0.032484247482309846}",25,8,-12.971039224362379,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3428,False,"{'a': 0.01, 'e': 0.03245177947153859}",25,17,-5.834818487611198,"{0: 7, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3429,False,"{'a': 0.01, 'e': 0.0324193439125495}",25,18,12.4992613820656,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3430,False,"{'a': 0.01, 'e': 0.03238694077290704}",20,12,14.486147369409261,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3431,False,"{'a': 0.01, 'e': 0.03235457002020804}",25,8,35.94013241876406,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3432,False,"{'a': 0.01, 'e': 0.03232223162208177}",30,18,21.925273307617935,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3433,False,"{'a': 0.01, 'e': 0.0322899255461898}",20,0,8.610949946729239,"{0: 19, 1: 0, 2: 0, 3: 1, 4: 0}",0 +3434,False,"{'a': 0.01, 'e': 0.032257651760226075}",25,9,31.20528921877043,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3435,False,"{'a': 0.01, 'e': 0.0322254102319168}",20,8,19.6805515568811,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3436,False,"{'a': 0.01, 'e': 0.03219320092902044}",25,18,14.68048189198508,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3437,False,"{'a': 0.01, 'e': 0.032161023819327686}",20,8,24.68721415134668,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3438,False,"{'a': 0.01, 'e': 0.03212887887066144}",25,13,23.56176296284612,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3439,False,"{'a': 0.01, 'e': 0.032096766050876746}",25,8,10.1858326473011,"{0: 16, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3440,False,"{'a': 0.01, 'e': 0.03206468532786077}",20,10,19.153068982001294,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3441,False,"{'a': 0.01, 'e': 0.03203263666953279}",30,16,29.09484465773394,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3442,False,"{'a': 0.01, 'e': 0.03200062004384415}",30,22,11.418654276181151,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3443,False,"{'a': 0.01, 'e': 0.03196863541877823}",20,11,18.238941818040676,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3444,False,"{'a': 0.01, 'e': 0.03193668276235039}",25,18,10.647232979530429,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3445,False,"{'a': 0.01, 'e': 0.03190476204260796}",20,7,13.766212643389808,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3446,False,"{'a': 0.01, 'e': 0.031872873227630244}",30,16,25.971074566270914,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3447,False,"{'a': 0.01, 'e': 0.03184101628552841}",25,20,9.209316261268478,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3448,False,"{'a': 0.01, 'e': 0.03180919118444552}",25,19,10.120753679863565,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3449,False,"{'a': 0.01, 'e': 0.03177739789255645}",25,14,21.517827580723598,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3450,False,"{'a': 0.01, 'e': 0.03174563637806794}",25,15,6.001677459475134,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3451,False,"{'a': 0.01, 'e': 0.03171390660921845}",20,13,13.800192421678037,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3452,False,"{'a': 0.01, 'e': 0.0316822085542782}",20,16,8.681932752979042,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3453,False,"{'a': 0.01, 'e': 0.03165054218154915}",25,9,28.907566205937666,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3454,False,"{'a': 0.01, 'e': 0.031618907459364916}",25,17,14.378274823785183,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3455,False,"{'a': 0.01, 'e': 0.031587304356090785}",20,13,9.562079011635246,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3456,False,"{'a': 0.01, 'e': 0.03155573284012364}",20,3,27.538315375887986,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3457,False,"{'a': 0.01, 'e': 0.031524192879891964}",20,12,14.286468749654908,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3458,False,"{'a': 0.01, 'e': 0.031492684443855785}",20,10,20.446769555647727,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3459,False,"{'a': 0.01, 'e': 0.03146120750050669}",20,15,9.488563728801386,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3460,False,"{'a': 0.01, 'e': 0.03142976201836771}",20,13,14.49206332027356,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3461,False,"{'a': 0.01, 'e': 0.03139834796599337}",30,18,21.325915819966617,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3462,False,"{'a': 0.01, 'e': 0.0313669653119696}",20,10,17.11550541804251,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3463,False,"{'a': 0.01, 'e': 0.03133561402491377}",20,13,13.532620299284059,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3464,False,"{'a': 0.01, 'e': 0.03130429407347458}",25,10,19.290436226783076,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3465,False,"{'a': 0.01, 'e': 0.03127300542633206}",20,9,15.550923248983786,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3466,False,"{'a': 0.01, 'e': 0.031241748052197565}",25,19,11.866486383533731,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3467,False,"{'a': 0.01, 'e': 0.031210521919813744}",25,6,33.10709340018517,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3468,False,"{'a': 0.01, 'e': 0.031179326997954438}",20,16,6.88830206742943,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3469,False,"{'a': 0.01, 'e': 0.03114816325542473}",30,16,24.298364876186874,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3470,False,"{'a': 0.01, 'e': 0.03111703066106086}",20,0,36.39099551733163,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3471,False,"{'a': 0.01, 'e': 0.03108592918373026}",20,6,29.43972541517951,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3472,False,"{'a': 0.01, 'e': 0.03105485879233143}",25,7,31.93338389183059,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3473,False,"{'a': 0.01, 'e': 0.031023819455793984}",25,20,8.543031388128576,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3474,False,"{'a': 0.01, 'e': 0.03099281114307856}",25,14,-20.996794438902793,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3475,False,"{'a': 0.01, 'e': 0.030961833823176882}",25,13,24.927364448484653,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3476,False,"{'a': 0.01, 'e': 0.030930887465111603}",20,12,13.53144717901833,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3477,False,"{'a': 0.01, 'e': 0.030899972037936367}",30,19,19.225384725599636,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3478,False,"{'a': 0.01, 'e': 0.03086908751073573}",20,12,13.418141565322127,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3479,False,"{'a': 0.01, 'e': 0.030838233852625192}",30,16,25.978725773189815,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3480,False,"{'a': 0.01, 'e': 0.030807411032751076}",25,15,19.832837737293133,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3481,False,"{'a': 0.01, 'e': 0.03077661902029056}",30,12,38.34924600048055,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3482,False,"{'a': 0.01, 'e': 0.030745857784451616}",20,16,7.142375325035707,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3483,False,"{'a': 0.01, 'e': 0.03071512729447303}",20,12,15.878245296172656,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3484,False,"{'a': 0.01, 'e': 0.0306844275196243}",20,12,14.537511272134006,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3485,False,"{'a': 0.01, 'e': 0.030653758429205646}",20,6,27.437469391436096,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3486,False,"{'a': 0.01, 'e': 0.03062311999254796}",20,9,20.354596659431515,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3487,False,"{'a': 0.01, 'e': 0.030592512179012835}",20,12,16.40144879474247,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3488,False,"{'a': 0.01, 'e': 0.030561934957992438}",25,20,9.769317112837205,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3489,False,"{'a': 0.01, 'e': 0.030531388298909546}",20,13,13.548369579374585,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3490,False,"{'a': 0.01, 'e': 0.030500872171217483}",20,8,17.786179516484797,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3491,False,"{'a': 0.01, 'e': 0.030470386544400145}",20,10,19.93141629999672,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3492,False,"{'a': 0.01, 'e': 0.03043993138797189}",30,21,18.719770663786864,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3493,False,"{'a': 0.01, 'e': 0.030409506671477564}",20,11,21.697282486632478,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3494,False,"{'a': 0.01, 'e': 0.03037911236449243}",20,13,15.44978590387861,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3495,False,"{'a': 0.01, 'e': 0.030348748436622202}",25,12,24.493373985935577,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3496,False,"{'a': 0.01, 'e': 0.03031841485750294}",25,15,20.72193529667525,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3497,False,"{'a': 0.01, 'e': 0.030288111596801063}",20,10,14.63969088955836,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3498,False,"{'a': 0.01, 'e': 0.030257838624213294}",20,13,14.378197803306247,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3499,False,"{'a': 0.01, 'e': 0.030227595909466682}",30,10,35.10364287347998,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3500,False,"{'a': 0.01, 'e': 0.0301973834223185}",25,15,4.815568485543284,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3501,False,"{'a': 0.01, 'e': 0.03016720113255626}",20,9,19.817543287939806,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3502,False,"{'a': 0.01, 'e': 0.030137049009997648}",25,14,8.555520760638686,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3503,False,"{'a': 0.01, 'e': 0.03010692702449057}",20,9,11.472520053855225,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3504,False,"{'a': 0.01, 'e': 0.03007683514591303}",20,10,18.264363511190215,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3505,False,"{'a': 0.01, 'e': 0.03004677334417314}",30,20,22.92372973710934,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3506,False,"{'a': 0.01, 'e': 0.030016741589209084}",25,12,24.3629307423173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3507,False,"{'a': 0.01, 'e': 0.029986739850989135}",20,12,16.015105679685607,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3508,False,"{'a': 0.01, 'e': 0.029956768099511533}",25,13,22.681010584393807,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3509,False,"{'a': 0.01, 'e': 0.02992682630480453}",30,19,15.035614636600556,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3510,False,"{'a': 0.01, 'e': 0.029896914436926308}",20,7,21.731635250851976,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3511,False,"{'a': 0.01, 'e': 0.02986703246596503}",25,13,23.206840163721456,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3512,False,"{'a': 0.01, 'e': 0.029837180362038706}",30,19,21.514186394005208,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3513,False,"{'a': 0.01, 'e': 0.029807358095295233}",30,10,26.717590802253866,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3514,False,"{'a': 0.01, 'e': 0.02977756563591232}",25,13,19.629551475603694,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3515,False,"{'a': 0.01, 'e': 0.029747802954097544}",25,15,19.324668896651616,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3516,False,"{'a': 0.01, 'e': 0.0297180700200882}",25,11,25.63971167031582,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3517,False,"{'a': 0.01, 'e': 0.02968836680415135}",25,17,11.747718396381565,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3518,False,"{'a': 0.01, 'e': 0.029658693276583766}",20,3,29.383666130512477,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3519,False,"{'a': 0.01, 'e': 0.029629049407711945}",20,10,7.15711730536551,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3520,False,"{'a': 0.01, 'e': 0.029599435167892}",30,20,19.3054150342967,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3521,False,"{'a': 0.01, 'e': 0.02956985052750969}",30,19,12.328166077806017,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3522,False,"{'a': 0.01, 'e': 0.029540295456980357}",20,12,14.106701162105757,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3523,False,"{'a': 0.01, 'e': 0.029510769926748955}",25,8,-15.230731827647405,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3524,False,"{'a': 0.01, 'e': 0.02948127390728994}",25,13,25.369649027699957,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3525,False,"{'a': 0.01, 'e': 0.02945180736910729}",20,3,28.692908346403975,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3526,False,"{'a': 0.01, 'e': 0.02942237028273445}",20,7,25.958694428486417,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3527,False,"{'a': 0.01, 'e': 0.029392962618734357}",20,6,21.39429228607458,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3528,False,"{'a': 0.01, 'e': 0.029363584347699333}",35,18,20.209090571619605,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3529,False,"{'a': 0.01, 'e': 0.029334235440251103}",20,11,17.562682081716044,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3530,False,"{'a': 0.01, 'e': 0.029304915867040746}",25,20,11.428960406526924,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3531,False,"{'a': 0.01, 'e': 0.02927562559874871}",20,11,16.83910194779162,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3532,False,"{'a': 0.01, 'e': 0.029246364606084714}",20,11,19.343679438740832,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3533,False,"{'a': 0.01, 'e': 0.029217132859787758}",30,13,25.626767025589565,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3534,False,"{'a': 0.01, 'e': 0.029187930330626086}",20,12,16.910904486425515,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3535,False,"{'a': 0.01, 'e': 0.02915875698939719}",20,15,8.679940619575259,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3536,False,"{'a': 0.01, 'e': 0.02912961280692771}",20,8,23.40891670112518,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3537,False,"{'a': 0.01, 'e': 0.02910049775407347}",20,8,22.014009885455337,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3538,False,"{'a': 0.01, 'e': 0.02907141180171939}",25,14,21.156737679708357,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3539,False,"{'a': 0.01, 'e': 0.029042354920779553}",20,6,27.574485258752077,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3540,False,"{'a': 0.01, 'e': 0.029013327082197053}",20,14,10.781196560208652,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3541,False,"{'a': 0.01, 'e': 0.028984328256944056}",25,3,24.80513585131007,"{0: 21, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3542,False,"{'a': 0.01, 'e': 0.028955358416021718}",25,14,23.09550905437437,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3543,False,"{'a': 0.01, 'e': 0.028926417530460217}",20,13,13.089741602729704,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3544,False,"{'a': 0.01, 'e': 0.028897505571318663}",20,16,9.173162862770042,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3545,False,"{'a': 0.01, 'e': 0.028868622509685086}",25,17,12.63264764556001,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3546,False,"{'a': 0.01, 'e': 0.028839768316676413}",25,18,12.701757186223938,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3547,False,"{'a': 0.01, 'e': 0.02881094296343847}",20,11,16.252402031444774,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3548,False,"{'a': 0.01, 'e': 0.02878214642114589}",20,12,14.914174386100829,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3549,False,"{'a': 0.01, 'e': 0.028753378661002135}",25,17,14.102745913001705,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3550,False,"{'a': 0.01, 'e': 0.028724639654239423}",20,13,-0.29293323924434334,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3551,False,"{'a': 0.01, 'e': 0.02869592937211877}",35,17,36.49402510462674,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3552,False,"{'a': 0.01, 'e': 0.02866724778592988}",20,8,23.98791960458895,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3553,False,"{'a': 0.01, 'e': 0.028638594866991166}",20,13,14.385279809608411,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3554,False,"{'a': 0.01, 'e': 0.028609970586649693}",25,19,11.371266479150089,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3555,False,"{'a': 0.01, 'e': 0.028581374916281203}",30,17,20.309908432874373,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3556,False,"{'a': 0.01, 'e': 0.02855280782729001}",20,7,18.69538667183992,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3557,False,"{'a': 0.01, 'e': 0.028524269291109027}",25,13,16.28755826514061,"{0: 11, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3558,False,"{'a': 0.01, 'e': 0.028495759279199697}",35,17,35.77125606174962,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3559,False,"{'a': 0.01, 'e': 0.028467277763052034}",20,13,15.066362914540278,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3560,False,"{'a': 0.01, 'e': 0.028438824714184505}",25,17,14.839929146683586,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3561,False,"{'a': 0.01, 'e': 0.02841040010414406}",20,15,9.657933650583477,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3562,False,"{'a': 0.01, 'e': 0.028382003904506077}",20,7,-16.334815582032128,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3563,False,"{'a': 0.01, 'e': 0.028353636086874374}",30,19,20.86288092531956,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3564,False,"{'a': 0.01, 'e': 0.02832529662288112}",20,3,27.266308919464652,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3565,False,"{'a': 0.01, 'e': 0.028296985484186854}",30,18,24.223978765663347,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3566,False,"{'a': 0.01, 'e': 0.028268702642480412}",20,6,23.666333239431644,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3567,False,"{'a': 0.01, 'e': 0.028240448069478983}",20,11,15.140768838776394,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3568,False,"{'a': 0.01, 'e': 0.02821222173692798}",20,7,21.436142961617552,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3569,False,"{'a': 0.01, 'e': 0.02818402361660106}",20,16,7.741067558857851,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3570,False,"{'a': 0.01, 'e': 0.028155853680300096}",35,16,37.84273484039382,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3571,False,"{'a': 0.01, 'e': 0.02812771189985517}",25,11,27.34147898281917,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3572,False,"{'a': 0.01, 'e': 0.028099598247124487}",35,21,27.37882488310977,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3573,False,"{'a': 0.01, 'e': 0.028071512693994393}",20,14,13.001369635552912,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3574,False,"{'a': 0.01, 'e': 0.02804345521237932}",20,12,15.310246887164809,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3575,False,"{'a': 0.01, 'e': 0.028015425774221808}",20,16,10.11378493505565,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3576,False,"{'a': 0.01, 'e': 0.027987424351492405}",20,14,11.503817217624402,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3577,False,"{'a': 0.01, 'e': 0.027959450916189687}",20,12,3.609892237103624,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3578,False,"{'a': 0.01, 'e': 0.027931505440340204}",20,2,31.009548230113555,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3579,False,"{'a': 0.01, 'e': 0.027903587895998498}",20,9,15.98888176301401,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3580,False,"{'a': 0.01, 'e': 0.027875698255247015}",20,11,18.50644274461588,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3581,False,"{'a': 0.01, 'e': 0.02784783649019611}",20,14,11.457799121891885,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3582,False,"{'a': 0.01, 'e': 0.027820002572984004}",25,18,14.000503706154856,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3583,False,"{'a': 0.01, 'e': 0.0277921964757768}",30,18,20.320245608706678,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3584,False,"{'a': 0.01, 'e': 0.02776441817076839}",20,0,19.061169593329236,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3585,False,"{'a': 0.01, 'e': 0.027736667630180466}",20,7,-17.16186479701402,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3586,False,"{'a': 0.01, 'e': 0.02770894482626248}",25,17,16.31605107879144,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3587,False,"{'a': 0.01, 'e': 0.02768124973129162}",25,10,24.459880539069875,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3588,False,"{'a': 0.01, 'e': 0.027653582317572808}",20,7,21.425206134610566,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3589,False,"{'a': 0.01, 'e': 0.027625942557438617}",30,18,20.800108142289872,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3590,False,"{'a': 0.01, 'e': 0.027598330423249287}",20,5,27.501006955952928,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3591,False,"{'a': 0.01, 'e': 0.02757074588739267}",20,12,16.59310426282316,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3592,False,"{'a': 0.01, 'e': 0.02754318892228425}",25,18,13.09240621523032,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3593,False,"{'a': 0.01, 'e': 0.027515659500367044}",20,14,10.915487214294277,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3594,False,"{'a': 0.01, 'e': 0.027488157594111634}",30,17,25.26992638429463,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3595,False,"{'a': 0.01, 'e': 0.027460683176016094}",35,22,25.89164381640738,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3596,False,"{'a': 0.01, 'e': 0.027433236218606032}",25,12,23.08412324600504,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3597,False,"{'a': 0.01, 'e': 0.027405816694434475}",25,17,16.74455198763841,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3598,False,"{'a': 0.01, 'e': 0.027378424576081896}",20,14,13.186375890454755,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3599,False,"{'a': 0.01, 'e': 0.027351059836156166}",25,18,14.273154964369645,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3600,False,"{'a': 0.01, 'e': 0.02732372244729256}",25,13,22.504173166184053,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3601,False,"{'a': 0.01, 'e': 0.027296412382153676}",20,8,24.413093327510246,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3602,False,"{'a': 0.01, 'e': 0.027269129613429453}",20,9,21.920880706871944,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3603,False,"{'a': 0.01, 'e': 0.027241874113837102}",25,5,37.641835993687444,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3604,False,"{'a': 0.01, 'e': 0.027214645856121145}",20,3,31.4504801504755,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3605,False,"{'a': 0.01, 'e': 0.027187444813053317}",30,21,16.385513706709915,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3606,False,"{'a': 0.01, 'e': 0.027160270957432564}",30,20,18.93063469348199,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3607,False,"{'a': 0.01, 'e': 0.027133124262085022}",35,18,30.915403957692003,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3608,False,"{'a': 0.01, 'e': 0.027106004699864013}",20,14,9.971146448479482,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3609,False,"{'a': 0.01, 'e': 0.027078912243649965}",30,17,21.685799179686025,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3610,False,"{'a': 0.01, 'e': 0.027051846866350416}",25,20,11.228810915397435,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3611,False,"{'a': 0.01, 'e': 0.027024808540899975}",25,13,22.892133223435113,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3612,False,"{'a': 0.01, 'e': 0.02699779724026034}",20,4,32.376660771298475,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3613,False,"{'a': 0.01, 'e': 0.026970812937420194}",20,13,14.596995755530209,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3614,False,"{'a': 0.01, 'e': 0.026943855605395233}",25,18,14.013095304926688,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3615,False,"{'a': 0.01, 'e': 0.026916925217228112}",20,11,14.56828151345688,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3616,False,"{'a': 0.01, 'e': 0.026890021745988462}",30,15,28.112236029478435,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3617,False,"{'a': 0.01, 'e': 0.026863145164772798}",20,12,16.706819053169788,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3618,False,"{'a': 0.01, 'e': 0.02683629544670454}",25,10,26.035820137206535,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3619,False,"{'a': 0.01, 'e': 0.02680947256493395}",30,19,22.63208089506846,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3620,False,"{'a': 0.01, 'e': 0.026782676492638175}",25,12,19.282167869498434,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3621,False,"{'a': 0.01, 'e': 0.026755907203021123}",25,4,26.334651797263685,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3622,False,"{'a': 0.01, 'e': 0.0267291646693135}",25,18,13.400495400872774,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3623,False,"{'a': 0.01, 'e': 0.026702448864772767}",25,17,14.26971449379359,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3624,False,"{'a': 0.01, 'e': 0.026675759762683132}",25,15,19.817540292037624,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3625,False,"{'a': 0.01, 'e': 0.026649097336355485}",20,8,20.09863565936494,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3626,False,"{'a': 0.01, 'e': 0.026622461559127397}",20,10,18.46904441214237,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3627,False,"{'a': 0.01, 'e': 0.02659585240436307}",30,16,24.865450289955877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3628,False,"{'a': 0.01, 'e': 0.02656926984545338}",20,16,7.860630209247457,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3629,False,"{'a': 0.01, 'e': 0.026542713855815747}",25,13,24.681694244718848,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3630,False,"{'a': 0.01, 'e': 0.02651618440889418}",25,16,18.542869692366224,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3631,False,"{'a': 0.01, 'e': 0.026489681478159225}",25,15,10.253665263994606,"{0: 9, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3632,False,"{'a': 0.01, 'e': 0.026463205037107963}",20,9,21.500964813783295,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3633,False,"{'a': 0.01, 'e': 0.026436755059263944}",20,4,27.336411256462505,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3634,False,"{'a': 0.01, 'e': 0.026410331518177187}",30,4,42.64315678826102,"{0: 26, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3635,False,"{'a': 0.01, 'e': 0.02638393438742414}",25,12,0.485713419436971,"{0: 12, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3636,False,"{'a': 0.01, 'e': 0.02635756364060769}",25,18,13.902994793285599,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3637,False,"{'a': 0.01, 'e': 0.026331219251357077}",20,7,20.779336459250278,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3638,False,"{'a': 0.01, 'e': 0.026304901193327908}",20,7,24.401345917931895,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3639,False,"{'a': 0.01, 'e': 0.026278609440202112}",20,9,20.85665857871265,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3640,False,"{'a': 0.01, 'e': 0.02625234396568796}",20,15,7.966425605211315,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3641,False,"{'a': 0.01, 'e': 0.02622610474351996}",30,20,18.396515440286016,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3642,False,"{'a': 0.01, 'e': 0.02619989174745889}",20,13,13.398106610548062,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3643,False,"{'a': 0.01, 'e': 0.02617370495129174}",20,15,7.668543938091589,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3644,False,"{'a': 0.01, 'e': 0.026147544328831734}",20,13,14.855256890650525,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3645,False,"{'a': 0.01, 'e': 0.026121409853918233}",20,8,22.642762139379904,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3646,False,"{'a': 0.01, 'e': 0.026095301500416765}",25,10,29.81946151698456,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3647,False,"{'a': 0.01, 'e': 0.02606921924221896}",30,18,24.012572283373775,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3648,False,"{'a': 0.01, 'e': 0.02604316305324258}",20,10,15.002907326590831,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3649,False,"{'a': 0.01, 'e': 0.026017132907431427}",20,4,23.055191519494613,"{0: 15, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3650,False,"{'a': 0.01, 'e': 0.025991128778755347}",25,4,25.138222908069807,"{0: 20, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3651,False,"{'a': 0.01, 'e': 0.0259651506412102}",25,15,15.988079876979983,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3652,False,"{'a': 0.01, 'e': 0.02593919846881787}",20,14,12.169884970854149,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3653,False,"{'a': 0.01, 'e': 0.02591327223562617}",30,20,20.184797218811998,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3654,False,"{'a': 0.01, 'e': 0.025887371915708866}",30,13,33.58887302644994,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3655,False,"{'a': 0.01, 'e': 0.025861497483165623}",20,14,11.87304539117129,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3656,False,"{'a': 0.01, 'e': 0.025835648912122026}",20,16,7.210509736716084,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3657,False,"{'a': 0.01, 'e': 0.0258098261767295}",20,8,24.570733283523097,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3658,False,"{'a': 0.01, 'e': 0.0257840292511653}",25,12,22.280563594351374,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3659,False,"{'a': 0.01, 'e': 0.025758258109632486}",30,20,16.40627810223614,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3660,False,"{'a': 0.01, 'e': 0.02573251272635994}",25,20,8.986820427970478,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3661,False,"{'a': 0.01, 'e': 0.025706793075602266}",30,22,14.160136257208677,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3662,False,"{'a': 0.01, 'e': 0.025681099131639813}",30,8,23.304560130998134,"{0: 20, 1: 2, 2: 0, 3: 0, 4: 0}",1 +3663,False,"{'a': 0.01, 'e': 0.025655430868778615}",25,19,14.461104982193557,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3664,False,"{'a': 0.01, 'e': 0.02562978826135044}",30,9,37.67648944947159,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3665,False,"{'a': 0.01, 'e': 0.025604171283712656}",20,3,27.562206746530542,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3666,False,"{'a': 0.01, 'e': 0.025578579910248294}",30,18,24.125811299198205,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3667,False,"{'a': 0.01, 'e': 0.025553014115365962}",20,13,13.432446596852943,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3668,False,"{'a': 0.01, 'e': 0.025527473873499885}",20,12,15.92487075566959,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3669,False,"{'a': 0.01, 'e': 0.02550195915910981}",25,20,10.391905673315659,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3670,False,"{'a': 0.01, 'e': 0.025476469946681016}",25,8,33.877650532707065,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3671,False,"{'a': 0.01, 'e': 0.025451006210724283}",20,8,24.392434133225944,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3672,False,"{'a': 0.01, 'e': 0.025425567925775893}",35,25,18.532560552035378,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3673,False,"{'a': 0.01, 'e': 0.025400155066397548}",20,9,21.945928148339206,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3674,False,"{'a': 0.01, 'e': 0.025374767607176385}",20,12,15.74526961545552,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3675,False,"{'a': 0.01, 'e': 0.02534940552272493}",25,7,31.96207171987426,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3676,False,"{'a': 0.01, 'e': 0.025324068787681127}",20,6,28.882518380536084,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3677,False,"{'a': 0.01, 'e': 0.02529875737670822}",20,15,-3.4205833916287958,"{0: 4, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3678,False,"{'a': 0.01, 'e': 0.025273471264494796}",20,10,19.776188422158317,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3679,False,"{'a': 0.01, 'e': 0.025248210425754734}",25,5,34.05691649305956,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3680,False,"{'a': 0.01, 'e': 0.025222974835227212}",25,17,17.43704665714353,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3681,False,"{'a': 0.01, 'e': 0.025197764467676628}",20,16,6.936214492249504,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3682,False,"{'a': 0.01, 'e': 0.025172579297892607}",25,10,26.87122783907677,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3683,False,"{'a': 0.01, 'e': 0.025147419300689974}",20,14,14.010310483061694,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3684,False,"{'a': 0.01, 'e': 0.02512228445090875}",30,6,29.95878069836848,"{0: 23, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3685,False,"{'a': 0.01, 'e': 0.025097174723414068}",25,13,22.512762253697247,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3686,False,"{'a': 0.01, 'e': 0.025072090093096203}",20,16,10.075148040510518,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3687,False,"{'a': 0.01, 'e': 0.025047030534870507}",20,11,15.84178688762048,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3688,False,"{'a': 0.01, 'e': 0.025021996023677443}",20,6,26.64346919663024,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3689,False,"{'a': 0.01, 'e': 0.024996986534482492}",20,12,18.035687128975184,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3690,False,"{'a': 0.01, 'e': 0.024972002042276155}",20,6,20.553073354724,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3691,False,"{'a': 0.01, 'e': 0.024947042522073932}",25,13,24.71080578821859,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3692,False,"{'a': 0.01, 'e': 0.02492210794891632}",30,15,27.594877939581583,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3693,False,"{'a': 0.01, 'e': 0.024897198297868735}",20,11,15.264143822433489,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3694,False,"{'a': 0.01, 'e': 0.024872313544021522}",25,14,23.26671815950266,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3695,False,"{'a': 0.01, 'e': 0.024847453662489916}",25,11,25.566672472614734,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3696,False,"{'a': 0.01, 'e': 0.02482261862841405}",20,8,23.234836187477367,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3697,False,"{'a': 0.01, 'e': 0.024797808416958885}",20,12,4.069428554446373,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3698,False,"{'a': 0.01, 'e': 0.0247730230033142}",25,14,21.151548309088767,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3699,False,"{'a': 0.01, 'e': 0.024748262362694576}",20,15,9.486869334882627,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3700,False,"{'a': 0.01, 'e': 0.024723526470339388}",30,17,24.733374324566206,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3701,False,"{'a': 0.01, 'e': 0.024698815301512727}",35,19,27.72962834595946,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3702,False,"{'a': 0.01, 'e': 0.02467412883150343}",25,19,10.16753933455789,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3703,False,"{'a': 0.01, 'e': 0.024649467035625004}",25,13,25.705081087441187,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3704,False,"{'a': 0.01, 'e': 0.024624829889215685}",20,3,27.89374292299162,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3705,False,"{'a': 0.01, 'e': 0.024600217367638302}",20,6,14.301845694712721,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3706,False,"{'a': 0.01, 'e': 0.024575629446280337}",25,17,15.687370295333327,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3707,False,"{'a': 0.01, 'e': 0.02455106610055386}",20,6,25.919661483543702,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3708,False,"{'a': 0.01, 'e': 0.024526527305895537}",25,12,26.90574545534354,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3709,False,"{'a': 0.01, 'e': 0.024502013037766564}",25,14,19.034161853268344,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3710,False,"{'a': 0.01, 'e': 0.02447752327165267}",30,8,38.22483399299752,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3711,False,"{'a': 0.01, 'e': 0.02445305798306408}",20,15,7.466967683536404,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3712,False,"{'a': 0.01, 'e': 0.024428617147535518}",20,13,14.687872080758241,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3713,False,"{'a': 0.01, 'e': 0.02440420074062614}",30,21,15.610457779462875,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3714,False,"{'a': 0.01, 'e': 0.024379808737919537}",20,8,20.78850580253634,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3715,False,"{'a': 0.01, 'e': 0.024355441115023704}",30,8,38.910320871368675,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3716,False,"{'a': 0.01, 'e': 0.024331097847571002}",25,17,14.51621660982085,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3717,False,"{'a': 0.01, 'e': 0.02430677891121819}",20,14,11.818252604692635,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3718,False,"{'a': 0.01, 'e': 0.02428248428164631}",20,8,-20.424086719518243,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3719,False,"{'a': 0.01, 'e': 0.02425821393456074}",20,12,17.80053735241204,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3720,False,"{'a': 0.01, 'e': 0.024233967845691113}",20,13,15.262637166789265,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3721,False,"{'a': 0.01, 'e': 0.024209745990791363}",20,6,23.53291470162651,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3722,False,"{'a': 0.01, 'e': 0.02418554834563962}",20,16,7.357626954805885,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3723,False,"{'a': 0.01, 'e': 0.02416137488603824}",25,11,26.420487398919118,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3724,False,"{'a': 0.01, 'e': 0.024137225587813747}",25,11,27.249764126224722,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3725,False,"{'a': 0.01, 'e': 0.024113100426816865}",25,20,9.334882850703252,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3726,False,"{'a': 0.01, 'e': 0.024088999378922418}",30,24,9.997081214175548,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3727,False,"{'a': 0.01, 'e': 0.024064922420029358}",30,12,28.99846644828454,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3728,False,"{'a': 0.01, 'e': 0.024040869526060712}",20,9,22.66932198498517,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3729,False,"{'a': 0.01, 'e': 0.024016840672963606}",25,13,24.081419359043323,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3730,False,"{'a': 0.01, 'e': 0.023992835836709175}",30,18,23.159664530052712,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3731,False,"{'a': 0.01, 'e': 0.02396885499329258}",25,14,21.563561671624765,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3732,False,"{'a': 0.01, 'e': 0.023944898118732967}",20,5,15.787582139409704,"{0: 14, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3733,False,"{'a': 0.01, 'e': 0.023920965189073478}",25,14,26.2573230587727,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3734,False,"{'a': 0.01, 'e': 0.023897056180381168}",25,16,20.736703418998086,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3735,False,"{'a': 0.01, 'e': 0.023873171068747034}",25,20,11.322046562019974,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3736,False,"{'a': 0.01, 'e': 0.023849309830285947}",30,24,10.944463153157225,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3737,False,"{'a': 0.01, 'e': 0.023825472441136687}",20,13,13.203045660311421,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3738,False,"{'a': 0.01, 'e': 0.023801658877461853}",25,11,28.6534067349105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3739,False,"{'a': 0.01, 'e': 0.02377786911544788}",20,16,9.33025344833869,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3740,False,"{'a': 0.01, 'e': 0.023754103131304997}",25,16,21.108579246913898,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3741,False,"{'a': 0.01, 'e': 0.02373036090126723}",25,12,19.740488161820586,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3742,False,"{'a': 0.01, 'e': 0.023706642401592346}",25,10,24.738195548571266,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3743,False,"{'a': 0.01, 'e': 0.023682947608561836}",20,12,18.629257786201702,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3744,False,"{'a': 0.01, 'e': 0.0236592764984809}",30,21,16.486637747184982,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3745,False,"{'a': 0.01, 'e': 0.023635629047678443}",20,13,13.772633300214432,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3746,False,"{'a': 0.01, 'e': 0.023612005232507005}",20,11,15.052361053438053,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3747,False,"{'a': 0.01, 'e': 0.023588405029342768}",25,3,37.74111798066376,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3748,False,"{'a': 0.01, 'e': 0.02356482841458551}",20,10,16.890277954173563,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3749,False,"{'a': 0.01, 'e': 0.023541275364658647}",25,17,16.80375839930413,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3750,False,"{'a': 0.01, 'e': 0.023517745856009107}",25,15,19.29327195535013,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3751,False,"{'a': 0.01, 'e': 0.023494239865107385}",20,6,18.393552512937802,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3752,False,"{'a': 0.01, 'e': 0.023470757368447476}",25,17,13.01798729420503,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3753,False,"{'a': 0.01, 'e': 0.0234472983425469}",25,11,15.5311027751878,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3754,False,"{'a': 0.01, 'e': 0.023423862763946618}",25,14,15.293517310323965,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3755,False,"{'a': 0.01, 'e': 0.023400450609211056}",25,15,21.170941165143468,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3756,False,"{'a': 0.01, 'e': 0.023377061854928043}",35,17,34.07068593818627,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3757,False,"{'a': 0.01, 'e': 0.02335369647770884}",25,18,12.830886129666126,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3758,False,"{'a': 0.01, 'e': 0.023330354454188063}",30,12,23.294512314416068,"{0: 17, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3759,False,"{'a': 0.01, 'e': 0.023307035761023685}",25,13,22.594537758728737,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3760,False,"{'a': 0.01, 'e': 0.023283740374897}",25,17,15.85724376439441,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3761,False,"{'a': 0.01, 'e': 0.023260468272512637}",25,19,11.064845709846699,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3762,False,"{'a': 0.01, 'e': 0.023237219430598487}",25,3,34.80268672551088,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3763,False,"{'a': 0.01, 'e': 0.023213993825905707}",20,8,24.485096453224717,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3764,False,"{'a': 0.01, 'e': 0.023190791435208673}",25,17,17.35006500969858,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3765,False,"{'a': 0.01, 'e': 0.02316761223530502}",25,18,11.72552364897242,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3766,False,"{'a': 0.01, 'e': 0.023144456203015532}",30,20,23.14492709209459,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3767,False,"{'a': 0.01, 'e': 0.023121323315184173}",20,16,5.056031015231764,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3768,False,"{'a': 0.01, 'e': 0.02309821354867805}",20,13,14.40907579499685,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3769,False,"{'a': 0.01, 'e': 0.023075126880387407}",20,6,23.010649085351435,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3770,False,"{'a': 0.01, 'e': 0.02305206328722557}",20,10,19.19149613933843,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3771,False,"{'a': 0.01, 'e': 0.02302902274612894}",20,9,23.255455397975062,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3772,False,"{'a': 0.01, 'e': 0.023006005234056964}",25,11,24.66898893697172,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3773,False,"{'a': 0.01, 'e': 0.02298301072799215}",20,0,29.855858053823077,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3774,False,"{'a': 0.01, 'e': 0.022960039204939983}",20,13,12.263912768109073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3775,False,"{'a': 0.01, 'e': 0.02293709064192893}",20,12,14.229211131253354,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3776,False,"{'a': 0.01, 'e': 0.022914165016010422}",20,11,18.267945807788266,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3777,False,"{'a': 0.01, 'e': 0.02289126230425885}",25,14,21.66468378725273,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3778,False,"{'a': 0.01, 'e': 0.022868382483771488}",20,16,9.929470665537687,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3779,False,"{'a': 0.01, 'e': 0.022845525531668517}",25,18,13.77970218960514,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3780,False,"{'a': 0.01, 'e': 0.02282269142509297}",25,19,9.64246073660324,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3781,False,"{'a': 0.01, 'e': 0.02279988014121076}",20,12,14.636809632610667,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3782,False,"{'a': 0.01, 'e': 0.022777091657210594}",30,11,36.1404442247725,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3783,False,"{'a': 0.01, 'e': 0.02275432595030398}",20,12,17.144503587661276,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3784,False,"{'a': 0.01, 'e': 0.022731582997725205}",25,14,-3.5202779271625992,"{0: 10, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3785,False,"{'a': 0.01, 'e': 0.022708862776731332}",20,6,26.50253692336736,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3786,False,"{'a': 0.01, 'e': 0.022686165264602126}",35,20,24.598613048916725,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3787,False,"{'a': 0.01, 'e': 0.022663490438640077}",25,13,-20.8421198308913,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3788,False,"{'a': 0.01, 'e': 0.022640838276170343}",35,20,28.963278551439455,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3789,False,"{'a': 0.01, 'e': 0.022618208754540785}",25,15,18.366598648420624,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3790,False,"{'a': 0.01, 'e': 0.022595601851121864}",20,13,13.368344484114912,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3791,False,"{'a': 0.01, 'e': 0.022573017543306678}",30,17,26.49225380651799,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3792,False,"{'a': 0.01, 'e': 0.022550455808510905}",20,9,20.063110048712236,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3793,False,"{'a': 0.01, 'e': 0.02252791662417283}",25,8,30.64898337996234,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3794,False,"{'a': 0.01, 'e': 0.02250539996775326}",20,16,8.621741433252364,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3795,False,"{'a': 0.01, 'e': 0.02248290581673553}",20,14,8.03736112848507,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3796,False,"{'a': 0.01, 'e': 0.02246043414862548}",25,17,12.826310588751046,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3797,False,"{'a': 0.01, 'e': 0.02243798494095146}",20,13,-27.29478278112679,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3798,False,"{'a': 0.01, 'e': 0.022415558171264255}",20,14,11.91484613898041,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3799,False,"{'a': 0.01, 'e': 0.022393153817137086}",35,27,16.133892256602486,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3800,False,"{'a': 0.01, 'e': 0.02237077185616559}",20,16,7.822113460251788,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3801,False,"{'a': 0.01, 'e': 0.022348412265967826}",25,15,21.285437642216227,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3802,False,"{'a': 0.01, 'e': 0.022326075024184187}",20,16,8.504471253038636,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3803,False,"{'a': 0.01, 'e': 0.022303760108477434}",20,12,18.77835250921678,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3804,False,"{'a': 0.01, 'e': 0.02228146749653264}",25,13,18.545266587653828,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3805,False,"{'a': 0.01, 'e': 0.02225919716605721}",25,17,14.652206686894157,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3806,False,"{'a': 0.01, 'e': 0.0222369490947808}",20,11,17.93713921233636,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3807,False,"{'a': 0.01, 'e': 0.022214723260455337}",20,8,19.47306441486952,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3808,False,"{'a': 0.01, 'e': 0.022192519640854974}",25,11,25.08634477113456,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3809,False,"{'a': 0.01, 'e': 0.022170338213776113}",25,14,20.896268553957185,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3810,False,"{'a': 0.01, 'e': 0.022148178957037315}",30,16,22.247233770644076,"{0: 13, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3811,False,"{'a': 0.01, 'e': 0.022126041848479317}",20,8,23.07258527774236,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3812,False,"{'a': 0.01, 'e': 0.022103926865965004}",20,12,16.7752152583554,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3813,False,"{'a': 0.01, 'e': 0.022081833987379406}",20,0,28.880879633282106,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3814,False,"{'a': 0.01, 'e': 0.022059763190629637}",20,12,14.698470774274522,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3815,False,"{'a': 0.01, 'e': 0.022037714453644896}",25,8,30.685491187805162,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3816,False,"{'a': 0.01, 'e': 0.02201568775437644}",20,16,6.253819124027354,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3817,False,"{'a': 0.01, 'e': 0.021993683070797576}",25,11,25.74997775596323,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3818,False,"{'a': 0.01, 'e': 0.021971700380903618}",25,11,-16.80430533843945,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 1}",1 +3819,False,"{'a': 0.01, 'e': 0.021949739662711874}",25,13,20.303740591800327,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3820,False,"{'a': 0.01, 'e': 0.02192780089426161}",20,14,13.955893172639641,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3821,False,"{'a': 0.01, 'e': 0.02190588405361408}",25,17,15.140350328726273,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3822,False,"{'a': 0.01, 'e': 0.021883989118852424}",30,16,25.106644435921748,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3823,False,"{'a': 0.01, 'e': 0.021862116068081715}",30,19,17.38276557859497,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3824,False,"{'a': 0.01, 'e': 0.021840264879428885}",30,18,23.32953734960023,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3825,False,"{'a': 0.01, 'e': 0.021818435531042762}",20,13,10.144460428954302,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3826,False,"{'a': 0.01, 'e': 0.02179662800109399}",20,13,13.948266325754624,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3827,False,"{'a': 0.01, 'e': 0.021774842267775037}",25,18,13.988946513722107,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3828,False,"{'a': 0.01, 'e': 0.021753078309300157}",30,23,12.475299370944267,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3829,False,"{'a': 0.01, 'e': 0.021731336103905406}",25,11,25.63396449128535,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3830,False,"{'a': 0.01, 'e': 0.02170961562984857}",30,13,35.292771876846615,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3831,False,"{'a': 0.01, 'e': 0.021687916865409173}",20,13,14.089675366605512,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3832,False,"{'a': 0.01, 'e': 0.02166623978888844}",30,12,33.11427003878625,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3833,False,"{'a': 0.01, 'e': 0.021644584378609312}",20,13,12.10942386330251,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3834,False,"{'a': 0.01, 'e': 0.021622950612916365}",20,10,16.413051823904677,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3835,False,"{'a': 0.01, 'e': 0.021601338470175833}",20,5,23.338674967393537,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3836,False,"{'a': 0.01, 'e': 0.021579747928775563}",20,16,8.583183282119435,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3837,False,"{'a': 0.01, 'e': 0.021558178967125027}",25,19,10.956361791178612,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3838,False,"{'a': 0.01, 'e': 0.02153663156365526}",30,18,23.422408325531933,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3839,False,"{'a': 0.01, 'e': 0.021515105696818845}",20,13,14.25767369040024,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3840,False,"{'a': 0.01, 'e': 0.021493601345089923}",25,1,32.78380475984188,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3841,False,"{'a': 0.01, 'e': 0.021472118486964127}",20,14,12.45378531195905,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3842,False,"{'a': 0.01, 'e': 0.021450657100958614}",20,13,17.897404505057576,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3843,False,"{'a': 0.01, 'e': 0.021429217165611993}",20,12,15.540962115544028,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3844,False,"{'a': 0.01, 'e': 0.021407798659484324}",20,12,14.541201110164028,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3845,False,"{'a': 0.01, 'e': 0.02138640156115709}",20,9,19.53224425746435,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3846,False,"{'a': 0.01, 'e': 0.021365025849233204}",25,13,23.640818047841986,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3847,False,"{'a': 0.01, 'e': 0.02134367150233695}",20,11,18.058390717779453,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3848,False,"{'a': 0.01, 'e': 0.02132233849911398}",20,13,15.107309887109809,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3849,False,"{'a': 0.01, 'e': 0.02130102681823127}",20,10,16.594671811518893,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3850,False,"{'a': 0.01, 'e': 0.02127973643837717}",20,14,12.1788821381915,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3851,False,"{'a': 0.01, 'e': 0.021258467338261276}",25,20,8.023075805934301,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3852,False,"{'a': 0.01, 'e': 0.021237219496614494}",20,16,7.6298939168079905,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3853,False,"{'a': 0.01, 'e': 0.021215992892188968}",20,16,7.258223148794194,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3854,False,"{'a': 0.01, 'e': 0.02119478750375811}",20,10,20.457761036203884,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3855,False,"{'a': 0.01, 'e': 0.02117360331011653}",35,21,29.29356728734438,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3856,False,"{'a': 0.01, 'e': 0.021152440290080017}",25,13,21.1867243803163,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3857,False,"{'a': 0.01, 'e': 0.02113129842248555}",20,11,18.872338483770882,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3858,False,"{'a': 0.01, 'e': 0.021110177686191275}",20,3,29.2672245458417,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3859,False,"{'a': 0.01, 'e': 0.021089078060076445}",30,16,10.798889024481449,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3860,False,"{'a': 0.01, 'e': 0.021067999523041434}",20,3,29.60654593379529,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3861,False,"{'a': 0.01, 'e': 0.02104694205400769}",20,13,14.16267892160737,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3862,False,"{'a': 0.01, 'e': 0.021025905631917766}",20,10,17.810326452089598,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3863,False,"{'a': 0.01, 'e': 0.021004890235735225}",25,11,25.283594153041804,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3864,False,"{'a': 0.01, 'e': 0.02098389584444467}",30,21,15.761035301153772,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3865,False,"{'a': 0.01, 'e': 0.0209629224370517}",25,13,24.516139201298344,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3866,False,"{'a': 0.01, 'e': 0.02094196999258292}",35,25,17.61425262792524,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3867,False,"{'a': 0.01, 'e': 0.020921038490085878}",20,15,11.180857389616353,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3868,False,"{'a': 0.01, 'e': 0.020900127908629072}",20,4,31.978271145423637,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3869,False,"{'a': 0.01, 'e': 0.020879238227301908}",25,18,13.511112361639864,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3870,False,"{'a': 0.01, 'e': 0.02085836942521472}",30,18,20.180705319963284,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3871,False,"{'a': 0.01, 'e': 0.020837521481498693}",20,7,26.46952865123662,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3872,False,"{'a': 0.01, 'e': 0.020816694375305884}",20,9,20.449969641133695,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3873,False,"{'a': 0.01, 'e': 0.020795888085809178}",20,14,10.730028651147647,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3874,False,"{'a': 0.01, 'e': 0.020775102592202298}",25,14,20.443580929499326,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3875,False,"{'a': 0.01, 'e': 0.020754337873699742}",30,17,22.210506568772747,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3876,False,"{'a': 0.01, 'e': 0.02073359390953679}",20,13,14.882109494156637,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3877,False,"{'a': 0.01, 'e': 0.020712870678969465}",20,7,23.02527155992848,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3878,False,"{'a': 0.01, 'e': 0.020692168161274557}",25,11,26.50449628731137,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3879,False,"{'a': 0.01, 'e': 0.02067148633574953}",20,12,16.151435698279244,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3880,False,"{'a': 0.01, 'e': 0.020650825181712566}",25,12,23.554118446242033,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3881,False,"{'a': 0.01, 'e': 0.020630184678502493}",30,19,20.776336842437455,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3882,False,"{'a': 0.01, 'e': 0.020609564805478826}",20,0,36.05077172170362,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3883,False,"{'a': 0.01, 'e': 0.020588965542021685}",20,6,28.168552091645857,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3884,False,"{'a': 0.01, 'e': 0.0205683868675318}",20,16,6.644737084657196,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3885,False,"{'a': 0.01, 'e': 0.02054782876143049}",20,14,10.689064014903131,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3886,False,"{'a': 0.01, 'e': 0.02052729120315966}",25,13,24.332568714839176,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3887,False,"{'a': 0.01, 'e': 0.020506774172181743}",20,9,22.134394630422257,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3888,False,"{'a': 0.01, 'e': 0.020486277647979705}",25,19,12.50306951220808,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3889,False,"{'a': 0.01, 'e': 0.020465801610057018}",20,14,11.568855687538935,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3890,False,"{'a': 0.01, 'e': 0.020445346037937653}",25,16,7.237449077310881,"{0: 8, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3891,False,"{'a': 0.01, 'e': 0.020424910911166032}",25,20,9.993144715215625,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3892,False,"{'a': 0.01, 'e': 0.02040449620930702}",25,11,26.011601479333237,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3893,False,"{'a': 0.01, 'e': 0.020384101911945913}",20,0,32.765846303065395,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3894,False,"{'a': 0.01, 'e': 0.020363727998688425}",25,3,28.658048276985877,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3895,False,"{'a': 0.01, 'e': 0.020343374449160633}",30,11,36.62817640272706,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3896,False,"{'a': 0.01, 'e': 0.020323041243008984}",25,15,17.225897792544366,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3897,False,"{'a': 0.01, 'e': 0.02030272835990026}",20,8,23.92752065389935,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3898,False,"{'a': 0.01, 'e': 0.0202824357795216}",25,13,23.318564253185073,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3899,False,"{'a': 0.01, 'e': 0.02026216348158041}",20,8,22.463964875896487,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3900,False,"{'a': 0.01, 'e': 0.02024191144580439}",20,16,9.813129217844255,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3901,False,"{'a': 0.01, 'e': 0.020221679651941493}",20,12,15.622293984873629,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3902,False,"{'a': 0.01, 'e': 0.020201468079759942}",20,11,21.52236738574682,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3903,False,"{'a': 0.01, 'e': 0.020181276709048155}",25,14,21.694338281438093,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3904,False,"{'a': 0.01, 'e': 0.02016110551961476}",20,10,22.036038340989162,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3905,False,"{'a': 0.01, 'e': 0.02014095449128855}",25,11,27.258078402351355,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3906,False,"{'a': 0.01, 'e': 0.020120823603918526}",20,12,14.453634925684021,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3907,False,"{'a': 0.01, 'e': 0.020100712837373778}",20,8,22.312640374183044,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3908,False,"{'a': 0.01, 'e': 0.020080622171543543}",20,15,8.285959150577415,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3909,False,"{'a': 0.01, 'e': 0.020060551586337145}",25,11,22.692660466160902,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3910,False,"{'a': 0.01, 'e': 0.020040501061684014}",25,14,18.5461155766255,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3911,False,"{'a': 0.01, 'e': 0.020020470577533613}",20,12,3.640945411060514,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3912,False,"{'a': 0.01, 'e': 0.02000046011385546}",25,9,30.57935983346995,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3913,False,"{'a': 0.01, 'e': 0.019980469650639078}",25,8,28.82551391950403,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3914,False,"{'a': 0.01, 'e': 0.01996049916789402}",30,13,31.371020152091724,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3915,False,"{'a': 0.01, 'e': 0.019940548645649796}",30,18,22.09504307519825,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3916,False,"{'a': 0.01, 'e': 0.019920618063955876}",20,12,13.678957727141956,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3917,False,"{'a': 0.01, 'e': 0.019900707402881673}",20,16,7.626992670229022,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3918,False,"{'a': 0.01, 'e': 0.01988081664251654}",30,19,21.42876053640406,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3919,False,"{'a': 0.01, 'e': 0.019860945762969703}",20,16,8.697133096622643,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3920,False,"{'a': 0.01, 'e': 0.019841094744370288}",30,23,14.083161366939073,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3921,False,"{'a': 0.01, 'e': 0.01982126356686726}",30,18,23.450012624550858,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3922,False,"{'a': 0.01, 'e': 0.019801452210629462}",25,11,25.42911403425279,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3923,False,"{'a': 0.01, 'e': 0.019781660655845523}",30,24,12.44486247461046,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3924,False,"{'a': 0.01, 'e': 0.019761888882723885}",25,17,14.301718477381538,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3925,False,"{'a': 0.01, 'e': 0.019742136871492774}",20,11,20.086312681140285,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3926,False,"{'a': 0.01, 'e': 0.019722404602400184}",20,9,14.964582000971314,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3927,False,"{'a': 0.01, 'e': 0.01970269205571384}",25,18,12.048228061880724,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3928,False,"{'a': 0.01, 'e': 0.019682999211721196}",20,16,5.877943543579519,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3929,False,"{'a': 0.01, 'e': 0.019663326050729395}",20,10,12.128840242547684,"{0: 9, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3930,False,"{'a': 0.01, 'e': 0.019643672553065292}",35,16,33.662785475064204,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3931,False,"{'a': 0.01, 'e': 0.019624038699075377}",25,14,18.706017534166023,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3932,False,"{'a': 0.01, 'e': 0.0196044244691258}",20,12,13.937753840164037,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3933,False,"{'a': 0.01, 'e': 0.019584829843602315}",25,4,42.36084806163487,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3934,False,"{'a': 0.01, 'e': 0.019565254802910312}",20,13,14.45802175384921,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3935,False,"{'a': 0.01, 'e': 0.019545699327474745}",25,20,11.712642294179233,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3936,False,"{'a': 0.01, 'e': 0.019526163397740135}",20,12,11.493882494020344,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3937,False,"{'a': 0.01, 'e': 0.01950664699417054}",30,8,35.91025110193299,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3938,False,"{'a': 0.01, 'e': 0.01948715009724957}",25,8,34.1453579197716,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3939,False,"{'a': 0.01, 'e': 0.019467672687480328}",20,12,16.028022738202758,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3940,False,"{'a': 0.01, 'e': 0.01944821474538539}",20,5,17.78057473137101,"{0: 14, 1: 1, 2: 0, 3: 0, 4: 0}",1 +3941,False,"{'a': 0.01, 'e': 0.019428776251506814}",25,11,25.526428279986135,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3942,False,"{'a': 0.01, 'e': 0.019409357186406115}",35,23,23.467777490381817,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3943,False,"{'a': 0.01, 'e': 0.01938995753066422}",20,13,11.191943601928479,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3944,False,"{'a': 0.01, 'e': 0.01937057726488147}",25,16,18.731838003347303,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3945,False,"{'a': 0.01, 'e': 0.01935121636967759}",20,6,26.298928844734053,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3946,False,"{'a': 0.01, 'e': 0.019331874825691705}",20,12,2.850513384783655,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3947,False,"{'a': 0.01, 'e': 0.019312552613582255}",30,12,33.16428262825657,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3948,False,"{'a': 0.01, 'e': 0.019293249714027027}",25,15,17.928906312437434,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3949,False,"{'a': 0.01, 'e': 0.01927396610772311}",20,11,18.3602997785173,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3950,False,"{'a': 0.01, 'e': 0.01925470177538692}",30,16,6.754630938669069,"{0: 13, 1: 0, 2: 0, 3: 1, 4: 0}",1 +3951,False,"{'a': 0.01, 'e': 0.01923545669775411}",25,7,31.98304677910935,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3952,False,"{'a': 0.01, 'e': 0.019216230855579598}",20,10,17.61508980107708,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3953,False,"{'a': 0.01, 'e': 0.019197024229637535}",20,16,8.458680874699816,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3954,False,"{'a': 0.01, 'e': 0.01917783680072131}",30,24,9.052303250830201,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3955,False,"{'a': 0.01, 'e': 0.019158668549643484}",20,7,25.537223738496248,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3956,False,"{'a': 0.01, 'e': 0.019139519457235805}",25,6,23.957450208496176,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +3957,False,"{'a': 0.01, 'e': 0.019120389504349168}",25,14,20.88058874169759,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3958,False,"{'a': 0.01, 'e': 0.019101278671853638}",20,16,7.777675564406605,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3959,False,"{'a': 0.01, 'e': 0.01908218694063837}",25,19,7.164653850644834,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3960,False,"{'a': 0.01, 'e': 0.019063114291611637}",25,16,17.699261599563805,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3961,False,"{'a': 0.01, 'e': 0.019044060705700774}",20,8,23.059578704327713,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3962,False,"{'a': 0.01, 'e': 0.01902502616385221}",30,23,13.760059983458287,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3963,False,"{'a': 0.01, 'e': 0.019006010647031397}",20,8,21.140734886584234,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3964,False,"{'a': 0.01, 'e': 0.018987014136222814}",20,0,30.47340987342699,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3965,False,"{'a': 0.01, 'e': 0.01896803661242994}",20,14,9.8236252898326,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3966,False,"{'a': 0.01, 'e': 0.01894907805667527}",20,6,28.636513924591753,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3967,False,"{'a': 0.01, 'e': 0.018930138450000234}",30,8,40.42043510281374,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3968,False,"{'a': 0.01, 'e': 0.018911217773465227}",30,17,22.36759051552173,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3969,False,"{'a': 0.01, 'e': 0.01889231600814957}",25,12,22.787689731571625,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3970,False,"{'a': 0.01, 'e': 0.018873433135151486}",20,11,15.534964432961491,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3971,False,"{'a': 0.01, 'e': 0.01885456913558812}",25,11,23.712770065729803,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3972,False,"{'a': 0.01, 'e': 0.018835723990595455}",25,15,19.632169174848688,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3973,False,"{'a': 0.01, 'e': 0.018816897681328357}",20,0,33.83342229945881,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3974,False,"{'a': 0.01, 'e': 0.018798090188960496}",20,11,16.848897682238196,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3975,False,"{'a': 0.01, 'e': 0.0187793014946844}",25,13,22.6916746688226,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3976,False,"{'a': 0.01, 'e': 0.018760531579711363}",20,8,22.829211791095734,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3977,False,"{'a': 0.01, 'e': 0.01874178042527147}",25,15,18.35734560818929,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3978,False,"{'a': 0.01, 'e': 0.018723048012613555}",20,7,24.81389203922098,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3979,False,"{'a': 0.01, 'e': 0.018704334323005223}",25,18,12.396376016057758,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3980,False,"{'a': 0.01, 'e': 0.018685639337732773}",25,7,31.119957851295165,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3981,False,"{'a': 0.01, 'e': 0.018666963038101215}",25,2,38.91050713284387,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3982,False,"{'a': 0.01, 'e': 0.018648305405434242}",20,8,20.078751519349737,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3983,False,"{'a': 0.01, 'e': 0.01862966642107424}",20,9,22.36392140293404,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3984,False,"{'a': 0.01, 'e': 0.01861104606638221}",20,0,17.535711255635846,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +3985,False,"{'a': 0.01, 'e': 0.018592444322737798}",20,10,21.913619896837083,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3986,False,"{'a': 0.01, 'e': 0.01857386117153925}",20,9,20.053756388993495,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3987,False,"{'a': 0.01, 'e': 0.01855529659420343}",25,13,23.851411521240376,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3988,False,"{'a': 0.01, 'e': 0.018536750572165746}",20,15,8.692336751305598,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3989,False,"{'a': 0.01, 'e': 0.018518223086880184}",20,2,34.19970050700974,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3990,False,"{'a': 0.01, 'e': 0.018499714119819242}",20,9,20.429272269606777,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3991,False,"{'a': 0.01, 'e': 0.01848122365247397}",25,20,11.279789366804021,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3992,False,"{'a': 0.01, 'e': 0.018462751666353888}",20,14,10.589591674276942,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3993,False,"{'a': 0.01, 'e': 0.018444298142987012}",25,13,19.269708728588604,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3994,False,"{'a': 0.01, 'e': 0.01842586306391981}",20,9,20.303983625045,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3995,False,"{'a': 0.01, 'e': 0.018407446410717215}",25,19,9.550486113280865,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3996,False,"{'a': 0.01, 'e': 0.018389048164962566}",20,12,16.280637416979694,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3997,False,"{'a': 0.01, 'e': 0.01837066830825761}",30,13,28.642934808018943,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3998,False,"{'a': 0.01, 'e': 0.01835230682222249}",20,0,31.975525770221513,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +3999,False,"{'a': 0.01, 'e': 0.018333963688495727}",25,7,33.31424872520143,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4000,False,"{'a': 0.01, 'e': 0.01831563888873418}",20,12,18.37674925455022,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4001,False,"{'a': 0.01, 'e': 0.01829733240461304}",20,14,12.551846924697276,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4002,False,"{'a': 0.01, 'e': 0.018279044217825845}",25,7,30.664498329930254,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4003,False,"{'a': 0.01, 'e': 0.01826077431008438}",25,11,28.488577338261976,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4004,False,"{'a': 0.01, 'e': 0.01824252266311874}",30,16,25.93566993540467,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4005,False,"{'a': 0.01, 'e': 0.018224289258677303}",30,20,22.535358460378347,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4006,False,"{'a': 0.01, 'e': 0.01820607407852663}",20,13,13.070371923138323,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4007,False,"{'a': 0.01, 'e': 0.018187877104451564}",20,14,9.17052769074544,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4008,False,"{'a': 0.01, 'e': 0.0181696983182551}",25,20,10.512668152840908,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4009,False,"{'a': 0.01, 'e': 0.018151537701758473}",25,17,16.338771749112468,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4010,False,"{'a': 0.01, 'e': 0.018133395236801075}",25,7,33.68708707547166,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4011,False,"{'a': 0.01, 'e': 0.01811527090524041}",25,12,11.201887330531674,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4012,False,"{'a': 0.01, 'e': 0.018097164688952158}",25,11,26.496249578331323,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4013,False,"{'a': 0.01, 'e': 0.01807907656983012}",30,16,31.5414708584714,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4014,False,"{'a': 0.01, 'e': 0.018061006529786143}",20,9,22.102948940539125,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4015,False,"{'a': 0.01, 'e': 0.018042954550750216}",25,11,25.591904749401426,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4016,False,"{'a': 0.01, 'e': 0.01802492061467033}",25,0,23.68252731515294,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4017,False,"{'a': 0.01, 'e': 0.018006904703512558}",25,14,19.605986198994824,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4018,False,"{'a': 0.01, 'e': 0.017988906799261007}",25,15,17.111243777247456,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4019,False,"{'a': 0.01, 'e': 0.017970926883917736}",25,19,8.88346908325416,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4020,False,"{'a': 0.01, 'e': 0.01795296493950285}",20,3,29.035528264278696,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4021,False,"{'a': 0.01, 'e': 0.017935020948054412}",20,8,21.28543306486816,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4022,False,"{'a': 0.01, 'e': 0.017917094891628405}",25,7,28.33871731673502,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4023,False,"{'a': 0.01, 'e': 0.017899186752298794}",20,0,34.295610852634866,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4024,False,"{'a': 0.01, 'e': 0.017881296512157415}",20,14,10.843132575475854,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4025,False,"{'a': 0.01, 'e': 0.017863424153314034}",30,16,26.94617370549475,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4026,False,"{'a': 0.01, 'e': 0.017845569657896316}",30,12,36.71305740722536,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4027,False,"{'a': 0.01, 'e': 0.017827733008049722}",20,14,11.998546820426302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4028,False,"{'a': 0.01, 'e': 0.017809914185937626}",25,20,7.880079974388758,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4029,False,"{'a': 0.01, 'e': 0.017792113173741214}",20,8,22.134896239189388,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4030,False,"{'a': 0.01, 'e': 0.01777432995365944}",20,1,27.6237197905027,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4031,False,"{'a': 0.01, 'e': 0.017756564507909123}",20,13,12.7710898289857,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4032,False,"{'a': 0.01, 'e': 0.017738816818724773}",25,13,21.129469706733758,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4033,False,"{'a': 0.01, 'e': 0.017721086868358722}",30,20,18.807087787487585,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4034,False,"{'a': 0.01, 'e': 0.017703374639081032}",20,12,16.113352749492197,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4035,False,"{'a': 0.01, 'e': 0.017685680113179437}",30,14,35.58028525026694,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4036,False,"{'a': 0.01, 'e': 0.01766800327295943}",25,13,24.153808580656168,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4037,False,"{'a': 0.01, 'e': 0.01765034410074419}",30,19,23.85116921480726,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4038,False,"{'a': 0.01, 'e': 0.0176327025788745}",25,19,11.284977552673723,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4039,False,"{'a': 0.01, 'e': 0.017615078689708876}",25,11,25.07371735961105,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4040,False,"{'a': 0.01, 'e': 0.017597472415623393}",25,17,18.902707611543782,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4041,False,"{'a': 0.01, 'e': 0.017579883739011794}",20,14,13.048151887509288,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4042,False,"{'a': 0.01, 'e': 0.017562312642285412}",20,3,28.668341187412896,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4043,False,"{'a': 0.01, 'e': 0.01754475910787312}",20,6,22.721321072259066,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4044,False,"{'a': 0.01, 'e': 0.0175272231182214}",20,8,22.787984786341077,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4045,False,"{'a': 0.01, 'e': 0.017509704655794274}",25,17,18.815004935274516,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4046,False,"{'a': 0.01, 'e': 0.017492203703073247}",35,13,40.79374873335359,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4047,False,"{'a': 0.01, 'e': 0.017474720242557397}",30,17,22.810186249910036,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4048,False,"{'a': 0.01, 'e': 0.01745725425676323}",25,16,19.545870770468856,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4049,False,"{'a': 0.01, 'e': 0.017439805728224775}",25,3,36.30625413134241,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4050,False,"{'a': 0.01, 'e': 0.017422374639493515}",30,13,33.83337571628095,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4051,False,"{'a': 0.01, 'e': 0.01740496097313833}",20,8,21.977362534270064,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4052,False,"{'a': 0.01, 'e': 0.017387564711745573}",25,8,31.231827905214242,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4053,False,"{'a': 0.01, 'e': 0.017370185837918987}",25,13,23.069551809427605,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4054,False,"{'a': 0.01, 'e': 0.017352824334279676}",35,16,35.36578892991215,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4055,False,"{'a': 0.01, 'e': 0.01733548018346616}",20,1,28.280556430193798,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4056,False,"{'a': 0.01, 'e': 0.017318153368134255}",20,10,18.443523488260812,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4057,False,"{'a': 0.01, 'e': 0.01730084387095716}",25,13,21.259347388471895,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4058,False,"{'a': 0.01, 'e': 0.017283551674625395}",30,19,19.801553196563933,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4059,False,"{'a': 0.01, 'e': 0.01726627676184673}",25,19,11.061792490950825,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4060,False,"{'a': 0.01, 'e': 0.017249019115346265}",25,8,30.61514320465018,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4061,False,"{'a': 0.01, 'e': 0.017231778717866367}",20,12,15.773627068661423,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4062,False,"{'a': 0.01, 'e': 0.017214555552166607}",20,9,20.82264784823285,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4063,False,"{'a': 0.01, 'e': 0.017197349601023853}",30,15,27.50169660528254,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4064,False,"{'a': 0.01, 'e': 0.017180160847232114}",20,15,9.944548862455356,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4065,False,"{'a': 0.01, 'e': 0.017162989273602654}",25,18,15.719959698052795,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4066,False,"{'a': 0.01, 'e': 0.017145834862963918}",20,16,8.253009660510036,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4067,False,"{'a': 0.01, 'e': 0.017128697598161453}",25,16,14.378571399529125,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4068,False,"{'a': 0.01, 'e': 0.017111577462058016}",25,19,10.066710955969564,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4069,False,"{'a': 0.01, 'e': 0.01709447443753348}",30,16,27.592952071612565,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4070,False,"{'a': 0.01, 'e': 0.017077388507484793}",20,13,14.457804267395673,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4071,False,"{'a': 0.01, 'e': 0.017060319654826052}",20,13,14.046315402583827,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4072,False,"{'a': 0.01, 'e': 0.017043267862488373}",20,16,7.038873756048789,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4073,False,"{'a': 0.01, 'e': 0.017026233113419977}",25,15,17.144951221456587,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4074,False,"{'a': 0.01, 'e': 0.017009215390586124}",20,10,21.02154888565834,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4075,False,"{'a': 0.01, 'e': 0.016992214676969066}",20,0,20.142434389948644,"{0: 19, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4076,False,"{'a': 0.01, 'e': 0.016975230955568105}",20,15,8.34029763171913,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4077,False,"{'a': 0.01, 'e': 0.016958264209399526}",30,16,26.135971136812387,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4078,False,"{'a': 0.01, 'e': 0.016941314421496552}",20,9,22.1517243660541,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4079,False,"{'a': 0.01, 'e': 0.01692438157490943}",20,7,25.98795091970599,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4080,False,"{'a': 0.01, 'e': 0.01690746565270528}",30,22,17.901694696857632,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4081,False,"{'a': 0.01, 'e': 0.016890566637968184}",20,12,18.311914475144334,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4082,False,"{'a': 0.01, 'e': 0.016873684513799156}",25,12,23.998934983441057,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4083,False,"{'a': 0.01, 'e': 0.01685681926331603}",20,11,18.12311128618692,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4084,False,"{'a': 0.01, 'e': 0.01683997086965357}",25,5,33.10690074652899,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4085,False,"{'a': 0.01, 'e': 0.016823139315963402}",20,16,6.745375265155651,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4086,False,"{'a': 0.01, 'e': 0.016806324585413937}",25,19,9.893108199792223,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4087,False,"{'a': 0.01, 'e': 0.01678952666119047}",25,20,8.23360541754995,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4088,False,"{'a': 0.01, 'e': 0.016772745526495048}",30,16,23.1690544491992,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4089,False,"{'a': 0.01, 'e': 0.016755981164546553}",30,12,34.247714814522624,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4090,False,"{'a': 0.01, 'e': 0.016739233558580632}",20,16,5.117642417354083,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4091,False,"{'a': 0.01, 'e': 0.01672250269184965}",20,16,10.296625595131793,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4092,False,"{'a': 0.01, 'e': 0.016705788547622755}",25,12,26.27812962134992,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4093,False,"{'a': 0.01, 'e': 0.016689091109185813}",25,0,47.251276400307916,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4094,False,"{'a': 0.01, 'e': 0.016672410359841357}",20,9,20.95916212030069,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4095,False,"{'a': 0.01, 'e': 0.016655746282908664}",30,20,17.489275802746356,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4096,False,"{'a': 0.01, 'e': 0.016639098861723624}",35,13,40.41116920047335,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4097,False,"{'a': 0.01, 'e': 0.01662246807963884}",30,19,24.59728016718112,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4098,False,"{'a': 0.01, 'e': 0.01660585392002353}",25,19,11.515218655222062,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4099,False,"{'a': 0.01, 'e': 0.01658925636626351}",25,15,19.212518566564416,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4100,False,"{'a': 0.01, 'e': 0.016572675401761255}",20,0,39.44973801631559,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4101,False,"{'a': 0.01, 'e': 0.016556111009935766}",20,8,21.77447540008334,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4102,False,"{'a': 0.01, 'e': 0.016539563174222668}",30,24,12.409082282749344,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4103,False,"{'a': 0.01, 'e': 0.016523031878074135}",25,15,18.61820965674827,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4104,False,"{'a': 0.01, 'e': 0.016506517104958845}",20,13,13.128745116593606,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4105,False,"{'a': 0.01, 'e': 0.016490018838362035}",20,13,11.161943572513804,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4106,False,"{'a': 0.01, 'e': 0.01647353706178545}",20,12,13.192913870448322,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4107,False,"{'a': 0.01, 'e': 0.016457071758747287}",20,10,16.212419101879647,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4108,False,"{'a': 0.01, 'e': 0.01644062291278227}",20,11,17.419913227569523,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4109,False,"{'a': 0.01, 'e': 0.016424190507441518}",20,5,24.716089511987786,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4110,False,"{'a': 0.01, 'e': 0.016407774526292645}",20,13,15.629580372080309,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4111,False,"{'a': 0.01, 'e': 0.016391374952919677}",20,14,11.423395401770229,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4112,False,"{'a': 0.01, 'e': 0.01637499177092302}",25,11,29.079152629242515,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4113,False,"{'a': 0.01, 'e': 0.01635862496391949}",35,23,24.722287631505754,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4114,False,"{'a': 0.01, 'e': 0.016342274515542307}",30,23,10.997007878278357,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4115,False,"{'a': 0.01, 'e': 0.016325940409440985}",25,14,19.608261652937635,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4116,False,"{'a': 0.01, 'e': 0.01630962262928145}",25,11,21.569362836724792,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4117,False,"{'a': 0.01, 'e': 0.016293321158745884}",25,11,24.941751646600316,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4118,False,"{'a': 0.01, 'e': 0.016277035981532836}",25,17,17.38775150627851,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4119,False,"{'a': 0.01, 'e': 0.016260767081357142}",20,14,12.799772404299278,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4120,False,"{'a': 0.01, 'e': 0.01624451444194987}",20,6,27.3903306768971,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4121,False,"{'a': 0.01, 'e': 0.016228278047058394}",25,6,21.006389405074863,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4122,False,"{'a': 0.01, 'e': 0.016212057880446332}",25,17,14.794635306778774,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4123,False,"{'a': 0.01, 'e': 0.016195853925893487}",25,7,32.749305070409015,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4124,False,"{'a': 0.01, 'e': 0.01617966616719593}",20,10,18.96191990368722,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4125,False,"{'a': 0.01, 'e': 0.016163494588165874}",20,16,10.647280511246855,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4126,False,"{'a': 0.01, 'e': 0.016147339172631756}",30,24,13.044852755305612,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4127,False,"{'a': 0.01, 'e': 0.01613119990443817}",25,18,2.9088322121365153,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4128,False,"{'a': 0.01, 'e': 0.016115076767445814}",25,15,15.568721855973369,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4129,False,"{'a': 0.01, 'e': 0.016098969745531575}",25,13,20.586507123533664,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4130,False,"{'a': 0.01, 'e': 0.016082878822588433}",20,12,15.626300827024172,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4131,False,"{'a': 0.01, 'e': 0.01606680398252544}",20,10,19.115619211378394,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4132,False,"{'a': 0.01, 'e': 0.016050745209267785}",20,4,29.958199345200413,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4133,False,"{'a': 0.01, 'e': 0.01603470248675666}",25,16,17.071399343789782,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4134,False,"{'a': 0.01, 'e': 0.016018675798949358}",30,18,21.397919228154958,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4135,False,"{'a': 0.01, 'e': 0.016002665129819207}",25,13,21.941947895630236,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4136,False,"{'a': 0.01, 'e': 0.0159866704633555}",25,16,18.254574281893124,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4137,False,"{'a': 0.01, 'e': 0.015970691783563595}",20,16,6.321448971148298,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4138,False,"{'a': 0.01, 'e': 0.015954729074464814}",20,14,11.480867102793667,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4139,False,"{'a': 0.01, 'e': 0.015938782320096424}",20,8,18.56256678073679,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4140,False,"{'a': 0.01, 'e': 0.015922851504511698}",20,13,13.238617471383133,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4141,False,"{'a': 0.01, 'e': 0.015906936611779787}",20,9,20.139961297563303,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4142,False,"{'a': 0.01, 'e': 0.015891037625985815}",20,14,12.525285716030014,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4143,False,"{'a': 0.01, 'e': 0.015875154531230805}",25,7,33.703721042044926,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4144,False,"{'a': 0.01, 'e': 0.015859287311631637}",20,14,9.797114114263302,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4145,False,"{'a': 0.01, 'e': 0.0158434359513211}",20,14,8.620329165710658,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4146,False,"{'a': 0.01, 'e': 0.015827600434447853}",20,15,11.945170837083886,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4147,False,"{'a': 0.01, 'e': 0.015811780745176342}",30,21,16.52543474241672,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4148,False,"{'a': 0.01, 'e': 0.01579597686768691}",25,18,14.616529085351399,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4149,False,"{'a': 0.01, 'e': 0.015780188786175646}",20,4,28.480822462201665,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4150,False,"{'a': 0.01, 'e': 0.015764416484854486}",25,14,17.92908968659942,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4151,False,"{'a': 0.01, 'e': 0.015748659947951136}",20,16,6.7245707008500935,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4152,False,"{'a': 0.01, 'e': 0.015732919159709032}",20,10,16.601108031382502,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4153,False,"{'a': 0.01, 'e': 0.015717194104387402}",20,14,-1.8623038069741769,"{0: 5, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4154,False,"{'a': 0.01, 'e': 0.015701484766261195}",20,9,22.982348531892438,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4155,False,"{'a': 0.01, 'e': 0.015685791129621054}",30,5,42.16139041138329,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4156,False,"{'a': 0.01, 'e': 0.01567011317877336}",20,15,2.340709197800676,"{0: 4, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4157,False,"{'a': 0.01, 'e': 0.01565445089804014}",20,11,19.039087509022835,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4158,False,"{'a': 0.01, 'e': 0.015638804271759118}",35,21,28.70672198000671,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4159,False,"{'a': 0.01, 'e': 0.01562317328428369}",30,16,25.040919830981654,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4160,False,"{'a': 0.01, 'e': 0.01560755791998283}",20,14,12.240095316094575,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4161,False,"{'a': 0.01, 'e': 0.015591958163241193}",20,12,13.836751485356725,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4162,False,"{'a': 0.01, 'e': 0.015576373998459032}",20,12,15.221733914498289,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4163,False,"{'a': 0.01, 'e': 0.015560805410052154}",30,22,12.675116795157848,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4164,False,"{'a': 0.01, 'e': 0.015545252382451996}",25,20,7.9644775486564585,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4165,False,"{'a': 0.01, 'e': 0.015529714900105502}",20,15,10.53097660633035,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4166,False,"{'a': 0.01, 'e': 0.015514192947475202}",25,11,27.839668485927504,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4167,False,"{'a': 0.01, 'e': 0.015498686509039157}",20,13,11.762246485231504,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4168,False,"{'a': 0.01, 'e': 0.015483195569290899}",25,17,16.57725603326507,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4169,False,"{'a': 0.01, 'e': 0.015467720112739499}",25,20,8.335097883634816,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4170,False,"{'a': 0.01, 'e': 0.015452260123909515}",25,15,17.5887215541137,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4171,False,"{'a': 0.01, 'e': 0.01543681558734093}",25,17,11.875471474014166,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4172,False,"{'a': 0.01, 'e': 0.015421386487589232}",25,11,25.670890458964898,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4173,False,"{'a': 0.01, 'e': 0.015405972809225293}",25,14,20.468213534107544,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4174,False,"{'a': 0.01, 'e': 0.015390574536835447}",30,22,15.795567374996054,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4175,False,"{'a': 0.01, 'e': 0.015375191655021433}",30,14,29.876044651702852,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4176,False,"{'a': 0.01, 'e': 0.015359824148400343}",25,9,1.704976793053054,"{0: 15, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4177,False,"{'a': 0.01, 'e': 0.015344472001604681}",20,8,23.984945493672807,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4178,False,"{'a': 0.01, 'e': 0.015329135199282314}",20,6,27.42592439458592,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4179,False,"{'a': 0.01, 'e': 0.015313813726096408}",20,13,11.706174632100762,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4180,False,"{'a': 0.01, 'e': 0.015298507566725518}",20,13,13.731184967014169,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4181,False,"{'a': 0.01, 'e': 0.015283216705863457}",30,20,21.07382300215173,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4182,False,"{'a': 0.01, 'e': 0.015267941128219376}",25,11,26.281676597982923,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4183,False,"{'a': 0.01, 'e': 0.015252680818517708}",20,14,11.404010258664307,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4184,False,"{'a': 0.01, 'e': 0.015237435761498117}",20,15,9.001484132759222,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4185,False,"{'a': 0.01, 'e': 0.015222205941915557}",20,7,19.18510655875342,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4186,False,"{'a': 0.01, 'e': 0.015206991344540219}",30,14,28.420702949876357,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4187,False,"{'a': 0.01, 'e': 0.015191791954157482}",25,17,17.165570175061056,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4188,False,"{'a': 0.01, 'e': 0.015176607755567978}",20,14,12.699817309210125,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4189,False,"{'a': 0.01, 'e': 0.01516143873358748}",20,10,16.234330697264053,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4190,False,"{'a': 0.01, 'e': 0.01514628487304698}",20,15,10.747159712081382,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4191,False,"{'a': 0.01, 'e': 0.015131146158792626}",20,14,14.534140325811608,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4192,False,"{'a': 0.01, 'e': 0.015116022575685681}",20,9,20.798136070446226,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4193,False,"{'a': 0.01, 'e': 0.015100914108602571}",25,2,41.48195860602,"{0: 23, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4194,False,"{'a': 0.01, 'e': 0.01508582074243484}",20,12,14.460133758736209,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4195,False,"{'a': 0.01, 'e': 0.015070742462089098}",25,0,40.638164510941145,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4196,False,"{'a': 0.01, 'e': 0.015055679252487086}",20,12,16.146726965992556,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4197,False,"{'a': 0.01, 'e': 0.015040631098565566}",20,7,24.176445157563638,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4198,False,"{'a': 0.01, 'e': 0.0150255979852764}",20,14,10.86805288544122,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4199,False,"{'a': 0.01, 'e': 0.015010579897586484}",20,8,20.291426244551506,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4200,False,"{'a': 0.01, 'e': 0.014995576820477703}",25,13,25.42753584363982,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4201,False,"{'a': 0.01, 'e': 0.014980588738946993}",20,10,16.161717439847884,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4202,False,"{'a': 0.01, 'e': 0.014965615638006283}",25,16,14.9726249045876,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4203,False,"{'a': 0.01, 'e': 0.014950657502682445}",25,20,9.874387133367904,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4204,False,"{'a': 0.01, 'e': 0.014935714318017369}",20,11,14.925960516984425,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4205,False,"{'a': 0.01, 'e': 0.014920786069067842}",20,0,31.188144205295163,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4206,False,"{'a': 0.01, 'e': 0.014905872740905627}",25,15,18.299661847108695,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4207,False,"{'a': 0.01, 'e': 0.01489097431861741}",20,9,22.376838172003666,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4208,False,"{'a': 0.01, 'e': 0.014876090787304737}",30,24,10.395299525099208,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4209,False,"{'a': 0.01, 'e': 0.014861222132084092}",25,13,11.870002886173697,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4210,False,"{'a': 0.01, 'e': 0.014846368338086832}",30,19,24.11925086418201,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4211,False,"{'a': 0.01, 'e': 0.014831529390459133}",20,13,11.12620316479558,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4212,False,"{'a': 0.01, 'e': 0.014816705274362072}",20,11,16.894419186512366,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4213,False,"{'a': 0.01, 'e': 0.01480189597497151}",30,19,23.699955815272332,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4214,False,"{'a': 0.01, 'e': 0.014787101477478155}",20,7,26.585229879368217,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4215,False,"{'a': 0.01, 'e': 0.014772321767087523}",25,11,26.734389273195035,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4216,False,"{'a': 0.01, 'e': 0.014757556829019875}",25,15,19.419434577588294,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4217,False,"{'a': 0.01, 'e': 0.014742806648510288}",25,9,27.917600773523812,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4218,False,"{'a': 0.01, 'e': 0.014728071210808588}",20,8,20.512060005401278,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4219,False,"{'a': 0.01, 'e': 0.014713350501179315}",25,11,27.475852382576726,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4220,False,"{'a': 0.01, 'e': 0.014698644504901784}",25,20,9.669882366437209,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4221,False,"{'a': 0.01, 'e': 0.014683953207269966}",25,9,26.403533445081955,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4222,False,"{'a': 0.01, 'e': 0.014669276593592582}",25,9,25.944334595930627,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4223,False,"{'a': 0.01, 'e': 0.014654614649193026}",20,12,16.0261302244609,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4224,False,"{'a': 0.01, 'e': 0.014639967359409327}",25,17,14.951846047280117,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4225,False,"{'a': 0.01, 'e': 0.014625334709594222}",20,16,6.549343661666114,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4226,False,"{'a': 0.01, 'e': 0.01461071668511503}",20,13,13.250294482474423,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4227,False,"{'a': 0.01, 'e': 0.014596113271353742}",30,8,40.66363953577046,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4228,False,"{'a': 0.01, 'e': 0.014581524453706954}",20,8,24.879400905076604,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4229,False,"{'a': 0.01, 'e': 0.014566950217585823}",25,14,17.564339218625488,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4230,False,"{'a': 0.01, 'e': 0.014552390548416123}",20,12,17.155264049695504,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4231,False,"{'a': 0.01, 'e': 0.014537845431638198}",20,8,19.387253713606537,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4232,False,"{'a': 0.01, 'e': 0.0145233148527069}",30,12,34.043365386968084,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4233,False,"{'a': 0.01, 'e': 0.01450879879709168}",20,8,19.77114684063628,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4234,False,"{'a': 0.01, 'e': 0.014494297250276454}",20,15,10.207161984985518,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4235,False,"{'a': 0.01, 'e': 0.014479810197759686}",30,6,41.47094039101092,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4236,False,"{'a': 0.01, 'e': 0.014465337625054335}",20,7,22.101559470106487,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4237,False,"{'a': 0.01, 'e': 0.0144508795176878}",25,12,23.596574818108298,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4238,False,"{'a': 0.01, 'e': 0.014436435861201989}",25,15,21.359784876920685,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4239,False,"{'a': 0.01, 'e': 0.014422006641153255}",20,6,28.70676916473749,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4240,False,"{'a': 0.01, 'e': 0.01440759184311235}",20,14,14.163652335493893,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4241,False,"{'a': 0.01, 'e': 0.014393191452664503}",25,11,25.971785810962743,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4242,False,"{'a': 0.01, 'e': 0.014378805455409293}",30,18,21.409862802266325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4243,False,"{'a': 0.01, 'e': 0.01436443383696074}",25,16,20.464468947451152,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4244,False,"{'a': 0.01, 'e': 0.01435007658294723}",25,3,35.36034901821571,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4245,False,"{'a': 0.01, 'e': 0.01433573367901149}",25,19,11.610496783938931,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4246,False,"{'a': 0.01, 'e': 0.01432140511081062}",30,19,22.87905077670803,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4247,False,"{'a': 0.01, 'e': 0.014307090864016068}",25,17,16.14609035405965,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4248,False,"{'a': 0.01, 'e': 0.014292790924313561}",25,11,26.76456148763439,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4249,False,"{'a': 0.01, 'e': 0.01427850527740318}",20,9,22.07719904186397,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4250,False,"{'a': 0.01, 'e': 0.014264233908999256}",20,11,17.103126524082523,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4251,False,"{'a': 0.01, 'e': 0.014249976804830427}",20,8,24.2874049644987,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4252,False,"{'a': 0.01, 'e': 0.014235733950639606}",20,10,17.090328246482937,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4253,False,"{'a': 0.01, 'e': 0.014221505332183906}",30,21,16.979906466327037,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4254,False,"{'a': 0.01, 'e': 0.014207290935234726}",20,12,10.79639276158626,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4255,False,"{'a': 0.01, 'e': 0.014193090745577676}",25,3,34.875984335182395,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4256,False,"{'a': 0.01, 'e': 0.014178904749012544}",35,15,32.614190834212735,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4257,False,"{'a': 0.01, 'e': 0.014164732931353353}",25,15,19.261293236607223,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4258,False,"{'a': 0.01, 'e': 0.014150575278428262}",20,14,9.710969466334499,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4259,False,"{'a': 0.01, 'e': 0.014136431776079627}",20,13,12.8770483822294,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4260,False,"{'a': 0.01, 'e': 0.014122302410163962}",20,12,17.67110980985111,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4261,False,"{'a': 0.01, 'e': 0.014108187166551869}",20,15,9.716567469704247,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4262,False,"{'a': 0.01, 'e': 0.01409408603112812}",20,6,27.401776483155555,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4263,False,"{'a': 0.01, 'e': 0.014079998989791587}",25,11,26.240082621103138,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4264,False,"{'a': 0.01, 'e': 0.014065926028455206}",25,13,22.568193093795667,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4265,False,"{'a': 0.01, 'e': 0.014051867133046037}",20,9,20.512047435104027,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4266,False,"{'a': 0.01, 'e': 0.014037822289505161}",25,13,23.203277702622294,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4267,False,"{'a': 0.01, 'e': 0.014023791483787743}",35,25,18.817829731778197,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4268,False,"{'a': 0.01, 'e': 0.01400977470186299}",20,0,31.32333598679336,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4269,False,"{'a': 0.01, 'e': 0.013995771929714095}",20,10,19.84601929956657,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4270,False,"{'a': 0.01, 'e': 0.013981783153338296}",20,12,15.778346479541707,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4271,False,"{'a': 0.01, 'e': 0.013967808358746827}",20,8,18.96294383802947,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4272,False,"{'a': 0.01, 'e': 0.013953847531964868}",20,16,10.011840283628011,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4273,False,"{'a': 0.01, 'e': 0.013939900659031617}",25,0,42.18198535162464,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4274,False,"{'a': 0.01, 'e': 0.013925967726000174}",25,5,36.70389859388831,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4275,False,"{'a': 0.01, 'e': 0.01391204871893762}",35,13,39.09417230144926,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4276,False,"{'a': 0.01, 'e': 0.013898143623924953}",20,11,18.842263148448406,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4277,False,"{'a': 0.01, 'e': 0.013884252427057056}",25,13,22.40013850657753,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4278,False,"{'a': 0.01, 'e': 0.013870375114442744}",25,18,14.764304218309919,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4279,False,"{'a': 0.01, 'e': 0.013856511672204716}",20,13,11.669777682616017,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4280,False,"{'a': 0.01, 'e': 0.013842662086479501}",20,6,27.61946689059263,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4281,False,"{'a': 0.01, 'e': 0.01382882634341754}",20,14,9.439847692007401,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4282,False,"{'a': 0.01, 'e': 0.01381500442918306}",20,13,15.357063658713367,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4283,False,"{'a': 0.01, 'e': 0.013801196329954161}",20,14,11.926791902776944,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4284,False,"{'a': 0.01, 'e': 0.013787402031922757}",25,16,17.06152590093724,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4285,False,"{'a': 0.01, 'e': 0.013773621521294518}",20,11,18.50508133198776,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4286,False,"{'a': 0.01, 'e': 0.01375985478428895}",30,14,27.047639671348037,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4287,False,"{'a': 0.01, 'e': 0.013746101807139326}",20,12,14.352954142568274,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4288,False,"{'a': 0.01, 'e': 0.01373236257609264}",25,16,15.078620021594038,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4289,False,"{'a': 0.01, 'e': 0.013718637077409689}",25,18,15.137323720025059,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4290,False,"{'a': 0.01, 'e': 0.013704925297364945}",25,0,37.9837690136954,"{0: 25, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4291,False,"{'a': 0.01, 'e': 0.013691227222246641}",30,17,26.84120574158879,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4292,False,"{'a': 0.01, 'e': 0.013677542838356711}",20,16,6.713296188432799,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4293,False,"{'a': 0.01, 'e': 0.01366387213201075}",20,12,14.756187944732762,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4294,False,"{'a': 0.01, 'e': 0.013650215089538058}",20,3,27.981931360945463,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4295,False,"{'a': 0.01, 'e': 0.013636571697281604}",20,10,23.255889676257,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4296,False,"{'a': 0.01, 'e': 0.013622941941597973}",20,10,18.48457086529944,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4297,False,"{'a': 0.01, 'e': 0.013609325808857431}",20,13,13.545470030040663,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4298,False,"{'a': 0.01, 'e': 0.013595723285443818}",35,10,36.44979506015157,"{0: 24, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4299,False,"{'a': 0.01, 'e': 0.013582134357754625}",30,22,14.448680295924948,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4300,False,"{'a': 0.01, 'e': 0.013568559012200934}",25,11,23.953420465819768,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4301,False,"{'a': 0.01, 'e': 0.013554997235207374}",25,14,18.946052388780927,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4302,False,"{'a': 0.01, 'e': 0.013541449013212178}",20,8,21.708273691619446,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4303,False,"{'a': 0.01, 'e': 0.013527914332667135}",35,23,25.489574280233338,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4304,False,"{'a': 0.01, 'e': 0.013514393180037542}",20,11,16.552679413190532,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4305,False,"{'a': 0.01, 'e': 0.013500885541802265}",20,8,18.570757872781684,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4306,False,"{'a': 0.01, 'e': 0.013487391404453644}",30,13,29.940672193204342,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4307,False,"{'a': 0.01, 'e': 0.013473910754497552}",20,9,20.51466040355055,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4308,False,"{'a': 0.01, 'e': 0.013460443578453348}",25,15,-22.901955896714448,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 1}",1 +4309,False,"{'a': 0.01, 'e': 0.013446989862853833}",25,18,13.41774514349076,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4310,False,"{'a': 0.01, 'e': 0.013433549594245302}",20,12,16.052000745141378,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4311,False,"{'a': 0.01, 'e': 0.013420122759187495}",30,18,24.674497534522313,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4312,False,"{'a': 0.01, 'e': 0.013406709344253556}",20,10,18.562448960618177,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4313,False,"{'a': 0.01, 'e': 0.013393309336030088}",25,17,15.860414384363386,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4314,False,"{'a': 0.01, 'e': 0.01337992272111706}",25,0,25.05882584940239,"{0: 24, 1: 0, 2: 1, 3: 0, 4: 0}",0 +4315,False,"{'a': 0.01, 'e': 0.01336654948612787}",30,11,20.89390584522021,"{0: 18, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4316,False,"{'a': 0.01, 'e': 0.013353189617689292}",20,8,24.72344003240326,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4317,False,"{'a': 0.01, 'e': 0.013339843102441431}",20,14,11.322550564457812,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4318,False,"{'a': 0.01, 'e': 0.013326509927037785}",20,12,14.504059768141568,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4319,False,"{'a': 0.01, 'e': 0.013313190078145189}",20,13,12.788466612820223,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4320,False,"{'a': 0.01, 'e': 0.013299883542443767}",25,13,18.393853585812376,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4321,False,"{'a': 0.01, 'e': 0.01328659030662701}",25,11,26.091181951082753,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4322,False,"{'a': 0.01, 'e': 0.013273310357401653}",25,8,27.87588552231207,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4323,False,"{'a': 0.01, 'e': 0.01326004368148776}",20,7,22.714799863665636,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4324,False,"{'a': 0.01, 'e': 0.013246790265618666}",30,18,22.846374379622958,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4325,False,"{'a': 0.01, 'e': 0.013233550096540928}",25,13,22.951186135172968,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4326,False,"{'a': 0.01, 'e': 0.013220323161014392}",20,14,13.24080713006539,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4327,False,"{'a': 0.01, 'e': 0.013207109445812128}",25,11,25.203966058932536,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4328,False,"{'a': 0.01, 'e': 0.0131939089377204}",25,8,34.21888449446219,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4329,False,"{'a': 0.01, 'e': 0.01318072162353872}",25,11,28.780720221880078,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4330,False,"{'a': 0.01, 'e': 0.013167547490079751}",20,13,14.928271481000712,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4331,False,"{'a': 0.01, 'e': 0.01315438652416937}",30,20,24.118562461956774,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4332,False,"{'a': 0.01, 'e': 0.01314123871264662}",20,12,14.794012366079201,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4333,False,"{'a': 0.01, 'e': 0.013128104042363666}",20,3,27.6588467273656,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4334,False,"{'a': 0.01, 'e': 0.013114982500185848}",20,7,24.357855212320207,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4335,False,"{'a': 0.01, 'e': 0.013101874072991637}",30,16,27.194752657108904,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4336,False,"{'a': 0.01, 'e': 0.013088778747672577}",20,10,19.92536096445078,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4337,False,"{'a': 0.01, 'e': 0.013075696511133368}",25,13,25.813793118980502,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4338,False,"{'a': 0.01, 'e': 0.013062627350291747}",30,11,36.574720950805805,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4339,False,"{'a': 0.01, 'e': 0.013049571252078566}",25,14,22.67678210683684,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4340,False,"{'a': 0.01, 'e': 0.013036528203437736}",25,16,14.094293622079316,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4341,False,"{'a': 0.01, 'e': 0.013023498191326184}",20,6,27.572673465013875,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4342,False,"{'a': 0.01, 'e': 0.013010481202713909}",25,16,15.560621005654781,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4343,False,"{'a': 0.01, 'e': 0.012997477224583932}",25,13,12.779328207320216,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4344,False,"{'a': 0.01, 'e': 0.012984486243932251}",30,14,28.808293452782095,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4345,False,"{'a': 0.01, 'e': 0.012971508247767908}",30,15,26.345792414137883,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4346,False,"{'a': 0.01, 'e': 0.012958543223112882}",30,9,37.294041908903566,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4347,False,"{'a': 0.01, 'e': 0.012945591157002159}",25,18,4.092718424987488,"{0: 6, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4348,False,"{'a': 0.01, 'e': 0.012932652036483683}",25,12,24.77180285108338,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4349,False,"{'a': 0.01, 'e': 0.01291972584861831}",20,16,6.60175472104247,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4350,False,"{'a': 0.01, 'e': 0.012906812580479862}",35,23,20.86267749462651,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4351,False,"{'a': 0.01, 'e': 0.012893912219155082}",25,14,17.88992778745091,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4352,False,"{'a': 0.01, 'e': 0.012881024751743584}",35,21,30.48508454741658,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4353,False,"{'a': 0.01, 'e': 0.012868150165357922}",20,12,19.000757547191977,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4354,False,"{'a': 0.01, 'e': 0.012855288447123487}",20,10,15.8790794389306,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4355,False,"{'a': 0.01, 'e': 0.01284243958417857}",20,12,13.378556286010008,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4356,False,"{'a': 0.01, 'e': 0.01282960356367432}",25,19,10.384145506696159,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4357,False,"{'a': 0.01, 'e': 0.01281678037277469}",25,16,19.701083309058827,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4358,False,"{'a': 0.01, 'e': 0.012803969998656512}",30,13,33.65237758208189,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4359,False,"{'a': 0.01, 'e': 0.01279117242850939}",35,19,29.947562181227262,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4360,False,"{'a': 0.01, 'e': 0.01277838764953576}",25,15,20.07104311439076,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4361,False,"{'a': 0.01, 'e': 0.012765615648950858}",25,16,17.536234485615452,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4362,False,"{'a': 0.01, 'e': 0.012752856413982657}",20,10,18.9417675797595,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4363,False,"{'a': 0.01, 'e': 0.012740109931871932}",20,13,14.09754313367211,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4364,False,"{'a': 0.01, 'e': 0.012727376189872212}",20,12,14.795611489932961,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4365,False,"{'a': 0.01, 'e': 0.012714655175249731}",25,12,28.664071307803283,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4366,False,"{'a': 0.01, 'e': 0.012701946875283497}",35,19,33.92565124291034,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4367,False,"{'a': 0.01, 'e': 0.012689251277265185}",25,13,20.69433554848677,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4368,False,"{'a': 0.01, 'e': 0.012676568368499208}",25,11,23.89247278502196,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4369,False,"{'a': 0.01, 'e': 0.012663898136302665}",20,8,22.399178591206486,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4370,False,"{'a': 0.01, 'e': 0.012651240568005305}",20,13,11.952371308783729,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4371,False,"{'a': 0.01, 'e': 0.012638595650949566}",25,14,21.61934307226508,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4372,False,"{'a': 0.01, 'e': 0.012625963372490544}",20,13,15.652423108919614,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4373,False,"{'a': 0.01, 'e': 0.012613343719995933}",25,14,23.0991904534524,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4374,False,"{'a': 0.01, 'e': 0.012600736680846106}",20,15,8.708714845251617,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4375,False,"{'a': 0.01, 'e': 0.012588142242433998}",30,19,19.28169980510929,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4376,False,"{'a': 0.01, 'e': 0.012575560392165182}",25,13,23.54207073591943,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4377,False,"{'a': 0.01, 'e': 0.012562991117457817}",30,18,23.180452792590383,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4378,False,"{'a': 0.01, 'e': 0.012550434405742605}",25,11,25.950192645739268,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4379,False,"{'a': 0.01, 'e': 0.012537890244462845}",20,7,20.37015251458503,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4380,False,"{'a': 0.01, 'e': 0.012525358621074385}",20,11,16.764032342510387,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4381,False,"{'a': 0.01, 'e': 0.012512839523045579}",25,14,19.695391731284413,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4382,False,"{'a': 0.01, 'e': 0.01250033293785735}",30,16,29.250260286331837,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4383,False,"{'a': 0.01, 'e': 0.01248783885300309}",25,12,25.32315530440487,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4384,False,"{'a': 0.01, 'e': 0.012475357255988723}",25,17,16.33210263436264,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4385,False,"{'a': 0.01, 'e': 0.012462888134332661}",25,10,25.99461496760378,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4386,False,"{'a': 0.01, 'e': 0.012450431475565764}",20,15,9.2661028336052,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4387,False,"{'a': 0.01, 'e': 0.012437987267231379}",25,7,28.071834255620487,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4388,False,"{'a': 0.01, 'e': 0.012425555496885309}",25,14,20.338591300686282,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4389,False,"{'a': 0.01, 'e': 0.012413136152095758}",25,17,14.571440028428313,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4390,False,"{'a': 0.01, 'e': 0.012400729220443406}",35,19,26.063091546996716,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4391,False,"{'a': 0.01, 'e': 0.012388334689521299}",20,6,23.59240662922719,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4392,False,"{'a': 0.01, 'e': 0.012375952546934911}",20,14,11.185149997112536,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4393,False,"{'a': 0.01, 'e': 0.012363582780302113}",25,13,23.49901354308027,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4394,False,"{'a': 0.01, 'e': 0.012351225377253115}",30,20,19.682187982620107,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4395,False,"{'a': 0.01, 'e': 0.012338880325430523}",25,11,26.997752554671212,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4396,False,"{'a': 0.01, 'e': 0.012326547612489296}",20,10,16.559113551147018,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4397,False,"{'a': 0.01, 'e': 0.012314227226096697}",20,3,26.484825695508658,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4398,False,"{'a': 0.01, 'e': 0.012301919153932363}",20,4,28.86725074140358,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4399,False,"{'a': 0.01, 'e': 0.012289623383688195}",20,16,8.518162671764909,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4400,False,"{'a': 0.01, 'e': 0.012277339903068436}",20,8,22.76292223388727,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4401,False,"{'a': 0.01, 'e': 0.012265068699789616}",25,19,12.79647845827252,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4402,False,"{'a': 0.01, 'e': 0.012252809761580503}",25,19,9.921756110424377,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4403,False,"{'a': 0.01, 'e': 0.012240563076182176}",30,22,15.89442049482241,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4404,False,"{'a': 0.01, 'e': 0.012228328631347955}",25,16,17.23523405689114,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4405,False,"{'a': 0.01, 'e': 0.012216106414843372}",30,24,10.079728663823294,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4406,False,"{'a': 0.01, 'e': 0.012203896414446235}",25,13,19.461795508446325,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4407,False,"{'a': 0.01, 'e': 0.012191698617946518}",30,16,23.75057965035722,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4408,False,"{'a': 0.01, 'e': 0.012179513013146433}",20,12,14.45633303802483,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4409,False,"{'a': 0.01, 'e': 0.01216733958786039}",20,14,11.06073870609772,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4410,False,"{'a': 0.01, 'e': 0.012155178329914935}",20,15,9.470032452683522,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4411,False,"{'a': 0.01, 'e': 0.012143029227148825}",20,16,7.243593342757767,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4412,False,"{'a': 0.01, 'e': 0.012130892267412964}",30,21,16.503332627926177,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4413,False,"{'a': 0.01, 'e': 0.01211876743857037}",30,16,26.42698292149355,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4414,False,"{'a': 0.01, 'e': 0.012106654728496237}",30,13,28.083813287178163,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4415,False,"{'a': 0.01, 'e': 0.012094554125077829}",20,16,9.09512595418667,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4416,False,"{'a': 0.01, 'e': 0.012082465616214554}",25,19,12.12354934876012,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4417,False,"{'a': 0.01, 'e': 0.012070389189817914}",20,8,23.430572169520424,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4418,False,"{'a': 0.01, 'e': 0.012058324833811458}",35,25,18.854435853047004,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4419,False,"{'a': 0.01, 'e': 0.012046272536130841}",25,8,23.785147485168288,"{0: 16, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4420,False,"{'a': 0.01, 'e': 0.012034232284723775}",25,13,24.730579537719358,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4421,False,"{'a': 0.01, 'e': 0.012022204067549985}",20,14,12.353447734298419,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4422,False,"{'a': 0.01, 'e': 0.012010187872581275}",20,13,14.837990999668165,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4423,False,"{'a': 0.01, 'e': 0.01199818368780143}",20,8,11.902562430953193,"{0: 11, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4424,False,"{'a': 0.01, 'e': 0.01198619150120627}",25,11,25.25990933248891,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4425,False,"{'a': 0.01, 'e': 0.011974211300803622}",20,2,23.971622631870858,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4426,False,"{'a': 0.01, 'e': 0.011962243074613261}",20,8,19.882574971605965,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4427,False,"{'a': 0.01, 'e': 0.011950286810666972}",30,13,34.98523894687923,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4428,False,"{'a': 0.01, 'e': 0.011938342497008501}",35,21,27.07986772653208,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4429,False,"{'a': 0.01, 'e': 0.011926410121693511}",20,12,14.479956300521332,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4430,False,"{'a': 0.01, 'e': 0.011914489672789647}",20,10,19.10650364832292,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4431,False,"{'a': 0.01, 'e': 0.011902581138376438}",20,12,17.3395606419178,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4432,False,"{'a': 0.01, 'e': 0.011890684506545358}",25,15,22.440954869206948,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4433,False,"{'a': 0.01, 'e': 0.011878799765399788}",25,17,15.382894255125777,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4434,False,"{'a': 0.01, 'e': 0.01186692690305496}",20,12,16.587525609935433,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4435,False,"{'a': 0.01, 'e': 0.011855065907638027}",20,2,23.900164217313517,"{0: 17, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4436,False,"{'a': 0.01, 'e': 0.011843216767287999}",20,15,7.720328728881949,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4437,False,"{'a': 0.01, 'e': 0.011831379470155714}",20,12,14.509219037627727,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4438,False,"{'a': 0.01, 'e': 0.011819554004403897}",20,14,11.33547927343136,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4439,False,"{'a': 0.01, 'e': 0.011807740358207058}",20,10,20.853347760224185,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4440,False,"{'a': 0.01, 'e': 0.011795938519751562}",20,10,20.378810897029403,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4441,False,"{'a': 0.01, 'e': 0.011784148477235577}",25,15,21.589581581827396,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4442,False,"{'a': 0.01, 'e': 0.011772370218869043}",20,12,15.456134816996496,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4443,False,"{'a': 0.01, 'e': 0.011760603732873708}",20,8,26.67117133990594,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4444,False,"{'a': 0.01, 'e': 0.011748849007483096}",35,25,17.757046786885752,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4445,False,"{'a': 0.01, 'e': 0.011737106030942461}",25,19,12.533546830707254,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4446,False,"{'a': 0.01, 'e': 0.011725374791508845}",20,10,17.466349020842365,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4447,False,"{'a': 0.01, 'e': 0.011713655277450987}",20,7,25.49680354632882,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4448,False,"{'a': 0.01, 'e': 0.011701947477049383}",25,17,16.67185246512359,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4449,False,"{'a': 0.01, 'e': 0.011690251378596242}",25,13,22.989404951547314,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4450,False,"{'a': 0.01, 'e': 0.011678566970395442}",30,18,24.47161569488263,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4451,False,"{'a': 0.01, 'e': 0.011666894240762588}",20,15,11.230629714863984,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4452,False,"{'a': 0.01, 'e': 0.011655233178024955}",20,16,6.4675967637213985,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4453,False,"{'a': 0.01, 'e': 0.011643583770521462}",25,14,21.426476894112362,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4454,False,"{'a': 0.01, 'e': 0.01163194600660272}",25,18,14.34853913534624,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4455,False,"{'a': 0.01, 'e': 0.011620319874630945}",20,16,8.421486724088702,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4456,False,"{'a': 0.01, 'e': 0.011608705362980011}",20,14,13.419887565425901,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4457,False,"{'a': 0.01, 'e': 0.011597102460035418}",25,14,20.253938429614063,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4458,False,"{'a': 0.01, 'e': 0.011585511154194242}",20,14,13.215388456652157,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4459,False,"{'a': 0.01, 'e': 0.011573931433865184}",25,11,25.25524736520352,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4460,False,"{'a': 0.01, 'e': 0.011562363287468536}",20,12,14.736921640886536,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4461,False,"{'a': 0.01, 'e': 0.011550806703436129}",20,4,24.156440002404402,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4462,False,"{'a': 0.01, 'e': 0.011539261670211397}",20,7,24.62752013135398,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4463,False,"{'a': 0.01, 'e': 0.011527728176249287}",20,11,17.444359348832364,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4464,False,"{'a': 0.01, 'e': 0.011516206210016314}",20,10,19.572842423884804,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4465,False,"{'a': 0.01, 'e': 0.011504695759990522}",30,18,23.276101090641966,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4466,False,"{'a': 0.01, 'e': 0.011493196814661438}",25,8,33.89459268026611,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4467,False,"{'a': 0.01, 'e': 0.011481709362530125}",30,11,33.19867176965074,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4468,False,"{'a': 0.01, 'e': 0.011470233392109144}",25,19,12.970040071793829,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4469,False,"{'a': 0.01, 'e': 0.011458768891922499}",30,18,21.75521504263984,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4470,False,"{'a': 0.01, 'e': 0.01144731585050571}",35,19,31.540857906468233,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4471,False,"{'a': 0.01, 'e': 0.011435874256405718}",20,16,7.12844280840727,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4472,False,"{'a': 0.01, 'e': 0.011424444098180933}",25,18,1.4340456164823008,"{0: 6, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4473,False,"{'a': 0.01, 'e': 0.011413025364401209}",25,11,25.636878468573876,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4474,False,"{'a': 0.01, 'e': 0.011401618043647792}",20,12,15.140863862073273,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4475,False,"{'a': 0.01, 'e': 0.011390222124513367}",30,9,37.23898578533033,"{0: 21, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4476,False,"{'a': 0.01, 'e': 0.011378837595602027}",20,14,12.64859847780343,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4477,False,"{'a': 0.01, 'e': 0.01136746444552922}",20,8,22.390129432909603,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4478,False,"{'a': 0.01, 'e': 0.011356102662921816}",35,23,24.247308875083274,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4479,False,"{'a': 0.01, 'e': 0.011344752236418012}",20,9,24.620940941593933,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4480,False,"{'a': 0.01, 'e': 0.011333413154667387}",20,14,11.831789453439928,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4481,False,"{'a': 0.01, 'e': 0.011322085406330874}",20,9,22.95416421288794,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4482,False,"{'a': 0.01, 'e': 0.0113107689800807}",25,18,14.816473294164307,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4483,False,"{'a': 0.01, 'e': 0.011299463864600458}",25,18,10.600801910879706,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4484,False,"{'a': 0.01, 'e': 0.011288170048585013}",25,19,11.19090892966299,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4485,False,"{'a': 0.01, 'e': 0.011276887520740558}",25,14,19.055531514752786,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4486,False,"{'a': 0.01, 'e': 0.011265616269784572}",30,18,24.216140593669483,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4487,False,"{'a': 0.01, 'e': 0.011254356284445785}",25,11,28.63073986248761,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4488,False,"{'a': 0.01, 'e': 0.011243107553464221}",25,16,17.13520897262359,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4489,False,"{'a': 0.01, 'e': 0.011231870065591157}",25,7,34.00233425827259,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4490,False,"{'a': 0.01, 'e': 0.011220643809589084}",20,10,20.576503792542383,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4491,False,"{'a': 0.01, 'e': 0.011209428774231766}",30,16,26.431521728872255,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4492,False,"{'a': 0.01, 'e': 0.011198224948304147}",25,17,13.787317030758945,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4493,False,"{'a': 0.01, 'e': 0.011187032320602409}",25,20,10.206566951696137,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4494,False,"{'a': 0.01, 'e': 0.011175850879933932}",20,14,11.621715222238079,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4495,False,"{'a': 0.01, 'e': 0.011164680615117259}",20,14,10.394545806298039,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4496,False,"{'a': 0.01, 'e': 0.011153521514982131}",20,12,2.485166420006892,"{0: 7, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4497,False,"{'a': 0.01, 'e': 0.011142373568369456}",20,0,34.425163941112075,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4498,False,"{'a': 0.01, 'e': 0.01113123676413127}",20,12,17.14198528245903,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4499,False,"{'a': 0.01, 'e': 0.011120111091130784}",25,11,25.116872343173434,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4500,False,"{'a': 0.01, 'e': 0.011108996538242306}",35,19,31.62126527679537,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4501,False,"{'a': 0.01, 'e': 0.011097893094351293}",20,8,23.6239525911593,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4502,False,"{'a': 0.01, 'e': 0.011086800748354308}",20,13,11.417291324853668,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4503,False,"{'a': 0.01, 'e': 0.011075719489158987}",20,13,17.75385993369631,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4504,False,"{'a': 0.01, 'e': 0.011064649305684076}",20,7,10.63521476132121,"{0: 12, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4505,False,"{'a': 0.01, 'e': 0.011053590186859403}",25,13,24.136782876998293,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4506,False,"{'a': 0.01, 'e': 0.01104254212162583}",25,11,23.62871403829023,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4507,False,"{'a': 0.01, 'e': 0.011031505098935307}",20,12,16.227059494701493,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4508,False,"{'a': 0.01, 'e': 0.011020479107750792}",25,19,14.329787527905939,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4509,False,"{'a': 0.01, 'e': 0.011009464137046305}",30,17,26.087665368166657,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4510,False,"{'a': 0.01, 'e': 0.010998460175806881}",25,15,17.841156770088666,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4511,False,"{'a': 0.01, 'e': 0.01098746721302854}",25,6,36.1557804711389,"{0: 19, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4512,False,"{'a': 0.01, 'e': 0.010976485237718327}",25,11,29.862097432648614,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4513,False,"{'a': 0.01, 'e': 0.010965514238894277}",20,9,21.041006572711996,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4514,False,"{'a': 0.01, 'e': 0.01095455420558537}",25,11,14.30326816912276,"{0: 13, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4515,False,"{'a': 0.01, 'e': 0.01094360512683159}",20,14,8.500389628173993,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4516,False,"{'a': 0.01, 'e': 0.01093266699168384}",30,24,13.422604257351207,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4517,False,"{'a': 0.01, 'e': 0.010921739789203994}",20,6,22.493127657479814,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4518,False,"{'a': 0.01, 'e': 0.010910823508464855}",25,14,19.88257496417561,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4519,False,"{'a': 0.01, 'e': 0.010899918138550124}",20,11,13.23740257390311,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4520,False,"{'a': 0.01, 'e': 0.01088902366855444}",30,14,28.888497718317968,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4521,False,"{'a': 0.01, 'e': 0.010878140087583343}",20,13,12.937915651797617,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4522,False,"{'a': 0.01, 'e': 0.01086726738475323}",25,20,8.277528925985582,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4523,False,"{'a': 0.01, 'e': 0.010856405549191416}",20,9,18.284052050645162,"{0: 10, 1: 1, 2: 0, 3: 0, 4: 0}",1 +4524,False,"{'a': 0.01, 'e': 0.010845554570036048}",25,13,23.689483977390164,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4525,False,"{'a': 0.01, 'e': 0.010834714436436152}",20,13,13.734595822156031,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4526,False,"{'a': 0.01, 'e': 0.010823885137551606}",30,13,27.509556368091104,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4527,False,"{'a': 0.01, 'e': 0.01081306666255309}",20,12,13.658507702855992,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4528,False,"{'a': 0.01, 'e': 0.010802259000622138}",20,15,-12.227261462638046,"{0: 4, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4529,False,"{'a': 0.01, 'e': 0.010791462140951094}",25,17,14.212565422049364,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4530,False,"{'a': 0.01, 'e': 0.010780676072743084}",30,16,27.19647280743776,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4531,False,"{'a': 0.01, 'e': 0.010769900785212052}",20,13,14.475575320340962,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4532,False,"{'a': 0.01, 'e': 0.010759136267582695}",25,13,23.373603669168332,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4533,False,"{'a': 0.01, 'e': 0.0107483825090905}",30,17,24.80647169829459,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4534,False,"{'a': 0.01, 'e': 0.01073763949898172}",25,19,10.078070882429525,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4535,False,"{'a': 0.01, 'e': 0.010726907226513326}",20,15,9.543982392834533,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4536,False,"{'a': 0.01, 'e': 0.01071618568095305}",20,16,7.281403248998631,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4537,False,"{'a': 0.01, 'e': 0.01070547485157936}",20,12,13.312939998100306,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4538,False,"{'a': 0.01, 'e': 0.010694774727681404}",25,13,26.79453505513118,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4539,False,"{'a': 0.01, 'e': 0.010684085298559074}",20,10,19.28099693868967,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4540,False,"{'a': 0.01, 'e': 0.010673406553522925}",25,3,37.52761398783977,"{0: 22, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4541,False,"{'a': 0.01, 'e': 0.010662738481894219}",20,15,8.08025804490418,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4542,False,"{'a': 0.01, 'e': 0.010652081073004893}",20,7,23.962839777246167,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4543,False,"{'a': 0.01, 'e': 0.010641434316197518}",20,8,19.741659461727323,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4544,False,"{'a': 0.01, 'e': 0.010630798200825346}",25,16,20.535257104678692,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4545,False,"{'a': 0.01, 'e': 0.01062017271625227}",20,15,9.72513528029955,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4546,False,"{'a': 0.01, 'e': 0.010609557851852787}",20,10,18.610547901541043,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4547,False,"{'a': 0.01, 'e': 0.010598953597012047}",20,9,23.637371346921313,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4548,False,"{'a': 0.01, 'e': 0.01058835994112578}",20,13,15.794600471720518,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4549,False,"{'a': 0.01, 'e': 0.010577776873600335}",30,12,33.46548494566966,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4550,False,"{'a': 0.01, 'e': 0.010567204383852655}",20,0,30.820024124997182,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +4551,False,"{'a': 0.01, 'e': 0.010556642461310231}",25,12,24.594261051964118,"{0: 13, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4552,False,"{'a': 0.01, 'e': 0.010546091095411146}",25,11,25.418363250774778,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4553,False,"{'a': 0.01, 'e': 0.010535550275604046}",30,16,26.234684445193132,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4554,False,"{'a': 0.01, 'e': 0.01052501999134809}",25,14,19.631201314079703,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4555,False,"{'a': 0.01, 'e': 0.010514500232113012}",20,15,8.64975697164592,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4556,False,"{'a': 0.01, 'e': 0.010503990987379034}",20,12,15.169221514333058,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4557,False,"{'a': 0.01, 'e': 0.010493492246636918}",20,13,14.466749584152648,"{0: 7, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4558,False,"{'a': 0.01, 'e': 0.010483003999387931}",25,13,22.212345520947572,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4559,False,"{'a': 0.01, 'e': 0.010472526235143808}",20,10,19.36147708681848,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4560,False,"{'a': 0.01, 'e': 0.010462058943426795}",25,19,11.511178731689547,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4561,False,"{'a': 0.01, 'e': 0.010451602113769604}",25,10,22.92432980511572,"{0: 15, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4562,False,"{'a': 0.01, 'e': 0.01044115573571539}",25,15,19.25985191561593,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4563,False,"{'a': 0.01, 'e': 0.01043071979881779}",25,8,20.842213185160322,"{0: 16, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4564,False,"{'a': 0.01, 'e': 0.01042029429264085}",25,19,10.776577787931059,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4565,False,"{'a': 0.01, 'e': 0.01040987920675907}",30,22,15.80545708339976,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4566,False,"{'a': 0.01, 'e': 0.010399474530757374}",20,16,5.490729519370127,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4567,False,"{'a': 0.01, 'e': 0.010389080254231065}",20,8,24.966252371146968,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4568,False,"{'a': 0.01, 'e': 0.010378696366785877}",20,14,12.468144334228608,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4569,False,"{'a': 0.01, 'e': 0.01036832285803793}",20,11,16.561258443836945,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4570,False,"{'a': 0.01, 'e': 0.010357959717613696}",25,13,22.148381809122718,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4571,False,"{'a': 0.01, 'e': 0.010347606935150052}",25,9,24.021768563242205,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4572,False,"{'a': 0.01, 'e': 0.010337264500294195}",20,8,20.711086758827783,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4573,False,"{'a': 0.01, 'e': 0.010326932402703702}",30,22,15.53157313171737,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4574,False,"{'a': 0.01, 'e': 0.01031661063204648}",25,19,12.36337141506266,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4575,False,"{'a': 0.01, 'e': 0.01030629917800074}",25,7,29.762992824979026,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4576,False,"{'a': 0.01, 'e': 0.010295998030255039}",20,12,16.6114180964884,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4577,False,"{'a': 0.01, 'e': 0.010285707178508234}",25,15,20.221474257572144,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4578,False,"{'a': 0.01, 'e': 0.010275426612469454}",30,20,20.279325173324498,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4579,False,"{'a': 0.01, 'e': 0.010265156321858154}",25,19,11.953590786253681,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4580,False,"{'a': 0.01, 'e': 0.010254896296404022}",30,6,43.66797059224402,"{0: 24, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4581,False,"{'a': 0.01, 'e': 0.010244646525847041}",25,9,28.352513747605556,"{0: 16, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4582,False,"{'a': 0.01, 'e': 0.010234406999937449}",20,12,14.780477609567342,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4583,False,"{'a': 0.01, 'e': 0.010224177708435698}",25,15,17.245196528234825,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4584,False,"{'a': 0.01, 'e': 0.01021395864111251}",25,19,13.059155260769355,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4585,False,"{'a': 0.01, 'e': 0.010203749787748823}",20,15,8.576227753566641,"{0: 5, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4586,False,"{'a': 0.01, 'e': 0.010193551138135765}",30,16,26.702146443634877,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4587,False,"{'a': 0.01, 'e': 0.010183362682074704}",30,23,-6.7879196960072825,"{0: 6, 1: 0, 2: 0, 3: 1, 4: 0}",1 +4588,False,"{'a': 0.01, 'e': 0.010173184409377162}",25,17,17.746006668343288,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4589,False,"{'a': 0.01, 'e': 0.01016301630986488}",25,16,16.503865124882104,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4590,False,"{'a': 0.01, 'e': 0.010152858373369763}",20,10,15.469038527295595,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4591,False,"{'a': 0.01, 'e': 0.010142710589733856}",25,13,26.077905824037682,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4592,False,"{'a': 0.01, 'e': 0.010132572948809385}",30,16,28.958697897023868,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4593,False,"{'a': 0.01, 'e': 0.010122445440458715}",35,21,28.027956422530387,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4594,False,"{'a': 0.01, 'e': 0.010112328054554321}",20,9,7.641182573903276,"{0: 10, 1: 0, 2: 1, 3: 0, 4: 0}",1 +4595,False,"{'a': 0.01, 'e': 0.010102220780978834}",20,12,16.04948702230589,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4596,False,"{'a': 0.01, 'e': 0.01009212360962496}",25,11,22.045980244463863,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4597,False,"{'a': 0.01, 'e': 0.010082036530395536}",20,9,22.289918047037133,"{0: 11, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4598,False,"{'a': 0.01, 'e': 0.01007195953320349}",20,14,12.824428293405468,"{0: 6, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4599,False,"{'a': 0.01, 'e': 0.010061892607971811}",30,18,21.77065678608712,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4600,False,"{'a': 0.01, 'e': 0.010051835744633576}",30,18,24.007278051174985,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4601,False,"{'a': 0.01, 'e': 0.010041788933131934}",20,12,15.131367149759665,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4602,False,"{'a': 0.01, 'e': 0.010031752163420051}",20,6,24.634919285154755,"{0: 14, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4603,False,"{'a': 0.01, 'e': 0.010021725425461177}",25,13,23.96791034930674,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4604,False,"{'a': 0.01, 'e': 0.010011708709228555}",20,11,15.024636927440227,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4605,False,"{'a': 0.01, 'e': 0.010001702004705479}",25,15,22.08324180787924,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4606,False,"{'a': 0.01, 'e': 0.009991705301885246}",20,0,30.60918051652356,"{0: 20, 1: 0, 2: 0, 3: 0, 4: 0}",0 +1,True,"{'a': 0.0, 'e': 0.0}",25,13,24.245183411275722,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +2,True,"{'a': 0.0, 'e': 0.0}",20,3,24.380711326619,"{0: 17, 1: 0, 2: 0, 3: 0, 4: 0}",1 +3,True,"{'a': 0.0, 'e': 0.0}",30,22,15.796632268943457,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +4,True,"{'a': 0.0, 'e': 0.0}",20,16,6.7759542353579905,"{0: 4, 1: 0, 2: 0, 3: 0, 4: 0}",1 +5,True,"{'a': 0.0, 'e': 0.0}",30,22,16.069300106675666,"{0: 8, 1: 0, 2: 0, 3: 0, 4: 0}",1 +6,True,"{'a': 0.0, 'e': 0.0}",30,21,18.85495444814331,"{0: 9, 1: 0, 2: 0, 3: 0, 4: 0}",1 +7,True,"{'a': 0.0, 'e': 0.0}",20,2,26.62957430279652,"{0: 18, 1: 0, 2: 0, 3: 0, 4: 0}",1 +8,True,"{'a': 0.0, 'e': 0.0}",20,8,20.42049781373089,"{0: 12, 1: 0, 2: 0, 3: 0, 4: 0}",1 +9,True,"{'a': 0.0, 'e': 0.0}",30,20,21.161776577693406,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 +10,True,"{'a': 0.0, 'e': 0.0}",25,15,18.385644477435942,"{0: 10, 1: 0, 2: 0, 3: 0, 4: 0}",1 diff --git a/smartcab/logs/sim_improved-learning_ref.txt b/smartcab/logs/sim_improved-learning_ref.txt new file mode 100644 index 0000000..3976e9e --- /dev/null +++ b/smartcab/logs/sim_improved-learning_ref.txt @@ -0,0 +1,292 @@ +/----------------------------------------- +| State-action rewards from Q-Learning +\----------------------------------------- + +('right', 'red', 'left', True) + -- forward : -6.29 + -- right : -2.60 + -- None : 1.29 + -- left : -8.27 + +('right', 'green', None, False) + -- forward : 0.68 + -- right : 2.01 + -- None : -4.62 + -- left : 0.69 + +('forward', 'green', 'left', False) + -- forward : 1.87 + -- right : 0.73 + -- None : 0.70 + -- left : 0.71 + +('left', 'green', 'right', True) + -- forward : 0.39 + -- right : 0.08 + -- None : -0.46 + -- left : -1.15 + +('forward', 'green', None, False) + -- forward : 1.82 + -- right : 0.84 + -- None : -4.82 + -- left : 0.79 + +('forward', 'green', 'right', True) + -- forward : 1.37 + -- right : 0.09 + -- None : -0.39 + -- left : -1.54 + +('left', 'red', 'right', False) + -- forward : -3.20 + -- right : 0.22 + -- None : 1.90 + -- left : -12.99 + +('forward', 'green', 'forward', True) + -- forward : 1.64 + -- right : 0.10 + -- None : -0.88 + -- left : -2.77 + +('left', 'green', 'left', True) + -- forward : 0.13 + -- right : 0.14 + -- None : 0.09 + -- left : 1.60 + +('left', 'green', 'forward', False) + -- forward : 0.53 + -- right : 0.98 + -- None : -2.71 + -- left : -11.58 + +('right', 'red', None, False) + -- forward : -12.03 + -- right : 1.86 + -- None : 1.60 + -- left : -12.51 + +('left', 'green', None, True) + -- forward : 0.36 + -- right : 0.35 + -- None : -2.36 + -- left : 1.91 + +('right', 'red', 'right', True) + -- forward : -0.79 + -- right : -1.39 + -- None : 0.73 + -- left : -1.56 + +('right', 'green', 'forward', False) + -- forward : 0.34 + -- right : 1.77 + -- None : -2.31 + -- left : -10.89 + +('right', 'red', 'left', False) + -- forward : -9.37 + -- right : 1.85 + -- None : 1.03 + -- left : -8.93 + +('forward', 'red', None, False) + -- forward : -12.35 + -- right : 0.83 + -- None : 1.91 + -- left : -12.56 + +('forward', 'green', 'left', True) + -- forward : 1.75 + -- right : 0.16 + -- None : 0.17 + -- left : 0.21 + +('left', 'green', 'right', False) + -- forward : 0.69 + -- right : 0.19 + -- None : -1.51 + -- left : -5.68 + +('forward', 'red', 'forward', True) + -- forward : -2.35 + -- right : -3.97 + -- None : 1.75 + -- left : -6.59 + +('forward', 'red', 'left', False) + -- forward : -11.63 + -- right : 0.76 + -- None : 1.89 + -- left : -11.97 + +('forward', 'green', None, True) + -- forward : 1.83 + -- right : 0.49 + -- None : -3.33 + -- left : 0.51 + +('forward', 'red', 'left', True) + -- forward : -8.27 + -- right : -5.76 + -- None : 1.83 + -- left : -7.61 + +('left', 'red', 'forward', False) + -- forward : -8.95 + -- right : 0.56 + -- None : 1.86 + -- left : -9.58 + +('forward', 'green', 'forward', False) + -- forward : 1.89 + -- right : 0.54 + -- None : -3.24 + -- left : -13.41 + +('left', 'red', None, True) + -- forward : -16.95 + -- right : -6.49 + -- None : 1.87 + -- left : -16.03 + +('left', 'green', 'left', False) + -- forward : 0.41 + -- right : 0.52 + -- None : 0.57 + -- left : 1.86 + +('left', 'green', 'forward', True) + -- forward : 0.08 + -- right : 0.61 + -- None : -0.55 + -- left : -2.98 + +('right', 'red', 'forward', False) + -- forward : -6.69 + -- right : 1.96 + -- None : 0.87 + -- left : -6.21 + +('forward', 'red', 'right', False) + -- forward : -4.60 + -- right : 0.27 + -- None : 1.94 + -- left : -12.99 + +('left', 'red', 'left', True) + -- forward : -3.07 + -- right : -3.46 + -- None : 1.65 + -- left : -7.31 + +('left', 'green', None, False) + -- forward : 0.76 + -- right : 0.78 + -- None : -4.68 + -- left : 1.94 + +('right', 'green', 'left', True) + -- forward : 0.11 + -- right : 1.49 + -- None : 0.09 + -- left : 0.05 + +('right', 'green', 'forward', True) + -- forward : 0.03 + -- right : 0.99 + -- None : -0.54 + -- left : -1.92 + +('right', 'green', 'right', True) + -- forward : 0.01 + -- right : 0.78 + -- None : -0.24 + -- left : -0.98 + +('forward', 'red', None, True) + -- forward : -16.98 + -- right : -9.52 + -- None : 1.92 + -- left : -19.57 + +('right', 'green', None, True) + -- forward : 0.26 + -- right : 1.81 + -- None : -2.39 + -- left : 0.42 + +('forward', 'red', 'forward', False) + -- forward : -9.87 + -- right : 0.61 + -- None : 1.92 + -- left : -9.80 + +('right', 'red', 'right', False) + -- forward : -2.53 + -- right : 0.46 + -- None : 1.71 + -- left : -12.16 + +('left', 'red', 'forward', True) + -- forward : -6.27 + -- right : -3.81 + -- None : 1.55 + -- left : -5.92 + +('forward', 'green', 'right', False) + -- forward : 1.93 + -- right : 0.29 + -- None : -1.54 + -- left : -7.30 + +('left', 'red', 'right', True) + -- forward : -1.93 + -- right : -1.72 + -- None : 0.89 + -- left : -4.55 + +('left', 'red', None, False) + -- forward : -12.82 + -- right : 0.80 + -- None : 1.88 + -- left : -12.24 + +('right', 'red', 'forward', True) + -- forward : -4.53 + -- right : -1.52 + -- None : 1.00 + -- left : -4.54 + +('forward', 'red', 'right', True) + -- forward : -3.43 + -- right : -1.75 + -- None : 1.22 + -- left : -4.20 + +('left', 'red', 'left', False) + -- forward : -9.92 + -- right : 0.67 + -- None : 1.93 + -- left : -10.43 + +('right', 'red', None, True) + -- forward : -14.26 + -- right : -6.93 + -- None : 1.71 + -- left : -11.28 + +('right', 'green', 'left', False) + -- forward : 0.38 + -- right : 1.91 + -- None : 0.45 + -- left : 0.40 + +('right', 'green', 'right', False) + -- forward : 0.20 + -- right : 1.59 + -- None : -0.79 + -- left : -6.21 + diff --git a/smartcab/logs/sim_no-learning.csv b/smartcab/logs/sim_no-learning.csv new file mode 100644 index 0000000..f56fd99 --- /dev/null +++ b/smartcab/logs/sim_no-learning.csv @@ -0,0 +1,31 @@ +trial,testing,parameters,initial_deadline,final_deadline,net_reward,actions,success +1,False,"{'a': 0.5, 'e': 1.0}",30,0,-189.18766695428616,"{0: 15, 1: 5, 2: 6, 3: 2, 4: 2}",0 +2,False,"{'a': 0.5, 'e': 1.0}",20,0,-32.028728542392514,"{0: 14, 1: 2, 2: 4, 3: 0, 4: 0}",0 +3,False,"{'a': 0.5, 'e': 1.0}",20,12,-6.61394572212318,"{0: 6, 1: 1, 2: 1, 3: 0, 4: 0}",1 +4,False,"{'a': 0.5, 'e': 1.0}",20,0,-105.96250760705891,"{0: 10, 1: 4, 2: 4, 3: 1, 4: 1}",0 +5,False,"{'a': 0.5, 'e': 1.0}",20,0,-148.94203511584809,"{0: 11, 1: 1, 2: 4, 3: 2, 4: 2}",0 +6,False,"{'a': 0.5, 'e': 1.0}",20,0,-50.92941811419935,"{0: 13, 1: 0, 2: 7, 3: 0, 4: 0}",0 +7,False,"{'a': 0.5, 'e': 1.0}",20,0,-47.545391189460986,"{0: 14, 1: 1, 2: 4, 3: 1, 4: 0}",0 +8,False,"{'a': 0.5, 'e': 1.0}",20,0,-77.40255656893456,"{0: 10, 1: 6, 2: 2, 3: 2, 4: 0}",0 +9,False,"{'a': 0.5, 'e': 1.0}",30,0,-139.0246068390602,"{0: 20, 1: 2, 2: 5, 3: 1, 4: 2}",0 +10,False,"{'a': 0.5, 'e': 1.0}",20,0,-61.37583009358228,"{0: 12, 1: 3, 2: 4, 3: 1, 4: 0}",0 +11,False,"{'a': 0.5, 'e': 1.0}",25,0,-81.4946198129636,"{0: 17, 1: 4, 2: 2, 3: 1, 4: 1}",0 +12,False,"{'a': 0.5, 'e': 1.0}",20,0,-65.60843961080717,"{0: 15, 1: 1, 2: 2, 3: 1, 4: 1}",0 +13,False,"{'a': 0.5, 'e': 1.0}",30,0,-122.25152672899478,"{0: 18, 1: 3, 2: 8, 3: 0, 4: 1}",0 +14,False,"{'a': 0.5, 'e': 1.0}",25,0,-130.54699646076554,"{0: 11, 1: 5, 2: 8, 3: 0, 4: 1}",0 +15,False,"{'a': 0.5, 'e': 1.0}",25,0,-159.93976619888116,"{0: 17, 1: 4, 2: 0, 3: 0, 4: 4}",0 +16,False,"{'a': 0.5, 'e': 1.0}",20,0,-41.230151913538315,"{0: 11, 1: 6, 2: 3, 3: 0, 4: 0}",0 +17,False,"{'a': 0.5, 'e': 1.0}",30,0,4.418273616665318,"{0: 26, 1: 2, 2: 2, 3: 0, 4: 0}",0 +18,False,"{'a': 0.5, 'e': 1.0}",25,0,-51.82444395636539,"{0: 17, 1: 2, 2: 6, 3: 0, 4: 0}",0 +19,False,"{'a': 0.5, 'e': 1.0}",25,0,-174.23957942445747,"{0: 11, 1: 3, 2: 9, 3: 0, 4: 2}",0 +20,False,"{'a': 0.5, 'e': 1.0}",20,0,-92.19225710620512,"{0: 11, 1: 3, 2: 5, 3: 0, 4: 1}",0 +1,True,"{'a': 0.5, 'e': 1.0}",20,0,-272.6295078055859,"{0: 5, 1: 3, 2: 6, 3: 2, 4: 4}",0 +2,True,"{'a': 0.5, 'e': 1.0}",20,0,-89.70516983314789,"{0: 13, 1: 2, 2: 3, 3: 1, 4: 1}",0 +3,True,"{'a': 0.5, 'e': 1.0}",20,0,-40.372218124024705,"{0: 15, 1: 0, 2: 5, 3: 0, 4: 0}",0 +4,True,"{'a': 0.5, 'e': 1.0}",20,4,-84.79055985923387,"{0: 10, 1: 1, 2: 3, 3: 1, 4: 1}",1 +5,True,"{'a': 0.5, 'e': 1.0}",20,0,-93.53703439272299,"{0: 11, 1: 4, 2: 4, 3: 0, 4: 1}",0 +6,True,"{'a': 0.5, 'e': 1.0}",20,0,-99.59745080640693,"{0: 13, 1: 2, 2: 3, 3: 0, 4: 2}",0 +7,True,"{'a': 0.5, 'e': 1.0}",20,0,-58.149657299144096,"{0: 15, 1: 1, 2: 3, 3: 0, 4: 1}",0 +8,True,"{'a': 0.5, 'e': 1.0}",25,0,-65.96100362059256,"{0: 16, 1: 2, 2: 6, 3: 1, 4: 0}",0 +9,True,"{'a': 0.5, 'e': 1.0}",20,0,-188.629556046148,"{0: 7, 1: 5, 2: 5, 3: 0, 4: 3}",0 +10,True,"{'a': 0.5, 'e': 1.0}",25,10,-91.40865250704636,"{0: 10, 1: 1, 2: 2, 3: 0, 4: 2}",1 diff --git a/smartcab/report.html b/smartcab/report.html new file mode 100644 index 0000000..83f8217 --- /dev/null +++ b/smartcab/report.html @@ -0,0 +1,19184 @@ + + + +smartcab + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

Machine Learning Engineer Nanodegree¶

Reinforcement Learning¶

Project: Train a Smartcab to Drive¶

Welcome to the fourth project of the Machine Learning Engineer Nanodegree! In this notebook, template code has already been provided for you to aid in your analysis of the Smartcab and your implemented learning algorithm. You will not need to modify the included code beyond what is requested. There will be questions that you must answer which relate to the project and the visualizations provided in the notebook. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide in agent.py.

+

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started¶

In this project, you will work towards constructing an optimized Q-Learning driving agent that will navigate a Smartcab through its environment towards a goal. Since the Smartcab is expected to drive passengers from one location to another, the driving agent will be evaluated on two very important metrics: Safety and Reliability. A driving agent that gets the Smartcab to its destination while running red lights or narrowly avoiding accidents would be considered unsafe. Similarly, a driving agent that frequently fails to reach the destination in time would be considered unreliable. Maximizing the driving agent's safety and reliability would ensure that Smartcabs have a permanent place in the transportation industry.

+

Safety and Reliability are measured using a letter-grade system as follows:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
GradeSafetyReliability
A+Agent commits no traffic violations,
and always chooses the correct action.
Agent reaches the destination in time
for 100% of trips.
AAgent commits few minor traffic violations,
such as failing to move on a green light.
Agent reaches the destination on time
for at least 90% of trips.
BAgent commits frequent minor traffic violations,
such as failing to move on a green light.
Agent reaches the destination on time
for at least 80% of trips.
CAgent commits at least one major traffic violation,
such as driving through a red light.
Agent reaches the destination on time
for at least 70% of trips.
DAgent causes at least one minor accident,
such as turning left on green with oncoming traffic.
Agent reaches the destination on time
for at least 60% of trips.
FAgent causes at least one major accident,
such as driving through a red light with cross-traffic.
Agent fails to reach the destination on time
for at least 60% of trips.
+

To assist evaluating these important metrics, you will need to load visualization code that will be used later on in the project. Run the code cell below to import this code which is required for your analysis.

+ +
+
+
+
+
+
In [2]:
+
+
+
# Import the visualization code
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+ +
+
+
+ +
+
+
+
+
+

Understand the World¶

Before starting to work on implementing your driving agent, it's necessary to first understand the world (environment) which the Smartcab and driving agent work in. One of the major components to building a self-learning agent is understanding the characteristics about the agent, which includes how the agent operates. To begin, simply run the agent.py agent code exactly how it is -- no need to make any additions whatsoever. Let the resulting simulation run for some time to see the various working components. Note that in the visual simulation (if enabled), the white vehicle is the Smartcab.

+ +
+
+
+
+
+
+
+

Question 1¶

In a few sentences, describe what you observe during the simulation when running the default agent.py agent code. Some things you could consider:

+
    +
  • Does the Smartcab move at all during the simulation?
  • +
  • What kind of rewards is the driving agent receiving?
  • +
  • How does the light changing color affect the rewards?
  • +
+

Hint: From the /smartcab/ top-level directory (where this notebook is located), run the command

+
'python smartcab/agent.py'
+
+ +
+
+
+
+
+
+
+

Answer: The smartcab does not move, it seems the simulation is in a state where we can observe how a fixed position still generates variable rewards. The only way to move the car is to start another trial. The driver is receiving both positive and negative rewards. For example, if the light in front of her changes to red, doing nothing will create a positive reward. In contrast, if the light is green, and there is no oncoming traffic, doing nothing will create a negative reward.

+

To force agent to move, could use simulating annealing algo, something to do with heating and refreezin slowly in metallurgy.

+ +
+
+
+
+
+
+
+

Understand the Code¶

In addition to understanding the world, it is also necessary to understand the code itself that governs how the world, simulation, and so on operate. Attempting to create a driving agent would be difficult without having at least explored the "hidden" devices that make everything work. In the /smartcab/ top-level directory, there are two folders: /logs/ (which will be used later) and /smartcab/. Open the /smartcab/ folder and explore each Python file included, then answer the following question.

+ +
+
+
+
+
+
+
+

Question 2¶

    +
  • In the agent.py Python file, choose three flags that can be set and explain how they change the simulation.
  • +
  • In the environment.py Python file, what Environment class function is called when an agent performs an action?
  • +
  • In the simulator.py Python file, what is the difference between the 'render_text()' function and the 'render()' function?
  • +
  • In the planner.py Python file, will the 'next_waypoint() function consider the North-South or East-West direction first?
  • +
+ +
+
+
+
+
+
+
+

Answer:

+

agent.py: I chose to set verbose, update_delay and log_metrics. Verbose=True will produce more debug output for agent movement in the simulation. update_delay sets the time between state changes in the simulation, and corresponding screen updates. log_metrics=True will write simulation metrics to log files.

+

environment.py: the act() function is called when an agent performs an action.

+

simulator.py: the difference is that render() renders the GUI of pygame, wherease render_text() updates the console.

+

planner.py: it checks the east-west direction first.

+ +
+
+
+
+
+
+
+
+

Implement a Basic Driving Agent¶

The first step to creating an optimized Q-Learning driving agent is getting the agent to actually take valid actions. In this case, a valid action is one of None, (do nothing) 'Left' (turn left), 'Right' (turn right), or 'Forward' (go forward). For your first implementation, navigate to the 'choose_action()' agent function and make the driving agent randomly choose one of these actions. Note that you have access to several class variables that will help you write this functionality, such as 'self.learning' and 'self.valid_actions'. Once implemented, run the agent file and simulation briefly to confirm that your driving agent is taking a random action each time step.

+ +
+
+
+
+
+
+
+

Basic Agent Simulation Results¶

To obtain results from the initial simulation, you will need to adjust following flags:

+
    +
  • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
  • +
  • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
  • +
  • 'log_metrics' - Set this to True to log the simluation results as a .csv file in /logs/.
  • +
  • 'n_test' - Set this to '10' to perform 10 testing trials.
  • +
+

Optionally, you may disable to the visual simulation (which can make the trials go faster) by setting the 'display' flag to False. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

+

Once you have successfully completed the initial simulation (there should have been 20 training trials and 10 testing trials), run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded! +Run the agent.py file after setting the flags from projects/smartcab folder instead of projects/smartcab/smartcab.

+ +
+
+
+
+
+
In [5]:
+
+
+
# Load the 'sim_no-learning' log file from the initial simulation results
+vs.plot_trials('sim_no-learning.csv')
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Question 3¶

Using the visualization above that was produced from your initial simulation, provide an analysis and make several observations about the driving agent. Be sure that you are making at least one observation about each panel present in the visualization. Some things you could consider:

+
    +
  • How frequently is the driving agent making bad decisions? How many of those bad decisions cause accidents?
  • +
  • Given that the agent is driving randomly, does the rate of reliabilty make sense?
  • +
  • What kind of rewards is the agent receiving for its actions? Do the rewards suggest it has been penalized heavily?
  • +
  • As the number of trials increases, does the outcome of results change significantly?
  • +
  • Would this Smartcab be considered safe and/or reliable for its passengers? Why or why not?
  • +
+ +
+
+
+
+
+
+
+

Answer: +The agent has almost 40% bad actions, with more violations than accidents as would be expected from a random agent. It does not learn from mistakes, so the rates dont improve but fluctuate randomly. The reliability rate is about 10%, but given it is driving randomly you would expect this as it does not chose its action based on a destination. The average rolling rewards are negative, due to the high number of bad actions committed and inability to learn, so it also doesnt improve over trials. The rewards suggest it is not penalised heavily on average, so not actively seeking out accidents, but rewards are still consistently negative. The number of trials does not affect the outcome - as expected, as no learning is happening. The only visible change across trials seems like random fluctuation. This smartcab is not safe or reliable, as it cannot learn, and thus gets safety and reliability ratings of F.

+ +
+
+
+
+
+
+
+
+

Inform the Driving Agent - Learning policies¶

The second step to creating an optimized Q-learning driving agent is defining a set of states that the agent can occupy in the environment. Depending on the input, sensory data, and additional variables available to the driving agent, a set of states can be defined for the agent so that it can eventually learn what action it should take when occupying a state. The condition of 'if state then action' for each state is called a policy, and is ultimately what the driving agent is expected to learn. Without defining states, the driving agent would never understand which action is most optimal -- or even what environmental variables and conditions it cares about!

+ +
+
+
+
+
+
+
+

Identify States¶

Inspecting the 'build_state()' agent function shows that the driving agent is given the following data from the environment:

+
    +
  • 'waypoint', which is the direction the Smartcab should drive leading to the destination, relative to the Smartcab's heading.
  • +
  • 'inputs', which is the sensor data from the Smartcab. It includes
      +
    • 'light', the color of the light.
    • +
    • 'left', the intended direction of travel for a vehicle to the Smartcab's left. Returns None if no vehicle is present.
    • +
    • 'right', the intended direction of travel for a vehicle to the Smartcab's right. Returns None if no vehicle is present.
    • +
    • 'oncoming', the intended direction of travel for a vehicle across the intersection from the Smartcab. Returns None if no vehicle is present.
    • +
    +
  • +
  • 'deadline', which is the number of actions remaining for the Smartcab to reach the destination before running out of time.
  • +
+ +
+
+
+
+
+
+
+

Question 4¶

Which features available to the agent are most relevant for learning both safety and efficiency? Why are these features appropriate for modeling the Smartcab in the environment? If you did not choose some features, why are those features not appropriate?

+ +
+
+
+
+
+
+
+

Answer: +Safety: most relevant are light and oncoming, given that respecting traffic lights avoids accidents and the direction of ongoing traffic affects whether you can turn left on green or not. I dont need waypoint as direction of travel is irrelevant for safety, and dont need left and right as this is handled by the color of the light. Also dont need deadline, unless you allow for reckless actions in order to meet a deadline.

+

Efficiency: most relevant are deadline, waypoint as efficiency depends on how much time is left, and if the next waypoint is an efficient step towards the destination. Anything in inputs doesnt matter, as they dont impact the time to destination. One exception is oncoming, as if it is none you can turn left immediately, else have to wait one timestep.

+

Interestingly, after running simulations, it seems removing deadline as a state variable reducing the variance in my reliability estimates. It also makes it easier to check states, as there are a lot less. It should also be noted that including the deadline could lead to the agent making illegal moves to meet the deadline, like running over a red light, however removing deadline ensures good behaviour after only 100 trials!

+

Including right and left would lead to an increase in state space, making it harder to interpret state action reward tuples. The edge case with left is if cars on your left go straight, and you turn right on a red light, which is allowed.

+ +
+
+
+
+
+
+
+

Define a State Space¶

When defining a set of states that the agent can occupy, it is necessary to consider the size of the state space. That is to say, if you expect the driving agent to learn a policy for each state, you would need to have an optimal action for every state the agent can occupy. If the number of all possible states is very large, it might be the case that the driving agent never learns what to do in some states, which can lead to uninformed decisions. For example, consider a case where the following features are used to define the state of the Smartcab:

+

('is_raining', 'is_foggy', 'is_red_light', 'turn_left', 'no_traffic', 'previous_turn_left', 'time_of_day').

+

How frequently would the agent occupy a state like (False, True, True, True, False, False, '3AM')? Without a near-infinite amount of time for training, it's doubtful the agent would ever learn the proper action!

+ +
+
+
+
+
+
+
+

Question 5¶

If a state is defined using the features you've selected from Question 4, what would be the size of the state space? Given what you know about the evironment and how it is simulated, do you think the driving agent could learn a policy for each possible state within a reasonable number of training trials?
+Hint: Consider the combinations of features to calculate the total number of states!

+ +
+
+
+
+
+
+
+

Answer: The state space would be: 2 (for light) 4 (for oncoming direction) 3 (for next waypoints) * 2 (for left=forward). I think the agent could learn policies for each state in a reasonable numer of trails.

+

Thus a total of 48 states.

+

To see if how long it takes to learn 48 states, you can run Monte Carlo, see below.

+ +
+
+
+
+
+
In [2]:
+
+
+
import numpy as np
+import random
+
+def percent_visited(steps, states):
+    visited = np.zeros(states, dtype=bool)
+    for _ in range(steps):
+        current_state = random.randint(0, states-1) # random visiting
+        visited[current_state] = True # add to visited list
+    return sum(visited)/float(states) # return share
+
+ +
+
+
+ +
+
+
+
In [3]:
+
+
+
import matplotlib.pyplot as plt
+%matplotlib inline
+
+states = 48
+n_steps = [s*40 for s in range(50)] # jump a little bit
+coverage = [percent_visited(steps,states) for steps in n_steps]
+plt.plot(n_steps, coverage, label="coverage of states")
+plt.xlabel("n steps")
+plt.legend()
+
+ +
+
+
+ +
+
+ + +
+ +
Out[3]:
+ + + + +
+
<matplotlib.legend.Legend at 0x2782390>
+
+ +
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

So this means, it takes around 250 steps for an agent to visit all 48 states if it does something random at each step. This corroborates the idea that without deadline convergence happens after around 250 trials.

+ +
+
+
+
+
+
+
+

Update the Driving Agent State¶

For your second implementation, navigate to the 'build_state()' agent function. With the justification you've provided in Question 4, you will now set the 'state' variable to a tuple of all the features necessary for Q-Learning. Confirm your driving agent is updating its state by running the agent file and simulation briefly and note whether the state is displaying. If the visual simulation is used, confirm that the updated state corresponds with what is seen in the simulation.

+

Note: Remember to reset simulation flags to their default setting when making this observation!

+ +
+
+
+
+
+
+
+
+

Implement a Q-Learning Driving Agent¶

The third step to creating an optimized Q-Learning agent is to begin implementing the functionality of Q-Learning itself. The concept of Q-Learning is fairly straightforward: For every state the agent visits, create an entry in the Q-table for all state-action pairs available. Then, when the agent encounters a state and performs an action, update the Q-value associated with that state-action pair based on the reward received and the interative update rule implemented. Of course, additional benefits come from Q-Learning, such that we can have the agent choose the best action for each state based on the Q-values of each state-action pair possible. For this project, you will be implementing a decaying, $\epsilon$-greedy Q-learning algorithm with no discount factor. Follow the implementation instructions under each TODO in the agent functions.

+

Note that the agent attribute self.Q is a dictionary: This is how the Q-table will be formed. Each state will be a key of the self.Q dictionary, and each value will then be another dictionary that holds the action and Q-value. Here is an example:

+ +
{ 'state-1': { 
+    'action-1' : Qvalue-1,
+    'action-2' : Qvalue-2,
+     ...
+   },
+  'state-2': {
+    'action-1' : Qvalue-1,
+     ...
+   },
+   ...
+}
+

Furthermore, note that you are expected to use a decaying $\epsilon$ (exploration) factor. Hence, as the number of trials increases, $\epsilon$ should decrease towards 0. This is because the agent is expected to learn from its behavior and begin acting on its learned behavior. Additionally, The agent will be tested on what it has learned after $\epsilon$ has passed a certain threshold (the default threshold is 0.01). For the initial Q-Learning implementation, you will be implementing a linear decaying function for $\epsilon$.

+ +
+
+
+
+
+
+
+

Q-Learning Simulation Results¶

To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:

+
    +
  • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
  • +
  • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
  • +
  • 'log_metrics' - Set this to True to log the simluation results as a .csv file and the Q-table as a .txt file in /logs/.
  • +
  • 'n_test' - Set this to '10' to perform 10 testing trials.
  • +
  • 'learning' - Set this to 'True' to tell the driving agent to use your Q-Learning implementation.
  • +
+

In addition, use the following decay function for $\epsilon$:

+$$ \epsilon_{t+1} = \epsilon_{t} - 0.05, \hspace{10px}\textrm{for trial number } t$$

If you have difficulty getting your implementation to work, try setting the 'verbose' flag to True to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

+

Once you have successfully completed the initial Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!

+ +
+
+
+
+
+
In [5]:
+
+
+
# Load the 'sim_default-learning' file from the default Q-Learning simulation
+vs.plot_trials('sim_default-learning.csv')
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Question 6¶

Using the visualization above that was produced from your default Q-Learning simulation, provide an analysis and make observations about the driving agent like in Question 3. Note that the simulation should have also produced the Q-table in a text file which can help you make observations about the agent's learning. Some additional things you could consider:

+
    +
  • Are there any observations that are similar between the basic driving agent and the default Q-Learning agent?
  • +
  • Approximately how many training trials did the driving agent require before testing? Does that number make sense given the epsilon-tolerance?
  • +
  • Is the decaying function you implemented for $\epsilon$ (the exploration factor) accurately represented in the parameters panel?
  • +
  • As the number of training trials increased, did the number of bad actions decrease? Did the average reward increase?
  • +
  • How does the safety and reliability rating compare to the initial driving agent?
  • +
+ +
+
+
+
+
+
+
+

Answer: +From the q table it seems that the agent learned for example that continuing to drive on a red light produces negative rewards. +Compared to the basic agent, the default Q learning agent has improved total bad actions (down to 10% after 20 trials vs 40% in the base case). The reliability is also improving over time now, so are the rewards.

+

Exploration factor declines as expected across trials to zero so the decaying function is implemented correctly. I had to apply one fix as epsilon 0 was internally represented as -0.0000 which cause issue with probabilitistic action choice.

+

The number of bad actions descreased with increasing number of trials, the average reward increased.

+

Safety is unchanged at F, but Reliability has improved to A.

+

The lack of learning enough shows up in sim_default-learning.txt, as meaning states are still 0, so no accumulated rewards as the agent has not visited them yet. With slower decay and more training could probably get better value out of this default agent.

+

Here the bellman equation iterative update algo: +image.png

+ +
+
+
+
+
+
+
+
+

Improve the Q-Learning Driving Agent¶

The third step to creating an optimized Q-Learning agent is to perform the optimization! Now that the Q-Learning algorithm is implemented and the driving agent is successfully learning, it's necessary to tune settings and adjust learning paramaters so the driving agent learns both safety and efficiency. Typically this step will require a lot of trial and error, as some settings will invariably make the learning worse. One thing to keep in mind is the act of learning itself and the time that this takes: In theory, we could allow the agent to learn for an incredibly long amount of time; however, another goal of Q-Learning is to transition from experimenting with unlearned behavior to acting on learned behavior. For example, always allowing the agent to perform a random action during training (if $\epsilon = 1$ and never decays) will certainly make it learn, but never let it act. When improving on your Q-Learning implementation, consider the impliciations it creates and whether it is logistically sensible to make a particular adjustment.

+ +
+
+
+
+
+
+
+

Improved Q-Learning Simulation Results¶

To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:

+
    +
  • 'enforce_deadline' - Set this to True to force the driving agent to capture whether it reaches the destination in time.
  • +
  • 'update_delay' - Set this to a small value (such as 0.01) to reduce the time between steps in each trial.
  • +
  • 'log_metrics' - Set this to True to log the simluation results as a .csv file and the Q-table as a .txt file in /logs/.
  • +
  • 'learning' - Set this to 'True' to tell the driving agent to use your Q-Learning implementation.
  • +
  • 'optimized' - Set this to 'True' to tell the driving agent you are performing an optimized version of the Q-Learning implementation.
  • +
+

Additional flags that can be adjusted as part of optimizing the Q-Learning agent:

+
    +
  • 'n_test' - Set this to some positive number (previously 10) to perform that many testing trials.
  • +
  • 'alpha' - Set this to a real number between 0 - 1 to adjust the learning rate of the Q-Learning algorithm.
  • +
  • 'epsilon' - Set this to a real number between 0 - 1 to adjust the starting exploration factor of the Q-Learning algorithm.
  • +
  • 'tolerance' - set this to some small value larger than 0 (default was 0.05) to set the epsilon threshold for testing.
  • +
+

Furthermore, use a decaying function of your choice for $\epsilon$ (the exploration factor). Note that whichever function you use, it must decay to 'tolerance' at a reasonable rate. The Q-Learning agent will not begin testing until this occurs. Some example decaying functions (for $t$, the number of trials):

+$$ \epsilon = a^t, \textrm{for } 0 < a < 1 \hspace{50px}\epsilon = \frac{1}{t^2}\hspace{50px}\epsilon = e^{-at}, \textrm{for } 0 < a < 1 \hspace{50px} \epsilon = \cos(at), \textrm{for } 0 < a < 1$$

You may also use a decaying function for $\alpha$ (the learning rate) if you so choose, however this is typically less common. If you do so, be sure that it adheres to the inequality $0 \leq \alpha \leq 1$.

+

If you have difficulty getting your implementation to work, try setting the 'verbose' flag to True to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!

+

Once you have successfully completed the improved Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!

+ +
+
+
+
+
+
In [5]:
+
+
+
# Load the 'sim_improved-learning' file from the improved Q-Learning simulation
+vs.plot_trials('sim_improved-learning_ref.csv') # e decay
+vs.plot_trials('sim_improved-learning.csv') # gompertz decay parametrized to go to 0 at around 1600 trials
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

Question 7¶

Using the visualization above that was produced from your improved Q-Learning simulation, provide a final analysis and make observations about the improved driving agent like in Question 6. Questions you should answer:

+
    +
  • What decaying function was used for epsilon (the exploration factor)?
  • +
  • Approximately how many training trials were needed for your agent before begining testing?
  • +
  • What epsilon-tolerance and alpha (learning rate) did you use? Why did you use them?
  • +
  • How much improvement was made with this Q-Learner when compared to the default Q-Learner from the previous section?
  • +
  • Would you say that the Q-Learner results show that your driving agent successfully learned an appropriate policy?
  • +
  • Are you satisfied with the safety and reliability ratings of the Smartcab?
  • +
+ +
+
+
+
+
+
+
+

Answer:

+

The epsilon decay function used was e^(-0.0005 * nb_trials). I also attempted gompertz decay, but needed to parametrize the function quite a bit. With the first i need about 4k trials, with gompertz about 2k to converge.

+

Epsilon tolerance was 0.01, alpha was 0.01 and constant over time. I used these values so that the simulation could learn a lot from historical mistakes before it started testing. A low alpha was chosen so that learning could be spread out better over the large number of trials.

+

Improvement over default q learner was vast. Initially I tried using better decay functions, but it turned out i needed more training. Accident rates are now will below 5% and reliability at worst is around 80% - 90% and i feel i narrowed the standard deviation of rolling reliability. Rewards are almost constant at 2.

+

Safety and Reliability rating are at A+, which is incredible. I would certainly say the learner has learned an appropriate policy, although it still has a rather high variance in reliability.

+

N.B: Removing deadline from the state variables reduces variance in the reliability running average, so I did this for the output.

+

Including all features is possible with advances in computing power, as opposed to using a priori knowledge to reduce space dimensionality. But a priori is NOT reinforcement learning - the agent must come up with all rules by itself, so you should not remove any features.

+

It seems running on all features except deadline, leads to a slightly lower reliability after 10k trials, and reliability variance is up again (not shown here).

+ +
+
+
+
+
+
+
+

Define an Optimal Policy¶

Sometimes, the answer to the important question "what am I trying to get my agent to learn?" only has a theoretical answer and cannot be concretely described. Here, however, you can concretely define what it is the agent is trying to learn, and that is the U.S. right-of-way traffic laws. Since these laws are known information, you can further define, for each state the Smartcab is occupying, the optimal action for the driving agent based on these laws. In that case, we call the set of optimal state-action pairs an optimal policy. Hence, unlike some theoretical answers, it is clear whether the agent is acting "incorrectly" not only by the reward (penalty) it receives, but also by pure observation. If the agent drives through a red light, we both see it receive a negative reward but also know that it is not the correct behavior. This can be used to your advantage for verifying whether the policy your driving agent has learned is the correct one, or if it is a suboptimal policy.

+ +
+
+
+
+
+
+
+

Question 8¶

Provide a few examples (using the states you've defined) of what an optimal policy for this problem would look like. Afterwards, investigate the 'sim_improved-learning.txt' text file to see the results of your improved Q-Learning algorithm. For each state that has been recorded from the simulation, is the policy (the action with the highest value) correct for the given state? Are there any states where the policy is different than what would be expected from an optimal policy? Provide an example of a state and all state-action rewards recorded, and explain why it is the correct policy.

+ +
+
+
+
+
+
+
+

Answer:

+

I have now removed deadline from the states, so answers are based on this: I find it surprising that its not required to know how close it is from failing in order to get good reliability.

+

I have defined states as waypoint, light, oncoming. +Examples:

+ +
waypoint=left, light=green, oncoming=forward, left!=forward => should wait for oncoming or go right or forward. In the simulation, going forward has the biggest reward, followed by right. Waiting actually has quite a negative reward.
+
+waypoint=right, light=green, oncoming=None, left!=forward => should turn right. Simulation agrees, right has the biggest reward.
+
+waypoint=right, light=red, oncoming=forward, left!=forward => should wait. Simulation agrees.
+
+
+
+

States: The few i checked seem to have the right policies. Removing deadline, it seems all states chose the best action.

+

A state i found where the optimal policy is different from the learned is:

+ +
waypoint=left, light=green, oncoming=right, left!=forward. It prefers forward instead of wait, although the next waypoint is left.
+
+('left', 'green', 'right', False)
+ -- forward : 0.13
+ -- right : 0.44
+ -- None : -1.44
+ -- left : -6.68
+
+
+
+

An example of a state with all actions and rewards that has the correct policy is:

+ +
('forward', 'red', 'left', False)
+ -- forward : -9.09
+ -- right : 0.73
+ -- None : 1.87
+ -- left : -9.62
+
+
+
+

here the light is red, car wants to go forward, oncoming goes left, so best action is chosen correctly (do nothing).

+

Papers on learning rates for later:

+ +
http://www.jmlr.org/papers/volume5/evendar03a/evendar03a.pdf
+http://karpathy.github.io/2016/05/31/rl/
+https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
+http://mnemstudio.org/path-finding-q-learning-tutorial.htm
+https://www-s.acm.illinois.edu/sigart/docs/QLearning.pdf
+http://www.umiacs.umd.edu/~hal/courses/ai/out/cs421-day10-qlearning.pdf
+ +
+
+
+
+
+
+
+
+

Optional: Future Rewards - Discount Factor, 'gamma'¶

Curiously, as part of the Q-Learning algorithm, you were asked to not use the discount factor, 'gamma' in the implementation. Including future rewards in the algorithm is used to aid in propogating positive rewards backwards from a future state to the current state. Essentially, if the driving agent is given the option to make several actions to arrive at different states, including future rewards will bias the agent towards states that could provide even more rewards. An example of this would be the driving agent moving towards a goal: With all actions and rewards equal, moving towards the goal would theoretically yield better rewards if there is an additional reward for reaching the goal. However, even though in this project, the driving agent is trying to reach a destination in the allotted time, including future rewards will not benefit the agent. In fact, if the agent were given many trials to learn, it could negatively affect Q-values!

+ +
+
+
+
+
+
+
+

Optional Question 9¶

There are two characteristics about the project that invalidate the use of future rewards in the Q-Learning algorithm. One characteristic has to do with the Smartcab itself, and the other has to do with the environment. Can you figure out what they are and why future rewards won't work for this project?

+ +
+
+
+
+
+
+
+

Answer:

+

Smartcab: it cannot see what is happening elsewhere in the city, so no point optimising now to make some headway a few roads down the line. It would need traffic reports to do this for example. Further, the agent cannot see how far it is from the destination, thus cannot optimise the path.

+

As traffic and lights and other cars movements are random, there is no benefit to learning to go towards the goal directly, as the environment keeps evolving randomly, so the agent cannot control the environments future. So lets say driving at the same speed to keep traffice flowing has no benefit down the line, as no traffic jams are avoided or created. Further, as each trial has a new destination, the learned Q cannot incorporate how to get there fast, as this info is useless in the next trial.

+

I wonder if there is a way to parallelize this implementation?

+ +
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/smartcab/smartcab.ipynb b/smartcab/smartcab.ipynb new file mode 100644 index 0000000..7dfc4f7 --- /dev/null +++ b/smartcab/smartcab.ipynb @@ -0,0 +1,690 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Reinforcement Learning\n", + "## Project: Train a Smartcab to Drive\n", + "\n", + "Welcome to the fourth project of the Machine Learning Engineer Nanodegree! In this notebook, template code has already been provided for you to aid in your analysis of the *Smartcab* and your implemented learning algorithm. You will not need to modify the included code beyond what is requested. There will be questions that you must answer which relate to the project and the visualizations provided in the notebook. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide in `agent.py`. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "\n", + "## Getting Started\n", + "In this project, you will work towards constructing an optimized Q-Learning driving agent that will navigate a *Smartcab* through its environment towards a goal. Since the *Smartcab* is expected to drive passengers from one location to another, the driving agent will be evaluated on two very important metrics: **Safety** and **Reliability**. A driving agent that gets the *Smartcab* to its destination while running red lights or narrowly avoiding accidents would be considered **unsafe**. Similarly, a driving agent that frequently fails to reach the destination in time would be considered **unreliable**. Maximizing the driving agent's **safety** and **reliability** would ensure that *Smartcabs* have a permanent place in the transportation industry.\n", + "\n", + "**Safety** and **Reliability** are measured using a letter-grade system as follows:\n", + "\n", + "| Grade \t| Safety \t| Reliability \t|\n", + "|:-----:\t|:------:\t|:-----------:\t|\n", + "| A+ \t| Agent commits no traffic violations,
and always chooses the correct action. | Agent reaches the destination in time
for 100% of trips. |\n", + "| A \t| Agent commits few minor traffic violations,
such as failing to move on a green light. | Agent reaches the destination on time
for at least 90% of trips. |\n", + "| B \t| Agent commits frequent minor traffic violations,
such as failing to move on a green light. | Agent reaches the destination on time
for at least 80% of trips. |\n", + "| C \t| Agent commits at least one major traffic violation,
such as driving through a red light. | Agent reaches the destination on time
for at least 70% of trips. |\n", + "| D \t| Agent causes at least one minor accident,
such as turning left on green with oncoming traffic. \t| Agent reaches the destination on time
for at least 60% of trips. |\n", + "| F \t| Agent causes at least one major accident,
such as driving through a red light with cross-traffic. \t| Agent fails to reach the destination on time
for at least 60% of trips. |\n", + "\n", + "To assist evaluating these important metrics, you will need to load visualization code that will be used later on in the project. Run the code cell below to import this code which is required for your analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Import the visualization code\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understand the World\n", + "Before starting to work on implementing your driving agent, it's necessary to first understand the world (environment) which the *Smartcab* and driving agent work in. One of the major components to building a self-learning agent is understanding the characteristics about the agent, which includes how the agent operates. To begin, simply run the `agent.py` agent code exactly how it is -- no need to make any additions whatsoever. Let the resulting simulation run for some time to see the various working components. Note that in the visual simulation (if enabled), the **white vehicle** is the *Smartcab*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "In a few sentences, describe what you observe during the simulation when running the default `agent.py` agent code. Some things you could consider:\n", + "- *Does the Smartcab move at all during the simulation?*\n", + "- *What kind of rewards is the driving agent receiving?*\n", + "- *How does the light changing color affect the rewards?* \n", + "\n", + "**Hint:** From the `/smartcab/` top-level directory (where this notebook is located), run the command \n", + "```bash\n", + "'python smartcab/agent.py'\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The smartcab does not move, it seems the simulation is in a state where we can observe how a fixed position still generates variable rewards. The only way to move the car is to start another trial. The driver is receiving both positive and negative rewards. For example, if the light in front of her changes to red, doing nothing will create a positive reward. In contrast, if the light is green, and there is no oncoming traffic, doing nothing will create a negative reward. \n", + "\n", + "To force agent to move, could use simulating annealing algo, something to do with heating and refreezin slowly in metallurgy." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understand the Code\n", + "In addition to understanding the world, it is also necessary to understand the code itself that governs how the world, simulation, and so on operate. Attempting to create a driving agent would be difficult without having at least explored the *\"hidden\"* devices that make everything work. In the `/smartcab/` top-level directory, there are two folders: `/logs/` (which will be used later) and `/smartcab/`. Open the `/smartcab/` folder and explore each Python file included, then answer the following question." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "- *In the *`agent.py`* Python file, choose three flags that can be set and explain how they change the simulation.*\n", + "- *In the *`environment.py`* Python file, what Environment class function is called when an agent performs an action?*\n", + "- *In the *`simulator.py`* Python file, what is the difference between the *`'render_text()'`* function and the *`'render()'`* function?*\n", + "- *In the *`planner.py`* Python file, will the *`'next_waypoint()`* function consider the North-South or East-West direction first?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "agent.py: I chose to set verbose, update_delay and log_metrics. Verbose=True will produce more debug output for agent movement in the simulation. update_delay sets the time between state changes in the simulation, and corresponding screen updates. log_metrics=True will write simulation metrics to log files.\n", + "\n", + "environment.py: the act() function is called when an agent performs an action.\n", + "\n", + "simulator.py: the difference is that render() renders the GUI of pygame, wherease render_text() updates the console.\n", + "\n", + "planner.py: it checks the east-west direction first." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Implement a Basic Driving Agent\n", + "\n", + "The first step to creating an optimized Q-Learning driving agent is getting the agent to actually take valid actions. In this case, a valid action is one of `None`, (do nothing) `'Left'` (turn left), `'Right'` (turn right), or `'Forward'` (go forward). For your first implementation, navigate to the `'choose_action()'` agent function and make the driving agent randomly choose one of these actions. Note that you have access to several class variables that will help you write this functionality, such as `'self.learning'` and `'self.valid_actions'`. Once implemented, run the agent file and simulation briefly to confirm that your driving agent is taking a random action each time step." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Basic Agent Simulation Results\n", + "To obtain results from the initial simulation, you will need to adjust following flags:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file in `/logs/`.\n", + "- `'n_test'` - Set this to `'10'` to perform 10 testing trials.\n", + "\n", + "Optionally, you may disable to the visual simulation (which can make the trials go faster) by setting the `'display'` flag to `False`. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation!\n", + "\n", + "Once you have successfully completed the initial simulation (there should have been 20 training trials and 10 testing trials), run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!\n", + "Run the agent.py file after setting the flags from projects/smartcab folder instead of projects/smartcab/smartcab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VeX9wPHPN2GFEJARkL2UTcIMoyxZVsQIokIsQ7EK\nttSJLQURpLi1rtqqtS3iCMhS/IG1gESgiBIwbHA1CgJhk7DM+v7+OCfXe3NvJokJyff9euWVe85z\nznOec+54znOeJaqKMcYYY4wxxpiLF1TSCTDGGGOMMcaYssIKWMYYY4wxxhhTRKyAZYwxxhhjjDFF\nxApYxhhjjDHGGFNErIBljDHGGGOMMUXECljGGGOMMcYYU0SsgFWOicg3ItIrH9tVEREVkUbFkIZf\nisjXXsuHRaSP+/oREflLUR/zYonIZBFZfRH7fywio4syTSb/RKSDiGwXkTMicufPcLxNIjL2ZzhO\nZfecGhT3sYwpbSw/MyVFRBaIyEMlnY6LZXlI0bICVgkSkSkiEi8iP4rIvADhg0Rkr4icE5G1ItI0\nh3gmuF+KMyJyXkQyvZZP5XR8VW2pqp8WwXlsEpEL7vGOisi7IhJ+sfGq6ixVnXKx8WTnlcGeddN8\nQESeFBEphmM9ISKve69T1YGqurCIj5P9nM6IyOGiPEYZ8kdghapWU9XXsgdm+zyfdr97bYszQW6h\nXUXk+gLs41NwU9Uf3XM6WDypNCZnlp/lrrjysywiEiwiP4jIF8V1jJ+bW0A9574Xh0TkdREJKel0\nlUaWh5Q+VsAqWQeBucA/sweISB1gKTATqAXEAwFvylX1DfdLUQ24Dvg+a1lVLwsQd4UiPIcsv3aP\n3xqoCzxRDMcoaq3dNA8GbgOKvZbhZ9Da672/PNAGxfT+X0qaArvy2Cbr81wb+Bz4VzGnaQJwAhhf\nzMcxprhYflayBgPVgA4i0rE4DlBCecdQ973oBvQGppZAGoCSzzvzOL7lIaWMFbBKkKouVdX3gOMB\ngm8AdqnqIlW9AMwGIkWkTWGO5T4Jmioiu4Bkr3VZzRd+ISKficgpETkoIs8V5sdEVU8Ay4FOXscO\nEZGX3SdQB0TkaRGpmI80e2p/RKSNiKSLyG1uHEdF5EGvbauJyDtu+neKyB/Fq6lGHmneC2zKluZa\nIjLfvUb7RWSWiAT8vojI39w0JYvI5yLS010/ArgfyHoi+7m7fpOIjBWRqu76K7ziaug+ta3pLo8U\npznbKRFZLyLt8nNO2dL3SxH5WkRmikgS8Le84haRKBHZJiIpIvKWiCwVtwmEZGsiKdma3Ljv9/Pu\ndTssIi+JSOVsaZnuvoc/iMivvOIKFZEX3X1Pi8gnIlJBRNaIyB3ZzmufiFyTwzmPEpHd7rmtFpEr\n3fUbgV7A6+61b5LbtVPVdJwbQe9rk+t3RUSuFZGv3PA/5/H2ICKtgB7AJGC4iNTKFn6T+z6luPEO\nEpFnge5e5/FsgPehlvudOCoi/xOR34s4tbTue7jGvdanxGleNdjrmHeISKJ7zG9F5Ka8zsOUb5af\n5Znm4s7PJgCLgVXu66y4JojIhmxp+aOIvOt1Pnn9XnvyDhEJF5EP3TSfEJH3RaS+V9xXishG97fj\n3yLyqni14hCRvl7vzVYR+UVe1w5AVX8AVuP/XuSU9s9E5Fr39SD3t3GQu3ytiGzyei/i3HM5KiJv\niEiY1zECfdZ88kegUk7pdn9rP3avQ7I4+VI/r/Ac7zW89n1ZRE4C03I4RqnLQ4wVsEqz9sC2rAVV\nPQt87a4vrNHAEJyn8tmlAVPcsL44Tw5/XdADiNOUYgROWrM8AkQAHYGuwADg9wWNGwjGeYp1BTAM\neFREWrhhc4FwnNqJa4FxBUhze5ybbu80vw2cBloAUTjnlFOcn+KcW23gfWCRiFR0bzb+DGQ9kY3y\n3klVz+Fk3jFeq8cAH6nqSXEKan/FqV2rDbwJvFeYGwWgGVARaAzcnVvc4jTBeB94Fedp84dAdAGO\n9WegEc41aQ20wjdjaAoI0ADnM/eKiFRzw14E2uD88NcCHgIUeAOvGkYR6QFUB/6T/eDiPL2dB/wG\n5+nzJ8D7IlJBVXsDm3GfUKvq97mdiJtZ34JTAM+S43fFvdF4F3gA5/N4FOczm5sJwAZVXQx8j9fn\nwc2IXwPuAWoAg4D9qvpAtvN4IEC8r+C8581xvvd3ueeSpR9OTUJt4C9A1s1fTeBpYJCqhgF9gJ15\nnIMxubH8zF+R5WciUt1N59vu369EJNgNXgZ0Ed+HSbcA77iv8/q9boZX3oFz3/gK0ATntwXgOTcd\ngvP7txbn2j+B7+92M+A9YAY//b6/5/7m5MpN/1B834vc0v4JznsD0B/4Fuc3L2v5E6945gCXe8Uz\nI9vhPZ+1QuaP/XA+/1nX5D33PYO87zX6AQlAHeDZHOIvVXmIcamq/ZXwH86P6bxs6/4BPJFt3X+B\nW/OIazCQGGD9YeCWAOv65BDPNCDWfV0F5ya3UQ7bbgLO4jzdUZwvbQOv8B+AgV7L1wN73de/BL4O\nlCacH6LX3ddt3LjreG27HRjhvj4I9PcKm+Idb7b0Zp3PaTfdinNDXtENb+qur+i1z23Ah+7rycDq\nHOIW4BxOUz2fc8h2vca6r4cDu73CtgA3u6//BczItu93QI88zumU+/eU1zXOfj45xo2Tif0vW9hW\n4KFA5+/9+QAqAKlAQ6/wq4A9Xmk5DQR5hSfjPJWsiHNj1DrA+YW62zVxl/8C/DmH9+BRYL7XcjBO\nQadn9uufx+f5lHsuJ4C+uWzv/V25E4jLduwjOR0P52ble2Cyu/wI8JlX+BvA47mkc6zXsvf7UBnI\nAFp4hd8D/NvrPdzpFVbL3fcyoKZ77tcDVXI6b/uzv0B/WH72s+Znbviv3XQF4fxWngWu8QpfDPze\nfd0ROIlT65Kf32ufvCPAsXsCh9zXrYDzQOVsx84671nA37Pt/wkwOoe4DwMp7p8C/wbC3LC80n4t\n8Ln7Os69RnHu8mfAsByOOQb4NKfPGnnkjwHimxxg++3ATeTvXuPLPL4jpS4PyS295enParBKrzM4\nT+i91QBSRKSJ/NTp90wB4tyfU4CItHOr/ZNEJBl4GOeJSX5NUtXqQBecJ0EN3HjFXf7Oa9vvgIYF\niDtLhqoe81o+B1Rzq9Mvx/f8cjxXL+2BMJw2y78Aqrrrm+L80Bx1q75PAS8A9QJFIk5zi30ichon\n46pC/q/dR0A9EYkUkdbAlcAHXumYnpUGNx3h5H7t2qvqZe6f91PVw6qa5rWcW9wNgAPZ4v2O/GmA\nU1Da5RXvezg1SVmOqmqm1/I5nL4D9XEyzW+yR6rOE++lOE9mK+I8UXwzlzR857VvBs7NR0E+c5PU\n6e9RBbgR+EDc5kx5fFca4PXZ8zp2Tq7C+ewucpffBqLkp6ZTjQlwPfLhcn7KeLNk/955D4Jyzv1f\nTVVPAr/CeVp9WESWi1czVmMKwfIzf0WZn00AFqhqpvtb+T5ezQRxaquyajVuARarair5+732yTtE\nJExE/iki37vX9j/4/v4dVdUfc0h7U2Bstnynm7tfTq5RpyZ9KNAB50Y+61i5pX0DTjPUOji1Um8A\nrd3lSDccEWkgIovEaa6ejFMLk/2z4n0OhckfA23fgPzda+T13pe6PKQQxyqTrIBVeu3C+REAnL4p\nQEucduzenX4L8mHWXML+jvMUpqWbsczBqY0pEFX9AngKeMldVpwvYVOvzZqQ+01nQY+ZCSThPHXJ\n0ji/+6rqmzhPlP7ort6Pc0NQ06uwUl1Vu2TfX0SGAL8DRuI8/a+F8wQv69rlds1xM67FOJnfLcAy\nVT3vlY6HvdJwmapWVdWl+Tm37IfKtpxb3IfwvZbgvGdZzvJTYRScH+Ish4B0nM9RVrw1VDVQM57s\nPPvmEP4Gzo3/L4Ek97MWyEG8Pm9uU5mGFOIz534+Psa5Xlnty3P7rhzC67Pn3izldvM1Aed3eJc4\noz6uw3mvsm6O9pPz9cjts3UYyMT3fcv3905VV6jqIJybgO9x++0ZU0iWn+X/mAXKz0SkJU4z3tvF\n6cdzGKdlxPUiUsPdbCXQXJzRUMfwU/PA/PxeZ7/O09y0dXev7VB8f//C3abVgdK+H6c2yzvfCVXV\n53K5JE4iVFfh9Id9Mj9pV9XTOE2b7we2uHltvLu8U1WT3XiexsnTOrjn82v8Pyve1yCv/DGQQNsf\nJH/3GrneQ1BK8xBjBawS5fZ3qYLTjChYnA6GWf1rluGMBjTK3WYWsE2dARmKQxhwWlXPuH2S7shr\nh1y8DlwhIle7y7HALBGpLSJ1cdo3v3VxyfXzLjBDRGq4bbXvKuD+jwO/FZHaqvo/nKrzp9yndUHi\ndNztE2C/MJxmbUdxmlzMwXkilSUJJ2PLLXN/ByfTi+GnjA+cdtO/E5Fu4qgmItEiUjVgLAWTW9zr\ngCridGKtICIxOH0OsiQAnUWkvbv9w1kBbib2T+AFEanjxt3YLYjmyt13vrtvPXGGHe4jP/UliMO5\n3o+62+VkITBSRPq5tV3TcDrex+frymQjThv2K/lp5MHcvivLge4iMtw99oP89MQ1e7zVcDr/34rT\nRDLrbyrOU94gnO/SJPdcgtxr2cqNIgmn3b4f9wnyMuAxcQYOaYnTvCPP7504A61c6763P+LcAGTm\nsZsp5yw/K1IFyc/G4/TvacNPvyGtcX7zbgZQZ2CRZTh9XCvi9j8q5O91GE5txSm3Nsh7/qcvgX3A\nQyJS0f3t/KVX+BvATeIMshAsziAVg0Qk4Ii3ATyLU3Bsm8+0f4LTvDKrv1VctuWs8zkDJLvX+v48\n0pBX/hhIY6/tx+IUOv9TwHsNP6U1DzEOK2CVrIdwajum4XQEPe+uQ1WPAqNwbiZP4nR+HFOMabkP\n+LU4TTReJochdPPDrYH5C86QvODcgO/GuUFNwGl7/9RFpdbfQzjX6TucTqfv4twc5ouqxvPT0y1w\nCjuXAXtx+uAsJHATwQ9wfnC/welEewynsJVlAU5tzwlxRrALZB3OTUkNnFGSstL0X5xmWq/i9In5\nEqeWK68nWnnKLW73/RuJM0jESZy27B947bsD5/1bj3N94rJFfy/O07l4nP5W/8bpyJ0fd+Ncyy9w\nbhD+hPs00X16/CZO0863czm37cDt7rkdxenUe706IwLmV9bISmdwMqgHVHWtG5bjd0VVD+F8T593\nj12PnAt2N+J8tmJV9XDWH07htzpOP4/1OG3d/4pzLdfw09PQ54DxInJSRAJ9nya5/78DPnbPI8fr\n5iUY5zfpMM570B3npsSY3Fh+VnTylZ+5D+7GAy97/4a4v0Ov4d9McDCwMFsT7YL+Xj+D04TuOE4z\nu5VZAe5v9Gj3OCeB6ThN1350w7/F+Rw8gpNXfodz056ve1F15mdawE+FurzS/glOAWpdDsvgvJ99\n3P2XAUvySEOu+WMO1gGdcX7vZwA3uDVskP97jUBKax5iAHG+D8aULSJyH/BLVb06z41NnkRkAU6z\nirklnI47cQYBseFgjTHlwqWcn4nI+8AmVX28pNNSEkRkMnCj5Vnlj9VgmTLBrfbu6VaBt8d5Kras\npNNlio44/Tbuwnk6Z4wxZdKlnJ+JSA8Raeam/TqcJoLvl3S6jPm5FWsBS5xJ6vaJM1Gd3wRpInK9\nOJOfJYhIvHe7UxG5R5wJ9naJyL1e6zuJM1Fr1j5R7vood12COBPAjSzOczOlTmWc9tgpOM0EFmBz\nMpQZIhKNM9z51ziDghhjTFl1KednjXCaDqbgDCAxUVV3l2ySjPn5FVsTQbdj+pc4k5MdwJlLIsb7\ni+Z20DurqioiEcC7qtpGRDrg/KBE4cxz8G+cMf6/FpH/AM+p6ociMgxnbocBbofsVFVNF2eyz204\nc1cUpN+FMcYYY4wxxhRacdZgReFMjPetOvMtLMCZkM9DVc/oTyW8UH7qvN8WZ6K0c24B6ROckVJw\nt8maT6MGTgdHvLaFnyZLM8YYY4wxxpifTYW8Nym0hvhOkHYA6JF9I7cp3+M4k8Nd667eCTwqIrVx\nRiIaxk8jcd0LfCQiz+AUEHt7xdUDp1q9KTAuUO2V20n+ToDQ0NCubdq0yb6JMcaYUmTLli3HVDW8\npNNRlOrUqaPNmjUr6WQYY4zJRWHzn+IsYOWLqi4DlrnzJfwJGKyqe0TkSZwZws/iDIWa4e5yF3Cf\nqi4RkZuBf+BOAKqqnwHtxZlM7w0R+dCd/8H7eK/hdpLv1q2bxscXamocY4wxPxMR+a6k01DUmjVr\nhuU/xhhTuhU2/ynOJoI/4DuDdyNymQFaVdcBLdyJ61DVf6hqV1XthzPXwJfuphOApe7rRThNEbPH\ntQdn4rgOF3sSxhhjjDHGGJNfxVnA2gxcKSLNRaQSzqSCy703EJEr3InyEJEuOCPnHHeX67r/m+D0\nv3rH3e0g0N99PRD4yt2uubizxotIU5xZzROL6+SMMcaYLHmNmmuMMab8KLYmgu5oflOAj4Bg4J+q\nusuddA1VfQVnRu/xIpKG09dqtNegF0vcPlhpwG9V9ZS7/g7gBbcwdQG3PxXOTNzT3Lgygd+o6rHi\nOj9jjDEGPKPmvozXqLkistyGpzbGmPKp2IZpvxRYHyxjLg1paWkcOHCACxcu5L2xuWRVqVKFRo0a\nUbFiRZ/1IrJFVbuVULLyJCK9gNmqerW7/EcAVX08p33CwsK0a9euPutuvvlmfvOb33Du3DmGDRvm\nt8+tt97KrbfeyrFjx7jxxhv9wu+66y5Gjx7N/v37GTdunF/4Aw88wHXXXce+ffuYNGmSX/hDDz3E\n4MGDSUhI4N577/ULf+yxx+jduzcbN25k+vTpfuHPP/88nTp1YvXq1cydO9cv/NVXX6V169Z88MEH\nPPvss37hb775Jo0bN2bhwoX87W9/8wtfvHgxderUYd68ecybN88vfOXKlVStWpW//vWvvPvuu37h\ncXFxADzzzDP83//9n09YSEgIH374IQB/+tOfWLNmjU947dq1WbJkCQB//OMf+fTTT33CGzVqxFtv\nvQXAvffeS0JCgk94q1ateO01Z470O++8ky+//NInvFOnTjz//PMAjB07lgMHDviE9+rVi8cfdz5O\no0aN4vjx4z7hgwYNYubMmQBcc801nD9/3id8+PDhTJ06FYABAwaQnX327LMH9tkL9Nn75JNPCpX/\nlPggF8YYk5cDBw4QFhZGs2bNcFsVmzJGVTl+/DgHDhygefPmJZ2cgsrvqLmeUWwrV67886TMGGPM\nz65c12BdccUV2qRJE+68805GjhxpGZ4xpdSePXto06aNFa7KOFVl7969tG3b1mf9JVCDdSPwS1X9\ntbs8DuihqlNy2sdaUBhjTOlX2PynOAe5KPWOHj3K2rVriYmJ4Yknnijp5JhL1JEjR0hP95tyzRQx\nK1yVfZfwe1ygUXONMcaUbeW6gJWSkgI4mfr48eP9wstz7Z75ydSpUxk6dChXXHEFR44c8Qu/8847\nCQ8P5+abb2bXrl0lkEJjTAnLc9RcY4wx5Ue5LmB16NCBOXPmcNttt/m1+b9w4QKtWrXi3nvvtZvm\nMu6FF17g5ptvplu3bmzfvt0vfM2aNaxatYpvvvmGb7/91icsNTWVNWvWcOrUKRYtWkSFCv7dGstz\nQT01NZXMzMySTsZFO378OJ06daJTp05cfvnlNGzY0LOcmprqt/2JEyd45ZVX8ow3PT2dyy67LOD6\n4OBgzzG6du3Kpk2bCpTmhx56yNNxOZAOHTowduzYPOP59ttvWbBggWf5s88+47777itQWso6VU0H\nskbN3QO8q6qWcRhjTDlVrgtYlSpVYubMmfzjH//wC1u6dClff/01L7zwAsOHDy8TN4nl1bvvvssd\nd9zB4MGDWb16tV/4mjVrWLRoEVu2bPEbXQegRYsWntf/+9//fML+97//eW6QW7RoQatWrXzCL1y4\nQNOmTYmJieHNN98sN5+jGTNm0LlzZ0JCQhg1alRJJ+ei1a5dm4SEBBISEpg8eTL33XefZ7lSpUp+\n2+e3gJWbsLAwzzHmzJnDjBkzLio+bzt27KBChQqsXbvWb8Sn7LIXsHr06MFzzz1XZGkpK1R1paq2\nUtWWqvpoSafHGGNMySnXBazceA+j+etf/5qgIN9LlZaW9nMnyeQgLi6OBx98kFGjRrFw4cKA4a+/\n/jpr1qxhx44dfuHeBajsNVTgDHu6fPlyduzYwYgRI3zCWrduzffff8+OHTt45ZVX/PqQrFu3jv37\n97NgwQLmzp3r9zm6lCUnJ7N69WoSExP9wnbs2EFCQgKZmZncfPPNfuFlabj1p556ig4dOtChQwde\neuklAKZNm8a+ffvo1KkT06ZNIzk5mYEDB9KlSxciIiL8hunNS3JyMjVr1vS8zimuOXPm0KpVK/r0\n6cNXX32VY3yxsbGMHz+egQMH8sEHH3jWf/nllwwcOJDIyEi6dOlCYmIi06ZNY+3atXTq1IkXX3yR\n1atXe74Hx44dIzo6moiICHr37s3OnTsBp/bs9ttvp3///rRo0YKXX34ZcJplX3PNNURGRtKhQwcW\nL15coOtgjDHGXBJUtdz+de3aVXOSkZGh//nPf/TGG2/UH374wS988uTJ2rNnT/3nP/+pZ86cyTEe\nc/EyMjJ0w4YNet999+mrr77qF/74448roIDed999fuFPP/20J3zKlCl+4Zs2bdL58+frhg0b9Pjx\n40Wa9unTp3uOfe+99/qFr1mzRm+55RZ966239OjRo0V67OL00EMPqYgooE8++aRf+GOPPaaABgUF\naUpKil94//79tXfv3vrKK69ocnJynsfbvXu3z/KsWbM813XWrFl+299///2e8GeeecYv/I477vCE\nB/pM5WbWrFn69NNPq6rz2YmIiNBz585pcnKytmnTRrdv365fffWVRkZGevZJTU3V06dPq6pqUlKS\nXnHFFaqqmpaWpjVq1PA7RlpamgYFBWlkZKS2bt1aa9SooVu3bs01rs8++8yTllOnTmmzZs30ueee\nC3gOLVu21AMHDuiKFSt0xIgRnvVdunTR5cuXq6rq+fPn9ezZs7pq1Sq9/vrrPdt4L0+ePFnnzp2r\nqqofffSRZv2mzpgxQ/v06aM//vijJiUlaa1atTQ9PV0XLFigkydP9sR16tQpv7Rlf69VVYF4LQV5\nRlH+5Zb/GGOMKR0Km//YPFg5CAoKYsiQIQwZMsQv7MyZM7z99tukpKSwadMmrrjiCvr27VsCqSwf\nHn30UR5++GEAbrzxRu68806fcO/+c4FqoIYOHUqVKlVo0aIF7du39wvv0aMHPXr4TVlTJObOncvN\nN9/MypUrGTRokF/40qVLeeedd3jnnXeYOnUqTz/9dLGko6BSUlLYuHEjn376KU2aNGHixIk+4U2b\nNsX53SFg36AxY8bQvXt3oqKiqFatmk9YYmIin3zyiWff6OhowsLCiulMiteGDRsYNWoUISEhAIwY\nMYL169czdOhQn+1UlWnTprFhwwaCgoLYv38/x44dC9j/KktWE8Gs44wfP54dO3bkGNe6des8aQkJ\nCeG6664LGO+mTZto2LAhDRs2pG7dutxxxx2cPn2azMxMjh075tmvSpUq+Tr/FStWAM737NZbb+Xs\n2bOAM7lkpUqVqFu3LrVq1eLo0aNEREQwbdo0pk2bxnXXXccvfvGLPI9hjDHGXGqsgFUIn3/+uaeJ\nU5s2bejTp49PuKpy9uxZvxtLk7uMjAwSExNp2bKlz/phw4Z5CliBClDdu3dn7ty5NG/ePGABKiIi\ngoiIiOJJdB5EhMjISCIjI/3CVJWVK1d6lq+55hq/bebNm0eVKlUYOnQotWrVKta0elu9ejU33HAD\nAH369PErYPXs2ZOgoCAiIiJo166d3/7NmzfPcbLYTZs2UaFCBdLT07n66qupX7++T3hKSgpfffUV\nnTt3vpSH7fYxf/58Tp8+zdatW6lQoQKNGjUqUDPJPn36cPDgQU6cOMHSpUsvKq7Y2Fh27txJs2bN\nAKfJ4dKlS/2av14s73kFg4ODSU9Pp23btsTHx7Ny5UqmTZvGNddcw/Tp04v0uMYYY0xJKzsdQn5G\nAwcO5IcffuCZZ55h+vTpfjeBn376KfXr12fSpEls3bq1hFJ56UhOTmbKlCk0atSI3r17k5GR4RPe\npUsXoqKiuOOOO3jsscf89m/RogUzZszglltuCViQKc2WLFnCo48+yqBBgwIW1B9++GFiYmIIDw/n\niy++KLLjnjp1ipkzZzJkyJCAtXe9evXyvI6Pj/frc9iuXTtOnz7NF198wdy5cwt07DFjxnDw4EFe\nfPFF7r33Xr/wRYsW0bVrVyIiInjrrbcCxjF79mxPNfzs2bP9wp999llP+AMPPOAX/tprr3nCs9eI\nFkTfvn1ZtmwZ58+f58yZM7z//vv07duXsLAwzzQQAKdPn6Zu3bpUqFCBVatW8cMPBZsiadeuXQQF\nBVGzZs0c4+rXrx/Lli3jwoULJCcnB+znlZmZyeLFi9m9ezeJiYkkJiaydOlSYmNjqVmzJuHh4Z4+\nWRcuXODcuXN+55L9/N9++23AKZQ3bNiQ0NDQHM/jhx9+oFq1aowbN44HHngg4O+jqpKcnFyg62OM\nMcaUJlaDVUjh4eEBb9zAuXk7c+YMr732GpmZmfz973//mVN3aQkNDWXJkiUcPnwYcAaGuOqqqzzh\nIsJnn31WUskrNiJC586d6dy5c8Cn+Lt372b//v2A01ysY8eOPuGqytKlSxk4cKBnAITs0tPT2bVr\nFxERET4PAipXrswTTzzhmSD55MmTPnFcfvnlXHfddTRp0oRevXr5jX4YFBR0UTW04eHh/O53vwsY\nNn/+fAB27txJUlJSoY/xc4iKiiImJobu3bsDcNddd3nep65du9KxY0euvfZa7r//fq677jo6duxI\nVFQUV155ZZ5xp6Sk0KlTJ8/y/PnzERHGjRsXMK6oqChGjhxJREQE9erVIyoqyi/OtWvX0rx5c+rV\nq+dZd9VVVzF27FiSkpJ4++23mTRpEjNmzKBSpUosWbKEzp07k5GRQWRkJLfffrtPjeWcOXOYOHEi\nERERVKu62JkjAAAgAElEQVRWjX/961+5nlNCQgLTpk0jKCiIypUr+4y0mJycTGJiIgcPHmTmzJks\nWbIkz2tkjDHGlEqF6bhVVv6Ko5NxRkaGdu3a1dOB/vPPP/fbJikpSTMzM4v82KVZWlqarl69WidN\nmqRbtmzxC//tb3+rgNatW1djY2NLIIWlz4EDB3TOnDnas2dPHT16tF/4F198oYAGBwdrdHS0X/gN\nN9ygoaGhCujXX3/tF96tWzfP5/Q///lPsZxDQaWnp+u4ceO0atWqGhQUpAcPHlRV34EPjhw5osnJ\nyeXuO1TaZWZm6oULFzQlJSXg4BVnzpzRzZs36+bNmwMOZJGSkqKbN2/WDz/8UKOionzCsEEujDHG\nlIDC5j9Wg1XEgoKC2Lx5M//973/58MMP6datm094ZmYmvXr1olq1atxxxx1MnDiRqlWrllBqfz73\n3HMPf/3rXwGoXr06Xbp08QmfMmUKN954I3379iU4OLgkkljqNGzYkJkzZzJz5ky/ZpMAH374IeD0\nXQv0GTp//rxnwIFPP/3Ur2/btGnTSE9Pp2fPnjRp0qQYzqDggoODmT9/Pi+//DIbN27065+VkZHB\n999/j6pSqVIl2rZtS8WKFUsoteWLqnLmzBlSU1PJyMigbt26PuGpqameaRAqVqzo11zXexLuQJMz\ne7+Pec3NZYwxxpRm1gerGIgIffr04dFHH/Xrn7V27Vq+/fZbtm/fzsyZM8tMJ/4saWlpfpPxgjNQ\nRZZFixbhPBT4SZs2bRgwYIAVrnIQ6Lo0aNCAqKgoRMTn+mbp2bMnQI6DIIwaNYrRo0fTtGnTUvc5\nDAsL4+qrr/Zbf/LkSc9nJzg42ApXRSwtLY2kpCS+//57v2ahqsq+ffv43//+FzDc+71IS0vLMbxi\nxYpUqlTJ7zegUqVKdOzYkSZNmrB9+/aiPC1jjDHmZ2U1WD+zr7/+mqpVq3Lu3DnGjx/vGd45y7Jl\ny9i9ezeNGzemb9++OY7EVtocPnyYhx56iGXLllG/fn3PhKNZhgwZQrt27Rg0aBA33XRTCaWybJkw\nYQITJkzg6NGjfp8jgDvvvJOJEyfSqFGjEkhd8QgNDSU8PJyTJ09Su3Ztv/Dk5GSOHj1K7dq1qV69\nepma2Lm4Xbhwgd27d3sKRvXq1fMZCTAoKIiKFSt6BjxJS0vzC69atSoiQsWKFcnMzPS5/kFBQXTp\n0iXH90REqFy5cqkr7BtjjDEFZQWsn9mkSZMYM2YM77zzjs9ADlkWLVpEbGws4AzRnb2A9cwzz/D1\n11/TqFEjxowZwxVXXPGzpDsvYWFhvPPOO5w/f54TJ06wZ88e2rZt6wmvVKkSu3btKsEUll3h4eEB\n119++eU/c0qKX0hICE2bNqVx48Z+NSAAx44d4+TJk5w8eZLLL7+8TBUui1vlypUJCQnxNCtNTU31\nKUAB1KhRg4yMDCpWrBiwIBRoyH5vpaHAKyLBQD288j9V/b7kUmSMMaassQJWCahRowZ33XVXwLAD\nBw54Xge6OVy+fDnr168HnKG0sxewbrvtNpKSkmjUqBHTp0/3zHVTFFJTU1m1ahWLFi3ikUceoWnT\npp6w0NBQhg0bxpIlS2jUqBH79+/3KWAZU5QC3ahnZGRw6tQpz3KgecMyMjKsGSo/NeHzLkCJCA0a\nNODAgQPUqlWLSpUq+e1XlL8nJUFEfgfMApKArDaMCpTMRHnGGGPKJCtglTK33347PXr04MCBAwFr\np7KG7QZo3LixX3hcXByJiYkATJ061S88MjKSjIwMGjVqxPz58/06qp85cybH4bdjYmJYunQp4Eze\ne//99/uET58+nalTpxIVFVUqnlSb8iU4OJi2bdty/Phxzp8/7zfwh6qyc+dOQkJCqFOnDpdddlm5\n+5xm9bE6cuQIYWFhfsPFV69enXbt2pXlZnr3AK1V9XhJJ8QYY0zZVb7uLi4BEyZM4OmnnyY2Ntan\nhijLiy++yEsvvcTvf/97vxquzMxMnwlMGzZs6Be+e/dudu3axUcffeRXkMrMzKRmzZpUr16d9u3b\n+430lX2giuy6dOlCz549y91Nqyk9QkJCaNSoUcB5ppKTk0lLSyM5OZnvvy94izARYezYsZ7l9PR0\nwsPDGT58OODULj/xxBOFT3wObrvtNl599VWfde+99x7XXHMNAL179851/8TERDp06OBJ8+HDh8nM\nzOT06dOe5oCJiYm88847iAgiQnx8PHfffXeRn0spsB84XdKJMMYYU7ZZDdYl5rrrrss1fNOmTezf\nv5/Dhw8TGhrqE3bkyBHPxLK1atXye8KflJREeno6KSkpHD582K+J0IgRI3jyyScZMWKEDVRhLjnn\nzp3zvK5du7bfg4D09HSCgoJyfEAQGhrKzp07OX/+PCEhIaxatcrnIUZ0dDTR0dEXnc709HSfIc1j\nYmJ4/PHHmTRpkmfdggULiImJAWDjxo35jjskJISaNWty8uRJQkJCPP3YsgpYt9xyCwDdunXzm2Ki\njPgWiBORFcCPWStV9c8llyRjjDFljVU1lCFZo3Rdf/31PjdjWerVq8eRI0fYunUrixcv9gs/evQo\nVapUAQI3P6xduzZffvklTz31FN27dy/6EzCmGNWvX5+IiAgaNGgQcGCQw4cPs337dvbv38+PP/4Y\nIAanFnfFihUAxMbGego54AxKM2XKFABuvfVW7r77bnr37k2LFi083zdV5cEHH6RDhw507NiRhQsX\nAk7T3r59+xIdHe03UMSgQYPYu3cvhw4dAuDs2bOsXr2aESNGAHhqor3j7tChA3/96185fdq3siYx\nMZHx48dz++23M27cOM9w6NOmTWP9+vV06tSJ5557jri4OE/N3IkTJxgxYgQRERH07NnTs8/s2bOZ\nOHEiAwYMoEWLFrz44ov5eh9K2PfAKqASEOb1Z4wxxhQZq8EqR0SE8PDwHEedi4iI4Ny5c5w4cYLk\n5OSfOXXGFMDqAf7rmtwMrX4D6ecgzn9eMFrcSqUWt9KgViXY8EufoMyBH3Ps2DHS09NJSkoiLCzM\nbwQ9gDFjxjBnzhyGDx/O9u3bmThxomfQmewOHTrEhg0b2Lt3L9HR0dx4440sXbqUhIQEtm3bxrFj\nx+jevTv9+vUDYOvWrezcudNv5NDg4GBGjRrFu+++yz333MMHH3zAgAEDqF69us92WXF/8sknbN26\nlXHjxtG+fXufSaTr1q3LmjVrqFKlCl999RUxMTHEx8fzxBNP8Mwzz/B///d/gFPgyzJr1iw6d+7M\ne++9x8cff8z48eNJSEgAYO/evaxdu5aUlBRat27NXXfdVarnJlPVRwBEpJq7fKZkU2SMMaYsshos\n40NEqF279iUz/5YxRSE1NdXTNLBixYrUqFEj4HYREREkJiYSGxsbcHJnbyNGjCAoKIh27dqRlJQE\nwIYNG4iJiSE4OJh69erRv39/Nm/eDEBUVFSO37uYmBgWLFgA+DYP9JYVd/Xq1alduzZdunQhPj6e\nlJQUzzZpaWnccccddOzYkZtuuondu3fncWWceMeNGwfAwIEDOX78uOcBzLXXXkvlypWpU6cOdevW\n9ZxnaSUiHUTkC2AXsEtEtohI+5JOlzHGmLLFarCMMZeewXE5h1Womnt4lTp+4VWAjh07kpycTEZG\nht8oeufPnyczM5M9e/YwePBgpk6dSlxcHMeP5zwYnXcNWKA5u7LL3mfSW+/evTl06BDbtm1j48aN\nnsJW1qS/3ipWrEh4eDjBwcHUr1+fsLCfWsA999xz1KtXj23btpGZmelpElxY3ucYHBzs6eNZir0G\n3K+qawFEZADwdyD3kUKMMcaYArAaLGOMwam9rVGjRsD5s44ePQo4/Z+GDx/OrFmz6NixY4GP0bdv\nXxYuXEhGRgZHjx5l3bp1REVF5Stto0ePZsKECVxzzTUEBwdz4MABduzY4Sm8ecddqVIltm/fzsCB\nA30Ki6dPn6Z+/foEBQXx5ptvkpGRATgThXvXdGVP89tvvw04TQfr1Knj1zzxEhKaVbgCUNU4IOeS\nrTHGGFMIVsAyxpg8eNdARURE+A1hnlXDlZeRI0cSERFBZGQkAwcO5KmnnuLyyy/PVxpiYmLYtm0b\nMTExnDhxwjPcuqqSmZnpE/fgwYMDxv2b3/yGN954g8jISPbu3eupNYuIiCA4OJjIyEiee+45n31m\nz57Nli1biIiIYNq0abzxxhv5Sm8p9a2IzBSRZu7fQzgjCxpjjDFFRvLTdKXQkYv8EngBCAZeV9Un\nsoVfD/wJyATSgXtVdYMblgikABlAuqp2y7bvA8AzQLiqHhOR2sBioDswT1Wn5JW+bt26aXx8/MWd\npDGm2O3Zs4e2bduWaBrS0tI4efIk4eHhfk0Id+/ezYULF6hduzb169f3m+KgqGVmZrJjxw7S0tII\nCQmhZcuWF93cr7QI9F6LyJbseUBhiEhN4BGgj7tqPTBbVU9eRJw3AbOBtkCUquYrU7H8xxhjSr/C\n5j/F1gdLRIKBl4EhwAFgs4gsV1XvXtVrgOWqqiISAbwLtPEKv0pVjwWIuzEwFGfI3SwXgJlAB/fP\nGGOKTMWKFalbt67f+rNnz3rm2Dp27JjfBN8XIy0tjSNHjlC3bl2f0fmCgoJo3LgxIsJll13mV+Az\ngbkFqaKeQXkncAPwal4bGmOMKR+Kc5CLKOBrVf0WQEQWANcDngJWtiFyQ4H8Vqc9B/weeN8rrrPA\nBhG54iLTbYwx+ZaRkUGVKlW4cOECtWrV8pkkGJyJg3/88UeqVq1aoILQkSNHOHDggKcZYKNGjXzC\nA/UVM4GJyPOqeq+IfECAfEZVCz1DtKrucY9xESk0xhhTlhRnAashsN9r+QDQI/tGIjISeByoC1zr\nFaTAahHJAF5V1dfc7a8HflDVbYXJ0ETkTuBOwGd+GGOMKYzq1avTvn17zpw541e4Ajh+/Dj79+8n\nJCSEBg0aULNmzXzFW6FCBU+/riNHjlCvXr1SPcdUKfem+/+ZkkyE5T/GGFM+lPgw7aq6DFgmIv1w\n+mMNdoP6qOoPIlIXWCUie4F4YDpO88DCHu81nKF66datW/F1QDPGlBsi4jMcehZV9YxAeP78+RyH\nMc/IyCA4ONhnXc2aNQkJCQGgfv36AQtvJn9UdYv7spOqvuAdJiL3AJ/ktr+IrAYCjUYyQ1XfD7A+\np3RY/mOMMeVAcebYPwCNvZYbuesCUtV1ItJCROqo6jFV/cFdf0REluE0OTwJNAeyaq8aAVtFJEpV\nDxfXiRhjTGFkZmYSGhpKamoq4N+sT1VJTEzk1KlTtGnTxlOgAqfQduWVV1KxYkVrflZ0JuAMvOTt\n1gDrfKjq4NzCjTHGGG/FWcDaDFwpIs1xClZjgFu8N3D7S33jDnLRBagMHBeRUCBIVVPc10OBOaq6\nA6cpYdb+iUC3QANhGGNMSQsODqZ58+Y0btyYc+fO+dVSpaWleSYrPnToEC1atPAJL+7RCMsLEYnB\nyX+ai8hyr6Aw4ETJpMoYY0xZVWzzYKlqOjAF+AjYA7yrqrtEZLKITHY3GwXsFJEEnBEHR6szbnw9\nnAErtgGfAytU9d95HdMtcP0ZuFVEDohIuyI/MWNMuSQijB071rOcnp5OeHg4w4cPz3W/+Ph47r//\n/oCT82YVriDnubRatGjBvn37fNbde++9PPnkk8THx/vNyZXdvHnzmDIl91kr4uLi2Lhxo2f5lVde\nYf78+bnuc4nZCDwL7HX/Z/09AFx9MRGLyEgROQD0AlaIyEcXmVZjjDGXuGJt1K+qK4GV2da94vX6\nSeDJAPt9C0TmI/5muS0bY0xRCQ0NZefOnZw/f56QkBBWrVqVryHZu3XrRrdugafQqFy5MrVr16ZG\njRrUrFkTESE9Pd2nv9WYMWNYsGABs2bNApxmh4sXL+a///0vTZs2zTHugoiLi6NatWr07t0bgMmT\nJ+exx6VFVb8DvhORXwEHVfUCgIiE4DQ1T7yIuJcBy4oincYYY8qGYqvBMsaYsmbYsGGsWLECgNjY\nWGJiYjxhn3/+Ob169aJz58707t3bU+sUFxfnqeU6ceIEI0aMICIigp49e3LgwAGaN2/Oiy++yPjx\n4/nFL37BuHHjfI4ZExPDwoULPcvr1q2jadOmNG3aNNe4t2/f7pf+Dz74gB49etC5c2cGDx5MUlIS\niYmJvPLKKzz33HN06tSJ9evXM3v2bJ55xhlwLyEhgZ49exIREcHIkSM5edKZk3fAgAH84Q9/ICoq\nilatWrF+/fqiuszF6V2cie2zZACLSigtxhhjyigblsoYc2l5p5gGfLgl70HdxowZw5w5cxg+fDjb\nt29n4sSJnoJFmzZtWL9+PRUqVGD16tVMnz6dJUuW+Ow/a9YsOnfuzHvvvcfHH3/M+PHjSUhIAGD3\n7t1s2LDBZ6ALgI4dOxIUFMS2bduIjIxkwYIFPgW7/MSdpU+fPmzatAkR4fXXX+epp57i2WefZfLk\nyVSrVo2pU6cCsGbNGs8+48eP56WXXqJ///48/PDDPPLIIzz//POA00zy888/Z+XKlTzyyCOsXr06\nz2tYwiqoamrWgqqmioh1dDPGGFOkrIBljDH5FBERQWJiIrGxsQwbNswn7PTp00yYMIGvvvoKESEt\nLc1v/w0bNngKXQMHDuT48eMkJycDEB0d7Ve4yhITE8OCBQto37497733Ho888kiB4s5y4MABRo8e\nzaFDh0hNTaV58+a5nu/p06c5deoU/fv3B2DChAncdNNNnvAbbrgBgK5du5KYmJhrXKXEURGJVtXl\n4JlX0QZJMsYYU6SsgGWMubTko6apOEVHRzN16lTi4uJ8BqmYOXMmV111FcuWLSMxMZEBAwYUKN7Q\n0NAcw8aMGcPQoUPp378/ERER1KtXr1Bp/93vfsf9999PdHQ0cXFxzJ49u1DxZKlcuTLgjJaY0xxf\npcxk4G0R+QsgwH5gfMkmyRhjTFljfbCMMaYAJk6cyKxZs+jYsaPP+tOnT3sGvZg3b17Affv27cvb\nb78NOH2z6tSpE3B0wexatmxJnTp1mDZtWsDmgfmN2zuNb7zxhmd9WFgYKSkpfnFmDb6R1QzyzTff\n9NRmXYpU9RtV7Qm0A9qqam/A/8SNMcaYi2AFLGOMKYBGjRoFHBr997//PX/84x/p3LmzX21O1kTB\ns2fPZsuWLURERDBt2jSfQk5eYmJi2Lt3r6dZXnb5iXv27NncdNNNdO3alTp16njWX3fddSxbtswz\nyIW3N954gwcffJCIiAgSEhJ4+OGH853mUqwCMFpE1gBflHRijDHGlC3iTDtVPnXr1k3j4+NLOhnG\nmDzs2bOHtm3blnQyCmXJkiUsX768QIWp8izQey0iW1T1osajd4dkvx5nwuHOOJMMjwDWqar/BGTF\nzPIfY4wp/Qqb/1gNljHGFJPly5czY8YMJk2aVNJJKddE5B3gS2AI8BLQDDipqnElUbgyxhhTttkg\nF8YYU0yio6OJjo4u6WQYp8/VSWAPsEdVM0Sk/DbfMMYYU6ysBssYY0yZpqqdgJtxmgWuFpENQJiI\nFG44RmOMMSYXVsAyxhhT5qnqXlWdpaptgHuAN4DNIrKxhJNmjDGmjLEmgsYYY8oVVd0CbBGRB4G+\nJZ0eY4wxZYsVsIwxxpRL6gyju66k02GMMaZssSaCxhiTDyLC2LFjPcvp6emEh4czfPhwwBkx8Ikn\nnii24yckJCAi/Pvf/y50HL179w64/tZbb2Xx4sWFTtfKlSsLnSZjjDGmrLECljHG5ENoaCg7d+7k\n/PnzAKxatYqGDRt6wqOjo5k2bdpFHyf7JMVZYmNj6dOnD7GxsYWOe+PGou9udKkUsEQkSERuLul0\nGGOMKfusgGWMMfk0bNgwVqxYATgFnpiYGE/YvHnzmDJlCuDUCN1999307t2bFi1aeGqHVJUHH3yQ\nDh060LFjRxYuXAhAXFwcffv2JTo6mnbt2vkdV1VZtGgR8+bNY9WqVVy4cMETNn/+fCIiIoiMjGTc\nuHEAJCUlMXLkSCIjI4mMjPQUrKpVq+aJb8qUKbRu3ZrBgwdz5MgRT3xbtmyhf//+dO3alauvvppD\nhw4BMGDAAP7whz8QFRVFq1atWL9+PampqTz88MMsXLiQTp06ec6nNHLnu/p9SafDGGNM2Wd9sIwx\nl54BA/zX3Xwz/OY3cO4cDBvmH37rrc7fsWNw442+YXFx+TrsmDFjmDNnDsOHD2f79u1MnDiR9evX\nB9z20KFDbNiwgb179xIdHc2NN97I0qVLSUhIYNu2bRw7dozu3bvTr18/ALZu3crOnTtp3ry5X1wb\nN26kefPmtGzZkgEDBrBixQpGjRrFrl27mDt3Lhs3bqROnTqcOHECgLvvvpv+/fuzbNkyMjIyOHPm\njE98y5YtY9++fezevZukpCTatWvHxIkTSUtL43e/+x3vv/8+4eHhLFy4kBkzZvDPf/4TcGrXPv/8\nc1auXMkjjzzC6tWrmTNnDvHx8fzlL3/J1zUsYatFZCqwEDibtVJVT5RckowxxpQ1VsAyxph8ioiI\nIDExkdjYWIYFKsR5GTFiBEFBQbRr146kpCQANmzYQExMDMHBwdSrV4/+/fuzefNmqlevTlRUVMDC\nFTi1ZWPGjAGcQt78+fMZNWoUH3/8MTfddBN16tQBoFatWgB8/PHHzJ8/H4Dg4GBq1KjhE9+6des8\n6WjQoAEDBw4EYN++fezcuZMhQ4YAkJGRQf369T373XDDDQB07dqVxMTEfF+3UmS0+/+3XusUaFEC\naTHGGFNGWQHLGHPpya3GqWrV3MPr1Ml3jVUg0dHRTJ06lbi4OI4fP57jdpUrV/a8dgary11oaGjA\n9RkZGSxZsoT333+fRx99FFXl+PHjpKSkFDzxeVBV2rdvz6effhowPOucgoODc+wrVpqpauASrDHG\nGFOErA+WMcYUwMSJE5k1axYdO3Ys8L59+/Zl4cKFZGRkcPToUdatW0dUVFSu+6xZs4aIiAj2799P\nYmIi3333HaNGjWLZsmUMHDiQRYsWeQp6WU0EBw0axN/+9jfAKaCdPn3aJ85+/fp50nHo0CHWrl0L\nQOvWrTl69KingJWWlsauXbtyTV9YWFixFPaKg4hUFZGHROQ1d/lKERle0ukyxhhTtlgByxhjCqBR\no0bcfffdhdp35MiRngEpBg4cyFNPPcXll1+e6z6xsbGMHDnSZ92oUaOIjY2lffv2zJgxg/79+xMZ\nGcn9998PwAsvvMDatWvp2LEjXbt2Zffu3X7puPLKK2nXrh3jx4+nV69eAFSqVInFixfzhz/8gcjI\nSDp16pTnyINXXXUVu3fvLvWDXLj+BaQCWePV/wDMLbnkGGOMKYskP01Xyqpu3bppfHx8SSfDGJOH\nPXv20LZt25JOhvkZBHqvRWSLqna72LhFJF5Vu4nIF6ra2V23TVUjLyLOp4HrcApu3wC3qeqpvPaz\n/McYY0q/wuY/VoNljDGmvEgVkRCcgS0QkZbAjxcZ5yqgg6pGAF8Cf7zI+IwxxlzirIBljDGmvJgF\n/BtoLCJvA2u4yLmxVPU/qpo14scmoNHFJdEYY8ylzkYRNMYYUy6o6ioR2Qr0BAS4R1WPFeEhJuLM\nsRWQiNwJ3AnQpEmTIjysMcaY0sQKWMYYY8qT/kAfnGaCFYFlee0gIquBQKORzFDV991tZgDpwNs5\nxaOqrwGvgdMHq8ApN8YYc0ko1iaCIvJLEdknIl+LyLQA4deLyHYRSRCReBHpk9e+IhIpIp+KyA4R\n+UBEqrvrK4rIG+76PSJi7eCNMcZ4iMhfgcnADmAnMElEXs5rP1UdrKodAvxlFa5uBYYDv9LyPHKU\nMcYYoBhrsEQkGHgZGAIcADaLyHJV9R4veA2wXFVVRCKAd4E2eez7OjBVVT8RkYnAg8BM4Cagsqp2\nFJGqwG4RiVXVxOI6R2OMMZeUgUDbrEKQiLwB5D7RVx5E5Jc4/bj6q+q5i0+iMcaYS11x1mBFAV+r\n6reqmgosAK733kBVz3g97QvFHdkpj31bAevc16uAUVnRAaEiUgEIwRkyN7noT8sYUx6JCGPHjvUs\np6enEx4ezvDhuc9TGx8fX+h5s7w9//zzVKlSxW/S4PzKLR3NmjXj2LHCdUV67733/ObZKsW+Brw7\nPzV2112MvwBhwCq3NcYrFxmfMcaYS1xxFrAaAvu9lg+463yIyEgR2QuswOkgnNe+u/ipsHUTTgYJ\nsBg4CxwCvgeeUdUTAY53p9scMf7o0aOFOS9jTDkUGhrKzp07OX/+PACrVq2iYUO/nzQ/3bp148UX\nX8z3cdLT0wOuj42NpXv37ixdujTfcV1MOvLrEitghQF7RCRORNYCu4HqIrJcRJYXJkJVvUJVG6tq\nJ/dvcpGm2BhjzCWnxIdpV9VlqtoGGAH8KR+7TAR+IyJbcDLLVHd9FJABNACaAw+ISIsAx3tNVbup\narfw8PAiOQdjTPkwbNgwVqxYATgFnpiYGE/Y559/Tq9evejcuTO9e/dm3759AMTFxXlquU6cOMGI\nESOIiIigZ8+ebN++HYDZs2czbtw4fvGLXzBu3Di/437zzTecOXOGuXPnEhsb61mfkZHB1KlT6dCh\nAxEREbz00ksAbN68md69exMZGUlUVBQpKSk+6Th+/DhDhw6lffv2/PrXv8a729Bbb71FVFQUnTp1\nYtKkSWRkZABQrVo1ZsyYQWRkJD179iQpKYmNGzeyfPlyHnzwQTp16sQ333xTZNe6mDwMXIMzXPts\nYJi77ln3zxhjjLloxVnA+oGfapfAmRvkh5w2VtV1QAsRqZPbvqq6V1WHqmpXIBbIytFvAf6tqmmq\negT4L1DgmZeNMaWcSPH85cOYMWNYsGABFy5cYPv27fTo0cMT1qZNG9avX88XX3zBnDlzmD59ut/+\ns2bNonPnzmzfvp3HHnuM8ePHe8J2797N6tWrfQpQWRYsWMCYMWPo27cv+/btIykpCYDXXnuNxMRE\nEtvkhj0AACAASURBVBIS2L59O7/61a9ITU1l9OjRvPDCC2zbto3Vq1cTEhLiE98jjzxCnz592LVr\nFyNHjuT7778HYM+ePSxcuJD//ve/JCQkEBwczNtvO4PinT17lp49e7Jt2zb69evH3//+d3r37k10\ndDRPP/00CQkJtGzZMl/XsaSo6ie5/ZV0+owxxpQNxTlM+2bgShFpjlM4GoNTCPIQkSuAb9xBLroA\nlYHjwKmc9hWRuqp6RESCgIeArPbu3+N0YH5TREJx5jl5vhjPzxhTzkRERJCYmEhsbCzDhg3zCTt9\n+jQTJkzgq6++QkRIS0vz23/Dhg0sWbIEgIEDB3L8+HGSk52uotHR0X4FoSyxsbEsW7aMoKAgRo0a\nxaJFi5gyZQqrV69m8uTJVKjg/JTXqlWLHTt2UL9+fbp37w5A9erV/eJbt26dp6nhtddeS82aNQFY\ns2YNW7Zs8ex7/vx56tatC0ClSpU8NWBdu3Zl1apVBbhyxhhjTPlRbAUsVU0XkSnAR0Aw8E9V3SUi\nk93wV3AGqBgvImnAeWC0O+hFwH3dqGNE5Lfu66XAv9zXLwP/EpFdOBNI/ktVtxfX+RljSkgJj4Id\nHR3N1KlTiYuL4/jx4571M2fO5KqrrmLZsmUkJiYyYMCAAsUbGhoacP2OHTv46quvGDJkCACpqak0\nb96cKVOmFPoccqKqTJgwgccff9wvrGLFiohb0xccHJxjXzFjjDGmvCvWPliqulJVW6lqS1V91F33\nilu4QlWfVNX2bsfgXqq6Ibd93fUvuOtbqeq0rFEI3REJb3Lja6eqTxfnuRljyqeJEycya9YsOnbs\n6LP+9OnTnkEv5s2bF3Dfvn37eprcxcXFUadOnYA1TN5iY2OZPXs2iYmJJCYmcvDgQQ4ePMh3333H\nkCFDePXVVz2FnRMnTtC6dWsOHTrE5s2bAUhJSfErDPXr14933nkHgA8//JCTJ08CMGjQIBYvXsyR\nI0c88X333Xe5pi8sLIyUlJRctzHGGGPKkxIf5MIYYy4l/8/encfHXZb7/39d2ZqtTduke5oudKOF\nlkIpZVPZQZTFXdGjgiIqKKg/RPke0aMe9bjviMiioqCiwAEVAT2yFmmRlhZaurfpnrRN26RpmuT6\n/XF/JjNJs0zTTCaTvJ+Pxzwyn/uzzDWTaTrX3Pd93eXl5e2WO7/xxhv53Oc+x9y5cw9LaGI9P1/8\n4hdZvHgxs2fP5qabbuLuu+/u8vHuvfdeLr/88lZtl19+Offeey8f+tCHqKioYPbs2cyZM4ff/OY3\n5OXlcd9993HdddcxZ84czjvvPOrr61udf8stt/Dkk08ya9Ys/vjHP1JRESqXz5w5k6985Sucf/75\nzJ49m/POO4+tW7d2Gt+73vUuvvnNbzJ37tw+W+QiWoB+aUe3dMcnIiL9iw3kRefnzZvnixYtSncY\nItKFV199lWOPPTbdYXTL/fffz0MPPZRUMiXt/67NbLG7d7tokZlNiO7Ghpf/Kvp5BYC739Tda3eX\n/v8REen7uvv/TyqLXIiIDGgPPfQQN998M3fccUe6QxnQ3H0DgJmd5+5zE3bdZGYvAr2eYImISP+l\nIYIiIilyySWXsGLFCk477bR0hyKBmdnpCRunof8HRUSkh6kHS0Qygru3zGWS/qkXhqxfSag2WxJt\n74naREREeowSLBHp8/Lz86murqa0tFRJVj/l7lRXV5Ofn5+S60drJ05x9zmxBMvda1LyYCIiMqAp\nwRKRPq+8vJzKykp27tyZ7lAkhfLz8ykvL0/Jtd292cxuBH6nxEpERFJJCZaI9Hm5ublMmjQp3WFI\n5nvczD4D3AfUxhrdfVf6QhIRkf5GCZaIiAwU74x+fjyhzYHJaYhFRET6KSVYIiIyILi7ukFFRCTl\nlGCJiMiAYWbHATOBlmoa7v7L9EUkIiL9jRIsEREZEMzsFuANhATrz8BFwNOAEiwREekxWmBRREQG\nircB5wDb3P2DwBygpPNTREREjowSLBERGSgOuHsz0GhmQ4AdwPg0xyQiIv2MhgiKiMhAscjMhgI/\nBxYD+4Hn0huSiIj0N0qwRERkQHD3j0V3bzWzvwJD3H1pOmMSEZH+RwmWiIgMCGb2K+BJ4Cl3X9FD\n1/wycCnQTBhy+AF339IT1xYRkcykOVgiIjJQ3AGMAX5oZmvN7H4z++RRXvOb7j7b3U8AHga+cNRR\niohIRlMPloiIDAju/g8zexI4GTgLuAaYBXz/KK65N2GzCPCjClJERDKeEiwRERkQzOwJQhL0HPAU\ncLK77+iB634V+A+ghpC4dXTc1cDVABUVFUf7sCIi0kdpiKCIiAwUS4EG4DhgNnCcmRV0dZKZPW5m\ny9q5XQrg7je7+3jgHuDajq7j7re5+zx3nzdixIieeUYiItLnqAdLREQGBHe/AcDMBgMfAO4ERgOD\nujjv3CQf4h7gz8At3Y9SREQynRIsEREZEMzsWuBM4CRgPaHoxVNHec2p7r4q2rwU6JHqhCIikrmU\nYImIyECRD3wHWOzujT10za+b2XRCmfYNhMIZIiIygCnBEhGRAcHdv2VmZwDvA+40sxFAsbuvO4pr\nvrXHAhQRkX5BRS5ERGRAMLNbgM8Cn4uacoFfpy8iERHpj5RgiYjIQHE5cAlQC+DuW4DBaY1IRET6\nnZQmWGZ2oZmtNLPVZnZTO/uvMLOlZvaymT1rZnMS9g01sz+Y2Qoze9XMTo3av2hmm83spej2xoRz\nZpvZc2a2PLpmfiqfn4iIZJQGd3eixYDNrCjN8YiISD+UsjlYZpYN/Bg4D6gEXjCzh9z9lYTD1gGv\nd/fdZnYRcBtwSrTv+8Bf3f1tZpYHFCac9113/1abx8shDPV4n7svMbNS4FBKnpyIiGSi35nZz4Ch\nZvZh4Erg9jTHJCIi/Uwqi1zMB1a7+1oAM7uXUMK2JcFy92cTjl8IlEfHlgCvI6xTgrs3EBaH7Mz5\nwFJ3XxKdU90jz0JERPqFqMjFecBeYDrwBXd/LM1hiYj0msamZip3H2BddS0As8YMYeQQDfjqaalM\nsMYBmxK2K4n3TrXnKuAv0f1JwE5Clac5wGLgk+5eG+2/zsz+A1gEfNrddwPTADezR4ERwL3u/j9t\nH8TMrgauBqioqOjucxMRkQwUJVSPAZhZlpld4e73pDksEZEe4+5s33uQtVX7WVdVy/qqWtZV1bK2\nqpZNu+o41OStji8rHsSssUOiWwmzxg6hYnghWVmWpmeQ+fpEmXYzO4uQYJ0RNeUAJwLXufvzZvZ9\n4CbgP4GfAl8mjKH/MvBtwjCPnOj8k4E64AkzW+zuTyQ+lrvfRhiKyLx581q/w0REpN8xsyHAxwlf\n/D1ESLA+DnwGWAIowRKRjLOnroG1VbWs2xkSqHXV4f766lrqGppajhuUk8WksiKmjRzMBbNGM6ms\niMllRTQ7LN9Sw/Ite1m2uYZnVlfR2Bw+GhcPymHmmCHMGhdPuqaMLCY3W/XxkpHKBGszMD5huzxq\na8XMZhPGwF+UMKyvEqh09+ej7T8QEizcfXvCuT8HHk4450l3r4r2/ZmQpLVKsEREZMD5FbAbeA74\nEPB5wIDL3P2ldAaWbo1Nzby8uYbte+spH1bIhNJCBufnpjssEYnUNTSyvqouJFBV+0NCFd321MVL\nDWRnGeOHFTCprIgFk0uZVFbIpLJiJo0oYsyQ/A57o+ZPGt5y/2BjE69t29+SdC3fUsO9/9rEgUPr\nAcjLyWL6qMEtvV0zx5Zw7JjBFOb1if6aPiWVr8gLwFQzm0RIrN4FvCfxADOrAP5IKEzxWqzd3beZ\n2SYzm+7uK4FziOZumdkYd98aHXo5sCy6/yhwo5kVEuZrvR74bsqenYiIZIrJ7n48gJndDmwFKty9\nPr1h9b5YQrVw7S4Wrq1m0fpd1CZ80w0wvCiPCaWFTBheSEVpEROGFzKxrJCK4UWUFedhpmFDIj2p\nobGZTbvrWnqfEnultu1t/Wdq9JB8JpUV8cbjxzC5rIhJZUVMLCti/LBC8nKOrndpUE42x5eXcHx5\nSUtbU7Ozrqq2VdL11+XbuPeFMAsoy2DyiOLDhhgOLcw7qlgyXcoSLHdvNLNrCYlPNnCHuy83s2ui\n/bcCXwBKgZ9Ef7Ab3X1edInrgHuiCoJrgQ9G7f9jZicQhgiuBz4SXW+3mX2HkNg58Gd3fyRVz09E\nRDJGy9e87t5kZpUDJbnqLKGaOrKYt5xYzoLJpVQML6Rydx0bdtWxobqODdW1vLB+Nw8t2UJzwmD6\norzslqRrQmkhE0qLmFBaSMXwQsYOLSBbczZE2tXc7GzdWx8lTqEnKjY3atPuAzQl/EMbVpjLpLIi\nTp9SFu+JKitiYllhr/cWZWcZU0YWM2VkMZeeMA4Ic7y21NSzfHMs6drLC+t28eBLW1rOGze0gJkJ\nSddx44Ywekj+gPmCxsKSIAPTvHnzfNGiRekOQ0REOhHNp53X9ZEdnt9EtLgwYWhgAWGurgHu7kOO\nPsojk6r/fxqbmlm2ZS8L11azcG01L6xrnVAtmFzKgsmlnDJ5OGXFg7q8XkNjc0i8oqQrMQHbtOsA\nDU3NLcfmZhvjhxVSEfV+xZKvCaWFlA8rJD83u8efr0hf5O5s2nWAJZV7WFq5hyWVNSzfXNOqt7gg\nN5tJZUVMGlHUqidqUmkRw4oys/dnV20Dr2zZy7KE3q51VbXEUo3hRXnR0MJ4T9ek0qI+XUyju///\ndJkGm1mpSp6LiEimcvd++8m+q4Qq1kM1f9JwRgzuOqFqKy8ni8kjipk8oviwfU3Nzra99WyormVj\ndR3rq+vYuKuWDdV1LFq/m/0HG1uONYMxQ/Kj5KuICWXRz9KQkA3RvC/JYDv21bN0Uw1LomTq5co9\n7I7mR+XlZDFzzBDedlI500cPCQUmRhQxcvCgftebM7wojzOmlnHG1LKWttqDjazYFnq5lm/ey/Kt\nNdz59PqWL2cK87I5dkzo6Tp2TKheOH5YIWOG5md0QY1k+hkXmtlLwJ3AX3wgd3mJiIikUaoTqiOR\nnWWMG1rAuKEFnHZM633uzq7aBjbsqouSr5CEbdhVxxMrtlO1v/XSlsOL8qhIGHY4uayI+ZOGM3Zo\nQUqfg8iRqjlwiJcra1p6p5ZW1rC1Jow4zs4ypo4s5vyZo5k9voQ55UOZNmrwUc+NymRFg3I4acJw\nTpoQL6bR0NjMqh37WL5lL69EPV33L65s1cOXZTCmpIBxwwooH1bA+GGF4efw8HP0kHxy+nAClkyC\nNQ04l1AK/Qdm9jvgrsSiFCIiItLz+lJCdSTMjNLiQZQWD+LEimGH7d9/sDEkXG2GHS5av5v/TZj3\nNXlEEWdMKeP0KWUsmFxKSYF6uqT3HGhoYvmWGpZU1rQkU+uqalv2TywtZP6k4cwuH8qc8hJmjS2h\nIK/fdpj3mLycrGiIYLyYRnOzs3nPASp3H2DT7joqdx+gclf4uXBNNX/au5nELp6cLGPM0HzKhxYy\nfngB5W0SsJGD89M6J/SI5mBF61X9GigirB1yk7s/l6LYUk5zsERE+r6jnYPVF3X0/09nCdWUkcUs\nmDw8zKGaVNqnEqqe1NDYzJqd+3lmdRXPrK7i+XW7qGtoIstgzvihLQnXiRXDBnTPgPSsQ03NrNy2\nL/RMRcP9Vu3Y31J8YvSQfGaXlzBn/FBml5cwe9xQSgqV8PeWhsZmttYcYNOuA1RGCVgsEdu0q44d\n+w62Oj43O/Swlw9rnYCVDytk/LACRiQ5RLO7//90mWCZWSnwXuB9wHbgF4SFGk8Afu/uk470QfsK\nJVgiIn1ff06w2iZUiXOXBkpC1ZWGxmb+vXE3z6yu4unVVSyprKGp2SnIzeaUycM5Y0qY8zF91OB+\nN6dFUqO52VlbVdvSK7Wkcg+vbNnLwcYwL2hoYW5Lr1Ts58gh+WmOWjpTf6iJLXsOsGl3SMBiidim\n3QfYvLvusGHJg3KyouGHIeFqm4iVFoUlKVJW5IKwMOOvCAsyVia0LzKzW4/0AUVERAa6nfsO8oE7\n/3VYQnXZ3LEDPqFqKy8ni1Mml3LK5FI+df509tYfYuGaap5ZXcVTq6v4yiOvAlBWPIjTp5Ry+pQy\nzphSpvlbAoT5gJv3HGhJpJZuqmHZ5hr2Rf/uCvOyOW5sCe9bMIE544cyp3wo44cXKFnPMPm52R0W\n5IEw3LNtz1csEUssShJTkJtN+bDu/w1JJsGa3lFhC3f/RrcfWUREZIDatreeyt0HlFB1w5D8XM6f\nNZrzZ40GYMueAy3DCZ9eXd2yFk/i/K1TjylVpcIM19Ts1B9q4sChJg40tPl5qIn6hibqou36Q03U\nHDjE8i17WVq5p6X3IjfbOHbMEC6dOzbqmRrKlJHFWr9tACjIy2bqqMFMHTW43f37DzaGBGxX66GH\n3ZXMEMHHgLe7+55oexhwr7tf0O1H7SM0RFBEpO/rj0METzjxJH/pxcXpDqPfcXdWbt/H06vCcMLn\n1+7iwKHW87fOmFLGXM3f6lHuTm1DE3UNjdQ3NLckPSEBauRAQlvbRCgxSUpMnGLJVOzYhsbmrgNJ\nYAZTRhRHvVJhqN+MMYMZlKMiFJK8VA4RHBFLrgDcfbeZjTzSBxIREZEgR9+Yp4SZMWP0EGaMHsKH\nzpzcMn/r6Wj+1o//sZof/n215m8lof5QE9W1DVTvP0j1/gaq9h9s2a6Kbe9voLr2ILtqGzjUdGSr\n+OTlZFGQmx1uednk52ZTkJtFYV4OwwrzKMgL2wW52eTnZVOYm0NBXrQdnVPYcl52dHzr+325jLf0\nb8kkWE1mVuHuGwHMbAKgtbBEREQiZvZp4FuELyWr0h2PBInztz59/nRqDhzi+bXVLQlX2/lbsYRr\nTEn/m7/V1OzsqWugujYkR1X748lTdW3Cdm0D1fsbWi0UnSg/N4uyqAT/mJJ8jh9XQmlxHkMLcynM\ny2mV4CQmQonb+TlZSn6kX0smwboZeNrM/gkYcCZwdUqjEhERyRBmNh44H9iY7likcyUFh8/fejqa\nv/XM6qrD5m+dMaWMBX10/lZsWF71/rbJUbRd2zqB2lXb0LK+WKIsg+FFgygrzqOseBDjhxdSWjSI\n0uI8yorzEu6Hn4V5yXx0FBnYuvxX4u5/NbMTgQVR0/X6dk5ERKTFd4EbgQfTHYgcmbFDC3jHvPG8\nY9543J0V2/a1lIP//aJKfvncBrIMZpcPpaw4D3dodqfZw1Aed09oC/fdwQnHxNscJzquuYNzoWXb\n25zbnHDNWFttQyP1h9qflzR4UE5LUjSxrJCTJg6jrCgvWvw5JE1lxWF7aEEuWRqyKtKjkv0aYhCw\nKzp+ppnh7k+mLiwREZG+z8wuBTa7+5Ku5vCY2dVEI0AqKip6ITo5EmahwtyxY8L8rYONTfx74x6e\nWV3FwrXVbK2pxwyyzLDo+CxL+IlhBtlZFrWFbYuOz4qd26rNyMqKnxu7VuJjhMc8/NzCvOyWoXql\nxXmURT1Nw4vyyM9VIQeRdOoywTKzbwDvBJYDsa9KHFCCJSIi/Z6ZPQ6MbmfXzcDnCcMDu+TutwG3\nQahi22MBSkoMyslmweRSFkwuTXcoIpJhkunBuoywFtbBVAcjIiLS17j7ue21m9nxwCQg1ntVDrxo\nZvPdfVsvhigiIn1IMgnWWiAXUIIlIiIScfeXgZZlS8xsPTBP85RFRAa2ZBKsOuAlM3uChCTL3T+R\nsqhEREREREQyUDIJ1kPRTURERDrg7hPTHYOIiKRfMmXa7zazAqDC3Vf2QkwiIiL92uLFi/ebmf5P\n7VgZoKGWndNr1DW9Rp3T69O16d05KZkqgm8mrE6fB0wysxOA/3L3S7rzgCIiIsJKd5+X7iD6KjNb\npNenc3qNuqbXqHN6fbpmZou6c15WEsd8EZgP7AFw95eAyd15MBERERERkf4smQTrkLvXtGlrf+lw\nERERERGRASyZIhfLzew9QLaZTQU+ATyb2rBERET6tdvSHUAfp9ena3qNuqbXqHN6fbrWrdfI3Dtf\nTN7MCgmr1Z8PGPAo8GV3r+/OA/Yl8+bN80WLujW0UkREeomZLdY8ARERyRTJVBGsIyRYN6c+HBER\nERERkcyVTBXBfwCHdXO5+9kpiUhERERERCRDJVPk4jPA/xfd/hN4CUhqXJ2ZXWhmK81stZnd1M7+\nK8xsqZm9bGbPmtmcqH28mf3DzF4xs+Vm9smEc94etTWb2byE9vlm9lJ0W2JmlycTo4iISCqZ2R1m\ntsPMliW0DTezx8xsVfRzWDpjTKcOXp9vmtmK6DPCn8xsaDpjTLf2XqOEfZ82MzezsnTE1hd09PqY\n2XXR+2i5mf1PuuLrCzr4d3aCmS2MPjsvMrP56YwxnTrKPbr7t7rLBMvdFyfcnnH3TwFvSCLQbODH\nwEXATODdZjazzWHrgNe7+/HAl4lPJGsEPu3uM4EFwMcTzl0GvAV4ss21lgHz3P0E4ELgZ2aWTBEP\nERGRVLqL8P9SopuAJ9x9KvBEtD1Q3cXhr89jwHHuPht4DfhcbwfVx9zF4a8RZjaeMEd+Y28H1Mfc\nRZvXx8zOAi4F5rj7LMKargPZXRz+Hvof4EvRZ+cvRNsDVUe5R7f+VneZYEWZW+xWZmYXACVJXHs+\nsNrd17p7A3Av4Y3ewt2fdffd0eZCoDxq3+ruL0b39wGvAuOi7VfdfWXbB3P3OndvjDbzaWdYo4iI\nSG9z9yeBXW2aLwXuju7fDVzWq0H1Ie29Pu7+t4T/01s+HwxUHbyHAL4L3MgA/8zTwevzUeDr7n4w\nOmZHrwfWh3TwGjkwJLpfAmzp1aD6kE5yj279rU6mh2cx4RdghOxuHXBVEueNAzYlbFcCp3Ry/FXA\nX9o2mtlEYC7wfFcPaGanAHcAE4D3JfxxTjzmauBqgIqKiq4uKSIikgqj3H1rdH8bMCqdwfRxVwL3\npTuIvsbMLgU2u/sSM0t3OH3RNOBMM/sqUA98xt1fSHNMfc31wKNm9i1Cp8tpaY6nT2iTe3Trb3Uy\nVQQndTO+pEXduFcBZ7RpLwbuB653971dXcfdnwdmmdmxwN1m9pe25eTd/TaioYjz5s0b0N/4iIhI\n+rm7m5n+P2qHmd1M+HL3nnTH0pdES+h8njA8UNqXAwwnDPc6GfidmU32rtYnGlg+Ctzg7veb2TuA\nXwDnpjmmtGqbeyR+eXEkf6uTqSL4ls72u/sfO9i1GRifsF0etbW9/mzgduAid69OaM8lPMF7OnmM\njmJ61cz2A8eRZEEOERGRXrTdzMa4+1YzGwMM6OFL7TGzDwBvAs7Rh+LDHANMAmK9V+XAi2Y23923\npTWyvqMS+GP03vmXmTUDZcDO9IbVp7wfiBWS+z3h8/iA1UHu0a2/1clUEbyKkNFeEd1uJ3TXv5nw\nh68jLwBTzWySmeUB7wIeavNEKoA/EobzvZbQbtFjvuru30nmiUSPkxPdnwDMANYnc66IiEgve4jw\n4Ybo54NpjKXPMbMLCXOLLonW45QE7v6yu49094nuPpGQTJyo5KqVB4CzAMxsGpAHVKU1or5nC/D6\n6P7ZwKo0xpJWneQe3fpbncwcrFxgZmz8YZS93eXuH+zsJHdvNLNrgUeBbOAOd19uZtdE+28lVCwp\nBX4SfQPT6O7zgNOB9wEvm9lL0SU/7+5/jsqv/xAYATxiZi+5+wWE4YU3mdkhoBn4mLvrH5KIiKSV\nmf2WUH23zMwqgVuArxOGLF0FbADekb4I06uD1+dzwCDgsejzwUJ3vyZtQaZZe6+Ru/8ivVH1HR28\nh+4A7ojKkjcA7x/IPaEdvEYfBr4fdVDUE9UoGKDazT3o5t9q6+q9ZmavuvuxCdtZwPLEtkw1b948\nX7RIIwhFRPoyM1scffkmIiLS5yXTg/WEmT0K/DbafifweOpCEhERERERyUzJVBG8NhqW97qo6TZ3\n/1NqwxIREREREck8yfRgAbwI7HP3x82s0MwGR4twiYiIiIiISKTLKoJm9mHgD8DPoqZxhMosIiIi\nIiIikiCZMu0fJ1TW2Avg7quAkakMSkREREREJBMlk2AddPeG2EZUynHAlrkUERER6WvMrNTMXopu\n28xsc8J2XptjHzWzwV1cr9LMhnbQfl/C9rvMrEcWqDWzr5jZ9T1xLZF0SmYO1j/N7PNAgZmdB3wM\n+N/UhiUiIiIiyXL3auAEADP7IrDf3b+VeEy0mKpF64cejVPMbLq7rzzK6/SYhOfWnO5YRJLpwboJ\n2Am8DHwE+DPw/1IZlIiIiIgcPTObYmavmNk9wHJgTGLvlJn9r5ktNrPlZvahJC/7bcIirG0fq1UP\nlJmtMLPyKIZlZvYrM3vNzH5pZheY2bNmtsrMEte5m2tmC6P2KxOudZOZ/cvMlprZFzp6bkf8Aomk\nQKc9WGaWDfzS3a8Aft47IYmIiIhID5oB/Ie7LwIInT0t3u/uu8ysEFhkZve7++4urvdb4Fozm3QE\nMUwH3gGsIFSnrnf308zsrYQv898WHXc8cBowBHjRzB4BTgIqgFMAA/5sZqcBO9o+N5G+oNMeLHdv\nAia0HbsrIiIiIhljTScJyA1mtgR4DigHjknieo2EXqybjiCG1e7+SjSE7xXgiaj9ZWBiwnEPuHu9\nu+8AngROBs4HLgL+TUjOpgDTouM7e24iaZHMHKy1wDNm9hBQG2t09++kLCoRERER6Sm17TWa2bnA\n64AF7n7AzJ4G8pO85l3AjcBrCW2NtP7yPvFaBxPuNydsN9P682jbQmpO6LX6irv/ok38U+jguYmk\nUzJzsNYAD0fHDk64iQxczYdg5zOw7ldQX5XuaERERLqjBNgVJVezCL1FSYkqTP8A+GRC83rCcD7M\nbD4wvhsxXWZmg8xsBHAmsAh4FLjKzIqia5ebWVk3ri3SKzrswTKzHHdvdPcv9WZAIn2SO9Qsh22P\nh9uOf0Lj/rAvOx8mvg9mXA8lM9Mbp4iISPIeAa42s1eAlcDzR3j+z2ld7OL3wHvNbBmwkDAKGrND\nyAAAIABJREFU6kgtA/4JlAK3uPt2wpyrGcDCaP7YPuA93bi2SK8w9/aXtDKzF939xOj+D939ul6N\nrBfMmzfPFy3SsF3pQO2mkExtfyL8rN/eev+QGVAwBrb/I9425gKY8SkYfR60nkQsIt1kZovdfV7X\nR4qIiKRfZ3OwEj8dnp7qQNKi+VC6I5C+pGE3bP+/eC/Vvtda7y8YA6POhdHnwuhzoHBcaK9ZASu/\nD+vuhq2PhlvJLJh+PUy8AnIKev2piIiIiEh6JNuD1XK/P5k32XzRj46Pf2ge+TrILU53WNJbmuph\n57PxhGr3YkhcnzBnMIw6K55QDTm2816pg9Ww+jZ47YdwYGtoG1QGUz8KUz8GBaNT+3xE+in1YImI\nSCbpLMGqA1YTerKOie4Tbbu7z+6VCFNo3jFZvujLCc/fcqDs1PgH6tL5kJWbvgClZzU3wZ6XooTq\nCdj5VEiyYrJyw+8/lnCXngxZyRTabKOpATb+DlZ8F3a/GF07Dya8G2bcAMPm9MzzERkglGCJiEgm\n6SzBmtDZie6+ISUR9aJ5807yRY98J96DsetfbXowimHkG+IJV8kszavJJO6wf01IprY9Dtv/Dg27\nWh8zdE70+z0XRp4JOUU9+/g7nwqJVuWDtFSeHXUWTL8Bxl0MlkwhT5GBTQmWiIhkkg4TrIHgsCIX\nDXtCdbhYwrV3ResT8keHRGv0uTDqHCjqTvVRSan6HbDt77A9+h3WtvkeoGhCKEAx6hwYfTbkj+yd\nuPatgZU/gLV3xKsPDp4K0z8Jkz/Qs4mdSD+jBEtERDKJEqzOqgjWbU7o/Xg8Pq8mZsj0aDjZOaFX\nIm9oagOWwx3aH3qJYsP+9ixpvT9vOIw6O95LVTw5vb2QDXtgzS9CslW3MbTlDoUpV8O0a5W0i7RD\nCZaIiGQSJVjJlml3h72vJiRc/4DGffH9lgXD58U/yJedGtZHkp7VfAiqXwi/h+2PQ9VzratBZufD\niDPjv4dhJ/TNYXjNjVD5pzB8sOq50GbZUPH2MHywbH564xPpQ5RgiYhIJkkqwTKzAqDC3VemPqTe\nc1TrYDU3Rh/0H+/gg34BjDij73/QzwQHd8GWR6DyAdj6WP9LbKsWhkRr0/3gTaGt7LRQEKP8su4V\n2hDpR5RgiYhIJukywTKzNwPfAvLcfZKZnQD8l7tf0hsBplKPLjTcWAs7norP32o7VG1QaRiqNuqc\nvjFUra+r3RgKQ1Q+EObFxRIPiIZmxubCvQHyhqUtzB5VuzGUeF/9czhUE9qKJsK06+CYqyCvJK3h\niaSLEiwREckkySRYi4Gzgf9z97lR28vufnwvxJdSPZpgtdVSbOEJ2PZYO8UWJsZ7XUadDfkjUhNH\npnCHmmWw6YGQVMXKm0Monz/qDaE3Z9yboagibWH2ikP7Ye2dYfHi/WtCW87gkGRN/wQUT0pvfCKp\n1lgLdZUtNzvmA0qwREQkYySTYC109wVm9u+EBGtpv1gHK5UJViJ32L823rvVWbnwEWeEYW4Fo1If\nV7o1N0HVsyGhqnwgvEYxOUUw5qIoqXpj/+mlOhLNTbDl4TB8cMc/Q5tlhddk+g0w4nT1gkrmObQf\n6ja1SqBatg9UQu0mOLSn1Sl2BUqwREQkYySTYP0CeAK4CXgr8Akg192vSX14qdVrCVZb3gy7X4on\nXG0XvIXQw1V2KpQtCD+HzoHsvN6Ptac1Hgi9epUPQOVDcHBnfN+gEVB+SUggRp+beXOpUmnXi7Di\ne7Dx3vhcv+HzwjytirdrQWzpGw7tDYlS7aaQLLVNoOoq48NfO5M1CArLW252+j1KsEREJGMkk2AV\nAjcD50dNjwJfcff6js9qOfdC4PtANnC7u3+9zf4ZwJ3AicDN7v6tqH06cF/CoZOBL7j798zsPmB6\n1D4U2OPuJ0TnfQ64CmgCPuHuj3YWX9oSrLaa6mHns6Fnq+o5qP5XfK2kmOx8GH4SlC6IJ16F49IT\n75Fq2A2bY0Uq/hqG/8QUT4byy0NSVXYqZGWnL85MULcFVv0EVt8KB6tDW8G4UOJ9ytUwaHh645P+\nyT0kRu0lTInbiQVoOpKdDwXlYUmCgvKERGp8/P6gsla9s5qDJSIimSSZBOtEd3+x04PaPy8beA04\nD6gEXgDe7e6vJBwzEpgAXAbsjiVY7VxnM3CKu29os+/bQI27/5eZzQR+C8wHxgKPA9PcE6sjtNZn\nEqy2mpugZjlULwwJV9XCwxc9hvCBJNbDVXYqDJsL2YN6P9721G5qU6SiMb5v+EkhoSq/DEpmaZhb\ndzTWwfpfh16tva+GtuxCmPx+mH49DJmW3vgkMx3aH/7N7nutTRK1qfUXIx3JLmidKLV3P2/4Ef+b\nV4IlIiKZJJkE6x/AaOAPwH3uviypC5udCnzR3S+Itj8H4O5fa+fYLwL7O0iwzgducffT27QbsBE4\n291Xtb2+mT0aPf5zHcXYZxOs9hzcFXq2qp6LermeD8NxEmXlwbATE5KuBeFDTW8kMO5Q80pY26ny\nAdi1OL7PsmHk66Oeqkv6f5GK3uTNsPVvYZ7Wtr/F28deHIYPjjpbCax0bd8aeO3HsPaOjofwZReG\nXqdYotReL1TesJS835RgiYhIJulygR13P8vMRgPvAH5mZkMIidZXujh1HLApYbsSOKUbMb6L0DPV\n1pnAdndflfB4C9s8XoaMoUvCoOEw9sJwg/DBuubV1r1cNa+E7eqFsPJ74biCsfGEq3RB6D3KKeiZ\nmJqbwmNVPhCq/+1fHd+XXRhiLb8sfNjX0LXUsKz4+2LPclj5XVj367Bu2JZHYOjskGhNeHff6d2U\nvsE9VDhd+cPwXiH6sq3stDAHsm3PU26JknUREZEkJLWCqbtvA34Q9WbdCHwB6CrBOmpmlgdcAnyu\nnd3vpv3Eq6trXg1cDVBRkcE9KZYFQ2eF2zFXhbaGmoRerijROrAFNv0x3CCUPB92QusCGkUTk//g\n1FQP26IiFZsfCuXoYwaVwbiEIhU9lchJcobOglNuhzn/DatuDXO19iyFhR+El26CqR+DqddA/sh0\nRyrpdGgfrL0bVv0I9kZrx2flhSR8+nXhSxgRERHpti4TLDM7FngnoYJgNaH4xKeTuPZmYHzCdnnU\ndiQuAl509+1tYsoB3gIkfhJI6vHc/TbgNghDBI8wnr4trwTGnBduEHq59r7WppdrGexaFG6v/TAc\nlz8qJFuxAhql80KZ9JiGPQlFKv7Sei5G0SQYHytScZqKVPQF+SPh+C/AzM/Cht+G4YN7lsLLt8Dy\n/4ZJ7w3ztIYel+5IpTftXQWv/SissRYrRlEwDqZ9DI75sNbiExER6SHJzMF6jpBU/c7dtyR94ZAE\nvQacQ0h0XgDe4+7L2zn2i7QzB8vM7gUedfc727RfCHzO3V+f0DYL+A3xIhdPAFMzsshFKh3aB9Uv\nJPRyPRevRhdj2WFoWen8sDbV9n+0LlIxbG68SMXQ4zVsqK9zD7/DFd8N62rFjD4vDB8cc0HoEZX+\nx5th66NhGODWv8TbR5wZeqvKL8uIEv+agyUiIpmkywTrqC5u9kbge4Qy7Xe4+1fN7BoAd781mtu1\nCBgCNAP7gZnuvtfMighFLCa7e02b694FLHT3W9u03wxcCTQC17v7X+jEgEyw2nKH/WvixTOqFobe\njsS81LJh5OuipOpSKJqQvnjl6Ox9DVZ+H9beBU11oW3IjNCjNel9kFOY1vCkhzTUhN/xqh/Dvmia\nanY+THhPSKyGnZDW8I6UEiwREckkHSZYZvY7d3+Hmb1My+znsAtwd5/dGwGmkhKsDjTWQvUi2PUC\nDBoJ4y6GQaXpjkp60sFdsObnoWfjQDSSdlApTPkITP04FI5Nb3zSPTUrwjDAdXfH19IrHA/TPg7H\nfChj/x0rwRIRkUzSWYI1xt23mlm73RVt16TKREqwZMBrPgQb/xCGD+56IbRl5ULFO8PwweEnpjc+\n6VpzUxj+t/IHoSpgzMg3hN6qcZdAVlL1jPosJVgiIpJJkpmD9Q13/2xXbZlICZZIxB2qng2JVuWf\nwtwdCOuXzbgBxr5JBUz6moY9sOaOMAxw/9rQll0AE98L066FYRk/yKCFEiwREckkySRYL7r7iW3a\nlmqIoEg/tX9dGDq45vZ4tbniY2D6J2HyByG3OL3xDXQ1r4Tfz7pfxufRFU0ISdXkK/vlmnNKsERE\nJJN0NkTwo8DHgMnAmoRdg4Fn3P29qQ8vtZRgiXTi0F5Y84sw9Kx2fWjLLYEpH4Zp10FRBq8jl2ma\nm0IFyJU/gO1/j7ePOicMA+znPYxKsEREJJN0lmCVAMOArwE3Jeza5+67eiG2lFOCJZKE5qawBtrK\n78LOZ0KbZcP4t4bhg2UL0htff3ZwV0hyV/0knuRmF8Kk/wg9VkNnpTW83qIES0REMknSZdrNbCSQ\nH9t2942pCqq3KMESOULVL4R5Wht/H18brXRBSLTGvyXjiyn0GXteDsMA1/8amg6EtuLJ0TDAD0Le\n0PTG18uUYImISCZJZg7Wm4HvEBbv3QFMAF5194z/6lQJlkg31VWGcuCrb4OG3aGtsAKmfyKUA88r\nSW98mai5ETY/FIYB7vhnvH30+WEY4JiL+vUwwM4owRIRkUySTIK1BDgbeNzd55rZWcB73f2q3ggw\nlZRgiRylxlpYezes/F58Qduc4lBsYfonYPAx6Y0vE9RXhYIiq34CdZtCW04RTPpA6LEqmZHW8PoC\nJVgiIpJJkkmwFrn7vCjRmuvuzWa2xN3n9E6IqaMES6SHeDNs+XMYPthShMGg/NKwePGoN0B2fmdX\nGFjqd8Lmh2Hzg7D1UWiqD+3FU6JhgB9QL2ACJVgiIpJJkpkwscfMioEngXvMbAdQm9qwRCSjWBaM\ne1O47V4SerTW/yYUx6h8IPTIjD4Xxl4cboVj0x1x79u3GiofDLeqZ+JrjQGMuTD0+I25ILyWIiIi\nkrGS6cEqAuoBA64ASoB73L069eGllnqwRFLowLYwR6vyT7D7pdb7hs0NydjYi6H05P6ZVHhzKApS\n+WDoqap5Jb4vKxdGnhV6+MovgcLy9MWZAdSDJSIimSTpKoL9kRIskV5SVxmGEG5+BLY9Hl8gF2DQ\nCBj7Rhh3cSjokDg0zh2aG6D5UHyB472r4NAeaKwLFfaaDkDesDAMEeC1n0D99tAeO2bYnNBDBPCv\na0IhjtIUfF5vOhiGSFY+GApWHNga35dbEp5n+aWhx0pDAJOmBEtERDJJh0MEzWwfkJh9WbRtgLv7\nkBTHJiKZbseTsOvfocdm2sdgytXw6ndh659h/3o4sBkO7oR1d4eb5YRkqbEOaI7mJjmUzocLng/X\nfPptsGdp68cZdVY8wVrxHdi/BrILwi2nMF4+3j3MeVr9s5DkHPefMOK0o3uODbtD4lj5IGz9KzTu\nj+8rHB/1Ul0KI14H2XlH91giIiLS53WYYLn74N4MRET6kYY98OKnYO2dYTt/ZEiwAHb/G/auDInP\n4GmhzbIgd3BYyPjgzvh18obBkBkw4szQO5Q9CE78Tki8YslTdkE4LubiZZCV1/6wQzN445LQy7Xi\n2/DY6SE5O/lnMGRq8s+vdkM0n+qBkER6U3zf0DnxpGrY3PCYIiIiMmAkNUTQzM4Aprr7nWZWBgx2\n93Upjy7FNERQJAV2vwT/d3EYpjfzszD9hjC8L5kqgg27YcujsOWRMKSwYVd8X04RjD4vmrv1RigY\nc3RxNtaGOWKrboXzn4VBpaG636Cyw5Mi95AYxopU7FkS32fZMPL1IaEadwkUTzy6uOQwGiIoIiKZ\nJJkiF7cA84Dp7j7NzMYCv3f303sjwFRSgiWSAof2wTPvhtlfguEndf86zU1Q/XxItjY/fPiwwOEn\nxasSls7rfqEM95BQucOjJ4e2Wf8Pxl4EO5+KJ1WxNaogrPU15sKQVI19Iwwa3r3HlqQowRIRkUyS\nTIL1EjAXeNHd50ZtS919di/El1JKsER6SOVDsPIH8IZHwjC+VKjdFBXKeBi2PxGKV8TkjwyJztiL\nYcz5kNuNKaLNTbDqp7DsK3BwO5AFJJRSLxgTeqjKLw3DCrWuV69RgiUiIpkkmXWwGtzdzcyhpWy7\niAgcrIZFn4ANvwlzj+q3Q1FFah6raDxM/Ui4NR6A7f+I927VbYS1d4Wb5cDI14Vka9ybYMi0zq9b\ntzlU/Kt8MFQAbD4U7YiSq7FvhuP+39H1komIiMiAkUwP1meAqcB5wNeAK4HfuvsPUh9eaqkHS+Qo\nbPojvPBROLgrVOObeVN6quS5Q83yeLJV9WzrRXyLp4QS8OPeFCr5ZeVCzbL40L9dCX8DLAvKTo/m\nU705HDf24tArt/5eaNwLk96ful46aZd6sEREJJMkW+TiPOB8Qon2R939sVQH1huUYIl0U3MTPDof\ncFhwZ1hnqq84uCuUYt/8cCib3qpQRnEoZlG7Id6WXRCGFZZfFpKp/BHtX/ept8OmP4RFgY+9Mayl\nlVOQ2ucigBIsERHJLEe80LCZZQHvdvd7UhNS71GCJXKENv0RRr4hFHWo2xKSkazcdEfVseZGqFoY\nVSV8BPa8HNoHjQg9VOWXwuhzQ7n3rriHRZKXfTkUv8gfBSd+Dya+K7XPQZRgiYhIRulsoeEhwMeB\nccBDwGPR9meAJUDGJ1gikqT6HfDCx0MPznFfCBUCC8emO6quZeXAyDPC7YSvQe1GOFgV5otlZR/Z\ntcxgzHnhtuPJUAwjJ5qS2lATfuaV9Gz8IiIiknE6K3LxK2A38BzwIeDzhCGCl7n7S70Qm4ikmzts\nuA8WXxvKr8/5Ghz7mXRH1X1FFT1ThGPk6+Dsv8W3X/0feO3HMO06mHF9GIYoIiIiA1JnCdZkdz8e\nwMxuB7YCFe5e3yuRiUj6vfpNeOmzUDo/zLUqmZnuiPqmirfD3tdg+Vdh5Xdh6sdgxqegYHS6IxMR\nEZFe1lmCFatVjLs3mVmlkiuRAcAdGmshtxgmvjeUPZ/+iTDcTto37AQ48/dQ8wos/29Y8W2oXQ9n\n/C7dkSWnqT6sM1a3ERr2QMVbQ/vmP8OBytbH5g0LCSWEKoz121vvHzQSxl8W7m/8PTTsbr2/YFyo\n6giw/rfQuK/1/qJJYRgmwNq7ofng0T03ERGRXtZhkQszawJqY5tAAVAX3Xd378ZKnn2LilyItFG3\nBV64JgwHPOcJrfvUXftWh0R1yNTQs7Xi2zDzs1A8ufdjcQ/zzuo2huqJB6tgytVh34ufhvW/DnPs\nYgor4LKoyuLfL4Btf2t9vZJZcPGycP9vp0HVc633ly6AC6K2R44Ppe4TjT4vPrzywUkhEU00/i1w\n5v3h/v1lcLAauwIVuRARkYzR4VfS7n6EM8BFJGO5w7pfweJPQnM9zP5qaLN0B5ahBk+J369+PiyA\nvOYXoUdw1udgyPSee6ymeqirDAU8ajeERGrWzaHHcekX4dVvhGNaGEz+YKj+WHwMjLs0zEsrjOan\nFU2MH3r6b6CpTQ9SYk/m6x5MWJg5tj+hquQ5T4RKjokS1xA7fyF4U5v9+fH7b1wWrWk2rvPXQERE\npA854jLtR3RxswuB7wPZwO3u/vU2+2cAdwInAje7+7ei9nzgSWAQIQn8g7vfEu37JvBmoAFYA3zQ\n3feYWS5we3StHOCX7v61zuJTD5YIofdi4ZWhjPmIM+CUX8CQaemOqn+p2wyvfgtW/ywkO5PfD6fc\nESoTdqZV71N0q9sYesPyR8KK78GLNxx+3qUboWh8GMK38+l48hT7mTe868fuQ1SmXUREMknKEiwz\nywZeA84DKoEXCOtnvZJwzEhgAnAZsDshwTKgyN33R4nT08An3X2hmZ0P/N3dG83sGwDu/lkzew9w\nibu/y8wKgVeAN7j7+o5iVIIlQhgO+OgpMPUamHathgWm0oHtoQgGFsrGA+x8DpoOxJOouo0w/QYY\nOgvW3QPPvbf1NbIL4bwnYfhJUPU8bHssofepIsxxSuwl6geUYImISCZJ5az1+cBqd18LYGb3ApcS\nEh8A3H0HsMPMLk480UPWtz/azI1uHu1LnBCwEHhb7DSgyMxyCPPFGoC9PfycRPqH2k3wytfgxO9A\n7mB441IVsegNBaPghISO/B1PwuOvb3PMGBj/9pBglS2Ak37Qce9T2SnhJiIiIn1GKj9RjQM2JWxX\nAkl/Eoh6wBYDU4Afu/vz7Rx2JXBfdP8PhARuK1AI3ODuu9q57tXA1QAVFT2wHo5IJnGHNbeH4gY0\nw8T3wYhTlVyly7AT4Izfh3WzCiugsLx179PgY2D6demLT0RERI5Yn/1U5e5NwAlmNhT4k5kd5+4t\n5ajM7GagEbgnapoPNAFjgWHAU2b2eKwHLeG6twG3QRgimPpnItJH1G6A5z8chpSNOivMtSqelO6o\nBrbcIVDxtq6PExERkYyRyskWm4HxCdvlUdsRcfc9wD+AC2NtZvYB4E3AFR6fRPYe4K/ufigaevgM\noDH7IjHPfSCU1D75p3D240quRERERFIglQnWC8BUM5tkZnnAu4CHkjnRzEZEPVeYWQGhUMaKaPtC\n4EZCQYu6hNM2AmdHxxQBC2LniAxY+9fBwWik7Pxbw/pFU69RIQsRERGRFEnZEMGoyt+1wKOEMu13\nuPtyM7sm2n+rmY0GFgFDgGYzux6YCYwB7o7mYWUBv3P3h6NL/4hQvv2xUGyQhe5+DfBj4E4zW05Y\nvedOd1+aqucn0qd5M6z6Kbz0WZjwbjjl5z279pKIiIiItCul62D1dSrTLv3SvjXw/FWw458w5gKY\nf1uoPieSoVSmXUREMkmfLXIhIt2w+WF4+p2QlRuKWEz+YEYtKCsiIiKS6ZRgiWQid9i7EnY+GdZS\nGnsxTHw3DDsRxr0ZTvxWKPktIiIiIr1qYCdY3gh1W8IaQJYNlhO++c8pTHdkIu1rboJn3w3b/w8O\n7gxt+aOhdH64XzgWzrg3beGJiIiIDHQDO8Gq3QAPjGvdVjQBLl0f7v/9Atj+RJR4RUlYyXFw/jNh\n/5OXw+4l0b7omGFz4dS7w/7n3h8eo+X8HBh+Esz+Uti/+Hpo2N06uStbAJPeF/bvWwP5IyF3cMpf\nCuljmg/BrhdD79SOJyG3GE7/LWRlQ2MdjL0IRr4ORrwOBk/RMEARERGRPmJgJ1iDRsD8b0BzY+jN\n8ibIKYrvn/geKD057Isdkz8qvn/YiZAzODo3OqZgTHy/ZQEOzfXQGB1zsCq+f9diqKsMj+uN0HQQ\nDu2NJ1h/mQuN+8JipIXjw5Cv8W+DKR8KQ8S2PQ6F40J77pCUvlSSYs2HQoIN8OJnQgXApmgVgiHT\nYcwb48e+4eHDzxcRERGRPkFVBPtaFUFvDomZN8OGe0MCVlcJdZvCz/FvhVk3QUMN/GFo/LycwVA0\nHmZ8Go65EhprYf1v4olZYTnklqino684tD8s+rvjn6GHave/4S3bw/DUVT+FmleiHqozoWB0uqMV\nSStVERQRkUwysHuw+qLYArCWFXrQOpJdAOc9DbWb4EBCEpZbEvbvXw//urr1OTnFcPKtMOmKcN7q\n26LkKyEJyxumJCwVGnZDVj7kFMC6X8HCD4aeS8sOPaFTPhKG/uUUwtSPpjtaEREREekmJViZKjsP\nRpwOIzrYP2QGXLqhde9XXSUMmRb273sNXvnv0FOW6HUPQfmboepfsOonMKgsDD+M3ca9GfJHwMFq\nqN8Rb88piieHAge2w86n4nOo9iyFM34PFW8N8/Bm3hR6qMpO1Rw7ERERkX5ECVZ/lZUdFpftaIHZ\n0efAOw9C/bbWvWDDTgj7D2wJBT4O7orPBQK46N8hwdr4e3ghsafFQqJw4Ysw+BhYfy+suyshAYt+\nHvuZULCh5lWo3dg6ecsrCUMdM7EHrXYTNDeE575/HTw0ObRnF8KI0+D4L8HQ40NbyUyY85X0xSoi\nIiIiKaMEayDLyokPDWxr/GXhBqF4R+O+UIAjP5oPNPo8OP3e0HaoJvq5FwYNj85pCMPiajfE9zXu\nh2M/FfavvRNe/ebhj/uuBrBcWPKfsOn+hASsJFx7/s/CcWvuCFX2EuWVwJyvhvurfgp7lrfenz8K\njv/PcH/F92Df6tb7iypg5o3h/vKvh4Qz0eCpMOOT4f7LX4L6nXBoD+x8BmrXw6T3w6l3QdFEOPF7\noSLk8BPjxStEREREpN9TgiVdy8oJc7PyhsXbBh8Tbh2Z/B/hlqi5KT6McPonofyyePIVS8BiyUjx\nRCiZFd93YDOQMASx6jmo/FPr6+ePjidYO56CbX9rvb94SjzB2v53qHq29f6hc+IJ1ra/hWF9icpO\njydYmx+B2rVhXlXZKTDjBhh1TthnFj9ORERERAYUVRHsa1UERUSkFVURFBGRTKKqBCIiIiIiIj1E\nCZaIiIiIiEgPUYIlIiIiIiLSQ5RgiYiISJ9mZp82Mzezh9MdS7LMbF4U816z3l1/JBNfLwnMbFn0\nu3tbumPpSWb2reh53ZXuWHqDqgiKiIhIrzCzCcDVwDnAVGAwsBvYASwF/gY84u5VbU6dE/1sU961\nT4sWlmSp92BFMTP7EFAO/Mndl3RwWCa+XgOemeUD06PNl3rwuvOANwHr3P3unrruEZob/eyx59WX\nqQdLREREUs7MbgReAz4PnAIMBfYBw4HjgPcAdwHntnN6IbASeK43Yu0hsQSrJz8oG/BN4BagoJND\nM/H1kvDvIIfw72JND173fYT3zKk9eM0jFUv6B0SCpR4sERERSSkz+xLwBaAZuB34IbDC3RvMLAeY\nDVwKfBhY3PZ8d8/E4VI9nmABUwiJaWNn183Q10tS1OsJxJa5SMvaRGY2HiiNNpVgiYiIiBwNM5sF\n3BxtXu3uv0jc7+6NwIvAi2b230BDL4fY46KeptnRZk9+oDw5+vmKu9f34HWlb+jxXh4zyyY+PO+w\nLy96SSxx3ODue9IUQ6/SEEERERFJpSuAbGALcEdnB7r7wbbf3JvZJ6PJ8X9te7yZ/TvmodIjAAAg\nAElEQVTa9x4zG2Fm3zSzVWZ2wMzWmtl/Rh8wY8dfbGZ/NbOdZlZnZn83sxPaXjc69uHo2p/tKF4z\nWxMd86Y2uyYT5pc1AcvanJNjZueb2XfM7Hkz22xmDWZWbWZ/M7OL23mcd5qZA/dETbOjx43d9iQc\n2+HrFe03M3tb9PwqzeygmW0ys5+bWUUH55wUXXNfdP4cM7szOq/OzF42s48dTTEPM8s3s4+a2aNm\ntj0hrsfM7ONmVtzOOUXR8302+p3Wm9mrZnaLmRV28Dix1+dv0XP5gJk9bWY1ZlZlZveb2eSE4yea\n2Y+i99NBM1ttZtd28hwORdefYmZvMbM/m9mO6He8wcy+YWYdDe+MvRfbnVsXPd/rzeyf0fulwczW\nm9lPzGxsm2OzzKyW0NsZe7wX27xvLm9zTq6ZXRn9DmIxbzGzX5nZdDphZjOi90SlhX9/y8zsw8k8\nr37J3Qfs7aSTTnIREenbgEXeB/7P0K17N+B+wIGXu3n+HdH532jTngscjPZ9ENge3d9DGIro0e3r\nhATv9mj7ILA/Yf82YHA7j1sZ7b+gg7hKEh5nfJt9b43al7dz3lkJj90M7ALqEtoc+Fibcz4bxdkQ\n7a+JtmO3h7t6vaJ9pcBfEx7nUJvXogo4vp3zroz2Pwd8OjqvmVCgJDHu67v5Oz4RWJtwnQagmpCg\nxtravsZzgVUJ++sS3g9O6K0p7uT99GPg4ej+gTa/gzVAEXBJ9Fo3R++rxOf6jnauPS/atx+4LeHY\nvW3O/Qtgbc616LEcOLmDa29MuMaB6Bbb3g5MSTh+YvTeiF2zoc17ZhtwTMLxxwAvt/kdJL439gOn\ndvD7ez/x96YnPKYDXyT+N+BL6f571Fs39WCJiIhIKtVEP2e209OTjNiwqbbffs8A8qL73wX+SfiA\nORQYATwe7fsI8CPgMkJv2uDodhnhA/woQoGNFmZWCoyLNjsarnUC4UPxbnff1M6+js4dSUj6ziAk\nAMPdvZAwv+q+6Jivm9mg2Anu/g13H03oBYTw4X50wi3xdW339Yp6dB4BLiAkJhcD+YTXYk4Uaylw\nTzs9UbFrTgW+ShjyWeruwwivX+y1/nQ7z7dTZjYT+DswCXgSOBsodPdSQhL7DuDvia+xmU0jVJyc\nQkgY50avYSwpqiYkbV9v5yFjz+UKYBahul5xdLsu2jcZ+DLwO+BXwNjofVUB/Ds65oZOrl1EmE94\nNzDp/2fvzuPkqMr9j3++WViSEEIIBAhLArLvEFZ3QFlEweUq6hVFFNn8CS5cUES8giiIoAIqIoKI\nIAgKXkAFBDc2Awgk7KskhCQsCQkhbHl+f5xTdE1NV89MMpOZyXzfr1e/uruWU6eqe5J6+pzznIgY\nCYzJ7wH2IF3/snWBkaTv5D2Va7R+Pt81SYHhhqREJsOA7Umf3arAj4t9IuLx/J05LS+6rPKdWS0i\nHsnljwGuJSXZuIgUvC4fESOAjYHr8zmdV/1uSNqdFLQOBk4FVo+IFUnfi0tI35V35M0HxPgrwC1Y\nZmbWt+EWrH79IN1Iln+9v4d0k747TVoYKvsOARbk/TatrPvvUpm/brLv1qX1C4Atm2zz+7z+1Mry\nXfPy6S3qdmTe5sYm6/6Q132li9dqMKlFK4BtKutGlc5ntUW4Xmfm5Q8BKzXZd2MaLUY7VdbdUDr2\nPk323bK0flgXznd5UmtRkFo5BnfyGt2d97kEGNRkm8/RaHUZWnN9ngHGNdn3rtK5nNRk/b553bNN\n1v2og32HlM73p5V1TVs98/neQ2pF+3jNNZlAo0V0dGXd7/K6o1tc02vyNl+tWT+SlNkwgK1Ky0cD\ns6hpvSQF8E+WrsmErvw99OeHW7DMzMysx0TEVaSWgWKc0GakVO1/BJ6RdLmkHWt23xBYltT164HK\nuqK1YBZwSJN9p5VeHx/N54wqWoSGVpZ3JgNgkTig2VxTi5SsICJeJ3X7gkbrXLXMmRHxdE0RTa+X\npPGkoAPgExHxfJNj30e6GYZGgg4q78+NiCuaHLdc3sKaujXzRVLLzePAJ/P5d+RjwOakz/3AiGh2\nvD/l5+G5/EJxfQA+HxHTaK9YNhn4epP1dd8ZaHxG9wLHVldGSujy5/x2Qs2+1e/MAaS/mQsj4kKa\niIjHSAGjaLS8Fjoa17UbqUXtHxHx7ZryXwDuz2/XKq06ktQyd0tEnN5kvwWk1kmAObmeA4KzCJqZ\nmVmPiogzJJ1LSsX+HtI4pDVIN7vvB/aV9NmoZBikcdM5Jd+cNlv324iYQ3tFwoaFwC9qqrZOfv5P\nTdmdCbCqXfFG07gJbXdTK2kFYH/gvaRAYWUaN/1lT1Xed6ZOddfrk6SWkL9HxC0t9p9BuiZvBA+S\n1iS1VABUP59CEcTMiE5mN5Q0CPh/+e23ImJeZ/YjjQcD+ElEzK3ZZkbpdTkQKq7PbFKLWTPF9+aX\nTb5zUPOdyV3nikD0tBbB4vT8HJXldYHQYfl5b0l1gTU00qDPL9VpRdJYLKj/3hTlb9mV8vPnd3Be\ndmqL/YrPYkBNet2jLViS9pD0QM64cnST9ZL0w7z+bknblNYdKWlKzkJykdLs1kjaStItkv4taZKk\n7fPy8Tlryb/z4yc9eW5mZmbWeRExPyIuioj/johxpJvR00lZzgScJmlUZbfihrhVK9H/1RyyWH97\nRMyo2Wbz/Dy5srxlC1a+J9mopm7FvtMjYmZlv7eQWgLOIHWRXIOUMGIm6Ua0aOWbR6M1qXo+rTKx\n1V2vXfNz3bUqrJifn2lS5jPUT1xcBBbV69jK9qRxQ68Cv+3MDvm675zftjqXFUuvm53LtRHRbjqA\nPO6tyJZ3VU3Zdd+ZCaXj/r5F3YpgtfqdbPedy5kBi+WjSOOa6h4i/S2VA7/ic5kVEdOpkDSUxsTe\nK3RQftEoU0yAvC2p9eoV6q8VeZs25zUQ9FiApZQW9UxgT2AT4KN5IGPZnqQBk+sDB5EH50kaR/pV\nY2JEbEb61WW/vM/JpCwkW5EmLTy5VN4jEbFVfhyMmZmZ9UkRcU9EHEnj1+8VSF2hyoobxGor0VjS\nzTmkObSa2bLVekkr0WhpKt/ULkMjeKq7KdyadMPZLg07NcGZpAmksS5rkLqJ7QGsGBErRMTYSAkJ\nTsybN5totjOprpteLxrXtTYAysFL0RJVDtCKMu9sUqdq3bpyE13U6b7cBa0zNqDRdbJVMLdpfp5V\n6U5ZnEvdd2ZT0uc6n0aXuKq6lsRi+X8i4hnqFZP+vvEZVVo9y+UW9833RIQ68RgaEa+W9u/oO7MO\nKbnH3E6Wr4h4vHK+90bES01Lb3u+AyrA6skugtsDD0fEowCSLiZ1Dbi3tM0+pCbYAG6RNErS6qW6\nLS/pVVKWlKKpPEiD7SD9UlBtQjczM7P+49bS6+pcR3WtNsXyGS3GI3V00183pmljUrey+aSEEM28\nLz8/1OTmsu64R5HO71pgj5pg5YPN9pU0hEbQ0JkugtXrVbQM1nWpA3g36byfpm1wUZR5Z7s9GhZl\nnqOx+fnZLuyzUn5+PSLmt9iuyNB3Q2V5R90si/O4p2ZsV7mM6rkW+9aeT26RKsYbXt1k32qrZ/Ej\nQrOuip3R0fkuTvnF59duPF8hZ3ssWvwGVIDVk10Ex9G2eXsq7QfeNd0mDzr8HqmZczppYFwxKPAI\n4BRJT+ZtjintPyF3D/yrpLd236mYmZlZDykP9n/jxl7SKkDxo2tdgFXXha88Hqajm+nq+vXz86PN\nbrIlDaeR1r0rCS7enJ9/0yy4krQdsEN+Ww1m1ieN03qF9sk+iv1bXa8X8/NqNfuKFAAC/Kpy3h1d\n6yE0Wlq6chNdjFGq3hu2UozTGpzPt1l9ViElhgD4ZWV5cX26+p0oyhhFYwxWXQvWGOodQeqVdUNO\nKlLdt1pm8Tms3yR1fmcUwU3d+Kei/JVyqvZFsUaLdcV36jVgyiKW3y/1ySyCudl+H9I/umsAwyX9\nd159CHBkRKxFyl5SDLicDqyduw5+Efi1pJFUSDooj92aNGvWrJ4+FTMzswFJ0ha5K1+rbdYCvpzf\n/rXU/QgaN51TI+K5yq4d/TI/nsZEwHU3l3UtEcWN7Jiam9ozaSRCqHZdXIbUAtas3GH5eeXK8iIZ\nwUWlY1fPq+g+NrMm8QK0vl5Fee+u2fcYUgA4h9LQi9xtsAg46671xjQyF9Z1q2umCDDWk7R5yy3b\n7lOMnWp3LjnYO4/UYndTzmBZ6EyrZ0ffq3KrZ3VMUxGcrdlkSAySdga+QPpOVrMT1rUAFt0gRwCf\nqalTUf7oJouL701db6/7aQS6zeb1alX+w/l5fUkbN9l+LxqB7v0R8XKr8pc2PRlgTaNtKsc1aZsy\ntdU2uwGPRcSs3Jf0chqDGj+Z3wNcSuqKSES8HBHP5te3kwbhbVCtVEScHRETI2LiKqs0/fHDzMzM\nFt/ngIcl/VjS2yUtDyn7mKS1JB1DGguzOmnup+rY6VZJHTrb1euhFl3J6sooWohWA06SNCIn5dpS\n0u9IPwAXmfKqwdumpG52L9K+e2FxnC9K2gHSeHVJewC30Eh+8BrtxxcVCRFWzzfqrc6n2fUqsih+\nUtIhpc9inZwU7MR83I9ERPnX52Ic/HxqWs5oXOt7K+N/OvJnUnfEwcBvJe2WA1QkDZe0u6RflYOV\n/FkWkzGfLGnXPOa/aAG8HtiLFFDsR1tdycLYUYBVDazLLVsvAG/UW9IwSZ8jTUuwDHBCRPyzUm7T\nlrOImAzclt+eLunLSpNgF8ddTdJHJP0J+FST+hbfm31y8NlGRMymcU99lKSTJL3RyilptKT3SrqU\nlPeg7M+kKQUGkRo1ivMdIekIUpbGIs4YUN0DgZ6baJg0hupRUivUMqQvY3XSu/eQBnyK1Cf1trx8\nB1JT4rC87nzSfAWQfr14R369Kyk7EKRZ2wfn1+uSArXRreroiYbNzPo+PNFwv3wAf6ftBMMLSeM1\nXqksvwvYvMn+v8zrT6wsX5aUeS6AjWqO/c28/uKa9bUT8ub111XqWBzvaVL2v2L5WpX9DsjLb25S\n5talYwZpPFTxfhKNiYsnN9l3KCnoKvZ9Ptflnx1dr7xONCacDVKrxZzS++eAfZvs9+m8/pYWn/Op\neZtfLMJ3ZDdSMFqu13M0Jjx+mdJEwXmfVUjBa7HPAlIAWLyfAmzS4vv0nZq6TCjVoelkyaReUwGc\nUln+9rx8GvDZymf8eun9mVQmRibdIxd/Exs2OeYGudzy93F25ZwDeFeTfb9auU5P58fEyvWcUinr\nBVJ3zPKyzzYp/4uVbcrnezdwU379pd76d6i3Hj3WghWpCftw0mRv9wGXRMQUSQdLKn6lupoUhD0M\n/Aw4NO97Kyll5x2k2asHAWfnfT4LnCrpLuDbpOyDAG8D7pb077zvwdG+idzMzMyWjL2Aj5NaT+4i\n3dCvQApWHgUuAf4L2DYi7mmyf13K8U1oZHp7sObYHbVEbEQK1BbQvFvbh0iZjf9D+pX+YdI9x6Y0\nEkU8HxF1qdTbHTci7gTeQUq88BIp4Pw3KWvyjjQSDjTb91Vgb+AC0tj1IqV2uZtabUr7SHfDHyJ1\nUbuTFLiIdI91IinAbZZavDtafWpFxHWkwPMc4DFSK9pg0ud6PvD+qLSKRWph24EU2D2Sz+NF4J+k\nCa0nRkQ5oVpn61msX5RWz6IF6u6I+Bnpe3876f51Dqn1as+IOCzaj+vbhBZJVSLiQdJ4wm/l475I\n6jL4EvAv4CRgu4i4tkl9vwt8hRRAvUb6zqxKqTUyX8/tSOOlbiUFV8Py9v8GfkAKINvNgRYR3ye1\nnN1DChIXku7dv0b6ThfjKwdcC5ZyBDogTZw4MSZNmtTb1TAzsxYk3R4REzve0sxsyVOaRPsA4LsR\n0W7eVxt4+mSSCzMzMzOzfuKNFqxerYX1GQ6wzMzMzMwWQSVNfVfmAbOlmAMsMzMzM7NFU05TX5dp\n0QYYB1hmZmZmZoumSHxxX9TPUWYDjAMsMzMzM7NFEBG/ighFxNa9XRfrOxxgmZmZmZmZdRMHWGZm\nZmZmZt3EAZaZmZmZmVk3cYBlZmZmfZaklSVFfoxZhP3HLM7+HZQ9MZf7giR1Z9l9lZIX8nkvNROA\nSzo8n9ONleV94nwlrSBpYa7HuEXYf3Le90M9Ub8Wx/1tPu7xS/K4vW1Ib1fAzMzMrIUiS9v0iHim\nvCLf8O4NPBYR59fsX0wCO626fzd4Y4LZiIhuLruvmgCsALwOTOnlunSnIknFvyvL+8r5bgkImBUR\n07qyo6TlgA3z2+r59bS667pUcwuWmZmZ9WWrk+YX+mOTdZ8AvgHs1GL/IgjqiRu8niy7r1qb9Hlc\nHxEv9XZlulHdZ9lXzreo36JMZrwZqVFlLvBIt9WoA5JGkgJUGFh/I27BMjMzs74rIi4ELqxZXXTZ\nmtSiCAdY3SgibgQ26u16dCdJQ4BN89s2n2UfOt/F+a71Vktr0eo2OyIeX4LH7XVuwTIzM7N+R9Jg\nGt2Pbm+xadHFsFuDoDzmaoueKNuWuI2BZYFXgXt7uS51Fud73CN/A52wOK1u/ZoDLDMzM+sWkp7J\nA9q3abLuJ6VkE+1aBCRdldcdWVo2qrTPannZIEkvAq8By+dN7yhtF5Len7ddlkbrw78lrSvpDEmP\nSnpJ0gOSjpO0zCKc7ro0xuZMrrkeG+Xj3SfpxfyYJOlQSU3vwSStKGk/SedJukvSLEmvSJoq6UJJ\nm9bsV75Wq0vaStIFkp7KyREuzNttm7eZmxM4bCnpF5KelDRf0j25fk2Tdkh6Lu+/Y2X5B/PyKfn9\n2yRdKmm6pHmSbpf04VYXVNJYSd+X9LCkBZKekPRdScMk7ZPLv79VGS3KHifpR5Iey2U/JOno/DkU\ngcB9EfFKZ843r1sz1+/f+Xq+nK/j3yV9U9Kale0X9bMdTOrmB+l7vJmkX+bPdoGkKZL+X91nRgeB\njqThko6Q9FdJz+Y6PS7pLElr1JRZ7LuDpEskzcjf79uKv7+OjrtUi4gB+9h2223DzMz6NmBS9IH/\nM/zo+AE8DATwtsrylYAX87oAdqysn0AKVOYCK5aWvy1vP6O0bDzwNDAnr3slvy8/1svbbpu3eQHY\nD5iX3z+fj1fU5/RFONcP5n2n1Kw/hhQEFseYAywsvb8UUJP9vlna5lXg2fxcLJsPTGyyX3GtngEO\nKe0zO5/r/+TtPp2X3wx8KW+3MF+TKD2OaHKMtfO614HhlXX/m9ddDJyWX7+Wj18ud9+a6/UW4LnS\ndi+UPqO/5esZwMWL8Fm9O5dXLrv4LM4DTs2vz+/C+VbLfLnyPoCduumz3TSvfwk4AFhQOo/y8X7U\nZF/R+FvZrsn6icB/SmW8lB/F+xnAm2qu69dK13FhpT4HkFqWAzigt/9tWtIPt2CZmZlZd5mdn0dU\nlh8EDANm5fejKusPJvWq+WVEzCktL7o2vfELeEQ8HhGrkW7iAS6LiNUqj2Ig/1alss4HfgysHhEr\n5Tr8Kq87LLd2dUXtmBhJXwK+TQr2PgeMiogVSdfgs6Sb8Q8BH6sp+0vA5sDyEbEysAzwZtJ1WB44\nsck+xbVaHjgT+AWwVkSMIrW0nVvZbv1czteAlfM1GQtcV6pD3TEeiYgXa9btRrq5/iwpWB5Fau0r\nrlO7ciVNAP6PFIj/Htg4IkYCI4GvA28FipbNLrWGSNoil7kC8EtS8D2S9Pn/EPgk8PG8efWzbHq+\nklYBLsllnkkKQJbN5a4E7AH8Bri7SZUW5bMtvmsLgZ8CZwNr5OOtAVyZ1x8uadvKvuuSruPrwD2V\na7M+8GdgzXweG5K+o8OA7fP1WJX0d0Nl388CJ5ACxK8Co3N9JgA3At+nZlzbgNDbEV5vPtyCZWbW\n9+EWrH7zAK4l/WL9kdKyIaRfyOcC38rr9yutX5YUeC0ENqqUd07e/pQmx/pdXnd0i/r8iMYv6p9v\nsn5Uaf3GXTzXP+T9vlJZvhPpZvYRUoDTbN+iJeP3XTzm1nm/F5qsO6d0Lie3KOOG0nb7NFm/ZWn9\nsMq6Y/PyS5vs9xiNlpxmrTD7UGmNLK37W153Gc1b9a4q1WnPLlyvocD9tGilBP5VKvudnTlfUgth\nANd0499Oq8/2lFIdj2qyfhgpmA/gpMq6pi2twGBSwLUQ+HhNnSbQaJ0aXVq+Po1Wrvc32W8sjdbi\nV4Bluus69ZeHW7DMzMysuzRrwfoAsBapK9aTedlKpfUfBsYA10VEdXxNuxasks6M7yj2vzYiftRk\n/QukbmyQbga7oi5xwMmk1riDIuJJmrstP6/VxWPOy8/NxowV9ZlCCgzqFIk5zo2IK5qsf770emHN\nMdpcc6V03OPz2xMiollWx6LcNtdZ0rtILVRzgc9FvkOvuKb0uistWPuTWmWeAI6u2ebq0uu6Fqzq\nMdfOz692oS4d6cxnO4kUbLUREfNpnMf6NftWz+0A0riuCyNl6mwnIh4jdTkVUJ7c+DhgOeA3EfG7\nJvvNoJF4pt24toHAadrNzMysuxQB1gqlZV8gjw+hkfWv3EXwkPz8w3JBlYH91Rv6FWnc0DftfpQH\n/BfBxDk19V2bdC8UpFa2TpE0mkZwdFdp+ZaksUQBXFifc4CiO+L8JmWvDXwG2BXYgHStqvdrT1X2\nKV+rH9Xd0OakC6Pz25/X1G3d/DwjIhZU1tUFHMV1DhpdEevKfbyy/OD8/Iuonwh6Rn6eFRFP1WzT\nzKH5+Ywm51It+8mIeL6yru58i6Qm75X0G+B04NaIqAakbSzKZ1upx/drAlCAYvLhauNJ3Q8Rh+Xn\nvSU93aLaK+fn+QCSVgI+mpd9r8V+xXUdeAkucIBlZmZm3ae4QR0BIGk7YGdSV6oHJa2X14/K67ck\ndal7hLYtCZBuQJcjdTGqtmwVN/SzImJ6TV0mACuSuutVy66W82huBeis4qZ1ekTMLC3fKz+L1E2q\nI20mfZV0KCnhwnJ5UZASFLyc369A6g52X6Wc4loFqetineJG/RlSkotmimvSJjOipOFA8flVxxYV\n5d4ZEdNorl25SvNP7ZbfNmtNK4zMz52+WZc0lkZAf3mLTcfk5zaBegfnexEpSDqA1AL7YWCmpD+Q\nAsV/NqnPIn22OYvfqqSW1lafbfGjxYzK8nZjBXOZxfLqeMhmXqPxA8RupO6FT9a0VBaaXteBwl0E\nzczMrLtUuwh+IT//ID8XCSyKLoLFr+hnNvn1v7ghvy8iql2xOtM9sNjmwYiY18E2Xb0JrNuvGNT/\npYhQJx6fKnaU9F+kRAPLAGcB25ESIawUOXkHafxUs+MW1+rhDlp4iu3ubNESUndum5HuG2dHxBM1\n5baaj6xZuRNoBE93tNh3UZIlbE4KdJ+PiEdbbFdMVt3p842IhRHxaWAbUtA0mRQEHQj8Q1Kb1sHF\n/GyL6/ZAi+8xpKQUAHeWjltuaS2Xu0l+vqeT39Ohpb/BIpiu/axz6vtiqgYHWGZmZmaL4Y0ugpJW\nJ/2yfz8pUxmkMU8Ao3I3v4+Rxp4061bWavxVZyZO7UoQ1tVuTHVByKr5+TW67n/z83ERcVhETIqI\nonWjGOdUtPbUjRW6k9Y6s13dNSn2bZYZrzPlNvs8i+u1MCJmU2/Pmjq1UrQg1pabv4MdXdNm5wtA\nRNwZEV+OiM1JY72KlrJPS9q5tOnifLbF5/Fci/NYm0agWB6vVtfSujjf0+K6VrtTlu1Kaj0GB1hm\nZmZmi6XcgnUoKYvbD0utJUUL1ihSeuzhtE/NXmgVYG2en2tvfulcENaZbbqyX9EKt0FXCsstDcWE\nyBfXbHYQjbFb1UCms+fRcrvcZW+Tmm3qElwMojQJbk25a5HGfkVl/+J6DZI0pt2Oad/3UJosutk2\nHVi9xQS8n6cxWXVnE1w0FREPklLvF1301oRu/WxXpd4XSff0V1QSq3T0PV2/xbXpSKsJiI/Kz09G\nRG1guDRzgGVmZmbdpfhVexXS/E+zSXMPFYoWrJVIyQ2K5BfNtLrBLbo9teoO17L7X241mNDiGE1J\nWgbYuGa/YnzRxyTV3hBLWjaP8SkMK71eucn225LmHIKUbe+RyiYdBliSlqORYa5uu41JN/ov037c\nW93nsR4pUF5IfcBbfBaPR8QLpeXl89ijSZ3HkrrUUVOnVh7Oz8uRJgWulr0NafJiSN/Lxyqb1AWU\nreZLW53G2KN78/PifrbFtXuTpA2b7P82Ulfb14Dja/at+56OICXdqJUDxLLiur5ZUrPzOZhGa9yA\nTHABDrDMzMys+xQtWO8iBVk/j7YT0s4lBVVbkW7mm6VmJ9+4FWmhm92kFa0E++RWl+r+K9FIpV0X\nTGxJY4xOpzMIksYDDQVeBB6qrDuPFGisBFwvaZfihlzSYEmbSToaeJBGsgNIgWIxCfOpOdsfkkZI\nOgi4nkbGwbvL46cq16pVF73NSMkJ5gMP1GxT3JDfWx73VsnIWNd18KFoP/lwtdw2n0XutlYk2zhF\n0m6SBuXHHsBNpKAF0jxOXenSNolGZr2fSNpJyTKS9idNqFwEP9Vr2vR8JY0C/iPpREkTJQ3Ny4dK\n2p00D9xg0rQARRCzOJ/tcOBN5PmxgF9L2iCvWz4HM1eRktYdExF13Qur130yjakCTpf05XKwJGk1\nSR+R9CfgU5Uyi0mNRwC/yd0TkbSypBOAM0rbNpuE+3xJIakrwXK/4wDLzMzMuksRYA0hBRrlmy1y\nIot5NLIYt0nNXlLctD9Vk7r70vz8eWCepKfzoxiHUtxYPp3n5Glmccdf3VNNzJFvXI8gnftm5Jtn\nSc8CC0gTu54EDImIZ0v7LQS+kd++BXhS0vOk6/lT0tieIsteXVe2GRHRKt12ETC0q3eTc6tekwmk\nLHevU8kuWCp3UcfDHUm6NquRApQXSQHHNfl18R26rcm+tSLidRpTBIwnBWtzc9nn57Kvqql73flu\nQeqq91XSBMXlz/aPpO6VN9NIY764n+0WpHv1aaRWqq2BB/L+LwA/JgU63yMl21XHC9IAACAASURB\nVHhDpaW12WfzCVLwN4w0t9YzkmZLmg9MJ3VnfDfpO/uGiLiPRqvzrsATkuaQMlN+DbiRRitcs+Nu\n3WLdUsNp2q25556DBx6Al15qu3zHHWHYMHjiCXik2ooNvPnNsOyy8Oij8Pjj7de//e0weDA89BA8\n2WT+xV12Sc/33QfTK5l3Bw9O+wNEwCJ3GzYzsx5SHvh+ZUQ83mSbOaSb12ap2QsdJRj4Lil9+6dI\nN89jSTfSRctMb4y/AiAifiTpNuD/kW6oVyPdBE8n3axeCfy+yX4/lvQi8BXSGK5XSclBfhwRf5BU\ntPTUBViLNf6qg23KrVR1c2Mt0rWOiFslvQM4EdiR9DneB/ya1D3wurzpjS3KbyoiLpP0XuDrpTrc\nS/renUx9gFV3vveQutTtQgp+Viclc3iO1Hr4a+CCHNyV67G4n+39EXGRpLmkSaQ3J/0d3QScFhE3\n0N4mpJbW+bRvaSVPm7AFKQh9L6n76Ihc7mTSdb+8JhX7EaTJmz9H+vt7HfgnKX39BTQSclRT3y9L\n66BvqaH6LJ3dUHhq3v0Bqbn0nIj4TmW98vq9SF+AT0XEHaX1g8lNvBGxd2XfL5Ei9lUi4hlJ2wNn\nF6uB45vNLl02ceLEmDSpVQr/pdhTT8Hf/w5TpzYeTz4J558PG24IZ54Jhx/efr+HHoI3vQlOOQWO\nOqr9+unTYbXV4Ljj4Fvfar9+3jwYPhyOPBJOP73tOgkW5h/VPvMZ+HllDsSRI2FOHgf9iU/ADTfA\nmmvCWmul5w02gEPyfJXPPQcrrABDh3btuphZnyPp9oiY2PGWZrY0kbQ+KWieB6zWxbnKzHpNj7Vg\n5eDoTFI/7KnAvyRdGRH3ljbbkxQxrw/sQGrq3KG0/gukXzFGlpYV2WjeTdtZ1ycDEyPitZwa9i5J\nf2jZX3fePLjsMlhxRRg1Kj2vtBKMaZrIpu975ZUUoCy3HEybBr/+ddvgaepU+MUvYPfd4V//gv32\nS/uNGNEIUl7NXa7f8x6YMCGtKxuXu3nvtx/ssAPtjM5jIT/9adhtt/brl8tdzg8/HN7//vpzOeoo\n2H//tssGD268fuc7U/A0dSpMngzXXJPqWwRY++4L//hHCvaKc9thh0ZQePfdKWBbYw1YZpn6ephZ\nz4qAWbPa/9hTfm9mA46kYcBvST+an+ngyvqTHmvBkrQTqRVp9/z+GICIOKm0zU+BGyPiovz+AeAd\nETE9DwI8n9Rk/MVyC5ak3wLfIvVZnVjtny1pAnALMK5VgDVx1KiYVLSIFNZZp9G17aMfhdtvT4FX\n8dh4YzghJ3u55JIUpBXrRo2CVVeFtdem2738cmp1Wn75FDTMnJlaiMo3IzNmwNlnw2c/C3feCdts\nk1pxigBjzTXh0ENh221TS9DUqWnZyJH9v7tdROrOOCyPV73kEpgype0N26abwqW52/6ECY3PeezY\ndI3e9z74+tfTst/9DlZeOS1fY43U7dHMumbhwhQ8VQOm6vtXXmlZjMAtWGZLIUlvJaU2/xlpIt1X\nc7bDXYFvk7rh3Qvs0MEku2Z9Sk+OwRoHlAfZTKVt61TdNuNI/ZRPJ+XRX6G8g6R9SF0G76qm7pe0\nA2mywnWATzQLrnLGloMAxo8bB3/7G8yenQKOOXNgSOmSbJ3H4RXrp09vtPAAnHhiagkpe8c7Utc1\ngC22SEFPOQB75zvhq19N67//fRg0qLF++PAUPG25JcyfDx/7WONGZGaeH+644+Cb30wB0QUXNLrI\nbb11er3ttmm7zTdPdR45kqaKYy4tpEZwBfDhD7fe/pxzUoBVvskruicuXJj2f6309Vl1Vfj85+HY\nY9P6k09O13v8+HTthw9vdhSzpdfChenft2ZBU/F62rS2/2bWWWmltj8Elbv+rrlm+mHLzJZGO5DG\nqv0/YKGk2aReS8XN2O3A+x1cWX/TJ5NcSNobmBkRt+eBj8XyYaTMLe3mM4A0UBLYVNLGwPmSrqkO\nxoyIs8ljtSZOnBhssUWTkrJmY4zK/vrXtsHZnDmpxajw4Q+nm4w5cxrbzS5NKH788TB3btsyDzgA\nzj03tVRNnZoCrokTGzcc222XtltllbZlVQ0ZUh9cGey6a+v199zT/qZxvfXSupkz4ZhjGtsOHpwC\n2q9/HT7wgXTjKfX/VkEbuF5/HZ5+unWr07RpbX+EqLPyyu0DpvL7ceP8A4XZwHUj6Z6sSAayAo2E\nERcDF5bTxZv1Fz0ZYE2jMREgpBmtp3Vymw8C75O0F2meiJGSfkXKGjSBNL6q2P4OSduXU5NGxH2S\n5pFSpPZcFotRo9KjzrHHtt7/+efhhRcawdm8eemmA9LN+UBNwNHbBg2CjTZKj2ZWWy0FxtOmwcMP\nw623ws03N8Zy3XYb7L13yri4446w006w/fZtg2+zjrz+OixYkLoHL1jQ9nVXn7uy7UsvpW59r7/e\ncR1XWaV5i1Pxfty49GORmVkTOUOdb3ZsqdOTY7CGkCbS25UUNP0L+FhETClt8x7gcFIWwR2AH0bE\n9pVy3gF8uZpFMK97nDwGK4+7ejInuViHNA/BFjXzZwADPIug9ZzJk+G001LQdd99aZkEt9ySAq3/\n/AdefDFlaxy0iFPRvfRS6uL46KNtH0880bkuWdZ3LFyYgptqoNOZAKcnrbpq625748Y1ktb0MGcR\nNDOz/qTHWrByoHM48CdSmvZzI2JKnnWaiPgJaR6CvYCHSWnaD1iMQ74FOFrSq6QJ/g5tFVyZ9ZjN\nNmukmJ89u9HCtemmadlPfwrf/nZq/dxhh9TCteOOKetikSkxInXRqgZQxeOpp3rn3GzJkVIAs9xy\nKclKs+dW6xZn2zFjnNjFzMxsEfXoPFh9nVuwrFc89hjceGNKsPLPf6a5xZZbLs399dhjKQPkrFmt\nW6KGDEkZL9ddt+1j/Hh3yepvpOaBzpAhHseXuQXLzMz6kz6Z5MJsqbBwYWppqmuFmjGjse2CBXDG\nGe3LGDQojXPZYgv4yEdSevl1101dtIb4z9fMzMysr/EdmvWuiJTc49ln2z6ee675svnzUzKJZZZJ\nEw339uvXX28+FurRR9PyVvP7LLNManGqtkJNmJCCs8mT07itm2+G1VeHAw9M1+vtb0/bFV0LN9us\n7STMZmZmZtZrHGBZ93nllfrgqFXQtDQnZRg7tn0AVTzWWKN1kotttoH990+vi6688+enOYOuvhrO\nPz8tGz4cTjopzdM1d27qYli10UYpacHs2e3nboM0PmzlldNnMmVK+/VbbJHGjM2cCfff33791lun\nLInTp6cuj2UjR6Z5jDymx8zMzAYAB1jW3Msvp+5tM2d2PmCat4jzAA4blm7uq4/Ro9svGzYsBWSv\nvJIe3fF6ccoAWHvt5gHUhAndN79PMRZn+HC44ooUcD32WGrduuWWRkr5Bx5ILVxVv/41fPSjKfja\nZZf26//wh5Ra/qab4H3va7/+xhtTudddBx//ePv1kyalSa6vvBIOPrj9+vvuS3W84II0z1s1M93u\nuzsAMzMzs6WCA6yB6OWX204YWp1E9MknU2DVVYMH1wdGdctHj15iqZ6XKlIjkCsHPBtsANdf3377\nIoPhVls1X19MuL3TTq3X77JL8/Xrr5+e99677fqI1Go2fnx6P2hQClD//ve2E9XOnZsCrGOPhYsu\nap8e/LDD0jm/+GJK4rGo6e3NzMzMetjAziK4/vox6fzzYcUVG48RI/p35q6XXko3rtWgqfx+1qyO\nyxk8OI37GTu288HSyJH9+9rZkrVwYQrkp01LrV+QWtquuqrtd3fEiNRaCrDffnD55WkOpiII22gj\nOO64tP6RR1Ir59ixDsKWIs4iaGZm/cnADrCkaJekfdCgFCiUg65Ro9q+r3sU2w0f3jOBxvz56Wa0\n2tpUDqKe6cTUX4MHpxvU6sSh5fdjxzpLnfW+hQtTC9jo0en95ZfDbbe1/e6PHg3/+lda/+Y3p26O\nQ4akMW5rrQVveQt85ztp/Y03pr/TzTbz97sfcYBlZmb9ycAOsFZcMSZtvDHMmdN4zJ+/+AUPHtw+\nSKsLxsqP4cNT61KzLntTpzZ+xW9l6NBG8FQNmorXq67qrHO29Iho/KBx3XXw4INt/3bWXx/OPjut\nX3vttGzYMJg4MXWJ3GsveNvbeq/+1iEHWGZm1p8M7ACr2UTDr74KL7zQNugqHrNnN19efXRHkNbM\n0KH1QVPxetVV3TXKrM7dd8O99zbS3995JxxyCPzgB+lv/8ADYbvtUvr7LbdMqfSt1znAMjOz/sQB\nVjXA6g7lIK2zQdmcOSkL35gx9UHUmDEOnsy604IF6QeR0aNTVsa3vjV1w4WUfGXbbeH442G33dq2\nlNkS5QDLzMz6Ew9C6AlDhzYSP5hZ37Xcco0slhMmNLoWFunvb765MVbrz3+Ggw5KrVvFJM9bb+30\n8mZmZtaGAywzs7I114T/+q/0KFtxxRRY3XwzXHJJWrbMMnDPPSk9/n/+k1q41lprydfZzMzM+gwH\nWGZmnbHjjnDxxen1U0+lFq7bbktzkQGcfDKceWZKMrPjjo2Wrp13dtdCMzOzAcRjsHpiDJaZDTxT\npsBf/tLoWvjYY6k17Mkn0/rzzkstXjvtlCZedtDVaR6DZWZm/YkDLAdYZtYTZsxI3Qa32y6932QT\nuO++9Hrs2NTC9YEPwP77p2WzZqXpG4YO7Z369mEOsMzMrD9xF0Ezs54wdmx6FO6+GyZPTq1bRRKN\nceNSgLVwIay2WnoeObKRJOeAA+DQQ1Nm0m9/Oy0bPbqxfvz4lF3UzMzM+gwHWGZmS8KQIbDVVulx\nyCFp2euvN55/8IM0mfizzzYeRWvWc8+ldPFV3/42HHMMPPEEbL99I/AqArEDDkip559/Hm64oX2A\n5gyIZmZm3c4BlplZbxk8OD0PHQqHH16/3dixqRXr+efbBmAbbtjYf999G8sfewwmTYJ3vSutv+8+\n+OAH25d7ySUpW+KkSSlQKwKv1VdP48f22CO1rHkOMDMzs05zgGVm1h8MGQKrrJIeVWusAT/9af2+\nW20Fd97ZCMCKlrIttkjrX34ZXnwxjRl75pm0HuDvf08B1kUXpQCwOgn65z4Hq64Kc+emAGzEiO4/\nbzMzs37GAZaZ2dJu2LAUZNV585vhppsa7xcsgGnTUuAGsN568LGPNSZivv12mDkTPvGJtP6ss+Do\no9NcYeUg7NRT05iyxx6D+fPTspEje+48zczM+gBnEXQWQTOzrnv55dQ1cdCg1MXwL39JKemLIGza\ntDQ2bOhQ+Pzn4Ywz0n4rrJACsHXWgauvTi1fN90EL7zQCMxGjmzTJdFZBM3MrD9xC5aZmXVdOUHG\nxInpUeeQQ1IrWTkAe+mlRhB18slwxRWN7UeMgG23hRtv7JGqm5mZ9SQHWGZm1rM22SQ96px1Fhx1\nVAq8iiDMGQ7NzKyfcoBlZma9a401GuO9zMzM+rlBvV0BMzMzMzOzpYUDLDMzMzMzs27SowGWpD0k\nPSDpYUlHN1kvST/M6++WtE1H+0oaLelaSQ/l55VK647J2z8gafeePDczMzMzM7OqHguwJA0GzgT2\nBDYBPiqpOsp5T2D9/DgI+HEn9j0auD4i1geuz+/J6/cDNgX2AM7K5ZiZmZmZmS0RPdmCtT3wcEQ8\nGhGvABcD+1S22Qf4ZSS3AKMkrd7BvvsA5+fX5wP7lpZfHBEvR8RjwMO5HDMzMzMzsyWiJ7MIjgOe\nLL2fCuzQiW3GdbDv2IiYnl8/DYwtlXVLk7LakHQQqbUM4GVJkztzMgPYGOCZ3q5EH+br0zFfo9Z8\nfTq2YW9XwMzMrLP6dZr2iAhJ0cV9zgbOBpA0KSJazI5pvkat+fp0zNeoNV+fjkma1Nt1MDMz66ye\n7CI4DVir9H7NvKwz27Tad0buRkh+ntmF45mZmZmZmfWYngyw/gWsL2mCpGVICSiurGxzJbB/zia4\nIzAnd/9rte+VwCfz608CV5SW7ydpWUkTSIkzbuupkzMzMzMzM6vqsS6CEfGapMOBPwGDgXMjYoqk\ng/P6nwBXA3uRElLMBw5otW8u+jvAJZIOBJ4APpz3mSLpEuBe4DXgsIh4vYNqnt1tJ7z08jVqzden\nY75Grfn6dMzXyMzM+g1FdGkIk5mZmZmZmdXo0YmGzczMzMzMBhIHWGZmZmZmZt1kwARYks6VNLM8\n75Wk0ZKulfRQfl6pN+vY22qu0SmS7pd0t6TfSRrVm3XsTc2uT2ndlySFpDG9Ube+ou4aSfp8/h5N\nkXRyb9Wvt9X8jW0l6RZJ/5Y0SdKAnSBd0lqSbpB0b/6ufCEv97/VZmbWbwyYAAs4D9ijsuxo4PqI\nWB+4Pr8fyM6j/TW6FtgsIrYAHgSOWdKV6kPOo/31QdJawLuB/yzpCvVB51G5RpLeCewDbBkRmwLf\n64V69RXn0f47dDLwzYjYCjguvx+oXgO+FBGbADsCh0naBP9bbWZm/ciACbAi4m/Ac5XF+wDn59fn\nA/su0Ur1Mc2uUUT8OSJey29vIc0vNiDVfIcATgOOAgZ8xpiaa3QI8J2IeDlvM7PdjgNEzfUJYGR+\nvSLw1BKtVB8SEdMj4o78ei5wHzAO/1ttZmb9yIAJsGqMzfNuATwNjO3NyvQDnwau6e1K9CWS9gGm\nRcRdvV2XPmwD4K2SbpX0V0nb9XaF+pgjgFMkPUlq3RvIrcRvkDQe2Bq4Ff9bbWZm/chAD7DeEClf\n/YBvgagj6Wuk7jsX9nZd+gpJw4Cvkrp1Wb0hwGhSl6+vkOaxU+9WqU85BDgyItYCjgR+3sv16XWS\nRgCXAUdExAvldf632szM+rqBHmDNkLQ6QH4esF2XWpH0KWBv4OPhidPK1gMmAHdJepzUffIOSav1\naq36nqnA5ZHcBiwEBnQykIpPApfn15cCAzbJBYCkoaTg6sKIKK6L/602M7N+Y6AHWFeSbm7Iz1f0\nYl36JEl7kMYXvS8i5vd2ffqSiLgnIlaNiPERMZ4USGwTEU/3ctX6mt8D7wSQtAGwDPBMr9aob3kK\neHt+vQvwUC/WpVflls2fA/dFxPdLq/xvtZmZ9RsaKA0Ski4C3kH65XwG8A3Sjd8lwNrAE8CHI6JZ\nEoMBoeYaHQMsCzybN7slIg7ulQr2smbXJyJ+Xlr/ODAxIgZs8FDzHboAOBfYCngF+HJE/KW36tib\naq7PA8APSF0pFwCHRsTtvVXH3iTpLcDfgXtILZ2QuuHeiv+tNjOzfmLABFhmZmZmZmY9baB3ETQz\nMzMzM+s2DrDMzMzMzMy6iQMsMzMzMzOzbuIAy8zMzMzMrJs4wDIzMzMzM+smDrDMupGklSX9Oz+e\nljSt9H6ZyrZ/krRCB+VNlTSqZvlvSu/3k3RON53DCZKO6I6yzMzMzAaaIb1dAbOlSUQ8S5rvCUnH\nA/Mi4nvlbfJkqoqI3RfzcDtI2jAiHljMcrpN6dwWdrixmZmZ2VLILVhmS4CkN0m6V9KFwBRg9XLr\nlKQ/SLpd0hRJn+lksaeSJmGtHqtNC5Sk+yWtmeswWdIFkh6U9EtJu0u6SdJDkiaWitla0i15+adL\nZR0t6TZJd0s6ru7cunyBzMzMzJYSbsEyW3I2AvaPiEkAqbHnDZ+MiOckDQMmSbosIp7voLyLgMMl\nTehCHTYEPgzcD9wBLIiInSV9EDga+FDebnNgZ2AkcIekq4BtgbWBHQABV0vaGZhZPTczMzOzgcot\nWGZLziMtApAjJd0F3AysCazXifJeI7ViHd2FOjwcEffmLnz3Atfn5fcA40vb/T4iFkTETOBvwHbA\nu4E9gTtJwdmbgA3y9q3OzczMzGzAcAuW2ZLzYrOFknYD3gbsGBEvSfoHsFwnyzwPOAp4sLTsNdr+\neFIu6+XS64Wl9wtp++9BVI4TpFarEyLi55X6v4maczMzMzMbaNyCZdb7VgSey8HVpqTWok6JiFeA\nHwJfKC1+nNSdD0nbA2stQp32lbSspFWAtwKTgD8BB0oansteU9KYRSjbzMzMbKnlAMus910FDJN0\nL3ACcGsX9/8ZUE4BfykwVtJk4CDg0UWo02Tgr8BNwDciYkZEXA38FrhF0j3AJcCIRSjbzMzMbKml\niGpPIDMzMzMzM1sUbsEyMzMzMzPrJg6wzMzMzMzMuokDLDMzMzMzs27iAMvMzMzMzKybOMAyMzMz\nMzPrJg6wzMzMzMzMuokDLDMzMzMzs27iAMvMzMzMzKybOMAyMzMzMzPrJg6wzMzMzMzMuokDLDMz\nMzMzs27iAMvMzMzMzKybOMAyWwpJekTSTp3YbjlJIWnNHqjDHpIeLr1/WtJb8utvSjqju4/Z10l6\nR/5s5knao5vLrl7vbvkOSDpQ0h+abSvpPElHddc5mJmZLQ0cYJn1AEmHS5ok6WVJ5zVZv6uk+yXN\nl3SDpHVqyvlkvhmfJ+klSQtL72fXHT8i1ouIm7vhPG6RtCAfb5akSyStsrjlRsQ3IuLwxS2nqhQA\nvJjrPFXSdyWpk/u3CVJ6wInAyRExIiL+2OT4T+fvxDxJ0yWdI2n5RTlQd30HIuLnEfHemnWfioiT\nYYlcOzMzs37BAZZZz3gKOAE4t7pC0hjgcuDrwGhgEvCbZoVExPn5ZnwE8F7gP8X7iBjVpOwh3XgO\nhc/k428IrAp8pweO0d02zHXeDTgA+O9erk9hHWBKB9u8O9d9IrAz8OUer5WZmZl1GwdYZj0gIi6P\niN8DzzZZ/QFgSkRcGhELgOOBLSVttCjHyq0eX5Y0BXihtKzojvdmSbdKmi3pKUmnLUogFhHPAVcC\nW5WOvbykM3Nry1RJp0ga2ok6f0fSOfn1RpJek3RALmOWpK+Uth0h6de5/pMlHdPZlpKIuB+4pVLn\nz+XWw7mSHpb06bx8ZeB3wLqlVsKVJQ2W9HVJj0p6RtKFktoFt6XyD8vd856VdLmksXn5VGAN4M+S\n5nWi7tOA62h/vU+X9GT+jH8kadmaenT1O7CvpMfz9T+xaPWTdLCk62qOcbGkY2uu3Tq5JXFkafud\n8/EHd3T+ZmZm/ZUDLLMlb1PgruJNRLwIPJyXL6qPAO8CVm6y7lXg8LzuraSWsM909QC5a+C+pLoW\nvglsAWwObAu8A1iUMTmDSS02bwL2Ak6UtG5edwKwCqn15z3AJ7pQ502BnSp1ng7sCYwEDgbOlLRp\nRDwLvB94tNRK+CypBendwFuANUnX87Sa4+1Fapl8PzAOeAa4ACAi1gRm0mih6qjua+fjluv+/VyH\nzUktihsAR3d8JTr1HXgvKZjbHvgo8PFOlAtAzbV7ArgV+GBp008AF0bE650t28zMrL9xgGW25I0A\n5lSWvQCssBhlnhYRT0XES9UVEXFbRPwrIl6PiEeAc4C3d6Hsn0p6gRQcLA8cWVr3ceAbEfFMRMwg\nBUOdDoAqvhERCyLiX8D9pMAN4MPACRExJ9+0n9WJsqZIehGYDFxFOmcAIuLKiHgskuuAv5KCpzoH\nA0fn67uAFFR+pGZc18eBsyPi7rztUcBuklbrRJ0L10iaCzwBPE66pkX3zwOBL0TE7IiYQ+quuV9H\nBXbyO3BSLvcx4AxSkLW4zid3z5S0DOmzvKAbyjUzM+uzHGCZLXnzSK0nZSsCcyWtXepi1WE3spIn\n61ZI2kTSNZJm5EDpOGBMF8r+XESMBLYBViN1cyMHGKuRAoHCE6SWm656PSKeKb2fD4yQNCgfo3x+\ntedasikpYN0feDMwrFgh6X2SbpP0nFKikF2ouR75HNcCrs7d62YDd5L+7WzWWrgGpesREbNJwXNX\nrsmeEbECqfVqM9I4vaLsoaTgsajL70nj4lrq5HegfF2fyMdbXJcB20kaR2qZnBoRd3dDuWZmZn2W\nAyyzJW8KsGXxRtJwYD3SuKxyEosOu5GVRIt1PwPuANbLgdL/Ap3KqtfmABF3AicDP8rvA3ia1HWv\nsDYwratltzjmQmAGqVtcYa3O7hsRFwB3A8fAG9f6UuBbwKo5UchfaFyPqJQRpPPZJSJGlR7LVQLC\nwlOUrkceqzWSRbgmEXEtKfnJd/Oi6cBrpM+xqMeKEdEs0KvqzHegfF3XzufSpSo3OYd5pLFZHyO1\nbLr1yszMlnoOsMx6gKQhkpYjjS0arJQ+vEgq8DtgM0kfzNt8A7grJ2ToCSsAcyJiXh6T9NnFKOsc\n4E2Sds/vLwK+kZNBrAp8DfjV4lW3nUuAr0laMY9LOqSL+58EHJYTMSxPagWaCSyU9D7SuLHCDGBV\nSeXg9ifAdyStBSBpVUlN05aTrsdnJW2WP9vvAH+JiKe7WOfCqcA+kjaOiFdJWSl/IGmMkrUkvasT\n5XTmO/A/+RqPJ43XaprZsoVm1w7gl6TxXnsAF3axTDMzs37HAZZZzzgWeImUgOC/8+tjASJiFmng\n/4nA86SkAh2Oo1kMRwKfyV0Oz6TrN85vyGO8ziAlcoDU1exeUqvcv4F/klq5utOxpOv0BHANKeB6\nubM7R8QkUir8L+ZWpy8DfyBleNwXuLq0+V2kTIlP5G54o0nncx3wlzw26iZSd8lmx/o/UkB3JakF\naDUWfUwaEfEUcDH5uwMckcudRBrH90dSYpCOdOY7cBXp/CeRWvm6Gig3u3YAN5AC239ExPQulmlm\nZtbvKPWAMTPrHyQdCewREbt3uLH1CZJuAs6KiO5u3TQzM+tz3IJlZn1a7ga3o6RBuXvbF0jdLK0f\nkPRmUjr5y3q7LmZmZktClycbNTNbwpYljT1aB3iONI7nnJZ7WJ8g6WJgd+CwZlMImJmZLY3cRdDM\nzMzMzKybuIugmZmZmZlZNxnQXQTHjBkT48eP7+1qmJmZWTe4/fbbn4mIVXq7HmY2sA3oAGv8+PFM\nmjSpt6thZmZm3UDSE71dBzMzdxE0MzMzMzPrJr0SYEk6V9JMSZNLy0ZLulbSQ/l5pdK6YyQ9LOkB\nSbvnZctK+qOkyZIOLW17tqSmk4CamZmZWc+R9Kk8qXmfIulxSV/uwvbvZjJcEgAAIABJREFUkBSS\nxvRQfULSh3qi7MpxevXzkPR/ks7rreP3lt5qwToP2KOy7Gjg+ohYH7g+v0fSJsB+wKZ5n7MkDSal\n/v0HsAXwibztlsDgiLhjCZyDmZmZWbeR9DZJV0qalm/AP9VkG0k6XtJTkl6SdGOeI7BVuceXf9Tu\nxvo2CxJ+A6zb3cdqcuyuBkDbAWf1ZJ26aHXgD71diWa6Goxae70SYEXE30jz2ZTtA5yfX58P7Fta\nfnFEvBwRjwEPA9sDrwLDgKGA8rbfAr7eg1U3MzMz6ykjgMmkCdXr5o47CvgS8HlS0DATuFbSCkuk\nhh2IiJciYmZv16MgaRmAiJgVEfN7uz6FiHg6Il7u7XpYz+hLY7DGRsT0/PppYGx+PQ54srTd1Lzs\nWmA8cAvwQ0nvA+6IiKdaHUTSQZImSZo0a9as7qy/mZmZ2SKLiKsj4qsR8VtgYXW9JAFHAN+JiMsi\nYjLwSWAF4GPNysytYN8ANs0tPm+0jElaMQ+tmClprqS/SppY2ndFSRfk9QskPSrpiLzu8bzZpbnM\nx4vjlbukFa1nkvaT9Eg+zu/LLU+Shkg6TdLzkp6T9D1JZ0m6seacxgM35Lez8vHPy+tulPTjXMYs\n4J9FfcutMpK+KOluSS/mFsNzJI1qdryOrkXN9mtJuiKfz3xJ90var7T+jdY/SePz+/3yZ/CSpDsl\nbSFpM0k35Xr+Q9KE6rWtHLdll0BJ6+V6PZ3LvEPS3qX1NwLrAKcU35fSup1z/ebna/ZjSSNL64dJ\nOk/SPEkzJH21rh5Lu74UYL0h0uzHLWdAjojXIuJjEbE1cCnpH5xTJX1f0m9zwNVsv7MjYmJETFxl\nFWdyNTMzs35jArAa8OdiQUS8BPwN2Llmn98ApwIPkLqlrQ78JgdrV5F+tN4b2DqX8xdJq+d9TwA2\nz+s3BD4NTMvrtsvPn81lFu+bGQ98BHg/8O58rBNL678MfAr4DLATqXfSx1uU9yTwwfx603z8L5TW\n/zepd9Nbgf1rylhIunfclBScbg/8qMUxW12LZs4i9bR6Zz7GEcDsFtsDfBP4Lun6zAYuynX6Wq7f\ncsAPOyijIyOAa4B3AVsClwGXS9oor/8AqTHjf2l8X5C0Oel7d2Xe7wPAVsC5pbK/l8v9ILBrPo+3\nLWZ9+6W+lKZ9hqTVI2J6/sMumpenAWuVtluT9l/oQ4FfAjsCc0h/xH8hfQnMzMzMlgar5ecZleUz\nSIFSOxHxUm7ReC0ini6WS9qFdIO8Sg7SAL4u6b2kse0nk1oy7oiI2/L6J0rlzkoxGrPL5dYYAnwq\nIubkY58NHFBa/wXguxFxWV5/BO3H6pfP6XVJxVCTmRHxTGWTxyLiS60qFBGnl94+Luko4ApJn4yI\ndq2HtLgWNdYBLouIu4o6dbA9wPcj4moASaeSxmh9PSJuyMvOAM7oRDm1cn3uKi06MX/mHwJOiIjn\nJL0OzK18rl8BfhMRpxYLJB0C3ClpVWA+cCDw6Yj4U15/AClYG3D6UgvWlaRmbvLzFaXl+yllDZwA\nrA8UX26Usg3uTQqwhpF+kQhg+SVUbzMzM7P+ZlvSfdOs3KVrXg7ENgPWy9v8GPiIpLtyl7u3L+Kx\nniiCq+wpYFVIXe9IgeMb93a5J9NtLLrbO9pA0i5KWaunSpoLXA4sQyOIrerqtfgBcKykmyWdIGnb\nTtT77tLrIoi+p7JsuKRhnSirKUnDJZ0s6d7cJXMeMBFYu4NdtwX+u/Jd+Wdet15+LAPcXOwQEfMq\n9R8weitN+0WkD2DD/MU+EPgO8C5JDwG75fdExBTgEuBe4I/AYRHxeqm444AT868NfyI1B98DXLCk\nzsfMzMxsCShaFMZWlo8treusQaQb9q0qj43ICcMi4hpSS8z3gDHAVZJ+sQj1frXyPujZe9AXW62U\ntA6pe+R9wH+RgodP59XLNNunq9ciIn5O6tL5C2AD4CZJx3dQ7/J1ihbLimu3kEait8LQDo7xPdI5\nfx14O+kzv42a8y4ZBJxD2+/KlqSGj393sO+A0ytdBCPiozWrdq3Z/kTa9tUtrzuy9HoBqW+vmZmZ\n2dLmMVIg9S7gXwCSliP9uPyVFvu9AgyuLLuDFJgtjIhH63bM3e8uAC6QdA1wkaSDcwa8V5uU2yUR\nMUfS06QxXH+BN5J5bEfroPGV/Lwox59ICiiOLH60Lyd6aFHXVtei2fZTgbOBsyX9D6kr5PGLUN86\ns4CxkpRb/SAFPq28BfhlqTvmcqTWpwdL29R9XzaNiIebFSrpEdL3YUfg0bxsOKlF9JFOn9FSoi91\nETQzMzMbsCSNkLSVpK1I92hr5/drwxtd504H/kfSByRtRppbdB7w6xZFPw6sI2kbSWMkLQtcR+ri\ndYWkPSVNkLSTpG9Kemuuz/9K2lfS+pI2JiU2eLQUUDwO7CpptTxkY1H9ADhK0vslbUhKyrE6rROe\nPZHXv0fSKpJGdOF4D5Gu7xH5vD9KSkJRqxPXorr9DyTtIWnd/HnuQeqN1Z1uBEYDX1XKDnggaSxV\nKw8C78/fhc2BX5GSZ5Q9DrxV0jg1sj1+F9he0k8kbS3pTZL2lvRTeKM74M+B70p6l9LcbOdSCdQk\nnSTp+kU+437CAZaZmZlZ3zARuDM/lidllbuTlNGtcDJwGnAmMIkUiLw7Iua2KPcy4GrgelKrx0dz\nsLYXqdXoZ6Qsg5eQMuQVU968TOpBdBcpGFsBeG+p3C+RsuQ9meu5qL5Hahn6BWn6HQG/AxbU7RAR\n00jp508kdXXsdPKHiLib1Jr0RVLQ8xlSJsNWOroWVYNIGQDvJU0tNINGroFuERH3AYcAB5HGb70L\n+HYHu32RlEju76Rsgrfk12XHkRLMPUL6vhTX7G2kjJB/JV2Hk2ibcOXLpPT5v8vPk0mZKctWpzHG\nb6mlRoviwDNx4sSYNGlSb1fDzMzMuoGk2yNiYsdbWl8n6U7gHxHx+d6ui1lX9aU07WZmZmY2wOSk\nE7uTWkaGkubW2iI/m/U7DrDMzMzMrDctJE0IfAqpa929wJ4R4W5G1i85wDIzMzOzXhMRT5Ky25kt\nFZzkwszMzMzMrJs4wDIzMzMzM+smDrDMzMzMzMy6iQMsMzMzMzOzbrJYAZakwR1vZWZmZmZmNjAs\nbgvWQ5JOkbRJt9TGzMzMzMysH1vcAGtL4EHgHEm3SDpI0shuqJeZmZmZmVm/s1gBVkTMjYifRcTO\nwP8A3wCmSzpf0pu6pYZmZmZmZmb9xGKPwZL0Pkm/A04HTgXWBf4AXN0N9TMzMzMzM+s3/n97dx5v\ndVXvf/z1FjQhB7SISwqhiHbLuaOiqGmW2eRwK691U3G4pOXUJY3U1NIc0vzl0OAYmGTirEUkYg5o\nqKAEDjmjiYgD5ogM8fn9sdb2fNmcA5y99zn7nLPfz8djP/Z3f4f1/ey9xXM+Z631WVXPwQL2As6O\niK0i4tyImBsR1wITKmlQ0vckPSLpYUlXSVpd0rqSJkp6Mj+vk88dJmmGpKmShuR9fSTdKskVEs3M\nzMzMrENVm4QcEBGHRMS9pR2ShgFExFFtbUzSesBRQFNEbAr0APYDRgGTImIIMCm/BhgJfBE4Bjgs\n7zsROD0illT2lszMzMysSNLeku6S9LKk+ZKek3SjpD0qbO/g/IfzhZL+1Ybr+kg6RdLWldx3Oe1G\n4bFE0quSbpL0yQrbG5Tj3LCFY7Mkja46aOu0qk2wzm9h3wVVttkT6CWpJ9AbeJHUSzYmHx8D7J23\nF+VzegOLJA0GBkTEHVXGYGZmZmaApKOAG0gjlw4BvgSclg9/poL2PgpcDNybr/9sGy7vQ5rzX9ME\nKxsNbA/sDPwI2AGYIKlPBW0NIsW5TIIF7AOcWlmI1hX0rOQiSduT/qPrK+n/CofWIvU6VSQiZks6\nB3gemA/cGhG3SuoXEXPyaS8B/fL2GcAV+dz9gXNIPVjLi30EMAJg4MCBlYZqZmZm1ii+D9wYEYcU\n9t0OXFLhlIwhpN8Xx0TE5FoEWCOzI2JK3p4s6U3gSmAP4A+1uklEPFSrtqxzqrQHazVgDVKCtmbh\n8SbwtUqDyXOr9gI2AD4KfFDSt4rnREQAkbenR8TQiNiV9BeCOakZXS3pSkn9KBMRF0dEU0Q09e3b\nt9JQzczMzBrFuqQ/cC+jOCVDUl9JF0l6QtK7kv4p6fd5CkjpnNHAHfnlpDwkb3Th+AhJf5f0Xh6m\nd5mkdfOxQcCz+dRLCkP6hku6QNJcSasW45O0pqS3JJ1Zwft+MD8v9Rd5SUdI+pukeZL+lZcq+lLh\n+C7AX/PLiYU4d8nHZ5W95+H5+FBJYyW9KelFSedLWr3s3htKGp8/35cl/Tx/ZpE/H+sEKurBiog7\ngTsljY6I52oYz2eBZyPiFQBJ15N6yuZK6h8RcyT1B14uXiRJpJ6r/UhDFI8jdc0eBZxQw/jMzMzM\nGs39wIGSngFuiognWjlvXWAh6XeyuUB/0nz5eyR9PCLeIw2Nm0aaZvJdUhJT+r3vzHz++cCxwHqk\noYibStqB9If0/wKuJ41iujnf9+kc4xGk4XfjCjF9E/ggcFEF73tQof2iDUjDCZ8m9cR9BfijpC9E\nxIT8nr4L/JL0u+gD+bpHV3C/3wFXkd7j9sApwOukoYZIWg2YCHwAOJz0uR1KC50bkk7J120QEbNW\n+E6tpiodIviLiDgGuFBSlB+PiD0rjOd5YKik3qRhf7sBU4F3gAOBM/PzTWXXHQCMj4h5+dol+dG7\nwjjMzMzMLDkMuBb4GfAzSa+RftH/bUTcWjopIh4Hjiy9ltQDuIf0+90XgBsi4mlJj+VTHi0Nycu9\nL8cCP46InxTaeAKYDHwlIm6UVBpe90xhOB/AK5LuBL7N0gnWt0lTTp5lxZRrAPQENsvvdwrNiVzp\nfY4sXLAKqQDbxqSkZ0JEvCmplEw9Vhbn8vw+Ik7O27dJ2g74BjnBAoaTRmxtFxH35/v/GZhOWS8b\n6ffgf5NHfVnHqijBImXYkOY81UxE3CfpWlLmvxh4iDQJcg1gnKRDgOeAfUvX5IRqOLB73nUuaQ2u\nhaS/WpiZmZlZhSLiCUlbAcNIv28NJfUU7SfpRxFRKniBpMNJCdlgUs9RySYruM3nSFNXxuYkp+Q+\n4C1S4YkbV9DGr4A/SBoSEU9K2gbYitQjtDKOz4+SWcBnImJR8SRJnwJ+DGwD9AWUDz2+kvdpzZ/K\nXs9k6QIgQ4HnS8kVpKkzkq4DNi9emJPUn2B1UekQwWn5+c7ahgM5cz+5bPcCUm9WS+e/C+xaeH03\n6a8OZmZmZlYDEfFv4K78KFUCnACcLOmXEfG6pCNJw/vOJfVGvU5KmqYAq7fYcLOP5OenWjn+oZUI\n8wbSXLFvkwpzHEaqRn3LSlwLcDnwa1KsuwEnkRK2z+YaAEgaQOqxepTUW/c8qVPgVOA/V/I+rZlX\n9noBaThgyTLTZLK5Vd7XaqzSIYIzWU6XY0Rs3toxMzMzM+vaIuJFSZcC55GqAt5Pmgs/qWwI3QYr\n2eRr+Xl3UmLW2vHlxbQox/QdST/L8fw8IhavZAxzImJq3p6c5/ifTJrjdE3evwewNrBvRLxQujCP\nqGpvc4BPtLB/maJuVl+VDhH8ck2jMDMzM7NOqVRorIVDH8/PpQqDvUkVpYsOWsnbTCTNGxoYEROX\nc96C/NyrleMXkYb5XUPq/blkJe/fkrOA/wVOknRt7sUqJVLvDxuUtDFp+OQLhWtXFGclpgAHSdq2\nMAdLwFdreA+rgUqHCNaycqCZmZmZdV4PS7qNNMf9WdK6p18kDcEbFxHP5/MmAD+QdDypR+szrOTy\nPbn4xVmkAmqbAHcC7wEDSPOzLo2Iv5KGw71Gmv81g1QI7dmIeC23M1vSzaQ5YrdExD8rfdMRMV/S\n6cCFpHlc1wG3kYYEXiHp56Rhez8mDRUsLn/0RD7vYEnzSAnX4xHxVqXxkCoX/gC4XtIJNFcRXCcf\nL5bMP4k0xHGwf2/veBWtgyVpcn5+K9fqX+q5tiGamZmZWR2dQOqJ+QlwK3A1qYz4KGD/wnk/IfUg\nfY80H2pz4PMre5OIOB4YQSpoMY5UNfoHpCGDT+ZzltCcVNxGKoH+lbKmSsP5KinNXu4SUoG1EyUp\nIh4B/gf4GKm64HGkz+GusvfyGqls/BakZPEB4FPVBBIRC0lDKGcAvwHGAP8klYMHeKNw+iqkEvLC\nOpzynL2G1NTUFFOnTl3xiWZmZtbpSZoWEU31jsPqS9JY0pC9DYsLIXdXkv4I/GdEDK53LJZUOgfr\nfZK2BnYkFb2YHBEPreASMzMzM7OakjQU2BL4b+D/umNyJen/gLdJPXprAl8HvkRag8s6iaoSrDy+\n8+ukFbUBRku6prgegpmZmZlZB/gbKfkYQ1oTqztaQBqCOZA0BPBx4NCIuKyuUdlSqhoiKOlxYIuI\neC+/7gVMj4gVLSbXKXiIoJmZWffhIYJm1hlUVOSi4EWWXjjuA8DsKts0MzMzMzPrkipdaPgC0pyr\nN4BHJE3Mrz9HKstpZmZmZmbWcCqdg1UaVzeNVIaz5I6qojEzMzMzM+vCKl1oeEytAzEzMzMzqzlp\nEGmB5GqMIWJ41bFYQ6i2iuAQ4AzgExTmYkXEhlXGZWZmZmZm1uVUW+Tit8CvgcXArsAVwJXVBmVm\nZmZmZtYVVbvQcK+ImCRJEfEccIqkacBJlTYoqQ9wKbApqXDGwaQa/1cDg4BZwL4R8bqkYaQEbyHw\njYh4Ml8/DtijOy4wZ2ZmZmZVmQ3s2MZr3m6PQKx7qjbBWiBpFeBJSUeQ/oNdo8o2zwMmRMTXJK0G\n9AaOByZFxJmSRgGjgB8AI4EvkhKvw/LrE4HTnVyZmZmZWQsWEzGr3kFY91XtEMGjSQnQUcCngP2B\nAyttTNLawM7AZQARsTAi/gXsRVqVm/y8d95elO/fG1gkaTAwICLuqDQGMzMzMzOzSlXVgxURD+TN\nt4GDqg+HDYBXgN9K2oJUBv5ooF9EzMnnvAT0y9tnkOZ9zScld+eQerDMzMzMzMw6XKULDf8iIo6R\ndAtpntRSImLPKuLZGjgyIu6TdB5pOGCx7ZAUeXs6MDTHtDMwJ23qalLv1siImFsW+whgBMDAgQMr\nDNPMzMzMzGxZlfZg/S4/n1OrQLIXgBci4r78+lpSgjVXUv+ImCOpP/By8SJJIvVc7QdcABxHmpd1\nFHBC8dyIuBi4GKCpqWmZ5NDMzMzMzKxSlS40PC0/31nLYCLiJUn/lLRJRDwO7AY8mh8HAmfm55vK\nLj0AGB8R8yT1BpbkR+9axmdmZmZmZrY8lQ4RnEkLQwMBkUbxbV5FTEcCY3MFwWdIc7tWAcZJOgR4\nDti3EEtvYDiwe951LjCeVLr9m1XEYWZmZmZm1iaVDhH8ck2jKMjzqppaOLRbK+e/S1rkuPT6bmCz\n9onOzMzMzMysdRWVaY+I50qPvGtI3n4ZmFez6MzMzMzMautjSNGGx/B6B2xdS1XrYEn6X1Ihiovy\nrvWBG6sNyszMzMzMrCuqdqHh7wLDgDcBIuJJ4CPVBmVmZmZmZtYVVbXQMLAgIhamKukgqSctF78w\nMzMzM+sMZgM7tuH8V9srEOueqk2w7pR0PNBL0ueA7wC3VB+WmZmZmVm7WEzErHoHYd1XtUMERwGv\nADOBb5PKo59YbVBmZmZmZmZdUVU9WBGxBLgkPwCQNAy4p8q4zMzMzMzMupxKFxruQVrsdz1gQkQ8\nLOnLwPFAL2Cr2oVoZmZmZmbWNVTag3UZMAC4Hzhf0oukxYFHRYTLtJuZmZmZWUOqNMFqAjaPiCWS\nVgdeAgZHxGu1C83MzMzMzKxrqbTIxcI8/4qIeA94xsmVmZmZmZk1ukp7sD4uaUbeFjA4vxYQEbF5\nTaIzMzMzMzPrQipNsP6zplGYmZmZmZl1AxUlWBHxXK0DMTMzMzMz6+qqXWjYzMzMzMzMsk6ZYEnq\nIekhSX/Mr9eVNFHSk/l5nbx/mKQZkqZKGpL39ZF0q6RO+d7MzMzMzKz7qigJkTQpP59V23DedzTw\nWOH1KGBSRAwBJuXXACOBLwLHAIflfScCp5eqHJqZmZmZmXWUSnt5+kvaAdhT0laSti4+qglI0vrA\nl4BLC7v3Asbk7THA3nl7EdA7PxZJGgwMiIg7qonBzMzMzMysEpVWETwJ+BGwPnBu2bEAPlNFTL8A\njgPWLOzrFxFz8vZLQL+8fQZwBTAf2B84h9SD1SpJI4ARAAMHDqwiTDMzMzPr9CJmkZYSMusQlVYR\nvBa4VtKPIuLUWgUj6cvAyxExTdIurdw7JEXeng4MzdfuDMxJm7qa1Ls1MiLmll1/MXAxQFNTU9Qq\ndjMzMzMzs0p7sACIiFMl7QnsnHfdERF/rKLJYaRhh18EVgfWknQlMFdS/4iYI6k/8HLxIkki9Vzt\nB1xA6gEbBBwFnFBFPGZmZmZmZiutqkp7ks4gFaR4ND+OlnR6pe1FxA8jYv2IGERKlm6PiG8BNwMH\n5tMOBG4qu/QAYHxEzCPNx1qSH70rjcXMzMzMzKytqurBIhWj2LJUsU/SGOAh4PhqAytzJjBO0iHA\nc8C+pQOSegPDgd3zrnOB8cBC4Js1jsPMzMzMzKxV1SZYAH2AeXl77Rq0B0CuBHhH3n4N2K2V894F\ndi28vhvYrFZxmJmZmZmZraxqE6wzgIck/ZVUnWVnmteoMjMzMzMzayhVzcGKiKtIVfyuB64Dto+I\nq2sRmJmZmZnVjqThkqLwWCjpaUmnS1q9wjZPKVV3LuwLSadU0NZoSS+sxHml9zGosG+WpNErOOcU\nSdUsJdRSLLPKPtN/SZooaccK2+uT41xmXVlJd0i6o+qgrd1VPUQwr091cw1iMTMzM7P293XgBdKa\no/sAP8zbR9ao/e1z++3lT/kec9p4zsnAT4HbaxzPX4BTSB0XQ/J9xkvaPNIaXG3RJ1//AvBg2bHv\nVBemdZRazMEyMzMzs65jekQ8lbcnShoCHCzp6FLhsmpExJRq21hB+68Ar1R7Tg29WnjP90p6CphM\nqoh9Zq1uEhGP1qota19VDRE0MzMzsy7vQdLSNh8u7pS0gaSxkl6RtEDSdEn7rKix8iGCkjaS9DtJ\nz0qaL+kZSb+WtE4r1+8g6QFJ7+UheEeWHV9m+F8LbSx1TmEY4wmF4XynSBqZ31vfsuuV4/zDit5v\nC0o9TwPL2txP0u3583xb0kOSDiwcHwQ8m19eUohzeD6+1BBBSbvk43tKulDSq/lxpaQ+ZffuK+kq\nSW9Kel3Sb/N1IWmXCt6jLUfVCZakHSUdlLf7Stqg+rDMzMzMrIMMAt4AXivtkDQAuA/YAvgesCcp\ncbhO0p5tbP+jwIvASGAP4Cek6tDjWzh3LeBqYAywN6mi9PmlJKMK2+fn0Xl7e+BS4LektVMPKjt/\nd2AD4DcV3GtQfn66bP9g4EZgf9J7uwW4VNJh+fgc4L/y9hmFOP+0gvudBwRpeaIfA1/N+4quB75A\nGg66H7AIuKC8oUJiussK7mnLUdUQQUknA03AJqT/QFcFrgSGVR+amZmZmbWDHpJ60jwH66vAMRHx\n78I5p5AqRH86L5cD8JeceP2ENsy/j4i7gLtKryXdAzwF3C1pq4h4qHD6msCIiCj1HE2QtB7wY0lj\nImKpghptiGGKJIDZ5UMYJV0NjJB0dqH9bwP/yMsGrYjy57kKsBHwa+BJ4PKyGH5auGAVUvLYHzgc\n+E1ELJBU+iyeacNQy7siotTLd6ukTYBDJQ2PiJC0O7Aj8N8RMS6f9xdJN1PWy0ZKNv9NStisQtX2\nYO1D+ovGOwAR8SLpH4aZmZmZdU7/IPVgzAMuAy6KiAvLztmD1MP0hqSepQepoMMWktZa2ZtJWk3S\n8ZL+IWl+vvfd+fAmZaf/m1SZuugPpERgvZW9Zxv9itS7tFuOtz/wFeDilbz+m6T3tAB4BNgU+EpE\nvF48SdKQPExvdj5/EXAoy34GbVXewzUT+ADQL78eSvpcbyg779ryhiLiiojoGRF3VhlTQ6s2wVqY\nM/0AkPTB6kMyMzMzs3a0D7AN8EXgNuA7kg4oO+cjwAE0JwKlx9n5+IfacL8zSD1iVwJfAraleShc\neXn41yNiUdm+ufm5XRKsiLgfmAaUhuodCiwmDVNcGX8mfZ47AMcAvYDrVSh9L2kNYCJpyOUoYKd8\nzeWkZKga88peL8jPpfv3Z/mfq9VYtVUEx0m6COgj6X+Bg0njWc3MzMysc3q4VEVQ0u3ADOBsSddF\nxDv5nNdIvUxntdLGi224337AFRFxWmlHTjhaso6kVcuSgVJPzOw23LOtfgVclIcjHgpcExHliUtr\n5kXE1Lz9N0lvkKbOHElzQro98DFgp4iYXLow9wq2tzks/3O1Gqt2oeFzSN2L15G6N0+KiPNrEZiZ\nmZmZta+IWAAcS+qxKq6zNAHYHHgkIqa28FjQUnut6E3q/SoqLypR0oM0J6xoP+B5qk+wFpJ6l1py\nFfAW8HvScMRKiluUjCEVBDlWUu+8r/T8/ueQqyjuVXZt6XNtLc5KTCF9ruUVIL9ew3tYQbVFLs6K\niB+QujzL95mZmZlZJxcRN0t6ABgp6cKImA+cBNwP3CXpQmAWsA5pftGGEXFwG24xAThQ0kxScYv/\nIg2na8lbwM8kfZhUKOIbwGeB4ZUWuCh4FPiSpAnA68CLuX4AETFf0mhSxcSZEXFvpTfJhSVOAv5I\nKmDxc+Be4E3gl7lI3AeBE4FXgbULl88l9R7uJ2kGqc7Bs4VCI5XEc2suLHJx/lyfAr5GGq4IqbAF\nAHmo6OXAbp6HVblq52B9roV9X6iyTTMzMzPrWCeShowdBhARz5MqRf8dOJ30x/RfA58Gbm9j20eS\nqg7+lFSCfU1S4tSSN0k9VgcCNwG7AkdHxMrOh1qeI0gJyy3AA8CIsuPX5OeLqr1RRPwJ+BvwfUm9\n8sLH+5B6kq4lzUu7lDQvrXjdEtIQxXVI8+MeIBXcqNY+pET3LGBYMQlUAAAN90lEQVQcaX7Wj/Kx\nNwrnrZJjVA3u2bBUyR8DJB1O6kbekKVr/K8J3BMR36pNeO2rqakppk6duuITzczMrNOTNC0imuod\nh3VNkn4KHA18NCLerHc87S33TB4ErNvGIZ+2ApUOEfw9qWLKGaRKKCVvtWFCoJmZmZlZXUnailRL\n4Gjg4u6YXOWFmtcmlZFfjVSG/3DgbCdXtVfREMGIeCMiZkXENyLiOWA+qVT7GpLKFyxbaZIGSPqr\npEclPSLp6Lx/XUkTJT2Zn9fJ+4dJmiFpqqQheV8fSbfmBdzMzMzMzJbnBlLVv9uAk+scS3t5h9Rb\ndQNwI/B54Pj8sBqrtsjFV4BzgY8CL5PKTz4GfLLCJhcDIyPiQUlrAtMkTQSGA5Mi4kxJo0i9Zj8A\nRpLWcBhEGjM8kjSG+PQ8htXMzMzMrFURMajeMbS3iLiG5jlm1s6q7eU5jbQ69BMRsQFpBewplTYW\nEXMi4sG8/RYpWVuPVMKyNLlxDLB33l5EKnvZG1gkaTAwICLuqDQGMzMzMzOzSlW7uNmiiHhN0iqS\nVomIv0r6RS0CkzQI2Aq4D+gXEXPyoZdoXhjtDOAK0hDF/YFzSD1Yy2t3BLlqzMCBFY9mNDMzMzMz\nW0a1PVj/yitx3wWMlXQeaYxnVXKb1wHHlE80zGsgRN6eHhFDI2JXUkXDOelyXS3pSknLrFAdERdH\nRFNENPXt27faUM3MzMysM5MGIUWVj9H1fhvWdVSbYO0FvEtalG0CqWR7VbX6Ja1KSq7GRsT1efdc\nSf3z8f6k+V7Fa0TquTqVNDnxOOAS4KhqYjEzMzMzM2uLqhKsiHgnIpZExOK8ANyFpLKPFcmJ0mXA\nYxFxbuHQzaQF56B54bmiA4DxuUR8b9KK1EvytpmZmZmZWYeoaA6WpLWA75IKUNxMWt37u8D3SSt+\nj60wnmGkuVQzJU3P+44HzgTGSToEeA7YtxBLb1KVwd3zrnOB8cBC4JsVxmFmZmZm3dNsYMc2XvN2\newRi3VOlRS5+B7wO/A04lJQECdg7IqYv78LliYjJuZ2W7NbKNe8CuxZe3w1sVmkMZmZmZtatLSZi\nVr2DsO6r0gRrw4jYDEDSpaTiEgMj4r2aRWZmZmZmZtbFVDoHa1FpIyL+Dbzg5MrMzMzMzBpdpT1Y\nW0gqlU8X0Cu/FqmS+lo1ic7MzMzMzKwLqSjBiogetQ7EzMzMzMysq6t2HSwzMzMzMzPLKh0i2C08\n/jjsvHO9o7CSHj1giy1gp51gxx2hX796R2RmZmZm1jYNnWBJ0LOhP4HOZf58uOgiOO+89HrIkJRs\nlRKuwYPTd2ZmZmZm1lk1dHqx8cZw++31jsKKFi6EBx+Eu+9OjxtugMsvT8f+4z+ak62ddoLNN0+9\nXmZmZmZt8DGkaMP5BxExur2Cse6noRMs63xWWw2GDk2PY4+FJUvgscdSsjV5cnq+5pp07pprwg47\nNCdd224LvXrVN34zMzMza2xOsKxTW2UV+OQn0+Oww9K+559vTrbuvhtOPDHtX3VV2Gab5h6uYcNg\nnXXqF7uZmZmZNR5FtKWHtHtpamqKqVOn1jsMq9K8eXDPPc1J19SpsCgvhb3ppkvP4xowoL6xmplZ\n+5E0LSKa6h2HdTLSIODZwp7ZwI5taOFVIt6uZUjWvTnBcoLV7bz7LjzwQHMP1733wtv5f4sf+1hz\nD9dOO8HHP556yczMrOtzgmUtWjbBeo6IQXWJxRqChwhat9O7N3z60+kBsHgxzJjR3MN1220wdmw6\n9qEPpaGEpR6urbdO88DMzMzMzCrhBMu6vZ49U+K09dZw1FEQAU8/3dzDNXky3HxzOrdXL9huu+Ye\nrqFDUzENMzMzM7OV4QTLGo4EG22UHgcdlPa99FJKtEq9XD/9aapg2KMHbLllcw+XF0A2MzMzs+Xp\nMnOwJO0BnAf0AC6NiDMlnQV8AZgeEQfk874FfDgifrGiNj0Hy1rz5pswZUpzD9eUKfDee+nYxhsv\nPY9rww29ALKZWWfgOVjWIs/Bsg7WJXqwJPUAfgl8DngBeEDSn4GtI2JzSZdK2gx4CjgI2KN+0Vp3\nsNZasPvu6QFpAeRp05p7uIoLIPfv39y75QWQzczMzBpbl0iwgG2BpyLiGQBJfwD2BFaVJKA3sAj4\nPnBBRCyqW6TWLa22Gmy/fXqsaAHkNdaAPn3qG6+ZmZmZ1UdXSbDWA/5ZeP0CsB0wHngImAS8AWwX\nEacuryFJI4ARAAMHDmyXYK37W94CyFOmwDvv1Dc+M7NGVBpZYGZWT11iDpakrwF7RMSh+fX+pGTq\niMI5lwK/ArYGdgdmRMRpy2vXc7DMzMy6D8/BshZ5DpZ1sK6yxOpsYEDh9fp5HwCStgIEPA58PSL2\nBQZLGtKhUZqZmZmZWUPrKgnWA8AQSRtIWg3YD7i5cPxU4EfAqqQqgwBLSHOzzMzMzMzMOkSXmIMV\nEYslHQH8hZRAXR4RjwBI2huYGhEv5tfTJc0kDRH8e92CNjMzMzOzhtMlEiyAiBhPKmpRvv9G4MbC\n6++TqgmamZmZmZl1qC5R5KK9SHqLNG/LOo8PA6/WOwh7n7+PzsXfR+fi76Pz2SQi1qx3ENbJuMiF\ndbAu04PVTh53taHORdJUfyedh7+PzsXfR+fi76PzkeTSwLasiFmkYmhmHaKrFLkwMzMzMzPr9Jxg\nmZmZmZmZ1UijJ1gX1zsAW4a/k87F30fn4u+jc/H30fn4OzGzumvoIhdmZmZmZma11Og9WGZmZmZm\nZjXjBMvMzMzMzKxGGibBknS5pJclPVzYt66kiZKezM/r1DPGRtLK93G2pH9ImiHpBkl96hljo2np\nOykcGykpJH24HrE1ota+D0lH5n8nj0j6Wb3iazSt/D9rS0lTJE2XNFXStvWMsZFIGiDpr5Iezf8W\njs77/XPdzOquYRIsYDSwR9m+UcCkiBgCTMqvrWOMZtnvYyKwaURsDjwB/LCjg2pwo1n2O0HSAGB3\n4PmODqjBjabs+5C0K7AXsEVEfBI4pw5xNarRLPvv42fAjyNiS+Ck/No6xmJgZER8AhgKfFfSJ/DP\ndTPrBBomwYqIu4B5Zbv3Asbk7THA3h0aVANr6fuIiFsjYnF+OQVYv8MDa2Ct/BsB+H/AcYAr4nSg\nVr6Pw4EzI2JBPuflDg+sQbXyfQSwVt5eG3ixQ4NqYBExJyIezNtvAY8B6+Gf62bWCTRMgtWKfhEx\nJ2+/BPSrZzC2lIOBP9c7iEYnaS9gdkT8vd6xGAAbAztJuk/SnZK2qXdADe4Y4GxJ/yT1JrrXvQ4k\nDQK2Au7DP9fNrBNo9ATrfZHq1fsv9J2ApBNIwz/G1juWRiapN3A8aeiTdQ49gXVJQ6KOBcZJUn1D\namiHA9+LiAHA94DL6hxPw5G0BnAdcExEvFk85p/rZlYvjZ5gzZXUHyA/e7hNnUkaDnwZ+J/wIm31\nNhjYAPi7pFmkIZsPSvqPukbV2F4Aro/kfmAJ4MIj9XMgcH3evgZwkYsOJGlVUnI1NiJK34N/rptZ\n3TV6gnUz6Qck+fmmOsbS8CTtQZrrs2dEvFvveBpdRMyMiI9ExKCIGET65X7riHipzqE1shuBXQEk\nbQysBrxa14ga24vAp/P2Z4An6xhLQ8k9t5cBj0XEuYVD/rluZnWnRukkkHQVsAvpr71zgZNJv6yM\nAwYCzwH7RkRLk/ytxlr5Pn4IfAB4LZ82JSIOq0uADail7yQiLiscnwU0RYR/oe8Arfwb+R1wObAl\nsBD4fkTcXq8YG0kr38fjwHmkoZvvAd+JiGn1irGRSNoRuBuYSerJhTSk+T78c93M6qxhEiwzMzMz\nM7P21uhDBM3MzMzMzGrGCZaZmZmZmVmNOMEyMzMzMzOrESdYZmZmZmZmNeIEy8zMzMzMrEacYJlZ\nu5L0IUnT8+MlSbMLr1crO/cvktZcQXsvSOrTyv6rC6/3k3Rpjd7DaZKOqUVbZmZm1r31rHcAZta9\nRcRrpHWbkHQK8HZEnFM8Jy8aqoj4fJW3207SJhHxeJXt1EzhvS1Z4clmZmbW5bkHy8zqQtJGkh6V\nNBZ4BOhf7J2SdIukaZIekXToSjb7c9Jio+X3WqoHStI/JK2fY3hY0u8kPSHpCkmfl3SvpCclNRWa\n2UrSlLz/4EJboyTdL2mGpJNae29t/oDMzMysS3IPlpnV08eBAyJiKkDq7HnfgRExT1JvYKqk6yLi\n9RW0dxVwhKQN2hDDJsC+wD+AB4H3ImIHSV8FRgFfy+dtBuwArAU8KOlPwKeAgcB2gIDxknYAXi5/\nb2ZmZtYY3INlZvX09HISkO9J+jvwN2B9YPBKtLeY1Is1qg0xPBURj+YhfI8Ck/L+mcCgwnk3RsR7\nEfEycBewDbA78AXgIVJythGwcT5/ee/NzMzMuin3YJlZPb3T0k5JnwV2BoZGxHxJk4HVV7LN0cBx\nwBOFfYtZ+g9KxbYWFLaXFF4vYen/R0bZfYLUa3VaRFxWFv9GtPLezMzMrHtzD5aZdUZrA/NycvVJ\nUm/RSomIhcD5wNGF3bNIw/mQtC0woIKY9pb0AUl9gZ2AqcBfgEMkfTC3vb6kD1fQtpmZmXUTTrDM\nrDP6E9Bb0qPAacB9bbz+EqBYAv4aoJ+kh4ERwDMVxPQwcCdwL3ByRMyNiPHAtcAUSTOBccAaFbRt\nZmZm3YQiyke9mJmZmZmZWSXcg2VmZmZmZlYjTrDMzMzMzMxqxAmWmZmZmZlZjTjBMjMzMzMzqxEn\nWGZmZmZmZjXiBMvMzMzMzKxGnGCZmZmZmZnVyP8HfU4u7i7hS2QAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_no-learning' log file from the initial simulation results\n", + "vs.plot_trials('sim_no-learning.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "Using the visualization above that was produced from your initial simulation, provide an analysis and make several observations about the driving agent. Be sure that you are making at least one observation about each panel present in the visualization. Some things you could consider:\n", + "- *How frequently is the driving agent making bad decisions? How many of those bad decisions cause accidents?*\n", + "- *Given that the agent is driving randomly, does the rate of reliabilty make sense?*\n", + "- *What kind of rewards is the agent receiving for its actions? Do the rewards suggest it has been penalized heavily?*\n", + "- *As the number of trials increases, does the outcome of results change significantly?*\n", + "- *Would this Smartcab be considered safe and/or reliable for its passengers? Why or why not?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "The agent has almost 40% bad actions, with more violations than accidents as would be expected from a random agent. It does not learn from mistakes, so the rates dont improve but fluctuate randomly. The reliability rate is about 10%, but given it is driving randomly you would expect this as it does not chose its action based on a destination. The average rolling rewards are negative, due to the high number of bad actions committed and inability to learn, so it also doesnt improve over trials. The rewards suggest it is not penalised heavily on average, so not actively seeking out accidents, but rewards are still consistently negative. The number of trials does not affect the outcome - as expected, as no learning is happening. The only visible change across trials seems like random fluctuation. This smartcab is not safe or reliable, as it cannot learn, and thus gets safety and reliability ratings of F." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Inform the Driving Agent - Learning policies\n", + "The second step to creating an optimized Q-learning driving agent is defining a set of states that the agent can occupy in the environment. Depending on the input, sensory data, and additional variables available to the driving agent, a set of states can be defined for the agent so that it can eventually *learn* what action it should take when occupying a state. The condition of `'if state then action'` for each state is called a **policy**, and is ultimately what the driving agent is expected to learn. Without defining states, the driving agent would never understand which action is most optimal -- or even what environmental variables and conditions it cares about!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Identify States\n", + "Inspecting the `'build_state()'` agent function shows that the driving agent is given the following data from the environment:\n", + "- `'waypoint'`, which is the direction the *Smartcab* should drive leading to the destination, relative to the *Smartcab*'s heading.\n", + "- `'inputs'`, which is the sensor data from the *Smartcab*. It includes \n", + " - `'light'`, the color of the light.\n", + " - `'left'`, the intended direction of travel for a vehicle to the *Smartcab*'s left. Returns `None` if no vehicle is present.\n", + " - `'right'`, the intended direction of travel for a vehicle to the *Smartcab*'s right. Returns `None` if no vehicle is present.\n", + " - `'oncoming'`, the intended direction of travel for a vehicle across the intersection from the *Smartcab*. Returns `None` if no vehicle is present.\n", + "- `'deadline'`, which is the number of actions remaining for the *Smartcab* to reach the destination before running out of time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Which features available to the agent are most relevant for learning both **safety** and **efficiency**? Why are these features appropriate for modeling the *Smartcab* in the environment? If you did not choose some features, why are those features* not *appropriate?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "Safety: most relevant are light and oncoming, given that respecting traffic lights avoids accidents and the direction of ongoing traffic affects whether you can turn left on green or not. I dont need waypoint as direction of travel is irrelevant for safety, and dont need left and right as this is handled by the color of the light. Also dont need deadline, unless you allow for reckless actions in order to meet a deadline.\n", + "\n", + "Efficiency: most relevant are deadline, waypoint as efficiency depends on how much time is left, and if the next waypoint is an efficient step towards the destination. Anything in inputs doesnt matter, as they dont impact the time to destination. One exception is oncoming, as if it is none you can turn left immediately, else have to wait one timestep.\n", + "\n", + "Interestingly, after running simulations, it seems removing deadline as a state variable reducing the variance in my reliability estimates. It also makes it easier to check states, as there are a lot less. It should also be noted that including the deadline could lead to the agent making illegal moves to meet the deadline, like running over a red light, however removing deadline ensures good behaviour after only 100 trials!\n", + "\n", + "Including right and left would lead to an increase in state space, making it harder to interpret state action reward tuples. The edge case with left is if cars on your left go straight, and you turn right on a red light, which is allowed. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a State Space\n", + "When defining a set of states that the agent can occupy, it is necessary to consider the *size* of the state space. That is to say, if you expect the driving agent to learn a **policy** for each state, you would need to have an optimal action for *every* state the agent can occupy. If the number of all possible states is very large, it might be the case that the driving agent never learns what to do in some states, which can lead to uninformed decisions. For example, consider a case where the following features are used to define the state of the *Smartcab*:\n", + "\n", + "`('is_raining', 'is_foggy', 'is_red_light', 'turn_left', 'no_traffic', 'previous_turn_left', 'time_of_day')`.\n", + "\n", + "How frequently would the agent occupy a state like `(False, True, True, True, False, False, '3AM')`? Without a near-infinite amount of time for training, it's doubtful the agent would ever learn the proper action!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5\n", + "*If a state is defined using the features you've selected from **Question 4**, what would be the size of the state space? Given what you know about the evironment and how it is simulated, do you think the driving agent could learn a policy for each possible state within a reasonable number of training trials?* \n", + "**Hint:** Consider the *combinations* of features to calculate the total number of states!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The state space would be: 2 (for light) * 4 (for oncoming direction) * 3 (for next waypoints) * 2 (for left=forward). I think the agent could learn policies for each state in a reasonable numer of trails. \n", + "\n", + "Thus a total of 48 states.\n", + "\n", + "To see if how long it takes to learn 48 states, you can run Monte Carlo, see below." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import random\n", + "\n", + "def percent_visited(steps, states):\n", + " visited = np.zeros(states, dtype=bool)\n", + " for _ in range(steps):\n", + " current_state = random.randint(0, states-1) # random visiting\n", + " visited[current_state] = True # add to visited list\n", + " return sum(visited)/float(states) # return share" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH2FJREFUeJzt3Xt4VPW97/H3l4SbgNySVuUi4EZbQEQNN61FbBWstepW\nKmoV7W45SEX7nKebevSU3vCotbv11BsP7aFo6y4qWrWWbt3WawuoQUFuoiGhENSaBAm5kJDL9/wx\nK2GSTJIhTDKZNZ/X8+RxZs1vZr5ZEz/85rfW+v3M3RERkXDpkewCREQk8RTuIiIhpHAXEQkhhbuI\nSAgp3EVEQkjhLiISQgp3EZEQUriLiISQwl1EJIQyk/XGWVlZPmrUqGS9vYhIStqwYUOxu2e31y5p\n4T5q1Chyc3OT9fYiIinJzP4RTzsNy4iIhJDCXUQkhBTuIiIhpHAXEQkhhbuISAi1G+5mtsLMPjGz\nLa08bmb2KzPLM7N3zeyMxJcpIiJHIp6e+0pgdhuPXwiMDX7mAw8dfVkiInI02j3P3d1fM7NRbTS5\nBHjEI+v1rTezQWZ2vLt/lKAaU5a78+ymD9n5SXmySxGRbiRn1BC+eHK71yEdlURcxDQM2BN1vzDY\n1iLczWw+kd49I0eOTMBbd1+Fn1Zy65Ob+VteMQBmSS5IRLqNBTNOSolwj5u7LweWA+Tk5IRyZe76\neuc/39zNnWu2A3DHZRO4espITOkuIl0oEeG+FxgRdX94sC3t7NlXyfeffJe1O0v4wr9kcdflpzJ8\n8DHJLktE0lAiwv1Z4CYzWwVMBUrDOt5+8FAdz2/9mOrauhaPfXKgmode3UkPM+7811OZO3mEeusi\nkjTthruZ/QE4F8gys0Lgh0BPAHdfBqwBvgLkAZXADZ1VbDK9WbCPxas3saukstU254zN4q7LJzJs\nUN8urExEpKV4zpa5qp3HHfhOwirqZioP1fKz/9rBw+t2MXxwXx7+5hTGfqZ/i3YZPYzPDOit3rqI\ndAtJm/I3FazPL2Hx6nfZva+S688axb/POoV+vbXLRKT7U1LFcPBQHXf+ZTuPrPsHJw49hsfmT2Pq\nmKHJLktEJG4K9xjuWLONR9/YzTfPHs2/zzqFvr0ykl2SiMgRUbg3s3f/QR57aw9XTxnJkovHJbsc\nEZEO0ayQzTzwch4A35n5L0muRESk4xTuUQo/reSJ3D1cOXkEJ+h0RhFJYQr3KA+8nIdh6rWLSMpT\nuAf27KvkidxC5k4ZwfED1WsXkdSmcA888HIePcy48dyTkl2KiMhRU7gT6bWv3lDIVeq1i0hIKNyB\n+1/Ko0cP48ZzNdYuIuGQ9uG+u6SS1W8XcvWUkRw3sE+yyxERSYi0D/f7XvqAzB4aaxeRcEnrcN9V\nXMFT7+zl6qkj+eyx6rWLSHikdbj/+vX8SK99hnrtIhIuaR3u7+zez/SThvIZ9dpFJGTSNtzdnYLi\nCsZktVx4Q0Qk1aVtuH98oIqDNXWMzu6X7FJERBIubcM9v6gCgJOyFO4iEj7pG+7FkXBXz11Ewih9\nw72onGN6ZXCcDqaKSAilcbhXMDqrH2aW7FJERBIubcO9oDgS7iIiYZSW4V5dW0fhp5WMydZpkCIS\nTmkZ7rtLKql3OEkHU0UkpNIy3HcGp0FqWEZEwiotwz2/uBxQuItIeKVluBcUVZA9oDcD+vRMdiki\nIp0iLcM9v7iCMeq1i0iIpWe4F5XrTBkRCbW4wt3MZpvZDjPLM7NbYzw+0Mz+ZGabzGyrmd2Q+FIT\n49OKQ3xaWaOeu4iEWrvhbmYZwAPAhcA44CozG9es2XeAbe5+GnAu8B9m1ivBtSZEw5wyY3QapIiE\nWDw99ylAnrvnu/shYBVwSbM2DgywyLX8/YF9QG1CK02QgsZw17CMiIRXPOE+DNgTdb8w2BbtfuDz\nwIfAZuAWd69PSIUJll9UTmYPY/jgvskuRUSk0yTqgOosYCNwAjAJuN/Mjm3eyMzmm1mumeUWFRUl\n6K2PTH5RBSOHHkPPjLQ8liwiaSKehNsLjIi6PzzYFu0G4CmPyAMKgM81fyF3X+7uOe6ek52d3dGa\nj0qBToMUkTQQT7i/BYw1s9HBQdK5wLPN2uwGvgRgZp8FTgHyE1loItTVOwUlFRpvF5HQy2yvgbvX\nmtlNwPNABrDC3bea2YLg8WXAT4GVZrYZMOD77l7ciXV3yIf7D3Kotl49dxEJvXbDHcDd1wBrmm1b\nFnX7Q+CCxJaWeI1L6yncRSTk0uqoYn5RZMIwDcuISNilVbgXFFcwoE8mWf275fVVIiIJk1bhnl8U\nOVNG66aKSNilWbhrwjARSQ9pE+4HD9XxYWmVDqaKSFpIm3Av0IRhIpJG0i/cszQsIyLhlzbh3nAa\n5KisY5JciYhI50ufcC+u4ISBfTimV1zXbYmIpLS0CnedKSMi6SItwt3dyS8q15kyIpI20iLci8sP\nUVZVqzNlRCRtpEW4F2jCMBFJM2kR7g1nypykMXcRSRNpEe4FxRX0yuzBCYO0bqqIpIe0CPedRRWM\nGnoMGT00YZiIpIe0CPf84nJdmSoiaSX04V5aWUNBcQWfP/7YZJciItJlQh/ubxSU4A7TxgxJdiki\nIl0m9OG+Pn8fvTN7MGnkoGSXIiLSZdIg3Es488TB9M7MSHYpIiJdJtThvr/yENs/PsC0MUOTXYqI\nSJcKdbi/UbAPd5h+ksJdRNJLqMN93c4S+vTswcThA5NdiohIlwp1uGu8XUTSVWjD/dOKQ7z3cRnT\nNd4uImkotOH+RkEJgA6mikhaCm24r8/fR9+eGUwcrvPbRST9hDjcS8gZNZhemaH9FUVEWhXK5Csp\nr+a9j8s0JCMiaSuU4f5mwT5A88mISPqKK9zNbLaZ7TCzPDO7tZU255rZRjPbamavJrbMI7M+v0Tj\n7SKS1jLba2BmGcADwPlAIfCWmT3r7tui2gwCHgRmu/tuM/tMZxUcj3XBeHvPjFB+MRERaVc86TcF\nyHP3fHc/BKwCLmnW5mrgKXffDeDunyS2zPgVl1fz/j/LNeWAiKS1eMJ9GLAn6n5hsC3aycBgM3vF\nzDaY2XWxXsjM5ptZrpnlFhUVdazidhweb1e4i0j6StS4RSZwJnARMAv4gZmd3LyRuy939xx3z8nO\nzk7QWze1bmcJx/TK4NRhmk9GRNJXu2PuwF5gRNT94cG2aIVAibtXABVm9hpwGvB+Qqo8AuvzS5g8\naojG20UkrcWTgG8BY81stJn1AuYCzzZr8wzwBTPLNLNjgKnA9sSW2r7i8mo++KRcQzIikvba7bm7\ne62Z3QQ8D2QAK9x9q5ktCB5f5u7bzey/gHeBeuA37r6lMwuPZX1+w3wyOr9dRNJbPMMyuPsaYE2z\nbcua3b8HuCdxpR259fkl9NN4u4hIuK5QXbezhMmjh5Cp8XYRSXOhScF9FYfYWVTB1NEabxcRCU24\nF5dXAzBiSN8kVyIiknyhCfeyqhoA+veO6zCCiEiohSjcawEY0EfhLiISmnAvr24I955JrkREJPnC\nE+5Bz13DMiIiIQr3hmGZ/hqWEREJUbgHwzL9eyncRURCE+7lVbX0751Jjx6W7FJERJIuNOFeVlWj\n8XYRkUBowr28ulanQYqIBEIV7jqYKiISEZpwPxCMuYuISIjCvbyqRsMyIiKB8IR7dS0DeuvqVBER\nCFO4V2nMXUSkQSjCva7eqThUpzF3EZFAKML98KRhCncREVC4i4iEUijC/fBCHTqgKiICIQn3ci3U\nISLSRCjCvXFGSIW7iAgQknBv7LnrbBkRESAk4a6FOkREmgpFuJdXRw6oav1UEZGIcIR7VS1mcEzP\njGSXIiLSLYQi3A9U1dK/l1ZhEhFpEIpw10IdIiJNhSPcNWmYiEgTcYW7mc02sx1mlmdmt7bRbrKZ\n1ZrZFYkrsX1l1Vo/VUQkWrvhbmYZwAPAhcA44CozG9dKu7uBFxJdZHvKq2p1poyISJR4eu5TgDx3\nz3f3Q8Aq4JIY7RYBTwKfJLC+uJRp/VQRkSbiCfdhwJ6o+4XBtkZmNgy4DHgocaXFr7yqVleniohE\nSdQB1XuB77t7fVuNzGy+meWaWW5RUVGC3jpyharG3EVEDosnEfcCI6LuDw+2RcsBVpkZQBbwFTOr\ndfenoxu5+3JgOUBOTo53tOhotXX1HKyp05i7iEiUeML9LWCsmY0mEupzgaujG7j76IbbZrYSeK55\nsHeWiuo6QPPKiIhEazcR3b3WzG4CngcygBXuvtXMFgSPL+vkGtt0IFioQ2PuIiKHxZWI7r4GWNNs\nW8xQd/frj76s+GmJPRGRllL+CtVyLdQhItJC6od7w1zuGpYREWmU8uHeOOaus2VERBqlfLhrzF1E\npKXUD3cNy4iItJDy4V5WVUsPg2N6aRUmEZEGKR/u5dWRqQeCq2NFRIQQhHuZpvsVEWkhBOGuhTpE\nRJpL+XDX+qkiIi2FItx1daqISFOpH+6ay11EpIWUD/cDOqAqItJCyod7eXWNxtxFRJpJ6XCvqaun\nqqZewzIiIs2kdLg3TD2gnruISFOpHe7VmldGRCSWlA73MvXcRURiSulwP9xz19kyIiLRUjrcyxoX\n6lDPXUQkWkqHu9ZPFRGJLaXDvXHMXQdURUSaCEe46wpVEZEmUjrcy6tryOhh9OmZ0r+GiEjCpXQq\nNkwaplWYRESaSulwL9Nc7iIiMaV2uGu6XxGRmFI63Mur1HMXEYkltcO9Wj13EZFYUjrcy6pqdBqk\niEgMKR3uWj9VRCS2uMLdzGab2Q4zyzOzW2M8fo2ZvWtmm81srZmdlvhSWyqrqtXVqSIiMbQb7maW\nATwAXAiMA64ys3HNmhUAM9z9VOCnwPJEF9rcodp6qmvrdUBVRCSGeHruU4A8d89390PAKuCS6Abu\nvtbdPw3urgeGJ7bMlrRQh4hI6+IJ92HAnqj7hcG21vwb8JdYD5jZfDPLNbPcoqKi+KuMoWGJvf46\noCoi0kJCD6ia2Uwi4f79WI+7+3J3z3H3nOzs7KN6r7JqzeUuItKaeJJxLzAi6v7wYFsTZjYR+A1w\nobuXJKa81mm6XxGR1sXTc38LGGtmo82sFzAXeDa6gZmNBJ4CrnX39xNfZkuHh2UU7iIizbWbjO5e\na2Y3Ac8DGcAKd99qZguCx5cBS4ChwIPBDI217p7TeWXrgKqISFviSkZ3XwOsabZtWdTtbwHfSmxp\nbTu8fqoOqIqINJeyV6iWVTeswqSeu4hIcykb7uVVtWT2MHpnpuyvICLSaVI2GcuDhTq0CpOISEsp\nG+5lVZo0TESkNakd7r11MFVEJJaUDffy6hodTBURaUXKhrum+xURaV3KhrsW6hARaV3qhrsWxxYR\naVXKhrsOqIqItC4lw726to5DdVqFSUSkNSkZ7o0zQuqAqohITKkZ7ppXRkSkTSkZ7mXquYuItCm1\nw109dxGRmFIy3BuGZY7VXO4iIjGlZLg3LNShYRkRkdhSMtwbl9jTsIyISEwpGe4NY+46W0ZEJLaU\nDPfy6lp6ZfSgd2ZGsksREemWUjLcy6pqNCQjItKGlEzI8qpaHUyV0KupqaGwsJCqqqpklyJJ0KdP\nH4YPH07Pnh07KzAlE7Jh/VSRMCssLGTAgAGMGjVKawWnGXenpKSEwsJCRo8e3aHXSMlhmQPquUsa\nqKqqYujQoQr2NGRmDB069Ki+taVkuGsud0kXCvb0dbSffWqGe3UtA3R1qogchffee49JkyZx+umn\ns3Pnznbbr1y5kg8//DBh7TpbSoZ7WVWNhmVEQqS2trbL3/Ppp5/miiuu4J133uGkk05qt73CvZO5\nu9ZPFekijzzyCBMnTuS0007j2muvBWDXrl2cd955TJw4kS996Uvs3r2b0tJSTjzxROrr6wGoqKhg\nxIgR1NTUsHPnTmbPns2ZZ57JOeecw3vvvQfA9ddfz4IFC5g6dSqLFy/mzTffZPr06Zx++umcddZZ\n7NixA4DKykq+/vWvM27cOC677DKmTp1Kbm4uAC+88ALTp0/njDPOYM6cOZSXl7f4HTZu3Mi0adOY\nOHEil112GZ9++ilr1qzh3nvv5aGHHmLmzJlN2tfV1XH99dczYcIETj31VH75y1+yevVqcnNzueaa\na5g0aRIHDx7kJz/5CZMnT2bChAnMnz8fd4/ZbsOGDcyYMYMzzzyTWbNm8dFHHwHwq1/9inHjxjFx\n4kTmzp2b8M8u5RKyuraemjrXmLuklR//aSvbPjyQ0Nccd8Kx/PDi8a0+vnXrVpYuXcratWvJyspi\n3759ACxatIh58+Yxb948VqxYwc0338zTTz/NpEmTePXVV5k5cybPPfccs2bNomfPnsyfP59ly5Yx\nduxY3njjDRYuXMhLL70ERM4IWrt2LRkZGRw4cIDXX3+dzMxMXnzxRW677TaefPJJHnzwQQYPHsy2\nbdvYsmULkyZNAqC4uJilS5fy4osv0q9fP+6++25+8YtfsGTJkia/x3XXXcd9993HjBkzWLJkCT/+\n8Y+59957WbBgAf379+d73/tek/YbN25k7969bNmyBYD9+/czaNAg7r//fn7+85+Tk5MDwE033dT4\nXtdeey3PPfccV1xxRZN2NTU1LFq0iGeeeYbs7Gwee+wxbr/9dlasWMFdd91FQUEBvXv3Zv/+/Qn4\nRJtKuYRsXKhDwzIineqll15izpw5ZGVlATBkyBAA1q1bx1NPPQVEQm3x4sUAXHnllTz22GPMnDmT\nVatWsXDhQsrLy1m7di1z5sxpfN3q6urG23PmzCEjI3KleWlpKfPmzeODDz7AzKipiUwQ+Le//Y1b\nbrkFgAkTJjBx4kQA1q9fz7Zt2zj77LMBOHToENOnT2/yO5SWlrJ//35mzJgBwLx585rUEsuYMWPI\nz89n0aJFXHTRRVxwwQUx27388sv87Gc/o7Kykn379jF+/HguvvjiJm127NjBli1bOP/884HIt4Lj\njz8egIkTJ3LNNddw6aWXcumll7ZZU0fElZBmNhv4v0AG8Bt3v6vZ4xY8/hWgErje3d9OcK2A5nKX\n9NRWD7u7+NrXvsZtt93Gvn372LBhA+eddx4VFRUMGjSIjRs3xnxOv379Gm//4Ac/YObMmfzxj39k\n165dnHvuuW2+n7tz/vnn84c//CGRvwaDBw9m06ZNPP/88yxbtozHH3+cFStWNGlTVVXFwoULyc3N\nZcSIEfzoRz+KedqiuzN+/HjWrVvX4rE///nPvPbaa/zpT3/ijjvuYPPmzWRmJi7X2h1zN7MM4AHg\nQmAccJWZjWvW7EJgbPAzH3goYRU2c3j9VJ0tI9KZzjvvPJ544glKSkoAGodlzjrrLFatWgXAo48+\nyjnnnANA//79mTx5Mrfccgtf/epXycjI4Nhjj2X06NE88cQTQCTsNm3aFPP9SktLGTZsGBA5KNng\n7LPP5vHHHwdg27ZtbN68GYBp06bx97//nby8PCAyzv/+++83ec2BAwcyePBgXn/9dQB+97vfNfbi\nW1NcXEx9fT2XX345S5cu5e23I/3UAQMGUFZWBtAY5FlZWZSXl7N69erG50e3O+WUUygqKmoM95qa\nGrZu3Up9fT179uxh5syZ3H333ZSWlsY8XnA04vlnYgqQ5+75AGa2CrgE2BbV5hLgEXd3YL2ZDTKz\n4939o4RWC5RVR76qacxdpHONHz+e22+/nRkzZpCRkcHpp5/OypUrue+++7jhhhu45557yM7O5re/\n/W3jc6688krmzJnDK6+80rjt0Ucf5cYbb2Tp0qXU1NQwd+5cTjvttBbvt3jxYubNm8fSpUu56KKL\nGrcvXLiQefPmMW7cOD73uc8xfvx4Bg4cSHZ2NitXruSqq65qHOpZunQpJ598cpPXffjhh1mwYAGV\nlZWMGTOmSb2x7N27lxtuuKHx4PCdd94JHD4A3LdvX9atW8e3v/1tJkyYwHHHHcfkyZMbn9+83erV\nq7n55pspLS2ltraW7373u5x88sl84xvfoLS0FHfn5ptvZtCgQXF+MvGxSB630cDsCmC2u38ruH8t\nMNXdb4pq8xxwl7v/Lbj/V+D77p7b2uvm5OR4wxHvI/H81o/5H7/bwHOLvsCEYQOP+PkiqWL79u18\n/vOfT3YZSVdXV0dNTQ19+vRh586dfPnLX2bHjh306tUr2aV1ulh/A2a2wd1z2ntul3Z/zWw+kWEb\nRo4c2aHXyOrfiwsnHEdW/96JLE1EuqnKykpmzpxJTU0N7s6DDz6YFsF+tOIJ973AiKj7w4NtR9oG\nd18OLIdIz/2IKg2ceeIQzjxxSEeeKiIpaMCAAXTkW366i+cipreAsWY22sx6AXOBZ5u1eRa4ziKm\nAaWdMd4uIiLxabfn7u61ZnYT8DyRUyFXuPtWM1sQPL4MWEPkNMg8IqdC3tB5JYukD3fX5GFpqr3j\noe2Ja8zd3dcQCfDobcuibjvwnaOqRESa6NOnDyUlJZr2Nw01zOfep0+fDr+GzicU6aaGDx9OYWEh\nRUVFyS5FkqBhJaaOUriLdFM9e/bs8Co8Iik3K6SIiLRP4S4iEkIKdxGREGp3+oFOe2OzIuAfHXx6\nFlCcwHISSbV1jGrrmO5aW3etC1K/thPdPbu9F0pauB8NM8uNZ26FZFBtHaPaOqa71tZd64L0qU3D\nMiIiIaRwFxEJoVQN9+XJLqANqq1jVFvHdNfaumtdkCa1peSYu4iItC1Ve+4iItKGlAt3M5ttZjvM\nLM/Mbu3i9x5hZi+b2TYz22pmtwTbf2Rme81sY/Dzlajn/K+g1h1mNquT69tlZpuDGnKDbUPM7L/N\n7IPgv4O7ujYzOyVq32w0swNm9t1k7TczW2Fmn5jZlqhtR7yfzOzMYH/nmdmvLAGze7VS2z1m9p6Z\nvWtmfzSzQcH2UWZ2MGr/LYt6TlfVdsSfYRfW9lhUXbvMbGOwvcv2WxuZ0fl/b+6eMj9EphzeCYwB\negGbgHFd+P7HA2cEtwcA7xNZNPxHwPditB8X1NgbGB3UntGJ9e0Csppt+xlwa3D7VuDuZNTW7DP8\nGDgxWfsN+CJwBrDlaPYT8CYwDTDgL8CFnVTbBUBmcPvuqNpGRbdr9jpdVdsRf4ZdVVuzx/8DWNLV\n+43WM6PT/95SrefeuFi3ux8CGhbr7hLu/pG7vx3cLgO2A8PaeMolwCp3r3b3AiLz3U/p/Epb1PBw\ncPth4NIk1/YlYKe7t3UBW6fW5u6vAftivGfc+8nMjgeOdff1Hvk/75Go5yS0Nnd/wd1rg7vriax0\n1qqurK0NSd9vDYIe7teBP7T1Gp1RWxuZ0el/b6kW7sOAPVH3C2k7XDuNmY0CTgfeCDYtCr42r4j6\nitXV9TrwopltsMh6tQCf9cOrYn0MfDZJtTWYS9P/ybrDfoMj30/DgttdWSPAN4n02hqMDoYWXjWz\nc4JtXV3bkXyGydhv5wD/dPcPorZ1+X5rlhmd/veWauHeLZhZf+BJ4LvufgB4iMhQ0STgIyJfAZPh\nC+4+CbgQ+I6ZfTH6weBf/KSdHmWRZRq/BjwRbOou+62JZO+n1pjZ7UAt8Giw6SNgZPCZ/0/gP83s\n2C4uq1t+hs1cRdMORZfvtxiZ0aiz/t5SLdzjWoi7M5lZTyIf0qPu/hSAu//T3evcvR74NYeHELq0\nXnffG/z3E+CPQR3/DL7SNXzt/CQZtQUuBN52938GdXaL/RY40v20l6bDI51ao5ldD3wVuCYIA4Kv\n7iXB7Q1ExmdP7sraOvAZdvV+ywT+FXgsquYu3W+xMoMu+HtLtXCPZ7HuThOM3f0/YLu7/yJq+/FR\nzS4DGo7YPwvMNbPeZjYaGEvkoEhn1NbPzAY03CZyEG5LUMO8oNk84Jmuri1Kkx5Ud9hvUY5oPwVf\nqQ+Y2bTg7+K6qOcklJnNBhYDX3P3yqjt2WaWEdweE9SW38W1HdFn2JW1Bb4MvOfujUMaXbnfWssM\nuuLv7WiOBCfjh8hC3O8T+df29i5+7y8Q+fr0LrAx+PkK8Dtgc7D9WeD4qOfcHtS6gwScFdBGbWOI\nHGXfBGxt2DfAUOCvwAfAi8CQrq4teK9+QAkwMGpbUvYbkX9gPgJqiIxd/ltH9hOQQyTMdgL3E1wU\n2Am15REZh234m1sWtL08+Kw3Am8DFyehtiP+DLuqtmD7SmBBs7Zdtt9oPTM6/e9NV6iKiIRQqg3L\niIhIHBTuIiIhpHAXEQkhhbuISAgp3EVEQkjhLgKY2SSLmtFQJNUp3EUiJhE5/1gkFBTuEhoWmad7\nu5n9Opg7+wUz6xuj3Rwz22Jmm8zsteBq558AVwaTSV0ZXPG7wszeNLN3zOyS4LnXm9kzZvaKRebi\n/mGwvZ+Z/Tl4zS1mdmXX/vYiTWUmuwCRBBsLXOXu3zazx4lcjfj7Zm2WALPcfa+ZDXL3Q2a2BMhx\n95sAzOz/AC+5+zctsjjGm2b2YvD8KcAEoBJ4y8z+TGR++g/d/aLg+QM7+xcVaYt67hI2Be6+Mbi9\ngcjCDM39HVhpZt8msnhILBcAt1pk9Z5XgD7AyOCx/3b3Enc/CDxF5BLzzcD5Zna3mZ3j7qUJ+W1E\nOkjhLmFTHXW7jhjfTt19AfC/icy+t8HMhsZ4HQMud/dJwc9Id9/e8BItX9LfJ7IS0GZgafBNQCRp\nFO6SdszsJHd/w92XAEVEQr6MyDJoDZ4nsgiFBc85Peqx8y2yBmZfIqvh/N3MTgAq3f33wD1Egl4k\naTTmLunoHjMbS6R3/lciM2nu5vAwzJ3AT4F7gXfNrAdQQGQ+dYhMP/wkkTm1f+/uuRZZyPgeM6sn\nMjPhjV35C4k0p1khRY5AsGhG44FXke5KwzIiIiGknruISAip5y4iEkIKdxGREFK4i4iEkMJdRCSE\nFO4iIiGkcBcRCaH/DzmPP6RgAACvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "states = 48\n", + "n_steps = [s*40 for s in range(50)] # jump a little bit\n", + "coverage = [percent_visited(steps,states) for steps in n_steps]\n", + "plt.plot(n_steps, coverage, label=\"coverage of states\")\n", + "plt.xlabel(\"n steps\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So this means, it takes around 250 steps for an agent to visit all 48 states if it does something random at each step. This corroborates the idea that without deadline convergence happens after around 250 trials." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Update the Driving Agent State\n", + "For your second implementation, navigate to the `'build_state()'` agent function. With the justification you've provided in **Question 4**, you will now set the `'state'` variable to a tuple of all the features necessary for Q-Learning. Confirm your driving agent is updating its state by running the agent file and simulation briefly and note whether the state is displaying. If the visual simulation is used, confirm that the updated state corresponds with what is seen in the simulation.\n", + "\n", + "**Note:** Remember to reset simulation flags to their default setting when making this observation!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Implement a Q-Learning Driving Agent\n", + "The third step to creating an optimized Q-Learning agent is to begin implementing the functionality of Q-Learning itself. The concept of Q-Learning is fairly straightforward: For every state the agent visits, create an entry in the Q-table for all state-action pairs available. Then, when the agent encounters a state and performs an action, update the Q-value associated with that state-action pair based on the reward received and the interative update rule implemented. Of course, additional benefits come from Q-Learning, such that we can have the agent choose the *best* action for each state based on the Q-values of each state-action pair possible. For this project, you will be implementing a *decaying,* $\\epsilon$*-greedy* Q-learning algorithm with *no* discount factor. Follow the implementation instructions under each **TODO** in the agent functions.\n", + "\n", + "Note that the agent attribute `self.Q` is a dictionary: This is how the Q-table will be formed. Each state will be a key of the `self.Q` dictionary, and each value will then be another dictionary that holds the *action* and *Q-value*. Here is an example:\n", + "\n", + "```\n", + "{ 'state-1': { \n", + " 'action-1' : Qvalue-1,\n", + " 'action-2' : Qvalue-2,\n", + " ...\n", + " },\n", + " 'state-2': {\n", + " 'action-1' : Qvalue-1,\n", + " ...\n", + " },\n", + " ...\n", + "}\n", + "```\n", + "\n", + "Furthermore, note that you are expected to use a *decaying* $\\epsilon$ *(exploration) factor*. Hence, as the number of trials increases, $\\epsilon$ should decrease towards 0. This is because the agent is expected to learn from its behavior and begin acting on its learned behavior. Additionally, The agent will be tested on what it has learned after $\\epsilon$ has passed a certain threshold (the default threshold is 0.01). For the initial Q-Learning implementation, you will be implementing a linear decaying function for $\\epsilon$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Q-Learning Simulation Results\n", + "To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file and the Q-table as a `.txt` file in `/logs/`.\n", + "- `'n_test'` - Set this to `'10'` to perform 10 testing trials.\n", + "- `'learning'` - Set this to `'True'` to tell the driving agent to use your Q-Learning implementation.\n", + "\n", + "In addition, use the following decay function for $\\epsilon$:\n", + "\n", + "$$ \\epsilon_{t+1} = \\epsilon_{t} - 0.05, \\hspace{10px}\\textrm{for trial number } t$$\n", + "\n", + "If you have difficulty getting your implementation to work, try setting the `'verbose'` flag to `True` to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation! \n", + "\n", + "Once you have successfully completed the initial Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FVX6wPHvm4TeQ6gBaSo9CRADRJrAqrQIgkKUJhbQ\nddF1UYOgFF3XH+pasLKsCwgbUDqCugSJgNSAIVJVIEgQAwmQBAiknd8fM7nc9AAJN4T38zx5cmfO\nzJl35pYzZ+bMOWKMQSmllFJKKaXUtXNzdQBKKaWUUkopVVpoBUsppZRSSimliohWsJRSSimllFKq\niGgFSymllFJKKaWKiFawlFJKKaWUUqqIaAVLKaWUUkoppYqIVrBuUiJySEQ6F2K58iJiRKRBMcRw\nr4j86jT9h4h0sV9PE5EPinqb10pExolI2DWs/52IDC3KmFThiUgbEYkSkXMi8sR12N5WERl+HbZT\nzt6n+sW9LaVKEi3LlKuIyEIRmezqOK6Vlh/FQytYLiIiT4tIhIhcEpE5uaT3EpEDInJBRNaLSKM8\n8hllfzHOiUiyiGQ4TZ/Na/vGmGbGmC1FsB9bReSivb1TIvKFiNS61nyNMVOMMU9faz7ZORWy5+2Y\nY0Tk/0REimFbb4jIbOd5xpiexphFRbyd7Pt0TkT+KMptlCITgdXGmMrGmFnZE7N9nhPs717L4gzI\nrrQbEbnvCtbJUnEzxlyy9+n34olSqdxpWZa/4irLMomIu4gcF5Efi2sb15tdQb1gvxcnRGS2iFRw\ndVwlkZYfJZdWsFznd+A14LPsCSLiBSwFXgY8gQgg15NyY8xc+4tRGRgA/JY5bYypnkveHkW4D5ke\ns7ffHKgNvFEM2yhqze2YewOPAMV+l+E6aO703tfNbYFiev9vJI2AvQUsk/l5rglsB/5TzDGNAk4D\nI4t5O0oVBy3LXKs3UBloIyJti2MDLio37rbfC38gEJjgghgA15ebBWxfy48SSitYLmKMWWqMWQ7E\n55J8P7DXGPOlMeYiMBXwFZEWV7Mt+2rQBBHZCyQ6zctswnCniGwTkbMi8ruIvHM1PyjGmNPASsDP\nadsVRORD+ypUjIi8KSJlChGz4+6PiLQQkTQRecTO45SIPO+0bGUR+a8d/x4RmShOzTUKiPkAsDVb\nzJ4iMs8+RsdEZIqI5PpdEZGP7ZgSRWS7iHSy5w8EngMyr8put+dvFZHhIlLRnn+rU17e9pXbGvb0\nILGas50VkY0i0qow+5QtvntF5FcReVlEYoGPC8pbRAJEZLeIJInIfBFZKnYzCMnWRFKyNbux3+93\n7eP2h4jMFJFy2WJ5yX4Pj4vIw055VRKR9+11E0TkexHxEJF1IvJ4tv06KCJ98tjnwSKyz963MBG5\nzZ6/GegMzLaP/S35HTtjTBrWyaDzscn3uyIi/UTkFzv9nwW8PYjI7UBHYCzQX0Q8s6U/YL9PSXa+\nvUTkbeAOp/14O5f3wdP+TpwSkSMi8oKIdZfWfg/X2cf6rFhNrHo7bfNxEYm2t3lYRB4oaD/UzUvL\nsgJjLu6ybBSwGFhrv87Ma5SIbMoWy0QR+cJpfwr6rXaUGyJSS0S+tmM+LSIrRKSeU963ichm+3fj\nGxH5VJxacIhIV6f3ZpeI3FnQsQMwxhwHwsj5XuQV+zYR6We/7mX/Lvayp/uJyFan9yLc3pdTIjJX\nRKo4bSO3z1qWshEom1fc9u/sd/ZxSBSrTOrmlJ7neYbTuh+KyBkgJI9tlLjyQ12mFaySqTWwO3PC\nGHMe+NWef7WGAn/CuiqfXSrwtJ3WFevq4WNXugGxmlMMxIo10zTAB2gLdAB6AC9cad6AO9aVrFuB\nvsDfRaSpnfYaUAvr7kQ/YMQVxNwa66TbOeYFQALQFAjA2qe88tyCtW81gRXAlyJSxj7h+CeQeVU2\nwHklY8wFrAI82Gn2MOBbY8wZsSpqH2HdXasJfA4sv5qTBaAxUAZoCIzPL2+xmmGsAD7FuuL8NRB0\nBdv6J9AA65g0B24na+HQCBCgPtZn7hMRqWynvQ+0wPrx9wQmAwaYi9MdRhHpCFQF/pd942JdwZ0D\nPIV1Bfp7YIWIeBhjAoEd2FepjTG/5bcjdoH9EFYFPFOe3xX7ZOML4G9Yn8dTWJ/Z/IwCNhljFgO/\n4fR5sAvjWcAzQDWgF3DMGPO3bPvxt1zy/QTrPW+C9b1/0t6XTN2w7ibUBD4AMk8AawBvAr2MMVWA\nLsCeAvZBqbxoWZZTkZVlIlLVjnOB/fewiLjbycuA9pL1QtJDwH/t1wX9VjfGqdzAOl/8BLgF63cF\n4B07DsH67VuPdezfIOtvdmNgOTCJy7/ty+3fm3zZ8d9N1vciv9i/x3pvALoDh7F+7zKnv3fKZzpQ\n1ymfSdk27/isXWXZ2A3r8595TJbb7xkUfJ7RDYgEvIC388i/RJUfKhtjjP658A/rB3VOtnn/Bt7I\nNu8HYHQBefUGonOZ/wfwUC7zuuSRTwgQar8uj3WS2yCPZbcC57Gu8BisL259p/TjQE+n6fuAA/br\ne4Ffc4sJ68dotv26hZ23l9OyUcBA+/XvQHentKed880Wb+b+JNhxG6wT8jJ2eiN7fhmndR4BvrZf\njwPC8shbgAtYTfWy7EO24zXcft0f2OeUthN40H79H2BStnWPAh0L2Kez9t8Mp2OcfX/yzBurIDuS\nLW0XMDm3/Xf+fAAeQArg7ZR+F7DfKZYEwM0pPRHrymQZrJOj5rnsXyV7uVvs6Q+Af+bxHvwdmOc0\n7Y5V0emU/fgX8Hk+a+/LaaBrPss7f1eeAMKzbftkXtvDOmH5DRhnT08DtjmlzwX+kU+cw52mnd+H\nckA60NQp/RngG6f3cI9Tmqe9bnWghr3v9wHl89pv/dO/7H9oWXZdyzI7/TE7Ljes38nzQB+n9MXA\nC/brtsAZrLsuhfmtzlJu5LLtTsAJ+/XtQDJQLtu2M/d7CvCvbOt/DwzNI+8/gCT7zwDfAFXstIJi\n7wdst1+H28co3J7eBvTNY5vDgC15fdYooGzMJb9xuSwfBTxA4c4zfi7gO1Liyo/84r0Z//QOVsl0\nDusKvbNqQJKI3CKXH/w9dwV5HssrQURa2bf+Y0UkEXgF66pJYY01xlQF2mNdDapv5yv29FGnZY8C\n3leQd6Z0Y0yc0/QFoLJ9S70uWfcvz3110hqogtVu+U6goj2/EdaPzSn79vdZ4D2gTm6ZiNXk4qCI\nJGAVXuUp/LH7FqgjIr4i0hy4DVjlFMdLmTHYcdQi/2PX2hhT3f5zvrL6hzEm1Wk6v7zrAzHZ8j1K\n4dTHqijtdcp3OdadpEynjDEZTtMXsJ4fqIdVcB7Knqmxrnovxbo6WwbrquLn+cRw1GnddKwTkCv5\nzI011jMf5YEhwCqxmzQV8F2pj9Nnz2nbebkL67P7pT29AAiQy82nGpLL8SiEulwufDNl/945d4Jy\nwf5f2RhzBngY64r1HyKyUpyasSp1hbQsy6koy7JRwEJjTIb9O7kCp2aCWHerMu9qPAQsNsakULjf\n6izlhohUEZHPROQ3+9j+j6y/faeMMZfyiL0RMDxbmeNvr5eXPsa6i3430AbrRD5zW/nFvgmrGaoX\n1l2puUBze9rXTkdE6ovIl2I1VU/EuguT/bPivA9XUzbmtnx9CneeUdB7X+LKj6vYVqmmFaySaS/W\nDwFgPZsCNMNqy+784O+VfKBNPmn/wroS08wuXKZj3Y25IsaYH4EZwEx72mB9ERs5LXYL+Z90Xuk2\nM4BYrCsvmRoWdl1jzOdYV5Um2rOPYZ0U1HCqrFQ1xrTPvr6I/An4CzAI6+q/J9ZVvMxjl98xxy68\nFmMVgA8By4wxyU5xvOIUQ3VjTEVjzNLC7Fv2TWWbzi/vE2Q9lmC9Z5nOc7kyCtaPcaYTQBrW5ygz\n32rGmNya8mTnWDeP9LlYJ/73ArH2Zy03v+P0ebOby3hzFZ85+/PxHdbxymxjnt935QROnz37hCm/\nE7BRWL/Be8Xq9XED1nuVeYJ0jLyPR36frT+ADLK+b4X+3hljVhtjemGdCPyG/dyeUldBy7LCb/OK\nyjIRaYbVhPdRsZ7j+QOrVcR9IlLNXmwN0ESsnlCHcbl5YGF+q7Mf5xA7tjvsY3s3WX/7atnNqnOL\n/RjW3SznMqeSMeadfA6JFYQxa7Gehf2/wsRujEnAatb8HLDTLmcj7Ok9xphEO583scqzNvb+PEbO\nz4rzMSiobMxNbsv/TuHOM/I9f6CElh/qMq1guYj9vEt5rGZE7mI9ZJj5fM0yrB6BBtvLTAF2G6tD\nhuJQBUgwxpyzn0l6vKAV8jEbuFVE7rGnQ4EpIlJTRGpjtXGef23h5vAFMElEqtnttZ+8wvX/AfxZ\nRGoaY45g3T6fYV+xcxPr4d0uuaxXBatZ2ymsZhfTsa5KZYrFKtzyK+D/i1XwBXO58AOr7fRfRMRf\nLJVFJEhEKuaay5XJL+8NQHmxHmT1EJFgrOcOMkUC7USktb38K5kJdkH2GfCeiHjZeTe0K6L5sted\nZ69bR6yuh7vI5ecJwrGO99/t5fKyCBgkIt3su10hWA/fRxTqyGQjVjv227jc82B+35WVwB0i0t/e\n9vNcvuqaPd/KWB0AjMZqIpn5NwHrSq8b1ndprL0vbvaxvN3OIhar7X4O9lXkZcDrYnUc0gyriUeB\n3zuxOlrpZ7+3l7BOAjIKWE3dxLQsK1JXUpaNxHq+pwWXfz+aY/3ePQhgrI5FlmE931oG+/mjq/yt\nroJ1t+KsfTfIefynn4GDwGQRKWP/bt7rlD4XeECsThbcxeqkopeI5NrbbS7exqo4tixk7N9jNa/M\nfN4qPNt05v6cAxLtY/1cATEUVDbmpqHT8sOxKp3/u8LzjBxKavmhstIKlutMxrrbEYL1MGiyPQ9j\nzClgMNbJ5BmsByCHFWMsfwUeE6uZxofk0Y1uYdh3YD7A6pYXrBPwfVgnqJFY7e9nXFO0OU3GOk5H\nsR48/QLr5LBQjDERXL7CBVZlpzpwAOsZnEXk3kRwFdaP7iGsB2njsCpbmRZi3e05LVYPdrnZgHVi\nUg2rp6TMmH7Aaqb1KdYzMT9j3eUq6KpWgfLL237/BmF1EnEGqz37Kqd1f8J6/zZiHZ/wbNk/i3WF\nLgLreatvsB7mLozxWMfyR6yThFexryjaV5A/x2rauSCffYsCHrX37RTWg733GatHwMLK7F3pHFYh\n9TdjzHo7Lc/vijHmBNb39F1723XIu2I3BOuzFWqM+SPzD6vyWxXrWY+NWO3dP8I6luu4fEX0HWCk\niJwRkdy+T2Pt/0eB7+z9yPO4OXHH+k36A+s9uAPrxESpvGhZVnQKVZbZF+1GAh86/37Yv0GzyNlM\nsDewKFvz7Cv9rX4LqwldPFYzuzWZCfbv81B7O2eAl7Carl2y0w9jfQ6mYZWTR7FO2gt1Dmqs8ZkW\ncrlSV1Ds32NVoDbkMQ3W+9nFXn8ZsKSAGPItG/OwAWiH9Vs/CbjfvsMGhT/PyE1JLT+UE7G+F0qV\nHiLyV+BeY8w9BS6sCiQiC7GaVrzm4jiewOoERLuEVUqVejdyWSYiK4Ctxph/uDoWVxCRccAQLa9u\nXnoHS93w7Fvfnezb4K2xrowtc3VcquiI9ezGk1hX6JRSqtS5kcsyEekoIo3t2AdgNRFc4eq4lHKV\nYq1giTVY3UGxBqzLMVCaiNwn1iBokSISIZcHC2woIuvFGphtr4g847TOA/a8DBHxd5ofYOcTKdZA\ncIOKc99UiVIOq012ElZTgYXouAylhogEYXV3/itWpyBKKVUa3chlWQOspoNJWB1IjDHG7HNtSEq5\nTrE1EbQfTv8Za5CyGKwxJYKdv3D2g3rnjTFGRHyAL4wxLcQasLOeMWaXWCNr78QaJ2KfWL3hZGA9\nYzHBfn4G+6HsFGNMmr3+bqwxLK7k2QullFJKKaWUumrFeQcrAGuAvMPGGndhIdbAfA7GmHPmcg2v\nEvYD/MaYE8aYXfbrJGA/dnfHxpj9xpiD2TdmjLngVJnKHDRNKaWUUkoppa4bj4IXuWreZB0oLQbo\nmH0huynfP7AGieuXS3pjrF5YthW0QRHpiHV7vREwIre7V/aD8k8AVKpUqUOLFi2yL6KUUqoE2Llz\nZ5wxppar4yhqXl5epnHjxq4OQymlVDZFVe4UZwWrUIwxy4Bl9rgJr3J5QM/MJoRLgGedBofLL69t\nQGu7GeFcEfnaHgfCeZlZ2A/K+/v7m4iIqxoeRymlVDETkaOujqE4NG7cGC17lFKq5Cmqcqc4mwge\nJ+tI3g3IZyRoY8wGoKk9gB1iDdS5BFhgjFl6JRs2xuzHGkCuzZUGrZRSSimllFJXqzgrWDuA20Sk\niYiUxRpccKXzAiJyqz1gHiLSHqsHnXh73r+B/caYfxZmY/Z2POzXjbBGN48uqp1RSimlclNQj7lK\nKaVuLsVWwbKff3oa+Bark4ovjDF7RWScPQAbWCN77xGRSKxR14fanV7cCYwAejp1vd4XrGe2RCQG\n6AysFpFv7by6ALvtvJYBTxlj4opr/5RSSim7x9wPgT5AKyBYRFq5NiqllFKuVGzdtN8I9BkspUq2\n1NRUYmJiuHjxYsELqxtW+fLladCgAWXKlMkyX0R2GmP881itRBCRzsBUY8w99vREAGPMP/Jap0qV\nKqZDhw5Z5j344IM89dRTXLhwgb59++ZYZ/To0YwePZq4uDiGDBmSI/3JJ59k6NChHDt2jBEjRuRI\n/9vf/saAAQM4ePAgY8eOzZE+efJkevfuTWRkJM8++2yO9Ndff53AwEA2b97MSy+9lCP93Xffxc/P\nj7CwMF577bUc6Z9++inNmzdn1apVvP322znSP//8cxo2bMiiRYv4+OOPc6QvXrwYLy8v5syZw5w5\nc3Kkr1mzhooVK/LRRx/xxRdf5EgPDw8H4K233uKrr77KklahQgW+/vprAF599VXWrVuXJb1mzZos\nWbIEgIkTJ7Jly5Ys6Q0aNGD+/PkAPPvss0RGRmZJv/3225k1yxoj/YknnuDnn3/Oku7n58e7774L\nwPDhw4mJicmS3rlzZ/7xD+vjNHjwYOLj47Ok9+rVi5dffhmAPn36kJycnCW9f//+TJgwAYAePXqQ\nnX729LMH+tnL/Ox9//33RVLuuLyTC6WUyktMTAxVqlShcePG2K2JVSljjCE+Pp6YmBiaNGni6nCu\nRmF7zHX0YFuuXLnrE5lSSimX0DtYegdLqRJr//79tGjRQitXpZwxhgMHDtCyZcss82+QO1hDgHuN\nMY/Z0yOAjsaYp/NaR8sepZQqmYqq3CnOTi5KvLS0NM6cOcPNXMlUqqTTylXpd4O/x1fUY65SSqnS\n76auYB0/fhxPT08qVqyYa7vaH374gW+++Ybdu3dz/vz56x+gUkqpkq7AHnOVUkrdXG7qClZqaioA\nFy9epGrVqjnSX3/9dfr06YOfnx9r167NkT5z5kymTZvGrFmziI2NLfZ4lVLXT3x8PH5+fvj5+VG3\nbl28vb0d0ykpKTmWP336NJ988kmB+aalpVG9evVc57u7uzu20aFDB7Zu3XpFMU+ePNnxwHJu2rRp\nw/DhwwvM5/DhwyxcuNAxvW3bNv76179eUSw3i7x6zHVtVEoppVzppu7kQkSoXLky586do169ejnS\nT5w44Xhdv379HOmzZ88mKioKgA4dOlCnTp0s6Q8++CDnz5+nfv36vPbaaznS09LS8PC4qd8CpUqs\nmjVrOnpkmjp1KpUrV3b0hpSbzArWuHHj8lymIFWqVHFsc/Xq1UyaNClHr1JX66effsLDw4P169eT\nnJxMhQoV8lw2s4I1bNgwADp27EjHjjn6bVA2Y8waYI2r41BKKVUy3NR3sJo1a0ZSUhJJSUn4++d8\nnq1r16706tWLli1b4u3tnSPduQKWWwVt3bp1rFmzhtmzZ+e6/Vq1alGrVi18fHxITEy8hj1RSl1P\nM2bMoE2bNrRp04aZM2cCEBISwsGDB/Hz8yMkJITExER69uxJ+/bt8fHxydE9b0ESExOpUaOG43Ve\neU2fPp3bb7+dLl268Msvv+SZX2hoKCNHjqRnz56sWrXKMf/nn3+mZ8+e+Pr60r59e6KjowkJCWH9\n+vX4+fnx/vvvExYWxsCBAwGIi4sjKCgIHx8fAgMD2bNnD2DdPXv00Ufp3r07TZs25cMPPwQgKSmJ\nPn364OvrS5s2bVi8ePEVHQellFLqhmOMuWn/OnToYK7FBx98YCZOnGhGjx5tUlNTs6RdvHjRAAYw\n7u7uJj09PUv6+fPnHellypQxGRkZ1xSLUqXRvn37skxPmTLF8b2ZMmVKjuWfe+45R/pbb72VI/3x\nxx93pH/66aeFjmPKlCnmzTffNMYYs3XrVuPj42MuXLhgEhMTTYsWLUxUVJT55ZdfjK+vr2OdlJQU\nk5CQYIwxJjY21tx6663GGGNSU1NNtWrVcmwjNTXVuLm5GV9fX9O8eXNTrVo1s2vXrnzz2rZtmyOW\ns2fPmsaNG5t33nkn131o1qyZiYmJMatXrzYDBw50zG/fvr1ZuXKlMcaY5ORkc/78ebN27Vpz3333\nOZZxnh43bpx57bXXjDHGfPvttybzd3TSpEmmS5cu5tKlSyY2NtZ4enqatLQ0s3DhQjNu3DhHXmfP\nns01vuzvtTHGABGmBJQVRf13rWWPUkqpq3fuYqo5cCLRrN37h/nPpsNm+qq95ol5O0zf9zYUWbmj\n7dOuwZ///Oc809zd3dm6dSsnTpzg7NmzuLllvVl48uRJ3NzcyMjIoG7dujd6L1pK3TQ2bdrE4MGD\nHU3sBg4cyMaNG7n77ruzLGeMISQkhE2bNuHm5saxY8eIi4vL9fmrTM5NBDdt2sTIkSP56aef8sxr\nw4YNjlgqVKjAgAEDcs1369ateHt74+3tTe3atXn88cdJSEggIyODuLg4x3rly5cv1P6vXr0agLvv\nvpvRo0c7OgHq378/ZcuWpXbt2nh6enLq1Cl8fHwICQkhJCSEAQMGcOeddxa4DaWUUupqXUxNJ+ZM\nMsfOXCDmTDIxpy9kmT59Putz1OXLuNGwRkUa1Mi76fyV0gpWMfHw8Mj3mYXGjRuTkpLCyZMnSUhI\nyJE+d+5c9u/fz+uvv56jcqaUKvnmzZtHQkICu3btwsPDgwYNGnDx4sVCr9+lSxd+//13Tp8+zdKl\nS68pr9DQUPbs2UPjxo0Bq8nh0qVLHc3+iorzALru7u6kpaXRsmVLIiIiWLNmDSEhIfTp04eXXnqp\nSLerlFLq5pGSlsHvZy9XmI5lq0CdSrqUZfmy7m5416hAgxoVaF2/Gg09K9CgRkUa1qhAQ8+K1KxU\n1nGjY86YoolRK1gu5O7uTr169XI8v7Vu3Toee+wx0tLSOHLkCHPnzi3UlWWlSrupU6cyderUPNPf\nfvtt3n777TzTZ82axaxZs64phq5duzJ27Fief/550tPTWbFiBYsWLaJKlSokJSU5lktISKB27dp4\neHiwdu1ajh+/sqGR9u7di5ubGzVq1Mgzr27dujF27FheeOEFUlJS+Oqrrxg/fnyWfDIyMli8eDH7\n9u1zdLSzdu1a3nzzTR555BFq1arFqlWrGDBgABcvXiQjIyPHvmTf/wULFjBx4kTCwsLw9vamUqVK\nee7H8ePH8fLyYsSIEVSpUoX58+df0XFQSil1c0lLz+BEwsU870D9kXgR4zSErbubUL96eRrWqMhd\nzWtZd6M8K9h3pSpSu0o53Nyub0sxrWCVQHPmzCEtLQ2AAwcOkJKSohUspUqIgIAAgoODueOOOwB4\n8sknadu2LWD1Jtq2bVv69evHc889x4ABA2jbti0BAQHcdtttBeadlJSEn5+fY3revHmICCNGjMg1\nr4CAAAYNGoSPjw916tQhICAgR57r16+nSZMmWXoxveuuuxg+fDixsbEsWLCAsWPHMmnSJMqWLcuS\nJUto164d6enp+Pr68uijj9KqVSvHutOnT2fMmDH4+PhQuXJl/vOf/+S7T7t37yYkJAQ3NzfKli1b\nqK7slVJKlX5nzqcQ/vNJfotPJubMBUcF6kTCRdIzLtegRKBe1fI08KxI52Y1Hc35Gnpa/+tWLY+H\ne8lq7SXGuQp4k/H39zcRERGuDiOH9PR0nnnmGZYtW8a2bdto0KCBq0NSyiX2799Py5YtXR2Gug5y\ne69FZKcxJmcXrze4klr2KKXU9RAVc5Z5W46ycvfvpKRlAFC7SjlHhSl7BapetQqU9bg+FaiiKnf0\nDlYJ5O7uzsyZM5kyZQq1atVydThKKaWUUkpdtUtp6az56QRzNx8l8thZKpZ154EODRh2xy3cVqcy\n5cu4uzrEIqUVrBJKRHKtXG3dupXffvuNBx980AVRKaWUUkopVTi/n01mwbajLNx+jPjzKTT1qsSU\nAa0Y3KEBVcuXcXV4xUYrWDeQQ4cOMWDAAOLi4oiOjub555/X7t2VUkoppVSJYYxh86F45m2JZu2+\nWAB6tqjDqMBG3NnM67p3OOEKWsG6gfz1r38lLi4OgDfffJPRo0dTu3ZtF0ellFI3BhFxB+rgVPYZ\nY35zXURKKVV6JF1MZdmPx5m35Si/njxHjYpleKJbMx7ueAsNPSu6OrzrSitYN5A5c+YwaNAgtm3b\nxsqVK7VypZRShSQifwGmALFAhj3bAD4uC0oppUqBX08mMW/LUZbsjOF8Sjo+Darx1gO+9PepV+qe\nrSosrWDdQDw9Pfnf//7Hrl276Ny5s6vDUUqpG8kzQHNjTLyrA1FKqRtdWnoGYftPMm9LNJsPxVPW\n3Y3+PvUYGdgYv4bVXR2ey5WsTuNVgcqVK5dr5SomJoaffvrJBREpVbqJCMOHD3dMp6WlUatWLfr3\n7w/AypUreeONN4p8u4888giffvpplnnLly+nT58+AAQGBua7fnR0NG3atClwmf/+97+O6YiIiBwD\nFZcix4AEVwehlFI3srhzl/hw/a90m7GecfN3Eh13nufvac6WiT3551A/rVzZ9A5WKZCYmEi/fv04\ncuQIixcv5u6773Z1SEqVGpUqVWLPnj0kJydToUIF1q5di7e3tyM9KCiIoKCga95OWloaHh6Xf5KD\ng4P5xz9xf0XtAAAgAElEQVT+wdixYx3zFi5cSHBwMACbN2++5m1mVrAeeughAPz9/fH3L3XDTmU6\nDISLyGrgUuZMY8w/XReSUkqVfMYYfjx2ls+3HGV11AlS0jO489aaTAlqTa8WtUvcIL8lgR6RUuDx\nxx8nKiqKpKQkBg4cSGxsrKtDUqpU6du3L6tXrwYgNDTUUckB69nIp59+GoDRo0czfvx4AgMDadq0\nKYsXLwaswun555+nTZs2tG3blkWLFgEQHh5O165dCQoKolWrVlm22atXLw4cOMCJEycAOH/+PGFh\nYQwcOBCAypUr55u3s+joaLp27Ur79u1p3769o3IWEhLCxo0b8fPz45133iE8PNxxZ+706dMMHDgQ\nHx8fOnXqRFRUFABTp05lzJgx9OjRg6ZNm/L+++8XwRG+Ln4D1gJlgSpOf0oppXJxMTWdLyKOEfTB\nD9z/0WbW7oslOKAhYc91Y8FjnbindV2tXOVB72CVApMnT2bLli0cO3aMDz/8kDp16rg6JKWKR1iP\nnPNueRBufwrSLkB435zpTUdbfxfjYNOQrGm9wwu12WHDhjF9+nT69+9PVFQUY8aMYePGjbkue+LE\nCTZt2sSBAwcICgpiyJAhLF26lMjISHbv3k1cXBx33HEH3bp1A2DXrl3s2bOHJk2aZMnH3d2dwYMH\n88UXX/DMM8+watUqevToQdWqVbMsl1/emWrXrs3atWspX748v/zyC8HBwURERPDGG2/w1ltv8dVX\nXwFWhS/TlClTaNeuHcuXL+e7775j5MiRREZGAnDgwAHWr19PUlISzZs358knn6RMmZI9nokxZhqA\niFS2p8+5NiKllCqZjp2+wPxtR1m04xhnL6RyW+3KvHpfawa1b0Dlclp1KAw9SqVA27Zt2bp1K6tW\nreKRRx5xdThKlTo+Pj5ER0cTGhpK3765VOKcDBw4EDc3N1q1auW4m7xp0yaCg4Nxd3enTp06dO/e\nnR07dlC1alUCAgJyVK4yBQcHM2HCBJ555hkWLlzIiBEjciyTV94+Ppc7x0tNTeXpp58mMjISd3d3\nfv755wL3edOmTSxZsgSAnj17Eh8fT2JiIgD9+vWjXLlylCtXjtq1axMbG0uDBg0KzNOVRKQN8Dng\naU/HASONMXtdGphSSpUAGRmGTb/GMW9LNOsOnMRNhLtb1WFE50Z0blpTx129QlrBKiXq16+f5VmN\nTMnJySQnJ+Pp6emCqJQqYvndcfKomH96ea9C37HKTVBQEBMmTCA8PJz4+Lw7oitXrpzjtTGmwHwr\nVaqUZ1pgYCAnTpxg9+7dbN68mYULF15Z0LZ33nmHOnXqsHv3bjIyMihfvvxV5ZPJeR/d3d1JS0u7\npvyuk1nAc8aY9QAi0gP4F5B/byFKKVWKJSSnsmRnDJ9vPcqRuPN4VS7Ln3vcykMdb6F+9QquDu+G\npQ0nS7GMjAxGjBhBYGAghw8fdnU4St3QxowZw5QpU2jbtu0Vr9u1a1cWLVpEeno6p06dYsOGDQQE\nBBS4nogwdOhQRo0aRZ8+fXKtGBUm74SEBOrVq4ebmxuff/456enpAFSpUoWkpKQ8Y16wYAFgNR30\n8vLK0TzxBlMps3IFYIwJB/Ku3RaCiDwgIntFJENESm3vIEqp0ufAH4m8tOwnOr2+julf7aNGxTK8\nO9SPH0J6MuGe5lq5ukZ6B6sUCwkJcTTxyXxIvW7dui6OSqkbU4MGDa66C/NBgwaxZcsWfH19ERFm\nzJhB3bp1OXDgQIHrBgcHM2PGjDy7gs8r7+joaMcyTz31FIMHD2bevHnce++9jrtmPj4+uLu74+vr\ny+jRo2nXrp1jnczOLHx8fKhYsSJz5869qn0vQQ6LyMtYzQQBhmP1LHgt9gD3A58WtKBSSrlacko6\n6w7EMm/LUbYfOU05Dzfu86vPyM6NaeNdzdXhlSpSmCYsV525yL3Ae4A7MNsY80a29IeBFwEBkoAn\njTG77bS/Ao8BBvgJeMQYc1FEpgKPA6fsbF4yxqyx1/HBKuiqAhnAHcaYi3nF5+/vbyIiIopob0ue\nL7/8khEjRnDp0iWeffZZ3nnnHVeHpNQV2b9/Py1btnR1GOo6yO29FpGdxpgiuTMkIjWAaUAXe9ZG\nYKox5kwR5B0OTDDGFKpAKe1lj1KqZDh3KY2I6NNsO3KabYfj+el4AqnphoaeFRjesREP+jekRqWy\nrg6zRCmqcqfY7mCJiDvwIfAnIAbYISIrjTH7nBY7AnQ3xpwRkT5YbeQ7iog3MB5oZYxJFpEvgGHA\nHHu9d4wxb2XbngcwHxhhjNktIjWB1OLavxvBAw88gLe3N5999hlvvfVWwSsopVQpZVekXDaKsog8\nATwBcMstt7gqDKVUKZZwIZUd0afZdiSe7UdOs+f3RNIzDB5uQtsG1Xi0S1MCm9Xkzlu9cHfTTiuK\nU3E2EQwAfjXGHAYQkYXAfYCjgmWMcR4pcyvg3A2VB1BBRFKBisDvBWzvbiAq8w6YMSbvp9BvIoGB\ngQQG5nyG2xhDRkYG7u7uLohKKaWuDxF51xjzrIiswmoRkYUxJt9RokUkDMitbfUkY8yKwsZhjJmF\ndRERf3//4ms6opS6aZw+n8L2I/FsPWzdpTrwRyLGQFl3N/waVuepHs3o2KQm7RtVp2JZfSroeirO\no+0NHHOajgE65rP8o8DXAMaY4yLyFtbAkMnA/4wx/3Na9i8iMhKIAP5mX5m8HTAi8i1QC1hojJmR\nfSN6FdHy6quvsmPHDkJDQx0DliqlVCmU+czVVd3GN8b0LsJYlFLqqp1MvGg19zsSz7bDp/nlpDWc\nX/kybrS/pQbP9rqdjk098WtYnfJl9AK6K5WI6qyI3IVVwepiT9fAutvVBDgLfCkiw40x84GPgVex\nrkS+CrwNjMHaly7AHcAFYJ3djnKd87b0KiLMnz+fKVOmANC9e3e+/fZbvLy8XByVUkoVPWPMTvul\nnzHmPec0EXkG+P76R6WUUgU7fjaZ7XZlatuR0xyJOw9ApbLudGjsycB23nRq6klb7+qU9dCOwUuS\n4qxgHQcaOk03sOdlYXdMMRvo49SsrzdwxBhzyl5mKdZYJfONMbFO6/4L+MqejAE2GGPi7LQ1QHsg\nSwVLwcGDBx2vPT09qVZNe45RSpV6o7A6XXI2Opd5hSYig4CZWK0mVotIpDHmnquOUCl10zLG8Nvp\nC3aHFNZdqpgzyQBULe9BQBNPggMa0rFJTVrXr4qHu1aoSrLirGDtAG4TkSZYFathwEPOC4jILcBS\nrI4pfnZK+g3oJCIVsZoI9sJqDoiI1DPGnLCXG4TVTS7At8AL9jopQHdAu83LxauvvkrDhg35+OOP\nWbx4MWXKlHF1SEopVSxEJBir7GkiIiudkqoAp68lb2PMMmDZteShlLo5GWM4dOo8252a/P2RaHV8\n7VmpLAGNPRlzZxM6NvWkRd2q2inFDabYKljGmDQReRqr4uMOfGaM2Ssi4+z0T4BXgJrARyICkGaM\n8TfGbBORxcAuIA34EbtZHzBDRPywmghGA2Pt/M6IyD+xKnYGWGOMWV1c+3eje+KJJxgzZgweHiWi\nlahSJZaI8PDDDzN//nwA0tLSqFevHh07duSrr77Kc72IiAjmzZvH+++/f1Xbbdq0KV9//TXNmzd3\nzHv22WepV68evXr1KjDvOXPmEBERwQcffJDnMuHh4ZQtW9bREc4nn3xCxYoVGTly5FXFXEJtBk4A\nXlhNyjMlAVEuiUgpddPJyDD8fDLJqlDZTf7izl0CoFaVcnRs4knHpjXp2MSTW2tVxk0rVDe0Yj27\ntsenWpNt3idOrx/DGusqt3WnAFNymT8in+3Nx+qqXRVCbpWr5cuXs2vXLqZNm4Zd6VXqplapUiX2\n7NlDcnIyFSpUYO3atXh7exe4nr+/P/7+hR9KIy0tLct3ctiwYSxcuNDxvGRGRgaLFy/mhx9+oFGj\nRleUd17Cw8OpXLmyo4I1bty4a86zpDHGHAWO2uMu/p45NqKIVMBquh7twvCUUqVURoZh/x+JVg9/\nh+PZEX2aMxes0YPqVytP19u8HJWqxjUr6jlXKaMNOJXD9u3beeihh3j11VcZOXIkly5dcnVISpUI\nffv2ZfVq64Z4aGgowcHBjrTt27fTuXNn2rVrR2BgoOMZx/DwcPr37w/A6dOnGThwID4+PnTq1Imo\nKOvGydSpUxkxYgR33nknI0ZkvXYUHBzMokWLHNMbNmygUaNGNGrUqFB5O1u1ahUdO3akXbt29O7d\nm9jYWKKjo/nkk09455138PPzY+PGjUydOtUxZl5kZCSdOnXCx8eHQYMGceaMNR5vjx49ePHFFwkI\nCOD2229n48aNRXKMr4MvsAagz5QOfOmiWJRSpYwxhl9PnuPzLdE8OX8nHV5bS7/3N/HqV/s4GJtE\n75Z1eOsBXza+cBebJ/binaF+DAu4hSZelbRyVQpp+zDl8MEHH5CcbD1QuXXrVs6dO0e5cuVcHJVS\ntv8WUwH0UMGdiQ4bNozp06fTv39/oqKiGDNmjKNi0aJFCzZu3IiHhwdhYWG89NJLLFmyJMv6U6ZM\noV27dixfvpzvvvuOkSNHEhkZCcC+ffvYtGkTFSpUyLJO27ZtcXNzY/fu3fj6+rJw4cIsFbvC5J2p\nS5cubN26FRFh9uzZzJgxg7fffptx48ZRuXJlJkyYAMC6dZf7BBo5ciQzZ86ke/fuvPLKK0ybNo13\n330XsO62bd++nTVr1jBt2jTCwsIKPIYlgIcxJiVzwhiTIiJlXRmQUurGduz0BTYfimPLoXg2H4rn\nZJJ1Ydq7egV6t6xD52Y16dysJvWqVSggJ1XaaAVLOfz73/+mfPnyLF26lDVr1lCzZk1Xh6RUieDj\n40N0dDShoaH07ds3S1pCQgKjRo3il19+QURITU3Nsf6mTZscla6ePXsSHx9PYmIiAEFBQTkqV5mC\ng4NZuHAhrVu3Zvny5UybNu2K8s4UExPD0KFDOXHiBCkpKTRp0iTf/U1ISODs2bN0794dgFGjRvHA\nAw840u+//34AOnToQHR0dL55lSCnRCTIGLMSQETuA+JcHJNS6gYSm3jRrkzFsfnQ5V7+vCqXI7BZ\nTfvPi4aeFfSu1E1OK1jKoUyZMnz66ae8/PLLNGzYMEuaMYbly5cTFBSEu7sOXqdcoBB3mopTUFAQ\nEyZMIDw8nPj4eMf8l19+mbvuuotly5YRHR1Njx49rijfSpUq5Zk2bNgw7r77brp3746Pjw916tS5\nqtj/8pe/8NxzzxEUFER4eDhTp069qnwyZd7Zdnd3Jy0t7Zryuo7GAQtE5ANAgGNAqerNQylVtE6f\nT2Hr4XjHXapDp6xxqKpVKEPnpjV5oltTOjetya21K2uFSmWhFSyVhYjkqFwBLF68mAcffJDWrVsz\nY8aMHFfxlSrtxowZQ/Xq1Wnbti3h4eGO+QkJCY5OL+bMmZPrul27dmXBggW8/PLLhIeH4+XlRdWq\nVQvcZrNmzfDy8iIkJIRnnnnmqvN2jnHu3LmO+VWqVMlxtwugWrVq1KhRg40bN9K1a1c+//xzx92s\nG5Ux5hDW8B+V7elzInJ1NValVKmUeDGVHUdOs9lu8rf/hPX7WKmsOwFNPBl2xy10blaTVvWqai9/\nKl9awVIFSk1NZdKkSQDs3buX8PBwrWCpm06DBg0YP358jvkvvPACo0aN4rXXXqNfv35Z0jKvaE6d\nOpUxY8bg4+NDxYoVs1RyChIcHExISIijWV52hcl76tSpPPDAA9SoUYOePXty5MgRAAYMGMCQIUNY\nsWIFM2fOzLLO3LlzGTduHBcuXKBp06b85z//KXTMJZwHMFhEHgJaAvVdHI9SykWSU9KJOHq5QvVT\nzFkyDJTzcMO/cQ2ev6c5nZvVpK13NcrowL7qCogxrm1240r+/v4mIiLC1WGUeBcvXmTGjBm8+eab\neHh4cOjQITw9PV0dlroJ7N+/n5YtW7o6jKuyZMkSVq5ceUWVqZtZbu+1iOw0xlxzf/R2l+z3YQ04\n3A5rkOGBwAZjTEZ+6xYHLXuUco1LaelE/naWLYetCtWPv50hNd3g4Sb4NaxOYLOadG7mRbtbqlO+\njD4OcTMqqnJH72CpApUvX55XXnmFcePGERUVlaNylZycTEhICM899xyNGjVyUZRKlRwrV65k0qRJ\nfPbZZ64O5aYnIv8FugL/A2YC3wG/GmPCXRmXUqr4paVnsOf3RMczVDuiT3MxNQMRaOtdjTFdmhDY\nzAv/RjWoVE5PiVXR0U+TKrTatWvTu3fvHPM//PBD3n//fT755BNefvllJk+e7ILolCo5goKCCAoK\ncnUYytIKOAPsB/YbY9JF5OZtuqFUKWaMYf+JJDYfimPr4Xi2HT5N0iWrI57mdaow7I5bCGxWk45N\nalKtYhkXR6tKM61gqWty/vx5Xn/9dQBSUlK06aBSqkQxxviJSAsgGAgTkTigiojUMcbEujg8pVQR\niU28yN++2M2mX63RF5p4VWKAX30Cm9WkU9OaeFXWcT3V9aMVLHVNKlWqxLJlywgJCeHUqVM8/vjj\nOZYxxmj3pUoplzHGHACmAFNEpANWZWuHiMQYYwJdG51S6lp9s+cPQpZGcSk1g5f7t6JPm7rUr66D\n+yrX0S5R1DXr3r07mzdvZsOGDZQpk/WWe2xsLO3atSM0NJSMjOv+LLlSSmVhjNlpjJkANAJCXB2P\nUurqXUhJY+LSKMbN30nDGhVZPb4Lj3ZpopUr5XJawVJFQkSoXz9nb8evvvoqu3fv5qGHHmLkSB3T\nUylVMhjLBlfHoZS6OlExZ+n//iYW7jjGkz2aseTJQJrWquzqsJQCtIKlitGFCxdYvHixYzo4ONiF\n0Sh1dUSE4cOHO6bT0tKoVasW/fv3B6weA994441i235kZCQiwjfffHPVeQQG5t4KbvTo0Vm+o1ca\n15o1a646JqWUuhrpGYaPww9x/0ebSU5N57+PdeLFe1tQ1kNPaVXJoZ9GVWwqVqzIgQMHmDhxIvfe\ne2+ugxPHxuoz5qpkq1SpEnv27CE5ORmAtWvX4u3t7UgPCgoiJOTaW5qlpaXlOj80NJQuXboQGhp6\n1Xlv3rz5qtfNy41UwRIRNxF50NVxKKWuze9nk3l49lb+75sD3NO6Lt88043OzWq6OiylctAKlipW\n1atX5/XXX2fNmjU5Orr46aefaNiwIY8//jjHjx93UYRKFaxv376sXr0asCo8zndj58yZw9NPPw1Y\nd4TGjx9PYGAgTZs2ddwdMsbw/PPP06ZNG9q2bcuiRYsACA8Pp2vXrgQFBdGqVasc2zXG8OWXXzJn\nzhzWrl3LxYsXHWnz5s3Dx8cHX19fRowYAVgXLAYNGoSvry++vr6OilXlypUd+T399NM0b96c3r17\nc/LkSUd+O3fupHv37nTo0IF77rmHEydOANCjRw9efPFFAgICuP3229m4cSMpKSm88sorLFq0CD8/\nP8f+lFT2YMIvuDoOpdTVWx11gnvf3cBPMQm8OcSHDx5qp12tqxJLexFU10VuvQhOnDiR1NRUZs+e\nTXx8PEuXLnVBZOqG0qNHznkPPghPPQUXLkAud0kZPdr6i4uDIUOypoWHF2qzw4YNY/r06fTv35+o\nqCjGjBnDxo0bc132xIkTbNq0iQMHDhAUFMSQIUNYunQpkZGR7N69m7i4OO644w66desGwK5du9iz\nZw9NmjTJkdfmzZtp0qQJzZo1o0ePHqxevZrBgwezd+9eXnvtNTZv3oyXlxenT58GYPz48XTv3p1l\ny5aRnp7OuXPnsuS3bNkyDh48yL59+4iNjaVVq1aMGTOG1NRU/vKXv7BixQpq1arFokWLsgyUnJaW\nxvbt21mzZg3Tpk0jLCyM6dOnExERwQcffFCoY1gChInIBGARcD5zpjHm9NVmKCJvAgOAFOAQ8Igx\n5uy1BqqUuuzcpTSmrdzLlztj8GtYnXeH+tHYq5Krw1IqX1rBUi6RnJzsuBovIkybNs3FESmVNx8f\nH6KjowkNDc21qauzgQMH4ubmRqtWrRxNYDdt2kRwcDDu7u7UqVOH7t27s2PHDqpWrUpAQECulSuw\n7pYNGzYMsCp58+bNY/DgwXz33Xc88MADeHl5ATjGn/vuu++YN28eAO7u7lSrVi1Lfhs2bHDEUb9+\nfXr27AnAwYMH2bNnD3/6058ASE9Pp169eo717r//fgA6dOhAdHR0oY9bCTPU/v9np3kGaHoNea4F\nJhpj0kTk/4CJwIvXkJ9SysmPv53h2UWRHDt9gfE9b+UvvW6jjLs2vlIln1awlEtUqFCBsLAwwsLC\n2Lp1K23bts2SboxhxYoV9O/fHw8P/ZgqW353nCpWzD/dy6vQd6xyExQUxIQJEwgPDyc+Pj7P5cqV\nuzyYpTGmwHwrVcr9Smx6ejpLlixhxYoV/P3vf8cYQ3x8PElJSVcefAGMMbRu3ZotW7bkmp65T+7u\n7nk+K1bSGWNyr8VeW57/c5rcCgzJa1mlVOGlZxg+Wv8r7677hbpVy7NobGfuaOzp6rCUKjS9DKBc\nqnfv3kyePDnH/DVr1jBo0CDatGnD8uXLXRCZUlmNGTOGKVOm5LgYUBhdu3Zl0aJFpKenc+rUKTZs\n2EBAQEC+66xbtw4fHx+OHTtGdHQ0R48eZfDgwSxbtoyePXvy5ZdfOip6mU0Ee/XqxccffwxYFbSE\nhIQseXbr1s0Rx4kTJ1i/fj0AzZs359SpU44KVmpqKnv37s03vipVqhRLZa+4iEhFEZksIrPs6dtE\npH8RbmIM8HU+239CRCJEJOLUqVNFuFmlSpeYMxcYNmsLb6/9mX5t67Hmma5auVI3HK1gqRInIyOD\niRMnAlbTpbCwMBdHpBQ0aNCA8ePHX9W6gwYNcnRI0bNnT2bMmEHdunXzXSc0NJRBgwZlmTd48GBC\nQ0Np3bo1kyZNonv37vj6+vLcc88B8N5777F+/Xratm1Lhw4d2LdvX444brvtNlq1asXIkSPp3Lkz\nAGXLlmXx4sW8+OKL+Pr64ufnV2DPg3fddRf79u27ITq5sP0H61mpzD7rjwOvFbSSiISJyJ5c/u5z\nWmYSkAYsyCsfY8wsY4y/Mca/Vq1a17YnSpVSKyKP0+fdjew/kcS7Q/14P7gd1SpoRxbqxiOFacJS\nWvn7+5uIiAhXh6GySUlJ4a233uL//u//SE9P59ChQ9SpU8fVYSkX2L9/Py1btnR1GOo6yO29FpGd\nxhj/oshfRCKMMf4i8qMxpp09b7cxxvca8x0NjAV6GWMuFGYdLXuUyirxYipTVuxl2Y/H6dCoBu8O\n9aOhZ0VXh6VuQkVV7ugdLFXilC1blpdeeonDhw+zePHiHJUrY0yez4oopVQeUkSkAlbHFohIM+DS\ntWQoIvdidf8eVNjKlVIqq51HT9P3vY2s3P07f+19O4ue6KSVK3XD0wqWKrFq1qzJvffem2P+Z599\nRmBgII899hiJiYkuiEwpdQOaAnwDNBSRBcA6rn1srA+AKsBaEYkUkU+uMT+lbhpp6Rm8s/ZnHvhk\nCyLwxdjOPNP7Njy0l0BVCmj3bOqGcvjwYZ599lkA/v3vf+Pt7a1dvCulCmSMWSsiu4BOgADPGGPi\nrjHPW4skOKVuMr/FX+DZRT+y67ez3N/em2lBralSXp+1UqWHXiZQN5Tq1avTr18/wOr57MUXdcgZ\npVShdQd6AXcBXV0ci1I3HWMMS3fF0Pf9jfxy8hzvB7fjnw/6aeVKlTrFegfLbp/+HuAOzDbGvJEt\n/WGsQRkFSAKeNMbsdkp3ByKA48aY/vY8X+AToDIQDTxsjEkUkbLAp4A/kIF1dTK8OPdPXX+enp4s\nXLiQgQMH0rRpUypW1HbaSqmCichHwK1AqD1rrIj0Nsb8OZ/VlFJFJCE5lcnL97Bq9+8ENPbkn0N9\naVBDy3BVOhVbBcuuHH0I/AmIAXaIyEpjjHO/wUeA7saYMyLSB5gFdHRKfwbYD1R1mjcbmGCM+V5E\nxgDPAy8DjwMYY9qKSG3gaxG5wxiTUUy7qFxo2LBhuc5/4403SE9P58UXX9QBipVSznoCLY3dda6I\nzAXyH+xLKVUkth2O57kvdhObeJHn72nOuO7NcHcTV4elVLEpziaCAcCvxpjDxpgUYCFwn/MCxpjN\nxpgz9uRWoEFmmog0APphVaic3Q5ssF+vBQbbr1sB39n5ngTOYt3NUjeJnTt38vLLLzN58mS6dOmC\nDuapioKIMHz4cMd0WloatWrVon///MeojYiIuOpxs5y9++67lC9fPsegwYWVXxyNGzcmLu7qHkNa\nvnx5jnG2SrhfgVucphva85RSxSQ1PYO3vj1I8L+2UsZdWPxkIH++61atXKlSrzgrWN7AMafpGHte\nXh4Fvnaafherh6fsd6D2crmi9gBWIQmwGwgSEQ8RaQJ0cEpzEJEnRCRCRCL0BLx0mTlzJmlpaQC4\nu7vj6akjv6trV6lSJfbs2UNycjIAa9euxds7v58yi7+/P++//36ht5P52c0uNDSUO+64g6VLlxY6\nr2uJo7BuwApWFWC/iISLyHpgH1BVRFaKyEoXx6ZUqXMk7jxDPt7MB+t/ZUiHBqwe3xW/htVdHZZS\n10WJ6ORCRO7CqmC9aE/3B04aY3bmsvgY4CkR2YlVYKbY8z/DqsRFYFXONgPp2Vc2xswyxvgbY/xr\n1apV5PuiXGf27Nn8/e9/p0aNGsybNw93d3dXh6RKib59+7J69WrAqvAEBwc70rZv307nzp1p164d\ngYGBHDx4EIDw8HDHXa7Tp08zcOBAfHx86NSpE1FRUQBMnTqVESNGcOeddzJixIgc2z106BDnzp3j\ntddeIzQ01DE/PT2dCRMm0KZNG3x8fJg5cyYAO3bsIDAwEF9fXwICAkhKSsoSR3x8PHfffTetW7fm\nsccew3mg+fnz5xMQEICfnx9jx44lPd36+axcuTKTJk3C19eXTp06ERsby+bNm1m5ciXPP/88fn5+\nHIzkgNsAACAASURBVDp0qMiOdTF6BeiD1V37VKCvPe9t+08pVQSMMXyx4xj93t9IdPwFPnq4PTOG\n+FKpnDbbVzeP4qxgHSfrHaQG9rwsRMQHqxngfcaYeHv2nVh3o6Kxmhb2FJH5AMaYA8aYu40xHbAe\nVj5kz08zxvzVGONnjLkPqA78XDy7pkoiDw8PXnrpJY4cOUKzZs1ypO/YscMFUakiI1I8f4UwbNgw\nFi5cyMWLF4mKiqJjx8uPirZo0YKNGzfy448/Mn36dF566aUc60+ZMoV27doRFRXF66+/zsiRIx1p\n+/btIywsLEsFKtPChQsZNmwYXbt25eDBg8TGxgIwa9YsoqOjiYyMJCoqiocffpiUlBSGDh3Ke++9\nx+7duwkLC6NChQpZ8ps2bRpdunRh7969DBo0iN9++w2A/fv3s2jRIn744QciIyNxd3dnwYIFAJw/\nf55OnTqxe/duunXrxr/+9S8CAwMJCgrizTffJDIyMtfvW0ljjPk+vz9Xx6dUaXD2Qgp//u8uXlgS\nhW+D6nzzbFf6tq3n6rCUuu6K83LCDuA2u7necWAY8JDzAiJyC7AUGGGMcVSGjDETgYn2Mj2wOrUY\nbk/XNsacFBE3YDJWj4KISEVAjDHnReRPQFq2DjXUTaJatWo55n399df07duXoUOH8uGHH1KzZk0X\nRKZuVD4+PkRHRxMaGkrfvn2zpCUkJDBq1Ch++eUXRITU1NQc62/atIn/Z+/O46IutweOf84ACiji\nhiugZIJLbklaubaZtmh5SytbzNT8tS9WlqXWrbzdbpvVTc3U6maatmheu10tU1sswSUVN9xwB0ER\nRJHl/P6YgYuyjQoMy3m/XvNivs93O4w4M+f7PN/zfPnllwBceeWVJCYm5k6S3b9//3yJUI7PP/+c\nr7/+GofDwV/+8hfmzp3LQw89xJIlSxg1alRuIZe6deuyfv16GjduzCWXXAJArVq18h1v+fLluUMN\nr7/+eurUqQPADz/8QHR0dO6+J06coEGDBgBUq1Yttwesc+fOLF68+CxeOWNMVfHr9sM8MWcdh1PT\nGdOvFSN6XGD3Wpkqq9QSLFXNFJGHgO9xlmmfrqobRWSUa/1knMMz6gH/FOeV5ExVLa4wxe0iklNW\n9ytghut5A+B7EcnGmdDlH29jqqSkpCTuu+8+AObMmUNAQAAffvihh6MyZy3PcDZP6N+/P6NHj+an\nn34iMTExt/2FF17giiuu4Ouvv2bXrl307t37rI5bo0aNAtvXr1/Ptm3buOaaawA4deoUYWFhPPTQ\nQ+f8OxRGVbnnnnuYOHFivnU+Pj643p/x8vIq9F4xY0zVdCozmzcWb2Hq8h2E1avB1w90o11w/gud\nxlQlpXoPlqouUtVwVW2hqq+42ia7kitUdbiq1nEN6+tYUHKlqj/lzIHlWn7HdcxwVR2TU3JXVXep\naoSqtlbVq1V1d2n+bqbi8PHxye11aNiwIa+++qqHIzIV0bBhwxg/fjzt2rU7rT05OTm36MXMmTML\n3LdHjx65Q+5++ukn6tevX2APU16ff/45EyZMYNeuXezatYv9+/ezf/9+du/ezTXXXMOUKVNyk52k\npCQiIiI4cOBA7lDYlJSUfMlQz549mTVrFuDs1T1yxFnE9aqrrmLevHnEx8fnHm/37qLfQgMCAkhJ\nSSlyG2NM5ZWemcXP2w4z8INfmLJsB7ddEsrCR7pbcmUMpTzRsDHlQUBAANOmTWPAgAH4+PhgxU3M\nuQgODi6w3PnTTz/NPffcw8svv8z1119/2rqcnp8JEyYwbNgw2rdvj7+/Px9//HGx55s9ezaLFi06\nre3mm29m9uzZPPnkk2zdupX27dvj4+PDiBEjeOihh5gzZw4PP/wwJ06cwM/PjyVLlpy2//jx47n9\n9ttp27Ytl19+OaGhzqrlbdq04eWXX6ZPnz5kZ2fj4+PD+++/T7NmzQqN77bbbmPEiBFMmjSJefPm\nldv7sERkPVBo96eqti/DcIyp0OIS01i2NZ5lWxP4dXsiaaeyqOPvw5S7OnNt20aeDs+YckPUw8Nu\nPCkyMlKjoqI8HYbxsJkzZ7J582ZefPFFqlev7ulwTB6bNm2idevWng7jnHz55ZcsWLDArWTKFPxv\nLSLRbgwbL5KI5GSJOUPLP3X9HAKgqmPO5/jnwj57TEVxMiOL33YksmxLAsu3JrDj8HEAQuv60zsi\niF7hQVzWoh7+1ex6vakcSuJzB6wHy1Rxu3bt4pFHHiElJYXvvvuO+fPn07x5c0+HZSq4BQsWMHbs\nWKZPn+7pUKq8nOHiInKNqnbKs2qMiKwGyjzBMqa8UlV2HD7OT1sSWLY1gd93JJKemU11bweXtajH\n3Zc1o1dEA8LqF3zvqDHGyRIsU6V98MEHufeRnDx5MrdymjHno3///vTv39/TYZjTiYh0U9VfXAuX\nU07mgjTGk1LTM/lteyI/bXEO/dt7xDmpeougGgzp2ozeEUF0CauLr4/NLWmMuyzBMlXaxIkTCQ4O\n5rnnnuPTTz/F39/f0yGZM6hq7r1MpnIqo6Hqw4AZIpJzB/5RV5sxVYqqsuVQCsu2JPDTlgSidieR\nkaXUqObF5RfWZ1SvFvQKDyKkrn0eGnOuLMEyVZrD4eDhhx/mzjvvzJ0TKK81a9bQsWNH+4LvIb6+\nviQmJlKvXj37N6ikVJXExER8fX1L7RyueRMvVNUOOQmWqiaX2gmNKWeST2TwS+xhlrmG/h08dhKA\nVo0CGNY9jF7hQUQ2q0s1b+vUNaYkWIJlDBSYXK1evZquXbvSp08fpk2bRuPGNht9WQsODmbv3r0k\nJCR4OhRTinx9fQkODi6146tqtog8DXxhiZWpCrKzlZgDx3KH/a2OO0pWthLg602PlvXpHd6AnuFB\nNAosvQsbxlRllmAZU4CTJ09y1113kZmZyaJFixg5ciTffvutp8Oqcnx8fAgLC/N0GKZyWCIio4E5\nwPGcRlVN8lxIxpScpOOnWLEtwVnxb1sCh1NPAdCuaSD/16sFvSOC6BhSG28v66UyprRZgmVMIfr0\n6UNMTAz+/v689dZbng7HGHN+Brt+PpinTYELPBCLMectK1tZt/eo816qrQn8ufcoqlDH34ee4c4S\n6j1aBhEUYNOPGFPWLMEypgC+vr689dZb9O/fnwMHDnDhhRd6OiRjzHlQ1RLvChWRvwIDgGwgHhiq\nqvtL+jzGgPN+xX1HT7ByRxLLtiawYlsCR9MycAh0CKnNY1eF0ysiiHZNA/Fy2D2rxniSJVjGFOGK\nK64osP37779nwYIFvPLKK9SuXbuMozLGnAsRuQhoA+TeeKKqn5zHIV9X1Rdcx34EGAeMOq8gjXFJ\nPpHBn3uPsjbuKOv2HmXtnmQOp6YDUL9mda5q1ZDeEUF0v7A+dWpU83C0xpi8LMEy5iwlJSUxbNgw\n9u/fz7Rp04iNjSUkJMTTYRljiiAi44HeOBOsRUA/4GfgnBMsVT2WZ7EGziGH5jz8viOR2IRULgyq\nScuGAdStIonDqcxsNh045kyk4o6ydu9RdiTk3ipIi6Aa9AyvT6eQ2lzcrA6tG9XCYb1UxpRblmAZ\nc5Y+/vhj9u93jgIKCQnJV/0sPT2dVatWcdlll+HlZRMzGlNO3AJ0ANao6r0i0hD41/keVEReAe4G\nkoGCu7yd240ERgKEhoae72krnf1HT/Dyv2NYtP7gae31alTjwgY1admwJi0bBNCyQU0ubFiToJrV\nK+zUDarK7sQ01u45mvuI2X+MU1nZgLN3qmNIbQZ2akrHkDq0Cw4k0M/Hw1EbY86GJVjGnKXHHnuM\nevXq8eabb3LllVfm+5D/6aef6Nu3L/Xq1WPkyJG8+uqrHorUGJPHCVe59kwRqYXznqliu55FZAnQ\nqIBVY1V1vqqOBcaKyLPAQ8D4go6jqlOBqQCRkZHW0+WSnpnFtBU7ee/HWBRldJ9w+ndoys7E42w7\nlEJsfCrb4lOZv3Y/KSczc/cL9POhpSvxauHq7WrZoCaNA33LXeKVdPwU6/YcZc2eo6zb4xzudzQt\nAwA/Hy/aNQ1kaLfmdAiuTcfQ2jQph7+DMebsWIJlzFkSEe6++27uvvtusrKy8q3PKeeemJjIyZMn\n860/deoU1apVjWEvxpQjUSJSG/gQiAZSgd+K20lVr3bz+J/hHHpYYIJl8lu+NYEJCzay4/Bx+rZt\nxPM3tCa4jj8AofX86RUelLutqpKQks62+FS2HUpx/oxP5fuNh0g6vid3u5rVvWnRoKYz+crT89W0\ntl+ZDKk7mZHFxv3JrN2TzFpXQhWXlAaAQyC8YQDXtmlEx9DadAiuTXjDmlY23ZhKyBIsY85DQUMA\n69atS+PGjTlw4AA33HBDvvVPPPEES5Ys4YYbbmDkyJGEh4eXRajGVGmq+oDr6WQR+Q9QS1X/PJ9j\nikhLVd3mWhwAbD6f41UV+46e4K/fxvCfjQcJq1+Dj4d1OS2ZKoiI0KCWLw1q+dLtwvqnrUtMTc/t\n6XL+TGH51gTmRe/N3cbXx8GFDWrm3tt1oSsBC63rf84JTna2suNwKmtyi1AcZfOBFDKznR2UTQJ9\n6RBSmyFdQ+kQUpt2TQOpUd2+dhlTFYhq1R2pEBkZqVFRUZ4Ow1RC2dnZrFmzhvbt2+Pj87+x86pK\nWFgYu3fvBuDHH38stFKhMVWdiESramQJHetTYDmwQlVLJBESkS+BCJxl2ncDo1R1X3H7VdXPnvTM\nLD5cvoP3lsYiCA9deSHDe4RR3bt07lVNTssgNiGFbYdSc3u8Yg+lsD/5fyMLqnk5uCCohivhCnD1\neNWkWb0aVPM+PfGKP3Yy956pdXuP8ueeZFLSncMWA6p70z4k0DnML8T5aFDLF2NMxVJSnzt2KcWY\nUuBwOOjcuXO+9j179hAfHw9ArVq16N69+2nrVZXBgwdzySWXcOONNxIREWFj8Y0pGdOBHsC7ItIC\nWAMsV9V3zvWAqvqXkgquslu6JZ4XF2xkV2Ia/S5qxPM3tKFpbb9SPWegvw+dm9Wlc7O6p7WnnMxg\ne4LrHq+EVGIPpfLn3mT+vf4AOdecvR1C8/o1uDCoJiKwds9RDrgSM2+H0KpxAAM6NaFDcG06hdbm\ngvo1raqfMSaX9WBVwauIxrNOnDjB0qVL2b9/P8OHDz9t3fr162nfvj0AgYGBJCQknNYDZkxVUpI9\nWK7jeQGX4Kz2Nwpn4YtWJXV8d1Wlz549SWm8tDCGxTGHuCCoBi/2b0uPlkUPB/SUE6ey2J7wv2GG\nOT1f2aq0z+2ZCqRtk0B8faxCrDGVkfVgGVNB+fn5cd111xW4LqdABkDfvn3zJVfbt2/n559/5rrr\nriMoqHx+STGmPBKRH3DOVfUbsAK4RFXjPRtV5XUyI4upy3fw/tJYvBzCM31bcV/3sHzD7soTv2pe\nXNQ0kIuaBno6FGNMBWcJljHlyPDhw2nSpAnffvstt9xyS771c+bMYezYsYgIY8eO5a9//asHojSm\nQvoT6AxchHPOqqMi8puqnvBsWJXPj5sP8eK3MexOTOP69o15/vrWNA4s3eGAxhhTnliCZUw50qBB\nA4YOHcrQoUMLXJ/Tw6WqRERElGFkxlRsqvo4gIgEAEOBGTjnt6ruwbAqlbjENF5auJElm+K5sEFN\nPhveNV/FP2OMqQoswTKmglBVBg4ciLe3N3/88Qf9+vXLt83HH3+Mn58fgwYN8kCExpRfIvIQziIX\nnYFdOIterPBkTJXFyYwsPvhpOx8s2463Q3i2Xyvu7Va+hwMaY0xpsgTLmApCRHjqqad46qmnOHbs\nGLVq1Tpt/c8//8yIESPIyMhgw4YNTJgwAYfDvuAY4+ILvAlEq2qmp4OpLJbEHOLFhRvZk3SCGzs0\nYex1rWkUaOXJjTFVm337MqYCOjO5UlWee+45MjIyAJg/fz4nT54saFdjqiRV/QfgA9wFICJBIhLm\n2agqrt2Jxxk2cxXDP4nC19uLWSO68u7tnSy5MsYYrAfLmEpBRFiwYAGDBw9mzZo1LFiwAH9/f0+H\nZUy5ISLjgUicEwPPwJls/Qvo5sm4KpoTp7L44KdYJi/fgY9DGHtda4Z2a46Pl12vNcaYHJZgGVNJ\n1K5dm3//+9/s3LmTZs2aeTocY8qbm4FOwGoAVd3vKnhh3KCq/DfmEC99G8O+oycY0LEJz13Xmoa1\nrMfKGGPOVKqXnESkr4hsEZFYERlTwPohIvKniKwXkV9FpEOeddNFJF5ENhRy7CdFREWkvmv5GhGJ\ndh0rWkSuLL3fzJjyydvbm5YtW+Zr/+WXX5gxY4YHIjKm3DilqgoogIjU8HA8FcbOw8cZOmMV938a\nTc3q3sweeSnv3NbJkitjjClEqfVgiYgX8D5wDbAXWCUiC1Q1Js9mO4FeqnpERPoBU4GurnUzgfeA\nTwo4dgjQB4jL03wYuNF1VfIi4Hugacn+VsZUPLt372bgwIHEx8ezYcMG/v73v+Pl5eXpsIwpa1+I\nyBSgtoiMAIYB0zwcU7mWdiqT95fG8uHynVTzdvDCDW24+7JmNhzQGGOKUZrvkl2AWFXdoaqngNnA\ngLwbqOqvqnrEtbgSCM6zbjmQVMix3wKexnUl0rX9GlXd71rcCPiJiM1vYqq8sWPHEh8fD8Ann3zC\nwYMHPRyRMWXPVeRiHvAlzvuwxqnqJM9GVT6pKv/ZcIBr3lzO+0u3c337xvz4ZC/u6x5myZUxxrih\nNO/BagrsybO8l//1ThXkPuC74g4qIgOAfaq6TkQK2+wvwGpVTS9g/5HASIDQ0NDiTmdMhTd58mRS\nU1NZtGgRX331FU2bWseuqZpUdTGwGEBEHCIyRFU/83BY5cqOhFTGL9jIim2HadUogC/uv4wuYXU9\nHZYxxlQo5aLIhYhcgTPB6l7Mdv7AcziHBxa2TVvgtcK2UdWpOIciEhkZqQVtY0xlUrNmTb766itW\nr15NZGSkp8MxpkyJSC3gQZwX/RbgTLAeBEYD6wBLsHAOB3z3x1imrdiBr7cX41zDAb2tx8oYY85a\naSZY+4CQPMvBrrbTiEh7nOPg+6lqYjHHbAGEATm9V8HAahHpoqoHRSQY+Bq4W1W3l8DvYEyl4HA4\nCkyu4uLi+M9//sOIESMookfYmIrsU+AI8BswHOdFOgFuUtW1ngysPFBVFq0/yMv/juFA8kkGXtyU\nMf1a0SDAClgYY8y5Ks0EaxXQ0jWR4z7gNuCOvBuISCjwFXCXqm4t7oCquh5okGf/XUCkqh4WkdrA\nv4ExqvpLif0WxlRSx48fZ8CAAaxdu5Y1a9YwadIkfHx8PB2WMSXtAlVtByAi04ADQKiqVumZuE+c\nyuLf6w8w6/fdrI47SuvGtXj39k5ENrfhgMYYc75KLcFS1UwReQhnNT8vYLqqbhSRUa71k4FxQD3g\nn66r55mqGgkgIp8DvYH6IrIXGK+qHxVxyoeAC4FxIjLO1dZHVeNL/rczpuKbOHEia9c6L+BPmzaN\n++67z4YQmsooI+eJqmaJyN6qnFxt3J/M7D/28M3afaSczCSsfg3+OqAtt3cJteGAxhhTQsQ5LUjV\nFBkZqVFRUZ4OwxiPOHHiBMOHD2fWrFlMnTqVESNGeDokY04jItE5F93O4xhZwPGcRcAPSHM9V1Wt\ndX5Rnr2y/uxJTc9kwdr9zF4Vx597k6nm7eC6ixpxW5dQuobVteHBxhjjUhKfO+BGD5aI1HPj3ihj\nTAXj5+fHv/71L+655x769Cm0bowxFZqqlvqkbyLyJPAPIEhVD5f2+dyhqqzdc5TZf+zh2z/3k3Yq\ni4iGAYy/sQ03d2pKbf9qng7RGGMqLXeGCK4UkbXADOA7rcpdXsZUMiJSYHKVlpbG7Nmzuffee+3q\ntjFFKGTie485mnaKr9fsY86qPWw+mIKfjxc3dmjMbV1C6RRS2/4/G2NMGXAnwQoHrsY56/0kEfkC\nmOlOUQpjTMWjqgwdOpS5c+fy008/MXXqVHx9raKYMYXImfh+vqcCUFV+35nE7D/iWLThIKcys2nX\nNJBXbr6I/h2aEOBrxWuMMaYsFZtguXqsFgOLXfNV/Qt4QETW4azY91spx2iMKUMzZsxg7ty5AHz6\n6af079+fW265xcNRGVP+uDnxfc62JT7J/eHUdL6M3sucVXvYcfg4AdW9GRwZwuBLQrioaWCJnMMY\nY8zZc+seLOBO4C7gEPAwzskaOwJzcc5LZYypJO68805+/fVXPvroIx588EFLrkyVJiJLgEYFrBpL\nMRPf51VSk9xnZys/xx5m9qo4FsccIiNLiWxWhweuuJDr2zXGr1qp33JmjDGmGO4MEfwN50SNN6nq\n3jztUSIyuXTCMsZ4SrVq1fjwww/p27cvAwYM8HQ4xniUql5dULuItKOIie9LOo6DySeZG7WHOVF7\n2HvkBHX8fbj7subcdkkILRsGlPTpjDHGnAd3EqyIwgpbqOprJRyPMaYcEJECe65Ulblz53LLLbfg\ncNicOabqKmri+5I6R2ZWNj9tSWD2qjh+3BxPtsLlLerxdN9WXNu2IdW9rbfKGGPKI3cSrP+KyK2q\nehRAROoAs1X12tINzRhT3rzyyiu88MILDBw4kE8++YQaNWp4OiRjKp09SWl8EbWHL6L2cOhYOvVr\nVuf+Xi0YHBlC8/r2f84YY8o7dxKsoJzkCkBVj4hIg6J2MMZUPsuWLeOFF14A4KuvviIyMpJnn33W\nw1EZUz6oavPz2f9UZjZLNh3i8z/i+DnW2QnWKzyIF/uHclXrBvh4WY+xMcZUFO4kWFkiEqqqcQAi\n0gywubCMqWK6devGo48+yjvvvMMVV1zB6NGjPR2SMRXejoRUZq/aw5fRe0k8foomgb48cmVLBl0S\nQtPafp4OzxhjzDlwJ8EaC/wsIssAAXrgKjVrjKk6vL29efvtt7nkkkvo27cvPj42t44x50IVvl6z\nl8//2MMfO5PwcghXtWrA7V1C6RkehJfDJgM2xpiKzJ15sP4jIhcDl7qaHivJm3iNMRXLkCFDCmz/\n4Ycf6N27N15eduO9MUXZdOAYj89ZR7N6/jzdN4JbLg6mQS2bzNsYYyoLd3qwAKoDSa7t24gIqrq8\n9MIyxlQkX3/9NQMHDqRfv358/vnnBAbaJKfGFKamrzezhnfl0gvq4bDeKmOMqXTcmWj4NWAwsBHI\ndjUrYAmWMYbY2FjuuusuAL777jtGjx7Nhx9+6OGojCm/Quv6c/mF9T0dhjHGmFLiTlmim3DOhXW9\nqt7oevQv7cCMMRXDBRdcwCOPPJL7/G9/+5uHIzLGGGOM8Rx3hgjuAHyA9FKOxRhTATkcDl599VXa\ntWtH+/btqVevnqdDMsYYY4zxGHcSrDRgrYj8QJ4kS1UfKbWojDEVzu23315g+759+2jSpAkidq+J\nMcYYYyo/d4YILgD+CvwKROd5GGNMkTZs2ED79u0ZPXo0qjZ9njHGGGMqP3fKtH8sIn5AqKpuKYOY\njDGVQFxcHH369CEpKYk333wTgDfeeMPDURnjedHR0akiYp+nhasP2HQwhbPXp2j2+hTNXp+iRZTE\nQdypIngj8A+gGhAmIh2Bl6zQhTGmKA0bNuSyyy7jq6++IiAggDvuuMPTIRlTXmxR1UhPB1FeiUiU\nvT6Fs9enaPb6FM1en6KJSFRJHMedIYITgC7AUQBVXQtcUBInN8ZUXtWrV2fOnDmMGjWKhQsX0rlz\nZ0+HZIwxxhhT6twpcpGhqsln3KCeXdjGxhiTw9vbmw8++MDTYRhjjDHGlBl3erA2isgdgJeItBSR\nd3EWvDDGmHNy5MgR7rzzTuLj4z0dijGeMNXTAZRz9voUzV6fotnrUzR7fYpWIq+PFFfZS0T8gbFA\nH0CA74G/qurJkgjAkyIjIzUqqkSGWhpj3JSamso111zDypUrCQ8PZ/HixYSGhno6LFMOiUi03Stg\njDGmonGnimAazgRrbOmHY4yp7FasWMEff/wBwNatW1m5cqUlWMYYY4ypNNypIrgUyNfNpapXlkpE\nxphKrV+/fsydO5fbb7+dN998k0GDBnk6JGOMMcaYEuPOPVijgadcjxeAtYBb4+pEpK+IbBGRWBEZ\nU8D6ViLym4iki8joPO0RIrI2z+OYiDzmWtdRRFa62qNEpIurvbmInMizz2R3YjTGlL2BAweyZcsW\nHnzwQU+HYkypEpHpIhIvIhvytNUVkcUiss31s44nY/SkQl6f10Vks4j8KSJfi0htT8boSQW9PnnW\nPSkiKiL1PRFbeVDY6yMiD7v+hjaKyN89FZ+nFfL/q8Dv0VWRiISIyFIRiXH9rTzqaj/v9+hiEyxV\njc7z+EVVnwB6uxG0F/A+0A9oA9wuIm3O2CwJeATnPFt5z7lFVTuqakegM5AGfO1a/XfgRde6ca7l\nHNtz9lPVUcXFaIzxnObNm+dry8rKYvXq1WUfjDGlZybQ94y2McAPqtoS+MG1XFXNJP/rsxi4SFXb\nA1uBZ8s6qHJkJvlfH0QkBOe98XFlHVA5M5MzXh8RuQIYAHRQ1bac8R2ziplJ/r+for5HVzWZwJOq\n2ga4FHjQlauc93t0sQmWK4vLedQXkWuBQDeO3QWIVdUdqnoKmI3zDz6Xqsar6iogo4jjXIUzcdqd\nsxtQy/U8ENjvRizGmHJOVRk5ciSXXnop8+bN83Q4xpQIVV2O82JiXgOAj13PPwZuKtOgypGCXh9V\n/a+qZroWVwLBZR5YOVHI3w/AW8DTFHALR1VSyOvzf8DfVDXdtU2VLVdbyOtj36NdVPWAqq52PU8B\nNgFNKYH3aHfmwYrG+Y8hODO9ncB9buzXFNiTZ3kv0PVsAwRuAz7Ps/wY8L2I/ANngnh5nnVhIrIW\nSAaeV9UVZx5MREYCIwG7sd6YcuTVV19l+vTpAAwePJhffvmFSy+91MNRGVMqGqrqAdfzg0BDTwZT\nzg0D5ng6iPJERAYA+1R13RlzlBqncKCHiLwCnARGuy7mG6eivkdXWSLSHOgE/E4JvEe7M0QwwWOH\naQAAIABJREFUTFUvcP1sqap9VPXnsz3RuRCRakB/YG6e5v8DHlfVEOBx4CNX+wEg1NXl+QQwS0Rq\ncQZVnaqqkaoaGRQUVLq/gDHGbXfffTcRERG5z7t0qbLDwk0Vos65Uqp0L0RhRGQszgu7n3k6lvLC\nNXXOcziHdpmCeQN1cQ75egr4QiwTzauw79FVlojUBL4EHlPVY3nXnet7tDtVBAcWtV5Vvypk1T4g\nJM9ysKvtbPQDVqvqoTxt9wCPup7PBaa54kgHcrqDo0VkO86rGDbRlTEVQEhICCtWrOCtt97ipZde\nwuFwpwaPMRXSIRFprKoHRKQxUGWHMBVGRIYCNwBXaXETdlYtLYAwIKf3KhhYLSJdVPWgRyMrP/YC\nX7n+bv4QkWygPpDg2bDKjQK/R1dVIuKDM7n6LE9Oc97v0e58g7kPZ3Y7xPWYhrPL/kacb36FWQW0\nFJEwV0/UbcCCs4zvdk4fHgjOsaK9XM+vBLYBiEiQq7AGInIB0BLYcZbnM8Z4UFBQEK+++ire3vmv\n/dh3LFOJLMD5JQfXz/kejKXcEZG+OO8v6u+ai9O4qOp6VW2gqs1VtTnOZOJiS65O8w1wBYCIhAPV\ngMMejah8KfB7dFXk6tn8CNikqm/mWXXe79Hu3IPlA7TJGYvoyuRmquq9Re2kqpki8hDwPeAFTFfV\njSIyyrV+sog0wtnDVAvIdpVib6Oqx0SkBnANcP8Zhx4BvCMi3jjH1o50tfcEXhKRDCAbGKWqBd0Y\naoypYCZPnszKlSuZNm1agcmXMeWViHyOs/JufRHZC4wH/oZz2NJ9wG6gyk4GV8jr8yxQHVjs6qVZ\nWVUrAxf0+qhqlR/SlaOQv5/pwHRXafJTwD1VtRe0kNensO/RVVE34C5gvauGAziH4J73e7QU9zcn\nIptUtXWeZQewMW9bRRUZGalRUTaC0JjybNasWdx5552oKjfddBOff/45vr6+ng7LlAERiVbVSE/H\nYYwxxpwNdy4F/yAi3/O/oXqDgSWlF5IxxvzPzz//nDs8cN++fWRkZFiCZYwxxphyq9gES1UfEpGb\ncQ7BA5iqql8XtY8xxpSU999/n5o1a7Jo0SK+++47AgICPB2SMcYYY0yhih0iCCAizYCWqrrEVSLU\nyzUhV4VmQwSNqRhUldTUVEuuqhgbImiMMaYiKraKoIiMAOYBU1xNTXFWaDHGmDIhIgUmV7/99hu7\ndu0q+4CMMcYYYwrhTpn2B3FW2TgGoKrbgAalGZQxxhRn9erV9O3bl+7du7Np0yZPh2OMMcYYA7iX\nYKWr6qmcBVdZxypZ7tIYUz6kp6dz0003cezYMfbt28egQYPIzs72dFjGGFPmRKSeiKx1PQ6KyL48\ny9XO2PZ7ESlyrLWI7BWR2oW0z8mzfJuIlMgktSLysmuqHmMqBXcSrGUi8hzgJyLX4Jz1+dvSDcsY\nYwpXvXp1Zs6cSY0aNahTpw6zZs3C4XDn7cwYYyoXVU1U1Y6q2hGYDLyVs5xzgVycHKp67XneQ99V\nRCJKJPASkvO7eToOY/Jy5w9yDJAArMc56e8i4PnSDMoYY4pz5ZVX8uOPP7Jo0SLatWvn6XCMMaZc\nEZELRSRGRD4DNgKN8/ZOici3IhItIhtFZLibh30D50SsZ57rtB4oEdksIsGuGDaIyKcislVEPhGR\na0XkVxHZJiJ5i9h0EpGVrvZheY41RkT+EJE/RWRcYb/bWb9AxpSiIsu0i4gX8ImqDgE+LJuQjDHG\nPV26dCmw/dSpU1SrVq3AdcYYU4W0Au5W1ShwFgzK4x5VTXJVh44SkS9V9Ugxx/sceEhEws4ihghg\nELAZWA2cVNXLReQvOC/i3+Larh1wOVALWC0i/wY6A6FAV0CARSJyORB/5u9mTHlSZA+WqmYBzc4c\nw2uMMeVVQkICnTp1YurUqZ4OxRhjPG17EQnI4yKyDvgNCAZauHG8TJy9WGPOIoZYVY1R1WwgBvjB\n1b4eaJ5nu29U9aSqxgPLgUuAPkA/YA3O5OxCINy1fVG/mzEeVexEw8AO4BcRWQAcz2lU1TdLLSpj\njDkHycnJXHvttcTExHD//fdz7NgxRo8e7emwjDHGU44X1CgiVwM9gUtV9YSI/Az4unnMmcDTwNY8\nbZmcftE+77HS8zzPzrOczenfQ88soKY4e61eVtWPzoj/Qgr53YwpD9y5B2s7sNC1bUCehzHGlCuZ\nmZl4eXkB4HA4aNasmYcjMsaYcikQSHIlV21x9ha5xVU4YxLwaJ7mXTiH8yEiXYCQc4jpJhGpLiJB\nQA8gCvgeuE9EariOHSwi9c/h2MaUqUJ7sETEW1UzVfXFsgzIGGPOVb169fjhhx8YMGAAd955J7fe\nequnQzLGmPLo38BIEYkBtgC/n+X+H3J6sYu5wJ0isgFYiXP009naACwD6gHjVfUQznuuWgErXfeP\npQB3nMOxjSlTolrwlFYislpVL3Y9f1dVHy7TyMpAZGSkRkXZ8F1jKpusrKzcnixTcYlItKpGFr+l\nMcYYU34UNUQwb6mZbqUdiDHGlJSCkquMjAyefPJJFi1aZJMSG2OMMabUFJVgFdy1ZYwxFUx2djZD\nhw7lzTff5Prrr+fRRx8tfidjjDHGmHNQVBXBViLyJ86erBau57iWVVXbl3p0xhhTAr7//ntmz56d\nuzx48GAPRmOMMcaYyqyoBKt1mUVhjDGlqF+/fsTGxvLee++xdu1aunU7fdSzqvL000/Tv39/unfv\nfuZknMYYY4wxbiu0yEVVYEUujKl6VDVfArVixQp69uwJQLdu3Vi+fDkOhzuzWJjSZEUujDHGVET2\nDcIYU6UU1Dv1zjvv5D5v06aNJVfGGGOMOWf2LcIYU+VNmDCBESNG4OfnV2ABjMWLF7N27VoPRGaM\nMcaYisatIYIi4geEquqW0g+p7NgQQWNMXseOHaNWrVqntWVlZdGyZUt27txJ7969mT59OmFhYR6K\nsGqxIYIVU3R0dANvb+9pwEXYhVxjKpNsYENmZubwzp07x3s6mPKsqCIXAIjIjcA/gGpAmIh0BF5S\n1f6lHZwxxpSlM5MrgIULF7Jz504A1q1bR8OGDcs6LGMqFG9v72mNGjVqHRQUdMThcFTdG72NqWSy\ns7MlISGhzcGDB6cBlgcUwZ0rSxOALsBRAFVdC9jlW2NMlRAWFsbgwYPx8vLi/vvvx9/f/7T1hw8f\nJjY21kPRGVMuXRQUFHTMkitjKheHw6FBQUHJOHunTRHcSbAyVDX5jDZ70zTGVAnt27dn9uzZ7Ny5\nkyeeeCLf+kmTJhEeHk7//v1ZtWqVByI0ptxxWHJlTOXk+r9tQ3+L4c4LtFFE7gC8RKSliLwL/FrK\ncRljTLkSEhJCUFDQaW0nT55k8uTJqCrffvstu3bt8kxwxhhjjCk33EmwHgbaAunALCAZeMydg4tI\nXxHZIiKxIjKmgPWtROQ3EUkXkdEFrPcSkTUisjBP2+sisllE/hSRr0WktqvdR0Q+FpH1IrJJRJ51\nJ0ZjjDlXiYmJdOnSBXAmYDfffHO+bY4cOVLWYRlT5Xl5eXVu1apVm5zHc8891+hcjvOXv/yl+YwZ\nM+qUREyffvpp7ejoaN+c5ccee6zJN998E1ASx77xxhvDwsPD27z44osNzma/w4cPe/3tb38LKn7L\nysff379TWZ5v8ODBzfL++5+Pl19+ucEFF1zQtn///md9y85LL73UICUlxXqgSlmxRS6AVqo6Fhh7\nNgcWES/gfeAaYC+wSkQWqGpMns2SgEeAmwo5zKPAJiDvneeLgWdVNVNEXgOeBZ4BbgWqq2o7EfEH\nYkTkc1XddTZxG2OMu5o2bcrChQvZsmULe/bswdv79LfULVu20L59e2699VYeffRRLrnkEg9FakzV\nUr169ezNmzfHFL9lycrMzMz3PpDjm2++qZ2ZmZncuXPnkwBvv/32/pI4Z1xcnPe6detqxMXFbTjb\nfRMTE70++uijBmPGjElwd5+MjAx8fHzO9lSVXnGvy5w5c3aX1Lk++uijoCVLlmxt0aJFxtnuO2XK\nlIYjRoxICggIyHZ3n6L+rk3B3Hm13hCRRsA8YI6quvsfuAsQq6o7AERkNjAAyH3DU9V4IF5Erj9z\nZxEJBq4HXgGeyLPPf/NsthK4JWcVUENEvAE/4BRwzM1YjTHmnEVERBAREZGvfdKkSZw6dYrPPvuM\nY8eOsWDBAg9EZ4znDBtGyIYN+Be/pfsuuoi06dPZc7b7JSYmenXu3Ln1/Pnzt3Xo0CH9xhtvDOvd\nu3fKk08+edjf37/T7bfffnjZsmW1goKCMr788ssdTZo0ycy7//z58wPGjBkTkpWVRYcOHdI++eST\n3X5+ftq0adN2/fv3T1q2bFmtxx577GBKSorXjBkzgjIyMqR58+bp8+bN27ly5Uq/JUuW1F65cmXA\na6+91vjLL7/cPm7cuMY33HBD8r333nukqGMPGjQo8fvvvw/MzMyUOXPm7OjUqdPJvHFdffXV4fHx\n8dVatWrV5u23347buHGj75nnDwgIyN6zZ4/3sGHDmsXFxVUHeO+993a/8847Dffs2VO9VatWbXr1\n6nXsgw8+2Pt///d/wT/++GOgiOhTTz11YMSIEUcWLlwYMH78+CaBgYFZO3bs8N21a9dZJ3OFGTZ/\nWMiG+A0l+zfS4KK06QOmn/XfyP79+73vvffeZvv27asG8Oabb8b16dPn+NKlS/0ff/zx0PT0dIev\nr2/2zJkzd3bo0CF90qRJ9b755ps6aWlpjqysLBk/fvz+l156qUndunUztmzZ4teuXbu0b775ZqfD\n4aBLly4R//jHP/b07Nkzzd/fv9N9990X/9///jfQ19c3e+HChbEhISGZGzdurH7HHXeEnThxwtG3\nb9+j06ZNa5iWlrYmb4x33HFH6N69e6v369ev5ZAhQw737NkztaDYMjMzeeCBB4KXLl0aKCJ6zz33\nHFZV4uPjfXr16hVep06dzN9//33rlClT6r7xxhuNVFWuvvrqox988ME+cPbwDRkyJGH58uW1Jk2a\nFHfttdemlsy/TtVQbBehql4BXAEkAFNcQ/Ced+PYTeG0N8C9rjZ3vQ08jbPmfmGGAd+5ns8DjgMH\ngDjgH6qadBbnM8aYEqOq7NixI3f5scfcGlltjCkB6enpjrxDBD/88MM69erVy3rrrbfi7rnnnrCp\nU6fWOXr0qPeTTz55GODEiROOyMjI47GxsRu7deuWMmbMmCZ5j5eWlib3339/2Jw5c7Zv3bo1JjMz\nk9dffz13aF29evUyY2JiNo0cOfLIkCFDjmzYsGHTli1bYiIiIk5MmjSp/jXXXHP86quvPvryyy/v\n3bx5c0zbtm3T3T12/fr1M2NiYjYNGzYs4W9/+1u+eSK+/fbb2JCQkPTNmzfH9O3bN7Wg8wOMGjUq\ntEePHilbtmyJ2bhxY8zFF1988o033tibs++UKVP2fvLJJ7XXr1/vt2nTpo0//PDD1nHjxgXv3r3b\nByAmJsb/n//8Z1xJJlflzf333x/yxBNPHNqwYcOmr7/+evuoUaOaA3To0OHkqlWrNm/atClm/Pjx\n+55++ungnH02btzoP3/+/O2rVq3aArBp0ya/999/f09sbOzGuLi46osXL6555nlOnDjhuOyyy1K3\nbNkSc9lll6W+++67QQAPPfRQyAMPPBC/devWmODg4AJ7p2bNmhXXoEGDjGXLlm0dP358fGGxvfHG\nG0FxcXHVYmJiNm7dujVm+PDhic8//3x8zr6///771l27dvlMmDCh6U8//bQ1JiZm45o1a2p8+umn\ntXNi7Nq16/EtW7bEWHJ19tzq71PVg8AkEVmKM+kZB7xcWkGJyA1AvKpGi0jvQrYZC2QCn7maugBZ\nQBOgDrBCRJbk9KDl2W8kMBIgNDS0dH4BY0yVJyJ89913REdHM2/ePK644op82wwbNoxWrVrxyCOP\n4OtbIkPzjSlXzqWnqSQUNkTw5ptvPvbFF1/Uefrpp5tFR0dvzGl3OBwMHz48CWDYsGGJAwcOvDDv\nfuvWrfMNDg5Ob9++fTrA0KFDE99///0GQDzA3XffnXuzZXR0tN+4ceOapqSkeB0/ftyrV69eZ1Zi\nPk1xx77jjjuOAHTp0iVtwYIFxd4PVtj5f/3114B58+btBPD29qZevXpZhw8f9sq774oVKwIGDRqU\n5O3tTUhISGbXrl1Tf/75Z//AwMDs9u3bH2/VqtWp4s5/ts6lp6m0/PLLL7W2bdvml7OcmprqlZyc\n7EhKSvIaPHhw2K5du3xFRDMyMiRnmx49ehxr2LBhVs5yu3btjucM3Wvbtm3a9u3bq515Hh8fH73t\nttuSATp37nx8yZIltQDWrFlT87///W8swPDhwxMnTJgQfOa+Zyosth9//LHWqFGjEnKGLeaNMcfP\nP/9c49JLL03J6a0dPHhw0rJly2reddddR728vBg6dKjdRHyOiu3BEpHWIjJBRNYDORUEi/0HB/YB\nIXmWg11t7ugG9BeRXcBs4EoR+VeemIYCNwBDVDWnFOwdwH9UNcM19PAXIPLMA6vqVFWNVNXIMyuC\nGWNMSevcuTMTJ05ERE5rX7FiBTNmzOCZZ56hVatWpKSkeChCY6qOrKwstm7d6uvr65udmJhY6EXm\nM/+/Fifv/SwjR44Me++99+K2bt0a88wzz+xPT08/r4ICvr6+CuDt7a2ZmZnFBlbS58/h7+/v9j07\nFZWqsnr16k2bN2+O2bx5c0x8fPyfgYGB2c8880zTXr16pWzbtm3jt99+G3vq1Knc1/TM16V69eq5\nUxR4eXlR0L+Zt7e3OhyOnOcFbuOuomI7H9WqVcu2+67OnTv/CNNxTjJ8rar2VtUPXAlMcVYBLUUk\nTESqAbcBbt2AoKrPqmqwqjZ37fejqt4JzsqEOHvR+qtqWp7d4oArXdvUAC4FNrtzPmOMKWsffPBB\n7vNu3boREFAixcSMMUV46aWXGoaHh5+cOXPmjmHDhjVPT08XgOzsbHKqBc6cObNely5dTrvi0aFD\nh5P79u2rtmHDhuoAn3zySb0ePXoUeFUkLS3NERoampGeni6zZ8+um9Nes2bNrGPHjuX73nU2x3ZH\nYefv1q1bSs7Qw8zMTBITE70CAwOzjh8/nhtTz549U+bNm1c3MzOT/fv3e//xxx81e/TocfxcY6lo\nunfvfmzixIm5lRh//fVXP4Bjx455BQcHnwKYMmVK/dI6f8eOHVNnzpxZB2D69Ol1i9u+qNiuuuqq\nY1OmTKmfkeEcaXjo0CEvgBo1amQlJyc7AHr06HH8999/Dzhw4IB3ZmYmc+fOrdu7d28bDlgC3LkH\n6zJVfVtVz6rajapmAg8B3+OsBPiFqm4UkVEiMgpARBqJyF6cRSyeF5G9IlKr8KMC8B4QACwWkbUi\nMtnV/j5QU0Q24kzuZqjqn2cTszHGlJWPP/6Y9957j+DgYF555ZV860+dKvGROMZUGWfeg/XAAw80\nXbduXfVPP/20/j//+c89ffv2Tb300ktTxowZ0xjAz88v+48//qjRsmXLtsuXLw+YOHHigbzH8/f3\n18mTJ++69dZbW4SHh7dxOByMHj26wMp7Y8aM2d+lS5fWkZGRrVq2bJlbkGLIkCFJkyZNatS6des2\nGzdurH4ux3ZHYef/4IMP4pYtWxYQHh7e5qKLLmqzZs0a30aNGmV17tw5tWXLlm3vv//+4Lvuuuto\n27ZtT7Ru3bpt7969w1988cW9oaGhmUWdr6I6efKko2HDhu1zHhMmTGg4derUPatXr64RHh7epkWL\nFm3fe++9IIBnnnnm4IQJE4Jbt27dJjOz9F6Od999d8+7777bMDw8vE1sbKxvzZo18w3rO1NhsT3+\n+OMJwcHBp1q1atU2IiKizUcffVQX4J577jnct2/f8K5du4Y3a9YsY/z48ft69eoV3rp167YdOnQ4\nfueddx4ttV+wCpH/jbA7Y4XIF6o6yDU0MO9GAqiqti+LAEtTZGSkRkVFeToMY0wVVlD52+zsbLp2\n7UrHjh156aWXaNy4sYei8ywRiVbVfEO9Tfm2bt26XR06dDjs6TjOhr+/f6czq7UZU9ZSUlIcNWrU\nyHY4HEydOrXOnDlz6v7www/bPR3XmdatW1e/Q4cOzT0dR3lW1ODKR10/byiLQIwxpioqaIz7rFmz\niIqKIioqivnz57N79278/PwK2NsYY0xl8csvv/g/+uijoapKrVq1smbOnLnL0zGZc1NogqWqOd3j\nD6jqM3nXuSb4fSb/XhXMkTWwoAVUr3/GI6iAtvpQrQ44vIo/rjHGnIelS5fmPh85cqQlV8aUMuu9\nMuVB3759U7ds2VLmE2SbkudOeZBryJ9M9SugreLRbEjd4Xy4QxxQra57CZmv66d3AJxlNSJjTNX2\n0UcfMXjwYP7+97/z9NNP51u/f/9+GjdufNaVzowpI9nZ2dnicDgKvgfBGFNhZWdnC0XPUWsoIsES\nkf8DHgAuEJG8xSICcJZAr/jqdIQbvoD0w2c8EgpoOwynjvzvubsc1QruDcublOUkY76NwLehJWTG\nGPr06UOfPn3ytR8/fpzIyEgiIiJ4/fXXiYy0W5RMubMhISGhTVBQULIlWcZUHtnZ2ZKQkBAIVNrJ\npktKUT1Ys4DvgInAmDztKaqaVKpRlRXxglotgZbubZ+dCemJBSdfhSVlmcfhxH7nwx2+DaHuJVDP\n9ah7iTMBM8YY4M033+TAgQMcOHCAAQMGsHPnTqpVyzePpTEek5mZOfzgwYPTDh48eBHuTQdjjKkY\nsoENmZmZwz0dSHlX1D1YyUAycDuAiDQAfHGWQq+pqnFlE2I54vAGv4bOh7syTxSSkBWQmB2Pg5OH\nYP9C5yNHjeZQNzJP0tUZfIqrZm+MqYzS0tJyJqbkxRdftOTKlDudO3eOB/p7Og5jjPGUQsu0524g\nciPwJtAEiAeaAZtUtW3ph1e6yl2ZdlVI3Q6Jq5yPpFWQtBqy0s7YUKBWxOk9XbU7gLfdCG9MVbB1\n61b++c9/8sYbb+DldXrhnV9//ZXOnTtTvXr1QvauOCprmfb69etr8+bNPR2GMcaYM0RHRx9W1aDz\nPY47CdY64Epgiap2EpErgDtV9b7zPbmnlbsEqyDZmXBsEyRGOROuxFVwdB1kZ5y+nXhD7YtOT7oC\n24LDxzNxG2PK3L59+2jZsiWNGjVi4sSJDBo0qEIXwqisCVaF+OwxxpgqqKQ+d9ypIpihqoki4hAR\nh6ouFZG3z/fExk0Ob6jdzvloca+zLSsdjv7p6uWKcv48FgNH1jof2z90buflC3U6/S/pqhsJtcKd\n1RCNMZXOuHHjOHHiBDt37uS1117j1ltvrdAJljHGGFMRuZNgHRWRmsBy4DMRiQeOl25Ypkhe1f/X\nS5UjI9U5r1fO0MLEVc7hhod/cz5y+NRy3sOVt6fLP9QqFxpTCXTq1Im6deuSlJTE66+/jsNhF1PO\nh4hMB24A4lX1ogLWC/AOcB2QBgxV1dVlG6Uxxpjyxp0hgjWAk4AAQ4BA4DNVTSz98EpXpR+mkZ4E\nSdH/S7gSV8GJffm3qx50RhGNS86ukIcxptw4evQo8+bNY/jw/EWeZs6cSb9+/WjYsGL8//b0EEER\n6QmkAp8UkmBdBzyMM8HqCryjql2LO26l/+wxxpgKqqQ+d4pNsCqzKvkhd+JAniIarvu60gvIlf1D\noF5XaDYImvZ39poZYyqs6OhoIiMjqVmzJs888wzPPfdcue/h8nSC5YqhObCwkARrCvCTqn7uWt4C\n9FbVA0Uds0p+9hhjTAVQ6vdgiUgKkDf7EteyAKqqVie8IvJrDMH9nQ9wVi48vuv0oYVJ0ZC2x/nY\nMw+q1YFmdzjvAatzsQ0nNKaCUVWeeuopAFJTU4mKiir3yVUF0RTYk2d5r6stX4IlIiOBkQChoaFl\nEpwxxhjPKGoerICyDMR4iAjUDHM+mg1ytmVnQcpWOPBf2DnTWThj2/vOR+12cMG90HwI+DbwaOjG\nGPeNHj2a+Ph4Nm/ezGuvvebpcKocVZ0KTAVnD5aHwzHGGFOK3LqEKSLdReRe1/P6IhJWumEZj3J4\nQWBraPUo9FvjfEQ8CtXrwdH1sPoJ+LopLL8J9s7PXzLeGFOuiAjXXXcda9euZdmyZURERJy2XlUZ\nPXo0v/zyC1V52Pg52AeE5FkOdrUZY4ypwopNsERkPPAM8KyrqRrwr9IMypQzdTpC57fhpv3Q40to\neiOgzuRq+U3OZCv6CWfyZYwpt7y9venWrVu+9m+++YY33niD7t27c91113kgsgprAXC3OF0KJBd3\n/5UxxpjKz50y7TcDnYDVAKq6X0Rs+GBV5FUNQgY6HycOwq5/wY4ZkBwDW95yPup2hrCh0PwOqF7X\n0xEbY4qhqjz//PO5y5dffnm+bY4ePUqtWrWq3H1bIvI50BuoLyJ7gfGAD4CqTgYW4awgGIuzTPu9\nnonUGGNMeeLOp+UpdY4ZUcgt226qOr9G0Ho0XLcBrv0DWv4f+NR2FsiIfhi+bgw/D4J9iyA709PR\nGmMKISLMmzePYcOGUadOHW699dZ82zzyyCMEBwfz8MMPExsb64EoPUNVb1fVxqrqo6rBqvqRqk52\nJVeo04Oq2kJV26mqW6UBExPhyJHSjd0YY4znuDMP1migJXANMBEYBnyuqpNKP7zSZaVyS1jWSeew\nwR0znAUycopQ+jWGsLudPVuBrTwZoTGmCBkZGfj4+JzWlp6eTsOGDUlOTgYgKiqKzp07l0k85aFM\ne2kQiVRv7yiuvhr+8he46SaoX9/TURljjCmpz51ie7BU9R/APOBLIAIYVxmSK1MKvHyh2WC44j9w\nUxx0eAUCWjrn3op5Df7dGr6/DGKnwqlkT0drjDnDmckVwLZt23Lbw8LCuPjii09bn5WVxZNPPsmP\nP/5IZqb1VrujVSt48knYuhVGjIBGjeDqq2HyZDh0yNPRGWOMOV9nPdGwiDiA21X1s9IIsSXlAAAg\nAElEQVQJqexYD1YZUIXDvzp7tXbPgcxUZ7uXLwQPdM6t1fBKkKp1b4cxFUlmZibLli0jOTmZgQMH\nnrZu6dKlXHnllQC0b9+edevWldh5K2sPVs5njyqsWwfz5sHcuc6ESwR69oRbboGBA6FJE09Ha4wx\nVUep92CJSC0ReVZE3hORPq4qSQ8BO4BB53tiU0WIQFA36DoNBh6Eyz6Bhlc4hxPungU/XgPzm8O6\nFyBlu6ejNcYUwNvbm6uuuipfcgUwb9683Oc9evTItz45OZmMDJvKoSAi0LEjvPwybN4M69fDuHFw\n+DA8/DA0bQrdu8Pbb0NcnKejNcYY466iug0+xTkkcD0wHFgK3ArcpKoDyiA2U9l414Cwu+CqH6H/\nDmg3AWo0h7Q9sPFl+PZCWNILdsyEjFQPB2uMccddd93Fww8/TOPGjQsskPHKK6/QqFEj7rvvvhLt\n3apsROCii2DCBNiwATZtciZex4/D449Ds2Zw6aXw+uuwY4enozXGGFOUQocIish6VW3neu4FHABC\nVfVkGcZXqmyIYDmg2RC/zJlUxc2DrDRnu3cNCL0VLrgXgno4v30YY8qt7OxsgNNKuasqLVq0YOfO\nnQAsXLiQ66+/3u1jVvYhgu6KjYUvv3QOJczZ7eKLncMIb7kFWrYspUCNMaaKKYsiF7ljOlQ1C9hb\nmZIrU06Iwzlk8LKPYeAB51DCoO6Q+f/snXecFeX1/9/PNtrSWWApK02qSi8CKiJdpK5RTNRolGii\n0eRrbEmM0Z+JLUXTNPZeWECxAmIvCIgo0ru0pfeFZcv5/XHu9d7tbXbn3t3zfr3mdWfmmZl77uzs\nPPOZc55zjqnoeu8c9WwtvxuOWYyMYUQqMTExBepkpaen/5D4omHDhowYMaLAfrfccgtz5szhxAnr\nXoqiUye45RZYvBg2bYIHH4SEBLj9dujcGXr2hLvvVq+XYRiG4T/FebBygGPBRaAOWkjRoeU/GlSJ\nhZWIebAimMPrYNPTsPEZOL49tL5xb0geBcmjodlgiK3lm4mGYZRMbm4uixcvZuPGjUybNi1P26pV\nq+jevTsALVu2ZOvWrcTFxf3Qbh6s4tm2DWbNUs/Wp59qTqHu3UOerdNOM+e/YRhGWfCq3ylzFsHq\nhAmsKCA3B3Yt0CyE217T5BhBYuuq9ysouOp3tqcJw4gi7r77bu644w4Apk6dmidhBpjAKgs7d8Ls\n2Sq2PvoIcnM1dDAotnr3ttujYRhGSVRZHayK4Jwb45xb45xb75y7tZD2rs65L5xzmYGCxiXu65x7\nxTm3LDBtds4tC6xv6pz7wDl31Dn3r8r8XUYVEhOrAmrIS5B6AM6dB91ugkan63itHW/BVzfAm101\nG+GX03Us18kDfltuGEYJTJ48mVtuuYUOHTqQmprqtzlRTXIy/OIX8P77KrYefRTatYP774e+faFj\nR7j5Zli0SD1dhmEYRuVRaR6sQGKMtcBIYBuwGK2ftTJsm+bAKcAk4ECgqHGp9g1s91fgkIjc5Zyr\nB/QGTgNOE5HrSrLRPFhRTsYOSJ8PO+dB+jzI3BtqczHQZIB6tpJHQdMBEBNX9LEMw/ANESE3N5fY\n2Ng8682DVXH27YPXX1fP1nvvQVYWpKTA1Knq2Ro0CGKsDKFhGAYQHR6sAcB6EdkoIieBl4E86d1F\nZLeILCYsoUZp93XOObQe10uBYx0TkU8BGyldU6jbCjpcDkNegCm7YMxX0PPP0HwYuFjYtxC++xPM\nHwIzm8EnU2H9/+DoZr8tNwwjDOdcAXFleEPTpnDllfD227BrFzzzjCbF+Pe/YcgQaNsWfvUrDSvM\nyfHbWsMwjOpBZb7Sbw1sDVveBgz0cN+zgF0isq4sRjnnpgPTAVJSUsqyqxHJuBho0kenHrdB1hFN\n/75zrnq4jqyFrbN0Ah2vFRy71XwYxCf6ar5hGEZl07gxXHaZTocPw5tvqmfrscfgn/+E5s1hyhT1\nbJ1zDsSZ098wDKNcRPPtcxoB71VZEJH/Af8DDdPw2igjQoivD63H6wTqtUqfp4IrfYEKriNrYe2/\nICYemg0JCK5RmqnQWcyMYVQnnHN10FqOa/y2JRJo0AAuuUSno0fhrbe01tazz8Ijj6jna/JkFVvD\nh0N8vN8WG4ZhRA+V+RS5HWgbttwmsK7C+zrn4oApwCsVtNGoKSS2g07T4ayZMHUvjPwMTvsjNB0E\nkgO7P4Rvbod3+8GsFvDZJYEU8Tv9ttwwjArinLsAWAa8G1ju5Zyb469VkUNiIlx0Ebz6KuzZo0Jr\n1Ch4+WUYMwZatIArrlARlpnpt7WGYRiRT2V6sBYDpzrn2qPi6GLgEo/2HQGsFpFtHtpr1BRi4iBp\nsE5n3KkZB9MXaCjhzrmQ8T1seUkn0IyFyaOh5ShofhbE1vbVfMMwysyd6NjeDwFEZFmgfzHyUbeu\nhglOmQInTsC8eSq4Zs+Gp59Wz9eECZokY/RoqFPHb4sNwzAij0oTWCKS7Zy7DpgLxAJPisgK59w1\ngfZHnHMtgSVAAyDXOXcj0F1EDhe2b9jhL6aQ8EDn3ObAsRKcc5OAUfkzDxpGARIaQ0qqTiIaOhgc\nu7XrAzi4XKdVD6q4an6Oiq3kkZDYCeLsCcMwIpwsETnk8haCKlWIuHNuDPAQ2hc9LiL35mtvCDwP\npKB96oMi8pQnVvtM7doqpiZMgJMnYcECHbP12mvw/PNQrx6MH69hhGPH6rJhGIZhhYYtTbtRPDmZ\nsPfzkOA68HXBbRIaQ53WUKeVZjb8YT7wWac11G5uaeINo4x4lS7XOfcEsAC4FZgK/AqIF5FrStiv\nNOVGbgcaisgtzrkkYA3QMpABt1Cive/JyoIPP1SxNXu2hhXWqQPjxqnYOv98qF/fbysNwzDKjlf9\njj3xGUZxxNaCFufq1OteOL4L0t/ThBm7P4Hj2zTE8OQBOPRd0cdxMVC7ZUBw5RNf4csJjSHvW3bD\nMCrO9cDvgEw0+mEucHcp9vuhZAiAcy5YMiQ8MkKA+oHSIYnAfiDbO9Mjj/h4GDlSp3//Gz79VMXW\nzJk61aqlY7dSU+GCC6BhQ78tNgzDqFrMgxXFbxGNCEByIXMfHN+uhY+P79D54zsgY3to+cTu0h0v\ntnZIhOUXXz+IslYQV7dyf5dhRAB+Fxp2zqUCY0TkqsDypcDA8EL2zrn6wBygK1AfuEhE3irkWOEl\nQvpu2bKlCn5B1ZKTA198ATNmqNDavl3F2KhROmZr4kRo0sRvKw3DMIrGPFiGEQm4GKidpFPjXkVv\nl3MSTqQHBFeY+AoXYcd3QNZhOLpRp+KIb1QwHLFuG2g2GBqdYV4wwwjDOfcBhYy5EpHhHhx+NJqh\ncDjQEZjvnPtERA7n+65qXyIkNhaGDtXp73+HRYvUs5WWphkI4+I05XtqKkyaBElJfltsGIZROZjA\nMoyqIDYB6qXoVBxZRwuKsAIesR2QdRAOHYRDheRwqd0SWo7UzIfJI3X8l2HUbG4Km6+NjsMqTRhf\nacqNXAHcKxoOst45twn1Zi0qv7nRT0wMDBqk0wMPwFdfhcTW9OlwzTUwbJiKrcmToWVLvy02DMPw\nDgsRtBBBI9oQCYQl5hNfR9bDrgW6HE7j3oEiyqPVwxVbyx+7DaOMVGaIoHNukYgMKGGbODTJxXmo\nsFoMXBKe1dY5919gl4jc6ZxrASwFeorI3qKOW5P7HhH49lsVWjNmwJo16nA/6ywVW1OmQOvWfltp\nGEZNxbPkSiawamYnZ1RTRNSrtXNuIBHHR5BzItQeVw+aDwsJrvqdLZzQiFg8zCIYPvInBugLPCwi\nXUqx7zjgH4RKhtyTr9xIK+BpIBlwqDfr+eKOaX2PIgIrV4Y8W98F8gQNHqxia+pUSCnB6W8YhuEl\nJrA8wDo5o9qTfRz2fBoSXAeX522vmxIIJRwFLc/TLIaGESF4KLA2oWOwHBoauAm4S0Q+reixy4P1\nPYWzerUmx0hLg2XLdF3//iq2UlOhQwd/7TMMo/pjAssDrJMzahwZOyB9fkBwzYfMsCgmFwNNBoQE\nV9MBVrvL8BW/swhWFtb3lMz69SGxFTxVvXuHxFbnzv7aZxhG9cQElgdYJ2fUaCRXCyfvnKeCa89n\nIGHj/uMbqlcreTS0HAWJ7Xwz1aiZVLSjc85NKa5dRGaV99gVwfqesrF5M8yapWLriy903emnh8RW\n9+6+mmcYRjXCBJYHWCdnGGFkHYFdH2oo4c65cGRd3vb6nUNjt5oPg/hEP6w0ahAeCKynimkWEbmy\nvMeuCNb3lJ9t20Ji69NPdRxXt24hsXX66Tas1DCM8mMCywOskzOMYji6Sb1b6fMgfQFkHQq1xcRD\nsyEhwdW4l4YYGoaHWIigURw7d8Ls2Sq2PvoIcnOhU6eQ2OrTx8SWYRhlwwSWB1gnZxilJDcb9i1S\nz9bOebB/kYYYBqmVFKi9NUqnOsn+2WpUG7wUWM6584EeaB0sAETkLi+OXVas7/Ge3bvhtddUbL3/\nPuTkQLt2IbE1YICJLcMwSsYElgdYJ2cY5SRzP+x6PyC45kLG1rztjU5Xz1bbVE2WYU82RjnwMIvg\nI0Bd4FzgcSAVWCQiP6voscuD9T2Vy7598PrrmiRj/nzIyoK2bTXte2oqnHmmFkI2DMPIjwksD7BO\nzjA8QAQOrwmN3dr1IeRkhNobdIH2l0G7n0A9K2pjlB4PBda3InJG2Gci8I6InOWBmWXG+p6q4+BB\neOMN9WzNnQuZmZCcHBJbQ4dCbKzfVhqGESl41e/YOxzDMCqGc9CwK3T5FQx7C1L3w/AF0OVGqN1C\nxdc3v4PXT4EFw2Hj05pQwzCqjuOBz4xAYeAstDCwUc1p1AguvVQ9Wrt3w4svqgfr8cdh2DBo1Qqu\nuQbeew+ys0s8nGEYRqkwgWUYhrfE1oKWw6Hv32HSNhj2NpxyMcTWhl0fwMIrYFYL+PwnOp4rN8dv\ni43qz5vOuUbAA8BSYDPwoq8WGVVOgwYwbZqGDu7ZA6++qiLr+edh5Eho2RKuugrefRdOnvTbWsMw\nohkLEbQwDcOoGk4egq1psOlZ2P1xaH2dZA0fbH8ZNDrNP/uMiMODNO3xIpKVb10toLaIHCpit0rH\n+p7IIiNDwwdnzoQ5c+DIEfV8TZigYYQjR0Lt2iUfxzCM6MfGYHmAdXKG4RNHN8Gm51VsHV0fWt+4\ntwqtU6ZBnRb+2WdEBB4IrN3AHOAl4H2JkA7P+p7I5cQJDRdMS9OwwoMHoX59uOACFVtjxkCdOn5b\naRhGZWECywOskzMMnxGBvQtVaG15GbIO6noXC8ljVGy1maDhhUaNwwOB1RTNGHgxcCowE3hJRBZ6\nZGK5sL4nOjh5UlO+p6Vpva39+6FePTj/fBVb48bpsmEY1QcTWB5gnZxhRBA5J2D7Wyq2drwNEhhx\nHt8QUn6kYitpiKV8r0F4XAerFXAhKraaAy+LyO+8OHZZsb4n+sjK0mLGaWkwa5aO4apTB8aOVbF1\n/vk6xsswjOjGBJYHREwnl30M4gKvwXZ/qimumw6EhIb+2mUYfnFij3q0Nj0L+8P+RxM7QLtLof2l\nUL+jf/YZVYKXAitwvERgCvAbIFlEfIlDjZi+xygXOTnwySc6ZmvmTNi5E2rVgtGjVWxdcIGO4TIM\nI/owgeUBvnZykqv1gjY8BtvfhAvW65iTjybA9jcABw27QdNB0Pwc6HCZP3Yaht8cWgmbntPp+PbQ\n+qQh6tVK+REk2NNMdcSLjs45Vxu4AJgGDAbeBV4G5ouILyksTWBVH3Jz4Ysv1LOVlgbbtkF8vCbG\nmDoVJk6Epk39ttIwjNJiAssDfOnkMvfD+kdhwxNwdAPEN9K38T1u02xqJw/B/sU6LmXvQti3EBp0\nhZGf6v5LblDPVtNB0Gwg1LI7t1FDyM2B3R+qV2vrTPX8AsTU0nFa7S+D5NEQE++rmYZ3eDAG60Vg\nBPARKqreEpETXtlXXkxgVU9yc2Hx4pDY2rxZixgPH66erUmToHlzv600DKM4TGB5QJV1crk5cHI/\n1E6CY1tgTgdIOgs6Xg1tp0BcMSmJRODkAajVROfnDYb9i9QDBlD/VOh8nRZ5DX5XjJWlN6o5WUdh\n6ywVW7veBwL3sVpJ0O4SFVuNe9t4rSjHA4F1GTBbRMpd2do5NwZ4CIgFHheRewvZZhjwDyAe2Csi\n5xR3TBNY1R8RWLo0JLbWr4eYGDjnHBVbkydDspW6NoyIwwSWB1R6J3dsC2x4EjY+CY16wrA3dX3G\ndqjbuvzHzToK+7+CvV+ohyt5NJx6rY5bmdMemvSDZmdCs0Hq6bJ010Z15thW2PyCiq3Dq0LrG/ZQ\nodXuxxX7fzN8w+sxWOX4/lhgLTAS2AYsBqaJyMqwbRoBnwNjROR751xzEdld3HFNYNUsRGD5chVa\nM2bA6tX67mfoUBVbU6ZAmzZ+W2kYBpjA8oRK6+R2zofVf4Odc3U5eTR0mg5tJ3v/XeFk7ICV96nw\nOvB1KAvb4Bf0rf6JvXBsk4q92ITKtcUwqhoRffGw6VnY8hJk7g00OGg5QsVW6wsseUwUEQEC60zg\nThEZHVi+DUBE/hK2zS+AViLy+9Ie1wRWzWblypBna/lyXTdokIqtqVOhXTtfzTOMGo1X/U6MF8YU\nhXNujHNujXNuvXPu1kLanXPu4UD7t865PoH1XZxzy8Kmw865GwNtFzrnVjjncp1zBU6Acy7FOXfU\nOXdTZf62AhxeBzmZOr9/MRz6Dk77A0zcBOe+U/niCqBuK+j3EIxZBBce1nFbvR+EZoO1fcebMHcA\npDWE+UNh6U3wfdhYFsOIZpyDpv2g38MwaTuc/Tq0napjstLnwxeXwsymeu0vvwv2fqkhtUa1xjkX\n45wbXM7dWwNbw5a3BdaF0xlo7Jz70Dn3VSAssTA7pjvnljjnluzZs6ec5hjVge7d4Y474Ntv1Zv1\n//4fZGbCTTdB+/bQvz/cd5+GFRqGEZ1UmgerlKEV44DrgXHAQOAhERlYyHG2AwNFZItzrhuQCzwK\n3CQiS/Jtn4YOyPhSRB4szsYKv0XMPq7jQDY8Brs/giEvwykX6fqYhMgbC3VijyYJ2LtQvVz7v4Lc\nkzA5XcMIt70BR9ZpeGGT3lbc1ageZO6H719Vr9aez0OeXYCExurdajlKPc312vpnp1EAz0I1nPta\nRHqXY79UNPTvqsDypWhfdF3YNv8C+gHnAXWAL4DzRWRtUcc1D5ZRGBs2hFK/L1qk63r1Us9Waip0\n6eKvfYZRE/Cq34nzwpgiGACsF5GNAM65l4GJwMqwbSYCz4qqvIXOuUbOuWQR2Rm2zXnABhHZAiAi\nqwLHK/CFzrlJwCagcl0y2cdh2S2w+XlNQJHYEXr+RdOpQ/FJK/ykdhKkXKgTqMft0IrQGK3tb6hY\nBBWITftDx6ug/eWWLMCIXmo1gVOv0SnrMOz6QMN3d87TTJ7fz9AJNGNn8mgVXC3OCdWnM6KdBc65\nqcAsKdtbxe1AuOpuE1gXzjZgn4gcA4455z4GeqIvGA2j1HTsCDffrNOWLVrQOC0Nfv97nU47LSS2\nune3btkwIpnKDBEsTWhFaba5GHippC8LFJC8BfhTmS0tDVlH9e03qGdnzyeQPAaGL4AL1kKPW6FO\ny0r56kojthY06RNaHvg/mLwDzpoFXW5U8bj+f6G7ePZxf+w0DK+IbwBtJkL//8CE9Vp/rv9/dF1c\nfTi8GtY8BB+dD2lNYMF5Oq7xwLJQ5k4jGvk5MAM4GQg5P+KcO1yK/RYDpzrn2jvnEtD+aE6+bV4H\nhjrn4pxzddFojFUYRgU45RT49a/hs8+0ttbDD0OTJvCnP6nQ6tZNRdeyZTr81DCMyKIyPVgVJtCh\nTQBuK8XmdwJ/F5GjhXm3wo45HZgOkJKSUvwRRWDfYtjwuIYXuRiYvBPi6sLoJZEXAugFdZJ1vFjb\nydDrXsjcp+tP7IY3OuuYlq43QqPT/bXTMLygfkeof61m4czN0vDZnfPUw7V/iaaA3/U+LLsVareA\nliMheZR6uCw7Z9QgIvXLuV+2c+46YC6apv1JEVnhnLsm0P6IiKxyzr0LfIuGrz8uIt95ZbthtG4N\n11+vU3o6zJ6tnq2//AXuuUc9X0HPVt++5tkyjEigMsdglSb70qPAhyLyUmB5DTAsGCLonJsI/FJE\nRhVy/A8JG4PlnPuEUChHI7Sju0NE/lWUjf3q15clt9wCo0dDnz5aETDIrg/hqxvg4LcQW1fHVnW8\nWlOf18S71/Gdmhhg0zOQc1zHrXT5NbQao8LTMKobmfsg/b2Q4DqeLzKsca/A2K1RkDRUPcKGp3g4\nBssBPwbai8jdzrm2QLKILKqwkeXAxmAZXrBnD7z2moqtBQsgJ0c9X0GxNWCA1t4yDKP0RHyadudc\nHBqDfh4as74YuEREVoRtcz5wHaEkFw+LyICw9peBuSLyVCHH/5BCklwE2u4EjpaY5MK50M5NmsBZ\nvWDEcJh0OdTdBYt+rqKq3TQNLTL0oXP9/2Dtv1R0XbBOvQCGUZ0R0RpbwbFbuz/SFw1BYuvqGMzk\n0Sq4GnStmS9iPMZDgfVf9KXbcBHp5pxrDMwTkf4VNrIcmMAyvGb/fpgzR+tszZ8PWVlaW2vqVJ0G\nD877DtkwjMKJeIEFP2QJ/Aeh0Ip7wkMrAm8V/wWMATKAK8I8UvWA74EOInIo7JiTgX8CScBBYFnQ\nSxa2zZ2URmB16iRLzh0C77wB2w/kbezeXT1bo0bB2WdD3brlPg/Vktws2PMptDhXlxf+DGo3h87X\nWVFXo/qTc0Kv/6DgOvht3va6bVVoJY+GFudpog2jzHgosJaKSJ/wbILOuW9EpGfFrSw7JrCMyuTg\nQXjzTfVsvfuupoBv2VILGqemwllnQVxEDxAxDP+ICoEV6fTrliRL/ngIcrIgqw9s6Q5L9sOHH8PR\no6ENa9XSO1JQcJ1+ur2dDic3Bz6fBltnAjGapbDrrzULoWHUBI7v1ALjO+dqza3MsDpHLgaa9A8J\nrqYDIcaebkqDhwLrS2AwsDggtJJQD1aZU7d7gQkso6o4cgTeekvF1ttvw/HjkJQEkyer2Bo2DOLj\n/bbSMCIHE1ge0K9HK1ny3DRNRd6wW6jh5En44guYNw/mzoWlS/Om6WnZUoXW6NEwYgQ0b171xkci\nRzfBmodhwxOQfQQGPAqdpvttlWFULZKrWQeDY7f2fqYe3yDxDdSrlTwKGnTT7KO1W0B8Q3txkw8P\nBdaPgYuAPsAzQCrwBxF5taLHLg8msAw/OHYM3nlHxdabb+pykyYwaZKKrfPOg4QEv600DH8xgeUB\npe7k9uyB995TwTVvHuzYkbe9T5+Q4Bo82O5QWYdhw5NwysX68LhzPhxcDh1/BgkN/bbOMKqWrKNa\n4DsouI4UUR4pppYKraDgqt2yiOUWmlK+Bogxrzq6wLG6omOCHbAgWFPRD0xgGX5z/Li+P545U8du\nHT4MDRvCxIk6ZmvUKKhd228rDaPqMYHlAeXq5ERgxQq9M82bBx9/DCdOhNrr1YNzzw0JrlNPrREP\nQsXy1Y1aWyiuPnS8Err8ChI7+G2VYfjD0c2QPk8LHmdsheO74EQ6ZB8tcdcfiK0TEl11ihNjLaO6\nWLKHHqznROTSktZVFfXb15e+f+zrx1cbRgFyc+HAAdizF/buhZxsrULTrKmGEzZpYtkIjZrDR1d8\nZAKronjyFvH4cfjkk5Dg+i5f+ZN27UJia/hwaNSoYt8Xrez/Clb/Hba8AuRC5+uh7z9Kv78I7N6t\nqZEihdhYDRet6QLa8IbsY3BiFxxP188T6SHxlX99ThmKfsfVK16AhS/H1am831cOvE5yEbYcCywX\nke4VPXZ5MIFlRCoiYWJrD2Rnq7hqGia2LBuhUZ0xgeUBlRKmsX275kidO1c/9+0LtcXEwMCBKrZG\nj4Z+/WpeKp+M7bDuP5DYCTpeAdnHYdtrWsA4tpDQyoMH4cUX4bHHtGR9pFG/PpxxBvTsGZpOP92y\nThqVh4h6u8IFV34BFr6cm1n6Yyc0hrptNAti3TZQp01gOWxdfGLl/bZ8VFRgBeov3g7UQTPVBt+G\nnAT+JyKlKWLvORYiaEQD2dkapJOWBrNmwa5dGjY4dqyO2Ro/HhpYBRujmmEhgh5Q6Z1cbq4myAgm\ny/j8c71jBWnUSJNkBD1cKSmVZ0uksvlF+PzHUKcVdP4ldPo5JDSBzz5TUTVjhnoJARITNUg8Ujhx\nIq+ADuKchoaGi66ePbUoiXm7jKpEBLIOFS/AgssnduVNxlEU8Q0Liq5wMVavrWd1Az30YP3FLzFV\nGCawjGgjJ0e75bQ0Hbe1Y4cONx81SsXWhAnQuLHfVhpGxTGB5QFV3skdOQIffBASXOvX523v2lVz\np154IfTqVTMexiVXB/6v/jusnQ+fxcGnibD5YGib4cPh6qv13NSq5Z+thbFrF3zzTd5p9eq8QjpI\nkyYFvV3du9tIYiMykFzI3AsZ2wLT1rD5wHR8m9YAK4m4+mEiLJ8QCy6XImuihwIrBrgEaC8idzvn\n2gLJIrKooscuDyawjGgmNxcWLlSxlZYGW7dqMM6IESq2Jk6EZs38ttIwyocJLA/wvZPbuDGUmXDB\nAk3jE6RjR71TXXihZimsrmIrNxfef1+9VbNnQVZAmLRsCVdcAT8aBj1HRtfvz8yElSsLCq/9+wtu\nGxurwjq/t6tly6q32zBKQgQy96nQyiO+tuadL80Ysbh6+cIQ84uwNrjazbwSWP8FcoHhItLNOdcY\nrYPlS7E+3/sew/AIEVi8OCS2Nm3Sbu3cc/URZvJkq2RjRBcmsDwgojq5rCxNlhEe7BykffuQ2OrX\nL7rERlHs2AFPPQVPPKF3ZNAxamPHwlU/g/PHQ+4ReK0tJLaDLjdCu59E3CD8UiOi4/Pyi65161Rk\n5qd584Kiq2tXqwhpRD4ikHUQjm0Neb0KiLGtmtSjBNyP8TTJhXPu62BxYefcN/hHKnkAACAASURB\nVCLSs6LHLg8R1fcYhkeI6FDptDSN7l+3Trv1s88Oia1Wrfy20jCKxwSWB0RsJ5eTA59+qneomTMh\nPT3UdsopeqdKTdWEGdEktrKztcrhY49pafmgsEhJgZ/9DK68UscpBcnJ1KyDa/6uhVsTmkCrsdDj\ndmjoS/Iv78nI0MyT4aLr22/zejODJCRoSGF+4dW0adXbbRgVQUTr5eX3gB3PK8Tcjw57JbC+BAYD\niwNCKwn1YPWu8G8pBxHb9xiGR4ho1xb0bK1cqY8rQ4bo48uUKdC2rd9WGkZBTGB5QFR0cjk5mhwj\nKLbCixy3bRsSW4MGRW6hik2b1FP11FMh++PiNFD76qs1cLu4vK8isPtj2PCYFmsd8aEKrB1zYdcC\nSB4NSUMgtpqMZRKBzZsLers2bix8+9atVWj17q1hlR07Vqm5hlFZeDgG68fARUAf4BkgFfi9iMyo\n6LHLQ1T0PYbhIStX6iNMWpq+QwR9R5yaqoWN27f31z7DCGICywOirpPLzYUvvgi9Etq2LdTWurXe\npS68EAYP9l9snTwJr70Gjz+u6eqDdO4MV10Fl19evsBsyQWcvgpbcS8sv0Mzn8XWgebDIHmU1tiK\nqYaFOg4fhuXL84qu5cvVCxYkPh5+8Qv4wx/Ms2VEPV51dIFjdQXOQ1O1LxCRVV4ctzxEXd9jGB6y\ndm1IbC1dquv69g29L+7UyV/7jJqNCSwPiOpOLjcXvvwyJLa+/z7UlpysYis1FYYOrdqqgKtXq6h6\n5hktCQ+a+e/CC1VYnX22t2GNWUdh90eaiTB9HuRmw4RAdsb1/4P4RtDyPKhVTcVGTg5s2KBi6803\n4bnn1APWsCHcfjv86leWpdCIWjwWWI2BtsAPxQdFZGkp9hsDPATEAo+LyL1FbNcf+AK4WETSijtm\nVPc9huEhGzeq2Jo5Ux9pQAMygmKra1d/7TNqHiawPKDadHIisGhRaGTpli2htpYtNdg5NVXFTWWI\nrYwM/e7HHtOxY0FOP11DAH/yk6orkHHyECQ01HPyRmc4uh5w0LS/hhK2mQRN+lSNLX7wzTdw882a\nmRJ0fNs998All/jv1TSMMuJhiODdwE+BDUCw0xMRGV7CfrHAWmAksA1YDEwTkZWFbDcfOAE8aQLL\nMMrO999rjq+0NK25BdCjR0hs9egRXcPOjejEBJYHVMtOTgS++kqF1owZoQx9oCF5QbF1zjk6Dqoi\nLFumouqFF+DQIV1Xrx5Mm6bCqn9/f++Gudmwb3HIu7XvS+h8A/T9m4YVbngSkkdCYgf/bKws5s2D\n3/42FOzepw888IDWFDOMKMFDgbUGOF1ETpZxvzOBO0VkdGD5NgAR+Uu+7W4EsoD+wJsmsAyjYmzf\nDrNnq9j6+GN9tOncOSS2akqpUKPqMYHlAdW+kxOBr78Oia0NG0JtzZqFihoPG1b69N+HD8NLL2kY\nYPi5GzBARdVFF0H9+p7+DM84eUAzE9ZpCXsXwrwzdX1iJx27lTwaWgyH+ER/7fSKnBwNGfz977W3\nAhg3Du6/X18FGkaE46HAmglcKyK7y7hfKjBGRK4KLF8KDBSR68K2aQ28CJwLPIkJLMPwlPR0HdKd\nlgYffqhdW4cOIbFVXarXGJGBCSwPqFGdnIiGjwXF1rp1obamTWHSJBVbw4cXFFsiWrb98cfh5ZdD\nSRUaNdLwv6uvhjPOqLrf4gUicGSderd2zoPdH2hdnvM+gBbD4OhGLajapC+4KA+ty8iAf/wD7r0X\njhzRUMErr4S77tLxeoYRoXgosPoBrwPfAZnB9SIyoYT9SiOwZgB/FZGFzrmnKUJgOeemA9MBUlJS\n+m4JD+U2DKNU7N2rYmvmTHjvPa3+kpKSt3qNRcMbFcEElgfUKIEVjohmnwuKrTVrQm2NG6vYSk3V\nsLJXXtEwwBUrQtucfbaKqqlToU6UFv7NT04m7P0Cmp0JsbXg65th1QOaHKPFCPVuJY+Eum1KPlak\nsnu3iqpHH9VeqW5duOkmDSVMrCZeO6Na4aHAWgE8CiwHfqjsLSIflbBfiSGCzrlNaGZCgGZABjBd\nRF4r6rg1tu8xDA85cADmzFHP1rx5mrw4mFB56lStuVWVOb6M6oEJLA+wTg4VWytWqNAKVgMsjKQk\n+OlPNRNg585VaqIvnNgN6e+FPFwn0jUj4dS9mgL+8BqomwJxUSgw166FW2/VAHeAFi3gT3/SYs8V\nHZdnGB7iocBaLCL9y7FfHJrk4jxgO5rk4hIRWVHE9k9jIYKGUeUcOqSJdNPS4J13IDNTu7bwHF/W\nvRmlwQSWB1gnVwgrV4bE1ooVMGqUiqoJEyAhwW/r/EEEDi7XsMG2k3Tdm101xNCFhVO2mQBDX9X5\n19rCiT15j9PuxzDoCZ2f0QhyTuRt7zQd+j2syTleLcSj1O3/oOc9OpZsViGhfaf/EXrcBse+1wyK\n+en9IHS5Dg6tgnd6w+pceCEb1gfuAZ1awd8egUHNYcE5Bfcf/DykpEL6+/DhuILtZ78OrUbDttfh\n04vAxULzsyHlQs3eWKtJwX0Moxg8FFh/Q0MD55A3RLA0adrHAf9A07Q/KSL3OOeuCez/SL5tn8YE\nlmH4ypEj8Pbb+hjz9tsaJR8cdp6aCueeW/ph50bNwwSWB1gnVwI5OeZfLwwR9Wzt/Rxyw5KSNewB\n7S/V+eV3Q86xvPs17g2nXKTz3/weJDtve9NBKuByc+Db3xX83ubnQKuxkJ0B391VsL3lKGg5HE4e\nhJWFlOppfQEkDYHju2DN30O/5b018PBHsO2grhs6CK7pDD3yibhTLoHGZ8DhdbDxiYLH73AFNOgC\nB7+Dzc9rjbIdb8GxzeDiYPxqqN9Rv9NGJBulwEOB9UEhq0tM015ZWN9jGFVDRga8+66KrTfegKNH\nQyMhpk6FESO0VKdhBDGB5QHWyRlGgJMn4b//1TFa+/frumnT4M9/hnbtyn9cETiwVMMsu9+qwmrR\nz9UbGPRs1W7uyU8wqh9eFhqOJKzvMYyq58QJHauVlgavv65JkRs00ACd1FQYPRpq1/bbSsNvTGB5\ngHVyhpGPgwfhL3+Bhx7SIPaEBLj+evjd77wrFr3yftjweCDEMgaaD4OOP4N2l3hzfKPa4KXAcs6d\nD/QAfniEEpFCXMGVj/U9huEvmZmwYIGOiHj9dU2YkZgI48er2Bo7VvNAGTUPr/qdmp3McvduuPFG\n+Oc/dVTk2rX6Jt8waiqNGsF992lmyZ/8RP8f/vpX6NgR/vY37ZUqSvebYfwaGLsMut8Ox7drXTIA\nyYX1j8HxnRX/HsMI4Jx7BLgIuB7N+HchcIqvRhmG4Ru1amlZyKeegl27YO5cDdp47z0VWElJWrnm\nlVc0rNAwykrN9mAlJcmS48fhWNhYmU6dQjWiHn5YfcodO4amSC2iaxiVwdKlmsb9/fd1uX17DRu8\n6CLvxlGJQG4mxNaGvV/CvEGAg6ShGkbYdirUbeXNdxlRhYdjsL4VkTPCPhOBd0TkLA/MLDPmwTKM\nyCQ7Gz75RMMIZ85U8VW7NowZo8Jr/Hho2NBvK43KxEIEPaBfv36yZPFi9WStXw8bNujD3uWX6wYD\nB8KiRXl3mjhRq9wB/Otf+sY/KL6SkmzwvlH9EFEP7803h+qh9e8PDz6ouW+95uAK2JoG38+AQysA\nByM/haTBliCjhuGhwFokIgOccwuBKcA+YIWIdKqwkeXABJZhRD45OfD55yGxtX27Rs2PHKlia8IE\naGLJcasdJrA8oFSd3KFDKryCU3KyCjARDdjNyAhtW7++jle55x5tf+opTRDQqZNWv7OMfEY0k50N\nTz8Nd9wBOwMhfBMmaEhh166V852HVsG22dD1JohN0OyLu94PeLZSoV7byvleIyLwUGD9AfgnWs/q\n34AAj4nIHRU9dnkwgWUY0UVuLnz5pYqttDT4/nutq3XeeSq2Jk3SVPBG9BMVAss5NwZ4CK0f8riI\n3Juv3QXaxwEZwE9FZKlzrjbwMVALiAPSROSPgX3uBK4GgkWGbheRt51zPwZ+G3b4M4A+IrKsKPsq\n3MmdOAGbNuUVYIMGwSWXwN696tEKkpCg4VW33aYC7fhxDbvq2FHXW55QI1o4dkzHZd1/v87HxsLV\nV8Odd2plx8pk/eOw7t9wIPBv3XQgtL4EGk6G9HSN5wh+hs+np4f+Jzt1Cnmdg/Pt2tn/YATiRUfn\nnIsBBonI54HlWkBtETnkhY3lwQSWYUQvIrBkSUhsbdyo3eCwYSq2Jk+u/K7QqDwiXmA552KBtcBI\nYBuwGJgmIivDthmHDjoeBwwEHhKRgQHhVU9Ejjrn4oFPgRtEZGFAYB0VkQeL+e7TgddEpGNxNlZq\nJ5ebC1u3hoRXMATx0ks1zPDrr6FPn6DB0KaNPuj98Y/6X7p7NyxcCG3baluzZhYaZUQW6ekqqh57\nTK/3xEQNI/zNb6BevYodOysL9uwpKJqCn9s3wbaNsGc/HM2p+G9xTv/XwsVXuACzsZe+4KEH62sR\n6e2FTV5gAsswqgci8M03KrRmzNBcac5p9HxqKkyZAq1sCHFUEQ0C60zgThEZHVi+DUBE/hK2zaPA\nhyLyUmB5DTBMRHaGbVMXFVjXisiXpRRYf9avkkKqtYbwtZPLyND/ynABtmmThheec45WxJswIbR9\nrVoaZvjiizo2bOVK9YC1aRMSYUlJEFOzE0MaPrBqFdxyi16zoL3JXXfBT3+aNyw2J0dFU2GCKf/n\n3r2l//7YWH1dmNQYWAENgZYtoX1f6DIC2vXU5aZN9fj5X3ps2ABbtqhILIqkpLyCK3zexl5WGh4K\nrAeBL4BZEgFx8SawDKP6IaLDlIOereCQ5SFDVGxNnaqPa0ZkEw0CKxUYIyJXBZYvBQaKyHVh27wJ\n3CsinwaWFwC3iMiSgAfsK6AT8G8RuSWwzZ3AFcAhYAnwfyJyIN93bwAmish3hdg1HZgOkJKS0nfL\nli3e/nCvOHIEVq+GbdvUE7Ztm053360Pdf/5D/zyl3n3iY+H5cuhSxeYP1+nNm3yirAWLUyEGZXD\nhx9qxsHgg2O3bnrNhYfoFSdiwomJUeHSsqVes8V9NmkSuqaPbg4lyNgXSFBz1kxoOwVysyDneMHv\niquvHrONa2H9Wti4CTZshA2bdH7TZg0HLorExIDoag/tT9HPDu2hYwf9/bUb6XbZGSDZYTs6iEs0\ncVYMHgqsI0A9IBs4gaZqFxFpUNFjlwcTWIZR/Vm1SpNjpKXp+3TQ9+NBsdW+vb/2GYVT7QVW2DaN\ngNnA9SLynXOuBbAXHaR8N5AsIleGbT8QHe91ekk2RnUnl5ur3oCg8ApOt9+u4Uz336/JCPLXLTp4\nUHOMPvoofPBBSIAFRdiAAfbAZ5Sf3FwtHHL77bB5c8H2Zs2KF0vB+WbNKp4U5tgW+H4mdPgp1GoC\nax6Gr24ouF3qfkhoDF/fAqvuL9j+o0xI3w1vXQdfvQ670Gl34DOj4C4/EAd06KwCrM4aqLcRmgMt\ngCSgWRcYv1q33f0JxNeHBt0g1saDgbeFhiOJqO57DMMoM+vWqdiaOTP0DrJvXxVaqalw6qn+2meE\niAaB5UmIYGD9HUBG/rBA51w74E0ROS1s3d+BPSLy55JsrPadnIh6DYLia8cOmD5dBdSf/6wZ4bZu\nDb2dr18fDh/W+V//Ou8YsOAYsYkTQ8c2IWYURWamVm6Mjw+JpqQkXfaLHe9oVsL8dP6F1uDa/THs\nK+R+0PVGcDGQvgAOfJO3zcVC0k80zHDJTFjzLXy/F77fB1v3wZ7DRdvjHHRvDRMuhdGj4cAvIGMl\nuDho2A0a9YTkUdD+0or97ijGS4HlnGsMnArUDq4TkY+9OHZZqfZ9j2EYRbJpE8yapZ6thQt13Rln\nqNBKTdXgD8M/okFgxaFJLs4DtqNJLi4RkRVh25wPXEcoycXDgVolSUCWiBx0ztUB5gH3icibzrnk\noABzzv0a9YpdHFiOAbYCZ4nIxpJstE4OFUoHDqgA279fE2yApt6ePz8UopiRAd27h4KKzztPQxjD\nPWC9e+u4G9CwsMaNNXuiYdRUjh3TFFNFjfvKCUvQkVgXBnWDvk3gtJNQdx20HA6Dn9P/07dPh7pt\nVHg17qmfDTpDjI+itZLxMETwKuAGoA2wDBgEfCEiwyt67PJgfY9hGKCPV0Gx9dlneqvv3j0ktk47\nzd5lVzURL7DghyyB/0DTtD8pIvc4564BEJFHAtkC/wWMQQNtrgiMvzoDeCawXwzwqojcFTjmc0Av\nNERwM/DzMME1DA05HFQa+6yTKyUiWg/s4EFNZw3w8MMaVBwUYFu3wuDB6rUA9XZt2qSei6AAGzUK\nrr1W27/8Uj0arVtbemyjZpKRAZ98ov8z8+aFXl4EadcORo2E0WPgnMGw9lY4+A0cWgm5J3WbbjdD\n7/t0fNf6x1R4Ne6pIY/VAA8F1nKgP7BQRHo557oCfxaRKRU2shxY32MYRn527IDZs1VsffyxRtx3\n7hwSW716mdiqCqJCYEU61sl5TGZmSCw995y+uQ+GJ27dCiNGwD/+oXeNOnXgZOAhMSlJBdiVV8J1\n12n7Cy+ExoW1bq3bG0Z1Zts29RrPnauf+/eH2mJjdXT06NEwYjh0SYTD30HD7tCkj4Y2zu0f2r5u\nW/Vw9bgNkgZDbjbgICa6ip17KLAWi0h/59wyNOoh0zm3QkR6eGBmmbG+xzCM4ti1C157TcXWBx9o\nsEOHDiGx1a+fia3KwgSWB1gn5xM5OXrHCM+OuG2bpqX/+c+1Blj+Kn1Nm2oGxWuv1QyLL74YSpPd\ntm3FEyIYRiSRkwNLl6pna+5c+OILyA7LQNiokb6wGD1aPcMpKXA8XceIHfwm8LkM+v8Xmp8N216H\nzy6BRqeHwgsbnQFN++n4swjFQ4E1G80+eyMwHDgAxIvIuIoeuzxY32MYRmnZuxdef13F1nvvaVeQ\nkhLKRjhokCWH9hITWB5gnVyEkp2d1/sVnCZPhpEjYfFizXYYJD5ew6keegjGjlWBtmiRiq/27aF2\n5D5AGkapOHxYX0oEBdeGDXnbu3ZVoTV6tNbRy1/oef/XsOmZkAA7GahsMX41NOgCO+bCvoXQpD80\nGwi1mlbN7yqBysgi6Jw7B62W9q6InCzF9mOAh9CQ9cdF5N587T8GbkFTvx9BazZ+U+BAYVjfYxhG\neThwAObMUbE1b54GArVqFcpGOGSIvW+uKCawPMA6uSglJwe2by+YOODmm6F/fx0xOnWqbutcKAPi\nP/+pI0Z37ICdO3Vdo0b+/hbDKA8bNmjvOm8eLFigXt0gCQkwdGhIcJ1xRt7XmyKQsU2FVvJYDRv8\n5g+w4h50aCtQvzM0GwQDn4CYuCr9aeFUtKNzztUGrkHrKS4HnhDJU4yspP1j0WRNI4FtaLKmaSKy\nMmybwcAqETngnBuLZs8dWNxxre8xDKOiHD4Mb76pYuuddzQhdIsWMGWKiq2zz4Y4/27fUYsJLA+w\nTq6acuSIJgwICrCgCHvuOQ1ifughuPFG3bZp00CR2I66PilJg59F9E5lQc5GpJOVpUljgskyFi/W\n6zdI8+YqtoJT/vDbH45zFPZ/BXu/UG/WiT0w6jNt++zHcHw7NDtThVfTQVCniON4iAcC6xUgC/gE\nGAtsEZFCiqEVuX+J5Ubybd8Y+E5EWhd3XOt7DMPwkqNH4e23VWy99ZbmUGrWTAN/UlPh3HP9rZIS\nTZjA8gDr5GooW7fqQ2j+tNkrVkDdunDTTfDXv2qYVYcOKr46dYJ771Xf+6FD2mavhoxIZN8+9WrN\nnavT9u1523v2DI3dGjq0dFk8v70TdrwNB76GoAOo7RQ4a6bOH1oFiR0h1tuyDB4IrOXBovOB0iGL\nRKRPGfZPBcaIyFWB5UvRJBnXFbH9TUDX4PZFYX2PYRiVRUYGvPuuiq033lDx1bixljFNTdXhu5a8\nuWhMYHmAdXJGoSxdqkkFwsXX4cMqzAAuukjDENu21fFdsbE6BuyNN7T9+uvh6681LCs2VqfOneE/\n/9H23/5Wx5gF22JitLLg73+v7XfeqePIgu2xsdCjh2ZZBBV/x47lbe/WDcaP1/ZHHgllaAzSo4fW\nLgNNsZ+fXr00niArC/7734LtAwboSNpjx+CJJwq2DxmiZekPHoRnn9V1sbF6TCvk4R8isGpVaOzW\nRx/B8eOh9jp1tPbd6NE6vrFNm+KPl31cQwv3LYaEptD+Esg5CbNb69+4cS9oOiAwlutMqNO8Qua7\nhg0rKrCWhguq/Mul2L/UAss5dy7wH2CoiOwrpH06MB0gJSWl75YtW8r8ewzDMMrCiRN66585UxNl\nHD4MDRpoTrHUVH3PZkma82ICywNMYBmlRiQkEubM0fLrW7aokMnJ0bCroDC56SYVWLm52paTox6w\nZ57R9mnTYPlyXR/cpl8/ePllbR8yBNauDe2bk6N3wVmztL1VKx1DFs7FF8NLL+l8gwZ5x+QAXHUV\nPPaYzsfE5A0hA/j1r+Fvf1MBlZhY8Pf/4Q9w112Qng7JyQXb779fheO6dSomw+nSRc/NuecWfm6N\nquPECfj005Dg+vZbvy0qFgcVFVg5wLHQ4aiD1lx0gIhIgxL2L1WIYKB242xgrIisLcku63sMw6hq\nMjM1uCEtTVPAHzig3f348Sq2xo7VIJ6ajgksD7BOzohKRPKKt5wcFU3BO2N4/aQgtWqFMssV1l67\ntu4vonfdotpzc9VLlZ86dXTKydEQSsgbFP7ww1qe/v33Nc/shRda1cRIYOdOrbk1b55mKcwvzMuL\n5ICLAZzOZ2foeoeud3EQE4/WkS8ad+SI51kEy0IgrHAtcB6wHU1ycYmIrAjbJgV4H7hMRD4vzXGt\n7zEMw0+ysvSWn5amxY337tUuftw4FVvnn1/4u9aagAksD7BOzjCqmPvug9/9ToVYx46hqol9+5rY\nqs4c3wl7FwamL2D/Ehj9pdbl2joLNj2vyTOanQlN+kKcviyojDTtZcU5Nw74B5qm/UkRucc5dw2A\niDzinHscmAoEY/6yS7LZ+h7DMCKF7Gz45BMVWzNnap6v2rVhzBjtnsePh4YN/bay6jCB5QHWyRmG\nDwSrJs6YofEKrVvDpk0qsL7/Xse2mdiq3uRmgYtVb9aGpzRF/NFAbS8Xp8WQR3yEi0/0XWBVBtb3\nGIYRieTkwOefh8TW9u1a+WPkSBVbEyZAkyZ+W1m5mMDyAOvkDMNn9u/XJCL9++trtORkjVNITdUw\nwoEDTWzVFE7sgX1fqofr6EYY8lJEeLAqA+t7DMOIdHJztQLIzJkquLZs0eTJ552nXfSkSZoKvrph\nAssDrJMzjAji5ElN1DFjho4JyspSb9bf/qZ3c6PGYQLLMAzDf0Tgq6+0e05LCyVCHjZMu+fJk4su\nsRhteNXvFD/C2DAMo6pISIDLL9fS9Lt3a7r3Xr20+DNo+vwbbtAseLm5/tpqGIZhGDUE5zTZ8X33\naQWbr7+GW2/V6jXXXqvBJ8OGwb/+BTt2+G1tZGAeLHuLaBjRwVNP6Z08M1Pv5lOnahjh0KGaRdGo\ndpgHyzAMI3IRgRUr1KuVlqbzAIMHq2dr6lRISfHXxrJiHizDMGoWV1wBe/bAiy/CmWfC449reqOs\nLG3//nsdoWsYhmEYRqXjHJx2Gtx5J3z3HaxcCXffrSU1f/MbOOUUHUr9wAMaVliTMIFlGEb0UL++\nFmqeOVPF1rx5WuMLNKdsq1bq5VqwQJNmGIZhGIZRJXTrBr//PSxbBmvXwl/+ohH9N9+slVn69tV1\na0ssxx79mMAyDCM6SUyEQYN0XgTuukuDwJ99FkaM0DDCRx7x1UTDMAzDqImceqqO01q8WL1XDz6o\nQ61vvx26dIEzztBue+VKvy2tHGwMlsXBG0b1IiMD3n1X0x0Fg8A3b9Y7eUoKxMfrXT4hQdtbt9b2\nL7/M25aQoKN6ExM1nfzu3XnbEhKgQQMb/1WJ2BgswzCM6sXWrTBrlnbRn3+u70e7ddPuODUVTj/d\n3+osXvU7cV4YYxiGETHUrQtTpugU5Lvv9I5+6FDebfv1U4H18ceawTA/y5ZBz56aPv666wq2r1+v\ncQ8PPKBxEQkJeUXa0qVaKOQ//4Gnnw6tD24za5bOP/aYZk8MJzZW2wEefljDHsNJTIQXXtD5++7T\nniqcpCQdpwYaIP/113nbU1Lgn//U+VtugdWr87Z36QL336/zv/qVFkEJp2dPFa0AV1+tAjScQYPg\nttt0/ic/gSNH8rafey7ceKPOT51aMKRz3DgMwzCM6kXbtpoQ+IYbNOPg7NmaIOOee3T81qmnhsRW\n797RWwrTBJZhGNWf8ePh4EF9VZaVpdPJkypSACZO1DiFkyfzTh07avuoUSqy8rcHU8gPGKAjesPb\nsrKgdm1tT0xUoRVsy8jQz2AEwf79mqQjnLiw2/O+fQXbGzQIze/ZU7A9mPwDVPzkb4+PD83v2lWw\nvVGj0Hx6esH25OTQ/I4dBXPzduoUmt++Xc9/OPv2hea3bs1rL8CBAxiGYRjVl1at4Je/1Gn3bnjt\nNRVb99+vY7Xatw+Jrf79o0tsWYighWkYhmFEJBYiaBiGUfPYtw9ef13F1nvv6fu3tm1DUf9nnll5\n0fmWpt0wDMMwDMMwjGpF06Zw5ZXw9tsaYPHMM9CrF/z731r6sm1buP56+OijyK3OYgLLMAzDMAzD\nMIyIo3FjuOwymDNHo+FfeEFraz3+uCYOjtTqLCawDMMwDMMwDMOIaBo0gEsu0fxPe/bAq6/mrc7S\nsqXmXJo7t+Cw3qrGBJZhGIZhGIZhGFFDYiJceCG88oqKrVmzYPRoXR4zBlq0gJ/+VBP0ZmZWvX0m\nsAzDMAzDMAzDiErq1oXJkzV8cPduDSe84ALNSnjBBdC8uVYLee01OH68amyqVIHlnBvjnFvjnFvv\nnLu1kHbnnHs40P6tc65PSfs655o45+Y759YFPhuHtd0W2H6Nc250Zf429mLN4QAAIABJREFUwzAM\no/pTkX7MMAzDqFpq11ZR9cwzKrbefluzD77zjoqwpCS4+GLNUHjsWOXZUWkCyzkXC/wbGAt0B6Y5\n57rn22wscGpgmg78txT73gosEJFTgQWBZQLtFwM9gDHAfwLHMQzDMIwyU5F+zDAMw/CXhAQYOxae\neELLOc6fr56s99/X8MKkJBVfL78MR454+92V6cEaAKwXkY0ichJ4GZiYb5uJwLOiLAQaOeeSS9h3\nIvBMYP4ZYFLY+pdFJFNENgHrA8cxDMMwjPJQkX7MMAzDiBDi4zURxiOPwM6d8MEHmgr+s89g2jQV\nW5MmlXyc0hLn3aEK0BrYGra8DRhYim1al7BvCxHZGZhPB1qEHWthIcfKg3NuOvqWESDTOfddaX5M\nDaUZsNdvIyIcO0fFY+eneOz8FE8Xn7+/Iv3YzvCN8vU9R51za7w1tVii/TqLZvuj2XaIbvuj2XaI\nbvujzvbMTC1ujEf9TmUKrEpHRMQ5J2Xc53/A/wCcc0u8qNZcXbHzUzJ2jorHzk/x2PkpHufcEr9t\n8IrwvqeqifbrLJrtj2bbIbrtj2bbIbrtj3bbvThOZYYIbgfahi23CawrzTbF7bsrGH4R+Nxdhu8z\nDMMwjNJSkX7MMAzDqKFUpsBaDJzqnGvvnEtAE1DMybfNHOCyQBamQcChQPhfcfvOAS4PzF8OvB62\n/mLnXC3nXHt0wPGiyvpxhmEYRrWnIv2YYRiGUUOptBBBEcl2zl0HzAVigSdFZIVz7ppA+yPA28A4\nNCFFBnBFcfsGDn0v8Kpz7mfAFuBHgX1WOOdeBVYC2cAvRSSnBDN9CdeIIuz8lIydo+Kx81M8dn6K\nx9fzU5F+LMKI9ussmu2PZtshuu2PZtshuu2v8bY7kTINYTIMwzAMwzAMwzCKoFILDRuGYRiGYRiG\nYdQkTGAZhmEYhmEYhmF4RI0RWM65J51zu8PrXjnnmjjn5jvn1gU+G/tpo58UcX4ecM6tds5965yb\n7Zxr5KeNflLY+Qlr+z/nnDjnmvlhWyRQ1Plxzl0fuIZWOOfu98s+vyni/6uXc26hc26Zc26Jc67G\nFkZ3zrV1zn3gnFsZuFZuCKy3e3QpKeoc5ttmmHPuUOCaW+acu8MPW4vCObfZObc8+D9RSLtzzj3s\nnFsf6Jf6+GFnfpxzXcLO6TLn3GHn3I35tomoc1+RZyLn3Bjn3JrA3+HWqrP6h+8v9/NKSddYZVOE\n7Xc657aHXRvjitjX1/MesKEw+18Js32zc25ZEfv6fe4r1M+U+fyLSI2YgLOBPsB3YevuB24NzN8K\n3Oe3nRF2fkYBcYH5++z85D0/gfVt0QHwW4BmftsZSecHOBd4D6gVWG7ut50Rdn7mAWMD8+OAD/22\n08fzkwz0CczXB9YC3e0eXfFzmG+bYcCbfttazG/YXNx9NPB/8g7ggEHAl37bXIiNsUA6cEokn/vy\nPhMFft8GoAOQAHyT/zrzyfZSPa+UdI35ZPudwE2luK58Pe9F2Z+v/a/AHRF67svdz5Tn/NcYD5aI\nfAzsz7d6IvBMYP4ZYFKVGhVBFHZ+RGSeiGQHFhei9V1qJEVcPwB/B24GanS2mCLOz7XAvSKSGdhm\nd4EdawhFnB8BGgTmGwI7qtSoCEJEdorI0sD8EWAV0Bq7R5eaYs5hdWIi8KwoC4FGLlAXM4I4D9gg\nIlv8NqQ4KvBMNABYLyIbReQk8HJgvyojmp9XinmWKAnfzzsUb79zzqGZvV+qUqNKSQX7mTKf/xoj\nsIqghYTqlaQDLfw0JsK5En1zaARwzk0EtovIN37bEqF0Bs5yzn3pnPvIOdffb4MijBuBB5xzW4EH\ngdt8ticicM61A3oDX2L36HKR7xzmZ3AgjOod51yPKjWsZAR4zzn3lXNueiHtrYGtYcvbiDwReTFF\nP2BG8rmH0v2/RcPfoLjnlZKuMb+4PnBtPFlEiFo0nPezgF0isq6I9og59+XoZ8p8/mu6wPoBUR9g\njfZCFIVz7ndobbEX/LYlUnDO1QVuByJqDEOEEQc0QUN5fovWr3P+mhRRXAv8WkTaAr8GnvDZHt9x\nziUCM4EbReRweJvdo0tHcecQWAqkiMgZwD+B16ravhIYKiK9gLHAL51zZ/ttUFlwWox6AjCjkOZI\nP/d5iNb/t1I8r0TiNfZfNPSsF7ATDbOLRqZRvPcqIs59VfUzNV1g7QqGFwQ+a2wIU1E4534KjAd+\nHLjwDKUj0B74xjm3GQ1HWOqca+mrVZHFNmBWIJxnEZAL1NhEIIVwOTArMD8DDUGosTjn4tFO7wUR\nCZ4Xu0eXgSLO4Q+IyGERORqYfxuIdxGUnEdEtgc+dwOzKfg/sR0d9xqkTWBdpDAWWCoiu/I3RPq5\nD1Ca/7eI/RuU5nmlFNdYlSMiu0QkR0RygceKsClizzuAcy4OmAK8UtQ2kXDuK9DPlPn813SBNQd9\nyCHw+bqPtkQczrkx6PiiCSKS4bc9kYSILBeR5iLSTkTaoWKij4ik+2xaJPEamugC51xndGDoXl8t\niix2AOcE5ocDRYVVVHsCns0ngFUi8rewJrtHl5JizmH4Ni2DXmSnWStjgH1VZ2XROOfqOefqB+fR\npAX5s7bOAS5zyiDgUFhoTyRQ5Bv8SD73YZTm/20xcKpzrn3AY3dxYD9fKc3zSimvsSon3zjCyRRu\nU0Se9zBGAKtFZFthjZFw7ivYz5T9/Fc0K0e0TOhNbyeQhT4M/wxoCixAH2zeA5r4bWeEnZ/1aMzp\nssD0iN92RtL5yde+mZqdRbCw6ycBeB69iS4FhvttZ4Sdn6HAV2g2oi+Bvn7b6eP5GYqGZXwbdr8Z\nZ/doT87hNcA1gW2uA1YErrmFwGC/7Q6zv0PArm8CNv4usD7cfgf8G83mtRzo57fdYfbXQwVTw7B1\nEXvuy/JMBLQC3g7bdxyagW1D8O8UAbYX+rwSbntR11gE2P5c4Hr+Fn1oT47E816U/YH1Twev9bBt\nI+3cl6mfqej5d4GdDMMwDMMwDMMwjApS00MEDcMwDMMwDMMwPMMElmEYhmEYhmEYhkeYwDIMwzAM\nwzAMw/AIE1iGYRj/n707j5dzPP84/vnGHvsuRYQ0qH0JtSQopbT2tkS1YvspLbVESW0RS61VLbqg\nFVRLLLWUUnvFntgptSUVkgixC4nk+v1x35M8GWedmXPmLN/363VeZ57tfq55ZpIz19z3fT1mZmZm\nNeIEy8zMzMzMrEacYJnViKQlJT2VfyZKerOwPG/ZvneU7gnRRHvjJS3WyPprCsuDJF1ao+dwmqQj\natGWmZm1Pf/tMet45q53AGZdRUS8C6wHIOlk4OOIOLe4T77RnSLiW1We7uuSVouIl6psp2YKz21m\nvWMxM+su/LfHf3us43EPllkbk/RVSS9Iuop0g71exW8IJd0iaYyk5yUd2MJmfwUc18C55vgWUNKL\nklbIMTwn6UpJ/5V0haRvSXpI0suS+heaWV/SI3n9/oW2hkp6TNIzkk5q7Lm1+gKZmVnN+W+PWf24\nB8usfawO7BMRowHSF26zDI6IKZJ6AqMlXR8R7zXT3t+AQyWt3IoYVgP2AF4EngA+i4jNJH0XGAp8\nL++3NrAZsAjwhKRbgQ2B3sDXAQG3SdoMeLv8uZmZWYfhvz1mdeAeLLP28WoTfwSOlPQ08DCwAtC3\nBe19QfomcWgrYnglIl7IwyheAO7O658F+hT2uzEiPouIt4F/AxsB2wE7AE+S/kB+FVg179/UczMz\ns/rx3x6zOnAPlln7+KShlZK+CWwBbBIRUyWNAuZvYZsjgGOA/xbWfcGcX5wU2/q88HhmYXkmc/5f\nEGXnCdI3h6dFxJ/K4v8qjTw3MzOrO//tMasD92CZ1deiwJT8B25N0jd2LRIR04DfAocXVo8lDalA\n0sbAihXEtKuk+SQtDQwERgN3AAdIWjC3vYKkpSpo28zM6s9/e8zakBMss/q6Fegp6QXgNODRVh5/\nCVAsw3stsKyk54CDgNcqiOk54H7gIWBYREyKiNuA64BHJD0LjAQWqqBtMzOrP//tMWtDiijvkTUz\nMzMzM7NKuAfLzMzMzMysRpxgmZmZmZmZ1YgTLDMzMzMzsxpxgmVmZmZmZlYjTrDMzMzMzMxqxAmW\nmZmZmZlZjTjBMjMzMzMzqxEnWGZmZmZmZjXiBMvMzMzMzKxGnGCZmZmZmZnViBMsMzMzMzOzGnGC\nZWZmZmZmViNOsMy6GEmvStq0BfvNLykkrdAGMWwv6ZXC8kRJA/Lj4ZIurPU5OzpJW+XX5mNJ29e4\n7fLrXZP3gKQDJN3S0L6SRkg6plbPwczMrKtwgmVWY5IOlTRa0ueSRjSwfRtJL0r6VNK9klZqpJ3B\n+cP4x5KmSppZWH6/sfNHRN+IeLgGz+MRSZ/l802WNFLS0tW2GxHDIuLQatspV0gAPskxj5d0liS1\n8Pg5kpQ2cDpwdkQsFBG3N3D+ifk98bGkCZIulbRAJSeq1XsgIv4UETs1sm3fiDgb2uXamZmZdRpO\nsMxq7y3gNODP5RskLQXcAJwILAGMBq5pqJGIuDx/GF8I2An4X2k5IhZroO25a/gcSg7M518NWAY4\nsw3OUWur5Zi/CewH/LDO8ZSsBDzfzD7b5dj7A5sBR7d5VGZmZlZTTrDMaiwiboiIG4F3G9i8O/B8\nRFwbEZ8BJwPrSlq9knPlXo+jJT0PfFhYVxqOt7mkRyW9L+ktSb+uJBGLiCnAzcB6hXMvIOmi3Nsy\nXtI5kuZpQcxnSro0P15d0heS9sttTJb088K+C0n6a47/OUm/aGlPSUS8CDxSFvOPc+/hR5JekbR/\nXr8k8HdglUIv4ZKS5pJ0oqTXJL0j6SpJX0puC+3/NA/Pe1fSDZKWzevHA18B/iXp4xbE/iZwF1++\n3udLeiO/xhdImq+ROFr7HthV0th8/U8v9fpJOljSXY2c42pJJzRy7VbKPYmLFPbfLJ9/ruaev5mZ\nWWfmBMusfa0JPF1aiIhPgFfy+krtCWwLLNnAtunAoXnbQFJP2IGtPUEeGrgrKdaS4cA6wNrAhsBW\nQCVzcuYi9dh8Ffg2cLqkVfK204ClSb0/3wF+1IqY1wQ2LYt5ArADsAhwMHCRpDUj4l1gN+C1Qi/h\nu6QepO2AAcAKpOv560bO921Sz+RuwPLAO8CVABGxAvA2s3uomou9dz5vMfbzcgxrk3oUVwWGNn8l\nWvQe2ImUzG0M7AXs3YJ2AWjk2o0DHgW+W9j1R8BVETGjpW2bmZl1Rk6wzNrXQsAHZes+BBauos1f\nR8RbETG1fENEPBYRj0fEjIh4FbgU2LIVbf9R0oek5GAB4MjCtr2BYRHxTkRMIiVDLU6AygyLiM8i\n4nHgRVLiBrAHcFpEfJA/tP+uBW09L+kT4DngVtJzBiAibo6I1yO5C7iflDw15mBgaL6+n5GSyj0b\nmde1N3BxRDyT9z0G+Kak5VoQc8k/JX0EjAPGkq5pafjnAcDhEfF+RHxAGq45qLkGW/geOCO3+zpw\nISnJqtbl5OGZkuYlvZZX1qBdMzOzDs0Jlln7+pjUe1K0KPCRpN6FIVbNDiMreKOxDZLWkPRPSZNy\nonQSsFQr2v5xRCwCbAAsRxrmRk4wliMlAiXjSD03rTUjIt4pLH8KLCSpRz5H8fk1+lwL1iQlrPsA\nmwM9Sxsk7SzpMUlTlAqFbE0j1yM/xxWB2/LwuveBJ0n/bzbUW/gVCtcjIt4nJc+tuSY7RMTCpN6r\ntUjz9Eptz0NKHkux3EiaF9ekFr4Hitd1XD5fta4HNpK0PKlncnxEPFODds3MzDo0J1hm7et5YN3S\ngqQFgb6keVnFIhbNDiMriCa2XQI8AfTNidIpQIuq6s1xgogngbOBC/JyABNJQ/dKegNvtrbtJs45\nE5hEGhZXsmJLj42IK4FngF/ArGt9LXAqsEwuFHIPs69HlLURpOezdUQsVviZvywhLHmLwvXIc7UW\noYJrEhF3koqfnJVXTQC+IL2OpTgWjYiGEr1yLXkPFK9r7/xcWhVyA8/hY9LcrB+Qejbde2VmZt2C\nEyyzGpM0t6T5SXOL5lIqH14qKvB3YC1J3837DAOezgUZ2sLCwAcR8XGek/R/VbR1KfBVSd/Ky38D\nhuViEMsAxwN/qS7cLxkJHC9p0Twv6ZBWHn8G8NNciGEBUi/Q28BMSTuT5o2VTAKWkVRMbv8AnClp\nRQBJy0hqsGw56Xr8n6S18mt7JnBPRExsZcwlvwJ2kfS1iJhOqkr5G0lLKVlR0rYtaKcl74Fj8zXu\nQ5qv1WBlyyY0dO0AriDN99oeuKqVbZqZmXVKTrDMau8EYCqpAMEP8+MTACJiMmni/+nAe6SiAs3O\no6nCkcCBecjhRbT+g/MseY7XhaRCDpCGmr1A6pV7CniQ1MtVSyeQrtM44J+khOvzlh4cEaNJpfCP\nyr1ORwO3kCo87grcVtj9aVKlxHF5GN4SpOdzF3BPnhv1EGm4ZEPn+gcpobuZ1AO0HJXPSSMi3gKu\nJr93gCNyu6NJ8/huJxUGaU5L3gO3kp7/aFIvX2sT5YauHcC9pMR2VERMaGWbZmZmnZLSKBgzs45P\n0pHA9hHxrWZ3tg5B0kPA7yKi1r2bZmZmHZJ7sMysw8rD4DaR1CMPbzucNMzSOgFJm5PKyV9f71jM\nzMzaS6tvOGpm1o7mI809WgmYQprHc2mTR1iHIOlq4FvATxu6hYCZmVlX5SGCZmZmZmZmNeIhgmZm\nZmZmZjXSrYcILrXUUtGnT596h2FmZmYVGjNmzDsRsXS94zAzK+nWCVafPn0YPXp0vcMwMzOzCkka\nV+8YzMyKPETQzMzMzMysRuqSYEn6s6S3JT1XWLeEpDslvZx/L17Y9gtJr0h6SdK38rr5JN0u6TlJ\nPynse7GkBm8EamZmZma1J2nffEPzDkXSWElHt2L/rSSFpKXaKJ6Q9L22aLvsPHV9PST9Q9KIep2/\n3urVgzUC2L5s3VDg7ojoB9ydl5G0BjAIWDMf8ztJc5HK/44C1gF+lPddF5grIp5oh+dgZmZmVjVJ\nW0i6WdKb+QP4vg3sI0knS3pL0lRJ9+X7AzbV7snFL7NrGG9DScI1wCq1PlcD525tArQR8Lu2jKmV\negG31DuIhrQ2GbXG1SXBioh/k+5pU7QLcHl+fDmwa2H91RHxeUS8DrwCbAxMB3oC8wDK+54KnNiG\noZuZmZnV2kLAc6SbqTd237hjgCHAYaSk4W3gTkkLt0uEzYiIqRHxdr3jKJE0L0BETI6IT+sdT0lE\nTIyIz+sdh7WtjjQHa9mImJAfTwSWzY+XB94o7Dc+r7sT6AM8AvxW0s7AExHxVlMnkXSQpNGSRk+e\nPLmW8ZuZmZm1WkTcFhHHRcR1wMzy7ZIEHAGcGRHXR8RzwGBgYeAHDbWZe8GGAWvmHp9ZPWOSFs1T\nKt6W9JGk+yX1Lxy7qKQr8/bPJL0m6Yi8bWze7drc5tjS+YpD0kq9Z5IGSXo1n+fGYs+TpLkl/VrS\ne5KmSDpX0u8k3dfIc+oD3JsXJ+fzj8jb7pP0+9zGZODBUrzFXhlJR0l6RtInucfwUkmLNXS+5q5F\nI/uvKOmm/Hw+lfSipEGF7bN6/yT1ycuD8mswVdKTktaRtJakh3KcoyStXH5ty87b5JBASX1zXBNz\nm09I2rGw/T5gJeCc0vulsG2zHN+n+Zr9XtIihe09JY2Q9LGkSZKOayyO7qIjJVizRLr7cZN3QI6I\nLyLiBxGxPnAt6T+eX0k6T9J1OeFq6LiLI6J/RPRfemlXdTUzM7MOb2VgOeBfpRURMRX4N7BZI8dc\nA/wKeIk0LK0XcE1O1m4lfVm9I7B+buceSb3ysacBa+ftqwH7A2/mbRvl3/+X2ywtN6QPsCewG7Bd\nPtfphe1HA/sCBwKbkkYl7d1Ee28A382P18znP7yw/YekUU0DgX0aaWMm6TPjmqTkdGPggibO2dS1\naMjvSCOsvpHPcQTwfhP7AwwHziJdn/eBv+WYjs/xzQ/8tpk2mrMQ8E9gW2Bd4HrgBkmr5+27kzox\nTmH2+wVJa5Pedzfn43YH1gP+XGj73Nzud4Ft8vPYosp4O7WOVKZ9kqReETEh/wMvdTO/CaxY2G8F\nvvzG/glwBbAJ8AHpH/M9pDeDmZmZWWe2XP49qWz9JFKi9CURMTX3aHwRERNL6yVtTfqAvHRO0gBO\nlLQTaU772aSejCci4rG8fVyh3ckpR+P9YruNmBvYNyI+yOe+GNivsP1w4KyIuD5vP4Ivz9EvPqcZ\nkkpTTN6OiHfKdnk9IoY0FVBEnF9YHCvpGOAmSYMj4ku9hzRxLRqxEnB9RDxdiqmZ/QHOi4jbACT9\nijRH68SIuDevuxC4sAXtNCrH83Rh1en5Nf8ecFpETJE0A/io7HX9OXBNRPyqtELSIcCTkpYBPgUO\nAPaPiDvy9v1IyVq31ZF6sG4mdXeTf99UWD9IqWrgykA/oPQmR6na4I6kBKsn6ZuJABZop7jNzMzM\nOosNSZ+XJuchXR/nRGwtoG/e5/fAnpKezkPutqzwXONKyVX2FrAMpKF3pMRx1me6PILpMSo3prkd\nJG2tVK16vKSPgBuAeZmdxJZr7bX4DXCCpIclnSZpwxbE/UzhcSmJfrZs3YKSeragrQZJWlDS2ZJe\nyEMyPwb6A72bOXRD4Idl75UH87a++Wde4OHSARHxcVn83U69yrT/jfRCrJbf4AcAZwLbSnoZ+GZe\nJiKeB0YCLwC3Az+NiBmF5k4CTs/fOtxB6hZ+FriyvZ6PmZmZWRsq9SgsW7Z+2cK2lupB+sC+XtnP\n6uRCYRHxT1JPzLnAUsCtki6rIO7pZctB2372/KSpjZJWIg2P/A/wfVLysH/ePG9Dx7T2WkTEn0hD\nOi8DVgUeknRyM3EXr1M0sa507WYyu8BbyTzNnONc0nM+EdiS9Jo/RiPPu6AHcClzvlfWJXV4PNXM\nsd1WXYYIRsRejWzappH9T2fOMbvFbUcWHn9GGuNrZmZm1lW8TkqktgUeB5A0P+lL5Z83cdw0YK6y\ndU+QErOZEfFaYwfm4XdXAldK+ifwN0kH5wp40xtot1Ui4gNJE0lzuO6BWcU8NqLppHFa/l3J+fuT\nEoojS1/WFws9NBFrU9eiof3HAxcDF0s6ljQU8uQK4m3MZGBZScq9fpASn6YMAK4oDMecn9T79N/C\nPo29X9aMiFcaalTSq6T3wybAa3ndgqQe0Vdb/Iy6mI40RNDMzMys25G0kKT1JK1H+mzWOy/3hllD\n584HjpW0u6S1SPcU/Rj4axNNjwVWkrSBpKUkzQfcRRridZOkHSStLGlTScMlDczxnCJpV0n9JH2N\nVNjgtUJCMRbYRtJyeapGpX4DHCNpN0mrkYpy9KLpQmfj8vbvSFpa0kKtON/LpOt7RH7ee5GKUDSq\nBdeifP/fSNpe0ir59dyeNAqrlu4DlgCOU6oOeABpLlVT/gvslt8LawN/IRXPKBoLDJS0vGZXezwL\n2FjSHyStL+mrknaU9EeYNRzwT8BZkrZVujfbnylL1CSdIenuip9xJ+MEy8zMzKy++gNP5p8FSFXl\nniRVdCs5G/g1cBEwmpSIbBcRHzXR7vXAbcDdpF6PvXKy9m1Sr9ElpCqDI0kV8kq3uvmcNHLoaVIy\ntjCwU6HdIaQqeW/kOCt1Lqln6DLSbXcE/B34rLEDIuJNUvn500lDHVtc/CEiniH1Jh1FSnoOJFUy\nbEpz16JcD1IFwBdItxSaxOwaAzUREf8BDgEOIs3f2hb4ZTOHHUUqIPcAqZrgI/lx0UmkwnKvkt4v\npWu2Baki5P2k63AGcxZcOZpUPv/v+fdzpMqURb2YPcevy9PsnsXup3///jF69Oh6h2FmZmYVkjQm\nIvo3v6d1BpKeBEZFxGH1jsWsUh2pTLuZmZmZdRO56MS3SD0j85DurbVO/m3WaTnBMjMzM7N6mEm6\nIfA5pKF1LwA7RISHF1mn5gTLzMzMOo2ZM+H55+GBB2DUqHpHY9WIiDdI1e3MuhQnWGZmZtZhTZsG\nY8akhOqBB+DBB+G999K2Xr3qG5uZWUOcYJmZmVmH8fHH8PDDsxOqRx+FqVPTtlVXhd13h4ED08/K\nK0MP10M2sw7GCZaZmZnVzeTJaahfKaF68kmYMSMlTuutBwcdlJKpAQNg2WXrHa2ZWfOcYJmZmVm7\niIBx42YnUw88AC++mLbNNx98/eswdGhKqDbdFBZZpL7xmplVoqoES9JcETGjVsGYmZlZ11FekOKB\nB2D8+LRt0UVh881h8OCUUPXvn5IsM7POrtoerJclXQ9cFhEv1CIgMzMz65yaK0hRmjs1cCCstRbM\nNVd94zUzawvVJljrAoOASyX1AP4MXB0RH1YdmZmZmXVoLS1IMWAArLIKSPWN18ysPVSVYEXER8Al\nwCWStgT+Cvxa0nXAqRHxSg1iNDMzsw7ABSnMzJpX9Rws4DvAfkAf4FfAVcBA4DZg1SrjMzMzszpw\nQQozs8pUPQcLuBc4JyIeKqy/TtIWlTQo6UjgQCCAZ0nJW0/gGlISNxbYIyLek7Q58HtgGrBXRLws\naTFgJLB9RMys6FmZmZl1MzNnwgsvzJlQuSCFmVnrVZtg7RMRo4orJG0eEQ9GxM9a25ik5YGfAWtE\nxFRJI0lzvNYA7o6IMyUNBYYCxwJDgG+TEq+D8/IJwC+dXJmZmTVu2jR44onZydSoUS5IYV8maVfg\nKGB1YGHgbeBJ4A8RcXsF7e0P/AJYCfg0IhZr4XGLAUcAN0fEE609bxPtRmExgCnAg8BxEfF8Be31\nAfYFroiI18q2jQXui4h9K4vWOotqE6zfAhuUrbuggXWtMTewgKTppJ6rt0j/ELfK2y8H7iMlWKV9\negLTJfUFVoyI+6o4v5mZ2SyffQajR89ORF56KQ2f6+wmTpxdkKJfP9htt9kJlQtSGICknwG/IRUx\nOwf4BOhLmh6yNdCqBEvSV4CLSdNJ9gM+a8XhiwHDgPFAzRKsbARDzSHFAAAgAElEQVTwR9Jn0LWB\nU4DbJa0dEe+3sq0+pDhHAa+VbdsNcCG4bqCiBEvSpsBmwNKSjipsWgSo+DuuiHhT0rnA/4CpwL8i\n4l+Slo2ICXm3iUBp6uwZwBV53x8B55J6sJqK/SDgIIDevXtXGqqZmXVRH3wADz00O6F6/HH4/PO0\n7WtfS3OP5q7268kOYMkl07C/AQNgueXqHY11UEcDN0bEAYV195CKm/WooL1+pM+Jl5ePgKqzNyPi\nkfx4lKQPgb8A2wNX1+okEfFkrdqyjq3SPxHzAgvl4xcurP8Q+F6lwUhaHNgFWBl4H7hW0g+L+0RE\nlLpzI+IpYJN87BbAhPRQ15B6t4ZExKSy4y8mfXtC//79u8B3kGZmVo2JE+ecd/TMM2k+0lxzwYYb\nwqGHpl6dzTeHpZaqd7Rm7WoJ0hfbX1KciiFpaeA04BvACsC7wAPAzyPizbzPCGBwPuRupS7Sy0vD\n5fIX4D8FVgM+Bm7Kx0/Jw+5ez8deIumS/Hg/YENgD2CFiJheiGlh0iioiyJiaCufd6mHbI5v4iUd\nCuydY+wBvEiqmn1r3r4VqTYBwJ2a3Q38jYi4r3yIoKR9gcuATYHDgJ3yc78OOCYiZvXwSVoFuJA0\noutj4ErgJVLP28oRMbaVz9HaUEUJVkTcD9wvaUREjKthPN8EXo+IyQCSbiD1lE2S1CsiJkjqRRr/\nO4vSO/gE0nytC4BjSF20PwOOr2F8ZmbWiUXAq6/OmVC9km8o0rMnbLIJnHhiSqg22QQWXLC+8ZrV\n2WPAYEmvATdFxH8b2W8JUsGxE4BJQC/SvPgHJa2eE4VTgTGk6SU/JSUxpc97Z+b9fwv8HFielLCt\nJWkz0hfouwM3kEYv3ZzP+2qO8VDS8LuRhZh+ACxISkBaq0+h/aKVScMJXyX1xO0E/EPSDnk+2hP5\nuV1E+gz6eD7uhWbOdyXwN9Jz3BQ4GXiPNNQQSfMCdwLzAYeQrtuBNNCpIenkfJyTrjqqdIjg+RFx\nBHBh2eRAACJi5wrj+R+wiaSepGF/2wCjSWN+BwNn5t83lR23D3Bb/pajJzAz//SsMA4zM+sCZsxI\nPVLFezdNzN/HL7FEGh734x+nhGqDDWCeeeobr1kHczCpN+Vs4GxJ75I+6F8WEf8q7RQRL5F6YIBZ\nt/F5kPS5bgfg7xHxqqT/5F1eKA3Jy71TPweGR8QphTb+S5rHtFNE3CipNLzutcJwPoDJku4Hfsyc\nCdaPSVNNXqd5kjQ3s+dgnQ08wuxErvQ8hxQO6AHcTbol0SHA7RHxoaRSMvWfsjib8teIGJYf3yXp\n68Be5ASLVDRjFeDrEfFYPv8/gaco62Ujff6dQSrYYXVS6RDBK/Pvc2sVCEBEPJpvUvwE8AWpSs3F\npOGIIyUdAIwjdQUDkBOqfYHt8qrzSPfgmkb69sLMzLqJzz5Lc6ZKydRDD8GHeUr5iivC1lvPLuTw\nta+lG+SaWcMi4r+S1gc2J33O2oTUUzRI0okRcVppX0mHkBKyvqSeo5LVmjnNtqThdlflJKfkUeAj\nYAvgxmba+B1wtaR++ZY9GwHrk3qEWuK4/FMyFti6OOQQQNKGwHBgI2BpoDQG8KUWnqcxt5YtP0sa\n1VWyCfC/UnIFs6bMXA+sUzwwJ6mnYHVV6RDBMfn3/bUNB3IGP6xs9eek3qyG9v+UNOa3tPwA6dsH\nMzPr4poqSLHGGrDXXrMTKtc1Mmu9iJgB/Dv/lCoB3g4Mk3RRvi/pYaThfeeReqPeIyVNjwDzN3OK\nZfLvVxrZvmQLwvw7aa7Yj0mFOQ4mzb+6pQXHQqqS+HtSrNsAJ5EStm9GpJqhklYk9Vi9QOqt+x+p\nM+BU4GstPE9jppQtf04aDljypekx2aQG1lkHUOkQwWdpousxItZpbJuZmVmlXJDCrL4i4i1Jl5LK\nt/cjzYEaRLpfaXEI3cotbPLd/Hs7UmLW2PamYpqeY/qJpLNzPL+KiC9aGMOEiBidH4/Kc/uHkeY4\nXZvXbw8sCuwREeNLB+aRVG1tAumesOWWbWCddQCVDhHcsaZRmJmZlXFBCrP6KhUYa2DT6vl3qcJg\nT758f6f9WniaO0nzhnpHxJ1N7Jf7plmgke1/JA3zu5bU+3NJI/u1xFnA/wEnSbou92KVEqlipcJV\nScMnxxeObS7OSjwC7Cdp48IcLAHfreE5rIYqHSJYy8qBZmZmswpSlJKpUaNckMKszp6TdBdpbvvr\npPudfps0BG9kRPwv73c7cKyk40g9WlvTwtv25OIXZ5EKp60G3E+6AfGKpPlZl0bEvaThcO+S5n89\nQyqA9npEvJvbeVPSzaQ5YrdExBuVPumImCrpl6Sy6LsD1wN3kYYEXiHpV6Rhe8NJQwWLszn/m/fb\nX9IUUsL1UkR8VGk8pMqFxwI3SDqe2VUEF8/biyXzTyINcezrz+v1U+kQwVERMUDSR6Shgir+johF\nahijmZl1QS5IYdbhHU9KqE4hDUebQUoghgLnF/Y7BVgMOJI0j+l+4FvAay05SUQclysM/jT/BPAG\nac7Ty3mfmZIOBH5JSnbmJvWSjSg0dS0pwaqkNHu5S0jzyU6QdENEPC9pb9JzvZlUqn0oaejgVoXn\n8m6+X9axpOswF6lWwH2VBhIR0yRtR7oV0R9I98H6K6kQyJnAB4Xde+Rzqrwdaz/Kc/e6pf79+8fo\n0aOb39HMzKpWXpDiscdg2rS0bY01ZidTLkhhrSFpTET0r3ccVn+SriIN2VuleCPkrkrSP4CvRUTf\nesdic6p0DtYskjYABpC+bRgVEU82c4iZmXUDjRWkmHvuNMTvsMNckMLMqidpE2A9YE/gqK6YXEk6\nitRz9TKwMPB94Duke3BZB1NVgpXHeX6fdGdtgBGSri3eF8HMzLo+F6Qwszp6mJR8XE66J1ZX9Dlp\nCGZv0hDAl4ADI+JPdY3KGlTVEEFJLwHrRsRneXkB4KmIaO6mch2ChwiamVWmJQUpSsP9XJDC2pKH\nCJpZR1PtEMG3SJMZP8vL8wFvVtmmmZl1ME0VpOjdG7bZJiVTAwa4IIWZmXVvlVYRvIA05+oD4HlJ\nd+blbUnlOc3MrBMrL0jx+OPweb67yxprwF57uSCFmZlZQyrtwSqNqxsD/L2w/r6qojEzs7poriDF\noYe6IIWZmVlLVHqj4ctrHYiZmbUPF6Qws25B6kO6QXI1Lidi36pjsW6l2iqC/YAzgDVIc7EAiIhV\nqozLzMxqZMYMePbZOROqUkGKJZdM86YOPjj9dkEKMzOz6lRb5OIyYBjwa9Jdqvcj3UHazMzqpFSQ\nYtSolEw9+GDDBSkGDoTVV3dBCjMzs1qqNsFaICLulqSIGAecLGkMcFKlDUpaDLgUWItUOGN/Uq3/\na4A+wFhgj4h4T9LmwO+BacBeEfFyPn4ksH1XvNGcmVk5F6QwM2uRN4EBrTzm47YIxLq2ahOszyX1\nAF6WdCjpjbtQlW3+Brg9Ir4naV6gJ3AccHdEnClpKDAUOBYYAnyblHgdnJdPAH7p5MrMuioXpDAz\nq8gXRIytdxDW9VWbYB1OSoB+BpwKbA0MrrQxSYsCWwD7AkTENGCapF2ArfJul5OqFR4LTM/n7wlM\nl9QXWDEi7qs0BjPrOt5+G6ZOrXcU1fv0U3jkkYYLUmy6KZx0Upo/5YIUZmZm9VdVghURj+eHH5Pm\nX1VrZWAycJmkdUll4A8Hlo2ICXmficCy+fEZwBXAVOBHwLmkHiwz62Yi4KWX5uzZGTu23lHVVrEg\nxcCBsP76LkhhZmbW0VR6o+HzI+IISbeQ5knNISJ2riKeDYDDIuJRSb8hDQcsth2SIj9+Ctgkx7QF\nMCE91DWk3q0hETGpLPaDgIMAensyglmn9cUX8NRTs5OpUaNg8uS0bemlUwJy2GGw+OL1jbMW5pkn\nDf1zQQozM7OOr9IerCvz73NrFUg2HhgfEY/m5etICdYkSb0iYoKkXsDbxYMkidRzNQi4ADiGNC/r\nZ8DxxX0j4mLgYoD+/ft/KTk0s47p00/h0UdnJ1QPPwyffJK2rbIK7LDD7EIOq64KUn3jNTMzs+6p\n0hsNj8m/769lMBExUdIbklaLiJeAbYAX8s9g4Mz8+6ayQ/cBbouIKZJ6AjPzT89axmdm7WfKlFRe\nvJRQjRkD06enxGnttWHffVMyNWAALL98vaM1MzMzSyodIvgsDQwNBEQaxbdOFTEdBlyVKwi+xux7\na42UdAAwDtijEEtPUlGM7fKq84DbSKXbf1BFHGbWjsaPn3P+1HPPpfXzzAMbbQRHHZUSqs026xrD\n/szMzKxrqnSI4I41jaIgz6vq38CmbRrZ/1PSTY5Lyw8Aa7dNdGZWCxHw4ouzb4RbLEix0EIpidpz\nz5RQbbwxLLBAXcM1MzMza7FKhwiOKz2WtBLQLyLukrRApW2aWdf1xRfw5JNzFqR45520rVSQ4vDD\n0+911033czIzM6uxlciF0lpoPyJGtFUw1nVV9TFG0v+RKvItAfQFVgD+QCO9TWbWPTRXkOI730lz\np1yQwszMzLqaar8n/imwMfAoQES8LGmZqqMys07FBSnMzMzMkmoTrM8jYpry18+S5qbh4hdm1oW8\n8cac86dckMLMzDqBN4EBrdj/nbYKxLq2ahOs+yUdBywgaVvgJ8At1YdlZh1FqSBFscLfuDwL0wUp\nzMysE/mCiLH1DsK6vmoTrKHAAcCzwI9J5dEvrTYoM6uflhSkOOIIF6QwMzMza0hVH40iYiZwSf4B\nQNLmwINVxmVm7aQlBSkGDkw//fq5IIWZmZlZUyq90fBcpJv9Lg/cHhHPSdoROA5YAFi/diGaWS25\nIIWZmZlZ26m0B+tPwIrAY8BvJb1Fujnw0Ii4sVbBmVn1xo+fc/6UC1KYmZmZtZ1KE6z+wDoRMVPS\n/MBEoG9EvFu70MystUoFKYoV/saOTdtckMLMzMys7VWaYE3L86+IiM8kvebkyqz9NVWQYpll5ixI\nsc46LkhhZmZm1tYq/bi1uqRn8mMBffOygIiIdWoSnZnNwQUpzMzMzDq2ShOsr9U0CjNrUEsLUgwc\nCF/5Sr2jNTMzM7OKEqyIGFfrQMys5QUpNt8cFlusvrGamZmZ2Zd5RoZZnTRVkGLhhVNBikGDUrl0\nF6QwMzMz6xw6ZIKV77M1GngzInaUtARwDdAHGAvsERHv5Zsa/x6YBuwVES9LWgwYCWxfKsRh1hG4\nIIWZmZlZ11fpjYbvjohtJJ0VEcfWOijgcOA/wCJ5eShwd0ScKWloXj4WGAJ8m5R4HZyXTwB+6eTK\n6s0FKczMzMy6n0q/I+8laTNgZ0lXk6oHzhIRT1QakKQVgO8ApwNH5dW7AFvlx5cD95ESrOlAz/wz\nXVJfYMWIuK/S85tVygUpzMzMzKzSBOsk4ERgBeC8sm0BbF1FTOcDxwALF9YtGxET8uOJwLL58RnA\nFcBU4EfAuaQerEZJOgg4CKB3795VhGndXWMFKeadNxWkGDIkzZ9yQQozM7M6iBhLWSeAWXuotIrg\ndcB1kk6MiFNrFYykHYG3I2KMpK0aOXdIivz4KWCTfOwWwIT0UNeQereGRMSksuMvBi4G6N+/f9Qq\nduvaIuCll+ZMqBoqSDFwYEquXJDCzMzMrHuqahp9RJwqaWdgi7zqvoj4RxVNbk4advhtYH5gEUl/\nASZJ6hUREyT1At4uHiRJpJ6rQcAFpB6wPsDPgOOriMe6KRekMDMzM7NKVPWxUNIZwMbAVXnV4ZI2\ni4jjKmkvIn4B/CK3vRVwdET8UNI5wGDgzPz7prJD9wFui4gpknoCM/NPz0risO7HBSnMzMzMrBaq\n/d79O8B6pYp9ki4HngQqSrCacCYwUtIBwDhgj9KGnFDtC2yXV50H3EYq3f6DGsdhXYQLUpiZmZlZ\nW6jFwKbFgCn58aI1aA+AXAnwvvz4XWCbRvb7FPhGYfkBYO1axWFdQ2MFKeaZJ82ZOuqolEy5IIWZ\nmZmZVaPaBOsM4ElJ95KqtGxBukeVWd1EwIsvpnlTTRWkGDAANt7YBSnMzMzMrHZ6VHNwRPyNVMXv\nBuB6YNOIuKYWgZm11BdfwOOPw3nnwW67pSIUa6wBBx0Ed9wBG24I55+fhgFOmQK33w7HHw9bbunk\nyszMuj5J+0qKws80Sa9K+qWk+Sts8+RSVefCupB0cgVtjZA0vgX7lZ5Hn8K6sZJGNLPPyZKquYVQ\nQ7GMLbum70u6U9KACttbLMe5QQPb7pN0X9VBW7upeohgvj/VzTWIxaxFXJDCzMysIt8HxpPuNbob\nqbDYwsBhNWp/09x+W7k1n2NCK/cZBpwO3FPjeO4ATiZ1WPTL57lN0jqR7sHVGovl48cDT5Rt+0l1\nYVp7c3Fp6/BckMLMzKwmnoqIV/LjOyX1A/aXdHipYFk1IuKRattopv3JwORq96mhdwrP+SFJrwCj\nSLcNOrNWJ4mIF2rVlrWPqoYImrWFN96Av/4VDjkkJVBLLgk775yG+fXokQpS/OMfKfF6+mm48ELY\nc08nV2ZmZq30BOmWNksVV0paWdJVkiZL+lzSU5J2a66x8iGCkr4q6UpJr0uaKuk1Sb+XtHgjx28m\n6XFJn+UheIeVbf/S8L8G2phjn8IwxuMLw/lOljQkP7ely45XjvPq5p5vA0o9T73L2hwk6Z58PT+W\n9KSkwYXtfYDX8+IlhTj3zdvnGCIoaau8fWdJF0p6J//8RdIcpbokLS3pb5I+lPSepMvycZFviWRt\noOoerDzWtF9EXJbfpAtFxOvNHWcGswtSFCv8jRuXti20UCpIseeeqXfKBSnMzMxqqg/wAfBuaYWk\nFYFHgbeBI0m9QXsC10vaNSJaMy3kK8BbwJB8jpVJt/K5jTSMr2gR4BrgLOAVUi/QbyV9FBEjWvvE\nCjYFHgZGAH/M68YDnwKnAfsBZxf23y7HuX8F5+qTf79atr4vcGM+zxekonCXSlogIv5AGs64O6mm\nwRnMnnpT3k653wD/IN2WaLXc/gzSPWNLbiBV1/4F6bp+F7igvKGczF0GfCNX8rYqVHuj4WFAf9KL\nehkwD/AXYPPqQ7Ou6Isv4MknZydTo0bBO++kbcsskyr7HXFESqjWXRfm9iBWMzOzWplL0tzMnoP1\nXeCIiJhR2OdkUmXoLfNtcgDuyInXKbRi3n1E/Bv4d2lZ0oOkD/kPSFo/Ip4s7L4wcFBElHqObpe0\nPDBc0uURMUdBjVbE8IjSZOw3y4cwSroGOEjSOYX2fwy82MIkQ/l69gC+CvweeBn4c1kMpxcO6EG6\nDVEv4BDgDxHxuaTStXitFUMt/x0RpV6+f0laDThQ0r4REZK2AwYAe0bEyLzfHZJupqyXDZhJSs4q\nus42p2o/vu4GrE/uEo2ItyQtXHVU1mW4IIWZmVmH8WLZ8u8i4sKydduTepg+yMlDyR3AOZIWiYgP\nW3IySfMCRwP7ACsBxYqFqwHFBGsGqSJ10dXApcDytE3xjN+Renu2Ae6S1AvYCTimhcf/IP+UTAE2\ni4j3ijvluW6nkHqulmP2FJ3PKw8dSAU9ip4F5gOWBSaSKn3PAP5ett91pOc5S0RcAVxRZTyWVZtg\nTcsZcgBIWrAGMVkn1tKCFAMGwPLL1ztaMzOzbmU3UqKyNHAU8BNJj+YP1yXLkBKifRppY0mgRQkW\nabjbYaTk4iHgI2AF0rC18vLw70XE9LJ1k/LvNkmwIuIxSWOAg4G7gANJQ/gub2ET/wROIo3g2pj0\nfG+QtGFEfAYgaSHgTtKQxKGkYX/TSL1XlQxDLJpStlxK2ErXthdNX1drI9UmWCMl/RFYTNL/kd4o\nl1YflnUWb7wx5/yp559P6+eZBzbaKBWkGDgwzaVavMEprWZmZtZOnitVEZR0D/AMqVfq+ojI40t4\nF3iANBeqIW+14nyDgCsi4rTSipxwNGRxSfOUJQPL5t9vtuKcrfU74I95OOKBwLURUZ64NGZKRIzO\njx+W9AFpysxhwDl5/aak3ruBETGqdGBZ72BbmUDT19XaSFUvbkScK2lb0jcZqwEnRcSdNYnMOpyW\nFKQYNMgFKczMzDq6PO/n58BNpPsslRKC20lJwfMRMbXK0/QEyntP9mtk37lIc8KK1fsGAf+j+gRr\nGtDYp5K/AecCfyXNS/pDFee5nJRc/VzSRRHxKekaQOE65CqKu5QdW+p9quWnp0dI13U3YGRh/fdr\neA5rQLVFLs6KiGNJXZ/l66yTa64gxcCBcOSR6fc667gghZmZWWcSETdLehwYIunCnFCdBDwG/FvS\nhcBYYHFgLWCViGjNsLbbgcGSniUVt9gd2KyRfT8Czpa0FKlQxF7AN4F9Ky1wUfAC8B1JtwPvAW9F\nxFsAETFV0ghSxcRnI+KhSk+Sp82cRKrsdwjwK9LQyA+Bi3JxuAWBE4B3gEULh08i9R4OkvQM8Anw\neqHQSCXx/CsXFrk4X9dXgO8B6+ZdZt37TNI+pOIc20TE/ZWe05Jq74O1bQPrdqiyTauTTz+Fe++F\nU06BbbeFxRZLPVFDhsAzz6SCFJdeCi+9BBMnwnXXweGHwwYbOLkyMzPrpE4gDRk7GCAi/keqEP00\n8EvSl+i/B7YE7mll24eRqg6eTirBvjApcWrIh6Qeq8GkXrVvAIdHREvnQzXlUFLCcgvwOHBQ2fZr\n8+8/UqWIuJVUFv7oXIZ9MqkHaS5ScYkzSNNp/lJ23EzSEMXFSfPBHqesEEWFdiMlumeRerHmB07M\n2z4o7Ncjx+hyYzWgSr4UkHQIqTt5Feas0b8w8GBE/LA24bWt/v37x+jRo5vfsYuaMiX1So0a1XBB\nilJ1v4EDfRNfMzPrmCSNiYj+9Y7DOi9JpwOHA19paYXEziz3TO4HLBER1VYytAZU2u/wV1LllDNI\nFVFKPmrFxEBrZy0tSLH55qn3yszMzKyrkrQ+qYbA4cDFXTG5yjcQXhR4HpiXVIb/EOAcJ1dtp6IE\nKyI+IHUr7gUgaRlSl+NCkhbK3cutlm9idwWpqzpIb/bfSFqC1LXchzQWeI+IeE/S5qRu62nAXhHx\nsqTFSF2g2+fu1m7JBSnMzMzMmvR30mfOO4BhdY6lrXwCHAH0Jd0j63XgOGYXNbE2UNEQwVkHSzsB\n5wFfAd4mlaH8T0SsWWF7vYBeEfFEvmHxGGBXYF9SKcwzJQ0FFo+IYyXdAPyMlHjtFhFDJJ0L/KMl\nd+DuSkMEW1KQovTjghRmZtZVeIigmXU01X7MPo10l+i7ImJ9Sd8AKp5/FRETSDX7iYiPJP2HdHO5\nXYCt8m6XA/cBx5JKXvbMP9Ml9QVWbEly1dl9+ik8+ujshOrhh+GTfAeLVVZJBSlKCVW/fmlelZmZ\nmZmZta1qE6zpEfGupB6SekTEvZLOr0VgkvoA6wOPAsvm5AtgIrNvkHYGaUjhVOBHpPsYnNBMuweR\nq8f07t27FqG2i1JBilJCNWZM6rUqFaTYd18XpDAzMzMzq7dqE6z38x25/w1cJelt0ljPquQ2rweO\niIgPVeh+yfcYiPz4KVIPGpK2IPV+SdI1pN6tIRExqdh2RFwMXAxpiGC1sbaV5gpSDBnighRmZmZm\nraXhugvYprBqJtAnhsUbdQrJuphqE6xdSL1HRwJ7k6qUnFJNg5LmISVXV0XEDXn1JEm9ImJCnqf1\ndtkxIvVcDQIuAI4hzcv6GXB8NfG0h6YKUiy8cCpIsddeMGCAC1KYmZmZVUrDtSLpHltFPUhTXM5o\n/4isK6oqwYqIUm/VTOByST1IlQWvqqS9nCj9iVQo47zCpptJN547k9k3oCvaB7gtIqZI6pnjmUma\nm9XhtKQgxZFHuiCFmZmZWY39iJRQlRuMEyyrkYo+uktaBPgpqQDFzaS7fP8UOJp05++KEixgc9Ib\n/1lJT+V1x5ESq5GSDgDGAXsUYulJqjK4XV51HnAbqXT7DyqMo6ZckMLMzMysQxjcyPrVNFxfj2Hx\naLtGY11SpX0jVwLvAQ8DB5KSIAG75nlRFYmIUbmdhmzT0MqI+JRCV29EPACsXWkMteCCFGZmZmYd\ni4ZrE2DVwqp/AjsUlgeTiquZVaXSBGuViFgbQNKlpOISvSPis5pF1om4IIWZmZlZh1fee3UM0Bso\n3b91kIbriBgW09o3LOtqKk2wppceRMQMSeO7S3LlghRmZmZmnYuGaz5gz8Kqp2NYPKfhupI0FQVg\ncWAnUrE1s4pVmmCtK+nD/FjAAnlZpErqi9Qkug7ABSnMzMzMOr2dSQlUyV/y77+SiluUpqgMxgmW\nVamidCAi5qp1IB2FC1KYmZmZdTnF4YEzSYkVMSze0HDdD2yVt+2g4VomhsXbmFWo2/e3TJkCDz44\nZ0GK6dNdkMLMzMysK9BwLQt8q7Dq3hgWbxWWr2R2gjU3qQr1+e0TnXVF3TrBev55WHLJ9LhUkOKo\no1yQwszMzKwL2Zs5P/P+pWz7dcBFwPx5eTBOsKwK3TrBmndeOP74lFC5IIWZmZlZl1QcHjiVsjlW\nMSw+1HDdzOz7rK6n4Vo7hsWz7RWgdS0N3cm62+jXD044Abbc0smVmZmZWVej4VoPWKew6pYYFh81\nsGt5r1ZjNyQ2a1a3TrDMzMzMrEsrT5TKE6mS24F3Cst7a7i6bFE3a1tOsMzMzMysy9FwlQpWlLxD\nSqS+JIbFdOCawqrlmLMwhlmLOcEyMzMzs67o28AyheWROZFqjIcJWk04wTIzMzOzrqilwwMBiGHx\nCPBKYdXOGq5Fax6VdXlOsMzMzMysS9FwLQHsWFj1agyLh1twaDEJmx/Ys6aBWbfgBMvMzMzMupq9\ngHkLy1e18DgPE7SqKSLqHUPd9O/fP0aPHl3vMMzMzKxCksZERP96x2Edi4brMWCjGjW3agyLl2vU\nlnUDnaYHS9L2kl6S9IqkoXndWZKekXRFYb8fSjqifpGamZmZWb1ouL5G7ZIrgH1q2JZ1A50iwZI0\nF3ARsAOwBrCXpHWBDSJiHWCapLUlLQDsl/c1MzMzs+6n1gSn9zcAAAiwSURBVMP6fqjhUo3btC5s\n7noH0EIbA69ExGsAkq4GdgbmkSSgJzAdOBq4IKLJEpxmZmZm1gVpuHoAPyys+gRYn/Q5sTVOZnai\n1gfYErivuuisu+gsCdbywBuF5fHA14HbgCeBu4EPgK9HxKlNNSTpIOAggN69e7dJsGZmZmZWF98k\nfW4subWS+VMariuYsydsME6wrIU6xRDBxkTE2RGxXkQMAU4FTpJ0oKSRkk5o5JiLI6J/RPRfeuml\n2zdgMzMzM2tL5cMDr6mwnfuBSYXl72m4FqywLetmOkuC9SawYmF5hbwOAEnrAwJeAr4fEXsAfSX1\na9cozczMzKwuNFyLALsVVn1MGu3UajEsZgDXF1YtBOxeeXTWnXSWBOtxoJ+klSXNCwwCbi5sPxU4\nEZgHmCuvm0mam2VmZmZmXd/3gQUKy7fEsPisivZGli27mqC1SKdIsCLiC+BQ4A7gP8DIiHgeQNKu\nwOiIeCsi3geekvQsMH9EPF23oM3MzMysPdVqeGDJA8CEwvLWGq4VqmzTuoFOkWABRMRtEbFqRPSN\niNML62+MiJMLy0dHxNoRsXddAjUzMzOzdqXhWgUYUFj1IXB7NW3GsJgJXFdY1QP4UTVtWvfQWaoI\ntokxY8Z8LOmlesdhsywFvFPvIGwWvx4di1+PjsOvRceyWr0DsA5hH9J8/JKbY1h8XoN2rwEOKywP\nBs6oQbvWhSki6h1D3UgaHRH96x2HJX49Oha/Hh2LX4+Ow69Fx+LXw8w6mk4zRNDMzMzMzKyjc4Jl\nZmZmZmZWI909wbq43gHYHPx6dCx+PToWvx4dh1+LjsWvh5l1KN16DpaZmZmZmVktdfceLDMzMzMz\ns5pxgmVmZmZmZlYj3SbBkvRnSW9Leq6wbglJd0p6Of9evJ4xdieNvB7nSHpR0jOS/i5psXrG2J00\n9HoUtg2RFJKWqkds3U1jr4Wkw/K/j+clnV2v+LqbRv6vWk/SI5KekjRa0sb1jLG7kLSipHslvZD/\nHRye1/tvuZl1KN0mwQJGANuXrRsK3B0R/YC787K1jxF8+fW4E1grItYB/gv8or2D6sZG8OXXA0kr\nAtsB/2vvgLqxEZS9FpK+AewCrBsRawLn1iGu7moEX/63cTYwPCLWA07Ky9b2vgCGRMQawCbATyWt\ngf+Wm1kH020SrIj4NzClbPUuwOX58eXAru0aVDfW0OsREf+KiC/y4iPACu0eWDfVyL8PgF8DxwCu\nhtNOGnktDgHOjIjP8z5vt3tg3VQjr0cAi+THiwJvtWtQ3VRETIiIJ/Ljj4D/AMvjv+Vm1sF0mwSr\nEctGxIT8eCKwbD2DsTnsD/yz3kF0Z5J2Ad6MiKfrHYuxKjBQ0qOS7pe0Ub0D6uaOAM6R9AapN9G9\n7e1MUh9gfeBR/LfczDqY7p5gzRKpXr2/pe8AJB1PGgpyVb1j6a4k9QSOIw1/svqbG1iCNCzq58BI\nSapvSN3aIcCREbEicCTwpzrH061IWgi4HjgiIj4sbvPfcjPrCLp7gjVJUi+A/NvDbupM0r7AjsDe\n4Zu01VNfYGXgaUljScM1n5C0XF2j6r7GAzdE8hgwE3DRkfoZDNyQH18LuMhFO5E0Dym5uioiSq+B\n/5abWYfS3ROsm0l/KMm/b6pjLN2epO1J8312johP6x1PdxYRz0bEMhHRJyL6kD7gbxARE+scWnd1\nI/ANAEmrAvMC79Q1ou7tLWDL/Hhr4OU6xtJt5F7bPwH/iYjzCpv8t9zMOhR1l04CSX8DtiJ96zsJ\nGEb60DIS6A2MA/aIiIYm+luNNfJ6/AKYD3g37/ZIRBxclwC7mYZej4j4U2H7WKB/RPhDfRtr5N/G\nlcCfgfWAacDREXFPvWLsThp5PV4CfkMauvkZ8JOIGFOvGLsLSQOAB4BnSb24kIYyP4r/lptZB9Jt\nEiwzMzMzM7O21t2HCJqZmZmZmdWMEywzMzMzM7MacYJlZmZmZmZWI06wzMzMzMzMasQJlpmZmZmZ\nWY04wTKzNvP/7d1PiFVlGMfx7w/CRO0PlEgwRdGgQbSI8g8DuYqkXVBEq4KKVkG5iVmli1nWxq0K\nokhoBUIouGhRhFlM9sdxMLVoUZBCtinSkHla3IOcuTjOzPXQ2O37gQv3vLz3eZ/3Li489zmcN8ld\nSb5pXr8m+aV1vaxv7tEkt80T7+ckd84xfqB1/UKSXR3tYSLJm13EkiRJw++WpU5A0vCqqt/ond1E\nku3AH1X1TntOc3hoqmrLDS63Mcm6qvr+BuN0prW3mXknS5KkoWAHS9K/Lslokukk+4FTwD3t7lSS\nj5J8leRUklcXGPZdeoeO9q81qwOV5HSSkSaHqST7kpxJsjfJliTHkpxN8ngrzKNJjjfjL7dijSf5\nMsl3Sd6ea2+L/oIkSdJ/lh0sSUvlIeDFqpoE6DV7rnqpqi4mWQFMJvmwqn6fJ957wOtJHlhEDuuA\n54HTwAngUlWNJXkWGAeea+Y9AowBtwMnkhwGHgPuAzYCAY4kGQMu9O9NkiT9f9jBkrRUfrhOAbI1\nybfA58AI8OAC4l2h18UaX0QO56pqurmFbxr4uBk/Cdzfmneoqi5V1QXgU2A98BTwNPA1veJsFFjb\nzL/e3iRJ0hCzgyVpqfx5rcEkTwKbgU1V9VeSz4DlC4y5B3gLONMau8LsP5PasS633s+0rmeY/ftY\nfesUva7VRFXt7st/lDn2JkmShp8dLEk3mzuAi01x9TC9btGCVNXfwA7gjdbwT/Ru5yPJBuDeAXJ6\nJsmtSVYDTwCTwFHglSQrm9gjSe4eILYkSRoiFliSbjaHgRVJpoEJ4ItFfn4n0H4E/PvAmiRTwGvA\njwPkNAV8AhwDtlXV+ao6AnwAHE9yEjgIrBogtiRJGiKp6r/zRZIkSZI0CDtYkiRJktQRCyxJkiRJ\n6ogFliRJkiR1xAJLkiRJkjpigSVJkiRJHbHAkiRJkqSOWGBJkiRJUkf+AUEBBDn4ezDTAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_default-learning' file from the default Q-Learning simulation\n", + "vs.plot_trials('sim_default-learning.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "Using the visualization above that was produced from your default Q-Learning simulation, provide an analysis and make observations about the driving agent like in **Question 3**. Note that the simulation should have also produced the Q-table in a text file which can help you make observations about the agent's learning. Some additional things you could consider: \n", + "- *Are there any observations that are similar between the basic driving agent and the default Q-Learning agent?*\n", + "- *Approximately how many training trials did the driving agent require before testing? Does that number make sense given the epsilon-tolerance?*\n", + "- *Is the decaying function you implemented for $\\epsilon$ (the exploration factor) accurately represented in the parameters panel?*\n", + "- *As the number of training trials increased, did the number of bad actions decrease? Did the average reward increase?*\n", + "- *How does the safety and reliability rating compare to the initial driving agent?*" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAABbCAYAAABpofqOAAAgAElEQVR4Ae2dTcgV1xnHx/ZdiEgQCS5cSAhBQgoi4V2U4EJCFvISgqRBJJRQXtpSsugiBOnCpZQQJIQupGQhRUIIoRQJRbqQ4EJCF1KkBClFpLgQKiVIcZGFYPlN5rk999xzZs7Mnc87/wuXmTkfz8f/eeac55w5cybL9BMCQkAICIEoAru7u0+jmcoQAkJACAgBISAEkhC4du3a0w8//FB9ahJaKiQEhIAQCCBw/PhxNaQBXJQkBISAEBACQqAJAocOHXp669YtDVCagKc6QkAIzBsBZneef/55NaDzdgNpLwSEgBAQAi0icPny5acMUFokKVJCQAgIgXkgsH//fs3uzMPU0lIICAEhIAR6RODkyZNPT58+rQFKj5iLlRAQAhNHgIaT/8TVkPhCQAgIASEgBEaHwIMHD+hfNQE4OstIICEgBEaJAC/s0WgWjecoZZRQQkAICAEhIASmjAATgFo6PWULSnYhIAR6Q4DGUk9NeoNbjISAEBACQmCGCNjTk2JCcIYISGUhIASEQAICxQ4ietScgJWKCAEhIASEgBBYBwF2xOS/Dg3VFQJCQAhsNAI8MdEuIhttYiknBISAEBACI0GAnbv07slIjCExhIAQGB8C9oj5/fff1yzO+MwjiYSAEBACQmADEdja2tLOXRtoV6kkBIRACwgUgxK9CN8CliIxLQSYvWRbT639npbdJK0Q2AQEWLHAAGUTdJEOQkAICIFWEeBFeC3pahVSEcuyjICfb+aMfU9//J8Pj3ZhtKlg0IXuoikEhEA5Ara0y50c+UF5FeUKASEgBOaBwL1797JXXnllHspKy94Q2NnZ2XPmzJne+DVl9MwzzzStWllvKhhUKqICQkAItI7A7u7uHoh+8sknC9oanCyg0IkQEAJzRcBmjN944425QiC9hYAQEAJCQAgMgsChQ4ey69evL3hrcLKAQidCQAjMFYGvv/46V91mcOaKg/TuBwF7x4P3nFhvbR/83N3dzZdWcXS/tUN5loaRTh3OkZRlECxFZMkY6fxZnmX0KBPjRV14UAe6Dx48qFSeQTxrw+FhheFvPGPyW1k72jIv09HVz8rE5LZ8HYWAENgcBFi18Pjx48xtuzZHO2kiBISAEGiAAAGWBXwNqquKEChFgKDd3jnhWzruu00E6rbPP0F+8a2djPLUM8Jc26DAnvSRRxmXng04yIvxIgDw/R3aLl3j6x8ZzJi8xt/KlMnvYmD1bHDCtatvTG7jo6MQEAKbhUDR9jxlUgLNtjZLPWkjBISAEKiPwMOHD7Pjx49nt2/frl9ZNYRADQQuXLiQ7d+/PyPIp9pXX32VPffcc7nv3bx5M/voo4/yPJY4PHr0aInysWPHMt6NOnfuXL5G2zJfeumlDB/md+DAgezbb7/Nz2O84MEyCmYq7Zf6zsnFixf38PTEZjihZb8q+a1c1TEmt+7PKuSULwSmicCrr76aC04bwk+Dk2naUVILASHQEgLMXO/s7GQvv/yyBictYSoycQQOHjyYMRDwBxgE+0ePHs2++OKLjBfIedLAQMT9UbfOL8aLgVHqYCTE78SJE9n58+cz6DNYoUyK/CFalsZAzPSLyW1ldRQCQmCzENje3qYdeXrjxo1cMb1zsln2lTZCQAjUROCbb77Ja7z44os1a6q4EKiPwLvvvpvhc/bkAQoMFj799NNs3759+cCENBuY2BOW+pyyLMbrvffey+7evbtEMuWdE6tw8eLF7MqVK4snNKTXld8GIkbzzp07dhqVe1FAJ0JACGwcAjxRtifAG6ecFBICQkAI1EGgWNevD9DVAU1lkxHg/QnexeC9EJ7SUZEj71vge/wZqPDnXQ6uGZCwBps6nFOed0S4dt8LIZ008lirbS+WV/FyZYA+PKnj1qtSEFnt/RjKlskfwsDKG3/omR6ufC5GVTIpXwgIgekiQPvD05PpaiDJhYAQEAItIVC8lLsUaLVEWmSEgBAQAkJACAiBBASKjTbyiRot60oATEWEgBDYXATu37+fK1esed1cRaWZEBACQkAICIGRIsDGIPzY+EKDk5EaSWIJASHQDwJa49oPzuIiBISAEBACQiCGgL2Hxjt5GpzEUFK6EBACs0Dgu+++y7a2tHHhLIwtJYWAEBACQmCUCNjghAlDDU5GaSIJJQSEQF8IPHnypC9W4iMERocAL9WfOnVKL6GOzjISSAjMEwG+06TByTxtL62FgBBwENi7d69zpVMhMB8EfvGLX2R/+ctf8q/Jz0draSoEhMDYEODDsPbT4MSQ0FEICIHZIcB2pijN9yX0EwJzQgDfZ4vjf//739nZs2ez7e3txVfr54SDdBUCQmAcCDz77LO5IDw50U8ICAEhMFsEisFJ/n2H2YIgxWeDAN8b4VsotmXn1tbWYgtt21Kbbw3wbRGWe9ngfTYASVEhIAQGQ4C2ie+cFG3RYHKIsRAQAkJgUASKj8jlM8h1BeHjccw8E+AVH47S8fsPaAmHCeBQDFCW3J7gQP6cfwROPjwBH3bbXT7gefr06cWHTpccWxeTQIAJEWwaapsmoYCEFAJCQAi0gYANTo4cOUKjmPRTAKfgzQ2KpnROAMesZBEEBP2dpyUaeMvHp+TXvqyaeQ/e2qNPtMHJj370o+T+ePRKSUAhIASEQF0EbHDCE5CUuszM0RES5GnpSwpiKiMEhIAQ6B4B2vIPP/zQZt3zJ4BF+949c3FoBYG6/XErTEVECAgBITA2BKwxTHmMzGCEgQmzymPTQ/IIASEgBITA9wjQrvPuFJNIem9qOl5Rpz+ejlaSVAgIASFQE4HUxtDKlS2HqclaxYWAEBACQqBDBJh0Spl46lAEka6BgPWz2ExbCdcATkWFgBCYJwJ8sfby5cvZzs7OnnkiIK2FgBAQAtNC4Pbt23tee+21aQktaXMEtoSDEBACQkAIlCOgQUk5PsoVAkJACIwRgYsXL2pCaYyGqZBpck9OWPddPPqpUG0c2axPn/NSkCnZa9NtJVuMo02QFEJACGwuAlNqZ+taYdP7yLp49FV+aj7Vhp9En5ywXeaXX36ZHTx4MMefLzY+evQo++yzz7LDhw8PMhJlJwaE2d7eHoR/E0dk1H79+vX8payhcEuVu22bT81eU7JVqk2tnGxhSLR7pBH+05/+lN27dy/bv39//pVt43D//v3s2LFj2aVLlwZrM00WHYWAEFhFYO593ioi5Smb3EeWa14vt02/mlrfDVKd+Ak7G7CtZrFl5pJFANz9ouxSZscXPC2Z6otNY5e9C5uPXeeYu05V7pg+pE9Vpz7khgc7cK3Tttje7LSPvh3Yb187xvio6FoIDIuA+rzm+PfRLjeXbtiabfvVlLFuInu0PyaDjtRGaiEz09myRVsor8s0gocpL49C/lDw0iVmKbS7svmU7TVWW6XYM1RGtgih8n1atDGMV1nJ4ZF78RGwlbzintf2wyvIKEEIDIOA+rz1cd+0PnJ9RL6fBGw7fp5y3w2mdf0k2B8z4gPY0BMT13DW2RZE3KxOz4cYELWpELhhqDZprkurS5tP2V7r2Cr1Y37r2q5O/bnaIgUjawzX+SItNo9hzLIvBi5lEz4pcnZRZoy+2oWeoikEDAH1eYbEesd1+sj1OI+zdld+FetXxonCqlR1/STYHxM4s2RrlfxyilXus7Olg+eJzbIkk7xqpENXg5qubL4h9mpkq7EFfHO2RUoLYe3ZOvcY7Wbx9GSFJRM+Y/MJE3Kscpl8OgqBthFQn9cqoo36yFYlGAmxLvxqQ/puLJTsJ25/nL8Qz3KpnZ2dbHd3N9/Lv8ze7PfPz45lZdvK44XTX/3qV9mNGzeiJBm5nj9/fvECPwV5KSdaoWYGGH3yySdL9Nkk4OrVq8k8Dh06lH3wwQcEMsl10OvEiRM1pa0u3qXNh7bXULaqRj29BHZ/++23swMHDmQvvPBCdvfu3Vq+ZpxkC0OimyON6fb2dvbWW28ttZ123x45coR2K/l+70bK+VGlY//4449zxV9//fWVe4fJtXPnzskuLboG7e7PfvazjH7xt7/9bU6ZOIFr+u6bN29mDx48yD7//PM87/r16xltnG8HbGPxxa1bt7J33nmH2GRhK2x75cqVPAbZ2trK/vrXv+ab5LDq4+rVq/nGFGfOnOF+XNSB4Sb3eW2ZsU7f2SSeaUvOMdHpyq+G7rvtnhki7l3Yt3gqke8otUiMnNAwMBLCIJEirSfzaKuKn/v4i8AAGYtR2Nry0Fi69G10V2CRTJ/Rdd062IZHY8lMEgt2afMh7TWkrYC+jdlo7A2GhR/nFqXjdZ8epvrRnG2RcivYvdz0yYm1hxz58wQFzKHn2i9Flr7LtOGrfcucwg8boJvZw18HXtgshZTKNECAJ4m0VW7/y/3An/bZSBZ9+tJ9Qr5/L0Iv1AdSjnvN6FUtIdnUPs/0X/dYt+8Ef91LWdaVXw3Zd+NLdf0h5n91/GSlP+bm5x8j7qYXDUdSWbfeOufIVtbRA6Lf0boN4zq8DawAvaXGN4UHAWbVOz0uHW78Am83uZXzLm0+lL2GtJUZxfdDS0892sDaH4xbRw4d9Ax11iEec7ZFCA8/zXym6X1GPd/m2JCAOLbUy5dhqGtf7qHkaJMv9vTbWOzh2nfsdmkTjyFo4fsu3shQYL7Uj4faOvo82ixXbmi5EzOWR33Kmj19u1s5O1LWp215/rGQf0kOv4x7Dd1CHzd5cd5ljLJgssaJtYPF0aUUjXPqxjMu0U0678qvhvSpJv4Qs2kdPzG+bvux0sHGGAGY31BwU/rBlFs/JZCiowzcGEamtJGwwI2RJg1ViE6VjMbIPwKSOztDPvqAg1+2igey+dj5NLiGjvFFlyZ/aIRoO2ld2ryUd1f2MswcHTu3lcuL83UDvpAO0C3smfuCdcbGu8LvZmcLwyrlXivaipVgyrCtOtIOhIKiwkZB7CvslftsFd+K9rKqep6/rq8mMem5EEFgiCXp4M4x1D+E6iitGQKhgTn3Q6jPZIVDKD6gj6AOgxX6X9rFkDTWl3CvF/d9qJilTbrPC+FkitmxabsQ6ndicY7xwj4pbayVH9uxTlxV4Vtd+VXQ5w1H8/1NiXvRK9QfJzmZdbi+oXDQssd7ZQ5MZ0HnTsNV0mlUNjzQKQYRGHSlwauS0QweOC5mZiwPeUMdexWP1JvZcLYZKBqOuv8yexR6dGnzoezVm62wNf7m//FjP43rkL+YP3nHFR2c/DwPX3fS8sfKJfbeeFu4WHBO+8S9Exo0+GVDjaFfJnZtdUNBQ9HmLdnJ6FS1E0VdK750TGwvl+p06KtLfMZ8gU+AXcl9MmbxJyVbbHBCekCRpb4aO9Feuvcu/lvWfpIfoe2zm3Sf13a74IGz0u/E4hyrlxrPWPkxHWm768RURUwWU6Ervxqq70bPZH/AL8va1Tp+Yn0qtsnBpjFYXETgLwYkQSFoGAqiwdplN5VVKBuclOXB1+dNQ+Y3ZlUymhzu0YDygw/wCjlrFQ9wCNVzedo5vOHj87b8dY9d2nwIew1pK9cWvt+5eVXnMR2oZ/df6F4q87s526IKb/IN86r2L0SraJCDHQg2AftQvTJ7UT5kY59OmV39srHrdXw1RnPM6eDaVXs6Zr37lg3/9vs5rkkPyLJkE3zS93+uzVeL+3VBhmto05/59RaFipOp93lV+qFmk3bB2kD/3gAv344upshTlu+W3eTzrvyqzJbYzL8XuEfsPjG8q/oaK+ce6/pDFY86fmK86Y9/gFDvv/9+dvv27YV8OClO546G2DGK3bzcHbAox+j6u+++yy5dupS0HGHBpMbJ3r17o7uDnTx5MpffJffmm29m7JLDbx0ZDx8+nNM4duzYgjxBIjuJ2A5aYJTK49GjR9mLL764oFV2sr29vQeb/OY3v7HAtKx47bwubT6EvYa0VW3wIxVCOvhFz507t0hK8TvZYgFX6yfsNrR///7s8OHDS7sCwejx48dLO/uRlmKv1oUUwQUCd+7cWdr1aZGhk9EgcO/evYydQ93f/fv3F5fEGe7vwoUL3Fd7rl27lu8I5j9VdstuWp/n6rbOeajfCcU5Po868Yxfd5Ouu/KrIfpu7JLqD6n92dp+wkiFEQ4jFxuUcM7NTnrspie9ataR+lXOWDZKhL7J5NMhr5hVXmQxenTTYjJShlFfjDYEyccIRrx43JzTJ71Y95fvbFCFA7SsvNGrOpoDVJVrko+8Xdi8C3tNwVbYwJ+5qGsX6vv+yH3IZIHri8UMQ6XfzdkWKdgXOFa2YSFatFmxto088wV812waa4tc+jGabpmy9tItV3Zu8pWV2aS8FFw3Sd+hdKGd8mfUrf0KyLTUv+LX7pIu7k/sZr7q0qVtc/tT7rGq+2JKfZ6PVYr/hvRvs+90ZWoSz7j1N+m8C7/qou8G8zb9IaU/q+Mn0f7YGNE4cKNzBCDXiSwosjRuGOt4TXHSqGd/hLNzjqGbLHRTGQ/oh+qQjzw0WJThzzngW12OvoyWRzn48ljO0vyjNY5Gm3xwMYysfIyH5XMEB/c69bxpvRT6bdjc59OFvaZiK+tEfUxSr9HTfMl82jpgBqrkuR20lY3Rn7MtYpi46dYY1vlCPJgXbUbefnDttznYypZFlNnL7O22j+u2l65+Zefr+moZ7bHlcQ/R1o1Nrk2SB4y5F1ivjg/TR6Ifx6IPy+MAynF/4POUtfuEsuThl9a/ms0oQxr3q0uPc8PQ6NGnF3JY1tJxCn1em+0CtNqKc1wgu4xLXD5TOW/br7rou8GyTX/gPkPOMhvV8ZPk/piCxQ2f80YpGhVXEBjToJjSbp6dlzUUVqZscALfOgoaTTtWyVgFrtEpO1bxwHHdhrSMlp/nY+7nt3ndhs27tNfYbdV3wFfld3O2Rcp9YY2h286l1Gtapspe0F23vUyVrW9fTZWri3KhSasu+Ijm9BAYe59niK7bLrTRd5os68QzRmPTj+v6VZd9N9i34Q9V/VldP0nujxl0wNycKNKZ5fkE0DZIsfJ2XPemgg401gjSS2UEQJN1jWMpD7ArgF+DRfdV27R5F/Yau636CnIdTyj1O8p1de+M3RYORtHT5MYwSqF2RpK9qqiWTeZU1bX8AXzVWPd+TOmDehdKDEeBwNj7PAMpxYfL2oWW2utcnKnEM4bdEMc2/Kqrvhs8WvKH0v6srp+4/XH+QnzMcMePH89f7MThefzKy+f+r3gh/el//vMfXmRbeTHUL+9fE8Ayq/XkyZPs5z//eXQ099lnn2W8/NbkVyYjYDz77LNNyC7VKeOBk/KCPi+5L1Ua4UVbNu/CXlOw1e3bt3u1cZnfmXvN1Ram/5iOKfYqkze1vSyjYXl9+6rxHeLIS5n6CYEQAmPu80LyhtKq2oW2+k54TymeCWHVV1obftVF343+bflDWX/WuZ8Us2ulazirjN10OZNP125AP32d65ZGj6UiTG2Gsg2bA0jb9pKtSt2sNFO2CMNDI83Ey5ju0bbay7DG80tleUQfbcf8kN0cjcfa57kIr9MutOn/Y2orXXzGeN6GX7Xdd4NTm/4Qw72Jn4yxP47pt5IOqIUCK3ljTGBdH53jGGXrQ6Yp2WvTbSVbrHr8pBvDVXWUIgQmiwArKOxfdznImJSeUjtbF7dN7yPr4tFX+an5VFM/UX/cl0eJjxAQAqNGoE5jyGNqZrHGqBCdwRjlakumIbDfdEzbsk0bdFhbz8AEWsVk3kb7cxuYiYYQ2DQE6vTHm6b77PUZopOfMuh9BSiyS7WXdGGLOo0hZcteOK3WoJsSzDI3eYTejTTdUO0b+zlg2o2l6lO1e9BWGNAWFlt11yemGkKgJwTUZ9cDOqX/trZg0/uzesjNpHTfnfyUYe0zQJFdyj2lK1vUbQyL2d3Kvd3LtWknl2AOXBgwWWDXDuVxUukD+7lhOgZLs2TF3RUUO6/zfsUYdJIMm4+A+ux0G6f233X743QJVHISCPTRyU8CiIiQQwUossuqQbq2RZPGsNjSc/HxOGbQ+hocIC9Ly+xFyzE+yVm1YnspXWA/d0zbs04zSo4/5wQYqJCWMtPajKNqCYF2EFCfXY5j3f67SX9cLoFyJ4dAF5385EBwBB5LgCK7fL/NoROwdLqUqmljiHy2xTq7fcX+BFrMAjOAcdwteEowZk9CYvTc9Lk++o5hn4q14fzDH/5wxW5zxTTokD0m0u5hF/4EfFzzRKVHEcRKCDRCQH32MmzrxFJN++NlCXQ1eQRinbwbALV9nhpAAK4FESlBYJtyDh2g9G2XVJsMYY+ubUFjuG/fvkbLSJgVqoNJ0YmttBt17I2toJMy2FlhtEEJLvahQUYI6xjOwnSDHEOqCIEBEIi1LW3GJT6tJv22DaR8Wl1d1+2/1+mPBzC7WHaJgNvJ9z0ICAUQ6DrUjT6moG8ou4Rs0rc9+gwWbaaGJxZd3GfQZwa4aKRXngIVa+vzNffMGPe5RKwLfYekWYa1cB7SMuItBDYfgaH6bAYWqf229UNdDUagu07/XUy6WX+5+U4jDceDQFkAgZQKIvq3VZlNNt0edCg0qH3sDgTO8KHxhq/WK3fn6y7WZ8+ezW3MU67uOIqyEBACQqA/BDax37bBSWiw1R+y4jR7BNwAQsHaONzBtckcgro+BydmYWavjh49mgfMc1+eZZh0dRTOXSG7TBc/5gnrcqqu5oKABv7DWnpT+m0NTob1I3H3EFCw5gEygsuZBXVLW5n2Af9PfvITBXM9AE1nd+rUKQXNHWNNcDS3neM6hnQy5FO3iZ2MQhMWdOr9djHB0egd0AmbTaKPGQEFa+OyzsyCOtt5a1xGkDRCYEIIaJnihIzVgqg8dbbdBYsn0C1QFYl1EJh6v63ByTrWV10hIAQ2DQENTjbNotJnEASKteKDfANoEIVnxpQnZASQ9mK1npbNzAE6VrdYHmjvY3bMTeSFgBAQAiNGwNmlbsRSSjQhMA0ECF6deyp/t6rL3YH6pN1k+9Y+5euTVzFAmYZTSspJIKCnr5Mwk4QUAkKgDwSKnbom+14CwSC7qhUvE/YBWc5jKL69KShGjRFgmU+dbwD1GVS3xSu0o9AmD8zAbZ1tYhs7kyrOBgHbHVQfYJ2NyftXVIFL/5iLYzMEbInClNdNs/Z7iAbd58v1WHfuqTt4o6NkJm+dGeK6PJt5sGr1hQDLmmLfLbLAigAev8H2U25T+sJUfMoRmFMsZctC1W6W+4RySxDAeewRd6yYH7jEyjVJT+HfhG7fdYbWY5OCyaa2s6CCwKMpjaHrEUAPMTjx+dKRjhFHgsRiyUCSqcDSZsabDrbq8kwSTIVGgwB+bt8tmsO266MBfsMESYkB5hJL2UQhJv7BhtlZ6vSEwM7Ozp4zZ86UcnvmmWdK89fJTOG/Dv2+6g6tx/nz57OzZ8/2pW4yHwK7P/7xj8nl1yn4wgsv5NX//ve/r0NGdbMs293d3bO9vb1nTGDgSzs7O7VE+sc//pEdOHAgr3Px4sXa+jThWUtAFR4cAfz84cOHew4fPpx9/vnn2bVr17ImvjK4IhJgUARSYoC5xFJ3797Ntra2cntocDKoW4q5EBgWgU0JJtdB8aWXXsqr37lzp5QMTwVsyQaz6ZxbBXv0Tjoz7gSnxZOMfFkQ18x+UYcZV/68NGxLhyjLzL7N1kO3jB+zbZSFH/UePHhgonR6LONLHjraEwp05hzd0JM8E86lQ16BFQFeXsf04po6HMHO8HGxsXxmsaFFXf7wQ4ZPP/00++9//5vduHGDwVPluznw+tvf/pYxWDVdTA+OJkOZLjGeMf1cfZDd9S3jo+M4Efj444+zU6dOZQSZ45RQUgmBaSDw+PHj7ODBg9MQVlIOi0CsM0UqOmqCAZOQsm7ARLBgQYeV8Y/kE6S5gQv1LLAoCwpc/vAuC17gGwogfXmGuHb1KJMzhkUssAGTWMAGH/LBGbp2XVbelY06PIIlkCoexZK98ovJRsGYPvgEcplsyEn5ruxHAMvLnq4vryhSJFAGubg037blHVYHeQ0Tyhu+hoWVs3ToQYN0t7xd+/yQ1w9eKWPyGP22jyl80clwNPuaHKav0Slwz3Ekz8eRevijYUMZd2DgY0U+5Y2ftUVc+2WtTOwILdODMjEbxXQJ8azSD36+rWPyKV0ICIFpIUC/QLtCn8nR+jW08Nsb8qz9Io92rap9J3/KsVTRzi+18dOysKTtDYGqztS9oayTdoVLDZj8ABe6RicWFJDv8rfrWPDi6+IGkMZrqKOrR5mcZVjEAhtoxwI2w8wNwqrK0/hZUAldt4GN4ReTrUofZDGaZbhYmXWOfqMeo4UuLl6UM/3oHPjjz1YGuW0ggT4MWsAMDK2z4Zw6dh/4Pmy0TCbKgZ1dc4Su0XPT2zxP4YuOJi+6gyt+Qpr5TYgOclLX1Z00ro2en086aaZjWb5f1urEjtAyvpSJ2SimC3V8nr58lHH1o7zLMyab0oWAEJgWAn7/hfS0i6Rz7rY3tDXWZ5iWtPcp7TvtkU2MGV2XhvELtU1u2+O3VW55X5e2Yikm75gkRAdk1rIus5yOKwhcunQpsyUvlsn1hQsX7HJx/Oijj7jZFtecpK6TZJ3uN998kwcA3JjuY72bN2/m63lx2H/961/ZvXv3lnikXiDz/v3781labvKvvvoqe+6551Kr91auTM4qLI4dO5bLee7cuaXlBa4NWUf/7bffluoTK49tnjx5kh0+fDinD57YLeUXkq1KH5duGS5uuabnR44cye7fv59U3fVPKnCNr4M7f/z56tWrOUasS9+3b1/+1Idyv/71r/HBjPuFsmB69OjR7NVXX83Xq7/88ssrMvj8KJB6b60QWzOhLt8nT57s+eCDD3Kux48fL+Ve5Zd+5UePHvlJSddFJ5hUlkIpNqoiBs8U/UK2rqKtfCEgBMaNgGKpavsQD/Czd2C/f/Okup5KzBCBlM7UhaVu4Gd3JRkAAAgJSURBVOLWPXHiRMbL2XTO9lKhBQVffPFFvp6X0XydwQnBi3X2HC2AdPmO7TwmZwoWpmtXOjEoYUbnxo0bT4uXQbOf/vSnBNmVLH3ZUvQxogR2NFxd2u/kyZMMIDJmheq+0P3uu+9mP/7xj/Mg1gZuDKbNj19//fV8UPLPf/4zH9iB4fPPP5+rx7sJDF5svbr5t1vfcLDje++9l/3+97+3y/zYxzsndfkyoGRWzXRj9u/hw4d558M6fXzA8GLCgAEadnB/vAf0hz/8Ibt69Wp+Lxs+lCHPcHTrhM7xP2vPqt4t8uuX2YiONKQLA0+fJ+1bmX4+X10LASGwGQhY25OqzRxjKd7z42f9r56cpHrLDMvRmd66dWtJczr2X/7yl0tpXBC4sNOC+6sTMF28eDG7cuXKIoCATllQ4PKxcz8AdoMQAkh7OmPl7fGhXY/hGJOzLhZd6fLaa69lzAKBHYNGCy7r8qvSxw/sYrjU5Rsr/9Zbb+VZPFGL/Qi0r1+/nv35z39evG9CWRrTL7/8Mnv77bfzx/MMorkf7EeQzo5ghhUYGj8Gd+z2Qx0wZVcp89sYP+iAPUuCqENdeHEPUcf4tn2s4svAjpfOv/7661wObMiOa8jI/80338xFcvGyPAYmpP/ud79bLIdiKQFPXWxwA6ZMOJjO4AYODF7RG7vQXnHN32xFHjbgyStYwavsZ7Soz6CpzEYxXaDv8yzTD54mb8ryjTL5Q3nQd9MZKIKjm9bmuc+vTdpGy5aauMtYLK/to69PV/jBh8kLd4lNmS51MfD1KKM9hry6eIxB5pAMiqVCqCynEZ+lTjYt19TVLBGgk7cGkCPXAEEgQgPtvndAQ+IGTOS5+VUA0slA18oxs0qaBW502tCjUw3xt/IWvFCXht5kNvmgx5/yxmuoY0iPkJymWwgLa8DBxg1sSCfNMAAHzs0mPu+q8mAEprxHYHSqOtGYbGX6wMfNhwZpHPGvruyHXug3lC+IrxDoAgHuJe4ZlzZtgdvWunnrnof4rUvTr087R1tAepeDLOiH9OkSP2xV1a4iV10MQnr4uI7xOhWPMcruyoTPKJZyEfn/edHHL8Uv/8/VmRAQAkKgBAFrXK0InZ01tpY25SPBDgOUKesg2YWAiwD3qE3wuOldnffFr6+AtS99XHuk6pZaDtpD6OHqtM55HT3X4aO6wyGAjXkZHj81KbSsy5DQUQgIgVIEeO/jlVdeWZRhmc8bb7yxtBRvkTnBE96d4YV/e1IzQRUk8gwQsEkCnhgwoKZD508Hz2w6EwY81QYKlk/633jBv8kvAoLc33maSj1o8mdAw5MV99qF1nhxtCcYMX6kh2R26YXOkRP6yMDR7kuO/ndoQvXdtBgt5OIpsA3g4GO6U79v/FyZy859DLhGD7OF6YU+ZXqU1XFpYAPKmkx17YlfMvFjfgkdfI5r13eR13QwXu6xSk/K1pXNpa/zYRBgOTBLumzp8zBSiKsQEAKTRYDOg78FDAQ0k1UmILjbWQeylSQEBkWAAQNBnQlBsGaBNQGgpVtQynXo6Sb57r3LtUuXANENJDl36XNty8J8+v51TGaTNXT061AG+YynL3+IhqVV0UJeNyC2ANjq+/qQ7vNvEz+ftsnhH/1yXLt6+HL716ZHVR3zA7O/j6f5oC+ff02fga9aOvLaeZk/1dGzqWwmh479I1A8LVlqX5BCu3X1bwtxFAKTReDy5ctL2xRPVpGI4GfOnMk3ZohkK1kIDIoAL9mzhTeBHoLYlui2YxwBPE83Kcfuc3V+bCHObmr82HKcmUzbHY3dgyyPfJ6ish02cvAif9m2zjGZb9++HRXPtl51eca2sY8SKTJSaKErs7f82ICBWX5m4Hd3d5Pbu67wq9Kv63y2gccP2IEOXk3sST12LwTXIhjN/cdkr+NPVid0bCpbiJbS+kGAzQK2trYW/mVcNTgxJHQUAkJg9ggUg698Fsc649mDIgBGgwA7oIW21D5//jzfIOKbMk/ZOS72TZm6AXdIcYJLvs2TssU7/JpsA15369WQnJbWJq2+8TMdmhzdrfT9+jE9QnX8XTBjPujzCF3rkwEhVOadxi6t77zzzspkit45mbdfSHshIAQ8BE6fPp1vy+sl61IIDI5AbEttZoxZXsNMPx8A5emK/QgmLUC3baotr8mxj23A62y9WqVDCi17QgQtcNy7dy9Lt/InBX3jV6VPLN8fRPi2DulRVSfEK+aDobJ+mj4Z4CMy72tbKkj7pZ8QEAJCQAhUIGDLOiqKKVsI9I4AwTPvCbAWn7+9UMw5y6zsb4KRb++lUJd1+azxZwkY1/w5530rZtS55tzySePa3gtw6cGLAIOynMPTzYcWaRx9mU2+2BG+9p4ER66NlslrwU2MhqXHaJEPbfAx3JATHayur0+X+Pm0TQb/6NrMMDA50QNfQCezKfUtnzyzi6WF6lDG/MB4mBxN7Gl1kQs97dpkMP91/SmEh5UPyQzNdWQzmXTsBwG33eiHo7gIASEgBCaMAB0fDeeEVZDoQkAIJCBgA6CEoioiBIRASwjYILQlciIjBISAEJgHAswUM0iZh7bSUgjMEwENTuZpd2k9LAKsTrAneMNKIu5CQAgIgQkhwPIBljVwnJDYElUICIFEBNylSwqUEkFTMSGwJgJMCPBfk4yqCwEhIATmiQBr1VkjPU/tpbUQEAJCQAgIgfYQsPeI2qMoSkJACAiBGSKgJyczNLpUFgJCQAgIgcEQ+B/bXCpev77hDAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "From the q table it seems that the agent learned for example that continuing to drive on a red light produces negative rewards. \n", + "Compared to the basic agent, the default Q learning agent has improved total bad actions (down to 10% after 20 trials vs 40% in the base case). The reliability is also improving over time now, so are the rewards.\n", + "\n", + "Exploration factor declines as expected across trials to zero so the decaying function is implemented correctly. I had to apply one fix as epsilon 0 was internally represented as -0.0000 which cause issue with probabilitistic action choice.\n", + "\n", + "The number of bad actions descreased with increasing number of trials, the average reward increased.\n", + "\n", + "Safety is unchanged at F, but Reliability has improved to A.\n", + "\n", + "The lack of learning enough shows up in sim_default-learning.txt, as meaning states are still 0, so no accumulated rewards as the agent has not visited them yet. With slower decay and more training could probably get better value out of this default agent.\n", + "\n", + "Here the bellman equation iterative update algo:\n", + "![image.png](attachment:image.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "## Improve the Q-Learning Driving Agent\n", + "The third step to creating an optimized Q-Learning agent is to perform the optimization! Now that the Q-Learning algorithm is implemented and the driving agent is successfully learning, it's necessary to tune settings and adjust learning paramaters so the driving agent learns both **safety** and **efficiency**. Typically this step will require a lot of trial and error, as some settings will invariably make the learning worse. One thing to keep in mind is the act of learning itself and the time that this takes: In theory, we could allow the agent to learn for an incredibly long amount of time; however, another goal of Q-Learning is to *transition from experimenting with unlearned behavior to acting on learned behavior*. For example, always allowing the agent to perform a random action during training (if $\\epsilon = 1$ and never decays) will certainly make it *learn*, but never let it *act*. When improving on your Q-Learning implementation, consider the impliciations it creates and whether it is logistically sensible to make a particular adjustment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Improved Q-Learning Simulation Results\n", + "To obtain results from the initial Q-Learning implementation, you will need to adjust the following flags and setup:\n", + "- `'enforce_deadline'` - Set this to `True` to force the driving agent to capture whether it reaches the destination in time.\n", + "- `'update_delay'` - Set this to a small value (such as `0.01`) to reduce the time between steps in each trial.\n", + "- `'log_metrics'` - Set this to `True` to log the simluation results as a `.csv` file and the Q-table as a `.txt` file in `/logs/`.\n", + "- `'learning'` - Set this to `'True'` to tell the driving agent to use your Q-Learning implementation.\n", + "- `'optimized'` - Set this to `'True'` to tell the driving agent you are performing an optimized version of the Q-Learning implementation.\n", + "\n", + "Additional flags that can be adjusted as part of optimizing the Q-Learning agent:\n", + "- `'n_test'` - Set this to some positive number (previously 10) to perform that many testing trials.\n", + "- `'alpha'` - Set this to a real number between 0 - 1 to adjust the learning rate of the Q-Learning algorithm.\n", + "- `'epsilon'` - Set this to a real number between 0 - 1 to adjust the starting exploration factor of the Q-Learning algorithm.\n", + "- `'tolerance'` - set this to some small value larger than 0 (default was 0.05) to set the epsilon threshold for testing.\n", + "\n", + "Furthermore, use a decaying function of your choice for $\\epsilon$ (the exploration factor). Note that whichever function you use, it **must decay to **`'tolerance'`** at a reasonable rate**. The Q-Learning agent will not begin testing until this occurs. Some example decaying functions (for $t$, the number of trials):\n", + "\n", + "$$ \\epsilon = a^t, \\textrm{for } 0 < a < 1 \\hspace{50px}\\epsilon = \\frac{1}{t^2}\\hspace{50px}\\epsilon = e^{-at}, \\textrm{for } 0 < a < 1 \\hspace{50px} \\epsilon = \\cos(at), \\textrm{for } 0 < a < 1$$\n", + "You may also use a decaying function for $\\alpha$ (the learning rate) if you so choose, however this is typically less common. If you do so, be sure that it adheres to the inequality $0 \\leq \\alpha \\leq 1$.\n", + "\n", + "If you have difficulty getting your implementation to work, try setting the `'verbose'` flag to `True` to help debug. Flags that have been set here should be returned to their default setting when debugging. It is important that you understand what each flag does and how it affects the simulation! \n", + "\n", + "Once you have successfully completed the improved Q-Learning simulation, run the code cell below to visualize the results. Note that log files are overwritten when identical simulations are run, so be careful with what log file is being loaded!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FcXawH9vOiXU0FvoPQm9KL1ILyJClCYigp8N2w2C\ngNiwIFiver2KIlIuTQUsIEQ6CJjQO0G69N6SzPfH7jnZ008CIQHm9zx5cnZndnZ2z56deedtopRC\no9FoNBqNRqPRaDQ3TkBWd0Cj0Wg0Go1Go9Fo7hS0gKXRaDQajUaj0Wg0NwktYGk0Go1Go9FoNBrN\nTUILWBqNRqPRaDQajUZzk9AClkaj0Wg0Go1Go9HcJLSApdFoNBqNRqPRaDQ3CS1g3cWIyB4RaeRH\nvTARUSJSMhP60E5Edlu2j4rIvebnV0Xk45t9zhtFRIaIyKIbOH6xiPS6mX3S+I+I1BCRjSJyQUQG\n34LzrRaRPrfgPKHmNRXP7HNpNNkNPZ5psgoRmSYiI7O6HzeKHkNuLlrAykJE5EkRWSciV0Vkkpvy\nViKyXUQuicgSESnjoZ3+5o/igohcFpFUy/YZT+dXSpVXSq26CdexWkSumOc7LiIzRKTQjbarlBqt\nlHryRttxxjLAXjT7fFBE3hYRyYRzjRORL637lFItlVLTb/J5nK/pgogcvZnnuIMYDsxXSuVWSn3h\nXOj0PJ81f3tVM7NDptCuRKRrOo5xENyUUlfNazqcOb3UaDyjxzPvZNZ4ZkNEAkXkkIj8lVnnuNWY\nAuol87s4IiJfikiOrO5XdkSPIdkPLWBlLYeB14GvnAtEJAKYDbwCFADWAW4n5Uqpb8wfRW6gM/C3\nbVsplc9N20E38RpsDDLPXxkoDIzLhHPcbCqbfW4NPAJkupbhFlDZ8t0XdVchk77/24kywBYfdWzP\nc0FgLfB1JvepP3AK6JfJ59FoMgs9nmUtrYHcQA0RqZkZJ8iisaOt+V3UBRoDL2RBH4CsHzt9nF+P\nIdkMLWBlIUqp2UqpucBJN8X3A1uUUv9TSl0BxgDRIlIlI+cyV4JeEJEtwDnLPpv5wj0iskZEzojI\nYRGZkJGXiVLqFPAjEGM5dw4R+cRcgTooIu+KSLAffbZrf0Skiogki8gjZhvHReRFS93cIvK92f/N\nIjJcLKYaPvq8HVjt1OcCIvKteY8OiMhoEXH7exGRf5t9Oicia0Wkobm/G/AcYFuRXWvuXy0ifUQk\np7m/gqWtEuaqbX5zu7sY5mxnRGSZiFTz55qc+tdORHaLyCsicgz4t6+2RaS+iCSKyHkR+U5EZotp\nAiFOJpLiZHJjft8Tzft2VEQ+EpFQp768bH6Hh0TkYUtbuUTkQ/PYsyLyh4gEicjvIvKY03XtEJH2\nHq65h4hsNa9tkYhUNPevBBoBX5r3vrS3e6eUSsaYCFrvjdffioh0FJFdZvn7Pr4eRKQS0AB4HOgk\nIgWcynua39N5s91WIjIeqGe5jvFuvocC5m/iuIjsE5GXRAwtrfkd/m7e6zNimFe1tpzzMRFJMs+5\nV0R6+roOzd2NHs989jmzx7P+wExgofnZ1lZ/EVnu1JfhIjLDcj2+3tf2sUNEConIz2afT4nIDyJS\nzNJ2RRFZab47fhGRz8VixSEiTSzfzQYRucfXvQNQSh0CFuH6XXjq+xoR6Wh+bmW+G1uZ2x1FZLXl\nu4g3r+W4iHwjIuGWc7h71hzGRyDEU7/Nd+1i8z6cE2Ncamop9zjXsBz7iYicBuI8nCPbjSEaLWBl\nZ6oDibYNpdRFYLe5P6P0AtpgrMo7cx140ixrgrFyOCi9JxDDlKIbRl9tvApEATWBOkBz4KX0tg0E\nYqxiVQA6AG+ISDmz7HWgEIZ2oiPQNx19ro4x6bb2eQpwFigH1Me4Jk9trsK4toLAD8D/RCTYnGy8\nD9hWZOtbD1JKXcIYvGMtu3sDvyqlToshqH2KoV0rCEwG5mZkogBEAsFAKeBpb22LYYLxA/A5xmrz\nz0CXdJzrfaAkxj2pDFTCcWAoAwhQHOOZ+0xEcptlHwJVMF78BYCRgAK+waJhFJEGQB7gN+eTi7F6\nOwl4AmP1+Q/gBxEJUko1Bv7EXKFWSv3t7ULMwfohDAHchsffijnRmAE8j/E8Hsd4Zr3RH1iulJoJ\n/I3leTAH4i+AZ4C8QCvggFLqeafreN5Nu59hfOdlMX73Q81rsdEUQ5NQEPgYsE3+8gPvAq2UUuHA\nvcBmH9eg0XhDj2eu3LTxTETymP2cYv49LCKBZvEcoLY4LiY9BHxvfvb1vo7EMnZgzBs/A0pjvFsA\nJpj9EIz33xKMez8Ox/d2JDAXGEHa+32u+c7xitn/tjh+F976/gfGdwPQDNiL8c6zbf9haWcsUNTS\nzgin09uftQyOj00xnn/bPZlrfmfge67RFEgAIoDxHtrPVmOIxkQppf+y+A/jZTrJad9/gXFO+1YA\nA3y01RpIcrP/KPCQm333emgnDphqfg7DmOSW9FB3NXARY3VHYfxoi1vKDwEtLdtdge3m53bAbnd9\nwngRfWl+rmK2HWGpuxHoZn4+DDSzlD1pbdepv7brOWv2W2FMyIPN8jLm/mDLMY8AP5ufhwCLPLQt\nwCUMUz2Ha3C6X33Mz52ArZay9cCD5uevgRFOx+4HGvi4pjPm3zuWe+x8PR7bxhjE9jmVbQBGurt+\n6/MBBAHXgBKW8hbANktfzgIBlvJzGKuSwRgTo8puri+XWa+0uf0x8L6H7+AN4FvLdiCGoNPQ+f77\neJ7PmNdyCmjipb71tzIYiHc69z+ezocxWfkbGGJuvwqssZR/A7zlpZ99LNvW7yEUSAHKWcqfAX6x\nfIebLWUFzGPzAfnNa+8KhHm6bv2n/9z9ocezWzqemeWDzH4FYLwrLwLtLeUzgZfMzzWB0xhaF3/e\n1w5jh5tzNwSOmJ8rAZeBUKdz2657NPAfp+P/AHp5aPsocN78U8AvQLhZ5qvvHYG15ud48x7Fm9tr\ngA4eztkbWOXpWcPH+OimvSFu6m8EeuLfXGOnj99IthtDvPX3bvrTGqzsywWMFXoreYHzIlJa0px+\nL6SjzQOeCkSkmqn2PyYi54BRGCsm/vK4UioPUBtjJai42a6Y2/stdfcDJdLRto0UpdQJy/YlILep\nTi+K4/V5vFYL1YFwDJvle4Cc5v4yGC+a46bq+wzwAVDEXSNimFvsEJGzGANXGP7fu1+BIiISLSKV\ngYrAT5Z+vGzrg9mPQni/d9WVUvnMP+uq6lGl1HXLtre2iwMHndrdj38UxxCUtljanYuhSbJxXCmV\natm+hOE7UAxj0Nzj3KgyVrxnY6zMBmOsKE720of9lmNTMCYf6XnmHleGv0cY8ADwk5jmTD5+K8Wx\nPHuWc3uiBcaz+z9zewpQX9JMp0rh5n74QVHSBl4bzr87axCUS+b/3Eqp08DDGKvVR0XkR7GYsWo0\nGUCPZ67czPGsPzBNKZVqvit/wGImiKGtsmk1HgJmKqWu4d/72mHsEJFwEflKRP427+1vOL7/jiul\nrnroexmgj9O4U9c8zhPtlaFJbwvUwJjI287lre/LMcxQIzC0Ut8Alc3taLMcESkuIv8Tw1z9HIYW\nxvlZsV5DRsZHd/WL499cw9d3n+3GkAyc645EC1jZly0YLwHA8E0BymPYsVudftPzMCsvZf/BWIUp\nbw4sYzG0MelCKfUX8A7wkbmtMH6EZSzVSuN90pnec6YCxzBWXWyU8vdYpdRkjBWl4ebuAxgTgvwW\nYSWPUqq28/Ei0gZ4CuiOsfpfAGMFz3bvvN1zzIFrJsbg9xAwRyl12dKPUZY+5FNK5VRKzfbn2pxP\n5bTtre0jON5LML4zGxdJE0bBeBHbOAIkYzxHtnbzKqXcmfE4Yz/WQ/k3GBP/dsAx81lzx2Esz5tp\nKlOCDDxz5vOxGON+2ezLvf1WjmB59szJkrfJV3+M9/AWMaI+LsX4rmyTowN4vh/enq2jQCqO35vf\nvzul1HylVCuMScDfmH57Gk0G0eOZ/+dM13gmIuUxzHgfFcOP5yiGZURXEclrVlsAlBUjGmpv0swD\n/XlfO9/nOLNv9cx72xbH918h07TaXd8PYGizrONOLqXUBC+3xOiEUgsx/GHf9qfvSqmzGKbNzwHr\nzbF2nbm9WSl1zmznXYwxrYZ5PYNwfVas98DX+OgOd/UP499cw+scgmw6hmi0gJWlmP4uYRhmRIFi\nOBja/GvmYEQD6mHWGQ0kKiMgQ2YQDpxVSl0wfZIe83WAF74EKojIfeb2VGC0iBQUkcIY9s3f3Vh3\nXZgBjBCRvKat9tB0Hv8W8H8iUlAptQ9Ddf6OuVoXIIbj7r1ujgvHMGs7jmFyMRZjRcrGMYyBzdvg\n/j3GoBdL2sAHht30UyJSVwxyi0gXEcnptpX04a3tpUCYGE6sQSISi+FzYCMBqCUi1c36o2wF5iD2\nFfCBiESYbZcyBVGvmMd+ax5bRIyww/dKmi9BPMb9fsOs54npQHcRaWpqu+IwHO/X+XVnnBDDhr0i\naZEHvf1WfgTqiUgn89wvkrbi6txubgzn/wEYJpK2vxcwVnkDMH5Lj5vXEmDey0pmE8cw7PZdMFeQ\n5wBvihE4pDyGeYfP350YgVY6mt/tVYwJQKqPwzR3OXo8u6mkZzzrh+HfU4W0d0hljHfegwDKCCwy\nB8PHNRjT/yiD7+twDG3FGVMbZM3/tBPYAYwUkWDz3dnOUv4N0FOMIAuBYgSpaCUibiPeumE8huBY\n1c++/4FhXmnzt4p32rZdzwXgnHmvn/PRB1/joztKWer3wRA6f0vnXMOF7DqGaAy0gJW1jMTQdsRh\nOIJeNvehlDoO9MCYTJ7GcH7snYl9GQYMEsNE4xM8hND1B1MD8zFGSF4wJuBbMSaoCRi29+/cUG9d\nGYlxn/ZjOJ3OwJgc+oVSah1pq1tgCDv5gO0YPjjTcW8i+BPGC3cPhhPtCQxhy8Y0DG3PKTEi2Llj\nKcakJC9GlCRbn1ZgmGl9juETsxNDy+VrRcsn3to2v7/uGEEiTmPYsv9kOXYTxve3DOP+xDs1/yzG\n6tw6DH+rXzAcuf3haYx7+RfGBOE1zNVEc/V4MoZp5xQv17YReNS8tuMYTr1dlRER0F9skZUuYAxQ\nzyullphlHn8rSqkjGL/Tiea5i+BZsHsA49maqpQ6avvDEH7zYPh5LMOwdf8U417+Ttpq6ASgn4ic\nFhF3v6fHzf/7gcXmdXi8bxYCMd5JRzG+g3oYkxKNxht6PLt5+DWemQt3/YBPrO8Q8z30Ba5mgq2B\n6U4m2ul9X7+HYUJ3EsPMboGtwHxH9zLPcxp4GcN07apZvhfjOXgVY6zcjzFp92suqoz8TNNIE+p8\n9f0PDAFqqYdtML7Pe83j5wCzfPTB6/jogaVALYz3/QjgflPDBv7PNdyRXccQDSDG70GjubMQkWFA\nO6XUfT4ra3wiItMwzCpez+J+DMYIAqLDwWo0mruC23k8E5EfgNVKqbeyui9ZgYgMAR7QY9bdh9Zg\nae4ITLV3Q1MFXh1jVWxOVvdLc/MQw29jKMbqnEaj0dyR3M7jmYg0EJFIs++dMUwEf8jqfmk0t5pM\nFbDESFK3Q4xEdW4TpJn16omRdO8Bp/2BIvKXiMyz7JsuIgnmX5KIJDgdY4tIlGXZvjVZQiiGPfZ5\nDDOBaeicDHcMItIFI9z5boygIBqNRnOncjuPZyUxTAfPYwSQGKiU2pq1XdJobj2ZZiJoOqbvxEhO\ndhAjl0Ss8w/NrLcQuAJ8pYxEabay5zBCeOZRSnVyc47xGI6sYy37ZmL4qKxRSr130y9Mo9FoNBqN\nRqPRaDyQmRqs+hiJ8fYqI9/CNIyEfM48heFU+I91p4iUxHAedLtqYzp3PogR0ce2rxuwj7RoXxqN\nRqPRaDQajUZzywjyXSXDlMAxQdpBoIG1goiUwIjG0gIjUpWVicBLGBFf3NEEIxfOLrOt3MC/MDRm\nHs0DTSf5wQC5cuWqU6VKFU9VNRqNRpNNWL9+/QmlVKGs7sfNICIiQkVGRmZ1NzQajUbjg4yOPZkp\nYPnDROBfSqlUsaQJEpFOwD9KqfUi0tzDsbFYtFfAGGCCmffC4wmVUl9gOsnXrVtXrVuXodQ4Go1G\no7mFiMj+rO7DzSIyMhI99mg0Gk32J6NjT2YKWIdwzOBdEtcM0HWBaaZAFAF0EJFkDE1XFxHpgJG0\nNY+IfKeU6gNGQkOM5Gp1LG01AB4wY/nnA1JF5IpS6uObf2kajUaj0Wg0Go1G40pmClh/AhVFpCyG\nYNUbI5GpHaVUWdtnEZkEzFNKzQXmAsPN/c2BF2zClUlrYLtS6qClrSaWtsYAF7RwpdFoNBqNRqPR\naG4lmRbkQimVDDwJ/ApsA2YopbaIyBAz8dqN0BtH80CNRqPRaG45Zs6iJSKyVUS2iMgzWd0njUaj\n0WQtmeqDpZRaACxw2veZh7oDPOyPB+L9qWspH+N3JzUazW3B9evXOXjwIFeuXMnqrmgykbCwMEqW\nLElwcHBWd8VfkoHnlVIbRCQcWC8iC3XuH41Gcztx9OwV1u8/TceoYn4fc+bSNXb/c4G6kQUysWe3\nJ1kd5CJL2bp1K+3bt2fOnDmEhYVldXc0Go0XDh48SHh4OJGRkXgLZKO5fVFKcfLkSQ4ePEjZsmV9\nH5ANUEodAY6Yn8+LyDaMKLpawNJosilKKYdx5MSFq3wWv4eX2lUhJChzjLuUUny3ej/3VS9K4Tze\n55wpqYpL15IJD/O+0PTR77toUK4g9cs6CjjXklO5npJKcopi74kL1CyRl6DAtOv65/wV8oQFExYc\naN/X8K3fAYgp3ZIS+XK4Pd/nf+yhScVCVCueB4DBk9ezdt8pEke3JW8O176mpCp2/3OBykXDaTdx\nKduPnidpXEd7Hycu2sljTcqRP1eI1+sE+DHxMCt3n2BcjyiXstfnbeXL5fvYNKYtby7YzhPNy1Oq\nQE6HOt+sTGL0j1t4sG5JOkYVp2Lh3BT3cJ03g0xLNHw7ICIK4PPPP2fw4MFZ3R2NRuOFbdu2UaVK\nFS1c3eEopdi+fTtVq1Z12C8i65VSdbOoW34hIpHAUqCGUuqcU5k9RUjp0qXr7N9/xwRF1NwFnLxw\nlbDgQHKFZnxdXinFP+evUsSHcOGN6X/+TZE8YTSvXNhh/8WryVy6lkKh8FCfbSzefoyBk9bxYWwt\nahTPQ7lCuRk+eyNT1x7go9hadI4u7nLMV8v3cfLiVV5oWxnA6zg0/c+/OXDqMsPaVEIpZRdsDpy6\nRJN3ltjrrR3RisLhYew9foGS+XMSN3sjdcsUoGaJvHT+eDkA+97qwNYj56hcJNxBQAKYv/EI//f9\nBgCSxnVk48EzrNpzkseblaf7pyv46+8zVCkazvaj5wGYNrghDcsV5HpKKhVH/GxvJ/6F5pQukJNy\nLxsGZ1/0rUNggPDoN+v4T7+6DP1uPUteaM7ufy7wyKQ/AWhaqRBtqxVh5NzN9nZe7lCFwU3L27dT\nUhVN3l7M4bNXWPRcU1q/vxSAnCGBXLqWQlCAkJyaJoN8NaAuLasUsW/XfX0RJy5cZemLLVAomr0b\nD8BDDUrz/Zq/Adj9RnuCAgOIjJsPQN4cwZy9fN2hbPLq/Zy+eI33F+50+a6Gt69CUGAAD9UvzZsL\ntvHdmv0kjm7LxIW7aFu9CAVyhVC5aJ4MjT1awALef/99hg0bltXd0Wg0Xti2bZvLpFtzZ+Luu87u\nApaZi/EP4A2l1GxvdXWKEM3thFKKuq8vombJvEx6pD7/nLtCnhyO2g9/+GDRLiYs2kn/RmV4tWsN\nt3Ven7eVeRuPsPrlVi5le49foOX4P4zPb3YgIMAQcrp9soKEA2cAWPRcMyoUzu21H8Nnb2Lq2r/t\n20teaM7nf+xh2p8HKJInlEpFwpn8qEPaVvsE3sqvzzbl8vUUzl2+zsRFO5nxeCOHyb6NpHEd2X/y\nIt0/Xcmpi9ccyj7rU5sh321w2FehcG52/3MBgKiSedl48CyD7i3LyE7VAPgz6RQhgQF0/WSFwzls\n5539RGPu/3SlS3971ytFsbw5+HZVEict/bi/VgnW7T/N36cuebxnVkHNG8+0qsiwNpW4npJKtVG/\ncD3FkDEeblCaKWv+9nF0xljyQnNavBd/Q200Ll+QlXtOui3b/3anDI09d7WJoI3Lly9ndRc0Go1G\nc5siIsHALGCKL+FKo7ld+GPncUbO3cScJ+7h5MVrxO84DkD9N3+ncfmCjOpcjXYTl7HhlTYU8GLi\ntWDTEZ6fkUiPOiUA+GbVfrYcPsfUwQ1RClbtPUn/r9Y6HPPP+SsUzBVKoClEXbqWbBeuACqMWECq\ngjbVitiFK4DW7//BlEENuKdChH3f+SvXyREcSFBgAF8t3+cgXAG0eC+ehxqUBuDYuascO3eV79f8\nTYsqhejy8QqOn7/q9rrum7jUYXvJjuO0qVbEpV7igTMOwpAVZ+EKsAtXABsPngXgy+X7qFEiLxev\nJTNizmaXY7p/mta+O+EKYNqfB9zun/2XcwalNJpWKsTSncf9Eq4APvh9F9+v/dvlnmWWcAWkS7ia\n9Eg9Bnz9p8t+T8LVjZBpUQRvB8qUKcN3331H165ds7orGo0mG3Py5EliYmKIiYmhaNGilChRwr59\n7do1l/qnTp3is8/cxvNxIDk5mXz58rndHxgYaD9HnTp1WL16dbr6PHLkSCZOnOixvEaNGvTp08dj\nuY29e/cybdo0+/aaNWu0xt+CGLZC/wW2KaXez+r+aDQA+09epO7rCzngRSvhzPWUVFq8F8+8jYcB\n6P/VWg6cukyvz1fZ61xLTgWMCWnnjwwztqemugoJNs5fuc4TUzZw+XoKQppZ3br9p6k44mcqjfyZ\n52ckuBxX/43fGfD1WlbuPsH1lFQXAcxmWbZw6zGXYzcfOuuwXXPMb3T4cBmRcfMZO8/VNbJUgRx2\nkzMbL8/ZRKO3FnsUrtzx2LfrWLrzuMt+T8JVenl2eoJb4Qrgr7/PuN0P8Nb9Nf0+R+PyBR22N+w/\n7bD9VMsKPtvwds/e7uF/X5xpXrmQ/XPiqLa84+SLZTMPrVI0nO2vtXM5vlG5gjSvXJigAM/mnTfT\n/+6uFrAiIiJ4+OGHqV69elZ3RaPRZGMKFixIQkICCQkJDBkyhGHDhtm3Q0JcV279FbC8ER4ebj/H\n2LFjGTFixA21Z2XTpk0EBQWxZMkSnxp8ZwGrQYMGTJgw4ab15Q7gHqAv0FJEEsy/DlndKc2dRUqq\n4stle7l8LYVTF6/R+aPl7D950aHOf5buJTJuPleTU5i1/iAnLlyjuwdthjtOX7rGvhMX+dfMjQ77\n9xxPO8/8TYftnwc3LQfAit0nuXA12W2bo3/YYv88N8G9puTEBddFKoBlu07w0JdreOzbdfyZdNpt\nHXfE7zjOy3M2sff4Ba5cTwFg57ELHut3inL1ucoow2dvAiA8zLuBWNNKhbyW30xyhgSyanhLn/Xy\n5gi2a3JiShkLf9dTUu3lVYqG83zbyozsWJWpjzVk5pBGPttc9lIL++eoknnpVa80SeM6Mvf/7uH3\n55uxbWw7e9ALd7zerQYl8uVg29h2THqkPoufb8bEXjHkzRnMg/VKEV0qbYHSJjgFBwYQFhxI0riO\n9nPVLZOfz/vVAWB4B8+uBtvGtuOJ5uXtbTUqV9BjXV/c1QLWyZMnmTJlCgcOuFebajQajS/eeecd\natSoQY0aNfjoo48AiIuLY8eOHcTExBAXF8e5c+do2bIltWvXJioqinnz5qXrHOfOnSN//vz2z57a\nGjt2LJUqVeLee+9l165dHtubOnUq/fr1o2XLlvz000/2/Tt37qRly5ZER0dTu3ZtkpKSiIuLY8mS\nJcTExPDhhx+yaNEiunXrBsCJEyfo0qULUVFRNG7cmM2bjdXVkSNH8uijj9KsWTPKlSvHJ598AsD5\n8+dp37490dHR1KhRg5kzZ6brPmRHlFLLlVKilIpSSsWYfwt8H6nRGCQeOMOn8bu91lm07Rivz9/G\n279s56fEw2w6dJb/LNvrUOeNBdsA6PfftQQGGNO7ExdctQl/7DzOZ3/scdl/4YohJAUHBZCS6t4/\nP8GDpqS1xXzPyubDadqkohkMbmEzTQTY8bqrZsKZVXtP8v2av2k5/g+3gQ2sBAYI/453vRdWWlc1\nAmpYNSieOHTGWLCqXCTca706pfO73V+laNpxm1+9j8/61GHJC81d6uU2g41408bYCAwQiuVNi5Y3\n6ZF6/Pvh2i71zl6+btcKPdakHCGBAQ5BTWzmmoOalKNR+YLUjSzA7jfaUz+yAFWL5SHe0s+JvWJI\nGteRUgVy8lybSgA8ck+kvTymVD7KF8pNjhDDj2/fWx1chMCiecLo07AMK+Ja2uuVK5SbbrVK2OtY\nr9/mV/Z0q4oO7cSUysfMoY3JY0ZkfPTesiSN68i2se3o16gMxfKmPZeBAcJL7arYg2+s2ptx08G7\nWsBKSkqiT58+lC5dmkKFCrldyT1+/DiLFy8mJSUlC3qo0Wg8MWbMGEQEEWHMmDEu5c8//7y9fPz4\n8S7lgwcPtpd/8cUXGerDmjVrmDJlCn/++SerVq3i008/ZdOmTYwbN47KlSuTkJDAuHHjyJEjB3Pn\nzmXDhg0sWrTILxO78+fPExMTQ5UqVRg6dKhdg+WprbVr1zJr1iwSExOZP38+a9eu9dj2jBkz6NWr\nF7GxsUydmpazPTY2lmHDhpGYmMjKlSspXLgw48aNo0WLFiQkJPD00087tPPKK6/QoEEDNm7cyJgx\nYxgwYIC9bOfOnSxcuJDVq1czatQoUlJSWLBgAZGRkSQmJrJ582batGmTntut0WRbEg+cYdkuV/Mw\nf+j6yQre+WWH1zo24efMpWt2bVHOEPdakjX7TpFiCWAWN2sjqeaEcc/xC/T/ai3jft5uL4+Mm0+H\nD5bR979rzXNcZ/vRczgTEhTA0XNpeQg/WZImmBw9d4Wth8/R+K3fWbn7BEt2/MM3K5McfLNOX7ru\n9Rr9ITQokD9ebO6yf2RH91qJ71Z7j9bpSZC0MrR5eXa90Z5Jj9QnaVxHv4Q8dwFAOtYsxoq4ljxQ\npyQP1itUFaLTAAAgAElEQVRp31/QvEevdqnO82aUQjCEqHY1ilI2IhedLLmp7qlQkNplDAEt2an/\n/2pXxeW8zkJYg7IFaV+zGJMeqcemMW159N60lBgP1ivFvrc60DGqGNdSUh2Ccmw57PpMBAUGMGlg\nPWYNbURkRC77/nY1ito/P92qIlvH3kf3WiVdjrch4igETn60vttAJ87YhL4hzcrTq24pACIL5vR2\niJ0cIYGM7VrDHhnSSu96pfxqwxt3tYBl5cSJEwQEON6Oy5cvU61aNVq1asXIkSOzqGcajSa7snz5\ncnr06EGOHDkIDw+nW7duLFu2zKWeUoq4uDiioqJo27YtBw4c4MSJE17btpkIbt++nXnz5tGvXz+v\nbS1dutTel7x589K5c2e37a5evZoSJUpQokQJ2rRpw9q1azl79iynT5/mxIkT9uPCwsLImdP7QLV8\n+XL69u0LQNu2bTl8+DAXLxrmRJ06dSIkJITChQtToEABjh8/TlRUFL/88gtxcXGsWLGCvHnzer/B\nGs1tQtdPVtD3v2tJtphUpZfIuPkM/taILnn64jUHfx6bqdbchMO8+6shjOUM8RzFr7QlB9C0Pw+w\nYPMRjp27QiuLpskaRXrrkXM0KJeWS+mJKYZflXVinzdHMOevuDcFBOjw4TIOn73CQ1+u4ZGv/2T0\nj1tYvfeUXZvjTptmwxZkwh/KFMzFm91rEls/7Zgetd1P3i9dS//i+GtdHd1G8uUMIdgSIj00yHf0\nxLBg1+n1+avJlMiXg/d6RlMsbw577qr7a5dg05i29G8cSagHH6BapsYrR3AgUwY1tD8bVuEIoGYJ\n13eqTdhb9FxTPugdY9cGNa9cmPCwYPYeN8wnbRrG9KZCyRkSZBf2177cinUjW7sImJ4WAzxRt4x/\niYvX7jsFGNq317rVYMfr7ajoQ3voTFCg6/W+0d3wFRtlRm7MCFrAsuD8UP3vf/+zT4LGjRuXFV3S\naDR3AN9++y1nz55lw4YNJCQkEBERwZUrV3wfaHLvvfdy+PBhTp06dcNtTZ06lc2bNxMZGUnFihU5\nd+4cs2ff/MB3oaFp+WgCAwNJTk6matWqrFu3jurVqxMXF8ebb75508+r0aSXK9dT2HL4rO+KfnDN\nImAlp6TafYCc+SHhEH8mnXLZ/5sZtGHQt+vo99Vanp76Fy3Hxzv4wtiwCVg7j513CexgC0ZhI1W5\nRpfbdOgsl66lCUwRudN+s/tPGsExrBqokMAAzl1x1UJ1qFnUZZ+VXKGB5Ai2mXjlYtFzTe1lw9tX\n4ftBDcjlRVi0YQ2Q8FCD0rzRLS3Uu7tJsi/WjnDUkLx1f00WPdeMgrkdc2kV9CMJrjO2XExWnANg\n2Hp88PRle0Jhm0mesxYmxLy+K8mOz9NTLSs4+DDlyxnM/4Y0ctBkFTVN4CoUDqdrTAmc+b8WFSiW\nN4xfhzV1KbPxcIPSfmnuCucJc3iO0sv3gxowvme0XQj0F5s/oj/CrzOX3QjhgQFC0riODHQSYNOD\nFrCA3r17c+zYMYKDHbNQR0dH2z/XrJnxyCcajebmM2bMGJRSKKXcmgiOHz/eXv7888+7lH/xxRf2\n8owmGm/SpAlz5szh8uXLXLhwgR9++IEmTZoQHh7O+fNpYW3Pnj1L4cKFCQoKYuHChRw65Dksrju2\nbNlCQEAA+fPn99hW06ZNmTNnDleuXOHcuXNu/bxSU1OZOXMmW7duJSkpiaSkJGbPns3UqVPJnz8/\nhQoVsvtkXblyhUuXLrlci/P1T5kyBYBFixZRokQJcuXK5bYuwKFDh8idOzd9+/bl+eefZ8MGz9HH\nNJpbRZ8v19Dxw+V+mYv5wpb3B+Dxyeup8sovLnWUUjwzLYGen61yKbNh0yr8mHiYvccvug0EEWAu\nCredsJROHy2nVmnD4f+BOiW56jQRv5acavcPstHl4xU0HrfYvv3FUkefLnAUsIIDxa0Gq2Au7xPq\nwAAhbw5jfhUaFEjZiLQ8VR2jitG4QoTbib8zveo5arkCLKZvwYHup7PO5nFWf6bC4Y4+YWHBAVQo\nnJsQp7by5Uy/gHXGjTlk+UKO70abRs+q3aldOh/v9Yzml2cdhR2bAsCmdFw3sjXL/9XCpW+hQQHU\niyzA0OZpCX+rFM3jta91Iwuwangr+3fkjte61siQ8JJeGleIoEcdz6aEzrzUzjDvK+xHgmlP2Hy3\nXmhbKcNtuEPnwQL++usvNm7cSNOmTR0igkVGRjJr1ixCQkLchlLWaDR3N/Xr1yc2NpZ69eoBMHTo\nUPtiTJ06dahZsyYdO3bkueeeo3PnztSsWZP69etTsWJFb80CaT5YNr799ltEhL59+7ptq379+nTv\n3p2oqCiKFClC/fr1XdpcsmQJZcuWpUiRtFwtLVq0oE+fPhw7dowpU6bw+OOPM2LECEJCQpg1axa1\natUiJSWF6OhoHn30UapVSzOZGDt2LAMHDiQqKorcuXPz9ddfe72mxMRE4uLiCAgIICQk5IYjLWo0\nN4N1Zijq5NRUAgNubBJp1TT9vv0fh7Lfthzl1MVrdK+dJky4CzMOrv5KH/zuGrTmmpNWy+Zn9ffJ\nS6xz0o59v8a9L5I7QcBKQQcBK8CtmV/OUO/3rEnFQszbeJij5ww/rkCL0GMzJfOUR6t43jAOn/Ws\noQ8LDqBnnVIOgtTHD9Xiye//Alx9lHJ4SY5suxd5vAganvi8bx2up6Taz/vxQ7VZsuMf8uYItkcW\n/LxvHYdjzpnCqtUMU0R4wI2AYdU0Ai5aord71OSHhMMOSZYL5ApxazKYEQL8CKaRFQxtVp78OUPo\nEp3xSJCP3luWQrlD3d73G+GuFrDKly/Pnj172LFjB23atGHDhg0opUhNTaVEiRIUK1aM+++/P6u7\nqdFoshHO2rKXXnqJl156yaXejBkzHLbXrFnjtr0zZ1yjcgUFBXkMrFO4cGGPbY0aNYpRo0a5LQNo\n1aoVrVo5msUEBQVx7JgxyStSpAjx8fEuxznva926NWCkuvjxxx9d6r/++usO29u3Gw71JUuWpEMH\nHcFckzGUUrz9yw561yvl4FB/s0jNoPuU1ZfJnSlfaqoiIEAYPHk9ADktkdkeM32ufFG3TH67IGjj\n6nXHc9n8jda6MT3MqHKugEU7FRggdqHAirPGx5nQoAB7mPRQp7o2gccayc3G94MaMDfhEDPWHbSH\nDXdm+2vtAcfvoHnlwkzoFc2w6Yku9W2+UTZtkkiaVqis+UxZhZT0YD0uPCyIIc3Kk5qq7AJWfidt\n0znTjNAfk7oLXnzfwNDuOWv41rzcisB0+lNZWTuiFf9dvo9B95bLcBuZjYg4+OJlhLDgQB68CUEt\nnLmrTQSdtVLvvfcederUoV69enz33XdZ1CuNRqPRaDTO7D95ic/+2MMgP4WS9HLejX+Rlb3HLxAZ\nN5+VexwD1Dj6XblKMntPXHTIE7XtiGs0Nl8EutEgfPD7Li5a2r3oIRfVjWDL5/RMq4psP3rerRnl\nzmPuTYhtWJO3Bgc5XodNwHIXWCEsJJC21Qz/rvEPRruUW7Eenzs0iJaV07T0Vu1Y7tAgvh/UgNlD\n7wGwB5V48b7KNK9c2F7fZnrm+XzG/6rFDPM7pXAQZmzfl1XzY/OzsmET7CLCfZsg2o615R7zh+DA\ngBvSPBUOD2N4+6r2BL6a9HFXC1jr16932P7+++/tn+fNm8eVK1c4dOgQR44c4dQp1xUhjUaj0Wg0\ntwbbpNWdU/rN4L8r9nktt2mQZq4/6LDf2h+bsGUVOlq//wddP15u39551LNAEiCu5mBghF53R/XR\nv9o/X/RyXxIOpGnKy3rR/lUq4qi9CQo0nP2HtfHsn/LrFlczR2sUvdCgQLtP0OZDhnC5580O7Hmz\ng1cBIEdwIK2rFWHPmx0oX8i3Vmn64IZ2M7y8OYMJNzWF1lDjQYEBNK4QQd6caT5hANWKOfopPdG8\nApEFc3q8VzaNWlpCYeVwLQFuBMYQpwiBz7apSHhokF8arD4Ny/Bm95puw7Brsid3tYDljYsXL7Ji\nxQpKlixJ8eLF6dmzZ1Z3SaPRaDSauxZbpDh3Zng3A+fIe1Yen7zOburlHDjh+Pk0vyRb39pOWOpQ\nZ8/xi/bPK/Z4TtGQquD3bf94LPeGP4Ln+J7RbhPX2niofmmW/6uFfdsaPKKMJbLdR7G1AMNHy50Q\nYg3THRwo9iiBjcoVBAxh2Vkr17h8QYIDXf2z3Gnv3NGgXEHuq54W0dAfq0h7tD83p/jh/+7ll2eb\nuD3usz51+DC2FvlNQU0px+fCnz4PbVaev0a18Rigw0qOkEAealDa73uhyXq0gOWBgQMH2v0SABYv\nXuyltkaj0WiyOyISKCLFRaS07S+r+6TxH5tJlXPggpvFlsPnWLz9GL0+X2UPGGHj1y3H7OZx1gmx\nUoo2FmHKnYmgM9WLew88kMtH0AhPOAe9cEfTSoW8lgc5TfatE/pBlpDVNsGkTpn8zH/6Xh53Ml3L\nZYmMN2/jEXt0RW99/P6xhux6I81H01tACn+wmjNWKpKbJ1tU8Fi3rpm410renMEeI+cVyRNGl+ji\nDGhs3JM6ZfI7aK2s5oILhzVl3lP3urQhIi73W3PncFcHufDGfffdx+rVq7O6GxqNRqO5CYjIU8Bo\n4Bhgm+UpICrLOqVJF6mmhHUjyXy9sXbfKRIPnOFqcipXk1PtuXje+nmbQz2r0PHPeceoetdSUh1M\n0txRyIdJWFCA90n3yI5V+X7N3+w9cdFrPXcE+8gXFRwoDsE+gi19CbUIPO1rFGXlnhOM7lydnCFB\nDO9Qlc8tYd6tIeGrF89j91Vy1v55w12y3vRw2ZKD7LdhzdzW+bJfXX7efNTFP8pfGpUvaM9Dddhy\nzdavML2JbzV3Blp09kDRokVp0aKF74oajUajuR14BqislKqulKpp/mnh6jbCNvG/EQ3Wv2ZuZMDX\nax322YIgPN4sTQuTbJEyPv/DMT+UVVPR4M3fHcp2HD1P7dcWeu3D8t2eTQTBUTBwR94cwdTIYPht\nZxOzER2qMqx1mn9VUEAAVvchawLfUIsPUYFcIXz6cB2K5HGN/mdjYq8Y7qlQkGdaV7TfT38SAm94\npQ1fDaibofxT7ugW4zmEd+tqRXwG0PAX6/3xx+xPc2ejnwAP5MqVi4IFCzrsS06++RF6NBrN7YOI\n0KdPH/t2cnIyhQoVolOnTgD8+OOPjBs37qaf95FHHuHzzz932Dd37lzatzdCFDdu3Njr8UlJSdSo\nUcNnHWugn3Xr1vH0009nsMfZkgPA2azuhCbjpGmw0idgpaYqrphCy/R1B4jfcdxtu1bByWbSZg3/\nbcNbQtYjXnI22bjgJtpftWJ5aFIxAsDeV0/kDg3yqSUr7ibsOaQFdWheuRCx9UvxWNNyPNM6LS/f\noTOXKVUgzdcqyE3OKnAf9e+Th2pTP7IAAK2rFqFbrRJMGdSQ0KBAe4hyfwTDArlCaFmliM96/uKu\nr5lBQYtmMuwGzRs1tz9awPLAnj17CA11VONfueL7xanRaO5ccuXKxebNm7l82TAFWbhwISVKpCUN\n7dKlC3FxcTd8HufFnNjYWKZNm+awb9q0acTGxgKwcuXKGz6ns4BVt25dPvzwwxtuNxuxF4gXkeEi\n8pztL6s7pfHMnuMXmLwqyb6dYgo7170krLL6Tl24msx7v+5g2IwEqrzyi8djbL46yQ7h1lMdyqws\n3XWcOq8tdBvWvbRFOPGGs6VcZERO2lQzhIpnpiV4PTYsONCnluvY+atuc0fZItlNeqQ+b93vqsB1\nFv6sPkLOUfCc6RhVjPY1jSAToU5176kQwbTBDRnStLzXNjIDd0JyZvHpw7VZ9Jx7c0TN3cVdLWDl\nz+/q1Gjjyy+/BKBXr1706NGDbt26kTOnfy9OjUZz59KhQwfmz58PwNSpU+1CDsCkSZN48sknARgw\nYABPP/00jRs3ply5csycORMwBvsXX3yRGjVqULNmTaZPnw4YyXybNGlCly5dqFatmsM5W7Vqxfbt\n2zly5AhgRDldtGgR3bp1AyB37txe27aSlJREkyZNqF27NrVr17YLZ3FxcSxbtoyYmBgmTJhAfHy8\nXTN36tQpunXrRlRUFA0bNmTjxo2AkXR54MCBNG/enHLlymV3gexvYCEQAoRb/jTZlFbj/+CVH7bY\nJ8hp/13rzlh3gClr9lPu5QX8mHgYgA8W7eTjJbv5IcHY9qQZsrW3em9aKPRZGw6RnJLq1hzxr7/P\ncPLiNWqO+c2lbP7Gw35dm7MJWc6QIL8jxIUEBfjUcqWkKl7tUt2v9qw4hxe3+kH50zubEOYu/HrD\ncgVvKC9TRsmkmChu6VCzWIYTFWvuLO7qIBenT5/2WPbzzz8zfPhwxowZQ0BAAOHh4QT4cDzVaDS3\nkEXNXfeVfhAqPQHJlyC+g2t5uQHG35UTsPwBx7LW8X6dtnfv3owdO5ZOnTqxceNGBg4cyLJly9zW\nPXLkCMuXL2f79u106dKFBx54gNmzZ5OQkEBiYiInTpygXr16NG3aFIANGzawefNmypYt69BOYGAg\nPXr0YMaMGTzzzDP89NNPNG/enDx5HHO3eGvbRuHChVm4cCFhYWHs2rWL2NhY1q1bx7hx43jvvfeY\nN28eYAh8NkaPHk2tWrWYO3cuixcvpl+/fiQkGKvs27dvZ8mSJZw/f57KlSszdOhQgoMz5jCemSil\nXgUQkdzm9oWs7dHtRfyOf/j71CX6NYq85edOSVUEBQreYlu8NHOj/fN3q/dTMFcIR885BqCYvGq/\n22NtJoKbDqVZkL79y3ZSlWJA40i/+rhqeEsavbWYJU7mh54ICQzgqiUsfHCg+B0AIjQogMpFw9ly\n2HPC4rpl8hNdKh9TBjVgxJxNJJ285Ffbzq5DRcLTTA39kVNsGsRTF6/6qHnrSLmFGiyNxoaWGLzw\n22+/UbVqVSpXrsxTTz2V1d3RaDTZgKioKJKSkpg6dSodOrgR4ix069aNgIAAqlWrZk/7sHz5cmJj\nYwkMDKRIkSI0a9aMP//8E4D69eu7CFc2rGaCVvNAK97atnH9+nUee+wxatasSc+ePdm6davPa16+\nfDl9+/YFoGXLlpw8eZJz54zJXceOHQkNDSUiIoLChQs7pLfITohIDRH5C9gCbBGR9SKS/iX+u5QB\nX//JqB+2ZMm5bVqkVMtEOTJuvksodRtr953i4S/X8FOiozbpjQXb3Nb3lFfrwKlLfgfUyBmcvvXq\nYCcTulkbDhHo5yJuSFAAT7esSK+6pXjOQwLgHnVKAoZp3kextf3ul82/bOmLLVjwdJN0a5xsyZhX\n7D6ZruMyk9ZVC2d1FzR3IXe1BssbDz/8MMOGDbNvz5o1Kwt7o9FoXPCmcQrK6b08LMJvjZU7unTp\nwgsvvEB8fDwnT3qeSFj9OP3xA8iVyzVhp43GjRtz5MgREhMTWblypYtPlr9MmDCBIkWKkJiYSGpq\nKmFhnqOA+YP1GgMDA7NzMKAvgOeUUksARKQ58B/Ae4QQTaZz+uI18uQI9mgiZ/ODcvaHSlGKAL8M\n1zxzPSXVHtDCmfX7T7P5kH9xUYKD0teP4EDhr1fasGjbMV6cuZG6ZfK7aLD6NyrD7L8OIcC5K2m/\nq9CgQCIjcvH2A1EopWhcviAPfLbK4VhrHiZbuHl/eOQeY4GndEFXl4iyBT2/n2zYBLQetUv6fc7M\nIq59Fcb9vJ2u0SV8V9ZobjJag+WBli1bcvDgQYd92XjioNFobiEDBw5k9OjR1KxZM93HNmnShOnT\np5OSksLx48dZunQp9evX93mciNCrVy/69+9P+/bt3QpG/rR99uxZihUrRkBAAJMnTyYlxfDlCA8P\n5/z58x77PGXKFMAwHYyIiHAxT7wNyGUTrgCUUvGA7xmjxgF3QR9uhLOXrlPrtYW899sO+z6lFKN/\n2GzfPmcGk3Beo7iRvqSmKq4mp7DCS8j0Xf9c4OEv1/hsq0HZAi4+Va92qc7TLSuw6432zBrayL6/\ndmkj8ESACPlzhdCzbimWvdSCbwfWdxEw/69lBTaNuc+l7aKWCIEi4jZinUOodT+0UE80L0/eHMFe\nw4tHRuRiyqAGrHm5lcc6Nh+umiWy/v0wpFl5ksZ1zBK/L41GC1geqFChgstq8pkzZ7KoNxqNJjtR\nsmTJDIcw7969O1FRUURHR9OyZUveeecdihYt6texsbGxJCYmujUP9LftJ554gm+++Ybo6Gi2b99u\nf89FRUURGBhIdHQ0EyZMcDhmzJgxrF+/nqioKOLi4vjmm28ycOVZzl4ReUVEIs2/kRiRBW8YEWkn\nIjtEZLeI3HgYyWyMJ3O69NLpo2V0+2QFGw8Z4+q/4/fYy5JTFd9Y/KVenr0JcPWlsZkMbj/q2RfJ\nE9+uSuKN+dsY8PWfPuv6YvrjjVyEmAfrluK5tpVNgcWaS8oQhqzh3EsVyElQYIBLG7a6zvfcOUy8\nu9xS246kLZb4E6X8pXZVSBzd1me9eypEeM199WzrivSsU5IH65XyfVKN5g4mU00ERaQd8AEQCHyp\nlBrnVN4VeA1IBZKBZ5VSy82yZ4DHMN5M/1FKTTT3Twcqm03kA84opWJE5GHgRUvzUUBtpZT3eKce\nOHjwIBMnTuSxxx6z70v1EhpWo9Hc+Vy44BoXoXnz5jRv3hwwIgcOGDAAMCIKujtWRHj33Xd59913\nPbbjiZiYGLemhr7ajoyMZPNmQyNQsWJFexRAgLfffhuA4OBgFi9e7NIngAIFCjB37lyX844ZM8Zh\n23aObMpA4FVgtrm9zNx3Q4hIIPAJ0AY4CPwpIj8qpXw7t92GnLp4jeL5cngs/2TJbjYePMPnfet6\nbWfzIUMo+mXzUZcyZ83U36eMAA2pTs++zT/q/JX0W5ccPH2Z7Ufca2wzgnOuJWuYcpvWCtznwLLh\nrMEKDzWmaFY/MFtSZCvuNFTWe2ULpnErotvlyxnCuz1vTuJejeZ2JtM0WJZBpz1QDYgVkWpO1X4H\nopVSMRgD3ZfmsTUwhKv6QDTQSUQqACileimlYsxjZmEOlkqpKZb9fYF9GRWuAJYuXcqgQYPs4ZLL\nlCmjowhqNBrNbYpS6rRS6mmlVG3z7xmllOdQsv5TH9itlNqrlLoGTAO63oR2syVPTNngtfzdX3fw\n6xb/A51UdDPpdxakbILHMackvku2/8P1lFRWZiCgQopSnExHpLueddLnU2Q1SxM//aGcNVG2Ni5d\nM8x4P+gdw7oRrf06vzWMe6n8OSkcHsornZynYBqNJrPITA2WfdABEBHboGNf1XMKk5uLtCigVYE1\nSqlL5rF/APcD79gqi/HGehBo6ebcsRiDXIaZMGECQ4cOZcuWrImapNFoNJobR0QmKqWeFZGfcBNp\nWinV5QZPUQI4YNk+CDTwdsCOHTtctJUPPvggTzzxBJcuXXIbndKmHT1x4gQPPPCAS/nQoUPp1asX\nBw4csEd8tPL888/TuXNnduzYweOPP+5SPnLkSFq3bk1CQgLPPvusa6cbGgYiCQfOuNW0Tpw4kZiY\nGPu2c53PP/+cypUr89NPPzF+/Hh7e/9+ezRU62WvN336dD754r9Q7xn7vn1793LiRHW7JsvGM9MS\nGDX+35wt0Yj0MnPWbM4X9T+6Xr6cnlMP9OnTh++++85hn/X6K1WqxJSX3mTtvlN89/NyCCniUCcm\nJoaJEye6RBG0t2Heq8AAoWfPB1wC69Ru0RFjHRsCUq6SGhjK4u8+oPlHhtllp06dWDviBZd+2cju\nz96bb75J48aNWblyJS+//LJLue3ZW7RoEa+//rpLucuz58TkyZMpVaoU06dP59///rdL+cyZM4mI\niGDSpEkulgkACxYsIGfOnHz66afMmDHDpdyW8sKaBsNGjhw5+PnnnwF47bXX+P333x3KCxYsaA+y\nNnz4cFatcgxmUrJkSfuz9+yzz9rTZ9ioVKkSX3zxBQCDBw9m586dDuW2Zw+M59g59kCjRo146623\nAOjRo4fLs9eqVSteeeUVANq3b8/ly5cdyjt16sQLL9zez15GyUwBy69BR0S6A28BhYGO5u7NwBsi\nUhC4DHQA1jkd2gQ4ppTa5ebcvfCwgigig4HBvjqvkwprNBrNHcFk8/97WdkJ69hjjbyocTVvU077\nxJSLC4W73rfrYfkzdNaQS47BLTpGFWP+xiMe6+88dmNp0+6pEME9FSL4/uelHuv4CkaR7CHaYQhp\n2qpy27/nbFA+cpze47auRqO5NYg/oYMz1LDIA0A7pdQgc7sv0EAp9aSH+k2BUUqp1ub2o8ATwEWM\nvCVXlVLPWur/G0NDNt6pnQYY/l4+w3uJiMeL//DDD3XuK40mG7Ft2zaqVq2a1d3Q3ALcfdcisl4p\n5d2xxwsi8oxS6gNf+zLQbiNgjFLqPnN7OIBS6i1Px9StW1etW+e8Zpi9iYybb/+cNK6jz3ru6iQe\nOMO5K9dpUrGQvd63A+vT76u1AMTWL8WoTtW5dC2ZOq8vsh/3cIPSvNG9JsNnb2Tq2gMObXasWYz5\nmzwLRs70qF2SWRsO8k6PKF6atdFlvycmPVLPHhAjYVQbYsYutJfZrtWfe/Ti/xL53/qDbuus3nuS\n3l+sdmnjXzM3Mn3dAd5/MJr7PYQ/t507cVRb8nrRtmk0mvSR0bEnM52KDgHWMDIlzX1uUUotBcqJ\nSIS5/V+lVB2lVFPgNGDXa4pIEIbJ4HQ3TfUGpmakw7GxsSQlJXH16lWeeuopfvzxR5555hmGDRvm\norbVaDQazW1Ffzf7BtyEdv8EKopIWREJwRiDfrwJ7d5SDpy6ZA+H7o36kQX8au/EBVf/pq6frKDv\nf9dywGLqZ/W3mrr2AKN/3MzsDY5Thfw5Q7hyPcVFuAK4dM1z0IgJvVyDLTQqXxCA79bsd9gfFux9\nOlS+kOErVi4iF/lyhlAyv+dAH94INc/jzh/KkwbrpXaVeahBaTrULOazfXcRBTUaza0nM00E7YMO\nhldt2mkAACAASURBVGDVG3jIWsEMXLFHKaVEpDYQCpw0yworpf4RkdIYwlRDy6Gtge1KqYNO7QVg\n+GU1yUiHp06dyuLFi5k8eTJt2rRh+fLlfPjhhwDs37+fe+6554aTcmo0Go3m1iEisRhjT1kRsQo+\n4cCpG21fKZUsIk8Cv2JEzP1KKXXbOe82eWcJZSNyseSF5m7LyxfKxZ7jF2loCii+WLrzuF3bMnlV\nEu/9lub7MXTKevtn54AWM9a5apGup6Qy5y/367NnLnsWCrvXKsmw6YkO+2zBHzYedEwgnMNNLikr\noUEBfD2gHtWLG/mdfhvWlI8X77bnffKXwuHGHMI51DqAp7ReBXOH8mZ3/3LuaQFLo8keZJoGSymV\nDNgGnW3ADKXUFhEZIiJDzGo9gM0ikoARcbCXSrNZnCUiW4GfgP9TSlmTUHnSUjUFDtgCa2SEY8eO\nce3aNcAxLPucOXM4dOgQX3zxBdHR0bdrHhiNRnMDiAh9+vSxbycnJ1OoUCE6derk9bh169ZlOG8W\nQLly5dixY4fDvmeffZa3337br7YnTZrEk0+6tc62Ex8fz8qVK+3bn332Gd9++22G+5yNWAmMB7ab\n/21/zwP33YwTKKUWKKUqKaXKK6XeuBltZgX7Tlz0WGYLFZ7qZ3Lfy5Yodq/8sIWzFkHIFqId4KdE\n7+Z94WFBrNl3iuFmLiyXfnnwS/JESJD7aU8PH1ECgwMDaFGlMIXNHFA5Q4J4qV0VXrivsr1ObH3f\nuZ+GNCvP691q0L1WCZeyi160cf4SrKMdazTZgkzNg6WUWgAscNr3meXz28DbHo71qIVSSg3wsD8e\nR01XhrCFY+/atatDxJlr167Zo5AMGDCA/v3dWZxoNJo7lVy5crF582YuX75Mjhw5WLhwISVKuE6U\nnKlbty516/pvwp2cnExQUNrruXfv3kybNo3Ro0cDxuLPzJkzWbFiBWXKlElX256Ij48nd+7cNG7c\nGIAhQ4b4OOL2QCm1H9hv5ko8rJS6AiAiOTBM15OysHu3DTZBxjnZryc+/2MvDzco4zbvU63S+fjr\nb2PN1FkzVSg8lOPn08wLc4cGkXDgDJ6w5oiKLpWPq9dT2H70PLH1S7utn9NDmPRyhXJ5vhj80wzd\nW6GQWzNGKyFBAfRpWMZtmVVYfKdHlM/zuSPAR6AMjUZza7irlzo8RXI6cuQIy5Yto0kTRxlvzZo1\n9s/OSQU1Gs3dQYcOHZg/33Aonzp1KrGxsfaytWvX0qhRI2rVqkXjxo3tWqf4+Hi7luvUqVN069aN\nqKgoGjZsaE/6O2bMGPr27cs999zjEm42NjaW6dPTXE6XLl1KmTJlKFOmjF9tW/npp59o0KABtWrV\nonXr1hw7doykpCQ+++wzJkyYQExMDMuWLWPMmDG8954ReC8hIYGGDRsSFRVF9+7dOX3aSB/VvHlz\n/vWvf1G/fn0qVarEsmXLbso9ziRmYCS1t5EC/C+L+nLbcT3FuHXOJn2esIVU7/PlGpcym3DlDqtw\nBXDEKfeVMykWSxPDhC8vYAhxADGl8jnUr1g43G07IYHep0PBPsoBSph+WRkVjqzJiR+s51sbptFo\nsi+ZqsHK7oSGhlKhQgVEhM2bN9v3P/roo/Ts2ZMmTZrQunVrFi0yohkVLlwYEUEphVKK1NRUAgIC\nSE1NRUS00KXR3Cq+z6Tf2kO+J4+9e/dm7NixdOrUiY0bNzJw4EC7YFGlShWWLVtGUFAQixYt4uWX\nX7bnMLExevRoatWqxdy5c1m8eDH9+vWz5y7ZunUry5cvJ0cORwf6mjVrEhAQQGJiItHR0UybNs1B\nsPOnbRv33nsvq1evRkT48ssveeeddxg/fjxDhgwhd+7c9pwl1sA+/fr146OPPqJZs2aMGjWKV199\n1Z47JTk5mbVr17JgwQJeffVV+/syGxJkJgIGQCl1zQxKofGD9JoIdo4uDuBV+3QzsGp9QoMC7IEi\nbP107m2lIq6JjcH3oqk/AlZMqXwkjGpDvpwZe6yaVIzI0HEajSb7cVcLWBUrVuTTTz9l0aJFjBgx\nwqEsNTWVUaNGOUwWQkNDmTdvHoGBgXbznU2bNtG5c2fy58/PkiVLyJfPcbVMo9HcWURFRZGUlMTU\nqVNdEiOePXuW/v37s2vXLkSE69ddHfCXL19uF7patmzJyZMnOXfO8Enp0qWLi3BlIzY2lmnTplG9\nenXmzp3Lq6++mq62bRw8eJBevXpx5MgRrl27RtmyZb1e79mzZzlz5gzNmjUDoH///vTs2dNefv/9\n9wNQp04dkpKSvLaVxRwXkS5KqR8BRKQrcMLHMRoTmwbL/Mfufy5QMn8OwjwEhygSHkpmpYFx6JdF\ngxUSFECn6GJMX3eAOmXM/FhOffAmSI27vyZxHny9Av00vcuocAVG37a/1o4zl3xHc9RoNNmbu1rA\nAmNC4ixcAVy/fp3XXnvNvv3uu+9SokQJqlSp4lCvc+fO7N+/n/379zN8+HC3WcA1Gs1Nxg9NU2bS\npUsXXnjhBeLj4x0y27/yyiu0aNGCOXPmkJSU5DZzvTdy5fLsB9K7d2/atm1Ls2bNiIqKokiRIhnq\n+1NPPcVzzz1Hly5diI+PZ8yYMRlqx4bN1DowMJDk5Bt30s9EhgBTRORjjOy2B4B+WdulW8Oircdo\nWqmQxwAPVvaduMiV6ylULZbHYb9NU3T8wlV7zqVuMcWZ2LuWvc77C9MiBZ66dI1Pluy+oX5//1gD\nHvqPq4nhhF7R9uiAB05dtu8PChCaVCzkkF/KT4UbgF9h6jObsOBAiub1HtFQo9Fkf+5qHyxIC2gB\n8PDDD9s///ijYxqTF198kfj4eDZt2sTmzZvZtm0bYEwqbLhbrdZoNHceAwcOZPTo0dSs6Rg6+ezZ\ns/agF5MmTXJ7bJMmTZgyZQpg+GZFRESQJ08et3WtlC9fnoiICOLi4tyaB/rbtrWP1mio4eHhnD9/\n3qXNvHnzkj9/frsZ5OTJk+3arNsJpdQepVRDoBpQVSnVGHC94DuMlXtOMOjbdYz/bYfHOlZNU4v3\n4mn/gasvXYopqfyUeNi+b9XetMWFNXv/n737Do+qSh84/n3TEyBASKihBIRQk1CCgHRBWeRHWVBB\npYiCoth2saICyrKKrquuuhYEZNWAjWJBBQRB6SBdqkREeu8lyfn9cWeGqclMCgnk/TxPHu4999x7\nz1wgM++cc95zmNfnbXPsf7H6Tyb9nJ6XphMVFkKVMv6vN+Wtd8o+Z2x87yS+frC11/OiI6zvmhMr\n5vz/UCml/FHse7BSU1N54oknCAoKomXLlo4PJ94MGzbMsV2iRAlOnTrFhAkT2LBhAyJyRX7oUEoF\nLj4+3mtq9Mcee4yBAwcyduxYbrrpJpdj9g9/o0ePZvDgwSQlJREVFRXQkg/9+vXjiSeecAzLc+fP\ntUePHs3NN99M2bJl6dixIzt37gSs3vg+ffowc+ZM/vOf/7ic88EHH3Dvvfdy5swZatasyaRJk/xu\ncxEUAvQWkduAekDlQm5PgbIPN9vltLivu0w/unmch+J584aX3qpzTqnacyNIoHeTKrz+w3a3cv/n\nYJ7PsNpdsXSEIwHGi70b8fjn1lDA+LKR/PR4RwBaXxNLTIkwXvhrI4b+b5X3CxZR2/7xl4BT1iul\nCk6xD7Cuu+46mjZtSnJyssdk9LZt27Jw4UKv550+fZqDBw/SoUMHOnTocDmaqpQqZKdOnfIoa9++\nvWMoYMuWLdm69dIwqbFjxwJw+PBhYmJiAIiJiWHGjBke1/FnqN7DDz/Mww8/7PP+vq49aNAgBg0a\nBFjLT/To0cOjTp06dVyyDjpnUU1JSWHp0qUe5yxYsMCxHRsbW2TnYNlSsvfAWnC4MdYiwz0B77/g\nryL2UCS76VA5pV7PzDLZng+uGfDsMvwcnxcSJF7rCt6TRwWSUMoe5JUIv/Rxp0/Tqo4Aa/fRS0MM\ng4OE1c909vvaRUlocBA5rJWslLqMiv0QQYDMzEy2bt3qsZDnvffey4QJE3ye5zykUCmlvJk1axYj\nR450rKGnLi8R+RjYCnQG/gPUAI4aYxYYY7LvlrmKGI98epfk0DnlSHCRHW9Bj733KCe+EkPUrxzt\nNblEIMkz7L06kU7Rh78JK5RSKreKfQ8WeP6yjoiIoESJErz22muUKlWKMWPGEBMTQ2Zmpsu3x3Pm\nzLncTVVKXWG6d+9O9+7dC7sZxVl94CjwK/CrMSZTRIrNWCp73OP8Nnfw5Hm+27jPseBtRg4R1ncb\n9+V4n7zFLN7/OoKDxCMYeuv2JtSK855q3Rt7cBjpY4HhV25J9lr+1QOt+WrdXt7+cUdA88CUUgo0\nwAIgKiqKX3/9le+//56HHnqIc+fOce7cOUd2sLlz5zqCMPfhOZMmTWLlypUEBQUxYMAAUlNTL3v7\nlVJKeWeMSRGRukA/YK6IHAJKiUgFY8z+Qm7eZWAFKM4hzL0frmLV70dpWzuOauWicpy789DUNdke\nh8Cy9bnzNgesXAnvvVpdG1UCYOOYG7nuxR9yTGl+wR5g+Rg/17Fuea/lDauUJjoilLd/3JFjAKqU\nUu6KfYC1bNkyZsyYgTHGawYtu0OHDhEbG8uAAQOYMmUKYGUSu/vuu8my/fI9evQoH3744WVpt1JK\nKf8YYzYDo4BRItIUK9haISK7bdkErypZWYaMLENYSJAjwHB26NR54NLcq+e/3uRR5y+vLWL2Q208\nyp0594rtPX7Wd0UvmlUvy8rfj3o9FhkazM9PWIknZvzyp9c6JcJDHIsKZ+dCRvYBVlA217Cntdfk\nEUqpQBX7OVhr1qzhhRde4MUXX2TDhg1UrFiRihUretSLi4ujbt263HnnnY7hPuXLl3cEV4AjdbtS\nSqmiyRizyhgzAqgOPFHY7SkIvd76mTpPz2b30TM8mPYL4BoM2bftscUXqz2DmF/3nvAoc+ccdgQH\nkHgCIDz00sePjEzD58Na0SPFSugYERrkWMD4+FnfPVTO2QS3jv2L1zpVylrD+6LCvQdY2bXbfs6Z\nC3nLhqiUKn6KfQ+W88TcOnXqsGzZMs6fP++17pYtW+jSpYvj+AsvvECjRo1Yv97KRtS4cWOv5yml\nlCpajDXu+6rMIrh293EAPlnxh1PppXDIvjaUkH1QlJVlXHp4SoQFc9op2HAe2pddT5A3ESGXAp6T\n5zNoWr0sq34/wsw1e1zqOQdi7px7sHwtopw2pAVr/zhGaLD349mlfC8VHkKnehUY2Kq6zzpKKeVN\nse/BSk1NdSwWPGHCBJ/BlZ378QkTJjBx4kQmT57sMT9LKXV1ERHuuOMOx35GRgZxcXF069YNsDIG\nvvDCCwV2/zVr1iAifPvtt7m+RqtW3kfEDRo0iM8++yzX7frmm29y3SZVMHYevrT2lXMPlj0wmrHG\n+/A7u/V/HnfZr+SW7MElwMomUJk2tIVH2bzNBzwSY9iv4fzFZ7hTIPbT465LovgT1FWIjuCGBp6j\nUi5dw/e5IsKEgc1oUzsux/sopZSzYh9gNW7cmMzM3Hf/N2/enDvvvJOBAwfSsGHDfGyZUqqoKVGi\nBBs2bODsWWu+yZw5c6hSpYrjePfu3XniibyPOsvIyPBanpaWRuvWrUlLS8v1tRcvXpzrc30p6gGW\niASJyC2F3Y7L7YSP4XV7j58D4JU5W70ed66X5RREua91lZnNMbvq5aKo7CMLn3tuC3vGQOewKcKp\nByu+bJRLfXsP1rUJMd5fgB8CWbRYKaX8VewDrLy66667GDRokNcFSJVSV5+uXbvy9ddfA1bA069f\nP8exyZMnM3z4cMDqEXrwwQdp1aoVNWvWdPQOGWN49NFHadiwIY0aNWLatGmAtWhvmzZt6N69O/Xr\n1/e4rzGGTz/9lMmTJzNnzhzOnTvnODZlyhSSkpJITk6mf//+AOzfv59evXqRnJxMcnKyI7AqWbKk\n43rDhw8nMTGRTp06ceDAAcf1Vq1aRbt27WjatCk33ngje/fuBaxFjR9//HGaN29OnTp1WLRoERcu\nXODZZ59l2rRppKSkOF5PUWJb7+qxwm7H5eYc9OQmTUNmlnHpxQpxG2Znz673xerdLN5x2Os1BHwO\nz6sa4xp42QMs50WBo0J9z2Sw92DlJkj66oHWDGtfy69EGUopFahiPwcLrAWF3377bcd+eHi4x1DA\npKQkEhISmDlzpkv5xIkTATh48CAfffQRZcqUKfgGK6WgfXvPsltugfvugzNnoGtXz+ODBlk/hw5B\nnz6uxxYs8Ou2ffv25bnnnqNbt26sW7eOwYMHs2jRIq919+7dy08//cTmzZvp3r07ffr04YsvvmDN\nmjWsXbuWQ4cOkZqaStu2bQFYvXo1GzZsICEhweNaixcvJiEhgVq1atG+fXu+/vprevfuzcaNGxk7\ndiyLFy8mNjaWI0eOAPDggw/Srl07pk+fTmZmpseXQNOnT2fLli1s2rSJ/fv3U79+fQYPHszFixd5\n4IEHmDlzJnFxcUybNo2RI0c6ftdlZGSwfPlyvvnmG8aMGcPcuXN57rnnWLlyJW+88YZfz7CQzBWR\nEcA04LS90BhzpPCaVLA61a/A95usTPTewohSESHZLtqbaVyXJ3YPRuzZ9f72yVpHWdPqZakQHc43\n6y+tnRUS7D2IaVs7jo+W7XLs2wOlKKc1q4a2rcnydO9/RfZ62Q3z86VhldI0rFI68BOVUsoP2oMF\nvPHGG+zevZsZM2YAnvOsAG655RZatmzp8xrffPONYx6GUurqlZSURHp6OmlpaXT1FsQ56dmzJ0FB\nQdSvX5/9+60Puj/99BP9+vUjODiYChUq0K5dO1asWAFYQ469BVdg9Zb17dsXsII8+zDBH374gZtv\nvpnY2FgAYmJiHOXDhg0DIDg4mNKlXT9MLly40NGOypUr07GjlRZ7y5YtbNiwgc6dO5OSksLYsWPZ\nvXu347y//vWvADRt2pT09HT/HlrRcCtwP1Zii1W2n5WF2qJ81vW1RdwxYZljP8yp56hkhOf3qdER\nodmuX5WZleVIiAGeAZa3Uz8f1oq4kuEudUJ9REB/vyHRZT/YS4/U9fXKc3frBKbf5zl3sExkmEd9\npZQqCop9D9by5cuZMmUKxhhCQ0N91nv66adzvNbPP/+cn01TSmUnux6nqKjsj8fG+t1j5U337t0Z\nMWIECxYscCxI7k14uNMHzWx6CuxKlCjhtTwzM5PPP/+cmTNn8o9//ANjDIcPH8527b7cMsbQoEED\nlixZ4vW4/TUFBwf7nCtWFBljvEeuV5FNttTqUWHBnLmQSZYx9Gkaz2erdlMm0vv720Uv62TZVSgV\n4bJ+lPtQP19hTTmnAAt89zC5Z/6zp0wPdgrkRISnu3kOmQUoHRXqqKOUUkVJse/B2rJlC2+++SZv\nvfUW69atK+zmKKWuAIMHD2bUqFE0atQo4HPbtGnDtGnTyMzM5ODBgyxcuJDmzZtne868efNISkri\njz/+ID09nd9//53evXszffp0OnbsyKeffuoI9OxDBK+//nr++9//AlaAdvy4a0a4tm3bOtqxd+9e\n5s+fD0BiYiIHDx50BFgXL15k48aN2bavVKlSBRLs5ScRiRKRp0XkXdt+bRHJ07ADEXlJRDaLyDoR\nmS4ihTZGfPH2Q45t+7pNWeZS0JLhpasqvmykS6IKd1nGNZFFqNtQv0xjmLp8l/tp3NuulmPbGCgV\n4T248zX96fCp7LP52kXbeuV0GpVSqqgp9gGW8zdflSpVytO17rzzzrw2Ryl1BYiPj+fBBx/M1bm9\nevVyJKTo2LEj48eP97q4ubO0tDR69erlUta7d2/S0tJo0KABI0eOpF27diQnJ/O3v/0NgNdee435\n8+fTqFEjmjZtyqZNmzzaUbt2berXr8+AAQMcQ6DDwsL47LPPePzxx0lOTiYlJSXHzIMdOnRg06ZN\nRTbJhc0k4AJgH2v2JzA2j9ecAzQ0xiQBW4En83i9gGRlGb7fuA9jDLc5DQ10Pm4f4uccKHVItNKO\nJ1Ys5TXwsruYleXSw/XXJvEux42BJ75Y73GerzWp3LkP7Vvym/UlwZ7j57xV9+BtSKFSShUFxX6I\nYGpqKtWqVWPXrl18/PHHub7ORx99REpKSj62TClV1HjLFtq+fXva2xJuDBo0iEGDBgFWRkFv54oI\nL730Ei+99JLP67ibNGmSR1n37t3p3r07AAMHDmTgwIEuxytUqOCRlMe9Hb6SUqSkpLBwoecavAuc\nhlXGxsY65mDFxMQ45pEVYbWMMbeKSD8AY8wZyePYMmPM9067S4E+vuoWhI+W/c4zMzfyUp8kr8ez\nnJJUOAdSzmXZ9RZlZBqX81pfE0v6CzdR44mv/W7jiXOuqeKbJ8SwfKfVy5rXuEgDK6VUUVXsA6zE\nxMRs50aMGDGCl19+2euxZ599lpSUFIwx9OjRw7FgsVJKqSLngohEYosvRKQW4N9YNP8MxspQ6JWI\nDAWGAlSrVi1fbmhfz2r/Ce89PlkGRw9WhlNPlL03KzPT0PV17xkw7efMsWUhBN/ZALNz7IxrgPXC\nXxvxzo+/0al+Bcfwxc71KwCBB0z2+j9sPpBDTaWUuryKfYAF2U8+9xVcAaxYsYIxY8YURJOUUkrl\nr1HAt0BVEfkIuA4YlNNJIjIX8DaGc6QxZqatzkggA/jI13WMMe8C7wI0a9YsN8tSeWmb/drej2ca\n4+iucunBcio7d9F3kou3FuxwWQfLOeFFbpWPjuBFpx63BSPaU7F0BAA+lsvySXuwlFJFVbGfgwXw\nyCOPuOzbh/g4i4+P9ygDa3K3iCAiVK1atSCap5RSKo+MMXOAv2IFVWlAM2PMAj/O62SMaejlxx5c\nDQK6Abcbf1JF5iN7gOFrGpVxGiLoPAfL0YOV5Tu4AlyCqxn3X+ex0HB2or2khQcoEeYapNWILUGE\nLXALvAcroOpKKXXZaIAFPPzwwxw/fpxjx45x/PhxRowY4XJ8xowZ/PLLLzz5pOv85dOnT7vMyXBe\nK8Zf27dv5+OPP2batGlXwhwGpZS6krUDrgc6AG3yejER6QI8BnQ3xpzJ6/UCvr/tz0wfcZ1zkouL\nmZfqOIYNZrcIlhvnNbDSX7iJ5PjsF+l9obf3eWHZTXu7sYHVUdiwSrRfbbJf6pryJf2qr5RSl0uB\nDhG0vfm8BgQDE4wxL7gd7wE8D2RhDa942Bjzk9PxYKyFIP80xnSzlaUAbwMRtnPuM8Ystx17ErgL\nyAQeNMZ8l1MbV6xYwRtvvIExhtTUVB544AGP7GBffPEFPXv29DjX2yTwQM2fP5+hQ4cCcNddd5Ga\nmprnayqllHIlIm8B12D1XgHcIyKdjDH35+GybwDhwBxb4LDUGHNv3loaAFuE4avjLMtcGg7o3Fvl\nLbNgTtznX5UtEZZtfft9/9Iw+wyZzjrULc+GMTf6PRTxm/X7Ar6HUkpdDgUWYNmCozeBzsBuYIWI\nzDLGOOcKngfMMsYYEUkCPgHqOh1/CPgVcP46azwwxhgzW0S62vbbi0h9oC/QAKgMzBWROsaYzOza\nuWvXLqZMmQJYPVJNmzblhx9+cKkzd+7cAF+9/7Kc3vQ0SYZSShWYjkA9+zA+EfkAyH6BrxwYY67J\nj4bllr1TyVeglGWMR2/VP2f/yor0oy5l/ghxWy04p+F89vsGOuyvZLj/H0v+PHYWgJPnrpwFr5VS\nxUNBDhFsDmw3xvxmjLkATAV6OFcwxpxyGrNegkvZYxGReOAmYILbdQ2XAq7SwB7bdg9gqjHmvDFm\nJ7Dd1oZsOQ9XyMrKokePHh51IiIicroMAAMGDPCrnrOqVavSqVMn2rZtS82aNQM+Xyl1+YgId9xx\nh2M/IyODuLg4unXLfr3alStX5nrdLGevvvoqERERHosG+yu7dtSoUYNDhw55PZaTGTNmeKyzVQRt\nB5zT91W1lV2xxDZIMLsAy30O1js//uY47pxZ8Kak7NeBdF9k2N8AqyDzULSoGQO4Dl9USqmioCAD\nrCrAH077u21lLkSkl4hsBr7GSnNr9yrW2Hb3WbgPAy+JyB/Ay1xa2NHf+w0VkZUisvLgwYM0bdqU\nDh06ALBhwwaPDxihoaFcuHAhp9fK7Nmzeeqpp3Ks5+706dPMnTuXhQsXsnLlyoDPV0pdPiVKlGDD\nhg2cPWt9cz5nzhyqVPH4NeOhWbNmvP76637fJyPD+zfyaWlppKam8sUXX/h9rby0w19XSIBVCvhV\nRBaIyHxgExAtIrNEZFYhty1XJMcerEvDBzMyPeucvXhpgEfjqmWyvZd7ggtv+S5mP3RpWpv9q9OC\nzPR3fV0rvftlzSyilFJ+KPQkF8aY6caYukBPrPlYiEg34IAxZpWXU4YBjxhjqgKPAO8HeL93jTHN\njDHN4uLiqF69OvPnzweshBPu5s2bR2JiotdrDRkyxLG9bt06n/WyE+Q07CIzM9vRjEqpIqBr1658\n/bW10GpaWhr9+vVzHFu+fDktW7akcePGtGrVii1btgDWAr32Xq4jR47Qs2dPkpKSaNGiBevWrQNg\n9OjR9O/fn+uuu47+/ft73HfHjh2cOnWKsWPHkpaW5ijPzMxkxIgRNGzYkKSkJP7zn/8A1vzSVq1a\nkZycTPPmzTl58qRLOw4fPswNN9xAgwYNuPvuu13m8Xz44Yc0b96clJQU7rnnHsfvppIlSzJy5EiS\nk5Np0aIF+/fvZ/HixcyaNYtHH32UlJQUduzYkW/POp89C/wFK137aKCrrexftp8ryto/jjHjlz8B\nzyyC9jlMWcY4pWT3zBh49sKl95ychgu6z/MKdus1+ubBNtSrdGk0/6Uhgtb+9PtaMXVoi2zvEaic\n0tQrpVRhKcgA60+sIRh28bYyr4wxC4GaIhKLtT5JdxFJxxpa2FFEPrRVHQjYv779lEvDAAO6ny+3\n3367y37btm1Zv369R70HHniARo0aOfZ37doV6K0AiIyMpFy5cpQvX57SpbPPyqSUshEpmB8/0Hpi\nkgAAIABJREFU9O3bl6lTp3Lu3DnWrVvHtdde6zhWt25dFi1axC+//MJzzz3ntVd71KhRNG7cmHXr\n1jFu3DiXocWbNm1i7ty5LgGU3dSpU+nbty9t2rRhy5Yt7N9vLQD77rvvkp6ezpo1a1i3bh233347\nFy5c4NZbb+W1115j7dq1zJ07l8jISJfrjRkzhtatW7Nx40Z69erl+B3266+/Mm3aNH7++WfWrFlD\ncHAwH31kLe90+vRpWrRowdq1a2nbti3vvfcerVq1onv37rz00kusWbOGWrVq+fUcLzdjzI/Z/RR2\n+wLV482f+e3QaeBSMGMXHmq9tU9d/ocj+LiQmcXp8649oyec5i6Fh2T/ccC9J8o9G2B0pOvcKXu8\nFmSLsBpXK0uLmuWyvUduGe3DUkoVMQUZYK0AaotIgoiEYSWgcBmGISLXiO23tIg0wcrGdNgY86Qx\nJt4YU8N23g/GGPvEhz1YqXbBmrS8zbY9C+grIuEikgDUBpYH2ujBgwd7lNmTYDjXef311/n+++8d\nZW+++SaVK1dm3Lhxfg0ptOvatSuHDh1i//79TJo0KdDmKqUus6SkJNLT00lLS6Nr164ux44fP87N\nN99Mw4YNeeSRR9i40TOHwk8//eTooerYsSOHDx/mxIkTAHTv3t0jELJLS0ujb9++BAUF0bt3bz79\n9FPASsJzzz33EBJifcCNiYlhy5YtVKpUyZGVNDo62nHcbuHChY75ZDfddBNly5YFrF77VatWkZqa\nSkpKCvPmzeO336x5O2FhYY4esKZNm5Kenh7Yw1P5YsyXrv+unNerAogIsXqwdh054wi+Nvx5ggaj\nXBPr7rQFaAC3X1vd5/1G3FCHymVc/10GuwVY7j1aWbYIS/Dvi4vcsAd52oOllCpqCiyLoDEmQ0SG\nA99hpWmfaIzZKCL32o6/DfQGBojIReAscKsfCzUOAV4TkRDgHDDUdr2NIvIJ1rj6DOD+nDII2m3Y\nsIGMjAyMMdSvX9/jeHh4uMv+9u3bWbdunceHp7179zJy5Eiio6MZPny4P7dmzZo19O/fnw0bNnDL\nLbcwbdo0v85Tqlgr5E9U3bt3Z8SIESxYsIDDhw87yp955hk6dOjA9OnTSU9Pp3379gFdt0SJEl7L\n169fz7Zt2+jcuTMAFy5cICEhwe/fM4EwxjBw4ED++c9/ehwLDQ11fKgNDg72OVdMFaxJP6e77K/6\n/ajLflhIEKXCQ+iWXJlDp87neL1qMVGEZdOD1btpvEeZe0DlHnDVrmCtTXWtLRFFQdDUFkqpoqpA\n52AZY74xxtQxxtQyxvzDVva2LbjCGPOiMaaBMSbFGNPSeQ0sp2sssK+BZdv/yRjT1BiTbIy51nme\nljHmH7Z7JRpjZvvTxl9++YVnn32WMWPGMGvWLEJDQz3quPcsLVy4kOTkZHbu3On1ms8++6w/twbg\n22+/ZcOGDQB88sknAfV+KaUKx+DBgxk1apTLMGGwerDsSS8mT57s9dw2bdo4htwtWLCA2NhYoqOz\nX1g1LS2N0aNHk56eTnp6Onv27GHPnj38/vvvdO7cmXfeeccR7Bw5coTExET27t3rWLz85MmTHsFQ\n27Zt+fjjjwErSc/Ro9aH9Ouvv57PPvuMAwcOOK73+++/Z9u+UqVKcfLkyWzrqPyR83eQ1ppVUeHB\nGGP8qp/TmlbuwRPkPGSwcbWyLHmyIzd7Cc7yy6U5WNqFpZQqWgp0oeErwf79+x0Zuc6cOcPq1atd\njlesWJHNmzf7fb27776b3r17O/Z37tzJq6++ioiQkJDAQw895FI/y23isa6FpVTRFx8f7zXd+WOP\nPcbAgQMZO3YsN910k8sx+wfQ0aNHM3jwYJKSkoiKiuKDDz7I8X5Tp07lm2++cSnr1asXU6dO5e9/\n/ztbt24lKSmJ0NBQhgwZwvDhw5k2bRoPPPAAZ8+eJTIy0mM9v1GjRtGvXz8aNGhAq1atqFbNymBe\nv359xo4dyw033EBWVhahoaG8+eabVK/uewhZ3759GTJkCK+//jqfffZZkZqHJSLrySbRnDEm6TI2\nJ89OX8h5YEZoUBAhQUFkZBm/Onv7pVbN9rh78ASeWQS9BTmVSnsf7ppf7K3S8EopVdQU+wDLfR0s\n929hJ02axBtvvJHjdTp27MisWbM8hvisXLnSJS2ye4BVt25dl31vb2RKqaLh1KlTHmXt27d3DAVs\n2bIlW7dudRwbO3YsYGXsi4mxhkrFxMQwY8YMj+uMHj3a533tc6CcvfLKKy7bzvsAqampLF261Gdb\ny5Ur5zKP1Nmtt97Krbfe6lHu/Pr79OlDnz59ALjuuuuKcpp2+wiI+21//s/25+1e6hZ57gktvBGx\nhvBlZhm/6qdUu5Si/fq65Zm3+YDLcffhgODZg5VZCL1I9gQa2oGllCpqin2AlZKS4tieM2cOcXFx\nLsdLlCjBv//9b0daZm9KlCjBvHnzvB7LaeFO+8RygFatWmmApdRVZtasWYwcOZKJEycWdlOKJWPM\n7wAi0tkY09jp0BMishp4onBaFrgzFzL4+ydrPcrtwZRdkAghQUJGlmHJb4c96ruzB0vpL1i9rmv+\nOMYvu44y5ksraPY6RNAW3MSXjaRCdARxJcM96hS0Sz1YGmEppYqWQl8Hq7BVqFDB57GSJUvSpk0b\nateune01Tp8+zeOPP+71WE5DZZzXwQoODtYAS6mrTPfu3dm8eTOtWrUq7KYUdyIi1znttOIKew/8\ndOVu5mza71HuvtDwpR6sLM5d9Fz/yp17b1RK1TKULxVx6XpenpI96GpTO47Ph7XyWIj4stAsgkqp\nIqrY92C5K1WqFA888ACZmZmULFkSY4xfQc/48eMZP348YA2dsadQbtasGW+++SZBQUGOIULOoqKi\nHEFeyZIlycrKcgm6lFKX+Pv/UV25CjBhwWBgkojYFxw8ZisrNOcuZnL+Yhalo1yTK506n0HJcM+3\nZy8j9bwKEiE4SLiY6d+z9HZd56GF3nqw7MMGQ/xtVAHQOVhKqaJKAyw3999/Py1btuT0aWt9kGee\neYaSJUtSrlw5l3TML774os9eq88++8yxHRMTw3333efzfqmpqVy8eJEjR444MnmVK1cwizEqdSWL\niIjg8OHDlCtXToOsq5QxhsOHDxMREZFz5QCISBBwjTEm2R5gGWOO53Bagev62iJ+O3TaMTRv/4lz\nXDvOGm7+8ZBraVUrFrCey9mLmY5heTkRsTIJZmYZasWVYMfB09nWd+/BArihwaXRHZGhnsmX7OeE\nBBfe/8WEWGvOc/1K2WfhVEqpy00DLKwJ5PZ0tjVr1nTpQbJn+XvzzTfp27evo9xXcBWoH3/8kSNH\njjj2MzP9WrpLqWInPj6e3bt3c/DgwcJuiipAERERxMfnb2pvY0yWiDwGfFIUAiu73w65Bj7fOw3/\nW/bbEUeA9cnKP3j88/X0TKns9TqRocGcvXjpvUOAYHsWQR/3DgsJ4kKG9f7mLcAKDwlm5dOduJCR\n5TWwsxcVZg/WddfEMvuhNtStWKrQ2qCUUt4U+wBr3bp1jBgxAmMMjRo14pVXXnHJJHjy5Emio6MJ\nC8t+nZDc+vzzz1323dO2K6UsoaGhJCQkFHYz1JVrroiMAKYBjsjGGHPE9ymXl3Oo4jxU8vuNVuA1\nY80er+ddzHR73xAh1DYHKyvLe4gV4Rxg+RiVHptN4gr7EMHgQh7SXk97r5RSRVCxD7COHTvGnDlz\nADh//jwbN250Ob5nzx6qVKlCly5daNeuHZs2bcrxG/SaNWs6tjdt2sS//vUvRIT69evzt7/9zaWu\ne49VxYoV8/JylFJKeWfPO3+/U5kBanqpW+ic46JlO7OPATPck1xgBUA/b/eeQbBJtTJsP3Ap5b63\nHqycbNlvfRF56vzFgM9VSqmrXbHPpuC+Dtbx466jR+wL/0ZGRvLjjz/6DK4WLVrEyZMnOXPmjEuQ\ntnbtWiZOnMj777/P3//+d8fcLrvmzZvn10tRSinlgzEmwctPkQyuwHVdqVPnMwI6N0iynxv1xX3X\nUbZEmFP9wAOsBVus98IPl+4K+FyllLraFfsAq2HDho7tn3/+meeff97luH3h4HPnzrmU33XXXY7t\nuLg4WrduTcmSJYmMjHSZoO2+MOm4ceNc9ps0aeLYbtCgQS5fhVJKqZyISEMRuUVEBth/CrtNzpzj\nHF9D+/y7juQ4dK9MlHOAletbKaWU8qLYB1juc6vsPVYAVatWJTExEYCdO3e61GvXrh0vv/wyAAcP\nHmTgwIFer9+oUSOX/djYWJ/30/lXSilVMERkFPAf208HYDzQvVAb5UbIn0gnSODAiXNej333cFsA\n6jklhshNVs6keCvb/b3tsl/rUSmliqNiPwfr/PnzLvulS5fm6aefxhhDmTJlHOXOgRBYadqdhwJO\nmTKFKVOmAFZP1IYNGwBISkoiJCSEjIwMx/WdRUZGUqlSJbKysoiOjiYjI4OQkGL/16KUUvmtD5AM\n/GKMuVNEKgAfFnKbHLbuP8lT09c79nPTfxUabK19JQjHz3rOjRrUqgaJtsBqdPcGTF3xR26by4CW\nNRjx6VrqVdIMfkop5a7Yf5K/cOGCy/5zzz1HrVqe38hFRUW57Lsnw/B1LCoqipMnT3Lu3DkuXLhA\nyZIlXeomJCQQHh5Oeno6+/fvZ9euXS5JMnJy4sQJZs2aRZs2bahevbrf5ymlVDFz1pauPUNEooED\nQNX8uLCI/B14GYgzxhwK9HxjDBMW/eZRBvD74ezXsHL2Tv+mDJ68EhHYe9yzB6tB5UsZ9yKc1rbK\nzeLOvZtUoVpMFKk1ygZ8rlJKXe2KfYBVvnx5Dh065BieFxcX57VefHy8402oYcOG2QZY7k6ePMnZ\ns2fJyMggOto1peysWbNIT0937Af6RjdkyBA++eQTqlSpws6dOwkNDQ3ofKWUKiZWikgZ4D1gFXAK\nWJLXi4pIVeAGINfZHo6fvUhIsPcR+49+us7v69jnXXkb8Te8wzX0bFzFpax8qXAOnDyfq94yEaF5\nQkwuzlRKqatfsZ+DtWXLFrp168b//d//8eijj/p1jj+LAd97772sWbMGgK5du1K9enVq1arF6tWr\nXerNnDnTZT/QsfCffPIJAH/++SeLFy8O6FyllCoujDH3GWOOGWPeBjoDA40xd+bDpf8NPEbuRvUB\nMHvDPo8Fe42B8xmZZAXwpdvZC9Z7U2So65D25PjSjLgxkVC3IO7B62sDUDpSv5hTSqn8VOx7sE6f\nPs3SpUsBuHgx+/U8unTpwvLlyzl69GiO133nnXf44IMPePfdd1m5cqWj/M4772TLli2OfefEFhMn\nTgxoeCBAmTJlOHbsGGD1simllPIkIv8DFgKLjDGb8+maPYA/jTFrc/pyTESGAkMBqlWr5nIsI8sw\nZcnvbvUh8elvA2rPgZPWsMDKZSJdyge39r5A9x0tqnNHCx1arpRS+a3YB1jOb4o5Dc/77rvvcrxe\nVFQUZ86cAazU7gMGuGYBDnJLndujRw+qVatGZmYmycnJ/jbbwZ9gTymlFBOBNsB/RKQW8Auw0Bjz\nWnYnichcwNsK8COBp7CGB+bIGPMu8C5As2bNXN5sMjI9M8i+t2inR1lOqsZYc4WbVCvL9fXKM3iy\n9eVebrIEKqWUyr1iH2AlJiby888/IyIeCShywx5c+dKyZUuX/Z49e9KzZ88831cppZRvxpj5IrIQ\nSMVK034v0ADINsAyxnTyVi4ijYAEwN57FQ+sFpHmxph9gbQtMw9rXjnrkFie7x5uS50KJTWoUkqp\nQlTsA6y9e/fSvn17goKCqF27NuvXr/dZ99prr2XZsmV5ut8777yTp/OVUkoFTkTmASWwElssAlKN\nMQdyez1jzHqgvNP104FmucsimNtWeEqs6Jk2PViDLaWUuqyKfZKLrKwsLl68yPnz5z1StrtbunQp\nxhg++OCDXN0rNTXVa5a/Xbt2sXXrVrZs2cK5c94Xh1RKKZUn64ALQEMgCWgoIpHZn1Jw/vH1Jse2\nt6AoP9xQvwIAPhIUKqWUKiDF/teuc5IJ9/lRvtStWzdX91qxYoXX8m7dupGYmEjdunVdEmD4o0qV\nKogIIsK2bdty1S6llLraGWMeMca0Bf4KHAYmAcfy8fo1Aum9cp5jlZlliCsVHtD9pgxunmMd+8jD\nIO3BUkqpy6rYDxGsW7cu58+fJysry+81qMaNG5djndKlSxMbG8uOHTscZRMnTvSoN3nyZJdhiYGu\ng7Vnzx7H9vbt26ldu3ZA5yulVHEgIsOxklw0BdKxkl4sKsw22WVkGUKDAguCKpeJyLGOPfV7SLAG\nWEopdTkV+wBLRAgLCwvoHF89Uc6OHz/ukTQjMzOTzMxMgoMvrVHivg5WXhYKDjQ4U0qpYiQCeAVY\nZYzJKMyGbN53klin/cws1yyCNcpFkX44+4RJpSOt963YkmEcOuV9ePvzPRtSrVwU7eqU93pcKaVU\nwSj2QwQDkZqaioi49Bplxz2L05AhQ7j33ntdypyHKM6cOZMGDRoE1KZGjRoRERFBZGQk11xzTUDn\nKqVUcWGMeRkIBfoDiEiciHhfIKqAXXRLy57hlkWweUIM2XVobXruRiLDrC/qujaq5LNeXKlwnupa\nj+AAe8eUUkrlTbHvwQqE84LBvnz88cc0bNgQYwwhISE5Bkxr1qxxbNerVy/gNq1bty7gc5RSqrgR\nkVFAMyARa/5VKPAhcF1htgs807QHBwXhnrm9W1Ilvlq3F4CoMOute+XTnSgTGeqxSLFSSqnCpQFW\nPrvtttsYOnQop0+fJjMz0+O4eyKNXbt2ObYjIwstoZVSSl3tegGNgdUAxpg9IlIw6fsClJFpOH3h\n0vvFnmNnPeq81rexI8Cyiy0ZWGIMpZRSl0eBDhEUkS4iskVEtovIE16O3y4i60RkvYgsFpFkp2MP\nicgGEdkoIg87laeIyFIRWSMiK0Wkua28ua1sjYisFZFe+f16Onfu7NccqWnTpvHRRx8xdepUj2N3\n330348aNY/fu3fndPKWUUr5dMNZEVQMgIiUKuT0O01b+wfGzFx37P2496FFHh/kppdSVo8B6sEQk\nGHgT6AzsBlaIyCxjzCanajuBdsaYoyLyF+Bd4FoRaQgMAZpjrVvyrYh8ZYzZDowHxhhjZotIV9t+\ne2AD1iKPGSJSCVgrIl/m52Tm77//HrCGAd5+++0+6x0/ftxrefPmzWne3EqtO2XKFDZv3sz27dvZ\ntm0bZ8+eZc+ePZQpU8YjOYZSSqk8+0RE3gHKiMgQYDAwoZDbBMDynUeyPW5fz0oppdSVoSCHCDYH\nthtjfgMQkalAD8ARYBljFjvVXwrE27brAcuMMWds5/6ItXbJeKxvH6Nt9UoDe2zXck65FGGrVyAS\nExNzrDN58mRCQ0N5//33+eGHHwBISEhg+fLlAGzZsoXz589Tq1YtBgwYwOLF1qNYtGgRrVu39rst\n4eHhjgWSN2zYEHCSDKWUKg6MMS+LSGfgBNY8rGeNMXMKuVl+2X/yfLbHVz/TGe3fUkqpoqMgA6wq\nwB9O+7uBa7Opfxcw27a9AfiHiJQDzgJdAXuGiYeB70TkZawhjq3sFxCRa7HWNqkO9PfWeyUiQ4Gh\nANWqVQv8VeGZHdCbp59+mmuuuYbU1FTWrVvHyJEjadeuHdOmTXPU+fTTT9m3b58juALXrIL+sAdX\nANu2bdMASymlfLAFVHMARCRIRG43xnxUyM1yUTE6gn0nzrmU2dfIuqdtTepVivY4J6ZEYEuNKKWU\nKlhFIsmFiHTACrBaAxhjfhWRF4HvgdPAGsA+A3gY8Igx5nMRuQV4H+hkO28Z0EBE6gEfiMhsY4zL\nO5Ux5l2soYg0a9YsV71cNWvW9Fq+c+dOTpw4QXJyMrt372bfvn0sWLAAgEceeYRSpVznU9eqVYt3\n3nnHpaxEiSIzLUAppa54IhIN3I/1pd8srADrfmAEsBYoUgHWzOHXce24eS5locHWdOknuwaeaVYp\npdTlV5BJLv4Eqjrtx9vKXIhIEtY4+B7GmMP2cmPM+8aYpsaYtsBRYKvt0EDgC9v2p1hDEV0YY34F\nTgEN8+F1ONSsWRMRoWzZsgwbNoyHHnrI5XhCQgJz58517GdkuHagnTx50rE9bNgwUlJS+Omnn7j+\n+usBmDt3Lk2bNg2oTV26dCEhIYGEhATq168f6EtSSqmr3f+whgSuB+4G5gM3Az2NMT0Ks2HuIkKD\nqBAd4VEeFRbspbZSSqmiqiADrBVAbRFJEJEwoC/Wt4cOIlINK1jqb4zZ6nasvFOdvwIf2w7tAdrZ\ntjsC22z1EkQkxLZdHagLpOfnC9q5c6dju3LlyrzyyiscPXqUFi1aOMoTEhLYuXMnv/32G2vXrvV5\nrYULFzrSss+bZ31bWaVKlYDbNGnSJJKTk2ndujXx8fE5n6CUUsVLTWPMIGPMO0A/oD5wozFmTQ7n\nXXbiYyZV3UpFIpu8UkopPxXYEEFbNr/hwHdAMDDRGLNRRO61HX8beBYoB7xlm9eUYYxpZrvE57Y5\nWBeB+40xx2zlQ4DXbMHUOWzzqbCGFz4hIheBLOA+Y8yh/HxNzz77LM899xzh4eEMGzYMgLCwMKpW\nrcqOHTuIjIykdOnSLF26lLS0NDIzM2nbti0LFy70uNbGjRs9ymrUqBFwm+6//35mzJgBWHPKxo4d\nG/A1lFLqKubIf26MyRSR3e5Dx4sK+/Re93lYZaN0jpVSSl1JxFoWpHhq1qyZWblyZc4VbS5cuMDs\n2bOpX78+tWvXZtOmTS5JJd577z06dOjA+PHjeffddwF45plneO655wB48skneeGFFxz1jTGkpaWR\nkZGBMYbbb7+d4ODAhoI4J9yoWrWqy8LFSil1tRCRVU5fwAVyXibWXF4AASKBM7ZtY4zxzBpRwMIr\n1TaVBr5KRGgQUWEhHDltJSsqERbMxue6sHX/SW74t/XF3P0davFwpzqOeVhKKaUun9y+9+TYgyUi\n5ZznRhVnYWFh9OhhDdk/ePAgW7e6jGpkyJAhHudMmjSJ3r17k5ycTJcuXVwCrO3bt9OvXz/Wr1/P\nkSNHWLRoEY0aNaJcuXJ+t+nXX3/ljz+sZI116tTJzctSSqmrljGmyE5geq1vY2at2cPX6/cCl74w\niwy91OSHrtfgSimlrjT+/NZeKiKfikhX8Sc/eTHRsmVLevXqlWO93bt306tXL7766iuPY/Y1sR59\n9FHat29Phw4dWLFihd9tyMzMpF69etxwww3ccMMNHDt2LOeTlFJKFQkNKkcTHnLpbdj+ButcFhai\nwZVSSl1p/PnNXQcrrXl/YJuIjBORYt9VsmPHDpf9bt26+ay7c+dOnn32WY81quxrWDnHrYGsg5WZ\nmemy794mpZRSRVd82SivvVPhIUW2000ppZQfcgywjGWOMaYfVoKJgcByEflRRFoWeAuvANHR0Ywb\nN47169f7rLNv3z7i4uJcyqpXrw5Ao0aNaNOmDe3atSMmJsbv+7rPnyvO8+mUUupK9NN2p1xMtu/a\nQoJ1sIhSSl3J/JqDBdyB1YO1H3gAK916CtY6VAkF2cCi6ocffuDXX38lODiYMWPGkJSU5LXewIED\n+d///sfevXtdytu1a0dUVJRjTldMTAzTp08nkFGYISEhDBo0iG3bthEUFERycnLuX5BSSqnL7s9j\nZz3KNMBSSqkrmz9p2pdgLdTY0xiz26l8pYi8XTDNKvo6dOhAhw4dAJg2bZojgBowYABZWVmsXr2a\natWqkZSUxF133cV7773ncv6PP/7I7NmzmTXr0tJgIsKUKVMYN24cQUFB9O/fnyeffNJnG4KDg5k8\nebJjv1evXtn2oimllMpfIvIAcD+QCXxtjHksp3NiSoTxSCffI+1Dg3TelVJKXcn8CbASjY+xZ8aY\nF/O5PVekhIQEDh48SFZWFvfddx/79+/nww8/ZNOmTXz77bckJCRQqVIlj16sIC9vokuWLGHLli0A\nzJo1K9sAy93Ro0fz9kKUUkr5TUQ6AD2AZGPMeREp7895VcpE8lCn2p4HbO+0QUHag6WUUlcyfwKs\n70XkZvtCvyJSFphqjLmxYJt25ejVqxcdO3YkPT2d4OBg5s+f73J8586d7Ny5k9mzZ3Pfffc5ypOT\nk5k+fbrL3Km5c+c6tpcuXVrwjVdKKZVbw4AXjDHnAYwxB/JyMZ1Fq5RSVwd/Aqw4e3AFYIw56u+3\ndMXFiBEjHL1OTz/9tNc6AwcOZNSoUS5le/bsYdiwYaxevZo9e/bw5ZdfcuONN7J9+3YAx/ys7Oze\nvZsjR44AUKVKlby8DKWUUoGpA7QRkX8A54ARxhiva22IyFBgKEC1atUuXwuVUkpddv4EWJkiUs0Y\nswtARKqjX7S58CcxxcKFC4mKinIpu+++++jVqxf//Oc/+eyzzwC45557uP322xEROnbsmO01T548\nSXx8vGN/yZIltGjRIhevQCmllDciMheo6OXQSKz30BigBZAKfCIiNb0NqzfGvIu15AnNmjXz+h4a\nWzIsv5qtlFKqEPkTYI0EfhKRH7GSyLbB9i2csnTr1o3GjRuTlpaWbb3atT3H3P/xxx8uAVqHDh24\n9dZb/bqvfR0tu99++00DLKWUykfGmE6+jonIMOALW0C1XESygFjgYKD36dW4Co/emJj7hiqllCoy\ncgywjDHfikgTrG/oAB42xhzK7pziZsCAAZw8eZIHHniAVq1a+awXGxvrUVauXDmaNGnC6dOnCQoK\nolKlSn7fV9fBUkqpQjUD6ADMF5E6QBiQq/fHf9+akp/tUkopVYj86cECCAeO2OrXFxGMMQsLrllX\nlnvuuYclS5YEdE6dOnV45ZVXuPPOOwkJCSEqKoovv/wyoGtER0fz+OOPO9bjatKkSUDnK6WUypOJ\nwEQR2QBcAAb6yrrry6Q7U/lyzR6P8u8facvOQ6fzp5VKKaUuK38WGn4RuBXYCGTZig3xNOwdAAAg\nAElEQVSgAZaN8/vpo48+ioiwdu1avvvuO5/nbN26lW7dujn2S5UqBcAbb7zBCy+8gIhw//3388QT\nT/i8RlhYGLGxsY61tBISEvjXv/6V15ejlFLKD8aYC8AdeblGh8TydEj0zBtVp0Ip6lQolZdLK6WU\nKiT+9GD1xFoL63xBN+ZK1ahRI8AKtPr378/u3bsZP368S50KFSqwf/9+n9ewr4m1fPly/vzzTwCm\nT5+ebYDlfJ79/koppZRSSqnC40+A9RsQCmiA5cMNN9xAkyZN2LhxI0lJSV7rPPXUUzRo0IBOnVzn\nSzdu3JiXXnrJESj9+OOPjmPLly8H4Pnnn+f8+fNkZWXx3HPPERJy6a8tJCSEsLAwgoKCCA4Ozu+X\nppRSSimllAqA5NTrISKfA8nAPJyCLGPMgwXbtILXrFkzs3LlyjxfJyUlhbVr12Zb5/XXX2f48OHE\nxcVx+PBhR/nIkSPp3r07O3bswBjDggULeO+99xzHz5w545Le/cyZM0RGRua5zUopdSURkVXGmGaF\n3Y78kF/vPUoppQpWbt97/OnBmmX7UT74sw5W6dKlERGX4Aqs4YXvvPMOEydOBKBfv34ux8+cOeOy\nn5WV5djet28fPXv2JCgoiIoVK/LFF1/k9iUopZRSSiml8oE/ado/EJFIoJoxZstlaNMVp3fv3jRv\n3px3333XZ52+fft6nYNVs2ZNl3lUrVu3pnHjxhhjCAkJ4eLFiy71nYcHnjt3jmXLlgFQrVq1vL4M\npZRSl8GqVasOicjvhd2OK1AsuUyDr/TZ5ZE+v9y70p9d9dyc5E8Wwf8DXsZa3yNBRFKA54wx3XNz\nwyLl1E5Y+RA0ey1Pl3n66acBeOedd3z2Zk2ZMoUhQ4Z4lFevXp3U1FROnjxJUFAQiYmJdOjQgczM\nTIwxXLhwgVdffZWLFy8SERFBeHi441zn4Z3OQZpSSqmiyxgTV9htuBKJyMqrZZjo5abPLm/0+eVe\ncX12/gwRHA00BxYAGGPWiEjNAmzT5XPhCGx9Pc8BlrMGDRqwceNGx/7dd9/NokWLXIKrxMRERowY\nwY4dO6hQoQJ16tShTp06fPnll2RlZbkkq8jIyOChhx7yeq9KlSoxf/58Tpw4QUhICCdOnCA6Ojrf\nXotSSimllFIqMP4EWBeNMcfdemayfFUuzjIyMlyCq06dOlG6dGmaNm3Kli2XRldu2bLFJeDaunWr\nY65VSkqKyzWzS0ISERHBtm3bGDp0KAB33XUXEyZMyJfXopRSSimllAqcPwHWRhG5DQgWkdrAg8Di\ngm1WITFZkHkeQnKXpe/tt9922Z87dy5z584FrKGAcXFxxMbG8u2333qcax/i98cff7iUOye18KYo\nrIM1d+5ctm3bRlZWFp07d6ZOnTqF0g6llFJXNd8TnVVO9NnljT6/3CuWz86fAOsBYCRWivY04Dvg\n+YJsVKGZ2xYO/gx9jkBY2YBPX7Bggc9jTz31FEOHDmXv3r1UrlzZ5Vi9evX46KOPADh27JjLsbCw\nMMaMGcORI0fIysri+eefp0yZMo7jkZGRlCtXjqCgIEqWLBlwm/PDxIkTSUtLA+DDDz/UAEsppVS+\nM8YUyw9q+UGfXd7o88u94vrs/MkieAYrwBpZ8M0pZAd/tv25GKrcFPDpn3/+eY51SpUqRWJiosuQ\nwYoVK7Jy5UqWL1/OwIED+eCDDxzHduzYwejRox37vXv3pn379o792267jdtuu42ffvqJoKAgli1b\nRvPmzf1KHZ9fFi++1KHp3gOnlFJKKaVUceJPFsH5gMfYM2NMxwJpUWEwBlwCktwNtevVqxfTp0/3\neszeu1SyZEl2797tcmz+/PnMnz8fgJtucg3s9u3b57I/ZcoUR4C1Y8cOevToAeAy9yunYYX57fff\nL2Ubdu+BU0oppZRSqjjxJ7f3COBR288zwBrAryXoRaSLiGwRke0i8oSX47eLyDoRWS8ii0Uk2e14\nsIj8IiJfOZWliMhSEVkjIitFpLnTsSQRWSIiG23XjPCnnZhMv6rlJCkpyeex9u3bs3PnTtLT0zl9\n+rTPei1atOC///0vb731FhMmTCAz07VtzlkCz549y8aNG12CK4BTp07l8hXkjj3IA6v9SimllD9E\nZKKIHBCRDU5lMSIyR0S22f4s63TsSdtnii0icqNTeVPb+/52EXldLucwjkIgIlVFZL6IbLJ95nnI\nVq7Pzg8iEiEiy0Vkre35jbGV6/Pzg/vnc31uXhhjAv4BlvtRJxjYAdTEWkNrLVDfrU4roKxt+y/A\nMrfjfwM+Br5yKvse+IttuyuwwLYdAqwDkm375YDg7NrYNAFjPsKYjPPGGGNtf4Qxu78yuZGZmWmw\nur88foYPH+6yHxERYUJCQsyRI0fMPffc4yivUaOGOX78uDl69Kg5fPiw+fPPP13O69Kli+N+a9eu\n9Xqv48eP56r9uTV+/Hhzyy23mD59+pjly5df1nsrpYoHYKXJxfuV/hTtH6At0ATY4FQ2HnjCtv0E\n8KJtu77ts0Q4kGD7jBFsO7YcaAEIMNv+OeFq/QEqAU1s26WArbbno8/Ov+cnQEnbdiiwzPYM9Pn5\n9/xcPp/rc/P88WeIYIzTbhDQFCid03lYa2dtN8b8ZrvOVKAHsMlewRjjnI1wKRDvdN944CbgH7a/\nSMdpgL0bpzSwx7Z9A7DOGLPWdu3DfrTRJn+G1HkLvh955BHWrVvHG2+84ShLTU2la9euLFmyhJiY\nGJf6iYmJlC596fG6DxEcMGCAY7tOnTosWbKE/fv307NnT0cbLvcQwUcfffSy3k8ppdTVwRizUERq\nuBX3ANrbtj/AWofzcVv5VGPMeWCniGwHmotIOhBtjFkKICJTgJ5YH9quSsaYvcBe2/ZJEfkVqII+\nO78Y6xO+fbhPqO3HoM8vRz4+n+tzc+NPFsFVWP/oBMgAdgJ3+XFeFcA548Fu4Nps6t+F64N9FXgM\n65sZZw8D34nIy1gBXytbeR3AiMh3QBzWX+h495uIyFBgKEDTBFvh2pFQ/0mnWrmbg3X+/HmX/ebN\nm3P69GnCwsJcylesWMGKFSu8XuO7775z2f/3v//tsu+8CHFERAS7du3i1ltvBaBPnz58+umnuWq7\nUkopVURUsAUQAPuACrbtKlhfxtrttpVdtG27lxcLtgC1MVYvjD47P4lIMNZn3GuAN40xy0REn1/O\nvH0+1+fmxp8sggk51ckrEemAFWC1tu13Aw4YY1aJSHu36sOAR4wxn4vILcD7QCes19IaSAXOAPNE\nZJUxZp7zycZKF/kuQLOaYkVSm1+B467zmHLjyy+/dNlfvnw5y5cvB6B+/fpUqFCBcuXK8dlnn/l9\nzRdffNGxXaVKFXr16uVyvCisg/X999+zZs0ajDHceOONHoslK6WUUrlhjDEiUjhvblcAESkJfA48\nbIw54TySRp9d9owxmUCKiJQBpotIQ7fj+vzc5PD5HNDnZufPEMG/ZnfcGPOFj0N/AlWd9uNtZe7X\nTwImYI29tA/ruw7oLiJdgQggWkQ+NMbcAQwEHrLV+9R2LljR70JjzCHbdb/BGtftEmD5tG+uX9Wy\ns2bNGp/HHnvsMQYOHMipU6cCCrCcHT58mHHjxjFq1ChHWcmSJalRowYiQvny5XN13bz6/PPPefdd\na5mDMmXKaICllFIqL/aLSCVjzF4RqQQcsJX7+lzxJ05TDPDxeeNqIyKhWMHVR06fxfTZBcgYc0ys\njNld0OeXE6+fz9Hn5sGfLIJ3YfUS3W77mQAMBv4P6JbNeSuA2iKSICJhQF9glnMFEakGfAH0N8Zs\ntZcbY540xsQbY2rYzvvBFlyBNeeqnW27I7DNtv0d0EhEokQkxFbHMd8rRy6ZBHOXyMR5npU7+7dK\n4eHhNGnSJFfXP3funMuaWABdunRh8+bNvPnmm/To0YOFCxfm6tp54TysUdfBUkoplUezsL5Mxfbn\nTKfyviISLiIJQG2spFt7gRMi0sKWiWyA0zlXJdvrfB/41RjzitMhfXZ+EJE4W88VIhIJdAY2o88v\nW9l8Ptfn5safOVihWNn/9gLYItPJxpg7szvJGJMhIsOxAp9gYKIxZqOI3Gs7/jbwLFa2v7dsAUiG\nMaZZDu0ZArxmC6LOYZtPZYw5KiKvYAV2BvjGGPO1H6/PW+tzdVbPnj2ZMmWK12Ph4eEAhIaGsnr1\n6tw1y80vv/xCr169OHDgAGfPnnXc58yZMy5DBwua8zpYISH+/JNSSimlQETSsCbHx4rIbmAU8ALw\niYjcBfwO3AJg+wzxCdaXpxnA/bZhXgD3AZOBSKz53FfNZHkfrgP6A+tFxD585in02fmrEvCBbR5W\nEPCJMeYrEVmCPr/c0H93biSneTsi8qsxpp7TfhCw0bnsStWsppiVY70caDsT4rsHfL1XXnmFv//9\n716PrV271rGdnJzstY6/XnzxRR577DGWLFlCq1atPI7v3r2bKlUu31zBzp07M3euNcTy+++/p3Pn\nzpft3kqp4sE2pzanL+CUUkqpQudPN8c8EflORAaJyCDgayDvE5aKMpNxaTv9Y5jTFs4fyfG0v/3t\nbz6PPfLIIyQnJzuCqxIlSgDw8MMPc8cdd/g8z5snnrDWbPaVjv1yp2nv0qULgwcP5s4776Ry5cqX\n9d5KKaWUUkoVJTn2YAGISC+sxQDBSiQxvUBbdZn47MFq/QlUu9na/tg2H6veo9DYI+u7h2uuuYYd\nO3a4lNWoUYP09PRL923WjCeffJJvvvmG999/P1dtz8rK4vz582zbto2kpCRHeXR0NOvXr6datWq5\nuq5SShVF2oOllFLqSuHvRJ3VwNfGmEew1qByX5vq6pKV4VmWcSbH006cOME///lPj2GCr732msv+\nypUr6d27d66Dq8ceewxjDBERER5JJUaOHJnn4Gr8+PHUqVOHevXq5bqNSimllFJKFUf+pGkfgpVI\nIgaohbUQ2NvA9QXbtEJkvARYfpg5cyYDBgzwKN+7dy9NmzalcuXKVK1alYsXL/Lee+/l6h7x8fEu\na2O590A+/vjjdO7cmcaNG+fq+gAHDhxg2zYrOePRo0dzrD979mwWL16MMf/P3p2Hx3T9Dxx/n0kI\nIbZIbLETWRBLGtSStGhR1aJFbUFRVUu1qrp8La1uv9aulLaW0kVLi+61ldp3JasgEmsiIUFIMpnz\n+2OScW9mJpkggp7X8+TJvefce+6Z0Sb5zDnncySdO3emdevWt/xsRVEURVEURbmfOTKC9RLmbDWp\nAFLKY0DRbLh0t5y5teSDe/futVk+YsQIXnvtNdatW8enn37KBx98kGc706dPt1t3+vRpuna9mR3/\n3LlzVtfc6j5bObKybqasd3Jyyvf6v/76i2nTpvHee++xe/fu23q2oiiKoiiKotzPHAmw0qWUGTkn\n2enRH+wdmuNW2ijM/yWvXGnrPmvu7u4EBtpfSmAvE2GOX3+9GQCGhIRY1ffp08ehftjz0EMP0bFj\nR0JCQihTpky+18+aNcty/O+//97WsxVFURRFKRghhLsQ4lD213khxBnNefFc1+a71EMIcTpnnygb\n5Ss1532EEF/codcwTQjx8p1oS1GKmiMB1hYhxJtASSFER+AH4OfC7da9KP8Aq3v37pbjkSNH5nnt\n999/f9s9+vvvv6lfv75VuY+Pz221GxcXx/r16/n777+Jjo7O/waNypUr39azFUVRFEUpGCllkpSy\niZSyCeZlHDNzznM+JBdmBinl41LKK7fxuBZCiAZ3pON3SM5rK+p+KEoOR/5jnAgkAkeAF4DfgLcL\ns1P3K+2o1Pz583V17u7ubN++nR07dnDs2DFq165NREQEc+bMoWzZsgV6jq+vLzdu3CAjI8Nm/d9/\n/+1wW7aySIaFhVmOc7+O/Pj5+RXoekVRFEVRCocQop4QIlwI8TUQBlTRjk4JIX4WQuwXQoQJIYY6\n2Ox0zJsa536WbgRKCBEphPDK7sNRIcRyIUS0EOIrIcTjQogdQohjQgjtlJ6mQohd2eVDNG1NFELs\nEUL8K4SYZO+1FfgNUpRCkmeAlb3D9XIp5edSymellM9kHz/YUwRtceAlDx06FDc326PuAwcOpE2b\nNrRu3ZrJkycDsGPHDtLT03Fxccm37X79+lmOIyIiuHbtms3gCMx7a+Xn/PnzPPTQQzRr1swqE2Ht\n2rUtx1evXs23LS01gqUoiqIo9xQfzCNaflLKM7nqQqWUzYGHgFeEEOUdaO9boKUQona+V97UAPgg\nuy+NgZ5Syocxf4g/UXNdIyAE89r/d4QQlYQQXYAaQAugCfCwEOJhB16bohSZPAMsKWUWUDP3/F3F\nPg8PD935//3f/zF8+HBdMgohBJcuXeL555/ntddeIyEhgZYtWzJ06FBdhkCtPXv26M6nTJnC3r17\nCQ8Pt7rWYDD/s5pMJnr27Em9evXYtm2b7prp06ezb98+Dh06xLRp+s3AfH19HX/BQN26dS3HderU\nKdC9iqIoiqIUquNSyn126sYJIQ4DOwEvzNmi82PEPIo1Mb8LNWKklOFSShMQDmzMLj8C1NJct0ZK\neUNKmQBsxRz4PQZ0Bg5i3jaoHuCdfX1er01Riky+adqBE8B2IcQ64FpOoZRyRqH16j518eJFpk2b\nRlRUFBUrVqR9+/b4+voSHR3NokWLLNfVr1/fahrfhAkTCAoKAmDBggW6jYkBS9r0HPPmzQOgXbt2\n5FayZEkAvv76a3788UcAgoODddkBy5e/+SGVu7u77v4VK1ZYjnv06JHnawYYO3Ysly9fRgiha1dR\nFEVRlCJ3zVahEKID0A5oKaW8LoTYBpRwsM2lwARAu1DbiP6De21b6Zpjk+bchP5v0dxTcyQggGlS\nSt3GnEKIeth5bYpS1BxZg3Uc+CX7WjfN14Or3ggbhflPEfzxxx/p27cvU6dO5fDhw1y8eJHvvvuO\n33//neDgYPr27curr77KlClTEELo7p0/fz5eXl54eXlZBVdaAQEBunNbI1gpKSmAPnBydXXVXaN9\nvslk0tVpg6TOnTvb7UuOOnXqkJSURGJiIvv378/3ekVRFEVRilxZIDk7uPLHPFrkkOzEGXOAsZri\nWKA5gBAiCKh+C316WgjhIoTwANoC+4A/geeFEKWy2/YSQlS8hbYV5a6xO4IlhHCWUhqllFPvZofu\nZzt27LAcHz16lE8++YR169YB8NNPP/H0009b6nOP9NjbQyu3w4cP687d3d1p06aNbgpgxYoViY2N\n1a3Runr1KqdOnaJmzZoA9O3bl5YtW2IwGKheXf8zcMuWLZZjbWCWmppKbGwsTk5OlClTxnLfjh07\nmD17NgCenp489thjDr0WRVEURVGKzK/AcCFEOBAFFHQjy8/RJ7v4AegvhDgK7MI8A6qgjgJbAHdg\nspTyAvCbEMIH2JX94fAVoO8ttK0od01eUwT3AM0AhBBzpZSj706X7gUm66KUo/netXHjRstxVFSU\nbj1W7hGr4OBg5s+fb0nnnjPq5KhHHnkEg8FAgwYNrJJk7Nixg4MHD9KtWzeCgoIs67c2bdrE4MGD\nAahZs6Yl2MpNO6Ll7e1tOf7nn38smxx37tyZ3377DYD333/fck3uhBmKoiiKotw9UsopmuMYzIkh\ntPVemtPH7bThlV+5lPI6UFlzfg3oYKdbTTTX9bfVPyml3QzV2ctSbC1NaWKjTFGKXF5TBLURQevC\n7sg9RdoIsBK353vbs88+azl+++232bfv5rpLW9n4HE3GeOjQIauyTZs2MXr0aAIDA9m4cSONGzem\nUaNGlvobN27g5OREvXr1LGXFi9/MVRIREcGaNWtYu3YtUVFRura1mRBLly5tOdYGXk5OTjb7mnsK\no6IoiqIoiqL8l+Q1gvXfS8VucWsvvWXLlgwbNgwhBI0aNaJBgwaW7IFGo5E//vgDIQTVq1fHz8+P\nRx99lCVLlmAymfj+++/5888/rdr08PAgICCA5cuXM2DAAMCctS8+Pp6srCwyMzMB+PfffwFz4BMU\nFESNGjXIzMykcuXKNGzYEBcXFypVqmRp95tvvrFkD5w6dSqTJk2y1KWmplqOW7RoYRldK126NA0b\nNiQrK8syPTB3kFirVq1beu8URVEURVEU5UGQV4DlI4T4F/NIVt3sY7LPpZSycaH3rqjYGsFyQK9e\nvejVq5flXJtyfdCgQZbj4cOHs3DhQrZv305cXBwmk4mBAwdStWpVlixZomuzXr16REdH079/f2bN\nmsX+/fs5fvw4Fy5csEpOAZCVlcXOnTuZNm0aDz/8MDNmmEfUg4OD6dDh5si9NjDKSeue488//6Rx\nY/M/r3Z9lo+PD2PGjMFkMun2u3r88cctwWFwcHD+b5SiKIqiKIqiPKDyCrAKthnSg+QWA6zcxowZ\nQ8+ePSmRvAm3xFUMWQRXrpvXYyUlJTF06M1N03/99VcWL15MSEgIoaGhlvKdO3cyZcoUvvnmG10g\n9MYbb/DQQw9x5swZOnfubBnByrF+/Xr++OMPy7k2cQXAwYMHLcfr1q3j7bdvTn3WrhfTBmIxMTEM\nHz4cgDZt2vDUU09x4MABjh41r09r2bKlVbZCRVEURVEURfkvsRtgSSlP3c2O3FskHBgPbvULdNeZ\nM2eIiYlBCEG1atXo1q2bueKbkVAbIs/C/34wb+SrXZ8FcO7cOSIjI3nrrbes2v3222957733GDNm\nDAkJCbz66qts2LCBDRs20KVLF5YsWcJff/3FG2+8YblHu+dVjkOHDtGkiXk9aMeOHS1JKlq1aqW7\nzs/Pjxs3biCE0AV1tlK779mzhzNnzJun79q1y+H3SlEURVEURVEeRI7sg/Xfc+kgRE6Hvbb2w7Jv\n9erVhISEEBwczKxZs6zq2wb58eabbzJ27FiraXk//fQTvr6+nD592mbb4eHh9O/fn1deeUVX/vXX\nX9OsWTMmTtRvqF6hQgVGj9YnfsxZrwX6aYG5pxoaDAZcXFwoXrw4zs43Y/DKlSszdOhQhg0bZgke\nMzIydPfmbGysKIqiKIqiKP9FeU0R/O9Kibil27TT8GxtuBvcri3BQe8B5gBIy1amQK1Ro0ZZUqRr\naacBatdCubm5ERwczNy5cy31J06c4KGHzPsI9u7dm4cffhiDwaBLJw/mPbwyMzMRQuDn52fJPujm\n5sagQYNwcnLC09MTME8L1Nq/fz89evTI87UoiqIoiqIoyoPKoQBLCFESqCGljMr34geBNN7Sbdog\n6eTJk7Yathw1b96cDz/80DLylDPNzp7Y2Fi75RkZGTg5OekCvFOnTtGzZ0+eeeYZVq1aZbl29erV\n7N27l7FjxxIYGGizzSeeeIK4uDjL68jJDPjbb78xZMgQAEJDQ1m6dKkuDTw4nnpeURRFeXDt37/f\n09nZ+QugIWq2jKI8SEzAUaPROLR58+YJRd2Ze1W+AZYQ4kngE6A4UFsI0QR4R0rZrbA7d7/p06eP\nZdPdUaNGWV+QK/iwlQXQHg8PDxITE23Wubi40L9/f/r06cPSpUsBLNkDtVkAjx8/bgnoli5dyscf\nf4wQgmbNmuHn52ezX9opgLb2wcodUKnRK0VRFMXZ2fmLypUr+3p4eFwyGAzqkzdFeUCYTCaRmJjo\nd/78+S8AFQvY4cinSlOAIOAygJTyEFC7EPtU9Fyr53+NDa1bt2bcuHG88sorBAUFWdWfOHGc1atX\nWzL+de/enVWrVvH999/zzDPP5Nn2Z599houLi936lJQUnJ2d8fX15eGHHyYoKIhDhw6xZ88eAKpV\nq0Z0dLTl+gsXLjBw4EAGDBhgSXaRo2TJkpbjnKQYYA7yWrVqRVBQEHXq1AH0AVjlypXtjorZ8913\n39G+fXvWrl1boPsURVGUe1pDDw+PVBVcKcqDxWAwSA8PjxTMo9OKHY5MEcyUUqZoM8jxoG9CLJxu\n6bYuXbrQpUsXu/WbNm1i2BebeOWVV5g+fTrbtm0jPDwck8nEI488QtWqVTGZTMybN093X7Nmzeja\ntSshISE2NyN2dnbm33//5dSpm4kfR40apZuyeObMGV3gpJXr35bff//dMvVPu99Vy5YteeaZZ5BS\nUrFiRUt9amoqGRkZNjMX5iUjI4PnnnsOML83anqhoijKA8OggitFeTBl/7+tpv7mwZE3J0wI0Rdw\nEkLUF0LMBXYUcr+KlixYoOConDhGCMG5c+cYNmwYM2fOZPbs2bi7uzN79mxdUoocXl5eFC9e3GZw\n9emnn5KZmcnixYt15baSZjRq1Mhmv8aPH09AQABNmza17LdVrFgxihcvbklwAXD27FleffVVxo8f\nz8yZMwHzfls+Pj40bdqUN9980+H3AvRZDRVFURRFURTlQeBIgDUa8AfSgW+AFOBlRxoXQnQSQkQJ\nIWKEEBNt1PsIIXYKIdKFEONz1Y0VQhwVQoQJIV7WlDcRQuwSQhwSQuwTQgRllxcTQiwTQhwRQkQI\nId7I/TyHpcXf8q15yRknatSoEQcOHNDVnT59mn379rF3716r+9atW0d8fDyffPKJVV3jxo0BKF++\nfL7Pz50tUOvff//l0KFDJCUlUbt2bTIyMkhPTycyMtJyja3U7mlpaZw9e5b4+HiSkpLy7YOWduSs\nRIkSBbpXURRFUfLi5OTU3MfHxy/n680336yc/13WevbsWWvJkiX5/5J1wPLly8vt37/f8gvv5Zdf\nrrpmzRq3O9H2k08+Wdvb29tv6tSpngW57+LFi04ffvih/T8QHmCurq5N7+bzevfuXVP77387pk2b\n5lmnTh3/bt26FXjZzjvvvON55coVNQJViByZIugjpXwLsN4BNw9CCCfgU6AjcBrYK4RYJ6UM11yW\nDIwBns51b0NgGOa1XxnAH0KIX6SUMcD/AVOllL8LIbpkn4cAzwIuUspGQghXIFwI8a2UMrYg/S5M\njRr5M23ac4SGhvLLL7/o6nbt2sX48ePt3AlxcXGWtV3t2rWzlK9YsYI2bdrQtEHGAr4AACAASURB\nVKn+Z0THjh2pX78+8+fPt5T16tWLFStWkJmZaXf0yGi0n0HRw8ODl19+GYPBQJUqVQB94os1a9aw\nbNkyQkND7bahVbJkSa5du4aUUk0PVBRFUe4oFxcXU2RkZHj+V95ZRqNRt4ek1po1a8oZjcaU5s2b\n3wCYNWvW2TvxzLi4OOfDhw+XiouLO1rQe5OSkpy+/PJLz4kTJ9rOpGVDZmYmxYoVK+ijHnj5vS8r\nV648ZbeygL788kuPDRs2RNetW7fA04EWLlxYadiwYclubm4OZ1vL679rxZoj79R0IURlYBWwUkrp\n6P+8QUCMlPIEgBDiO+ApwPLDTkqZACQIIZ7Ida8vsFtKmZZ97xagB+ZgSgJlsq8rC+T8cJJAKSGE\nM1ASc2CW6mBf7wpXV1dKZprXQeUEKDnCwsJ05926dWPdunWW8xEjRnD0qPVbv337dsuxj4+PZcQp\nIyODdu3a6QKspUuXkpaWZjmPjIxECMGYMWMs0w9PnTrFzp07LftgtWjRwjJNMD09nU6dOmEwGKhZ\nsyZgXnc2btw4y5TBw4cPO/x+CCFwdXV1+HpFURTl/jNkCNWPHuWO/rBv2JC0xYsp8HSTpKQkp+bN\nm/uuXbv2WEBAQPqTTz5ZOyQk5Mqrr7560dXVtelzzz13ccuWLWU8PDwyV69efaJq1aq6Tx3Xrl3r\nNnHixOpZWVkEBASkffXVV6dKliwpq1Wr1qhbt27JW7ZsKfPyyy+fv3LlitOSJUs8MjMzRa1atdJX\nrVp1cteuXSU3bNhQbteuXW4fffRRldWrVx+fNGlSla5du6YMHjz4Ul5t9+rVK+nPP/8sazQaxcqV\nK080bdr0hrZfHTp08E5ISCju4+PjN2vWrLiwsLASuZ/v5uZmio+Pdx4yZEjNuLg4F4B58+admj17\ndqX4+HgXHx8fv+Dg4NQFCxacfvHFF702bdpUVgghX3vttXPDhg279Msvv7hNnjy5atmyZbNOnDhR\nIjY2tsDBnD1D1g6pfjTh6J39b8SzYdripxYX+L+Rs2fPOg8ePLjmmTNnigPMmDEj7rHHHru2efNm\n13HjxtVIT083lChRwrR06dKTAQEB6XPmzHFfs2ZN+bS0NENWVpaYPHny2XfeeadqhQoVMqOioko2\natQobc2aNScNBgNBQUENPvnkk/h27dqlubq6Nn3++ecT/vrrr7IlSpQw/fLLLzHVq1c3hoWFufTt\n27f29evXDZ06dbr8xRdfVEpLSzuo7WPfvn1rnD592qVz5871+/Xrd7Fdu3ZXbfXNaDQycuRIr82b\nN5cVQsjQ0NCLUkoSEhKKBQcHe5cvX964e/fu6IULF1aYPn16ZSml6NChw+UFCxacAfMIX79+/RK3\nbt1aZs6cOXGPP/741Tvzr/Pgy3d4UEr5CPAIkAgszJ6C97YDbVcD3Q+/09lljjgKtBVCuGePRnUB\nclL7vQx8LISIx5w+Pmcq4CrgGnAOiAM+kVImO/g8x9zmKMu+vXsto1TNmzfXrVmKiNBvbqwNrsCc\nYt2Wo0ePkpycTFpamm463+HDh+nduzcTJkywlK1YsUJ3b/369fH29tat7TIYDDz11FMEBwfTrl07\nLl26ZKlbvXo1nTp14rHHHuOzzz4DzKNQXl5elmvOnr0jH8YpiqIoym1JT083aKcIfv755+Xd3d2z\nZs6cGRcaGlp70aJF5S9fvuz86quvXgS4fv26ITAw8FpMTExY69atr0ycOLGqtr20tDTxwgsv1F65\ncuXx6OjocKPRyMcff2yZWufu7m4MDw+PGD58+KV+/fpdOnr0aERUVFR4gwYNrs+ZM6dix44dr3Xo\n0OHytGnTTkdGRob7+/unO9p2xYoVjeHh4RFDhgxJ/PDDDyvlfq0///xzTPXq1dMjIyPDO3XqdNXW\n8wFGjBhRo23btleioqLCw8LCwps1a3Zj+vTpp3PuXbhw4emvvvqq3JEjR0pGRESEbdy4MXrSpEle\np06dKgYQHh7uOn/+/Lg7GVzda1544YXqr7zyyoWjR49G/PTTT8dHjBhRCyAgIODG3r17IyMiIsIn\nT558ZsKECZY/fsLCwlzXrl17fO/evVEAERERJT/99NP4mJiYsLi4OJf169eXzv2c69evG1q1anU1\nKioqvFWrVlfnzp3rATBq1KjqI0eOTIiOjg738vKyOTr1zTffxHl6emZu2bIlevLkyQn2+jZ9+nSP\nuLi44uHh4WHR0dHhQ4cOTXr77bcTcu7dvXt3dGxsbLEpU6ZU+/vvv6PDw8PDDh48WGr58uXlcvrY\nokWLa1FRUeEquCoYh8b6pJTngTlCiM3ABGASMK2wOiWljBBCfAT8hTloOgTkZJ54ERgnpVwthOgF\nfAl0wDxilgVUBcoD/wghNuSMoOUQQgwHhgM0L/CsVcnNlVQFJwSW6XBCCN30ukGDBln2sLLF09NT\nlyVQy93dnRdffJGRI0daRqymTp0KYMn2l9uECRNYsGCBbl0VQHJysi4bYHJyMpUqmX+Wa6fxae/T\nTje0tYYsL8HBwWRkZGAymdi2bZuacqAoivKAuZWRpjvB3hTB7t27p37//fflJ0yYUHP//v2W6SMG\ng4GhQ4cmAwwZMiSpR48e9bT3HT58uISXl1d648aN0wEGDRqU9Omnn3oCCQADBw60fCK5f//+kpMm\nTap25coVp2vXrjkFBwen5NXX/Nru27fvJYCgoKC0devW5bsezN7zd+zY4bZq1aqTYM5A7O7unnXx\n4kVd6uR//vnHrVevXsnOzs5Ur17d2KJFi6vbtm1zLVu2rKlx48bXfHx8Mmw983bcykhTYdm+fXuZ\nY8eOWdIuX7161SklJcWQnJzs1Lt379qxsbElhBAyMzPT8gdh27ZtUytVqmT546lRo0bXcqbu+fv7\npx0/frw4uRQrVkz26dMnBaB58+bXNmzYUAbg4MGDpf/6668YgKFDhyZNmTLFK/e9udnr26ZNm8qM\nGDEiMedvK20fc2zbtq1Uy5Ytr+SM1vbu3Tt5y5YtpQcMGHDZycmJQYMGXcp9j5I/RzYa9gV6Az2B\nJGAl8KoDbZ/h5qgTgFd2mUOklF9iDp4QQryPeQQMIBQYm338A/BF9nFf4A8pZSbmaYfbgUBAF2BJ\nKRcBiwAC64iCDUkl7gDPNgW6Rat48WJUqODGwYMHadasGUOGDCEkJASTyYS3t3eeAdaCBQvo0aMH\nN27csFl/+fJlSpYsSf369SlfvjwBAQEcOHCAH3/80erayZMnk5CQYHMz5IEDB3LkyBGSk82Df82b\nN7dMK6xZsyYdO3ZESkn9+vUt98TExFiOT5w4gaOklGzfvt0S0GVlZakAS1EURSlUWVlZREdHlyhR\nooQpKSnJ2d4altxbmORHu55l+PDhtVetWhXTqlWr63PmzHHfsmXLbSWyKFGihARwdnaWRqMx347d\n6efncHV1dXjNzv1KSsmBAwciXF1ddX8jDhkypEZwcPCV9evXH4+Kiir+6KOPNsipy/2+uLi4WO51\ncnLC1r+Zs7OzzPmw2tnZ2eY1jnr99der2evb7ShevLhJrbu6NY5kEFmMeZPhx6WUIVLKBdlrp/Kz\nF6gvhKgthCgO9AHW5XOPhRDCM/t7Dczrr77JrjoLBGcfPwocyz6Oyz5HCFEKaAncnDN3J2xoC2m3\nPgXOmJlJcnKyZVPdbdu2sXr1alatWsWFCxdo0MD2/w/NmjWjXbt2jBs3zqquWLFilC9fnri4OBYv\nXsyxY8fYs2cPAwYMoHnz5uzatcty7aOPPgrAN998w4IFC2w+q0yZMvz888+W87Jly1qO27dvT+vW\nrWndujXXr1+3lLu7uxfgXbgpKSlJN1qmHdFTFEVRlMLwzjvvVPL29r6xdOnSE0OGDKmVnp4uwPw7\nKCdb4NKlS92DgoKuaO8LCAi4cebMmeJHjx51Afjqq6/c27Zte8X6CZCWlmaoUaNGZnp6uvjuu+8q\n5JSXLl06KzU11epvr4K07Qh7z2/duvWVnKmHRqORpKQkp7Jly2Zdu3bN0qd27dpdWbVqVQWj0cjZ\ns2ed9+zZU7pt27bXbrUv95s2bdqkfvDBB5ZMjDt27CgJkJqa6uTl5ZUBsHDhQtvTg+6AJk2aXF26\ndGl5gMWLF1fI7/q8+ta+ffvUhQsXVsyZaXThwgUngFKlSmWlpKQYANq2bXtt9+7dbufOnXM2Go38\n8MMPFUJCQtR0wNvkyBqsVlLKWVLKAkUWUkojMAr4E4gAvpdShgkhRgghRgAIISoLIU4DrwBvCyFO\nCyFyElisFkKEAz8DL0kpL2eXD8OceOMw8D7Z0/0wZywsLYQIwxzcLZFS/luQPjsk7XT+19ih3Qfr\n2LFjDBkyhM8//5zFixdbEk7YUq5cOUqVKsXAgQOt9ruaO3cuycnJVinc4+OtR9s3bdoEwLFjx6zq\ncmzZsgUnJycqVKiAu7s7FSrc/H/78uXLTJkyhalTpzJnzhzAvK7ro48+0rVx+fJlHJE7c6CLi4tD\n9ymKoihKfnKvwRo5cmS1w4cPuyxfvrzi/Pnz4zt16nS1ZcuWVyZOnFgFoGTJkqY9e/aUql+/vv/W\nrVvdPvjgg3Pa9lxdXeVnn30W++yzz9b19vb2MxgMjB8/3mbmvYkTJ54NCgryDQwM9Klfv75l6km/\nfv2S58yZU9nX19cvLCzM5VbadoS95y9YsCBuy5Ytbt7e3n4NGzb0O3jwYInKlStnNW/e/Gr9+vX9\nX3jhBa8BAwZc9vf3v+7r6+sfEhLiPXXq1NM1atSwn2L4Pnbjxg1DpUqVGud8TZkypdKiRYviDxw4\nUMrb29uvbt26/vPmzfMAeP31189PmTLFy9fX1y+vjMu3a+7cufFz586t5O3t7RcTE1OidOnS+W7O\naq9v48aNS/Ty8srw8fHxb9Cggd+XX35ZASA0NPRip06dvFu0aOFds2bNzMmTJ58JDg729vX19Q8I\nCLjWv39/x/6QU+wS9tJjCyG+l1L2EkIcwbz4yFIFSCll47vRwcIUWEfIfQVdSfb4HnB/yHxsvAZ/\ntYbqPaHR/+zf8405cPpmB/T7FH766SdSUlIYNGiQ5ZIFCxbQtWtXjEYjtWtbLw47f/48lSpVIjU1\nVTeqBJCSksK5c+fw8fFx+GV4e3sTHR1tVb548WIGDx5s857Y2FhL32rWrElsbCxffvklQ4cOtbrW\nkbTrCQkJVKlSBSklFStWJCHBkYFRRVH+i4QQ+6WUgUXdD8Uxhw8fjg0ICLhY1P0oCFdX16a5s7Up\nyt125coVQ6lSpUwGg4FFixaVX7lyZYWNGzfaznRWhA4fPlwxICCgVlH3416V18TKnHVOXe9GR+4b\nQjPod+o7uHzY/JVXgJWtXr26HDq0moCAAMsapxwhISGWbHyjR49m7ty5uvpLly5RqVIlm2uwpk6d\nyvTp0wv0MmwFVwDXrtmfBVCuXDn+97//YTAYKFeuHGB/Wl9OIo+8eHp66qYIKoqiKIqi/Jdt377d\ndezYsTWklJQpUyZr6dKlsUXdJ6Xg7E4RlFLmDI2PlFKe0n4BI+9O9+5FmqBB5hEcGNMgai6k3czr\n4VqyJD/99BM3btygQoUKbN26lffff5/z58/j4+PDjRs3ePHFF8nKyrJKQNGoUSOEEJaMflozZswg\nPj7+lhNENGvWzHJ89OhR/vzzT3799Vd+++03XYbAc+fOERAQQOPGjXnssccACA0N5fLly1YBm72N\njBVFURTlXqRGr5R7QadOna5GRUWFR0dHh+/bty+qYcOG6fnfpdxrHEkN0hF4PVdZZxtlitbhtyBq\nFkTeHFkKCzvK1LlHGTt2LCVKlKBt27a0bdvWUp+RkWHZXyq3/Ob7RkZG3nJQc+DAAcuxlJJnnnmG\nq1fN6xtTUlIsgdsPP/zA5MmTAXjrrbeYNm0axYsX5/Lly0RGRjJq1CgOHz7MV199ZdmcWFEURflP\nMplMJmEwGG5vA0lFUe45JpNJACozWR7sjmAJIV7MXn/VQAjxr+brJHDnk0fcL7RTBPNaZ5T4j/n7\ntZt7V+WMfdmbVnc7WfSGDRumO8/IyEBKybJlywrUzrVr13TBXFxcHGBOjJETXIF+H6y1a9fSrVs3\n5s2bxz///EOtWrUcft6jjz5Ko0aN8Pf35+LF+2q6vqIoimLf0cTExLLZf4gpivKAMJlMIjExsSzw\nwG42fSfkNYL1DfA78AEwUVN+RUqZbPuW/wIHf1ck77cqKl7cmQoVyhAREUGbNtb7aXXq1Mluc++9\n9x5vvfWW3frSpfWbhKempuLu7k6DBg0YPnw4ixYtcqjboaGhnD17ls2bNwMQGBjIjRs36Nu3r+46\nX19fy7F2BAzMmQ1Hjx6d77NMJhM7duwgPd08+q2mFSqKojwYjEbj0PPnz39x/vz5hji2JYyiKPcH\nE3DUaDRaZzhTLOwGWFLKFCAFeA4s+1KVwJwKvbSUMu7udPFekx1gmXKtv1rfFmr0ggb2Awuj0Uhy\ncjI7d+60GWDZ20S4WbNmdOnShaVLl9pNsd6vXz+++OILy0a/9erVw8fHh4iICGrUqMGSJUsYOnRo\nvkklMjIy+PHHHylf3rxRfE7q9CpVquiuCw8P1z1bO7Vx7dq1DgVY8fHxluAK1D5YiqIoD4rmzZsn\nAN2Kuh+KoihFId81WEKIJ4EZQFUgAaiJeV8r/8Lt2j0schYcfA3qPn+zLHGb+SuPACtn7Es7vU7r\n8OHDlmODwWAJOJKTkzl69KjN4OqXX37BYDAQHBzM22+/bSm/fPmyZZPhI0eO2E29npvJZGLgwIGW\n8xo1agDQs2dP0tLS2LhxI2BOK//uu+8yffp0xo8fr2vj/PnzZGVl4eTklOezcqdy9/T0tLpm3759\njBw5kiZNmrBw4cJ8MxMqiqLc6ypWrCgLMpVaURRFKRr79++/KKX0KOh9jiS5mAa0BDZIKZsKIR4B\n+hf0QfekYmWA1ALeZIID48yHMQsLdGdIgBsvvTSQJk2a2Kx/5JFHLFPzxo0bZ0m9HhsbazdY6dWz\nKy91hEa1tzi09xRgd8rgI488Qrdu+g8cjxw5ApinDj755JO4u7sDN0ebbI06hYWFWfa4yk/ZsmWR\nUlKjRg2bWRCDg4NJS0tj7969dOrUiR49euT/AhVFUe5htWrVYt++fUXdDUVRFCUfQohT+V9lzZEA\nK1NKmSSEMAghDFLKzUKIWbfysAfCtVufGenucoV58+Zlt3MKipWF4uUs9RUqVLAc16tXz3L80EMP\nUbt2bQYMGMDy5ct1bb7SGd59FkyHOlO6dGmuXLmSbz9yr5nKkRPc2ePq6sr//d//YTAYKFGiBJD3\nPli2fPjhhyxatIhJkyYxaNAgLl/Oe7PwtLQ0y3FOZkNFURRFURRFuVc5svD0shCiNLAV+FoIMRuw\nvxvtg27rU/lfI+2vJXr11VdJOhMBa2vBqvK6uoyMDMvx7Nmzee211/D19WX8+PG0bNmSr776ig8+\n+EB3T9Na5u8GU5rV5sX2FOST05deeomkpCTGjBlD/fr1mTBhAuPHj2fUqFGcPXuWCRMmkJWVRWZm\nJv7+/lSqVInKlSvbnMqXlpbGG2+8wcmTJ3nllVccev6YMWNo3bo1LVq0oGHDhg73W1EU5XYJIRYL\nIRKEEDazZQmzOUKImOwsu81sXacoiqL8tzgSYD0FXAfGAX8Ax4EnC7NTd08hrecx2d+zasaMGdy4\nYHsEKSYmxnIcGRnJ//3f/xEeHk6vXr0s5blHhoyanBXOzs48/fTTuvru3bsXpOdW5s+fT0pKCnPn\nzuX06dO6OiEEQggMBgPOzs4cPXqU8+fPc+7cOZvTA7UJLVJSUhx6/uzZs9m2bRu7du3SbYisKIpy\nFywF7Kd3Ne8JWT/7aziw4C70SVEURbnH5RtgSSmvSSmzpJRGKeUyKeUcKWXS3ejcfUvaz9TXpQlU\ni7S9hC2/DH/Lly/nzTff1JXlzpfRsGFDnJ3NMz+XLVvGiBEjHOjwTR06dLAqszcN8NQp87TUhIQE\nAgICaNy4Me3bt7fbtjZJR06bHTt2pFatWtSoUcNuhkRFUZSiIKXcCuQ1NeAp4CtptgsoJ4TId/Hp\nmTN3qoeKoijKvSivjYavCCFSNV9XtN/vZicLTWFlpMsjwPr1Nfu3RUdHW44ff/xxq/qEhASrMg83\nzWOlpF+/fpaNgkNDQ9m/f7/drIW2rF27lj59+ljOZ82aRcWKFW1emzMiZTQa+ffffzly5AibNm1i\n1izbS/Q+//xz3XlmZia7du3i1KlTxMfH66ZIKoqi3AeqAfGa89PZZVaEEMOFEPuEEPvOn4ctW+5K\n/xRFUZQiYPcvbymlm5SyjObLTfv9bnay8BTS3ofS/hTBvLRo0cJyPHnyZKt6W+ua3DX7C2dlZek2\nAAZ48803MZlMLFxoO+PhihUrePbZZ+nevTudO3fG39+f7777jlatWhETE8PYsWMpV66czXsPHDhA\nenq6LhEFYEnlntvTTz9N2bJlcXNzo1evXkRHR+sSV9gaKZs+fTq9evXi2WefZffu3TbbVRRFuddJ\nKRdJKQOllIHFi8Pzz0OuH52KoijKA8KhCEMI0UYIMTj7uKIQonbhdusucfWCCoF3vt08RrDyog0g\n9u/fb1Xfr18/Xaa/9evX09C/geU8r5GqF154wWZ5//79iY+P58cff2TUqFHExsYCsHPnTurVq0fd\nunUZOXIkM2bMYOhQ/abdmzZtYurUqdSvX19X/ssvv9gcjXrsscd46623ePvtt2nRooVuPVnp0qVp\n0KCB1T3Tpk3jhx9+YNWqVboRPkVRlHvAGaC65twruyxPtWrB8eMwaVJhdUtRFEUpSvkGWEKIycDr\nwBvZRcWBFYXZqbvGUAw67YWqXe5su3YCrBtZxfO8TTs1r3Tp0lb1lSpVIiQkBKPRyOjRo5k0aZJl\nHRTYHuFyxK5duxgzZgwzZ860qjtx4gTnz59n3LhxVlP8fv31V7vrs+Lj463KjEYjEyZM4PXXX+fN\nN9/E2dkZLy8vqlWrRmBgIMWLW78/2jTuZ9TCBUVR7i3rgIHZ2QRbAilSynP53eTmBiNGwMyZoAbm\nFUVRHjyO7IPVHWgKHACQUp4VQrjlfcv95g5PFTTanvdRorgzZNlfZ+Ti4mI5treP1KxZs5g3bx7H\njx8H4EYPIDvb+60GWABz5861W5fXXlfOzs64urpaTRO01X9t/6SU+Pj42AzE7GndurXD1yqKotwu\nIcS3QAhQUQhxGpgMFAOQUn4G/AZ0AWKANGCwo21/9BH8+isMGQIHDoDmx7+iKIpyn3MkssiQ5r+W\nJYAQolThdqkIiDscYGXYTrKYmXnDuvDGRcuhn5+f5Xj16tU220hKSrIEV5D9j1LIXF1dSUxMtFqL\n1aVLF6ZNm8a1a9eIjIykWLFiAJQpU8aSyVBLu0+XowktQkND6dSpEx06dLA5hVBRFKWwSCmfk1JW\nkVIWk1J6SSm/lFJ+lh1ckZ098CUpZV0pZSMppcObDJYpAwsXQng4vPde4b0GRVEU5e5zJLL4Xgix\nEHP62WHABuCLwu3WXXanAyyT7SmCwtYGxPGrLIfaEZpLly7ZbMPeyFZ2JWXK6POPjB07No+O2ubt\n7a0737ZtG56enlZ7V2nXdTVo0ICMjAyklKSkpFCrVi2rdrdt21bgvixdupTff/+d9evX4+npWeD7\nFUVR7lWdO8PAgfDBB3DoUFH3RlEURblTHNkH6xNgFbAaaABMklLOKeyO3VX5BVjFbGfRs8tOFkFn\nJxuFppsjOdqpeLYSVnz99dfMnz9fV2bQzQqU9OjRQ1c/e/bsfLubW+69sM6ds72koGbNmgCkpqZS\nt25d6tSpQ+PGje22+9NPP1mVdenSxbJh8bvvvmtVn5WVxYkTJwrSfUVRlPvGzJlQsaI50LphY5KD\noiiKcv9xaOhGSrleSvmalHI8sFEI0a+Q+3WX5fM21H2+YM0VJE27JsDy8/NjzZo1rF692mawkZKS\nYjWypVt2JbNs7p9VsmRJx/sDliCuf//+9O3bl08++cTmdSdPnjQ/VkpOnDjByZMnOXLkCO7u7jav\nr1Spku48NTWVXbt2Wc5zJ+2QUhIcHEzdunWZOHFigV6DoijK/aBCBVi8GI4cgf/9r6h7oyiKotwJ\neW00XEYI8YYQYp4Q4rHsLEmjgBNAr7vXxbshv5VMBVjpJCWYChBgaTIOuru789RTT9GjRw9CQkKs\nLtUmiejduzcjR47EyUkTYUkTzz33nNV9oaGhrFhR8MSPy5cv5+uvv6Z69eo26/fs2UNKSgoXLlzQ\nlWvXWmnlTlLx7bffWgWM3377reU4KiqK7du3A/DRRx+xcuVKq2QaiqIo97vOnc1ZBadPVxsQK4qi\nPAjyGrpZjnlK4BFgKLAZeBZ4Wkr51F3o290TbzuhBACtlpuDJkdJU8FGsDQB1g8//MDYsWMZPXo0\nW7dutbpUGzytXLmS/v37U6dWTZttaSUmJtK/f3/H+5TN3d0dT09Pu/eeOHGC119/3WbyievXr1uV\nPfvss7rz3GuqfHx8aN++PTNmzMDPz4/mzZvr6vv06cPo0aML+jIURVHueZ98AnXrQmgopKYWdW8U\nRVGU25FXgFVHSjlISrkQeA7wAx6XUj7YS3HLadYQNfkQavenYCNYRoj7wfHrNaNdf//9N3PmzGHe\nvHkcOXLEumu5svidOHHCHNBZnm07nfqvv/7qUFd8fX1158nJySQmJtoMlsAc5NlL4R4TE+PQM7Ui\nIiJ46KGHmDlzJhERETZHq/LaTFlRFOV+VaoULF8O8fFwC7mJFEVRlHtIXn+tZuYcSCmzgNNSygd/\nCa6zdoPfnLenAAFW5hU4XoAki5pRJ+0UQHuBi5Z5rZQ2wLKzwbGDK6cjIiLs1u3atYsdO3bQvXt3\nXbmbm5vNNVf2sh1qX+Py5cttXnP69Gm7/fjiiwcrgaWiKEqOli3hzTdhvqqKCgAAIABJREFU6VKw\nkRNIURRFuU/kFWAFCCFSs7+uAI1zjoUQD+4EBqFJ9ZeTXbAgUwR/9LBbdS2zmHWhJijy8vKyHK9f\nvz7fRzVt2jTXqJXJboKJHNq9tgrC09OTIUOG6DIBBgYG0qZNG4xGI97e3tSrVw+AOnXqUKJECZvt\nTJ48mSlTpjB16lSeeOIJS/ljjz1mOfbwsP8eKoqiPMgmTYJmzWD4cDh7tqh7oyiKotwK691gs0kp\nbSUVf/BpU7aLWxjByoMxMxNyx1ia9VoNGza0HDsygmUymfQBlimLRo0a8ffff1uKxowZw5w5N7Pq\nh4eHF7jfYA6atL788ks8PDzo1q0bYM5w+P333+vWWaWnp+Pi4mI5T05O5tlnn8VgMFC+fHkqVarE\n888/z4ULFzCZTFy4cAF3d3cSExMt9zz66KNs2rTplvqsKIpyvylWDFasgMBAGDAA/voLnP6bv40V\nRVHuW4W6oEUI0UkIESWEiBFCWOXZFkL4CCF2CiHShRDjbdQ7CSEOCiF+0ZQFZN9zRAjxsxCiTHa5\nuxBisxDiqhBi3q13WvubLPvtcSpYmnN7nGy925oRrPz2wVq5cqXuvHnz5uDZTtdWjRo1dNfMmTOH\nRx555NY6nK1Zs2ZWZZs2bbLa1LhXr15UrlwZME/lK1u2LE8//bRluuC3336Lv78/vr6+NG/enCtX\nrtCjRw8qV65M1apVqVy5Mjt27NBlG1TBlaIo/zW+vjB3LmzaBB9+WNS9URRFUQrK7gjW7RJCOAGf\nAh2B08BeIcQ6KaV2CCUZGAM8baeZsUAEoP1L/gtgvJRyixBiCPAa8D/gRvb3htlft9hx7QhW9noh\nvwlw7k+4fPiWmwWwmZ9Bk+SiVatWbNiwAZPJ9lS/3MkmevbsCeGbbxbcOG8zo9+MGTOA7CmFt6Bm\nzZocOHBAV/b111/zyCOPsHnzZhITE+nVy5y5/8KFC7p1VmvXrrUETdoA8syZM5QrV85qpG7nzp20\naNGC0qVLc/jwYc6fP6+rb9Wq1S29BkVRlPvJ4MGwYQNMngzBwdCmTVH3SFEURXFUYY5gBQExUsoT\nUsoM4DtAl95dSpkgpdyLJqFGDiGEF/AE5oBKyxvIyWG+HuiZ3dY1KeU2zIHWbTBYH7u4Q5dDUHfY\nbbWs3bLKQjOC5eHhQfv27enYsaPNUSNt4OLt7W3OKqibIpjJM888Y3VfkyZNaNKkSYGDk9mzZwPo\n1l1p7d69mwYNGhAQEKArzz36lhNElS9f3ma5lpOTE9OnT+ePP/5g9+7dVvW2Xp+iKMqDRgj47DOo\nVQv69gU72wsqiqIo96DCDLCqAfGa89PZZY6aBUxAlyYPgDBuBmrPArZ3wbVDCDFcCLFPCLFPu9ZH\nc4Hm+M6+PflNEfzhhx8YMmQIgwYNsplaPWeUCCA6Opp169bpA6x9L7FmzRq7zx9bwNy/+V3/+eef\nU7VqVatRsw4dOrB161a2bdvG5s2bCQwMBKB///68+OKLdO3a1W6bgYGBCCEQQlCzZk2r+vfee69A\nr0FRFOV+VaYMfPcdnD8PQ4YULN+SoiiKUnTuyU2FhBBdgQQp5X4b1UOAkUKI/YAbkFGQtqWUi6SU\ngVLKQJvZ6hI0G/xaBVi399vN2dZC5fSLlt+a+/btY8mSJSxbtuzmPlipUbCjP8T/REmX4rpbT506\nhS7+TNrD3r17ddfUrl3bcty7d2+GDh2Km5ub7hoXFxd++umnW84wmNtff/1FsWLFaN26NSEhIZQs\neXMN2/z58/n5558ZMWKEzXvbtm2bZ9u9e/e+I31UFOW/RQhRUghhPYf6HhcYCB99BGvXwrxbX12s\nKIqi3EWFGWCdQT+65JVd5ojWQDchRCzmqYWPCiFWAEgpI6WUj0kpmwPfAsfvXJcB96Cbx3d4BMum\nuO/hWwN8IyjpfHOmpGUfqU0dIPZr+KcHHH5Dd+v27dutNhfOHTydPHlSd/75558THR2tK0tPT6d7\n9+6cO3fObjdbt25Njx49HH5Z9vbByuHp6WlVFhgYyK5du3RlJUqU0CXpWLBggcN9UBRFARBCPAkc\nAv7IPm8ihFhXtL1y3MsvQ9eu8OqrkOtHpKIoinIPKswIYi9QXwhRWwhRHOgDOPQLTUr5hpTSS0pZ\nK/u+TVLK/gBCCM/s7wbgbeCzO9przxDNyZ0dwcqPq6t5pKd+ZehcYhZc3A1pmk13Iz7m+QE3g5wZ\nM2ZYBVidO3e22bbJZOLSpUskJSXxww8/2Lzm0qVLluOQkBBdXXp6Oj/++GOe/a9cuTKVK1cmMDDQ\nKtAD88jWt99+S2ZmJl27duXFF1/U1e/bt4/Jkyfz6aef4uzsjI+PDzExMbp+KYqi3IIpmNcFXwaQ\nUh4Caud1w71ECPjqK6heHZ55BhISirpHiqIoSl4KLcCSUhqBUcCfmDMBfi+lDBNCjBBCjAAQQlQW\nQpwGXgHeFkKczkm7nofnhBDRQCRwFliSU5E94jUDGJTdlmNz3jyDbx4bNBtViVxZKQp5AvwLtZbw\nTBB8OwqaVEqAv1paXfPFMMGVK1fIyMigatWq5F6i5u/vrztfvnw5AHFxcVSoUIGKFSsyZsyYfPvi\nlGvjlX379uV7z8aNGzl37hz//PMPjRo1sqylOnPmDFu3buXxxx+nb9++vPTSS1StWpX58+ezevVq\nXRs3btxg5syZGI1GIiMjmT9/PocOHcr32YqiKHnIlFKm5Cpz6Ae6A9uNlM3eMuSwECJMCDH4jvQ4\nl/LlYfVqSEqCPn3AaMz/HkVRFKVoFOocOCnlb1JKbyllXSnle9lln0kpP8s+Pp89UlVGSlku+zg1\nVxt/Sym7as5nZ7fpLaWcKDVz0aSUtaSUFaSUpbPbcmxX3Wrdbh5rA6y7PIJVVpzjh7HgYT34Y5EY\nvhoPDw8GDRqU3SV9gOXn58e6deuYOnUqCQkJ9O3bF7C9r1ZeNm7cmGe9j4+PVZm/vz8uLi4Yc/3m\nP3ToEMHBN4PYzz//nIcffpjExESrDIWlS5cmK+tm4o/3339fVz9+vNV2aYqiKPkJE0L0BZyEEPWF\nEHOBHfndpNlupDPgh/kDvtwf3L0EhEspA4AQYHr2rI07rkkTc2bBzZvh7bcL4wmKoijKnXBPJrm4\n67RrrXQjWEXz9tSoaL/OALgYbvBys81w+merAAugZcuWTJ48GU9PT8taJ2dn21ue3bhxg9jYWPr3\n729V99prr9GypfUoWpvWDxMZGWmzvYyMDKvRr1GjRlldFxcXh6enJytWrNCVp6am0rlzZ3r06EGV\nKlV0devXr+dtzV8VSUlJfP/99/z4449s3boVRVEUO0YD/kA65rW7qcDLDtyX73YjmD95cxPmfTRK\nY97fsdDGl0JDYcQIc+KLfGZtK4qiKEWk0DYavn9pg6rcG1cVfY5cgwEmPgkPVTkHW7tBFes1V9oE\nEzkjV1WrVsXf35+wsDDdtRMmTEBKaRXo1K5dm169evHxxx/rymcNgDFd/6Xl1VrsORxrs4/aESjQ\n79+Vn507d7Jjh/mD5ePHj9OgQQNLe/v27aNDhw6Wa6OioixZBVu2bMnOnTsdfo6iKP8dUso04K3s\nr4Kwtd1Ii1zXzMO8vvgs5sy2vaW0/uRLCDEcGA5Qo0aNAnZDb9YsOHAABg0Cf3+wsb+8oiiKUoTU\nCBZgN3AyOBh/tr17HyO6FC9GYON6mhLrESwpJcWKFcPJyUk3mvTOO+8wc+ZMatasyZQpUwCYM2cO\nc+fOtWpjy5YtPPTQQ1blYzuBMF6lV2C63T6OHDlSd37y5EliY2PzfmEan3/+OWXLlqVp06a64Ozs\n2bO667SBXO5RM0VRlBxCiM1CiE25v+5Q849jzlBYFWgCzLO1ljjfLUIKwMUFVq2CEiWgWzdQeYAU\nRVHuLWoEC3JNs9MEW6ZcW2w1mgInllrfXynEdrueIZDw9+30zIrRmEnUsRg61MousDFF8Nq1a/Tv\n3x8ppW4frJw06y+PGQ0GJ0uQZUtaWlqe/ShTxg2wndY9J7FGjo4dOzJt2rQ828vx4osvkpGRQWpq\nqlVdZmam7tzd3Z327duzbds2UlNT2b59O61bt3boOYqi/KdoF2+WAHri2DQ+R7YbGQx8mL0eOEYI\ncRLwAfbcenfzV726OelF+/bQuzf89hvYmQmuKIqi3GVqBAvsB1jJB/XXlaoJFW39AW/nbRR3flTF\n2QBZuu7mCrDOb+Lq2f0sWbKEpUuX8vPPP+vrjy2E75wh4Z88n/PPP3nXR0VF51mvVa1atXwzAQ4e\nPJgVK1bQoUMH3ahVz5492b9/P/Xq1WPPnj088cQTliQafn5+TJo0ifT0dI4cOcLEiVYJvhRFUZBS\n7td8bZdSvoI5IUV+HNluJA5oDyCEqAQ0AE7cud7b17YtLFgA69eb98hSFEVR7g3q8y5AF1RpU7Hb\nCpBsTRu0F0g5OsWwAFxdoF9HL8xLAcBqiuCm9jTWnOasxzKZTDg5OSG/zi7fa514QqtkyZI888wz\nrFq1yuG+PfHEE5w7dw4PDw/ee+89mjdvbqnLbx3WkiVLWLJkCTVr1uR///sfM2fOxNnZmQEDBjB0\n6FBiYmIs15pM5teclJSkSzm/bds2h/uqKMp/hxCigubUADQHyuZ3n5TSKITI2W7ECVics91Idv1n\nwLvAUiHEEcwLd1+XUl6806/Bnuefh7AwmDnTvB5r+PC79WRFURTFHhVgAUhtUgZNgGWwETjZ2gvL\nXrZBUThvb3nvJyFmQXZ/rKcIAnzxxRcIIahY0ZyS8PLly7r6tOvX7bYfFBSEl5cXxYoVs3uNLQsW\nLKBSpUoUK1aMRYsW8e233yKlpFKlSg63YTKZGD9+vKW/ycnJVkFeztqrM2fOcPjw4QL1UVGU/6T9\nmH+4C8xTA08Czztyo5TyN+C3XGWfaY7PAo/dsZ7ego8/hogIeOklc8ILza4YiqIoShFQARbog5RM\n7V6UNgInk43kDsIAvuMh4hN9eSGMYAG8NnUB0/tln9gJsJ566imcnJwsQVL58uV19ceOHQOgc+fO\nJCYm6jYS7tOnD8HBwfz777/s2LGDU6dOOdSvnMxYFy9eZMSIEfleX65cOavAz9/fn+3bt1vOJ0+e\nrKufMWOG5TXlHhV74oknHOqnoij/LVLK2vlfdf9ycoLvvoOWLaFnT9i9G+rWLepeKYqi/HepNViA\nbtQqQpOW3NbIVOk6Nu43wOnc0/IplDVYACZdTGU7A2K1Kh5UqFDBMk1PCKHLtJczEPfbb7+xd+9e\n3b2vvPIKAKNHj7YbXOU140/aGuWzIXdwBXDw4EH69+9PaGiobh8sNzc3du7cyYgRIyx7eiUnJ+vu\nVZsQK4qiJYTokddXUffvTipbFnKW3HbqBImJRdsfRVGU/zIVYIF+FCjrxs1jWwHWQ/Oty4QBrthI\n+pB21rrsDjBp9+eyM4I1paf5uzaoql3x5lRIR2KgiIiIAvXLyckJZ2dn0tPTKVPGKkuxQ65fv878\n+fNZunQpmzZtsmQFvHLlCpMnT6ZkyZKWa999913Lcb169QgJCbmlZyqK8sB6Mo+vrkXYr0JRrx6s\nWwenT5vTt+eTDFZRFEUpJCrAArtBis0RKOdSNq6z8zamF85HiBOe0CblsN33fq0NlC1b9magczmM\nYzNu1jdt2jTfkaajR4/qzgcPHmw5blDbeh+XrKwsjEYjgwcPtplm3RH169dn2bJlGAwGfH19SUhI\nsNTltJmUlES7du3YuHGjpU6bBKOoxMbGUrNmTWrUqEG7du2KujuK8p8npRycx9eQou5fYXj4Yfjm\nG/M0wX79INe+74qiKMpdoNZgAbY26wWg5nPWZZdsJFWwF2A5l771LuWhmjYflp2+13A36afg/dZQ\nV59fVj+kxNl0VVe0ZMkSFncwH1d0sx+br1+/Pu+28/DVV1/h7+9vOXfWbOySkZHB3r17adu2Lenp\n1mvhfvnlF7p2LboPpY1GI3FxcQAFThCiKErhEkI8Afhj3gcLACnlO0XXo8LTvTvMng1jxsDYsTB3\nbt7TuhVFUZQ7S41ggf0RrOLlrcvS4h1v13AX/si213cHvPvuuwghrIKtOnXqwI5+dM8awiNNbLwH\nQELChVt+rj0NGjTgo48+0pX5+/sTFRVFs2bNuH79OkFBQTaDK4DXXnvtjvepILTvo6Pr0BRFKXxC\niM+A3sBozJkEnwVqFmmnCtno0TB+PHz6KXzySf7XK4qiKHeOGsGCggUpBbn2Xg6whLCZwKJUqVKE\nhYXBj+a1Tr2aXWKzjT2CnWyE5pMmTWL//v2ULl2a0aNH0717dxIdWGndsmVLdu3aRVRUFFFRUbq6\nVq1a0aBBA4deUmRkpEPX3apOnToRHh6Os7Mz69ato2FD/aigp6cnf/31F0ajkdKlC2f0UlGUW/Kw\nlLKxEOJfKeVUIcR04Pei7lRh++gjiI+HCRPA0xNCQ4u6R4qiKP8NKsACdJn4/N6E8PfNx04lrC+9\ndtLxZu9GgGVveqOWjSDs0qXLPFPpO7qPh66aTzevXbvG6dOnqZd9btTM3+/duzewEgCDjekmL774\nIsWKFaNUqVK6ZBT52bVrF0LYTrzx6quv2r0vNDSUZcuWOfyc2/Xnn39ajmNiYqwCrGXLljF69GjL\nuRrFUpR7Rs7Gf2lCiKpAElAlj+sfCAYDLFsGyckwZAi4uUGPByp3oqIoyr1JTREE/UbDJbN/54ri\nULyc9bXHv9Cfl6gMiTugjo09K8XdGMGys4K5yuPm7yajzWtiYo7Tyf8aTzSFebM+0FdqMilGnbtZ\nHBQUZDm2FWBVqVKFihUrMnHiRIe7D1DRDY7PgFVj4YUXXsjz2unTp7N9+3YOHjxotdeWOQC8O3L2\nEdPaunXrXXu+oigF8osQohzwMXAAiAW+KdIe3SUuLvDTT9CiBTz3HNzGEllFURTFQSrAAv0IT87m\nwJUfgW8ERM7SX5uqn8KGW11Y3xrO/GzdbiFtNKxjMtoud6loTsjxXTHYZR38acdWXnphqK7uzz9+\nu3mdNmGh5mR/rP0uZWRk5NVjnZc7QeJnUNsTegZBxYoVGTRoEHXt7JI5cuRIHv5/9s47PIqq++Of\nuymkAQkQCCQgvUmTjgVBOipFpQs/RJEir0i3oSjyiiKivNJBitIVQRQQUaQJCALSixTpLSRACElI\ncn9/zJaZ3dmSkBjK/TxPnp25c9um7Zw553zPww9TrVo1g6ohZH8dLL2BWbKkaz00vcBGSEhItu5F\noVB4RwjtKZeUcqSUMl5K+S1a7lV5KeU7Obu7f4/QUPjxRyhfHtq0gc2bc3pHCoVCcW+jDCyAvBUc\nx+FVoNYkKNtPOz/0mfkYOxaIqAYRVc2vZTfpt9xcsMBea52oE1+5XDXUqUpPpl+/fvZTXeksLLq3\nUKtWLfvxxauuK0ZE5KVRtdzkCvBdrmpcV+P5qFGjGD58OF99ZdzzrFmzkFIyffp0WrZsydNPP+2S\nc1WzZk2f180MPXr0oF+/fvTv3980L8zPz4+goCAsFgvt27fP1r0oFAqfOCOEmC6EaCSsKjRSymQp\npcl/sHubiAhYvRqKFIGWLeEvE0FchUKhUGQNKgcLoER3uLITQopA/log/LVjgNIvex4r/AChheG1\n3AMrKjtdy2YS3NV/SncvHw+UL1cWrmzXTmQa6ekOL56fzj6yHTdo0IDixYvDaesQp/maN2/OxFdL\nUSJuAr8d+wZvZqknvvnmG4YNG2Zo+z9rdvayZctYs2aN6biff/6ZJk2acO3aNQ4fPkyNGjW8y9Fn\nAG/hiw0bNiQ4OJigoCC2bt2aZesqFIpMUwF4DngbmC2E+BaYL6XckrPbyhkKFYI1a+DRR6FpU1i7\nFipWzOldKRQKxb2H8mABWPyg1hfw4JuQHAur68DhL7Rr6V6qNAoLxO2EC79CQG7XazlFWrJnA89m\nXAHINF588UUWLlzIggULeKLh4/ZLNrXA3377jY6NHarGerPl8ccfp0qVKgSfmQtAg5IXySy9e/dm\nwYIFhrbq1atr25TSrXEF0LRpU/bu3UvZsmWpVasWo0aNyvQ+MoOUkri4OOLj4401yBQKRY4gpYyV\nUk6RUjYEagPHgHFCiKNCiH/3H8QdwgMPaEaWxQJPPAEHDuT0jhQKheLeQxlYzkhrTtN+az2msyvc\n9wWjEeNs0PwbOVjukKn4+uMtXbokNWrUoH379nTo0IFSJRyG1FmdnfBZV5PBwOZN6ygjfiM0wLw+\nVUaIjY1l586dhAVBmFXE8cknn6Rdu3Z2Q8sTjz/+OBcuaDW6hg8fTsuWLZk/f/5t78sXVB0sheLO\nRUp5FpgBTAKuAy95HnHvUq6c5r0SAho2VEaWQqFQZDXKwLKRkgJbt0Kqk0BD8c7Gc0su43mBhx3H\nzgaWn+9S5VlOeGWfQxRtXqq4uDhiY2NJvWVuKCXp0r30kXfJs+GlKn+QO+Cmve3nTEpV/bBsMQDX\nZ2hfp06eZODAgezbt49du0wKcjlx5coVw/nKlSvp3LkzCQkJmdoPwPz583nllVfsRZmFEGzYsMGl\n3+XLl/nqq6+YM2eOQdJdoVDkHEKIICFEOyHEEuBv4AngdaBIzu4sZylfXjOyQBlZCoVCkdUoA8tG\n68pQty6MnWBs93dSgyvpVKmx1AsQWgKKP4/Lt9OsjhZA7SnQYqfve6s4zHsfF4TPIYq5Q7V95suX\njwIFCnDgwF77Nb0cuz4s0EymXU/9+vV9WjvVKQLztebwYg+HOuDkSRP45JNPOJDBT/8TJ04Yzm/c\nuJGh8TaOHDlC586dmThxoqH9888/d+n7xhtv0LVrV7p165ZpA1OhUGQdQoh5wEmgPTAXKC6l7C6l\nXCWluxoX9w/ORlY212pXKBSK+wZlYNlYdVh7nTnX2H52lfH8mvMnkAVS4iD5sqvHSLgJEQyK0pQH\nfSUz9bSkZ5ELPet/W2sMv9NJvxsMLN2xxcvU+fPn93i9ZcuW2lJOkXT/93w7pk+bYj//6OOPGDVq\nFJUrV2bbtm2sWbOGXbt2sXPnTpYtW+Z2/jNnzlCoUCG76ERGCh/ruXjRPJ8sPNy1RtqKFY5w0uyW\njFcoFD6xCiglpWwnpfxWSpnkdYQTQojmQohDQoi/hRCmRf6EEA2EELuEEPuEEOtue9f/IhUqOIys\nBg1gz54c3Y5CoVDcEygVQWduXjCeX3IKBSvRHS46FZS9FQ/nVmliGXrcGTgZVRe0BGasPwDSZwMr\nJDiQHTt22M83bVxP5Wjt2N9PYNMMDAzwBzTjy5s2n1lIXpUqVShbtiyNGjWid+/eNGvWjLT01YY+\nJ0+eIuTUCYpaz23rVK1a1SDDHhUVZc+1MiNXrlycP3/eyy49c+LECRdPmI0mTZrc1twKhSL7kVLO\nuZ3xQgg/YALQBE1DdZsQ4nsp5X5dn3BgItBcSnlSCFHwdtbMCWxGVuPG8PjjsGoV6Mr+KRQKhSKD\nKAPLGWdtAj+nEMFYZ/ltCUWfhWsHTAwndwZWBh2HaYkZ6w+aByvNR9EJmUbXrl3ttacKRRawXxo6\ndDDFnwjDYrFQvvx8SNHuK7x5sMwIDw9n8eLF9vOffvoJFoVBqiN8b/PmLYTWchhYFguQBs8++yxS\nSnr27MmGDRvcGlflypUjPDycfPnyZXyDOvbt20flypWRUlKjRg3atm3LkiVL7IbounXr6NChg9vx\nDRo0uK31FQrFHUFt4G8p5TEAIcQCoDWwX9enM7BESnkSQEqZeRnVHKRCBdi4UTOyGjWC77/XwgYV\nCoVCkXGyNUTQW2iF0Bhvvb5bCFFdd62/EGKvNeTiNV17VSHEZiHEHiHEciFEHqc5iwkhEoQQvsVo\n7f8Y5nnwx4QW06TaT34DUmqGiwEJt67B1f0Q51S50a0hlcFve3qK9z6ug/DuZ7J1TTXkKIWGOIQ8\nypUtyzPPPEPbNm3Ik+K4p/DzMvXKlStd2tavX090dLRdKCI6Opp06TrRjg1L7Me2EMU2bdpw48YN\nZsyYweHDh92ue+jQIbZu3coLL7zA0KFD3fZLSkriu+++49SpU6bX33rrLbsSYM2aNXnrrbfo2bOn\n/bq+bpiNkydP2o9/++03t2srFIp/DyGERQjxsPeepkQD+n8Sp61tesoCEUKI34QQfwohurnZx8tC\niO1CiO2XLl3K5HaylxIlYMMGKFYMWrSA5ctzekcKhUJxd5JtBpYutKIFUBHoJIRwLmnYAihj/XoZ\nTT4XIUQloCfa08OqwFNCiNLWMdOB16WUlYHvgCFOc34KuN7du+OiUwhgYITx/NoBOPUtbGwHF9ai\nGS56LHDeKmiwtafxUj5dXlNUY92QDIYIusvl8oSUuLrj3PVNY+TIkaxevZolS5ZQtaqjWLKUaVSu\nXJknHqlsGDLDS/3lP//8k9TUVJf2s2fPGo6Tko3GY53aNQk8u8h+LoQjXysj0ufr1q1jzJgxdO3a\nlS5durioCw4cOJBnnnmGhx56iKQkY1rGyZMnDfldISGaF7N69eq88cYbvPXWW7Ro0cJlTec8r+Tk\n25etVygUt4eUMh3tsyi78AdqAE8CzYDhQoiyJvuYKqWsKaWsGRkZmY3buT2KFIH166FyZXjmGfiX\nqlwoFArFPUV2hgj6ElrRGpgjtTvnLUKIcCFEYaACsFVKmWgduw54BvgY7WmhLQnqZ+AnYLi1Xxvg\nOOC7ZNzl343nzvfwSRcdaoCB4UYP1gOdwaJTCrx+yDg28jFosBLyVoBt/XQXMmrXZqamUrrv4058\nTcU85ajYZIB2HusoQnw1Lg5wSLnruXzpEh07dQKMxX+v3dQ8PH/88Yf3XaalGX4Ly5cry56/HOtb\nBDRr1ozOnTtnyiv09ddfA1CvXj369XP8DCZNmgRodbc2btxI48YOA3j69OmGOcaNG8eMGTN4/PHH\n+f77792uVaBAAcP5tWvX0N9ITZ06lW3btmGxWHjppZeoVatWht9UoGv/AAAgAElEQVSPQqHIFL8I\nIZ5FC+XLyD/UM2CPWAaIsbbpOQ3ESilvADeEEOvRHgy6d7Xf4eTPD7/8Aq1aQZcucOECvPaa93EK\nhUKh0MjOEEFfQivc9dkLPCaEyC+ECAFa4viQ24dmmAG0s7ULIcKAYcB7Pu8w6QKkGD0bpMQZzx/o\nCDut0YbC32hgVRwK33nIZxYWKNIcQh8whgtmNAdLpkOtSRkbc+ATzfPmC39PgR0DHd48XUjimTPa\nj8fMwLqwaw5r1qxxaQ8IDKROnTp2z5Mn0tONSsmxsZfx16116uQJXv6/Z8idvJcb8ecMfYsWLYqv\n6BX+AMqUKeN2noceeshl/LVr11i+fDn+/v64e/r811/GENFbt24Zzt9++22mT5/O1KlTDbloCoUi\n2+kFLAZShBDXhBDXhRDXfBi3DSgjhCghhAgEOgLOT1mWAY8KIfytn1d1gLu+qlSePLByJbRtCwMG\nwMCBYBIZrVAoFAoT7kiZdinlAeAjYDWazO4uwHYn3gPoK4T4E8gN2KyBEcA4KaXHirL6OHgST5ss\n7nRedRRcP6Idr6kPld52XFtpIrUepDe49BrnurBAZwPLPzcUcxJM0Mu4y3Qo09t1LT2PLHRtS8ug\nIvEaa+2qdIdhsGGD5iz0N4lqnDFukOk0wUFBNG3alKioKK9LOmdgbdq4zrDWR6NGEPRjUaY8u4dd\n/zX2rVjROeLUPQULGg3h3r17M2zYMAYOHOgiKV+xYkViYmKIiYlxmSctLY3Lly9TtWpVHn30UcP8\n1aoZfx+Cgox10PR5F1u2bPF57wqF4vaQUuaWUlqklAFSyjzW8zw+jEsF+qFFShwAFkkp9wkhegsh\nelv7HED7nNoN/AFMl1LudTfn3URwMCxaBK++CuPGQceOkJRhoXuFQqG4/8jOEEFfQivc9pFSzgBm\nAAgh/ovm3UJKeRBoam0vixb3DtpTw+eEEB8D4UC6ECJJSvmFfkEp5VRgKkDNksJ9qEjBx+HiOujU\nDhKBF4FbV+H3rp7fdet/YKE1F+fKTggrrh0bDCzrca3JcHAspN7ExdSoO8vcgHOHJRO1ssxIugwJ\nx+ynV2IvAxBgYmCZtQHcvJlEqMXiU85UsJMCfWBIPuRNh6dq1uxZfGiVCy5RUPMShYaGEhQUxOXL\nlzUlQh/o0aMHy5Yt48cff+TVV19l4MCBSClJS0vD39/4ZxAWFsbp0ybGt47du3cTGhpqPzfLt3JW\nMqxcuTJ7rEVmqlSp4tO+FQrF7SOEEEAXoISUcqQQoihQWErpNY5ZSrkCWOHUNtnpfAwwJgu3fMfg\n5weffQYPPACDBsG5c7BsGdymUKtCoVDc02SnB8uX0IrvgW5WNcG6wFUp5TkAWy0RIUQxtPyreU7t\nFuBtYDKAlPIxKWVxKWVx4DPgv87GVcaQkAT8sAN+BWzBJLFePA8XdDWyknVS4gavlfW4TC94+rC2\n1skFxnmC9N4fH1IGMlpbyx1LImFrD/tp57q3WDccCpo863VnYIG5IMXkyZNZv349L7zwgr0tLtko\nDPHD7+cM86YZIwipUqUKpUqVIj4+3sVj5GkvFSpUoE2bNkybNo1GjRpx8+ZNateuTXR0NBs3bvS6\ndxtt27a1H9+4cYPk5GSklC51v2bPnu0y9v3332fAgAEMGTKE9u3b+7T3zJKcnMyyZcs4c8b5mYZC\ncV8yEaiHJqkOkED2Cl/cUwihhQguXAh//AGPPAJHj+b0rhQKheLOJdsMLF9CK9CeCh4D/gamAX11\nU3wrhNgPLAdekVLGW9s7CSEOAweBs8DMrN249fXiegjQhZXN8HH8djdiFp5CBGuMc53HLE8rpJj7\ndbPKwHKiRN5Y6peHr18v7/MYd+ZJ7969eeyxx+jcubO9LTDQ6HkTQhPJsJE/t3GOI0eOcPToUa8e\nJhs1atQAYNeuXfa2ixcvUrNmTbZv387Fixd57LHHDGPSnK064LPPPuOxxx7ju+++M7QfPnwYKaVB\ntj0kJITff/+dcuXKMXXqVHt7mzZt+PTTT/n444+pX7++T/vPLAMGDKBNmzamKokKxX1IHSnlK2iP\nzZBSxgGZqeB+X9O+Pfz8M1y8qBUiXrs2p3ekUCgUdybZWmjYW2iFVc3pFTdjH3PT/jnwuZd1R2R0\nr6ak6MK+9rvvZlxclwVcUPcWPBlYRZ81mcik0NSTe2Gxm7SBbDKwbETmTndku9mWdFMLSwjBihUr\n2LtuJqt+WMyv+xzXihQpwrlz53j44YcJDw8nd9guSHLkmlsEXNE5gwKdfkPLlnVRP/bIyy9revIV\nK1akXbt2pKWlERUVxcSJE92OiY2NNZz36NGD/v37U7hwYTZsMMr6p6enGwwyPz8/rl27Zg877NWr\nl30P/yY2lcRLly6xdOlSOnbs+K/vQaG4g7hlLR0iAYQQkbjW3FD4QP36mherVSto2hTGj4c+fXJ6\nVwqFQnFncUeKXNwx3LzqOE4ECjaGiOqa/Lo7bujiJgJ1QepmOVg2Yrd52YjVJxSQ232XbDawzp9y\nVRwWAgoVclXUS0pKpmXLlgypsphf3oRwrYwUwYFw7pyWX/X777+zYsUKLpw3KgOWKV2Ske0c5/63\n+Rs6duxYAKKjo3nppZf4+++/yZ3b+H388ccfDedrnR7Lbt++HSklc+fOdZk/ICCA9PR0cufOTWho\nKGlpabz99tuGPhlThc4a9AIb5cqV+9fXVyjuMMaj1U0sKIQYBWwEPszZLd29lCoFmzdDs2bQty+8\n8go4iaYqFArFfY0ysJzR3ws7R4oNXQNxO8AS6KQW6IZkh2qcR5n2DW1xYaPOyvDlBt2Src5I8oa4\ntr33el/On/We41MgN/RrCokzoUNd47WkFON7a9umleHcTL3QmZo1a5q2+/tBscDDhOQSzJo1i2bN\nmrF7924++ugjQz9nr5izYMXu3buxWCz2GljVqlVDSomUkooVK3L48GHKlClDhQoVABg9ejQAM2fO\nNIQyjh49mk6dOtGlSxdDyGJ2cPPmTbuIh6+5agrFvYqUci4wFM2oOge0kVIu8jxK4Yk8eTSxiyFD\nYOJEzdhycv4rFArFfYsysDyR6nS+0/pa/VMo8pT38dfdZQE7fdulSaRK2k3XNk8ERmSsfwYpYOY8\nOzIR0p2/SSbdPoX//Z92vOA/xmubnBxjhw8dNJwvX+a+llfx4sUBzcNkxjtt4ec3YH4/2Lx5s2kf\nIQSlS5c2tBUuXNjtmoCLcXT9+nV27Njhso+oqCiio6MR1ljKDz/8kAULFjBv3jxmzZrlcY2swmKx\n2NdXKO5XhBBfSSkPSiknSCm/kFIeEEJ8ldP7utvx84OPP4bZs2HTJqheHbZ5C8hQKBSK+wBlYDlj\niwp8oJOrBwvALxgiqvjmMRJA6g1Nhv2y7gZfH86XclUreJyrkHGsNFvc01rZGyLojty5TVxbXkia\nm5s+z1Xl/efg+UeN137++SfG6rL2Wjxllp+mceLECUDL28ofZrxWsWJFulrnbl0Dg9iEHrPwuaZN\nm3p9D0IIu+GS7lR901aouEWLFggh2Lp1K6AVK7bxyy+/eF1DoVBkGQ/qT6z5WDVyaC/3HN26aQaW\nEPDoozB5sm+BFwqFQnGvogwsd4SVcPVggeZZuvAblHkFKr7hel1fj0pKWBQG3+bTwgpt6EMEE09p\nr3pJd4Arem+IL59UOeOlaFrZtc3bB2surjOx7V8MN4mMREpu6sQ0YhPgus6ZFxXuOuTXt+DyFChf\nxNG2f/9+tyIcem7cuMG6detYtGgRf//9N6Dla2UE5xC8nTt3Gs6vXLkCaCqCNsqX912VMTP06dOH\n4OBgQkND/zVvmUJxpyGEeEMIcR2oIoS4JoS4bj2/CCzL4e3dU9SsCX/+CY0aaaIX3brBjRs5vSuF\nQqHIGbI3ceduwT8UcPokuLzV3IMFcOATqDcH9pvkSOs9T7FWIyktCeJ3O9oN+VhZ9SPIGQOrpZv0\nHnft3rBYNI+U/VzALd23tHQhOB9vHPO4lvpE25rwoa7Smi/fkVOnTtGgQQP7+dWrV8mTx41Sownb\nt29n6dKlHvvYPF3Dhg2jcuXK+Pv7U7t2bZ/XyAyTJzvqoL7wwgt07949W9dTKO5EpJQfAh8KIT6U\nUpo8EVNkJfnzww8/wKhR8O67sGsXfPMNKJ0dhUJxv6EMLIDgIsARY9uFX2C3aW9Y9CN8PxjMtRUc\nnP3BzQU39bHuQto8GgWcN7RJCT8Oydx8FgF+um9PucKQTxf+F5PPdYwv/PDDDzz1lPe8uaNHj5qq\n/i1dupSff/6ZCROMtUlr1arl0jciIoK4uDj7uc3DVbduXR588EEXFcOM8vXXX3P27Fn8/f3p0KFD\nhj1uCsV9yFtCiOeBElLKkUKIokBhKeUfOb2xew2LBYYPh7p1oVMnqFEDJkzQPFoqHVShUNwvqBBB\ngOtOxpUtXcpdmswkYNxMOGVyTS9YEVrch8XdxNMZpOB9CRHMmYD3/P7nvXfKAH4Wo4EV4PQI4PWn\n3Y/19OFdunRpHiquiW2YKSLa8Pf357333jO09enTh9atW9OqVSs3o6BKMdjyHjxcFv766y/Dtaio\nKPs8efPmZdiwYe434AMTJkxg2LBhDBo0iJMnT3rtHxKS8Tw5heIeYwJQD7BVOU+wtimyiSZNNA9W\nzZrQvTt07gxXr3odplAoFPcEysCKBc46eRS+sL629DLWm4Ceu7pVR6c7js0UBAECdclG91G28Etd\n21CtqiOxy7kOVq4AfKZYAcdxuXLl2DFKk4sf1d79mKCgILscu41JkyYhhKBZs2aG9urVq9uPlw2E\nOqVh07swaNAge/sDDzwAQGJiIpMnT0ZKyccff+z7mzAhNdXxi+fn590DumXLlttaT6G4B6gjpXwF\nSAKQUsYBgZ6HKG6XmBj45RctZHDxYqhWTaufpVAoFPc697eBFQu8Cvxw3fy6t0gub/e2CcfN29N0\ndZaCo6DQE659zhqL37L9VTj0P/drBRVyf+0u4uHgpdSs8ZD9PMDpe+yp8LAnD9YHH3xgPy5ewLxP\n586dKVOmjNc9vvbaa6SkpNC7d2/GjRtHyZIlDV6xxYsXAzBv3jy70qG/v9EVd/iwa+FmXylbtiyR\nkZHkzZuXq24eCdvqdEkpqVzZRIlEobi/uGVVDpQAQohIwM3TLUVW4ucHb74JGzdq/6Mfeww++ABS\nvVf4UCgUiruW+9vAsqlmr8vkeG8ZbAnu6mDpPFKB4dDoF6g22tgltKTjePc52LsUYt2kC4Q+ALkK\nQON1EFbK266zndv1t4XncVi2BZ30Jnb+oxUrvvEl1HcjxLdmzRqXtuHDh9uP05xuq/r27curr75K\n8+bNAde8qvZ1Yd/HUNJaW9rPz4+FCxfy8ssvM2DAAAoXLmxwMobk0l718u0BAUbX22effWa+eR/I\nmzcvly5d4urVqxw5Ygxv3b17Nx9++CFjxoxh1apVmV5DobjHGA98BxQUQowCNgL/zdkt3V/UrQs7\nd0KHDlqO1qOPwsGD3scpFArF3cj9bWB5Iqa1uaWgvzn/EWvAiRvK9HUc++uUGo7Nchyn3oBLv0Op\nno42Sy6HGuFx4KUl8MIpuLTBfJ0b/2jXCtaHos942NBdgk6JMTbBeGnVX1qx4pBc8FUfGDx4sMtw\nmwfJHa2cqt9cvnyZ8ePH07dvX9auXcuyZcvYvHkzK1eu5KWXXmLhf6BiNHzeTROwGDt2LF27dgXg\n+eefZ9u2bQYDa8OIQAoUKMDYsWPp2LEjO3fudCn2u3LlSh++EeZYLI4/W+caXBMmTODNN99k6NCh\ntGjRItNrKBT3ElLKucBQ4EPgHNBGSun5H4Uiy8mbF+bOhfnz4cgRLWRw7FhIy2DZR4VCobjTUQaW\nO2S4Q+xCzy3d8W/A5rbQPgEarobwyrANGAKcBfJWhDjgdyBZZymkOgrOcv0I/PwIXFjraEtPhhvW\n8EK9E+zGP+73awnSXiu9475PSFH317KQ200Zu3TJURPs/FU46xDkY/SHo+zHFgvUqOFaK3TKlCkZ\nWm/RokUAJCQkcOXKFY4dO8bu3btp0aIF06c78uXCckHjxo0NY7/++mtSUlLIrwsnrV4shaJFi7Jz\n504WLlzImTNnAKMxWKxYMZd9XLlyhapVqxIdHe1RUKNOnTp069aN7t27u9TTchcy6Cu3bt0iKiqK\nggUL2sU5FIp7hAvABrT/yMFCiOpe+gMghGguhDgkhPhbCPG6h361hBCpQojnsmi/9ywdO8K+fdC8\nOQweDPXrw21ETSsUCsUdh5Jpd0ej2eZ1sG45ne8+qdXRKtwE3kkE2/34DKDml/AOcAXto920sK7V\nA7HR5DO56n9h7Ujgpus1Z3JbQwMDwtz3yZXfUdj4DmbZ0u94qaF2bBFa3asiEdr5H1s386Q1VC9f\nKHTq1ImOc7XzrFAAPn36NGvWrDHUkbIR6O/dO2ZDL9M+duxYGjRoQK9evShYsCD+/v6UKuUI5axe\nvTopKSns27fP3nb27Fm3c3ft2tXuQXOmRo0aLFy40H4uhKBLly58/fXXPu37119/5cKFC947ZpB9\n+/YRExND3rx5s3xuhcIbQoiRQHe0R1a2R0ASMEmANYzzQ1MbbAKcBrYJIb6XUu436fcRsDprd37v\nEhUF332nebT+8x/NmzVqFLz6qpa3pVAoFHczyoPlDnchC84GVrJOsGK6zt2UCpxdoRlXAN+4mc+d\niiDAg29A9bEet2nnog+JZDYv1x2OXqa9RgmoXsJxvmKFo7aYLdcpK+ncubNLvpSNikUtjGoP9bzr\nYNjFLQB+++03hg0bRuPGjZk0aRLz5s0zeKh27txpMK68MWbMGN555x3ee+894uONVZd79erFH38Y\nc/XOn/ddSj87jKspU6ZQqVIlihcvftseNoUik7QHSkkpG0gpG1q/PBpXVmoDf0spj0kpU4AFQGuT\nfv8BvgUuZt2W732EgOef17xZjRrBwIFQpw78+WdO70yhUChuD2VgZRRn5aMUa8NFp8/VXPnAL9jY\nZvahId1YcqV7a6/63J2IauZ904DfuznOn3KTOWzJgMZ5DqI3sJxVA/08/MbWr/EAfZs4pNy3/J2x\ndcPCwoiMjGTbtm32tmnTptmPw4PTebM1/D4iY/OC5sH5559/OH78ONu3bychQQsZNStqDBATE+N2\nrqFDhzJy5EhGjBjBqFGjDNfy5MnjItKRmgG5LmcDyN3+MkLv3trvcnx8PKNHj/bSW6HIFvYC4V57\nuRKNseLhaWubHSFENFp8wqRM7+4+p0gR+P57WLgQzpyB2rVhwABISPA+VqFQKO5ElIGVUZwfwKdY\nXVo9exrb/cMgzSm071O0Glt6Z4U7D5Z/qPaqN7DSU1z73QS6AW/ecLTlKWc+579EZB7vfdwRa6lA\nk8aN7OfOoSJ+TnGAvRxdaVLyHyZ0h7fbaOfJzt5GE1q3djyMthk9ehGJzIa0BTnZsuvWaR7GUKvX\n7fp1R2mAPHkc37DNmzeTnJzMqVO+hXJ+8sknLm1SSvLnz28/X7Zsma/bpk+fPkRHa/ePrVq1chHn\nuF12796dpfMpFD7yIbBTCPGTEOJ721cWzf0ZMExKT+EIIIR4WQixXQix/dKlS1m09L2DENC+PRw4\nAL16weefQ8WKkIF/XwqFQnHHoAysjDLR6TzFavTs329sT3ITlrUZozhwnrLw6DeQ90Fjv6MzXMdG\nNXVt+8j6esx8ubuN/IVLE57XoRhRobwxHk9fbwpgcg/XOZ5v7rtUfWRkpP24bt26gFGZ7/PPPzcd\n98svv3icN9ikhGmfxpDwJTz/KJw7dw7QJOGvXdNET6ZNm8aNGzcyFC5ohhCCy5cv2+tgZcRI9Pf3\nZ+vWrcybN8/nvC1vPP300/Zj5/BFheJfYjbaf8vRwFjdlzfOAHp1oBhrm56awAIhxAngOWCiEKKN\n80RSyqlSyppSypr6/zsKI+HhMHEibNqkqQ62aQOtWsHfGYxIUCgUipxEiVxkFOcUFVsOlvOTfjNv\nk5643bB8F5w/D088AcOuw7NAOcAvBKRJWJfF5Md1xLXJlLwPcvsVqv4FZBrBQY5csWNHj0Alx+UR\nz3qfolBUNHDUoGaYO9i87/nz5wkICODpp5+mWbNmAAwYMIBz586Rnp7O1q1bTccNHjyYFxtArZLw\n2leu180cPxNfsL52h0+XL6d69ers3LnTfr106dI0bKipe0RHR3Pq1ClTD1LlypXZs2cPACVLljRc\nW7NmDWvXrsXf35+GDRvSoEED8zfugejoaDp16pThcWakp6dzURc++9RTT2XJvApFBkmUUo7PxLht\nQBkhRAk0w6oj0FnfQUppzxIVQswCfpBSLr2NvSqAevVgxw4YNw5GjoQHH9TCBt96C3Ln9j5eoVAo\nchLlwcooMU7eAJsHy+L0rTwCeIqGWvkQ/PgjfDkd6tWFfSfBlk6TlqjVxwLjnfqJuY5js3ysuF1w\n9YCbBbM21CvbkGmGsMkKRTI+xT8nT/LRRx8Z2tylEv3www/cunWL5cuW0KtXL5588knat29P//79\n6dSpE/ny5TMdd+vyTqb31EIU//ufx12uV37QfZimnwW+/16LTtJ7yzZu3Gg/PnPmDD/99JPp+JUr\nV1KnTh0effRRtmzZYrg2e/ZsDq35LzFn36dZE81Y27t3L3379nU7X3bibKQ+/PDD//oeFApggxDi\nQyFEPSFEdduXt0FSylSgH/ATcABYJKXcJ4ToLYTond2bvt8JCIChQ+HQIU3a/aOPoGxZmD0b0j0G\nZCoUCkXOojxYGeWmUxKWOw8WOML3zHgvHYIPwSGdC8qgdyEhNdFp7XOOY4tJDNqeEZASB43NFAWz\n2cBKJUt+m67EXiLdcoMC1vNnannsbsrfR08gCgoqVaoE6XsBSPfgvCtbGPaMhs9WwbD5K5gzZw4j\nR47kb2tMysRHXceE60IVB9Rw/X5Xq/Ig67YeMl3PIhzCE13aP0ntfHtYdSAPU6dONb4PXUxM586d\nmT9/PgCvvPKKi2FlIyUlhW/6a8dr98OlS5eoXLkyAJMmTSIhIYHQUC2/T0pJeno6frpEt7S0NCIi\nIkhISMBisRAXF0fu23hcrPfACSHo6ZyrqFD8Ozxkfa2ra/Mq0w4gpVwBrHBqc63joLV3z+T+FB4o\nUkQzqvr21WTcu3fXwgjHjQP1zEahUNyJKA9WRnEW/bt1Swvzc/ZgeSMiDP76y3Ofv6dpRYfNMPNU\n+QVD4mnz/kKQbSGCZ4GXgSxI2dm5Ywe/b9rovaMH0tI1z0lunXiEJ/PylSZajauh1ui1//u//zMY\nN+7W8MSlC2fJ76Ykmb+/YMSIEQDUDfmJVx87Sb/ae12ELXr0cCSY2YwrgBkzZnDrlrmCR4sWLezH\nBfNAwYIFDdcPHXIYfQkJCfj7+xMUFGQvfLxq1SquX7+OlJK0tDSDhy0z6AVDpJTMmjXrtuZTKDKD\nTpq9YQZl2hV3EHXqwObNmrF18iQ88gi0basJYygUCsWdhDKwMkq803lqKhQu7L4MfVHzZiLqurmg\nwz8YzvzsOI/Vr2tVoauna/MLdp/7FWpNE/gBGAEkmnezk6uAlw461gLJwErfh7jDz+JZit0XbqbA\n6NGjSU9zWMOexPA8GUshISGm7RYvDsEmhbdweQp81hWmTp1K0aKOXwSBpG3btowfP55mlTVPVkuT\niM/AQBMvJZCUlETPnj0ZPHiwiwHUpUsX3TquTJgwwX5844YWhpqcnEyy1RO7d+9eQ//33nuP7du3\nu3+jXrCtYWPo0KGm/aSUPisn6rl69SpXrlzh8uXLt20MKu5thBBPCiGGCiHesX3l9J4UGcdigW7d\n4MgRLTfrl1+gUiVNyPeMs/yIQqFQ5BDKwMoKHnpIM7RMcePGWLXG+7w/nYDxuryZbSY/Lr14w7GZ\nbjxYfvDwHO1wPlp+2Bbw+OM3Uyx0h7uizJmgRgl48iHv/TxxPl6ruZR40yGT78nA8mQrbdiwwbQ9\nwEs4ZPf62mv/5vDyyy8bjAebAbl69WrTtT/55BO++OILLBYLSUlJrFmzhokTJ1K7dm3Kly8PaLlW\nY8eOpWbNmnTq1IkXX3yR2NhYQ5FkM6eq/npiYqI9hM9mSDorB44bN47mzZvbDbCMkpJiNPjdyVO3\naNGCYsWKMXjwYJ/nTk1NJTw8nPz58xMZGel2boVCCDEZ6IBWEFgA7YAHcnRTitsiLAzefhuOHtXC\nBmfPhtKl4Y03IC4up3enUCjud5SBlRXolOBcSM5EWJ4lF4SVhH4fwjX9DaqXJ/TuLgsJAXkgVlfp\nOAlXy8KSy3Gsz/f6F3Gn9pcRnq0NH3eClCSH98TMkLGF0xUqVNDkqsZhN57JQD/TZo84O1gsbsJK\nx4wZY7/epk0bmjRpwrx589i6dSu//vqroe/OnTtZsGABX375Jf/73/8M14oUjiJIp8gIUKKEXfCM\nkiVLkpaWRmJiIjt27ACgffv2LvuJjY3l7Nmzvr1JJ6ZMmeK1z/Hjx+0CHGPH+qKcrZHgVIU0K4oi\nK+5ZHpZSdgPipJTvofn+y+bwnhRZQGSklot16BA895wmhFGiBLz7rjK0FApFzqEMrOwmyZ1nyxMS\nEkwKW+U3Eb3S37T/A0gTU0Kmw6HxkJ7kaEvDtchxSIxmZOWrCRfX+r7dzLzFbKRofhjyFBT2P2pv\nqxjt2m+/tXbZpUsXXS9acVYjtPHV7OkZ3tcFnT7Kl19+Se/e5iJkFy5cYPPmzaSkpNgNj40bN3Lz\n5k3y5s3L+++/bzpu5syZhvNBAwdw5coVjh07xokTJzh//jzDhg0z9OnQoQPt2rWjc+fOJCUl4e9v\n7ppLT08nOTk5w0aMTVDDRqFChVz6ZLYmUKpbr7FC4YLtn1+iEKIIcAsonIP7UWQxJUrAV19pzzsb\nNYL334fixeGdd5ShpVAo/n2UimB2k5zBm8BlQKsUcz2Kz87eqOcAACAASURBVHbAUKCqrk3f723g\n/+pBF11bMlpY4PHPoYSu3TSsT0Cr47C0CKQA5ilArniuuXtHsPk9x/H2Y5pohLdaTxEREeTPn9/0\n2uj/vs+nbTO2h0PnoHCEdvziiy8SFxdHrLnQIHPnzqVRo0aGtqCgIIQQDBkyhCZNmuDn58f58+eJ\niYkBNO/UnDlz6Gb9qz59+hQxFYMNXitnVqxYYc+TunXrFl27dqVhw4b4+/vTr18/QMsFmzVrFh99\n9BGPP/64FtroKeZSR65cuQznNWvWdOkTGhrK6NGjCQsLIywsDCmlT/NbLBYeeeQRUlNTyZs3L1FR\nUT7tSXFfslwIEQ6MAXag/eeclrNbUmQHVavCt9/C7t2akTVyJHz+uRZGOGAAuKm8oVAoFFlKthpY\nQojmwOeAHzBdSjna6bqwXm+JJrvQXUq5Q3fdD9gOnJFSPmVtqwpMRktuOgF0kVJeE0J0AYbopq8C\nVJdS7sqmt+cbyRlMUFoE5EUzcMz4GNCVw3IJC5z9O3ygEwtYB/wM/Hoc5uj6hddE+9bq93oJDn4C\n54FBwECgRsa2fzcQli+GON0jzd6NzPvFxcUZcpb0nDtz8rb34c0Dc+vWLSZOnMitW7dIS0uzGx1B\nQUHULXQUQqKh1tOGMcuXL6eb1fCbMOELPmz6P+dpDThLtMfExFCkSBHi4+Pp168fXbp0QQhhX3vN\nmjX89ddfVKtmosphQo8ePQyeurVr1zJs2DBq1arFc889B2jy7c6eNV/Ily8fG78dBVt7QA2lV6Aw\nRwhhAX6RUsYD3wohfgCCpJRXvQxV3MVUqQLffAN79miG1gcfaKGEPXtqhpZVOFWhUCiyhWwLEbQa\nRxOAFkBFoJMQoqJTtxZAGevXy8Akp+v90Yo76pkOvC6lrAx8h9WoklLOlVJWk1JWA7oCx3PcuMos\n04DZPvYVoa5tRYuBLXXIpjyY5uQSm+ZkXG0G5kZCahrYtCEyk9JyF0RtlQ8/TcT+vuwcoxWNDvTw\nmGHVqlWm7bnM7S6fGTJkCOHh4eTO7UYEBfD396dPnz68+uqr/PTTT3ZD5+1+bWDz8/BLQ5cxeiU9\nARw7dozq1avTtGlT3n77bUPf2NhYhg4dyqhRo5g6dSqhoaHMmjULPz8/8ufPT9euXZkzZ46LZP3V\nq77fl06ebCwXlJiYyMcff5x1RY+399PCabe+kDXzKe45pJTpaJ9FtvNkZVzdP1SuDIsXa4bWM8/A\nF19AyZLw/PPeK6UoFApFZslOD1Zt4G8p5TEAIcQCoDWwX9enNTBHaokdW4QQ4UKIwlLKc0KIGOBJ\nYBSaL8VGWWC99fhn4CdguNPanYAFWf2G7jimAutvmF/bgPad8tWE/gLgb3gyzWEkZea34xKOzIZE\nICgDe/gX6VgP4CqRebz1NCczIhf6qDebuIS+nlVMTAynT2sqkB06dKBz5872a3qDpGWBZfbjP//8\nkxo1NDdj9+7d+f333+FZ7ZrFAqVKlbL3/fnnn/H396dQoULExMRw4cIFu9HVo0cPevbsybp1xqLJ\n3bt358EHH2TVqlXEx8cTHBxsL1zsC0lJSabteu+dlJIlS5bw1FNPuYQUeuXGCetC7vPoFArgFyHE\ns8ASqdRQ7ksqVYI5czRP1mefwbRpMHcuNG0KQ4ZoeVs+Rj4rFAqFV7Lz1jca0Be2OW1t87XPZ2gZ\nR85BcPvQDDPQpHbNKk11QMs8ckEI8bIQYrsQIvPFfe4U1nm4ZvvJevrAWIprXa/w+mBzWOwl49jM\n2utAT+saPrD0r0xaOrfJsGFvGM7zWFUMIyIi6Natm9txMRmI42/WrJlL26effkqRIkUM8ucLFixA\nSklqaioLFiwgKCiI3bt3s2XLFsPYuqUdx3379iUxMZH4+Hhmz57N+fPn7dfManW999579O3bl1at\nWhm8XbZQwdTUVAL8oH55xxiLxUKzZs3o0LoRrZ5+mnwZSGI441SY5oMPPmD06NG0a9fO3vbNN9/w\n3HPPUbJkSZ555hmf5wZI1wm1uCu+rFAAvYDFQLIQ4poQ4roQ4lpOb0rx71OsGHz6qVao+L//1bxY\nTZpoIYVTpsANN88sFQqFIiPcgb4FEEI8BVyUUv5pcrkH0FcI8SeQG6dsJSFEHSBRSmlqHkgpp0op\na0opXbPtrTkh9wS2m2tPP+HFGPO5AAIsDgEMX+u26sUNbWarLQBnp5NCXOEWplMUbTTKx8WykK0w\n6NQFQ1OwVdgjLi6OLwYPpnBhc+GE18zfhilm4XDLli1zKcJrq+Okz4tq3bo19epp1aQrVqxI4cKF\nuan7jf/jjz8IDQ0lIiLCZQ1vxZDz5ctH1apVqVSpEtHR2nONF198kd+mtWPdcIeRtWfPHs5vnwRL\nIuGvNzzM6GDq1Kk0atSIkiVL2tvy5MnDsGHDGDp0KC1btnQZc/bsWb777jv++OMPn9Y4dOgQSYmO\nitknTpzwaZzi/kNKmVtKaZFSBkop81jPc+apjuKOICJCq5l14gTMmAH+/tC7N0RHw8CB4BQZrVAo\nFBkiOw2sMxi9SzHWNl/6PAK0EkKcQPOJPCGE+BpASnlQStlUSlkDzUt11DglHXHjvfKKk6fgrkY4\nvbrDuYTX6TlgS+sKAkr19L5WbpM2mwLh4061POuYC3c9VLe593WymvHA5C8NTbYiwJ8BuatU4Wgz\nc33fa0m396dj8+Dofzxr1hiLT2/bts1gNCxZsoRFixZxwcfn7t0ahlLQwy3kc889x65du9izZw/v\nvvsuAA0aNODh+i1AWKj2SCt7X3Hoc+1gv6ts/dGjR5k3bx4zZ85kw4YNxMXF0atXL3799Vf69+9v\n73ft2jUCAgKwWCwsWbLE3p7uVCDM1xyvHTt2GEJ6nOcxQ0WH3b8IISKEELWFEPVtXzm9J0XOExQE\nPXrAjh2waRO0aAH/+x+UKQMtW8KPP0JaBrWqFAqFIjsNrG1AGSFECSFEIJrh871Tn++BbkKjLnBV\nSnlOSvmGlDJGSlncOu5XKeXzAEKIgtZXC5owuT2L3trWnszmX1nzX+4JLE6v7nC+Jw3IBTaBuHzA\nUatBdBItYHOrl/lirK+2G99CTp9MS2MwIz0xc4VssxqLgFxo6ioAwd8nm/aLrvmiz3N+0M61LSUl\nhblz51JCV+O4aNGipOk+yceNG2cYExgYSIUKFYiMdF8YWU/JfDf4a7SFsLAw6pTPTcLx1cTHx/PP\nP/9w6NAh4uPj6dy5M48//jiPPvqoo5iwTAOZjrA4lDwOHXKjJ4+mDNilSxd69OjBrFmz3OZd6dF7\n6dq1a8cTTzxhP+/Vq5ch1NEdaWlpBi+dfk4zRo4cSWRkJB9//LHXuRX3FkKIl9Byd38C3rO+jsjJ\nPSnuLISAhx+G+fO18MERI7SaWk89pdXTGj4cjh/P6V0qFIq7hWwzsKSUqUA/tA+yA8AiKeU+IURv\nIYRNt3kFcAwt62ca0NeHqTsJIQ4DB4GzgL66an3glE1YwytebsiylEpZNE+Qj/1sd556F4mZreBs\nYOXK5/it0F9biOZbHG8yh94pYHNE2bxgo3UuskRc+RWt9ld8Dsg5PeTaZLE4/aiumA/9a+0sn5d5\nqw00f6KOIVwOYOLEiYbz119/HX9/f4QQ5M6dm8OHDxuulyhRgvz58xOWJ6+9rX/LXDzfqBCffvop\nISEhLmtH5U3n+vXrbBl+ndDfm/Lm4F488MADlCtXjiVLlrB161bWr1/Ppk2bSLSF213X1m1SK4oO\nHTrw9NNPk6qzk6dNM3ohv/jiC/vxl19+6dXQAQzy9xaLhQkT7CJvHD9+nOvXr5OcnMykSZMYP368\nY286ypUrh7+f419Y6dKlXfrY2LdvH++88w6xsbGZkoRX3PX0B2oB/0gpG6L99TtnoCoUABQuDO++\nC//8oykQVqoEo0Zp6oONG2tGmA/PkRQKxX1MtuZgSSlXSCnLSilLSSlHWdsmSyknW4+llPIV6/XK\nUkoX4Qkp5W+2GljW88+tc5aVUr6uV4Sy9q3r8wb/Tb9/Vtlyvv5TD7YWyNUbWL+a9EvDaEilJMFu\n63GgLv/I062IfvxX1tcQp+sb0IT41+vaJTADWAT+f/7jYQE0aZPLnrtkmJeBscam1k8/6dMfRbVi\nGRNU2LF9K8eOGe3+TZs2Gc5rlYTDY6FxJUhISKBYsWKEh4cD8Nprr9n7Cd0P9bMuyXzV4wIDBgxw\nW2j3hx9+sB8XCHNYw8nJyS51sABuXtU8uTUqFmbq1KnMnj2bVN3P+OWXXzbMr1+3UKFChIWF8e67\n7/L+++9TsaKxMkOuXLno1auXi/FYvnx5ihcvbj/39/fnq6++om/fvvTv358pU6a4vK9atWrh5+eb\n7JdzvpsKFbzvSJJSJgEIIXJJKQ8C5XJ4T4o7nMBALTV75UrN2Hr/fTh6FDp3hiJFoF8/LbNA/TtR\nKBTO3JEiF/ccQvy73jKAffFaPSv9/WeYSXHYdIwGUp/ZDtmQ554x9nOH/sMl2ekVtPnmWPvp63vp\nx839zf38Z4H/4ojb85WDQIKH6xfQZOV1XLp4IVv+KAL8vYtOfPsalImCn606Ejdv3mTIkCGMGTOG\nuXPn2utgpV49Yjp+0KBBpu2vvOAoRpwvXz6KFi1K6dKluXLlCj179mTUqFF8/fXXFC1alPfee4/O\nQ7QUxkFD3+b999/n+PHjBg+WM3XrOp5p9O7dm5CQEEaMGMHw4cNdDJnk5GSmTJliMPps1KtXj1Kl\nShEVFUVsbCxSSgYNGkTTpk1566232LNnj8nqvt3ZxMbGGs6FLnlr6tSpPPvss6xdu9anuRR3JaeF\nEOFouqY/CyGWAV6e6igUDooW1cIEjx6FNWugWTOYPh3q1dPytd55Bw4ezOldKhSKOwVlYP0b+Pvh\nkObLAtpd997nYCocjobf9I1uqgCnOx3fspa4/16XF+XpPtbM+DrvdN1WvDjJqd1GkkEM0kis+0tu\nSQFGohl27pgIjAZ0zqg//9yeLX8Unz3vENAA47GNovkdx9euXSMkJIS33nqLIUOG2BUGAWS66w/j\n6tWrrFmzhuBg1xjSfz53HE+aNJnExEQqVapEcnIyQ4cO5a233mLv3r2EhITw66+/st8qRSMEjB07\nlv79+1OqjEO3vU2bNob5hw4dSvyeGcTv+IxBgwaRmJjIhg0b2LRpEzdv3jQdp5dUT01N5Wb8aarm\n3cfpk0c5f/48p06dIjAwkLFjx7J69Wpu3rzJ3LnOkpeA9E3qUi+AoVcwPHr0KL169WLJkiWGumPu\nSEpKYtGiRS4eOMWdjZSyrZQyXko5Aq1u4gygjedRGkKI5kKIQ0KIv4UQr5tc7yKE2C2E2COE+F0I\nUTVrd6+4k7BYtJpZ8+fDhQswcyaUKKGFEFaoADVqaDLwZ++MtGKFQpFDZGehYYUNPwsEZ9Fc0cCl\nTV67AfBAqOalsXHN3PNhMHQigB3Wm/kJS+ELCfOEZwPL7Jqz0WbBYWMmAGFO45I9hNxl5rc0EC1f\nLdxDH1tt2iTAmhLkZ8mepw5+FqNRVb4I7POgqZI7d26D0p6ehVvg+UeNbd9++y3fffcdAV4cpRaL\n5s1ZunQpJ0+edOzP6mFNS0sj0qoKWSnGNsZCwUJFIEF7PNugWgHDnCEhIbDbKvrxYHcOHjtD/foO\ngbbSpUtz69Yt2rRpQ4MGDfD397fLwgPMnj2b8qdeYthjIK7CsPmap6tq1apYLBa7ceTv7/kXITEx\n0TQPDSAyMpKnnnqK9PR0atZ0VGiwqTRWq1aNXbt2IaU0eLecefPNNxk3bhxhYWGcPn2avHnzuu2r\nyHmEEEFAb6A0sAeYIaX0VEHQebwfMAFoglancZsQ4nsp5X5dt+PA41LKOCFEC7QS8HWy6j0o7lzy\n5oXu3bWvc+dg4UKtePGgQTB4MDzyCDzzjPb1wAPeZlMoFPcS97eBFRIC+uT5unXdS7WHhUGCp3gz\nD/j5Q6wHD01GSAMOf+Nb36tOT9kDwjFaXFacjaEEJzWMmDYgdRWD/cMg1fq9iMM1L2w2oCtUSxpG\nA2sSmpxJgK7PzUDconf+pQPl+sCRSe772xD45jjUOfYswsTAshmINqT1KwOWWHKq0cD6aRjE/Md9\n/zST/MBSpUpx6dIlJK467S++qBk4AV7+ogN111966SVWr17N2bNn7QbWiBEjKHRxIvAd/1hz3tav\nX8+FrpWIsNou8ac8SEmmJhi8RRUqVGD/fu1eNC4uDiEEAQEBBAc7njikp6fzSFntuG1N+ObvWlSs\nWJEqVaqwYMECRo8ezT///OOiTrhlyxZswYmHzsL1/fsNxpOe2rVrs3z5cpf2woUL07NnT9LS0ujY\nsaNH4wocyo4JCQnMnDnTkBunuCOZjeaj3gC0ACqSsWDj2sDfNuEkIcQCtEL3dgNLSvm7rv8WHFqq\nivuIwoXhtde0r8OHNWPr22+1mloDB0LNmpqh9eyzULZsTu9WoVBkN/d3iKDzf7ktW6B9e2jd2rWv\nr8aV2R3ujUQtHygrOA8cjIOT5k/qDbzpdH7JxLgCo4F1FWPY1dwAOL3U2KdYR4h8DEqO0XQidznN\ntxqj2mA6xlywPWiKgum6xp273ed5fas7TgNyFXDTUccNtLBEX8QJdQaWnwVCA5yuO//o5wBdfZhX\nx9MPQamSjkeY0fk89zfz1nz++eeMHz+eXG6MqEfKGsMBzQi0ergGDx5Mnz59WLJkCW+++SbVq2vV\nohs3bkzlylquXkQth9reX7sddbud602dO3fOfvzVnJkEBTnCFA8cOMD169f5/sO6vNkuHxEREYSF\nhXFQl6xgsTj+DeXy1/ZWpUoVABo1asSOHTuIjY1l7NixhpyujRs32o8lRuGK3377jcWLFxtCEVu2\nbEnz5s1p0aIFFy5ofwsVK1Zk6tSpzJgxwyd1wQoVKtiPq1UzyWlU3GlUlFI+L6WcAjwHPJbB8dHA\nKd35aWubO14EVmZwDcU9RtmyWr7Wrl1w5Ah89JGWhv3mm1CunKZK+PbbsHmzqrGlUNyr3N8Glp8f\n1K5tbHvzTS2IOrM89bT3Ps6EZbD/wR0wz0zz3Au53LTrp4oBaunCnpKt1ofeyPhgMXy/AWIr4JXh\njSAPRgPLplzoLL3kHCV4Fi0NXe+ISwNCS3hf1+YwNCunlO60lu7YYoFHyriZy8Zq66tZaORetLyu\nk8bm0CAIDjJ66aKiojgZ71vsaO3atcmfPz/NmjXjiQaPmPZZORQKmBV91rFxfE0O/DiUZs2asWvX\nLob0bUfCup4807YNq1atsr4v7Wdu8TO35Lo+b7Qu9QWS138/kRIljD+fr96uRasHtjKph6Nt0aJF\ntGrViiZNmhgMsmIFoEOHDgBUr16dyMhIAv3hnWegclEMuWh6L5+UmkJhcnIyzz77LA0bNqR9+/bM\nmDEDgDFjxrBy5Up++uknVq1axYABAzx/o9ywf/9+pJRIKWnQoEGm5rjTOXLkCKVKlSIiIoIaNWpw\n+XJWy3f+q9j/uq2lQ7INIURDNAPL1FIXQrwshNguhNiu/z1W3NuULg1Dh2rPb0+ehM8/h/z5YfRo\nre5WVBR07QoLFkCceV17hUJxF3J/G1gHD8IffxjbFiyAZPPisj7x3XcZH5PRyMPtx3UBKhnA3b38\n3KKO40ggWReKZbsl0e/xx6vwBZDiQ9jjyF80iXpn71QaWgU05zaAo8B8YAiuXrg0IMhLod1/gHnW\n4yZO1zYD3YA/dW1OIYKnnUU1nA0/W16XmVdyIpqHbr7rpaAkYw5caGgIqSk3XTsCwTpb7JNPPmHr\n1q3UrVuXqKgoCkS4WlHjxn1KWIiz682VwKvbKR//MU2aNGHkyJHs/f1bnqxwiVqlcNSaktoP4rmq\njhtrfXhj6WDjL58tPBHgf+3PIYTgkbKw/QPoWA/61jEWKQ4ODub48eMsX76cNWvWcOSIeW5gSkoK\n6enpDGwJ7z0Lu0droXk26tWrZz+uEK15u4KCggy5a3369AE0IQ498+eb/IAUAJw/f55jx44RHx/P\njh077CGedylVhRDXrF/XgSq2YyGEa6ytK2cA3T9IYqxtBoQQVYDpQGsppaksj5RyqpSyppSyZmRk\nZCbeiuJup2hRePVVWLcOLl6EefM0NcKVK6FTJ4iMhPr1NY/XX39Bum8aPgqF4g7k/jawbLVxcutu\nWEeP1jJX72TKNs2cKKE7oYrtugiYncCfOgPzHeCQ09ii4VBXgK9PYU/gKmCYjia9rifVus47gKuK\nt2OcJQCiPXgKPwBsWRHFna59YV3jS+t5cwwBP4H+JiXLnPduK6b8gaMpLr2IdnDV2uAUjbndpPT1\n5XPHDKIU8bpSTU9Xdxznz2+VF5Tpmqsm3dWwfa1xIl7Sh1xITU1lxPMxhIdCUIAmLAFw7bLmfsvj\nd4UKFSrg7+9vFM84bpRmLFDAIX9oc9JtfBdqlID5/YxrBgYInnvuOebMccyRmJjIiTij9Z8vXz72\n7dsHwIO6n4++WLNeSOPaTTx6WsqUMbolbWIYKSkpzJw5k3HjxjF+/HiDAZcZXnnlFXr37s1//vMf\nl5yxuwXn/D+zfMC7BSmln5Qyj/Urt5TSX3ecx4cptgFlhBAlhBCBQEfge30HIUQxYAnQVUqp5CUV\nPpEvn2ZUff21pka4aRMMGwbXrsHrr0O1app3q2NHTQ7eqsejUCjuEu5vA8vG4MHGc18fG1WqlPk1\nJ5q0RXiSvNMR4iUOzEZbY5FXn42yc7rjC8D7QHHd3XugP9yS2ieBL6zD1bhLwxg2aGv7E8/YKtfU\n0CUbBTgZxPqQx1N4ZguaRXUdeAOm5Q2kgHPIprOB1cJ1mtwPNDA2OL23miVxwd+CwXAJDwWOAF2g\nuk6yfdSoUVR7sBQJM/04M8HCvj07XSfb/Tak+178OG/evKQkXKButCZluGBIQQ4ePIgQgpuHvwbg\nt58Wc+DAAVJTU03VCY8cOcKTTz7J+fNmcZjmBPpJvvpKq0a9dOlSVq9eTa9evQgONuYUxuliZfx9\nKCHnTuW/dOnSANSp4xB1E0Lw0UcfAdC6dWt69OjBwIED6d+/v0u9LJ+5eQE2/x95z0xhypQpfPHF\nF3dtMePy5csTE6PpNOTKlcth4N+HWMMK+wE/AQeARVLKfUKI3kKI3tZu7wD5gYlCiF1CiO05tF3F\nXYqfnxYuOGqUlrd1+jTMng3Nm8P69dCzpyYFX7o09OoFixf7/nxToVDkDMrAAq1yoB5fnti+9JIm\nF5QZJk6EWttc2+PifRuf4qNixndOoT23I2QYpTNijl7WDKF33/VtrHNceS6gGK5GVyreS39+gebF\nkbqfUQVj+BcP6o5/djOPzVsUj2ZEbgNOQuU/U3jeuR6Ss4FlS2HXpaD5n5pn7OODNynAHwpFRhgb\nF2svz+pu0erVq0e45TxhQZo4hrjl9A1NxXMhaBN+/fVXonRr37x2iffffx+A/FYDs00NKFsY8oXh\nYmAtX76cDz/8kBUrVri8VVMlPuv+gnRRjGPGjGHkyJHs2LGDVF0l43KFNeELm9CFWc0wT0ybNo2x\nY8cybdo0xo0bR3p6+v+zd9ZxVlXbA/+uKYYZSrqEAaRDHqKgYgeK+kR95rPbn12I8YynKHZiooLx\nDOzuQFSku6S7a8ip/ftjnzP33HPPjblzhyHW9/M5M+fuPvvse89eZ629Nm+++SbGGPpfcyaPnWOY\n/uf7GGMYPTr8e/jaa69x5513RtWG7bvvvqUbPv/1l8eb4uKPYN4bPHhGMbnOWsfMzPgmmzsjDRs2\nZNGiRRhj2LZtW+l9qGjGjh3L8OHDGTFiBPn5Cez1t4MwxnxljGljjGlljBnghL1ojHnROb/UGLOX\nMaarcwS7slSUBGnSBM4/H954A5YsgalT4ZlnoGNHu//WGWdA/fp2363LL4c337Qarl30nY6i7Jbs\n2W7aXd4IN3lib4/J/ebNkJsbmWfrVnjqqeTqmzMHbr89ubwAM9Yml++T+EmiMjJA+NuShKMNgO0E\nCyDFBNjn+cgHMOGeDtdPCk/j1UDtTXyWEyZEtd7iE5bcuN+xXgndFRixrMmWYTV/FxPVaXNGGuRv\nXEcNr3WcIwRneB6Uw4YNo3vzkLlZrt9ZyT3ADdj1cwlQnJZL+/btMV5TQ2Po3hImLAhpjHKrwMzH\nYOw8yPdZu/3555+8/vrrPHpOQHsiKgSuAE6G5556lO0Z9bn22mv5/Xe7n9u6det497z1NHHu29f9\noOWNJXTt2pVJkyaxV8DXz0/NmjXp3/8qBg4cyIsPXgbYdoPdtLl69eps2LCBHpnv0bcPjJs/gsWL\nF0dorFwhc+HChaWaNi+TJoXG2ogRI0o1Y6NH/sb+Tr9deGQOHY+/p9T1fTK4rulzcnK45pprIhyH\n7I5cfvnljBs3DoDRo0dHdbmvKHsSItChgz2uvRaKimDMGLuO67ff4P334ZVXbNqmTeGQQ+zRq5fN\nU46fIUVRysGeLWC5+2Cdd559BQRWK3POOTBvHhxzjE3ToQP4F3q//Xby9T7+ePJ5AX5bFj9NqqmZ\nCxs2x08XRJCZ3q0BYYkIWAAYyM2D9rfC9Edh4Xvh0Rs8565cWESkswqXWYDX6vJnX7wrYPnNOlc5\ndUVbsjcT608sylDJTId0v6DZGfgb8pxNkO8/Hc45aBtve/aWbu73Ur8c+IaEXMdPWpRGl0NO5fQT\nezFt8jjoa8Mb1ITR98Mr3mt32rZfCxgR7qeCtWvXMnPmTNqMaRtRR9tGvoBtWJf570LPy9aRlZHP\nySefXCrAzJgxI+zNa4v6du+tQ3r14oFjJrJ3WsjX/sqVK6lf3zo5GTp0KBc4SqL82Rs4Y+BAZgAf\nO2vjql8Cm7aF1hDl5+dzkLMzQ7c8w9rcXHJyqvLm5VtZshau87xneeuttwIFLC/Tp08vPS8s2Frq\nROa5c7dA499YtfoiFi5cyPjx4ykqKqJly5Yce+yxdHnwJwAAIABJREFUkQWNuRZKiuCA0N5ut3te\nwJxyyil7hIDlXetVHuFUUXZnMjLslp09e9o1WyUlMGWKFbaGD4dffrFaLrDLy7t3hx49rMPkHj2g\nceNKbb6i7DHs2SaCbdrAzJnWdU9mJixfbv2ppqfD3XeD66XsYse/9MaN4Lzh3qHsDD43ChJf3xNB\n0PZbSwPC+gHxlHN7AYVF1tFFlfC1ISbNcfc9zxO4DqjRwWrvnvOV45IFm8SjZhrnqzPaioptxDdp\njMGtJwZsm7Z/6PTGG2/krr7Qsj5cEzAvD2vH30Ru+BxAl71LYP6bXNlzXtjaphxHC3XZEaGwEmcn\n6Ls/iDQRfOmll2jYsGFgHd/7lbOeodN8+YM0Wvxf7rrrLoYPH06fPn0oKiqKmFAfcsghbN24NEy4\ngkgNkkv19+EfQKkPzxJ4+mx72rt3b3r16sW4ceOo6rFRrFOnDrWzt3Lq/nBtb+j7zz6lca6reC9+\nb4fDhg0rPS8p8tnfLv2C+vXr0717dy677DKuuuqqUpfxYRRuglnPwewXKdpqTT/9zjFeeCGBTbV3\nAxYuDO1tMGTIkMpriKLsQqSlQZcucPXVdnPjJUuskczQofbdcX4+PPaY3eS4SROr5TrtNOup8Jdf\nYMOGuFUoipIEe7aAlZ5uV47+739QWAh161qNlR93I9SSErt74I6kTRuIVBJE8m/g58HgmXSmlKIk\njbuPJrr3wiC+ixO/Acj7JzzwH5jyAEwFXgFWAic6aha/l/3a3aBe73DBax/PeQlUK1oc+uw3tYu1\nlMYrKHa+L07jw7nqaOsvJAzP3PrJJ58sPa8Zb1/pOdg+SJBWtdYFOq7wIs6NGz03UsCCSEHAZW+/\nTwSPgDVtMXw1UWjTpg1FY27mxj5WTda6TcjL34i67/Lpp5/SumW4beW0Jf69r0JmouLf1+wWuPAN\n649k1KhR/P7777z22mtkZYSrDL3LxYZcV4epU6cyYcIEHnrooYjrqlo13NOhdx+sb7/5KiK9H++m\nxy6DX3yi9LzfrTcBdpPpU089tTTc7wGxohk5ciT169dHRKhVqxbz5s2LnylB5s6dG9Ur4X332e9P\nRkbGLu25UFEqExFo2dKu4Ro0CEaPtkLWn3/aVQ2HHWZdwPfvD0ccAbVq2fSnnQb33w+ff26dbOh6\nLkUpH3u2gDVtGmRlWcNmCAlSfi6+2K4gdd25T51qXw2VhVoJegj0s2iRFSLi0QdYv90aXlcEAZPD\nhEj1CHPn1OuXw4hN1tX7L8DbIKuGR6ZvCcx/C+p1DzcdnOw5zyZca+UXsPwPGu9+wV4BqdUllBuP\nkiSvHvAEcBOkBWkB/SQ6J10LUgDt2gS4NvRQKDkcOxD2y4MOTQLiEx0TnmRVq0BGVnWKNy3iiAaj\nOXqvL52YkKRz1sU307dv34i1Xdm5NalXrx7GGKZOncqF5/QtjQu7RWuBFZBWDEd6hKLxn35K5usF\n4CjBatWqSe3atUvja26fQIcOHdh3330DTfL8AlabNtbesKSkJK6wesUVV9C7d++I8JZVQqbHLfKH\ncOMlfcjIyGDffTvzwsVwxVES7DSkoljyFRkL3ijd0HnDhg1xTSUT5eKLL6ZVq1Z06dIlfOwUbYYv\n2nNI9c+5DRhz/PE0bmTtTAcPHkxeXl6pV0NFUcpOdrY1Kbz+eru6YfZsWL3a7r/14IOw//4webI1\n3PnnP+0y9Pr17SqJW2+1ruTHj7dLzxVFSYw9ew2W+2txxx32iEbNmuF7Y3XoYB1juBOPffaxv1jR\nqFLFbnqx3uMoIiPDrlZNtI3x2HQ+1GuQWNodid/cLlV8NwymeD6PAV44D7r60rnz5AEDwsO9ypfj\ngWlplEpvbQjfyNnvoa8jdr8wCF+7Ne3hhJoeyESsO3uPyeG0GwlttPwxcJUn/SzsGi/vnD0RT4Lr\ngGuhTQ24946Azbk8SFoGN/WB4wKcyN12IlFNBAGmLoaO7pzYsy90i3rQot5Gzj62WekeWXbT1ZAQ\nccsRS7jxrfD9rwBatmjB2rw8mtdLo7AYOnXuyveOo+wwGcTTD9s9359/Amk/YdcEdoG/Z06nbrVi\n+MR6Qlm5ag1bFyygefPmgddUu3ZtSkpKKCgo4PPPPuO7D5/lnf+9xWn/OoOcqpn4F/kVv78XaceP\ng9zmYKxZa0lJCQ8//DBTpkzhuuuuI239xFKnLNf2hq0FXzN58mTuuvwI0n66DzBwToLeOh2MMUkJ\nZSP//JOe806gO9Ys9R95sGU7VK+e4LYQ2LV5Z599NsuXL6d69eq8++67NG3alOLiYl5//XUApk2b\nxl9//UUv52XQn+/340Bm0JUZ9uv7+ed0HjQIsBtLL1hQDjtcRVECqVPHuoE/7rhQWH4+TJpkXcVP\nmGCFqmefBWeLRNLSrLarQwfr0bBjR3verh343j8pyh7Pni1gJUturnWOccABVnC6/no4PmBzJJc6\ndSJd+RQW2tdEix3TtO7drWugZPl8LdzlzGgzM+w6pZ2BRLYVqo7jHbAMTAnYg+tRIh1KrCXkkj0W\nabmhRvjbvJVw4cW77ZN7W5v2heU/BJe9DRiOnUiPABYDjxGuCXvVqdfV+NWCqt75urd/CgHXGjEX\nu3btERITsBxrr7SN0DmOh8Wq29dyXP3guIFnw219M7jkcNi83U7GvXT0Khzeiszv3YB45fIl8HVo\nZ+UbjoeCYljg2+dl27atDHrmcf5+3NbZod+E0jjxako9Zpveb13pMHDUXXs3bcwj9/fjWqcfFixc\nyo/39eLqw9bywtLb6Hf73WH1Dxs2jEcffZQj1q/n3A2z+dej8OKPv7Hs4EO45aYbrMMVD2mF63jp\n+hbs0yiDTnun8W3W09Su15Q7nJc5P/74I/89cQWHe/qqapZ1xpFWO3k35V26dGHq1KlkZmYyduxY\nOiW4X9/XX39Jz3b2/IbjrMA3bnF18rt1i53Rw5o1a/juu5Cd75gxY8K0Tzk5OWzZsoWCgtCatQnj\nx3LgPygdvyt79Sp1ZHLnnXcmXLeiKOWjenU4+GB7uBQWwqxZ1uBn6lR7TJsGX30VekfsmiV27GhX\nNbRuHfrfuLHvBZii7CHs2QJW69bQp0/8dH5c9+SnnALVqkHv3lajtd9+0Llz5EbFDRpYDZi7SP6h\nh+CDD2Ctx6PDCy9YPX2yZGbaA3Ye4QqsYiKeLfeBxF97lQiu44oulJqBMR64KU6+nwDxSDu/+eJ/\nw24j6rIMaIydyLu3Or0qFEZZLfwL4FpZ5WJn+u8BxwCuEshVbrrl9STclb1XUvDK4WsJmTS6eccB\nDYCxDaHR8jDHGWUx2Uy/F6vtuQw43Iatzoe6jkLj4bNh8M9w6RGB2UN49yLbiBU4NwDO0qLvPxrE\nYWlbw+TNfifCH6s64VVTbtu6mZHDv6ZKG6iSGb5+LS3NM9Ce8IRjvRou21SV1zZugbZSuqYuMwO+\n++57rnUsO4sNrFy+mOqZ8OaQwREC1rJlyxgzZgwtgVYt7LVceRRIXh4/PdaVI/zeE7Eu74/qYL+P\n2xdPYsISu79WjRo1WLFiReAeXwcddBAsCu2p0K5dO2bOnElWVha//fYb3bp1IyMj+k93UVERxhgK\nCgrK5I2vpDgk9FzraEa7tcq2izbisH37djIzMynyaeVdQSo9PT3QmQlAZoa7xtX+GzhiBANKSqiK\n3QPuxx9/TPgaFEVJLZmZIW3V6aeHwgsK7JTGFbjc/998Y+NccnOtkU/r1uGCV+vW1r+YCl/K7sqe\nLWDVqJH8XlZgV4m6uGuy/MIV2I2Ljz7auuwBuOCCSF+pnTvbsKVB7vUSICMjJGDtLFQh0uGEnzSB\n7OrYmXc56en8949qd7+qww6zm4f4WQxsiaNqG+v7vBQ4mJADknnvgOvF0I9X7joUu1HxN1h38P2x\nJol+ziC03xaEC0beIWacsg7FCn0GeBwrtP7pqNrG3RrSrnjLKSBci+bHda/vsdCqmlsz7IKO6kjZ\nuBPYghWyHgcawso/BrCg6Wpa+ywO96oebnNSi8Xsv9+RuPaZ3nVP6VODpfi6uTDjMZiV9U9YPxlO\np1RwzUiD8RPGl6Y1Bm47yZ6vWG4vfvPmzeQ6++BtcV6s5AC58wi7D7NmTAsUsC45PHSekZlN7yN6\nIyJs3bqVvLw86s29Db/rzGnTpvHXoHO5yHmLPHPmTJ4FOhYUcHmPHtQ89FB+DRrHDl4hJ5Yg5qfn\nAd0jtb0lie1Onp0dGvu1cqwWcsRMaNIkZOcZIVwt+RKmPshZ+y60fencwnOANXPn0rRjRw7YZx+e\nrlWL6z78kJ8SvhJFUSqarKyQ4OWluNguHf/7b6v5+vtve0ycCB9/bONdcnIgL8/6GvP+d8/32ksF\nMGXXZc8WsJJl4MDw9VReGjSAFT6PBOvWWVNCl6CNKLZuTV64AitcNW0KL74IV14ZHlc7G9Ym4MM7\n1cQTrgBKDKxoB4wqf32rsRP3mVHily0ODl9JfEciQXt5zcVxod8ErlkCzaP0sdek8GvP+XaskPFS\nQJ6LfZ+jPWQMMAErOFQntGfXn540Lc5j/389yuj7sdo3b7uaxSg3gNUbC8n1+GtpEWRCOAGYDxxG\nuDt8CJclHEXw+nWryQxY9jTinQm0Pyq8jfu3D1V49OE9gZExTSOrOr9w++TOxtx5ADIcuzcZ8Op1\nDXj1m9B3taDI7gcGcHs/q/bs0qULTz31FCeddBJ33HEHB7WBV2c5GTx91LNHd+CP6A0Bnn76Scbf\n8Dj7ezXVfwyH+eFOJLZs2UK1jJCk0xBwLSr/DfQbPpylS5fS2PM7UlhYSOaKr2DDNCaN+pZBtx3N\nypXL6dC+DYUJegA9oc9xMCx+unhcc9o+3HPcbKjaJNzWyM+0h2H1H6F9wXPhbOAdYNGyZdCxI/cf\neCDpF17Iy4Q7/lQUZeckPT0kJB1zTHhcYaH1F+YKXfPnh44RIyJdxlevHhK6mje3UxzX1bx7nh3l\nvaaiVDYqYCXDbbdFjzv1VGvu52X5cjjjDOuOZ3PAgqDatZPfbv2gg+CPP6wGa6+94Ior4KabQmaM\nAPcMhNvvCA/bmZg9IXrc8fvA1zEciHgZDZxK9DVXs+YEh48PDo7LMuCvxvCMo2qaFCVdjMsr1a7F\ne0vn9RDoTevOnacARxH8je51Gu888xpsuLhUqAFCwlgQRcHnaVk1CC8kIJ+7FCmf2JsfO+WmpxG2\nJxcAW+GyHwrhB8LW1a2f9zO0BzbCS21G2kBv37TBjoGBThXOOraffhvL0cuw/TQX2AdO6bSCYz0e\n0HOqhlSup3dbx7aJD1O4fQtDhgzhpJNOok6dOrx9xRrSbnYyOILd0KFDWbHgbmgV41qxGrfJkyfT\npUvIa0hJSWGE1WZhYWGY6WAtj/+VzNJ8NsAYw/UX9aZl8ffc4CwDzV78KbccbhfbTZ5vTRsbNWoE\n0x+3e271eh/qBJgjl6TGtLhKpjNAO4ebWGJKYNbzsHdftqfXQ7ZtilCgurJyn969mVxcTPq557Ll\n+eepsXw5ePbJUhRl1yMzM2QeGMT69VbYmjcvJHjNm2ePX36xW5H6qVMnJHD5BbBGjew77zp1ojuJ\nVpSKQgWsVLNokdWdP/gg3HKLDatSxX7DN2ywgpCXf/8bbr89toB1111w0kl2G3Y/v/9uPRi6LnwG\nDYoUpKbPqHjhqlEjWLYsfrogimOYIY0tY5nRLafKTkfia7aGJaB1jGVlFcfRRCleLY1XwHLnxNOx\nDiwivYvD1L/Z54H74WTChRGvE40pQKcocZ7zJk2bwVqvSs6HN18sB5gnU7oGKyMNmk4C/sJ6dOxC\nuJfHSUAtoBn0auysY3wJK7gOIfyaZhHGwfUasezuZTZNZyfwTUqdhJS6gt8M3bp0hI3W7WXTda/D\nOmhfG7758iM6tGvJurVryPPutuB8pa674AKevIS4AlZGGmzKXw9/XQ6F62G/p5k3ZzatPJa9C/Lr\n0bZtW+p2bIuriq2RTun9z8Duv5XmzBbGjx/PyY2/5yjPvSveOLf0h712rvXs16hRIxjv/B7NfBYO\neiOygSZSwBo/ZwvrfvqJI488snSdVVrATGX1Rx+R8ehD5B/QmZxz28OsW6FRyMXlokWL+M+1fRly\nxji+f+ceZjd4gG6rxtPDq5babG8nQM1qjl4rPZ2c+vUpXuPzeKIoym5HrVrQtas9gsjPtxspL1li\n/YO5h/t51ChYFfBTkZ5u3c43bGgFrlj/1SxRSRUqYKWaL76w/2++OSRguYJRejpcdhm8/nrI/c5b\njos176rQAw6wvxQuDzwQchOfnQ3eDV7Xr7cmiK650PjxkcLO/vtb00GXNLGmeYnQti3MjGZz56E8\nevpYst/KRFwAekhSxgukdvwklGQRW4KKwyFO9ng/6EVYRyA/E+60witQluD3FB5i5Dwb57VOdefT\n+Vih43JCQkIUDdbaVcuoG0vZ6hV2YilEip32boU2DYEHnPBJwEOAu/yqE/A6Vmt1OVSvmhZqMwT3\n3dOh05YL7IBoBNZsESJNCr8E/gfpHWfCHVDS4mLS5r0GwDGd4bObYVvhPDZt813fCmCW9U+y6nPg\nyIDr3IRdtLUZPhz2DnXqlcCvrwDw7CvDOP8QQmqpQigetoo1E++i1kGhi3rSU+dVl17KNa/Y/KtW\nrWLJkiW09o3T4oLNuPspD33tRdLbdCA/Pz+0o0C0dVUBGqzNWwv56aefGPfnd2yZ+Bhrt9fk/Hu+\np5vPs2CdV1+BP0dT88/RzO3Uito5wMIPob01tVy3bh1rFzl7NhSs5cEHH2TYZb7KtoVuexXnRdTv\nDz3IwV98QTX/3nSKouxxVK9uXcK3axc9zbZtdrXF4sXWeGjFisj/U6fa86CtHDMz7fvwOnWgbl17\nuOfRwmrWVKFMiUQFrFSzfHnk3lXVqoXOX34ZnnzSumj/739D4V4N1l9/RX5bb701VJYrYDVrZvXm\np5xiy7zhBvvrkO9z8ewvK0i4arcPzAgwxUtEuGreHNYk4o89CvHkk5o1rd5/5rT4m+lOiRNfFv6O\nnyTcP3gSvAt8QHTByKUEu65qIeFC0mZfmmpYTY13I2WXgiwo9HT2MOz+WvtiHX0sAJpg3aqv8+Rz\nlykVwbw5i6jbluh47898rAv5IL7GaqxWwaF+M8LXgJuBE4EeWBf0awEDtbOctY+HAXOwY8f/KxZv\n6zi/gDXd+T91M6vTO1Nj/gdklQC/2W3GqmTao2YO4b5Ycij16FhvpVOudzh8hvUW6dD4kvd5qu52\nblhrr//gQ50yXSZByx+BH1+wa9ecxeMHedqbPngwRdlZfHrIoSz4/GxOP+lwGjauGnbRVWSLvZcz\nIb3NRkSEpx9/gLscZypvvP0ep+/3esTGyd9/9zW+JRM0qAmFKwpZM/kRHjoTYC13vj2Ibt1eDU+4\nNdQxLXOsKe6WkTfz+aQmnHnmmRQUFHCusxzrmE6QKQHSt+c6f/zuO9avX8+2Eda1hfwbKIc/IkVR\n9gyys63L+JYtY6czxr6fDhLC1qyxx+rVMH166Lw4yvwjI8MKWrVrWw1YrVrRD398zZo7n38yJTWo\ngJVqGgRs9us3C8zNDXfRDtZAOC8vcpXnyy/D5ZeHPnuNkGfNgt8cn+Jvv20FrJ9/hk2bwj0Sxlpo\n7lK9Rvw00ViwADp1gilJSjd16sQW0DZsiOwXl2qE1jFBfAGsLLQk3EFFEBvK6TykhGAB03Xn7lJE\nSFMzI0pZRdgNkrtgN04u9kkSSwqs+3YXV4B0BYxXsQLCz75y12P74S7oVgI8SMi9vIehf9Xhgtae\n+7gkMk0pxYBryvGLL24t1mFHH+B3rLZqsnPeC3udrzlpC0jc9bzryd3f3573DXULJ9vyNgEfQsd1\nwBFYYQrC78kjQHfP5yKsi/yvnHb6zUs//ZkFh9W0ws9iqOvvH2/ZHq1ucVYm6QUhCTzjueeZN38U\nt5xtoMh/sxwGA3PBNPwA6XQBwz96xHqsBNZvgW3btlkBq3AjFKyD3Obcdst1HPPf8GJa/CgcfUpr\nxnucvAy4J0BqLvYITI6gmZ4G33zzDWeeeSYtW7Ykt21Te+HArVf1pUWTr7BvDByc+7D52CrkNi6B\nH46g8RZnAWNZvVUqiqLEQMQKO3vtBe3bx09vjJ2GuMKW+997vmaNFdpWrLDvptevt0c0wcwlNzck\ncNWoYd+jV68e+4iWRoW1nQcVsHYEibhKFrGu2hf53NVVqRL+2WtKWKVKSDtWt26oHID334dPP4Xz\nz7cbT2zfHlmWlx4Hwuhx8dsZjdqJ2NNFoW9fePXV+OmC2BQ/SdIkYpYUT1uSLH7LyCKsKVlHrHbJ\ndWKZJnC1gWexAtNXboYA13qGSIceR0KY/+sgc821wCBgq7Md1zwCBawLeqzhviF1uYfVwdcUjSAP\njUXY/bM+9oTNxQou7ruJHKyb+USFamcCX5gfssorrct7noXt3zWO7DaSkPmf30+KP+8wrDA6h/A1\nbQBFm3nilA2lGy8387/T8Jbl0WimZ0iEUJi1Lc7Ad8Zl2rJR8FEDvvPsKNG1ud23iqKt8GkLKFgL\nPV/n2A6RNz/jT8NR7abT9vS+sNXZm6s43D3onXfeybnj/6J0jlJMqYDluoyvXbs2tbseAgveAeCq\n/adDYR1Y5xGwnCGb3rklSye+SOOCCdRyx9l0FEVRKg2RkBDUKs56Wy/GWN9mrrAVdKxbFzrfuNEe\nS5daYyT3KIplcu+hSpWQAJaTE3zk5kaPi5UmO9seGRlqEpkIFSpgichx2BUR6cBgY8xAX7w48X2w\nU7sLjTHjYuUVkdpYw5s8rBHSGcaYdU7c7cAl2Ef8dcaYbyvy+hKmVq34aQAmTQqN2oED4aef4MQT\nQ/FBLti7dYM77rDOMiC0VqtWLXjkkVC6rCx4+mmr/37oofAyLroIzj4HnhsUvW39+9s2+TkG+Pcz\nUFINhg9P6DIBePhh643x889hyJDE8wWRmwObfZPD+llQpSB48p4o2SdgF+jsBBQAVwFbwTzjWXbU\nuB78uhJOAhKx0sz1pfNtLrQ53yaJYK6vLT7+XplO6/rF/Ofhd+H7oxNoSBzmEC5cAQXb0siiJFT/\nxVhTujL6PxhTx24TVko0AcvFa3Hr33rA7wzEG+9/IBoQMdaz4l+Ebx7tTx9WbqQEuWhWNDWmwznY\nLQACTE8Pal/VvpDZusAKVwDrJnLTdVfCyhfD0ppCkI0badagnmcNW3gnfDL0QQY0IGQ+6bwMSEuD\ns88+O5SwxNOY7Wsj1s6ZvbohjCP7j3S2tpxvHZu47wmSfP+SCsrzHFMUZc9GxAo71apZz4bJYIx9\nR+4VuGIdmzbZY8uW0LFmjX1/7w3bvDl469ZErik72wpzrtAVdF7WsMxMO1Utz/+dSfCrMAFLRNKx\n772PwdqFjBaRz4wx0zzJjsf6EmuNXW3xAtAjTt7+wI/GmIEi0t/5fJuIdADOwr7jbwz8ICJtjDGp\nNBorG088Ac8/D9dfn1j6Pn2stgms8HHbbfab5XLFFSEBK8exWcrKggEDQmmuvtqu4QpyOnHddfb/\n3Xfbb5pbV/Pm9vDSsSPcf7/9tvbuDR9+GNzmDj3h/KsBgYs9mzfVxr9/ajiuq/shQ6KX7aVmTTAb\ngvcj7t4RirKsR0WXjGqQHqsBCfDeTiJcAWyHghbNMWctIjOtJDQ3Xb3efkN6Yjc/jsUWYm8sDORm\nVidcogjAEXDmrMmlVR2ramvU6kDIH0FaUTkcfngJeFuXVuy403Pn6VOwpoRldICw7xEHELbvWpBD\nD+/6O6+W0q+c8wowRVCcUYt0VzrzCTdFxYWhH9znAhrmKwsAA6awOMKPR+smDYlpv9oVuB+oExmV\nkVWNjVu2sG35PNxdxT758H8ce8JpEWllEzB4ML/OhsMcpxSrVyyhpLg59evXp6CggNZNqsIqTyc5\nbU+TNPr06cOqVasoLCyk/uqxpddfVJCPkcwwTeLSogU0uR14aArFB7aF/QiZbybokyfVlOc5Fqvc\nBRsWcOUXV8ZKoiiKEp8c52gQHBwLgxWwigqthizWUVhkLcGLi4OPomLYUAxriuzqhLC0RdbwoXid\nkzY1O4IEImJf7qWn2/+lR7q1qvB+TpPQZ5Hw9N7PyVKRGqwDgNnGmLkAIvIu1jmz98F0MvCGMcYA\nI0Wklog0wmqnouU9GTjcyT8Uu4LjNif8XWPMdmCeiMx22uDdcnXHcuON9kiU55+PDBOxApR/HVU0\nt+uuCWFWjJl0dnb4RhTZ2SGBDeyOf/76ZkfZi6r9hSFHD507w2THu0IimwxDyLTRT/MmsGJJyF13\nzZrQoDqMDtgsuFk2DHjbOv1wSc/YvQxg10FW/xIo8r1u2ubc7/cId20exHbCtVd7EXJmUQurtRkV\nR7gC66BiFLRKL7EahvpQjRGwASj6v/j547GRUjM6LxnTsWuLVjoBv2CdTPgeLMWZkB7DaUjOx+Ot\nBsnFO6QGYa/Ju1f4eOx6sm1EyjRer5XPQNo6zxsAX9r0LcAAp+yqhGtoIFx4+wVrmmiCHUxeMG8F\nPIkVMA2hPnHZihU8gywJc1ZR+GRzZOv60jFzfNFKMj8bbMvKxa5t9LyaOmi60/YMIOsUIB3S9iKr\nOJNPirNhqUfAehMryK8BHqtPlQ1rSS8uJj0XqGKvW1gIK8LHcoOSkGeVvPdnwjfYMdqE2Ov5Kpak\nn2PGmKg+TddvW88nMz6pyHYriqKkjnQirS5iINjHRaxpmKs/MCb8PNp/A/alYwJpvXmK4qQLjCv9\nkzxiTMW8GhSRfwHHGWMudT6fB/QwxlzjSfMFMNAYM8L5/CNWWMqLlldE1htjajnhAqwzxtQSkeeA\nkcaYt5y4V4GvjTEf+Np1OdYhNUBosxmlrNQl8n2+khjad8mjfZc8u3rfNTfG7FCH7eV5jhljxvjK\n8j57OpFan6d7Erv6OK5MtO+SR/sueXb1vktA06diAAAgAElEQVTq2bNLv+M3xhgRKZOEaIx5GXi5\ngpq0xyAiY4wx3eOnVPxo3yWP9l3yaN9VLt5nj96L5NG+Sx7tu+TRvkuePbXvyrmJT0yWAHt7Pjcl\n0tAjWppYeVc4ZoQ4/13jmETqUxRFUZREKc9zTFEURdlDqUgBazTQWkRaiEgW1gHFZ740nwHni6Un\nsMGxW4+V9zPgAuf8AuBTT/hZIlJFRFpgFxx7VrIriqIoSpkoz3NMURRF2UOpMBNBY0yRiFwDfItd\nGveaMWaqiFzpxL+I3bWnDzAb6+Psolh5naIHAu+LyCXYLTvPcPJMFZH3sYuPi4CrK9WD4O6Pmlkm\nj/Zd8mjfJY/2XRkpz3MsDnovkkf7Lnm075JH+y559si+qzAnF4qiKIqiKIqiKHsaFWkiqCiKoiiK\noiiKskehApaiKIqiKIqiKEqKUAFLAUBEXhORlSIyxRNWW0S+F5G/nf97eeJuF5HZIjJTRHp7wvcT\nkclO3DPOXmW7NSKyt4j8LCLTRGSqiFzvhGv/xUFEskVklIhMdPruPidc+y5BRCRdRMY7+zFp3+3E\niMhxTt/PFpH+ld2enQF99iSPPnuSR5895UOfOwlgjNFDD4BDgW7AFE/YI0B/57w/8LBz3gGYCFQB\nWgBzgHQnbhTQE7uR99fA8ZV9bTug7xoB3Zzz6sAsp4+0/+L3nQDVnPNM4C/n+rXvEu/Dm4D/AV84\nn7XvdsID6yRjDtASyHLuRYfKbldlH/rsKVff6bMn+b7TZ0/5+k+fO3EO1WApABhjhgNrfcEnA0Od\n86FAX0/4u8aY7caYeVjvWQeI3ZeshjFmpLHfnjc8eXZbjDHLjDHjnPN8YDrQBO2/uBjLJudjpnMY\ntO8SQkSaAicAgz3B2nc7JwcAs40xc40xBcC72HuyR6PPnuTRZ0/y6LMnefS5kxgqYCmxaGBC+7ks\nBxo4502ARZ50i52wJs65P3yPQUTygH9g34Zp/yWAY2owAbtp+PfGGO27xHkK6AeUeMK073ZOovW/\nEomO4TKiz56yo8+epNHnTgKogKUkhPOGQX36x0BEqgEfAjcYYzZ647T/omOMKTbGdAWaYt9sdfLF\na98FICInAiuNMWOjpdG+U3Z1dAzHR589yaHPnrKjz53EUQFLicUKR42L83+lE74E2NuTrqkTtsQ5\n94fv9ohIJvYB97Yx5iMnWPuvDBhj1gM/A8ehfZcIBwP/FJH5WHOzI0XkLbTvdlai9b8SiY7hBNFn\nT/nRZ0+Z0OdOgqiApcTiM+AC5/wC4FNP+FkiUkVEWgCtgVGOenijiPR0vMGc78mz2+Jc66vAdGPM\nE54o7b84iEg9EanlnFcFjgFmoH0XF2PM7caYpsaYPOAs4CdjzLlo3+2sjAZai0gLEcnC3rPPKrlN\nOys6hhNAnz3Jo8+e5NDnThkoq1cMPXbPA3gHWAYUYm1hLwHqAD8CfwM/ALU96e/EeoOZicfzC9Ad\nmOLEPQdIZV/bDui7Xlh1+CRggnP00f5LqO+6AOOdvpsC3O2Ea9+VrR8PJ+TNSftuJz2c34VZTj/f\nWdnt2RkOffaUq+/02ZN83+mzp/x9qM+dGIc4F6koiqIoiqIoiqKUEzURVBRFURRFURRFSREqYCmK\noiiKoiiKoqQIFbAURVEURVEURVFShApYiqIoiqIoiqIoKUIFLEVRFEVRFEVRlBShApaipBARqSMi\nE5xjuYgs8XzO8qX9VkSqxylvsbtXR0D4e57PZ4nI4BRdwwMickMqylIURVEqHn32KMrORUZlN0BR\ndieMMWuArgAici+wyRjzmDeNs6meGGN6l7O6HiLS1hgzs5zlpAzPtZVUdlsURVH2FPTZo88eZedC\nNViKsgMQkX1EZJqIvA1MBRp53xCKyOciMlZEporIpQkW+zhwR0BdYW8BRWSGiDR12jBFRN4UkVki\n8oaI9BaRP0TkbxHp7inmHyIy0gm/2FNWfxEZJSKTROTuaNdW5g5SFEVRUo4+exSlclANlqLsONoB\n5xtjxgDYF26lXGCMWSsiOcAYEfnQGLMuTnnvANeISIsytKEtcAYwAxgHbDPGHCQipwH9gX856ToD\nBwE1gHEi8iWwH9AM6AEI8JWIHASs9F+boiiKstOgzx5F2cGoBktRdhxzYjwEbhSRicCfQFOgVQLl\nFWHfJPYvQxtmG2OmOWYU04AfnfDJQJ4n3SfGmG3GmJXAcGB/4FjgeGA89gG5D9DGSR/r2hRFUZTK\nQ589irKDUQ2Wouw4NgcFisjRwKFAT2PMVhEZAWQnWOYQoB8wyxNWRPjLE29Z2z3nJZ7PJYT/Hhhf\nPQb75vABY8yrvvbvQ5RrUxRFUSodffYoyg5GNViKUvnUBNY6D7iO2Dd2CWGMKQCeAa73BM/HmlQg\nIgcAeyfRpr4iUkVE6gGHAGOAb4FLRCTXKbupiNRNomxFURSl8tFnj6JUECpgKUrl8yWQIyLTgAeA\nv8qY/xXA64Z3GNBARKYAlwNzk2jTFOBX4A/gHmPMCmPMV8AHwEgRmQy8D1RLomxFURSl8tFnj6JU\nEGKMXxurKIqiKIqiKIqiJINqsBRFURRFURRFUVKECliKoiiKoiiKoigpQgUsRVEURVEURVGUFKEC\nlqIoiqIoiqIoSopQAUtRFEVRFEVRFCVFqIClKIqiKIqiKIqSIlTAUhRFURRFURRFSREqYCmKoiiK\noiiKoqQIFbAURVEURVEURVFShApYiqIoiqIoiqIoKUIFLEVRFEVRFEVRlBShApaiKIqiKIqiKEqK\nUAFLUXZDRGSOiByYQLpsETEi0rQC2nCciMz2fF4uIr2c8/tE5LlU17mzIyKHO/dmk4gcl+Ky/f2d\nkjEgIpeIyOdBaUVkiIj0S9U1KIqiKMrugApYilIBiMg1IjJGRLaLyJCA+KNEZIaIbBGRn0WkeZRy\nLnAm45tEZKuIlHg+r49WvzGmlTHmzxRcx0gR2ebUt0pE3heReuUt1xhzjzHmmvKW48cjAGx22rxY\nRB4WEUkwf5iQUgEMAB4xxlQzxnwTUP9yZ0xsEpFlIjJYRKomU1GqxoAx5lVjzElR4i40xjwCO6Tv\nFEVRFGWXQAUsRakYlgIPAK/5I0SkLvAR8B+gNjAGeC+oEGPMUGcyXg04CVjofjbG1AooOyOF1+By\nqVN/W6A+MLAC6kg1bZ02Hw1cBJxbye1xaQ5MjZPmWKft3YGDgFsqvFWKoiiKoqQMFbAUpQIwxnxk\njPkEWBMQfSow1RgzzBizDbgX2FdE2iVTl6P1uEVEpgIbPWGuOd7BIvKXiKwXkaUi8mQygpgxZi3w\nGdDVU3dVERnkaFsWi8ijIpKZQJsHishg57ydiBSJyEVOGatE5FZP2moi8j+n/VNE5PZENSXGmBnA\nSF+br3C0h/kiMltELnbC6wAfAy09WsI6IpIuIv8RkbkislpE3haRCOHWU/7VjnneGhH5SEQaOOGL\ngcbAdyKyKYG2LwF+ILK/nxKRRc49flZEqkRpR1nHQF8Rme/0/wBX6yciV4rID1HqeFdE7orSd80d\nTWINT/qDnPrT412/oiiKouyqqIClKDuejsBE94MxZjMw2wlPljOBY4A6AXGFwDVO3CFYTdilZa3A\nMQ3si22ry31AF6AzsB9wOJDMmpx0rMZmH6APMEBEWjpxDwD1sNqfE4DzytDmjsCBvjYvA44HagBX\nAoNEpKMxZg1wCjDXoyVcg9UgHQv0Appi+/PJKPX1wWomTwGaAKuBNwGMMU2BlYQ0VPHa3syp19v2\nJ5w2dMZqFNsA/eP3REJj4CSsMHcAcDbw7wTKBSBK3y0A/gJO8yQ9D3jbGFOcaNmKoiiKsquhApai\n7HiqARt8YRuB6uUo80ljzFJjzFZ/hDFmlDFmtDGm2BgzBxgMHFaGsl8SkY1Y4aAqcKMn7t/APcaY\n1caYFVhhKGEByMc9xphtxpjRwAys4AZwBvCAMWaDM2l/PoGyporIZmAK8CX2mgEwxnxmjJlnLD8A\nv2KFp2hcCfR3+ncbVqg8M8q6rn8DLxtjJjlp+wFHi0jDBNrs8rWI5AMLgPnYPnXNPy8BrjfGrDfG\nbMCaa54Vr8AEx8BDTrnzgOewQlZ5GYpjnikiWdh7+WYKylUURVGUnRYVsBRlx7MJqz3xUhPIF5Fm\nHhOruGZkHhZFixCRDiLytYiscASlu4G6ZSj7CmNMDaAb0BBr5oYjYDTECgIuC7Cam7JSbIxZ7fm8\nBagmImlOHd7ri3qtHjpiBdbzgYOBHDdCRP4pIqNEZK1YRyFHEqU/nGvcG/jKMa9bD4zH/nYGaQsb\n4+kPY8x6rPBclj453hhTHau96oRdp+eWnYkVHt22fIJdFxeTBMeAt18XOPWVlw+B/UWkCVYzudgY\nMykF5SqKoijKTosKWIqy45kK7Ot+EJFcoBV2XZbXiUVcMzIPJkbcK8A4oJUjKP0XSMirXlgFxowH\nHgGedT4bYDnWdM+lGbCkrGXHqLMEWIE1i3PZO9G8xpg3gUnA7VDa18OA+4H6jqOQnwj1h/GVYbDX\nc6QxppbnyPYJhC5L8fSHs1arBkn0iTHme6zzk4edoGVAEfY+uu2oaYwJEvT8JDIGvP3azLmWMjU5\n4Bo2YddmnYPVbKr2SlEURdntUQFLUSoAEckQkWzs2qJ0se7DXacCHwOdROQ0J809wETHIUNFUB3Y\nYIzZ5KxJuqwcZQ0G9hGR3s7nd4B7HGcQ9YE7gbfK19wI3gfuFJGazrqkq8qY/yHgascRQ1WsFmgl\nUCIi/8SuG3NZAdQXEa9w+yIwUET2BhCR+iIS6LYc2x+XiUgn594OBH4yxiwvY5tdHgdOFpH2xphC\nrFfKp0Wkrlj2FpFjEignkTFwm9PHedj1WoGeLWMQ1HcAb2DXex0HvF3GMhVFURRll0MFLEWpGO4C\ntmIdEJzrnN8FYIxZhV34PwBYh3UqEHcdTTm4EbjUMTkcRNknzqU4a7yewzpyAGtqNg2rlZsA/I7V\ncqWSu7D9tAD4GitwbU80szFmDNYV/k2O1ukW4HOsh8e+wFee5BOxnhIXOGZ4tbHX8wPwk7M26g+s\nuWRQXV9gBbrPsBqghiS/Jg1jzFLgXZyxA9zglDsGu47vG6xjkHgkMga+xF7/GKyWr6yCclDfAfyM\nFWxHGGOWlbFMRVEURdnlEGsBoyiKsmsgIjcCxxljesdNrOwUiMgfwPPGmFRrNxVFURRlp0M1WIqi\n7NQ4ZnA9RSTNMW+7HmtmqewCiMjBWHfyH1Z2WxRFURRlR1DmzUYVRVF2MFWwa4+aA2ux63gGx8yh\n7BSIyLtAb+DqoC0EFEVRFGV3RE0EFUVRFEVRFEVRUoSaCCqKoiiKoiiKoqSIPdpEsG7duiYvL6+y\nm6EoiqIoSgoYO3bsamNMvcpuh6IoezZ7tICVl5fHmDFjKrsZiqIoiqKkABFZUNltUBRFURNBRVEU\nRVEURVGUFFEpApaIvCYiK0Vkiiestoh8LyJ/O//38sTdLiKzRWSmiPR2wqqIyDciMkVE/s+T9mUR\nCdwEVFEURVEURak4RORCZ1PznQoRmS8it5Qh/eEiYkSkbgW1x4jIvyqibF89lXo/ROQLERlSWfVX\nFpWlwRoCHOcL6w/8aIxpDfzofEZEOgBnAR2dPM+LSDrW9e8IoAtwnpN2XyDdGDNuB1yDoiiKoihK\nyhCRQ0XkMxFZ4kzALwxIIyJyr4gsFZGtIvKLs0dgrHLv9b7UTmF7g4SE94CWqa4roO6yCkD7A89X\nZJvKSCPg88puRBBlFUaVSCplDZYxZriI5PmCTwYOd86HAr8Atznh7xpjtgPzRGQ2cABQCOQAmYA4\n+e4HrqzAplc6kybBxIlw3nnx0/75JyxbBqeeWvHt8rN6Ndx7L5xwAhx/PBgD//0v1K4NGzdC//6Q\nnh49vzEwYACceCJ07RoKf+EFGDsWzjkHvv3WlrPXXuF5hw+HoUMhLw/q1IGCAujeHZo2hYEDobAQ\nRGy5EyZAo0a2batWweOPw1132fzLl8Odd9pjwwZbXn4+1K8Pxx4Lr70GbdtCjx7QrRt8+SV88gl0\n6WLLz8yEUaOgZUvYtMnmb9UKjj4aiorgjjtgzZrwth97LBx+OLzxhq1ryRK45BL47TfIzbVhq1fD\n+vXh+dq3hwULYMsW2HdfmDrV1pGRAf36wVtv2b6fMCE8X4cOMG8ebI2zQ1F2tm27MfB//2fbvnFj\nKL5RI3vNS5faz9WrQ+PGsHAhXHghDB5s63Lb1bChvf9Lltj0++4LU6ZAcXFw/Q0a2P5cvDgUJgJX\nXmn7feHCyDzt2sHpp9t73qEDzJxpw9w+6NDB1t+sGUyeHHwdydC5sx07tWrB339HT9emjU3n9mOX\nLvY6GjWC6dOheXPYvt1e+8SJZW9HTo4to2pVOOUUeOABW14qceuYPt1+7tEDjjsOHnzQfs+8+O95\nsrhjcerUUFidOlCjhh1zhYUwZgyUlNi4rl3t/Y02tvzUrWuvK2hMJUuXLraP3D6pW9d+nxdEWS3U\npg3UrGm/E7G+m+3a2eueOdP+vs2bZ393H38cVqwIT+v+Lpx6qv0eDxsWv90dO8KcObBtW3D8scfa\nfh092o7Tv/+On6esdOpky/WOXe/v926400w1YArwhnME0Q+4GbgQmAncDXwvIm2NMfk7opGxcPa8\n22n2vRORLGNMgTFmVWW3xYsxZnllt0GpOCptHyxHwPrCGNPJ+bzeGFPLORdgnTGmlog8B4w0xrzl\nxL0KfA18gv3xaQ88CmwCuhlj7o1T7+XA5QDNmjXbb0G0J9xOijiiZCK3rSxpU80HH9jJ7T772Ifj\nmjV2UuGNP+206PnXrbMCQceOdpLhUr26FVZcHn8cbropPO9ZZ8F770WW+dRTcMMNdhK2bFl4vyxZ\nAoMG2Ynha6/BxRfb8GHD7HVkZVlBzeWEE+zE3sUYOOoo+OmnUFidOpEClJt26lQ7cahd207mwApO\nbdtaAe7770Ppzzwz8nrq1LETZ4C1a61g5adxYyso3HorPPqoDcvIsBNdfz5XgAmiqMgKAi6//w4H\nH2zvZ3a2vR+uwFerli1nlecxdvDBNo9LrVrh6TdvDk08mzQJjVuXzZvteAA76axe3Z4vWQJnnGH7\nxhsOViDOz4cnnogcH5mZth+8E9fsbHt421WtWnB/xGL16vCJZbVqtiw/69eHxnHduratsYSfrCw7\nLhKloABWrgx9fvVVK6g3bGivPRV468jJsfctNxfuuQeuvtoKiu5LFO89TLZvwY4TV3CoWtV+D7Zs\nsWPZT9OmNq07tpo2jV++tyz/mEqWVatC97ZRI3seq47ly+13ziXad3Pp0pAQ6eXJJ+HGG+2Lp9xc\nG7ZyZej369BD7Vj/+WdbdjTWrAl9R4LasHo1tG4dejnhJxVjzft98pbnXntamv2dc7H3W8YaY7qX\nr+adA8es6xpjzBBPmABLgeeMMQOcsKrASuAWY8xLAeVcCLzuC77IGDNERGpi51B9garAOOBmY8wY\nJ29N4Dms1VANp+5njDFPich87AbwLguMMXlOfc8ZY6o5ZdwL/At4ABgA1MdaKl1qjFntpMlw2nEh\nYLCby+cAHYwxhwdcUx4wzxc81BhzoYj8AkwHNgMXAPONMfs77X3OGPOYU8ZNTn2tgPXYueUtxpj1\nTvzhwM9APWPM6lh94W+fk39vJ/0hQDawELjXGPOuE2+A040xH3iu52zgKqwiYYbT/hLgZWBfYDxw\nnjFmnrdv3bm0E+bvf//nVsATQA+gOo6Qboz5won/BTjMey3GGHHiDgIewmoD1wGfAbcZYzY68TlY\nLeG/nP5/GjgIWG2MuTCon3ZbjDGVcgB5wBTP5/W++HXO/+eAcz3hr2IHkzdtJvATdqA8AXwA/DNe\nG/bbbz+zq2Gn56lPm2r+9z9bd8OG9vOyZaH2gI2PxYoVNl1aWnh4bm54OffdF5n31FPD07jHo4/a\n/xs3GtOkSXjc/PnGXHWVPR80KBQ+dKj9f8IJ4ekPPDD8szHGHHJIeFiNGsHtMMaY8ePt+ccfh9p9\n2mnGdOxoTI8e4elPOimyjK++CuX7v/8LhdepEzrPz7f/r746FPaPf4TyXXJJKHz69Oj3Yu7c8Lp/\n/DH03xhjXn89FDd4sDG//x6e/h//CP/sTf/yy8YcfHDoc0lJZP1vvhmKf+GFUHijRqG+ef758DwD\nBthw97/36NXLmIsuCg879dTI60iG004LL/euu4LT3XFHKM2vvxpz4onBY8U9jjiibO2YNCk8/4sv\n2v9LliR3XfHquPJKY6691pi99jLmqads2Jo1obTu9wiMeeml5OucMydUzvnn27D334/srxo1bJz7\nXcrISKz8994LlfHMM8m304v3t2PduvA6nn46Mn23buHXMm1acLktWgSPFXfMv/VWKO1RR4WP/yOO\nsP9jcd55oTxz5kTGn366Me3aRR+z8+cn3kfROP30UHnesdu8uQ1r2jQ8vf1dZowxlTOvSfWBfXF8\noS+sJWCA/X3hX2IFjKByqgKPYSfsDZ2jKtb6Z4ST9wBgH6wl0EagkZP3WWCCE98ca2l0uhNXz2nL\npU6Z9ZzwC4FNnvrvda7lY+yyjgOBBcBLnjT9sRP204C22In5BuCXKNeUDpzq1N/Bqb+mE/cLkA88\nDrQD2jvh87EClFvGDcCRznz0MGAS8KYn/nCn/Lrx+iJKGz8HvscKRi2wy1yO88Qbdz7rtMFghZ0+\nTrt/BqY6/4/ALpUZA3zu69spvnr9/e//vC/W2quzc8/vBAqAdk58bWARcJ/Trw2d8M7OfbwZaI0V\n0P4EPvCU/TywBCuEdgKGYcfTkMr+Pu3oY2dy075CRBoZY5aJSCPs2xiwN2pvT7qmTpiX/8Nqs3pi\nv5BnYgWuzyq2yUo0XHMc+32LNBfyayn8+NPHCy9L3szMyLexrtmgH/cNrqstilWH3wQpVlu9bXFJ\nT7dlpPlWRgaZCHnzec+97czOtv+9GpVo+aJpr4Li3Pa44f5yoqUH28dVqgSnz8gIvgex2uxviz9d\ntL4LSp9of8QiWjtipQtqj0jou5NMe4LGdzLlJFqHew2FhaHvgVd7kYq+jVZOUHn+uETrTFU7Y5UZ\nr45kxpCXoO9E0HiId32JtDPWb1wq+i/e75W/Dv9v526KY4OAzwiUFUCToAzGmK2ONqzIeMzSRORI\noCtWMHJ/Lf8jIidh17Y/ghUkxhljRjnxCzzlrrIKNdab+OZuGVhhcYNT98vARZ7464GHjTEfOvE3\nELlW33tNxSLi6q5XGkcT5mGeMebmWA0y4Zqn+SLSD/hURC4wxgToh6P3RRSaAx8aY1wj73lx0gM8\nYYz5CkBEHscKaf8xxvzshD2HVTwkjdMer+H5AOee/wt4wBizVkSKgXzffb0VeM8Y87gbICJXAeNF\npD6wBbgEuNgY860TfxHgMe7fc9iZfo4+w6pCcf5/6gk/y/Ea2AIrNbuDG8fb4IlYASsHq0o12Lcz\nSiXhmrhEE7DiPQjLI2B5zWuC8romYv4474TWxTWh8wtYQXX4w7Zvj8znb4u3Henptgz/2rQg879o\nk1e3vvT0UDleASuZSa8/zm2PVzDylu/vW2/7/fEZGfEnwdHamZER2RZ/umh9508f1K5k8OeLdk3R\n+sDFP27KK2C55mEVKWBlZNhx7X4PvOM4VYJL0PgNKs9NFzRGY+EfX6mgrAKWv95o7YgWHvSd8J4X\nF+8YASsV/Rfrux9Uxx4iYKWS/bDzplUissk9sJqHVk6aF4AzRWSiiDwmIoclWdcCV7hyWIo1FXTN\nEBvimdsZqw4ZRfKMjZdARI50vFYvFpF84CMgi5AQ66esffE0cJeI/CkiD4jIfgm0e5Ln3BWiJ/vC\nch1TvKQQkVwReUREponIOueedweaxcm6H3Cub6y4CwBaOUcWVqsFgDFmk6/9ewyV5ab9HewNaOsM\n7EuAgcAxIvI3cLTzGWPMVOB9YBrwDXC1McarK7gbGOC8bfgWa+s6GXhzR12PEon7FttdI5CsBssr\n9BQXRwpBQUJRtIe+O/FLS4v+ht/bZghNVnJyoqf3ts9LSUlkPn/+RDRYQUJCtImgW19mZsjRhleL\nEy1frMlQNIHJP4l1z2NpsIImmNEmS/HamZkZ2RZ/umgarCBBqCI0WNGuKVofuPgFrLJOVv3p3X5I\nldDgL8sVEqNpsFIhvEJik2xvuqAxGotoLyDKQ6wXELHaHq8d0cKDvhPe88JCe8S7D/Ha6QrU0UhF\n/8X67gfVEctx0m6Eq1Hwr6Br4IlLlDTshL2r72gH/AfAGPM1VhPzGFAX+FJEXk+i3f7RYqjYOejm\nWJEi0hxrGjkdOB0rPDirr8kKylPWvjDGvIo1DXwdaAP84ayZioW3n0yMMLfvSgg5enOJ9+17DHvN\n/8GaRnbFCrOB1+0hDRhM+FjZF6v4mBAj3x5JZXkRPDtK1FFR0g/ALowMirvRc74NOLbcDdwFMCa+\nkFKZ+DVYfu1OvDeNiWiIohFL++UVPKKV7RWwymIiGNS+aBosN20iAlYyJoLeCUhlmwh6BcQgQSZZ\nDZZXeCyLBiuojRUlYCV6Tf50OTnhDlLKq8GK1k/lIegaSkqCtbOp0mAlYiYWFJdonalqZ1CZaWmR\nL3ditT1eO6KFxzMRLCqy9ykVGqxYv8mp6L94v1f+OvYQDdY8rCB1DDAaQESysS+Xb42RrwC7bsnL\nOKxgVmKMmRsto2N+9ybwpoh8DbwjIlca6925MKDcMmGM2SAiy7GOE36CUmce+xNbaHRdTyVTf3es\nQHGj+9JeRE5MoK2x+iIo/WKsg4qXReQ2rCnkvUm0NxqrgAYiIo7WD6zgE4tewBsec8xsrPZplidN\ntPHS0RgzO6hQEZmDHQ89gblOWC5WIzon4SvaTdgzfo52Q4K8R+1MxFuDlaiJoFeIDBJqgoTMWCaC\n0UyGvGV7NVHuZMWviQqqI8gNdDwNlo4kcQwAACAASURBVP8NbXFx5FvYIAEr2uTVrc/7dj/VJoL+\nCVw8E0Fv+1NtIpjMGqxdwUTQP252BQHLvSZ3vHm/46kSXHZlE8FoLyT8lNdEMJ6A5WqwUiFg+X+T\nveO2MkwEdwcNlohUE5GuItIVO0dr5nxuBqWmc08Bt4nIqSLSCbu36CbgfzGKng80F5FuIlJXRKoA\nP2BNvD4VkeNFpIWIHCgi94nIIU57/isifUWktYi0xzqWmOsRKOYDR4lIQ2fJRrI8DfQTkVNEpC3W\nQUUjQhqbIBY48SeISD0RKYt/0r+x/XuDc91nY51eRCWBvvCnf1pEjhORls79PA5rjZVKfsE6pbhD\nRFo5FmHxNi+eBZzijIXOwFtYL4de5gOHiEgTCe0z9jBwgIi8KCL/EJF9ROREEXkJSs0BXwUeFpFj\nxO7N9ho+QU1EHhKRH5O+4l0EFbB2URLV5lQWFbEGK5H1V7HSFRVFn5RFE7CircEqrwYrlSaCO1qD\n5V/jEU8b430ZkGoNVrw1WLuqk4tUr8HasiWkQUkV0a5h2zY7lr0vP1SDlbiAVV4NVrw1WBUpYHnH\nbSo1WP6xu5trsLpjXXGPx64lv885/68nzSPAk8AgrFe5RsCxJvYeWB8CX2Hdo68CznaEtT5YrdEr\nWA9272O9+Lm7AW7HWhBNxApj1YGTPOXejPVwt8hpZ7I8htUMvQ6MxJq9fQxE3VHNGLMEuMdp3wrK\n4PzBGDMJq026CSv0XArE21g3Xl/4ScN6HpyG9Sa4gpCvgZRgjJmOdet+OXb91jHAg3Gy3YR1JPcb\n1jX9SOfcy91YB3NzsOPF7bNDsR4Pf8X2w0OEO1y5Bev18GPn/xRguK/sRoTW+O227ExeBJUykOim\nmZWFX4PlFz7imTdWlImg/822663NW3aQBisZL4JB+VximQh638KKxDcR9L7FLYuAlajGJppGLdE1\nWP52R9N8JLMGK9raIvdzNOF0T1yDlcr1V/46vFo4V8CKlTZVdUYrz6+5SvR+VuQarKD2VsQarKDv\nhPfcNRFMxRos/2+yO25FUqNNinaPd2cByxjzC5FravxpDNbM7N4ylLudAM2GI5Rd7xxB+QYQZYmG\nE/851tOdN2wIVqvmfo5oa0CaIqwGqVSLJCLjsW7ko2KMuR/rWt4bdniUtHm+z88Az/iSve+J/wXP\nvYjXFwH1XRsn3lv2fHz33di9yPxh3wSEvQT49z972hM/hPC+XoD1deDlMV+ZI7Hrq/xtHkNs746b\ngfOdI1qaC6PF7U6ogLWLsqtrsJJx056oBqssJoJVq9pJuLds74avZTERDAori4lgkAaratXKNxEU\nCXcbXlYTQX+71USwckwEUyUwBNXhFRK3bYvdD+VpRyJaDFATwVj1FBaWfQ1WtO0TvJuvQ2jcpkrQ\niXaPd2cTwT0Vx+lEb6xmJBO4DLtn1mWV2S5FSZbd4H3PnsmuosGK5kUw3hqyRAWsaF4Es/3WxASb\nCLoTAm/ZXoGkPF4Eg/L58/s1WEVF4ZOTnJzgvoo2efJ6EXT/R/Mi6D0vy4SorCaC/nZHS19WASsz\nM9Q3ZRGwgtpYURqsRK+pogWsLVsqXsDy9rl/orsjTO9ixSVa545oZyKmd16iCQ3R2lcRJoLR4v2/\nv+64TZUDJrcN0cbT7qjB2oMpwWo9RmG9TPcEjnc0Joqyy6E/R7somzfDZZfB8uWwYQM0a2YfarMD\nfbuEmDULrrsObrnFPrSuvjqkofjkk/C027eH6njiCfjmG+jXDyYk4IzT1ebk51uB5Z13wuNdYWTo\nUFv3r7+G4hYuhCOPtOclJbZdzz5r6/dz770wytkpY8YMyMuz/4MErK++inwwuyYt/frBCy/Y84ce\nCuX54ovwdC4bNoR/PuEE224/QSaCInDuueHtgJAGa/r02Pn9+bzn7ia+3je88+bFzxcP70TqxRfD\n85dFwPJra7zpEzWni3fu/Tw+YEXAriBglXcNln+i+cUXqfc66tcmuW18992K02AFlZmIgJWMBivV\n7XSFhLIKWP/f3n2HSVKV7R//3rsLuyw5iwSXhQUEkZxRQRQBJaoIiiwKL4KA8IKvIirDqARF/Sko\nKoICggQJCohIUBZBEZYgGQHJOS9hI/v8/jhVdk1Nd0+niXt/rquvqjpVder09MxuPf2cc6rW51ar\nffm/z7Wu8+yz8PzznQmwyvLf2071sMivUf7yygHWyBMRT0TElhGxaEQsHBGbRMRVg90us1a5i+Aw\ndeGFcNpp8MYbcPDB8MQTqfzaa2HVVWuf9/GPw913V7ZPOaWyvuuuPW+kL7kkXePNN3sGSD//OUyb\nVr99xf8QH34YHsuedz5uXAq48v377JOWW21Vufa++/asa9dd0/KAA9JyscXg1Vcr+zfZJJ173XWV\n62yzDVx0Uc96VlsNPvzhtP6pT6Xgb6+94AtfgHvuqf1eFlootW+HHVJgdeONvY+54orq526ySbpO\nteAQYPnlK+t5gLXeeulntuOO6YYl/2zz9/2pT8Eyy1TOe9/74EMfSp/7jjumG6ztt6/UWbTLLpX1\nrbZKP6e11qr93nNf/nK6Sb///rS90kqpPZB+rjvtlD6D1VdP32J/7nPw5JNw9dWVOj7wgfQznDQJ\ndt45vdc11kjn3nVXWlazyiqp3XPmwLvfXSlfZJHKerEcYP31e25/4AMpcF1jjfQzWm65FMT/5S/p\n57Dttr3fRyu23Tb9DU6ZktY32qj6cZtskva/4x2w8MKw3XZwww3pd3ibbdIXH2+8kX6vNtssBfDN\nOugg+NOf4D/Z5MsbNPKIyxaucf/96Xew+LtW/r1bddWen3k7Dj88/Y5vvXXaXmkl2G03uPjitL3w\nwvDpT6f1nXdOn3v+b0hf3vWuVNeMGfCe97TXztx226V/M7baqrFr7LorXHppmqb/4INr17v77unf\nlTzjnv8+5yZOrKx/9KMwdWr6G8r//dphh/rt/uAH02vdGhM+F/9GFlkk/Z5+8Yvw4x/3/vtr1Yc/\nDNdck/5einbfHV55JS2L1lqr9xeFZmaDIiLm2dcGG2wQw026/Ys48cS03H33iOuuq5T/4he9jy1a\nc81KebVX0W9/m8r22KPnMePH993Ob3yjcvy//hWx9dYRW24Zce+9qezcc3u2sXjtbbap3rb99ot4\n5zsjvvCF6u0+6aTK9oUXVtavuKJ+W48+unLs2mv3rvu006p/Bn/6U8RHPtLz2IMOipg6tbJ9ww3V\nz82vVXTkkRHzzRfx6U9HrLJKKrvkkuqfTaO+9a3K+Tfe2FodRVttler6858bO3677dLx++7b/rXL\nzjmn/s9miSUa+/xHukUXTT+Hv/+9/6+17rrpWu94R/9fy3r72c/Sz3/XXavvnzu3vX9Pih5/vFLX\n00+3X1+nAFNjCNxf+OWXX/P2ywn1YaqYISp2x4h6T4zokEauUWzf229XZsfLv9muN4asVjePOXPS\n+bW6rhTHRRW7CPY18LlaFzvou0vVfPP1rrvcvnrdbMr158/BqjedfLPqZRVaUWvMUy2deh/16u7U\ncSPdQPwc8t8xTzYwOPLPuNa/0Z3sJtof3SnNzEYKB1jDVHEa9HIwU9bphxI3EmAVg745c5oLsGrd\nBLz9dvUZ16pdsxhg9TX+olaA1UhgVm3Gr1ZvPEaPTp9VcQB6uzcunZoeO5f/LjU7psUB1uDr9DTt\n9a4xENey3gbyd90BlplZbW0FWJL8PeUgyW90I3oHM2WdnnGwvzNYtQKsPINV6+at1QxWsb5qAVat\n9owZUz2D1WpQk9dVnOa63RvVTmew8s+t0cHk/XnD3WidvtlPnMEa+fLf9U5PaFLvWuV1MzNrP4P1\noKQTJa3ZkdZYw2plraoFLp0OsBrJiNXKYOX/EdebZarVDFYxwJp//sp6uxmsWgFlf2SwIAVYQz2D\n1egNtDNYQ8dA/BycwRpcfXUR7I9rldfNzKz9AGsd4N/AaZJukrS/pEX6OsnaV+wi2FcGqxgQdeI/\n3sHOYDUSYDWTuWmni2A7Y7DKP8e8rpkzh+4YrGYzWIMZYOU/X9/8JQMR9DiDNbgG8ude/LtyQG1m\n1lNbAVZEvB4Rv4yIzYGvAl3AM5LOlFRnsnBrVx40zZ078BmswR6DVes/8+I1m8nc9NVFsN551TJY\nQ6mLYH9lsBoNsPL35C6Cg88ZLOuk4mfs50+ZmfXU9hgsSTtJugT4EfADYCJwGVDjyUDWqmJgU2sW\nwZEwBqsTswgOhwxWOZDsjy6C/TWLYKN15e9xMDJY/Xnt4cgZLOukgRjnZWY2XLU9BgvYGTgxItaL\niB9GxHMRcSFQ49Gq9Un6X0n3SLpb0rmSxklaQtLVkh7Mlotnx24h6U5JUyVNysoWk3SVpBH3nVq1\nTFWtWQSL3QKH0hisdjJYeWankQCrmcxNrQCrkfP6YwxWJ7sIdjqD1WwXwZzHYA2egQw0ncEaXA56\nzMyGhnaDkL0jYt+I+HteIGkLgIj4UrOVSVoe+BKwYUS8BxgN7AEcCVwbEZOAa7NtgCOAHYDDgAOy\nsm8Ax0VEhycnH3zFoKSvWQSLZcWAaKD+Ay5ev1NjsGbMqJ/BKl5zOGSwyvKb0pGUwco5wBp8A5FV\ncgbLbGSStIuk6yU9L2m6pMck/V7Sdi3W9/nsS/NZkl5t4rzFJB0jaf1Wrlun3ii85kp6UdIfJK3V\nYn0TsnZOrLLvUUlntN1oG9LaDbBOqlJ2cpt1jgEWkDQGGA88TcqSnZntPxPYJVufnR0zHpgtaRVg\nxYi4rs02DJgnn0wBhQTTp6eyO++ENdeE117reWwxKPnBD9Ky1hisYtkyy6T6G8k8bbJJY+3O23zL\nLWl5xRXw6quV8ksuqRxbbRbBRx+F1VfvWecaa8BnPgOXXlr9mjfeCE89VfuG+aabKuudyGAtumha\nFmckBHjHOyr1luseNarxay+2WM/t/Kb0qacq63nbiu1qRqczWAsvnJaNBi39mdHI27DMMtX3r7JK\n/117OFl88bQciC9XnngiLT0mZ3DkfxNLLTW47bCRRdKXgEtIvZb2BT4KfCfb/cEW6nsncCrw9+z8\nDzVx+mKk8f4dDbAyZwCbAe8HvglsDlwpabF6J9UwgdTOXgEWsCvw7daaaMNFS7cekjYj/eItLenw\nwq5FSFmnlkTEU5K+DzwOTAeuioirJC0bEc9khz0LLJutHw+clR37WeD7pAxWvbbvD+wPsNJKK7Xa\n1I65//7K+nPPwYQJ0NUF990H110HO+9c2V8t67P00n1nsHKvv169DUcdBccdl9ZvvrlS3shYq49/\nPC0/+lE4//xK+UILwQEHpECwWgbr1FN7dukDeOCB9ModfTR861s9j3n8cdhhB9hvP9htt7S+0UZp\n3xJLpOUvfwkrrQRf/nIKKvMb7Vre977KejGQOf54uO022HPPnseffz5ceWUKtPbZB954A846K+1b\nccV0Q3/ssTBrVvo5FE2Zkn7WN98MJ57Yc1/xW//ll0/L/H1svXX991BLsc5agUgzfvc7OPdcWG21\nxo4/8MD02X/sY+1fu2y11eCww9LvXjWnnZY+q+WW6/y1h5NrrklfWpQD+v6Q//22+vtq7dlmGzj8\ncDj00NrHnHNO54Ltk092MD2P+DLw+4jYt1D2F+CXLQ7HmES6VzwzIm7oRAM75KmIyL+qvUHSNOBs\nYDvgvE5dJCJu71RdNoRFRNMv4ANkMwZmy/x1ODCplTqzehcn/dEuDcwH/B7YC3i1dNwrVc59P/D/\ngNWA80l/FMvWu94GG2wQg+3KKyNSKBPx8MOpbOed0/Yll/Q89tVXK8fmr4MOijjllMr24YenY195\npfexL70U8e539y6fOzdi5ZUr27nf/CZt775773Py1/LLV9bPO6+yvs02Effem9bPPTdipZUiJk+O\nmDMnlY0aVbvO/PWPf1QvL1pnnfTzioh4//sjttqqtc9hiSVS3d3dletcd13j5+fn3H57a9ePiPjV\nryr1XHRR6/UUXXhhqu8d7+hMfWb1LLBA+38HZu0ApkaL9yB+1bw3ewP4WQPHLQ38gvT4nreAJ4Df\nAssXjjkDiNLrjML+/YF/ATOAF4HTgSWyfROqnBvAPqTeU88B85XatDDwOnBCH20P4Dulsndn5V8p\nlR8M/AN4GXgVuAn4aGH/VjXauVW2/9HSe94n278pcA4wjdR76yRgXOnaE0mTyL0FPE+aXG7/7PwJ\ng/274lfl1VIGKyKmAFMknRERj7VSRw0fAh6JiBcAJF1MypQ9J2m5iHhG0nKkX6r/kiRS5moP0h/Z\nV0h/iF8Cvt7B9nVctXFVjRxb1GgGq1b9UvUuaHkd9cZL1XrGVrH7XDGDlX/b2Uh3xUbGcYweXWnn\n7Nmw4IJ9n1NPM2OwqmmnO1qnx0t1sh6zRuT/Bszr3TLNRpibgcmS/gP8ISL+XeO4JYBZpPux54Dl\nSGPlb5S0RkTMIHWNu5UUPBwE3Abk93wnZMefBPwfsDypK+J7JG1O+lJ/N+BiUg+mfEDBw1kbDyZ1\nv7ug0KZPAwuSAr9mTSjUX7QyKVB8mJSJ2xG4XNL2EXFl9p4OAn5Kug+9JTvv3j6u9xvgXNJ73Aw4\nBniFlMBA0vzA1cBY4EDSz20/4BPliiQdk523ckQ82uc7tY5rtYvgjyLiMOAnknp1JIuInVpsz+PA\nppLGk7r9bQNMBd4EJgMnZMs/lM7bG7giIl7Ozp2bvca32I4BUy3AyrtvlLtx9BVgFYONagFWtbLc\nuHG1j68XDBWDquJ6sTtgcQyWlIKsRgKsRm7SxozpGWC1OqFBHvi1G2C1M6FC8XqdukHN63E3HhsI\n+b8BnljEbEQ5ALgQ+B7wPUkvkW70fx0RV+UHRcQDwCH5tqTRwI2ke7vtgUsi4mFJ92WH3BtZlzxJ\nE0hBVXdEfKtQx7+BG4AdI+L3kvLudf+JSnc+gBckTQG+QM8A6wuk4SaPNPA+lY3/HwOsnb3fm6gE\ncvn7PKJwwijS5GurkYKeKyNimqQ8mLqv1M56fhsRXdn6NZI2AfYkC7BIma6JwCYRcXN2/T8BdwDl\nMS9zgbdJmS0bBK3exv0mW36/Uw0BiIh/SrqQFP3PAW4nDYRcCLhA0r7AY8Du+TlZQLUPsG1W9ENS\n+nQW6ZuLIa3W1OvFZbVjc1KlfNy46pNc5MpjnoqqZbCqTfle65hye2tlsCAtOxlg5W2YM6f1G7s8\nmC0GmiMpwPL0zTYQHGCZjTwR8W9J6wFbkO61NiVlivaQ9M2IyCe8QNKBpIBsFVLmKFea1qqXD5Mm\nXjsnC3Jy/yR18Xs/adhIPacA50maFBEPStoIWI+UEWrEUdkr9yjwwYjocfckaQOgG9iI1C0y/x/2\nAdrzx9L2XfScAGRT4PE8uII0aELSRcB7iydmQWppFLsNpFa7CN6aLad0tjmQRe9dpeKZpGxWtePf\nArYubP+N9M3DsFBrOvVqagVYeR1jx7aewSrPlFc8vl67ivuK67UyWPm+esFesY5GjulEBisPQJp5\nDlY1nQqwOt1F0AGWDQQHWGYjU0S8DVyfvfKZAK8EuiT9NCJekXQIqXvfD0nZqFdIQdNNQJV+Mj3k\n0zA9VGP/kg008xLSRGhfIE3McQBpLNNlDZwL8CvgZ6S2bgMcTQrYPhSR/nWTtCIpY3UvKVv3OCkh\n8G3SmK12vFzanknqDpjrNUQm81yb17V+0GoXwbuok3aMiPfW2mc9dWIMVl4+dmzfGaxaN9qtZrCK\ngVLxmvUyWI0GLq10EWw181MtwBroMVidnlK9WI8DLBsIHoNlNm+IiKclnQb8mDQr4M2kcfDXlrrQ\nrdxglS9ly21JgVmt/fXaNDtr0xclfS9rzw8ios7Xyz08ExFTs/UbsvH9XaQxTr/LyrcDFgV2j4gn\n8xOz3lT97RlgzSrly1Yps0HW6n+D/TDp8rypWhfBRo4tajSD1WwXwUYmuZg5s3r7+spgNaLRDNaM\nGZXrjJQxWJ3OYHkMlg0EZ7DMRp58krEqu9bIls9my/GkGfCKPtfgZa4mjRtaKSKurnNcftexQI39\nvyB18/sdKfvzywavX813gf8BjpZ0YZbFygOp/95RSVqN1H3yycK5fbWzFTcBn5O0cWEMloCPd/Aa\n1iGtdhHs5MyB87R6GaxGxmDlDxqW0k1NXxmscp25YmCRB0ONZLCKAVYxqOtrDFYjmh2D1YkugsWu\nkh6DZdac/N8KB1hmI8rdkq4hjW9/hPTM0x1IXfAuiIjHs+OuBL4q6ShSRuuDVJnhrpps8ovvkiZP\nWx2YQpqqfUXS+KzTIuKvpO5wL5HGf91JmgTtkYh4KavnKUmXksaIXRYRT7T6piNiuqTjgJ+QxnFd\nBFxD6hJ4lqQfkLrtdZO6Cha/yvx3dtznJb1MCrgeiIgaTyRtyBnAV4GLJX2dyiyC2ePk+e/dmqSj\nSV0cV/E9++Bo6XttSTdky9clTSsvO9vEka1egFXOQlULmubMSa88Y9TqGKxigFWuo5EJKcrtG8gM\nVrG97XYRbDeLNFSnaXeAZQPBXQTNRqSvkzIx3wKuIj1rdDPgSOCzheO+Rcog/S9pPNR7gY80epGI\nOIr0TKf3k2YC/AMpoHgFeDA7Zi6VoOIa0hToO5aqyrvztTI1e9kvSZOrfUOSIuIe4DPAu0izC36F\n9HO4vvReXiJNG78OKVi8BdignYZExCxSF8o7gZ8DZ5KeNfbT7JDXCoePIk0h7//9B0mrGawts+XC\nnW3OvKdeF8Fyl75qAVaeHcozRp2YRXD27L7Hc1UzEjJYxa50zmCZtcYZLLORIyJ+Trqh7+u46aSp\nyg8s7VLpuGvKZYV9v6EyU3Wt6/ye+jMKfowUFP2pjyYX66zVnllUnoeVl11Az6ngAc6rcu4vqBLk\nRUS5vjNI2anycceQnoVVLHuYlD38L0mXk6atf63euTaw2h6ZIWl9SV+SdEg2jeeI95WvwJKNzGdD\n+kZXqtzgHnAAbFOYD7FaBuu229LyT4V/Gr71LVhrrbRevHl5+2343vdg1qx0rYsvho99DB6p8sSH\nzTeH++7rXQ6w/PKV9bx9J5+cln/9a/33mPvSlyrrxQDryCN7BliNBmzVZjZcuzQ/5Esvwb/+lX6+\nL77YWL3VTJyYlgstVP/6fWknMGq3e2K9OidN6kx9ZvWsumpaOoNlZgNN0qaSDgA+Bfwwy3aNKJIO\nl7S/pK0l7STpN8BHgRMHu23WU1v/DWZ9PD9Jeqo2wBmSfld8JsJIdGITv8blYOIXpe8yqk3TvuGG\n8MQTsEBhaGRXYeL6+eevZKPy+tdfH9ZZB+65B/74R/hcA8NKd94ZDskeCXj00XDssWn95uwJC4sv\nDs9XmxC0AaNH9/4WOw8aJkyAF16of/5XvwpLLFHZPvRQePll+PrXex53zz09t1sJiiAFpn/9K2yx\nBZx0UmrrCis0fv7VV8Nzz7U3mcSmm1bWO3WDutZa8OMfp6DbrL9NmQK33upJVcxsUPwDeIPUde6U\nQW5Lf5lJ6oK5EqkL4APAfhFx+qC2ynpp9zbuM8A6ETEDQNIJpCdKj+gAqxnNTL1e7pJXK9Mzdiy8\n+WZanzUrLXfaKX17fPrp9c8t2nnnSrZq/vlh6tQU3FVrW7OqBQh5gLXNNnDLLfXP32mnntvbbZde\nZauvDjcVnpG+cqMTwpYsuSR8IhuKe8gh9Y+t5kMf6vuYvrQ7g2E1o0b1zCya9ad3vjO9zMwGWq1u\nfiNJRPyUypgrG8La/Z7xaXo+PG4s8FSbdY4ozQRY+bF9TY9ezNLkAdbo0T2DmnoTWtRSvqlvJ8Cq\nFiDkZY2Mz6iV/erruJHSNWmkvA8zMzOzeU2rDxo+mfSg4deAeyRdnW1/mDQ1p2WaebZVoxmsYoCV\nT5NenLWvketC74kPyt16WgnSctUChLz+VgKsWl2OytfpVOZnsI2U92FmZmY2r2n1e/L8Sde3kqbi\nzF3XVmtGoFYyWM0EWLUyWJ0IsPorg9Xo7IBFtQIsZ7DMzMzMbChpdZr2MzvdkJGqPwKs4lidTgZY\n5aCo0xksdxFs3Eh5H2ZmZp2mbl0DFOZkZi4wIbpaf7CwWSe1NQZL0iRJF0q6V9J/8lenGjfU5Q/V\nrKevQKcYxDQzyUWuGGC120WwbCiNwXIXQTMzM1O3VgS2LhWPAvYahOaYVdXuJBe/Bn4GzCH9sp8F\nnN1uo4aLvrJTjRwzmF0Ey8ptHQ4ZrHKQOFIyPyPlfZiZmXXYZ6l+/zp5oBtiVku7AdYCEXEtoIh4\nLHty9EfbqVDSYllW7H5J90naTNISkq6W9GC2XDw7dgtJd0qaKmlS4fyrJPX7k1gaCWL6u4tgPsnF\nmDHtZ7DK5wyHMViNXHc4Ginvw8zMrMNqBVKrq1ubDGhLzGpoNwiZmQUyD0o6WNKuwEJt1vlj4MqI\nWANYB7gPOBK4NiImAddm2wBHADsAhwEHZGXfAI4biCd4NxKA1Dom715YbRbBTkzT3kqAVS2D1eqN\nfrsZrPJ1Gw2wRkrmZ6S8DzMzs05RtzYFVisU/al0SL9msdStY9StyF7X9ee1bHhrN8A6FBgPfAnY\ngJS2bfmXW9KiwPuB0wEiYlZEvArsTHoyN9lyl2x9dnb98cBsSasAK0bEda22oRn1gpi3304BS60M\nVjlbBTB9Orz0Us9A6/XX4a23ep5bzGC9/npalsdgzZ7d2Hsot7m4PnMmjBtX+/hcMeDLtTsGq68J\nOHLlcXAjJfMzUt6HmZlZB5XvMb8C3FPY3kPdqnJXYjaw2gqwIuKWiHgjIp6MiM9FxG4RcVMbVa4M\nvAD8WtLtkk6TtCCwbEQ8kx3zLLBstn48adzX14CfAMeSMlj95sknK+v1AqwxY2DzzWsHWNW6AX7m\nM7DUUvDII2n7qqtgkUVgwQV7njt9emX9meynUs5g/d//1X8fAMsv33N7scV6tj+id+aoWiZp4YV7\nl40f37vstdfSsvx+igFjLg/sZt3wUQAAIABJREFUJkzouV32nvf03B7umZ+JE9NyuL8PMzOzTlK3\nxgKfKhT9K7ribuA3hbLFgR0HtGFmVbT6oOEfRcRhki4jPWC4h4jYqY32rA8cEhH/lPRjKt0B87pD\nUmTrdwCbZm16P/BMWtX5pOzWERHxXKnt+wP7A6y00kpNN/DhhyvrfXXD++c/ax9Tb5zVq6/Wr3eJ\nJXqXlTNYZUcdBccdl9YPOww23hi22qrnMaus0vu8LbaAK69M63/8I6y4Itx3H0ydCieeWKl71qwU\n+K2xRgoqd8p+Ay67DHbM/qnLs2077AAXXJCCp4cego9/HI44AlZeGZ54ArbfvhK0/fnPcM898O53\nV39fxxyTAsH8vQ33zM/VV8PjjzvAMjMzK9mJFEDl8knVfkv6wj3v+zIZuGgA22XWS6u3cfm3Bd/v\nVEMyTwJPRsQ/s+0LSQHWc5KWi4hnJC0HPF88SZJImas9gJNJKeMJpK6LXy8eGxGnAqcCbLjhhg1M\ntN5TMYPTziQX5fFWzShmmnLlDFbZxhvD4ovDK6/A5z8Pa6/d2LWWWqqyvsMOabn22rDoopUAa7nl\nYM89q5+fZ6Cg0u1v7Fj45CfT+kYbpeXJJ1c/f7XV0quWMWPg2GMrAdZwD0wmTqxksczMzOy/it0D\n55ICK6IrnlC3pgBbZfu2V7eWia54HrNB0uqDhm/NllM62ZiIeFbSE5JWj4gHSA+Ruzd7TQZOyJZ/\nKJ26N3BFRLwsaTzpD28uaWxWRxUzJM1O014cL9TXTIGttKte9mb06EpbGhkDlavVNa8YaPZ13Vxf\nz93qhOGewTIzM7Oe1K1lgY8Uiv4aXfF0Yfs3VAKsMcCngR8NTOvMemu1i+BdVOkaSErPRkS8t402\nHQKcI2l+4D/A50hjxS6QtC/wGLB7oS3jgX2AbbOiHwJXALNIf2Ad1WwGq9o07MXyVgKsaoHKmDH1\nszfFAKuZLE8jAVa9+or7BiLAGu4ZLDMzM+vlM/S8Zy0/c/VC4KdAftcyGQdYNohavR39WEdbUZCN\nq9qwyq5tahz/FoUnekfE34AGO8A1r50ugsXugH1Nxd6sRjJY+bU6kcEqXqvRDNZAcAbLzMxsxCl2\nD5xOaYxVdMU0detSKl/Ar6turR1dcddANdCsqKVZBLOHCj8WEY9lRZOy9eeBlzvWuiGo2Yf5VnvO\nVXG9kwFWvezNqFGtdRGsVWejXQQHOqPkDJaZmdnIoW6tCxR7Rl0WXfF6lUPLWa1+fSaWWT1tTdMu\n6X9IadlfZEUrAL9vt1FDWbGbW7MZrFoBVrNZl2pd7foKsFrtIlirbY1msBxgmZmZWRvKgVI5kMpd\nCbxY2P6MuuV+LTYo2n3Q8EHAFsA0gIh4EFim3UYNZdUmqqhnIAOsas+oKu5vpYtguxmsgZrkIq/b\nXQTNzMxGBnUrn7Ai9yIpkOolumI2cH6h6B30nBjDbMC0+33/zIiYpezuVtIYqk9+MWLUCpiK+uoW\nWFyfMycFMbNmtdeu0aN7BzDFoKrVWQQ72UWwvwOsCGewzMzMRpAd6PnF/QVZIFXL2aQv/3OTSROf\n1aRuLQQsVe+YguKDcsapWxMaPO+N6IoX+z7MRop2b0enSDoKWEDSh4EvApe136yhq1bAVFSczKI/\nM1jlAKocwMw/f3r4b74/z741E2C120VwoDJKzmCZmZmNOI12DwQguuImdeshYNWsaCd1a9Hoitfq\nnPYJ4NcttG0T4JEGjz2TNOO1zSPa7SJ4JPACcBfwBdK3BN9ot1FDWV8ZrMceg9cLQy+LwVYxSzVz\nZjr28stbD7Dmn79SNmZM7y6CxUCq0WnVa12rbKhN057X7QyWmZnZ8KduLUHPWasfjq74RwOnFoOw\nccCnOtowswa0FWBFxNyI+GVEfDIiPhERvwQ271DbhqR6Adb998OECbDyypWyBx+srM+cWVk/7LB0\n7MyZzQceW2yRlhtvXCkbPRoWXLDnccUAbPRo2HnnynotK6zQc/td70rLHXboWd5oF8GxYyvr665b\n+7h27bZbWi68cP9dw8zMzAbMnkDhToZzGjzPswnaoGv1QcOjSc8aWB64MiLulvQx4ChgAWC9zjVx\naKnXRfCxbNL6N95Iy0mTemaRihmsa6+trH/zm3D44Y234dOfhs02g4svhilTUlkeYD3wAKy+eior\nB1jnnw8vvVS/7n//G8aPr2x/6lOw6aawVKl3cqNdBOebL7XplVdgk036fm+t+tWvoKsLlhnRU6yY\nmZnNM8qB0dHq1tEt1LO5ujUpuuLBajujK84AzmikInXrGKAr25wSXbFVC+2xeUCrGazTgf2AJYGT\nJJ0NfB/4XkSM2OAK6mewypkoqecxtSayKGeNGtm38srVg5zVVoMtt0zrxeBu9OiUTXrnO2tfC2CB\nBSrrq66aMlUrr9w7M9RoBitvU38GV5CCyzXX7N9rmJmZWf9Tt94NbNTBKvfuYF1mfWp1xMqGwHsj\nYq6kccCzwCoR0Ud+ZPhrJsB6++3GAqy+HhBcS/G8YpCTlzeaZaol6swH2UyAZWZmZtaETnfr20vd\nOjq66t3ZmHVOqwHWrIiYCxARMyT9Z14IrqB+F8FygDVnTu1JLopanYWvVgCVr7cbYNV7zle7dZuZ\nmZmVqVujgL0KRW+Shp7Um569mmOoBGoTgA8A17XXOrPGtBpgrSHpzmxdwCrZtoCIiPd2pHVDUH9k\nsOppJ4NV3F+vnlrqBVjOYJmZmVk/+BBpjH/uj7XGT9Wjbp1Fz0zYZBxg2QBpNcB6d0dbMYw0E2DN\nmdPzmOIsgo2qFxhVC6qK5e1mmYrvtV67PDW6mZmZdUi5e+D5LdYzBXgOWDbb/oS6dXB0xZstt8ys\nQS1NchERj9V7dbqRQ0kjDxrONRpg1ZumvV5g1N9jsOoFWO4iaGZmZp2kbi0C7FooeoP0jNWmRVe8\nDVxUKFoI2K311pk1rt0HDc9zBqqLYB4kNdpFsFpGqT8DrKL+fICwmZmZzTM+SXrcT+6y6IoZbdR3\nQWnbswnagBiSAZak0ZJul3R5tr2EpKslPZgtF8/Kt5B0p6SpkiZlZYtJukpSv7y3egFWWTmD1UyA\nlU+x3ugkF8V5cQaii2Dxep6Tx8zMzDqgU90Dc38Dnilsf1DdqvNwHLPOaCkIkXRttvxuZ5vzX4cC\n9xW2jwSujYhJwLXZNsARwA7AYcABWdk3gOPyWQ47rRgwlQOQTmaw8ocEN5rBKgY51TJYnZ7kot7P\nwczMzKwZ6tZEYMtC0TTgynbqjK6YC1xYKBoFfLadOs0a0WqWZzlJmwM7SVpP0vrFVzsNkrQC8FHg\ntELxzsCZ2fqZwC7Z+mxgfPaaLWkVYMWIuK6Raz39NDxYmpfmxhvhySd7H/vAA/D5z8Nll1XKygHI\n7bf33H7rLZhdmFT0+usbaVWSB1iNTpVeDHI6lcF65ZXa+4rXcwbLzMzM2rQ3aTbq3KXRFS1MD9ZL\nOQvW6WdsmfXS6vxvRwPfBFYAfljaF8AH22jTj4CvAAsXypaNiDzF+yyVGWGOB84CppO+kfg+KYNV\nk6T9gf3T1gastlrPAGHLLWG99eC223qet8YavesqBz+HH977mDvuqKyfcUb1Nq21Vu+yF15Iy7vv\nhiWXhJf6eMrYUktV1t/5zp5L6PyDhpdeurK+zDLN121mZmaWi644hvTsqk7XeyM9A7d26jqGfmij\njTytziJ4YURsD3wvIrYuvVoOriR9DHg+Im6tc+0gBXFExB0RsWlEbA1MJPWzlaTzJZ0tadkq558a\nERtGxIa1rlHORNXS1xgsgGnTau9bZx2YPh0mTkzjtV58ETas0qrnn0/HTZ/e85oTJ6bl/PPDYotV\nyo8/Hh59FM45p1LWTIA1o4HhpIstlo6bMaPntc3MzMzM5mVtPcEoIr4taSfg/VnRdRFxeRtVbkHq\ndrgDMA5YRNLZwHOSlouIZyQtBzxfPEmSSJmrPYCTSRmwCcCXgK83/n6aa2wjAVa9Z1+ttBKMG5fW\nR49OmapqgdCoUZXjyuUACy3Uu/xd7+pZ1kyA1ehzrcaObbxOMzMzM7N5QVsz7Uk6njQhxb3Z61BJ\nx7VaX0R8LSJWiIgJpGDpLxGxF3AplT6zk4E/lE7dG7giIl4mjceam73GN3P9ZidraCTAmjGjdnCT\nzxRYrc58DFY9eb2NTGDRzCQXrUyIYWZmZmZmbWawSJNRrJvP2CfpTOB24Kh2G1ZyAnCBpH2Bx4Dd\n8x2SxgP7ANtmRT8kPZRuFvDpZi7SSMDU7PF5gFXt2GoBVh7kjR3b96yDeSDUSEDUTAbLz7UyMzMz\nM2tNuwEWwGLAy9n6oh2oD4BsJsDrsvWXgG1qHPcWsHVh+2/A2q1cc86c5o5vN4NVrSteMcB6/fX6\ndeeBVSPBUyuTXJiZmZmZWXPaDbCOB26X9FfSDC3vp/KMqmGnkxmsceMqk0DUGtM0VLsImpmZmZlZ\na9q67Y6Ic4FNgYuBi4DNIqLdp24Pmk5msPJJKaplsPLJIeoFWI1MNJF35WskeHK3PzMzs3mXpH0k\nReE1S9LDko6TVGUqrYbqPEZSlMpC0jEt1HWGpCpPIu11XP4+JhTKHpV0Rh/HHCOpnccIVWvLo6Wf\n6auSrpa0Zd9nV61vsaydvZ4pK+k6Sde13WgbEG13EcyeT3VpB9oy6AYqwJp//jS7YL0ugtWCr1qc\nnTIzM7MGfRJ4kvS80V2Br2Xrh3So/s2y+vvLH7NrPNPkMV3AscBfOtyeP5OejTUKmJRd5wpJ742I\nR5usa7Hs/CeB0hNZ+WJ7zbSB1IkxWCNGp7sIQgqkFl645758fFVfk1z0JT/WAZaZmZk16I6IeChb\nv1rSJODzkg7NJy1rR0Tc1G4dfdT/AvBCu8d00IuF9/x3SQ8BN5Bmwz6hUxeJiHs7VZf1P9+aFwyF\nLoJ50NRIF8H8WE9gYWZmZi26jfRYm6WKhZJWlnSOpBckzZR0h6Rd+6qs3EVQ0qqSfiPpEUnTJf1H\n0s8kLV7j/M0l3SJpRtYF75DS/l7d/6rU0eOYQjfGrxe68x0j6YjsvS1dOl9ZO8/r6/1WkWeeVirV\nuYekv2Q/zzck3S5pcmH/BOCRbPOXhXbuk+3v0UVQ0lbZ/p0k/UTSi9nrbEmLla69tKRzJU2T9Iqk\nX2fnhaStWniP1oe2AyxJW0r6XLa+tKSV22/W4LjzzuaOv+KKyvqRpak98gcMR7QWYDUyZsoZLDMz\nM2vTBOA14KW8QNKKwD+BdYD/BXYiBQ4XSdqpyfrfCTwNHAFsB3yLNDP0FVWOXQQ4HzgT2IU0m/RJ\neZDRhs2y5RnZ+mbAacCvSc9N/Vzp+G2BlYGft3CtCdny4VL5KsDvgc+S3ttlwGmSDsj2PwPslq0f\nX2jnH/u43o+BID2aqBv4eFZWdDGwPak76B7AbODkckWFwHSrPq5pfWiri6CkLmBDYHXSL+l8wNnA\nFu03beDttlv18ldeqV4+dWpa3nsvfPe7Pfc98khlvTzd+quvVi8HOPpo2Gcf6O6GXXaBQ+r0iF5+\n+bT85jdrH3PUUXByrz+hvi25JHz+882fZ2ZmZkPaaEljqIzB+jhwWEQU++UcQ5od+gPZo3IA/pwF\nXt+iibH3EXE9cH2+LelG4CHgb5LWi4jbC4cvDOwfEXnm6EpJywPdks6MiB4TajTRhpuUvrl+qtyF\nUdL5wP6STizU/wXg/uyRQX1R9vMcBawK/Ax4EPhVqQ3HFk4YRQoelwMOBH4eETMl5T+L/zTR1fL6\niMjvFq+StDqwn6R9IiIkbQtsCXwqIi7IjvuzpEspZdlIwebbpIDN2tBu7mNX0rcabwJExNOkP45h\nYfHFYdKkynaedSqbMSMti1On77tvJTP11lvVzzvllLR8++2Uycrl6+v3miMGJk9O+3feOS1POql2\n+xdaKB2z1161jzn2WJg2rfb+Wl58Eb73vebPMzMzsyHtflIG42XgdOAXEfGT0jHbkTJMr0kak79I\nEzqsI2mRRi8maX5JR0m6X9L07Np/y3avXjr8bdKs1EXnkQKB5Ru9ZpNOIWWXtsnauxywI3Bqg+d/\nmvSeZgL3AO8BdoyIHl/PS5qUddN7Kjt+NrAfvX8GzSpnuO4CxgLLZtubkn6ul5SOu7BcUUScFRFj\nImJKm22a57UbYM3Kov0AkLRg+00aOFKlm109s2en5fjxlbKxYytjtmp156s1Nio/vpmZAs3MzMw6\nYFdgI2AH4Brgi5L2Lh2zDLA3lUAgf52Y7V+yiesdT8qInQ18FNiYSle48vTwr0TE7FLZc9myXwKs\niLgZuBXIu+rtB8whdVNsxJ9IP8/NgcOABYCLVZj6XtJCwNWkLpdHAu/LzvkVKRhqx8ul7TxdkF9/\nOer/XK0ftDuL4AWSfgEsJul/gM+T+rQOG40EWHkgteCCle59Y8dWAq9aAVY+UUU5oZ2PmWpkIgsz\nMzOzDro7n0VQ0l+AO4ETJV0UEW9mx7xEyjJ9t0YdTzdxvT2AsyLiO3lBFnBUs7ik+UrBQJ6JeaqJ\nazbrFOAXWXfE/YDfRUQ5cKnl5YjIBo3wD0mvkYbNHEIlIN0MeBfwvoi4IT8xywr2t2eo/3O1ftDu\ng4a/T0oxXkRKcR4dEXU6tQ0tUmNTs+eB1IKF/FwxwKo1yYQzWGZmZjZURcRM4P9IGavic5auBN4L\n3BMRU6u8agyqqGo8KftVVJ5UIjeaNCasaA/gcdoPsGaRskvVnAu8DvyW1B2xlcktcmeSJgT5P0l5\n36d8+d+fQzaL4s6lc/Ofa612tuIm0s+1PAPkJzt4DStpd5KL70bEV0lpz3LZsNBMF8FygJWPrWo2\ng5VvO8AyMzOzwRQRl0q6BThC0k8iYjpwNHAzcL2knwCPAouTxhdNjIhmpsG6Epgs6S7S5Ba7kbrT\nVfM68D1JS5EmitgT+BCwT6sTXBTcC3xU0pXAK8DT2dwBRMR0SWeQZky8KyL+3upFsokljgYuJ01g\n8QPg78A04KfZBHELAt8AXgQWLZz+HCl7uIekO0lzHDxSmGiklfZclU0scmr2c30I+ASpuyKkiS0A\nyLqK/grYxuOw2tPuGKwPVynbvs06B0yjY7DyLoLjCj2F8+BozpzaddTKYDnAMjMzsyHkG6QuYwcA\nRMTjpFmi/wUcR/oi/WfAB4C/NFn3IaRZB48lTcG+MClwqmYaKWM1GfgDsDVwaEQ0Oh6qnoNJActl\nwC3A/qX9v8uWv2j3QhHxR+AfwJclLZA9+HhXUibpQtK4tNNI49KK580ldVFcnDQ+7hbShBvt2pUU\n6H4XuIA0Piufg/q1wnGjsjY28LAgq0etfCEg6UBSKnkiPef5Xxi4MSLqzGs3dCy99IYxevRUnn02\nbRczUcUfyy23wMYbwwc+AFOyeP6EE9Kzr956C+65BzbaqHf9v/sdfPKTaXKMN9+s1L/EEvDyy/Dn\nP8O22/bPezMzM5vXSLo1IjYc7HbY8CPpWOBQ4J0R0cL8y8NLlpn8HLBEk10+rQGtdhH8LWnWlONJ\ns6HkXm9iUOCga3YWweI07Xn2afbsSoarLM9glWPY/JrOYJmZmZkNHknrkeYROBQ4dSQGV9mDmhcl\nTSM/P2ka/gOBEx1c9Y+WughGxGsR8WhE7BkRjwHTSVO1LySp/NCyhklaUdJfJd0r6R5Jh2blS0i6\nWtKD2XLxrHwLSXdKmippUla2mKSrsoe49amZSS6KAVEjAVatWQIdYJmZmZkNCZeQZv27Buga5Lb0\nlzdJ2apLgN8DHwGOyl7WD9qd5GJH4IfAO4HnSVNQ3ges1WKVc4AjIuI2SQsDt0q6GtgHuDYiTpB0\nJClr9lXgCNJzHCaQ+g0fQepHfFzWj7WP9jc3BquYwcqDpzlzagdptSa5yK/padrNzMzMBk9ETBjs\nNvS3iPgdlTFmNgDaneTiO6QnRP87IlYmPQX7plYri4hnIuK2bP11UrC2PGkay3yA45nALtn6bNLU\nl+OB2ZJWAVaMiOsaud7cuem5VnvsAc8803PfjjvC37M5ZB57LC3HFh4Fl2efXnsNjj++ev21JrnI\nAytnsMzMzMzMRpZ2A6zZ2dSRoySNioi/kmadaZukCcB6wD+BZSMiD4GepfJwtOOBs4CvAT8hzVDz\njT7q3T/rUjh12rTU9+/882H50vPBL78cTj89rc/MeqceeGBabrBB5dlXzz6bJqvIHXRQWv7615VA\nasaMtDzllDTpxQknwLrrwsSJff0UzMzMzMxsOGm3k9qr2dO4rwfOkfQ8qZ9nW7I6LwIOi4hpKkzv\nlz1fILL1O0gZNCS9n/S0akk6n5TdOiIinivWHRGnAqcCLLjghjFrVl7eux1518C8C+Caa1aOu/76\ntJxdeHTeTTfBJpvAT36StvMZBydNSssDD6wEaV/4QoM/DDMzMzP7L3XrGlKvqdxcYEJ0xROD1CSz\nHtrNYO0MvEV6MNuVpCnb25qvX9J8pODqnIi4OCt+TtJy2f7lSOO9iueIlLn6NmmA4leAXwJfaqct\neWCVL4tjpsrZqfL+4natBxGbmZmZWePUrRVJz8cqGgUMi0cE2byhrQArIt6MiLkRMSd7CNxPSFM/\ntiQLlE4H7ouIHxZ2XUp66BxUHj5XtDdwRTZF/HjSNxlzs/U67a/fnjyDlS+LY6ry8VNvvVUpK4+5\nyrdHtRvGmpmZmRnAZ6l+/zq5SpnZoGjp1l/SIpK+JuknkrZVcjDwH2D3NtqzBekP54OS7sheOwAn\nAB+W9CDwoWw7b8t40iyDP82KfghcAfwI+HkbbWkog1UvwHIGy8zMzKyjagVSq6tbmwxoS8xqaHUM\n1m+AV4B/APuR5tEXsEs2LqolEXFDVk8121QrjIi3KKSKI+JvwNqNXa/+/kYyWNOnV8rKmar8eAdY\nZmZmZu1RtzYFVisU/QnYvrA9mTQ5Wn9d/xgqz8qaEl2xVX9dy4a3VjuvTYyIfSLiF8CewJrAR9oJ\nroaiehmsagFWOZBygGVmZmbWMeXs1VeAewrbe6hb82M2yFoNsP47d15EvA08GREz6hw/JFXLYBUf\nJlzOYBUzVHmwVS/AynkMlpmZmVnr1K2xwKcKRf+Krrib1KsqtzhtTrZm1gmt3vqvI2la9nodeG++\nLmlaJxs40IoBVjGDNXp0zwCq2iQX5UAqD+CcwTIzMzNry06kACp3drb8LVD8ytyTXdigaynAiojR\nEbFI9lo4IsYU1hfpdCP7SzMZrPIEFo10EXSAZWZmZtYRxcBpLimwInv21ZTCvu3VrWUGsmFmZe68\nVlIrg1XrGVf1Aqy5c6uXm5mZmVlj1K1lgY8Uiv4aXfF0YbvYTXAM8OkBaZhZDQ6wSpZcsrI+Zw6c\neCJ8//s9uwJCJYP1s59VymoFUuXsl5mZmZk17DP0nPn67NL+C4HiXADuJmiDap4OsCZNqqxvumla\nnnwyfOlLaf3tt+GMM6qfu+iiPbe33homTuxZts46cPDBcN55HWmumZmZ2byoGDBNBy4q7oyumAZc\nWihaV91q6JE9Zv2h1edgjQjjxlUfh7X11vDgg/DCC5VxWGUSfOxjcPnlafvii6s/B+vkkzvbZjMz\nM7N5hbq1LvDeQtFl0RWvVzn0bGD3wvZk4Mv92TazWubpDFY9o0enDNbs2bWPybsJltfNzMzMrCPK\n3f3K3QNzVwIvFrY/o255kIYNCgdYNYwZk7JXDrDMzMzMBp66VZ6w4kVSINVLdMVs4PxC0TvoOTGG\n2YCZp7sI1pNnsGp1EYSeMwuWZxk0MzMzs7bsABSnXL8gC6RqORs4qLA9Gbii3gXUrYWApRpsz2KF\n9XHq1oQGz3sjuuLFvg+zkcJhQQ3NZLBGjeo9/srMzMzM2tJo90AAoituUrceAlbNinZStxaNrnit\nzmmfAH7dQts2AR5p8NgzgX1auIYNUw4LamhmDJa7B5qZmZl1jrq1BPCxQtHD0RX/aODUYhA2DvhU\nRxtm1gAHWDU0ksHKuwW6e6CZmZlZR+0JzF/YPqfB88pZLj8TywacQ4MaRo9OAVa9MVjOYJmZmZn1\ni3JgdLS6dXQL9Wyubk2Krniw2s7oijOAMxqpSN06BujKNqdEV2zVQntsHjBsMliStpP0gKSHJB2Z\nlX1X0p2Szioct5ekw9q9XjNjsBxgmZmZmXWGuvVuYKMOVrl3B+sy69OwCLAkjQZ+CmwPrAnsKWkd\nYP2IeC8wS9LakhYAPpcd25bRo2HWrPrHOMAyMzMz67hOd+vbS91Sh+s0q2m4dBHcGHgoIv4DIOk8\nYCdgPkkCxgOzSU/sPjmi7hSeDZlvPnjllb6PgRSMmZmZmVl71K1RwF6FojeB9Uj3ec04hkqgNgH4\nAHBde60za8xwCbCWB54obD9Jmh7zCuB24FrgNWCTiPh2vYok7Q/sD7DSSivVPG6ffeCtt1LwtP76\nUO3QPfeE556DzTdv6r2YmZmZWXUfIt335f5Ya/xUPerWWfTMhE3GAZYNkOESYFUVEd8Dvgcg6TTg\naEn7AdsCd0bEd6qccypwKsCGG24Ytepef3047bT6119zTTj11Jabb2ZmZmY9lbsHnt9iPVOA54Bl\ns+1PqFsHR1e82XLLzBo0LMZgAU8BKxa2V8jKAJC0HiDgAeCTEbE7sIqkSQPaSjMzMzNribq1CLBr\noegNUm+lpkVXvA1cVChaCNit9daZNW64BFi3AJMkrSxpfmAP4NLC/m8D3wTmA/IRUXNJY7PMzMzM\nbOj7JLBAYfuy6IoZbdR3QWnbswnagBgWAVZEzAEOBv4M3AdcEBH3AEjaBZgaEU9HxKvAHZLuAsZF\nxL8GrdFmZmZm1oxOdQ/M/Q14prD9QXVrhTbrNOvTsAiwACLiiohYLSJWiYhjC+W/j4hjCttfjoi1\nI+Izg9JQMzMzM2uKujUR2LJQNA24sp06oyvmAhcWikYBn22nTrNGDOtJLtp16623vijpscFuhzVs\nKeDFwW6ENc2f2/Djz2ySBzMFAAAF9klEQVT48WeWvGuwG2At25s0nj53aXTFzA7Uez5wSGF7MnB8\nB+o1q0kRNSfSMxtSJE2NiA0Hux3WHH9uw48/s+HHn5mZ2dAxbLoImpmZmZmZDXUOsMzMzMzMzDrE\nAZYNJ36s8/Dkz2348Wc2/PgzMzMbIjwGy8zMzMzMrEOcwTIzMzMzM+sQB1hmZmZmZmYd4gDLBpWk\nX0l6XtLdhbIlJF0t6cFsuXhh39ckPSTpAUkfKZRvIOmubN9JklS+lnWGpBUl/VXSvZLukXRoVu7P\nbYiSNE7SzZL+lX1m3Vm5P7MhTtJoSbdLujzb9mdmZjbEOcCywXYGsF2p7Ejg2oiYBFybbSNpTWAP\nYK3snFMkjc7O+RnwP8Ck7FWu0zpnDnBERKwJbAoclH02/tyGrpnAByNiHWBdYDtJm+LPbDg4FLiv\nsO3PzMxsiHOAZYMqIq4HXi4V7wycma2fCexSKD8vImZGxCPAQ8DGkpYDFomImyLN2nJW4RzrsIh4\nJiJuy9ZfJ938LY8/tyErkjeyzfmyV+DPbEiTtALwUeC0QrE/MzOzIc4Blg1Fy0bEM9n6s8Cy2fry\nwBOF457MypbP1svl1s8kTQDWA/6JP7chLetqdgfwPHB1RPgzG/p+BHwFmFso82dmZjbEOcCyIS37\nxtXPEhiCJC0EXAQcFhHTivv8uQ09EfF2RKwLrEDKbLyntN+f2RAi6WPA8xFxa61j/JmZmQ1NDrBs\nKHou69ZCtnw+K38KWLFw3ApZ2VPZernc+omk+UjB1TkRcXFW7M9tGIiIV4G/ksbh+DMburYAdpL0\nKHAe8EFJZ+PPzMxsyHOAZUPRpcDkbH0y8IdC+R6SxkpamTRY++asu8w0SZtms2PtXTjHOiz7GZ8O\n3BcRPyzs8uc2RElaWtJi2foCwIeB+/FnNmRFxNciYoWImECavOIvEbEX/szMzIa8MYPdAJu3SToX\n2ApYStKTQBdwAnCBpH2Bx4DdASLiHkkXAPeSZrI7KCLezqr6ImlGwgWAP2Uv6x9bAJ8F7srG9AAc\nhT+3oWw54MxsVrlRwAURcbmkf+DPbLjx35mZ2RCn1IXbzMzMzMzM2uUugmZmZmZmZh3iAMvMzMzM\nzKxDHGCZmZmZmZl1iAMsMzMzMzOzDnGAZWZmZmZm1iEOsMys30laUtId2etZSU8VtucvHftnSQv3\nUd+T+XOdqpSfX9jeQ9JpHXoP35F0WCfqMjMzs5HLz8Eys34XES8B6wJIOgZ4IyK+XzwmewiqIuIj\nbV5uE0mrR8QDbdbTMYX3Nnew22JmZmb9yxksMxs0klaVdK+kc4B7gOWK2SlJl0m6VdI9kvZrsNof\nkB58XL5WjwyUpPslrZC14W5Jv5H0b0lnSfqIpL9LelDShoVq1pN0U1b++UJdR0q6WdKdko6u9d6a\n/gGZmZnZsOMMlpkNtjWAvSNiKkBK9vzX5Ih4WdJ4YKqkiyLilT7qOxc4WNLKTbRhdWB34H7gNmBG\nRGwu6ePAkcAnsuPWBjYHFgFuk/RHYANgJWATQMAVkjYHni+/NzMzMxv5nMEys8H2cJ0A5H8l/Qv4\nB7ACsEoD9c0hZbGObKIND0XEvVkXvnuBa7Pyu4AJheN+HxEzIuJ54HpgI2BbYHvgdlJwtiqwWnZ8\nvfdmZmZmI5AzWGY22N6sVijpQ8D7gU0jYrqkG4BxDdZ5BvAV4N+Fsjn0/FKpWNfMwvrcwvZcev47\nGaXrBClr9Z2IOL3U/lWp8d7MzMxs5HIGy8yGqkWBl7Pgai1StqghETELOAk4tFD8KKk7H5I2BlZs\noU27SBoraWngfcBU4M/AvpIWzOpeQdJSLdRtZmZmI4ADLDMbqv4IjJd0L/Ad4J9Nnv9LoDgF/O+A\nZSXdDewP/KeFNt0NTAH+DnRFxHMRcQVwIXCTpLuAC4CFWqjbzMzMRgBFlHu8mJmZmZmZWSucwTIz\nMzMzM+sQB1hmZmZmZmYd4gDLzMzMzMysQxxgmZmZmZmZdYgDLDMzMzMzsw5xgGVmZmZmZtYhDrDM\nzMzMzMw65P8DZcFf3XHMSTYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAI4CAYAAAB3HEhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VUX2wL8nL70AgdBbKAICSehNOop0QUXBpS2riK4F\nhdWI+COWXV0bWLAXUJGyKG3RRVqEiIIgHWlC6D2kkz6/P+a+l/eSlwIkBGS+n08+uffO3Jlzy7sz\nZ+bMOaKUwmAwGAwGg8FgMBgMV45HWQtgMBgMBoPBYDAYDH8WjIJlMBgMBoPBYDAYDCWEUbAMBoPB\nYDAYDAaDoYQwCpbBYDAYDAaDwWAwlBBGwTIYDAaDwWAwGAyGEsIoWAaDwWAwGAwGg8FQQhgF6wZG\nRP4QkY7FyOcrIkpEapWCDH1E5IDT/ikR6WxtPy8i75Z0nVeKiIwXkZVXcP5qEbm3JGUyFB8RaS4i\n20UkWUTGXYX6fhGREVehHh/rmmqUdl0Gw7WGac8MZYWIzBWRKWUtx5Vi2pCSxShYZYiIPCIim0Qk\nXURmuknvJSJ7RCRVRNaISN0Cyhlt/SiSReSiiOQ47ccXVL9SqoFS6ucSuI5fRCTNqu+siMwXkcpX\nWq5SaqpS6pErLScvTg1siiXzMRH5t4hIKdT1ioh84nxMKdVTKTWvhOvJe03JInKqJOv4E/EMsEwp\nFaiU+ihvYp73OcH67d1cmgJZSrsSkTsu4RwXxU0plW5d04nSkdJgKBjTnhVOabVndkTEJiLHRWRL\nadVxtbEU1FTrWZwUkU9ExK+s5boWMW3ItYdRsMqWE8BLwGd5E0QkBPgWeA6oCGwC3HbKlVKzrB9F\nIDAQOGLfV0pVcFO2Zwleg537rfobA1WAV0qhjpKmsSXzrcBfgVKfZbgKNHZ69tXcZSil5389URfY\nVUQe+/tcCdgIfF7KMo0G4oBRpVyPwVBamPasbLkVCASai0hYaVRQRm1Hb+tZtAE6AZPKQAag7NvO\nIuo3bcg1hlGwyhCl1LdKqUXAeTfJdwK7lFL/UUqlAVFAhIg0uZy6rJGgSSKyC0h0OmY3X7hFRDaI\nSLyInBCRaZfzMVFKxQFLgBZOdfuJyAxrBOqYiLwmIl7FkNkx+yMiTUQkS0T+apVxVkT+4ZQ3UES+\ntuTfKSLPiJOpRhEy7wF+ySNzRRH5wrpHR0Vkqoi4/b2IyPuWTIkislFEOljHBwNPAvYR2Y3W8V9E\nZISI+FvHGzqVVdMatQ229oeINmeLF5F1ItK0ONeUR74+InJARJ4TkdPA+0WVLSLtRGSbiCSJyFci\n8q1YJhCSx0RS8pjcWM97unXfTonIOyLik0eWydYzPC4if3EqK0BE3rbOTRCRH0XEU0RWicgDea5r\nr4j0LeCa7xKR3da1rRSRm6zj64GOwCfWva9T2L1TSmWhO4LO96bQ34qI9BeR/Vb6m0U8HkSkEdAe\neBAYICIV86QPtZ5TklVuLxF5A2jrdB1vuHkOFa3fxFkROSQiT4noWVrrGa6y7nW8aPOqW53qfEBE\nYq06D4rI0KKuw3BjY9qzImUu7fZsNLAAWGFt28saLSIxeWR5RkTmO11PUd9rR9shIpVF5HtL5jgR\nWSwi1Z3KvklE1lvfjv+JyIfiZMUhIl2cns1vInJLUfcOQCl1HFhJ/mdRkOwbRKS/td3L+jb2svb7\ni8gvTs8i2rqWsyIyS0SCnOpw9665tI+Ad0FyW9/a1dZ9SBTdLnV1Si+wr+F07gwRuQBEFlDHNdeG\nGIyCdS3TDNhm31FKpQAHrOOXy73AbehR+bxkAo9YaV3QI4f3X2oFok0pBqNltfM8EA6EAa2B7sBT\nl1o2YEOPYjUE+gH/FJH6VtpLQGX07ER/YOQlyNwM3el2lnk2kADUB9qhr6mgMn9GX1slYDHwHxHx\nsjobbwL2Edl2zicppVLRjfdwp8PDgOVKqQuiFbX30LNrlYAvgUWX01EAQgEvoDbwWGFlizbBWAx8\niB5t/h4YdAl1vQnUQt+TxkAjXBuGuoAANdDv3AciEmilvQ00QX/4KwJTAAXMwmmGUUTaA+WAH/JW\nLnr0dibwMHr0+UdgsYh4KqU6Ab9ijVArpY4UdiFWY30fWgG3U+BvxepozAcmot/Hs+h3tjBGAzFK\nqQXAEZzeB6sh/gh4HCgP9AKOKqUm5rmOiW7K/QD9zOuhf/cPWddipyt6JqES8C5g7/wFA68BvZRS\nQUBnYGcR12AwFIZpz/JTYu2ZiJSz5Jxt/f1FRGxW8kKglbgOJt0HfG1tF/W9DsWp7UD3Gz8A6qC/\nLQDTLDkE/f1bg773r+D63Q4FFgHPkvt9X2R9cwrFkr83rs+iMNl/RD8bgG7AQfQ3z77/o1M5LwDV\nnMp5Nk/1jnftMtvHruj3335PFlnPDIrua3QFtgIhwBsFlH9NtSEGC6WU+SvjP/THdGaeY58Cr+Q5\n9hMwpoiybgVi3Rw/Bdzn5ljnAsqJBOZY277oTm6tAvL+AqSgR3cU+kdbwyn9ONDTaf8OYI+13Qc4\n4E4m9IfoE2u7iVV2iFPe7cBga/sE0M0p7RHncvPIa7+eBEtuhe6Qe1npda3jXk7n/BX43toeD6ws\noGwBUtGmei7XkOd+jbC2BwC7ndI2A/dY258Dz+Y59zDQvohrirf+XnW6x3mvp8Cy0Y3YoTxpvwFT\n3F2/8/sBeAIZQE2n9B7A706yJAAeTumJ6FFJL3THqLGb6wuw8tWx9t8F3izgGfwT+MJp34ZWdDrk\nvf9FvM/x1rXEAV0Kye/8WxkHROep+0xB9aE7K0eA8db+88AGp/RZwMuFyDnCad/5OfgA2UB9p/TH\ngf85PcOdTmkVrXMrAMHWtd8B+BZ03ebP/Ln7w7RnV7U9s9Lvt+TyQH8rU4C+TukLgKes7TDgAnrW\npTjfa5e2w03dHYCT1nYj4CLgk6du+3VPBT7Oc/6PwL0FlH0KSLL+FPA/IMhKK0r2/sBGazvaukfR\n1v4GoF8BdQ4Dfi7oXaOI9tFNeePd5N8ODKV4fY19RfxGrrk2pDB5b6Q/M4N17ZKMHqF3pjyQJCJ1\nJHfRb/IllHm0oAQRaWpN+58WkUTg/9AjJsXlQaVUOaAVeiSohlWuWPuHnfIeBmpeQtl2spVS55z2\nU4FAazq9Gq7XV+C1OtEMCELbLN8C+FvH66I/NGetqe944C2gqrtCRJtb7BWRBHTD5Uvx791yoKqI\nRIhIY+AmYKmTHJPtMlhyVKbwe9dMKVXB+nMeVT2llMp02i+s7BrAsTzlHqZ41EArSrucyl2Enkmy\nc1YpleO0n4peO1Ad3Wj+kbdQpUe8v0WPzHqhRxS/LESGw07nZqM7H5fyzj2o9HoPX+BuYKlY5kxF\n/FZq4PTuOdVdED3Q7+5/rP3ZQDvJNZ2qjZv7UQyqkdvw2sn7u3N2gpJq/Q9USl0A/oIerT4lIkvE\nyYzVYLgMTHuWn5Jsz0YDc5VSOda3cjFOZoLo2Sr7rMZ9wAKlVAbF+167tB0iEiQin4nIEeve/oDr\n9++sUiq9ANnrAiPytDttrPMKoq/SM+m9gebojry9rsJkj0GboYagZ6VmAY2t/QgrHRGpISL/EW2u\nnoiehcn7rjhfw+W0j+7y16B4fY2inv0114ZcRl1/SoyCde2yC/0RAPTaFKAB2o7dedHvpbzMqpC0\nj9GjMA2shuUF9GzMJaGU2gK8Crxj7Sv0j7CuU7Y6FN7pvNQ6c4DT6FEXO7WLe65S6kv0iNIz1uGj\n6A5BsJOyUk4p1Srv+SJyG/AoMAQ9+l8RPYJnv3eF3XOshmsBuvG7D1iolLroJMf/OclQQSnlr5T6\ntjjXlreqPPuFlX0S13sJ+pnZSSFXGQX9IbZzEshCv0f2cssrpdyZ8eTFcW4B6bPQHf8+wGnrXXPH\nCZzeN8tUpiaX8c5Z78dq9P2y25cX9ls5idO7Z3WWCut8jUZ/h3eJ9vq4Fv2s7J2joxR8Pwp7t04B\nObg+t2L/7pRSy5RSvdCdgCNY6/YMhsvEtGfFr/OS2jMRaYA24/2b6HU8p9CWEXeISHkr23dAPdHe\nUIeRax5YnO913vscacnW1rq3vXH9/lW2TKvdyX4UPZvl3O4EKKWmFXJLtBBKrUCvh/13cWRXSiWg\nTZufBDZbbe0ma3+nUirRKuc1dJvW3Lqe+8n/rjjfg6LaR3e4y3+C4vU1Cu1DcI22IQajYJUp1noX\nX7QZkU30AkP7+pqFaG9Ad1l5pgLblHbIUBoEAQlKqWRrTdIDRZ1QCJ8ADUXkdmt/DjBVRCqJSBW0\nffNXVyZuPuYDz4pIectW+6FLPP9l4O8iUkkpdQg9df6qNVrnIXrhbmc35wWhzdrOok0uXkCPSNk5\njW7YCmvcv0Y3esPJbfhA200/KiJtRBMoIoNExN9tKZdGYWWvBXxFL2L1FJHh6DUHdrYCLUWkmZX/\n/+wJViP2GfCWiIRYZde2FNFCsc79wjq3qmi3w50ldy1BNPp+/9PKVxDzgCEi0tWa7YpEL7zfVKw7\nkwfRNuw3ket5sLDfyhKgrYgMsOr+B7kjrnnLDUQv/h+DNpG0/01Cj/J6oH9LD1rX4mHdy0ZWEafR\ndvv5sEaQFwL/Eu04pAHavKPI351oRyv9rWebju4A5BRxmuEGx7RnJcqltGej0Ot7mpD7DWmM/ubd\nA6C0Y5GF6DWuXljrjy7zex2Enq2It2aDnOM/7QP2AlNExMv6dvZxSp8FDBXtZMEm2klFLxFx6/HW\nDW+gFcebiyn7j2jzSvt6q+g8+/brSQYSrXv9ZBEyFNU+uqO2U/4RaKXzh0vsa+TjWm1DDBqjYJUt\nU9CzHZHohaAXrWMopc4Cd6E7kxfQix+HlaIsTwD3izbRmEEBLnSLgzUD8y7aJS/oDvhudAd1K9r2\n/tUrkjY/U9D36TB60el8dOewWCilNpE7ugVa2akA7EGvwZmHexPBpegP7h/oRbTn0MqWnbno2Z44\n0R7s3LEW3Skpj/aSZJfpJ7SZ1ofoNTH70LNcRY1oFUlhZVvPbwjaScQFtC37Uqdzd6Cf3zr0/YnO\nU/wE9OjcJvR6q/+hF3IXh8fQ93ILuoPwItZoojV6/CXatHN2Ide2HfibdW1n0Yt671DaI2BxsXtW\nSkY3UBOVUmustAJ/K0qpk+jf6XSr7qoUrNjdjX635iilTtn/0MpvOfQ6j3VoW/f30PdyFbmjodOA\nUSJyQUTc/Z4etP4fBlZb11HgfXPChv4mnUI/g7boTonBUBimPSs5itWeWQN3o4AZzt8Q6zv0EfnN\nBG8F5uUx0b7U7/XraBO682gzu+/sCdY3+l6rngvAZLTpWrqVfhD9HjyPbisPozvtxeqLKh2faS65\nSl1Rsv+IVqDWFrAP+nl2ts5fCHxThAyFto8FsBZoif7ePwvcac2wQfH7Gu64VtsQAyD692Aw/LkQ\nkSeAPkqp24vMbCgSEZmLNqt4qYzlGId2AmLcwRoMhhuC67k9E5HFwC9KqZfLWpayQETGA3ebNuvG\nw8xgGf4UWNPeHawp8GboUbGFZS2XoeQQvW7jIfTonMFgMPwpuZ7bMxFpLyKhluwD0SaCi8taLoPh\nalOqCpboIHV7RQeqcxsgzcrXVnTQvbudjj0uOsDeLhGZkCf/oyKyx0p71Tr2FxHZ6vSXIyIt8tZl\n+NPig7bHTkKbCczFxGT40yAig9Duzg+gnYIYDAbDn5XruT2rhTYdTEI7kBirlNpdtiIZDFefUjMR\ntBam70MHJzuGjiUxPO8Pzcq3AkgDPlNKLRCR5ugPSjt0nIP/oX38HxCRHmgb1v5KqXQRqaKUOpOn\nzDBgkVKqIM8pBoPBYDAYDAaDwVDilOYMVjt0YLyDSsdbmIsOyJeXR9GLCp2VpJvRgdJSrYXpP6I9\npYA2EXrF8nBCXuXKYrhVn8FgMBgMBoPBYDBcNTyLznLZ1MQ1QNoxoL1zBhGpifbG0gPtqcrOTuCf\nIlIJ7YmoH7meuBoBXUTkn+hZr0lKqV/z1H0v7pU5+yL5cQABAQGtmzRp4i6bwWAwGK4hNm/efE4p\nVbms5SgJQkJCVGhoaFmLYTAYDIYiuNy2pzQVrOIwHXhaKZUjTmGClFK/i8i/0RHCU9CuULOtZE90\nXJkOaKVsvojUt9yDIiLtgVSl1E53FSqlPsJaJN+mTRu1adNlhcYxGAwGw1VERA6XtQwlRWhoKKbt\nMRgMhmufy217SlPBOo5rBO9a5I8A3QaYaylXIUA/EclSSi1SSn0KfAogIv9Cz4Bh/f/WUqg2ikiO\nda499tAwdCBAg8FgMBgMBoPBYLiqlOYarF+Bm0Sknoh4oxWfJc4ZlFL1lFKhSqlQtGewh5VSiwCs\nCOlYkbXvRAfJA1iENinEikbtjQ5YhxW1+h7M+iuDwWAwXAUsl9prRGS35dn28bKWyWAwGAxlS6nN\nYCmlskTkEWA5YEN7CNxlBV1DKfVBEUV8Y63BygT+rpSKt45/BnwmIjvRHgZH280Dga7AUStauMFg\nMBgMpU0WMFEp9ZuIBAGbRWSFcU1tMBgMNy6lugZLKfUd8F2eY24VK6XUmDz7XQrIlwGMKCAtGr02\n66rx888/89VXXzF69GjatWt3Nas2GG4oMjMzOXbsGGlpaWUtiqEU8fX1pVatWnh5eZW1KMVCKXUS\nOGltJ4nI72gnT0bBMhgM1x3J6VnsO51EqzrBV63OixnZLNxynK6NQqgV7F9k/pwcxdnkdKqW872s\nuny9PHD2/VAalLWTi+sapRR9+/YlISGB9957j5ycnFJ/YAbDjcqxY8cICgoiNDTU/M7+pCilOH/+\nPMeOHaNevXplLc4lIyKhQEtgg5s0hwfbOnXqXFW5DAaDwU5cSgafrDvIY71uwtfLli99yIyf2H8m\nmQP/7IunLf9KopwcxcItx7m9eTUCfa5cjcjIyqH/O+s4eDYFgF+e6UW18rmKU1Z2DscuXCQ0JMBx\nbPG24zwxbxtjOoXydJ8m+HnbOJuUTlZODhsPxVHOz4uO9Svlu76ZPx0iaulumtcsx4z7WlG3UgDu\niE/NYMfxBLrcdPmOa42CdQUopUhISHDsJyQkUKFChTKUyGD485KWlmaUqz85IkKlSpU4e/Zs0Zmv\nMUQkEB3TcYJSKjFvel4PtldZPIPBcJ2Sk6MY9dlGfDw9+GR0m0tqA3/YdYrq5f0Iq1WeM4lpTFu5\nnzkbjwBQK9if+9q7DvZk5yj2n0kGICU9m/L++RWs93/8g9eW72Xif7axemI36lcOtPJnkZGVQ3CA\nN1FLdnHgTDIPdW9AwyqBVC3nS3xqBkfjLhJWqzxKKbYfSyC8Vnlmrj/kUK4Adh5PoEqQD61fWsGF\n1EzH8W8e6kjruhUBiD2XCsDM9bHMXB9Lv7BqfLfjlIucNSv48fUD7V2UqJnrY606Eun2WjSHXu5H\n4sUsYs+nEFE7t//+7KKdLNt+kh6NjYJVJnh4eNCgQQP++OMPAE6dOmUULIOhFDHK1Z+f6/EZi4gX\nWrmarZT6tqzlMRgMfx6W7zpFzIFzAKRkZF/SrNG4LzcDEPtKfyYv3MnK30870tbtP5tPwdoUG+fY\nTkrPpLy/q6l2Wma2Q0kBuO/jDUT/oztKQbOpywFoGxrMr7EXAIg5cA4vm/BYz5v4JOYQCRczWfFE\nV/67/SRvrdrPl39rx+8nkwCY+de2jPn8V1Iyspi98YiLcgXw9YajDgUrO8d1jCqvctWkWhB7TiXx\nf4t3MWusXr7zWcwhYs+ncmfLmuw+mcieU0lsPRrPQ1/9xqnENKqW8+GDEa0p5+fFsu0nAViz9/IH\n+4yCdYVERkaSmZlJ9erVqV69elmLYzAYDIariGiN8FPgd6XUm2Utj8FguD44GpdKpUBv/L0L74p/\nEnPIsZ2UlnlZZnkZWTkO5epfQ8JYtuMEpxPzr2f+6Y/zju2tR+OpWcEPEeFkwkUqBnjzfvQfnE1K\n54MRrTlwJonXf9jHmj1nOJGQW5ZduWpRuwJbj8aTma14Y8U+R/pt09Y6tkd+uhGAHo0r06RaOQBS\nM7I5m5QOwLapvQF4bM4WVuw+RXJ6M/y9bLy75gAASx/pzL7TSRw6p2eg9pxMZFy3+vh42nhi3lYW\nbjnO0m0n6NSgEi/8Vy+LHdSiBvd3qU+/t9cx5L31AFQt58PpxHTHPkD/8OrYRHjnku+2xihYV8j9\n999f1iIYDIZS5vz58/Tq1QvQM9U2m43KlbXpwMaNG/H29nbJHxcXx/z58xk/fnyh5WZlZRESEkJ8\nfHy+4z4+PoSFhQFgs9mYMWMGHToU34fPlClTCAkJYcKECW7TmzdvTosWLfjqq68KLefgwYNs3LiR\nYcOGAbBhwwbmzp3LtGnTii3Ln5xbgJHADhHZah2bbDl5MhgMhnws2nKcCfO2MiiiBm8Pb1lgPqUU\nmw9fcOwnpWVRvXzR5Sul+ONssmN/y5HcMu5rX4efD55nxwXd7jy7cAdxKRm895dWnE9Od+R75Ost\nPOu3k4SLrjNJLWpXoE/zaiSlVeL1H/bx+Nyt3Nq0iiN9QHh1ziSm89Go1vwae4EHvig6qPoLdzTH\n30evl0pJzyIpLZMgH0/K++kZtP7h1flx31maT13OP25vDECdiv6E1SpPWK3cG3Jb06qO7T7Nq7Fw\ny3EenbPFceyNoRF0b6xlfaRHQ95dc4CKAd7EPN2TZ77dwYLNOuRuryZViOzThNoV/XnnviLFd4tR\nsAwGg6EIKlWqxNatuu8cFRVFYGAgkyZNKjB/XFwcH3zwQZEKVmEEBQU56ly2bBnPPvssq1atuuzy\nnNmxYweenp6sWbOGixcv4ufnV2DegwcPMnfuXIeC1b59e9q3b18icvwZUErFANefXaPBYCgT3lm1\n3zGj8/NBPWPUe9qP3FQ1iBn3tXLJu+WoVoLK+3mRcDGTpDRXZceOUorlu07TvXFlvG0eTJi3lSXb\nTjjSV+05A8DwdrUBCAn05kxSOqkZWczeoNdkHT6fSlxKBv7eNlIzsgHyKVcAzWromaYgX638ZGTn\n8N2OU9QK9iPm6Z4uebs1yl3DtPelPqSkZ7PjeAIXM7Lo3rgKX284wm1Nq1K7oj9Z2TkALNh8jAr+\nXgT55qooQ1rWZMHmY2w8FMdry/fSvl5F5jxQ+IDj7c2qMWtsO55fsouD5/Qar8EtazrSJ93emEmW\nsgbw1O2N+fmP89zfpR5/veXKnSyVZqDhPz3Hjh2jefPmtGzZksGDB5e1OAaDoQx49dVXad68Oc2b\nN+edd7QxQWRkJHv37qVFixZERkaSmJhIz549adWqFeHh4fz3v/+9pDoSExMJDg52bBdU1gsvvECj\nRo3o3Lkz+/fvL7C8OXPmMGrUKHr27MnSpUsdx/ft20fPnj2JiIigVatWxMbGEhkZyZo1a2jRogVv\nv/02K1eudHzvzp07x6BBgwgPD6dTp07s3LkT0LNnf/vb3+jWrRv169dnxowZACQlJdG3b18iIiJo\n3rw5CxYsuKT7YDAYDGVBWmY2oZHL+PLn2Ms6/5N1BwmNXMb0lftczOVqVNCDW/tOJzvW/Tiz+4T2\nlzOpdyMAjsZddFv++z/+wfivNvNe9B/8/evfWLLtBC3rVGBYW61QfbRWh4f9S/u6ADSvUZ7UjGwe\n/Tp3due7nSc5m5RO85rlOfRyP269uYpLHfVDAuhyUwgPdW/gODal/82O7TZ187t19/b04Iux7Vj4\ncCd8PG1UDPCmW6PK9GleHV8vG2M716N2Re2W3dPmQQV/L/acSuKXg3EuHgC9bB58PKqNY/+h7g3w\n8Ch6XKtbo8qsmtiNlU925dDL/bAVck6Vcr78FNmzRJQrMDNYV0Rqaiq7du0CIDk5uYjcBoOhJImK\niuL5558HYOrUqURFRbmkT5w4kTff1EtiXn/9dSZOnOiSPm7cOD7++GMAPvzwQ8aNG3fJMmzYsIHZ\ns2fz66+/kpWVRbt27ejevTuvvPIKBw4ccMxAZWZmsmjRIsqVK8eZM2e45ZZbGDBgQKFlJyUl0aJF\nC9LS0jh16hRr1qwBwM/Pz21ZGzdu5JtvvmHbtm1kZGTQokULOnbs6Lbs+fPn8+OPP9KkSRM+/vhj\n7rnnHgCGDx9OVFQUAwcOJC0tjZycHF555RXeffddFi1aBMDKlSsd5Tz33HO0b9+eJUuW8MMPPzBm\nzBg2bdLmIPv27WPVqlXEx8dz8803M378eL777jtCQ0P5/vvvAVy8sBoMBkNZEbVkFzPXxxL7Sn8A\n0rOyWbzlBEPb1EJE2GrNJH35y2FGdgwtVpkbD8Vxz4c/uxybvlIPfA2KqEG2UqzYfZo1e88UWMap\nhDRsHsLwdnV4dfleNhyKY3DLmvx04ByNqwUR7O/N0m0n+Pa34wC8vSp3YG3uuA54enhwIiGNtfvO\n0uWmEJpW17NPfZpXY+J/tjlmtgBe/d9eAEZ2qIuI5Isx9dfO9RjZoa7Lsfu71GdgRA0Wbz3OiDxp\ndro2Kr4nvkUP38Iz3+7Ay9PDoRzaCXJae1aQe3V3iAgNqwQVO39JYRSsKyAzM3fq9MCBA2zcuNEE\nGzYYbiBiYmK46667HCZ2gwcPZt26dfTu3dsln1KKyMhIYmJi8PDw4OjRo5w7d65Qr6POJoIxMTGM\nGjWKHTt2FFjW2rVrHbL4+fkxcOBAt+X+8ssv1KxZk5o1a1KlShUeeOABEhISyMnJ4dy5c47zfH2L\nDuAYExPDsmXLAOjduzdjxowhJUWbYgwYMABvb2+qVKlCxYoVOXv2LOHh4URGRhIZGcnAgQO55ZZb\niqzDYDAYShu7Z7yU9CwCfDx5Z9UB3l1zgEBfT/qFVSfWMjGrXYwguHbyKlfOvHp3OC/8dzcZWTn8\n9fNfC8yXnJ5FoI8nnjYP2oZW5JeD55m1PpapS3bRP6w66VnZrPzdVUGrW8mfF+5ojo+nngH6Ymw7\nMrJy8PQQx6xPgI8nL97RjOcW78pX56AWNQAc65/uaFGDe9vUpkP9Sm5lrFrOl3FdG7hNu1RCQwKY\nM8696Z/zjFVopeI/h7LCKFhXQIMGDWjYsCEHDmhvJseOHTMKlsFgyMcXX3xBQkICv/32G56entSq\nVYu0tPyTRPZSAAAgAElEQVQenAqic+fOnDhxgri4OL799tsrKmvOnDns3LmT0NBQQJscfvvttyVu\n5uzj4+PYttlsZGVlcfPNN7Np0ya+++47IiMj6du3L5MnTy7Reg0Gg+FS8bIJmdmKQ+dSaF6zPKcs\nD3vJaVkAHI/XpnkZ2TkopRARdhxL4L3oA3h4CPe1q8MtDUMc5eU4uRGfdm8Ezy3aRdSgZnyz+Rj3\ntq2Nr5eNyoE+5CUpLZNNhy+wYvdp/jUkjKS0LIfXwFsahrB6zxmmLtFK0bId+U0KAVZP7J7PFM7b\nM/+KIOcgupun3EpqRjax51NoG6pdobcJ1SZ/5f286OR0bWXJlP4307ha0HURzsOswSqA2NhYQkND\nady4MX369HGbx9fXl4iICMd+dnb21RLPYLjhiYqKQimFUiqfeSDAG2+84UjPax4I8NFHHznSL8c8\nEKBLly4sXLiQixcvkpyczOLFi+nSpQtBQUEkJSU58iUkJFClShU8PT1ZsWIFx48fv6R6du3ahYeH\nB8HBwQWW1bVrVxYuXEhaWhqJiYlu13nl5OSwYMECdu/eTWxsLLGxsXz77bfMmTOH4OBgKleu7FiT\nlZaWRmpqar5ryXv9s2fPBrTpYM2aNQkIKNh04/jx4wQGBjJy5EgmTpzIb7/9dkn3wWAwGC6VjKwc\nx1qmgqhprYWye97LUVpBsvfjz6dkALBu/zk+/ykWgNGfb+T7nadYtv0k//7fHpfyDljl3NKwEkNa\n1mLn87dzd+tazBnXweFoYUB4dUe9dsKifuCvn//K1xuOEJ+aQUp6roLV28lDnjMVnGJV1azgV+g6\nI2dCQwJ4uHsDejSuTKVAH2pX9HdRuno2qcr/JnRxcQRR1tzfpb6LjNcyZgarAHbv3s3hw4cBvZag\nICZMmMDQoUOx2WyX5ELZYDBc/7Rr147hw4fTtm1bAB566CGHa/XWrVsTFhZG//79efLJJxk4cCBh\nYWG0a9eOm266qciy7Wuw7HzxxReICCNHjnRbVrt27RgyZAjh4eFUrVrV7Wz6mjVrqFevHlWr5jbU\nPXr0YMSIEZw+fZrZs2fz4IMP8uyzz+Lt7c0333xDy5Ytyc7OJiIigr/97W80bdrUce4LL7zA2LFj\nCQ8PJzAwkM8//7zQa9q2bRuRkZF4eHjg7e3NBx98UOR9MBgMhithyqIdzN90jI3P9qJKkHvT5yrl\nfIk9n8rBs9oU0D4DZVdW4lMzHHn3ntIDThecjgU4xbKKT83gMcs1+EuDwwqU66aqQcQ83YN6z7iP\n6HDoXAqnEtMIsNyX167oz6GX+1Hvme94vNdN9GhShTOJaXRvXIU9pxKpXt6Pcn6X1q1/qk+TQtPt\nsakMl44opYrO9SelTZs2yr4gOy+LFi1iyJAhjn1392nr1q3MmzePl19+udRkNBgMmt9//52bb765\n6IyG6x53z1pENiul2hRwynVFYW2PwWAoWSKe/4GEi5msmdSdeiF6hv3QuRRylMImQqCvJz1fjyYx\nLcsRl+qxOVtYsu0E0+6NYEjLWgz/6BeHS/WBETV4Z3hLGj37PRmWa3Gbh7Dl/26jnK8X//jPNv5j\nxVOyO80ojIysHHq8Hu0wQ7QzMKIGS7ed4KHuDXi6CEXIUHpcbttjZrAKoEGD3AV7np7ub1NUVBTn\nz59HKUVqamqhpjEGg8FgMBgMhquLPZZTSrpeT5WZrRUaOxX8vUi01lodspxZZFszWJlZ+v+F1Axu\nvbkq51PSiUvRwXjtytWHI1vz4Jeb+e3wBbo3roKnTc96tahdsBMjZ7w9PZj3YAc6/3uNy/G1+87i\n721jUu9rx0TPUHzMGqwCCAsLc6zPcPYW6Mzx48fJycnh73//u8Ndu8FgMBgMBoPh2sKuYNnXWdmJ\nT83t4x06l0JWdo7DgcSxC6mOPMH+XpTz9SI5LYuMLK1c1anoT4f6lfD0EFb+fhqA3Se1CeG797Us\ntmy1gv3Z/cLt/PfRzg5X6gkXM0nNyC72mirDtYVRsK6A9PR01q9fz/vvv8+qVatYvXp1WYtkMBgM\nBoPBYACHIgSQkmF5BLzgPlhvxQBvktOz2OnkEOPt1QdQSnEqMY3gAG8CfT1JSs9yKGtjOoVS3s+L\n+pUD+OqXI2w9Gs82K2ZWrUtw6Q7g7+1J85rlWfKICV/xZ8AoWFfAoEGDHNuTJ0+mV69eZSiNwWAw\nGApDRGwiUkNE6tj/ylomg8FQemw8FOfYPpOoTfuenL/Nbd4p/fW6z02x+pxyvnp5iD0QcP2QAAK9\nPUlJzyLZUrACrTzB/t4A7D/t3uPqpeBp8yDEcuE+dWDTInIbrlWMgnUFvPTSS/zlL38pazGuK7Kz\ns1m8eDFr164ta1EMBsMNhIg8CpwGVgDLrL/8vuwNBsNV41RCmlsnYiXFiE83OLb3nk5i8+E4x5os\nZ/a82McR/2n2hiMA9GxSBYCY/dq5xaAWNQj09eR0YrpjNszuQv2Zflo5234soUTk3jC5F5+MasPo\njqElUp7h6mMUrALYtGkTwcHBlCtXji5duhS4DsvLy8vt8WuZCxcusHz5cjIyMorOXMJ89dVXDB48\nmG7duvHrrwVHLzcYDIYS5nGgsVKqmVIqzPoLL2uhDIYblT/OJtPh5VWOuFKXw8yfDtH536uZtqLg\ncDp2ziVn8O/v9zr2l0/oCkBIoA++XjYqBuhZqEPnUqhR3pdODXRw3aMXUgny8cTf2xP7cqg+09cB\nEGApWOX9vKw69CzZX9pf2eS4zUO4tWlVPMz6q+sWo2AVwIYNG4iPjycpKYmYmJgClZFJkybRoEED\nqlevTpcuXUhJSbnKkl4aOTk5tGvXjj59+vDAAw9c9frfeecdx/ann3561es3GK4EEWHEiBGO/ays\nLCpXrsyAAQMAWLJkCa+88kqJ1/vXv/6VDz/80OXYokWL6Nu3LwCdOnUq9PzY2FiaN29eZJ6vv/7a\nsb9p0yYee+yxy5T4muQoUDLDywaD4Yo5Zq2FWr7rVKH5jsal0vP1aNb/cS5fWtTS3Ry7cJG3Vu13\nxK5ypkm1IKqW8yG8VnniUzMIr1UegF+e6UXdSv40qhrI28N0vEE/L5sjsHD7+pUcMaXOJKXj661j\nUQ0Ir+FSfiVLKfO30u0K1v1d6hd9Awx/aoyCVQBZWVku+9nZ2W7zNWvWjPj4eE6ePMm6deu4eNH9\n4slrhSNHjnDgwAFABy692txyS+7izSZNTFwHw/VFQEAAO3fudPzOV6xYQc2aNR3pgwYNIjIy8orr\nyfv9GT58OHPnznU5NnfuXIYPHw7A+vXrr7jOvApWmzZtePvtt6+43GuIg0C0iDwjIk/a/8paKIPh\nRiUpTVsGpTk5onBHl1fXcPBcCi/99/dC8zkH/rWTeDGTLjdVplKAN/GpmcSlZlCzgh/Vyvvi62Xj\nhye60amhnqny8BC8PHS3uHZFf4J89azU2cQ0/Ly0AlWtvGug4kqBWsHysxSsX2MvALkKl+HGxShY\nBdC2bVvHdkREhFtTwLfffpsZM2Zw/vx5x7G8HaNrDW9vb8d2tWrVrnr97du3Z8yYMdx///2kpKTQ\nrVs3OnTowKOPPnrVZTEYLod+/fqxbNkyAObMmeNQcgBmzpzJI488AsCYMWN47LHH6NSpE/Xr12fB\nggWADlr+j3/8g+bNmxMWFsa8efMAiI6OpkuXLgwaNIimTV0XNvfq1Ys9e/Zw8qR2HZySksLKlSsZ\nPHgwAIGBgYWW7UxsbCxdunShVatWtGrVyqGcRUZGsm7dOlq0aMG0adOIjo52zMzFxcUxePBgwsPD\n6dChA9u3bwd0LMCxY8fSvXt36tevf60rZEfQ66+8gSCnP4PBUAacSkgDXD395SU9K3dwu1awX4Fp\nAKctJxZ6O40j51OJS80g2N+LykE+nEpMIyU9y7Fuyh322FZ1KvoT5Js7g2VXsCr4u/YFKwVoZxT+\nXrY8x70x3NiYQMMF0KlTJ5RS5OTkkJ6ejp+fX748TzzxBDk5+sf48ccf4+PjQ7ly5a62qJeEp6cn\nAQEB2Gw2goKuft/ivvvu47777gP06P+UKVMATJBmw6Wzsnv+Y3XugUYPQ1YqRPfLn15/jP5LOwcx\nd7um3RpdrGqHDRvGCy+8wIABA9i+fTtjx45l3bp1bvOePHmSmJgY9uzZw6BBg7j77rv59ttv2bp1\nK9u2bePcuXO0bduWrl31WoDffvuNnTt3Uq9ePZdybDYbd911F/Pnz+fxxx9n6dKldO/ePd/3prCy\n7VSpUoUVK1bg6+vL/v37GT58OJs2beKVV17h9ddf57//1X4foqNz78fUqVNp2bIlixYtYvXq1Ywa\nNYqtW7cCsGfPHtasWUNSUhKNGzfmoYceuibXpiqlngcQkUBrP7nwMwwGQ2ly+LyOMZVqOYyY/+tR\nth6L519Dwnjzh72EhgTQpFruN+6H3afJzM7By6bnBs44KVQAzy3eyYt3NKdpjXK0/9cqx/Fawf6U\n98vkbFI6cSkZjtmmwqhR3tcxg5WVoxwmgj6eued+MKIV3p5aFk9b7nzFgPDqLvuGGxPzBhRCSkoK\nTZs2pWrVqqxcudIlLSsry6FcAZQrV446derg739pcQ+uNlWqVCE5OZmEhAT27St6UWhp4uPj49gu\nC4cbBsPlEB4eTmxsLHPmzKFfPzdKnBODBw/Gw8ODpk2bcvq0DkIZExPD8OHDsdlsVK1a1cXhS7t2\n7fIpV3aczQSdzQOdKaxsO5mZmTzwwAOEhYUxdOhQdu/eXeQ1x8TEMHLkSAB69uzJ+fPnSUzUsWL6\n9++Pj48PISEhVKlSxXGd1xoi0lxEtgC7gF0isllEmpVQ2X1EZK+IHBCRK7cRNRhuAE4l6hkse6Df\np77ZzteWB7+3Vx/gyfnb6Pe26+DVkq0n8p0/tHUtADYfvsCd7/+Ur57aFf2oXVH3zfafSS7UfG94\nuzr4eHrQOjTYMYMFcOR8/vX1jau5DnDd174ObwyNYPq9LQos33DjYGawCuHll19m717tcea2225z\ncSWanZ3N1KlTef755wG49957AUrV3ej1xoEDBzh06BAXL16kWbNmNGjQgPfee49ffvkFm83GsGHD\nWLNmDT4+PlSoUKGsxTVcbxQ24+TpX3i6b0ixZ6zcMWjQICZNmkR0dLSLiXBenAcRivNtKGwmt1On\nTpw8eZJt27axfv36fGuyisu0adOoWrUq27ZtIycnB19f36JPKgTna7TZbNeymfRHwJNKqTUAItId\n+Bgo3ENIEYiIDZgB3AYcA34VkSVKqaI1V4PhBsbuLj0xLdPFQUVh38rM7NyB7RPxei3suK71Wbjl\nOFk5irTMHLLzOLuoHexPvFVXfGomtkI88718Zxgv3xkGgM0vN9+F1PyepAPyKGr/GhJWYLmGGw+j\nYBVCQa7ZQXcqoqKiCA8P56677gIgODj4aol22ezcuZP7778fLy8vwsLCeO+990qtrnfffZe33noL\ngDfffJMnnniCtWvXOtaFNGzYkIYNG+Lp6XnFnTyD4WoyduxYKlSoQFhYmIspXXHo0qULH374IaNH\njyYuLo61a9fy2muvsWfPnkLPExHuvfdeRo8eTd++fd3+ZgoqOy0tzZEnISGBWrVq4eHhwaxZsxwO\nfIKCgkhKch8ks0uXLsyePZvnnnuO6OhoQkJCrnlzaDcE2JUrAKVUtIiUhG1yO+CAUuoggIjMBe4A\nClSw9u7dS/fu3V2O3XPPPTz88MOkpqa6nRkdM2YMY8aM4dy5c9x999350h966CHuvfdejh496pht\ndGbixIkMHDiQvXv38uCDD+ZLnzJlCrfeeitbt25lwoQJ+dL/9a9/0alTJ9avX8/kyZPzpU+fPp0W\nLVqwcuVKXnrppXzpH374IY0bN2bp0qW88cYb+dK//PJLateuzbx583j//ffzpS9YsICQkBBmzpzJ\nzJkz86V/9913+Pv789577zF//vx86fbfqbMZrB0/Pz++//57AF588UVWrVrlkl6pUiW++eYbAJ55\n5hl+/vlnl/RatWrx1VdfATBhwgSH+aydRo0a8dFHHwEwbty4fNYjLVq0YPr06QCMGDGCY8eOuaR3\n7NiRl19+GYC77ror36BOr169eO655wDo27dvPmdbAwYMYNKkSQD53jsom3cvOaQZ5xrqupSCHcdz\nHXx2u/V2aPt4vnIAXnvtNT44uwOA+BrtoU5Xzh/dj5fNg6wc/S3rcWtvaJf7Dl88d4waNUMd++v2\nn3O5D4W9ezV9K3C8xQN0bVQ5993r8A8A7h48EI+cTPPuXWfvnjPF+e5dLsZEsAC+//57Xn31VQDq\n1avHkSNHXNKVUiQnJ9OxY0eGDRtGeHg4S5cuLQtRL4n4+Hg2bNhATEwM27a5j2ZeUjivW7P/6DZu\n3Og49sILLzBs2DDuvvvuUlX0DIaSplatWpftwnzIkCGEh4cTERFBz549efXVV4vtcGb48OFs27bN\nrXlgcct++OGHmTVrFhEREezZs8cxaxYeHo7NZiMiIoJp06a5nBMVFcXmzZsJDw8nMjKSWbNmXcaV\nlzkHReQ5EQm1/qagPQteKTXRLuDtHLOOuSAi40Rkk4hsKmzwzmC4ETgf2tNl/44ZuaZ9GX4hhZyZ\nOzuVEVAFz7R4fD09HGuhPLIuojxc5w58PD2oGuTD5eCVFs+nw5sy476WjmMBZ3cCIDnX7Gy94RpA\nStOkTUT6AG8BNuATpZTbADEi0hb4GRimlFrgdNwGbAKOK6UGWMeGAlHAzUA7pdQm63go8DtgjyL3\ni1JqfGHytWnTRm3atMlt2tNPP+1QsECbuzVo0ADQSorzbFX16tXp1KkTWVlZvPHGG4581yKrV6+m\nV69eAISGhnLo0KFSq0skd3r9xRdfZPLkyQwYMMAxWuPM0KFD3Y78GAx2fv/9d26++eayFsNwFXD3\nrEVks1KqzeWWKSLBwPNAZ+vQOiBKKXXhsgXV5d4N9FFK3W/tjwTaK6UeKeicwtoeg+FGoP4zy3AT\ntqpIXhzcnJEd6gJwx7sxVPD3ZtbYdmw+fIG73l9PzQp+zB/fkVteWY23zYPpw1rQL6w6AKGR2vvr\n+39pRV/r2OWQlZ1DUloWwcZT4A3B5bY9pTaD5WSX3hdoCgwXkaYF5Ps38IObYh5HK03O7ATuBNa6\nyf+HUqqF9VeoclUUeeNeOe/ndchw8uRJvvnmGxYvXsyFC1fUVhebRYsWMXHiRCZPnsyWLVtc0n78\n8UemTJlCVFRUPucc4eHhju3Y2NhSk+/cOdeAgM899xwHDhygZ8/cUSvnwKf/+c9/XMyYDAaDoSRR\nSl1QSj2mlGpl/T1+pcqVxXGgttN+LeuYwXBDcjEjm7NJ6fnWQjnTqKr2Yvzq3eEF5nFm/oMdAUhJ\nz501SkrLcjiiaF03mFEd65KcnsX3O3Q4i9eGhjuUK2dCQ67MMtjT5mGUK0ORlOYarOLapT8KfAO0\ndT4oIrWA/sA/AUcwSKXU71Z6qQkOOtbNF198QXJyMkOGDKFKlSqOtMLMO67GAu+kpCSGDBni2G/Y\nsCEtW+ZOX7/11lssXLgQ0LNrJ07ket1xnnkrzXuYkJBAcHCwi8KZnp5Oq1atePTRR7HZbLRo0YIx\nY8Y40s+ePUvt2rXdlGYwGAyXh4hMV0pNEJGlONsXWSilBl1hFb8CN4lIPbRiNQy47wrLNBiuO2Zv\nOIwgvLRsN6kZ2XRrVJlZY9u5zZudo+jbvBpt6hZv7Xrb0GBEINVJwUpMy3K4UgcI9PEk4WImLy3T\n4/K+eWJThQR6cy45gwBv437AUPqU5lvmzi69vXMGEakJDAF6kEfBAqYDT3FpgSDrichWIAGYopTK\nF5xGRMYB4wDq1KlTYEE9e/Zk8eLF/Pbbb/j4+HD48GGHp7uqVasyb948h+fAd955h2rVquHp6Umj\nRo0uQdzLY/HixS77qampLvs7d+50bNsDk9rx8PCgWrVqeHh4YLPZUEqViqLVoEED4uLiaNy4Mfv2\n7cNms5GZmUnPnj0ds1jJyckuClZZBD42GAx/er60/r9eGoUrpbJE5BFgOdoc/jOl1K7SqMtguJZ5\nduFOl/0f953laFyqw0W6nYsZ2ZxNTqdVnWDqhQTwVJ/GvPq/vbgjsm8TagX7ISJ42zw4Hp9r6ZKU\nlkk5J1fqAXkCCFfwc43H981DnZi94Ui+gMUGQ2lQ1mr8dOBppVSOcydfRAYAZ5RSmy1XusXhJFBH\nKXVeRFoDi0SkmVIq0TmTUuojtLte2rRpU6gF8JtvvsmCBY4lYQ7XoZ6entxzzz306tULT09Pypcv\nX0wRS4a83sY6dOjgst+7d2/2798PQEiI62JREcmndJUm27Ztw8vLC5stf9yJwMBAxo0bx6effsrk\nyZOvyeCkBoPh+kYptdnabKGUess5TUQeB34sgTq+A7670nIMhj8ba/aeYVTHUMf+uv1neWrBdhIu\nZjIwogYiwsPdGzoUrHFd69OxQSUOnk3hxf/u5tabq9Cwih5nT8/K4ZvfjvFoz4b4e9tIz8qhnJMS\ndWermry2PFdRC8nj2KJupQAm9zPreA1Xh9JUsIpjl94GmGspVyFAPxHJQs90DRKRfoAvUE5EvlJK\njSioMqVUOpBubW8WkT+ARmgnGZdFUeZ+lSpVutyir4ghQ4ZQt25dhxfDNm1c1949+uij1KtXDy8v\nr6syo1YQp0+fpnPnzmRlZVGrVi3Wrl1LVFQUO3bswGaz8dxzz/Hhhx8yffp0F4+DBoPBUAqMRjtd\ncmaMm2MGg6GEqBTgquSM/FR7Eo6oXYHON+X3FhjZpwkeHkL3RtqEsEaF/H2DPaeSGP+VHjep4qRE\nVS/vmjck4PI8BxoMJUFpKlhF2qUrperZt0VkJvBfpdQiYBHwjHW8OzCpMOXKylcZiFNKZYtIfeAm\nrtAFb48ePVi0aNGVFFEqtG7dmtatWxeY3rhxYxo3buw2bcmSJY7ZogEDBvDiiy+Wlpj8+uuvHDhw\nANAONUSEdevWsWaNDkXTunVrfv31Vzw9PWnVqhVhYSZIn8FgKFlEZDi67aknIkuckoKAuLKRymC4\nMbiYme32uFeeYL+dG4YQc+AcHtZxEXGrXAH8fjLXMKlaedd4gP+b0IVTCWmkpGdT3t9YxRjKjlLz\nIqiUygLsdum/A/OVUrtEZLyIXLaHPxEZIiLHgI7AMhFZbiV1BbZba7AWAOOVUpfdeH7++efs3r2b\nYcOG8eOPP5KTk1P0SdcBR48eZdeuXWzdupWzZ8+WWj1paWn5AtYBLrG3nnnmGe6//37GjBlDeHh4\nvrVlBsO1hogwYkTuWE9WVhaVK1dmwIABhZ63adOmy46bBVC/fn327nVdozBhwgT+/e9/F6vsmTNn\n8sgjBXoNB3QwzPXr1zv2P/jgA7744ovLlvkaYj3wBrDH+m//mwjcXoZyGQx/GgoK+ZNWgIKVcNHV\nWdjMv7Zlz4t9Cq1j9cRuAOw6katgtc7jJKNJtXJ0b1yF/uGX74bdYCgJSnUNlju7dKXUBwXkHVPA\n8Wgg2ml/IbDQTb5v0N4IS4QVK1YwZ84cQEeidl4jtnnzZvr06YOXlxdt27albdu2xMTEkJWVxdSp\nU+nSpUtJiVHibN++3bF96tQpsrOz3a6PulK2bNnCQw895HIsLS2NoUOH8uGHH7o9Jy6uaH345MmT\nnDhxAk9PT6pWrWocYxiuKgEBAezcuZOLFy/i5+fHihUrqFkzX0zZfLRp0yafKW9hZGVl4emZ+3ke\nNmwYc+fOZerUqQDk5OSwYMECfvrpJ+rWrXtJZRdEdHQ0gYGBdOrUCYDx468o0sU1g1LqMHBYRP4C\nnFBKpQGIiB/adD22DMUzGP4UFDRT5axgXczI3X62v+taKE+bB55FdEXqVw4kyMeTXScSAKgU4I2/\n8QhouEYptRms6x3nuFfOHR2Aixcvcu7cOU6ePMn58+fZunUry5cvZ9WqVZw+ffqqyLd7924mT57M\nhAkT8iks8+fP5/HHH2fixIkuI9KZmZl89NFHjv3FixeTkJBQKvLljSMGsGDBAnr06OHYDwhwjUWR\nnp5eZLmzZs2iTZs2tGjRgunTp1+5oAbDJdKvXz+WLdMBK+fMmcPw4cMdaRs3bqRjx460bNmSTp06\nOWadoqOjHbNccXFxDB48mPDwcDp06OAY9IiKimLkyJHccsstjBw50qXO4cOHM2/ePMf+2rVrqVu3\nLnXr1i1W2c4sXbqU9u3b07JlS2699VZOnz5NbGwsH3zwAdOmTaNFixasW7eOqKgoXn9dO97bunUr\nHTp0IDw8nCFDhjjCL3Tv3p2nn36adu3a0ahRI9aty+e49VpiPuBsipAN/KeMZDEYrmmUUnyy7iBx\nKRlFZwZS0t0rWOlZuT+5Hcd1f+OzMW3o3riK2/xFUTnIh5MJ2pPg/yZ0vawyDIargVH9C+Bvf/sb\nXbt2JSsryyXGFLjGwfL09HRRwK5GHKypU6cyffp0EhP1NHn//v158MEHHekff/yxI8DwnDlzHHGw\nzp8/n68sd4pQSeDl5UWdOnU4cuSI41h6ejphYWE89dRT+Pv7ExERQatWrYiPj8fHx6dYs1HO9zev\n4mu4gfi6lGK43VeoY1FAzya98MILDBgwgO3btzN27FiHYtGkSRPWrVuHp6cnK1euZPLkyXzzjevE\n+tSpU2nZsiWLFi1i9erVjBo1iq1btwJ64CQmJiaf05ewsDA8PDzYtm0bERERzJ0710WxK07Zdjp3\n7swvv/yCiPDJJ5/w6quv8sYbbzB+/HgCAwOZNGkSAKtWrXKcM2rUKN555x26devG//3f//H88887\nBjiysrLYuHEj3333Hc8//3y+4ObXEJ5KKUdvUSmVISImWqjBkAelFNH7zvLSst/ZdiyBd4a3LDR/\nakYWn/10yG2a8wzW/jNJANxU5VKi77hSKdCbg+dS9LYJ9mu4hjE91ALo3bs3vXv3BrQSEh8fT2Bg\nIMNpHSMAACAASURBVJ6ennTu3JkzZ86QmZmJzWbjxIkTjBkzBk9PT5o3b17qsi1fvtyhXAEsW7aM\n5ORkAgMDAW36Z8fZJXtqairly5d3mbW68847S2XUuX379hw+fJi///3vfPbZZ/j4+ODh4UFERAQR\nEREueQuLR5YX5+uZOXMmL730UonJbDAUh/DwcGJjY5kzZw79+vVzSUtISGD06NHs378fEXEblDwm\nJsahdPXs2ZPz5887fs+DBg0q0KPm8OHDmTt3Ls2aNWPRokU8//zzl1S2nWPHjnHvvfdy8uRJMjIy\nqFevXr5y8l5TfHw83brp9Q+jR49m6NChjvQ777wT0E5rYmNjCy2rjDkrIoOUUksAROQO4FwZy2Qw\nXHMs2nqcJ+bp9dLOZn0F0euNHx2zSnaevK0R01buc1GwNh6Ko3KQzxXFoXJeruHhUUoDbQZDCWAU\nrCK45ZZbHGZ269evp2PHjnh5eVG5cmVHnqpVq15VmdzNkqWmpjoUrJEjR/L000870pYvX87tt99O\n/fr1iY+Pp3379mzcqF2lxsTElKqsM2bMYMaMGSVW3oABA3jvvfcAaNasGbt27aJ27dqUK1euxOow\nXAcUY6apNBk0aBCTJk0iOjraZWb4ueeeo0ePHixcuJDY2Fi6d+9+SeXmNZt1ZtiwYfTu3Ztu3boR\nHh5+2d+dRx99lCeffJJBgwYRHR1NVFTUZZVjx8dHu0K22WxXZQb/ChgPzBaRdwEBjgKjylYkg+Ha\nY1PsBcd2kK/7bmLsuRRqVPDD29Mjn3IF8Fivm/jsp0OkZWoTwTOJaSzeeoKeTaq4KEmXiu0KzjUY\nriZmDVYROCtSR48eLUNJcvnnP//JV1995XLMeaR87NixNGvWzLH/5ZdfuuTdtWuXy/7V9JD4wAMP\ncNttt9GnTx8OHXJvUlAYzqP7Z86coXnz5pQvX57q1asX6MXIYChpxo4dy9SpU/OFFkhISHA4vZg5\nc6bbc7t06cLs2bMBvTYrJCSkWAMEDRo0ICQkhMjISLfmgcUt21nGWbNmOY4HBQWRlJSUr8zy5csT\nHBzsmOn+8ssvHbNZ1xNKqT+UUh2ApsDNSqlOQP4LNhhucAKdlCovW36FJjEtk+6vRzN54Q635z/Y\ntT4Afl42xwzWY3O3AOB5hbNOvl6629q0uhlUNVzbmBksN6xbtw5vb28CAgKoVq0aHh4eBAQE5DO1\nKStuv117Fs7OziY9PR0vLy8qVKjgSA8JCeGxxx5zrMvy9/d3Of8f//iHy6i1O8UkMTGRzMxMvL29\n8fPzK7H1TuvXr2f37t2Ant2qWbMmHh4ejBgxgooVKxY5stWkSRM+/fRT/Pz8SExMdHg6CwwMvKJR\nMYPhUqhVq5Zb1+hPPfUUo0eP5qWXXqJ///4uafb3MyoqirFjxxIeHo6/v7+LklMUw4cPJzIy0mGW\nl5filB0VFcXQoUMJDg6mZ8+ejoGOgQMHcvfdd7N48WLeeecdl3NmzZrF+PHjSU1NpX79+nz++efF\nlvkaxBO4S0TuA24GapSxPAbDNYWHU1ua6sZEMN2alVq950y+/sP+f/Z1KFG+XjbSLCcXf5zV66b8\nvK/Ma3HnmyqzZu9ZnunX5IrKMRhKG7mRR/3btGmjNm3alO94QEDA/7N35vEx3G8cf89euUUk7iiK\nUCRRxH3VFbSOFqVVlDpbVIuW8kNTLb1p66hqq5TQIq6icZ9VQl0Vt7hDJMi52SPz+2Oyk509klBa\nrXm/Xl52Zr4z891NNjOfeZ7n85CZmQlI9QXvv/8+1ar9819mURTZtWsXWq2Whg0b5isovvvuO155\n5RUA+vXrx3fffSdvO3nyJNOmTSM7O5vKlSsTFRXltP/w4cP56quvAPjiiy8YPnz4Xc31zp07XLp0\nCa1Wi7+/P2XKlGH79u35pkxFRETIqYuF4dixY7Rs2RKj0Ui1atXual+Vfx/x8fE88cQTBQ98CFm+\nfDmrV6++KzH1KOPqZy0IwgFRFO/Jjz7Xkr0zUsPhJ5GaDHcBdoii+Lc3OXR37VFReRiYvPpP5u9J\nAKD1EyWZ11f5tbueaqT+B5vxNmipUaYI++1SChOm5T1Yajd9B+WKefNNn7q8tvggvxy5xoaRTalW\n6t6jT6IocuDCLepWKHbPx1BRuRvu9dqjpgg6kJOTI4srgBUrVnDjxg3FmEWLFuHp6Ymfnx+DBw/m\nq6++onHjxtSvX19Oz7GRlZXFsGHDePnll/+yJfq6deto1qwZjRs3Zvv27fmOff755/njjz/o06eP\nnC6YkZHB5cuXWb9+Pbt37+bAgQN4enpy9epVpzRBkynPmtVgKJxTT7t27WjZsiXt27dn5cqVhIaG\nUr16dXr06MGlS5fcpkzZKIzF/cmTJ9m+fTu7d+8mKCiILVu2sHjxYsaNG3dPKYcqKg+a1atXM378\neIXTp8rfhyAIi4FTQBvgS6ACcEsUxW3/hLhSUXnYyTTl1VK6ahRstkpfm2xLjkJcTXDobeVplyLo\nqdNStqjXXxJXIGUCqOJK5d+AmiLogCvXL8f0uOzsbPmfyWTiwoULshGGzRLdxsqVK2WTB6PRyJIl\nS+55brZeNwCDBg3i1KlTLsdNnTqV06dPK9J46tSpw/Xr1+nZs6di7Pjx4xk/fjz16tWTrZu3bt2q\n6Je1ePHiQt0c7tixg6ysLEASeDZ27drl1imwf//+cnTt4sWL9OvXjwEDBtC4cWOX46dPn86cOVKv\n6lmzZnHw4EHmzZsHwNy5cxk4cGCB81RR+Tvp1KkTnTp1+qen8ShTHbgFxAPxoihaBUF4dFM3VFQK\nYPnBK1QI9KZMUS83Akv6+lhzlF8jx4QoT71GTidMM5rx9VBvOVUeHdQIlgMeHh4K1zuDwUDlypUV\nYxx7MeXXBysmJkZ+7VgLZWPcuHGUL1+exYsX5zs3e/Fw+vRpnnvuOafoGsCSJUucaiTi4+MxGp2d\nfmzs27ePLVu2ADhZT9vXd7nDbDYrGgUHBQVRvXr1fPeZNWsW8+bN49ixY1y+fBmQjAGaNGnidp/8\nPntX4lhFReXRRhTFWsDzSGmBmwRB2AX4CYLw99q/qqj8Czh+NRVrjkhCciaeei1ZdgLrif9toPe3\nv2OxOgd+g3w96FYnWLHOx6AjPVu6Zl++lUXpop4PdvIqKg8RqsByQdmyZalXrx4tWrTgvffew2Aw\ncPXqVVnMvPLKK2RmZnLnzh2mT5/OoEGD2LVrF3v37qVv376KY9WuXVt+7cpWOSEhgWnTpnHx4kV6\n9eqV77zmzp2LKIqyA1hMTAzPPfccXbt25cSJE/I4V6mIjz32GAaDQdHMt2PHjooxNiHlKMRsUSl3\nTJs2DT8/P8LCwti0aRO//PILHTt25M8//2TBggUEBARQrlw5evfuTWxsLOvWrePIkSMMHToUQRCo\nUaMGfn7KxoPuagP9/f3l1++88w6hoaF06NCBzp07U758+XznqaKi8mgiiuIJURQniaJYDXgd+AHY\nLwjCnn94aioqDxVmO/G05cQN/ryayo1UIykZJrLMVnaevonJhcBa+VojAhwa/xbx0pNqNJOTI3L+\nZgaPB/k+8PmrqDwsqPFaF3Tu3JnOnTsDsHTpUgICAgDo3r07P/30E1qtFi8vL9kyvGLFim6bdY4d\nO5a33noLi8Xi0pRCq717Rx37KM7u3bsBeP3112UjjmnTpilsnDt37kytWrUoW7asvL5OnTqsWbMG\nkHp9NWjQQBaAs2fPZvfu3fz444+88cYbNGzY0O1cRFFk3LhxABw6dAiNRkNgYCCZmZl4e3vTu3dv\nevfuXeB70mg0PP/887IrojsDj+HDh/Ppp58CUsQqMjKSzp07U6RIESeRpqKiouKIKIoHgAOCIIwB\nmv7T81FReRCcuZFG5RKFuybm5IjM23WOnvUek1MCW1YrwZYT0kPlCymZrDh4WR5vsTo/APUxON9O\n+nvpSc0ycy3VSJbZSqUS7vv8qaj811AFVgHYGzzcawqaRqNxaxTh4+NDyZIl0el0lChRolDHW7hw\nIZmZmXTp0kVeZ29K0a1bN2bMmMHevXsBuHLlihz1smFrDgrw4YcfKmqehgwZwpAhQ1i4cCG3b9/m\n4sWLbNy4kfLlyxMSEqI4jmOKYsuWLQE4fPgwYWFhim0mk4n69evLBiGxsbHyNl9fX5YuXVrge7cX\npHfu3JHTN/v06aM6tKmoqBQaUQqT7/in56Gi4ojZmsOF5IxCCyRHFv9+kXdijrJkUAMaPB5Y4Pg9\nZ5P5YN0JTlxLo2O41LVgRKsqRNYoydvLj5KcbiI1K+/BrtlFBMvbw/lhcRFPHWnZFq7elrJgyhb1\nchqjovJfRRVYDqSmprJ79265t5SXlxeBgYHodLpCNQO9W4oVK0ZiYuJd7dOmTRsANm7cSFJSEnq9\nXtHwVKfTERUVRdu2bQHXNVRDhgyhS5cueHh4UKFCBaftly9fxmq1Krb179+fb7/9VjEuMzOTtm3b\ncuLECS5evCivdyVGjUYjhw4dAiRB9dFHH2E0GtFqtYwcORIfHx9EUczXfj4wMJAVK1ag1WpZuHAh\ny5YtA5SCUUXlQSEIAr169ZIbfVssFkqXLk39+vVZu3Ytq1ev5vjx44wdO/aBnP/QoUM8+eSTrF+/\nnnbt2t3TMRo1aiSb8tjz8ssv88wzz9CtW7d7mtfVq1ed6jdVVFTunsmr/2TR7xfZN74VJfzuvm7p\n1z+le4qktOwCRirZ8GciT1WTHvT6GLQ0rVIcgFuZJgJ89ACUK+bFF1vOOO3roXMWWEF+HoginL8p\n9cDy89Tf1XxUVP7NqALLgdOnTytuEl544QVOnDhBUFCQvM6WoqfVahEEgZycHNLS0jCZTOTk5Chq\nrRITExk+fDg5OTmUKFGC2bNnO51z1apV/Pbbb5jNZhITEwkNDUWv1zNgwABFzdHAgQNZsGABOp2O\n6dOn5+uYZ2/+sGnTJubNm8eAAQPkdX369AEgPT0dvV5PTk4OGk1eSV6PHj2cbsLso2Q2KlasyK+/\n/krTpk0VAuv27dv89ttv6HQ6SpYsyWOPPaaoDUtPT+ftt9+WlydMmIBGo2HdunVyI2VXeHl58eyz\nz8rn2LdvH1arVfHzUVF5UPj4+HDs2DGysrLw8vJi48aNiujw/XIMtFgsLpt7R0dH06RJE6Kjo+9Z\nYLkSV3+VQ4cOERcX99AKLEEQNEA3URR/us/H/RjoCJiAs0A/URRv389zqDx6bDuZBECWiya/hcGg\nk67laUaL2zEnElOpWtIPQRBkI4pMk5UzN9IB8PbQ4ZF7HLM1h+upkljz89Cz41SS4ljz+rhuEVQu\nQDL2ir+WKu3rqd5yqjw6qCYXdly4cMFJRERHR2O1Kv/IRUVFodfr0Wg0vPfee5w7d46iRYtSokQJ\nJ3vx5ORkli1bxooVK1i/fr3L827YsIEPP/yQzz77TO7pNHr0aNauXasYN2/ePEwmE5mZmaxcudLl\nsbKysrBYLDRp0oQ33nhDXp+QkMDNmzc5deoU586d49YtqXdFYGAgnp6eaLVa2dxi//79Lm/CKlWq\n5PKcIFmx23P8+HEaNWpEvXr1GD58OMePH+ejjz5yuz9IPcgOHDhAXFycW2ONvXv3snbtWjZs2ED7\n9u3ZsGEDn3zyCU888QQHDhzI9/gqKveDDh068MsvvwDS3wf7esf58+czbNgwQIoIjRgxgkaNGvH4\n44/L0VZRFBkzZgw1a9YkNDRUTo3dtm0bTZs2pVOnTi4dOEVR5Oeff2b+/Pls3LhRYUazYMECwsLC\nCA8Pl2ser1+/zrPPPkt4eDjh4eHyd9rX11c+3rBhw6hatSqtW7dWpPseOHCA5s2bU6dOHSIjI7l2\n7RoALVq04O2336ZevXqEhISwc+dOTCYTEydOZOnSpdSqVatQqb5/N7n9rt56AIfeCNQURTEMqdfW\nuAdwDpVHDFsdlKtUvMLgpZeiST/uveBy+77zKbSbvlPevv7YNXnb5VvStdfHoEWfK7BSs8xsPC71\nqXRlcNG6umtDzuJ+UmbJ97sTAFSbdpVHClVg5TJ27FgqVKhAp06dZFMLG4726u+99578+vPPP1fU\nV9lblQOMGTNGfn3hgvMfu4MHD8p9nRxJT093O1935hgzZ87E09OTypUr8/nnn8vrL168yNdff03V\nqlWpVKmSbBRhLyjPnJHC/vXq1VMcs3r16hw8eJDx48e7nY+jEYa9Ecfq1aupUaMGX331ldv9bYwf\nP56IiAh5Lo5ERUXRsWNH2rdvz/79+1m1ahUvvPACffr04aef7uvDaZWHnRYtnP/NmiVty8x0vd3W\n7PrmTedthaRnz54sWbIEo9HIkSNHqF+/vtux165dY9euXaxdu1ZOG1yxYgWHDh3i8OHDbNq0iTFj\nxsgC5uDBg8yYMcNlj7s9e/ZQsWJFKlWqRIsWLWSR9+effzJlyhS2bNnC4cOHmTFjBgAjRoygefPm\nHD58mIMHD8oNx23ExMRw8uRJjh8/zoIFC2QBZjabGT58OMuWLePAgQP0799f8d23WCzs27eP6dOn\n8+6772IwGIiKiqJHjx4cOnSIHj16FPqz/JvZJAjCaEEQygmCUMz2768cUBTFWFEUbX/s9gLB+Y1X\nUSkMNmt0o/neBJatP9Xxa6kuHXmv3ZFE1N7zKQBcTMmUt6UapfR+b4MOg1a6RbSJLpD6WdkwaDWs\nG+HeJ8YxYqVGsFQeJVSBlcuHH34IwM2bNxXCBNz3rwL44IMP8PDwwM/Pj6CgIIoVU16v7VP8unbt\n6rS/oyCzR69X5ivbp9+sWbOGNm3aOEXXsrKysFqtinQ9gMGDBytEj1arlU0wbJw8edKpfxZI0aiS\nJUs6zcdGrVq1+O233+Tlp556ilKlSlG/fn2Cgwt3v2G7WbThrmeXYx8s+zmpfbBU/g7CwsJISEgg\nOjq6wJS4Ll26oNFoqF69OtevS0+Ad+3axQsvvIBWq6VkyZI0b96c/fv3A9LDDXeOpNHR0XKj8J49\nexIdHQ3Ali1b6N69u5wma/sbtGXLFoYOHQpI33f7v0UgNQa3zaNMmTKyQc3Jkyc5duwYbdq0oVat\nWkyZMkXuUwfw3HPPAZITaUJCQuE+tIeDHsBrSMYWB3L/xd3H4/cHXKcpAIIgDBIEIU4QhLikpCR3\nw1RU5AiWqya/hSHTlHeddBVxskW40owWRFEkIbdGCuBGWjZ6rYBBp0GfK7ASU6XrcaCPQU4VnPZc\nKKfeb0/1Mu5r0x0jVq6cBlVU/quov+0uqFOnDq1bt8bDw4OyZcty6dIluSaiQoUKBAQEyCl2nTt3\npmTJkqSmpro8lr+/P97e3pjNZpe1GY6NiY8ePYrVasXT09PJ+e+XX37BarXKtRmbNm2iY8eOWCwW\n3njjDdq3b+82ta5NmzZkZWVRuXJlLBYLmzZtIioqSjHGbDY7pfrZWL58OcOHD3daf+XKFQ4fPiwv\nDx8+nOLFi9O9e3deeOEFUlJSqF+/PjqdDqPRSHR0NBaLhfj4eAYNGiTPzbHexJ2Yq127Nhs3bgQg\nMjKSfv360a1bNzw8PKhTp47LfVT+o2zb5n6bt3f+24OC8t9eAJ06dWL06NFs27aN5ORkt+PszVfc\n9Xazx8fHtY2x1Wpl+fLlrFq1ivfffx9RFElOTiYtLe3uJ18AoihSo0YNxUMTe2zvSavVOv39epgR\nRdG1ci0AQRA2AaVcbBoviuKq3DHjAQuwKJ/zzwXmAtStW7fgXwaVR5bcANQ9R7Ay7Wq3si05TgYU\n2RbpuDtOJZGUls2tzLyHk9fvGPHOFUJajYBGyKsJC/L1IDlDynrx9yrYsMLXIWKl0bg3sFJR+a+h\nRrBy+eabb/jss8+IioriiSeeYOPGjaxdu5YBAwZQsWJFqlSpQvfu3TGZTAQGBqLX6xk0aJDTU2FH\n5syZQ0ZGBiaTSTaWsKdBgwaK5eTkZMLDw6latapcK2GPvZgBWL9+PRs3bpQjVlFRUdy5c8cpWpaV\nlUXnzp05ffo058+fp25dZVFqUFAQNWrUcHvD5HhekGq1HB0Iv/zySyZOnCjXpRQrVozTp08THx/P\n+fPnadCgAU2aNOGll17i8uXLXL9+neXLl1O6dGn69+9Pr169+OCDD6hVq5bLebz//vuK5e+//55B\ngwbx+eefF9ioWUXlftG/f38mTZqkcO8sLE2bNmXp0qVYrVaSkpLYsWOHU1quI5s3byYsLIxLly6R\nkJDAhQsX6Nq1KzExMbRs2ZKff/5ZFnopKVLaT6tWrWRTHavV6tSAvFmzZvI8rl27xtatWwGoWrUq\nSUlJssAym838+eef+c7Pz8/vgYi9+4kgCN6CIEwQBGFu7nIVQRCeKWg/URRbi6JY08U/m7h6GXgG\n6CUWRkWrqOSDvfPfvUawsuz2M1mcRZq9ecabPymv7YmpRjnFEJCjWABliuY5GhZGYLlyFlRReVRQ\nBVYuAwYM4I033uB///ufor7JPrJisVhYtGgRZ86cwWw24+Pjk2/6YGFwjNTkV3cFEBISwsGDB9m5\nc6ei9sOWHmezk//55585efIk69atk8dkZOSlAdjP+4MPPiApKYnQ0FBee+01fvzxR7777jvFeb/9\n9lunm6ykpCS3gswW4XOHl5cXZcuWpUSJEvj5+REaGsq3337Ljz/+KDcuthEXF8fUqVOZMmWKHL2y\np23btnLdiYrK30FwcDAjRoy4p32fffZZ2ZCiZcuWfPTRR5Qq5SpAkkd0dLTsnmmja9euREdHU6NG\nDcaPH0/z5s0JDw/nzTffBGDGjBls3bqV0NBQ6tSpw/Hjx53mUaVKFapXr06fPn3kOkqDwcCyZct4\n++23CQ8Pp1atWgU6Dz711FMcP378oTW5yOV7JLe/RrnLV4Apf+WAgiC0QzLP6CSKYmZB41VUCmLk\n0j/k15n5CKxzSekuxRM4R7AcybBLIdx15iYAP/TPe8hjn1Zo/8QgNDiv5Uugb+FaozxR+v63t1FR\n+TcgPMoP3OrWrSvGxSlT8C9evMjvv/+OXq+nXLly+Pj40K5dO3Q6HU888QRpaWls375dHn8/Pr+6\ndevKDnj79u0jIiKiUPsdOXKECxcuoNfrqV69Oo899pjTmD179nDo0CFKlSrFk08+Kdd37Nmzh4MH\nD+Lt7U3dunXZtm0bp06dokGDBixevJjff/9dfhJuY+jQocyymQhAvv2qVq1aVaBd9ahRo9BoNGi1\nWt5//33MZrPLpsx9+vRh4cKFgJSSOWTIENq3b68YM3HiRN599918z6fy7yY+Pp4nnnjin56Gyt+A\nq5+1IAgHRFF07QddCARBiBNFsa4gCH+Iovhk7rrDoiiG/4VjngE8AFue6F5RFIcUtJ+ra4+KCkDk\n5zs4eV2KBk/pUpOXGpR3GnPgwi26zt7DpI7V6dfYOfO10dTN3EjLxpIjsnV0CyoGKVOPZ249w8e/\nnlSsWzKoAYcv3Wbq+hME+XoQN6E1ABXGSvXRY9tX43qqke93J1CnfADLhjTM9x7AxoAf9rMpXnIo\nTZj2dCE+ARWVh4t7vfaoNVgO7NixQ7Y5thWS2xdyX7hwgaioKEqVKqWwLb9y5QrZ2dmYTCZCQkLk\nnlIZGRl069aNDRs2ALB161ZaODiWvfLKKwiCQEpKCvXq1aNatWo8//zzTJ48Wf4DlpqaSr9+/Vix\nYgUAH3/8MaNHjyYsLExxrOzsbCwWCz4+Pty6dUthG7948WJZYDVq1IhGjaQHuZs3b+b1118HJBdC\nd9gbauRnKPHqq69SrVo1Nm7ciFarpVKlSpQvn3eR2LlzJ82aNVPsYzMZeffdd5k4caJim01cgeRI\nuHLlSr7//nuioqI4f/48AQEBFC9e3O18VFRUVACTIAhe5D6UFwShEnB3nVgdEEWx8v2YmMqjzdXb\nWQR4G/AyaBXRoztZrq+zx65I6b6nrrvOeMk0WynqbeBmejbZFucomL0Jhg0PnYba5SUH5UAfg9P2\nysV9aVoliFWHrvLlC08WSlwBlC3qBcD61927Daqo/BdRBVYu3333HWPGjFFEbVwZLZQvX55vv/3W\naX316tVlo4vbt2/j7+9PXFwcLVu2VNQmtGnTxkmcZGdnY/8088SJE0RFRVG2bFnZCOLGjRuyuALJ\n/r1EiRKKuq6LFy9Sp04dTCYTW7dupXJl5bU/OTmZgwcPotPpCA4Olt3GDh06VPAHlPsebdinGwKM\nGzeOwMBAfHx86NGjBx999BHTpk0DoHv37owZM4YJEyZw+fJlp1Qle7Zv3862bduoXLkywcHB7Nix\nQ7Fdr9ezZMkSfH19+eOPPxBFkTVr1nDnzh2+/fZbXnnlFXns5s2bGT16NFarlZYtWzJ9+vRCvU8V\nFZX/JJOADUA5QRAWAY2Bl//RGak88oiiSKNpW2haJYiFr9THklOwwLJlzui1rkVOpsnKY8U8uJme\nTeIdI9VKFXHa7oinXiv3rRrVNsRpe5CfBzXK+HPwf20K98ZyebNtVdrVLK2mCqo8cqgCC4iNjVXc\nmIPkEla7du1CH8NVL6zp06c7FX471iwtW7ZM0RDYHntnQkdBA3D+/HnF8muvvcbNm1I+dZ06dZwa\nFX/zzTeyE+DcuXMpV64cI0aM4PTp0/KYsLAwatSoIVtAAzRv3pwvvvhCjsoBFClShOvXr5OZmYnR\naKRSpUpYLBYMBoOTu9jPP//Mzz//7PI9OrJlyxa2bNnCl19+ybBhw3j66byUgqZNm7Jz507ZQOPY\nsWPodDpZZFapUkXxc0xNTZXF4+OPP644z+3bt7l8+TIGgwF/f39KlnTdKFFFReW/gSiKGwVBOAg0\nAATgdVEUb/7D01J5xEnNkq6VO09Lv4pNqxRn8e8X0WoERc8pe4xuaq9A6oFlsuRQsogHZ26ks/KP\nK7SoWkIxJjNbEliDmz/O19vPAVIEK8jXw20aX5Cvc1SrMPh76WlYKfCe9lVR+TejmlyAU1Pb5hzk\nXQAAIABJREFUF198kVWrVjFy5MhCH6N8+fJUqFCBkJAQcnKfQGVmOtc8f/LJJ4pl+0a/juTYPckK\nCgqib9++iu2bNm1SLDvWTBkMBvbt28exY8c4e/asQjDqdDr27dunEFcjRoygUaNGCnEFUlQpPDyc\n0NBQunTpQlpaGhqNhhIlSlChQgVGjBiBwWDA29sbg8FA27Zt+eSTT2jdurVTOqQNeyMRjUbj5A5o\nE6n2UcSYmBhCQvKerDn2wXIUr/bncOwXFhsbS2hoKFWrVmXYsGEu56iiovKfoznQCngKUHOWVP4W\nskxWt46A19OkHlN+uT2jRFGkuJ8Hpf09yXZj026LQLkqAbel/zWrIqXNB+WaUWw/lUTvb38nJ0ck\n02ylQqA3A5vmPXj00Ofv+BdUSFMLFRUViQcawcp1WJoBaIF5oihOc9jeGXgPyEHqITJSFMVdudve\nAAYg5csfBfqJomjM3TYcqWGkFfhFFMW3BEGoR26PEaSnk5NFUYwpzDzthdCwYcMUjnS2nk0WiwVB\nEKhRowZarVYRzQFwVbBs3wMHJFtzR3t0rVaLXq93Shv86KOPGDx4sLxctmxZ5s+fzw8//CCvCwkJ\noVmzZlitVnr16iU7C9rmotfrCQ4Opnbt2rIldJ06dcjIyCA9PZ1JkyYpzhkYGOi0zpFVq1Zx5swZ\nnnzySXmdvdNiTk4OGzdupESJErLjX6NGjTCbzdy8eZNly5YhCAJ6vV6uHytRooST0GzQoAFWq1Xh\nRqjRaHj66ac5deoUANWqVWPChAkMGDAAvV7vVIdlS1EEnCKUtkgfSFFEFRWV/zaCIMwCKgO2J0iD\nBUFoLYria//gtFTuM28sPcQTpf0Y1KxSwYP/Jmq/txGdVuDo5Einbbdy+0p5GSSBYzTn4KnXYNBq\nXDoAAmRmSyIqy4Vos4kvHw8dgT4GjLk1WIMWxJFtySEt20KWyYK3QYefXZ8qD13+z9s9CxBgKioq\nSh6YwBIEQQvMBNoAl4H9giCsFkXRvgBnM7BaFEVREIQw4CegmiAIZYERQHVRFLMEQfgJ6AnMFwTh\nKaAzEC6KYrYgCLbY9zGgriiKFkEQSgOHBUFYI4pigZ0wn3nmGcqUKcPOnTsxGo3MmjWLRo0aUbt2\nbW7duiULgcDAQGrVqsXmzZvR6/WsX7+eVq1auT1u165dqVq1KgaDgU6dOlGzZk2nMT169KB79+5E\nRkbKEamxY8cyZswYl8ecOnUqiYmJmM1mihQpItupN27cGI1Gw/79+7FarXJj5Bs3bpCYmAhAyZIl\nZfEVHx+vOG63bt1o1aqVQmC9++67zJkzB29vb86ePSuvf/XVV1m/fj1Fi0qWrXq9Hp1Op4gg2UeM\nXFk85+TkcPv2bfR6PXq9ns2bNzNkyBBEUeSZZ56hcePGiqbJHh4eBAQE8NlnnzFz5kxZkE2ZMoWo\nqCgGDRrklOZnn1bp2K/LUSCrqKj852kJPGHrVSUIwg9A/g2+VP51xPxxhZg/eGgEVqrRLAkhN75Q\n6bliyZArcIxmKwatBg+d1qVBBeTZt1+7k+W8LVdgeRu0eBm08rLNkyIj20JGthVvg1bRp6qom75W\niwbUJ/5aqsttKioq7nmQd5n1gDOiKJ4TRdEELEESRjKiKKbbNWb0QdlyQQd4CYKgA7yBq7nrhwLT\nRFHMzj3Gjdz/M+3ElKfDsfKlWrVqvPjii/j5+TFv3jyGDx8uR1/sa6tMJpOcumY2mxWRG1d069aN\nyZMn884777gUVyA1yu3YsSOlSpWiSZMmNG/enBo1arg95tixY5k+fTozZ84kMDAvr9le0Gi1Wjw8\nPNBqtU59vGzYDC5sBAQEEB0dzdq1a7l06RIdOnTgnXfeIS4uThFJA9i7dy+TJ0+Wl5ctW0bz5s3p\n3Lkz5cuXZ8OGDQVGhTQaDf7+/nh7e6PX62nXrh2zZ89mzpw5PPPMM07vKTs7m7fffpsFCxY4RQYn\nTpzIkiVLnM5h31Ns7Nixim0vvvii/Pqv9jJTeXQQBIGXXnpJXrZYLBQvXlz+nXVHXFzcPffNsmf6\n9Ol4eno6NQ0uLPnNo0KFCorI7t2wcuXKfM1rHhLOAPa9LMrlrlNReWBMXXdCfu2qrYsssHIb+ial\nZRPk64GH3n0Ey9YoePeZZCdHQNuyt0GLt0Er11vZ2BR/nYspmXh7KO9fdFrXt4ONKwcxoOnjLrep\nqKi450GmCJYFLtktXwbqOw4SBOFZYCpQAngaQBTFK4IgfAJcBLKAWFEUY3N3CQGaCoLwPmAERoui\nuD/3WPWB74DyQG9X0StBEAYBgwCnvlH2jXQ///xz2rdvT9WqValWrRoeHh74+fkp/kA63ug7smDB\nApKTk9m3bx+hoaGUL1+eiIgIuY4oMTGR/v37y+NtToSTJk2iQ4cOTiLIkR49elCvXj00Gg1ly5Z1\nOSYwMJArV644ia2AgADmz5+Pl5cXn332Gd988408vl69eqxYsQKdTsfevXt56623nI47Y8YMvv/+\ne3Q6HdWqVZOjVMWKFSMy0jkNIj+sVisZGRls3LgRLy8vOnToAEhCMTIykl9//RWQ0iafffZZlixZ\nojC/sI115MyZM3Kk6tdff+XAgQPUqVMHAF9fXwYMGECpUqUoXbo0oigW2nZW5dHFx8eHY8eOkZWV\nhZeXFxs3bnT73bOnbt26TunB+WGLQDsSHR1NREQEK1asoF+/fnc193uZR2FZuXIlzzzzjMJp9CHE\nD4gXBGEf0gO4ekCcIAirAURRzL9xn4rKPXA2Ke9BX5bZirdB+b1OM+ZFsERR5GJKJk2rFOfq7Sy3\nNVgZ2Xm3Nq/MjyN6UIO8c8gRLB3eBp1Ts+KJq6T7nNCy/gDMeakOKRnua8FVVFTujX88T0oUxRhR\nFKsBXZDqsRAEIQAp2lURKAP4CIJge2ysA4ohOUGNAX4Scu+MRVH8XRTFGkAEME4QBE8X55srimJd\nURTrOtbsrFu3Tn59/fp1li9fjoeHB/Hx8Rw6dIidO3eya9cucnJyMBqNiobAFy9e5MiRI8TFxcnu\nf5988glvvvkmS5YsYfz48bz00ktUrVpVju44pukdP36cy5cvc+7cOacUtkWLFjFkyBAEQeDxxx+n\nR48elCtXjmbNmtGkSRMqVqzI1atXmTlzJp9++ilz50rlaBqNhjJlylCyZElFxMtgMNC3b1+ef/55\nRfpcVFQUxYsXl8WjK+Hi7+/P4MGDSU1NJSUlhXPnzsnbbEYbcXFxrFixglWrVnHp0iXF/ikpKQiC\nIP/7/PPP8ff3p1u3bjz99NM8/vjjBAcHExcX59SXy2Kx0KFDB44cOUKVKlXk9a5cAG3Ht+Hpmffr\noNFoGDt2LP7+/uTk5Mgi7kHx3XffMXLkSK5evVrwYJWHmg4dOvDLL1LzzejoaNnVEqRG4Q0bNuTJ\nJ5+kUaNGnDwpNfPctm2bHOVKSUmhS5cuhIWF0aBBA44cOQLA5MmT6d27N40bN5Z78dlz9uxZ0tPT\nmTJlisKIxmq1Mnr0aGrWrElYWBhffvklINV8NmrUiPDwcOrVq0daWppiHsnJybRt25YaNWowYMAA\nxcOjH3/8kXr16lGrVi0GDx4sR5N9fX0ZP3484eHhNGjQgOvXr7Nnzx5Wr17NmDFjqFWrliKd+CFj\nItAeya59MtAhd92nuf9UVO471py875VNTNljE0t6rYbLt7K4kZZNeDn/3AiW9L3bcSpJkS5oX3v1\n27lkTiZKbsU/7Emg25zfAPDxsEWwpOPnOATPvD2ka3u7mqV4sb7yYbOKispf50EKrCtIKRg2gnPX\nuUQUxR3A44IgBAGtgfOiKCaJomgGVgCNcodeBlaIEvuQDDKCHI4VD6QDrvPycjlz5gwvvvgiH3/8\nMb/99pvTdld9sEC6cbel4Nl4+eWXCQ8PJyIigv379wPum/Haoj3169dn+vTpLtOLSpUqpXDWW7Nm\nDV9//TUg2bPbGhfbuHjxImXLlmXYsGGMHj2awYMHO6UjzJ8/n02bNnHlyhXFtueff97lPAHKlCnj\ntG7WrFl06dJFXq5QoQJ+fn5AXurdF198QdeuXenSpQtTp05ly5YtCIJAUFAQ1apVUxzP1vDYxvnz\n57ly5Qo7d+5k/fr1im1Wq5VvvvmGuLg4jh07hsVi4dNPP+XcuXNMnTpVMfbAgQOK9+nv76/YfvTo\nUcaMGcPw4cOZPXu228/gr7Jnzx5eeeUVZsyY4ZSqqHKPCMKD+VcIevbsyZIlSzAajRw5coT69fMC\n89WqVWPnzp388ccfREVF8c477zjtP2nSJJ588kmOHDnCBx98oOhld/z4cTZt2uTk5AmwZMkSevbs\nSdOmTTl58iTXr18HpJYLCQkJHDp0iCNHjtCrVy9MJhM9evRgxowZHD58mE2bNuHl5aU43rvvvkuT\nJk34888/efbZZ7l48SIgPfhZunQpu3fv5tChQ2i1WhYtWgRIdY0NGjTg8OHDNGvWjG+++YZGjRrR\nqVMnPv74Yw4dOqRowP4wIYri9vz+/dPzU/nr5DiqiIcAe4F1+Zazs7AtRVAjwO1M6Z6hjL8XHjoN\np2+kc/jSbfp8t0+RamgfwQK4cls67qTVUnRKrxWoUcZfimDlRrTMVmU0zNugmlaoqDxIHmSK4H6g\niiAIFZGEVU/gRfsBgiBUBs7mmlzUBjyAZKTUwAaCIHgjpQi2Amw2fSuRLHa3CoIQAhiAm7nnuZRr\nclEeqAYk5DfBO3fuEB0d7fJmpmnTpoSGhhb6zdqnC9rqtGwmEI7Yoire3t7ExMSwfbvztT07O1th\n8uDYB8u+Rxa4Nm04d+6cfLOTlZVF//79EUURjUZDZmYmH374IQsWLHB64rx69WpatmyJr68vERER\nfPDBB/KN4tChQ2VBdvv2bSwWCxqNhnPnzrF792569eoFKMXl7NmzZQGTnJwMQMuWLdmyZQuRkZE0\nbNjQ5ec0fvx4Rf+qUaNGMXv2bDnS2L17dzw9PRk1apT8GYwbN04eb+9MWL9+fYKDg+Vlx3RA++hW\nQYwdO5aYmBg+/vhjOnUqOKto4cKFitcLFiwo9LlUHj7CwsJISEggOjpaTme1cefOHfr27cvp06cR\nBMHlQ5Zdu3axfPlyQPoeJCcny9/nTp06OQkhG9HR0cTExKDRaOjatSs///wzw4YNY9OmTQwZMkRO\nKSxWrBhHjx6ldOnScpS9SBHnJp87duyQm5c//fTTBAQEAFKD7gMHDsj7ZmVlUaKE5CVkMBjkB0J1\n6tSRa1VVVB4GTFb3/aH+CczWHA5dui0vz9p6lm9fVqb+26JamSarPH+9TkPCzUwyTVbm7pAyROxT\nDTNNVlo/UZJN8dJDlo9/PUWTynkZOQHeBjz1uRGs3Josx/IvH4PaBlVF5UHywL5huUJnGPArkk37\nd6Io/ikIwpDc7XOArkAfQRDMSEKqR67pxe+CICwDDiLZt/9BngX7d8B3giAcA0xA31yB1gQYm3us\nHODVe2kiqdPpqF27Njt27Lir/SpWrEjNmjXx8PDAx8cHQH7C7Mhnn32GwWBg6tSpLntl2bDvg/XK\nK6/QuHFjWUA89dRTirGffuqc4WIfgbt69aoczQkODsbDw4PY2FiX6TydO3fm9OnTVK5cGQCj0Shv\nK168uHwjZx8RqlOnDuHh4bRo0QKr1crevXvp2rUrmZmZTlEokFIeDQaDXGfWsWNH1qxZ4zTOdtMH\n8Nxzz/HFF18o3p99FDEnJ4ecnBw0GimXPb8+WI60bds23+02jh8/zocffghIn5OromVHIiMjOXLk\nCFevXqVnz56FOo9KARTic3+QdOrUidGjR7Nt2zb5oQHA//73P5566iliYmJISEhw2wfOHba/HY4c\nPXqU06dP06ZNG0B6eFCxYsUH0sNNFEX69u3rFBEG6Ttnezjh2FBcReWfxr5m6VaGiQCfe2uOe7+4\nk6V8wLL5xA2sOSJaTd4DPlsEK9VolqNMeo1A0ypBnLyeRkKy9HDV9icvJ0fkeqqR8OCifPXikwxb\n/Afx11L5Ke4SOo2AJUfEN9d+3ccjz0XQEX9v1xk6Kioq94cH+ghDFMV1wDqHdXPsXn8IfOhm30lI\nufKO603ASy7WLwQWOq6/GypUqMD58+ed1h8+fJjU1FSMRiPVqlXD398fDw8PDAaDfLMxa9Ysp/3e\ne+89heOYPdOmTWPq1Kno9Xo8PT0VIqZbt27MnTtXEVWxpeS9+uqrbNu2jZYtW7Jq1SomT56M1Wrl\n6NGjiuPbek2JokiRIkVkR72nnnqK0qVLA7B79263n4W9OOnRowehoaFs3LgRnU5HbGwsERERCvED\nUgTJdkxBEORas379+pGQkEBaWhofffQRZcuWJSgoSFHEb//+QYooWSwWRRPogIAABg4cKH/Wnp6e\ntGvXjlGjRskmHjbBs2HDBjm6UL9+fWJi3LdEswm9whhd2EckbPb9BdGlSxdFSqXKv5/+/ftTtGhR\nQkND2bZtm7z+zp07sunF/PnzXe7btGlTFi1axP/+9z+2bdtGUFCQywiTPdHR0UyePFkRoa1YsSIX\nLlygTZs2fP311zz11FPodDpSUlKoWrUq165dY//+/URERJCWluYUGWvWrBmLFy9mwoQJrF+/Xu45\n16pVKzp37swbb7xBiRIlSElJIS0tjfLly7udn5+fH2lpafm+BxWVB43Rrk7pRlr2Py6w0l3UXC07\ncIkeEY85jUnNsmCxStcvvU7D6MiqzNt1Hn2uu5+Ya4x85XYWtzLN1HqsKE8+lncNnrDymPzaz1MS\nT156nVuBZTuXiorKg0GNESOl8p09e5bDhw/z2WefYTabefzxx+nevTsgpaKdPn3aab+0tDR8fX2d\n1lutVnbu3ElkZCQ1a9bk2LFjct2GIzZBMmrUKD777DNAarzrKF5sFClSRE5Lu3XrFocOHXI5zj76\nZR8li42NlYXNiBEj5IjQzJkzmTFjBtWrV8disSiepFevXp3q1aszfvx4uclvzZo1ycnJITQ0lEWL\nFjk1XxZFURYs33//vcs52tOrVy8iIiLIzs5m0KBBhISEkJCQQMWKFQEoV64cEydOdLpJ3LBhA5mZ\nmSxdupRSpUq5fM+///474eHhrF69mgYNJLelM2fOyBE6k8nEc889h9FoLNAZ0j5t827SClX+WwQH\nB7u0O3/rrbfo27cvU6ZMcXK6tIn3yZMn079/f8LCwvD29lY0D3fHkiVLFCY8gOyoOWrUKE6dOkVY\nWBh6vZ6BAwcybNgwli5dyvDhw2XHQ1ufPRuTJk3ihRdeoEaNGjRq1Eh2Va1evTpTpkyhbdu25OTk\noNfrmTlzZr4Cq2fPngwcOJAvvviCZcuWPVR1WIIgHCWfth2iKBbuSYnKQ8/p63lpdOnZ/0x0deKq\nY5Tw82BYyyp8EiuZ3MztXYdBCw8AkpCyJ9UoPbTLMlvldD69VoOnXouXXsuV29I1Z/eZZNYdvYZ/\nbr+q8oHe+Hq4voX7uJv0K21LETS6aEicZnTTmEtFReW+8EgLLIPBQIUKFQgICKBYsWKkp6fL9TxP\nP/20LLDc3XS7W9+jRw+5xiIqKoqjR49y5swZhcCKjIxk1qxZTJ48GV9fX8qUKUO7du3Q6XRue2Y5\n4q5ZbseOHRXLWq1WFlxWq1UWWJ9//jk9e/akZs2a+Pn58eqrrzodKykpiQ0bNmCxWGRxBXDsmPS0\n7Pjx4/Tu3Vu+mVy8eLFsdBEbG1toy/a+ffs6rbMXiZcuXXJyI7SxY8cOtmzZouhtZTQaEQRBjmgl\nJSUpRFelSpV49dVXFZFHs9lcoMCqXbs2Fy5cwGg0unRYVPlvY99bzUaLFi3kVMCGDRsqvidTpkwB\npNpDWzpssWLFWLlypdNx7HvLOWLv1GnD9kDG9tp+GSAiIoK9e/e6nWtgYCCxsbG4okePHvTo0cNp\nvf3779atG926dQOkRucPcR8sm4vQa7n/2zIdev0Dc1F5gLz07e/ya0cjiL+LBb9dAGBYyyqsPXIN\nQBFF0mmVWRL2Fum217rcFEJ/Lz2JqXnZHW8vO8LkTlKfzNL+Xi4FVr2KxQgpKZlOeRm05Ig42bC3\nfqKk2ttKReUB84/btP+ThIaGcvLkSfkmxL5m6ZdffpGjVrVr16Zp06Y0a9YMkOokDAaD20bDy5cv\nx2YBHx8fz4kTJ6hcuTJ37twhISGBs2fPsmjRIlJSUkhKSuL8+fOEhISwY8cOdu3a5WRN7o6nn36a\nAwcOcOjQIYoXL06RIkUoUqSIfFNnIzk5mYyMDIxGo6JxskajoWHDhrIDoNVqJTU1VZEGd+bMGfr0\n6aPo1+WIvQvi0qVL5dft2rUr1Ptwh5+fH4MGDXISnEWLFuXbb79VrHMUO7169XIyGHBc7txZ0fe6\nwDotkET5Y489RkhISKGf0qelpbFlyxZiY2PZtWtXofZR+e+wevVqxo8f79SwW+XvQRTFC6IoXgDa\niKL4liiKR3P/jQUKV3yp8q/jnxJY9tR+TDK6alIlz+hY79DQ91amSW4ynJwrhAw6ablobp2Up15a\nTsu2yJEnfy+9oparWinpOm4vumxOgddTlSn48/rWpWQRNQNDReVB8kgLLEds6Wg2bHbrP/zwAzt2\n7GD79u2Iokh6ejrZ2dmKep1Lly6xZ88etm7dCuS5/iUmJjJ06FBCQ0Px9/enQoUK7Ny5k8DAQIUz\n4Pfff09mZia3b992utFPT09n4MCBDB06lLffflteHxgYSO3atQkKCiIpKYnU1FRSU1Od7Mj9/Pzw\n9vbGw8PDbY1Rhw4d0Ol0+Pv7K2pKChOlsRXeA06i46efflKk1RXEpEmT5P5VXbt2ZdKkSU4phu3b\nt6dVq1aK89q7DdpwjPA5Gg60bdtWTmUURdHpc3OFKIrcuHGDK1eucOHChUK9p/Xr19OqVSsiIyPl\nqKjKo0OnTp04ceKEUzsClb8dQRCExnYLjVCvgfly61/cgPZ+pwieTEzjt7PJ+Y4ZtCBOfm3NESlX\nzJvygd4E+eZlRujtIlhGs5XkdBOPF5dS8neeTsodI/1ansjtb1UuwFvex+Y66OepfMAbUUGKkIcF\n513H8gRWtrwuQDW3UFH5W3ikLy6nTp2iWbNmzJs3j8zMTCpXrsxzzz0nb3fXB8sVX375JY0bN6Zl\ny5ZUrVpVjups3boVQRDklDrI64M1adIkEhMTnWojTpw4gV6v5/XXXwekeqJ58+YxZ84cl/VMJ06c\nUCw7prm1atVKFi0tWrQgLi4OR+zfq73wc2zGDPDBBx/w1Vdfycv2DX+nTp1Kenq6bFHfo0cP9u7d\nS9u2bRXNhd1hE7UAO3fupGzZsnTs2JHRo0fL66Ojo/nmm2+IjY1FFEXmzJnD6tWrGTlyJElJSfI4\nx7SqgtL/CoPJZKJkyZIEBwcr3nd+2Ds8JiYm/uU5PMoUxrVR5d/NA/wZ9wdmCYKQIAhCAjArd91D\nzbU7WUR+voNzSc7pqYUlKS2bCmN/YfeZwhvr7jydxJPvbZRv+h92bGJwQBPpQen9jmBFTt/BC9/s\ndbv9Zno2scfznINvZ5owmq146pQPKTV217/T19Ox5Ig0rBQIwN5zKUBeiqCNW5lmSvh5yK899Rqn\nSJglN6U+wDsvS8Ur14p9wzEpVfHVFpX4dWSzQrxbFRWVv8ojLbDS0tLYuXMnAwcOxMfHh7Vr1/L0\n008zbNgwBg8eLJsgFAb71LuTJ0+yefNmtm/fTmxsLNOmTVOMtdUWeXp6yjfrjlgsFr744gu2bt2q\nsEJ2lZZo67sFUoG6oyjasmWL/Hr79u2KBsY27E0tFixYIJ+zYsWKikao33//PePGjeO1117DarVi\nNBoVtR8GgwEfHx9FD6q5c+cWul+OLQ3TnsTEROLj4xWfsf17+PLLL5kyZQozZsxQCBj76JutgB/g\n4MGDBAYGUr58+XybLLvCXoiazeZCpRXaG3PYvweVu8PT05Pk5GRVZP2HEUWR5OTk+24gIwiCBqgs\nimI4EA6Ei6JYSxTFg/fp+KMEQRAFQQgqePTdMWvrWU5eT6Plp/fWC/lmejYR70sP8X6Kc13H6oqj\nV+4AsOu0a1F2J9NM19l72Hbyxj3N636zI1cI1n9cEisZbtzzHhQ307MVy7cyTWSZc/DMjSItHypF\nsO0bD9/Okq6Tjwcp2zPYUgRfrG+7bokMbSFlh1xMyaCIZ9516ONuYczrU5e+jSoQ5Gsgskae2ZO3\nXjr3ykNXAegQWpoSamqgisrfwiNtcuGITqfLt9YoPypWrEhISIhc4J6cnEzDhg3lG/IhQ4bw9ddf\nI4oi8+bN4+DBg6xZs4YyZcpQtWpV2rZtS2xsLAEBAbJdMkgW8REREcydOxeLxeLyxiM4OJghQ4Zg\nNBoJDQ0tMK3PPspj44cffmD58uWYTCZiYmIwm82ymLMXePYCQ6PROEWFmjVrRkpKCpmZmXTq1Am9\nXu/SadEdvXr1UlhR26hRowa3bt2So3/279FWQwZ5DZhNJpPCJMNeCKWmppKSkkJKSgoVKlQo1Lxi\nYmKYNm2ak538woULefnll/Pdt3Xr1litViwWC5MmOXUeUCkkwcHBXL582eXvr8p/B09PT5cPnf4K\noijmCILwFvCTKIp37uexBUEoh1TLdfF+HteG+S82zz1+Na8pva+Hjgpjf2Fen7q0rl4y3/1sVt+p\nLqzGAU4kpnLgwi1G/3yYuAltXI653+TkiAiCc6N4yEsJDA/2R68V7muKYE5OwQ91HN0BM03W3AiW\nJJYqBEppfvbNkG1RttL+SndcW3SqY1gZFv9+EWuOKIuqTfE3qF46r61D97rl5NeOPwdbiqANx7RC\nFRWVB4f6bbPDXUrg/v37ZRe6xx57jODgYLy9veU0OJAaAc+ZM0ex35w5c4iMjCQkJIR3331Xsf3g\nwYOK2qQNGzZw7do1SpQowdtvvy1HhTIyMvD19WXgwIFO89qyZQuDBw/GarXy1FNPubUNCGtGAAAg\nAElEQVRDL1asGCkpKfJyaGioy/duL0jsBczYsWPp06cPixYt4vLly0yePFnuiVWnTh1FBOv48eN0\n69aNpKQk5s2bR/HixZk9e7biXG+++abLeYJkx26LUEyYMEGOVB09epRVq1bx0UcfYTabFTb2L7/8\nMu3ataNIkSKylfTLL79MdHQ0ANOnT1dE4eyd0NLS0jh79ixms5mKFSu6TSO0Tx2159q1a27fi40J\nEyYwYcKEAsep5I9er3eqk1RRuQs2CYIwGlgKyHnQoiimuN+lUHwOvAWs+ovHcYnJ8tcElr00OH9T\nettztp8tUGD5ekjXAHepdrcypejLzXQTl1IyKVfM2+W4+8HtTBPjVx7jlyPXMGg1nHq/vdMY2+dk\n0Gnw8dDd1xTB21n5W5ov/v0ik1YfU6wzWXLIMlkpltuLS58rtOx/nunZ0oO/0kWVD069ciNPNkFk\nsYoKcVSmaOGiULZImA0/T7X+SkXl7+KRFlharVaObKSkpGC1WomKipJv4G1CYNy4cWzevFmxb40a\nNRR1VaIoOtU2jRgxgi+//JKQkBCXqX32kSFBEChTpgwgNQO2WCx4e3vTsGFDt/PPysqSG/FWq1bN\n7bi4uDiFCcQbb7zhclzv3r3ltDf7+YaGhhIaGspLL73EwoXKXs47duxQCKygoCBMJhMhISEcPHiQ\nyMhIhg4dSmxsrGxN3bhxYwpD586dZYG1adMm+vXrh06no1atWkycOFEe58qdzf6zHTlyJGPHjuXH\nH3+ka9euREZGcv36dTIyMggLC5NTQY8dO0aNGjVczsXLy8ulWUerVq0K9V5UVFT+cWy+86/ZrROB\ne/arFgShM3BFFMXDBTUpFwRhEDAIlCnLNrJMVtYcvkr3usGKCI27CNK9YMuu1eS2sMhvzrZAi9VN\nSm5KRp7oiFp7nG/61L1v83Rk8uo/+SXX8tzkIqL3x8VbxPxxBcgVWAadIoI1eGEcpYp48m7nwrVA\ncSQlIy/9z2LNQWdX/3Qj1cg7MUfl5VdbVGLWtrNkW3JITs+mSkkpg8PmFGi2a/BrE4GOjn5euZGn\nMkW98DZoGdkmhCJeeeJoUkfX1ylHHOu03PXNUlFRuf880t82Ly8vqlatKouJW7duySlclSpVkgWW\nK3HkmKpnH/2xx2YN7lh78+KLLzJ69Gi2bduGXq9n0aJFtG8vPZV75plnFNbn7rCPMuVXC1SxYkXO\nnDmD1WpFq9VSrlw5l+O+++47p3Wpqan8+OOPWCwWbt4suEC6ZMmSciStXbt2cjSqoDoyV9i/J7PZ\nzNq1awHXvYgcEQQBnU4nn9doNMp1YXq9nhIlSgDSZ3P06FGnOdojiqJTamBsbCx169Z12xBaRUXl\n4UIUxXsKfwqCsAko5WLTeOAdCmn1LoriXGAuQN26dZ1Uy4cbTjB/TwIlinjQomoJeX1Ccp7pkNma\n43TTXIjzyq+NFulv6r6EFJbsv8QL9ZyFng1bpMVdepwtggWQfh9FoCvir6Xlu/3ZWXvk1watBl+H\nCNavf0rmE/cqsLJMedf3LLMVP7ufQUJypmJsm+olcwWWlaT0bFk8GbQaBEHa34ZNBLpL3SvmY+DY\n5Eg0GoE/r+ZlthY21c/+dyU4wMspoqWiovLgeKQFVkBAAK1bt2bMmDEEBATI9TsAZ8+eJTExkVKl\nShEREYFGo+Hw4cNcvXqVkiVLEhSkrGUWRZERI0Zw8eJFRRPRN998kzVr1rBlyxYyMjLIysoiJycH\nb29vunXrJosF+4vgW2+9hdVqxWAwMGnSJLcF302bNuXkyZNotVqFSYUrCtOzyWg0kpycjNlslmuT\nkpOTee2119zuY1//BDBz5kxFCuLhw4cJDw9nwYIFZGZmYrFYnD47R/bu3ctXX33FlSvSE8nnn3+e\nn376Sd6en7vj3LlzSUxMpFKlSly7do3XX3+dxYsXA65FaLly5cjIyECn0+Ur/DZv3kzLli3l5aJF\nixZaXJlMJtavX4/FYkGj0fDss88Waj8VFZX7iyAINYHqgPxHVRTFBfntI4piazfHCgUqArboVTBw\nUBCEeqIo3rVd6I006SGOY+2QfQ1WapaZQN+C3VCzLVZ0Gg1ajUC2XUraDTu77nErjroUWLbIVnau\nGFt/LNFltMvewt3L8GCbrqdkFs4uXiOATqvBx0NLRvb9M7mwCVOQIo32qXbnbyof+NlEzI5TNzFb\nRYrluvppNAJFPPXcsRem2Rb0WgEPnZbNo5rTyoWRiSbXUdDe2KKwQsl+nIcqrlRU/lYeaYF16dIl\nPvzwQ7p3705gYCCBgYGK7VevXqVUqVK89957GI1Gvv76a3x9fenfv7/TxSYxMZEOHTpw7tw5hcAC\nqYarQoUKct+kGTNmMGLECJdRnZycHD799FM5IjZx4kTOnj3L+PHj0el0VK5cmcmTJwOS819ISAjb\nt2/nt99+w9fXl4YNG1KnTp27/ix27twpO/g1atSI3bt3K+blSN26denVqxfDhw9XrHdsCjx58mRi\nYmIICAgotCBZunQpixYtkpc/+OADhcAKCQnhxo0bchTKnunTpxMfHw9Ihhlz585l3LhxJCYmOvXB\nAqmhdEEIgkBERIRiXZMmTQgLC6NEiRIFHmPr1q106dJFXlZd8FRU/n4EQZgEtEASWOuA9sAuIF+B\n5Q5RFI8C8h+hXOv3uqIoFt4L3X5+CLnHdTxP3us7hRRYNSb+SuPKQfzQvx5Gu4jJldv59yR8bfFB\nktKy+WlwQ1Yfviqvt+SIiv5NIIkeP08daUaLXGdkz7Erdxiz7Ag/DW7wl2t/UvOpgbIXoLaIjY+H\nTu4XZU9BaZHuOHMjT0RlOrgT/nY2GR+DlgyTlWYhxfHItWWfvycByGsSDFLjYPt6roxsCz65aXtB\nBfxcA+w+48JGMQ12426m/3t7mqmo/Bt5pAWWjR9++IHg4GACAwOpWbOmXFtlLy7mzZvHyJEjASny\n5Wh6sG7dOrkWqGjRoty+fVve9umnnyrqhGwCYM2aNZhMJiwWi+y0t2jRIkW6ocFg4ObNmyxduhSA\nevXqyQLLxq+//srUqVMByb7clcA6evQocXFx6HQ6atSoQe3atRXb7cWlfSqgY4TKRlxcHHFxcbz2\n2mtOroXh4eEcPnwYgJUrV3L06FGOHDmCxWIhLCyMJ5980uUxbXzzzTeK5W3btjFz5kw5kjZjxgxM\nJhOzZs2Sz7Ft2zbMZrP82YIUkbt16xYREREYjUZmz57NkCFD7uki6+hcZzKZXPYTc4XqHKii8lDQ\nDcmi/Q9RFPsJglAS+PEfnlOBZJqslPH35OodY4FmCzYsOSLbT0l/s7LN7k0yrDkiWrueS7Y6p6Yf\nbeFSSp4YM5qtTjf1qVlmygV4k2myuHQ6/GzjKeKvpfLcrD1sGNlMcZ67QRRFl3VXNj7akNcH0hax\n8fXQkXjH6DT26JU7hAUXdVpfEONW5NVY2af4Afxx6TbNQooz4ZnqeOu1ThFI+yhSUS89tzLzfobp\n2RZ8cntVFSkg7c/HLkro2CfLHfbntvxFN0oVFZW7Q40ZI/VRKlWqFPHx8QwaNIixY8cyatQoRYRk\nzJgx8mtXtUr2YsxeXAF07NiRr7/+GpBqt9599135dZEiRShWrJhco+V447948eIC65fsa5LcpQqu\nX7+e/v3706dPH9ldzx57gXX58mX5ddGiRalXr568/Ntvvyn2c2UJ36lTJ/m1wWBgxYoVvPTSS7z8\n8svExMS4nJ89jsYRAwYMcDrP/Pnz5dfbt29nxowZsuCyUapUKUaNGiXXTw0dOhSAUaNG4eXlRVBQ\nkPxzsREfH0+pUqWc3nfv3r0LnLc77FMay5cvr0awVFT+GbJEUcwBLIIgFAFuAK4LUu8BURQr3E30\n6r21x1l2IO9vbW4Aix/3XqDBB5vlvkpGs5XiuXU8hal1cnQddBQE9riLDNmLK2kOzjfnWWYr3gYt\neq2GNKPF6QbeP9eU4fSNdPacvbugniiK7E9IQRRFzFYRUYQxkVUZ0bIygqDMAvj9fJ4JpE3E+Xjo\nXNq0O0afAFb+cYWYPy4r1qUZzW7t8e2PcSfLzIXkTEoW8aRsUS8CfAz5puL5eiprwzKyLbLxhCAI\nfNwtjA0jm7rc1/7eoLAPCO2jjvn9HqioqNx/HukIlq2vjg2dTueU8mbjlVdeYebMmYBk3uDqWI40\nbNgQnU4n26ynpaUxevRoSpbMs8fNzs5WGGA41hctXbqU77//nujoaCwWi1MaI0h9lnJychBF8f/s\nnXeYFFXWh98zPTnCMOSM5DhkFEkKBlRQERFRxICKrHHNuuq66oqKKwrihwqiyCqGZSWYQFyR4BAk\ni0RBhhwHJnRPd9/vj+quqU4zPcMEBu77PPNM1a1bt+7tCVWnzjm/Q3p6etD5P/bYY+b2r7/+GnC8\nZs2aZi2um266yeeYVeAhNjaWIUOG4HK5cLlcREQE3kzuuOMOsrKyyM/Pp169eiHrUYXihhtuwO12\nm6IWYNQRs2JV4QqWk9W0aVPi4+NJT083wwubNWsGwL/+9S9zXf7CFhERERw4YCREnzhRkFTcsGFD\nM2zSijX0LxQXXHABSUlJOJ1Oxo8fX6IQFY1Gc9qsFJEqwLvAKuAUsKzwU8qO93/eCcCQTnV9/id4\nDYbMY7lUS4gmx+GkeqJxjwhHetza5/Apu0+IoD/Hc/N9Qs9CYXcGjpHrcBEfHUmOw8UPmw9y10er\neH9UQSh1ikX1bvHWw/RqVr3I63j5z6+ZPDRrLW8O70jfFsZ5MZERHMzKQynYcuAULWoZ0RXBZOwT\nom1BjakcR+Dn98CnawC4pmPBPbzdc98xsF0t3h4RGA1i/Tyf8qgH7jhcIETin49mfZ8WF2XzUV/M\ntrtIiCnob61pVRpYPVjv39K1kJ4ajaa0OacNLKtxBYFKf14yMjJo3749PXr0oE6dOrjdbv78808f\nNb7u3bsHnDdp0iSfcLiHH344oM+7777rIyIxbNgwkpOTGThwIGAo21WvXp0bbrgh4Nzc3Fx69OjB\n7t27sdvtZGdnh/XwHkqK/Ouvv2bbtm2mIeLl3//+N8ePHycvL4+mTZvy+eefFzp+gwYNeOONN8z9\nr776ytx+6aWXuPbaawvNExs+fDjDhw9n2LBhHDlyxPTQ/fLLL4Ah8241hK+66ipq167Nrl27mDBh\nAgDbtm0jNTUVgCVLlnDBBRcEvdbRo0dZvXo1OTk5VK9e3cdY8xqWa9asMYUy/Akn323cuHFF9tFo\nNGWLUuoez+Y7IvINkKyUWlcRc9mflWfefNfuOUF6/Sr4/+e2O904XG7cqiA/J5ziudY+P289HNT7\n5CU3iBFi5fK2tfh6w/6gY+Tlu0lNiDDrOy3cfNDnuPVWNOWnHTw5sBVghCWO/Xg1o3s3oXPD4Hm5\nGR4j80SOwzRoYqJsLN1+BIDpy/7gpWsMMaXzqieyeb+hMnjcE34XG20zPTZ5Pqp9Rb/g8/afv34/\n89btY2A7XwHJHIcLpRTHcvLZtM8Qxkq0GEn++WbWeIW46EhyLUbeKbuzTIv/WsM6+7UMzFnWaDRl\nxzltYFnJyMgIqbQ3adIkPvywIA/6yy+/pFmzZj4GlrWQr5dwvDUZGRkBKn3NmjXj2WefxWazmTWa\nghEXF8fmzZtN+fG8vDzi4uKC9r3wwgv5+eefARgyZEjQPhERETRv3jygvXXr1ub27NmzWbx4MQ6H\ng+uuu44+ffoUvkCMkMFOnTqxevXqIvta8eadgW9IROPGjRk2bJi536tXL3r16sWff/5JdHQ0X3/9\ntU+NMv+wyrS0NDPPLCsryzSS7rrrLp+f6ahRowB88rr8ycjIKNaaNBpNxSAiHwE/AYuVUpuL6l+W\nHMt24PXnhEqncTjd5HnkwasnGQZWOB6sPccKwvsOZOWRm+8i2hbBZ3efT7XEaC4ct6jgGkXk5XgV\nCIN5wfKcLmKibKz983jAMTDC56zkOJzER0eyPyuPbzbuZ/XuY2Q8FVSgkSMehcLqSTGmERgTGcHr\n16dz1cSfaZJmhMJnHs9l3vrAYu/xUZE4nG5cbsXjXxTY0DlhfH7WeY+duZotL/gWNc5xOHljwVYm\nLNxKsxpG7vRzg3xfWjZIjWf3UUO+3erBio+y+YTqZdud1E4Jr2hwSYgupqS/RqMpPbSBhRFiV5jM\nebA8I68ohZdgNZSef/55H+9NMD788ENmzpzJ2rVrTUPGqxS4ZcsWZs2axapVq0J6SmJiYkwDy+Fw\nhDSwvvzyS5xOJzabrVi1m/Lz83n99dfNcMB9+/bx5ptvAob0ezgGFpSsDpYX/xpjycnJQftZwwZr\n1aplhgBavVJbt24lOzubtLQ0unTp4mPAZmZmYrfb8Wf//gLF5XvvvZdu3bqZOVmhJPQ1Gs0Zx1Sg\nF/CWiJwH/Ar8pJSaUN4TcVpqS3m9Q/6ZmXany3wYr+YJ4wumjOePtV7SwZN2XG5FbFQEHeoHijvY\ni8jL6deyBj9sPhg0RNCe7yY2MrQ8+/ZD2T77f5u9kfHXdzBD+grznnlrbx3LyefKt4wXg/kuN63r\nJCNSUHz5qzUFSof39D2PIZ2NML+4aMOwyM138fO2I2afeev3cUOI2l95+S5io2ymF8yLNxfrlvMb\nMn3ZLuz5bn783fDWbT14ijZ1kqmR5Hsf+M89F3DLtAw2ZGbhtlhYcX6hi1YVwXD4Ysz57PD7XAvD\nK/FeUoERjUZTcs5pA6tjx478+OOPIR/YvXTt2pVTp05x/Phx4uLi+Oqrr3zyqMAQg3jyySeZNGmS\nmbvj/7DudDpZuHAhl156aUC7v9Hhcrm47LLL2LlzJ+PGjWPPnj2kpKQEzG3Lli1ERUURExNTqJFY\nvXr48e/+83j88ccBI4TyvvvuM495DTt/vvnmG77++mvy8/MZOHAgV155JcuWLSM/Px+n0xl0Hf44\nnU5ycnLIzc0lPj7e51gwA23fPt+3mL169eL++++nZ8+ePu1btmwhNzeX3NxccnJyaNiwIenp6cTH\nx/vkfEFBbtfIkSO56KKLyMnJoUaNGhw7doyxY8eSl5cXtiT+999/z969e7Hb7WZIo0ajKT+UUotE\n5CegK9APuBtoA5S7gWXFmxfkb+zYnW7Tc5QSH0W1hGj2nihcZh0w1QPrpMRyPCef6EghNqrAEFrx\nVH827D3BrdNW+NTI8qdmcgzt6hr/q1/55nc+vet885jD6SbzeG6AByzX4TJzkA6cyCPeYlBsP2SE\nenu9cIWJLniNEqt6377jedgihCpxUaYAiLfY8V8HNOfeiwtC2+M8ynz+OVeLt4YW2zia7aBOlTh+\n25fl0+41sLw5ZTkOp09uU1xUoJFZLTGGF69ux+BJS+jTvODeGxdt42Se0zTmTllELsKhc8NUOjdM\nDbs/QMaTFxMQf6rRaMqcc9rAioiIKNK4AkN9zqtA93//9380bNgwIJTO5XKRnp5OUlKSaWD16uWr\nBhTME+bFX6jhxIkT7Ny5k9dee42HH36YAQMGULduXS6++GL+8pe/mP1SUlK46KKLiI6OJiUlpUiP\nWXGxztnlctG/f3/mz59PXFwcx44dC3rO9OnT+eSTTwCjvtaVV14ZYCQVxaOPPmqKUbz22ms+x0aP\nHh3QXynFrbfeyrRp0wD47LPP6Nu3L82bN+eHH34wCxxba1ZFR0dz2WWXmaIlTz/9NC+++CJg5Mv9\n9a9/BQhaI+2ee+7h5MmT/Pjjj9x6662FerLmzp3LVVddZe43b95cG1gaTTkjIguBBAxhi8VAV6XU\nwcLPKnt+2nKYvi1qBBgcDqfbbIuNtFEvNd4n/C8UXiMiOS6KE7n5JMTYfIQXqifFkJZghByOnJpB\nxpMXM3/9PqomRBMh4HWujejekMbVjJd2VqU+wMw98vdC7c/Ko7EnfC/H4eT6LvVJiYtiwsKtXNjU\nKDDvzRGzevH8CXZo5PkNAWiclsAOj7G270Qe9VPjfIwrKDB68hxuqsYXGGRQ4Knyx2tgLd1+2KNU\naLR7PW7JHgPruTmb6NSgwBsYqshyh/pV+OPlK3za2nsM1tW7j9G1USqn7M4i5dlPlxrJOspCo6kI\nzmkDSylFRkYGKSkppKSkUKtWrZB9R48ezaxZs7DZbLzzzjsBx9esWcP1118PGHWyPvjgA1q0aBHQ\nz+VyERUVZXp3/vvf/+J2uwO8Mvn5RpiC17hYsWIFK1asCAjvy8vLY/ny5QCFeoZ++ukn1q5di81m\nM4vkhoN1Xi6Xi44dO7Jp0yYAdu3aZdbfsrJlyxZze8OGDWzevJkff/wRp9NJq1atAmTYg7FgwQJz\n+7///S+fffYZERER2Gw2n5wwMOpkffTRRzidTpKSkjh50kh4zsvLY/PmzaZASM+ePZk7dy6PPvoo\n8+fPNz9jLykpKTRs2BCn00n9+vWJjY31qZmVmZnJO++8Q35+PitWrDDPczgchRpYDz74oM9+sDBE\njUZT5qwDOgNtgRPAcRFZppQq2mopQ6Yu2ckzV7UOMFasIYKx0TbqVY1jY+aJYEOYWOXLD5+ym+IP\n/nk+Vg/Mtxv389ycTeb+QwOa85d+Tc3wMi9Ol5tIT06P1zN024WN+MtFTbl6kqGweuikncZpCSil\nyMpzEhtlY2y/pkxYuNUsuBtMyS/H4SRCCjxt7iClLLyGQtMaicxZu491e46z60g2jaoFRm7Ee4ye\nnHwnufkuru1Uly9XZwJGmGUoAwuM0MYejauxbIcRWuj10iVbxCvW7Sn4OQQbKxT1U+PNOew5lotb\nFbRpNJqzi3M6A9LpdNK9e3datmxJhw4dCu2bnZ1NVlYWx44dC5pvZTVEjh07xhNPPBHUwLr88stZ\nuXIlycnJfPPNN3Tt2pXo6GgfufM9e/bwwgsv0KlTJ9LT003DDYycKyvWh3X/Y1a++OIL7rvvPsaO\nHcuiRYtC9vNHRPjkk0/o3bs3s2bN8hHuCOWR69u3r7ndoEEDli5dypgxY3j44Yf5+OOPw7qutTDz\nNddcw3XXXce1117L4MGDA6Tht2zZwtSpU/noo4+oUqUK48aNY8KECfTr1y/AA1elShUaNmzIJZdc\nwv333+8zziOPPMIff/xBXl4ef/3rX4mIiCA7uyDefd++fbzwwgsBqoD+hpo/1t+XDh06kJ2dzY4d\nO3xk4DUaTdmilHpQKdUbuBY4AkwDgis0lCNeFblcP6U+u9NNnsfoiouyUa9KHHuPBxbPteI1Bq7t\nVJfDpwpCuPf5Fd21Glh7jvval1G2iADjCuDTlX+a215jMDEmkvT6VczaTVM90vOT/7cdMMQ8vLWY\nvJ4gfyW/SYu20fqZbxnwr/+ZbcEMLC9NaySSm+9i0MQlrNtzggZBDBSvByvX4SIv3+UTxpeVV/D/\n2lrryhtueCArj9opsaR68t688/Yp2mtxsRXHwPL+rE/lOTl00rh31ypDkQuNRlNxnNMeLK+nw387\nGFahhWC1n/y9X/7Fhr2MGzfOzGkCgobZHTp0iIkTJwLGA/k777zDyJEjsdvtNGrUyKdvamoqS5Ys\nIS8vL+i8vHiFKQDmzZsXYFwUxrBhw0zVvmPHjjFq1ChcLhdJSUlB+99yyy3ExcWRn59P+/btcTgc\n3Hfffdx7770+BYIL44477uDEiRMopbjnnnsK7WuVlU9NTeXRRx/l999/JzY2lszMTIYOHUpUVJTZ\nT0SCqjN+8cUXvPHGGxw5UpAUbTWO/H9HNm7cSFRUFFWqBCaPW7nyyis5cOAALpeLlJQUU8Xxn//8\np8/vgkajKTtE5C8YIhedgT8wRC8WV+Scrmhfm6/X78PudJHjcNKtcSrjh3ag1yuLDBVBZ4GBlRAT\nicPl9vEk+ZPjMV7a1U2hQWo8byzYGrSfy2Ig/N//dvgciw8R8matN5VjMfygQEb+m42GINAnGYYx\ndjzXgYgQbYvA4TKuaVVCPJiVx6vf/g74Fjd2FyJu2KyG730nWC6XN2wv1+Ey8sIsRtCW/SfZeSib\n/q1r+qgjHs12oJTiYJadGsmxDGxXi/nr93Pcoyro9cD5U5wcKq+gRbbDaRp3MYUIhWg0msrLOW1g\nWYURcnNDR4ns27ePXr160bZtW9LS0rjmmmsC+rRt25Z169bRrVs3XC5XyFwo/4f0Xbt2BfSxesPW\nrl1LnTp1aNiwYdDxBgwYYApIeOtEFUXLli3D6heMqlWrmnlOoWjfvr1PCOLy5cu57bbbmDhxYtAi\nzcGIiYnhySefDKtv586deffdd0lMTDTFPNLT0806Vjk5OSHVFe12OxkZGeTk5PDBBx+YUvZenE4n\nd9xxB4sWLfIZ48UXXwwIVQzFW2+9ZW5ba6EVlpOn0WhKnVjgdWCVUqpoOb5yoF3dFOat20fmsVxO\n5Tm5sGkiNT2hcHanm1yPTHtslI0YjwfF7gxtYL36nWGsxEfb6N+qpmlgvXNTJ59+jaqFDkvzd169\nel17Hvl8nU9NpV1HDM++15CpGu9bQ9LrJbJ6f7zbVgPL37N25JSdaokxuIrwYFkJVmjYa1DlOFzk\n5Lt8jMYxHxvlQv54+Qqf+l7Hsh0cy8nH4XJTMzmGvCMunC436zwy9MFUGCF4EeZQeI2xU3anOW+v\nh0+j0ZxdnNMGVnx8vPkQPnXq1JD9tmzZYgpL9OrVi7vvvjtov3bt2pnFi/1FEbz4i2rcdNNN2O12\noqOjzVwffwGE6OhoFi9ezIUXXhgwnteTlJubG1LVD+C6664zCwQHGydcli5dyvTp07Hb7fTs2TOo\n4IQ/3bt3Z8qUKaxatcpHhbC0SE5OplmzZmRkZJCfn8+mTZvMnysULqV+7NgxevfuHfTYjBkzSEtL\nY//+/ezYYbzl/c9//kPnzp196mUVh5SUFDMHz7/QtUajKTuUUq+JyIXAzcA0EakOJCqldlbUnBp6\nwtt+33+SI9kOYqNs5gP35v0nTWMrzmJgOZxuEvyiwTfuPcG3G/Yz85fdRv/oSKsMF6sAACAASURB\nVJ8Ctpe28Y2wiLRF0KxGIlsPnipyjle0r80jn6/j562HaVEria6NUnntuy3mvMBXBtztVjRJS2D1\n7uMMTq8LGEaE12OTbQkR3OsXnvjYF+toVTvZLDQcjLpVfF+WFZaDNeOXXShl5LD543YrHw9WtsPF\nmBmrAKiZHEvmsVycbkWOp4+/EVk7JZZ9J/J8QjGLIiYygsgI4VSe0wzntIYeajSas4dz+i87Pj6e\nAQMGcOONN/rUUArWz0tOTk6hYwZTnLNy2223+ezPmDGD2NhYnzyetLS0gPO2b98edLzo6GgaNWrE\nN998Q3R0dNA+YCj7ZWVlkZ2dHbLQcDhs3bqVKVOmMH36dBYvDi+6RkQYPXo077zzTthen+Iyb948\nHn30UUaOHMmnn35KixYtqF+/PvXq1fMpUnzXXXeRmppKjRo1+Pzzz82frb/iIxQoO1rDBGNiYkps\nXIERbun9Wc+fP7/E42g0muIhIs8CjwFPeJqigBkVN6OC/BuvV2XLgZPm/6s5a/eyYNMBAGKjI4jx\nGDOfr9pDpp9hcsWbP/PmD9vM/U4NqvjUV7L+D/Ty5T0XBLTVqxoXYIzFeYy+bzbuZ+g7y3w8NkkW\n4YenBrYCDAGHlLgo2tVN4eqOhoEVHRlhGlgHTxa8/LKq+4FRYPgtyzqCEREh/Ht0D3P//v7NAvp4\nw+5+/N2QrPdKrFtxuNw+a8lxuEy1xJrJMdhsQo7DxVJPHa2YyAgus3w2vZtVp26VOO69KDDcPBQi\nQmJsJNkWD5YuBqzRnJ2c0x6smjVr8t133xXZr1atWowaNYr4+HgaN258WtdMS0tj4sSJvPfee6xZ\ns8Zs91cRfPrpp3nhhRfMfatHxkqPHj349ttvQ3phvBRXJj0UViOuMI9ZefPnnwUJ2K+88go33ngj\nXbt25e677+bqq6/mxIkTxMXF4XA4zLw3h8NBfHw8NpuNjh07kpeX56MO6DWwpk2bxsmTJ011QX/c\nbneh+W8Ay5YtY9WqVezcWfCyvKi8P41GU6pcA3QEVgMopfaKSPBE0nLC3yvilTj38u0mI6cpNspm\nPoi/OP833ly4lfV/962naKVe1aL/31uNI4Dh3Rrwz2vbBfQTEZJjozjiUdnzCm1UiY/y8b5UiTfG\nO5GbT16+2ydnKcpmhAjm5bv4+Jfd2CIEl1txyOL96dm0WqHFh62cf1411j57CbFRET6hi16qJ/m6\n+M5vUo3ZY3uaaodgFEo+ZikqbA1drJEUy/aDRhjkz9sOExMZgYjwzs2deXr2emYs302N5BiWPH5R\nWPO1khAdyUm707ye9mBpNGcnZfqXLSKXicjvIrJNRAKy+UVksIisE5E1IrLSE76BiMSKSIaIrBWR\njSLyd8s5Qz1tbhHpYmmvJiKLROSUiEwszXXUr1+fadOmMWnSJJ8cmpIyduxYVq1aRUpKCvHx8cTG\nxgY8oF999dU++08++SSDBw/2McoA/va3vwWVSi8rmjRpQqtWrejcuXNQT1tFccstt/DII48AhjE6\ndepUFi9eTFZWFv/973/58ccfzeLHXiIjI4mMjOTOO+8E8PGuvffeewwePBgwQjabN29O69atTWGP\nmTNn0qhRIxITE3nggQcKndv777/PFVdcwb333svrr78OQKtWrU4rF06j0RQbhzJ0zBWAiISuzF5O\n1KkS52OIPHF5K5/j3lSkuCgbMZZ+J+2ln0LmLqQulde4ArhjuvES6rmr2vj08XqJTuTmk+f0rTUV\nHRnBvPX7mLTI8E55RTY27S1QUs3Ld7N6d/iijilxUSEFIuKibdxxYcHL0LpV46iW4GvM2p0unrQU\nMt5zrCA6pXpSjI/aoHUt3rDI4qgHWkmKjeRUnpPHPdcOZiBqNJrKT5n9ZYuIDZgEXA60BoaLiH98\n2EKgg1IqHbgNeM/TbgcuUkp1ANKBy0TEGxOwAUNm9ye/sfKAvwGnbwEFYeDAgdhsNqKiovjmm29O\ne7yIiAgOHTrE3r17faTAvfhLfx89epSvvvoqIEQxLi6OSy655LTnEy4xMTH89ttvrFq1KuwQwfLg\nsssu45VXXmHmzJlmm8vl4vDhwz79fvrpJ55//nn2799vFv99++23eemll6hTpw5t2rShadOmJCQk\nkJOT4yNLb8Vut7Nr1y5Tvr8wxowZ46MW+eKLL7Jp0yZ+/PHHEq5Wo9GUgFki8n9AFREZDSyg4J5T\nrjStnsiCh/oQHRlhija0q5sStGhtZIQQZYsIMCY27Q3+f+fTO3sEbQ+GV14dCpdGt7L9kHG/8g+7\n8xbiXb37GL/uPu4T+rbjUDZ2p5tl24/4nLPgN6PO8yWta7JqV/DC9W3qJDP33uLnDUd5PENeQ8zf\nILJbxDEaVos3jbu/DmhObJTNp16X1Qj2epwKM0gLIzEmkv1ZBREp2oOl0ZydlOVfdjdgm1Jqh1LK\nAXwCDLZ2UEqdUgWVERPwvFlUBt7s2yjPl/fYb0qp3/0vppTKVkr9jGFolToulwu3243T6Qwaz15c\n6tatS3R0NFWqVOHQoUM+x7Kyspg4cSLp6emcf/75PuGDhQk2lAfh1MGqSLp27crkyZOZMmUKd955\nZ9A5fvjhh9SsWdNHFTAhIYGXXnqJDRs2EBMTw/Dhw0lKSuK3334Leh1rzTGrMbxu3ToyMjLIyMgw\npfr966Zt3LiRtWvXBpXo12g0ZYNS6jXgc+ALoAXwjFLqzcLPKhviom2mYVUzqUDIIhhewyDG70H8\nuneWBu2fEl9g+BSV39OyVrIZ2ucsxGBoUj3Q2Zcc5xvW7g13fParjQAcsuRXdW+cChQYNSPP91XF\nvavPeSGv3b5eCm3rpoQ8HgqvZygt0ZiX/2dhd7pJio3kwqZptKlTID5V1ePpyrGEK1qNs/hoY91e\n+fbi0qZOsk+hYu3B0mjOTsryL7su8Kdlf4+nzQcRuUZENgPzMLxY3nabiKwBDgLfK6XC0yAvAhG5\n0xOOuNLfsCkMax2s0zUs/vGPf7B3715z398rZbfb+fjjj+nduzfLli3jn//8J88//zyvvvqqT82n\niiAtLY17772XMWPGMHTo0AqdSzCaNm1K7dq1OXnyJJs3b+bgwYMhJdr9+e677+jYsSMbN24024IV\nlQYjhHPfvn0cOXKE994zXoI/++yzdOjQge7du9O9e3cWLlyIUoo77riDUaNGmefOnDmT9PR0Zs+e\nXfKFajSaYqOU+l4p9YhS6mFgoYiMqOg5efOF/IUrvHgf7q2qgGAYAMG8KFZDbfmTF7P40X6FXv+r\nsYZ3yF/cwsq3DwTm+Cb75XA1r5lIbUvRXGutrck3dQYK8pzuu9j3PlYlPor3b+lCMJyuknmKoj1q\njF7DLyU+irdHdDLzzOxOF/kuRZRNaJJWIP3u/bx7NS0Igbcat72aGe2FSd0XRn2/wsj+hrNGozk7\nqHCRC6XUf4D/iEhv4B9Af0+7C0gXkSqe422VUhtK4XpTgCkAXbp0Ces/t1KKyy+/nL59+5KXl0e/\nfoXfsIpi0qRJPvv+YhEJCcbbQm9xYG9uUZ8+fUolB+x0aNiwoU/R4jORjz76iC+++AKAzz77jJUr\nV9KmTUG+wEMPPeTTf+7cuSxYsIDp06f7FIiOi4vD5XLRq1cvtm7dSlRUFAsWLKBFixbEx8f7CIcc\nPnyY559/3mdcu92OiDBlyhSys7MDiiyfiR5AjeZsQ0SSgbEYL/i+Ar737D8MrAU+rrjZQYtaRl6n\n1cD69+geDH93OQBx0V5PTEzAuSftTpIthlfjtATqWwQuUhOiSU0IrS4L0KBaPDteGkiEfwEsC1G2\nCBY/2o8HPl1jhvIl+4UIighXd6zL5B8NxVtrrS5viJ03r8k/XK96Ugw1LMIUHRtU4er0ujz71Uby\ngtS5Cgevt6y2RdZ9YLvaLPr9oHk831O02bp2r8Hz9JWtOZztYN66fT5hfO3rVeGnR/pRt2p4L+78\n8Q+t1CqCGs3ZSVkaWJmAVXKtnqctKEqpn0SkiYikKaUOW9qPi8gi4DKM/KtyR0R49NFHzfC4Z555\n5rQejg8cOGBu16hRg8OHD9OiRQuzLT4+nrZt27Jhg+9y//jjjxJf81zCvwZW69atUYXkFyxZsoQJ\nEyYEtOfm5vL+++9z6NAh82cWapx169YFtCUmFrwVDZbLtXbtWo4fP06VKsELWGo0mlLhI+AYsAy4\nA3gSEOBqpdSawk4MBxG5F8NgcwHzlFKPFuf8m3s05Kcth0xJczBU8uqkxLL3RJ7pkfJXxgPIys1n\n1a6CmlE//LVPiULYCzOuvNRPjefxy1sy9J1lQKAHC/ARkoi2FND1GhFZeU6ffS9JMb6PIhNv7MSS\nrcZjQJ2UkoXFn/J4yzrU8w0vNAs25xsGVrQtApvlMzueY7zwjLJFcMKjMrgh0zffrUEJvVfBCOez\n12g0lY+yfHWyAmgmIo1FJBq4AePtoYmINBXP3UBEOgExwBERqe7xXCEiccAAYHMZzrVIrDk3pytP\n3rBhQfz5wYMHgxb+/dvf/hbQtmvXrtO67rnCNddcw4MPPsiYMWMCZPX79u1LdHQ08fHxLFliSPYW\nFkI4ffr0AOXBYFjzqapWrcrBgwcZNGiQ2ZaYmMiff/7Jzp07qVOnDgCvv/46a9euLf4CNRpNcWii\nlBqllPo/YDiG6NKlpWRc9cPILe6glGoDvFbcMSJtEUy7tZtZlNfL3hPGi6JYi2rdeyN9w+iy8vI5\nYckFKo384MJIiLbkA0cFPj60rm3JZbJI0EfajAK7DqcbEaPwcM1k4576yKUtEBFEhJevbccr17Wn\nbpU4BqXX4S/9mnLvxSULi/fW3fIPwfOKhbzzv+043YpIm5j5cADnWbaHdS15zcNQ1CqhwajRaCoX\nZebBUko5ReQvwLeADZiqlNooInd7jr8DDAFGikg+kAsMU0opEakNTPcoEUYAs5RSc8HI2QLeAqoD\n80RkjVLqUs+xP4BkIFpErgYuUUptKo313HfffbjdbqKjo087tGvMmDE8/niAar0PVoPOy3PPPXda\n1z0X2LhxIz/88ANOp5PWrVv7hAbm5+ezdu1a8vPzyc/PNx9GLrnkEpKTk3nwwQcDxrPb7WRkZOBw\nOMjPz6d27doBfZRSpKamcvnll2O32+nbty/Vq1f36bN69Wq+++47XC6XT/5dKJVCjUZTapgWiFLK\nJSJ7lFKlJYY0BnhZKWX3jH+wlMY1cVhC5Pq3rsmFTdP4eZvh3cnKdRIbQqq8LEgsonhxxwZVzW3/\nmlqxUTZO2Z1E24yaUj3PS+PLXzOpmVxgcNzQrYFP/4cvbUFJ8X5u/iISXoPrf1sOUScllihbBAPb\n1eLLey6gaY1EH89cjybVSnz9UPRqVnBv+Pzu80t9fI1Gc2ZQpjlYSqn5wHy/tncs2+OAcUHOW4dR\nEDLYmP8B/hPiWKPTmG6heD1KXqn20+Gxxx4jMzOTt956C4DLL788oM+gQYMYO3asT77Wc889x333\n3UfVqlUD+msMDh48aEq19+nTh2effdY8NmfOHJ8cK6+h3KNHD3r06MHcuXNZuHChz3izZs2iWrXA\nm+yqVavo06cPDoeDDh06sGLFiqC5eTk5Obz99ttMnjyZHTt2mO3dunXDZrOZdbU0Gk2Z0UFEvDFe\nAsR59gVDtDY59KlF0hzoJSIvYijYPqyUWhGso4jcCdwJ0KBBg2BdfOjUoAqrdx/nz6O+Ikhv39SJ\n+ev28fiX68nKM2pOAUwb1fU0lhEeibGFPzJ4ZeYjI4RqfjljMZERnLIXyJJ7Q+PClYcvLvkecQx/\nGXSrR8vhUkR5DL5ODQLvqwkxZWu8dmmUWqbjazSaiqNIA0tEqimljhTV72ynT58+rFy5EoCMjAy6\ndj29m5n1QT9YHSsRYeLEiUycOJEqVapw4sSJgD6aQKzeRa93KC8vL2gYYJcuvuE2rVu3Jjs7m1On\nTvGvf/2L1q1bh8yPstlsZv2ywkJGs7KyTJESKy+//PJpi6VoNJqiUUqd1lOyiCwAgknsPYVxD00F\negBdMWptNVFBkjWLK7D02tAOXDT+f/h3TI6NoqdH4e79xTtp7ZEYb1P3dOzE8AjH4Jg5ujt1UgL/\n33oNG28umTf1qLD82NPBKyZRJd73hai1nliuw0mULXRYZXl6BzUazdlFOB6s5R659GnA18FuHOcC\nVpn2iIjTT11LSSlIvG3d2r/+si/WHKDT9Z6d7bRs2ZIZM2Zgs9moUaMGEPrn5R/qWRx1xOjogvwC\nh8PBunXr2LFjB/Xr12fv3r243W4aN25MamrwN5SvvfYa6enp2hup0ZzhKKX6hzomImOALz33xQwR\ncQNpQPg1QEJQt2ocMZERPDeoTcAxbxhbxh9HyfjDELlIjCl7UWCvcVKY8MQF56UFbY/1eLfqelT9\nIjwhhq6SiQQWyaOXtaBpjUT6tajh0x5jyR3LzXcVWodKC1BoNJqSEs5/5OYY0um3AW+KyCzgA6XU\nljKd2RlGTEwMsbGxuN3uUpHXfv7550lOTqZevXoMGDAgZL+8vDyef/5501sSbk2nc5UaNWrw559/\n4nA42L17N926dfNR8/Oyf//+gLbly5dz0003Ybfb6dmzJ5988gknTpxgw4YNxMbGUrVqVZo0aQJA\nixYtyMrKIjo6ml27dtGyZcuAN7HXXXcdU6ZM4aGHHmLTpk1888035rH58+ezfPnyoOGhGo2m0jAb\n6AcsEpHmQDRwuPBTwiMm0sbvLwT//+AfqpcUE2kWwC1rvhhzAY3TAgsPF8VV7eswYeFWs67V0C71\n+GTFn/RsWvp5TmAUBL6pR8OAdmuIoFtBZCEeLIBxQ9rRpk7xCx1rNJpzmyL/I3vezH0PfO9RTJoB\n3CMia4HHlVLLyniOZwRLly4t1fGqVq3Kiy++WGS/66+/njlz5pj7zzzzTKnO42zktdde48gRI6r1\n1ltvDTCw5s6dS82aNc399evX88Ybb/Dtt9+SmZnJ+++/z+TJkzl16hRLlizhiiuuAKBXr1789NNP\nAD75U3PmzAka5uJ0OqlatSrjx49n/fr1PgaWdwyNRlOpmQpMFZENgAO4pTyiPGwRQnRkhCnkULtK\n+SnTdW5YMq973xbVmbBwq5kz1rlhKn+8fEVpTi0s/HOyiqpDNaxr0flyxeWuPk3Id56TwUAazTlD\nWDlYwE3AzcAB4F4MufV04DOgceizNaeL1bjShId/HSww4vw///xzHnnkEe644w6GDh1qhgTu27eP\nqVOnmufcfvvtAAECFN6x/OnUqVPQdmttM6fTGXB8xYoVtGvXLqgyoUajOfNRSjkw7o/lTlyUzTSw\nWtUu+/yr06Vt3RSGdq7H7b0q9pEhPjqS5jUT2XLgFBCoMlgePHF5q3K/pkajKV/CiSlYhlGo8Wql\n1B5L+0oReSfEOZoyoF69ehU9hUrB008/TU5OToC4hd1uN4s1Hz5cEMUTTBLfyvnnn09eXh7NmgWv\nx2KtawaG1/HVV1/1UQpr3749x44dw+l0Mnz4cBYsWMDTTz9NkyZNGD58eHGXqNFoznHiomxmDaye\nIfKeziSibBG8OrRDRU8DgNsvbMxjX6wHoGq8zmvWaDSlTzgGVotQIQ8emXVNGTJv3jzGjh1L//79\neffddyt6Omc8e/bsYenSpbhcLmrXru1TGNjqRTp0qCAHvUWLFrz77ruMHj3aZ6y4uDi6dOlihgVa\nUUrhcrnM60ybNo158+Zht9sZMWJEgAzz5s2bmTFjBi6XiwULFgSdk0aj0YSLVxIdoGVtXe6hOERa\nhI9ionSotkajKX3CMbC+E5GhSqnjACJSFfjEW9xXU7YMHDiQnTt3VvQ0Kg05OTlmWGXTpk3N9j17\n9vh8jlaJ9Fq1anHHHXfwxBNPmJ6tQ4cOkZYW+q3wkSNHzGLCqampHDlyhFGjRgX0y8zM5N1332Xu\n3LmsWrXKbL/ooouIjIykVq1g6s8ajUZTOEkWoYuEclAQPJuwClvYghRM1mg0mtMlnP/K1b3GFYBS\n6piI1CjsBI2moghWBwvgpZdeYvLkyeb+ww8/HHBuv379OH78OA6HI2S+VbDrHD16lMcee4yYmBj6\n9+9P7969zWN79uzh73//e8D5Xbp0Ydw47QDWaDQlo0p8QamIhHJSEDwbGZxep6KnoNFozkLC+a/s\nEpEGSqndACLSEAJqH2o0ZwS1atVi9uzZREZGkpBQICXcv39/08Bq3bq1Tx0rL7NmzQr7OjabjYiI\nCGw2G/n5+bzyyiuAURMrPz8fp9NJUlJSyCKar7zyCs8884zPHDUajSZcUi25Q7FR5S/UUJnJyi2o\nLRlZASIXGo3m7CccA+sp4GcR+R8gQC/gzjKdlUZTQhISEhg8eHBA+zXXXMNDDz3E5s2bef3118Me\nb9u2bezYsYOYmBgaNWpkClokJyebHrIHH3yQN954A4Bx48aZnqnu3bvz6aef8uyzz+J0OqlRowb3\n33+/OXZaWhoffvghQ4cOLfF6NRrNuYnXgyUCKXFaqKE4HM/JL7qTRqPRnAbh1MH6RkQ6AT08TQ8o\npUqlkKJGU16ICOPHjw96LDc3l1GjRpGXl4fNZuOzzz7j6NGjuN1uJkyYwMSJEwFDnfAf//iHz7lL\nlixh0aJFQcd1uVw0bNiQ5557zmzbu3evaYDl5eVx/fXXh/RyaTQaTSiqeDxYY/s2RXQeUbEoaS0v\njUajCZdwA7djgKOe/q1FBKVUoLSaRlMJiYiIMMMDo6Ki2LlzZ1BJ9mBy7hdeeGHQMS+55BKaN28e\n0P7yyy9z8OBBpk2bdpqz1mg05zIjz2/Emj+Pc8sFjSp6KpWOC5qmMeGGdB+hEI1GoylNwik0PA4Y\nBmwE3J5mBWgDS3NWYM3Hys/P58MPP/Q5HhcXR5s2bWjUqJFPeyjP04IFC7j44otDXi81NdXc9uZu\naTQaTXFITYjmg1u7VfQ0Ki2D0+tW9BQ0Gs1ZTDivb67GqIVlL+vJaDQVgYjQs2dPlixZAsDPP/9M\ntWrViIiI4NChQ+Tm5hIZGcmIESN8zvv0008Dxho8eHCAIeZPKKVDjUaj0Wg0Gk3lJxwDawcQBWgD\nS3PWMnz4cNPAatmyJT/88AOAmduwfPlyMjMzqVevns85/kyZMoUaNQqqGGRkZDBz5kyzaPGQIUNo\n06YNgwcPJjIyMmgYoUaj0Wg0Go2m8hKOgZUDrBGRhViMLKXUfWU2K42mnOnbty+TJ08mNzeXdu3a\nme0tW7Zk8+bNABw/ftzHwArGkSNHfAys9evXM2HCBABGjRrFkCFDGDlyJCNHjiyDVWg0Go1Go9Fo\nKppwDKyvPF8azVlLmzZtaNOmjbm/YsUKNm3axJEjR2jSpAldunQJKnLhP0aDBg2YPXs2TqeTmJgY\ncnNzzePx8fE+/ffs2cP3339Pv379igwr1Gg0Go1Go9FUDsKRaZ8uInFAA6XU7+UwJ42mwvniiy9M\nOfUHHniAJ598MqCPV+RCKcWvv/5K69atOXz4MNdccw0AderUYd68ebz++uvk5ubSqVMn89ybb76Z\nGTNmAPD9999rA0ujOYdYtWrVYRHZVdHzOA3SgLOhXMvZsg44e9ZytqwDzp61nC3rgJKtpWFJLhSO\niuBVwGtANNBYRNKB55VSg0pyQY3mTMftdpORkWHup6WlFdpfREzjKTKy4E/K6XSSnp5Oenp6wDlH\njhwxt+12nd6o0ZxLKKWqV/QcTgcRWamU6lLR8zhdzpZ1wNmzlrNlHXD2rOVsWQeU71rCCRF8DugG\n/AiglFojIk3KcE4aTYWSnZ3tUzx47ty5pKSkMGzYsCLPjYuL45JLLiEpKYlatWqF7NewYUNatWpF\ndHR0QOigRqPRaDQajabyEo6Bla+UOuFXKd4dqrNGU9mxyqgDzJkzh927d4dlYKWkpPDtt98W2W/y\n5Mklnp9Go9FoNBqN5swlIow+G0XkRsAmIs1E5C1gaRnPS6OpMKxhfl6sxYi9PPHEE3Tq1Inu3buz\nYMECn2Pjxo3jrrvu4vbbb2fnzp1lNleNRqOpAKZU9ARKibNlHXD2rOVsWQecPWs5W9YB5bgW8Sbq\nh+wgEg88BVwCCPAt8A+lVF7ZT69s6dKli1q5cmVFT0NzBvLxxx9z0003mfuvv/46Dz74oE8fq1f3\nlVde4ZFHHjH3e/TowS+//AIYUu9XXHEFY8eOpXHjxmU8c43m7EREVp0teQAajUajObsp0oOllMpR\nSj2llOqqlOri2a70xpVGUxhWL9b1118fYFwB9O/fH4DExERuvvlmn2MbNmwwtzdv3sz48eM5dOhQ\nGc1Wo9FoNBqNRnOmEI6K4CIgwM2llLqoTGak0ZwBrFixgho1apCUlMQVV1wRtM+0adP44IMPGDBg\ngI+gxYIFC8jOzg7obw0zzMzMJDMzE7vdTsOGDWnQoEHpL0Kj0Wg0Go1GU+6Ek4P1MPCI5+tvwBog\nrLg6EblMRH4XkW0i8niQ4yNEZJ2IrBeRpSLSwdPeQkTWWL6yROQBz7HnRCTTcmygpz1aRKZ5xlor\nIn3D+gQ0miDMmDGDgwcPsn37dgYMGBC0T7169Xj66afp3r27T/vjj/v+qk+ZMoW3336b+vXrm21v\nvvkm3bt3p3fv3vz73/8u/QVoNBpNCRCR+iKySEQ2ichGEbnf054qIt+LyFbP96qWc57w3Od/F5FL\nK272gYiITUR+FZG5nv3Kuo4qIvK5iGwWkd9E5PzKuBYRedDze7VBRP4tIrGVZR0iMlVEDorIBktb\nsecuIp09z6rbRORN8VORq8C1vOr5/VonIv8RkSpn+lqCrcNy7K8iokQkzdJWbusIJ0RwleVriVLq\nIaBvUeeJiA2YBFwOtAaGi0hrv247gT5KqXbAP/AknymlfldKpSul0oHOQA7wH8t5//IeV0rN97SN\n9pzbDhgAjBeRcAxIjSaAAwcOmNsxMTHFOjc2NtZnf/To0YwZM4Zq1aqZx8S8kQAAIABJREFUbVZv\nlq6DpdFoziCcwF+VUq2BHsBYz737cWChUqoZsNCzj+fYDUAb4DLgbc/9/0zhfuA3y35lXccE4Bul\nVEugA8aaKtVaRKQucB/QRSnVFrBhzLOyrOMDzzyslGTukzGeWZt5vvzHLA8+CHLd74G2Sqn2wBbg\nCTjj1/JBsGuKSH0M7YjdlrZyXUeRBojHOvd+pXksvpQwxu4GbFNK7VBKOYBPgMHWDkqppUqpY57d\n5UC9IONcDGxXShVV9b418INn3IPAcUAnRGtOm/HjxzNr1qyw+w8ePJibb76Ze+65h7Vr1wbtU79+\nfbp27UrPnj2pW7duaU1Vo9FoTgul1D6l1GrP9kmMB/m6GPfv6Z5u04GrPduDgU+UUnal1E5gG8b9\nv8IRkXrAFcB7lubKuI4UoDfwPoBSyqGUOk4lXAtGakqciEQC8cBeKsk6lFI/AUf9mos1dxGpDSQr\npZYrQ2XuQ8s55UawtSilvlNKOT271mfyM3YtIX4mAP8CHsU3xalc1xGOh2cVRkjgKmAZ8Ffg9jDO\nqwv8adnf42kLxe3A10HabwD8Y6ju9bgwp1rcsWuBQSISKSKNMTxf9f3OQ0TuFJGVIrJSiw5oQrF8\n+XKqVDG84y+99BKffPJJ2Oc+8sgjfPjhh0yaNIn27dsH7XPnnXeSkZHBzz//zO23F/w5jR49mkaN\nGjFv3rzTW4BGo9GcJiLSCOgI/ALUVErt8xzaD9T0bBf3Xl+evIHxkGWt3VkZ19EYOARMEyPc8T0R\nSaCSrUUplQm8huFV2AecUEp9RyVbhx/FnXtdz7Z/+5nGbRQ8k1eqtYjIYCBTKeX/hrtc1xFOiGBj\npVQTz/dmSqlLlFI/n+6FrYhIPwwD6zG/9mhgEPCZpXky0ARIx/gDHe9pn4rxoazE+Ke6FHAFWc8U\njxpil+rVq5fmMjRnETVr1iQ5OdncD1YbqzAmTpzIiBEjGDZsGEuXhlc2buXKlbz33nvs2rWLW2+9\ntVjX02g0mtJERBKBL4AHlFJZ1mOet7yF13ipYETkSuCgUmpVqD6VYR0eIoFOwGSlVEcgG08ompfK\nsBbPC/HBGAZjHSBBRG6y9qkM6whFZZ67FRF5CiNU+OOKnktxEaO01JPAMxU9l3BUBK8t7LhS6ssQ\nhzLx9SDV87T5j98ew31/uVLqiN/hy4HVSikzIca6LSLvAnM97U7gQcuxpRgxpJqKQilwHIOY1Iqe\nSbHZv38/u3ebobsMGTKkWOcvWbLE9HrNmjWLG2+8kYkTJ1K1atWQ5zidTnO7SZMmxZyxRqPRlA4i\nEoVhXH1succfEJHaSql9npCag572sO71FUBPjKiWgUAskCwiM6h86wDj5fEepdQvnv3PMQysyraW\n/sBOpdQhABH5EriAyrcOK8Wdeya+6TBn1JpEZBRwJXCxKiiUW5nWch6GAb/Wo1NRD1gtIt0o53WE\nEyJ4O0bc7wjP13sYrsOrMH4IoVgBNBORxh5P1A3AV9YOItIA+BK4WSkVzBgajl94oOcX2Ms1wAZP\ne7zHZY6IDACcSqlNYaxPU1asug++qAZ7v63omRQbq8eqU6dODBs2LOxzjx49yrJly3zaZs6cWaSY\nhcPhMLejoqLCvp5Go9GUFh71rPeB35RSr1sOfQXc4tm+Bfivpf0GEYnxhOc3AzLKa76hUEo9oZSq\np5RqhPH88YNS6iYq2ToAlFL7gT9FpIWn6WJgE5VvLbuBHp7nNcFYx29UvnVYKdbcPeGEWSLSw/MZ\njLScU6GIyGUYIbWDlFI5lkOVZi1KqfVKqRpKqUaev/09QCfP31C5riOcuKcooLU3xtRj4HyglCo0\nhkkp5RSRvwDfYijFTFVKbRSRuz3H38Fw4VXDUPIAwyjq4rlOAoYa4F1+Q78iIukYbtg/LMdrAN+K\niBvD8rwZTcWyZaLxffNrUOeMUYkNi3r16vHyyy8TFRXlU+MqHGbOnMmuXYGaLDZbgfjRgQMH2LBh\nAw6Hg4iICLZv387BgwcZPXo0I0aMIDEx8bTXoNFoNCWgJ8b9c72IrPG0PQm8DMwSkduBXcD1AJ77\n+iyMB34nMFYpFRCefwZRWddxL/Cx54X1DuBWjJfklWYtSqlfRORzYDXGvH7FUI9OpBKsQ0T+jaGi\nnSYie4BnKdnv0z0Y6ndxGHlOwfQHypQQa3kCiAG+9zyTL1dK3X0mryXYOpRS7wfrW97rkAIPYMjJ\n/6aUamXZjwA2WtsqK126dFErV4ZV0ktTEmZ6ygjU6g8XfV+xcylHnnrqKV566SVzf+bMmbhcLoYO\nHWpKvn/66afccMMNAIgI3r/Dtm3bsn79+vKftEZzhiMiq7wv4DQajUajOZMJx4O1UES+pSBUbxiw\noOympNFUbp544glmzpzJvn37+Oyzz7jqqqsC+lhra1lfcmzYsIHvvvsOu90e9DyNRqPRaDQazZlN\nkQaWUuovInINRg0GgClKqf8Udo5G40u5FykvFX788Udmz55NZGQkvXv3ZtCgQWGdl5iYyLZt2zh5\n8qQp9e5PzZo16devH4sWLTLb7rzzTqZMmcKllxrhlG63Gyn/Au8ajUaj0Wg0mtMgXO3p1cBJpdQC\nT3JikqcAoUYTBpVTtXTlypVMmDABMIydcA0sMPKtQhlXAOeffz4//PAD1apV4+hRo0Zenz59mDJl\nitnHbrcTGxtbwtlrNBqNRqPRaCqCIlUERWQ0hiTo/3ma6gKzy3JSGk1Fk5WVxSOPPGLuF9fQmT59\nOoMGDWLgwIHMmjUrZD+rmMWIESN8jrlcFZ6TrNFoNBqNRqMpJuHItI/FUBXKAlBKbcVQ7NNozlr8\nJdW9YXvhsnnzZubMmcPXX3/NsGHDGDRoEMEEZXbs2MHUqVMD2keNGkVCQkLxJq3RaDQajUajqXDC\nMbDsSimzQI+IRFJZY740mjCx1sFKSUmhT58+xTrfv47VvHnzguZT2Ww26tSpwxVXXFHo+RqNRqPR\nhEJEqonIGs/XfhHJtOxH+/X9VkSSihhvj4gExLl72j+17N8gIu+V0hpeEJEHSmMsjaaiCScH638i\n8iQQ5yngew8wp2ynpdFULAkJCUyaNInIyMgS5UENHz6ctm3bmgWKrTWwAI4fP86kSZOYOnUq1apV\nw+12c//997N9+3aeeuopatasWSrr0Gg0Gs3Zj1LqCJAOICLPAaeUUq9Z+3iKqIpS6nQLU3YXkRZK\nqd9Pc5xSw7I2d0XPRaOB8Aysx4HbgfUYRX3nA6XytkKjOVOJjo7mnnvuKfH5rVq1onnz5syfPx+X\nyxUQHrhjxw6efvppcxtg1apVACxcuBCbzUbdunXZvHlzieeg0Wg0mnMbEWkKfIVR1LcjMEBEfgHa\nKqWOi8gcoA4QC/xLKRXO8914jOLTt/hd6wXgsFLqDc/+ZqC/Z+zZnjl0B5YDH2MUt60ODFdKeYuS\ndhSR5UA14J9KqamesR4HrvWM9blS6vlgawMyi/kRaTRlQqEGlojYgA+VUiOAd8tnSppS4dQOyD8J\nVTtU9EzOWWw2G5dffnnIY6HIzc0FYNu2bWUyL41Go9GcU7QERnqNGL9w9VuUUkdFJB5YKSJfKKWO\nFTHev4G/iEjjYsyhBXA9sBlDmTpPKXWBiAzBeJF/nadfO+ACIBlYLSLzgM5AAwzjTID5InIBcNB/\nbRrNmUKhOVhKKRfQ0D9+V1MJ+Oo8+Dod9i+s6JlQWetgvfXWW9x2223cc889/Prrr6U6dtWqVWnZ\nsmWhfbSKoEaj0WhKge2FGCAPishaYBlQDzgvjPGcGF6sx4sxh21KqU2eEL5NgPfhZD3QyNJvtlIq\nTyl1EPgJ6ApcAlyO4alaDTQFmnv6F7Y2jabCCEfkYgewRET+JiIPeb/KemKaUuKH/mA/UtGzqJR8\n9913TJs2jcmTJ7Nr165SHbtBgwb89ttvjB8/3qfNyiuvvFKq19RoNBrNOUl2sEYR6Q/0BnoopToA\n6zBC8MLhA+BijNI9Xpz4Pldax7JK87ot+258o6n8RdQUxlvaF5RS6Z6vpkqpDzzHg65No6lowjGw\ntgNzPX2TLF+aykLOnoqeQaVk7ty55naNGsWrTDBnzhwuuugievfuzauvvhqyX0pKirm9e/dun2PF\nKWys0Wg0Gk0xSQGOKqVyRaQNhrcoLDzq0m8C91ua/8AI50NEugH1SzCnq0UkRkSqA72AlcC3wO0i\nkuAZu56IpJVgbI2m3AiZgyUikUopp1Lq7+U5IU0Z4LIHth1dBb+/BenjIK4SK9YpBQcWQrUeEJVY\ndP9icNVVVzFnzhw6d+5Mjx49inXu/v37WbRoEQCLFy/mt99+C1rv6vbbb2f16tW8/fbbPu1Dhgyh\nRYsWJZ+8RqPRaDSFMw+4U0Q2Ab8DvxTz/HcxxC68fAbcJCIbMIQsdpRgThuA/2GIXDyrlDqAkXPV\nEljuyR87CdxYgrE1mnKjMJGLDKATgIi8pZS6t3ympCl13EEMrG+6GN+d2dDrszKeQBmWTfvtFVjz\nODS5FXoEGjCnw+eff87ixYvp3LkzERHhOHsLsNbRAlixYkXIvi1atCA1NZWjR4+abaHEMTQajUaj\nKQyl1HOW7W145NstbfUsu0El2/36BG1XSuUCtSz72RiqgcFIt/S7Kdj8lFJPhzgXpdTrwOuFjavR\nnEkU9tRoVSboWdYT0ZQifpLguHJ993d8WLB9shzKWLjzy27sjS8b33dMC348JxMcx0s0dHR0NBdf\nfDFVqgTUWiySSy+9lJdfftncj4mJ8Z1WTg4333wzcXFx3H///aZxde211/Lzzz8zePBgcnNzcTqd\nJZq7RqPRaDQajaZiKMyDVYZuB02Z4l9nz3nKd3+5pXRFsPDB0saVV3ZjRyVBfggDKu8QzK4HiefB\noPKVPK9Tpw5jx46lV69eOBwO4uLifI5nZWUxY8aMgPO+/PJLduzYwZo1awD49NNPuf7668tlzhqN\nRqPRaDSa06cwA6uliKzD8GSd59nGs6+UUu3LfHaakqH8vB6FGThuR9nOBeDk1rIb21aI4NG+b4zv\np7aX3fULITExkQsuuCDoscLqYFlrlOTnl6H3T6PRaDQajUZT6hRmYLUqt1loShflVz+pMCOqPAws\nx1EjTC+6+KF2p0XegfK9XjGIi4ujXbt2rF+/3qf9/vvvZ9u2baxdu5aoqCiUf7inRqPRaDQajeaM\nJqSBpZQq3cI/mvIjwINVSBhgcfOjsncZIYiJxSngDuTuK38Dy3nmlsdITExk3bp1QY8ppXy8WBqN\nRqPRaDSaykPxpNE0lYPieLCkGL8Cbif8txF81SQwz6tIKsBg8M89K0eWL19O165d6dixI3fffXeR\n/d1uNzExMSQlJVGzZk3tudJoNBqNRqOppBQWIqiprJz4zXd/1X3QIoTKfnEMrBMbC7bd+WCLCd3X\n30Dw96qVBUqB1fOTf7Jg2+2CiNB5T6XNqVOnWLlyJQBr1qyhR48ejBo1KmR/u92Ow+HA4XCQn5+v\nPVgajUaj0Wg0lZSwDCwRiQMaKKXKQdO7kuHMgcw5UL0XxNcpu+vk7oPvehqGUssHC+/7fTFU9aUY\nRodV7lw5gcIMLGfh+6WF2zKucoJEFexbxT1UPlB+BpZ/HaxDhw4V2t9uLwjj9Jd012g0msrGqlWr\nakRGRr4HtEVHy2g0ZxNuYIPT6byjc+fOByt6MmcqRRpYInIV8BoQDTQWkXTgeaXUoLKeXIWzYzr8\n+QV0mQQJ9YP32TIR1jwG1brDpcvLbi4bXoTsnbD6oaINrKKo2gmOrTa2i5ODZTWS3EEMptx9EF3V\nUPbzP15WtbDcFiPKZYcIi4FlDY10OwpXHCxlOnXqRKdOnVi92vicExISfI4rpahatSonTpwAYMyY\nMdx6661kZ2czZswYjh8/Tn5+PnFxcSQmJpbbvDUajaY0iIyMfK9WrVqtqlevfiwiIkLHPGs0Zwlu\nt1sOHTrUev/+/e8BZ78tUELC8WA9B3QDfgRQSq0RkWIqHFRSVowxivTmHYBLlvuGn3k5ZtQr4sgv\ngSFqpUmoWk+nS0R0+H39vUVWsnfDfxtCQmMYvCPweDCDrDSwGm6uPIiyGCNue/B+5UBycjLz58/n\n8OHD5OXlUa9evYA+XuMKYM6cOezZsweA/fv389NPPwHw97//nWeeeaZ8Jq3RaDSlR1ttXGk0Zx8R\nERGqevXqJ/bv39+2oudyJhOO2z5fKXXCr+3c+IfpyjW+H8kwwgCDYX1wL0vJc6tgw5rHT2+s3MyC\n7aRm4Z9XmAfr4P+M79k7A/uCJ0SvDLDOw+1X7yvf8pmVhxy9HzVr1qRNmzZ07tyZmjVr+hwTEbp1\n6wZAhw4daNq0qXksIqLgz1LXwdJoNJWUCG1caTRnJ56/bR36WwjheLA2isiNgE1EmgH3AUvLdloV\nTN5hyBjt23Zqh+++y254uP783NKWV7jww+lgNRY2jYP0l4P3K0p9Lv+Ub32o4uRGqUI8WAEhgeXk\nwbIqJlpzrlx5sP87y/XL38Aqinnz5jF//nwGDBjAL7/8wtChQ4mMjOT333/n119/JSoqitjY0g1r\n9KoTahENjUaj0Wg0mrIhHOvzXqANYAdmAieAB8IZXEQuE5HfRWSbiAS4XURkhIisE5H1IrJURDp4\n2uuLyCIR2SQiG0Xkfss5qSLyvYhs9XyvahlrjeXL7ckXKz67Z8Ge2b5tLj/vSOYc2DGt8D6lib/0\neihDyr+fPzl7fPeLY/iEChHM3g2/3OY3j3ISufAxsCwhgVl+eizlHCIYDmlpaYwcOZLatWszcOBA\nRowYwejRoxk/fjzHjx/n0KFDPPXUU6d9HZfLRbdu3RARIiIi+Oqrr0ph9hqNRnNmY7PZOrds2bK1\n9+vJJ5+sVZJxhgwZ0mjatGlVS2NOH330UZVVq1aZb84eeOCBOrNnz04qjbGvuuqqxs2bN2/997//\nvUZxzjt8+PD/s3fm4VFUWR9+b2dPCBD2fZVFECIQNhEBlRFcUUdEEBVUdBgdd2XmU8FlxmVARVEE\nN8TRERUUcUNFBUFZBGQLBBDCvoYl+9Kd+/1RXd3V1VXVlZAQYO77PHm6uupW1a3qQOrX55zfiXr2\n2WfrVsQcTjcSExO7nMzzXX/99c2Nn/+J8PTTT9dr1apVxyuvvLLMZTtPPvlkvZycHBWBqkTcRLDa\nSyn/DyjTk54QIgp4FRgI7AZWCCE+l1KmG4ZtB/pJKY8KIQYD04GegBd4QEq5SgiRDKwUQnzn33cc\nsEBK+axftI0DHpFSvg+87z93J+AzKeXvZZlzACsxUGpq1issbp05Ra0yMTvmGdebMZo7nIjwsUsR\n/PXm8LEny+TCKLCM9z8qwXT+kxvByszMZPDgwXi9Xpo2bcoPP/zgOH7JkiVceOGFREdHc9lll/HZ\nZ585ji8LR48eZcWKFYH3xcWnXjRPoVAoKpq4uLjSTZs2pUceWbF4vd4wJ1mdzz77rKbX6z3erVu3\nQoCXXnppb0Wcc+fOndFr1qxJ2rlz5/qy7puVlRX11ltv1Rs3bpyz3a2BkpISYmIsnkH+x4l0X2bN\nmrWjos711ltv1f3+++83t27duswPWNOmTat/++23H0lOTnbd1NTp91oRjps7NUkI0QD4BJglpXT7\nj7cHsFVKuQ1ACPEhcBUQ+M9OSmlMNVwKNPGv3wfs8y/nCCE2Ao39+14F9Pfv8y6a+cYjpnPfAHzo\ncp7hWEV13ESnvAXW6/N2gTcParTX3pfHDMM8vtQb6phnXB+2zlgnZhKKkSJedscOiWBlho89bvo1\nqbQIluG4Ibbspv8zynKdFYDP52PTpk0AbN26ldWrV9Oli/0XZYcPHwa0/8CioirWTt4sqJTAUigU\nJ5PRo2m6fj2JFXnMc84h/+232VXW/bKysqK6det29ty5c7ekpqYWXXHFFS379++f88ADDxxOTEzs\ncsMNNxxeuHBh9bp165bMnj17W6NGjUL+eM2dOzd53LhxTX0+H6mpqfkzZ87ckZCQIBs3btzpyiuv\nPLJw4cLq99577/6cnJyod955p25JSYlo0aJF0SeffLJ96dKlCd9//33NpUuXJj/33HMNZ8+e/cfj\njz/e8PLLLz8+atSoo07HHjp0aNb8+fNreL1eMWvWrG1dunQJeSi5+OKL2x48eDC2ffv2HV566aWd\nGzZsiDefPzk5uXTXrl3Ro0ePbr5z5844gClTpuyYPHly/V27dsW1b9++Q79+/bKnTp26+y9/+UuT\nH374oYYQQj700EP7br/99qNffPFF8vjx4xvVqFHDt23btvjMzMwyizk7Rs8d3XT9wfUV+ztS75z8\nt696u8y/I3v37o0eNWpU8z179sQCvPDCCzv/9Kc/5f3444+J9913X7OioiJPfHx86YwZM7anpqYW\nvfzyy7U/++yzlPz8fI/P5xPjx4/f++STTzaqVatWSUZGRkKnTp3yP/vss+0ej4cePXq0mzhx4q4L\nLrggPzExscutt9568Ntvv60RHx9f+sUXX2xt2rSpd8OGDXHDhw9vWVBQ4Bk0aNCxN998s35+fv5q\n4xyHDx/ebPfu3XGDBw9uM2LEiMMXXHBBrtXcvF4vY8eObfLjjz/WEELIm2+++bCUkoMHD8b069ev\nbUpKinfZsmWbp02bVmvSpEkNpJTi4osvPjZ16tQ9oEX4RowYcWjRokXVX3755Z2XXHJJrtU9U4QT\nMTwopRwADAAOAdP86XyPujh2Ywj5z2+3f50dtwJfm1cKIVoAXYBl/lX1/QIMYD9Q37wPcD3wXxdz\ntMZnIZTMAssyymUjwuY2gy/P1kTWkhHwTdey1yRZNe7N2wXb39eO6zQv6Qvur6fR6RGesswjkk27\nkbydoe9PRgQrrO+V8fwnodGxAfO3PKWlzl8SFRYWBuzY69Sp4zg2JyeHDz74gB073H0RVlpaSv36\n9UlJSaFTp06MGDHC1X4KhUJxOlNUVOQxpgi+8cYbKbVr1/a9+OKLO2+++eaW06dPTzl27Fj0Aw88\ncBigoKDAk5aWlrd169YNffr0yRk3blxIc8v8/Hxxxx13tJw1a9YfmzdvTvd6vfz73/8OpNbVrl3b\nm56evnHMmDFHR4wYcXT9+vUbMzIy0tu1a1fw8ssv1xk4cGDexRdffOzpp5/evWnTpvSOHTsWuT12\nnTp1vOnp6RtHjx596Nlnnw177pk3b97Wpk2bFm3atCl90KBBuVbnB7jzzjub9e3bNycjIyN9w4YN\n6V27di2cNGnSbn3fadOm7Z45c2bNdevWJWzcuHHDggULNj/++ONNduzYEQOQnp6e+Nprr+2sSHF1\nqnHHHXc0vf/++w+sX79+46effvrHnXfe2QIgNTW1cMWKFZs2btyYPn78+D0PP/xwwB54w4YNiXPn\nzv1jxYoVGQAbN25MePXVV3dt3bp1w86dO+O+++67sH4rBQUFnt69e+dmZGSk9+7dO/eVV16pC3DX\nXXc1HTt27MHNmzenN2nSxPLh6YMPPthZr169koULF24eP378Qbu5TZo0qe7OnTtj09PTN2zevDn9\ntttuy3r00UcP6vsuW7Zsc2ZmZsyECRMa//TTT5vT09M3rF69Oum9996rqc+xZ8+eeRkZGelKXJUN\nV7E+KeV+4GUhxI/Aw8DjwNMVNQkhxAA0gXW+aX01YDZwr5Qy22JeUgghTfv0BPLtIm1CiDHAGIBm\nzZpZT8iNwCpPlKskG3Z8oC1nb4SanZzHOyG98MNFkLMFCifB2fdr64+uCR0norWxpSUQFRuMYEUn\naddZphRBg5iJtJ85UlYZAsccpfI52LLvngu1TjDVOn+P5uDY/v6Ix2rUKLTpdI0aNRzHjxw5kpEj\nR1JYWEhBQQEHDhwgJycHIQStW7cOGTtmzBg+/PBDGjZsSGZmJrGxzlb7999/P2eddRYJCQm8+eab\njmMVCoWioilPpKkisEsRvPrqq7M/+uijlIcffrj5ypUrN+jrPR4Pt9122xGA0aNHZ11zzTVnGfdb\ns2ZNfJMmTYo6d+5cBHDLLbdkvfrqq/WAgwA33XTTUX3sypUrEx5//PHGOTk5UXl5eVH9+vUzuzGH\nEOnYw4cPPwrQo0eP/M8//zxiPZjd+X/55ZfkTz75ZDtoXwTWrl3bd/jw4ZC0iZ9//jl56NChR6Kj\no2natKm3Z8+euYsXL06sUaNGaefOnfPat29f4WkQ5Yk0VRZLliypvmXLlkCdQW5ubtTx48c9R44c\nibr++utbZmZmxgshZElJSSC1qG/fvtn169cPPCR16tQpT0/d69ixY/4ff/wR9oc6JiZGDhs27DhA\nt27d8r7//vvqAKtXr6727bffbgW47bbbsiZMmBDe58WE3dx++OGH6nfeeechPW3ROEedxYsXJ/Xq\n1StHj9Zef/31RxYuXFht5MiRx6KiorjllluOmvdRRCZiBEsIcbYQYoIQYh3wCpqDYMQPG9gDGLvz\nNvGvMx+/M/AmcJWUMsuwPgZNXL0vpZxj2OWAEKKhf0xD/P/5GBiGQ/RKSjldSpkmpUyrW9emptOb\nH77OHJ2ySjmzEmZGYWGs2xInmAbmK9bEFUC+4f+lBf1Dx+lphHpERxeBUf5IvJNQKsmFRUNg52wt\nArZxYnBbyH4W6Y4+cyqiYfze+fB1Vzh+gqnx5s/A+BmZBdb6J07sXACrHoDM/2gRyD1fwvf9wk1D\n/MTExJCbm8uOHTtYtWqVvZg3ER8fz4YNG2jQoAFt2rRh5MiRYWNmzZoFwL59+3j//feZNWsW7733\nHllZWWFjAT7++GOWLFnC999/z8cff+zyYhUKheLMxOfzsXnz5vj4+PjSrKws2y+ay+q2aqxnGTNm\nTMspU6bs3Lx5c/ojjzyyt6io6IQMBeLj4yVAdHS09Hq9ESdW0efXSUxMdF2zc7oipWTVqlUbN23a\nlL5p06b0gwcPrq1Ro0bpI4880rhfv345W7Zs2TBv3rytxcXFgXvbb902AAAgAElEQVRqvi9xcXGB\nL/+joqKw+syio6Ol3pYlOjracoxbnOZ2IsTGxpaquqvy4eYDeBs4BlwipewvpZwqpTSLGitWAG2E\nEC2FELFowifEvkwI0QyYA4yUUm42rBfAW8BGKeULpuN+DuiuCjcDcw37eYChnEj9FdhEsBwEQ2CM\nRQRrvSHQZ0zlM5ouHFsPK++H4qOaINs20/bBPXgugwi0qsUyb9MFh34dekNeq8iStwB+uxsW/1mL\n/Cz+Mxz6WYu6BeZfxgiW8Z7+NAiOrtZs7k+EIpOg8DkIrIrAaG+/8HI4uAiW32E7PCkpiWbNmtGl\nS5eIUSYjeqogQF5eXth2YzTsqaeeYtiwYdx0001s27YtbKyZvXsrpJ5aoVAoTluefPLJ+m3bti2c\nMWPGttGjR7coKioSoKVT626BM2bMqN2jR48c436pqamFe/bsiV2/fn0cwMyZM2v37ds3J/wMkJ+f\n72nWrFlJUVGR+PDDD2vp66tVq+bLzs4Oe/Yqy7HdYHf+Pn365Oiph16vl6ysrKgaNWr48vLyAnO6\n4IILcj755JNaXq+XvXv3Ri9fvrxa3759w/8YnaGcf/752c8880zAifGXX35JAMjOzo5q0qRJMcC0\nadOcc/lPgHPPPTd3xowZKQBvv/12rUjjneZ20UUXZU+bNq2O3lPzwIEDUQBJSUm+48ePewD69u2b\nt2zZsuR9+/ZFe71ePv7441r9+/dX6YAniJsarN5SypeklGV6MpNSeoG7gPnARuAjKeUGIcSdQog7\n/cMeB2oDr/mt1X/zr+8DjAQuNNiuX+rf9iwwUAixBbjY/17nAmCXbqxRbqxqqUpM/8+5EVgHfw6N\nnJQYMgSMUbKvOkHGi7DmUdj8Kiy9WYvwOBFSd+WP5FiJioDA8gs6XfhEJdlfx+ZXYPMU2DffMHcX\n1x/YJsNd+4qPhY8zi7T83ZD5oTtDkZ2z4dOGoeuMIrgyGhsnWUShzCmZFUBCQgJNmzalZcuWYamG\nUkoaNAg6DW/fvj2wXFRkErV+hgwZElh+8cUXWbhwYQXPWKFQKE49zDVYY8eObbxmzZq49957r85r\nr722a9CgQbm9evXKGTduXEOAhISE0uXLlye1adOm46JFi5KfeeaZfcbjJSYmytdffz3zuuuua922\nbdsOHo+HBx980NJ5b9y4cXt79OhxdlpaWvs2bdoE/qiNGDHiyMsvv9zg7LPP7rBhw4a48hzbDXbn\nnzp16s6FCxcmt23btsM555zTYfXq1fENGjTwdevWLbdNmzYd77jjjiYjR4481rFjx4Kzzz67Y//+\n/ds+8cQTu5s1a3ZyC5lPEoWFhZ769et31n8mTJhQf/r06btWrVqV1LZt2w6tW7fuOGXKlLoAjzzy\nyP4JEyY0Ofvsszt4vZV3O1555ZVdr7zySv22bdt22Lp1a3y1atUiunTZze2+++471KRJk+L27dt3\nbNeuXYe33nqrFsDNN998eNCgQW179uzZtnnz5iXjx4/f069fv7Znn312x9TU1Lwbb7zR4qFNURaE\ntOmnJIT4SEo51J8aaBwk0MqfOp+MCVYmaWlp8rff/Jru4CLIeAW6vwar7oPM90MH1+0LAxcF32+Z\nBiv8OjGxqZamd9770GK4YczroVGaixdqaWUAF34HDS7Wlj/wR4UbXapZqu/yZ0QON9z27wfAwZ+C\n7/+0DL7tqS23/RukTdZqvD421Pr0/1prmJy/G67aCUlNYctUWDEW6g+AAz9CYhMYYkp9/u1uTWAZ\n6Tsbfr42+P6in6C+/1o+bx3aiHlYsSYWNz4P0dXAmwsd/g7n/iv0ehteAgO+Ce73TQ84skJrotzB\nbAxpYl7bYIqkTvfXoI3/fu/7Fn68JHT78AhNmCOx+qHQNEnQrm9oub9kdM2YMWNYsGABe/bsYerU\nqYweHew7FhsbS3JyMj/++COdOoXX9a1YsYIePXqErLP7d69QnKoIIVZKKdOqeh4Kd6xZsyYzNTX1\ncFXPoywkJiZ2Mbu1KRQnm5ycHE9SUlKpx+Nh+vTpKbNmzaq1YMGCP6p6XmbWrFlTJzU1tUVVz+NU\nxSmxUm/ue/nJmEiVs2CA3zRBWtdHlZjqU/UITo2OULs7bJsROfJijDpZ1XnFVHffrNhn4RxotIkX\nUdBoULDWSk8pzPL3Q6rdQxNY5tRHsO7xZZ6vUw1WaUkwUhZfH3JztfRHM7GmyPcR/9wOLwsfa2Tb\nu+HiCio/RdDqM/O6zJooOAC5f0Dd82DdU7Djv3DxTxDvrh/k/v37AymABw4cCNlWXFxMVlZWmBmG\nTvfu3Zk8eTL33KP9k/773//ubs4KhUKhUChOKkuWLEm85557mkkpqV69um/GjBmZVT0nRdmxFVgG\nK/SxUsqQcIIQ4jnCe0+d3uiOdIeWQJ3ewfUxNaHkWHiKm56WV/9CQ31TBHFkTJuzeliPTrZebzyf\nTklu+DZjnZN+PdGJoefTxyS1DJ+zLIW9X0PGS+HnN9elGdP7ck1frEhvULjF1dG2e/1RngJDxkWi\njWu/J0K90tJbrNdXtsCyqs3DZSTo8xba/C5ZAese19ZteydypA74+eefmTdvXuD9xIkTLcfFxcVZ\nrge49dZbyczMRErJY4895m7OCoVC8T+Eil4pTgUGDRqUm5GRcdIbZCsqFjcmFwMt1g2u6IlUKbsN\n3huF+2H3p8H3sX431BKTwNIFhogO9pSyfAA37mN46PdZCClPNLYP7OaaJuP+ejQp5Pz+45gjWPpx\nYmqE77PjQ828wQrztemi7tASi7HFhvNU96/zC64jK4Pj9PtRsA/S/x1c72Ta4URl12DZiV836OLv\n8K/BdSVhnQcsMUesrNwCBw0aFLFB8RVXXMGll15KIC1WoVAoKo/S0tLScruiKRSKUxf/v+0z3lHy\nRHCyJ/0LMBZoJYRYa9iUDFg8VZ/GrHX4Rl8XCCXZUOoDj/8hVhc1nuhgSp1ZhBgfpiFyBAsR3lA4\nsK9JMFiZXFgJvLAIVlFwvfD4e2R5tes4+LP1uQGyN4W+168/e3P4WG9uMEVQv3/6+4VXBMfpc/n5\n2tB7VV6B5WTTXhFEEtBuEIbvNIqt26J4vV4yMjLwer14PB7y852FXUxMDF9/HdajG4BDhw7Rt29f\nMjMzAyYY7dq1Y9OmTZbjFQqFooJYf+jQoQ5169Y97vF4VNGnQnGGUFpaKg4dOlQDOGObTVcETjVY\nHwBfA88A4wzrc6SURyp1ViebY2vtt4koTSSUZIM3OxjRklYRLFOK4PaZoe8jRbBw+ELAHJExCjQ9\nmmYlKuwiWJ44bd7ePE04eJKD12HFlqmm+ejXbxEELTkeFCP6/bKq9dJFl1mIljuCZbj/FSGGwo5v\nl75Zan0fAtvNHjF+bCJYWVlZnHPOOQDUq1eP9PR0PvroI4YOHWo5vqSkhPHjxzN06FA6duwYsi03\nN5eMjIyQdZXpfqRQKBQAXq/3tv3797+5f//+c3CXLaNQKE4PSoH1Xq/3tqqeyKmMUw3WceA4cAOA\nEKIeEA9UE0JUk1LuPDlTrGKE8NdhZWt1WLpgKPVHjURUeJRIJzo5WHsEkSNYQgRrp8yEpQhamFxY\nCiy/aNINMPTjRBkFViHEJGsOhm4J1GBZZICUHA9eX+B+WdSnma9JRzgILLv7A6ECyymdb90TgAc6\nlbEWyU605WyB6u3c7WfsD2Y2TvFjbOrn9XqpXbs2CQkO4hd48sknadCgQZjAKiwMve8XXXQRjRvb\n1L4pFApFBdGtW7eDwJVVPQ+FQqGoCiK2ZxZCXAG8ADQCDgLN0fpadXTa74wiJll7NfaCMqYIRpui\nRDopnUNrlEIiWH6BFJYS6DJF0Mrkwqo3le6IGEgj9D/ge2LDa8ecIlhmnCJYxceD90J3CrSKYFmt\nA01o2uGU+mcUVVbRJl+htv+6Cdr7lM7Q5Cr74zkd38jBRc4CyzhnY1qgTQQrNjaWDh06EBUVFWgq\nnJMT2Qreqg9Wq1at2LhxIwUFBXg8HlJTUyMeR6FQVC516tSRLVq0qOppKBQKhSICK1euPCylrFvW\n/SIKLOBpoBfwvZSyixBiAHBjWU902tL6Vtg6XVs2pumFpAjaRLDMAsL4oK2PNYoi6XOIYJmEhc8i\nRdBKYHmiQ7cFUgRjgxErXWBFl0FgBUw+LIwVtky1iGDproJ1oehQ6LrEJlqvLh3jcth5baJeoNV+\nBZYtxNCPgyDl3OD7rOXa/OucB3EumqXbpQhGwvi5GEWVjRFHcnIyGzZsCFnnJq3PqgdWXFwc7du3\ndzdPhUJxUmjRooUym1EoFIrTACHEjvLs5yYvukRKmQV4hBAeKeWPwP9Gs8duL8NZdwZT1owip2Cv\n9hpdzTqC5c0LCghdhFilihkFQ2mx+xRBK5MLq+iOOYIVIrBMESxPGVIEpUOK4L6vDREsUw2WcY6B\nazIdY/dncHSN9XkdI1gGgWUlhg4uhIzJwfcb/qWZbixzmUbsNaUI6tGvSIYaRkv7jBcN690bcdxw\nww0MGDDAccy8efOYMGGC62MqFAqFQqFQKCoeNwLrmBCiGrAIeF8IMRlw2V31NMDOtQ+gZmctXc1j\nIbCO+c1TancPj2DtmAUfVYNj67T3upBZY2jwqh/LKJx8RbhOEfRa1WBZpQgaIli52+G4f956DRYE\na5fKYi4REFg2gtAugmWM2gREl0WqYPrz1sc1C82+s6H/N/5zWkSw6p5vfRwjRlt+J8yiLc4fMY5k\nqGEVWQTXAuvVV1+la9eubN++nXr16vHuu++yYsUKUlJSQsZNnjyZJ554Aun0O61QKFwjhHhbCHFQ\nCGHpliU0XhZCbBVCrBVCdD3Zc1QoFArFqYcbgXUVUADcB3wD/AFc4bjH6YTTQ64e9bESWLrAia0Z\nHsFa8ZfQ4+jbrc5rTCP05lAugeWUImiMYH3XJ7jeKkXQ3MzYiVJTyqGZQASrpv+9VQTLv84cGYLw\nvmOBffznS2wKQ/Og6TWQ0NB/HIPAytmivbb7m/01lBWzkNKvbfWDzk2mT1Bg7dmzh3Xr1pGZmcnd\nd9/NTTfdRFpaGl9//TW9e/cOM62wSif0+XzMmzePTz/9lDlz5rg6r0KhYAYwyGH7YKCN/2cMMNVh\nrEKhUCj+R4hYgyWlNEar3q3EuVQNTg1pk8/SXj2x2quVzXpUYngEyxMXehwr8wirCFbRYWw1r3me\nBxYYtpnS/4zoNVilXq2hr3FOZodBOyFgJL6B1ozZyrmw7d9g88vacuFB7VVvaGw1PiC6yuAwqO/v\niQ0K15hq2qtuQuIrDpqL1L0g8jXFuqi/kjK8rsvodpj1G9SziZZZRRbB8Xdv2bJleL1efD4fJSXB\ncdnZ2SxdupSYmBjq16/PL7/8QnZ2dsAMA6C4uJiYGG1uzz//PBMnTiQpKYnMzExAM9GwMsRQKBSh\nSCkXCSFaOAy5CpgptbDxUiFETSFEQynlPod92LwZBg7Ulo2ePlbLkbaXZezpeqzoaIiPt/6Ji4PE\nRKhZE2rVgpSU4E9sLAqFQlElODUaNodThP+9AKSUsnolz+3kYBdFSGwCSc20ZT2CZXwg1h+2oxMh\nOklb9uVrNVSF+0OPZSWwpEUEq+gwxNa2madJcISYJfgf4JffGb6fuQbLOCdzDZabCFbzG7Q6InME\nq81YOPeZoMDSCTQaLoH8vYT8SpUWa3b3Vp+BrcDSa8gM4ibaL7C8ubDnC/815UNCI0ioH/ma4l2Y\nw+RsISy66Im2XjZjJ1x99oYdffr0wefTPo9du3YxcuRISkpKWLx4Mb179wbg2muvZcKECSxYoInt\nxMRErroq1BXx+PHjHDp0iEOHDgXWqT5YCkWF0RjYZXi/278uTGAJIcagRbmIi+tMfn5ohrrVcqTt\nZRl7Oh+rpASKiqCwEAoKoNShW4eRatWgSRNo2jT42rw5tG8PHTpookyhUCgqA6c+WMkncyJVhvFB\n3uhwV/3s4HqrFEFjBMvYB2v90+HnsOovZRXBKskORnyMyNKg+UWLGyHzP9bXYJVWJ0wugjrRiYYU\nQX8EKZLAqtbKIDb9x9OjRp4Y61RIXcRJr2YoETLvIs3Jzwr9/qx7Qpvfuc/41xtMOgLX4hdYRYdD\nz+G2r5edXbyRpaMs9iuwXjZjF8HK2w4FByxFYFRUVEBg1alThyZNmgCQnp4e3D0vj6VLl3LvvfcC\nMGzYMN56663QKfpCP9MhQ4YQHR2NlBLhZIevUCgqFCnldGA6QFpamlyyJMIOClu83qDgKiyEvDw4\ndgyOHIGjR4M/hw7B7t2waxesXw/794cKt4YNNaGVlga9emk/DRpU3XUpFIozBzc27QghzgfaSCnf\nEULUAZKllNsrd2ongeMbYKX2cEpCQy3aogusWt2C48wugsZ0saiEYIqgLx/Snw0/T4zF12T6sfZ/\nH1wnfdYP44G0uBhrI4oShx5JdhEsT0x4BMtOCBjnp/e9OvCT1vtJN+7w2ORiBFIUS+DoqtBtviIo\nsLFkLy3W6sz0nlVt/qJFFK0EVlQCwQCr8dwuTTuc6qd08neFrzPed6fPwCn1cut0y4bHvXr1wuv1\nEhUVaoOfnR2MXObl5REXF0xHLS4uZtWqVWzZsoUhQ4YQFxfHuHHj+Mtf/kJpaSk1a9YMM8ZQKBQn\nxB6gqeF9E/86RSUSHa39JCWVbb/iYk1sbdwI6ena6/r18MILWpQMtAjXRRfBoEFw8cVaqqFCoVCU\nFTeNhsej2bK3A94BYoH/AH2c9jst8BXCjv9qyyIGklpCdob2/pxHg+PMEaxSv9ufJw48UaERLDMN\nB1unu+nHWnVvcF3hwWDtEsC2mdDqplAbdWHxkZUcs3dDNNZgmSlriqD0Be/Xvq/hiKGPiy54oquF\nmk1YWdzr+PJh4wvW5yotgdxtwfdH1/gFlkFsBs4h/Oc1iRyre2Wk59uwbLSW0vllJxi4KOh6aMZc\nV9dqdMUIrKg4y9ULFy60XH/HHXfw+++/s2fPHtLT07npppsC2zp37kyPHj3w+Xw8+eSTPPbYY9Ss\nWZOaKg9GoagsPgfuEkJ8CPQEjkeqv1JUHbGx0Lq19nP55cH1hYWwejX8+issWQJz5sDbb4PHo0W1\nrrtO+zH5CSkUCoUtblwErwauxG/NLqXcC5x56YOeGOgxDer1hwHzg3VV+jYI1k0Z66/AEMHKs4gU\nRQejPkYO/hQqIKxYerP2uvrB0OOZKT5mX0tmF8GCYGNhK4HV/XXo/BRcYkjhk6WQZ+y3ZhB1+j1q\neXPoOYyNjs1mEkWHIWup9byRUHQk+LbQ/8xiFcGCoNFFyLkdIlhNr4Hm1wffH18PmR/Yj0/pHFwe\nvBq6Tw0VdGZxZ8QpMmgX+bMhOjqaN954g6+++orDhw+HbHv44YcDKYGPP/54mY6rUCjCEUL8F/gV\naCeE2C2EuFUIcacQQi94/QrYBmwF3gDGVtFUFSdAfDz07g333w+zZ2uphUuWwKOPQn4+3HefVr/V\nrx+89ZaWkqhQKBROuBFYxX6HJAkghChjUP40ISpBi5Bc/CM0/FPoNnMEy1h/BZqISGisCRBztEpE\nB0WOmSU3uJvbH/66Gm8OFGWFb/fmWjvx6ecHTeDE1Qnd5rGpweo0AdrcoUXxancPjpc+6GZo1Bsi\nsPxCwSxqhCcoMGv6RUqTq8PnGV8fBv5iOLTpXhZEEFjRFgJLOAgsj78PmFUtlxU1U7XX5sMg5VyI\nijXVz5UzguUijXH06NG0bNmStm3b8v33wZRSp35XuhGGQqEoP1LKG6SUDaWUMVLKJlLKt6SUr0sp\nX/dvl1LKv0opW0spO0kpf4t0TMWpT3Q0nHcePPGEFtnKyNCWDx2C226DRo3g7rthw4aqnqlCoThV\ncSOwPhJCTANqCiFuB74H3qzcaVUB0Q66UX9Q3/mx9mqOYIFWj2SFXQQL4NjayPMyRz92fmQ9ziy8\nov1BRl3clXqhWmttueuL/jHmCJY3dB8z0gfNhmrL8fVC0xLtBBYE75+eOtj+vqC7YGBMNCQYqotl\naWhUTndNtEoRBGtx5OTsFxWnpRYaRaeTKYZ+b4zmJ10mBpfLEsHq/Z5hjpEjWGvXriUzM5MtW7aQ\nZCg6+P7777nmmmto1qxZ2D7/+Mc/wtb98MMP3HrrrYwYMYJ33nkn4nkVCoVCAW3bwmOPaYJq8WK4\n8kqYPh3OOQcuu0yLdikUCoURN32wJgohBgLZaHVYj0spv6v0mZ1snARWvN/lbf93kLNVS8mDYAQL\nwgWDjlMEy425gpM7HWhCo7QECoM23DS5SkvvA0OKni8oEur6y+fsarBsBVZp8D5580LFgZPA8kRr\ndWu6CImK12qdjFbznlitx5ZOabHJFj83uN54Ph1LgRUhggXaPAr2astunACNoq3mOdBlEqx+oGwR\nrBhDhq2N+F66dCnHjx+nqKiILVu2BNY3atQosNy7d29mz57NoUOHqFevXsj+eu+s++67jxkzZhAV\nFUWrVq1YsWIFANWrV2fUKAtnRIVCoVBYIgT06aP9vPgivP46TJ4M558PF1wA48fDhRdW9SwVCsWp\ngJsIFlLK76SUD0kpHwQWCCFGVPK8Tj5O6WFNDNbfxcfg257acqGhltlpfzvB4gazcUacoU9Wx39A\njY7asu5+GF8fLvgManYKPbf0hkd/AjbtZRBYgabKeVB8NLhNP6bVvnoEq8QgsMzpimfdpkXUer4Z\nvB5jBMvrT3ovT4pgx/BoTlBgGQwgrExKdALRPdN3ErpYKksEyxMHDQf5t1nXzo0aNYpBgwZx1VVX\n8c0335CZmcnvv/9OY4sq66lTpwaWmzRpgsfj4ZdftHTL3Nxcjh07RlZWFh5P8J97YaELca9QKBQK\nS+rU0Wq0MjPhpZfgjz8098HBg2Gti+QUhUJxZmMrsIQQ1YUQfxdCTBFC/Elo3IVW0Dv05E3xJOEU\nwarVTesBBaHRCKPjX4yN70dpkXu7cCt8pmraPh8Gl5OaB/tm6QIrrAbKIoKlC49ABKtQi4Dl7fRv\nd0gR9ERZ36uA4LHoraRHfQI9s+Ih0ZDWVqc3nP2Ittz4Sv/YbC1aqBOIYOkisQwmF50tepPp22IM\nroE+J4Gli0+TwNJTMZ0iWOa6PE8sJLex3uYnNjZ4fQkJCTRv3pzU1FSio8ODzs8991xguVq1apSW\nljJx4kTWr1/PsWPB3mj9+vXjjTfe4L333uPOOy2aUisUCoWiTCQlwT33wNatMHEiLFsG554Lt9yi\n9d1SKBT/mzilCL4HHEVzULoN+Afa0/MQKeXvJ2FuJxebB90ACQ011z87tz67CJav0LoPlpHYWlB8\nxHpbsaF5sCcuVJhUax0USfoDvtnYwViDFRAn/o891h8N2z4Tds0ORons0h11kdF9Kvx6U+g2p1qi\nIr/bnTFFMNEQial/oSbcINS2fOv04HJYBMt0nR6L+ildDDk11DXasjtFsEpt6tN0YWe0pjdj/mw9\nscH7ZfN7d95559GgQQNiY2ND6q6siI2NJT9fm/umTZsC6zt16hRY/uijj7j88stJSEhQTYYVCoWi\ngomPhwcegNGj4ZlntNTBzz6Df/4T7rwTok4gkUWhUJx+OKUItpJS3iKlnAbcAHQALjkjxRVA4QHn\n7REeiB0FVqQIVutb7beFCKzoUAESWyv4XhcgYcJDj2CVGOqI/GPq9Q2O8xoiZXF1bSZTqr00vTZ8\nU1nsxqPiQ++XsceUUSgZ7/WBn6DUZ58iaGVo4SZyGG+oXXKMYFnUYIG7CFZRqJ06UXERf5+mTp3K\n/PnzmTdvHm3atLEc06dPH4QQgSiVsemwmb1795KQkMA///lPatSooWzcFQqFohJISYHnn4d166B7\nd7jrLq2X1urVVT0zhUJxMnESWIFQjZTSB+yWUp65hRuRHsadGuZCMJJkxk2KoNP2EoPAEjGhYiS6\nWvC9HkGxc9fbOj1Ya6VHdmJrapE5M+b6KB09ghWdGH69RsMKnYE21kpRcaEGIUb3viiDcDJaz0sv\nrLrfXmBZNRV2rH3zOyB2eDi4yutgchGxBst//w/9Asc3hY4JE1gGe3hfkcMcobS01NaOfdmyZaGn\nKQoeq2fPniHboqOjkVIyZcoUcnJyeOqpp0LGKxQKhaLiaNsWvv0W/vtf2L0bevSAp54Cr0PXDoVC\ncebgJLBShRDZ/p8coLO+LISweJo+zTE3wTVj7oUFobVIdgLLKoKlG1PoOPVrMkawmg4JjWDFJAcf\n1O0EljHdr3B/+JiERoRhFlgpXfyv3QxzNomXRpdqr8b51T1Pe217V+hYT3yoxX2sKYVStz83i7bN\nLwfXGfcHG0t2+z5RAVEXX09rMA3OESwrF0EICtiSHMjfC9/1gS/PDh1jJbCiIkRE/cyfP5+YmBjq\n1KkT5vqnNxW24umnnyY1NZX4+HhiYmIYOHAgQoiQfY4csUlLVSgUCsUJIwQMGwbp6TB0KDz+uNZf\na9OmyPsqFIrTG1uBJaWMklJW9/8kSymjDcs2RTqnMec+57xdFyVGtzijMIo2CSw90pFybriAajHc\n+thWGAVWt1fCG+PqgiZgIGFOnbNIGzNGYazEnVlgXTAX2t8PfT827GcSWIl+oWZVbxZyDqFdr1Eg\nJTUPHa+LVatoYe52/z4tTOeIILDOGR+6KdpgShJwRiyHi6Bu4Z+7FfZ+Yb2vUwQrgsA6evQoPp+P\nrKwsCgpCI2yLFi3igQcesNxv4MCBrF27luXLl1NcXEzbtm0BqF076EJ55513snPnTsfzKxQKheLE\nSEmB99+Hjz7S3Aa7dIGpU0NbSSoUijMLVzbt5UUIMUgIkSGE2CqEGGexvb0Q4lchRJEQ4kHTtppC\niE+EEJuEEBuFEL396ycIIfYIIX73/1xq2Kez/3gbhBDrhBAOnWNN6C6BdugiaM+XxkkGl6NMEZV+\nX0DHR7V+VOaoh1nUOKYIHtdea/fSDBVCUgQTg+9LLHpzga+fjV8AACAASURBVPUDvPF8Vuc2Gj8A\nJDWFrpMgsYnhGmzS73RXQ7vzRcVr9y3KSWA5fGx6rZw5tdFKYMnS4HLnCXCtQegYa8B0sVceF8FY\nw/WufsR6X7PAik4Ifm42AmvdunV8+umnTJkyJbCuevXQ7zX69u3LxIkTWWvjCSyl5OabbyYmJob4\n+Hg+/fRTZs2aRUKCJmA///xzDh48aLmvQqFQKCqW666D9euhXz8YOxZGjIAch/JdhUJx+hKx0XB5\nEUJEAa8CA4HdwAohxOdSynTDsCPA34AhFoeYDHwjpfyzECIWMCqHF6WUE03niwb+A4yUUq4RQtTG\nUEfmYsLO23UTiB0fBNc1NvTHMqcI1ukBjS7RlsOMJ8ogsPQIlp6O6InWekWJaK1Jrf6gHmh+bJ7H\neeHHjCSwPC7sjixT8oCGA/3n7W1zPv98jSLK6IwI9umWYDCbMEfqLK7DKLBA6yHWZizs+C+0uMFw\nPv+v1u7P7M9rlyIIUO0sLYJlrJcrLQnOqRwRrJdeeom3334bgBdeeCEglKzo1KkTH330EYsWLSI2\nNpYXXniB2NhYiouLiYmJwev14vUn/nfu3JnmzZsH3AYTExMtj6lQKBSKiqdhQ/jqK3juOa2P1sqV\n8MknYDB9VSgUZwCVGcHqAWyVUm6TUhYDHwJXGQdIKQ9KKVdgEkJCiBrABcBb/nHFUspjOPMnYK2U\nco1/nyy/OYc91Vq7vxpzs1iAtGB0IUwUGCM0YdbpDhGtev1Dt+kP7caUuta3Qqub/efxC5YDP2iv\nZkvw+DpQvZ39+cvbo8sughVfD647DhcvMpzDIIZ0YVXvAi2dMKVLeHqlUwTL7IQYOEeECJZO91fh\nmkOhDZuNNXFW+4AhRdDiutvdHb7OmG5oFlieyC6CxmiVlJJatWqRnGzTaw247rrreOWVV4iPj6dP\nnz506dKF2bNnU1IS/KcV5fcJ7tevX2Bd9+7dWbNmje1xFQqFQlGxeDzw97/DggWQnQ09e2ophAqF\n4syh0iJYQGNgl+H9bqCnzVgzLYFDwDtCiFRgJXCPlFL3Er9bCHET8BvwgJTyKNAWkEKI+UBd4EMp\n5fPmAwshxgBjANo0t7Mjt8AcMUk5N7S5cJhIMKTySVMgzSwOjM55aS/DV52D74uP+o9v83BtrhvK\nWhY+Jr4+ZGdYn9/JYMMJo9DoNjl0m7mPljlFELQUvyv/CL1PgTEuIlhhItXqV9lGLJkjdElNg8u+\novDPEoKpmlafg5VBijdPSx8s9YWLXiEMLoLWAis1NZUrr7yS6tWr065dO8sxVmzatIklSzT3xmuv\nDdrpv/POO1x6qZZNa2xWnJ+fH9KMWKFQKBQnh/794fff4frr4cYbtfTBf/5TE2AKheL05lT9ZxwN\ndAWmSim7AHmAXsM1FWgFnAvsAyYZ9jkfGOF/vVoIcZH5wFLK6VLKNCllmrmmxRFzCmG0qfmrURSk\nvRq6zVi3BRYW4zFw6Xro9yXU7AT9vwluCwgsm2azNTo4zxtMRhdCSy0MbKsAgVW3r/048zmM0am4\nWtbXFWMfqQkYX7gRWHbRKCv02rFSm04EhYe013gLUW41Xz2l1JurzSM6Gf58DIb63R4DLoLWVum3\n3HILc+fO5b333uOyyy5zeRGh4slIfn5+YFt8fGiE0Kl/lkJxpiCESBBCuP+2QqE4CdSvD999pzUj\nfvZZGDJE1WUpFGcClSmw9gCG0ABN/OvcsBut75YejvkETXAhpTwgpfRJKUuBN9BSEfV9FkkpD0sp\n84Gv9H0qBpPAijILLEMKn1m0+EwP7WaBFVcHanaExn6/jkaXQEt/CuChxdqrXSPj1qOdpw0mgWWy\nLSq3wDKmGUZoMiwsarCcsOrNpWPX8NdtiqAduvDT+1JlfgBb3wxuL/ILLKseYVYiMXuj9rpNq6PC\nm6NFtAK1dO5cBH0+H6Wlka9DSsnhw4e55557GD9+fNj2pCTtvHPmzGHSpEmB9ffee2+ZImQKxemI\nEOIK4HfgG//7c4UQn1ftrBQKjZgYzVXw1Ve1+qzzzoPt26t6VgqF4kSoTIG1AmgjhGjpN6kYBrj6\ngyal3A/sMnzbeBGQDiCEMD59Xw2s9y/PBzoJIRL9hhf99H0qhLAIlskcwJhWZo6mdH4q9L05La6O\nReZkWD8rG4HliQmtJzrnsfAxVml4dudxizGCVZZGyk71VTrxDgLLrgYrkk17JAKufn6B9csIWH57\n0P5e7zNmFa2yEr85W7TXVffbnM+dwBo3bhxRUVHExMTwwgsv2I5buHAhdevWpU+fPjzxxBM88cQT\nIdvPOy/c7KRdu3YMHz6c/fv3O85BoTgDmID2ZdwxACnl72ip6ArFKcPYsTB/PuzZo9Vl/fZbVc9I\noVCUl0oTWFJKL3AXmvDZCHwkpdwghLhTCHEngBCigRBiN3A/8KgQYrcQQs/buxt4XwixFi0d8F/+\n9c/7LdjXAgOA+/znOwq8gCbsfgdWSSlNuXlhsyzDFZUhRdAcTWkxDOoPCL6Prxe63dLJz7TOLoIF\noc00Oj0Rvt0palQhAitCBMvK5MKJ6ITwOi4duxqsE45g+e+RrzD0fuqpfgGbdov7ZXVNRVnO5zPb\ntG96Cea2goJ9IcPy87UaO6/Xi8chMX/RokUh78ePH0+9evUC/a+uvfZapJQBowuAjIwMevTowT/+\n8Q/nuSoUpz8lUsrjpnWu/gC4aDdSQwgxTwixxt8iZJTVcRQKN1x0Efz6KyQlaTVaX39d1TNSKBTl\noVJrsKSUX0kp20opW0sp/+lf97qU8nX/8n4pZRN/A+Oa/uVs/7bf/bVSnaWUQ/wCCinlSCllJ//6\nK6WU+wzn+4+UsqOU8hwp5cMRJxhJGIRgThE0RbCiHCJYAAO+gxYjNIt1c82S1TzMD/J2NVgQ2pDX\nym7eKYJVXpOL3G3B5bJEsNykCAKk/iu43Mhfg1R/gH0Nlp5KGUI5UwSN91MXWE427Vaft9k50Iw5\ngrXqPsjbDhu17gNZWVlMmjSJ1157LbCLnU07YJlGKIRg8+bNgNZX6+OPP2bw4MGcddZZIeNyc3Od\n5+rA0aNH2bBhQ7n3VyhOEhuEEMOBKCFEGyHEK8AvkXYytBsZDHQAbhBCmAtf/wqkSylTgf7AJH/W\nhkJRLtq1g19+gTZt4IorYMaMqp6RQqEoK6eqycXJIToJekyDgUsijy2LyYVdb6nz/qNZrAuh2ZQH\ntln8LS5LBCtCmpmjqDHXOzkJuZBzGswZIkawypgiaJ6HPscDPwav1Sx0TJEfoGwRLGOKoPHavP4U\nQbvIGYTavOsUR4pg2bkIar9nO3bs4MEHg723q1Wrxh133GF7uMsvv5xx48Zxyy23AFC7dm3q1atH\nr169tKMKQa9evYiNjSU9PZ05c+bQpk0bunbtSps2bQLHWb16NZMnT+bQoUOO08/LyyMjI4MmTZpw\nzjnn8MYbbzhfr0JRtdwNdASKgP8C2cC9LvaL2G4ELRKWLIQQQDW0/o4WfT0UCvc0bAgLF8KAATBq\nlOYuKMuSdKNQKKqUyrRpPz04a4zLgSYtaq7BMooMVw/2huNZPbSbRcuJCCynCFbKuaHvExo7H8uK\nMtVguYxgGQVWbEpwWRc85nO2ugUO/xq6rlwpggVBowvQarCkNKQIWvTBEgLqXxjsRQZQEiEqZOci\n6L8u3ZRCp3HjxrYOgQBpaWmkpaXx3HPP0blzZ3w+H7fccgudOnXiueeeY8iQITRrpjV03r17N9dc\nc01g319+0b7Iz83NpW/fvuTl5bF48WI+/vhj2/N9/PHHjBoVzIQaM2YMt99+u/M1KxRVhN/46P/8\nP2XBTbuRKWj1xXuBZOB6vwlTCMYWIfq/RYXCierV4csv4dZbtabEhw/DCy9YJ6ooFIpTCyWw3BIp\ngmXcXmJO9bfC8FWU1f+WZYlg6ccSNgFJpwiWuR6s7ycO57EhUtTLKBbjXPYeM7o01ukVXNYdGc2i\ntPVtsNwc4SmDwEpsBiyB7M2hDai9uaHiyu4vm/neeyMILDuTC/911apVi6uvvpq8vDyqV6/OSy+9\n5Ooy9u3bx9q1awF44IEHAuuHDBkSWF63bl3IPrGx2lzS09PJy9NSIj/5xPn34OjRo67mo1CcCggh\nfsSi5kpKeWEFHP4StLrfC4HWwHdCiJ/1dHfDuaYD0wHS0tJULELhithYePddqF0bXnoJcnPh9dch\nyuK7PoVCceqgBJZrIti0GymrwLIiTGC5SN2zS9UzRo2M4gFCbce7v6714SoLNTtFjmAZ67yqtXJ3\nXGOEUMRozXyLj0CJ/5klrA+WQeAkNoX8XdD4CnfnAqh5DuwAsjdBA0P7tFKvIT3Q4S+a+d7rkbaG\ng2Hf19BhnPV4s8Dypz7WrVuXOXPmuJ+/H7s6LWON1kUXXUTt2rXJysri4YcfRvhFY506wd+FFi1a\nOJ5HmnJVdJGmUJyiPGhYjgeuxV0an5t2I6OAZ6X2j2KrEGI70B5YXv7pKhRBPB548UVIToann9ZE\n1syZmr27QqE4NVECyzVmgeUUFaof+XCR0tfMoiXJRUqJ3iw37FiGuba4MXSbMf3ObfqekZqdI48x\nXos5YuZmH0+Mu75XV27X+lUlt4GDP0Ojwe7OBf4IFpC/OzRFUPqCBheWVvB+uvwbspZDq1Gw8d/B\nFEFd+NUx2aSbXQR1nM7hgr/+9a8MGzaMtLS0kPXz58/nb3/7G6ClH27cuJH09PQQ+/aUlBQeeugh\nYmJiqF27Nk7cf//95OXlMX/+fOLi4hg3LsxcTaE4ZZBSrjStWiKEcCOAAu1G0ITVMGC4acxOtFYi\nPwsh6gPtgG0oFBWIEPDUU1CtGowbB/n5MGsWxLssa1YoFCcXJbDc4ibp+ZIVsG8+NL/BxQEjRLCM\nUZ8uE90JrDibh2KjcDILk5AGyeX4n9qNzbtxTLRFHykrQhoZx1hErCx+dau10H4AmpQhegVa1Au0\nyJexLkoaIlhWok6nRge45iAUHtQElp4iqDsSmu+THsHK3w1fpQbX26V5uqRevXoUFxdzzz33MHny\nZACio2BY2+WaSYi/XUDdunWpUaMGv/zyCzk5OVxyySWkpKTw/PPPuz7XY489xmOPWfRdUyhOMYQQ\ntQxvPUA3wOYbqSBSSq8QQm83EgW8rbcb8W9/HXgKmCGEWIf2TdwjUsoINqIKRfl45BEtkvXXv2oO\ng599plm6KxSKUwslsFzjQmDVTtN+3BAxgmVIuarVzd0xY2tZrzdGsMzCxOh+GFWONC83Nu9GcWHX\nMNlpHyuBVSaLfRckGQSWMYJV6nUXwQJNhOsuiXpkStoILOO9PrY2uHw8HbbNhBbD8ZbiaGxhxfLl\nyxkwQBNR8fHxFBYW8peLYWT3w7DgQhgeFPaDBw8ONBnevXs3jRuXw+BEoTg9WIn2rZZASw3cDtzq\nZkcp5VfAV6Z1rxuW9wJ/qrCZKhQRGDtWE1WjR8Oll8JXXymRpVCcaiiB5ZawyMIJ2vjE1HTebhYY\nbrATWMb6rbBUO2NdUTmuydF8Qz+HQUyUJ4IlTCmC0UnuhZpbdPfEgr2ak6CO9AZNLpwiWDrm2qpI\nESwzmf/Rfo6sIKb7lMDqNWvW0Llz5HTMkpJgD68mTZpw9dVXc3Wjr4DwXlV16tQJCKzDhw9z8OBB\nnnrqKWJiYujSpYtK+1OcMUgpW1b1HBSKiuTmm7X0wOHDlchSKE5FlMByS0oXyHy/4o7X+Qkt2tFs\nqPX2EIHlMloTZyOwjHVPebusxwAR0xaN9HwbtrwGHf8ReWxIiqDbCJZDimCHv7s7RlmIitPOIb2h\nJiXS59wDy4zHZL8eaIzsUmDpbJ4S8jbKpWVUXFwcZ511FiUlJfTq1UtL+Vu0BXaHC6yuXbtSo0YN\n6tSpQ2xsLNu2bePTTz8FICcnx1FgzfB3vty9ezeDBw8mNjaWTp3KaJCiUFQyQohrnLZLKcvuJKNQ\nnCJcf73WRWTECLjsMs3SXYksheLUQAkst7S9W3ORWzdBewBveMmJHa92d7jA4W+7Nz+4bGdeoZPQ\nSIu8NLrMeruxzkqWWI+BsvWNaj1K+3GDUVzERojcWe1jNrmIqe7uGGXFEwM+s8DyllFgRWnRTlkK\npT77CFakYzW/gZtuimHmzJmkpaXRoUMHV5dwwQUXsGXLltCVRdZNj999993A8ueff85VVwX7p379\n9de25ygtLQ3pgfXYY49x1llnhZ9Xoah6nIoxJaAEluK0ZtgwTWTdeCNcfjl88YUSWQrFqYASWG6J\nioX290Lbv0LxcYivE3mfEyHfEGmq3tZ57KCVcGQlNLrUenvdPsFlY/pbGJXUmsUojuLqQMEBLXoX\n6yAcnSJYkQRnedHPkfVbcJ2xBstNiiBo0SlfoZYmGKjBMkWshNDW2TWJjorj7bffZOzYsaSmpgas\n1N0yceJEpk+fTvXq1fnm7j3UiZBlatXXqrS0FI8n3HSjsLAwbJ0xNVGhOFWQUrr8FkihOH254QZN\nZI0cqRlfzJunRJZCUdUogVVWPDGVL64g6GrnhoQG0NgmegVaTY+OL/zhOEB1d1GSMmMUdVFx8MNF\nmuve+R/Z72OuwRInKYIFsPnl4LqyRrAgVGDZRbAA6vWD/d9ZH8NXTFRUFD179nR3ThNffvllIKLk\nzQMiBA4TExPD1pWUlBAXZ23dP2rUKLZt28bChQtJTU1VBhmKUx4hxGVAR7Q+WABIKZ+suhkpFBXH\n8OGayLrpJk1kffEFWPy3rlAoThJKYJ2qnHW7ZvVdlma5dhTsDy5bCayrMiE3E2p2PPFzWaE3N05o\nqL2KKPvIjY5THyynyNeJYCWCyhvBgsgCSzfPsCLS/YnAAw88wIpff+KtMdDARVbmgAEDWLx4MS+/\n/DJ169alRYsWltEr0MTY22+/fULzUyhOJkKI14FEYADwJvBnVCNgxRnGiBHaq1FkJSQ476NQKCoH\nJbCcKDyoCY+UzkH77ZNFVBx0rCAXt7WPBpfNDW8BkpprP5VFTDL8+UiwFkyWOkfSwLkPVmWlCFqJ\noN8fgosX++fkzmiiQgTWrk+00FN0+fI8LrvsMjbMuYPmx6YFVyY0ChmzdetWNm3aREFBAUePHqVV\nq1aMHTuWrl27kpzs0u1RoTg9OE9K2VkIsVZK+YQQYhJgX2ioUJymjBgRjGRdfTXMnQs2iQgKhaIS\nUQLLiT1fwrLRcOX2YAPb041SQ21M6r+g3T1VM4/YlODy8fXajxPmGqyTYXJh1dOrtERrHAyhPcOc\nMDoJShsXQQg1FTn7YdhoavK74RlIfdrdOU0IIWjeqCYcsx/z/vvvM2HChLD1y5cvp3v37uU6r0Jx\niqLnKecLIRoBWUDDKpyPQlFp3HgjFBfDrbdqToMffwwxLru9KBSKisE6B0ih4fM7+Vk9WO/8GL7p\nrn1V5Jb8PcF0s5OFMVKU0rV8zYSrAqdGwyczggWQna69RrlMaI/yf13oK3SOYGEQWO3vD998PNxa\nvUyYa8ZKQ40oEmxyR3r06OHoIqhQnIZ8IYSoCfwbWAVkAh9U6YwUikpk9GiYMkWLYN14I3hP8qOH\nQvG/jopgObH7M+31+DpIqB+6rfgYHPlNewiueU7kY+Vmwuctoc1foPtrFT5VW4wGEz8NguuLTg+R\nFWZyYUjPq7QIlk0KoM/f08ptul5SC8jOgKNrI6QIGgRWXG2L+Zzg9x/mc5oEVtu2bbn88suJiYnh\nyy+/pLg4WPcVHR36X8P8+fOZO3cuY8eOJTk5mblz55KQkEBxcTH16tUjPz+fjh07kpaWdmJzVigq\nECFEjJSyREr5lH/VbCHEF0C8lPK4074KxenOX/8KBQXw0ENaU+J33gGb0lqFQlHBKIHlRCDaZPE/\nUrVW2mvxEXfHyvH3CMr870kWWKZap4I9UK1l5ZwrewvM7wEX/wgp59qPi02BFiOcj2WuwTKKkahK\nSii3s0LXmwZHu4xgVT8b9s2Hgz8Ge2pFElhWBhqxFqKrLJgjWKYeaEOGDGHIkCGAZtNeq1awUfXt\nt9/OrFmz6NmzJ8eOHWPQoEGA1h9rypQp3HNPeKrpI488ogSW4lRjjxDic+C/wA9SowgoquJ5KRQn\nhQcf1ETW449rhhdTp9r/qVMoFBWH+i7DCd2eW1rE1nd/rr26dXsr3G9/rMokKhFaGVrBVGaK4uYp\nUHIM9n7lPK7UG9ny3Bi98cSc/PtmJH936GskdCG2dXpwXaQaLEvK0PjZCrNoK7XvVRVjStDfsWMH\nf/zxBwCHDx8OrM/MzKSgwLqXWn5+vuV6haIKORtYATwK7BJCTBZC9KriOSkUJ5VHH4W//x2mTYP7\n7itbZYNCoSgfKoLlRKvRcGhxMEXMyIEftFerbWZKS7T6p17vVmz0aM+XUKtr0P7civg60OttLQVt\n48TKFSql/mhZpMiLiIJ9XwMvOowRMHCxJkKEJ3TeK8ZC7nYYUNF1QhG+1jv8q7vDWKUSRqrBAs0u\n31cEGS/DllcdBZErzKLO4XhWfbD0lMGUlKBBSUpKCq1ateKuu+6ioKCAAwcOEBsbS2JioopeKU45\npJRZwDRgmt/c4jrgRSFEPeBDKeX/VekEFYqTgBDwz39qkayXXtIiWf/6l4pkKRSViRJYTtT2PzBa\nRan0CEupC4G18j7tgfnaw9a1NuWhJBsWXq4tD1wCdS3s10GLFvkKoHYP//sTfGh3ot29WtQmktte\nwz/BsTWRj1e3T3DZZ/gMCg9C/s7yzfFEaPMXd+OszDCs/pKZbdp1q/y65/kF1on1wgpPO5RBwWoe\n6vHw+++/s2TJEnbt2kXLli3p3bs3ADVq1GDp0qXExsYSFxdHhw4d6Nq1q+OpCwoKeOaZZ0hMTKRW\nrVqMGTPmxK5FoThBpJR7hRBvAUeB+4HbACWwFP8TCAEvvKCJrGef1UTW449X9awUijMXJbCcOLIK\nGl0KyWeFb6vWWqurajg48nFytVQrvusL5z4DTa468bllvBxc/q4PDLeJ+R9aAgv6a+IHKjeCVb09\n3FAa+Wux4mOaQCwL3tzg8q7ZZZ+bGyL1uWp5k7vjuDXDsIt+6tGusohhbx4c/BkaXBTc3yoNs7Qk\nUMO2Y8cOlixZQklJCcuWLWPgwIG0bNmSO+64g5UrVzJhwgSuueYarrvuOnr27Ol+LsCxY8d46inN\nV6BBgwZKYCmqDCFEPHAFcANwHvANMA74rirnpVCcbISA116DwkIYP14TWQ89VNWzUijOTJTAcmLl\nPdDyZkhJ1d77irQH2ZjqsGceVG8H0S56I7UYAfu+geyNsOy2ihFYRYcjj4GgyUWdXlDzTUhseuLn\ntmPPF5C1HFKfCl0vZVB0yVLY/23Zj+3NOfH5RcKYxnfRD7DgwtDtrm3aXY7zWdcyBVL7yiKwltyg\n/U52/L9g7ywrwWgQWL/++isjRgTNRqZOnQqA1+ulT58+eL1ePvzwQ44dO0aNGu6t8bdt28bTTwf7\nd+3fv5/ff/+dc891MD5RKCoBIcQHwMXAQuB9YLiUMkKXc4XizMXjgbfe0kTWww9rIuuuu6p6VgrF\nmYcyubCjtERzgPPEBEXK4utgdm0tvU16NYv2rN8iH8voPneiaV86RQb3wsZX2o/TH+KT20LrWyG+\nbsWc34rdn8KGp2HHR1papB6lWvs4fNEBSn3lN9loPrzi5mmHsWapXv/w7W4bDbt1GzQ7POoEGhWX\nQWDtmae9bp8ZXGdOQQTI3xVYNFuxg2Z2ERUVhdfQNGXmzJkMHz6cW265hRkzZkScyubNm3nnnXdC\n1hmNMhSKk8g3QGsp5XVSytnlEVdCiEFCiAwhxFYhxDibMf2FEL8LITYIIRae8KwVikokKgreew+G\nDIG774Y336zqGSkUZx4qgmVHUZb2ummS1teo3V1Q4xztQfYbQzH/+iehy0So3tb+WH8YHjYrqgaq\nxXDIfA/qXQB9HVLm9Id46YXDy7WoW6whGiElrH0MWt8G1Vqc2Jx0QbXkeu3Vmwft7tEMQbI3QnEW\nRFcr37E7PwmHfoHDi7X3iU1ObK5WGPuD/dcD/b6EhZcF17kVTq5TBG0iWHokbd/XWtS0LLb0RgFv\nJbC+7BBIJ23evHnY5ssuu4zffvuNGjVqcPy4ZjH/yiuvsGWL1mYgLi6Ohg0bsnLlShISEujfvz/p\n6ekcPXqU48eP83//93+UlIT/jmdnlzElVKGoAKSUMyOPskcIEQW8CgwEdgMrhBCfSynTDWNqAq8B\ng6SUO/0GGgrFKU1MDHz4oSayxoyB2Fi4yWUWvEKhiIwSWHaUGFLSdCMLPVXQyJ55UDM1PC3OSM1O\nsPcL/7EqKILVaBA0vASyN2k1TdGJ1gJAd/Y7vhGW3gwXfq/V6egc3wAb/gkHF8LAn0P39RVqkbLE\nRu7mZK7vanwFfGVowjynPlzn7wvVZZK7Y+pExUG9PkGB1WdW2fZ3g9l1LzoB2oyFLf6+ZW4jWK5T\nCeO1KKk5lc+Yqrjvm8gppUbP3UgCy0D37t354YcfWLlyJdnZ2Vx++eUcPnyY7t27h4zTxRXA9OnT\nyc/P5z//+Q8AkydP5qGHHgo4Dt5///20bt2acePGsWrVKrZt20ZSUhIe1d1ScXrSA9gqpdwGIIT4\nELgKSDeMGQ7MkVLuBJBSHjzps1QoykFcHMyZA1dcAaNGaSJr2LCqnpVCcWZQqU89kVIrhBDthRC/\nCiGKhBAPmra9LYQ4KIRYb1pfSwjxnRBii/81xbS9mRAi13y8MmM0VdAfWg/9Yj22KMLfU6PwkD4t\nVe5EObYBjq2DvB0wpy58lAT7LGqbanaGcx6HeP+XqnYpeu3+Fr7u5z/DZ43dz8l8bEvB5x/jiQaf\nD2bNgj173B2/naG5bUW5MRoxC52SnGC6HpQ/gmUnzC6Yq4nvi80ZRQbBZJdGCFo0NDtD+/wD4w3G\nGS4MTWrVqsXhw4fJy8sjIyOD9PT0iPts3rw5sBwbfyI0swAAIABJREFUGxti4z5nzhweffRRVq1a\nRVpaGlu3bmXNmjVcffXV+HwV8HuvUJQRIYRHCGFjsxqRxsAuw/vd/nVG2gIpQoifhBArhRCWcQAh\nxBghxG9CiN8OHTpUzukoFBVLQgLMnQvnnw833gizK8lDSqH4X6PSIlhuUiuAI8DfgCEWh5gBTAHM\nKR7jgAVSymf9om0c8Ihh+wvAiTdISj4LLvoRFgwICizbBroRXPNKvRCdDJenQ/7eimk+saBfMI1R\nZ/8CzQLdSK2u2k/WCu298aF7z1eQu01bjrEwMcharr36CrVoSyTMEZPM/4SPiYqHGh20qNmymnDz\nzdr6oiLt6zMnopP9x0iEH/4EQ3ZEnlNZMKfiFWWFRpM8LlP1zELMTmDV6QmXrg1fb3RYtBPEviL4\noj3kZYauL0MEC2Djxo0899xzAAwdOpTzzz8/4j7Ll2u/F0lJSaSmpjJ8+HAKCgqoXr06N954Y2Dc\nt9+GCv7i4mISElxGARWKCkJKWSqEeBXoUkmniAa6ARcBCcCvQoilUsrNxkFSyunAdIC0tDTV6lVx\nypCUBF98AZdcokWw9KiWQqEoP5UZwQqkVkgpiwE9tSKAlPKglHIFEFa0IaVchCbAzFwFvOtffpf/\nZ++8w6sosz/+edNDQui9g4B0UDpKExBFEBWkWHDXDpb1Z1l314IoNnRtKCqioihdBVcBEVAQEKRK\n7y3UUBIC6cn7++PMZN6Ze28ICKIyn+fJc6e80+69SeY755zvMcSZUqo3sANY95vPPrIolOsoVtd2\nVMBrENH5e+tkT3Ejq7MlYlOkMpRuGbQP0WmhNWQdC1weFkSgZKVA+n4nOmMKrB97wPL7ZTpxWuC2\njZ6W18Jaqrf/0i1CUrdAm0+d+YvukT5ZJ/dIL6tffnHWffXVqfe/8mF5zU07ddTwTPA2SM487P5s\nCyuMvWL0dJtLRyY40/bndXSFfI42J3cHiitzPBRKYEVGOgIyJyeHLl268PHHH/P8889zxx13uMYO\nGzaMp4zGKVWrVqVNmzb897//ZdSoUTz+eND6/3yC1Wb5+PxOzFFK3aDUaT/d2guY1quVrWUmicAs\nrfVJrfVhYD4QJJ/cx+ePS9GiMGMGNGsGffrAzJnn+4x8fP7cnEuBVZjUijOhnNbavtM8AJQDUErF\nI5GsZ87CMSSys+MzqPewU7NkRyIaDYXeibI8vmbBaVwAJS6BKjdIOtfWD8T84beQmyZ25yZlLoPq\nAwLHbnwVvqzo9EQKFRFJ3Ry4zI5qFSSwPlcwubi85mVDh6+ddTEVpE7MFlllL4c1zziW60ZtDwdW\nwtHloY8D7ojduWiYXLq1ez4sslAiJQBTqFXoDu0mnN72poOhzoHNb8PMS2HBDcagPO9WgYT6rK3v\nzsGDB1m4cCH2PWdYWBiJiYkMGjSI/v37c9dddzFy5EgmTZrE4sWLGTJkCM2bOwYvtWrVcu02NjaW\nRx99lLi4uIDln376KdHRp2HW4eNzdrkbmAxkKaWOK6VSlVKFeXL0C1BbKVVDKRUF9Aeme8ZMAy5T\nSkUopYoArYANZ/PkfXx+D4oVg1mzoEEDMb+YM+d8n5GPz5+XP3XludZa4xSsDAVe01qfCL3FaeTB\nH5oPi2+WqIstsPIyoVxniewUsbRi64+h/j9D7gaAWn+DVqNFQCy9E9ISC3F1BWALtGIN5LV4YzGo\nKFY/cKyd3hdXTW70S7UMHFO0NkSXDly+0u5AeIqHvtmWccXSu2CekaK4Zwp8UVbev2INxUgjO1nW\npSF/yW3Wvuh2ZwxGXpaca4MnRPjos5xlc9FdUPJSmS53BVz8jzM7RmQ89NoG1+2HTjOCN6ouCKXk\nXECE5MbXZPrwYmdMqCbFJqHEoSVOd+7cyWuvvYa2rnHKlCk884w8n3jooYdo2bIl9913HxEREbRu\n3ZqSJUsSFxdH2bJlqVKlCqVKuSN+MTExvPzyy5w86X6AkJ6ezvz5832B5XPe0FoX1VqHaa0jtdYJ\n1nxCIbbLAe4DZiGiaZLWep1S6h6l1D3WmA2IHfyvwFLgA6312lD79PH5I1OiBHz3HdSpI2mCP/pN\nB3x8zohzKbAKk1pxJhxUSlUAsF7tXLFWwMtKqZ3AP4B/K6UC2udprd/XWjfXWjcvU6aAnlCHrL8q\nOSecyEmwWqSyl0PxhhQKW8QUtklwKGwDjpw0ea3SR6JtSQsDx+ZmSOQtqhhU6wdxxkcyIA/654h1\nerCoWlQJ2XfRWoHrgpHofbBrEZkgxz9gPQ5LqCcCy8TSaCEFjc6DjIMQW8GplTqT6FJBKAXx1rWW\n7SAmF2b91OcK1j1fuH3F14TY8r/hXOxmwzmQccBZvnuymKScKmoKTrpgY4/DpVWnVa5cuYBNoqw6\nuIULne/S9ddfT5s2bQgPDyctLY2DBw+ye/fuQvXEspk3bx67d+8u9Hgfn7OJEm5WSj1pzVdRSgV5\n2hSI1vpbrXUdrXUtrfVwa9m7Wut3jTEjtNb1tdYNtdavn5ur8PH5fShdGr7/HqpXhx49YFEIfy8f\nH5/QnEuBVZjUijNhOmA5IzAISc9Aa3251rq61ro68DrwvNZ65BkfZfvH8jqnM6y0DAk7z4G2HuOG\nQ/Ph4LyC9/Xz3+Hbpo7AyviNDlJRpSRy1mo0tP4I0vdKtG1ZECfA3HQRhbkZInDSDI2rFGx9F46t\nlJooL9nJEoVa82zoqFvxxs50MCGmIsRVT0U4Ii6+BhTz9A2zNUReiMjMDz3EdCO6jByzxq243PYA\ndo7/bdHBk7tg9ySZXjsUJifAhpfcY1b/58z3fzqEWSmdOsftbvjTjbDh5dDvk4ktQL3uiFYEq3r1\n6jzzzDOEh8v6m2++mY4dO/L999+TkOB+uP/zzz+Tl5dHz549UUoxZMgQhg4dypYtW/jiiy948cUX\nefbZZ10OgyZbt24N2nfLx+d34h2gDWKpDnACMWHy8fEJQtmykiJYsSJcdZW7ZNrHx+fUnDMXQa11\njhVBmgWEAx/aqRXW+neVUuWBZUACkKeU+gdQX2t9XCk1HugIlFZKJQJPa63HAC8Ck5RStwO7gBvP\n1TUAYnax50sRMlFBnPaW3i29qC66Gy59I3hT2JyT0o/K7o8UqsFsYYkqBjUtjZm2F7aNCb3f3AwI\ni5Go2dwu0HI0XGSZF3xupP6FRYrDodnzyjZVWPMUHF4InTxVr1pLA+CsFEmDW3K7s67uQ7DpNSjX\nSeZVhBOJqf84VKsM1HTGp1SGK8aFdurbZx27zOVQuZf8mKRsgEXWvdPAM0wdzDQ8Vcwat5bvwYb/\nQuqmM9vvmZBfM5cdGKnb9kHBzYy1FvFspxGGRUOpVnBkibVPx2nwqaeechlXzJs3j86dO5/y9N55\nR3qDtW7dmrFjxzJ9ujw7adSoEbNnz2bevHmEhYXx3HPPnXJfPj6/A6201pcopVYCaK2PWQ/+fHx8\nQlChAsydCx06QLduMt3sXHlx+vj8xTinjYa11t8C33qWmWkVB5DUwWDbBnFsAK31EcQOt6DjDj3d\nc3WRY+Sv6TzyIyXrXoSEi6GK4SqfbomGre/Bp7ugRAsYNsxZ/0NPaTJcrKE7KvFbyDwioq5EU4lo\nHLbi98HSxqoPdNwQzWObAkJFyHV9VckRJ7mehshZKQSQmQTzr4MG/4bV/4L0fc46WxTYtWphxlet\n7OWwySNWEo9DuQ4hL5k3KsCR/fBrn+Dro4o70+kHCpeel5QE27dDq1YybwuPuGoiiu1UzkPzHXFV\nLejX8uxj28PrnEBDjxPbYfmDgdvY6Fz5TO0oV3g0XDFXeqWBa3+7d+/m5ZdfJjs7mypVqlC7du3T\nOs2IiAhXE+Hrrrsuf3rSpElBt5kyZQpffPEFMTEx9O7dm169egUd5+NzFsm2WodoAKVUGQrlFOPj\nc2FTubIIq/btoUsXmW7ie2T6+JySP7XJxTkjdau81n0QqlzviIVNr8H+WZCaKn2bwDFtyANGzoRn\nn4UcQ0Dt+5+8hkdDkarSW2vTGxIVS5xWuFoaL4fmw+zLxAb9sJEcnRdkXxWvglq3B7oIuvol5ci5\ngSOsUtZCvGHOYDv/meRmAhrWv+AWV+Bcd+uP5FUZAmvfLPj+Kvf41OPwfSd3FCn//DT8sh+2A0cO\nwvZPYEKU2L3bxFaA9l9BxR4EpA4CHFkGCwfAiZ3Osrp1oXVr+Plnmd9rnXOla639AFElYednzja7\nxp/ZZ3a6mBGsvKyCx3rRns84LEp6c8XVcC8HDh8+zNtvv83777/PlMmTiI0pRL8zg5o1a9KlS5eg\n655++mkqVXKMQ2fOnMmePXvo27cv48eP56OPPmL16tWndTwfnzPkTeBLoKxSajjwE/DC+T0lH58/\nB9WqibAqUgQ6d4YVK873Gfn4/PHxBVYwclIlUnHxw3Jzat+Q5mZAVhiULw+XX+7exgwyZAW5IY4q\nBeFRktJ3dLmkFs7vDTs+DRx7yvOzapki4t3Lg934n9ghQsQbPfPetK+x0sTsqM3MS+HEVrGjr9bf\nMdYwsSMkZjQstiLUuQ86fgtd5jvLL5voTO+fAck7POcOHPrBXQuWc1J+0gxxt+MLie7kZYtdff65\n5IglfIevRWx5Sd8Puya4DUaOWb3EbJskW6Bu+0Dq1mLKQot3Ave16t+By8429ucV7H0/FXk5cHyL\nY3pip12GWxlRRgSrYkVJCY2PgWl3rOXqsCeZMnki06dP54knnmDKlCl8//33JCYmkpiYSPfu3V2H\nqlmzJv379w96GvXq1aNKFcdUJSEhgf3797vGfPTRR6d/fT4+p4nW+jPgMURU7Qd6a62Dh1h9fHwC\nqFVL/lXGx8MVV/g1WT4+p+Kcpgj+aSnTTn4A6tzvpIXlZsKqQ5CWFvjXZZUxnZUlj3pMR7zKvST1\ncKllv52Z5H61mVpGrOBNQeLFvumOiJOxB+eKgUa78YFjF98iNVjtrUa+tsAK1YsrM0nqsBLqWjVZ\nlSSKE+xGP5hV+HWGiUZCXWc6Ig4ufUsaG4fHgjdL0tZoZhRufm95zxqNdZblxkk0xryGpEUw2/q8\nuvwIZds747d9CPtmQLF61vUFcXC0G+CWsCzac9MgaYGIvT1fBI7f9BpU7A4VugWuAzgwV4xHatwS\nfH1hsFMEN4w4/W2XDYGdnzuftV0XmO9M6IjrcuXKcc8995CybRbVSu2A1DXccF17iC1Pz549Xbs9\ncuQIM43uk7Y4K1WqFFu3bmXmzJmsX7+e0aNHU7JkSYYNG8a+fftITk4mMjKSOnXqMG+e2xBmxw6P\n0PbxOQcopT7VWt8CbAyyzMfHpxDUrAnz50OnTpIuOHMmtGlzvs/Kx+ePiR/BOhVFKkKJxiKW8jLB\n1BS5uVD5Wpl+01hupw8qJTVNAzXUGSImFHbUxRZwyqNxMw87TnahMCNYtq14++kwtyscXekea1vL\nh8dCh2+slEcNST+BCpMb+UpGDYwdQcpJl0jekWVQtS80Hi7Lj60WEbhvlrsvk82xVYHLQGzkl9/v\nnLfXYd3uaGZG4VS4iIQTRv1X2gnH4MGulVtuuCd+30EEjs2S28UJcf3L1jZBhKUtsKr3h0qWqKhv\nRal2T3LEqcnerwOX2cy9AhbfGnp9YfB+L06HHZ+46/zsCFaYFcGa0UQaPgNKKerXr09KkiF0QjgU\nHjhwwDXfo0eP/OlatWoxZMgQ3n77bbKysjhw4AANGjSga9eu9O3bl969e1OqVCn69HHX0AWzivfx\nOQc0MGeseqxLz9O5+Pj8aalWTSJZZcuK8cVPP53vM/Lx+WPiC6xgbHwDJsVD9nFIXgObRjo1SDmG\n815GBpS4JHD7E0a05+RuqfvR2olKAJTrIg1zo0rCikcgdZuMCS8SvGGwSbZ1LuFFoFQLKN0Wdlr2\n8XYdkY1t0x4WDpWulv5MuyaKOUa3JdAvA4o3csbbfb7SrJ5FRWuJSUbtu2U+6ScRgcdWyHLbJdAm\nzVOLZbN3mnGMIBEskCiWKbDCoiVKdvK4s+zwZsON0RJYEUXd+zHrxWKtGiBbNBz4LvC4dkpnXo4R\ndTSij976MoBqAwOXecn7DWYmv0VgebGFlfn9WzM0fzIrK4tSZrZpiCbGMTEx1KxZk6JFi9K8eXPe\nf//9Ux5aa83mzZtZuXJlfm+t66+/Pn/9ffcFtKrz8TlrKKX+pZRKBRorpY4rpVKt+UNYLT58fHxO\njypV4IcfoFIluPJKmfbx8XHjpwgGIzdNIh1hUXDwR4m8VOsH/TLho4+ByTIuIwNQgZ4KgwbJY53s\nEzDN6v1T/5/Q0LHDJrq0mE8sGiBmFyWaiZgp0VSMKza/LVGvYNS4WURYmGWKdXgRNPgPbHlHmvq6\nriXDaZabOB3iakKO1RdJhcGc7jBjNtQGmv5dHP5AxE2ZttJsOPOIiIxiDSDLqlvKOSnW7Je+Ad8a\nvbAijMa83vOwqT4Qch8OHOMVWHuttmkZRnSl9NVQpDLUHiy1Vie2w/EN7v2YUaq6D8Kqx5z5re9D\n9Zsg1vCatSNYs9tJry0QV0ibXwa7bc4BoksGv86jy53p3AwIiw8+7lREFj31mMIS7olgeWjWrBk1\nsjoAdi2aCM5NmzYxa9YsoqKiqFu3Lunp6XTq1IkTJ05w7bXX5m8/c+ZMFixYQHZ2Nj169KBDB8cN\nUmtN3bpOqui8efMYPHgwDz/8ME2bNqVIkSKFuoQxY8YwZ84coqKiuPXWWwtlJe/jo7V+AXhBKfWC\n1vpf5/t8fHz+KlSqJMLqiivg6qth+nRJG/Tx8RH8CFYwTPc1++Y0L1NMArKMqMSsWVD7XkjzbG89\nqXf1pVKR7gjC8vthUhERLyBRl6xkOGI52u0KUk9lU/QiqGa1/zqxXV5LNRfB5K0xslMEARbcAD17\nQ5NbIR0xspgwG/4LDEO2twmLguKWF+v2j0RE5Zw0mteGwS/3iRBsOdrZLjyEwIqxUsHafCoW6g0s\nAy+F8y3svhWeewVGv+eOAi4x6t3CykFcVWjxtkTetn8MGQcDr9mmWD2o3Nu9HgVvGjmdr74KKSny\n/tsixGygDIGmIFveI4CMJJjZ3DiP39DvrFSLM9/Wi50iGBFczHTu3Jnrr73aWbD0Lsg+zrBhw3jw\nwQe599576dy5M2vWrGHMmDFMnDiRgQMH8rPlvjhjxgyef/55RowYwcSJ7trBsLAw4uKcnl0DBw6k\nS5cutGvXjt27dxf6EpYsWcL48eMZO3YsW7duLfR2Pj4W/1FK3ayUehJAKVVFKdXyfJ+Uj8+fmfLl\nYd48uOgiuOYa+Oab831GPj5/HHyBFYzcTEnRUmHODXfSIolkpBoudzfdBDGlYU/w3bj6F4VFBE/7\nSrISmA/+INO2I58uoEXLzgmSUgiw6S15DY+F8DgnerP9E6mXavYqVL/ZOYeF2yAtA+w2VHbJ1n5g\n/QcimMASlJYwy7TSIvOynPM6sgy2vC2RnovugIR6znkE45JX4YofJBIIgHXT3xwoYkV5RvwDRs2B\nu+6Bdu2cbcONBs9paVY9XDbk5Up/MZsaVvNls/5o2wfi3GiScxKmTHEve/sNic6V6wz1HhVzk0qG\nycMxT21b1pHAa1Th7vnfYufujUSeikbDQq+zo2FRnqjbD9fA1tE8/vjjTBr/ibP88GJY9wKNGjmp\no+3atXMJJRCLd4CiRZ1o26hRo1BKMWfOHOfUGjWiSZMmtG3bltRUJ30zNjbEdwW48cYbqV27NpUq\nVWLNmjVkGc6ckZGRIbfz8QnB20AbwM7tPWEt8/Hx+Q2ULSsW7g0aQO/eML6AZ8M+PhcSfoqgyZEj\nEsnIy3KElS0yktfAllGQ9lDgdikDgc/dy/LyQBsCS0WI6UXvPfBVFQLYPVF+bIIZSID0qVo0QG6o\nGz0pFurbP5Tz7L1HBI7Og2WDJWrW56gc1z4HmzVAU4BYJJwFTACaH5bt87Ik8vHll9D3MbgK6J3p\nROGiSzn7mn+9k6ZnR0u8RCa4GwnnWmIkAgi3zm+l0ZP611/ltdFQWGaaXKRJn7L/1ZFoWI2bYaEl\n2ho9DWh3/65g9UQ/3QjpFd3LFjwN1ZGoWDPLEKP6zZJ+mekRU8UbQXaQxsvKqM9r/bETtTsTwjz9\nqOKqw8mdoceXah56XXQZefVGsPZ9A/u+YebMJhStsw7qGevSEvm//3uGlStXcuhAIu9/8BHZ2e6G\nxzlWv7d//etfDB8+3LUuKclxx1y82PkuDxw4kAMHDpCenk58fOj0ycTExPxIVWpqKvfccw9du3Yl\nKyuLyy67LPS1+vgEp5XW+hKl1EoArfUxpVTwnFkfH5/TonRpiWT16iXPnY8dg8GDz/dZ+ficX/wI\nlkm5ctLsIaw+XHSnLIsqIa+20UF2kCa2MZUDl2VkBEawANY9/9vOMd/YwYomtHwPrk8S4RNVzOq1\ntQf2nYTD18GSiY5AmG1Y99lu2yXaOsuWI8YMP3wPnwLJOfDBB5CbB/9DRFf8RVCqtdQk2SR+Ka/F\n6kNctcBz1hpuvhleesm4DkuMRADYJhNBonYxZWHnLGc+Lc15L2d9Cdu3Oev2fSvCprxRn5O0EI56\nLPVzUt3NoMFJ8zQjYtVuhEtHBp5TZDHICiKwtlqmD/UekzqvzW9BUgihfCq8tWz1Hws+zqagiKct\nhr2izSIqKopob1AoPIaoqCgmjvwH8+5eRO2sKdSv7zZfqVOnDgBxcXFM8UQEExKCR+A+//xzxo4d\nS7t27Rg2bBgvv/xy0HFmbVZaWhrly5cnISGBhIQETpw4g95gPhc62ZZzoAZQSpXBaQ7h4+PzG0lI\ngBkzJFVwyBB47jl3pxofnwsNX2DZaC226wA5jeHS12W6ZGv4oB28aEVUvjZu9ptYNUqZQaIkaWlu\nFzlbkGwZ5R4XXQoaPxv6vI4uh5SNzvyx1fL64xapKg2LkDRFgPUvwY5x8PFH8BAw+CNoMwD2WonR\nH3hqgiKKuZsiZyJRtxv6iwD74hiYaVwp68TK/MrF7ia/Nj3WBTe5WLYMPvsMHn/cWZZr3dGHA2EF\nfA1/GQxJ6535tDSJxO0C7v0CahnRqmX3OTVipyL5mHve/kdQ/grPcuMz7PoTXDYZIosHj2ClW010\njywVe/iVj8DaAlL3grFlFHyuIM/znymuhjNdPUjrnlDXHVPWqSMMDx5dbNGiBRXLedIHw2Ng20cw\n2xLgq8W2vkIFp4lzsWJO6mbv3r25+OKLAXj00Udp3jx0RC0pKYlXX32VN998k/FB8km+/vpr9u7d\nS+PGjRk2bBiXX34506dPp1evXvTp08dvTuxzJrwJfAmUVUoNB34CfuPTLh8fH5PYWJg6VZ6nPvkk\nPPxw8OemPj4XAn6KYF6e3OAnJzvLci27bqXgUArMs0wrOgLaSANLT4cDB+CNN2S+O05kaMYMuNgy\nrLjuAMSGSBcr11kiHsUaQlqi0yuqfFeJgM1sLul1fVMkPXBOR3nueu+7wLsSiQm30u22fyTGFG8t\ndR8jwl074xz7BljwoTOfiRzzmCU+3njHPX7ONXBTBkwpHlhfVLVv8GMcPSquil5yrb+6EUCEJbBC\nPe0y9asdwdoZYuykOEkrbGAZhoXHuG3b7eOkeASS/bEWqeQsW/cirP4XlLkMUjc7vcuO/AIpayUy\naKZKZlt28od+cJaF6CkVEjvCmXPcvTyuOnSeI3Ve5TrAzk/d60sGETR1H4Kmxj1kePAIVnp6Oiez\njnqWKljyd/ei5DU8++yzZGZmEhUV5RJY4eHhbNjgcXMMgVlDtWHDBq688koiIyN59913qVy5Mlu2\nbGHjRnmo0KlTJ6Kjo4mOdsRhpvVAIyUlhQULFtCpU6eA+jAfHxOt9WdKqeXAFchve2+tdeG+sD4+\nPoUmMhLGjoUSJeC11+R2YvRoiPDvNn0uMC7sCNbWrdCwoURx9hhOFUufgK8l/cl1I54KZBsRjbQ0\ncaCzMTMFb73VcZHb9D1MnRz4KKfVGDG3WDYY0GLbXqKprKtyA+y3omX1rPQwO2pkahvDNICwaLmh\nL+a52QyPDh6rr/6Ue15RcA+udGDFwyKuokpCTHnoOAP6pUPbEJWtTzwBwW687chZOI5ALIzAOnFC\nREZWiLF5WW7Hv1p3BI7JiYAcT8RHBQ7Lr6kKi3bXr1W5TuqhDi9xjw9W7xXCGj0k5bvKa5FKbkEU\nESupj2YdG0DXRdA7URpie4kt795H0TpBD9nvokXc6WlnRmSxwIEbXuX2229n8ODB3HHHHaFrqDz9\nvzZu3Mj8+fOZM2cOhw4dokKFCvTv3x8QsfTdd9/xzTff8JKVQnrypGOzbwunGjVq0KNHD66//nqa\nNm2K1ppu3brRs2dPevf2ukT6+ATlILAAWATEKqWCNDEMRCnVXSm1SSm1VSn1eAHjWiilcpRSfUKN\n8fG5EAgLk+fOQ4fCxx+L+YWf2e1zoXFhC6yUFLn5X7oUtmxxlh/ZJbVM9hibph9K1MomKQmMm8GA\neKBtLtDtZuhzI4wYAVcuhR4b4Lr9YpaQmQTbxsCC6+GnvhBfS7Y5OFeMNUDqeQByLIEV4/QgckXe\nkn+VnlqlPDVhYdHuVMD86/SYN0QUEZEXirnANqvOqMatcP1+qNjdaWQcjD0ei0U7DdM2TIjAEVih\nMIMrBw5ARDzEOr2VqP9P9/g1Q+H4Zplu9LR7XZnLoeuuwGMEE1i2k19eltuKPsMycEhe7R5/utGq\nYIRFSVpfWKTTUBkC3RmvmAst3oEybZyoW4f/uYWgt5eW7Sbp4crqmwIXBuvztWNsYO3Z+pdg9mWQ\nY/1e7J4ME2OctFTg8ccfp0OHDnTp0oUHHniAhQsXMmHCBNduOnToQNWqVQExwvj666+ZOHEi/fqJ\ngcns2bMJCwtDKUXHjh05evQoS5dKpPb7778Pel0+PjZKqWeBX5FUwVetn1cKsV044jZ4FVAfGKCU\nCngKZY17CQjSydzH58JDKXj6aRg1ShJ6OnbXUX6aAAAgAElEQVSUf98+PhcKF7bAstm0ABa968wn\nbXUiD6bA2jnbai5skZkpfz1svEYBdsTJNlR7/HHpb1TsYokuRJeDSYDtg7DvG0kTjEyA3ZNg79ey\nfNFAiUCdtBru3jLNOYYpsEKdR3i0WwiWsSJcXvGTluakBwZjEnDCEoA5hXwc5W0kawtUW/BF4DgP\nHqlEAInWj82uXSIEqxhph0XrQsLFzrwGjlvmF2YvqoEaus53PtNKxvHKXw1dFriPHV1WXpMWQCmj\nZc5GK2p5xBPBqnwtv5nwWMg4BCnr3dEvW6zblOskPdhMKvWAa42mzBEeo4mwcLdQDEbR2vLqiULl\nY9Vi5bPqcTESOWDdV/50o9SD2c6OuFMCJ06cGDTilJaWRqtWUqdYq1YtrrnmGm688UYaN5Z+ZAsW\nLODrr79m6tSpJCcnc/Soo7pr1KgRsD8fHw83ArW01h211p2sn8J0q24JbNVab9daZyFeq8F+0e8H\npgKHgqzz8blguecemDZNnmW3aQMbN556Gx+fvwK+wAJY9gqsN56CJ2P0v3Lsptky3h3B8uKNYOUE\nMYIwBdtn/WEaMBKwM9aOLIGrLUONY6vk9fBiScv7z2UwooD92X2Yjm1xj0mo7wisEkBxa/qwpykx\nwHM9A5eZpFkmB9s+gDXPFDw2GF6BFQ7ssR5rrfP0q9LA1gbuZampIjaTtjvLSjSGS16D5pbj3wig\nitU49ysrmlfOupfSefDTIzJdsSJYURN0DJQ2nBFBIkk2YcaHG2sLM8+vT40g5hOnEjReLrbaABxe\n7K4HU8FCbEFQhrr2RrBAepYVhJ0aqEMILDuqCiKsbCI86YJGJK1evXpcdtllVKzoTmNcvHgxq1at\n4tixYyxdupT27dvnr3vjjTeoWLEixYsXZ9iwYSxZ4ojZqCj53ezatSvNmjWjYcOG+PicgrVA8TPY\nrhLuToeJ1rJ8lFKVgOsAj4ORj48PiLPgjz/KM9y2bWHBglNv4+PzZ8cvOwRITgMzW+4wTlTlXSOy\nlYk7guWl2ZPwRSRc/xTUqyfugEeWIv/bLVJTwTYHOLzTWT4DKb+OAWIri915mcvEWGHJYBj1FgS7\nV08zRNyVS2Bcc1iw3T0mojictMRUDE6EK5jA2nYw9PUBHN8BlmmhK4UtFEU9N/np6ZCYCMMsd72C\nvoHzgISmwDp59LV4sZh65GXDqg+ccSUucQTIsvvAztzLTnUaL9sCQIXBNsuJpFgxePRRuPFG2P6F\nCIZyHZ39xlV3ps3+Xi3fg12fuwUQuNPnrtkEsRWCi5yCsJsBZx5115IVlrBTCKxTHt+6Bw3VJNnc\nf7LxvfaeqyFIh1mf9e7du3nkkUdIT0+nYsWKHD9+nO+++46kpCQGDBhA27ZOy4DMzEz27xdXxqef\ndqd51qxZkxIlSvDdd342lk+heQFYqZRai1HVqbXudRb2/TrwT611nirgQYhS6i7gLiA/HdbH50Kh\neXP4+We46iro0gU++QT69Tv1dj4+f1b8CBZAWiyYrZJSgOoDZNpMmUtDbvDDwmDAgMD9VO4EjQfK\n9IYNYgJR3PN03RREGfud6UXAHcD3sZLKFV0aso6JJfgG4AFPnZGNmfoX7rkOmxNHnXHRgJ15Fkxg\nTdsauCw+Dhpb08d3OmlkZdoGjvVSs6Z7PjkZ/vMfZ35zAduOAbZ/JtPVrBuS7GyJ1IXKULzoHqgB\n1Cgl9W0ArT6Ey6c6Y05Yb0DZsmC70+UQ2CQ5rgo0+I+IMtMsIjIeilR2xJvNvO7yWrqNpPjNvxa2\nf1zABQbh57/J66rHoPyVMl2qVejxXsxmwjEVQo8LRaQtsIJEX8EtsNKNiKM3WqsClXPVqlWZNGkS\nkydPZuPGjVx55ZU8/fTTjBw5knbt2rkaEhfxppYa/PTTT6e8DB8fD2ORGqkXcWqwXi1wC2EvYHaG\nr2wtM2kOTFBK7QT6AO8opQLyYLXW72utm2utm5cpU8a72sfnL0+NGrBoEbRqBf37iwmGb+Pu81fF\nF1gASd7an9pOfYsZsbJv6mNjoXOQ9P3YPMja7cy/839SxxNrvM2mwKre35m2fRf22DemCvZ8Czsm\ngOc+3oW5v/hakHBp4JjkXY7AiiIwglWrVgEHQCzV7UvIA5pazWG9xgvBsM0sbPbuhRUrnHlvvVjA\nsa3XGOtYOTkieEw/CbNpcHxNSS2sVBTmdLGOUdSd4pdiTVeoADGWcMomsE+U1pBxUNJFvU+mI+Lc\nAisvG45YtvyHF8OC6+DgPNjxScHXl5cjhhy5VgTITgsFSe1sNQY6fF3wPkzCY+CKeXDZFKn1O12i\nrOiqYVLhwkxBTDPuM72CTEVIBNFLXi7hKx+gdPr8gFVt27YlJSWFwYMHM2bMGBo3bswPP/yQH8my\nGT58OAD//ve/ueWWW+jbty/79u075aX5XNCkaa3f1FrP01r/aP8UYrtfgNpKqRpKqSigPzDdHKC1\nrqG1rq61rg5MAQZrrb8661fg4/MXoGRJmD0b/vY3eOYZSSA5WdA9jo/PnxRfYAH8utY9n5rnuKKZ\n7ntp1s14bGygeQNA+hew6GpnfuEUOLIW0o1HNLYgSk2FA0FqR+ZYN6X1n5dmwY/+ApFBzB+8+wMR\nCMoyNihnOPOlZzh/waq0dyJYdn1ZiRKh9w+S1mfvLg8RDyA38+XLw7MFNEoOJrCMZrV8mUgAQy3X\nxGIRjsCKNQWWctu0m59R/UchMxx+2inpjAARnlS5E9bFlC0rf+1BLPi9EayTu6TWrOHQwMdsbcfL\n9dtmEEdXOutijc/LTLULZpW/bAj8ry4ssiKiOalQzKo7++UOqPV3iDnNp93lOkLVG0KvDytA1do1\nWMdDtAgKj4YT26X59e5JznJvA+30vTA5AVI9EdF93xC5YzRT/xF89//73/9YsWIFq1at4tdffyUq\nKory5cuzbNmy/DF2H6xp06Yxbtw4pkyZwrGCzFl8fGCBUuoFpVQbpdQl9s+pNtJa5wD3AbOQXIJJ\nWut1Sql7lFL3nOuT9vH5KxIdDWPGwH//C19+Ce3aiX+Vj89fCV9ggRMhKm+9HtgGP98m05lGqCTb\nutGNiQkUWEWKQMlSEGbcUG/bK/VdJrYg6tlTekQFY8IE+OoXqQtbvh/qFyBgTIGVkwZ7f5DpbuWh\nspXulWe4CCaUgnjr3L+xohSnElgARSzDB7N9VHgZOHgQnnoq6CaAYcduRY327nXS8v77X3Hy89ps\nt7HE1PEcqH6nTNuRJjtaZQos+zNKTBQRc5Vdx2Stj6vm3n+Otf+4OIi13OhMYxMbe77/KPD2fPr5\nNolOpayT+XlW/6qEi+G6ROeYtsD6tjHMbkcA26xGz3u+kHPPToGyHWVZ4+GB488G5bqEXuc1q/Cy\nZyp8XRu+qed2kjy8OLjpyc7P2bx5M99++y3Tpk1j/54tgWMMGjRo4OqDZacKlilThn79+nHLLbfQ\nq1cvNm3axPr16/PHZRRUG+njA82A1sDznIZNO4DW+lutdR2tdS2t9XBr2bta63eDjL1Naz3lLJ63\nj89fEqXgoYfkNmTnTmjRAvzsb5+/Er7AMrE9pnJw0ptMgcVF8hIbG3jDvXu39A4ygwNpwI6f3eNs\nQfRjAdkpAwbAUqOA/+9/Dz3WjK2PGgVfWVGSCpdDguXapovAdsv4Ii4OEnq491GvXvB9Jxg23xHW\nheUB1fpDRjGoUUBTYhtbYFWvLq+Jic57YFlw43WBS/xAomwaSLOUlC2wjh+XzyTXELhpaTBlClSp\nAo88ArGWgLNFmDdVrsxVzj6jLAfDVAVRpdzjbIG1dlege2S6lbZW3LoGu2dWN6uOqPsKiUTZAit5\nDYxdDM/9zb2fBKufV1QJEVe5GU6915mYVBSGNp9A4+fguiBpdRGFMC7RIZLm1wwNNpgPP/yQHj16\n0Lt3b4YNfzl/TQtPed6MGTNo2rQp48aNY+7cuXz99dfUtGr4qlatyoQJE/jkk0945pln+Oyzz1zb\nNm/enHTjM9Jak+cn9/tYGNbs5k9hbNp9fHzOId27w5IlULy4VF6MHBk82cPH58+GL7BMbHGUAXxm\nNV81BZbdmDc2Fkp5bsZLl4ZNx93v6GYgp7x7XFoI8wAvB9cWvN52IjRt2o2bV8q1cERJRgb80zLJ\nyMyEvn3d+6pZU4SJyZvXOGl5AKUsIVG0odTXbE5xargGDw59nrbAsnsV7d3rvI92FDDWU8sVhZhx\nAIwd6x6TnAzPPQfKsFBPTZWOhiBRsbettMMsoK+nMS44Yik2FnIOibNinoYsjzGD3Wy6LtIl0cQ2\n0LBrs1QklO/quPBFlxR3Q1tgZQKfA09+7P7vUdmqhS/dRsaW7wZZ1vuz7L7Acz8bxJSGhv8Rl0Mv\n0aUDl/0WdJ6rD1byUadN0FIrMNusWTO6dOlC06ZNAWjSpAmdOnXimmuuIS4ujkWLFrFq1So2b96c\nL6IOBzFoycjIYNy4cURHRxMWFkZ4eDhbtwYxbfG5IFFK9VBKPaaUesr+Od/n5OPjA3Xrisjq1g3u\nvx8GDoQThWy16ePzR+XCFljebKjLrdcsYMx2qbsxDRTsm7qYGAjmArXKigi0aCSv2cAGz017YQVW\ndnTB60uXdp8TwEGjx2VkpCNKzPSppCTo08eJHoGItbYeR8CYLY5AA4i1jlf3EWmGbGZ6PflkAdfh\nEVjbt8Nqy0fdFljmcUC+lbHedD3jq9qkift9fOQRMNLF8smJDKy/AjhmJXuHZ4mJha3vkj11PHYE\nK5tAEdj0RXlN3Qp7vpQm0GbfLBA792us8ypnuEGnGuYPTZ6Dq9dA87ek+XTnWdDyfVlX8ZrAcz/X\nlLn81GNOC03dunWpXFn6kcV7PmqtNSuWL2f25NcpX9Yt7urXr09UVBTt2rWjWbNm1K1bl5Urpdat\nSZMmAUfKysri7rvvJsuoybvrrrvO8vX4/BlRSr0L9EMaAiugL1CtwI18fHx+N0qUgOnT4fnnYdIk\naNlSzJh9fP6sXNgCy/uw/pIebre4LE9vH1vMxMY6Asfknv+D1h9BhlGo9LnHxKGwAiuloAZROOYM\ntsOatw4qKsoRLmYaYUyMXOPVhhlHkSJw2WXu7Rt3cIsKu4YqJwfafwUbDefBWbMCzSxs7OXWDTab\nNjnr6lsphkaEg7qWI3JcAbVApUvD0aPO/LffBh+XmQ1zOgYuT7Pej/AM6TdlZ8UZ0RXAEVjbgRkz\n3GmCJZvL63dtoEI3sYJv/Jx7+4hYJ92vodEh2jx3ECv/eCNfLiwSitYRO3ibI0fkv09uLmeVGre6\n5+0+XF66Lgy+/FRozc0334zdHyg+2HOD7R/Ctw1h6Z2uxbm5ueR6rjfG+k7ffffdLFu2jDJlyhAb\nG0unTp0o6u25BsybN+/Mztvnr0ZbrfWtwDGt9TNAG6DOeT4nHx8fg7Aw+Ne/xGXwyBGpyxo//nyf\nlY/PmXFhCyxvT8g6vZ30rSZNPPVXOIIrNlaESner71HdunDLLVCuDtS8DdYEiabYnDwZaOoQjFW7\nC15vpwZ+952cs9fJzxRYhwzhcPfd8mrejBYpIhG56f+Ae4BVk6HFSHdkyRZYubli5Z1siI3bbpNq\n1WDY0bMgN7/5wsoUtU2sHlvFPKmVZlrdihXuyGIw/l0WqgOHAu3AybL2lWTZn9sCK9VTZ6XCpN/V\nLVZE8vhxed20CXZYDZkzD8OSO0BnQ3x19/Z7v4EVD8O+WbDC6P31leHgvOlN+KYB7BwPSYtgWnU4\nvERs5fOMa+zaFa691t34+mzQ8j33fKi6r2DphIVC3us9e/YAgREsdB7pq16S6e0fM974bxrjjWwC\nY8eO5ZlnniE7O5tLL72UQ4cOkZaWxty5cylSpAjd7d9Jg0aNGvEfs/eaz4WIHcZPU0pVROLSZ/ql\n9vHxOYd07iz/5ps2lXTBu+/2rdx9/nxc2ALLS6M+IkxATCwOHAg+zo7sfPUVzJ0r7cmLFRPjiiTP\nk367x1R/q+fV44/LzbLNwIHu8XZtVSiqxkO1atC+vbOsdevAcabAMnsEXXutvJqCRykxnxg4Cn4C\n9AaJopgRrHDL2twWNl6Tj7ffFvHVrRu88IKz3E6kLhkiMuKlWEXpsxXlSckzBdabb4be3k47LJod\nKKBtsizzg8PfQt0HoLxlgpF6Qo7z7bewyupHlXUMalnRypQUSbFs1Aja3Qx2IGrXBMhKDjzOkSWw\n8b/wQ3fYbhiLHTsGeVZkJmmRNCVe87T01Tq5C3SO1LlpQ2BZqXH5zo9ni3CPiPH2Auu2BC6bDPE1\noGSLMziAfG7/93//R7du3bioukc4Zx4lM8P5zzlw4EDq1atH8+bNKV++PDk5OWit0VpTtmxZ3nzz\nTYYOHcr+/ft57733uO6667jqqqv41opiTp06Fa01lxkR2bVr17Jjx44zOHefvxBfK6WKAyOAFcBO\npCrSx8fnD0ilSjBvHjz2GIweDZde6m6h6ePzR+ecCiylVHel1Cal1Fal1ONB1iul1JvW+l/NviRK\nqZ1KqTVKqVVKqWXG8qFKqb3W8lVKqaut5V2VUsutbZYrpU7fIap4cSeasnBhcOEC4sQHcjN+/Lg0\ncBg5Um7Kf7jaPXbnTnmtWjX4vt591xFVdes6UZJgJCbCzuOwY4fjygewdGng2MhIp07sPStK0bix\nc32mQBo3TmqkTmTCWqDZUzB1augIFgQ/z/r1Jbb/7387y+x6o0ILrPLSy2r4i6HHFNQwIycH6pWF\nycfkFqp+wNcOMizhEgnMaAplrPS85GRJw+vRAzp0kPTGhk/CHOtajx8Xt8jsbPnsjWzHfGt1E1O8\nmBmUiUtgcrz0kzppXUtuhjQrBhFXlXpCWUNE23gbHp8NynYIvrzuP6B0S6jaR+Yvmxg4pubfxZo+\nFJYwfvXVV5k1axaDBl7vXp+XSXHldjPcuHEjy5cvZ/369YSHO/3cqleIy4+ATZs2jdWrV/PVV18x\nc+ZMdtq/ZxZr1qxxzaekBDE7KQRvvfUWN954I3PmzDmj7X3OP0qpMGCO1jpZaz0Vqb26WGvtm1z4\n+PyBiYyEl16SpJ/UVLklGzEisC2lj88fkXMmsJRS4cDbwFVAfWCAUsrr630VUNv6uQvwdCulk9a6\nqda6uWf5a9byplpruwDnMNBTa90IGAR8WqgT9WYhmWmByUGiEuCIk4MHoXdvWLRI5mfMABXljpzY\ngqRCiGyUokXh449lumLFQEt2s1dWbKzcYCvlRNpCERUltjwgggzc0TEzglWypBOZsu+1N2wILrBy\nckSEBIvubd4cuMyOYBWm1xY4EaiLPTftubluowuQaJy3/iorCx7qKs+os1pD/O1S//WekQqXaQkZ\n+y1Mt/R7SgrYDW2PHxfr9421YcFyZ71pUGGW6BWpHHgtYdb7p4HXDPvzPYtEUK14GI5YNv55mZJm\nCBI9bPIcXBwk7dJ+DzIOS98pr2X6kV9g4+uB2xVEzduCL8/zpMjG14AG/3YvqzkI2k8rYOd57N+/\nnylTpvDpp5+yb7fnOxKqoTEQZz/IAMhJZ8ljO0gdA6NHj2batGmMGuX8ufD2wYo1oq/9+vXjgw8+\nIOdUaaUeVq5cyQMPPMDkyZPp0qVLvsGGz58LrXUe8r/Ins/UWp+Z4vbx8fnd6dwZfv0VrrlGIlrd\nuokhsY/PH5lzGcFqCWzVWm/XWmcBE4BrPWOuBT7Rws9AcaXUGeXFa61Xaq3tR+HrgFilVMFWfJFF\n4R6r6eqll8qr8cQ8n397birtGz/b9KC4Zc194gQQDTEeg4qIiMCUOpNPLS14332BPalMYbL2n7DL\niiIMGhR6fwCtWsn+TEzTDvN83nnHmb4EiI6UawmVInit92M06NBBxJstLG1B4hVY3kbN3uXe8Tk5\ngQKreHG46qrAfSRbx85S8tnt3Qv33OOst2/GbYEVaQlpr4AaOBBuuMGZb9bMvb72o9DAqu3xNikG\nI4JVGQ4a5iYnrH0kGrVYuZlOzVWY2UwtBD/fJn2nDi92L/+uNax4yImG/RZyMwOXNRkOJS915ku1\nDrz2Zoahx/qX0AtupG/fvtx6661UzPTUH2Y5zo1ZFOGzzz5j6dKlLPl5MV+9/zBkWwI9wxH0bdq0\ncUWUYmJi+PDDD11RqxLW96dLQ8jaNpFu3bpRokQJxo0bV8iLh4iICKKjnT8hPXv2LPS2Pn845iil\nblDqXISAfXx8zjWlSklizfvvw+LF0j5z7Fi/Z5bPH5dzKbAqAXuM+URrWWHHaOB7K93P67V8v5VS\n+KFSKlho5AZghdY64A5RKXWXUmqZUmpZUkYJeOkbidS0bCkDLrrIGWyLisc9aWa2wLLNCmJjJa0s\nPR2iYuCrFtDAGF+kiNspz4vpwFexonudLd4A9o6F7Qth+HAnohSKChXgek86lh3RguCmEwCvIREe\nr8Cyj3eq5hQvvSTRH/u9s6OA3tqyUAKreXMx5Rg40J1WWb584HsY6l7pUyvSkBsT2CAYnGX27qpZ\n2aQnT7pTH6tXhyuvlOlHH5VIn7k+qrI0Ey7Zwp0OqDXceCOM+FLmEzypfkFOiewUEUuVekFkcZh7\nJcztGjguIwM2LYM7F8BLQEIz9/rS7ayJs3AfmZtx6uXhUYF1W+Xd510x5yfirCE5lvbNs9/8bOf7\nFFW0EgMHDqRFixa0LL2eixPvIveHXnzxxRcs+tlJg83KdJ9XRkYG69at49ChQ6xfv57ExESGDh0K\nwOx/wRcPwe5tazlx4gS33HJL4a4dMcfINCLae/1Hpn9m7gYmA5lKqeNKqVSlVAH52D4+Pn80lII7\n75RqjIYNxV+rRw+pnvDx+aPxRza5uExr3RRJIxyilLLvUkcBNYGmwH7gVXMjpVQD5Nbz7mA71Vq/\nr7VurrVuXqZMGREOGRnOY5CEBGdwbq7c1MfHuyNbdvTniy/kNTZWBFqrVnBim9wom216ihRxCzcv\ntj3OwoXgfUpuChOdDZ+skLRBb6NjL3l5gVGzu423JJjAucKwag8VwTrm6RXlZdo0+WuXkyM/hw7J\nX8Wynh5R3r5SmzZJ84srrhATi+nT5b2vUUMs5YsXDxRYlbx63aKMFQTNjYH//S9wvS2w7MBLFUtg\nZWTAHkPvHzsGdqPatDQYOtTd2PnYDkhZB51muC3Vd+6EyZPhg+8hD9joqaX3uP/TY530vNr4KtQZ\nAnFVxOAimMBJS4OPBsPW4/ArsHmbe32sZSJRQOpdofGmCObjeWQYZgisbj9DiSbSrsCgRBwUiYaI\ncMjKgYxoq+4tx4gI5hjifccnAIQnzeOGG27gpoH981dVrliK999/n5EjR7qOkZ6eTsOGDalSpQr9\n+vUjzNCYxayve5g3CmqQkpLCiBEjeP311/nkEzn+woULuf3227npppsCjufl5MmTHDx4kF27dpFq\nRjp9zjta66Ja6zCtdZTWOsGaTzj1lj4+Pn80atcWT7E33pDXBg1gzBg/muXzx+JcCqy9QBVjvrK1\nrFBjtNb26yHgSyTlEK31Qa11rpVXP9peDqCUqmyNvVVr7bnzDMLy5WDdSOXbXx886B6TnQ233+7u\nP2RHsLZY3XbT0qQP1TvvwIloGAmYgZ4iRaBdO0kxC0ZSkrz+4x+BoqhzZ7iiJthmgzmeyFXt2sH3\nefy4iEezjsq0UvdWiXbvDt2t1L8GDUTkmNvaAuutt4Ifz+aFF6BKFXjgAbmuvDzpW+UVR14L7jp1\noG9fmbZrXbZtk8bEu3aJDb43YjV8uLx6o3lFYuWbPTmI5VBSkpMiaJ+SfS7p6W4L/ZQUOQcQl8Rn\nnnH6jgGcOAjrhosLoIkpwnKqOAbRNjEXQ2PLVr/l+1CsPoxfD4OB2QtkeXZYYB82ENGXYuwwca17\nfY4l1je+FrhtKOJquOftZsNVrg8cC1DOEqR2KqMZwSpl/Tp6xOE/H7qTYpamPnoCwqOs3yFTVOUY\nPryZRgNtIMr4iMsUL8Kdd97JkCFD+PHHH5kyZQrTp0+nTp06aOs/bNGiRZk68ZP8bRJiYdCgQbz0\n0kvBrwl45ZVXeOyxx3jooYcYNGgQs2fPpm3btnzwwQeMGzeOIUOGBN1Oa0379u2Jj4+nfPnyVK9e\nnalTp4Y8js/5QSlVQinVUinV3v453+fk4+NzZoSFyW3Gr7/CJZfAHXeIQbPZatPH53xyLgXWL0Bt\npVQNpVQU0B+Y7hkzHbjVchNsDaRorfcrpeKUUkUBlFJxQDfE3w5PjdZ1xvLiwDfA41rrwndFHT3a\nPR/M2OIj99P4fIFl1//06OGsi24BiwGzP6odLRo8OPg5JCVBdLQIEy8ZGfDGHWAfIs9T71Lf6xti\nYd/kmymG5co50w0bSgpcC8t6+9prxQO1YUMYNUoieb16ybo6dZxGwaa5xl13BTYotjl50qlXMs/B\n5sEHg28Hzl9Iu85m+3b3NXlZvlxS+Fq1kvnYeNi2A3YfDBxr9knqsRp6rHcEVkF5BrY4PWzc+Oda\nAuP79uInO3OmzNuCGeCYDhRYOeFQbYBEsnQknNgJ72+HFGDkc7B/E/SfD3etdhwLbTZsgMmGi+L0\nse5917Ka9R5bDVmFrOMv10H6YV1ppeF1miGRqGoDgo9v8gLUHgJdLDEYEQdtP4P20x0R7Nm2drVS\n+VGk4xmK6FjrQYIhqnTOSd56603Wrv5FIoMGpsDq37cnj1tpu+3bt+eGG26gZ8+eJCQkcPHFF1Oh\nQgUqVKhA72u65G9TvAh06tSJfv36sSnIf+Cff/6Z555zN4peGsydMwivvPIKCxYscC3L9PbQ8zmv\nKKXuAOYDs4BnrNeh5/OcfHx8fju1asmtwqhR4lHVqJEk+aSlnXpbH59zyTkTWFrrHOA+5B/ZBmCS\n1nqdUuoepZTtOPAtsB3YikSjbAVSDvhJKbUaWAp8o7W27l552bJi/xXoBNhhmfuAi4CnDAt3T15a\nEMyIhJz4qS/OjjKFhUHNmiI6nntObKRCp6cAACAASURBVNaPWDdvhgFavuOeGcWZPFmEAcDrr4u9\nuc0nnzgpdI0bQ5QhUMp63Or69HFcAk1sMWK68ZnphtHRkv728svQqZP8hRo/Xs5jzx5x3evaVSzg\nly51LOvtqErbtjJmwYJAY5A6deSvm32TGR3Ea+Tii+HDD+W9U8rpE7Z6tUSNWreWiF+VKsHrqMBJ\n52zcWK7DTpsMDw9uI5+d7W6kUaIxRNdwztN7492unTNti72jR51ludavzwmgSxcR3PXru403SvWD\njz0Rtsxs2DgX7gWuHwbHDFFfBNi6E1KyYF+mk25pcsS4thWz3E6CVXpD+S5wbAVsesO9XW6uI1a9\nXHQXlLLEdkQclG4VusYtMl4aUZdu5SyrPhAqG+mtUcWgv3PeTepVpailYzNyIh1jDKMGS+lcHn34\nQa7vnh+URkeVRGtN3+t75S9bu2opq1evDjit8uXLs2HDBvbt2yciyth3sSJw2223UbVqVerVq8f0\n6e5nPXZKoMlnn33Gs88+yyuvvMIy210yCI97azQJ3iTZ57zyINAC2KW17gQ0A0LYxPr4+PyZCAsT\nH6tNm+RWYvhwScQJViHg4/N7cU5rsLTW32qt62ita2mth1vL3tVav2tNa631EGt9I631Mmv5dq11\nE+ungb2tte4Wa2xjrXUvrfV+a/lzWus4w769qZVeGJqoKHj4YZmuWVPS2cxUQJsRI9zzdgQrK8uJ\n6KSlyc1rvNXKq90rzvgHHpBXM5WtTx+JawP06weXX+6su+UWqd4EiZgkWFGqki3gtQ+dtMYtW+Dm\nmyUS9c9/us/RFlimqFNK9jdkiESe9u2Djh0l/W3KFOc9mThRHgeBRLiKFQus2TLnvWYYJ07I/mwL\n9WA36l26SOqlbfAxcaIIiaZNZX7pUtlXQVEl+5xtbCF3ySXw7LOB44NFJ7t0gfvvl+mNG93rbEH6\nwguSh+DdR148HI+EE2FOyuWGDe7vUF5D2OcRSBmZMOVuiWyt3QG/GtmsGTg28iCCMFiqoE0OcHyj\nuAZmJcOmt+CAleaY63mEd+ed8rjvww/hh56w58vQ+z0bhIVDzb8BEM3J/ChURrZ2BFaO2zQlLpr8\nXlcAyqopu3+I4wJZMh7SCvN40qjvKmZ8XbXWjBkzxjXU2ydrxIgRFCtWjKeeeopHH32Uli1bMmjQ\nIF4wm2hbNG7cOH960qRJpKSkMOhULp8+vzcZWusMAKVUtNZ6I1D3PJ+Tj4/PWaRcObk9+uEHuS3p\n2VOSc4J1kPHxOdf8kU0uzj2NGonY6NxZxNHllwfWJlWpIulnJvYN9LhxTt+khAQRCEWukflwI6pk\nCzIzRc/c18KFgX2lmhutv+bshWINxfwAoFo1ia7k5DimE7YAsLFvGM3+QImJsGaN1IotXAhHjshy\nUyxFR0uEzusW6DW3+PFH2RfI+2iTkyPCDeCVV5xrDIUpAM36t/vuCxR1Zl8kcKfrgSP0Fi50Ik4F\nXUNysjsi5WXFCnk0Zh7H3Mfnn8O92XC0gK6HpnOjTXo6hFV35p8wxGAGkGkIsj59ChZYWcA3DWDL\ne3ByJyx/AKKsps5mHdSaNU6q6+iRsO9/sCBEjdXZJEpMPhNicvlwtIj2Rk0uNQTWSddwr8AiR4RU\niWLOZ//AXf04cuQIt956K+/atZNAUlISycnJTr8rwwK+lKe08eJqCbB9bL6dfboRJW3Tpg133nkn\njYzvtdaaTz75hHnz5gVc4iWXXELbtm1p0KABzZs3JyHB9074A5JopZF/BcxWSk0DCuhY7uPj82el\nQwdxGnzxRZg7V6JZDz7o3PL4+PweXNgCa+dO+PJLSe0DaRjsTWezXeUGGDUldk1RVJRz0283Et57\nEIoByUbdlr3PK66QiNnkyc661FSJJo0f7z7u3/4mjnwAN90kNS7NRkjd05dfwk8/iemCHQU7ftwR\nJGPHOvVI5s15TIzT1NheN3iwRHHMc42Pd5wNbbzRnexsJ3WtefPgroT2ddvnYEbpbNobdeYHDjjz\nr70WmHroPaeBA93ztvX8tGmOa2G/fo5Y9Uaw2reXiFMoDhwQwT1jhrPM/At99CgU3GkteCJ4RgZk\nGL96KUbK32ogy5Omuq0Avxa71CfzMGRYtV+XfyEiK9dIrXzuKWf6mGUiEqx31+mg9alt+yPldyU8\nbQdrfpWHEfsPHSVH233V3Ntf0rgO9WobtYhZ1meW53yPq5SJZt26dXz66afce++9XHnllXTs2JGy\nZctSokQJIiMjWb58OWQ6n9Vbg6BWOahduzYHDx7kpS6LpJeY1ZT56aef5ptvvmHq1Kk89thjFC9e\nnNFWfWaTJo4laLDaqjFjxrBw4ULWrl1LjRo1Atb7nH+01tdprZO11kOBJ4ExQO/CbKuU6q6U2qSU\n2qqUCsgHVUrdZLUNWaOUWqSUahJsPz4+Pr8fUVGS2LNlC/z97zBypJg5v/qqUxXg43MuubAF1pEj\n0ivKFje33Sb1PMH4/HPpbvfWW1J/BDL99tsybQusZs3gHaBckBtrpSSq06ePs8y+QfW6ByrlmEyA\n1AuNmiqmHLt3y7K0NBGJI0aIwOrYUUTBrbdCmTIyxnyaXrq0u1FuZqYISK8de1ycexwE1gGBkx75\n5puOGLQpU8Zptb5jhxxnwgRn/euvw733OmmTkybB88/LcTduDGwqXBhKlnSmbRGckOBMewWW0ZjW\nlb5pTg8fDusNl0BvDVOTptDw+dDntGGDu58XiFB8xxBN3sdq3rTIgqzxw62+aWlHINu6vuiS0kQ7\nxxBYk4ymxlGWEM3LgvWe9NfT4YknRNSa1vYB52eFo7a+x1dTJwGwdt1mcvKszzfDbUTy1eRxvDfS\n6LyQnUyF8mW4eeCN+Ysic93vx3fffcePP/7oWhYfHw+7J7mWPd5L8f777/Pxxx/DCfkcc/fNAkRE\nxcTEsHXrVl555RXXdo8++ihvvfUWo0ePDlpv5fPHRSkVo5T6h1JqpFLqbqVUhNb6R631dK11AaHh\n/O3DgbeRdiH1gQFKKa+z0A6gg9a6EfAs8P7Zvg4fH58zo3x5KRdfvVpKux95BOrVk1TCgpJrfHx+\nKxe2wLJJTpaeSu3aBa8X6tVL0sSqVJHUNaVE5DzwgNMLq2FDuOEGiLRCGoUNDthRGW/6m43tUJiT\nI0YOIClwIAIFRCCmpIiAKltWzslOGbRrs9q2lUjM0aPONWZmSvy8fHkRIrfdJutiY92phfZYL6aj\noNcB0XTSy80VD1Wzb9Xnn4vJxyy5waVsWRE2K1eGrkx94gn3sU1HQHsfNrZwLVrUEVjelEIT200R\n3Gmip7LbXroKThbgpbJmjSNOq1WT9zc3190Ly2vIscuTueQ1YjFJPQxzgTYjYYFl4BEeCw2fFOMJ\ncDeyBogtBx2s93j7h6H3fSrsWkBvawOTkzvzJ8OV/DfLygVlW7sf9ZhH5Jx0mVMAtKh0mKYVHFFV\nt8wJxo8fz8cff0znzmIZH21FS4sWLYpSiqJFi7pSBAEG3Px3OnbsyLNGfZ7OdT6IV155hX/+858s\nXOg2IS1Tpgz33Xcfd9xxB1eZBiYeUlNT2bp1K+vWrWNPQaLT5/dkLNAcWIOIpFcLHh5AS2CrVRec\nBUwArjUHaK0Xaa3tL9vPSLsRHx+fPxANG8ot0KxZUl49aJCkDk6YEFgZ4uNzNvAFFkj/qY4d5WZ4\n/vzA9Z99JkKncmWxqgFHwNjuehUrSiSn8zUwAzCN44K56NmEimDZdOwor+npzo26LXa6d5cUuJMn\nRWAVKyY38AMGiIABaNJE0u1+/VVi5GFhTtPjDz6QKJhSYmphNyJ+8km56TcdFYM5+dkCa/Rot1th\nML77zj1vuxN27So9yMaMkSgWuAXBrl1OaqHZ8ysyMlA4mH8l7fcqPt4xq7jppuDn9tFHIn5sTNv9\ngsSDjbdGzyQ726lJ8zZX9lLCen3Vcw9YkGFCWpYkOwE8aaWlhsdCrduhoiVAvTVcqVtBhUPtwZCZ\nxBlzySXy/TLrBQPOz4nG9e51NQC1LqpHeGSQlFLgwfvu5N2R7gjSrZeLzbpNXPI8+vfvz6BBgxg5\nciT3338/ycnJaK05fvw4ubm5VKhQwUkvtLc7/hN5uTmcNFJNMzNOkm19jw546yAtdCG7V06YMIHa\ntWvTsGFDhg0bFrD+tttuo1KlStStW5fvvL8PPueK+lrrm7XW7wF9gCB5ygVSCTDVcqK1LBS3I/8B\nfHx8/oB06ybPdqdOlduIAQMkcWnKFF9o+ZxdfIG1apUIkHHjxHrGS3y8/Ngpd++9J6/2zb3dHBec\nWib7Xe3aSW7u69QJfXxbYIWKYNl2zxkZjlAzDRyeeEJqkdavh6eflmXFijkmF2Fh4pLXqpVE6ubO\ndSx1Jk6U17vukn3YYjEmRmqqzGiet/4JHFEYzCYeYOjQ4MtNypWTNM1PP3WWXXedM121qtMzy0yd\nCyawzCibbblevLg453m59FJneulSdxTJjMYFs9uuWNE9X1AKn0lUVMFtAE7dVAC8rVHNYM+Og3AT\nMH4GpB+A49Z74I0+nkQMLnLTpU5pu6eXVmH45Rex6I+JKTjPokzb/MnePUVgNWveiogw9/uQEy33\nrJeW3sruHVIXlxst73NcNJROcOrx8jTUu7gu2dnZ1KtXjzfeeIMoI5qqlEIpFRDB4vgmVsx4lRu6\nOmnAq1euYNeuXSxbtoy6dd2mcjExMWitufLKK0NeXt++fWnatCmdO3dmm1Erl+GNAAMHDx5k3759\nbN78/+ydd5gUVdaH3zMZhhkykjOCgAERFFwVMwYUlVVWUcy66reYVgkGdI2Ys2JYdM2CIkYEMSGK\nIoiSRCQnyWGAYdL9/jhVVHVPT4IZJnje5+mnu27dunVvVXdXnTrn/s78QIjDKGt2/Ul4qUPKDBE5\nGjWwbi5g/eUiMk1Epq1duwcPNgzD2CPi4vS2Y+ZM9WDl5uqt3P776xT2wnSlDKO4/LUNrPj4yJvl\nWDfTxx+v7/XqRZb7N/dhFTxfMMFPhfzRWDVqjoy+Kw7RsaOKXhQ096tLF/WwJSWpF2nQoEDYAvQm\nd/hwTXTr54GqWVP3u2WLCnhkZGjZlCkwa1Zwk9+ihUp2d+8euc/vvtN9ho2Oyy4Lku2CBjH7+4vx\ntL7Y9OkTOU/sjjsC0RGf007TuVAXXxyUdeigfQwT618xPR1i3SBPmgSPeXmi3nknkJSHYFwQJFgO\nk5BQ/DliYYOqME8mwAGh8LP9O8FRMfbRqH7kcnb+Klx6Gfx0LXzlzeGLNrCWosZV41OgRhtIiaFu\nWRQ9e6phOXWqHo+RMaadZG3epQKIJEKe14+4JFj5cWTVOA3jTIiH1CQ9Zrk19MHESUcdQN+ugREX\nJ7Bq2Xw+9RI7iwhxsc5HtIEFPHrfYPZxQQ6tHVlw0UUX0a1bN94MzxFEjaSbb76ZO+64gzVrIjM+\nZGdns3TpUn788UdmzpzJF198Qft6W3j7+hrcfl5D9aBFkRESBKlRkMfaKG0OFJEt3msrcID/WURi\nJMvLxwogHP/c1CuLQEQOAF4ATnfOxdQqc86NdM4d4pw7pH79+rGqGIaxF4mL0yCgWbP0GXt8vM6U\naNMGHn44/1R0wygJf20D66CDAs8UaJhcz56BUh/oYw4IFO3uv1/fO3VSwyIsvT57Nnz6KRyUBM3/\nDglpBe87K0vnKY0dqwIRBV1wDz9cPWw1a+pjlmi1Pn/u0K23BmGLvgdr/nydd/T110Hy2/33V4EJ\nUCPloovyz5+aM0eNj3/9Sw040HF26hTUic59ddRRkW107x54sPwQsksv1UdGfjjhhAlw9tmRhkcs\ngyYxEYYOjZxj1a6deroyM4P5XoMHB/PSfNauDdQFw6Sl6Xy699/PHzoYNqbDBrTP9dfnP2bhen37\nBl6zcMyBn+OrINqHvGp16kFqw/x1ul2VvywWyfVg63xYOyW24bkEyGsGpy0IQglLQrQHJpbxuO57\nmOUZ3/scFYQLxiUBkR6s6gerymGdVPVYAUg1z0jZFJWCAGhVHz68cgC0aaUPDkLk+cfcz4OVvt+u\ndTVSImXgD24dx+TJkyO2v+eee3YpCI4YMYLhw4dz2mmn0b9/fwYMGADA448/TosWLVgSmi/3j86/\n8feuGQw/eTUj7rk9X58/+ugjxo4dy2OPPcaqVavYUFiKAKNUcM7FO+fSvVeacy4h9Lk4evo/Au1E\npJWIJAH9gYgs1SLSHHgXON85Zxl3DKOSER+vtwEzZ+o8rbZtVfC5eXMYMiT/tGjDKA5/bQMrmoMP\nVgGJ557TuSUQeKp84+L884PlW2+NvBnv2FG9JXlZsPx9nd/UrJnOzYqW2r7+ejU0nnsOJk4suE95\neRqel5Ojnqi7745c73tbFi0K1O58A8tXzatVS/3fvifNvwFdujTIjRTGD296+eVgm4kTI2XT69WL\n9M6Ew/og0vvlH6MXXlBlQX8eWyxp92hDLUzYS7F9O9x1l84b889VcrIKdoR54IHYN/8LF6px2bJl\nfm+Ub8glJwcy62Hv5jHH6LZhsrO1HRE13CZM0PKGDYNxhj1wsQgbkCkp0Pj4yPU9gENDU0gKM9ha\neKp7Kz+JLVDyLdDqUHjrZdhZCjf6fmLsMOFEx5vnwKJQGKiEv0s9IVXnwPU+MDCAEtKijFggE/V0\nzbgHnlu5BRYuhn4n0a9fv12hgUOHDtX8Vi5X95MXuPnq1UzktN7BMaxdPY/00LOCEw+AwR1HcunB\n82gWMqKnTp3KW2+9xbueqE1bfx6jx2effUaSCyUrzolSEXV5pP96JZ2WnkuPzYN47s7+zC0sRYBR\nIfDCCq8BxgNzgbedc7NF5EoR8bNf3wbUBZ4WkZ9FZFoBzRmGUYER0antX3yhwRnHHqvaYq1b63PT\nCRMKj/I3jDBmYBWE75HwDaPjjtN8Vb73Z8sWNVBizT857L9w8q8a1rd8uYb1tW0bqaw3Z44q+v30\nU6TAQjQTJ+pcJy8cKp/KYTjUyBdzeOIJnY/lq6HVqqXrHn5Yl/3HM3Pnxg7tipV36aWX1LhzTl/j\nx0f25eqrI+uHle/C852SkvRf65//jFQVBPWSxZovFYs5c9TAfeWVYF/vvgvffx9Zb8MGla4fNiwo\nO+88+OAD3Xb9+khZdgiM1qSkwMCqXTtyvX+swxx8sIpiHHts0MaWLYF3MpYnLUzYK5ibC62jvJq9\n4+HwY7Tfr70GJ59ccFsNjlQv1s51sT1YH3nv/S+ErwsR0dgTwkmEd6wEfwpMvcMjDay0dlAtCNXt\n0k6NqF0eLJ+Og0luEUPFL2sLO5YGDylGjx4Nn6u6IPEpcOjzu9bddVY2PWt9E7H5xilD+PXXX/nq\nq6948ZZeyLbFMO8hrr76Ko7qnMqUEU145mI4YX8NG3TOER+Vo23z5s3EZQchiX1OOT7Cu8XWBbDk\nDdrW3U63NjDwCMiyQP9KgXPuY+fcvs65Ns65u72yZ51zz3qfL3XO1XbOHeS9ClF9MQyjMtC9uwpf\nLFqkYsxTpqhARocOGuBjAQhGUZiBVRBNm2p+nzvu0OUDDtCb8REjVH7m1VfVMIol/d36QkjfN394\nWdjo+OKL4LMvIx4L3/vTp0+QfytM2MDy5zJ17KhKdH6Int++H6pXu3ZwMx9r39E37jk5amjE8jj5\nJCREqsnFxwfhleHt8vJUL/XppyMNy9xcNYSKS3SInoiqEEaFiwEq8PHDD8FyvXrBcufOkXPaIMin\nJRIYWOEQzoULI+ej+bRvH2lMJSTo9r6KoC+zH4ubboo8ThMnQi8H4al/Ha/SPp1/fqQoic+x3rt/\n81+zoxoYMQQXIlgZmqv0889w3335pePDhI+lT9g4/Pln/b20vQAuBvwIPz/xca39ISEk6pKYDqnB\n+eza0TOsog2spNpInahzBZAM/x0cePNGPvcMrPXC/nJ3wj694KD7ChxO3Jx76dwqnSMP706TJkE/\n/q/BEL4cso0eTVZw5bEwfjCMGT0agJdeipS337BhQ4QncN7smQwLG/W5kecgORG+CP0H5HoPanJy\ncoqtWmgYhmGULc2ba4rOZctUi6t2bZ3+3aiRznD45BPLp2XExgyswmjaNDIszs9t89JLsUUuYuGH\nr0GQeDeaWN4Qn7Dgwi/556KQkhIo8PntTJsWyKJ37hzZBqi/2w95izXZ/rjjghC3Dz5Qeff33y9Y\n6dDn88/BT/i6YUNgbKSkqEJjamp+Y8anpImFfWMyfH6+/joyN1f4uPrjAf03nDtXDcn69TUM0sun\nBATeqszMwMAKJwv2E1NH48/PAzWE/OPuf1cKu3G+//78BmxabTgztDzwxcgQ0ejQR18pPzdXkzUf\n9xV0fSRQlAxTJ+SRC4kvcO21GnQ+blz+bXwuuSR/WdpO8JL28vbbmvIgz8FOYIZXxxedSKoNPULK\nhfX/pu/p7SPrJUcJy9Trwcw5nmJlOOqxHjSom87MmTP5+eefOeaIsAPBO+aNCs5fBcD7LWBiL1gc\nhDFWjxFZekafExARGjZsyA0nw7vXQruGsHnzpmDOF5CSBDtDoZnPPv1YRDtJCbDDS30watQoEhIS\nSEurwUldEsnYYAH/hmEYFYnkZBgwQINkZszQmQ6TJultRPPmOgV83rzy7qVRkTADqyT4anQtWxbf\nwPrxx+DzySfrDbufU+rOO9VQiA6VCxMW0UiPMSdbJPBQ+AbF2LH6ftRReqMbfePetGngcSgoN1Pr\n1vq+bl3grSnMg+X378gjg376kvbJydqXjIz8xt7ukp6u4ZfbtwfGwKpVkUbH/ALmm8+fr14W/3g1\nbhwZ4uiXZ2UFxkdYFc4P14wm+jxGj7UoFcHo45tcF8K29/btkUZctMcvZDNFpBx45538+9oQ8lr9\nFvr8wgv6vmCKSrjHIuy1bQB0AxLzYK0Xeucfs45e3rLoUIrkulAnFDZas6O+i/dbyvI2CIvEVG8G\nDY5g/kLPCxw2sGoCG6ZxQNIXHLjifJh1V7DOeY8Wax8Ah42KPR6f9VPzl2UD1xJkNtqmxs+jjzzE\ng+fBGd3g85Hncu3AY4N9ASmJMD/0/Zs3J1AuBDWw0r3fySOPPEK/7rD1uW1MGAIpXx9XaDe3b9/O\nhAkTWB5OW2AYhmHsFQ46SMMEV67UgKauXeHBB1Vc+aCD1OP1++/l3UujvDEDqyS8+qqGfe3cGXg2\nijKwEhMjPT8rVwZzoxo2VKNg6NCCt09J0bC6G28s+MZ+8WIV0vBv8P0QN9+bFOb00/Xdv9mPJU0P\nGoJ3//0qJOFTlAfL5/DDI5cL2sfucM01+j5okI43KSkydDK8rwYNguTFYXzvXlhQI2zcVK8eGIm+\nUEhYzv/QQ/U9PHerX7/8+wkbZYVJu/uJjcN92H9/aDkAaoUM4DrJOg/QJ5x4uSVwcP9gefJkmP8U\nvNcEfvMMrPRQGGcTAu/luyFDrU0b/W7M/wxWfKhlK1dGBpyHPWI5qIHVS4KkxX7OtK5eCOPOkHhH\naguI9757rS9S71VqS12O87yPed7cpMSQdzVF2/hi8k9em8EqsoAdq2D6tbDpV5j3MDGRhNjlhbEU\nWAv4DtAV7wOQFBcYU82Sl5A4MXLaTUoi3HDDDUFBbqTQyAGdO+zKr7V27VreGRSsS9zxB9u3R4pk\nzJgxg9dff53t27fTvn17TjjhBFq0aMG3/n9JJWDr1q0MGTKEM844g7f8HHyGYRiVlKQknQkxbpwG\nKD36qF5Whw3T9KcHH6wR9wsWlHdPjfLADKySkJICrVrpzaaf1LcoAwsiw8/WrQtC/Xr00Jvq6Bxb\n0YioGl5BubL8uUf+DfxVV6nQAmj+Kh/nAu/WiSfCqFH6qCUWiYn6KMYXvBg4UGXsi8NVUVLixTXM\nisPjj6uHJHwswvPIfOPSDx38+9/V2AA1GsPqf1dcEXz2k0E3bqznuVevYF3dupEiF86p8RT2WHny\n3RGEx52TExg00Z4q30Bs2TIo++wzNTDOfgOa1IVmCdAwTQO+Bw3SMMBwOORiYH3IYHztNfhquopL\nrPSMo87pGj4Kmsln61Y49wQ40DuWq1bBFefpA4QVf6gH66GHdJz16+t3LCsr8MACZAJ9usEZdWHh\nKNi2NDCwNqniHpuz4E2vbv2QCmJKQ50rtcLzQMaFxgOR87SygRUruPwSz8AO60NMBcLaJlne+NZG\nteGHIHo8/wVF42Vr2PVP6SsShhUS1+U3cm668nSOPvroXctXXq4KkjlOjbydO7byjZcCYUuM+W63\n3norw4YN45NP1HX222+/cd555/Hqq69yzDHHcOedd9K8eXPGFRbKWcF4/vnneeCBB5g6dSoPPvhg\nzHH7OOfo1asXvXv3pm/fvjYvzTCMCs0+++ilefJk1T975BG9lRgyRJ+FduyoU62/+SZ/lhOjamIG\nVkmpXh0++ihYjlITi8nLL+v8oObN9Qb1+uv15rZz59Lp0++/azpyn5QUzZ4HsWXYQZUEBw4s3LgL\nGxlXXRXpxSmM6Dllxd2uOIjkN9ji41VUomZN/Xf7/XdV8/PxjbFly+C332K327q1/ivOnq37CKsZ\nNmoUOVdtwwbtQ3icseTlw9+NZs0CUQrfED7rLLjggsC4a9pU+7dsWSA33/Z0GHsXLMuBOV5o3uOP\n6xjDyZEBataNnB91+Us6BcnXVqnfJX8fXxsPb4+BdVPV4H/+DUgHfgf+9XxgkOXlwbfjYHGkAh/b\ngc2psGGdep6+7R8YWMne+8ot8AEwD0j0jllGBnT2RCCWeh62+GgDyzvmOcDlv0LTphx04d2wjUgD\nCwIPE6ho9k1oaN+m0Jy1cFgiUKPrrWQUof+B55TLXSvwPDzx6AgWLVqUX4Y9ij49GkTIvHdo1woA\nF69jWrt6haodAm+//Gi+7R9++GHuuecePv/8c1599VX+8B50LF26lG7dunHbbbexePHiiOTFFZ25\nc+fSo0cPHn/8ca699tpdIZKxmyMA6wAAIABJREFU2LlzJ1999RXjx4/nk08+QaLVUw3DMCoozZrp\ndOYpUzSH1qOP6nPKRx/VWRQNGqiY8RtvRIpLG1ULM7BKyjXXBLLXsQQiYlG7NhxxhP7S/LxSxd12\nd7noIhWr+N//iq5bEElJQd6vQw+NPZcnFmVpYBXEmDHqh09MVOMxPP8pfKynTAm8UU8+GdlGs2aB\nNyy8fVoanHaafm7USD04qamR4YixhErCHibn1JvWq5caF1Onqtz6yy8HYZugxlY42XLmWvgoKnly\np07aj7CxWKuWekqj86RlJ2mGHoD9ukWumzBBle/uPQKGHAYrlkBz4BTUKJs4Dz77JKj/yf0wxJsf\nFPa2PfAV/Fs0efGGRYGBVcc7ljl5UAuogxqvw4drCOaL3hy95WNV2EJC3uBNwFvjYJH3ebX3m9u4\nWfsWUoAHwHeq5QHLQuW+KAZATqQx8o/zLyMptQ4xaeMZqt6Txi3V46AW5GVvp3Xr1lx52QWxt/Nx\n2ZHLeRoimBevDweSEgIRjJO7Fjy3cfPmzaxZs4ZbbrkFgLvvvpvNM59i/ai6rH6/DzfffHPh/ahA\nJCQkMHPmTP7+97/nk7mPJjOkfJmVlaVGrWEYRiWjeXP1bE2YoAFMo0fr7cRnn6kYcIMGqoV2/fX6\n7H7r1qLbNCoHZmCVlEsvDT6fVIQyWSyyszXM8Pnni65bXC67TG/ewyQk6C/6H//Ys7bD8uSvvVa8\nbaKNx+LmttoTjj9ew9leeSX/OpFIQ3OjJ+rgG02x6NMn+JycrMdh+3YV1njlFXj99WAenr+PaMKJ\ngP15W2PGqAxR9+7qDX32WTXEfv01dj9+f1q9RD41a6qXKj09cl7Uxo1qFEbL7o9yGj4IUCvKY/DJ\nJzpf6ZWlsBDIBQ4GwqKDG0IL02uAF/VHdkjoIsPBdgdDgceyYLP3SK52yOjcBNwF5ORq6gPn4N4b\nILO5eol+nQ7fbYSfgJXArwI33gwPEjl+0FBDXzvGt498AyvKrok4R7mZQOg8VW9CUu32xCTN8yom\nA2cdwH3H1YC/Q7UkiI+D9IxvYm/nk7Uxcjlbj2Ncsh6Tls0bMXjwYG9d7FC5O++8kzPPPJPOnTtz\nwQWBQXdU43nUSVzPPhkf0Lxx8URjZs6cyfPPP8+7777LvHKSunrmmWfYsmULubm59Is1ZzFEamoq\nV4eEZ2688cay7p5hGEaZkp6ugSujRqlG1fff6zPRevU0c82pp+rz3549dR7Xxx9bvq3KjBlYJSU8\nwb9//4LrxeLUU+Hoo1WUojSDcEeOjC3mUBqcd14Q6laQ4mA04Xp9+sQ2PkqbSZN0Nuk3Bdz4ttIQ\nrYiwx8LCI8Nj8D1V1appeF/LlhpQ3aOHlkeLevhcd50evxNPDOav1akTGFugCZfD/YsmLw7Cp7ZF\nCw0PvO02zcvmM3q0/lsnRYXZfRWyOM7sBx9+GMw927IFEqqrUZKBhhMmAgXYeuzMgYM9Zb/Nodi6\n3wgMmzMHw1ZPGGSfqATa24BNOyOXL1kKw1PhsN5w63R4GDXUDkvTsNRNqMEVJhzW50+DW+O9R4cO\nbvdcXdlbwOVB3e66XK8HSBwc9UFs8Ys4z5t2D3DLKVx79Q2wEXofewRXHAsjCnhu4RI97+jy9+l1\npM6ty8vLI2+xijokJqm3ql5qDmef5KUsyM4vo9+iWSNuvfVWTjrpJE444QRefjmQtW8QtpNjhCpm\nZWXlm980fvx4Lr/8cs466yxe8JUi0flft950JdeedwgPDT5jl0rizz//zNVXX83AgQMZOnQoq0uS\no64I4uLiWLBgAZtjpQ/wSExMpHfv3ruWM4vK5WYYhlGJiI/XW4GhQzXDzcaN+n7zzRqRf//9qn9V\nt64GrVx2mc74mD+/8IwvRsXBDKySMneuChrMmRMk0i0ukyYFCoJhz1BF5uCD9Rddo4bO1iwO4dC5\n6ITAZcXXX+ffdxhvvgs33xwo8RUmOx82sHzFxW+/VaPsn//URMB33KFB1QUZt8nJqjz56adFn2/f\n6zd1Klx+eWA8LVgbeKBq14aZM3We2eTJmvD32GN17tjVV+u/b2HGbPXq+o/tiy9s2QJJdaAaapg8\nB/RmV+qofGRmwi/eDX1GDsSK8ho9Gn735MP/FiOxcsL+wed1QHISDL1dHzhUS1CPUTbwwXZI80Ig\nZ0eP45DAY9U9VN70EWh3a2TdVd4cst+egPcawn43AgKNT9Xy5LpwelTeqVoHBOsB4lNo9Pl8uAaa\nZs1gyNWF/O4TA2n56lu+wznH3LlzGfPBJAA+nuzJSe1cC5NURXDT2qUAuP3vZFuOfn9feEaVELds\n2cKHH37IxIkTAahZHfYNiVNefskA1npB/OPGjaN27dokJydz+eWXR3Rr/fr17FMTzuoOzet7J27t\nd2S+tx//Oeg5Hj3lJ244YCyMa43LWEK/fv14+umneeWVV7j33nsZGlI6nTFjBm+99Rbjx49n6dKl\nBR+LGOTMGMb2j/5G+rR+3HpOrQgp+zBbt25FRGjVqhX77bcfTcNhs4ZhGFWMatWCKP/vv9dn+V98\noULOLVvqpfXii6F9e31Oe+yx8O9/6zyu+fPVKDMqFmZglZTDDtNws/32K/m2YUW/cOLaik7r1hoY\nXJCKYTRhI6dr14LrlSa+sVSQgeHPC8rJ0dA4Xx2xIMJj8D8nJKjh8+yzOneqUSMNrt6TOWa+R+3n\nn/V9xgwNH13puW0a14fLgSHAr1O0LC1NRTwGDlRvVLNmGnswcmSkVysa32j0xQWmToUmp6qBNR84\nY7J6ggpLr5QTSll/Xgyv2w8/BJ/r75N//SWPRC7HxUMr75w1TQvmi43JgWZeYu5JUW08NiswsOqE\nBE+mL4amUWqOW71QvdwdgEC9noCD5NDcq+qNoc/vsP9w6PUpdH0MErxj9STwyVyopoZTXGYGTber\nVDvdnoW/R3qK5ITvWOfF0NdKVc9LVlYWSZ6TbOJvobDJzNU0atSIV//7NABfTplBak0VNznu8M6s\nWbOGn376ib59+vDc8cdzITCsDupt9Pjmy8947rnneOmll5gyZQqbvLQCa9asIUy3bt345j81GT0I\n+tV+lmnTpsEfL9AgUb9nWTmwaRvg8sjeOI+4uDhq165NQkICGzduZOTIkbvaevPNN+nfvz+9e/fm\n9ddfp9js3EDC3HuovvlbGsfN5v7+8N577+Wr9t67Y3jisjq0/vMOFr52BHPGXctzTz9R/P0YhmFU\nclJT9fZg2DCdm7V+vWpwjRypGmZbtqje1bnnqtFVs6ZO8R80SOt8+22QZcYoH3YjMYyx24S9GH4i\n36pI2DjZW5666NC4aB56SLVSTzpJffNFiYyEx+B7sMJJn/eJYTzsDu+/r/+MkybpnK0HHtDy4cPV\ngGudAL5AYR0v/KxmTZVSHzUqaOeEE1Tko7D5Nf6YfAGPpUvBpaqQw3Zg8GMQapLmAks9d1Y6ELYl\nuqdDy9qoCgUqzhHtjagTQ0Ai2uPRuB488W/9nJgQ+Y+UGhX+Vk1gh4OMTJjuldWoBonb1Ot13WNw\n9EWR2/y4Vo3rNV8CLjCccndE1ktrC/vfDmObw/Zl0OxelZb/AeiyAzp7YaA5qER+HpCXokqHyfXV\nI5WQDtUbs7N+b8j8lOpJ0KBBAxISEnjdcyjlSRJ58dWJy93OuytOZvXq0aR7XVqyciM09kITf7qO\n1X/W4qZhozkS2CUvsxxVTDxDF6snwVNPPcXq1au58MILARCRfHm0+vXrR95rqizauMYWmnTrxuox\nR+N/i7MT6qmM/fZvSZIs5s+fz9KlS/nyyy9JTk4mIZTzbcvmDSTGQ56DWtFz/gph0fwZtAJWbYJ6\nNXQ+2/aMjfnqffneQzx2Wg7wIyz6ERa9GulRNAzD+IsRF6czEzp2DJ7VZ2drMNVPP8H06fr+4ovB\n82TQ578dO2qYYadO0KGD6oA1bLh3Zm/8lTEDa2/ih8t16lR07qvKTPhXW5pJhgvDN4IKmtuWlqb+\n9OISy8Bq2VIfIW3aBF1iSJ7vDr7k/A03aAjgwoW6/O67QZ05I6F5b6jm3Q7XrKleuMzMoJ+XXKKz\nZNeFxCei8eseEkqK++dGmPILLMmArj0j66cnsGtyVbQOQ4fOcPa58FMjfbyWkqLSeFmh4+975QCu\nuxIeeTZ/n5rsAwme7F9SDUjwBDISBd78KbLuCfHwftT5PfMduD3IN8W5nuWRIJDjGYcf/Q9yvNDc\n+AIMLJ+er8PEI+C7X+CjOI27qH8gVPMM8nXAMDwhkAuh1yi4zDMSen0EC0fRpFYOrIbqyeySUU/y\novIeeOgxMr+/iuq5i7n7CQ1bbdu8HrCOE089B3Z8Clt/hz8ncsBG+GIV+I8CljeoS9NN6wPvHXDC\nAXDfOJ0fdUDDTSx8qQMtD+qLdLk3clwujzgJYkj2378z0777glO8r/HOnTup07ypJlb21BabN28e\nIa4BwNyHeOqIF3nmSNiZDc/Pfp01a86kQYMGFMbq1as5o89x/HwPrNkM+9SvA9kbuGPYDfnqSra6\nABevhZb1AfJAipEOwzAM4y9EYqIqEB54oIYPgl6y/Iwzs2erATZ7tgbGhJ+7paaqoRX9atNGjbLi\nZCAyCscMrL3JuefqzXqsnElVlaI8S6WFn0tqT1UTfUJP7CP+aTp2LJ32w20PHKghh/4/5AUX6PLw\n4TrPa9+LI/swYIDGCzz4IHjy3TRurHLvdeqod3ThQg3a9tXa2rUL8m/Fxens2qlT9d+0V6/I5MH1\n6qmhVj1kYEWzvTF0uhqePV0fHPjJs0EDjwcMUB1aUIXHOx+INLBq1VJDNTtP510BbMsM5nVlO3g1\nap8bmkL9bUHikHHjoHOvyDoLPGMtx0GDeFiTC9/8E3r4fUsGBHJC43UOpn0Cf7wN1Y6Ge4E/RgdB\n7UnJgZG9lEiVxS+/hPOAuk2gwd/gl1tg/QJYDG12qOq9q8suL1XiqvfJjdPv1pndQGruR89u+8Ca\nL2nUbF/YkAHLNQTx7scTGbYzOP5N16yHG4B9IC8uhbi8TO49B77bcChfTZ5Kq51jaZUMzL2P4/9v\nHDmJDZgwYQIJ2xfC+PBkNXjggjQ6JgfLzuVpYmtgzq8/0mFmdeK8+aIrgIn77cfAiy6CVZ8RJ448\nB8mJEL/uG+bOnVukgXXlFZfyzIX6WeKEuKSakL2BFYvn8uSz/yZz0xK6dOnCBVfdyYGd2wOz2OHS\nAC/eMi9avcQwDMOIxtfhatlSp1z75OVppqD58zXYxX/Nng0ffBBkHwK93WjSRGey+K9mzSI/16pl\nHrCiMANrb5KYWHLlwcrO3vLUHXmk+sULE67YXcp69uioUSr/f8QRuuxLUm/cqPOloh8lnXJK5D8n\nqL9/7FiV0u/SBUaMiPSyhb1JoAItU6fq5y+/jFzXq5fGGtTYAMfVg8lroH4OLAvNv2rXVg2TRo10\nPzNmBOvaA4OuU4GPtLTA0EqJg0zvWDZIUIXA76aDr5Yfl5x/VmjtWrDRCyT/ZnEwRwtgxAWQdmdk\n/bAHrUUHWDM7UBZs90+9IrT/V6AmCHDPPYGhiq/WFzIsN2+GLl0Ye1Bj+sZ7c+O6gVvbBFm8Aj4H\nDjtJjdS4ZBi8AhbDIPS1NS2N1M8zVMo+8U0SRS2bYX3h5m2/wdi5urvNk+HQ4PcyqFc2zIfZnTrR\nackSzZ+2H9DmVOIOug8+1kTl99w2iAlT5nNQo+dg9Sp4GIQ5LF4xh14tWtBx35WMDE3/BDix8XcR\nyyJxfDj+K05tCx03P0LORY8T5823awKMiofDevakfa4+Ap05ri5d/lzPGdtqsO2ppzTtQEEqox92\nYOw5Qc42SawJiToPcPTzQ7nrkG+JjwP4Ej4Zx0UX3AeTx7Bfx06w7nvdKNdUBA3DMHaXuDgVK27V\nSoWNw+TmwrJlanD98Yd6wJYt0/fvvtMUqNlRz1pTUvS2o6hX/fplc1tWGTADyygbXntNf62dOu2d\n/SUm6qss2BuPaf72NxVPufLKYI7U44+XvJ3bb1cBjB49VCJ/yhR95BT9D3fTTaqoCNC5M8yaFaxr\n2FDP3VdnQ1oTuGuJJ38fSshR6zGYngldH4Fp0yKNwDvqq/rkm29qWz6N0mCR5/7pocYDAKsaAasg\nPjm/MmH3Q2H8eP086iQY/gn4Oh6TN8G7n0bWbwa0A2bWhXjPmKt7PDABOnrj7foo5O6E7wZCj5cD\n71sq+RMYJySotP3vv5N+zwus+l8fGpELySBNG8PiFTpX680XIGtfOOV4WPpZRBNpi7eqEuTvwEE7\niU+upUZf9RYkvLkEPvBr3q5vHZrA9hXU8KardapTR9VLAX4BcrbBAVlQpyts+ImeHdPp+cVcmLxK\n66yAXT1YuZJJnhP5xS/hopOaEbd5GTwFE46Po0c7qJGcR+0u/+L1F+7m1LbADkjIycUlwp81Umm4\ncRvXHQ7z5s2jfZIaWJ0+2AQ7oCEZMO0dnXV91lkR43744YcREXrV3ZcuCYGB1eGgIyFbRTja1FxD\nfBxs3g5p1SAu449QDrHQlyHPDCzDMIyyID4+8Hodd1z+9Xl5eluxdGlgfK1apbm8Vq/W24XJkwue\noZCSorc10a86dfKX1aypz5Vr1tSp8nHRD10rEWVqYIlIb+Ax9Er5gnPuvqj14q0/GZ1mf6Fzbnph\n24pIHeAtoCV623K2c26jt24IcAmaMvVfzrnxZTk+oxDOPbe8e1B67C0v3IAB+vI58cSSiWl06aKP\nn26+Wed0QZCrqzD23TcwsC68EK69Vv/Vjvak7etflj/bYVJWMJ8p+h9w3wlqFI0YoS+fPkfD42Nh\n6BXQ8TnIPgBe/wU2pwGrIO4PTXgcZn1IlfDoi+Hp32CxVykJoDE8OAJuvAn2Bf6Mg6cehg6D4JyO\n8D2QehAc+X+QEjL25oyAVZ5x5ueMqkWkgSWic/rmzIE5czimcWNY1g6Yp/u+ZQi8+gHM+hl+mAGL\nFkHLByHv35pP7EVgzT/IXbGc+Ee+0XlsuZlqSAK0uRTWerLy+7aF+Z6E+7wVEYdg+vTpHOx7Ud8C\n2v0MjfoF45n7ALzzlapBHhNsN/tAIW2mYx8v9djJowFpCFuXwQw4/pNvoe6hkPknUq0hZ//7EKb8\nfAY9PW0SqQFTM7dxOpAu8NioUXQ8cibt6kHSjlwQyOtci7hfNwVhmyEeuf922tTN4I4lsCmUVz1x\nwzcQp1bfCX/rCKt/Z0vakVRnFnG5GyDTU0CU0PeqHD1Ye3IdMwzDqOzExWmwSqNGkWk8o8nOhjVr\nAsNr1So1utavj3zNmqXvGzao96ww0tIija709PyfU1P1Vb160e9+OtO9QZkZWCISDzwFHI9qX/0o\nIuOcc3NC1U5Cnze3Aw4FngEOLWLbwcDnzrn7RGSwt3yziHQE+gOdgMbARBHZ1zlXxOkzjAIYPVpn\nhvohe3ubTz8tuk6Y1q01FPCww4pXf+RIePJJTYb87ruaNr537/weu0GnQPy38NzcoKxGbmBggQpd\nnHIKvPUWPPGEinCsiDQU2L+DvrddCAJ02A/4JZDMz8uJNHCSEkFCKnPvLIEfQhZYNSBjJ1x/I+w3\nHR7+EnKrqXG1ZQvQCpgL1ISmfSL7krsNsjZpmKNvYHWJgxWeIXPTGXDi1VCnrhqcX32lYZC/eSGC\nyUDH2nBDe/jxMPjhCg3p9Nuqht6O9zmcuVPG0xn01tuxy8CaN38BHbzxLu/Vi6a+gdW0FtTcDrM1\ntnFLWBIqHk34nLEQmvSFdVPIWz+NuB1AHeDQu4Bb4HSofWInHn6rLvumfkUnB/tsEeLqHAstT4c3\nboHUA/VcV1NDrW/fvtBgAEx+ddcYXGJN2LGZJmlpJCQkkBSfG4hsVIO4/dLg101sWbqUjJUrqVOn\nDikpKeTm5tKmbgZf3gJH3x156LOpzua1K6iXBrN++JSDm0Oz1p1g1UrI2EDG+kUq7JG+n3qu1v9Y\nbgbWnlzHCmt3yeYlXPnhlWXTacMwjIpAQ++FPpNs5L18HJCdpXpdmZkqjpyVpa/s7OBzVhbsyILN\n2Vo/KwuytkDWuoJ1zQojPl4DnhIS9LP/7r+il3eXsvRgdQcWOOcWAojIm8DpQPjCdDrwinPOAd+L\nSC0RaYR6pwra9nSgl7f9y8CXwM1e+ZvOuZ3AIhFZ4PUhcrKBYRSXs87KF/ZUoRk9Wg2G4j6euewy\nfX3vzXPJyoo0rmbeoje3ae2gQ8i4SkiAajmB5DnAyScH6eW/+06NjSuuUJ//Pfdo+Sbv7+bD+fCP\nOtD9IuCt4BFWVL5fqlcjYi6Ur7joUwsgXv+ZN/WBjfMh3VcO/Aje/lg/v/ACfP659qV2bU/b9mvI\nyILHOsKvnjDGPmnsUrBIe0+VGxP+hPpem4sWwUZPdGEzsPC/sOgVmHedlk2YAGf4KoZeH5e+Q5Np\nc3AJIDnAXUDSYkiAuvGv7hrzjl8mBOPK3YRLrYZ/JrrUBnw7czOwOQMerMas3DfoXBfiNm6DPwFJ\ngTc9j98f0HjMbzyYWg/WpMBdmcTlOk0H4AvPHHEQtGighuzWHbBhqxqdvrMyB07sUQfe30y7X7Yz\nqvp4Umah8QHeocf9CUDSC/fDqHs15iMpnri8LMa7RBiZzUtxsOYOPTUpiRAfv5Ha2UAcHFB/p867\ny/0YNqyGPEjMeRESYGfcGyQ1S0UygZFnU07s9nXMObeqoEY3ZW5i7LyxZdlvwzCMyomgFlkMjTRB\nn2+GNJpwbvdeOU4zr2SGyqLb26NhuD1toaCGRfoBvZ1zl3rL5wOHOueuCdX5ELjPOTfZW/4cNZZa\nFrStiGxyztXyygXY6JyrJSJPAt8751711r0IfOKcGx3Vr8vR1K2g0/F/o/Ki+s5Vg6oylqoyDqg6\nY7FxVDx2ZywtnHN7KbGesifXMefctKi2wteezsAsKj9V5Ttp46hYVJVxQNUZy195HLt17anUIhfO\nOSciJbIQnXMjgZFl1KW9iohMc84dUnTNik9VGUtVGQdUnbHYOCoeVWksxSV87akq47dxVCxsHBWP\nqjIWG0fJKcupXitQTS+fpl5ZceoUtu2fXhgh3vuaEuzPMAzDMIrLnlzHDMMwjL8oZWlg/Qi0E5FW\nIpKEClCMi6ozDrhAlMOAzV7cemHbjgMGep8HAu+HyvuLSLKItEInHIckyAzDMAyjROzJdcwwDMP4\ni1JmIYLOuRwRuQYYj06Hfsk5N1tErvTWPwt8jErbLkA1ti4qbFuv6fuAt0XkEnSK+NneNrNF5G10\n8nEOcPVfQEGwSoQ6elSVsVSVcUDVGYuNo+JRKcayJ9exIqgU4y8GNo6KhY2j4lFVxmLjKCFlJnJh\nGIZhGIZhGIbxV6MS50g2DMMwDMMwDMOoWJiBZRiGYRiGYRiGUUqYgVVBEZFmIvKFiMwRkdkiMsgr\nryMiE0Tkd++9dmibISKyQER+E5ETy6/3sRGReBGZ4eWNqZRj8ZKIjhaReSIyV0R6VMZxAIjIdd53\na5aIvCEiKZVhLCLykoisEZFZobIS91tEuorIr966x728ehVhLA94369fROQ9EalV0ccSaxyhdTeI\niBOReqGyCjmOskZEentjXiAig8u7P4VR1a5Bdv2pUOOolNcery9V4vpj1569MA7nnL0q4AtoBBzs\nfU4D5gMdgRHAYK98MHC/97kjMBNNcN0K+AOIL+9xRI3peuB14ENvudKNBXgZuNT7nATUqqTjaAIs\nAqp5y28DF1aGsQBHAgcDs0JlJe43qjJ6GJoc/hPgpAoylhOABO/z/ZVhLLHG4ZU3QwUilgD1Kvo4\nyvgYxXtjbe39d8wEOpZ3vwrpb5W6BmHXnwoxDirxtcfrT5W4/hQwDrv2lOI4zINVQXHOrXLOTfc+\nbwXmon9Mp6N/snjvfb3PpwNvOud2OucWoYpW3fdurwtGRJoCpwAvhIor1VhEpCb6Y34RwDmX5Zzb\nRCUbR4gEoJqIJADVgZVUgrE4574GNkQVl6jfojn00p1z3zv9d30ltM1eI9ZYnHOfOedyvMXv0bxK\nUIHHUsA5AXgEuAkIqylV2HGUMd2BBc65hc65LOBN9FhUSKrSNciuPxVnHB6V8toDVef6Y9eesh+H\nGViVABFpCXQBpgL7uCDHympgH+9zE2BZaLPlXllF4VH0y54XKqtsY2kFrAX+64WavCAiqVS+ceCc\nWwE8CCwFVqG5ez6jEo7Fo6T9buJ9ji6vaFyMPk2DSjYWETkdWOGcmxm1qlKNoxSp6L+hAqkC1yC7\n/lSQcVTBaw9UzeuPXXv2EDOwKjgiUgMYA1zrnNsSXudZ2hVeZ19ETgXWOOd+KqhOJRlLAuqKfsY5\n1wXYhoYD7KKSjAMvRvx09KLdGEgVkQHhOpVlLNFU1n5HIyLD0Jx+r5V3X0qKiFQHhgK3lXdfjD2j\nsl+D7PpTsajK1x6o3H33sWtP6WAGVgVGRBLRC9trzrl3veI/PXcm3vsar3wFGnPq09QrqwgcDpwm\nIovRsJhjRORVKt9YlgPLnXNTveXR6AWvso0D4DhgkXNurXMuG3gX6EnlHAuUvN8rCMIfwuUVAhG5\nEDgVOM+7YEPlGksb9AZqpve7bwpMF5GGVK5xlCYV/TeUjypyDbLrj1JRxlHVrj1Qha4/du2JKN8j\nzMCqoHgKJi8Cc51zD4dWjQMGep8HAu+HyvuLSLKItALaoZP2yh3n3BDnXFPnXEugPzDJOTeASjYW\n59xqYJmItPeKjgXmUMnG4bEUOExEqnvftWPRORaVcSxQwn574RxbROQwb/wXhLYpV0SkNxrOdJpz\nbntoVaUZi3PuV+dcA+dcS+93vxwVTFhNJRpHKfMj0E5EWolIEvpfOK6c+1QgVeUaZNefijUOqt61\nB6rI9ceuPaU8DrcX1T7sVSJllL+hbuZfgJ+918lAXeBz4HdgIlAntM0wVBXlNyqo+hbQi0DFqdKN\nBTgImOadl7FA7co4Dq+RJeaiAAAgAElEQVRvdwDzgFnA/1BlnQo/FuANNHY/G/3zvGR3+g0c4o39\nD+BJQCrIWBagceL+7/7Zij6WWOOIWr8YT8mpIo9jLxynk1E1vj+AYeXdnyL6WuWuQdj1p9zH4PWr\nUl57vL5UietPAeOwa08pjkO8hg3DMAzDMAzDMIw9xEIEDcMwDMMwDMMwSgkzsAzDMAzDMAzDMEoJ\nM7AMwzAMwzAMwzBKCTOwDMMwDMMwDMMwSgkzsAzDMAzDMAzDMEoJM7AMoxQRkboi8rP3Wi0iK0LL\nSVF1x4tIWhHtLReRWgWUvxVa7i8iL5TSGO4SkWtLoy3DMAyj7LFrj2FULBLKuwOGUZVwzq1Hc5Ug\nIsOBDOfcg+E6XiI7cc6duIe7O1RE2jvnftvDdkqN0NjyyrsvhmEYfxXs2mPXHqNiYR4sw9gLiEhb\nEZkjIq8Bs4FG4SeEIvKBiPwkIrNF5NJiNvsQMDTGviKeAorIPBFp6vVhloj8T0Tmi8grInKiiEwR\nkd9F5JBQM11E5Huv/OJQW4NF5AcR+UVEbitobCU+QIZhGEapY9cewygfzINlGHuPDsAFzrlpAPrA\nbRcDnXMbRKQ6ME1ExjjnNhbR3hvANSLSqgR9aA+cDcwDpgOZzrmeInIWMBjo59XbH+gJpAPTReQj\noCvQHDgUEOBjEekJrIkem2EYhlFhsGuPYexlzINlGHuPPwq5CFwnIjOB74CmQJtitJeDPkkcXII+\nLHDOzfHCKOYAn3vlvwItQ/XGOucynXNrgK+BbsAJwEnADPQC2RbY16tf2NgMwzCM8sOuPYaxlzEP\nlmHsPbbFKhSR44AjgcOccztEZDKQUsw2RwE3AfNDZTlEPjwJt7Uz9DkvtJxH5P+Bi9qPQ58c3uWc\nezGq/20pYGyGYRhGuWPXHsPYy5gHyzDKn5rABu8C1wl9YlcsnHNZwOPAoFDxYjSkAhHpDjTbjT71\nFZFkEakPHAFMA8YDl4hIqtd2UxGptxttG4ZhGOWPXXsMo4wwA8swyp+PgOoiMge4C5hawu2fB8Iy\nvO8A+4jILOByYOFu9GkW8BUwBbjdOfenc+5jYDTwvYj8CrwN1NiNtg3DMIzyx649hlFGiHPR3ljD\nMAzDMAzDMAxjdzAPlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmEYhmEY\nhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYp\nYQaWYRiGYRiGYRhGKWEGlmEYhmEYhmEYRilhBpZhGIZhGIZhGEYpYQaWYRiGYRiGYRhGKWEGlmFU\nQUTkDxHpUYx6KSLiRKRpGfSht4gsCC2vFpG/eZ/vEJEnS3ufFR0R6eWdmwwR6V3KbUcf71L5DojI\nJSLyQay6IjJKRG4qrTEYhmEYRlXADCzDKANE5BoRmSYiO0VkVIz1x4rIPBHZLiJfiEiLAtoZ6N2M\nZ4jIDhHJCy1vKmj/zrk2zrnvSmEc34tIpre/tSLytojU39N2nXO3O+eu2dN2ogkZANu8Pi8XkftF\nRIq5fYSRUgbcDYxwztVwzn0aY/+rve9EhoisEpEXRKTa7uyotL4DzrkXnXN9Clh3oXNuBOyVY2cY\nhmEYlQIzsAyjbFgJ3AW8FL1CROoB7wK3AnWAacBbsRpxzr3s3YzXAPoAS/1l51ytGG0nlOIYfC71\n9t8eaADcVwb7KG3ae30+DrgIGFDO/fFpAcwuos4JXt8PAXoCN5Z5rwzDMAzDKDXMwDKMMsA5965z\nbiywPsbqM4HZzrl3nHOZwHDgQBHpsDv78rweN4rIbGBLqMwPxztcRKaKyCYRWSkij+yOIeac2wCM\nAw4K7buaiDzleVuWi8gDIpJYjD7fJyIveJ87iEiOiFzktbFWRP4dqltDRF73+j9LRIYU11PinJsH\nfB/V5ys87+FWEVkgIhd75XWB94DWIS9hXRGJF5FbRWShiKwTkddEJJ9xG2r/ai88b72IvCsi+3jl\ny4HGwGciklGMvq8AJpL/eD8qIsu8c/yEiCQX0I+Sfgf6ishi7/jf7Xv9RORKEZlYwD7eFJFbCjh2\nLTxPYnqofk9v//FFjd8wDMMwKitmYBnG3qcTMNNfcM5tAxZ45bvLOcDxQN0Y67KBa7x1R6CesEtL\nugMvNLAv2lefO4ADgP2BrkAvYHfm5MSjHpu2wMnA3SLS2lt3F1Af9f6cApxfgj53AnpE9XkVcBKQ\nDlwJPCUinZxz64EzgIUhL+F61IN0AvA3oCl6PB8pYH8no57JM4AmwDrgfwDOuabAGgIPVVF9b+7t\nN9z3h70+7I96FPcFBhd9JIr1HeiDGnPdgX8A5xWjXQAKOHZLgKnAWaGq5wOvOedyi9u2YRiGYVQ2\nzMAyjL1PDWBzVNkWIG0P2nzEObfSObcjeoVz7gfn3I/OuVzn3B/AC8BRJWj7ORHZghoH1YDrQuvO\nA253zq1zzv2JGkPFNoCiuN05l+mc+xGYhxpuAGcDdznnNns37U8Xo63ZIrINmAV8hI4ZAOfcOOfc\nIqdMBL5CjaeCuBIY7B3fTNSoPKeAeV3nASOdc794dW8CjhORhsXos88nIrIVWAIsRo+pH/55CTDI\nObfJObcZDdfsX1SDxfwO3Ou1uwh4EjWy9pSX8cIzRSQJPZf/K4V2DcMwDKPCYgaWYex9MlDvSZia\nwFYRaR4KsSoyjCzEsoJWiEhHEflERP70DKXbgHolaPsK51w6cDDQEA1zwzMwGqKGgM8S1HNTUnKd\nc+tCy9uBGiIS5+0jPL4CxxqiE2qwXgAcDlT3V4jIaSLyg4hsEBUKOYYCjoc3xmbAx1543SZgBvrf\nGctb2JjQ8XDObUKN55Ick5Occ2mo96ozOk/PbzsRNR79voxF58UVSjG/A+HjusTb354yBugmIk1Q\nz+Ry59wvpdCuYRiGYVRYzMAyjL3PbOBAf0FEUoE26LyssIhFkWFkIVwh654HpgNtPEPpTqBYqnoR\nO3BuBjACeMJbdsBqNHTPpzmwoqRtF7LPPOBPNCzOp1lxt3XO/Q/4BRgCu471O8B/gAaeUMgkguPh\notpw6HiOcc7VCr1SogxCn5WEjoc3Vyud3TgmzrkJqPjJ/V7RKiAHPY9+P2o652IZetEU5zsQPq7N\nvbGUqMsxxpCBzs06F/VsmvfKMAzDqPKYgWUYZYCIJIhICjq3KF5UPtwXFXgP6CwiZ3l1bgdmeoIM\nZUEasNk5l+HNSbpsD9p6AWgrIid6y28At3tiEA2AYcCre9bdfLwNDBORmt68pH+WcPt7gas9IYZq\nqBdoDZAnIqeh88Z8/gQaiEjYuH0WuE9EmgGISAMRiSlbjh6Py0Sks3du7wMmOedWl7DPPg8Bp4vI\nfs65bFSV8jERqSdKMxE5vhjtFOc7cLN3jFui87ViKlsWQqxjB/AKOt+rN/BaCds0DMMwjEqHGViG\nUTbcAuxABQgGeJ9vAXDOrUUn/t8NbERFBYqcR7MHXAdc6oUcPkXJb5x34c3xehIVcgANNZuDeuV+\nBr5FvVylyS3ocVoCfIIaXDuLu7FzbhoqhX+953W6EfgAVXjsC3wcqj4TVUpc4oXh1UHHMxGY5M2N\nmoKGS8ba14eoQTcO9QA1ZPfnpOGcWwm8iffdAa712p2GzuP7FBUGKYrifAc+Qsc/DfXyldRQjnXs\nAL5ADdvJzrlVJWzTMAzDMCodohEwhmEYlQMRuQ7o7Zw7scjKRoVARKYATzvnStu7aRiGYRgVDvNg\nGYZRofHC4A4TkTgvvG0QGmZpVAJE5HBUTn5MeffFMAzDMPYGJU42ahiGsZdJRucetQA2oPN4Xih0\nC6NCICJvAicCV8dKIWAYhmEYVRELETQMwzAMwzAMwyglLETQMAzDMAzDMAyjlPhLhwjWq1fPtWzZ\nsry7YRiGYRhGKfDTTz+tc87VL+9+GIbx1+YvbWC1bNmSadOmlXc3DMMwDMMoBURkSXn3wTAMw0IE\nDcMwDMMwDMMwSolyMbBE5CURWSMis0JldURkgoj87r3XDq0bIiILROQ3ETnRK0sWkU9FZJaIXBWq\nO1JEYiYBNQzDMAzDMMoOEbnQS2peoRCRxSJyYwnq9xIRJyL1yqg/TkT6lUXbUfsp1/MhIh+KyKjy\n2n95UV4erFFA76iywcDnzrl2wOfeMiLSEegPdPK2eVpE4lHp38nAAcD5Xt0DgXjn3PS9MAbDMAzD\nMIxSQ0SOFJFxIrLCuwG/MEYdEZHhIrJSRHaIyJdejsDC2h0efqhdiv2NZSS8BbQu7X3F2HdJDaBu\nwNNl2acS0gj4oLw7EYuSGqNGfsplDpZz7msRaRlVfDrQy/v8MvAlcLNX/qZzbiewSEQWAN2BbKA6\nkAiIt91/gCvLsOuGYRjMmwcPPwxnngm9ox8VxeDBB6FBA7jggpLva9IkeO21/OUtW8Ktt+Yvz82F\nYcNg7dr861JT4T//gZo1C9/ne+/Bhx9GlonAZZfBoYcWr9+ffgrvvJO/PDkZbrsNGjaE9evh9tth\nR1SGrMREGDoUmjeHrVvhllsgIwM6dYLrr8/fZmam1t+8ObI8Lg4GDYLOnXV5wQJ44AHIyYkc1z//\nCV27gnN6TFetKt4Yo2nbFoYM0c9ffw0vv1z8bTt0gH//O395Vpa2uWmTLjdqpOdQJH/dZcvgnnt0\nm9KmdWv9XgFMngz//W/+On37Qp8++vmZZyB6inNCAtx0E7Rpo+d86FDYsiX2/mrUgLvv1vdopk6F\n55/X81UFqQHMAl7xXrG4CbgBuBD4DbgNmCAi7Z1zW/dGJwvDy3lXYfLeiUiScy7LORfjX7H8cM6t\nLu8+GGWIc65cXkBLYFZoeVPos/jLwJPAgNC6F4F+qHH4OjADOBc4DRhejP1eDkwDpjVv3twZhmGU\nlOHDnQPnTjih6Lq5uVoXdm9fffs6l5DgXNOmwatmTW1v06b89X/7TdfVqRO5TYMGWv7RR0Xvs3t3\n55KTI7ePi3PukkuK3+8TTnAuMTGyjYYNtQ8vv6x1xozR5X32Ceo0bqxlTzyhdT77TJeTk50TcS4v\nL/++vv9e69SrF7k/cG7w4KDeffdpWZMmQR0R566+WtcvW6bra9eObKc4r/R03XbbNm3rnHOci48v\n2bY5OfnHNm2arqtb17latfTz8uWxj/kzz+j6Ro1K3v/CXv73bcsW3c955+UfW1KSc0ceGfSlVi3n\nUlOD9U2aaBsjRuj6yZNjn7OmTZ2rX1/XTZoUe5yXXqrfx1h9Baa5crqvKe0XkAFcGFUmwCpgWKis\nGrAVuKKAdi4EXNTrQm9dTWAksMZr4yvgkNC2NYH/eeszgYXAtd66xVFtLg7tLyPUxnDUaOwP/OHt\nZyxQL1QnAXgE2IgmlH8Q9TZ9WcCYWsYY0yhv3ZfAM14ba4EfQ/29MdTG9cAvwDZgBZrAvlZofS+v\n3XpFHYsC+tgMeN8bz3ZgHtA/tN4B/aLG0987Bzu8+9sDgM7AFK+fk4FW0cc2xvnOKGS5jdev1V6b\n04FTQ+u/jD62oXU9vf5t947ZM0B6aH11NEotA/gTGAp86J+bv9KrQqoIOueciBT6bMo5l4MaVohI\nIjAeOF1EHgaaA68458bF2G4k+mfCIYccUjWffxmGUaZkZur7zp1F1y1OnaL2dfDB+tTe5+mn4eqr\ndV20N8rv2/PPq4fN55df4MADg/VF7bN3bxg7Nihr27Z424bbOPxw+OKLoGzlSmjSJGjHf//6a9h3\nX/28dSukp+evc9JJ2p/sbEhKyr8vgLffhqOPDsrD7YTrLV2q3i2Apk3z7+vxx2HAgOKPFeDRR+G6\n6/R8V6+ubXXqBDNnFr3t/ffD4MHBtrHG9sYb6lkbOLDg8+CXz5kDtWqVrP+F8eST8H//p+2npel7\n+/Ywe3ZQ56STYMOGyL786186NlCvYWJi/mM9ZgwceWTk/r7/Hnr0KHycLVvCH3/kXxfLs1fFaAU0\nBD7zC5xzO0Tka/Tm97kY27yF3qSfShAptFlEBPgI2Oyt2wAMBCZ53rBVwF3A/t76P739+zL43VBj\n4zL0Jjq3kH63BM4BzgBSgTeBu4ErvPU3oobApagxdhVwHmpkxGIZcBYwBp1CsoFIr9kA9F7vCIIo\np2jygGtRQ6kF8IT3Or+A+oUdi1g8DaQARwNbgPaF1PW5A7jO69MzwBvoMR7mvb8MPA70KUZbBVED\n+AS4BT1m5wDvisgBzrl5wJnATOAlrw8AiMj+6PfudvQ81QEe9er5YaIPAsej52aFV/dI4N096G+l\npCIZWH+KSCPn3CoRaYR+kUBPULNQvaZeWZirUFf6YegfxTnAJCCfgWUYhrGnRN8kFqfunuwrOTmy\nzF+O1bZfVpJtirvPkhpYtWtHlkX3IVZfC6rjG5KZmQUbWEX1OTNTb/Lj4mLXKaid4hCr38VtJ7xt\nQQZWcnLR53BP+l/c/vnvhR1r5/LXSUiA+PjiHevijLO0x1iJaOi9/xlV/ifQJNYGngGWAeS4UFia\niBwDHATUdxrWB3CriPRBjYwRqOEx3Tn3g7d+SajdtWqjsckVHe6WgHrNNnv7HglcFFo/CLjfOTfG\nW38t+efqh8eUKyK+Sb/GObcuqsoi59wNhXXIOfdoaHGxiNwEvC8iA51zeTE2KfBYFEALYIxzzn/M\nsqiI+gAPO+c+BhCRh9A5Wrc6577wyp5EI7t2G68/4Uc/d3vnvB9wl3Nug4jkAlujzuu/gbeccw/5\nBSLyT2CGiDRAvVqXABc758Z76y8Clu9JfysrFUmmfRz65ATv/f1QeX9PNbAV0A7wv9x4aoOnogZW\ndfSJhENd5oZhGKWO75XaGx6snTshJSWyzF+O1bZfVpJtirvPkoylOP2O1dfERPVCRNfxDaySjjlc\nv6hxFdROcYg1tuK2U9zzWdQ59MtL2/goztjCxzE7O3K7WHUKO9bFGefunCMjH13R+6a1IpLhv1Bv\nVxuvzjPAOSIyU0QeFJGjdnNfS3zjymMl0ABARGqihuOuezun8WY/sPv8VFQFETnGU61eLiJbUS9L\nEoERG01Jj8VjwC0i8p2I3CUiXYvR719Cn30j+teoslQRiXoUU3xEJFVERojIHBHZ6J3zQ9Dor8Lo\nCgyI+q58661r472SgO/8DZxzGVH9/8tQXjLtb6AnoL33xb4EuA84XkR+B47zlnHOzYb/Z++8w62o\nrj78LnqRZiMWEEQ09oYRxAK2CNgrGhTsvX0kJjHq5aaIJTH2xJIIClGxYyOKip0kGBUVo6JgQ0VU\niiJ9fX+sGc/cuXPOmdNuY73PM8/M7Lpmn3Nh1vntvTYTgBnAJOBMVY3K0JcAfwh+bfgnJge/gc2T\ndRzHKTt1rWBlc1RyKVjxOvWhYOVT0ZJsFUl+EQ+nvBWi2rVpU1vBShrLcihYlXKwomOU63MP0+MK\nXTlI82xJSmCasS7GwVrNFaxQUegaS+8ayUtLM+yFfbvY8WPgYgBVfRxTYv4IrA08KiIJIU7ysjx2\nr1T2HfS7XJkishE2PfJt4AjMeTghyG6VVKfQsVDVv2HTCG8DNgVeEpFReeyOjpPmSAvHbhW1p0C2\nzNPHH7FnvhjYA/vM/02W547QDFunFv2ubIsJH6/lqbvaUV9RBI/OkrVXlvJ/wObqJuWdH7leAuxb\nsoGO4zg5KFbBWrnSpkkV2lc2RyWX4pHkbGSrk9RGJRSscJpYfPxyOXPxKYKFKFitW9dWsJL6KoeC\nleQ8rrVWcXWjRMco1+cepldC2UnzbElOcZqxLmaK4GquYM3CHKl9gP8AiEgb7MflhDiUP7AMiP/r\n81/MMVulqh9kqxhMv7sDuENEHgfuFJHT1KI7L09otyBUdYGIfI6t6XoaLBR9cJ/LaQzjZRbTfx/M\noTg//NFeRPZPYWuusUgq/wm2FuxmEfklNhVyVBH2ZuNLoKuISKD6gTk+udgVi1MQTsdsg6lP70bK\nZPu+bKmqM5MaFZH3se9DX2wNGSLSHlNEE1ZMNm0a0hRBx3GcRkGxClYx0wWbkoIVbyeX8pRtiqAr\nWHW/NskVrLpDRNYQke1EZDvsHa17cN8dfpg6dzXwSxE5VES2IhO17R85mp4NbCQiO4jI2iLSGpiM\nTfF6SEQGiUhPEeknItUisltgz29F5GAR6S0im2MBED6IOBSzgb1E5EfBko1iuQa4QEQOEZHNgD9h\n+0TlCkb2YZA/RETWEZGEoP5ZeQ8b3/OC5z4aC3iRlRRjES9/jYjsJyIbB5/nfthsrHIyBQs2caGI\n9ApmhOXbvPhd4JDgu7A1MA4LxhFlNrCbiGwgmX3GLgd+IiJ/FZHtRWQTEdlfRG6CH6YD/g24XET2\nEdub7e/EHDURGS0iTxX9xI0Ed7Acx3EKpFgFq5jpguVSsPKpHyGq2V+gC1WwsjlY0fFr1ap25Ldi\nFaxcikk2m9KqKvkoV5CLOIUqWJVwPNIGuahLBaupOliYsvJqcLTFosq9Cvw2UuYKLKT5Ddi2M+sB\n+2ruPbDuAx4DnsJUj6MDZ20wphrdgu2pNQGLdjcnqLcUm0H0OuaMdaBmBLuRWJS8j8ke8S8Nf8SU\noduAqdi0tweArP9qqmoYpe4P2FTH1MEfVHU6pib9H+b0nIRFMsxFvrGI0wyLSjgDeDKwcXiO8gWj\nqm8Dp2NbEE3HlM1L81T7PyyQ3PNYNMGpwXWUS7AAc+9j35dwzHbHIkI+i43DaGoGXPk58Az22T2D\nRYR8Ltb2emTW+DVZGlIUQcdxnEZBY1SwmjWrGSY7G8uXm5OVTw0qxu54O7nKxF/EO3TI1EnqK6yX\ny+a0ClZDCnJRqIJVialzaYNcLFmSiSAYrRcvE9qaVAbyO5KVes6GgKpOIXtY8bCMYtPMRhXQ7lIS\nlI3AKTs3OJLqZV2iEeQ/jEW6i6aNwVS18L6WrQllVmAK0g8qkoi8iu37lBVV/R3wu1jagCxle8Tu\nr8VCnkeZEMmfQuSzyDcWCf2dnSc/2vZsYp+7qk5LSJuUkHYTtcPzXxPJH0PNsf4Qi3UQ5Y+xNqdi\n66viNk8jd3TH74DjgiNbmRHZ8poS7mA5juMUSGNUsCDdOqq065lyEapgaRSsNNMIW7dOF2kvaZwW\nLqxZzhWswkmrYKnaflelKljxkO5xmriCtVoSBJ34KaaMtMT21tomODtOo8OnCDqO4xRI+OK3cqW9\nUKYpC/WrYEG6dVRp1aBcrFgBq1aVT8HKp94sWWLTDFvGYmc1JQUr6mQ2VAUrtCGtgpUr4mGuHwOa\nsoK1GrMKUz3+jUWZ7gsMChQTx2l0uIPlOE6DRxXOPBP23BNGjSpv23fdBWuvDa8mrB645RbYZBNY\nf3047DCYMwcOPhjefjtTZq+94MgjMy+DU6daew88YPfhGeC44+wZROx8W55gx+++a85KNgVr2DB4\nLQiOO3++2XbDDTXLRIm/tM6aBQccAC+9lEnLpT7Mm2d277kn/PSnMD3YseXrr+Ggg2DkSLjmGth7\n7+w2tG4NTz9tbTz2WPYyU6damXvuqane/PKXGRvC4/bbLT9pLdebb8KCBfZcL7yQ/Fxz5lg7V12V\n3e58hHWqqqyt774rXMH69a9rP9ttt2UckbDcGWfY8zz5JKy5JmyzjZV96aXKKli//a31s3Bh9u/k\n4MFw1lk106JlXn3V2hg/PretrVvb3+aee0LPnjBokDntn30Gn3/uClZTQ1U/VtVdVbWTqnZQ1Z1V\n9Yn6tstxisWnCDqO0+BZsQJuvNGuZ8wor5N1dLBpxB571JxOBtbn+0Fw2fvvh113hYcegq23hv32\ng1desZfz554zm7bYAvr1s/KHHmqO4eefZ9pftSrT3jPPWP7xx2e37blgafDWW9dM32ADGDIEHn3U\nXrK32w5efz1j20knWfCIOHEF64UX4JFHoGNH2GUXS8umPhx4oDlUK1aYcvfMM7DvvvZy/9prMHFi\nxtY5c2DgQHM+4wwfbk7nihWw6aY2jnGGDYNx46xMr16w225W9qCDzJmLq4YbbWTjHWeDDez85puZ\nfbTWXrtmmYMPhv/9z9r80Y+gb99M2ULYaCNzwufOtbb22MOcgjRssonZ8dVXtZ+te3cbe4AuXaBr\nV/jiC3OOq6rgm2/s2G032GorGDq0cNvzseGGcMQR9l1escL6GjKkZpnw8162zNbLDRlS+3t79NGw\neLG10aOH/TCRjVNOgRdftPKzZ9sxc2bmx41NNinjAzqO45QZd7Acx2nwxCPBVYKkqX4aCxC8YIGd\n//IX6N/frh96yF6Oc62L6d8fpkyx+8suM6UizMtFmB/2FdKihTkprVrVXtPy179mnKU4SVH1oOaz\nZ1Ow9t47o0yFU8SS1qItWWLl7ror2Ybzz7cjF6ecYkecBx/MXS/OAQfAn/5k9oU2Hh5b5j9oUHpH\nKBetWsG99xZXt02bmkpnNpo1M6f/sMPseaLO8nPxOF1lpGVLmDAhd5mttoLJk3OXGT7cjjSMHm3n\nefNgnXUy6eHnuM8+6dpxHMepD3yKoOM4DZ7wRbJt2+ICRRRL3OkKHayo81HopqjRuvmeJdfGty1a\n2At3IXs4Ja1JipNmHVKojoX2RdtJmj5WX6RZF9TYyLcOq6kR/S7lilDoOI7TkHAHy3GcBk90s9ml\nS2srS5XuNyR0sKIvd4Vuihqtm0/ByuU0iSSrSLlePLMpWFHSRNITqTndMNrOggUN5+U3GnWvlAiB\nDYm0+5k1FaLfpWXLms7n6DhO06YkB0tEmucv5TiOUxrRzWZVba+muuw3pL4UrKT1VGFb9aFghf0k\nKViFhCevNK5gNX5aRBYyNKXP0XGcpk2pCtZ7InKliGxRFmscx3ESiCpY0fu66jekPhSspOh40bbK\noWCtWlU7LZ+TFHXW4s/RUF5+XcFq/ES/+03pc3Qcp2lTqoO1LfAucKuITBWRU0SkYxnschzH+YGo\nghW9r6t+Q3I5WK4dUfIAACAASURBVGkVrPgv8rnIt5dSuRSspM2Q8zlJUecu/hwNxcFyBatp0ZQ+\nR8dxmjYlOViqukhVb1HVXYBfAlXAZyIyVkQ8iKrjOGUhrmBV4uUyquLE+w3JNUUwrYKVq/1C6kKy\ngpVvb6EkBSspLZ9CkG0NVpq6dYUrWE2L8HNs1qzmDxWO4zgNjZLXYInIgSLyAHA18CdgY+Bh4LEy\n2Oc4jlNLwarEy+WyZTXvV62qnVYOBStKJRSsXOWzKVhJaa5gNUyiz1RXaxEbCuHn2Ng/Q8dxmj4l\nr8ECDgKuVNXtVfUqVf1CVe8FJhXToIicLyJvicibInKniLQRkTVF5EkReS84dwnK9heR6SIyTUR6\nB2mdReQJEfEIiY7TRKiUghWNRhiPTBh3riDjYLVsmUkrRcEKN+3NRjEKVtS2OK5gNRzbiiX6TKvb\nNMHwc2zsn6HjOE2fUp2Q41T1RFV9KUwQkf4AqnpOoY2JyAbAOUAfVd0KaA4MBX4FPKWqvYGngnuA\nkcBg4DzgtCDtIuBSVU2Y8OM4TmOkUgpWkhMV7zNKqChFF97nUrBUrY9cv7jnepZ8ClZUkQp/2c8W\nECNePmpzU1Wwmje3qWRNVcFa3aYJuoJVf4jIwSLynIjMFZHvReRDEXlQRPYrsr0Tgh/Nl4nI/ALq\ndRaRUSKyQzH95mhXI8cqEZknIg+JyJZFttcjsHPjhLzZIjKmZKOdBk2pDta1CWnXldhmC6CtiLQA\n2gFzMJVsbJA/Fjg4uF4elGkHLBeRXkA3VZ1Sog2O45TAV19B7972sr/xxrDrrjBwIJx7Lvz973Do\noYW1F75Idu5s5512gg8+SFd31SpYc02zZdttYe5cS1+yBH7yk9rlv/4adtjBykYJlaH4r+fh/QUX\n2LNGCe+zRREEWGMNK9erl11vuSW8+SbssgtMmpRfwXr5Zat/003pVKcFC+Dtt21c7r7b0l9/He67\nzzYJPu+85OdM6vvFF63vq66q3U9DoU0buOEGGD3a7huSbcUQfn/+8Af49NP6taWuueACuPPOxv8Z\nNjZE5BzgAWzW0onAEOD3QfaeRbS3PnAz8FJQf+8CqnfG1vuX1cEKGAP0A3YHLgZ2ASaJSOci2uqB\n2VnLwQIOAX5XnIlOY6GoZaIi0g/74q0jIv8XyeqIqU5FoaqfisgfgY+A74EnVPUJEemqqp8FxT4H\nugbXo4Hbg7LHAn/EFKxctp8CnALQvXv3Yk11HCcH770HM2fa9dKl9iIOMGVKce2F6sMee0DfvjB1\nqjkhcYcmiYUL4Ztv7Hr6dHj3XVh3XZgzx+5Deve288yZ8OqrsOeesM8+0L+/OWjvvWfld9qpZvst\nWmSUofbt4Wc/g2eegZ13Nodp4EA47LBM+SFDYNQoOOAA2HFHU7kWLIDvvrOxmjED/vlPc5z694dz\ncswFOOcce5aQuG1x+vSx8+uvw3rr2XXz5jZN8bnnzMkDs719+9xtnXuutfHyy3a/1lpwzDE2DnsX\n8rpUYX7/e3jlFbvefHN73sZMq1b2TO+8Yz8adOkCQ4fWt1WVZeJE+O1v7fMDGDCgXs1ZHfk58KCq\nnhhJexq4pcjlGL2xd8WxqvpCOQwsE5+q6tTg+gURWQiMA/YD7ipXJ6r6arnachowqlrwAexBEDEw\nOIfH/wG9i2kzaLcL9ke7DtASeBAYBsyPlfsmoe7uwJ+BTYG7sT+Krrn623HHHdVxnPIzZYqquQ6q\nRxyRuY4ehXDTTVbnk09U33jDridMSFf3yy9r9jt5sqXPmGH3d96petxxqhttZOnPPVezXBqOP97q\nVFcX9Fh68MFWb5ddVNdfP2PjxRfb+a67CmsvHx98YO2OGaP6+ed2fcMNql27qp56qurUqZb26KPp\n2zz9dKvTs2d5bXWcYgCmaZHvIH5kfTf7FvhLinLrADdh2/csBj4G/gFsECkzBtDYMSaSfwrwOrAE\nmAf8DVgzyOuRUFeBEdjsqS+AljGbOgCLgMvy2K7A72NpmwfpF8TSzwJeBr4G5gNTgSGR/AFZ7BwQ\n5M+OPfOIIL8vMB5YiM3euhZoE+t7YyyI3GJgLhZc7pSgfo/6/q74kTmKUrBU9VngWREZo6ofFtNG\nFvYGZqnqlwAicj+mlH0hIuup6mcish72pfoBERFMuRqK/ZFdgP0hngP8poz2OY6TguianHDdVBzV\n3OuFktpr06bwfYDi5eLrhsI2C9lPKhuF1gmfpXXrmnWTwsGXg2xR9cLnL2adUmijr4txnCbLv4Hh\nIvIB8JCqvpul3JrAMux97AtgPWyt/Isi8mNVXYJNjXsFcx7OBP4LhO98lwXlrwV+AWyATUXcSkR2\nwX7UPxS4H5vBNDHo9/3AxrOw6XcTIjYdA7THHL9C6RFpP0pPzFF8H1PiDgAeEZFBqjopeKYzgRuw\n99D/BPVm5OnvDuBO7Bn7AaOAbzABAxFpBTwJtAZOx8btJODweEMiMiqo11NVZ+d9UqfsFDtF8GpV\nPQ+4XkQ0nq+qBxZpz0dAXxFph0372wuYBnwHDAcuC84PxeodBzymql8HdVcFR7si7XAcpwSii++z\nOVjLlqV3IKIR4ArdByheLh75LmwzHlGvGIeh0DpR56RVq0x6Ujj4cpAtql74/MU8e9RJdBynSXIa\ncC9wBXCFiHyFvejfpqpPhIVU9R3g7PBeRJoDL2LvdoOAB1T1fRF5OygyQ4MpeSLSA3OqqlX1t5E2\n3gVeAA5Q1QdFJJxe94FmpvMBfCkizwKnUtPBOhVbbjIrxXNKsP6/BbB18LxTyThy4XOOjFRohgVf\n2xRzeiap6kIRCZ2pt2N25uIfqloVXE8WkZ2BowkcLEzp2hjYWVX/HfT/OPAaEF/zsgpYiSlbTj1Q\n7FZ9dwTnP5bLEABV/ZeI3It5/yuAV7GFkGsAE0TkROBD4MiwTuBQjQD2DZKuwuTTZdgvF47j1DFp\nFKx8IciT2mvKClZUzatvBauQfsOyUQfRcZymg6q+KyLbA/2xd62+mFI0VEQuVtUw4AUicjrmkPXC\nlKOQzfJ0sw8WeG184OSE/Aub4rc7tmwkFzcCd4lIb1V9T0R2ArbHFKE0XBgcIbOBPVW1xo5zIrIj\nUA3shE2LDP/1fidlP9l4NHb/BjUDgPQFPgqdK7DJ9iJyH7BNtGLgpP4Wp94odorgK8H52fKaA4H3\nXhVLXoqpWUnlFwMDI/fPY788OI5TT0RVo44d85dJ016zZhZQopIKlmppClauPaiSiCpYGvmdsTEq\nWGmnezqO0/hQ1ZXAc8ERRgKcBFSJyA2q+o2InI1N77sKU6O+wZymqUC+f1XCcD0zs+SvlcLMB7BA\naKdigTlOw9YyPZyiLsDfgb9gtu4FXII5bHur2r/QItINU6xmYGrdR5gg8DtszVYpfB27X4pNBwyp\ntUQm4IsS+3UqQLFTBN8gh+yoqttky3Mcp+mTVsEqpL3wRb5SCpYqLF9emoJVKNmm11VKwcq2L1Q5\nFCzHcVYfVHWOiNwKXINFBfw3tg7+qdgUup4pm/wqOO+LOWbZ8nPZtDyw6QwRuSKw50+quiKlDZ+p\n6rTg+oVgfX8VtsbpniB9P6ATcKSqfhJWDGZTVZrPgC0S0rsmpDn1TLFTBPcvqxWO4zQp0qzBKlTB\nCl/kQ5Wo3ApWmFaKglUoYb/ZHKxK2JCkVrVuDYsXl6ZgOY7TNAmDjCVk/Tg4fx6c22ER8KIcn7Kb\nJ7F1Q91V9ckc5cJ/0dtmyb8Jm+Z3D6b+3JKy/yQuB04GLhGRewMVK3Skfpg2KCKbYtMnP4nUzWdn\nMUwFjheRn0TWYAlwWO5qTn1Q7BTBckYOdByniRFVjTpn2aKxWAVLpOaaqUJsgewKVphWTCS9Ygn7\naBbbSaZSClbYZ1ytatPGNlguRsFyB8txmjxvishkbH37LGzP08HYFLwJqvpRUG4S8EsRuRBTtPYk\nIcJdEkHwi8ux4GmbAc9iodq7YeuzblXVZ7DpcF9h67+mY0HQZqnqV0E7n4rIRGyN2MOq+nGxD62q\n34vIpcD12Dqu+4DJ2JTA20XkT9i0vWpsqmD0X/J3g3IniMjXmMP1jqouKtYeLHLhL4H7ReQ3ZKII\ndgnyV4UFReQSbIpjL39nrx+K2SAOEXkhOC8SkYXxc3lNdBynsVFJBQtqRv0rxBZIr2DVxdS3bH3U\nh4JVrHrnUwQdp8nzG0yJ+S3wBLbXaD/gV8CxkXK/xRSk87H1UNsAP03biapeiO3ptDsWCfAhzKH4\nBngvKLOKjFMxGQuBfkCsqXA6XzGh2ePcggVXu0hERFXfAn4GbIRFF7wAG4fnYs/yFRY2flvMWfwP\nsGMphqjqMmwK5XTgr8BYbK+xG4IiCyLFm2Eh5H11bD1RrIK1a3DuUF5zHMdpCpR7DdbSpTVf+otV\nsFq2TK9g1UVUvGzOyfLlufNLIZuCVax65wqW4zRtVPWv2At9vnLfY6HKT49lSazc5HhaJO8OMpGq\ns/XzILkjCu6POUWP5zE52mY2e5aR2Q8rTJtAzVDwAHcl1L2JBCdPVePtjcHUqXi5UdheWNG09zH1\n8AdE5BEsbP2CXHWduqXYNVg/ICI7ALtiQS9eUNVX81RxHKeJc/nlmesuXZLLfPSRTfd7/HHYb7/a\neRttBFOmQP/+MGECbLllJr9Nm3QK1vjxMGxY5r5dOxg92o4wumHr1pYO0Lt3pmwhUfHWX9/O2aZD\nZiN0oDp0gA03hHdiQX4r4by0awfjxtkR9tGuHbz/Plx0kQXBaFHA/wzh2HX1ZdaO49QjItIX2A44\nCvi/QO1qUojI/wHfYopeB+AIYAi1nVqnninJwQrmeB6B7aoNMEZE7onuieA4zupHhw62kfD48bDm\nmnDrrfDll/DrX2fKvPSSna+9traD9WywAcQtt8DWwaYLUQerdet0CtZvI7uAvPACfP45TJ8Of/mL\n2QPmYOy7rzldDz4I//oXbLJJYc978cVW59C0u60EHHYYfPONOYGLFsEjj8DEifBcMNmkEgrWn/8M\nTz4JV1yR6eP8881JVIUf/7gw53L33eHKK+Ggg8pvq+M4TgG8jDkfY7E9sZoiS7EpmN2xKYDvACep\n6t/q1SqnFqUqWD8DtlXVJQAichm2o7Q7WI6zGrN8OZx0Ehx4oN2feKKdow5WoWuo9twzk5ZWwQrp\n3t2UMDCn5pFHzMESMbWmQwf41a9g/nxzsIYMSd82mJMyYkRhdcCczwsuyNxvthmsWpVxsApRktKy\n9942FqGD1aYNbL45jBpVXHvt2sHPf1428xzHcYoi2zS/poSq3kBmzZXTgCkqyEWEOdTcPK418GmJ\nbTqO08iJr5lKotA1VNH20ipYIfH1VNENfqNqTbaw6XVJ9DkrtXlvPGCI4ziO4zjlo9iNhq/D1lwt\nAN4SkSeD+32w0JyO46ymrFpl0wPzOViFKlhRR6BQBSvuqGTb4De8j4dNr0vqwuGJPp87WI7jOI5T\nXoqdgBLudP0KFoozZEpJ1jiO0+hZtszO+V7cv/8+XXvZFKzFiwu3LVo/3iZUTjEqhLqOytcQntlx\nHMdxmhLFhmkfW25DHMdpGqQN9b0o5XaL2RSsr78u3LZo/XibDYWGaJPjOE5DQqplMrBXJGkV0EOr\nit9Y2HHKSUkTYUSkt4jcKyIzROSD8CiXcY7jND7SbtS7YEH2vBUrMtfZFKxCpgjGyaZgNQQaok2O\n4zgNBamWbsDAWHIzYFhCccepF0pdaXAb8BdgBfZlvx0YV6pRjuM0XtIqWLkcrGgAi2wKViFBLuK4\nguU4jtNoOZbk99fhdW2I42SjVAerrao+BYiqfhjsHF1ggOOaiEjnQBX7n4i8LSL9RGRNEXlSRN4L\nzl2Csv1FZLqITBOR3pH6T4hIPS5Td5zVlzQKVsuWuR2sqDpVCQUrbKshqkUN0SbHcZwGRDZHajOp\nlp3r1BLHyUKpTsjSwJF5T0TOEpFDgDVKbPMaYJKq/hjYFngb+BXwlKr2Bp4K7gFGAoOB84DTgrSL\ngEub4g7ejtMYSKNgtW5dNwrWypXZ+4+32VBoiDY5juM0BKRa+gKbRpIejxWpqIol1TJKqkWDY0ol\n+3IaN6U6WOcC7YBzgB0x2bboL7eIdAJ2B/4GoKrLVHU+cBC2MzfB+eDgennQfztguYj0Arqp6pRi\nbXAcp3CWLwdVmDcPPg6WGOdysFq2zDg/y5fDhx/WVKQ+DXbT++abzHUxCta8eXbOFqa9IapFDdEm\nx3GcBkL8HfMC4K3I/VCpltjOh45T95TkYKnqf1T1W1X9RFWPV9VDVXVqCU32BL4EbhORV0XkVhFp\nD3RV1c+CMp8DXYPr0di6r18D1wN/wBQsx3HqiAULbCPfwYNhnXVg//0tvUOH2mVDdSbq8EyeDD16\nwKGH2v2778L119v1Y4/B+efXbi+NgvXNNxmVbMcda+Z17JhsY8+edu7VK3fblSS0bZtt6s8Gx3Gc\nhoZUS2vgqEjS61qlbwJ3RNK6AAfUqWGOk0CxGw1frarnicjD2AbDNVDVA0uwZwfgbFX9l4hcQ2Y6\nYNi2iogG168BfQObdgc+s0u5G1O3RqrqFzHbTwFOAejevXuRZjqOEzJ3rp0nTcqkXXgh7LJL7bKz\nZ1t49V/+Eh55pGZeqHzNmVMz/bTT4MADYd11M2mtW5vytWpV9k2BQ/Vqv/3g1ltr5p1xBnTrBrvt\nVjP9qKOga1cYMCC5zbqgVy+YOBG22qqy/cyaZePnOI7TSDgQc6BCwqBq/8B+cA9/uhsO3FeHdjlO\nLYrdaDj8teCP5TIk4BPgE1X9V3B/L+ZgfSEi66nqZyKyHjA3WklEBFOuhgLXYZJxD2zq4m+iZVX1\nZuBmgD59+tRyDh3HKZ1hw6B589rpP/qRHTvvXNvBCqf8xZWp/faDQYNqpoXT6JYuhbZtk20I2znx\nRGjXrmZely5w3HG164jAwHjw33rggDr4/bVHj8r34TiOU0ai0wNXYY4VWqUfS7U8CwwI8gZJtayr\nVToXx6knit1o+JXg/Gw5jVHVz0XkYxHZTFXfwTaRmxEcw4HLgvNDsarHAY+p6tci0g77w1uFrc1y\nHKeCRPesCsm3jigpP3SI4murkoI+hGm5HKywHV/T5DiO07iRaukK/DSS9IxWaXS+wx1kHKwWwDHA\n1XVjnePUptgpgm+QMDUQk2dVVUtZPXA2MF5EWgEfAMdja8UmiMiJwIfAkRFb2gEjgH2DpKuAx4Bl\n2B+Y4zgVJCnYRL5IeEn52RSspLKh05RrHVaY51H5HMdxGj0/o+Y7a3zP1XuBG4DwJ7XhuIPl1CPF\nThHcv6xWRAjWVfVJyNorS/nFRHb0VtXnga0rY53jOHGSHKxyKlhJZaMKVj67XMFyHMdp9ESnB35P\nbI2VVulCqZaJZH6A306qZWut0jfqykDHiVJUFMFgU+EPVfXDIKl3cD0X+Lps1jmO0+BJUpHyqUYt\nEn7acQXLcRzHiSPVsh0QnRn1sFbpooSicVWrontiOU4uSgrTLiInY7LsTUHShsCDpRrlOE7joZgp\ngkksWWJ7abmC5TiO40SIO0pxRypkEjAvcv8zqZaEcEuOU3lK3Wj4TKA/sBBAVd8D1s1Zw3GcJkWS\nipSkUOUi3Bdr+XJXsBzHcRxDqiUMWBEyD3OkaqFVuhy4O5L0I2oGxnCcOqPYNVghS1V1mQRvRyLS\nguTgF47jNFFyqUhp6dQJ5s83pyhsr3lzWLkyWYGKhmnPZ5crWI7jOI2WwdT84X5C4EhlYxz243/I\ncCzwWVakWtYA1k5pT+fIdRuplh4p632rVTovfzGnqVCqg/WsiFwItBWRfYAzgIdLN8txnMZCLhUp\nLR07moO1dKm116yZqWArV+YO0+4KluM4TpMm7fRAALRKp0q1zAQ2CZIOlGrppFW6IEe1w4HbirBt\nZ2BWyrJjsYjXzmpCqVMEfwV8CbwBnIr9SnBRqUY5jlP/fPopvP9+/nLlULDCjYBnzYI33jDnKpw2\nmGuK4Jw58PHHsHAhfPWV1X/7bXjlFXj22ZplHcdxnMaDVMua1Ixa/b5W6cspqkadsDbAUWU1zHFS\nUJKCpaqrgFuCAwAR6Q+8WKJdjuPUM1ttZaqS5pn0W4yCtfnmdt5iC5gxAzbYAP73P9h550yZY46B\nf/wj2UFaay07jxiRvy9XsBzHcRolRwOtIvfjU9YbB4yK3A8Hbi6TTY6TCtF8b09JlUSaY3sNbABM\nUtU3RWR/4EKgrapuX14zK0OfPn102rRp9W2G4zRIooEncgWt+NOf4Oc/t+szzoBRo2CddfK3P2sW\nbLghvPaaKWVHH53JO/xwGD8evvzSnK8k1loLvk6xKcTKlTbl0HGcpo+IvKKqSXtpOo0MqZZ/AzuV\nqblNtUrfK7URqZZRQFVw+6xW6YBS23SaJsW+dvwNOAlYC7hWRMYBfwSuaCzOleM46cg3BTCqYG25\nZTrnCqBnT2jZEnbaCdq3r5nXuze0apXduYKMCpYPd64cx3EaF1Itm1M+5wrguDK25Th5KXaKYB9g\nG1VdJSJtgM+BXqr6VflMcxynIbB0aW0HKJ4fUux6p3i9NO342irHcZwmS7k3CR4m1XKJVhUxbctx\niqBYB2tZsP4KVV0iIh+4c+U4TZN8a6yi+cWud4rXS9OOr61yHMdpeki1NAOGRZK+A7YHcoVnT2IU\nGUetB7AHMKU06xwnHcU6WD8WkenBtQC9gnsBVFW3KYt1juPUCytWZK7zTRF0BctxHMcpI3tja/xD\nHi1m/ZRUy+3UVMKG4w6WU0cU62ClXP3gOE5jJOo01YeClcZ5cgXLcRynSRKfHnh3ke08C3wBdA3u\nD5dqOUur9LuiLXOclBS1/FtVP8x1lNtIx3HqlqjTVB8KVhrnyRUsx3GcpoVUS0fgkEjSt9geqwWj\nVboSuC+StAZwaPHWOU56PL6W4zi1KFbByhXOPReuYDmO4zjAEUDbyP3DWqVF7Lb4AxNi9x5N0KkT\nGqSDJSLNReRVEXkkuF9TRJ4UkfeCc5cgvb+ITBeRaSLSO0jrLCJPiEiDfDbHaQwUq2CFe2cViitY\njuM4DuWbHhjyPPBZ5H5PqZYNS2zTcfJSlBMiIk8F58vLa84PnAu8Hbn/FfCUqvYGngruAUYCg4Hz\ngNOCtIuAS8Moh47jFE6xClaxuILlOI6zeiPVsjGwayRpITCplDa1SlcB90aSmgHHltKm46ShWJVn\nPRHZBThQRLYXkR2iRykGiciGwBDg1kjyQcDY4HoscHBwvRxoFxzLRaQX0E1Vp5RiQ1Nj6lS4556a\nkeGc2nz/Pbz8ct32qQoTJ8Ls2ZXtZ8kSeOmlwsqHxBWsl1+279O998Jzz8ELL5Run0cRdBzHWe05\nDotGHTJRqzTPHIpUxFWwcu+x5Ti1KDaK4CXAxcCGwFWxPAX2LMGmq4ELgA6RtK6qGkq8n5OJCDMa\nuB34HvtF4o+YgpUVETkFOAWge/fuJZjZeOjXz87PPAMDBtSrKQ2aU0+FO+6Ajz6Cbt3qps+ZM+Gg\ng2D77eG//61cP2efDbfeav316pW/fC4Fa5ddstdL03YScTVqvfXy10nzGW29dXH2OI7jOHWLVuko\nbO+qcrf7IjUdt1LaGkUFbHSaHsVGEbxXVQcBV6jqwNhRtHMlIvsDc1X1lRx9K+bEoaqvqWpfVR0I\nbIzNsxURuVtExolI14T6N6tqH1Xts8466xRraqNk0aL6tqBh80rwrVu4sO76DPt69dXK9hM6b/Pn\npytfyBosgDFjrNyGRc5sbxb5l+jFF+HHP85f54QT4O3IROI33oB582DBArN/+fLKj6vjOI7jOE6c\nYhUsAFT1dyJyILB7kDRFVR8pocn+2LTDwUAboKOIjAO+EJH1VPUzEVkPmButJCKCKVdDgeswBawH\ncA7wmxLsafSoZq7LsVbGKS8N9TPJpmCtXJlcfo01oFWr8vS9/vrpyonUVMy6d4eOHctjg+M4juM4\nTrGUFGlPREZjASlmBMe5InJpse2p6q9VdUNV7YE5S0+r6jBgIpk5s8OBh2JVjwMeU9WvsfVYq4Kj\nXbG2NBWWL89cp1EinOxORCWoawcr6nDnIpuCle07VM71UIW0FQ0L72uyHMdxHMdpCJSkYGHBKLYL\nI/aJyFjgVeDCUg2LcRkwQUROBD4EjgwzRKQdMALYN0i6CtuUbhlwTJntaHREX5QbqlrSUAidj7p0\nROuqr/DZog53LrIpWNm+Q+WM6FdIW9Gw8C1bls8Gx3Ecx3GcYinVwQLoDHwdXHcqQ3sABJEApwTX\nXwF7ZSm3GBgYuX8e8KXtAWnUB6cmdTlOde30pn22xqJgRSl2Dy7HcRzHcZxyUqqDNRp4VUSewSK0\n7E5mjyqnAeAKVuHU5TjVtdOb9tkKVbDK6WD5/laO4ziO4zRmSlqDpap3An2B+4H7gH6qWuqu204Z\ncQWrcFzBKlzBKqdT1Kykf5Ucx3GcJERkhIho5FgmIu+LyKUiUtTPZCIySkQ0lqYiMqqItsaIyCcp\nyoXP0SOSNltExuQpM0pEStlGKMmW2bExnS8iT4rIrvlrJ7bXObCz1p6yIjJFRKaUbLRTJ5Q8RTDY\nn2piGWxxKkCh4bYdV7AgY1eLFnWvYDmO4zgV5QjgE2y/0UOAXwfXZ5ep/X5B+5Xi0aCPzwosUwX8\nAXi6zPb8E9sbqxnQO+jnMRHZRlVnF9hW56D+J0B8d8wzSjPTqUvKsQbLacDk2jDWScYVrIxdnTrV\nvYLlOI7jVJTXVHVmcP2kiPQGThCRc8OgZaWgqlNLbSNP+18CX5ZapozMizzzSyIyE3gBi4Z9Wbk6\nUdUZ5WrLqTw+GaeJ4wpW4dSl01PXDlYhClazZra/lStYjuM4TZr/YtvarB1NFJGeIjJeRL4UkaUi\n8pqIHJKvsfgUQRHZRETuEJFZIvK9iHwgIn8RkS5Z6u8iIv8RkSXBFLyzY/m1pv8ltFGjTGQa428i\n0/lGicjIYFvyZgAAIABJREFU4NnWidWXwM678j1vAqHy1D3W5lAReToYz29F5FURGR7J7wHMCm5v\nidg5IsivMUVQRAYE+QeKyPUiMi84xolI51jf64jInSKyUES+EZHbgnoqIgOKeEYnDyUrWME8096q\nelvwBV1DVWflq+dkZ+5cuPlmC6194onpN15NIupUvfACjBsHw4alq/vtt3DDDTBrFqy1Fhx9NGy1\nVfG2FMO778I//gGbbw5HHVUzb8kSuO46s3PzzWHo0OL6+OgjGDMGZs+2+ylToF07+PRTOOQQeOcd\nGDSohIfIwsyZ8PvfZ+7vusuUoP79Yd11S29/1iy4+mpr8/33Le3WW+G44+Daa2HVKvuOqcLpp0OX\nLvDdd3D99fD001avdWu4/Xb4859hzTVh2rTkvlzBchzHabT0ABYAX4UJItIN+BcwFzgfU4OOAu4T\nkYNVtZClIesDc4CRQR89se18HsOm8UXpCNwNXA7MxFSga0VkkaqOKfTBIvQDXgbGADcFaZ8Ai4Hf\nA8cDV0TK7xvYeUIRffUIzu/H0nsBDwb9rMACw90qIm1V9a/YdMZDsbgGo8ksv4m3E+ca4BFsa6LN\ngvZXktk/lqDNrbHpoDOBw4Dr4g0FztxtwMAgmrdTLKpa9IHNE30YeDe4Xx94sZQ26/LYcccdtSFy\n7bXha6/qZZeV1tajj1o7nTvbWUR1+fJ0dR96KGMHqB57bGm2FMNZZ2X6jzN5ciavRYvi+7jkkprP\nuf32Ne+T+i4H551Xux9QLdfX8phjktuvqqqdNnas1Zk4MZPWr5/qXnvZ9W23Wf4RR9h9z56q3bqp\nrrGG6oYbpv9O5WLECNWtty683pAhqgMHlt6/4ziNH2CaNoD3i4Z4YHuGKvYS3gLogjkQK4CzYmX/\nhjlVa8XSn8SmGIb3o+xVskYZBUblsKMFsGtQbvtI+pggbWhCnx8CEnuOHpEys4ExCc/aI2bX7xPs\nGYM5HRJJux94O8WYzgbGB8/UCtgCeBZ4F+iSo16zoM4twOuR9B6BnScl1JkCTIncDwjKjo2Vux5Y\nEhmvfYNyR8bKTQzSB0TSjgu+D3vU9/e1sR+lThE8BDgQ+A5AVedgCyWdEli8OHP9/feltRUqWM88\nA1dcYa/OaacKRu0ohy3FELVh5crkvIMOghUr7Ci2j7ZtbWwOPjh5fFRrp5XK4sXQtaupQ1Fmzkwu\nXyjz5mWuly3LXH/+ee2y4WcbjumMGfDSSzB+fM38FStMxfzgA1P+Fi2Cjz+2YBilctttMH164fUe\necQUN8dxHCcV/wOWY3uY/g24SVWvj5XZD1OYFohIi/DAAjpsKyId03YmIq1E5EIR+Z+IfB/0/XyQ\nvVms+EosKnWUu7Dpdhuk7bNAbsTUpb0Ce9cDDgBuTln/GOyZlgJvAVsBB6jqN9FCItI7mKb3aVB+\nOXAStcegUB6N3b8BtAa6Bvd9sXF9IFbu3nhDqnq7qrZQ1WdLtGm1p1QHa5may6sAItK+dJOccJ1L\ny5alr9EJ67dpk1knk7bNeLn6CJKRaw1ZNBBDvGyhfYRj07o1LFhQu0zUQSkXYb91sX4p6gAlOZDh\n2EW/L9FzNN/XWzmO4zRqDgF2AgYDk4EzROS4WJl1MTVjeey4Mshfq4D+RmNK1zhgCPATbCocQPx/\nlG9UdXks7YvgXBEHS1X/DbwCnBYknYSpOGNTNvE4Np67AOcBbYH7o6HvRWQNTInbFtsvdregzt8x\nZ6gUvo7dh//Lh/2vR+5xdSpAqb87TxCRm4DOInIyJjXfWrpZqzdLl5pz1bZt6YEpwvrheppoWtq6\n2e7rgngEu3btaueFDtbSpRaUoZg+wrFp0ybZwYqWKRdhm3Wxfkkkc53kiIZjGf2+RM/RfF9v5TiO\n06h5U4MogiLyNDAduFJE7lPV74IyX2Eq0+VZ2phTQH9DgdtV9YdVx4HDkUQXEWkZcwZCJebTAvos\nlBuBm0RkA8zBukdV445LNr5W1XCF8ssisgBbx3Q2GYe0H7ARsJuqvhBWDFTBSvMZucfVqQClbjT8\nR0xivA+TOC9R1WvLYdjqTFTZcAUre/+VUrC+/Ta3HeWiLhWseL/Z0uIKVuhMuYLlOI7T9FDVpcAv\nMMUqus/SJGAb4C1VnZZwFPKTaztM/YpyfJayzbEADFGGAh9RuoO1DFOXkrgTWAT8A5uO+NcS+hmL\nRRL8hYiEPwuH5x/GIYiieFCsbjiu2ewshqnYuMYjQB5Rxj6cGCV5ziJyuar+EpM942lOkUSVDVew\nsvefpGAV20dUwcpnR7moSwUrynff1U7LpmCJQKtWNfM7d65d33Ecx2mcqOpEEfkPMFJErlfV74FL\ngH8Dz4nI9Vgwhy7Y+qKNVbWQ6HqTgOEi8gYWTOJQbDpdEouAK0RkbeA94Ghgb2BEsCSlFGYAQ0Rk\nEvANMCeIHYCqfi8iY7CIiW+o6kvFdqKqKiKXYJH9Tgf+BLwELARuEJEqoD1wETAP6BSp/gWmHg4V\nkelYjINZqvoVRaKqT4jIi8DNwbjOBA7HpisC/LD3WTBV9O/AXr4OqzRKXYO1T0JaBQJar164gpXc\nZ10pWPnsKBeVVrCy/Ve0cGGyLdFzdByi30NXsBzHcZokF2FTxk4DUNWPgD7A68Cl2A/pfwH2AAoN\nK3Q2FrHuD1gI9g6Y45TEQkyxGg48BAwEzlXVtOuhcnEW5rA8DPwHOCWWf09wvokSUdVHsbDwPw/C\nsH+JKUjNsZlfo7ElNeNi9VZhUxS7YOvj/oMF3CiVQzBH93JgArY+6+IgL7owollgo+CURFEKloic\njknJGwcedkgH4MVyGLY64wpWcp9NUcFq3762Uydl+mctW2CObGvMwnPz5jWDYkS/h74Gy3Ecp3Gi\nto/UmCx5TxB7qVbVT7CX/VxtjsICWETT4u3Mw5ymOPFyIyK3O+Xocwyx51DVHinKvAjsmK1dYH/M\nAbsjR5m4LT1y5O0Su38a2D6h6KhYuQex/bLi7Q2I3U8hwRHK8uxfEvsMAmVyMRZVMmtdpziKnSL4\nDyxqymgsGkrIogIWBTpZKKeCtXSpvSw3b16cgtWqVeZFvT4UrKVLMzZkU7A6dKh5Xyj1qWCttVbl\nFKFsTuGCBebEhQpXNFplkkLlCpbjOI7TVBGR7bE4AucCN6tqwjyPxk2wgXAnLIx8KywM/+nAlQWu\np3NSUtQUQVVdoKqzVfVoVf0Q+B4L1b6GiHQv1hgR6SYiz4jIDBF5S0TODdLXFJEnReS94NwlSO8v\nItNFZJqI9A7SOovIEyJS6vTHeqOcCtaSJdkjwqWxIxqVrz4UrCVLsitU4TiFL/yNUcGq5BqsbE7h\nggU1++zUKbdC5QqW4ziO04R5AIv6NxmoqmdbKsV3WGCRBzB17KfAhcHhVICSnBAROUBE3gNmYTtX\nz8aUrWJZAYxU1S2wjdHOFJEtMJXsKVXtDTxFRjUbie3jcB6Z/QsuAi4N5rE2SsqtYGXb0yitHdH7\numbp0uxrrOJrmBqjglXJNVjZnMLFi2v22amTK1iO4zjO6omq9lDVtqp6sKouqm97KoGq3qOq26lq\nB1VtpaqbqerljflduaFTavz932OO0GRV3V5EBgLDim1MVT/D4vWjqotE5G1sY7mDgAFBsbHAFOCX\nWLjLdsGxXER6Ad2CeakFsWgR/OpX9lK6YoVNq6uqgm7din0a+Owza2PqVNhuO1tvM3p07ihs48bB\n5MkwcGD2TW8LIa2CtWwZ/OIX8M030KyZ7cH1t79Bjx6ZMvPnw9y5sO66dv/113DhhTb9cLPN4M03\n4Xe/g9dft/b23z+9nWPHwlNP2fX668PIkXDRRfDFF7Dllsl233mnTW8Ln+uJJ2C//dL3GZJGwZo8\nGTbZxJ4vnDLZsSNccUXNvbkefxyefNLSw3VMd9xhaQAHHQSHHQYvvQQffAADBtR26ubPh7PPhiuv\nNHtWrbLv5ldfwW9+A//8J+yxB2yxBUyYYOO1665W98svbdy+/x4+/jj7M0f77NAB7r0XTjgBZsxI\nVrDuv9++x4sWuYLlOI7jOI6TE1Ut+gCmBefXgWbhdSltRtruge170BGYH0mX8B7YDovv/wywIXAX\n0DtPu6cA04Bp3bt315CnnlK1VSmZ46abtCTGjs201aaNnR99NHedzTe3cqNHqx56qOpWW5Vmw7Bh\nqhtvbNfvv29tjx1bu9x//1vTzvDo0UP1sMNUt93W7u+6K1PnwQdrj9n48ZnrQujdW7V9e9W117a6\n11xj527dVC+80K7vuadmHVBdc03V+fPt+sADC+szpGdPGydV1dtvz9g/aJBqhw52fdhhqtdfb9fd\nu6v+6Ed2/dxzNdsKy8+YkUnbfHPVdu1sbPv1s7QTTrByd9yhunix6g47ZPrt1MnOL79sZWfNyuRd\ndVXmcwrHIDrW99xj9xtsYM/VvLnqFVdYXnW15fXsqXriiaonn2xj1rdvzc9w881rPtM551h6WO7G\nG4sbZ8dxnEoTvpf44YcfftTnUaqCNT/Yjfs5YLyIzMXmeZZE0OZ9wHmqulAiYdVUVUVEg+vXMAUN\nEdkdU79ERO7G1K2RqvpFtG1VvRm4GaBPnz4/BLJOmgJWjvVPIYMHmwqQr82lS+FnPzPF4phj6m4N\nVmjroEHwwAOZ9NNPhwsuMLWlV6+adcs5ZkuWwJFHmqIzfLipOJBRtS69tGZ/GnxyZ51lU9x22il7\n1Lx8JClY7dvDY4/Z9fbb1wyy8cYbMH067LZb7eddtCjTZvTZDjvM1ME5czJpm2wCwwK995VXMuWf\neQb23DPTRvS5w/azTVkM06dMsfajXHKJHXEGDqx5H1eoLr0Urr0285kMHpzct+M4juPUBVItk4G9\nIkmrgB5apTnmbjhO3VFqIIiDsBCP52Px9d+nxHj9ItISc67Gq+r9QfIXIrJekL8eMDdWR7C1V7/D\nFiheANwCnJO236QX1nLtQQXp92qKrnGpyzVY8T2lQnLVLeeYxdcjhVMjo2lJIdvLMVbxMY8Ttl3I\nnmLxcYqvqYs6vkn9RduItpVvymjUxrQkrbmKEtoZOli+BstxHMepL6RaumH7Y0VpRglLVByn3JTk\nYKnqd6q6SlVXqG0Cdz0W+rEoAkfpb8DbqnpVJGsitukcZDafi3Ic8JhaiPh22C8Zq4LrVCQpL+Xa\ngwrS79UUVVPqMopgfE+pkFx1yzlm8Yh6oSMRTYs6GtH9vcJzOaIIJjk9Ydth+9F1X9n6jCtY8aiQ\nUcc3qb+wXrytfA5WfFzSkLTmKkoY5j/6mTiO4zhOPXEsye+vwxPSHKdeKMrBEpGOIvJrEbleRPYV\n4yzgA+DIEuzpj/3h7CkirwXHYOAyYJ8gYuHewX1oSztgBHBDkHQV8BhwNfDXtB27glXTzpCGqmDF\nlZq6UrDatLE9pApRsMLPoFAFK2mKYH0oWGHa998X3rbjOI7jlJlsjtRmUi0716kljpOFYtdg3QF8\nA7yM7fJ9IRZ84uBgXVRRqOoLJOxKHbBXUqKqLiYiFavq88DWhfZdaQWrY8d0bVZCwerSxa5btLAI\ngQ1NwVK1NU7ZFKyQSihYK1bAypXpFay0e4rVhYK1KiG4aiUUrDDtu2B1ZatW6dt2HMdxnHIh1dIX\n2DSS9DgwKHI/HPhXBfsfRWavrGe1SgdUqi+ncVPsFMGNVXWEqt4EHA1sAfy0FOeqvqmEghV9MW7b\nNn+bK1faC39UTVm6NBPQoVgboi/y2ZSefApWOE0sycmJ91eMjWFfYX/hep9WrTIv9JVQsJLWcsUJ\n2y5kT7Gw3RUrzBEqRcHK5mBlC1YiYtMY05JWwQL7LJo12i28HcdxnEZOXL26AHgrcj9UqsV/BnTq\nnWJflZaHF6q6EvhEVethG9ryUekpgvkUj2heXCUpNjpeaEP0Rb5169zR/7IpWEl1841ZWscw+txR\nBat1a3MWRGr3nTRWpThY+RSscIpgWgUrHqAirmDl2rA3rmBlmyKYbfzDcUtLWgUrW57jOI7jVBqp\nltbAUZGk17VK38RmVYV0ocRga45TDop1sLYVkYXBsQjYJrwWkYXlNLCuiL8oh+pRudps1sxUhVxO\nQJIqE00v1oa4gpUrTHs2BSupbnTKXDQtZMWKdDYmRedbsCB330ljVcznlW3Mo4RtF6NgxdW55ctN\n0Uoau2h/2drIp2DlmnqYjUIULF9/5TiO49QTB2IOVMi44PwPIPqTrge7cOqdohwsVW2uqh2Do4Oq\ntohcdyy3kXXBkiU2DS6kU6fyKliQf51QNjWlFEev0gpWu1icxjAQQpifhlwKVra+61vBSpq2GCWb\nghXWKUbB6tQpvYJVCM2bJ/eflOYKluM4jlNPRB2nVZhjRbD31bORvEFSLevWpWGOE8dXUwTEf/nv\n1Km8ChbkXyfUGBWsuJOwcGHN/DRk21+qIStYSdMWV67MXMcjAMafLZeCFQYjiQe56NSppgNbLgUr\njitYjuM4TkNCqqUr8NNI0jNapXMi99Fpgi2AY+rEMMfJQrFRBJsMs2bBqafCm2/aC++331p6x47w\n3HMwcCCMHg19+2Zv44EH4M9/ztw//zzsuivMmJFJCwMP3Hgj9O8PxyT86WdTUwYPhgEDYPr0TNlj\nj4WTT7brRx+FK67IrHnq2RN+8xs488z8ShDApElwySV23b59zbx43ccfhx13tJf9t96qrWA9/XTm\nesgQq7PLLnDZZWQlrBNVeZL6fvRRe+6xY+Ghh2qWad3apiTutltm/dE++8DFF2fauP56mDAhc7/X\nXrDmmjXbCYNDRNXM1q3NsXnpJdh665rpS5fCyy/DhRfa9L+Q664zG59/vvazjR6dW8ESMVXpD3+w\no2dPS487v9Hv0O672/n552HTTSmIeNAKV7Acx3GcBsbPqPnOOi6Wfy+2XU/4P+twbLsex6kXVnsH\n66WX4MknYeed7YW8XTuYMwe23BLuvhumTIEnnsjtYN13H/znP9CvH3z4oaW9/jr06WPO1Jw5cOSR\n8PHH9sI/YUKygxVXU/r3N0fvrbfs2GADe3n+739h/PiMg/XAAzB1qpX/+GN7yd5uO5g82Ry9Aw/M\n9JGk9ITOynnnwXrrwbBh8NFH0LUr9OqVKXfSSXDzzdZ/aN+QIeZ8vPoqbL45TJsGs2dbYI727eHd\nd832XA7Wu+/aeeedMyHlo+MA9qy33ALjxsHVV8Nnn1n6FlvYefBgeOGFjIo0Y0ZmvENuvx3efx+2\n3Rbefts+q4MPzvQNZvMvflHz89l/f/jXv6ztaHqoSE6aZN+TgQPtO/Ttt5Y3c2ambL9+GfXp8cdz\nK1hgn8WVV9p1hw429v372zM8/7x9t9q2hbXWgnXXNYcwdMALVZmOOsrqbrMN/Pvf9pnGGT7cHLED\nfOmw4ziOU/dEpwd+D9wXzdQqXSjVMpHMXqzbSbVsrVX6Rl0Z6DhRVnsHK3Q2JkyA7t1r5p12mr24\nptm7auONTYn505/g5z831WbSpJrlLroIJk7Mv3dS+OLdowc8+CDsuafdH3kkXHUV7LsvLFpUs94G\nG1j/N96YUa4A7r3XHKWQJAVr6VLo1i2jwt1xB4mMHAmdO9vLPtizhApQNkaOhJtuyl1m6VJYe23Y\ncEO7P/xwszvqgPziF6bgnHpqZrreDjvAGmtY/k47maMccvLJpnjF+9l9d3NITz3VHMulS2181l/f\nyoiYGhilb9+abYfE98eKqncAv/61OZann575bg0dak5ovql8V1yRcbCuvtqcN4ARI7LXOfxwc/YL\nVZm22QYefjh3meOPt8NxHMdx6hKplu2AbSJJD2uVLkooOo6MgwXmlP28krY5TjZW+zVY0SAESaTZ\nXyk63SufepCrvbiCle063kZS/6GDlRQhLu7gFRIYIVoujVJS6PhF280W3S4MOJGr/6R+4+MUD1xR\nKNE28u0dFU0L16mlVZoKLefrpBzHcZwmRDwqYHx6YMgkYF7k/mdSLc2zlHWcirLaO1jxjWbj5Iv8\nF7aRdo1KrvaSnL2k63gbSf2HDlbSHkdJClYxL/tpHJPWrTMbKGcjPl0u21hGo/Dlm2KXNM7xcYoH\nriiUcCyz2ZItLdtnk6ufQsr5OinHcRynKSDVEg9YMQ9zpGqhVbocuDuS9CNqBsZwnDpjtZ8iWB8K\n1ldfJeclOXulKljx5yqnghUP751EdE+nFlm+bcUqWGuvnbvfulCwcoVcb5Wwl3x0/F3BchzHcZyc\nDAaiIdcnBI5UNsYBZ0buhwOP5epAqmUNIMcbRQ06R67bSLX0SFnvW63SefmLOU2F1d7Biq97ipNW\nwQqj7zUkBatVq0xEvWgb5VKw0hBVneIRCqP9V0LBWrXKlLPQsUsap0WLKqdgZauTdJ22TppyrmA5\njuM4TYS00wMB0CqdKtUyE9gkSDpQqqWTVumCHNUOB24rwradgVkpy44FRhTRh9NIWe2nCC5ZkuyI\nhNTlGqxCFKxs+1FFFaxcezrF7S/3y37c5lxOaqXWYMX7zab0VUrBymVX/DptnTTlXMFyHMdxGjtS\nLWsC+0eS3tcqfTlF1agT1gY4qqyGOU4KVnsHK596U+garHzT5sqlYMWnCCYpWNnWANWHgpXLSc2m\nYMWnFBaqYEX7Vc2u9DU1BSvcy8txHMdxGjFHA9HJ9uNT1ourXHEVzHEqzmo/RTCfelNMFLxcNFQF\nK639lVKwouupstlSioK1fLk5WWnHKQ0NVcFyHMdxnCZA3DG6RKrlkiLa2UWqpbdW6XtJmVqlY4Ax\naRqSahkFVAW3z2qVDijCHmc1oNEoWCKyn4i8IyIzReRXQdrlIjJdRG6PlBsmIuelbTefg5Wk+BTa\nRtr2ClGwVqzIbKpbqoJVySmCaRSseP+51sOF5dN8btF+42Obb5zSEI5lseNXKQXLcRzHcRozUi2b\nAzuVscnjytiW4+SlUThYItIcuAEYBGwBHC0i2wI7qOo2wDIR2VpE2gLHB2VTkW96XJLiU2gbadtL\nUrCi0+Ti6ktYPknBymZTmza1w6ZXcopgGgUr3n8+BStNePWkMYqm5xunNISfZbHjl7ZOtuiLudp2\nHMdxnEZMuaf1DZPqbKvtHaf8NJYpgj8BZqrqBwAichdwINBSRARoByzHduy+TjVnCM8fmD4d3noL\nNtkke5k2beC//4Vu3bKXmT+/9ot7587JZdu0Mecmqb0FCyzYRnQNTfSfg3gfvXtDs2bw+efJAQ6y\nOVgAPXpk2v7008o7WAcckF1hmTMHdtklcx+Wa9s2ua1zz00/RXDAAAtiEqp9accpDW3awCefwGef\n2XjGCaMmrrFGcl9p+037X0I4bu5oOY7jOI0VqZZmwLBI0nfA9th7XiGMIuOo9QD2AKaUZp3jpKOx\nOFgbAB9H7j/BwmM+BrwKPAUsAHZW1d/lakhETgFOAWjffkuOOgr22Sd7+XPOgbXWym1cs2YwLPin\nYMAAGD0aTjkluexRR9lLefjCH2fLLWu/UF93HcycCT/5id0fdBDMmGHriuyZYMQIu+7WDS680Jyu\nwYNrt3/oodZWVMESgRNOyP2MIV27wiWXwPbbpyv/k5+YQ7RoUfYyInDiiZn7/faDs8+GM86oWW69\n9eCii8wha94chg7N3ubuu8NZZ8HixZm01q1h0CC73m0362PxYjj55HTPEueEE2DZMlvbdeyxyflz\n58LIkZm0vfe252rdGrbZJnf7b7wB06altycctzPPzF/WcRzHcRooe2PvfSGPZls/lQupltupqYQN\nxx0sp44QVa1vG/IiIocD+6nqScH9sZgzdVakzK3AjcAOwL7AdFX9fa52+/Tpo9MKeYN1HMdxHKfB\nIiKvqGqf+rbDKR6plvHAMZGkw7RK7y+inebAp0DXIOlb4Edapd+VYNsoPMiFk4JGsQYL+wOJTqrb\nMEgDQES2BwR4BzhCVY8EeolI7zq10nEcx3EcxykKqZaOwCGRpG+x2UoFo1W6ErgvkrQGcGjx1jlO\nehqLg/UfoLeI9BSRVsBQYGIk/3fAxUBLINyJahW2NstxHMdxHMdp+BwBRFdgP6xVmieWc04mxO49\nmqBTJzQKB0tVVwBnAf8E3gYmqOpbACJyMDBNVeeo6nzgNRF5A2ijqq/Xm9GO4ziO4zhOIcSjB95d\nYnvPA59F7veUatmwxDYdJy+NwsECUNXHVHVTVe2lqn+IpD+oqqMi9z9X1a1V9Wf1YqjjOI7jOI5T\nEFItGwO7RpIWApNKaVOrdBVwbySpGZAQlspxyktjiSJYEV555ZV5IvJhfdvRAFgbmFffRjRAfFyS\n8XGpjY9JMj4uyfi41KZcY7JRGdpw6ofjsPX0IRO1SvPsRJqKu4GzI/fDgdFlaNdxstIoogg6lUVE\npnnUpdr4uCTj41IbH5NkfFyS8XGpjY+J4zhNiUYzRdBxHMdxHMdxHKeh4w6W4ziO4ziO4zhOmXAH\nywG4ub4NaKD4uCTj41IbH5NkfFyS8XGpjY+J4zhNBl+D5TiO4ziO4ziOUyZcwXIcx3Ecx3EcxykT\n7mA5juM4juM4juOUCXewVgNEpJuIPCMiM0TkLRE5N0hfU0SeFJH3gnOXSJ1fi8hMEXlHRH5af9ZX\nFhFpLiKvisgjwb2PiUhnEblXRP4nIm+LSL/VfVxE5Pzgb+dNEblTRNqsjmMiIn8Xkbki8mYkreBx\nEJEdReSNIO9aEZF4X42JLONyZfA3NF1EHhCRzpG81XZcInkjRURFZO1I2moxLo7jNH3cwVo9WAGM\nVNUtgL7AmSKyBfAr4ClV7Q08FdwT5A0FtgT2A24Ukeb1YnnlORd4O3LvYwLXAJNU9cfAttj4rLbj\nIiIbAOcAfVR1K6A59syr45iMwZ4pSjHj8BfgZKB3cMTbbGyMofYzPAlsparbAO/y/+3dX4xdVR3F\n8e9KKpVpBRPRCh1MGxpLQkgsKjQlEiMENBJKIiEkIOVfjPFPxBfSYgI+9IEH/BNfTLSNgjZgLcQ/\nAQJ69rr0AAAF4UlEQVRGE4jBKSkDpe2AiIAwY0uJVVEUsHTxcLb29NqBzvTOXHr2+iRNz933nH33\nWcncmd/Z+54LayC5QHPRDzgXeK7VVlMuEdFxKbAqYHun7dGy/Q+aP5gXAiuBW8putwAXlu2VwO22\nX7X9DPAUcPrsjnrmSRoGPg2sazXXnsmxwFnAegDbr9n+G5XnAswBjpY0BxgC/kyFmdh+ANjT0zyl\nHCQdDxxje8TNXZZubR1zRDpYLrbvs723PBwBhst21bkU3wKuA9p32aoml4jovhRYlZG0CFgGbAYW\n2N5ZntoFLCjbC4HnW4eNl7au+TbNL/l9rbbaM1kMvAj8oCydXCdpHhXnYnsCuJnmavtO4O+276Pi\nTHpMNYeFZbu3vcuuAu4p21XnImklMGF7a89TVecSEd2SAqsikuYDdwDX2n6p/Vy5MljNPfslnQ/s\ntv3wZPvUlkkxBzgN+K7tZcDLlCVf/1VbLuUzRStpis8TgHmSLmvvU1smk0kO/0/S12iWaW8Y9FgG\nTdIQcD1ww6DHEhExk1JgVULSO2iKqw227yzNL5TlF5T/d5f2CeDE1uHDpa1LzgQukPQscDvwCUk/\npu5MoLk6PG57c3m8iabgqjmXc4BnbL9o+z/AncAK6s6kbao5TLB/uVy7vXMkXQGcD1zq/V86WXMu\nJ9FcqNha3nuHgVFJ76fuXCKiY1JgVaDccWk98Ljtb7ae+gWwqmyvAn7ear9E0lxJi2k+VPzQbI13\nNtheY3vY9iKaD1b/xvZlVJwJgO1dwPOSlpams4Ex6s7lOWC5pKHys3Q2zecYa86kbUo5lOWEL0la\nXvK8vHVMZ0j6JM0S5Ats/6v1VLW52N5m+322F5X33nHgtPK+U20uEdE9cwY9gJgVZwKfBbZJerS0\nXQ/cBGyUdDXwJ+BiANs7JG2k+cN6L/BF26/P/rAHIpnAl4ENko4CngaupLkYU2UutjdL2gSM0pzj\nI8D3gPlUlomk24CPA8dJGgduZHo/M1+gucPc0TSfTbqHI9gkuawB5gK/KncVH7H9+dpzsb3+YPvW\nlEtEdJ/2r1qIiIiIiIiIw5ElghEREREREX2SAisiIiIiIqJPUmBFRERERET0SQqsiIiIiIiIPkmB\nFRERERER0ScpsCJixkl6j6RHy79dkiZaj4/q2fdeSe96i/7GJb17kvaftB5fImldn85hraRr+9FX\nREREdFe+BysiZpztvwAfApD0deCftm9u71O+RFS2zzvMlztD0lLbvz/MfvqmdW77Bj2WiIiImFmZ\nwYqIgZG0RNKYpA3ADuD49uyUpF9KeljSDknXHGK336D5Iu3e1zpgBkrSE5KGyxi2S/qRpCcl3Srp\nPEkPSvqDpI+0ulkmaaS0X9Xqa7WkhyQ9JumGyc5tygFFRETEESczWBExaCcDl9veAtBM9vzPKtt7\nJA0BWyTdYfuvb9HfbcCXJC2ewhiWAhcDTwCjwCu2V0j6DLAauKjsdyqwAjgGGJV0F/Bh4APAGYCA\nuyWtAHb3nltERER0X2awImLQ/vgmBchXJW0FfgcMAycdQn97aWaxVk9hDE/ZHitL+MaAX5f2bcCi\n1n4/s/2K7d3AA8BHgXOBTwGP0BRnS4APlv3f7NwiIiKigzKDFRGD9vLBGiWdA5wFLLf9b0m/Bd55\niH3+ELgOeLLVtpcDLyq1+3q1tb2v9XgfB75Puud1TDNrtdb2+p7xL2GSc4uIiIjuygxWRLxdHQvs\nKcXVKTSzRYfE9mvAd4CvtJqfpVnOh6TTgROnMaYLJc2V9F7gY8AW4F7gaknzSt/Dko6bRt8RERHR\nASmwIuLt6i5gSNIYsBbYPMXjvw+0bwH/U2CBpO3A54CnpzGm7cD9wIPAjbZfsH03sAkYkbQN2AjM\nn0bfERER0QGye1e8RERERERExHRkBisiIiIiIqJPUmBFRERERET0SQqsiIiIiIiIPkmBFRERERER\n0ScpsCIiIiIiIvokBVZERERERESfpMCKiIiIiIjokzcAjgftaSMY73kAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the 'sim_improved-learning' file from the improved Q-Learning simulation\n", + "vs.plot_trials('sim_improved-learning_ref.csv') # e decay\n", + "vs.plot_trials('sim_improved-learning.csv') # gompertz decay parametrized to go to 0 at around 1600 trials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7\n", + "Using the visualization above that was produced from your improved Q-Learning simulation, provide a final analysis and make observations about the improved driving agent like in **Question 6**. Questions you should answer: \n", + "- *What decaying function was used for epsilon (the exploration factor)?*\n", + "- *Approximately how many training trials were needed for your agent before begining testing?*\n", + "- *What epsilon-tolerance and alpha (learning rate) did you use? Why did you use them?*\n", + "- *How much improvement was made with this Q-Learner when compared to the default Q-Learner from the previous section?*\n", + "- *Would you say that the Q-Learner results show that your driving agent successfully learned an appropriate policy?*\n", + "- *Are you satisfied with the safety and reliability ratings of the *Smartcab*?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "The epsilon decay function used was e^(-0.0005 * nb_trials). I also attempted gompertz decay, but needed to parametrize the function quite a bit. With the first i need about 4k trials, with gompertz about 2k to converge.\n", + "\n", + "Epsilon tolerance was 0.01, alpha was 0.01 and constant over time. I used these values so that the simulation could learn a lot from historical mistakes before it started testing. A low alpha was chosen so that learning could be spread out better over the large number of trials.\n", + "\n", + "Improvement over default q learner was vast. Initially I tried using better decay functions, but it turned out i needed more training. Accident rates are now will below 5% and reliability at worst is around 80% - 90% and i feel i narrowed the standard deviation of rolling reliability. Rewards are almost constant at 2.\n", + "\n", + "Safety and Reliability rating are at A+, which is incredible. I would certainly say the learner has learned an appropriate policy, although it still has a rather high variance in reliability.\n", + "\n", + "\n", + "N.B: Removing deadline from the state variables reduces variance in the reliability running average, so I did this for the output.\n", + "\n", + "Including all features is possible with advances in computing power, as opposed to using a priori knowledge to reduce space dimensionality. But a priori is NOT reinforcement learning - the agent must come up with all rules by itself, so you should not remove any features.\n", + "\n", + "It seems running on all features except deadline, leads to a slightly lower reliability after 10k trials, and reliability variance is up again (not shown here).\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an Optimal Policy\n", + "\n", + "Sometimes, the answer to the important question *\"what am I trying to get my agent to learn?\"* only has a theoretical answer and cannot be concretely described. Here, however, you can concretely define what it is the agent is trying to learn, and that is the U.S. right-of-way traffic laws. Since these laws are known information, you can further define, for each state the *Smartcab* is occupying, the optimal action for the driving agent based on these laws. In that case, we call the set of optimal state-action pairs an **optimal policy**. Hence, unlike some theoretical answers, it is clear whether the agent is acting \"incorrectly\" not only by the reward (penalty) it receives, but also by pure observation. If the agent drives through a red light, we both see it receive a negative reward but also know that it is not the correct behavior. This can be used to your advantage for verifying whether the **policy** your driving agent has learned is the correct one, or if it is a **suboptimal policy**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8\n", + "Provide a few examples (using the states you've defined) of what an optimal policy for this problem would look like. Afterwards, investigate the `'sim_improved-learning.txt'` text file to see the results of your improved Q-Learning algorithm. _For each state that has been recorded from the simulation, is the **policy** (the action with the highest value) correct for the given state? Are there any states where the policy is different than what would be expected from an optimal policy?_ Provide an example of a state and all state-action rewards recorded, and explain why it is the correct policy." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** \n", + "\n", + "I have now removed deadline from the states, so answers are based on this: I find it surprising that its not required to know how close it is from failing in order to get good reliability.\n", + "\n", + "I have defined states as waypoint, light, oncoming.\n", + "Examples:\n", + "\n", + " waypoint=left, light=green, oncoming=forward, left!=forward => should wait for oncoming or go right or forward. In the simulation, going forward has the biggest reward, followed by right. Waiting actually has quite a negative reward.\n", + " \n", + " waypoint=right, light=green, oncoming=None, left!=forward => should turn right. Simulation agrees, right has the biggest reward.\n", + " \n", + " waypoint=right, light=red, oncoming=forward, left!=forward => should wait. Simulation agrees.\n", + " \n", + " \n", + "States: The few i checked seem to have the right policies. Removing deadline, it seems all states chose the best action. \n", + "\n", + "A state i found where the optimal policy is different from the learned is:\n", + "\n", + " waypoint=left, light=green, oncoming=right, left!=forward. It prefers forward instead of wait, although the next waypoint is left.\n", + " \n", + " ('left', 'green', 'right', False)\n", + " -- forward : 0.13\n", + " -- right : 0.44\n", + " -- None : -1.44\n", + " -- left : -6.68\n", + " \n", + " \n", + "An example of a state with all actions and rewards that has the correct policy is:\n", + "\n", + " ('forward', 'red', 'left', False)\n", + " -- forward : -9.09\n", + " -- right : 0.73\n", + " -- None : 1.87\n", + " -- left : -9.62\n", + "\n", + "\n", + " here the light is red, car wants to go forward, oncoming goes left, so best action is chosen correctly (do nothing).\n", + " \n", + " \n", + "Papers on learning rates for later:\n", + "\n", + " http://www.jmlr.org/papers/volume5/evendar03a/evendar03a.pdf\n", + " http://karpathy.github.io/2016/05/31/rl/\n", + " https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0\n", + " http://mnemstudio.org/path-finding-q-learning-tutorial.htm\n", + " https://www-s.acm.illinois.edu/sigart/docs/QLearning.pdf\n", + " http://www.umiacs.umd.edu/~hal/courses/ai/out/cs421-day10-qlearning.pdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----\n", + "### Optional: Future Rewards - Discount Factor, `'gamma'`\n", + "Curiously, as part of the Q-Learning algorithm, you were asked to **not** use the discount factor, `'gamma'` in the implementation. Including future rewards in the algorithm is used to aid in propogating positive rewards backwards from a future state to the current state. Essentially, if the driving agent is given the option to make several actions to arrive at different states, including future rewards will bias the agent towards states that could provide even more rewards. An example of this would be the driving agent moving towards a goal: With all actions and rewards equal, moving towards the goal would theoretically yield better rewards if there is an additional reward for reaching the goal. However, even though in this project, the driving agent is trying to reach a destination in the allotted time, including future rewards will not benefit the agent. In fact, if the agent were given many trials to learn, it could negatively affect Q-values!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional Question 9\n", + "*There are two characteristics about the project that invalidate the use of future rewards in the Q-Learning algorithm. One characteristic has to do with the *Smartcab* itself, and the other has to do with the environment. Can you figure out what they are and why future rewards won't work for this project?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:**\n", + "\n", + "Smartcab: it cannot see what is happening elsewhere in the city, so no point optimising now to make some headway a few roads down the line. It would need traffic reports to do this for example. Further, the agent cannot see how far it is from the destination, thus cannot optimise the path.\n", + "\n", + "As traffic and lights and other cars movements are random, there is no benefit to learning to go towards the goal directly, as the environment keeps evolving randomly, so the agent cannot control the environments future. So lets say driving at the same speed to keep traffice flowing has no benefit down the line, as no traffic jams are avoided or created. Further, as each trial has a new destination, the learned Q cannot incorporate how to get there fast, as this info is useless in the next trial.\n", + "\n", + "I wonder if there is a way to parallelize this implementation?\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/titanic_survival_exploration/titanic_data.csv b/titanic_survival_exploration/titanic_data.csv new file mode 100644 index 0000000..5cc466e --- /dev/null +++ b/titanic_survival_exploration/titanic_data.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/titanic_survival_exploration/titanic_survival_exploration.html b/titanic_survival_exploration/titanic_survival_exploration.html new file mode 100644 index 0000000..338e4b4 --- /dev/null +++ b/titanic_survival_exploration/titanic_survival_exploration.html @@ -0,0 +1,13379 @@ + + + +titanic_survival_exploration + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Introduction and Foundations

Project: Titanic Survival Exploration

In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive. To complete this project, you will need to implement several conditional predictions and answer the questions below. Your project submission will be evaluated based on the completion of the code and your responses to the questions.

+

Tip: Quoted sections like this will provide helpful instructions on how to navigate and use an iPython notebook.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

To begin working with the RMS Titanic passenger data, we'll first need to import the functionality we need, and load our data into a pandas DataFrame.
+Run the code cell below to load our data and display the first few entries (passengers) for examination using the .head() function.

+

Tip: You can run a code cell by clicking on the cell and using the keyboard shortcut Shift + Enter or Shift + Return. Alternatively, a code cell can be executed using the Play button in the hotbar after selecting it. Markdown cells (text cells like this one) can be edited by double-clicking, and saved using these same shortcuts. Markdown allows you to write easy-to-read plain text that can be converted to HTML.

+
+ +
+
+
+
+
+
In [5]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from IPython.display import display # Allows the use of display() for DataFrames
+
+# Import supplementary visualizations code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the dataset
+in_file = 'titanic_data.csv'
+full_data = pd.read_csv(in_file)
+
+# Print the first few entries of the RMS Titanic data
+display(full_data.head())
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:

+
    +
  • Survived: Outcome of survival (0 = No; 1 = Yes)
  • +
  • Pclass: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)
  • +
  • Name: Name of passenger
  • +
  • Sex: Sex of the passenger
  • +
  • Age: Age of the passenger (Some entries contain NaN)
  • +
  • SibSp: Number of siblings and spouses of the passenger aboard
  • +
  • Parch: Number of parents and children of the passenger aboard
  • +
  • Ticket: Ticket number of the passenger
  • +
  • Fare: Fare paid by the passenger
  • +
  • Cabin Cabin number of the passenger (Some entries contain NaN)
  • +
  • Embarked: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)
  • +
+

Since we're interested in the outcome of survival for each passenger or crew member, we can remove the Survived feature from this dataset and store it as its own separate variable outcomes. We will use these outcomes as our prediction targets.
+Run the code cell below to remove Survived as a feature of the dataset and store it in outcomes.

+ +
+
+
+
+
+
In [6]:
+
+
+
# Store the 'Survived' feature in a new variable and remove it from the dataset
+outcomes = full_data['Survived']
+data = full_data.drop('Survived', axis = 1)
+
+# Show the new dataset with 'Survived' removed
+display(data.head())
+
+ +
+
+
+ +
+
+ + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
013Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
121Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
233Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
341Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
453Allen, Mr. William Henrymale35.0003734508.0500NaNS
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

The very same sample of the RMS Titanic data now shows the Survived feature removed from the DataFrame. Note that data (the passenger data) and outcomes (the outcomes of survival) are now paired. That means for any passenger data.loc[i], they have the survival outcome outcomes[i].

+

To measure the performance of our predictions, we need a metric to score our predictions against the true outcomes of survival. Since we are interested in how accurate our predictions are, we will calculate the proportion of passengers where our prediction of their survival is correct. Run the code cell below to create our accuracy_score function and test a prediction on the first five passengers.

+

Think: Out of the first five passengers, if we predict that all of them survived, what would you expect the accuracy of our predictions to be?

+ +
+
+
+
+
+
In [44]:
+
+
+
def accuracy_score(truth, pred):
+    """ Returns accuracy score for input truth and predictions. """
+    
+    # Ensure that the number of predictions matches number of outcomes
+    if len(truth) == len(pred): 
+        
+        # Calculate and return the accuracy as a percent
+        return "Predictions have an accuracy of {:.2f}%.".format((truth == pred).mean()*100)
+    
+    else:
+        return "Number of predictions does not match number of outcomes!"
+    
+# Test the 'accuracy_score' function
+predictions = pd.Series(np.ones(5, dtype = int))
+print accuracy_score(outcomes[:5], predictions)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 60.00%.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Tip: If you save an iPython Notebook, the output from running code blocks will also be saved. However, the state of your workspace will be reset once a new session is started. Make sure that you run all of the code blocks from your previous session to reestablish variables and functions before picking up where you last left off.

+
+

Making Predictions

If we were asked to make a prediction about any passenger aboard the RMS Titanic whom we knew nothing about, then the best prediction we could make would be that they did not survive. This is because we can assume that a majority of the passengers (more than 50%) did not survive the ship sinking.
+The predictions_0 function below will always predict that a passenger did not survive.

+ +
+
+
+
+
+
In [45]:
+
+
+
def predictions_0(data):
+    """ Model with no features. Always predicts a passenger did not survive. """
+
+    predictions = []
+    for _, passenger in data.iterrows():
+        
+        # Predict the survival of 'passenger'
+        predictions.append(0)
+    
+    # Return our predictions
+    return pd.Series(predictions)
+
+# Make the predictions
+predictions = predictions_0(data)
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 1

Using the RMS Titanic data, how accurate would a prediction be that none of the passengers survived?
+Hint: Run the code cell below to see the accuracy of this prediction.

+ +
+
+
+
+
+
In [46]:
+
+
+
print accuracy_score(outcomes, predictions)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 61.62%.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: 61.62%

+ +
+
+
+
+
+
+
+
+
+

Let's take a look at whether the feature Sex has any indication of survival rates among passengers using the survival_stats function. This function is defined in the titanic_visualizations.py Python script included with this project. The first two parameters passed to the function are the RMS Titanic data and passenger survival outcomes, respectively. The third parameter indicates which feature we want to plot survival statistics across.
+Run the code cell below to plot the survival outcomes of passengers based on their sex.

+ +
+
+
+
+
+
In [9]:
+
+
+
vs.survival_stats(data, outcomes, 'Sex')
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females did survive the ship sinking. Let's build on our previous prediction: If a passenger was female, then we will predict that they survived. Otherwise, we will predict the passenger did not survive.
+Fill in the missing code below so that the function will make this prediction.
+Hint: You can access the values of each feature for a passenger like a dictionary. For example, passenger['Sex'] is the sex of the passenger.

+ +
+
+
+
+
+
In [47]:
+
+
+
def predictions_1(data):
+    """ Model with one feature: 
+            - Predict a passenger survived if they are female. """
+    
+    predictions = []
+    for _, passenger in data.iterrows():
+        
+        # Remove the 'pass' statement below 
+        # and write your prediction conditions here
+        if passenger['Sex'] == 'female':
+            predictions.append(1)
+        else:
+            predictions.append(0)
+    
+    # Return our predictions
+    return pd.Series(predictions)
+
+# Make the predictions
+predictions = predictions_1(data)
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 2

How accurate would a prediction be that all female passengers survived and the remaining passengers did not survive?
+Hint: Run the code cell below to see the accuracy of this prediction.

+ +
+
+
+
+
+
In [48]:
+
+
+
print accuracy_score(outcomes, predictions)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 78.68%.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: 78.68%

+ +
+
+
+
+
+
+
+
+
+

Using just the Sex feature for each passenger, we are able to increase the accuracy of our predictions by a significant margin. Now, let's consider using an additional feature to see if we can further improve our predictions. For example, consider all of the male passengers aboard the RMS Titanic: Can we find a subset of those passengers that had a higher rate of survival? Let's start by looking at the Age of each male, by again using the survival_stats function. This time, we'll use a fourth parameter to filter out the data so that only passengers with the Sex 'male' will be included.
+Run the code cell below to plot the survival outcomes of male passengers based on their age.

+ +
+
+
+
+
+
In [56]:
+
+
+
vs.survival_stats(data, outcomes, 'Parch', ["Sex == 'male'"])
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older did not survive the ship sinking. Let's continue to build on our previous prediction: If a passenger was female, then we will predict they survive. If a passenger was male and younger than 10, then we will also predict they survive. Otherwise, we will predict they do not survive.
+Fill in the missing code below so that the function will make this prediction.
+Hint: You can start your implementation of this function using the prediction code you wrote earlier from predictions_1.

+ +
+
+
+
+
+
In [49]:
+
+
+
def predictions_2(data):
+    """ Model with two features: 
+            - Predict a passenger survived if they are female.
+            - Predict a passenger survived if they are male and younger than 10. """
+    
+    predictions = []
+    for _, passenger in data.iterrows():
+        
+        # Remove the 'pass' statement below 
+        # and write your prediction conditions here
+        if passenger['Sex'] == 'female':
+            predictions.append(1)
+        else:
+            if passenger['Age'] < 10.0:
+                predictions.append(1)
+            else:
+                predictions.append(0)
+    
+    # Return our predictions
+    return pd.Series(predictions)
+
+# Make the predictions
+predictions = predictions_2(data)
+
+ +
+
+
+ +
+
+
+
+
+
+

Question 3

How accurate would a prediction be that all female passengers and all male passengers younger than 10 survived?
+Hint: Run the code cell below to see the accuracy of this prediction.

+ +
+
+
+
+
+
In [51]:
+
+
+
print accuracy_score(outcomes, predictions)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 79.35%.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: 79.35%

+ +
+
+
+
+
+
+
+
+
+

Adding the feature Age as a condition in conjunction with Sex improves the accuracy by a small margin more than with simply using the feature Sex alone. Now it's your turn: Find a series of features and conditions to split the data on to obtain an outcome prediction accuracy of at least 80%. This may require multiple features and multiple levels of conditional statements to succeed. You can use the same feature multiple times with different conditions.
+Pclass, Sex, Age, SibSp, and Parch are some suggested features to try.

+

Use the survival_stats function below to to examine various survival statistics.
+Hint: To use mulitple filter conditions, put each condition in the list passed as the last argument. Example: ["Sex == 'male'", "Age < 18"]

+ +
+
+
+
+
+
In [40]:
+
+
+
def checkSurvived(data, filters):
+    all_data = data
+    for condition in filters:
+        all_data = vs.filter_data(all_data, condition)
+    
+    print("nb", len(all_data), "percent survived", len(all_data[all_data["Survived"] ==1]) / float(len(all_data[all_data["Survived"]])), " in cat " + ' | '.join(filters))
+    return all_data
+
+vs.survival_stats(data, outcomes, 'Age', ["Sex == 'female'", "Age > 0", "Age < 35"])
+#vs.survival_stats(data, outcomes, 'Age', ["Sex == 'male'", "Age >= 20"])
+
+print("full:",len(full_data))
+checkSurvived(full_data, ["Sex == 'male'", "Age >= 10"])
+checkSurvived(full_data, ["Sex == 'male'", "Age > 20"])
+checkSurvived(full_data, ["Sex == 'male'", "Age >= 10", "Age < 30"])
+t = checkSurvived(full_data, ["Sex == 'male'", "Age >= 10", "Age < 30", "Pclass == 3"])
+
+ +
+
+
+ +
+
+ + +
+
+ + + +
+ +
+ +
+ +
+
+ +
+
('full:', 891)
+('nb', 421, 'percent survived', 0.17577197149643706, " in cat Sex == 'male' | Age >= 10")
+('nb', 351, 'percent survived', 0.18233618233618235, " in cat Sex == 'male' | Age > 20")
+('nb', 205, 'percent survived', 0.15609756097560976, " in cat Sex == 'male' | Age >= 10 | Age < 30")
+('nb', 144, 'percent survived', 0.1388888888888889, " in cat Sex == 'male' | Age >= 10 | Age < 30 | Pclass == 3")
+
+
+
+ +
+
+ +
+
+
+
+
+
+

After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction.
+Make sure to keep track of the various features and conditions you tried before arriving at your final prediction model.
+Hint: You can start your implementation of this function using the prediction code you wrote earlier from predictions_2.

+ +
+
+
+
+
+
In [52]:
+
+
+
def predictions_3(data):
+    """ Model with multiple features. Makes a prediction with an accuracy of at least 80%. """
+    
+    predictions = []
+    test = []
+    i = 0
+    for _, passenger in data.iterrows():
+        
+        # Remove the 'pass' statement below 
+        # and write your prediction conditions here
+        if passenger['Sex'] == 'female':
+            if passenger["Pclass"] == 3 and passenger["SibSp"] >= 2:
+                predictions.append(0)
+            else:
+                predictions.append(1)
+        else:
+            if passenger['Age'] < 10.0:
+                predictions.append(1)
+            else:
+                predictions.append(0)
+               
+               
+        i +=1           
+    
+    # Return our predictions
+    return pd.Series(predictions), test
+
+# Make the predictions
+predictions,test = predictions_3(full_data)
+print accuracy_score(outcomes, predictions)
+import pandas as pd
+#testdata = checkSurvived(full_data, ["Sex == 'male'", "Age >= 10"])
+testdata = checkSurvived(full_data, ["Sex == 'female'"])
+
+surv = checkSurvived(testdata, ["Survived == 0"])
+
+gb = ["Pclass", "SibSp", "Parch"]
+dfall = pd.DataFrame(testdata).groupby(gb).count()
+dfSurv = pd.DataFrame(surv).groupby(gb).count()
+
+#dfSurv / dfall
+#dfSurv
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 80.58%.
+('nb', 314, 'percent survived', 0.7420382165605095, " in cat Sex == 'female'")
+('nb', 81, 'percent survived', 0.0, ' in cat Survived == 0')
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 4

Describe the steps you took to implement the final prediction model so that it got an accuracy of at least 80%. What features did you look at? Were certain features more informative than others? Which conditions did you use to split the survival outcomes in the data? How accurate are your predictions?
+Hint: Run the code cell below to see the accuracy of your predictions.

+ +
+
+
+
+
+
In [53]:
+
+
+
print accuracy_score(outcomes, predictions)
+
+ +
+
+
+ +
+
+ + +
+
+ +
+
Predictions have an accuracy of 80.58%.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: I got an accuracy of 80.58%. Initially i used the filter function to check various features and compute the percent survived. However, to get a better idea of cells of survival / death, I then moved to using group by count to compare dataframes for dead against all female. I then tried to find cells that gave more than 50% dead females. One such area of cells gave me the result - see code. Turns out class 3 with more than 1 increases your probability of death as a woman.

+ +
+
+
+
+
+
+
+
+

Conclusion

After several iterations of exploring and conditioning on the data, you have built a useful algorithm for predicting the survival of each passenger aboard the RMS Titanic. The technique applied in this project is a manual implementation of a simple machine learning model, the decision tree. A decision tree splits a set of data into smaller and smaller groups (called nodes), by one feature at a time. Each time a subset of the data is split, our predictions become more accurate if each of the resulting subgroups are more homogeneous (contain similar labels) than before. The advantage of having a computer do things for us is that it will be more exhaustive and more precise than our manual exploration above. This link provides another introduction into machine learning using a decision tree.

+

A decision tree is just one of many models that come from supervised learning. In supervised learning, we attempt to use features of the data to predict or model things with objective outcome labels. That is to say, each of our data points has a known outcome value, such as a categorical, discrete label like 'Survived', or a numerical, continuous value like predicting the price of a house.

+

Question 5

Think of a real-world scenario where supervised learning could be applied. What would be the outcome variable that you are trying to predict? Name two features about the data used in this scenario that might be helpful for making the predictions.

+ +
+
+
+
+
+
+
+
+

Answer: I could use supervised learning on a set of bonds. The outcome would be outperformance of a bond against the benchmark index by 3 % over 1 year. Two features that might be helpful to make this prediction is the credit rating and expected remaining life of a bond.

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ + + + + + diff --git a/titanic_survival_exploration/titanic_survival_exploration.ipynb b/titanic_survival_exploration/titanic_survival_exploration.ipynb new file mode 100644 index 0000000..49b3547 --- /dev/null +++ b/titanic_survival_exploration/titanic_survival_exploration.ipynb @@ -0,0 +1,865 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Introduction and Foundations\n", + "## Project: Titanic Survival Exploration\n", + "\n", + "In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive. To complete this project, you will need to implement several conditional predictions and answer the questions below. Your project submission will be evaluated based on the completion of the code and your responses to the questions.\n", + "> **Tip:** Quoted sections like this will provide helpful instructions on how to navigate and use an iPython notebook. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting Started\n", + "To begin working with the RMS Titanic passenger data, we'll first need to `import` the functionality we need, and load our data into a `pandas` DataFrame. \n", + "Run the code cell below to load our data and display the first few entries (passengers) for examination using the `.head()` function.\n", + "> **Tip:** You can run a code cell by clicking on the cell and using the keyboard shortcut **Shift + Enter** or **Shift + Return**. Alternatively, a code cell can be executed using the **Play** button in the hotbar after selecting it. Markdown cells (text cells like this one) can be edited by double-clicking, and saved using these same shortcuts. [Markdown](http://daringfireball.net/projects/markdown/syntax) allows you to write easy-to-read plain text that can be converted to HTML." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the dataset\n", + "in_file = 'titanic_data.csv'\n", + "full_data = pd.read_csv(in_file)\n", + "\n", + "# Print the first few entries of the RMS Titanic data\n", + "display(full_data.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:\n", + "- **Survived**: Outcome of survival (0 = No; 1 = Yes)\n", + "- **Pclass**: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)\n", + "- **Name**: Name of passenger\n", + "- **Sex**: Sex of the passenger\n", + "- **Age**: Age of the passenger (Some entries contain `NaN`)\n", + "- **SibSp**: Number of siblings and spouses of the passenger aboard\n", + "- **Parch**: Number of parents and children of the passenger aboard\n", + "- **Ticket**: Ticket number of the passenger\n", + "- **Fare**: Fare paid by the passenger\n", + "- **Cabin** Cabin number of the passenger (Some entries contain `NaN`)\n", + "- **Embarked**: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)\n", + "\n", + "Since we're interested in the outcome of survival for each passenger or crew member, we can remove the **Survived** feature from this dataset and store it as its own separate variable `outcomes`. We will use these outcomes as our prediction targets. \n", + "Run the code cell below to remove **Survived** as a feature of the dataset and store it in `outcomes`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
013Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
121Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
233Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
341Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
453Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Pclass Name \\\n", + "0 1 3 Braund, Mr. Owen Harris \n", + "1 2 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", + "2 3 3 Heikkinen, Miss. Laina \n", + "3 4 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", + "4 5 3 Allen, Mr. William Henry \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", + "0 male 22.0 1 0 A/5 21171 7.2500 NaN S \n", + "1 female 38.0 1 0 PC 17599 71.2833 C85 C \n", + "2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 female 35.0 1 0 113803 53.1000 C123 S \n", + "4 male 35.0 0 0 373450 8.0500 NaN S " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Store the 'Survived' feature in a new variable and remove it from the dataset\n", + "outcomes = full_data['Survived']\n", + "data = full_data.drop('Survived', axis = 1)\n", + "\n", + "# Show the new dataset with 'Survived' removed\n", + "display(data.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The very same sample of the RMS Titanic data now shows the **Survived** feature removed from the DataFrame. Note that `data` (the passenger data) and `outcomes` (the outcomes of survival) are now *paired*. That means for any passenger `data.loc[i]`, they have the survival outcome `outcomes[i]`.\n", + "\n", + "To measure the performance of our predictions, we need a metric to score our predictions against the true outcomes of survival. Since we are interested in how *accurate* our predictions are, we will calculate the proportion of passengers where our prediction of their survival is correct. Run the code cell below to create our `accuracy_score` function and test a prediction on the first five passengers. \n", + "\n", + "**Think:** *Out of the first five passengers, if we predict that all of them survived, what would you expect the accuracy of our predictions to be?*" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 60.00%.\n" + ] + } + ], + "source": [ + "def accuracy_score(truth, pred):\n", + " \"\"\" Returns accuracy score for input truth and predictions. \"\"\"\n", + " \n", + " # Ensure that the number of predictions matches number of outcomes\n", + " if len(truth) == len(pred): \n", + " \n", + " # Calculate and return the accuracy as a percent\n", + " return \"Predictions have an accuracy of {:.2f}%.\".format((truth == pred).mean()*100)\n", + " \n", + " else:\n", + " return \"Number of predictions does not match number of outcomes!\"\n", + " \n", + "# Test the 'accuracy_score' function\n", + "predictions = pd.Series(np.ones(5, dtype = int))\n", + "print accuracy_score(outcomes[:5], predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Tip:** If you save an iPython Notebook, the output from running code blocks will also be saved. However, the state of your workspace will be reset once a new session is started. Make sure that you run all of the code blocks from your previous session to reestablish variables and functions before picking up where you last left off.\n", + "\n", + "# Making Predictions\n", + "\n", + "If we were asked to make a prediction about any passenger aboard the RMS Titanic whom we knew nothing about, then the best prediction we could make would be that they did not survive. This is because we can assume that a majority of the passengers (more than 50%) did not survive the ship sinking. \n", + "The `predictions_0` function below will always predict that a passenger did not survive." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_0(data):\n", + " \"\"\" Model with no features. Always predicts a passenger did not survive. \"\"\"\n", + "\n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Predict the survival of 'passenger'\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_0(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "*Using the RMS Titanic data, how accurate would a prediction be that none of the passengers survived?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 61.62%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** *61.62%*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "Let's take a look at whether the feature **Sex** has any indication of survival rates among passengers using the `survival_stats` function. This function is defined in the `titanic_visualizations.py` Python script included with this project. The first two parameters passed to the function are the RMS Titanic data and passenger survival outcomes, respectively. The third parameter indicates which feature we want to plot survival statistics across. \n", + "Run the code cell below to plot the survival outcomes of passengers based on their sex." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXHWd7/H3104gCJE1cAMBEhlUCCQBml0wFxxAiUEd\nIEFkwKsCLpC5OirgAogoI+IdNwbh6pAraAhxxMgyoIyACIIJJmgCTNgkgUBCZAkRMAnf+8c5HSqd\nXqqX6u6cvF/PU09XnTrLt7b+1O93fnVOZCaSJKla3tDfBUiSpN5nwEuSVEEGvCRJFWTAS5JUQQa8\nJEkVZMBLklRBBrzUhyLixIi4pRfWc0pE3NkbNXVz+5dFxBe7sdxOEfFSRDQ1oq7e2H5EZET8XV/W\nJTWCAb8Bi4jHI+Ll8h/eMxFxZURs1t919bWIGBERP42IZyPihYj4U0Sc0ohtZebVmXlEI9ZdKyI+\nHBEPRsTy8rW9MSKGlvddGRFf6cK61vkykZmnZ+YFdSz7eES8s2a5JzJzs8xc3ZXH08H6vx8R/1Zz\ne3BErGhn2gGttx8Rt0XER3qw/fMi4rya2+dExGPlZ2pRRFzT3XXXrHN8RNzWzn0jyy8kL9Vc5vbC\nNs+LiKt6uh71LwNe78nMzYC9gWbgC/1cT0NFxKA2Jv8IWAjsDGwNnAQ804vr71MR8Q7gq8AJmTkU\n2A3ocdAMUHcAh9bcbgaeAA5pNQ1gdiMLiYiTKd477yw/U83ArY3cZo0tyi8um2Xm2D7aZrsGwudA\nBrxKmfkkcBOwB0BEfCgiHihbgI9GxGkt80bENhFxfUQ8HxF/iYjfRMQbyvs+FxFPlss9FBGHl9Pf\nEBFnRcQjEbEsIqZHxFblfS2tkJMj4omyJf35mu1tEhFTI+K5sqbPRsSimvu3L1vgS8vW05k1950X\nETMi4qqIeBE4pY2Hvy9wZWauyMxVmfmHzLypXH587bbKaWtapW2s/5yyV2Srmvn3Kh/T4NrWcET8\nW0R8o9W6fx4RnyqvtzxfyyNifkS8r86Xc1/g7sz8A0Bm/iUzp2bm8og4FTgR+GzZ2vtFR9uKiN2A\ny4ADy/mfL6ev6QVo7/0QET8CdgJ+US772ZrXelC57FYR8e8R8VT5+l7X0TrbeKx3ALtFxDbl7UOA\nacCmrabdnZkra7cfEReW9323rO+7Net9Z0QsKLf/vYiIOp/3mzPzkfJ5fzozL2+5MyI2j4gfRMTi\n8jPylSh3FZTvhZ/WzPsvEXFrndttV0T8r/Iz81xE3BwRO9fc962IWBgRL0bE7Ig4pJx+FHAOMClq\negSiVW9M1LTya57XD0fEE8B/ldMPiIi7yudxbkSM78njURdlppcN9AI8TtHaANgRmAdcUN4+GtgF\nCOAdwF+Bvcv7vkbxT39weTmknO+tFC3h7cv5RgK7lNenAL8DRgAbA98HflIzXwJXAJsAY4FXgd3K\n+y8Cbge2LJe/H1hU3vcGipbZl4CNgDcDjwJHlvefB6wE3lvOu0kbz8OvgN8Ck4GdWt03vmVb7Txv\n66yf4p/bR2vmvxi4rLx+CnBnef3Q8vmK8vaWwMs1z99xwPbleicBK4DhrdfTxuM5pFzP+cDBwMat\n7r8S+EqraV3aVu062ns/tH6uWr3Wg8rbN1D0LmxZLvuOztbZxuN9DHhfef164DDg6lbTvtTO9m8D\nPtJqfVkuswXFF5SlwFF1fJ4+CPwF+AxF672p1f0/o3jfbwpsC9wLnFbe90bgv8vn+hDgWWBEHdtc\n6/G0uu8Y4GGKHpxBFL1zd7Wqd+vyvk8DTwNDat7XV7X3vm89T00d/698fJsAOwDLgHdTvK/+vrw9\nrL//920oF1vwuq5sld1JEaJfBcjMGzLzkSzcDtzC692eK4HhwM6ZuTIzf5PFp3w1RXjvHhGDM/Px\nLFszwOnA5zNzUWa+SvHP4dhYuyvv/Mx8OTPnAnMpgh7geOCrmflcZi4Cvl2zzL4U/zC+nJl/y8xH\nKb4oTK6Z5+7MvC4zX8vMl9t4Do4DfgN8EXgsIuZExL5deA5br//HwAkAZQtscjmttd9Q/FNseV6P\nLdf1FEBmXpuZT5XrvQZYAOzXWTGZ+Rvg/RS7XW4AlkXEN6ODgWXd3VapvfdDhyJiOPAu4PTytV1Z\nvte6us7bgUPLFv5+FF8kf1Mz7eBynq64KDOfz8wngF8D4zpbIDOvAs4Ajiy3tyQiPlc+1u0ogu6f\nsugpWgL8H8r3aWb+laJ7/5vAVcAZ5Xu9Xs+WreTnI+Kfy2mnA1/LzAcycxXFZ3tcSys+M6/KzGVZ\n9FpdQvHZfWsXttmW88rH9zLFF4gbM/PG8n31S2BW+TyoDxjwem9mbpGZO2fmx1sCMCLeFRG/K7tH\nn6f4ULZ0eV5M0TK4JYru+7MAMvNh4J8owntJREyLiO3LZXYGftbyTwh4gOILwXY1tTxdc/2vQMuA\nv+0pWrotaq/vDGxf88/teYruxe3amX8dZbiclZmjy+XmUHzxqbd7tPX6f0rRpT2copX+GkXgtN5u\nUnQnn1BO+gBFyxOAiPjH8stGy+Pag9dfgw5l5k2Z+R5gK4qW3ClAu4PJerIt2nk/1GFH4C+Z+VwP\n19myH35P4NEyLO+smbYJcE+dNbVo773YoSwGUb6TovV/OnBBRBxJ8T4dDCyueY6/T9GSb1n2Hore\npwCmd7HebcrP8RaZ2bLbZ2fgWzXb+0u57h0AIuKfy+77F8r7N6f+17w9rT+bx7X6bL6d4oub+oAB\nr3VExMYUIfUNYLvM3AK4keKfA5m5PDM/nZlvBiYCn4pyX3tm/jgz307x4U7gX8rVLgTeVfNPaIvM\nHJLFvv/OLKbomm+xY831hcBjrdY7NDNrWwl1nzIxM58tH/f2FOG4gqL7FICyFTys9WKt1vEcRY/H\nJIrQntZB6/MnFD0ZOwP7UzzvlLevAD4JbF2+Bn+ifA268Hhey8xbKXYb7NFWvXVsq8Pnr6P3QyfL\nLgS2iogturjO1u6g6O05mte/SM2jeJ8cDfw+M19pr/yOHlt3lb0O11LsTtqD4rG+ytpB/KbySyUA\nEfEJilb0U8Bne6GMhRS7AGo/G5tk5l3l/vbPUvSObVm+5i/Q8Wu+1mcB+B9tzFO73ELgR622v2lm\nXtTjR6a6GPBqy0YU/2iWAqsi4l3Amp92RcSEiPi7soX7AkVL/LWIeGtEHFZ+QXiFYj/wa+VilwEX\ntnQPRsSwiDimznqmA2dHxJYRsQNFELW4F1gexeC+TSKiKSL26EoXezmgaY8oBl4NBT4GPJyZyyj2\niw6JiKMjYjDFfsyN61jtj4F/pOh2b6t7HoAsBsI9C/xfigFaz5d3bUrxz3JpWeOHeD2gO3s8x0TE\n5PL5iojYj2Icxe/KWZ6hGKvQorNtPQOMiIiN2tlem++HdrZV+9gXUwzsvLSsdXBEHFrHOluv5+Fy\nO1MoA778QnVPOe2OtpbrrL6uimIA5dERMTSKQYbvAkYD95SP9Rbgkoh4U3n/LlH84oGIeAvwFYpu\n7ZMoBkF2ulugE5dRfG5Gl9vYPCKOK+8bCqyieM0HRcSXgDfVLPsMMDLWHtg4B5hcvk7NFO/tjlwF\nvCcijiw/l0OiGLQ6opPl1EsMeK0jM5cDZ1IE63MUrdCZNbPsSjEw7SXgbuDSzPw1RfBdRBFYT1N0\nP55dLvOtch23RMRyirDZv86SvgwsohhM9StgBkVriCx+zzyBYh/pY7welpt34SG/kWIA1PMUXaQ7\nU7QaycwXgI+X63ySohVTz77RmRTP09NZjCnoyI+Bd1LzRSAz5wOXUDy/z1B0Nf+2zsfzHPBRiv3o\nL1L8o704M1u6/39AMU7i+Yi4ro5t/RdFi/jpiHi2je21936AYrDcF1rtG651EsX+9geBJRS7eDpb\nZ1vuoOhZqa37NxTvwY4C/lsUPSjPRcS3O5ivHi9S7B56guK99HXgY5nZcgyBf6T48jyf4jWaAQyP\nYhzKVcC/ZObczFxQrudH5ZflbsnMn1H0oE2L4hcef6IY8wBwM/CfFF9g/0zxhby2e/3a8u+yiLiv\nvP5FioG3z1EM4Gz3i2u5/YUUu4fOofgisZBiAKK500daRrpK642I+BgwOTPf0d+1SNJA5TcpDXgR\nMTwiDi67Nd9K8ZOen/V3XZI0kHm0Ia0PNqIYcTyKoutzGnBpv1YkSQOcXfSSJFWQXfSSJFWQAS9J\nUgWt1/vgt9lmmxw5cmR/lyFJUp+ZPXv2s5nZ+oBb61ivA37kyJHMmjWrv8uQJKnPRMSf65nPLnpJ\nkirIgJckqYIMeEmSKmi93gcvSerYypUrWbRoEa+80t4J9TRQDRkyhBEjRjB48OBuLW/AS1KFLVq0\niKFDhzJy5EiKk/NpfZCZLFu2jEWLFjFq1KhurcMuekmqsFdeeYWtt97acF/PRARbb711j3peDHhJ\nqjjDff3U09fNgJckNVRTUxPjxo1j9OjRjB07lksuuYTXXnsNgFmzZnHmmWe2udzIkSN59tlne7z9\n6667jvnz5/d4PV3x7ne/m+eff75Pt9ma++AlaUPS2635Ok5YtskmmzBnzhwAlixZwgc+8AFefPFF\nzj//fJqbm2lubu7dmlq57rrrmDBhArvvvnuvrnf16tU0NTW1ed+NN97Yq9vqDlvwkqQ+s+2223L5\n5Zfz3e9+l8zktttuY8KECQAsW7aMI444gtGjR/ORj3yE9s52utlmm/H5z3+esWPHcsABB/DMM88A\n8Pjjj3PYYYcxZswYDj/8cJ544gnuuusuZs6cyWc+8xnGjRvHI488sta6rr32WvbYYw/Gjh3LoYce\nCsCVV17JJz/5yTXzTJgwgdtuu23Ntj/96U8zduxYvva1r3Hcccetma/2sbT0Ppx11ll873vfWzPP\neeedxze+8Q0ALr74Yvbdd1/GjBnDueee25OntU0GvCSpT735zW9m9erVLFmyZK3p559/Pm9/+9uZ\nN28e73vf+3jiiSfaXH7FihUccMABzJ07l0MPPZQrrrgCgDPOOIOTTz6Z+++/nxNPPJEzzzyTgw46\niIkTJ3LxxRczZ84cdtlll7XW9eUvf5mbb76ZuXPnMnPmzE5rX7FiBfvvvz9z587lrLPO4p577mHF\nihUAXHPNNUyePHmt+SdNmsT06dPX3J4+fTqTJk3illtuYcGCBdx7773MmTOH2bNnc8cdd3T+5HWB\nAS9JGhDuuOMOPvjBDwJw9NFHs+WWW7Y530YbbbSmpbzPPvvw+OOPA3D33XfzgQ98AICTTjqJO++8\ns9NtHnzwwZxyyilcccUVrF69utP5m5qa+Id/+AcABg0axFFHHcUvfvELVq1axQ033MAxxxyz1vx7\n7bUXS5Ys4amnnmLu3LlsueWW7Ljjjtxyyy3ccsst7LXXXuy99948+OCDLFiwoNPtd4X74CVJferR\nRx+lqamJbbfdlgceeKDLyw8ePHjNCPOmpiZWrVrV7Vouu+wy7rnnHm644Qb22WcfZs+ezaBBg9YM\nAgTW+qnakCFD1trvPnnyZL773e+y1VZb0dzczNChQ9fZxnHHHceMGTN4+umnmTRpElD8zv3ss8/m\ntNNO63btnbEF31qEl764SNogLV26lNNPP51PfvKT6/wM7NBDD+XHP/4xADfddBPPPfdcl9Z90EEH\nMW3aNACuvvpqDjnkEACGDh3K8uXL21zmkUceYf/99+fLX/4yw4YNY+HChYwcOZI5c+bw2muvsXDh\nQu699952t/mOd7yD++67jyuuuGKd7vkWkyZNYtq0acyYMWPNPvsjjzySH/7wh7z00ksAPPnkk+vs\nsugpW/CSpIZ6+eWXGTduHCtXrmTQoEGcdNJJfOpTn1pnvnPPPZcTTjiB0aNHc9BBB7HTTjt1aTvf\n+c53+NCHPsTFF1/MsGHD+Pd//3egaGV/9KMf5dvf/jYzZsxYaz/8Zz7zGRYsWEBmcvjhhzN27FgA\nRo0axe67785uu+3G3nvv3e42m5qamDBhAldeeSVTp05tc57Ro0ezfPlydthhB4YPHw7AEUccwQMP\nPMCBBx4IFIP3rrrqKrbddtsuPeaORHujFNcHzc3N2evng7d12TfW4/edtD554IEH2G233fq7DHVT\nW69fRMzOzE5/W2gXvSRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCSpoS688EJGjx7N\nmDFjGDduHPfcc0+P1zlz5kwuuuiiXqiu+A16FXmgG0nagMT5vXusjzy342Na3H333Vx//fXcd999\nbLzxxjz77LP87W9/q2vdq1atYtCgtmNq4sSJTJw4scv1bkhswUuSGmbx4sVss802bLzxxgBss802\nbL/99mtOpwowa9Ysxo8fDxSnUz3ppJM4+OCDOemkkzjggAOYN2/emvWNHz+eWbNmrTml6wsvvMDO\nO++85tjxK1asYMcdd2TlypU88sgjHHXUUeyzzz4ccsghPPjggwA89thjHHjggey555584Qtf6MNn\no28Z8JKkhjniiCNYuHAhb3nLW/j4xz/O7bff3uky8+fP51e/+hU/+clP1jrd6uLFi1m8eDHNza8f\nxG3zzTdn3Lhxa9Z7/fXXc+SRRzJ48GBOPfVUvvOd7zB79my+8Y1v8PGPfxyAKVOm8LGPfYw//vGP\naw4dW0UGvCSpYTbbbDNmz57N5ZdfzrBhw5g0aRJXXnllh8tMnDiRTTbZBIDjjz+eGTNmAMW51I89\n9th15p80aRLXXHMNANOmTWPSpEm89NJL3HXXXRx33HGMGzeO0047jcWLFwPw29/+lhNOOAEoTitb\nVe6DlyQ1VFNTE+PHj2f8+PHsueeeTJ06da1TstaejhVg0003XXN9hx12YOutt+b+++/nmmuu4bLL\nLltn/RMnTuScc87hL3/5C7Nnz+awww5jxYoVbLHFFsyZM6fNmlqfya6KbMFLkhrmoYceYsGCBWtu\nz5kzh5133pmRI0cye/ZsAH760592uI5Jkybx9a9/nRdeeIExY8asc/9mm23Gvvvuy5QpU5gwYQJN\nTU286U1vYtSoUVx77bVAcf71uXPnAnDwwQevdVrZqjLgJUkN89JLL3HyySez++67M2bMGObPn895\n553Hueeey5QpU2hubqapqanDdRx77LFMmzaN448/vt15Jk2axFVXXcWkSZPWTLv66qv5wQ9+wNix\nYxk9ejQ///nPAfjWt77F9773Pfbcc0+efPLJ3nmgA5Cni21tA+i2GRDW4/edtD7xdLHrN08XK0mS\n1mLAS5JUQQa8JEkVZMBLUsWtz2OtNmQ9fd0MeEmqsCFDhrBs2TJDfj2TmSxbtowhQ4Z0ex0e6EaS\nKmzEiBEsWrSIpUuX9ncp6qIhQ4YwYsSIbi9vwEtShQ0ePJhRo0b1dxnqB3bRS5JUQQa8JEkVZMBL\nklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JU\nQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEND/iIaIqIP0TE9eXtrSLilxGxoPy7Zc28Z0fEwxHxUEQc\n2ejaJEmqqr5owU8BHqi5fRZwa2buCtxa3iYidgcmA6OBo4BLI6KpD+qTJKlyGhrwETECOBr4vzWT\njwGmltenAu+tmT4tM1/NzMeAh4H9GlmfJElV1egW/L8CnwVeq5m2XWYuLq8/DWxXXt8BWFgz36Jy\n2loi4tSImBURs5YuXdqAkiVJWv81LOAjYgKwJDNntzdPZiaQXVlvZl6emc2Z2Txs2LCelilJUiUN\nauC6DwYmRsS7gSHAmyLiKuCZiBiemYsjYjiwpJz/SWDHmuVHlNMkSVIXNawFn5lnZ+aIzBxJMXju\nvzLzg8BM4ORytpOBn5fXZwKTI2LjiBgF7Arc26j6JEmqska24NtzETA9Ij4M/Bk4HiAz50XEdGA+\nsAr4RGau7of6JEla70WxG3z91NzcnLNmzerdlUb07vrUtvX4fSdJ/SkiZmdmc2fzeSQ7SZIqyICX\nJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySp\nggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIM\neEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJ\nkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpgjoN+IjY\nNCLeUF5/S0RMjIjBjS9NkiR1Vz0t+DuAIRGxA3ALcBJwZSOLkiRJPVNPwEdm/hV4P3BpZh4HjG5s\nWZIkqSfqCviIOBA4EbihnNbUuJIkSVJP1RPwU4CzgZ9l5ryIeDPw68aWJUmSemJQR3dGRBMwMTMn\ntkzLzEeBMxtdmCRJ6r4OW/CZuRp4ex/VIkmSekmHLfjSHyJiJnAtsKJlYmb+R8OqkiRJPVJPwA8B\nlgGH1UxLwICXJGmA6jTgM/NDfVGIJEnqPfUcye4tEXFrRPypvD0mIr7Q+NIkSVJ31fMzuSsofia3\nEiAz7wcmN7IoSZLUM/UE/Bsz895W01Y1ohhJktQ76gn4ZyNiF4qBdUTEscDihlYlSZJ6pJ5R9J8A\nLgfeFhFPAo8BH2xoVZIkqUc6bcFn5qOZ+U5gGPC2zHx7Zj7e2XIRMSQi7o2IuRExLyLOL6dvFRG/\njIgF5d8ta5Y5OyIejoiHIuLIHjwuSZI2aJ224CPiU61uA7wAzM7MOR0s+ipwWGa+VJ4//s6IuIni\nrHS3ZuZFEXEWcBbwuYjYnWLw3mhge+BXEfGW8mh6kiSpC+rZB98MnA7sUF5OA44CroiIz7a3UBZe\nKm8OLi8JHANMLadPBd5bXj8GmJaZr2bmY8DDwH5deziSJAnqC/gRwN6Z+enM/DSwD7AtcChwSkcL\nRkRTRMwBlgC/zMx7gO0ys2WQ3tPAduX1HYCFNYsvKqdJkqQuqifgt6Xobm+xkiKkX241fR2ZuToz\nx1F8SdgvIvZodX9Sjs6vV0ScGhGzImLW0qVLu7KoJEkbjHpG0V8N3BMRPy9vvwf4cURsCsyvZyOZ\n+XxE/Jqia/+ZiBiemYsjYjhF6x7gSWDHmsVGlNNar+tyilH9NDc3d+nLgSRJG4p6RtFfQLHf/fny\ncnpmfjkzV2Tmie0tFxHDImKL8vomwN8DDwIzgZPL2U4GWr44zAQmR8TGETEK2BVofYAdSZJUh3pa\n8AD3UbSmBwFExE6Z+UQnywwHpkZEE8UXiemZeX1E3A1Mj4gPA38GjgfIzHkRMZ2iV2AV8AlH0EuS\n1D1R7AbvYIaIM4BzgWeA1UBQ7D4f0/jyOtbc3JyzZs3q3ZUWPwNUo3XyvpMktS0iZmdmc2fz1dOC\nnwK8NTOX9bwsSZLUF+oZRb+Q4sA2kiRpPVFPC/5R4LaIuIGan8Vl5jcbVpUkSeqRegL+ifKyUXmR\nJEkDXKcBn5ktJ4l5Y2b+tfElSZKknup0H3xEHBgR8yl+w05EjI2ISxtemSRJ6rZ6Btn9K3AksAwg\nM+dSHIdekiQNUPUEPJm5sNUkD0AjSdIAVs8gu4URcRCQ5XndpwAPNLYsSZLUE/W04E8HPkFx6tYn\ngXHlbUmSNEDVM4r+WaDdk8pIkqSBp55R9F+PiDdFxOCIuDUilkbEB/uiOEmS1D31dNEfkZkvAhOA\nx4G/Az7TyKIkSVLP1BPwLd34RwPXZqbHpZckaYCrZxT99RHxIPAy8LGIGAa80tiyJElST3Tags/M\ns4CDgObMXAmsAI5pdGGSJKn76hlkdxywMjNXR8QXgKuA7RtemSRJ6rZ69sF/MTOXR8TbgXcCPwD+\nrbFlSZKknqgn4FsOS3s0cHlm3oCnjZUkaUCrJ+CfjIjvA5OAGyNi4zqXkyRJ/aSeoD4euBk4MjOf\nB7bC38FLkjSg1TOK/q+Z+R/ACxGxEzCY8tzwkiRpYKpnFP3EiFgAPAbcXv69qdGFSZKk7quni/4C\n4ADgvzNzFMVI+t81tCpJktQj9QT8ysxcBrwhIt6Qmb8GmhtclyRJ6oF6DlX7fERsBtwBXB0RSyiO\nZidJkgaoelrwxwB/Bf438J/AI8B7GlmUJEnqmQ5b8BHxXorTw/4xM28GpvZJVZIkqUfabcFHxKUU\nrfatgQsi4ot9VpUkSeqRjlrwhwJjy5PMvBH4DcWIekmSNMB1tA/+b5m5GoqD3QDRNyVJkqSe6qgF\n/7aIuL+8HsAu5e0AMjPHNLw6SZLULR0F/G59VoUkSepV7QZ8Zv65LwuRJEm9x9O+SpJUQQa8JEkV\n1NHv4G8t//5L35UjSZJ6Q0eD7IZHxEHAxIiYRqufyWXmfQ2tTJIkdVtHAf8l4IvACOCbre5L4LBG\nFSVJknqmo1H0M4AZEfHFzPQIdpJUIXG+xy7rC3lu9tu2Oz1dbGZeEBETKQ5dC3BbZl7f2LIkSVJP\ndDqKPiK+BkwB5peXKRHx1UYXJkmSuq/TFjxwNDAuM18DiIipwB+AcxpZmCRJ6r56fwe/Rc31zRtR\niCRJ6j31tOC/BvwhIn5N8VO5Q4GzGlqVJEnqkXoG2f0kIm4D9i0nfS4zn25oVZIkqUfqacGTmYuB\nmQ2uRZIk9RKPRS9JUgUZ8JIkVVCHAR8RTRHxYF8VI0mSekeHAZ+Zq4GHImKnPqpHkiT1gnoG2W0J\nzIuIe4EVLRMzc2LDqpIkST1ST8B/seFVSJKkXlXP7+Bvj4idgV0z81cR8UagqfGlSZKk7qrnZDMf\nBWYA3y8n7QBc18iiJElSz9TzM7lPAAcDLwJk5gJg20YWJUmSeqaegH81M//WciMiBgH9dwZ7SZLU\nqXoC/vaIOAfYJCL+HrgW+EVjy5IkST1RT8CfBSwF/gicBtwIfKGzhSJix4j4dUTMj4h5ETGlnL5V\nRPwyIhaUf7esWebsiHg4Ih6KiCO795AkSVI9o+hfi4ipwD0UXfMPZWY9XfSrgE9n5n0RMRSYHRG/\nBE4Bbs0nz2A/AAALQElEQVTMiyLiLIovEJ+LiN2BycBoYHvgVxHxlvJgO5IkqQvqGUV/NPAI8G3g\nu8DDEfGuzpbLzMWZeV95fTnwAMUI/GOAqeVsU4H3ltePAaZl5quZ+RjwMLBf1x6OJEmC+g50cwnw\nPzPzYYCI2AW4Abip3o1ExEhgL4pegO3K088CPA1sV17fAfhdzWKLymmt13UqcCrATjt5BF1JktpS\nzz745S3hXnoUWF7vBiJiM+CnwD9l5ou195Vd/V0akZ+Zl2dmc2Y2Dxs2rCuLSpK0wWi3BR8R7y+v\nzoqIG4HpFGF8HPD7elYeEYMpwv3qzPyPcvIzETE8MxdHxHBgSTn9SWDHmsVHlNMkSVIXddSCf095\nGQI8A7wDGE8xon6TzlYcEQH8AHggM79Zc9dM4OTy+snAz2umT46IjSNiFLArcG/dj0SSJK3Rbgs+\nMz/Uw3UfDJwE/DEi5pTTzgEuAqZHxIeBPwPHl9ubFxHTgfkUI/A/4Qh6SZK6p9NBdmVr+gxgZO38\nnZ0uNjPvBKKduw9vZ5kLgQs7q0mSJHWsnlH011F0tf8CeK2x5UiSpN5QT8C/kpnfbnglkiSp19QT\n8N+KiHOBW4BXWya2HMRGkiQNPPUE/J4Ug+UO4/Uu+ixvS5KkAaiegD8OeHPtKWMlSdLAVs+R7P4E\nbNHoQiRJUu+ppwW/BfBgRPyetffBd/gzOUmS1H/qCfhzG16FJEnqVfWcD/72vihEkiT1nnqOZLec\n18/4thEwGFiRmW9qZGGSJKn76mnBD225Xp5A5hjggEYWJUmSeqaeUfRrZOE64MgG1SNJknpBPV30\n76+5+QagGXilYRVJkqQeq2cU/Xtqrq8CHqfoppckSQNUPfvge3peeEmS1MfaDfiI+FIHy2VmXtCA\neiRJUi/oqAW/oo1pmwIfBrYGDHhJkgaodgM+My9puR4RQ4EpwIeAacAl7S0nSZL6X4f74CNiK+BT\nwInAVGDvzHyuLwqTJEnd19E++IuB9wOXA3tm5kt9VpUkSeqRjg5082lge+ALwFMR8WJ5WR4RL/ZN\neZIkqTs62gffpaPcSZKkgcMQlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4\nSZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmS\nKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirI\ngJckqYIMeEmSKsiAlySpggx4SZIqaFB/F6ANU5wf/V3CBiHPzf4uQVI/sQUvSVIFGfCSJFVQwwI+\nIn4YEUsi4k8107aKiF9GxILy75Y1950dEQ9HxEMRcWSj6pIkaUPQyBb8lcBRraadBdyambsCt5a3\niYjdgcnA6HKZSyOiqYG1SZJUaQ0L+My8A/hLq8nHAFPL61OB99ZMn5aZr2bmY8DDwH6Nqk2SpKrr\n633w22Xm4vL608B25fUdgIU18y0qp60jIk6NiFkRMWvp0qWNq1SSpPVYvw2yy8wEuvwbnsy8PDOb\nM7N52LBhDahMkqT1X18H/DMRMRyg/LuknP4ksGPNfCPKaZIkqRv6OuBnAieX108Gfl4zfXJEbBwR\no4BdgXv7uDZJkiqjYUeyi4ifAOOBbSJiEXAucBEwPSI+DPwZOB4gM+dFxHRgPrAK+ERmrm5UbZIk\nVV3DAj4zT2jnrsPbmf9C4MJG1SNJ0obEI9lJklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkV\nZMBLklRBDfsdvCR1S0R/V7BhOK+/C1Cj2YKXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIq\nyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiA\nlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJck\nqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmC\nDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4\nSZIqyICXJKmCBlzAR8RREfFQRDwcEWf1dz2SJK2PBlTAR0QT8D3gXcDuwAkRsXv/ViVJ0vpnQAU8\nsB/wcGY+mpl/A6YBx/RzTZIkrXcGWsDvACysub2onCZJkrpgUH8X0FURcSpwannzpYh4qD/rUTed\n198FdMs2wLP9XURXxHnR3yVooDqvvwvoFj+DhZ3rmWmgBfyTwI41t0eU09bIzMuBy/uyKAkgImZl\nZnN/1yFtqPwMds1A66L/PbBrRIyKiI2AycDMfq5JkqT1zoBqwWfmqoj4JHAz0AT8MDPn9XNZkiSt\ndwZUwANk5o3Ajf1dh9QGdw1J/cvPYBdEZvZ3DZIkqZcNtH3wkiSpFxjwUjdExPiIuL6/65DWJxFx\nZkQ8EBFXN2j950XEPzdi3eujAbcPXpJUWR8H3pmZi/q7kA2BLXhtsCJiZEQ8GBFXRsR/R8TVEfHO\niPhtRCyIiP3Ky90R8YeIuCsi3trGejaNiB9GxL3lfB5eWWolIi4D3gzcFBGfb+szExGnRMR1EfHL\niHg8Ij4ZEZ8q5/ldRGxVzvfRiPh9RMyNiJ9GxBvb2N4uEfGfETE7In4TEW/r20fc/wx4bej+DrgE\neFt5+QDwduCfgXOAB4FDMnMv4EvAV9tYx+eB/8rM/YD/CVwcEZv2Qe3SeiMzTweeoviMbEr7n5k9\ngPcD+wIXAn8tP393A/9YzvMfmblvZo4FHgA+3MYmLwfOyMx9KD7PlzbmkQ1cdtFrQ/dYZv4RICLm\nAbdmZkbEH4GRwObA1IjYFUhgcBvrOAKYWLPvbwiwE8U/Hknrau8zA/DrzFwOLI+IF4BflNP/CIwp\nr+8REV8BtgA2ozh2yhoRsRlwEHBtxJpDxW7ciAcykBnw2tC9WnP9tZrbr1F8Pi6g+IfzvogYCdzW\nxjoC+IfM9LwIUn3a/MxExP50/pkEuBJ4b2bOjYhTgPGt1v8G4PnMHNe7Za9f7KKXOrY5r58P4ZR2\n5rkZOCPKpkJE7NUHdUnrs55+ZoYCiyNiMHBi6zsz80XgsYg4rlx/RMTYHta83jHgpY59HfhaRPyB\n9nu8LqDour+/7Oa/oK+Kk9ZTPf3MfBG4B/gtxTiZtpwIfDgi5gLzgA1u8KtHspMkqYJswUuSVEEG\nvCRJFWTAS5JUQQa8JEkVZMBLklRBBrykNpXHC58XEfdHxJzyICSS1hMeyU7SOiLiQGACsHdmvhoR\n2wAb9XNZkrrAFryktgwHns3MVwEy89nMfCoi9omI28szdN0cEcMjYlB5Zq/xABHxtYi4sD+Ll+SB\nbiS1oTxZx53AG4FfAdcAdwG3A8dk5tKImAQcmZn/KyJGAzOAM4CLgf0z82/9U70ksIteUhsy86WI\n2Ac4hOJ0ntcAX6E4lecvy0OINwGLy/nnRcSPgOuBAw13qf8Z8JLalJmrKc6ed1t5+txPAPMy88B2\nFtkTeB7Ytm8qlNQR98FLWkdEvDUidq2ZNI7i/PbDygF4RMTgsmueiHg/sBVwKPCdiNiir2uWtDb3\nwUtaR9k9/x1gC2AV8DBwKjAC+DbFaXQHAf8K/Ixi//zhmbkwIs4E9snMk/ujdkkFA16SpAqyi16S\npAoy4CVJqiADXpKkCjLgJUmqIANekqQKMuAlSaogA16SpAoy4CVJqqD/D4fPhy9k8RkrAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.survival_stats(data, outcomes, 'Sex')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females *did* survive the ship sinking. Let's build on our previous prediction: If a passenger was female, then we will predict that they survived. Otherwise, we will predict the passenger did not survive. \n", + "Fill in the missing code below so that the function will make this prediction. \n", + "**Hint:** You can access the values of each feature for a passenger like a dictionary. For example, `passenger['Sex']` is the sex of the passenger." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_1(data):\n", + " \"\"\" Model with one feature: \n", + " - Predict a passenger survived if they are female. \"\"\"\n", + " \n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_1(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "*How accurate would a prediction be that all female passengers survived and the remaining passengers did not survive?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 78.68%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *78.68%*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "Using just the **Sex** feature for each passenger, we are able to increase the accuracy of our predictions by a significant margin. Now, let's consider using an additional feature to see if we can further improve our predictions. For example, consider all of the male passengers aboard the RMS Titanic: Can we find a subset of those passengers that had a higher rate of survival? Let's start by looking at the **Age** of each male, by again using the `survival_stats` function. This time, we'll use a fourth parameter to filter out the data so that only passengers with the **Sex** 'male' will be included. \n", + "Run the code cell below to plot the survival outcomes of male passengers based on their age." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWZ7/HvzwIFFRW19CKgYKK2oIBazkpoTauJBGK3\nCmq4agY1TuTqTYJ20mi8duyoSSfRxMbWQLcaRIxKHOIUDTEqWGVAZbDBEQgCoijgCLz3j70KD0UN\np4ZTp9j8Ps9zntrj2u/e55x6z9p77b0UEZiZmVm+bFHuAMzMzKztOcGbmZnlkBO8mZlZDjnBm5mZ\n5ZATvJmZWQ45wZuZmeWQE7xZiUg6Q9IjbVDOWZKeaouYWrj9myT9sAXr7S5plaSKUsTVFtuXFJI+\n355xNYekPinGTuWOxTY9TvCbCUmvS/ow/cNbImm8pG3LHVd7k9RL0t2S3pb0nqSXJJ1Vim1FxO0R\ncVwpyi4k6RuS5kpamd7bByV1S/PGS/p/zShrox8TEXFeRFxVxLqvS/piwXpvRsS2EbG2OfvTSPn/\nIenXBeOdJa1uYNphdbcv6UlJ32zF9q+QdEUaHiJpXfo+rZT0sqSzW7F7rY6pnnlnSVqbYqx93dAG\n22zVcbT24wS/eflKRGwLHAhUAT8oczwl1UCt57+BBcAewE7AKGBJG5bfriR9AfhX4LSI6AbsC9xZ\n3qhKZiowuGC8CngTOLrONICadojnb+n7tB3wfeBmSf2aW0iJz3A8k37k1L4uLOG2itIRvjebCyf4\nzVBELAIeAvYDkHS2pDmpJvKqpHNrl5W0s6T7Ja2Q9I6kP0vaIs37vqRFBTWYY9P0LSSNkfSKpOWS\nJknaMc2rPeV4pqQ3U036nwu211XSBEnvppi+J2lhwfzdUg18maTXJF1cMO8KSZMl3SbpfeCsenb/\nYGB8RKyOiDUR8deIeCitP6RwW2na+lppPeVfns6K7Fiw/AFpnzoX1oYl/VrSdXXKvk/SJWm49nit\nlDRb0klFvp0Hk/0T/ytARLwTERMiYqWkc4AzgO+l2tvvG9uWpH2Bm4DD0/Ir0vT1ZwEa+jxI+m9g\nd+D3ad3vqc7pZUk7SvqNpL+l9/fexsqsZ1+nAvtK2jmNHw1MBLapM+2ZiPi0cPuSrk7zbqinJvtF\nSfPS9m+UpCKPPemYR0TcC7wL9Ev7dJekt5SdJZoqqX/t8ul4/lrZmZbVwN+nz/31kt5I6zwlqWvB\nZs6o7/vSUpK2knRdKnOJssswXdO87un9WJbep/sl9UrzNjqOdd/ntNz6Wn76HvxF0s8kLQeuSNO/\nruw7/q6khyXt0dr9sjoiwq/N4AW8DnwxDfcGZgFXpfETgc8BAr4AfAAcmOb9mOyffuf0Ojottw9Z\nTXi3tFwf4HNpeDTwLNAL2Ar4D+C3BcsFcDPQFRgIfAzsm+ZfA/wJ6J7WfwFYmOZtQVYz+xdgS2BP\n4FXg+DT/CuBT4Ktp2a71HIfHgL8AI4Hd68wbUrutBo7bRuUDfwS+VbD8tcBNafgs4Kk0PDgdL6Xx\n7sCHBcfvFGC3VO4IYDXQo2459ezP0amcK4Ejga3qzB8P/L8605q1rcIyGvo81D1Wdd7rTmn8AbKz\nC93Tul9oqsx69vc14KQ0fD9wDHB7nWn/0sD2nwS+Wae8SOvsQPYDZRlwQhHfp/WflXQcT0qfjX3S\ntK8D3cg+//8OzKhzPN9L79cWQBfgxhRfT6ACOCKtW7sP9X5fmoixsc/Nz4ApwI4pzt8DP07zdgL+\nCdg6zbsLuLdg3Q2OY93jXHeZFMca4CKgU9qP4cB8sjNOncjOJj5d7v+TeXuVPQC/2umNzv75rgJW\nAG8Av6KeBJiWvRcYnYZ/BNwHfL7OMp8HlgJfBDrXmTcHOLZgvEf659ep4J9Br4L504GRaXh9wk7j\n3yz4R3oo8GadbV0G/CYNXwFMbeI4dCf7ETELWAvMAA5O84bQdIKfWmf+N4E/pmGRJfHBaXz9P9g0\n782Ced+qXa+BOGcAw+uW08CyXyL7B70ivcc/BSrSvPHUSfDN3RYbJvh6Pw91j1Uar32vO6XPwDqg\nez3rNVhmPcuOJ0tOW6TP39bAeQXT3uWzHw7rt5/Gn6T+BH9UwfgkYEwRcQxJ+7MCeCcdw5ENLLtD\n2s72BfvwXwXztyD7kTawnnVr96He70sTMZ5FllhXFLwOS5/F1aQf5GnZw4HXGihnEPBuwfgGx7Hu\nca67TIqj7vf2IeAbdY7BB8AeTe2XX8W/fIp+8/LViNghIvaIiPMj4kMASV+S9Gw6PboC+DJQe8rz\nWrJf2o8oO30/BiAi5gPfIUt6SyVNlLRbWmcP4J50ynMFWcJfC+xaEMtbBcMfALUN/nYjS5K1Cof3\nAHarLTeVfXmdcguX30hEvBsRYyKif1pvBnBvM07L1i3/brJT2j3IaunrgD/Xs90gO518Wpp0OlnN\nEwBJ/1vSjIL92o/P3oNGRcRDEfEVstrYcLJ/qA02gmrNtmjg81CE3sA7EfFuK8usvQ6/P/BqRHwA\nPFUwrSswrciYajX0WWzK39L3aceIGBQREyG7pi7pmnQZ5H2yHz6w4TEu/BztTFaLf6UEMT6bYqx9\nPQtUkv0wqin4DPwhTUfS1soaNL6R4p8K7KDWtRWo+73ZA/h5wfbfIfvh0bMV27A6nOA3c5K2IktS\n1wG7RsQOwINkXzYiYmVEXBoRewLDgEuUrrVHxB0RcRTZlzWAf0vFLgC+VOcfS5fIrv03ZTHZqfla\nvQuGF5DVMgrL7RYRXy5YpujuESPi7bTfu5Elx9Vk//iA9Y2fKuuuVqeMd4FHyE51nw5MTMm8Pr8F\nTk7XGg8lO+6k8ZuBC4Gd0nvwEuk9aMb+rIuIx8kuG+xXX7xFbKvR49fY56GJdRcAO0raoZll1jWV\n7DT1iXz2Q2oW2efkROC5iPioofAb27c2dDrZD60vAtuT1XBhw/ezMJa3gY/ILpO1h7fJzhj0L/ge\nbR9Zg0GAS8kuwR0aEdvxWcPGhj4jq9PfrQum/a86y9RdZwFwbp3vcteIeLqlO2Ubc4K3Lcmu9S0D\n1kj6ErD+1i5JQyV9PtVw3yOria+TtI+kY9IPhI/I/mGsS6vdBFxd22hGUqWk4UXGMwm4LDX06UmW\niGpNB1Yqa9zXNdWU9pN0cLE7K+nf0jqdlN1K9m1gfkQsB/4H6CLpREmdya4LblVEsXcA/xs4OQ3X\nK7KGcG8D/wk8HBEr0qxtyP4BLksxns1nCbqp/RkuaWQ6XpJ0CFk7imfTIkvI2irUampbS4BekrZs\nYHv1fh4a2Fbhvi8mOy37qxRrZ0mDiyizbjnz03ZGkxJ8+kE1LU2bWt96TcXXxrqRXSdfTpb0/rWx\nhSNiHXAr8FNljUgrJB2evlttLm3vZuBnknYBkNRT0vEF8X8IrFDWgHRsnSI2OI4RsQxYBHwtxf51\nmv6xchPZ97x/2v72kk5p5a5ZHU7wm7mIWAlcTJZY3yWrfUwpWGQvsoZpq4BngF9FxBNkie8asoT1\nFrAL2fVwgJ+nMh6RtJIs2RxaZEg/AhaSNaZ6DJhM9s+SyO5nHkp2TfA1PkuW2zdjl7cG7iG7Hvkq\n2dmHYan894DzU5mLyGomC+svZgNTyI7TWxExs4ll7yCr2a3/IRARs4HryY7vErJTzX8pcn/eJbue\nPw94H7gNuDYiak//3wL0S6dC7y1iW38kqxG/JenterbX0OcBssZyP0jb+r/1rDuKrC3GXLLr598p\nosz6TCU7s1IY95/JPoONJfifk51BeVfSLxpZrrX+i6ydyyJgNp/92GrM/wVeBJ4jO139b5T2//P3\nyS6LPJtOwz9GVmuHrFFgV7Lv17Nkp+8L1XccvwV8l+xHTX+g0Zp4RNxDto8T0/ZfImtLYm2otvWr\nWYck6dtkDYq+UO5YzMw2Ja7BW4ciqYekI5XdW70P2fXAe8odl5nZpsZPFLKOZkuy++b7kp1Gn0h2\nS5+ZmTWDT9GbmZnlkE/Rm5mZ5ZATvJmZWQ5t0tfgd9555+jTp0+5wzAzM2s3NTU1b0dE3YdwbWST\nTvB9+vShurq63GGYmZm1G0lvFLOcT9GbmZnlkBO8mZlZDjnBm5mZ5dAmfQ3ezMwa9+mnn7Jw4UI+\n+qihTvaso+rSpQu9evWic+fOLVrfCd7MLMcWLlxIt27d6NOnD1mHfbYpiAiWL1/OwoUL6du3b4vK\n8Cl6M7Mc++ijj9hpp52c3Dcxkthpp51adebFCd7MLOec3DdNrX3fnODNzKykKioqGDRoEP3792fg\nwIFcf/31rFu3DoDq6mouvvjietfr06cPb7/9dqu3f++99zJ79uxWl9McX/7yl1mxYkW7brMuX4M3\nM9uctHVtvogOy7p27cqMGTMAWLp0Kaeffjrvv/8+V155JVVVVVRVVbVtTHXce++9DB06lH79+rVp\nuWvXrqWioqLeeQ8++GCbbqslXIM3M7N2s8suuzBu3DhuuOEGIoInn3ySoUOHArB8+XKOO+44+vfv\nzze/+U0a6u1022235Z//+Z8ZOHAghx12GEuWLAHg9ddf55hjjmHAgAEce+yxvPnmmzz99NNMmTKF\n7373uwwaNIhXXnllg7Luuusu9ttvPwYOHMjgwYMBGD9+PBdeeOH6ZYYOHcqTTz65ftuXXnopAwcO\n5Mc//jGnnHLK+uUK96X27MOYMWO48cYb1y9zxRVXcN111wFw7bXXcvDBBzNgwADGjh3bmsNaLyd4\nMzNrV3vuuSdr165l6dKlG0y/8sorOeqoo5g1axYnnXQSb775Zr3rr169msMOO4yZM2cyePBgbr75\nZgAuuugizjzzTF544QXOOOMMLr74Yo444giGDRvGtddey4wZM/jc5z63QVk/+tGPePjhh5k5cyZT\npkxpMvbVq1dz6KGHMnPmTMaMGcO0adNYvXo1AHfeeScjR47cYPkRI0YwadKk9eOTJk1ixIgRPPLI\nI8ybN4/p06czY8YMampqmDp1atMHrxmc4M3MrEOYOnUqX/va1wA48cQT6d69e73Lbbnllutrygcd\ndBCvv/46AM888wynn346AKNGjeKpp55qcptHHnkkZ511FjfffDNr165tcvmKigr+6Z/+CYBOnTpx\nwgkn8Pvf/541a9bwwAMPMHz48A2WP+CAA1i6dCl/+9vfmDlzJt27d6d379488sgjPPLIIxxwwAEc\neOCBzJ07l3nz5jW5/ebwNXgzM2tXr776KhUVFeyyyy7MmTOn2et37tx5fQvziooK1qxZ0+JYbrrp\nJqZNm8YDDzzAQQcdRE1NDZ06dVrfCBDY4Fa1Ll26bHDdfeTIkdxwww3suOOOVFVV0a1bt422ccop\npzB58mTeeustRowYAWT3uV922WWce+65LY69KSWvwUuqkPRXSfen8R0lPSppXvrbvWDZyyTNl/Sy\npONLHVsDAZfuZWa2mVu2bBnnnXceF1544Ua3gQ0ePJg77rgDgIceeoh33323WWUfccQRTJw4EYDb\nb7+do48+GoBu3bqxcuXKetd55ZVXOPTQQ/nRj35EZWUlCxYsoE+fPsyYMYN169axYMECpk+f3uA2\nv/CFL/D8889z8803b3R6vtaIESOYOHEikydPXn/N/vjjj+fWW29l1apVACxatGijSxat1R41+NHA\nHGC7ND4GeDwirpE0Jo1/X1I/YCTQH9gNeEzS3hHR9DkTMzPrsD788EMGDRrEp59+SqdOnRg1ahSX\nXHLJRsuNHTuW0047jf79+3PEEUew++67N2s7v/zlLzn77LO59tprqays5De/+Q2Q1bK/9a1v8Ytf\n/ILJkydvcB3+u9/9LvPmzSMiOPbYYxk4cCAAffv2pV+/fuy7774ceOCBDW6zoqKCoUOHMn78eCZM\nmFDvMv3792flypX07NmTHj16AHDccccxZ84cDj/8cCBrvHfbbbexyy67NGufG6OGWim2SeFSL2AC\ncDVwSUQMlfQyMCQiFkvqATwZEftIugwgIn6c1n0YuCIinmmo/Kqqqmjz/uBLWdMu4bE2M6vPnDlz\n2HfffcsdhrVQfe+fpJqIaPLewlKfov934HvAuoJpu0bE4jT8FrBrGu4JLChYbmGatgFJ50iqllS9\nbNmyEoRsZma26StZgpc0FFgaETUNLRPZ6YNmVWsjYlxEVEVEVWVlZWvDNDMzy6VSXoM/Ehgm6ctA\nF2A7SbcBSyT1KDhFX9uqYBHQu2D9XmmamZmZNVPJavARcVlE9IqIPmSN5/4YEV8DpgBnpsXOBO5L\nw1OAkZK2ktQX2AtouOmimZmZNagc98FfA0yS9A3gDeBUgIiYJWkSMBtYA1zgFvRmZmYt0y4JPiKe\nBJ5Mw8uBYxtY7mqyFvdmZmbWCn5UrZmZldTVV19N//79GTBgAIMGDWLatGmtLnPKlClcc801bRBd\ndg96HvlRtWZmmxFd2bbP+oixjd8I9cwzz3D//ffz/PPPs9VWW/H222/zySefFFX2mjVr6NSp/jQ1\nbNgwhg0b1ux4NyeuwZuZWcksXryYnXfema222gqAnXfemd122219d6oA1dXVDBkyBMi6Ux01ahRH\nHnkko0aN4rDDDmPWrFnryxsyZAjV1dXru3R977332GOPPdY/O3716tX07t2bTz/9lFdeeYUTTjiB\ngw46iKOPPpq5c+cC8Nprr3H44Yez//7784Mf/KAdj0b7coI3M7OSOe6441iwYAF77703559/Pn/6\n05+aXGf27Nk89thj/Pa3v92gu9XFixezePFiqqo+e4jb9ttvz6BBg9aXe//993P88cfTuXNnzjnn\nHH75y19SU1PDddddx/nnnw/A6NGj+fa3v82LL764/tGxeeQEb2ZmJbPttttSU1PDuHHjqKysZMSI\nEYwfP77RdYYNG0bXrl0BOPXUU5k8eTKQ9aV+8sknb7T8iBEjuPPOOwGYOHEiI0aMYNWqVTz99NOc\ncsopDBo0iHPPPZfFi7OHqP7lL3/htNNOA7JuZfPK1+DNzKykKioqGDJkCEOGDGH//fdnwoQJG3TJ\nWtgdK8A222yzfrhnz57stNNOvPDCC9x5553cdNNNG5U/bNgwLr/8ct555x1qamo45phjWL16NTvs\nsAMzZsyoN6a6PdnlkWvwZmZWMi+//DLz5s1bPz5jxgz22GMP+vTpQ01N9iTzu+++u9EyRowYwU9+\n8hPee+89BgwYsNH8bbfdloMPPpjRo0czdOhQKioq2G677ejbty933XUXkPW/PnPmTACOPPLIDbqV\nzSsneDMzK5lVq1Zx5pln0q9fPwYMGMDs2bO54oorGDt2LKNHj6aqqoqKiopGyzj55JOZOHEip556\naoPLjBgxgttuu40RI0asn3b77bdzyy23MHDgQPr3789992UPTv35z3/OjTfeyP7778+iRfl9InpJ\nu4stNXcXa2bWOHcXu2nryN3FmpmZWRk4wZuZmeWQE7yZmVkOOcGbmeXcptzWanPW2vfNCd7MLMe6\ndOnC8uXLneQ3MRHB8uXL6dKlS4vL8INuzMxyrFevXixcuJBly5aVOxRrpi5dutCrV68Wr+8Eb2aW\nY507d6Zv377lDsPKwKfozczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczM\ncsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcqhkCV5SF0nTJc2UNEvSlWn6\nFZIWSZqRXl8uWOcySfMlvSzp+FLFZmZmlnel7C72Y+CYiFglqTPwlKSH0ryfRcR1hQtL6geMBPoD\nuwGPSdo7ItaWMEYzM7NcKlkNPjKr0mjn9IpGVhkOTIyIjyPiNWA+cEip4jMzM8uzkl6Dl1QhaQaw\nFHg0IqalWRdJekHSrZK6p2k9gQUFqy9M08zMzKyZSprgI2JtRAwCegGHSNoP+DWwJzAIWAxc35wy\nJZ0jqVpS9bJly9o8ZjMzszxol1b0EbECeAI4ISKWpMS/DriZz07DLwJ6F6zWK02rW9a4iKiKiKrK\nyspSh25mZrZJKmUr+kpJO6ThrsA/AHMl9ShY7CTgpTQ8BRgpaStJfYG9gOmlis/MzCzPStmKvgcw\nQVIF2Q+JSRFxv6T/ljSIrMHd68C5ABExS9IkYDawBrjALejNzMxaRhGNNWzv2KqqqqK6urptC5Xa\ntrxCm/CxNjOzjkFSTURUNbWcn2RnZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY5\n5ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2Zm\nlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBm\nZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY5VLIEL6mLpOmSZkqaJenK\nNH1HSY9Kmpf+di9Y5zJJ8yW9LOn4UsVmZmaWd6WswX8MHBMRA4FBwAmSDgPGAI9HxF7A42kcSf2A\nkUB/4ATgV5IqShifmZlZbpUswUdmVRrtnF4BDAcmpOkTgK+m4eHAxIj4OCJeA+YDh5QqPjMzszwr\n6TV4SRWSZgBLgUcjYhqwa0QsTou8BeyahnsCCwpWX5im1S3zHEnVkqqXLVtWwujNzMw2XSVN8BGx\nNiIGAb2AQyTtV2d+kNXqm1PmuIioioiqysrKNozWzMwsP9qlFX1ErACeILu2vkRSD4D0d2labBHQ\nu2C1XmmamZmZNVMpW9FXStohDXcF/gGYC0wBzkyLnQncl4anACMlbSWpL7AXML1U8ZmZmeVZpxKW\n3QOYkFrCbwFMioj7JT0DTJL0DeAN4FSAiJglaRIwG1gDXBARa0sYn5mZWW4puwy+aaqqqorq6uq2\nLVRq2/IKbcLH2szMOgZJNRFR1dRyfpKdmZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGb\nmZnlkBO8mZlZDjWZ4CVtI2mLNLy3pGGSOpc+NDMzM2upYmrwU4EuknoCjwCjgPGlDMrMzMxap5gE\nr4j4APhH4FcRcQrQv7RhmZmZWWsUleAlHQ6cATyQplWULiQzMzNrrWIS/GjgMuCe1CHMnmRdv5qZ\nmVkH1WhvcqknuGERMax2WkS8Clxc6sDMzMys5RqtwafuWo9qp1jMzMysjRTTH/xfJU0B7gJW106M\niN+VLCozMzNrlWISfBdgOXBMwbQAnODNzMw6qCYTfESc3R6BmJmZWdsp5kl2e0t6XNJLaXyApB+U\nPjQzMzNrqWJuk7uZ7Da5TwEi4gVgZCmDMjMzs9YpJsFvHRHT60xbU4pgzMzMrG0Uk+DflvQ5soZ1\nSDoZWFzSqMzMzKxVimlFfwEwDvg7SYuA14CvlTQqMzMza5ViWtG/CnxR0jbAFhGxsvRhmZmZWWs0\nmeAlXVJnHOA9oCYiZpQoLjMzM2uFYq7BVwHnAT3T61zgBOBmSd8rYWxmZmbWQsVcg+8FHBgRqwAk\njSXrNnYwUAP8pHThmZmZWUsUU4PfBfi4YPxTYNeI+LDOdDMzM+sgiqnB3w5Mk3RfGv8KcEdqdDe7\nZJGZmZlZixXTiv4qSX8AjkiTzouI6jR8RskiMzMzsxYr5hQ9wPNk3cXeAyyVtHtTK0jqLekJSbMl\nzZI0Ok2/QtIiSTPS68sF61wmab6klyUd35IdMjMzs+Juk7sIGAssAdYCInuq3YAmVl0DXBoRz0vq\nBtRIejTN+1lEXFdnO/3InnHfH9gNeEzS3hGxtjk7ZGZmZsVdgx8N7BMRy5tTcEQsJj3SNiJWSppD\ndptdQ4YDEyPiY+A1SfOBQ4BnmrNdMzMzK+4U/QKyB9u0mKQ+wAHAtDTpIkkvSLpVUvc0rWfaVq2F\nNP6DwMzMzBpQTA3+VeBJSQ9QcFtcRPy0mA1I2ha4G/hORLwv6dfAVWSn+a8Crge+XmzAks4BzgHY\nffcmmwKYmZltloqpwb8JPApsCXQreDVJUmey5H57RPwOICKWRMTaiFhH1tf8IWnxRUDvgtV7pWkb\niIhxEVEVEVWVlZXFhGFmZrbZKeY2uSsBJG0dER8UW7Cyh9bfAswprO1L6pGuzwOcBLyUhqeQ3V//\nU7JGdnsBdfuhNzMzsyIU04r+cLJEvS2wu6SBwLkRcX4Tqx4JjAJelFTbKc3lwGmSBpGdon+d7Nn2\nRMQsSZPIHp6zBrjALejNzMxapphr8P8OHE9WwyYiZkoa3NRKEfEU2S11dT3YyDpXA1cXEZOZmZk1\noqgH3UTEgjqTXLM2MzPrwIqpwS+QdAQQqdHcaGBOacMyMzOz1iimBn8ecAHZPemLgEFp3MzMzDqo\nYlrRv407lTEzM9ukNFmDl/QTSdtJ6izpcUnLJH2tPYIzMzOzlinmFP1xEfE+MJTstrbPA98tZVBm\nZmbWOsUk+NrT+CcCd0VEq55Lb2ZmZqVXTCv6+yXNBT4Evi2pEviotGGZmZlZazRZg4+IMcARQFVE\nfAqsJuva1czMzDqoYhrZnQJ8GhFrJf0AuI3sWfFmZmbWQRVzDf6HEbFS0lHAF8meS//r0oZlZmZm\nrVFMgq99LO2JwLiIeICs61gzMzProIpJ8Isk/QcwAnhQ0lZFrmdmZmZlUkyiPhV4GDg+IlYAO+L7\n4M3MzDq0YlrRfxARvwPek7Q70BmYW/LIzMzMrMWKaUU/TNI84DXgT+nvQ6UOzMzMzFqumFP0VwGH\nAf8TEX3JWtI/W9KozMzMrFWKSfCfRsRyYAtJW0TEE0BVieMyMzOzVijmUbUrJG0LTAVul7SU7Gl2\nZmZm1kEVU4MfDnwA/B/gD8ArwFdKGZSZmZm1TqM1eElfJese9sWIeBiY0C5RmZmZWas0WIOX9Cuy\nWvtOwFWSfthuUZmZmVmrNFaDHwwMTJ3MbA38maxFvZmZmXVwjV2D/yQi1kL2sBtA7ROSmZmZtVZj\nNfi/k/RCGhbwuTQuICJiQMmjMzMzsxZpLMHv225RmJmZWZtqMMFHxBvtGYiZmZm1HXf7amZmlkNO\n8GZmZjmiEKLMAAAQJ0lEQVTU2H3wj6e//9Z+4ZiZmVlbaKwG30PSEcAwSQdIOrDw1VTBknpLekLS\nbEmzJI1O03eU9Kikeelv94J1LpM0X9LLko5v/e6ZmZltnhprRf8vwA+BXsBP68wL4Jgmyl4DXBoR\nz0vqBtRIehQ4C3g8Iq6RNAYYA3xfUj9gJNAf2A14TNLetffim5mZWfEaa0U/GZgs6YcR0ewn2EXE\nYmBxGl4paQ7Qk6zzmiFpsQnAk8D30/SJEfEx8Jqk+cAhwDPN3baZmdnmrsnuYiPiKknDyB5dC/Bk\nRNzfnI1I6gMcAEwDdk3JH+AtYNc03BN4tmC1hWla3bLOAc4B2H333ZsThpmZ2WajyVb0kn4MjAZm\np9doSf9a7AZSX/J3A9+JiPcL50VEkJ3uL1pEjIuIqoioqqysbM6qZmZmm40ma/DAicCgiFgHIGkC\n8Ffg8qZWlNSZLLnfHhG/S5OXSOoREYsl9QCWpumLgN4Fq/dK08zMzKyZir0PfoeC4e2LWUGSgFuA\nORFR2EhvCnBmGj4TuK9g+khJW0nqC+wFTC8yPjMzMytQTA3+x8BfJT1B1tHMYLKW7005EhgFvChp\nRpp2OXANMEnSN4A3gFMBImKWpElklwHWABe4Bb2ZmVnLKLsM3sRC2an0g9Po9Ih4q6RRFamqqiqq\nq6vbtlCVsFfcIo61mZlZYyTVRERVU8sVU4OvveVtSqujMjMzs3bhZ9GbmZnlkBO8mZlZDjWa4CVV\nSJrbXsGYmZlZ22g0wadW7C9L8iPjzMzMNiHFNLLrDsySNB1YXTsxIoaVLCozMzNrlWIS/A9LHoWZ\nmZm1qWI6m/mTpD2AvSLiMUlbAxWlD83MzMxaqpjOZr4FTAb+I03qCdxbyqDMzMysdYq5Te4CssfO\nvg8QEfOAXUoZlJmZmbVOMQn+44j4pHZEUiea2cWrmZmZta9iEvyfJF0OdJX0D8BdwO9LG5aZmZm1\nRjEJfgywDHgROBd4EPhBKYMyMzOz1immFf06SROAaWSn5l+OYrqgMzMzs7JpMsFLOhG4CXiFrD/4\nvpLOjYiHSh2cmZmZtUwxD7q5Hvj7iJgPIOlzwAOAE7yZmVkHVcw1+JW1yT15FVhZonjMzMysDTRY\ng5f0j2mwWtKDwCSya/CnAM+1Q2xmZmbWQo2dov9KwfAS4AtpeBnQtWQRmZmZWas1mOAj4uz2DMTM\nzMzaTjGt6PsCFwF9Cpd3d7FmZmYdVzGt6O8FbiF7et260oZjZmZmbaGYBP9RRPyi5JGYmZlZmykm\nwf9c0ljgEeDj2okR8XzJojIzM7NWKSbB7w+MAo7hs1P0kcbNzMysAyomwZ8C7FnYZayZmZl1bMU8\nye4lYIdSB2JmZmZtp5ga/A7AXEnPseE1eN8mZ2Zm1kEVk+DHljwKMzMza1PF9Af/p5YULOlWYCiw\nNCL2S9OuAL5F9rhbgMsj4sE07zLgG8Ba4OKIeLgl2zUzM7PinmS3kqzVPMCWQGdgdURs18Sq44Eb\ngP+qM/1nEXFdnW30A0YC/YHdgMck7R0Ra5vcAzMzM9tIMTX4brXDkgQMBw4rYr2pkvoUGcdwYGJE\nfAy8Jmk+cAjwTJHrm5mZWYFiWtGvF5l7geNbsc2LJL0g6VZJ3dO0nsCCgmUWpmkbkXSOpGpJ1cuW\nLatvETMzs81ekwle0j8WvE6WdA3wUQu392tgT2AQsBi4vrkFRMS4iKiKiKrKysoWhmFmZpZvxbSi\nL+wXfg3wOtkp9WaLiCW1w5JuBu5Po4uA3gWL9krTzMzMrAWKuQbfZv3CS+oREYvT6ElkD9EBmALc\nIemnZI3s9gKmt9V2zczMNjcNJnhJ/9LIehERVzVWsKTfAkOAnSUtJLuffoikQWSt8l8Hzk2FzZI0\nCZhNdpbgAregNzMzazlFRP0zpEvrmbwN2b3qO0XEtqUMrBhVVVVRXV3dtoVKbVteoQaOtZmZWbEk\n1UREVVPLNViDj4j1DeAkdQNGA2cDE2lB4zgzMzNrP41eg5e0I3AJcAYwATgwIt5tj8DMzMys5Rq7\nBn8t8I/AOGD/iFjVblGZmZlZqzR2H/ylZC3afwD8TdL76bVS0vvtE56ZmZm1RGPX4Jv1lDszMzPr\nOJzEzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3M\nzHLICd7MzCyHnODNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAne\nzMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyAnezMwsh0qW4CXdKmmppJcKpu0o\n6VFJ89Lf7gXzLpM0X9LLko4vVVxmZmabg1LW4McDJ9SZNgZ4PCL2Ah5P40jqB4wE+qd1fiWpooSx\nmZmZ5VrJEnxETAXeqTN5ODAhDU8AvlowfWJEfBwRrwHzgUNKFZuZmVnetfc1+F0jYnEafgvYNQ33\nBBYULLcwTTMzM7MWKFsju4gIIJq7nqRzJFVLql62bFkJIjMzM9v0tXeCXyKpB0D6uzRNXwT0Lliu\nV5q2kYgYFxFVEVFVWVlZ0mDNzMw2Ve2d4KcAZ6bhM4H7CqaPlLSVpL7AXsD0do7NzMwsNzqVqmBJ\nvwWGADtLWgiMBa4BJkn6BvAGcCpARMySNAmYDawBLoiItaWKzczMLO9KluAj4rQGZh3bwPJXA1eX\nKh4zM7PNiZ9kZ2ZmlkNO8GZmZjnkBG9mZpZDTvBmZmY55ARvZmaWQ07wZmZmOeQEb2ZmlkNO8GZm\nZjnkBG9mZpZDTvBmZmY5VLJH1drGdKVKWn6MbXbvu2ZmllOuwZuZmeWQE7yZmVkOOcGbmZnlkBO8\nmZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45\nwZuZmeWQE7yZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeVQp3JsVNLrwEpgLbAm\nIqok7QjcCfQBXgdOjYh3yxGfmZnZpq6cNfi/j4hBEVGVxscAj0fEXsDjadzMzMxaoCOdoh8OTEjD\nE4CvljEWMzOzTVq5EnwAj0mqkXROmrZrRCxOw28Bu9a3oqRzJFVLql62bFl7xGpmZrbJKcs1eOCo\niFgkaRfgUUlzC2dGREiK+laMiHHAOICqqqp6lzEzM9vclaUGHxGL0t+lwD3AIcASST0A0t+l5YjN\nzMwsD9o9wUvaRlK32mHgOOAlYApwZlrsTOC+9o7NzMwsL8pxin5X4B5Jtdu/IyL+IOk5YJKkbwBv\nAKeWITYzM7NcaPcEHxGvAgPrmb4cOLa94zEzM8ujjnSbnJmZmbURJ3gzM7MccoI3MzPLoXLdB28d\nQdbQsXTCjykwMysX1+DNzMxyyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxy\nyAnezMwsh5zgzczMcsgJ3szMLIec4M3MzHLICd7MzCyHnODNzMxyyL3J2ebDveeZ2WbECd5KRleW\nNqHGWCdUM7OG+BS9mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkOOcGbmZnlkG+TM2sjvi3Q\nzDoS1+DNzMxyyAnezMwsh5zgzczMcqjDJXhJJ0h6WdJ8SWPKHY+ZmdmmqEMleEkVwI3Al4B+wGmS\n+pU3KjMzs01PR2tFfwgwPyJeBZA0ERgOzC5rVGbWsbmnQLONdLQE3xNYUDC+EDi0TLGYbdqc9PLL\n760VQdGB3khJJwMnRMQ30/go4NCIuLBgmXOAc9LoPsDL7R5o+9kZeLvcQbQj729+bU77Ct7fPOsI\n+7pHRFQ2tVBHq8EvAnoXjPdK09aLiHHAuPYMqlwkVUdEVbnjaC/e3/zanPYVvL95tinta4dqZAc8\nB+wlqa+kLYGRwJQyx2RmZrbJ6VA1+IhYI+lC4GGgArg1ImaVOSwzM7NNTodK8AAR8SDwYLnj6CA2\ni0sRBby/+bU57St4f/Nsk9nXDtXIzszMzNpGR7sGb2ZmZm3ACb6D2pwe2SvpVklLJb1U7lhKTVJv\nSU9Imi1plqTR5Y6plCR1kTRd0sy0v1eWO6ZSk1Qh6a+S7i93LKUm6XVJL0qaIam63PGUmqQdJE2W\nNFfSHEmHlzumxvgUfQeUHtn7P8A/kD3s5zngtIjI5RP9JA0GVgH/FRH7lTueUpLUA+gREc9L6gbU\nAF/N8XsrYJuIWCWpM/AUMDoini1zaCUj6RKgCtguIoaWO55SkvQ6UBUR5b4vvF1ImgD8OSL+M93p\ntXVErCh3XA1xDb5jWv/I3oj4BKh9ZG8uRcRU4J1yx9EeImJxRDyfhlcCc8ie4JhLkVmVRjunV25r\nFZJ6AScC/1nuWKxtSdoeGAzcAhARn3Tk5A5O8B1VfY/szW0S2FxJ6gMcAEwrbySllU5ZzwCWAo9G\nRJ7399+B7wHryh1IOwngMUk16SmjedYXWAb8Jl2C+U9J25Q7qMY4wZuVgaRtgbuB70TE++WOp5Qi\nYm1EDCJ7MuUhknJ5GUbSUGBpRNSUO5Z2dFR6b78EXJAut+VVJ+BA4NcRcQCwGujQ7aOc4DumJh/Z\na5uudC36buD2iPhdueNpL+l05hPACeWOpUSOBIal69ITgWMk3VbekEorIhalv0uBe8guL+bVQmBh\nwRmoyWQJv8Nygu+Y/MjenEqNzm4B5kTET8sdT6lJqpS0QxruStZwdG55oyqNiLgsInpFRB+y7+wf\nI+JrZQ6rZCRtkxqKkk5VHwfk9k6YiHgLWCBpnzTpWDp4V+Yd7kl2tvk9slfSb4EhwM6SFgJjI+KW\n8kZVMkcCo4AX03VpgMvTExzzqAcwId0ZsgUwKSJyf/vYZmJX4J7sNyudgDsi4g/lDankLgJuTxWv\nV4GzyxxPo3ybnJmZWQ75FL2ZmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZtt5iStTb2B\nvSTpLklbt0GZZ0m6oS3iM7OWcYI3sw8jYlDqye8T4LxiV0z3t5tZB+QEb2aF/gx8HkDSvakTkVmF\nHYlIWiXpekkzgcMlHSzp6dTn+/Tap5sBu0n6g6R5kn5Shn0x26z5SXZmBoCkTmSdhtQ+jezrEfFO\nesTsc5LujojlwDbAtIi4ND3Ray4wIiKek7Qd8GFafxBZb3kfAy9L+mVELMDM2oUTvJl1LXhs7p9J\n/V0DF0s6KQ33BvYClgNryTrLAdgHWBwRzwHU9oyXHl/6eES8l8ZnA3uwYTfIZlZCTvBm9mHq8nM9\nSUOALwKHR8QHkp4EuqTZH0XE2iLK/bhgeC3+f2PWrnwN3szqsz3wbkrufwcc1sByLwM9JB0MIKlb\nOtVvZmXmL6KZ1ecPwHmS5pAl8WfrWygiPpE0Avhlulb/IVnN38zKzL3JmZmZ5ZBP0ZuZmeWQE7yZ\nmVkOOcGbmZnlkBO8mZlZDjnBm5mZ5ZATvJmZWQ45wZuZmeWQE7yZmVkO/X+MNe9ZpwgVcQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "vs.survival_stats(data, outcomes, 'Parch', [\"Sex == 'male'\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older *did not survive* the ship sinking. Let's continue to build on our previous prediction: If a passenger was female, then we will predict they survive. If a passenger was male and younger than 10, then we will also predict they survive. Otherwise, we will predict they do not survive. \n", + "Fill in the missing code below so that the function will make this prediction. \n", + "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_1`." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def predictions_2(data):\n", + " \"\"\" Model with two features: \n", + " - Predict a passenger survived if they are female.\n", + " - Predict a passenger survived if they are male and younger than 10. \"\"\"\n", + " \n", + " predictions = []\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " predictions.append(1)\n", + " else:\n", + " if passenger['Age'] < 10.0:\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions)\n", + "\n", + "# Make the predictions\n", + "predictions = predictions_2(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "*How accurate would a prediction be that all female passengers and all male passengers younger than 10 survived?* \n", + "**Hint:** Run the code cell below to see the accuracy of this prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 79.35%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *79.35%*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "***\n", + "Adding the feature **Age** as a condition in conjunction with **Sex** improves the accuracy by a small margin more than with simply using the feature **Sex** alone. Now it's your turn: Find a series of features and conditions to split the data on to obtain an outcome prediction accuracy of at least 80%. This may require multiple features and multiple levels of conditional statements to succeed. You can use the same feature multiple times with different conditions. \n", + "**Pclass**, **Sex**, **Age**, **SibSp**, and **Parch** are some suggested features to try.\n", + "\n", + "Use the `survival_stats` function below to to examine various survival statistics. \n", + "**Hint:** To use mulitple filter conditions, put each condition in the list passed as the last argument. Example: `[\"Sex == 'male'\", \"Age < 18\"]`" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGDCAYAAADd8eLzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//HXxwMKieWEXhQV61ZXUUE95oASPzW1JLRS\n0YyL3kps5P7qV5npVetXWVqP2+Q1vHXllxZOpTiV5XVM06DAcuiSQwKBIE5IWYif3x9rHdwczrDP\nOewzLF7Px+M8zl5rr+Gz9tp7v/d3jZGZSJKkgW2Tvi5AkiT1nIEuSVIFGOiSJFWAgS5JUgUY6JIk\nVYCBLklSBRjo0gYWESdHxC0bYDqnRMTdG6Kmbs7/4og4uxvj7RwRL0ZEUyPq2hDzj4iMiH/szbqk\nRjPQKy4inoiIv5ZfcE9FxKURMayv6+ptETEyIq6JiKcj4vmI+H1EnNKIeWXm5Zl5RCOmXSsi3h8R\nj0TEynLd3hQRW5TPXRoR/7cL01rvx0Nmnp6ZX6hj3Cci4vCa8Z7MzGGZuaYry9PB9L8bEf9R0z04\nIla10++A1vOPiNsj4gM9mP+5EXFuq367RsQrtTVsCBHR7oVBWn2WW/526OH8JkTEop5MQ/2Hgb5x\neGdmDgP2AZqBs/q4noaKiEFt9P4BsBDYBdgGmAI8tQGn36si4q3Al4CTMnMLYDfgir6tqmHuBMbX\ndDcDTwKHtOoHMLeXavpn4FlgckRs1kvzhPKzXPP3516c93r6w2dBrzLQNyKZuRi4GdgDICJOjYiH\nyxbeYxExrWXYiNg2Im6IiOci4pmIuCsiNimf+0xELC7H+0NEHFb23yQizoiIRyNiRURcGRFbl8+N\nKjdzTo2IJ8uW8udq5jc0ImZGxLNlTZ+ubTlExA5lC3t5RDweER+vee7ciLg6Ii6LiBeAU9pY/P2A\nSzNzVWa+nJm/zcyby/HXa6XUtjrbmP6ZZUtp65rh9y6XaXBtazci/iMiLmw17esi4hPl45bXa2VE\nPBQR76pzde4H3JuZvwXIzGcyc2ZmroyI04CTgU+XrbjrO5pXROwGXAwcWA7/XNl/bSu/vfdDRPwA\n2Bm4vhz30zXrelA57tYR8V8R8edy/V7b0TTbWNY7gd0iYtuy+xBgFrB5q373Zubq2vlHxBfL575d\n1vftmukeHhELyvl/JyKinhe+HO6fKX4Yrwbe2er5I8rPxfMRcVFE3BE1Wwgi4l/K9/izEfGziNil\nnvl2UtMBEXFPuSzzI2JCzXOnRhuf84jYnOL7YIeoafFHq607rT8f5WfjMxHxALCqfJ3b/XyqF2Wm\nfxX+A54ADi8f7wQ8CHyh7D4aeAMQwFuBvwD7lM99meJLfnD5d0g53JspWro7lMONAt5QPp4O/AoY\nCWwGfBf4Uc1wCVwCDAXGAH8DdiufPx+4A9iqHP8BYFH53CYULa9/AzYFXg88BhxZPn8uxRfrseWw\nQ9t4HX4B/BI4Edi51XMTWubVzuu23vSB/wY+WDP8BcDF5eNTgLvLx+PL1yvK7q2Av9a8fscDO5TT\nnQysAka0nk4by3NIOZ3zgHHAZq2evxT4v636dWletdNo7/3Q+rVqta4Hld03Umw92Koc962dTbON\n5X0ceFf5+AbgUODyVv3+rZ353w58oNX0shxnS4ofJMuBo+r8TB1C8d7dCvgWcH3Nc9sCLwDvBgZR\nfCZWt8wfOAb4I8UWlUEUPwru6epnuVX/HYEVwDvKdfu2snt4HZ/zCaz/3l/nvdN6mLKOeRTfJ0Pp\n5PPpX+/92ULfOFxbtrrupgjNLwFk5o2Z+WgW7gBu4dXNmKuBEcAumbk6M+/K4tO8hiKsd4+IwZn5\nRGY+Wo5zOvC5zFyUmX+jCMLjYt3Ncudl5l8zcz4wnyLYAU4AvpSZz2bmIuCbNePsR/Hl9PnM/Htm\nPkbxw+DEmmHuzcxrM/OVzPxrG6/B8cBdwNnA4xExLyL268Jr2Hr6PwROgrUtthPLfq3dRREeLa/r\nceW0/gyQmVdl5p/L6V4BLADe0lkxmXkXRWjsQxGYKyLi69HBgWDdnVepvfdDhyJiBPB24PRy3a4u\n32tdneYdwPiyBf8Wih+Od9X0G1cO0xXnZ+ZzmfkkcBswts7xpgI3Z+azFOv8qIjYrnzuHcCDmfnj\nzHyZ4n28tGbc04EvZ+bD5fNfAsZ2oZV+bdkKf65lSwfwPuCmzLypXLc/B+aUtXT2Oe+ub2bmwvKz\nUM/nU73AQN84HJuZW2bmLpn54ZbAi4i3R8Svys2dz1F8AbRswryAoiVxS7mZ7gyAzPwj8K8UYb0s\nImbFqwfm7AL8pOULB3iY4gfA9jW11H65/QVoOUBvB4qWbIvax7tQbBZ8rmbaZ7aabu3w6ynD5IzM\nHF2ON4/iy7GuzaxtTP8aik3UIyha4a9QBEzr+SbF5uGTyl7vpWhZAhAR/1z+uGhZrj14dR10KDNv\nzsx3AltTtPxOAdo9+Ksn86Kd90MddgKeKcOvJ9Ns2Y++J/BYZv6F4gdqS7+hwH111tSivfdiuyJi\nKMWPw8sBMvNeiv357y0HWed9XK7/2t05uwDfqFkHz1C0nHess+aWz/KWmXlszTSPb/X5OJjix1Jn\nn/Pu6urnU73AQN9IRXEgzzXAhcD2mbklcBPFlwuZuTIzP5mZrwcmAZ+Icl95Zv4wMw+m+CAn8JVy\nsguBt9d84WyZmUOy2HffmSUUm9pb7FTzeCHweKvpbpGZ76gZpu7bBmbm0+Vy70ARhquA17Q8X7Zy\nh7cerdU0nqVo6Uym+DKf1UHr8kcUWyp2AfaneN0puy8BPgpsU66D31Ougy4szyuZeSvFboA92qq3\njnl1+Pp19H7oZNyFwNYRsWUXp9nanRRbc47m1R9OD1K8T44Gfp2ZL7VXfkfL1kXvAl4LXBQRSyNi\nKUUYTy2fX+d9XP5grH1fLwSmtXovD83Me3pQ00LgB62muXlmnt/Z55y2X5t1Pg/AP7QxTO149Xw+\n1QsM9I3XphSbzpcDL0fE24G1p1pFxMSI+MfyC+l5ipb2KxHx5og4tPyieIliP+4r5WgXA19s2XwY\nEcMj4pg667kS+GxEbBURO1IET4v7gZXlgThDI6IpIvboyibziPhKOc6gKE7t+hDwx8xcAfwPMCQi\njo6IwRT7Nes5cvmHFAdHHUfbm9sByOLAtaeB/wR+lpnPlU9tTvHFuLys8VReDeTOlueYiDixfL0i\nIt5CsX/0V+UgT1Hsy2zR2byeAkZGxKbtzK/N90M786pd9iUUB15dVNY6OCLG1zHN1tP5Yzmf6ZSB\nXv6Auq/sd2db43VWXzdMBb5PsVVgbPk3DhgTEXtS7P7YMyKOLXc1fYR1A/Fiivf5aICIeF1EHN/D\nmi4D3hkRR5afjSFRHMg2kk4+5xSvzTYR8bqafvOAd0RxMOM/UGyR60iPP5/aMAz0jVRmrgQ+ThGk\nz1K0MmfXDPJGigPJXgTuBS7KzNsovhzOpwiopcB2wGfLcb5RTuOWiFhJES7711nS5yk2TT5ezvdq\nigOPyOJ84okUX56P82o4vq7NKbXtNcBPgOcoDtjZhaJVSGY+D3y4nOZiihZKPefmzqZ4nZZmcUxA\nR34IHE5N8GfmQ8DXKF7fpyhC4pd1Ls+zwAcp9oO/QPGlfkFmtmzO/x7FcQ7PRcS1dczrvylavEsj\n4uk25tfe+wGKg9vOKuf1f9oYdwrF/vJHgGW8GhAdTbMtd1JsOamt+y6K92BHgf4Nii0kz0bENzsY\nrkPlD83DgH/PzKU1f3OBnwJTy60/xwNfpTgwbXeK/dkt7+WfUGzRmhXFGRO/pzjGoNsycyHFLpcz\nKYJ7IfApYJPOPueZ+QjFFqTHyvW3A8UpnvMpDn67hU5Oh9xAn09tAC1HqUr9SkR8CDgxM9/a17VI\n3RXFAXuLgJM7+bEi9ZgtdPULETEiIsZFcW7zm4FPUrSopQGl3PS9Zblb6kyK/dW/6mQ0qce8yo/6\ni00pzlvflWKz+Czgoj6tSOqeAyl2rWwKPERxZHpbp1JKG5Sb3CVJqgA3uUuSVAEGuiRJFTAg9qFv\nu+22OWrUqL4uQ5KkXjF37tynM7P1Ba46NCACfdSoUcyZM6evy5AkqVdExJ+6Oo6b3CVJqgADXZKk\nCjDQJUmqgAGxD70tq1evZtGiRbz0Uns3WFJ/NWTIEEaOHMngwYP7uhRJqowBG+iLFi1iiy22YNSo\nUUTdt7RWX8tMVqxYwaJFi9h11137uhxJqowBu8n9pZdeYptttjHMB5iIYJtttnHLiiRtYAM20AHD\nfIByvUnShjegA72vNTU1MXbsWEaPHs2YMWP42te+xiuvvALAnDlz+PjHP97meKNGjeLpp9u65XTX\nXHvttTz00EM9nk5XvOMd7+C5557r1XlKkjo3YPehr2fatA07ve9+t9NBhg4dyrx58wBYtmwZ733v\ne3nhhRc477zzaG5uprm5ecPW1Mq1117LxIkT2X333TfodNesWUNTU1Obz910000bdF6SpA3DFvoG\nst122zFjxgy+/e1vk5ncfvvtTJw4EYAVK1ZwxBFHMHr0aD7wgQ/Q3h3uhg0bxuc+9znGjBnDAQcc\nwFNPPQXAE088waGHHspee+3FYYcdxpNPPsk999zD7Nmz+dSnPsXYsWN59NFH15nWVVddxR577MGY\nMWMYP348AJdeeikf/ehH1w4zceJEbr/99rXz/uQnP8mYMWP48pe/zPHHH792uNpladm6cMYZZ/Cd\n73xn7TDnnnsuF154IQAXXHAB++23H3vttRfnnHNOT15WSVKdDPQN6PWvfz1r1qxh2bJl6/Q/77zz\nOPjgg3nwwQd517vexZNPPtnm+KtWreKAAw5g/vz5jB8/nksuuQSAj33sY0ydOpUHHniAk08+mY9/\n/OMcdNBBTJo0iQsuuIB58+bxhje8YZ1pff7zn+dnP/sZ8+fPZ/bs2Z3WvmrVKvbff3/mz5/PGWec\nwX333ceqVasAuOKKKzjxxBPXGX7y5MlceeWVa7uvvPJKJk+ezC233MKCBQu4//77mTdvHnPnzuXO\nO+/s/MWTJPWIgd4L7rzzTt73vvcBcPTRR7PVVlu1Odymm266tiW877778sQTTwBw77338t73vheA\nKVOmcPfdd3c6z3HjxnHKKadwySWXsGbNmk6Hb2pq4j3veQ8AgwYN4qijjuL666/n5Zdf5sYbb+SY\nY45ZZ/i9996bZcuW8ec//5n58+ez1VZbsdNOO3HLLbdwyy23sPfee7PPPvvwyCOPsGDBgk7nL0nq\nmersQ+8HHnvsMZqamthuu+14+OGHuzz+4MGD1x4B3tTUxMsvv9ztWi6++GLuu+8+brzxRvbdd1/m\nzp3LoEGD1h60B6xz6tiQIUPW2W9+4okn8u1vf5utt96a5uZmtthii/Xmcfzxx3P11VezdOlSJk+e\nDBTnmX/2s59l2oY+pkGS1CEDfQNZvnw5p59+Oh/96EfXOy1r/Pjx/PCHP+Sss87i5ptv5tlnn+3S\ntA866CBmzZrFlClTuPzyyznkkEMA2GKLLVi5cmWb4zz66KPsv//+7L///tx8880sXLiQUaNGcdFF\nF/HKK6+wePFi7r///nbn+da3vpV/+Zd/4ZJLLllvc3uLyZMn88EPfpCnn36aO+64A4AjjzySs88+\nm5NPPplhw4axePFiBg8ezHbbbdelZVb/MO16f5gNZN99Z+cH96o6DPQe+Otf/8rYsWNZvXo1gwYN\nYsqUKXziE59Yb7hzzjmHk046idGjR3PQQQex8847d2k+3/rWtzj11FO54IILGD58OP/1X/8FFK3o\nD37wg3zzm9/k6quvXmc/+qc+9SkWLFhAZnLYYYcxZswYAHbddVd23313dtttN/bZZ59259nU1MTE\niRO59NJLmTlzZpvDjB49mpUrV7LjjjsyYsQIAI444ggefvhhDjzwQKA42O6yyy4z0CWpwaK9I677\nk+bm5mx9P/SHH36Y3XbbrY8qUk+5/gYGW+gDmy30gSsi5mZml8599qA4SZIqwECXJKkCDHRJkirA\nQJckqQIMdEmSKsBAlySpAhoa6BHxRET8LiLmRcScst/WEfHziFhQ/m/7OqgDxBe/+EVGjx7NXnvt\nxdixY7nvvvt6PM3Zs2dz/vnnb4DqivPAJUnV1xsXlvlfmVl78+8zgFsz8/yIOKPs/kxPZ7Khz5et\n5/zNe++9lxtuuIHf/OY3bLbZZjz99NP8/e9/r2v6L7/8MoMGtf3yT5o0iUmTJnWpXknSxq0vNrkf\nA7RcemwmcGwf1LBBLFmyhG233ZbNNtsMgG233ZYddthh7S1GAebMmcOECROA4hajU6ZMYdy4cUyZ\nMoUDDjiABx98cO30JkyYwJw5c9be5vT5559nl112WXv99VWrVrHTTjuxevVqHn30UY466ij23Xdf\nDjnkEB555BEAHn/8cQ488ED23HNPzjrrrF58NSRJfanRgZ7ALyJibkScVvbbPjOXlI+XAtu3NWJE\nnBYRcyJizvLlyxtcZvccccQRLFy4kDe96U18+MMfXns984489NBD/OIXv+BHP/rROrcgXbJkCUuW\nLKG5+dULA73uda9j7Nixa6d7ww03cOSRRzJ48GBOO+00vvWtbzF37lwuvPBCPvzhDwMwffp0PvSh\nD/G73/1u7eVYJUnV1+hAPzgzxwJvBz4SEeNrn8ziurNtXns2M2dkZnNmNg8fPrzBZXbPsGHDmDt3\nLjNmzGD48OFMnjyZSy+9tMNxJk2axNChQwE44YQTuPrqq4HifuLHHXfcesNPnjyZK664AoBZs2Yx\nefJkXnzxRe655x6OP/54xo4dy7Rp01iypPiN9Mtf/pKTTjoJKG61KknaODR0H3pmLi7/L4uInwBv\nAZ6KiBGZuSQiRgDLGllDozU1NTFhwgQmTJjAnnvuycyZM9e5TWntLUoBNt9887WPd9xxR7bZZhse\neOABrrjiCi6++OL1pj9p0iTOPPNMnnnmGebOncuhhx7KqlWr2HLLLZk3b16bNbW+25skqfoa1kKP\niM0jYouWx8ARwO+B2cDUcrCpwHWNqqHR/vCHP7BgwYK13fPmzWOXXXZh1KhRzJ07F4Brrrmmw2lM\nnjyZr371qzz//PPstdde6z0/bNgw9ttvP6ZPn87EiRNpamrita99LbvuuitXXXUVUNyDfP78+QCM\nGzeOWbNmAXD55ZdvkOWUJPV/jdzkvj1wd0TMB+4HbszMnwLnA2+LiAXA4WX3gPTiiy8ydepUdt99\nd/baay8eeughzj33XM455xymT59Oc3MzTU1NHU7juOOOY9asWZxwwgntDjN58mQuu+wyJk+evLbf\n5Zdfzve+9z3GjBnD6NGjue664nfRN77xDb7zne+w5557snjx4g2zoJKkfs/bp6pPuP4GBm+fOrB5\n+9SBy9unSpK0kTLQJUmqAANdkqQKGNCBPhD2/2t9rjdJ2vAGbKAPGTKEFStWGA4DTGayYsUKhgwZ\n0telSFKl9MbNWRpi5MiRLFq0iP56WVi1b8iQIYwcObKvy5CkShmwgT548GB23XXXvi5DkqR+YcBu\ncpckSa8y0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANd\nkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKk\nCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow\n0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAl\nSaoAA12SpApoeKBHRFNE/DYibii7t46In0fEgvL/Vo2uQZKkquuNFvp04OGa7jOAWzPzjcCtZbck\nSeqBhgZ6RIwEjgb+s6b3McDM8vFM4NhG1iBJ0sag0S30fwc+DbxS02/7zFxSPl4KbN/gGiRJqryG\nBXpETASWZebc9obJzASynfFPi4g5ETFn+fLljSpTkqRKaGQLfRwwKSKeAGYBh0bEZcBTETECoPy/\nrK2RM3NGZjZnZvPw4cMbWKYkSQNfwwI9Mz+bmSMzcxRwIvDfmfk+YDYwtRxsKnBdo2qQJGlj0Rfn\noZ8PvC0iFgCHl92SJKkHBvXGTDLzduD28vEK4LDemK8kSRsLrxQnSVIFGOiSJFWAgS5JUgUY6JIk\nVYCBLklSBRjokiRVgIEuSVIFGOiSJFWAgS5JUgUY6JIkVYCBLklSBRjokiRVgIEuSVIFGOiSJFWA\ngS5JUgUY6JIkVUCngR4Rm0fEJuXjN0XEpIgY3PjSJElSveppod8JDImIHYFbgCnApY0sSpIkdU09\ngR6Z+Rfg3cBFmXk8MLqxZUmSpK6oK9Aj4kDgZODGsl9T40qSJEldVU+gTwc+C/wkMx+MiNcDtzW2\nLEmS1BWDOnoyIpqASZk5qaVfZj4GfLzRhUmSpPp12ELPzDXAwb1UiyRJ6qYOW+il30bEbOAqYFVL\nz8z8ccOqkiRJXVJPoA8BVgCH1vRLwECXJKmf6DTQM/PU3ihEkiR1Xz1XintTRNwaEb8vu/eKiLMa\nX5okSapXPaetXUJx2tpqgMx8ADixkUVJkqSuqSfQX5OZ97fq93IjipEkSd1TT6A/HRFvoDgQjog4\nDljS0KokSVKX1HOU+0eAGcA/RcRi4HHgfQ2tSpIkdUk9R7k/BhweEZsDm2TmysaXpSqZdv20vi5B\nkiqv00CPiE+06gZ4HpibmfMaVJckSeqCevahNwOnAzuWf9OAo4BLIuLTDaxNkiTVqZ596COBfTLz\nRYCIOIfiNqrjgbnAVxtXniRJqkc9LfTtgL/VdK8Gts/Mv7bqL0mS+kg9LfTLgfsi4rqy+53AD8uD\n5B5qWGWSJKlu9Rzl/oWI+ClwUNnr9MycUz4+uWGVSZKkutXTQgf4DbC4ZfiI2Dkzn2xYVZIkqUvq\nOW3tY8A5wFPAGiAorhq3V2NLkyRJ9aqnhT4deHNmrmh0MZIkqXvqOcp9IcWFZCRJUj9VTwv9MeD2\niLiRmtPUMvPrDatKkiR1ST2B/mT5t2n5J0mS+pl6Tls7DyAiXpOZf2l8SZIkqas63YceEQdGxEPA\nI2X3mIi4qOGVSZKkutVzUNy/A0cCKwAycz7FddwlSVI/UU+gk5kLW/Va04BaJElSN9VzUNzCiDgI\nyIgYTHFe+sONLUuSJHVFPS3004GPUNwLfTEwtuyWJEn9RD1HuT+NN2GRJKlfq+co969GxGsjYnBE\n3BoRyyPifXWMNyQi7o+I+RHxYES0nP62dUT8PCIWlP+32hALIknSxqyeTe5HZOYLwETgCeAfgU/V\nMd7fgEMzcwzFZvqjIuIA4Azg1sx8I3Br2S1JknqgnkBv2Sx/NHBVZtZ1XfcsvFh2Di7/EjgGmFn2\nnwkcW3+5kiSpLfUE+g0R8QiwL3BrRAwHXqpn4hHRFBHzgGXAzzPzPmD7zFxSDrIU2L4bdUuSpBqd\nBnpmngEcBDRn5mpgFUUru1OZuSYzxwIjgbdExB6tnk+KVvt6IuK0iJgTEXOWL19ez+wkSdpo1XNQ\n3PHA6sxcExFnAZcBO3RlJpn5HHAbcBTwVESMKKc9gqL13tY4MzKzOTObhw8f3pXZSZK00alnk/vZ\nmbkyIg4GDge+B/xHZyNFxPCI2LJ8PBR4G8X14GcDU8vBpgLXdadwSZL0qnoCveUyr0cDMzLzRuq7\njeoI4LaIeAD4NcU+9BuA84G3RcQCih8I53e9bEmSVKueS78ujojvUrSwvxIRm1HfvvcHgL3b6L8C\nOKyrhUqSpPbV00I/AfgZcGS5L3xr6jsPXZIk9ZJ6Wtp/ycwfA89HxM4U55M/0vDKJElS3eo5yn1S\nub/7ceCO8v/NjS5MkiTVr55N7l8ADgD+JzN3pTiQ7VcNrUqSJHVJPYG+ujyQbZOI2CQzbwOaG1yX\nJEnqgnqOcn8uIoYBdwKXR8QyiqvFSZKkfqKeFvoxwF+A/w38FHgUeGcji5IkSV3TYQs9Io6luF3q\n7zLzZ7x6lzRJktSPtNtCj4iLKFrl2wBfiIize60qSZLUJR210McDY8qbsrwGuIviiHdJktTPdLQP\n/e+ZuQaKi8sA0TslSZKkruqohf5P5Y1VoAjzN5TdQXEr870aXp0kSapLR4G+W69VIUmSeqTdQM/M\nP/VmIZKkDWva9dP6ugT1onrOQ5ckSf2cgS5JUgV0dB76reX/r/ReOZIkqTs6OihuREQcBEyKiFm0\nOm0tM3/T0MokSVLdOgr0fwPOBkYCX2/1XAKHNqooSZLUNR0d5X41cHVEnJ2ZXiFOkqR+rNPbp2bm\nFyJiEsWlYAFuz8wbGluWJEnqik6Pco+ILwPTgYfKv+kR8aVGFyZJkurXaQsdOBoYm5mvAETETOC3\nwJmNLEySJNWv3vPQt6x5/LpGFCJJkrqvnhb6l4HfRsRtFKeujQfOaGhVkiSpS+o5KO5HEXE7sF/Z\n6zOZubShVUmSpC6pp4VOZi4BZje4FkmS1E1ey12SpAow0CVJqoAOAz0imiLikd4qRpIkdU+HgZ6Z\na4A/RMTOvVSPJEnqhnoOitsKeDAi7gdWtfTMzEkNq0qSJHVJPYF+dsOrkCRJPVLPeeh3RMQuwBsz\n8xcR8RqgqfGlSZKketVzc5YPAlcD3y177Qhc28iiJElS19Rz2tpHgHHACwCZuQDYrpFFSZKkrqkn\n0P+WmX9v6YiIQUA2riRJktRV9QT6HRFxJjA0It4GXAVc39iyJElSV9QT6GcAy4HfAdOAm4CzGlmU\nJEnqmnqOcn8lImYC91Fsav9DZrrJXZKkfqTTQI+Io4GLgUcp7oe+a0RMy8ybG12cJEmqTz0Xlvka\n8L8y848AEfEG4EbAQJckqZ+oZx/6ypYwLz0GrGxQPZIkqRvabaFHxLvLh3Mi4ibgSop96McDv+6F\n2iRJUp062uT+zprHTwFvLR8vB4Y2rCJJktRl7QZ6Zp7am4VIkqTuq+co912BjwGjaof39qmSJPUf\n9Rzlfi2we+fAAAALY0lEQVTwPYqrw73S2HIkSVJ31BPoL2XmNxteiSRJ6rZ6Av0bEXEOcAvwt5ae\nmfmbhlUlSZK6pJ5A3xOYAhzKq5vcs+yWJEn9QD2Bfjzw+tpbqNYjInYC/h+wPcUPgBmZ+Y2I2Bq4\nguIguyeAEzLz2a5MW5IkraueK8X9HtiyG9N+GfhkZu4OHAB8JCJ2p7h7262Z+Ubg1rJbkiT1QD0t\n9C2BRyLi16y7D73D09YycwmwpHy8MiIeBnYEjgEmlIPNBG4HPtPVwiVJ0qvqCfRzejqTiBgF7E1x\nC9bty7AHWEqxSb6tcU4DTgPYeeede1qCpO64686+rkA9ccj4vq5Avaie+6Hf0ZMZRMQw4BrgXzPz\nhYionXZGRJv3Vs/MGcAMgObmZu+/LklSBzrdhx4RKyPihfLvpYhYExEv1DPxiBhMEeaXZ+aPy95P\nRcSI8vkRwLLuFi9JkgqdBnpmbpGZr83M11LclOU9wEWdjRdFU/x7wMOZ+fWap2YDU8vHU4Hruly1\nJElaRz1Hua+VhWuBI+sYfBzl+esRMa/8ewdwPvC2iFgAHF52S5KkHqjn5izvruncBGgGXupsvMy8\nG4h2nj6sruokSVJd6jnKvfa+6C9TXAzmmIZU044/Pf8npl0/rTdnKUnSgFLPUe7eF12SpH6u3UCP\niH/rYLzMzC80oB5JktQNHbXQV7XRb3Pg/cA2gIEuSVI/0W6gZ+bXWh5HxBbAdOBUYBbwtfbGkyRJ\nva/DfejlndE+AZxMcd31fbwzmiRJ/U9H+9AvAN5NcfnVPTPzxV6rSpIkdUlHF5b5JLADcBbw55rL\nv66s99KvkiSpd3S0D71LV5GTJEl9x9CWJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECX\nJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySp\nAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIM\ndEmSKsBAlySpAgx0SZIqwECXJKkCDHRJkirAQJckqQIMdEmSKsBAlySpAgx0SZIqwECXJKkCDHRJ\nkirAQJckqQIG9XUBdVn5Itx1Z19XIUlSv2ULXZKkCjDQJUmqgIYFekR8PyKWRcTva/ptHRE/j4gF\n5f+tGjV/SZI2Jo1soV8KHNWq3xnArZn5RuDWsluSJPVQwwI9M+8EnmnV+xhgZvl4JnBso+YvSdLG\npLf3oW+fmUvKx0uB7dsbMCJOi4g5ETHnpb++3DvVSZI0QPXZQXGZmUB28PyMzGzOzOYhQwfG2XWS\nJPWV3g70pyJiBED5f1kvz1+SpErq7UCfDUwtH08Fruvl+UuSVEmNPG3tR8C9wJsjYlFEvB84H3hb\nRCwADi+7JUlSDzVs53RmntTOU4c1ap6SJG2svFKcJEkVYKBLklQBBrokSRVgoEuSVAEGuiRJFWCg\nS5JUAQa6JEkVYKBLklQBBrokSRVgoEuSVAEGuiRJFWCgS5JUAQa6JEkVYKBLklQBBrokSRVgoEuS\nVAEGuiRJFWCgS5JUAYP6ugBJUoPcdWdfV6BeZAtdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQ\nJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJ\nqgADXZKkCjDQJUmqAANdkqQKMNAlSaoAA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQKMNAlSaoA\nA12SpAow0CVJqgADXZKkCjDQJUmqAANdkqQK6JNAj4ijIuIPEfHHiDijL2qQJKlKej3QI6IJ+A7w\ndmB34KSI2L2365AkqUr6ooX+FuCPmflYZv4dmAUc0wd1SJJUGX0R6DsCC2u6F5X9JElSNw3q6wLa\nExGnAaeVnX+bccEjv+/LehpsW+Dpvi6igaq8fFVeNnD5BjqXb+B6c1dH6ItAXwzsVNM9suy3jsyc\nAcwAiIg5mdncO+X1Ppdv4KrysoHLN9C5fANXRMzp6jh9scn918AbI2LXiNgUOBGY3Qd1SJJUGb3e\nQs/MlyPio8DPgCbg+5n5YG/XIUlSlfTJPvTMvAm4qQujzGhULf2EyzdwVXnZwOUb6Fy+gavLyxaZ\n2YhCJElSL/LSr5IkVUC/DvSqXyI2Ip6IiN9FxLzuHNHY30TE9yNiWUT8vqbf1hHx84hYUP7fqi9r\n7Il2lu/ciFhcrsN5EfGOvqyxJyJip4i4LSIeiogHI2J62X/Ar8MOlq0S6y8ihkTE/RExv1y+88r+\nA37dQYfLV4n1B8VVVCPitxFxQ9nd5XXXbze5l5eI/R/gbRQXn/k1cFJmPtSnhW1AEfEE0JyZlTiP\nMiLGAy8C/y8z9yj7fRV4JjPPL3+UbZWZn+nLOrurneU7F3gxMy/sy9o2hIgYAYzIzN9ExBbAXOBY\n4BQG+DrsYNlOoALrLyIC2DwzX4yIwcDdwHTg3QzwdQcdLt9RVGD9AUTEJ4Bm4LWZObE73539uYXu\nJWIHmMy8E3imVe9jgJnl45kUX6IDUjvLVxmZuSQzf1M+Xgk8THEVxwG/DjtYtkrIwotl5+DyL6nA\nuoMOl68SImIkcDTwnzW9u7zu+nOgbwyXiE3gFxExt7wyXhVtn5lLysdLge37spgG+VhEPFBukh+Q\nmzRbi4hRwN7AfVRsHbZaNqjI+is32c4DlgE/z8xKrbt2lg+qsf7+Hfg08EpNvy6vu/4c6BuDgzNz\nLMWd5z5SbtKtrCz271TmV3XpP4DXA2OBJcDX+racnouIYcA1wL9m5gu1zw30ddjGslVm/WXmmvL7\nZCTwlojYo9XzA3rdtbN8A379RcREYFlmzm1vmHrXXX8O9LouETuQZebi8v8y4CcUuxmq5qly/2XL\nfsxlfVzPBpWZT5VfNK8AlzDA12G5f/Ia4PLM/HHZuxLrsK1lq9r6A8jM54DbKPYvV2Ld1apdvoqs\nv3HApPKYqlnAoRFxGd1Yd/050Ct9idiI2Lw8OIeI2Bw4AqjiDWhmA1PLx1OB6/qwlg2u5QNXehcD\neB2WBx59D3g4M79e89SAX4ftLVtV1l9EDI+ILcvHQykOJn6ECqw7aH/5qrD+MvOzmTkyM0dR5Nx/\nZ+b76Ma667d3W9sILhG7PfCT4nuGQcAPM/OnfVtSz0TEj4AJwLYRsQg4BzgfuDIi3g/8ieKo4gGp\nneWbEBFjKTaHPQFM67MCe24cMAX4XbmvEuBMqrEO21u2kyqy/kYAM8uzgzYBrszMGyLiXgb+uoP2\nl+8HFVl/beny567fnrYmSZLq1583uUuSpDoZ6JIkVYCBLklSBRjokiRVgIEuSVIFGOjSRi4ijo2I\njIh/6utaJHWfgS7pJIq7V53U14VI6j4DXdqIldc2Pxh4P8VVqoiITSLiooh4pLwP800RcVz53L4R\ncUd5Q6GftbpSl6Q+ZKBLG7djgJ9m5v8AKyJiX4p7aI8Cdqe4utqBsPZa6N8CjsvMfYHvA1/si6Il\nra/fXvpVUq84CfhG+XhW2T0IuKq84cXSiLitfP7NwB7Az8tLFjdR3OFKUj9goEsbqYjYGjgU2DMi\nkiKgk+LOf22OAjyYmQf2UomSusBN7tLG6zjgB5m5S2aOysydgMeBZ4D3lPvSt6e4IQ3AH4DhEbF2\nE3xEjO6LwiWtz0CXNl4nsX5r/BrgH4BFwEPAZcBvgOcz8+8UPwK+EhHzgXnAQb1XrqSOeLc1SeuJ\niGGZ+WJEbAPcD4zLzKV9XZek9rkPXVJbboiILYFNgS8Y5lL/ZwtdkqQKcB+6JEkVYKBLklQBBrok\nSRVgoEuSVAEGuiRJFWCgS5JUAf8fDd+qD278eEEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('full:', 891)\n", + "('nb', 421, 'percent survived', 0.17577197149643706, \" in cat Sex == 'male' | Age >= 10\")\n", + "('nb', 351, 'percent survived', 0.18233618233618235, \" in cat Sex == 'male' | Age > 20\")\n", + "('nb', 205, 'percent survived', 0.15609756097560976, \" in cat Sex == 'male' | Age >= 10 | Age < 30\")\n", + "('nb', 144, 'percent survived', 0.1388888888888889, \" in cat Sex == 'male' | Age >= 10 | Age < 30 | Pclass == 3\")\n" + ] + } + ], + "source": [ + "def checkSurvived(data, filters):\n", + " all_data = data\n", + " for condition in filters:\n", + " all_data = vs.filter_data(all_data, condition)\n", + " \n", + " print(\"nb\", len(all_data), \"percent survived\", len(all_data[all_data[\"Survived\"] ==1]) / float(len(all_data[all_data[\"Survived\"]])), \" in cat \" + ' | '.join(filters))\n", + " return all_data\n", + "\n", + "vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'female'\", \"Age > 0\", \"Age < 35\"])\n", + "#vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'male'\", \"Age >= 20\"])\n", + "\n", + "print(\"full:\",len(full_data))\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\"])\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age > 20\"])\n", + "checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\", \"Age < 30\"])\n", + "t = checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\", \"Age < 30\", \"Pclass == 3\"])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction. \n", + "Make sure to keep track of the various features and conditions you tried before arriving at your final prediction model. \n", + "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_2`." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 80.58%.\n", + "('nb', 314, 'percent survived', 0.7420382165605095, \" in cat Sex == 'female'\")\n", + "('nb', 81, 'percent survived', 0.0, ' in cat Survived == 0')\n" + ] + } + ], + "source": [ + "def predictions_3(data):\n", + " \"\"\" Model with multiple features. Makes a prediction with an accuracy of at least 80%. \"\"\"\n", + " \n", + " predictions = []\n", + " test = []\n", + " i = 0\n", + " for _, passenger in data.iterrows():\n", + " \n", + " # Remove the 'pass' statement below \n", + " # and write your prediction conditions here\n", + " if passenger['Sex'] == 'female':\n", + " if passenger[\"Pclass\"] == 3 and passenger[\"SibSp\"] >= 2:\n", + " predictions.append(0)\n", + " else:\n", + " predictions.append(1)\n", + " else:\n", + " if passenger['Age'] < 10.0:\n", + " predictions.append(1)\n", + " else:\n", + " predictions.append(0)\n", + " \n", + " \n", + " i +=1 \n", + " \n", + " # Return our predictions\n", + " return pd.Series(predictions), test\n", + "\n", + "# Make the predictions\n", + "predictions,test = predictions_3(full_data)\n", + "print accuracy_score(outcomes, predictions)\n", + "import pandas as pd\n", + "#testdata = checkSurvived(full_data, [\"Sex == 'male'\", \"Age >= 10\"])\n", + "testdata = checkSurvived(full_data, [\"Sex == 'female'\"])\n", + "\n", + "surv = checkSurvived(testdata, [\"Survived == 0\"])\n", + "\n", + "gb = [\"Pclass\", \"SibSp\", \"Parch\"]\n", + "dfall = pd.DataFrame(testdata).groupby(gb).count()\n", + "dfSurv = pd.DataFrame(surv).groupby(gb).count()\n", + "\n", + "#dfSurv / dfall\n", + "#dfSurv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "*Describe the steps you took to implement the final prediction model so that it got an accuracy of at least 80%. What features did you look at? Were certain features more informative than others? Which conditions did you use to split the survival outcomes in the data? How accurate are your predictions?* \n", + "**Hint:** Run the code cell below to see the accuracy of your predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions have an accuracy of 80.58%.\n" + ] + } + ], + "source": [ + "print accuracy_score(outcomes, predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer**: *I got an accuracy of 80.58%. Initially i used the filter function to check various features and compute the percent survived. However, to get a better idea of cells of survival / death, I then moved to using group by count to compare dataframes for dead against all female. I then tried to find cells that gave more than 50% dead females. One such area of cells gave me the result - see code. Turns out class 3 with more than 1 increases your probability of death as a woman.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion\n", + "\n", + "After several iterations of exploring and conditioning on the data, you have built a useful algorithm for predicting the survival of each passenger aboard the RMS Titanic. The technique applied in this project is a manual implementation of a simple machine learning model, the *decision tree*. A decision tree splits a set of data into smaller and smaller groups (called *nodes*), by one feature at a time. Each time a subset of the data is split, our predictions become more accurate if each of the resulting subgroups are more homogeneous (contain similar labels) than before. The advantage of having a computer do things for us is that it will be more exhaustive and more precise than our manual exploration above. [This link](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) provides another introduction into machine learning using a decision tree.\n", + "\n", + "A decision tree is just one of many models that come from *supervised learning*. In supervised learning, we attempt to use features of the data to predict or model things with objective outcome labels. That is to say, each of our data points has a known outcome value, such as a categorical, discrete label like `'Survived'`, or a numerical, continuous value like predicting the price of a house.\n", + "\n", + "### Question 5\n", + "*Think of a real-world scenario where supervised learning could be applied. What would be the outcome variable that you are trying to predict? Name two features about the data used in this scenario that might be helpful for making the predictions.* " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "**Answer**: *I could use supervised learning on a set of bonds. The outcome would be outperformance of a bond against the benchmark index by 3 % over 1 year. Two features that might be helpful to make this prediction is the credit rating and expected remaining life of a bond.*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}